Содержание

0. Вводная лекция	2
1. Современная физическая картина мира. Кинематика материальной точки	2
2. Кинематика материальной точки	3
Лекция 3. Кинематика вращательного движения. Динамика материальной	картина мира. Кинематика материальной точки 2 й точки 3 ащательного движения. Динамика материальной 6
точки	6
Движение по окружности	6
Zakouli Helotoua	Q

0. Вводная лекция

Задается вопрос: зачем обучающимся программистам нужна физика в учебном плане?

Приводятся цитаты Л. Богуславского, одного из крупнейших IT инвесторов, и Б. Страуструпа, которые считают, что такие фундаментальные дисциплины, как математика, физика, иностранный язык, способствуют развитию мышления человека

Такие компании, как Bell Labs и IBM создали прорывные изобретения в области физики, на основе которых построены компьютерные технологии

В 3-ем семестре курс физики будет состоять из классической механики и основ электричества

В 4-ом семестре будут темы магнетизма, колебаний, волн и волновых процессов

В 5-ом семестре будут рассматриваться оптика, основы квантовой физики и квантовые вычисления

Занятия состоят из лекций, практических и лабораторных занятий. Всего в 3-ем семестре будут 5 лабораторных работ

1. Современная физическая картина мира. Кинематика материальной точки

План лекции

- Историческая справка
- Методы и модели в физике
- Изучаемые объекты
- Физика и другие науки
- Фундаментальные взаимодействия
- Кинематика материальной точки. Начало

Физика - раздел естествознания, изучающий свойства и формы движения материи. Под материей понимают вещество и поля.

Научный метод: сначала проводятся наблюдения и эксперименты, из которых выдвигается гипотеза и ищется адекватная математическая модель, эта гипотеза проверяется, и если она подтверждается, то формируется *теория*

Пример - открытие Нептуна: в 1781-1845 годах наблюдались аномалии в движении Урана, в 1845 проведение расчетов координат новой планеты, а в 1846 обнаружилась новая планета Принцип соответствия (Н. Бор, 1923 г.) - каждая новая теория должна включать предыдущую как частный случай

Изучаемые объекты: вселенная, галактики, звездные системы и планеты, экосистемы, макротела, молекулы, атомы, ядра, элементарные частицы

Всего в физике существуют 4 фундаментальных взаимодействия:

Взаимодействие	Квант поля	Область взаимодействия
Гравитационное	гравитон	Macca
Электромагнитное	фотон	все заряженные частицы, атомы, электротехника
Слабое	бозон	радиоактивный распад
Сильное	ГЛЮОН	атомные ядра, фундаментальные частицы

Механика - раздел физики, изучающий механическое движение, то есть движение тел в пространстве и времени. Механическое движение тел ОТНОСИТЕЛЬНО.

	$\ll 3 \cdot 10^8$ м/с	$pprox 3 \cdot 10^8$ м/с
≫ 1 нм	Классическая	Релятивистская
≪1 нм	Квантовая	Квантовая теория поля

Материальная точка - тело, размерами которого можно пренебречь в условиях данной задачи Абсолютно твердое тело (ATT) - система материальных точек, расстояние между которыми не меняется в процессе движения (деформации в процессе движения пренебрежимо малы) Тело отсчета - тело, относительно которого определяется положение других тел в пространстве Система отсчета - совокупность тела отсчета, связанной с ним системы координат и синхронизированных между собой часов

Степени свободы - число независимых скалярных величин, однозначно определяющих положение тела в пространстве

Материальная точка: 3 степени свободы

Система N материальных точек: 3N степени свободы

АТТ: 6 степеней свободы

Система единиц (le System International d'unites), 1960

$$[t] = c$$
 $[S, l] = M$

7 основных единиц:

$$[S] = M$$
 $[T] = K$

$$[m] =$$
кг $[v] =$ моль

$$[t] = c$$
 $[l] = Kд$

$$[q] = K_{\Pi}$$

Изначально все физические единицы основывались на материальных предметов, из-за которых точности единиц была низкой, но недавно все единицы были переопределены на основе физических констант.

В природе нет абсолютно точных вычислений. Измерение любой физической величины без погрешности не имеет смысла!

