Application Performance Tuning

M. D. Jones, Ph.D.

Center for Computational Research University at Buffalo State University of New York

High Performance Computing I, 2013

Performance Foundations

Three pillars of performance optimization:

Algorithmic - choose the most effective algorithm that you can for the problem of interest

Serial Efficiency - optimize the code to run efficiently in a non-parallel environment

Parallel Efficiency - effectively use multiple processors to achieve a reduction in execution time, or equivalently, to solve a proportionately larger problem

Algorithmic Efficiency

Choose the best algorithm *before* you start coding (recall that good planning is an essential part of writing good software):

- Running on large number of processors? Choose an algorithm that scales well with increasing processor count
- Running a large system (mesh points, particle count, etc.)?
 Choose an algorithm that scales well with system size
- If you are going to run on a massively parallel machine, plan from the beginning on how you intend to decompose the problem (it may save you a lot of time later)

Serial Efficiency

Getting efficient code in parallel is made much more difficult if you have not optimized the sequential code, and in fact can lead to a misleading picture of parallel performance. Recall that our definition of parallel speedup,

$$\mathcal{S}(N_p) = rac{ au_{\mathcal{S}}}{ au_p(N_p)},$$

involves the time, τ_S , for an **optimal** sequential implementation (**not** just $\tau_p(1)!$)

Establish a Performance Baseline

Steps to establishing a baseline for your own performance expectations:

- Choose a representative problem (or better still a suite of problems) that can be run under identical circumstances on a multitude of platforms/compilers
 Requires portable code!
- How fast is "fast"? You can utilize hardware performance counters to measure actual code performance
- Profile, profile, and then profile some more ... to find bottlenecks and spend your time more effectively in optimizing code

Parallel Performance Trap

Pitfalls when measuring the performance of parallel codes:

- For many, speedup or linear scalability is the ultimate goal.
- This goal is incomplete a terribly inefficient code can scale well, but actually deliver poor efficiency.
- For example, consider a simple Monte Carlo based code that uses the most rudimentary uniform sampling (i.e. no importance sampling) - this can be made to scale perfectly in parallel, but the algorithmic efficiency (measured perhaps by the delivered variance per cpu-hour) is quite low.

time Command

Note that this is not the time built-in function in many shells (bash and tcsh included), but instead the one located in /usr/bin. This command is quite useful for getting an overall picture of code performance. The default output format:

```
%Uuser %Ssystem %Eelapsed %PCPU (%Xtext+%Ddata %Mmax)k
%Iinputs+%Ooutputs (%Fmajor+%Rminor)pagefaults %Wswaps
```

and using the -p option:

```
real %e
user %U
sys %S
```

time Example

```
[rush:~/d_laplace]$ /usr/bin/time ./laplace_s
:
    Max value in sol:     0.999992327961218
    Min value in sol:     -8.742278000372475E-008
75.82user 0.00system 1:17.72elapsed 97%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (0major+913minor)pagefaults 0swaps
[bono:~/d_laplace]$ /usr/bin/time -p ./laplace_s
:
    Max value in sol:     0.999992327961218
    Min value in sol:     -8.742278000372475E-008
real 75.73
user 74.68
sys 0.00
```

time MPI Example

```
[rush:~/d_laplace]$ /usr/bin/time mpiexec -np 2 ./laplace_mpi
:
    Max value in sol:     0.999992327961218
    Min value in sol:     -8.742278000372475E-008
Writing logfile....
Finished writing logfile.
28.43user 1.54system 0:31.95elapsed 93%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (0major+14920minor)pagefaults 0swaps
```

You will see the result of timing the mpiexec shell script, not the MPI code). Of course, having external timing is nice, but thankfully MPI gives up much better timing and profiling tools to use.

Code Section Timing (Calipers)

Timing sections of code requires a bit more work on the part of the programmer, but there are *reasonably* portable means of doing so:

Routine	Туре	Resolution
times	user/sys	ms
gettimeofday	wall	μ S
clock_gettime	wall	ns
system_clock (f90)	wall	system-dependent
cpu_time (f95)	cpu	compiler-dependent
MPI_Wtime*	wall	system-dependent
OMP_GET_WTIME*	wall	system-dependent

Generally I prefer the MPI and OpenMP timing calls whenever I can use them (*the MPI and OpenMP specifications call for their intrinsic timers to be high precision).

More information on code section timers (and code for doing so):

LLNL Performance Tools:

```
https://computing.llnl.gov/tutorials/performance_tools/#gettimeofday
```

 Stopwatch (nice F90 module, but you need to supply a low-level function for accessing a timer):

```
http://math.nist.gov/StopWatch
```

GNU Tools: gprof

Tool that we used briefly before:

- Generic GNU profiler
- Requires recompiling code with -pg option
- Running subsequent instrumented code produces gmon.out to be read by gprof
- Use the environment variable GMON_OUT_PREFIX to specify a new gmon.out prefix to which the process ID will be appended (especially usefule for parallel runs) - this is a largely undocumented feature ...
- Line-level profiling is possible, as we will see in the following example

gprof Shortcomings

Shortcomings of **gprof** (which apply also to any statistical profiling tool):

- Need to recompile to instrument the code
- Instrumentation can affect the statistics in the profile
- Overhead can significantly increase the running time
- Compiler optimization can be affected by instrumentation

Types of gprof Profiles

gprof profiles come in three types:

- Flat Profile: shows how much time your program spent in each function, and how many times that function was called
- Call Graph: for each function, which functions called it, which other functions it called, and how many times. There is also an estimate of how much time was spent in the subroutines of each function
- Sasic-block: Requires compilation with the -a flag (supported only by GNU?) enables gprof to construct an annotated source code listing showing how many times each line of code was executed

gprof example

```
gfortran -I. -O3 -ffast-math -q -pq -o rp rp read.o initial.o en gde.o \
         adwfns.o rpgmc.o evol.o dbxqde.o dbxtri.o gen etg.o gen rtg.o \
 gdewfn.o lib/*.o
[jonesm@rush ~/d_bench]$ qsub -qdebug -lnodes=1:ppn=2,walltime=00:30:00 -I
[jonesm@rush ~/d bench]$ ./rp
Enter runid: (<=9chars)
short
... skip copious amount of standard output ...
[jonesm@rush ~/d bench]$ gprof rp gmon.out > & out.gprof
[jonesm@rush ~/d bench]$ less out.gprof
Flat profile:
Each sample counts as 0.01 seconds.
     cumulative
                 self
                                 self total
 time
       seconds
                seconds calls
                                 s/call
                                         s/call name
 89.74 123.23 123.23
                         204008
                                0.00
                                           0.00 triwfns
 6.96 132.79 9.56
                                   9.56 137.22 MAIN
 1.18 134.41
                         200004
                                 0.00 0.00 en_gde__
                 1.62
                         204002 0.00
                                         0.00 evol_
 1.05 135.86 1.44
 0.71 136.83 0.97 14790551
                                         0.00 ranf_
                                   0.00
               0.37
 0.27 137.20
                         204008
                                   0.00
                                           0.00 gdewfn_
```

```
[jonesm@rush ~/d bench]$ gprof --line rp gmon.out > & out.gprof.line
[jonesm@rush ~/d_bench]$ less out.gprof.line
Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self
                                 self
                                         total
time
       seconds seconds calls ns/call ns/call name
17 45
          23.96 23.96
                                              triwfns (adwfns.f:129 @ 403c94)
       43.82 19.86
14.46
                                              triwfns (adwfns.f:130 @ 403ce6)
12.87 61.50 17.68
                                              triwfns (adwfns.f:171 @ 404755)
12.31 78.41 16.91
                                              triwfns_ (adwfns.f:172 @ 4047e2)
 0.67 79.33
               0.92
                                              triwfns (adwfns.f:130 @ 403cd6)
 0.59 80.14
               0.82
                                              MAIN (cc4WTuQH.f:308 @ 4070c6)
 0.51
         80.84
               0.70
                                              MAIN (cc4WTuOH.f:304 @ 4072da)
```

More gprof Information

More **gprof** documentation:

• gprof GNU Manual:

```
http://sourceware.org/binutils/docs/gprof/
```

gprof man page: man gprof

PGI Tools: pgprof

- PGI tools also have profiling capabilities (c.f. man pgf95)
- Graphical profiler, pgprof

pgprof example

pgprof example [screenshot]

- N.B. you can also use the -text option to pgprof to make it behave more like gprof
- See the PGI Tools Guide for more information (should be a PDF copy in \$PGI/doc)

mpiP: Statistical MPI Profiling

- http://mpip.sourceforge.net
- Not a tracing tool, but a lightweight interface to accumulate statistics using the MPI profiling interface
- Quite useful in conjunction with a tracefile analysis (e.g. using jumpshot)
- Installed on CCR systems see "module avail" for mpiP availability and location

mpiP Compilation

To use mpiP you need to:

- Add a -g flag to add symbols (this will allow mpiP to access the source code symbols and line numbers)
- Link in the necessary mpiP profiling library and the binary utility libraries for actually decoding symbols (*There is a trick that you can use most of the time to avoid having to link with mpiP, though*).

