Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (currently amended). A compound of formula

$$R^{11}$$
 R^{33}
 R^{6}
 R^{10}
 R^{9}
 R^{5}
 R^{10}
 R^{10}

or a pharmaceutically acceptable salt thereof, wherein

m is 1 or 2; and n is 0, 1 or 2;

 R^1 is (1) an alkyl, alkenyl, alkynyl, cycloalkyl or heterocyclyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, amino, alkanoylamino, alkylsulfonylamino, alkoxycarbonylamino, alkoxycarbonyl, cyano, halo, azido, alkyl or haloalkyl; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^1 is 0-3;

wherein each R³ is independently an alkyl, haloalkyl, aryl, heteroaryl, aryl-alkyl or heteroarylalkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, alkoxy, alkylthiol, amino, alkanoylamino, alkylsulfonylamino, alkylsulfonyl, alkylsulfonyl, alkoxycarbonylamino, alkoxycarbonyl, cyano, halo, azido, alkyl, haloalkyl or haloalkoxy; and each R⁴ is independently a hydrogen or alkyl radical;

$$R^{11} \text{ is a -C(O)-R}^{31}, \text{-C(O)-OR}^{30}, \text{-C(O)-NR}^{32} \\ R^{31}, \text{-S(O)}_2 - R^{30} \text{ or -S(O)}_2 - NR^{32} \\ R^{31} \text{ radical;}$$

R⁵ and R⁶ are each independently a hydrogen or alkyl radical; or CR⁵-CR⁶ is C=C;

wherein R^9 and R^{10} are each independently -B-A, provided that the combined total number of aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^9 , R^{10} and R^{11} is 0-3;

wherein each B is independently a

- (1) bond;
- (2) alkyl, alkenyl or alkynyl radical optionally substituted by (a) 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano or halo, and/or (b) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano, halo, alkyl, haloalkyl or haloalkoxy;
- (3) heterocyclyl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano, alkyl, haloalkyl or haloalkoxy; or
- (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano, halo, alkyl, haloalkyl or haloalkoxy;

each A is independently a

- (1) hydrogen radical;
- (2) halo, cyano or nitro radical;

(3)
$$-C(O)-R^{30}$$
, $-C(O)-OR^{31}$, $-C(O)-NR^{32}R^{31}$ or $-C(NR^{32})-NR^{32}R^{31}$ radical;

(4)
$$-OR^{31}$$
, $-O-C(O)-R^{31}$, $-O-C(O)-NR^{32}R^{31}$ or $-O-C(O)-NR^{33}-S(O)_2-R^{30}$ radical;

$$(5) - SR^{31}, -S(O) - R^{30}, -S(O)_2 - R^{30}, -S(O)_2 - NR^{32}R^{31}, -S(O)_2 - NR^{33} - C(O) - R^{31}, -S(O)_2 - NR^{33} - C(O)_2 - NR^{33$$

$$C(O)$$
- OR^{30} or $-S(O)_2$ - NR^{33} - $C(O)$ - $NR^{32}R^{31}$ radical; or

(6)
$$-NR^{32}R^{31}$$
, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-S(O)_2-R^{30}$ or $-NR^{33}-S(O)_2-NR^{32}R^{31}$ radical;

wherein each R³⁰ is independently

- (1) alkyl, alkenyl or alkynyl radical optionally substituted by 1-3 radicals of -CO₂R³⁴, amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, N-(alkoxycarbonyl)-N-(alkyl)amino, aminocarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo or aralkoxy, arylalkylthio, arylalkylsulfonyl, cycloalkyl, heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, alkanoyl, alkoxycarbonyl, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy;
- (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, alkoxycarbonyl, hydroxy, alkoxy, alkylthio, cyano, alkyl, haloalkyl or haloalkoxy; or
- (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, alkoxycarbonyl, hydroxy, alkoxy, alkylthio, cyano, halo, azido, alkyl, haloalkyl or haloalkoxy;

each R³¹ is independently hydrogen radical or R³⁰;

wherein each R³² is independently

- (1) hydrogen radical;
- (2) alkyl, alkenyl or alkynyl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, hydroxy, alkoxy, alkylthio, cyano or halo; or
- (3) aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, cycloalkyl or cycloalkylalkyl radicals optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, hydroxy, alkoxy, alkylthio, cyano, alkyl, haloalkyl or haloalkoxy; and

each R³³ is independently

- (1) hydrogen radical;
- (2) alkyl radical optionally substituted by a radical of heterocyclyl, aryl or heteroaryl which is optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy; or
- (3) heterocyclyl, aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy; and

each R³⁴ is independently hydrogen, alkyl, aryl, heteroaryl, arylalkyl or heteroarylalkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy.

