2013 年 4 月查漏补缺文理合卷 高二下数学

附: 随机变量 K^2 的概率分布

$P(K^2 \ge k)$	0.50	0.40	0.25	0.15	0.10	0.05	0.025	0.010	0.005	0.001
k	0.455	0.708	1.323	2.072	2.706	3.841	5.024	6.635	7.879	10.828

- 1. i 是虚数单位, n 是正整数, 则 $i^{n} + i^{n+1} + i^{n+2} + i^{n+3} =$
- 2. (文科) 在研究身高和体重的关系时,求得相关指数 $R^2 \approx _____$,可以叙述为"身高解释了 64% 的体重变化,而随机误差贡献了剩余的 36%"所以身高对体重的效应比随机误差的效应大得多.

(理科) 函数 $f(x) = \sqrt{x}$ 的图象在 x = 4 处的切线方程是_____

3. (文科) 某高校"统计初步"课程的教师随机调查了选该课的一些学生情况,具体数据如下表:

性别	非统计专业	统计专业
男	13	10
女	7	20

为判断主修统计专业是否与性别有关系,根据表中数据得到 $k=\frac{50\times(13\times20-10\times7)^2}{23\times27\times20\times30}\approx4.844$,因为_______,所以判定主修统计专业与性别______(填空"有"或"无")关系,那么这种判断出错的可能性为______.

(理科) 设函数 $f(x) = x \ln x, x \in [e^{-2}, e]$, 则 f(x) 的最大值为 , 最小值为 .

4. (文科) 某工厂的某种型号的机器的使用年限 x 和所支出的维修费用 y (万元) 有下表的统计资料:

x	2	3	4	5	6
y	2.2	3.8	5.5	6.5	7.0

根据上表可得回归方程 $\hat{y} = 1.23x + \hat{a}$,据此模型估计,该型号机器使用年限为 10 年时维修费用约________万元 (结果保留两位小数).

(理科) 已知 $\vec{a} = 3\vec{i} + 2\vec{j} - \vec{k}, \vec{b} = \vec{i} - \vec{j} + 2\vec{k}$ 则 $\vec{a} \cdot \vec{b} =$ ______.

- 5. 数列 $2,5,10,17,x,37,\cdots$ 中 x 等于______, 这个数列的一个通项公式是_____.
- 6. (文科) 已知 f(x) 为一次函数,且 f(x) = x f'(x) ,则 f(x) =_____. (理科) 已知 f(x) 为一次函数,且 $f(x) = x - \int_0^{\sqrt{3}+1} f(t)dt$,则 f(x) =_____.
- 7. 已知函数 $f(x) = \frac{1}{3}x^3 + ax$ 在 $(-\infty, -1)$ 上为增函数,在 (-1, 1) 上为减函数,在 $(1, +\infty)$ 上为增函数,则 f(1) 的值为______.
- 8. (文科) 函数 $f(x) = \frac{e^{2x}}{x}$ 的导函数是_____.

(理科) 已知不等式 $x^2 - ax + 4 \ge 0$ 对于任意的 $x \in [1,3]$ 恒成立,则实数 a 的取值范围是

9. 设平面内有 n 条直线 $(n \ge 3, n \in N^*)$,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f(n) 表示 n 条直线交点的个数,则 $f(4) = ______$; 当 $n \ge 3$ 时, $f(n) = ______$. (用含 n 的数学表达式表示)

11. 用分析法或综合法证明: $\sqrt{n-1} - \sqrt{n-2} < \sqrt{n-3} - \sqrt{n-4}$ 其中, $n > 3, n \in N^*$.

- 12. 已知函数 $f(x) = x^3 + ax^2 + bx + 5, a, b \in \mathbb{R}, f'(1) = 3, x = 2$ 是函数的一个极值点.
 - (I) 求 f(x) 的解析式;
 - (II) 求在 [0,1] 上的最大值和最小值.

13. (理科) 在四棱锥 P-ABCD 中, $PA\perp$ 平面ABCD, $\triangle ABC$ 是正三角形,AC 与 BD 的交点 M 恰好是 AC 点,又 PA=AB=4, $\angle CDA=120^\circ$,点 N 在线段 PB 上,且 $PN=\sqrt{2}$.

(I) 求证: $BD \perp PC$;

(II) 求证: $MN \parallel$ 平面PDC;

(III) 求二面角 A - PC - B 的余弦值.

- 14. 已知函数 $f(x) = \frac{1}{3}x^3 + mx^2 3m^2x + 1, (m \in \mathbb{R}).$
 - (I) 当 m=1 时,求曲线f(x) 在点 (2, f(2)) 处的切线方程;
 - (II) 若f(x) 在区间 (2m-1, m+1) 上单调递增,求 m 的取值范围.

15. 已知 M 是由满足下述条件的函数构成的集合:

对 $\forall f(x) \in M$, ①方程 f(x) - x = 0 有实数根; ②函数 f(x) 的导数 f'(x) 满足 0 < f'(x) < 1.

- (I) 判断函数 $f(x) = \frac{x}{2} + \frac{\sin x}{4}$ 是否是集合 M 中的元素,并说明理由;
- (II) 集合 M 中的元素 f(x) 具有下面的性质:

若 f(x) 的定义域为 D,则对于 $\forall [m,n] \subseteq D$,都 $\exists x_0 \in (m,n)$,使得等式 $f(n) - f(m) = (n-m)f'(x_0)$ 成立.

试用这一性质证明: 方程 f(x) - x = 0 有且只有一个实数根.