GigaDevice Semiconductor Inc.

GD32A503xx Arm® Cortex®-M33 32-bit MCU

Datasheet

Revision 1.0

(Sep. 2022)

Table of Contents

Та	ble c	of Contents	1
Li	st of	Figures	4
Li	st of	Tables	5
1.	Ge	neral description	7
2.	De	vice overview	8
:	2.1.	Device information	8
	2.2.	Block diagram	9
	2.3.	Pinouts and pin assignment	
	2.4.	Memory map	
	2. 4 . 2.5.	Clock tree	
	_		
:	2.6.	Pin definitions	
	2.6.		
	2.6.		
	2.6. 2.6.	·	
	2.6.		
		•	
3.	Fui	nctional description	45
,	3.1.	Arm® Cortex®-M33 core	45
;	3.2.	Embedded memory	45
;	3.3.	Clock, reset and supply management	46
;	3.4.	Boot modes	46
;	3.5.	Power saving modes	47
;	3.6.	Analog to digital converter (ADC)	47
,	3.7.	Digital to analog converter (DAC)	
,	3.8.	Controller area network (CAN)	48
,	3.9.	Comparators (CMP)	49
;	3.10.	Direct memory access controller (DMA)	49
;	3.11.	DMA request multiplexer (DMAMUX)	49
;	3.12.	General-purpose inputs/outputs (GPIOs)	49
;	3.13.	Inter-integrated circuit (I2C)	50
;	3.14.	Inter-IC sound (I2S)	50

	3.15.	Multi-function communication Interface (MFCOM)	50
	3.16.	Real time clock (RTC)	51
	3.17.	Serial peripheral interface (SPI)	51
	3.18.	Trigger selection controller (TRIGSEL)	51
	3.19.	Timers and PWM generation	52
	3.20.	Universal synchronous asynchronous receiver transmitter (USART)	53
	3.21.	Debug mode	53
	3.22.	Package and operation temperature	53
4	. Ele	ctrical characteristics	. 54
	4.1.	Absolute maximum ratings	54
	4.2.	Recommended DC characteristics	54
	4.3.	Power consumption	56
	4.4.	EMC characteristics	61
	4.5.	Power supply supervisor characteristics	61
	4.6.	Electrical sensitivity	62
	4.7.	External clock characteristics	63
	4.8.	Internal clock characteristics	65
	4.9.	PLL characteristics	65
	4.10.	Memory characteristics	66
	4.11.	NRST pin characteristics	66
	4.12.	GPIO characteristics	67
	4.13.	ADC characteristics	69
	4.14.	DAC characteristics	71
	4.15.	I2C characteristics	72
	4.16.	SPI characteristics	73
	4.17.	I2S characteristics	75
	4.18.	USART characteristics	77
	4.19.	CAN characteristics	77
	4.20.	Comparators characteristics	77
	4.21.	Temperature sensor characteristics	78
	4.22.	TIMER characteristics	78
	4.23.	WDGT characteristics	79

4	.24.	Parameter conditions	
5.	Pac	ckage information	80
5	.1.	LQFP100 package outline dimensions	80
5	.2.	LQFP64 package outline dimensions	82
5	.3.	LQFP48 package outline dimensions	84
5	.4.	QFN32 package outline dimensions	86
5	.5.	Thermal characteristics	88
6.	Ord	dering information	90
7.	Rev	vision history	91

List of Figures

Figure 2-1. GD32A503xx block diagram	
Figure 2-2. GD32A503Vx LQFP100 pinouts	10
Figure 2-3. GD32A503Rx LQFP64 pinouts	11
Figure 2-4. GD32A503Cx LQFP48 pinouts	12
Figure 2-5. GD32A503Kx QFN32 pinouts	12
Figure 2-6. GD32A503xx clock tree	17
Figure 4-1. Recommended power supply decoupling capacitors ⁽¹⁾⁽²⁾	55
Figure 4-2. Typical supply current consumption in Run mode	60
Figure 4-3. Typical supply current consumption in Sleep mode	60
Figure 4-4. Recommended external NRST pin circuit ⁽¹⁾	67
Figure 4-5. I2C bus timing diagram	72
Figure 4-6. SPI timing diagram - master mode	73
Figure 4-7. SPI timing diagram - slave mode	74
Figure 4-8. I2S timing diagram - master mode	76
Figure 4-9. I2S timing diagram - slave mode	76
Figure 4-10. CMP hysteresis	78
Figure 5-1. LQFP100 package outline	80
Figure 5-2. LQFP100 recommended footprint	81
Figure 5-3. LQFP64 package outline	82
Figure 5-4. LQFP64 recommended footprint	83
Figure 5-5. LQFP48 package outline	84
Figure 5-6. LQFP48 recommended footprint	85
Figure 5-7. QFN32 package outline	86
Figure 5-8. QFN32 recommended footprint	87

List of Tables

Table 2-1. GD32A503xx devices features and peripheral list	8
Table 2-2. GD32A503xx memory map	13
Table 2-3. GD32A503Vx LQFP100 pin definitions	18
Table 2-4. GD32A503Rx LQFP64 pin definitions	26
Table 2-5. GD32A503Cx LQFP48 pin definitions	32
Table 2-6. GD32A503Kx QFN32 pin definitions	36
Table 2-7. Port A alternate functions summary	39
Table 2-8. Port B alternate functions summary	39
Table 2-9. Port C alternate functions summary	40
Table 2-10. Port D alternate functions summary	41
Table 2-11. Port E alternate functions summary	42
Table 2-12. Port F alternate functions summary	43
Table 4-1. Absolute maximum ratings ^{(1) (4)}	54
Table 4-2. DC operating conditions	54
Table 4-3. Clock frequency ⁽¹⁾	
Table 4-4. Operating conditions at Power up / Power down ⁽¹⁾	
Table 4-5. Start-up timings of Operating conditions ⁽¹⁾⁽²⁾⁽³⁾	55
Table 4-6. Power saving mode wakeup timings characteristics(1)(2)	56
Table 4-7. Power consumption characteristics (2)(3)(4)	56
Table 4-8. EMI characteristics ⁽¹⁾	61
Table 4-9. Power supply supervisor characteristics	61
Table 4-10. ESD and static latch-up characteristics(1) (2) (3)	63
Table 4-11. High speed external clock (HXTAL) generated from a crystal / ceramic characteristics	63
Table 4-12. High speed external clock characteristics (HXTAL in bypass mode)	64
Table 4-13. Low speed external user clock characteristics (LXTAL in bypass mode)	64
Table 4-14. High speed internal clock (IRC8M) characteristics	65
Table 4-15. Low speed internal clock (IRC40K) characteristics	65
Table 4-16. PLL characteristics	65
Table 4-17. Flash memory characteristics	66
Table 4-18. NRST pin characteristics	66
Table 4-19. I/O port DC characteristics ⁽¹⁾	67
Table 4-20. I/O port AC characteristics(1)(2)(4)	68
Table 4-21. ADC characteristics	69
Table 4-22. ADC RAIN max for f _{ADC} = 15 MHz ⁽²⁾	69
Table 4-23. ADC dynamic accuracy at f _{ADC} = 15 MHz ⁽¹⁾	70
Table 4-24. ADC dynamic accuracy at f _{ADC} = 15 MHz ⁽¹⁾	70
Table 4-25. ADC static accuracy at f _{ADC} = 15 MHz ⁽¹⁾	70
Table 4-26. ADC static accuracy at f _{ADC} = 15 MHz ⁽¹⁾	70
Table 4-27. DAC characteristics ⁽³⁾	71
Table 4-28 I2C characteristics(1)(2)	72

Table 4-29. Standard SPI characteristics ⁽¹⁾	73
Table 4-30. I2S characteristics ^{(1) (2)}	75
Table 4-31. USART characteristics ⁽¹⁾	77
Table 4-32. CMP characteristics (1)	77
Table 4-33. Temperature sensor characteristics	78
Table 4-34. TIMER characteristics ⁽¹⁾	78
Table 4-35. FWDGT min/max timeout period at 40 kHz (IRC40K) (1)	
Table 4-36. WWDGT min-max timeout value at 50 MHz (f _{PCLK1}) (1)	79
Table 5-1. LQFP100 package dimensions	
Table 5-2. LQFP64 package dimensions	82
Table 5-3. LQFP48 package dimensions	84
Table 5-4. QFN32 package dimensions	86
Table 5-5. Package thermal characteristics ⁽¹⁾	
Table 6-1. Part ordering code for GD32A503xx devices	
Table 7-1. Revision history	91

1. General description

The GD32A503xx device belongs to the high performance line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the Arm® Cortex®-M33 core. The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and low-cost debug. The characteristics of integrated and advanced make the Cortex®-M33 processor suitable for market products that require microcontrollers with high performance and low power consumption. The processor is based on the ARMv8 architecture and supports a powerful and scalable instruction set including general data processing I/O control tasks, advanced data processing bit field manipulations and DSP.

The GD32A503xx device incorporates the Arm® Cortex®-M33 32-bit processor core operating at up to 100 MHz frequency with Flash accesses 0~3 waiting time to obtain maximum efficiency. It provides up to 384 KB on-chip Flash memory and up to 48 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer two 12-bit ADCs, one DAC, one comparator, up to one general 16-bit timer, two basic timers, four PWM advanced timers, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, three USARTs, one I2S, and two CANs. Additional peripherals as trigger selection controller (TRIGSEL), multi-function communication interface (MFCOM), DMA request multiplexer (DMAMUX) are included.

The device operates from a 2.7 to 5.5 V power supply and available in -40 to +125 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32A503xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike, optical module and so on.

2. Device overview

2.1. Device information

Table 2-1. GD32A503xx devices features and peripheral list

Part Number					iluies a		4503xx				
		KB	KC	СВ	CC	RB	RC	RD	VB	VC	VD
FLASH (KB)		128	256	128	256	128	256	384	128	256	384
S	RAM (KB)	24	32	24	32	24	32	48	24	32	48
Da	ta Flash &										
E	EEPROM	32	64	32	64	32	64	64	32	64	64
ba	ickup (KB)										
EE	PROM (KB)	2	4	2	4	2	4	4	2	4	4
	General	1	1	1	1	1	1	1	1	1	1
	timer(16-	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
-	bit)										
	Advanced	3	4	3	4	3	4	4	4	4	4
"	timer(16-	(0,7,19)	(0,7,19,20)	(0,7,19)	(0,7,19,20)	(0,7,19)	(0,7,19,20)	(0,7,19,20)	(0,7,19,20)	(0,7,19,20)	(0,7,19,20)
Timers	bit)										
Ë	SysTick	1	1	1	1	1	1	1	1	1	1
	Basic	2	2	2	2	2	2	2	2	2	2
	timer(16-	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)	(5-6)
-	bit)	-	0	0	-		0	0	0	0	0
-	Watchdog	2	2	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1	1	1
	USART	1	1	2	2	3	3	3	3	3	3
-		2	2	2	2	2	(0-2)	2	(0-2)	2	(0-2)
iţ	I2C	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	2	(0-1)	(0-1)	(0-1)	(0-1)
Connectivity		1/0	1/0	2/1	2/1	2/1	2/1	2/1	2/1	2/1	2/1
nne	SPI/I2S	(0)/none	(0)/none	Z/ I (0-1)/(1)	∠/ I (0-1)/(1)	Z/ I (0-1)/(1)	Z/ I (0-1)/(1)	∠/ I (0-1)/(1)	∠/ I (0-1)/(1)	(0-1)/(1)	∠/ I (0-1)/(1)
ပ	MFCOM	1	1	1	1	1	1	1	1	1	1
-	50111	1×FD	1×FD	2×FD	2×FD	2×FD	2×FD	2×FD	2×FD	2×FD	2×FD
	CAN	(0)	(0)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)	(0-1)
	GPIO	27	27	42	42	57	57	57	88	88	88
	DAC	1	1	1	1	1	1	1	1	1	1
	СМР	1	1	1	1	1	1	1	1	1	1
ပ	Units	2	2	2	2	2	2	2	2	2	2
ADC	Channels	12	12	20	20	27	27	27	32	32	32
Package			V32		P48		LQFP64			_QFP10(

2.2. Block diagram

Figure 2-1. GD32A503xx block diagram

2.3. Pinouts and pin assignment

Figure 2-2. GD32A503Vx LQFP100 pinouts

Figure 2-3. GD32A503Rx LQFP64 pinouts

Figure 2-4. GD32A503Cx LQFP48 pinouts

Figure 2-5. GD32A503Kx QFN32 pinouts

2.4. Memory map

Table 2-2. GD32A503xx memory map

Pre-defined Regions	Bus	Address	Peripherals
		0xE004 4400 - 0xE00F FFFF	Cortex M33 internal peripherals
		0xE004 4000 – 0xE004 43FF	DBG
		0xE000 0000 – 0xE004 3FFF	Cortex M33 internal
E . IDAM		0.0000.0000.0000.000	peripherals
External RAM	ALIDA	0x6000 0000 - 0x9FFF FFFF	Reserved
	AHB1	0x5000 0000 - 0x5FFF FFFF	Reserved
		0x4800 1800 - 0x4FFF FFFF	Reserved
		0x4800 1400 - 0x4800 17FF	GPIOF
		0x4800 1000 - 0x4800 13FF	GPIOE
	AHB2	0x4800 0C00 - 0x4800 0FFF	GPIOD
		0x4800 0800 - 0x4800 0BFF	GPIOC
		0x4800 0400 - 0x4800 07FF	GPIOB
		0x4800 0000 - 0x4800 03FF	GPIOA
		0x4003 8C00 - 0x47FF FFFF	Reserved
		0x4003 8400 - 0x4003 8BFF	MFCOM
		0x4002 3400 - 0x4003 83FF	Reserved
		0x4002 3000 - 0x4002 33FF	CRC
		0x4002 2400 - 0x4002 2FFF	Reserved
		0x4002 2000 - 0x4002 23FF	FMC
		0x4002 1C00 - 0x4002 1FFF	Reserved
Peripheral	AHB1	0x4002 1800 - 0x4002 1BFF	Reserved
		0x4002 1400 - 0x4002 17FF	Reserved
		0x4002 1000 - 0x4002 13FF	RCU
		0x4002 0C00 - 0x4002 0FFF	Reserved
		0x4002 0800 - 0x4002 0BFF	DMAMUX
		0x4002 0400 - 0x4002 07FF	DMA1
		0x4002 0000 - 0x4002 03FF	DMA0
		0x4001 C000 - 0x4001 FFFF	Reserved
		0x4001 B000 - 0x4001 BFFF	CAN1
		0x4001 A000 - 0x4001 AFFF	CAN0
		0x4001 8800 - 0x4001 9FFF	Reserved
	APB2	0x4001 8400 - 0x4001 87FF	TRIGSEL
		0x4001 8000 - 0x4001 83FF	Reserved
		0x4001 7C00 - 0x4001 7FFF	CMP
1		0x4001 5800 - 0x4001 7BFF	Reserved
		0x4001 5400 - 0x4001 57FF	TIMER20
			1

Pre-defined Pre-defined			
Regions	Bus	Address	Peripherals
		0x4001 5000 - 0x4001 53FF	TIMER19
		0x4001 4C00 - 0x4001 4FFF	Reserved
		0x4001 4800 - 0x4001 4BFF	Reserved
		0x4001 4400 - 0x4001 47FF	Reserved
		0x4001 4000 - 0x4001 43FF	Reserved
		0x4001 3C00 - 0x4001 3FFF	Reserved
		0x4001 3800 - 0x4001 3BFF	USART0
		0x4001 3400 - 0x4001 37FF	TIMER7
		0x4001 3000 - 0x4001 33FF	SPI0
		0x4001 2C00 - 0x4001 2FFF	TIMER0
		0x4001 2800 - 0x4001 2BFF	ADC1
		0x4001 2400 - 0x4001 27FF	ADC0
		0x4001 2000 - 0x4001 23FF	Reserved
		0x4001 1C00 - 0x4001 1FFF	Reserved
		0x4001 1800 - 0x4001 1BFF	Reserved
		0x4001 1400 - 0x4001 17FF	Reserved
		0x4001 1000 - 0x4001 13FF	Reserved
		0x4001 0C00 - 0x4001 0FFF	Reserved
		0x4001 0800 - 0x4001 0BFF	Reserved
		0x4001 0400 - 0x4001 07FF	EXTI
		0x4001 0000 - 0x4001 03FF	SYSCFG
		0x4000 DC00 - 0x4000 FFFF	Reserved
		0x4000 D800 - 0x4000 DBFF	Reserved
		0x4000 D400 - 0x4000 D7FF	Reserved
		0x4000 D000 - 0x4000 D3FF	Reserved
		0x4000 CC00 - 0x4000 CFFF	Reserved
		0x4000 C800 - 0x4000 CBFF	Reserved
		0x4000 C400 - 0x4000 C7FF	Reserved
		0x4000 C000 - 0x4000 C3FF	Reserved
		0x4000 8800 - 0x4000 BFFF	Reserved
	APB1	0x4000 8400 - 0x4000 87FF	Reserved
		0x4000 8000 - 0x4000 83FF	Reserved
		0x4000 7C00 - 0x4000 7FFF	Reserved
		0x4000 7800 - 0x4000 7BFF	Reserved
		0x4000 7400 - 0x4000 77FF	DAC
		0x4000 7000 - 0x4000 73FF	PMU
		0x4000 6C00 - 0x4000 6FFF	BKP
		0x4000 6800 - 0x4000 6BFF	Reserved
		0x4000 6400 - 0x4000 67FF	Reserved
		0x4000 6000 - 0x4000 63FF	Reserved

