Probability Distributions Cheat Sheet

Alireza Miraliakbar

Spring 2024

Continuous Distributions

Normal (Gaussian) Distribution

Description: Described by its mean (μ) and standard deviation (σ) , and has the classic "bell curve" shape.

PDF:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Mean: μ

Variance: σ^2 Figure Placeholder

Exponential Distribution

Description: Models the time between events in a Poisson point process, i.e., events occur continuously and independently at a constant average rate.

$$PDF: f(x; \lambda) = \lambda e^{-\lambda x} \text{ for } x \ge 0$$

Mean: $\frac{1}{\lambda}$ Variance: $\frac{1}{\lambda^2}$ Figure Placeholder

Discrete Distributions

Bernoulli Distribution

Description: Models a single trial with two possible outcomes (success with probability pand failure with probability 1-p).

$$PMF: P(X = k) = p^k (1 - p)^{1-k} \text{ for } k \in \{0, 1\}$$

Mean: $\mu = p$ Variance: $\sigma^2 = p(1-p)$

Figure Placeholder

Binomial Distribution

Description: Models the number of successes in a fixed number of independent Bernoulli trials, each with the same probability of success.

$$PMF: P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for

k = 0, 1, ..., n

Mean: $\mu = np$

Variance: $\sigma^2 = np(1-p)$

Figure Placeholder