```
R: {(x,y) for (x,y) ∈ A<sup>2</sup> if xRy}
```

$$T \cdot R$$
: $\{\langle a,c \rangle \mid \exists b \in B (\langle a,b \rangle \in T \land \langle b,c \rangle \in R)\}$

$$R^2$$
: aR^2 c \leftrightarrow {(a,c) | \exists b \in A ((a,b) \in R \land (b,c) \in R)}

an ordered pair $\langle a,c \rangle \in \mathbb{R}^2$ means there's a "middle" b \in B that satisfies $\langle a,b \rangle \in \mathbb{R}$ \land $\langle b,c \rangle \in \mathbb{R}$

Examples

•
$$(a=-b)^2 = I_{\mathbb{R}}$$

•
$$\langle a,b \rangle \in \mathbb{R}^2 \Leftrightarrow \langle a,c \rangle, \langle c,b \rangle \in \mathbb{R}$$

Empty ø_∧

$$R := rel(A \times B) = \emptyset$$

No pair \in AimesB satisfies \langle a,bangle \in R

Properties

•
$$S \cdot \varnothing_{\Delta} = \varnothing$$

- anti-symmetric
- symmetric ?

Examples

•
$$\{\langle x,y\rangle \in \mathbb{N}^2 \mid x+y < x\}$$

Identity $oldsymbol{I}_{\mathsf{A}}$

Properties

$$\bullet \quad R \cdot I_{\mathsf{A}} = R$$

Reflexivity

R:=rel(A) is reflexive if $\forall a \in A(\langle a,a \rangle \in R)$

 $m{R}$ is reflexive if every a \in A satisfies $\langle a,a \rangle \in m{R}$. In other words:

$$I_{\mathsf{A}} \subseteq R$$

$$A = \{ -1, 0, 1 \}$$
. Is \cdot contained $\in R$?

$$R = lambda \ a,b: a o b; all(R(x,x) for x \in A)?$$

Properties

•
$$R^{-1}$$
 is reflexive

•
$$\rightarrow R \subseteq R^2$$
 (and R^2 is reflexive)

- $\rightarrow R \subseteq R^2$
- if $S \subseteq R$ then S is reflexive
- if S is reflexive then both $R \cup S$ \land $R \cap S$ are reflexive

Examples

- U_{Δ} : $\forall a \in A(\langle a,a \rangle \in A \times A = UA)$
- I_A : $\forall a \in A (\langle a,a \rangle \in \{\langle -1, -1 \rangle, \langle 0, 0 \rangle, \langle 1, 1 \rangle\})$
- ≤, ≥ both contain ·.

Counter Examples

- \neq (which is $U_A IA$)
- <, >, Ø_Δ
- a=-b ∴

Anti-Reflexivity

R:=rel(A) is anti-reflexive iff $\neg\exists a\in A(\langle a,a\rangle\in R)$

R is reflexive if every a ∈ A satisfies (a,a) ∉ R. In other words:

$$I_{A} \cap R = \emptyset$$

just $I_A \nsubseteq R$ isn't enough; $I_A = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} \nsubseteq R = \{\langle 1,1 \rangle, \langle 1,2 \rangle\}$ but $\langle 1,1 \rangle \in R$ so isn't anti-reflexive

Examples

Counter Examples

•
$$U_{A}$$
, I_{A} , a=-b \cdot , \leq , \geq

Symmetry

 $R:=\mathsf{rel}(\mathsf{A})$ is symmetric iff $R=R^{-1}$

R is symmetric if every $\langle x,y \rangle \in R$ satisfies $\langle y,x \rangle \in R$ assuming both $x \land y$ exist $\in A$

$$\forall \times \forall y (\langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$$

R = lambda a,b: a⊙b; all(rel(y,x) for x,y ∈ R)?

<u>Properties</u>

- if S is symmetric then both $R \cup S$ \wedge $R \cap S$ are reflexive
- if S is symmetric then $R \setminus S$ is symmetric

Examples

• $\varnothing_{\mathbf{A}}$ can't point at $\langle \mathsf{x},\mathsf{y} \rangle$ \wedge say $\langle \mathsf{y},\mathsf{x} \rangle$ is $\neg \in \varnothing^{-1}$

• U_{Δ} , I_{Δ} , a=-b \therefore , \neq

Counter Examples

≤, ≥, <, >

Anti-Symmetry

R := rel(A) is anti-symmetric iff $R \cap R^{-1} = \emptyset$

R is anti-symmetric if every $(x,y) \in R$ satisfies $(y,x) \notin R$ $\forall x \forall y ((x,y) \in R \rightarrow (y,x) \notin R)$

 $R \cap R^{-1} = \emptyset$ means there can't be a $\langle x, x \rangle$

Properties

- → R is anti-reflexive
- $\rightarrow R^{-1}$ is anti-symmetric
- if $S \subseteq R$ then S is anti-symmetric
- if $S \cup T$ is anti-symmetric then both $S \wedge T$ are anti-symmetric
- $\rightarrow R \cap S$ is anti-symmetric
- if R is antireflexive Λ transitive then it's asymmetric Λ anti-symmetric

Examples

- <, >, Ø
- $b > a^2$

Counter Examples

- \neq , \leq , \geq , U_{Δ} , I_{Δ} , a=-b \cdot , \neq
- $b < a^2$ (3,4) \wedge (4,3) are symmetric

Weak Anti-Symmetry

$$R \cap R^{-1} \subseteq I_A$$

 $\forall x \forall y (\langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$

if both $\langle x,y \rangle \in R$ \wedge $\langle y,x \rangle \in R$ it's only because they're equal

for x,y ∈ A: if x≠y ∧ (x,y) ∈ R then must (y,x) ∉ R A_S vs WA_S: A_S requires every pair's opposite to ¬ be ∈ R, whereas WA_S requires the same only for pairs that x=y

