

## EN 55032:2015/A1:2020 EN 55035:2017/A11:2020

#### **TEST REPORT**

For

Bluetooth Low Energy and 802.15.4 wireless radio module

MODEL NUMBER: HM-MT2401, HM-MT2401B

REPORT NUMBER: E04A24020079E01001

**ISSUE DATE: May 09, 2024** 

Prepared for

Shenzhen HOPE Microelectronics Co., Ltd

30th floor of 8th Building, C Zone Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, Guangdong, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products.

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24020079E01001 Page 2 of 57

# Revision History

| Rev. | Issue Date   | Revisions     | Revised By |
|------|--------------|---------------|------------|
| V0   | May 09, 2024 | Initial Issue |            |

TRF No.: 04-E001-0B

# **Summary of Test Results**

|                                   | Emission                                   |          |        |  |  |  |
|-----------------------------------|--------------------------------------------|----------|--------|--|--|--|
| Standard                          | Test Item                                  | Limit    | Result |  |  |  |
| EN IEC 61000-3-<br>2:2019/A1:2021 | Harmonic current emissions                 | Clause 6 | N/A    |  |  |  |
| EN 61000-3-<br>3:2013/A1:2019     | Voltage fluctuations and flicker           | Clause 4 | N/A    |  |  |  |
| EN 55032:2015                     | Conducted emissions (AC mains power ports) | Clause 5 | N/A    |  |  |  |
| EN 55032:2015/A1:202              | Radiated emissions below 1GHz              | Clause 5 | Pass   |  |  |  |
| 0                                 | Radiated emissions above 1GHz              | Clause 5 | Pass   |  |  |  |

|                                        | Immunity (EN 55035:2017/A11:2020)                             |                                                                                                       |          |        |  |
|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|--------|--|
| Basic Standard                         | Test Item                                                     | Test Specification                                                                                    | Criteria | Result |  |
| IEC 61000-4-2:2008                     | Electrostatic Discharge                                       | Contact +/- 4 kV;<br>Air +/- 2 kV;+/- 4 kV;+/- 8<br>kV                                                | В        | Pass   |  |
| IEC 61000-4-3:2006<br>+A1:2007+A2:2010 | Continuous RF<br>electromagnetic field<br>disturbances        | 3 V/m, 80 %;<br>1 kHz, AM<br>80 MHz-1000 MHz;<br>1800 MHz 2600                                        |          | Pass   |  |
| IEC 61000-4-4:2012                     | Electrical fast transients<br>burst (AC mains power<br>ports) | +/- 1.0 kV<br>5/50 ns, 5 kHz                                                                          | В        | N/A    |  |
| IEC 61000-4-5:2014                     | Surges (AC mains power ports)                                 | +/-2 kV (Common)<br>+/-1 kV (Differential)<br>1.2/50 us                                               | В        | N/A    |  |
| IEC 61000-4-6:2013                     | Continuous induced RF disturbances (AC mains power ports)     | 150 kHz-80 MHz<br>80 %, 1 kHz<br>0.15 MHz-10 MHz: 3 V<br>10 MHz-30 MHz: 3 V~1 V<br>30 MHz-80 MHz: 1 V | А        | N/A    |  |
| IEC 61000-4-<br>11:2004                | Voltage dips and interruptions (AC mains power ports)         | Residual < 5 %: 0.5 cycle;<br>Residual 70 %: 25 cycles;<br>Residual < 5 %: 250<br>cycles;             | B,C,C    | N/A    |  |
| IEC 61000-4-8:2009                     | Power frequency magnetic field                                | 50 Hz, 1 A/m                                                                                          | А        | N/A    |  |

<sup>\*</sup>N/A: In this whole report not applicable.

<sup>\*</sup>This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

<sup>\*</sup>The measurement result for the sample received is <Pass> according to < EN 55032:2015/A1:2020, EN 55035:2017/A11:2020> when <Accuracy Method> decision rule is applied.

# **CONTENTS**

| 1.  | ATTES"        | TATION OF TEST RESULTS                                    | 5          |
|-----|---------------|-----------------------------------------------------------|------------|
| 2.  | TEST N        | IETHODOLOGY                                               | 6          |
| 3.  | FACILI        | TIES AND ACCREDITATION                                    | 6          |
| 4.  | CALIBR        | RATION AND UNCERTAINTY                                    | 7          |
| 4   | 4.1.          | MEASURING INSTRUMENT CALIBRATION                          | 7          |
| 4   | 4.2.          | MEASUREMENT UNCERTAINTY                                   | 7          |
| 5.  | EQUIP         | MENT UNDER TEST                                           | 8          |
|     | 5.1.          | DESCRIPTION OF EUT                                        | 8          |
|     | 5.2.          | TEST MODE                                                 | 8          |
|     | 5.3.          | SUPPORT UNITS FOR SYSTEM TEST                             | 8          |
| 6.  | MEASU         | RING EQUIPMENT AND SOFTWARE USED                          | 9          |
| 7.  | EMISSI        | ON TEST                                                   | . 11       |
|     | 7.1.          | Harmonic current emissions                                | . 11       |
|     | 7.2.          | Voltage fluctuations and flicker                          | . 13       |
|     | 7.3.          | Conducted emissions (AC mains power ports)                | . 15       |
| ;   | 7.4.          | Radiated emissions below 1GHz                             | . 19       |
| ,   | 7.5.          | Radiated emissions above 1GHz                             | . 25       |
| 8.  | IMMUN         | ITY TEST                                                  | . 31       |
| ð   | 3.1.          | PERFORMANCE CRITERIA                                      | . 31       |
| ð   | 3.2.          | Electrostatic Discharge                                   | . 34       |
| ð   | 3.3.          | Continuous RF electromagnetic field disturbances          | . 37       |
| ð   | 3. <i>4.</i>  | Electrical fast transients burst (AC mains power ports)   | . 40       |
| ð   | 3. <i>5</i> . | Surges (AC mains power ports)                             | . 42       |
| ð   | 3.6.          | Continuous induced RF disturbances (AC mains power ports) | . 44       |
| ð   | 3.7.          | Voltage dips and interruptions (AC mains power ports)     | . 46       |
| ð   | 3.8.          | Power frequency magnetic field                            | . 48       |
| ΑP  | PENDIX:       | PHOTOGRAPHS OF TEST CONFIGURATION                         | . 50       |
| A D | DENDIV.       | DUOTOCDADUS OF THE EUT                                    | <b>E</b> 2 |

REPORT NO.: E04A24020079E01001

Page 5 of 57

## 1. ATTESTATION OF TEST RESULTS

**Applicant Information** 

Company Name: Shenzhen HOPE Microelectronics Co., Ltd

Address: 30th floor of 8th Building, C Zone Vanke Cloud City, Xili Sub-

district, Nanshan, Shenzhen, Guangdong, China

**Manufacturer Information** 

Company Name: Shenzhen HOPE Microelectronics Co., Ltd

Address: 30th floor of 8th Building, C Zone Vanke Cloud City, Xili Sub-

district, Nanshan, Shenzhen, Guangdong, China

**EUT Information** 

**Product Description:** Bluetooth Low Energy and 802.15.4 wireless radio module

Model: HM-MT2401 Series Model: HM-MT2401B Brand: **HOPERF** Sample Received Date: Mar. 01, 2024

Sample Status: Normal

Sample ID: A24020079 001

Date of Tested: Mar. 01, 2024 to May 09, 2024

| APPLICABLE STANDARDS   |      |  |  |  |
|------------------------|------|--|--|--|
| STANDARD TEST RESULTS  |      |  |  |  |
| EN 55032:2015/A1:2020  | Pass |  |  |  |
| EN 55035:2017/A11:2020 | Pass |  |  |  |

