BREAKING DOWN OF A PROBLEM

II. SEQUENCE

...académiquement, il se sent prêt à se lancer froidement dans une aventure qui l'amènera à circonscrire son Sujet, à le pulvériser selon n'importe quelle loi en un nombre fini d'objets insécables, vidés de toute essence, et à recomposer les morceaux inertes suivant n'importe quel système de telle façon que toute modification ne consistera plus qu'en divisions et combinaisons.

Jean-Louis AYME 1

Résumé. L'auteur présente Breaking down of a problem où chaque problème se résout

par décomposition en un nombre fini d'étapes et par la suite à les

recomposer...

Abstract. The author presents Breaking down of a problem where each problem is

resolved by decomposition in a finite number of steps and subsequently to recompose them...

El autor presenta Breaking down of a problem donde cada problema se

Resumen.

St-Denis, Île de la Réunion (Océan Indien, France), le 12/04/2017 ; jeanlouisayme@yahoo.fr

resuelve por la descomposición de un número finito de pasos y posteriormente recomponerlos...

Zusammenfassung.

Der Autor präsentiert *Breaking down of a problem* wo durch Zersetzung in einer endlichen Anzahl von Schritten und anschließend zu schwenken sie jedes Problem behoben ist...

3

14

Sommaire

Sequence 1 : La médiatrice de Stan Fulger
Sequence 2 : La médiane de Tran Quang Hung

Sequence 3 : Sequence 4 :

Lexique Français-Anglais

SEQUENCE 12

La médiatrice de Stan Fulger

ÉTAPE 1

VISION

Figure:

Traits: XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure,

et S, U les points d'intersection resp. de (YC) et (AD), (XZ) et (AD).

Donné: DU = AY.

VISUALISATION

- Nous avons:
- (1) les triangles DUC et AYD sont resp. rectangles en D, C
- (2) CD = DA
- $(3) \qquad <UCD = <AYD.$
- Conclusion:
- DUC et AYD étant égaux,

DU = AY.

Fulger S., Geometry, AoPS du 06/04/2017; https://artofproblemsolving.com/community/c6t48f6h1423629_geometry

³ Ayme J.-L., Square 1, inspired by sunken rock, AoPS du 11/08/2017; https://artofproblemsolving.com/community/c6h1494000_square_1

VISION

Figure:

Traits: XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure,

S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC),

et U, V les points d'intersection resp.

de (XZ) et (AD), (ZD) et la parallèle à (AD) issue de Y.

Donné : (UV) est parallèle à (AQ). ⁴

VISUALISATION

• Une chasse de rapport :

* par hypothèse et d'après Étape 1, DU/DA = AY/AB

* par projection, AY/AB = DV/DQ

* par transitivité de =, DU/DA = DV/DQ

* d'après Thalès "Rapports", (UV) // (AQ).

• Conclusion : (UV) est parallèle à (AQ).

Ayme J.-L., Square 2, inspired by sunken rock, AoPS du 11/08/2017; https://artofproblemsolving.com/community/c6h1494001_square_2

VISION

Figure:

Traits: XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure,

et S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC).

Donné: (AQ) est parallèle à (YC). ⁵

VISUALISATION

- Notons U, V les points d'intersection resp. de (XZ) et (AD), (ZD) et la parallèle à (AD) issue de Y.
- D'après Étape 2, (AQ) // (UV).
- D'après Pappus d'Alexandrie ⁶
 (UV) étant la pappusienne de l'hexagone sectoriel 123456
 de frontières (YZ) et (BC),
 par transitivité de //,
 (AQ) // (YC).
- Conclusion : (AQ) est parallèle à (YC).

Scolie: deux autres parallèles

Ayme J.-L., Square 3, inspired by sunken rock, AoPS du 11/08/2017; https://artofproblemsolving.com/community/c6h1494004_square_3

Ayme J.-L., Une rêverie de Pappus d'Alexandrie, G.G.G. vol. 6, p. 18; http://jl.ayme.pagesperso-orange.fr/

• Conclusion: mutatis mutandis, nous montrerions que (AQ) est parallèle à (YC).

ÉTAPE 4

VISION

Figure:

Traits: XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure,

O le centre de ABCD

et S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC).

