2019-2020 学年第 1 学期 数学分析作业

目录

第4周

△ 作业题 1.1 设 A, B 为非空有界数集, 并且 $A \subset B$, 证明

 $\inf B \le \inf A \le \sup A \le \sup B.$

证明 显然, $\inf A \leq \sup A$. 下证 $\inf B \leq \inf A$ 并且 $\sup A \leq \sup B$.

假设 $\inf B > \inf A$, 则 $\inf B$ 不是集合 A 的下界, 从而存在 $x_0 \in A$ 使得 $\inf B > x_0$. 另一方面, 由于 $A \subset B$,从而也有 $x_0 \in B$,于是

$$\inf B > x_0 \ge \inf B,$$

矛盾.

假设 $\sup A > \sup B$, 则 $\sup B$ 不是集合 A 的上界, 从而存在 $x_1 \in A$ 使得 $\sup B < x_1$. 另一方面, 由于 $A \subset B$,从而也有 $x_1 \in B$,于是

$$\sup B < x_1 \le \sup B$$
,

矛盾.

综上, $\inf B \leq \inf A \leq \sup A \leq \sup B$.

△ 作业题 1.2 设 S 为非空有下界 (不一定有上界) 的数集, 并且 $\inf S > 0$, 证明集合

$$S^{-1} = \left\{ x^{-1} \mid x \in S \right\}$$

有界并且

$$\sup S^{-1} > 0$$
, $\inf S^{-1} \ge 0$, $\sup S^{-1} = \frac{1}{\inf S}$.

证明 Step1. 任取 $y \in S^{-1}$, 令 $x = y^{-1}$, 则 $x \in S$,

$$x > \inf S > 0$$
,

从而

$$0 < y \le \frac{1}{\inf S}, \quad \forall y \in S^{-1}. \tag{1.1}$$

数学分析作业

所以 0 是 S^{-1} 的一个下界, $\frac{1}{\inf S}$ 是 S^{-1} 的一个上界, 并且

$$\sup S^{-1} > 0, \quad \inf S^{-1} \ge 0.$$

Step2. 由 Step1 可知 $\sup S^{-1} \leq \frac{1}{\inf S}$. 下面排除 $\sup S^{-1} < \frac{1}{\inf S}$ 的情况. 反证法, 假设 $\sup S^{-1} < \frac{1}{\inf S}$ 成立, 由于 $\sup S^{-1} > 0$, 则

$$0<\inf S<\frac{1}{\sup S^{-1}}.$$

所以 $\frac{1}{\sup S^{-1}}$ 不是 S 的下界, 存在 $x \in S$ 使得

$$0<\inf S\le x<\frac{1}{\sup S^{-1}}.$$

 $\ \diamondsuit \ y=x^{-1}, \ \mathbb{M} \ y\in S^{-1},$

$$0 < \frac{1}{y} = x < \frac{1}{\sup S^{-1}},$$

从而

$$\sup S^{-1} < y.$$

但是另一方面, 由于 $y \in S^{-1}$, 则一定有

$$y \le \sup S^{-1}$$
,

矛盾. 所以

$$\sup S^{-1} = \frac{1}{\inf S}.$$

▲ 作业题 1.3 证明以下等式和不等式:

(1) 设 $a, b \in \mathbb{R}$, 则

$$||a| - |b|| \le |a - b|, \quad \frac{|a + b|}{1 + |a + b|} \le \frac{|a|}{1 + |a|} + \frac{|b|}{1 + |b|}.$$

(2) 设 $a, b \in \mathbb{R}, n \in \mathbb{N}_+$ 且 $n \geq 2$, 则

$$a^{n} - b^{n} = (a - b) (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}),$$

