Force

Gravtional force
$$F = \frac{G * m_1 * m_2}{R^2} (N)$$

Gravtional force
$$F = \frac{G*m_1*m_2}{R^2}$$
 (N) Gravtional field $= \frac{G*m_1}{R^2}*\widehat{-R}$ (N/kg)
Electrical force $F = \frac{q_1*q_2}{4*\pi*\epsilon*R^2}*\widehat{R} = E*q$ (N) Electrical field $E = \frac{q_1}{4*\pi*\epsilon*R^2}\widehat{R}$ (V/m)

$$\varepsilon = 8.854 * 10^{-12}$$

Electrical field
$$E = \frac{q_1}{4*\pi*\epsilon*R^2} \hat{R} \ (V/m)$$

$$\mu = 4 * \pi * 10^{-7} H/m$$

Waves

$$y(x,t) = A * \cos\left(\frac{2*\pi * t}{T} - \frac{2*\pi * x}{\lambda} + \phi_0\right) \Rightarrow y(x,t) = A * \cos(wt - \beta x)$$

<Opposite sign positve diection> <Same sign negative direction>

Phase velocity =
$$u = \frac{\lambda}{T} = \lambda * f = \frac{w}{\beta}$$

Lossy media $y(x, t) = A * e^{-\alpha x} * \cos(wt - \beta x + \phi)$

AC/DC circuit

Real battery terminal voltage $\Delta V = V_{emf} - I * r$

Power
$$I * \Delta V = I * V_{emf} = I^2 * R = \frac{V^2}{R}$$
 (W)

$$\sin(\theta) = \cos(90 - \theta) = \cos(\theta - 90)$$

AC voltage $\Delta V = V_{max} * \sin(wt)$

Resistor in AC:
$$i = \frac{V_{max}}{R} * \sin(wt)$$
 no phase difference

Kirchhoff current node law and voltage loop rule

Average power =
$$I_{rms}^2 * R$$

$$\cos(-\theta) = \cos(\theta)$$

$$w = 2\pi f V_{rms} = \frac{V_{max}}{\sqrt{2}}$$

$$I_{max} = \frac{V_{max}}{R}$$
 $I_{rms} = \frac{I_{max}}{\sqrt{2}}$

Capacitor in AC:
$$I_C = w * C * \Delta V_{max} * \sin\left(wt + \frac{\pi}{2}\right)$$
 Current leads voltage by 90° $I_{max} = w * C * V_{max}$ $X_C = \frac{1}{w*C*j} = \frac{V_{max}}{I_{max}}$

$$I_{max} = w * C * V_{max}$$

$$X_C = \frac{1}{w * C * j} = \frac{V_{max}}{I_{max}}$$

Inductor in AC:
$$I_L = \frac{v_{max}}{w*L} * \sin\left(wt - \frac{\pi}{2}\right)$$
 Current lags voltage by 90°

$$X_L = w * L * j$$

Euler's Identity:	$e^{j\theta} = \cos\theta + j\sin\theta$
$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$	$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$
$\mathbf{z} = x + jy = \mathbf{z} e^{j\theta}$	$\mathbf{z}^* = x - jy = \mathbf{z} e^{-j\theta}$
$x = \Re \epsilon(\mathbf{z}) = \mathbf{z} \cos \theta$	$ \mathbf{z} = \sqrt[+]{\mathbf{z}\mathbf{z}^*} = \sqrt[+]{x^2 + y^2}$
$y = \mathfrak{Im}(\mathbf{z}) = \mathbf{z} \sin \theta$	$\theta = \tan^{-1}(y/x)$
$\mathbf{z}^n = \mathbf{z} ^n e^{jn\theta}$	$\mathbf{z}^{1/2} = \pm \mathbf{z} ^{1/2} e^{j\theta/2}$
$\mathbf{z}_1 = x_1 + jy_1$	$\mathbf{z}_2 = x_2 + jy_2$
$\mathbf{z}_1 = \mathbf{z}_2$ iff $x_1 = x_2$ and $y_1 = y_2$	$\mathbf{z}_1 + \mathbf{z}_2 = (x_1 + x_2) + j(y_1 + y_2)$
$\mathbf{z}_1\mathbf{z}_2 = \mathbf{z}_1 \mathbf{z}_2 e^{j(\theta_1+\theta_2)}$	$\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{ \mathbf{z}_1 }{ \mathbf{z}_2 } e^{j(\theta_1 - \theta_2)}$
$-1 = e^{j\pi} = e^{-j\pi} = 1 \angle \pm 180^{\circ}$	
$j = e^{j\pi/2} = 1 \angle 90^{\circ}$	$-j = e^{-j\pi/2} = 1 \angle -90^{\circ}$
$\sqrt{j} = \pm e^{j\pi/4} = \pm \frac{(1+j)}{\sqrt{2}}$	$\sqrt{-j} = \pm e^{-j\pi/4} = \pm \frac{(1-j)}{\sqrt{2}}$

z(t)		\widetilde{Z}
$A\cos\omega t$	\leftrightarrow	A
$A\cos(\omega t + \phi_0)$	\leftrightarrow	$Ae^{j\phi_0}$
$A\cos(\omega t + \beta x + \phi_0)$	\leftrightarrow	$Ae^{j(\beta x+\phi_0)}$
$Ae^{-\alpha x}\cos(\omega t + \beta x + \phi_0)$	\leftrightarrow	$Ae^{-\alpha x}e^{j(\beta x+\phi_0)}$
$A \sin \omega t$	\leftrightarrow	$Ae^{-j\pi/2}$
$A\sin(\omega t + \phi_0)$	\leftrightarrow	$Ae^{j(\phi_0-\pi/2)}$
$\frac{d}{dt}(z(t))$	+	$j\omega\widetilde{Z}$
$\frac{d}{dt}[A\cos(\omega t + \phi_0)]$	+	$j\omega Ae^{j\phi_0}$
$\int z(t)dt$	+	$\frac{1}{j\omega}\widetilde{Z}$
$\int A\sin(\omega t + \phi_0) dt$	*	$\frac{1}{j\omega}Ae^{j(\phi_0-\pi/2)}$

