Text Mining: High-Dimensional datasets clustering

Ricardo Navares

Abstract

Clustering is an unsupervised technique for grouping a set of objects in such way that objects in the same group are more similar in some sense or another to each other than to those in other groups. There are several decisions to be taken before tackling the problem such as the number of groups to use, the measures to use in order to decide which element belongs to which group... These questions will be addressed showing the advantages and disadvantages of each configuration.

Introduction

Clustering is the task to classify objects without previous knowledge of the class they belong as opposed to classification. A wrapper to $\rm CLUTO^1$ software is used to access this tool for high-dimensional datasets clustering on a collection of documents from Reuters-2178

The first part serves as a review of the theoretical concepts needed to understand the algorithms. Concretely, agglomerative clustering and K-means will be covered. The main difference between both techniques is that K-means initialize the grouping from a predefined number of centroids while in the agglomerative case, each element represents a cluster and iteratively the are grouped to form bigger clusters. Clustering consists on either moving the centroids or sequentially forming small clusters until the space of elements are combined in a predefined number of groups. Different measures and functions used to build the clusters will be covered in the case of the agglomerative algorithm, for K-means these functions define cecutroids relocation.

Finally, we will compare all possible configurations based on the quality measures and entropy and purity of the clusters. For this specific example

¹http://glaros.dtc.umn.edu/gkhome/views/cluto/

Collection	Source	num. Documents	num. Terms	num. Classes
re0	Reuters-21578	1504	2886	13
re1	Reuters-21578	1657	3758	25

Table 1: $re\theta$ and re1 specifications

an optimal solution will be provided to help the reader to understand the process step by step.

Documents

The documents belong to the Reuters-21578 collection, indexed and categorized by Reuters. This set is distributed in 22 files, each of them containing 1000 documents in SGML format. Please notice this description is based on version 1.0~(2004)~[1] and its constent might be updated. Concretely, collections re0 and re1 was used as shown in Table 1

theoretical background

Document clustering consists on applying analysis techniques to documents in order to organize, categorize and extract information from them. The most common algorithms lay in two main types, hierarchical and based on K-means and their variants [2].

Hierarchical algorithms generate a dendrogram where each intermediate levels can be interpreted as the combination of the clusters of its inferior level. There are two types of hierarchical cluster, agglomerative and divisive. We will focus on the agglomerative kind. The task starts with one cluster per individual element or class and, sequentially at each step combines pairs according to their similarity.

As opposed to hierarchical clustering the are several partition-based techniques. Since these ones are numerous we will focus on basic K-means algorithm which is the most commonly used. Given a predefined number of K clusters, the centroids are defined, these can be interpret as the center of each group based on a distance metric. At each step the ceentroids are updated trying to minimize the distance to each element of the cluster.

Similarity measures

A similarity measure is a function to quantify how similar two elements are. It can be interpret as a measure inversed to distance, it is, longer distance

lower similarity and viceversa. One of the most common similarity measures used [3] is provided by the cosine function,

$$cos(d_i, d_j) = \frac{d_i^t \cdot d_j}{\|d_i\| \|d_j\|}$$
 (1)

Given this function is defined for vectors and it is intended to classify documents, unary vectors can be used to simplify (1) to $cos(d_i, d_j) = d_i^t \cdot d_j$. It is clearly interpretable and it is related to the orientation of the vector. Vectors with identical orientation (0°), will have a cosine equal to 1. Similarly, two orthogonal vectors (90°) have a cosine equal to 0 and consequently the will not be similar. Same applies to documents.

The second most common measure proposed by [3] is the euclidean distance but it is defined for criterion functions based on graphs and does not apply in this case. As an alternative we can use the correlation defined by (2)

$$corr(d_i, d_j) = \frac{(d_i - \overline{d_i})(d_j - \overline{d_j})}{\|d_i - \overline{d_i}\| \|d_j - \overline{d_j}\|}$$
(2)

Where $\overline{d_i}$ and $\overline{d_j}$ are the means. By definition, correlation takes values in the interval [-1,1]. Being 1 a perfect correlation, ergo identical documents and -1 representing completely different documents.

Criterion functions

Given a cluster contains several elements or objects, in practice there are many candidates on which the similarity measures can be applied. As this number can be extremely high, there is a need to apply a criteria in order to select a reduce set on which the functions will be applied. There are 4 types of criterion functions [3]: internal, external, hybrid and graph-based. We will only cover two of them, an internal \mathcal{I}_2 and a hybrid one \mathcal{H}_1 based on the results obtained in Zhao et al. [3] which show for these two metrics better entropies and purities.

An internal function only takes into account those elements which belong to a cluster, ignoring the elements that were assign to other clusters. Concretely, it optimize the function define for the set of documents that belong to the cluster,

maximize
$$\mathcal{I}_2 = \sum_{r=1}^k \sum_{d_i \in S_r} \cos(d_i, C_r)$$
 (3)

being k the number of clusters, S_i the subsety of elements (documents) of cluster i and C_i the centroid of the cluster. An hybrid function combine those internal and external functions. It is evident that an external function, as opposed to internal, takes only into consideration the of other clusters. An hybrid function is defined as follows,

maximize
$$\mathcal{H}_1 = \frac{\mathcal{I}_1}{\mathcal{E}_1}$$
 (4)

where the externl function is defined by the similarity cosine functions between the centroid of cluster C_r and the vector of remaining centroid C weighting by the number of elements n in the cluster.

$$\mathcal{E}_1 = \sum_{r=1}^k n_r \cdot \cos(C_r, C) \tag{5}$$

and the internal function is defined by the sum of similarity means of the documents of each cluster weighted by the size of the cluster.

$$\mathcal{I}_1 = \sum_{r=1}^k n_r \left(\frac{1}{n_r^2} \sum_{d_i, d_j \in S_r} \cos(d_i, d_j) \right)$$

$$\tag{6}$$

Algorithm evaluation

In order to evaluate the quality of an algorithm we can use the entropy which measures how the elements (documents) are distributed in each cluster,

$$E(S_r) = -\frac{1}{\log q} \sum_{i=1}^{q} \frac{n_r^i}{n_r} \log \frac{n_r^i}{n_r}$$
 (7)

where q is the class which contains the document and n_r^i the number of documents of class i. The entropy of the solution is defined by the sum of entropies of the clusters weighted by the size of the cluster,

$$E = \sum_{r=1}^{k} \frac{n_r}{n} E(S_r) \tag{8}$$

It can be clearly seen that a cluster with only one class q of element (document) leads in (7) to the condition $n_r^i = n_r$ and, consequently, the logarithm is equal to 0, thus a perfect classification. As a second measure, purity represents the most representative class in each cluster weighted by the cluster size,

$$P(S_r) = \frac{1}{n_r} \max_i(n_r^i) \tag{9}$$

being i the class. The total purity is defined by,

$$P = \sum_{r=1}^{k} \frac{n_r}{n} P(S_r) \tag{10}$$

Again, a perfect clustering condition implies that each cluster contains only one class so $n_r = \max_i(n_r^i)$ and the total purity will be equal to the number of clusters k.

Material and methods

The experiments are taylored using CLUTO² through command line *vcluster*. This tool provides an interface to the implementation of the methods described in the previous sections. Several configurations will be tests in order to compare the metrics and evaluate the idoneity of each solution.