(3) Bernoulli(伯努利) 不等式: 设 $h \ge -1$, $n \in \mathbb{N}_+$, 则

$$(1+h)^n \ge 1 + nh.$$

特别地, 如果还有 $h \ge 0$ 并且 $n \ge 2$, 则还成立

$$(1+h)^n > \frac{n(n-1)}{2}h^2 \ge \frac{n^2h^2}{4}.$$

(4) 算术-几何平均值不等式: 设 a_1, a_2, \cdots, a_n 是 n 个非负实数,则

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}.$$

如果 a_1, a_2, \cdots, a_n 都是正实数, 还成立几何-调和平均值不等式:

$$\sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

(5)

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$
$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

② 注意 $\sum_{k=1}^{n} s_k$ 表示对 s_1, s_2, \dots, s_n 按下标 k 从 1 到 n 求和, 即 $\sum_{k=1}^{n} s_k = s_1 + s_2 + \dots + s_n$.

(6) 若 $0 < x < \frac{\pi}{2}$, 则 $\sin x < x < \tan x$. 若 $x \in \mathbb{R}$, 则 $|\sin x| \le |x|$.

证明 (1) 对任意 $a,b \in \mathbb{R}$, 由绝对值不等式可得

$$|a-b| \ge |a| - |b|,$$

 $|a-b| = |b-a| \ge |b| - |a|,$

综合上述两式可得

$$-|a - b| \le |a| - |b| \le |a - b|,$$

所以

$$||a| - |b|| \le |a - b|.$$

由于

$$f(t) = \frac{t}{1+t}, \quad t > 0$$

是严格增函数,并且

$$|a+b| \le |a| + |b|,$$

则 $f(|a+b|) \le f(|a|+|b|)$, 从而

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|+|b|}{1+|a|+|b|}$$

$$= \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|}$$

$$\le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}.$$

(2)

$$(a-b) (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$= (a^n + a^{n-1}b + \dots + a^2b^{n-2} + ab^{n-1})$$

$$- (a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n)$$

$$= a^n - b^n.$$

(3) 当 n = 1 时, $(1+h)^1 = 1+1 \cdot h$, 结论成立. 假设当 n = k 时, 成立.

$$(1+h)^k \ge 1 + kh.$$

由于 $h \ge -1$, 则当 n = k + 1 时,

$$(1+h)^{k+1} = (1+h)^k \cdot (1+h) \ge (1+kh) \cdot (1+h)$$

= 1 + (k+1)h + kh² \ge 1 + (k+1)h.

综上, 对任意 $n \in \mathbb{N}_+$ 以及任意 $h \ge -1$ 都有

$$(1+h)^n \ge 1 + nh.$$

当 $n \ge 2$ 时,有

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4},$$

从而对任意 $h \ge 0$ 都有

$$(1+h)^n = 1+nh+\frac{n(n-1)}{2}h^2+\cdots+h^n$$

> $\frac{n(n-1)}{2}h^2 \ge \frac{n^2h^2}{4}$.

(4) 如果 a_1, a_2, \dots, a_n 中有一个是 0, 则算术-几何平均值不等式成立. 下设 a_1, a_2, \dots, a_n 都是正的实数.

当 n=1 时,两个不等式显然都成立.

假设当 n = k 时,有

$$\frac{a_1 + \dots + a_k}{k} \ge \sqrt[k]{a_1 \cdot \dots \cdot a_k}.$$

当 n = k + 1 时,

$$\frac{a_1 + \dots + a_k + a_{k+1}}{k+1}$$

$$= \frac{a_1 + \dots + a_k}{k} + \left(\frac{1}{k+1} - \frac{1}{k}\right)(a_1 + \dots + a_k) + \frac{a_{k+1}}{k+1}$$

$$= \frac{a_1 + \dots + a_k}{k} + \frac{ka_{k+1} - (a_1 + \dots + a_k)}{k(k+1)}.$$

令

$$A = \frac{a_1 + \dots + a_k}{k}, \quad B = \frac{ka_{k+1} - (a_1 + \dots + a_k)}{k(k+1)},$$

