General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

G3/05

(NASA-TM-X-73921) APPLICATION OF ADVANCED TECHNOLOGY TO FUTURE LONG-RANGE AIRCRAFT CSCL 01C (NASA) 49 p HC \$4.00

N76-29218

Unclas 48385

APPLICATION OF ADVANCED TECHNOLOGY TO FUTURE LONG-RANGE AIRCRAFT

by Owen E. Schrader

May 24, 1976

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

1. Report No. NASA TM X-73921	2. Government Accession I	Vo.	3, Recip	ient's Catalog No.
4. Title and Subtitle			5. Repo	rt Date
ADDLICAT	TON OF ADVANCED TECHNO	N OCV	M	ay 24, 1976
	ION OF ADVANCED TECHNOURE LONG-RANGE AIRCRAN		6. Perfo	rming Organization Code
7. Author(s)			8. Perfo	rming Organization Report No.
Owen E. Schrader			10 Work	Unit No.
9. Performing Organization Name and Add	dress			· · · · · · · · · · · · · · · · · · ·
NASA Langley Research Hampton, Virginia 23				ract or Grant No.
			13. Type	of Report and Period Covered
2. Sponsoring Agency Name and Address	•		T	echnical Memorandum
National Association	& Space Administration	· •	14. Spon	soring Agency Code
Washington, DC 20546	& Space Administration	I		
5. Supplementary Notes				
	nted at the 35th Annua., Philadelphia, Penns			
6. Abstract				
nology into cargo aircr the use of load distri nology is t (LFC) to th The last pr nate aircra	nter that have incorporthe design of long-raft. The first technolog span-loaded cargo abuted along the wing. The application of lambe aircraft to reduce togram evaluates the post fuels from coal and an aircraft fuel.	ange passenge plogy centers ircraft with The second inar flow cor the aerodynan roduction of	er and the pay tech- ntrol nic drag	<u>.</u>
		•		
. Key Words (Suggested by Author(s))	18.	Distribution Statem	ent	
CARGO AIRCRAFT LAMINAR FLOW CONTR HYDROGEN FUELED AI				
9. Security Classif. (of this report)	20. Security Classif. (of this page	21, No. c	of Pages	22. Price*
Unclassified	Unclassified		46	\$3 7 5

APPLICATION OF ADVANCED TECHNOLOGY TO FUTURE LONG-RANGE AIRCRAFT

bу

O. E. Schrader, Aerospace Technologist

NASA Langley Research Center

SUMMARY

The objective of this paper is to provide an overview assessment of three separate programs at Langley Research Center that have incorporated advanced technology into the design of long-range passenger and cargo aircraft. The first technology centers around the use of a span-loaded cargo aircraft with the payload distributed along the wing. This concept has the potential for reduced structural weights. The second technology is the application of laminar flow control (LFC) to the aircraft to reduce the aerodynamic drag. The use of LFC can reduce the fuel requirements during long-range cruise. The last program evaluates the production of alternate aircraft fuels from coal and the use of liquid hydrogen as an aircraft fuel. Coal-derived hydrogen as an aircraft fuel offers both the prospect for reduced dependence on petroleum fuels and improved performance for long-range aircraft.

INTRODUCTION

This paper was presented at the 35th Annual Conference of the Society of Allied Weight Engineers, Inc., Philadelphia, Pennsylvania, May 24-26, 1976, to provide an overview assessment of three distinct program efforts at Langley Research Center. The purpose was to show the impact on aircraft weight due to the application of advanced technology into the design of long-range passenger and cargo aircraft. Each of the programs will be discussed separately followed by a general discussion of items of common interest.

The first program is the Very Large Aircraft Systems Technology Program. The discussion on this program will center around the results of recent studies on Technical and Economic Assessment of Span-Loaded Cargo Aircraft Concepts (Refs. 1-4). The next program is the Laminar Flow Control Technology Program. A recent study of the Application of Advanced Technologies to Laminar Flow Control Systems for Subsonic Transports will provide the basis for the discussion (Refs. 5 and 6). The third program is the Hydrogen Fueled Aircraft Technology Program. Areas of discussion will be on the Application of Hydrogen Fuel to Long-Range Subsonic Transport Aircraft (Refs. 7 and 8), and of the Conversion of Coal to Hydrogen, Methane, and Liquid Fuels for Aircraft (Refs. 9, 10, and 11).

SYMBOLS

ACLS air cushion landing system

ALT altitude

AR aspect ratio

Btu British thermal unit

Bend M. bending material

G.G. center of gravity

carbon monoxide

CO₂ carbon dioxide

C(s) carbon-solid

C.S. control surfaces

Deg degree

DOC direct operating cost

EAS equivalent air speed

EMP empennage

FAR federal air regulations

F.E. fixed equipment

FeO iron (II) oxide

Fe₃0₄ iron (II, III) oxide

F.L. field length

GTM gross ton miles

GW gross weight

H₂ hydrogen

H₂0 water

IC investment cost

LFC laminar flow control 1b pound L/D lift/drag L.E. leading edge LH₂ liquid hydrogen M Mach number nitrogen N₂ NAC nacelle National Science Foundation NSF 02 oxygen OWE operating weight empty P pressure PAX passenger ROI return on investment \mathbf{S}° second SFC specific fuel consumption SHR shear SLS sea level static STR structure Sw wing area $S \, km/m^3$ seat - km/m3 SS mi/gal seat - statute mi./gallon T temperature TE trailing edge turbulent flow TF TOFL takeoff field length TOGW takeoff gross weight t/c thickness/chord v_{App} velocity approach

wing sweep angle

DISCUSSION

Large Aircraft

Λ

The Very Large Aircraft Systems Technology Program is a broad program.