Donné : O est le milieu de [SQ]. ⁷

VISUALISATION

Ayme J.-L., Square 4, inspired by sunken rock, AoPS du 11/08/2017; https://artofproblemsolving.com/community/c6h1494007_square_4

• D'après Étape 2 et hypothèse,

les triangles AQD et CSB sont homothétiques.

• D'après Girard Desargues 8,

(AC), (QS) et (DB) concourent en O.

• Conclusion : par symétrie de centre O,

O est le milieu de [SQ].

ÉTAPE 5

VISION

Figure:

X C Q Q Y A B Z

Traits:

XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure,

O le centre de ABCD,

S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC),

Ayme J.-L., Une rêverie de Pappus d'Alexandrie, G.G.G. vol. 6, p. 42; http://jl.ayme.pagesperso-orange.fr/

le cercle passant par S, D, O
 M le second point d'intersection de 1 avec (DC).

Donné : (OM) est la médiatrice de [SQ]. 9

VISUALISATION

• D'après Étape 3,

O est le milieu de [SQ].

• D'après Thalès "Triangle inscriptible dans un demi-cercle",

 $(OM) \perp (OS)$.

• Conclusion : (OM) est la médiatrice de [SQ].

Scolie : *1* est le cercle de diamètre [SM].

ÉTAPE 6

VISION

Figure:

X D M C S I V A B

Traits:

XYZ ABCD un triangle X-rectangle,

un carré inscrit dans XYZ comme indiqué sur la figure,

8

Ayme J.-L., Square 5, inspired by sunken rock, AoPS du 11/08/2017; https://artofproblemsolving.com/community/c6h1494008_square_5

O le centre de ABCD,

S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC),

1 le cercle passant par S, D, O

et M le second point d'intersection de 1 avec (DC).

Donné: O, M, Q et C sont cocycliques. 10

VISUALISATION

• Scolie: (SD) // (QC).

• Conclusion : le cercle 1, les points de base O et M, les moniennes naissantes (SOQ) et (DMC), les parallèles (SD) et (QC), conduisent au théorème 0'' de Reim ;

en conséquence, O, M, Q et C sont cocycliques.

• Notons 2 ce cercle.

Scolies: (1) 1 et 2 sont égaux

- D'après Étape 5, le triangle MSQ est M isocèle.
- Conclusion : 1 et 2 sont égaux.
 - (2) Trois points alignés

Notons
 J, K les seconds points d'intersection de 1, 2 resp. avec (XZ), (XY)
 et 3 le cercle de diamètre [CD]; il passe par O.

9

-

Ayme J.-L., Square 6, inspired by sunken rock, AoPS du 11/08/2017; https://artofproblemsolving.com/community/c6h1494010_square_6

- Conclusion: d'après Auguste Miquel "La droite de Miquel-Wallace" ¹¹ appliqué au triangle XCD avec J sur (XC), M sur (CD) et K sur (DX), du point de Miquel-Wallace O, J, M et K sont alignés.
 - (3) Six points cocycliques

- Notons 4 le cercle circonscrit à ABCD; il a pour centre O.
- Les cercles l et 2 étant égaux, OJ = OK = OA = OB = OC = OD.
- Conclusion: 4 passe par J, K (et A, B, C, D).

Restitution du problème

de

Stan Fulger (Roumanie) 12

VISION

Figure:

Ayme J.-L., Auguste Miquel, G.G.G. vol. 13, p. 15-16; http://jl.ayme.pagesperso-orange.fr/

Fulger S., Surprising perpendicularity in a right-angled triangle https://artofproblemsolving.com/community/c6t48f6h1491448_surprising_perpendicularity_in_a_rightangled_triangle

Traits: XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure

et S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC).

Donné: XS = XQ.

VISUALISATION

• Notons 1 le cercle passant par S, D, O,

M le second point d'intersection de 1 avec (DC),

2 le cercle passant par O, M, Q, C,

4 le cercle circonscrit à ABCD ; il a pour centre O.

O le centre de ABCD

et J, K les seconds points d'intersection de 1, 2 resp. avec (XZ), (XY).

• D'après Gaspard Monge "Le théorème des trois cordes" ¹³ appliqué aux cercles 1, 2 et 4, (OM) passe par X.

• Conclusion: d'après Étape 5, (OM) étant la médiatrice de [SQ], XS = XQ.

