Estimating returning salmon stocks

Stephen Gregory

Why salmon?

Economic

- Angling
- Food source

Social

- "existence value"
- "heritage value"

© Katie Sumner

Net or angler catches

© Environment Agency

© Environment Agency

- Temporally patchy sampling
- Unknown / unrecorded effort
- Fish damage / death

Extrapolation from other life stages

© GWCT

- Extrapolation from other life stages
 - NASCO pre-fisheries abundance
 - Statistical & ecological assumptions
 - Standardised with uncertainty

© GWCT

Automatic fish counters

© GWCT

Automatic fish counters

© GWCT

- Year-round monitoring
- Expensive to maintain
- Patchy counts without uncertainty

Resistivity counter

• 3 electrodes

- 3 electrodes
- electric field

- 3 electrodes
- electric field
- waveform

- 3 electrodes
- electric field
- waveform

Video verification

- 24h / 7d
- species-verification
- flow-sensitive

every waveform checked!

Problems and pitfalls

Problems and pitfalls

Objective

To develop a method to estimate the number of salmon (and its uncertainty) that ascend a river each year

Objective

To develop a method to estimate the number of salmon (and its uncertainty) that ascend a river each year

The method should:

- cope with missing data
- admit covariates
- be easily transferable

Estimates true number of salmon S

Estimates true number of salmon S

- Uses video-verified waveforms but also
 - waveform only
 - video only
 - complete system failure

Estimates true number of salmon S

- Uses video-verified waveforms but also
 - waveform only
 - video only
 - complete system failure

Hourly, daily, weekly, etc. estimates

Baseline model

- Modest data requirements
 - number of waveform
 - number of waveform verified as salmon
 - number of salmon on video when waveform off

Baseline model

- Modest data requirements
 - number of waveform
 - number of waveform verified as salmon
 - number of salmon on video when waveform off
- Expertise on local salmon population
 - number of migration "peaks"
 - mean number of migrators outside peak(s)

Transferability

- Counters are numerous and widespread
 - 41 (England & Wales), 29 (Scotland), ?? (Ireland)

Transferability

- Counters are numerous and widespread
 - 41 (England & Wales), 29 (Scotland), ?? (Ireland)
- Salmon populations are highly variable
 - Numbers of salmon
 - Migration timing
 - etc.

Transferability

- Counters are numerous and widespread
 - 41 (England & Wales), 29 (Scotland), ?? (Ireland)
- Salmon populations are highly variable
 - Numbers of salmon
 - Migration timing
 - etc.
- Data is often poor quality

Phenology informs S estimation

Phenology informs S estimation

Phenology informs S estimation

Perfect conditions

Perfect conditions

Imperfect conditions

Imperfect conditions

Confused!

Further work

More simulation tests

- Extending to include "system tests"
 - 24h waveform check
 - Video observer test

Application

- User workshop in 2016
 - Environment Agency
 - Natural Resources Wales
 - Scottish Natural Heritage
 - Scottish and Southern Electric
 - Inland Fisheries Ireland
 - others...
- Student projects

Thank you

Ibbotson

Gregory

Beaumont

Rivot

Jeannot

Roberts

Roussel

Lauridsen

Nevoux

Prevost

Scott

Game & Wildlife

www.morfish.org.uk