

Lattice Models

Lattice models are a form of piecewise linear interpolated model

- They are defined via a grid over their input variables
- Their parameters are the output values at each grid point
- The output values for input vectors not corresponding to a point of the grid...
- ...Is the linear interpolation of neighboring grid points

They are available in tensorflow via the tensorflow-lattice module

Lattice Models

Lattice models:

- Can represent non-linear multivariate functions
- Can be trained by (e.g.) gradient descent

The grid is defined by splitting each input domain into intervals

- lacktriangle The domain of variable x_i is split by choosing a fixed set of n_i "knots"
- ...Of course this leads to scalability issues: we will discuss them later

The lattice parameters are interpretable

They simply represent output values for certain input vectors

- They can be changed with predictable effects
- They can be constrained so that the model behaves in a desired fashion
- If we use hard constraints, we get a guaranteed behavior

Lattice Models and Interpretability

Interpretability is a major open issue in modern ML

It is often a key requirement in industrial applications

- Customers have trouble accepting models that they do not understand
- Sometimes you are legally bound to provide motivations

There are two main ways to achieve interpretability

The first is using a model that is inherently interpretable

- There are a few examples of this: linear regression, DTs, (some) SVMs, rules...
- Lattice models fall into this class

The second approach is computing a posteriori explanations

- E.g. approximate linear explanations
- ...Such as in the <u>LIME</u> or <u>SHAP</u> approaches

The first step for implementing a lattice model is choosing the lattice size

```
In [16]: lattice_sizes = [4] * 2 + [2] * 4
```

■ We are using 4 knots for numeric inputs and 2 knots for the boolean inputs

Next, we need to split the individual input columns

```
In [17]: tr_ls = [tr_sc[c] * (s-1) for c, s in zip(dt_in_c, lattice_sizes)]
val_ls = [val_sc[c] * (s-1) for c, s in zip(dt_in_c, lattice_sizes)]
ts_ls = [ts_sc[c] * (s-1) for c, s in zip(dt_in_c, lattice_sizes)]
```

- This step is required by the tensorflow-lattice API
- We also scale the input to the range $[0, n_{knots} 1]$
- ...Since this is the expected convention for the considered API

The we build the symbolic tensors for the model input

```
In [18]: mdl_inputs = []
for cname in dt_in_c:
    cname_in = layers.Input(shape=[1], name=cname)
    mdl_inputs.append(cname_in)
```

■ We have one tensor per input column

Finally we can build our lattice model

```
In [67]: import tensorflow_lattice as tfl

mdl_out = tfl.layers.Lattice(lattice_sizes=lattice_sizes,
          output_min=0, output_max=1, name='lattice',
) (mdl_inputs)

lm = keras.Model(mdl_inputs, mdl_out)
```


We can plot the model structure

We can train the model as usual

```
In [69]: history = util.train_nn_model(lm, tr_ls, tr_sc['clicked'], loss='binary_crossentropy', batch_siz
          util.plot_training_history(history, figsize=figsize)
           0.75
           0.70
           0.65
           0.60
           0.55
           0.50
                              20
                                                                               100
                                                                                           120
                                                                                                        140
                                                               epochs
          Final loss: 0.4808 (training)
```


Lattice Model Evaluation

A large enough lattice model can peform as well as a Deep Network

Let's see the performance in terms of AUC

```
In [70]: pred_tr2 = lm.predict(tr_ls, verbose=0)
    pred_val2 = lm.predict(val_ls, verbose=0)
    pred_ts2 = lm.predict(ts_ls, verbose=0)
    auc_tr2 = roc_auc_score(tr_sc['clicked'], pred_tr2)
    auc_val2 = roc_auc_score(val_sc['clicked'], pred_val2)
    auc_ts2 = roc_auc_score(ts_sc['clicked'], pred_ts2)
    print(f'AUC score: {auc_tr2:.2f} (training), {auc_val2:.2f} (validation), {auc_ts2:.2f} (test)')

AUC score: 0.82 (training), 0.79 (validation), 0.76 (test)
```

- It is indeed comparable to that of the deep MLP
- ...Also in the fact that it works poorly on the test distribution

Lattice Model Evaluation

...And in fact the behavior is just as bad as the MLP (or worse)

- The expected monotonicity constraints are still violated
- There are still many mistakes for less represented areas of the input space

Calibration

Let's start fixing some of the outstanding issues

In a lattice model, the number of grid points is given by:

$$n = \prod_{i=1}^{m} n_i$$

- ...Hence the parameter number scales exponentially with the number of inputs
- So that modeling complex non-linear function seems to come at a steep cost

Scalability issues can be mitigated via two approaches:

- Ensembles of small lattices (we will not cover this one)
- Applying a calibration step to each input variable individually

We will focus on this latter approach

Calibration for Numeric Inputs

Calibration for numeric attributes...

