Material Summary: Introduction to Neural Networks

1. Neural Networks

1.1 Neural Networks

- Neural networks try to mimic the way the human brain works
 - Series of interconnected artificial neurons (perceptrons)
 - Can do classification, regression, unsupervised learning, etc.
- Perceptrons were "invented" in the 1940s
 - Great development in the recent years
- "Deep learning" ML algorithms using neural networks
- Cutting-edge applications
 - Machine translation
 - Speech recognition and generation
 - Image recognition
 - Game playing, etc.
- Some examples of deep learning applications

1.2 Neural Networks: Pros and Cons

- Can be used to model any datasets
 - Arbitrary dataset complexity
 - One type of algorithm can be used for many applications
- Do not provide any interpretability
 - The classification boundaries are hard to interpret
 - The model is mostly "black box"
 - NNs are not probabilistic (we can't get a confidence metric)
 - "The Dark Secrets at the Heart of AI"
 - Solutions: trying to explain decisions, combining with other algorithms, etc.
- Can be slow
 - Other models usually train a lot faster, even if we use special hardware
- NNs are not a substitute for understanding the problem deeply

1.3 Neural Network Architecture

- Neural network layout
 - Input(s) (+ bias unit)
 - "Hidden layers" (+ bias units)
 - Output(s)
- Each "node" is a perceptron
- Each arrow carries 0 or 1, and is assigned a weight
- The layers are fully connected
 - There are no connections within layers
- More than 1 hidden layer → "deep learning" (deep NN)
- How many layers? How many units per layer?
 - We don't know :(⇒ hyperparameter tuning

x₀ x_1 1st Layer 3rd Layer [™] Layer (input layer) (hidden layer) (output layer)

1.4 Neural Network Learning

- The type of NN we look at is called a "feed-forward NN"
 - Data flows only forward, there are no "back-links"
- Learning algorithm:

- Forward propagation / backpropagation
- Using the data, propagate the patterns from input to output
- Based on the output, calculate the error (using a cost function)
- Backpropagate the error (using derivatives), update the model
- We get the "final" weights after repeating the process for several epochs
- The math is a bit ugly
 - You can read an explanation <u>here</u>
- Classification: just use one-hot encoding
 - MLP = multi-layer perceptron

from sklearn.neural_network import MLPClassifier

Regression: no activation function at the output layer

from sklearn.neural_network import MLPRegressor

- Regularization: parameter alpha
- Increasing = less overfitting
- A <u>visual comparison</u> of regularization parameters
- Tips
 - A neural network is very sensitive to feature scaling
 - [0; 1], [-1; 1] or Z
 - Use a scaler, e.g. StandardScaler
 - Use fine-tuning to optimize alpha
 - Usually in the range 10.0 ** -np.arange(1, 7)

1.5 Example: Classifying Handwritten Digits

- Obtain the MNIST dataset of handwritten digits
 - This is a famous dataset for learning and comparing neural networks
 - Each data point represents a 28 x 28 image of a digit (0 9)
- Train a simple NN on the MNIST dataset
 - Choose a reasonable number of layers and units per layer, e.g. {3, 3}
- Test, score and evaluate the classification performance
 - E.g., accuracy, precision, recall, F1, confusion matrix, ROC curve
- * Try several other architectures (e.g., more layers, more units per layer, different structure, e.g., 2 + 3 + 2 units, etc.)
- * Compare the results with (an)other classifier(s), e.g., SVM

2. Neural Network Implementation

2.1 Conventions

- Try to vectorize where possible
 - Hundreds to thousands of times faster
- Always use 2-dimensional matrices
 - Matrix: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
 - Row vector: [[1, 10, 100]]
 - Column vector: [[10], [100], [1000]]
 - Scalar: can be [[42]] or just the number
- Python broadcasting will turn any vector to a matrix where needed
 - If a dimension has size 1 (e.g., 3×1), it will be copied