13

Ayme J.-L., Two parallels, inspired by sunken rock, AoPS du 09/08/2017; https://artofproblemsolving.com/community/c6h1492554_two_parallels

VISION

Figure:

Traits: XYZ un triangle X-rectangle,

ABCD un carré inscrit dans XYZ comme indiqué sur la figure,

O le centre de ABCD,

S, Q les points d'intersection resp. de (YC) et (AD), (ZD) et (BC),

le cercle passant par S, D, O

et M le second point d'intersection de 1 avec (DC).

Donné : (SM) est parallèle à (XY).

VISUALISATION

- Notons 3 le cercle de diamètre [CD] ; il passe par O.
- Scolie: 3 est tangent à (AD) en D.
- D'après Étape 7, M, O et X sont alignés.
- Les cercles 1 et 3, les points de base D et O, les moniennes (SDD) et (MOX), conduisent au théorème 3 de Reim ; il s'en suit que (SM) // (DX).
- Conclusion : (SM) est parallèle à (XY).

Scolies: (1) deux autres parallèles

- Notons 2 le cercle passant par S, D, O et M.
- Conclusion: mutatis mutandis, nous montrerions que (QM) est parallèle à (XZ).

(2) Une bissectrice

• D'après Étape 6,

(MO) est la M-bissectrice intérieure du triangle M-isocèle MSQ.

• D'après Étape 7,

- O, M et X sont alignés.
- Conclusion: par parallélisme,
- (XO) est la X-bissectrice intérieure du triangle XTZ.

SEQUENCE 2 14

La médiane de Tran Quang Hung

ÉTAPE 1

VISION

Traits: ABC un triangle,

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

N le point d'intersection de (EF) avec la perpendiculaire à (BC) en C,

Q le second point d'intersection de 1 avec (DN)

et K le point d'intersection de (DE) et (FQ).

Donné: (IK) est perpendiculaire à (CN). 15

VISUALISATION

• D'après Philippe de La Hire "La réciprocité polaire" ¹⁶, en conséquence,

K est le pôle de (CN); $(IK) \perp (CN)$.

Crux Mathematicorum vol. 43, 8 (Oct. 2017); https://cms.math.ca/crux/

Milieu d'un segment, Les-Mathematiques.net; http://www.les-mathematiques.net/phorum/read.php?8,1534990

Ayme J.-L., Crux Mathematicorum, Problem 4277, G.G.G. vol. 38; http://jl.ayme.pagesperso-orange.fr/

¹⁵ Ayme J.-L., Collinear, AoPS du 29/11/2016;

http://www.artofproblemsolving.com/community/c6h1346410_collinear

Ayme J.-L., La réciprocité polaire, G.G.G., vol. 13; http://jl.ayme.pagesperso-orange.fr/

• Conclusion: (IK) est perpendiculaire à (CN).

Archive

High School for Gifted Students (HSGS) Open Olympiad 2016, day 2

Problem proposed

by

Tran Quang Hung (Vietnam) 2016

VISION

Figure:

Traits: ABC un triangle,

1 le cercle inscrit de ABC,

le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C,

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN)

et K, L les points d'intersection resp. de (DE) et (FQ), (DF) et (EP).

Donné: (KL) passe par I et est parallèle à (BC). 17

VISUALISATION

• Scolie: (BM) // CN).

http://www.artofproblemsolving.com/community/c6t48f6h1276894_collinear_points

¹⁷ Collinear points, AoPS du 23/07/2016;

• D'après Étape1, (1) (IK) // (BC)

(2) (BC) // (IL).

• Par transitivité du //, (IK) // (IL); d'après le postulat d'Euclide, (IK) = (IL).

• Conclusion : (KL) est parallèle à (BC).

High School for Gifted Students (HSGS) Open Olympiad 2016, day 2

Problem proposed

by

Tran Quang Hung (Vietnam) 2016

VISION

Figure:

Traits: ABC un triangle,

et

1 le cercle inscrit de ABC,

le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN).

Donné: (PQ) est parallèle à (BC). 18

VISUALISATION

• Notons *Td* la droite (BC) tangente à *1* en D,

K, L les points d'intersection resp. de (DE) et (FQ), (DF) et (EP).

http://www.artofproblemsolving.com/community/c6t48f6h1276894_collinear_points

Collinear points, AoPS du 23/07/2016;

• D'après Étape 2,

(KL) // (BC) i.e. à Td.

