FSUmath png

Hidden Markov Model for Financial Economics

Nguyet Nguyen, Major Prof: Giray Ökten

Financial Mathematics, Department of Mathematics, Florida State University

FSU.jpg

Introduction

A Hidden Markov model (HMM) is a stochastic signal model which has three assumptions:

- 1 The observation at time t, O_t , was generated by some process whose state, S_t , is **hidden**.
- 2 The hidden process satisfies the first-order Markov property: given S_{t-1} , S_t is independent of S_i for any i < t 1.
- 3 The hidden state variable is discrete.

Elements of HMM

- **1** Observation data, $O = (O_t), t = 1, ..., T$
- ② Hidden states, $S = (S_i), i = 1, 2, ..., N$
- 3 Hidden state sequence: $Q = (q_t), t = 1, ..., T$
- 4 Transition matrix A

$$a_{ij} = P(q_t = S_j | q_{t-1} = S_i), i, j = 1, 2, ..., N$$

- **6** Observation symbols per state, $V = (v_k), k = 1, 2, ..., M$
- 6 The observation probability

$$B: b_i(k) = P(O_t = v_k | q_t = S_i), i = 1, 2, ..., N; k = 1, 2, ..., M$$

• Initial probabilities, vector p, of being in state S_i at t=1

$$p_i = P(q_1 = S_i), i = 1, 2, ..., N$$

Three problems and corresponding solutions for HMMs

- Given (O, λ) , compute the probability of observations, $P(O|\lambda)$ Forward, backward algorithm
- ② Given (O, λ) , simulate the most likely hidden states, Q Viterbi algorithm
- 3 Given O, calibrate HMM parameters, λ Baum-Welch algorithm

Forward algorithm

- **1** Initialization, $\alpha_1(i) = p_i b_i(O_1)$ for i = 1, ..., N
- **2** For t = 2, 3, ..., T, for j = 1, ..., N

$$\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right]b_j(O_t),$$

 $P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$

Hidden Markov Model

Some Applications of HMMs

Figure 1: 1. Speech recognition 2. Bioinformatics 3. Finance

Forecast economics regimes

Economics indicators

Credit Index

3 Commodity

2 Yield Curve

4 Dow Jones Industrial Average

Figure 2: HMMs for Bear Market Predictions

Training and Predicting Process

- Use HMM for single and multiple observation data with normal distributions.
- Calibrate Markov-switching model parameters using Baum-Welch algorithm
- 3 Use the obtained parameters to predict stock prices for the next trading period.

HMMs for Stock Price Predictions

Figure 3: Forecast S&P500 close prices using single observation

HMMs for Stock Tradings

Symbol	Initial Investment (\$)	Earning (\$)	Earning %
SPY	9,000.00	2050.66	22.79
GOOG	30,000.00	29,036.4	96.79
FORD	250.00	10.10	4.04
AAPL	950.00	19.06	2.01
GE	1,700.00	490.00	28.82
TOTAL	41,900.00	31,606.22	75.43

Table 1: One year daily stock trading portfolio from December 2012 to December 2013

References

- [1] Zoubin Ghahramani. An Introduction to Hidden Markov Models and Bayesian Networks. International Journal of Pattern Recognition and Artifical Interlligence, 15(1): 9-42, 2001.
- [2] Lawrence Rabiner. A Tutorial on Hidden Markov Models and Seclected Applications in Speech Recognition, IEEE Vol 77-2, 1989.
- [3] Przemyslaw Dymarski. Hidden Markov Models, Theory and Applications, InTech 2011.
- [4] Xiaolin Li, Training Hidden Markov Models with Multiple Observations âĂŞ A Combinatorial Method. IEEE Transactions on PAMI, vol. 22(4): 371-377, 2000.
- [5] Mark Kritzman, SÃl'bastien Page, and David Turkington. Regime Shifts: Implications for Dynamic Strategies. Financial Analysts Journal, Vol.68(3), 2012 CFA Institute.