Liquid-crystalline compounds

The present invention relates to liquid-crystalline compounds and to a liquid-crystalline medium, to the use thereof for electro-optical purposes, and to displays containing this medium.

Liquid crystals are used principally as dielectrics in display devices, since the optical properties of such substances can be modified by an applied voltage. Electro-optical devices based on liquid crystals are extremely well known to the person skilled in the art and can be based on various effects. Examples of such devices are cells having dynamic scattering, DAP (deformation of aligned phases) cells, guest/host cells, TN cells having a twisted nematic structure, STN (supertwisted nematic) cells, SBE (super-birefringence effect) cells and OMI (optical mode interference) cells. The commonest display devices are based on the Schadt-Helfrich effect and have a twisted nematic structure.

The liquid-crystal materials must have good chemical and thermal stability and good stability to electric fields and electromagnetic radiation. Furthermore, the liquid-crystal materials should have low viscosity and produce short addressing times, low threshold voltages and high contrast in the cells.

They should furthermore have a suitable mesophase, for example a nematic or cholesteric mesophase for the above-mentioned cells, at the usual operating temperatures, i.e. in the broadest possible range above and below room temperature. Since liquid crystals are generally used as mixtures of a plurality of components, it is important that the components are readily miscible with one another. Further properties, such as the electrical conductivity, the dielectric anisotropy and the optical anisotropy, have to satisfy various requirements depending on the cell type and area of application. For example, materials for cells having a twisted nematic structure should have positive dielectric anisotropy and low electrical conductivity.

For example, for matrix liquid-crystal displays with integrated non-linear elements for switching individual pixels (MLC displays), media having large positive dielectric anisotropy, broad nematic phases, relatively low bire-fringence, very high specific resistance, good UV and temperature stability and low vapour pressure are desired.

Matrix liquid-crystal displays of this type are known. Non-linear elements which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors). The term "active matrix" is then used, where a distinction can be made between two types:

- 1. MOS (metal oxide semiconductor) or other diodes on a silicon wafer as substrate.
- 15 2. Thin-film transistors (TFTs) on a glass plate as substrate.

The use of single-crystal silicon as substrate material restricts the display size, since even modular assembly of various part-displays results in problems at the joins.

20 In th

In the case of the more promising type 2, which is preferred, the electrooptical effect used is usually the TN effect. A distinction is made between two technologies: TFTs comprising compound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon. Intensive work is being carried out world-wide on the latter technology.

25

30

5

10

The TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counterelectrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image. This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.

35

The TFT displays usually operate as TN cells with crossed polarisers in transmission and are back-lit.

WO 2004/048501 PCT/EP2003/012813 - 3 -

The term MLC displays here encompasses any matrix display with integrated non-linear elements, i.e., besides the active matrix, also displays with passive elements, such as varistors or diodes (MIM = metal-insulator-metal).

5

10

15

20

25

30

35

MLC displays of this type are particularly suitable for TV applications (for example pocket television sets) or for high-information displays for computer applications (laptops) and in automobile or aircraft construction. Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S., SEKI-GUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. With decreasing resistance, the contrast of an MLC display deteriorates, and the problem of after-image elimination may occur. Since the specific resistance of the liquid-crystal mixture generally drops over the life of an MLC display owing to interaction with the interior surfaces of the display, a high (initial) resistance is very important in order to obtain acceptable service lives. In particular in the case of low-volt mixtures, it was hitherto impossible to achieve very high specific resistance values. It is furthermore important that the specific resistance exhibits the smallest possible increase with increasing temperature and after heating and/or UV exposure. The low-temperature properties of the mixtures from the prior art are also particularly disadvantageous. It is demanded that no crystallisation and/or smectic phases occur, even at low temperatures, and

There thus continues to be a great demand for MLC displays having very high specific resistance at the same time as a large working-temperature range, short response times even at low temperatures and low threshold

the temperature dependence of the viscosity is as low as possible. The MLC displays from the prior art thus do not meet today's requirements.

voltage which do not have these disadvantages, or only do so to a reduced extent.

In TN (Schadt-Helfrich) cells, media are desired which facilitate the following advantages in the cells:

- extended nematic phase range (in particular down to low temperatures)
- the ability to switch at extremely low temperatures (outdoor use, automobile, avionics)
 - increased resistance to UV radiation (longer service life).

20

25

30

35

The media available from the prior art do not allow these advantages to be achieved while simultaneously retaining the other parameters.

In the case of supertwisted (STN) cells, media are desired which enable greater multiplexability and/or lower threshold voltages and/or broader nematic phase ranges (in particular at low temperatures). To this end, a further widening of the available parameter latitude (clearing point, smectic-nematic transition or melting point, viscosity, dielectric parameters, elastic parameters) is urgently desired.

The invention has the object of providing media, in particular for MLC, IPS, TN or STN displays of this type, which do not have the above-mentioned disadvantages or only do so to a reduced extent, and preferably simultaneously have very high specific resistance values and low threshold voltages. This object requires liquid-crystalline compounds which have a high clearing point and low rotational viscosity.

It has now been found that this object can be achieved if the liquid-crystalline compounds according to the invention are used.

The invention thus relates to liquid-crystalline compounds of the formula I

$$R^{1}-(A^{1}-Z^{1})_{a}$$
 $-(Z^{2}-A^{2})_{b}$ $-CF_{2}O-(A^{3}-Z^{3})_{c}$ $-A^{4}-R^{2}$

5 in which

10

20

25

30

35

R¹ and R²

each, independently of one another, denote H, halogen, a halogenated or unsubstituted alkyl or alkoxy radical having 1 to 15 C atoms, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another, where one of the radicals R¹ and R² may alternatively denote CN, OCN, SCN, NCS or SF₅,

15 A^1, A^2, A^3 and A^4

each, independently of one another, denote

 Z^1 , Z^2 and Z^3 each, independently of one another, denote -CO-O-, -O-CO-, -CF₂O-, -OCF₂-, -CH₂O-, -OCH₂-, -CH₂CH₂-, -CH₂CH₂-, -CF=CF-, -CH=CH-, -C=C- or a single bond, and

a, b and c each, independently of one another, denote 0, 1, 2 or 3, where $a + b + c \le 3$.

10

15

20

25

35

The invention furthermore relates to the use of the compounds of the formula I in liquid-crystalline media.

The compounds of the formula I have a broad range of applications. Depending on the choice of substituents, these compounds can serve as base materials of which liquid-crystalline media are predominantly composed; however, it is also possible to add compounds of the formula I to liquid-crystalline base materials from other classes of compound in order, for example, to modify the dielectric and/or optical anisotropy of a dielectric of this type and/or in order to optimise its threshold voltage and/or its viscosity.

In the pure state, the compounds of the formula I are colourless and form liquid-crystalline mesophases in a temperature range which is favourably located for electro-optical use. In particular, the compounds according to the invention are distinguished by their broad nematic phase range. In liquid-crystalline mixtures, the substances according to the invention suppress the smectic phases and result in a significant improvement in the low-temperature storage stability. They are stable chemically, thermally and to light.

The invention relates, in particular, to the compounds of the formula I in which R¹ is alkyl or alkenyl, and R² is halogen or OCF₃. Halogen is preferably F, furthermore CI.

Particular preference is given to compounds of the formula I in which a=0, furthermore a=1. Z^1 , Z^2 and/or Z^3 preferably denotes a single bond, furthermore -CF₂O-, -OCF₂-, -C₂F₄-, -CH₂O-, -OCH₂- or -COO-.

A¹, A², A³ and A⁴ preferably denote
$$H$$
, O , O , F or O .

$$A^4$$
 denotes in particular O or O

5 Particular preference is given to compounds of the formulae IA

$$R^{1} \underbrace{ \left(\begin{array}{c} H \\ \end{array} \right)}_{a} \underbrace{ \left(\begin{array}{c} CF_{2}O \\ \end{array} \right)}_{b} \underbrace{ \left(\begin{array}{c} CF_{2}O \\ \end{array} \right)}_{A} X$$

in which

25

a and b each denote 0, 1 or 2 and a + b = 1 or 2. Preferably, a = 1 and b = 0 or a = 0 and b = 1. Preferably, $L^1 = F$ and $L^2 = H$ or fluorine, in particular $L^1 = L^2 =$ fluorine.

 R^1 preferably denotes alkyl, alkoxy, alkenyl or alkenyloxy. R^2 preferably denotes F, Cl, OCF₃, OCHF₂, OCHFCF₃, OCF₂CHFCF₃, CN, SF₅, NCS or SCN, in particular F or OCF₃, and R^1 preferably denotes straight-chain alkyl or alkenyl. L^1 and L^2 each, independently of one another, denote H or F. Particular preference is given to compounds in which $X = L^1 = L^2 = 1$ fluorine, furthermore $X = CCF_3$ and $L^1 = L^2 = 1$.

Particularly preferred compounds of the formula I are the compounds of the formulae I1 to I31,

$$R^1$$
 CF_2O O X

$$R^{1} \longrightarrow CF_{2}O \longrightarrow X$$
 12

$$R^{1}$$
 \longrightarrow $CH_{2}CH_{2}$ \longrightarrow $CF_{2}O$ \longrightarrow O \longrightarrow $CF_{2}O$ \longrightarrow O \longrightarrow O

$$R^1$$
 \longrightarrow CH_2CH_2 \longrightarrow CF_2O \longrightarrow X 15

$$R^1$$
 \longrightarrow CH_2CH_2 \longrightarrow CF_2O \longrightarrow \longrightarrow CF_2O \longrightarrow CF_2O \longrightarrow O \longrightarrow O

$$R^{1}$$
 O H $CF_{2}O$ O O X $I7$

$$R^1$$
 O H CF_2O O O X 18

$$R^1$$
 O H CF_2O O F CF_2O O F O F

30

35

$$R^1$$
 O H CF_2O O O X $I10$

R¹ CF_2O O COO O X I13

 R^{1} O H $CF_{2}O$ O COO O X I14

 R^1 CF_2O O COO O F COO CO

$$R^1$$
 CF_2O CF_2O

$$R^1$$
 H CF_2O O X $I19$

$$R^1$$
 H CF_2O O X $I20$

$$R^1$$
 H CF_2O O X $I21$

$$R^1 \longrightarrow CF_2O \longrightarrow X$$

$$R^1$$
 O H CF_2O O X 123

$$R^1$$
 \longrightarrow H \longrightarrow CF_2O \longrightarrow X 124

$$R^1$$
 O O CF_2O O X 125

$$R^1$$
 O O CF_2O O X 126

$$R^{1} \longrightarrow O \longrightarrow O \longrightarrow CF_{2}O \longrightarrow CF_{2}O \longrightarrow F$$

$$R^1$$
 O O CF_2O O X 130

10

in which R¹ has the meaning indicated above. X has the meaning of R².

The compounds of the formula I can be separated into the enantiomers very easily by passing the racemate, for example, through a chiral HPLC column. The invention therefore relates to the compounds of the formula I both in the form of the racemate and the enantiomer.

20

The compounds of the formula I are prepared by methods known per se, as described in the literature (for example in the standard works, such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise under reaction conditions which are known and suitable for the said reactions. Use can also be made here of variants which are known per se, but are not mentioned here in greater detail.

25

The compounds of the formula I can be prepared, for example, as follows:

30

Scheme 1

25

30

Scheme 2

5

$$R^{1}$$
- $(-A^{1}-Z^{1})_{a}$ O $CF_{2}Br_{2}$, $P(NMe_{2})_{3}$, R^{1} - $(A^{1}-Z^{1})_{a}$ O $THF/dioxane$; RT , R^{1} - $(A^{1}-Z^{1})_{a}$

15
$$\frac{H_2, 5\% \text{ Rh/C};}{80^{\circ}\text{C, THF}} \qquad \text{R}^1 - (\text{A}^1 - \text{Z}^1)_a \longrightarrow \text{O} \longrightarrow \text{H} \longrightarrow \text{CF}_2\text{O} \longrightarrow \text{Q} \longrightarrow \text{R}^2$$

Scheme 3

$$R^{1}-(A^{1}-Z^{1})_{a} \xrightarrow{O} O \rightarrow Br \xrightarrow{1. \text{ BuLi, THF; -40°C}} R^{1}-(A^{1}-Z^{1})_{a} \xrightarrow{O} O \rightarrow COOH$$

25
$$R^{1}-(A^{1}-Z^{1})_{a}$$

$$HS(CH_{2})_{3}SH, TfOH,$$

$$R^{1}-(A^{1}-Z^{1})_{a}$$

$$R^{1}-(A^{1}-Z^{1})_{a}$$

$$CF_{a}SC$$

toluene/i-octane; -H2O

Scheme 4

$$R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$\frac{HS(CH_{2})_{3}SH, TfOH,}{2. CO_{2}} \longrightarrow R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

15

35

Scheme 5 (L¹ and L²: H or F)

20

1. Li
$$\bigcirc$$
 , Et₂O

$$R^{1} \bigcirc \bigcirc$$
 0

$$R^{1} \bigcirc \bigcirc$$
 1. n-BuLi, THF, - 78°C

2. B (OCH₃)₃
3. HCl

$$R^{1} \bigcirc$$
 0

$$R^{2} \bigcirc$$
 1. n-BuLi, THF, - 78°C

2. B (OCH₃)₃
3. HCl

$$R^{2} \bigcirc$$
 0

The invention also relates to electro-optical displays (in particular STN or MLC displays having two plane-parallel outer plates, which, together with a frame, form a cell, integrated non-linear elements for switching individual pixels on the outer plates, and a nematic liquid-crystal mixture of positive dielectric anisotropy and high specific resistance which is located in the cell) which contain media of this type, and to the use of these media for electro-optical purposes.

The liquid-crystal mixtures according to the invention enable a significant widening of the available parameter latitude.

The achievable combinations of clearing point, viscosity at low temperature, thermal and UV stability and dielectric anisotropy are far superior to previous materials from the prior art.

15

10

5

The requirement for a high clearing point, a nematic phase at low temperature and a high $\Delta\epsilon$ has hitherto only been satisfied to an inadequate extent. Although liquid-crystal mixtures such as, for example, MS 99295 (Merck KGaA, Darmstadt, Germany) have comparable clearing points and low-temperature stabilities, they have, however, relatively high Δn values and also higher threshold voltages of about $\geq 1.7 \text{ V}$.

20

Other mixture systems have comparable viscosities and $\Delta\epsilon$ values, but only have clearing points in the region of 60°C.

25

30

The liquid-crystal mixtures according to the invention, while retaining the nematic phase down to -20°C and preferably down to -30°C, particularly preferably down to -40°C, enable clearing points above 80°, preferably above 90°, particularly preferably above 100°C, simultaneously dielectric anisotropy values $\Delta\epsilon$ of \geq 4, preferably \geq 6, and a high value for the specific resistance to be achieved, enabling excellent STN and MLC displays to be obtained. In particular, the mixtures are characterised by low operating voltages. The TN thresholds are below 1.5 V, preferably below 1.3 V.

35

It goes without saying that, through a suitable choice of the components of the mixtures according to the invention, it is also possible for higher clearing points (for example above 110°) to be achieved at higher threshold voltage or lower clearing points to be achieved at lower threshold voltages with retention of the other advantageous properties. At viscosities correspondingly increased only slightly, it is likewise possible to obtain mixtures having greater $\Delta \varepsilon$ and thus lower thresholds. The MLC displays according to the invention preferably operate at the first Gooch and Tarry transmission minimum [C.H. Gooch and H.A. Tarry, Electron. Lett. 10, 2-4, 1974; C.H. Gooch and H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], where, besides particularly favourable electro-optical properties, such as, for example, high steepness of the characteristic line and low angle dependence of the contrast (German Patent 30 22 818), a lower dielectric anisotropy is sufficient at the same threshold voltage as in an analogous display at the second minimum. This enables significantly higher specific resistance values to be achieved using the mixtures according to the invention at the first minimum than in the case of mixtures comprising cyano compounds. Through a suitable choice of the individual components and their proportions by weight, the person skilled in the art is able to set the birefringence necessary for a pre-specified layer thickness of the MLC display using simple routine methods.

20

5

10

15

The flow viscosity v_{20} at 20°C is preferably < 60 mm² · s⁻¹, particularly preferably < 50 mm² · s⁻¹. The nematic phase range is preferably at least 90°, in particular at least 100°. This range preferably extends at least from -30° to +80°. The rotational viscosity γ_1 at 20°C is preferably < 200 mPa·s, particularly preferably < 180 mPa·s, in particular < 160 mPa·s.

30

25

Measurements of the capacity holding ratio (HR) [S. Matsumoto et al., Liquid Crystals <u>5</u>, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals <u>5</u>, 1381 (1989)] have shown that mixtures according to the invention comprising compounds of the formula I exhibit a significantly smaller decrease in the HR with increasing temperature than analogous mixtures comprising cyanophenylcyclohexanes of the formula R—(H)—(O)—CN or esters of

the formula R O C-O O CN instead of the compounds of the formula I.

- The UV stability of the mixtures according to the invention is also considerably better, i.e. they exhibit a significantly smaller decrease in the HR on exposure to UV.
- The media according to the invention are preferably based on a plurality of (preferably two, three or more) compounds of the formula I, i.e. the proportion of these compounds is 5-95%, preferably 10-60% and particularly preferably in the range 15-40%.
- The individual compounds of the formulae I to IX and their sub-formulae which can be used in the media according to the invention are either known or they can be prepared analogously to the known compounds.

Preferred embodiments are indicated below:

- The medium preferably comprises one, two or three homologous compounds of the formula I, where each homologue is present in the mixture in a maximum amount of 10%.
- Medium additionally comprises one or more compounds selected from the group consisting of the general formulae II to IX:

$$R^0$$
 H O X^0 H

$$R^{0} \longrightarrow H \longrightarrow C_{2}H_{4} \longrightarrow O \longrightarrow X^{0} \longrightarrow X^{0}$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad IV$$

$$R^{0} \xrightarrow{H} Z^{0} \xrightarrow{V} X^{0} \qquad V$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad VI$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad VI$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad VII$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad VIII$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad VIII$$

$$R^{0} \xrightarrow{H} C_{2}^{0} \xrightarrow{V} X^{0} \qquad VIII$$

in which the individual radicals have the following meanings:

25

30

35

n-alkyl, oxaalkyl, fluoroalkyl, alkenyloxy or alkenyl, each having up to 9 C atoms,

5 F, CI, halogenated alkyl, halogenated alkenyl, halogenated alkenyl part of 7 C atoms,

Z⁰ -CH=CH-, -C₂H₄-, -(CH₂)₄-, -C₂F₄-, -CH₂O-, -OCH₂-, -CF=CF-, -CF₂O-, -OCF₂- or -COO-,

10 Y_{1} , Y_{2} , Y_{3} and Y_{4} each, independently of one another, H or F, and r 0 or 1.

The compound of the formula IV is preferably

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow X^0$$

$$R^0$$
 H O O X^0

$$R^0$$
 H
 O
 F
 O
 F
 X^0

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow F \longrightarrow K^0$$

or

5

35

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow F \longrightarrow X^0$$

15 - The medium preferably comprises one or more compounds of the formulae

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow OCF_3$$

$$R^{0} \longrightarrow H \longrightarrow O \longrightarrow OCF_{2}H$$

$$R^{0} \longrightarrow H \longrightarrow COO \longrightarrow F$$

$$R^0$$
 H O COO O F

$$R^0$$
 H O O F

$$R^0 \longrightarrow 0 \longrightarrow F$$

$$R^0$$
 H H O F

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow F$$

$$R^0$$
 H H O F

$$R^0$$
 H C_2F_4 H CF_2O O F

$$R^0 H O COO O OCF_3$$

5 and/or

10

$$R^0$$
 H O F

in which R⁰ and Y² have the meanings indicated above.

The medium preferably comprises one, two or three, furthermore four, homologues of the compounds selected from the group consisting of H1 to H19 (n = 1-7):

$$C_nH_{2n+1} - H - O - F + H2$$

$$C_nH_{2n+1}$$
 H H O F H4

$$C_{n}H_{2n+1} \xrightarrow{H} C_{2}H_{4} \xrightarrow{H} O \xrightarrow{F} H5$$

$$C_{n}H_{2n+1} \xrightarrow{H} H \xrightarrow{H} C_{2}H_{4} \xrightarrow{O} F$$

$$C_{n}H_{2n+1} \xrightarrow{H} H \xrightarrow{H} O \xrightarrow{F} H7$$

$$C_{n}H_{2n+1} \xrightarrow{H} H \xrightarrow{H} O \xrightarrow{F} OCF_{3}$$

$$C_{n}H_{2n+1} \xrightarrow{H} H \xrightarrow{F} H9$$

$$C_{n}H_{2n+1} \xrightarrow{H} O \xrightarrow{F} H10$$

$$C_nH_{2n+1}$$
 H
 O
 COO
 O
 F
 F
 $H13$

$$C_nH_{2n+1}$$
 H COO O F $H14$

$$C_nH_{2n+1}$$
 H H COO O F H15

$$C_nH_{2n+1}$$
 H CF_2O F H16

$$C_nH_{2n+1}$$
 H CF_2O O F $H17$

$$C_nH_{2n+1}$$
 O O CF_2O O F $H19$

 The medium additionally comprises one or more compounds selected from the group consisting of the general formulae X to XV:

10 $R^0 \longrightarrow H \longrightarrow H \longrightarrow CF_2O \longrightarrow X^0 XI$

 $R^{0} \longrightarrow H \longrightarrow O \longrightarrow X^{1} \longrightarrow X^{1}$

 $R^{0} \longrightarrow H \longrightarrow C_{2}H_{4} \longrightarrow O \longrightarrow X^{0} \longrightarrow XIII$

 $R^{0} \longrightarrow H \longrightarrow C_{2}H_{4} \longrightarrow H \longrightarrow O \longrightarrow X^{0} \longrightarrow XIV$

 $R^0 \longrightarrow H \longrightarrow O \longrightarrow H \longrightarrow X^0 \longrightarrow XV$

in which R^0 , X^0 , Y^1 , Y^2 , Y^3 and Y^4 each, independently of one another, have one of the meanings indicated in Claim 8. X^0 preferably denotes F,

CI, CF₃, OCF₃ or OCHF₂. R⁰ preferably denotes alkyl, oxaalkyl, fluoroalkyl, alkenyl or alkenyloxy.

- The proportion of compounds of the formulae I to IX together in the mixture as a whole is at least 50% by weight.
 - The proportion of compounds of the formula I in the mixture as a whole is 5 to 50% by weight.
- The proportion of compounds of the formula II in the mixture as a whole is 3-40% by weight.
 - The proportion of compounds of the formulae II to IX in the mixture as a whole is 30 to 70% by weight.

- The medium comprises compounds of the formulae II, III, IV, V, VI, VII, VII, VIII and/or IX.

- Ro is straight-chain alkyl or alkenyl having 2 to 7 C atoms.
- The medium essentially consists of compounds of the formulae I to XV.

- The medium comprises 5-40% by weight of compounds of the formulae H17 and/or H18.
- The medium comprises further compounds, preferably selected from the following group consisting of the general formulae XVI to XX:

$$R^0 - O - O - X^0$$
 XVI

15
$$R^0 \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow O \longrightarrow X^0$$
 XVII

$$R^0 \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow O \longrightarrow X^0$$
 XVIII

$$R^0 \longrightarrow C_2H_4 \longrightarrow C \longrightarrow X^0$$

$$R^{0} \longrightarrow O \longrightarrow F \longrightarrow F$$

$$XX$$

30

in which R^o and X^o have the meanings indicated above, and the 1,4-phenylene rings may be substituted by CN, chlorine or fluorine. The 1,4-phenylene rings are preferably mono- or polysubstituted by fluorine atoms.

35

 The medium comprises further compounds, preferably selected from the following group consisting of the formulae RI to RIX

R⁰ denotes n-alkyl, oxaalkyl, fluoroalkyl, alkenyloxy or alkenyl, each having up to 9 C atoms,

d denotes 0, 1 or 2,

WO 2004/048501 PCT/EP2003/012813

	Y ¹	denotes H or F,			
5	alkyl or alkyl*	each, independently of one another, denote a straight-chain or branched alkyl radical having 1-9 C atoms,			
10	alkenyl or alkenyl*	each, independently of one another, denote a straight-chain or branched alkenyl radical having up to 9 C atoms.			
	- The medium preferably comprises one or more compounds of the formulae				
15	C _n H _{2n} ₊	$H \longrightarrow H \longrightarrow C_m H_{2m+1}$	Rla		
20	C_nH_{2n}	$H \rightarrow H \rightarrow C_m H_{2m+1}$	Rlb		
	C _n H _{2n} ,	H H	Rlla		
25	C_nH_{2n}	H H	RIIb		
		H H	RIIIa		
30	//	H H	RIIIb		
		H H	RIIIc		
35	C_nH_{2n}	H H CF_3	RIVa		

in which n and m each denote an integer from 1 to 9.

- The I: (II + III + IV + V + VI + VIII + IX) weight ratio is preferably 1: 10 to 10: 1.
 - The medium essentially consists of compounds selected from the group consisting of the general formulae I to XV.
- It has been found that even a relatively small proportion of compounds of the formula I mixed with conventional liquid-crystal materials, but in particular with one or more compounds of the formula II, III, IV, V, VI, VII, VIII or IX results in a considerable lowering of the threshold voltage and in low birefringence values, with broad nematic phases with low smectic-nematic transition temperatures being observed at the same time, improving the storage stability. The compounds of the formulae I to IX are colourless, stable and readily miscible with one another and with other liquid-crystal materials.
- The term "alkyl" or "alkyl*" encompasses straight-chain and branched alkyl groups having 1-9 carbon atoms, in particular the straight-chain groups methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl. Groups having 2-5 carbon atoms are generally preferred.
- The term "alkenyl" or "alkenyl*" encompasses straight-chain and branched alkenyl groups having up to 9 carbon atoms, in particular the straight-chain groups. Particularly preferred alkenyl groups are C₂-C₇-1E-alkenyl, C₄-C₇-3E-alkenyl, C₅-C₇-4-alkenyl, C₆-C₇-5-alkenyl and C₇-6-alkenyl, in particular C₂-C₇-1E-alkenyl, C₄-C₇-3E-alkenyl and C₅-C₇-4-alkenyl. Examples of preferred alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 carbon atoms are generally preferred.
- The term "fluoroalkyl" preferably encompasses straight-chain groups having a terminal fluorine, i.e. fluoromethyl, 2-fluoroethyl, 3-fluoropropyl,

15

20

35

.4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl and 7-fluoroheptyl. However, other positions of the fluorine are not excluded.

The term "oxaalkyl" preferably encompasses straight-chain radicals of the formula C_nH_{2n+1} -O-(CH_2)_m, in which n and m each, independently of one another, denote 1 to 6. Preferably, n = 1 and m denotes 1 to 6.

Through a suitable choice of the meanings of R⁰ and X⁰, the addressing times, the threshold voltage, the steepness of the transmission characteristic lines, etc., can be modified in the desired manner. For example, 1E-alkenyl radicals, 3E-alkenyl radicals, 2E-alkenyloxy radicals and the like generally result in shorter addressing times, improved nematic tendencies and a higher ratio of the elastic constants k₃₃ (bend) and k₁₁ (splay) compared with alkyl or alkoxy radicals. 4-alkenyl radicals, 3-alkenyl radicals and the like generally give lower threshold voltages and smaller values of k₃₃/k₁₁ compared with alkyl and alkoxy radicals.

