Wydział FiIS	Imię i nazwisko 1. Piotr Kowale 2. Marcin Polo	czyk	Rok IV	Grupa 2	Zespół 2		
LABORATORIUM DETEKCJI PROMIENIOWANIA	Temat Badanie licznika półprzewodnikowego						
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA		
3.11.2016	30.11.2016						

1 Wstęp teoretyczny

pruda piotr

2 Przebieg ćwiczenia

- Sprawdzamy poprawność podłączenia układu pomiarowego.
- \bullet Wykonujemy pomiar widma ^{55}Fe dla rosnących wartości napięcia polarywacji.
- Zamiast detektora, pod układ pomiarowy podpinamy generator sygnałów.
- Ustawiamy generator tak, aby generował sygnał testowy, czyli prostokątny o częstotliwości 100 Hz.
- Mierzymy odpowiedź analizatora, przy ustalonym czasie pomiaru, na sygnały testowe dla różnych amplitud generowanego sygnału.
- Odłączamy generator sygnałów.
- Ponownie mierzymy widmo ^{55}Fe , dla $U_{bias} = 200V$ oraz t = 300s.
- Do pomierzonego widma fitujemy funkcję gaussa, i zapisujemy wyniki.
- Analogicznie mierzymy i dopasowywujemy widmo dla $^{109}Cd,$ dla $U_{bias}=200V$ oraz t=300s.
- Pomierzyliśmy analogiczne i dopasowaliśmy gaussa dla widma srebra, ale przez niedopatrzenie, zapisaliśmy tylko wyniki fitu.

3 Wyniki

Rysunek 1: Widmo żelaza dla napięć polaryzacji $40\mathrm{V},\,60\mathrm{V},\,80\mathrm{V},\,100\mathrm{V},\,120\mathrm{V},\,140\mathrm{V},\,160\mathrm{V},\,200\mathrm{V}.$

Rysunek 2: Widmo żelaza przy podanym napięciu 60V.

Rysunek 3: Widmo żelaza przy podanym napięciu 80V.

Rysunek 4: Widmo żelaza przy podanym napięciu 100V.

Rysunek 5: Widmo żelaza przy podanym napięciu 120V.

Rysunek 6: Widmo żelaza przy podanym napięciu 140V.

Rysunek 7: Widmo żelaza przy podanym napięciu 160V.

Rysunek 8: Widmo żelaza przy podanym napięciu 200V.

4 Wnioski

5 Dane pomiarowe

Tabela 1: Pomiary pików i ich szerokości połówkowych. Źródłem było Fe-55.

	k	$-\alpha$	k_{β}		
U[V]	peak	FWHM	peak	FWHM	
200	1425,31	56,14	1565,58	52,93	
160	$1425,\!11$	54,3	1563,44	$36,\!29$	
140	1424,3	51,79	1562,68	44,91	
120	$1424,\!21$	54,79	1565,34	$51,\!33$	
100	$1423,\!45$	58,1	1558,64	44,7	
80	1423,45	$74,\!27$	_	-	

Literatura

[1] Skrypt Ćwiczenia laboratoryjne z jądrowych metod pomiarowych dostępny pod adresem: http://winntbg.bg.agh.edu.pl/skrypty3/0364/dziunikowski-kalita.pdf