1. Показатель, к которому принадлежит вычет. Свойства.

Показатель, к которому принадлежит вычет

Определение

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}_p$, $a \neq 0$, $d \in \mathbb{N}$. Вычет *а принадлежит к показателю d*, если $a^d = 1$, но $a^s \neq 1$ при $s \in \mathbb{N}$, s < d. Обозначение: $a \in_p d$.

$$Z_5 = \{0, 1, 2, 3, 4\}$$

 $2^1 = 2$; $2^2 = 4$; $2^3 = 3$; $2^4 = 1$, то есть вычет 2 принадлежит к показателю 4

 $3^1=3;\ 3^2=4;\ 3^3=2;\ 3^4=1$, то есть вычет 3 принадлежит к показателю 4

Лемма 1

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}_p$. Тогда выполнены следующие утверждения.

- 1) Если $a^d = 1$ и $a \in_p s$, то $s \mid d$.
- 2) Если $a \in_{p} d$, то $d \mid p 1$.

Доказательство. 1) • Предположим противное и поделим d на s с остатком: d = sq + r, 0 < r < s.

$$ullet$$
 Тогда $1 = a^d = a^{sq+r} = (a^s)^q \cdot a^r = a^r$,

что противоречит минимальности s.

2) По теореме Эйлера $a^{p-1}=1$. Тогда по пункту 1 имеем $d\mid p-1$.

Важным следствием теоремы Эйлера для случая простого модуля является малая теорема Ферма:

Если a не делится на простое число p, то $a^{p-1} \equiv 1 \pmod p$.

2. Количество корней многочлена $t^d - 1$ в \mathbb{Z}_p , где $p - 1 \ \vdots \ d$.

Лемма 2

Если $p \in \mathbb{P}$ и $d \mid p-1$, то многочлен $t^d-1 \in \mathbb{Z}_p[t]$ имеет ровно d корней, все они не 0.

Доказательство. • Многочлен $t^{p-1}-1$ имеет в $\mathbb{Z}_p[t]$ ровно p-1 корень (по теореме Эйлера, все ненулевые вычеты его корни).

Теорема 15

Пусть
$$m \in \mathbb{N}$$
, $a \in \mathbb{Z}$, $(a,m) = 1$. Тогда $a^{arphi(m)} \equiv 1 \pmod m$

Важным следствием теоремы Эйлера для случая простого модуля является малая теорема Ферма

Если
$$a$$
 не делится на простое число p , то $a^{p-1} \equiv 1 \pmod p$.

$$t^{p-1}=1$$
 в $Z_p[t]$
$$t^{p-1}-1=0$$
 в $Z_p[t]$
$$t^4-1=(t^2+1)(t^2-1)=(t^2+1)(t-1)(t+1); p=5$$
 Какие тут корни: $t=1; t=-1=4; t=2; t=3$

- ullet Пусть p-1=qd. Тогда $t^{p-1}-1=(t^d-1)(t^{(q-1)d}+\cdots+t^d+1)=:(t^d-1)f(t).$
- ullet Так как $\deg(f)=(q-1)d$, этот многочлен по Теореме 3.7 имеет не более (q-1)d корней.

Теорема 7

Пусть K — поле, $f \in K[t]$, $\deg(f) = n$, $\alpha_1, \ldots, \alpha_k \in K$ — все различные корни f, причем корень α_i имеет кратность m_i . Тогда:

- 1) $f(t) : \prod_{i=1}^{k} (t \alpha_i)^{m_i};$
- 2) $m_1 + \cdots + m_k \le n$. В частности, $k \le n$.

ullet Если t^d-1 имеет менее d корней, то $t^{p-1}-1=(t^d-1)f(t)$ имеет менее d+(q-1)d=p-1 корней, противоречие.

3. Количество вычетов, принадлежащих к показателю d.

Теорема 1

Если $p \in \mathbb{P}$ и $d \mid p-1$, то к показателю d принадлежит ровно $\varphi(d)$ вычетов.

Доказательство. ullet Индукция по d. База d=1 очевидна: $a\in_{p}1\iff a=1$.

Пусть p = 5. То есть $Z_p = \{0, 1, 2, 3, 4\}$

4:1;4:2;4:4

К показателю d должно принадлежать $\varphi(4) = 2$ вычета

$$a^1 - 1 = 0$$
; $a = 1$

$$a^2 - 1 = 0$$
; $a = 1$ и $a = 4$

$$a^4 - 1 = 0$$
; $a = 1$ и $a = 4$

То есть к показателю d принадлежит 2 вычета

Доказательство. ullet Индукция по d. База d=1 очевидна: $a\in_p 1\iff a=1.$

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}_p$, $a \neq 0$, $d \in \mathbb{N}$. Вычет *а принадлежит к показателю d*, если $a^d = 1$, но $a^s \neq 1$ при $s \in \mathbb{N}$, s < d. Обозначение: $a \in_p d$.

Только одно число в 1-ой степени выдаст 1: собственно 1 ©

- ullet Все вычеты, принадлежащие к показателю d, являются корнями многочлена t^d-1 .
- ullet Если $s \mid d$ (скажем, d = qs) и $b \in_p s$, то $b^d = (b^s)^q = 1$, то есть, b корень $t^d 1$.
- ullet Так как каждый ненулевой вычет принадлежит в точности одному показателю, вычеты, принадлежащие собственным делителям d дают нам

$$\sum_{s \mid d, \, s < d} \varphi(s) = \left(\sum_{s \mid d} \varphi(s)\right) - \varphi(d) = d - \varphi(d)$$
 различных

корней многочлена t^d-1 (последнее равенство верно по Теореме 2.17).

Вычли $\varphi(d)$, потому что d = s — это делитель d. A d в свою очередь — делитель p-1. A мы считаем собственные делители d.

Для любого
$$n \in \mathbb{N}$$
 $\sum_{d \in \mathbb{N}, \ d \mid n} \varphi(d) = n.$

• Оставшиеся $d-(d-\varphi(d))=\varphi(d)$ корней многочлена t^d-1 принадлежат к d (по Лемме 1 они должны принадлежать к делителю d, а этим делителем может быть только само d). \square