A -CH₂CH₂- group in Z^1 and/or Z^2 generally results in higher values of k_{33}/k_{11} compared with a single covalent bond. Higher values of k_{33}/k_{11} facilitate, for example, flatter transmission characteristic lines in TN cells with a 90° twist (in order to achieve grey shades) and steeper transmission characteristic lines in STN, SBE and OMI cells (greater multiplexability), and vice versa.

The optimum mixing ratio of the compounds of the formulae I and II + III + IV + V + VI + VII + VIII + IX depends substantially on the desired properties, on the choice of the components of the formulae I, II, III, IV, V, VI, VII, VIII and/or IX, and on the choice of any other components that may be present. Suitable mixing ratios within the range given above can easily be determined from case to case.

The total amount of compounds of the formulae I to XV in the mixtures according to the invention is not crucial. The mixtures can therefore comprise one or more further components for the purposes of optimisation of various properties. However, the observed effect on the addressing times

and the threshold voltage is generally greater, the higher the total concentration of compounds of the formulae I to XV.

In a particularly preferred embodiment, the media according to the invention comprise compounds of the formulae II to IX (preferably II and/or III) in which X⁰ denotes OCF₃, OCHF₂, F, OCH=CF₂, OCF=CF₂, OCF₂CHFCF₃ or OCF₂-CF₂H. A favourable synergistic effect with the compounds of the formula I results in particularly advantageous properties.

The construction of the MLC display according to the invention from polarisers, electrode base plates and surface-treated electrodes corresponds to the conventional construction for displays of this type. The term conventional construction is broadly drawn here and also encompasses all derivatives and modifications of the MLC display, in particular including matrix display elements based on poly-Si TFT or MIM.

A significant difference between the displays according to the invention and the hitherto conventional displays based on the twisted nematic cell consists, however, in the choice of the liquid-crystal parameters of the liquid-crystal layer.

20

25

30

35

The liquid-crystal mixtures which can be used in accordance with the invention are prepared in a manner conventional per se. In general, the desired amount of the components used in lesser amount is dissolved in the components making up the principal constituent, advantageously at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after thorough mixing.

The dielectrics may also comprise further additives known to the person skilled in the art and described in the literature, such as, for example stabilisers and antioxidants. For example, 0-15% of pleochroic dyes or chiral dopants can be added.

C denotes a crystalline phase, S a smectic phase, S_C a smectic C phase, S_B a smectic B phase, N a nematic phase and I the isotropic phase.

V₁₀ denotes the voltage for 10% transmission (viewing angle perpendicular to the plate surface). t_{on} denotes the switch-on time and t_{off} the switch-off time at an operating voltage corresponding to 2 times the value of V₁₀. Δn denotes the optical anisotropy and n_o the refractive index. Δε denotes the dielectric anisotropy ($\Delta \epsilon = \epsilon_{\parallel} - \epsilon_{\perp}$, where ϵ_{\parallel} denotes the dielectric constant parallel to the longitudinal molecular axes and ϵ_{\perp} the dielectric constant perpendicular thereto). The electro-optical data were measured in a TN cell at the 1st minimum (i.e. at a d · Δn value of 0.5 μm) at 20°C, unless expressly stated otherwise. The optical data were measured at 20°C, unless expressly stated otherwise.

In the present application and in the examples below, the structures of the liquid-crystal compounds are indicated by means of acronyms, the transformation into chemical formulae taking place in accordance with Tables A and B below. All radicals C_nH_{2n+1} and C_mH_{2m+1} are straight-chain alkyl radicals having n and m C atoms respectively; n and m are each, independently of one another, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. The coding in Table B is self-evident. In Table A, only the acronym for the parent structure is indicated. In individual cases, the acronym for the parent structure is followed, separated by a dash, by a code for the substituents R¹, R², L¹ and L²:

25

5

	Code for R ₁ ,	R¹	R ²	L1	L2
	R ² , L ¹ , L ²				
30	nm	C_nH_{2n+1}	C_mH_{2m+1}	Н	Н
	nOm	C_nH_{2n+1}	OC_mH_{2m+1}	Н	Н
	nO.m	OC_nH_{2n+1}	C_mH_{2m+1}	Н	Н
	n	C_nH_{2n+1}	CN	Н	Н
	nN.F	C_nH_{2n+1}	CN	Н	F
35	nF	C_nH_{2n+1}	F	Н	Н
	nOF	OC_nH_{2n+1}	F	Н	Н
	nCl	C_nH_{2n+1}	CI	Н	Н

	Code for R ¹ , R ² , L ¹ , L ²	R1	R ²	L1	L 2
	nF.F	C _n H _{2n+1}	F	Н	F
5	nF.F.F	C_nH_{2n+1}	F	F	F
	nCF ₃	C_nH_{2n+1}	CF ₃	Н	Н
	nOCF ₃	C_nH_{2n+1}	OCF ₃	Н	Н
	nOCF ₃ .F	C_nH_{2n+1}	OCF ₃	Н	F
	nOCF ₂	C_nH_{2n+1}	OCHF ₂	Н	Н
10	nS	C_nH_{2n+1}	NCS	Н	Н
	rVsN	C_rH_{2r+1} -CH=CH- C_sH_{2s} -	CN	Н	Н
	rEsN	C_rH_{2r+1} -O- C_2H_{2s} -	CN	Н	Н
	nAm	C_nH_{2n+1}	$COOC_mH_{2m+1}$	Н	Н
	nOCCF ₂ .F.F	C_nH_{2n+1}	OCH ₂ CF ₂ H	F	F

Preferred mixture components are given in Tables A and B.

Table A:

WO 2004/048501 PCT/EP2003/012813

- 36 -

$$R^1 - H - O - C \equiv C - O + R^2$$

5 CPTP

$$R^1$$
 C_2H_4 O $C \equiv C$ C C C C

10 CEPTP

$$R^1 - H - C_2H_4 - O + R^2$$

ECCP

15

$$R^{1} - \left(H \right) - C_{2}H_{4} - \left(H \right) - \left(O \right) - R^{2}$$

CECP

$$25 \qquad R^{1} - H - C_{2}H_{4} - O + R^{2} \qquad \qquad R^{1} - H - O + R^{2}$$

EPCH

$$R^{1} \longrightarrow C \equiv C \longrightarrow O \longrightarrow R^{2} \qquad R^{1} \longrightarrow H \longrightarrow C_{2}H_{4} \longrightarrow O \longrightarrow O \longrightarrow R^{2}$$

$$PTP \qquad \qquad BECH$$

PCH

35

$$R^1 \longrightarrow C_2H_4 \longrightarrow C_2H_4 \longrightarrow R^2$$

CPC

FET-nF

CGU

5 EBCH

$$R^1 \longrightarrow O \longrightarrow R^2$$
 $R^1 \longrightarrow O \longrightarrow O$

10 B

$$R^1$$
 H O R^2 R^1 H O R^2

15 **CGG**

20

25

$$R^{1} \longrightarrow H \longrightarrow O \longrightarrow C \longrightarrow C \longrightarrow C^{1}$$

CUP

$$R^1$$
 H CF_2O O R^2

CCQU

PGU

$$R^1$$
 H COO O H R^2

CCPC

Table B:

5

$$C_nH_{2n+1}$$
 H O H C_mH_{2m+1}

CBC-nmF

$$C_nH_{2n+1}$$
 H O OC_mH_{2m+1}

10 PCH-nOm

$$C_nH_{2n+1}$$
 O O C_2H_4 O CI

15 FET-nCI

$$C_nH_{2n+1}$$
 H COO O OCF_3

CP-nOCF₃

CCH-nOm

$$25 \qquad C_n H_{2n+1} \longrightarrow H \longrightarrow O \longrightarrow X$$

BCH-n.Fm

$$C_nH_{2n+1}$$
 H C_2H_4 O C_mH_{2m+1}

Inm

$$C_nH_{2n+1}$$
 H O O H C_mH_{2m+1}

35 **CBC-nm**

ECCP-nm

CCH-n1EM

T-nFm

$$C_nH_{2n+1} \longrightarrow H \longrightarrow O \longrightarrow F \qquad C_nH_{2n+1} \longrightarrow H \longrightarrow O \longrightarrow OCF_3$$

CGU-n-F

CCP-nOCF₃.F

$$20 \qquad C_nH_{2n+1} \longrightarrow H \longrightarrow O \longrightarrow F$$

CGG-n-F

CCP-nOCF₂.F(.F)

$$30 \qquad C_nH_{2n+1} \longrightarrow H \longrightarrow F$$

CCP-nF.F.F

5 CCGU-n-F

10 CGU-n-OXF

$$C_nH_{2n+1}$$
 \leftarrow O \leftarrow COO \leftarrow F \leftarrow F

CUZU-n-F

15

20

25

30

CGU-n-O1DT

$$C_nH_{2n+1}$$
 H COO F

CCZU-n-F

CC-n-V1

$$C_nH_{2n+1}$$
 H H H

CC-n-V

 C_nH_{2n+1} H O OCF_3

35 CCP-nOCF₃

$$C_nH_{2n+1}$$
 \longrightarrow O \longrightarrow F

5 BCH-nF.F.F

$$C_nH_{2n+1}$$
 \longrightarrow O O F

10 CDU-n-F

$$C_nH_{2n+1}$$
 H C_2F_4 H CF_2O O F

CWCQU-n-F

$$C_nH_{2n+1}$$
 H CH_2O C_mH_{2m+1}

20 CCOC-n-m

$$C_nH_{2n+1}$$
 H O COO O F

25 CGZU-n-F

$$C_nH_{2n+1}$$
 H O F

CUZP-n-F

30

CCQU-n-F

5 CGU-1V-F CCG-V-F

$$C_{n}H_{2n+1} \longrightarrow H \longrightarrow CCG-V-F$$

$$C_{n}H_{2n+1} \longrightarrow F$$

$$C_{n}H_{2n+1}$$

$$C_nH_{2n+1}$$
 H CF_2O O F

CCQG-n-F

$$C_nH_{2n+1}$$
 O F

$$C_nH_{2n+1}$$
 O O F

10

Dec-U-n-F

Nap-U-n-F

$$C_nH_{2n+1}$$
 H CF_2O O COO O F

15

CCQP-n-S

20

$$C_nH_{2n+1}$$
 H O CF_2O F F

CPUQU-n-F

25

$$C_nH_{2n+1}$$
 H H $CH_2)_4$ O F

30

CCEEU-n-F

$$C_nH_{2n+1}$$
 $(CH_2)_4$ H O F

$$H$$
 H CF_2O O F

5 CCQU-V-F

$$H$$
 H CF_2O O F

10 CCQU-1V-F

$$C_nH_{2n+1}$$
 O O CF_2O O F

15 PUQU-n-F

$$C_nH_{2n+1}$$
 H
 O
 F
 CF_2O
 F
 F

CGUQU-n-F

$$C_nH_{2n+1}$$
 O O F O F

PGU-n-F

$$Br \longrightarrow O \longrightarrow CF_2O \longrightarrow F$$

PQU-Br-F

20

25

$$F \longrightarrow O \longrightarrow CF_2O \longrightarrow F$$

5 **PUQU-F-F**

$$H_7C_3$$
 O O F

10 **IS-9003**

15 ACQU-n-F

$$C_nH_{2n+1}$$
 O O CF_2O O F

20 APUQU-n-F

25

35

$$C_nH_{2n+1}$$
 O O F O CF_2O O F F

AUUQPU-n-F

$$C_nH_{2n+1} \longrightarrow O \longrightarrow F \longrightarrow CF_2O \longrightarrow O \longrightarrow F$$

AUUQGU-n-F

$$C_nH_{2n+1}$$
 CF_2O O OCF_3

ACQP-n-OT

$$C_nH_{2n+1}$$
 O H CF_2O O O OCF_3

10 ACQG-n-OT

$$C_nH_{2n+1}$$
 O H CF_2O O F

15 ACQG-n-F

$$20 \qquad C_nH_{2n+1} \longrightarrow \qquad \qquad H \longrightarrow CF_2O \longrightarrow \qquad O \longrightarrow F$$

ACQGU-n-F

$$C_{n}H_{2n+1} \longrightarrow 0 \longrightarrow F$$

ACQGP-n-F

30

$$C_nH_{2n+1}$$
 O H CF_2O O O O O O

ACQPG-n-OT

$$C_nH_{2n+1}$$
 O H CF_2O O F

5 ACQPU-n-F

$$C_nH_{2n+1} \longrightarrow O \longrightarrow O \longrightarrow CF_2O \longrightarrow F$$

AGUQU-n-F

15
$$C_nH_{2n+1}$$
 O O F O CF_2O O F

AUUQU-n-F

20

35

$$C_nH_{2n+1}$$
 O
 O
 F
 CF_2O
 O
 F
 F
 F

25 AUUQU-n-T

AUUQP-n-T

5 AUUQU-n-OT

$$C_nH_{2n+1}$$
 O O C_mH_{2m+1}

10 PGP-n-m

Table C:

15

20

25

30

35

Table C shows possible dopants which are generally added to the mixtures according to the invention in amounts of 0.1 to 10% by weight.

$$C_2H_5$$
-CH- CH_2O O O CN CH_3

C 15

$$C_2H_5$$
- CH - CH_2 - O - O - CN

CB 15

CM 21

R/S-811

$$C_3H_7$$
 H O CH_2 - $CH-C_2H_5$ CH_3

10

CM 44

CM 45

CM 47

CN

$$C_3H_7 \longrightarrow H \longrightarrow O \longrightarrow C_6H_{15}$$

R/S-2011

$$C_5H_{11}$$
 O
 O
 F
 C_6H_{13}
 C_6H_{13}

R/S-4011

R/S-5011

15 Table D

Stabilisers which can be added, for example, to the mixtures according to the invention are mentioned below.

20

$$HO \longrightarrow O \longrightarrow CH_2 \longrightarrow O \longrightarrow OH$$

25

$$C_nH_{2n+1}$$
 H O OH .

30

5

30

30

35

The following examples are intended to explain the invention without restricting it. Above and below, percentages are per cent by weight. All temperatures are given in degrees Celsius. m.p. denotes melting point, cl.p. clearing point. Furthermore, C = crystalline state, N = nematic phase, S = smectic phase and I = isotropic phase. The data between these symbols represent the transition temperatures. Δn denotes optical anisotropy (589 nm, 20°C), $\Delta \epsilon$ the dielectric anisotropy (1 kHz, 20°C). The flow viscosity v_{20} (mm²/sec) was determined at 20°C. The rotational viscosity γ_1 (mPa·s) was likewise determined at 20°C.

"Conventional work-up" means that water is added if necessary, the mixture is extracted with dichloromethane, diethyl ether, methyl tert-butyl ether or toluene, the phases are separated, the organic phase is dried and evaporated, and the product is purified by distillation under reduced pressure or crystallisation and/or chromatography. The following abbreviations are used:

n-BuLi

1.6 molar solution of n-butyllithium in n-hexane

DMAP

4-(dimethylamino)pyridine

10 THF

5

tetrahydrofuran

DCC

N,N'-dicyclohexylcarbodiimide

LDA

lithium dimethylamide

RT

room temperature

15 Example 1

$$H_7C_3$$
 H CF_2O O F

Step 1.1

35

B is prepared analogously to Lit. a) R. Baker, A. L. Boyes, C. J. Swain, J. Chem. Soc. Perkin Trans. 1, 1990, 1415-1421; b) H. Hagiwara, T. Okabe, H. Ono, V. P. Kamat, T. Hoshi, T. Suzuku, M. Ando, J. Chem. Soc. Perkin Trans. 1, 2002, 895-900.

Step 1.2

5

10

15

20

25

30

35

$$H_7C_3$$
 O Br

207 mmol of BuLi (15% in hexane) are added dropwise at -50°C to a solution of 207 mmol of 1,4-dibromobenzene in 250 ml of diethyl ether. A solution of 170 mmol of $\underline{\mathbf{B}}$ in 50 ml of diethyl ether is then added dropwise at the same temperature, and the mixture is stirred for a further 30 minutes, allowed to come to 0°C and subjected to conventional aqueous work-up. The crude product (51 g) is dissolved in 400 ml of CH_2Cl_2 , and 400 mmol of triethylsilane are added at -75°C. 400 mmol of boron trifluoride etherate are added dropwise, during which the temperature must not rise above -70°C. The mixture is then allowed to come to -10°C, is hydrolysed using sat. NaHCO₃ solution and subjected to conventional aqueous work-up. The crude product comprises the trans/cis isomers in a ratio of 9:1. The product is recrystallised from pentane at -20°C.

Step 1.3

$$H_7C_3$$
 O $B(OH)_2$

73 mmol of $\underline{\mathbf{C}}$ are dissolved in 200 ml of THF and cooled to -70°C. Firstly 73 mmol of BuLi (15% in hexane) followed by 73 mmol of trimethyl borate in 50 ml of THF are added dropwise. The mixture is allowed to come to -20°C, adjusted to pH = 2 by addition of 2N HCl and subjected to aqueous work-up. The crude product is digested with hot heptane and crystallised at 0°C.

Step 1.4

5

10

30

35

$$H_7C_3$$
 O OH

A mixture of 60 mmol of $\underline{\mathbf{D}}$, 300 ml of toluene, 120 mmol of NaOH, 50 ml of water and 30 ml of 30% H_2O_2 is stirred at 45°C for 2 hours. The mixture is adjusted to pH = 2 using 10% HCl and subjected to aqueous work-up. The crude product is recrystallised from heptane.

Step 1.5

H₇C₃
$$\stackrel{O}{\longrightarrow}$$
 $\stackrel{E}{\longrightarrow}$

22 mmol of <u>E</u> are hydrogenated at 5 bar and 130°C for 27.5 hours in 100 ml of xylene in the presence of 1.5 g of water-moist 5% Pd/C catalyst. Conventional work-up gives a colourless oil.

Step 1.6

 H_7C_3 G S S S G

17 mmol of BuLi (15% in hexane) are added at -70°C to a solution of 17 mmol of 2-trimethylsilyl-1,3-dithiane in 75 ml of THF. The mixture is allowed to come to 0°C over the course of 4 hours, then re-cooled to -70°C, 17 mmol of <u>F</u> in 25 ml of THF are added dropwise, and the mixture is allowed to come to room temperature, stirred for a further 18 hours and

subjected to conventional aqueous work-up. The crude product is crystallised from heptane, giving colourless crystals.

Step 1.7

5

$$H_7C_3$$
 O H CF_2O O F

10

15

20

25

35

<u>H</u>

6.27 mmol of trifluoromethanesulfonic acid are added dropwise at -20°C to a solution of 6.12 mmol of $\underline{\mathbf{G}}$ in 50 ml of CH_2Cl_2 . The mixture is allowed to come to room temperature for 30 minutes and then cooled to -70°C. Firstly a solution of 9.1 mmol of 3,4,5-trifluorophenol and 10.1 mmol of triethylamine in 20 l of CH_2Cl_2 and 5 minutes later 31 mmol of triethylamine tris(hydrofluoride) are then added. After a further 5 minutes, a suspension of 31.5 mmol of DBH (1,3-dibromo-5,5-dimethylhydanthoin) is added in small portions, and the mixture is stirred at -70°C for a further 1 hour. The reaction mixture is allowed to come to -10°C and is poured into 400 ml of ice-cold NaOH. The mixture is subjected to conventional aqueous work-up, and the crude product is purified by chromatography on silica gel (heptane/toluene 3:2) and crystallisation from pentane at -70°C, giving colourless crystals: C 35 N 66.3 I; $\Delta n = 0.0570$; $\Delta \epsilon = 13.4$

The following compounds of the formula

$$R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} CF_{2}O \longrightarrow \begin{array}{c} C^{1} \\ CF_{2}O \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c}$$

are prepared analogously:

	R ¹	X	L ¹	L ²	
	Н	F	Н	Н	
	CH₃	F	Н	Н	
	C ₂ H ₅	F	Н	Н	
5	n-C₄H ₉	F	Н	Н	
	n-C ₅ H ₁₁	F	Н	Н	
	n-C ₆ H ₁₃	F	Н	Н	
	Н	F	F	Н	
	CH ₃	,F	F	Н	
10	C ₂ H ₅	F	F	Н	
	n-C ₃ H ₇	F	F	Н	C 41 S _B 51 N 95.9 I;
					$\Delta \varepsilon = 9.7$; $\Delta n = 0.0688$
	n-C₄H ₉	F	F	Н	C 31 S _B 64 N 97.1 I;
					$\Delta \varepsilon = 9.3$; $\Delta n = 0.0621$
15	n-C ₅ H ₁₁	F	F	Н	
	n-C ₆ H ₁₃	F	F	Н	
	H .	F	F	F	
	CH ₃	F	F	F	C 54 I;
					$\Delta \varepsilon = 14.8$; $\Delta n = 0.0490$
20	C₂H₅	F	F	F	C 48 N (34.7) I;
					$\Delta \varepsilon = 14.1$; $\Delta n = 0.0540$
	n-C ₃ H ₇	F	F	F	
	n-C₄H ₉	F	F	F	C 43 N 66.1 I;
					$\Delta \varepsilon = 13.3$; $\Delta n = 0.0590$
25	n-C ₅ H ₁₁	F	F	F	C 39 N 75.3 I;
					$\Delta \varepsilon = 11.8$; $\Delta n = 0.0568$
	n-C ₆ H ₁₃	F	F	F	
	Н	CI	Н	Н	
	CH₃	CI	Н	Н	
30	C ₂ H ₅	CI	Н	Н	
	n-C ₃ H ₇	CI	Н	Н	
	n-C₄H ₉	CI	Н	Н	
	n-C ₅ H ₁₁	CI	Н	Н	
0.5	n-C ₆ H ₁₃	CI	Н	Н	
35	Н	CI	F	Н	
	CH ₃	CI	F	Н	

	R ¹	X	L ¹	L ²	
	C ₂ H ₅	CI	F	Н	
_	n-C ₃ H ₇	CI	F	Н	
	n-C₄H ₉	CI	F	Н	
5	n-C₅H ₁₁	CI	F	Н	
	n-C ₆ H ₁₃	CI	F	Н	
	Н	CI	F	F	
	CH ₃	CI	F	F	
	C ₂ H ₅	CI	F	F	
10	n-C ₃ H ₇	CI	F	F	
	n-C₄H ₉	CI	F	F	
	n-C₅H ₁₁	CI	F	F	
	n-C ₆ H ₁₃	CI	F	F	
	Н	OCF ₃	Н	Н	
15	CH ₃	OCF ₃	Н	Н	
	C ₂ H ₅	OCF ₃	Н	Н	
	n-C₃H ₇	OCF ₃	Н	Н	C -41 S _B 123 N 129.3 I; $\Delta \varepsilon = 9.1$; $\Delta n = 0.0780$
	n-C₄H ₉	OCF ₃	Н	Н	C? -54 S _B 129 I;
20		•			$\Delta \varepsilon = 9.1$; $\Delta n = 0.0689$
	n-C ₅ H ₁₁	OCF ₃	Н	Н	,
	n-C ₆ H ₁₃	OCF ₃	Н	Н	
	Н	OCF ₃	F	Н	
	CH ₃	OCF ₃	F	Н	
25	C ₂ H ₅	OCF ₃	F	Н	
	n-C ₃ H ₇	OCF ₃	F	Н	S _B 74 N 105.8 I;
	•				$\Delta \varepsilon = 11.7$; $\Delta n = 0.0701$
	n-C ₄ H ₉	OCF ₃	F	Н	S _B 81 N 105.8 I;
					$\Delta \varepsilon = 11.5$; $\Delta n = 0.0623$
30	n-C₅H ₁₁	OCF ₃	F	Н	
	n-C ₆ H ₁₃	OCF ₃	F	Н	
	Н	OCF ₃	F	F	
	CH ₃	OCF ₃	F	F	
	C_2H_5	OCF ₃	F	F	
35	n-C ₃ H ₇	OCF ₃	F	F	
	n-C₄H ₉	OCF ₃	F	F	

	R^1	×	L ¹	L ²
	n-C ₅ H ₁₁	OCF ₃	F	F
	n-C ₆ H ₁₃	OCF ₃	F	F
	H	OCHF₂	Н	H
5	CH₃	OCHF ₂	H	Н
	C₂H₅	OCHF ₂	H	Н
	n-C ₃ H ₇	OCHF ₂	H	Н
	n-C₄H ₉	OCHF ₂	 Н.	Н
	n-C₅H ₁₁	OCHF ₂	Н	Н
10	n-C ₆ H ₁₃	OCHF ₂	Н	Н
	H	OCHF ₂	F	Н
•	CH₃	OCHF ₂	F	H
	C ₂ H ₅	OCHF ₂	F	н
	n-C₃H ₇	OCHF ₂	F	н
15	n-C₄H ₉	OCHF ₂	F	H
•	n-C ₅ H ₁₁	OCHF ₂	F	н
	n-C ₆ H ₁₃	OCHF ₂	, F	H
	H	OCHF ₂	F	F
	CH₃	OCHF ₂	F	F
20	C₁1₃ C₂H₅	OCHF ₂	, F	F
	n-C ₃ H ₇	OCHF ₂	F	F
	n-C ₄ H ₉	OCHF ₂	F	F
	n-C₅H ₁₁	OCHF ₂	F	F
	n-C ₆ H ₁₃	OCHF ₂	F	F
25	H	OCHFCF ₃	Н	Н
	CH₃	OCHFCF ₃	н Н	 Н
	C ₁ 1 ₃ C ₂ H ₅	OCHFCF ₃	H	H
	02⊓5 n-C3H7	OCHFCF ₃	H	H
	n-C₃⊓ ₇ n-C₄H ₉	OCHFCF ₃	Н	Н
30		OCHFCF ₃	Н	Н
	n-C₅H ₁₁			
	n-C ₆ H ₁₃	OCHFCF₃ OCHFCF₃	H F	H H
	H	•	F	
	CH₃	OCHFCF ₃		Н
35	C₂H₅	OCHFCF ₃	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н

	R ¹	×	L ¹	L ²
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
	Н	OCHFCF ₃	F	F
5	CH₃	OCHFCF ₃	F	F ,
	C ₂ H ₅	OCHFCF ₃	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F
	n-C₄H ₉	OCHFCF ₃	F	F
40	n-C₅H ₁₁	OCHFCF ₃	F	F
10	n-C ₆ H ₁₃	OCHFCF ₃	F	F·
	Н	OCHFCF ₃	Н	Н
	CH ₃	OCHFCF ₃	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н
45	n-C ₃ H ₇	OCHFCF ₃	Н	Н .
15	n-C₄H ₉	OCHFCF ₃	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н
	Н	OCHFCF ₃	F	Н
00	CH ₃	OCHFCF ₃	F	Н
20	C ₂ H ₅	OCHFCF ₃	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н
	n-C₅H ₁₁	OCHFCF ₃	F	Н
0.5	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
25	Ĥ	OCHFCF ₃	F	F
	CH ₃	OCHFCF ₃	F	F
	C₂H₅	OCHFCF ₃	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F
20	n-C₄H ₉	OCHFCF ₃	F	F
30	n-C₅H ₁₁	OCHFCF ₃	F	F .
	n-C ₆ H ₁₃	OCHFCF ₃	F	F
	Н	OCF ₂ CHFCF ₃	Н	Н
	CH ₃	OCF ₂ CHFCF ₃	Н	Н
25	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н
35	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н