Pre-defined						
Regions Bus		Address	Peripherals			
		0x4000 5C00 - 0x4000 5FFF	Reserved			
		0x4000 5800 - 0x4000 5BFF	I2C1			
		0x4000 5400 - 0x4000 57FF	I2C0			
		0x4000 5000 - 0x4000 53FF	Reserved			
		0x4000 4C00 - 0x4000 4FFF	Reserved			
		0x4000 4800 - 0x4000 4BFF	USART2			
		0x4000 4400 - 0x4000 47FF	USART1			
		0x4000 4000 - 0x4000 43FF	Reserved			
		0x4000 3C00 - 0x4000 3FFF	Reserved			
		0x4000 3800 - 0x4000 3BFF	SPI1/I2S1			
		0x4000 3400 - 0x4000 37FF	Reserved			
		0x4000 3000 - 0x4000 33FF	FWDGT			
		0x4000 2C00 - 0x4000 2FFF	WWDGT			
		0x4000 2800 - 0x4000 2BFF	RTC			
		0x4000 2400 - 0x4000 27FF	Reserved			
		0x4000 2000 - 0x4000 23FF	Reserved			
		0x4000 1C00 - 0x4000 1FFF	Reserved			
		0x4000 1800 - 0x4000 1BFF	Reserved			
		0x4000 1400 - 0x4000 17FF	TIMER6			
		0x4000 1000 - 0x4000 13FF	TIMER5			
		0x4000 0C00 - 0x4000 0FFF	Reserved			
		0x4000 0800 - 0x4000 0BFF	Reserved			
		0x4000 0400 - 0x4000 07FF	Reserved			
		0x4000 0000 - 0x4000 03FF	TIMER1			
		0x2000 D000 - 0x3FFF FFFF	Reserved			
		0x2000 C000 - 0x2000 CFFF	Shared SRAM(4KB)			
SRAM		0x2000 5000 - 0x2000 BFFF				
SKAW		0x2000 2000 - 0x2000 4FFF	SRAM(48KB)			
		0x2000 1000 - 0x2000 1FFF	SKAW(46KB)			
		0x2000 0000 - 0x2000 0FFF				
		0x1FFF FC4 - 0x1FFF FFFF	Reserved			
		0x1FFF FC00 - 0x1FFF FC0F	Reserved			
		0x1FFF F818 - 0x1FFF BFFF	Reserved			
		0x1FFF F800 - 0x1FFF F817	Option Bytes (24B)			
Code		0x1FFF B000 - 0x1FFF F7FF	System memory(18KB)			
0000		0x1FFF 7400 - 0x1FFF AFFF	Reserved			
		0x1FFF 7000 - 0x1FFF 73FF	OTP(1KB)			
		0x0A00 D000 - 0x1FFF 6FFF	Reserved			
		0x0A00 C000 - 0x0A00 CFFF	Shared SRAM(4KB)			
		0x0A00 0000 - 0x0A00 BFFF	SRAM(48KB)			

GD32A503xx Datasheet

Pre-defined Bus		Address	Peripherals
		0x08C0 1000 - 0x09FF FFFF	Reserved
		0x08C0 0000 - 0x08C0 0FFF	EEPROM(4KB)
		0x0881 0000 - 0x08BF FFFF	Reserved
		0x0880 0000 - 0x0880 FFFF	DFlash(64KB)
		0x0808 0000 - 0x0871 FFFF	Reserved
		0x0806 0000 - 0x0807 FFFF	Reserved
		0x0802 0000 - 0x0805 FFFF	
		0x0801 0000 - 0x0801 FFFF	Main Flash memory
		0x0800 0000 - 0x0800 FFFF	
		0x0006 0000 - 0x07FF FFFF	Reserved
		0x0002 0000 - 0x0005 FFFF	Aligned to Fleeb or
		0x0001 0000 - 0x0001 FFFF	Aliased to Flash or
		0x0000 0000 - 0x0000 FFFF	system memory

2.5. Clock tree

Figure 2-6. GD32A503xx clock tree

Note:

If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1. Otherwise, they are set to the AHB frequency divide by half of APB prescaler.

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillator IRC40K: Internal 40K RC oscillator

2.6. Pin definitions

2.6.1. GD32A503Vx LQFP100 pin definitions

Table 2-3. GD32A503Vx LQFP100 pin definitions

			QFP100	
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PE2	1	I/O	5VT	Default: PE2 Alternate: TIMER19_MCH3, USART1_RTS, USART1_DE, MFCOM_D3, TRIGSEL_OUT7, EVENTOUT
PE3	2	I/O	5VT	Default: PE3 Alternate: TIMER19_CH3, USART1_CTS, MFCOM_D2, TRIGSEL_OUT6, EVENTOUT
PE4	3	I/O	5VT	Default: PE4 Alternate: TIMER0_MCH1, TIMER19_MCH0, SPI1_MISO, MFCOM_D1, TRIGSEL_OUT2, EVENTOUT
PE5	4	I/O	5VT	Default: PE5 Alternate: TIMER0_CH1, TIMER19_CH0, SPI1_SCK, I2S1_CK, MFCOM_D0, TRIGSEL_OUT1, EVENTOUT
PE6	5	I/O	5\/T	Default: PE6 Alternate: TIMER1_CH0, TIMER1_ETI, TIMER19_MCH 2, I2S1_MCK, MFCOM_D5, TRIGSEL_OUT5, EVENT OUT
PC13	Default: PC13 Alternate: CK_OUT, TIMER19_CH2, TRIGSEL_OUT4, EVENTOUT		Alternate: CK_OUT, TIMER19_CH2, MFCOM_D4,	
PC14- OSC32IN	7	I/O		Default: PC14 Alternate: TIMER19_BRKIN0, EVENTOUT Additional: OSC32IN ⁽⁴⁾
PC15 8 I/O Default: PC15 Alternate: TIMER_ETI2 ⁽³⁾ , TIMER19 TIMER19_CH1, CAN0_TX, MFCO		Default: PC15 Alternate: TIMER_ETI2 ⁽³⁾ , TIMER19_MCH1, TIMER19_CH1, CAN0_TX, MFCOM_D7, EVENTOUT Additional: OSC32OUT		
BOOT0/PF0 9 I Default: PF0 ⁽⁴⁾ Alternate: TIME EVENTOUT			Alternate: TIMER19_CH1, CAN0_RX, MFCOM_D6,	
V _{DD} 10 P Default: V _{DD}		Default: V _{DD}		
		Default: V _{DDA}		
V _{REF+} 12 P Default: V _{REF+}				
V _{REF} -	13	Р		Default: V _{REF-}

				GD3ZA303XX Datasiit
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
Vss	14	Р		Default: Vss
				Default: PF6
PF6-	15	0		Alternate: I2C0_SCL, EVENTOUT
OSCOUT				Additional: OSCOUT
				Default: PF7
PF7-OSCIN	16	1		Alternate: I2C0_SDA, EVENTOUT
				Additional: OSCIN
				Default: PF1
PF1	17	I/O		Alternate: TIMER0_BRKIN1, TIMER19_BRKIN1,
				EVENTOUT
				Default: PF2
DEO	40	1/0		Alternate: TIMER0_BRKIN0, TIMER19_BRKIN0,
PF2	18	I/O		USART2_RTS, USART2_DE, TRIGSEL_IN6, CMP_OUT,
				EVENTOUT
PF3	19	I/O		Default: PF3
FFS	19	1/0		Alternate: TIMER0_BRKIN3, USART2_TX, EVENTOUT
PF4	20	I/O		Default: PF4
FF4	20	1/0		Alternate: TIMER0_BRKIN2, USART2_RX, EVENTOUT
		I/O	I/O	Default: PF5
PF5	21			Alternate: TIMER0_MCH0, SPI0_MISO, USART1_CTS,
				EVENTOUT
PC0	22	I/O		Default: PC0
1 00		1,0		Alternate: TIMER0_CH0, SPI0_SCK, EVENTOUT
PC1	23	I/O		Default: PC1
	20	.,,		Alternate: TIMER0_MCH3, USART2_CTS, EVENTOUT
			/O	Default: PC2
PC2	24	I/O		Alternate: CK_OUT, TIMER19_MCH2, USART1_TX,
				EVENTOUT
PC3	25	I/O		Default: PC3
				Alternate: TIMER19_CH2, USART1_RX, EVENTOUT
				Default: PA0
PA0-WKUP0	26	I/O		Alternate: TIMER0_CH3, EVENTOUT
				Additional: CMP_IM_IP3, WKUP0
D.4.4	07	1/0		Default: PA1
PA1	PA1 27 I/O	1/0		Alternate: CK_OUT, TIMER0_MCH2, SPI0_NSS,
				TRIGSEL_INO, EVENTOUT
DAG	DAG 00	1/0		Default: PA2
PA2	20	28 I/O		Alternate: TIMER0_CH2, SPI0_MOSI, TRIGSEL_IN1, EVENTOUT
				Default: PA3
				Alternate: TIMER0_MCH1, USART0_TX, CAN0_TX,
PA3	29	I/O		TIMER1_CH3, EVENTOUT
				Additional: ADC0_IN11, CMP_IM_IP4
		l	l	F

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PA4	30	I/O		Default: PA4 Alternate: TIMER0_CH1, USART0_RX, CAN0_RX, EVENTOUT Additional: ADC0_IN10, CMP_IM_IP5
PA5	31	I/O		Default: PA5 Alternate: TIMER19_BRKIN3, USART2_TX, EVENTOUT Additional: CMP_IM_IP6
PA6	32	I/O		Default: PA6 Alternate: TIMER19_BRKIN2, USART2_RX, EVENTOUT Additional: CMP_IM_IP7
PA7	33	I/O		Default: PA7 Alternate: TIMER19_MCH1, TIMER1_CH1, TIMER19_BRKIN1, TRIGSEL_IN7, EVENTOUT, USART2_CK Additional: DAC_OUT
PC4	34	I/O		Default: PC4 Alternate: TIMER19_CH1, USART2_RTS, USART2_DE, EVENTOUT
PC5	35	I/O		Default: PC5 Alternate: TIMER19_MCH0, TIMER19_CH0, USART2_CTS, EVENTOUT
PB0	36	I/O		Default: PB0 Alternate: TIMER19_CH0, TIMER19_CH1, EVENTOUT
V _{SS_1}	37	Р		Default: V _{SS 1}
V _{DD_1}	38	Р		Default: V _{DD_1}
PB1	39	I/O		Default: PB1 Alternate: TIMER0_MCH0, TIMER7_MCH3, EVENTOUT Additional: ADC0_IN9 ⁽⁵⁾
PB2	40	I/O	5VT	Default: PB2 Alternate: TIMER0_CH0, TIMER7_CH3, EVENTOUT Additional: ADC0_IN8 ⁽⁵⁾
PE7	41	I/O	5VT	Default: PE7 Alternate: TIMER7_MCH2, TIMER19_BRKIN3, MFCOM_D0, EVENTOUT
PE8	42	I/O	5VT	Default: PE8 Alternate: TIMER7_CH2, TIMER19_BRKIN2, MFCOM_D1, EVENTOUT
PE9	43	I/O	5VT	Default: PE9 Alternate: TIMER7_BRKIN3, EVENTOUT Additional: ADC0_IN15
PE10	44	I/O	5VT	Default: PE10 Alternate: TIMER7_BRKIN2, EVENTOUT, I2C1_SCL Additional: ADC0_IN14

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PE11	45	I/O	5VT	Default: PE11 Alternate: TIMER7_MCH1, TRIGSEL_IN8, EVENTOUT, I2C1_SDA Additional: ADC0_IN13
PE12	46	I/O	5VT	Default: PE12 Alternate: TIMER7_CH1, TRIGSEL_IN9, EVENTOUT, I2C1_SMBA Additional: ADC0_IN12
PE13	47	I/O	5VT	Default: PE13 Alternate: TIMER7_MCH0, TIMER7_CH0, SPI0_MISO, TRIGSEL_IN2, EVENTOUT Additional: ADC0_IN7
PE14	48	I/O	5VT	Default: PE14 Alternate: TIMER7_CH0, TIMER7_CH1, SPI0_SCK, TRIGSEL_IN3, EVENTOUT Additional: ADC0_IN6
PE15	49	I/O	5VT	Default: PE15 Alternate: TIMER20_MCH3, TIMER19_MCH3, SPI0_IO2, USART2_RTS, USART2_DE, EVENTOUT
PB10	50	I/O	5VT	Default: PB10 Alternate: TIEMR20_CH3, TIMER19_CH3, SPI0_IO3, USART2_CTS, EVENTOUT
PB11	51	I/O	5VT	Default: PB11 Alternate: TIMER20_MCH2, TRIGSEL_IN10, TIMER1_CH3, EVENTOUT
PB12	52	I/O	5VT	Default: PB12 Alternate: TIMER20_CH2, TRIGSEL_IN11, EVENTOUT
PB13	53	I/O	5VT	Default: PB13 Alternate: TIMER_ETI0 ⁽³⁾ , SPI0_MOSI, USART0_TX, CAN0_TX, EVENTOUT Additional: ADC0_IN5, ADC1_IN15 ⁽⁵⁾
PB14	54	I/O	5VT	Default: PB14 Alternate: TIMER1_CH2, SPI0_NSS, USART0_RX, CAN0_RX, EVENTOUT Additional: ADC0_IN4, ADC1_IN14 ⁽⁵⁾
PB15	55	I/O	5VT	Default: PB15 Alternate: TIMER7_BRKIN1, USART1_TX, USART0_RTS, USART0_DE, EVENTOUT
PD8	56	I/O	5VT	Default: PD8 Alternate: TIMER7_BRKIN0, USART1_RX, USART0_CTS, EVENTOUT
PD9	57	I/O	5VT	Default: PD9 Alternate: TIMER0_BRKIN2, USART1_RTS,

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				USART1_DE, EVENTOUT
				Additional: ADC0_IN3
PD10	58	I/O	5VT	Default: PD10 Alternate: TIMER0_BRKIN1, SPI1_NSS, I2S1_WS, USART1_CTS, EVENTOUT Additional: ADC0_IN2
PD11	59	I/O	5VT	Default: PD11 Alternate: TIMER0_MCH3, TIMER20_BRKIN0, EVENTOUT, I2C1_SMBA
Vss_2	60	Р		Default: Vss_2
V_{DD_2}	61	Р		Default: V _{DD_2}
PD12	62	I/O	5VT	Default: PD12 Alternate: TIMER0_CH3, TIMER20_BRKIN0, EVENTOUT
PD13	63	I/O	5VT	Default: PD13 Alternate: TIMER0_MCH2, SPI1_NSS, I2S1_WS, EVENTOUT
PD14	64	I/O	5VT	Default: PD14 Alternate: TIMER0_CH2, SPI1_MOSI, I2S1_SD, EVENTOUT Additional: ADC1_IN15 ⁽⁵⁾
PD15	65	I/O	5VT	Default: PD15 Alternate: TIMER0_MCH1, SPI1_MISO, EVENTOUT Additional: ADC1_IN14 ⁽⁵⁾
PC6	66	I/O	5VT	Default: PC6 Alternate: TIMER0_CH1, SPI1_SCK, I2S1_CK, EVENTOUT Additional: ADC1_IN9, ADC0_IN9 ⁽⁵⁾
PC7	67	I/O	5VT	Default: PC7 Alternate: TIMER0_MCH0, TIMER20_BRKIN1, I2S1_MCK, EVENTOUT Additional: ADC1_IN8, ADC0_IN8 ⁽⁵⁾
PC8	68	I/O	5VT	Default: PC8 Alternate: TIMER0_CH0, TIMER20_BRKIN2, EVENTOUT Additional: ADC1_IN7
PC9	69	I/O	5VT	Default: PC9 Alternate: TIMER0_BRKIN3, TIMER20_BRKIN3, EVENTOUT Additional: ADC1_IN6
PA8	70	I/O	5VT	Default: PA8

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: TIMER0_BRKIN0, TIMER20_MCH2,
				SPI1_NSS, I2S1_WS, MFCOM_D7, MFCOM_D5,
				TRIGSEL_IN4, EVENTOUT
				Additional: ADC1_IN3, NMI
				Default: PA9
PA9	71	I/O	5VT	Alternate: TIMER20_CH2, SPI1_MOSI, I2S1_SD,
1 49	, ,	1/0	3 7 1	MFCOM_D6, MFCOM_D4, TRIGSEL_IN5, EVENTOUT
				Additional: ADC1_IN2
				Default: PA10
PA10	72	I/O	5VT	Alternate: TIMER20_MCH0, I2C0_SCL, USART0_TX,
17110		1, 0	011	MFCOM_D5, EVENTOUT
				Additional: ADC1_IN1
				Default: PA11
PA11	73	I/O	5VT	Alternate: TIMER20_CH0, I2C0_SDA, USART0_RX,
				MFCOM_D4, EVENTOUT, TRIGSEL_IN13
				Additional: ADC1_IN0
				Default: PA12
PA12	74	I/O	5VT	Alternate: TIMER20_MCH1, I2C0_SMBA, USART0_CK,
				EVENTOUT
PA13	75	I/O	5VT	Default: PA13
				Alternate: TIMER20_CH1, I2C0_SDA, EVENTOUT
PA14	76	I/O	5VT	Default: PA14
				Alternate: TIMER20_MCH0, I2C0_SCL, EVENTOUT
PA15	77	I/O	5VT	Default: PA15
				Alternate: TIMER20_CH0, EVENTOUT, TRIGSEL_IN12
				Default: PC10 Alternate: TIMER7_MCH0, TIMER7_CH0, I2C0_SDA,
PC10	78	I/O	5VT	USARTO_RTS, USARTO_DE, MFCOM_D3,
FCIO	70	1/0	371	TRIGSEL_OUT0, EVENTOUT
				Additional: ADC0_IN1, CMP_IM_IP1
				Default: PC11
				Alternate: TIMER19_MCH0, TIMER19_CH0, I2C0_SCL,
PC11	79	I/O	5VT	USARTO_CTS, MFCOM_D2, TRIGSEL_OUT3,
	. •	, ,,		EVENTOUT
				Additional: ADC0_IN0, CMP_IM_IP0
	PC12 80 I/O			Default: PC12
B046			E\	Alternate: TIMER20_MCH1, TIMER7_CH0, USART1_TX,
PC12		80 I/O	5VT	CAN1_TX, EVENTOUT
				Additional: ADC1_IN5
				Default: PD0
BD0	04	1/0	5\ /T	Alternate: TIMER20_CH1, TIMER7_CH1, USART1_RX,
PD0	81	I/O	5VT	CAN1_RX, EVENTOUT
				Additional: ADC1_IN4

