Upwind Stabilization of the Advection Term

Consider a triangle $T \in \mathcal{T}_h$ and a fixed edge $E \subset T$. Let T' denote the adjacent triangle across E as illustrated in Fig. 4.1, where we also allow for the case of $T' = \emptyset$. According to (4.14b), the associated entry in the system of equations (4.13) is

$$u_T C_{ET}^n \stackrel{(4.14g)}{=} u_T \sum_{\{E' \subset T; E' \notin \mathcal{E}_{\mathbb{N}}\}} c_{E'}^n H_{T,E',E}^n \quad \text{for} \quad E \in \mathcal{E}_{\Omega} \cup \mathcal{E}_{\mathbb{D}} \ .$$

If E is an inflow edge, then $c_{ET}^n := c_E^n \sigma_{ET} < 0$ holds and we have to weight $u_{T'}$ in upwind direction in dependency of the local Péclet number (cf. Rem 4.12). Vice versa, if $c_{ET}^n > 0$ we have to take account of the weighting between u_T and $u_{T'}$ in opposite direction due to symmetry reasons. Hence, the above term is approximated by

$$\left(\alpha\left(\operatorname{sign}(c_{ET}^n)\operatorname{Pe}_T^n\right)u_T + \left(1 - \alpha\left(\operatorname{sign}(c_{ET}^n)\operatorname{Pe}_T^n\right)u_{T'}\right)\right)C_{ET}^n.$$

We consider the following upwind formulas (KA2003):

(i)
$$\alpha(z) = \frac{1}{2} \left(\operatorname{sign}(z) + 1 \right) \in \{0, 1\} \qquad \text{(full upwinding)},$$

(ii)
$$\alpha(z) = 1 - \frac{1}{z} \left(1 - \frac{z}{e^z - 1} \right) \qquad \text{(exponential upwinding)} ,$$

(iii)
$$\alpha(z) = \begin{cases} (1-\tau)/2, \ z < 0 \\ (1+\tau)/2, \ z \ge 0 \end{cases}, \quad \tau(z) := \max\left\{0, 1 - \frac{2}{|z|}\right\} \ .$$