	R ¹	X	L ¹	L^2
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	н
	Н	OCF ₂ CHFCF ₃	F	H
5	CH₃	OCF ₂ CHFCF ₃	F	н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	н
	n-C ₃ H ₇	OCF₂CHFCF₃	F	н
	n-C ₄ H ₉	OCF₂CHFCF₃	F	н
	n-C ₅ H ₁₁	OCF₂CHFCF₃	F	н
10	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н
	Н	OCF₂CHFCF₃	F	F
	CH₃	OCF ₂ CHFCF ₃	F	F
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F
15	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F
	Н	NCS	Н	Н
	CH₃	NCS	Н	Н
20	C_2H_5	NCS	Н	Н
	n-C₃H ₇	NCS	·H	Н
	n-C₄H ₉	NCS	Н	Н
	n-C ₅ H ₁₁	NCS	Н	Н
	n-C ₆ H ₁₃	NCS	Н	Н
25	Н	NCS	F	Н
	CH₃	NCS	F	Н
	C ₂ H ₅	NCS	F	Н
	n-C₃H ₇	NCS	F	Н
00	n-C₄H ₉	NCS	F	Н
30	n-C ₅ H ₁₁	NCS	F	Н
	n-C ₆ H ₁₃	NCS	F	Н
	Н	NCS	F	F
	CH₃	NCS	F	F
25	C_2H_5	NCS	F	F
35	n-C ₃ H ₇	NCS	F	F
	n-C₄H ₉	NCS	F	F

	R ¹	X	L ¹	L ²	
	n-C ₅ H ₁₁	NCS	F	F	
_	n-C ₆ H ₁₃	NCS	F	F	
	Н	C_2F_5	н	Н	
5	CH ₃	C_2F_5	Н	Н	
	C ₂ H ₅	C_2F_5	Н	Н	
	n-C₃H ₇	C_2F_5	Н	Н	
	n-C₄H ₉	C_2F_5	Н	Н	
4.5	n-C₅H₁₁	C_2F_5	Н	Н	
10	n-C ₆ H ₁₃	C_2F_5	Н	Н	
	Н	C_2F_5	F	Н	
	CH₃	C_2F_5	F	Н	
	C ₂ H ₅	C_2F_5	F	Н	
.4-	n-C₃H ₇	C_2F_5	F	Н	
15	n-C₄H ₉	C_2F_5	F	Н	
	n-C ₅ H ₁₁	C_2F_5	F	Н	
	n-C ₆ H ₁₃	C_2F_5	F	Н	
	Н	C_2F_5	F	F	
20	CH₃	C_2F_5	F	F	
20	C ₂ H ₅	C ₂ F ₅	F	F	
	n-C₃H ₇	C ₂ F ₅	F	F	
٠	n-C₄H ₉	C_2F_5	F	F	
	n-C₅H ₁₁	C ₂ F ₅	F	F	
25	n-C ₆ H ₁₃	C ₂ F ₅	F	F	
25	Н	C_3F_7	Н	Н	
	CH₃	C_3F_7	Н	Н	
	C ₂ H ₅	C_3F_7	Н	Н	
	n-C₃H ₇	C ₃ F ₇	Н	Н	
20	n-C ₄ H ₉	C ₃ F ₇	н	Н	
30	n-C₅H ₁₁	C_3F_7	Н	Н	·
	n-C ₆ H ₁₃	C ₃ F ₇	н	Н	
	Н	C ₃ F ₇	F	·H	
	CH₃	C ₃ F ₇	F	Н	
35	C ₂ H ₅	C ₃ F ₇	F	Н	
30	n-C₃H ₇	C ₃ F ₇	F	Н	
	n-C₄H ₉	C_3F_7	F	Н	

	R ¹	X	L ¹	L ²
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н
	n-C ₆ H ₁₃	C_3F_7	F	Н
	Н	C_3F_7	F	F
5	CH₃	C_3F_7	F	F
	C ₂ H ₅	C ₃ F ₇	F	F
	n-C ₃ H ₇	C ₃ F ₇	F	F
	n-C₄H ₉	C_3F_7	F	F
	n-C ₅ H ₁₁	C ₃ F ₇	F	F
10	n-C ₆ H ₁₃	C ₃ F ₇	F	F
	Н	SF ₅	Н	Н
	CH₃	SF ₅	Н	Н
	C ₂ H ₅	SF ₅	Н	Н
	n-C ₃ H ₇	SF ₅	Н	Н
15	n-C₄H ₉	SF ₅	Н	Н -
	n-C ₅ H ₁₁	SF ₅	Н	Н
	n-C ₆ H ₁₃	SF ₅	Н	Н
	Н	SF ₅	F	H .
	CH₃	SF ₅	F	Н
20	C ₂ H ₅	SF ₅	F	Н
	n-C ₃ H ₇	SF ₅	F	Н
	n-C₄H ₉	SF ₅	F	Н
	n-C ₅ H ₁₁	SF ₅	F	Н
0.5	n-C ₆ H ₁₃	SF ₅	F	Н
25	Н	SF ₅	F	F
	CH₃	SF ₅	F	F
	C ₂ H ₅	SF ₅	F	F
	n-C ₃ H ₇	SF ₅	F	F
00	n-C₄H ₉	SF ₅	F	F
30	n-C ₅ H ₁₁	SF ₅	F	F
	n-C ₆ H ₁₃	SF ₅	F	F
	Н	CN	Н	Н
	CH₃	CN	Н	Н
25	C ₂ H ₅	CN	Н	Н
35	$n-C_3H_7$	CN	Н	Н
	n-C₄H ₉	CN	Н	Н

	R^1	X	L ¹	L ²		
	n-C ₅ H ₁₁	CN	Н	Н		
	n-C ₆ H ₁₃	CN	Н	Н		
	Н	CN	F	Н		
5	CH₃	CN	F	Н		
	C ₂ H ₅	CN	F	Н		
	n-C₃H ₇	CN	F	Н		
	n-C₄H ₉	CN	F	Н		
	n-C ₅ H ₁₁	CN	F	Н		
10	n-C ₆ H ₁₃	CN	F	H.		
	Н	CN	F	F	•	
	CH₃	CN	F	F		
	C_2H_5	CN	F	F		
4-	n-C₃H ₇	CN	F	F		
15	n-C₄H ₉	CN	F	F		
	n-C ₅ H ₁₁	CN	F	F		
	n-C ₆ H ₁₃	CN	F	F		

Example 2

35

<u>Step 2.1</u>

A mixture of 50 mmol of <u>I</u>, 50 mmol of <u>J</u>, 2.5 mmol of Pd(PPh₃)₄, 300 ml of toluene and 300 ml of Na borate buffer (pH = 9) is stirred at 80°C for 18 hours. The mixture is poured into 500 ml of 0.1 N HCl, and the product is extracted with CH₂Cl₂, dried over Na₂SO₄ and evaporated to dryness in a rotary evaporator. The crude product is chromatographed over silica gel in n-heptane and subsequently recrystallised twice from n-heptane at -20°C. C 78 N 93.1 I; $\Delta n = 0.1493$; $\Delta \epsilon = 27.3$

The following compounds of the formula

10

5

$$R^{1} \longrightarrow O \longrightarrow CF_{2}O \longrightarrow O \longrightarrow X$$

15

are prepared analogously:

	R ¹	X	L ¹	L ²	L^3	L ⁴
20	Н	F	Н	Н	Н	Н
	CH ₃	F	Н	Н	Н	Н
	C ₂ H ₅	F	Н	Н	Н	Н
	C ₃ H ₇	F	Н	Н	Н	Н
	n-C₄H ₉	F	Н	Н	Н	Н
25	n-C₅H ₁₁	F	Н	Н	Н	Н
	n-C ₆ H ₁₃	F	Н	Н	Н	Н
	Н	F	F	Н	Н	Н
	CH₃	F	F	Н	Н	Н
	C ₂ H ₅	F	F	Н	Н	Н
30	n-C₃H ₇	F	F	Н	Н	Н
	n-C₄H ₉	F	F	Н	Н	Н
	n-C₅H ₁₁	F	F	Н	Н	Н
	n-C ₆ H ₁₃	F	F	Н	Н	Н
	Н	F	F	F	Н	Н
35	CH ₃	F	F	F	Н	Н

-	68	•

	R ¹	X	L ¹	L ²	L ³	L ⁴	
	n-C ₃ H ₇	F	F	F	Н	Н	C 75 N 118.0 I;
							$\Delta \varepsilon$ = 23.2; Δn = 0.1450
_	n-C₄H ₉	F	F	F	Н	Н	
5.	n-C ₅ H ₁₁	F	F	F	Н	Н	
	n-C ₆ H ₁₃	F	F	F	Н	Н	
	Н	CI	Н	Н	Н	Н	
	CH ₃	CI	Н	Н	Н	Н	
40	C ₂ H ₅	CI	Н	Н	Н	Н	
10	n-C ₃ H ₇	CI	Н	Н	Н	Н	
	n-C₄H ₉	CI	Н	Н	Н	Н	
	n-C ₅ H ₁₁	CI	Н	Н	Н	Н	
	n-C ₆ H ₁₃	CI	Н	Н	Н	Н	
45	Н	CI	F	Н	Н	Н	
15	CH ₃	CI	F	Н	Н	Н	
	C ₂ H ₅	CI	F	Н	Н	Н	
	n-C ₃ H ₇	CI	F	Н	Н	Н	
	n-C₄H ₉	CI	F	Н	Н	Н	
20	n-C ₅ H ₁₁	CI	F	Н	Н	Н	
20	n-C ₆ H ₁₃	CI	F	Н	Н	Н	
	Н	CI	F	F	Н	Н	
	CH ₃	CI	F	F	Н	Н	
	C ₂ H ₅	CI	F	F	Н	Н	
25	n-C ₃ H ₇	CI	F	F	Н	Н	•
25	n-C₄H ₉	CI	F	F	Н	Н	
	n-C₅H ₁₁	CI	F	F	Н	Н	
	n-C ₆ H ₁₃	CI	F	F	Н	Н	
	Н	OCF ₃	Н	Н	Н	Н	
20	CH ₃	OCF ₃	Н	Н	Н	Н	
30	C ₂ H ₅	OCF ₃	Н	Н	Н	Н	
	n-C₃H ₇	OCF ₃	Н	Н	Н	Н	
	n-C₄H ₉	OCF ₃	Н	Н	Н	Н	
	n-C ₅ H ₁₁	OCF ₃	Н	Н	Н	Н	
35	n-C ₆ H ₁₃	OCF ₃	Н	Н	Н	Н	
33	Н	OCF ₃	F	Н	Н	Н	
	CH ₃	OCF ₃	F	Н	Н	Н	

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCF ₃	F	Н	Н	Н
	n-C₃H ₇	OCF ₃	F	Н	Н	Н
_	n-C ₄ H ₉	OCF ₃	F	Н	Н	Н
5	n-C ₅ H ₁₁	OCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₃	F	Н	Н	Н
	Н	OCF ₃	F	F	Н	Н
	CH₃	OCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₃	F	F	Н	Н
10	n-C ₃ H ₇	OCF ₃	F	F	Н	Н
	n-C₄H ₉	OCF ₃	F	F	Н	Н
	n-C₅H ₁₁	OCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCF ₃	F	F	Н	Н
	Н	OCHF ₂	Н	Н	Н	Н
15	CH ₃	OCHF ₂	Н	Н	Н	Н
	C₂H₅	OCHF ₂	Н	Н	Н	Н
	n-C ₃ H ₇	OCHF ₂	Н	Н	Н	Н
	n-C₄H ₉	OCHF ₂	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	Н	Н	Н	Н
20	n-C ₆ H ₁₃	OCHF ₂	Н	Н	Н	Н
	Н	OCHF ₂	F	Н	Н	Н
	CH ₃	OCHF ₂	F	Н	Н	Н
	C ₂ H ₅	OCHF ₂	F	Н	Н	Н
	n-C₃H ₇	OCHF ₂	F	Н	Н	Н
25	n-C₄H ₉	OCHF ₂	F	Н	Н	Н
	n-C₅H ₁₁	OCHF ₂	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	F	Н	Н	Н
	Н	OCHF ₂	F	F	Н	Н
	CH₃	OCHF ₂	F	F	Н	Н
30	C ₂ H ₅	OCHF ₂	F	F	Н	Н
	n-C₃H ₇	OCHF ₂	F	F	Н	Н
	n-C₄H ₉	OCHF ₂	F	F	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	F	F	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	F	F	Н	Н
35	Н	OCHFCF ₃	Н	Н	Н	Н
	CH ₃	OCHFCF ₃	Н	Н	Н	Н

	R ¹	Χ	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCHFCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	Н	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н	Н	Н
5	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
	Н	OCHFCF ₃	F	Н	Н	Н
	CH₃	OCHFCF ₃	F	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	Н	Н
10	n-C₃H ₇	OCHFCF ₃	F	Н	Н	
	n-C₄H ₉	OCHFCF ₃	F	Н	Н	Н
	n-C₅H ₁₁	OCHFCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	Н
	Н	OCHFCF ₃	F	F	Н	Н
15	CH ₃	OCHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	F	Н	Н
	n-C₃H ₇	OCHFCF ₃	F	F	Н	Н
	n-C₄H ₉	OCHFCF ₃	F	F	Н	Н
	n-C₅H ₁₁	OCHFCF ₃	F	F	Н	Н
20	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
20	Н	OCHFCF ₃	Н	Н	Н	Н
	CH ₃	OCHFCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	Н	Н
	n-C₃H ₇	OCHFCF ₃	Н	Н	Н	Н
25	n-C₄H ₉	OCHFCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
30	Н	OCHFCF ₃	F	Н	Н	Н
	CH ₃	OCHFCF ₃	F	Н	Н	Н
	C_2H_5	OCHFCF ₃	F	Н	Н	Н
	n-C₃H ₇	OCHFCF ₃	F	Н	Н	Н
	n-C₄H ₉	OCHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
25	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	Н
35	Н	OCHFCF ₃	F	F	Н	Н
	CH ₃	OCHFCF ₃	F	F	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCHFCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	Н	Н
	n-C₄H ₉	OCHFCF ₃	F	F	Н	Н
5	n-C ₅ H ₁₁	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
	Н	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	CH ₃	OCF ₂ CHFCF ₃	Н	Н	Н	Н
10	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	Н	
	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C₅H₁₁	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	Н	OCF ₂ CHFCF ₃	F	Н	Н	Н
15	CH₃	OCF ₂ CHFCF ₃	F	Н	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	Н	Н
20	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	Н	Н
20	Н	OCF ₂ CHFCF ₃	F	F	Н	Н
	CH ₃	OCF ₂ CHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	Н	Н
0-2	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F	Н	Н
25	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C₅H₁₁	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	Н	Н
30	Н	NCS	Н	Н	Н	Н
	CH ₃	NCS	Н	Н	Н	Н
	C ₂ H ₅	NCS	Н	Н	Н	Н
	n-C ₃ H ₇	NCS	Н	Н	Н	Н
	n-C₄H ₉	NCS	Н	Н	Н	Н
	n-C ₅ H ₁₁	NCS	Н	Н	Н	Н
	n-C ₆ H ₁₃	NCS	Н	Н	Н	Н
35	Н	NCS	F	Н	Н	Н
	CH ₃	NCS	F	Н	Н	Н

	R ¹	X	L^1	L ²	L ³	L ⁴
	C ₂ H ₅	NCS	F	Н	Н	Н
5	n-C₃H ₇	NCS	F	Н	Н	Н
	n-C₄H ₉	NCS	F	Н	Н	Н
	n-C₅H ₁₁	NCS	F	Н	Н	Н
	n-C ₆ H ₁₃	NCS	F	Н	Н	Н
	Н	NCS	F	F	Н	Н
	CH₃	NCS	F	F	Н	Н
	C ₂ H ₅	NCS	F	F	Н	Н
10	n-C₃H ₇	NCS	F	F	Н	H
	n-C₄H ₉	NCS	F.	F	Н	Н
	n-C ₅ H ₁₁	NCS	F	F	Н	Н
	n-C ₆ H ₁₃	NCS	F	F	Н	Н
	Н	C_2F_5	Н	Н	Н	Н
15	CH₃	C_2F_5	Н	Н	Н	Н
	C ₂ H ₅	C_2F_5	Н	Н	Н	Н
	n-C₃H ₇	C_2F_5	Н	Н	Н	Н
	n-C₄H ₉	C_2F_5	Н	Н	Н	Н
	n-C ₅ H ₁₁	C_2F_5	Н	Н	Н	Н
20	n-C ₆ H ₁₃	C_2F_5	Н	Н	Н	Н
	Н	C_2F_5	F	Н	Н	Н
	CH₃	C_2F_5	F	Н	Н	Н
	C₂H₅	C_2F_5	F	Н	Н	Н
	n-C ₃ H ₇	C_2F_5	F	Н	Н	Н
25	n-C₄H ₉	C_2F_5	F	Н	Н	Н
	n-C ₅ H ₁₁	C_2F_5	F	Н	Н	Н
	n-C ₆ H ₁₃	C_2F_5	F	Н	Н	Н
	Н	C_2F_5	F	F	Н	Н
00	CH ₃	C_2F_5	F	F	Н	Н
30	C ₂ H ₅	C_2F_5	F	F	Н	Н
	n-C₃H ₇	C_2F_5	F	F	Н	Н
	n-C ₄ H ₉	C_2F_5	F	F	Н	Н
	n-C ₅ H ₁₁	C_2F_5	F	F	Н	Н
25	n-C ₆ H ₁₃	C_2F_5	F	F	Н	Н
35	Н	C_3F_7	Н	Н	Н	Н
	CH₃	C_3F_7	Н	Н	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	C ₃ F ₇	Н	Н	Н	Н
	n-C ₃ H ₇	C ₃ F ₇	Н	Н	Н	Н
	n-C₄H ₉	C ₃ F ₇	Н	Н	Н	Н
5	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	Н	Н
	Н	C ₃ F ₇	F	Н	Н	Н
	CH ₃	C ₃ F ₇	F	Н	Н	Н
	C ₂ H ₅	C ₃ F ₇	F	Н	Н	Н
10	n-C ₃ H ₇	C ₃ F ₇	F	Н	Н	Н
	n-C₄H ₉	C ₃ F ₇	F	Н	Н	Н
	n-C₅H ₁₁	C ₃ F ₇	F	Н	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	Н	Н
	Н	C ₃ F ₇	F	F	Н	Н
15	CH ₃	C ₃ F ₇	F	F	Н	Н
	C ₂ H ₅	C ₃ F ₇	F	F	Н	Н
	n-C ₃ H ₇	C ₃ F ₇	F	F	Н	Н
	n-C₄H ₉	C ₃ F ₇	F	F	Н	Н
	n-C₅H ₁₁	C ₃ F ₇	F	F	Н	Н
20	n-C ₆ H ₁₃	C ₃ F ₇	F	F	Н	Н
	Н	SF ₅	Н	Н	Н	Н
	CH ₃	SF ₅	Н	Н	Н	Н
	C ₂ H ₅	SF ₅	Н	Н	Н	Н
	n-C ₃ H ₇	SF ₅	Н	Н	Н	Н
25	n-C₄H ₉	SF ₅	Н	Н	Н	Н
	n-C ₅ H ₁₁	SF ₅	Н	Н	Н	Н
	n-C ₆ H ₁₃	SF ₅	Н	Н	Н	Н
	Н	SF ₅	F	Н	Н	Н
	CH ₃	SF ₅	F.	Н	Н	Н
30	C ₂ H ₅	SF ₅	F	Н	Н	Н
	n-C ₃ H ₇	SF ₅	F	Н	Н	Н
	n-C₄H ₉	SF ₅	F	Н	Н	Н
	n-C ₅ H ₁₁	SF ₅	F	Н	Н	Н
0.5	n-C ₆ H ₁₃	SF ₅	F	Н	Н	Н
35	Н	SF ₅	F	F	Н	Н
	CH₃	SF ₅	F	F	Н	Н

	R ¹	X .	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	SF ₅	F	F	Н	Н
	n-C₃H ₇	SF ₅	F	F	Н	Н
	n-C₄H ₉	SF ₅	F	F	Н	Н
5	n-C₅H₁₁	SF ₅	F	F	Н	Н
	n-C ₆ H ₁₃	SF ₅	F	F	Н	Н
	Н	CN	Н	Н	Н	Н
	CH ₃	CN	Н	Н	Н	Н
	C ₂ H ₅	CN	·H	Н	Н	Н
10	n-C₃H ₇	CN	Н	Н	Н	Н
	n-C₄H ₉	CN	Н	Н	Н	Н
	n-C₅H ₁₁	CN	Н	Н	Н	Н
	n-C ₆ H ₁₃	CN	Н	Н	Н	Н
	Н	CN	F	Н	Н	Н
15	CH ₃	CN	F	Н	Н	Н
	C_2H_5	CN	F	Н	Н	Н
	n-C₃H ₇	CN	F	Н	Н	Н
	n-C₄H ₉	CN	F	Н	Н	Н
	n-C₅H ₁₁	CN	F	Н	Н	Н
20	n-C ₆ H ₁₃	CN	F	Н	Н	Н
	Н	CN	F	F	Н	Н
	CH ₃	CN	F	F	Н	Н
	C ₂ H ₅	CN	F	F	Н	Н
	n-C ₃ H ₇	CN	F	F	Н	Н
25	n-C₄H ₉	CN	F	F	Н	Н
	n-C ₅ H ₁₁	CN	F	F	Н	Н
	n-C ₆ H ₁₃	CN	F	F	Н	Н
	Н	F	Н	Н	F	Н
	CH₃	F	Н	Н	F	Н
30	C ₂ H ₅	F	Н	Н	F	Н
	C_3H_7	F	Н	Н	F	Н
	n-C₄H ₉	F	Н	Н	F	Н
	n-C ₅ H ₁₁	F	Н	Н	F	Н
0.5	n-C ₆ H ₁₃	F	Н	Н	F	Н
35	Н	F	F	Н	F	Н
	CH₃	F	F	Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴	
	C ₂ H ₅	F	F	Н	F	Н	-
	n-C ₃ H ₇	F	F	Н	F	Н	
	. n-C₄H ₉	F	F	Н	F	Н	
5	n-C₅H₁1	F	F	Н	F	Н	
	n-C ₆ H ₁₃	F	F	Н	F	Н	
	H .	F	F	F	F	Н	
	CH ₃	F	F	F	F	Н	
	C ₂ H ₅	F	F	F	F	Н	C 89 N (76.8) I;
10							$\Delta \varepsilon$ = 29.9; Δn = 0.1310
	n-C₃H ₇	F	F	F	F	Н	C 70 N 102.3 I;
							$\Delta \varepsilon = 29.7$; $\Delta n = 0.1364$
	n-C₄H ₉	F	F	F	F	Н	
45.	n-C ₅ H ₁₁	F	F	F	F	Н	
15	n-C ₆ H ₁₃	F	F	F	F	Н	
	Н	CI	Н	Н	F	Н	
	CH ₃	CI	Н	Н	F	Н	
	C_2H_5	CI	Н	Н	F	Н	
00	n-C ₃ H ₇	CI	Н	Н	F	Н	
20	n-C₄H ₉	CI	Н	Н	F	Н	
	n-C₅H ₁₁	CI	Н	Н	F	Н	
	n-C ₆ H ₁₃	CI	Н	Н	F	Н	
	Н	CI	F	Н	F	Н	
25	CH₃	CI	F	Н	F	Н	
25	C ₂ H ₅	CI	F	Н	F	Н	
	n-C ₃ H ₇	CI	F	Н	F	Н	
	n-C₄H ₉	CI	F	Н	F	Н	
	n-C₅H ₁₁	CI	F	Н	F	Н	
20	n-C ₆ H ₁₃	CI	F	Н	F	Н	
30	Н	CI	F	F	F	Н	
	CH₃	CI	F	F	F	Н	
	C ₂ H ₅	CI	F	F	F	Н	
	n-C ₃ H ₇	CI	F	F	F	Н	
35	n-C₄H ₉	CI	F	F	F	Н	
55	n-C ₅ H ₁₁	CI	F	F	F	Н	
	n-C ₆ H ₁₃	CI	F	F	F	Н	

	R ¹	X	L ¹	L ²	L ³	L⁴
	Н	OCF ₃	Н	Н	F	Н
	CH ₃	OCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCF ₃	Н	Н	F	Н
5	n-C ₃ H ₇	OCF ₃	Н	Н	F	Н
	n-C₄H ₉	OCF ₃	Н	Н	F	Н
	n-C₅H ₁₁	OCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н	F	Н
	Н	OCF ₃	F	Н	F	Н
10	CH ₃	OCF ₃	F	Н	F	Н
	C ₂ H ₅	OCF₃	F	Н	F	Н
	n-C ₃ H ₇	OCF₃	F	Н	F	Н
	n-C₄H ₉	OCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCF ₃	F	Н	F	Н
15	n-C ₆ H ₁₃	OCF ₃	F	Н	F	Н
	Н	OCF₃	F	F	F	Н
	CH ₃	OCF ₃	F	F	F	Н
	C ₂ H ₅	OCF ₃	F	F	F	Н
	n-C ₃ H ₇	OCF ₃	F	F	F	Н
20	n-C₄H ₉	OCF ₃	F	F	F	Н
	n-C₅H ₁₁	OCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	F	F	Н
	Η .	OCHF ₂	Н	Н	F	Н
	CH ₃	OCHF ₂	Н	Н	F	Н
25	C ₂ H ₅	OCHF ₂	Н	Н	F	Н
	n-C₃H ₇	OCHF ₂	Н	Н	F	Н
	n-C₄H ₉	OCHF ₂	Н	Н	F	Н
	n-C₅H ₁₁	OCHF ₂	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	Н
30	Н	OCHF ₂	F	Н	F	Н
	CH₃	OCHF ₂	F	Н	F	Н
	C ₂ H ₅	OCHF ₂	F	Н	F	Н
	n-C₃H ₇	OCHF ₂	F	Н	F	Н
0.5	n-C₄H ₉	OCHF ₂	F	Н	F	Н
35	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	Н
	n-C ₆ H ₁₃	OCHF ₂	F	H	F	Н

	R ¹	X	L ¹	L ²	L^3	L ⁴
	Н	OCHF ₂	F	F	F	Н
	CH₃	OCHF ₂	F	F	F	Н
	C ₂ H ₅	OCHF ₂	F	F	F	Н
5	n-C ₃ H ₇	OCHF ₂	F	F	F	Н
	n-C₄H ₉	OCHF ₂	F	F	F	Н
	n-C₅H ₁₁	OCHF ₂	F	F	F	Н
	n-C ₆ H ₁₃	OCHF ₂	F	F	F	Н
	Н	OCHFCF ₃	Н	Н	F	Н
10	CH₃	OCHFCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCHFCF₃	Н	Н	F	Н
	n-C ₃ H ₇	OCHFCF₃	Н	Н	F	Н
	n-C₄H ₉	OCHFCF₃	Н	Н	F	Н
	n-C₅H₁₁	OCHFCF ₃	Н	Н	F	Н
15	n-C ₆ H ₁₃	OCHFCF₃	Н	Н	F	Н
	Н	OCHFCF₃	F	Н	F	Н
	CH₃	OCHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	Н
20	n-C₄H ₉	OCHFCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	Н
	Н	OCHFCF ₃	F	F	F	Н
0.5	CH₃	OCHFCF ₃	F	F	F	Н
25	C ₂ H ₅	OCHFCF ₃	F	F	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	Н
	n-C₄H ₉	OCHFCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	Н
00	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н
30	Н	OCHFCF ₃	Н	Н	F	Н
	CH ₃	OCHFCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	Н
25	n-C₄H ₉	OCHFCF ₃	Н	Н	F	Н
35	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	Н