Prepared By:

Win Huang

Project Engir

Laboratory Managere

TRF No.: 04-E001-0B

Checked By:

Alan He

Laboratory Leader

REPORT NO.: E04A24020079E01001 Page 6 of 57

# 2. TEST METHODOLOGY

All tests were performed in accordance with the standard EN 55032:2015/A1:2020, EN 55035:2017/A11:2020

# 3. FACILITIES AND ACCREDITATION

|                           | A2LA (Certificate No.: 6947.01)                                      |  |  |  |
|---------------------------|----------------------------------------------------------------------|--|--|--|
|                           |                                                                      |  |  |  |
|                           | Guangdong Global Testing Technology Co., Ltd.                        |  |  |  |
|                           | has been assessed and proved to be in compliance with A2LA.          |  |  |  |
|                           | FCC (FCC Designation No.: CN1343)                                    |  |  |  |
|                           | Guangdong Global Testing Technology Co., Ltd.                        |  |  |  |
|                           | has been recognized to perform compliance testing on equipment       |  |  |  |
| Accreditation Certificate | subject to Supplier's Declaration of Conformity (SDoC) and           |  |  |  |
|                           | Certification rules                                                  |  |  |  |
|                           | ISED (Company No.: 30714)                                            |  |  |  |
|                           | Guangdong Global Testing Technology Co., Ltd.                        |  |  |  |
|                           | has been registered and fully described in a report filed with ISED. |  |  |  |
|                           | The Company Number is 30714 and the test lab Conformity              |  |  |  |
|                           | Assessment Body Identifier (CABID) is CN0148.                        |  |  |  |

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24020079E01001 Page 7 of 57

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

### 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Item          | Measurement Frequency Range | K | U(dB) |
|--------------------|-----------------------------|---|-------|
| Radiated emissions | 30 MHz ~ 1 GHz              | 2 | 3.79  |
| Radiated emissions | 1 GHz ~ 18 GHz              | 2 | 5.62  |

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

| EUT Name         |         | Bluetooth Low Energy and 802.15.4 wireless radio module |  |  |
|------------------|---------|---------------------------------------------------------|--|--|
| Model            |         | HM-MT2401                                               |  |  |
| Series Model     |         | HM-MT2401B                                              |  |  |
| Model Difference |         | HM-MT2401/19.5dBm, HM-MT2401B/10dBm                     |  |  |
| Hardware Version |         | V1.0                                                    |  |  |
| Software Version |         | V1.0                                                    |  |  |
| Ratings          |         | Input: DC 1.71V-3.8V                                    |  |  |
| Power Supply     | AC      | N/A                                                     |  |  |
|                  | Battery | N/A                                                     |  |  |

## 5.2. TEST MODE

| Test Mode                                | Description                         |
|------------------------------------------|-------------------------------------|
| M01 Bluetooth Working: Connect to the PC |                                     |
| M02                                      | 802.15.4 Working: Connect to the PC |

# 5.3. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment        | Mfr/Brand | Model/Type No. | Series No. | Note        |
|------|------------------|-----------|----------------|------------|-------------|
| E-1  | PC               | Lenovo    | T430           | N/A        | GTG Support |
| E-2  | Serial Port Tool | N/A       | USB TO TTL     | N/A        | GTG Support |

The following cables were used to form a representative test configuration during the tests.

| Item | Type of cable | Shielded Type | Ferrite Core    | Length |
|------|---------------|---------------|-----------------|--------|
| C-1  | Dupont cable  | Unshielded    | without ferrite | 0.2 m  |

# 6. MEASURING EQUIPMENT AND SOFTWARE USED

| Test Equipment of Radiated emissions below 1GHz |              |                    |            |            |           |
|-------------------------------------------------|--------------|--------------------|------------|------------|-----------|
| Equipment                                       | Manufacturer | Model No.          | Serial No. | Last Cal.  | Due Date  |
| Chamber                                         | ETS          | 9*6*6              | Q2146      | 2022/8/30  | 2025/8/29 |
| Receiver                                        | R&S          | ESCI3              | 101409     | 2023/9/18  | 2024/9/17 |
| Loop Antenna                                    | ETS          | 6502               | 243668     | 2022/3/30  | 2025/3/30 |
| Pre-Amplifier                                   | HzEMC        | HPA-9K0130         | HYPA21001  | 2023/9/18  | 2024/9/17 |
| Biconilog<br>Antenna                            | Schwarzbeck  | VULB 9168          | 1315       | 2022/10/10 | 2025/10/9 |
| Biconilog<br>Antenna                            | ETS          | 3142E              | 243646     | 2022/3/23  | 2025/3/22 |
| EZ-EMC                                          | Farad        | Ver/FA-03A2<br>RE+ | N/A        | N/A        | N/A       |

| Test Equipment of Radiated emissions above 1GHz |                                                                |                    |           |           |           |  |  |
|-------------------------------------------------|----------------------------------------------------------------|--------------------|-----------|-----------|-----------|--|--|
| Equipment                                       | Equipment Manufacturer Model No. Serial No. Last Cal. Due Date |                    |           |           |           |  |  |
| Spectrum<br>Analyzer                            | R&S                                                            | FSV40              | 101413    | 2023/9/18 | 2024/9/17 |  |  |
| Pre-Amplifier                                   | HzEMC                                                          | HPA-1G1850         | HYPA21003 | 2023/9/18 | 2024/9/17 |  |  |
| Horn antenna                                    | ETS                                                            | 3117               | 246069    | 2022/3/11 | 2025/3/10 |  |  |
| EZ-EMC                                          | Farad                                                          | Ver/FA-03A2<br>RE+ | N/A       | N/A       | N/A       |  |  |

| Test Equipment of Electrostatic Discharge                      |       |        |     |           |           |
|----------------------------------------------------------------|-------|--------|-----|-----------|-----------|
| Equipment Manufacturer Model No. Serial No. Last Cal. Due Date |       |        |     |           |           |
| ESD Simulator                                                  | TESEQ | NSG437 | 336 | 2023/9/20 | 2024/9/19 |

| Test Equipment of Continuous RF electromagnetic field disturbances |              |                       |                |           |           |
|--------------------------------------------------------------------|--------------|-----------------------|----------------|-----------|-----------|
| Equipment                                                          | Manufacturer | Model No.             | Serial No.     | Last Cal. | Due Date  |
| Stacked Log-Per-<br>Broadband<br>Antenna                           | Schwarzbeck  | STLP 9129             | 170            | N/A       | N/A       |
| Power amplifier                                                    | MiCOTOP      | MPA-80-<br>1000-500   | MPA220933<br>6 | 2023/9/18 | 2024/9/17 |
| Power amplifier                                                    | MiCOTOP      | MPA-1000-<br>6000-100 | MPA220933<br>7 | 2023/9/18 | 2024/9/17 |
| EPM Series<br>Power Meter                                          | Keysight     | N1914A                | MY53240003     | 2023/9/18 | 2024/9/17 |
| Average Power Sensor                                               | Keysight     | E9304A                | MY41498925     | 2023/9/18 | 2024/9/17 |
| Average Power Sensor                                               | Keysight     | E9304A                | MY41497454     | 2023/9/18 | 2024/9/17 |
| EXG Analog<br>Signal Generator                                     | Keysight     | N5171B                | MY61252624     | 2023/9/18 | 2024/9/17 |