...Consists in applying a piecewise linear transformation to each input

- This is essentially a 1-D lattice
- Calibration parameters are the function values at all knots

Calibration for Categorical Inputs

Calibration for categorical inputs...

...Consists in applying a map:

- Categorical inputs must be encodeded as integers
- Each input value is mapped to an output value
- The parameters are the map output values

How is this related to scalability?

About Calibration

With this approach:

- We make each input more complicated
- ...Which allows us to make the lattice model simple

Calibration enables the use of fewer knots in the lattice

E.g. say we are aiming for 5 grid values per attribute, with 2 attributes

- With 5 knots per layer an single lattice: $5 \times 5 = 25$ parameters
- With 5 calibration knots + 2 lattice knots: $5 \times 2 + 2 \times 2 = 14$

We do not get the same level of flexibility, but we get close

- Additionally, we tend to get more regular results
- ...Since we have more bias and less variance

This might be an advantage for out-of-distribution generalization

About Calibration

Calibration enables using categorical inputs without a one-hot encoding

- The calibration map is almost equivalent
- ...Since it enables mapping each category to an arbitrary numeric value
 Once again, we gain in terms of lattice parameters:
- E.g. 5 categories, no calibration: $2 \times 5 = 10$ parameters
- Whereas with calibration: 5 + 2 = 7 parameters

To use calibration, we start by adjusting our lattice size

- We will use just two knots per dimension
- ...And we replace the 4 one-hot variable with a single one

```
In [85]: lattice_sizes2 = [2] * 3
```


Preparing the Input

Then, we need to encode our categorical input using integers

We start by converting our string data input pandas categories

We can check how the categories are mapped into integer codes:

```
In [87]: tr_sc2['dollar_rating'].cat.categories
Out[87]: Index(['D', 'DD', 'DDD'], dtype='object')
```

The codes are are the positional indexes of the strings

Preparing the Input

Now we replace the category data with the codes themselves

...And we apply the same treatment to the validation and test set:

```
In [89]: val_sc2 = val_s.copy()
val_sc2['dollar_rating'] = val_sc2['dollar_rating'].astype('category').cat.codes

ts_sc2 = ts_s.copy()
ts_sc2['dollar_rating'] = ts_sc2['dollar_rating'].astype('category').cat.codes
```


Piecewise Linear Calibration

We use PWLCalibration objects for all numeric inputs

```
In [90]: avg_rating = layers.Input(shape=[1], name='avg_rating')
avg_rating_cal = tfl.layers.PWLCalibration(
    input_keypoints=np.quantile(tr_sc2['avg_rating'], np.linspace(0, 1, num=20)),
    output_min=0.0, output_max=lattice_sizes2[0] - 1.0, name='avg_rating_cal'
) (avg_rating)

num_reviews = layers.Input(shape=[1], name='num_reviews')
num_reviews_cal = tfl.layers.PWLCalibration(
    input_keypoints=np.quantile(tr_sc['num_reviews'], np.linspace(0, 1, num=20)),
    output_min=0.0, output_max=lattice_sizes2[1] - 1.0, name='num_reviews_cal'
) (num_reviews)
```

- The knot values are learnable parameters
- ...But their positions are fixed

A good choice consist in using distribution quantiles

E.g. for five knots: the 0-th, 25-th, 50-th, 75-th, 100-th percentile

Categorical Calibration

We use CategoricalCalibration objects for the categorical input

```
In [91]: dollar_rating = layers.Input(shape=[1], name='dollar_rating')
    dollar_rating_cal = tfl.layers.CategoricalCalibration(
        num_buckets=4,
        output_min=0.0, output_max=lattice_sizes2[2] - 1.0,
        name='dollar_rating_cal'
) (dollar_rating)
```

■ We use one "bucket" for each possible category

Building the Calibrated Lattice Model

We can now build the lattice model

...Using distinct input tensors for each input (as we did before)

```
In [92]: lt_inputs2 = [avg_rating_cal, num_reviews_cal, dollar_rating_cal]

mdl_out2 = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes2,
    output_min=0, output_max=1, name='lattice',
)(lt_inputs2)

mdl_inputs2 = [avg_rating, num_reviews, dollar_rating]
lm2 = keras.Model(mdl_inputs2, mdl_out2)
```

