Regular Expressions vs Finite State Automata

- Regular Expressions (REs) are an algebraic means for defining languages.

- Languages accepted by **DFA**'s and **NFA**'s vs **RE**'s

CS 302 Fall 2024

Definition of a set RE of regular expressions

(over a finite set $\Sigma := \{\sigma_1, \sigma_2, \dots \sigma_K\}$)

Recursive Formal Definition

- (A) (Basis) e, \emptyset and σ_1 , σ_2 ,..., σ_K are all elements of RE
- (B) (Recursion)
 - (1) If \mathbf{F} and \mathbf{G} are in \mathbf{RE} then so is $\mathbf{F}+\mathbf{G}$
 - (2) If **F** and **G** are in **RE** then so is **F.G**
 - (3) If \mathbf{F} is in \mathbf{RE} then so is \mathbf{F}^*
 - (4) If **F** is in **RE** then so is **(F)**

We call **each element** of the set **RE** a **regular expression** (symbolized by **E**)!

CS 302 Fall 2024

Example of a RE (over the set $\Sigma := \{0,1\}$)

Is
$$1+(1.0^*).(1^*.0)+e$$
 an element of RE ?

$$1+(1.0^*).(1^*.0)+e \longrightarrow E+(E.E^*).(E^*.E)+E$$

$$E^* \in RE \longrightarrow E+(E.E).(E.E)+E \longrightarrow E+(E).(E)+E$$

$$E \mapsto E+E+E \longrightarrow E+E+E \longrightarrow E+E+E$$

$$E+E+E \mapsto E+E+E \longrightarrow E+E+E$$

$$E+E+E \mapsto E+E+E$$

$$E+E+E+E \mapsto E+E+E$$

3

Language interpretation is a mapping $L: RE \to 2^{\Sigma^*}$ given by :

$$L(e) := \{e\}$$
 where $e := empty string$

$$L(\mathcal{O}) := \mathcal{O}$$
 where $\mathcal{O} := null$ language (language with no strings)

$$L(\sigma_i) := {\sigma_i}, j=1,..., K$$

$$L(F+G) := L(F) \cup L(G)$$

$$L(F.G) := L(F).L(G)$$

$$L(F^*) := L(F)^*$$

$$L((F)) := (L(F))$$

Relation of Basic Operations on Languages to REs

(1) Union:
$$L = L_1 \cup L_2 \longrightarrow E + E$$

(2) Concatenation:
$$L = L_1 . L_2$$
 for all logical notation for AND = conjunction

$$L_1.L_2 := (s \in \Sigma * | s = u.v; u \in L_1 \land v \in L_2)$$

informal logical notation for AND = conjunction

(3) Closure (star or Kleene closure)
$$L^* = \bigcup_{k=0,\infty} L^k \longrightarrow E^*$$

$$L^{k} := (s \in \Sigma * | s = u_{1}.u_{2}...u_{k}; u_{j} \in L \text{ for } j=1,...k)$$

$$L^0 := \{e\}$$
 (i.e. by definition)

Definition: A language L is called a **regular language** if it is the language interpretation of a **regular expression**

Main Theorem

A language is regular if and and only if it is accepted

by some finite state automaton.

CS 302 Fall 2024

Examples of simple DFA X to RE conversions

$$L(X) = E = 0+1$$

$$X > 4$$

$$B$$

$$L(X) = E = \emptyset$$

$$L(X) = E = 0$$

$$L(X) = E = 0$$

$$L(X) = E = 0*.1.1*$$

$$L(X) = E = (a*.b.c*.a)*.b.c*$$

$$L(X) = E = (a*.b.c*.a)*.b.c*$$

$$L(X) = E = (a*.b.c*.a)*.b.c*$$

7

Examples of **RE** to **\varepsilon-NFA** conversions

$$E = E_1 + E_2 \qquad W > \underbrace{E_1 \mid E_2 \mid}_{\mathcal{E}}$$

$$E = E_1 \cdot E_2$$
 $W > E_1$

final states

initial states

$$E = (E_1)*$$

$$W > \bigcup_{\varepsilon} E_1 \bigcup_{\varepsilon} E_1$$
initial states final states

Proof of the Main Theorem

- (if) Idea:
- (1) Let a DFA $D = (Q, \Sigma, \delta, 1, F)$ with $Q = \{1, 2, ..., n\}$
- (2) Let R_{ij}^{k} denote the language corresponding to strings covering **all** paths of **D** that start at state **i**; end at state **j**; and is only allowed to visit intermediate states with labels $p \le k$
- (3) Note that $L(D) = \bigcup_{(m \in F)} R_{lm}^n$ where 1 is the initial state
- (4) Prove by induction on k that R_{ij}^{k} is a RE for all i,j=1,...,n and k=0,...,n. (see the next slide first formula)
- (5) Conclude that L(D) is a RE.

