Química IS Prof María Luján Ferreira

Equilibrio Químico

Cursado 2018

Equilibrio Dinámico :

Un estado en el que dos procesos opuestos ocurren a velocidades iguales.

Equilibrio Químico:

Tiene lugar cuando dos reacciones opuestas ocurren a <u>igual velocidad</u>

y

las concentraciones de reactivos y productos NO cambian con el tiempo.

Condiciones

Sistema CERRADO

NADA sale, NADA entra

Para la reacción:

$$A \rightarrow B$$

Reacción directa:

$$A \rightarrow B$$

$$V_d = k_d[A]$$

 k_d = constante específica reacción directa

Reacción reversa:

$$B \rightarrow A$$

$$V_r = k_r[B]$$

 k_r = constante específica de reacción reversa

V_d= velocidad de reacción directa

V_r=Velocidad de reacción inversa

- A medida que la reacción directa avanza
 - –[A] disminuye y la velocidad de reacción directa disminuye
 - -[B] aumenta y la velocidad de reacción reversa aumenta
 - -Eventualmente ambas velocidades se hacen iguales. (=Equilibrio Químico)

kd[A] = kr[B]

 Al establecerse el equilibrio, a una temperatura constante, las concentraciones de A y B NO cambian.

$$\frac{[B]e}{[A]e} = \frac{k_d}{k_r} = \text{constante} = K_{eq}$$

Ley de Acción de Masas:

Expresa la relación entre concentraciones de reactivos y productos en el equilibrio.

Ejemplo:

$$aA + bB \leftrightarrow cC + dD$$

$$\mathbf{K_c} = [\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^{\mathbf{d}}$$
$$[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^{\mathbf{b}}$$

$$\mathbf{K}_{\mathbf{c}} = [\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^{\mathbf{d}}$$
$$[\mathbf{A}]^{\mathbf{a}}[\mathbf{B}]^{\mathbf{b}}$$

- K_c es la constante de Equilibrio
 - -El suscripto c indica concentraciones molares.
 - Reacciones en fase gas,
 puedo obtener K_c ó K_p

Kp y Kc tienen unidades, sólo por sentido práctico y a efectos educativos!!

PERO la constante de equilibrio que obtenemos de la termodinámica es

K_{ter}=K_p en valor absoluto cuando la reacción es en fase gas

K_{ter}=K_c cuando la reacción es en solución, en general acuosa

$$2SO_{2(g)} + O_{2(g)} + 2SO_{3(g)}$$

$$K_c = \frac{\left[SO_3\right]^2}{\left[SO_2\right]^2 \left[O_2\right]}$$

$$K_p = \frac{P_{SO3}^2}{P_{SO2}^2 x P_{O2}}$$

Estado de referencia gases 1atmósfera

K_p=K_{ter} Valor absoluto

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_c = 64 \text{ a } 400^{\circ}$$

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = 64$$

$$2 \operatorname{HI}(g) \leftrightarrows \operatorname{H}_{2}(g) + \operatorname{I}_{2}(g)$$

$$K_c = \frac{[H_2][I_2]}{[HI]^2} = \frac{1}{64}$$

(b)

En el equilibrio, partiendo de sólo H₂y N₂ ó sólo de NH₃, llegamos a las mismas concentraciones a T constante.

El Proceso Haber

$$N_{2(g)} + 3H_{2(g)} \stackrel{\longleftarrow}{\rightarrow} 2NH_{3(g)}$$

- En este proceso se sintetiza amoníaco a alta presión
- ➤ En el equilibrio, los 3 componentes se encuentran en el reactor, partiendo de los reactivos solos ó el producto solo

Constante de equilibrio Kc

$$K_c = \frac{\left[\mathbf{NH}_3 \right]^2}{\left[\mathbf{N}_2 \right] \left[\mathbf{H}_2 \right]^3}$$

 La constante de equilibrio depende de la estequiometría de la reacción, NO del mecanismo de reacción.

Para la reacción a 230°C, con todos gases:

 $2NO + O_2 = 2NO_2$

En el equilibrio se encontró que las concentraciones eran

[NO]=0.0542M [O₂]=0.127M [NO₂]=15.5M. Kc??

$$K_c = \frac{\left[\text{NO}_2\right]^2}{\left[\text{NO}\right]^2 \left[\text{O}_2\right]}$$

$$K_c = \frac{[15.5]^2}{[0.0542]^2[0.127]}$$

K_c sin considerar Estados de referencia Kc se obtuvo de Kp 6.44 x 10⁵ mol/L

K_c considerando los estados de referencia 6.44 x 10⁵

$aA + bB \leftrightarrow cC + dD$

$$K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

P_A es la presión parcial de A, P_B es la presión parcial de B, etc; todas en atm.