Major elements of the program are shown in Figure 1. Under the configuration

studies, the most recent data are the results from the studies of the application of advanced technologies to span-distributed loading cargo aircraft. The application of comparable advanced technologies was also applied on conventional fuselage-loaded cargo aircraft. The studies were conducted with the following general ground rules: nominal range of 5,556 km (3,000 n. mi.); balanced field length of 3,657 meters (12,000 ft); container size of $2.44 \times 2.44 \times 6.1$ meters (8 x 8 x 20 ft); cargo density of 112 to 192 kg/meter³ (7 to 12 lb/ft³); and appropriate technology for a 1990 system introduction date. The technology could include composites, active controls, and thick supercritical wings with winglets.

The Boeing study of the distributed-load concept (Fig. 2) was limited to unswept wings of constant chord with the tail supported by twin booms from the wing trailing edge. The McDonnell Douglas study concentrated on an unswept wing configuration (Fig. 3) that had a small nonpayload-carrying fuselage. Douglas also performed a brief analysis of a swept wing spanloader and a cargo hybrid seaplane (Figs. 4 and 5). The Lockheed study configuration (Fig. 6) has a swept wing with provision for outsized cargo 4.12 m (13.5 ft) in the fuselage. All three studies developed a conventional reference configuration for comparison (Figs. 7, 8, and 9). Table 1 lists various elements for comparison between the selected distributed load concept (spanloader) and the conventional fuselage-loaded reference configuration.

The distributed-load airplanes with a straight wing and constant chord have a large number of common parts compared to conventional airplanes. This increase in the number of common parts allows the manufacturing man-hours to be reduced because of the lower position on the learning curve. The data in Table 1 present the cost difference in terms of dollars per kg (dollars per pound) of empty weight. The Boeing configuration cost was \$304 per kg (\$137.9 per pound) of empty weight compared to \$355 per kg (\$161.2 per pound) for their conventional configuration. The Douglas configuration cost was \$325 per kg (\$147.5 per pound) of empty weight compared to \$396 per kg (\$179.7 per pound) for their conventional configuration.

The Boeing distributed-load airplane with a straight wing was not as fuel efficient as the conventional configuration. This resulted in a higher direct operating cost (DOC), but when aircraft investment cost is added to the DOC, the distributed load aircraft has an economic advantage. This is an ROI that is a simple return on the cost of the investment added to operating cost; it is not a profit derived ROI. A breakdown of these costs is shown in Figure 10.

The Boeing and Douglas straight-wing distributed-load airplanes (Figs. 2 and 3), when confined to a 272,155 kg (600,000-lb) payload, did not have as efficient aerodynamic performance as the conventional aircraft (L/D: 16.6 vs 21.9 and 18.8 vs 21.5). This was due to the fallout during the design of a trade between aspect ratio, wing thickness ratio, and number of cargo bays. When the study aircraft were projected to 453,600 kg (1,000,000 lb) payload, both the aspect ratio could be increased and the wing thickness ratio improved by the addition of additional cargo bays. This resulted in a configuration that was 20 to 25 percent better than the reference conventional configuration. It is also apparent from the study results by Lockheed that the use of a tailless,

the production of liquid methane over liquid hydrogen and synthetic jet fuel from coal. The choice for an alternative fuel is not obvious because it is necessary to take other factors into consideration, such as: the efficiency of each when used as fuel on the airplane; the potential capability of production of hydrogen from other sources of energy by electrolysis, the potential restriction on the use of our coal supplies to chemical uses; the comparative cost of each fuel; and the problems of storage, handling, and tankage of cryogenic fuels.

Another of the studies, under the hydrogen-fueled aircraft technology program, assessed the use of LH₂ (liquid hydrogen) as an aircraft fuel. The title was the Study of the Application of Hydrogen Fuel to Long-Range Subsonic Transport Aircraft. The study was performed by Lockheed Aircraft Company. The objectives of the study were to: (1) assess the feasibility and potential advantages of using LH₂ as fuel in long-range, subsonic transport aircraft (both passenger and cargo types), (2) identify the problems and technology requirements peculiar to such aircraft, and (3) outline a program for development of necessary technology on a timely basis. The technical guidelines included supercritical aerodynamics, composite materials, active controls, advanced engines, and initial operation in 1990-1995.

A number of candidate passenger configurations, shown in Figures 21 and 22, were reviewed. Two configurations were selected for detail analysis, while the others were rejected for the reasons shown. One of the configurations (Fig. 23) has all of the fuel located in two tanks fore and aft in the fuselage, while the other (Fig. 24) has external fuel tanks on the wing. There was not a clearly significant safety advantage with either configuration. The decision to select the internal tank configuration offered the potential for both lower weight and better performance.