Compilation examples (from U2) follow ...

mpiP Runtime Flags

You can set various mpiP runtime flags (e.g. export MPIP="-t 10.0 -k 2"):

Option -c	Description Generate concise version of report, omitting callsite process-specific detail.	Default
-е	Print report data using floating-point format	
-f dir	Record output file in directory <dir></dir>	
-g	Enable mpiP debug mode	disabled
-k n	Sets callsite stack traceback depth to <n></n>	1
-n	Do not truncate full pathname of filename in callsites	
-0	Disable profiling at initialization.	
	Application must enable profiling with MPI_Pcontrol()	
-s n	Set hash table size to <n></n>	256
-t x	Set print threshold for report, where <x> is the</x>	
	MPI percentage of time for each callsite	0.0
-V	Generates both concise and verbose report output	

mpiP Example Output

From an older version of mpiP, but still almost entirely the same - this one links directly with mpiP; first compile:

```
mpicc -g -o atlas aij2_basis.o analyze.o atlas.o barrier.o byteflip.o \
    chordgn2.o cstrings.o io2.o map.o mutils.o numrec.o paramods.o proj.o \
    projAtlas.o sym2.o util.o -lm -L/Projects/CCR/jonesm/mpiP-2.8.2/gnu/ch_gm/lib \
    -lmpiP -lbfd -liberty -lm
```

then run (in this case using 16 processors) and examine the output file:

```
[jonesm@joplin d_derenzo]$ ls *.mpiP atlas.gcc3-mpi-papi-mpiP.16.20578.1.mpiP [jonesm@joplin d_derenzo]$ less atlas.gcc3-mpi-papi-mpiP.16.20578.1.mpiP : :
```

```
@ mpiP
@ Command : ./atlas.gcc3-mpi-papi-mpiP study.ini 0
@ Version
                           . 282
@ MPIP Build date
                           : Jun 29 2005, 14:53:41
 Start time
                           : 2005 06 29 15:18:52
 Stop time
                           : 2005 06 29 15:28:34
                           : gettimeofday
@ Timer Used
 MPTP env var
                           : [null]
 Collector Rank
                           : 0
 Collector PID
                           . 20578
@ Final Output Dir
@ MPI Task Assignment
                             0 bb18n17.ccr.buffalo.edu
@ MPI Task Assignment
                           : 1 bb18n17.ccr.buffalo.edu
 MPI Task Assignment
                           : 2 bb18n16.ccr.buffalo.edu
 MPI Task Assignment
                             3 bb18n16.ccr.buffalo.edu
 MPI Task Assignment
                             4 hb18n15 ccr buffalo edu
 MPI Task Assignment
                           : 5 bb18n15.ccr.buffalo.edu
 MPI Task Assignment
                               bb18n14.ccr.buffalo.edu
 MPI Task Assignment
                               bb18n14.ccr.buffalo.edu
 MPI Task Assignment
                              bb18n13.ccr.buffalo.edu
 MPI Task Assignment
                               bb18n13.ccr.buffalo.edu
 MPI Task Assignment
                             10 bb18n12.ccr.buffalo.edu
 MPI Task Assignment
                           : 11 bb18n12.ccr.buffalo.edu
 MPI Task Assignment
                           : 12 bb18n11.ccr.buffalo.edu
 MPI Task Assignment
                           : 13 bb18n11.ccr.buffalo.edu
@ MPI Task Assignment
                           : 14 bb18n10.ccr.buffalo.edu
@ MPI Task Assignment
                           : 15 bb18n10.ccr.buffalo.edu
```

0 N				
Task	AppTime	MPITime	MPI%	
0	582	44.7	7.69	
1	579	41.9	7.24	
2	579	40.7	7.03	
3	579	36.9	6.37	
4	579	22.3	3.84	
5	579	16.6	2.87	
6	579	32	5.53	
7	579	35.9	6.20	
8	579	28.6	4.93	
9	579	25.9	4.48	
10	579	39.2	6.76	
11	579	33.8	5.84	
12	579	35.3	6.10	
13	579	41	7.07	
14	579	29.9	5.16	
15	579	41.4	7.16	
*	9.27e+03	546	5.89	

D	Lev File/Addres	s Line	Parent_Funct	MPI_Call
1	0 util.c	833	gsync	Barrier
2	0 atlas.c	1531	readProjData	Allreduce
3	0 projAtlas.c	745	backProjAtlas	Allreduce
4	0 atlas.c	1545	readProjData	Allreduce
5	0 atlas.c	1525	readProjData	Allreduce
6	0 atlas.c	1541	readProjData	Allreduce
7	0 atlas.c	1589	readProjData	Allreduce
8	0 atlas.c	1519	readProjData	Allreduce
9	0 util.c	789	mygcast	Bcast
10	0 projAtlas.c	1100	computeLoglikeAtlas	Allreduce
11	0 atlas.c	1514	readProjData	Allreduce
12	0 atlas.c	1537	readProjData	Allreduce
13	0 projAtlas.c	425	fwdBackProjAtlas2	Allreduce

Call	Site	Time	App%	MPI%	COV	
Allreduce	13	3.09e+05	3.33	56.50		
Barrier	1	2.13e+05	2.30	38.97	0.35	
Bcast	9	1.69e+04	0.18	3.10	0.37	
Allreduce	3	7.78e+03	0.08	1.42	0.11	
Allreduce	10	62.7	0.00	0.01	0.20	
Allreduce	11	2.42	0.00	0.00	0.09	
Allreduce	7	2.17	0.00	0.00	0.26	
Allreduce	12	1.15	0.00	0.00	0.20	
Allreduce	6	1.14	0.00	0.00	0.19	
Allreduce	5	1.13	0.00	0.00	0.15	
Allreduce	8	1.12	0.00	0.00	0.18	
Allreduce	2	1.1	0.00	0.00	0.13	
Allreduce	4	1.1	0.00	0.00	0.12	

Aggregate	Sent Message	Size (top	twenty, des	scending, b	ytes)
Call	Site	Count	Total	Avrg	Sent%
Allreduce	13	65536	2.28e+09	3.48e+04	83.69
Allreduce	3	8192	2.85e+08	3.48e+04	10.46
Bcast	9	490784	1.59e+08	325	5.85
Allreduce	11	16	2.07e+04	1.3e+03	0.00
Allreduce	10	512	4.1e+03	8	0.00
Allreduce	7	16	256	16	0.00
llreduce	2	16	64	4	0.00
llreduce	6	16	64	4	0.00
llreduce	5	16	64	4	0.00
llreduce	4	16	64	4	0.00
llreduce	8	16	64	4	0.00
llreduce	12	16	64	4	0.00

Using mpiP at Runtime

Now let's examine an example using mpiP at runtime. This example is solves a simple Laplace equation with Dirichlet boundary conditions using finite differences.

```
4
 5
 8
10
11
12
13
14
15
16
17
18
19
20
21
```

```
#!/bin/bash
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=8
#SBATCH --constraint=CPU-L5520
#SBATCH --partition=debug
#SBATCH --time=00:10:00
#SBATCH --mail-type=END
#SBATCH --mail-user=jonesm@buffalo.edu
#SBATCH --output=slurmMPIP.out
#SBATCH --job-name=mpip-test
module load intel
module load intel-mpi
module load mpip
module list
export I MPI DEBUG=4
# Use LD PRELOAD trick to load mpiP wrappers at runtime
export LD PRELOAD=$MPIPDIR/lib/libmpiP.so
export I MPI PMI LIBRARY=/usr/lib64/libpmi.so
srun ./laplace mpi<<EOF
2000
EOF
```

... and then run it and examine the resulting mpiP output file:

```
[rush:~/d laplace/d mpip]$ ls -l laplace mpi.*
[rush:~/d laplace/d mpip]$ ls -1 laplace mpi.*
-rw-r--r-- 1 jonesm ccrstaff 17920 Dec 5 2012 laplace mpi.16.11597.1.mpiP
-rw-r--r--1 jonesm ccrstaff 17698 Oct 7 15:45 laplace_mpi.16.31074.1.mpiP
-rw-r--r- 1 jonesm ccrstaff 16032024 Oct 7 15:45 laplace mpi.dat
                                             2010 laplace mpi.f90 -> ../laplace mpi.f90
lrwxrwxrwx 1 ionesm ccrstaff
                                  18 Dec 21
```

and again we will break it down by section:

```
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
```

6

7

8

```
@ mpiP
@ Command : /ifs/user/jonesm/d_laplace/d_mpip/./laplace_mpi
@ Version
                            : 3.3.0
@ MPIP Build date
                            : Oct 14 2011, 16:16:34
                            : 2013 10 07 15:43:14
@ Start time
                    : 2013 10 07 15:45:11
@ Stop time
@ Timer Used : PMPI_Wtime
@ MPIP env var : [null]
@ Collector Rank
                            : 0
@ Collector PID
                            : 31074
@ Final Output Dir : .
@ Report generation : Single collector task
@ MPI Task Assignment : 0 d16n02
                       : 1 d16n02
@ MPI Task Assignment
                       : 2 d16n02
@ MPI Task Assignment
@ MPI Task Assignment : 3 d16n02
@ MPI Task Assignment
                       : 4 d16n02
@ MPI Task Assignment
                            : 5 d16n02
@ MPI Task Assignment
                            : 6 d16n02
@ MPI Task Assignment
                            : 7 d16n02
@ MPI Task Assignment
                            : 8 d16n03
@ MPI Task Assignment
                            : 9 d16n03
@ MPI Task Assignment : 10 d16n03
@ MPI Task Assignment : 11 d16n03
@ MPI Task Assignment : 12 d16n03
@ MPI Task Assignment : 13 d16n03
@ MPI Task Assignment : 14 d16n03
@ MPI Task Assignment
                            : 15 d16n03
```

49

	 AppTime	MPITime	MPI
0		17.2	
1		17.6	
2	117	19.9	17.03
3	117	17.9	15.33
4	117	17.7	15.14
5	117	14.6	12.53
6	117	13.6	11.64
7	117	13.4	11.49
8	117	12.2	10.48
9	117	16.7	14.28
10		17	
11		17.2	
12	117	19.1	16.33
13	117		
14	117		
15	117	17.5	14.96
*	1.87e+03	267	14.30

50

```
ID Lev File/Address
                        Line Parent Funct
                                                   MPI Call
     0 laplace mpi.f90 118 MAIN
                                                   Allreduce
     0 laplace_mpi.f90
                      143 MAIN
                                                   Recv
    0 laplace_mpi.f90 48 __paramod_MOD_xchange
                                                   Sendrecv
    0 laplace mpi.f90 80 MAIN
                                                   Bcast
    0 laplace_mpi.f90 46 __paramod_MOD_xchange
                                                   Sendrecv
     0 laplace_mpi.f90 138 MAIN__
                                                  Send
@--- Aggregate Time (top twenty, descending, milliseconds) -----
Call
                  Site
                            Time
                                   App%
                                         MPI%
                                                  COV
Allreduce
                        2.45e+05
                                  13.09
                                         91.53
                                                 0.14
Sendrecv
                        1.12e+04
                                0.60
                                        4.20
                                               0.17
                        1.11e+04 0.59 4.14
                                                0.20
Sendrecv
Send
                             306 0.02 0.11
                                               0.55
                           16.7 0.00 0.01
                                                 0.25
Bcast
Recv
                              14
                                   0.00
                                          0.01
                                                 0.00
```