RLC circuit maximum frequency $w = \frac{1}{\sqrt{L*C}}$

Attenuating wave: $Ae^{-\alpha x}\cos(wt - \beta x + \phi_0) \rightarrow A*e^{-\alpha x}*e^{j(-\beta x + \phi_0)}$

Transmission lines

Lines affects
$$\phi = \frac{2\pi f * l}{c} = \frac{2\pi l}{\lambda}$$

$$\lambda = \frac{c}{f}$$

$$R_s = \sqrt{\frac{\pi * f * \mu}{\sigma}} \rightarrow surface \ resistance \ of \ conductor$$

- When
$$\frac{l}{\lambda}$$
 is very small ignore effects

$$c = 3 * 10^8 \, m/s$$

- When $\frac{l}{\lambda} > 0.01$, need to account for phase delay and possibly reflection
- When $\frac{l}{\lambda} > 0..25$, definitely need to account for phase delay and possibly reflection

Parameter	Coaxial	Two-Wire	Parallel-Plate	Unit
R'	$\frac{R_8}{2\pi}\left(\frac{1}{a} + \frac{1}{b}\right)$	$\frac{2R_5}{\pi d}$	$\frac{2R_8}{w}$	Ω/m
L'	$\frac{\mu}{2\pi} \ln(b/a)$	$\frac{\mu}{\pi} \ln \left[(D/d) + \sqrt{(D/d)^2 - \frac{1}{2}} \right]$	$\frac{\mu h}{w}$	H/m
G'	$\frac{2\pi\sigma}{\ln(b/a)}$	$\frac{\pi \sigma}{\ln \left[(D/d) + \sqrt{(D/d)^2 - 1} \right]}$	$\frac{\sigma w}{h}$	S/m
<i>C'</i>	$\frac{2\pi\varepsilon}{\ln(b/a)}$	$\frac{\pi \varepsilon}{\ln \left[(D/d) + \sqrt{(D/d)^2 - 1} \right]}$	$\frac{\varepsilon w}{h}$	F/m

$$L' * C' = \mu \varepsilon$$

$$\frac{G'}{C'} = \frac{\sigma}{\varepsilon}$$
Air line: $\varepsilon = \varepsilon_0 = 8.854 * \frac{10^{-12}F}{m}$

$$\mu = \mu_0 = 4 * \pi * 10^{-7}$$

$$\sigma = 0$$

$$G' = 0$$

Dispersion \rightarrow Distorts signals because different frequency components \rightarrow Proportional to the length of the transmission line

Telegraphers equations (time domain):

$$-\frac{\partial v(z,t)}{\partial z} = R'i(z,t) + L'\frac{\partial i(z,t)}{\partial t}$$
$$-\frac{\partial i(z,t)}{\partial z} = G'v(z,t) + C'\frac{\partial v(z,t)}{\partial t}$$

$$-\frac{d\tilde{V}(z)}{dz} = (R' + j\omega L')\tilde{I}(z)$$

$$d\tilde{I}(z)$$

$$-\frac{d\bar{I}(z)}{dz} = (G' + j\omega C')\bar{V}(z)$$

Derive the wave equations by separating variables

$$\frac{d^2 \tilde{V}}{dz^2} - \gamma^2 \tilde{V}(z) = 0$$

$$\frac{d^2 \tilde{I}}{dz^2} - \gamma^2 \tilde{I}(z) = 0$$

Complex prepagation constant = $\gamma = \sqrt{(R' + j * w * L')(G' + j * w * C')} = \alpha + \beta j$

Attenuation constant = $\alpha = Re(\gamma) Np/m$

Phase constant = $\beta = Im(\gamma)$ rad/m

$$\textit{Characteristic Impedance} = Z_0 = \frac{R' + jwL'}{\gamma} = \frac{\sqrt{R' + jwL'}}{\sqrt{G' + jwC'}} = \frac{V_0^+}{I_0^+} = \frac{V_0^-}{I_0^-}$$

$$\textit{Phase velocity} = u_p = \frac{w}{\beta} = f * \lambda$$

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{-\gamma}$$

Lossless transmission line

R' and G' are negligible
$$\Rightarrow \alpha = 0$$
 $\beta = w * \sqrt{L' * C'} = \frac{w*\sqrt{\varepsilon_r}}{c}$ Phase velocity $= u_p = \frac{c}{\sqrt{\varepsilon_r}}$ $Z_0 = \sqrt{\frac{L'}{c'}}$

	Propagation Constant $\gamma = \alpha + j\beta$	Phase Velocity up	Characteristic Impedance Z ₀
General case	$\gamma = \sqrt{(R' + j\omega L')(G' + j\omega C')}$	$u_{\beta}=\omega/\beta$	$Z_0 = \sqrt{\frac{(R'+j\omega L')}{(G'+j\omega C')}}$
Lossless $(R' = G' = 0)$	$\alpha = 0, \ \beta = \omega \sqrt{\varepsilon_{\rm f}}/c$	$u_{\rm p}=c/\sqrt{\varepsilon_{\rm f}}$	$Z_0 = \sqrt{L'/C'}$
Lossless coaxial	$\alpha = 0$, $\beta = \omega \sqrt{\tilde{\epsilon}_f}/c$	$u_{\rm p}=c/\sqrt{\varepsilon_{\rm f}}$	$Z_0 = \left(60/\sqrt{\varepsilon_{\rm f}}\right)\ln(b/a)$
Lossless two-wire	$\alpha = 0$, $\beta = \omega \sqrt{\varepsilon_{\rm f}}/c$	$u_{\mathfrak{p}}=c/\sqrt{\varepsilon_{\mathfrak{f}}}$	$Z_0 = (120/\sqrt{\varepsilon_r}) \cdot \ln[(D/d) + \sqrt{(D/d)^2 - 1}]$
			$Z_{\Theta} \simeq \left(120/\sqrt{\varepsilon_{\mathrm{f}}}\right)\ln(2D/d),$ if $D \gg d$
Lossless parallel-plate	$\alpha = 0$, $\beta = \omega \sqrt{\varepsilon_t}/c$	$u_p=c/\sqrt{\varepsilon_{\rm f}}$	$Z_0 = \left(120\pi/\sqrt{\varepsilon_{\rm r}}\right)(h/w)$

