**CURSO ESPECIALIZADO** 

### PELIGROSIDAD SÍSMICA

Método Determinista (DSHA)

Organizado por:



SESIÓN 6: Reproducción del terremoto de 2007 de Pisco Mw 7.9

DOCENTE DEL CURSO

Mag. Ing. Jorge Trujillo

### EVALUAR EL GRAN TERREMOTO DE PISCO DE 2007, MW 7.9 IMPLEMENTANDO EL METODO DETERMINISTA (DSHA) CON OPENQUAKEY QGIS

Versión: OpenQuake Engine 3.16.2



Versión: QGIS 3.28.7



Añadir su pluging: Complementos>OpenQuake









| Parámetros<br>sísmicos | IGP, Tavera<br>(2008)    | Modelo de<br>Caltech<br>(Ozgun<br>Konca) | Modelo de<br>Geosciences-<br>Azur(Martin<br>Vallé) -<br>Francia | Modelo de<br>Tsukuba<br>Universidad<br>(Dr.Yagi) |
|------------------------|--------------------------|------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|
| Magnitud (Mw)          | <mark>7.9</mark>         | 8.0                                      | 7.9                                                             | 8.1                                              |
| Profundidad<br>(km)    | <mark>26</mark>          | 39                                       |                                                                 |                                                  |
| Intensidad Max         | VIII                     |                                          |                                                                 |                                                  |
| Latitud                | <mark>-13.49° Sur</mark> | 13.354° S                                |                                                                 |                                                  |
| Longitud               | -76.85° Oeste            | 76.509° O                                |                                                                 |                                                  |
| Azimut (Strike)        | 311                      | 324                                      | 318                                                             | 320                                              |
| Buzamiento (dip)       | 14                       | 27                                       | 20                                                              | 18                                               |
| Mecanismo<br>focal     | Inversa                  | Inversa                                  | Inversa                                                         | Inversa                                          |



#### **OBJETIVO PRINCIPAL**



Reproducir el terremoto de Pisco del 1746 de 7.9 Mw implementando el método determinista (DSHA) en un SIG con la aplicación ArcGIS Pro

#### Fuente sísmica

El escenario sísmico es el terremoto de Pisco del 2007 con epicentro en las coordenada aproximada de longitud-76.85° Oeste y latitud de-13.49°Sur, con emplazamiento en todo el Perú. La magnitud máxima es de Mw. 7.9. Haciendo uso de las relaciones alternativas de subducción de Hayes et al (2017), que a partir de la magnitud se obtiene la longitud y ancho del plano de ruptura. Este terremoto generó un tsunami de 10m en la localidad de Lagunillas. (Tavera, 2008)





Algunos autores como Tavera y Bernal (2005) realizaron una revisión detallada de estas áreas de ruptura y remarcaron la existencia del área de 150 km de longitud sin ruptura, como la más indicada para producir un terremoto en el futuro. Dichos autores indicaron que el terremoto tendría una magnitud probable de 7.0 Ms y que produciría daños principalmente entre la localidad de Chilca y la ciudad de Pisco



## FLUJOGRAMA DEL PROCESO DE MODELAMIENTO DEL PLANO DE RUPTURA



This ANL the does not appear to have any style information associated with h

#### Plano de Ruptura del Terremoto 1746



# PLANO DE RUPTURA



## PELIGROSIDAD SISMICA



### Diagrama de flujo para un escenario sísmico en OQ



Es necesario generar los archivos:

- ruptura: contiene las características de la ruptura
- gmpe: contiene los M.M.T que escogemos para generar campos de movimiento
- job: contiene las instrucciones de ejecución para OQ



#### Variabilidad de la intensidad



En realidad las intensidades tienen una variabilidad asociada, observada en un mismo evento y en diferentes eventos, aunque se trate del mismo tipo de ruptura, magnitud y distancia



## PGA EN ROCA (TERREMOTO PISCO 2007)





# ESPECTRO DE PELIGRO ESPECIFICO EN ROCA (TERREMOTO 1746)



Longitud:-77.10471 Latitud:-12.08459





## PGA EN SUELO (TERREMOTO 1746)



# ESPECTRO DE PELIGRO ESPECIFICO EN SUELO (TERREMOTO 1746)



Longitud:-77.10471

Latitud:-12.08459





## COMPARACIÓN ROCA VS SUELO (TERREMOTO 1746 MW9.0)