Execution

The wrapper main.sh to CLUTO was written in the scriptting language BASH 3 which asks the user how many clusters are wanted to be executed. The results are provided in text files for each execution. The following files are needed:

```
../
- vcluster
- main.sh
- re0.mat
- re0.mat.rclass
- re1.mat
- re1.mat
```

²http://glaros.dtc.umn.edu/gkhome/views/cluto/

³https://www.gnu.org/software/bash/

```
echo -n "Enter number of clusters for re0 [ENTER]: "
   read nclusters
   algorithm = ("direct" "agglo")
   similarity=("cos" "corr")
    criteria = ("i2" "h1")
    echo -ne "Calculating re0"
    for i in ${algorithm[@]}; do
      for j in ${similarity[@]}; do
9
        for k in ${criteria[@]}; do
10
            cmd="./vcluster -rclassfile=re0.mat.rclass -clmethod=$i
11
                   .
—sim=$j —crfun=$k reO.mat $nclusters";
12
            eval $cmd>>resultados_re0.txt;
            echo -ne ".";
14
        done
15
16
     done
    done
17
    echo "Finish"
19
    echo -n "Enter number of clusters for re1 [ENTER]: "
20
    read nclusters
21
22
    echo -ne "Calculating re1"
23
24
    for i in ${algorithm[@]}; do
      for j in ${similarity[@]}; do
        for k in ${criteria[@]}; do
26
            cmd \!\!=\! "./vcluster-rclassfile \!\!=\! re1.mat.rclass-clmethod \!\!=\!\! \$i
27
                   -sim=$j -crfun=$k re1.mat $nclusters";
28
29
            eval $cmd>>resultados_re1.txt;
30
            echo -ne ".";
31
        done
      done
32
33
   done
34
    echo "Finish"
35
36
    exit 0;
```

Command vcluster

It is required to execute CLUTO via command line with the following parameters:

- **-rclassfile**: File .mat.rclass which contains the classes to which the docuemnts belong in order to identify the clusters.
- -clmethod: Algorithm to be used. "direct" for K-means and "agglo" agglomerative
- -sim: Similarity measure. "cos" cosine and "corr" correlation
- -crfun: Criterion function. "i2" for \mathcal{I}_2 and "h1" for \mathcal{H}_1

- fichero.mat: File with the data
- n: Number of clusters (K)

```
./vcluster -rclassfile= -clmethod= -sim= -crfun= fichero.mat n
```

Number of clusters

The scripts results show the entropy for each configuration. At first sight, it makes sense to define a number of clusters equal to the number of classes of each collection as shown in Table 1. It is 13 for $re\theta$ and 25 for re1, as in the execution of the following part,

```
echo "Calculating optimal number of clusters for re0:"
clusters=("5" "7" "8" "9" "10" "11" "12" "13")
 2
     for i in ${clusters[@]}; do
       cmd="./vcluster re0.mat $i | grep -o 'Entropy: 0.[0-9][0-9][0-9]' |
                sed 's/\Entropy: //g'
 8
           entropy=$(eval $cmd)
 9
          echo "Entropy for $i clusters: $entropy"
10
     done
11
12
     echo "Calculating optimal number of clusters for re1:" clusters=("5" "10" "15" "20" "21" "22" "23" "24" "25")
13
14
15
     for i in ${clusters[@]}; do
    cmd="./vcluster re1.mat $i |
16
17
                grep -o 'Entropy: 0.[0-9][0-9]' | sed 's/\Entropy: //g'"
18
19
           entropy=$(eval $cmd)
20
           echo "Entropy for $i clusters: $entropy"
21
     done
```

provides,

```
Calculating optimal number of clusters for re0:
Entropy for 5 clusters: 0.518
Entropy for 7 clusters: 0.448
Entropy for 8 clusters: 0.445
Entropy for 9 clusters: 0.412
Entropy for 10 clusters: 0.403
Entropy for 11 clusters: 0.397
Entropy for 12 clusters: 0.396
Entropy for 13 clusters: 0.395
Calculating optimal number of clusters for re1:
Entropy for 5 clusters: 0.476
Entropy for 10 clusters: 0.406
Entropy for 15 clusters: 0.351
Entropy for 20 clusters: 0.314
Entropy for 21 clusters: 0.309
Entropy for 22 clusters: 0.309
Entropy for 23 clusters: 0.305
Entropy for 24 clusters: 0.299
Entropy for 25 clusters: 0.298
```

It can be clearly see that the entropy decreases as the number of clusters increase, although its value is problem-specific and depending on what the user wants it can be set to a different number depending on the needs. In order to compare the metrics and to save execution time, henceforth we will set K=5 which also makes it easier to show the results in tables.

Results and discussion

Algorithm comparison

To compare the algorithms, as a first step of the analysis we are using the default values with CLMethod=XXX indicating the algorithm XXX which will be "agglo" or "direct".

Table 2 shows the entropies and the purities of each algorithm applied on each collection of documents. It is shown that the K-menas obtains lower entropies for both cases with also higher purities.

		Entropy	Purity
K-means	re0	0.516	0.471
	re1	0.479	0.556
Agglomerative	re0	0.623	0.465
	re1	0.765	0.274

Table 2: Algorithm comparison: clustering quality

Algorithm	cid	Size	ISim	ISdev	ESim	ESdev	Entpy	Purty
K-mean	0	117	0.458	0.128	0.033	0.008	0.16	0.906
	1	175	0.189	0.072	0.034	0.013	0.357	0.72
	2	408	0.094	0.03	0.031	0.012	0.932	0.145
	3	252	0.082	0.025	0.032	0.015	0.32	0.639
	4	552	0.06	0.02	0.026	0.012	0.423	0.466
Agglomerative	0	1	1	0	0.013	0	0	1
	1	3	0.427	0.044	0.021	0.004	0.428	0.333
	2	485	0.061	0.021	0.028	0.013	0.436	0.458
	3	80	0.164	0.053	0.026	0.01	0.026	0.988
	4	935	0.063	0.023	0.028	0.013	0.772	0.425

Table 3: Algorithm comparison::Internal and external metrics for re0

The reason is shown in Tables 3 and 4 where cluster C_4 is way bigger compared to the rest, contianing many objects of different classes. As a result it gets high entropy and low purity,

Algorithm	cid	Size	ISim	ISdev	ESim	ESdev	Entpy	Purty
K-means	0	194	0.10	0.04	0.02	0.01	0.49	0.48
	1	225	0.09	0.03	0.02	0.01	0.52	0.44
	2	402	0.06	0.02	0.02	0.01	0.35	0.74
	3	480	0.05	0.02	0.02	0.01	0.47	0.66
	4	356	0.04	0.01	0.01	0.01	0.61	0.33
Agglomerative	0	8	0.28	0.07	0.01	0.00	0.41	0.38
	1	8	0.21	0.04	0.01	0.00	0.23	0.75
	2	3	0.41	0.04	0.01	0.01	0.20	0.67
	3	176	0.06	0.02	0.01	0.01	0.40	0.58
	4	1462	0.03	0.01	0.01	0.01	0.82	0.23

Table 4: Algorithm comparison::Internal and external metrics for re1

For $re\theta$ in Table Appendix A.1 it can be seen that clusters C_0 and C_1 contain very few classes for agglomerative clustering. Situation extended to C_2 for re1 collection in Table Appendix A.2. High purity is achieved in these cases but clusters with very few clases are not convenient in this example as their entropy and the external metrics are low in similar proportion.

Comparison similarity functions

Shell command to compare similarity functions and the default options needed are shown below. Notice that SimFun=XXX specifices function XXX which can be cosiene ("Cosine") or correlation ("CorrCoef").

		Entropy	Purity
Cosine	re0	0.518	0.513
	re1	0.476	0.543
Correlation	re0	0.498	0.580
	re1	0.560	0.512

Table 5: Comparison similarity functions: clustering quality

We can see in Table 5 which function fits to each set. It looks like the cosine function obtains better results both entropy and purity for $re\theta$ collection while te correlation function fits better for $re\theta$. Tables 6 and 7 show that the correlation function along with the external measures are bigger when the cosine function is used, telling a bigger cluster differentiation.

Tables Appendix A.3 and Appendix A.4 show the clusters per class. Special attention deserves Table Appendix A.3 for re0 collection. Using the cosine function, cluster number 2 contains similar amount of elements for each class, consequently its purity decreases which can be supplemented with Table 5 that it shows a more equitative distribution. On the other hand Table Appendix A.4 shows a better distribution of the classes for re1.