Name	Site	Rank	Count	Max	Mean	Min	App%	MPI
Allreduce	1	0	23845	32.2	0.667	0.037	13.57	92.3
Allreduce	1	1	23845	29.1	0.685	0.037	13.98	92.7
Allreduce	1	2	23845	33.9	0.779	0.037	15.92	93.4
Allreduce	1	3	23845	29.2	0.696	0.04	14.22	92.7
Allreduce	1	4	23845	32.3	0.687	0.036	14.03	92.6
Allreduce	1	5	23845	29.2	0.56	0.037	11.44	91.2
Allreduce	1	6	23845	28.5	0.511	0.035	10.43	89.6
Allreduce	1	7	23845	25.7	0.493	0.036	10.06	87.6
Allreduce	1	8	23845	26.1	0.444	0.038	9.07	86.5
Allreduce	1	9	23845	28.2	0.637	0.034	13.00	91.0
Allreduce	1	10	23845	33.6	0.649	0.036	13.26	91.3
Allreduce	1	11	23845	28.9	0.657	0.034	13.42	91.2
Allreduce	1	12	23845	32.3	0.737	0.039	15.06	92.2
Allreduce	1	13	23845	31	0.67	0.035	13.69	91.4
Allreduce	1	14	23845	33.7	0.704	0.038	14.38	91.7
Allreduce	1	15	23845	33.9	0.683	0.036	13.94	93.1
Allreduce	1	*	381520	33.9	0.641	0.034	13.09	91.5

2	@ Callsite	Message	Sent	statistic	s (all, s	ent bytes)		
3 4	Name	Site	— — — Rank	Count	 Max	 Mean	 Min	
5	Allreduce	1		23845	8	8	8	1.908e+05
3	Allreduce	1	. 1	23845	8	8	8	1.908e+05
7	Allreduce	1	. 2	23845	8	8	8	1.908e+05
3	Allreduce	1	. 3	23845	8	8	8	1.908e+05
9	Allreduce	1	. 4	23845	8	8	8	1.908e+05
)	Allreduce	1	. 5	23845	8	8	8	1.908e+05
1	Allreduce	1	. 6	23845	8	8	8	1.908e+05
2	Allreduce	1	. 7	23845	8	8	8	1.908e+05
3	Allreduce	1	. 8	23845	8	8	8	1.908e+05
1	Allreduce	1	. 9	23845	8	8	8	1.908e+05
5	Allreduce	1	10	23845	8	8	8	1.908e+05
3	Allreduce	1	. 11	23845	8	8	8	1.908e+05
7	Allreduce	1	. 12	23845	8	8	8	1.908e+05
3	Allreduce	1	1.3	23845	8	8	8	1.908e+05
9	Allreduce	1	. 14	23845	8	8	8	1.908e+05
)	Allreduce	1	. 15	23845	8	8	8	1.908e+05
l	Allreduce	1	. *	381520	8	8	8	3.052e+06

Intel Trace Analyzer/Collector (ITAC)

A commercial product for performing MPI trace analysis that has enjoyed a long history is **Vampir/Vampirtrace**, originally developed and sold by Pallas GmbH. Now owned by Intel and available as the Intel Trace Analyzer and Collector. We have a license on U2 if someone wants to give it a try.

Note that **Vampir/Vampirtrace** has since been reborn as an entirely new product.

ITAC Example

Note that you do not have to recompile your application to use ITAC (unless you are building it statically), you can just build it usual, using Intel MPI:

```
[rush:~/d_laplace/d_itac]$ module load intel-mpi
[rush:~/d_laplace/d_itac]$ make laplace_mpi
mpiifort -ipo -03 -Vaxlib -g -c laplace_mpi.f90
mpiifort -ipo -03 -Vaxlib -g -o laplace_mpi laplace_mpi.o
ipo: remark #11001: performing single-file optimizations
ipo: remark #11005: generating object file /tmp/ipo_ifortj0zYAn.o
[bono:~/d_laplace/d_itac]$
```

You can turn trace collection on at run-time ...

```
#!/hin/hash
1
2
   #SBATCH --nodes=2
3
  #SBATCH --ntasks-per-node=8
   #SBATCH --constraint=CPU-L5520
   #SBATCH --partition=debug
   #SBATCH --time=00:10:00
   #SBATCH --mail-type=END
8
   #SBATCH --mail-user=jonesm@buffalo.edu
9
   #SBATCH --output=slurmITAC.out
   #SBATCH --job-name=mpip-test
   module load intel
  module load intel-mpi
    . /util/intel/itac/8.1.0.024/bin/itacvars.sh
   module list
   which mpiexec
  # this is one of those times when srun is not going to work - need to
       use Intel MPI's task launching to generate ITAC profile
   MYHOSTFILE=tmp.hosts
   srun -l hostname -s | sort -n | awk '{print $2}' > $MYHOSTFILE
   NNODES='cat $MYHOSTFILE | unig | wc -1'
   NPROCS='cat $MYHOSTFILE | wc -1'
   export I MPI DEBUG=4
   mpdboot -n $NNODES -f "$MYHOSTFILE" -v
   mpdtrace
   mpiexec -trace -np $NPROCS ./laplace mpi <<EOF
   2000
   EOF
   mpdallexit
    [ -e "$MYHOSTFILE" ] && \rm "$MYHOSTFILE"
```

Running the preceding batch job on U2 produces a bunch (many!) of profiling output files, the most important of which can be is the name of your binary with a .stf suffix, in this case laplace mpi.stf, which we feed to the Intel Trace Analyzer using the traceanalyzer command ... and we should see a profile that looks very much like what you can see using **jumpshot** (MPICH2's trace file profiler).

More ITAC Documentation

Some helpful pointers to more ITAC documentation:

```
[rush:~/d laplace/d_itac]$ which traceanalyzer
    /util/intel/itac/8.1.0.024/bin/traceanalyzer
    [rush:~/d laplace/d itac]$ ls -1 /util/intel/itac/8.1.0.024/doc
    FAQ.pdf
    Getting Started.html
    INSTALL.html
    ITA Reference Guide
    ITA Reference Guide.htm
    ITA_Reference_Guide.pdf
10
    ITC Reference Guide
11
    ITC Reference Guide.htm
12
    ITC Reference Guide.pdf
13
    Release Notes Addendum for MIC Architecture.txt
14
    Release Notes.txt
```

Generally a good idea to refer to the documentation for the same version that you are using (you can check with "module show intel-mpi").

Introduction

- Performance Application Programming Interface
- Implement a portable(!) and efficient API to access existing hardware performance counters
- Ease the optimization of code by providing base infrastructure for cross-platform tools

Pre-PAPI

Before PAPI came along, there were hardware performance counters, of course - but access to them was limited to proprietary tools and APIs. Some examples were SGI's **perfex** and Cray's **hpm**.

Now, as long as PAPI has been ported to a particular hardware substrate, the end-programmer (or tool developer) can just use the PAPI interface.

PAPI Schematic

Best summarized by the following schematic picture:

Behind the PAPI Curtain

 Linux - x86/x86_64 uses the perfctr kernel patches by Mikael Petterssen:

```
http://user.it.uu.se/~mikpe/linux/perfctr/2.6
```

- Headed for inclusion in mainstream Linux kernel (was a custom patch applied to CCR systems prior to Linux kernel 2.6.32)
- low overhead
- IA64 uses PFM, developed by HP and included in the linux kernel (for x86 64):
 - Full use of available IA64 monitoring capabilities
 - Quite a bit slower than perfctr, at least according to the PAPI developers
 - http://www.hpl.hp.com/research/linux/perfmon
 - libpfm lives on using perf events, but perfmon apparently ceased development for Linux as of kernel 2.6.30 or so
- "Perf Events" added to Linux kernel in 2.6.31, replacing both of the above, c.f.:

http://web.eecs.utk.edu/~vweaver1/projects/perf-events/

Nehalem Xeon Block Diagram

Block diagram for Nehalem architecture, showing a single socket (repeat on QPI for dual sockets):

"Westmere" Xeons

Characteristics of the 'Westmere' E5645 Xeons that form (part of) CCR's **U2** cluster:

Clock Cycle	2.4 GHz
TPP	9.6 GFlop/s (per core)
Pipeline	14 stages
L2 Cache Size	256 kByte
L3 Cache Size	12 MByte
CPU-Memory Bandwidth	32 GByte/s (nonuniform!)

"Westmere" Xeon Memory Hierarchy Penalties

Consider the penalties in lost computation for **not** reusing data in the various caches (using U2's Intel *Westmere* Xeon E5645 processors):

Memory	Miss Penalty (cycles)
L1 Cache	4
L2 Cache	10
L3 Cache	58
Main	200 (on socket)
	334 (off socket)

as determined by the **Imbench** benchmark¹.

¹http://www.bitmover.com/lmbench

Xeon E5645 Memory Latencies

Available PAPI Performance Data

- Cycle count
- Instruction count (including Integer, Floating point, load/store)
- Branches (including Taken/not taken, mispredictions)
- Pipeline stalls (due to memory, resource conflicts)
- Cache (misses for different levels, invalidation)
- TLB (Translation Lookaside Buffer) misses, invalidation, etc.

High-level PAPI

- Intended for coarse-grained measurements
- Requires little (or no) setup code
- Allows only PAPI preset
- Allows only aggregate counting (no statistical profiling)

Low-level PAPI

- More efficient (and functional) than high-level
- About 60 functions
- Thread-safe
- Supports presets and native events

Preset vs. Native Events

- preset or pre-defined events, are those which have been considered useful by the PAPI community and developers:
 - http://icl.cs.utk.edu/projects/papi/presets.html
- native events are those countable by the CPU's hardware.

