- 1. Consider the vector field $\mathbf{F} = \langle 2x 2y, 2x + 2y, 0 \rangle$
 - (a) (2 points) Show that F is not conservative.Solution.
 - (b) (2 points) Show that **F** is not solenoidal. Solution.
 - (c) (2 points each) Let $\mathbf{G} = \langle 2x, 2y, 0 \rangle$ and $\mathbf{H} = \langle -2y, 2x, 0 \rangle$. Notice that $\mathbf{F} = \mathbf{G} + \mathbf{H}$.
 - i. Show that G is conservative, and find a potential function g. Solution.
 - ii. Show that **H** is solenoidal so that it is the curl of some other vector field **C**. Find such a **C**. [Hint: You might want to choose the z-component to be 0.] Solution.
 - (d) (2 points) Conclude that we have decomposed \mathbf{F} into a purely conservative (i.e., irrotational) part and a purely solenoidal (i.e., divergence-free) part, so that $\mathbf{F} = \nabla g + \nabla \times \mathbf{C}$. [This can always be done, so long as everything is continuous enough.]

 Solution.

2. (8 points) Let $\mathbf{F} = \langle 6x^2y, -6x - 4y \rangle$. Let C be the rectangle with endpoints (0,0), (4,0), (4,1), and (0,1), with positive orientation. Determine the exact value of the flux of \mathbf{F} over C: $\oint \mathbf{F} \cdot \mathbf{N} \, ds$.

3. (8 points) Determine $\iint_S z \, dS$ where S is the surface $y = 3x + z^2$, where $0 \le x \le 1$ and $0 \le z \le 2$.

4. (8 points) Let $\mathbf{F}(x,y,z) = \langle y,\, x,\, xz \rangle$ and the surface S be the part of the paraboloid $z=4-x^2-y^2$ that lies above $0 \le x \le 1$ and $0 \le y \le 1$, where positive orientation is directed upward. Determine

$$\iint_{S} \mathbf{F} \cdot d\mathbf{s}$$

[Hint: The surface, projected into the xy-plane, is not a quarter of the unit circle, and therefore, it is likely easiest to parameterize S in Cartesian coordinates.]

5. (8 points) Calculate the flux of $mbF(x,y,z) = \langle x^3 + y, y^3 + z^2, z^3 + x^3 \rangle$ across the surface of the sphere centered at the origin with radius 2, with positive orientation. [Since the surface is closed, there are two distinct ways to do this – though both are things you can work out, one is *significantly* easier than the other.]