Claim 2 (original). The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein

R¹ is (1) an C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, cycloalkyl or heterocyclyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, amino, C₁-C₈ alkanoylamino, C₁-C₈ alkylsulfonylamino, C₁-C₈ alkoxycarbonylamino, C₁-C₈ alkoxycarbonylamino, C₁-C₈ alkoxycarbonylamino, c₁-C₈ haloalkyl of 1-3 halo radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R¹ is 0-3;

wherein each R³ is independently a C₁-C₈ alkyl, C₁-C₈ haloalkyl of 1-3 halo radicals, aryl, heteroaryl, aryl-C₁-C₄-alkyl or heteroaryl-C₁-C₄-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthiol, amino, C₁-C₈ alkanoylamino, C₁-C₈ alkylsulfonylamino, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₈ alkoxycarbonylamino, C₁-C₈ alkoxycarbonyl, cyano, halo, azido, C₁-C₈ alkyl, C₁-C₈ haloalkyl of 1-3 halo radicals or C₁-C₈ haloalkoxy of 1-3 halo radicals; and each R⁴ is independently a hydrogen or C₁-C₈ alkyl radical;

$$R^{11} \text{ is a -C(O)-R}^{31}, -C(O)-OR^{30}, -C(O)-NR^{32}R^{31}, -S(O)_2-R^{30} \text{ or -S(O)}_2-NR^{32}R^{31} \text{ radical;}$$

R⁵ and R⁶ are each independently a hydrogen or C₁-C₄ alkyl radical; or CR⁵-CR⁶ is C=C;

wherein R^9 and R^{10} are each independently -B-A, provided that the combined total number of aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^9 , R^{10} and R^{11} is 0-3;

wherein each B is independently a

- (1) bond;
- (2) C₁-C₈ alkyl, C₂-C₈ alkenyl or C₂-C₈ alkynyl radical optionally substituted by (a) 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano or halo, and/or (b) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;
- (3) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, C₁-C₈ haloalkyl of 1-3 halo radicals or C₁-C₈ haloalkoxy of 1-3 halo radicals;

each A is independently a

- (1) hydrogen radical;
- (2) halo, cyano or nitro radical;
- (3) $-C(O)-R^{30}$, $-C(O)-OR^{31}$, $-C(O)-NR^{32}R^{31}$ or $-C(NR^{32})-NR^{32}R^{31}$ radical;
- (4) $-OR^{31}$, $-O-C(O)-R^{31}$, $-O-C(O)-NR^{32}R^{31}$ or $-O-C(O)-NR^{33}-S(O)_2-R^{30}$ radical;

(5) $-SR^{31}$, $-S(O)-R^{30}$, $-S(O)_2-R^{30}$, $-S(O)_2-NR^{32}R^{31}$, $-S(O)_2-NR^{33}-C(O)-R^{31}$, $-S(O)_2-NR^{33}-C(O)-R^{30}$ or $-S(O)_2-NR^{33}-C(O)-NR^{32}R^{31}$ radical; or

(6) $-NR^{32}R^{31}$, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-C(O)-NR^{33}-C($

