```
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from scipy.cluster import hierarchy
In [32]: df = pd.read_csv('USArrests.csv')
df_copy = df.copy()
df_copy.rename(columns={'Unnamed: 0':'State'}, inplace=True)
df_copy.head()
```

Out[32]:

In [15]: import numpy as np

	State	Murder	Assault	UrbanPop	Rape
0	Alabama	13.2	236	58	21.2
1	Alaska	10.0	263	48	44.5
2	Arizona	8.1	294	80	31.0
3	Arkansas	8.8	190	50	19.5
4	California	9.0	276	91	40.6

Problem a

Problem b

```
In [38]: # Draw line at y=150
```

Problem c

```
In [34]: # Scale variables to have standard deviation of 1
murder_std = df_copy['Murder'].std()
df_copy['Murder'] = df_copy['Murder_std

assault_std = df_copy['Assault'].std()
df_copy['Assault'] = df_copy['Assault']/assault_std

urbanpop_std = df_copy['UrbanPop'].std()
df_copy['UrbanPop'] = df_copy['UrbanPop']/urbanpop_std

rape_std = df_copy['Rape'].std()
df_copy['Rape'] = df_copy['Rape']/rape_std
```


In []: