

Computing Infrastructures

Course Introduction

Prof. Manuel Roveri

Prof. Gianluca Palermo, Prof. Danilo Ardagna

Prof. Manuel Roveri

Full Professor

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy Email: manuel.roveri@polimi.it
Web: http://roveri.faculty.polimi.it

- Research interests: TinyML, IoT and edge computing, privacy-preserving machine and deep learning
- Lecturer of « Computing Infrastructures» and «Hardware Architecture for Embedded and edge AI»
- Associate Editor of IEEE Trans. on Artificial Intelligence, Neural Networks, IEEE Trans. on Emerging Tecnologies in Computational Intelligence, IEEE Trans. on Neural Networks and Learning Systems
- Chair of the IEEE CIS Technical Activities strategic planning committee and IEEE CIS Neural Network Technical Committee
- Co-Founder of DHIRIA, a Spin-Off of Politecnico di Milano

The AI-Tech Research Lab @ POLIMI

Cyberphysical Systems Artificial
Intelligence
(Machine
learning
and deep
learning)

Internet-of-Things

Edge Computing

Cloud Computing Artificial
Intelligence
(Machine
learning
and deep
learning)

Topics of this course!!!

Introduction to the course

 Modern large-scale datacenters require the seamless integration of different components - applications, computation nodes, storage devices, and networks - into one computing infrastructure.

 The course covers the basics of current datacenters architectures, ranging from the analysis of the single components to the global infrastructure.

The topics of the course

A. HW Infrastructures:

- **System-level**: Computing Infrastructures and Data Center Architectures, Rack/Structure;
- Node-level: Server (computation, HW accelerators), Storage (Type, technology), Networking (architecture and technology);
- Building-level: Cooling systems, power supply, failure recovery

B. SW Infrastructures:

- Virtualization: Process/System VM, Virtualization Mechanisms (Hypervisor, Para/Full virtualization)
- Computing Architectures: Cloud Computing (types, characteristics), Edge/Fog Computing, X-as-a service
- Machine and deep learning-as-a-service

C. Methods:

- Reliability and availability of datacenters (definition, fundamental laws, RBDs)
- **Disk performance** (Type, Performance, RAID)
- Scalability and performance of datacenters (definitions, fundamental laws, queuing network theory)

1. Prof. Manuel Roveri

- HW-SW infrastructure, Cloud, MLaaS, Disks
- Dipartimento di Elettronica,
 Informazione e Bioingegneria
- manuel.roveri@polimi.it
- http://roveri.faculty.polimi.it

2. Prof. Danilo Ardagna

- Performance
- Dipartimento di Elettronica,
 Informazione e Bioingegneria
- danilo.ardagna@polimi.it
- http://ardagna.faculty.polimi.it

3. Ing. Roberto Sala

- Dependability
- Dipartimento di Elettronica,
 Informazione e Bioingegneria
- roberto.sala@polimi.it

4. Prof. Marco Gribaudo

- Dependability, disks, and performance exercises
- Dipartimento di Elettronica,
 Informazione e Bioingegneria
- marco.gribaudo@polimi.it

	CS [E-P], MUS[E-P],BIO, TEL[E-P], GEO
Monday	14:15-16:15 9.1.2
Tuesday	12:15-14:15 B.4.4

Schedule of the Course

A detailed schedule is available on WeBeep (

The course will have a written exam

- The exam will consist in:
 - a set of exercises, i.e., simple problems to solve (similar to the ones that will be covered during the classes)
 - one or more questions dealing with more general topics covered by the course
- Closed book
- Exercises and Exams will be made available
- Thesis about course topics will be made available

Slides of the course will be published on the WeBeep website

- Luiz André Barroso and Urs Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
- James Smith and Ravi Nair, "Virtual Machines" Versatile
 Platforms for Systems and Processes
- Caesar Wu and Rajkumar Buyya, Cloud Data Centers and Cost Modeling
- Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth
 C. Sevcik, Quantitative System Performance: Computer System
 Analysis Using Queueing Network Models
- Massimo Lazzaroni, Loredana Cristaldi, Lorenzo Peretto, Paola Rinaldi, Marcantonio Catelani. Reliability Engineering: Basic Concepts and Applications in ICT