$$\lambda = \frac{c}{f * \sqrt{\varepsilon_r}}$$

Normalized load impedance = $z_L = \frac{Z_L}{Z_0}$

voltage reflection coefficient =
$$\Gamma = \frac{z_L - 1}{z_L + 1} = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{V_0^+}{V_0^-} = -\frac{I_0^+}{I_0^-} = |\Gamma| * e^{j\theta_T}$$

Wave impdeance = $Z(d) = \frac{\bar{V}(d)}{\tilde{I}(d)} \rightarrow ratio \ of \ total \ voltage \ to \ total \ current$

Wave impedance
$$Z(d) = Z_0 * \left[\frac{1+\Gamma_d}{1-\Gamma_d}\right]$$
 , $\Gamma_d = \Gamma * e^{-j*2\beta d}$

Input impedance =
$$Z_{in} = Z_0 * \left[\frac{z_L + j * \tan(\beta l)}{1 + j * z_L * \tan(\beta l)} \right]$$

Forward voltage =
$$V_0^+ = \left(\frac{\tilde{V}_g * Z_{in}}{Z_q + Z_{in}}\right) * \left[\frac{1}{e^{j\beta l} + \Gamma * e^{-j\beta l}}\right] \rightarrow this \ part \ may \ not \ be \ used$$

Full final equation for phasor voltage and phasor current on the lossless line:

$$\begin{split} \widehat{V}(z) &= |V_0^+| e^{j\phi^+} \big[e^{-j\beta z} + |\Gamma| e^{j\theta_T} e^{j\beta z} \big] \\ \widehat{I}(z) &= \frac{|V_0^+| e^{j\phi^+}}{|Z_0| e^{j\phi_Z}} \big[e^{-j\beta z} - |\Gamma| e^{j\theta_T} e^{j\beta z} \big] \end{split}$$
 phasor solutions

Full final equation for instantaneous voltage and current on the line:

$$\begin{split} v(z) &= \mathrm{Re}\big\{\bar{V}(z)e^{j\omega t}\big\} \\ &= |V_0^+|\{[\cos(\omega t - \beta z + \phi^+)] + |\Gamma|[\cos(\omega t + \beta z + \theta_r + \phi^-)]\} \\ i(z) &= \mathrm{Re}\big\{\bar{I}(z)e^{j\omega t}\big\} \\ &= \frac{|V_0^+|}{|Z_0|}\{\cos(\omega t - \beta z + \phi^+ - \phi_z) + |\Gamma|\cos(\omega t + \beta z + \phi^- - \phi_z)\} \\ \hline v_0^+ &= \left(\frac{\bar{V}_0Z_0}{Z_0 + Z_{00}}\right)\left[\frac{1}{e^{j\beta t} + \Gamma e^{-j\beta t}}\right]_T \end{split}$$

Vector analysis			
Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[4]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $x = x$	$\begin{split} \ddot{\mathbf{r}} &= \dot{\mathbf{x}}\cos\phi + \dot{\mathbf{y}}\sin\phi \\ \dot{\dot{\mathbf{\phi}}} &= -\dot{\mathbf{x}}\sin\phi + \dot{\mathbf{y}}\cos\phi \\ \dot{\mathbf{z}} &= \dot{\mathbf{z}} \end{split}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_{\phi} = -A_x \sin \phi + A_y \cos \phi$ $A_x = A_{\phi}$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ $z = z$	$\begin{split} \hat{\mathbf{x}} &= \hat{\mathbf{r}} \cos \phi - \hat{\mathbf{\phi}} \sin \phi \\ \hat{\mathbf{y}} &= \hat{\mathbf{r}} \sin \phi + \hat{\mathbf{\phi}} \cos \phi \\ \hat{\mathbf{z}} &= \hat{\mathbf{z}} \end{split}$	$A_X = A_T \cos \phi - A_{\phi} \sin \phi$ $A_{\phi} = A_T \sin \phi + A_{\phi} \cos \phi$ $A_{\delta} = A_{\delta}$
Cartesian to spherical	$R = \sqrt[3]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \{ \sqrt[3]{x^2 + y^2}/z \}$ $\phi = \tan^{-1} (y/x)$	$\begin{split} \tilde{\mathbf{R}} &= \hat{\mathbf{x}} \sin \theta \cos \phi \\ &+ \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta \\ \tilde{0} &= \hat{\mathbf{x}} \cos \theta \cos \phi \\ &+ \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta \\ \hat{\mathbf{\phi}} &= -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi \end{split}$	$\begin{split} A_R &= A_x \sin\theta \cos\phi \\ &+ A_y \sin\theta \sin\phi + A_z \cos \\ A_\theta &= A_x \cos\theta \cos\phi \\ &+ A_y \cos\theta \sin\phi - A_z \sin \\ A_\phi &= -A_z \sin\phi + A_y \cos\phi \end{split}$
Spherical to Cartesian	$x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\begin{split} \hat{\mathbf{x}} &= \hat{\mathbf{R}} \sin \theta \cos \phi \\ &+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi \\ \hat{\mathbf{y}} &= \hat{\mathbf{R}} \sin \theta \sin \phi \\ &+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi \\ \hat{\mathbf{z}} &= \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta \end{split}$	$A_X = A_R \sin \theta \cos \phi$ $+ A_\theta \cos \theta \cos \phi - A_\phi \sin$ $A_Y = A_R \sin \theta \sin \phi$ $+ A_\theta \cos \theta \sin \phi + A_\phi \cos$ $A_Z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to spherical	$R = \sqrt[4]{r^2 + x^2}$ $\theta = \tan^{-1}(r/x)$ $\phi = \phi$	$\begin{split} \hat{\mathbf{R}} &= \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta \\ \hat{\mathbf{\theta}} &= \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta \\ \hat{\mathbf{o}} &= \hat{\mathbf{o}} \end{split}$	$A_R = A_r \sin \theta + A_x \cos \theta$ $A_\theta = A_r \cos \theta - A_x \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\begin{split} \hat{\mathbf{r}} &= \hat{\mathbf{K}} \sin \theta + \hat{\mathbf{\theta}} \cos \theta \\ \hat{\mathbf{\phi}} &= \hat{\mathbf{\phi}} \\ \hat{\mathbf{z}} &= \hat{\mathbf{K}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta \end{split}$	$A_{\theta} = A_{R} \sin \theta + A_{\theta} \cos \theta$ $A_{\phi} = A_{\phi}$ $A_{x} = A_{R} \cos \theta - A_{\theta} \sin \theta$

