[4]

OR	iii.	Describe following variant of Turing Machine-
		(a) Multi tape Turing Machine
		(b) Multi track Turing machine
Q.6		Attempt any two:
	i.	Write short notes on Universal Turing Machine.
	ii.	Explain undecidable problem and Turing Machine halting problem.
	iii.	Explain P class and NP class problem. Also give example of each.

Total No. of Questions: 6

6

5

5 5 Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

CB3CO22 Formal Language & Automata Theory

Programme: B.Tech. Branch/Specialisation: CSBS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

,	_	s) should be written in full inste Notations and symbols have the	•		a 1		
Q.1	i.	In FSA M=({q0,q1}, {a,b}, respectively-	δ, q0, {q0}),	Start and final states are	1		
		(a) $q0, q1$ (b) $q1,q0$	(c) q1, q1	(d) q0,q0			
	ii.	Maximum number of states in of states-	equivalent Dl	FA, if NDFA has p number	1		
		(a) p (b) $2^{(p-1)}$	(c) 2^{p}	(d) $2^p - 1$			
	iii.	Pick the correct statement-			1		
		(a) Context Free Grammar is	sub-set of Reg	ular Grammar			
		(b) By the pumping lemma for regular language, it is always possible to prove that a language is regular					
		(c) Complement of Regular L	anguage is Reg	gular.			
		(d) A language which can only be generated from context free					
		grammar, can also be generated from regular grammar					
	iv.	v. Which of the following production does not belongs to GNF?					
		(Where V and A are variables, a is terminal symbol)					
		(a) $V -> a$ (b) $V -> Aa$	(c) V-> aA	(d) $v \rightarrow aAA$			
	v.	If $\beta \rightarrow \gamma$ be a production of C	CSG than-		1		
		I. $ \beta \leq \gamma $					
		II. $ \beta \ge \gamma $					
		III. β , $\gamma \in (V \cup T)^+$					
		IV. β , $\gamma \in (V \cup T)^*$					
		Which of above are correct?					
		(a) I and III (b) II and IV	(c) I and IV	(d) Only I			
	vi.	As compared to Linear Bound	ed Automata,	Pushdown automata has-	1		
		(a) Stack	(b) Infinite len	gth tape			
		(c) Read/ Write head	(d) All of these	2			

P.T.O.

[2]

- vii. A Turing Machine is capable of-
 - (a) Accept a formal language
 - (b) Produce a output
 - (c) Enumerate strings of language
 - (d) All of these
- viii. A basic Turing Machine has-

1

1

1

3

1

- (a) Bounded workspace but infinite length tape
- (b) Unbounded workspace but finite length tape
- (c) Unbounded workspace and infinite length tape
- (d) None of these
- ix. Problems which are solvable and Tractable in polynomial time is-
 - (a) P class problem
- (b) NP class problem

(b) NP hard problem

- (c) NP Hard class problem
- (d) None of these
- Sorting Problem is-

- (a) P class problem (c) NP complete problem
- (d) None of these
- Explain production and derivation. Give suitable example of each. Q.2 i. 2
 - What is chomsky hierarchy? Explain with diagram.
 - iii. Minimise following FSA by table filled (Myhill-Nerode theorm) 5 method. Also draw transition diagram of minimised FSA.

OR iv. A NDFA is given as below. Construct and draw transition diagram of 5 its equivalent DFA.

NDFA = $(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_0\})$

	0	1
->{q ₀ }*	$\{q_{2}\}$	$\{q_1\}$
$\{q_1\}$	$\{q_0,q_2\}$	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2\}$

- Define regular grammar. Also give its example. Q.3 i.
 - Write any three properties of regular language. 3
 - iii. (a) Give formal Definition of CFG. Also write some of its 5 productions as an example.
 - (b) Show that following grammar is ambiguous by constructing two parse tree that produce string $\omega = aab$.

$$G = (\{S,A,B\},\{a,b\},P,S)$$

 $S \rightarrow AB|aaB$

 $A \rightarrow a|Aa$

 $B \rightarrow b$

- OR iv. (a) Explain Chomsky Normal Form (CNF) and Greibach Normal 5 Form (GNF).
 - (b) Convert following grammar into CNF.