2. Кинематика материальной точки

- Основные способы описания движения
- Основные понятия кинематики
- Кинематика поступательного и вращательного движения
- Прямая и обратная задачи кинематики
- Численные методы при решении задач

Def. Кинематика - раздел механики, изучающий движение тел, независимо от причин, вызывающих это движение.

Def. Траектория - линия, по которой движется материальная точка в пространстве

Def. Путь - длина траектории

Def. Перемещение - вектор, проведенный из начальной точки в конечную

Способы описания движения

Векторный способ

Координатный способ

Естественный (траекторный) способ

Положение точки может быть Положение точки может быть Положение точки определяетоднозначно определено с помощью радиус-вектора

однозначно определено с помо- ся дуговой координатой щью трех скалярных коорди-

Векторный способ

 $\vec{r_1}, \vec{r_2}$ - радиус-векторы, определяющие положения материальной точки в 1 и 2 $\Delta \vec{r} = \vec{r_2} - \vec{r_1}$ - перемещение материальной точки

нат

Def. Скорость - векторная физическая величина, характеризующая быстроту перемещения материальной точки

Средняя скорость - $\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t}$

Мгновенная скорость - $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$

Средняя путевая скорость - $v_{\rm cp} = \frac{\Delta t}{\Lambda}$

Def. Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости материальной точки

Среднее ускорение -
$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}$$

Мгновенное ускорение -
$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

Координатный способ

В координатном способе положение точки описано 3 координатами x, y, z (в данном случае в ДПСК)

$$|r| = \sqrt{x^2 + y^2 + z^2}$$

$$\vec{r}(t) = r_x(t)\vec{i} + r_y(t)\vec{j} + r_z(t)\vec{k} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

$$\vec{v}(t) = v_x(t)\vec{i} + v_y(t)\vec{j} + v_z(t)\vec{k}$$

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Прямая задача:

$$\vec{r}(t), x(t), y(t), z(t) \longrightarrow \vec{v}(t), \vec{a}(t), v_x, v_y, v_z, a_x, a_y, a_z$$

Решением является дифференцирование

Обратная задача:

$$\vec{a}(t), a_x, a_y, a_z \longrightarrow \vec{v}(t), \vec{r}(t), x(t), y(t), z(t)$$

Для обратной задачи решением является интегрирование

$$\vec{v} = \frac{d\vec{r}}{dt}$$
 $d\vec{r} = \vec{v}dt$ $\Delta \vec{r} = \int_{t_1}^{t_2} \vec{v}dt$

$$\vec{r} = \vec{r_0} + \Delta \vec{r} = \vec{r_0} + \int_{t_1}^{t_2} \vec{v} dt$$

Аналогично для ускорения

Численное решение ОДУ (обыкновенного дифференциального уравнения) $\frac{dy}{dx} = f(x,y)$ на отрезке $[x_0, x_n]$ при условии $y(x_0) = y_0$

Разбиваем отрезок $[x_0, x_n]$ на конечное число частей введением узловых точек

Шаг разбиения: $h = \frac{x_N - x_0}{N}$

По определению производной $\frac{dy}{dx} = \frac{y_{i+1} - y_i}{h}$, из этого:

Формула Эйлера: $y_{i+1} = y_i + hf(x_i, y_i)$

$$dy = f(x, y)dx$$

$$\Delta y = y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f(x, y) dx$$

Естественный (траекторный) способ

Если траектория точки заранее известна, то положение точки задается дуговой координатой l(t)

$$\vec{v} = v_{\tau}\vec{\tau} \quad v_{\tau}\frac{dl}{dt}|\vec{\tau}| = 1$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_{\tau}}{dt}\vec{\tau} + \frac{d\vec{\tau}}{dt}v_{\tau} \qquad \frac{d\tau}{dt} = \frac{d\tau}{dl} \cdot \frac{dl}{dt} = \frac{d\tau}{dl}v_{\tau}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_{\tau}}{dt}\vec{\tau} + \frac{d\vec{\tau}}{dt}v_{\tau}^{2}$$

$$d\tau = \tau d\alpha$$

$$dl = Rd\alpha \qquad d\vec{\tau} \uparrow \uparrow \vec{n}$$

R - радиус кривизны траектории

$$\vec{\alpha} = \frac{dv_{\tau}}{dt}\vec{\tau} + \frac{1}{R}v_{\tau}^{2}\vec{n} \qquad \vec{a} = \vec{a}_{\tau} + \vec{a}_{n}$$

