

How to characterize a cube?

Cubic geometry has axis-aligned surface normals

Minimizing L1-norm

$$||n||_1 = |n_x| + |n_y|$$

As-rigid-as-possible deformation

$$E(R, p') = \sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2}$$

 \succ Vertex normal of deformed mesh $n_i'=R_in_i$

$$E_{cubic} = \sum_{i} a_i ||R_i n_i||_1$$

$$E(R, p') + \lambda E_{cubic}$$

Optimization

$$\sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2} + \lambda \sum_{i} a_{i} \| z_{i} \|_{1}, s.t. z_{i} - R_{i} n_{i} = 0$$

ADMM updates - penalty functions $\frac{\rho}{2} \|z_i - R_i n_i + u_i\|_2^2$

- 1. Local update R_i
- 2. Local update $\overline{z_i}$
- 3. Update u_i and ρ

Orientation Dependent

Polygonal Boxes Stylization

Polygonal Boxes Stylization

$$\sum_{i} w_{i} \sum_{j \in \Omega(i)} w_{ij} \| (p'_{i} - p'_{j}) - R_{i} (p_{i} - p_{j}) \|^{2} + \lambda \sum_{i} a_{i} \|BR_{i}n_{i}\|_{1}$$

Assignment requirements

- Cubic stylization algorithm
- Email: ID_name_homework#1.zip
 - > Pdf : Input + parameter + output
 - Source code (no exe)
- > Deadline: 2024.04.17, 23:59