BBM402-Lecture 8: Decidable Languages and the Halting Problem

Lecturer: Lale Özkahya

Resources for the presentation: https://courses.engr.illinois.edu/cs373/fa2010/lectures

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there exists a TM M which recognizes L.

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (or simply decidable) if there exists a TM M which decides L.

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (or simply decidable) if there exists a TM M which decides L.

• Every finite language is decidable

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (or simply decidable) if there exists a TM M which decides L.

• Every finite language is decidable: For e.g., by a TM that has all the strings in the language "hard-coded" into it

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (or simply decidable) if there exists a TM M which decides L.

- Every finite language is decidable: For e.g., by a TM that has all the strings in the language "hard-coded" into it
- We just saw some example algorithms all of which terminate in a finite number of steps, and output yes or no (accept or reject).

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M). A Turing machine M is said to decide a language L if L = L(M) and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there exists a TM M which recognizes L. L is said to be Turing-decidable (or simply decidable) if there exists a TM M which decides L.

- Every finite language is decidable: For e.g., by a TM that has all the strings in the language "hard-coded" into it
- We just saw some example algorithms all of which terminate in a finite number of steps, and output yes or no (accept or reject). i.e., They decide the corresponding languages.

But not all languages are decidable!

- But not all languages are decidable! In the next class we will see an example:
 - $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable

- But not all languages are decidable! In the next class we will see an example:
 - $A_{\text{\tiny TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable
- However A_{TM} is Turing-recognizable!

- But not all languages are decidable! In the next class we will see an example:
 - $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable
- However A_{TM} is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

```
Program U for recognizing A_{TM}:
```

```
On input \langle M,w\rangle simulate M on w if simulated M accepts w, then accept else reject (by moving to q_{\rm rej})
```

```
Program U for recognizing A_{TM}:
```

```
On input \langle M,w\rangle simulate M on w if simulated M accepts w, then accept else reject (by moving to q_{\rm rej})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U)=A_{\scriptscriptstyle {
m TM}}$$

Program U for recognizing A_{TM} :

```
On input \langle M,w\rangle simulate M on w if simulated M accepts w, then accept else reject (by moving to q_{\rm rej})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\scriptscriptstyle \mathrm{TM}}$$

But U does not decide A_{TM}

Program U for recognizing A_{TM} :

```
On input \langle M,w\rangle simulate M on w if simulated M accepts w, then accept else reject (by moving to q_{\rm rej})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\scriptscriptstyle \mathrm{TM}}$$

But U does not decide A_{TM} : If M rejects w by not halting, U rejects $\langle M, w \rangle$ by not halting.

Program U for recognizing A_{TM} :

```
On input \langle M,w\rangle simulate M on w if simulated M accepts w, then accept else reject (by moving to q_{\rm rej})
```

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\scriptscriptstyle \mathrm{TM}}$$

But U does not decide $A_{\rm TM}$: If M rejects w by not halting, U rejects $\langle M, w \rangle$ by not halting. Indeed (as we shall see) no TM decides $A_{\rm TM}$.

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs P_L and $P_{\overline{L}}$ for recognizing L and \overline{L} :

• On input x, simulate P_L and $P_{\overline{L}}$ on input x.

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

- On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first?

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

- On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

- On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel P_L and $P_{\overline{L}}$ on input x until either P_L or $P_{\overline{L}}$ accepts

Proposition

If L and \overline{L} are recognizable, then L is decidable

Proof.

- On input x, simulate P_L and P_{\(\bar{L}\)} on input x. Whether x ∈ L or x \(\notin\) L, one of P_L and P_{\(\bar{L}\)} will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel P_L and $P_{\overline{L}}$ on input x until either P_L or $P_{\overline{L}}$ accepts
- If P_L accepts, accept x and halt. If $P_{\overline{L}}$ accepts, reject x and halt. \cdots

Proof (contd).

In more detail, P works as follows:

```
On input x for i=1,2,3,\ldots simulate P_L on input x for i steps simulate P_{\overline{L}} on input x for i steps if either simulation accepts, break if P_L accepted, accept x (and halt) if P_{\overline{L}} accepted, reject x (and halt)
```

Proof (contd).

In more detail, P works as follows:

