RELAZIONE TECNICA COMPLETA CABINA DI TRASFORMAZIONE MT/BT

CLIENTE:	7huyyutguy
COMMESSA:	hnhbgyb
UBICAZIONE:	bghjgbyubgu
PROGETTISTA:	Ing. Maurizio
DATA:	20/07/2025
REVISIONE:	00

Maurizio srl - Progettazione Impianti Elettrici Software di Calcolo Cabine MT/BT v.3.0

1. DATI DI PROGETTO

1.1 Caratteristiche Generali dell'Impianto

Potenza installata: 361.5 kVA
Tensione nominale MT: 20.0 kV
Tensione nominale BT: 400 V
Sistema di distribuzione: TT
Lunghezza cavo BT: 50 m
Frequenza nominale: 50 Hz

1.2 Configurazione della Cabina

La cabina è del tipo prefabbricato in calcestruzzo, conforme alle prescrizioni del distributore di energia elettrica e alle norme CEI applicabili. La configurazione prevede compartimenti separati per le apparecchiature MT e BT.

2. CALCOLI ELETTRICI

2.1 Correnti Nominali

Parametro	Valore	Formula
Corrente nominale MT	14.4 A	In = Sn / (√3 × Un)
Corrente nominale BT	721.7 A	In = Sn / (√3 × Un)

2.2 Calcoli di Cortocircuito

I calcoli di cortocircuito sono stati eseguiti considerando l'impedenza della rete MT di alimentazione e le caratteristiche del trasformatore installato. **Risultati Cortocircuito MT:** • Icc max (trifase): 12.5 kA • Icc min (monofase): 10.0 kA **Risultati Cortocircuito BT:** • Icc max (ai morsetti trasformatore): 18.0 kA • Icc min (a fondo linea BT): 9.0 kA

NOTA IMPORTANTE: Il calcolo della corrente di cortocircuito minima BT tiene conto della lunghezza effettiva del cavo BT (50 m), parametro critico per il corretto dimensionamento delle protezioni.

3. DIMENSIONAMENTO TRASFORMATORE

3.1 Selezione della Potenza Normalizzata

La potenza del trasformatore è stata selezionata secondo la norma CEI 14-52 considerando la potenza installata di 361.5 kVA. **Potenza trasformatore selezionata: 500 kVA**

3.2 Caratteristiche Tecniche del Trasformatore

Caratteristica	Valore	
Potenza nominale	500 kVA	
Tensioni nominali	20.0 kV / 400 V	
Tipo di isolamento	Resina	
Tensione di cortocircuito	4%	
Perdite a vuoto	150.0 W	
Perdite a carico	400.0 W	
Gruppo di collegamento	Dyn11	
Raffreddamento	AN (aria naturale)	

4. APPARECCHIATURE MEDIA TENSIONE

4.1 Interruttore Generale MT

Interruttore selezionato: • Marca/Modello: ABB VD4 • Corrente nominale: 630 A • Potere di interruzione: 25 kA • Tensione nominale: 20.0 kV

√ VERIFICA SUPERATA: Icu (25 kA) > Icc max (12.5 kA)

4.2 Sistema di Protezione MT

Il sistema di protezione MT è costituito da: • Relè di protezione 51/50 (sovracorrente temporizzata/istantanea) • Relè di protezione 51N (terra temporizzata) • Relè di protezione 67N (terra direzionale) • TA di protezione classe 5P10 • TV di protezione classe 3P

5. APPARECCHIATURE BASSA TENSIONE

5.1 Interruttore Generale BT

Interruttore generale BT selezionato: • Marca/Modello: ABB E6V • Corrente nominale: 1600 A • Potere di interruzione: 50 kA • Tensione nominale: 400 V • Categoria di utilizzo: A

5.2 Quadro di Distribuzione BT

Il quadro BT è costituito da: • Carpenteria metallica IP54 • Interruttore generale con sganciatori elettronici • Interruttori di linea modulari/scatolati • Dispositivi di protezione SPD Classe I+II • Strumentazione di misura (multimetro digitale) • Segnalazioni luminose di stato

6. PROTEZIONI E SELETTIVITÀ

6.1 Coordinamento delle Protezioni

Il coordinamento delle protezioni è stato verificato per garantire la selettività tra le protezioni MT e BT, assicurando l'isolamento del guasto nel punto più vicino possibile alla sua origine.

6.2 Tarature delle Protezioni

Protezione	Taratura	Tempo
------------	----------	-------

51 (Sovracorrente)	18.0 A	0.1 - 3.2 s
50 (Istantanea)	144.0 A	< 0.1 s
51N (Terra)	2.9 A	0.2 - 1.0 s

7. IMPIANTO DI TERRA

7.1 Dimensionamento dell'Impianto di Terra

L'impianto di terra è stato dimensionato secondo la norma CEI 11-1 considerando: • Resistività del terreno: 100 Ω ·m • Resistenza di terra calcolata: 1.0 Ω • Sezione conduttori di terra: 50 mm² • Materiale: Rame nudo interrato

7.2 Verifiche di Sicurezza

Sono state eseguite le seguenti verifiche: • Tensione di contatto < 50V (CEI 11-1) • Tensione di passo < 125V (CEI 11-1) • Coordinamento con protezioni differenziali • Equipotenzializzazione masse e masse estranee

8. VERIFICHE NORMATIVE E CONFORMITÀ

8.1 Norme Tecniche Applicate

Il progetto è stato sviluppato in conformità alle seguenti normative: **Norme CEI:** • CEI 11-1: Impianti elettrici con tensione superiore a 1 kV in corrente alternata • CEI 64-8: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V • CEI 0-16: Regola tecnica di riferimento per la connessione di Utenti attivi e passivi • CEI 14-52: Trasformatori di distribuzione in resina **Norme IEC:** • IEC 62271: Apparecchiature di manovra e comando per alta tensione • IEC 61439: Quadri elettrici di bassa tensione

8.2 Conformità del Progetto

Si attesta che il presente progetto è conforme a tutte le normative vigenti e alle prescrizioni del distributore di energia elettrica. Tutti i calcoli sono stati eseguiti secondo metodologie consolidate e le apparecchiature selezionate rispettano i requisiti normativi.

II Progettista Ing. Maurizio Data: 20/07/2025