UNIVERSIDADE ESTADUAL DO CENTRO-OESTE CIÊNCIA DA COMPUTAÇÃO PROJETO INTRODUTÓRIO EM COMPUTAÇÃO

COLETA SELETIVA DE RESÍDUOS

PROJETO: SISTEMA DE LEITURA COM SENSOR DE COR PARA INDICAR TIPO DE LIXO (PAPEL, PLÁSTICO, VIDRO, METAL).

Beatriz Oliveira De Jesus Moliana Joseli Maria Clara Margraf Bill

SUMÁRIO

1. Resumo
2. Objetivos
3. Descrição do Problema e Fundamentação Teórica
4. Descrição Técnica do Projeto
5. Imagens do Projeto
6. Descrição das Imagens
7. Código-fonte (com comentários)
8. Resultados Esperados e Aplicações
9. Considerações Finais
10. Referências Bibliográficas

1. RESUMO:

Este projeto apresenta o desenvolvimento de um sistema automatizado de identificação de resíduos recicláveis, com ênfase na sua relevância socioambiental. Utilizando a plataforma Arduino e a simulação no ambiente virtual Tinkercad, o sistema tem como objetivo principal promover a coleta seletiva por meio de uma solução acessível, educativa e de baixo custo. A separação correta dos resíduos é fundamental para a preservação do meio ambiente e redução da poluição, sendo um desafio recorrente em comunidades onde a conscientização ambiental ainda é limitada.

O sistema utiliza um potenciômetro para simular a leitura de diferentes materiais recicláveis, com base em valores analógicos processados pelo Arduino. A cada leitura, o tipo de resíduo é identificado e indicado por meio de LEDs coloridos e mensagens em um display LCD, facilitando a visualização e o entendimento por parte dos usuários.

Além de estimular o aprendizado de conceitos de eletrônica e programação, o projeto visa contribuir para a formação de cidadãos mais conscientes em relação ao descarte de lixo. Seu potencial pedagógico o torna ideal para uso em escolas e feiras de ciências, podendo futuramente ser aprimorado com sensores reais de cor e mecanismos físicos de separação.

2. OBJETIVOS DO PROJETO:

2.1 Objetivo Geral:

Desenvolver um sistema automatizado de leitura e identificação de resíduos sólidos com base na detecção de cores, utilizando sensores de forma didática para auxiliar na coleta seletiva, promovendo a correta separação entre papel, plástico, vidro e metal.

2.2 Objetivos Específicos:

 Projetar e simular no Tinkercad um sistema eletrônico com sensor de cor capaz de identificar e classificar automaticamente os principais tipos de resíduos recicláveis: papel, plástico, vidro e metal.

- Integrar sensores de cor com componentes eletrônicos, como LEDs, potenciômetro e display LCD, para indicar visualmente a categoria do resíduo detectado.
- Promover a conscientização sobre a separação correta de resíduos por meio de uma solução de baixo custo, aplicável em ambientes educacionais ou comunitários.

3. DESCRIÇÃO DO PROBLEMA E FUNDAMENTAÇÃO TEÓRICA:

3.1 Descrição do Problema:

A separação incorreta de resíduos sólidos urbanos ainda é uma realidade em grande parte das comunidades, comprometendo diretamente os processos de reciclagem e contribuindo para o aumento da poluição ambiental. Muitas pessoas não possuem o hábito ou o conhecimento necessário para identificar corretamente os diferentes tipos de lixo reciclável, como papel, plástico, vidro e metal. Esse cenário resulta em um descarte inadequado de materiais que poderiam ser reaproveitados, sobrecarregando aterros sanitários e aumentando os impactos ambientais negativos.

Além disso, a coleta seletiva muitas vezes depende de processos manuais ou da boa vontade da população, o que torna o sistema ineficiente em muitos locais. A ausência de soluções tecnológicas acessíveis e educativas dificulta ainda mais a consolidação de práticas sustentáveis no cotidiano.

Diante desse contexto, torna-se necessário o desenvolvimento de um sistema automatizado que auxilie na identificação e separação dos resíduos recicláveis, promovendo uma coleta seletiva mais eficiente e contribuindo para a preservação do meio ambiente.

3.2 Fundamentação Teórica:

A coleta seletiva é um processo essencial para a correta gestão de resíduos sólidos, promovendo a separação de materiais recicláveis e não recicláveis desde a origem. Essa prática contribui significativamente para a preservação dos recursos naturais, a diminuição da poluição e a redução do volume de lixo encaminhado aos aterros sanitários. Segundo o Ministério do Meio Ambiente, a reciclagem adequada pode reduzir em até 30% o impacto ambiental gerado pelos resíduos urbanos.

A tecnologia tem se mostrado uma grande aliada da sustentabilidade, especialmente quando aplicada ao desenvolvimento de soluções automatizadas que otimizam processos ambientais. Sistemas inteligentes baseados em sensores e microcontroladores têm sido utilizados em diversas áreas para tornar tarefas mais rápidas, eficientes e precisas. No contexto da coleta seletiva, esses sistemas podem auxiliar na identificação e separação de materiais recicláveis, mesmo quando o usuário final possui pouco conhecimento sobre o tema.

