

ये विद्या हो ।

中華民國經濟部智慧財產局

INTELLECTUAL PROPERTY OFFICE MINISTRY OF ECONOMIC AFFAIRS REPUBLIC OF CHINA

茲證明所附文件,係本局存檔中原申請案的副本,正確無訛,

其申請資料如下

This is to certify that Jannexed is a true copy from the records of this office of the application as originally filed which is identified hereunder:

西元 2003 年 請

Application Date

092101164

Application No.

曾俊元、李顯億

Applicant(s)

Director General

Issue Date

發文字號 >

Serial No. जर जर

發明專利說明書

(塡寫本書件時請先行詳閱申請書後	6之申請須知,作※記號部分請勿填寫)
※ 申請案號:	※I P C 分類:
※ 申請日期:	
壹、發明名稱	
(中文)	結構及其製造方法
(英文)Ferroelectric memory	structures and their fabrications
貳、發 明人(共 <u>2</u> 人)	
發明人 <u>1</u> (如發明人超過一人, 姓名:(中文) 曾俊元	請填說明書發明人續頁)
(英文)	
住居所地址:(中文)新竹市	<u> </u>
<u>(英文)</u> 國籍: <u>(中文) 中華民國</u>	(英文) R.O.C.
參、申請人(共 <u>2</u> 人)	
申請人 1 (如發明人超過一人,	請填說明書申請人續頁)
姓名或名稱:(中文) 曾俊元	
(英文) 住居所或營業所地址:(<u>中文)</u> ————	新竹市建中一路 31 號 14 樓之三
(英文)	
國籍:(中文) 中華民國	(英文) <u>R.O.C.</u>
代表人:(中文) 曾俊元	
_(英文)	
(週次不敷体 用味,速针和光体用缀直)

說明書發明人續真

發明人 __2_

姓名:(中文)	李顯億	<u> </u>				
<u>(英文)</u>						
住居所地址:	(<u>中文)</u>	南縣新營	市民治路	143 號		
_	(英文)					
國籍:(中文)	<u>中華民國</u>	(英文)	R.O.C.		說明書中請人讀真	Î
申請人2	2			L		2i ——
姓名或名稱:((中文) 李	顯億	- 	·		
	(英文)					
住居所或營業	听地址: <u>(中文</u>) 台南	縣新營市	民治路	143 號	
	(英文	()				
國籍: <u>(中文)</u>	中華民國		(英文)	R.O.C		
代表人: <u>(中文</u>) 李顯	億				
<u>(英</u>	文)					

本案係指一種鐵電層電極結構及製造方法,其製造方法係包含下列步驟: (a)提供一基板; (b)形成一絕緣層於該基板上; (c)形成複數個氧化物電極於該絕緣層之上; (d)形成一鐵電層於該絕緣層及該複數個氧化物電極之上; 以及(e)相對於該複數個氧化物電極形成複數個金屬電極於該鐵電層之上。

伍、英文發明摘要

The present invention retates generally to ferroelectric memory structures and their fabrications, and more particularly to an improved data $Bi_{3.35}La_{0.85}Ti_3O_{12}(BLT)$ / retention Pt LaNiO₃(LNO) Ba_{0.7}Sr_{0.3}TiO₃(BST) / Si metal-ferroelectric-metal-insulator-semiconductor (MFMIS) structures for ferroelectric-memory field effect transistor applications. The BLT films were deposited on LNO / BST / Si using the metalorganic decomposition and annealed by rapid thermal annealing process at low temperature 600°C for 3 min. By the utilization of high dielectric constant 5 mol% MgO doped BST insulator layer, LNO bottom electrode layer for BLT, and small area ratio $A_F / A_I = 1/12$ in the MFMIS structure, large Pr / Ps ratio in BLT film and low leakage current and good capacitance matching of the ferroelectric and the insulator have been achieved and hence long data retention time >106 sec has been obtained in the present invention.

陸、(一)、本案指定代表圖爲:第一圖(f)

(二)、本代表圖之元件代表符號簡單說明:

矽基板1

絕緣膜2

複數個氧化物電極 4

鐵電薄膜 5

複數個鉑金屬電極7

第一電極面積8 第二電極面積9

柒、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:

捌、聲明事項
□ 本案保符合專利法第二十條第一項□第一款但書或□第二款但書規定
之期間・其日期爲:
本案已向下列國家(地區)申請專利,申請日期及案號資料如下:
【格式請依:申請國家(地區);申請日期;申請案號 順序註記】
1
2
3
主張專利法第二十四條第一項優先權:
【格式請依:受理國家(地區);日期;案號 順序註記】
1
2
3
4
5
6
7
8.

