# **The Matrix Singular Value Decomposition**

The Singular Value Decomposition (SVD) of a matrix  $A \in \mathbb{R}^{n \times m}$  is a decomposition of the form

$$A = U\Sigma V^T$$

where  $U \in \mathbb{R}^{n \times n}$  and  $V \in \mathbb{R}^{m \times m}$  are orthogonal matrices and  $\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$  is a diagonal matrix with

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$$

for  $p = \min\{n, m\}$ .

The Singular Value Decomposition (SVD) of a matrix  $A \in \mathbb{R}^{n \times m}$  is a decomposition of the form

$$A = U\Sigma V^T$$

where  $U \in \mathbb{R}^{n \times n}$  and  $V \in \mathbb{R}^{m \times m}$  are orthogonal matrices and  $\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$  is a diagonal matrix with

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$$

for  $p = \min\{n, m\}$ .

If A is a complex  $n \times m$  matrix, then the above decomposition holds with T replaced by \* so that U and V are unitary matrices. However  $\Sigma$  remains unchanged.

The Singular Value Decomposition (SVD) of a matrix  $A \in \mathbb{R}^{n \times m}$  is a decomposition of the form

$$A = U\Sigma V^T$$

where  $U \in \mathbb{R}^{n \times n}$  and  $V \in \mathbb{R}^{m \times m}$  are orthogonal matrices and  $\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$  is a diagonal matrix with

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$$

for  $p = \min\{n, m\}$ .

If A is a complex  $n \times m$  matrix, then the above decomposition holds with T replaced by \* so that U and V are unitary matrices. However  $\Sigma$  remains unchanged.

The numbers  $\sigma_1, \sigma_2, \dots, \sigma_p$  are called the singular values of A.

Every matrix has an SVD. For example, the SVD of

$$A := \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T,$$

Every matrix has an SVD. For example, the SVD of

$$A := \left[ \begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] = \left[ \begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right] \left[ \begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right] \left[ \begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]^T,$$

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}',$$

Every matrix has an SVD. For example, the SVD of

$$A := \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T,$$

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^{T},$$

$$D := \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}^T.$$

Every matrix has an SVD. For example, the SVD of

$$A := \left[ \begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] = \left[ \begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right] \left[ \begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right] \left[ \begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]^T,$$

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^T,$$

$$D := \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}^T.$$

Clearly if  $A = U \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) V^T$  is the SVD of A and rank A = r, then the first r singular values  $\sigma_1 \ge \dots \ge \sigma_r > 0$  with  $\sigma_k = 0$  for  $k = r + 1, \dots, p$  if r < p.

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

Theorem Every matrix has a Singular Value Decomposition.

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

(a) 
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$$

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

(a) 
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$$
 (Exercise!)

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

- (a)  $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$  (Exercise!)
- (b)  $A^* = V \Sigma^T U^*$  is an SVD of  $A^*$ .

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

- (a)  $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$  (Exercise!)
- (b)  $A^* = V \Sigma^T U^*$  is an SVD of  $A^*$ . (Exercise!)

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,  $Av_i = \sigma_i u_i$  and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

- (a)  $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$  (Exercise!)
- (b)  $A^* = V \Sigma^T U^*$  is an SVD of  $A^*$ . (Exercise!)
- (c)

$$R(A) = \text{span}\{u_1, \dots, u_r\},$$
  $N(A) = \text{span}\{v_{r+1}, \dots, v_m\}$   
 $R(A^*) = \text{span}\{v_1, \dots, v_r\}$   $N(A^*) = \text{span}\{u_{r+1}, \dots, u_n\}.$ 

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,  $Av_i = \sigma_i u_i$  and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

- (a)  $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$  (Exercise!)
- (b)  $A^* = V \Sigma^T U^*$  is an SVD of  $A^*$ . (Exercise!)
- (c)

$$R(A) = \text{span}\{u_1, \dots, u_r\},$$
  $N(A) = \text{span}\{v_{r+1}, \dots, v_m\}$   
 $R(A^*) = \text{span}\{v_1, \dots, v_r\}$   $N(A^*) = \text{span}\{u_{r+1}, \dots, u_n\}.$ 

(d) 
$$||A||_2 = \sigma_1$$
.