The requirement for large tankage volume results from the difference in the available energy per unit weight and volume between conventional hydrocarbon jet fuel and LH2. On an energy per unit weight basis, the LH2 is higher by a factor of 2.8, but on an energy per unit volume basis, the LH2 is lower by a factor of 3.78. Therefore, for the same onboard energy, it required 3.78 times the volume of LH2 to be equivalent to the volume of 2.8 times more weight of jet fuel.

The results of the comparison are shown in Tables 3 and 4 for the 400-passenger, 5,560 km (3,000 n. mi.), M = 0.85 aircraft and 400-passenger, 10,190 km (5,500 n. mi.), M = 0.85 aircraft. The results of the comparison of the selected LH₂ configurations to the reference jet-fueled configurations are shown in Tables 5 and 6.

A similar review of cargo configurations was conducted and the selected configurations are shown in Figures 25 and 26. The mission fuel is contained in an area above the cargo bay and in the unpressurized aft fuselage section. The upper tank area is separated from the cargo area by a horizontal bulkhead, and the area is pressurized by engine bleed air entering from the front and venting out the rear of the aircraft to provide continuous purging.

PRECEDING PAGE BLANK NOT FILMED

A corresponding hydrocarbon jet-fueled airplane was developed for each mission of 56,700 kg payload, 5,560 km range (125,000 lb, 3000 n. mi.), and M = 0.85 small cargo aircraft; and 113,400 kg payload, 10.190 km range (250,000 lb, 5,500 n. mi.), and M = 0.85 large cargo aircraft. The jetfueled airplane was used as a reference airplane for comparison with the LH2 fueled cargo airplanes. The results of the comparison are shown in Tables 7 and 8. The combination of the low density of LH2 and the requirement for a bianket of insulation around the tanks and plumbing to maintain the fuel at its cryogenic temperature, present design requirements that are reflected in the weight and performance of the airplane. As the tables show, the fuel weight required is about one-third of the conventional fueled airplane while the operating weights are nearly the same. The performance for the fat fuselage LH2 in terms of L/D ratio is lower, but because of the reduced take-off weight, the onboard energy utilization is slightly better with LH2. The use of LH2 as a fuel for transport aircraft does require technology development but is not dependent upon either a breakthrough in present capability or the invention of new products. It has been considered technically feasible that hydrogen-fueled aircraft can be developed and begin commercial operations by 1990.

The advantage of using LH₂ fueled aircraft increases with the amount of fuel or energy needed to perform the mission. The apparent crossover point, shown in Figures 27 and 28, where LH₂ can be used to an advantage appears to also vary with passenger load. The 130-passenger LH₂ configuration appears to have a crossover point at 2,780 km (1,500 n. mi.), while the 400-passenger LH₂ appears to have its crossover point just under 3,700 km (2,000 n. mi.). The weight difference for LH₂ fueled aircraft becomes significant (266,430 kg vs. 450,200 kg or 587,370 lb vs 992,520 lb) for the 19,000+ km (10,000 + n. mi.) when compared to a kerosene-fueled configuration.

CONCLUDING REMARKS

This paper has reviewed three technology programs that have the potential for the improvement in efficiency of transport airplanes. The first program, Span-Loaded Cargo Aircraft Concepts, identified the gains that are possible with this concept and also that these gains would tend to increase with both aircraft size and configuration refinements. The need for aircraft of this size will have to be paced with the development of large markets for air freight operations between selected hub cities that have the special runways and facilities.

The efforts at aircraft fuel conservation are being actively pursued by the laminar-flow control technology project. This is a technology that has been demonstrated in actual flight test with the X-21 in the 1960's. The current effort is to demonstrate economic and practicality of LFC. The potential gains of LFC are significant. It will require the development of a number of technologies to meet the structural, material, systems, maintenance, and operational requirements of LFC.

As we enter into the late 20th century and the numerous efforts of the type described in the two preceding programs cannot meet the fuel conservation requirements placed on air transportation, the alternative of LH₂ as an airplane fuel can be used. The efforts of the Hydrogen Fueled Aircraft Technology Program are aimed at providing a technology readiness so that the aircraft and the air transportation industry can convert to LH₂ fueled configurations in a more orderly manner with the arrival of the so-called "hydrogen economy." The results of the initial studies on LH₂ fueled airplanes have shown that the performance is improved over kerosene-fueled airplanes for design ranges over 2,780 km (1,500 n. mi.). The advantages in performance alone are not adequate to justify the conversion to LH₂ for aircraft fuel at this time. The hydrogen production, distribution, and storage would also require extensive parallel development to meet the fuel needs of the air transportation industry.

