Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 8 - Chapter 12

Started on	Tuesday, 7 March 2017, 10:05 PM
State	Finished
Completed on	Tuesday, 7 March 2017, 10:10 PM
Time taken	4 mins 35 secs
Marks	100.00/100.00
Grade	10.00 out of 10.00 (100 %)

Correct

Mark 20.00 out of 20.00

P12.47_10ed

Given: $I_{DC} = 3 \text{ Amps}$

The Laplace Transform of $v_0(t)$ and $i_0(t)$ are

$$V_{0}(s) = \frac{\frac{I_{DC}}{C}}{s^{2} + s\frac{1}{RC} + \frac{1}{LC}}$$
$$I_{0}(s) = \frac{sI_{DC}}{s^{2} + s\frac{1}{RC} + \frac{1}{LC}}$$

a) Use the initial-value theorem to find the initial value of $v_0(t=0^+)$.

$$\mathbf{v}_0(\mathbf{t} = \mathbf{0}^+) = \boxed{\mathbf{0}} \qquad \mathbf{V}$$

b) Use the final-value theorem to find the final value of $v_0(t=\infty)$. (∞ is infinity)

$$v_0(t=\infty) = \boxed{0}$$

c) Use the initial-value theorem to find the initial value of $i_0(t = 0^+)$.

$$i_0(t = 0^+) = 3$$
 \checkmark A

d) Use the final-value theorem to find the final value of $i_0(t=\infty)$. (∞ is infinity)

$$i_0(t=\infty) = \boxed{0}$$

Correct

Correct

Mark 20.00 out of 20.00

P12.48 10ed

The switch moves from position a to position b at t = 0.

Given: $I_{DC} = 5 \text{ Amps}$

The Laplace Transform of
$$i_0(t)$$
 is $I_0(s) = \frac{I_{DC}\left[s + \frac{1}{RC}\right]}{s^2 + s\frac{1}{RC} + \frac{1}{LC}}$

a) Use the initial-value theorem to find the initial value of i_0 ($t = 0^+$).

$$i_0(t=0^+) = 5$$
 \checkmark A

b) Use the final-value theorem to find the final value of $i_0(t\to\infty)$. (∞ is infinity)

$$i_0(t \to \infty) = \boxed{0}$$

Correct

Correct

Mark 20.00 out of 20.00

P12.46 10ed

The DC current source is replaced with a sinusoidal current source $i(t) = 5 \cos(20t) A$.

Given: $R = 1.25 \Omega$ (Ohm) C = 50 mF (milli F) L = 200 mH (milli H)

With these given values the Laplace Transform of v(t) is

$$V(s)\!=\!\tfrac{100s^2}{(s^2+16s+100)(s^2+400)}\!=\!\tfrac{100s^2}{(s+8-j6)(s+8+j6)(s+0-j20)(s+0+j20)}$$

a) Use the initial-value theorem to find the initial value of v(t=0).

$$v(t) = \boxed{0}$$

b) Can we use the final-value theorem on this Laplace function?

Correct

Correct

Mark 20.00 out of 20.00

Copyright C0015 Pearson Education, All Rights Reserve

P13.03_10ed

Find the Norton Equivalent of this circuit.

Select one:

- O b. $I_N = I_{ab} = I_0/s$ $Z_{Th} = sL$
- $\bigcirc \quad \text{c. } I_{\text{N}} = I_{\text{ab}} = -I_{0} \quad Z_{\text{Th}} = \text{sL}$
- O d. $I_N = I_{ab} = -I_0/s$ $Z_{Th} = 1/(sL)$

Correct

Correct

Mark 20.00 out of 20.00

Copyright ©2015 Peanson Education, All Rights Reserved

P13.02_10ed

Find the Thévenin Equivalent of this circuit.

Select one:

- a. $V_{Th} = V_{ab} = V_0/s$ $Z_{Th} = 1/(sC)$
- $\bigcirc \quad \text{c. } V_{Th} = V_{ab} = V_0 \quad Z_{Th} = sC$
- O d. $V_{Th} = V_{ab} = 1/s$ $Z_{Th} = V_0/(sC)$

Correct