Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	
$t_0^{\#_1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$ +	3
	$2 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi} \right) - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = = \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	е
$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == 0$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta = 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}$	2
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6ik^{\lambda}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\varepsilon \partial_\chi \sigma^{\delta\varepsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	de denerators.	2.6

Quadratic (free) action $S == \iiint (\frac{1}{6} (2t_1 \omega^{\alpha_l} \omega_{,\theta}^{\theta} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 4t_1 \omega_{,\theta}^{\theta} \partial_l f^{\alpha_l} + 4t_1 \partial_l f^{\theta} \partial^l f^{\alpha} - 2t_1 \partial_l f^{\theta} \partial^l f^{\alpha} - 6 r_1 \partial_\beta \omega_{,\theta}^{\theta} + 4t_1 \partial^l f^{\alpha} \partial_{\theta} f^{\alpha} + 6 r_1 \partial_\beta \omega_{,\theta}^{\theta} + 2t_1 \partial^l f^{\alpha} \partial_{\theta} f^{\alpha} + 4t_1 \partial^l f^{\alpha} \partial_{\theta} f^{\alpha} + 6 r_1 \partial_\alpha \omega_{,\beta}^{\beta} \partial_\theta \omega_{,\beta}^{\beta} - 12 r_1 \partial^l \omega_{,\beta}^{\alpha} \partial_\theta \omega_{,\beta}^{\beta} - 6 r_1 \partial_\alpha \omega_{,\beta}^{\beta} \partial_\theta \omega_{,\beta}^{\beta} - 12 r_1 \partial^l \omega_{,\beta}^{\alpha} \partial_\theta \omega_{,\beta}^{\beta} - 6 t_1 \partial_\alpha f_{,\theta}^{\alpha} \partial_\theta f^{\alpha} + 3t_1 \partial_\theta f_{,\alpha}^{\alpha} \partial_\theta f^{\alpha} + 3t_1 \partial_\theta f_{,\alpha}^{\alpha} \partial_\theta f^{\alpha} + 3t_1 \partial_\theta f_{,\alpha}^{\alpha} \partial_\theta f^{\alpha} + 2t_1 \partial_\theta \omega_{,\beta}^{\beta} - 16 r_1 \partial_\theta \omega_{,\beta}^{\beta} - 16 r_1 $

								l
$ au_1^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	7
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	f#1 f#2
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0 0		$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$\omega_1^{\#2}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	$\omega_{1}^{\#1}$
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	ω_{1+}^{*1} ω_{1+}^{*2} ω_{1+}^{*2} ω_{1+}^{*2} ω_{1-}^{*1} ω_{1-}^{*1}
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0 0		0	0	$\omega_{_1+_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} + \alpha$ $\sigma_{1}^{\#2} + \alpha$		$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$	

0	0	0	$\frac{t_1}{3\sqrt{2}}$	£3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$		$\omega_0^{\#_2}$	1 f ₀ ^{#1}	$f_{0}^{#2}$	$\omega_0^{\#1}$						
0	0	0	$\frac{9}{\overline{1}_{j}}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1	$\omega_{0^{+}}^{\#1}\dagger$ $f_{0^{+}}^{\#1}\dagger$	0	0	0	0	<u>t1</u> 2 i kt1	$-\frac{i k t_1}{\sqrt{2}}$		0		
$\sqrt{2}$	0	0	0	0	0	0	$f_{0}^{#2}$ † $\omega_{0}^{#1}$ †	0	0	0	0	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	k ² 1	0 $r_1 + \frac{t_1}{2}$		
$\sqrt{2}$	0	0	0	0	0	0	ω_{0} -	U	$\sigma_{2}^{\#1}$	0 αβ	$-t_1$	1 αβ	$\sigma_{2}^{\#1}$		2	$\sigma_{0^{+}}^{#1}$	7
2	$\frac{t_1}{\sqrt{2}}$	<u>t1</u>	0	0	0	0	$\sigma_{2}^{\#1}$ †	_αβ	$\frac{2}{(1+2k^2)^2}$	12.	- 2i	$\frac{\sqrt{2} k}{k^2)^2 t_1}$	0		$\sigma_{0}^{\#1}$ †		
. 1 ·	- <u>t</u>	$\frac{i k t_1}{\sqrt{2}}$))	0	(= 11 , 1						$\tau_{0}^{\#1}$ †	0			
	$\dagger^{\alpha \beta}$	$\dagger^{\alpha \beta}$	+α	$+^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	$ au_{2}^{\#1}$ †	μ	$\frac{2i\sqrt{2}}{(1+2k^2)^2}$	$\frac{1}{(t_1)^2 t_1}$	(1+2 k	$(2)^2 t_1$	0		$\tau_{0}^{\#2}$ †	0	
$\omega_{1^+}^+$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} +^{\alpha\beta}$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1}$	$f_1^{#2}$	$\sigma_2^{\#1} + ^{\circ}$	αβχ	0		Ó	0	$\frac{2}{2k^2r_1}$	<u></u> ⊦t ₁	$\sigma_{0}^{\#1}$ †	0	

Massive and massless spectra

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$