

强化学习原理及应用 Reinforcement Learning (RL): Theories & Applications

DCS6289 Spring 2022

Lijun Xia (夏礼俊)

School of Computer Science and Engineering Sun Yat-Sen University

Lecture 14: Hierarchical RL

14th June. 2022

- Why Hierarchical Approaches?
 - ☐ To deal with the problem of sparse reward
 - ☐ To solve the sequential decision-making problem with long horizon
 - Many large problems have hierarchical structure that allows them to be broken down into sub-problems. The sub-problems, being smaller, are often solved more easily

- What is key of Hierarchical RL?
 - ☐ Temporally extended actions
 - □ Policy on the abstract action and policy in the abstract action

■ Basic model – Two levels of hierarchy

- ➤ High level:
 - \triangleright High level policy: $g_t = \pi^h(s_t)$
 - The high level policy receives state s_t , then chooses an abstracted action $g_t \in G$, where G denotes the set of all possible current abstracted actions (e.g., skills/sub-policies/options/goals)
 - The high level aims to maximize the rewards from environment directly, i.e., extrinsic rewards

> Low level:

- \triangleright Low level policy: $a_t = \pi^l(s_t, g_t)$
- The low level policy receives state s_t and g_t then takes a primitive action a_t , while results in a new state s_{t+1}
- The low level is expected to accomplish subtasks or achieve goals from high level

- Basic model Two levels of hierarchy
 - ➤ Both high level and low level can use RL algorithms to realize (e.g. DQN, PPO, DDPG, TD3)
 - ➤ The hierarchy can be deeper (i.e., more than 2 levels)

- ☐ Discrete abstracted action
 - ☐ H-DRLN

- ☐ Continual abstracted action
 - ☐ FuN
 - ☐ HIRO

☐ H-DRLN

- > Motivation
 - In Minecraft, the task of building a wooden house can be decomposed into sub-tasks (a.k.a skills) such as chopping trees, sanding the wood, cutting the wood into boards and finally nailing the boards together.
 - The knowledge gained from 'building a house' task can also be partially reused when building a small city
- ➤ Main idea
 - Predefined and reusable skills

- 1. Efficiently learn multiple tasks
- 2. Transfer knowledge to new tasks

Tessler, Chen, et al. "A Deep Hierarchical Approach to Lifelong Learning in Minecraft". *Proceedings of the AAAI Conference on Artificial Intelligence* 31(2017).

H-DRLN

The outputs of the H-DRLN consist of primitive actions as well as skills. The H-DRLN learns a policy that determines when to execute primitive actions and when to reuse pre-learned skills.

Tessler, Chen, et al. "A Deep Hierarchical Approach to Lifelong Learning in Minecraft". *Proceedings of the AAAI Conference on Artificial Intelligence* 31(2017).

☐ H-DRLN

➤ The architecture of the deep skill module can be either a DSN array or a Distilled Multi-Skill Network.

☐ The training process of H-DRLN

- ➤ High level:
 - For a skill σ_t initiated in state s_t at time t that has executed for a duration k, the H-DRLN target function is given by:

$$y_t = \begin{cases} \sum_{j=0}^{k-1} \left[\gamma^j r_{j+t} \right] & \text{if } s_{t+k} \text{ terminal} \\ \sum_{j=0}^{k-1} \left[\gamma^j r_{j+t} \right] + \gamma^k \max_{\sigma'} Q_{\theta_{target}} \left(s_{t+k}, \sigma' \right) & \text{else} \end{cases}$$

- \triangleright Transition tuple $(s_t, \sigma_t, \sum_{j=0}^{k-1} \gamma^j r_{t+j}, s_{t+k})$
- > Low level:
 - Pre-trained with manually defined scenarios

☐ H-DRLN

- > Experiments
 - ➤ The manually defined scenarios:

The Two-room scenario:

Tessler, Chen, et al. "A Deep Hierarchical Approach to Lifelong Learning in Minecraft". *Proceedings of the AAAI Conference on Artificial Intelligence* 31(2017).

☐ H-DRLN

- > Experiments
 - > The success percentages of the two-room scenario

Information in the training process

Tessler, Chen, et al. "A Deep Hierarchical Approach to Lifelong Learning in Minecraft". *Proceedings of the AAAI Conference on Artificial Intelligence* 31(2017).

