Problem S3: Searching for Strings

Problem Description

You're given a string N, called the *needle*, and a string H, called the *haystack*, both of which contain only lowercase letters "a".."z".

Write a program to count the number of distinct permutations of N which appear as a substring of H at least once. Note that N can have anywhere between 1 and |N|! distinct permutations in total – for example, the string "aab" has 3 distinct permutations ("aab", "aba", and "baa").

Input Specification

The first line contains N ($1 \le |N| \le 200\ 000$), the needle string.

The second line contains H (1 < |H| < 200 000), the haystack string.

For 3 of the 15 available marks, $|N| \le 8$ and $|H| \le 200$.

For an additional 2 of the 15 available marks, $|N| \le 200$ and $|H| \le 200$.

For an additional 2 of the 15 available marks, $|N| \le 2000$ and $|H| \le 2000$.

Output Specification

Output consists of one integer, the number of distinct permutations of N which appear as a substring of H.

Sample Input

aab abacabaa

Output for Sample Input

2

Explanation of Output for Sample Input

The permutations "aba" and "baa" each appear as substrings of H (the former appears twice), while the permutation "aab" does not appear.

Problème S3 : À la recherche de chaînes

Énoncé du problème

Soit N une chaîne appelée Aiguille et H une chaîne appelée Botte de foin, les deux ne contenant comme caractères que des lettres minuscules « a ».. « z ».

Écrire un programme dont le but est de compter le nombre d'arrangements distincts de N qui paraissent au moins une seule fois comme sous-chaînes de H. Remarquons que N peut avoir un nombre total d'arrangements distincts allant de 1 à |N|! arrangements. Par exemple, la chaîne « aab » a 3 arrangements distincts (« aab », « aba » et « baa »).

Précisions par rapport aux données d'entrée

La première ligne contient N (1 < |N| < 200 000), soit la chaîne Aiguille.

La deuxième ligne contient H ($1 \le |H| \le 200\ 000$), soit la chaîne Botte de foin.

Pour 3 des 15 points disponibles, $|N| \le 8$ et $|H| \le 200$.

Pour 2 autres points parmi les 15 points disponibles, $|N| \le 200$ et $|H| \le 200$.

Pour 2 autres points parmi les 15 points disponibles, $|N| \le 2000$ et $|H| \le 2000$.

Précisions par rapport aux données de sortie

Les données de sortie ne devraient contenir qu'un seul entier, soit le nombre d'arrangements distincts de N qui paraissent comme sous-chaînes de H.

Exemple de données d'entrée

aab

abacabaa

Exemple de données de sortie

2.

Justification des données de sortie

Les arrangements « aba » et « baa » paraissent tous les deux comme sous-chaînes de H (on voit d'ailleurs que le premier y paraît deux fois) tandis que l'arrangement « aab » n'y paraît aucunement.