

Linear Algebra 2

Assignments 2: Change of Basis (§2.4)

Alexander Heinlein

Q1 2022/2023

Delft University of Technology

Change of basis (§2.4)

Assignment 2.1

Prove Theorem 2.11 (§2.4, p.27) from the book:

If \mathcal{B} , \mathcal{C} and \mathcal{D} are bases for the same vector space, then $P_{\mathcal{B}\mathcal{D}} = P_{\mathcal{B}\mathcal{C}}P_{\mathcal{C}\mathcal{D}}$.

Assignment 2.2

Exercise (5) from page 28 of the book:

Let $\mathcal{B} = ((1, 1, 1)^{\top}, (2, 3, 1)^{\top}, (1, 2, 1)^{\top})$ be a basis for \mathbb{R}^3 and $\mathbf{v} = (5, -2, 3)^{\top}$. Find $P_{\&B}$, $P_{B\&}$ and $[\mathbf{v}]_{\mathcal{B}}$.

Assignment 2.3

Exercise (10) from page 29 of the book:

In $\mathbb{R}_2[t]$, let $\mathcal{B} = (t^2, (t-1)^2, (t+1)^2)$ be a basis, and $\mathbf{v}(t) = t^2 - 4t + 1$. Let $\mathcal{E} = (1, t, t^2)$ be the standard basis.

Find $P_{\&B}$, $P_{B\&}$ and $[\mathbf{v}]_{B}$.

Assignment 2.4

Exercise (12) from page 29 of the book:

In $M_{2,2}$, let & be the standard basis, and let

$$\mathcal{D} = \left(\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \right)$$

be another basis. Let
$$\mathbf{v} = \begin{pmatrix} 5 & 6 \\ 5 & 4 \end{pmatrix}$$
.

Find $P_{\mathcal{D}\mathcal{E}}$, $P_{\mathcal{E}\mathcal{D}}$ and $[\mathbf{v}]_{\mathcal{D}}$.

Assignment 2.5 (for submission)

Consider the bases

$$\mathcal{B} = (t^2 - t + 1, t + 1, t^2 + 1)$$

and

$$\mathcal{D} = (t^2 + t + 4, 4t^2 - 3t + 2, 2t^2 + 3)$$

for the vector space $\mathbb{R}_2[t]$. Determine the change of basis matrix that changes $\mathfrak D$ coordinates into $\mathfrak B$ coordinates.