第二十一届全国青少年信息学奥林匹克联赛初赛

提高组 C++语言试题

竞赛时间: 2015年10月11日14:30~16:30

选手注意:

A. f

•	试题纸共有9页,	答题纸共有2页,	满分 100 分。	请在答题纸上作答,	写在试题纸上的
	一律无效。				

- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。

一、」选项》		15 题,每题 1.	5 分,共计 22.5 分	分;每题有	且仅有一个正确
			. 处理的数据或指令者 C. 十进制码		
A. B. C.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	是执行数据运算和 能力,其中信息任 尺寸相同,则它们	何时候都不会丢失]的分辨率必定相同		
	5二进制小数 0.1 相 0.8		是()。 C. 0.2	D.	0.1
+	一进制数,第三个数	数据为十六进制数	数据,其中第一个数 [。这四个数据组中] C. 300 200 C	三个数据相同]的是()。
A.	战性表若采用链表不 必须连续 一定不连续	存储结构,要求内	存中可用存储单元均 B. 部分地址 D. 连续不连	必须连续	o
			元素序列 a,b,c,d,e,f (完成后,栈 S 的栈J		

C. a

D. b

В. с

7.	前序遍历序列与后	序遍历序列	列相同的二义和	对为	() 。		
A	. 非叶子结点只有	左子树的二	二叉树	B.	只有根结点的二	叉树	
C	. 根结点无右子树	的二叉树		D.	非叶子结点只有	右子	树的二叉树
8.	如果根的高度为1,	具有 61	个结点的完全	二叉	树的高度为() 。	
A	. 5	B. 6		C.	7	D.	8
9.	6个顶点的连通图的	的最小生成	文树, 其边数 対	A () 。		
A	. 6	B. 5		C.	7	D.	4
10.	设某算法的计算时间复杂的			n) = T	「(n - 1) + n(n 为』	三整数	(i) 及 T(0) = 1, 则
A	. O(log n)	B. O(n	log n)	C.	O(n)	D.	O(n ²)
	具有 n 个顶点, e 条 算的时间复杂度均	为()	0	绪结 林	勾,进行深度优先	遍历	和广度优先遍历运
A	. $\Theta(n^2)$	B. Θ(e	2)	C.	$\Theta(ne)$	D.	Θ(n + e)
12.	在数据压缩编码的	应用中, 四	哈夫曼(Huffm	nan)	算法是一种采用	了 ()思想的算法。
A	. 贪心	B. 分消	चे	C.	递推	D.	回溯
13.	双向链表中有两个: 一个结点, q 指向-						•
A	<pre>p->llink = q; p->llink->rli</pre>	•	• •		11: mlc.		
В	p->111111K->1111 . q->1111nk = p-		•	•	-		
	q->rlink = p;	p->llir	nk = q->rlin	nk;			
C	. q->rlink = p;	•	••				
D	p->llink->rli . p->llink->rli						
	q->llink = p-	-	•	-			
14.	对图 G 中各个结点	分别指定-	一种颜色,使	相邻	结点颜色不同,则	川称为	为图 G 的一个正常

着色。正常着色图 G 所必需的最少颜色数, 称为 G 的色数。那么下图的色数是()。

A	. 3	B. 4	C. 5	D.	6
15.	在 NOI 系列赛事中 手自带的是()	参赛选手必须使用由承 。	办单位统一提供的设备	≰。下	列物品中不允许选
A	. 鼠标		C. 身份证	D.	准考证
	不定项选择题(页,多选或少选均	共 5 题,每题 1.5 分 不得分)	分,共计 7.5 分 ;每点	题有 [·]	一个或多个正确
1.	以下属于操作系统	的有()。			
A	. Windows XP	B. UNIX	C. Linux	D.	Mac OS
2.	下列属于视频文件	格式的有()。			
A	. AVI	B. MPEG	C. WMV	D.	JPEG
3.	下列选项不是正确!	的 IP 地址的有()	0		
A	. 202.300.12.4	B. 192.168.0.3	C. 100:128:35:91	D.	111-127-35-21
4.	下列有关树的叙述	中,叙述正确的有() 。		
		的树中,边数只能是(n	•		
		叶结点的个数比非叶结 目 # -	点个数多1		
	. 完全二叉树一定; . 在二叉树的前序	是两 _一 义树 序列中,若结点 u 在结	i点 v 之前,则 u 一定悬	星v的	祖先
5.		进行黑白染色的有()。(黑白染色:为	各个	结点分别指定黑白
A		相邻结点颜色不同。) B. 完全图	C. 树	D.	连通图

