THE UNIVERSITY OF SYDNEY MATH1901 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Tutorial Week 10 2012

(These preparatory questions should be attempted before the tutorial. Answers are provided at the end of the sheet - please check your work.)

- 1. Sketch the curves given by the following parametric equations (find corresponding cartesian equations if possible).
 - (a) In \mathbb{R}^2 , $x = 1 + \cos t$, $y = 2 + \sin t$, $t \in [0, \pi]$. Mark the points corresponding to $t=0, \pi/2, \pi$ on your sketch.
 - (b) In \mathbb{R}^2 , $x = 1 + 2\cos t$, $y = 2 + \sin t$, $t \in [0, 2\pi]$. Mark the points corresponding to $t=0, \pi/2, \pi, 3\pi/2, 2\pi$ on your sketch.
 - (c) In \mathbb{R}^2 , x = 2t, $y = 4t^2 + 1$, $t \in [0, 1]$. Mark the points corresponding to t = 0, 1/2, 1.
 - (d) In \mathbb{R}^3 , x = 0, y = 3 3t, z = 2t, $t \in \mathbb{R}$. Mark the points corresponding to t = 0, 1, -1.
- 2. What are the natural domains of the functions $f(x,y) = \sqrt{xy}$ and $g(x,y) = \ln(x^2 + y^2 1)$?

Questions for the tutorial

- **3.** Show that the curve \mathcal{C} with parametric equations $x=t^2$, y=1-3t, $z=1+t^3$, $t\in\mathbb{R}$, passes through (1, 4, 0) and (9, -8, 28) but not (4, 7, -6).
- 4. (a) Find the intersection points of the helix whose general point is given parametrically as $(\cos t, \sin t, t), t \in \mathbb{R}$, with the sphere whose cartesian equation is $x^2 + y^2 + z^2 = 4$.
 - (b) Find all points common to the helices C_1 and C_2 , where

$$C_1(t) = (\cos t, \sin t, t), \quad t \in \mathbb{R}, \qquad C_2(s) = (\cos s, s, \sin s), \quad s \in \mathbb{R}.$$

- 5. Describe the curves in \mathbb{R}^3 given by the following parametric equations.
 - (a) $x = t \cos t$, $y = t \sin t$, z = 5t, $t \in [0, 100]$.
 - (b) $x = 2\cos t$, $y = \sin t$, $z = e^{-t}$, t > 0.
- **6.** Determine the domain and range of the functions whose formulas appear below.
 - (a) $f(x,y) = \sqrt{x-y}$

- (b) $f(x,y) = \tan^{-1}(y/x)$
- (c) $G(x,y) = \sqrt{x+y} \sqrt{x-y}$ (d) $h(x,y) = \sin^{-1}(x+y)$
- 7. Sketch the level curves at heights $c = 0, \pm 1, \pm 2$ for the functions given by:
 - (a) $1 x^2 y^2$ (b) $4x^2 + y^2$ (c) $y x^2$ (d) 2x + 3y

8. Find the domains and ranges, and describe the level curves, of the functions defined by:

(a)
$$\sqrt{4-x^2-y^2}$$

(b)
$$(x-1)(y+1)$$
 (c) $\frac{2xy}{x^2+y^2}$

$$(c) \frac{2xy}{x^2 + y^2}$$

Extra Questions

- **9.** If we take a curve z = f(y) in the yz-plane and revolve it about the z-axis, we obtain a surface of revolution in space. What do the level curves look like? Prove that the rule for the surface of revolution thus obtained is $z=f(\sqrt{x^2+y^2})$. Use this result to deduce that the equation $x^2+y^2+2x+2y-z^2+2=0$ defines a cone in space.
- 10. A circle of radius b rolls on the inside of a larger circle of radius a. The curve traced out by a fixed point P on the circumference of the smaller circle is called a hypocycloid.

(a) If the initial position of P is (a,0), and the parameter θ is chosen as in the figure, show that the parametric equations of the hypocycloid are

$$x = (a - b)\cos\theta + b\cos\left(\frac{a - b}{b}\theta\right), \qquad y = (a - b)\sin\theta - b\sin\left(\frac{a - b}{b}\theta\right).$$

(b) Show that if b = a/4, the parametric equations reduce to $x = a\cos^3\theta$, $y = a\sin^3\theta$. Sketch the curve in this case.

Solution to Question 1

- (a) The curve is the top half (semi-circle) of the circle $(x-1)^2 + (y-2)^2 = 1$, of radius 1, centred at (1,2). The value t=0 gives the point (2,2), $t=\pi/2$ gives (1,3), $t=\pi$ gives (0,2).
- The semi-circle is traced anticlockwise from (2,2) as t increases from 0 to π . (b) The curve is an ellipse, $(\frac{x-1}{2})^2 + (y-2)^2 = 1$. The value t=0 gives the point (3,2), $t=\pi/2$ gives (1,3), $t=\pi$ gives (-1,2), $t=3\pi/2$ gives (1,1) and $t=2\pi$ gives (3,2). The ellipse is traced anticlockwise as t increases from 0 to 2π .
- (c) The curve is part of the parabola $y = x^2 + 1$, for $x \in [0, 2]$. The value t = 0 gives the point (0,1), t = 1/2 gives (1,2), t = 1 gives (2,5).
- (d) The curve is a line through (0,3,0) in the direction of $-3\mathbf{j} + 2\mathbf{k}$. Its cartesian equations are $x=0, \frac{z}{2}=\frac{y-3}{-3}$. The value t=0 gives (0,3,0), t=1 gives (0,0,2), t=-1 gives (0,6,-2).

Solution to Question 2

The natural domain of f is $\{(x,y) \mid xy \geq 0\}$, which is the union of the first and third quadrants of the xy-plane, including both axes. The natural domain of g is $\{(x,y) \mid x^2 + y^2 > 1\}$, the set of all points in the xy-plane lying outside the unit circle.