Прогнозы. Сравнение моделей

Эконометрика. Орепеdu. Неделя 4

Неделя 4

- Прогнозирование
- Выбор "наилучшей" модели

Прогнозирование

Модель:
$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

Точечный прогноз: $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 z_i$

Интервальное прогнозирование

Что мы прогнозируем?

ullet Средний y_i при данных регрессорах, $E(y_i|x_i,z_i)$:

$$E(y_i|x_i,z_i) = \beta_1 + \beta_2 x_i + \beta_3 z_i$$

 \bullet Конкретный y_i при данных регрессорах:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

Возникает две разных ошибки прогноза!

Ошибка прогнозирования среднего

- ullet условное среднее, $E(y_i|X)$
- ullet ошибка прогноза условного среднего, $\hat{y}_i E(y_i|X)$
- дисперсия ошибки прогноза:

$$Var(\hat{y}_i - E(y_i|X)|X) = Var(\hat{y}_i|X) = Var(\hat{\beta}_1 + \hat{\beta}_2x_i + \hat{\beta}_3z_i|X)$$

Ошибка прогноза конкретного значения

- конкретное наблюдение, у
- \bullet ошибка прогноза, $\hat{y}_i y_i$
- дисперсия ошибки прогноза:

$$Var(\hat{y}_i - y_i|X) = Var(\hat{y}_i - E(y_i|X) - \varepsilon_i|X) = Var(\hat{y}_i - \varepsilon_i|X) = Var(\hat{y}_i|X) + Var(\varepsilon_i|X) = Var(\hat{\beta}_1 + \hat{\beta}_2x_i + \hat{\beta}_3z_i|X) + Var(\varepsilon_i|X)$$

Оценка дисперсии

- $Var(\hat{y}_i|X)$, $Var(\varepsilon_i|X)$ неизвестны, зависят от σ^2
- $\widehat{Var}(\hat{y}_i|X), \ \widehat{Var}(\varepsilon_i|X)$ известны
- Используем стандартные ошибки: $se(\hat{y}_i) = \sqrt{\widehat{Var}(\hat{y}_i|X)}$

Доверительный интервал для среднего значения

ullet Асимптотический: $rac{\hat{y}_i - E(y_i|X)}{se(\hat{y}_i)}
ightarrow \mathcal{N}(0,1)$

$$E(y_i|X) \in [\hat{y}_i - z_{cr}se(\hat{y}_i); \hat{y}_i + z_{cr}se(\hat{y}_i)]$$

ullet При предположении о нормальности: $rac{\hat{y}_i - E(y_i|X)}{\mathsf{se}(\hat{y}_i)} \sim t_{n-k}$

$$E(y_i|X) \in [\hat{y}_i - t_{cr}se(\hat{y}_i); \hat{y}_i + t_{cr}se(\hat{y}_i)]$$

Предиктивный интервал для конкретного значения

ullet Асимптотический: $rac{\hat{y}_i-y_i}{\mathsf{se}(\hat{y}_i-arepsilon_i)} o \mathcal{N}(0,1)$

$$y_i \in [\hat{y}_i - z_{cr}se(\hat{y}_i - \varepsilon_i); \hat{y}_i + z_{cr}se(\hat{y}_i - \varepsilon_i)]$$

• При предположении о нормальности: $\frac{\hat{y}_i - y_i}{\mathsf{se}(\hat{y}_i - \varepsilon_i)} \sim t_{\mathsf{n}-\mathsf{k}}$

$$y_i \in [\hat{y}_i - t_{cr}se(\hat{y}_i - \varepsilon_i); \hat{y}_i + t_{cr}se(\hat{y}_i - \varepsilon_i)]$$

Пример вычислений [у доски]

```
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.53539 0.05183 164.68 <2e-16 ***
\log(\text{carat}) 1.74685 0.07505 23.27 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2771 on 38 degrees of freedom
vcov(mod)
         (Intercept) log(carat)
(Intercept) 0.002686470 0.002078281
\log(\text{carat}) \quad 0.002078281 \quad 0.005632675
```

Логарифмирование

Четыре модели:

•
$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

•
$$ln(y_i) = \beta_1 + \beta_2 ln(x_i) + \varepsilon_i$$

•
$$ln(y_i) = \beta_1 + \beta_2 x_i + \varepsilon_i$$

•
$$y_i = \beta_1 + \beta_2 \ln(x_i) + \varepsilon_i$$

Вывод интерпретации [у доски]

Идея получения интерпретации логарифмических моделей: $d \ln x = \frac{dx}{x}$ — изменение x в долях

Две популярные версии

- $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$. С ростом x на единицу y растет на β_2 единиц.
- $\ln(y_i) = \beta_1 + \beta_2 \ln(x_i) + \varepsilon_i$. С ростом x на один процент y растет на β_2 процентов.

