Package 'hydReng'

January 9, 2025

Type Package

Title Hydraulic Engineering Tools
Version 0.1.0
Description The 'hydReng' package provides a set of functions for hydraulic engineering tasks and natural hazard assessments. It includes basic hydraulics (wetted area, wetted perimeter, flow, flow velocity, flow depth, and maximum flow) for open channels with arbitrary geometry under uniform flow conditions. For structures such as circular pipes, weirs, and gates, the package includes calculations for pressure flow, backwater depth, and overflow over a weir crest. Additionally, it provides formulas for calculating bedload transport. The formulas used can be found in standard literature on hydraulics, such as Bollrich (2019, ISBN:978-3-410-29169-5) or Hager (2011, ISBN:978-3-642-77430-0).
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
<pre>URL https://github.com/NiccoloGalatioto/hydReng</pre>
BugReports https://github.com/NiccoloGalatioto/hydReng/issues
Suggests testthat (>= 3.0.0)
Imports methods
NeedsCompilation no
Author Galatioto Niccolo [cre, aut], Bühlmann Marius [aut], HOLINGER AG [cph, fnd]
Maintainer Galatioto Niccolo <niccolo.galatioto@gmail.com></niccolo.galatioto@gmail.com>
Repository CRAN
Date/Publication 2025-01-09 17:40:02 UTC
Contents
bedload_MPM2bedload_SJ3

2 bedload_MPM

	CSarbitrary-class	4
	CScircle-class	5
	d_aequiv	
	flow	6
	flow_depth	
	flow_depth_gate	8
	flow_depth_weir	9
	flow_gate	9
	flow_max	10
	flow_max_freeboard	
	flow_velocity	13
	flow_weir	
	freeboard	
	froude_number	15
	mean_roughness	16
	par_fill	17
	pressflow	17
	pressflow_depth	18
	pressflow_depth_sub	19
	wetted_area	
	wetted_perimeter	
	•	
Index		23

 ${\tt bedload_MPM}$

Bedload Transport Capacity (Meyer-Peter Müller)

Description

Calculates the bedload transport capacity using the formula by Meyer-Peter Müller. The formula is valid for bed slopes less than 0.005.

Usage

```
bedload\_MPM(dm, J, Rs, B, f_kSt = 0.85, t_crit = 0.047, rho_s = 2650, s = 2.65)
```

Arguments

dm	Median grain size [m].
J	Bottom slope [-].
Rs	Hydraulic radius [m].
В	Bottom width [m].
f_kSt	Friction factor = $(k_StS / k_Str)^(3/2)$ (default: 0.85).
t_crit	Critical shear stress [-] (default: 0.047).
rho_s	Density of bedload material [kg/m3] (default: 2650).
S	Relative solid density [-] (default: 2.65).

bedload_SJ 3

Value

Returns the bedload transport rate [kg/s].

References

Bezzola, G.R. (2012). Vorlesungsmanuskript Flussbau. ETH Zürich, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie VAW.

Examples

```
bedload_MPM(dm = 0.1, J = 0.01, Rs = 1.5, B = 20) bedload_MPM(dm = 0.1, J = 0.01, Rs = 1.5, B = 20, t_crit = 0.06)
```

bedload_SJ

Bedload Transport Capacity (Smart and Jaeggi)

Description

Calculates the bedload transport capacity based on the formula by Smart and Jaeggi (1983). This formula is recommended for slopes between 0.005 and 0.2.

Usage

```
bedload_SJ(d30, dm, d90, J, Rs, um, B, t_crit = 0.05, rho_s = 2650, s_value = 2.65)
```

Arguments

d30	Grain size distribution parameter [m].
dm	Median grain size [m].
d90	Grain size distribution parameter [m].
J	Bottom slope [-].
Rs	Hydraulic radius [m].
um	Mean flow velocity [m/s].
В	Bottom width [m].
t_crit	Critical shear stress [-] (default: 0.05).
rho_s	Density of bedload material [kg/m3] (default: 2650).
s_value	Relative solid density [-] (default: 2.65).

Value

bedload_SJ returns the bedload transport rate [kg/s]

4 CSarbitrary-class

References

Smart, G. M., & Jäggi, M. N. R. (1983). Sediment transport in steilen Gerinnen. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 64, Zürich.