Os sensores de cor, por exemplo, são dispositivos capazes de detectar diferentes tonalidades com base na luz refletida pelos objetos. No projeto em questão, o sensor de cor é utilizado para identificar o tipo de resíduo de acordo com sua coloração predominante. Para fornecer um retorno visual ao usuário, são utilizados LEDs que indicam a categoria do material detectado (como vermelho para plástico, azul para papel, verde para vidro, etc.).

Além disso, o sistema conta com um display LCD, que exibe informações complementares sobre o resíduo identificado, e um potenciômetro, que pode ser utilizado para calibrar a sensibilidade do sensor de cor ou controlar o brilho do display. Todos os componentes foram simulados no ambiente virtual Tinkercad, que permite testar circuitos eletrônicos e programações com base na plataforma Arduino.

Esses conhecimentos técnicos são fundamentais para o desenvolvimento de soluções inovadoras e educativas, capazes de promover a conscientização ambiental e facilitar a adoção da coleta seletiva em ambientes escolares, domésticos ou comunitários.

4. DESCRIÇÃO TÉCNICA DO PROJETO:

O projeto desenvolvido e simulado na plataforma Tinkercad consiste em um sistema eletrônico automatizado para identificação e classificação de resíduos recicláveis, utilizando um potenciômetro como sensor simulado para representar diferentes tipos de materiais com base em variações analógicas.

Os principais componentes do sistema são:

 Potenciômetro: utilizado para simular a leitura de diferentes materiais, fornecendo um valor analógico que varia conforme a posição do eixo. Cada faixa de valor lido pelo Arduino corresponde a um tipo específico de resíduo: papel, vidro, metal ou plástico.

- Display LCD 16x2: exibe o nome do material identificado, fornecendo um feedback visual claro ao usuário sobre o tipo de resíduo detectado.
- LEDs Coloridos: cada LED representa um tipo de material reciclável e acende de acordo com o valor analógico recebido do potenciômetro, indicando visualmente a classificação do resíduo.
- Arduino Uno (simulado no Tinkercad): processa os valores analógicos do potenciômetro e controla os LEDs e o display LCD conforme a lógica programada.

O funcionamento do sistema baseia-se na leitura analógica do potenciômetro, que varia continuamente os valores enviados ao microcontrolador. O código foi desenvolvido para classificar esses valores em faixas pré-definidas, correspondendo aos tipos de resíduos. Ao detectar a faixa correspondente, o Arduino acende o LED do material apropriado e atualiza o display LCD com o nome do resíduo, garantindo um retorno imediato e intuitivo para o usuário.

O sistema é atualizado a cada 500 milissegundos, permitindo uma resposta rápida às alterações feitas no potenciômetro, simulando de forma eficaz a variação de cores que seria captada por um sensor real.

A simulação no Tinkercad possibilitou o desenvolvimento e testes completos do circuito e programação sem a necessidade de montagem física, garantindo o funcionamento adequado antes de uma possível implementação prática.

5. IMAGENS DO PROJETO:

6. DESCRIÇÃO DAS IMAGENS:

No circuito completo no ambiente de simulação Tinkercad:

- Arduino Uno conectado a um display LCD 16x2;
- Potenciômetro ligado à entrada analógica A0;
- Quatro LEDs representando os resíduos: papel (LED azul), vidro (LED verde), metal (LED amarelo) e plástico (LED vermelho);
- Resistores e conexões apropriadas na protoboard.

Durante os testes, diferentes valores lidos pelo potenciômetro geraram comportamentos distintos. Os momentos destacados são:

- Valor baixo (< 250):
- LED do papel acende;
- LCD exibe: Material: Papel.
 - Valor entre 250 e 499:
- LED do vidro acende;
- LCD exibe: Material: Vidro.
 - Valor entre 500 e 749:
- LED do metal acende;
- LCD exibe: Material: Metal.
 - Valor ≥ 750:
- LED do plástico acende;
- LCD exibe: Material: Plástico.

Essas imagens demonstram claramente a lógica de funcionamento do projeto, em que a leitura do sensor (simulado pelo potenciômetro) determina qual tipo de resíduo está sendo identificado.