REFERENCES

- 1. Nicks, Oran W.; and Whitehead, A. H., Jr.: An Outlook for Cargo Aircraft of the Future. NASA TM X-72796, November 14, 1975.
- 2. Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts. NASA CR-144963, 1976, Boeing Commercial Airplane Company, Seattle, Washington.
- 3. Technical and Economic Assessment of Span-Loaded Cargo Aircraft Concepts. NASA CR-144962, 1976, Douglas Aircraft Company, Long Beach California.
- 4. Whitehead, A. H., Jr.: Opportunities for Development of Advanced Large Cargo Aircraft. Presented at the Thirteenth Space Congress, Cocoa Beach, Florida, April 7-9, 1976.
- 5. Povinelli, Frederick P.; Klineberg, John M.; and Kramer, James J.: Improving Aircraft Energy Efficiency. Astronautics and Aeronautics, Volume 14, No. 2, February 1976, pp. 18-31.
- 6. Study of the Application of Advanced Technologies to Laminar-Flow Control Systems for Subsonic Transports. NASA CR-144949, 1976, Lockheed-Georgia Company.
- 7. Brewer, G. D.; Morris, R. E.; Lange, R. H.; and Moore, J. W.: Study of the Application of Hydrogen Fuel to Long-Range Subsonic Transport Aircraft. Volume II, NASA CR-132559, 1975, Lockheed-California Company and Lockheed-Georgia Company.
- 8. Brewer, G. D.; and Morris, R. E.: Study of LH₂ Fueled Subsonic Passenger Transport Aircraft. NASA CR-144935, 1976, Lockheed-California Company.
- 9. Witcofski, R. E.: The Thermal Efficiency and Cost of Producing Hydrogen and Other Synthetic Aircraft Fuels From Coal. Presented at the First World Hydrogen Energy Conference, Miami Beach, Florida, March 1-3, 1976.

- 10. Nagel, A. L.; Alford, W. J., Jr.; and Dugon, J. F., Jr.: Future Long-Range Transports Prospects for Improved Fuel Efficiency. NASA TM X-72659, February 1975.
- 11. Survey Study of the Efficiency and Economics of Hydrogen Liquefaction. NASA CR-132613, 1975, The Linde Division of Union Carbide Corp., Tonawanda, New York.

TABLE 1 - COMPARISON OF SPAN LOADER CONFIGURATIONS VS REFERENCE CONFIGURATIONS SI UNITS

	ВОЕ	ING	DOUG	GLAS	LOCK	IEED
	Span Loader	Reference	Span Loader	Reference	Span Loader	Reference
TOGW kg	759177	467018	612349	571602	700013	781164
OWE kg	238771	179713	179860	181667	248754	313894
GROSS PL* kg	316516	194772	280428	267619	272155	272155
PL DENSITY kg/m ³	.128	.128	.128	.128	.128	.128
FUEL kg	203889	92532	152060	122314	179103	430154
RESERVE %	14.4	19.1	18.8	14.9	18.4	18.0
LAND F.L. m	1889	1859	3035	1588		
T.O.F.L. m	2133	3566	3272	3657	2206	3360
OWE/TOGW	.3145	.3848	.294	.318	.3553	.4018
CRUISE MACH NO.	.68	.78	.655	.784	.75	.75
ALT. m	853/4	10058	9601	8778	10668	10668
L/D	16.6	21.9	18.8	21.5	19.66	20.05
BLOCK FUEL PAYLOAD	.5512	.3843	.4402	. 3889	.5368	.5878
PAYLOAD GW	.2836	.3235	.2999	.3671	.2916	.2613
PAY LOAD x Range km	5.04	7.23	6.30	7.13	5.17	4.73
VAPP m/s	67.4	66.8	86.9	68.9		and the state of
RANGE km	5556	5556	5556	5556	5556	5556
ASPECT RATIO	6.5	10.5	4.45	9.2	5.9	8.5
Sw m ²	1730	790	1701	743	1724	1287
Gw/Sw kg/m ²	439	591	360	769	392	591
∧ . DEG	0	20	0	28	40	20
t/c %	21.5	14	20	14	21.77	13.6
PAYLOAD	.4169	A171	4570	.4681	.3888	.3484
TOGW PRICE (MILLION) \$	72.6	.4171 63.9	.4579 58.5	72.0	134.08	156.58
\$/kg of OWE	304	355	325	396	539	499
\$/kg of PAYLOAD	229	328	208	269	493	575
DOC ¢/kg-km	.00303	.00297	.00230	.00222	.00351	.00397
DOG WANG-KIII	.00303	100231	.00230	.00222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.00097
NO. OF BAYS	4		3		2	