Examples

```
d30 <- 0.05

dm <- 0.1

d90 <- 0.2

J <- 0.03

Rs <- 1

um <- 2

B <- 3

bedload_SJ(d30 = 0.05, dm = 0.10, d90 = 0.2, J = 0.03, Rs = 1, um = 2, B = 5)
```

CSarbitrary-class

CSarbitrary Class

Description

Defines a cross-section class with arbitrary geometry for hydraulic calculations. For single open channels only, avoid geometries with multiple channels.

Slots

```
x A numeric vector of x-coordinates [m].
```

z A numeric vector of z-coordinates [m].

xb_1 x-coordinate of the left bank bottom [m].

xb_r x-coordinate of the right bank bottom [m].

kSt_B Roughness of the channel bed $[m^{(1/3)/s}]$.

kSt_1 Roughness of the left bank $[m^{(1/3)/s}]$.

kSt_r Roughness of the right bank $[m^{(1/3)/s}]$.

CScircle-class 5

CScircle-class

CScircle Class

Description

Defines a cross-section class with circular geometry for hydraulic calculations.

Slots

```
Di Diameter of the pipe [m].
```

kSt Roughness of the pipe according to Strickler $[m^{(1/3)/s}]$.

ks Roughness of the pipe according to Prandtl-Coolebrook-White [mm] (SIA 190)

Examples

```
csC <- CScircle(Di = 1, kSt = 75)
csC <- CScircle(Di = 1, ks = 1.5)</pre>
```

d_aequiv

Equivalent Hydraulic Diameter

Description

Calculates the equivalent hydraulic diameter of a rectangular cross-section given its width and height.

Usage

```
d_aequiv(b, h)
```

Arguments

```
b Width of the rectangle [m].h Height of the rectangle [m].
```

Value

The equivalent hydraulic diameter [m].

```
d_{aequiv}(b = 2, h = 1)
```

6 flow

flow Flow

Description

Calculates the discharge of a CSarbitrary or CScircle object for a given flow depth and bottom slope under uniform flow conditions.

Usage

```
flow(object, h, J, method = "Strickler", ret = "all", plot = FALSE)
```

Arguments

object A CSarbitrary or CScircle object.

h Flow depth [m].

J Bottom slope [-].

method Method to calculate the roughness. Allowed are "Strickler" (equal roughness)
 "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".

ret Defines the result returned by the function.

plot Logical; if 'TRUE', plots the results.

Value

A list containing the following hydraulic variables:

Q Discharge [m3/s].

v Flow velocity [m/s].

 $\mathbf{kSt}_{\mathbf{m}}$ Mean roughness $[\mathbf{m}^{\wedge}(1/3)/\mathbf{s}]$ (if method = "Einstein").

A Wetted area [m^2].

```
# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(
    x = x, z = z, xb_l = 4, xb_r = 9,
    kSt_B = 35, kSt_l = 45, kSt_r = 45
)
flow(cs, h = 2, J = 0.0001, method = "Einstein", ret = "Q")
flow(cs, h = 2, J = 0.0001, method = "Einstein", plot = TRUE)

# Example for CScircle object
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
flow(csC, h = 0.46, J = 0.004)
flow(csC, h = 0.46, J = 0.004, method = "Prandtl-Coolebrook-White", plot = TRUE)</pre>
```

flow_depth 7

flow_depth	Flow Depth
------------	------------

Description

Calculates the flow depth of a CSarbitrary or CScircle object for a given discharge and bottom slope under uniform flow conditions.

Usage

```
flow_depth(object, Q, J, method = "Strickler", ret = "all", plot = FALSE)
```

Arguments

object	A CSarbitrary or CScircle object.
Q	Discharge [m3/s].
J	Bottom slope [-].
method	Method to calculate the roughness. Allowed are "Strickler" (equal roughness) "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".
ret	Defines the result returned by the function.
plot	Logical; if 'TRUE', plots the results.

Value

A list containing the following hydraulic variables:

```
h Flow depth [m].v Flow velocity [m/s].
```

Fr Froude number [-].

 $\mathbf{kSt}_{\mathbf{m}}$ Mean roughness $[\mathbf{m}^{(1/3)/s}]$ (if method = "Einstein").

A Wetted area [m^2].

P Wetted perimeter [m].

```
# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(
    x = x, z = z, xb_l = 4, xb_r = 9,
    kSt_B = 35, kSt_l = 45, kSt_r = 45
)
flow_depth(cs, Q = 8.677, J = 0.0001, method = "Einstein", ret = "h")
flow_depth(cs, Q = 8.677, J = 0.0001, method = "Einstein", plot = TRUE)</pre>
```

8 flow_depth_gate

```
# Example for CScircle object
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
flow_depth(csC, Q = 0.46, J = 0.004)
flow_depth(csC, Q = 0.46, J = 0.004, method = "Prandtl-Coolebrook-White", plot = TRUE)</pre>
```

flow_depth_gate

Water Depth Upstream Of Gate

Description

Calculates the upstream water depth for a gate based on given discharge and gate parameters.

Usage

```
flow_depth_gate(a, Q, B, alpha, h2 = NULL, ret = "h0")
```

Arguments

а	Gate opening height [m].
Q	Discharge [m3/s].
В	Gate width [m].
alpha	Gate angle from horizontal [degrees].
h2	Optional. Downstream water depth [m]. Default is NULL (free flow).
ret	Specifies the return value. "h0" for depth only or "all" for all intermediate results.

Value

A list containing the following hydraulic variables:

```
h0 Upstream water depth [m].psi Contraction coefficient [-].mu Discharge coefficient [-].v Flow velocity [m/s].
```

```
flow_depth_gate(a = 0.5, Q = 2.5, B = 2.0, alpha = 90)
flow_depth_gate(a = 0.5, Q = 2.5, B = 2.0, alpha = 90, h2 = 0.8)
flow_depth_gate(a = 0.5, Q = 2.5, B = 2.0, alpha = 90, h2 = 0.8, ret = "all")
```

flow_depth_weir 9

flow.	_depth	weir
1 1 0 11	_	wcii

Flow Depth At Weir Crest

Description

Calculates the height difference between the upstream water level and the weir crest.

Usage

```
flow_depth_weir(B, Q, w = Inf, mu = 0.73)
```

Arguments

B Width of the weir [m].

Q Flow rate [m3/s].

w Height of the weir crest (upstream) [m]. If w = Inf, the upstream velocity is

considered 0.

mu Discharge coefficient [-]. Default is 0.73.

Value

A list with the following components:

- **h** Flow depth over the weir [m].
- v Flow velocity [m/s].

Examples

```
flow_depth_weir(B = 3, Q = 5)
flow_depth_weir(B = 3, Q = 5, w = 1)
```

flow_gate

Discharge At Underflow Gate

Description

Calculates the discharge through a gate under free or submerged conditions.

```
flow_gate(a, h0, B, alpha, h2 = NULL, ret = "Q")
```

10 flow_max

Arguments

а	Gate opening height [m].
h0	Upstream water depth [m].
R	Gate width [m]

B Gate width [m].

alpha Gate angle from horizontal [degrees].

h2 Optional. Downstream water depth [m]. Default is NULL (free flow).

.

ret Specifies the return value. "Q" for discharge only or "all" for all intermediate

results.

Value

A list containing the following hydraulic variables:

```
Q Flow [m3/s].psi Contraction coefficient [-].mu Discharge coefficient [-].
```

v Flow velocity [m/s].

chi Coefficient for submerged flow [-].

Examples

```
flow_gate(a = 0.5, h0 = 1.0, B = 2.0, alpha = 90)
flow_gate(a = 0.5, h0 = 1.0, B = 2.0, alpha = 90, h2 = 0.8)
flow_gate(a = 0.5, h0 = 1.0, B = 2.0, alpha = 90, h2 = 0.8, ret = "all")
```

flow_max

Maximum Flow

Description

Calculates the maximum discharge of a CSarbitrary or CScircle object for a given bottom slope under uniform flow conditions.

Usage

```
flow_max(object, J, method = "Strickler", ret = "all", plot = FALSE)
```

Arguments

object A CSarbitrary or CScircle object.

J Bottom slope [-].

method Method to calculate the roughness. Allowed are "Strickler" (equal roughness)

"Einstein" (mean roughness) and "Prandtl-Coolebrook-White".

ret Defines the result returned by the function.

plot Logical; if TRUE, plots the results.

flow_max_freeboard 11

Value

A list containing the following hydraulic variables:

```
Qmax Maximum discharge [m3/s].
hmax Maximum flow depth [m].
v Flow velocity [m/s].
kSt_m Mean roughness [m^(1/3)/s] (if method = "Einstein").
A Wetted area [m2].
```

Examples

```
# Example for CSarbitrary object
x <- c(0, 4, 9, 13)
z <- c(2, 0, 0, 2)
cs <- CSarbitrary(
    x = x, z = z, xb_l = 4, xb_r = 9,
    kSt_B = 35, kSt_l = 45, kSt_r = 45
)
flow_max(cs, J=0.0001, method="Einstein",ret="Qmax")
flow_max(cs, J=0.0001, method="Einstein",plot=TRUE)

# Example for CScircle object
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
flow_max(csC, J=0.004)
flow_max(csC, J = 0.004, method = "Prandtl-Coolebrook-White", plot = TRUE)</pre>
```

flow_max_freeboard

Maximum Flow Including Freeboard

Description

Calculates the maximum discharge of a CSarbitrary object including a freebord for a given bottom slope under uniform flow conditions.

Usage

```
flow_max_freeboard(object, J, type = "KOHS", sigma_wz = 0, fw = TRUE, fv = FALSE, ft = 0,
fe = NULL, fe_min = 0, fe_max = Inf, method = "Strickler",
ret = "all", plot = FALSE)
```

Arguments

```
object A CSarbitrary object.

J Bottom slope [-].

type Type of freeboard calculation. Defaults to "KOHS".

sigma_wz Uncertainty in bed elevation (morphodynamics) [m].
```

12 flow_max_freeboard

fw	Logical; considers freeboard due to uncertainty in water elevation. If TRUE, calculates according to KOHS; if FALSE, sets $fw = 0$.
fv	Logical; considers freeboard due to waves. If 'TRUE', calculates according to KOHS; if FALSE, sets $\rm fv=0$.
ft	Freeboard due to driftwood based on KOHS (2013) [m].
fe	Fixed freeboard value to override calculations [m].
fe_min	Minimum freeboard [m].
fe_max	Maximum freeboard [m].
method	Method to calculate the roughness. Allowed are "Strickler" (equal roughness) and "Einstein" (mean roughness).
ret	Definition of the result returned by the function ("all", "Qmax", "hmax", "fe", or "v").
plot	Logical; whether to plot the results.

Value

Depending on ret, returns flow, water level, velocity, or all details.

References

KOHS (2013). Freibord bei Hochwasserschutzprojekten und Gefahrenbeurteilungen - Empfehlungen der Kommission Hochwasserschutz KOHS. Wasser Energie Luft 105(1): 43-53.

```
# Cross section
x <- c(-0.85, 3, 15, 18.85)
z <- c(3.85, 0, 0, 3.85)
cs<- CSarbitrary(x = x, z = z, xb_1 = 3, xb_r = 15,
                                      kSt_B = 45)
flow_max_freeboard(cs, sigma_wz = 0.3, fv = FALSE, J = 2.2 * 10^-2)
flow_max_freeboard(cs, sigma_wz = 0.3, fv = TRUE, J = 2.2 * 10^-2)
# Bridge
flow_max_freeboard(cs, sigma_wz = 0.3, fv = TRUE, ft = 0.5,
           J = 2.2 * 10^{-2}
# Sensitivity analysis for slope
J \leftarrow seq(1, 3, 0.1) * 10^{-2}
Q <- sapply(J, function(J) {
  flow_max_freeboard(cs, sigma_wz = 0.3, fv = TRUE, ft = 0.5,
             J = J)$Qmax
plot(J, Q, type = "l")
```

flow_velocity 13

Description

Calculates the flow velocity of a CSarbitrary or CScircle object for a given water level and bottom slope under uniform flow conditions.

Usage

```
flow_velocity(object, h, J, method = "Strickler", nu = 1.14e-6,...)
```

Arguments

object	A CSarbitrary or CScircle object.
h	Flow depth [m].
J	Bottom slope [-].
method	Method to calculate the roughness. Allowed are "Strickler" (equal roughness) "Einstein" (mean roughness) and "Prandtl-Coolebrook-White".
nu	Kinematic viscosity [m2/s]. Only for CScircle objects
	Additional arguments.

