Recherche du zéro d'une fonction

1 Méthode par balayage

1.A Présentation du problème

On considère un condensateur chargé à l'instant initial $t_0=0$ ms. Il se décharge à partir de l'instant $t_1=0.5$ ms. On pose $\tau=1$ ms et E=5V. On souhaite avoir une valeur approchée de l'instant t_* pour lequel on a $u_c(t_*)=\frac{5E}{100}$ c'est-à-dire que le condensateur est déchargé à 95%.

La tension aux bornes du condensateur s'écrit

$$\forall t \geqslant t_1 : u_c(t) = E \cdot \exp\left(-\frac{(t-t_1)}{\tau}\right).$$

1.B Reformulation du problème

On cherche donc un réel t_* tel que $u_c(t_*) = \frac{5E}{100} \iff u_c(t_*) - \frac{5E}{100} = 0$.

Par conséquent, trouver une valeur approchée de t_* telle que $u_c(t_*) = \frac{5E}{100}$ revient donc à **déterminer un zéro** t_* de la fonction f définie par

$$f(t) = u_c(t) - \frac{5E}{100}.$$

Q1 Justifier à l'aide d'un théorème mathématique que la fonction f s'annule en un unique réel t_* sur l'intervalle \mathbb{R}_+ .

1.C Représentation graphique en Python

Q2 Importer dans l'IDLE les module numpy et matplotlib.pyplot avec les commandes suivantes :

```
import matplotlib.pyplot as plt # pour les graphes
import numpy as np # module d'algèbre linéaire
```

Taper les commandes suivantes dans la console :

- L1=np.linspace(0,1,11).
- L2=np.linspace(0,10,101)

Que contiennent les variables L1,L2?

- Q3 Expliquer ce que permet de créer la commande np.linspace(a,b,N) avec a,b des flottants et N un entier.
- Q4 Si lesx=[x0,...,xN] et lesy=[y0,... yN] sont des listes de flottants alors la commande plt.plot(lesx,lesy) permet de représenter graphiquement et de relier les points $M_0(x_0,x_0),...M_N(x_N,y_N)$.

Tapons, par exemple, les commandes ci-dessous :

```
lesx=np.linspace(0,2,6)

lesy=[]
for x in lesx:
    lesy.append(x**2)
plt.plot(lesx,lesy)
plt.show() # pour afficher
```


Que contiennent les variables lesx et lesy? Que représente le graphe?

Q5 Dans le tracer précédent, la courbe obtenue est une ligne polygonale : elle est composée de segments. Comment améliorer le code précédent pour obtenir un tracer satisfaisant (plus régulier) de la fonction carré $x \mapsto x^2$ sur le segment [0; 2]?

1.D Méthode par balayage

- **Q**6 En vous inspirant de l'exemple précédent, taper les commandes permettant l'affichage de la courbe représentative de la fonction $f: t \mapsto E \cdot \exp\left(-\frac{(t-t_1)}{\tau}\right) 0,05E$ sur le segment [0.5; 7].
- **Q**7 Simplement à l'aide de cette représentation graphique, donner en encadrement de t_* tel que $f(t_*) = 0$ entre **deux entiers consécutifs** : $n \le t_* < n+1$.
- **Q**8 On propose d'obtenir une valeur approchée de t_* par une **méthode de balayage** à pas constant ε .

L'idée est la suivante, on pose u = n et on calcule f(u).

Si f(u) > 0, on modifie la valeur de $u \leftarrow u + \varepsilon$.

On re-calcule f(u) avec cette nouvelle valeur de u.

Si f(u) < 0 on s'arrête. Sinon, on modifie $u \leftarrow u + \varepsilon$. Et ainsi de suite.

On arrête lorsque f(u) < 0.

Écrire une fonction balayage(f,epsilon,n) d'arguments une fonction f, un flottant epsilon et un entier n et renvoyant le zéro $t_* \ge n$ de la fonction f avec une précision epsilon.

