Claims

[1]	An XML processor comprising:
	a first memory storing software for performing an XML processing, variables,
	and values required to execute software;
	a hardware processing module performing a part of the XML processing in a
	hardware manner;
	a second memory employed by the hardware processing module; and
	a CPU controlling the XML processing by the software stored in the first
	memory.
[2]	The XML processor according to claim 1, wherein the hardware processing
	module performs a memory management function used in XML parsing, i.e.,
	assignment, return, and reassignment of memory among XML processing
	functions.
[3]	The XML processor according to claim 2, wherein the hardware processing
	module processes assignment, reassignment, and return of memory with respect
	to XML elements which are expressed as nodes and a tree relation between the
	nodes, the module comprising:
	a node usage check table divided into several blocks, each block indicating
	whether to use a corresponding node table;
	a node table managing the whole information that each node has to store, i.e., a
	node name, a node type, a parent node, a child node, and the like; and
	a node memory storing actual content of every component of the node table.
[4]	The XML processor according to claim 3, wherein the node table has addresses
	in which every component on the node memory is respectively stored.
[5]	The XML processor according to claim 1, wherein the hardware processing
	module performs an XML DTD processing.
[6]	The XML processor according to claim 1, wherein the hardware processing
	module performs a state machine of an XML schema.
[7]	An XML processing method performed in a system having an independent
	hardware-based first XML processor and a software-based second XML
	processor, the method comprising:
	checking a size of an XML file to be processed;
	performing an XML processing by the second XML processor if a size of the
	XML file to be processed is larger than an established size; and

performing an XML processing by the first XML processor if a size of the XML file to be processed is not larger than the established size.

- [8] The method according to claim 7, further comprising: checking whether establishment of a tree is necessary after the XML processing; performing the XML processing by the second XML processor if the establishment of the tree is not necessary; and performing the XML processing by the first XML processor if the establishment of the tree is necessary.
- [9] The method according to claim 7, further comprising: checking whether a fast processing is necessary; performing the XML processing by the second XML processor if the fast processing is not necessary; and performing the XML processing by the first XML processor if the fast processing is necessary.