9	
10	
」主張專利	J法第二十五條之一第一項優先權:
【格式請依:	申請日;申請案號 順序註記】
l	
n	
3	
主張專利	川法第二十六條微生物 :
	·····································
l	
)	
3	
國外微生物	【格式請依:寄存國名;機構;日期;號碼 順序註記】
•	

玖、發明說明

(發明說明應敘明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說 明)

發明所屬之技術領域

本案係指一種鐵電層/電極/絕緣層/矽(MFMIS)結構及其製造方法,尤指一種增加記憶保留時間(Retention Time)的鐵電層/電極/絕緣層/矽結構及其製造方法。

先前技術

近年來,鐵電記憶場效電晶體(FeMFET)倍受矚目的原因是可應用作為非揮發性隨機存取記憶體(NVFeRAMs),因為其具有非破壞性讀取及提高

元件集積化的功能。寬的記憶窗及快速的讀寫速度已有研究者在文獻或專利中報導,目前在這兩方面均可達成,然而根據 Ishiwara 等人在 IEEE. Trans. on Electron Devices 48, P. 2002, (2001)及 United States Patent 6,449,185,6,285,577專利報導,目前最好的鐵電記憶場效電晶體記憶保持時間均低於 105秒有的甚至只有短短的數秒,而且鐵電薄膜結晶溫度要大於 6000C以上。若要實際應用在工業生產上,則必須克服過低記憶保持時間及降低結晶溫度的缺點。

要能實際有效提高記憶保持時間,根據理論模擬,在低電壓操作下則要

- (1)提高殘留極化量與飽和極化量(Pr/Ps)之比值;
- (2)降低絕緣層之漏電流密度;以及
- (3)降低 MFMIS 結構中鐵電薄膜與絕緣膜之面積 比,以達成較佳的 MFM 和 MIS 的電容匹配。

根據上述原因,本發明之目的在於利用高熱穩定性、低漏電流密度及高介電常數之掺雜氧化鎂的鈦酸鍶鋇(MgO doped BST)薄膜當作絕緣層,錄酸鑭(LNO)當作氧化物金屬電極,鈦酸鐦铋作為鐵電材料,不但有效提高記憶保持時間大於106秒以上(AF/AI = 1/12及 1/16),在 LNO 底電極上成長鐵電薄膜亦可降低鈦酸鑭铋鐵電薄膜之製程溫度至 6000C。以下為本案之簡要說明。

發明內容

本案之主要目的,在於提供一種增加記憶保留時間(Retention Time)的鐵電層/電極/絕緣層

/矽結構及其製造方法,在此結構及製造方法中,由於低溫製程的鐵電薄膜具有較高的殘留極化和飽和極化(Pr/Ps)比值、低漏電流密度及較佳的MFM和 MIS的電容匹配,可有效提高 MFMIS 結構電容記憶保留時間大於 106秒以上。

根據本案之構想,提供一種鐵電層電極結構,其包含:一基板;一絕緣層,其係形成於該基板之上;複數個氧化物電極,其係形成於該絕緣層之上;一鐵電層,其係形成於該層及該複數個氧化物電極之上;以及複數個金屬電極之上,以及複數個金屬電極,其係相對於該複數個氧化物電極形成於該鐵電層之上。

根據上述構想,其中該基板可為一矽基板。 根據上述構想,其中該矽基板可為一 p-型 矽基板。

根據上述構想,其中該矽基板更可為一 n-型矽基板。

根據上述構想,其中該絕緣層之材料可為鈦酸鍶鋇。

根據上述構想,其中該絕緣層中更掺有氧化鎂。

根據上述構想,其中該複數個氧化物電極之材料可為鎳酸鑭。

根據上述構想,其中該鐵電層之材料可為鈦酸鑭鈆。

根據上述構想,其中該金屬層之材料可為化學性質穩定的貴金屬,如:鉑(Pt),釘(Ru),銥(Ir);及含鈣鈦礦結構之氧化物電極如: 鎳酸鐦(LNO),釘酸鍶(SrRuO3),釘酸鋇(BaRuO3),釔鋇銅氧

