

CO₂ on the International Space Station: An Operations Update

Jennifer Law, M.D., M.P.H.
David Alexander, M.D.
Space Medicine Operations Division
NASA Johnson Space Center

Aerospace Medical Association 87th Annual Scientific Meeting April 26, 2016

Disclosures

- We have no financial relationships to disclose.
- We will not discuss off-label use or investigational use in this presentation.

Background

- CO₂ present in Earth's atmosphere at a partial pressure of 0.3 mmHg
- Historically unable to get to terrestrial levels with regenerable hardware

Lithium Hydroxide (LiOH) Canisters

- Permanent conversion from Li to Li₂CO₃ (single use)
- Each canister weighs 7 lbs
- Reserved for contingency use
 - 20 canisters would provide 14 days of CO₂ removal for 6 crew

Carbon Dioxide Removal Assembly

- Regenerable system
- Zeolite desiccant-adsorbent beds
- Typically control ppCO₂ to 2-5 mmHg
- Constrained by power, parts, crew time for maintenance

Brief History of CO₂ Control Levels

- Shuttle and original ISS Flight Rule limit for CO₂ was 7.6 mmHg
 - Based on existing terrestrial data
 - Consistent with recommendations set by OSHA and NIOSH in the 1980's
- Throughout ISS program, anecdotal reports have suggested that crewmembers develop CO₂-related symptoms at lower CO₂ levels than would be expected terrestrially
- FR limit revised to 5.3 mmHg in 2008
 - Based on new terrestrial data and the established Space Maximum Allowable Concentration (SMAC) for 7 to 180 days
- Since 2010, operational limits have been driven by crew symptomatology, and Chits have limited the 24-hour average CO₂ to 4.0 mmHg or below.
 - Of note, OSHA and NIOSH have since adjusted their exposure limits to 3.8 mmHg (8-hour TWA) and our interim SMAC value is set at 4.0 mmHg.

CO₂ Symptoms in Spaceflight

- In spaceflight, symptoms seem to occur at lower
 CO₂ levels than terrestrially
- Reported symptoms include:
 - Fatigue
 - Difficulty concentrating
 - Irritability
 - Performance decrements
 - Headache
 - One of the more easily recognized symptoms
 - Clinically attributed to CO₂ when symptoms are not attributed to another cause and symptoms resolve with lowering of CO₂

CO₂ Operational Control Levels: Recent Experience

- We have operated to control limits less than 4 mmHg for portions of 4 out of 6 recent increments
 - Range: 2.7 mmHg (3-hr avg) 3.4 mmHg (24-hr avg)
- Reports from multiple crewmembers:

CO ₂ (mmHg)	Observations
< 2.3	Few reports attributable to CO ₂
2.3 - 2.7	Fatigue, full-headedness
2.7 - 3.0	Self-reports of performance decrements, procedure missed steps, procedures going long
> 3.0	Headaches (variable – between 3.0 and 3.4 mmHg) [in addition to the symptoms experienced at lower CO ₂]

Notes: <u>Early, semi-quantitative</u> data; range of inter- and intra-individual variability in sensitivity to CO₂

Moving Target...

- Same crewmember
 - One month into mission, denied any CO₂ symptoms when CO₂ peaked at 4.02 mmHg due to Node 3 CDRA failure
 - 2 months later, reported symptoms at 3.5-4 mmHg
 - Two weeks prior, CO₂ elevated due to
 - Back-to-back SPHERES run and METOX regen
 - Node 3 CDRA down

Theories

Why do symptoms occur at lower CO₂ levels in flight than terrestrially?

- Physiologic changes induced by microgravity result in changes to CO₂ sensitivity
- Localized pockets of CO₂ form, allowing crewmembers to be exposed to higher concentrations of CO₂ than are recorded by the MCA
- Individual susceptibility of crewmembers
- Exposure to above-normal CO₂ levels may sensitize some individuals to CO₂ and build tolerance to higher than normal CO₂ in others
- Symptoms develop when there are large or rapid excursions in CO₂ from an established baseline

Conclusion

- There is increasing awareness of CO₂ symptoms by crew and ground teams
- There is mounting evidence that there are health and performance impacts at recent ISS CO₂ levels
 - An operational limit between 0.5 and 2.0 mmHg may maintain health and performance, but data are limited due to hardware
 - 3.0 mmHg is more achievable in the short term new operational limit since summer 2015
 - May be below the threshold for frank headaches for many crewmembers but still likely to be associated with CO₂ symptoms
- Future work is needed to establish long-term ISS and future vehicle operational limits

Acknowledgments

- CO₂ Data Group
 - David Alexander, M.D.
 - Chris Coble, M.P.H.
 - Jennifer Law, M.D., M.P.H.
 - Sara Mason, B.S.
 - Valerie Ryder, Ph.D.
 - Mary Van Baalen, Ph.D.
 - Mary Wear, Ph.D.
 - Millennia Young, Ph.D.