FBX4025 – Sistemas Digitais I

Objetivos

- Apresentar o conceito de circuitos sequenciais
- Apresentar a arquitetura de contadores assíncronos e síncronos
- Apresentar a arquitetura de Memórias

Circuitos Sequenciais - PARTE I

Células básicas dos circuitos sequenciais

1.Latch e Flip-flop

1.Latch e Flip-flop

S	R	Qa	Ö	Ö	
0 0 0 0 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	0 1 0 0 1 1	1 0 1 0 0 1	<pre>} fixa Qf = Qa } fixa Qf em 0 } fixa Qf em 1 } não permitido</pre>

Diagrama temporal

1.Latch e Flip-flop

1a. Flip-flop J-K com Clock

J K	Qa	Qa	S	R	Qf	
0 0	0	1	0	0	Qa]
0 0	1	0	0	0	Qa	} Qa
) 1	0	1	0	0	Qa (Qa = 0)	\int_{0}
0 1	1	0	0	1	0	} "
1 ()	()	1	1	()	1	} 1
1 0	1	0	0	0	Qa(Qa = 1)	J 1
1 1	0	1	1	0	$\overline{Q}a(Qa=0)$	$\overline{Q}a$
1 1	1	0	()	1	$\overline{Q}a(Qa = 1)$	J Qa

J	K	Qf
0	0	Qa
0	1	0
1	()	1
1	1	Qa

1. Flip-flop com J-K com Clock, CLEAR E PRESET

CLR	PR	Qf
0	0	não permitido
0	1	0
1	()	1
1	1	funcionamento normal

1b. Flip-flop J-K tipo T

J	K	T	Qf
0	0	()	Qa
0	1	não existe	/
1	()	não existe	/
1	1	1	Qa

Т	Qf
0	Qa
1	Qa

1c. Flip-flop J-K tipo D

J	K	D	Qf
0	0	não existe	1
0	1	0	0
1	0	1	1
1	1	não existe	/

D	Qf
0	0
1	1

2. Registradores de Deslocamento

Os flip-flops podem ser agrupados para formar circuitos isolados com uma aplicação específica e limitada, chamados de subsistemas sequenciais. Juntos, os subsistemas formam sistemas maiores, como o computador.

Três subsistemas seqüenciais fundamentais são: os registradores, os contadores e as memórias. Registrador é um subsistema seqüencial constituído basicamente por flip-flops, e serve para a manipulação e armazenamento de dados. Para nosso estudo, entende-se como dados a informação no formato binário (na forma de bits).

O registrador possui quatro configurações diferentes, dadas pelo modo como os dados (bits) entram e como são transmitidos do registrador para outro circuito.

2. Registradores de Deslocamento

Os flip-flops podem ser agrupados para formar circuitos isolados com uma aplicação específica e limitada, chamados de subsistemas sequenciais. Juntos, os subsistemas formam sistemas maiores, como o computador.

Três subsistemas seqüenciais fundamentais são: os registradores, os contadores e as memórias. Registrador é um subsistema seqüencial constituído basicamente por flip-flops, e serve para a manipulação e armazenamento de dados. Para nosso estudo, entende-se como dados a informação no formato binário (na forma de bits).

O registrador possui quatro configurações diferentes, dadas pelo modo como os dados (bits) entram e como são transmitidos do registrador para outro circuito.

Configurações básicas

- · Modo serial: os dados são recebidos e/ou transmitidos um bit por vez, em uma única linha;
- · Modo paralelo: mais de um bit que compõem os dados são recebidos e/ou transmitidos simultaneamente, em mais de uma linha.

Registradores série/série

- Entrada de dados em série e saída de dados em série
- Shift register / registrador de deslocamento
- O deslocamento de dados pode ser para esquerda ou para a direita
- Alguns dispositivos comerciais podem fazer deslocamentos nos dois sentidos

Registrador de deslocamento

Registrador de deslocamento para direita

Registrador de deslocamento

Supondo que CLEAR' = 0 e o PRESET'=1, todos FFs vão para 0

Registrador de deslocamento

Consideramos CLEAR'=PRESET'=1 e fazemos SERIAL = 1.
No próximo clock (borda de subida), FF1 armazenará o "1"
da entrada SERIAL, o FF2 armazenará o "0" na sua entrada
que vem da saída do FF1 e assim por diante

Registrador de deslocamento

Depois do clock, SERIAL vai a "0" novamente. No próximo clock, esse "0" será armazenado no FF1, o "1" na saída do FF1 (e entrada do FF2) será armazenado no FF2, o "0" na saída do FF2 será armazenado no FF3 e assim por diante

Registrador de deslocamento

Depois do clock, SERIAL continua em "0". No próximo clock, o "1" na saída do FF3 (e entrada do FF4) será armazenado no FF4, os "0"s também se deslocam

Registrador de deslocamento

Registr ador de desloca mento

(Tocci et al., 2007)

Registradores de Deslocamento Conversor Série- Paralelo

Registradores de Deslocamento Conversor Série- Paralelo

2. Registrador série-paralelo:

Registradores de Deslocamento Conversor Série- Paralelo

Registrador paralelo-série:

Registradores de Deslocamento Conversor Série- Paralelo

Registradores de Deslocamento Conversor Paralelo - Paralelo

Registrador paralelo-paralelo:

Registradores de Deslocamento Conversor Paralelo - Série

Referências

IDOETA, Ivan V.; CAPUANO, Francisco G. **ELEMENTOS DE ELETRÔNICA DIGITAL** 42ª edição. Editora Saraiva, 2019. E-book. ISBN 9788536530390.

TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais:** princípios e aplicações, 12^a ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018.

FLOYD, Thomas. Sistemas digitais: fundamentos e aplicações. 9. Porto Alegre