## Лабораторная работа № 1 Определение плотности и кинематической вязкости рабочей жидкости

Цель работы: ознакомиться с устройством денсиметров (ареометров), определить плотности нескольких рабочих жидкостей и сравнить их со справочными величинами; овладеть методикой определения кинематической вязкости жидкостей; определить коэффициент кинематической вязкости жидкости.

#### 1.1. Общие сведения

К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении. Такими являются свойства, характеризующие концентрацию жидкости в пространстве, свойства, определяющие процессы деформации жидкости, определяющие величину внутреннего трения в жидкости при её движении, поверхностные эффекты.

Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является <u>плотность</u> жидкости.

 $\Pi$ лотностью  $\rho$  (кг/м<sup>3</sup>) называют массу жидкости, заключённую в единице объёма; для однородной жидкости определяется по формуле:

$$\rho = \frac{m}{V},$$

где m — масса жидкости в объёме V .

Плотность характеризует инерционные свойства сплошной среды и в общем случае  $\ \rho = f(x,y,z,t)$  .

Величины плотности реальных капельных жидкостей в стандартных условиях изменяются в системе единиц СИ в широких пределах (таблица 1.1).

Таблица 1.1. Плотность некоторых жидкостей при температуре 20°C и атмосферном давлении 0.1 МПа

| 7,                |                |                    |             |  |  |  |  |
|-------------------|----------------|--------------------|-------------|--|--|--|--|
| Жидкость          | $ρ$ , $κΓ/m^3$ | Жидкость           | ρ, $κΓ/M3$  |  |  |  |  |
| Бензин            | 712 - 780      | Масло минеральное  | 860 - 930   |  |  |  |  |
| Спирт этиловый    | 789            | Вода пресная       | 998,2       |  |  |  |  |
| Керосин           | 790 - 860      | Вода морская       | 1020 - 1030 |  |  |  |  |
| Нефть             | 760 - 900      | Глицерин безводный | 1260        |  |  |  |  |
| Топливо дизельное | 831 - 861      | Ртуть              | 13546       |  |  |  |  |

<u>Вязкость жидкостей и газов</u>. При движении реальной жидкости или газа они расходуют часть своей механической энергии на работу против сил внутреннего трения. Эти потери механической энергии носят название диссипации (потери) энергии и представляют собой необратимый переход кинетической энергии потока в тепловую энергию молекулярного движения.

Вязкость представляет собой свойство жидкости сопротивляться сдвигу её слоёв и проявляется в результате её движения. Вязкость есть свойство противоположное текучести: более вязкие жидкости (глицерин, смазочные масла и т.д.) являются менее текучими, и наоборот.



Рис. 1.1. Действие сил внутреннего трения

При течении вязкой жидкости вдоль твёрдой стенки происходит торможение потока, обусловленное вязкостью (рис. 1.1). Скорость  $\upsilon$  уменьшается по мере уменьшения расстояния y от стенки вплоть до  $\upsilon=0$  при y=0, а между слоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений, так называемых напряжений трения.

Напряжения, возникающие при деформации сдвига согласно гипотезе Ньютона пропорциональны градиенту скорости в движущихся слоях жидкости. Таким образом, закон жидкого трения Ньютона имеет вид:

$$\tau = \mu \cdot \frac{dv}{dy},$$

где µ - коэффициент пропорциональности, получивший название динамической вязкости жидкости;

 $d \upsilon$  - приращение скорости, соответствующее приращению координаты d v.

Динамическая вязкость жидкости имеет размерность Пуаз:

$$1\Pi = 0,1\Pi a \cdot c = 0,0102 \text{ кгс} \cdot c/\text{м}^2$$
.

Помимо динамического коэффициента вязкости используется кинематический коэффициент вязкости:

$$v = \frac{\mu}{\rho}$$

Кинематическая вязкость жидкости имеет размерность Стокс:

$$1 \text{ CT} = 1 \text{ cm}^2/\text{c} = 10^{-4} \text{ m}^2/\text{c}.$$

Коэффициент вязкости является физической характеристикой сплошной среды и для нормальных жидкостей и всех газов (так называемых ньютоновских сплошных сред) не зависит от кинематических характеристик движения (т.е. от распределения скоростей).