 $(YBa_2Cu_3O_7) \cdot$

根據上述構想,其中該複數個金屬電極分別 具有一第一電極面積,該複數個氧化物電極分別 具有一第二電極面積,且該第一電極面積與該第 二電極面積之比值小於 1/12。

根據本案之另一構想,提出一種鐵電層極結構之製造方法,其包含下列步驟:(a)提供一基板;(b)形成一絕緣層於該基板上;(c)形成複數個氧化物電極於該絕屬層之上;(d)形成一鐵電層於該絕屬層及該複數個氧化物電極之上;以及(e)相對於該複數個氧化物電極形成複數個金屬電極於該鐵電層之上。

根據上述構想,其中該基板可為一矽基板。 根據上述構想,其中該矽基板可為一 p-型 矽基板。

根據上述構想,其中該矽基板更可為一 n-型矽基板。

根據上述構想,其中該步驟(a)中更包含另一步驟:將該基板依序以 RCA 清潔法及氮化法作前置處理。

根據上述構想,其中該絕緣層可由一物理氣相沉積法所形成。

根據上述構想,其中該絕緣層可由一化學氣相沉積法所形成。

根據上述構想,其中該絕緣層可由一金屬有機物沉積法所形成。

根據上述構想,其中該物理氣相沉積法之靶材可為一鈦酸鍶鋇濺鍍靶。

根據上述構想,其中該鈦酸鍶鋇濺鍍靶成份

為 $Ba_x Sr_{1-x} TiO_3 (x=0~1)$ 。

根據上述構想,其中該鈦酸鍶鋇濺鍍靶係由碳酸鋇(BaCO3).碳酸鍶(SrCO3).二氧化鈦(TiO2)調配而成。

根據上述構想,其中該鈦酸鍶鋇濺鍍靶更掺有氧化鎂(MgO)。

根據上述構想,其中該步驟(c)中更包含另一步驟:形成一氧化物層於該絕緣層上,再以一微影蝕刻製程使得該氧化物層形成該複數個氧化物電極。

根據上述構想,其中該氧化物層可由一物理氣相沉積法所形成。

根據上述構想,其中該氧化物層可由一化學氣相沉積法-所形成。

根據上述構想,其中該氧化物層可由一金屬有機物沉積法所形成。

根據上述構想,其中該物理氣相沉積法之靶材可為一鎳酸鑭濺鍍靶。

根據上述構想,其中該鎳酸鑭濺鍍靶成份為 LaNiO₃。

根據上述構想,其中該鎮酸鑭濺鍍靶係由氧化鑭(La_2O_3)二氧化鎳(NiO_2)調配而成。

根據上述構想,其中該鐵電層可由一物理氣相沉積法所形成。

根據上述構想,其中該鐵電層可由一化學氣相沉積法所形成。

根據上述構想,其中該鐵電層可由一金屬有機物沉積法所形成。

根據上述構想,其中該金屬有機物沉積法之

溶液可為一鈦酸鑭鉍溶液。

根據上述構想,其中該鈦酸鑭鉍溶液成份為 $Bi_xLa_{4-x}Ti_3O_{12}(x=0~4)$ 。

根據上述構想,其中該鈦酸鋼級溶液係以醋酸作溶劑,以醋酸鋼、醋酸級及四異丙醇基鈦為溶質。

根據上述構想,其中該步驟(e)中更包含另一步驟:形成一金屬層於該鐵電層上,再以一光阻剝落法(lift-off)使得該金屬層形成該複數個金屬電極分別具有的一第一電極面積,與該複數個氧化物電極分別具有的一第二電極面積之比值小於 1/12。

根據上述構想,其中該金屬層之材料可為化學性質穩定的貴金屬,如:鉛(Pt),釘(Ru),銥(Ir);及含鈣鈦礦結構之氧化物電極如: 鎮酸鐦(LNO),釘酸鍶(SrRuO $_3$),釘酸鋇(BaRuO $_3$),釔鋇銅氧(YBa $_2$ Cu $_3$ O $_7$)。

本案得藉由下列圖式及實施例之說明,俾得一更深入之了解:

圖示簡單說明

第一圖(a)~(f):本案實施方式之鐵電層電極結構製造方法步驟示意圖。

第二圖:本案結構之極化量對外加電場之關係圖。

第三圖: 本案結構之記憶窗對 AF / AI 面積比之關係圖。

第四圖:本案結構之漏電流密度對外加電壓之

關係圖。

第五圖:本案結構之電容對記憶保持時間之關係圖。

圖示符號說明

矽基板 1 絕緣膜 2

氧化物薄膜3 複數個氧化物電極 4

鐵電薄膜 5 鉑金屬層 6

複數個鉑金屬電極 7

第一電極面積 8 第二電極面積 9

實施方式

首先將一 p-型或一 n-型矽基板經由標準之RCA 清潔法,將表面之有機物及雜質去除乾淨。再將該矽基板進行一氮化處理,也就是高溫下通入 N2O或 NH3 氣體,利用爐管、PECVD或 LPCVD 方式使之在該矽基板表面成長一層約 20~100Å之 SiON 犧牲層,再加以浸泡稀釋過之氫氟酸(HF),去除 SiON之犧牲層。

