

正基科技股份有限公司

SPECIFICATION

SPEC. NO).:		REV: 0.5	5
DATE:	09. 29 . 2	017		
PRODUC	Г NAME:	Al	P6398S	
	Custo	omer APPROVI	ED	
	Company			
	Representative Signature	,		
PREPARED -	REVII PM		APPROVED	DCC ISSUE
	1 171	QA		

AMPAK

AP6398S

2x2 WiFi + Bluetooth 5.0 Module Spec Sheet

Revision History

Date	Revision Content	Revised By	Version
2017/06/03	- Preliminary	Richard	0.1
2017/06/07	- Modify RF Spec	Richard	0.2
2017/06/07	- Modify BT 4.2 to BT 5.0	Richard	0.3
2017/00/07	- Modify Vbat operation range	Richard 0.3	
2017/08/24	- Modify Recommended Reflow Profile	Richard	0.4
2017/09/29	- Modify Supply voltage range	Richard	0.5

Contents

1.	Introduction	3
2.	Features	4
3.	General Specification	5
	3.1 General Specification	5
	3.2 Voltages	5
	3.2.1 Absolute Maximum Ratings	5
	3.2.2 Recommended Operating Rating	5
4.	WiFi RF Specification	6
	4.1 2.4GHz RF Specification	6
	4.2 5GHz RF Specification	8
5.	Bluetooth Specification	13
	5.1 Bluetooth Specification	13
6.	Pin Assignments	14
	6.1 Pin Outline	14
	6.2 Pin Definition	14
7.	Dimensions	16
	7.1 Physical Dimensions	16
	7.2 Layout Recommendation	17
8.	External clock reference	18
	8.1 SDIO Pin Description	18
9.	Host Interface Timing Diagram	19
	9.1 Power-up Sequence Timing Diagram	19
	9.2 SDIO Default Mode Timing Diagram	21
	9.3 SDIO High Speed Mode Timing Diagram	22
	9.4 SDIO Bus Timing Specifications in SDR Modes	23
	9.5 SDIO Bus Timing Specifications in DDR50 Mode	26
10	.Recommended Reflow Profile	27
11	. Package Information	30
	11.1 Label	30
	11.2 Dimension	31
	11.3 MSL Level / Storage Condition	33

1. Introduction

AMPAK Technology would like to announce a low-cost and low-power consumption module which has all of the WiFi and Bluetooth functionalities. The highly integrated module makes the possibilities of web browsing, VoIP, Bluetooth headsets applications. With seamless roaming capabilities and advanced security, also could interact with different vendors' 802.11a/b/g/n/ac 2x2 Access Points in the wireless LAN.

The wireless module complies with IEEE 802.11 a/b/g/n/ac 2x2 MIMO standard and it can achieve up to a speed of 867Mbps with dual stream in 802.11n to connect the wireless LAN. The integrated module provides SDIO interface for WiFi, UART / PCM interface for Bluetooth.

This compact module is a total solution for a combination of WiFi + BT technologies. The module is specifically developed for tablet, OTT box & portable devices.

2. Features

- Lead Free design which is compliant with ROHS requirements.
- TX and RX low-density parity check (LDPC) support for improved range and power efficiency.
- Dual-stream spatial multiplexing up to 867 Mbps data rate.
- 20, 40, 80 MHz channels with optional SGI (256 QAM modulation)
- IEEE 802.11 ac/n beam forming.
- Real simultaneous dual-band (RSDB)
- Supports 2 antennas with one for WLAN & Bluetooth shared port and one WLAN port.
 Also, shared Bluetooth and WLAN receive signal path eliminates the need for an external power splitter while maintaining excellent sensitivity for both Bluetooth and WLAN.
- Supports IEEE 802.15.2 external coexistence interface to optimize bandwidth utilization with other co-located wireless technologies such as LTE, GPS.
 - Supports standard SDIO v3.0, compatible with SDIO v2.0 HOST interfaces.
- BT host digital interface:
 - HCI UART (up to 4 Mbps)
 - PCM for audio data
- Complies with Bluetooth Core Specification Version 5.0 with provisions for supporting future specifications. With Bluetooth Class 1 or Class 2 transmitter operation.
- Supports extended synchronous connections (eSCO), for enhanced voice quality by allowing for retransmission of dropped packets.
- Adaptive frequency hopping (AFH) for reducing radio frequency interference.

A simplified block diagram of the module is depicted in the figure below.

3. General Specification

3.1 General Specification

Model Name	AP6398S
Product Description	Support WiFi/Bluetooth functionalities
Dimension	L x W x H: 15 x 13 x 1.5 (typical) mm
WiFi Interface	Support SDIO V3.0/2.0
BT Interface	UART / PCM
Operating temperature	-30°C to 75°C
Storage temperature	-40°C to 85°C
Humidity	Operating Humidity 10% to 95% Non-Condensing

Optimal RF performance specified in the data sheet, however, is guaranteed only -10 °C to +55 °C and 3.2V< VBAT < 3.8V without derating performance.