• D'après Aubert-Pascal "Pentagramma mysticum" appliqué à l'hexagone dégénéré cyclique FD *Td* EPQF,

- (KL) en est la pascale
- (2) (PQ) // Td.
- Conclusion: (PQ) est parallèle à (BC).

Archive

Source: Own, HSGS Open Olympiad 2016, day 2

buratinogigle

Jul 23, 2016, 6:02 am • 2 ·

Let ABC be a triangle with incircle (I) touches BC, CA, AB at D, E, F, reps. M, N lie on line EF such that BM and CN are perpendicular to BC, DM, DN cut (I) again at P, Q.

(1)

a) Prove that $PQ \parallel BC$.

b) Let DE cuts FQ at K . DF cut EP at L . Prove that $KL \parallel BC$.

c) Prove that I,K,L are collinear.

Scolies (1) le triangle DPQ est D-isocèle

- Notons *Td* la tangente à *1* en D.
- Nous avons:

- * 1 est cercle circonscrit au triangle DPQ
- * Td = (BC)
- Conclusion: *Td* étant parallèle à (PQ),
- le triangle DPQ est D-isocèle.
- (2) Deux triangles rectangles semblables

- Une chasse angulaire :
 - * DPQ étant D-isocèle, <DPQ = <PQD
 - * par "Angles alternes-internes", <DPQ = <MDB et <PQD = <CDN
 - * par substitution, <MDB = <CDN.
- Conclusion : les triangles BDM, CDN étant resp. B, C-rectangle et ayant deux autres angles égaux, sont semblables.

L'auteur

VISION

Figure:

Traits: ABC un triangle,

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C

et U, X les milieux resp de [DM], [MN].

Donné : (BX) est parallèle à (DN).

VISUALISATION

- Une chasse angulaire:
 - * le triangle UBD étant U-isocèle, <DBU = <UDB
 - * d'après Étape 3, scolie 2, <UDB = <CDN
 - * par transitivité de =, <DBU = <CDN

- * par "Angles correspondants", (BU) // (DN).
- D'après Thalès "La droite des milieux" appliqué au triangle MDN, par transitivité du //, d'après le postulat d'Euclide, en conséquence,

(DN) // (UX); (BU) // (UX); (BU) = (UX); B, U et X sont alignés.

• Conclusion: (BX) est parallèle à (DN).

Scolies: (1) deux autres parallèles

- Notons U le milieu de [DM]
- Conclusion: mutatis mutandis, nous montrerions que (CX) est parallèle à (DM).

(2) Deux parallèles remarquables

- Conclusion: d'après Thalès "La droite des milieux" appliqué au triangle DMN,
- (UV) est parallèle à (MN).
- (3) Un point remarquable sur (BD)

- les points d'intersection de (BC) resp. avec (MN), (UV). 19 Notons A*, J
- Par culture géométrique,

le quaterne (B, C, D, A*) est harmonique.

• Conclusion: d'après Thalès "La droite des milieux" appliqué au triangle A*DM,

J est le milieu de [A*D].

(4) Par culture géométrique 20, $JB/JC = (DB/DC)^2$.

19

A* est le A-point de Nobbs de ABC Leboss2 C., Héméry C., *Géométrie Classe de Mathématiques*, Ed. Fernand Nathan (1961), n° **262**, p. 168

Crux Mathematicorum Problem 4277

proposed

by

Tran Quang Hung ²¹ (Vietnam) 2017

VISION

Figure:

Traits: ABC un triangle,

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C,

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN),

Y le point d'intersection de (CP) et (BQ),

et X le milieu de [MN].

Donné : D, X et Y sont alignés ²².

VISUALISATION COURTE

connu sous le pseudonyme buratinogigle sur le site Art of Problem Solving (AoPS)

²² Crux Mathematicorum vol. 43, 8 (Oct. 2017); https://cms.math.ca/crux/

Milieu d'un segment, Les-Mathematiques.net; http://www.les-mathematiques.net/phorum/read.php?8,1534990

- D'après Étape 3, (PQ) // (BC).
- D'après Étape 4, (DQ) // (BX) et (DP) // (CX).
- Les triangles DPQ et XCB étant homothétiques sont perspectifs ; en conséquence, (DX), (PC) et (QB) concourent en Y.
- Conclusion : D, X et Y sont alignés.

