

Skript Topologie I.

Mitschrift der Vorlesung "Topologie I." von Prof. Dr. Arthur Bartels

Jannes Bantje

16. November 2015

Aktuelle Version verfügbar bei

⇔ GitHub

https://github.com/JaMeZ-B/latex-wwu♂

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

(sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files8t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

■ Bittorrent SyncB6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein RasPi ist permanent online, sodass stets die aktuellste Version verfügbar ist. Clients ☑ gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich.

Vorlesungshomepage

Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie I., WiSe 2014/2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs) oder Kommentare auf https://github.com/JaMeZ-B/latex-wwu ♂.
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.
 - Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") verständlicherweise Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹
- Indirektes Mitarbeiten: T_FX-Dateien per Mail verschicken.
 - Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

Inhalt der Vorlesung

In der Vorlesung werden wir uns mit algebraischer Topologie beschäftigen. In der algebraischen Topologie werden topologische Fragen, wie zum Beispiel wann \mathbb{R}^n und \mathbb{R}^m homöomorph sind, in algebraische Fragen übersetzt. Ein wichtiges Hilfsmittel für solche Übersetzungen sind Homologiegruppen. Wir werden in der Vorlesung diese Homologiegruppen definieren und Hilfsmittel entwickeln, um Homologiegruppen zu berechnen. Es ergeben sich dann schöne topologische Anwendungen, wie zum Beispiel die topologische Invarianz der Dimension.

Literatur

- Bredon, G.E.: Topology and Geometry, Graduate Texts in Mathematics, Springer Verlag 1993
- HATCHER, A.: Algebraic Topology ☑, Cambridge University Press, 2002
- Lück, W.: Algebraische Topologie Homologie und Mannigfaltigkeiten, Vieweg, 2005

¹ zB. https://try.github.io/levels/1/challenges/1♂, ist auf Englisch, aber dafür interaktives LearningBy-Doing

- том DIECK, Т.: Topologie, 2. Auflage, de Gruyter 2000
- WALDHAUSEN, F.: Skript zur Einführung in die Topologie⊄, Skript zur Topologie⊄

Inhaltsverzeichnis

1	Kate	gorien, Funktoren und natürliche Transformationen	1
	1.1	Definition: Kategorie	1
	1.2	Beispiele für Kategorien	1
	1.3	Bemerkungen zu Kategorien	2
	1.4	Definition: Funktor	2
	1.5	Beispiele für Funktoren	
	1.6	Definition: Natürliche Transformation	3
	1.7	Ausblick auf Kategorien und Funktoren in der algebraischer Topologie	3
2	Kom	binatorische Beschreibungen topologischer Räume	4
	2.1	Beispiel einer kombinatorischen Beschreibung eines Raumes	4
	2.2	Definition: Simplizialer Komplex	4
	2.3	Beispiel für simpliziale Komplexe	4
	2.4	Definition: Unterkomplex	4
	2.5	Definition: Simpliziale Abbildung	
	2.6	Definition: Geometrische Realisierung	
	2.7	Beispiel: Rand des n -Simplizes und der Torus	5
	2.8	Definition: Polyeder	
	2.9	Definition: Euler-Charakteristik	
	2.10	Satz über die Euler-Charakteristik	
3	Simp	liziale Homologie	7
	3.1	Definition: Freier R -Modul mit Basis S	7
	3.2	Lemma: Universale Eigenschaft von freien Moduln	7
	3.3	Beispiel für freie und nicht-freie Moduln	7
	3.4	Definition: <i>n</i> -ter Kettenmodul	8
	3.5	Definition: Orientierung eines $(n-1)$ -Simplizes als Teilmenge eines n -Simplizes	8
	3.6	Definition: <i>n</i> -te Randabbildung	8
	3.7	Proposition: Für die Randabbildung gilt $\partial_{n-1} \circ \partial_n = 0 \dots \dots \dots$	8
	3.8	Lemma: Ein $(n-2)$ -Simplex ist Seite von genau zwei $(n-1)$ -Simplizes	8
	3.9	Notation für das Weglassen eines Knotens	9
	3.10	Definition: <i>n</i> -ter Homologiemodul	9
	3.11	Beispiele für Homologiemoduln	9
	3.12	Definition: R -Kettenkomplex, n -te Homologie eines R -Kettenkomplexes	10
	3.13	Bemerkungen zu Kettenkomplexen	
	3.14	Definition: Simplizialer Kettenkomplex	10
4	Eulei	-Charakteristik von Kettenkomplexen	11
	4.1	Wiederholung: Torsionsgruppe	11
	4.2	Lemma: Rang einer endlich erzeugten abelschen Gruppe	11
	4.3	Definition: Kurze exakte Sequenz	11
	4.4	Beispiele für kurze exakte Folgen	12
	4.5	Bemerkung: Spaltung einer kurzen exakten Sequenz	12
	4.6	Bemerkung: Existenz einer Spaltung, wenn M_2 frei ist $\dots \dots \dots \dots$	12
	4.7	Bemerkung: Der Rang ist additiv	12