If 
$$U = [u_1 \cdots u_n]$$
 and  $V = [v_1 \cdots v_m]$ , then for  $i = 1, \dots, p$ ,

$$Av_i = \sigma_i u_i$$
 and  $u_i^* A = \sigma_i v_i^*$ 

Hence  $u_i$  and  $v_i$  are respectively left and right singular vectors of A corresponding to  $\sigma_i$ .

**Theorem** Every matrix has a Singular Value Decomposition.

**Theorem** Let  $A = U\Sigma V^*$  be an SVD of  $A \in \mathbb{F}^{n \times m}$  with rank A = r.

(a) 
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$$
 (Exercise!)

(b) 
$$A^* = V\Sigma^T U^*$$
 is an SVD of  $A^*$ . (Exercise!)

(c)

$$R(A) = \text{span}\{u_1, \dots, u_r\},$$
  $N(A) = \text{span}\{v_{r+1}, \dots, v_m\}$   
 $R(A^*) = \text{span}\{v_1, \dots, v_r\}$   $N(A^*) = \text{span}\{u_{r+1}, \dots, u_n\}.$ 

(d) 
$$||A||_2 = \sigma_1$$
.

(e) 
$$\|A\|_F = \sqrt{\sum_{k=1}^r \sigma_k^2}$$
.

(Here 
$$\mathbb{F} = \mathbb{R}$$
 or  $\mathbb{F} = \mathbb{C}$ .)



**Corollary** Let  $A = U\Sigma V^*$  be an SVD of  $A \in \mathbb{F}^{n \times m}$ .

(a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $||A^{-1}||_2 = \frac{1}{\sigma_n}$ .

**Corollary** Let  $A = U\Sigma V^*$  be an SVD of  $A \in \mathbb{F}^{n \times m}$ .

(a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $||A^{-1}||_2 = \frac{1}{\sigma_n}$ . (Exercise!)

- (a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$ . (Exercise!)
- (b) If  $p = \min\{m, n\}$ , then assuming  $\kappa_2(A) = \frac{\max a_A^I}{\min a_B A^T}$  if n < m,  $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$

- (a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$ . (Exercise!)
- (b) If  $p = \min\{m, n\}$ , then assuming  $\kappa_2(A) = \frac{\max \operatorname{ag} A^T}{\min \operatorname{ag} A^T}$  if n < m,  $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if } \operatorname{rank} A = p, \\ \infty & \text{otherwise} \end{cases}$  (Exercise!)

- (a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$ . (Exercise!)
- (b) If  $p = \min\{m, n\}$ , then assuming  $\kappa_2(A) = \frac{\max a A^T}{\min A A}$  if n < m,  $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$  (Exercise!)
- (c) Assuming,  $\sigma_k = 0$  for  $k > \min\{m, n\}$ ,  $A^*Av_i = \sigma_i^2 v_i$ , i = 1, ..., m, and  $AA^*u_j = \sigma_j^2 u_j$ , j = 1, ..., n.

- (a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$ . (Exercise!)
- (b) If  $p = \min\{m, n\}$ , then assuming  $\kappa_2(A) = \frac{\max a A^T}{\min A A}$  if n < m,  $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$  (Exercise!)
- (c) Assuming,  $\sigma_k = 0$  for  $k > \min\{m, n\}$ ,  $A^*Av_i = \sigma_i^2v_i$ , i = 1, ..., m, and  $AA^*u_j = \sigma_j^2u_j$ , j = 1, ..., n. (Exercise!)

- (a) If A is square and nonsingular, then  $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$  is an SVD of  $A^{-1}$  and where F is the  $n \times n$  'flip' matrix and  $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$ . (Exercise!)
- (b) If  $p = \min\{m, n\}$ , then assuming  $\kappa_2(A) = \frac{\max A^T}{\min A}$  if n < m,  $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$  (Exercise!)
- (c) Assuming,  $\sigma_k = 0$  for  $k > \min\{m, n\}$ ,  $A^*Av_i = \sigma_i^2 v_i$ , i = 1, ..., m, and  $AA^*u_j = \sigma_i^2 u_j$ , j = 1, ..., n. (Exercise!)
- (d) If n=m and A is a singular matrix, then for any  $\epsilon>0$ , there exists a nonsingular matrix  $B\in\mathbb{F}^{n\times n}$  such that  $\|A-B\|_2<\epsilon$ .