Let \mathcal{E} be a vector bundle with projection $\pi: \mathcal{E} \to \mathcal{M}$ onto base manifold \mathcal{M} . Let the manifold be of dimension dim $\mathcal{M} = n$ and the fibre of dimension s, so that the total bundle is of dimension dim E = n + s. Let $\mathbb{T}\mathcal{E}$ denote the space of tensors constructed from \mathcal{E} ,

$$\mathbb{T} \mathcal{E} = \bigoplus_{r,s=0}^{\infty} \underbrace{\mathcal{E} \otimes \cdots \otimes \mathcal{E}}_{r} \otimes \underbrace{\mathcal{E}^{*} \otimes \cdots \otimes \mathcal{E}^{*}}_{s}.$$

Let Γ denote the set of local sections.

Definition 1 A covariant derivative is a map

$$\mathscr{D}: \Gamma(\mathbb{T}\,\mathcal{E}) \to \Gamma(\mathbb{T}\,\mathcal{E}\otimes \mathbb{T}^*\,\mathcal{M}) \equiv \Omega^1(\mathcal{M}, \mathbb{T}\,\mathcal{E})$$

which is

1. a derivation:

$$\mathscr{D}(A \otimes B) = \mathscr{D}(A) \otimes B + A \otimes \mathscr{D}(B)$$

whenever $A \otimes B \in \Gamma(\mathbb{T} \mathcal{E})$; and

2. coincident with the exterior derivative

$$\mathcal{D}(f) = \mathbf{d}f$$

on scalar fields $f \in \mathbb{T}_0^0 \mathcal{E} \cong \mathcal{C}^{\infty}(\mathcal{M})$.

Note that we are to view $\mathcal{C}^{\infty}(\mathcal{M}) \ni f$ as the one-dimensional vector bundle $\mathbb{T}_0^0 \mathcal{E} \ni f\mathbf{1}$, identifying the scalar multiplication by f of tensors $e \in \mathbb{T} \mathcal{E}$ with the *right* tensor product, $fe \cong e \otimes f\mathbf{1}$. This identification occurs so that we automatically have

$$\mathcal{D}(f\mathbf{e}) = \mathcal{D}(\mathbf{e} \otimes f\mathbf{1}) = \mathbf{e} \otimes \mathcal{D}(f) + f \mathcal{D}(\mathbf{e})$$
$$= \mathbf{e} \otimes \mathbf{d}f + f \mathcal{D}(\mathbf{e}),$$

which otherwise needs to be included in the definition. (Actually, no.)

Let $(\mathbf{e}_1,...,\mathbf{e}_s)$ be a frame in the vector bundle $\mathcal E$ of dimension s, so that any vector field $\mathbf{v} \in \mathcal E$ has the form $\mathbf{v} = v^a \mathbf{e}_a$. Let $(\mathbf{d}x^1,...,\mathbf{d}x^n)$ be a coframe in the cotangent space $\mathbf{T}^*\mathcal M$. Any element $\mathbf{X} \in \mathcal E \otimes \mathbf{T}^*\mathcal M$ is of the form $\mathbf{X} = X^a{}_{\mu}\mathbf{e}_a \otimes \mathbf{d}x^{\mu}$. Latin indices are for components in the vector bundle $\mathcal E$, and greek indices are for components in the tangent bundle $\mathbf{T} \mathbf{T} \mathcal M \supset \mathbf{T}^*\mathcal M$. In general,

$$\mathscr{D} e_a = (\mathscr{D} e_a)^b{}_{\mu} e_b \otimes dx^{\mu} = e_b \otimes \theta^b{}_a$$

where the connection 1-forms are

$$\boxed{ \boldsymbol{\theta}^b{}_a \coloneqq (\mathscr{D}\,\boldsymbol{e}_a)^b{}_\mu \mathbf{d} x^\mu, }$$

which define the connection coefficients by

$$\Gamma^{b}{}_{\mu a} \mathbf{d} x^{\mu} := \boldsymbol{\theta}^{b}{}_{a}$$

$$\iff \Gamma^{b}{}_{\mu a} = (\boldsymbol{\theta}^{b}{}_{a})_{\mu}.$$

The T* \mathcal{M} index (here, μ) of the connection coefficients $\Gamma^b_{\mu a}$ is known as the differentiating index (conventionally, the 2nd index).

