

Model Estimation

Model the probability of success given predictor(s):

$$\mathsf{Logit}\big(\mathsf{Pr}\big(Y=1\mid X_1,\cdots,X_p\big)\big) = \mathsf{Logit}\big(\mathsf{p}\big(X_1,\cdots,X_p\big)\big) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Parameters: β_0 , β_1 , \cdots , β_p

Approach: Maximum Likelihood Estimation

$$\max_{\beta_0,\beta_1,\cdots,\beta_p} \mathcal{L}(\beta_0,\beta_1,\cdots,\beta_p) = \prod_{i=1}^n p(X_{i,1},X_{i,2},\cdots,X_{i,p})^{Y_i} \left(1 - p(X_{i,1},X_{i,2},\cdots,X_{i,p})\right)^{1-Y_i}$$

or

$$\max_{\beta_0,\beta_1,\cdots,\beta_p} \ell(\beta_0,\beta_1,\cdots,\beta_p) = \max_{\beta_0,\beta_1,\cdots,\beta_p} \log(\mathcal{L}(\beta_0,\beta_1,\cdots,\beta_p))$$

$$= \max_{\beta_0,\beta_1,\cdots,\beta_p} \sum_{i=1}^n \left(Y_i \log \left(\frac{e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}} \right) + (1 - Y_i) \log \left(\frac{1}{1 + e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}} \right) \right)$$

Georgia Tech

Statistical Inference

Maximum Likelihood Estimators (MLEs):

$$\widehat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$$

Statistical Properties of MLEs:

- Approximate Sampling Distribution: $\hat{\beta} \approx N(\beta, V)$
- The normal approximation relies on the assumption of <u>large sample size</u>
- · Statistical inference is not reliable for small sample data

1-
$$\alpha$$
 Approximate Confidence interval
$$\hat{\beta}_j \pm z_{\alpha/2} \sqrt{\text{Var}(\hat{\beta}_j)}$$

Georgia Tech

Statistical Inference (cont'd)

- Hypothesis testing and Confidence Intervals rely on the approximately normal distribution of large sample sizes
- Use the z-test (Wald test)
 - Test is for the statistical significance of $\hat{\beta}_j$ given all other predicting variables in the model
 - Null hypothesis is that β_j is not significant $H_0: \beta_i = 0$ vs. $H_a: \beta_i \neq 0$
 - z-value = $\frac{\widehat{\beta}_j 0}{\operatorname{se}(\widehat{\beta}_j)} = \frac{\widehat{\beta}_j}{\operatorname{se}(\widehat{\beta}_j)}$
 - Reject H₀ if |z-value| is too large
 - Implies that β_i is statistically significant

Statistical Inference (cont'd)

For H_0 : $\beta_j = b$ vs. H_a : $\beta_j \neq b$ (to test if the coefficient equals constant b)

- z-value = $\frac{\widehat{\beta}_j b}{\operatorname{se}(\widehat{\beta}_j)}$
- Reject H_0 if $|z-value| > z_{\alpha/2}$ for significance level α
- Alternatively, compute P-value
 - P-value = 2Pr(Z > |z-value|)

For H_0 : $\beta_j \le 0$ vs. H_a : $\beta_j > 0$ (to test for a significantly positive coefficient)

• P-value = Pr(Z > |z-value|)

For H_0 : $\beta_j \ge 0$ vs. H_a : $\beta_j < 0$ (to test for a significantly negative coefficient)

• P-value = Pr(Z < |z-value|)

Georgia Tech

Statistical Inference (cont'd)

For H_0 : $\beta_j = b$ vs. H_a : $\beta_j \neq b$ (to test if the coefficient equals constant b)

- z-value = $\frac{\widehat{\beta}_j b}{\operatorname{se}(\widehat{\beta}_j)}$
- Reject H₀ if $|z-value| > z_{\alpha/2}$ for significance level α
- · Alternatively, compute P-value
 - P-value = 2Pr(Z > |z-value|)

For H_0 : $\beta_j \le 0$ vs. H_a : $\beta_j > 0$ (to test for a significantly positive coefficient)

• P-value = Pr(Z > |z-value|)

For H_0 : $\beta_j \ge 0$ vs. H_a : $\beta_j < 0$ (to test for a significantly negative coefficient)

• P-value = Pr(Z < |z-value|)

- Because the approximation of the normal distribution relies on large sample size, so do the hypothesis testing procedures.
- What if n is small?
 - The hypothesis testing procedure will have a probability of type I error larger than the significance level.
 - In other words, there will likely be more type I errors than expected.

