Page 1 of 2 10/009584 Search results

Refine Search

Search Results -

Terms	Documents
L14 and (express\$ or transcript\$)	8

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Database:

L15		Refine Search
	Œ	Renite Search
Recall Text	Clear	Interrupt

Search History

DATE: Wednesday, April 28, 2004 Printable Copy Create Case

Set Name side by side	Query	Hit Count	Set Name result set
DB=P	GPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=OR		
L15	L14 and (express\$ or transcript\$)	8	L15
$\overline{L14}$	animal near5 model\$ near5 hypoxia	13	L14
<u>L13</u>	L3 and hypoxia	1	<u>L13</u>
L12	L3 and (express\$ or transcript\$)	1	<u>L12</u>
L11	L9 and transcript\$	5	<u>L11</u>
$\overline{L10}$	L9 and transcription\$	3	<u>L10</u>
L9	(identify\$ or screen\$ or assay\$) near10 hypoxia near10 (animal\$ or in near vivo)	10	<u>L9</u>
L8	6436654 [pn]	2	<u>L8</u>
<u>L7</u>	L6 and cobalt	7	<u>L7</u>
<u>L6</u>	(identif\$ or screen\$ or assay\$) near10 hypoxia and green near fluorescent	28	<u>L6</u>
<u>L5</u>	L1 and green near fluorescent	4	<u>L5</u>

L4	L3 and erythropoietin\$	2	<u>L4</u>
$\overline{L3}$	5985913 [pn]	2	L3
<u>L2</u>	L1 and (green near fluorescent or yellow near fluorescent or cyano) and cobalt	1	<u>L2</u>
L1	(identif\$ or screen\$ or assay\$) near10 hypoxia near10 transcript\$	27	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
L14 and (express\$ or transcript\$)	8

US Pre-Grant Publication Full-Text Database

US Patents Full-Text Database US OCR Full-Text Database

Database:

EPO Abstracts Database JPO Abstracts Database

Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

	ta de la companya de	
L15	I	ā
ПТЭ	i i i i i i i i i i i i i i i i i i i	*****
	i i i i i i i i i i i i i i i i i i i	9
	1	
·····		

Refine Search

•		
_		
Reca	II I OV	200000000000000000000000000000000000000
11 5 00	11 1 5 7	1.1000000000000000000000000000000000000
	102200000000000000000000000000000000000	CONTRACTOR OF THE PARTY OF THE

Interrupt

Search History

DATE: Wednesday, April 28, 2004 Printable Copy Create Case

Set Name side by side	Query	Hit Count	Set Name result set
DB=F	PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=OR		
L15	L14 and (express\$ or transcript\$)	8	L15
L14	animal near5 model\$ near5 hypoxia	13	<u>L14</u>
L13	L3 and hypoxia	1	L13
L12	L3 and (express\$ or transcript\$)	1	<u>L12</u>
L11	L9 and transcript\$	5	<u>L11</u>
L10	L9 and transcription\$	3	<u>L10</u>
L9	(identify\$ or screen\$ or assay\$) near10 hypoxia near10 (animal\$ or in near vivo)	10	<u>L9</u>
L8	6436654 [pn]	2	L8
$\overline{\text{L7}}$	L6 and cobalt	7	<u>L7</u>
L6	(identif\$ or screen\$ or assay\$) near10 hypoxia and green near fluorescent	28	<u>L6</u>
<u>L5</u>	L1 and green near fluorescent	4	<u>L5</u>

WEST R	Refine Search	Pag	ge 2 of 2	2
L4	L3 and erythropoietin\$	2	<u>L4</u>	
$\overline{L3}$	5985913 [pn]	2	L3	
<u>L2</u>	L1 and (green near fluorescent or yellow near fluorescent or cyano) and cobalt	1	<u>L2</u>	
L1	(identif\$ or screen\$ or assay\$) near10 hypoxia near10 transcript\$	27	L1	

END OF SEARCH HISTORY

Generate Collection

Print

Search Results - Record(s) 1 through 27 of 27 returned.