- K_c y K_p son diferentes en general, <u>pero no</u> <u>siempre.</u>
- La relación entre ambas es

$$K_p = K_c (RT)^{\Delta n}$$

• Δn es el cambio en el número de moles de gas.

$$\Delta n = n_{\text{productos}} - n_{\text{reactantes}}$$

Si
$$\Delta n = 0$$
 Kp=Kc

$$N_2O_{4(g)} \pm 2NO_{2(g)}$$

•
$$\Delta n = 2 - 1 = 1$$

- Entonces
- $K_p = K_c(RT)$

$$2SO_{3(g)} \leftrightarrows 2SO_{2(g)} + O_{2(g)} \text{ a } 1000K$$

$$K_c = 4.08 \text{ x } 10^{-3}$$

$$K_p??$$

$$K_p = K_c (RT)^{\Delta n}$$

$$\Delta n = 3 - 2 = 1$$

$$K_p = 4.08 \times 10^{-3} \times (0.08205 \times 1000)^1$$

0.335

Magnitud de las constantes de Equilibrio

- Cuando K_c es muy grande el numerador es mucho más grande que el denominador.
- El equilibrio está desplazado hacia la derecha

- Cuando la constante de equilibrio es muy pequeña, el equilibrio está desplazado hacia los reactivos.
- K>>1Productos Favorecidos.
- K<<1 Reactivos favorecidos.

Equilibrie Leterogéneo

Reacciones Químicas con Sustancias en equilibrio en diferentes fases

$$CaCO_{3(s)} \hookrightarrow CaO_{(s)} + CO_{2 (gas)}$$

 La concentración de un líquido ó un sólido puro es constante

$$K_c = \frac{\left[\text{CaO}\right]\left[\text{CO}_2\right]}{\left[\text{CaCO}_3\right]}$$

$$K_c = \frac{[CO_2]}{}$$

•NO SE INCLUYEN las concentraciones de sólidos ó líquidos puros

$$K_c' = K_c \frac{\text{constante 2}}{\text{constante 1}} = [CO_2]$$

Esta ecuación muestra que a una dada temperatura, existe un equilibrio CaO, CaCO₃, y CO₂ que a T constante lleva a la misma concentración de CO₂ en el equilibrio. Los sólidos puros y los líquidos puros DEBEN estar presentes para que se establezca el equilibrio.

Escriba K_c y K_p para las siguientes reacciones:

$$3Fe_{(s)} + 4H_2O_{(g)} \leftrightarrows Fe_3O_{4(s)} + 4H_{2(g)}$$

$$K_c = \frac{[\text{Fe}_3\text{O}_4][\text{H}_2]^4}{[\text{Fe}]^3[\text{H}_2\text{O}]^4} = \frac{[\text{H}_2]^4}{[\text{H}_2\text{O}]^4}$$

$$K_{p} = \frac{P_{\text{Fe}_{3}O_{4}}^{1} \left(P_{\text{H}_{2}}^{4}\right)}{P_{\text{Fe}}^{3} \left(P_{\text{H}_{2}O}^{4}\right)} = \frac{P_{\text{H}_{2}}^{4}}{P_{\text{H}_{2}O}^{4}}$$

Calculando Constantes de Equilibrio

- Las concentraciones de reactivos y productos en el equilibrio son desconocidas
- Si una concentración es conocida se pueden calcular las otras conociendo la estequiometría de la reacción.

Concentraciones en el Equilibrio

Concentración Inicial

Cambio en la concentración

Concentración en el Equilibrio

Procedimiento

$$H_2(g) + I_2(g)$$
 \longrightarrow $2HI(g)$

En cierto volumen se colocan 2 moles de H_2 y 2 moles de I_2 . Sabiendo que hay 3,5 moles en equilibrio de HI calcule las cantidades de los reactivos en el equilibrio.

1) Diseñamos la tabla con una columna para cada componente e hileras para las condiciones iniciales, el cambio delta (Δ) y las condiciones en el equilibrio.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

	H_2	I_2	2HI
C.I.			
Δ			
C.E			

2) Completamos con lo que sabemos

*HI es un producto, es 0 como C.I.

*En el equilibrio existen 3.50 moles de HI

$$H_2(g) + I_2(g) \implies 2HI(g)$$

C.I. 2.0	2.0 0
Δ	+3.50
C.F.	3.50

3)Ahora utilizamos la estequiometría para calcular el resto

$$H_2(g) + I_2(g) \implies 2HI(g)$$

	H_2	I_2	2HI
C.I.	2.0	2.0	0
Δ	-1.75		+3.50
C.F.			3.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

El cambio ó Δ de H_2 es NEGATIVO, se consumió para dar HI

$$H_2(g) + I_2(g) \implies 2HI(g)$$

	H_2	I_2	2HI
C.I.	2.0	2.0	0
Δ	-1.75	-1.75	+3.50
C.F.			3.50

$$\frac{3.50 \text{ mol HI}}{2 \text{ mol HI}} = 1.75 \text{ mol I}_2$$

$$2 \text{ mol HI}$$

Como la estequiometría de H₂ es 1 a 1 con I₂, se consumió lo mismo de I₂ que de H₂.