Value

Flow velocity [m/s]

14 freeboard

~ 7			
+ 1	OW_	MA	ır
1 1	. • • • • •	_ ٧٧ 🕒 .	т.

Flow Over Weir Crest

Description

Calculates the flow over a weir crest based on upstream water level.

Usage

```
flow_weir(B, h, w = Inf, mu = 0.73)
```

Arguments

D .	XX 7° 1.1	C .1		r n
В	Width	of the	weir	m .

h Height difference between the upstream water level and the weir crest [m].

W Height of the weir crest (upstream) [m]. If w = Inf, the upstream velocity is

considered 0.

mu Discharge coefficient [-]. Default is 0.73.

Value

A list with the following components:

Q Flow over the weir [m3/s].

v Flow velocity [m/s].

Examples

```
flow_weir(B = 3, h = 1.2)
flow_weir(B = 3, h = 1.2, w = 1)
```

freeboard

Freeboard Calculation

Description

Calculates the required freeboard based on the KOHS (2013) recommendations.

```
freeboard(v, h, sigma_wz = 0, fw = TRUE, fv = FALSE, ft = 0, min = 0,
  max = Inf, fe_fixed = 0)
```

froude_number 15

Arguments

V	Flow velocity [m/s].
h	Flow depth [m].
sigma_wz	Uncertainty in bed elevation (morphodynamics) [m].
fw	Logical; considers freeboard due to uncertainty in water elevation. If 'TRUE', calculates according to KOHS; if 'FALSE', sets 'fw = 0 '.
fv	Logical; considers freeboard due to waves. If 'TRUE', calculates according to KOHS; if 'FALSE', sets 'fv = 0'.
ft	Freeboard due to driftwood based on KOHS (2013) [m].
min	Minimum allowable freeboard [m].
max	Maximum allowable freeboard [m].
fe_fixed	Fixed freeboard value to override calculations [m].

Value

A numeric value of the calculated freeboard [m].

References

KOHS (2013). Freibord bei Hochwasserschutzprojekten und Gefahrenbeurteilungen - Empfehlungen der Kommission Hochwasserschutz KOHS. Wasser Energie Luft 105(1): 43-53.

Examples

```
freeboard(h = 1.36, sigma_wz = 0.3, fv = FALSE, ft = 0) # Channel example. freeboard(v = 4.56, h = 1.36, sigma_wz = 0.3, fv = TRUE, ft = 0) # Dam. freeboard(v = 4.56, h = 1.36, sigma_wz = 0.3, fv = TRUE, ft = 0.5) # Bridge.
```

froude_number Froude Number

Description

Calculates the froude number of a CSarbitrary or CScircle object for a given water level and velocity under uniform flow conditions.

Usage

```
froude_number(object, v, h)
```

Arguments

object	A CSarbitrary or CScircle object.
V	Flow velocity [m/s].
h	Flow depth [m].

16 mean_roughness

Value

Froude number [-]

Examples

mean_roughness

Mean Roughness

Description

Calculates the mean roughness of a CSarbitrary object for a given set of water levels, based on Einstein (1934).

Usage

```
mean_roughness(object, h)
```

Arguments

object A CSarbitrary object.

h A numeric vector of water levels [m].

Value

A numeric vector representing the mean roughness for the given water levels.

par_fill 17

	\sim	7	ъ
par	+ 1	- 1	1
pai _		_	_

Partial Filling Flow Diagram

Description

Function to generate a plot of partial-filling diagram of circular pipe with discharge and flow velocity

Usage

```
par_fill(object, J, method="Strickler")
```

Arguments

object A CScircle object.

J Bottom slope [-].

method Method to calculate the roughness. Allowed are "Strickler" (equal roughness)

and "Prandtl-Coolebrook-White".