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 10 of 57

| Field Probe    | Narda   | EP 601   | 811ZX11137 | 2023/9/21 | 2024/9/20 |
|----------------|---------|----------|------------|-----------|-----------|
| Microphone kit | Magasig | MPA 663  | 220803075  | 2023/9/21 | 2024/9/20 |
| FASLAB-RS      | HzEMC   | V2/7/2/3 | N/A        | N/A       | N/A       |

REPORT NO.: E04A24020079E01001

Page 11 of 57

## 7. EMISSION TEST

## 7.1. HARMONIC CURRENT EMISSIONS

### **LIMITS**

| EN 61000-3-2/IEC 61000-3-2 |                   |                                            |         |         |                          |        |
|----------------------------|-------------------|--------------------------------------------|---------|---------|--------------------------|--------|
| Equipment<br>Category      | Harmonic<br>Order | Max.<br>Permissible<br>Harmonic<br>Current | C       |         | Permissible onic Current |        |
|                            | n                 | Α                                          |         | n       | Α                        | mA/w   |
|                            | Odd H             | larmonics                                  |         | Odd     | Harmonic                 | s only |
|                            | 3                 | 2.30                                       |         | 3       | 2.30                     | 3.4    |
|                            | 5                 | 1.14                                       |         | 5       | 1.14                     | 1.9    |
|                            | 7                 | 0.77                                       |         | 7       | 0.77                     | 1.0    |
|                            | 9                 | 0.40                                       | Class D | 9       | 0.40                     | 0.5    |
|                            | 11                | 0.33                                       |         | 11      | 0.33                     | 0.35   |
| Class A                    | 13                | 0.21                                       |         | 13      | 0.21                     | 0.30   |
| Olass A                    | 15≤n≤39           | 0.15 x 15/n                                |         | 15≤n≤39 | 0.15 x<br>15/n           | 3.85/n |
|                            | Even H            | armonics                                   |         |         |                          |        |
|                            | 2                 | 1.08                                       |         |         |                          |        |
|                            | 4                 | 0.43                                       |         |         |                          |        |
|                            | 6                 | 0.30                                       |         |         |                          |        |
|                            | 8≤n≤40            | 0.23 x<br>8/n                              |         |         |                          |        |

### **TEST PROCEDURE**

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating Condition.
- b. The classification of EUT is according to EN 61000-3-2. The EUT is classified as follows:

Class A:

Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B:

Portable tools. Arc welding equipment which is not professional equipment.

Class C:

Lighting equipment.

Class D:

Equipment having a specified power less than or equal to 600W of the following types: Personal

TRF No.: 04-E001-0B Global Testing, Great Quality.

REPORT NO.: E04A24020079E01001 Page 12 of 57

computers and personal computer monitors and television receivers.

c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

### **TEST SETUP**



### **TEST ENVIRONMENT**

| Temperature         | $^{\circ}$ | Relative Humidity | % |
|---------------------|------------|-------------------|---|
| Atmosphere Pressure | kPa        |                   |   |

# **TEST MODE**

| Pre-test Mode:   |   |
|------------------|---|
| Final Test Mode: | 1 |

### **TEST RESULTS**

N/A.

REPORT NO.: E04A24020079E01001 Page 13 of 57

# 7.2. VOLTAGE FLUCTUATIONS AND FLICKER

### **LIMITS**

| Test items       | Limits (EN 61000-3-3)                                        | Descriptions                           |
|------------------|--------------------------------------------------------------|----------------------------------------|
| P <sub>st</sub>  | ≤1.0, T <sub>p</sub> =10 min                                 | short-term flicker indicator           |
| P <sub>lt</sub>  | ≤0.65, T <sub>p</sub> =2 h                                   | long-term flicker indicator            |
| d <sub>c</sub>   | ≤3.3 %                                                       | relative steady-state voltage change   |
| d <sub>max</sub> | ≤4 %(or 6 % <sub>Note(1)</sub> ,<br>7 % <sub>Note(2)</sub> ) | maximum relative voltage change:       |
| d <sub>(t)</sub> | ≤3.3 %, more than 500 ms                                     | relative voltage change characteristic |

#### Note:

(1)6 % for equipment which is:

- a. switched manually, or
- b. switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.

## (2)7 % for equipment which is

a. attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or b. switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

### **TEST PROCEDURE**

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal Condition
- b. During the flick measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.
- c. Tests was performed according to the Test Condition/Assessment of Voltage Fluctuations specified in Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.
- d. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 14 of 57

# **TEST SETUP**



### **TEST ENVIRONMENT**

| Temperature         | $^{\circ}$ | Relative Humidity | % |
|---------------------|------------|-------------------|---|
| Atmosphere Pressure | kPa        |                   |   |

## **TEST MODE**

| Pre-test Mode:   |  |
|------------------|--|
| Final Test Mode: |  |

## **TEST RESULTS**

N/A.

REPORT NO.: E04A24020079E01001 Page 15 of 57

# 7.3. CONDUCTED EMISSIONS (AC MAINS POWER PORTS)

## **LIMITS**

## (a.) Limits of conducted emissions from the AC mains power ports of Class A equipment

| Frequency<br>range<br>MHz | Coupling device | Detector type<br>/ bandwidth | Class A<br>voltage limits<br>dB(uV) |
|---------------------------|-----------------|------------------------------|-------------------------------------|
| 0.15 to 0.5               | ANANI           | Ougai Book / 0 kHz           | 79                                  |
| 0.5 to 30                 | AMN             | Quasi Peak / 9 kHz           | 73                                  |
| 0.15 to 0.5               | ANANI           | Average / O kHz              | 66                                  |
| 0.5 to 30                 | AMN             | Average / 9 kHz              | 60                                  |

# (b.) Limits of conducted emissions from the AC mains power ports of Class B equipment

| Frequency<br>range<br>MHz | Coupling device | Detector type<br>/ bandwidth | Class B<br>voltage limits<br>dB(uV) |
|---------------------------|-----------------|------------------------------|-------------------------------------|
| 0.15 to 0.5               |                 |                              | 66 to 56                            |
| 0.5 to 5                  | AMN             | Quasi Peak / 9 kHz           | 56                                  |
| 5 to 30                   |                 |                              | 60                                  |
| 0.15 to 0.5               | ANANI           |                              | 56 to 46                            |
| 0.5 to 5                  | AMN             | Average / 9 kHz              | 46                                  |
| 5 to 30                   |                 |                              | 50                                  |

## (c.) Limits of asymmetric mode conducted emissions of Class A equipment

| Frequency<br>range<br>MHz | Coupling device | Detector type<br>/ bandwidth | Class A<br>voltage limits<br>dB(uV) | Class A<br>current limits<br>dB(uA) |
|---------------------------|-----------------|------------------------------|-------------------------------------|-------------------------------------|
| 0.15 -0.5                 | AAN             | Quasi Peak / 9 kHz           | 97 to 87                            | n/a                                 |
| 0.5 -30                   | AAN             | Quasi Peak / 9 km2           | 87                                  | n/a                                 |
| 0.15 -0.5                 | AAN             | Average / O kHz              | 84 to 74                            | n/a                                 |
| 0.5 -30                   | AAN             | Average / 9 kHz              | 74                                  | n/a                                 |
| 0.15 -0.5                 | Current         | Quasi Peak / 9 kHz           | N/A                                 | 53 to 43                            |
| 0.5 -30                   | Probe           | Quasi Peak / 9 km2           | N/A                                 | 43                                  |
| 0.15 -0.5                 | Current         | Average / O kHz              | N/A                                 | 40 to 30                            |
| 0.5 -30                   | Probe           | Average / 9 kHz              | N/A                                 | 30                                  |