Finalmente, calculamos las C.F.

$$H_2(g) + I_2(g) \implies 2HI(g)$$

	H_2	I_2	2HI
C.I.	2.0	2.0	0
Δ	-1.75	-1.75	+3.50
C.F.	0.25	0.25	3.50

Las cantidades en rojo se usan para calcular K_c.

$$K_c = \frac{(HI)^2}{(H_2)(I_2)} = \frac{(3.50)^2}{(0.25)(0.25)} = 196$$

En este caso Kc no tiene unidades, sea que consideremos los estados de referencia o no, porque ∆n=0 !!

Entonces K_c=K_p=K_{ter}

$$2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g)$$

0.01219 moles de SO_3 gas en un vaso de 2.0 L se calientan a 1000K. En el equilibrio el vaso contiene 0.00487 moles de SO_3 .

A) Calcule las presiones parciales de $SO_2(g)$ y $O_2(g)$. B) Calcule K_{eq} .

1)Primero calculamos las presiones iniciales y finales del reactivo.

PV = nRT

 $P = 0.01219(0.8206)(1000) \, / \, (2.0) = 0.500 \ atm$ Esta es la presión inicial de SO $_3$ gas.

	$2SO_3$	$2SO_2$	O_2
C.I.	0.500	0	0
Δ			
C.F.			

P = nRT/V

P = 0.00487(0.8206)(1000) / (2.0) = 0.200 atm Esta es la presión de SO_3 gas en el equilibrio

	$2SO_3$	$2SO_2$	O_2
C.I.	0.500		
Δ			
C.F.	0.200		
Equilibrio			

2)Completamos la tabla, con el cambio en concentración de reactivo

$$2SO_3(g) = 2SO_2(g) + O_2(g)$$

	$2SO_3$	$2SO_2$	O_2
C.I.	.500		
Δ	300		
C.F.	.200		

3) Utilizamos las relaciones estequiométricas para completar la tabla

Note la relación 2:2 de SO₃ y SO₂. Note la relación 2:1 ratio de SO₃ y O₂.

	$2SO_3$	$2SO_2$	O_2
initial	.500	0	0
Δ	300	+.300	+.150
finish	.200	.300	.150

$$k_{eq} = \frac{[.300]^2[.150]}{[.200]^2} = .338$$

4) Escribimos la constante de equilibrio y resolvemos para obtenerla

$$2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$$

Aplicaciones de K

La magnitud de K nos dice cuánto procede la reacción.

Mirando la constante podemos predecir

- 1. Dirección de la reacción
- 2. Calcular las concentraciones de reactivos y productos en el equilibrio

Cociente de Reacción (Q)

- Es la relacion de productos y reactivos, con el mismo formato que la constante de equilibrio, en cualquier situación que no es la del equilibrio (C.I ó tiempo de cambio)
- Nos permite predecir hacia dónde irá la reacción.

I)Calcule Q como K

$$N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$$

II)Compare Q y K

$$Q = \frac{\left[\mathbf{NH}_3 \right]^2}{\left[\mathbf{N}_2 \right] \left[\mathbf{H}_2 \right]^3}$$

Cociente de Reacción (Q)

- Q=K en el equilibrio
- Q>K reacción va a la izquierda (reactivos)
 - Q<K reacción va a la derecha (productos)

Dirección de una Reacción

Etapa 1: Calcule el cociente de reacción Q_c

Etapa 2: Compare Q_c a K_c

caso 1:
$$Q_c > K_c$$
 Demasiado producto!

Numerador grande

caso 2:
$$Q_c = K_c$$

caso 2: $Q_c = K_c$ En el equilibrio

caso 3: Q_c < K_c Demasiados reactivos!

Denominador grande

$N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$

• Tenemos inicialmente 0.249 mol N₂, $3.21 \times 10^{-2} \text{ mol H}_2 \text{ y } 6.42 \times 10^{-4} \text{ mol}$ NH₃ en un vaso de 3.50 L a 200° C. Si K_c es 0.65 a esta temperatura, decida si el sistema está en el equilibrio. Si no, prediga en qué dirección progresará la reacción.