Then, for a general vector $\mathbf{v} \in \mathcal{E}$ we have

$$\begin{split} \mathscr{D}\, \pmb{v} &= \mathscr{D}(v^a \pmb{e}_a) = \pmb{e}_a \otimes (\mathscr{D}\,v^a) + v^a (\mathscr{D}\,\pmb{e}_a) \\ &= \pmb{e}_a \otimes \mathbf{d} v^a + v^a \pmb{e}_b \otimes \pmb{\theta}^b{}_a \\ &= \left(\partial_\mu v^a + \Gamma^a{}_{\mu b} v^b\right) \pmb{e}_a \otimes \mathbf{d} x^\mu \\ &=: (\mathscr{D}_\mu \, v^a) \pmb{e}_a \otimes \mathbf{d} x^\mu. \end{split}$$

At the cost of clarity, we may write the $\it covariant\ exterior\ derivative$

$$\mathscr{D} = \mathbf{d} + \underline{\boldsymbol{\theta}}$$

where $\underline{\boldsymbol{\theta}} = [\boldsymbol{\theta}^a_{\ b}]\boldsymbol{e}_a \otimes \boldsymbol{e}^b = [\theta^a_{\ \beta b}\mathbf{d}x^\beta]\boldsymbol{e}_a \otimes \boldsymbol{e}^b$ is a matrix (underbar) of 1-forms (bold), so that

$$\begin{split} \mathcal{D}\,\vec{v} &= \mathbf{d}\vec{v} + \underline{\boldsymbol{\theta}}\vec{v} \\ (\mathcal{D}\,\vec{v})^a &= (\mathbf{d}\vec{v})^a + {\boldsymbol{\theta}^a}_b v^b \\ &= (\partial_\mu v^a + {\Gamma^a}_{\mu b} v^b)\,\mathbf{d}x^\mu \\ \mathcal{D}_\mu\,v^a &= \partial_\mu v^a + {\Gamma^a}_{\mu b} v^b. \end{split}$$

A choice of covariant derivative gives a notion of parallel transport via $\mathcal{D} \mathbf{v} = 0$.

Curvature Form

$$\begin{split} \underline{F} &= \mathbf{d}\underline{\theta} + \underline{\theta} \wedge \underline{\theta} \\ F^a_{b} &= \left(\mathbf{d}\underline{\theta} \right)^a_{b} + \theta^a_{c} \wedge \theta^c_{b} \\ F^a_{b\mu\nu} \mathbf{d} x^\mu \wedge \mathbf{d} x^\nu &= \left(\partial_\mu \Gamma^a_{\nu b} + \Gamma^a_{\mu c} \Gamma^c_{\nu b} \right) \mathbf{d} x^\mu \wedge \mathbf{d} x^\nu \\ 2F^a_{b[\mu\nu]} &= \partial_\mu \Gamma^a_{\nu b} - \partial_\nu \Gamma^a_{\mu b} + \Gamma^a_{\mu c} \Gamma^c_{\nu b} - \Gamma^a_{\nu c} \Gamma^c_{\mu b} \end{split}$$

Notations

	general	general relativity	U(1) gauge theory
fibre	$\mathbb{T}\mathcal{E}$	$\mathbb{T}(\mathrm{T}\mathcal{M})$	\mathbb{C}
covariant derivative	${\mathscr D}_{\mu}$	$ abla_{\mu}$	D_{μ}
connection 1-form	$\boldsymbol{\theta}^{a}_{b}$	$\Gamma^a{}_{\mu b}\mathbf{d}x^\mu$	$-i\frac{e}{\hbar}A_{\mu}\mathbf{d}x^{\mu}$
curvature 2-form	$m{F}^a{}_b$	$\mathbf{R}^{a}{}_{b} = \frac{1}{2} R^{\dot{a}}{}_{b\mu\nu} \mathbf{d} x^{\mu} \wedge \mathbf{d} x^{\nu}$	$F_{\mu\nu} = \partial_{\mu} \dot{A}_{\nu} - \partial_{\nu} A_{\mu}$