Fractions rationnelles et tout depuis le début de l'année - exercices supplémentaires

Exercice 1 ()

Effectuer la décomposition en éléments simples des fractions rationnelles suivantes :

1)
$$\frac{1}{X(X-1)^2}$$
;

3)
$$\frac{3X-1}{X^2(X+1)^2}$$
;

2)
$$\frac{4}{(X^2+1)^2}$$
;

4)
$$\frac{1}{X^4 + X^2 + 1}$$
.

Exercice 2 ()

Calculer les primitives suivantes :

1)
$$\int \frac{\cos^3 x}{\sin^5 x} dx$$
 ; 2) $\int \frac{\sin^3 x}{1 + \cos x} dx$; 3) $\int \frac{dx}{\cos^4 x + \sin^4 x}$.

Exercice 3 ($^{\infty}$) Soit $F \in \mathbb{K}(X)$.

- 1) Soit a un zéro d'ordre $\alpha \ge 1$ de F. Montrer que a est zéro d'ordre $\alpha 1$ de F'.
- 2) Comparer les pôles de F et de F', ainsi que leur ordre de multiplicité.

Exercice 4 (\bigcirc) Déterminer le lieux des points du plan d'affixe $z \in \mathbb{C}^*$ tels que les points d'affixes $z, \frac{1}{z}$ et z^2 soient alignés.

Exercice 5 Trouver toutes les courbes \mathscr{C} d'équation y = f(x) telles que

- f est définie, continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* ;
- pour tout point quelconque $M \in \mathcal{C}$, si T est l'intersection de la tangente à \mathcal{C} en M avec (Ox) et si P est la projection de M sur (Ox), alors O est le milieu de T et de P.

Exercice 6 (🔼)

Soit E et F deux ensembles, $f:E\to F$ une application et G un troisième ensemble, ayant au moins deux éléments. On construit deux nouvelles applications :

$$f_*: \left\{ \begin{array}{ccc} E^G & \to & F^G \\ \varphi & \mapsto & f \circ \varphi \end{array} \right. \text{ et } f^*: \left\{ \begin{array}{ccc} G^F & \to & G^E \\ \varphi & \mapsto & \varphi \circ f \end{array} \right.$$

Montrer les équivalences suivantes :

f est injective $\iff f_*$ est injective $\iff f^*$ est surjective.

Exercice 7 Soit α un nombre irrationnel positif et (p_n) et (q_n) deux suites d'éléments de \mathbb{N}^* telles que $\alpha = \lim_{n \to +\infty} \frac{p_n}{q_n}$.

1) Montrer que si (p_n) et (q_n) sont majorées, $\frac{p_n}{q_n}$ ne prend qu'un nombre fini de valeurs. Conclusion

1

- 2) Montrer que si (p_n) est majorée mais pas (q_n) , $\alpha=0$. Conclusion ?
- 3) Montrer que $\lim_{n\to\infty} q_n = \lim_{n\to\infty} p_n = +\infty$.