7. CÓDIGO-FONTE

```
#include <LiquidCrystal.h> //biblioteca LCD
// Inicializa o display LCD com os pinos conectados ao Arduino
LiquidCrystal lcd(12, 11, 6, 7, 8, 9);
// Define o pino analógico onde o potenciômetro está conectado
int potPin = A0;
// Define os pinos para os LEDs dos materiais recicláveis
int ledPapel = 2;
int ledVidro = 3;
int ledMetal = 4;
int ledPlastico = 5;
void setup() {
 // Configura os pinos dos LEDs como saída
 pinMode(ledPapel, OUTPUT);
 pinMode(ledVidro, OUTPUT);
 pinMode(ledMetal, OUTPUT);
 pinMode(ledPlastico, OUTPUT);
 // Inicia a comunicação serial para depuração
```

```
Serial.begin(9600);
 // Inicializa o display LCD com 16 colunas e 2 linhas
 lcd.begin(16, 2);
 lcd.print("Material:");
}
void loop() {
 // Lê o valor do potenciômetro (0 a 1023)
 int valor = analogRead(potPin);
 Serial.print("Valor lido: ");
 Serial.println(valor);
 // Desliga todos os LEDs antes de acender o correto
 digitalWrite(ledPapel, LOW);
 digitalWrite(ledVidro, LOW);
 digitalWrite(ledMetal, LOW);
 digitalWrite(ledPlastico, LOW);
 // Limpa a segunda linha do LCD
 lcd.setCursor(0, 1);
 lcd.print("
 lcd.setCursor(0, 1);
 // Verifica o valor lido e acende o LED correspondente
```

```
if (valor < 250) {
  digitalWrite(ledPapel, HIGH);
  lcd.print("Papel");
 } else if (valor < 500) {
  digitalWrite(ledVidro, HIGH);
  lcd.print("Vidro");
 } else if (valor < 750) {
  digitalWrite(ledMetal, HIGH);
  lcd.print("Metal");
 } else {
  digitalWrite(ledPlastico, HIGH);
  lcd.print("Plastico");
 }
 // Pequena pausa para estabilidade da leitura
 delay(500);
}
```

8. RESULTADOS ESPERADOS E APLICAÇÕES

O projeto desenvolvido tem como objetivo principal promover a conscientização sobre a separação correta de resíduos sólidos, utilizando tecnologia simples e acessível como o Arduino. Os resultados esperados envolvem tanto o impacto educacional quanto o potencial de aplicação prática.

Resultados Esperados:

- Estimular o entendimento da coleta seletiva por meio da visualização do material detectado e do LED correspondente acendendo:
- Facilitar o ensino de sustentabilidade e eletrônica básica para estudantes do ensino fundamental, médio ou técnico;
- Demonstrar a viabilidade de um protótipo funcional para triagem automatizada de resíduos, mesmo que simplificado.

Aplicações Possíveis:

- Escolas e projetos pedagógicos: o sistema pode ser usado como recurso didático em aulas de ciências, robótica, meio ambiente ou tecnologia;
- Feiras de ciências e exposições: ideal para demonstrar na prática como a tecnologia pode auxiliar na preservação ambiental;
- Lixeiras inteligentes: com adaptações futuras (uso de sensores reais de cor e atuadores mecânicos), este protótipo pode ser a base para sistemas automatizados de separação de resíduos em ambientes públicos, condomínios ou eventos.

9. CONSIDERAÇÕES FINAIS

O projeto de coleta seletiva com sensor de cor foi uma oportunidade de colocar em prática o uso de componentes eletrônicos e programação com Arduino. A ideia era identificar diferentes tipos de resíduos (papel, vidro, metal e plástico) e indicar o material por meio de LEDs e mensagens no display LCD. Com o tempo e os testes, conseguimos fazer tudo funcionar como planejado.

Durante o desenvolvimento, tivemos dificuldades iniciais com o display LCD e com o código, especialmente para fazer as mensagens aparecerem corretamente e ligar os LEDs conforme os valores lidos. No entanto, com o tempo e com os testes feitos em aula e nas simulações, o entendimento ficou muito mais fácil, e conseguimos montar um circuito funcional que cumpre seu objetivo.

Além da parte técnica, o projeto também reforçou a importância da educação ambiental e mostrou como a tecnologia pode ser usada de forma simples para ajudar na conscientização sobre a coleta seletiva. Aprendemos bastante sobre trabalho em equipe, lógica de programação e sobre como usar sensores e atuadores de maneira criativa.

10. REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL. Ministério do Meio Ambiente. Política Nacional de Resíduos Sólidos. Lei nº 12.305, de 2 de agosto de 2010. Disponível em:

https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm

AUTODESK. Tinkercad Circuits. Simulador online de circuitos. Disponível em: https://www.tinkercad.com/circuits

Liquid Crystal Displays (LCD) with Arduino Disponível em: https://docs.arduino.cc/learn/electronics/lcd-displays/

BRASIL. Ministério do Meio Ambiente. Política Nacional de Resíduos Sólidos: Lei nº 12.305, de 2 de agosto de 2010. Disponível em:

https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Acesso em: 11 jul. 2025.

AUTODESK. Tinkercad Circuits: simulador online de circuitos. Autodesk, 2024. Disponível em: https://www.tinkercad.com/circuits. Acesso em: 11 jul. 2025.

ARDUINO. Liquid Crystal Displays (LCD) with Arduino. Arduino Docs, 2023. Disponível em: https://docs.arduino.cc/learn/electronics/lcd-displays/. Acesso em: 11 jul. 2025.

ARDUINO. Arduino Education: aplicações de sensores, potenciômetros e displays em projetos didáticos. 2023. Disponível em:

https://www.arduino.cc/en/Main/Education. Acesso em: 11 jul. 2025.