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PD1	82	I/O	5VT	Default: PD1 Alternate: TIMER7_MCH1, SPI1_NSS, I2S1_WS, EVENTOUT Additional: ADC1_IN13
PD2	83	I/O	5VT	Default: PD2 Alternate: TIMER7_CH1, SPI0_NSS, EVENTOUT Additional: ADC1_IN12
PD3	84	I/O	5VT	Default: PD3 Alternate: TIMER20_MCH3, SPI0_NSS, USART1_RTS, USART1_DE, EVENTOUT Additional: ADC1_IN11
PD4	85	I/O	5VT	Default: PD4 Alternate: TIMER20_CH3, TIMER1_CH2, SPI0_MOSI, USART1_CTS, EVENTOUT Additional: ADC1_IN10
V _{SS_3}	86	Р		Default: V _{SS_3}
V_{DD_3}	87	Р		Default: V _{DD_3}
PD5	88	I/O	5VT	Default: PD5 Alternate: TIMER0_BRKIN0, TIMER20_BRKIN1, TIMER7_BRKIN0, USART1_CK, EVENTOUT
PD6	89	I/O	5VT	Default: PD6 Alternate: TIMER7_MCH3, TIMER19_CH0, CAN1_TX, EVENTOUT, I2C1_SCL
PD7	90	I/O	5VT	Default: PD7 Alternate: TIMER7_CH3, TIMER19_CH1, CAN1_RX, EVENTOUT, I2C1_SDA
PB3	91	I/O	5VT	Default: NJTRST, PB3 Alternate: TIMER7_MCH2, SPI0_IO2, MFCOM_D1, EVENTOUT
PB4	92	I/O	5VT	Default: JTDO, PB4 Alternate: TIMER7_CH2, SPI0_IO3, MFCOM_D0, EVENTOUT
PB5	93	I/O		Default: PB5 Alternate: TIMER7_BRKIN1, I2C0_SMBA, SPI0_MISO, SPI1_NSS, I2S1_WS, EVENTOUT
PB6	94	I/O	5VT	Default: PB6 Alternate: TIMER7_BRKIN2, TIMER_ETI1(3), SPI0_SCK, SPI1_MOSI, I2S1_SD, EVENTOUT
PB7	95	I/O	5VT	Default: JTDI, PB7 Alternate: TIMER19_CH0, TIMER19_CH1, EVENTOUT, I2C1_SCL
PB8	96	I/O	5VT	Default: JTCK, SWCLK, PB8

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: TIMER7_CH0, TIMER7_CH1, EVENTOUT,
				I2C1_SDA
				Additional: CMP_IM_IP2
NRST	97	I/O		Default: NRST
				Default: JTMS, SWDIO, PB9
PB9	98	I/O	5VT	Alternate: CMP_OUT, EVENTOUT, I2C1_SMBA
				Additional: BOOT1
				Default: PE0
PE0	99	I/O	5VT	Alternate: TIMER20_BRKIN2, TIMER7_BRKIN3,
				USART2_TX, MFCOM_D7, EVENTOUT
				Default: PE1
PE1	100	I/O	5VT	Alternate: TIMER20_BRKIN3, USART2_RX,
				MFCOM_D6, EVENTOUT

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) This function is controlled by SYSCFG_TIMERINSEL register.
- (4) This function is controlled by SYSCFG_CFG0 register.
- (5) This function is controlled by SYSCFG_CFG1 register.

2.6.2. GD32A503Rx LQFP64 pin definitions

Table 2-4. GD32A503Rx LQFP64 pin definitions

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PE4	1	I/O	5VT	Default: PE4 Alternate: TIMER0_MCH1, TIMER19_MCH0, SPI1_MISO, MFCOM_D1, TRIGSEL_OUT2, EVENTOUT
PE5	2	I/O	5VT	Default: PE5 Alternate: TIMER0_CH1, TIMER19_CH0, SPI1_SCK, I2S1_CK, MFCOM_D0, TRIGSEL_OUT1, EVENTOUT
PE6	3	I/O	5VT	Default: PE6 Alternate: TIMER1_CH0, TIMER1_ETI, TIMER19_MCH2, I2S1_MCK, MFCOM_D5, TRIGSEL_OUT5, EVENTOUT
PC13	4	I/O		Default: PC13 Alternate: CK_OUT, TIMER19_CH2, MFCOM_D4, TRIGSEL_OUT4, EVENTOUT Additional: WKUP1, OSC32IN ⁽⁴⁾
PC15	5	I/O		Default: PC15 Alternate: TIMER_ETI2 ⁽³⁾ , TIMER19_MCH1, TIMER19_CH1, CAN0_TX, MFCOM_D7, EVENTOUT Additional: OSC32OUT
BOOT0/PF0	6	ı		Default: PF0 ⁽⁴⁾ Alternate: TIMER19_CH1, CAN0_RX, MFCOM_D6, EVENTOUT Additional: BOOT0
V_{DD}	7	Р		Default: V _{DD}
V _{DDA}	8	Р		Default: V _{DDA}
V _{REF+}	9	Р		Default: V _{REF+}
V _{SS}	10	Р		Default: Vss
PF6- OSCOUT	11	0		Default: PF6 Alternate: I2C0_SCL, EVENTOUT Additional: OSCOUT
PF7-OSCIN	12	I		Default: PF7 Alternate: I2C0_SDA, EVENTOUT Additional: OSCIN
PF2	13	I/O		Default: PF2 Alternate: TIMER0_BRKIN0, TIMER19_BRKIN0, USART2_RTS, USART2_DE, TRIGSEL_IN6, CMP_OUT, EVENTOUT
PF5	14	I/O		Default: PF5 Alternate: TIMER0_MCH0, SPI0_MISO, USART1_CTS, EVENTOUT
PC0	15	I/O		Default: PC0

				ODOZI (OOOXX Datasiic)
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: TIMER0_CH0, SPI0_SCK, EVENTOUT
				Default: PC1
PC1	16	I/O		Alternate: TIMER0_MCH3, USART2_CTS, EVENTOUT
PA0-WKUP0	17	I/O		Default: PA0 Alternate: TIMER0_CH3, EVENTOUT Additional: CMP_IM_IP3, WKUP0
PA1	18	I/O		Default: PA1 Alternate: CK_OUT, TIMER0_MCH2, SPI0_NSS, TRIGSEL_IN0, EVENTOUT
PA2	19	I/O		Default: PA2 Alternate: TIMER0_CH2, SPI0_MOSI, TRIGSEL_IN1, EVENTOUT
PA3	20	I/O		Default: PA3 Alternate: TIMER0_MCH1, USART0_TX, CAN0_TX, TIMER1_CH3, EVENTOUT Additional: ADC0_IN11, CMP_IM_IP4
PA4	21	I/O		Default: PA4 Alternate: TIMER0_CH1, USART0_RX, CAN0_RX, EVENTOUT Additional: ADC0_IN10, CMP_IM_IP5
PA5	22	I/O		Default: PA5 Alternate: TIMER19_BRKIN3, USART2_TX, EVENTOUT Additional: CMP_IM_IP6
PA6	23	I/O		Default: PA6 Alternate: TIMER19_BRKIN2, USART2_RX, EVENTOUT Additional: CMP_IM_IP7
PA7	24	I/O		Default: PA7 Alternate: TIMER19_MCH1, TIMER1_CH1, TIMER19_BRKIN1, TRIGSEL_IN7, EVENTOUT, USART2_CK Additional: DAC_OUT
PB1	25	I/O		Default: PB1 Alternate: TIMER0_MCH0, TIMER7_MCH3, EVENTOUT Additional: ADC0_IN9
PB2	26	I/O	5VT	Default: PB2 Alternate: TIMER0_CH0, TIMER7_CH3, EVENTOUT Additional: ADC0_IN8 ⁽⁵⁾
PE9	27	I/O	5VT	Default: PE9 Alternate: TIMER7_BRKIN3, EVENTOUT Additional: ADC0_IN15
PE10	28	I/O	5VT	Default: PE10 Alternate: TIMER7_BRKIN2, EVENTOUT, I2C1_SCL Additional: ADC0_IN14

_					GD32A303XX DataSHE
	Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
	PE11	29	I/O	5VT	Default: PE11 Alternate: TIMER7_MCH1, TRIGSEL_IN8, EVENTOUT, I2C1_SDA Additional: ADC0_IN13
	PE12	30	I/O	5VT	Default: PE12 Alternate: TIMER7_CH1, TRIGSEL_IN9, EVENTOUT, I2C1_SMBA Additional: ADC0_IN12
	PE13	31	I/O	5VT	Default: PE13 Alternate: TIMER7_MCH0, TIMER7_CH0, SPI0_MISO, TRIGSEL_IN2, EVENTOUT Additional: ADC0_IN7
	PE14	32	I/O	5VT	Default: PE14 Alternate: TIMER7_CH0, TIMER7_CH1, SPI0_SCK, TRIGSEL_IN3, EVENTOUT Additional: ADC0_IN6
	PB13	33	I/O	5VT	Default: PB13 Alternate: TIMER_ETI0 ⁽³⁾ , SPI0_MOSI, USART0_TX, CAN0_TX, EVENTOUT Additional: ADC0_IN5, ADC1_IN15 ⁽⁵⁾
	PB14	34	I/O	5VT	Default: PB14 Alternate: TIMER1_CH2, SPI0_NSS, USART0_RX, CAN0_RX, EVENTOUT Additional: ADC0_IN4, ADC1_IN14 ⁽⁵⁾
	PB15	35	I/O	5VT	Default: PB15 Alternate: TIMER7_BRKIN1, USART1_TX, USART0_RTS, USART0_DE, EVENTOUT
	PD8	36	I/O	5VT	Default: PD8 Alternate: TIMER7_BRKIN0, USART1_RX, USART0_CTS, EVENTOUT
	PD9	37	I/O	5VT	Default: PD9 Alternate: TIMER0_BRKIN2, USART1_RTS, USART1_DE, EVENTOUT Additional: ADC0_IN3
	PD10	38	I/O	5VT	Default: PD10 Alternate: TIMER0_BRKIN1, SPI1_NSS, I2S1_WS, USART1_CTS, EVENTOUT Additional: ADC0_IN2
	PD11	39	I/O	5VT	Default: PD11 Alternate: TIMER0_MCH3, TIMER20_BRKIN0 ⁽⁶⁾ , EVENTOUT, I2C1_SMBA
	Vss_2	40	Р		Default: Vss_2
	V_{DD_2}	41	Р		Default: V _{DD_2}

				ODOZI (OOOXX Datasric)
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PC7	42	I/O	5VT	Default: PC7 Alternate: TIMER0_MCH0, TIMER20_BRKIN1 ⁽⁶⁾ , I2S1_MCK, EVENTOUT Additional: ADC1_IN8, ADC0_IN8 ⁽⁵⁾
PC8	43	I/O	5VT	Default: PC8 Alternate: TIMER0_CH0, TIMER20_BRKIN2 ⁽⁶⁾ , EVENTOUT Additional: ADC1_IN7
PC9	44	I/O	5VT	Default: PC9 Alternate: TIMER0_BRKIN3, TIMER20_BRKIN3 ⁽⁶⁾ , EVENTOUT Additional: ADC1_IN6
PA8	45	I/O	5VT	Default: PA8 Alternate: TIMER0_BRKIN0, TIMER20_MCH2 ⁽⁶⁾ , SPI1_NSS, I2S1_WS, MFCOM_D7, MFCOM_D5, TRIGSEL_IN4, EVENTOUT Additional: ADC1_IN3, NMI
РА9	46	I/O	5VT	Default: PA9 Alternate: TIMER20_CH2 ⁽⁶⁾ , SPI1_MOSI, I2S1_SD, MFCOM_D6, MFCOM_D4, TRIGSEL_IN5, EVENTOUT Additional: ADC1_IN2
PA10	47	I/O	5VT	Default: PA10 Alternate: TIMER20_MCH0 ⁽⁶⁾ , I2C0_SCL, USART0_TX, MFCOM_D5, EVENTOUT Additional: ADC1_IN1
PA11	48	I/O	5VT	Default: PA11 Alternate: TIMER20_CH0 ⁽⁶⁾ , I2C0_SDA, USART0_RX, MFCOM_D4, EVENTOUT, TRIGSEL_IN13 Additional: ADC1_IN0
PC10	49	I/O	5VT	Default: PC10 Alternate: TIMER7_MCH0, TIMER7_CH0, I2C0_SDA, USART0_RTS, USART0_DE, MFCOM_D3, TRIGSEL_OUT0, EVENTOUT Additional: ADC0_IN1, CMP_IM_IP1
PC11	50	I/O	5VT	Default: PC11 Alternate: TIMER19_MCH0, TIMER19_CH0, I2C0_SCL, USART0_CTS, MFCOM_D2, TRIGSEL_OUT3, EVENTOUT Additional: ADC0_IN0, CMP_IM_IP0
PC12	51	I/O	5VT	Default: PC12 Alternate: TIMER20_MCH1 ⁽⁶⁾ , TIMER7_CH0, USART1_TX, CAN1_TX, EVENTOUT Additional: ADC1_IN5

				ODOZ/ (OOOXX Datasiio)
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PD0	52	I/O	5VT	Default: PD0 Alternate: TIMER20_CH1 ⁽⁶⁾ , TIMER7_CH1, USART1_RX, CAN1_RX, EVENTOUT Additional: ADC1_IN4
PD3	53	I/O	5VT	Default: PD3 Alternate: TIMER20_MCH3 ⁽⁶⁾ , SPI0_NSS, USART1_RTS, USART1_DE, EVENTOUT Additional: ADC1_IN11
PD4	54	I/O	5VT	Default: PD4 Alternate: TIMER20_CH3 ⁽⁶⁾ , TIMER1_CH2, SPI0_MOSI, USART1_CTS, EVENTOUT Additional: ADC1_IN10
PD6	55	I/O	5VT	Default: PD6 Alternate: TIMER7_MCH3, TIMER19_CH0, CAN1_TX, EVENTOUT, I2C1_SCL
PD7	56	I/O	5VT	Default: PD7 Alternate: TIMER7_CH3, TIMER19_CH1, CAN1_RX, EVENTOUT, I2C1_SDA
PB3	57	I/O	5VT	Default: NJTRST, PB3 Alternate: TIMER7_MCH2, SPI0_IO2, MFCOM_D1, EVENTOUT
PB4	58	I/O	5VT	Default: JTDO, PB4 Alternate: TIMER7_CH2, SPI0_IO3, MFCOM_D0, EVENTOUT
PB5	59	I/O		Default: PB5 Alternate: TIMER7_BRKIN1, I2C0_SMBA, SPI0_MISO, SPI1_NSS, I2S1_WS, EVENTOUT
PB6	60	I/O	5VT	Default: PB6 Alternate: TIMER7_BRKIN2, TIMER_ETI1(3), SPI0_SCK, SPI1_MOSI, I2S1_SD, EVENTOUT
PB7	61	I/O	5VT	Default: JTDI, PB7 Alternate: TIMER19_CH0, TIMER19_CH1, EVENTOUT, I2C1_SCL
PB8	62	I/O	5VT	Default: JTCK, SWCLK, PB8 Alternate: TIMER7_CH0, TIMER7_CH1, EVENTOUT, I2C1_SDA Additional: CMP_IM_IP2
NRST	63	I/O		Default: NRST
PB9	64	I/O	5VT	Default: JTMS, SWDIO, PB9 Alternate: CMP_OUT, EVENTOUT, I2C1_SMBA Additional: BOOT1

Notes:

(1) Type: I = input, O = output, P = power.

- (2) I/O Level: 5VT = 5 V tolerant.
- (3) This function is controlled by SYSCFG_TIMERINSEL register.
- (4) This function is controlled by SYSCFG_CFG0 register.
- (5) This function is controlled by SYSCFG_CFG1 register.
- (6) Functions are available on GD32A503RC/D devices only.

2.6.3. GD32A503Cx LQFP48 pin definitions

Table 2-5. GD32A503Cx LQFP48 pin definitions

Table 2-5. G		Pin	1/0	
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description
				Default: PE4
PE4	1	I/O	5VT	Alternate: TIMER0_MCH1, TIMER19_MCH0,
				SPI1_MISO, MFCOM_D1, TRIGSEL_OUT2, EVENTOUT
		I/O	5VT	Default: PE5
PE5	2			Alternate: TIMER0_CH1, TIMER19_CH0, SPI1_SCK,
				I2S1_CK, MFCOM_D0, TRIGSEL_OUT1, EVENTOUT
		I/O		Default: PC15
PC15	3			Alternate: TIMER_ETI2 ⁽³⁾ , TIMER19_MCH1,
				TIMER19_CH1, CAN0_TX, MFCOM_D7, EVENTOUT Additional: OSC32OUT
				Default: PF0 ⁽⁴⁾
				Alternate: TIMER19_CH1, CAN0_RX, MFCOM_D6,
BOOT0/PF0	4	I		EVENTOUT
				Additional: BOOT0
V_{DD}	5	Р		Default: V _{DD}
V _{DDA}	6	P		Default: V _{DDA}
V _{SS}	7	P		Default: Vss
		0		Default: PF6
PF6-	8			Alternate: I2C0_SCL, EVENTOUT
OSCOUT				Additional: OSCOUT
	9	I		Default: PF7
PF7-OSCIN				Alternate: I2C0_SDA, EVENTOUT
				Additional: OSCIN
				Default: PF5
PF5	10	I/O		Alternate: TIMER0_MCH0, SPI0_MISO, USART1_CTS,
				EVENTOUT
PC0	11	I/O		Default: PC0
	•••			Alternate: TIMER0_CH0, SPI0_SCK, EVENTOUT
PC1	12	I/O		Default: PC1
				Alternate: TIMER0_MCH3, EVENTOUT
DAG MUCUDO	13	I/O		Default: PA0
PA0-WKUP0				Alternate: TIMERO_CH3, EVENTOUT
				Additional: CMP_IM_IP3, WKUP0 Default: PA1
PA1	14	I/O		Alternate: CK_OUT, TIMER0_MCH2, SPI0_NSS,
				TRIGSEL_INO, EVENTOUT
PA2	15	I/O		Default: PA2
				Alternate: TIMER0_CH2, SPI0_MOSI, TRIGSEL_IN1,
				EVENTOUT
PA3	16	I/O		Default: PA3
				Alternate: TIMER0_MCH1, USART0_TX, CAN0_TX,
				TIMER1_CH3, EVENTOUT

				GD32A303AA Datasi leet
Pin Name	Pins	Pin	I/O	Functions description
		Type ⁽¹⁾	Level ⁽²⁾	·
				Additional: ADC0_IN11, CMP_IM_IP4
				Default: PA4
PA4	17	I/O		Alternate: TIMER0_CH1, USART0_RX, CAN0_RX,
				EVENTOUT
				Additional: ADC0_IN10, CMP_IM_IP5
		I/O		Default: PA7
PA7	18			Alternate: TIMER19_MCH1, TIMER1_CH1,
				TIMER19_BRKIN1, TRIGSEL_IN7, EVENTOUT
				Additional: DAC_OUT
				Default: PB1
PB1	19	I/O		Alternate: TIMER0_MCH0, TIMER7_MCH3, EVENTOUT
			<u> </u>	Additional: ADC0_IN9 ⁽⁵⁾
				Default: PE10
PE10	20	I/O	5VT	Alternate: TIMER7_BRKIN2, EVENTOUT, I2C1_SCL
				Additional: ADC0_IN14
			5VT	Default: PE11
PE11	21	I/O		Alternate: TIMER7_MCH1, TRIGSEL_IN8, EVENTOUT,
				I2C1_SDA
				Additional: ADC0_IN13 Default: PE12
		I/O	5VT	Alternate: TIMER7_CH1, TRIGSEL_IN9, EVENTOUT,
PE12	22			I2C1_SMBA
				Additional: ADC0_IN12
				Default: PE13
				Alternate: TIMER7_MCH0, TIMER7_CH0, SPI0_MISO,
PE13	23	I/O	5VT	TRIGSEL_IN2, EVENTOUT
				Additional: ADC0_IN7
				Default: PE14
	24	1/0	F. /	Alternate: TIMER7_CH0, TIMER7_CH1, SPI0_SCK,
PE14	24	I/O	5VT	TRIGSEL_IN3, EVENTOUT
				Additional: ADC0_IN6
				Default: PB13
PB13	25	I/O	F) /T	Alternate: TIMER_ETI0 ⁽³⁾ , SPI0_MOSI, USART0_TX,
PB13	25	1/0	5VT	CAN0_TX, EVENTOUT
				Additional: ADC0_IN5, ADC1_IN15 ⁽⁵⁾
DD14	26	I/O	5VT	Default: PB14
				Alternate: TIMER1_CH2, SPI0_NSS, USART0_RX,
PB14	26	1/0	371	CAN0_RX, EVENTOUT
				Additional: ADC0_IN4, ADC1_IN14 ⁽⁵⁾
PB15	27	I/O	5VT	Default: PB15
				Alternate: TIMER7_BRKIN1, USART1_TX,
				USART0_RTS, USART0_DE, EVENTOUT
				Default: PD8
PD8	28	I/O	5VT	Alternate: TIMER7_BRKIN0, USART1_RX,
				USART0_CTS, EVENTOUT

				GD32A3U3XX Datasneet
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PD9	29	I/O	5VT	Default: PD9 Alternate: TIMER0_BRKIN2, USART1_RTS, USART1_DE, EVENTOUT Additional: ADC0_IN3
Vss_2	30	Р		Default: V _{SS_2}
V _{DD 2}	31	Р		Default: V _{DD_2}
PC7	32	I/O	5VT	Default: PC7 Alternate: TIMER0_MCH0, TIMER20_BRKIN1 ⁽⁶⁾ , I2S1_MCK, EVENTOUT Additional: ADC1_IN8, ADC0_IN8 ⁽⁵⁾
PA8	33	I/O	5VT	Default: PA8 Alternate: TIMER0_BRKIN0, TIMER20_MCH2 ⁽⁶⁾ , SPI1_NSS, I2S1_WS, MFCOM_D7, MFCOM_D5, TRIGSEL_IN4, EVENTOUT Additional: ADC1_IN3, NMI
PA9	34	I/O	5VT	Default: PA9 Alternate: TIMER20_CH2 ⁽⁶⁾ , SPI1_MOSI, I2S1_SD, MFCOM_D6, MFCOM_D4, TRIGSEL_IN5, EVENTOUT Additional: ADC1_IN2
PA10	35	I/O	5VT	Default: PA10 Alternate: TIMER20_MCH0 ⁽⁶⁾ , I2C0_SCL, USART0_TX, MFCOM_D5, EVENTOUT Additional: ADC1_IN1
PA11	36	I/O	5VT	Default: PA11 Alternate: TIMER20_CH0 ⁽⁶⁾ , I2C0_SDA, USART0_RX, MFCOM_D4, EVENTOUT, TRIGSEL_IN13 Additional: ADC1_IN0
PC10	37	I/O	5VT	Default: PC10 Alternate: TIMER7_MCH0, TIMER7_CH0, I2C0_SDA, USART0_RTS, USART0_DE, MFCOM_D3, TRIGSEL_OUT0, EVENTOUT Additional: ADC0_IN1, CMP_IM_IP1
PC11	38	I/O	5VT	Default: PC11 Alternate: TIMER19_MCH0, TIMER19_CH0, I2C0_SCL, USART0_CTS, MFCOM_D2, TRIGSEL_OUT3, EVENTOUT Additional: ADC0_IN0, CMP_IM_IP0
PC12	39	I/O	5VT	Default: PC12 Alternate: TIMER20_MCH1 ⁽⁶⁾ , TIMER7_CH0, USART1_TX, CAN1_TX, EVENTOUT Additional: ADC1_IN5
PD0	40	I/O	5VT	Default: PD0 Alternate: TIMER20_CH1 ⁽⁶⁾ , TIMER7_CH1, USART1_RX, CAN1_RX, EVENTOUT Additional: ADC1_IN4
PD6	41	I/O	5VT	Default: PD6

GD32A503xx Datasheet

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: TIMER7_MCH3, TIMER19_CH0, CAN1_TX, EVENTOUT, I2C1_SCL
PD7	42	I/O	5VT	Default: PD7 Alternate: TIMER7_CH3, TIMER19_CH1, CAN1_RX, EVENTOUT, I2C1_SDA
PB3	43	I/O	5VT	Default: NJTRST, PB3 Alternate: TIMER7_MCH2, SPI0_IO2, MFCOM_D1, EVENTOUT
PB4	44	I/O	5VT	Default: JTDO, PB4 Alternate: TIMER7_CH2, SPI0_IO3, MFCOM_D0, EVENTOUT
PB7	45	I/O	5VT	Default: JTDI, PB7 Alternate: TIMER19_CH0, TIMER19_CH1, EVENTOUT, I2C1_SCL
PB8	46	I/O	5VT	Default: JTCK, SWCLK, PB8 Alternate: TIMER7_CH0, TIMER7_CH1, EVENTOUT, I2C1_SDA Additional: CMP_IM_IP2
NRST	47	I/O		Default: NRST
PB9	48	I/O	5VT	Default: JTMS, SWDIO, PB9 Alternate: CMP_OUT, EVENTOUT, I2C1_SMBA Additional: BOOT1

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) This function is controlled by SYSCFG_TIMERINSEL register.
- (4) This function is controlled by SYSCFG_CFG0 register.
- (5) This function is controlled by SYSCFG_CFG1 register.
- (6) Functions are available on GD32A503CC devices only.

2.6.4. GD32A503Kx QFN32 pin definitions

Table 2-6. GD32A503Kx QFN32 pin definitions

		Pin	I/O	F
Pin Name	Pins	Type ⁽¹⁾	Level ⁽²⁾	Functions description
PC15	1	I/O		Default: PC15 Alternate: TIMER_ETI2 ⁽³⁾ , TIMER19_MCH1, TIMER19_CH1, CAN0_TX, MFCOM_D7, EVENTOUT Additional: OSC32OUT
BOOT0/PF0	2	I		Default: PF0 ⁽⁴⁾ Alternate: TIMER19_CH1, CAN0_RX, MFCOM_D6, EVENTOUT Additional: BOOT0
V _{DD}	3	Р		Default: V _{DD}
V _{SS}	4	Р		Default: V _{SS}
PF6- OSCOUT	5	0		Default: PF6 Alternate: I2C0_SCL, EVENTOUT Additional: OSCOUT
PF7-OSCIN	6	I		Default: PF7 Alternate: I2C0_SDA, EVENTOUT Additional: OSCIN
PF5	7	I/O		Default: PF5 Alternate: TIMER0_MCH0, SPI0_MISO, EVENTOUT
PC0	8	I/O		Default: PC0 Alternate: TIMER0_CH0, SPI0_SCK, EVENTOUT
PA0-WKUP0	9	I/O		Default: PA0 Alternate: TIMER0_CH3, EVENTOUT Additional: CMP_IM_IP3, WKUP0
PA1	10	I/O		Default: PA1 Alternate: CK_OUT, TIMER0_MCH2, SPI0_NSS, TRIGSEL_IN0, EVENTOUT
PA2	11	I/O		Default: PA2 Alternate: TIMER0_CH2, SPI0_MOSI, TRIGSEL_IN1, EVENTOUT
PA3	12	I/O		Default: PA3 Alternate: TIMER0_MCH1, USART0_TX, CAN0_TX, TIMER1_CH3, EVENTOUT Additional: ADC0_IN11, CMP_IM_IP4
PA4	13	I/O		Default: PA4 Alternate: TIMER0_CH1, USART0_RX, CAN0_RX, EVENTOUT Additional: ADC0_IN10, CMP_IM_IP5
PA7	14	I/O		Default: PA7 Alternate: TIMER19_MCH1, TIMER1_CH1, TIMER19_BRKIN1, TRIGSEL_IN7, EVENTOUT Additional: DAC_OUT
PE13	15	I/O	5VT	Default: PE13

				GD32A303XX DataSileet
Pin Name	Pins	Pin	I/O	Functions description
1 III Hullio	1 1110	Type ⁽¹⁾	Level ⁽²⁾	
				Alternate: TIMER7_MCH0, TIMER7_CH0, SPI0_MISO,
				TRIGSEL_IN2, EVENTOUT
				Additional: ADC0_IN7
				Default: PE14
PE14	16	I/O	5VT	Alternate: TIMER7_CH0, TIMER7_CH1, SPI0_SCK,
				TRIGSEL_IN3, EVENTOUT
				Additional: ADC0_IN6
				Default: PB13
PB13	17	I/O	5VT	Alternate: TIMER_ETIO ⁽³⁾ , SPI0_MOSI, USART0_TX,
				CANO_TX, EVENTOUT
				Additional: ADC0_IN5, ADC1_IN15 ⁽⁵⁾
				Default: PB14 Alternate: TIMER1_CH2, SPI0_NSS, USART0_RX,
PB14	18	I/O	5VT	CANO_RX, EVENTOUT
				Additional: ADC0_IN4, ADC1_IN14 ⁽⁵⁾
				Default: PD9
PD9	19	I/O	5VT	Alternate: TIMER0_BRKIN2, EVENTOUT
1 1 1 1 1 1	13	1/0	3 7 1	Additional: ADC0_IN3
Vss_2	20	Р		Default: Vss_2
V _{DD_2}	21	P		Default: V _{DD} 2
▼ BB_2				Default: PA8
				Alternate: TIMER0_BRKIN0, TIMER20_MCH2 ⁽⁶⁾ ,
PA8	22	I/O	5VT	MFCOM_D7, MFCOM_D5, TRIGSEL_IN4, EVENTOUT
				Additional: ADC1_IN3, NMI
				Default: PA10
				Alternate: TIMER20_MCH0 ⁽⁶⁾ , I2C0_SCL, USART0_TX,
PA10	23	I/O	5VT	MFCOM_D5, EVENTOUT
				Additional: ADC1_IN1
				Default: PA11
DA11	24	1/0	EV/T	Alternate: TIMER20_CH0 ⁽⁶⁾ , I2C0_SDA, USART0_RX,
PA11	24	I/O	5VT	MFCOM_D4, EVENTOUT, TRIGSEL_IN13
				Additional: ADC1_IN0
				Default: PC10
				Alternate: TIMER7_MCH0, TIMER7_CH0, I2C0_SDA,
PC10	25	I/O	5VT	USART0_RTS, USART0_DE, MFCOM_D3,
				TRIGSEL_OUT0, EVENTOUT
				Additional: ADC0_IN1, CMP_IM_IP1
				Default: PC11
DC 11	00		E) (T	Alternate: TIMER19_MCH0, TIMER19_CH0, I2C0_SCL,
PC11	26	I/O	5VT	USART0_CTS, MFCOM_D2, TRIGSEL_OUT3,
				EVENTOUT Additional: ADC0_IN0, CMP_IM_IP0
				Default: NJTRST, PB3
PB3	27	I/O	5VT	Alternate: TIMER7_MCH2, SPI0_IO2, MFCOM_D1,
1 00		"	371	EVENTOUT
PB4	28	I/O	5VT	Default: JTDO, PB4
1 5 7		., 0	J V I	

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: TIMER7_CH2, SPI0_IO3, MFCOM_D0, EVENTOUT
PB7	29	I2C1_SCL		Alternate: TIMER19_CH0, TIMER19_CH1, EVENTOUT,
PB8	30	I/O	5VT	Default: JTCK, SWCLK, PB8 Alternate: TIMER7_CH0, TIMER7_CH1, EVENTOUT, I2C1_SDA Additional: CMP_IM_IP2
NRST	31	I/O		Default: NRST
PB9	32	I/O	5VT	Default: JTMS, SWDIO, PB9 Alternate: CMP_OUT, EVENTOUT, I2C1_SMBA Additional: BOOT1

Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) This function is controlled by SYSCFG_TIMERINSEL register.
- (4) This function is controlled by SYSCFG_CFG0 register.
- (5) This function is controlled by SYSCFG_CFG1 register.
- (6) Functions are available on GD32A503KC devices only.