3.2 Voltages

3.2.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VBAT	Input supply Voltage	-0.5	4.5	V
VDDIO	Digital/Bluetooth/SDIO/ I/O Voltage	-0.5	3.8	٧

3.2.2 Recommended Operating Rating

The module requires two power supplies: VBAT and VDDIO.

	Min.	Тур.	Max.	Unit
Operating Temperature	-30	25	75	deg.C
VBAT	3.0	3.3	3.8	V
VDDIO	1.7	1.8, 3.3	3.6	V

VBAT current consumption 1200mA(Peak), when VBAT = 3.3V

4. WiFi RF Specification

4.1 2.4GHz RF Specification

Conditions: VBAT=3.3V; VDDIO=3.3V; Temp:25°C

Feature	Description		
WLAN Standard	IEEE 802.11a/b/g/n/ac WiFi compliant		
Frequency Range	2.400 GHz ~ 2.483 GHz (2.4 GHz ISM Band)		
Number of Channels	2.4GHz: Ch1	~ Ch13	
Modulation	802.11b : DQF	PSK, DBPSK, CCK	
Modulation	802.11 g/n : O	FDM /64-QAM,16-QAM, QPSK, BPSK	
	802.11b /11Mb	ops : 17.5 dBm ± 1.5 dB @ EVM ≤ -9dB	
Output Power	802.11g /54Mbps : 16.5 dBm ± 1.5 dB @ EVM ≤ -25dB		
	802.11n /MCS	7@20MHz : 15.5 dBm ± 1.5 dB @ EVM ≤ -27dB	
CICO Dessive	- 1Mbps	PER @ -96 dBm, +/- 2dB	
SISO Receive	- 2Mbps	PER @ -93 dBm, +/- 2dB	
Sensitivity (11b,20MHz) @8% PER	- 5.5Mbps	PER @ -91 dBm, +/- 2dB	
@0 /0 FER	- 11Mbps	PER @ -88 dBm, +/- 2dB	
	- 6Mbps	PER @ -92 dBm, +/- 2dB	
	- 9Mbps	PER @ -91 dBm, +/- 2dB	
SISO Receive	- 12Mbps	PER @ -90 dBm, +/- 2dB	
Sensitivity (11g,20MHz)	- 18Mbps	PER @ -87 dBm, +/- 2dB	
@10% PER	- 24Mbps	PER @ -84 dBm, +/- 2dB	
	- 36Mbps	PER @ -81 dBm, +/- 2dB	
	- 48Mbps	PER @ -78 dBm, +/- 2dB	
	- 54Mbps	PER @ -76 dBm, +/- 2dB	
	- 6Mbps	PER @ -95 dBm, +/- 2dB	
	- 9Mbps	PER @ -94 dBm, +/- 2dB	
14114 C D	- 12Mbps	PER @ -93 dBm, +/- 2dB	
MIMO Receive	- 18Mbps	PER @ -90 dBm, +/- 2dB	
Sensitivity (11g,20MHz)	- 24Mbps	PER @ -87 dBm, +/- 2dB	
@10% PER	- 36Mbps	PER @ -84 dBm, +/- 2dB	
	- 48Mbps	PER @ -81 dBm, +/- 2dB	
	- 54Mbps	PER @ -78 dBm, +/- 2dB	
SISO Receive	- MCS=0	PER @ -91 dBm, +/- 2dB	
Sensitivity (11n,20MHz)	- MCS=1	PER @ -89 dBm, +/- 2dB	
@10% PER	- MCS=2	PER @ -87 dBm, +/- 2dB	

	- MCS=3	PER @ -83 dBm, +/- 2dB	
	- MCS=4	PER @ -80 dBm, +/- 2dB	
	- MCS=5	PER @ -78 dBm, +/- 2dB	
	- MCS=6	PER @ -76 dBm, +/- 2dB	
	- MCS=7	PER @ -74 dBm, +/- 2dB	
	- MCS=0	PER @ -93 dBm, +/- 2dB	
	- MCS=1	PER @ -92 dBm, +/- 2dB	
	- MCS=2	PER @ -90 dBm, +/- 2dB	
MIMO Deseive	- MCS=3	PER @ -87 dBm, +/- 2dB	
MIMO Receive	- MCS=4	PER @ -83 dBm, +/- 2dB	
Sensitivity (11n,20MHz) @10% PER	- MCS=5	PER @ -80 dBm, +/- 2dB	
@10%FLIX	- MCS=6	PER @ -78 dBm, +/- 2dB	
	- MCS=7	PER @ -76 dBm, +/- 2dB	
	- MCS=8	PER @ -92 dBm, +/- 2dB	
	- MCS=15	PER @ -73 dBm, +/- 2dB	
Marianum lauruk laural	802.11b : -10 dBm		
Maximum Input Level	802.11g/n : -20 dBm		
Antenna Reference	Small antennas with 0~2 dBi peak gain		