Inhaltsverzeichnis

	4.8	Proposition: Der Rang ist für kurze exakte Folgen endl. erz., abelscher Gruppen additiv	12
	4.9	Definition: Eulercharakteristik von \mathbb{Z} -Kettenkomplexen	
	4.10	Satz: Eulercharakteristik eines endlich erzeugten \mathbb{Z} -Kettenkomplexes	
	4.11	Korollar: Die Eulercharakteristik eines simplizialen Komplexes	
5	Sing	uläre Homologie	15
	5.1	Definition: Singuläre Simplizes und n -ter singulärer Kettenmodul	15
	5.2	Definition: Einschränkung eines singulären Simplizes auf eine Seite	15
	5.3	Bemerkung zur Inklusion der j -ten Seite	15
	5.4	Definition: n -te singuläre Randabbildung	15
	5.5	Proposition: Für die Randabbildungen gilt $\partial_{n-1}\circ\partial_n=0$	15
	5.6	Lemma: Hilfslemma für Proposition 5.5	15
	5.7	Definition: Singuläre Homologie von X	16
	5.8	Definition: n -Ketten, n -Ränder und n -Zykel und Homologieklasse	16
	5.9	Beispiel: Die Homologie des Ein-Punkt-Raumes	16
	5.10	Proposition: Eigenschaften von $H_0(X)$ für $X \neq \emptyset$ und X wegzusammenhängend	16
	5.11	Bemerkung: Vorgehen, um später zu zeigen: $H_*(K;R) \cong H_*(K ;R)$	17
	_		
6		torialität	18
	6.1	Definition: R-Kettenabbildung	18
	6.2	Bemerkung: Induzierte Abbildung einer Kettenabbildung auf Homologie	18
	6.3	Bemerkung: Homologie definiert einen Funktor	18
	6.4	Definition: Induzierte Abbildung auf Kettenkomplexen	18
	6.5	Proposition: Der singuläre Kettenkomplex über R bildet einen Funktor	19
	6.6	Korollar: Homologie ist ein Funktor Top $ o$ R -Mod	
	6.7	Bemerkung: Notation für die auf Homologie induzierte Abbildung	
	6.8	Definition: Summe oder Koprodukt von topologischen Räumen	19
	6.9	Definition: Summe von R-Moduln	
	6.10	Satz: Homologie des Koproduktes topologischer Räume	20
7	Hom	otopieinvarianz	21
	7.1	Bemerkung: Die induzierte Abbildung eines Homöomorphismus ist ein Isomor-	
		phismus	21
	7.2	Definition: Homotopieäquivalenz und Homotopieinverse	21
	7.3	Satz: Homotopieinvarianz der Homologie	21
	7.4	Korollar: Die induzierte Abbildung einer Homotopieäquivalenz ist ein Isomor-	
		phismus	21
	7.5	Korollar: Homologie eines kontrahierbaren Raumes	21
	7.6	Definition: Kettenhomotopie	22
	7.7	Prop.: induzierte Abbildungen von kettenhomotopen Kettenabbildungen sind	
		gleich	22
	7.8	Lemma: Reduktion von Satz 7.3 auf Beweis eines Spezialfalles	22
	7.9	Bemerkung zum Vorgehen beim Beweis von [#]	22
	7.10	Definition: Affin lineare Abbildungen zur Konstruktion der Kettenhomotopie	23
	7.11	Lemma: Gleichungen für die Abbildungen aus 7.10	23
	7.12	Beweis von [##]/Konstruktion der Kettenhomotopie	
	7.13	Bemerkung: Konstruktion einer Kettenhomotopie aus einer Homotopie	25

VI Inhaltsverzeichnis

8	Homo	ologie von Paaren	26
	8.1	Definition: Paar von topologischen Räumen	26
	8.2	Definition: Singulärer Kettenkomplex und Homologiemodul von Paaren	
	8.3	Definition: Der singuläre Kettenkomplex von Paaren definiert einen Funktor	26
	8.4	Bemerkung: Topologische Räume als Paar auffassen	26
	8.5	Frage: Können wir $H_n(X, A; R)$ durch $H_n(X; R)$ und $H_n(A; R)$ ausdrücken?	26
	8.6	Beispiel: Homologie des Paares $(\Delta^n , \partial\Delta^n)$	
	8.7	Definition: Lange exakte Sequenz von R-Moduln	
	8.8	Satz: Existenz der Paarsequenz	
	8.9	Korollar: Hologiemodul wenn A kontraktibel ist	
	8.10	Definition: Kurze exakte Folge von Kettenkomplexen	
	8.11	Beispiel einer kurzen exakten Folge von Kettenkomplexen	
	8.12	Schlangenlemma	
	8.13	Beweis von Satz 8.8	
	8.14	Bemerkung	
	8.15	Fünfer-Lemma	
	8.16	Lemma ("2 von 3")	
		,	
9	Ausso	hneidung und die Mayer-Vietoris Folge:	32
	9.1	Satz: Ausschneidungsisomorphismus	32
	9.2	Satz (Mayer-Vietoris-Folge)	32
	9.3	Bemerkung zur Anwendbarkeit der Mayer-Vietoris-Folge	34
	9.4	Satz: Homologie der Sphäre S^n	34
	9.5	Definition: Reduzierte Homologie	34
	9.6	Bemerkung: Die Aussage von Satz 9.4 in reduzierter Homologie	34
	9.7	Beweis von [##]	35
10		ndungen	36
	10.1	Satz: Invarianz der Dimension	
	10.2	Fixpunktsatz von Brouwer	
	10.3	Definition: Abbildungsgrad einer stetigen Abbildung $f\colon S^n \to S^n$	
	10.4	Proposition: Einfache Eigenschaften des Abbildungsgrades	
	10.5	Beispiel: Abbildungsgrad der Spiegelung $R_i \colon S^n \to S^n \dots \dots \dots$	
	10.6	Beispiel: Grad der Punktspiegelung	
	10.7	Erinnerung: Vektorfelder	
	10.8	Satz: Es gibt ein Vektorfeld ohne Nullstellen auf $S^n \iff n$ ist ungerade	
	10.9		38
	10.10	Satz: Homologie von S^n ohne Einbettung von Scheiben ${\cal D}^k$ und Sphären S^k mit	
		k < n	39
		Proposition über Homologie von $X=\bigcup_{a\in N}U_a$ wobei $U_a\subseteq U_{a+1}$	
	10.12	Beweis von Satz 10.10	39
11	CW-I	Komplexe	4
••	11.1	Definition: Pushout	4
	11.2		٦ 4
	11.3	Definition: CW-Komplex	
	11.4	Bemerkungen zur Definition von CW-Komplexen	
	11.5	Beispiele für CW-Komplexe	42