2.6.5. GD32A503xx pin alternate functions

Table 2-7. Port A alternate functions summary

Dim				iate ranotic						
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PA0		TIMER0_C								EVENTOUT
PAU		НЗ								EVENTOUT
PA1	CK_OU	TIMER0_M			CDIO NICC			TRIGSEL		EVENTOUT
PAI	Т	CH2			SPI0_NSS			_IN0		EVENTOUT
PA2		TIMER0_C			SPI0_MOS			TRIGSEL		EVENTOUT
PAZ		H2			I			_IN1		EVENTOUT
PA3		TIMER0_M	TIMER1_C			USART0	CANO TV			EVENTOUT
PAS		CH1	НЗ			_TX	CAN0_TX			EVENTOUT
PA4		TIMER0_C				USART0	CAN0_RX			EVENTOLIT
FA4		H1				_RX	CANU_KX			EVENTOUT
PA5			TIMER19_			USART2				EVENTOUT
FAS			BRKIN3			_TX				EVENTOOT
PA6			TIMER19_			USART2				EVENTOUT
1 70			BRKIN2			_RX				LVLINIOOI
PA7		TIMER19_	TIMER1_C	TIMER19_		USART2		TRIGSEL		EVENTOUT
1 //		MCH1	H1	BRKIN1		_CK ⁽³⁾		_IN7		LVLINIOOI
		TIMER0_B	TIMER20_		SPI1_NSS(MECOM	MFCOM_D	TRIGSEI		
PA8		RKIN0	MCH2 ⁽⁴⁾		²⁾ /I2S1_WS	D7	5	_IN4		EVENTOUT
		Talaito	WOTIE		(2)	<i>D1</i>	J	_1144		
PA9		TIMER20_			SPI1_MOS	MFCOM_	MFCOM_D	TRIGSEL		EVENTOUT
17.0		CH2 ⁽⁴⁾			I/I2S1_SD	D6	4	_IN5		LVLIVIOOT
PA10		TIMER20_		I2C0_SCL		USART0	MFCOM_D			EVENTOUT
17(10		MCH0 ⁽⁴⁾		1200_001		_TX	5			LVLIVIOOT
PA11		TIMER20_		I2C0_SDA		USART0	MFCOM_D	TRIGSEL		EVENTOUT
IAII		CH0 ⁽⁴⁾		1200_0DA		_RX	4	_IN13		LVLIVIOOT
PA12		TIMER20_		I2C0_SMB		USART0				EVENTOUT
IAIZ		MCH1		А		_CK				LVLIVIOOT
PA13		TIMER20_		I2C0_SDA						EVENTOUT
IAIS		CH1		1200_3DA						LVLINTOOT
PA14		TIMER20_		I2C0_SCL						EVENTOUT
Γ / I / 1		MCH0		1200_30L						LVLIVIOUI
PA15		TIMER20_						TRIGSEL		EVENTOUT
1713		CH0						_IN12		LVLIVIOUI

Table 2-8. Port B alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PB0		TIMER19_	TIMER19_							EVENTOUT

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
		CH0	CH1							
PB1		TIMER0_M	TIMER7_M							EVENTOUT
		CH0	CH3							LVLIVIOOI
PB2		TIMER0_C	TIMER7_C							EVENTOUT
		H0	H3							
PB3	NJTRST	TIMER7_M CH2			SPI0_IO2		MFCOM_D 1			EVENTOUT
PB4	JTDO	TIMER7_C H2			SPI0_IO3		MFCOM_D 0			EVENTOUT
PB5			TIMER7_B RKIN1	I2C0_SMB A	SPI0_MIS O	SPI1_NS S/I2S1_ WS				EVENTOUT
PB6			TIMER7_B RKIN2	TIMER_ETI	SPI0_SCK	SPI1_MO SI/I2S1_ SD				EVENTOUT
PB7	JTDI	TIMER19_ CH0	TIMER19_ CH1			I2C1_SC L				EVENTOUT
PB8	JTCK/SW CLK	TIMER7_C H0	TIMER7_C H1			I2C1_SD A				EVENTOUT
PB9	JTMS/SW DIO					I2C1_SM BA		CMP_OU T		EVENTOUT
PB10		TIMER20_ CH3	TIMER19_ CH3		SPI0_IO3	USART2 _CTS				EVENTOUT
PB11		TIMER20_ MCH2	TIMER1_C H3					TRIGSEL _IN10		EVENTOUT
PB12		TIMER20_ CH2						TRIGSEL _IN11		EVENTOUT
PB13	TIMER_E TIO ⁽¹⁾				SPI0_MOS I	USART0 _TX	CAN0_TX			EVENTOUT
PB14		TIMER1_C H2			SPI0_NSS	USART0 _RX	CAN0_RX			EVENTOUT
PB15			TIMER7_B RKIN1		USART1_T X	USART0 _RTS/ USART0 _DE				EVENTOUT

Table 2-9. Port C alternate functions summary

		= 0				•				
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PC0		TIMER0_C H0			SPI0_SCK					EVENTOUT

								1		
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PC1		TIMER0_M CH3				USART2 _CTS ⁽³⁾				EVENTOUT
PC2	CK_OUT	TIMER19_ MCH2				USART1 _TX				EVENTOUT
PC3		TIMER19_ CH2				USART1 _RX				EVENTOUT
PC4		TIMER19_ CH1				USART2 _RTS/ USART2 _DE				EVENTOUT
PC5		TIMER19_ MCH0	TIMER19_ CH0			USART2 _CTS				EVENTOUT
PC6		TIMER0_C H1			SPI1_SCK/ I2S1_CK					EVENTOUT
PC7		TIMER0_M CH0	TIMER20_ BRKIN1 ⁽⁴⁾		I2S1_MCK					EVENTOUT
PC8		TIMER0_C H0	TIMER20_ BRKIN2 ⁽⁴⁾							EVENTOUT
PC9		TIMER0_B RKIN3	TIMER20_ BRKIN3 ⁽⁴⁾							EVENTOUT
PC10		TIMER7_M CH0	TIMER7_C H0	I2C0_SDA		USART0 _RTS/ USART0 _DE	MFCOM_D	TRIGSEL _OUT0		EVENTOUT
PC11		TIMER19_ MCH0	TIMER19_ CH0	I2C0_SCL		USART0 _CTS	MFCOM_D 2	TRIGSEL _OUT3		EVENTOUT
PC12		TIMER20_ MCH1 ⁽⁴⁾	TIMER7_C H0			USART1 _TX	CAN1_TX			EVENTOUT
PC13	CK_OUT		TIMER19_ CH2				MFCOM_D 4	TRIGSEL _OUT4		EVENTOUT
PC14			TIMER19_ BRKIN0							EVENTOUT
PC15	TIMER_E TI2 ⁽¹⁾	TIMER19_ MCH1	TIMER19_ CH1				CAN0_TX	MFCOM_ D7		EVENTOUT

Table 2-10. Port D alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PD0		TIMER20_ CH1 ⁽⁴⁾	TIMER7_C H1			USART1 _RX	CAN1_RX			EVENTOUT
PD1		TIMER7_M			SPI1_NSS/					EVENTOUT

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
		CH1			12S1_WS					
PD2		TIMER7_C H1			SPI0_NSS					EVENTOUT
PD3		TIMER20_ MCH3 ⁽⁴⁾			SPI0_NSS	USART1 _RTS/ USART1 _DE				EVENTOUT
PD4		TIMER20_ CH3 ⁽⁴⁾	TIMER1_C H2		SPI0_MOS					EVENTOUT
PD5		TIMER0_B RKIN0	TIMER20_ BRKIN1	TIMER7_B RKIN0		USART1 _CK				EVENTOUT
PD6		TIMER7_M CH3	TIMER19_ CH0			I2C1_SC L	CAN1_TX			EVENTOUT
PD7		TIMER7_C H3	TIMER19_ CH1			I2C1_SD A	CAN1_RX			EVENTOUT
PD8			TIMER7_B RKIN0		USART1_R X	USART0 _CTS				EVENTOUT
PD9			TIMER0_B RKIN2			USART1 _RTS ⁽²⁾ / USART1 _DE ⁽²⁾				EVENTOUT
PD10			TIMER0_B RKIN1		SPI1_NSS/ I2S1_WS	USART1 _CTS				EVENTOUT
PD11		TIMER0_M CH3	TIMER20_ BRKIN0 ⁽⁴⁾			I2C1_SM BA				EVENTOUT
PD12		TIMER0_C H3	TIMER20_ BRKIN0							EVENTOUT
PD13		TIMER0_M CH2			SPI1_NSS/ I2S1_WS					EVENTOUT
PD14		TIMER0_C H2			SPI1_MOS I/I2S1_SD					EVENTOUT
PD15		TIMER0_M CH1			SPI1_MIS O					EVENTOUT

Table 2-11. Port E alternate functions summary

	Table 2-11. For E diterrate functions summary											
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9		
PE0		TIMER20_	TIMER7_B			USART2	MFCOM_D			EVENTOUT		
FEU		BRKIN2	RKIN3			_TX	7		EVE	EVENTOUT		
DE1		TIMER20_				USART2	MFCOM_D			EVENTOUT		
PE1		BRKIN3				_RX	6			EVENTOUT		

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PE2			TIMER19_ MCH3			USART1 _RTS/ USART1 _DE	MFCOM_D	TRIGSEL _OUT7		EVENTOUT
PE3			TIMER19_ CH3				MFCOM_D 2	TRIGSEL _OUT6		EVENTOUT
PE4		TIMER0_M CH1	TIMER19_ MCH0		SPI1_MIS O		MFCOM_D 1	TRIGSEL _OUT2		EVENTOUT
PE5		TIMER0_C H1	TIMER19_ CH0		SPI1_SCK/ I2S1_CK		MFCOM_D 0	TRIGSEL _OUT1		EVENTOUT
PE6		TIMER1_C H0, TIMER1_E TI	TIMER19_ MCH2		12S1_MCK		MFCOM_D 5	TRIGSEL _OUT5		EVENTOUT
PE7		TIMER7_M CH2	TIMER19_ BRKIN3				MFCOM_D 0			EVENTOUT
PE8		TIMER7_C H2	TIMER19_ BRKIN2				MFCOM_D 1			EVENTOUT
PE9			TIMER7_B RKIN3							EVENTOUT
PE10			TIMER7_B RKIN2			I2C1_SC L				EVENTOUT
PE11		TIMER7_M CH1				I2C1_SD A		TRIGSEL _IN8		EVENTOUT
PE12		TIMER7_C H1				I2C1_SM BA		TRIGSEL _IN9		EVENTOUT
PE13		TIMER7_M CH0	TIMER7_C H0		SPI0_MIS O			TRIGSEL _IN2		EVENTOUT
PE14		TIMER7_C H0	TIMER7_C H1		SPI0_SCK			TRIGSEL _IN3		EVENTOUT
PE15		TIMER20_ MCH3	TIMER19_ MCH3		SPI0_IO2	USART2 _RTS/ USART2 _DE				EVENTOUT

Table 2-12. Port F alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
PF0		TIMER19_ CH1					CAN0_RX	MFCOM_ D6		EVENTOUT
PF1		TIMER0_B	TIMER19_							EVENTOUT

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9
		RKIN1	BRKIN1							
						USART2				
PF2		TIMER0_B	TIMRE19_			_RTS/	TRIGSEL_I	CMP_OU		EVENTOUT
FFZ		RKIN0	BRKIN0			USART2	N6	Т		EVENTOUT
						_DE				
PF3			TIMER0_B			USART2				CVCNTOLIT
FF3			RKIN3			_TX				EVENTOUT
PF4			TIMER0_B			USART2				CV/CNTOLIT
PF4			RKIN2			_RX				EVENTOUT
PF5		TIMER0_M			SPI0_MIS	USART1				EVENTOUT
PF5		CH0			0	_CTS ⁽²⁾				EVENTOUT
PF6				I2C0_SCL						EVENTOUT
PF7				I2C0_SDA						EVENTOUT

Notes:

- (1) This function is controlled by SYSCFG_TIMERINSEL register.
- (2) Functions are available on GD32A503Vx/Rx/Cx devices only.
- (3) Functions are available on GD32A503Vx/Rx devices only.
- (4) Functions are available on GD32A503xC/xD/VB devices only.

3. Functional description

3.1. Arm[®] Cortex[®]-M33 core

The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and low-cost debug. The characteristics of integrated and advanced make the Cortex®-M33 processor suitable for market products that require microcontrollers with high performance and low power consumption.

32-bit Arm® Cortex®-M33 processor core

- Up to 100 MHz operation frequency
- Ultra-low power, energy-efficient operation
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M33 processor is based on the ARMv8 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M33:

- Internal Bus Matrix connected with Code bus, System bus, and Private Peripheral Bus (PPB) and debug accesses
- Nested Vectored Interrupt Controller (NVIC)
- Breakpoint Unit (BPU)
- Data Watchpoint and Trace (DWT)
- Instrumentation Trace Macrocell (ITM)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Trace Port Interface Unit (TPIU)
- Memory Protection Unit (MPU)
- Floating Point Unit (FPU)
- DSP Extension (DSP)

3.2. Embedded memory

- Up to 384 Kbytes of Flash memory
- Max 4KB emulated EEPROM
- Extend Block: 64KB shared for data flash and EEPROM backup
- 4KB shared RAM for basic SRAM or EEPROM SRAM or fast program buffer
- ECC of on-chip Flash memory with single bit error corrected and double bit errors detected
- Up to 48 Kbytes of SRAM with ECC check

384 Kbytes of inner Flash and 48 Kbytes of inner SRAM at most is available for storing programs and data. 0~3 waiting time within Bank0/Bank1/Data Flash when CPU executes

instructions and data. <u>Table 2-2. GD32A503xx memory map</u> shows the memory map of the GD32A503xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3. Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 2 to 40 MHz crystal oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 2.7 to 5.5 V application supply and I/Os

The Clock Control Unit (CCTL) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 100 MHz/100 MHz/50 MHz. See *Figure 2-6. GD32A503xx clock tree* for details on the clock tree.

The Reset Control Unit (RCTL) controls three kinds of reset: system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller and the backup domain. Power-on reset (POR) and power-down reset (PDR) are always active. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. The embedded over voltage detector (OVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 2.7 to 5.5 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 2.7 to 5.5 V, external analog power supplies for ADC, DAC, reset blocks, RCs and PLL.
- V_{BAK} range: 2.7 to 5.5 V, power supply for RTC, external clock 32 kHz oscillator, backup registers and three pads, including PC13 to PC15.

3.4. Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory

by using USART0 (PA10 and PA11), LIN (PA3 and PA4), and CAN0 (PB13 and PB14).

3.5. Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep, Deep-sleep, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

■ Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In Deep-sleep mode, all clocks in the 1.1V domain are off, and all of IRC8M, HXTAL and PLLs are disabled. The contents of SRAM and registers are preserved. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, LVD output, CAN0 wakeup, CAN1 wakeup, USART0 wakeup, USART1 wakeup, USART2 wakeup, CMP output and over voltage output. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

■ Standby mode

In Standby mode, the whole 1.1V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pins.

3.6. Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 1 MSPS
- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
- Input voltage range: V_{REF-} to V_{REF+}
- Temperature sensor

Two 12-bit 1 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: up to 16 external channels, 1 channel for internal temperature sensor (V_{SENSE}) and 1 channel for internal reference voltage (V_{REFINT}). The input voltage range is between V_{REF-} and V_{REF+}. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. The analog watchdog allows the application to detect whether the input voltage goes outside the user-defined higher or lower thresholds. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered by TRIGSEL, or by software. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC IN16 input channel which is used to convert the sensor output voltage in a digital value.

To ensure a high accuracy on ADC and DAC, the ADC/DAC independent external reference voltage should be connected to V_{REF+}/V_{REF-} pins. According to the different packages, V_{REF+} pin can be connected to V_{DDA} pin, or external reference voltage, V_{REF-} pin must be connected to V_{SSA} pin. The V_{REF+} pin is only available on no less than 64-pin packages, or else the V_{REF+} pin is not available and internally connected to V_{DDA} . The V_{REF-} pin is only available on no less than 100-pin packages, or else the V_{REF-} pin is not available and internally connected to V_{SSA} .

3.7. Digital to analog converter (DAC)

8-bit or 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC is used to generate variable analog outputs. The DAC channel can be triggered by TRIGSEL or by software with DMA support. The maximum output value of the DAC is V_{REF+}.

3.8. Controller area network (CAN)

- Two CAN interfaces supports the CAN protocols version 2.0A and B, ISO11891-1:2015 and BOSCH CAN FD specification with baud rates up to 1 Mbit/s when classical frames and 8 Mbit/s when FD frames.
- Supports CAN FD Frame with up to 64 data bytes (ISO11898-1 and Bosch CAN FD specification V1.0).
- Supports four communication mode: normal mode, Inactive mode, Loopback and silent mode, and Monitor mode.
- 32 mailboxes when configures with 8 bytes data length each, configurable as Rx or Tx mailbox.
- Receive public filter register for Rx mailboxes and receive public filter register for Rx FIFO.

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. The CAN module is a CAN Protocol controller with a very flexible mailbox system for transmitting and receiving CAN frames. The mailbox system consists of a set of mailboxes that store configuration and control data, timestamp, message ID, and data. The space of up to 32 mailboxes can also be configured as Rx FIFO with ID filtering against up to 104 extended IDs or 208 standard IDs or 416 partial 8-bit IDs, and configure receive FIFO/mailbox private filter register for up to 32 ID filter table elements.

3.9. Comparators (CMP)

- One fast rail-to-rail low-power comparator with software configurable
- Comparator has configurable analog input source

One Comparator (CMP) is implemented within the devices. It can work either standalone (all terminal are available on I/Os) or together with the timers. It could be used to wake up the MCU from low-power mode by an analog signal, provide a trigger source when an analog signal is in a certain condition, achieves some current control by working together with a PWM output of a timer and the DAC. It blanking function can be used for false overcurrent detection in motor control applications.

3.10. Direct memory access controller (DMA)

- 7 channels for DMA0 controller and 5 channels for DMA1 controller, and each channel are configurable
- Each channel is connected to flexible hardware DMA request.

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.

Each channel is connected to flexible hardware DMA requests. Each channel is dedicated to manage memory access requests from one or more peripherals. Transfer size of source and destination are independent and configurable.

3.11. DMA request multiplexer (DMAMUX)

- 12 channels for DMAMUX request multiplexer and 4 channels for DMAMUX request generator
- Support 27 trigger inputs
- Support 27 synchronization inputs

DMAMUX is a transmission scheduler for DMA requests. The DMAMUX request multiplexer is used for routing a DMA request line between the peripherals / generated DMA request (from the DMAMUX request generator) and the DMA controller. Each DMAMUX request multiplexer channel selects a unique DMA request line, unconditionally or synchronously with events from its DMAMUX synchronization inputs.

3.12. General-purpose inputs/outputs (GPIOs)

■ Up to 88 fast GPIOs, all mappable on 16 external interrupt lines

- Analog input/output configurable
- Alternate function input/output configurable

There are up to 88 general purpose I/O pins (GPIO) in GD32A503xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15, and PF0 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Most of the GPIO pins are shared with digital or analog alternate functions.

3.13. Inter-integrated circuit (I2C)

- Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode
- SMBus 3.0 and PMBus 1.3 compatible

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.14. Inter-IC sound (I2S)

- One I2S bus Interface with sampling frequency from 8 KHz to 192 KHz
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 4-wire serial lines. GD32A503xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1. The audio sampling frequency from 8 KHz to 192 KHz is supported.