Function	cid	Size	ISim	ISdev	ESim	ESdev	Entpy	Purty
Cosine	0	127	0.41	0.14	0.03	0.01	0.22	0.86
	1	185	0.18	0.07	0.04	0.01	0.31	0.74
	2	347	0.10	0.03	0.03	0.01	0.94	0.14
	3	377	0.07	0.02	0.03	0.01	0.31	0.57
	4	468	0.06	0.02	0.03	0.01	0.54	0.56
Correlation	0	139	0.49	0.14	0.10	0.03	0.24	0.85
	1	286	0.26	0.07	0.08	0.03	0.61	0.45
	2	572	0.23	0.07	0.07	0.03	0.79	0.31
	3	258	0.18	0.05	0.05	0.03	0.17	0.90
	4	249	0.18	0.07	0.07	0.03	0.20	0.87

Table 6: Comparison similarity functions: External and internal measures for re0

Function	cid	Size	ISim	ISdev	ESim	ESdev	Entpy	Purty
Cosine	0	203	0.10	0.04	0.02	0.01	0.49	0.47
	1	314	0.07	0.03	0.02	0.01	0.63	0.32
	2	368	0.06	0.02	0.02	0.01	0.26	0.81
	3	393	0.06	0.02	0.02	0.01	0.37	0.73
	4	379	0.04	0.01	0.01	0.01	0.66	0.31
Correlation	0	447	0.16	0.06	0.04	0.02	0.67	0.42
	1	459	0.13	0.05	0.04	0.02	0.46	0.66
	2	213	0.12	0.06	0.04	0.02	0.62	0.39
	3	263	0.08	0.03	0.04	0.02	0.45	0.66
	4	275	0.07	0.03	0.03	0.02	0.60	0.38

Table 7: Comparison similarity functions: External and internal measures for rel

		Entropy	Purity
I2	re0	0.518	0.513
	re1	0.476	0.543
H1	re0	0.515	0.508
	re1	0.504	0.551

Table 8: Comparison criterion functions: clustering quality

Criterion functions comparison

Line commands are defined as follows. Notice that CRfun=XX specifies function XX, being either hybrid ("H1") or internal ("I2")

Table 8 shows better results for $re\theta$ for the hybrid function as it obtains higher entropy and purity, this does not happen for the collection re1. Internal and external metrics are shown in Tables 9 and 10. It is obtained in \mathcal{H}_1 similart internal an external metrics values which defines the convenience of this function. Table Appendix A.5 for $re\theta$ clearly shows the term "mone" with high representation on each cluster so the algorithms does not manage to classify it propoerly. Besides, there are significative differences between both functions when categorizing the classes of this collection. In re1 the results are similar for both metrics as shown in Table Appendix A.6.

Function	$_{ m cid}$	Size	ISim	ISdev	ESim	ESdev	Entpy	Purty
I2	0	127	0.41	0.14	0.03	0.01	0.22	0.86
	1	185	0.18	0.07	0.04	0.01	0.31	0.74
	2	347	0.10	0.03	0.03	0.01	0.94	0.14
	3	377	0.07	0.02	0.03	0.01	0.31	0.57
	4	468	0.06	0.02	0.03	0.01	0.54	0.56
H1	0	108	0.51	0.10	0.03	0.01	0.09	0.95
	1	157	0.22	0.07	0.04	0.01	0.31	0.74
	2	389	0.10	0.03	0.03	0.01	0.93	0.17
	3	393	0.07	0.02	0.03	0.01	0.31	0.55
	4	457	0.06	0.02	0.03	0.01	0.51	0.57

Table 9: Comparison criterion functions: IOnternal and external metrics for re0

Function	cid	Size	ISim	ISdev	ESim	ESdev	Entpy	Purty
I2	0	203	0.10	0.04	0.02	0.01	0.49	0.47
	1	314	0.07	0.03	0.02	0.01	0.63	0.32
	2	368	0.06	0.02	0.02	0.01	0.26	0.81
	3	393	0.06	0.02	0.02	0.01	0.37	0.73
	4	379	0.04	0.01	0.01	0.01	0.66	0.31
H1	0	146	0.14	0.04	0.02	0.01	0.32	0.60
	1	200	0.10	0.04	0.02	0.01	0.44	0.48
	2	494	0.05	0.02	0.02	0.01	0.45	0.60
	3	474	0.05	0.02	0.02	0.01	0.47	0.66
	4	343	0.03	0.01	0.02	0.01	0.74	0.36

Table 10: Comparison criterion functions: IOnternal and external metrics for re1

Putting all together

Table 11 shows all the combinations of the selecter parameters. Agglomerative clustering with the correlation function and \mathcal{H}_1 obtains lower entropies and higher purities. As a general approach, it is more convenient the correlation function as a similarity measure either for both algorithms. On hte other hand, the results for re1 are the contrary, being the cosine function with \mathcal{I}_2 the best configuration of metrics as shown in Table 12.

Conclusions

We have checked diverse cluster configurations and metrics to evaluate the performance of the algorithms over two collection of documents from Reuters. Give the two different problem characteristics we saw that an optimal configuration for one problem might not apply to other. Additionally

		E	Intropy	Purity		
		K-means	Agglomerative	K-means	Agglomerative	
Cosino	I2	0.516	0.546	0.471	0.465	
	H1	0.512	0.569	0.465	0.527	
Correlation	I2 H1	0.491 0.498	0.497 0.475	0.548 0.529	0.476 0.559	

Table 11: Comparison re0 with K=5

		E	Intropy	Purity		
		K-means	Agglomerative	K-means	Agglomerative	
Cosino	I2	0.479	0.564	0.556	0.482	
	H1	0.489	0.571	0.551	0.461	
Correlation	I2	0.548	0.571	0.513	0.499	
	H1	0.633	0.565	0.414	0.492	

Table 12: Comparison re1 with K=5

we exposed the need to research the influence of each parameter over each algorithm to obtain optimal results.

References

- [1] David D. Lewis. Reuters-21578 text categorization test collection. http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt. 2004.
- [2] Michael Steinbach, George Karypis, Vipin Kumar. Dept. of Computer Eng. University of Minnesota A comparison of document clustering techniques. 2000.
- [3] Ying Zhao, George Karypis. Dept. of Computer Eng. University of Minnesota. Criterion functions for document clustering. Experiments and analysis. 2002.

class		K	-mear	ıs			A	gglome	rative	
cid	0	1	2	3	4	0	1	2	3	4
hous	0	0	15	0	1	0	0	0	0	16
mone	106	126	51	82	243	0	1	210	0	397
trad	5	1	54	2	257	0	1	222	1	95
rese	0	12	23	1	6	0	0	5	0	37
cpi	0	2	54	1	3	0	0	2	0	58
inte	4	29	4	161	21	1	1	32	79	106
gnp	0	1	59	4	16	0	0	5	0	75
reta	0	0	20	0	0	0	0	2	0	18
ipi	0	0	36	0	1	0	0	3	0	34
jobs	0	4	32	0	3	0	0	1	0	38
lei	0	0	11	0	0	0	0	2	0	9
bop	2	0	34	1	1	0	0	1	0	37
wpi	0	0	15	0	0	0	0	0	0	15

Table Appendix A.1: Algorithm comparison: Class classification for re0

class			K-mea	ns			Ag	glom	erative	
cid	0	1	2	3	4	0	1	2	3	4
coco	42	0	0	6	0	0	0	0	0	48
grai	1	39	3	316	12	2	1	2	25	341
veg	0	45	4	10	1	0	0	0	1	59
whea	0	1	0	18	0	0	0	0	0	19
copp	1	0	0	0	36	0	0	0	0	37
coff	93	0	3	3	0	1	0	0	0	98
suga	1	99	0	5	1	3	0	0	1	102
ship	2	0	4	14	117	2	0	0	102	33
cott	1	0	0	16	0	0	0	0	0	17
carc	2	6	0	5	7	0	1	0	0	19
crud	0	1	297	0	32	0	0	0	33	297
nat	0	0	27	0	0	0	0	0	0	27
meal	0	2	0	13	0	0	0	0	1	14
alum	0	0	1	4	26	0	0	0	0	31
oils	0	10	0	33	7	0	0	1	6	43
gold	0	0	0	0	87	0	0	0	1	86
tin	11	0	1	1	5	0	0	0	5	13
live	6	13	0	20	3	0	6	0	0	36
iron	0	4	7	7	13	0	0	0	0	31
rubb	26	0	2	2	2	0	0	0	0	32
zinc	0	2	1	0	7	0	0	0	0	10
oran	6	0	1	6	0	0	0	0	0	13
pet	2	1	14	1	0	0	0	0	1	17
dlr	0	0	20	0	0	0	0	0	0	20
gas	0	2	17	0	0	0	0	0	0	19