- - Motivation
 - > Create temporally extended actions autonomously
 - ➤ No additional rewards or subgoals are required
 - > Method
 - Using differentiable parameterized function approximators
 - \triangleright policy over options π_{Ω}
 - \triangleright intra-option policy $\pi_{W,\theta}$ for option W
 - \triangleright Termination policy $\beta_{W,\vartheta}$ for option W
 - Calculate the derivative of the cumulative return reward function with respect to the parameters

> Define the option-value function

$$Q_{\Omega}(s,\omega) = \sum_{a} \pi_{\omega,\theta} (a \mid s) Q_{U}(s,\omega,a)$$

Where $Q_U: S \times \Omega \times A \rightarrow R$ is the value of executing an action in the context of a state-option pair:

$$Q_U(s, \omega, a) = r(s, a) + \gamma \sum_{s} P(s' \mid s, a) U(\omega, s')$$

The function $U: \Omega \times S \to R$ is called the option-value function upon arrival

$$U(\omega, s') = (1 - \beta_{\omega, \vartheta}(s'))Q_{\Omega}(s', \omega) + \beta_{\omega, \vartheta}(s')V_{\Omega}(s')$$

Theorem 1 (Intra-Option Policy Gradient Theorem). Given a set of Markov options with stochastic intra-option policies differentiable in their parameters θ , the gradient of the expected discounted return with respect to θ and initial condition (s_0, w_0) is:

$$\sum_{s,\omega} \mu_{\Omega}(s,\omega \mid s_0,\omega_0) \sum_{a} \frac{\partial \pi_{\omega,\theta}(a \mid s)}{\partial \theta} Q_U(s,\omega,a)$$

Theorem 2 (Termination Gradient Theorem). Given a set of Markov options with stochastic termination functions differentiable in their parameters θ , the gradient of the expected discounted return objective with respect to θ and the initial condition (s_1, w_0) is:

$$-\sum_{s',\omega} \mu_{\Omega}\left(s',\omega \mid s_1,\omega_0\right) \frac{\partial \beta_{\omega,\vartheta}(s')}{\partial \vartheta} A_{\Omega}(s',\omega)$$

four-rooms domain

Termination probabilities for the option-critic agent learning with 4 options

After a 1000 episodes, the goal location in the four-rooms domain is moved randomly

Bacon, Pierre-Luc, et al. "The Option-Critic Architecture". Proceedings of the AAAI Conference on Artificial Intelligence 31(2017).

- - ➤ Arcade Learning Environment
 - > Performance

➤ Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest.

Bacon, Pierre-Luc, et al. "The Option-Critic Architecture". Proceedings of the AAAI Conference on Artificial Intelligence 31(2017).

- ☐ Discrete abstracted action
 - ☐ H-DRLN

- ☐ Continual abstracted action
 - ☐ FuN
 - ☐ HIRO

- □ FuN
 - Motivation
 - ➤ Goals can be generated in a top-down fashion
 - Goal setting can be decoupled from goal achievement

■ FuN

- ➤ The Manager and the Worker share a perceptual module
- ➤ The Manager's goals g t are trained using an approximate transition policy gradient
- The Worker is then trained via intrinsic reward to produce actions that cause these goal directions to be achieved

$$z_t = f^{ ext{percept}}(x_t)$$
 $s_t = f^{ ext{Mspace}}(z_t)$ $h_t^M, \hat{g}_t = f^{ ext{Mrnn}}(s_t, h_{t-1}^M); g_t = \hat{g}_t/||\hat{g}_t||;$ $w_t = \phi(\sum_{i=t-c}^t g_i)$ $h^W, U_t = f^{ ext{Wrnn}}(z_t, h_{t-1}^W)$ $\pi_t = SoftMax(U_t w_t)$

□ FuN

- > High level:
 - > The update rule:

$$\nabla g_t = A_t^M \nabla_{\theta} d_{\cos}(s_{t+c} - s_t, g_t(\theta)),$$
Where $A_t^M = R_t - V_t^M(x_t, \theta)$, $d_{\cos}(\alpha, \beta) = \alpha^T \beta / (|\alpha| |\beta|)$

- > Low level:
 - ➤ Using intrinsic reward to encourage the Worker to follow the goals

$$r_t^I = 1/c \sum_{i=1}^c d_{\cos}(s_t - s_{t-i}, g_{t-i})$$

- ightharpoonup Total reward: $R_t + \alpha R_t^I$
- The Workers policy is trained by traditional reinforcement learning algorithms.

$$\nabla \pi_t = A_t^D \nabla_\theta \log \pi(a_t | x_t; \theta)$$

☐ FuN

- > Transition Policy Gradients
 - The high-level policy can be composed with the transition distribution to give a 'transition policy'

$$\pi^{TP}(s_{t+c}|s_t) = p(s_{t+c}|s_t, \mu(s_t, \theta))$$

The policy gradient theorem can be applied to the transition policy π^{TP} , so as to find the performance gradient with respect to the policy parameters

$$\nabla_{\theta} \pi_t^{TP} = \mathbb{E}\left[(R_t - V(s_t)) \nabla_{\theta} \log p(s_{t+c} | s_t, \mu(s_t, \theta)) \right]$$