3.15. Multi-function communication Interface (MFCOM)

Programmable logic mode by integrating external digital logic function chip or combining

pin / shifter / timer function to produce complex output.

■ USART, I2C, SPI, I2S, PWM waveform generation supported

The MFCOM is a highly configurable module provide emulation of a variety of serial communication protocols and flexible timers. Data can be signaled by timer, loaded, stored and compared between shifter and shiftbuf using DMA/Polling/Interrupt method. Program trigger, pin or shifter flag for the timer to produce shift clock that transfers data and generate specific events.

3.16. Real time clock (RTC)

- 32-bit programmable counter with a programmable 20-bit prescaler
- Alarm function

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock of HXTAL clock divided by 128, or LXTAL oscillator clock, or IRC40K oscillator clock.

3.17. Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 22.5 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking
- Quad-SPI configuration available in master mode (only in SPI1)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). All SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI1.

3.18. Trigger selection controller (TRIGSEL)

- Trigger input source could be external input signal or output of peripheral
- Trigger selection output could be for external output or peripheral
- Supports different optional trigger inputs

The trigger selection controller (TRIGSEL) allows software to select the trigger input signal for various peripherals. TRIGSEL provides a flexible mechanism for a peripheral to select different trigger inputs. With TRIGSEL, there are up to 4 trigger selection outputs could be selected for each peripheral. And every output could select from different trigger input signal.

3.19. Timers and PWM generation

- Four 16-bit advanced timer (TIMER0, TIMER7, TIMER19, TIMER20), one 16-bit general timer (TIMER1), and two 16-bit basic timer (TIMER5, TIMER6)
- Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
- 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0, TIMER19, TIMER19, TIMER20) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 8 independent channels can be used for input capture, output compare, PWM generation (edge- or centeraligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMER1. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.

The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TIMER5 &TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.

The GD32A503xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and an 8-stage prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep, and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.20. Universal synchronous asynchronous receiver transmitter (USART)

- Maximum speed up to 12.5 MBits/s
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- ISO 7816-3 compliant smart card interface

The USART (USART0, USART1, USART2) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.21. Debug mode

Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.22. Package and operation temperature

- LQFP100(GD32A503Vx), LQFP64 (GD32A503Rx), LQFP48(GD32A503Cx) and QF N32(GD32A503Kx).
- Operation temperature range: -40°C to +125°C (automotive level).

4. Electrical characteristics

4.1. Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1) (4)

Symbol	Parameter	Min	Max	Unit
V_{DD}	External voltage range ⁽²⁾	V _{SS} - 0.3	V _{SS} + 5.5	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 5.5	V
V _{IN}	Input voltage on all I/O pins(3)	V _{SS} - 0.3	$V_{DD} + 0.3$	V
AVDDX	Variations between different V _{DD} power pins		50	mV
Vssx-Vss	Variations between different ground pins	_	50	mV
TA	Operating temperature range	-40	+125	°C
	Power dissipation at T _A = 125°C of LQFP100		441	
P _D	Power dissipation at T _A = 125°C of LQFP64	_	TBD	mW
רט	Power dissipation at T _A = 125°C of LQFP48	_	TBD	IIIVV
	Power dissipation at T _A = 125°C of QFN32	_	TBD	
T _{STG}	Storage temperature range -65 +150		°C	
TJ	Maximum junction temperature	_	150	°C

⁽¹⁾ Guaranteed by design, not tested in production.

4.2. Recommended DC characteristics

Table 4-2. DC operating conditions

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
$V_{DD}^{(2)}$	Supply voltage		2.7	5.0	5.5	٧
V_{DDA}	Analog supply voltage	Same as V _{DD}	2.7	5.0	5.5	V

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ All main power and ground pins should be connected to an external power source within the allowable range.

⁽³⁾ VIN maximum value cannot exceed 5.5 V.

⁽⁴⁾ It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and V_{DDA} does not exceed 300 mV during power-up and operation.

⁽²⁾ If the voltage is below 3V, the flash erasing may be interrupted and FMC_STAT0->RSTERR=1.

Figure 4-1. Recommended power supply decoupling capacitors (1)(2)

- The V_{REF+} and V_{REF-} pins are only available on 100-pin package, or else the V_{REF-} V_{REF-} pins are not available and internally connected to V_{DDA} and V_{SSA} pins.
- All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	AHB clock frequency			100	MHz
f _{APB1}	APB1 clock frequency	_	_	50	MHz
f _{APB2}	APB2 clock frequency			100	MHz

Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up / Power down(1)

Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{DD} rise time rate		0	∞	
t∨dd	V _{DD} fall time rate	_	100	8	µs/V

Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions(1)(2)(3)

Symbol	Parameter	Conditions	Тур	Unit
	Start-up time	Clock source from HXTAL	5.2	
		(HXTALSCAL off)	5.2	ms
t _{start-up}		Clock source from HXTAL	0.4	ms
		(HXTALSCAL on)	2.1	
		Clock source from IRC8M	105	us

- Based on characterization, not tested in production.
- After power-up, the start-up time is the time between the rising edge of NRST high and the main function. (2)
- (3) PLL is off.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

Symbol	Parameter	Тур	Unit
t _{Sleep}	Wakeup from Sleep mode	1.3	
	Wakeup from Deep-sleep mode (LDO in normal power	2.3	
	mode and normal driver mode)	2.3	
	Wakeup from Deep-sleep mode (LDO in low power mode	2.3	
+ _ (3)	and normal driver mode)	2.3	
t _{Deep-sleep} (3)	Wakeup from Deep-sleep mode (LDO in normal power	2.3	μs
	mode and low driver mode)	2.3	
	Wakeup from Deep-sleep mode (LDO in low power mode	2.3	
	and low driver mode)	2.3	
tStandby	Wakeup from Standby mode	110	

⁽¹⁾ Based on characterization, not tested in production.

4.3. Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7. Power consumption characteristics (2)(3)(4)

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		$V_{DD} = V_{DDA} = 5 \text{ V}$, HXTAL = 8 MHz, System clock = 100 MHz, All peripherals enabled	_	24.6	_	mA
		$V_{DD} = V_{DDA} = 5 \text{ V}$, HXTAL = 8 MHz, System clock = 100 MHz, All peripherals disabled	_	11.9	_	mA
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals enabled	_	18.5	_	mA
	Supply current (Run mode)	V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals disabled	_	9.3	_	mA
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 64 MHz, All peripherals enabled	_	15	_	mA
I _{DD} +I _{DDA}		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 64 MHz, All peripherals disabled	_	6.7	_	mA
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled	_	11.6	_	mA
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals disabled	_	5.4	_	mA
		$V_{DD} = V_{DDA} = 5 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{ System}$ clock = 32 MHz, All peripherals enabled	_	8.3	_	mA
		$V_{DD} = V_{DDA} = 5 \text{ V}$, HXTAL = 8 MHz, System clock = 32 MHz, All peripherals disabled	_	4.2	_	mA

⁽²⁾ The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 5 \text{ V}$, IRC8M = System clock = 8 MHz.

⁽³⁾ DSLPVS[1:0] bit in Register RCU_DSV is 0x11.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		6.7		mA
		clock = 24 MHz, All peripherals enabled		0.7		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		3.5		mA
		clock = 24 MHz, All peripherals disabled		3.3		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		5		mA
		clock = 16 MHz, All peripherals enabled		3		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		2.9		mA
		clock = 16 MHz, All peripherals disabled		2.5		ША
		$V_{DD} = V_{DDA} = 5 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{ System}$		3.3		mA
		clock = 8 MHz, All peripherals enabled		0.0		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		2.2		mA
		clock = 8 MHz, All peripherals disabled		2.2		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		2.5		mA
		clock = 4 MHz, All peripherals enabled		2.0		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		1.9		mA
		clock = 4 MHz, All peripherals disabled		1.9		IIIA
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		2		mA
		clock =2 MHz, All peripherals enabled			_	ША
		$V_{DD} = V_{DDA} = 5 \text{ V, HXTAL} = 8 \text{ MHz, System}$		1.7		mA
		clock = 2 MHz, All peripherals disabled		1.7		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		1.8		mA
		clock = 1 MHz, All peripherals enabled		1.0		ША
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System		1.6		mA
		clock = 1 MHz, All peripherals disabled		1.0		ША
		$V_{DD} = V_{DDA} = 5 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{ System}$				
		clock = 100 MHz, CPU clock off, All	_	19.7	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 100 MHz, CPU clock off, All	_	6.1	_	mA
		peripherals disabled				
		$V_{DD} = V_{DDA} = 5 \text{ V}, \text{ HXTAL} = 8 \text{ MHz}, \text{ System}$				
		clock = 72 MHz, CPU clock off, All	_	14.7	_	mA
	Supply current	peripherals enabled				
	(Sleep mode)	V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 72 MHz, CPU clock off, All	_	4.8	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 64 MHz, CPU clock off, All	_	13.3	_	mA
		peripherals enabled				
		$V_{DD} = V_{DDA} = 5 \text{ V, HXTAL} = 8 \text{ MHz, System}$				
	clock = 64 MHz, CPU clock off, All	_	4.5	_	mA	
		peripherals disabled				

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 48 MHz, CPU clock off, All	_	10.3	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 48 MHz, CPU clock off, All	_	3.7	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 32 MHz, CPU clock off, All	_	7.5	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 32 MHz, CPU clock off, All	_	3	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 24 MHz, CPU clock off, All	_	6	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 24 MHz, CPU clock off, All	_	2.7	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 16 MHz, CPU clock off, All	_	4.6	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 16 MHz, CPU clock off, All	_	2.3	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 8 MHz, CPU clock off, All	_	3.1	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 8 MHz, CPU clock off, All	_	2	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 4 MHz, CPU clock off, All	_	2.4	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 4 MHz, CPU clock off, All	_	1.7	_	mA
		peripherals disabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 2 MHz, CPU clock off, All	_	2	_	mA
		peripherals enabled				
		V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System				
		clock = 2 MHz, CPU clock off, All	_	1.6	_	mA
		peripherals disabled				

I	Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
			V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 1 MHz, CPU clock off, All peripherals enabled	_	1.8	_	mA
			V _{DD} = V _{DDA} = 5 V, HXTAL = 8 MHz, System clock = 1 MHz, CPU clock off, All peripherals disabled	_	1.58	_	mA
			V _{DD} = V _{DDA} = 5 V, LDO in normal power and normal driver mode, IRC40K off, RTC off, All GPIOs analog mode, SRAM1 and SRAM2 on, V _{core} = 1.1V	_	160.7 9	_	uA
			$V_{DD} = V_{DDA} = 5 \text{ V}$, LDO in low power and normal driver mode, RTC off, All GPIOs analog mode, SRAM1 and SRAM2 on, $V_{core} = 1.1 \text{V}$		134.7 9	_	uA
		Supply current (Deep-Sleep mode)	$V_{DD} = V_{DDA} = 5$ V, LDO in normal power and low driver mode, IRC40K off, RTC off, All GPIOs analog mode, SRAM1 and SRAM2 on, $V_{core} = 1.1V$	ı	107.7 9	_	uA
			$V_{DD} = V_{DDA} = 5$ V, LDO in low power and low driver mode, IRC40K off, RTC off, All GPIOs analog mode, SRAM1 and SRAM2 on, $V_{core} = 1.1V$		81.46	_	uA
			$V_{DD} = V_{DDA} = 5$ V, LDO in low power and low driver mode, IRC40K off, RTC off, All GPIOs analog mode, SRAM1 and SRAM2 off, $V_{core} = 0.8V$	_	39.79	_	uA
			$V_{DD} = V_{DDA} = 5 \text{ V, IRC40K on, RTC on,}$ BOR on		8.59	_	μΑ
		Supply current	$V_{DD} = V_{DDA} = 5 \text{ V, IRC40K on, RTC off,}$ BOR on	_	7.65	_	μΑ
	(Standby mode)	$V_{DD} = V_{DDA} = 5 \text{ V, IRC40K off, RTC off,}$ BOR on	_	6.11	_	μΑ	
			$V_{DD} = V_{DDA} = 5 \text{ V, IRC40K off, RTC off,}$ $BOR \text{ off}$	_	2.31	_	μΑ

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all values given for $T_A = 25$ °C and test result is mean value.
- (3) Run mode and sleep mode use WS_WSCNT_3 and PLL on.
- (4) When analog peripheral blocks such as ADCs, DACs, HXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.

Figure 4-3. Typical supply current consumption in Sleep mode

4.4. EMC characteristics

EMI (Electromagnetic Interference) emission test result is given in the <u>Table 4-8. EMI characteristics</u>, The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J1752-3:2017 standard which specifies the test board and the pin loading.

Table 4-8. EMI characteristics(1)

Symbol	Parameter	Conditions	Tested frequency band	Max vs. [f _{HXTAL} /f _{HCLK}] 8/100 MHz	Unit
		$V_{DD} = 5.5 \text{ V}, T_A = +25 ^{\circ}\text{C},$	0.15 MHz to 30 MHz	-8.45	
		LQFP100, f _{HCLK} = 100 MHz,	30 MHz to 130 MHz	10.34	
Semi	D	conforms to SAE J1752- 3:2017	130 MHz to 1 GHz	28.86	dDu\/
SEMI	Peak level	$V_{DD} = 5.5 \text{ V}, T_A = +25 \text{ °C},$	0.15 MHz to 30 MHz	-7.31	dBμV
		LQFP64, f _{HCLK} = 100 MHz,	30 MHz to 130 MHz	12.49	
		conforms to SAE J1752- 3:2017	130 MHz to 1 GHz	17.78	

⁽¹⁾ Based on characterization, not tested in production.

4.5. Power supply supervisor characteristics

Table 4-9. Power supply supervisor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT<2:0> = 000(rising edge)		2.94	_	
		LVDT<2:0> = 000(falling edge) — 2.84	_			
		LVDT<2:0> = 001(rising edge)	_	3.16	_	
		LVDT<2:0> = 001(falling edge)	_	3.03	_	
		LVDT<2:0> = 010(rising edge)	_	3.36	_	
V _{LVD} ⁽¹⁾	Low voltage Detector level selection	LVDT<2:0> = 010(falling edge)	_	3.24	_	V
		LVDT<2:0> = 011(rising edge)	_	3.56	_	
		LVDT<2:0> = 011(falling edge) —	_	3.44	_	
		LVDT<2:0> = 100(rising edge)	_	4.07	_	
		LVDT<2:0> = 100(falling edge)	_	3.95	_	
		LVDT<2:0> = 101(rising edge)	_	4.27	_	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT<2:0> = 101(falling edge)	_	4.15	_	
		LVDT<2:0> = 110(rising edge)	_	4.47	_	
		LVDT<2:0> = 110(falling edge)	_	4.35	_	
		LVDT<2:0> = 111(rising edge)	_	4.68	_	
		LVDT<2:0> = 111(falling edge)	_	4.56	_	
V _{LVDhyst} ⁽²⁾	LVD hystersis	_	_	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold	_	_	2.13	_	V
V _{PDR} ⁽¹⁾	Power down reset threshold	_	_	2.08	_	٧
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	_	_	50	_	mV
trsttempo ⁽¹⁾	Reset temporization	_	_	460	_	us
V _{OVD} ⁽¹⁾	OVD threshold	Falling edge	_	5.697	_	V
VOVD	(OVDT=1)	Rising edge		5.714	1	V
V _{OVDhyst} ⁽¹⁾	OVD hysteresis		_	17		m\/
V OVDhyst\''	(OVDT=1)	_	_	17	_	mV
V (1)	OVD threshold	Falling edge	_	5.170	_	V
V _{OVD} ⁽¹⁾	(OVDT=0)	Rising edge	_	5.188	_	V
V _{OVDhyst} ⁽¹⁾	OVD hysteresis (OVDT=0)	_	_	18	_	mV
	Dues our state week - 1-1	Falling edge	_	2.53	_	V
V _{BOR} ⁽¹⁾⁽³⁾	Brownout threshold	Rising edge	_	2.569	_	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	_	_	39	_	mV

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) BOR is not available when V_{DD} is lower than 3V.

4.6. Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 4-10	. ESD and	static latch-up	characteristics(1)(2)(3)
-------------------	-----------	-----------------	--------------------------

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{ESD(HBM)} (4)	Electrostatic discharge	T _A = 25 °C, LQFP100, Zap 3				4000	V
V ESD(HBM)	voltage (human body model)	pulse, Zap Interval = 500 ms				4000	V
		All pins except				500	V
V _{ESD(CDM)} (5)	Electrostatic discharge	the corner pins	T _A = 25 °C,			300	V
* LSD(CDIVI)	voltage (charge device model)	Corner pins only	LQFP100		_	750	V
[[] (6)	I-test	T _A = 125 °C, LQFP100		_	_	200	mA
LU	V _{supply} over voltage	1A = 125 C,	, LQFF 100		_	8.25	٧

- All ESD testing are in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
- (2) Device failure is defined as: "If after exposure to ESD pulses, the device does not meet the device specification requirements, which include the complete DC parametric and functional testing at room temperature and hot temperature".
- (3) Based on characterization, not tested in production.
- (4) This parameter is tested in conformity with AEC-Q100-002E.
- (5) This parameter is tested in conformity with AEC-Q100-011D.
- (6) This parameter is tested in conformity with AEC-Q100-004D.

