Foundations of Machine Learning

Module 7: Computational Learning Theory

Part A: Finite Hypothesis Space

Sudeshna Sarkar IIT Kharagpur

Goal of Learning Theory

- To understand
 - What kinds of tasks are learnable?
 - What kind of data is required for learnability?
 - What are the (space, time) requirements of the learning algorithm.?
- To develop and analyze models
 - Develop algorithms that provably meet desired criteria
 - Prove guarantees for successful algorithms

Goal of Learning Theory

- Two core aspects of ML
 - Algorithm Design. How to optimize?
 - Confidence for rule effectiveness on future data.
- We need particular settings (models)
 - Probably Approximately Correct (PAC)

$$\Pr(P(c \oplus h) \le \epsilon) \ge 1 - \delta$$

Prototypical Concept Learning Task

Given

- Instances *X* (e.g., $X = R^d$ or $X = \{0,1\}^d$
- Distribution \mathcal{D} over X
- Target function c
- Hypothesis Space ${\mathcal H}$
- Training Examples S = $\{(x_i, c(x_i))\}\ x_i$ i.i.d. from \mathcal{D}

Determine

- A hypothesis $h \in \mathcal{H}$ s.t. h(x) = c(x) for all x in S?
- A hypothesis $h \in \mathcal{H}$ s.t. h(x) = c(x) for all x in X?
- An algorithm does optimization over S, find hypothesis h.
- Goal: Find h which has small error over \mathcal{D}

Computational Learning Theory

- Can we be certain about how the learning algorithm generalizes?
- We would have to see all the examples.
- Inductive inference –
 generalizing beyond the training
 data is impossible unless we add
 more assumptions (e.g.,
 priors over H)
 We need a bias!

Function Approximation

- How many labeled examples in order to determine which of the 2^{2^N} hypothesis is the correct one?
- All 2^N instances in X must be labeled!
- Inductive inference: generalizing beyond the training data is impossible unless we add more assumptions (e.g., bias)

Error of a hypothesis

The **true error** of hypothesis h, with respect to the target concept c and observation distribution \mathcal{D} is the probability that h will misclassify an instance drawn according to \mathcal{D}

$$error_{\mathcal{D}}(h)Pr_{x \sim \mathcal{D}}[c(x) \neq h(x)]$$

In a perfect world, we'd like the true error to be 0.

Bias: Fix hypothesis space H

c may not be in H => Find h close to c

A hypothesis h is approximately correct if

$$error_{\mathcal{D}}(h) \leq \varepsilon$$

PAC model

- Goal: h has small error over D.
- True error: $error_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$
- How often $h(x) \neq c^*(x)$ over future instances drawn at random from D
- But, can only measure:

Training error:
$$error_S(h) = \frac{1}{m} \sum_i I(h(x_i) \neq c^*(x))$$

How often $h(x) \neq c^*(x)$ over training Instances

• Sample Complexity: bound $error_D(h)$ in terms of $error_S(h)$

Probably Approximately Correct Learning

- PAC Learning concerns efficient learning
- We would like to prove that
 - With high probability an (efficient) learning algorithm will find a hypothesis that is approximately identical to the hidden target concept.
- We specify two parameters, ε and δ and require that with probability at least $(1-\delta)$ a system learn a concept with error at most ε .

Sample Complexity for Supervised Learning

Theorem

$$m \ge \frac{1}{\epsilon} \left[In(|H|) + In\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $error_D(h) \ge \epsilon$ have $error_S(h) > 0$.

- inversely linear in ϵ
- logarithmic in |H|
- ϵ error parameter: D might place low weight on certain parts of the space
- δ confidence parameter: there is a small chance the examples we get are not representative of the distribution

Sample Complexity for Supervised Learning

Theorem: $m \ge \frac{1}{\epsilon} \Big[In(|H|) + In\left(\frac{1}{\delta}\right) \Big]$ labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $error_D(h) \ge \epsilon$ have $error_S(h) > 0$.