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation $\mathbf{A} =$	$\hat{x}A_L + \hat{y}A_J + \hat{z}A_Z$	$\hat{\mathbf{r}}A_F + \hat{\mathbf{\phi}}A_{\hat{\mathbf{\phi}}} + \hat{\mathbf{z}}A_Z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\theta}}A_{\theta} + \hat{\mathbf{\phi}}A_{\phi}$
Magnitude of $A = A \Rightarrow$	$\sqrt[4]{A_L^2 + A_T^2 + A_Z^2}$	$\sqrt[4]{A_F^2 + A_\#^2 + A_Z^2}$	$\sqrt[p]{A_R^2 + A_{\theta}^2 + A_{\phi}^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{x}x_1 + \hat{y}y_1 + \hat{x}x_1,$ for $P = (x_1, y_1, x_2)$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$ for $P = (r_1, \phi_1, z_1)$	$\hat{\mathbf{R}}R_1$, for $P = (R_1, \theta_1, \phi_1)$
Base vectors properties	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{split} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} &= \hat{\mathbf{q}} \cdot \hat{\mathbf{q}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1 \\ \hat{\mathbf{r}} \cdot \hat{\mathbf{q}} &= \hat{\mathbf{q}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0 \\ \hat{\mathbf{r}} \times \hat{\mathbf{q}} &= \hat{\mathbf{z}} \\ \hat{\mathbf{q}} \times \hat{\mathbf{z}} &= \hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}} &= \hat{\mathbf{q}} \end{split}$	$\begin{split} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}} &= \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = 1 \\ \hat{\mathbf{R}} \cdot \hat{\mathbf{\theta}} &= \hat{\mathbf{\theta}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}} = 0 \\ \hat{\mathbf{R}} \times \hat{\mathbf{\theta}} &= \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}} &= \hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\boldsymbol{\phi}} &= \hat{\mathbf{R}} \end{split}$
$Dot \ product \qquad A \cdot B =$	$A_3B_X + A_3B_3 + A_ZB_Z$	$A_F B_F + A_{\phi} B_{\phi} + A_Z B_Z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product A × B =	$\left \begin{array}{cccc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_x \\ B_x & B_y & B_x \end{array}\right $	$\left \begin{array}{ccc} \hat{\mathbf{r}} & \hat{\mathbf{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{x} \\ B_{r} & B_{\phi} & B_{x} \end{array}\right $	$ \begin{vmatrix} \bar{\mathbf{R}} & \dot{\mathbf{\Phi}} & \bar{\mathbf{\Phi}} \\ A_R & A_{\theta} & A_{\phi} \\ B_R & B_{\theta} & B_{\phi} \end{vmatrix} $
Differential length d1 =	$\hat{x} dx + \hat{y} dy + \hat{x} dx$	$\dot{t} dr + \dot{\phi}r d\phi + \dot{z} dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin \theta d\phi$
Differential surface areas	$d\mathbf{x}_{x} = \hat{\mathbf{x}} dy dx$ $d\mathbf{x}_{y} = \hat{\mathbf{y}} dx dx$ $d\mathbf{x}_{z} = \hat{\mathbf{z}} dx dy$	$ds_r = \hat{\mathbf{r}}r d\phi dz$ $ds_{\phi} = \hat{\mathbf{\phi}} dr dz$ $ds_z = \hat{\mathbf{z}}r dr d\phi$	$d\mathbf{x}_R = \hat{\mathbf{R}}R^2 \sin\theta \ d\theta \ d\phi$ $d\mathbf{x}_\theta = \hat{\mathbf{\theta}}R \sin\theta \ dR \ d\phi$ $d\mathbf{x}_\phi = \hat{\mathbf{\Phi}}R \ dR \ d\theta$
Differential volume $dV =$	du dy dz	e de do de	$R^2 \sin \theta dR d\theta d\phi$

- Cylindrical $\langle r, \phi, z \rangle$
- Spherical $\langle R, \theta, \phi \rangle$
- Gradient (∇)

$$\circ \quad \nabla = \frac{\partial}{\partial x} \, \hat{x} + \frac{\partial}{\partial y} \, \hat{y} + \frac{\partial}{\partial z} \, \hat{z}$$

Divergence $(\nabla \cdot \vec{A})$

Curl $(\nabla \times \vec{A})$

$$\circ \quad \nabla \times \vec{A} = \operatorname{curl} \vec{A} = (\frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z}) \times (Ax\hat{x} + Ay\hat{y} + Az\hat{z})$$

- Stroke's theorem
 - $\circ \quad \int \nabla \times \vec{B} \cdot ds = \oint \vec{B} \cdot \vec{dl}$
- Divergence theorem

$$\circ \quad \int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} \cdot \overrightarrow{ds}$$