Table Appendix A.2: Algorithm comparison: Class classification for re1

class			Cosine)			C	orrelati	on	
cid	0	1	2	3	4	0	1	2	3	4
hous	1	0	14	0	1	0	2	14	0	0
mone	109	137	49	214	99	118	129	126	18	217
trad	6	0	49	3	261	10	56	9	233	11
rese	0	12	20	2	8	0	37	3	0	2
cpi	0	0	50	1	9	0	1	57	1	1
inte	9	32	7	156	15	2	24	175	1	17
gnp	0	0	26	1	53	2	2	73	2	1
reta	0	0	18	0	2	0	0	20	0	0
ipi	0	0	30	0	7	0	0	36	1	0
jobs	0	4	26	0	9	1	6	31	1	0
lei	0	0	10	0	1	0	0	11	0	0
bop	2	0	33	0	3	6	29	2	1	0
wpi	0	0	15	0	0	0	0	15	0	0

Table Appendix A.3: Similarity metrics: Class classification for re0

class			Cosin	е			Co	rrelati	ion	
cid	0	1	2	3	4	0	1	2	3	4
coco	48	0	0	0	0	8	2	36	2	0
grai	1	77	1	288	4	186	8	2	174	1
veg	0	46	7	6	1	19	38	0	2	1
whea	0	6	0	13	0	15	0	0	4	0
copp	0	1	0	0	36	8	13	3	1	12
coff	96	0	1	0	2	10	3	84	0	2
suga	2	99	0	5	0	80	0	13	11	2
ship	2	5	2	9	119	16	7	3	8	103
cott	1	1	0	14	1	4	1	3	8	1
carc	1	7	0	5	7	7	1	2	3	7
crud	1	1	297	1	30	1	302	0	0	27
nat	0	0	27	0	0	1	25	0	0	1
meal	0	10	0	5	0	13	1	0	1	0
alum	0	5	1	1	24	15	4	4	0	8
oils	0	25	0	18	7	25	7	0	11	7
gold	0	0	0	1	86	6	4	1	0	76
tin	9	2	0	0	7	6	1	5	0	6
live	7	13	0	19	3	6	5	7	22	2
iron	0	11	2	0	18	12	6	1	2	10
rubb	26	1	1	1	3	3	1	23	3	2
zinc	0	2	1	1	6	3	3	0	1	3
oran	7	0	0	6	0	0	0	4	9	0
pet	1	1	10	0	6	1	11	2	1	3
dlr	1	0	0	0	19	0	0	20	0	0
gas	0	1	18	0	0	2	16	0	0	1

Table Appendix A.4: Similarity metrics: Class classification for re1

Figure A.1: Solution rel CLMethod=Direct, CRfun=I2, SimFun=Cosine.

voluster (CLUTO 2.1.1) Copyright 2001-03, Regents of the University of Minnesota
Natria Enformation
Name: ret.ams, Resoc. 1857, #Columns: 3758, #MonZeros: 87228

Options
CLUBethodologicet, Coffuest2, Sisfus-Cosine, #Clusters: 5
RomAndelshome, ColModelshome, ColModelshome, ColModelshome, ColModelshome, ColModelshome, ColModelshome, Registers, #Registers, #Registers

class			I2					H1		
cid	0	1	2	3	4	0	1	2	3	4
hous	1	0	14	0	1	0	0	15	0	1
mone	109	137	49	214	99	103	117	68	216	104
trad	6	0	49	3	261	2	0	54	3	260
rese	0	12	20	2	8	0	10	26	1	5
cpi	0	0	50	1	9	0	0	51	1	8
inte	9	32	7	156	15	2	26	6	170	15
gnp	0	0	26	1	53	0	0	31	2	47
reta	0	0	18	0	2	0	0	19	0	1
ipi	0	0	30	0	7	0	0	34	0	3
jobs	0	4	26	0	9	0	4	26	0	9
lei	0	0	10	0	1	0	0	10	0	1
bop	2	0	33	0	3	1	0	34	0	3
wpi	0	0	15	0	0	0	0	15	0	0

Table Appendix A.5: Comparison criterion functions: Class classification for re0

class			12					H1		
cid	0	1	2	3	4	0	1	2	3	4
coco	48	0	0	0	0	38	0	0	9	1
grai	1	77	1	288	4	0	40	0	311	20
veg	0	46	7	6	1	0	40	7	11	2
whea	0	6	0	13	0	0	4	0	15	0
copp	0	1	0	0	36	1	0	27	0	9
coff	96	0	1	0	2	87	0	1	4	7
suga	2	99	0	5	0	1	97	0	6	2
ship	2	5	2	9	119	0	0	2	12	123
cott	1	1	0	14	1	0	0	1	14	2
carc	1	7	0	5	7	0	2	0	8	10
crud	1	1	297	1	30	0	1	295	0	34
nat	0	0	27	0	0	0	0	27	0	0
meal	0	10	0	5	0	0	1	0	14	0
alum	0	5	1	1	24	0	0	3	5	23
oils	0	25	0	18	7	0	9	0	33	8
gold	0	0	0	1	86	0	0	81	0	6
tin	9	2	0	0	7	2	0	0	3	13
live	7	13	0	19	3	0	5	1	15	21
iron	0	11	2	0	18	0	0	10	7	14
rubb	26	1	1	1	3	17	0	1	2	12
zinc	0	2	1	1	6	0	0	6	1	3
oran	7	0	0	6	0	0	0	0	4	9
pet	1	1	10	0	6	0	0	14	0	4
dlr	1	0	0	0	19	0	0	0	0	20
gas	0	1	18	0	0	0	1	18	0	0

Table Appendix A.6: Comparison criterion functions: Class classification for re1

Figure A.2: Solution re1 CLMethod=Direct, CRfun=H1, SimFun=Cosine.

\[\text{Number (CLUTO 2.1.1) Copyright 2000-00, Regents of the University of Minnesota
\[\text{Nature (CLUTO 2.1.1) Copyright 2000-00, Regents of the University of Minnesota
\[\text{Nature (CLUTO 2.1.1) Copyright 2000-00, Regents of the University of Minnesota
\[\text{Nature (CLUTO 2.1.1) Copyright 2000-00, Regents of the University of Minnesota
\[\text{Nature (CLUTO 2.1.1) Copyright 2000-00, Regents of the University of Minnesota
\[\text{CLUTO 2.1.1} \]
\[\te

Figure A.3: Solution re1 CLMethod=Direct, CRfun=I2, SimFun=CorrCoef.

vclus	ter (CL	UTO 2	1.1)	Copyri	ight	2001	1-83	, R	ege	ts o	of t	the	Unive	rsit	у о	f Mi	nnes	ota																								
	x Infor e: re1.																	-																								
CLM Row Col CST Solut:	ns ethod=D Model=N prune=1 ype=Bes ion cluste	irect one, i .00, i t, Ag	CRfu ColMod EdgePro	n=I2, el=Nor une=-1 m=0, /	Sim ne, 1.00 Aggl	Fun=C GrMod , Vtx oCRFu	corr del= dPru un=I	Coe SY- ne= 2,	F, a	Clu: NNI 0, I als:	ster ors: din(rs: =48 Comp , NI	onent ter=1	=5 0																												
C10	Size I																opp	COTT	sug	ja s	nip c	ott	car	c cr	ua	nat	mea.	ali	ım o	115	dore	t1	1 11	/e :	rron	rubb	211	ic or	an	pet	arr	gas
	395 +0											7	156	20		12	5	6		33	12	3		7	1	1	13	: :	12	21	3		5	6	12	3		3	Θ	2	Θ	2
1	411 +8	.143	8.648	+0.04	12 +	0.018	8 8.	352	Θ.	27		8	2 6	38		Θ	1	. 3		Θ	6	1	- 1	8 2	99	23	-	9	9	8	3		1	3	3	0		1 2	9	7	9 28	16
	255 +8												197			7			١.	9		9			1				7 A	14				7	4	25		2	5	6		9
4	299 +8												10	1		é	15	- 5			189	ค		7	27	1	- 1		2	-6	86			2	11	2		3	A	2		1
																																		· ·								
Timin	a Infor	matio																																								
T/0																																										
1/0								8	.02	se	2																															

Figure A.4: Solution rel CLMethod=Direct, CRfun=H1, SimFun=CorrCoef.