4.2 5GHz RF Specification

Conditions: VBAT=3.3V; VDDIO=3.3V; Temp:25°C

Feature	Description		
WLAN Standard	IEEE 802.11a/n 2x2, WiFi compliant		
Frequency Range	5.15 GHz ~ 5.845 GHz (5.0 GHz ISM Band)		
Number of Channels	5.0GHz: Please see the table ¹		
	802.11a : OFDM /64-QAM,16-QAM, QPSK, BPSK		
Modulation	802.11n : OFDM /64-QAM,16-QAM, QPSK, BPSK		
	802.11ac : OFDM /256-QAM		
	802.11a /54Mbps : 15 dBm ± 2 dB		
	@ EVM ≤ -25dB		
	802.11n /MCS7@20MHz : 14 dBm ± 2 dB		
	@ EVM ≤ -27dB		
	802.11n /MCS7@40MHz : 14 dBm ± 2 dB		
Output Power	@ EVM ≤ -27dB		
Output I owel	802.11ac /MCS8@20MHz : 12 dBm ± 2 dB		
	@ EVM ≤ -30dB		
	802.11ac /MCS9@40MHz : 10 dBm ± 2 dB		
	@ EVM ≤ -32dB		
	802.11ac /MCS9@80MHz : 10 dBm ± 2 dB		
	@ EVM ≤ -32dB		
	- 6Mbps PER @ -91 dBm, +/- 2dB		
	- 9Mbps PER @ -90 dBm, +/- 2dB		
	- 12Mbps PER @ -88 dBm, +/- 2dB		
SISO Receive Sensitivity	- 18Mbps PER @ -86 dBm, +/- 2dB		
(11a,20MHz) @10% PER	- 24Mbps PER @ -83 dBm, +/- 2dB		
	- 36Mbps PER @ -80 dBm, +/- 2dB		
	- 48Mbps PER @ -76 dBm, +/- 2dB		
	- 54Mbps PER @ -74 dBm, +/- 2dB		
	- 6Mbps PER @ -92 dBm, +/- 2dB		
	- 9Mbps PER @ -92 dBm, +/- 2dB		
	- 12Mbps PER @ -92 dBm, +/- 2dB		
MIMO Receive Sensitivity	- 18Mbps PER @ -89 dBm, +/- 2dB		
(11a,20MHz) @10% PER	- 24Mbps PER @ -86 dBm, +/- 2dB		
	- 36Mbps PER @ -83 dBm, +/- 2dB		
	- 48Mbps PER @ -78 dBm, +/- 2dB		
	- 54Mbps PER @ -77 dBm, +/- 2dB		

	- MCS=0 PER @ -90 dBm, +/- 2dB
	- MCS=1 PER @ -88 dBm, +/- 2dB
	- MCS=2 PER @ -86 dBm, +/- 2dB
SISO Receive Sensitivity	- MCS=3 PER @ -83 dBm, +/- 2dB
(11n,20MHz) @10% PER	- MCS=4 PER @ -79 dBm, +/- 2dB
	- MCS=5 PER @ -76 dBm, +/- 2dB
	- MCS=6 PER @ -73 dBm, +/- 2dB
	- MCS=7 PER @ -72 dBm, +/- 2dB
	- MCS=0 PER @ -92 dBm, +/- 2dB
	- MCS=1 PER @ -91 dBm, +/- 2dB
	- MCS=2 PER @ -89 dBm, +/- 2dB
	- MCS=3 PER @ -86 dBm, +/- 2dB
MIMO Receive Sensitivity	- MCS=4 PER @ -82 dBm, +/- 2dB
(11n,20MHz) @10% PER	- MCS=5 PER @ -78 dBm, +/- 2dB
	- MCS=6 PER @ -76 dBm, +/- 2dB
	- MCS=7 PER @ -75 dBm, +/- 2dB
	- MCS=8 PER @ -89 dBm, +/- 2dB
	- MCS=15 PER @ -70 dBm, +/- 2dB
	- MCS=0 PER @ -88 dBm, +/- 2dB
	- MCS=1 PER @ -86 dBm, +/- 2dB
	- MCS=2 PER @ -83 dBm, +/- 2dB
SISO Receive Sensitivity	- MCS=3 PER @ -80 dBm, +/- 2dB
(11n,40MHz) @10% PER	- MCS=4 PER @ -77 dBm, +/- 2dB
	- MCS=5 PER @ -72 dBm, +/- 2dB
	- MCS=6 PER @ -70 dBm, +/- 2dB
	- MCS=7 PER @ -69 dBm, +/- 2dB
	- MCS=0 PER @ -89 dBm, +/- 2dB
	- MCS=1 PER @ -88 dBm, +/- 2dB
	- MCS=2 PER @ -86 dBm, +/- 2dB
	- MCS=3 PER @ -83 dBm, +/- 2dB
MIMO Receive Sensitivity	- MCS=4 PER @ -79 dBm, +/- 2dB
(11n,40MHz) @10% PER	- MCS=5 PER @ -75 dBm, +/- 2dB
	- MCS=6 PER @ -73 dBm, +/- 2dB
	- MCS=7 PER @ -72 dBm, +/- 2dB
	- MCS=8 PER @ -86 dBm, +/- 2dB
	- MCS=15 PER @ -67 dBm, +/- 2dB
SISO Receive Sensitivity	- MCS=0, NSS1 PER @ -90 dBm, +/- 2dB