```
On input x for i=1,2,3,\ldots simulate P_L on input x for i steps simulate P_{\overline{L}} on input x for i steps if either simulation accepts, break if P_L accepted, accept x (and halt) if P_{\overline{L}} accepted, reject x (and halt)
```

(Alternately, maintain configurations of P_L and $P_{\overline{L}}$, and in each iteration of the loop advance both their simulations by one step.)

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable
- Is every language recognizable?

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable
- Is every language recognizable? No!

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable
- Is every language recognizable? No!

Proposition

 $\overline{A_{\rm TM}}$ is unrecognizable

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable
- Is every language recognizable? No!

Proposition

 $\overline{A_{\rm TM}}$ is unrecognizable

Proof.

If $\overline{A_{\text{TM}}}$ is recognizable, since A_{TM} is recognizable, the two languages will be decidable too!

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable
- Is every language recognizable? No!

Proposition

 $\overline{A_{\rm TM}}$ is unrecognizable

Proof.

If \overline{A}_{TM} is recognizable, since A_{TM} is recognizable, the two languages will be decidable too!

Note: Decidable languages are closed under complementation, but recognizable languages are not.

Decision Problems and Languages

 A decision problem requires checking if an input (string) has some property.

Decision Problems and Languages

 A decision problem requires checking if an input (string) has some property. Thus, a decision problem is a function from strings to boolean.

Decision Problems and Languages

- A decision problem requires checking if an input (string) has some property. Thus, a decision problem is a function from strings to boolean.
- A decision problem is represented as a formal language consisting of those strings (inputs) on which the answer is "yes".

Recursive Enumerability

• A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.

Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- The language of a Turing Machine M, denoted as L(M), is the set of all strings w on which M accepts.

Recursive Enumerability

- A Turing Machine on an input w either (halts and) accepts, or (halts and) rejects, or never halts.
- The language of a Turing Machine M, denoted as L(M), is the set of all strings w on which M accepts.
- A language L is recursively enumerable/Turing recognizable if there is a Turing Machine M such that L(M) = L.

Decidability

• A language L is decidable if there is a Turing machine M such that L(M) = L and M halts on every input.

Decidability

- A language L is decidable if there is a Turing machine M such that L(M) = L and M halts on every input.
- Thus, if *L* is decidable then *L* is recursively enumerable.

Definition

A language L is undecidable if L is not decidable.

Definition

A language L is undecidable if L is not decidable. Thus, there is no Turing machine M that halts on every input and L(M) = L.

Definition

A language L is undecidable if L is not decidable. Thus, there is no Turing machine M that halts on every input and L(M) = L.

• This means that either L is not recursively enumerable. That is there is no turing machine M such that L(M) = L, or

Definition

A language L is undecidable if L is not decidable. Thus, there is no Turing machine M that halts on every input and L(M) = L.

- This means that either L is not recursively enumerable. That is there is no turing machine M such that L(M) = L, or
- L is recursively enumerable but not decidable. That is, any Turing machine M such that L(M) = L, M does not halt on some inputs.

Big Picture

Relationship between classes of Languages

ullet For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$

• For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$; a string over any alphabet can be encoded in binary.

- For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string.

- For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program.

- For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)

- For the rest of this lecture, let us fix the input alphabet to be $\{0,1\}$; a string over any alphabet can be encoded in binary.
- Any Turing Machine/program M can itself be encoded as a binary string. Moreover every binary string can be thought of as encoding a TM/program. (If not the correct format, considered to be the encoding of a default TM.)
- We will consider decision problems (language) whose inputs are Turing Machine (encoded as a binary string)

The Diagonal Language

Definition

Define $L_d = \{M \mid M \not\in L(M)\}.$

The Diagonal Language

Definition

Define $L_d = \{M \mid M \notin L(M)\}$. Thus, L_d is the collection of Turing machines (programs) M such that M does not halt and accept when given itself as input.

Proposition

 L_d is not recursively enumerable.

Proposition

 L_d is not recursively enumerable.

Proof.

Proposition

 L_d is not recursively enumerable.

Proof.

Recall that,

• Inputs are strings over $\{0,1\}$

Proposition

 L_d is not recursively enumerable.

Proof.

- Inputs are strings over $\{0,1\}$
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine

Proposition

 L_d is not recursively enumerable.

Proof.

- Inputs are strings over $\{0,1\}$
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine
- In what follows, we will denote the *i*th binary string (in lexicographic order) as the number *i*.

Proposition

 L_d is not recursively enumerable.

Proof.

- Inputs are strings over $\{0,1\}$
- Every Turing Machine can be described by a binary string and every binary string can be viewed as Turing Machine
- In what follows, we will denote the ith binary string (in lexicographic order) as the number i. Thus, we can say $j \in L(i)$, which means that the Turing machine corresponding to ith binary string accepts the jth binary string.

Completing the proof

Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the (i,j)th entry is Y if and only if $j \in L(i)$.

						Inputs \longrightarrow			
	1	2	3	4	5	6	7		
1	N	N	N	N	N	N	N		
2	Ν	Ν	Ν	Ν	Ν	Ν	Ν		
3	Υ	Ν	Υ	Ν	Υ	Υ	Υ		
4	N	Υ	Ν	Υ	Υ	Ν	Ν		
5	N	Υ	Ν	Υ	Υ	Ν	Ν		
6	Ν	Ν	Υ	Ν	Υ	Ν	Υ		
	1 2 3 4 5	1 N 2 N 3 Y 4 N 5 N	1 N N 2 N N 3 Y N 4 N Y 5 N Y	1 N N N N 2 N N N N N N N N N N N N N N	1 N N N N N 2 N N N N N N N N N N N N N	1 N N N N N N N 2 N N N N N N N N N N N	1 2 3 4 5 6 1 N N N N N N N 2 N N N N N N 3 Y N Y N Y Y 4 N Y N Y Y N 5 N Y N Y Y	1 2 3 4 5 6 7 1 N N N N N N N N N 2 N N N N N N N N 3 Y N Y N Y Y Y 4 N Y N Y Y Y N N 5 N Y N Y N Y N N	

Completing the proof

Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the (i,j)th entry is Y if and only if $j \in L(i)$.

							Inputs \longrightarrow			
		1	2	3	4	5	6	7	• • •	
TMs	1	N	N	N	N	N	N	N		
\downarrow	2	Ν	Ν	Ν	Ν	Ν	Ν	Ν		
	3	Υ	Ν	Υ	Ν	Υ	Υ	Υ		
	4	N	Υ	Ν	Υ	Υ	Ν	Ν		
	5	N	Υ	Ν	Υ	Υ	Ν	Ν		
	6	N	Ν	Υ	N	Υ	N	Υ		

Suppose L_d is recognized by a Turing machine, which is the *j*th binary string. i.e., $L_d = L(j)$.

Completing the proof

Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix, where the (i, j)th entry is Y if and only if $j \in L(i)$.

Suppose L_d is recognized by a Turing machine, which is the jth binary string. i.e., $L_d = L(j)$. But $j \in L_d$ iff $j \notin L(j)$!

Acceptor for L_d ?

```
Consider the following program
```

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

Acceptor for L_d ?

```
Consider the following program
```

```
On input i

Run program i on i

Output ''yes'' if i does not accept i

Output ''no'' if i accepts i
```

Does the above program recognize L_d ?

Acceptor for L_d ?

Consider the following program

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

Does the above program recognize L_d ? No, because it may never output "yes" if i does not halt on i.

Question

Is there a machine model such that

- all programs in the model halt on all inputs, and
- for each problem decidable by a TM, there is a program in the model that decides it?

Answer

There is no such model!

Answer

There is no such model! Suppose there is a programming language in which all programs always halt.

Answer

There is no such model! Suppose there is a programming language in which all programs always halt. Programs in this language can be described by binary strings, and can be simulated by TMs.

Answer

There is no such model! Suppose there is a programming language in which all programs always halt. Programs in this language can be described by binary strings, and can be simulated by TMs. Consider the Turing Machine M_d

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

Answer

There is no such model! Suppose there is a programming language in which all programs always halt. Programs in this language can be described by binary strings, and can be simulated by TMs. Consider the Turing Machine M_d

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

 M_d always halts and solves a problem not solved by any program in our language!

Answer

There is no such model! Suppose there is a programming language in which all programs always halt. Programs in this language can be described by binary strings, and can be simulated by TMs. Consider the Turing Machine M_d

```
On input i
   Run program i on i
   Output ''yes'' if i does not accept i
   Output ''no'' if i accepts i
```

 M_d always halts and solves a problem not solved by any program in our language! Inability to halt is essential to capture all computation.

Recursively Enumerable but not Decidable

 \bullet L_d not recursively enumerable, and therefore not decidable.

Recursively Enumerable but not Decidable

L_d not recursively enumerable, and therefore not decidable.
 Are there languages that are recursively enumerable but not decidable?

Recursively Enumerable but not Decidable

- L_d not recursively enumerable, and therefore not decidable.
 Are there languages that are recursively enumerable but not decidable?
- Yes, $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that $A_{\rm TM}$ is r.e.

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that $A_{\rm TM}$ is r.e. Suppose (for contradiction) $A_{\rm TM}$ is decidable. Then there is a TM M that always halts and $L(M)=A_{\rm TM}$.

Proposition

 A_{TM} is r.e. but not decidable.

Proof.

We have already seen that $A_{\rm TM}$ is r.e. Suppose (for contradiction) $A_{\rm TM}$ is decidable. Then there is a TM M that always halts and $L(M) = A_{\rm TM}$. Consider a TM D as follows:

```
On input i
Run M on input \langle i,i \rangle
Output ''yes'' if i rejects i
Output ''no'' if i accepts i
```

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that $A_{\rm TM}$ is r.e. Suppose (for contradiction) $A_{\rm TM}$ is decidable. Then there is a TM M that always halts and $L(M) = A_{\rm TM}$. Consider a TM D as follows:

```
On input i
Run M on input \langle i,i \rangle
Output ''yes'' if i rejects i
Output ''no'' if i accepts i
```

Observe that $L(D) = L_d!$

Proposition

 $A_{\rm TM}$ is r.e. but not decidable.

Proof.

We have already seen that $A_{\rm TM}$ is r.e. Suppose (for contradiction) $A_{\rm TM}$ is decidable. Then there is a TM M that always halts and $L(M) = A_{\rm TM}$. Consider a TM D as follows:

```
On input i
Run M on input \langle i,i \rangle
Output ''yes'' if i rejects i
Output ''no'' if i accepts i
```

Observe that $L(D) = L_d!$ But, L_d is not r.e. which gives us the contradiction.

A more complete Big Picture