Полулогарифмические модели

- $\ln(y_i) = \beta_1 + \beta_2 x_i + \varepsilon_i$. С ростом x на единицу y растет на $100\beta_2$ процентов.
- $y_i = \beta_1 + \beta_2 \ln(x_i) + \varepsilon_i$. С ростом x на один процент y растет на $0.01\beta_2$ единиц.

Дамми-переменные

- Объясняющая переменная, принимающая значение 0 или 1, называется дамми-переменной (dummy variable)
- Например, пол респондента в опросе, переменная \textit{male}_i , равная 1 для мужчин и 0 для женщин.

Дамми-переменные и разные зависимости на подвыборках

Пример 1. Базовая модель.

$$wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \varepsilon_i$$

Зарплата мужчин и женщин в среднем одинаковая при равном опыте и образовании

Пример 2.

$$wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \beta_4 male_i + \varepsilon_i$$

Для мужчин: $wage_i = (\beta_1 + \beta_4) + \beta_2 exper_i + \beta_3 educ_i + \varepsilon_i$
Для женщин: $wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \varepsilon_i$

Пример 3.

$$wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \beta_4 male_i + \beta_5 male_i exper_i + \varepsilon_i$$

Для мужчин: $wage_i = (\beta_1 + \beta_4) + (\beta_2 + \beta_5) exper_i + \beta_3 educ_i + +\varepsilon_i$
Для женщин: $wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \varepsilon_i$

Пример 4.

$$wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \beta_4 male_i + \beta_5 male_i educ_i + \varepsilon_i$$

Для мужчин: $wage_i = (\beta_1 + \beta_4) + \beta_2 exper_i + (\beta_3 + \beta_5) educ_i + \varepsilon_i$
Для женщин: $wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \varepsilon_i$

Пример 5.

$$wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \beta_4 male_i + \beta_5 male_i educ_i + \beta_6 male_i exper_i + \varepsilon_i$$

Для мужчин: $wage_i = (\beta_1 + \beta_4) + (\beta_2 + \beta_6) exper_i + (\beta_3 + \beta_5) educ_i + \varepsilon_i$
Для женщин: $wage_i = \beta_1 + \beta_2 exper_i + \beta_3 educ_i + \varepsilon_i$

Факторная переменная принимает несколько значений

```
season_i \in \{ зима , весна , лето , осень \}
```

- Выбираем базовое значение факторной переменной: зима.
- Вводим 3 (четыре сезона минус один базовый) дамми-переменных:

vesna_i, leto_i, osen_i

Вводим дамми-переменные

Наблюдение	Сезон	vesna _i	leto _i	osen _i
1	Зима	0	0	0
2	Весна	1	0	0
3	Лето	0	1	0
4	Осень	0	0	1
5	Зима	0	0	0
÷	:	÷	:	:

Модели для подвыборок на примере

```
ісесгеаm_i = \beta_1 + \beta_2ргісе_i + \beta_3vesn_a_i + \beta_4leto_i + \beta_5osen_i + \varepsilon_i
Зима: ісесгеаm_i = \beta_1 + \beta_2ргісе_i + \varepsilon_i
Весна: ісесгеаm_i = (\beta_1 + \beta_3) + \beta_2ргісе_i + \varepsilon_i
Лето: ісесгеаm_i = (\beta_1 + \beta_4) + \beta_2ргісе_i + \varepsilon_i
Осень: ісесгеаm_i = (\beta_1 + \beta_5) + \beta_2ргісе_i + \varepsilon_i
```

Частая ошибка!

Включить дамми-переменные на все значения факторной перенной и константу в регрессию. Благородные доны и дуэньи так не поступают!
Пример с ошибкой (!).

 $wage_i = \beta_1 + \beta_2 exper_i + \beta_3 male_i + \beta_4 female_i + \varepsilon_i$

Выполнено соотношение $1 = male_i + female_i$.

частая ошибка — нарушение предпосылки

- О вероятностью 1 среди регрессоров нет линейно зависимых
- ullet Синонимы в матричном виде: rank(X)=k или det(X'X)
 eq 0 или $(X'X)^{-1}$ существует

Регрессоры линейно зависимы. Не существует единственных оценок ${\rm MHK}.$

Проверка гипотез о нескольких ограничениях сразу

$$\begin{aligned} \textit{wage}_i &= \beta_1 + \beta_2 \textit{exper}_i + \beta_3 \textit{educ}_i + \beta_4 \textit{male}_i + \beta_5 \textit{male}_i \textit{educ}_i + \varepsilon_i \\ \textit{Для мужчин: } \textit{wage}_i &= (\beta_1 + \beta_4) + \beta_2 \textit{exper}_i + (\beta_3 + \beta_5) \textit{educ}_i + \varepsilon_i \\ \textit{Для женщин: } \textit{wage}_i &= \beta_1 + \beta_2 \textit{exper}_i + \beta_3 \textit{educ}_i + \varepsilon_i \\ \textit{H}_0 : \begin{cases} \beta_4 &= 0 \\ \beta_5 &= 0 \end{cases} \end{aligned}$$

