Page 2

Listing of Claims

1. (Currently amended) A copolymer comprising at least one first monomeric unit and at least one second monomeric unit, wherein the at least one first monomeric unit has a Formulae I and I(a)

and the at least one second monomeric unit is selected from 5-membered-ring heteroaromatic groups having Formula IV

in each of Formulae I[[, I(a)]] and IV:

R is a substituent on a carbon atom which can be the same or different at each occurrence and is selected from hydrogen, alkyl, aryl, heteroalkyl, heteroaryl, F, -

Page 3

CN, $-OR^1$, $-CO_2R^1$, $-C_{\psi}H_{\theta}F_{\lambda}$, $-OC_{\psi}H_{\theta}F_{\lambda}$, $-SR^1$, $-N(R^1)_2$, $-P(R^1)_2$, $-SOR^1$, $-SO_2R^1$, $-NO_2$, and beta-dicarbonyls having Formula XII

$$R^2$$
 C
 CH
 C
 R^2
 CH
 C
 $CH_2)_{\delta}$
 C
 CH_2

or adjacent R groups together can form a 5- or 6-membered cycloalkyl, aryl, or heteroaryl ring,

such that:

 R^1 is a substituent on a heteroatom which can be the same or different at each occurrence and is selected from alkyl, aryl, heteroalkyl and heteroaryl; and ψ is an integer between 1 and 20, and θ and λ are integers satisfying Equation A1 below:

$$\theta + \lambda = 2\psi + 1;$$
 (Equation A1);

in Formula IV:

E can be the same or different at each occurrence and is a single bond or a linking group selected from arylene and heteroarylene;

in Formula IV:

A is independently at each occurrence C or N and γ is 0 or an integer selected from 1 or 2, such that when both A are N, then γ is 0; or when one of A is N and one of A is C, then γ is 1; or when both A are C, then γ is 2;

Q is O, S, SO₂, or NR¹ where:

R¹ is a substituent on a heteroatom which can be the same or different at each occurrence and is selected from alkyl, aryl, heteroalkyl and heteroaryl;

in Formula XII:

R² is selected from hydrogen, alkyl, aryl, heteroalkyl and heteroaryl;

δ is 0 or an integer from 1 to 12, and when R in formula IV is hydrogen, alkyl, F, -CN, -OR¹, or CO₂R¹ the copolymer further comprises end-capping groups that are aromatic.

Page 4

- 2. (Original) The copolymer of Claim 1, wherein R groups in one or more of the at least one first monomeric unit are independently selected from alkyl groups having 1 to 30 carbon atoms; heteroalkyl groups having 1-30 carbon atoms and one or more heteroatoms of S, N, or O; aryl groups having from 6 to 20 carbon atoms, and heteroaryl groups having from 2 to 20 carbon atoms and one or more heteroatoms of S, N, or O.
 - 3. (Original) The copolymer of Claim 1 that excludes any vinylene monomeric units.
- 4. (Previously presented) The copolymer of Claim 1 wherein each R group in each of Formula I, Formula I(a), and Formula IV is selected from:

hydrogen;

alkyl;

aryl;

heteroalkyl;

heteroaryl;

F;

-CN;

-P(R¹)₂ and -SOR¹, where R¹ is a substituent on a heteroatom which can be the same or different at each occurrence and is selected from alkyl, aryl, heteroalkyl and heteroaryl;

-NO₂;

a beta-dicarbonyl having Formula XII

$$R^2$$
 CH
 $CH_2)_{\delta}$
 CH
 CH_2
 CH
 CH_2
 CH
 CH

 $-C_{\mathbf{W}}H_{\mathbf{\theta}}F_{\lambda}$

-OR 1 , -CO $_2$ R 1 , -SR 1 , -N(R 1) $_2$, and -SO $_2$ R 1 where R 1 is a straight chain or branched alkyl of more than 20 carbons or a straight chain or branched heteroalkyl.

Page 5

- 5. (Original) The copolymer of Claim 1 wherein the at least one of the R groups in one or more of the at least one first monomeric unit is independently selected from linear and branched n-butyl groups; linear and branched iso-butyl groups; linear and branched pentyl groups; hexyl groups, and octyl groups with and without olefinic unsaturation; phenyl groups, thiophene groups, carbazole groups, alkoxy groups, phenoxy groups and cyano groups.
- 6. (Original) The copolymer of Claim 1 wherein at least one of the R groups in one or more of the at least one first monomeric unit are independently selected from H, C₆-C₁₂ alkoxy, phenoxy, C₆-C₁₂ alkyl, phenyl and cyano.
- 7. (Currently Amended) The copolymer of Claim 1 wherein one or more of the at least one second monomeric unit is selected from Formulae I, I(a), and IV(a) through IV(h):

Page 6

where:

in Formula IV(a):

R is as described above for each of Formulae I, I(a) and IV;

in Formula IV(h):

R1 is a substituent on a heteroatom which can be the same or different at each occurrence and is selected from alkyl, aryl, heteroalkyl and heteroaryl.

