

Submitted by,

MD. Abu Hasanat Soykot

Roll: 2107100

Group: B2

Course no. CSE 2114

Course title: Computer Architecture

Submitted to,

Dr. M.M.A Hashem

Professor,

CSE,KUET

Md. Badiuzzaman Shuvo

Lecturer

CSE,KUET

Objective:

- 1) To get an overall understanding of basic components and working functionalities of a computer.
- 2) To learn how data communication, instruction fetch and execution works internally.
- 3) To make a 29-bit minimal computer system using logisim software

Introduction:

The project was to build a minicomputer with certain functionalities utilizing the roll-wise allocated bits(here the assigned bit number was 29). The minimal computer system was implemented using logisim software. Component such as ALU(utilized from a previous assignment), register, CPU and control unit design were integrated in it. Lastly, the main circuit was assembled to display outputs stored in memory.

The final circuitry and functioning is added below:

The instruction sets used in my project were modified for my 16-bit minicomputer. The instruction sets were as follows:

	ROM address	ROM outputs	Corresponding
			Hex Value
FETCH	00000	0001 001	09
	00001	0011 001	19
	00010	0010 100	14
AND	00011	0101 001	29
	00100	0011 001	19
	00101	0110 001	31
	00110	0000 010	02
ADD	00111	0101 001	29
	01000	0011 001	19
	01001	0111 001	39
	01010	0000 010	02

STO	01011	0101 001	29
	01100	1010 001	51
	01101	1011 001	59
	01110	0000 010	02
OR	01111	0101 001	29
	10000	0011 001	19
	10001	0111 001	41
	10010	0000 010	02
SUB	10011	0101 001	29
	10100	0011 001	19
	10101	1000 001	49
	10110	0000 010	02
BUN	10111	0100 001	21
	11000	0000 010	02
	11001	0000 010	02
	11010	0000 010	02
LOAD	11011	0101 001	29
	11100	0011 001	19
	11101	1110 001	71
	11110	0000 010	02
HLT	11111	1111 000	78

Sample code:

LOAD 7

ADD 8

STORE 9

HLT

Code written RAM:

06000010 -load 7

01000011 -add 8

02000012 -store 9

07000000 -hlt

Operation and Functioning:

According to our Tiny computer layout we are keeping our instruction at the beginning of our RAM and

the data in the lower part(comparatively) of the RAM.

So whenever a clock pulse is given to the CPU (control unit) fetches instruction from the beginning of the

RAM . Then sends the instruction to the Program Counter . Now considering the first instruction is

pointing to functionality for ADD operation:

At first the address part from the MBR will come to MAR. Then jump and execute the microprograms

serially as they appear according to our modified instruction set .So in this case it will send the signal to

the ALU and then to the Accumulator the be updated by the value.

Discussion and Conclusion:

According to the instructions provided, the minimal computer system was designed. Initially the instructions were positioned at the lower section of the RAM. Upon supplying the clock pulse following the reset key press, anticipated output was displayed. Operations that were integrated include fetch, and, add, sto, or, sub, bun, load and halt. By implementing the project, I got valuable insights of computer hardware systems, and my understanding of computer organization and architecture got enriched.