Для смазочных масел и жидкостей, применяемых в системах гидропривода, кинематический коэффициент вязкости  $\nu_T$  при температуре T °C можно определить по формуле:

$$\mathbf{v}_T = \mathbf{v}_{50} \cdot \left[ \frac{50}{T} \right]^n,$$

где  $v_{50}$  — кинематический коэффициент вязкости жидкости при температуре 50 °C (таблица 1.2);

n – показатель степени, зависящий от  $v_{50}$ :

$$n = \lg v_{50} + 2.7$$
.

Таблица 1.2. Значения n в зависимости от кинематический коэффициент вязкости жидкости при температуре 50 °C

| $v_{50}$ , cC <sub>T</sub> | n    | ν <sub>50</sub> , cCτ | n    | ν <sub>50</sub> , cCτ | n     |
|----------------------------|------|-----------------------|------|-----------------------|-------|
| 2,8                        | 1,39 | 21,2                  | 1,99 | 52,9                  | 2,42  |
| 6,25                       | 1,59 | 29,3                  | 2,13 | 60,6                  | 2,49  |
| 9,0                        | 1,72 | 37,3                  | 2,24 | 68,4                  | 2,52  |
| 11,8                       | 1,79 | 45,1                  | 2,32 | 80,0                  | 2,546 |

Вязкость жидкости измеряют при помощи вискозиметров.

Наиболее распространенным является вискозиметр Энглера, который представляет собой цилиндрический сосуд диаметром 106 мм, с короткой трубкой диаметром 2,8 мм, встроенной в дно. Время t истечения 200 см³ испытуемой жидкости из вискозиметра через эту трубку под действием силы тяжести, деленной на время  $t_{\rm вод}$  истечения того же объема дистиллированной воды при 20 °C выражает вязкость в градусах Энглера:  $1^{\circ}E = t/t_{\rm вод}$ , где  $t_{\rm вод} = 51,6$  с. Формула для пересчёта градусов Энглера в стоксы в случае минеральных масел:

$$v = 0.073$$
 °E -  $\frac{0.063}{$  °E.

# 1.2. Оборудование и приборы

При определении кинематической вязкости жидкостей применяется следующая аппаратура:

1. Наборы капиллярных стеклянных вискозиметров типа ВПЖ-2 (рис. 1.2, a).



Рис. 1.2. Приборы для измерения: a) вискозиметр стеклянный капиллярный типа ВПЖ-2;  $\delta$ ) ареометр типа АОН

Внутренний диаметр капилляра: 0,99 мм и 0,73 мм.

- 2. Термометры стеклянные лабораторные группы 4.
- 3. Секундомер.

При определении плотности жидкостей применяется следующая аппаратура:

1. Набор денсиметров типа АОН (ареометры общего назначения) по ГОСТ 18481-81 с ценой деления  $20 \div 0.5$  кг/м³ (рис. 1.2,  $\delta$ ).

- 2. Стеклянные цилиндры, заполненные испытуемой рабочей жидкостью.
- 3. Термометр для определения температуры испытуемой рабочей жидкости.

### 1.3. Порядок проведения работы 1.3.1. Определение вязкости жидкости.

- 1) Перед определением вязкости вискозиметр должен быть тщательно промыт растворителем (бензин–растворитель ГОСТ 443-76, бензин авиационный Б-70 ГОСТ 1012-72, ацетон, спирт этиловый ректификованный) и высушен. Рекомендуется после растворителя вискозиметр промыть дистиллированной водой и высушить пропусканием через прибор отфильтрованного от пыли воздуха.
- 2) Перед испытанием жидкость профильтровывают через бумажный фильтр.
- 3) Вискозиметр наполняют испытуемой жидкостью и устанавливают вертикально. На конец трубки I (рис. 1.2, a) одевают резиновую трубку с грушей (или другим устройством).
- 4) Пропустить жидкость через прибор для получения смазывающего слоя на внутренней поверхности прибора, т.о. чтобы жидкость поднялась выше уровня  $M_1$  (рис. 1.2, a).
- 5) Измерить температуру окружающей среды по термометру.
- 6) Установить уровень жидкости так чтобы мениск жидкости находился выше уровня  $M_1$ , примерно до середины расширения 4 и отсоединить грушу. Сообщить трубку 1 с атмосферой и определить время опускания мениска жидкости от метки  $M_1$  до  $M_2$ .
- 7) Во всех вискозиметрах производят несколько измерений времени течения жидкости (минимум три раза).