	R ¹	x	L ¹	L ²	L ³	L ⁴
	Н	OCHFCF ₃	F	Н	F	Н
	CH ₃	OCHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	F	Н
5	n-C₃H ₇	OCHFCF ₃	F	Н	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Ή	F	Н
	n-C₅H ₁₁	OCHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	Н
	Н	OCHFCF ₃	F	F	F	Н
10	CH ₃	OCHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCHFCF₃	F	F	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	Н
	n-C₄H ₉	OCHFCF₃	F	F	F	Н
	n-C₅H ₁₁	OCHFCF₃	F	F	F	Н
15	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н
	Н	OCF ₂ CHFCF ₃	Н	Н	F	Н
	CH ₃	OCF₂CHFCF₃	Н	Н	F	Н
	C_2H_5	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	F	Н
20	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	F	Н
•	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	Н
	Н	OCF ₂ CHFCF ₃	F	Н	F	Н
0.5	CH ₃	OCF₂CHFCF₃	F	Н	F	Н
25	C_2H_5	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C₅H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	Н
00	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	Н
30	Н	OCF ₂ CHFCF ₃	F	F	F	Н
	CH ₃	OCF ₂ CHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C₃H ₇	OCF ₂ CHFCF ₃	F	F	F	Н
0.5	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	F	Н
35	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	Н

	R ¹	X	L^1	L ²	L ³	L ⁴
	H	NCS	Н	Н	F	Н
	CH₃	NCS	Н	Н	F	Н
_	C ₂ H ₅	NCS	Н	Н	F	Н
5	n-C ₃ H ₇	NCS	Н	Н	F	Н
	n-C₄H ₉	NCS	Н	Н	F	Н
	n-C ₅ H ₁₁	NCS	Н	Н	F	Н
\$	n-C ₆ H ₁₃	NCS	Н	Н	F	Н
4.0	Н	NCS	F	Н	F	Н
10	CH₃	NCS	F	Н	F	Н
	C ₂ H ₅	NCS	F	Н	F	Н
	n-C ₃ H ₇	NCS	F	Н	F	Н
	n-C₄H ₉	NCS	F	Н	F	Н
	n-C ₅ H ₁₁	NCS	F	Н	F	Н
15	n-C ₆ H ₁₃	NCS	F	Н	F	Н
	Н	NCS	F	F	F	Н
	CH ₃	NCS	F	F	F	Н
	C ₂ H ₅	NCS	F	F	F	Н
	$n-C_3H_7$	NCS	F	F	F	Н
20	n-C₄H ₉	NCS	F	F	F	Н
	n-C ₅ H ₁₁	NCS	F	F	F	Н
	n-C ₆ H ₁₃	NCS	F	F	F	Н
	Н	C ₂ F ₅	Н	Н	F	Н
	CH ₃	C ₂ F ₅	Н	Н	F	Н
25	C ₂ H ₅	C ₂ F ₅	Н	Н	F	Н
	n-C₃H ₇	C ₂ F ₅	Н	Н	F	Н
	n-C₄H ₉	C ₂ F ₅	Н	Н	F	Н
	n-C₅H ₁₁	C ₂ F ₅	Н	Н	F	Н
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н	F	Н
30	Н	C ₂ F ₅	F	Н	F	Н
	CH ₃	C_2F_5	F	Н	F	Н
	C ₂ H ₅	C ₂ F ₅	F	Н	F	Н
	n-C ₃ H ₇	C ₂ F ₅	F	Н	F	Н
0.5	n-C₄H ₉	C ₂ F ₅	F	Н	F	Н
35	n-C ₅ H ₁₁	C_2F_5	F	Н	F	Н
	$n-C_6H_{13}$	C ₂ F ₅	F	Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	H ·	C ₂ F ₅	F	F	F	Н
	CH ₃	C ₂ F ₅	F	F	F	Н
_	C ₂ H ₅	C ₂ F ₅	F	F	F	Н
5	n-C ₃ H ₇	C ₂ F ₅	F	F	F	Н
	n-C₄H ₉	C_2F_5	F	F	F	Н
	n-C ₅ H ₁₁	C_2F_5	F	F	F	Н
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	F	Н
40	Н	C ₃ F ₇	Н	Н	F	Н
10	CH₃	C ₃ F ₇	Н	Н	F	Н
	C ₂ H ₅	C ₃ F ₇	Н	Н	F	Н
	n-C ₃ H ₇	C ₃ F ₇	Н	Н	F	Н
	n-C₄H ₉	C ₃ F ₇	Н	Н	F	Н
	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	F	Н
15	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	F	Н
	Н	C ₃ F ₇	F	Н	F	Н
	CH ₃	C ₃ F ₇	F	Н	F	Н
	C ₂ H ₅	C ₃ F ₇	F	Н	F	Н
	n-C ₃ H ₇	C ₃ F ₇	F	Н	F	Н
20	n-C₄H ₉	C ₃ F ₇	F	Н	F	Н
	n-C₅H ₁₁	C ₃ F ₇	F	Н	F	Н
	n-C ₆ H ₁₃	C_3F_7	F	Н	F	Н
	Н	C ₃ F ₇	F	F	F	Н
	CH ₃	C ₃ F ₇	F	F	F	Н
25	C ₂ H ₅	C ₃ F ₇	F	F	F	Н
	n-C ₃ H ₇	C ₃ F ₇	F	F	F	Н
	n-C₄H ₉	C ₃ F ₇	F	F	F	Н
	n-C₅H ₁₁	C ₃ F ₇	F	F	F	Н
	n-C ₆ H ₁₃	C ₃ H ₇	F	F	F	Н
30	Н	SF ₅	Н	Н	F	Н
	CH ₃	SF ₅	Н	Н	F	Н
	C ₂ H ₅	SF ₅	Н	Н	F	Н
	n-C ₃ H ₇	SF ₅	Н	Н	F	Н
	n-C₄H ₉	SF ₅	Н	Н	F	Н
35	n-C₅H ₁₁	SF ₅	Н	Н	F	Н
	n-C ₆ H ₁₃	SF ₅	Н	Н	F	Н

	R ¹	X	L ¹	L ²	L^3	L ⁴
	Н	SF ₅	F	Н	F	Н
	CH ₃	SF ₅	F	Н	F	Н
	C ₂ H ₅	SF ₅	F	Н	F	Н
5	n-C ₃ H ₇	SF ₅	F	Н	F	Н
	n-C₄H ₉	SF ₅	F	Н	F	Н
	n-C₅H ₁₁	SF ₅	F	Н	F	Н
	n-C ₆ H ₁₃	SF ₅	F	Н	F	Н
	Н	SF ₅	F	F	F	Н
10	CH₃	SF ₅	F	F	F	Н
	C ₂ H ₅	SF ₅	F	F	F	Н
	n-C ₃ H ₇	SF ₅	F	F	F	Н
	n-C₄H ₉	SF ₅	F	F	F	Н
	n-C₅H₁₁	.SF ₅	F	F	F	Н
15	n-C ₆ H ₁₃	SF ₅	F	F	F	Н
	Н	CN	Н	Н	F	Н
	CH ₃	CN	Н	Н	F	Н
	C ₂ H ₅	CN	Н	Н	F	Н
	n-C ₃ H ₇	CN	Н	Н	F	Н
20	n-C₄H ₉	CN	Н	Н	F	Н
	n-C ₅ H ₁₁	CN	Н	Н	F	Н
	n-C ₆ H ₁₃	CN	Н	Н	F	Н
	Н	CN	F	Н	F	Н
0.5	CH ₃	CN	F	Н	F	Н
25	C ₂ H ₅	CN	F	Н	F	Н
	n-C ₃ H ₇	CN	F	Н	F	Н
	n-C₄H ₉	CN	F	Н	F	Н
	n-C₅H ₁₁	CN	F	Н	F	Н
20	n-C ₆ H ₁₃	CN	F	Н	F	Н
30	Н	CN	F	F	F	Н
	CH₃	CN	F	F	F	Н
	C ₂ H ₅	CN	F	F	F	Н
	n-C ₃ H ₇	CN	F	F	F	Н
25	n-C₄H ₉	CN	F	F	F	Н
35	n-C ₅ H ₁₁	CN	F	F	F	Н
	n-C ₆ H ₁₃	CN	F	F	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴	
·	Н	F	Н	Н	F	F	
	CH ₃	F	Н	Н	F	F	
	C ₂ H ₅	F	Н	Н	F	F	
5	n-C₄H ₉	F	Н	Н	F	F	
	n-C ₅ H ₁₁	F	Н	Н	F	F	
	n-C ₆ H ₁₃	F	Н	Н	F	F	
	Н	F	F	Н	F	F	
	CH ₃	F .	F	Н	F	F	
10	C ₂ H ₅	F	F	Н	F	F	
	n-C ₃ H ₇	F	F	Н	F	F	
	n-C₄H ₉	F	F	Н	F	F	
	n-C ₅ H ₁₁	F	F	Н	F	F	
	n-C ₆ H ₁₃	F	F	Н	F	F	
15	Н	F	F	F	F	F	
	CH ₃	F	F	F	F	F	
	C ₂ H ₅	F	F	F	F	F	
	C ₂ H ₅	F	F	F	F	F	C 91 N (58.8) I;
							$\Delta \varepsilon = 35.0$; $\Delta n = 0.1149$
20	n-C ₃ H ₇	F	F	F	F	F	C 83 N (83.0) I;
							$\Delta \varepsilon = 34.9$; $\Delta n = 0.1231$
	n-C₄H ₉	F	F	F	F	F	C 90 N 79.4 I;
							$\Delta \varepsilon = 32.4$; $\Delta n = 0.1171$
	n-C ₅ H ₁₁	F	F	F	F	F	C 82 N 84.3 I;
25							$\Delta \varepsilon = 31.9$; $\Delta n = 0.1205$
	n-C ₆ H ₁₃	F	F	F	F	F	C 89 N (83.4) I;
							$\Delta \varepsilon = 30.6$; $\Delta n = 0.1116$
	n-C ₇ H ₁₅	F	F	F	F	F	C 82 N 84.3 I;
							$\Delta \varepsilon = 30.3$; $\Delta n = 0.1130$
30	Н	CI	Н	Н	F	F	
	CH ₃	CI	Н	Н	F	F	
	C ₂ H ₅	CI	Н	Н	F	F	
	n-C ₃ H ₇	CI	Н	Н	F	F	
25	n-C ₄ H ₉	CI	Н	Н	F	F	
35	n-C ₅ H ₁₁	CI	Н	Н	F	F	
	n-C ₆ H ₁₃	CI	Н	Н	F	F	

	R ¹	Χ .	L ¹	L ²	L ³	L ⁴	
	Н	CI	F	Н	F	F	
	CH ₃	CI	F	Н	F	F	
	C₂H₅	CI	F	Н	F	F	
5	n-C ₃ H ₇	CI	F	Н	F	F	
	n-C₄H ₉	CI	F	Н	F	F	
	n-C ₅ H ₁₁	CI	F	Н	F	F	
	n-C ₆ H ₁₃	CI	F	Н	F	F	
	Н	CI	F	F	F	F	
10	CH ₃	CI	F	F	F	F	
	C ₂ H ₅	CI	F	F	F	F	
	n-C ₃ H ₇	CI	F	F	F	F	C 80 N 106.7 I;
		•					$\Delta \varepsilon = 31.5$; $\Delta n = 0.1372$
	n-C₄H ₉	CI	F	F	F	F	
15	n-C ₅ H ₁₁	CI	F	F	F	F	
	n-C ₆ H ₁₃	CI	F	F	F	F	
	Н	OCF ₃	Н	Н	F	F	
	CH₃	OCF ₃	Н	Н	F	F	
00	C ₂ H ₅	OCF ₃	Н	Н	F	F	
20	n-C ₃ H ₇	OCF ₃	Н	Н	F	F	C 80 N 119.8 I;
	•						$\Delta \varepsilon = 25.3$; $\Delta n = 0.1330$
	n-C₄H ₉	OCF ₃	Н	Н	F	F	
	n-C₅H ₁₁	OCF ₃	Н	Н	F	F	
25	$n-C_6H_{13}$	OCF ₃	Н	Н	F	F	
25	Н	OCF ₃	F	Н	F	F	
	CH ₃	OCF ₃	F	Н	F	F	
	C ₂ H ₅	OCF ₃	F	Н	F	F	
	n-C₃H ₇	OCF ₃	F	Н	F	F	C 48 S _A (46) N 105.1 I;
20							$\Delta \varepsilon = 29.8$; $\Delta n = 0.1180$
30	n-C₄H ₉	OCF ₃	F	Н	F	F	
	n-C₅H ₁₁	OCF ₃	F	Н	F	F	
	n-C ₆ H ₁₃	OCF ₃	F	Н	F	F	
	Н	OCF ₃	F	F	F	F	
25	CH ₃	OCF ₃	F	F	F	F	
35	C ₂ H ₅	OCF ₃	F	F	F	F	

	R ¹	X	L ¹	L ²	L ³	L ⁴	_
	n-C ₃ H ₇	OCF ₃	F	F	F	F	C 73 N 97.5 I;
							$\Delta \varepsilon = 35.6$; $\Delta n = 0.1158$
_	n-C₄H ₉	OCF ₃	F	F	F	F	
5	n-C₅H ₁₁	OCF ₃	F	F	F	F	
	n-C ₆ H ₁₃	OCF ₃	F	F	F	F	
	Н	OCHF ₂	Н	Н	F	F	•
	CH₃	OCHF ₂	Н	Н	F	F	
4.0	C ₂ H ₅	OCHF ₂	Н	Н	F	F	
10	n-C ₃ H ₇	OCHF ₂	Н	Н	F	F	
	n-C₄H ₉	OCHF ₂	Н	Н	F	F	
	n-C ₅ H ₁₁	OCHF ₂	Н	Н	F	F	
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	F	
45	Н	OCHF ₂	F	Н	F	F	
15	CH ₃	OCHF₂	F	Н	F	F	
	C ₂ H ₅	OCHF ₂	F	Н	F	F	
	n-C₃H ₇	OCHF ₂	F	Н	F	F	
	n-C₄H ₉	OCHF ₂	F	Н	F	F	
20	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	F	
20	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	F	
•	Н	OCHF ₂	F	F	F	F	
	CH ₃	OCHF ₂	F	F	F	F	
	C ₂ H ₅	OCHF ₂	F	F	F	F	
25	n-C₃H ₇	OCHF ₂	F	F	F	F	
25	n-C₄H ₉	OCHF ₂	F	F	F	F	
	n-C₅H ₁₁	OCHF ₂	F	F	F	F	
	n-C ₆ H ₁₃	OCHF ₂	F	F	F	F	
	Н	OCHFCF ₃	Н	Н	F	F	
20	CH₃	OCHFCF ₃	Н	Н	F	F	
30	C₂H₅	OCHFCF ₃	Н	Н	F	F	
	n-C₃H ₇	OCHFCF ₃	Н	Н	F	F	
	n-C₄H ₉	OCHFCF ₃	Н	Н	F	F	
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F	
25	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F	
35	Н	OCHFCF ₃	F	Н	F	F	
	CH₃	OCHFCF ₃	F	Н	F	F	

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCHFCF₃	F	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
	n-C₄H ₉	OCHFCF ₃	F	Н	F	F
5	n-C₅H ₁₁	OCHFCF₃	F	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	F
	Н	OCHFCF₃	F	F	F	F
	CH ₃	OCHFCF ₃	F	F	F	F
	C ₂ H ₅	OCHFCF ₃	F	F	F	F
10	n-C ₃ H ₇	OCHFCF₃	F	F	F	F
	n-C₄H ₉	OCHFCF ₃	F	F	F	F
	n-C₅H ₁₁	OCHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	Н	OCHFCF ₃	Н	Н	F	F
15	CH₃	OCHFCF ₃	Н	Н	F	F
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	F
	n-C₄H ₉	OCHFCF ₃	Н	Н	F	F
00	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F
20	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	Н	OCHFCF ₃	F	Н	F	F
	CH ₃	OCHFCF ₃	F	Н	F	F
	C ₂ H ₅	OCHFCF ₃	F	Н	F	F
0.5	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
25	n-C₄H ₉	OCHFCF ₃	F	Н	F	F
	n-C₅H ₁₁	OCHFCF ₃	F	Н	F	F
	$n-C_6H_{13}$	OCHFCF ₃	F	Н	F	F
	Н	OCHFCF ₃	F	F	F	F
20	CH₃	OCHFCF ₃	F	F	F	F
30	C₂H₅	OCHFCF ₃	F	F	F	F
	n-C₃H ₇	OCHFCF ₃	F	F	F	F
	n-C₄H ₉	OCHFCF ₃	F	F	F	F
	n-C₅H ₁₁	OCHFCF ₃	F	F	F	F
25	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
35	Н	OCF ₂ CHFCF ₃	Н	Н	F	F
	CH ₃	OCF₂CHFCF₃	Н	Н	F	F

			4		_		
	R ¹	X	_ L ¹	L ²	L ³	L⁴	_
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	F	
	n-C₃H ₇	OCF ₂ CHFCF ₃	Н	Н	F	F	
_	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н	F	F	
5	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	F	F	
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	F	
	Н	OCF ₂ CHFCF ₃	F	Н	F	F	
	CH₃	OCF ₂ CHFCF ₃	F	Н	F	F	
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	F	
10	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	F	F	
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н	F	F	
	n-C₅H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	F	
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	F	
	Н	OCF ₂ CHFCF ₃	F	F	F	F	
15	CH ₃	OCF ₂ CHFCF ₃	F	F	F	F	
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	F	
	n-C₃H ₇	OCF ₂ CHFCF ₃	F	F	F	F	
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	F	F	
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	F	
20	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	F	
	Н	NCS	Н	Н	F	F	
	CH₃	NCS	Н	Н	F	F	
	C ₂ H ₅	NCS	Н	Н	F	F	
	$n-C_3H_7$	NCS	Н	Н	F	F	C 107 N 185.5 I;
25							$\Delta \varepsilon = 31.4$; $\Delta n = 0.2$
	n-C₄H ₉	NCS	Н	Н	F	F	
	n-C₅H₁₁	NCS	Н	Н	F	F	
	n-C ₆ H ₁₃	NCS	Н	Н	F	F	
	H .	NCS	F	Н	F	F	,
30	CH₃	NCS	F	Н	F	F	
	C ₂ H ₅	NCS	F	Н	F	F	
	n-C ₃ H ₇	NCS	F	Н	F	F	
	n-C₄H ₉	NCS	F	Н	F	F	
	n-C ₅ H ₁₁	NCS	F	Н	F	F	
35	n-C ₆ H ₁₃	NCS	F	Н	F	F	
	Н	NCS	F	F	F	F	

	R ¹	X	L ¹	L ²	L ³	L⁴
	CH ₃	NCS	F	F	F	F
	C ₂ H ₅	NCS	F	F	F	F
_	n-C ₃ H ₇	NCS	F	F	F	F
5	n-C₄H ₉	NCS	F	F	F	F
	n-C ₅ H ₁₁	NCS	F	F	F	F
	n-C ₆ H ₁₃	NCS	F	F	F	F
	Н	C ₂ F ₅	Н	Н	F	F
	CH ₃	C ₂ F ₅	Н	Н	F	F
10	C ₂ H ₅	C ₂ F ₅	Н	Н	F	F
	n-C ₃ H ₇	C ₂ F ₅	Н	Н	F	F
	n-C₄H ₉	C ₂ F ₅	Н	Н	F	F
	n-C₅H ₁₁	C ₂ F ₅	Н	Н	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н	F	F
15	Н	C ₂ F ₅	F	Н	F	F
	CH ₃	C ₂ F ₅	F	Н	F	F
	C ₂ H ₅	C ₂ F ₅	F	Н	F	F
	n-C ₃ H ₇	C ₂ F ₅	F	Н	F	F
	n-C₄H ₉	C ₂ F ₅	F	Н	F	F
20	n-C₅H₁₁	C ₂ F ₅	F	Н	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	F	Н	F	F
	Н	C ₂ F ₅	F	F	F	F
	CH₃	C ₂ F ₅	F	F	F	F
	C ₂ H ₅	C ₂ F ₅	F	F	F	F
25	n-C ₃ H ₇	C ₂ F ₅	F	F	F	F
	n-C₄H ₉	C ₂ F ₅	F	F	F	F
	n-C₅H ₁₁	C ₂ F ₅	F	F	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	F	F
	Н	C ₃ F ₇	Н	Н	F	F
30	CH ₃	C ₃ F ₇	Н	Н	F	F
	C ₂ H ₅	C ₃ F ₇	Н	Н	F	F
	n-C ₃ H ₇	C ₃ F ₇	Н	Н	F	F
	n-C₄H ₉	C ₃ F ₇	Н	Н	F	F
25	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	F	F
35	$n-C_6H_{13}$	C ₃ F ₇	Н	Н	F	F
	H	C ₃ F ₇	F	Н	F	F

- 88 -

	R ¹	X	L ¹	L ²	L ³	L ⁴	_
	CH ₃	C ₃ F ₇	F	Н	F	F	
	C ₂ H ₅	C ₃ F ₇	F	Н	F	F	
	n-C₃H ₇	C_3F_7	F	Н	F	F	
5	n-C₄H ₉	C ₃ F ₇	F	Н	F	F	
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н	F	F	
	n-C ₆ H ₁₃	C_3F_7	F	Н	F	F	
	Н	C ₃ F ₇	F	F	F	F	
	CH ₃	C ₃ F ₇	F	F	F	F	
10	C ₂ H ₅	C ₃ F ₇	F	F	F	F	
	n-C ₃ H ₇	C ₃ F ₇	F	F	F	F	
	n-C₄H ₉	C ₃ F ₇	F	F	F	F	
	n-C ₅ H ₁₁	C ₃ F ₇	F	F	F	F	
4-	n-C ₆ H ₁₃	C ₃ F ₇	F	F	F	F	
15	Н	SF ₅	Н	Н	F	F	
	CH ₃	SF ₅	Н	Н	F	F	
	C_2H_5	SF ₅	Н	Н	F	F	
	n-C₃H ₇	SF ₅	Н	Н	F	F	
00	n-C₄H ₉	SF ₅	Н	Н	F	F	
20	$n-C_5H_{11}$	SF ₅	Н	Н	F	F	
	$n-C_6H_{13}$	SF ₅	Н	Н	F	F	
	Н	SF ₅	F	Н	F	F	
	CH ₃	SF ₅	F	Н	F	F	
0.5	C_2H_5	SF ₅	F	Н	F	F	
25	n-C ₃ H ₇	SF ₅	F	Н	F	F	
	n-C₄H ₉	SF ₅	F	Н	F	F	
	$n-C_5H_{11}$	SF ₅	F	Н	F	F	
	n-C ₆ H ₁₃	SF ₅	F	Н	F	F	
0.0	Н	SF ₅	F	F	F	F	
30	CH ₃	SF ₅	F	F	F	F	
	C ₂ H ₅	SF ₅	F	F	F	F	
	n-C₃H ₇	SF ₅	F	F	F	F	C 110 N (83.4) I;
							$\Delta \varepsilon = 33.8$; $\Delta n = 0.1211$
25	n-C₄H ₉	SF ₅	F	F	F	F	
35	n-C ₅ H ₁₁	SF ₅	F	F	F	F	
	n-C ₆ H ₁₃	SF ₅	F	F	F	F	

	R ¹	X	L^1	L ²	L ³	L ⁴	
	Н	CN	Н	Н	F	F	
	CH ₃	CN	Н	Н	F	F	
	C ₂ H ₅	CN	Н	Н	F	F	
5	n-C₃H ₇	CN	Н	Н	F	F	
	n-C₄H ₉	CN	Н	Н	F	F	
	n-C ₅ H ₁₁	CN	Н	Н	F	F	
	n-C ₆ H ₁₃	CŅ	Н	Н	F	F	
	Н	CN	F	Н	F	F	·
10	CH ₃	CN	F	Н	F	F	
	C ₂ H ₅	CN	F	Н	F	F	
	n-C₃H ₇	CN	F	Н	F	F	
	n-C₄H ₉	CN	F	Н	F	F	
	n-C ₅ H ₁₁	CN	F	Н	F	F	
15	n-C ₆ H ₁₃	CN	F	Н	F	F	
	Н	CN	F	F	F	F	
	CH ₃	CN	F	F	F	F	
	C ₂ H ₅	CN	F	F	F	F	C 98 N _{Re} (71) S _C (84)
							N 127.6 I
20							$\Delta \varepsilon$ = 67.8; Δn = 0.1459
	n-C ₃ H ₇	CN	F	F	F	F	C 75 S _c ? (65) N 144.1 I
							$\Delta n = 0.1561$; $\Delta \epsilon = 66.5$
	n-C₄H ₉	CN	F	F	F	F	C 79 N 139.3 I;
0.5							$\Delta \varepsilon = 64.2$; $\Delta n = 0.1477$
25	n-C ₅ H ₁₁	CN	F	F	F	F	C 65 S _C (44) N 141.5 I;
							$\Delta \varepsilon = 61.8$; $\Delta n = 0.1490$
	n-C ₆ H ₁₃	CN	F	F	F	F	
	n-C ₇ H ₁₅	CN	F	F	F	F	C 51 N 130.8 I;
							$\Delta \varepsilon = 58.4$; $\Delta n = 0.1459$
30	Н	CF₃	Н	Н	F	F	
	C ₂ H ₅	CF₃	Н	Н	F	F	
	n-C₃H ₇	CF ₃	Н	Н	F	F	C 95 N (87.5) 1;
							$\Delta \varepsilon = 31.5$; $\Delta n = 0.1330$
25	n-C₄H ₉	CF ₃	Н	Н	F	F	
35	n-C ₅ H ₁₁	CF ₃	Н	Н	F	F	
	n-C ₆ H ₁₃	CF ₃	Н	Н	F	F	

	R ¹	X	L ¹	L ²	L ³	L ⁴	
	CH ₂ =CH	CF ₃	Н	Н	F	F	
	Н	CF ₃	F	F	F	F	
_	C ₂ H ₅	CF ₃	F	F	F	F	
5	n-C ₃ H ₇	CF ₃	F	F	F	F	C 91 I;
							$\Delta n = 0.1190$; $\Delta \epsilon = 40.8$
	n-C₄H ₉	CF ₃	F	F	F	F	
	n-C ₅ H ₁₁	CF ₃	F	F	F	F	
40	n-C ₆ H ₁₃	CF ₃	F	F	F	F	
10	CH₂=CH	CF ₃	F	F	F	F	
	Н	F	Н	Н	F	F	
	C ₂ H ₅	F	Н	Н	F	F	
	n-C ₃ H ₇	F	Н	Н	F	F	
45	n-C₄H ₉	F	Н	Н	F	F	
15	n-C ₅ H ₁₁	F	Н	Н	F	F	
	n-C ₆ H ₁₃	F	Н	Н	F	F	
	CH ₂ =CH	F	Н	Н	F	F	

Example 3

$$C_3H_7$$
 O
 H
 CF_2O
 O
 F
 F

Step 3.1

30
$$H_7C_3 \longrightarrow \underbrace{L}$$

$$H_7C_3 \longrightarrow \underbrace{O}$$

$$H \longrightarrow CF_2O \longrightarrow O$$

$$Br$$
35

62.7 mmol of trifluoromethanesulfonic acid are added dropwise at -20°C to a solution of 61.2 mmol of \underline{L} in 500 ml of CH_2Cl_2 . The mixture is allowed to come to room temperature for 30 minutes and then cooled to -70°C. Firstly a solution of 91 mmol of 4-bromo-3-fluorophenol and 101 mmol of triethylamine in 200 ml of CH_2Cl_2 and 5 minutes later 310 mmol of triethylamine tris(hydrofluoride) are then added. After a further 5 minutes, a suspension of 315 mmol of 1,3-dibromo-5,5-dimethylhydanthoin is added in small portions, and the mixture is stirred at -70°C for a further 1 hour. The reaction mixture is allowed to come to -10°C and is poured into ice-cold NaOH. The mixture is subjected to conventional aqueous work-up, and the crude product is purified by chromatography on silica gel (heptane/MTB ether 4:1) and crystallisation from ethanol at -20°C.