- 8. (Cancelled).
- 9. (Previously Presented) The copolymer of Claim 1, wherein one or more of the at least one second monomeric unit has Formula IV wherein R is selected from:

partially or fully fluorinated alkyl groups having from 1 to 12 carbon atoms;

alkoxy groups having from I to 12 carbon atoms;

esters having from 3 to 15 carbon atoms;

-SR1, -N(R1)2, -P(R1)2, -SOR1, -SO₂R1, where R1 is an alkyl group having from 1 to 12 carbon atoms;

-NO₂; and

beta-dicarbonyls having Formula XII where:

$$\begin{array}{cccc}
O & O & \\
C & & \\
R^2 & C & \\
CH_2)_{\delta} & C & \\
\end{array}$$
(XII)

in Formula XII:

 R^2 is an alkyl group having from 1 to 12 carbon atoms and δ is 0, 1, or 2.

- 10. (Cancelled).
- 11. (Original) The copolymer of Claim 1, wherein one or more of the at least one second monomeric unit has Formula IV wherein:

R groups are selected from H, C6-C12 alkyl groups, C6-C20 aryl groups, and C2-C20 heteroaryl groups; and

E linking groups include pyrrolediyl (- C_4H_3N -) and thiophenediyl (- C_4H_3S -).

Page 7

12-13. (Cancelled).

- 14. (Original) An electronic device comprising at least one electroactive layer comprising the copolymer of Claim I.
- 15. (Original) The device of Claim 14, wherein the device comprises a hole injection/transport layer comprising the copolymer of Claim 1.
- 16. (Original) The device of Claim 14, wherein the device comprises an electron injection/transport layer comprising the copolymer of Claim 1.
- 17. (Original) The device of Claim 14, wherein the electroactive layer comprises a light-emitting material comprising the copolymer of Claim 1.
 - 18. (Cancelled).
- 19. (Original) The device of Claim 14, wherein the device is selected from a light-emitting device, a photodetector, and a photovoltaic device.
- 20. (Original) The device of Claim 14, wherein the device is an electroluminescent display.
- 21. (Currently Amended) A light-emitting device comprising at least one light-emitting layer comprising the following copolymer;

at least one first monomeric unit and at least one second monomeric unit, wherein the at least one first monomeric unit has a Formulae I and I(a)

Page 8

and the at least one second monomeric unit is selected from 5-membered-ring heteroaromatic groups having Formula IV

$$(R)_{\gamma}$$
 A
 $(E)_{2}$
 $(R)_{\gamma}$
 $(E)_{2}$

in each of Formulae I[[, I(a)]] and IV:

R is a substituent on a carbon atom which can be the same or different at each occurrence and is selected from hydrogen, alkyl, aryl, heteroalkyl, heteroaryl, F, - CN, -OR¹, -CO₂R¹, -C $_{\psi}$ H $_{\theta}$ F $_{\lambda}$, -OC $_{\psi}$ H $_{\theta}$ F $_{\lambda}$, -SR¹, -N(R¹)₂, -P(R¹)₂, -SOR¹, - SO₂R¹, -NO₂, and beta-dicarbonyls having Formula XII

$$\mathbb{R}^{2}$$
 \mathbb{C}
 \mathbb{C}
 \mathbb{C}
 \mathbb{R}^{2}
 \mathbb{C}
 \mathbb{C}
 \mathbb{R}^{2}
 \mathbb{C}
 \mathbb{R}^{2}
 \mathbb{C}
 \mathbb{C}
 \mathbb{R}^{2}

or adjacent R groups together can form a 5- or 6-membered cycloalkyl, aryl, or heteroaryl ring,

such that:

R1 is a substituent on a heteroatom which can be the same or different at each occurrence and is selected from alkyl, aryl, heteroalkyl and heteroaryl; and

Page 9

 ψ is an integer between 1 and 20, and θ and λ are integers satisfying Equation A1 below:

$$\theta + \lambda = 2\psi + 1$$
;

(Equation A1);

in Formula IV:

E can be the same or different at each occurrence and is a single bond or a linking group selected from arylene and heteroarylene;

in Formula IV:

A is independently at each occurrence C or N and γ is 0 or an integer selected from 1 or 2, such that when both A are N, then γ is 0; or when one of A is N and one of A is C, then γ is 1; or when both A are C, then γ is 2;

Q is O, S, SO₂, or NR¹ where:

R¹ is a substituent on a heteroatom which can be the same or different at each occurrence and is selected from alkyl, aryl, heteroalkyl and heteroaryl [[.]] _;_ in Formula XII:

 \mathbb{R}^2 is selected from hydrogen, alkyl, aryl, heteroalkyl and heteroaryl; δ is 0 or an integer from 1 to 12.