FuN assumes a particular form for the transition model: that the direction in state-space, $s_{t+c} - s_t$, follows a von Mises-Fisher distribution

$$p(s_{t+c}|s_t,o_t) \propto e^{d_{\cos}(s_{t+c}-s_t,g_t)}$$

➤ If this functional form were indeed correct, then the proposed update heuristic for the Manager, is in fact the proper form for the transition policy gradient

□ FuN

➤ ATARI training curves

□ FuN

- ➤ Ablative analysis
 - ➤ Non feudal FuN: the Managers output g is trained with gradients coming directly from the Worker and no intrinsic reward is used
 - Manager via PG: g is learnt using a standard policy gradient approach
 - ➤ **Absolute goals**: g specifies absolute, rather than relative/directional, goals
 - **Pure feudal FuN**: the Worker is trained from the intrinsic reward alone

□ HIRO

- Motivation
 - ➤ A successful policy must perform a complex sequence of directional movement

- ➤ Off-policy methods are generally more efficient than off-policy methods, but also face another challenge that is unique to HRL
- > Main ideas
 - > Use states as goals directly, which allows for simple and fast training
 - ➤ Use off-policy training with novel off-policy correction, which is extremely sample-efficient

□ HIRO

- ➤ Low level
 - > The rewards for training the lower-level policy is defined as:

$$r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t - s_{t+1}||_2.$$

All positional observations are used as the representation for g_t , without distinguishing between the (x,y,z) root position or the joints, making for a generic and broadly applicable choice of goal space

- 1. Collect experience $s_t, g_t, a_t, R_t, \ldots$
- 2. Train μ^{lo} with experience transitions $(s_t, g_t, a_t, r_t, s_{t+1}, g_{t+1})$ using g_t as additional state observation and reward given by goal-conditioned function $r_t = r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$.
- 3. Train μ^{hi} on temporally-extended experience $(s_t, \tilde{g}_t, \sum R_{t:t+c-1}, s_{t+c})$, where \tilde{g}_t is relabelled high-level action to maximize probability of past low-level actions $a_{t:t+c-1}$.
- 4. Repeat.

■ HIRO

- > High level
 - Re-labeling the high-level transition $(s_t, g_t, \sum R_{t:t+c-1}, s_{t+c})$ with a different high-level action \tilde{g}_t chosen to maximize the probability $\mu^{lo}(a_{t:t+c-1}|s_{t:t+c-1}, \tilde{g}_{t:t+c-1})$
 - Most RL algorithms will use random action-space exploration to select actions, and the log probability may be computed as:

$$\log \mu^{lo}(a_{t:t+c-1}|s_{t:t+c-1}, \tilde{g}_{t:t+c-1}) \propto -\frac{1}{2} \sum_{i=t}^{t+c-1} ||a_i - \mu^{lo}(s_i, \tilde{g}_i)||_2^2 + \text{const.}$$

- 1. Collect experience $s_t, g_t, a_t, R_t, \ldots$
- 2. Train μ^{lo} with experience transitions $(s_t, g_t, a_t, r_t, s_{t+1}, g_{t+1})$ using g_t as additional state observation and reward given by goal-conditioned function $r_t = r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$.
- 3. Train μ^{hi} on temporally-extended experience $(s_t, \tilde{g}_t, \sum R_{t:t+c-1}, s_{t+c})$, where \tilde{g}_t is relabelled high-level action to maximize probability of past low-level actions $a_{t:t+c-1}$.
- 4. Repeat.

☐ HIRO

- > Experiments
 - > Scene screenshot

> performance

	Ant Gather	Ant Maze	Ant Push	Ant Fall
HIRO	3.02±1.49	0.99 ± 0.01	0.92 ± 0.04	0.66 ± 0.07
FuN representation	0.03 ± 0.01	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
FuN transition PG	0.41 ± 0.06	0.0 ± 0.0	0.56 ± 0.39	0.01 ± 0.02
FuN cos similarity	0.85 ± 1.17	0.16 ± 0.33	0.06 ± 0.17	0.07 ± 0.22
FuN	0.01 ± 0.01	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
SNN4HRL	1.92 ± 0.52	0.0 ± 0.0	0.02 ± 0.01	0.0 ± 0.0
VIME	1.42 ± 0.90	0.0 ± 0.0	0.02 ± 0.02	0.0 ± 0.0

□ HIRO

- ➤ Ablative Analysis
 - ➤ With lower-level re-labelling: increase the amount of data available to an agent trained using a parameterized reward (the lower-level policy in our setup) by re-labeling experiences with randomly sampled goals.
 - ➤ With pre-training: pre-train the lower-level policy for 2M steps (using goals sampled from a Gaussian) before freezing it and training the higher-level policy alone
 - **➣** No off-policy correction
 - > No HRL

Nachum, Ofir, et al. "Data-Efficient Hierarchical Reinforcement Learning". 32nd Conference on Neural Information Processing Systems (2018).