(6) $-NR^{32}R^{31}$, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-S(O)_2-R^{30}$ or $-NR^{33}-S(O)_2-NR^{32}R^{31}$ radical;

wherein each R³⁰ is independently

- (1) C_1 - C_8 alkyl, C_2 - C_8 alkenyl or C_2 - C_8 alkynyl radical optionally substituted by 1-3 radicals of - CO_2R^{34} , amino, C_1 - C_4 alkylamino, di-(C_1 - C_4 alkyl)amino, C_1 - C_5 alkanoylamino, (C_1 - C_4 alkoxy)carbonylamino, N-((C_1 - C_4 alkoxy)carbonyl)-N-(C_1 - C_4 alkyl)amino, aminocarbonylamino, C_1 - C_4 alkylsulfonylamino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, cyano, halo, aryl- C_1 - C_4 -alkoxy, aryl- C_1 - C_4 -alkylthio, aryl- C_1 - C_4 -alkylsulfonyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C_1 - C_4 alkylamino, di-(C_1 - C_4 alkyl)amino, C_1 - C_5 alkanoylamino, (C_1 - C_4 alkoxy)carbonylamino, C_1 - C_4 alkylsulfonylamino, C_1 - C_5 alkanoylamino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, cyano, halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl of 1-3 halo radicals or C_1 - C_4 haloalkoxy of 1-3 halo radicals;
- (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

each R³¹ is independently hydrogen radical or R³⁰;

wherein each R³² is independently

- (1) hydrogen radical;
- (2) C_1 - C_8 alkyl, C_2 - C_8 alkenyl or C_2 - C_8 alkynyl radical optionally substituted by 1-3 radicals of amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 -alkyl)amino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, cyano or halo; or
- (3) aryl, heteroaryl, aryl- C_1 - C_4 -alkyl, heteroaryl- C_1 - C_4 -alkyl, heterocyclyl, heterocyclyl- C_1 - C_4 -alkyl, C_3 - C_8 cycloalkyl or C_3 - C_8 -cycloalkyl- C_1 - C_4 -alkyl radical optionally substituted by 1-3 radicals of amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 -alkyl)amino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl of 1-3 halo radicals or C_1 - C_4 haloalkoxy of 1-3 halo radicals; and

each R³³ is independently

- (1) hydrogen radical;
- (2) C_1 - C_4 alkyl radical optionally substituted by a radical of heterocyclyl, aryl or heteroaryl which is optionally substituted by 1-3 radicals of amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 alkyl)amino, C_1 - C_5 alkanoylamino, (C_1 - C_4 alkoxy)carbonylamino, C_1 - C_4 alkylsulfonylamino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, cyano, halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl of 1-3 halo radicals or C_1 - C_4 haloalkoxy of 1-3 halo radicals; or
- (3) heterocyclyl, aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; and

each R^{34} is independently hydrogen or C_1 - C_4 alkyl, aryl, heteroaryl, aryl- C_1 - C_4 -alkyl or heteroaryl- C_1 - C_4 -alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 alkyl)amino, C_1 - C_5 alkanoylamino, $(C_1$ - C_4 alkoxy)carbonylamino, C_1 - C_4 alkylsulfonylamino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, cyano, halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl of 1-3 halo radicals or C_1 - C_4 haloalkoxy of 1-3 halo radicals; and

wherein cycloalkyl is a monocyclic, bicyclic or tricyclic carbocyclic alkyl radical of 3-10 ring members, which is optionally partially unsaturated or benzo-fused; heterocyclyl is a radical of a monocyclic or bicyclic saturated heterocyclic ring system having 5-8 ring members per ring, wherein 1-3 ring members are oxygen, sulfur or nitrogen heteroatoms, which is optionally partially unsaturated or benzo-fused and optionally substituted by 1-2 oxo or thioxo radicals; aryl is a phenyl, biphenyl or naphthyl radical; and heteroaryl is a radical of a monocyclic or bicyclic aromatic heterocyclic ring system having 5-6 ring members per ring, wherein 1-3 ring members are oxygen, sulfur or nitrogen heteroatoms, which is optionally benzo-fused or saturated C₃-C₄-carbocyclic-fused.

Claim 3 (original). The compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is (1) a C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, cycloalkyl or heterocyclyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)2R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6

ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)R^3$, $-S(O)_2R^3$, $-C(O)R^3$, $-NR^3R^4$, amino, C_1 - C_4 alkanoylamino, C_1 - C_4 alkylsulfonylamino, C_1 - C_4 alkoxycarbonylamino, C_1 - C_4 alkoxycarbonyl, cyano, halo, azido, C_1 - C_6 alkyl or C_1 - C_4 haloalkyl of 1-3 halo radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^1 is 0-3;

wherein each R³ is independently a C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals, aryl, heteroaryl, aryl-C₁-C₄-alkyl or heteroaryl-C₁-C₄-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthiol, amino, C₁-C₄ alkanoylamino, C₁-C₄ alkylsulfonylamino, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkoxycarbonylamino, C₁-C₄ alkoxycarbonyl, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; and each R⁴ is independently a hydrogen or C₁-C₄ alkyl radical;

wherein each B is independently a

- (1) bond;
- (2) C₁-C₈ alkyl radical optionally substituted by (a) a radical of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, and/or (b) 1-3 halo radicals, and/or (c) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;
- (3) heterocyclyl radical; or
- (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino,

 C_1 - C_4 alkylsulfonylamino, hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, cyano, halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl of 1-3 halo radicals or C_1 - C_4 haloalkoxy of 1-3 halo radicals;

wherein each R³⁰ is independently

- (1) C₁-C₆ alkyl radical optionally substituted by 1-3 radicals of -CO₂R³⁴, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, N-((C₁-C₄ alkoxy)carbonyl)-N-(C₁-C₄ alkyl)amino, aminocarbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, aryl-C₁-C₄-alkoxy, aryl-C₁-C₄-alkylthio, aryl-C₁-C₄-alkylsulfonyl, C₃-C₈ cycloalkyl, heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;
- (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

each R³¹ is independently hydrogen radical or R³⁰;

wherein each R³² is independently hydrogen or C₁-C₄ alkyl radical;

each R³³ is independently hydrogen or C₁-C₄ alkyl radical; and

each R³⁴ is independently hydrogen or C₁-C₄ alkyl radical.

Claim 4 (original). The compound of Claim 3 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is (1) a C_1 - C_{12} alkyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)2R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, -OR³, -SR³, -S(O)R³, -S(O)2R³, -C(O)R³, -NR³R⁴, amino, acetylamino, methylsulfonylamino, C_1 - C_4 alkoxycarbonylamino, C_1 - C_4 alkoxycarbonyl, cyano, halo, C_1 - C_6 alkyl or -CF₃ radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^1 is 0-3;

wherein each R^3 is independently an C_1 - C_4 alkyl, -CF₃, aryl, heteroaryl, aryl- C_1 - C_4 -alkyl or heteroaryl- C_1 - C_4 -alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylthiol, amino, acetylamino, methylsulfonylamino, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkoxycarbonylamino, C_1 - C_4

alkoxycarbonyl, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃; and each R⁴ is independently a hydrogen or methyl radical;

wherein each B is independently a

- (1) bond;
- (2) C₁-C₈ alkyl radical optionally substituted by (a) a radical of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, and/or (b) 1-3 halo radicals, and/or (c) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;
- (3) heterocyclyl radical; or
- (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;

each A is independently a

- (1) hydrogen radical;
- (2) halo, cyano or nitro radical;

(3)
$$-C(O)-R^{30}$$
, $-C(O)-OR^{31}$, $-C(O)-NR^{32}R^{31}$ or $-C(NR^{32})-NR^{32}R^{31}$ radical;

(4)
$$-OR^{31}$$
, $-O-C(O)-R^{31}$ or $-O-C(O)-NR^{32}R^{31}$ radical;

(5)
$$-SR^{31}$$
, $-S(O)-R^{30}$, $-S(O)_2-R^{30}$ or $-S(O)_2-NR^{32}R^{31}$ radical; or

(6)
$$-NR^{32}R^{31}$$
, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-S(O)_2-R^{30}$ or $-NR^{33}-S(O)_2-NR^{32}R^{31}$ radical;

wherein each R³⁰ is independently

- (1) C₁-C₆ alkyl radical optionally substituted by 1-3 radicals of -CO₂R³⁴, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, N-((C₁-C₄ alkoxy)carbonyl)-N-(C₁-C₄ alkyl)amino, aminocarbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, aryl-C₁-C₄-alkoxy, aryl-C₁-C₄-alkylthio, aryl-C₁-C₄-alkylsulfonyl, C₃-C₈ cycloalkyl, heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkylsulfonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;
- (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₂ haloalkyl of 1-3 halo radicals or -OCF₃; or
- (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;

each R³¹ is independently hydrogen radical or R³⁰; and

each R³³ is independently a hydrogen or methyl radical.