Gradient of cylindrical coordinate $\Rightarrow \frac{\partial A}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial A}{\partial \phi} \hat{\varphi} + \frac{\partial A}{\partial z} \hat{z}$

Gradient of Spherical coordinate $\Rightarrow \frac{\partial A}{\partial R} \hat{R} + \frac{1}{R} * \frac{\partial A}{\partial \theta} \hat{\theta} + \frac{1}{R \sin \theta} \frac{\partial A}{\partial \phi} \hat{\Phi}$

Coulomb's Law (Find electric field given charge)

$$\overrightarrow{E(R)} = \frac{q}{4\pi\varepsilon * R^2} \ \widehat{R} = \frac{q}{4\pi\varepsilon * |R|^3} \ \overrightarrow{R} \ (V/m) \rightarrow$$
 electric field at point P due to single charge

 $\vec{F} = q' * \vec{E}(N) \rightarrow electric force on a charge placed at P$

$$\vec{E}(\vec{R}) = \frac{1}{4\pi\varepsilon} \sum_{i=0}^{N} \frac{q_i * (\vec{R} - \vec{R_i})}{|\vec{R} - \vec{R_i}|^3} (V/m)$$

 $Q = \int_{\mathbb{R}^n} \rho_v(\overrightarrow{r'}) dV' \rightarrow total \ charge \ in \ a \ volume, \rho_v \ is \ charge \ density$

$$\overrightarrow{E(R)} = \int_{v'} \frac{\rho_v(\overrightarrow{R'})(\overrightarrow{R} - \overrightarrow{R'})}{4\pi\varepsilon |\overrightarrow{R} - \overrightarrow{R'}|^3} dV' \rightarrow field \text{ at point } P$$

Infinite Plane (Disk) of charge $\vec{E}=\pm\hat{z}\frac{\rho_{v}}{2\varepsilon}$ Infinite line of charge $E=\frac{\rho_{v}}{2\pi\varepsilon r}\hat{r}$

$$\vec{E}(\vec{R}) = \int_{\mathcal{V}'} \frac{\rho_{\nu}(\vec{R}')(\vec{R} - \vec{R}')}{4\pi\varepsilon |\vec{R} - \vec{R}'|^3} d\mathcal{V}'$$

In a volume

$$\vec{E}(\vec{R}) = \int_{s'} \frac{\rho_s(\vec{R}')(\vec{R} - \vec{R}')}{4\pi\epsilon |\vec{R} - \vec{R}'|^3} ds'$$

Over a surface

$$\vec{E}(\vec{R}) = \int_{l'} \frac{\rho_l(\vec{R}')(\vec{R} - \vec{R}')}{4\pi\varepsilon |\vec{R} - \vec{R}'|^3} dl'$$

On a line

Gauss's Law (Find charge given a field)

$$\vec{D} = \varepsilon \vec{E} (C/m^2)$$

$$\varepsilon = \varepsilon_r * 8.854 * 10^{-12} \qquad \qquad \overrightarrow{D} = \widehat{R} \frac{q}{4*\pi * R^2}$$

$$\overrightarrow{D} = \widehat{R} \, \frac{q}{4 * \pi * R^2}$$

$$\oint_{\mathcal{S}} \ \overrightarrow{D} \cdot ds' = q = \int_{v}, \ \rho_v \ dV' \rightarrow determine \ electric \ flux \ density \ D \qquad \qquad \nabla \cdot \overrightarrow{D} = \ \rho_v(x,y,z) \rightarrow differential \ form$$

$$\nabla \cdot \vec{D} = \rho_v(x, y, z) \rightarrow differential form$$

Electric Potential

$$V = - \int_{l'} \vec{E} \cdot \hat{dl'}$$

$$V_{21} = V_2 - V_1 = -\int_{P_1}^{P_2} \vec{E} \cdot \widehat{al'} \rightarrow potential \ difference \ between \ P1 \ and \ P2$$

$$\oint \vec{E} \cdot \widehat{dl'} = 0 \rightarrow for \ any \ closed \ path$$

$$V = -\int_{\infty}^{P} \vec{E} \cdot \widehat{dl'} \rightarrow zero\ reference\ at\ infinity\ (free\ space\ and\ material\ media)$$

$$V(\overrightarrow{R}) = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{N} \frac{q_i}{|\overrightarrow{R} - \overrightarrow{R_i}|}$$

$$\vec{E} = \frac{V}{L}$$

$$\vec{E} = \frac{V}{I} \qquad \qquad \vec{E} = -\nabla V$$

 $V(\vec{R}) = \int_{s} \frac{\rho_s(\vec{R}')}{4\pi\epsilon |\vec{R} - \vec{R}'|} ds'$

 $V(\overrightarrow{R}) = \int_{\Gamma} \frac{\rho_{\ell}(\overrightarrow{R}')}{4\pi \varepsilon |\overrightarrow{R} - \overrightarrow{R}'|} dt'$

 $P = (R, \theta, \phi)$

Dielectrics

- An electric dipole consists of 2-point charges of equal magnitude but opposite polarity
 - o Applications: Dielectrics, molecular bonds, antennas

$$\vec{p} = q * \vec{d} \rightarrow dipole \; moment \qquad V \; \overline{(R)} = \frac{\vec{p} \cdot \hat{R}}{4\pi\varepsilon_0 |\vec{R} - \vec{R_I}|^2} = \frac{q*d*cos\theta}{4\pi\varepsilon_0*R^2}$$

$$\overrightarrow{E(R)} = \frac{qd}{4\pi\varepsilon_0 |\vec{R} - \vec{R_t}|^3} (\hat{R} \ 2 * cos\theta + \hat{\theta} \ sin\theta) \ V/m \qquad \text{only when R>>d}$$

