

## Lista de ejercicios de la lección 1.1

I. Sea  $f(x) = 6 - x^2$  en [0, 6] en cinco subintervalos determinados por:

$$x_0 = 0, \quad x_1 = 0.5, \quad x_2 = 1.5$$

$$x_3 = 3.5, \quad x_4 = 4.5, \quad x_5 = 6$$

$$\Delta x_1 = x_1 - x_0 = \frac{1}{2}$$

$$\Delta x_2 = x_2 - x_1 = 1.5 - 0.5 = 1$$

$$\Delta x_3 = x_3 - x_2 = 3.5 - 1.5 = 2$$

$$\Delta x_4 = x_4 - x_3 = 4.5 - 3.5 = 1$$





Figura 1: Intervalos

II. Calcular la norma de la partición y la suma de Riemman  $R_p$ , para:

$$W_1 = \frac{1}{4}$$
,  $W_2 = 1$ ,  $W_3 = 2$ ,  $W_4 = 4$ ,  $W_5 = 5$ 

III. Calcular el área bajo la gráfica de f entre a y b usando:

- a) Rectángulos inscritos. (Área por defecto)
- b) Rectángulos circunscritos. (Área por exceso)
- c) Trace la gráfica y un rectángulo típico

2. 
$$f(x) = 2x - 1$$
,  $[-1, 1]$ 

2. 
$$f(x) = 2x - 1$$
,  $[-1, 1]$  8.  $f(x) = 2 + 3x - x^2$ ,  $[1, 5]$  14.  $f(x) = 8 - 3x$ ,  $[0, 2]$ 

14. 
$$f(x) = 8 - 3x$$
,  $[0, 2]$ 

3. 
$$f(x) = 4 - x^2$$
, [1, 3]

3. 
$$f(x) = 4 - x^2$$
, [1,3] 9.  $f(x) = 2 - x^2$ , [0,2] 15.  $f(x) = x^2$ , [0,5]

15. 
$$f(x) = x^2$$
,  $[0, 5]$ 

4. 
$$f(x) = x^3 - 1$$
,  $[0, 2]$ 

4. 
$$f(x) = x^3 - 1$$
,  $[0, 2]$  10.  $f(x) = 1 + 2x^3$ ,  $[0, 5]$  16.  $f(x) = x^2 + 2$ ,  $[1, 3]$ 

16. 
$$f(x) = x^2 + 2$$
, [1, 3]

5. 
$$f(x) = x^4 - 2x^2 + 1$$
, [1,2] 11.  $f(x) = x^3$ , [1,2]

11. 
$$f(x) = x^3$$
, [1, 2]

17. 
$$f(x) = 3x^2 + 5$$
, [1, 4]

6. 
$$f(x) = x^5 + 1$$
,  $[0, 2]$ 

6. 
$$f(x) = x^5 + 1$$
,  $[0, 2]$  12.  $f(x) = 16 - x^2$ ,  $[0, 2]$  18.  $f(x) = 7$ ,  $[-2, 6]$ 

18. 
$$f(x) = 7$$
,  $[-2, 6]$ 

7. 
$$f(x) = 1 + 3x$$
,  $[-1, 5]$  13.  $f(x) = 2x + 3$ ,  $[0, 4]$  19.  $f(x) = 9 - x^2$ ,  $[0, 3]$ 

13. 
$$f(x) = 2x + 3$$
,  $[0, 4]$ 

19. 
$$f(x) = 9 - x^2$$
,  $[0,3]$ 



20. 
$$f(x) = 2 + 3x + 4x^2$$
, [1,5]

21. 
$$f(x) = x^3 + 1$$
, [1, 2]

22. 
$$f(x) = 4x + x^3$$
,  $[0, 2]$