REPORT NO.: E04A24020079E01001

Page 16 of 57

| ( | d.) | Limits of | as' | ymmetric | mode | conducted | emissions | of | Class E | B equipme | nt |
|---|-----|-----------|-----|----------|------|-----------|-----------|----|---------|-----------|----|
|   |     |           |     |          |      |           |           |    |         |           |    |

| Frequency<br>range<br>MHz | Coupling device | Detector type<br>/ bandwidth | Class B<br>voltage limits<br>dB(uV) | Class B<br>current limits<br>dB(uA) |
|---------------------------|-----------------|------------------------------|-------------------------------------|-------------------------------------|
| 0.15 -0.5                 | AAN             | Quasi Peak / 9 kHz           | 84 to 74                            | n/a                                 |
| 0.5 -30                   | AAN             | Quasi Feak / 9 kHz           | 74                                  | n/a                                 |
| 0.15 -0.5                 | A A N I         | Average / O.kHz              | 74 to 64                            | n/a                                 |
| 0.5 -30                   | AAN             | Average / 9 kHz              | 64                                  | n/a                                 |
| 0.15 -0.5                 | Current         | Quasi Peak / 9 kHz           | n/a                                 | 40 to 30                            |
| 0.5 -30                   | Probe           | Quasi Peak / 9 KHZ           | n/a                                 | 30                                  |
| 0.15 -0.5                 | Current         | Avorago / O kHz              | n/a                                 | 30 to 20                            |
| 0.5 -30                   | Probe           | Average / 9 kHz              | n/a                                 | 20                                  |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

### **TEST PROCEDURE**

- a. The EUT was placed on the top of a rotating table 0.8 meters above the horizontal ground plane and being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- e. LISN at least 80 cm from nearest part of EUT chassis.
- f. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

REPORT NO.: E04A24020079E01001 Page 17 of 57

### **TEST SETUP**





### **TEST ENVIRONMENT**

| Temperature         | $^{\circ}\mathbb{C}$ | Relative Humidity | % |
|---------------------|----------------------|-------------------|---|
| Atmosphere Pressure | kPa                  |                   |   |

# **TEST MODE**

| Pre-test Mode: |  |
|----------------|--|
|----------------|--|

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 18 of 57

| Final Test Mode: |  |
|------------------|--|

# **TEST RESULTS**

N/A.

REPORT NO.: E04A24020079E01001 Page 19 of 57

## 7.4. RADIATED EMISSIONS BELOW 1GHZ

### **LIMITS**

(a). Limits up to 1 GHz

|                 | Clas    | ss A   | Clas    | ss B   |
|-----------------|---------|--------|---------|--------|
| FREQUENCY (MHz) | At 10 m | At 3 m | At 10 m | At 3 m |
|                 | dBµV/m  | dBμV/m | dBµV/m  | dBμV/m |
| 30 – 230        | 40      | 50     | 30      | 40     |
| 230 – 1000      | 47      | 57     | 37      | 47     |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level ( $dB\mu V/m$ )=20log Emission level (uV/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

### **TEST PROCEDURE**

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

| RBW      | 120 kHz     |
|----------|-------------|
| VBW      | 300 kHz     |
| Sweep    | Auto        |
| Detector | Peak and QP |
| Trace    | Max hold    |

- 1. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp was used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 2. The EUT was placed on a turntable with 80 cm above ground.
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 5. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 20 of 57

- 6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 7. For measurement below 1 GHz, the initial step in collecting Radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

### **TEST SETUP**



### **TEST ENVIRONMENT**

| Temperature         | 24.3℃  | Relative Humidity | 54% |
|---------------------|--------|-------------------|-----|
| Atmosphere Pressure | 101kPa |                   |     |

### **TEST MODE**

| Pre-test Mode:   | M01 ~ M02 |
|------------------|-----------|
| Final Test Mode: | M01, M02  |

REPORT NO.: E04A24020079E01001 Page 21 of 57

# **TEST RESULTS**



Antenna: Vertical Mode: M01

| No. | Freq. (MHz) | Reading (dBµV) | Corr. (dB) | Meas. (dBμV/m) | Limit (dBµV/m) | Margin (dB) | Det. | Pol. |
|-----|-------------|----------------|------------|----------------|----------------|-------------|------|------|
| 1   | 143.490     | 40.16          | -23.52     | 16.64          | 40.00          | 23.36       | PK+  | V    |
| 2   | 191.990     | 44.77          | -22.57     | 22.20          | 40.00          | 17.80       | PK+  | V    |
| 3   | 431.580     | 39.57          | -14.16     | 25.41          | 47.00          | 21.59       | PK+  | V    |
| 4   | 529.550     | 35.44          | -10.79     | 24.65          | 47.00          | 22.35       | PK+  | V    |
| 5   | 900.090     | 33.79          | -5.1       | 28.69          | 47.00          | 18.31       | PK+  | V    |
| 6   | 948.590     | 32.97          | -3.42      | 29.55          | 47.00          | 17.45       | PK+  | V    |

REPORT NO.: E04A24020079E01001 Page 22 of 57



| Antenna: Horizontal | Mode: M01 |
|---------------------|-----------|
|                     |           |

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 143.490        | 55.42             | -23.52        | 31.90             | 40.00             | 8.10           | PK+  | Н    |
| 2   | 167.740        | 52.39             | -22.7         | 29.69             | 40.00             | 10.31          | PK+  | Н    |
| 3   | 191.990        | 58.70             | -22.57        | 36.13             | 40.00             | 3.87           | PK+  | Н    |
| 4   | 215.270        | 52.53             | -21           | 31.53             | 40.00             | 8.47           | PK+  | Н    |
| 5   | 239.520        | 52.11             | -19.66        | 32.45             | 47.00             | 14.55          | PK+  | Н    |
| 6   | 419.940        | 43.00             | -13.89        | 29.11             | 47.00             | 17.89          | PK+  | Н    |

REPORT NO.: E04A24020079E01001 Page 23 of 57



| Antenna: Vertical | Mode: M02 |
|-------------------|-----------|
|                   |           |

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 143.490        | 39.85             | -23.52        | 16.33             | 40.00             | 23.67          | PK+  | V    |
| 2   | 191.990        | 44.99             | -22.57        | 22.42             | 40.00             | 17.58          | PK+  | V    |
| 3   | 215.270        | 40.04             | -21           | 19.04             | 40.00             | 20.96          | PK+  | V    |
| 4   | 431.580        | 39.79             | -14.16        | 25.63             | 47.00             | 21.37          | PK+  | V    |
| 5   | 560.590        | 34.99             | -10.36        | 24.63             | 47.00             | 22.37          | PK+  | V    |
| 6   | 924.340        | 32.21             | -3.27         | 28.94             | 47.00             | 18.06          | PK+  | V    |

REPORT NO.: E04A24020079E01001 Page 24 of 57



| Antenna: Horizontal | Mode: M02 |
|---------------------|-----------|
|                     |           |

|     | _              |                   |               |                   |                   |                |      |      |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
| 1   | 143.490        | 51.93             | -23.52        | 28.41             | 40.00             | 11.59          | PK+  | Н    |
| 2   | 167.740        | 50.73             | -22.7         | 28.03             | 40.00             | 11.97          | PK+  | Н    |
| 3   | 191.990        | 58.11             | -22.57        | 35.54             | 40.00             | 4.46           | PK+  | Н    |
| 4   | 215.270        | 53.07             | -21           | 32.07             | 40.00             | 7.93           | PK+  | Н    |
| 5   | 239.520        | 53.78             | -19.66        | 34.12             | 47.00             | 12.88          | PK+  | Н    |
| 6   | 372.410        | 48.89             | -15.26        | 33.63             | 47.00             | 13.37          | PK+  | Н    |

