Week 3_12 Spatial Regressions

CRP 3850/5850

Yujin Hazel Lee Wenzheng Li

Objectives

- Introduce new spatial terms
- Learn different types of spatial models and their use
- Run regressions for different models

Highly Recommended Readings

- Lesage, J., 2014. What Regional Scientists
 Need to Know about Spatial Econometrics
- Chi and Zhu, 2008. Spatial Regression Models for Demographic Analysis
- Ruttenauer, T., 2019. Spatial Regression Models: A Systematic Comparison of Different Model Specifications Using Monte Carlo Experiments

Spatial Regression Models for Demographic Analysis

Published: 27 September 2007

Volume 27, pages 17-42, (2008) Cite this article

Spatial Regression Models: A Systematic Comparison of Different Model Specifications using Monte Carlo Experiments

Tobias Rüttenauer

Nuffield College University of Oxford New Road Oxford, OX1 1NF United kingdom tobias.ruttenauer@nuffield.ox.ac.uk

RECAP

Spatial Weights – contiguity/ distance-based/block weight/ Kernel matrices

Spatial Autocorrelation – Global Moran's I, LISA map

Linear Regressions - OLS, Interpreting results

Spatial Regressions

What is a Spatial Lag?

- In linear regressions, a 'lag' shifts the variable by one or more periods in time
- The 'spatial lag operator' (Wy or Wx or Wu) relates a variable at one point in space to the observation for that variable in other spatial units in the system
- We assume that the values in one unit are indirectly influenced by the values found in the neighbors

	Α	В	O	О	Е
Α	0	1	1	1	0
В	1	0	1	0	1
С	1	1	0	1	1
D	1	0	1	0	1
Е	0	1	1	1	0

Spatial Characteristics and Terminology

- **Spatial Dependence** (= Spatial Autocorrelation) lack of independence between observations it relates to the characteristics of the observations in the dataset (i.e. distance)
- Spatial Heterogeneity lack of stability over space and the behavior of other relationships – geographical characteristics are considered as spatial heterogeneity
- Spatial Regimes aggregation of neighboring units that are homogenous in functional terms that "share the same relationship between a dependent variable and some covariates (i.e. urban/rural areas; coastal areas)

What is a Spatial Regression?

- Assumes that spatial diffusion affects the choices and behavioral patterns of regions - adding spatially weighted variables into the regression
- Based on the idea that social events are not simply an artifact of observed and unobserved variables, there's a spatial component to understand neighbors' behaviors
- Depending on whether the dependent variable or independent variable is lagged, the name of the models will vary (taxonomically)

• Spatial Regression is still a very new field, and is constantly developing

Taxonomy of Spatial Models

W = weights $\rho = autocorrelation \ parameter \ for \ y$ $\gamma = autocorrelation \ parameter \ for \ x$ $\lambda = autocorrelation \ parameter \ for \ u$

Spatial Spillovers

- Spatial Spillovers (Diffusion) results in Peer Effects (Indirect Effects)
- The effect that neighboring regions gives to you, rather than characteristics of your own region

Model Interpretation

- Python results will differ depending on the model you run
- Basic statistics such as p-values, t-stats, and r-squared can be interpreted as the same way as we did in the linear regression
- Results from the weighted (or lagged) variables will give you the spatial effects