Types of dipoles in matter

- Permanent
 - Molecule having atoms with different electronegativity
 - Polar molecule → water
- Instantaneous
 - Electrons happen to concentrate in one place
- Induced
 - o A permanent dipole or applied electric field near another atom induces a dipole

In a dielectric material $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \rightarrow P$ is the electric flux density induced by applied field E

$$\vec{P} = \varepsilon_0 * X_e * \vec{E}$$
 $\vec{D} = \varepsilon_0 \vec{E} + \varepsilon_0 * X_e * \vec{E} = \varepsilon_0 (1 + X_e) \vec{E}$

$$(1 + X_e) = relative permittivity = \varepsilon_r$$

Conductors & Resistors

- Conductors are materials in which some of the electrons are free electrons
 - o Electrons can move relatively freely through the material
 - o Copper, aluminum, and silver
 - o Charge Carrier: A particle carrying charge that is free to move

Total Current
$$I = \int_{S} \vec{J} \cdot \vec{ds} \rightarrow \vec{J} = \rho_{v} * \vec{u} \left(\frac{A}{m^{2}}\right) \rightarrow u \text{ is velocity } \rightarrow \rho_{v} = q * N, N \text{ is # of charges per unit volume}$$

Drift velocity, u: Steady state average velocity of the electrons

Mobility μ : Accounts for the effective mass of charged particle and the average distance before stopped by colliding

$$\overrightarrow{u_e} = -\mu_e \overrightarrow{E} \rightarrow drift \ velocity \ of \ electrons \ (m/s)$$
 $\overrightarrow{u_h} = \mu_h \overrightarrow{E} \rightarrow drift \ velocity \ of \ holes \ (m/s)$

$$\vec{J} = \vec{J_e} + \vec{J_h} = \rho_e * \vec{u_e} + \rho_h * \vec{u_h} = (-\rho_e * \mu_e + \rho_h * \mu_h)\vec{E}$$

$$\vec{J} = \sigma \vec{E} (A/m^2)$$

Semiconductor / dielectric
$$\sigma = (-\rho_e * \mu_e + \rho_h * \mu_h) = -N_e q \mu_e + N_h q \mu_h$$
 (S/m)

Conductor
$$\sigma = -\rho_e * \mu_e = N_e e \mu_e$$
 For perfect dialectic: $N_e = 0, \sigma = 0, J = 0$

For perfect conductor $\mu_e = \infty$, $\sigma = \infty$, E = D = 0

For any conductor
$$R = \frac{V}{I} = \frac{-\int_{l'} \vec{E} \cdot d\hat{l'}}{\int_{S} \vec{J} \cdot d\hat{s}} = \frac{-\int_{l'} \vec{E} \cdot d\hat{l'}}{\int_{S} \sigma \vec{E} \cdot d\hat{s}}$$
 $R = \frac{l}{\sigma_1 * A_1 + \sigma_2 * A_2} \rightarrow resistance \ coaxial \ cable$

Electric Boundary Conditions

Field Component	Any Two Media	Medium 1 Dielectric ε ₁	Medium 2 Conductor
Tangential E	$\mathbf{E}_{1t} = \mathbf{E}_{2t}$	$\mathbf{E}_{1t}=\mathbf{E}_{2t}=0$	
Tangential D	$\mathbf{D}_{1t}/\varepsilon_1 = \mathbf{D}_{2t}/\varepsilon_2$	$D_{1t} = D_{2t} = 0$	
Normal E	$\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$	$E_{1n} = \rho_s/\epsilon_1$	$E_{2n} = 0$
Normal D	$D_{1n} - D_{2n} = \rho_8$	$D_{1n} = \rho_k$	$D_{2n} = 0$

← General Boundary Conditions

DD:
$$E_{1t} = E_{2t}$$
 & $E_{2n} = \frac{\varepsilon_1}{\varepsilon_2} E_{1n}$

DC:
$$E = D = 0$$
 in perfect conductor

$$D_{1t} = E_{1t} = 0$$
 & $D_{1n} = \varepsilon_1 E_{1n} = \rho_s$

Notes: (1) ρ_8 is the surface charge density at the boundary; (2) normal components of E_1 , D_1 , E_2 , and D_2 are along \hat{n}_2 , the outward normal unit vector of medium 2.

Material 1: Dielectric

Material 2: Conductor

Dielectric - dielectric

$$\frac{\tan\theta_1}{\varepsilon_1} = \frac{\tan\theta_2}{\varepsilon_2}$$

Capacitor

$$C = \frac{Q}{V} = \frac{\int_{S} \varepsilon \vec{E} \cdot \vec{ds}}{-\int_{U} \vec{E} \cdot \hat{dl}} = \frac{\varepsilon * A}{d}$$

$$E = \frac{V}{d} \qquad \qquad Q = \int_{S} \varepsilon \vec{E} \cdot \vec{ds}$$

Dielectric - conductor

$$\overrightarrow{D_1} = \varepsilon_1 \overrightarrow{E_1} = \rho_s \hat{n}$$

$$Conductor-Conductor\\$$

$$\varepsilon_1 * \frac{J_{1n}}{\sigma_1} - \varepsilon_2 * \frac{J_{2n}}{\sigma_2} = \rho_s \rightarrow J_{1n} = J_{2n}$$

$$RC = \frac{V}{I} * \frac{Q}{V} = \frac{\varepsilon}{\sigma}$$

$$W = \int_0^Q \frac{q}{c} dq = \frac{1}{2} * \frac{Q^2}{C} = \frac{1}{2} * C * V^2 = \frac{1}{2} \varepsilon E^2(Ad)$$

Magnetic Forces and torques

Magnetic force = $\vec{F}_m = q\vec{u} \times \vec{B}(N)$

Lorentz force = $q\vec{u} \times \vec{B} + q\vec{E}$ $dF_m = I\vec{dl} \times \vec{B} = dQ\vec{u} \times \vec{B}$