Claim 5 (original). The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein R^{11} is a $-C(O)-R^{31}$ or $-S(O)_2-R^{30}$ radical; provided that the combined total number of aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^9 , R^{10} and R^{11} is 0-2.

Claim 6 (original). The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is (1) an C_1 - C_{12} alkyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)₂R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, -OR³, -SR³, -S(O)₂R³, -NR³R⁴, amino, acetylamino, methylsulfonylamino, C₁-C₄ alkoxycarbonylamino, C₁-C₄ alkoxycarbonyl, cyano, halo, C₁-C₆ alkyl or -CF₃ radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R¹ is 0-2;

wherein each R³ is independently a C₁-C₄ alkyl, -CF₃, aryl, heteroaryl, aryl-C₁-C₂-alkyl or heteroaryl-C₁-C₂-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-2 radicals of hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthiol, amino, acetylamino, methylsulfonylamino, C₁-C₄ alkylsulfonyl, C₁-C₄ alkoxycarbonylamino, C₁-C₄ alkoxycarbonyl, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃;

wherein each B is independently a

- (1) bond;
- (2) C_1 - C_4 alkyl radical optionally substituted by (a) a radical of amino, C_1 - C_2 alkylamino, di- $(C_1$ - C_2 alkyl)amino, C_1 - C_2 alkanoylamino, $(C_1$ - C_4 alkoxy)carbonylamino, hydroxy, C_1 - C_2

alkoxy, and/or (b) 1-2 halo radicals, and/or (c) a radical of heterocyclyl, aryl or heteroaryl optionally substituted by 1-2 radicals of amino, C_1 - C_2 alkylamino, di- $(C_1$ - C_2 alkyl)amino, C_1 - C_2 alkanoylamino, (C_1 - C_4 alkoxy)carbonylamino, C_1 - C_2 alkylsulfonylamino, hydroxy, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, halo, C_1 - C_4 alkyl, -CF₃ or -OCF₃ radicals;

- (3) heterocyclyl radical; or
- (4) aryl or heteroaryl radical optionally substituted by 1-2 radicals of amino, C_1 - C_2 alkylamino, di- $(C_1$ - C_2 alkyl)amino, C_1 - C_2 alkanoylamino, $(C_1$ - C_4 alkoxy)carbonylamino, C_1 - C_2 alkylsulfonylamino, hydroxy, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, halo, C_1 - C_4 alkyl, -CF3 or -OCF3 radicals;

each A is independently a

- (1) hydrogen radical;
- (2) halo radical;

(3) -C(O)-
$$R^{30}$$
, -C(O)- OR^{31} , -C(O)- $NR^{32}R^{31}$ or -C(NR^{32})- $NR^{32}R^{31}$ radical;

- (4) -OR³¹ radical;
- (5) $-SR^{31}$, $-S(O)_2-R^{30}$ or $-S(O)_2-NR^{32}R^{31}$ radical; or

(6)
$$-NR^{32}R^{31}$$
, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-NR^{32}R^{31}$, $-NR^{33}-S(O)_2-R^{30}$ or $-NR^{33}-S(O)_2-NR^{32}R^{31}$ radical;

wherein each R³⁰ is independently

(1) -CF₃ or C_1 -C₄ alkyl radical optionally substituted by 1-2 radicals of -CO₂R³⁴, amino, C_1 -C₂ alkylamino, di-(C_1 -C₂ alkyl)amino, C_1 -C₂ alkanoylamino, (C_1 -C₄ alkoxy)carbonylamino, N-((C_1 -C₄ alkoxy)carbonyl)-N-(C_1 -C₄ alkyl)amino, hydroxy, C_1 -C₄ alkoxy, or aryl-C₁-C₂-alkoxy, heterocyclyl, aryl or heteroaryl radicals, wherein the heterocyclyl, aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C_1 -C₂ alkylamino, di-(C_1 -C₂ alkyl)amino, C_1 -C₂ alkanoylamino, (C_1 -C₄ alkoxy)carbonylamino, C_1 -C₅ alkanoyl, (C_1 -C₄ alkoxy)carbonyl, hydroxy, C_1 -C₄ alkoxy, halo, C_1 -C₄ alkyl, -CF₃ or -OCF₃ radicals;