则 A>0, A+B>0. 再令 $h=\frac{B}{A},$ 则 1+h>0, h>-1, 利用 Bernoulli 不等式可得

$$\left(\frac{a_1 + \dots + a_k + a_{k+1}}{k+1}\right)^{k+1}$$

$$= (A+B)^{k+1} = A^{k+1} \left(1 + \frac{B}{A}\right)^{k+1} = A^{k+1} (1+h)^{k+1}$$

$$\geq A^{k+1} \left[1 + (k+1)h\right] = A^{k+1} \left[1 + \frac{(k+1)B}{A}\right] = A^k \left[A + (k+1)B\right]$$

$$= A^k \cdot a_{k+1}.$$

根据 n = k 时的假设条件, 有

$$A^k = \left(\frac{a_1 + \dots + a_k}{k}\right)^k \ge a_1 \cdot \dots \cdot a_k,$$

从而

$$\frac{a_1 + \dots + a_k + a_{k+1}}{k+1} \ge a_1 \cdot \dots \cdot a_k \cdot a_{k+1}.$$

综上, 算术-几何平均值不等式

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

成立.

利用算术-几何平均值不等式可得

$$\frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n} \ge \sqrt[n]{\frac{1}{a_1 \cdot a_2 \cdot \dots \cdot a_n}} > 0,$$

对上式取倒数, 就得到几何-调和平均值不等式:

$$\sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

(5) 当 n = 1 时, 两不等式显然都成立. 假设当 n = l 时,

$$\sum_{k=1}^{l} k^2 = \frac{l(l+1)(2l+1)}{6},$$
$$\sum_{k=1}^{l} k^3 = \left(\frac{l(l+1)}{2}\right)^2.$$

当 n = l + 1 时就有

$$\begin{split} \sum_{k=1}^{l+1} k^2 &=& \sum_{k=1}^{l} k^2 + (l+1)^2 \\ &=& \frac{l(l+1)(2l+1)}{6} + \frac{6(l+1)^2}{6} \\ &=& \frac{(l+1)[(l+1)+1][2(l+1)+1]}{6}, \end{split}$$

$$\sum_{k=1}^{l+1} k^3 = \sum_{k=1}^{l} k^3 + (l+1)^3$$
$$= \left(\frac{l(l+1)}{2}\right)^2 + (l+1)^3$$
$$= \left[\frac{(l+1)(l+2)}{2}\right]^2.$$

综上, 两等式恒成立. (6)

在以上单位圆周中, 角的弧度 x 满足 $0 < x < \frac{\pi}{2}$, 三角形 OAB 的面积

$$S_1 = \frac{1}{2} \cdot OA \cdot OB \cdot \sin x = \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin x = \frac{1}{2} \sin x,$$

扇形 \widehat{OAB} 的面积

$$S_2 = \frac{1}{2} \cdot OA \cdot OB \cdot x = \frac{1}{2} \cdot 1 \cdot 1 \cdot x = \frac{1}{2}x,$$

直角三角形 OAC 的两条直角边的长度分别为

$$OA = 1$$
, $AC = \tan x$,

所以直角三角形 OAC 的面积为

$$S_3 = \frac{1}{2} \cdot OA \cdot AC = \frac{1}{2} \cdot 1 \cdot \tan x = \frac{1}{2} \tan x.$$

显然, $S_1 < S_2 < S_3$, 从而

$$0 < \sin x < x < \tan x.$$

当 $0 \le x \le \frac{\pi}{2}$ 时,由上述结论可知

$$|\sin x| \le |x|$$
.

当 x > 1 时, 总有

$$|\sin x| \le 1 < x = |x|.$$

于是,

$$|\sin x| \le |x|, \quad \forall x \in [0, +\infty).$$

当 x < 0 时, $-x \in (0, +\infty)$, 由以上结论可得

$$|\sin x| = |\sin(-x)| \le |-x| = |x|.$$

综上,

$$|\sin x| \le |x|, \quad \forall x \in \mathbb{R}.$$