I

$$(3 \oplus_{12} 9) O_{17} (3 \oplus_{12} 9) = 0$$

$$((30_{9}6)0_{9}3)0_{9}8 = 00_{9}8 = -8 = 1$$

$$\frac{30_{8}60_{8}20_{8}3 = -3 \mod 8 = -3}{=0}$$

 \mathbb{I}

⊕ 7	0123456
0	0123456
1	1234560
2	0 1 2 3 4 5 6 1 2 3 4 5 6 0 2 3 4 5 6 0 1 3 4 5 6 0 1 2
3	3 4 5 6 0 1 2
4	14560123
5	5601234
6	5601234

O ₇	0123456
0	000000
1	0123456
2	0246135
3	0 3 6 2 5 1 4
4	0415163
5	0531642
6	000000 0123456 0246135 0362514 0415163 0531642

Z7 O7 inverterbar

$$88T(1,7) = 1$$
 $98T(2,7) = 1$
 $89T(3,7) = 1$
 $89T(4,7) = 1$
 $89T(5,7) = 1$
 $89T(6,7) = 1$

Wenn got (x, Oy) = 1, dann ist modular inveces

$$\coprod$$
.

$$\mathbb{D}$$
 $n=15$, $\mathbb{Z}^*_{15}=\{1,2,4,7,8,11,13,14\}$

V. $k \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid$ $k^{2} \mod 11 \mid 1 \mid 4 \mid 9 \mid 5 \mid 3 \mid 3 \mid 5 \mid 9 \mid 4 \mid 1$ h^{2} : $\alpha \qquad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad |6| \neq 9 \mid 9$ $\sqrt{n} \mod 11 \quad 1 \quad 10 \quad 10 \quad 5 \quad 6 \quad 2 \quad 9 \quad 4 \quad 7 \quad 10 \quad 10 \quad 3 \quad 8$

QR = 1,3,4,5,9 NR = 2,6,7,8,10

Rest, der aus einer Rest, der nicht aus einer Quadrierung entsleht Quadrierung entsleht

Ber & Fer Reihe aus Menge nehman

Quadrat warzeln von 1 sind 1, 8, 13, 20

VII. n=13, g=11 Diffie - Hellmann a= 5, b=7 Alice Bob 115 mod 13 117 mod 13 101 111 QMQQM RMRMRM - Qan - QHQM Alice: 11 \$ 121 = 4 \$ 16 = 3 \$ 33 = 7 Bob: 11 = 121 = 4 = 44 = 5 = 25 = 12 = 132 = 2 a private = 5 b private = 7 A public = 7 13 public = 2

$$8^{\alpha}/.n$$
 $A^{6}/.n$ $A^{6}/.n$ $A^{5}/.n$ $A^{5}/.n$ $A^{5}/.n$ $A^{5}/.n$