Value

Plots of a partial filling diagram of a circular pipe with discharge and flow velocity

Examples

```
csC <- CScircle(Di = 0.7, ks = 1.5, kSt = 75)
par_fill(csC,J=0.04)</pre>
```

pressflow

Flow Under Pressure (Bernoulli)

Description

Calculates the flow in a pipe or a rectangle under pressure (Bernoulli). The outlet is not submerged, e.g., the exit loss equals 0.

```
pressflow(z0, z1, h0, Di=NULL, h = NULL, b = NULL, L, ks=NULL, kst, xi_e = 0.5, nu = 1.14e-6, calc_lam = "kst")
```

18 pressflow_depth

Arguments

z0	Absolute height of upper gate – upstream of the inlet [m.a.s.l].
z1	Absolute height of the pipe/rectangle vertical middle axis at lower gate [m.a.s.l].
h0	Water depth upstream of the gate – upstream of the inlet [m].
Di	Diameter of pipe [m]. If Di is specified, h and b must be NULL.
h	Height of rectangle [m]. If h is specified, Di must be NULL.
b	Width of rectangle [m]. If b is specified, Di must be NULL.
L	Length of pipe [m].
ks	Equivalent sand roughness [m].
kst	Roughness $[m^{(1/3)/s}]$.
xi_e	Entrance loss [-]. Default = 0.5 .
nu	Kinematic viscosity [m2/s]. Default = 1.14e-6.
calc_lam	Defines if lambda should be calculated with ks or kst.

Value

Pressflow returns the flow under pressure:

```
Q Discharge [m<sup>3</sup>/s].v Flow velocity [m/s].
```

Examples

```
# Calculate flow in a pipe under pressure with ks value
pressflow(z0 = 415, z1 = 413, h0 = 3, L = 20, Di = 1, ks = 0.01,
    calc_lam = "ks")

# Calculate flow in rectangle under pressure with kst value
pressflow(z0 = 415, z1 = 413, h0 = 3, L = 20, b = 2, h = 1, kst = 60,
    calc_lam = "kst")
```

pressflow_depth

Backwater Height Upstream A Inlet Under Pressure (Bernoulli)

Description

Calculates the backwater height upstream of an inlet (pipe or rectangle) under pressure (Bernoulli). The outlet is not submerged, e.g., the exit loss equals 0.

```
pressflow_depth(
  z0, z1, Q, Di = NULL, h = NULL, b = NULL, L, ks = NULL, kst,
  xi_e = 0.5, nu = 1.14e-6, calc_lam = "kst"
)
```

pressflow_depth_sub 19

Arguments

z0	Absolute height of upper gate – upstream of the inlet [m.a.s.l].
z1	Absolute height of the pipe/rectangle vertical middle axis at lower gate [m.a.s.l].
Q	Flow [m^3/s].
Di	Diameter of pipe [m]. If Di is specified, h and b must be NULL.
h	Height of rectangle [m]. If h is specified, Di must be NULL.
b	Width of rectangle [m]. If b is specified, Di must be NULL.
L	Length of pipe [m].
ks	Equivalent sand roughness [m].
kst	Roughness $[m^{(1/3)/s}]$.
xi_e	Entrance loss [-]. Default = 0.5 .
nu	Kinematic viscosity $[m^2/s]$. Default = 1.14e-6.
calc_lam	Defines if lambda should be calculated with ks or kst.

Value

Returns the backwater height upstream the inlet:

```
h0 Water depth upstream the inlet [m].v Flow velocity [m/s].
```

Examples

pressflow_depth_sub

Backwater Height Upstream A Inlet Under Pressure (Bernoulli)

Description

Calculates the backwater height upstream of an inlet (pipe or rectangle) under pressure (Bernoulli). The outlet is submerged; hence, an exit loss (xi_a) has to be specified.

```
pressflow_depth_sub(
  z0, z1, Q, h1, v1, Di = NULL, h = NULL, b = NULL, L, ks = NULL, kst, xi_a,
  xi_e = 0.5, nu = 1.14e-6, calc_lam = "kst"
)
```

20 pressflow_depth_sub

Arguments

z0	Absolute height of upper gate – upstream of the inlet [m.a.s.l].
z1	Absolute height of the pipe/rectangle vertical middle axis at lower gate [m.a.s.l].
Q	Flow [m^3/s].
h1	Water depth downstream the outlet [m].
v1	Velocity downstream the outlet [m/s].
Di	Diameter of pipe [m]. If Di is specified, h and b must be NULL.
h	Height of rectangle [m]. If h is specified, Di must be NULL.
b	Width of rectangle [m]. If b is specified, Di must be NULL.
L	Length of pipe [m].
ks	Equivalent sand roughness [m].
kst	Roughness $[m^{(1/3)/s}]$.
xi_a	Exit loss, according to Borda-Carnot formula (1 - A1/A2)^2 [-].
xi_e	Entrance loss [-]. Default = 0.5 .
nu	Kinematic viscosity $[m^2/s]$. Default = 1.14e-6.
calc_lam	Defines if lambda should be calculated with ks or kst.