# 1.3.2. Измерение плотности жидкости.

- 1) Ознакомиться с набором денсиметров (ареометров) и определить возможный диапазон измерения плотности.
- 2) Измерить температуру рабочей жидкости.
- 3) В стеклянный цилиндр, диаметр которого больше диаметра поплавка денсиметра не менее чем в два раза, налить испытуемую жидкость.

- 4) Чистый и сухой денсиметр осторожно поместить в цилиндр с жидкостью, удерживая прибор за верхний конец. Испытание следует начинать с самых легких денсиметров. После того, как прекратится колебания денсиметра, произвести отсчет по его шкале по верхнему краю мениска. При этом глаз наблюдателя должен находиться на уровне мениска.
- 5) Вынуть денсиметр из цилиндра и удалить жидкость с его поверхности.
- 6) Определить плотность разных жидкостей.

### 1.4. Обработка опытных данных 1.4.1. Определение вязкости жидкости.

- 1) Вычислить среднее арифметическое значение времени течения жидкости в вискозиметре (с точностью до 0,1 с).
- 2) Определить коэффициент кинематической вязкости испытуемой жидкости по формуле:

$$v = C \cdot t \cdot K$$
, cCT

где C — коэффициент, учитывающий изменение гидростатического напора жидкости в результате расширения её при нагревании. Для вискозиметров типа ВПЖ-2 коэффициент равен C=1.

t — среднее значение времени течения жидкости в вискозиметре, с.

- K постоянная вискозиметра, сCт/с (указана на приборе).
- 3) Коэффициент кинематической вязкости жидкости вычисляют с точностью до четвёртой значащей цифры (например 1,255; 16,47; 193,1; 1735) при температуре опыта.
- 4) Полученные результаты заносят в таблицу 1.3 и по приложению 1 и 2 определяют вид рабочей жидкости.

 Таблица 1.3.

 Результаты измерений и расчетов вязкости жидкости

| №               | Врем  | ия теч<br>кост | ения :<br>ти <i>t</i> ,с | жид-  | Темпе-<br>ратура | Кинематический коэффициент | Вид рабочей |
|-----------------|-------|----------------|--------------------------|-------|------------------|----------------------------|-------------|
| $\Pi.\Pi$ $t_1$ | $t_2$ | $t_3$          | $t_{\rm cp}$             | T, °C | вязкости, у, сСт | жидкости                   |             |
| 1               |       |                |                          |       |                  |                            |             |
| 2               |       |                |                          |       |                  |                            |             |
|                 |       |                |                          |       |                  |                            |             |
| •••             |       |                |                          |       |                  |                            |             |
|                 |       |                |                          |       |                  |                            |             |

#### 1.4.2. Измерение плотности жидкости.

1) Для получения сравнительных результатов, произвести перерасчет экспериментально полученных значений плотности по уравнению:

$$\rho_0 = \rho + \alpha_\rho \cdot \Delta T \,,$$

где  $\rho_0$  – плотность рабочей жидкости при температуре 20 °C, кг/м³;  $\rho$  - плотность при температуре испытания, кг/м³;

 $\Delta T$  - разность температуры опыта и нормальной температуры в 20 °C;

 $\alpha_{\rho}$  - средняя температурная поправка плотности, кг/м³.°С. Численные значения средней температурной поправки приведены в таблице 1.4.