 These events are highly platform specific, and you would need to consult the processor architecture manuals for the relevant native event lists

Low-level PAPI Functions

- Hardware counter multiplexing (time sharing hardware counters to allow more events to be monitored than can be conventionally supported)
- Processor information
- Address space information
- Memory information (static and dynamic)
- Timing functions
- Hardware event inquiry
- ... and many more

More PAPI Information

For more on PAPI, including source code, documentation, presentations, and links to third-party tools that utilize PAPI, see

http://icl.cs.utk.edu/projects/papi

How to Access PAPI at CCR

Consider a simple example code to measure Flop/s using the high-level PAPI API:

```
#include <stdio.h>
#include <stdib.h>
#include "papi.h"

int main()

float real_time, proc_time, mflops;
long_long flopps;
float ireal_time, iproc_time, imflops;
long_long iflpops;
int retval;
```

```
if ((retval=PAPI flops(&ireal time, &iproc time, &iflpops, &imflops)) < PAPI OK)
    printf("Could not initialise PAPI flops \n");
    printf("Your platform may not support floating point operation event.\n");
    printf("retval: %d\n", retval);
    exit(1):
 vour slow code():
 if((retval=PAPI flops( &real time, &proc time, &flpops, &mflops))<PAPI OK)
    printf("retval: %d\n", retval);
    exit(1);
 printf("Real time: %f Proc time: %f Total flpops: %lld MFLOPS: %f\n",
         real time, proc time, flpops, mflops);
 exit(0):
int your slow code()
  int i:
 double tmp=1.1;
  for (i=1: i<2000: i++)
    tmp=(tmp+100)/i;
  return 0:
```

How to Access PAPI at CCR

On U2, you access the **papi** module and compile accordingly:

... and on Lennon (SGI Altix):

N.B., The Altix is long dead, but this is a good example of the cross-platform portability of PAPI accessign the hardware performance counters.

papi_avail Command

You can use **papi_avail** to check event availability (different CPUs support various events):

```
#!/bin/bash
    #SBATCH --nodes=1
    #SBATCH --ntasks-per-node=8
    #SBATCH --constraint=CPU-L5520
    #SBATCH --partition=debug
    #SBATCH --time=00:10:00
    #SBATCH --mail-type=END
    #SBATCH --mail-user=jonesm@buffalo.edu
    #SBATCH --output=slurmO.out
10
    #SBATCH --job-name=papi-test
11
12
    module load papi
13
    module list
14
    export | grep SLURM
15
    papi avail
```