Proof: Assume k bad hypotheses $H_{\text{bad}} = \{h_1, h_2, \dots, h_k\}$ with $err_D(h_i) \ge \in$

- Fix h_i . Prob. h_i consistent with first training example is $\leq 1 \epsilon$. Prob. h_i consistent with first m training examples is $\leq (1-\epsilon)^m$.
- ullet Prob. that at least one h_i consistent with first m training examples

$$\leq k(1 - \epsilon)^m \leq |H|(1 - \epsilon)^m.$$

- Calculate value of m so that $|H|(1-\epsilon)^m \le \delta$
- Use the fact that $1 x \le e^{-x}$, sufficient to set $|H|e^{-\epsilon m} \le \delta$

Sample Complexity: Finite Hypothesis Spaces Realizable Case

PAC: How many examples suffice to guarantee small error whp. Theorem

$$m \ge \frac{1}{\epsilon} \left[In(|H|) + In\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.

Statistical Learning Way:

With probability at least $1 - \delta$, all $h \in H$ s.t. $err_S(h) = 0$ we have

$$err_D(h) \le \frac{1}{m} \left[In(|H|) + In\left(\frac{1}{\delta}\right) \right]$$

$$P(\text{consist}(H_{bad}, D)) \leq |H|e^{-\varepsilon m} \leq \delta$$

$$e^{-\varepsilon m} \leq \frac{\delta}{|H|}$$

$$-\varepsilon m \le \ln(\frac{\delta}{|H|})$$

$$m \ge \left(-\ln \frac{\delta}{|H|}\right)/\varepsilon$$
 (flip inequality)

$$m \ge \left(\ln \frac{|H|}{\delta}\right)/\varepsilon$$

$$m \ge \left(\ln\frac{1}{\delta} + \ln|H|\right)/\varepsilon$$

Sample complexity: inconsistent finite $|\mathcal{H}|$

• For a single hypothesis to have misleading training error $\Pr[error_{\mathcal{D}}(f) \leq \varepsilon + error_{\mathcal{D}}(f)] \leq e^{-2m\varepsilon^2}$

- We want to ensure that the best hypothesis has error bounded in this way
 - So consider that any one of them could have a large error $\Pr[(\exists f \in \mathcal{H})error_{\mathcal{D}}(f) \leq \varepsilon + error_{\mathcal{D}}(f)] \leq |\mathcal{H}|e^{-2m\varepsilon^2}$
- From this we can derive the bound for the number of samples needed.

$$m \ge \frac{1}{2\varepsilon^2} (\ln|\mathcal{H}| + \ln(\frac{1}{\delta}))$$

Sample Complexity: Finite Hypothesis Spaces

Consistent Case

Theorem

$$m \ge \frac{1}{\epsilon} \left[In(|H|) + In\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.

Inconsistent Case

What if there is no perfect h?

Theorem: After m examples, with probability $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \epsilon$, for

$$m \ge \frac{2}{2 \in 2} \left[In(|H|) + In\left(\frac{2}{\delta}\right) \right]$$

Sample complexity: example

• \mathcal{C} : Conjunction of n Boolean literals. Is \mathcal{C} PAC-learnable?

$$|\mathcal{H}| = 3^n$$

$$m \ge \frac{1}{\varepsilon} (n \ln 3 + \ln(\frac{1}{\delta}))$$

- Concrete examples:
 - δ=ε=0.05, n=10 gives 280 examples
 - δ=0.01, ε=0.05, n=10 gives 312 examples
 - δ=ε=0.01, n=10 gives 1,560 examples
 - δ=ε=0.01, n=50 gives 5,954 examples
- Result holds for any consistent learner, such as FindS.

Sample Complexity of Learning Arbitrary Boolean Functions

• Consider any boolean function over n boolean features such as the hypothesis space of DNF or decision trees. There are 2^{2^n} of these, so a sufficient number of examples to learn a PAC concept is:

$$m \ge \frac{1}{\varepsilon} (\ln 2^{2^n} + \ln(\frac{1}{\delta})) = \frac{1}{\varepsilon} (2^n \ln 2 + \ln(\frac{1}{\delta}))$$

- $\delta = \epsilon = 0.05$, n = 10 gives 14,256 examples
- $\delta = \epsilon = 0.05$, n = 20 gives 14,536,410 examples
- $\delta = \epsilon = 0.05$, n = 50 gives 1.561×10^{16} examples

Thank You

Concept Learning Task

"Days in which Aldo enjoys swimming"

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- Hypothesis Representation: Conjunction of constraints on the 6 instance attributes
 - "?" : any value is acceptable
 - specify a single required value for the attribute
 - "∅": that no value is acceptable

Concept Learning

```
h = (?, Cold, High, ?, ?, ?)
```

indicates that Aldo enjoys his favorite sport on cold days with high humidity

Most general hypothesis: (?, ?, ?, ?, ?, ?)