 ${\it Таблица~1.4.}$  Значения средней температурной поправки  $\alpha_{\rm o}$ 

|                | 1 1                                     | • 1                         | P                             |
|----------------|-----------------------------------------|-----------------------------|-------------------------------|
| Плотность      | Поправка на 1°С                         | Плотность                   | Поправка на 1°С               |
| ρ, κΓ/M³       | $\alpha_{\rho}$ , kg/m <sup>3</sup> .°C | $\rho$ , $\kappa\Gamma/M^3$ | $α_ρ$ , κγ/m <sup>3</sup> .°C |
| $700 \div 710$ | 0,897                                   | $851 \div 860$              | 0,699                         |
| $711 \div 720$ | 0,884                                   | $861 \div 870$              | 0,686                         |
| $721 \div 730$ | 0,870                                   | $871 \div 880$              | 0,672                         |
| $731 \div 740$ | 0,857                                   | $881 \div 890$              | 0,660                         |
| 741 ÷ 750      | 0,844                                   | $891 \div 900$              | 0,647                         |
| $751 \div 760$ | 0,831                                   | $901 \div 910$              | 0,633                         |
| $761 \div 770$ | 0,818                                   | $911 \div 920$              | 0,620                         |
| $771 \div 780$ | 0,805                                   | $921 \div 930$              | 0,607                         |
| $781 \div 790$ | 0,792                                   | $931 \div 940$              | 0,594                         |
| $791 \div 800$ | 0,778                                   | $941 \div 950$              | 0,581                         |
| 801 ÷ 810      | 0,765                                   | $951 \div 960$              | 0,567                         |
| 811 ÷ 820      | 0,752                                   | 961 ÷ 970                   | 0,554                         |
| 821 ÷ 830      | 0,738                                   | $971 \div 980$              | 0,541                         |
| 831 ÷ 840      | 0,725                                   | $981 \div 990$              | 0,578                         |
| $840 \div 850$ | 0,712                                   | $991 \div 1000$             | 0,515                         |

Полученные значения сравнить со справочными данными.

2. Результаты измерений и вычислений занести в таблицу 1.5.

Результаты измерений и расчетов плотности жидкости

|         |                                    |                                    |                                                       | - ' '                                                         |                 |  |
|---------|------------------------------------|------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-----------------|--|
| т вил г | Темпе-<br>ратура,<br><i>T</i> , °C | Плотность,<br>р, кг/м <sup>3</sup> | Температурная поправка                                | Плотность при $20  ^{\circ}\text{C},  \rho_0,  \text{кг/м}^3$ |                 |  |
|         |                                    |                                    | плотности, $\alpha_{\rho}$ , кг/м $^3$ . $^{\circ}$ С | расчет-<br>ная                                                | спра-<br>вочная |  |
|         |                                    |                                    |                                                       |                                                               |                 |  |
|         |                                    |                                    |                                                       |                                                               |                 |  |
|         |                                    |                                    |                                                       |                                                               |                 |  |
|         |                                    |                                    |                                                       |                                                               |                 |  |

#### 1.5. Контрольные вопросы

- 1. Что называется абсолютной и относительной плотностью?
- 2. По какой формуле определяется плотность?
- 3. В каких единицах измеряется плотность?
- 4. Как выражается зависимость плотности от температуры и давления?
- 5. Что характеризует плотность?
- 6. Чему равна плотность наиболее распространенных жидкостей?
- 7. Каковы основные методы опытного определения плотности рабочей жидкости?
- 8. Что такое денсиметр и для чего он используется?
- 9. Что называется вязкостью жидкости?
- 10. Как вязкость связана с текучестью?
- 11. Как выражается связь вязкости с напряжением, возникающем при деформациях сдвига в жидкости?
- 12. Что такое коэффициент динамической вязкости? Какова его размерность?
- 13. Какая связь существует между коэффициентами динамической и кинематической вязкости?
- 14. В каких единицах измеряется динамическая и кинематическая вязкость в системе СИ?
- 15. Почему вязкость называется важнейшим свойством рабочих жидкостей?
- 16. Какие единицы измерения вязкости наиболее часто используются в инженерных расчетах?
- 17. Как определить вязкость масел при любой температуре?
- 18. Какими приборами измеряется вязкость?



 $Puc.\ \Pi.1.1.$  Зависимость кинематической вязкости некоторых жидкостей от температуры: I — масло всесезонное гидравлическое ВМГЗ; 2 — масло индустриальное И-12A; 3 — масло индустриальное И-30A; 4 — масло индустриальное И-40A; 5 — трансмиссионное масло 75W90; 6 — трансмиссионное масло ТАД-17.

