- ✅ 为啥这么火呢?
 - ❷ NLP领域大哥大级别,一统天下好多年了
 - ♂ CV界新秀,开场即巅峰;满级大号直接上场
 - ∅ 新一代backbone,可直接套用在各项下游任务中
 - ❷ 分类,分割,检测各项任务均刷榜;

✓ 发家史

2017.6 | Transformer

Solely based on attention mechanism, the Transformer is proposed and shows great performance on NLP tasks.

2020.5 | GPT-3

A huge transformer with 170B parameters, takes a big step towards general NLP model.

2020.7 | iGPT

The transformer model for NLP can also be used for image pretraining.

2020.12 | IPT

The first transformer model for low-level vision by combining multi-tasks.

2018.10 | BERT

Pre-training transformer models begin to be dominated in the field of NLP.

2020.5 | DERT

A simple yet effective framework for high-level vision by viewing object detection as a direct set prediction problem.

2020.10 | VIT

Pure transformer architectures work well for visual recognition.

✓ 回忆一下咋干活的来着

✓ 视觉中的Attention

❤ 整体架构分析

✓ CNN最大的问题是什么?

❷ 格局, 眼界; 这两词往上一整, 就把这页PPT显得高的上了!

♂ CNN中的格局和眼界是什么?不就是感受野嘛!

❷ 想要获得大的感受野(全局的信息)就必须堆叠很多层卷积

❷ 这问题就来了,不断卷积+池化的操作感觉有点麻烦还不一定好

- ✓ transformer的格局
 - ❷ 根本不需要堆叠,直接就可以获得全局信息
 - ❷ CNN就像一个穷秀才考状元; transformer直接当驸马爷了

- ❷ 但是驸马爷也不是好当的,银子(训练数据)得到位才行
- ∅ 纯transformer结构已经在CV界起义了, CNN是否会沦陷?

❤ 公式介绍

∅ 输入patch (P*P*C) 经过全连接E得到(P*P*D)

❷ N+1表示额外找一个patch表示分类特征,位置编码也同理

∅ 输出矩阵维度与输入矩阵维度一致,重复多层即可

$$\mathbf{z}_0 = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
(1)

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1},$$
 $\ell = 1 \dots L$ (2)

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z'}_{\ell})) + \mathbf{z'}_{\ell}, \qquad \ell = 1 \dots L$$
 (3)

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0)$$

(4)

- ❤ 格局有多大呢?
 - Ø 可以对比CNN来感受野

 - ♂可能5层就顶CNN30层了
 - ♂ 全局信息丰富,更好理解整个图像

✅ 位置编码

❷ 2D (分别计算行和列的编码,然后求和)的效果还不如1D的每一层都加共享的位置编码也没啥太大用

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

✓ 效果分析 (/14表示patch的边长是多少)

	Epochs	ImageNet	ImageNet ReaL	CIFAR-10	CIFAR-100	Pets	Flowers	exaFLOPs
name		A SECRET S. C. C. S. SANGE (PROSE)						
ViT-B/32	7	80.73	86.27	98.61	90.49	93.40	99.27	55
ViT-B/16	7	84.15	88.85	99.00	91.87	95.80	99.56	224
ViT-L/32	7	84.37	88.28	99.19	92.52	95.83	99.45	196
ViT-L/16	7	86.30	89.43	99.38	93.46	96.81	99.66	783
ViT-L/16	14	87.12	89.99	99.38	94.04	97.11	99.56	1567
ViT-H/14	14	88.08	90.36	99.50	94.71	97.11	99.71	4262
ResNet50x1	7	77.54	84.56	97.67	86.07	91.11	94.26	50
ResNet50x2	7	82.12	87.94	98.29	89.20	93.43	97.02	199
ResNet101x1	7	80.67	87.07	98.48	89.17	94.08	95.95	96
ResNet152x1	7	81.88	87.96	98.82	90.22	94.17	96.94	141
ResNet152x2	7	84.97	89.69	99.06	92.05	95.37	98.62	563
ResNet152x2	14	85.56	89.89	99.24	91.92	95.75	98.75	1126
ResNet200x3	14	87.22	90.15	99.34	93.53	96.32	99.04	3306
R50x1+ViT-B/32	7	84.90	89.15	99.01	92.24	95.75	99.46	106
R50x1+ViT-B/16	7	85.58	89.65	99.14	92.63	96.65	99.40	274
R50x1+ViT-L/32	7	85.68	89.04	99.24	92.93	96.97	99.43	246
R50x1+ViT-L/16	7	86.60	89.72	99.18	93.64	97.03	99.40	859
R50x1+ViT-L/16	14	87.12	89.76	99.31	93.89	97.36	99.11	1668

✓ TNT: Transformer in Transformer

❷ VIT中只针对pathch进行建模,忽略了其中更小的细节

✓ TNT的基础组成

Ø 内部transformer:

₫ 重组成多个超像素 (4个像素点)

把重组的序列继续做transformer

✓ TNT的序列构建

❷ 内部序列构建:

∅ 重构内部序列

∅ 组合后的序列继续transformer

- ✓ TNT的基本计算
 - Ø 内部transformer重组成新的向量:

 - Ø 内部组合后的向量与patch编码大小相同

✓ TNT位置编码实验

∅ 内外兼修,都加编码效果最好

Model	Patch position encoding	Pixel position encoding	Top-1 (%)
TNT-S	×	×	80.5
	✓	×	80.8
	×	✓	80.7
	✓	✓	81.3

✓ TNT的PatchEmbedding的可视化

❷ 特征更鲜明,分布更多样性

(a) Feature maps in Block-1/6/12.

(b) T-SNE of Block-12.