^{*}Gross PL includes container weight

PRINCEDING PAGE BLANK NOT FILMED

OF POOR QUALITY

TABLE 1 - COMPARISON OF SPAN LOADER CONFIGURATIONS VS REFERENCE CONFIGURATIONS CONVENTIONAL UNITS

	BOEIN	<u>G</u>	DOUG	LAS	LOCKH	EED
· · · · · · · · · · · · · · · · · · ·						
	SPAN LOADER	REFERENCE	SPAN LOADER	REFERENCE	SPAN LOADER	REFERENCE
TOGW LB	1,673,700	1,029,600	1,350,000	1,260,167	1,543,266	1,722,172
OWE LB	526,400	396,200	396,525	400,509	548,410	692,019
GROSS PL* LB	697,800	429,400	618,240	590,000	600,000	600,000
PL DENSITY LB/FT ³	10	10	10	10	10	10
FUEL LB	449,500	204,000	335,235	269,658	394,856	430,154
RESERVE %	14.4	19.1	18.8	14.9	18.4	18.0
LAND FL. FT	6,200	6,100	9,960	5,210		
TOFL FT	7,000	11,700	10,737	12,000	7,240	11,024
OWE/TOGW	.3145	.3848	.294	.318	.3553	.4018
CRUISE MACH	.68	.78	.655	.784	.75	.75
CRUISE ALT FT	2 0, 000	33,000	31,500	28,800	35,000	35,000
CRUISE L/D	16.6	21.9	18.8	21.5	19.66	20.05
BLOCK FUEL PAYLOAD	.5512	.3843	.4402	.3889	.5368	.5878
PAYLOAD X MACH NO.	.2836	.3235	.2999	. 3671	.2916	.2613
PAYLOAD X RANGE NMI	2.72	3.90	3.40	3.85	2.79	2.55
V _{APP} KT	131	130	169	134		
RANGE NMI	3,000	3,000	3,000	3,000	3,000	3,000
				program		
ASPECT RATIO	6.5	10.5	4.45	9.2	5.9	8.5
Sw FT ²	18,620	8,500	18,314	8,000	18,559	13,880
Gw/Sw LB/FT ²	90	121	73.7	157.5	80.3	121
Λ DEG	0	20	0	28	40	20
t/c %	21.5	14	20	14	21.77	13.6
PAYLOAD TOGW	.4169	.4171	.4579	.4681	.3888	.3484
PRICE (MILLION) \$	72.6	63.9	58.5	72.0	134.08	156.58
\$/LB OF OWE	137.9	161.2	147.5	179.7	244.5	226.3
\$/LB OF PL	104.0	148.8	94.6	122.0	223.5	260.9
DOC COST ¢/GTM	5.1	5.0	3.863	3.734	5.89	6.67
NO. OF BAYS	4		3		2	

^{*}Gross PL includes container weight

TABLE 2 - COMPARISONS OF 200-PASSENGER TF AND LFC AIRCRAFT

CHARACTERISTIC	<u>TF-200</u>	<u>LFC-200-R</u>
CRUISE M. NO.	0.80	0.80
CRUISE ALTITUDE m (FT)	10972.(36000)	11582.(38000)
WING SWEEP, DEG	25.0	22.7
ASPECT RATIO	12.5	14.0
WING LOADING, kg/m ² (LB/FT ²)	672.(133.5)	658. (131.0)
WING T/C RATIO	.1075	.1088
WING AREA, m ² (FT ²)	258.(2779)	232.(2494)
CRUISE L/D	22.63	28.76
ENGINE THRUST kg(LB)	11720.(25840)	9882.(21788)
BYPASS RATIO	6.00	6.00
CRUISE POWER RATIO	0.87	0.87
GROSS WEIGHT, kg(LB)	173431.(382351)	152685, (336612)
EMPTY WEIGHT, kg(LB)	81906.(166006)	80384.(162990)
BLOCK FUEL, kg (LB)	67756 (129604)	48532.(93028)
FLYAWAY COST. \$106	23.218	23.503

TABLE 3-COMPARISON OF INTERNAL VS EXTERNAL TANK LH2 AIRCRAFT

[400 PAX; 5560 km (3000 nmi); M = 0.85]

			EXTERNAL TANKS	TANKS	INTERN	INTERNAL TANKS
	SI	CUSTOMARY	SI	CUSTOMARY	SI	CUSTOMARY
Gross Weight	kg	1b	159,800	352,300	153,500	338,500
Fuel Weight	kg	Jb	18,500	40,700	16,300	36,300
Operating Empty Weight	kg	19	101,400	223,600	97,300	214,500
Wing Area	ш5	ft2	294	3170	286	3077
Span	E	ft	48.7	160	50.6	166
Fuselage Length	E	ft	09	197	64	210
FAR T.O. Field Length	E	ft.	1536	5040	1788	5860
FAR Landing Field Length	E	ft	1760	5780	1770	5810
L/D (Cruise)	•	. 1	13.1	13.1	15.2	15.2
SFC (Cruise)	kg/daN	$\left(\frac{1b}{hr}\right)/1b$.203	.200	.203	.200
Thrust per Engine	, z	Jb	135,000	30,390	111,000	24,960
Energy Utilization	kJ seat km	btu seat nmi	814	1430	089	1196
Airplane Price	\$10 ₆	\$10 ⁶	25.0	25.0	23.6	23.6
**************************************	seat km	¢ seat nmi	.612	1.134	.554	1.026
			-			

*LH₂ Firel Cost = \$3/1.054 GJ = $$3/10^6$ BTU = 15.48 ¢/1b

TABLE 4 - COMPARISON OF INTERNAL VS EXTERNAL TANK LH2 AIRCRAFT

[400 PAX; 10,190 km (5500 nmi); M = 0.85]

