Optimizers, Cost Functions

Loss/ Cost functions

- Cost functions (or loss functions) in deep learning measure the error between the model's predictions and the actual target values.
- The choice of cost function depends on the task (classification, regression, etc.).
- 1. Mean Squared Error (MSE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- **How it works**: Measures the average of the squares of the errors between predicted (y^i) and actual values (Yi).
- When to use: Best suited for regression tasks where the output is continuous, like predicting house prices or stock prices. MSE penalizes larger errors more, leading to smoother predictions.

2. Mean Absolute Error (MAE)

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

- **How it works**: Calculates the average of the absolute differences between the predicted and actual values.
- When to use: Also used for regression, especially when outliers are present. MAE treats all errors equally, so it's more robust to outliers than MSE.
- 3. Binary Cross-Entropy (Log Loss)

$$\text{Loss} = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

- **How it works**: Measures the difference between the actual label yi∈{0,1} and the predicted probability y^i for **binary classification** tasks.
- When to use: For binary classification problems, such as spam detection, fraud detection, or any task where there are two possible outcomes (0 or 1).

• 4. Categorical Cross-Entropy

$$ext{Loss} = -\sum_{i=1}^n y_i \log(\hat{y}_i)$$

- **How it works**: Similar to binary cross-entropy but for multi-class classification. Here, yi is a one-hot encoded true label vector, and y^i is the predicted probability for each class.
- When to use: For multi-class classification problems where there is one correct class out of many, such as image classification or text classification tasks (e.g., predicting if an image is a cat, dog, or bird).

• 5. Sparse Categorical Cross-Entropy

- **How it works**: Similar to categorical cross-entropy, but instead of one-hot encoding the true labels, the true labels are integers representing the class index.
- When to use: When your target labels are integers instead of one-hot encoded vectors. Useful for multi-class classification problems with a large number of classes, as it saves memory and computation.

6. Kullback-Leibler Divergence (KL Divergence)

Formula:

$$D_{ ext{KL}}(P||Q) = \sum_i P(i) \log rac{P(i)}{Q(i)}$$

- **How it works**: Measures how one probability distribution P diverges from a second distribution Q.
- When to use: Often used in unsupervised learning, particularly in models like variational autoencoders (VAE) and when comparing distributions, e.g., reinforcement learning where you compare the policy of the agent.

• 7. Hinge Loss

$$Loss = \max(0, 1 - y_i \cdot \hat{y}_i)$$

- How it works: Used for "maximum-margin" classification like support vector machines (SVMs). Penalizes incorrect classifications and correct classifications that are not confidently correct.
- When to use: Best for binary classification tasks where margin maximization is important, often used in tasks requiring SVMs or in deep learning applications with SVM-like behavior.

Summary of Cost Functions and Their Use-Cases

- MSE/MAE/Huber: For regression tasks (continuous output).
- Binary Cross-Entropy: For binary classification (two possible outcomes).
- Categorical Cross-Entropy/Sparse Categorical Cross-Entropy: For multiclass classification.
- KL Divergence: For comparing probability distributions, often in unsupervised learning or reinforcement learning.
- Hinge Loss: For binary classification using SVM-like models.
- **Poisson Loss**: For **count-based regression** tasks (such as number of customers, number of emails received in a day).

Optimizers

- In deep learning, optimizers are algorithms used to adjust the weights of neural networks to minimize the loss function.
- common optimizers and when to use them:
 - Stochastic Gradient Descent (SGD)
 - Basic optimization, good for large datasets.
 - When to use: Works well when data is plentiful and simple.
 - Often used in large-scale applications like image recognition.
 - Slow convergence but leads to good generalization.

SGD with Momentum

- •For faster, smoother convergence.
- When to use: Use when the optimization is slow or gets stuck in local minima. It speeds up convergence, especially on complex tasks.

- RMSprop (Root Mean Square Propagation):
 - When to use: Great for mini-batch training and noisy data (e.g., recurrent neural networks)
 - Helps with faster convergence.
- Adam (Adaptive Moment Estimation): General-purpose, widely effective across tasks.
 - The most popular optimizer for most deep learning models.
 - When to use: It generally performs well across various tasks, like natural language processing and computer vision, due to fast convergence.
- Adagrad: Best for sparse data and features.
 - When to use: Useful for sparse data and when features are very different in scale, like in natural language processing.
 - However, learning rates can get too small, slowing down training.
- Adadelta: Improved Adagrad, useful for preventing slowdowns.
- •Nadam: When you need fast convergence with high accuracy.

Appendix

1. Stochastic Gradient Descent (SGD)

- **How it works**: Updates weights by calculating the gradient of the loss function with respect to the model parameters.
- When to use: Works well when data is plentiful and simple. Often used in large-scale applications like image recognition. Slow convergence but leads to good generalization.

2. SGD with Momentum

- **How it works**: Accelerates the gradient vectors in the right direction by adding a fraction of the previous update to the current update.
- When to use: Use when the optimization is slow or gets stuck in local minima. It speeds up convergence, especially on complex tasks.

• 3. RMSprop (Root Mean Square Propagation)

- **How it works**: Adapts the learning rate for each parameter by maintaining a moving average of the squared gradient.
- When to use: Effective for problems with noisy gradients (e.g., recurrent neural networks) or for training on mini-batches. Helps with faster convergence.

4. Adam (Adaptive Moment Estimation)

- **How it works**: Combines the benefits of both Momentum and RMSprop by computing adaptive learning rates for each parameter and using moving averages of both the gradients and their squares.
- When to use: The most popular optimizer for most deep learning models. It generally performs well across various tasks, like natural language processing and computer vision, due to fast convergence.

• 5. Adagrad

- How it works: Adjusts the learning rate for each parameter individually, scaling it inversely with the sum of the squares of the past gradients.
- When to use: Useful for sparse data and when features are very different in scale, like in natural language processing. However, learning rates can get too small, slowing down training.

6. Adadelta

- How it works: A refinement of Adagrad that limits the learning rate from shrinking too much by focusing on a window of past updates.
- When to use: Suitable for cases where Adagrad would cause the learning rate to decrease too much, like in NLP tasks.

7. Nadam (Nesterov-accelerated Adam)

- **How it works**: An extension of Adam that incorporates Nesterov momentum, offering faster convergence.
- When to use: Good for models that require fast convergence and high accuracy. Often used in computer vision and language models.