We can compare the number of parameters

```
In [93]: print(f'#Parameters in the original lattice: {sum(len(w) for w in lm.get_weights())}')
    print(f'#Parameters in the new lattice: {sum(len(w) for w in lm2.get_weights())}')

#Parameters in the original lattice: 256
    #Parameters in the new lattice: 52
```


Building the Calibrated Lattice Model

Let's see which kind of architecture we have now:

Before we can train it, we need to split our dataset columns

```
In [98]: tr_ls2 = [tr_sc2[c] for c in dt_in]
    val_ls2 = [val_sc2[c] for c in dt_in]
    ts_ls2 = [ts_sc2[c] for c in dt_in]
```


Training the Calibrated Lattice

We can train the new model as usual

```
In [101]: history = util.train_nn_model(lm2, tr_ls2, tr_sc['clicked'], loss='binary_crossentropy', batch_s
           util.plot training history(history, figsize=figsize)
            0.66
            0.64
            0.62
            0.60
            0.58
            0.56
            0.54
            0.52
            0.50
                                20
                                                          60
                                                                                   100
                                                                                               120
                                                                                                            140
                                                                  epochs
           Final loss: 0.5041 (training)
```


Evaluating the Calibrated Lattice

...And finally we can evaluate the results

```
In [103]: pred_tr3 = lm2.predict(tr_ls2, verbose=0)
    pred_val3 = lm2.predict(val_ls2, verbose=0)
    pred_ts3 = lm2.predict(ts_ls2, verbose=0)
    auc_tr3 = roc_auc_score(tr_s['clicked'], pred_tr3)
    auc_val3 = roc_auc_score(val_s['clicked'], pred_val3)
    auc_ts3 = roc_auc_score(ts_s['clicked'], pred_ts3)
    print(f'AUC score: {auc_tr3:.2f} (training), {auc_val3:.2f} (validation), {auc_ts3:.2f} (test)')
AUC score: 0.80 (training), 0.80 (validation), 0.79 (test)
```

- The performance is on par with the original one
- ...Except on the test set, where it works much better

Inspecting the Calibrated Lattice

We can inspect the learned function visually to get a better insight

- The structure follows a (piecewise linear) "tartan pattern"
- This is particularly evident now, since we use just two knots per dimension

Inspecting the Calibrated Lattice

It is useful to inspect the calibration layers

- The learned calibration functions violate the expected monotonicities
- ...Meaning that we still have one problem to solve

Shape Constraints

Lattice models are well suited to deal with shape constraints

Shape constraints are restrictions on the input-output function, such as:

- Monotonicity (e.g. "the output should grow when an input grows")
- Convexity/concavity (e.g. "the output should be convex w.r.t. an input")

Shape constraints are very common in industrial applications

Some examples:

- Reducing the price will raise the sales volume (monotonicity)
- Massive price reductions will be less effective (diminishing returns)
- Too low/high temperatures will lead to worse bakery products (convexity)

We can use them to fix our calibration issues

Shape Constraints

Shape constraints translate into constraints on the lattice parameters

- Let $\theta_{i,k,\bar{i},\bar{k}}$ be the parameter for the k-th note of input i...
- lacksquare ...While all the remaining attributes and knots (i.e. \overline{i} and k) are fixed

Then (increasing) monotonicity translates to:

$$\theta_{i,k,\bar{i},\bar{k}} \leq \theta_{i,k+1,\bar{i},\bar{k}}$$

- I.e. all else being equal, the lattice value at the grid points must be increasing
- Decreasing monotonicity is just the inverse

Then convexity translates to:

$$\left(\theta_{i,k+1,\bar{i},\bar{k}} - \theta_{i,k,\bar{i},\bar{k}}\right) \leq \left(\theta_{i,k+2,\bar{i},\bar{k}} - \theta_{i,k+1,\bar{i},\bar{k}}\right)$$

all else being equal, the adjacent parameter differences should increase

Monotonicity and Smoothness

We can expect a monotonic effect of the average rating

I.e. Restaurants with a high rating will be clicked more often

```
In [114]: avg_rating2 = layers.Input(shape=[1], name='avg_rating')
avg_rating_cal2 = tfl.layers.PWLCalibration(
    input_keypoints=np.quantile(tr_s['avg_rating'], np.linspace(0, 1, num=20)),
    output_min=0.0, output_max=lattice_sizes2[0] - 1.0,
    monotonicity='increasing',
    kernel_regularizer=('hessian', 0, 1),
    name='avg_rating_cal'
) (avg_rating2)
```