接著將氮化處理過後之該矽基板放入射頻濺鍍腔中,並放入含有摻雜 1~10 mo1% 氧化鎂 (Mg0)之鈦酸鳃鋇(BaxSr_{1-x}TiO₃, x=0~1)濺鍍靶,使得該矽基板上成長一層絕緣層。其中鈦酸鳃鋇(BaxSr_{1-x}TiO₃, x=0~1)濺鍍靶之製作條件為: x 莫耳之碳酸鋇(BaCO₃)、(1-x)莫耳之碳酸鳃(SrCO₃)、1 莫耳之二氧化鈦(TiO₂)及 1~10 mo1%氧化鎂(Mg0)粉末,加入無水酒精濕磨 48~72 小時,烘乾後經第一次研磨且過篩至 325 mesh,以昇溫速率 10°C/min 初燒 900°C 2 小時,再經第二次研磨及過篩之步驟,以昇溫速率 5°C/min

最後燒結 1350°C 4小時。

將鍍有掺雜氧化鎂之厚度為 10~100 nm 絕緣層(BaxSr_{1-x}TiO₃)之該矽基板在 600~900°C 下經由快速紅外線退火熱處理 1~30 分鐘,以得到高熱穩定度、低漏電流、高介電常數之絕緣膜 2 於該矽基板 1 上,如第一圖(a)所示。

接著將鍍有該絕緣膜 2 的該矽基板 1 放入射頻鍍腔中,並放入鎳酸鑭(LNO)濺鍍靶,以濺鍍條件為 20 mTorr壓力下通入氫氣:氧氣=1:1之混合氣體,且該矽基板溫度為 300°C,輸出功率為 100 W 等條件下歷時 30~80 分鐘完成濺鍍,以得到結晶性佳、低電阻率之氧化物薄膜 3 (厚度 20~100 nm)於該絕緣膜 2 上,如第一圖(b)所示。其中鎳.酸鐦(LNO)濺鍍靶之製作條件為: 2 莫耳之 La₂O₃、2 莫耳之 NiO₂加入無水酒精濕磨24~48 小時,烘乾後經第一次研磨且過篩至 325mesh,在純氧下以昇溫速率為 10°C/min 初燒600°C 1 小時,再經由第二次研磨且過篩之步驟,最後燒結 1000°C 3 小時。

隨後進行一微影蝕刻製程於該氧化物薄膜 3 上,使得該絕緣膜 2 形成複數個氧化物電極 4 (LNO),如第一圖(c)所示。

接著以醋酸當溶劑,並以醋酸鐦、醋酸铋及四異丙醇基鈦為溶質,掺入 $2\sim10\,\mathrm{ml}$ 的乙二醇(目的為降低結晶溫度),在 $90\sim150\,^{\circ}$ C 下旋轉 120 分鐘,以調配一 $0.2\,\mathrm{M}$ 的鈦酸鐦铋溶液(Bi $_{x}\mathrm{La}_{4-x}\mathrm{Ti}_{3}\mathrm{O}_{12}$) (BLT) 20 毫升。

將配製好之鈦酸鑭鈆溶液 $(Bi_\chi La_{4-\chi} Ti_3 O_{12})$ 利用金屬有機物沉積法(MOD),在第一階段轉速

1000rpm, 30秒及第二階段轉速 4000rpm, 30秒, 經由軟烤 150°C 10~30分鐘及硬烤 400°C 10~30分鐘, 並將此步驟重複兩次,以得到厚度為 180 nm之鐵電層, 並將該鐵電層在 600~900°C 的溫度下經由快速紅外線退火熱處理 1~30分鐘, 而形成一鐵電薄膜 5 於該複數個氧化物電極 4 (LNO)上,如第一圖(d)所示。