$$G = (\{S,A,B\},\{a,b,c\},P,S)$$

 $S \rightarrow ABa$

A -> aab

 $B \rightarrow Ac$

- Q.4 i. Compare Deterministic and Non-deterministic pushdown automata.
 - Compute input string $\omega = abba$ on given pushdown automata and write 6 comments on acceptability of this string.

$$P = (\{q_0, q_1,q_2\}, \{a,b\}, \{a,b,Z\}, \delta,q_0,Z, \{q_2\}))$$

 $\delta(q_0, a, a) = \{(q_0, aa)\}$

 $\delta (q_0, \varepsilon, a) = \{(q_1, a)\}$

 $\delta(q_0, b, a) = \{(q_0, ba)\}\$

 $\delta (q_0, \varepsilon, b) = \{(q_1, b)\}\$

 $\delta(q_0, a, b) = \{(q_0, ab)\}$

 $\delta(q_0, b, b) = \{(q_0, bb)\}$

 $\delta(q_0, a, Z) = \{(q_0, aZ)\}$ $\delta(q_0, b, Z) = \{(q_0, bZ)\}\$

 $\delta (q_1, a, a) = \{(q_1, \epsilon)\}$

 $\delta(q_1, b, b) = \{(q_1, \epsilon)\}$

 $\delta (q_1, \varepsilon, Z) = \{(q_2, Z)\}$

- OR iii. (a) Describe physical construction of linear bounded automata.
 - (b) Write formal definition of linear bounded automata.
- Define Turing recognizable and Turing decidable language. Q.5 i.
 - ii. Design Turing Machine for Language as given below.

$$L = \{a^n b^n \mid n > 0\}$$

P.T.O.

6

6

[4]

Marking Scheme

Formal Language and Automata Theory-CB3CO22(T)

Q.1	1)	a. qu,qu		1	
	ii)	d. 2 ^p -1		1	
	iii)	c. Complement of Regular Language is Regula	ır.	1	
	iv)	b. V -> Aa			
	v)	a. I and III		1	
	vi)	a. Stack		1	
	vii)	d. All of the above		1	
	viii)	c. Unbounded and infinite length tape		1	
	ix)	Problems which are solvable and Tractable in polynomial time is			
	,	.) P class problem			
	x)	Sorting Problem is		1	
		a. a,b,c all are correct.			
Q.2	i.	Production and derivation	(1 Mark*2)	2	
	ii.	Explanation:	1-Mark	3	
		Diagram:	2-Marks		
	iii.	Procedure:	3-Marks	5	
		Transition Diagram:	2-Marks		
OR	iv.			5	
		Construction Procedure:	3-Marks		
		Transition Diagram:	2-Mark		
Q.3	i.	Formal Definition with example:	2-Marks	2	
	ii.	Three properties of regular language	(1 Mark*3)	3	
OR	iii.	(a) Formal Definition with example :	2-Mark	5	
		(b) Parse Tree:	3-Marks		
		(a) Explain Form (GNF).	(1 Mark*2)	5	
o 1		(b) Convert following grammar into CNF.	3-Marks		
Q.4	i.		(2.2.5.1.1.2)		
	ii.	Deterministic automata.	(2 Mark*2)	4	
OR	iii.	Instantaneous Description:	4-Marks	6	
		Comment of acceptability:	2-Marks	_	
		(a) Physical automata.	3 Marks	6	
		(b) Formal automata.	3 Marks		

Q.5	i.			
	ii.	Define Turing recognizable	2 Marks	4
		Turing decidable language.	2-Marks	
OR	iii.	Procedure	4-Marks	6
		Transition Diagram/ Transition Table	2-Marks	
		(a) Multi tape Turing Machine	3 Marks	6
		(b) Multi track Turing machine	3-Marks	
Q.6				
	i.	Attempt any two:		
	ii.	Universal Turing Machine.	(As per explanation)	5
	iii.	Undecidable Problem:	2- Marks	5
		Turing Machine halting Problem:	3- Marks	
	iv.	P class and NP class problem.	2.5 Marks	5
		Example	2.5 Marks	

P.T.O.