9

Illustration of the language $R_{ij}^{\ k}$

 R_{II}^{0} = start at 1 and terminate at 1 (no intermediate visit is allowed) = 0+e

 R_{12}^{0} = start at 1 and terminate at 2 (no intermediate visit is allowed) = 1

 $R_{11}{}^1=$ start at 1, move to allowed intermediate state 1 as desired and terminate at 1=0*

 R_{12}^{1} = start at 1, move to intermediate state 1 as desired and finally terminate at 2 = 0*.1

The Inductive Formula for DFA > RE

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. $(R_{kk}^{k-1})^{*}$. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

Example

$$R_{11}^{0} = 0 + e$$
; $R_{22}^{0} = 1 + e$; $R_{21}^{0} = 0$; $R_{12}^{0} = 1$

$$R_{11}^{1} = 0*; R_{22}^{1} = 0.0*.1+1+e; R_{21}^{1} = 0.0*; R_{12}^{1} = 0*.1$$

$$R_{11}^2 = \dots ; R_{22}^2 = \dots ; R_{21}^2 = \dots ; R_{12}^2 = \dots$$

After Simplification: $L=R_{12}^2=(0*+1.1*.0)*.1.1*$

Continue with the Proof (by induction on the superscript **k**)

Basis (k=0)
$$R_{ij}^{0} = \alpha + \beta + ... \text{ if } i \xrightarrow{\beta} j \qquad E \rightarrow E + E$$

$$= \emptyset \text{ if } i \qquad j \qquad \alpha, \beta, ..., e, \emptyset \in E$$

$$R_{ii}^{\ \theta} = \alpha + \beta + ... + e \quad if$$

$$R_{ii}^{\ \theta} = e \quad if \qquad i$$

Induction (true for **k-1**, show for **k**)

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. (R_{kk}^{k-1}) *. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

(E)
$$\rightarrow E$$
 $E^* \rightarrow E$ $E.E \rightarrow E$ (twice) $E+E \rightarrow E$

 $R_{kk}^{k-1} \in E \Rightarrow (R_{kk}^{k-1}) \in E \Rightarrow (R_{kk}^{k-1})^* \in E \Rightarrow R_{ik}^{k-1}. (R_{kk}^{k-1})^*. R_{kj}^{k-1} \in E \text{ etc.}$

Interpreting the induction formula:

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. (R_{kk}^{k-1}) *. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

A path (string) s in R_{ij}^{k} can be expressed in terms of a sequence of states as shown below:

$$i \longrightarrow m < k \longrightarrow j$$

$$s \in R_{ij}^{k-1}$$

$$i \longrightarrow k \longrightarrow k \longrightarrow j$$

$$(OR) s=u.v.w \qquad u \in R_{ik}^{k-1} \quad v \in (R_{kk}^{k-1})^* \quad w \in R_{kj}^{k-1}$$
First occurrence of k Last occurrence of k

So: $L(D) = \sum_{(m \in F)} R_{1m}^n = E + E + ... + E = a regular expression$

Alternative Proof of the Main Theorem (State Elimination)

After eliminating all non-initial and non-final states; start eliminating all final states except one f in F and repeat this for each distinct f in F. Then the following picture(s) prevail

$$L_f = (P_f^* + Q_f.R_f^*.S_f)^*.Q_f.R_f^*$$

$$L = \Sigma_{(f \in F)} L_f$$

CS 302 Fall 2024

Proof of the Main Theorem

given REs over the set $\Sigma = (\alpha, \beta, \gamma, ...,)$

Basis

$$e \longrightarrow > \bigcirc$$
 $\varnothing \longrightarrow > \bigcirc$
 $\alpha, \beta, \dots \longrightarrow > \bigcirc$
 α, β, \dots
 RE
 NFA

17

Some short cuts!

$$(a+b+c)*.d$$

But!

$$(a*+b+c).d$$

Examples

Construct a regular expression E over the alphabet $\Sigma = \{0,1\}$ to represent a language where there is no substring of 2 or more consecutive 1's AND there is no substring of 2 or more consecutive 0's.

 $complement = a \ substring \ 1.1 \ or \ 0.0$

Solution

 $E^{c} = (0+1)*.(1.1+0.0).(1+0)*$

Q	σ	Q'
A (1)	0	A,C
\boldsymbol{A}	1	<i>A,B</i>
A,C (2)	0	<i>A,C,D</i>
<i>A</i> , <i>C</i>	1	<i>A</i> , <i>B</i>
A,B (3)	0	A,C
<i>A</i> , <i>B</i>	1	A,B,D
A,C,D (4*)	0	<i>A,C,D</i>
<i>A</i> , <i>C</i> , <i>D</i>	1	A,B,D
A,B,D (5*)	0	<i>A,C,D</i>
<i>A</i> , <i>B</i> , <i>D</i>	1	A,B,D

A digression on the previous Example

(i) Construct a regular expression E over the alphabet $\Sigma = \{0,1\}$ to represent a language where there is no substring of 2 or more consecutive 1's AND 2 or more consecutive 0's. (ii) Construct a regular expression E over the alphabet $\Sigma = \{0,1\}$ to represent a language where ; there is no substring of 2 or more consecutive 1's AND; there is no substring with 2 or more consecutive 0's.

logical negation symbol

Let $A := \{ 11 \text{ is a substring of } L \}$ and $B := \{ 00 \text{ is a substring of } L \}$

Then (i) above says $\neg (A \land B)$ whereas (ii) says $(\neg A) \land (\neg B)$

Hence (i) has a complement $A \wedge B$ whereas (ii) has a complement $A \vee B$

is the product NFA for $A \wedge B$ case.

