External

Registers

ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers, n = 0 - 3

The ICH AP1R<n> EL2 characteristics are:

Purpose

Provides information about Group 1 virtual active priorities for EL2.

Configuration

AArch64 System register ICH_AP1R<n>_EL2 bits [31:0] are architecturally mapped to AArch32 System register ICH_AP1R<n>[31:0].

This register is present only when FEAT_GICv3 is implemented and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to ICH_AP1R<n>_EL2 are undefined.

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ICH AP1R<n> EL2 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39 3	38 3	37 3
NM	I													RES	50											
P31	P30	P29	P28	P27	P26	P25	P24	P23	P22	P21	P20	P19	P18	P17	P16	P15	P14	P13	P12	P11	P10	P9	P8	27 F	² 6P	25 P
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4

NMI, bit [63] When FEAT GICv3 NMI is implemented and n == 0:

Indicates whether the running virtual priority is from a NMI.

NMI	Meaning
0b0	There is no active Group 1 NMI,
	or all active Group 1 NMIs have
	undergone priority drop.
0b1	There is an active Group 1 NMI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

Bits [62:32]

Reserved, res0.

P < x >, bit [x], for x = 31 to 0

Group 1 interrupt active priorities. Possible values of each bit are:

P <x></x>	Meaning
0b0	There is no Group 1 interrupt
	active with this priority level, or
	all active Group 1 interrupts with
	this priority level have
	undergone priority-drop.
0b1	There is a Group 1 interrupt
	active with this priority level
	which has not undergone priority
	drop.

The correspondence between priority levels and bits depends on the number of bits of priority that are implemented.

If 5 bits of preemption are implemented (bits [7:3] of priority), then there are 32 preemption levels, and the active state of these preemption levels are held in ICH_AP1R0_EL2 in the bits corresponding to Priority[7:3].

If 6 bits of preemption are implemented (bits [7:2] of priority), then there are 64 preemption levels, and:

- The active state of preemption levels 0 124 are held in ICH AP1R0 EL2 in the bits corresponding to 0:Priority[6:2].
- The active state of preemption levels 128 252 are held in ICH AP1R1 EL2 in the bits corresponding to 1:Priority[6:2].

If 7 bits of preemption are implemented (bits [7:1] of priority), then there are 128 preemption levels, and:

- The active state of preemption levels 0 62 are held in ICH_AP1R0_EL2 in the bits corresponding to 00:Priority[5:1].
- The active state of preemption levels 64 126 are held in ICH_AP1R1_EL2 in the bits corresponding to 01:Priority[5:1].

- The active state of preemption levels 128 190 are held in ICH AP1R2 EL2 in the bits corresponding to 10:Priority[5:1].
- The active state of preemption levels 192 254 are held in ICH AP1R3 EL2 in the bits corresponding to 11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both <a href="ICH_APOR<n>_EL2">ICH_APOR<n>_EL2 and <a href="ICH_APIR<n>_EL2">ICH_APIR<n>_EL2 might result in unpredictable behavior of the interrupt prioritization system for virtual interrupts.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

This register is always used for legacy VMs, regardless of the group of the virtual interrupt. Reads and writes to <u>GICV_APR<n></u> access <u>ICH_AP1R<n>_EL2</u>. For more information about support for legacy VMs, see 'Support for legacy operation of VMs' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Accessing ICH_AP1R<n>_EL2

ICH_AP1R1_EL2 is only implemented in implementations that support 6 or more bits of preemption. ICH_AP1R2_EL2 and ICH_AP1R3_EL2 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are undefined.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits

Writing to these registers with any value other than the last read value of the register (or 0×00000000 for a newly set up virtual machine) can result in unpredictable behavior of the virtual interrupt prioritization system allowing either:

Writing to the active priority registers in any order other than the following order will result in unpredictable behavior:

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_AP1R<m $>_EL2$; Where m = 0-3

op0	op1	CRn	CRm	op2			
0b11	0b100	0b1100	0b1001	0b0:m[1:0]			

```
integer m = UInt(op2<1:0>);
if m == 1 && NUM GIC PREEMPTION BITS < 6 then
   UNDEFINED;
elsif (m == 2 | m == 3) && NUM GIC PREEMPTION BITS
< 7 then
   UNDEFINED;
elsif PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
        X[t, 64] = NVMem[0x4A0 + (8 * m)];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if ICC_SRE_EL2.SRE == '0' then
       AArch64.SystemAccessTrap(EL2, 0x18);
        X[t, 64] = ICH\_AP1R\_EL2[m];
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = ICH\_AP1R\_EL2[m];
```

MSR ICH_AP1R<m>_EL2, <Xt>; Where m = 0-3

op0	op1	CRn	CRm	op2			
0b11	0b100	0b1100	0b1001	0b0:m[1:0]			

```
integer m = UInt(op2<1:0>);

if m == 1 && NUM_GIC_PREEMPTION_BITS < 6 then
        UNDEFINED;
elsif (m == 2 || m == 3) && NUM_GIC_PREEMPTION_BITS
< 7 then
        UNDEFINED;
elsif PSTATE.EL == ELO then
        UNDEFINED;</pre>
```

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
   AArch64.SystemAccessTrap(EL2, 0x18);
   else
       UNDEFINED;
elsif PSTATE.EL == EL2 then
   if ICC_SRE_EL2.SRE == '0' then
       AArch64.SystemAccessTrap(EL2, 0x18);
   else
       ICH\_AP1R\_EL2[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
   if ICC_SRE_EL3.SRE == '0' then
       AArch64.SystemAccessTrap(EL3, 0x18);
   else
       ICH\_AP1R\_EL2[m] = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.