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

REPORT NO.: E04A24020079E01001 Page 25 of 57

7.5. RADIATED EMISSIONS ABOVE 1GHZ

### **LIMITS**

### (a). Limits above 1 GHz

| FREQUENCY (MHz)  | Class A (at 3 | 3 m) dBµV/m | Class B (at 3 | 3 m) dBµV/m |
|------------------|---------------|-------------|---------------|-------------|
| FREQUENCY (MINZ) | Peak          | Avg         | Peak          | Avg         |
| 1000-6000        | 80            | 60          | 74            | 54          |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBµV/m)=20log Emission level (uV/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

### **TEST PROCEDURE**

Above 1 GHz

The setting of the spectrum analyzer

| RBW         | 1 MHz                  |
|-------------|------------------------|
| VBW         | 3 MHz                  |
| Sweep       | Auto                   |
| II letector | Peak: Peak<br>AVG: RMS |
| Trace       | Max hold               |

- a. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- b. The EUT was placed on a turntable with 80 cm above ground.
- c. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- d. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

REPORT NO.: E04A24020079E01001 Page 26 of 57

- e. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- f. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- g. For measurement above 1 GHz, the peak emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the peak limit. If peak result complies with average limit, average result is deemed to comply with average limit.
- h. The average emission measurement will be measured by the RMS detector and must comply with the average limit.

### **TEST SETUP**



### **TEST ENVIRONMENT**

| Temperature         | 24.3℃  | Relative Humidity | 54% |
|---------------------|--------|-------------------|-----|
| Atmosphere Pressure | 101kPa |                   |     |

### **TEST MODE**

| Pre-test Mode:   | M01 ~ M02 |
|------------------|-----------|
| Final Test Mode: | M01, M02  |

REPORT NO.: E04A24020079E01001 Page 27 of 57

# **TEST RESULTS**



Antenna: Horizontal Mode: M01

| No.  | Freq.    | Reading | Corr.  | Meas.         | Limit         | Margin | Det. | Pol.  |
|------|----------|---------|--------|---------------|---------------|--------|------|-------|
| 110. | (MHz)    | (dBµV)  | (dB)   | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   | DCt. | 1 01. |
| 1    | 1870.000 | 57.83   | -10.37 | 47.46         | 74.00         | 26.54  | PK+  | V     |
| 2    | 2148.000 | 57.98   | -9.05  | 48.93         | 74.00         | 25.07  | PK+  | V     |
| 3    | 2410.000 | 54.06   | -8.52  | 45.54         | 74.00         | 28.46  | PK+  | V     |
| 4    | 2944.000 | 52.80   | -7.46  | 45.34         | 74.00         | 28.66  | PK+  | V     |
| 5    | 4180.500 | 54.87   | -12.35 | 42.52         | 74.00         | 31.48  | PK+  | V     |
| 6    | 5087.700 | 53.47   | -10.4  | 43.07         | 74.00         | 30.93  | PK+  | V     |
| 7    | 1870.000 | 52.83   | -10.37 | 42.46         | 54.00         | 11.54  | AVG  | V     |
| 8    | 2148.000 | 52.98   | -9.05  | 43.93         | 54.00         | 10.07  | AVG  | V     |
| 9    | 2410.000 | 49.06   | -8.52  | 40.54         | 54.00         | 13.46  | AVG  | V     |
| 10   | 2944.000 | 47.80   | -7.46  | 40.34         | 54.00         | 13.66  | AVG  | V     |
| 11   | 4180.500 | 49.87   | -12.35 | 37.52         | 54.00         | 16.48  | AVG  | V     |
| 12   | 5087.700 | 47.47   | -10.4  | 37.07         | 54.00         | 16.93  | AVG  | V     |



| Antenna: Vertical | Mode: M01 |
|-------------------|-----------|
|                   |           |

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2020.000       | 51.40             | -9.02         | 42.38             | 74.00             | 31.62          | PK+  | Н    |
| 2   | 2216.000       | 52.40             | -9.23         | 43.17             | 74.00             | 30.83          | PK+  | Н    |
| 3   | 2488.000       | 51.39             | -8.42         | 42.97             | 74.00             | 31.03          | PK+  | Н    |
| 4   | 2832.000       | 52.33             | -7.73         | 44.60             | 74.00             | 29.40          | PK+  | Н    |
| 5   | 4615.500       | 54.98             | -11.55        | 43.43             | 74.00             | 30.57          | PK+  | Н    |
| 6   | 5358.600       | 52.40             | -9.55         | 42.85             | 74.00             | 31.15          | PK+  | Н    |
| 7   | 2020.000       | 46.40             | -9.02         | 37.38             | 54.00             | 16.62          | AVG  | Н    |
| 8   | 2216.000       | 46.40             | -9.23         | 37.17             | 54.00             | 16.83          | AVG  | Н    |
| 9   | 2488.000       | 45.39             | -8.42         | 36.97             | 54.00             | 17.03          | AVG  | Н    |
| 10  | 2832.000       | 46.33             | -7.73         | 38.60             | 54.00             | 15.40          | AVG  | Н    |
| 11  | 4615.500       | 48.98             | -11.55        | 37.43             | 54.00             | 16.57          | AVG  | Н    |
| 12  | 5358.600       | 45.40             | -9.55         | 35.85             | 54.00             | 18.15          | AVG  | Н    |



| Antenna: Vertical | Mode: M02 |
|-------------------|-----------|
|                   |           |

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2546.000       | 51.70             | -8.27         | 43.43             | 74.00             | 30.57          | PK+  | Н    |
| 2   | 2980.000       | 51.46             | -6.99         | 44.47             | 74.00             | 29.53          | PK+  | Н    |
| 3   | 3556.200       | 55.76             | -14.02        | 41.74             | 74.00             | 32.26          | PK+  | Н    |
| 4   | 4106.100       | 54.41             | -12.5         | 41.91             | 74.00             | 32.09          | PK+  | Н    |
| 5   | 5078.100       | 52.86             | -10.41        | 42.45             | 74.00             | 31.55          | PK+  | Н    |
| 6   | 5660.400       | 51.46             | -9.14         | 42.32             | 74.00             | 31.68          | PK+  | Н    |
| 7   | 2546.000       | 45.70             | -8.27         | 37.43             | 54.00             | 16.57          | AVG  | Н    |
| 8   | 2980.000       | 45.46             | -6.99         | 38.47             | 54.00             | 15.53          | AVG  | Н    |
| 9   | 3556.200       | 49.76             | -14.02        | 35.74             | 54.00             | 18.26          | AVG  | Н    |
| 10  | 4106.100       | 48.41             | -12.5         | 35.91             | 54.00             | 18.09          | AVG  | Н    |
| 11  | 5078.100       | 46.86             | -10.41        | 36.45             | 54.00             | 17.55          | AVG  | Н    |
| 12  | 5660.400       | 45.46             | -9.14         | 36.32             | 54.00             | 17.68          | AVG  | Н    |



| Antenna: Horizontal | Mode: M02 |
|---------------------|-----------|
|                     |           |