	11.6 11.7	Lemma: Kompaktheit von Teilmengen eines CW-Komplexes	
12	ابراام7	läre Homologie	45
12	12.1	Definition: n -ter zellulärer Kettenmodul und zelluläre Randabbildung	
	12.1		45
	12.3		45
	12.3	Bem.: Funktorialität des zellulären Kettenkomplexes und der zellulären Homologie	
	12.5		45
	12.5	Bemerkung: Matrixform der Randabbildung ∂_n^{cell}	46
	12.7		47
	12.7	Satz: Natürlicher Isomorphismus zwischen zellulärer und singulärer Homologie	47
	12.9	Lemma: Die Homologie des n -Gerüsts und die von $X^{(n)} \hookrightarrow X$ induzierte Abbildung	
		<u> </u>	48
	12.11		48
		· · · · · · · · · · · · · · · · · · ·	48
	12.13		
		Satz: Isomorphie zwischen $C_*(K;R)$ und $C_n^{\mathrm{cell}}(K ;R)$	
		\mathcal{C}_n (11) \mathcal{C}_n (11) \mathcal{C}_n (11) \mathcal{C}_n	•
13	Klein	e Simplizes	52
	13.1	Satz: Ausschneidungs-Isomorphismus	52
	13.2	Definition: \mathcal{U} -klein	
	13.3	Satz über kleine Simplizes	
	13.4	Bemerkung: Satz über kleine Simplizes für Paare von topologischen Räumen	
	13.5	Beweis des Ausschneidungssatzes (13.1)	
	13.6	Idee zum Beweis des Satzes über kleine Simplizes	
	13.7	Definition: Schwerpunkt und "Abkegeln"	
	13.8	Lemma: Kettenhomotopie zwischen const_{s_n} und id auf $ \Delta^n $	
	13.9	Definition von Zerteilungsoperatoren	
		Lemma 1: Kettenhomotopie zwischen $(H_*)_X$ und der Identität	
		Lemma 2: Eigenschaft von $(B_n)_X$ in Bezug auf eine offene Überdeckung $\mathcal U$ von X	
		Beweis des Satzes über kleine Simplizes (13.3)	
		Bemerkung über Abbildungen $s_n \colon C_n \to C'_{n+1}$, die den Rang erhöhen	
		Definition: Affiner singulärer Simplex	
		Definition: Durchmesser eines singulären Simplizes $ \Delta^p \to \Delta^n $	
	13.16	Lemma 3: Eigenschaften von affinen singulären Simplizes	56
14	Axion	ne für Homologie	58
	14.1	Bezeichnung: Funktor mit $(X,A)\mapsto (X,\emptyset)$	
	14.2	Definition: Homologietheorie	
	14.3	Bemerkung zur Homotopieinvarianz von Homologietheorien	
	14.4	Bemerkung zu Mayer-Vietoris-Folge und disjunkten Vereinigungen	
	14.5		58
	14.6	Bemerkung: Statt №-graduierten Moduln sind oft auch ℤ-graduierte Moduln nötig	59
	14.7		59
	14.8	· · · · · · · · · · · · · · · · · · ·	59
	14.9	Satz: Isomorphie der Homologie von CW-Komplexen von zwei Homologietheorien	59