SUMMARY OF OUTPUT: ORD	INARY LEAST SQUARES	5			
Data set :	unknown	-			
Veights matrix :					
Dependent Variable :I	nsurer Nonrenewals	Number of Observations:			
Mean dependent var :		Number of Variables : 1			
S.D. dependent var :	131.3436	Degree	es of Freedom	: 1263	
R-squared :	0.1764				
Adjusted R-squared :					
Sum squared residual:		F-sta	tistic	: 15.0284	
Sigma-square :	14410.524	Prob(i	F-statistic)	: 3.937e-42	
S.E. of regression :	120.044	Log l:	ikelihood	: -7947.541	
Sigma-square ML : 14196.952		Akaike	e info criterion	: 15933.082	
S.E of regression ML:	119.1510	Schwai	rz criterion	: 16031.049	
Variable	Coefficient	Std.Error	t-Statistic	Probability	
CONSTANT	-72.97667	26.25543	-2.77949	0.00553	
Avg_Risk	1.82673	10.35052	0.17649	0.85994	
POP_SQMI	0.00075	0.00099	0.75799	0.44860	
Hous_Burd	1.67922	1.03101	1.62872	0.10362	
Education	2.16290	0.74618	2.89864	0.00381	
Poverty	-2.03009	0.66620	-3.04727	0.00236	
Unemployment	-1.07390	1.51413	-0.70925	0.47830	
Ling_Iso	-1.78042	0.91266	-1.95080	0.05130	
0zone	3563.57676	2245.98469	1.58664	0.11284	
PM25	20.64495	6.10145	3.38361	0.00074	
W_Avg_Risk	26.58061	14.13528	1.88044	0.06028	
W_POP_SQMI	-0.00045	0.00118	-0.38539	0.70002	
W Hous Burd	2.44505	1.59971	1.52843	0.12666	
W_Education	3.31552	1.11298	2.97895	0.00295	
W_Poverty	-3.04462	0.96934	-3.14092	0.00172	
W Unemployment	7.78908	2.77846	2.80338	0.00513	
W_Ling_Iso	-3.88419	1.32753	-2.92587	0.00350	
W_Ozone	936.12278	2287.16269	0.40929	0.68239	
W_PM25	-23.21078	6.57040	-3.53263	0.00043	
DECRECATION DIAGNOSTICS					
REGRESSION DIAGNOSTICS MULTICOLLINEARITY COND		185.697			
TEST ON NORMALITY OF E	RRORS				
TEST ON MONTHEETT OF E	DF	VALUE	PROB		
Jarque-Bera	2	7802.166	0.0000		
•		.0021100	0.0000		
DIAGNOSTICS FOR HETERO RANDOM COEFFICIENTS	SVEDASITCITY				
TEST	DF	VALUE	PR0B		
Breusch-Pagan test	18	724.080	0.0000		
Koenker-Bassett test	18	110.016	0.0000		
	====== END OF F	REPORT			

Model Interpretation

- Direct and Indirect Effects are given separately for spatial regressions
- Direct Effects (Local effects) how the independent variables within my area is correlated with the dependent variable within my area
- Indirect Effects (Extralocal Effects) –
 known as the spillover effect. How the
 independent/dependent variables from
 my neighbors explains my dependent
 variable

Table 2. Logistic Coefficients for Regression Analyses of Residential Mobility Out of Census Tract of Origin: White PSID Householders, 1980 to 2003

	Model 1		Model 2	
Independent Variables	b	SE	b	SE
Extralocal Neighborhood Conditions				
Minority concentration in distance-weighted surrounding neighborhoods			0092***	.0021
Multiethnic indicator for distance-weighted surrounding neighborhoods			0971**	.0350
Change in minority concentration in distance-weighted surrounding neighborhoods			.0445**	.0163
Local Neighborhood Conditions				
Minority concentration	.0159**	.0053	.0231***	.0059
Squared minority concentration	0003*	.0001	0004**	.0002
Cubed minority concentration ^a	.0002*	.0001	.0002*	.000
Multiethnic indicator	.0884**	.0332	.0848*	.033
Change in minority concentration	.0075*	.0038	.0019	.004
Poverty level	0056	.0032	0067*	.003
Level of homeownership	0030**	.0011	0037***	.001
Level of single motherhood	.0010	.0023	0010	.002
Micro-Level Characteristics				
Age	1347***	.0062	1351***	.006
Age squared	.0010***	.0001	.0010***	.000
Female	.0634	.0506	.0549	.050
Education	.0310***	.0067	.0323***	.006
Family income (in \$1,000's)	.0007***	.0002	.0009***	.000
Employed	0486	.0616	0545	.061
Married	2298***		2370***	.044
Children	1055***		1069***	.016
Homeowner	-1.0504***		-1.0622***	.038
Household crowding	.0357***		.0347***	
Long-term resident	2442***		2357***	
Year (1980 = 0)	.0419***		.0427***	.003
Constant		6.695	-81.687***	6.810
Wald chi-square	4228.3	8	4290.2	20

Note: N of observations = 48,508; N of persons = 7,622.