Тангенциальное ускорение отвечает за изменение модуля скорости, направлено по касательной к траектории движения

Нормальное ускорение отвечает за изменение направления вектора скорости, направлено к центру кривизны траектории

Лекция 3. Кинематика вращательного движения. Динамика материальной точки

План лекции

- Угловые величины: угол поворота, угловая скорость
- Взаимосвязь между линейными и угловыми величинами
- Плоское движение
- Динамика материальной точки
- Законы Ньютона. Силы в механике
- Принципы работы акселерометра

Движение по окружности

Возьмем точку A, положение которое определим через \vec{r} . Точка A движется по окружности вокруг неподвижной оси OO'

Тогда $d\vec{r}$ - перемещение, $d\vec{\phi}$ - элементарный угол поворота (вектор определяет в какую сторону, по часовой или против, обращается по окружности тело; вектор направлен перпендикулярно окружности)

$$|d\vec{r}| = Rd\varphi = r \cdot \sin \alpha d\varphi$$

$$R = r \cdot \sin \alpha$$

$$d\vec{r} = [d\vec{\varphi}\vec{r}]$$

здесь и далее $[\vec{x}\vec{y}]$ - векторное произведение

Угловая скорость - векторная величина, показывающая как меняется угол поворота тела со $\Delta \varphi$, $d\vec{\varphi}$

временем: $\langle \omega \rangle = \frac{\Delta \varphi}{\Delta t}$ $\vec{\omega} = \frac{d\vec{\varphi}}{dt}$

Направление совпадает с направлением угла поворота $d\vec{\varphi}$: $\vec{\omega} \uparrow \uparrow d\vec{\varphi}$

Угловое ускорение - векторная величина, показывающая как меняется угловая скорость тела со временем

$$\langle \beta \rangle = \frac{\Delta \omega}{\Delta t}$$
 $\vec{\beta} = \frac{d\vec{\omega}}{dt} = \frac{d^2 \vec{\phi}}{dt^2}$

Направление совпадает с направлением вектора изменения скорости $\Delta \vec{\omega} \colon \vec{\beta} \uparrow \uparrow d\vec{\omega}$

$$d\vec{r} = [d\vec{\varphi}\vec{r}]$$

 $dr = d\varphi \cdot r \cdot \sin \alpha = d\varphi \cdot R$

Выразим скорость $\vec{v} = \frac{d\vec{r}}{dt} = \left[\frac{d\vec{\phi}}{dt}\vec{r}\right] = \left[\vec{\omega}\vec{r}\right]$

$$v = \omega \cdot r \cdot \sin \alpha = \omega \cdot R$$

Выразим ускорение:
$$\vec{a} = \frac{d\vec{v}}{dt} = \left[\frac{d\vec{\omega}}{dt}\vec{r}\right] + \left[\vec{\omega}\frac{d\vec{r}}{dt}\right] = \left[\vec{\beta}\vec{r}\right] + \left[\vec{\omega}\vec{v}\right] = \vec{a}_{\tau} + \vec{a}_{n}$$

 \vec{a}_{τ} называют тангенциальным ускорением (напраленным по касательной), \vec{a}_{n} - нормальным (направленным к центру)

$$a_{\tau} = \beta \cdot r \cdot \sin \alpha = \beta \cdot R$$

Перемещение, путь, скорость:

$$d\vec{r} = [d\vec{\varphi}\vec{\rho}](\vec{\rho}$$
 - вектор радиуса окружности) $\vec{v} = [\vec{\omega}\vec{\rho}]$

$$dr = d\varphi \cdot R \qquad \qquad v = \omega \cdot R$$

$$S = \varphi \cdot R$$

Ускорение: $\vec{a} = [\vec{\beta}\vec{r}] + [\vec{\omega}\vec{v}]$

$$ec{a}_{ au} = [ec{eta}ec{r}]$$
 $ec{a}_{n} = [ec{\omega}ec{v}] = [ec{\omega}[ec{\omega}ec{
ho}]]$ $T = rac{2\pi}{\omega} = rac{1}{v}$ - период $a_{n} = \omega^{2}R = rac{1}{R}v^{2}$ $v = rac{\omega}{2\pi} = rac{1}{T}$ - частота

