GREIBACH NORMAL FORM

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Understand the need of formal languages, and grammars (K3)
 - To Understand context free grammars

GREIBACH NORMAL FORM

• A context free grammar G is in GNF if every production is of the form $A \rightarrow a\alpha$ where $\alpha \in N^*$ and $a \in T$ (α may be ϵ) and $S \rightarrow \epsilon$ is in G if $\lambda \in L(G)$, where S does not appear on the RHS of any production.

$$S \rightarrow \underline{AB} \mid \underline{\varepsilon}$$

$$A \rightarrow \underline{bC}$$

$$B \rightarrow \underline{b}$$

GREIBACH NORMAL FORM

• Examples:

$$-G_1 = (\{S, A\}, \{a, b\}, \underline{S}, \{S \rightarrow \underline{aSA} \mid \underline{a}, A \rightarrow \underline{aA} \mid \underline{b}\})$$

$$-G_2 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow \underline{AS} \mid AAS, A \rightarrow \underline{SA} \mid \underline{aa}\})$$

- This grammar $S \to AB$ $A \to aA \mid bB \mid b$ $B \to b$ is not in GNF
- This grammar $S \rightarrow aAB \mid bBB \mid bB$

$$A \rightarrow aA \mid bB \mid b$$
 $B \rightarrow b$

is in GNF

GNF

not GNF

• Every context free language L can be generated by a context free grammar G in GNF.

• Step 1:

Eliminate null productions and then construct a grammar in G in

CNF generating L.

Rename the variables as A_1 , A_2 ,..... A_n with $\underline{S} = \underline{A_1}$.

Write G as $({A_1, A_2, A_n}, T, P, A_1)$.

Step 2: Derive the productions of the form

$$A_i \rightarrow \underline{a}\gamma$$
 or

$$A_i \rightarrow A_j \gamma$$
, where $j > i$.

To obtain this convert the A_i productions (i=1,2, ... n-1) to the form $A_i \rightarrow A_j \gamma$ such that j > i.

Step 3: Derive the productions of the form

$$A_i \rightarrow a\gamma$$
 from $A_i \rightarrow A_i\gamma$

To obtain this eliminate the left recursion

$$A \to A \alpha_1 \mid ... \mid \underline{A} \alpha_m \mid \underline{\beta_1} \mid ... \mid \underline{\beta_n} \text{ where } \underline{\beta_1} ... \, \underline{\beta_n} \text{ do not start with A}$$
 eliminate immediate left recursion

$$A \rightarrow \beta_{1} \mid \dots \mid \beta_{n}$$

$$A \rightarrow \beta_{1} \mid B \mid \dots \mid \beta_{n} \mid B$$

$$B \rightarrow \alpha_{1} \mid \dots \mid \alpha_{m}$$

$$A \rightarrow \beta_{1} \mid B \mid \dots \mid \alpha_{m} \mid B$$

$$A \rightarrow \beta_{1} \mid B \mid \dots \mid \alpha_{m} \mid B$$

an equivalent grammar

Step 4: Modify A_i-productions to the form

$$A_i \rightarrow a\gamma$$
 for i=1,2, ... n-1

• Step 5: Modify B_i - productions to the form

$$B_i \rightarrow a\gamma$$

First Step

$$S \rightarrow XA \mid BB$$
 $B \rightarrow b \mid SB$
 $X \rightarrow b$
 $A \rightarrow a$

$$S = A_1$$

 $X = A_2$
 $A = A_3$
 $B = A_4$

$$A_{1} \rightarrow A_{2}A_{3} \mid A_{4}A_{4}$$

$$A_{4} \rightarrow b \mid A_{1}A_{4}$$

$$A_{2} \rightarrow b$$

$$A_{3} \rightarrow a$$

CNF

New Labels

Updated CNF

$$A_1 \rightarrow A_2 A_3 \mid A_4 A_4$$

$$A_4 \rightarrow b \mid A_1 A_4$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

Second Step
$$A_i \rightarrow A_j \gamma \quad j > i$$

γ is a string of zero or more NTs

$$\times A_4 \rightarrow A_1 A_4$$

$$A_i \rightarrow A_j \gamma \quad j > i$$

$$A_4 \rightarrow A_1 A_4$$

 $A_4 \rightarrow A_2 A_3 A_4 \mid A_4 A_4 A_4 \mid b$
 $A_4 \rightarrow b A_3 A_4 \mid A_4 A_4 A_4 \mid b$

$$A_{1} \rightarrow A_{2}A_{3} \mid A_{4}A_{4}$$

$$A_{4} \rightarrow b \mid A_{1}A_{4}$$

$$A_{2} \rightarrow b$$

$$A_{3} \rightarrow a$$

$$A_1 \rightarrow A_2 A_3 \mid A_4 A_4$$

 $A_4 \rightarrow b A_3 A_4 \mid A_4 A_4 A_4 \mid b$
 $A_2 \rightarrow b$
 $A_3 \rightarrow a$

