Algorithms for Non-negative Matrix Factorization

content

Introduction
Non-negative matrix factorization
Cost functions
Multiplicative update rules
Multiplicative versus additive update rules
Proofs of convergence
Discussion

Introduction

Daniel D. Lee Bell Laboratories Lucent Technologies.

H. Sebastian Seung Dept. of Brain and Cog. Sci. Massachusetts Institute of Technology Cambridge

Introduction

Non-negative matrix factorization (NMF)

- Nonnegativity is useful constraint for matrix factorization that can learn a parts representation of the data.
- Sparse combinations to generate expressiveness in the reconstructions

Non-negative matrix factorization

Non-negative matrix factorization (NMF): Given a non-negative matrix V, find non-negative matrix factors W and H such that:

$$V \approx WH$$

- V is an $n \times m$ matrix: m examples, n features.
- $W_{n \times r}, \, H_{r \times m}, \,$ where r < m, r < n . Compressed !
- $v_{*j} pprox W h_{*j}$, v is approximated by a linear combination of the columns of W, weighted by the components of h.

How to find: NP-hard. Alternating iterative method.

Two algorithms will be discussed.

Cost functions

1. Euclidean distance

$$\|A-B\|^2 = \Sigma_{ij} (A_{ij} - B_{ij})^2$$

lower bounded by zero, vanishes if A=B

2. Divergence

$$D(A\|B) = \Sigma_{ij}(A_{ij}\lograc{A_{ij}}{B_{ij}} - A_{ij} + B_{ij})$$

- lower bounded by zero.
- not symmetric, not distance.
- ullet reduces to the Kullback-Leibler divergence when $\Sigma_{ij}A_{ij}=\Sigma_{ij}B_{ij}=1$

Kullback-Leibler divergence(relative entropy)

$$D(p\|q) = \Sigma_{i=1}^n p(x) \log rac{p(x)}{q(x)}$$

Cost functions

Problem1 Minimize $\|V-WH\|^2$ with respect to W and H, subject to the constraints $W,H\geq 0$.

Problem2 Minimize $D(A\|B)$ with respect to W and H, subject to the constraints $W,H\geq 0$.

Gradient descent

Multiplicative update rules

Theorem 1 The Euclidean distance $\|V-WH\|$ is nonincreasing under the update rules

$$H_{a\mu} \leftarrow H_{a\mu} rac{(W^T V_{a\mu})}{(W^T W H)_{a\mu}} \quad W_{ia} \leftarrow W_{ia} rac{(VH^T)_{ia}}{(WHH^T)_{ia}}$$

invariant if and only if \boldsymbol{W} and \boldsymbol{H} are at a stationary point of the distance.

Theorem 2 The divergence $D(A\|B)$ is nonincreasing under the update rules

$$H_{au} \leftarrow rac{\Sigma_i W_{ia} V_{i\mu}/(WH)_{i\mu}}{\Sigma_k W_{ka}} \quad W_{ia} \leftarrow W_{ia} rac{\Sigma_\mu H_{a\mu} V_{i\mu}/(WH)_{i\mu}}{\Sigma_v H_{av}}$$

invariant if and only if W and H are at a stationary point of the distance.

multiplicative factor is unity when V=WH, so that perfect reconstruction is necessarily a fixed point of the update rules.

Multiplicative versus additive update rules

Gradient descent

1. Euclidean distance

$$H_{a\mu} \leftarrow + \eta_{a\mu}[(W^TV)_{a\mu} - (W^TWH)_{a\mu}] ext{ set: } \eta_{a\mu} = rac{H_{a\mu}}{(W^TWH)_{a\mu}} \ \downarrow \ H_{a\mu} \leftarrow H_{a\mu} rac{(W^TV_{a\mu})}{(W^TWH)_{a\mu}} ext{(in Theory 1)}$$

2. Divergence

$$egin{aligned} H_{a\mu} \leftarrow + \eta_{a\mu} [\Sigma_i W_{ia} rac{V_{i\mu}}{(WH)_{i\mu} - \Sigma_i W_{ia}}] ext{ set: } \eta_{a\mu} = rac{H_{a\mu}}{\Sigma_i W_{ia}} \ & \downarrow \ H_{au} \leftarrow rac{\Sigma_i W_{ia} V_{i\mu}/(WH)_{i\mu}}{\Sigma_k W_{ka}} (ext{in Theory 2}) \end{aligned}$$

2016/10/25 cont

Proofs of convergence

Definition 1 G(h,h') is an auxiliary function for F(h) if the conditions

$$G(h,h') \geq F(h), G(h,h) = F(h)$$

are satisfied.

Lemma 1 If G is an auxiliary function, then F is nonincreasing under the update

$$h^{t+1} = arg\min_h G(h,h^t)$$

Figure 1: Minimizing the auxiliary function $G(h,h^t)\geq F(h)$ guarantees that $F(h^{t+1})\leq F(ht)$ for $h^{n+1}=arg\min_h G(h,h^t)$.

Proofs of convergence

Lemma 2 If $K(h^t)$ is the diagonal matrix

$$K_{ab}(h^t) = \delta_{ab}(W^TWh^t)_a/h_a^t$$

then

$$G(h,h^t) = F(h^t) + (h-h^t)^T
abla F(h^t) + rac{1}{2} (h-h^t)^T K(h^t) (h-h^t)$$

is an auxiliary function for

$$F(h) = rac{1}{2} \Sigma_i (v_i - \Sigma_a W_{ia} h_a)^2$$

Proof of Theorem 1

$$h^{t+1} = h^t - K(h^T) - 1
abla F(h^t)$$

$$h_a^{t+1} = h_a^t rac{(W^T v)_a}{(W^T W h^t)_a}$$

reversing the roles of W and H, F can similarly be shown to be nonincreasing under the update rules for W.

Proofs of convergence

Lemma 3 Define

$$egin{aligned} G(h,h^t) &= & \Sigma_i(v_i\log v_i - v_i) + \Sigma_{ia}W_{ia}h_a \ &- \Sigma_{ia}v_irac{W_{ia}h_a^t}{\Sigma_bW_{ib}h_b^t}(\log W_{ia}h_a - \lograc{W_{ia}h_a^t}{\Sigma_bW_{ib}h_b^t}) \end{aligned}$$

this is an auxiliary function for

$$F(h) = \Sigma_i v_i \log(rac{v_i}{\Sigma_a W_{ia} h_a}) - v_i + \Sigma_a W_{ia} h_a$$

Proof of Theorem 2 The minimum of $G(h,h^t)$ with respect to h is determined by setting the gradient to zero:

$$rac{dG(h,h^t)}{dh_a} = -\Sigma_i v_i rac{W_{ia}h_a^t}{\Sigma_b W_{ib}h_b^t} rac{1}{h_a} + \Sigma_i W_{ia} = 0$$

update rule:

$$h_a^{t+1} = rac{h_a^t}{\Sigma_b W_{kb}} \Sigma_i rac{v_i}{\Sigma_b W_{ib} h_b^t} W_{ia}$$

Rewriten in matrix form, it is equivalent to the update rule.

Discussion

- The update rules guaranteed to find at least locally optimal solutions of Problems 1 and 2.
- The convergence proofs rely upon **defining an appropriate auxiliary function**, more generalize?
- Easy to implement computationally, utilized by other applications?

2016/10/25	content
	hank you!