Value

Returns the backwater height upstream the inlet:

```
h0 Water depth upstream the inlet [m].
```

v Flow velocity [m/s].

```
# Flow in a pipe under pressure with ks value
pressflow_depth_sub(z0=415,z1=413,Q=5.18,h1=2,v1=4,L=20,Di=1,ks=0.01,
calc_lam="ks",xi_a=0.5)

# Flow in a rectangle under pressure with kst value
pressflow_depth_sub(z0=415,z1=413,Q=13.7,h1=2,v1=4,L=20,b=2,h=1,kst=60,
calc_lam="kst",xi_a=0.5)
```

wetted_area 21

|--|

Description

Calculates the wetted area of a CSarbitrary or CScircle object for given water levels.

Usage

```
wetted_area(object, h, ret = "A")
```

Arguments

object	An object of class CSarbitrary or CScircle.
h	A numeric vector of water levels (m). For CScircle, only a single numeric value is allowed.
ret	A character string. If 'A', returns total wetted area. If 'Aii', returns wetted area by segment.

Value

A numeric vector or matrix of wetted areas based on the 'ret' argument.

22 wetted_perimeter

wetted_perimeter

Wetted Perimeter

Description

Calculates the wetted perimeter of a CSarbitrary or CScircle object for given water levels.

Usage

```
wetted_perimeter(object, h, ret = "P")
```

Arguments

object An object of class CSarbitrary or CScircle.

h A numeric vector of water levels (m). For CScircle, only a single numeric value is allowed.

ret A character string. If 'P', returns total wetted perimeter. If 'Pii', returns wetted

perimeter by segment.

Value

A numeric vector or matrix of wetted perimeter based on the 'ret' argument.

Index

bedload_MPM, 2	mean_roughness, 16
bedload_SJ, 3	<pre>mean_roughness,CSarbitrary-method</pre>
	(mean_roughness), 16
CSarbitrary (CSarbitrary-class), 4	
CSarbitrary-class, 4	par_fill, <mark>17</mark>
CScircle (CScircle-class), 5	<pre>par_fill,CScircle-method(par_fill), 17</pre>
CScircle-class, 5	pressflow, 17
	pressflow_depth, 18
d_aequiv, 5	pressflow_depth_sub, 19
flow, 6	wetted_area, 21
flow, CSarbitrary-method (flow), 6	<pre>wetted_area,CSarbitrary-method</pre>
flow, CScircle-method (flow), 6	(wetted_area), 21
flow_depth, 7	<pre>wetted_area,CScircle-method</pre>
flow_depth, CSarbitrary-method	(wetted_area), 21
(flow_depth), 7	<pre>wetted_perimeter, 22</pre>
flow_depth, CScircle-method	<pre>wetted_perimeter,CSarbitrary-method</pre>
(flow_depth), 7	<pre>(wetted_perimeter), 22</pre>
flow_depth_gate, 8	<pre>wetted_perimeter,CScircle-method</pre>
flow_depth_weir, 9	<pre>(wetted_perimeter), 22</pre>
flow_gate, 9	
flow_max, 10	
<pre>flow_max,CSarbitrary-method(flow_max),</pre>	
10	
<pre>flow_max,CScircle-method(flow_max), 10</pre>	
flow_max_freeboard, 11	
<pre>flow_max_freeboard,CSarbitrary-method</pre>	
(flow_max_freeboard), 11	
flow_velocity, 13	
flow_velocity,CSarbitrary-method	
(flow_velocity), 13	
flow_velocity,CScircle-method	
(flow_velocity), 13	
flow_weir, 14	
freeboard, 14	
froude_number, 15	
<pre>froude_number,CSarbitrary-method</pre>	
(froude_number), 15	
<pre>froude_number,CScircle-method</pre>	
(froude_number), 15	