REPUBLIQUE TUNISIENNE	Epreuve : MATHEMATIQUES
MINISTERE DE L'EDUCATION . ♦♦♦	Durée : 4 H
EXAMEN DU BACCALAUREAT SESSION DE JUIN 2014	Coefficient: 4
Section : Mathématiques	Session de contrôle

Le sujet comporte 4 pages. La page annexe 4/4 est à rendre avec la copie.

Exercice 1 (5points)

Le plan est orienté dans le sens direct.

Dans l'annexe ci-jointe (**Figure 1**) , IAB est un triangle isocèle en A , O est le milieu de [BI] , OA = 2OI et $\widehat{(OI,OA)} \equiv \frac{\pi}{2}[2\pi]$.

Soit h l'homothétie de centre I et de rapport 2 et s la similitude directe de centre O, de rapport 2 et d'angle $\frac{\pi}{2}$.

- 1) Déterminer h(O) et s(I).
- 2) Pour tout point M du plan, on note P son image par h et Q son image par s.

Soit f l'application qui à un point M du plan associe le point M' barycentre des points pondérés (P, 3) et (Q, 1).

- a) Soit O' = f(O). Montrer que $\overrightarrow{OO'} = \frac{3}{4}\overrightarrow{OB}$ et construire le point O'.
- b) Soit I' = f(I). Montrer que $\overrightarrow{II'} = \frac{1}{4}\overrightarrow{IA}$ et construire le point l'.
- 3) Dans cette question, on munit le plan du repère orthonormé direct $(O, \overrightarrow{OI}, \overrightarrow{OJ})$, où J est le milieu de [OA] et on note z l'affixe d'un point M du plan.
- a) Exprimer en fonction de z l'affixe z_P du point P.
- b) Exprimer en fonction de z l'affixe z_Q du point Q.
- c) Soit z' l'affixe du point M' = f(M). Montrer que $z' = \frac{3+i}{2}z \frac{3}{4}$.
- d) Déterminer l'image par f du cercle de diamètre [OI].

Exercice 2 (5points)

son excentricité.

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Soit (E) l'ellipse d'équation $\frac{\chi^2}{4} + y^2 = 1$. Déterminer les cordonnées des foyers de l'ellipse (E) et donner
 - b) Soit (P) la parabole d'équation y² = 2x + 4.
 Déterminer les coordonnées du foyer F de la parabole (P) et donner une équation de sa directrice.
- 2) Dans l'annexe ci-jointe **(Figure 2)**, on a tracé dans un repère orthonormé (O, \vec{i}, \vec{j}) l'ellipse (E) et la parabole (P).

Soit (Γ) la courbe d'équation $y^2 = -2|x| + 4$.

- a) Vérifier que $[0, \ \vec{j}]$) est un axe de symétrie de (Γ).
- b) Tracer (Γ) dans le repère (O,\vec{i},\vec{j}) .
- 3) a) Soit C le cercle d'équation $x^2+y^2=4$. Vérifier que pour tout réel t de [0,2], le point $M\left(t,\sqrt{4-t^2}\right)$ appartient à C.
 - b) On pose $I_1 = \int_0^2 \sqrt{4 t^2} dt$. Montrer que $I_1 = \pi$.
- 4) Calculer $I_2 = \int_0^2 \sqrt{-2t + 4} \, dt$.
- 5) Soit \mathscr{A} l'aire de la surface limitée par la courbe (Γ) et l'ellipse (E). Exprimer \mathscr{A} en fonction de I_1 et I_2 puis calculer \mathscr{A} .

Exercice 3 (4points)

- 1) Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 1111 x 10⁴ y = 1.
 - a) Vérifier que (9, -1) est une solution de (E) .
 - b) Résoudre l'équation (E) .
- 2) Soit n un entier.
 - a) Montrer que s'il existe deux entiers p et q tels que n=1111p et n=1+q10⁴ alors (p, q) est une solution de (E).

- b) Déterminer alors l'ensemble des entiers n tels que $\begin{cases} n \equiv 0 \pmod{1111} \\ n \equiv 1 \pmod{10^4} \end{cases}.$
- c) En déduire le plus petit entier naturel multiple de 1111 et dont le reste dans la division euclidienne par 10⁴ est égal à 1.

Exercice 4 (6points)

1) Soit f la fonction définie sur $]0,+\infty[$ par $(x)=\frac{\ln x}{x}$.

Déterminer f'(x)et dresser le tableau de variation de f.

- $\begin{cases} g(x)=e^{f(x)} \text{ si } x>0 \\ 2) & \text{Soit g la fonction définie sur } \left[0,+\infty\right[\text{ par } \left\{g(0)=0\right. \right] \end{cases}$
 - a) Montrer que g est continue à droite en 0.
 - b) Montrer que g est dérivable à droite en 0.
 - c) Dresser le tableau de variation de g.
- 3) Dans l'annexe ci-jointe (**Figure 3**), on a représenté dans le repère $(0, \vec{i}, \vec{j})$ la courbe de la fonction f et la courbe de la fonction exponentielle.

 - b) Déterminer et tracer la tangente à la courbe $C_g\,de\,g\,$ au point d'abscisse 1.
 - c) Tracer la courbe C_g dans le repère $(0, \vec{i}, \vec{j})$.
- $\begin{cases} u_1=1\\ 4) \ \ \text{On considère la suite (u_n) définie sur } \mathbb{N}^* \, \text{par} \quad \begin{cases} u_n=\text{\em g} \ n) \ \ \text{si} \ n \geq 2 \end{cases}$
 - a) Donner la limite de (un).
 - b) Déterminer l'entier naturel n pour lequel $\sqrt[n]{n}$ est maximal.

Section :	Signatures des surveillants
Date et lieu de naissance :	
Epreuve : Mathématiques (Section mathématiques)	

Annexe (à rendre avec la copie)

Figure 1 Figure 2

Figure 3