ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua Grado en Ingeniería Informática de Gestión y Sistemas de Información

BUKAERAKO ARIKETA (EBALUAZIO FINALA)

2017-2018 Ikasturtea. Ez-ohiko deialdia: 2018ko uztailak 4

Izen Abizenak: Taldea:

1. ARIKETA

(2.5 puntu)

Izan bedi $(\mathbb{P}_3, <,>)$ espazio euklidearra ohiko biderkadura eskalarrarekin, eta izan bedi:

$$S = \mathcal{L}\left\{p_1(x) = -1 + x^2 + x^3, p_2(x) = x + x^2 + x^3, p_3(x) = -1 - 2x - x^2 - x^3\right\} \subset \mathbb{P}_3$$

- (1.) Zehaztu S azpiespazio bektorialaren oinarri bat, dimentsioa eta ekuazio inplizituak.
- (2.) Lortu S^{\perp} azpiespazio bektorialaren oinarri bat
- (3.) Osatu $B_{s^{\perp}}$ -ren oinarria \mathbb{P}_3 -ko oinarri bat lortu arte
- (4.) 3. ataleko oinarria erabili eta lortu Gram matrizetzat identitate matrizea duen P₃-ko oinarri bat

2. ARIKETA

(3 puntu)

Izan bedi $M \in \mathbb{M}_{3\times 3}(\mathbb{R})$ ondoko matrizea:

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

- (1.) Lortu bere polinomio karakteristikoa eta lortutako emaitzarekin kalkulatu |M|
- (2.) Posible bada, lortu bektore propioz osatutako \mathbb{R}^3 -ko oinarri bat.
- (3.) Posible bada, lortu bektore propio ortonormalez osatutako R³-ko oinarri bat.
- (4.) Kalkulatu *M* matrizearen alderantzizkoa Cayley-Hamilton-en teorema erabiliz
- (5.) Antzekotasunaren propietateak erabiliz, kalkulatu $|M^5|$ eta M^4

BILBOKO
INGENIARITZA
ESKOLA
ESCUELA
DE INGENIERÍA
DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua Grado en Ingeniería Informática de Gestión y Sistemas de Información

3. ARIKETA

(2.5 puntu)

Izan bitez honako bi azpiespazioak:

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_{2x2} / c = 2a - b \wedge d = a + b \right\}$$

$$T = \left\{ \begin{pmatrix} a & 0 \\ c & a \end{pmatrix} \in \mathbb{M}_{2x2} \right\}$$

- (1.) Kalkulatu azpiespazio bakoitzaren oinarri bat eta dimentsioa.
- (2.) Kalkulatu $S \cap T$
- (3.) Kalkulatu S+T
- (4.) Konprobatu eta arrazoitu:

a)
$$M = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix} \in S \cap T$$
?

b)
$$M = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix} \in S + T$$
?

c)
$$M = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix} \in S \cup T$$
?

4. ARIKETA

(2 puntu)

A ATALA

Izan bedi $A = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in M_{2x2}(\mathbb{R})$ matrizea. Kalkulatu, posible bada, $a,b \in \mathbb{R}$ -ren balioak, A matrizea nilpotentea, idenpotentea edo inbolutiboa izateko.

B ATALA

Izan bitez $C_{B_1}(\overline{x}) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ \overline{x} bektorearen koordenatuak $B_1 = \{(1,2),(2,1)\}$ oinarrian. Kalkulatu:

- a) \overline{x} bektorea
- b) \overline{x} bektorearen koordenatuak (iragaite matrizea erabili gabe) $B_2 = \{(1,1),(0,1)\}$ oinarrian
- c) \overline{x} bektorearen koordenatuak (iragaite matrizea erabiliz) $B_2 = \{(1,1),(0,1)\}$ oinarrian