Un critère de primalité pour les nombres de MERSENNE

Clarence Kineider

Leçons: 120, 121, 123, 141

Référence(s): Saux Picard, Rannou, Cours de Calcul Formel, Corps finis, Systèmes polynomiaux, Applications.

Définition : Soit $q \in \mathbf{N}^*$. Le q-ième nombre de Mersenne est $M_q = 2^q - 1$.

Remarque 1:

Si qn'est pas premier, alors ${\cal M}_q$ n'est pas premier.

En effet, si q s'écrit $a \times b$ avec $a, b \ge 2$, alors $M_q = 2^{a \cdot b} - 1 = (2^a - 1)(1 + 2^a + 2^{2a} + \dots + 2^{(b-1)a})$ et $2^a - 1 \ne 1$. Puisque $M_2 = 3$ est premier, il reste à traiter le cas de M_q avec q premier impair.

Théorème : Soit q premier impair. Alors M_q est premier si et seulement si $(2+\sqrt{3})^{2^{q-1}} \equiv -1 \pmod{M_q}$.

Remarque 2:

Le $\sqrt{3}$ [mod M_q] n'est pas bien défini dans l'énoncé. Si 3 n'est pas un carré modulo M_q (et on va montrer que c'est toujours le cas), il faudra se placer dans une extension de $\mathbf{Z}/M_q\mathbf{Z}$ dans laquelle X^2-3 a une racine.

Démonstration : Soit q un nombre premier impair. On montre d'abord que 3 n'est jamais un carré modulo M_q . En effet, $M_q \equiv (-1)^q - 1 \equiv 1 \pmod 3$, donc par la loi de réciprocité quadratique, on a :

$$\left(\frac{3}{M_q}\right) = (-1)^{\frac{2.(2^q-2)}{4}} \left(\frac{M_q}{3}\right) = -\left(\frac{1}{3}\right) = -1.$$

Cette relation est également valable si M_q n'est pas premier, il suffit d'appliquer la loi de réciprocité quadratique pour le symbole de Jacobi défini de la manière suivante :

$$\left(\frac{a}{n}\right) = \prod \left(\frac{a}{p_i}\right) \text{ où } n = \prod p_i.$$

On pose alors $\mathcal{A} = \binom{\mathbf{Z}/M_q\mathbf{Z}[X]}{(X^2-3)}$ et on note $\sqrt{3}$ la classe de X dans \mathcal{A} . \Rightarrow : On suppose que M_q est premier. On a $2(2^q-1)\equiv 0 \pmod{M_q}$, donc $2^{q+1}\equiv 2 \pmod{M_q}$. Comme q+1 est pair, 2 est un carré modulo M_q . On note alors $\sqrt{2}$ pour $2^{\frac{q+1}{2}}$. Montrons que $(2+\sqrt{3})^{2^{q-1}}=-1$ dans \mathcal{A} . Pour cela, posons $\rho=\frac{1+\sqrt{3}}{\sqrt{2}}$ et $\overline{\rho}=\frac{1-\sqrt{3}}{\sqrt{2}}$. On a :

$$(2 + \sqrt{3})^{2^{q-1}} = (\rho^2)^{2^{q-1}}$$
$$= \rho^2$$
$$= \rho \cdot \rho^{M_q}$$

Comme le polynôme X^2-3 est irréductible dans $\mathbf{Z}/_{M_q\mathbf{Z}}[X]$, \mathcal{A} est un corps et l'application $\frac{\mathcal{A}}{x} \to \frac{\mathcal{A}}{x^{M_q}}$ est un morphisme d'anneaux (c'est le morphisme de Frobenius car \mathcal{A} est de caractéristique M_q). De plus, ρ et $\overline{\rho}$ sont les deux racines du polynôme $(\sqrt{2}X-1)^2-3\in \mathbf{Z}/_{M_q\mathbf{Z}}[X]$, et $\rho\notin \mathbf{Z}/_{M_q\mathbf{Z}}$ donc n'est pas un point fixe du morphisme de Frobenius. Ainsi $\rho^{M_q}=\overline{\rho}$. D'où, $(2+\sqrt{3})^{2^{q-1}}=\rho\cdot\overline{\rho}=-1$ dans \mathcal{A} .

