

Data sheet acquired from Harris Semiconductor SCHS200D

November 1997 - Revised October 2003

High-Speed CMOS Logic Decade Counter/Divider with 10 Decoded Outputs

Features

- · Fully Static Operation
- Buffered Inputs
- Common Reset
- · Positive Edge Clocking
- Typical $f_{MAX} = 50MHz$ at $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^{o}C$
- Fanout (Over Temperature Range)
 - Standard Outputs 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at $V_{CC} = 5V$

Description

The 'HC4017 is a high speed silicon gate CMOS 5-stage Johnson counter with 10 decoded outputs. Each of the decoded outputs is normally low and sequentially goes high on the low to high transition clock period of the 10 clock period cycle. The CARRY (TC) output transitions low to high after OUTPUT 10 goes from high to low, and can be used in conjunction with the CLOCK ENABLE (CE) to cascade several stages. The CLOCK ENABLE input disables counting when in the high state. A RESET (MR) input is also provided which when taken high sets all the decoded outputs, except "0", low.

The device can drive up to 10 low power Schottky equivalent loads.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC4017F3A	-55 to 125	16 Ld CERDIP
CD74HC4017E	-55 to 125	16 Ld PDIP
CD74HC4017M	-55 to 125	16 Ld SOIC
CD74HC4017MT	-55 to 125	16 Ld SOIC
CD74HC4017M96	-55 to 125	16 Ld SOIC
CD74HC4017NSR	-55 to 125	16 Ld SOP
CD74HC4017PW	-55 to 125	16 Ld TSSOP
CD74HC4017PWR	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Pinout

CD54HC4017 (CERDIP) CD74HC4017 (PDIP, SOIC, SOP, TSSOP) TOP VIEW

Functional Diagram

TRUTH TABLE

СР	CE	MR	OUTPUT STATE †
L	X	L	No Change
X	Н	L	No Change
Х	Х	Н	"0" = H, "1"-"9" = L
1	L	L	Increments Counter
\	Х	L	No Change
X	1	L	No Change
Н	↓	L	Increments Counter

H = High Level

L = Low Level

 \uparrow = High to Low Transition \downarrow = Low to High Transition

X = Don't Care.

† If n < 5 TC = H, Otherwise = L

Absolute Maximum Ratings

DC Supply Voltage, V _{CC} 0.5V to 7V
DC Input Diode Current, I _{IK}
For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$
DC Output Diode Current, I _{OK}
For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ ±20mA
DC Output Source or Sink Current per Output Pin, IO
For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ ±25mA
DC V _{CC} or Ground Current, I _{CC or} I _{GND}

Thermal Information

Package Thermal Impedance, θ _{JA} (see Note 1):
E (PDIP) Package
M (SOIC) Package73°C/W
NS (SOP) Package64°C/W
PW (TSSOP) Package108°C/W
Maximum Junction Temperature
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)300°C
(SOIC - Lead Tips Only)

Operating Conditions

Temperature Range, T _A 55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V_I , V_O 0V to V_{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TEST CONDITIONS		V _{CC}		25°C		-40°C 1	O 85°C	-55°C TO 125°C							
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS					
High Level Input	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V					
Voltage				4.5	3.15	ı	-	3.15	_	3.15	-	V					
				6	4.2	ı	-	4.2	-	4.2	-	٧					
Low Level Input	V _{IL}	-	-	2	-	ı	0.5	_	0.5	-	0.5	V					
Voltage				4.5	-	ı	1.35	_	1.35	-	1.35	V					
				6	-	-	1.8	_	1.8	_	1.8	V					
High Level Output	V _{OH}	V_{IH} or V_{IL}	-0.02	2	1.9	-	-	1.9	_	1.9	-	V					
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	_	4.4	-	V					
OWIGO Edddo			-0.02	6	5.9	=	-	5.9	-	5.9	-	V					
High Level Output			-	-	-	-	-	-	-	-	-	V					
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V					
TTE Education			-5.2	6	5.48	-	-	5.34	_	5.2	-	V					
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V					
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V					
OWIGO Edads						0.02	6	-	-	0.1	-	0.1	-	0.1	V		
Low Level Output												-	-	-	-	-	-
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V					
TTE LOaus			5.2	6	-	-	0.26	-	0.33	-	0.4	V					
Input Leakage Current	IĮ	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ					
Quiescent Device Current	I _{CC}	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μΑ					

Prerequisite for Switching Specifications

		TEST	v _{cc}		25°C		-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(v)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Maximum Clock	f _{MAX}	-	2	6	-	-	5	-	4	-	MHz
Frequency			4.5	30	-	-	35	-	20	-	MHz
			6	35	-	-	49	-	23	=.	MHz
CP Pulse Width	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	=.	ns
			6	14	-	-	17	-	20	=.	ns
MR Pulse Width	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	=.	ns
			6	14	-	-	17	-	20	-	ns
Set-up Time,	t _{SU}	-	2	75	-	-	95	-	110	-	ns
CE to CP			4.5	15	-	-	19	-	22	=.	ns
			6	13	-	-	16	-	19	=.	ns
Hold Time,	t _H	-	2	0	-	-	0	-	0	-	ns
CE to CP			4.5	0	-	-	0	-	0	-	ns
			6	0	-	-	0	-	0	=.	ns
MR Removal Time	t _{REM}	-	2	5	-	-	5	-	5	-	ns
			4.5	5	-	-	5	-	5	-	ns
			6	5	-	-	5	-	5	-	ns

Switching Specifications Input t_r , t_f = 6ns

		TEST	V _{CC}		25°C			-40°C TO 85°C		-55°C TO 125°C	
PARAMETER	SYMBOL		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS	
Propagation Delay	t _{PLH,}	C _L = 50pF	2	-	-	230	-	290	-	345	ns
CP to any Dec. Out	^t PHL	C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
CP to TC	t _{PLH,}	C _L = 50pF	2	-	-	230	-	290	-	345	ns
	^t PHL	C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
CE to any Dec. Out	t _{PLH,} t _{PHL}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
		C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	=	21	-	-	-	-	=	ns
		C _L = 50pF	6	-	-	43	-	54	=	64	ns
CE to TC	t _{PLH} ,	C _L = 50pF	2	-	-	250	-	315	-	375	ns
	^t PHL	C _L = 50pF	4.5	-	-	50	-	63	=	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns

Switching Specifications Input t_r , t_f = 6ns (Continued)

		TEST	v _{cc}	25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(v)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
MR to any Dec. Out	t _{PLH} ,	C _L = 50pF	2	-	-	230	-	290	=	345	ns
	^t PHL	C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
MR to TC	t _{PLH} ,	C _L = 50pF	2	-	-	230	-	290	-	345	ns
	^t PHL	C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
Transition Time TC, Dec. Out	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
		C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
		C _L = 50pF	6	-	-	13	-	16	-	19	ns
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
Maximum CP Frequency	f _{MAX}	C _L = 15pF	5	-	60	-	-	-	-	-	MHz
Power Dissipation Capacitance (Notes 2, 3)	C _{PD}	C _L = 15pF	5	ı	39	-	-	-	-	1	pF

NOTES:

- 2. $\ensuremath{C_{\text{PD}}}$ is used to determine the dynamic power consumption, per package.
- 3. $P_D = V_{CC}^2 f_i \Sigma \in C_L V_{CC}^2$ fo where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, V_{CC} = supply voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 2. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Test Circuits and Waveforms (Continued)

FIGURE 3. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

Timing Diagrams