- (2) heterocyclyl radical optionally substituted by 1-2 radicals of $(C_1-C_4 \text{ alkoxy})$ carbonyl, hydroxy or $C_1-C_4 \text{ alkyl}$; or
- (3) aryl or heteroaryl radicals optionally substituted by 1-2 radicals of amino, C_1 - C_2 alkylamino, di- $(C_1$ - C_2 alkyl)amino, C_1 - C_2 alkanoylamino, hydroxy, C_1 - C_2 alkoxy, halo, C_1 - C_4 alkyl, -CF₃ or -OCF₃ radicals;

each R³¹ is independently hydrogen radical or R³⁰; and

wherein cycloalkyl is a monocyclic carbocyclic alkyl radical of 3-6 ring members, which is optionally partially unsaturated or benzo-fused; and heterocyclyl is a radical of a monocyclic saturated heterocyclic ring system having 5-8 ring members per ring, wherein 1-3 ring members are oxygen, sulfur or nitrogen heteroatoms, which is optionally partially unsaturated or benzo-fused and optionally substituted by 1-2 oxo or thioxo radicals.

Claim 7 (original). The compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein

R¹ is (1) an C₁-C₄ alkyl radical substituted by 1-2 radicals of -OH, -OR³, -NR³R⁴, aryl or heteroaryl; or (2) an aryl radical optionally substituted by a monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by a phenyl radical; wherein the phenyl, aryl and heteroaryl radicals of (1), (2) and (3) are optionally substituted by 1-2 radicals of hydroxy, -OR³, -SR³, -S(O)₂R³, -NR³R⁴, amino, acetylamino, methylsulfonylamino, C₁-C₄ alkoxycarbonylamino, C₁-C₄ alkoxycarbonyl, halo, C₁-C₆ alkyl or -CF₃ radicals; provided that the total number of phenyl, aryl and heteroaryl radicals in R¹ is 0-2;

wherein each R^3 is independently a C_1 - C_4 alkyl, -CF₃, aryl, heteroaryl, aryl- C_1 - C_2 -alkyl or heteroaryl- C_1 - C_2 -alkyl radical, wherein the aryl and heteroaryl radicals are optionally

substituted by 1-2 radicals of hydroxy, C₁-C₂ alkoxy, C₁-C₂ alkylthiol, amino, acetylamino, methylsulfonylamino, C₁-C₂ alkylsulfonyl, C₁-C₄ alkoxycarbonylamino, C₁-C₄ alkoxycarbonyl, halo, C₁-C₂ alkyl, -CF₃ or -OCF₃;

wherein each B is independently a

- (1) bond;
- (2) C_1 - C_4 alkyl radical; or
- (3) aryl or heteroaryl radical optionally substituted by a radical of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₂ alkylsulfonylamino, hydroxy, C₁-C₂ alkoxy, C₁-C₂ alkylthio, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;

each A is independently a

- (1) hydrogen radical;
- (2) halo radical;

(3)
$$-C(O)-R^{30}$$
, $-C(O)-NR^{32}R^{31}$ or $-C(NR^{32})-NR^{32}R^{31}$ radical;

- (4) -OR³¹ radical;
- (5) $-SR^{31}$, $-S(O)_2-R^{30}$ or $-S(O)_2-NR^{32}R^{31}$ radical; or
- (6) $-NR^{32}R^{31}$, $-NR^{33}-C(O)-R^{31}$ or $-NR^{33}-S(O)_2-R^{30}$ radical;

wherein each R³⁰ is independently

- (1) heterocyclyl radical optionally substituted by 1-2 radicals of (C_1 - C_4 alkoxy)carbonyl, hydroxy or C_1 - C_4 alkyl; or
- (2) heteroaryl radicals optionally substituted by 1-2 radicals of amino, C_1 - C_2 alkylamino, di- $(C_1$ - C_2 alkyl)amino, C_1 - C_2 alkanoylamino, hydroxy, C_1 - C_2 alkoxy, halo, C_1 - C_4 alkyl, - CF_3 or -OCF3 radicals; and

each R³¹ is independently hydrogen radical or

(1) -CF₃ or C₁-C₄ alkyl radical optionally substituted by 1-2 radicals of hydroxy, C₁-C₂ alkoxy or aryl-C₁-C₂-alkoxy, aryl or heteroaryl radicals, wherein the aryl and heteroaryl radicals are optionally substituted by 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals; or (2) aryl or heteroaryl radical optionally substituted by 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, hydroxy, C₁-C₂ alkoxy, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals.

