Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Informatik

Computer Graphics Viewing

Informatik **Prof. Dr. Thomas Koller**Dozent

T direkt +41 41 349 35 38 thomas.koller@hslu.ch

Projektionen

- In der Computergrafik werden planare Projektionen verwendet, das heisst es wird ein Bild auf eine Ebene projeziert (ähnlich wie bei einer Kamera)
- Man unterscheidet hauptsächlich zwischen parallelen und perspektivischen Projektionen

Klassifikation von Projektionen

Parallel-Projektion

- Spezifikation durch Ebene und Projektionsrichtung
- Eigenschaften:
 - Geraden bleiben erhalten
 - Parallelen bleiben erhalten
 - Konstante Verkürzung in eine gegebene Richtung
 - keine Winkeltreue

Orthographische Projektion

- Rechter Winkel zwischen Projektionsebene und Projektionsrichtung

Projektionsebene

Projiziertes Bild

Isometrische Projektion

- Orthographische Projektion auf Ebene mit Normalvektor (1,1,1)

Projektionsebene

Kavaliersprojektion

- Parallelprojektion mit 45 Grad Winkel zwischen Ebene und Projektionsrichtung
- Linien rechtwinklig zur Ebene haben natürliche Länge

Kabinettsprojektion

- Parallelprojektion mit 63.4 Grad Winkel zwischen Ebene und Projektionsrichtung
- Linien rechtwinklig zur Ebene haben halbe Länge

Perspektivische Projektion

- Simuliert Kamera oder Auge
- Spezifiziert durch Projektionszentrum und Projektionsebene

Perspektivische Projektion

- Eigenschaften:
 - Geraden bleiben erhalten
 - Parallelen schneiden sich in einem Punkt
 - Die Objektgrösse nimmt proportional zum Abstand vom Projektionszentrum ab
 - 1, 2, oder 3 Fluchtpunkte abhängig von der Anzahl Schnittpunkte zwischen Projektionsebene und Koordinatenachsen

Mathematik der Projektion

- Projektionsebene parallel zu x-y Ebene bei z=d
- Projektionszentrum = (0,0,0)

Berechnung

- Ansicht entlang der x-Achse

Berechnung in hom. Koordinaten

- Projektionsmatrix in homogenen Koordinaten

$$M_{\text{per}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

Darstellung mit z=0 Ebene

- Projektionsebene bei z=0

Parallelprojektion

- Für d → ∞ **ergibt sich die Matrix für eine** Parallelprojektion

$$M'_{
m orth} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Vertex Transformation