| No. | Freq.<br>(MHz) | Reading (dBµV) | Corr.<br>(dB) | Meas. (dBμV/m) | Limit<br>(dBµV/m) | Margin (dB) | Det. | Pol. |
|-----|----------------|----------------|---------------|----------------|-------------------|-------------|------|------|
| 1   | 2548.000       | 51.70          | -8.22         | 43.48          | 74.00             | 30.52       | PK+  | V    |
| 2   | 2882.000       | 52.66          | -8.28         | 44.38          | 74.00             | 29.62       | PK+  | V    |
| 3   | 2988.000       | 51.85          | -6.97         | 44.88          | 74.00             | 29.12       | PK+  | V    |
| 4   | 3950.400       | 54.90          | -13.23        | 41.67          | 74.00             | 32.33       | PK+  | V    |
| 5   | 5104.200       | 53.50          | -10.42        | 43.08          | 74.00             | 30.92       | PK+  | V    |
| 6   | 5536.200       | 52.06          | -9.54         | 42.52          | 74.00             | 31.48       | PK+  | V    |
| 7   | 2548.000       | 45.70          | -8.22         | 37.48          | 54.00             | 16.52       | AVG  | V    |
| 8   | 2882.000       | 46.66          | -8.28         | 38.38          | 54.00             | 15.62       | AVG  | V    |
| 9   | 2988.000       | 45.85          | -6.97         | 38.88          | 54.00             | 15.12       | AVG  | V    |
| 10  | 3950.400       | 48.90          | -13.23        | 35.67          | 54.00             | 18.33       | AVG  | V    |
| 11  | 5104.200       | 47.50          | -10.42        | 37.08          | 54.00             | 16.92       | AVG  | V    |
| 12  | 5536.200       | 47.06          | -9.54         | 37.52          | 54.00             | 16.48       | AVG  | V    |

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

REPORT NO.: E04A24020079E01001 Page 31 of 57

# 8. IMMUNITY TEST

# 8.1. PERFORMANCE CRITERIA

EN 55035:2017/A11:2020

# **GENERAL PERFORMANCE CRITERIA**

According to EN 55035 standard, the general performance criteria as following:

| Criteria A | The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.                                                                                                                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria B | During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.  After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.  If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended. |
| Criteria C | Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

REPORT NO.: E04A24020079E01001

Page 32 of 57

### PERFORMANCE CRITERIA FOR BROADCAST RECEPTION FUNCTION

The broadcast reception function shall comply with the general performance criteria given in Clause 8 and any relevant annex with the deviations defined in Table A.2.

| Tab         | Table A.2 – Modified test levels for performance criterion A for the broadcast reception function |                              |                            |  |  |
|-------------|---------------------------------------------------------------------------------------------------|------------------------------|----------------------------|--|--|
| Performance | Test type                                                                                         | Group 1                      | Group 2                    |  |  |
| criteria    | table clause                                                                                      |                              |                            |  |  |
|             | 1.2                                                                                               | The disturbance level is     | No test requirements apply |  |  |
|             | 1.3                                                                                               | reduced to                   |                            |  |  |
|             |                                                                                                   | 1 V/m for in-band            |                            |  |  |
| Criterion A |                                                                                                   | frequencies.                 |                            |  |  |
|             | 2.1                                                                                               | The disturbance level is     |                            |  |  |
|             | 3.1                                                                                               | reduced to                   |                            |  |  |
|             | 4.1                                                                                               | 1 V for in-band frequencies. |                            |  |  |

In-band is defined as the entire tuneable operating range of the selected broadcast reception function.

The tuned channel  $\pm 0.5$  MHz (lower edge frequency -0.5 MHz up to the upper edge frequency  $\pm 0.5$  MHz of the tuned channel) is excluded from testing.

Note: In some countries, there is a requirement to test the tuned channels. Refer to the relevant regional requirements for guidance.

### PERFORMANCE CRITERIA FOR PRINT FUNCTION

| Criterion A | Refer to chapter B.3.1 of EN 55035:2017/A11:2020 |
|-------------|--------------------------------------------------|
| Criterion B | Refer to chapter B.3.2 of EN 55035:2017/A11:2020 |
| Criterion C | Refer to chapter B.3.3 of EN 55035:2017/A11:2020 |

### PERFORMANCE CRITERIA FOR SCAN FUNCTION

| Criterion A | Refer to chapter C.3.1 of EN 55035:2017/A11:2020 |
|-------------|--------------------------------------------------|
| Criterion B | Refer to chapter C.3.2 of EN 55035:2017/A11:2020 |
| Criterion C | Refer to chapter C.3.3 of EN 55035:2017/A11:2020 |

### PERFORMANCE CRITERIA FOR DISPLAY AND DISPLAY OUTPUT FUNCTION

| Criterion A | Refer to chapter D.3.1 and D.3.2 of EN 55035:2017/A11:2020 |
|-------------|------------------------------------------------------------|
| Criterion B | Refer to chapter D.3.3 of EN 55035:2017/A11:2020           |
| Criterion C | Refer to chapter D.3.4 of EN 55035:2017/A11:2020           |

### PERFORMANCE CRITERIA FOR MUSICAL TONE GENERATING FUNCTION

| Criterion A | Refer to chapter E.3.2 of EN 55035:2017/A11:2020 |
|-------------|--------------------------------------------------|
| Criterion B | Refer to chapter E.3.3 of EN 55035:2017/A11:2020 |
| Criterion C | Refer to chapter E.3.4 of EN 55035:2017/A11:2020 |

REPORT NO.: E04A24020079E01001 Page 33 of 57

## PERFORMANCE CRITERIA FOR NETWORKING FUNCTION

| General requirements for network functions |                                                    |  |  |  |
|--------------------------------------------|----------------------------------------------------|--|--|--|
| Criterion A                                | Refer to chapter F.3.3.1 of EN 55035:2017/A11:2020 |  |  |  |
| Criterion B                                | Refer to chapter F.3.3.2 of EN 55035:2017/A11:2020 |  |  |  |
| Criterion C                                | Refer to chapter F.3.3.3 of EN 55035:2017/A11:2020 |  |  |  |

| Requirements for CPE containing xDSL ports |                                                  |  |
|--------------------------------------------|--------------------------------------------------|--|
| Criterion A                                | Refer to chapter F.4.2 of EN 55035:2017/A11:2020 |  |
| Criterion B                                | Refer to chapter F.4.3 of EN 55035:2017/A11:2020 |  |
| Criterion C                                | Refer to chapter F.4.4 of EN 55035:2017/A11:2020 |  |

## PERFORMANCE CRITERIA FOR AUDIO OUTPUT FUNCTION

| Criterion A | Refer to chapter G.7.1 of EN 55035:2017/A11:2020 |
|-------------|--------------------------------------------------|
| Criterion B | Refer to chapter G.7.2 of EN 55035:2017/A11:2020 |
| Criterion C | Refer to chapter G.7.3 of EN 55035:2017/A11:2020 |

## PERFORMANCE CRITERIA FOR TELEPHONY FUNCTION

| Criterion A | Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020 |
|-------------|----------------------------------------------------------|
| Criterion B | Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020 |
| Criterion C | Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020 |

REPORT NO.: E04A24020079E01001

Page 34 of 57

## 8.2. ELECTROSTATIC DISCHARGE

### **TEST SPECIFICATION**

| Standard:            | EN 55035:2017/A11:2020<br>IEC 61000-4-2:2008                                           |  |  |
|----------------------|----------------------------------------------------------------------------------------|--|--|
| Criterion Required:  | Performance criteria B                                                                 |  |  |
| Discharge Impedance: | 330(1±10 %) Ω / 150(1±10 %) pF                                                         |  |  |
| Polarity:            | Positive & Negative                                                                    |  |  |
| Number of Discharge: | Minimum 10 times at each test point                                                    |  |  |
| Discharge Mode:      | Single Discharge                                                                       |  |  |
| Discharge Period:    | 1 second minimum                                                                       |  |  |
| Test Level:          | Air Discharge: 2 kV, 4 kV, 8 kV (Direct);<br>Contact Discharge: 4 kV (Direct/Indirect) |  |  |

### **TEST PROCEDURE**

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions  $0.5 \text{ m} \times 0.5 \text{ m}$ , is placed parallel to, and positioned at a distance 0.1 m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1 m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

- b. Air discharges at insulation surfaces of the EUT.
  - It was at least ten single discharges with positive and negative at the same selected point.
- c. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied.
- d. For air discharge testing, the test shall be applied at all test levels 2 kV, 4 kV and 8 kV.
- e. For the actual test configuration, please refer to the related Item: EUT Test Photos.

