미래 유망 기술 발굴을 위한 텍스트 마이닝 기법

전종준 | 서울시립대 통계학과 문상준 | 서울시립대 통계학과 유형곤 | 안보경영연구원 신동협 | 안보경영연구원

김단비 | 안보경영연구원

2017. 12. 27

CONTENTS

- 텍스트 마이닝 소개
- 분석 절차
- 분석 절차 세부 내용 소개
- 분석 결과 도출 예시
- 분석 결과 시각화
- 분석 고도화 방안
- 참고문헌

텍스트 마이닝 소개

〈텍스트 마이닝〉

비정형 텍스트 데이터에서 자연 언어 처리 기술에 기반하여 유용한 정보를 추출, 가공하는 기법

출처 : Wikipedia

문서 및 텍스트 데이터를 이용하여 특정한 정보를 추출하는 작업

〈예시〉

- 키워드빈도 및 추세 분석
- 주제어 분석
- 문서 및 연관검색어 추천
- 문서요약
- 문장생성

(유용성)

문장, 문서에 대한 정성적 분석의 대안

기술적 자원의 재활용성

기술 변화 예측에의 텍스트 마이닝의 활용

〈기술 변화 예측〉

과학 기술의 발전방향에 대한 중요성이 증가하여

기술 변화에 대한 예측을 통해 미래변화 전망 및 수요를 도출

인공지능 키워드 출현 추이 출처 : 구글 트렌드

〈텍스트 마이닝 활용〉

- 기술변화 예측에 필요한 정보 증가
- 특허 문서의 네트워크 분석 방법론 개발
- 특정기술분이의 키워드기반기술변화예측
- 대용량데이터를이용한 텍스트마이닝기법적용

〈관련 문헌 연구〉

- Zhu and Porter (2002):
 전문 자료원과 일반 자료원에서 출현한
 키워드 빈도수를 비교하여
 기술 혁신성 정의 및 시각화
- Yoon and Park (2004):
 특허 문서의 키워드 벡터와 상관행렬을 이용한 문서 중심도 계산
- Chang et al. (2009):
 특허 데이터의 인용관계를 이용하여
 거리를 계신하고 클러스터링 방법을 적용
- Ho et al. (2014): 연료전지를 주제로 한 논문의 트렌드 분석과 논문 주제의 정성적 분석 수행

분석목표

과학 기술에 대한 텍스트 데이터와 <u>미래 기술 변화의 예측에 대한</u> 수요가 증기했다.

따라서 과학 기술에 대한 문헌 정보와 텍스트 마이닝 기법을 이용하여 미래 기술 변화에 대해 예측하고 과학기술 트렌드의 변화를 분석한다.

전체 미래 기술 조사 과정

미래 유망기술분이 (대분류)로부터 Magnet word를, Magnet word로부터 유망기술키워드를 도출할 때 데이터 분석 기법을 활용

각 데이터 분석 과정

● ● ● 분석절차세부내용소개 ● ● ●

데이터 수집

〈학술지 데이터 수집〉

- 웹문서의규칙에따라데이터를수잡하는 "텍스트크롤링"기법사용
- 학술지사이트별로개별적인데이터수집프로그램작성
- 데이터 수집 프로그램은 크게 4위제공 유무에 따라 분류
- 입력: 키워드, 연도, 자료원
- 출력:제목,저자,초록등관련문헌정보