Name					
PAPI_L2_DCM	Name	Code	Avail	Deriv	Description (Note)
PAPI_L2_DCM 0x80000002 Yes Level 2 data cache misses PAPI_L2_DCM 0x80000003 Yes No Level 2 instruction cache misses PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses PAPI_L1_TCM 0x80000006 Yes Yes Level 1 cache misses PAPI_L3_TCM 0x80000008 Yes No Level 2 cache misses PAPI_L3_TCM 0x80000008 Yes No Level 3 cache misses PAPI_C4_SNP 0x80000009 No No Requests for a snoop PAPI_CA_SNP 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x80000000 No No Requests for cache line invalidation PAPI_CA_INV 0x80000000 No No Requests for cache line intervention PAPI_L3_SIM 0x80000000 No No Requests for cache line intervention PAPI_L3_SIM 0x80000001 No N	PAPI_L1_DCM	0x80000000	Yes	No	Level 1 data cache misses
PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction cache misses PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses PAPI_L1_TCM 0x80000006 Yes Yes Level 1 cache misses PAPI_L3_TCM 0x80000007 Yes No Level 2 cache misses PAPI_CA_SNP 0x80000009 No No Level 3 cache misses PAPI_CA_SNP 0x80000000 No No Requests PAPI_CA_SNP 0x80000000 No No Requests for exclusive access to shared cache line PAPI_CA_SNP 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_ITV 0x80000000 No No Requests for cache line invalidation PAPI_CA_ITV 0x80000000 No No Requests for cache line intervention PAPI_L3_STM 0x80000001 No No Level 3 store misses PAPI_BRU_IDL 0x80000001 No <td>PAPI_L1_ICM</td> <td>0x80000001</td> <td>Yes</td> <td>No</td> <td>Level 1 instruction cache misses</td>	PAPI_L1_ICM	0x80000001	Yes	No	Level 1 instruction cache misses
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses PAPI_L1_TCM 0x80000007 Yes No Level 1 cache misses PAPI_L3_TCM 0x80000007 Yes No Level 2 cache misses PAPI_CA_STMP 0x80000009 No No Requests for a snoop PAPI_CA_STM 0x80000000 No No Requests for exclusive access to shared cache line PAPI_CA_CIN 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_ITV 0x80000000 No No Requests for cache line invalidation PAPI_CA_ITV 0x80000000 No No Requests for cache line intervention PAPI_L3_LDM 0x80000000 No No Requests for cache line intervention PAPI_L3_STM 0x80000000 No No Requests for cache line intervention PAPI_L3_STM 0x80000001 No No Level 3 store misses PAPI_EXU_IDL 0x	PAPI_L2_DCM	0x80000002	Yes	Yes	Level 2 data cache misses
PAPI_L3_ICM 0x80000005 No No Level 3 instruction cache misses PAPI_L1_TCM 0x80000006 Yes Level 1 cache misses PAPI_L2_TCM 0x80000007 Yes No Level 2 cache misses PAPI_L3_TCM 0x80000008 Yes No Level 3 cache misses PAPI_CA_SNP 0x80000009 No No Requests for a snoop PAPI_CA_CLN 0x80000000 No No Requests for exclusive access to shared cache line PAPI_CA_INV 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x80000000 No No Requests for cache line invalidation PAPI_CA_INV 0x80000000 No No Requests for cache line intervention PAPI_L3_SIM 0x80000000 No No Requests for cache line intervention PAPI_L3_SIM 0x80000001 No No Level 3 store misses PAPI_L3_SIM 0x80000001 No No Cycles branch units are idle PAPI_SU_IDL 0x80000001 No	PAPI_L2_ICM	0x80000003	Yes	No	Level 2 instruction cache misses
PAPI_LI_TCM 0x80000006 Yes Yes Level 1 cache misses PAPI_LZ_TCM 0x80000007 Yes No Level 2 cache misses PAPI_LZ_TCM 0x80000008 Yes No Level 3 cache misses PAPI_CA_SNP 0x80000009 No No Requests for a snoop PAPI_CA_SNR 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x80000000 No No Requests for cache line invalidation PAPI_CA_ITV 0x80000000 No No Requests for cache line intervention PAPI_LS_LDM 0x80000000 Yes No Level 3 load misses PAPI_BRU_IDL 0x80000010 No No Cycles branch units are idle PAPI_S_LDL 0x80000011 No No Cycles floating point units are idle PAPI_S_LD_IDL 0x80000012 No No Cycles floating point units are idle PAPI_LB_ID 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_TLB_ID 0x80000015 </td <td>PAPI_L3_DCM</td> <td>0x80000004</td> <td>No</td> <td>No</td> <td>Level 3 data cache misses</td>	PAPI_L3_DCM	0x80000004	No	No	Level 3 data cache misses
PAPI_L2_TCM 0x80000007 Yes No Level 2 cache misses PAPI_L3_TCM 0x80000008 Yes No Level 3 cache misses PAPI_CA_SNP 0x80000009 No No Requests for a snoop PAPI_CA_SIR 0x80000000 No No Requests for exclusive access to shared cache line PAPI_CA_CIN 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_ITV 0x80000000 No No Requests for cache line invalidation PAPI_CA_ITV 0x80000000 No No Requests for cache line intervention PAPI_L3_IDM 0x80000000 No No Requests for cache line intervention PAPI_L3_SIM 0x80000001 No No Level 3 load misses PAPI_BIJL0 0x80000010 No No Cycles load misses PAPI_FXU_IDL 0x80000011 No No Cycles integer units are idle PAPI_LSU_IDL 0x80000012 No No Cycles load/store units are idle PAPI_TIB_IM 0x80000014	PAPI_L3_ICM	0x80000005	No	No	Level 3 instruction cache misses
PAPI_L3_TCM 0x80000008 Yes No Level 3 cache misses PAPI_CA_SNP 0x80000009 No No Requests for a snoop PAPI_CA_SNP 0x80000000 No No Requests for exclusive access to shared cache line PAPI_CA_CLN 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x80000000 No No Requests for cache line invalidation PAPI_CA_INV 0x80000000 No No Requests for cache line intervention PAPI_L3_SLM 0x80000000 Yes No Level 3 load misses PAPI_L3_SIM 0x80000010 No No Level 3 store misses PAPI_BRU_IDL 0x80000010 No No Cycles branch units are idle PAPI_FU_IDL 0x80000011 No No Cycles integer units are idle PAPI_LSU_IDL 0x80000012 No No Cycles load/store units are idle PAPI_LB_M 0x80000014 Yes No Data translation lookaside buffer misses PAPI_LB_ID 0x800	PAPI_L1_TCM	0x80000006	Yes	Yes	Level 1 cache misses
PAPI_CA_SNP 0x80000009 No No Requests for a snoop PAPI_CA_SHR 0x80000000 No No Requests for exclusive access to shared cache line PAPI_CA_CIN 0x80000000 No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x80000000 No No Requests for cache line invalidation PAPI_LA_IDM 0x80000000 Yes No Level 3 load misses PAPI_BAU_IDL 0x80000001 No No Level 3 store misses PAPI_BRU_IDL 0x80000010 No No Cycles branch units are idle PAPI_FU_IDL 0x80000011 No No Cycles floating point units are idle PAPI_LSU_IDL 0x80000012 No No Cycles floating point units are idle PAPI_LB_ID 0x80000013 No No Cycles load/store units are idle PAPI_TLB_ID 0x80000015 Yes No Data translation lookaside buffer misses PAPI_TLB_ID 0x80000015 Yes No Instruction translation lookaside buffer misses <	PAPI_L2_TCM	0x80000007	Yes	No	Level 2 cache misses
PAPI_CA_SHR 0x8000000a No No Requests for exclusive access to shared cache line PAPI_CA_CIN 0x8000000b No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x8000000c No No Requests for cache line invalidation PAPI_CA_ITV 0x8000000c No No Requests for cache line intervention PAPI_L3_LDM 0x8000000c Yes No Level 3 load misses PAPI_BNU_IDL 0x80000010 No No Cycles load misses PAPI_FXU_IDL 0x80000011 No No Cycles branch units are idle PAPI_FYU_IDL 0x80000012 No No Cycles integer units are idle PAPI_LSU_IDL 0x80000012 No No Cycles load/store units are idle PAPI_TIB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TIB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_LS_IM 0x80000017 Yes No Level 1 load misses PAPI_	PAPI_L3_TCM	0x80000008	Yes	No	Level 3 cache misses
PAPI_CA_CLN 0x8000000b No No Requests for exclusive access to clean cache line PAPI_CA_INV 0x8000000c No No Requests for cache line invalidation PAPI_CA_ITV 0x8000000c No No Requests for cache line intervention PAPI_L3_LDM 0x8000000e Yes No Level 3 load misses PAPI_BRU_IDL 0x80000010 No No Level 3 store misses PAPI_BRU_IDL 0x80000011 No No Cycles branch units are idle PAPI_FPU_IDL 0x80000012 No No Cycles integer units are idle PAPI_LSU_IDL 0x80000013 No No Cycles load/store units are idle PAPI_TLB_ID 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_ID 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_LI_SIM 0x80000017 Yes No Level 1 load misses PAPI_LI_SIM 0x80000018 Yes No Level 1 store misses PAPI_LZ_SIM 0x	PAPI_CA_SNP	0x80000009	No	No	Requests for a snoop
PAPI_CA_INV 0x8000000c No No Requests for cache line invalidation PAPI_CA_ITV 0x8000000d No No Requests for cache line intervention PAPI_LA_LDM 0x8000000e ves No Level 3 load misses PAPI_LA_STM 0x80000010 No No Level 3 store misses PAPI_BRU_IDL 0x80000011 No No Cycles branch units are idle PAPI_FPU_IDL 0x80000011 No No Cycles floating point units are idle PAPI_LSU_IDL 0x80000013 No No Cycles floating point units are idle PAPI_TLB_IM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_TLB_TD 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_STM 0x80000018 Yes No Level 1 load misses PAPI_LZ_LDM 0x80000018 Yes No Level 2 load misses PAPI_BTAC_M <td< td=""><td>PAPI_CA_SHR</td><td>0x8000000a</td><td>No</td><td>No</td><td>Requests for exclusive access to shared cache line</td></td<>	PAPI_CA_SHR	0x8000000a	No	No	Requests for exclusive access to shared cache line
PAPI_CA_ITV 0x8000000d No No Requests for cache line intervention PAPI_L3_LDM 0x8000000e Yes No Level 3 load misses PAPI_L3_STM 0x80000016 No No Level 3 store misses PAPI_BRU_IDL 0x80000011 No No Cycles branch units are idle PAPI_FXU_IDL 0x80000011 No No Cycles integer units are idle PAPI_LSU_IDL 0x80000012 No No Cycles cload/store units are idle PAPI_TLB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_LI_LDM 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_STM 0x80000018 Yes No Level 1 load misses PAPI_LZ_LDM 0x80000019 Yes No Level 2 load misses PAPI_LZ_STM 0x80000019 Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b	PAPI_CA_CLN	0x8000000b	No	No	Requests for exclusive access to clean cache line
PAPI_L3_LDM 0x8000000e Yes No Level 3 load misses PAPI_L3_STM 0x80000001 No No Level 3 store misses PAPI_BRUJLDL 0x80000010 No No Cycles branch units are idle PAPI_FYU_IDL 0x80000011 No No Cycles integer units are idle PAPI_FYU_IDL 0x80000013 No No Cycles floating point units are idle PAPI_LSU_IDL 0x80000013 No No Cycles load/store units are idle PAPI_TLB_IM 0x80000015 Yes No Data translation lookaside buffer misses PAPI_LB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_L1_STM 0x80000017 Yes No Level 1 load misses PAPI_L2_LDM 0x80000018 Yes No Level 2 load misses PAPI_L2_STM 0x80000018 Yes No Level 2 store misses PAPI_LSTAC_M 0x80000018 Yes No Level 2 store misses	PAPI_CA_INV	0x8000000c	No	No	Requests for cache line invalidation
PAPI_L3_STM 0x8000000f No No Level 3 store misses PAPI_BRU_IDL 0x80000010 No No Cycles branch units are idle PAPI_FPU_IDL 0x80000011 No No Cycles integer units are idle PAPI_LSU_IDL 0x80000012 No No Cycles floating point units are idle PAPI_LSU_IDL 0x800000013 No No Cycles load/store units are idle PAPI_TLB_IM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_TLB_TL 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LS_TM 0x80000018 Yes No Level 1 load misses PAPI_LS_LDM 0x80000018 Yes No Level 2 load misses PAPI_LS_TM 0x80000019 Yes No Level 2 store misses	PAPI_CA_ITV	0x8000000d	No	No	Requests for cache line intervention
PAPI_BRU_IDL 0x80000010 No No Cycles branch units are idle PAPI_FXU_IDL 0x80000011 No No Cycles integer units are idle PAPI_FPU_IDL 0x80000012 No No Cycles floating point units are idle PAPI_TLB_UDL 0x80000013 No No Cycles load/store units are idle PAPI_TLB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_LIL_DIM 0x80000017 Yes No Level 1 load misses PAPI_LI_SIM 0x80000018 Yes No Level 1 store misses PAPI_L2_DM 0x80000019 Yes No Level 2 load misses PAPI_L2_SIM 0x80000018 Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_L3_LDM	0x8000000e	Yes	No	Level 3 load misses
PAPI_FXU_IDL 0x80000011 No No Cycles integer units are idle PAPI_FPU_IDL 0x80000012 No No Cycles floating point units are idle PAPI_LSU_IDL 0x80000013 No No Cycles load/store units are idle PAPI_TIB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TIB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_LI_LDM 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_STM 0x80000017 Yes No Level 1 load misses PAPI_LZ_LDM 0x80000018 Yes No Level 2 load misses PAPI_LZ_STM 0x80000019 Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_L3_STM	0x8000000f	No	No	Level 3 store misses
PAPI_FPU_IDL 0x80000012 No No Cycles floating point units are idle PAPI_LSU_IDL 0x80000013 No No Cycles load/store units are idle PAPI_LTLB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_TLB_ID 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_STM 0x80000017 Yes No Level 1 load misses PAPI_LZ_LDM 0x80000019 Yes No Level 2 load misses PAPI_LZ_STM 0x80000018 Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_BRU_IDL	0x80000010	No	No	Cycles branch units are idle
PAPI_LSU_IDL 0x80000013 No No Cycles load/store units are idle PAPI_TLB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_LIB_TL 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_STM 0x80000017 Yes No Level 1 load misses PAPI_L2_STM 0x80000019 Yes No Level 2 load misses PAPI_L2_STM 0x8000001a Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_FXU_IDL	0x80000011	No	No	Cycles integer units are idle
PAPI_TLB_DM 0x80000014 Yes No Data translation lookaside buffer misses PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_TLB_IL 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_LDM 0x80000017 Yes No Level 1 load misses PAPI_LZ_LDM 0x80000019 Yes No Level 1 store misses PAPI_LZ_SIM 0x80000019 Yes No Level 2 load misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_FPU_IDL	0x80000012	No	No	Cycles floating point units are idle
PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses PAPI_TLB_ID 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_LI_LDM 0x80000017 Yes No Level 1 load misses PAPI_LI_STM 0x80000018 Yes No Level 1 store misses PAPI_L2_DM 0x80000019 Yes No Level 2 load misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_LSU_IDL	0x80000013	No	No	Cycles load/store units are idle
PAPI_TLB_TL 0x80000016 Yes Yes Total translation lookaside buffer misses PAPI_L1_LDM 0x80000017 Yes No Level 1 load misses PAPI_L1_STM 0x80000018 Yes No Level 1 store misses PAPI_L2_LDM 0x80000019 Yes No Level 2 load misses PAPI_LS_STM 0x8000001a Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_TLB_DM	0x80000014	Yes	No	Data translation lookaside buffer misses
PAPI_L1_DDM 0x80000017 Yes No Level 1 load misses PAPI_L1_STM 0x80000018 Yes No Level 1 store misses PAPI_L2_DDM 0x80000019 Yes No Level 2 load misses PAPI_L2_STM 0x8000001a Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_TLB_IM	0x80000015	Yes	No	Instruction translation lookaside buffer misses
PAPI_LI_STM 0x80000018 Yes No Level 1 store misses PAPI_L2_LDM 0x80000019 Yes No Level 2 load misses PAPI_L2_STM 0x8000001a Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_TLB_TL	0x80000016	Yes	Yes	Total translation lookaside buffer misses
PAPI_L2_LDM 0x80000019 Yes No Level 2 load misses PAPI_L2_STM 0x8000001a Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_L1_LDM	0x80000017	Yes	No	Level 1 load misses
PAPI_L2_STM 0x8000001a Yes No Level 2 store misses PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_L1_STM	0x80000018	Yes	No	Level 1 store misses
PAPI_BTAC_M 0x8000001b No No Branch target address cache misses	PAPI_L2_LDM	0x80000019	Yes	No	Level 2 load misses
	PAPI_L2_STM	0x8000001a	Yes	No	Level 2 store misses
PAPI PRF DM 0x8000001c No No Data prefetch cache misses	PAPI_BTAC_M	0x8000001b	No	No	Branch target address cache misses
	PAPI_PRF_DM	0x8000001c	No	No	Data prefetch cache misses

```
PAPI L3 DCH 0x8000001d No
                                   Level 3 data cache hits
                              No
PAPI TLB SD 0x8000001e No
                                   Translation lookaside buffer shootdowns
                              Nο
PAPI CSR FAL 0x8000001f No
                              Nο
                                   Failed store conditional instructions
PAPI CSR SUC 0x80000020 No
                              Nο
                                   Successful store conditional instructions
PAPI CSR TOT 0x80000021
                                   Total store conditional instructions
                        Nο
                              Nο
PAPI MEM SCY 0x80000022
                              Nο
                                   Cycles Stalled Waiting for memory accesses
                        Nο
PAPI MEM RCY 0x80000023
                        No
                              No
                                   Cycles Stalled Waiting for memory Reads
PAPI MEM WCY 0x80000024
                                   Cycles Stalled Waiting for memory writes
                        Nο
                              Nο
PAPI STL ICY 0x80000025
                                   Cycles with no instruction issue
                        No
                              Nο
PAPI_FUL_ICY 0x80000026
                        Nο
                              Nο
                                   Cycles with maximum instruction issue
PAPI STL CCY 0x80000027
                        Nο
                              Nο
                                   Cycles with no instructions completed
PAPI FUL CCY 0x80000028 No
                              No
                                   Cycles with maximum instructions completed
PAPI HW INT 0x80000029 No
                              No
                                   Hardware interrupts
                                   Unconditional branch instructions
PAPI BR UCN 0x8000002a Yes
                              No
PAPI BR CN 0x8000002b Yes
                                   Conditional branch instructions
                              Nο
PAPI BR TKN 0x8000002c Yes
                              Nο
                                   Conditional branch instructions taken
PAPI BR NTK 0x8000002d Yes
                              Yes
                                   Conditional branch instructions not taken
PAPI BR MSP 0x8000002e Yes
                              Nο
                                   Conditional branch instructions mispredicted
PAPI BR PRC 0x8000002f Yes
                                   Conditional branch instructions correctly predicted
                              Yes
PAPI_FMA_INS 0x80000030
                        No
                              No
                                   FMA instructions completed
PAPI TOT IIS 0x80000031 Yes
                                   Instructions issued
                              Nο
PAPI_TOT_INS 0x80000032 Yes
                                   Instructions completed
                              Nο
PAPI_INT_INS 0x80000033
                        Nο
                              Nο
                                   Integer instructions
PAPI FP INS 0x80000034 Yes
                              No
                                   Floating point instructions
PAPI LD INS 0x80000035 Yes
                              Nο
                                   Load instructions
PAPI SR INS 0x80000036 Yes
                              No
                                   Store instructions
PAPI BR INS 0x80000037 Yes
                              No
                                   Branch instructions
PAPI VEC INS 0x80000038 No
                                   Vector/SIMD instructions (could include integer)
                              Nο
PAPI_RES_STL 0x80000039 Yes
                                   Cycles stalled on any resource
                              Nο
PAPI FP STAL 0x8000003a No
                              No
                                   Cycles the FP unit(s) are stalled
PAPI TOT CYC 0x8000003b Yes
                                   Total cycles
                              Nο
PAPI LST INS 0x8000003c Yes
                              Yes
                                   Load/store instructions completed
PAPI SYC INS 0x8000003d No
                              No
                                   Synchronization instructions completed
```

```
PAPI L1 DCH
            0x8000003e
                        Yes
                              Yes
                                   Level 1 data cache hits
PAPI L2 DCH 0x8000003f
                                   Level 2 data cache hits
                        Yes
                              Yes
PAPI L1 DCA 0x80000040
                                   Level 1 data cache accesses
                        Yes
                              No
PAPI L2 DCA 0x80000041
                        Yes
                                   Level 2 data cache accesses
                              Nο
PAPI L3 DCA 0x80000042 Yes
                                   Level 3 data cache accesses
                              Yes
PAPI L1 DCR 0x80000043
                        Yes
                              No
                                   Level 1 data cache reads
PAPI L2 DCR 0x80000044
                        Yes
                              No
                                   Level 2 data cache reads
PAPI L3 DCR 0x80000045
                                   Level 3 data cache reads
                        Yes
                              No
PAPI L1 DCW 0x80000046 Yes
                              No
                                   Level 1 data cache writes
PAPI L2 DCW 0x80000047
                        Yes
                              No
                                   Level 2 data cache writes
PAPI L3 DCW 0x80000048
                                   Level 3 data cache writes
                        Yes
                              Nο
PAPI L1 ICH 0x80000049
                        Yes
                              No
                                   Level 1 instruction cache hits
PAPI L2 ICH 0x8000004a
                        Yes
                              No
                                   Level 2 instruction cache hits
PAPI L3 ICH 0x8000004b
                        No
                              No
                                   Level 3 instruction cache hits
PAPI L1 ICA 0x8000004c
                                   Level 1 instruction cache accesses
                        Yes
                              No
PAPI L2 ICA 0x8000004d Yes
                              No
                                   Level 2 instruction cache accesses
PAPI L3 ICA 0x8000004e Yes
                                   Level 3 instruction cache accesses
                              Nο
PAPI L1 ICR 0x8000004f Yes
                                   Level 1 instruction cache reads
                              Nο
PAPI_L2_ICR 0x80000050 Yes
                              No
                                   Level 2 instruction cache reads
PAPI_L3_ICR 0x80000051
                        Yes
                              No
                                   Level 3 instruction cache reads
PAPI L1 ICW 0x80000052
                        No
                              No
                                   Level 1 instruction cache writes
PAPI L2 ICW 0x80000053
                        No
                              No
                                   Level 2 instruction cache writes
PAPI L3 ICW 0x80000054
                        No
                              No
                                   Level 3 instruction cache writes
PAPI L1 TCH 0x80000055
                                   Level 1 total cache hits
                        Nο
                              Nο
PAPI L2 TCH 0x80000056
                                   Level 2 total cache hits
                        Yes
                              Yes
                                   Level 3 total cache hits
PAPI L3 TCH 0x80000057
                        No
                              No
PAPI L1 TCA 0x80000058
                        Yes
                              Yes
                                   Level 1 total cache accesses
PAPI L2 TCA 0x80000059
                        Yes
                              Nο
                                   Level 2 total cache accesses
PAPI L3 TCA 0x8000005a
                        Yes
                              No
                                   Level 3 total cache accesses
PAPI L1 TCR 0x8000005b
                        Yes
                              Yes
                                   Level 1 total cache reads
PAPI L2 TCR 0x8000005c
                                   Level 2 total cache reads
                        Yes
                              Yes
```

```
PAPI L3 TCR 0x8000005d Yes
                                   Level 3 total cache reads
                              Yes
PAPI L1 TCW 0x8000005e
                                   Level 1 total cache writes
                        Nο
                              Nο
PAPI L2 TCW 0x8000005f
                                   Level 2 total cache writes
                        Yes
                              Nο
PAPI L3 TCW 0x80000060
                        Yes
                              No
                                   Level 3 total cache writes
PAPI FML INS 0x80000061
                                   Floating point multiply instructions
                        Nο
                              Nο
PAPI FAD INS 0x80000062
                        Nο
                              Nο
                                   Floating point add instructions
PAPI FDV INS 0x80000063
                        Nο
                              No
                                   Floating point divide instructions
PAPI FSO INS 0x80000064
                              No
                                   Floating point square root instructions
                        No
                                   Floating point inverse instructions
PAPI FNV INS 0x80000065
                        Nο
                              Nο
                                   Floating point operations
PAPI FP OPS 0x80000066 Yes
                              Yes
PAPI SP_OPS 0x80000067 Yes
                              Yes
                                   Floating point operations:
                                   optimized to count scaled single precision vector operation
PAPI DP OPS 0x80000068
                        Yes
                              Yes
                                   Floating point operations;
                                   optimized to count scaled double precision vector operatio
PAPI VEC SP 0x80000069 Yes
                                   Single precision vector/SIMD instructions
                              Nο
PAPI VEC DP 0x8000006a Yes
                                   Double precision vector/SIMD instructions
                              Nο
                                   Reference clock cycles
PAPI REF CYC 0x8000006b Yes
                              No
Of 108 possible events, 64 are available, of which 17 are derived.
```