2.2 Review: Logistic Regression

- The main NN unit (perceptron) does exactly this
- Input: $x = [x_1, x_2, ..., x_m]^T$, $x^{(1)}$, $x^{(2)}$, ..., $x^{(n)}$; output $p \in [0, 1]$
- Objective: Maximize the probability of the class given the input
 - Simplest possible: linear combination $w_0 + w_1x_1 + \cdots + w_mx_m$
 - Convert this to be [0;1]: $\tilde{y} = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_m x_m)}}$
- Input augmentation
 - $w_0 = w_0.1$
 - $x = [1, x] = [1, x_1, x_2, ..., x_m]^T$ Also: $w = [w_0, w_1, ..., w_m]^T$

$$\Rightarrow w_0 x_0 + w_1 x_1 + \dots + w_m x_m = \begin{bmatrix} w_1 & w_2 & \dots & w_m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_m \end{bmatrix} \equiv w^T x$$

- Objective function: $\tilde{y} = \sigma(w^T x)$
 - Represents the probability the class is 1 given x: p(y = 1|x)
- Loss function
 - If y = 1, $p(y|x) = \tilde{y}$; if y = 0, $p(y|x) = 1 \tilde{y}$
 - Combined loss (we can check that): $p(y|x) = \tilde{y}^y (1 \tilde{y})^{1-y}$
 - Log both sides:

 - We want to maximize the probability, so the loss should be $-\ln p(y|x)$
- Total cost function: The average of all losses (on all examples)
 - $J(w) = -\frac{1}{n} \sum_{i=1}^{n} \left(\left(y^{(i)} \ln(\tilde{y}^{(i)}) + \left(1 y^{(i)} \right) \ln(1 \tilde{y}^{(i)}) \right) \right)$
 - This is called categorical cross-entropy and is widely used in machine learning

2.3 Computation Graphs

- Overview
 - A useful representation of computation sequences
 - Good not only for visualization
 - Almost every compiler / interpreter has some implementation
- Example: logistic regression

- Why is a graph so useful?
 - We need to know the derivatives of the last quantity
 - To compute them, we just need to go back

2.4 Gradients on Computational Graphs

- Now that we've computed I, we need to perform gradient descent
 - i.e. we need the gradient (derivatives) of J w.r.t. its input variables

- J = J(w; x, y)
- We don't like to change the data (x,y)
 - \Rightarrow We're only interested in $\frac{\partial J}{\partial w}$
 - In case of many weights:

$$\nabla_{w} J = \left[\frac{\partial J}{\partial w_{0}}, \frac{\partial J}{\partial w_{1}}, \dots, \frac{\partial J}{\partial w_{m}} \right]^{T}$$

$$z = w^{T} x$$

$$\tilde{y} = \sigma(z)$$

$$L(y, \tilde{y}) - \cdots - J(w)$$

- Solution: Chain rule
 - For the function f(g(x)), $\frac{df}{dx} = \frac{df}{da} \frac{dg}{dx}$
- $I = -\frac{1}{2}\sum L^{(i)}$
- $L(y, \tilde{y}) = y \ln(\tilde{y}) + (1 y) \ln(1 \tilde{y})$ $\frac{\partial L}{\partial \tilde{y}} = \frac{y}{\tilde{y}} \frac{1 y}{1 \tilde{y}}$

- $$\begin{split} \tilde{y}(z) &= \sigma(z) = \frac{1}{1 + e^{-z}} \\ \frac{d\tilde{y}}{dz} &= \sigma(z) (1 \sigma(z)) = \tilde{y} (1 \tilde{y}) \end{split}$$
 - Detailed derivation
- $z(w) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_m x_m$
- For any individual weight w_k , k = 0, 1, 2, ..., m:
 - $\frac{\partial z}{\partial w_k} = x_k$ (for simplicity: $\frac{\partial z}{\partial w} = x$)
- Applying the chain rule

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial z} \frac{\partial z}{\partial w} = \left(\frac{y}{\tilde{y}} - \frac{1 - y}{1 - \tilde{y}}\right) \left(\tilde{y}(1 - \tilde{y})\right)(x) =
= \frac{y(1 - \tilde{y}) - \tilde{y}(1 - y)}{\tilde{y}(1 - \tilde{y})} \tilde{y}(1 - \tilde{y})x =
= (y - y\tilde{y} - \tilde{y} + y\tilde{y})x = (y - \tilde{y})x$$