〈데이터 수집 결과 예시〉

source	url	title	date	issn	abstract							
	1 http://ieee	Magnetic	2016	0278-0062	magnetic	particle in	naging mpi	is able to	provide hi	gh tempora	al and go	od spa
	1 http://ieee	Semiautor	2015	0196-2892	this pape	r proposes	a novel al	gorithm fo	r extracting	g street ligh	nt poles f	rom ve
	1 http://ieee	Switchable	2015	2156-342X	a terahert	tz amplitud	le switchin	g device is	proposed	which allo	ws for the	effici
	1 http://ieee	Nonortho	2017	0018-9480	design of	the power	r ground la	yout of a i	multilayere	d printed c	ircuit boa	rd pck
	1 http://ieee	CMOS Mi	2017	0018-9200	a flow cyt	tometer chi	ip fabricate	ed in nm st	tandard cm	os technol	ogy embe	edded
	1 http://ieee	Effect of E	2015	2156-3381	dielectric	nanopartio	le arrays h	ave been p	proposed a	s antirefled	tion coat	ings a
	1 http://ieee	Crosstalk	2016	0018-9375	in this pa	per the co	ncepts of v	veak coupl	ling and w	eak imbala	nce are ex	<ploite< li=""></ploite<>
	1 http://ieee	Radioluce	2016	0278-0062	four dime	ensional d	ultrasound	us is an a	ittractive m	odality for	image gu	idanc
	1 http://ieee	Transient .	2015	0018-9375	an equiva	alent circuit	t model for	the transi	ent analysi	is of throug	h silicon	vias t
	1 http://ieee	An INSPE	2015	0018-9456	nonconta	ct optical i	maging is	frequently	used in th	e inspectio	n and me	etrolog
	1 http://ieee	Printed M	2017	0018-9480	although	wireless se	ensor netw	orks wsns	have been	an active f	ield of re	search
	1 http://ieee	3-D Inkjet	2017	1536-1225	the gain o	of an anter	nna can be	enhanced	l through t	he integrat	ion of a l	ens alt
	1 http://ieee	Smart Opt	2017	1530-437X	proposed	l is a smart	single vie	wing axis o	optical lase	r line illum	ination b	ased c
	1 http://ieee	Force Ripp	2015	0018-9464	a novel d	irect drive	degree of	freedom d	of planar le	evitating sy	nchronou	s mot
	1 http://ieee	Integrated	2015	0093-9994	this pape	r explores	the use of	gan powe	r fets to rea	alize an int	egrated n	nodula
	1 http://ieee	Successive	2017	0018-926X	we propo	se a novel	heuristic n	nethod for	optimizing	g planar pix	el antenr	nas wh
	1 http://ieee	V-Band Vi	2015	1531-1309	in this let	ter a grour	nded copla	nar waveg	uide to mi	crostrip gcp	w to ms	transit
	1 http://ieee	Robust Sc	2015	1556-6013	vulnerabil	lity of iris r	ecognition	systems r	emains a c	hallenge d	ue to dive	erse pr
	1 http://ieee	A Fluidic (2015	1530-437X	a new ser	nsor desigr	n for detec	ting water	hardness (using comp	lexometri	c and

3D printing 분야 데이터 수집 결과

데이터 수집

〈단어 사전 데이터 수집〉

- 단어 정제를 위해 이래 사전의 단어를 수잡하여 저장
 - IEEE taxonomy
 - ▶ Oxford dictionary (약 180,000 단어)
 - Taxonomy for Service Computing
 - NASA Technology Roadmaps TA 1: Launch Propulsion Systems
 - EDA Technology Taxonomy
 - NASA SBIR-STTR Technology Taxonomy
 - Space Technology Roadmaps

〈사전 데이터 수집 결과 예시〉

Oxford 사전 데이터 예시

데이터 전처리

〈자료원 제한〉

- 특성세부분이의 키워드 도출을 위해 자료원제한
- 세부학술지별문서빈도를계산
- 전문가의 의견을 반영하여 자료원 선정

IEEE SENSORS JOURNAL

ONCOGENE

IEEE Transactions on Components Packaging and Manufacturing Technology

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

NATURE MATERIALS

IEEE Access

SCIENCE

IEEE TRANSACTIONS ON MEDICAL IMAGING

NATURE

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

IEEE Antennas and Wireless Propagation Letters

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

NEUROPSYCHOPHARMACOLOGY

Nature Nanotechnology

Journal of Display Technology

3D printing and additive manufacturing

3D printing 분야 제한된 자료원 예시

데이터 전처리

〈형태소 분석〉

- 문서를 단어 단위로 분해하여 정형 데이터로 처리
- 하나의 단어와 주변 단어들을 묶어서 복합어 생성
- 분석시네 주변 6개 단어를 하나로 묶는 "6-gram" 사용

N = 1 : 이 문장은 예시 문장입니다.

N = 2 : 이 문장은 예시 문장입니다.

N = 3 : 이 문장은 예시 문장입니다.

