1) Suppose Ris symmetric This mea	os $(x,y) \in R \Rightarrow (y,x) \in R \Rightarrow (x,y) \in R^{-1}$
Since (x,y) & R-1 => (y	$(x,y) \in \mathbb{R} = (x,y) \in \mathbb{R}$
then R-1 s R, so	R-1 = R
Therefore, R is symmetric iff	R-1=R
2) Suppose RE AXB and SEBXC	are relations
Let (x,y) & (Ros)" in which	bxec REA
It is important to note that here	(R.S)" S C XA
(x,y) ∈ (RoS)" (>) (y	(x) ∈ (Ros)
↔ ∃ k ∈ B such that (y,)	k) ere (kx) es
\Leftrightarrow $(k,y) \in R^{-1}$ and (x,y)	k) es-1
€> (x,y) € 5-1 • R-1	Thus, (Ros) -1 = 5-10 R-1
Therefore IF REAXB and SCE	3 x C, then (ROS)" = 5" 0 R"
3) Suppose R = A × B. Let (x,y)	ER such that XEA YEB
men, (y,x)	$\in R^{-1}$ and $(x,y) \in (R^{-1})^{-1}$
Ims, (x,y)	ER ⇔ (y,x) € (R-1)-1
Therefore,	(R=) = R
4) Suppose R & AxB is a relation.	
Case 1) Let (x,4) & ROR" S.t. XEV	EA Case 2) Let (x,y) & R'OR S.T. x,y & R
Thus, 3 KEB St (x,K) FR & (k,y) &	ER' Thus 3 KEAST (THIS S)
This implies (K,x) ER' and (Y,K) ER.	This implies (K, x) ER and (y, k) ER'S(K,y)
\Rightarrow $(y,k) \in R$ and $(k,x) \in R^{-1}$	=> (y, k) ER' and (k,x) ER
=> (y,x)& ROR-1	=> (u x) c 0 - 1 0 0
(x,y) & R.R. 1 => (y, x) & ROR	1 (xu)ep-1-0-1
Thus, ROR-1 is symmetric	(x,y) eR-1 = R => (y,x) eR-1 = R Thus, R-1 = R is symmetric R
7	mus, symmetric
	M