			EXTERNAL TANKS	L TANKS	INTERNAL TANKS	TANKS
	SI	CUSTOMARY	IS	CUSTOMARY	IS	CUSTOMARY
Gross Weight	kg	Jb	198,100	436,800	177,700	391,700
Fuel Weight	kg	1p	36,700	81,000	27,900	61,600
Operating Empty Weight	kg	Jb	121,300	267,800	109,900	242,100
Wing Area	_{III} 2	ft2	338	3640	312	3360
Span	E	ţ	52.1	171	53	174
Fuselage Length	E	ft	09	197	8.99	219
FAR T.O. Field Length	E	ft	1610	5290	1900	6240
FAR Landing Field Length	E	ft	1770	5810	1770	5810
L/D (Cruise)			13.4	13.4	16.1	16.1
SFC (Cruise)	kg/daN hr/daN	$\left(\frac{1b}{hr}\right)/1b$.202	.199	.202	. 199
Thrust per Engine		10	172,100	. 38,760	127,500	28,690
Energy Utilization	kJ seat km	Btu seat nmi	930	1634	705	1239
Airplane Price	\$10 ⁶	\$10 ₆	30.2	30.2	26.9	26.9
*300	seat km	seat nmi	.688	1.277	.576	1.079
		-				

*LH₂ Fuel Cost = \$3/1.054 GJ - \$3/10⁶ BTU = 15.48 ¢/lb

TABLE 5 - COMPARISON OF LH2 VS JET A PASSENGER AIRCRAFT

[400 PAX; 5560 km (3000 nmi): M = 0.85]

		The state of the s				
			LH2	2	JET	Ą
	SI	CUSTOMARY	SI	CUSTOMARY	IS	CUSTOMARY
Takeoff Gross Weight	kg	2	152,000	335,200	183,200	404,300
operating Empty Weight Block Fuel Weight	ם ס	<u> </u>	12,700	28.000	37.400	210,600 82,400
Total Fuel Weight	, A	<u>2</u>	15,600	34,300	47,800	105,700
Wing Area		ft ² ,	283	3,047	301	3,235
Wing Loading, Takeoff	kg/m ²	1b/ft ²	537	110	610	125
Span	E E	10/10 ft	50.5	165.6	52 52	170.6
Fuselage Length	E	£	64	210	09	197
Lift/Drag (Cruise)			14.86	14.86	16.66	16.66
Specific Fuel Consumption (Cruise)	kg/dan	(lb)/1p	.203	0.200	.592	0.582
Thrust per Engine (SLS)	z	9L	110,000	24,720	114,500	25,770
<pre>Thrust/Weight (SLS)</pre>	N/kg	1	2.90	.295	2.51	0.255
FAR T.O. Distance	E	٠ ـ	1,790	5,860	2,437	7,980
FAK Landing Distance Approach Speed (EAS)	m/s	knots	69.5	5,804 135	09/ . 1 69	5,760
Weight Fractions	percent	percent				
Fuel			10.2	10.2	26.2	26.2
Payload Structure		•	31.7	31.4	21.8	27.8
Propulsion			10.7	10.7	6.7	6.4
Equipment and Operation Items			21.7	21.4	17.8	17.8
Energy Utilization	kJ seat km	Btu seat nmi	685	1,204	717	1,260
		1				

TABLE 6 - COMPARISON OF LH₂ VS JET A PASSENGER AIRCRAFT [400 PAX; 10,190 km (5500 nmi); M = 0.85]

			LH2	2	JET	A
	SI	CUSTOMARY	IS	CUSTOMARY	SI	CUSTOMARY
Takeoff Gross Weight Operating Empty Weight Block Fuel Weight Total Fuel Weight	k K K G G G	5555	177,800 110,000 24,000 27,900	391,700 242,100 52,900 61,600	237,200 110,800 75,000 86,500	523,200 244,400 165,500 190,800
Wing Area Wing Loading, Takeoff Landing Span Fuselage Length	m ² kg/m ² kg/m ² m	ft ² 1b/ft ² 1b/ft ² ft	313 569 493 53 66.7	3,363 116.5 101 174 219	389 610 518 59.2 60	4,186 125 106 194.1 197
Lift/Drag (Cruise) Specific Fuel Consumption (Cruise) Thrust per Engine (SLS) Thrust/Weight (SLS)	kg/dan hr/dan N	الر <u>ال</u>) 15	16.07 .203 127,700 2.88	16.07 0.199 28,700 0.293	. 17.91 .590 145,400 2.45	17.91 0.581 32,700 0.25
FAR T.O. Distance FAR Landing Distance Approach Speed (EAS)	m m	ft ft knots	1,900 1,770 69.5	6,240 5,810 135	2,435 1,590 63.7	7,990 5,210 124
Weight Fractions Fuel Payload Structure Propulsion Equipment and Operating Items	percent	percent	15.7 22.5 30.7 12.3 18.8	15.7 22.5 30.7 12.3 18.8	36.5 16.8 26.0 6.4 14.3	36.5 16.8 26.0 6.4 14.3
Energy Utilization	kJ seat km	Btu seat nmi	705	1,239	788	1,384

TABLE 7. COMPARISON OF LH2 VS JET A SMALL CARGO AIRCRAFT [56,700 kg (125,000 lb); 5560 km (3000 nmi); M = 0.85]

