MATH 5340

Fall 23

Lecture 20

Part III. Grapher Japlacions, and Marker chairs

Markov chains (stochestic processes)

Motivating example (simple random walk on a graph)

Consider a symmetric graph (G, Wi)),

and for simplicity assum Wij € 20,13.

in this graph, which we think of as

the board for a game, we do the following: we place a tiken at some initial vade X_0 and then we move this token in every turn according to the following rule:

if we at the beginning of the n-th turn the token is at X_{n-1} we choose at random one of the neighbor of X_{n-1} and wove our token there.

Q: Given an initial location x_0 , no $X_0 = x_0$, what is the probability distribution of X_n ? in other words, for an $x_j \in G$, what is $X_0 = x_0$?

Note (on probability distributions on a graph)

Given a finite set 6, $6 = 2 \times 1,..., \times N^{3}$, then a probability distribution in 6 is

a function

$$M: G \longrightarrow IR, and$$
 $M: G \longrightarrow IR, and$
 $M: (x_i) \ge 0 \quad \text{for } i=1,..., N$
 $\sum_{i=1}^{N} M(x_i) = 1$

Alternatively, one can twok of M or a furth $M: 2^{G} \longrightarrow 17$

sotioling: · O = M(E) = 1 t E C"G

.
$$M(AUB) = R(A) + R(B)$$

if $ADD = \Phi$.

In this one, pl define a function M: GOR

b: M(Xi)= M(XXi), and

$$\mu(E) = \sum_{\chi_i \in E} \mu(\chi_i)$$

This is all to say that probabilities in 6 one devented by elements of C(6), which are non-regultive and whose value add up to h.

Morkou chains

(finite)

A Markor chain is a require of rardom vaidles $X_0, X_1, X_2, ...$ living in a state space" S_0 which is a sound finite, and satisfying the "Markov property", which soup that given Ω , oug given elevely $\alpha_0, \alpha_1, ..., \alpha_N \in S$

Then

$$P_{0}b(X_{n}=\alpha_{n}|X_{0}=\alpha_{0},...,X_{n-1}=\alpha_{n-1})$$

= Prob (Xn=an (Xn-1 = an-1)

For a Markov chain one defines a metrie
$$S = \{ 21, 22, ..., 2N \}$$

$$T_{ij}^{(m)} := Prob(X_{n+1} = x_5 | X_n = x_i)$$

if there numbers don't vay with n, we say the chain is homogenen, and $T_{ij} = T_{ij}^{(i)}$ is called the transition probability matrix

Exercise: Obeds That if This is a toomsition probability waterne, then Tilis 20 t is and the rows of T add up to 1.

Exercise: Green a simple graph write down TII for the Markon chain given at the beginning of the dans (write your armen

Evolution of the probability distribution

Jet's conider a homogeneous Markor chain X_0, X_1, \dots with transition matriz T_i and state space $S = \frac{1}{2} \times 10^{-10}$

Problem: Given $x_* \in S$, compute the probabilities $U_n(x_i) = Prob(X_n = x_i) \setminus X_c = x_a)$

The key to solving this problem is using what is known as the total probability powder:

(and the Markov property)

If $A = A_1 \cup \dots \cup A_n$ (designed wind), and $E \subset A_1$ then $P(E) = P(E(A_1)P(A_1) + \dots + P(E(A_n)P(A_n))$

Exercise: If $M: G \rightarrow IR$ is a probability distribute, where G is fruk, show the above holds for $P(A) := \sum_{x \in A} P(x_i)$

Lemma: For each n, we have

$$U_{n}(x_{i}) = \sum_{j=1}^{N} T_{j}; U_{n-1}(x_{j})$$

 $V_{n}(x_{i}) = P_{nb}(X_{n} = x_{i} | X_{o} = x_{+})$

$$= \sum_{j=1}^{N} P_{rob}(X_{n} = x_{i} | X_{n-i} = x_{j}) X_{o} = x_{k}) P_{rob}(X_{i} = x_{j} | X_{o} = x_{k})$$
by the Markov property

$$= P_{rob}(X_{n} = x_{i} | X_{n-i} = x_{j}) X_{o} = x_{k})$$

$$= P_{rob}(X_{n} = x_{i} | X_{n-i} = x_{j})$$

$$= P_{rob}(X_{n} = x_{i} | X_{n-i} = x_{j})$$

$$= T_{ji}$$

when where $X_{i} = X_{i} = X_{i} = X_{i} = X_{i} = X_{i}$

where $X_{i} = X_{i} = X$

With this we reduce our problem to notriz multiplication, in fact $u_n = \left(TL^{+} \right) u_0$