******		TO 2.1.1					****				****			***																			
vciust	er (CLU	10 2.1.1) cop	yrigi	1t 200.	-83,	кеде	ents c	or the	Unive	rsit	у от	minne:	ota																			
		ation at, #Row												-																			
Option	ıs																																
		rect, CR																															
		ne, ColM																															
		 60, Edge AggloF 																															
		, 55		, ,	,	,																											
Soluti	on													-																			
5-way	cluster	ing: [H1	=4.66	e-84	[165]	of 1	657	l. Ent	rony:	0.633	. Pur	rity:	0.41																				
cid S	size IS	im ISde	v E	Sim	ESdev	Entp	y Pt	urty	coco	grai	veg	whea	copp	coff	suga	ship	cott	car	rc cru	nat	meal	alum	oils	gold	tin	live	iron	rubb	zinc	oran	pet	dlr	gas
												• • • • • •											• • • • • •	• • • • • •		• • • • • •							
		224 +8.8 182 +8.8								72 135	18	2 15		- 5	73	. 12	5		4 3			. 1	. 5	5	1	7	18	6	. 2	1	5	9	1
		169 +8.6								135	31	15	8	8	/1	5	9		8 24	9 8	;	9	21	2	5 8	4 A	1	9	1 8	9	1	9	7
		689 +8.6								120	4	1	14	79		4	7		4			. 7	6	3	5	25			3	9	7	8	1
4	486 +8.	046 +8.0	19 +8	.027	+0.01	8.75	6 0.	.271	8	42	1	1	17	6	٤	118	4		8 42	16	. 6	14	- 11	75	7	6	11	5	4	3	4	12	5
		ation																															
T/C		ation						26 sec																									
	Isterino							32 sec																									
	ortina:							29 sec																									

Figure A.5: Solution re1 CLMethod=AGGLO, CRfun=I2, SimFun=Cosine.

uclue	er (C	LUTO	2.1.1)	Conve	rint	+ 200	1.0	2 D		nte	of i	the I	Unive	reir	of I	tinna	enta																			
VCIUS	(0	2010		сору	- ±9·	100.	1-0.	٥, ١٠	cyc				011240		,		JULU																			
			on																																	
Nan	e: re1	.mat,	#Rows:	1657	7, ±	Colum	ns:	375	8,	#Non	Zero	os: I	87328																							
Ontio	15																																			
			, CRfun																																	
			ColMod																																	
			EdgePr																																	
CST	/pe=Be:	st, A	ggloFro	m=Θ,	Agg	LOCRE	un=	12,	NTr	ials	=18,	, NI	ter=1	В																						
Solut	ion																																			
JULUE	LOII																																			
										-				Design		0 40	-																			
o-way	clust	ering	: [12=3	.84e-	+82]	[165]	7 0	† 16	5/]	, =11	ri of	ру. ч	0.004	, ru	itty.	0.40.	4																			
									:									SIII	na shi	n cott	care	crud	nat	meal	alum	oils	nold	tin	live	iron	rubb	zinc	oran	net	dlr	nas
			: [I2=3 ISdev						:									su	ga shi	cott	carc	crud	nat	meal	alum	oils	gold	tin	live	iron	rubb	zinc	oran	pet	dlr	gas
	Size :	ISim 8.046	ISdev +0.018	ES:	im 917	ESdev +0.66	E:	nt py	Pu 0.	17ty	cc	000 (grai 27	veg 2	whea 0	copp 3	coff	:	2 16	cott	carc	crud	nat 0	2		6	64		2			1	oran 0	3		
	268 +1 237 +1	ISim 0.046	ISdev +0.018 +0.034	+0.0	im 917 920	+0.00 +0.00	7 8 8 8	ntpy .538 .631	Pu 0.	373 354	cc	0C0 (grai 27	veg 2 4	whea 0	copp 3 27	coff		2 16	9 6	7	47 5	8	2 0	9	6	64	 8 17	2 0		 0 27	1 1	 0 0	3	9 9	 2 6
0 1 2	268 +1 237 +1 364 +1	ISim 0.046 0.071 0.058	1Sdev +8.018 +8.034 +8.021	+0.0 +0.0 +0.0	im 917 920 920	+0.00 +0.00 +0.00	7 8 8 8 8 8	.538 .631	9. 9. 9.	373 354 701	cc	0C0 (8 48 8	grai 27 11 17	veg 2 4 16	whea 0 0	copp 3 27 1	coff	3	2 16 5 0	9 6	7	47 5 255	8 1 26	2 0 0	 0 0 8	6 1 5	64 7 6	 8 17 1	2 0 1	8 8 2	0 27 0	1 1 0	9 9 9	3 0 7	0 0 0	2 8 15
	268 +1 237 +1 364 +1 392 +1	ISim 0.046 0.071 0.058 0.055	+8.918 +8.934 +8.921 +8.928	+9.0 +9.0 +9.0 +9.0	im 917 920 920	+9.98 +9.98 +9.98 +9.98	7 8 8 8 8 8 8 8	.538 .631 .394	9. 9. 9.	373 354 701 673	cc	0C0 (8 48 8	grai 27	veg 2 4	whea 0 0	copp 3 27	coff	3	2 16	9 6 4 2 3 6 2 14	7	47 5 255	8	2 0 0	 0 0 8	6 1 5	64 7 6 9	 8 17 1	2 0 1	8 8 2	0 27 0	1 1 9	9 9 9	3	0 0 0	gas 2 9 15 2
0 1 2	268 +1 237 +1 364 +1 392 +1	ISim 0.046 0.071 0.058 0.055	1Sdev +8.018 +8.034 +8.021	+9.0 +9.0 +9.0 +9.0	im 917 920 920	+9.98 +9.98 +9.98 +9.98	7 8 8 8 8 8 8 8	.538 .631 .394	9. 9. 9.	373 354 701 673	cc	8 48 8	grai 27 11 17 264	veg 2 4 16	whea 0 0	copp 3 27 1	coff 84	3	2 16 5 0 3 1	9 6 4 2 3 6 2 14	7	47 5 255 4	8 1 26	2 0 0	 0 0 8	6 1 5 21	64 7 6 9	9 17 1 9	2 0 1	8 8 2 2	0 27 0	1 1 0	9 9 9	3 0 7	0 0 0 2	
0 1 2 3 4	268 +1 237 +1 364 +1 392 +1 396 +1	ISim 0.046 0.071 0.058 0.055	1Sdev +8.018 +8.034 +8.021 +8.026	+0.0 +0.0 +0.0 +0.0	im 917 920 920 921 922	+0.00 +0.00 +0.00 +0.00 +0.00 +0.00	7 8 8 8 8 8 8 9 9 8	.538 .631 .394 .457	9. 9. 9. 9.	373 354 701 673 242	cc	8 48 8 5 3	27 11 17 264 52	veg 2 4 16 9 29	whea 0 0 19 0	3 27 1 4 2	coff 84 6	3	2 16 5 0 3 1	9 6 4 2 3 6 2 14	7	47 5 255 4	8 1 26	2 0 0	 0 0 8	6 1 5 21	64 7 6 9	9 17 1 9	2 0 1	8 8 2 2	0 27 0	1 1 0	9 9 9	3 0 7	0 0 0 2	15
0 1 2 3 4	268 +1 237 +1 364 +1 392 +1 396 +1	ISim 0.046 0.071 0.058 0.055	+8.918 +8.934 +8.921 +8.928	+0.0 +0.0 +0.0 +0.0	im 917 920 920 921 922	+0.00 +0.00 +0.00 +0.00 +0.00 +0.00	7 8 8 8 8 8 8 9 9 8	.538 .631 .394 .457	9. 9. 9. 9.	373 354 701 673 242	cc	8 48 8 5 3	27 11 17 264 52	veg 2 4 16 9 29	whea 0 0 19 0	3 27 1 4 2	coff 84 6	3	2 16 5 0 3 1	9 6 4 2 3 6 2 14	7	47 5 255 4	8 1 26	2 0 0	 0 0 8	6 1 5 21	64 7 6 9	9 17 1 9	2 0 1	8 8 2 2	0 27 0	1 1 0	9 9 9	3 0 7	0 0 0 2	2 6
0 1 2 3 4 Timin	268 +1 237 +1 364 +1 392 +1 396 +1	ISim 0.046 0.071 0.058 0.055 0.045	1Sdev +8.018 +8.034 +8.021 +8.026	+0.0 +0.0 +0.0 +0.0	im 917 920 920 921 922	+0.00 +0.00 +0.00 +0.00 +0.00 +0.00	7 8 8 8 8 8 8 9 9 8	.538 .631 .394 .457 .805	9. 9. 9. 9.	373 354 701 673 242	00	8 48 8 5 3	27 11 17 264 52	veg 2 4 16 9 29	whea 0 0 19 0	3 27 1 4 2	coff 84 6	3	2 16 5 0 3 1	9 6 4 2 3 6 2 14	7	47 5 255 4	8 1 26	2 0 0	 0 0 8	6 1 5 21	64 7 6 9	9 17 1 9	2 0 1	8 8 2 2	0 27 0	1 1 0	9 9 9	3 0 7	0 0 0 2	2 8 15
0 1 2 3 4 Timin I/Cl	268 +1 237 +1 364 +1 392 +1 396 +1	ISim 0.046 0.071 0.058 0.055 0.045 rmati	1Sdev +8.018 +8.034 +8.021 +8.026	+0.0 +0.0 +0.0 +0.0	im 917 920 920 921 922	+0.00 +0.00 +0.00 +0.00 +0.00 +0.00	7 8 8 8 8 8 8 9 9 8	.538 .631 .394 .457 .805	9. 9. 9. 9.	373 354 701 673 242	00	8 48 8 5 3	27 11 17 264 52	veg 2 4 16 9 29	whea 0 0 19 0	3 27 1 4 2	coff 84 6	3	2 16 5 0 3 1	9 6 4 2 3 6 2 14	7	47 5 255 4	8 1 26	2 9 9	 0 0 8	6 1 5 21	64 7 6 9	9 17 1 9	2 0 1	8 8 2 2	0 27 0	1 1 0	9 9 9	3 0 7	0 0 0 2	2 8 15