VISUALISATION LONGUE

- Notons R, S les seconds points d'intersection de 1 resp. avec (BQ), (CP).
- D'après Étape **3**, (PQ) // (BC).
- Le cercle 1, les points de base R et S, les moniennes naissantes (QRB) et (PSC), les parallèles (QP) et (BC), conduisent au théorème 0'' de Reim ; en conséquence, R, S, B et C sont cocycliques.
- Notons 2 ce cercle.

- Notons R', S' les points d'intersection resp. de (BQ) et (DP), (BP) et (DQ),
 - *Td* la tangente à *1* en D
 - et K le point d'intersection de (RS) et (BC).
- Scolie: Td = (BC).
- D'après Aubert-Pascal "Pentagramma mysticum" (KR'S') est la pascale de l'hexagone dégénéré cyclique *Td* PSRQD.

- Une chasse de rapports par application du théorème de Ménélaüs au triangle BYC et aux ménéliennes
 - * $(R'S'K), (R'Y/R'B) \cdot (KB.KC) \cdot (S'C/S'Y) = 1$

 $KB.KC = (R'B/R'Y) \cdot (S'Y/S'C)$

* (R'DP), $(R'Y/R'B) \cdot (DB/DC) \cdot (PC/PY) = 1$

 $R'B/R'Y = (DB/DC) \cdot (PC/PY)$

* $(S'DQ), (S'C/S'Y) \cdot (QY/QB) \cdot (DB/DC) = 1$

 $S'Y/S'C = (QY/QB) \cdot (DB/DC)$

* d'après Thalès ''Rapports'',

PC/PY = QB/QY

* par substitution,

 $KB.KC = (DB/DC)^2$.

- Notons U, V les milieux resp de [DM], [DN].
- D'après Étape 4, scolie 4,

 $JB/JC = (DB/DC)^2$;

en conséquences,

- (1) K et J sont confondus
- (2) (UV), (R'S') et (BC) concourent en J.

D'après Girard Desargues "Le théorème des deux triangles" ²³
(BJC)étant l'arguésienne des triangles XUV et YR'S',

XUV et YR'S' sont D-perspectifs.

Ayme J.-L., Une rêverie de Pappus d'Alexandrie, G.G.G. vol. 7, p. 40-44; http://jl.ayme.pagesperso-orange.fr/

• Conclusion: D, X et Y sont alignés.

LEXIQUE

FRANÇAIS - ANGLAIS

A		N	
aligné	collinear	Notons	name
annexe	annex	nécessaire	necessary
axiome	axiom	note historique	historic note
appendice	appendix		
adjoint	associate	0	
a propos	by the way btw	orthocentre	orthocenter
acutangle	acute angle	ou encore	otherwise
axiome	axiom		
		P	
В		parallèle	parallel
bissectrice	bisector	parallèles entre elles	parallel to each other
bande	strip	parallélogramme	parallelogram
		pédal	pedal
C		perpendiculaire	perpendicular
centre	incenter	pied	foot
centre du cercle circonscrit	circumcenter	point de vue	point of view
cercle circonscrit	circumcircle	postulat	postulate
cévienne	cevian	point	point
colinéaire	collinear	pour tout	for any
concourance	concurrence		
coincide	coincide	Q	
confondu	coincident	quadrilatère	quadrilateral
côté	side		
par conséquence	consequently	R	
commentaire	comment	remerciements	thanks
		reconnaissance	acknowledgement
D		respectivement	respectively
d'après	according to	rapport	ratio

donc	therefore	répertorier	to index
droite	line		
d'où	hence	S	
distinct de	different from	semblable	similar
		sens	clockwise in this
E		order	
extérieur	external	segment	segment
		Sommaire	summary
F		symédiane	symmedian
figure	figure	suffisante	sufficient
		sommet (s)	vertex (vertice)
H			
hauteur	altitude	T	
hypothèse	hypothesis	trapèze	trapezium
		tel que	such as
I		théorème	theorem
intérieur	internal	triangle	triangle
identique	identical	triangle de contact	contact triangle
i.e.	namely	triangle rectangle	right-angle triangle
incidence	incidence		
L			
lemme	lemma		
lisibilité	legibility	The second second	
M			
mediane	median		
médiatrice	perpendicular bissector		
milieu	midpoint		