三、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部分分)

1.	在1和2015之间	(包括1和2015石	在内)不能被4、	5、	6三个数任意一个数整除的数
	有个。				

2.	结点数为 5 的不同形态的二叉树一共有	种。(结点数为 2 的二叉树一共有 2
	种:一种是根结点和左儿子,另一种是根结儿	点和右儿子。)

四、阅读程序写结果(共4题,每题8分,共计32分)

1. #include <iostream> using namespace std; struct point { int x; int y; **}**; int main() { struct EX{ int a; int b; point c; } e; e.a = 1;e.b = 2;e.c.x = e.a + e.b;e.c.y = e.a * e.b; cout << e.c.x << ',' << e.c.y << endl;</pre> return 0; }

2. #include <iostream>
 using namespace std;

输出:

```
void fun(char *a, char *b) {
       a = b;
       (*a)++;
   }
   int main() {
       char c1, c2, *p1, *p2;
       c1 = 'A';
       c2 = 'a';
       p1 = &c1;
       p2 = &c2;
       fun(p1, p2);
       cout << c1 << c2 << endl;</pre>
       return 0;
   }
   输出: _____
3. #include <iostream>
   #include <string>
   using namespace std;
   int main() {
       int len, maxlen;
       string s, ss;
       maxlen = 0;
       do {
           cin >> ss;
           len = ss.length();
           if (ss[0] == '#')
               break;
           if (len > maxlen) {
               s = ss;
               maxlen = len;
           }
       } while (true);
       cout << s << endl;</pre>
       return 0;
   }
```

```
输入:
   Ι
   am
   citizen
   of
   China
   输出: _____
4. #include <iostream>
   using namespace std;
   int fun(int n, int fromPos, int toPos) {
       int t, tot;
       if (n == 0)
           return 0;
       for (t = 1; t <= 3; t++)
           if (t != fromPos && t != toPos)
              break;
       tot = 0;
       tot += fun(n - 1, fromPos, t);
       tot++;
       tot += fun(n - 1, t, toPos);
       return tot;
   }
   int main() {
       int n;
       cin >> n;
       cout << fun(n, 1, 3) << endl;</pre>
       return 0;
   }
   输入:5
   输出: _____
```

五、完善程序(共2题,每题14分,共计28分)

1. (双子序列最大和)给定一个长度为 n (3 ≤ n ≤ 1000)的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出这个最大和。一个连续子序列的序列和为该连续子序列中所有数之和。要求:每个连续子序列长度至少为 1,且两个连续子序列之间至少间隔 1 个数。(第五空 4 分,其余 2.5 分)

```
#include <iostream>
using namespace std;
const int MAXN = 1000;
int n, i, ans, sum;
int x[MAXN];
int lmax[MAXN];
// lmax[i]为仅含 x[i]及 x[i]左侧整数的连续子序列的序列和中,最大的序列和
int rmax[MAXN];
// rmax[i]为仅含 x[i]及 x[i]右侧整数的连续子序列的序列和中,最大的序列和
int main() {
   cin >> n;
   for (i = 0; i < n; i++)
      cin >> x[i];
   lmax[0] = x[0];
   for (i = 1; i < n; i++)
      if (lmax[i - 1] <= 0)
          lmax[i] = x[i];
      else
          lmax[i] = lmax[i - 1] + x[i];
   for (i = 1; i < n; i++)
      if (lmax[i] < lmax[i - 1])
          lmax[i] = lmax[i - 1];
    (1);
   for (i = n - 2; i >= 0; i--)
      if (rmax[i + 1] <= 0)
          (2)
      else
          (3);
```

