Aufgabe Sei K ein Körper, V ein K-Vektorraum und $U, W \subseteq V$ Untervektorräume. Zeige: (a) Es gibt einen Isomorphismus $U/(U \cap W) \to (U+W)/W$.

(b) Ist $U \subseteq W$, so lässt sich W/U als Untervektorraum von V/U auffassen,

(a) Sei
$$\pi: U+W \rightarrow (U+W)/W$$
, $\pi(v) = CvJ_W = v+W$

und es ist $(V/U)/(W/U) \cong V/W$.

Setze f := TIU. Es ist Kern(f) = Un Kern(T) = UnW 2 41W

Homomorphie-=> ∃! F: U/(UnW) -> (U+W)/W linear

Wegen Kern(\bar{f}) = Kern(f) / $unw = unw / unw = {0}$, ist \bar{f} injective

f ist surjectio:

Sei y = (U+W)/W. Dannex. u = U, w = W mit y = (n+w)+W = u+W = f(u) V

Wegen Bild (f) = Bild (f), ist auch f surjective. Also ist f ein Isom.

$$\pi: V \rightarrow V/u$$
, $\pi(u) = [v]_u = v + u$

Es ist Kern(f) = W 2 U

Homomorphie- ∃! I : V/U → V/W linear

=> W/U ist ein Unterraum von V/U.

Nach dem 1. Isomorphiesatz gilt:

$$(\bigvee/U)$$
 / Kern $(\bar{I}) \stackrel{\sim}{\rightarrow} Bild(I)$

Wegen Bild(f) = V/W und Kern(f) = W/U folgt:

(V/U)/(W/U) ≈ V/W

Aufgabe

Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und $U\subseteq V$ ein Untervektorraum. Weiterhin sei u_1,\ldots,u_m eine Basis von U

Dann gibt es nach dem Basisergänzungssatz ein $n \in \mathbb{N}_0$ und Vektoren $v_1, \dots, v_n \in V$, so dass $u_1, \dots, u_m, v_1, \dots, v_n$ eine Basis von V ist.

Zeigen Sie, dass in dieser Situation die Elemente $v_1 + U, \dots, v_n + U$ eine Basis von V/U bilden.

Lösung

• Es sei v+U ein beliebiges Element aus V/U. Dann ist $v \in V$ und da $u_1, \ldots, u_m, v_1, \ldots, v_n$ eine Basis von V ist, gibt es Koeffizienten $\lambda_1, \ldots, \lambda_m, \mu_1, \ldots, \mu_n \in \mathbb{R}$ mit

$$v = \lambda_1 u_1 + \ldots + \lambda_m u_m + \mu_1 v_1 + \ldots + \mu_n v_n.$$

Wegen $v - (\mu_1 v_1 + \ldots + \mu_n v_n) = \lambda_1 u_1 + \ldots + \lambda_m u_m \in U$ folgt

$$v + U = (\mu_1 v_1 + \ldots + \mu_n v_n) + U = \mu_1 (v_1 + U) + \ldots + \mu_n (v_n + U).$$

D.h. die Vektoren $v_1 + U, \dots, v_n + U$ erzeugen V/U.

• Seien nun $\mu_1, \ldots, \mu_n \in \mathbb{R}$ mit

$$0 + U = \mu_1(\nu_1 + U) + \ldots + \mu_n(\nu_n + U) = (\mu_1 \nu_1 + \ldots + \mu_n \nu_n) + U.$$

Insbesondere gilt also $0 \in (\mu_1 \nu_1 + \ldots + \mu_n \nu_n) + U$. D.h. es existiert ein $u \in U$ und $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ mit

$$0 = \mu_1 \nu_1 + \ldots + \mu_n \nu_n + u = \mu_1 \nu_1 + \ldots + \mu_n \nu_n + \lambda_1 u_1 + \ldots + \lambda_m u_m.$$

Da $u_1, \ldots, u_m, v_1, \ldots, v_n$ linear unabhängig sind, folgt daraus

$$\mu_1 = \ldots = \mu_n = 0.$$

D.h. die Vektoren $v_1 + U, \dots, v_n + U$ sind linear unabhängig.

Insgesamt folgt, dass die Vektoren $v_1 + U, \dots, v_n + U$ eine Basis von V/U bilden.