

A particle P of mass $0.2 \,\mathrm{kg}$ is attached to one end of a light inextensible string of length $0.6 \,\mathrm{m}$. The other end of the string is attached to a particle Q of mass $0.3 \,\mathrm{kg}$. The string passes through a small hole H in a smooth horizontal surface. A light elastic string of natural length $0.3 \,\mathrm{m}$ and modulus of elasticity $15 \,\mathrm{N}$ joins Q to a fixed point A which is $0.4 \,\mathrm{m}$ vertically below H. The particle P moves on the surface in a horizontal circle with centre H (see diagram).

- (i) Calculate the greatest possible speed of P for which the elastic string is not extended. [4]
- (ii) Find the distance HP given that the angular speed of P is 8 rad s^{-1} . [5]