				,		
			LH ₂	_2_	ה	JĘT A
	IS	CUSTOMARY	SI	CUSTOMARY	IS	CUSTOMARY
Takeoff Gross Weight Operating Empty Weight Block Fuel Weight Total Fuel Weight	8 K K K G G G G	5 2 5 2	135,760 64,640 11,860 14,470	299,300 142,500 26,140 31,900	161,480 63,730 33,880 41,100	356,000 140,500 74,700 90,600
Wing Area	z	ft ²	240.1	2584	263.2	2833
Wing Loading, Takeoff Landing	kg/m ² kg/m ²	1b/ft ² 1b/ft ²	565 536	115.8 109.7	613	125.6
Span Fuselage Length	EE	f t	46.5	152.5 170.7	51.3	168.3 166.5
Lift/Drag (Cruise) Specific Fuel Consumption (Cruise)		- P	16.3	16.3	17.9	17.9
Thrust per Engine (SES) Thrust/Weight (SLS)	hr/dan N N/kg	15 16 -	0.213 106,310 0.32	0.209 23,890 0.32	0.619 112,980 0.29	0.608 25,400 0.29
FAR T.O. Distance FAR Landing Distance Approach Speed (EAS)	m m/s	ft ft knots	1786 2231 69.5	5800 7320 135	2207 2216 69.5	7240 7270 135
Weight Fractions Fuel Payload Structure Propulsion Equipment and Operating Items Énergy Utilization	percent kJ Mg km	percent Btu	11 42 29 10 8 4502	11 42 29 10 8 7181	26 35 25 7 7 4596	26 35 25 7 7 7330

TABLE 8. COMPARISON OF LH2 VS JET A LARGE CARGO AIRCRAFT [113,400 kg (250,000 lb); 10,190 km (5500 nmi); M = -.85]

				LH2	JET	T A
	SI	CUSTOMARY	SI	CUSTOMARY	SI	CUSTOMARY
Takeoff Gross Weight Operating Empty Weight Block Fuel Weight Total Fuel Weight	k kg kg kg	41 41 41 41	300,060 138,670 41,300 47,990	661,500 305,700 91,100 105,800	400,890 138,850 129,200 148,650	883,800 306,100 285,000 327,700
Wing Area Wing Loading, Takeoff Landing Span Fuselage Length	m kg/m ² kg/m ² kg/m ² m	ft ² 1b/ft ² 1b/ft ² ft ft	483.4 620.5 535.6 66 77.0	5203 127.5 109.7 216.4 252.7	658.1 609.3 412.5 77 72.0	7084 124.8 84.5 252.5 236.0
Lift/Drag (Cruise) Specific Fuel Consumption (Cruise)	kg dan	1) 41 J	18.0	18.0	19.5	19.5
Thrust per Engine (SLS) Thrust/Weight (SLS)	N/kg	- 1 - 1	212,170 0.29	47,700 0.29	258,430 0.26	58,100 0.26
FAR T.O. Distance FAR Landing Distance Approach Speed (EAS)	m m/s	ft ft knots	2185 2304 69.5	7170 7560 135	2438 2143 61.2	8000 7030 119
Weight Fractions Fuel Payload Structure Propulsion Equipment and Operating Items	percent	percent	38 33 10 5	16 38 31 10 5	37 28 23 7 5	37 28 23 7
Energy Utilization	kJ Mg km	Btu ton nmi	4286	6835	4782	7627

CARGO TRANSPORTATION SYSTEMS

MARKET SYSTEMS ANALYSIS TECHNOLOGY IMPACT ASSESSMENT (WITH N. S. F.)

AIRCRAFT SYSTEMS TECHNOLOGY STUDY

IN-HOUSE ANALYSES INDUSTRY SURVEYS INDUSTRY SYSTEMS STUDY

AIRCRAFT RESEARCH AND TECHNOLOGY

PROPULSIVE LIFT STUDIES - ANALYSES AND EXPERIMENTS THICK AIRFOIL PROGRAM - ANALYSES AND EXPERIMENTS COMPOSITE STRUCTURES DEVELOPMENT ACTIVE CONTROL DEVELOPMENT SUPPORT FOR ACLS PROGRAM CONFIGURATION STUDIES

SIMULATION/DEMONSTRATION

SIMULATOR STUDIES SUB-SCALE FLIGHT TESTS - NEEDS ASSESSMENT Representative elements of NASA proposed very large aircraft systems technology program.

Figure 2. Boeing spanloader configuration.

Figure 3. McDonnell Douglas spanloader configuration.

Figure 4. McDonnell Douglas swept wing spanloader configuration.

Figure 5. McDonnell Douglas hybrid seaplane configuration

日のでは、日本のでは

Q.,

Figure 6. Lockheed spanloader configuration.

GROSS WEIGHT 467 000 kg WING SPAN 87 m WING AREA 744 m² 4 BAY FUSELAGE

Figure 7. Boeing conventional reference configuration.

Figure 8. McDonnell Douglas conventional reference configuration.

Figure 9. Lockheed conventional reference configuration.

