EE 368 机器人运动与控制方法(Robotic Motion and Control) Assignment #4

Due time: 5:00pm on Monday, May 29, 2023 via Blackboard

Q-1. The single-degree-of-freedom "manipulator" in Fig. Q-1 has total mass m=1, with the center of mass at ${}^1P_C=[2 \quad 0 \quad 0]^T$, and has inertia tensor ${}^CI_1=\mathrm{diag}\{1 \quad 2 \quad 2\}$. From rest at t=0, the joint angle θ_1 moves in accordance with the time function

$$\theta_1(t) = bt + ct^2$$

in radians. Given the angular acceleration of the link and the linear acceleration of the center of mass in terms of frame $\{1\}$ as a function of t.

Figure Q-1

Q-2. Derive the equations of motion for the PR manipulator shown in Fig. Q-2. Neglect friction, but include gravity. (Here, \hat{X}_0 is upward.) The inertia tensors of the links are diagonal, with moments I_{xx1} , I_{yy1} , I_{zz1} and I_{xx2} , I_{yy2} , I_{zz2} . The centers of mass for the links are given by

$$^{1}P_{C_{1}} = \begin{bmatrix} 0\\0\\-l_{1} \end{bmatrix}$$
 and $^{1}P_{C_{2}} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$.

Figure Q-2

Q-3. Derive the Cartesian space form of the dynamics for the two-link planar manipulator of Q-2 in terms of the base frame. *Hint*: Use the Jacobian written in the base frame.