Quiz 1

Allen Williams

January 24th, 2018

Problem 1. i) Let $x, y \in \mathbb{R}$, $(x, y) \in R$ iff $x \leq y$ is not an equivalence relation on \mathbb{R} since it fails to be symmetric. Consider (x, y) = (0, 3). $(0, 3) \in R$ since $0 \leq 3$ but $(3, 0) \notin R$ since 3 > 0.

ii) Let $x, y \in \mathbb{R}$, $(x, y) \in R$ iff |x| = |y| is an equivalence relation on \mathbb{R} . For all $x \in \mathbb{R}$, $(x, x) \in R$ since |x| = |x| so R is reflexive. Suppose $(x, y) \in R$ then |x| = |y| and since "=" is symmetric |y| = |x| meaning $(y, x) \in R$ so R is symmetric. Now suppose $(x, y) \in R$ and $(y, z) \in R$ so |x| = |y| and |y| = |z|, by transitivity of equality |x| = |z| so $(x, z) \in R$ so R is transitive. Since R is reflexive, symmetric, and transitive R is an equivalence relation on \mathbb{R} . The partition of \mathbb{R} given by R is $\{x, -x \mid x \in \mathbb{R}\}$.

iii) Let $x,y \in \mathbb{Z}$. $(x,y) \in R$ iff $x \equiv y \pmod{5}$ is an equivalence relation on \mathbb{Z} . By definition if $x \equiv y \pmod{5}$ then x - y = 5k for some $k \in \mathbb{Z}$. Let $x,y,z \in \mathbb{Z}$ be arbitrary. $x-x=0=5 \cdot 0$ so $x \equiv x \pmod{5}$ so $(x,x) \in R$ and R is reflexive. Suppose $(x,y) \in \mathbb{R}$ then $x \equiv y \pmod{5}$ so x-y=5k for some $k \in \mathbb{Z}$, then y-x=5(-k) and since $k \in \mathbb{Z}$, $-k \in \mathbb{Z}$ so $y \equiv x \pmod{5}$ so $(y,x) \in R$ and R is symmetric. Now suppose $(x,y) \in R$ and $(y,z) \in R$, so $x \equiv y \pmod{5}$ and $y \equiv z \pmod{5}$. Then $x-y=5k_1$ for some $k_1 \in \mathbb{Z}$ and $y-z=5k_2$ for some $k_2 \in \mathbb{Z}$. Then by adding these equations, $x-y+y-z=5k_1+5k_2$, or $x-z=5(k_1+k_2)$. Since $k_1 \in \mathbb{Z}$ and $k_2 \in \mathbb{Z}$, $k_1+k_2 \in \mathbb{Z}$ so $x \equiv z \pmod{5}$, $(x,z) \in R$, and R is transitive. Since R is reflexive, symmetric, and transitive, R is an equivalence relation on \mathbb{Z} . The partition of \mathbb{Z} given by R is $\{\{5k \mid k \in \mathbb{Z}\}, \{5k+1 \mid k \in \mathbb{Z}\}, \{5k+2 \mid k \in \mathbb{Z}\}, \{5k+3 \mid k \in \mathbb{Z}\}, \{5k+4 \mid k \in \mathbb{Z}\}\}$

Problem 2. Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty} \in S$ where S is the set of all real valued sequences. " $((a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}) \in R$ iff $\lim_{n\to\infty}(a_n-b_n)=0$ " is an equivalence relation on S. Let $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}, (c_n)_{n=1}^{\infty}$ be arbitrary. To see that R is reflexive, let $\varepsilon > 0$, clearly $|a_n - a_n - 0| = 0 < \varepsilon$ for any value of n, so $\lim_{n\to\infty}(a_n-a_n)=0$ meaning $((a_n)_{n=1}^{\infty}, (a_n)_{n=1}^{\infty}) \in R$ so R is reflexive. To see that R is symmetric, suppose $\lim_{n\to\infty}(a_n-b_n)=0$ and let $\varepsilon > 0$. Then there exists an $N \in \mathbb{N}$ such that n > N implies $|a_n - b_n - 0| < \varepsilon$, or $|a_n - b_n| < \varepsilon$. Then for n > N, $|-(a_n - b_n)| = |b_n - a_n| < \varepsilon$, so $\lim_{n\to\infty}(b_n - a_n) = 0$, so $((b_n)_{n=1}^{\infty}, (a_n)_{n=1}^{\infty}) \in R$ so R is symmetric. To see that R is transitive, suppose $\lim_{n\to\infty}(a_n - b_n) = 0$ and $\lim_{n\to\infty}(b_n - c_n) = 0$ and let $\varepsilon > 0$. Then there

exists an $N_1 \in \mathbb{N}$ such that for $n > N_1$, $|a_n - b_n| < \frac{\varepsilon}{2}$. Also there exists an $N_2 \in \mathbb{N}$ such that for $n > N_2$, $|b_n - c_n| < \frac{\varepsilon}{2}$. Then for $n > \max\{N_1, N_2\}$, $|a_n - b_n + b_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \varepsilon$, so $|a_n - c_n| < \varepsilon$ meaning $\lim_{n \to \infty} (a_n - c_n) = 0$ so $((a_n)_{n=1}^{\infty}, (c_n)_{n=1}^{\infty}) \in R$ so R is transitive. Since R is reflexive, symmetric, and transitive, R is an equivalence relation on S.