VIII

15	Zusar	nmenhang zwischen $\pi_1(X,x_0)$ und $H_1(X;\mathbb{Z})$	61
	15.1	Definition: Kommutatorgruppe	61
	15.2	0 11	61
	15.3	Definition: Abelianisierung	61
	15.4	Bemerkung: Funktorialität der Abelianisierung	61
	15.5	Schleifen und 1-Zykel	61
	15.6	Lemma 1: Für Pfade ω, ω' ist $\omega * \omega' - \omega - \omega'$ der Rand eines 2-Simplex	61
	15.7		62
	15.8	Lemma 3: Für punktiert homotope Pfade ω und ω' ist $\omega-\omega'$ im Rand einer 2-Kette	
	15.9	5	63
			63
		,	63
		, , , , , , , , , , , , , , , , , , , ,	64
			64
		1 0 11	65
		S (7 °)	65
		Definition: n-zusammenhängender Raum	65
			65
		·	66
		Bemerkung: Homotopiegruppen bilden keine verallgemeinerte Homologietheorie	
			66
	15.21		66
		Theorem (Hurewicz)	67
		Korollar: Isomorphie von Homotopie- und Homologiegruppen für $(n-1)$ -zsmhg.	0,
			67
	15.25		67
	-· -		
16			69
	16.1	1 0 0 11	69
	16.2		69
	16.3	Definition: Homologische Orientierung in einem Punkt	
	16.4 16.5	Notation: Einschränkung eines Elementes $v \in H_n(X, X \setminus B; R)$ Definition: Homologische Orientierung der gesamten Mannigfaltigkeit	69
	16.6		69
	16.7	· ·	69
	16.8	Bezeichnung: Geschlossene Mannigfaltigkeit	
	16.9	Satz über <i>R</i> -Orientierbarkeit	
		Definition: Disjunkte Vereinigung der $H_n(M, M \setminus \{x\}; R)$ und $\Gamma(M, \mathcal{H})$	
			70
		· · · · · · · · · · · · · · · · ·	71
		Lemma über kompakten Teilraum einer <i>n</i> -Mannigfaltigkeit	71
			72
Ind	lex		Α
		governo i abraio	_
AD	DILGUN	gsverzeichnis	C

Inhaltsverzeichnis

1 Kategorien, Funktoren und natürliche Transformationen

1.1 Definition Eine *Kategorie* C besteht aus:

- i) Einer Klasse $Ob(\mathcal{C})$. Die Elemente von $Ob(\mathcal{C})$ heißen die **Objekte** von \mathcal{C} .
- ii) Zu je zwei Objekten A,B aus $\mathcal C$ einer Menge $\mathrm{Mor}_{\mathcal C}(A,B)$. Die Elemente von $\mathrm{Mor}_{\mathcal C}(A,B)$ heißen **Morphismen** von $\mathcal C$.
- iii) Zu je drei Objekten $A, B, C \in Ob(\mathcal{C})$ aus einer Abbildung:

$$\operatorname{Mor}_{\mathcal{C}}(B,C) \times \operatorname{Mor}_{\mathcal{C}}(A,B) \to \operatorname{Mor}_{\mathcal{C}}(A,C)$$
, $(f,g) \mapsto f \circ g$

genannt die Komposition in C.

Dabei müssen folgende Axiome erfüllt sein:

(i) Die Komposition ist **assoziativ**: Für Objekte A,B,C,D von $\mathcal C$ und $f\in \operatorname{Mor}_{\mathcal C}(C,D)$, $g\in \operatorname{Mor}_{\mathcal C}(B,C)$ und $h\in \operatorname{Mor}_{\mathcal C}(A,B)$ gilt immer

$$f \circ (g \circ h) = (f \circ g) \circ h$$

(ii) Die Komposition ist *unital*: Für jedes Objekt A von $\mathcal C$ gibt es einen Morphismus $\mathrm{id}_A\in\mathrm{Mor}_{\mathcal C}(A,A)$ so, dass

$$\forall f \in \operatorname{Mor}_{\mathcal{C}}(B, A) : \operatorname{id}_{A} \circ f = f$$
 und $\forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B) : f \circ \operatorname{id}_{A} = f$

1.2 Beispiele

- (1) Die Kategorie der Mengen MENGEN: Objekte sind Mengen und Morphismen sind Abbildungen.
- (2) Die Kategorie der Gruppen GRUPPEN: Objekte sind Gruppen und Morphismen sind Gruppenhomomorphismen.
- (3) Die Kategorie der K-Vektorräume K-VR: Objekte sind K-Vektorräume und die Morphismen sind K-lineare Abbildungen.
- (4) Die Kategorie der R-Moduln R-Mod: Objekte sind R-Moduln und Morphismen sind R-lineare Abbildungen.
- (5) Die Kategorie der C^{∞} -Mannigfaltigkeiten C^{∞} -Man: Objekte sind C^{∞} -Mannigfaltigkeiten und Morphismen sind C^{∞} -Abbildungen.
- (6) Die Kategorie der topologischen Räume Top: Objekte sind topologische Räume und Morphismen sind stetige Abbildungen.
- (7) Die Kategorie der punktierten topologischen Räume Top.: Objekte sind punktiert-topologische Räume und Morphismen sind punktiert-stetige Abbildungen.
- (8) Die Kategorie HTOP: Objekte sind topologische Räume und Morphismen sind Homotopieklassen von stetigen Abbildungen.