Force on any closed current loop in a uniform magnetic field = 0

Magnetic torque $T = \vec{m} \times \vec{B} (N \cdot m)$

$$|T| = N * I * A * B * sin\theta$$

$$\vec{m} = \hat{n}N * I * A$$

Biot-Savart Law

$$\vec{B} = \mu_0 \vec{H} (T)$$

$$\overrightarrow{dH} = \frac{I}{4\pi R^2} * \overrightarrow{dl} \times \widehat{R} \left(\frac{A}{m} \right)$$

$$\overrightarrow{dB} = \frac{I \,\mu_0}{4\pi R^2} * \overrightarrow{dl} \times \widehat{R} (T)$$

$$\overrightarrow{\boldsymbol{B}}\left(\overrightarrow{\boldsymbol{R}}\right) = \int\limits_{\boldsymbol{\mathcal{V}}'} \frac{\mu \overrightarrow{\boldsymbol{J}}\left(\overrightarrow{\boldsymbol{R}}'\right) \times \left(\overrightarrow{\boldsymbol{R}} - \overrightarrow{\boldsymbol{R}}'\right)}{4\pi \left|\overrightarrow{\boldsymbol{R}} - \overrightarrow{\boldsymbol{R}}'\right|^3} d\boldsymbol{\mathcal{V}}' = \frac{\mu}{4\pi} \int\limits_{\boldsymbol{\mathcal{V}}'} \frac{\overrightarrow{\boldsymbol{J}} \times \widehat{\boldsymbol{R}}}{R^2} d\boldsymbol{\mathcal{V}}'$$

$$\vec{B}(\vec{R}) = \int_{s'} \frac{\mu \vec{J}_s(\vec{R}') \times (\vec{R} - \vec{R}')}{4\pi |\vec{R} - \vec{R}'|^3} ds' = \frac{\mu}{4\pi} \int_{v'} \frac{\vec{J}_s \times \vec{R}}{R^2} ds'$$

$$\vec{B}(\vec{R}) = \int_{l'} \frac{\mu l d\vec{l}' \times (\vec{R} - \vec{R}')}{4\pi |\vec{R} - \vec{R}'|^3} = \frac{\mu l}{4\pi} \int_{l'} \frac{d\vec{l}' \times \hat{R}}{R^2}$$

Magnetic field of a loop
$$B = \frac{\mu I a^2}{2(a^2 + z^2)^{1.5}} \hat{z}$$

At
$$z = 0$$
 $B = \mu * \frac{I}{2*a} \hat{z}$

At points far away
$$B = \frac{\mu I a^2}{2z^3} \hat{z}$$

On a line

Magnetic field of a linear conductor
$$B = \frac{\mu Ia}{2\pi r\sqrt{4r^2+a^2}} \hat{\phi}$$

R is the distance from center to point P, a is length of wire segment

For an infinity long wire $B = \frac{\mu I}{2\pi r} \hat{\phi}$

Ampere's law (Gauss's Law for magnetism) (net magnetic flux through a closed Gaussian surface is 0)

$$\oint_C \vec{H} \cdot \vec{dl} = I$$

$$\nabla \times \vec{H} = \vec{I}$$

H field for long wire:
$$r1 \le a \to \vec{H} = \frac{r_1 * I}{2\pi a^2} \hat{\phi}$$
 $r2 \ge a \to \vec{H} = \frac{I}{2\pi r} \hat{\phi}$

$$r2 \ge a \to \vec{H} = \frac{I}{2\pi r} \hat{\phi}$$

H field for toroidal coil:
$$r < a \rightarrow \vec{H} = 0$$

$$r < a \rightarrow \vec{H} = 0$$

$$r < a \rightarrow \vec{H} = 0$$
 $a < r < b \rightarrow \vec{H} = -\frac{NI}{2\pi r} \hat{\phi}$

H field inside long solenoid:
$$r > a \rightarrow \vec{H} \approx 0$$

$$r < a \rightarrow \vec{H} = N * \frac{I}{L} \hat{z}$$

H field of current sheet:
$$z > 0 \rightarrow \vec{H} = -\frac{J}{2} \hat{y}$$
, J is current density

$$z < 0 \rightarrow \vec{H} = \frac{J}{2} \hat{y}$$

Magnetic vector potential & Magnetic material

$$\vec{B} = \nabla \times \vec{A} (Wb/m^2) \rightarrow A$$
 is magnetic vector potential

$$\overrightarrow{A(R)} = \int_{v'} \frac{\mu * \overrightarrow{J}(\overrightarrow{R'})}{4\pi |\overrightarrow{R} - \overrightarrow{R_I}|} dV' (Wb/m^2)$$

Spin Magnetic Moments:
$$m = I * A = \frac{-e*v}{2\pi r} * \pi r^2 = -\frac{e*L}{2m}$$

Angular momentum:
$$L = m * v * r$$

Magnetization: $\vec{B} = \mu_0 \vec{H}$ in free space

$$\vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M}$$
 in magnetic material

$$\vec{M} = X_m * \vec{H} \rightarrow X_m$$
 is magnetic susceptibility

$$\vec{B} = \mu_0 \vec{H} + \mu_0 \, X_m * \vec{H} = \, \mu_0 (1 + X_m) \vec{H} \rightarrow \, (1 + X_m) = \, \mu_r$$

	Diamagnetism	Paramagnetism	Ferromagnetism
Permanent magnetic dipole moment	No	Yes, but weak	Yes, and strong
Primary magnetization mechanism	Electron orbital magnetic moment	Electron spin magnetic moment	Magnetized domains
Direction of induced magnetic field (relative to external field)	Opposite	Same	Hysteresis (see Fig. 5-22)
Common substances	Bismuth, copper, diamond, gold, lead, mercury, silver, silicon	Aluminum, calcium, chromium, magnesium, niobium, platinum, tungsten	Iron, nickel, cobalt
Typical value of χ ₀₁ Typical value of μ _t	≈ −10 ^{−5} ≈ 1	≈ 10 ⁻⁵ ≈ 1	$ \chi_{\rm m} \gg 1$ and hysteretic $ \mu_{\rm r} \gg 1$ and hysteretic