In addition to monotonicity, we use a Hessian reguralizer:

- This is a regularization term that penalizes the second derivative
- ...Thus making the calibrator more linear
- The two parameters are an L1 weight and L2 weights

Diminishing Returns

We can expect a diminishing returns from the number of reviews

- I.e. 200 reviews will be linked to much more clicks than 10 reviews
- ...But only a little more than 150 reviews

By coupling monotonicity with concavity we enforce diminishing returns

- We also use the "wrinkle" reguralizer, which penalizes the third derivative
- ...Thus making the calibration function smoother

Partial Orders on Categories

We can expect more clicks for reasonably priced restaurants...

...At least compared to very cheap and very expensive ones

```
In [116]: dollar_rating2 = layers.Input(shape=[1], name='dollar_rating')
    dollar_rating_cal2 = tfl.layers.CategoricalCalibration(
        num_buckets=4,
        output_min=0.0, output_max=lattice_sizes2[2] - 1.0,
        monotonicities=[(0, 1), (3, 1)],
        name='dollar_rating_cal'
) (dollar_rating2)
```

On categorical attributes, we can enforce partial order constraints

- Each (i, j) pair translates into an inequality $\theta_i \leq \theta_j$
- Here we specify that "D" and "DDDD" will tend to have fewer clicks than "DD"

Lattice Model with Shape Constraints

Then we can build the actual lattice model

```
In [118]: It inputs3 = [avg rating cal2, num reviews cal2, dollar rating cal2]
          mdl out3 = tfl.layers.Lattice(
              lattice sizes=lattice sizes2,
              output min=0, output max=1,
              monotonicities=['increasing'] * 3, name='lattice',
          )(lt inputs3)
          mdl inputs3 = [avg rating2, num reviews2, dollar rating2]
          lm3 = keras.Model(mdl inputs3, mdl out3)
```

If we specify monotonicities in the calibration layers

...Then the lattice must be monotone, too

- Otherwise, we risk loosing all our benefits
- Lattice monotonicities are always set to "increasing"

...Since we just want to preserve monotonicities from the calibration layers

Lattice Model with Shape Constraints

Let's train the constrained model

```
In [119]: history = util.train_nn_model(lm3, tr_ls2, tr_sc['clicked'], loss='binary_crossentropy', batch_s
           util.plot training history(history, figsize=figsize)
            0.60
            0.58
            0.56
            0.54
            0.52
                               20
                                                                                100
                                                                                            120
                                                                                                        140
                                                               epochs
           Final loss: 0.5173 (training)
```


Evaluating the Lattice Model with Shape Constraints

```
In [120]: pred_tr4 = lm3.predict(tr_ls2, verbose=0)
    pred_val4 = lm3.predict(val_ls2, verbose=0)
    pred_ts4 = lm3.predict(ts_ls2, verbose=0)
    auc_tr4 = roc_auc_score(tr_s['clicked'], pred_tr3)
    auc_val4 = roc_auc_score(val_s['clicked'], pred_val3)
    auc_ts4 = roc_auc_score(ts_s['clicked'], pred_ts3)
    print(f'AUC score: {auc_tr4:.2f} (training), {auc_val4:.2f} (validation), {auc_ts4:.2f} (test)')
AUC score: 0.80 (training), 0.80 (validation), 0.79 (test)
```

The results are on par with the previous ones

Inspecting the Calibrated Lattice

Let's inspect the learned function

- All monotonicities are respected, the functions are much more regular
- Tartan-pattern apart, they closely match our ground truth

Inspecting the Calibrated Lattice

The most interesting changes will be in the calibration functions

- Indeed, all monotonicities are respected
- The avg rating regularizer is more linear
- The num_reviews one is convex and smooth

Considerations

Lattice models are little known, but they can be very useful

- They are interpretable
- Customer react (very) poorly to violation of known properties

In general, shape constraints are related to the topic of reliability

- I.e. the ability of a ML model to respect basic properties
- ...Especially in areas of the input space not well covered by the training set Reliability is a very important topic for many applications of AI methods

Calibration is not restricted to the lattice input

- Indeed, we can add a calibration layer on the output as well
- ...So that we gain flexibility at a cost of a few more parameters

