Discrete Structures

Lecture # 12

Dr. Muhammad Ahmad

Department of Computer Science

FAST -- National University of Computer and Emerging Sciences. CFD Campus

KONIGSBERG BRIDGES PROBLEM

Is it possible for a person to take a walk around town, starting and ending at the same location and crossing each of the seven bridges exactly once?

Is it possible to find a route through the graph that starts and ends at some vertex A, B, C or D and traverses each edge exactly once?

EQUIVALENT FORM OF BRIDGE PROBLEM

Is it possible to trace this graph, starting and ending at the same point, without ever lifting your pencil from the paper?

Let G be a graph and let v and w be vertices in graph G.

1. WALK

A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G.

Thus a walk has the form

 $v_0e_1v_1e_2 \dots v_{n-1}e_nv_n$

where the v's represent vertices, the e's represent edges $v_0=v_iv_n=w_i$, and for all i=1, 2 ... n, v_{i-1} and v_i are endpoints of e_i .

The trivial walk from v to v consists of the single vertex v.

CLOSED WALK

A closed walk is a walk that starts and ends at the same vertex.

3. CIRCUIT

A circuit is a closed walk that does not contain a repeated edge.

Thus a circuit is a walk of the form

 $v_0e_1v_1e_2...v_{n-1}e_nv_n$

where $v_0 = v_n$ and all the e_i 's are distinct

4. SIMPLE CIRCUIT

A simple circuit is a circuit that does not have any other repeated vertex except the first and last.

Thus a simple circuit is a walk of the form $v_0e_1v_1e_2 \dots v_{n-1} e_n v_n$ where all the e_{i} 's are distinct and all the v_j 's are distinct except that $v_0 = v_n$

5. PATH

A path from v to w is a walk from v to w that does not contain a repeated edge.

Thus a path from v to w is a walk of the form $v = v_0e_1v_1e_2 \dots v_{n-1} e_n v_n = w$ where all the e_i 's are distinct (that is $e_i \neq e_k$ for any $i \neq k$).

6. SIMPLE PATH

A simple path from v to w is a path that does not contain a repeated vertex.

Thus a simple path is a walk of the form $v = v_0e_1v_1e_2 \dots v_{n-1} e_n v_n = w$ where all the e_i 's are distinct and all the v_j 's are also distinct (that is, $v_j \neq v_m$ for any $j \neq m$).

SUMMARY

Criteria	Repeated	Repeated	Starts and
T	Edge	Vertex	Ends at
Terms			Same Point
walk	allowed	allowed	allowed
closed walk	allowed	allowed	yes
circuit	no	allowed	yes
simple circuit	no	first and last only	yes
path	no	allowed	no
simple path	no	no	no

PROBLEM

CONNECTEDNESS

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a walk from v to w.

The graph G is connected if, and only if, given any two vertices v and w in G, there is a walk from v to w.

Symbolically:

G is connected $\Leftrightarrow \forall$ vertices $v, w \in V(G)$,

∃ a walk from v to w:

EULER CIRCUITS

Let G be a graph. An Euler circuit of G is a circuit that contains every vertex and every edge of G.

That is, an Euler circuit of G is sequence of adjacent vertices and edges in G that starts and ends at the same vertex, uses every vertex of G at least once, and uses every edge of G exactly once.

EULER RESULT

A graph G has an Euler circuit if, and only if, G is connected and every vertex of G has an even degree.

KONIGSBERG BRIDGES PROBLEM

KONIGSBERG BRIDGES PROBLEM

Determine whether the following graph has an Euler circuit. v₃

 $deg(v_3) = 2 = deg(v_4) = deg(v_2)$, $deg(v_1) = 5$ As v_1 has odd degree so this graph can't have an Euler circuit.

Determine whether the following graph has Euler circuit.

deg(a) = 2, deg(b) = 4, deg(c) = 4, deg(d) = 4, deg(e) = 2, deg(f) = 4, deg(g) = 4, deg(h) = 4,deg(i) = 4

So the every vertex is of even degree, clearly Euler theorem is applicable. We should be able to find Euler circuit here:

Euler circuit: {a, b, c, d, f, e, d, g, f, i, h, g, c, h, b, i, a}.

EULER PATH

Let G be a graph and let v and w be two vertices of G.

An Euler path from v to w is a sequence of adjacent edges and vertices that starts at v, end at w, passes through every vertex of G at least once, and traverses every edge of G exactly once.

HAMILTONIAN CIRCUITS

Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex of G.

That is, a Hamiltonian circuit for G is a sequence of adjacent vertices and distinct edges in which every vertex of G appears exactly once.

Find Hamiltonian Circuit for the following graph. d

PROPERTIES

If a graph G has a Hamiltonian circuit then G has a sub-graph H with the following properties:

- 1. H contains every vertex of G.
- 2. H is connected.
- 3. H has the same number of edges as vertices.
- 4. Every vertex of H has degree 2.

Show that whether the Hamiltonian circuit is possible or not?

deg(c) = 5, if we remove 3 edges from vertex c then deg(a) < 2, deg(b) < 2, deg(g) < 2, deg(d) < 2

It means that this graph does not have a subgraph with the desired properties, so the Hamiltonian circuit is not possible.

Is the following graph a Hamiltonian graph? Give the explicit reason.