Плоское движение - движение твердого тела, при котором каждая его точка движется в плоскости, параллельной некоторой неподвижной в данной системе отсчета плоскости

$$\vec{r} = \vec{r}_0 + \vec{r}'$$

$$d\vec{r} = d\vec{r}_0 + d\vec{r}' = d\vec{r}_0 + [d\vec{\varphi}\vec{r}]$$

$$\vec{v} = \vec{v}_0 + [\vec{\omega}\vec{r}]$$

 \vec{v}_{C} - скорость центра колеса относительно точки отсчета

 $\vec{v}_{\rm Bp}$ - скорость точек колеса относительное его центра

Def. Динамика - раздел механики, изучающий причины, вызывающие движение тел 1687 г. - законы Ньютона, основа классической механики (механики Ньютона), обобщение большего количества опытов (Г. Галилей)

Классическая механика - частный случай 1) СТО при скоростях много меньших скорости света $v \ll c$; 2) квантовой механики при массах, много больших массы атома

В динамике существуют различия между системами отсчета и преимущества одних СО над другими.

Существуют такие системы отсчета, относительно которых свободное тело (тело, на которое не действуют другие тела) движется равномерно и прямолинейно или находится в состоянии покоя. Таким системы называются инерциальными (ИСО)

Принцип относительности Галилея:

Любая CO, движущаяся с постоянной скоростью относительно ИСО, также является ИСО. Тогда справедливо любое из этих утверждений:

- 1. все ИСО эквивалентны друг другу по своим механическим свойствам
- 2. во всех ИСО свойства пространства и времени одинаковы
- 3. законы механики одинаковы во всех ИСО

Преобразования Галилея - преобразования координат при переходе от одной ИСО к другой K, K' - ИСО

 $ec{V}$ - скорость, с которой движется СО K' относительно K t=t'

 $\vec{r} = \vec{r}' + \vec{V}t$

 $\vec{c} = \vec{v}' + \vec{V}$

 $\vec{a} = \vec{a}'$

Def. Сила - физическая величина, определяющая количественную характеристику и напраление воздействия, оказываемого на данное тело со стороны других тел.

Силы условно можно разделить на силы, возникающие при непосредственном контакте (силы трения, давления) и на силы, возникающие через поля (электрические, гравитационные).

Def. Инертная масса - мера инертности тела, то есть способности тела сохранять свою скорость при движении

Def. Гравитационная масса - мера гравитацонного взаимодействия, величина, определяющая вес тел.

 $m_{\rm ин} = m_{\rm гр}$ с точностью до 10^{-13} кг

В классической механике 1) масса - величина аддитивная $(m_1+m_2+\cdots=m);\ 2)$ m=const

Законы Ньютона

І закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы вза-имно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

II закон Ньютона

Ускорение тела пропорционально действующей на него силе и обратно пропорционально его массе $\vec{a} = \frac{\vec{F}}{m}$

Под равнодействующей всех сил понимают векторную сумму всех сил, действующих на тело (принцип суперпозиции)

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 - II закон в импульсной (дифференциальной) форме

III закон Ньютона

Силы, с которыми два тела действуют друг на друга равны по модулю и направлены в противоположные стороны $\vec{F}_{12} = -\vec{F}_{21}$

Закон Гука: $F = k|\Delta l|$ - сила упругости пропорциональна изменению длины тела Акселерометр - прибор, измеряющий ускорение, точнее проекцию кажущегося ускорения. Акселерометр использует II закон Ньютона $(mg - k\Delta l = ma)$ во всех трех осях, что позволяет измерение ускорения в трех направлениях. Акселерометр используется в автомобилях, авиации, телефонах, игровых контроллерах, компьютерах (защита жесткого диска). Сейчас акселерометры изготавливаются в размерах от 20 мкм до 1 мм из кремния