

Data Analysis Analyzing Dependency

Prof. Dr. Gero Szepannek Statistics, Business Mathematics & Machine Learning Stralsund University of Applied Sciences

Quantifying Dependency

A statistical measure to quantify the dependency between two numeric variables is given by the coefficient of correlation ρ :

Interpretation:

 $-1 \le \rho \le 1$ where:

Correlation	Interpretation
ρ > 0	Positive dependency
ρ = 0	No (linear) dependency
ρ<0	Negative dependency

Understanding Correlation...

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{j=1}^{n} (x_j - \bar{x})^2 \cdot \sum_{j=1}^{n} (y_j - \bar{y})^2}}$$

Understanding Correlation...

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{j=1}^{n} (x_j - \bar{x})^2 \cdot \sum_{j=1}^{n} (y_j - \bar{y})^2}}$$
...only for scaling $-1 \le \rho \le 1$

Understanding Correlation

Interpretation:

 $-1 \le \rho \le 1$ where:

Correlation	Interpretation
ρ > 0	Positive dependency
ρ = 0	No (linear) dependency
ρ<0	Negative dependency

Interpretation:

 $-1 \le \rho \le 1$ where:

Correlation	Interpretation
ρ > 0	Positive dependency
ρ = 0	No (linear) dependency
ρ<0	Negative dependency

But note: No correlation (i.e. $\rho = 0$) \Rightarrow independence (!) (just: no linear dependency).

some examples...

Which is the corresponding plot to a correlation of:

- **□** 0.9
- **□** -0.42
- **0.09**
- **0.17**

Correlation for Gapminder Data...

- Note: x-axis logarithmically scaled...
- This is often done if the differences are huge

Correlation for Gapminder Data...

- Note: x-axis logarithmically scaled...
- This is often done if the differences are huge

 ρ = 0.68 \rightarrow Strong positive dependency btw income and life expectancy!

A Common Mistake...

What is the interpretation of the negative correlation, here?

A Common Mistake...

- What is the interpretation of the negative correlation, here?
- Will 'having children' make you die earlier?

A Common Mistake: Confounder Variables

- What is the interpretation of the negative correlation, here?
- Will 'having children' make you die earlier?
- **No!** There seems to be a hidden 'confounder' variable behind the data: Richer countries can be assumed to have both, less \emptyset # of childen and better developed health systems.

Absolute frequencies

	1 st	2 nd	3 rd	crew	total
no	123	166	528	679	1496
yes	201	118	181	211	711
total	324	284	709	890	2207

Mosaicplot

Figure taken from: https://www.geo.de/geolino/mensch/10493-rtkl-geschichte-die-letzte-nacht-auf-der-titanic

How are the conditional frequencies from the bottom left table are visualized in the mosaic plot?

Absolute frequencies

	1 st	2 nd	3 rd	crew	total
no	123	166	528	679	1496
yes	201	118	181	211	711
total	324	284	709	890	2207

Conditional frequencies

	1 st	2 nd	3 rd	crew	total
no	0,37963	0,58451	0,74471	0,76292	1496
yes	0,62037	0,41549	0,25529	0,23708	711
total	324	284	709	890	2207

observed

			Σ
Frau	50	20	
Mann	10	20	
Σ			

observed

			Σ
Frau	50	20	
Mann	10	20	
Σ			

expected

		Σ
Frau		
Mann		
Σ		

What counts could we expect if gender and preference were independent?

observed

			Σ
Frau	50	20	
Mann	10	20	
Σ			

		Σ
Frau		
Mann		
Σ		_

expected

		Σ
Frau		
Mann		
Σ		

$$\chi^2 = \sum_{i,j} \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$$

$$\chi^2 = \sum_{i,j} \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$$

Describe what χ^2 measures in a senctence!

$$\chi^2 = \sum_{i,j} \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$$

$$V = \sqrt{\frac{\chi^2/n}{\min(c-1,r-1)}}$$

n: # observations c/r: columns/rows of the table

0 ≤ V ≤ 1 measures the dependency between two categorical variables.