Most specific hypothesis: $(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$

Find-S Algorithm

- 1. Initialize h to the most specific hypothesis in \mathcal{H}
- 2. For each positive training instance x

For each attribute constraint a_i in h

IF the constraint a_i in h is satisfied by x

THEN do nothing

ELSE replace a_i in h by next more general constraint satisfied by x

3. Output hypothesis *h*

Concept Learning

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Finding a Maximally Specific Hypothesis

Find-S Algorithm

```
h_1 \leftarrow (\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing)
```

 $h_2 \leftarrow (Sunny, Warm, Normal, Strong, Warm, Same)$

 $h_3 \leftarrow (Sunny, Warm, ?, Strong, Warm, Same)$

 $h_4 \leftarrow (Sunny, Warm, ?, Strong, ?, ?)$

Thank You

Foundations of Machine Learning

Module 7: Computational Learning Theory

Part A

Sudeshna Sarkar IIT Kharagpur

Sample Complexity: Infinite Hypothesis Spaces

- Need some measure of the expressiveness of infinite hypothesis spaces.
- The *Vapnik-Chervonenkis* (*VC*) *dimension* provides such a measure, denoted VC(*H*).
- Analagous to ln|H|, there are bounds for sample complexity using VC(H).

Shattering

- Consider a hypothesis for the 2-class problem.
- A set of N points (instances) can be labeled as + or
 in 2^N ways.
- If for every such labeling a function can be found in \mathcal{H} consistent with this labeling, we set that the set of instances is shattered by \mathcal{H} .

Three points in R²

- It is enough to find one set of three points that can be shattered.
- It is not necessary to be able to shatter every possible set of three points in 2 dimensions

Shattering Instances

 Consider 2 instances described using a single realvalued feature being shattered by a single interval.

Shattering Instances (cont)

But 3 instances cannot be shattered by a single interval.

VC Dimension

- The <u>Vapnik-Chervonenkis dimension</u>, VC(H). of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite subsets of X can be shattered then VC(H) = ∞
- If there exists at least one subset of X of size d that can be shattered then $VC(H) \ge d$.
- If no subset of size d can be shattered, then VC(H) < d.
- For a single intervals on the real line, all sets of 2 instances can be shattered, but no set of 3 instances can, so VC(H) = 2.

VC Dimension

- An unbiased hypothesis space shatters the entire instance space.
- The larger the subset of X that can be shattered, the more expressive (and less biased) the hypothesis space is.
- The VC dimension of the set of oriented lines in 2-d is three.
- Since there are 2^m partitions of m instances, in order for H to shatter instances: $|H| \ge 2^m$.
- Since $|H| \ge 2^m$, to shatter m instances, $VC(H) \le \log_2 |H|$

VC Dimension Example

Consider axis-parallel rectangles in the real-plane, i.e. conjunctions of intervals on two real-valued features. Some 4 instances can be shattered.

Some 4 instances cannot be shattered:

VC Dimension Example (cont)

 No five instances can be shattered since there can be at most 4 distinct extreme points (min and max on each of the 2 dimensions) and these 4 cannot be included without including any possible 5th point.

- Therefore VC(H) = 4
- Generalizes to axis-parallel hyper-rectangles (conjunctions of intervals in n dimensions): VC(H)=2n.

Upper Bound on Sample Complexity with VC

 Using VC dimension as a measure of expressiveness, the following number of examples have been shown to be sufficient for PAC Learning (Blumer et al., 1989).

$$\frac{1}{\varepsilon} \left(4\log_2\left(\frac{2}{\delta}\right) + 8VC(H)\log_2\left(\frac{13}{\varepsilon}\right) \right)$$

• Compared to the previous result using $\ln |H|$, this bound has some extra constants and an extra $\log_2(1/\epsilon)$ factor. Since $VC(H) \le \log_2 |H|$, this can provide a tighter upper bound on the number of examples needed for PAC learning.

