BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI SECOND SEMESTER 2020-2021 **ECON F241 ECONOMETRIC METHODS** QUIZ 2 – 6 April 2021 OPEN BOOK

TOTAL MARKS: 10 Name: ID:

Q1. Consider the following model.

 $GRADE_i = \beta_1 + \beta_2 STUDYTIME_i + \beta_3 ATTENDANCE_i + u_i$

If we remove the ATTENDANCE variable, what kind of problems and bias will we face? What will this bias depend on? Which measures regarding the regression equation will be affected? Explain. **(2)**

Q2. Two models are fit to the same data set. The results are given below. Study the results carefully and answer the questions.

Model 1 – Simple linear regression $y=\beta_0+x\beta_1+u$

Estimate Std. Error t value Pr(>|t|) 0.20675 0.03818 0.185 0.854 Intercept 0.61672 0.12623 4.886 <0.001 R-Squared: 0.3521; Adjusted R-squared: 0.3182 F-statistic: 23.87 on 1 and 48 DF, p-value: < 0.001

Model 2 – Quadratic regression $y=\beta_0+x\beta_1+x^2\beta_2+u$

Estimate Std. Error t value Pr(>|t|) Intercept -0.008506 0.208413 -0.041 0.360560 0.233740 1.543 Х 0.130633 0.100613 R-Squared: 0.3553; Adjusted R-squared: 0.3278

F-statistic: 12.95 on 2 and 47 DF, p-value: < 0.001

- a) Which model would you select, Model 1 or 2? Why?
- (1) b) Is there evidence of collinearity in Model 2? Explain. (1)
- Q3. Consider the following models being run on the same data.

Model 1: $STOCK_t = \alpha_1 + \alpha_2 OIL_{2t} + \alpha_3 GOLD_{3t} + u_{1t}$

Model 2:
$$(STOCK_t - GOLD_{3t}) = \beta_1 + \beta_2 OIL_{2t} + \beta_3 GOLD_{3t} + u_{2t}$$

- a) Will OLS estimates of α_1 and β_1 be the same? Why? Will OLS estimates of α_3 and β_3 be the same? Whv?
- b) What is the relationship between α_2 and β_2 ? Can you compare the R² terms of the two models? Why or
- c) In model 1, $STOCK_t$ refers to the price of 1 share of Reliance in Rs., OLL_{2t} refers to the oil price per barrel in '000 Rs. and GOLD_{3t} refers to the price of 10g of gold in '000 Rs. If α_2 =1.3 and α_3 = -1.7, interpret α_2 and α_3 .
- Q4. Consider the following model.

$$\ln Y_t = 6.183 - 0.521 \ln PT_t + 0.061 X_t$$

where Y is number of oranges bought in Pilani Market per week, PT is the price of tangerines in Rs. per bag, X is per capita income in '000 Rs. How would you interpret the two slope coefficients in the above model? (2)