Inductor

$$L = \frac{Magnetic\ Flux}{Current}$$

$$\phi_m = \int_{\mathcal{S}} \vec{B} \cdot \vec{ds} \ (Wb) \rightarrow total \ magnitic \ flux$$

$$L = \frac{\textit{Magnetic Flux}}{\textit{Current}} \qquad \qquad \phi_m = \int_{\mathcal{S}} \ \overrightarrow{B} \cdot \overrightarrow{ds} \ (\textit{Wb}) \rightarrow \textit{total magntic flux} \qquad \qquad \textit{Self inductance} = \ L = \frac{\phi_m}{I} = \frac{\int_{\mathcal{S}} \ \overrightarrow{B} \cdot \overrightarrow{ds}}{\phi_{\mathcal{C}} \ \overrightarrow{H} \cdot \overrightarrow{ds}} \ (\textit{H or Wb/A})$$

Self-inductance in a solenoid:
$$\phi_m = \frac{\mu * N * I}{L} * S \rightarrow S$$
 is area of one loop $L = \frac{\mu * N^2}{L} * S$ $I = \frac{BL}{\mu N}$

$$L = \frac{\mu * N^2}{L} * S \qquad I = \frac{BL}{\mu N}$$

Energy stored in solenoid:
$$W = \frac{1}{2} * L * I^2 = \frac{1}{2} * \frac{B^2}{\mu}$$
 Energy density $W = \frac{1}{2} \mu H^2$ Total energy in any volume $W = \frac{1}{2} \int_V \mu H^2 dV$

Energy density
$$w = \frac{1}{2}\mu H$$

Total energy in any volume
$$W = \frac{1}{2} \int_{V} \mu H^{2} dV$$

Self-inductance of toroid:
$$L = \frac{\mu * N^2}{2\pi r_m} * S \rightarrow r_m = \frac{a+b}{2}$$

Mutual Inductance
$$L_{12} = \frac{N_2}{I_1} \int_{S2} \overrightarrow{B_1} \cdot \overrightarrow{ds}$$

Potential energy
$$W = \int_0^I i * v * dt = L \int_0^I i * di = \frac{1}{2}LI^2(J)$$

Faraday's Law

- A time varying magnetic field creates transformer emf V
- A moving loop with time-varying surface area in static field B create motional emf
- A moving loop in time-varying field B is transformer emf + motional emf

$$V_{emf} = -N * \frac{d\phi_m}{dt} = -N \frac{d}{dt} \int_S \vec{B} \cdot \vec{ds} (V)$$
 Transformer $V_{emf} = -N \int_S \frac{\vec{dB}}{dt} \cdot \vec{ds}$

$$\oint_C \vec{E} \cdot \vec{dl} = - \int_S \frac{\vec{\partial B}}{\vec{\partial t}} \cdot \vec{ds}$$

$$\nabla \times \vec{E} = \frac{-\overline{\partial B}}{\partial t}$$

Lenz's Law

The current in the loop is always in a direction that opposes the change of magnetic flux that produced I

Moving Conductor in a static magnetic field

Motional EMF =
$$V_{12} = \int_{2}^{1} (\vec{u} \times \vec{B}) \cdot d\vec{l}$$

$$\vec{u} \times \vec{B} = u\hat{x} \times B_0\hat{z} = -uB_0\hat{y}$$

$$V_{emf} = -uB_0L$$

$$V_{emf} = -\int_{S} \frac{\overrightarrow{dB}}{dt} \cdot \overrightarrow{dS} + \int_{2}^{1} (\overrightarrow{u} \times \overrightarrow{B}) \cdot \overrightarrow{dl}$$

Transformers

$$\frac{V_1}{V_2} = \frac{N_1}{N_2} \rightarrow turns \ ratio \rightarrow N_2 > N_1 \ \text{Step up traernsform}; N_2 < N_1 \ \text{"Step down traernsform"}$$

$$P_1 = I_1 V_1 = P_2 = I_2 V_2$$

$$R_{in} = \frac{V_1}{I_1} = (\frac{N_1}{N_2})^2 * R_L$$

$$Z_{in} = (\frac{N_1}{N_2})^2 * Z_L$$

$$V_{emf} = -\frac{d\phi_m}{dt} = A * w * B_0 * \sin(wt + C_0)$$

DC Generators: Same components as AC generator, main difference is contacts to the rotating loop are made using a split ring called commutator.

Motor: Electrical to mechanical energy Generators works opposite

EM Motor: A current is supplied to the coil by a battery and the torque acting on the current carrying coil causes it to rotate

- Induced back emf, acts to reduce the current in the coil
- The back emf increases in magnitude as the rotational speed of coil increases
- $I = \frac{V_{app} V_{emf}}{P}$

The displacement current

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \rightarrow \frac{\partial \vec{D}}{\partial t} = \vec{J_d} \rightarrow displacement current density$$

$$\oint_C \vec{H} \cdot \vec{dl} = \int_S \vec{J} \cdot ds' + \int_S \frac{\partial \vec{D}}{\partial t} \cdot ds' = I_C(conduction\ current) + I_D(Displacement\ current) = I$$

In perfect conducting wire: $I_1 = I_{1c} + I_{1d} = -CV_0 w sin(wt)$

In perfect conducting capacitor:

$$I_2 = I_{2c} + I_{2d} = -CV_0 wsin(wt) = I_1$$

Continuity of current flow through the circuit

- The displacement current behaves like a real current
- The displacement current accounts for polarization in the medium
- The perfect wire has infinite conductivity
 - \circ If it has finite conductivity, then D in the wire would be non-zero and I_1 would consist of both conduction and displacement currents
- A magnetic field can be produced either by currents or by changing electric fields

- An electric field can be produced either by charges or changing magnetic fields