 H_a : хотя бы один коэффициент (eta_4 или eta_5) отличен от нуля

Проверка гипотезы

• Оценить неограниченную модель (unrestricted, ur)

wage
$$_i=\beta_1+\beta_2$$
exper $_i+\beta_3$ educ $_i+\beta_4$ male $_i+\beta_5$ male $_i$ educ $_i+\varepsilon_i$ Посчитать RSS $_{UR}$

2 Оценить ограниченную модель (restricted, r)

wage
$$_i = \beta_1 + \beta_2$$
exper $_i + \beta_3$ educ $_i + \varepsilon_i$
Посчитать RSS $_R$

Два подхода:

3.1. Асимптотически:

$$\chi^2 = \frac{RSS_R - RSS_{UR}}{RSS_{UR}/(n - k_{UR})} \to \chi_r^2$$

3.2. При нормальности ошибок, $\varepsilon_i | X \sim N(0, \sigma^2)$

$$F = \frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n - k_{UR})} \sim F_{r,n-k_{UR}}$$

r — количество ограничений в H_0

Вывод:

lacktriangle Если $F_{obs} > F_{cr}$ или $\chi^2_{obs} > \chi^2_{cr}$, то H_0 отвергается

Пример [у доски]

Проверьте гипотезу о двух ограничениях. RSS для двух моделей:

```
\label{eq:model_1} \begin{split} \operatorname{model_1} &<-\operatorname{lm}(\operatorname{data} = \operatorname{h,\,log}(\operatorname{price}) \,\,^{\sim} \, \operatorname{log}(\operatorname{totsp}) \, + \, \operatorname{log}(\operatorname{kitsp}) \, + \, \operatorname{brick} \, + \, \operatorname{metrdist} \, + \, \operatorname{walk}) \\ \operatorname{model_2} &<-\operatorname{lm}(\operatorname{data} = \operatorname{h,\,log}(\operatorname{price}) \,\,^{\sim} \, \operatorname{log}(\operatorname{totsp}) \, + \, \operatorname{log}(\operatorname{kitsp}) + \operatorname{brick}) \\ \operatorname{deviance}(\operatorname{model_1}) \end{split}
```

[1] 62.56589

deviance(model_2)

[1] 69.29502

Примечание

RSS ограниченной модели всегда больше:

- $RSS_{UR} = \min_{\hat{\beta}_1, \hat{\beta}_2, \dots} RSS$
- $RSS_R = \min_{\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_4 = 0} RSS$

TSS в моделях равны, т.к. $TSS = \sum (y_i - \bar{y})^2$ Следовательно, $ESS_{UR} > ESS_R$ и $R_{UR}^2 > R_R^2$.

Самый простой случай

Модель
$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

Гипотеза H_0 : все наши регрессоры абсолютно бесполезны

$$H_0: \begin{cases} \beta_2 = 0 \\ \beta_3 = 0 \\ \dots \end{cases}$$

Всего (k-1) ограничение.

Гипотеза о незначимости регрессии.

Доказательство формулы статистики для гипотезы о незначимости регрессии [у доски]

Для гипотезы:

$$H_0: \begin{cases} \beta_2 = 0 \\ \beta_3 = 0 \\ \dots \\ \beta_k = 0 \end{cases}$$

Статистика приобретает вид:

$$F = \frac{ESS/(k-1)}{RSS/(n-k)} \sim F_{k-1,n-k}$$

Идея доказательства: ограниченной моделью будет модель $y_i = \beta_1 + \varepsilon_i$.

В ограниченной модели $\hat{\beta}_1 = \bar{y}$ и $RSS_R = TSS_R$, а $ESS_R = 0$.

Проверка гипотезы о незначимости регрессии

Модель
$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$
 $H_0: \begin{cases} \beta_2 = 0 \\ \beta_3 = 0 \end{cases}$
 $F = \frac{ESS/(k-1)}{RSS/(n-k)} \sim F_{k-1,n-k}$

Пример проверки гипотезы о незначимости регресии [у доски]

Для регрессии

$$\widehat{wage}_i = -2.5 + 0.6 school_i + 0.157 exper_i$$

Проверьте гипотезу о незначимости регрессии в целом. $R^2 = 0.09$, n = 3294.

