Statistik 2, Übung 8, Tafelbild

HENRY HAUSTEIN

Aufgabe 1

Zweiseitige Tests für den Mittelwert (häufig t-Test genannt) (Formelsammlung II, Seite 33):

$$\begin{split} T &= \frac{\mu - \mu_0}{\sigma} \sqrt{n} \qquad z_{krit} = \pm z_{1-\alpha/2} \qquad \sigma \text{ bekannt} \\ T &= \frac{\mu - \mu_0}{s} \sqrt{n} \qquad t_{krit} = \pm t_{n-1,1-\alpha/2} \qquad \sigma \text{ unbekannt} \end{split}$$

Bei einseitigen Tests wird $1 - \alpha/2$ durch $1 - \alpha$ ersetzt und einer der kritischen Werte verschwindet. Für $n \ge 100$ ist die t-Verteilung sehr ähnlich zur Normalverteilung, wir werden deswegen häufig die Quantile der Standardnormalverteilung nehmen.

Fehler und α -Niveau

- Fehler 1. Art: Entscheide mich für H_1 , aber H_0 ist richtig $\to \alpha$ (Signifikanzniveau/Irrtumswahrscheinlichkeit ist die obere Schranke für den Fehler 1. Art)
- Fehler 2. Art: Entscheide mich für H_0 , aber H_1 ist richtig $\rightarrow \beta$

Die Gütefunktion G gibt die Wahrscheinlichkeit an, dass man H_0 ablehnt. Für einen rechtsseitigen Test $(H_0: \mu \leq 83, H_1: \mu > 83)$:

$$G(\mu) = \mathbb{P}(T > z_{krit})$$

Aufgabe 2

Berechnung von p-values:

- $T < 0 \Rightarrow p$ -value = $\Phi(T)$
- $T > 0 \Rightarrow p$ -value = $1 \Phi(T)$