예시 문장에 대한 3-gram 모형

〈키워드 정제〉

- 사전에 포함된 단어를 추출하여 문서-단어 행렬 생성
- 분야의특성이 반영되지 않은 일반어의 필터링 필요
- 단어출현의 유사성 측도인 Hellinger distance를 사용하여 단어 제거

keyword	value
gain	0.005155
modeling	0.011498
logic	0.012446
engineering	0.013475
simulation	0.013663
testing	0.014342
hardware	0.015504
guidelines	0.015717
stem	0.016377
art	0.018546
Analysis	0.024259
monitoring	0.025558

Hellinger distance 예시

● ● ● 분석절차세부내용소개 ● ● ●

데이터 분석 – 연관성 분석

〈분석 방법〉

- 대규모 데이터베이스에서 변수 간의 상관성 발견을 위해 사용
- 하나의 단어에 대해 다른 단어가 출현하는 시간을 수치화
 - 天下下(Support):

단어가 전체 문서에 포함된 비율

• 신로도(Confidence):

입력 단어로 검색시 단어가 동시에 출현할 확률

• 향상도(Lift):

단어가 동시 출현할 빈도와 일반적인 출현 빈도의 비율

	지지도	신뢰도	향상도
{경남 통영시,문화} => {경남 거제시}	0.348432	0.775194	1,332219
{경남 사천시,문화} => {경남 남해군}	0.114983	0.673469	2,611969
{경남 고성군,문화} => {경남 거제시}	0.097561	0.7	1.202994
{경남 통합창원시,문화} => {경남 김해시}	0.069686	0.625	5.275735
{경남 거제시,경남 통합창 원시,문화} => {경남 김해 시}	0.034843	0.833333	7.034314

〈분석 목적〉

- 분석에서 신뢰도가 증가하며 향상도가 높은 단어를 선택
- 신뢰도를 통해 단어의 동시 출현 빈도 및 증가 추세의 단어를 선택
- 향상도를 통해 일반적인 출현 빈도보다 동시 출현 빈도가 높은 단어를 선택하여 일반적인 단어 제외

연관성분석 예시

데이터 분석 - Graphical lasso

〈분석 방법〉

- Graphical Lasso 모형은 Gaussian graphical 모형의 확장
- · Gaussian graphical 모형
 - 하나의 단어가 주어졌을 때 각 단어와 다른 단어의 상관성 편상관계수 추정
 - 편상관계수는 화귀분석을 통해 계산된 화귀계수로 파악
 - 회귀계수가 0인 경우 편상관성이 없다고 판단
- Graphical lasso 모형
 - 회귀계수를 0으로 만들기 위해 Lasso 벌점 함수를 부여

〈분석 목적〉

- 하나의 입력 단어에 대한 유의미한 단어들을 찾음
- 유의한단어들사이의상관성을 동시에 파악

Graphical lasso 모형예시

분석 결과 - Magnet word 도출 결과

〈분석 방법〉

- 대분류로부터 Magnet word를 도출하기 위해 연관성 분석 기법을 사용
- 도출된 결과와 전문가 토론을 바탕으로 Magnet Word를 도출

〈분석 결과〉

단어	연도	신뢰도	향상도
machine learning	2017	0,158093	26,92673
neural networks	2017	0,099122	25,76233
artificial intelligence	2017	0,092848	48,85746
decision making	2017	0,031368	11,45673
supervised learning	2017	0,026349	17,16796
computer vision	2017	0,025094	14,12084
feature extraction	2017	0,025094	10,33714
internet of things	2017	0,022585	76,98925
machine learning algorithms	2017	0,017566	30,6056
pattern recognition	2017	0,017566	8,716786
artificial neural networks	2017	0,016311	24,59379
image analysis	2017	0,015056	10,50892
neuroscience	2017	0,012547	7,433891
linear discriminant analysis	2017	0,011292	26,82959
classification algorithms	2017	0,011292	25,5397
support vector machines	2017	0,011292	12,18408
complex networks	2017	0,011292	11,91089
gaussian mixture model	2017	0,010038	590,2509

인공자능분야결과예시

분석 결과 – 유망 키워드 도출 결과

〈분석 방법〉

- Magnet word로부터 유망키워드를 도출하기 위해 연관성 분석 기법, Graphical lasso을 사용
- 도출된 결과와 전문가 토론을 바탕으로 최종 연관 키워드를 도출