- (9) Die Kategorie HTOP•: Objekte sind punktiert-topologische Räume und Morphismen sind Homotopieklassen von punktiert-stetigen Abbildungen.
- (10) Sei G eine Gruppe. Wir erhalten eine Kategorie \mathcal{C}_G mit genau einem Objekt * und Morphismen $\mathrm{Mor}_{\mathcal{C}_G}(*,*)=G$. Die Komposition wird durch die Verknüpfung in der Gruppe festgelegt.
- (11) Ist $\mathcal C$ eine Kategorie, so ist $\mathcal C^{\mathrm{op}}$ eine Kategorie, wobei $\mathrm{Ob}(\mathcal C^{\mathrm{op}}) = \mathrm{Ob}(\mathcal C)$ und $\mathrm{Mor}_{\mathcal C^{\mathrm{op}}}(A,B) := \mathrm{Mor}_{\mathcal C}(B,A)$. Die Komposition ist gegeben durch $f \circ^{\mathrm{op}} g := g \circ f$.

1.3 Bemerkung

- (i) Eine Kategorie heißt *klein*, wenn ihre Objekte eine Menge bilden.
- (ii) Statt $f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ schreiben wir oft $f \colon A \to B$ oder $A \xrightarrow{f} B$.
- **1.4 Definition** Seien $\mathcal C$ und $\mathcal D$ Kategorien: Ein *Funktor* $F\colon \mathcal C\to \mathcal D$ ordnet jedem Objekt C von $\mathcal C$ ein Objekt F(C) von $\mathcal D$ und ordnet jedem Morphismus $f:C\to C'$ in $\mathcal C$ einen Morphismus $F(f)\colon F(C)\to F(C')$ in $\mathcal D$ zu. Dabei muss gelten:

$$F(f \circ g) = F(f) \circ F(g)$$
 und $F(\mathrm{id}_C) = \mathrm{id}_{F(C)}$

1.5 Beispiele

(1) Es gibt offensichtliche "Vergiss"-Funktoren:

$$K ext{-VR} \longrightarrow \text{Mengen}$$
 $R ext{-Mod} \longrightarrow \text{Mengen}$ $ext{Top} \longrightarrow \text{Mengen}$ $ext{Top}_{ullet} \longrightarrow \text{Mengen}$ $ext{Top}_{ullet} \longrightarrow \text{Top}$

(2) Sei $\mathcal C$ eine Kategorie und C ein Objekt von $\mathcal C$. Der durch C dargestellte Funktor $F_C\colon \mathcal C\to M$ ENGEN ist definiert durch

$$\begin{split} F_C(A) &= \mathrm{Mor}_{\mathcal{C}}(C,A) & \text{für } A \in \mathrm{Ob}(\mathcal{C}) \\ F_C(f) \colon \mathrm{Mor}_{\mathcal{C}}(C,A) &\to \mathrm{Mor}_{\mathcal{C}}(C,A'), g \mapsto f \circ g & \text{für } f \colon A \to A' \text{ in } \mathrm{Mor}(A,A') \end{split}$$

(3) Die Fundamentalgruppe definiert einen Funktor

$$\pi_1 \colon \mathsf{HTop}_{ullet} \longrightarrow \mathsf{Gruppen}$$

BEMERKUNG:

- Ist $F: \mathcal{C} \to \mathcal{D}$ ein Funktor so schreiben wir oft kürzer und ungenauer $f_* := F(f)$.
- Kleine Kategorien und Funktoren bilden die Kategorie KAT.

1.6 Definition Seien $F,G\colon\mathcal{C}\to\mathcal{D}$ zwei Funktoren. Eine *natürliche Transformation* $\tau\colon F\to G$ ordnet jedem $C\in \mathrm{Ob}(\mathcal{C})$ einen Morphismus $\tau_C\colon F(C)\to G(C)$ in \mathcal{D} zu, sodass für jedes $f\colon C\to C'$ in \mathcal{C}

$$F(C) \xrightarrow{F(f)} F(C')$$

$$\downarrow^{\tau_C} \qquad \qquad \downarrow^{\tau_{C'}}$$

$$G(C) \xrightarrow{G(f)} G(C')$$

kommutiert.

BEMERKUNG: Natürliche Transformationen lassen sich komponieren. Für $\tau\colon F\to G$, $\eta\colon G\to H$ ist $\eta\circ\tau\colon F\to H$ gegeben durch

$$F, G, H: \mathcal{C} \to \mathcal{D}$$

$$(\eta \circ \tau)_C := \eta_C \circ \tau_C \colon F(C) \to H(C)$$

Genauer: Für feste kleine Kategorien $\mathcal C$ und $\mathcal D$ bilden die Funktoren $\mathcal C \to \mathcal D$ mit den natürlichen Transformationen eine Kategorie Fun $(\mathcal C, \mathcal D)$.

1.7 Ausblick In der algebraischen Topologie werden topologische Fragen, wie zum Beispiel, wann \mathbb{R}^n und \mathbb{R}^m homöomorph sind, in algebraische Fragen übersetzt. Eine Möglichkeit für eine solche Übersetzung sind Funktoren von einer Kategorie von topologischen Räumen, z.B. Top, Top, HTop, in eine algebraisch Kategorie, z.B. Gruppen, K-VR, Abel.Gruppen, R-Mod. Ein Beispiel für einen solchen Funktor ist die Fundamentalgruppe π_1 . Ein Nachteil der Fundamentalgruppe ist, dass diese oft schwierig zu berechnen ist. Wir werden in dieser Vorlesung weitere Funktoren und Methoden für ihre Berechnung kennenlernen.