4.7. External clock characteristics

Table 4-11. High speed external clock (HXTAL) generated from a crystal / ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	Crystal or ceramic frequency	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	2	8	40	MHz
R _F ⁽²⁾	Feedback resistor	V _{DD} = 5 V	_	400	_	kΩ
	Recommended matching					
C _{HXTAL} ^{(2) (3)}	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT					
Ducy _(HXTAL) ⁽²⁾	Crystal or ceramic duty cycle	_	30	50	70	%
		Startup,				
		RCU_CTL_HXTALSC	_	4	_	
g _m (2)	Ossillatas transas advetas as	AL=0				mA/V
' ym'⁻′	Oscillator transconductance	Startup,				IIIAV V
		RCU_CTL_HXTALSC	_	29	_	
		AL=1				
I _{DDHXTAL} ⁽¹⁾	Crystal or ceramic operating	V _{DD} = 5 V, HXTAL		0.46		mA
IDDHXTAL(**)	current	SCAL off		0.46	_	IIIA
to(1)	Crystal or ceramic startup time	V _{DD} = 5 V, HXTAL		5.1	_	ms
t _{SUHXTAL} (1)	orystar or ceramic stantup time	SCAL off				

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) $C_{\text{HXTAL1}} = C_{\text{HXTAL2}} = 2^*(C_{\text{LOAD}} C_{\text{S}})$, for C_{HXTAL1} and C_{HXTAL2} , it is recommended matching capacitance on OSCIN

and OSCOUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_{S} , it is PCB and MCU pin stray capacitance.

Table 4-12. High speed external clock characteristics (HXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f (1)	External clock source or oscillator	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	1		F.0	MHz
f _{HXTAL_ext} (1)	frequency	5.5 V	1	_	50	IVITZ
VHXTALH ⁽²⁾	OSCIN input pin high level		0.7 V _{DD}		V _{DD}	V
	voltage	$V_{DD} = 5 V$	טטי סטי	_	VDD	V
V _{HXTALL} ⁽²⁾	OSCIN input pin low level voltage		Vss	_	$0.3 V_{DD}$	V
t _{H/L(HXTAL)} (2)	OSCIN high or low time		5	_		ns
t _{R/F(HXTAL)} (2)	OSCIN rise or fall time			_	10	ns
C _{IN} ⁽²⁾	OSCIN input capacitance	_		5	_	pF
Ducy _(HXTAL) (2)	Duty cycle	_	30	_	70	%

⁽¹⁾ Based on characterization, not tested in production.

Table 4-13. Low speed external user clock characteristics (LXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL_ext} (1)	External clock source or oscillator	$2.7 \text{ V} \leq \text{V}_{DD} \leq$			1000	kHz
THXTAL_ext\ /	frequency	5.5 V	_	_	1000	KIIZ
V _{HXTALH} ⁽²⁾	OSC32IN input pin high level		0.7 V _{DD}		\/	V
	voltage	\/ - E \/	U.7 VDD	_	V _{DD}	V
V (2)	OSC32IN input pin low level	$V_{DD} = 5 V$	\/		0.237	V
V _{HXTALL} ⁽²⁾	voltage		Vss	_	0.3 V _{DD}	V
t _{H/L(HXTAL)} (2)	OSC32IN high or low time	_	450	_	_	ns
t _{R/F(HXTAL)} (2)	OSC32IN rise or fall time	_	_	_	50	ns
C _{IN} ⁽²⁾	OSC32IN input capacitance	_	_	5	_	pF
Ducy _(HXTAL) (2)	Duty cycle	_	30	_	70	%

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

4.8. Internal clock characteristics

Table 4-14. High speed internal clock (IRC8M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	High Speed Internal					
f _{IRC8M}	Oscillator (IRC8M)	$V_{DD} = V_{DDA} = 5 V$	_	8	_	MHz
	frequency					
		$V_{DD} = V_{DDA} = 5 V$,	-3.75		. 2 75	%
	IRC8M oscillator Frequency	$T_A = -40 ^{\circ}\text{C} \sim +125 ^{\circ}\text{C}$	-3.75	_	+3.75	70
	accuracy, Factory-trimmed	$V_{DD} = V_{DDA} = 5 V$,	-1.0		+1.0	%
ACC _{IRC8M}		T _A = 25 °C	-1.0	_	+1.0	70
	IRC8M oscillator Frequency					
	accuracy, User trimming	_	_	0.5	_	%
	step ⁽²⁾					
Ducy _{IRC8M} ⁽²⁾	IRC8M oscillator duty cycle	$V_{DD} = V_{DDA} = 5 V$	45	50	55	%
(1)	IRC8M oscillator operating	V -V -FV		407		
IDDAIRC8M ⁽¹⁾	current	$V_{DD} = V_{DDA} = 5 V$		107		uA
4(1)	IRC8M oscillator startup	\/ = \/ = E \/		1.2		
tsuirc8m ⁽¹⁾	time	$V_{DD} = V_{DDA} = 5 V$	_	1.3		us

⁽¹⁾ Based on characterization, not tested in production.

Table 4-15. Low speed internal clock (IRC40K) characteristics

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
firc40K	Low Speed Internal oscillator	$V_{DD} = V_{DDA} = 5 \text{ V},$ $T_A = -40 \text{ °C} \sim +125 \text{ °C}$	38		44	
	(IRC40K) frequency	$V_{DD} = V_{DDA} = 5 \text{ V},$ $T_A = 25 ^{\circ}\text{C}$	38	_	44	kHz
Iddairc40k	IRC40K oscillator operating current	$V_{DD} = V_{DDA} = 5 V$		0.8	l	μΑ
tsuirc40k	IRC40K oscillator startup time	$V_{DD} = V_{DDA} = 5 V$	_	19	_	μs

⁽¹⁾ Based on characterization, not tested in production.

4.9. PLL characteristics

Table 4-16. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} (1)	PLL input clock frequency		2	_	16	MHz
f _{PLLOUT} ⁽²⁾	PLL output clock frequency	_	16	_	100	MHz
fvco ⁽²⁾	PLL VCO output clock		32		200	MHz
	frequency		32		200	IVITZ
t _{LOCK} (2)	PLL lock time	_	_	_	300	μs

⁽²⁾ Guaranteed by design, not tested in production.

I _{DDA} ⁽¹⁾⁽³⁾	Current consumption on V_{DD})/OO fra ra 000 MHz	_	1100	_	
	Current consumption on V _{DDA}	VCO freq = 200 MHz	_	620	_	μΑ
	Cycle to cycle Jitter(rms)			40	_	
Jitter _{PLL} (4)	Cycle to cycle Jitter (peak to peak)	System clock	_	400	_	ps

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) PLL clock source = IRC8M/2 = 4 MHz, f_{PLLOUT} = 100 MHz.
- (4) Value given with main PLL running.

4.10. Memory characteristics

Table 4-17. Flash memory characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽²⁾	Unit
	Number of guaranteed					
PEcyc	program /erase cycles before	_	100	_	_	kcycles
	failure (Endurance)					
t _{RET}	Data retention time	_	20	_	_	years
4	Double-Word programming	T _A = -40°C ~ +125 °C		45		
tprog	time	1A40 C ~ +125 C		45		μs
t _{ERASE}	Sector erase time	$T_A = -40^{\circ}C \sim +125^{\circ}C$	1	_	20	ms
t _{MERASE(256K)}	Mass erase time	T _A = -40°C ~ +125 °C		18.06	_	ms
t _{MERASE(384B)}	Mass erase time	T _A = -40°C ~ +125 °C	146	_	2578	ms

⁽¹⁾ Based on characterization, not tested in production.

4.11. NRST pin characteristics

Table 4-18. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.3	_	$0.35\ V_{DD}$	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	$V_{DD} = V_{DDA} = 2.7 \text{ V}$	0.65 V _{DD}	_	$V_{DD} + 0.3$	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis		_	380	_	mV
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	V _{DD} = V _{DDA} = 5 V	-0.3	_	0.35 V _{DD}	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		0.65 V _{DD}	_	$V_{DD} + 0.3$	V
$V_{hyst}^{(1)}$	Schmidt trigger Voltage hysteresis		_	570	_	mV
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.3	_	0.35 V _{DD}	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	$V_{DD} = V_{DDA} = 5.5 \text{ V}$	0.65 V _{DD}	_	V _{DD} + 0.3	V
V _{hyst} ⁽¹⁾	Schmidt trigger Voltage hysteresis		_	610	_	mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_	_	40		kΩ

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

Figure 4-4. Recommended external NRST pin circuit⁽¹⁾

(1) Unless the voltage on NRST pin go below V_{IL(NRST)} level, the device would not generate a reliable reset.

4.12. **GPIO** characteristics

Table 4-19. I/O port DC characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	All IO Pins level input voltage	$2.7 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 5.5 \text{ V}$	_	_	0.3 V _{DD}	V
Vih	All IO Pins High level input voltage	2.7 V ≤ V _{DD} = V _{DDA} ≤ 5.5 V	0.7 V _{DD}	_	_	V
	IO_	_speed=50MHz				
	Low level output	V _{DD} = 2.7 V	_	0.16	_	
	voltage for an IO Pin	V _{DD} = 5 V	_	0.10	_	
Vol	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 5.5 V	_	0.09	_	
VOL	Low level output	$V_{DD} = 2.7 \text{ V}$	_	0.44		
	voltage for an IO Pin	$V_{DD} = 5 V$	_	0.25		
	(I _{IO} = +20 mA)	$V_{DD} = 5.5 \text{ V}$	_	0.24	_	V
	High level output	$V_{DD} = 2.7 \text{ V}$	_	2.51	_	V
	voltage for an IO Pin	$V_{DD} = 5 V$	_	4.87		
Vон	$(I_{IO} = +8 \text{ mA})$	$V_{DD} = 5.5 \text{ V}$	_	5.37	_	
VOH	High level output	$V_{DD} = 2.7 \text{ V}$	_	2.16	_	
	voltage for an IO Pin	$V_{DD} = 5 V$	_	4.67		
	(I _{IO} = +20 mA)	$V_{DD} = 5.5 \text{ V}$	_	5.19	_	
	10_	_speed=10MHz				
	Low level output	$V_{DD} = 2.7 \text{ V}$	_	0.26	_	
	voltage for an IO Pin	$V_{DD} = 5 V$	_	0.18		
Vol	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 5.5 V	_	0.17		V
	(I _{IO} = +12 mA)	$V_{DD} = 2.7 \text{ V}$	_	0.69	_	
	Low level output	$V_{DD} = 5 V$	_	0.60	_	

CBCZ/ 1000/X/ Batacino						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	voltage for an IO Pin	V _{DD} = 5.5 V		0.56		
	(I _{IO} = +20 mA)	י טט י – טט ס – טט ס		0.50	_	
	High level output	V _{DD} = 2.7 V	I	2.38	_	
	voltage for an IO Pin	V _{DD} = 5 V	I	4.79	_	
	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 5.5 V	I	5.30	_	
V _{OH}	(I _{IO} = +12 mA)	V _{DD} = 2.7 V		1.86		
	High level output	$V_{DD} = 5 V$	1	4.23	_	
	voltage for an IO Pin	V _{DD} = 5.5 V		4.78		
	(I _{IO} = +20 mA)	V DJ = 3.5 V		4.70		
	10	_speed=2MHz				
	Low level output	$V_{DD} = 2.7 \text{ V}$	_	0.12	_	
V	voltage for an IO Pin	$V_{DD} = 5 V$		0.07		
	$(I_{IO} = +1 \text{ mA})$	V _{DD} = 5.5 V		0.06		
Vo	Low level output	V _{DD} = 2.7 V		0.52	_	
	voltage for an IO Pin	V _{DD} = 5 V		0.27		
	$(I_{IO} = +4 \text{ mA})$	V _{DD} = 5.5 V	_	0.26	_	
	High level output	V _{DD} = 2.7 V	_	2.50	_	V
	voltage for an IO Pin	V _{DD} = 5 V		4.87		
.,	$(I_{IO} = +1 \text{ mA})$	V _{DD} = 5.5 V		5.38		
Vон	High level output	V _{DD} = 2.7 V	_	1.69	_	
	voltage for an IO Pin	V _{DD} = 5 V		4.50		
	(I _{IO} = +4 mA)	V _{DD} = 5.5 V	_	5.02	_	
R _{PU} ⁽²⁾	Internal pull-up			40		kΩ
Γ ΥΡυ'⁻′	resistor	_		40		K12
Ppp(2)	Internal pull-down			40		kΩ
R _{PD} ⁽²⁾	resistor	_	_	40	_	K12

⁽¹⁾ Based on characterization, not tested in production.

Table 4-20. I/O port AC characteristics(1)(2)(4)

GPIOx_OSPD[1:0] bit value ⁽³⁾	Parameter	Conditions	Тур	Unit
GPIOx_OSPD->OSPDy[1:0] = X0 (IO_Speed = 2 MHz)		$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 10 \text{ pF}$	50.4	
	-	$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 30 \text{ pF}$	61.2	ns
		$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 50 \text{ pF}$	71.2	İ
		$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 10 \text{ pF}$	11.6	
GPIOx_OSPD->OSPDy[1:0] = 01 (IO_Speed = 10 MHz)	T _{Rise} /T _{Fall}	$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 30 \text{ pF}$	14.8	ns
(10_3peeu = 10 lvii 12)		$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 50 \text{ pF}$	16.4	l
CDIOX OSDD > OSDDv(1:0) = 11		$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 10 \text{ pF}$	2.8	
GPIOx_OSPD->OSPDy[1:0] = 11 (IO Speed = 50 MHz)	$T_{\text{Rise}}/T_{\text{Fall}}$	$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 30 \text{ pF}$	3.6	ns
(10_opeeu = 30 Wil 12)		$2.7 \le V_{DD} \le 5.5 \text{ V}, C_L = 50 \text{ pF}$	4.4	İ

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Unless otherwise specified, all test results given for $T_A = 25$ °C.

⁽³⁾ The I/O speed is configured using the GPIOx_OSPD -> OSPDy[1:0] bits.

(4) Only for reference, Depending on user's design.

4.13. ADC characteristics

Table 4-21. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	2.7	5.0	5.5	V
V _{REF+} (2)	Positive Reference Voltage	_	2.7	5.0	V_{DDA}	V
V _{REF-} (2)	Negative Reference Voltage	_		Vssa	_	V
V _{IN} ⁽¹⁾	ADC input voltage range	_	0	_	V _{REF+}	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.1	_	15	MHz
		12-bit	0.007		1	
f _S ⁽¹⁾	Compling rate	10-bit	0.008		1.15	MSPs
IS'''	Sampling rate	8-bit	0.009	_	1.36	MOPS
		6-bit	0.011		1.67	
V _{AIN} ⁽¹⁾	Analog input voltage	32 external, 2 internal	0		V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <u>Equation 1</u>			823	kΩ
R _{ADC} ⁽²⁾	Input sampling switch resistance	_		_	500	Ω
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance included		_	9	pF
t _s (2)	0 lin tin	£ 45 MIL	0.17		32	μs
I _S (2)	Sampling time	f _{ADC} = 15 MHz	2.5	_	479.5	1/f _{ADC}
		12-bit		15	_	
1 (2)	Total conversion time (including	10-bit		13	_	415
t _{CONV} (2)	sampling time)	8-bit		11	_	1/ f _{ADC}
		6-bit	_	9	_	
tsu ⁽²⁾	Startup time	_	_	_	1	μs
I _{VDDA} ⁽¹⁾	ADC consumption from the V _{DDA} supply	f _{ADC} = 15 MHz, V _{DDA} = V _{REF+} = 5 V	_	1	_	mA
I _{VDD} ⁽¹⁾	ADC consumption from the V _{DD} supply	f _{ADC} = 15 MHz, V _{DDA} = V _{REF+} = 5 V	_	0.8	_	mA
Ivref+(1)	ADC consumption from the V _{REF+} supply	f_{ADC} = 15 MHz, V_{DDA} = V_{REF+} = 5 V	_	0.1	_	mA

⁽¹⁾ Based on characterization, not tested in production.

$$\textit{Equation 1:} \ \mathsf{R}_{\mathsf{AIN}} \ \mathsf{max} \ \mathsf{formula} \quad \mathsf{R}_{\mathsf{AIN}} \! < \! \frac{\mathsf{T}_{\mathsf{s}}}{\mathsf{f}_{\mathsf{ADC}}^* \mathsf{C}_{\mathsf{ADC}}^* \mathsf{ln}(2^{N+2})} \! - \! \mathsf{R}_{\mathsf{ADC}}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 4-22. ADC RAIN max for $f_{ADC} = 15 \text{ MHz}^{(2)}$

T _s (cycles)	t _s (us)	R _{AIN max} (KΩ)
2.5	0.17	1.4

⁽²⁾ Guaranteed by design, not tested in production.

T _s (cycles)	t _s (us)	R _{AIN max} (ΚΩ)
14.5	0.97	10.5
27.5	1.83	20.5
55.5	3.7	41.8
83.5	5.57	63.2
111.5	7.43	84.6
143.5	9.57	109
479.5	31.97	365.5

⁽¹⁾ Based on characterization, not tested in production.

Table 4-23. ADC dynamic accuracy at $f_{ADC} = 15 \text{ MHz}^{(1)}$

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
Syllibol	Farailletei	lest conditions	IVIIII	тур	IVIAX	Ullit
ENOB	Effective number of bits	$f_{ADC} = 15 \text{ MHz}$		11.1		bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 5.0 \text{ V}$		68.6	1	
SNR	Signal-to-noise ratio	Input Frequency = 20		71.27	1	dB
THD	Total harmonic distortion	kHz		-81.1		ub
טווו	Total harmonic distortion	Temperature = 25 °C		-01.1		

⁽¹⁾ Based on characterization, not tested in production.

