

In each of Problems 1 through 13:

- (a) Find the solution of the given initial value problem.
- (b) Draw the graphs of the solution and of the forcing function; explain how they are related.

1.
$$y'' + y = f(t);$$
 $y(0) = 0,$ $y'(0) = 1;$ $f(t) = \begin{cases} 1, & 0 \le t < 3\pi \\ 0, & 3\pi \le t < \infty \end{cases}$

1.
$$y'' + y = f(t)$$
; $y(0) = 0$, $y'(0) = 1$; $f(t) = \begin{cases} 1, & 0 \le t < 3\pi \\ 0, & 3\pi \le t < \infty \end{cases}$
2. $y'' + 2y' + 2y = h(t)$; $y(0) = 0$, $y'(0) = 1$; $h(t) = \begin{cases} 1, & \pi \le t < 2\pi \\ 0, & 0 \le t < \pi \end{cases}$ and $t \ge 2\pi$

3.
$$y'' + 4y = \sin t - u_{2\pi}(t)\sin(t - 2\pi);$$
 $y(0) = 0,$ $y'(0) = 0$

4.
$$y'' + 4y = \sin t + u_{\pi}(t)\sin(t - \pi);$$
 $y(0) = 0,$ $y'(0) = 0$

5.
$$y'' + 3y' + 2y = f(t);$$
 $y(0) = 0,$ $y'(0) = 0;$ $f(t) =\begin{cases} 1, & 0 \le t < 10 \\ 0, & t \ge 10 \end{cases}$

6.
$$y'' + 3y' + 2y = u_2(t)$$
; $y(0) = 0$, $y'(0) = 1$

7.
$$y'' + y = u_{3\pi}(t);$$
 $y(0) = 1,$ $y'(0) = 0$

8.
$$y'' + y' + \frac{5}{4}y = t - u_{\pi/2}(t)(t - \pi/2);$$
 $y(0) = 0,$ $y'(0) = 0$

7.
$$y'' + y = u_{3\pi}(t);$$
 $y(0) = 1,$ $y'(0) = 0$
8. $y'' + y' + \frac{5}{4}y = t - u_{\pi/2}(t)(t - \pi/2);$ $y(0) = 0,$ $y'(0) = 0$
9. $y'' + y = g(t);$ $y(0) = 0,$ $y'(0) = 1;$ $g(t) = \begin{cases} t/2, & 0 \le t < 6 \\ 3, & t \ge 6 \end{cases}$

$$y'' + y' + \frac{5}{4}y = g(t); y(0) = 0, y'(0) = 0; g(t) = \begin{cases} \sin t, & 0 \le t < \pi \\ 0, & t \ge \pi \end{cases}$$

20. 11.
$$v'' + 4v = u_{\pi}(t) - u_{3\pi}(t);$$
 $y(0) = 0,$ $y'(0) = 0$

11.
$$y'' + 4y = u_{\pi}(t) - u_{3\pi}(t);$$
 $y(0) = 0,$ $y'(0) = 0$
12. $y^{(4)} - y = u_1(t) - u_2(t);$ $y(0) = 0,$ $y'(0) = 0,$ $y''(0) = 0,$ $y''(0) = 0$
13. $y^{(4)} + 5y'' + 4y = 1 - u_{\pi}(t);$ $y(0) = 0,$ $y'(0) = 0,$ $y''(0) = 0,$ $y'''(0) = 0$

- 14. Find an expression involving $u_c(t)$ for a function f that ramps up from zero at $t = t_0$ to the value h at $t = t_0 + k$.
 - 15. Find an expression involving $u_{\varepsilon}(t)$ for a function g that ramps up from zero at $t=t_0$ to the value h at $t = t_0 + k$ and then ramps back down to zero at $t = t_0 + 2k$.
- № 16. A certain spring-mass system satisfies the initial value problem

$$u'' + \frac{1}{4}u' + u = kg(t),$$
 $u(0) = 0,$ $u'(0) = 0,$

where $g(t) = u_{3/2}(t) - u_{5/2}(t)$ and k > 0 is a parameter.