Claim 8 (original). The compound of Claim 7 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is aryl or heteroaryl radicals optionally substituted by 1-2 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)_2R^3$, $-NR^3R^4$, amino, acetylamino, methylsulfonylamino, C_1 - C_4 alkoxycarbonyl, halo, C_1 - C_6 alkyl or -CF₃ radicals; provided that the total number of aryl and heteroaryl radicals in R^1 is 1-2;

wherein each R^3 is independently a C_1 - C_4 alkyl, - CF_3 , aryl, heteroaryl, arylmethyl or heteroarylmethyl radical;

wherein each B is independently a

- (1) bond;
- (2) C₁-C₄ alkyl radical; or
- (3) aryl or heteroaryl radical;

each A is independently a

- (1) hydrogen radical;
- (2) halo radical; or

(3) $-C(O)-R^{30}$ or $-C(O)-NR^{32}R^{31}$ radical;

wherein each R^{30} is independently a heterocyclyl radical optionally substituted by C_1 - C_4 alkyl;

each R³¹ is independently hydrogen radical or

- (1) -CF₃ or C_1 - C_4 alkyl radical optionally substituted by 1-2 radicals of aryl or heteroaryl radicals; or
- (2) aryl or heteroaryl radical; and

wherein each R³² is independently a hydrogen or methyl radical.

Claim 9 (original). The compound of Claim 8 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is an aryl radical optionally substituted by 1-2 radicals of hydroxy, $-OR^3$, $-S(O)_2R^3$, $-NR^3R^4$, amino, acetylamino, methylsulfonylamino, halo, C_1 - C_4 alkyl or -CF3 radicals; provided that the total number of aryl and heteroaryl radicals in R^1 is 1-2;

R⁵, R⁶, R⁹ and R¹⁰ are each a hydrogen radical; or CR⁵-CR⁶ is C=C; and

wherein heterocyclyl is a radical of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiamorpholinyl, 4-benzyl-piperazin-l-yl, pyrimidinyl, tetrahydrofuryl, pyrazolidonyl, pyrazolinyl, pyridazinonyl, pyrrolidonyl, tetrahydrothienyl or its sulfoxide or sulfone derivative, 2,3-dihydroindolyl, tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, 1,2,3,4-tetrahydro-1-oxo-isoquinolinyl, 2,3-dihydrobenzofuryl, benzopyranyl, methylenedioxyphenyl or ethylenedioxyphenyl; aryl is a phenyl, biphenyl or naphthyl radical; and heteroaryl is a

radical of imidazolyl, pyrrolyl, pyrazolyl, pyridyl, pyrazinyl, triazolyl, furyl, thienyl, oxazolyl, thiazolyl, indolyl, quinolinyl, isoquinolinyl, 5,6,7,8-tetrahydroquinolyl, 5,6,7,8-tetrahydroisoquinolinyl, quinoxalinyl, benzothiazolyl, β-carbolinyl, benzofuryl, benzimidazolyl or benzoxazolyl.

Claim 10 (original). The compound of Claim 9 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is a phenyl or biphenyl radical optionally substituted by 1-2 radicals of hydroxy, -OR³, -S(O)₂R³, -NR³R⁴, amino, acetylamino, methylsulfonylamino, halo, C₁-C₄ alkyl or -CF₃ radicals; provided that the total number of aryl and heteroaryl radicals in R¹ is 1-2;

wherein each R^3 is independently an C_1 - C_4 alkyl, - CF_3 , phenyl, heteroaryl, phenylmethyl or heteroarylmethyl radical; and

wherein heterocyclyl is a radical of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiamorpholinyl, 4-benzyl-piperazin-l-yl or pyrimidinyl; and heteroaryl is a radical of imidazolyl, pyrrolyl, pyrazolyl, pyridyl, pyrazinyl, indolyl, quinolinyl, isoquinolinyl, benzothiazolyl, benzofuryl, benzimidazolyl or benzoxazolyl.

