## 西安邮电大学课程考试试题 (A卷)

( 2023 —— 2024 学年第 二 学期)

课程名称: 信号与系统 B

考试专业、年級:通工、广电、电信、电科等专业 21 级重修

考核方式: 闭卷

可使用计算器: 否

| 题号  | _ | 11 | 111 | 四 | 五 |  | 总分 |
|-----|---|----|-----|---|---|--|----|
| 得分  |   |    |     |   |   |  |    |
| 评卷人 |   |    |     |   |   |  |    |

得分: \_\_\_\_\_ 一、填空题 (共10空,每空3分,共30分)

- 1、信号e<sup>-2</sup>(ε(t) 是功率信号还是能量信号? \_\_\_\_\_\_
- 2、计算卷积积分 sin tε(t) \* δ(t-1)=\_\_\_\_\_。
- 3、设信号  $f(t) = e^{-t} \varepsilon(t)$ ,则像分 $\frac{df(t)}{dt} =$ \_\_\_\_\_\_\_。
- 4、序列  $f(k) = 2\cos(\frac{\pi}{4}k) + \sin(\frac{5\pi}{8}k) + 2\cos(\frac{\pi}{2}k \frac{\pi}{4})$  的周期为 \_\_\_\_\_\_\_
- 5、已知某离散 LTI 系统,当输入为  $\delta(k-1)$  时,系统的零状态响应为  $(0.5)^k$   $\epsilon(k-1)$  ,则该系统的单位序列响应 h(k)=\_\_\_\_\_\_。
- 6、周期矩形脉冲信号的周期为2s,脉冲宽度为0.2s,则其频谱间隔Ω为\_\_\_\_\_\_,第一零点带宽为\_\_\_\_\_。
- 7、信号  $f(t) = e^{-2t} \varepsilon (t-1)$  的傅里叶变换  $F(j\omega)$  等于\_\_\_\_\_\_。



8、己知信号 f(t) 如图所示,则 F(0) =\_\_\_\_\_,



9、已知 H(s) 的零点在1, 极点在-1和-3, 且 h(0,)=2,则 H(s)=\_\_\_\_\_。

得分: \_\_\_\_\_ 二、选择题(共10 题, 每题 3 分, 共30 分)

1、若f(t)为激励,y(t)为响应,描述系统的方程为y(t) = |f(t)| + 2,则该系统是( ),

A、非线性、时不变

B、非线性、时变

C、线性、时不变

D、线性、时变

2、对信号 f(t) 经过 ( ),最后得到 f(-2t+3)。

A、扩展, 反转, 右移1.5 B、反转, 左移3, 压缩

C、左移3,压缩,反转 D、扩展,右移1.5,反转

3、积分 $\int_{-\delta}^{1} (t-1)\delta(t-4)dt$ 等于 ( )。

A, -1 B, -0.5 C, 0

D<sub>2</sub> 0.5

4、如下图所示周期信号f(t),该信号不可能含有的频率分量是(

则污系

,第一



A. 0.5HzB. 1Hz

 $C \cdot 1.5Hz$ 

D, 2.5Hz



- 5、序列和  $\sum_{i=-\infty}^{k} 2^{i+1} \delta(i)$  等于 ( )。

  - A.  $2\varepsilon(k)$  B.  $2\varepsilon(k+1)$  C.  $2^{k+1}$  D. 2
- 6、以下分别是四个因果信号的拉普拉斯变换,其中不存在傅里叶变换的是(



A,  $\frac{1}{s}$  B, 1 C,  $\frac{1}{s+3}$  D,  $\frac{1}{s-1}$ 

7、系统的幅频特性和相频特性如下图所示,下列信号通过该系统时不产生失真的是(



- $A_{\searrow} f(t) = \sin(2t) + \cos(6t)$
- $B_{\gamma} f(t) = \cos(3t)\sin(4t)$
- C,  $f(t) = \sin(2t) + \sin(4t)$  D,  $f(t) = 1 + \cos^2(4t)$
- 8、连续时间信号 f(t) 的最高频率 100 Hz , 若对 f(0.5t) 取样,则奈奎斯特频率为(
  - A. 200 Hz
- B, 400 Hz
- C \ 100 Hz
- D. 50 Hz
- 9、设因果信号 f(t) 的象函数为 F(s),则  $e^{-2t} f(3t-1)$  的象函数等于 ( ).
  - A.  $3F[3(s+2)]e^{-3(s+2)}$
- B.  $3F[3(s-2)]e^{-3(s-2)}$
- C,  $\frac{1}{3}F\left[\frac{1}{3}(s-2)\right]e^{\frac{1}{3}(s-2)}$  D,  $\frac{1}{3}F\left[\frac{1}{3}(s+2)\right]e^{\frac{1}{3}(s+2)}$
- 10、下列叙述正确的是(
  - A、两个连续周期信号的和一定是周期信号。
  - B、两个离散周期序列之和不一定是周期序列。
  - C、两个连续周期信号之比为有理数时,其和信号才是周期信号。
  - D、以上说法均不正确。

得分: \_\_\_\_\_\_三、简答题(共2题,每题5分,共10分)

得分: \_\_\_\_\_\_1、已知某连续 LTI 系统的频率响应  $H(j\omega)=rac{2+j3\omega}{2-j3\omega}$ ,试判断系统是否是无失真传输系统。

導分: \_\_\_\_\_2、已知信号  $f_1(t)$  和  $f_2(t)$  的波形如下图所示,画出  $f(t) = f_1(t) * f_2(t)$  的波形。



四、得分:\_\_\_\_\_(15 分)如图示系统,带通滤波器的频率响应为 $H(j\omega) = \begin{cases} 1, & 999 \le |\omega| \le 1001 \\ 0, & 其它 \end{cases}$ 

若输入 f(t) = Sa(2t), s(t) = cos(1000t), 试求

- (1) 求信号 f(t) 的频谱  $F(j\omega)$ , 画出其频谱图:
- (2) 画出信号 $y_1(t)$ 的频谱图;
- (3) 求输出信号 y(t), 并画出频谱图。





\$1001

五、得分: \_\_\_\_\_(15 分) 某连续时间系统的信号流图如下图所示,已知当  $f(t)=e^{-3t}s(t)$  时,

系统的零状态响应为  $y_{x}(t) = (e^{-t} + e^{-2t} - 2e^{-3t}) \delta(t)$ ,试求:



- (1) 常数a,b,c;
- (2) 单位冲激响应h(t);
- (3) 若系统的初始状态  $y(0_{-})=1$ ,  $y'(0_{-})=1$ , 求零输入响应  $y_{z}(t)_{z}$