Table 4-24. ADC dynamic accuracy at f_{ADC} = 15 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 15 MHz	_	10.8	_	bits
SNDR	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 2.7 \text{ V}$	_	66.8	_	
SNR	Signal-to-noise ratio	Input Frequency = 20 kHz	_	67.2	_	dB
THD	Total harmonic distortion	Temperature = 25 °C	_	-79.1	_	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-25. ADC static accuracy at f_{ADC} = 15 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	f _{ADC} = 15 MHz	±3		
DNL	Differential linearity error	$V_{DDA} = V_{REF+} = 5.0 V$	±3	_	LSB
INL	Integral linearity error	Temperature = 25 °C	±5	_	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-26. ADC static accuracy at f_{ADC} = 15 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	f _{ADC} = 15 MHz	±1		
DNL	Differential linearity error	$V_{DDA} = V_{REF+} = 2.7 \text{ V}$	+2/-1	_	LSB
INL	Integral linearity error	Temperature = 25 °C	±3		

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

4.14. DAC characteristics

Table 4-27. DAC characteristics(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	2.7	5	5.5	V
V _{REF+} (2)	Positive Reference Voltage	_	2.7	_	V_{DDA}	V
V _{REF-} (2)	Negative Reference Voltage	_	_	V _{SSA}		V
R _{LOAD} ⁽²⁾	Resistive load	Resistive load with buffer ON	1	_	_	kΩ
Ro ⁽²⁾	Impedance output	Impedance output with buffer OFF	_	_	35	kΩ
C _{LOAD} (2)	Capacitive load	Capacitive load with buffer ON	_	_	100	pF
DAC_OUT	Lower DAC_OUT voltage	Lower DAC_OUT voltage with buffer ON	0.2	_	_	V
		Lower DAC_OUT voltage with buffer OFF	0.5		_	mV
DAC_OUT	Higher DAC_OUT voltage	Higher DAC_OUT voltage with buffer ON	_	_	V _{DDA} -	V
		Higher DAC_OUT voltage with buffer OFF	_		V _{DDA} - 1LSB	V
I _{DDA} (1)	DAC current consumption in quiescent mode	With no load, middle code(0x800) on the input, V _{REF+} = 5.5 V	_	590		μΑ
		With no load, worst code(0xF1C) on the input, $V_{REF+} = 5.5 \text{ V}$	_	670		
IDDVREF+ ⁽¹⁾	DAC current consumption in quiescent mode	With no load, middle code(0x800) on the input, V _{REF+} = 5.5 V	_	95		μΑ
		With no load, worst code(0xF1C) on the input, $V_{REF+} = 5.5 \text{ V}$	_	250		
DNL ⁽¹⁾	Differential non linearity	10-bit configuration, buffer ON	_	_	±1	LSB
		12-bit configuration, buffer ON	_	_	±4	
INL ⁽¹⁾	Integral non linearity	10-bit configuration, buffer ON12-bit configuration, buffer ON	_	_	±1.5	LSB
Offset ⁽¹⁾	Offset error	DAC in 12-bit mode	_	_	±22	LSB
GE ⁽¹⁾	Gain error	DAC in 12-bit mode, buffer ON	_	_	±1	%
T _{setting} ⁽¹⁾	Settling time	$C_{LOAD} \leqslant~50$ pF, $R_{LOAD} \geqslant~5$ k Ω	_	0.5	1	μs
T _{wakeup} (2)	Wakeup from off state	_	_	5	10	μs
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change from	$C_{\text{LOAD}} \leqslant 50 \; \text{pF}, R_{\text{LOAD}} \geqslant 5 \; \text{k}\Omega$	_	_	2	MS/s

	code i to i±1LSB					
PSRR ⁽²⁾	Power supply rejection	No R _{Load} , C _{LOAD} = 50 pF	_	-80	-55	dB
	ratio(to V _{DDA})					Ì

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) Buffer ON mode is recommended when using DAC at high temperature.

4.15. I2C characteristics

Table 4-28. I2C characteristics(1)(2)

Symbol	Parameter	Condit	Stand		Fast	mode	Fast pl	mode us	Unit
		ions	Min	Max	Min	Max	Min	Max	
t _{SCL(H)}	SCL clock high time	_	4.0	_	0.6	_	0.2	_	μs
t _{SCL(L)}	SCL clock low time	_	4.7	_	1.3	_	0.5	_	μs
t _{su(SDA)}	SDA setup time	_	250	_	100	_	50	_	ns
th(SDA)	SDA data hold time	_	0(3)	3450	0	900	0	450	ns
t _{r(SDA/SCL)}	SDA and SCL rise time	_		1000	_	300		120	ns
t _f (SDA/SCL)	SDA and SCL fall time	_	_	300	_	300	_	120	ns
t _{h(STA)}	Start condition hold time	_	4.0	_	0.6		0.26		μs

- (1) Guaranteed by design, not tested in production.
- (2) To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz. To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f_{PCLK1} must be at least a multiple of 10 MHz.
- (3) he external device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Figure 4-5. I2C bus timing diagram

4.16. SPI characteristics

Table 4-29. Standard SPI characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency		_	_	22.5	MHz
t _{sck(H)}	SCK clock high time	$V_{DD} = V_{DDA} = 5 V$	_	22.22	_	ns
t _{sck (L)}	SCK clock low time		_	22.22	_	ns
		SPI master mode				
t _{V(MO)}	Data output valid time		_	_	7	ns
t _{SU(MI)}	Data input setup time	$V_{DD} = V_{DDA} = 5 \text{ V}$	2	_	_	ns
t _{H(MI)}	Data input hold time		0	_	_	ns
		SPI slave mode				
t _{SU(NSS)}	NSS enable setup time	V V EV	0	_	_	ns
t _{H(NSS)}	NSS enable hold time	$V_{DD} = V_{DDA} = 5 \text{ V},$	2	_	_	ns
t _{A(SO)}	Data output access time	f _{PCLK} = 100 MHz	_	6	_	ns
t _{DIS(SO)}	Data output disable time		_	9	_	ns
t _{V(SO)}	Data output valid time	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	9	_	ns
t _{SU(SI)}	Data input setup time	$V_{DD} = V_{DDA} = 5 V$	0	_	_	ns
t _{H(SI)}	Data input hold time		1	_	_	ns

⁽¹⁾ Based on characterization, not tested in production.

Figure 4-6. SPI timing diagram - master mode

Figure 4-7. SPI timing diagram - slave mode

4.17. I2S characteristics

Table 4-30. I2S characteristics(1) (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode (data: 32 bits,		C 0F		
fcĸ	Clock frequency	Audio frequency = 96 kHz)		6.25	_	MHz
		Slave mode	_	_	12.5	
tн	Clock high time	fcik= 6.25 MHz	_	80	_	ns
tL	Clock low time	ICLK= 6.25 IVIHZ	_	80	_	ns
t _{V(WS)}	WS valid time	Master mode	_	3	_	ns
t _{H(WS)}	WS hold time	Master mode	_	3	_	ns
tsu(ws)	WS setup time	Slave mode	0	_	_	ns
t _{H(WS)}	WS hold time	Slave mode	3	_	_	ns
Ducyroom	I2S slave input clock duty	Slave mode		_ 50 _		%
Ducy _(SCK)	cycle	Slave mode	_	50		70
t _{SU(SD_MR)}	Data input setup time	Master mode	1	_	_	ns
t _{su(SD_SR)}	Data input setup time	Slave mode	0	_	_	ns
th(SD_MR)	Data input hold time	Master receiver	0	_	_	ns
t _{H(SD_SR)}		Slave receiver	1	_	_	ns
4	Data autout valid time	Slave transmitter			10	
t _{v(SD_ST)}	Data output valid time	(after enable edge)	_		10	ns
t	Data output hold time	Slave transmitter	3			20
th(SD_ST)	Data output hold time	(after enable edge)	3			ns
t (00 147)	Data output valid time	Master transmitter			10	ne
t _{v(SD_MT)}	Data output valid time	(after enable edge)			10	ns
thiop was	Data output hold time	Master transmitter	0			ne
th(SD_MT)	Data output hold time	(after enable edge)	U			ns

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

Figure 4-8. I2S timing diagram - master mode

Figure 4-9. I2S timing diagram - slave mode

4.18. USART characteristics

Table 4-31. USART characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	f _{PCLKx} = 100 MHz		_	12.5	MHz
t _{SCK(H)}	SCK clock high time	f _{PCLKx} = 100 MHz	40	_	_	ns
t _{SCK(L)}	SCK clock low time	f _{PCLKx} = 100 MHz	40	_	_	ns

⁽¹⁾ Guaranteed by design, not tested in production.

4.19. CAN characteristics

Refer to <u>Table 4-19. I/O port DC characteristics</u>(1) for more details on the input/output alternate function characteristics (CAN TX and CAN RX).

4.20. Comparators characteristics

Table 4-32. CMP characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Operating voltage	_	2.7	5.0	5.5	V
Vin	Input voltage range		0	_	V_{DDA}	V
V_{BG}	Scaler input voltage		_	1.2	_	٧
Vsc	Scaler offset voltage		_	±5	_	mV
I _{DDA} (SCALER)	Scaler static consumption	BEN = 0 (bridge disable)	_	750	_	nA
IDDA(SCALER)	from V_{DDA}	BEN = 1 (bridge enable)	_	1.95	_	μΑ
tstart_scaler	Scaler startup time	_	_	100	_	μs
	Propagation delay for 200	low power mode	_	320	_	ns
t_D	mV step with 100 mV	Medium power mode	_	150	_	ns
	overdrive	High speed power mode	_	50	_	ns
		low power mode	_	2.7	_	
I _{DD}	Current consumption	Medium power mode	_	8.2	_	μΑ
		High speed power mode	_	56	_	
V _{offset}	Offset error	_	_	±5	_	mV
		No Hysteresis	_	0	_	
V	I lyatawa sia Maltawa	Low Hysteresis	_	18	_	\/
V _{hyst}	Hysteresis Voltage	Medium Hysteresis	_	36	_	mV
		High Hysteresis		54	_	

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 4-10. CMP hysteresis

4.21. Temperature sensor characteristics

Table 4-33. Temperature sensor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voff ⁽¹⁾	Uncalibrated Offset	$T_A = 30^{\circ}C$	_	1405.6	_	mV
E _{OFF} ⁽¹⁾	Uncalibrated Offset Error	$T_A = 30^{\circ}C$	_	3.3	_	mV
M ⁽¹⁾	Slope	_	_	4.58	_	mV/°C
E _M ⁽¹⁾	Slope Error	_	_	60	_	μV/°C
LIN ⁽³⁾	Linearity	T _A = -40 °C to 125 °C	_	-2 to2.5	_	°C
ton	Turn-on Time	_		_		μs
ETOT ⁽²⁾⁽³⁾⁽⁴⁾	Temp Sensor Error Using Typical Slope and Factory-Calibrated Offset	T _A = -40 °C to 125 °C	-4.5	_	5.5	°C

⁽¹⁾ Guaranteed by design, not tested in production.

4.22. TIMER characteristics

Table 4-34. TIMER characteristics(1)

Symbol	Parameter	Conditions	Min	Max	Unit
+	Timer resolution time	_	1		tTIMERXCLK
t _{res}	Timer resolution time	ftimerxclk = 100 MHz	10	_	ns
f	Time an automobil alsolt fra accessor	_	0	f _{TIMERxCLK} /2	MHz
f _{EXT}	Timer external clock frequency	f _{TIMERxCLK} = 100 MHz	0	50	MHz

⁽²⁾ The factory-calibrated offset value is stored in the read-only area of flash in locations 0x1FFFF7F8.

⁽³⁾ Based on characterization, not tested in production.

⁽⁴⁾ The error is the average result of 100 times and represents the chip junction temperature error. The chip self-heating shall be considered when testing ambient temperature.

GD32A503xx Datasheet

	RES Timer resolution		_		16	bit
-	16-bit counter clock period			1	65536	tTIMERXCLK
	tCOUNTER	when internal clock is selected	ftimerxclk =100 MHz	0.01	655.36	μs
	4	Maximum possible count	_	_	65536x65536	tTIMERXCLK
	tmax_count	Maximum possible count	ftimerxclk = 100 MHz	_	42.95	S

⁽¹⁾ Guaranteed by design, not tested in production.

4.23. WDGT characteristics

Table 4-35. FWDGT min/max timeout period at 40 kHz (IRC40K) (1)

Prescaler divider	PSC[2:0] bits	Min timeout RLD[11:0] = 0x000	Max timeout RLD[11:0] = 0xFFF	Unit
1/4	000	0.03125	511.90625	
1/8	001	0.03125	1023.7812	
1/16	010	0.03125	2047.53125	
1/32	011	0.03125	4095.03125	ms
1/64	100	0.03125	8190.03125	
1/128	101	0.03125	16380.03125	
1/256	110 or 111	0.03125	32760.03125	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-36. WWDGT min-max timeout value at 50 MHz (f_{PCLK1}) (1)

Prescaler divider	PSC[1:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit	
1/1	00	81.92		5.24		
1/2	01	163.84		10.49	ms	
1/4	10	327.68	μs	20.97		
1/8	11	655.36		41.94		

⁽¹⁾ Guaranteed by design, not tested in production.

4.24. Parameter conditions

Unless otherwise specified, all values given for $V_{DD} = V_{DDA} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

5. Package information

5.1. LQFP100 package outline dimensions

Figure 5-1. LQFP100 package outline

Table 5-1. LQFP100 package dimensions

Symbol	Min	Тур	Max
A	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	15.80	16.00	16.20
D1	13.90	14.00	14.10
E	15.80	16.00	16.20
E1	13.90	14.00	14.10
е	_	0.50	_
eB	15.05	_	15.35
L	0.45	_	0.75
L1		1.00	
θ	0°	_	7°

Figure 5-2. LQFP100 recommended footprint

5.2. LQFP64 package outline dimensions

Figure 5-3. LQFP64 package outline

Table 5-2. LQFP64 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
E	11.80	12.00	12.20
E1	9.90	10.00	10.10
е	е —		_
eB	eB 11.25		11.45
L	0.45	_	0.75
L1	_	1.00	_
θ	θ 0°		7°

Figure 5-4. LQFP64 recommended footprint

5.3. LQFP48 package outline dimensions

Figure 5-5. LQFP48 package outline

Table 5-3. LQFP48 package dimensions

Symbol	Min	Тур	Max
Α	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.50	_
eB	8.10	_	8.25
L	L 0.45		0.75
L1	_	1.00	_
θ	0°	_	7°

Figure 5-6. LQFP48 recommended footprint

5.4. QFN32 package outline dimensions

Figure 5-7. QFN32 package outline

Table 5-4. QFN32 package dimensions

Symbol	Min	Тур	Max
A	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.25
D	4.90	5.00	5.10
D2	3.40	3.50	3.60
E	4.90	5.00	5.10
E2	3.40	3.50	3.60
е	е —		_
h	h 0.30		0.40
L	0.35	0.40	0.45
Ne	Ne —		_

Figure 5-8. QFN32 recommended footprint

5.5. Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "θ". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 θ_{JA} : Thermal resistance, junction-to-ambient.

 θ_{JB} : Thermal resistance, junction-to-board.

 θ_{JC} : Thermal resistance, junction-to-case.

ΨJB: Thermal characterization parameter, junction-to-board.

Ψ_{JT}: Thermal characterization parameter, junction-to-top center.

$$\theta_{JA} = (T_J - T_A)/P_D \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where, T_J = Junction temperature.

 T_A = Ambient temperature

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θ_{JA} can be considerate as better overall thermal performance. θ_{JA} is generally used to estimate junction temperature.

 θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 θ_{JC} represents the thermal resistance between the chip surface and the package top case. θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-5. Package thermal characteristics⁽¹⁾

Symbol	Condition	Package	Value	Unit
θја	Natural convection, 2S2P PCB	LQFP100	56.74	°C/W
		LQFP64	TBD	
		LQFP48	TBD	
		QFN32	TBD	
θЈВ	Cold plate, 2S2P PCB	LQFP100	42.61	
		LQFP64	TBD	°C/W
		LQFP48	TBD	

GD32A503xx Datasheet

Symbol	Condition	Package	Value	Unit
		QFN32	TBD	
θЈС	Cold plate, 2S2P PCB	LQFP100	15.02	°C/W
		LQFP64	TBD	
		LQFP48	TBD	
		QFN32	TBD	
ΨЈВ	Natural convection, 2S2P PCB	LQFP100	43.37	°C/W
		LQFP64	TBD	
		LQFP48	TBD	
		QFN32	TBD	
Ψл	Natural convection, 2S2P PCB	LQFP100	1.41	
		LQFP64	TBD	°C/W
		LQFP48	TBD	C/VV
		QFN32	TBD	

⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification.

6. Ordering information

Table 6-1. Part ordering code for GD32A503xx devices

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32A503VDT3	384	LQFP100	Green	Automotive -40°C to +125°C
GD32A503VCT3	256	LQFP100	Green	Automotive -40°C to +125°C
GD32A503VBT3	128	LQFP100	Green	Automotive -40°C to +125°C
GD32A503RDT3	384	LQFP64	Green	Automotive -40°C to +125°C
GD32A503RCT3	256	LQFP64	Green	Automotive -40°C to +125°C
GD32A503RBT3	128	LQFP64	Green	Automotive -40°C to +125°C
GD32A503CCT3	256	LQFP48	Green	Automotive -40°C to +125°C
GD32A503CBT3	128	LQFP48	Green	Automotive -40°C to +125°C
GD32A503KCU3	256	QFN32	Green	Automotive -40°C to +125°C
GD32A503KBU3	128	QFN32	Green	Automotive -40°C to +125°C

7. Revision history

Table 7-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Sep.15, 2021

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice - All rights reserved