Step 3.2

15

5

10

20

25

30

35

A mixture of 50 mmol of $\underline{\mathbf{M}}$, 50 mmol of 3,4,5-trifluorobenzeneboronic acid, 2.5 mmol of Pd(PPh₃)₄, 300 ml of toluene and 300 ml of Na borate buffer (pH = 9) is stirred at 80°C for 18 hours. The mixture is poured into 500 ml

of 0.1 N HCl, and the product is extracted with CH_2Cl_2 , dried over Na_2SO_4 and evaporated to dryness in a rotary evaporator. The crude product is chromatographed over silica gel in n-heptane and subsequently recrystallised from n-heptane at -20°C. C 61 N 191.8 I; $\Delta n = 0.1220$; $\Delta \epsilon = 19.1$

The following compounds of the formula

are prepared analogously:

	R ¹	X	L ¹	L ²	<u>.</u>
	Н	F	Н	Н	
5	CH ₃	F	Н	Н	
	C ₂ H ₅	F	Н	Н	
	n-C ₃ H ₇	F	Н	Н	C 84 N 232.4 I;
					$\Delta \varepsilon = 9.4$; $\Delta n = 0.1390$
	n-C ₄ H ₉	F	Н	Н	
10	n-C₅H ₁₁	F	Н	Н	
	n-C ₆ H ₁₃	F	Н	Н	
	Н	F	F	Н	
	CH ₃	F	F	Н	
	C ₂ H ₅	F	F	Н	
15	n-C ₃ H ₇	F	F	Н	C 44 S _M ? 45 N 212.6 I;
					$\Delta \varepsilon = 13.4$; $\Delta n = 0.1328$
	n-C₄H ₉	F	F	Н	
	n-C₅H ₁₁ ∘	F	F	Н	
00	n-C ₆ H ₁₃	F	F	Н	•
20	Н	F	F	F	
	CH ₃	F	F	F	
	C ₂ H ₅	F	F	F	
	n-C₄H ₉	F	F	F	
0.5	n-C ₅ H ₁₁	F	F	F	
25	n-C ₆ H ₁₃	F	F	F	
	Н	CI	Н	Н	
	CH ₃	CI	Н	Н	
	C ₂ H ₅	CI	Н	Н	
20	$n-C_3H_7$	CI	Н	Н	
30	n-C₄H ₉	CI	Н	Н	
	n-C₅H ₁₁	CI	Н	Н	
	n-C ₆ H ₁₃	CI	Н	Н	
	Н	CI	F	Н	
35	CH ₃	CI	F	Н	
30	C ₂ H ₅	CI	F	Н	
	n-C₃H ₇	CI	F	Н	

	R ¹	X	ٹ	L ²	
	n-C₄H ₉	CI	F	Н	
	n-C₅H ₁₁	CI	F	Н	
	n-C ₆ H ₁₃	CI	F	Н	
5	н	CI	F	F	
	CH ₃	CI	F	F	
	C₂H₅	CI	F	F	
	n-C₃H ₇	CI	F	F	
	n-C₄H ₉	CI	F	F	
10	n-C₅H ₁₁	CI	F	F	
	n-C ₆ H ₁₃	CI	F	F	
	Н	OCF ₃	Н	Н	
	CH₃	OCF ₃	Н	Н	
	C₂H₅	OCF ₃	Н	Н	
15	n-C₃H ₇	OCF ₃	Н	Н	
	n-C₄H ₉	OCF ₃	Н	Н	
	n-C ₅ H ₁₁	OCF ₃	Н	Н	
	n-C ₆ H ₁₃	OCF ₃	Н	Н	
	Н	OCF ₃	F	Н	
20	CH ₃	OCF ₃	F	Н	
	C ₂ H ₅	OCF ₃	F	Н	
	n-C₃H ₇	OCF ₃	F	Н	
	n-C₄H ₉	OCF ₃	F	Н	
05	n-C₅H ₁₁	OCF ₃	F	Н	
25	$n-C_6H_{13}$	OCF ₃	F	Н	
	Н	OCF ₃	F	F	
	CH₃	OCF ₃	F	F	
	C₂H₅	OCF ₃	F	F	
20	n-C₃H ₇	OCF ₃	F	F	
30	n-C₄H ₉	OCF ₃	F	F	
	$n-C_5H_{11}$	OCF ₃	F	F	
	n-C ₆ H ₁₃	OCF ₃	F	F	
	Н	OCHF ₂	Н	Н	
25	CH₃	OCHF ₂	Н	Н	
35	C_2H_5	OCHF ₂	Н	Н	
	n-C ₃ H ₇	OCHF ₂	Н	Н	

	R^1	X	L ¹	L ²
	n-C ₄ H ₉	OCHF ₂	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	Н	H
	n-C ₆ H ₁₃	OCHF ₂	Н	Н
5	Н	OCHF ₂	F	Н
	CH ₃	OCHF ₂	F	Н
	C₂H₅	OCHF ₂	F	Н
	n-C ₃ H ₇	OCHF ₂	F	Н
	n-C ₄ H ₉	OCHF ₂	F	Н
10	n-C₅H ₁₁	OCHF ₂	F	Н
	n-C ₆ H ₁₃	OCHF ₂	F	Н
	Н	OCHF ₂	F	F
	CH₃	OCHF ₂	F	F
	C ₂ H ₅	OCHF ₂	F	F
15	n-C ₃ H ₇	OCHF ₂	F	F
	n-C₄H ₉	OCHF ₂	F	F
	n-C₅H ₁₁	OCHF ₂	F	F
	n-C ₆ H ₁₃	OCHF ₂	F	F
	Н	OCHFCF ₃	Н	Н
20	CH ₃	OCHFCF ₃	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н
0.5	n-C₅H ₁₁	OCHFCF ₃	Н	Н
25	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н
	Н	OCHFCF ₃	F	Н
	CH ₃	OCHFCF ₃	F	Н
	C ₂ H ₅	OCHFCF ₃	F	Н
0.0	n-C ₃ H ₇	OCHFCF ₃	F	Н
30	n-C₄H ₉	OCHFCF ₃	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
	Н	OCHFCF ₃	F	F
0.5	CH ₃	OCHFCF ₃	F	F
35	C ₂ H ₅	OCHFCF ₃	F	F
	n-C₃H ₇	OCHFCF ₃	F	F

WO 2004/048501

	R ¹	×	L ¹	L ²
	n-C ₄ H ₉	OCHFCF ₃	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F
5	Н	OCHFCF ₃	Н	Н
	CH₃	OCHFCF ₃	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н
10	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н
	Н	OCHFCF ₃	F	Н
	CH₃	OCHFCF ₃	F	Н
	C₂H₅	OCHFCF ₃	F	Н
15	$n-C_3H_7$	OCHFCF ₃	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	, F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
	Н	OCHFCF ₃	F	F
20	CH ₃	OCHFCF ₃	F	F
	C ₂ H ₅	OCHFCF ₃	F	F
	$n-C_3H_7$	OCHFCF ₃	F	F
	n-C₄H ₉	OCHFCF ₃	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F
25	n-C ₆ H ₁₃	OCHFCF ₃	F	F
	Н	OCF ₂ CHFCF ₃	Н	Н
	CH₃	OCF ₂ CHFCF ₃	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н
30	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н
	Н	OCF ₂ CHFCF ₃	F	Н
	CH₃	OCF ₂ CHFCF ₃	F	Н
35	C₂H₅	OCF ₂ CHFCF ₃	F	Н
	n-C ₃ H ₇	OCF₂CHFCF₃	F	Н

	R^1	×	L ¹	L ²
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н
	n-C₅H ₁₁	OCF ₂ CHFCF ₃	F	н
5	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н
	H	OCF ₂ CHFCF ₃	F	F
	CH₃	OCF ₂ CHFCF ₃	F	F
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F
10	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F
	H	NCS	Н	Н
	CH₃	NCS	н	н
,	C ₂ H ₅	NCS	н	н
15	n-C ₃ H ₇	NCS	Н	н
	n-C₄H ₉	NCS	Н	Н
	n-C ₅ H ₁₁	NCS	Н	H
	n-C ₆ H ₁₃	NCS	Н	Н
	H	NCS	F	Н
20	CH₃	NCS	F	Н
	C ₂ H ₅	NCS	F	Н
	n-C ₃ H ₇	NCS	F	Н
	n-C₄H ₉	NCS	F	Н
	n-C ₅ H ₁₁	NCS	F	Н
25	n-C ₆ H ₁₃	NCS	F	Н
	Н	NCS	F	F
	CH₃	NCS	F	F
	C₂H₅	NCS	F	F
	n-C ₃ H ₇	NCS	F	F
30	n-C₄H ₉	NCS	F	F
	n-C ₅ H ₁₁	NCS	F	F
	n-C ₆ H ₁₃	NCS	F	F
	Н	C_2F_5	Н	Н
	СН₃	C ₂ F ₅	Н	Н
35	C ₂ H ₅	C ₂ F ₅	Н	Н
	n-C ₃ H ₇	C ₂ F ₅	Н	Н

	R^1	X	L ¹	L ²
			H	<u>-</u> Н
	n-C₄H ₉	C ₂ F ₅		
	n-C₅H ₁₁	C ₂ F ₅	Н	Н
5	n-C ₆ H ₁₃	C ₂ F ₅	Н	H
	Н	C ₂ F ₅	F	Н
	CH ₃	C ₂ F ₅	F	Н
	C ₂ H ₅	C ₂ F ₅	F	Н
	n-C₃H ₇	C ₂ F ₅	F	Н
10	n-C₄H ₉	C ₂ F ₅	F	Н
10	n-C₅H ₁₁	C ₂ F ₅	F	Н
	$n-C_6H_{13}$	C_2F_5	F	Н
	Н	C ₂ F ₅	F	F
	CH₃	C_2F_5	F	F
	C_2H_5	C ₂ F ₅	F	F
15	$n-C_3H_7$	C ₂ F ₅	F	F
	n-C₄H ₉	C_2F_5	F	F
	n-C₅H ₁₁	C ₂ F ₅	F	F
	n-C ₆ H ₁₃	C_2F_5	F	F
	H ·	C ₃ F ₇	Н	Н
20	CH ₃	C ₃ F ₇	Н	Н
	C ₂ H ₅	C_3F_7	Н	Н
	$n-C_3H_7$	C ₃ F ₇	Н	Н
	n-C₄H ₉	C ₃ F ₇	Н	Н
	n-C₅H ₁₁	C ₃ F ₇	Н	Н
25	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н
	H	C ₃ F ₇	F	Н
	CH₃	C ₃ F ₇	F	Н
	C ₂ H ₅	C ₃ F ₇	F	Н
	n-C ₃ H ₇	C ₃ F ₇	F	Н
30	n-C₄H ₉	C ₃ F ₇	F	Н
	n-C₅H ₁₁	C ₃ F ₇	F	н
	n-C ₆ H ₁₃	C ₃ F ₇	F	н
	н-о _б гиз Н	C ₃ F ₇	F	F
	CH₃	C ₃ F ₇	F	F
35	C ₁ I ₃ C ₂ H ₅	C ₃ F ₇	F	F
	n-C ₃ H ₇	C ₃ F ₇	, F	, F
	11-03/7	∪ 3Г7	Г	F

	R ¹	X	L ¹	L ²	
	n-C₄H ₉	C ₃ F ₇	F	F	
	n-C₅H ₁₁	C ₃ F ₇	F	F	
	n-C ₆ H ₁₃	C ₃ F ₇	F	F	
5	Н ,	SF₅	Н	Н	
	CH₃	SF ₅	Н	Н	
	C ₂ H ₅	SF ₅	Н	Н	
	n-C ₃ H ₇	SF ₅	Н	Н	
	n-C₄H ₉	SF₅	Н	Н	
10	n-C₅H ₁₁	SF ₅	Н	Н	
	n-C ₆ H ₁₃	SF ₅	Н	Н	
	Н	SF ₅	F	Н	
	CH₃	SF ₅	F	Н	
	C ₂ H ₅	SF ₅	. F	Н	
15	n-C ₃ H ₇ .	SF₅	F	Н	
	n-C₄H ₉	SF₅	F	Н	
	n-C₅H₁₁	SF ₅	F	Н	
	n-C ₆ H ₁₃	SF ₅	F	Н	
	Н	SF ₅	F	F	
20	CH₃	SF ₅	F	F	
	C ₂ H ₅	SF ₅	F	F	
	n-C₃H ₇	SF ₅	F	F	
	n-C₄H ₉	SF ₅	F	F	
	n-C₅H₁₁	SF ₅	F	F	
25	n-C ₆ H ₁₃	SF ₅	F	F	
	Н	CN	Н	Н	
	CH₃	CN	Н	Н	
	C ₂ H ₅	CN	Н	Н	
	n-C ₃ H ₇	CN	Н	Н	
30	n-C₄H ₉	CN	Н	Н	
	n-C ₅ H ₁₁	CN	Н	Н	
	n-C ₆ H ₁₃	CN	Н	Н	
	Н	CN	F	Н	
0.5	CH₃	CN	F.	Н	
35	C ₂ H ₅	CN	F	Н	
	n-C ₃ H ₇	CN	F	Н	

- 99 -

Example 4

$$_{5}$$
 $C_{3}H_{7}$ O H $CF_{2}O$ O O F

Step 4.1

62.7 mmol of trifluoromethanesulfonic acid are added dropwise at -20°C to a solution of 61.2 mmol of $\underline{\textbf{N}}$ in 500 ml of CH_2Cl_2 . The mixture is allowed to come to room temperature for 30 minutes and is then cooled to -70°C . Then, firstly a solution of 91 mmol of 4-bromophenol and 101 mmol of triethylamine in 200 ml of CH_2Cl_2 and, 5 minutes later, 310 mmol of triethylamine tris(hydrofluoride) are added. After a further 5 minutes, a suspendsion of 315 mmol of 1,3-dibromo-5,5-dimethylhydantoin is added in small portions, and the mixture is stirred at -70°C for a further 1 hour. The reaction mixture is allowed to come to -10°C and is poured into ice-cold NaOH. The mixture is subjected to conventional aqueous work-up, and the crude product is purified by chromatography on silica gel (heptane/MTB ether 4:1) and crystallization from ethanol at -20°C .

20

25

Step 4.2

$$_{5}$$
 $C_{3}H_{7}$ O H $CF_{2}O$ O F

A mixture of 50 mmol of $\underline{\mathbf{O}}$, 50 mmol of 3,4,5-trifluorobenzeneboronic acid, 2.5 mmol of Pd(PPh₃)₄, 300 ml of toluene and 300 ml of Na borate buffer (pH = 9) is stirred at 80°C for 18 hours. The mixture is poured into 500 ml of 0.1 N HCl, the product is extracted with CH₂Cl₂, and the extracts are dried over Na₂SO₄ and evaporated to dryness in a rotary evaporator. The crude product is chromatographed over silica gel in n-heptane and subsequently recrystallized from n-heptane at -20°C. C 60 S_B 81 N 206.6 I; Δ n = 0.1291; Δ e = 15.7

The following compounds of the formula

$$R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} CF_{2}O \longrightarrow \begin{array}{c} C \\ O \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow$$

25 are prepared analogously:

	R ¹	X	L ¹	L ²
	Н	F	Н	Н
	CH₃	F	Н	Н
30	C ₂ H ₅	F	Н	Н
	n-C ₃ H ₇	F	Н	Н
	n-C ₄ H ₉	F	Н	Н
	n-C ₅ H ₁₁	F	Н	Н
	n-C ₆ H ₁₃	F	Н	Н
35	Н	F	F	Н
	CH ₃	F	F	Н

	R ¹	X	L ¹	L^2	
	C₂H₅	F	F	<u>-</u>	
	n-C ₃ H ₇	F	F	Н	C 47 S _B 91 N 238.0 I;
	05,	·	·		$\Delta \varepsilon = 10.7$; $\Delta n = 0.1370$
5	n-C₄H ₉	F	F	Н	
	n-C₅H ₁₁	F	F	Н	
	n-C ₆ H ₁₃	F	F	Н	
	Н	F	F	F	
	CH₃	F	F	F	
10	C ₂ H ₅	F	F	F	
	n-C₄H ₉	F	F	F	
	n-C ₅ H ₁₁	F	F	F	
	n-C ₆ H ₁₃	F	F	F	
	Н	CI	Н	Н	
15	CH₃	CI	Н	Н	
	C ₂ H ₅	CI	Н	Н	
	n-C ₃ H ₇	CI	Н	Н	
	n-C₄H ₉	CI	H	Н	
	n-C₅H ₁₁	CI	Н	Н	
20	n-C ₆ H ₁₃	CI	Н	Н	
	Н	CI	F	Н	
	CH ₃	CI	F	Н	
	C ₂ H ₅	CI	F	Н	
	n-C ₃ H ₇	CI	F	Н	
25	$n-C_4H_9$	CI	F	Н	
	n-C ₅ H ₁₁	CI	F,	Н	
	n-C ₆ H ₁₃	CI	F	Н	
	Н	CI	F	F	
0.0	CH ₃	CI	F	F	
30	C ₂ H ₅	CI	F	F	
	n-C₃H ₇	CI	F	F	
	n-C₄H ₉	CI	F	F	
	n-C₅H ₁₁	CI	F	F	
25	n-C ₆ H ₁₃	CI	F	F	
35	Н	OCF ₃	Н	Н	
	CH ₃	OCF₃	Н	Н	

	R ¹	X	L^1	L ²
	C ₂ H ₅	OCF ₃	Н	Н
	n-C ₃ H ₇	OCF ₃	Н	Н
	n-C₄H ₉	OCF ₃	Н	Н
5	n-C ₅ H ₁₁	OCF ₃	Н	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н
	Н	OCF ₃	F	Н
	CH₃	OCF ₃	F	Н
4.0	C_2H_5	OCF ₃	F	Н
10	n-C₃H ₇	OCF ₃	F	Н
	n-C ₄ H ₉	OCF ₃	F	Н .
	$n-C_5H_{11}$	OCF ₃	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	H
4.5	Н	OCF ₃	F	F
15	CH ₃	OCF ₃	F	F
	C_2H_5	OCF ₃	F	F
	n-C₃H ₇	OCF ₃	F	F
	n-C₄H ₉	OCF ₃	F	F
20	n-C₅H ₁₁	OCF ₃	F	F
20	$n-C_6H_{13}$	OCF ₃	F	F
	Н	OCHF ₂	Н	Н
	CH₃	OCHF ₂	Н	н
	C ₂ H ₅	OCHF ₂	Н	Н
25	n-C ₃ H ₇	OCHF ₂	Н	Н
25	n-C₄H ₉	OCHF ₂	Н	Н
	n-C₅H ₁₁	OCHF ₂	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н
	Н	OCHF ₂	F	Н
20	CH ₃	OCHF ₂	F	Н
30	C ₂ H ₅	OCHF ₂	F	Н
	n-C ₃ H ₇	OCHF ₂	F	H ·
	n-C₄H ₉	OCHF ₂	F	Н
	n-C₅H ₁₁	OCHF ₂	F	H
25	n-C ₆ H ₁₃	OCHF ₂	F	Н
35	Н	OCHF ₂	F	F
	CH ₃	OCHF ₂	F	F

	R ¹	X	L ¹	L ²	
	C ₂ H ₅	OCHF ₂	F	F	
	n-C ₃ H ₇	OCHF ₂	F	F	
	n-C₄H ₉	OCHF ₂	F	F	
5	n-C₅H ₁₁	OCHF ₂	F	F	
	n-C ₆ H ₁₃	OCHF ₂	F	F	
	Н	OCHFCF ₃	Н	Н	
	CH ₃	OCHFCF ₃	Н	Н	
	C ₂ H ₅	OCHFCF ₃	Н	Н	
10	n-C ₃ H ₇	OCHFCF ₃	Н	Н	
	n-C₄H ₉	OCHFCF ₃	Н	Н	
	n-C₅H ₁₁	OCHFCF ₃	Н	Н	
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	
4.5	Н	OCHFCF ₃	F	Н	
15	CH ₃	OCHFCF ₃	F	Н	
	C ₂ H ₅	OCHFCF ₃	F	Н	
	n-C₃H ₇	OCHFCF ₃	F	Н	
•	n-C₄H ₉	OCHFCF ₃	F	Н	
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	
20	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	
	Н	OCHFCF ₃	F	F	
	CH₃	OCHFCF ₃	F	F	
	C ₂ H ₅	OCHFCF ₃	F	F	
0.5	n-C ₃ H ₇	OCHFCF ₃	F	F	
25	n-C₄H ₉	OCHFCF ₃	F	F	
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	
	Н	OCHFCF ₃	Н	Н	
00	CH ₃	OCHFCF ₃	Н	Н	
30	C ₂ H ₅	OCHFCF ₃	Н	Н	
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	
	n-C₄H ₉	OCHFCF ₃	Н	Н	
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	
25	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	
35	Н	OCHFCF ₃	F	Н	
	CH ₃	OCHFCF ₃	F	Н	

	R ¹	X	L ¹	L ²
	C ₂ H ₅	OCHFCF ₃	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н
5	n-C₅H₁₁	OCHFCF ₃	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
	Н	OCHFCF ₃	F	F
	CH ₃	OCHFCF ₃	F	F
	C_2H_5	OCHFCF ₃	F	F
10	n-C₃H ₇	OCHFCF ₃	F	F
	n-C₄H ₉	OCHFCF ₃	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F
. –	Н	OCF ₂ CHFCF ₃	Н	Н
15	CH₃	OCF ₂ CHFCF ₃	Н	Н
	C_2H_5	OCF ₂ CHFCF ₃	Н	Н
	n-C₃H ₇	OCF ₂ CHFCF ₃	Н	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	. Н	н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	H
20	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н
	Н	OCF ₂ CHFCF ₃	F	Н
	CH ₃	OCF ₂ CHFCF ₃	F	н _
	C_2H_5	OCF ₂ CHFCF ₃	F	Н
0.5	n-C₃H ₇	OCF ₂ CHFCF ₃	F	Н
25	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н
	n-C₅H ₁₁	OCF ₂ CHFCF ₃	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н
	Н	OCF ₂ CHFCF ₃	F	F
0.0	CH ₃	OCF ₂ CHFCF ₃	F	F
30	C_2H_5	OCF ₂ CHFCF ₃	F	F
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F
	n-C₅H ₁₁	OCF ₂ CHFCF ₃	F	F
25	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F
35	Н	NCS	Н	Н
	CH₃	NCS	Н	Н

	R ¹	X	L ¹	L ²
	C ₂ H ₅	NCS	Н	Н
	n-C ₃ H ₇	NCS	Н	Н
	n-C₄H ₉	NCS	Н	Н
5	n-C₅H ₁₁	NCS	Н	Н
	n-C ₆ H ₁₃	NCS	Н	Н
	Н	NCS	F	Н
	CH₃	NCS	F	Н
4.0	C ₂ H ₅	NCS	F	Н
10	n-C ₃ H ₇	NCS	F	Н
	n-C₄H ₉	NCS	F	Н
	n-C₅H ₁₁	NCS	F	Н
	n-C ₆ H ₁₃	NCS	F	H .
45	Н	NCS	F	F
15	CH ₃	NCS	F	F
	C₂H₅	NCS	F	F
	$n-C_3H_7$	NCS	F	F
	n-C₄H ₉	NCS	F	F
00	$n-C_5H_{11}$	NCS	F	F
20	n-C ₆ H ₁₃	NCS	F	F
	Н	C_2F_5	Н	Н
	CH₃	C_2F_5	Н	Н
	C₂H₅	C ₂ F ₅	Н	Н
25	n-C₃H ₇	C_2F_5	Н	Н
25	n-C₄H ₉	C ₂ F ₅	Н	Н
	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н
	n-C ₆ H ₁₃	C_2F_5	Н	Н
	Н	C ₂ F ₅	F	Н
20	CH ₃	C ₂ F ₅	F	Н
30	C ₂ H ₅	C ₂ F ₅	F	Н
	n-C ₃ H ₇	C ₂ F ₅	F	Н
	n-C₄H ₉	C ₂ F ₅	F	Н
	n-C₅H ₁₁	C ₂ F ₅	F	Н
25	n-C ₆ H ₁₃	C ₂ F ₅	F	Н
35	Н	C ₂ F ₅	F	F .
	CH₃	C ₂ F ₅	F	F

	R ¹	X	L ¹	L ²	
	C ₂ H ₅	C ₂ F ₅	F	F	
	n-C ₃ H ₇	C ₂ F ₅	F	F	
	n-C₄H ₉	C ₂ F ₅	F	F	
5	n-C₅H ₁₁	C ₂ F ₅	F	F	
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	
	Н	C_3F_7	Н	Н	
	CH₃	C_3F_7	Н	Н	
	C ₂ H ₅	C_3F_7	Н	Н	
10	n-C₃H ₇	C ₃ F ₇	Н	Н	
	n-C ₄ H ₉	C ₃ F ₇	Н	Н	
	n-C ₅ H ₁₁	C_3F_7	Н	Н	
	n-C ₆ H ₁₃	C_3F_7	Н	Н	
	Н	C_3F_7	F	Н	
15	CH ₃	C_3F_7	F	Н	
	C ₂ H ₅	C_3F_7	F	Н	
	n-C₃H ₇	C_3F_7	F	Н	
	n-C₄H ₉	C_3F_7	F	Н	
	n-C ₅ H ₁₁	C_3F_7	F	Н	
20	n-C ₆ H ₁₃	C_3F_7	F	Н	
	Н	C_3F_7	F	F	
	CH₃	C_3F_7	F	F	
	C_2H_5	C_3F_7	F	F	
	n-C ₃ H ₇	C_3F_7	F	F	
25	n-C₄H ₉	C_3F_7	F	F	
	n-C ₅ H ₁₁	C_3F_7	F	F	
	n-C ₆ H ₁₃	C_3F_7	F	F	
	Н	SF ₅	Н	Н	
	CH ₃	SF ₅	Н	Н	
30	C ₂ H ₅	SF ₅	Н	Н	
	n-C ₃ H ₇	SF ₅	Н	Н	
	n-C₄H ₉	SF ₅	Н	Н	
	n-C₅H ₁₁	SF ₅	Н	Н	
. =	n-C ₆ H ₁₃	SF ₅	Н	Н	
35	Н	SF ₅	F	Н	
	CH ₃	SF ₅	F	Η٠	

- 108 -

	R^1	X	L^1	L^2	
	C ₂ H ₅	SF ₅	F	Н	
	n-C ₃ H ₇	SF ₅	F	Н	
_	n-C₄H ₉	SF ₅	F	Н	
5	n-C ₅ H ₁₁	SF ₅	F	Н	
	n-C ₆ H ₁₃	SF ₅	F	Н	
	Н	SF ₅	F	F	
	CH₃	SF ₅	F	F	
4.0	C ₂ H ₅	SF ₅	F	F	
10	n-C ₃ H ₇	SF ₅	F	F	
	n-C₄H ₉	SF ₅	F	F	
	n-C ₅ H ₁₁	SF ₅	F	F	
	n-C ₆ H ₁₃	SF ₅	F	F	
	Н	CN	Н	Н	
15	CH₃	CN	H	Н	
	C ₂ H ₅	CN	Н	Н	
	n-C ₃ H ₇	CN	Н	Н	
	n-C₄H ₉	CN	Н	Н	
	n-C ₅ H ₁₁	CN	Н	Н	
20	n-C ₆ H ₁₃	CN	Н	Н	

25

30

- 109 -

Example 5

Step 5.1

25

30

35

A mixture of 98 mmol of **Q** and 16.3 ml of triethylamine (117 mmol) in 80 ml of dichloromethane is added dropwise with stirring to a solution, cooled to -70° C, of 65 mmol of **P** in 100 ml of dichloromethane. When the addition is complete, the mixture is stirred at -70° C for a further 1 hour. 325 mmol of triethylamine trishydrofluoride are subsequently added dropwise at the same temperature. 325 mmol of bromine are subsequently added dropwise at -70° C. After stirring at -70° C for one hour, the reaction mixture is allowed to warm to -10° C and is poured into a mixture of 500 ml of ice-water and 95 ml of 32% sodium hydroxide solution. The phases are separated, and the aqueous phase is extracted with dichloromethane. The combined organic phases are subjected to conventional work-up.