 \Leftarrow : On suppose que $(2+\sqrt{3})^{2^{q-1}}=-1$ dans l'anneau \mathcal{A} . Pour montrer que M_q est premier, on va montrer que son seul diviseur distinct de 1 est lui-même. Soit donc p>1 un facteur premier de M_q . Alors p est un diviseur de zéro dans \mathcal{A} car $p \cdot \frac{M_q}{p} = M_q = 0$ dans \mathcal{A} . Ainsi, p n'est pas inversible dans \mathcal{A} . On peut donc considérer \mathcal{M} un idéal maximal de \mathcal{A} contenant p (\mathcal{M} existe car \mathcal{A} est fini).

On se place dans le corps \mathcal{A}/\mathcal{M} qui est de caractéristique p car $p \in \mathcal{M}$ et donc $p \cdot 1 = 0$ dans le quotient.

On pose α (resp. β) la classe de $2 + \sqrt{3}$ (resp. $2 - \sqrt{3}$) dans \mathcal{A}/\mathcal{M} . On a $(2 + \sqrt{3})^{2^{q-1}} = -1$ dans \mathcal{A} donc $\alpha^{2^{q-1}} = -1$ dans \mathcal{A}/\mathcal{M} . L'ordre de α est donc 2^q .

On considère le polynôme $Q(X) = (X - \alpha)(X - \beta) = X^2 - 4X + 1$ dans \mathcal{A}/\mathcal{M} . Or \mathcal{A}/\mathcal{M} est de caractéristique p, donc α^p est un zéro de Q car α l'est. Donc $\alpha^p = \alpha$ ou $\alpha^p = \beta$.

Dans le premier cas, $\alpha^p = \alpha$ et comme α est inversible d'inverse β , on a $\alpha^{p-1} = 1$ donc 2^q divise p-1. Or on sait que p divise $2^q - 1 = M_q$, ce qui est absurde. Dans le deuxième cas, $\alpha^p = \beta$, on a $\alpha^p = \beta = \alpha^{-1} = \alpha^{M_q}$. Donc 2^q divise p+1, ce qui implique que $p=M_q$. Ainsi M_q est bien premier.

Remarque 3:

Ce critère n'est pas directement utilisable en pratique car le calcul de $(2+\sqrt{3})^{2^{q-1}}$ demande beaucoup de temps lorsque la valeur de q est grande.

Cependant, ce résultat est utilisé dans le test de primalité suivant :

Théorème (Test de Lucas-Lehmer): On définit par récurrence la suite $(x_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} x_0 = 4; \\ \forall n \geqslant 0, \ x_{n+1} = x_n^2 - 2. \end{cases}$$

Alors pour q premier impair, M_q est premier si et seulement si $x_{q-2} \equiv 0 \pmod{M_q}$.

Démonstration : La solution générale de cette équation de récurrence est $x_n = (2 + \sqrt{3})^{2^n} + (2 - \sqrt{3})^{2^n}$.

Alors par le théorème précédent, on a :

$$\begin{split} x_{q-2} &\equiv 0 \text{ [mod } M_q] \Leftrightarrow (2+\sqrt{3})^{2^{q-2}} + (2-\sqrt{3})^{2^{q-2}} \equiv 0 \text{ [mod } M_q] \\ &\Leftrightarrow (2+\sqrt{3})^{2^{q-1}} + 1 \equiv 0 \text{ [mod } M_q] \\ &\Leftrightarrow (2+\sqrt{3})^{2^{q-1}} \equiv -1 \text{ [mod } M_q] \\ &\Leftrightarrow M_q \text{ est premier} \end{split}$$