Figure A.6: Solution re1 CLMethod=AGGLO, CRfun=H1, SimFun=Cosine.

maiion	vclust	er (0	LUTO	2.1.1) Co	pyrig	ht 2	001-	83,	Re	ege	ents	01	f t	he	Univ	ers	ity	of	Mi	nne	sota																										
GEGO, Offunest, Simfunescaine, Scilaters: 5 GRE, Cindest, Simfunescaine, Similared Si																																																
Sin ISdew Esin Esdew Entry Furty coco grai veg whea copp coff suga ship cott carc crud nat meal alum cils gold tin live iron rubb zinc oran pet 1059 +0.618 +0.619 +0.61	CLMe RowM Colp CSTy	thod= odel= rune= pe=Be	None, 1.00,	ColMo Edger ggloFi	un=H odel Prun rom=	1, Si =IDF, e=-1. 0, Ag	GrM GrM GB, gloC	=Cos odel VtxF RFur	L=SY Prun n=H1	, n -DI e=-	IR,	NN 00,	brs M: s=1	s: s=4 inC 10,	5 10 Omp	oner	t=5 18																															
.656 + 6.618 + 6.617 + 6.607 6.568 6.566 10 255 + 60 18 2 13 160 15 15 2 7 0 10 0 88 1 0 15 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																																
.174 -6.968 +0.922 +0.9686 0.228 6.648 36 0 0 0 0 70 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0	5-way	clust	ering	: [H1:	2.9	2e-84] [1	657	of	165	57]	, Е	nti	rop	y:	0.57	1,	Pur	ity	/: 0	46	1																										
.669 +6.025 +6.020 +0.608 6.276 6.775 6 15 1 0 0 0 0 0 0 0 123 27 0 0 0 4 0 0 1 0 0 0 2 288 +0.658 +0.027																							ff :	suga	ı si	hip	cot	t c	irc	crud	na	t me	al	alum	n oi	ils	gold	ti	n 1	ive	iron	rut	ob z	inc e	oran	pet	dl	r
.288 +8.058 +9.017 +9.006 8.023 8.986 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	id S	ize 590 +	ISim 0.050	ISdev +8.01	18 +	ESim 0.019	ESd +0.	ev 807	Ent	ру 68	Pu 0	irty 500	1	co	18	grai	v	eg	whe	a c	орр	cot	13	106		15	1	5	2	7		3	10			38	1			16	3		3	А	Θ	pet		2
	id S	ize 590 +	ISim 0.056	1Sdev +8.83	18 +	ESim 0.019	+0.	ev 607 608	Ent	ру 68 28	Pu 0.	500 648	1	co	18 36	grai	v	eg 40	whe	a c	2 8	cot	13 78	106)	15	1	5	2	7		3 3	10	6	 9	38	1 6		 8 1	15 0	3		3	8	9	6	· · · · · ·	2 0
	0 1 2	ize 590 + 108 + 275 +	0.056 0.174	+8.80 +8.80 +8.80	18 + 48 + 25 +	ESim 0.019 0.022 0.020	+0. +0. +0.	ev 697 698 698	8.5 8.2 8.2	py 68 28 76	Pu 0.0	586 648	1	co	18 36 8	grai		eg 40 0	whe	a c 18 0	2 8 8	cot	13	100	9	15 8 6	1	5	2 8	7 1 213		3 3	10 0	6	 9 9	38 0 0	1 6		8 1 8	15 0	3		3 0	8 8	9 9 9	6	· · · · · ·	2
0.000 0.000 0.000 0.000 0.000 1 2 00 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20	0 1 2 3	ize 590 + 108 + 275 +	ISim 0.050 0.174 0.069	+8.60 +8.60 +8.60 +8.60	18 + 48 + 25 +	ESim 0.019 0.022 0.020 0.017	+0. +0. +0. +0.	ev 607 608 608	8.5 8.2 8.2	py 68 28 76 23	Pu 0.0.0	586 648 775	1	co	18 36 8	grai	v	eg 40 0 1	whe	a c 18 0	2 9 9	cot	13	100	9	15 8 6	1	5	2 8 8	7 1 213		3 3	10 0	6	 9 9	38 0 0	1 6		8 1 8	15 0	3		3 0 0	8 8	9 9 9	6	· · · · · ·	2 0
mation	cid S	ize 590 +	ISim 0.050	ISdev +8.01	18 +		ESim 0.019	ESim ESd 0.019 +0.	ESim ESdev 0.019 +0.007	ESim ESdev Ent	ESim ESdev Entpy 0.019 +0.007 0.560	ESim ESdev Entpy Pu 0.019 +0.007 0.568 0	ESim ESdev Entpy Purty 0.019 +0.007 0.560 0.500	ESim ESdev Entpy Purty 0.019 +0.007 0.560 0.500	ESim ESdev Entpy Purty co	ESim ESdev Entpy Purty coco	ESim ESdev Entpy Purty coco grai	ESim ESdev Entpy Purty coco grai v	ESim ESdev Entpy Purty coco grai veg	ESim ESdev Entpy Purty coco grai veg who	ESim ESdev Entpy Purty coco grai veg whea c	ESim ESdev Entpy Purty coco grai veg whea copp	ESim ESdev Entpy Purty coco grai veg whea copp co	ESim ESdev Entpy Purty coco grai veg whea copp coff	ESim ESdev Entpy Purty coco grai veg whea copp coff suga	ESim ESdev Entpy Purty coco grai veg whea copp coff suga s	ESIm ESdev Entpy Purty coco grai veg whea copp coff suga ship	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship coto	ESIM ESIGN ENTRY PUTTY coco grai veg whea copp coff suga ship cott ca	ESIm ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud	ESim ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud na:	ESim ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat mu	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal	ESIm ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum	ESIm ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum o	ESIM ESdew Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold ti	ESIM ESGEV Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin l	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron rul	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron rubb i	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron rubb zinc o	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron rubb zinc oran	ESIM ESdev Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron rubb zinc oran per	ESIM ESdew Entpy Purty coco grai veg whea copp coff suga ship cott carc crud nat meal alum oils gold tin live iron rubb zinc oran pet dl
8.829 sec		ize 590 + 108 + 275 + 613 +	0.056 0.174 0.069 0.208	+8.01 +8.01 +8.04 +8.05 +8.05 +8.06	18 + 48 + 25 + 58 +	ESim 0.019 0.022 0.020 0.017 0.020	+0. +0. +0. +0. +0.	ev 997 998 998 996 999	8.5 8.2 8.2 8.8	py 68 28 76 23 39	Pu 0. 0. 0. 0.	586 648 775 986		co	18 36 8 9 2	295 6 15 6	٧	40 0 1 0	whe	18 0 0 1	2 9 9 9 35	cot	13	100	9	15 8 6	1	5	2 8	7 1 213		3 3	10 0	6	 9 9	38 0 0	1 6		8 1 8	15 0	3		3 0 0	8 8	9 9 9	6	· · · · · ·	2
	id S 0 1 2 3 4 iming I/O	ize 590 + 108 + 275 + 613 +	ISim -0.056 -0.174 -0.065 -0.288 -0.028	+8.01 +8.01 +8.04 +8.05 +8.05 +8.06	18 + 48 + 25 + 58 +	ESim 0.019 0.022 0.020 0.017 0.020	+0. +0. +0. +0. +0.	ev 997 998 998 996 999	8.5 8.2 8.2 8.8	py 68 28 76 23 39	Pu 0. 0. 0.	506 648 775 986 189	ec	co	18 36 8 9 2	295 6 15 6	٧	40 0 1 0	whe	18 0 0 1	2 9 9 9 35	cot	13	100	9	15 8 6	1	5	2 8 8	7 1 213		3 3	10 0	6	 9 9	38 0 0	1 6		8 1 8	15 0	3		3 0 0	8 8	9 9 9	6	· · · · · ·	2 0

