Quantum Computing CHEAT SHEET for circuit ungicions

Bits and Qubits

Instead of classical bits, quantum computers use quantum bits (or qubits for short).

Multiple qubits form a **register**. The number of computational states doubles with each new qubit. A state with multiple qubits involved is often denoted like $|00\rangle = |0\rangle \otimes |0\rangle$ (where \otimes is the tensor product)

# qubits	# basis states	example
1	2	$igotimes_{_{[0]}}igotimes_{_{[1]}}rac{1}{\sqrt{2}} 0 angle-rac{1}{\sqrt{2}} 1 angle$
2	4	$ _{\scriptscriptstyle (0)} _{\scriptscriptstyle (1)} _{\scriptscriptstyle (2)} _{\scriptscriptstyle (3)} $
3	8	$ \bigoplus_{(0)} (\widehat{\Phi}_{(1)} \widehat{\Phi}_{(2)} \bigoplus_{(3)} (\widehat{\Phi}_{(3)} \widehat{\Phi}_{(4)} \bigoplus_{(5)} (\widehat{\Phi}_{(6)} \bigoplus_{(7)} \frac{1}{2\sqrt{2}} 000\rangle - \frac{1}{2\sqrt{2}} 001\rangle - \frac{1}{2\sqrt{2}} 010\rangle + \frac{1}{2\sqrt{2}} 011\rangle + \frac{1}{2\sqrt{2}} 111\rangle + \frac{1}{2\sqrt{2}$

Two or more qubits can be **entangled**, meaning that the state cannot be factorized as a product of states:

created, for example, with this circuit

Hadamard maps |0>

to $|+\rangle$ and $|1\rangle$ to $|-\rangle$;

used to create an egual superposition

S is a 90° rotation around the z-axis;

in the opposite direction

S S = Z ; The inverse S rotates

T is a 45° rotation

around the z-axis;

The inverse 🔳 rotates in

the opposite direction

One-Qubit Gates				
Gate	Matrix	Ket and circle notation		
Pauli-X is a 180° rotation around the x-axis; also known as the quantum NOT gate	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$a 0 angle + b 1 angle \qquad b 0 angle + a 1 angle \qquad b 0 angle + a 1 angle$		
Pauli-Y is a 180° rotation around the y-axis	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$a 0 angle + b 1 angle \qquad \qquad -ib 0 angle + ia 1 angle \qquad \qquad 0 = 0$		
Pauli-Z is a 180° rotation around the z-axis	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	a 0 angle+b 1 angle $a 0 angle-b 1 angle$ $a 0 angle-b 1 angle$		

 $a|0\rangle + be^{i\frac{\pi}{4}}|1\rangle$

 $a|0\rangle + b|1\rangle$

 $a|0\rangle + b|1\rangle$

Building Blocks for Quantum Algorithms

There are many clever ways to arrange quantum circuits. A couple of them

Increment & decrement are used to add or subtract one from a register and are an example of how to do arithmetic with quantum gates.

Swap test allows for checking how similar the states in two registers are

Quantum Fourier Transform can reveal the signal frequency in a register. Among other algorithms, it is used in Shor's algorithm for factoring numbers and computing the discrete logarithm.

over the qubit Count: -90°, -45°, -22.5°, .