papi even chooser Command

Not all events can be simultaneously monitored (at least not without multiplexing):

```
[rush:~]$ papi event chooser PRESET PAPI FP OPS
Event Chooser: Available events which can be added with given events.
PAPI Version : 5.1.1.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz (47)
CPU Revision : 2.000000
CPUID Info : Family: 6 Model: 47 Stepping: 2
CPU Max Megahertz : 2127
CPU Min Megahertz : 2127
Hdw Threads per core : 1
Cores per Socket : 8
NUMA Nodes : 4
CPUs per Node : 8
                       • 32
Total CPUs
Running in a VM : no
Number Hardware Counters: 7
Max Multiplex Counters : 64
    Name Code Deriv Description (Note)
PAPI L1 DCM 0x80000000 No Level 1 data cache misses
PAPI L1 ICM 0x80000001 No Level 1 instruction cache misses
```

```
PAPI L2 DCM 0x80000002 Yes Level 2 data cache misses
PAPI L2 ICM 0x80000003
                       No
                            Level 2 instruction cache misses
                       Yes Tevel 1 cache misses
PAPI L1 TCM 0x80000006
PAPI L2 TCM 0x80000007
                       No
                           Level 2 cache misses
                          Level 3 cache misses
PAPI L3 TCM 0x80000008
                       Nο
PAPI L3 LDM 0x8000000e No Level 3 load misses
PAPI TLB DM 0x80000014 No
                            Data translation lookaside buffer misses
PAPI TLB IM 0x80000015
                            Instruction translation lookaside buffer misses
                       Nο
PAPI TLB TL 0x80000016 Yes Total translation lookaside buffer misses
                            Tevel 1 load misses
PAPI L1 LDM 0x80000017
                        No
PAPI L1 STM 0x80000018
                       No Level 1 store misses
PAPI L2 LDM 0x80000019 No Level 2 load misses
PAPI L2 STM 0x8000001a
                       No
                            Tevel 2 store misses
PAPI BR UCN 0x8000002a No
                            Unconditional branch instructions
PAPI BR CN 0x8000002b No
                            Conditional branch instructions
PAPI_BR_TKN 0x8000002c
                       Nο
                            Conditional branch instructions taken
PAPI_BR_NTK 0x8000002d Yes
                            Conditional branch instructions not taken
PAPI BR MSP 0x8000002e
                            Conditional branch instructions mispredicted
                       Nο
PAPI BR PRC 0x8000002f
                       Yes Conditional branch instructions correctly predicted
PAPI_TOT_IIS 0x80000031
                       No
                            Instructions issued
PAPI TOT INS 0x80000032
                       Nο
                           Instructions completed
PAPI FP INS 0x80000034
                           Floating point instructions
                       Nο
                            Load instructions
PAPI LD INS 0x80000035
                        No
PAPI SR INS 0x80000036
                       Nο
                           Store instructions
PAPI BR INS 0x80000037
                       No Branch instructions
PAPI RES STL 0x80000039
                       No
                            Cycles stalled on any resource
PAPI TOT CYC 0x8000003b
                       No
                            Total cycles
```

```
PAPI LST INS 0x8000003c Yes Load/store instructions completed
PAPI L2 DCH 0x8000003f Yes Level 2 data cache hits
PAPI L2 DCA 0x80000041
                            Level 2 data cache accesses
                       No
PAPI L3 DCA 0x80000042 Yes Level 3 data cache accesses
PAPI L2 DCR 0x80000044 No Level 2 data cache reads
PAPI L3 DCR 0x80000045 No Level 3 data cache reads
PAPI L2 DCW 0x80000047 No Level 2 data cache writes
PAPI L3 DCW 0x80000048 No Level 3 data cache writes
PAPI L1 ICH 0x80000049 No Level 1 instruction cache hits
PAPI L2 ICH 0x8000004a No Level 2 instruction cache hits
PAPI L1 ICA 0x8000004c No Level 1 instruction cache accesses
PAPI L2 ICA 0x8000004d No
                           Level 2 instruction cache accesses
PAPI L3 ICA 0x8000004e No
                           Level 3 instruction cache accesses
PAPI L1 ICR 0x8000004f No Level 1 instruction cache reads
PAPI L2 ICR 0x80000050 No Level 2 instruction cache reads
PAPI L3 ICR 0x80000051 No Level 3 instruction cache reads
PAPI L2 TCH 0x80000056 Yes Level 2 total cache hits
PAPI L2 TCA 0x80000059 No Level 2 total cache accesses
PAPI L3 TCA 0x8000005a No Level 3 total cache accesses
PAPI_L2_TCR 0x8000005c Yes Level 2 total cache reads
PAPI L3 TCR 0x8000005d Yes Level 3 total cache reads
PAPI L2 TCW 0x8000005f No Level 2 total cache writes
PAPI L3 TCW 0x80000060 No
                            Level 3 total cache writes
PAPI SP OPS 0x80000067 Yes Floating point operations; optimized to count scaled single prec
PAPI_DP_OPS 0x80000068 Yes Floating point operations; optimized to count scaled double pr
                            Single precision vector/SIMD instructions
PAPI VEC SP 0x80000069 No
PAPI VEC DP 0x8000006a No
                            Double precision vector/SIMD instructions
PAPI REF CYC 0x8000006b No Reference clock cycles
Total events reported: 57
event chooser.c
                                  PASSED
```

PAPI Examples

In this section we will work through a few simple examples of using the PAPI API, mostly focused on using the high-level API. And we will steer clear of native events, and leave those to tool developers.

Accessing Counters Through PAPI

Include files for constants and routine interfaces:

C: papi.h

F77: f77papi.h

F90: f90papi.h

PAPI Naming Scheme

The C interfaces:

PAPI C interface

(return type) PAPI_function_name(arg1, arg2, ...)

and Fortran interfaces

PAPI Fortran interfaces

PAPIF_function_name(arg1, arg2, ..., check)

note that the *check* parameter is the same type and value as the ${\tt C}$ return value.

Relation Between C and Fortran Types in PAPI

The following table shows the relation between the C and Fortran types used in PAPI:

Pseudo-type	Fortran type	Description
C_INT	INTEGER	Default Integer type
C_FLOAT	REAL	Default Real type
C_LONG_LONG	INTEGER*8	Extended size integer
C_STRING	CHARACTER*(PAPI_MAX_STR_LEN)	Fortran string
C_INT FUNCTION	EXTERNAL INTEGER FUNCTION	Fortran function
		returning integer result

High-level API Example in C

Let's consider the following example code for using the high-level API in C.

```
#include "papi.h"
#include <stdio.h>
#define NUM_EVENTS 2
#define THRESHOLD 10000
#define ERROR RETURN(retval) { fprintf(stderr, "Error %d %s:line %d: \n", \
                              retval, FILE , LINE ); exit(retval); }
void computation_mult() { /* stupid codes to be monitored */
 double tmp=1.0;
 int i=1;
 for( i = 1; i < THRESHOLD; i++ ) {</pre>
   tmp = tmp*i:
void computation add() { /* stupid codes to be monitored */
 int tmp = 0;
 int i=0;
  for ( i = 0; i < THRESHOLD; i++ ) {
   tmp = tmp + i;
```

```
int main()
  /*Declaring and initializing the event set with the presets*/
 int Events[2] = {PAPI TOT INS, PAPI TOT CYC};
 /*The length of the events array should be no longer than the
   value returned by PAPI num counters.*/
  /*declaring place holder for no of hardware counters */
 int num hwcntrs = 0;
 int retval:
 char errstring[PAPI MAX STR LEN];
 /*This is going to store our list of results*/
 long long values[NUM EVENTS];
  This part initializes the library and compares the version number of the*
 * header file, to the version of the library, if these don't match then it *
 * is likely that PAPI won't work correctly. If there is an error, retval
 * keeps track of the version number.
 if((retval = PAPI library init(PAPI VER CURRENT)) != PAPI VER CURRENT ) {
    fprintf(stderr, "Error: %d %s\n", retval, errstring);
    exit(1):
```

```
* PAPI num counters returns the number of hardware counters the platform *
* has or a negative number if there is an error
if ((num hwcntrs = PAPI num counters()) < PAPI OK) {
   printf("There are no counters available. \n");
   exit(1):
 printf("There are %d counters in this system\n".num hwcntrs);
/*************************
* PAPI start counters initializes the PAPI library (if necessary) and
* starts counting the events named in the events array. This function
* implicitly stops and initializes any counters running as a result of
* a previous call to PAPI start counters.
if ( (retval = PAPI start counters (Events, NUM EVENTS)) != PAPI OK)
   ERROR RETURN (retval):
 printf("\nCounter Started: \n");
 /* Your code goes here*/
 computation add();
```

```
* PAPI read counters reads the counter values into values array
if ( (retval=PAPI read counters (values, NUM EVENTS)) != PAPI OK)
  ERROR RETURN (retval):
printf("Read successfully\n");
printf("The total instructions executed for addition are %lld \n", values[0]);
printf("The total cycles used are %lld \n", values[1] );
printf("\nNow we try to use PAPI accum to accumulate values\n");
/* Do some computation here */
computation add():
* What PAPI accum counters does is it adds the running counter values *
* to what is in the values array. The hardware counters are reset and *
* left running after the call.
if ( (retval=PAPI accum counters(values, NUM EVENTS)) != PAPI OK)
  ERROR RETURN (retval):
printf("We did an additional %d times addition!\n", THRESHOLD);
printf("The total instructions executed for addition are %lld \n".
       values[0]);
printf("The total cycles used are %lld \n", values[1] );
```

Running on CCR:

```
[rush:/ifs/user/jonesm/d papi]$ icc -I$PAPI/include -o highlev highlev.c -L$PAPI/lib -lpapi
[rush:/ifs/user/jonesm/d papil$ module list
Currently Loaded Modulefiles:
  1) null
                       2) modules
                                           3) use.own
                                                               4) intel-mpi/4.1.1
  5) papi/v5.1.1
                     6) intel/13.1
[rush:/ifs/user/jonesm/d_papi]$ ./highlev
There are 7 counters in this system
Counter Started.
Read successfully
The total instructions executed for addition are 4406
The total cycles used are 8482
Now we try to use PAPI accum to accumulate values
We did an additional 10000 times addition!
The total instructions executed for addition are 10056
The total cycles used are 16570
Now we try to do some multiplications
The total instruction executed for multiplication are 6041
The total cycles used are 7328
```

PAPI Initialization

The preceding example used PAPI_library_init to initialize PAPI, which is also used for the low-level API, but you can also use the PAPI_num_counters, PAPI_start_counters, or one of the "rate" calls, PAPI_flips, PAPI_flops, or PAPI_ipc.

Events are counted, as we saw in the example, using PAPI_accum_counters, PAPI_read_counters, and PAPI_stop_counters.

Let's look at an even simpler example just using one of the rate counters.