REPORT NO.: E04A24020079E01001 Page 35 of 57

## **TEST SETUP**



## **TEST ENVIRONMENT**

| Temperature         | 23.6℃  | Relative Humidity | 52% |
|---------------------|--------|-------------------|-----|
| Atmosphere Pressure | 101kPa | Test Voltage      |     |

## **TEST MODE**

| Test Mode: | M01, M02 |
|------------|----------|
|------------|----------|

REPORT NO.: E04A24020079E01001 Page 36 of 57

## **TEST RESULTS**

| Mode                   | Level(kV) | Polarity | Test Point            | Criteria | Result | Judgement |
|------------------------|-----------|----------|-----------------------|----------|--------|-----------|
| Air<br>Discharge       | 2,4,8     | +        | All Slot              | В        | Α      | Pass      |
| Air<br>Discharge       | 2,4,8     | -        | All Slot              | В        | Α      | Pass      |
| Contact<br>Discharge   | 4         | +        | All Metal             | В        | Α      | Pass      |
| Contact<br>Discharge   | 4         | ı        | All Metal             | В        | Α      | Pass      |
| Horizontal<br>Coupling | 4         | +        | Front,rear,left,right | В        | Α      | Pass      |
| Horizontal<br>Coupling | 4         | ı        | Front,rear,left,right | В        | Α      | Pass      |
| Vertical<br>Coupling   | 4         | +        | Front,rear,left,right | В        | Α      | Pass      |
| Vertical<br>Coupling   | 4         | -        | Front,rear,left,right | В        | Α      | Pass      |
| Air<br>Discharge       | 15        | +        | All Slot              | 1        | 1      | /         |
| Air<br>Discharge       | 15        | -        | All Slot              | 1        | 1      | /         |
| Contact<br>Discharge   | 8         | +        | All Metal             | /        | /      | /         |
| Contact<br>Discharge   | 8         | -        | All Metal             | /        | /      | /         |

Observation:

A: No observable change.

Conclusion: The EUT met the requirements of the standard

REPORT NO.: E04A24020079E01001 Page 37 of 57

#### 8.3. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES

#### **TEST SPECIFICATION**

| Standard:             | EN 55035:2017/A11:2020<br>IEC 61000-4-3:2006 +A1:2007+A2:2010                                             |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|--|
| Criterion Required:   | Performance criteria A                                                                                    |  |
| Spot test:            | 1 800 MHz, 2 600 MHz, 3 500 MHz, 5 000 MHz                                                                |  |
| Test Level:           | Level 2: 3 V/m (measured unmodulated)                                                                     |  |
| Modulation:           | The test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz. |  |
| Frequency Step:       | 1 % of fundamental                                                                                        |  |
| Dwell time:           | 1 seconds                                                                                                 |  |
| Antenna Polarization: | Horizontal and vertical                                                                                   |  |

#### **TEST PROCEDURE**

The test procedure was in accordance with IEC 61000-4-3.

- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The disturbance test signal shall be 80 % amplitude modulated by a sine wave, preferably having a frequency of 1 kHz. A frequency other than 1 kHz may be used where permitted within EN 55035 (for example Clause G.3).
- c. 1 % step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4 % of the previous frequency with a test level of twice the value of the specified test level.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time should not exceed 5 s at each of the frequencies during the scan.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields.

REPORT NO.: E04A24020079E01001 Page 38 of 57

## **TEST SETUP**



## **TEST ENVIRONMENT**

| Temperature         | 24.2℃  | Relative Humidity | 52% |
|---------------------|--------|-------------------|-----|
| Atmosphere Pressure | 101kPa | Test Voltage      |     |

#### **TEST MODE**

| Test Mode: | M01, M02 |
|------------|----------|
|------------|----------|

REPORT NO.: E04A24020079E01001 Page 39 of 57

## **TEST RESULTS**

| Freq.Range<br>(MHz)                          | Position<br>(Face) | Polarity<br>(H or V) | Field Strength<br>(V/m)<br>(unmodulated,r.m.s) | Criterion | Result | Judgment |
|----------------------------------------------|--------------------|----------------------|------------------------------------------------|-----------|--------|----------|
| 80-1000;<br>1800;<br>2600;<br>3500;<br>5000; | 0°                 | H&V                  | 3 V/m                                          | А         | А      | Pass     |
| 80-1000;<br>1800;<br>2600;<br>3500;<br>5000; | 90°                | H&V                  | 3 V/m                                          | А         | А      | Pass     |
| 80-1000;<br>1800;<br>2600;<br>3500;<br>5000; | 180°               | H&V                  | 3 V/m                                          | А         | А      | Pass     |
| 80-1000;<br>1800;<br>2600;<br>3500;<br>5000; | 270°               | H&V                  | 3 V/m                                          | А         | А      | Pass     |

Observation:

A: No observable change. **Conclusion:** The EUT met the requirements of the standard

REPORT NO.: E04A24020079E01001 Page 40 of 57

## 8.4. ELECTRICAL FAST TRANSIENTS BURST (AC MAINS POWER PORTS)

#### **TEST SPECIFICATION**

| Standard:                            | EN 55035:2017/A11:2020<br>IEC 61000-4-4:2012                                                                     |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Criterion Required:                  | Performance criteria B                                                                                           |
| Polarity:                            | Positive & Negative                                                                                              |
| Test Level and Repetition Frequency: | The test level for shall be 0.5kV,1 kV open circuit voltage at a repetition rate of 5 kHz as given EN 61000-4-4. |
| Impulse Wave shape:                  | 5/50 Tr/Th ns                                                                                                    |
| Burst Duration:                      | 15 ms                                                                                                            |
| Burst Period:                        | 300 ms                                                                                                           |
| Test Duration:                       | 1 Minute                                                                                                         |

#### **TEST PROCEDURE**

- a. Both positive and negative polarity discharges were applied.
- b. The duration time of each test sequential was 1 minute.
- c. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.
- d. Multi conductor cables shall be tested as a single cable. Cables shall not be split or divided into groups of conductors for this test.

#### **TEST SETUP**



#### **TEST ENVIRONMENT**

| Temperature         | ${\mathbb C}$ | Relative Humidity | % |
|---------------------|---------------|-------------------|---|
| Atmosphere Pressure | 102kPa        | Test Voltage      |   |

#### **TEST MODE**

| Test Mode: |  |
|------------|--|
|------------|--|

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 41 of 57

## **TEST RESULTS**

N/A.