(11ac,20MHz) @10% PER	- MCS=1, NSS1 PER @ -88 dBm, +/- 2dB
	- MCS=2, NSS1 PER @ -86 dBm, +/- 2dB
	- MCS=3, NSS1 PER @ -82 dBm, +/- 2dB
	- MCS=4, NSS1 PER @ -79 dBm, +/- 2dB
	- MCS=5, NSS1 PER @ -76 dBm, +/- 2dB
	- MCS=6, NSS1 PER @ -73 dBm, +/- 2dB
	- MCS=7, NSS1 PER @ -70 dBm, +/- 2dB
	- MCS=8, NSS1 PER @ -67 dBm, +/- 2dB
	- MCS=0, NSS1 PER @ -92 dBm, +/- 2dB
	- MCS=1, NSS1 PER @ -91 dBm, +/- 2dB
	- MCS=2, NSS1 PER @ -88 dBm, +/- 2dB
	- MCS=3, NSS1 PER @ -85 dBm, +/- 2dB
MIMO Receive Sensitivity	- MCS=4, NSS1 PER @ -82 dBm, +/- 2dB
(11ac,20MHz) @10% PER	- MCS=5, NSS1 PER @ -77 dBm, +/- 2dB
(11ac,201vii 12) @ 10 /01 EIX	- MCS=6, NSS1 PER @ -76 dBm, +/- 2dB
	- MCS=7, NSS1 PER @ -75 dBm, +/- 2dB
	- MCS=8, NSS1 PER @ -72 dBm, +/- 2dB
	- MCS=0, NSS2 PER @ -88 dBm, +/- 2dB
	- MCS=8, NSS2 PER @ -65 dBm, +/- 2dB
	- MCS=0, NSS1 PER @ -88 dBm, +/- 2dB
	- MCS=1, NSS1 PER @ -86 dBm, +/- 2dB
	- MCS=2, NSS1 PER @ -83 dBm, +/- 2dB
	- MCS=3, NSS1 PER @ -80 dBm, +/- 2dB
SISO Receive Sensitivity	- MCS=4, NSS1 PER @ -76 dBm, +/- 2dB
(11ac,40MHz) @10% PER	- MCS=5, NSS1 PER @ -72 dBm, +/- 2dB
	- MCS=6, NSS1 PER @ -70 dBm, +/- 2dB
	- MCS=7, NSS1 PER @ -69 dBm, +/- 2dB
	- MCS=8, NSS1 PER @ -65 dBm, +/- 2dB
	- MCS=9, NSS1 PER @ -63 dBm, +/- 2dB
	- MCS=0, NSS1 PER @ -90 dBm, +/- 2dB
	- MCS=1, NSS1 PER @ -88 dBm, +/- 2dB
	- MCS=2, NSS1 PER @ -86 dBm, +/- 2dB
MIMO Receive Sensitivity	- MCS=3, NSS1 PER @ -82 dBm, +/- 2dB
(11ac,40MHz) @10% PER	- MCS=4, NSS1 PER @ -79 dBm, +/- 2dB
	- MCS=5, NSS1 PER @ -77 dBm, +/- 2dB
	- MCS=6, NSS1 PER @ -73 dBm, +/- 2dB
	- MCS=7, NSS1 PER @ -72 dBm, +/- 2dB

