

PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

P1-F3. Rentgenowska analiza strukturalna monokryształów*

Zagadnienia

Budowa sieci krystalicznej, stała sieci. Długość fali promieniowania X. Metody wytwarzania promieniowania X. Budowa i charakterystyka lampy rentgenowskiej. Dyfrakcja Bragga na sieci krystalicznej.

1 Układ pomiarowy

Pomiary wykonuje się przy pomocy dyfraktometru rentgenowskiego firmy LEYBOLD Didactic, przedstawionego schematycznie na rys. 1. Źródłem promieniowania X jest elektronowa lampa rentgenowska (rys. 2^1), z rozgrzaną katodą emitującą elektrony, które bombardują molibdenową anodę wtopioną w miedziany blok. Geometria elektrod jest taka, że emitowane z katody kwanty promieniowania X padają na kolimator, skupiający wiązkę promieniowania na próbce. Próbka umieszczona jest na stoliku goniometrycznym (rys. 3), obracanym przy pomocy sterowanego automatycznie silnika krokowego. Urządzenie umożliwia zmianę kąta ϕ od 0° do 87.5°. Całość sterowana jest komputerowo, program wyświetla wyniki w postaci tabeli i wykresu.

Fig. 1: Schemat dyfraktometru rentgenowskiego

Fig. 2: Lampa

Fig. 3: Stolik goniometryczny

Pomiarowi podlega natężenie ugiętej na sieci krystalicznej wiązki promieni rentgenowskich, w funkcji kąta padania wiązki na badaną próbkę. Celem ćwiczenia jest wyznaczenie: (1) długości fali promieniowania X urządzenia w oparciu o znaną sieć krystaliczną NaCl; (2) stałej sieci krystalicznej badanych próbek krystalicznych.

2 Pomiary

Wyznaczenie długości fali promieniowania X w oparciu o znaną sieć krystaliczną

1. Pokrętłem sterującym ustalić parametry lampy i pomiaru:

napięcie lampy	U, kV	35
natężenie prądu anodowego lampy	I, mA	1
interwał czasowy próbkowania	Δt , s	$1 \div 10$
krok zmian kąta padania promieni X na próbkę	$\Delta \phi$,°	0.1

Zatwierdzić parametry przyciskiem COUPLED.

2. Ustalić przedział zmienności kata padania wiązki promieni X na próbkę:

ϕ_{min}	° +COUPLED
ϕ_{max}	° +COUPLED

^{*}Opracowanie: dr inż. Alina Domanowska

¹ Fotografie pochodzą ze strony www producenta (LD Didactic)

Na wyświetlaczu pojawiają się ustawienia zerowe.

- 3. Nie dotykając badanej powierzchni, umieścić próbkę NaCl w uchwycie.
- 4. Wcisnąć przycisk SCAN ON/OFF. Urządzenie wykonuje rejestrację widma dyfrakcyjnego.
- 5. Odczytać kąty Bragga dla ugięć 1, 2 i 3 rzędu (z tablicy danych pomiarowych lub z wykresu w programie sterującym) i umieścić je w tabeli.

n	linia	$\theta,^{\circ}$	λ , pm	λ_{sr} , pm	$u_a(\lambda_{sr}), \mathrm{pm}$
1					
2	K_{α}				
3					
1					
2	K_{eta}				
3					

Wyznaczenie stałej sieci dla wybranych próbek

- 6. Zarejestrować widma dyfrakcyjne wybranych próbek.
- 7. Określić kąty Bragga K_{α} i K_{β} dla ugięć 1, 2 i 3 rzędu. Umieścić je w tabeli.

n	linia	$\theta,^{\circ}$	a, pm	a_{sr}, pm	$u_a(a_{sr}), \mathrm{pm}$
1					
2	K_{α}				
3					
1					
2	K_{eta}				
3					

3 Opracowanie wyników pomiarów

Wyznaczenie długości fali promieniowania X w oparciu o znaną sieć krystaliczną

1. Korzystając z zależności obliczyć długości fali promieniowania X dla linii α i β

$$\lambda_{\alpha} = \frac{2a\sin(\theta_{\alpha})}{n}, \ \lambda_{\beta} = \frac{2a\sin(\theta_{\beta})}{n},$$

gdzie: a=564.02 pm – stała sieciowa dla monokryształu NaCl, n – rząd ugięcia, θ - kąt Bragga, obliczyć długości fali promieniowania rentgenowskiego λ_{α} i λ_{β} dla każdego pomiaru i umieścić je w tabeli.

- 2. Obliczyć średnie długości fali promieniowania rentgenowskiego dla każdej linii λ_{α} i λ_{β} .
- 3. Obliczyć niepewności statystyczne $u_a(\lambda_{\alpha})$ i $u_a(\lambda_{\beta})$ jako odchylenia standardowe wartości sredniej, pomnożone przez odpowiednie współczynniki Studenta Fishera. W odpowiednim formacie wpisać je do tabeli.

Wyznaczenie stałej sieci dla wybranych próbek

4. Obliczyć stałe sieciowe badanej próbki dla linii α i β , korzystając z zależności

$$a_{\alpha/\beta} = \frac{n\lambda_{\alpha/\beta}}{2\sin(\theta_{\alpha/\beta})}.$$

i umieścić je w tabeli.

- 5. Obliczyć średnie wartości stałych sieciowych a_{α} i a_{β} oraz ich niepewności statystyczne $u_a(a_{\alpha})$ $u_a(a_{\beta})$.
- 6. Wyznaczyć średnią ważoną stałej sieciowej a wraz z niepewnością i zapisaź w poprawnym formacie.
- 7. Wykonać test zgodności a z wartością tablicową a_T dla badanego materiału. Skomentować.