Figure A.7: Solution re1 CLMethod=AGGLO, CRfun=I2, SimFun=CorrCoef.

*****										• • •		•••																														
vclus	ter (CLUTO	2.1.1) Co	pyri	ht 2	2001	-83,	R	ege	ents	of	the	Univ	ersi	ity	of I	Minne	esot	3																						
Matri: Name			ion																																							
CLM Row Col CST	ethod: Model: orune: /pe=Be	=AGGL0 =None, =1.00, est,	D, CRf , ColM , Edge AggloF	un=1 lode: Prur rom	2, Si =None e=-1. 0, Ap	mFun 6, Gr 60, gglot	n=Co rMod Vtx CRFu	rrCd lel=1 Prum n=I	ef SY- ne= 2,	DIF -1. NT:	Clu R, N .00,	ste Nbr Mi s=1	rs: ! s=40 nCom	s onen Eter=	t=5 10																											
5-way	clust	terin	g: [I2	=5.4	4e+82	[:	1657	of	16	57	, E	ntr	opy:	0.57	1, F	Pur:	ıty:	0.49	99																							
			g: [12 ISde																	ff s	suga	ship	cot	t ca	irc i	rud	nat	mea.	l alu	m o	ils	gold	tin	live	ir	on r	ubb	zinc	oran	pet	dlr	r ga
id :	Size	ISim	ISde	v	ESim	ES	dev	Ent	ру	Pt	irty	ij	coco	grai	ve					ff s	suga	ship	cot	t ca	rc		nat	mea	l alu	m o	ils	gold	tin	live	ir	on r	ubb	zinc	oran	pet	dlr	
	5ize 584 -	ISim	ISde 4 +0.0	v 143 +	ESim 0.041	ES4	dev . 020	Ent	py 519	Pt O	irty 563	1	coco	grai 12	ve	eg v	whea 0	copp	co	4	Θ	6		1	8	284	24			4	1	72	1	3		16	ubb 27	4	oran 0	pet	dlr	r ga
id :	51ze 584 -	TSim +0.10+	ISde	143 +	ESim 0.041	ES4 +0 +0	dev .020	En!	py 519 722	Pt 0 .	563 336	1	coco	grai 12 177	ve			copp	co	ff s 4 6	98 0	6	cot	1	8 9		nat 24	1	3 2	m o	1 32 0	72 6 0	1 11 1	3 26 6		on r	27 1 0	zinc 4 2	oran 0 3	13	3 6) 1
id :	584 - 527 -	ISim +0.18- +0.121 +0.23	ISde 4 +8.8 8 +8.8	143 + 155 +	0.041 0.045 0.044	ES6 +0 +0	.020 .020	8.1 8.1	py 519 722	Pt 0 . 0 . 0 .	563 336 686	1	0 0 11 36	grai 12 177	ve	eg v	whea 0 15	copp	co	4	98	6		1 2 9	8	284	24	1	3 2	4	1 32	72 6 0	1 11 1	3 26 6		16 12	27	4 2	 0 3	13	3 6) 1 1
cid :	584 - 527 - 118 - 315 -	ISim +0.10+ +0.121 +0.23! +0.06	ISde 4 +8.8 8 +8.8 5 +8.8	143 + 155 + 158 +	0.041 0.045 0.044 0.039	+0 +0 +0 +0	.020 .020 .020	8.1 8.1 8.1	py 519 722 205 576	9. 9. 9.	563 336 686 565		0 0 11 36	grai 12 177 0 178	ve	eg v 5 48 0	whea 0 15	copp	2	4 6 81	98	6 14 8		1 2 9	8	284 6 0	24	1	3 2	4 7 0	1 32 0	72 6 0	1 11 1	3 26 6		16 12	27	4 2 8	 9 3 0	13	3 6) 1 1
cid :	584 - 527 - 118 - 315 -	ISim +0.10+ +0.121 +0.23! +0.06	ISde 4 +0.0 8 +0.0 5 +0.0 7 +0.0	143 + 155 + 158 +	0.041 0.045 0.044 0.039	+0 +0 +0 +0	.020 .020 .020	8.1 8.1 8.1	py 519 722 205 576	9. 9. 9.	563 336 686 565		0 0 11 36 1	grai 12 177 0 178	ve	5 48 0 5	whea 0 15 0	cop	2	4 6 81	98	6 14 8 18		1 2 9	8	284 6 0 10	24	1	3 2	4 7 8	1 32 0	72 6 0	1 11 1	3 28 8		16 12	27	4 2 8	 9 3 0	13	3 6) 1 1
0 1 2 3 4	584 - 527 - 118 - 315 - 193 -	ISim +8.18+ +8.121 +8.23! +8.86* +8.87	ISde 4 +8.8 8 +8.8 5 +8.8 7 +8.8 8 +8.8	143 + 155 + 158 + 126 +	0.041 0.045 0.046 0.035	ES6 +0 +0 +0 +0 +0 +0	.020 .020 .020 .020 .022	8.1 8.1 8.1 8.1	722 205 576 511	9. 9. 9. 9.	563 336 686 565 554		0000 11 36 1 8	grai 12 177 0 178 4	ve	5 48 0 5 2	whea 9 15 9 4	copp	2	4 6 81	98	6 14 8 18		1 2 9	8	284 6 0 10	24	1	3 2	4 7 8	1 32 0	72 6 0	1 11 1	3 28 8		16 12	27	4 2 8	 9 3 0	13	3 6) 1 1
cid 5	584 - 527 - 118 - 315 - 193 -	ISim +8.18+ +8.121 +8.23! +8.86* +8.87	ISde 4 +8.8 8 +8.8 5 +8.8 7 +8.8 8 +8.8	143 + 155 + 158 + 126 +	0.041 0.045 0.046 0.035	ES6 +0 +0 +0 +0 +0 +0	.020 .020 .020 .020 .022	8.1 8.1 8.1 8.1	519 722 205 576 511	9. 9. 9. 9.	563 336 686 565 554		0000 11 36 1 8	grai 12 177 0 178 4	ve	5 48 0 5 2	whea 9 15 9 4	copp	2	4 6 81	98	6 14 8 18		1 2 9	8	284 6 0 10	24	1	3 2	4 7 8	1 32 0	72 6 0	1 11 1	3 28 8		16 12	27	4 2 8	 9 3 0	13	3 6) 1 1
cid :	584 - 527 - 118 - 315 - 193 -	ISim +8.18- +8.121 +8.23! +8.96 +8.97!	ISde 4 +8.8 8 +8.8 5 +8.8 7 +8.8 8 +8.8	143 + 155 + 158 + 126 +	0.041 0.045 0.046 0.035	ES6 +0 +0 +0 +0 +0 +0	.020 .020 .020 .020 .022	8.1 8.1 8.2 8.3	722 205 576 511	Pt 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	563 336 565 565 554	ec	0000 11 36 1 8	grai 12 177 0 178 4	ve	5 48 0 5 2	whea 9 15 9 4	copp	2	4 6 81	98	6 14 8 18		1 2 9	8	284 6 0 10	24	1	3 2	4 7 8	1 32 0	72 6 0	1 11 1	3 28 8		16 12	27	4 2 8	 9 3 0	13	3 6) 1 1
0 1 2 3 4 Timing I/6	584 - 527 - 118 - 315 - 193 -	ISim +0.10- +0.121 +0.23! +0.06 +0.07! ormat:	ISde 4 +8.8 8 +8.8 5 +8.8 7 +8.8 8 +8.8	143 + 155 + 158 + 126 +	0.041 0.045 0.046 0.035	ES6 +0 +0 +0 +0 +0 +0	.020 .020 .020 .020 .022	8.1 8.1 8.2 8.3	py 722 205 576 511	Pt	563 336 686 565 554	ec ec	0000 11 36 1 8	grai 12 177 0 178 4	ve	5 48 0 5 2	whea 9 15 9 4	copp	2	4 6 81	98	6 14 8 18		1 2 9	8	284 6 0 10	24	1	3 2	4 7 8	1 32 0	72 6 0	1 11 1	3 28 8		16 12	27	4 2 8	 9 3 0	13	3 6) 1 1