	- MCS=8, NSS1 PER @ -68 dBm, +/- 2dB
	- MCS=9, NSS1 PER @ -66 dBm, +/- 2dB
	- MCS=0, NSS2 PER @ -86 dBm, +/- 2dB
	- MCS=9, NSS2 PER @ -60 dBm, +/- 2dB
	- MCS=0, NSS1 PER @ -85 dBm, +/- 2dB
	- MCS=1, NSS1 PER @ -82 dBm, +/- 2dB
	- MCS=2, NSS1 PER @ -79 dBm, +/- 2dB
	- MCS=3, NSS1 PER @ -76 dBm, +/- 2dB
SISO Receive Sensitivity	- MCS=4, NSS1 PER @ -73 dBm, +/- 2dB
(11ac,80MHz) @10% PER	- MCS=5, NSS1 PER @ -68 dBm, +/- 2dB
	- MCS=6, NSS1 PER @ -67 dBm, +/- 2dB
	- MCS=7, NSS1 PER @ -65 dBm, +/- 2dB
	- MCS=8, NSS1 PER @ -62 dBm, +/- 2dB
	- MCS=9, NSS1 PER @ -60 dBm, +/- 2dB
	- MCS=0, NSS1 PER @ -87 dBm, +/- 2dB
	- MCS=1, NSS1 PER @ -85 dBm, +/- 2dB
	- MCS=2, NSS1 PER @ -82 dBm, +/- 2dB
	- MCS=3, NSS1 PER @ -79 dBm, +/- 2dB
	- MCS=4, NSS1 PER @ -76 dBm, +/- 2dB
MIMO Receive Sensitivity	- MCS=5, NSS1 PER @ -71 dBm, +/- 2dB
(11ac,80MHz) @10% PER	- MCS=6, NSS1 PER @ -70 dBm, +/- 2dB
	- MCS=7, NSS1 PER @ -68 dBm, +/- 2dB
	- MCS=8, NSS1 PER @ -66 dBm, +/- 2dB
	- MCS=9, NSS1 PER @ -63 dBm, +/- 2dB
	- MCS=0, NSS2 PER @ -83 dBm, +/- 2dB
	- MCS=9, NSS2 PER @ -58 dBm, +/- 2dB
Maximum Input Level	802.11a/n : -30 dBm
Antenna Reference	Small antennas with 0~2 dBi peak gain

5GHz(20MHz) Channel table

Band (GHz)	Operating Channel Numbers	Channel center frequencies(MHz)		
	36	5180		
5.15GHz~5.25GHz	40	5200		
J. 13GHZ 3.23GHZ	44	5220		
	48	5240		
5.25GHz~5.35GHz	52	5260		
	56	5280		
	60	5300		

	64	5320
	100	5500
	104	5520
	108	5540
	112	5560
	116	5580
5.5GHz~5.7GHz	120	5600
	124	5620
	128	5640
	132	5660
	136	5680
	140	5700
	149	5745
	153	5765
5.725GHz~5.85GHz	157	5785
	161	5805
	165	5825

5. Bluetooth Specification

5.1 Bluetooth Specification

Conditions: VBAT=3.3V; VDDIO=3.3V; Temp:25°C

Feature	Description					
General Specification						
Bluetooth Standard	Bluetooth V5.0	Bluetooth V5.0 of 1, 2 and 3 Mbps.				
Host Interface	UART					
Antenna Reference	Small antennas	with 0~2 dBi peak	gain			
Frequency Band	2402 MHz ~ 24	80 MHz				
Number of Channels	79 channels	79 channels				
Modulation	FHSS, GFSK, DPSK, DQPSK					
RF Specification						
	Min.	Typical.	Max.			
Output Power ¹	0	-	10			
Sensitivity @ BER=0.1% for GFSK (1Mbps)		-86 dBm				
Sensitivity @ BER=0.01% for π/4-DQPSK (2Mbps)		-88 dBm				
Sensitivity @ BER=0.01% for 8DPSK (3Mbps)		-84 dBm				
	GFSK (1Mbps):	GFSK (1Mbps):-20dBm				
Maximum Input Level	π/4-DQPSK (2N	π/4-DQPSK (2Mbps) :-20dBm				
	8DPSK (3Mbps	8DPSK (3Mbps) :-20dBm				

NOTE1: Output power can be configured by HCD firmware.

6. Pin Assignments

6.1 Pin Outline

6.2 Pin Definition

NO	Name	Type	Description
1	GND	_	Ground connections
2	WL/BT_ANT0	I/O	RF I/O port0
3	GND	_	Ground connections
4	GND	_	Ground connections
5	GND	_	Ground connections
6	GND	_	Ground connections
7	GND	_	Ground connections
8	GND	_	Ground connections
9	WL_ANT1	I/O	RF I/O port1
10	GND	_	Ground connections
11	GND	_	Ground connections
12	NC	_	Floating (Don't connected to ground)
13	XTAL_OUT	0	External Crystal out
14	XTAL_IN	I	External Crystal in/ Single clock source in

15	WL_REG_ON	I	Low asserting reset for WiFi core
16	WL_HOST_WAKE	0	WLAN to wake-up HOST
17	SDIO_DATA_CMD	I/O	SDIO command line
18	SDIO_DATA_CLK	I/O	SDIO clock line
19	SDIO_DATA_3	I/O	SDIO data line 3
20	SDIO_DATA_2	I/O	SDIO data line 2
21	SDIO_DATA_0	I/O	SDIO data line 0
22	SDIO_DATA_1	I/O	SDIO data line 1
23	GND	_	Ground connections
24	SDIO_VSEL	1	SDIO voltage select:
24	3DIO_V3LL	'	0: 3.3V 1:1.8V
25	VIN_LDO	Р	Internal Buck voltage generation pin
26	VIN_LDO_OUT	Р	Internal Buck voltage generation pin
27	PCM_SYNC	I/O	PCM sync signal
28	PCM_IN	I	PCM data input
29	PCM_OUT	0	PCM Data output
30	PCM_CLK	I/O	PCM clock
31	LPO	I	External Low Power Clock input (32.768KHz)
32	GND	_	Ground connections
33	NC	_	Floating (Don't connected to ground)
34	VDDIO	Р	I/O Voltage supply input
35	NC	_	Floating (Don't connected to ground)
36	VBAT	Р	Main power voltage source input
37	NC	_	Floating (Don't connected to ground)
38	BT_REG_ON	I	Low asserting reset for Bluetooth core
39	GND	_	Ground connections
40	UART_TXD	0	Bluetooth UART interface
41	UART_RXD	Ι	Bluetooth UART interface
42	UART_RTS_N	0	Bluetooth UART interface
43	UART_CTS_N	Ι	Bluetooth UART interface
44	WL_UART_TX	0	WL_UART_TX
45	WL_UART_RX	Ι	WL_UART_RX
46	NC		Floating (Don't connected to ground)
47	GND		Ground connections
48	NC	_	Floating (Don't connected to ground)
49	BT_WAKE	I	HOST wake-up Bluetooth device
50	BT_HOST_WAKE	0	Bluetooth device to wake-up HOST

7. Dimensions

7.1 Physical Dimensions

(Unit: mm)

< TOP VIEW >

7.2 Layout Recommendation

(Unit: mm)

< TOP VIEW >

8. External clock reference

External LPO signal characteristics

Parameter	Specification	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	±30	ppm
Duty cycle	30 - 70	%
Input signal amplitude	1600 to 3300	mV, p-p
Signal type	Square-wave or sine-wave	-
Input impodence	>100k	Ω
Input impedance	<5	pF
Clock jitter (integrated over 300Hz – 15KHz)	<1	Hz
Output high voltage	0.7Vio - Vio	V

8.1 SDIO Pin Description

The module supports SDIO version 3.0 for all 1.8V 4-bit UHSI speeds: SDR50(100 Mbps),SDR104(208MHz) and DDR50(50MHz, dual rates) in addition to the 3.3V default speed(25MHz) and high speed (50 MHz). It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This 'out-of-band' interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B)

SDIO Pin Description

	SD 4-Bit Mode					
DATA0	Data Line 0					
DATA1	Data Line 1 or Interrupt					
DATA2	Data Line 2 or Read Wait					
DATA3	Data Line 3					
CLK	Clock					
CMD	Command Line					

9. Host Interface Timing Diagram

9.1 Power-up Sequence Timing Diagram

The module has signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN and internal regulator blocks. These signals are described below.

Additionally, diagrams are provided to indicate proper sequencing of the signals for carious operating states. The timing value indicated are minimum required values: longer delays are also acceptable.

- WL_REG_ON: Used by the PMU to power up or power down the internal regulators used by the WLAN section. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset.
- BT_REG_ON: Used by the PMU to power up or power down the internal regulators used by the BT section. Low asserting reset for Bluetooth. This pin has no effect on WLAN and does not control any PMU functions. This pin must be driven high or low (not left floating).

WLAN=ON, Bluetooth=ON

WLAN=OFF, Bluetooth=OFF

WLAN=ON, Bluetooth=OFF

WLAN=OFF, Bluetooth=ON

保存期限:最新版本 C-RD-047A ²⁰

9.2 SDIO Default Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are referred to minimu	m VIH and mo	aximum VIL ^b)			
Frequency – Data Transfer mode	fPP	0	3 20	25	MHz
Frequency – Identification mode	fOD	0	-	400	kHz
Clock low time	tWL	10		=1	ns
Clock high time	tWH	10	=	-	ns
Clock rise time	tTLH	5 8	=4	10	ns
Clock low time	tTHL	-1	- ×	10	ns
Inputs: CMD, DAT (referenced to CLK)					6
Input setup time	tISU	5	_	-	ns 🔾
Input hold time	tIH	5	2-9	100	ns)
Outputs: CMD, DAT (referenced to CLK)				1	
Output delay time – Data Transfer mode	tODLY	0	-	14	ns
Output delay time – Identification mode	tODLY	0	_	50 🖒	ns

a. Timing is based on CL \leq 40pF load on CMD and Data.

b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.

9.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit		
SDIO CLK (all values are referred to minimum VIH and maximum VIL ^b)							
Frequency – Data Transfer Mode	(SfPP	0	<u>148</u> 7	50	MHz		
Frequency – Identification Mode	fOD	0	<u>-15</u> 4	400	kHz		
Clock low time	tWL	7		13 1	ns		
Clock high time	tWH	7	-	-	ns		
Clock rise time	tTLH	<u>100</u> 53	324	3	ns		
Clock low time	tTHL	157 H	12 4	3	ns		
Inputs: CMD, DAT (referenced to CLK)							
Input setup Time	tISU	6	=	 .	ns		
Input hold Time	tIH	2	223	(2-2-3) (2-2-3)	ns		
Outputs: CMD, DAT (referenced to CLK)							
Output delay time – Data Transfer Mode	tODLY		556)	14	ns		
Output hold time	tOH	2.5	i ets ti	,	ns		
Total system capacitance (each line)	CL	-:	=3;	40	pF		
// B							

a: Timing is based on CL ≤ 40 pF load on CMD and Data.

b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.

9.4 SDIO Bus Timing Specifications in SDR Modes

Clock timing(SDR Modes)

Parameter	Symbol	Minimum	Maximum	Unit	Comments
	t _{CLK}	40	nelli	ns	SDR12 mode
		20	 -0	ns	SDR25 mode
		10	- 4	ns	SDR50 mode
		4.8	- (√ns	SDR104 mode
-	t _{CR} , t _{CF}	17 8	0.2 × tclk	ns	t_{CR} , t_{CF} < 2.00 ns (max) @100 MHz, C_{CARD} = 10 pF
					t_{CR} , t_{CF} < 0.96 ns (max) @208 MHz, t_{CARD} = 10 pF
Clock duty	₹ —	30	70	%	

Card Input timing (SDR Modes)

Symbol	Minimum	Maximum	Unit	Comments
SDR104 M	ode			C
t _{IS}	1.4	<u></u>	ns	C _{CARD} = 10 pF, VCT = 0.975V
t _{IH}	0.80	<u>uc.</u> ?	ns	C _{CARD} = 5 pF, VCT = 0.975V
SDR50 Mo	de			70.
t _{IS}	3.00		ns	C _{CARD} = 10 pF, VCT = 0.975V
t _{IH}	0.80		ns C _{CARD} = 5 pF, VCT = 0.975V	

Card output timing (SDR Modes up to 100MHz)

Minimum	Maximum	Unit	Comments
· <u>·</u>	7.5	ns	t _{CLK} ≥ 10 ns C _L = 30 pF using driver type B for SDR50
-	14.0	ns	t _{CLK} ≥ 20 ns C _L = 40 pF using for SDR12, SDR25
1.5	-	ns	Hold time at the t _{ODLY} (min) C _L = 15 pF
	-	- 7.5 - 14.0	- 7.5 ns - 14.0 ns

Card output timing (SDR Modes 100MHz to 208MHz)

Symbol	Minimum	Maximum	Unit	Comments		
t _{OP}	0	2	UI	Card output phase		
Δt _{OP}	-350	+1550	ps	Delay variation due to temp change after tuning		
t _{obw}	0.60	<u>25</u> 3	UI 6	t _{ODW} =2.88 ns @208 MHz		

- Δt_{OP} = +1550 ps for junction temperature of Δt_{OP} = 90 degrees during operation
- $\Delta t_{OP} = -350$ ps for junction temperature of $\Delta t_{OP} = -20$ degrees during operation
- Δt_{OP} = +2600 ps for junction temperature of Δt_{OP} = -20 to +125 degrees during operation

Δt_{OP} Consideration for Variable Data Window (SDR 104 Mode)

9.5 SDIO Bus Timing Specifications in DDR50 Mode

Parameter	Symbol	Minimum	Maximum	Unit	Comments
-	t _{CLK}	20	-	ns	DDR50 mode
9	t _{CR} ,t _{CF}		0.2 × tCLK	ns	t _{CR} , t _{CF} < 4.00 ns (max) @50 MHz, C _{CARD} = 10 pF
Clock duty		45	55	% (197

Data Timing

1990 THE TOTAL TOT	11.150/15-1	and the state of t	2.000 2000	
Symbol	Minimum	Maximum	Unit	Comments
		A)		
t _{ISU}	6	Y	ns	C _{CARD} < 10 pF (1 Card)
t _{IH}	0.8	-	ns	C _{CARD} < 10 pF (1 Card)
	10			
todly	-114	13.7	ns	C _{CARD} < 30 pF (1 Card)
t _{OH}	1.5	()	ns	C _{CARD} < 15 pF (1 Card)
t _{ISU2x}	3	5 — 3	ns	C _{CARD} < 10 pF (1 Card)
t _{IH2x}	0.8	() ()	ns	C _{CARD} < 10 pF (1 Card)
t _{ODLY2x}	5 	7.5	ns	C _{CARD} < 25 pF (1 Card)
t _{ODLY2x}	1.5	() - ()	ns	C _{CARD} < 15 pF (1 Card)
	t _{ISU} t _{IH} todly tOH t _{ISU2x} t _{IH2x}	t _{ISU} 6 t _{IH} 0.8 t _{ODLY} - t _{OH} 1.5 t _{ISU2x} 3 t _{IH2x} 0.8	t _{ISU} 6 - t _{IH} 0.8 - t _{ODLY} - 13.7 t _{OH} 1.5 - t _{ISU2x} 3 - t _{IH2x} 0.8 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

10. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : <250°C Number of Times : ≤2 times

The notification of WiFi module before mounting:

The aperture of stencil should be larger than foot print of module, and the stencil thickness should be not less than 0.12mm.