2. (最短路径问题) 无向连通图 **G** 有 **n** 个结点,依次编号为 0,1,2,...,(**n**-1)。用邻接矩阵的形式给出每条边的边长,要求输出以结点 0 为起点出发,到各结点的最短路径长度。

使用 Dijkstra 算法解决该问题:利用 dist 数组记录当前各结点与起点的已找到的最短路径长度;每次从未扩展的结点中选取 dist 值最小的结点 v 进行扩展,更新与 v 相邻的结点的 dist 值;不断进行上述操作直至所有结点均被扩展,此时 dist 数据中记录的值即为各结点与起点的最短路径长度。(第五空 2 分,其余 3 分)

```
for (i = 1; i < n; i++)
   dist[i] = -1;
for (i = 0; i < n; i++)
   used[i] = 0;
while (true) {
   (1) ;
   for (i = 0; i < n; i++)
       if (used[i] != 1 && dist[i] != -1 && (v == -1 || ____(2) ___))
          (3);
   if (v == -1)
       break;
   (4)
   for (i = 0; i < n; i++)
       if (w[v][i] != -1 && (dist[i] == -1 || ___(5)__))
          dist[i] = dist[v] + w[v][i];
for (i = 0; i < n; i++)
   cout << dist[i] << endl;</pre>
return 0;
```

}

第二十一届全国青少年信息学奥林匹克联赛初赛

提高组参考答案

一、单项选择题(共15题,每题1.5分,共计22.5分)

1	2	3	4	5	6	7	8
А	А	А	D	D	В	В	В
9	10	11	12	13	14	15	
В	D	D	Α	D	А	А	

二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确选项,没有部分分)

1	2	3	4	5
ABCD	ABC	ACD	AB	AC

- 三、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部分分)
- 1. 1075
- 2. 42
- 四、阅读程序写结果(共4题,每题8分,共计32分)
- 1. 3,2
- 2. Ab
- 3. citizen
- 4. 31

五、完善程序(共计 28 分,以下各程序填空可能还有一些等价的写法,由各省赛区组织本省专家审定及上机验证,可以不上报 CCF NOI 科学委员会复核)

		Pascal 语言	C++语言	C语言	分值
1	(1)	rmax[n]:=x[n]	rmax[n]:=x[n]		2.5
•	(2)	rmax[i]:=x[i]	rmax[i]=x[i]		2.5
	(3)	rmax[i]:=rmax[i+1]+x[i]	rmax[i]=rma	x[i+1]+x[i]	2.5
	(4)	rmax[i]:=rmax[i+1]	rmax[i]=	rmax[i+1]	2.5
	(5)	lmax[i-1]+rmax[i+1]		4
2	(1)	v:=-1	V=	-1	3
	(2)	dist[i] <dist[v] dist[v]="" 或="">dist[i] :</dist[v]>	或 dist[i]<=dist[v] 或	dist[v]>=dist[i]	3
	(3)	v:=i	V=	=i	3
	(4)	used[v]:=1	used	[v]=1	3
		dist[v]+w[v,i] <dist[i]< td=""><td>dist[v]+w[v]</td><td>][i]<dist[i]< td=""><td></td></dist[i]<></td></dist[i]<>	dist[v]+w[v]][i] <dist[i]< td=""><td></td></dist[i]<>	
	(5)	或 dist[i]>dist[v]+w[v,i]	或 dist[i]>di	st[v]+w[v][i]	2
	(3)	(5) 或 dist[v]+w[v,i]<=dist[i] 或 dist[v]+w[v][i]<=dist[i]		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		或 dist[i]>=dist[v]+w[v,i]	或 dist[i]>=di	ist[v]+w[v][i]	