最後如第一圖(e)所示,加鍍一鉑金屬層 6 於該鐵電薄膜 5 上,再利用一光阻剝落法(lift-off)蝕刻兹金屬層 6,以形成複數個鉑金屬電 極 7,如第一圖(f)所示,即形成本案所述之鐵 電層電極結構。惟上述所提供之結構製作方法僅 為眾多製程之其中一種,意即於形成各層材料層 時並不限於 PVD、 CVD 或 MOD 等方式,對各層材 料層實行熱處理退火法以得到各層薄膜及電 時上數數 次 以得到各層薄膜及電 不限於使用紅外線、爐管、準分子雷射或酸腔 方式,而是視實際需要及性能規格要求而定。

由上遊實施方式所示,並於第一圖(f)呈現之鐵電層電極結構中,利用光阻剝落法(lift-off)形成該複數個鉑金屬電極7時,可藉此調整該複數個鉑金屬電極分別具有的一第一電極面積8(A_F)與該複數個氧化物電極4(LNO)分別具有的一第二電極面積9(A_I)之比值;首先,不但使得低溫製程下的鐵電薄膜5(BLT)有較高的殘留極化和飽和極化(P_r/P_s)比值(請參閱第二圖,由圖中可知A_F/A_I由1/2降至1/16時,殘留極化量與飽和極化量(Pr/Ps)之比值由0.67提高至0.91)。再者,對於以高熱穩定性及高介電常數之掺雜氧化鎂的鈦酸鍶鋇(MgO doped BST)薄膜當作的絕緣膜2

來說,更可使得記憶窗及漏電流密度隨著 A_F/A_I 的降低亦分別趨向令人滿意之結果(由第三圖及第四圖中可看出,隨著 A_F/A_I 的降低,結構特性亦趨向高記憶窗及低漏電流密度)。最重要的是,隨著 A_F/A_I 面積比的減少,更佳的 MFM和 MIS的電容匹配便隨之形成,從第五圖即可看出本案之結構在 A_F/A_I 小於 1/12 時可有效提高 MFMIS結構電容記憶保留時間至大於 10^6 秒以上。

由以上之陳述,可知本案所述之鐵電記憶結電內。鐵電記憶保持時間的缺失時間的時該特別上,同時該特別上,同時該特別上,同時該特別上,可應用於非揮發性鐵電記憶場,與明可降低力,以及實別,以及實別之發明,爰依法提出申請。

本案得由熟悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。

拾、申請專利範圍

- 1. 一種鐵電層電極結構,其包含:
 - 一基板;
 - 一絕緣層,其係形成於該基板之上;
- 複數個氧化物電極,其係形成於該絕緣層之上;
 - 一鐵電層,其係形成於該絕緣層及該複數個氧化物電極之上,以及
 - 複數個金屬電極,其係相對於該複數個氧化物電極形成於該鐵電層之上。
- 2.如申請專利範圍第1項所述之結構,其中該基板可為一矽基板。
- 3.如申請專利範圍第2項所述之結構,其中該矽基板可為一p-型矽基板。
- 4.如申請專利範圍第2項所述之結構,其中該矽基板更可為一n-型矽基板。
- 5.如申請專利範圍第1項所述之結構,其中該絕緣層之材料可為鈦酸鍶鋇。
- 6.如申請專利範圍第5項所述之結構,其中該絕緣層中更掺有氧化鎂。
- 7.如申請專利範圍第1項所述之結構,其中該複數個氧化物電極之材料可為鎳酸鑭。
- 8.如申請專利範圍第1項所述之結構,其中該鐵電層之材料可為鈦酸鐦鉍。
- 9.如申請專利範圍第 1 項所述之結構,其中該複數個金屬電極之材料可為化學性質穩定的貴金屬,如:鉑(Pt),釘(Ru),銥(Ir);及含鈣鈦礦結構之氧化物電極如: 鎳酸鐦(LNO),釘酸鍶(SrRuO3).釘酸鋇(BaRuO3). 红鋇銅氧

(YBa2Cu307) •

- 10.如申請專利範圍第1項所述之結構,其中該複數個金屬電極分別具有一第一電極面積,該複數個氧化物電極分別具有一第二電極面積,且該第一電極面積與該第二電極面積之比值小於1/12。
- 11. 一種鐵電層電極結構之製造方法,其包含下列步驟:
 - (a)提供一基板;
 - (b)形成一絕緣層於該基板上;
 - (c)形成複數個氧化物電極於該絕緣層之上;
 - (d)形成一鐵電層於該絕緣層及該複數個氧化物電極之上; 以及
 - (e)相對於該複數個氧化物電極形成複數個 金屬電極於該鐵電層之上。
- 12.如申請專利範圍第 11 項所述之製造方法,其中該基板可為一矽基板。
- 13.如申請專利範圍第 12 項所述之製造方法,其中該矽基板可為一 p-型矽基板。
- 14.如申請專利範圍第 12 項所述之製造方法,其中該矽基板更可為一 n-型矽基板。
- 15.如申請專利範圍第 11 項所述之製造方法,其中該步驟(a)中更包含另一步驟:將該基板依序以RCA清潔法及氮化法作前置處理。
- 16.如申請專利範圍第 11 項所述之製造方法,其中該絕緣層可由一物理氣相沉積法所形成。
- 17.如申請專利範圍第 11 項所述之製造方法,其中該絕緣層可由一化學氣相沉積法所形成。
- 18.如申請專利範圍第 11 項所述之製造方法,其