2 Kombinatorische Beschreibungen topologischer Räume

2.1 Beispiel *Graphen* sind einerseits topologische Räume und andererseits kombinatorische Objekte:

- **2.2 Definition** Ein *simplizialer Komplex* $K=(V,\Sigma)$ besteht aus einer Menge V und einer Menge Σ von nichtleeren, endlichen Teilmengen von V, sodass gilt
 - (i) $\{v\} \in \Sigma$ für alle $v \in V$
 - (ii) $\sigma \in \Sigma$, $\emptyset \neq \tau \subseteq \sigma \Longrightarrow \tau \in \Sigma$.

(Abgeschlossen bzgl. Teilmengenbildung)

Die Elemente von V heißen die **Ecken** oder **Vertices** von K. Die Elemente von Σ heißen die **Simplizes** von K. Enthält $\sigma \in \Sigma$ genau n+1 Elemente, so heißt σ ein \mathbf{n} -**Simplex**. Ist $\tau \subseteq \sigma$, wobei σ ein n-Simplex und τ ein n-1-Simplex ist, so heißt τ eine **Seite** von σ . Ist V geordnet, so heißt K geordnet. Ist V endlich, so heißt K endlich.

2.3 Beispiel

Ist σ eine endliche Menge, so heißt $\Delta^{\sigma}:=\left(\sigma,\mathcal{P}(\sigma)\setminus\{\emptyset\}\right)$ der σ -Simplex. Für $\sigma=\{0,\ldots,n\}$ schreiben wir $\Delta^n:=\Delta^{\{0,\ldots,n\}}$. Es ist

$$\Delta^0 = \mathbf{0}, \qquad \Delta^1 = \mathbf{0}, \qquad \Delta^2 = \mathbf{0}, \qquad \Delta^3 = \mathbf{0}$$

2.4 Definition Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Ein *Unterkomplex* von K ist ein simplizialer Komplex $K_0=(V_0,\Sigma_0)$ mit $V_0\subseteq V$ und $\Sigma_0\subseteq \Sigma$.

BEISPIEL: Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Dann ist K ein Unterkomplex von Δ^V .

- **2.5 Definition** Eine *simpliziale Abbildung* $f\colon K_1=(V_1,\Sigma_1)\to K_2=(V_2,\Sigma_2)$ zwischen simplizialen Komplexen ist eine Abbildung $f\colon V_1\to V_2$, sodass $f(\sigma_1)\in \Sigma_2$ für alle $\sigma_1\in \Sigma_1$. Simpliziale Komplexe zusammen mit simplizialen Abbildungen bilden eine Kategorie SIMP.
- **2.6 Definition** Sei σ eine endliche Menge. Sei $\mathbb{R}^\sigma=\prod_{v\in\sigma}\mathbb{R}$ mit der Produkttopologie. Wir setzen nun

$$|\Delta^{\sigma}| := \left\{ x = (x_v)_{v \in \sigma} \in \mathbb{R}^{\sigma} \left| \sum_{v \in \sigma} x_v = 1, x_v \in [0, 1] \ \forall v \in \sigma \right. \right\}$$

Ist $\tau\subseteq\sigma$, so erhalten wir eine Abbildung $\iota_{\tau}^{\sigma}\colon |\Delta^{\tau}|\to |\Delta^{\sigma}|$ indem wir $(x_{v})_{v\in\tau}\in |\Delta^{\tau}|$ durch $x_{v}=0$ für $v\in\sigma\setminus\tau$ zu $(x_{v})_{v\in\sigma}$ auffüllen. Ist $\eta\subseteq\tau\subseteq\sigma$ so gilt offensichtlich $\iota_{\eta}^{\sigma}=\iota_{\tau}^{\sigma}\circ\iota_{\eta}^{\tau}$. Sei nun $K=(V,\Sigma)$ ein simplizialer Komplex. Die **geometrische Realisierung** |K| von K ist definiert als

$$|K| := \coprod_{\sigma \in \Sigma} \{\sigma\} \times |\Delta^{\sigma}| \Big/ \! \sim$$

wobei \sim die durch $(\tau,x)\sim \left(\sigma,\iota_{\tau}^{\sigma}(x)\right)$ für $\tau\subseteq\sigma$ erzeugte Äquivalenzrelation ist. Versehen mit der Quotiententopologie ist |K| ein topologischer Raum.