Concentraciones iniciales:

$$[N_2]_0 = \frac{0.249 \text{ mol}}{3.50 \text{ L}} = 0.0711 \text{ M}$$

$$[H_2]_0 = \frac{3.21 \times 10^{-2} \text{mol}}{3.50 \text{ L}} = 9.17 \times 10^{-3} \text{ M}$$

$$[NH_3]_0 = \frac{6.42 \times 10^{-4} \text{ mol}}{3.50 \text{ L}} = 1.83 \times 10^{-4} \text{ M}$$

$N_{2(g)} + 3H_{2(g)} = 2 NH_{3(g)}$

$$Q_{c} = \frac{[NH_{3}]_{0}^{2}}{[N_{2}]_{0}[H_{2}]_{0}^{3}}$$

$$K_{c} = 0.65$$

$$Q_{c} = \frac{(1.83 \times 10^{-4})^{2}}{(0.0711)(9.17 \times 10^{-3})^{3}} = 0.611$$

Q_c es más chica que K_c. Hay demasiados reactivos, la reacción progresa hacia la derecha. Qc y Kc se reportan considerando la división por los estados de referencia

Calculo de las concentraciones en el Equilibrio

- A menudo sólo K_c y las concentraciones iniciales son conocidas.
- Se pueden obtener entonces las concentraciones en el equilibrio

$H_{2(g)} + I_{2(g)} \leftrightarrows 2HI_{(g)}$

 0.500 mol H₂ y 0.500 mol I₂ se colocaron en un recipiente de 1.00L de acero inoxidable a 430°C. Calcule las concentraciones de H2, I2, and HI en el equilibrio si $K_c = 54.3$ a esa temperatura.

$$H_{2(g)} + I_{2(g)} + I_{2(g)}$$

Molaridad inicial (M)		
Cambio (M)		
Equilibrio (M)		

Comencemos poniendo los datos en la tabla

$H_{2(g)} + I_{2(g)} \leftrightarrows 2HI_{(g)}$

	H ₂	I ₂	2HI
C. I. (M)	0.500 M	0.500 M	0
Δ (M)	-X	-X	2x
C.F. (M)	0.500-x	0.500-x	2x

$$K_c = \frac{\left[HI\right]^2}{\left[H_2\right]\left[I_2\right]}$$

$$54.3 = \frac{(2x)^2}{(0.500 - x)(0.500 - x)}$$

$$\sqrt{54.3} = \sqrt{\frac{(2x)^2}{(0.500 - x)(0.500 - x)}}$$

$$7.37 = \frac{2x}{0.500 - x} \quad \text{or } x = 0.393M$$

Incluyamos x en los cálculos de las C.F.

En el equilibrio las concentraciones son:

- $[H_2]$ = (0.500-0.393) = 0.107M
- $[I_2] = (0.500-0.393) = 0.107M$
- [HI] = 2(0.393) = 0.786M
- Las respuestas se pueden chequear calculando K_c con estas concentraciones.

Principio de Le Chatelier's

- Si se introduce una perturbación en un sistema en equilibrio, el equilibrio se modificará en el sentido de volver al estado de equilibrio.
- Perturbación puede ser un cambio en :
- temperatura
- presión
- Concentración de uno o varios componentes

∆ en concentración de Productos ó Reactivos

 Agregando una sustancia a un sistema en equilibrio, la reacción consumirá el compuesto agregado.

 Removiendo una sustancia de un sistema en equilibrio, la reacción generará más del compuesto removido.

Efectos de Volumen y Presión

Reducir el volumen (a T constante)
 causará un corrimiento en la reacción
 que reduzca el número de moles de gas
 en el sistema.

Para esta reacción

$$N_2O_4 \leftrightarrows 2NO_2$$

- Reducir el volumen favorece qué dirección de la reacción química?
- Desplazamiento hacia los reactivos, donde hay menor número de moles

$$H_{2(g)} + I_{2(g)} \stackrel{\longleftarrow}{\rightarrow} 2HI_{(g)}$$

 Cambiar Presión ó Volumen qué tipo de cambio genera en esta reacción?

- Ninguno, no hay cambio.
- Cambiar concentraciones sí genera cambio

Efecto del cambio de Temperatura

- K_{eq} siempre cambia con el cambio de temperatura, pero se mantiene IGUAL cuando presiones ó concentraciones cambian.
- La entalpía de la reacción juega un rol fundamental en cómo el cambio de T afecta el equilibrio.

Cuando la temperatura aumenta la reacción se realiza en la dirección en que absorbe calor.

• Endotérmica: + signo de ΔH (derecha)

Reactivos + calor ≒ Productos

Exotérmica: - signo de ΔH (izquierda)
 Reactivos ≒ Productos + calor

El proceso Haber
$$\Delta H_{rxn} = -48.5 \text{ KJ/mol}$$

 $N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g) + Calor$

...hmmm, el proceso Haber requiere alta temperatura (menos producto!) y alta presión (más producto); Porqué?? CINETICA