

## ATIVIDADE 2 - PROJETO DE DECODIFICADOR C-2 PARA DISPLAY DE 7-SEGMENTOS

CURSO: TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS DISCIPLINA: ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PERÍODO LETIVO: 2022-02

**PROFESSOR:** FELIPE MARTIN SAMPAIO

**ALUNA: RAFAELLI DOS SANTOS** 

### OBJETIVO DA ATIVIDADE

 Desenvolver um circuito lógico (utilizando o simulador Logisim) para decodificação de números binários de entrada (4 bits), utilizando a representação de números com sinal em complemento de 2 (C-2), para que sejam apresentados de forma gráfica em displays de 7 segmentos (Figura 1).

# ESPECIFICAÇÃO DO CIRCUITO LÓGICO

- Entradas: Número binário de 4 (quatro) bits: **A** (bit mais significativo), **B**, **C**, **D** (bit menos significativo).
- Saídas: Saídas para o acendimento dos segmentos dos displays:
  - Display para o número: a, b, c, d, e, f, g, h
  - o Display para o sinal: sin
- A lógica de comportamento das saídas, em função das entradas, será expressa de acordo com a representação de números com sinal em C-2, expressa na Figura 2.

# PASSOS PARA O DESENVOLVIMENTO

Passo 1: Construir a tabela-verdade para a especificação do comportamento do circuito lógico, utilizando o modelo da Figura 2. Seguir a especificação das conexões da Figura 1b e a representação dos números em C-2 apresentada na Figura 1c.

<u>Passo 2:</u> Para cada uma das saídas, realizar o processo de síntese das expressões lógicas simplificadas a partir da técnica de Mapas de Karnaugh.

<u>Passo 3:</u> Projetar o circuito lógico "Decodificador Display 7-Segmentos" no simulador Logisim utilizando, como base, as expressões lógicas do Passo 2.

<u>Passo 4:</u> Realizar a simulação do funcionamento do circuito lógico utilizando um display de 7 segmentos disponível na biblioteca de componentes do simulador Lógico (Figura 1a).

#### **ENTREGAS E PRAZOS**

- O roteiro **DEVE** ser desenvolvido de forma **INDIVIDUAL**.
- O que deve ser entregue:
  - Tabela-verdade construída para a especificação do funcionamento do circuito
  - Demonstração do processo de síntese das expressões lógicas por meio dos Mapas de Karnaugh para cada uma das saídas
  - o Arquivo .circ com o projeto do circuito lógico
- Prazo de entrega: até o dia 27 de setembro de 2022.





Figura 1: Especificação do circuito para o projeto utilizando o simulador Logisim.

| mintermo | Α | В | С | D | а | b | С | d | е | f | g | sin | C-2 |
|----------|---|---|---|---|---|---|---|---|---|---|---|-----|-----|
| 0        | 0 | 0 | 0 | 0 |   |   |   |   |   |   |   |     | 0   |
| 1        | 0 | 0 | 0 | 1 |   |   |   |   |   |   |   |     | 1   |
| 2        | 0 | 0 | 1 | 0 |   |   |   |   |   |   |   |     | 2   |
| 3        | 0 | 0 | 1 | 1 |   |   |   |   |   |   |   |     | 3   |
| 4        | 0 | 1 | 0 | 0 |   |   |   |   |   |   |   |     | 4   |
| 5        | 0 | 1 | 0 | 1 |   |   |   |   |   |   |   |     | 5   |
| 6        | 0 | 1 | 1 | 0 |   |   |   |   |   |   |   |     | 6   |
| 7        | 0 | 1 | 1 | 1 |   |   |   |   |   |   |   |     | 7   |
| 8        | 1 | 0 | 0 | 0 |   |   |   |   |   |   |   |     | -8  |
| 9        | 1 | 0 | 0 | 1 |   |   |   |   |   |   |   |     | -7  |
| 10       | 1 | 0 | 1 | 0 |   |   |   |   |   |   |   |     | -6  |
| 11       | 1 | 0 | 1 | 1 |   |   |   |   |   |   |   |     | -5  |
| 12       | 1 | 1 | 0 | 0 |   |   |   |   |   |   |   |     | -4  |
| 13       | 1 | 1 | 0 | 1 |   |   |   |   |   |   |   |     | -3  |
| 14       | 1 | 1 | 1 | 0 |   |   |   |   |   |   |   |     | -2  |
| 15       | 1 | 1 | 1 | 1 |   |   |   |   |   |   |   |     | -1  |

Figura 2: Tabela-verdade a ser preenchida com o comportamento do circuito.

| N  | A | В | С | D | а | b | С | d | е | f | g | sin | C-2 |
|----|---|---|---|---|---|---|---|---|---|---|---|-----|-----|
| 0  | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0   | 0   |
| 1  | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0   | 1   |
| 2  | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0   | 2   |
| 3  | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0   | 3   |
| 4  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0   | 4   |
| 5  | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0   | 5   |
| 6  | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0   | 6   |
| 7  | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0   | 7   |
| 8  | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | -8  |
| 9  | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1   | -7  |
| 10 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1   | -6  |
| 11 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1   | -5  |
| 12 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1   | -4  |
| 13 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1   | -3  |
| 14 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1   | -2  |
| 15 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1   | -1  |

Figura 3: Tabela-verdade preenchida com o comportamento do circuito.



Figura 4: Mapas de Karnaugh de A à D.



Figura 5: Mapas de Karnaugh de E à Sin.