Anschaulich "klebt"
~ die geometrischen Realisierungen aller Einzelteile
passend zusammen

BEMERKUNG:

- In Aufgabe 4 von Blatt 1 haben wir gezeigt, dass |K| homöomorph zu einem Unterraum X von \mathbb{R}^n mit n:=#V ist via $\left[(\{\sigma\},(x_{v_i})_{v_i\in\sigma})\right]\mapsto \sum_{v_i\in\sigma}x_{v_i}\cdot e_i$.
- In Aufgabe 2 von Blatt 2 haben wir gezeigt, dass $|\cdot|$ einen Funktor SIMP \to TOP definiert. Dazu definiert man eine Abbildung zunächst auf den zugrunde liegenden Räumen durch

$$\left(\sigma, \sum_{v \in \sigma} x_v \cdot v\right) \longmapsto \left(f(\sigma), \sum_{v \in \sigma} x_v \cdot f(v)\right)$$

und wendet diese unter Benutzung der universellen Eigenschaft der Quotiententopologie auf Repräsentanten an.¹

2.7 Beispiel

• Sei $\partial \Delta^n := \Big(\{0,\ldots,n\}, \mathcal{P}\big(\{0,\ldots,n\}\big) \setminus \{\emptyset,\{0,\ldots,n\}\}\Big) = \text{"}\Delta^n \setminus \{0,\ldots,n\}\text{"}.\ \partial \Delta^n \text{ heißt der } \text{Rand des } n\text{-Simplizes}.$ Es gilt

$$\begin{aligned} \left| \partial \Delta^1 \right| &= \bullet \bullet &\cong S^0 \\ \left| \partial \Delta^2 \right| &= \bigwedge \cong S^1 \\ \left| \partial \Delta^3 \right| &= \bigwedge \cong S^2 \end{aligned}$$

Allgemein gilt $|\partial \Delta^n| \cong S^{n-1}$, siehe Aufgabe 1 von Blatt 3.

 $^{^1}$ hier wird eine formale Summe anstatt eines Tupels benutzt; da σ stets eine endliche Menge ist, macht dies aber keinen Unterschied.

- **2.8 Definition** Ein topologischer Raum X heißt ein **Polyeder**, falls er homöomorph zur geometrischen Realisierung eines simplizialen Komplexes ist.
- **2.9 Definition** Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Sei

$$a_n := \#\{\sigma \in \Sigma \mid \sigma \text{ ist ein } n\text{-Simplex von } K\}$$

Dann heißt $\chi(K) := \sum_{n \in \mathbb{N}} (-1)^n \cdot a_n$ die **Euler-Charakteristik** von K.

BEISPIEL:

$$\chi\left(\partial\Delta^{3} = \left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 4 - 6 + 4 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \end{array}\right) = 8 - 12 + 6 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \end{array}\right) = 6 - 12 + 8 = 2$$

2.10 Satz Seinen K und K' endliche simpliziale Komplexe. Gilt $|K| \cong |K'|$, so gilt

$$\chi(K) = \chi(K').$$

Bemerkung: Die Euler-Charakteristik ist also eine topologische Invariante von simplizialen Komplexen. Sie hängt nur von der topologischen Struktur von |K| und nicht von der kombinatorischen Struktur von K ab.

BEWEIS: Siehe 12.10.

3 Simpliziale Homologie

3.1 Definition Sei S eine Menge. Sei R ein Ring. Der **freie** R-**Modul mit Basis** S, R[S], besteht Ring mit Eins aus allen endlichen formalen R-Linearkombinationen

$$\sum_{s \in S} r_s \cdot s \quad , r_s \in R \text{ und } r_s \neq 0 \text{ für endliche viele } s \in S$$

Die R-Modulstruktur auf R[S] ist definiert durch:

$$r \cdot \left(\sum_{s \in S} r_s \cdot s\right) := \sum_{s \in S} (r \cdot r_s) \cdot s \qquad \left(\sum_{s \in S} r_s \cdot s\right) + \left(\sum_{s \in S} r_s' s\right) := \sum_{s \in S} (r_s + r_s') \cdot s$$

BEMERKUNG: Mittels $s = \sum_{s' \in S} \delta_{s,s'} \cdot s'$ fassen wir S als Teilmenge von R[S] auf.

- **3.2 Lemma** Sei S eine Menge, R ein Ring. Es gilt
 - 1) Ist M ein R-Modul und $i \colon S \to M$ eine Abbildung, so gibt es genau eine R-lineare Abbildung $\varphi \colon R[S] \to M$, die i fortsetzt.
 - 2) Sei f: R[S] → M R-linear und p: N → M R-linear und surjektiv. Dann gibt es f̂: R[S] → N mit p ∘ f̂ = f.
 Moduln mit dieser Eigenschaft bezeichnet man als projektiv.
 Freie Moduln sind also projektiv.

BEWEIS:

1) Eine solche Abbildung ist gegeben durch $\varphi \left(\sum_{s \in S} r_s \cdot s \right) = \sum_{s \in S} r_s \cdot i(s)$. Ist φ' eine zweite, so gilt

$$\hat{\varphi}\left(\sum_{s\in S} r_s \cdot s\right) = \sum_{s\in S} r_s \cdot \hat{\varphi}(s) = \sum_{s\in S} r_s \cdot i(s)$$

2) Wähle für jedes $s \in S$ ein Urbild $j(s) \in N$ für $f(s) \in M$ unter $p \colon N \twoheadrightarrow M$. Nun wende 1) auf $j \colon S \to N$ an, um $\hat{f} \colon R[S] \to N$ mit $\hat{f}(s) = j(s)$ zu erhalten. Nun ist $p \circ \hat{f}(s) = f(s)$ für alle $s \in S$. Mit der Eindeutigkeit aus 1) folgt $p \circ \hat{f} = f$.