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 42 of 57

## 8.5. SURGES (AC MAINS POWER PORTS)

#### **TEST SPECIFICATION**

| Standard:           | EN 55035:2017/A11:2020<br>IEC 61000-4-5:2014                                                                                                                                                                                                                                                                        |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Criterion Required: | Performance criteria B                                                                                                                                                                                                                                                                                              |  |
| Wave Shape:         | Tr/Th 1.2/50 us or 10/700 us                                                                                                                                                                                                                                                                                        |  |
| Test Level:         | 1 kV (Line to Line for AC mains power ports) 2 kV (Line to Ground for AC mains power ports) 1 kV (Lines to Ground for Analogue/Digital data ports) 0.5 kV (shield to ground for coaxial/shielded cable on Analogue/Digital data ports) 0.5 kV (each individual line to reference ground for DC network power ports) |  |
| Polarity:           | Positive & Negative                                                                                                                                                                                                                                                                                                 |  |
| Interval:           | 60s between each surge                                                                                                                                                                                                                                                                                              |  |
| No. of Surges:      | Five positive pulses at 90° phase Five negative pulses at 270° phase                                                                                                                                                                                                                                                |  |

#### TEST PROCEDURE

- a. The EUT and the auxiliary equipment were placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m×1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT was less than 2 meters (provided by the manufacturer).
- b. The EUT was connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise was applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- c. The surges were applied line to line and line(s) to earth. When testing line to earth the test voltage was applied successively between each of the lines and earth. Steps up to the test level specified increased the test voltage. All lower levels including the selected test level were tested. The polarity of each surge level included positive and negative test pulses.

REPORT NO.: E04A24020079E01001 Page 43 of 57

#### **TEST SETUP**



#### **TEST ENVIRONMENT**

| Temperature         | $^{\circ}$ | Relative Humidity | % |
|---------------------|------------|-------------------|---|
| Atmosphere Pressure | kPa        | Test Voltage      |   |

#### **TEST MODE**

| Test Mode: | 1 |
|------------|---|
|------------|---|

#### **TEST RESULTS**

N/A.

REPORT NO.: E04A24020079E01001 Page 44 of 57

# 8.6. CONTINUOUS INDUCED RF DISTURBANCES (AC MAINS POWER PORTS)

#### **TEST SPECIFICATION**

| Standard:           | EN 55035:2017/A11:2020<br>IEC 61000-4-6:2013                                                           |  |
|---------------------|--------------------------------------------------------------------------------------------------------|--|
| Criterion Required: | Performance criteria A                                                                                 |  |
| Test Level:         | 0.15 MHz to 10 MHz: 3 V (r.m.s)<br>10 MHz to 30 MHz: 3 to 1 V (r.m.s)<br>30 MHz to 80 MHz: 1 V (r.m.s) |  |
| Modulation:         | 80%, 1kHz Amplitude Modulation                                                                         |  |
| Step Size:          | 1% increment                                                                                           |  |
| Dwell Time:         | 1s                                                                                                     |  |

#### **TEST PROCEDURE**

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.
- c. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate shall not exceed 1.5×10<sup>-3</sup> decades/s. The step size shall not exceed 1 % of the start and thereafter 1 % of the preceding frequency value where the frequency is swept incrementally.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- e. Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

REPORT NO.: E04A24020079E01001 Page 45 of 57

#### **TEST SETUP**





#### **TEST ENVIRONMENT**

| Temperature         | $\mathbb{C}$ | Relative Humidity | % |
|---------------------|--------------|-------------------|---|
| Atmosphere Pressure | 101kPa       | Test Voltage      |   |

#### **TEST MODE**

| Test Mode: | 1 |
|------------|---|

#### **TEST RESULTS**

N/A.

REPORT NO.: E04A24020079E01001 Page 46 of 57

## 8.7. VOLTAGE DIPS AND INTERRUPTIONS (AC MAINS POWER PORTS)

#### **TEST SPECIFICATION**

| Standard:                    | EN 55035:2017/A11:2020<br>IEC 61000-4-11:2004                                                                                                       |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Criterion Required:          | Voltage dips: performance criteria B or C;<br>Interruptions: performance criteria C                                                                 |  |
| Test Port:                   | AC mains power port                                                                                                                                 |  |
| Test Level:                  | >95 % reduction: 0.5 period<br>>30 % reduction: 25 period for 50Hz/ 30 period for 60Hz<br>>95 % reduction: 250 period for 50Hz/ 300 period for 60Hz |  |
| No. of Dips / Interruptions: | 3 per Level                                                                                                                                         |  |
| Interval between Event:      | Minimum 10 seconds                                                                                                                                  |  |
| Phase Angle:                 | 0°                                                                                                                                                  |  |

#### **TEST PROCEDURE**

- a. The power cord was used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.
- b. Voltage reductions occur at 0 degree crossover point of the voltage waveform. The performance of the EUT was checked after the voltage dip or interruption.

#### **TEST SETUP**



#### **TEST ENVIRONMENT**

| Temperature         | $^{\circ}\mathbb{C}$ | Relative Humidity | % |
|---------------------|----------------------|-------------------|---|
| Atmosphere Pressure | kPa                  | Test Voltage      |   |

#### TEST MODE

| Test Mode: | 1 |
|------------|---|
|------------|---|

REPORT NO.: E04A24020079E01001 Page 47 of 57

## **TEST RESULTS**

N/A.

TRF No.: 04-E001-0B

REPORT NO.: E04A24020079E01001 Page 48 of 57

#### 8.8. POWER FREQUENCY MAGNETIC FIELD

#### **TEST SPECIFICATION**

| Standard:           | EN 55035:2017/A11:2020<br>IEC 61000-4-8:2009 |  |
|---------------------|----------------------------------------------|--|
| Criterion Required: | Performance criteria A                       |  |
| Frequency:          | 50/60 Hz                                     |  |
| Test Level:         | Level 2: 1 A/m (rms)                         |  |
| Observation Time:   | 1 minute                                     |  |
| Inductance Coil:    | Rectangular type, 1 mx1 m                    |  |

#### **TEST PROCEDURE**

- a. The equipment cabinets which can be earthed shall be connected to the safety earth directly on the GRP or via the earth terminal to PE.
- b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- c. The cables supplied or recommended by the equipment manufacturer shall be used. In absence of any recommendation, unshielded cables shall be adopted, of a type appropriate for the signals involved. All cables shall be exposed to the magnetic field for 1 m of their length.
- d. The back filters, if any, shall be inserted in the circuits at 1 m cable length from the EUT and connected to the ground plane.
- e. The communication lines (data lines) shall be connected to the EUT by the cables given in the technical specification or standard for this application.

#### **TABLE-TOP EQUIPMENT:**

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

#### FLOOR-STANDING EQUIPMENT:

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50% of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

REPORT NO.: E04A24020079E01001 Page 49 of 57

## **TEST SETUP**



#### **TEST ENVIRONMENT**

| Temperature         | $^{\circ}$ | Relative Humidity | % |
|---------------------|------------|-------------------|---|
| Atmosphere Pressure | 101kPa     | Test Voltage      |   |

#### **TEST MODE**

| Test Mode: |
|------------|
|------------|

## **TEST RESULTS**

N/A.

REPORT NO.: E04A24020079E01001 Page 50 of 57

# **APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION**













REPORT NO.: E04A24020079E01001 Page 53 of 57

# **APPENDIX: PHOTOGRAPHS OF THE EUT**

## **External**





















**END OF REPORT**