Synthetic Biology Open Language Visual Graphical notation for forward engineering of biology

Jackie Quinn COMBINE - August 19, 2014

SBOL and SBOL Visual (the basics)

visual representation of genetic design

SBOL Visual 11 1.1 **Designed DNA Component** atgtatag 11 act 1.1 1.1 11 1.1 CDS tgac 1.1 5'UTR tataat cct atgtatagcctgtttcgctag 1.1 11 5'UTR Promoter, atgtatagcctgtttcgctag cct gtgactga 5'UTR **Terminator** CDS **CDS** 11 11 Collection **Shared Collection SBOL Core**

Symbol Design

(what we focus on)

- Compatibility with current practice
- Flexibility
- Ease of use

promoter	O origin of replication
cds	-> primer binding site
ribosome entry site	blunt restriction site
terminator	sticky restriction site
operator	— 5' overhang
insulator	= 3' overhang
ribonuclease site	= assembly scar
rna stability element	× signature
Y protease site	user defined
P protein stability element	

symbol set

relationship to SBOL

use in various contexts

Fig. 4. Comprehensive schematic illustration for the complete refactored gene cluster and controller. Each of the 89 parts is represented according to the Synthetic Biology Open Language visual standard (www.sbolstandard.org), and the SynBERC Registry part number (registry.synberc.org) and part activity are shown. The full sequences of each plasmid have been deposited in GenBank (SBa_000534, JQ903614; SBa_000559, JQ903615; SBa_000560, JQ903616). The T7 promoter strengths are measured with monomeric red fluorescent protein and reported in REUS (Materials and Methods). Terminator strengths are measured in a reporter plasmid and reported as the fold reduction in monomeric red fluorescent protein and fluorescent protein

UC Berkeley iGEM 2012

software

GenoCAD genocad.org

SBOL Designer http://clarkparsia.github.io/sbol/

JBEI-ICE, Pigeon public-registry.jbei.org, pigeoncad.org

BioCompiler synbiotools.bbn.com

Number of Goal Parts	1
umber of Assembly Steps	3
umber of Assembly Stages	2
umber of Reactions	12
umber of Recommended Parts	0
lumber of Discouraged Parts	0
Assembly Efficiency	1.0
Parts Shared	0

Raven ravencad.org

VectorNTI Express Designer

Toggle Switch

SBOL Visual 2.0?

SBOL Visual Working Group

Aaron Adler
Jacob Beal
Swapnil Bhatia
Patrick Cai
Joanna Chen
Kevin Clancy
Robert Sidney Cox III
Michal Galdzicki
Nathan Hillson
Cory Li

Chris Myers Umesh P **Matthew Pocock** Jackie Quinn Cesar Rodriguez **Herbert Sauro** Larisa Soldatova Guy-Bart Stan Grimaldo Urena Alan Villalobos Mandy Wilson

Thank You!

www.sbolstandard.org/visual visual@sbolstandard.org