☐ 1. 20030229108. 21 May 03. 11 Dec 03. Barbituric acid analogs as therapeutic agents. De Belin, Jackie Y, et al. 514/269; 514/270 A61K031/515 A61K031/513.
☐ 2. 20030176349. 25 Apr 03. 18 Sep 03. Stable hypoxia inducible factor-1 alpha and method of use. Semenza, Gregg L 514/12; 435/320.1 435/325 435/69.1 530/350 536/23.2 A61K038/18 C12P021/02 C12N005/06 C07K014/475.
3. 20030045686. 19 Mar 02. 06 Mar 03. Muteins of hypoxia inducible factor alpha and methods of use thereof. Kaelin, William G. JR., et al. 530/350; C07K001/00 C07K014/00 C07K017/00.
4. 20030022870. 03 Jun 02. 30 Jan 03. Methods of treating cardiac disorders. Dzau, Victor, et al. 514/152; 514/179 514/291 514/44 A61K048/00 A61K031/65 A61K031/56 A61K031/4745.
5. 20030013703. 13 May 02. 16 Jan 03. Upregulation of type III endothelial cell nitric oxide synthase by agents that disrupt actin cytoskeletal organization. Liao, James K 514/221; 514/253.05 514/640 A61K031/551 A61K031/496 A61K031/15.
☐ 6. 20020164575. 28 Aug 01. 07 Nov 02. Gene identification. Case, Casey C., et al. 435/4; 435/6 C12Q001/00 C12Q001/68.
7. 20020094529. 28 Aug 01. 18 Jul 02. Gene identification. Case, Casey C., et al. 435/6; 435/4 435/455 C12Q001/68 C12Q001/00.
8. 20020082281. 14 Jul 98. 27 Jun 02. UPREGULATION OF TYPE III ENDOTHELIAL CELL NITRIC OXIDE SYNTHASE BY AGENTS THAT DISRUPT ACTIN CYTOSKELETAL ORGANIZATION. LIAO, JAMES K 514/340; A61K031/44 A01N043/40.
9. 20020081614. 09 Aug 01. 27 Jun 02. Functional genomics using zinc finger proteins. Case, Casey C., et al. 435/6; 435/7.21 702/19 C12Q001/68 G01N033/567 G06F019/00 G01N033/48 G01N033/50.
☐ 10. 6696480. 13 May 02; 24 Feb 04. Upregulation of type III endothelial cell nitric oxide synthase by agents that disrupt actin cytoskeletal organization. Liao; James K 514/411; 424/130.1 424/142.1 424/152.1 424/172.1 514/2 514/211.08 514/218 514/220 514/253.04 514/253.05 514/253.06 514/253.07 514/279 514/307 514/309 514/369 514/44 514/443 514/565 514/602 514/603 514/604 514/640 514/8. A61K031/15 A61K038/00 A61K036/16 A01N037/18.
☐ 11. 6599692. 14 Sep 99; 29 Jul 03. Functional genomics using zinc finger proteins. Case; Casey C., et al. 435/4; 435/6 536/23.1. C12Q001/02 C12Q001/68 C12N015/12.
☐ 12. 6562799. 25 Aug 99; 13 May 03. Stable hypoxia inducible factor-1.alpha. and method of use. Semenza; Gregg L 514/44; 435/320.1 435/375 435/455 435/471 536/23.1 536/23.5. A61K031/70 C07H021/04 C12N015/63 C12N015/74 C12N015/00.
13. 6423751. 14 Jul 98; 23 Jul 02. Upregulation of type III endothelial cell nitric oxide synthase by