2.5 Putting It All Together

- Forward propagation (left to right)
 - $z = w^T x$
 - $\tilde{y} = \sigma(z)$
 - $L(y, \tilde{y}) = -y \ln(\tilde{y}) + (1 y) \ln(1 \tilde{y})$ $J = \frac{1}{n} \sum_{i} L^{(i)}$

Backpropagation (computing gradients, right to left)

$$\frac{\partial J}{\partial w} = \frac{1}{n} (\tilde{y} - y) x$$
Gradient updates

•
$$w = w - \alpha \frac{\partial J}{\partial w}$$

2.6 Generalization: Many Examples

- Just work in parallel
 - All training examples at once
 - You can check that the matrix multiplication works out exactly

$$z \Rightarrow Z = [z^{(1)}, z^{(2)}, z^{(3)}, z^{(n)}] = \sigma(w^T X)$$

- Warning
 - X contains all variables in rows
 - Keep this in mind, it's different than what we're used to seeing
 - This makes computations easier
 - Otherwise, we need too many transpositions and indexing magic

2.7 Perceptron

Logistic regression (forward) at a glance

- In NN terminology, this is called a perceptron
 - The main NN unit
 - The result $Z = w^T X$ is called **activation**
 - $\sigma(Z)$ is called **activation function**
 - May be something else than sigmoid
 - Usually, we use other activations in the "middle" and sigmoid at the output layer
 - Many of those form a neural network layer

2.8 Neural Network

- Layers
 - Input layer
 - Hidden layers
 - **Output layer**
- Each layer has some number of perceptrons: $n^{[l]}$
- The perceptrons in one layer are fully connected to the next
- There are no connections within a layer

2.9 Neural Network Implementation

- For each layer, compute several instances of regression with the chosen activation function
 - Sigmoid in this case
- Vectorize for the entire layer
 - I.e., compute all logistic regressions at once
 - Don't forget to augment the input with bias terms
 - Using our convention
 - Each layer l has $m^{[l-1]}$ inputs (+ 1 bias term), $m^{[0]} = m+1$
 - Each layer l has $m^{[l]}$ outputs
 - $\qquad \text{Therefore, each weight matrix will be } W \ \{ m^{[l]} \times m^{[l-1]} + 1 \}$
- Don't initialize W with zeroes!
- Don't forget the activation function!
- Define layer sizes: $[m^{[0]} = m, m^{[1]}, m^{[2]}, ..., m^{[L]}]$
- Initialize weights randomly: $[w^{[0]}, ..., w^{[L]}]$, with dimensions $m^{[l]} \times m^{[l-1]} + 1$
- Forward (input activation $a^{[l-1]}$)
 - For each layer $l \in \{1, 2, ..., L\}$
 - Augment the input activation so that it has dimensions $n \times m^{[l-1]} + 1$
 - Compute the linear combination $Z^{[l]} = w^{[l]}a^{[l-1]}$, cache it
 - Compute the activation $A^{[l]} = g(Z^{[l]})$
- Backward (input gradient $\frac{\partial L}{\partial z^{[l]}}$)
 - For each layer $l \in \{1, 2, ..., L\}$
 - Compute the gradients $\frac{\partial J}{\partial w^{[l]}} = \frac{1}{n} dZ^{[l]} A^{[l-1]T}$, update $w^{[l]} = w^{[l]} \alpha \frac{\partial J}{\partial w^{[l]}}$

2.9 Extensions

- There are a lot of things we can (and will) do
 - Add regularization
 - Use a better / different optimization algorithm
 - Tune hyperparameters
 - Deal with vanishing / exploding gradients
 - Reuse computations
- Regression
 - Omit the output activation, take the raw output
- Many classes / output values
 - Use many output neurons $(n^{[L]} > 1)$
- I recommend that you try to implement this yourself
 - It's quite hard but useful once you do it

