Examen final - durée 1h30 mn

Exercice 1.- Mesures asymptotiques

- a- Classer les fonctions suivantes par ordre croissant de leur valeur asymptotique: $log(n^3), 2^{n^2}, n^3 logn, \sqrt(n!), 2^{\sqrt{n}}$
- b- Prouver que $\sum_{k=0}^{k=n} 3^k$ est en $O(3^n)$.
- c- Montrer que $t(n) = log(2 * n + \alpha) = \Theta(log n)$

Exercice 2.- Equations de récurrence

- a- Résoudre l'équation suivante par la méthode itérative: t(n) = t(n-a) + t(a), a >= 1.
- b- Résoudre l'équation: t(n) = 4 * t(n/2) + n et t(0) = O(1).
- Exercice 3.- Soit N un entier donné, écrire une fonction itérative qui calcule la suite des N premiers nombres de la suite de Fibonacci définie par les relations suivantes:

$$U_n = 1$$
 si $n = 0$ ou $n = 1$
 $U_n = U_{n-1} + U_{n-2}$ si $n > 1$

Prouver la validité de la fonction et donnez sa complexité.

Exercice 4.- Décomposition en facteurs premiers

Soit a un entier positif, a peut s'écrire sous forme de produit de facteurs premiers p_i ordonnés $(p_i < p_j \text{ si } i < j)$, dont les puissances e_i sont strictement positives:

$$a = p_1^{e_1} * p_2^{e_2} * p_3^{e_3} * \dots * p_k^{e_k}$$
 p_i nombre premier $(i = 1, \dots, k)$

Exemple: $a = 3500 = 2^2 * 5^3 * 7^1$

On représente un tel nombre dans un tableau de structure T de taille k tel que: T[i].prem est le nombre premier p_i et T[i].expo est son exposant e_i Soient a et b deux entiers positifs sous forme de produit de facteurs premiers représentés dans deux tableaux T1 et T2 de taille respective n1 et n2:

$$a=p_1^{e_1}*p_2^{e_2}*p_3^{e_3}*\cdots*p_{n_1}^{e_{n_1}}$$
 et $b=p_1^{f_1}*p_2^{f_2}*p_3^{f_3}*\cdots*p_{n_2}^{f_{n_2}}$
Exemple:

Si $a = 3500 = 2^2 * 5^3 * 7^1$ et $b = 392 = 2^3 * 7^2$ alors $PGCD(a, b) = 2^2 * 7^1$.

- a) Écrire une fonction itérative PGCD (T1, T2: tableau; n1, n2: entier): entier qui retourne le PGCD des entiers contenus dans T1 et T2.
- b) Définir l'invariant de boucle de l'algorithme. Indication: si on note T le tableau contenant un entier $a=p_1^{e_1}*p_2^{e_2}*p_3^{e_3}*\cdots*p_k^{e_k}$, on note $T^j(j<=k)$ le sous tableau qui représente l'entier $p_1^{e_1}*p_2^{e_2}*p_3^{e_3}*\cdots*p_j^{e_j}$
- c) Prouver la validité de l'algorithme.
- d) Donnez la complexité du cas pire de l'algorithme.

¹On prend les facteurs premiers en commun avec les minimums des exposants.