Claim 11 (original). The compound of Claim 10 or a pharmaceutically acceptable salt thereof, wherein

 R^1 is a phenyl or biphenyl radical optionally substituted by 1-2 radicals of hydroxy, $-OR^3$, halo, methyl or $-CF_3$ radicals; provided that the total number of aryl and heteroaryl radicals in R^1 is 1-2; and

wherein each R³ is independently an methyl, -CF₃, phenyl, heteroaryl, phenylmethyl or heteroarylmethyl radical.

Claim 12 (currently amended). The compound of Claim 1 or a pharmaceutically acceptable salt thereof, which is

cis-1-(4-Methoxy-benzenesulfonyl)-3-(phenylmethane sulfonylamino)-heptamethyleneimine-2-carboxylic acid; or

<u>trans-1-(4-Methoxy-benzenesulfonyl)-3-(phenylmethane sulfonylamino)-</u> heptamethyleneimine-2-carboxylic acid

- 1-(4-Methoxy benzenesulfonyl) 3-(2-amino-phenylmethane sulfonylamino) 1H-azepane 2-carboxylic acid;
- 1-(4-Methoxy-benzenesulfonyl) 3-(phenylmethanesulfonyl amino)-1*H*-azepane-2-carboxylic acid;
- 1-(4 Chlorophenyl-phenylsulfonyl) 3 (phenylmethane sulfonylamino) 2,3,4,7-tetrahydro-1*H*-azepine 2-carboxylic acid;
- 1-(4-Methoxy-benzenesulfonyl)-3-(2-nitrophenyl-methanesulfonylamino) 2,3,4,7-tetrahydro-1*H*-azepine-2-carboxylic acid;
- 1-(4-Methoxy benzenesulfonyl) 3-(phenylacroylsulfonyl amino) 2,3,4,7-tetrahydro-1*H*-azepine 2-carboxylic acid;
- 3 (4-Chlorobenzyloxycarbonylamino) 1 (4-methoxy-benzenesulfonyl) 2,3,4,7-tetrahydro 1*H*-azepine 2 carboxylic acid; or
- 3-(3,5-Dichlorobenzyloxycarbonylamino) 1-(4-methoxy-benzenesulfonyl) 2,3,4,7-tetrahydro-1*H*-azepine 2-carboxylic acid.

Claim 13 (original). A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.

Claim 14 (original). A method for prophylaxis or treatment of inflammation comprising administering an effective amount of a compound of Claim 1.

Claim 15 (original). A method for prophylaxis or treatment of inflammation comprising administering an effective amount of a composition of Claim 13.

Claim 16 (original). A method for prophylaxis or treatment of connective tissue degradation comprising administering an effective amount of a compound of Claim 1.

Claim 17 (original). A method for prophylaxis or treatment of connective tissue degradation comprising administering an effective amount of a composition of Claim 13.

Claim 18 (original). A method of treating neuroinflammatory disorders or angiogenesis dependent diseases comprising administering an effective amount of a compound of Claim 1.

Claim 19 (original). A method of treating neuroinflammatory disorders or angiogenesis dependent diseases comprising administering an effective amount of a composition of Claim 13.

Claim 20 (original). A method of treating rheumatoid arthritis, osteoarthritis, osteopenias, periodontitis, gingivitis, corneal ulceration, epidermal ulceration, gastric ulceration, tumour metastasis, tumour invasion, tumour growth, myelin degradation, cancer, psoriasis, proliferative retinopathies, neovascular glaucoma, ocular tumours, angiofibromas, hemangiomas, nephritis, pulmonary inflammation or restenosis comprising administering an effective amount of a compound of Claim 1.

Claim 21 (original). A method of treating rheumatoid arthritis, osteoarthritis, osteopenias, periodontitis, gingivitis, corneal ulceration, epidermal ulceration, gastric ulceration, tumour metastasis, tumour invasion, tumour growth, myelin degradation, cancer, psoriasis, proliferative retinopathies, neovascular glaucoma, ocular tumours, angiofibromas, hemangiomas, nephritis, pulmonary inflammation or restenosis comprising administering an effective amount of a composition of Claim 13.