

A Unified Framework for Distance Based Pairs Trading via Graph Laplacians

Professors:

Student:

Juri Marcucci

Michelangelo Saveriano

Daniele Bianchi

Introduction (pairs trading)

- Pairs trading idea:
 - first find two securities whose prices move together
 - when they diverge, buy the undervalued asset and sell the overvalued one

- In the quasi-multivariate framework, a security is traded against a basket of securities.
- In the distance-based approach various distance metrics are leveraged to identify comoving assets.

Our contribution

- We presented a new unified framework where relationships between stocks are represented via a graphical structure.
- We introduced two novel approaches for the estimation of the comoving portfolios.
- We back-tested a total of 780 approaches to show the differences between the various techniques.
- We analyzed the evolution of the excess returns over time and how liquidity and market capitalization affect performance.

Framework

Our framework is spit in 3 phases:

- 1. Data preprocessing
- 2. Spreads evaluation
- 3. Trading

Framework - Data Preprocessing

- Remove the effect of common risk factors when evaluating the idiosyncratic component of a stock
- We assume the following linear factor model:

$$r = \sum_{i} \beta_i f_i + \epsilon$$

• We compute the spreads using the residuals ϵ rather than the returns r

Framework – Spreads Evaluation

 The idiosyncratic component of a stock is represented as the spread between the returns of the stock and the ones of its comoving portfolio

$$s_t^T = r_t^T - r_t^T A = r_t^T L$$

- 1. Correlation-based approaches Corr-K
- 2. Approaches based on the sparse inverse covariance:
 - Laplacian constrained Gaussian Markov Random Field (LGMRF)
 - Smooth Graph Signal (SGS) representation
- 3. Identity L = I

Graph Visualization

Framework - Trading

We define the rolling spreads with window w:

$$s_t^{(w)} = \sum_{\tau = t - w}^t s_{\tau}$$

Non-Parametric Threshold

- Given the rolling spreads standard deviation $s_{std}^{(w)}$
- We long asset i if $s_{t,i}^{(w)} \leq -\gamma \cdot s_{std,i}^{(w)}$
- We short asset i if $s_{t,i}^{(w)} \ge \gamma \cdot s_{std,i}^{(w)}$ We short the q/2 assets with the

Quantiles-based

- Given the amount of assets traded q
- We long the q/2 assets with the lowest spreads
- highest spreads

Framework - Trading

Quantiles-Std

- We long asset i if $s_{t,i} \leq -\gamma \cdot s_{std,i}^{(w)}$ and it belongs to the subset of the q/2 assets with the lowest spreads.
- We long asset i if $s_{t,i} \ge \gamma \cdot s_{std,i}^{(w)}$ and it belongs to the subset of the q/2 assets with the highest spreads.
- When $\gamma = None$ we neglect the non-parametric threshold trading rule;
- When q = None we neglect the quantiles-based trading rule

Results

- We utilized two datasets:
 - S&P500, 427 stocks from 1995 to 2022;
 - CRSP, 3218 stocks from 1961 to 2022.
- We tested a total of 780 configurations on the S&P500
- Metrics of interest:
 - Monthly Excess Returns;
 - Sharpe Ratio;
 - Sortino Ratio.
- Empirical distributions and 95% confidence intervals are computed using non-parametric bootstrap.

Results – Preprocessing method

• **Returns** vs **Residuals**: The excess returns generated using residuals are less risky.

	Excess Returns	Sharpe Ratio	Sortino Ratio
Method			
residuals	0.82%	0.47	0.76
	(0.78% - 0.86%)	(0.45 - 0.49)	(0.72 - 0.81)
returns	$\boldsymbol{0.86\%}$	0.36	0.58
	(0.8% - 0.91%)	(0.34 - 0.39)	(0.54 - 0.62)

Results – Spreads method

 Identity vs Corr-50 vs LGMRF vs SGS: Corr-K and LGMRF can considerably reduce the risk of the strategy.

	Excess Returns	Sharpe Ratio	Sortino Ratio
Method			
Corr-50	0.87%	0.47	0.79
	(0.76% - 0.99%)	(0.42 - 0.53)	(0.68-0.91)
Identity	$\boldsymbol{0.99\%}$	0.35	0.65
	(0.83% - 1.17%)	(0.31 - 0.4)	(0.53 - 0.77)
LGMRF	0.84%	0.45	0.73
	(0.73% - 0.95%)	(0.39 - 0.5)	(0.62 - 0.84)
\mathbf{SGS}	0.91%	0.38	0.6
	(0.77% - 1.06%)	(0.33-0.44)	(0.5-0.71)

Results – Preprocessing method

• A small rolling window and the union of the two approaches give the best performance.

	Excess Returns	Sharpe Ratio	Sortino Ratio
Configuration			
w=1 - γ =None - q=0.1	0.96%	0.65	1.0
	(0.85% - 1.09%)	(0.58 - 0.73)	(0.85-1.17)
w=1 - γ =None - q=0.2	0.8%	0.72	1.17
	(0.71% - 0.89%)	(0.65 - 0.8)	(1.02 - 1.34)
w=2 - γ =2 - q=0.1	1.43%	0.64	1.18
	(1.25% - 1.61%)	(0.56 - 0.73)	(1.01-1.37)
w=2 - γ =2 - q=0.2	1.3%	0.63	1.14
	(1.13% - 1.47%)	(0.54 - 0.73)	(0.97 - 1.33)
w=2 - γ =2 - q=None	1.25%	0.63	1.12
	(1.09% - 1.42%)	(0.54 - 0.72)	(0.95-1.3)

Performance over time – Rolling lpha

$$r = \alpha + \sum_{i} \beta_{i} f_{i} + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^{2})$$

Market Cap. and Liquidity

 We split the U.S. CRSP dataset into 3 tertiles based on the average monthly volumes: Low, Mid, and High liquidity.

Conclusion

- We suggest using residuals and information from other stocks to reduce the risk of the trading strategies.
- We found that a low liquidity environment is beneficial to pairs trading.
- We formalized the pairs trading problem, and we presented a statistical arbitrage approach that casts some doubts on the robustness of the idea behind pairs trading.

Thanks for your attention!