- (a) Sketch the graph of g(t). Observe that it is a pulse of unit magnitude extending over one time unit.
- (b) Solve the initial value problem.
- (c) Plot the solution for k = 1/2, k = 1, and k = 2. Describe the principal features of the solution and how they depend on k.

37.
$$\mathcal{L}{f(t)} = \frac{1}{s^2(1 - e^{-s})}, \quad s > 0$$

39. (a) $\mathcal{L}{f(t)} = s^{-1}(1 - e^{-s}), \quad s > 0$
(b) $\mathcal{L}{g(t)} = s^{-2}(1 - e^{-s}), \quad s > 0$
(c) $\mathcal{L}{h(t)} = s^{-2}(1 - e^{-s})^2, \quad s > 0$
40. (b) $\mathcal{L}{p(t)} = \frac{1 - e^{-s}}{s^2(1 + e^{-s})}, \quad s > 0$

Section 6.4, page 336.

1. (a)
$$y = 1 - \cos t + \sin t - u_{3\pi}(t)(1 + \cos t)$$

1. (a)
$$y = 1 - \cos t + \sin t - u_{3\pi}(t)(1 + \cos t)$$

2. (a) $y = e^{-t} \sin t + \frac{1}{2}u_{\pi}(t)[1 + e^{-(t-\pi)} \cos t + e^{-(t-\pi)} \sin t]$
 $-\frac{1}{2}u_{2\pi}(t)[1 - e^{-(t-2\pi)} \cos t - e^{-(t-2\pi)} \sin t]$

3. (a)
$$y = \frac{1}{6}[1 - u_{2\pi}(t)](2\sin t - \sin 2t)$$

4. (a)
$$y = \frac{1}{6}(2\sin t - \sin 2t) - \frac{1}{6}u_{\pi}(t)(2\sin t + \sin 2t)$$

5. (a)
$$y = \frac{1}{2} + \frac{1}{2}e^{-2t} - e^{-t} - u_{10}(t)[\frac{1}{2} + \frac{1}{2}e^{-2(t-10)} - e^{-(t-10)}]$$

6. (a) $y = e^{-t} - e^{-2t} + u_2(t)[\frac{1}{2} - e^{-(t-2)} + \frac{1}{2}e^{-2(t-2)}]$

6. (a)
$$y = e^{-t} - e^{-2t} + u_2(t) \left[\frac{1}{2} - e^{-(t-2)} + \frac{1}{2} e^{-2(t-2)} \right]$$

7. (a)
$$y = \cos t + u_{3\pi}(t)[1 - \cos(t - 3\pi)]$$

8. (a)
$$y = h(t) - u_{\pi/2}(t)h(t - \pi/2)$$
, $h(t) = \frac{4}{25}(-4 + 5t + 4e^{-t/2}\cos t - 3e^{-t/2}\sin t)$

9. (a)
$$y = \frac{1}{2}\sin t + \frac{1}{2}t - \frac{1}{2}u_6(t)[t - 6 - \sin(t - 6)]$$

10. (a)
$$y = h(t) + u_{\pi}(t)h(t - \pi)$$
, $h(t) = \frac{4}{17}[-4\cos t + \sin t + 4e^{-t/2}\cos t + e^{-t/2}\sin t]$

11. (a)
$$y = u_{\pi}(t) \left[\frac{1}{4} - \frac{1}{4} \cos(2t - 2\pi) \right] - u_{3\pi}(t) \left[\frac{1}{4} - \frac{1}{4} \cos(2t - 6\pi) \right]$$

12. (a)
$$y = u_1(t)h(t-1) - u_2(t)h(t-2)$$
, $h(t) = -1 + (\cos t + \cosh t)/2$

13. (a)
$$y = h(t) - u_{\pi}(t)h(t - \pi)$$
, $h(t) = (3 - 4\cos t + \cos 2t)/12$

14.
$$f(t) = [u_{t_0}(t)(t-t_0) - u_{t_0+k}(t)(t-t_0-k)](h/k)$$