- 中該絕緣層可由一金屬有機物沉積法所形成。19.如申請專利範圍第16項所述之製造方法,其中該物理氣相沉積法之靶材可為一鈦酸鍶鋇濺鍍靶。
- 20. 如 申 請 專 利 範 圍 第 19 項 所 述 之 製 造 方 法 , 其 中 該 鈦 酸 鍶 鋇 濺 鍍 靶 成 份 為 Ba_xSr_{1-} $_xTiO_3(x=0~1)$ 。
- 21. 如申請專利範圍第 20 項所述之製造方法,其中該鈦酸鍶鋇濺鍍靶係由碳酸鋇(BaCO₃).碳酸鍶(SrCO₃).二氧化鈦(TiO₂)調配而成。
- 22. 如申請專利範圍第 21 項所述之製造方法,其中該鈦酸鍶鋇濺鍍靶更掺有氧化鎂(MgO)。
- 23.如申請專利範圍第 11 項所述之製造方法,其中該步驟 (c)中更包含另一步驟:形成一氧化物層於該絕緣層上,再以一微影蝕刻製程使得該氧化物層形成該複數個氧化物電極。
- 24.如申請專利範圍第 11 項所述之製造方法,其中該氧化物層可由一物理氣相沉積法所形成。
- 25.如申請專利範圍第 11 項所述之製造方法,其中該氧化物層可由一化學氣相沉積法所形成。
- 26.如申請專利範圍第 11 項所述之製造方法,其中該氧化物層可由一金屬有機物沉積法所形成。
- 27.如申請專利範圍第 24 項所述之製造方法,其中該物理氣相沉積法之靶材可為一鎮酸鑭濺鍍靶。
- 28.如申請專利範圍第 27項所述之製造方法,其中該錄酸鑭濺鍍靶成份為 LaNiO3。
- 29. 如申請專利範圍第 28項所述之製造方法,其中該錄酸鑭濺鍍靶係由氧化鑭(La₂O₃).二氧化鎳(

NiO2)調配而成。

- 30.如申請專利範圍第 11 項所述之製造方法,其中該鐵電層可由一物理氣相沉積法所形成。
- 31.如申請專利範圍第 11 項所述之製造方法,其中該鐵電層可由一化學氣相沉積法所形成。
- 32.如申請專利範圍第 11 項所述之製造方法,其中該鐵電層可由一金屬有機物沉積法所形成。
- 33.如申請專利範圍第 32 項所述之製造方法,其中該金屬有機物沉積法之溶液可為一鈦酸鑭級溶液。
- 34.如申請專利範圍第 33 項所述之製造方法,其中該鈦酸鑭鉍溶液成份為
- $B i_x L a_{4-x} T i_3 O_{12} (x = 0 4) \circ$
- 35.如申請專利範圍第 34 項所述之製造方法,其中該 鈦酸 鐦铋溶液係以醋酸作溶劑,以醋酸鑭、醋酸 级及四異丙醇基鈦為溶質。
- 36.如申請專利範圍第 11 項所述之製造方法,其中該步縣 (e)中更包含另一步縣:形成一金屬層於鐵電層上,再以一光阻剝落法(lift-off)使得該金屬層形成該複數個金屬電極,其中該複數個金屬電極分別具有的一第一電極面積之比值小於 1/12。
- 37.如申請專利範圍第 36 項所述之製造方法,其中該金屬層之材料可為化學性質穩定的貴金屬,如:鉑(Pt),釘(Ru),銥(Ir);及含鈣鈦礦結構之氧化物電極如: 鎮酸鑭(LNO),釘酸鍶(SrRuO3),釘酸鋇(BaRuO3),釔鋇銅氧(YBa2Cu3O7)。

第一圖(b)

第一圖(c)

第一圖(d)

第一圖(e)

第一圖(f)

第二圖

第三圖

第五圖