^a Coefficients and standard errors multiplied by 100.

^{*} p < .05; ** p < .01; *** p < .001 (two-tailed tests).

Model Choice

- Substantive choice
 - i.e. if we're looking at voting results, because elections happen on a single day, it's hard to argue that the results from neighboring regions will spillover
- A lot of the spatial effects are not clear cut though
 - i.e. the feedback loop is unclear (whether there are global or local spillover effects)
 - Sometimes hard to discern to what extent indirect effects would exist – do we assume investment for infrastructure are local or global?

Model Choice

- Data Driven Approach
- Series of Lagrange-Multiplier tests that determine whether we would use a spatial lag or spatial error model

Non-Spatial Regressions

- Assumption: the errors are not correlated (complete spatial randomness of error terms)
- What if we see spatial autocorrelation in the error terms – would indicate that there are issues behind the structural ideas captured in the independent variables that have been unobserved

Non-Spatial Regressions

- Why not include regional dummy variable for each state or unit of observation?
 - Less parsimonious (the general rule of thumb is that the less variables are better)
 - Lost opportunity if interested in diffusion

Spatial Lag Model

- Global model where we assume that the y values of our neighbors will affect the y values of us
- i.e. adoption of solar panels; air pollution

https://www.msarrias.com/uploads/3/7/7/8/37783629/spatialeconometrics.pdf

Spatially Lagged X Model (SLX)

- Lagged X variable
- Assuming that the neighbor's x values will spillover to my Y
- If we're looking at the average number of pupils in a school district, the birthrate of my neighbors can also affect the pupils for school districts

https://www.msarrias.com/uploads/3/7/7/8/37783629/spatialeconometrics.pdf

Spatial Error Model

- Assumes that the y and xvariable is not subject to spatial diffusion
- Autocorrelation parameter would be zero
- No indirect (spillover) effects caused in this model
- There could be spatial issues that are not included in the model – usually justified theoretically.

Taxonomy of Spatial Models

Spatial Durbin Model

$$y = \rho W y + \alpha \imath_n + X \beta + W X \gamma + \epsilon$$

$$y = (I_n - \rho W)^{-1} (\alpha \imath_n + X \beta + W X \gamma + \epsilon)$$

Figure 2.2: The SDM for Two Regions

Lagged x and y

Spatial Durbin Error Model

Spatial Durbin Error Models

OLS: $y_i = \beta X_i + \varepsilon_i$

Error: $y_i = \beta X_i + (I - \lambda w_i)^{-1} \varepsilon$

SDEM: $y_i = \beta X_i + \theta(w_i X_i) + (I - \lambda w_i)^{-1} \varepsilon$

y_i	outcome variable for focal unit (i)
X_i	vector of covariates
β	coefficients for those covariates
$w_i X_i$	For each x in the vector of covariates, the average value of all neighbors of focal unit (i), based on a specified neighbor weight matrix
θ	Coefficients for each of the spatially lagged covariates
λ	correlation parameter (i.e. correlation coefficient of errors among neighbors). Bounded by -1 and 1. A value of zero indicates no autocorrelation
$arepsilon_i$	Error (assumed IID and no longer spatially clustered)

Lagged X and error

The Python Spatial Analysis Library for open source, cross platform Geospatial Data Science

Spatial Regression Models (spreg)

spreg, short for "spatial regression," is a python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another. For more information on these models, consult the Spatial Regression short course by Luc Anselin (Spring, 2017), with the Center for Spatial Data Science at the University of Chicago: