House Price Prediction Multi-Linear Regression

February 20, 2025

Step 1: Importing Libraries

```
[82]: # Import numpy and pandas package
import pandas as pd
import numpy as np
# Data visualization
from matplotlib import pyplot as plot
import statsmodels.api as sm
import seaborn as sns
```

Step 2: Reading the Dataset and Inspecting

```
[83]: data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ML-DSE4/

Project_College/Housing.csv')
```

[84]: data.head(10)

[84]:		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	\
	0	13300000	7420	4	2	3	yes	no	no	
	1	12250000	8960	4	4	4	yes	no	no	
	2	12250000	9960	3	2	2	yes	no	yes	
	3	12215000	7500	4	2	2	yes	no	yes	
	4	11410000	7420	4	1	2	yes	yes	yes	
	5	10850000	7500	3	3	1	yes	no	yes	
	6	10150000	8580	4	3	4	yes	no	no	
	7	10150000	16200	5	3	2	yes	no	no	
	8	9870000	8100	4	1	2	yes	yes	yes	
	9	9800000	5750	3	2	4	yes	yes	no	

	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
0	no	yes	2	yes	furnished
1	no	yes	3	no	furnished
2	no	no	2	yes	semi-furnished
3	no	yes	3	yes	furnished
4	no	yes	2	no	furnished
5	no	yes	2	yes	semi-furnished
6	no	yes	2	yes	semi-furnished
7	no	no	0	no	unfurnished

```
8 no yes 2 yes furnished
9 no yes 1 yes unfurnished
```

[85]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	prefarea	545 non-null	object
12	furnishingstatus	545 non-null	object

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

[86]: data.describe()

[86]: price bedrooms bathrooms stories area 5.450000e+02 545.000000 545.000000 545.000000 545.000000 count 4.766729e+06 5150.541284 2.965138 1.286239 1.805505 meanstd 1.870440e+06 2170.141023 0.738064 0.502470 0.867492 min 1.750000e+06 1650.000000 1.000000 1.000000 1.000000 25% 3.430000e+06 3600.000000 2.000000 1.000000 1.000000 50% 4.340000e+06 4600.000000 3.000000 1.000000 2.000000 75% 5.740000e+06 6360.000000 3.000000 2.000000 2.000000 max 1.330000e+07 16200.000000 6.000000 4.000000 4.000000

parking 545.000000 count mean 0.693578 std 0.861586 min 0.000000 25% 0.000000 50% 0.000000 75% 1.000000 3.000000 max

```
[87]: data.shape
 [87]: (545, 13)
      Step 3: Data Preprocessing
  []: #Data Cleaning
       data.isnull().sum()
  []: price
                           0
       area
                           0
       bedrooms
                           0
       bathrooms
                           0
       stories
                           0
       mainroad
                           0
                           0
       guestroom
       basement
                           0
                           0
       hotwaterheating
       airconditioning
                           0
                           0
       parking
       prefarea
                           0
       furnishingstatus
       dtype: int64
[105]: #Detecting for Outliers
       def detectOutliers():
           fig, axs = plot.subplots(2,3, figsize = (10,5))
           plt1 = sns.boxplot(data['price'], ax = axs[0,0])
           plt2 = sns.boxplot(data['area'], ax = axs[0,1])
           plt3 = sns.boxplot(data['bedrooms'], ax = axs[0,2])
           plt1 = sns.boxplot(data['bathrooms'], ax = axs[1,0])
           plt2 = sns.boxplot(data['stories'], ax = axs[1,1])
           plt3 = sns.boxplot(data['parking'], ax = axs[1,2])
           plot.tight_layout()
       detectOutliers()
```



```
[104]: #Removing Outliers
    # Outlier reduction for price
    plot.boxplot(data.price)
    Q1 = data.price.quantile(0.25)
    Q3 = data.price.quantile(0.75)
    IQR = Q3 - Q1
    data = data[(data.price >= Q1 - 1.5*IQR) & (data.price <= Q3 + 1.5*IQR)]
    # Outlier reduction for area
    plot.boxplot(data.area)
    Q1 = data.area.quantile(0.25)
    Q3 = data.area.quantile(0.75)
    IQR = Q3 - Q1
    data = data[(data.area >= Q1 - 1.5*IQR) & (data.area <= Q3 + 1.5*IQR)]

#To verify the outlier is still existing
    detectOutliers()</pre>
```


Step 4: Data Visualizations

```
[106]: sns.pairplot(data) plot.show()
```



```
[107]: #Visualizing the Categorical Variables
plot.figure(figsize=(20, 12))
plot.subplot(3,3,1)
sns.boxplot(x='mainroad', y='price', data=data)
plot.subplot(3,3,2)
sns.boxplot(x='guestroom', y='price', data=data)
plot.subplot(3,3,3)
sns.boxplot(x='basement', y='price', data=data)
plot.subplot(3,3,4)
sns.boxplot(x='hotwaterheating', y='price', data=data)
```

```
plot.subplot(3,3,5)
sns.boxplot(x='airconditioning', y='price', data=data)
plot.subplot(3,3,6)
sns.boxplot(x='furnishingstatus', y='price', data=data)
plot.show()
```