Sample Complexity Lower Bound with VC

• There is also a general lower bound on the minimum number of examples necessary for PAC learning (Ehrenfeucht, et al., 1989):

Consider any concept class C such that VC(H)>2, any learner L and any $0<\varepsilon<{}^1/_8$, $0<\delta<{}^1/_{100}$.

Then there exists a distribution *D* and target concept in *C* such that if *L* observes fewer than:

$$\max\left(\frac{1}{\varepsilon}\log_2\left(\frac{1}{\delta}\right), \frac{VC(C)-1}{32\varepsilon}\right)$$

examples, then with probability at least δ , L outputs a hypothesis having error greater than ϵ .

• Ignoring constant factors, this lower bound is the same as the upper bound except for the extra $\log_2(1/\epsilon)$ factor in the upper bound.

Thank You

Foundations of Machine Learning

Module 8: Ensemble Learning Part A

Sudeshna Sarkar IIT Kharagpur

What is Ensemble Classification?

- Use multiple learning algorithms (classifiers)
- Combine the decisions
- Can be more accurate than the individual classifiers
- Generate a group of base-learners
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations (Modalities)
 - Training sets

Why should it work?

- Works well only if the individual classifiers disagree
 - Error rate < 0.5 and errors are independent</p>
 - Error rate is highly correlated with the correlations of the errors made by the different learners

Bias vs. Variance

- We would like low bias error and low variance error
- Ensembles using multiple trained (high variance/low bias) models can average out the variance, leaving just the bias
 - Less worry about overfit (stopping criteria, etc.)
 with the base models

Combining Weak Learners

- Combining weak learners
 - Assume *n* independent models, each having accuracy of 70%.
 - If all n give the same class output then you can be confident it is correct with probability $1-(1-.7)^n$
 - Normally not completely independent, but unlikely that all n would give the same output
 - Accuracy better than the base accuracy of the models by using the majority output.
 - If n1 models say class 1 and n2 < n1 models say class 2, then P(class1) = 1 Binomial(n, n2, .7)

$$P(r) = \frac{n!}{r!(n-r)!}p^{r}(1-p)^{n-r}$$

Ensemble Creation Approaches

- Get less correlated errors between models
 - Injecting randomness
 - initial weights (eg, NN), different learning parameters, different splits (eg, DT) etc.
 - Different Training sets
 - Bagging, Boosting, different features, etc.
 - Forcing differences
 - different objective functions
 - Different machine learning model

Ensemble Combining Approaches

- Unweighted Voting (e.g. Bagging)
- Weighted voting based on accuracy (e.g. Boosting),
 Expertise, etc.
- Stacking Learn the combination function

Combine Learners: Voting

- Unweighted voting
- Linear combination (weighted vote)

 - weight $\propto \frac{1}{variance}$

$$y = \mathop{\triangle}_{j=1}^{L} w_j d_j$$

$$w_j \stackrel{3}{=} 0 \text{ and } \mathop{\triangle}_{j=1}^{L} w_j = 1$$

Bayesian

$$P(C_i|X) = \sum_{\text{all Inodels IM}_j} P(C_i|X, \mathcal{M}_j) P(\mathcal{M}_j)$$

Fixed Combination Rules

Rule	Fusion function $f(\cdot)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$
Median	$y_i = \text{median}_j d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$
Product	$y_i = \prod_j d_{ji}$

	C_1	C_2	C_3
d_1	0.2	0.5	0.3
d_2	0.0	0.6	0.4
d_3	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.032

Bayes Optimal Classifier

- The Bayes Optimal Classifier is an ensemble of all the hypotheses in the hypothesis space.
- On average, no other ensemble can outperform it.
- The vote for each hypothesis
 - proportional to the likelihood that the training dataset would be sampled from a system if that hypothesis were true.
 - is multiplied by the prior probability of that hypothesis.

$$y = \operatorname{argmax}_{c_j \in C} \sum_{h_i \in H} P(c_j | h_i) P(T | h_i) P(h_i)$$

$$y = \operatorname{argmax}_{c_j \in C} \sum_{h_i \in H} P(c_j | h_i) P(T | h_i) P(h_i)$$

- y is the predicted class,
- C is the set of all possible classes,
- H is the hypothesis space,
- T is the training data.

