Numerical Linear Algebra Assignment 1

Exercise 1. (10 points)

Prove the Cauchy–Schwarz inequality: For any given inner product $\langle \cdot, \cdot \rangle$,

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

The equality holds if and only if \mathbf{x} and \mathbf{y} are linearly dependent.

Exercise 2. (10 points)

Prove that

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{b_{ij}}, \quad \forall \mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$$

is an inner product on $\mathbb{C}^{m\times n}$. (The Frobenius norm on $\mathbb{C}^{m\times n}$ is induced by this inner product.)

Exercise 3. (10 points)

Let $\|\cdot\|$ denote any vector norm on \mathbb{C}^m and $\mathbf{W} \in \mathbb{C}^{m \times m}$ be nonsingular. Prove that $\|\mathbf{x}\|_{\mathbf{W}} = \|\mathbf{W}\mathbf{x}\|$ is a vector norm on \mathbb{C}^m .

Exercise 4. (10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{B} \in \mathbb{C}^{n \times r}$ and let $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\beta}$, and $\|\cdot\|_{\gamma}$ be norms on \mathbb{C}^{m} , \mathbb{C}^{n} , and \mathbb{C}^{r} , respectively. Prove the induced matrix norms $\|\cdot\|_{\alpha,\gamma}$, $\|\cdot\|_{\alpha,\beta}$, and $\|\cdot\|_{\beta,\gamma}$ satisfy $\|\mathbf{A}\mathbf{B}\|_{\alpha,\gamma} \leq \|\mathbf{A}\|_{\alpha,\beta} \|\mathbf{B}\|_{\beta,\gamma}$.

Exercise 5. (10 points)

Prove that $\|\mathbf{A}\|_{\infty,1} = \max_{i,j} |a_{ij}|$.

Exercise 6. (TreBau Exercise 3.4, 10 points)

Let **A** be an $m \times n$ matrix and let **B** be a submatrix of **A**, that is, an $s \times t$ matrix $(s \le m, t \le n)$ obtained by selecting certain rows and columns of **A**.

- (a) Explain how ${\bf B}$ can be obtained by multiplying ${\bf A}$ by certain row and column "deletion matices" as in step 7 of Exercise 1.1.
- (b) Using this product, show that $\|\mathbf{B}\|_p \leq \|\mathbf{A}\|_p$ for any p with $1 \leq p \leq \infty$.