Figure A.8: Solution re1 CLMethod=AGGLO, CRfun=H1, SimFun=CorrCoef.

	ma · r						Column																												
Ivai	ne. i	er.	.mac,	#ROW	. 1	331, 1	COTUIII	5. 3/	50,	*********	Zeros.	0/32	,																						
ptio																																			
							Fun=Co GrMoo					5																							
							B. Vt																												
							loCRF																												
CS	Type-	-DC:	st, ,	ggior	Otti-1	o, my	IJUCAFI	III-nii,	NI.	Idis	-10, N	LLCI -	LO																						
lut	tion																																		
olut	tion																																		
olut																																			
							[1657																												
-way	y clu	ıste	ering	: [H1	3.8	5e-84	[1657	of 1	657	, En	tropy:	0.56	5, Pu	ity:	0.492	off s	suga	ship	cott o	arc	crud	nat	neal	alum	oils	oold	tin	live	iron i	rubb a	rinc (oran	pet	dlr	-
way	y clu	ıste	ering	: [H1	3.8	5e-84		of 1	657	, En	tropy:	0.56	5, Pu	ity:	0.492	off s	suga	ship	cott o	arc	crud	nat	neal	alum	oils	gold	tin	live	iron :	rubb 2	rinc (oran	pet	dlr	-
way	y clu Size	uste	ering ISim	: [H1 ISde +0.0	3.8	Se-84 Sim	[1657 ESdev +0.018	of 1 Entp	657 y Pu 3 0	rty	tropy:	0.56 grai 8	veg	ity: whea	0.492 copp c	1	5	118		8	38	θ	Θ	3	7	gold 80	8	live	12	1	1	Θ	pet 9	dlr	-
way	y clu Size 316 441	ste	Ering	: [H1 ISde +8.0 +8.0	3.86 / 1	Se-84 Sim 0.030 0.045	[1657 ESdev +0.018 +0.028	of 1 Entp	657 y Pt	rty 348 628	tropy:	0.56 grai 8	veg	ity: whea	0.492 copp c	1 2	5 4	118	0	8	38 277	8 27	 0 0	3 22	7	80	8	3 4	12	1 10	1 4	oran 0 3	9 5	9	-
-way	y clu Size 316 441	ste	Ering	: [H1 ISde +8.0 +8.0	3.86 / 1	Se-84 Sim 0.030 0.045	[1657 ESdev +0.018	of 1 Entp	657 y Pt	rty 348 628	tropy:	0.56 grai 8	veg	ity: whea 0 0	0.492 copp c	1 2 88	5	118	0 1 0	8	38 277 0	θ	Θ	3 22 0	7 3 0	gold 80 4 0	8 1 1	3 4 0	12	1 10 17	1 4 8	9 3 9	9 5 0	Θ	-
id 0	Size 316 441 134	ste	ering Sim 9.062 9.119	: [H1 ISde +8.0 +8.0 +8.0	3.86 / I	Se-84 Sim 0.030 0.045	[1657 ESdev +0.018 +0.028	of 1 Entp 8.62 8.49 8.29	657 y Pi 3 0. 9 0.	rty 348 628	tropy: coco 8 8	0.56 grai 8 15 0 250	veg 2 26 9	ity: whea 0 0	0.492 copp c	1 2	5 4	118 3 8 21	0 1 0 14	8	38 277 0 12	8 27 8	 0 0	3 22 0 3	7 3 0 24	80	8	3 4 9 33	12	1 10	1 4 8	Θ	9 5	9	
id 0 1	y clu Size 316 441 134 474	3 +6 1 +6 4 +6	Ering ISim 9.062 9.119 9.217 9.208	: [H1 ISde +8.0 +8.0 +8.0 +8.0	23 +1 19 +1 56 +1	Se-84 Sim 0.030 0.045 0.044 0.044	ESdev +0.018 +0.020 +0.021	0f 1 Entp 8.62 8.49 8.29 8.62	657 y Pt 3 0 9 0 8 0	348 628 597	tropy: coco 8 8	0.56 grai 8 15	veg 2 26 0	ity: whea 0 0	0.492 copp c	1 2 88	5 4 0	118 3 8	0 1 0	8 9 9	38 277 0	9 27 0	 0 0	3 22 0	7 3 0	80	8 1 1	3 4 0	12	1 10 17	1 4 8	9 3 9	9 5 0	9 9 9	