Step 5: Data Preparations

To fit the data in the regression line, we need of numeric data not string. So, need to convert those string values to int.

```
[108]: def toNumeric(x):
    return x.map({"no":0,"yes":1})

def convert_binary():
    for column in list(data.select_dtypes(['object']).columns):
        if(column != 'furnishingstatus'):
            data[[column]] = data[[column]].apply(toNumeric)
        convert_binary()
```

Splitting the column for furnishing status that holds the value in three levels namely furnished/unfurnished/semi-furnished. To implement this we need dummy variables

```
[109]: status = pd.get_dummies(data['furnishingstatus']) status
```

[109]:		furnished	semi-furnished	unfurnished
	21	False	False	True
	22	True	False	False
	23	True	False	False
	24	True	False	False
	25	True	False	False
		•••	•••	•••

540	False	False	True
541	False	True	False
542	False	False	True
543	True	False	False
544	False	False	True

[506 rows x 3 columns]

Now, you don't need three columns. You can drop the furnished column, as the type of furnishing can be identified with just the last two columns where

- 1. 00 will correspond to furnished
- 2. 01 will correspond to unfurnished
- 3. 10 will correspond to semi-furnished

```
[110]: #To drop the very first column of furnished
status = pd.get_dummies(data['furnishingstatus'], drop_first=True)
#Concat the status and main data frame as below,
data = pd.concat([data, status], axis=1)
#Remove the column furnishing status which is no longer needed.
data.drop(columns='furnishingstatus',inplace=True)
```

After all the changes, the data frame looks like

[111]: data

[111]:	data								
[111]:		price	area	bedrooms	bathrooms	stories	mainroad	d guestroo	m \
	21	8680000	7155	3	2	1	1	L	1
	22	8645000	8050	3	1	1	1	L :	1
	23	8645000	4560	3	2	2	1	L :	1
	24	8575000	8800	3	2	2	1	L	0
	25	8540000	6540	4	2	2	1	L	1
	• •	•••		•••		•••	•••		
	540	1820000	3000	2	1	1	1	L (0
	541	1767150	2400	3	1	1	()	0
	542	1750000	3620	2	1	1	1	L (0
	543	1750000	2910	3	1	1	()	0
	544	1750000	3850	3	1	2	1	L (0
		h = = = = = = +	1						
	0.1	basement	notw	aterheating	aircondi	tioning		prerarea	\
	21	1		0		1	2	0	
	22	1		0		1	1	0	
	23	1		0		1	1	0	
	24	0		0		1	2	0	
	25	1		0		1	2	1	
	 E40						 2	0	
	540	T		U		U	2	U	

541	0	0	0	0	0
542	0	0	0	0	0
543	0	0	0	0	0
544	0	0	0	0	0

```
semi-furnished unfurnished
21
              False
                             True
22
                            False
              False
23
              False
                            False
24
              False
                            False
              False
25
                            False
540
              False
                             True
541
               True
                            False
542
              False
                             True
543
              False
                            False
544
              False
                             True
```

[506 rows x 14 columns]

Checking for Multi-Collinearity

```
[113]: # Import necessary libraries
       from sklearn.preprocessing import MinMaxScaler, LabelEncoder, OneHotEncoder
       from statsmodels.stats.outliers_influence import variance_inflation_factor
       import pandas as pd
       import numpy as np
       def preprocessing(X):
           # Separate numeric and categorical features
           numeric_features = X.select_dtypes(include=np.number).columns
           categorical_features = X.select_dtypes(include=['object']).columns
           # Handle numeric features: Scaling and VIF calculation
           X_numeric = X[numeric_features]
           scaler = MinMaxScaler()
           X_numeric_scaled = scaler.fit_transform(X_numeric)
           X_numeric_scaled = pd.DataFrame(X_numeric_scaled, columns=numeric_features,_
        ⇒index=X.index)
           # Handle categorical features: One-hot encoding
```

```
if len(categorical_features) > 0: # Only if there are categorical features
        encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore') #__
 ⇔sparse=False for compatibility with statsmodels
        X categorical encoded = encoder.fit transform(X[categorical features])
        X_categorical_encoded = pd.DataFrame(X_categorical_encoded,__
 -columns=encoder.get feature names out(categorical features), index=X.index)
        # Combine scaled numeric and encoded categorical features
       X_processed = pd.concat([X_numeric_scaled, X_categorical_encoded],__
 ⇒axis=1)
   else:
       X_processed = X_numeric_scaled
    # Calculate VIF for numeric features
   variables = X_processed[numeric_features].values
   vif = pd.DataFrame()
   vif["VIF"] = [variance_inflation_factor(variables, i) for i in_
 ⇔range(variables.shape[1])]
   vif["Features"] = numeric_features
   print(vif)
   return X_processed # Return the preprocessed DataFrame
# ... (Rest of your code) ...
# Before train_test_split
X = preprocessing(X)
# ... (Continue with your code) ...
```

	VIF	Features
0	5.819700	area
1	6.225434	bedrooms
2	1.596261	bathrooms
3	2.689909	stories
4	5.432064	mainroad
5	1.520775	guestroom
6	2.024715	basement
7	1.068902	hotwaterheating
8	1.728249	airconditioning
9	1.850638	parking
10	1.426323	prefarea

As a thumb rule, a VIF value greater than 5 means very severe multicollinearity. From the above results area and bedrooms having severe collinearity.

We need to drop those columns and confirm the collinearity is still exists.

```
[114]: X.drop(['area', 'bedrooms'], axis=1, inplace=True)
       preprocessing(X)
               VIF
                           Features
         1.536585
                          bathrooms
      0
         2.251750
      1
                             stories
      2 3.080967
                           mainroad
      3
         1.474810
                           guestroom
      4
         1.876139
                           basement
         1.061477
                    hotwaterheating
         1.654247
                    airconditioning
         1.673949
      7
                            parking
      8
        1.414061
                           prefarea
[114]:
            bathrooms
                         stories
                                  mainroad
                                             guestroom
                                                        basement
                                                                   hotwaterheating \
       21
                   0.5
                        0.000000
                                        1.0
                                                                                0.0
                                                    1.0
                                                              1.0
       22
                       0.000000
                                        1.0
                                                                                0.0
                   0.0
                                                    1.0
                                                              1.0
       23
                   0.5
                       0.333333
                                        1.0
                                                    1.0
                                                              1.0
                                                                                0.0
       24
                  0.5
                                                    0.0
                                                              0.0
                                                                                0.0
                       0.333333
                                        1.0
       25
                   0.5
                       0.333333
                                        1.0
                                                    1.0
                                                              1.0
                                                                                0.0
       540
                  0.0
                       0.000000
                                        1.0
                                                    0.0
                                                              1.0
                                                                                0.0
       541
                   0.0
                       0.000000
                                        0.0
                                                    0.0
                                                              0.0
                                                                                0.0
       542
                  0.0 0.000000
                                        1.0
                                                    0.0
                                                              0.0
                                                                                0.0
       543
                  0.0
                       0.000000
                                        0.0
                                                    0.0
                                                              0.0
                                                                                0.0
       544
                  0.0 0.333333
                                        1.0
                                                    0.0
                                                              0.0
                                                                                0.0
            airconditioning
                               parking
                                        prefarea
                              0.666667
       21
                                              0.0
                         1.0 0.333333
       22
                                              0.0
       23
                         1.0
                             0.333333
                                              0.0
       24
                         1.0
                             0.666667
                                              0.0
       25
                         1.0
                              0.666667
                                              1.0
                                              0.0
       540
                         0.0 0.666667
       541
                         0.0 0.000000
                                              0.0
                                              0.0
       542
                         0.0 0.000000
       543
                         0.0 0.000000
                                              0.0
       544
                         0.0 0.000000
                                              0.0
       [506 rows x 9 columns]
      Step 6: Splitting the Data into Training and Testing Sets
[115]: from sklearn.model_selection import train_test_split
       x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size = 0.
        →25,random_state=355)
```

Step 7: Traning the model using Multi-Linear Regression

```
[116]: from sklearn.linear_model import LinearRegression
  regression = LinearRegression()
  regression.fit(x_train,y_train)
```

[116]: LinearRegression()

Step 8: Making Predictions

```
[117]: y_predict = regression.predict(x_test)
```

Step 9: Plotting y_test and y_pred to understand the spread

Step 10: Evaluating the model

```
[120]: from sklearn.metrics import mean_squared_error, r2_score
    from sklearn.preprocessing import StandardScaler

    mse = mean_squared_error(y_test,y_predict)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test,y_predict)

    print(f'Mean Squared Error (MSE): {mse}')
    print(f'Root Mean Squared Error (RMSE): {rmse}')
    print(f'R-Sqaured (R2-Score): {r2}')
    print("Model Coefficients:")
    print(regression.coef_)
```

Mean Squared Error (MSE): 1396590759756.7407
Root Mean Squared Error (RMSE): 1181774.4115340882
R-Sqaured (R2-Score): 0.5154735302953686
Model Coefficients:
[1767879.26522718 1475368.92119728 598690.19657082 500675.44444703

376416.68297797 724872.17600083 1043865.90913399 777512.22815843 561347.53843054]