〈분석 결과〉

context awareness internet of things, education, decision making, heterogeneous networks, base stations, business, centralized control, data collection, encryption, neural networks

Gaphicallesso 분석결과

context awareness machine learning algorithms, decision trees, informatics, data mining, artificial intelligence, optimization methods, mental disorders, centralized control, data privacy, classification algorithms, base stations, encryption, training

연관성분석결과

context awareness

centralized control, base stations, encryption

두가지분석방법동시도출결과

인공자능분야 "Context awareness" 결과에시

문서 빈도 추이 시각화

• Magnet word별 검색된 문서의 수 추이

• 연도별 연관 키워드에 대한 신뢰도의 평균과 2017년 증가비율 산점도

문서 간 네트워크 시각화

• 연관 키워드 간 상관성을 시각화

인공지능 분야의 "Computer vision" 키워드의 네트워크 그림 예시

〈분석 모형의 고도화〉

- 연관성 분석과 Graphical Lasso 모형의 목적을 모두 반영한 분석 모형 제안 (Temporal Graphical Lasso)
- t시점에서 위험함수 $L_t(\gamma_t, \lambda_1)$ 를 최소화하는 γ_t 추정

$$L_t(\gamma_t, \lambda_1) = \sum_{j=1}^p \sum_{i=1}^n \left(x_{ij}^t - \gamma_{j0}^t - \sum_{k:k \neq j} \gamma_{jk}^t x_{ik}^t \right)^2 + p_{\lambda_1}(\gamma_t)$$

• 이 때, 벌점 함수는 아래와 같음

$$p_{\lambda_1}(\gamma_t) = \lambda_1 \sum_{j=1}^p \sum_{k: k \neq j} |\gamma_{jk}^t|$$

• 여기에 시간의 변화에 다른 벌점 함수를 추가하여 회귀 계수 계산

$$\sum_{t=1}^{T} L_t(\gamma_t, \lambda_1) + p_{\lambda_2}(\gamma_1, \dots, \gamma_T)$$

• 이 때, 추가되는 벌점 함수는 아래와 같음

$$p_{\lambda_2}(\gamma_1, \dots, \gamma_T) = \lambda_2 \sum_{t=1}^{T-1} \sum_{j=1}^p \sum_{k: k \neq j} |\gamma_{jk}^{t+1} - \gamma_{jk}^t|$$

〈문서 정보 추출 방법 개선〉

• 단어의 포함 관계를 고려한 Keyword stemming을 활용, 문서에서 단어 정보를 추출

level0 level1 level2 level3

Aerospace and electronic systems

Aerospace engineering

Aerospace biophysics

Aerospace electronics

Aerospace safety

Air safety

Aerospace simulation

Aerospace testing

Satellites

Artificial satellites

Earth Observing System

Low earth orbit satellites

Moon

Space stations

참고문헌

- Chang, S. B., Lai, K. K., Chang, S. M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107-117.
- Fan, W., Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM sIGKDD Explorations Newsletter, 14(2), 1-5.
- Friedman, J., Hastie, T., Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441.
- Ho, J. C., Saw, E. C., Lu, L. Y., Liu, J. S. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82, 66-79.
- Santo, M., Coelho, G. M., Santos, Filho, L. (2006). Text mining as a valuable tool in foresight exercises: A study on nanotechnology. Technological Forecasting and Social Change, 73(8), 1013-1027.
- Technology Futures Analysis Methods Working Group. (2004). Technology futures analysis: Toward integration of the field and new methods. Technological Forecasting and Social Change, 71(3), 287-303.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267-288.
- Tseng, Y.H., Lin C. J., Lin, Y. I, Text mining techniques for patent analysis, Information Processing and Management 43 (2007) 1216–1247.
- Yoon, B., Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37-50.
- Yoon, B., Phaal, R., Probert, D. (2008). Morphology analysis for technology roadmapping: application of text mining. R&d Management, 38(1), 51-68.
- Zhu, D., Porter, A. L. (2002). Automated extraction and visualization of information for technological intelligence and forecasting. Technological forecasting and social change, 69(5), 495-506.