Step 5.2

20

25

A mixture of 10 mmol of **S** and 10 mmol of 2,6-difluoro-4-(trans-5'-propyltetrahydropyranyl-(2))-phenylboronic acid in 60 ml of toluene and 60 ml of sodium borate buffer solution (pH = 9) is warmed at 80°C for 16 hours with stirring with 0.5 mmol of Pd(PPh₃)₄. After cooling, the two-phase reaction mixture is poured into 100 ml of 0.1 N HCl with stirring, the organic phase is separated off, and the aqueous phase is extracted twice with toluene.

The combined toluene phases are dried and evaporated, and the residue is filtered through silica gel (heptane/methyl tert-butyl ether). Finally, the product is recrystallized first from ethanol and then from n-heptane.

C 115 N 197.7 I; Δε = 35.4; Δn = 0.1706

The following compounds of the formula

$$R^{1} \longrightarrow O \longrightarrow F \longrightarrow CF_{2}O \longrightarrow O \longrightarrow X$$

are prepared analogously:

00	R ¹	X	L ¹	L ²	L ³	L ⁴	_
30	Н	F	Н	Н	Н	Н	
	CH ₃	F	Н	Н	Н	Н	
	C ₂ H ₅	F	Н	Н	Н	Н	
35	C ₃ H ₇	F	Н	Н	Н	Н	
	n-C₄H ₉	F	Н	Н	Н	Н	
	$n-C_5H_{11}$	F	Н	Н	Н	Н	
	n-C ₆ H ₁₃	F	Н	Н	Н	Н	

	R ¹	x	L ¹	L ²	L ³	L ⁴
	Н	F	F	Н	Н	Н
	CH ₃	F	F	Н	Н	Н
_	C ₂ H ₅	F	F	Н	Н	Н
5	n-C ₃ H ₇	F	F	Н	Н	Н
	n-C₄H ₉	F	F	Н	Н	Н
	n-C ₅ H ₁₁	F	F	Н	Н	Н
	n-C ₆ H ₁₃	F	F	Н	Н	Н
	Н	F	F	F	Н	Н
10	CH ₃	F	F	F	Н	Н
	n-C₄H ₉	F	F	F	Н	Н
	n-C₅H ₁₁	F	F	F	Н	Н
	n-C ₆ H ₁₃	F	F	F	Н	Н
	Н	CI	Н	Н	Н	Н
15	CH ₃	CI	Н	Н	Н	Н
	C ₂ H ₅	CI	Н	Н	Н	Н
	n-C₃H ₇	CI	Н	Н	Н	Н
	n-C₄H ₉	CI	Н	Н	Н	Н
	n-C₅H ₁₁	CI	Н	Н	Н	Н
20	n-C ₆ H ₁₃	CI	Н	Н	Н	Н
	Н	CI	F	Н	Н	Н
	CH ₃	CI	F	Н	Н	Н
	C ₂ H ₅	CI	F	Н	Н	Н
	n-C ₃ H ₇	CI	F	Н	Н	Н
25	n-C₄H ₉	CI	F	Н	Н	Н
	n-C₅H ₁₁	CI	F	Н	Н	Н
	n-C ₆ H ₁₃	CI	F	Н	Н	Н
	Н	CI	F	F	Н	Н
	CH ₃	CI	F	F	Н	Н
30	C ₂ H ₅	CI	F	F	Н	Н
	n-C₃H ₇	CI	F	F	Н	Н
	n-C₄H ₉	CI	F	F	Н	Н
	n-C ₅ H ₁₁	CI	F	F	Н	Н
0.5	n-C ₆ H ₁₃	CI	F	F	Н	Н
35	Н	OCF ₃	Н	Н	Н	Н
	CH ₃	OCF ₃	Н	Н	Н	Н

	R ¹	X	L¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCF ₃	Н	Н	Н	Н
	n-C₄H ₉	OCF ₃	Н	Н	Н	Н
5	n-C ₅ H ₁₁	OCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н	Н	Н
	н	OCF ₃	F	Н	Н	Н
	CH ₃	OCF ₃	F	Н	Н	Н
	C ₂ H ₅	OCF ₃	F	Н	Н	Н
10	n-C ₃ H ₇	OCF ₃	F	Н	Н	Н
	n-C₄H ₉	OCF ₃	F	Н	Н	Н
	n-C₅H ₁₁	OCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₃	F	Н	Н	Н
	Н	OCF ₃	F	F	Н	Н
15	CH ₃	OCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCF ₃	F	F	Н	Н
	n-C₄H ₉	OCF ₃	F	F	Н	Н
	n-C₅H ₁₁	OCF ₃	F	F	Н	Н
20	n-C ₆ H ₁₃	OCF ₃	F	F	Н	Н
	Н	OCHF ₂	Н	Н	Н	Н
	CH ₃	OCHF ₂	Н	Н	Н	Н
	C ₂ H ₅	OCHF ₂	Н	Н	Н	Н
	n-C₃H ₇	OCHF ₂	Н	Н	Н	Н
25	n-C ₄ H ₉	OCHF ₂	Н	Н	Н	Н
	n-C₅H ₁₁	OCHF ₂	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	Н	Н
	Н	OCHF ₂	F	Н	Н	Н
	CH ₃	OCHF ₂	F	Н	Н	Н
30	C ₂ H ₅	OCHF ₂	F	Н	Н	Н
	n-C₃H ₇	OCHF ₂	F	Н	Н	Н
	n-C₄H ₉	OCHF ₂	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	F	Н	Н	Н
35	Н	OCHF ₂	F	F	Н	Н
	CH ₃	OCHF ₂	F	F	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCHF ₂	F	F	Н	Н
	n-C ₃ H ₇	OCHF ₂	F	F	Н	Н
_	n-C₄H ₉	OCHF ₂	F	F	Н	Н
5	n-C ₅ H ₁₁	OCHF ₂	F	F	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	F	F	Н	Н
	Н	OCHFCF ₃	Н	Н	Н	Н
	CH ₃	OCHFCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	Н	Н
10	n-C ₃ H ₇	OCHFCF ₃	Н	Н	Н	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
4.=	Н	OCHFCF ₃	F	Н	Н	Н
15	CH₃	OCHFCF ₃	F	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	Н	Н
	n-C₄H ₉	OCHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
20	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	Н
	Н	OCHFCF ₃	F	F	Н	Н
	CH ₃	OCHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	Н	Н
25	n-C₄H ₉	OCHFCF ₃	F	F	Н	Н
	n-C₅H₁₁	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
	Н	OCHFCF ₃	Н	Н	Н	Н
00	CH ₃	OCHFCF ₃	Н	Н	Н	Н
30	C ₂ H ₅	OCHFCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	Н	Н
·	n-C₄H ₉	OCHFCF ₃	Н	Н	Н	Н
	n-C₅H ₁₁	OCHFCF ₃	Н	Н	Н	Н
25	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
35	Н	OCHFCF ₃	F	Н	Н	Н
	CH ₃	OCHFCF ₃	F	Н	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCHFCF ₃	F	Н	Н	Н
	n-C₃H ₇	OCHFCF ₃	·F	Н	Н	Н
_	n-C₄H ₉	OCHFCF ₃	F	Н	Н	Н
5	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	H
	Н	OCHFCF ₃	F	F	Н	H
	CH₃	OCHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	F	H.	Н
10	n-C ₃ H ₇	OCHFCF ₃	F	F	Н	Н
	n-C₄H ₉	OCHFCF ₃	F	F	Н	H
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
	Н	OCF ₂ CHFCF ₃	Н	Н	Н	Н
15	CH ₃	OCF ₂ CHFCF ₃	Н	Н	Н	H
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	Н	H
	n-C₃H ₇	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C₄H ₉ ˙	OCF ₂ CHFCF ₃	Н	Н	H	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	H	Н	Н
20	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	H	Н	Н
	Н	OCF ₂ CHFCF ₃	F	H	H	Н
	CH ₃	OCF ₂ CHFCF ₃	F	H	H	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	H	Н	H
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	Н	Н
25	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	Н	Н
	Н	OCF ₂ CHFCF ₃	F	F	Н	Н
	CH ₃	OCF ₂ CHFCF ₃	F	F	Н	Н
30	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C₃H ₇	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	Н	Н
0.5	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	Н	Н
35	Н	NCS	Н	Н	Н	Н
	CH ₃	NCS	Н	Н	Н	Н

	R ¹	×	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	NCS	Н	Н	Н	Н
	n-C₃H ₇	NCS	Н	Н	Н	Н
	n-C₄H ₉	NCS	Н	Н	Н	Н
5	n-C ₅ H ₁₁	NCS	Н	Н	Н	Н
	n-C ₆ H ₁₃	NCS	Н	Н	Н	Н
	Н	NCS	F	Н	Н	Н
	CH ₃	NCS	F	Н	Н	Н
	C ₂ H ₅	NCS	F	Н	Н	Н
10	n-C ₃ H ₇	NCS	F	Н	Н	Н
	n-C₄H ₉	NCS	F	Н	Н	Н
	n-C ₅ H ₁₁	NCS	F	Н	Н	Н
	n-C ₆ H ₁₃	NCS	F	Н	Н	Н
4.5	Н	NCS	F	F	Н	Н
15	CH ₃	NCS	F	F	Н	Н
	C ₂ H ₅	NCS	F	F	Н	Н
	n-C ₃ H ₇	NCS	F	F	Н	Н
	n-C₄H ₉	NCS	F	F	Н	Н
	n-C ₅ H ₁₁	NCS	F	F	Н	Н
20	n-C ₆ H ₁₃	NCS	F	F	Н	Н
	Н	C ₂ F ₅	Н	Н	Н	Н
	CH ₃	C ₂ F ₅	Н	Н	Н	Н
	C_2H_5	C ₂ F ₅	Н	Н	Н	Н
	n-C₃H ₇	C ₂ F ₅	Н	Н	Н	Н
25	n-C₄H ₉	C ₂ F ₅	Н	Н	Н	Н
	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н	Н	Н
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н	Н	Н
	Н	C ₂ F ₅	F	Н	Н	Н
	CH ₃	C ₂ F ₅	F	Н	Н	Н
30	C ₂ H ₅	C ₂ F ₅	F	Н	Н	Н
	n-C ₃ H ₇	C ₂ F ₅	F	Н	Н	Н
	n-C₄H ₉	C ₂ F ₅	F	Н	Н	Н
	n-C ₅ H ₁₁	C ₂ F ₅	F	Н	Н	Н
0.5	n-C ₆ H ₁₃	C ₂ F ₅	F	Н	Н	Н
35	Н	C ₂ F ₅	F	F	Н	Н
	CH ₃	C ₂ F ₅	F	F	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	C ₂ F ₅	F	F	Н	Н
	n-C ₃ H ₇	C ₂ F ₅	F	F	Н	Н
_	n-C₄H ₉	C ₂ F ₅	F	F	Н	Н
5	n-C ₅ H ₁₁	C ₂ F ₅	F	F	Н	Н
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	Н	Н
	Н	C ₃ F ₇	Н	Н	Н	Н
	CH ₃	C ₃ F ₇	Н	Н	Н	Н
	C_2H_5	C ₃ F ₇	Н	Н	Н	Н
10	n-C ₃ H ₇	C ₃ F ₇	Н	Н	Н	Н
	n-C₄H ₉	C ₃ F ₇	Н	Н	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	Н	Н
4.5	Н	C ₃ F ₇	F	Н	Н	Н
15	CH₃	C ₃ F ₇	F	Н	Н	Н
	C ₂ H ₅	C ₃ F ₇	F	Н	Н	Н
	n-C ₃ H ₇	C ₃ F ₇	F	Н	Н	Н
	n-C₄H ₉	C ₃ F ₇	F	Н	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н	Н	Н
20	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	Н	Н
	Н	C ₃ F ₇	F	F	Н	Н
	CH ₃	C ₃ F ₇	F	F	Н	Н
	C ₂ H ₅	C ₃ F ₇	F	F	Н	Н
0.5	n-C ₃ H ₇	C ₃ F ₇	F	F	Н	Н
25	n-C₄H ₉	C ₃ F ₇	F	F	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	F	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	F	F	Н	Н
	Н	SF ₅	Н	Н	Н	Н
20	CH ₃	SF ₅	Н	Н	Н	Н
30	C ₂ H ₅	SF₅	Н	Н	Н	Н
	n-C ₃ H ₇	SF ₅	Н	Н	Н	Н
	n-C₄H ₉	SF₅	Н	Н	Н	Н
	n-C ₅ H ₁₁	SF ₅	Н	Н	Н	Н
25	n-C ₆ H ₁₃	SF ₅	Н	Н	Н	Н
35	Н	SF ₅	F	Н	Н	Н
	CH ₃	SF₅	F	Н	Н	Н

	R ¹	X	L ¹	L ²	L^3	L ⁴
	C ₂ H ₅	SF ₅	F	Н	Н	Н
	n-C ₃ H ₇	SF ₅	F	Н	Н	Н
_	n-C₄H ₉	SF ₅	F	Н	Н	Н
5	n-C ₅ H ₁₁	SF ₅	F	Н	Н	Н
	n-C ₆ H ₁₃	SF₅	F	Н	Н	Н
	Н	SF ₅	F	F	Н	Н
	CH₃	SF ₅	F	F	Н	Н
	C ₂ H ₅	SF ₅	F	F	Н	Н
10	n-C₃H ₇	SF ₅	F	F	Н	Н
	n-C₄H ₉	SF ₅	F	F	Н	Н
	n-C ₅ H ₁₁	SF ₅	F	F	Н	Н
	n-C ₆ H ₁₃	SF ₅	F	F	Н	Н
4.5	Н	CN	Н	Н	Н	Н
15	CH ₃	CN	Н	Н	Н	Н
	C ₂ H ₅	CN	Н	Н	Н	Н
	n-C₃H ₇	CN	Н	Н	Н	Н
	n-C₄H ₉	CN	Н	Н	Н	Н
	n-C ₅ H ₁₁	CN	Н	Н	Н	Н
20	n-C ₆ H ₁₃	CN	Н	Н	Н	Н
	Н	CN	F	Н	Н	Н
	CH₃	CN	F	Н	Н	Н
	C ₂ H ₅	CN	F	Н	Н	Н
0.5	n-C ₃ H ₇	CN	F	Н	Н	Н
25	n-C₄H ₉	CN	F	Н	Н	Н
	n-C₅H ₁₁	CN	F	Н	Н	Н
	n-C ₆ H ₁₃	CN	F	Н	Η,	· H
	Н	CN	F	F	Н	Н
20	CH₃	CN	F	F	Н	Н
30	C ₂ H ₅	CN	F	F	Н	Н
	n-C ₃ H ₇	CN	F	F	Н	Н
	n-C₄H ₉	CN	F	F	Н	Н
	n-C ₅ H ₁₁	CN	F	F	Н	Н
35	n-C ₆ H ₁₃	CN	F	F	Н	Н
33	Н	F	Н	Н	F	Н
	CH ₃	F	Н	Н	F	Н

- 118 -

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5 n-C ₅ H ₁₁ F H H F H n-C ₆ H ₁₃ F H H F H	
$n-C_6H_{13}$ F H H F H	
CH₃ F F H F H	
C_2H_5 F F H F H 10 \sim C	
11-O3П7	
n-C ₄ H ₉ F F H F H	
n-C₅H ₁₁ F F H F H	
n-C ₆ H ₁₃ F F H F H	
H F F F H	
ОП3 Г ГГП	
C₂H₅ F F F H	
$n-C_3H_7$ F F F H C 98 N 193.0 I;	
$\Delta \varepsilon = 37.9$; $\Delta n = 0.1$	1649
n-C ₄ H ₉ F F F H 20 F F F H	
II-O5∏11 F F F II	
n-C ₆ H ₁₃ F F F H	
H CI H H F H	
CH₃ CI H H F H	
C ₂ H ₅ Cl H H F H	
n-C ₃ H ₇ Cl H H F H	
n-C₄H ₉ Cl H H F H	
n-C₅H ₁₁ Cl H H F H	
n-C ₆ H ₁₃ CI H H F H	
H CI F H F H	
³⁰ CH ₃ CI F H F H	
C₂H₅ CI F H F H	
n-C₃H ₇ · CI F H F H	
n-C₄H ₉ Cl F H F H	
n-C ₅ H ₁₁ Cl F H F H	
35 n-C ₆ H ₁₃ Cl F H F H	
H CI F F F H	

	R ¹	Х	L^1	L ²	L ³	L ⁴
	CH ₃	CI	F	F	F	Н
	C ₂ H ₅	CI	F	F	F	Н
_	n-C ₃ H ₇	CI	F	F	F	Н
5	n-C₄H ₉	CI	F	F	F	Н
	n-C ₅ H ₁₁	CI	F	F	F	Н
	n-C ₆ H ₁₃	CI	F	F	F	Н
	Н	OCF ₃	Н	Н	F	Н
	CH ₃	OCF ₃	Н	Н	F	Н
10	C ₂ H ₅	OCF ₃	Н	Н	F	Н
	n-C ₃ H ₇	OCF ₃	Н	Н	F	Н
	n-C₄H ₉	OCF ₃	Н	Н	F	Н
15	n-C₅H ₁₁	OCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н	F	Н
	Н	OCF ₃	F	Н	F	Н
	CH ₃	OCF ₃	F	Н	F	Н
	C ₂ H ₅	OCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCF ₃	F	Н	F	Н
	n-C₄H ₉	OCF ₃	F	Н	F	Н
20	n-C ₅ H ₁₁	OCF ₃	F	Н	F	Н
•	n-C ₆ H ₁₃	OCF ₃	F	Н	F	Н
	Н	OCF ₃	F	F	F	Н
	CH ₃	OCF ₃	F	F	F	Н
0.5	C_2H_5	OCF ₃	F	F	F	Н
25	n-C ₃ H ₇	OCF ₃	F	F	F	Н
	n-C₄H ₉	OCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	F	F	Н
00	Н	OCHF ₂	Н	Н	F	Н
30	CH₃	OCHF ₂	Н	Н	F	Н
	C ₂ H ₅	OCHF ₂	Н	Н	F	Н
	n-C ₃ H ₇	OCHF ₂	Н	Н	F	Н
	n-C₄H ₉	OCHF ₂	Н	Н	F	Н
25	n-C₅H ₁₁	OCHF ₂	Н	Н	F	Н
35	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	Н
	Н	OCHF ₂	F	Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCHF ₂	F	Н	F	Н
	.C ₂ H ₅	OCHF ₂	F	Н	F	Н
_	n-C ₃ H ₇	OCHF ₂	F	Н	F	Н
5	n-C₄H ₉	OCHF ₂	F	Н	F	Н
	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	Н
	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	Н
	Н	OCHF ₂	F	F	F	Н
	CH₃	OCHF ₂	F	F	F	Н
10	C ₂ H ₅	OCHF ₂	F	F	F	Н
	n-C ₃ H ₇	OCHF ₂	F	F	F	Н
	n-C₄H ₉	OCHF ₂	F	F	F	Н
	n-C ₅ H ₁₁	OCHF ₂	F	F	F	Н
15	n-C ₆ H ₁₃	OCHF ₂	F	F	F	Н
	Н	OCHFCF ₃	Н	Н	F	Н
	CH₃	OCHFCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	Н
	n-C₃H ₇	OCHFCF ₃	Н	Н	F	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н	F	Н
20	n-C₅H ₁₁	OCHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	Н
	Н	OCHFCF ₃	F	H	F	Н
	CH ₃	OCHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	F	Н
25	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	Н
	Н	OCHFCF ₃	F	F	F	Н
30	CH ₃	OCHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCHFCF ₃	F	F	F	Н
	n-C₃H ₇	OCHFCF ₃	F	F	F	Н
	n-C₄H ₉	OCHFCF ₃	F	F	F	Н
0.5	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	Н
35	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н
	Н	OCHFCF ₃	Н	Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCHFCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	Н
_	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	Н
5	n-C₄H ₉	OCHFCF ₃	Н	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	Н
	Н	OCHFCF ₃	F	Н	F	Н
10	CH₃	OCHFCF ₃	F	Н	F	Н
10	C ₂ H ₅	OCHFCF ₃	F	Н	F	Н
	n-C₃H ₇	OCHFCF ₃	F	Н	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	Н
15	Н	OCHFCF ₃	F	F	F	Н
	CH ₃	OCHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCHFCF ₃	F	F	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	Н
	n-C₄H ₉	OCHFCF ₃	F	F	F	Н
20	n-C₅H ₁₁	OCHFCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н
	Н	OCF ₂ CHFCF ₃	Н	Н	F	Н
	CH₃	OCF ₂ CHFCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	Н
25	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н	F	Н
	$n-C_5H_{11}$	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	Н
0.0	Н	OCF ₂ CHFCF ₃	F	Н	F	· H
30	CH₃	OCF ₂ CHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н	F	Н
0.5	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	Н
35	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	Н
	Н	OCF ₂ CHFCF ₃	F	F	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCF ₂ CHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C₃H ₇	OCF ₂ CHFCF ₃	F	F	F	Н
5	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	Н
	Н	NCS	Н	Н	F	Н
	CH ₃	NCS	H	Н	F	Н
10	C ₂ H ₅	NCS	Н	Н	F	Н
	n-C ₃ H ₇	NCS	Н	Н	F	Н
	n-C₄H ₉	NCS	Н	Н	F	Н
	n-C ₅ H ₁₁	NCS	Н	Н	F	Н
	n-C ₆ H ₁₃	NCS	Н	Н	F	Н
15	Н	NCS	F	Н	F	Н
	CH₃	NCS	F	Н	F	Н
	C ₂ H ₅	NCS	F	Н	F	Н
	n-C ₃ H ₇	NCS	F	Н	F	Н
	n-C ₄ H ₉	NCS	F	Н	F	Н
20	n-C ₅ H ₁₁	NCS	F	Н	F	Н
	n-C ₆ H ₁₃	NCS	F	Н	F	Н
	Н	NCS	F	F	F	Н
	CH ₃	NCS	F	F	F	Н
	C_2H_5	NCS	F	F	F	Н
25	n-C₃H ₇	NCS	F	F	F	Н
	n-C₄H ₉	NCS	F	F	F	Н
	n-C ₅ H ₁₁	NCS	F	F	F	Н
	n-C ₆ H ₁₃	NCS	F	F	F	Н
00	Н	C ₂ F ₅	Н	Н	F	Н
30	CH ₃	C ₂ F ₅	Н	Н	F	Н
	C ₂ H ₅	C ₂ F ₅	Н	Н	F	Н
	n-C ₃ H ₇	C ₂ F ₅	Н	Н	F	Н
	n-C₄H ₉	C ₂ F ₅	Н	Н	F	Н
25	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н	F	Н
35	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н	F	Н
	Н	C ₂ F ₅	F	Н	F	Н

	R ¹	Х	L ¹	L ²	L ³	L ⁴
	CH ₃	C_2F_5	F	Н	F	Н
	C ₂ H ₅	C ₂ F ₅	F	Н	F	Н
	n-C₃H ₇	C ₂ F ₅	F	Н	F	Н
5	n-C₄H ₉	C ₂ F ₅	F	Н	F	Н
	n-C ₅ H ₁₁	C_2F_5	F	Н	F	Н
	n-C ₆ H ₁₃	C_2F_5	F	Н	F	Н
	Н	C_2F_5	F	F	F	Н
	CH ₃	C_2F_5	F	F	F	Н
10	C ₂ H ₅	C_2F_5	F	F	F	Н
	n-C ₃ H ₇	C ₂ F ₅	F	F	F	Н
	n-C₄H ₉	C ₂ F ₅	F	F	F	Н
	n-C₅H ₁₁	C ₂ F ₅	F	F	F	Н
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	F	Н
15	Н	C ₃ F ₇	Н	Н	F	Н
	CH₃	C ₃ F ₇	Н	Н	F	Н
	C ₂ H ₅	C ₃ F ₇	Н	Н	F	Н
	n-C ₃ H ₇	C ₃ F ₇	Н	H	F	Н
	n-C₄H ₉	C ₃ F ₇	Н	Н	F	Н
20	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	F	Н
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	F	Н
	Н	C ₃ F ₇	F	Н	F	Н
	CH₃	C ₃ F ₇	F	Н	F	Н
	C ₂ H ₅	C ₃ F ₇	F	H	F	Н
25	n-C₃H ₇	C ₃ F ₇	F	Н	F	Н
	n-C₄H ₉	C ₃ F ₇	F	Н	F	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н	F	Н
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	F	Н
	Н	C ₃ F ₇	F	F	F	Н
30	CH₃	C ₃ F ₇	F	F	F	Н
	C ₂ H ₅	C ₃ F ₇	F	F	F	Н
	n-C ₃ H ₇	C ₃ F ₇	F	F	F	Н
	n-C ₄ H ₉	C ₃ F ₇	F	F	F	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	F	F	Н
35	n-C ₆ H ₁₃	C ₃ H ₇	F	F	F	Н
	Н	SF ₅	Н	Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	SF ₅	Н	Н	F	Н
	C ₂ H ₅	SF ₅	Н	Н	F	Н
	n-C ₃ H ₇	SF₅	Н	Н	F	Н
5	n-C ₄ H ₉	SF ₅	Н	Н	F	Н
	n-C ₅ H ₁₁	SF₅	Н	Н.	F	Н
	n-C ₆ H ₁₃	SF ₅	Н	Н	F	Н
	Н	SF ₅	F	Н	F	Н
	CH₃	SF ₅	F	Н	F	Н
10	C ₂ H ₅	SF₅	F	Н	F	Н
	n-C ₃ H ₇	SF ₅	F	Н	F	Н
	n-C₄H ₉	SF₅	F	Н	F	Н
	n-C₅H ₁₁	SF ₅	F	Н	F	Н
	n-C ₆ H ₁₃	SF₅	F	Н	F	Н
15	Н	SF ₅	F	F	F	Н
	CH ₃	SF₅	F	F	F	Н
	C ₂ H ₅	SF₅	F	F	F	Н
	n-C ₃ H ₇	SF ₅	F	F	F	Н
	n-C ₄ H ₉	SF ₅	F	F	F	Н
20	n-C ₅ H ₁₁	SF₅	F	F	F	Н
	n-C ₆ H ₁₃	SF ₅	F	F	F	Н
	Н	CN	Н	Н	F	Н
	CH ₃	CN	Н	Н	F	Н
	C ₂ H ₅	CN	Н	Н	F	Н
25	n-C ₃ H ₇	CN	Н	Н	F	Н
	n-C ₄ H ₉	CN	Н	Н	F	Н
	n-C₅H ₁₁	CN	Н	Н	F	Н
	n-C ₆ H ₁₃	CN	Н	Н	F	Н
	Н	CN	F	Н	F	Н
30	CH ₃	CN	F	Н	F	Н
	C ₂ H ₅	CN	F	Н	F	Н
	n-C ₃ H ₇	CN	F	Н	F	Н
	n-C₄H ₉	CN	F	Н	F	H
	n-C ₅ H ₁₁	CN	F	Н	F	н
35	n-C ₆ H ₁₃	CN	F	Н	F	Н
	Н	CN	F	F	F	Н