Figure 10. Cost comparison of the Boeing spanloader versus reference configuration.

Weight distribution comparison of the Boeing spanloader versus reference configuration. Figure 11.

PHASE I

TRANSPORT SYSTEMS DEFINITION
DEVELOP TOOLS & REQUIREMENTS
EVALUATE LEADING-EDGE CONTAMINATION
DEVELOP LFC AIRFOILS

PHASE 11

FLIGHT TEST ADVANCED LFC AIRFOIL
WTT SWEPT AIRFOIL SURFACE EFFECTS
SYSTEM DESIGN
SYSTEMS DEVELOPMENT
PRELIMINARY DESIGN 1990 TRANSPORT
DEFINE VALIDATOR AIRCRAFT

PHASE III

DESIGN VALIDATOR AIRCRAFT
AIRCRAFT MODIFICATION
FLIGHT TEST

Representative elements of the Laminar Flow Control Technology Program.

Laminar flow control configuration characteristics. Figure 13.

Figure 14. Typical laminar flow control wing section.

Figure 15. Conventional turbulent flow configuration.

Figure 16. Laminar flow control configuration.

Figure 17. Comparison of fuel efficiency.

PRODUCTION OF ALTERNATE FUELS

THERMAL EFFICIENCY AND ECONOMICS OF HYDROGEN LIQUEFACTION CONVERSION CONVERSION OF COAL TO H_2 , CH_d , AND LIQUID FUELS FOR AIRCRAFT POTENTIAL FOR IMPROVING LH, PRODUCTION FROM COAL

APPLICATION OF LH, TO LONG-RANGE SUBSONIC AIRCRAFT RELATIVE PERFORMANCE OF AIRCRAFT - JP vs LH2

INTERACTION OF LH, AIRCRAFT WITH AIRPORT/GROUND REQUIREMENTS

DETERMINATION OF INTEGRATED TECHNOLOGICAL AIR TRANSPORT SYSTEM GROUND LH, FIRE AND EXPLOSION HAZARDS REQUIREMENTS IF LONG-HAUL

LH, AIRCRAFT FUEL SYSTEMS

DEVELOPMENT AND VALIDATION OF THERMAL PROTECTION SYSTEMS FOR LH, FUEL TANKS EVALUATION OF MECHANICAL PROPERTY DATA ON 2219 AND APPLICATION TO LH₂

THERMAL INSULATION OF AIRBORNE LH, FUEL TANKS

Figure 18. Representative elements of the Hydrogen-Fueled Aircraft Technology Program.

Steam-iron process for producing hydrogen from coal. Figure 19.

JET FUEL	· · · · · · · · · · · · · · · · · · ·				52.7
METHANE JET FUEL	HYGAS®	70.0	4.0	74.0	64.8
HYDROGEN PROCESSES	KOPPERS- TOTZEK	56.8	.2	57.0	38.9
	STEAM-IRON	44.6	18.0/(36.9) ^(a)	62.6/(81.5) ^(a)	61.6 ^(a)
	U-GAS TM	66.2	.2	66.4	44.9
		COAL INPUT PRODUCER GAS	+ BY-PRODUCT %	GAS PRODUCTION %	LIQUID PRODUCTION %

(a) ON SITE ELECTRICAL POWER GENERATION

Figure 20. Thermal efficiency of fuel production from coal by various processes.

CONFIGURATION

COMMENT

RETAIN FOR EVALUATION

CONFIGURATION

COMMENT

REJECT - EXCESSIVE TRIM DRAG DUE TO FWD C.G. AND TAIL DOWN LOAD

ALL FUEL AFT

FUSELAGE FUEL IN

FUEL FORE AND AFT

REJECT - MAXIMUM PASSENGER EXPO-SURE TO FUEL

REJECT - HIGH TECH-NICAL RISK. C.G. TRAVEL AND LOAD-ABILITY SEVERELY LIMITED BY CANARD ALL FUEL AND PROP FWD CANARD/WING

FUEL PARALLEL AND ADJACENT TO PASSENGERS

Candidate configurations. Figure 21.

LARGE WETTED AREA. HIGH STRUCT WEIGHT REJECT - LOW L/D COMMENT CONFIGURATION INBOARD FUEL RETAIN FOR EVALUATION COMMENT CONFIGURATION TWIN PODDED

Ġ

FUEL IN PODS

FUEL IN WING WING WING WING WING ADVANTAGE OVER ABOVE CONFIG.

REJECT - WILL NOT
MEET M.9 CRUISE
WITH REASONABLE T/C
OR SWEEP, LOW WING
LOADING.

FLY ING WING.

SINGLE DECK

WEIGHT PENALTY

Figure 22. Candidate configurations.

A CONTRACTOR OF THE PROPERTY O

Figure 23. 400 passenger internal LH₂ tank configuration.

Figure 25. LH_2 cargo configuration — 113,400 kg payload (250,000 lb).

Figure 26. LH $_2$ cargo configuration — 56,700 kg payload (125,000 lb).

Energy utilization — LH_2 versus kerosene-fueled aircraft. Figure 27.

Figure 28. Growth characteristics — LH_2 versus kerosene-fueled aircraft.