

Joint posterior	likelihood uniformed priors uniformed
	Inverse Gamma (x, λ) Prior for σ^2 and σ^2 Uniform uninformed Uniform uninformed Priors for σ and σ Prior σ and σ σ σ σ σ σ σ σ
	$X = \frac{1}{2}$ $\lambda = \sum (y_i - (\alpha + \beta x_i))^2$ Full Conditional for σ^2 : $(\sigma^2 x, \beta, \vec{y}, \vec{x}) \sim IG(\frac{1}{2}, \sum (y_i - (\alpha + \beta x_i))^2)$
no.	Full Conditional for $X: (X \sigma^2, \beta, \psi, \bar{X}) \sim N(\frac{E(y_i - \beta x_i)}{n}, \frac{\sigma^2}{n})$ $= \frac{1}{2\sigma^2} (y_i - \beta x_i - \alpha)^2 - \frac{1}{2\sigma^2} (y_i - \beta x_i)^2 - 2x(y_i - \beta x_i) + \alpha^2)$ $= \frac{1}{2\sigma^2} (\frac{E}{i=1} (y_i - \beta x_i)^2 - 2\alpha \frac{E}{i=1} (y_i - \beta x_i) + \alpha^2)$ $= \frac{1}{2\sigma^2} (\frac{E}{i=1} (y_i - \beta x_i)^2 - 2\alpha \frac{E}{i=1} (y_i - \beta x_i) + \alpha^2)$ $= \frac{1}{2\sigma^2} (\frac{E}{i=1} (y_i - \beta x_i)^2 - 2\alpha \frac{E}{i=1} (y_i - \beta x_i) + \alpha^2)$

regression line along w/ 95% credible bounds for the line

* Trace plots, Hist, ACF For o 2 X B

V coord correspond to OXN, BN