 $\mathbf{Q}9$ Donner une valeur approchée du zéro t_* de la fonction

$$f: t \mapsto E \cdot \exp\left(-\frac{(t-t_1)}{\tau}\right) - 0,05E$$
 à 10^{-3} près sur la valeur de t_*

2 Méthode de Newton

2.A Présentation de la méthode

La méthode de Newton présentée ci-dessous permet également de trouver, sous certaines conditions, un zéro d'une fonction f sur un intervalle I où cette fonction s'annule. On pose pour $t \geqslant t_1$:

$$f(t) = u_c(t) - \frac{5E}{100} = E \cdot \exp\left(-\frac{(t - t_1)}{\tau}\right) - 0.05E.$$

L'idée est la suivante.

On fixe un élément $t_1 \in I$.

On trace la tangente \mathcal{T}_{t_1} à la courbe de f au point $(t_1, f(t_1))$.

On détermine alors le point d'intersection de \mathcal{T}_{t_1} et de l'axe des abscisses (\mathcal{O}_x) .

On note t_2 l'abscisse de ce point d'intersection.

La tangente \mathscr{T}_{t_1} a pour équation $\mathscr{T}_{t_1}: y = f'(t_1)(t-t_1) + f(t_1)$.

L'abscisse du point $(t_2,0)$ à l'intersection $\mathscr{T}_{t_1}\cap(\mathscr{O}_x)$ est donc solution de l'équation :

$$0 = f'(t_1)(t_2 - t_1) + f(t_1) \iff t_2 = t_1 - \frac{f(t_1)}{f'(t_1)}$$

On recommence la même démarche avec t_2 à la place de t_1 : on détermine la tangente \mathscr{T}_{t_2} au point $(t_2, f(t_2))$ puis le point d'intersection $(t_3, 0)$ de $\mathscr{T}_{t_2} \cap (\mathscr{O}_x)$. Et ainsi de suite.

Ci-dessous une illustration pour la fonction définie par $f(t) = u_c(t) - \frac{5E}{100}$.

On obtient une suite $(t_n)_{n\in\mathbb{N}^*}$ vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}^*, t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)} \quad (*).$$

Sous des hypothèses que nous ne détaillons pas ici, on peut montrer que la suite $(t_n)_{n\in\mathbb{N}^*}$ converge vers le zéro t_* de la fonction f sur l'intervalle I.

2.B Application de la méthode

Q10 On rappelle que si f est une fonction numérique d'une variable réelle, dérivable en x alors :

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Si h est proche de 0, on a donc :

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}.$$

Écrire une fonction derive(f,x) d'argument une fonction numérique f, dérivable en x, et un flottant x et renvoyant une valeur approchée du nombre dérivé f'(x). On pourra prendre une valeur h arbitraire ici $(0 < h < 10^{-3})$.

Q11 Importer les module numpy et matplotlib.pyplot avec les commandes suivantes :

Sur un même graphe, tracer avec Python:

— La courbe représentative de f définie sur [0.5, 7] par

$$f(t) = E \cdot \exp\left(-\frac{(t - t_1)}{\tau}\right) - 0.05E.$$

- La tangente de la courbe de f au point d'abscisse $t_1 = 0.5$.
- Q12 On rappelle que la suite $(t_n)_{n\in\mathbb{N}}$ vérifie la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)}.$$

Écrire une fonction suivant (a) d'argument un flottant et renvoyant le terme suivant dans la suite $(t_n)_{n\in\mathbb{N}}$.

- Q13 Écrire alors une fonction Newton(f,t1,n) dont les arguments sont une fonction f, un flottant t_1 et un entier naturel n. Cette fonction renvoie le n-ième terme de la suite $(t_n)_{n\in\mathbb{N}^*}$ définie par la relation de récurrence dans l'encadré (*) et dont le premier terme est t_1 .
- Q14 Donner une valeur approchée du zéro de la fonction f sur l'intervalle [0,7] en utilisant la fonction précédente avec $t_1 = 0.5$ et n = 4.
- Q15 Écrire une deuxième fonction Newton1(f,x0,epsilon) dont les arguments sont une fonction f, un flottant t_1 et une précision ε . Cette fonction renvoie une valeur approchée du zéro de la fonction f avec une précision au moins ε .