Приложение 2 Динамическая вязкость минеральных масел, Па·с

| Маста                          | ГОСТ        |       | Температура, <sup>0</sup> С |       |       |        |        |        |        |        |        |        |      |
|--------------------------------|-------------|-------|-----------------------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|------|
| Масло                          | ГОСТ        | 0     | 10                          | 20    | 30    | 40     | 50     | 60     | 70     | 80     | 90     | 100    | m    |
| Турбинное:                     |             |       |                             |       |       |        |        |        |        |        |        |        |      |
| Тп-22                          | 9972-       | 0,415 | 0,189                       | 0,085 | 0,048 | 0,0318 | 0,0187 | 0,0128 | 0,0091 | 0,0068 | 0,0051 | 0,0040 | 1,98 |
| Тп-30                          | 74          | 0,776 | 0,31                        | 0,145 | 0,074 | 0,0432 | 0,0272 | 0,0179 | 0,0127 | 0,0092 | 0,0068 | 0,0051 | 2,18 |
| Тп-46                          |             | 1,575 | 0,630                       | 0,270 | 0,139 | 0,0746 | 0,0472 | 0,0297 | 0,0206 | 0,0143 | 0,0104 | 0,0077 | 2,30 |
| Индустриальное:                |             |       |                             |       |       |        |        |        |        |        |        |        |      |
| И-12А                          |             | 0,157 | 0,077                       | 0,044 | 0,026 | 0,0176 | 0,0114 | 0,0081 | 0,0060 | 0,0048 | 0,0039 | 0,0033 | 1,75 |
| И-20А                          | 20799       | 0,248 | 0,102                       | 0,064 | 0,038 | 0,0244 | 0,0164 | 0,0110 | 0,0083 | 0,0063 | 0,0050 | 0,0044 | 1,84 |
| И-30А                          | -75         | 0,585 | 0,270                       | 0,126 | 0,075 | 0,0442 | 0,0270 | 0,0185 | 0,0138 | 0,0093 | 0,0077 | 0,0050 | 2,00 |
| И-40А                          |             | 1,070 | 0,452                       | 0,207 | 0,108 | 0,0610 | 0,0380 | 0,0244 | 0,0171 | 0,0122 | 0,0095 | 0,0073 | 2,21 |
| И-50А                          |             | 2,060 | 0,752                       | 0,298 | 0,144 | 0,0792 | 0,0442 | 0,0324 | 0,0208 | 0,0140 | 0,0140 | 0,0076 | 2,28 |
| Авиационное:                   |             |       |                             |       |       |        |        |        |        |        |        |        |      |
| MC-14                          | 21743       | _     | _                           | _     | _     | _      | 0,0930 | _      | _      | _      | _      | _      | 2,70 |
| MC-20                          | -76         | 6,850 | 2,430                       | 1,000 | 0,465 | 0,2350 | 0,1315 | 0,0785 | 0,0500 | 0,0339 | 0,0238 | 0,0172 | 2,85 |
| MC-24                          | -70         | _     | _                           | _     | _     | _      | 0,1600 | _      | _      | _      | _      | _      | 2,95 |
| MK-22                          |             | _     | 3,550                       | 1,860 | 0,620 | 0,3030 | 0,1640 | 0,0960 | 0,0605 | 0,0400 | 0,0273 | 0,0205 | 2,89 |
| Цилиндровое                    | 6411-       | _     | _                           | _     | _     | _      | _      | 0,2440 | 0,1480 | 0,0860 | 0,0585 | 0,0415 |      |
| Полисилоксано-<br>вое:<br>ОМТИ | 76<br>МРТУ  | 0,21  | 0,163                       | 0,129 | 0,093 | 0,0820 | 0,0680 | 0,0620 | 0,0550 | 0,0445 | 0,0397 | 0,0374 | 0,71 |
| ИВВИОЛЬ-3                      | 208-<br>140 | _     | _                           | _     | _     | _      | 0,0270 | 0,0170 | 0,0120 | 0,0088 | 0,0065 | 0,0052 | 1,98 |