Напоминание. Отображение $\varphi \colon X \to Y$ из множества X в множество Y называется взаимно однозначным (или биекцией), если для каждого элемента $y \in Y$ существует ровно один элемент x такой, что $\varphi(x) = y$.

Преобразованием множества X называется любая биекция множества X в себя. Множество всех преобразований — S(X). Преобразование $\psi \colon X \to X$ называется тождественным, если оно переводит каждый элемент x в себя. Обозначение: $\psi = \mathrm{id}_X$.

Отображение $\varphi: X \to Y$ называется обратным для отображения $\psi: Y \to X$, если справедливы равенства $\varphi \circ \psi = \mathrm{id}_Y$ и $\psi \circ \varphi = \mathrm{id}_X$. Обозначение: $\varphi = \psi^{-1}$

Количество элементов во множестве X обозначается через |X| или #X.

Определение 1. Γ руппой преобразований множества X называется всякая непустая совокупность его преобразований G, удовлетворяющая следующим свойствам:

- (i) G замкнута относительно композиции, то есть для всех $g, h \in G$ верно: $g \circ h \in G$;
- (ii) G замкнута относительно взятия обратного преобразования, то есть для всех $g \in G$ преобразование g^{-1} лежит в G.

Задача 1. Докажите, что группа преобразований любого множества содержит тождественное преобразование.

Задача 2. Пусть множество X — это правильный треугольник ABC (с внутренностью, точки A, B, C идут по часовой стрелке). Обозначим через s_a , s_b и s_c симметрии относительно прямых, содержащих соответствующие высоты исходного треугольника. Далее, обозначим через r_0 , r_1 и r_2 повороты вокруг центра треугольника на 0° , 120° и 240° против часовой стрелки соответственно.

- а) Докажите, что $G = \{s_a, s_b, s_c, r_0, r_1, r_2\}$ образует группу преобразований треугольника;
- **б**) Выпишите таблицу «умножения» в этой группе (например, $s_b \circ s_a = r_1$);
- в) Придумайте группу преобразований правильного треугольника, состоящую из трёх преобразований.

Задача 3. а) Докажите, что для любого множества X множество S(X) является группой;

 $\mathbf{6}$) Пусть X — конечно, причём |X| = n. Найдите |S(X)|.

Замечание 1. Если множество X конечно и состоит из n элементов, то группа S(X) называется симметрической группой и обозначается S_n (см. 47-й листок).

Задача 4^{\varnothing} . Пусть множество X является подмножеством прямой, плоскости или пространства. Рассмотрим множество преобразований $\mathrm{Isom}(X) = \{ \varphi \in S(X) \mid \varphi \text{ сохраняет расстояния} \}$. Докажите, что вне зависимости от X множество преобразований $\mathrm{Isom}(X)$ является группой. Эта группа называется группой движений X.

Задача 5. а) Докажите, что самый длинный отрезок, внутри треугольника — это одна из его сторон.

б) Какой может быть группа движений треугольника (с внутренностью)?

Задача 6. Пусть в множестве $X \subset \mathbb{R}^2$ есть 3 точки, не лежащие на одной прямой. Докажите, что для любого преобразования $\varphi \in \text{Isom}(X)$ можно найти ровно одно такое движение плоскости $\Phi \in \text{Isom}(\mathbb{R}^2)$, что $\varphi(x) = \Phi(x)$ для любого $x \in X$. Говорят при этом, что движение φ *продолжается* до движения всей плоскости.

Задача 7. а) Опишите группу движений квадрата (то есть найдите и опишите все её элементы).

- б) Придумайте две различных группы преобразований квадрата, состоящих из четырёх движений.
- в)* Придумайте три таких группы и докажите, что других нет.

Определение 2. Порядком элемента g группы преобразований G называется наименьшее натуральное k такое, что $g^k = \underbrace{g \circ \cdots \circ g}$ = id. Обозначение: $\operatorname{ord}(g)$.

Определение 3. Порядком группы G называется количество элементов в G. Обозначение: |G| или #G.

Задача 8. Найдите порядок каждого элемента групп из задач 7 и 2.

Задача 9. Докажите, что в конечной группе каждый элемент имеет конечный порядок.

Задача 10. Перечислите все элементы и их порядки в группах движений следующих множеств:

- а) прямоугольник;
- **б**) правильный m-угольник (эта группа называется группой диэдра и обозначается D_m);
- в) правильный тетраэдр;

Задача 11. Найдите порядок группы движений следующих множеств:

- а) куб; б) октаэдр; в) правильная m-угольная призма; r) икосаэдр; д) додекаэдр.
- **e)** Найдите все движения куба, которые не являются ни поворотом вокруг прямой, ни симметрией относительно плоскости:

(Как связаны между собой куб и октаэдр? Тот же вопрос для икосаэдра и додекаэдра. :вясвяэдоП)

1	2 a	2 б	2 B	3 a	3 6	4	5 a	5 б	6	7 a	7 б	7 в	8	9	10 a	10 б	10 B	11 a	11 б	11 B	11 г	11 д	11 e