

New Product

N-Channel 30-V (D-S) 175°C MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A) ^b		
30	0.006 @ V _{GS} = 10 V	70		
	0.009 @ V _{GS} = 4.5 V	70		

FEATURES

- TrenchFET® Power MOSFET
- High Current
- 100% R_g Tested

APPLICATIONS

- DC/DC Converters
 - Optimized For Low Side
- Synchronous Rectifiers

Ordering Information: SUD70N03-06P

N-Channel MOSFET

D

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	30		
Gate-Source Voltage		V _{GS}	±20	· V	
	T _C = 25°C	- I _D	70		
Continuous Drain Current ^a	T _C = 100°C		70 ^b		
Pulsed Drain Current		I _{DM}	100	Α	
Continuous Source Current (Diode Conduction) ^a		Is	27		
Avalanche Current, single pulse			45	1	
Avalanche Energy, single pulse	L = 0.1 mH	E _{AS}	101	mJ	
M	T _C = 25°C	_	88		
Maximum Power Dissipation	T _A = 25°C	- P _D	8.3 ^a	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to 175	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
	t ≤ 10 sec		15	18		
Maximum Junction-to-Ambient ^a	Steady State	R _{thJA}	40	50	°C/W	
Maximum Junction-to-Case		R _{thJC}	1.4	1.7		

Notes

a. Surface Mounted on FR4 Board, $t \le 10$ sec.

b. Limited by package.

Vishay Siliconix

New Product

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	Test Condition	Min	Typ ^a	Max	Unit		
Static								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.0		3.0			
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA		
Zero Gate Voltage Drain Current		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1			
	IDSS	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C}$				μΑ		
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	50			Α		
		V _{GS} = 10 V, I _D = 20 A		0.0046	0.006			
Drain-Source On-State Resistance ^b	r _{DS(on)}	V_{GS} = 10 V, I_D = 20 A, T_J = 125°C			0.0105	Ω		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$		0.0072	0.009			
Forward Transconductanceb	9fs	V _{DS} = 15 V, I _D = 20 A	20			S		
Dynamic ^a								
Input Capacitance	C _{iss}			3100		pF		
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		565				
Reverse Transfer Capacitance	C _{rss}			255				
Total Gate Charge ^c	Qg			21	30	nC		
Gate-Source Charge ^c	Q_{gs}	$V_{DS} = 15 \text{ V}, \ V_{GS} = 4.5 \text{ V}, \ I_D = 50 \text{ A}$		10				
Gate-Drain Charge ^c	Q_{gd}			7.5				
Gate Resistance	R _g	f = 1 MHz	0.9	2.0	3.4	Ω		
Turn-On Delay Time ^c	t _{d(on)}			12	20			
Rise Time ^c	t _r	$V_{DD} = 15 \text{ V}, R_L = 0.3 \Omega$		12	20	ns		
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$		30	45			
Fall Time ^c	t _f			10	15			
Source-Drain Diode Ratings and	d Characteristi	c (T _C = 25°C)						
Pulsed Current	I _{SM}				100	Α		
Diode Forward Voltage ^b	V _{SD}	I _F = 100 A, V _{GS} = 0 V		1.2	1.5	V		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 50 A, di/dt = 100 A/μs		35	70	ns		

- Guaranteed by design, not subject to production testing. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. Independent of operating temperature.

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

New Product

V GS - Gate-to-Source Voltage (V)

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

On-Resistance vs. Drain Current 0.015 0.012 R_{DS(on)} – On-Resistance (Ω) 0.009 $V_{GS} = 4.5 \text{ V}$ 0.006 $V_{GS} = 10 \text{ V}$ 0.003 0.000 0 20 40 60 80 100

I_D - Drain Current (A)

100

Source-Drain Diode Forward Voltage

Vishay Siliconix

New Product

THERMAL RATINGS

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