High-level Example in F90

For something a little different we can look at our old friend, matrix multiplication, this time in Fortran:

```
! A simple example for the use of PAPI, the number of flops you should
! get is about INDEX^3 on machines that consider add and multiply one flop
! such as SGI, and 2*(INDEX^3) that don't consider it 1 flop such as INTEL
! -Kevin London
program flops
implicit none
include "f90papi.h"

integer,parameter :: i8=SELECTED_INT_KIND(16) ! integer*8
integer,parameter :: index=1000
real :: matrixa(index,index), matrixb(index,index), mres(index,index)
real :: proc_time, mflops, real_time
integer(kind=i8) :: flpins
integer :: i,j,k, retval
```

```
retval = PAPI VER CURRENT
CALL PAPIf_library_init(retval)
if ( retval.NE.PAPI VER CURRENT) then
   print*, 'Failure in PAPI library init: ', retval
end if
CALL PAPIf query event (PAPI FP OPS, retval)
if (retval .NE. PAPI OK) then
   print*, 'Sorry, no PAPI FP OPS event: ', PAPI ENOEVNT
end if
! Initialize the Matrix arrays
do i=1,index
   do j=1, index
      matrixa(i,j) = i+j
      matrixb(i,j) = j-i
      mres(i,j) = 0.0
   end do
end do
! Setup PAPI library and begin collecting data from the counters
call PAPIf_flops( real_time, proc_time, flpins, mflops, retval )
if ( retval.NE.PAPI OK) then
   print*, 'Failure on PAPIf flops: ', retval
end if
```

```
! Matrix-Matrix Multiply
 do i=1, index
    do j=1,index
        do k=1.index
           mres(i,j) = mres(i,j) + matrixa(i,k)*matrixb(k,j)
        end do
    end do
 end do
  ! Collect the data into the Variables passed in
 call PAPIf_flops( real_time, proc_time, flpins, mflops, retval)
 if ( retval.NE.PAPI OK) then
    print*, 'Failure on PAPIf flops: ', retval
 end if
 print *, 'Real time: ', real time
 print *, ' Proc time: ', proc time
 print *, ' Total flpins: ', flpins
 print *, ' MFLOPS: ', mflops
end program flops
```

Compile and run on E5645 U2:

Low-level API

The low-level API is primarily intended for experienced application programmers and tool developers. It manages hardware events in user-defined groups called "event sets," and can use both preset and native events. The low-level API can also interrogate the hardware and determine memory sizes of the executable itself.

The low-level API can also be used for **multiplexing**, in which more (virtual) counters can be used than the underlying hardware supports by timesharing the available (physical) hardware counters.

PAPI Low-level Example

A simple example using the low-level API:

```
#include <papi.h>
#include <stdio.h>
#define NUM FLOPS 10000
main() {
int retval, EventSet=PAPI NULL;
long long values[1];
/* Initialize the PAPI library */
retval = PAPI library init (PAPI VER CURRENT);
if (retval != PAPI VER CURRENT) {
  fprintf(stderr, "PAPI library init error!\n");
  exit(1);
/* Create the Event Set */
if (PAPI create eventset(&EventSet) != PAPI OK) handle error(1);
/* Add Total Instructions Executed to our Event Set */
if (PAPI add event (EventSet, PAPI TOT INS) != PAPI OK) handle error(1):
```

```
/* Start counting events in the Event Set */
if (PAPI start(EventSet) != PAPI OK) handle error(1);
/* Defined in tests/do loops.c in the PAPI source distribution */
do flops (NUM FLOPS);
/* Read the counting events in the Event Set */
if (PAPI read(EventSet, values) != PAPI OK) handle error(1);
printf("After reading the counters: %lld\n",values[0]);
/* Reset the counting events in the Event Set */
if (PAPI reset(EventSet) != PAPI OK) handle error(1);
do flops (NUM FLOPS);
/* Add the counters in the Event Set */
if (PAPI accum(EventSet, values) != PAPI OK) handle error(1);
printf("After adding the counters: %lld\n", values[0]);
do flops (NUM FLOPS);
/* Stop the counting of events in the Event Set */
if (PAPI stop(EventSet, values) != PAPI OK) handle error(1);
printf("After stopping the counters: %lld\n", values[0]);
```

PAPI in Parallel

- threads PAPI_thread_init enables PAPI's thread support, and should be called immediately after
 PAPI_library_init.
 - MPI codes are treated very simply each process has its own address space, and potentially its own hardware counters.

High-level Tools

There are a bunch of open-source high-level tools that build on some of the simple approaches that we have been talking about. General characteristics found in most (not necessarily all):

- Ability to generate and view MPI trace files, leveraging MPI's built-in profiling interface,
- Ability to do statistical profiling (á la gprof) and code viewing for identifying hotspots,
- Ability to access performance counters, leveraging PAPI

Tool Examples

A list of such high-level tool examples (not exhaustive):

TAU, Tuning and Analysis Utility,

http://www.cs.uoregon.edu/Research/tau/home.php

Open|SpeedShop,funded by U.S. DOE

http://www.openspeedshop.org

IPM, Integrated Performance Management

http://ipm-hpc.sourceforge.net

Example: IPM

IPM is relatively simple to install and use, so we can easily walk through our favorite example. Note that IPM does:

- MPI
- PAPI
- I/O profiling
- Memory
- Timings: wall, user, and system

Run and Gather

```
#!/bin/bash
    #SBATCH --nodes=1
    #SBATCH --ntasks-per-node=16
    #SBATCH --constraint=CPU-E5-2660
    #SBATCH --partition=debug
6
    #SBATCH --time=00:15:00
    #SBATCH --mail-type=END
8
    #SBATCH --mail-user=jonesm@buffalo.edu
    #SBATCH --output=slurmIPM.out
10
    #SBATCH --job-name=ipm-test
11
    module load intel
12
    module load intel-mpi
13
    module list
14
    export I MPI DEBUG=4
15
    # Use LD PRELOAD trick to load ipm wrappers at runtime
16
    export LD PRELOAD=/projects/jonesm/ipm/src/ipm/lib/libipm.so
17
    export I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so
18
    srun ./laplace mpi<<EOF
19
20
    EOF
```

... and the output is a big xml file plus some useful output to standard output:

```
[rush:~/d_laplace/d_ipm]$ file jonesm.1318862245.001449.0
    jonesm.1318862245.001449.0: XML document text
    [rush:~/d laplace/d ipm]$ less subMPIP.out
    # command : ./laplace mpi (completed)
    # host : d16n03/x86 64 Linux
                                               mpi_tasks : 16 on 2 nodes
    # start : 10/17/11/10:37:25
                                               wallclock: 116.170005 sec
10
    # stop : 10/17/11/10:39:21
                                               %comm
                                                         : 13.94
11
    # gbytes : 2.24606e+00 total
                                               gflop/sec : 5.02520e+00 total
12
13
14
    # region : *
                        [ntasks] =
                                       16
15
```

#		[total]	<avg></avg>	min	max		
#	entries	16	1	1	1		
#	wallclock	1853.71	115.857	115.816	116.17		
#	user	1853.09	115.818	115.707	115.936		
#	system	2.18066	0.136291	0.071989	0.198969		
#	mpi	259.152	16.197	11.3859	19.1157		
#	%comm		13.9425	9.82914	16.5048		
#	gflop/sec	5.0252	0.314075	0.311741	0.319497		
#	gbytes	2.24606	0.140379	0.138138	0.170021		
#							
#	PAPI_FP_OPS	5.83778e+11	3.64861e+10	3.62149e+10	3.7116e+10		
#	PAPI_FP_INS	5.8276e+11	3.64225e+10	3.62144e+10	3.69079e+10		
#	PAPI_DP_OPS	5.82764e+11	3.64228e+10	3.62144e+10	3.69079e+10		
#	PAPI_VEC_DP	4.00803e+06	250501	0	4.00803e+06		
#							
#		[time]	[calls]	<%mpi>	<%wall>		
#	MPI_Allreduce	243.838	381520	94.09	13.15		
#	MPI_Sendrecv	14.9598	763040	5.77	0.81		
#	MPI_Send	0.339084	15	0.13	0.02		
#	MPI_Recv	0.0143731	15	0.01	0.00		
#	MPI_Bcast	0.00124932	16	0.00	0.00		
#	MPI_Comm_rank	1.58967e-05	16	0.00	0.00		
#	MPI_Comm_size	8.01496e-06	16	0.00	0.00		
##	+++++++++++++++++++++++++++++++++++++++						

```
[u2:~/d_laplace/d_ipm]$ ./genhtml.sh jonesm.1318862245.001449.0
# data acquire
                 = 0 sec
# data workup
                 = 0 sec
  mpi pie
                 = 1 sec
 task_data
                 = 0 sec
  load bal
                 = 0 sec
  time stack
                 = 0 sec
  mpi stack
                 = 1 sec
  mpi_buff
                 = 0 sec
  switch+mem
                 = 0 sec
 topo tables
                 = 0 sec
 topo_data
                 = 0 sec
 topo time
                 = 0 sec
# html all
                 = 2 sec
# html regions
                = 0 sec
# html nonregion = 1 sec
[rush:~/d laplace/d ipm]$ ls -1 \
laplace mpi 16 jonesm.1318862245.001449.0 ipm 1159896.d15n41.ccr.buffalo.edu/
total 346
-rw-r--r-- 1 jonesm ccrstaff 994 Oct 17 16:07 dev.html
-rw-r--r-- 1 jonesm ccrstaff 104 Oct 17 16:07 env.html
                             347 Oct 17 16:07 exec.html
-rw-r--r-- 1 jonesm ccrstaff
-rw-r--r-- 1 jonesm ccrstaff 451 Oct 17 16:07 hostlist.html
drwxr-xr-x 2 jonesm ccrstaff 930 Oct 17 16:07 img
-rw-r--r-- 1 jonesm ccrstaff 10550 Oct 17 16:07 index.html
-rw-r--r-- 1 jonesm ccrstaff 387 Oct 17 16:07 map_adjacency.txt
-rw-r--r-- 1 jonesm ccrstaff 8961 Oct 17 16:07 map_calls.txt
-rw-r--r-- 1 jonesm ccrstaff 1452 Oct 17 16:07 map data.txt
drwxr-xr-x 2 jonesm ccrstaff 803 Oct 17 16:07 pl
-rw-r--r-- 1 jonesm ccrstaff 2620 Oct 17 16:07 task data
[rush:~/d laplace/d ipm]$ tar czf my-ipm-files.tgz \
  laplace_mpi_16_jonesm.1318862245.001449.0_ipm_1159896.d15n41.ccr.buffalo.edu/
[rush:~/d laplace/d ipm]$ ls -1 mv-ipm-files.tgz
-rw-r--r- 1 jonesm ccrstaff 71509 Oct 17 16:48 my-ipm-files.tgz
```

Visualize Results in Browser

Transfer compressed tar file to your local machine, unpack, and browse the results:

Summary

Summary of high-level tools

- IPM is pretty easy to use, provides some good functionality
- TAU and Open|SpeedShop have steeper learning curves, much more functionality