Problem 3. Let $A, B \in \mathcal{P}(X)$ where $X = \{1, 2, 3...100\}$. " $(A, B) \in R$ iff $A \subseteq B$ " is not an equivalence relation on $\mathcal{P}(X)$ since it fails to be symmetric. Consider $(A, B) = (\{\}, \{1, 2, 3\})$. $(A, B) \in R$ since $\{\} \subseteq \{1, 2, 3\}$ but $(B, A) \notin R$ since $\{1, 2, 3\}$ is not a subset of $\{\}$.

- **Problem 4.** 1. i is a partial order relation. Let $x,y,z\in\mathbb{R}$ be arbitrary. Since x=x, it is also true that $x\leq x$, so R is reflexive. Suppose $(x,y)\in R$ and $(y,x)\in R$ then $x\leq y$ and $y\leq x$ so x=y, meaning R is anti-symmetric. Now suppose $(x,y)\in R$ and $(y,z)\in R$, then $x\leq y$ and $y\leq z$ so by transitivity of \leq , $x\leq z$ so R is transitive. Since R is reflexive, anti-symmetric, and transitive R is a partial order relation on \mathbb{R} .
 - ii is not a partial order relation on \mathbb{R} since it fails to be anti-symmetric. Consider (x,y)=(-2,2). Then $(x,y)\in R$ since |-2|=|2| and $(y,x)\in R$ by the symmetry of R but $-2\neq 2$.
 - iii is not a partial order relation on \mathbb{Z} since it fails to be anti-symmetric. Consider (x,y)=(1,6). Then $(x,y)\in R$ since $1\equiv 6\pmod 5$ and $(y,x)\in R$ by the symmetry of R, but $1\neq 6$.
 - 2. is not a partial order on the set of all real valued sequences since it fails to be anti-symmetric. Let $(a_n)_{n=1}^{\infty}$ be the sequence given by $a_n = \frac{1}{n}$ and let $(b_n)_{n=1}^{\infty}$ be the sequence given by $b_n = \frac{1}{n^2}$. To see that both $((a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty})$ and $((b_n)_{n=1}^{\infty}, (a_n)_{n=1}^{\infty})$ are elements of R recall that R is symmetric so it is enough to show that $((a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}) \in R$. Fix $\varepsilon > 0$ and let $N = \frac{1}{\varepsilon}$, then n > N means $n > \frac{1}{\varepsilon}$, so $\frac{1}{n} = \frac{n}{n^2} < \varepsilon$. Further, $\frac{n-1}{n^2} < \frac{n}{n} < \varepsilon$. Since $n \in \mathbb{N}$ this means $|\frac{n-1}{n^2}| < \varepsilon$, or or $|(\frac{1}{n} \frac{1}{n^2}) 0| < \varepsilon$ so $\lim_{n \to \infty} (\frac{1}{n} \frac{1}{n^2}) = 0$ meaning $((a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}) \in R$. Two sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equal if for all $n \in \mathbb{N}$ $a_n = b_n$, but for the sequences defined above, $a_4 = \frac{1}{4}$ and $b_4 = \frac{1}{16}$ so $(a_n)_{n=1}^{\infty} \neq (b_n)_{n=1}^{\infty}$, so R is not anti-symmetric so it cannot be a partial order relation on the set of all real valued sequences.
 - 3. is a partial order relation on $\mathcal{P}(X)$. Let $A, B, C \in \mathcal{P}(X)$ be arbitrary. $(A, A) \in R$ means $A \subseteq A$ and since every set is a subset of itself, clearly R is reflexive. Suppose $(A, B) \in R$ and $(B, A) \in R$ then $A \subseteq B$ and $B \subseteq A$ so A = B, so R is anti-symmetric. To see that R is transitive suppose $(A, B) \in R$ and $(B, C) \in R$ then $A \subseteq B$ and $B \subseteq C$. Let $a \in A$ be arbitrary. Since $A \subseteq B$ then $a \in B$, and since $a \in B$ and $B \subseteq C$, $a \in C$ so $A \subseteq C$ demonstrating that R is transitive. Since R is reflexive, anti-symmetric, and transitive R is a partial order relation on $\mathcal{P}(X)$.