	R ¹	X	L ¹	· L²	L ³	L ⁴	_
	CH ₃	CN	F	F	F	Н	- 3
	C₂H₅	CN	F	F	F	Н	
	n-C₃H ₇	CN	F	F	F	Н	
5	n-C₄H ₉	CN	F	F	F	Н	
	n-C ₅ H ₁₁	CN	F	F	F	Н	
	n-C ₆ H ₁₃	CN	F	F	F	Н	
	Н	F	Н	Н	F	F	
	CH ₃	F	Н	Н	F	F	
10	C ₂ H ₅	F	H	Н	F	F	
	n-C₄H ₉	F	Н	Н	F	F	
	n-C₅H ₁₁	F	Н	Н	F	F	
	n-C ₆ H ₁₃	F	Н	Н	F	F	
	Н	F	F	Н	F	F	
15	CH ₃	F	F	Н	F	F	
	C ₂ H ₅	F	F	Н	F	F	
	n-C ₃ H ₇	F	F	Н	F	F	
	n-C₄H ₉	F	F	Н	F	F	
	n-C₅H ₁₁	F	F	Н	F	F	
20	n-C ₆ H ₁₃	F	F	Н	F	F	
	Н	F	F	F	F	F	
	CH ₃	F	F	F	F	F	
	C_2H_5	F	F	F	F	F	
	C_2H_5	F	F	F	F	F	
25	n-C ₃ H ₇	F	F	F	F	F	C 144 N 181.4 I;
							$\Delta \varepsilon = 42.1$; $\Delta n = 0.1510$
	n-C₄H ₉	F	F	F	F	F	
	n-C ₅ H ₁₁	F	F	F	F	F	
	n-C ₆ H ₁₃	F	F	F	F	F	
30	Н	CI	Н	Н	F	F	
	CH₃	CI	Н	Н	F	F	
	C_2H_5	CI	Н	Н	F	F	
	n-C ₃ H ₇	CI	Н	Н	F	F	
•=	n-C₄H ₉	CI	Н	Н	F	F	
35	$n-C_5H_{11}$	CI	Н	Н	F	F	
	n-C ₆ H ₁₃	CI	Н	Н	F	F	

	R ¹	Χ	L ¹	L^2	L^3	L ⁴	_
	Н	Cl	F	Н	F	F	•
	CH ₃	CI	F	Н	F	F	
	C₂H₅	CI	F	Н	F	F	
5	n-C ₃ H ₇	CI	F	Н	F	F	
	n-C₄H ₉	CI	F	Н	F	F	
	n-C₅H ₁₁	CI	F	Н	F	F	
	n-C ₆ H ₁₃	CI	F	Н	F	F	
	Н	CI	F	F	F	F	
10	CH₃	CI	F	F	F	F	
	C ₂ H ₅	CI	F	F	F	F	
	n-C₃H ₇	CI	F	F	F	F	
	n-C₄H ₉	CI	F	F	F	F	
4.5	n-C ₅ H ₁₁	CI	F	F	F	F	
15	n-C ₆ H ₁₃	CI	F	F	F	F	
	Н	OCF ₃	Н	H	F	F	
	CH ₃	OCF ₃	Н	Н	F	F	
	C ₂ H ₅	OCF ₃	Н	Н	F	F	
00	n-C₃H ₇	OCF ₃	Н	Н	F	F	
20	n-C₄H ₉	OCF ₃	Н	Н	F	F	
-	n-C₅H ₁₁	OCF ₃	Н	Н	F	F	
	n-C ₆ H ₁₃	OCF ₃	Н	Н	F	F	
	Н	OCF ₃	F	Н	F	F	
25	CH ₃	OCF ₃	F	Н	F	F	
25	C₂H₅	OCF ₃	F	Н	F	F	
	n-C ₃ H ₇	OCF ₃	F	Н	F	F	C 121 N 205.2 I;
							$\Delta \varepsilon = 37.7$; $\Delta n = 0.1634$
	n-C₄H ₉	OCF ₃	F	Н	F	F	
20	n-C ₅ H ₁₁	OCF ₃	F	Н	F	F	
30	n-C ₆ H ₁₃	OCF ₃	F	Н	F	F	
	Н	OCF ₃	F	F	F	F	
	CH ₃	OCF ₃	F	F	F	F	
	C ₂ H ₅	OCF ₃	F	F	F	F	
25	n-C₃H ₇	OCF ₃	F	F	F	F	C 128 N 201.2 I;
35							$\Delta \varepsilon = 43.8$; $\Delta n = 0.1411$
	n-C₄H ₉	OCF ₃	F	F	F	F	

- 127 -

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C₅H ₁₁	OCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCF ₃	F	F	F	F
	Н	OCHF ₂	Н	Н	F	F
5	CH ₃	OCHF ₂	Н	Н	F	F
	C ₂ H ₅	OCHF ₂	Н	Н	F	F
	n-C ₃ H ₇	OCHF ₂	Н	Н	F	F
	n-C₄H ₉	OCHF ₂	Н	Н	F	F
	n-C₅H ₁₁	OCHF ₂	Н	Н	F	F
10	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	F
	Н	OCHF ₂	F	Н	F	F
	CH ₃	OCHF ₂	F	Н	F	F
	C ₂ H ₅	OCHF ₂	F	Н	F	F
	n-C ₃ H ₇	OCHF ₂	F	Н	F	F
15	n-C₄H ₉	OCHF ₂	F	Н	F	F
	n-C₅H ₁₁	OCHF ₂	F	Н	F	F
	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	F
	Н	OCHF ₂	F	F	F	F
	CH ₃	OCHF ₂	F	F	F	F
20	C ₂ H ₅	OCHF ₂	F	F	F	F
	n-C₃H ₇	OCHF ₂	F	F	F	F
	n-C₄H ₉	OCHF ₂	F	F	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	F	F	F
	n-C ₆ H ₁₃	OCHF ₂	F	F	F	F
25	Н	OCHFCF ₃	Н	Н	F	F
	CH ₃	OCHFCF ₃	Н	Н	F	F
	C_2H_5	OCHFCF ₃	Н	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	F
	n-C₄H ₉	OCHFCF ₃	Н	Н	F	F
30	n-C₅H ₁₁	OCHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	Н .	OCHFCF ₃	F	Н	F	F
	CH ₃	OCHFCF ₃	F	Н	F	F
	C ₂ H ₅	OCHFCF ₃	F	Н	F	F
35	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
	n-C₄H ₉	OCHFCF ₃	F	Н	F	F

WO 2004/048501 PCT/EP2003/012813

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	F
	n-C ₆ H ₁₃	OCHFCF₃	F	Н	F	F
_	Н	OCHFCF ₃	F	F	F	F
5	CH ₃	OCHFCF ₃	F	F	F	F
	C_2H_5	OCHFCF ₃	F	F	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	F
	n-C₄H ₉	OCHFCF ₃	F	F	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	F
10	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	Н	OCHFCF ₃	Н	Н	F	F
	CH ₃	OCHFCF ₃	H	Н	F	F
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	F
15	n-C₄H ₉	OCHFCF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	Н	OCHFCF ₃	F	Н	F	F
	CH ₃	OCHFCF ₃	F	Н	F	F
20	C ₂ H ₅	OCHFCF ₃	F	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
	n-C₄H ₉	OCHFCF ₃	F	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	F
25	Н	OCHFCF ₃	F	F	F	F
	CH₃	OCHFCF ₃	F	F	F	F
	C ₂ H ₅	OCHFCF ₃	F	F	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	F
	n-C₄H ₉	OCHFCF ₃	F	F	F	F
30	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	Н	OCF ₂ CHFCF ₃	Н	Н	F	F
	CH ₃	OCF ₂ CHFCF ₃	Н	Н	F	F
25	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	F _.
35	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н	F	F

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	F
_	Н	OCF ₂ CHFCF ₃	F	Н	F	F
5	CH ₃	OCF ₂ CHFCF ₃	F	Н	F	F
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	F
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	F	F
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	Н	F	F
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F١	Н	F	F
10	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	F
	Н	OCF ₂ CHFCF ₃	F	F	F	F
	CH ₃	OCF ₂ CHFCF ₃	F	F	F	F
	C_2H_5	OCF ₂ CHFCF ₃	F	F	F	F
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F	F	F
15	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	F	F
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	F
	Н	NCS	Н	Н	F	F
	CH₃	NCS	Н	Н	F	F
20	C ₂ H ₅	NCS	Н	Н	F	F
	n-C ₃ H ₇	NCS	Н	Н	F	F
	n-C₄H ₉	NCS	Н	Н	F	F
	n-C ₅ H ₁₁	NCS	Н	Н	F	F
	n-C ₆ H ₁₃	NCS	Н	Н	F	F
25	Н	NCS	F	Н	F	F
	CH ₃	NCS	F	Н	F	F
	C ₂ H ₅	NCS	F	Н	F	F
	n-C₃H ₇	NCS	F	Н	F	F
00.	n-C₄H ₉	NCS	F	Н	F	F
30	n-C ₅ H ₁₁	NCS	F	Н	F	F
	n-C ₆ H ₁₃	NCS	F	Н	F	F
	Н	NCS	F	F	F	F
	CH ₃	NCS	F	F	F	F
0.5	C ₂ H ₅	NCS	F	F	F	F
35	n-C₃H ₇	NCS	F	F	F	F
	n-C₄H ₉	NCS	F	F	F	F

	R ¹	X	L ¹	L ²	L^3	L ⁴
	n-C ₅ H ₁₁	NCS	F	F	F	F.
	n-C ₆ H ₁₃	NCS	F	F	F	F
_	Н	C_2F_5	Н	Н	F	F
5	CH₃	C ₂ F ₅	Н	Н	F	F
	C ₂ H ₅	C ₂ F ₅	Н	Н	F	F
	n-C ₃ H ₇	C_2F_5	Н	Н	F	F
	n-C ₄ H ₉	C_2F_5	Н	Н	F	F
	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н	F	F
10	n-C ₆ H ₁₃	C_2F_5	Н	Н	F	F
	Н	C_2F_5	F	Н	F	F
	CH ₃	C ₂ F ₅	F	Н	F	F
	C ₂ H ₅	C ₂ F ₅	F	Н	F	F
	n-C ₃ H ₇	C_2F_5	F	Н	F	F
15	n-C₄H ₉	C ₂ F ₅	F	Н	F	F
	n-C ₅ H ₁₁	C ₂ F ₅	F	Н	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	F	Н	F	F
	Н	C ₂ F ₅	F	F	F	F
	CH ₃	C ₂ F ₅	F	F	F	F
20	C ₂ H ₅	C ₂ F ₅	F	F	F	F
	n-C ₃ H ₇	C ₂ F ₅	F	F	F	F
	n-C₄H ₉	C_2F_5	F	F	F	F
	n-C ₅ H ₁₁	C ₂ F ₅	F	F	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	F	F
25	Н	C ₃ F ₇	Н	Н	F	F
	CH ₃	C ₃ F ₇	Н	Н	F	F
	C ₂ H ₅	C ₃ F ₇	Н	Н	F	F
	n-C ₃ H ₇	C ₃ F ₇	Н	Н	F	F
00	n-C₄H ₉	C ₃ F ₇	Н	Н	F	F
30	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	F	F
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	F	F
	Н	C ₃ F ₇	F	Н	F	F
	CH ₃	C ₃ F ₇	F	Н	F	F
25	C ₂ H ₅	C ₃ F ₇	F	Н	F	F
35	n-C ₃ H ₇	C ₃ F ₇	F	Н	F	F
	n-C ₄ H ₉	C ₃ F ₇	F	Н	F	F

	R ¹	X	L ¹	L ²	L ³	L⁴
	n-C₅H ₁₁	C ₃ F ₇	F	Н	F	F
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	F	F
_	Н	C ₃ F ₇	F	F	F	F
5	CH ₃	C ₃ F ₇	F	F	F	F
	C ₂ H ₅	C ₃ F ₇	F	F	F	F
	n-C ₃ H ₇	C ₃ F ₇	F	F	F	F
	n-C₄H ₉	C ₃ F ₇	F	F	F	F
	n-C₅H₁₁	C ₃ F ₇	F	F	F	F
10	n-C ₆ H ₁₃	C ₃ F ₇	F	F	F	F
	Н	SF ₅	Н	Н	F	F
	CH ₃	SF ₅	Н	Н	F	F
	C ₂ H ₅	SF ₅	Н	Н	F	F
	n-C₃H ₇	SF ₅	Н	Н	F	F
15	n-C₄H ₉	SF ₅	Н	Н	F	F
	n-C ₅ H ₁₁	SF ₅	Н	Н	F	F
	n-C ₆ H ₁₃	SF ₅	Н	Н	F	F
	H	SF ₅	F	Н	F	F
	CH ₃	SF ₅	F	Н	F	F
20	C ₂ H ₅	SF ₅	F	Н	F	F
	n-C ₃ H ₇	SF ₅	F	Н	F	F
•	n-C₄H ₉	SF ₅	F	Н	F	F
	n-C ₅ H ₁₁	SF ₅	F	Н	F	F
	n-C ₆ H ₁₃	SF ₅	F	Н	F	F
25	Н	SF ₅	F	F	F	F
	CH ₃	SF ₅	F	F	F	F
	C ₂ H ₅	SF ₅	F	F	F	F
	n-C₃H ₇	SF ₅	F	F	F	F
00	n-C₄H ₉	SF ₅	F	F	F	F
30	n-C ₅ H ₁₁	SF ₅	F	F	F	F
	n-C ₆ H ₁₃	SF ₅	F	F	F	F
	Н	CN	Н	Н	F	F
	CH ₃	CN	Н	Н	F	F
25	C ₂ H ₅	CN	Н	Н	F	F
35	n-C ₃ H ₇	CN	Н	Н	F	F
	n-C₄H ₉	CN	Н	Н	F	F

_	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₅ H ₁₁	CN	Н	Н	F	F
	n-C ₆ H ₁₃	CN	Н	Н	`F	F
_	Н	CN	F	Н	F	F
5	CH ₃	CN	F	Н	F	F
	C ₂ H ₅	CN	F	Н	F	F
	n-C ₃ H ₇	CN	F	H F H F H F	F	F
	n-C₄H ₉	CN	F	Н	F	F
4.0	n-C ₅ H ₁₁	CN	F	Н	F	F
10	n-C ₆ H ₁₃	CN	F	Н	F	F
	Н	CN	F	F	F	F
	CH ₃	CN	F	F	F	F
	C ₂ H ₅	CN	F	F	F	F
	n-C ₃ H ₇	CN	F	F	F	F
15	n-C₄H ₉	CN	F	F	F	F
	n-C₅H ₁₁	CN	F	F	F	F
	n-C ₆ H ₁₃	CN	F	F	F	F
	Н	CF ₃	Н	Н	F	F
	C_2H_5	CF ₃	Н	Н	F	F
20	n-C₃H ₇	CF ₃	Н	Н	F	F
	n-C₄H ₉	CF₃	Н	Н	F	F
	n-C ₅ H ₁₁	CF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	CF ₃	Н	Н	F	F
	CH ₂ =CH	CF₃	Н	Н	F	F
25	Н	CF ₃	F	F	F	F
	C ₂ H ₅	CF ₃	F	F	F	F
	n-C₃H ₇	CF ₃	F	F	F	F
	n-C₄H ₉	CF ₃	F	F	F	F
	n-C ₅ H ₁₁	CF ₃	F	F	F	F
30	n-C ₆ H ₁₃	CF ₃	F	F	F	F
	CH₂=CH	CF ₃	F	F	F	F
	Н	F	Н	Н	F	F
	C_2H_5	F	Н	Н	F	F
0.5	n-C₃H ₇	F	Н	Н	F	F
35	n-C₄H ₉	F	Н	Н	F	F
	n-C ₅ H ₁₁	F	Н	Н	F	F

R ¹	X	L ¹	L ²	L ³	L⁴
n-C ₆ H ₁₃	F	Н	Н	F	F
CH ₂ =CH	F	Н	Н	F	F

5 Example 6

Separation of the enantiomers of

15

In order to separate the enantiomers, 8.7 g of $\underline{\mathbf{T}}$ are passed through a preparative enantio-HPLC column. After the two fractions have been obtained, each is recrystallized from ethanol and its optical rotation is determined.

20

25

3.18 g enantio-HPLC: 99.68 % - optical rotation: +29.0° 3.74 g enantio-HPLC: 98.25 % - optical rotation: -28.0°

The following racemates are separated into the enantiomers by an analogous method:

$$C_{3}H_{7} \longrightarrow O \longrightarrow F \longrightarrow F$$

$$C_{5}H_{11} \longrightarrow O \longrightarrow H \longrightarrow CF_{2}O \longrightarrow F$$

$$C_{5}H_{11} \longrightarrow O \longrightarrow F \longrightarrow F$$

$$C_{2}H_{5} \longrightarrow O \longrightarrow F \longrightarrow F$$

$$F \longrightarrow F \longrightarrow F$$

$$C_{2}H_{5} \longrightarrow O \longrightarrow F \longrightarrow F$$

$$F \longrightarrow F \longrightarrow F$$

$$F \longrightarrow F \longrightarrow F$$

Enantio-HPLC: 99.97 % - optical rotation: +32.0° Enantio-HPLC: 99.40 % - optical rotation: -32.1°

Enantio-HPLC: 100.0 % - optical rotation: +4.5°
Enantio-HPLC: 99.9 % - optical rotation: -4.9 °

Enantio-HPLC: 99.98 % - optical rotation: +28.5° Enantio-HPLC: 100.00 % - optical rotation: -31.4°

PCT/EP2003/012813

- 134 -

Mixture Examples

Example	M1
----------------	----

5	CCH-5CF ₃	3.00%	Clearing point [°C]:	+80.0
	CCP-1F.F.F	3.00%	Δn [589 nm, 20°C]:	+0.0660
	CCP-2F.F.F	8.00%	Δε [kHz, 20°C]:	+10.4
	CCP-3F.F.F	8.00%	d · Δn [20°C, μm]:	0.50
	CCP-5F.F.F	5.00%	Twist [°]:	90
10	CCP-20CF ₃ .F	8.00%	V ₁₀ [V]:	1.31
	CCP-50CF ₃ .F	8.00%		
	CCOC-3-3	2.00%		
	CCOC-4-3	2.00%		
	CCQU-2-F	10.00%		
15	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
	ACQU-3-F	15.00%		
	CCH-301	3.00%		
	CCH-501	5.00%		
20				
	Example M2			
	CCH-501	7.00%	Clearing point [°C]:	+88.5
	CCH-5CF ₃	7.00%	∆n [589 nm, 20°C]:	+0.0657
25	CCP-2F.F.F	4.00%	Δε [kHz, 20°C]:	+9.9
	CCP-3F.F.F	7.00%	d · ∆n [20°C, μm]:	0.50
	CCP-5F.F.F	5.00%	Twist [°]:	90
	CCP-30CF ₃ .F	8.00%	V ₁₀ [V]:	1.45
	CCP-50CF ₃ .F	8.00%		
30	CCOC-3-3	3.00%		
	CCOC-3-5	2.00%		
	CCOC-4-3	4.00%		
	CCQU-2-F	10.00%		
	CCQU-3-F	12.00%		
35	CCQU-5-F	8.00%		
	ACQU-3-F	15.00%		

- 135 -

	Example M3			
	CCH-301	7.00%	Clearing point [°C]:	+81.0
	CCH-501	10.00%	∆n [589 nm, 20°C]:	+0.0608
5	CCH-5CF ₃	2.00%	Δε [kHz, 20°C]:	+8.4
	CCP-2F.F.F	9.00%	d · Δn [20°C, μm]:	0.50
	CCP-3F.F.F	4.00%	Twist [°]:	90
	CCP-5F.F.F	4.00%	V ₁₀ [V]:	1.49
	CCP-30CF ₃ .F	2.00%		
10	CCP-50CF ₃ .F	4.00%		
	CCOC-3-3	3.00%		
	CCOC-3-5	2.00%		
	CCOC-4-3	4.00%		
	ACQU-3-F	15.00%		
15	CCQU-2-F	10.00%		
	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
	CCH-35	4.00%		
20	Example M4			
	CCP-1F.F.F	4.00%	Clearing point [°C]:	+79.0
	CCP-2F.F.F	10.00%	∆n [589 nm, 20°C]:	+0.0808
	CCP-3F.F.F	9.00%	Δε [kHz, 20°C]:	+15.5
25	CCP-5F.F.F	5.00%	d · Δn [20°C, μm]:	0.50
	CCP-30CF ₃ .F	5.00%	Twist [°]:	90
	CCP-50CF ₃ .F	7.00%	γ₁ [20°C, mPa⋅s]:	150
	PUQU-2-F	5.00%	V ₁₀ [V]:	0.98
	PUQU-3-F	5.00%		
30	CCQU-2-F	11.00%		
	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
	CCGU-3-F	4.00%		
	ACQU-3-F	15.00%		
35			•	

	Example M5			
	BCH-3F.F	10.80%	Clearing point [°C]:	+89.0
	BCH-5F.F	9.00%	Δn [589 nm, 20°C]:	+0.0930
5	ECCP-30CF ₃	4.50%	Δε [kHz, 20°C]:	+6.2
	ECCP-50CF ₃	4.50%		
	CBC-33F	1.80%		
	CBC-53F	1.80%		
	CBC-55F	1.80%		
10	PCH-6F	7.20%		
	PCH-7F	5.40%		
	CCP-20CF ₃	7.20%		
	CCP-30CF ₃	10.80%		
	CCP-40CF ₃	6.30%		
15	CCP-50CF ₃	9.90%		
	PCH-5F	9.00%		
	ACQU-3-F	10.00%		
	Example M6			
20				
	CCH-35	3.00%	Clearing point [°C]:	+81.0
	CC-3-V1	4.00%	∆n [589 nm, 20°C]:	+0.0912
	CCP-1F.F.F	10.00%	d · ∆n [20°C, µm]:	0.50
	CCP-2F.F.F	9.00%	Twist [°]:	90
25	CCP-3F.F.F	9.00%	γ₁ [20°C, mPa⋅s]:	129
	CCP-20CF ₃ .F	6.00%	V ₁₀ [V]:	1.30
	CCG-V-F	9.00%		
	CCP-20CF ₃	8.00%		
	CCP-30CF ₃	8.00%		
30	CCP-40CF ₃	6.00%		
	CCP-50CF ₃	7.00%		
	PUQU-2-F	5.00%	•	
	PUQU-3-F	7.00%		
	APUQU-2-F	4.50%		
35	CGUQU-3-F	3.50% •		
	CBC-33	1.00%		

- 137 -

	Example M7			
	CCP-2F.F.F	11.00%	Clearing point [°C]:	+80.0
	CCP-20CF ₃	7.00%	∆n [589 nm, 20°C]:	+0.1034
5	CCP-30CF ₃	8.00%	d · Δn [20°C, μm]:	0.50
	CCP-40CF ₃	5.00%	Twist [°]:	90
	PGU-2-F	8.00%	V ₁₀ [V]:	1.22
	PGU-3-F	7.00%		
	CC-3-V1	10.00%		
10	CCH-35	3.00%		
	CCP-V-1	5.00%		
	CCP-20CF ₃ ,F	8.00%		
	CCP-30CF ₃ .F	11.00%		
	PUQU-2-F	4.00%		
15	PUQU-3-F	6.00%		
	ACQU-3-F	7.00%		
	Example M8			
20	CCP-1F.F.F	6.00%	$S \rightarrow N [^{\circ}C]$:	-40.0
	CCP-2F.F.F	10.00%	Clearing point [°C]:	+80.0
	CCP-20CF₃	8.00%	∆n [589 nm, 20°C]:	+0.1029
	CCP-30CF ₃	8.00%	d · Δn [20°C, μm]:	0.50
	CCP-40CF ₃	6.00%	Twist [°]:	90
25	CCP-50CF ₃	8.00%	V ₁₀ [V]:	1.24
	PGU-2-F	8.00%		
	PGU-3-F	7.00%		
	CC-3-V1	8.00%		
	CCH-35	5.00%		
30	CCP-V-1	5.00%		
	CCP-30CF ₃ .F	3.00%		
	PUQU-2-F	4.00%		
	PUQU-3-F	6.00%	:	
	ACQU-3-F	8.00%		Ā
35				

	Example M9			
	CC-3-V1	5.00%	$S \rightarrow N [^{\circ}C]$:	-30.0
	CCP-1F.F.F	5.00%	Clearing point [°C]:	+85.5
5	CCP-2F.F.F	8.00%	∆n [589 nm, 20°C]:	+0.0931
	CCP-20CF ₃ .F	8.00%	Δε [kHz, 20°C]:	12.1
	CCP-20CF ₃	5.00%	γ₁ [20°C, mPa⋅s]:	135
	CCP-30CF ₃	8.00%	d · Δn [20°C, μm]:	0.50
	CCP-40CF ₃	6.00%	Twist [°]:	90
10	CCP-50CF ₃	8.00%	V ₁₀ [V]:	1.23
	PUQU-2-F	5.00%		
	PUQU-3-F	7.00%		
	PGU-2-F	5.00%		
	CCP-V-1	10.00%		
15	ACQU-3-F	12.00%		
	ACQU-4-F	8.00%		
	Example M10			
20	CC-3-V1	6.00%	$S \rightarrow N [^{\circ}C]$:	-40.0
	CCP-1F.F.F	6.00%	Clearing point [°C]:	+83.5
	CCP-2F.F.F	7.00%	∆n [589 nm, 20°C]:	+0.0917
	CCP-20CF ₃ .F	10.00%	Δε [kHz, 20°C]:	11.7
	CCP-20CF ₃	8.00%	γ₁ [20°C, mPa⋅s]:	125
25	CCP-30CF ₃	8.00%	d · Δn [20°C, μm]:	0.50
	CCP-40CF ₃	6.00%	Twist [°]:	90
	CCP-50CF ₃	4.00%	V ₁₀ [V]:	1.25
	PUQU-2-F	5.00%		
	PUQU-3-F	8.00%		
30	PGU-2-F	4.00%		
	CCP-V-1	10.00%		
	ACQU-3-F	10.00%		
	ACQU-4-F	8.00%		

Example M11 (IPS)

	CDU-2-F	5.00%	Clearing point [°C]:	+81
	PGU-2-F	2.50%	∆n [589 nm, 20°C]:	+0.0850
5	CCZU-2-F	4.00%	Δε [kHz, 20°C]:	10.1
	CCZU-3-F	11.00%	γ₁ [20°C, mPa⋅s]:	98
	CCP-V-1	15.00%		
	CCQU-3-F	10.00%		
	PUQU-2-F	4.00%		
10	PUQU-3-F	5.00%		
	CC-3-V1	11.00%		
	PCH-302	3.50%		
	CC-5-V	11.00%		
•	ACQU-3-F	9.00%		
15	ACQU-4-F	9.00%		
	Example M12 (IPS)			
	<u>LXample W12 (II 0)</u>			
	PGU-2-F	9.00%	Clearing point [°C]:	81.0
20	PGU-3-F	2.00%	∆n [589 nm, 20°C]:	0.1090
	CGZP-2-OT	8.00%	Δε [kHz, 20°C]:	11.0
	CGZP-3-OT	10.00%	γ₁ [20°C, mPa⋅s]:	100
	CCP-20CF ₃	6.00%		
	CCP-30CF ₃	6.50%		
25	PUQU-2-F	4.00%		
	PUQU-3-F	3.50%		
	CCP-V-1	9.00%		
	CC-3-V1	11.00%		
	PCH-302	15.00%		
30	ACQU-3-F	8.00%		
	ACQU-4-F	8.00%		