On pourra utiliser la condition suivante : t_n est une valeur approchée du zéro de f avec une précision au moins ε si l'on a $|t_n - t_{n-1}| < \varepsilon$.

3 Recherche dichotomique

3.A Présentation de la méthode

La méthode de recherche du zéro d'une fonction par dichotomie est encore une méthode permettant de trouver le zéro t_* d'une fonction f s'annulant sur un intervalle I. On considère à nouveau la fonction f définie sur $I=[0.5\,;7]$ par :

$$f(t) = E \cdot \exp\left(-\frac{(t - t_1)}{\tau}\right) - 0.05E.$$

L'idée est la suivante. On construit deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\mathbb{N}}$ d'éléments de $I=[0.5\,;7]$ de la manière suivante :

— **Étape 1 :** On pose $a_0 = 0.5$ et $b_0 = 7$.

Graphiquement, ou par le calcul, on constate qu'on a $f(a_0) > 0$ et $f(b_0) < 0$. Le zéro t_* recherché se trouve entre a_0 et b_0 .

On détermine le milieu du segment $[a_0, b_0]$ noté $m_0 = \frac{a_0 + b_0}{2} = 3.75$ puis on calcule l'image f(3.75). On constate que $f(m_0) < 0$. Le zéro recherché se trouve donc entre a_0 et m_0 .

— Étape 2: On recommence cette fois-ci avec $a_1 = a_0 = 0.5$ et $b_1 = m_0 = 3.75$. |Q18 La distance $|a_n - b_n|$ est divisée par 2 à chaque étape de l'algorithme. On peut On détermine le milieu $m_1 = \frac{a_1 + b_1}{2} = 2.125$. On calcule l'image $f(m_1) = f(2.125)$ et on constate que f(2.125) > 0. Le zéro t_* recherché se trouve donc entre $m_1 = 2.125$ et $b_1 = 3.75$. On pose alors $a_2 = m_1$ et $b_2 = b_1$.

- Étapes suivantes: A chaque étape de l'algorithme de dichotomie, on divise le segment $[a_n, b_n]$ en deux parties : $[a_n, m_n]$ et $[m_n, b_n]$ avec $m_n = \frac{a_n + b_n}{2}$. Pour passer à l'étape suivante, on calcule $f(m_n)$.
 - * si $f(m_n) > 0$ alors le zéro t_* recherché se trouve entre m_n et b_n . On pose $a_{n+1} = m_n$ et $b_{n+1} = b_n$ (valeur inchangée).
 - * si $f(m_n) < 0$ alors le zéro t_* recherché se trouve entre a_n et m_n . On pose $a_{n+1} = a_n$ (valeur inchangée) et $b_{n+1} = m_n$.

On peut montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent vers la même limite, t_* l'unique zéro de f sur I (elles sont adjacentes).

Application 3.B

- Q16 Écrire une fonction dichotomie (f,a,b,n) d'arguments une fonction f, deux flottants a, b et un entier n et qui renvoie les valeurs des n-ième termes des suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ construites dans la partie précédente.
- Q17 Tester avec la fonction définie $f(t) = u_c(t) 0.05E$, a = 0.5 et b = 7 et diverses valeurs de n.

montrer qu'après n itérations de l'algorithme, on a $|a_n - b_n| = \frac{|a_0 - b_0|}{2^n} = \frac{|a_0 - b|}{2^n}$. Par conséquent, si $\varepsilon>0$ est un réel strictement positif fixé et qu'on a

$$\frac{|a-b|}{2^n} < \varepsilon$$

alors une valeur approchée de $t_* \in [a_n, b_n]$ est donnée avec une précision ε indifféremment par a_n ou b_n .

En déduire une fonction dichotomie (f,a,b,epsilon) renvoyant une valeur approchée de t_* avec une précision ε .