agents that disrupt actin cytoskeletal organization. Liao; James K., 514/640; 424/130.1 424/142.1 424/152.1 424/172.1 514/2 514/211.08 514/218 514/220 514/253.04 514/253.05 514/253.06 514/253.07 514/279 514/307 514/309 514/369 514/411 514/44 514/443 514/565 514/602 514/603 514/604 514/8. A61K031/15 A61K038/00 A61K038/16 A01N037/18. 14. 6222018. 22 Jan 99; 24 Apr 01. Hypoxia inducible factor-1 and method of use. Semenza; Gregg L.. 530/387.1; C07K016/18. 15. 6180597. 11 Aug 98; 30 Jan 01. Upregulation of Type III endothelial cell nitric oxide synthase by rho GTPase function inhibitors. Liao; James K., 514/2; 424/172.1 424/94.5. A61K038/02 A61K038/45 A61K039/395. 16. 6147109. 11 Aug 98; 14 Nov 00. Upregulation of Type III endothelial cell Nitric Oxide Synthase by HMG-CoA reductase inhibitors. Liao; James K., et al. 514/460;. A61K031/35. 17. 6124131. 25 Aug 98; 26 Sep 00. Mutant hypoxia inducible factor-1 HIF-1. Semenza; Gregg L.. 435/325; 435/252.3 435/320.1 435/69.1 536/23.1 536/23.5. C07K016/00 C12N015/12 C12N015/74 C12N015/85. 18. 6020462. 20 Aug 97; 01 Feb 00. Nucleic acids encoding the hypoxia inducible factor-1. Semenza; Gregg L.. 530/350; 536/23.5. C07K014/435 C12N015/12. 19. 5985913. 29 Apr 98; 16 Nov 99. Tetracyclic compounds for enhancing biosynthesis of erythropoietin, compositions containing same, and methods of use thereof. Williams; Jonathan Gareth, et al. 514/453; 549/275 549/279. A61K031/35 A61K031/365 C07D311/78. 20. 5882914. 06 Jun 95; 16 Mar 99. Nucleic acids encoding the hypoxia inducible factor-1. Semenza; Gregg L.: 435/252.3; 435/320.1 435/325 536/23.5. C12N001/20 C12N015/63 C12N005/00 C07H021/04. 21. 5785965. 15 May 96; 28 Jul 98. VEGF gene transfer into endothelial cells for vascular prosthesis. Pratt; Richard E., et al. 424/93.21; 424/93.1 424/93.2 435/325 435/455 435/456. A01N063/00 C12N015/00. 22. WO002068466A2. 22 Feb 02. 06 Sep 02. HYPOXIA-REGULATED GENES. WHITE, JONATHAN, et al. C07K014/47; C12N015/12 C12N015/63 C12N005/10 A61K038/17 C12Q001/68 G01N033/68 A61K048/00. 23. WO009856936A1. 10 Jun 98. 17 Dec 98. REGULATORY SEQUENCES INVOLVED IN HYPOXIA REGULATED GENE EXPRESSION AND USES THEREOF. RISAU, WERNER, et al. C12N015/85; C07K014/52 A01K067/027 A61K031/70 C12Q001/68. 24. WO 200246465A. Identifying a gene involved in disease for treating hypoxia-regulated conditions, comprises comparing the transcriptome/proteome of two cell types under different conditions and identifying a differentially regulated gene. BINLEY, K M, et al. C12Q001/68. 25. WO 200168846A. New transcription transactivator protein of CITED family, termed HCITEDX, useful for controlling hypoxia signaling, inflammation, activating cholesterol uptake genes and identifying compounds interfering with HCITEDX function, BHATTACHARYA, S, et al. A01K067/027 A61K038/17 C07H021/04 C07K014/47 C07K016/18 C12N009/06 C12N015/10 C12N015/12 C12N015/62 C12N015/86 C12Q001/68 G01N033/53 G01N033/68.

26. WO 200074725A. Identifying compounds that modulate transcriptional response to hypoxia	in
a cell, useful for identifying compounds to treat cancer and inflammatory conditions.	
BHATTACHARYA, S, et al. A61K038/00 A61K045/00 A61K048/00 A61K049/00 A61P007/06	
A61P009/10 A61P029/00 A61P035/00 A61P043/00 C12N015/09 C12Q001/00 C12Q001/02	
C12Q001/66 G01N033/15 G01N033/50 C12Q001/02 C12R001:91.	

27. WO 9948916A. New isolated hypoxia-inducible genes, used to develop products for diagnosis and treatment of hypoxia-related conditions, e.g. cancer, ischemia, reperfusion, retinopathy, neonatal distress, pre-eclampsia, cardiac arrest or stroke. DENKO, N C, et al. A61K031/70 A61K031/711 A61K039/00 A61K048/00 A61P035/00 C07K014/00 C07K014/435 C07K014/47 C07K016/18 C12N001/15 C12N001/19 C12N001/21 C12N005/10 C12N015/09 C12N015/12 C12N015/70 C12N015/79 C12Q001/68 G01N033/50 G01N033/577.

Generate Collection	Print

	Documents
(identif\$ or screen\$ or assay\$) near10 hypoxia near10 transcript\$	27

Go to Doc# Next Page Prev Page