Georgia Tech

Testing for Subsets of Coefficients

Full model:

$$Logit\left(p(X_1, \dots, X_p, Z_1, \dots, Z_q)\right)$$

= $\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \alpha_1 Z_1 + \dots + \alpha_q Z_q$

Reduced model:

$$Logit(p(X_1, \dots, X_p)) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

The hypothesis test:

$$\mathbf{H_0}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_q = \mathbf{0}$

VS.

$$H_a$$
: $\alpha_i \neq 0$ for at least one α_i , $i = 1, \dots, q$

- Maximize the likelihood function under reduced model: $\mathcal{L}(\bar{\beta}_0, \bar{\beta}_1, ..., \bar{\beta}_p)$
- Maximize the likelihood function under full model: $\mathcal{L}(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p, \hat{\alpha}_1, ..., \hat{\alpha}_q)$
- Test Statistics
 - $\bullet \quad \text{Deviance} = \log \left(\mathcal{L}(\bar{\beta}_0, \bar{\beta}_1, \dots, \bar{\beta}_p) \right) \log \left(\mathcal{L}(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p, \, \hat{\alpha}_1, \dots, \, \hat{\alpha}_q) \right) \approx \chi_q^2$
 - P-value = $Pr(\chi_q^2 > Deviance)$

Georgia Tech

Testing for Subsets of Coefficients

Full model:

Logit
$$(p(X_1, \dots, X_p, Z_1, \dots, Z_q))$$

= $\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \alpha_1 Z_1 + \dots + \alpha_q Z_q$

Reduced model:

$$\operatorname{Logit}\left(\operatorname{p}\!\left(X_1,\cdots,X_p\right.\right)\right) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

The hypothesis test: H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_q = 0$

VS.

 H_a : $\alpha_i \neq 0$ for at least one α_i , $i = 1, \dots, q$

- The hypothesis test for subsets of coefficients is approximate
 - It relies on large sample size
- This is not a test for goodness of fit!
 - It only compares two models
- Maximize the likelihood function under reduced model: $\mathcal{L}(\bar{\beta}_0, \bar{\beta}_1, ..., \bar{\beta}_p)$
- Maximize the likelihood function under full model: $\mathcal{L}(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p, \hat{\alpha}_1, ..., \hat{\alpha}_q)$
- **Test Statistics**
 - $\text{Deviance} = \log \left(\mathcal{L}(\bar{\beta}_0, \bar{\beta}_1, \dots, \bar{\beta}_p) \right) \log \left(\mathcal{L}(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p, \, \hat{\alpha}_1, \dots, \, \hat{\alpha}_q) \right) \approx \chi_q^2$
 - P-value = $Pr(\chi_q^2 > Deviance)$

Georgia

Testing for Overall Regression

Full model:

$$Logit(p(X_1, \dots, X_p)) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Reduced model:

$$\mathsf{Logit}\left(\mathsf{p}\big(X_1,\cdots,X_p\big)\right) = \beta_0$$

The hypothesis test:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

VS.

$$H_a$$
: $\beta_i \neq 0$ for at least one β_i , $i = 1, \dots, p$

- Maximize the likelihood function under reduced model: $\mathcal{L}(\bar{\beta}_0)$
- Maximize the likelihood function under full model: $\mathcal{L}(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p)$
- **Test Statistics**
 - Deviance = $\log(\mathcal{L}(\bar{\beta}_0)) \log(\mathcal{L}(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p)) \approx \chi_p^2$
 - P-value = $Pr(\chi_n^2 > Deviance)$