Reflow 時需使用 N2, 含氧量建議 5000 ppm 以下,

It must use N2 for reflow and suggest the concentration of oxygen less than 5000 ppm.

Solder Paste definition

- Module Specifications: W:0.65mm * L:0.95mm pitch 0.9 mm
- The proposed design W:0.65~0.75 mm * L:1.33mm. Consider not place other parts in the peripheral area of 1 mm ~ 1.5 mm to facilitate additional amount of solder for PCB pad.
- We Suggest the thickness of Stencil between 0.12 mm ~0.15mm, the W between 0.6~0.65mm and the L between L1.5~1.6mm.
- If the thickness of the stencil is thinner, we suggest to adding more solder, to increase
 the wetting ability. Depends on different production situation, if the stencil thickness is
 0.08~0.1mm, and the module nearby area is no more space for expending soldering
 area, we will suggest to increase the stencil thickness to increase the wetting ability.
- The major consideration parts of stencil design is to increase the solder paste wetting ability.

保存期限:最新版本 C-RD-047A ²⁸

模組規格 L 0.7mm PCB Pad 設計 L 0.8mm 鋼網開孔建議 L0.5mm~0.6mm 適當內縮可以避免撐高造成高度影響

- Module Specifications L 0.7mm
- The design for PCB Pad: L:0.8mm
- We recommend the apertures for stencil L:0.5mm~0.6mm
- In order to avoid highness impact caused solder paste thickness, the stencil open size can be appropriately retracted

保存期限:最新版本 C-RD-047A ²⁹

11. Package Information

11.1 Label

Label A→ Anti-static and humidity notice

Label B→ MSL caution / Storage Condition

0	Caution This bag contains MOISTURE-SENSITIVE DEVICES Habitot, see adjacent
	alculated shelf life in sealed bag: 12 months at <40°C and 90% relative humidity (RH)
2. Pe	eak package body temperature:°C # blank, see adjacent bar code label
	ter bag is opened, devices that will be subjected to reflow lder or other high temperature process must be
a)	Mounted within:hours of factory conditions ≤30°C/60% RH, or
b)	Stored per J-STD-033
4. De	evices require bake, before mounting, if:
a)	Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at 23 \pm 5°C
b)	3a or 3b are not met
5. If I ba	baking is required, refer to IPC/JEDEC J-STD-033 for like procedure
Bag S	Seal Date:
No	te: Level and body temperature defined by IPC/JEDEC J-STD-020

Label C→ Inner box label .

PO:	
AMK DEVICE	: j
PKG S/N:	9PKGXXXXXXXXXXX
Model:	AP6XXXX(HF)
P/N:	99P-W01-0XXXR
Qty:	
Date Code :	1000
Lot Code :	TXXXXXXX

Label D→ Carton box label .

PO:	111111
AMK DEVICE:	imm
Model Name :	AP6XXXX (HF)
Part No.:	
Quantity:	99P-W01-0XXXR
Lot D/C:	TXXXXXXX XXXX
Manufacture:	YYYY/MM/DD

11.2 Dimension

W	24.00±0.30
AO	15.30±0.10
ВО	13.30±0.10
KO	2.00±0.10
E	1.75±0.10
F	11.50±0.10
PO	4.00±0.10
P1	20.00±0.10
P2	2.00±0.10
D0	1.50 +0.10
D1	ø1.50MIN

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 2. Carrier camber is within 1 mm in 250 mm.
- 3. Material: Black Conductive Polystyrene Alloy.
- 4. All dimensions meet EIA-481-D requirements.
- 5. Thickness: 0.30±0.05mm.
- 6. Component load per 13"reel: 1000 pcs

11.3 MSL Level / Storage Condition

Caution This bag contains MOISTURE-SENSITIVE DEVICES LEVEL 4 If blank, see adjacent bar code label
1. Calculated shelf life in sealed bag:12months at<40℃and <90% relative humidity(RH)
2. Peak package body temperature: 250 °C If blank, see adjacent bar code label
After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
a) Mounted within: 72 hours of factory conditions
≤30℃/60% RH,or
b) Stored per J-STD-033
4. Devices require bake, before mounting, if:
a) Humidity Indicator Card reads>10% for level 2a-5a devices or>60% for level 2 devices when read at 23±5℃
b) 3a or 3b are not met.
5.If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure.
Bag Seal Date: If blank,see adjacent bar code label
Note:Level and body temperature defined by IPC/JEDEC J-STD-020

%NOTE: Accumulated baking time should not exceed 96hrs