	Example M13			
	CC-4-V	17.00%	Clearing point [°C]:	74.5
	CC-3-V1	3.00%	∆n [589 nm, 20°C]:	+0.0890
5	CCQU-2-F	12.00%	Δε [kHz, 20°C]:	12.7
	CCQU-3-F	12.00%	γ ₁ [20°C, mPa·s]:	119
	CCQU-5-F	10.00%	V ₁₀ [V]:	1.09
	CCP-20CF ₃	5.00%		
	PGU-2-F	3.00%		
10	PGU-3-F	6.00%		
	AUUQGU-3-F	8.00%		
	CCP-1F.F.F	8.00%		
	CCP-3F.F.F	9.00%		
	BCH-3F.F.F	7.00%		
15				
	Example M14			
	CC-3-V1	6.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
	CCP-1F.F.F	9.00%	Clearing point [°C]:	83.5
20	CCP-2F.F.F	9.00%	∆n [589 nm, 20°C]:	0.0941
	CCP-3F.F.F	10.00%	Δε [kHz, 20°C]:	11.4
	CCQU-3-F	11.00%	γ ₁ [20°C, mPa·s]:	137
	CCQU-5-F	9.00%	V ₁₀ [V]:	1.23
	CCP-20CF ₃	6.00%		
25	CCP-30CF ₃	8.00%		
	CCP-50CF ₃	2.00%		
	CGU-2-F	4.00%		
	PGU-2-F	6.00%		
	PGU-3-F	6.00%		
30	CCP-V-1	7.00%		
	ACQU-3-F	7.00%		

Examp	ole I	M1	5

	CC-3-V1	5.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
	CCP-1F.F.F	7.00%	Clearing point [°C]:	84.0
5	CCP-2F.F.F	10.00%	∆n [589 nm, 20°C]:	0.0919
	ACQU-1-F	8.00%	Δε [kHz, 20°C]:	11.9
	ACQU-3-F	8.00%	γ₁ [20°C, mPa⋅s]:	135
	CCG-V-F	11.00%	V ₁₀ [V]:	1.19
	BCH-3F.F	2.50%		
10	CCP-20CF ₃	8.00%		
	CCP-30CF ₃	8.00%		
	CCP-40CF ₃	5.00%		
	CCP-V-1	8.00%		
	PUQU-2-F	5.50%		
15	PUQU-3-F	8.00%		
	CCGU-3-F	6.00%		
	Example M16			
20	CC-3-V1	5.00%		
	CCP-1F.F.F	7.00%		
	CCP-2F.F.F	6.00%		
	CCQU-3-F	10.00%		
	CCG-V-F	6.00%		
25	CCP-20CF ₃	8.00%		
	CCP-30CF ₃	8.00%		
	CCP-40CF ₃	6.00%		
	CCP-50CF ₃	8.00%		
	ACQU-2-F	6.00%		
30	ACQU-3-F	6.00%		
	PUQU-2-F	5.00%		
	PUQU-3-F	7.00%		
	PGU-3-F	6.00%		
	CCP-V-1	6.00%		
35				

- 142 -

	Example M17			
	CCP-20CF₃	8.00%	S → N [°C]:	< -30.0
	CCP-30CF ₃	8.00%	Clearing point [°C]:	75.0
5	CCP-40CF ₃	5.00%	∆n [589 nm, 20°C]:	0.0858
	PGU-2-F	5.00%	Δε [kHz, 20°C]:	13.3
	PGU-3-F	5.00%	γ ₁ [20°C, mPa·s]:	152
	CCP-1F.F.F	10.00%	V ₁₀ [V]:	1.07
	CCP-2F.F.F	11.00%		
10	CCP-3F.F.F	12.00%		
	CCZU-2-F	3.00%		
	CCZU-3-F	13.00%		
	ACQU-2-F	8.00%		
	ACQU-3-F	8.00%		
15	ACQU-5-F	4.00%		
	Example M18			
	CC-4-V	11.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
20	CDU-2-F	7.00%	Clearing point [°C]:	76.5
	CDU-3-F	8.00%	∆n [589 nm, 20°C]:	0.0870
	CDU-5-F	9.00%	$\Delta \varepsilon$ [kHz, 20°C]:	13.6
	CCP-1F.F.F	8.50%	γ₁ [20°C, mPa⋅s]:	146
	CCP-20CF ₃	8.00%	V ₁₀ [V]:	1.09
25	CCP-30CF ₃	6.50%		
	PGU-2-F	3.00%		
	PGU-3-F	6.00%		
	CCGU-3-F	6.00%		
	CBC-33	3.00%		
30	ACQU-2-F	8.00%		
	ACQU-3-F	8.00%		
	ACQU-5-F	8.00%		

- 143 -

	Example M19			
	CC-4-V	10.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
	CCP-1F.F.F	9.00%	Clearing point [°C]:	75.0
5	CCP-2F.F.F	9.00%	∆n [589 nm, 20°C]:	0.0869
	CCP-30CF ₃ .F	8.00%	Δε [kHz, 20°C]:	13.1
	CCP-20CF ₃	8.00%	γ₁ [20°C, mPa⋅s]:	128
	CCP-30CF ₃	8.00%	V ₁₀ [V]:	1.06
	ACQU-2-F	8.00%		
10	ACQU-3-F	8.00%		
	ACQU-4-F	8.00%		
	PGU-2-F	2.00%		
	PUQU-2-F	5.00%		
	PUQU-3-F	8.00%		
15	CCGU-3-F	6.00%		
	CBC-33	3.00%		
	Example M20			
20	CC-4-V	18.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
	CC-3-V1	3.00%	Clearing point [°C]:	75.0
	CCQU-2-F	11.00%	∆n [589 nm, 20°C]:	0.0891
	CCQU-3-F	12.00%	Δε [kHz, 20°C]:	13.0
	CCQU-5-F	8.00%	γ₁ [20°C, mPa⋅s]:	113
25	CCP-20CF ₃	8.00%	V ₁₀ [V]:	1.08
	PGU-2-F	2.00%		
	PGU-3-F	6.00%		
	APUQU-2-F	8.00%		
	APUQU-3-F	9.00%		
30	CCP-1F.F.F	7.00%		
	CCP-2F.F.F	7.00%		
	CCGU-3-F	1.00%		

- 144 -

	Example M21			
	CC-4-V	17.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
	PUQU-2-F	5.00%	Clearing point [°C]:	75.5
5	PUQU-3-F	7.00%	∆n [589 nm, 20°C]:	0.0894
	CCP-20CF ₃	6.00%	Δε [kHz, 20°C]:	14.0
	CCP-30CF ₃	5.00%	γ₁ [20°C, mPa⋅s]:	120
	CCP-2F.F.F	5.00%	V ₁₀ [V]:	1.06
	CCZU-2-F	3.00%		
10	CCZU-3-F	13.00%		
	PGU-3-F	6.00%		
	ACQU-1-F	8.00%		
	ACQU-3-F	8.00%		
	ACQU-4-F	8.00%		
15	CCGU-3-F	6.00%		
	CBC-33	3.00%		
	Example M22			
20	CC-4-V	16.00%	$S \rightarrow N [^{\circ}C]$:	< -40.0
	CC-3-V1	8.00%	Clearing point [°C]:	75.5
	CCP-1F.F.F	5.00%	∆n [589 nm, 20°C]:	0.0916
	CCP-2F.F.F	6.00%	$\Delta \varepsilon$ [kHz, 20°C]:	13.6
	CCQU-2-F	10.00%	γ₁ [20°C, mPa⋅s]:	107
25	CCQU-3-F	12.00%	V ₁₀ [V]:	1.08
	CCP-20CF ₃	4.00%		
	CCZU-3-F	13.00%		
	PGU-2-F	5.00%		
	PGU-3-F	5.00%		
30	APUQU-2-F	8.00%		
	APUQU-3-F	8.00%		

- 145 -

	Example M23			
	CCP-1F.F.F	6.00%	Clearing point [°C]:	78.2
	CCP-2F.F.F	9.00%	∆n [589 nm, 20°C]:	0.0791
5	CCP-3F.F.F	6.00%	Δε [kHz, 20°C]:	14.3
	CCP-5F.F.F	4.00%		
	CCP-20CF ₃ .F	5.00%		
	CCP-30CF ₃ .F	5.00%		
	CCP-50CF ₃ .F	7.00%		
10	CDU-2-F	7.00%		
	CDU-3-F	10.00%		
	CDU-5-F	10.00%		
	CGU-3-F	4.00%		
	CCGU-3-F	9.00%		
15	ACQU-3-F	18.00%		
	Example M24			
	CCQU-2-F	13.00%	Clearing point [°C]:	84.5
20	CCQU-3-F	14.00%	∆n [589 nm, 20°C]:	0.0779
	CCQU-5-F	13.00%	Δε [kHz, 20°C]:	18.7
	ACQU-5-F	33.00%	γ ₁ [20°C, mPa·s]:	182
	APUQU-2-F	7.00%	V ₁₀ [V]:	0.95
	APUQU-3-F	9.00%	•	
25	CC-4-V	11.00%		

	Example M25			
	CC-4-V	18.00%	Clearing point [°C]:	74.5
	CC-3-V1	5.00%	∆n [589 nm, 20°C]:	0.0882
5	CCP-2F.F.F	8.00%	Δε [kHz, 20°C]:	12.9
	CCQU-2-F	9.00%	γ₁ [20°C, mPa⋅s]:	103
	CCQU-3-F	11.00%	V ₁₀ [V]:	1.09
	CCQU-5-F	11.00%		
	CCQG-3-F	6.00%		
10	BCH-3F.F.F	8.00%		
	APUQU-2-F	6.00%		
	APUQU-3-F	6.00%		
	PUQU-2-F	3.00%		
	PUQU-3-F	6.00%		
15	CCGU-3-F	1.50%		
	PGP-2-3	1.50%		
	Example M26 (IPS)			
20	CCP-20CF₃	7.00%	Clearing point [°C]:	80.0
	CCP-30CF ₃	7.00%	∆n [589 nm, 20°C]:	0.1102
	CCP-40CF ₃	7.00%	Δε [kHz, 20°C]:	11.1
	CCP-50CF ₃	3.50%	γ₁ [20°C, mPa⋅s]:	82
	CCZU-3-F	5.00%	V ₁₀ [V]:	1.13
25	PGU-2-F	9.00%		
	PGU-3-F	8.00%		
	PUQU-2-F	6.00%		
	PUQU-3-F	6.00%		
	CC-3-V1	13.00%	•	
30	CC-4-V	14.00%		
	CCP-V-1	8.00%		
	APUQU-2-F	6.50%		

- 147 -

	Example M27 (IPS)			
	CCP-20CF₃	8.00%	Clearing point [°C]:	79.5
	CCP-30CF ₃	8.00%	∆n [589 nm, 20°C]:	0.1095
5	CCP-40CF ₃	8.00%	Δε [kHz, 20°C]:	11.4
	CCZU-3-F	5.00%	γ₁ [20°C, mPa⋅s]:	87
	PGU-2-F	9.00%	V ₁₀ [V]: 1.11	
	PGU-3-F	8.50%		
	PUQU-2-F	6.00%		
10	PUQU-3-F	5.00%		
	CC-3-V1	12.50%		
	CC-4-V	14.00%		
	CCP-V-1	9.00%		
	AGUQU-2-F	3.50%		
15	AGUQU-3-F	3.50%		
	Example M28 (IPS)			
	CCP-2F.F.F	6.50%	Clearing point [°C]:	78.0
20	CCP-30CF ₃	6.00%	∆n [589 nm, 20°C]:	0.0805
	CCZU-2-F	4.00%	∆ε [kHz, 20°C]:	14.8
	CCZU-3-F	15.00%	γ₁ [20°C, mPa⋅s]:	121
	CDU-2-F	9.00%		
	CDU-3-F	4.00%		
25	CCQU-3-F	13.00%		
	CCQU-5-F	10.00%		
	PUQU-2-F	5.00%		
	PUQU-3-F	5.00%		
	APUQU-2-F	6.00%		
30	CC-3-V1	12.00%		
	CC-4-V	4.50%		

- 148 -

	Example 28 (IPS)			
	CDU-2-F	9.00%	Clearing point [°C]:	76.5
	CDU-3-F	8.00%	∆n [589 nm, 20°C]:	0.0960
5	PGU-2-F	9.00%	Δε [kHz, 20°C]:	12.7
	CCZU-2-F	4.00%	γ₁ [20°C, mPa⋅s]:	92
	CCZU-3-F	11.00%	V ₁₀ [V]:	1.02
	PUQU-2-F	4.00%		
	PUQU-3-F	6.00%		
10	APUQU-2-F	7.00%		
	CCP-V-1	14.50%		
	CC-3-V1	12.50%		
	CC-4-V	10.00%		
	CCH-35	5.00%		
15				
	Example M30 (IPS)			
	CCP-30CF ₃	3.50%	Clearing point [°C]:	75.5
	CDU-2-F	5.00%	∆n [589 nm, 20°C]:	0.0975
20	PGU-2-F	6.50%	Δε [kHz, 20°C]:	8.4
	PUQU-2-F	8.00%	γ₁ [20°C, mPa⋅s]:	67
	PUQU-3-F	8.00%	V ₁₀ [V]:	1.28
	CCP-V-1	13.00%		
	CCP-V2-1	9.50%		
25	CC-3-V1	13.00%		
	CC-5-V	9.00%		
	CC-4-V	14.00%		
	PCH-302	3.50%		
	APUQU-2-F	7.00%		
30				

Example M31 (IPS)

	PGU-2-F	6.50%	Clearing point [°C]:	74.0
	CDU-2-F	9.00%	∆n [589 nm, 20°C]:	0.1005
5	PUQU-2-F	11.00%	Δε [kHz, 20°C]:	14.1
	PUQU-3-F	10.00%	γ₁ [20°C, mPa⋅s]:	92
	CCP-30CF ₃	8.00%		
	CCZU-3-F	11.50%		
	CC-4-V	10.00%		
10	CC-5-V	3.00%		
	CC-3-V1	11.00%		
	CCP-V2-1	13.00%		
	APUQU-2-F	7.00%		
15	Example M32			
	CCQU-2-F	10.00%	Clearing point [°C]:	82.0
	CCQU-3-F	12.00%	∆n [589 nm, 20°C]:	0.0792
	CCQU-5-F	8.00%	Δε [kHz, 20°C]:	11.2
20	CCP-1F.F.F	6.00%	V ₁₀ [V]:	1.20
	CCP-2F.F.F	5.00%		
	CCP-3F.F.F	5.00%		
	CC-3-V1	10.00%		
	CC-4-V	14.00%		
25	CGU-2-F	5.00%		
	CCGU-3-F	5.00%		
	ACQG-3-F	5.00%		
	ACQG-4-F	5.00%		
	APUQU-2-F	5.00%		
30	APUQU-3-F	5.00%		

- 150 -

Example M33			
CCQU-2-F	11.00%	Clearing point [°C]:	81.5
CCQU-3-F	13.00%	∆n [589 nm, 20°C]:	0.0804
CCQU-5-F	11.00%	Δε [kHz, 20°C]:	13.6
CCP-1F.F.F	8.00%	γ₁ [20°C, mPa⋅s]:	153
CCP-2F.F.F	10.00%	V ₁₀ [V]:	1.06
CCP-3F.F.F	10.00%		
CCP-5F.F.F	6.00%		
CC-3-V1	9.00%		
CGU-3-F	4.00%		
ACQG-3-F	3.00%		
ACQG-4-F	5.00%		
APUQU-2-F	5.00%		
APUQU-3-F	5.00%		
Example M34			
CCH-5CF ₃	5.00%	Clearing point [°C]:	80.5
CCP-1F.F.F	5.00%	∆n [589 nm, 20°C]:	0.0660
CCP-2F.F.F	9.00%	$\Delta \epsilon$ [kHz, 20°C]:	9.7
CCP-3F.F.F	8.00%	V ₁₀ [V]:	1.27
CCP-5F.F.F	5.00%		
CCP-20CF ₃ .F	6.00%	•	
CCP-50CF ₃ .F	6.00%		
CCOC-3-3	2.00%		
CCOC-4-3	2.00%		
CCQU-2-F	10.00%		
CCQU-3-F	12.00%		
CCQU-5-F	8.00%		
CCH-501	6.00%		
ACQG-3-F	8.00%		
ACQG-4-F	8.00%		
	CCQU-2-F CCQU-3-F CCQU-5-F CCP-1F.F.F CCP-2F.F.F CCP-3F.F.F CCP-3F.F.F CC-3-V1 CGU-3-F ACQG-4-F APUQU-2-F APUQU-3-F Example M34 CCH-5CF ₃ CCP-1F.F.F CCP-2F.F.F CCP-2F.F.F CCP-2OCF ₃ .F CCP-2OCF ₃ .F CCOC-3-3 CCOC-4-3 CCQU-2-F CCQU-5-F CCQU-5-F CCH-501 ACQG-3-F	CCQU-2-F CCQU-3-F CCQU-5-F CCP-1F.F.F CCP-2F.F.F CCP-3F.F.F CCP-5F.F.F CCP-3-F.F CCP-3-F ACQG-3-F ACQG-4-F APUQU-2-F APUQU-3-F CCP-3F.F.F CCP-3F.F.F CCP-3F.F.F S.00% ACQG-4-F APUQU-3-F APUQU-3-F CCP-5F.F.F CCP-5OCF3.F CCP-5OCF3.F CCQU-2-F CCQU-3-F CCQU-5-F CCQU-5-F CCQU-5-F CCQU-5-F S.00% CCQU-5-	CCQU-2-F CCQU-3-F CCQU-5-F CCQU-5-F CCP-1F.F.F CCP-2F.F.F CCP-3F.F.F CCP-3F.F.F CCP-3-F CCQG-4-F APUQU-2-F APUQU-3-F CCP-1F.F.F S.00% CCH-5CF3 CCP-1F.F.F S.00% AC [kHz, 20°C]: Y1 [20°C, mPa·s]: V10 [V]: CCP-3F.F.F CCP-3F.F.F CON% CCP-3F.F.F CON% CCP-3-V1 S.00% CCG-3-V1 S.00% CCG-3-V1 S.00% CCG-3-F ACQG-4-F APUQU-2-F APUQU-3-F S.00% ACGP-1F.F.F S.00% CCP-2F.F.F S.00% CCP-2F.F.F S.00% CCP-3F.F.F S.00% CCP-3F.F.F S.00% CCP-3F.F.F S.00% CCP-3F.F.F S.00% CCP-20CF ₃ .F CCP-20CF ₃ .F CCP-3-F CCP-3-F CCOC-4-3 CCQU-2-F CCQU-3-F CCQU-3-F CCQU-5-F S.00% CCQU-5-F S.00% CCQU-5-F S.00% CCQU-5-F S.00% CCGU-5-F S

WO 2004/048501 PCT/EP2003/012813

	Example M35			
	CCP-1F.F.F	7.00%	Clearing point [°C]:	81.5
	CCP-2F.F.F	8.00%	∆n [589 nm, 20°C]:	0.0658
5	CCP-3F.F.F	7.00%	Δε [kHz, 20°C]:	13.5
	CCP-5F.F.F	4.00%	V ₁₀ [V]:	1.06
	CCQU-2-F	11.00%		
	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
-10	ACQU-2-F	8.00%		
	ACQU-3-F	9.00%		
	ACQU-5-F	8.00%		
	ACQG-3-F	7.00%		
	ACQG-4-F	5.00%		
15	CCOC-3-3	3.00%		
	CCOC-4-3	3.00%		
	Example M36			
20	AUUQU-3-F	6.00%	Clearing point [°C]:	98.0
	AGUQU-3-F	6.00%	∆n [589 nm, 20°C]:	0.0927
	APUQU-2-F	6.00%	Δε [kHz, 20°C]:	18.9
	CGU-2-F	5.00%		
	CGU-3-F	5.00%		
25	CGU-5-F	5.00%		
	CCZU-2-F	5.50%		
	CCZU-3-F	10.50%		
•	CCZU-5-F	5.50%		
	CCQU-2-F	10.00%		
30	CCQU-3-F	10.00%		
	CCQU-5-F	10.00%		
	CC-5-V	9.50%		
	CCPC-33	2.00%		
	CCPC-34	2.00%		
35	CCPC-35	2.00%		

- 152 -

	Example M37			
	0001105	7.000/		05.5
	CCQU-2-F	7.00%	Clearing point [°C]:	85.5
5	CCQU-3-F	8.00%	Δn [589 nm, 20°C]:	0.0783
5	CCQU-5-F	8.00%	Δε [kHz, 20°C]:	11.66
	CCQG-3-F	6.00%	γ₁ [20°C, mPa⋅s]:	213
	ACQU-2-F	17.00%	V ₁₀ [V]:	0.90
	ACQU-5-F	16.00%		
10	PUQU-2-F	5.00%		
10	PUQU-3-F	5.00%	•	
	CCGU-3-F	5.00%		
	CCOC-4-3	3.00%		
	CCZU-2-F	3.00%		
	CCZU-3-F	14.00%		
15	CCZU-5-F	3.00%		
	Example M38			
	<u> </u>			
	BCH-3F.F	10.80%	Clearing point [°C]:	56.9
20	BCH-5F.F	9.00%	∆n [589 nm, 20°C]:	0.0834
	ECCP-30CF ₃	4.50%	Δε [kHz, 20°C]:	4.1
	ECCP-50CF ₃	4.50%	γ₁ [20°C, mPa⋅s]:	65
	CBC-33F	1.80%		
	CBC-53F	1.80%		
25	CBC-55F	1.80%		
	PCH-6F	7.20%		
	PCH-7F	5.40%		
	CCP-20CF ₃	7.20%		
	CCP-30CF ₃	10.80%		
30	CCP-40CF ₃	6.30%		
	CCP-50CF ₃	9.90%		
	PCH-5F	9.00%		
	AUUQPU-3-F	10.00%		
				•

- 153 *-*

	Example M39			
	CCP-1F.F.F	3.00%	Clearing point [°C]:	79.5
	CCP-2F.F.F	6.00%	∆n [589 nm, 20°C]:	0.0796
5	CCP-3F.F.F	7.00%	Δε [kHz, 20°C]:	10.12
	CCP-5F.F.F	5.00%	γ₁ [20°C, mPa⋅s]:	202
	CCQU-2-F	11.00%	V ₁₀ [V]:	0.93
	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
10	CGU-2-F	4.00%		
	CGU-3-F	7.00%		
	CCGU-3-F	9.00%		
	ACQU-2-F	8.00%		
	ACQU-3-F	10.00%		
15	ACQU-4-F	10.00%		
	Example M40			
	CCH-5CF₃	2.00%	Clearing point [°C]:	79.5
20	CCP-2F.F.F	9.00%	∆n [589 nm, 20°C]:	0.0659
	CCP-3F.F.F	7.00%	Δε [kHz, 20°C]:	8.22
	CCP-5F.F.F	4.00%	γ ₁ [20°C, mPa·s]:	169
	CCP-20CF ₃ .F	7.00%	V ₁₀ [V]:	1.14
	CCP-50CF ₃ .F	6.00%		
25	CCOC-3-3	2.00%		
	CCOC-4-3	2.00%		
	CCQU-2-F	10.00%		
	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
30	ACQU-2-F	8.00%		
	ACQU-3-F	10.00%		
	ACQU-4-F	8.00%		
	CCH-501	5.00%		
			,	

- 154 -

	Example M41		*	
	CCP-1F.F.F	6.00%	Clearing point [°C]:	80.0
_	CCP-2F.F.F	9.00%	∆n [589 nm, 20°C]:	0.0694
5	CCP-3F.F.F	10.00%	Δε [kHz, 20°C]:	8.96
	CCP-5F.F.F	6.00%	γ₁ [20°C, mPa⋅s]:	175
	CCP-20CF ₃ .F	4.00%	V ₁₀ [V]:	1.11
	CCP-50CF ₃ .F	8.00%		
	CCQU-2-F	11.00%		
10	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
	ACQU-3-F	26.00%		
	Example M42			
15				
	CCP-1F.F.F	8.00%	Clearing point [°C]:	88.0
	CCP-2F.F.F	7.00%	∆n [589 nm, 20°C]:	0.0788
	CCP-3F.F.F	9.00%	Δε [kHz, 20°C]:	8.51
	CCP-5F.F.F	6.00%	γ₁ [20°C, mPa⋅s]:	192
20	CCP-30CF ₃ .F	9.00%	V ₁₀ [V]:	1.13
	CCP-50CF ₃ .F	9.00%		
	CGU-2-F	5.00%		
	CCGU-3-F	5.00%		
	CCQU-2-F	11.00%		
25	CCQU-3-F	12.00%		
	CCQU-5-F	8.00%		
	ACQU-3-F	6.00%		
	ACQU-4-F	5.00%		

30

- 155 -

	Example M43			
	CCP-1F.F.F	2.00%	Clearing point [°C]:	81.0
	CCP-20CF ₃	8.00%	Δn [589 nm, 20°C]:	0.0785
5	CCP-30CF ₃	8.00%	Δε [kHz, 20°C]:	7.27
	CCP-40CF ₃	6.00%	γ ₁ [20°C, mPa⋅s]:	108
	CCP-50CF ₃	8.00%	V ₁₀ [V]:	1.34
	CCP-20CF ₃ .F	12.00%		
	ACQU-2-F	8.00%		
10	ACQU-3-F	8.00%		
	ACQU-4-F	8.00%		
	PUQU-2-F	5.00%		
	PUQU-3-F	7.00%		
	CC-3-V1	8.00%		
15	CC-4-V	9.00%		
	CCOC-4-3	3.00%		
	Evernle M44			
	Example M44			
20	CC-3-V1	5.00%	$S \rightarrow N [^{\circ}C]$:	< 20.0
	CCP-1F.F.F	8.00%	Clearing point [°C]:	82.5
	CCP-2F.F.F	10.00%	∆n [589 nm, 20°C]:	0.0939
	CCQU-2-F	10.00%	∆ε [kHz, 20°C]:	10.6
	CCQU-3-F	5.00%	γ₁ [20°C, mPa⋅s]:	128
25	CCP-20CF ₃	8.00%	V ₁₀ [V]:	1.19
	CCP-30CF ₃	8.00%		
	CGU-2-F	9.00%		
	PGU-3-F	5.00%		
	CCP-V-1	6.00%		
30	CCG-V-F	18.00%	•	
	APUQU-3-F	8.00%		

WO 2004/048501 PCT/EP2003/012813

- 156 -

	Example M45			
	CCP-2F.F.F	7.00 %	Clearing point [°C]:	88.0
	CCP-3F.F.F	6.00 %	∆n [589 nm, 20 °C]:	0.0720
5	CCP-5F.F.F	6.00 %	Δε [kHz, 20 °C]:	16.1
	ACQU-2-F	10.00 %	γ₁ [20 °C, mPa⋅s]:	210
	ACQU-3-F	10.00 %	V ₁₀ [V]:	0.97
	ACQU-5-F	11.00 %		
	CCQU-2-F	10.00 %		
10	CCQU-3-F	12.00 %		
	CCQU-5-F	10.00 %		
	CCGU-3-F	5.00 %		
	CCZU-2-F	4.00 %		
	CCZU-3-F	9.00 %		
15				