Solution (by state elimination)

1- Eliminate 4,5

2- Eliminate all but 2

4- Eliminate all but 1

$$E = (1.0+0).(1.0)* + (0.1+1).(0.1)* + e$$

0 OR sequences of consecutive 0's and 1's that start with 1 OR 0 and end with 0

1 OR sequences of consecutive 0's and 1's that start with 0 OR 1 and end with a 1

Algebraic Laws For REs

Trivial Laws

(1)
$$L+M=M+L$$
; $(L+M)+N=L+(M+N)$; $(L.M).N=L.(M.N)$

(2)
$$\phi + L = L$$
; $e \cdot L = L \cdot e = L$; $\phi \cdot L = \phi$

(3)
$$L.(M+N) = L.M + L.N$$
; $(L+M).N = L.N + M.N$; $L+L = L$

Non-trivial Laws

(4)
$$(L+M)^* = (L^*+M^*)^* = (L^*.M^*)^*$$

(5) $(L.M)^* \subseteq (L^*.M^*)^*$ and $(L.M)^* = (L^*.M^*)^*$ iff $e \in L$ and $e \in M$

CS 302 Fall 2024 21

Proof of (4) \rightarrow (L+M)* = (L*. M*) *

Two steps: (1) $(L+M)^* \subseteq (L^*M^*)^*$; (2) $(L^*M^*)^* \subseteq (L+M)^*$

- (1) Let $u \in (L+M)^*$ then $u = u_1.u_2....u_k$ for some integer $k \ge 0$ where for each j, $u_j \in L+M$;
- but $L \subseteq L^* \subseteq L^*$. $e \subseteq L^*$. M^* and $M \subseteq M^* \subseteq e$. $M^* \subseteq L^*$. M^* ;

hence $u_i \in L^*$. $M^* + L^*$. $M^* = L^*$. M^* and therefore $(L+M)^* \subseteq (L^*.M^*)^*$

- (2) Conversely let $u \in (L^*.M^*)^*$ then by definition $u = u_1.u_2....u_k$ where $u_j \in L^*.M^*$;
- $hence \ u_j = v_j^{\ 1} \cdot v_j^{\ 2} \cdot \dots \cdot v_j^{\ l(j)} \cdot w_j^{\ 1} \cdot w_j^{\ 2} \cdot \dots \cdot w_j^{\ p(j)} \ where \ v_j^{\ m} \in L \subseteq L + M \ \text{and} \ w_j^{\ m} \in M \subseteq L + M \ ;$
- thus $u=z_1.z_2...z_q$ where $q=\sum_{j=1,k}l(j)+p(j)$ and each $z_i\in L+M$. Hence $u\in (L+M)^*$;
- this proves that $(L^*.M^*)^* \subseteq (L+M)^*$

CS 302 Fall 2024 22

Proof of (L+M) * = (L*+M*) * given (4) \rightarrow (L+M) * = (L*. M*) *

Since $L \subseteq L^*$ and $M \subseteq M^*$ it follows that $(L+M)^* \subseteq (L^*+M^*)^*$

Conversely let $u \in (L^*+M^*)^*$ then $u = (v_I+w_I)$ (v_k+w_k) where for each j $v_j \in L^*$ and $w_j \in M^*$.

We show that $u \in (L^*, M^*)^*$ by using induction on k.

For k=1 $v_1 \in L^* \subseteq L^*$. $e \subseteq L^*.M^* \subseteq (L^*.M^*)^*$

similarly $w_1 \in M^* \subseteq e$. $M^* \subseteq L^*.M^* \subseteq (L^*.M^*)^*$ hence $v_1+w_1 \subseteq (L^*.M^*)^*$.

Now assume statement holds for k-1, hence $z := (v_1 + w_1)$ $(v_{k-1} + w_{k-1}) \in (L^*, M^*)^*$

But using the above reasoning for v_1+w_1 it follows that $v_k+w_k \in (L^*, M^*)^*$

and therefore u=z. $(v_k+w_k)\in (L^*,M^*)^*$. $(L^*,M^*)^*=(L^*,M^*)^*$ using the obvious

identity $K^* \cdot K^* = K^*$ for any language K. This proves that $(L^* + M^*)^* \subseteq (L^* \cdot M^*)^*$

but by (4) $(L+M)^* = (L^*, M^*)^*$ hence $(L^*+M^*)^* \subseteq (L+M)^*$ and result follows

CS 302 Fall 2024 23