B11015010 羅翡榮

Compiler Designs, Homework Assignment 1

1. Describe the languages accepted by the following NFA. (30%)

a.

- ightharpoonup Regex : (b+(a| ε))*
- ➤ Desc: The S1 is a trap state, so no strings accepted that start reading a. Firstly, the strings accepted either empty set (define by s0) or only b (define by s2) or start with b with looping b (define by s2); which means at least there is 1 b define by b⁺ (b⁺ means can loop b many times but at least there will be one b, so can't empty b for s2). The strings will end with empty set, b or a as define in s2 and s0 as final state.
- > Example of accepted:

arepsilon ,b, bbb, bba, ba, bbbaba, bbababb

b.

- ightharpoonup Regex : (01|10)*(00|11)(0|1)*
- Desc: The strings can start either 0 or 1, but in the middle if they go for 0, then there will be one 0 next to it define by 00. If go to 1, then there will be one 1 next to it define by 11. The substring need to have either 00 or 11. The end of strings can be either 0, 1, or ε . Language can't be empty set
- > Example of accepted:

0111, 000, 111, 10001, ...

c.

- Regex : (ab | b)* aa a*ba*b (ab | b)* aa (a|b)*
- > Desc : The strings can start either a or b. The end of string can end with a or b too.
- Example of accepted:

2. Construct a DFA accepting each of the following languages (30%)

- a. $\{w \in \{a, b\}^* \mid w \text{ starts with 'a' and contains "baba" as a substring}\}$
 - > a (a|b)* (baba) (a|b)*

- b. $\{w \in \{0, 1\}^* \mid w \text{ contains "111" as a substring and does not contain "00" as a substring}\}$
 - \triangleright (01|1)*(01|1)11(01|1)*(0| ε)

- c. $\{w \in \{a, b, c\}^* \mid in \ w \ the \ number \ of \ 'a's \ modulo \ 2 \ is \ equal \ to \ the \ number \ of \ 'b's \ modulo \ 3\}$
 - \triangleright Let's say a = 2, 2 mod 2 = 0

Let's say b = 3, $3 \mod 3 = 0$, by here they both equal to 0

 $\,$ mod 2 had 2 possible result which is 0 and 1 $\,$

 $\,$ mod 3 had 3 possible result which 0, 1 and 2 $\,$

from here, a multiply by b is 2 multiply by 3 equals to 6, means have 6 states, define by A, B, C, D, E, F below.

- As c not define anywhere, then c will loop in each state
- In here final state is A and D because in these states, the result of mod 2 and mod 3 will be the same

3. Give a regular expression for the set recognized by the finite-state machine. (10%)

> $11*(\varepsilon | 0(10)*1)$

4. Consider the regular expression: (30%)

(01 | 10 | 00) * 11

a. Use Thompson's construction to construct an NFA for each regex.

b. Convert the NFAs to DFAs.

NFA State	DFA State	Туре	0	1
{s0, s1, s2, s5, s8, s12}	A	Initial	В	С
{s3, s9}	В		D	Е
{s6, s13}	С		F	G
{s1, s2, s5, s8, s10, s11, s12}	D		В	С
{s1, s2, s4, s5, s8, s11, s12}	Е		В	С
{s1, s2, s5, s7, s8, s11, s12}	F		В	С
{s14}	G	Final		

c. Minimize the DFAs.

DFA State	Min-DFA	Туре	0	0,1	1
{A, D, E, F}	A	initial	В		С
{B}	В			A	
{C}	С		A		G
{G}	G	final			