The Bayes Optimal Classifier represents a hypothesis that is not necessarily in H.

But it is the optimal hypothesis in the ensemble space.

Practicality of Bayes Optimal Classifier

- Cannot be practically implemented.
- Most hypothesis spaces are too large
- Many hypotheses output a class or a value, and not probability
- Estimating the prior probability for each hypothesizes is not always possible.

BMA

- All possible models in the model space used weighted by their probability of being the "Correct" model
- Optimal given the correct model space and priors

Why are Ensembles Successful?

Bayesian perspective:

$$P(C_i \mid x) = \sum_{\text{allmodels} \mathcal{M}_i} P(C_i \mid x, \mathcal{M}_j) P(\mathcal{M}_j)$$

• If d_i are independent

$$\operatorname{Var}(y) = \operatorname{Var}\left(\sum_{j} \frac{1}{L} d_{j}\right) = \frac{1}{L^{2}} \operatorname{Var}\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}} L \cdot \operatorname{Var}(d_{j}) = \frac{1}{L} \operatorname{Var}(d_{j})$$

Bias does not change, variance decreases by L

If dependent, error increase with positive correlation

$$Var(y) = \frac{1}{L^2} Var\left(\sum_j d_j\right) = \frac{1}{L^2} \left[\sum_j Var(d_j) + 2\sum_j \sum_{i < j} Cov(d_i, d_j)\right]$$

Challenge for developing Ensemble Models

- The main challenge is to obtain base models which are independent and make independent kinds of errors.
- Independence between two base classifiers can be assessed in this case by measuring the degree of overlap in training examples they misclassify (|A ∩B|/|A∪B|)

Thank You

Foundations of Machine Learning

Module 8: Ensemble Learning

Part B: Bagging and Boosting

Sudeshna Sarkar IIT Kharagpur

Bagging

- Bagging = "bootstrap aggregation"
 - Draw N items from X with replacement
- Desired learners with high variance (unstable)
 - Decision trees and ANNs are unstable
 - K-NN is stable
- Use bootstrapping to generate L training sets and train one base-learner with each (Breiman, 1996)
- Use voting

Bagging

- Sampling with replacement
- Build classifier on each bootstrap sample
- Each sample has probability $(1 1/n)^n$ of being selected

Boosting

- An iterative procedure. Adaptively change distribution of training data.
 - Initially, all N records are assigned equal weights
 - Weights change at the end of boosting round
- On each iteration t:
 - Weight each training example by how incorrectly it was classified
 - Learn a hypothesis: h_t
 - A strength for this hypothesis: α_t
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength
- "weak" learners
 - P(correct) > 50%, but not necessarily much better

Adaboost

- Boosting can turn a weak algorithm into a strong learner.
- Input: $S=\{(x_1, y_1), ..., (x_m, y_m)\}$
- $D_t(i)$: weight of i th training example
- Weak learner A
- For t = 1, 2, ..., T
 - Construct D_t on $\{x_1, x_2 ...\}$
 - Run A on D_t producing $h_t: X \to \{-1,1\}$ ϵ_t =error of h_t over D_t

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak classifier h_t : X → \mathbb{R} .
- − Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_t + 1(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^{m} D_t(i) exp \left(-\alpha_t y_i h_t(x_i)\right)$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Given: $(x_1, y_1), ..., (x_m, y_m)$ where

$$x_i \in X, y_i \in Y = \{-1, +1\}$$

Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak classifier h_t : X → \mathbb{R} .
- − Choose α_t ∈ \mathbb{R} .
- Update:

$$D_t + 1(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^{m} D_t(i) exp \left(-\alpha_t y_i h_t(x_i)\right)$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Choose α_t to minimize training error

$$\alpha_t = \frac{1}{2} In \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

where

$$\in_t = \sum_{i=1}^m D_t(i)\delta(h_t(x_i) \neq y_i)$$

Strong weak classifiers

- If each classifiers is (at least slightly) better than random $\epsilon_t < 0.5$
- Ican be shown that AdaBoost will achieve zero training error (expotentially fast):

$$\frac{1}{m}\sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \prod_t Z_t \leq exp\left(-2\sum_{t=1}^T (1/2 - \epsilon_t)^2\right)$$

Illustrating AdaBoost

Illustrating AdaBoost

Thank You