Снова БСХС — предпосылки

Если:

- lacktriangle Истинная зависимость имеет вид $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$
- В матричном виде: $y = X\beta + \varepsilon$
- $oldsymbol{0}$ С помощью МНК оценивается регрессия y на константу, x_i, z_i
- В матричном виде: $\hat{\beta} = (X'X)^{-1}X'y$

BCXC — предположения на ε_i :

- lacktriangle Строгая экзогенность: $E(arepsilon_i|$ все регрессоры)=0
 - В матричном виде: $E(\varepsilon_i|X)=0$
- ullet Условная гомоскедастичность: $E(arepsilon_i^2|$ все регрессоры $)=\sigma^2$
- В матричном виде: $E(\varepsilon_i^2|X) = \sigma^2$

БСХС — предпосылки на регрессоры

- lacktriangledown векторы отдельных наблюдений (x_i, z_i, y_i) независимы и одинаково распределены
- 🔞 с вероятностью 1 среди регрессоров нет линейно зависимых
- ullet Синонимы в матричном виде: rank(X)=k или det(X'X)
 eq 0 или $(X'X)^{-1}$ существует

БСХС — асимптотические свойства (плюс новое)

При $n \to \infty$:

- $\hat{\beta}_i \to \beta_i$ по вероятности
- $\frac{\hat{\beta}_j \beta_j}{\operatorname{se}(\hat{\beta}_i)} \to N(0,1)$ по распределению
- $\hat{\sigma}^2 \to \sigma^2$ по вероятности новое: $\chi^2 = \frac{RSS_R RSS_{UR}}{RSS_{UR}/(n-k_{UR})} \to \chi^2_r$

$$\hat{\sigma}^2 = \frac{RSS}{n-k}$$

БСХС — при нормальности

Если дополнительно известно, что $\varepsilon_i \sim N(0, \sigma^2)$:

- Оценки эффективны среди несмещенных
- $\frac{\hat{\beta}_j \beta_j}{\operatorname{se}(\hat{\beta}_j)} | X \sim t_{n-k}, \frac{\hat{\beta}_j \beta_j}{\operatorname{se}(\hat{\beta}_j)} \sim t_{n-k}$
- $RSS/\sigma^2|X \sim \chi^2_{n-k}$, $RSS/\sigma^2 \sim \chi^2_{n-k}$
- новое: $F = \frac{(RSS_R RSS_{UR})/r}{RSS_{UR}/(n-k_{UR})} | X \sim F_{r,n-k_{UR}}$

Лишние переменные

- Истина: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$
- Оценена регрессия: $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 z_i$
- Потеряна: эффективность

Пропущенные переменные

- Истина: $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$
- Оценена регрессия: $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$
- Всё плохо!

Мораль:

- Если в теории предполагается зависимость от переменной z, то её лучше включить в модель, даже если она не значима.
- Если переменные значимы, то их лучше оставить в модели, даже если теория говорит, что зависимости от них быть не должно.

Увидеть то, чего нет

- Как проверить не пропущены ли переменные, которых нет?
- RESET-тест Рамсея

$$H_0: y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

На: Есть неизвестные нам пропущенные регрессоры

Алгоритм теста Рамсея:

① Оценить модель: $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$

Получить прогнозы \hat{y}_i

- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$
- **8** Посчитать *F*-статистику проверяющую гипотезу о равенстве всех γ_i нулю.

Рамсей: при верной H_0 и нормальности остатков $F \sim F_{p,n-k-p}$

Пример теста Рамсея [у доски]

Для регрессии

$$\widehat{wage}_i = -2.5 + 0.6 school_i + 0.157 exper_i$$

Проверьте тест Рамсея, если:

- $R^2 = 0.091$ (в основной регрессии),
- $R_{aux}^2 = 0.095$ (во вспомогательной регрессии Рамсея),
- n = 3294.

Простые показатели качества

- $lackbox{0}$ R^2 . Растет с добавлением регрессоров, $R_{ur}^2 > R_r^2$
- **2** $R_{adj}^2 = 1 \frac{RSS/(n-k)}{TSS/(n-1)} = 1 \frac{\hat{\sigma}^2}{TSS/(n-1)}$

Чем больше R_{adj}^2 тем меньше $\hat{\sigma}^2$.

Информационные критерии

Модель плохая если:

- плохо предсказывает (*RSS* большой)
- \bullet сложная (много коэффицентов, большое k)
- Информационные критерии (размер штрафа):
- Акаике $AIC = n \ln(RSS/n) + 2k$
- Шварца $BIC = n \ln(RSS/n) + \ln(n)k$

Мораль

В этой лекции:

- Прогнозирование
- Гипотезы о нескольких ограничениях
- RESET-тест Рамсея

Далее: о неприятностях :)