Third Step

Eliminate Left Recursions

$$\times$$
 $A_4 \rightarrow A_4 A_4 A_4$

A
$$\to$$
 A α_1 | ... | A α_m | β_1 | ... | β_n where β_1 ... β_n do not start with A

eliminate immediate left recursion

$$A \rightarrow \beta_1 \mid ... \mid \beta_n$$

$$A \rightarrow \beta_1 B \mid ... \mid \beta_n B$$

$$B \rightarrow \alpha_1 \mid \dots \mid \alpha_m$$

$$B \rightarrow \alpha_1 B | \dots | \alpha_m B$$

an equivalent grammar

Third Step

Eliminate Left Recursions

$$A_4 \rightarrow bA_3A_4 \mid b \mid bA_3A_4B_4 \mid bB_4$$

 $B_4 \rightarrow A_4A_4 \mid A_4A_4B_4$

$$A_1 \rightarrow A_2 A_3 \mid A_4 A_4$$
 $A_4 \rightarrow b A_3 A_4 \mid A_4 A_4 A_4 \mid b$
 $A_2 \rightarrow b$
 $A_3 \rightarrow a$

$$A_1 \rightarrow A_2A_3 \mid A_4A_4$$

 $A_2 \rightarrow b$
 $A_3 \rightarrow a$
 $A_4 \rightarrow bA_3A_4 \mid b \mid bA_3A_4B_4 \mid bB_4$
 $B_4 \rightarrow A_4A_4 \mid A_4A_4B_4$

Fourth Step

$$A_1 \rightarrow A_2 A_3 \mid A_4 A_4$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_4 \rightarrow bA_3A_4 \mid b \mid bA_3A_4B_4 \mid bB_4$$

$$B_4 \rightarrow A_4A_4 \mid A_4A_4 \mid A_4$$

$$A_1 \rightarrow bA_3 bA_3 A_4 A_4 | bA_4 | bA_3 A_4 B_4 A_4 bB_4 A_4$$

Fifth Step

$$A_2 \rightarrow b$$

 $A_3 \rightarrow a$
 $A_4 \rightarrow bA_3A_4 \mid b \mid bA_3A_4B_4 \mid bB_4$
 $B_4 \rightarrow A_4A_4 \mid A_4A_4B_4$

Modify B_i-productions

$$\begin{array}{c} A_{1} \rightarrow bA_{3} \ bA_{3}A_{4}A_{4} \ | \ bA_{4} \ | \ bA_{3}A_{4}B_{4}A_{4} \ | \ bB_{4}A_{4} \\ B_{4} \rightarrow bA_{3}A_{4}A_{4} \ | \ bA_{3}A_{4}B_{4}A_{4} \ | \ bB_{4}A_{4} \ | \ bA_{3}A_{4}A_{4} \ | \ bA_{3}A_{4}B_{4}A_{4} \\ bB_{4}A_{4} \end{array}$$

$$\begin{array}{l} A_{1} \rightarrow bA_{3} \ bA_{3}A_{4}A_{4} \ | \ bA_{4} \ | \ bA_{3}A_{4}B_{4}A_{4} \ bB_{4}A_{4} \\ A_{2} \rightarrow b \\ A_{3} \rightarrow a \\ A_{4} \rightarrow bA_{3}A_{4} \ | \ b \ | \ bA_{3}A_{4}B_{4} \ | \ bB_{4} \\ B_{4} \rightarrow bA_{3}A_{4}A_{4} \ | \ bA_{4} \ | \ bA_{3}A_{4}B_{4}A_{4} \ | \ bB_{4}A_{4} \ | \ bA_{3}A_{4}A_{4} \ | \ bA_{4} \ | \ bA_{3}A_{4}B_{4}A_{4} \\ bB_{4}A_{4} \end{array}$$

- S->AA|a
- A->SS|b

AZ > A, A, /b

$$A_{1} \rightarrow A_{2}A_{2} | a \qquad A_{1} \rightarrow a_{1}$$

$$A_{2} \rightarrow A_{1}A_{1} | b \qquad A_{1} \rightarrow b$$

$$1 \times 2$$

$$1 \times 4$$

$$A_{2} \rightarrow A_{2}A_{1} | A_{1} | b$$

$$A_{3} \rightarrow A_{2}A_{2} | a \qquad A_{1} | b$$

$$A_{4} \rightarrow A_{2}A_{2} | a \qquad A_{1} | b$$

$$A_{5} \rightarrow A_{2}A_{2} | a \qquad A_{1} | b$$

$$A_{2} \rightarrow A_{2}A_{2} | a \qquad A_{1} \rightarrow A_{2}A_{3} | a A_{1} | b$$

$$A_{2} \rightarrow A_{2}A_{2} | a \qquad A_{1} \rightarrow A_{2}A_{3} | a A_{1} | b$$

$$A_{2} \rightarrow A_{2}A_{2} | a \qquad A_{1} \rightarrow A_{2}A_{3} | a A_{1} | b$$

19

$$B_2 \rightarrow aA_1A_1 / bA_1 | aA_1 B_2 A_1 | bB_2 A_1$$

 $B_2 \rightarrow aA_1A_1 B_2 | bA_1B_2 | aA_1B_2 A_1 B_2 / bB_2 A_2 B_2$

Final Grammer

SUMMARY

• Definition of GNF, theorem

TEST YOUR KNOWLEDGE

- The entity which generate Language is termed as:
 - a) Automata
 - b) Tokens
 - c) Grammar
 - d) Data
- The minimum number of productions required to produce a language consisting of palindrome strings over ∑={a,b} is
 - a) 3
 - b) 7

c) 5 d) 6

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