Examples

• I_A

Transitivity

$$R^2 \subseteq R$$

 $\forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$

Every $(x,y,z)\in A$ that satisfy $(x,y)\in R$ \land $(y,z)\in R$ also satisfy $(x,z)\in R$

If you see an x that leads to y that leads to z, then expect x to lead to z this is why $R^2 \subseteq R$

Properties

• if T is symmetric Λ anti-symmetric then it's also transitive

Examples

- $A=\{1,2,3\}$; $R=\{\langle 1,2\rangle, \langle 2,3\rangle, \langle 1,3\rangle\} \Rightarrow R^2=\{\langle 1,3\rangle\} \subseteq R$
- $A = \{1, 2, 3\}$; $T = \{\langle 1, 2 \rangle\} \Rightarrow T^2 = \emptyset \subseteq T$
- $W = \{(1,1)\} \Rightarrow W^2 = \{(1,1)\} \subseteq W$
- I_A
- Ø_Δ
- U_{Λ} if $\langle a,b \rangle \in A^2 \land \langle b,a \rangle \in A^2$ then $\langle a,c \rangle \in A^2$
- if |A| > 1 then ≠ is trans
- <, ≤

Counter Examples

- $P = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle\} \Rightarrow P^2 = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle\} \not\subseteq P$ iow: 1 leads to 2 leads to 1, but $\langle 1, 1 \rangle \not\subseteq P$
- $\exists x \exists y \exists z (R(x,y) \land R(y,z) \land \neg R(x,z))$

Equivalance

 $m{R}$ over A is equivalence iff $m{R}$ is reflexive, symmetric $m{\Lambda}$ transitive

Examples

- \bullet $\overline{U_{A}}$, I_{A} , equality
- "Has the same absolute value" on the set of real numbers
- if $A=\emptyset$ then \emptyset_Λ is symmetric, transitive Λ reflexive

Counter Examples

- ≥ reflexive ∧ transitive but ¬ symmetric
- if $A \neq \emptyset$ then \emptyset_A is symmetric Λ transitive, but \neg reflexive

```
Connexivity
lesson 7 00:06:00
R over A is connexive iff \forall (x,y) \in A (x \neq y \rightarrow \langle x,y \rangle \in R \lor \langle y,x \rangle
\in R)
0rder
lesson 7 00:00:00
Partial Order
R over A (≤) is a partial order iff it's antireflexive ∧
Properties

    Antisymmetric because antireflexive Λ transitive

Examples
 • \subset over \mathcal{P}(A)
???
for all a, b, Λ c:
 • a ≤ a reflex
 • if a ≤ b ∧ b ≤ a, then a = b antisymm
  • if a \le b \land b \le c, then a \le c trans
Examples

    equality

    ???
Total Order
Partial order A <u>connexive</u> (aka "linearly ordered")
\forall (x,y) \in A \ (x \neq y \rightarrow (x,y) \in R \ \lor (y,x) \in R) note the xor. verify
Examples
  • c over N also over R?
Counter Examples
  • if A\neq\emptyset then I_{\Lambda} isn't total order because for all aEA:
    a=a
```

Partitions

Partition of A is a set of non-empty, non-overlapping subsets of A whose u = A

Properties

- every aEA is E exactly one block
- no block contains ø
- u of blocks = A
- n of any two blocks = Ø
- \rightarrow A is finite \Rightarrow rank of P is |X| |P|?

Examples

- {A} is partition of A trivial
- ø's only partition is ø
- {1,2,3} has five partitions: {{1},{2},{3}}, {{1, 2}, {3}}, {{1, 3},{2}}, {{1},{2, 3}}, {{1, 2, 3}}

Counter Examples

- ¬ partitions of {1,2,3}:

 - {{}, {1,3}, {2}} contains Ø {{1, 2}, {2, 3}} 2 exists ∈ more than one block
 - {{1}, {2}} no block contains 3

Equivalence Class: $\{x \in S \mid x \equiv a\}$ where $a \in S$

Given $oldsymbol{\mathit{R}}$ is an equivalence relation on S, the equivalence class of an element a $\in S$ is the set $\{x \in S \mid \langle x, a \rangle \in R\}$

 $\llbracket a \rrbracket = \{b \mid aRb\} = \{b \mid \langle a,b \rangle \in R\}$ all elements $\in S$ that when paired with a, exist $\in R$

In other words: going over R, the elements \in \llbracket arbracket are all the elements that a is paired with

Properties

- || of all equivalence classes = S ?
- every element exists E its equivalence class
- ullet the items ullet each equivalence class of S exist only ullettheir equivalence class ?
- every possible pair of eq. classes is zar ?

Examples

- X = all cars; relation \equiv_{Y} = "has the same color as"; one particular equivlance class consists of all green cars
- Relation \equiv_{π} is $(a,b) \in \equiv_{\pi} \Leftrightarrow (a-b) \cdot 2 = \emptyset \Rightarrow two equivalence$ classes: even numbers Λ odd numbers

```
    S = {1,2,3,4,5}
    □ ≡<sub>S</sub> = {⟨1,1⟩, ⟨1,2⟩, ⟨1,3⟩, ⟨2,2⟩, ⟨3,3⟩, ⟨4,4⟩, ⟨5,5⟩, ⟨2,1⟩, ⟨2,3⟩, ⟨3,2⟩, ⟨3,1⟩}
    □ [1] = {1, 2, 3} everything that 1 is related to
    □ [2] = {2, 1, 3}
    □ [3] = {3, 2, 1} note that [1] ≡ [2] ≡ [3]
    □ [4] = {4}
    □ [5] = {5}
```