3.3 Beispiel

- (i) Sei K ein Körper und V, M, N seien K-Vektorräume, $f \colon V \to M$, $p \colon N \to M$ seien K-linear und p surjektiv. Dann gibt es $\hat{f} \colon V \to N$ mit $p \circ \hat{f} = f$. Wir können Lemma 3.2 benutzen, da V eine Basis B hat, also $V \cong K[B]$.
- (ii) Sei $R=\mathbb{Z}$, sei $V=\mathbb{Z}/2\mathbb{Z}$ und $M=\mathbb{Z}/2\mathbb{Z}$, sowie $f=\operatorname{id}\colon V\to M$, $N=\mathbb{Z}$ und $p\colon \mathbb{Z} \twoheadrightarrow \mathbb{Z}/2\mathbb{Z}$ die Projektion mit $p(n)=n+2\mathbb{Z}$. Dann gibt es $keine\ \mathbb{Z}$ -lineare Abbildung $\hat{f}\colon \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ mit $p\circ \hat{f}=f$ denn falls $\hat{f}(1+2\mathbb{Z})=n\in \mathbb{Z}$ ist, so folgt

$$2n=2\cdot \hat{f}(1+2\mathbb{Z})=\hat{f}\big(2\cdot (1+2\mathbb{Z})\big)=\hat{f}(0+2\mathbb{Z})=0$$

also n=0 und somit $p\circ \hat{f}=0$. $\mathbb{Z}/2\mathbb{Z}$ ist also kein freier Modul.

3.4 Definition Sei $K = (V, \Sigma)$ ein simplizialer Komplex. Sei $\Sigma_n := \{ \sigma \in \Sigma \mid \sigma \text{ ist ein } n\text{-Simplex} \}.$ Sei R ein Ring. Der \mathbf{n} -te Kettenmodul von K über R ist definiert als

$$C_n(K;R) := R[\Sigma_n]$$

Ist $R = \mathbb{Z}$, so schreiben wir auch kurz $C_n(K) := C_n(K; \mathbb{Z})$.

3.5 Definition Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_0,\ldots,v_n\}$ ein n-Simplex von K. Bezüglich der Ordnung von K sei dabei $v_0 < v_1 < \ldots < v_n$. Sei au ein (n-1)-Simplex von K. Definiere

$$\varepsilon_\sigma^\tau \coloneqq \begin{cases} (-1)^i, & \text{falls } \tau = \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \\ 0, & \text{sonst} \end{cases}$$

BEMERKUNG: Es gilt: $\varepsilon^{\tau}_{\sigma} \neq 0 \iff \tau$ ist eine Seite von σ .

BEISPIEL: Für den folgenden geordneten simplizialen Komplex gilt

$$\sum_{j=0}^{1} \varepsilon_{\{0,1\}}^{\{0,1\}}$$

$$\varepsilon_{\{0,1,2\}}^{\{0,1\}} = 1, \quad \varepsilon_{\{0,1,2\}}^{\{0,2\}} = -1, \quad \varepsilon_{\{0,1,2\}}^{\{1,2\}} = 1$$

3.6 Definition Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Die \mathbf{n} -te Randabbildung

$$\partial_n \colon C_n(K;R) \longrightarrow C_{n-1}(K;R)$$

$$= R[\Sigma_n] = R[\Sigma_{n-1}]$$

ist für ein Basiselement $\sigma \in \Sigma_n$ definiert durch

$$\partial_n(\sigma) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_{\sigma}^{\tau} \cdot \tau$$

3.7 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Damit folgt $\operatorname{Im} \partial_n \subseteq \ker \partial_{n-1}$.

BEWEIS (MIT LEMMA 3.8): Sei σ ein n-Simplex von K. Dann gilt

$$\begin{split} \partial_{n-1} \big(\partial_n (\sigma) \big) &= \partial_{n-1} \left(\sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \tau \right) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \partial_{n-1} (\tau) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \left(\sum_{\eta \in \Sigma_{n-2}} \varepsilon_\tau^\eta \cdot \eta \right) \\ &= \sum_{\eta \in \Sigma_{n-2}} \left(\sum_{\tau \in \Sigma_{n-1}, \eta \subseteq \tau \subseteq \sigma} \varepsilon_\tau^\eta \cdot \varepsilon_\sigma^\tau \right) \eta \\ &= \sum_{\text{Lemma 3.8}} 0 \end{split}$$

3.8 Lemma Sei σ ein n-Simplex. Sei $\eta \subseteq \sigma$ ein (n-2)-Simplex. Dann gibt es genau zwei (n-1)-Simplizes τ, τ' von K, die eine Seite von σ sind und η als Seite enthalten. Es gilt

$$\varepsilon_{\tau}^{\eta} \cdot \varepsilon_{\sigma}^{\tau} = -\varepsilon_{\tau'}^{\eta} \cdot \varepsilon_{\sigma}^{\tau'}$$

8

BEWEIS: Sei $\sigma = \{v_0, \ldots, v_n\}$ mit $v_0 < v_1 < \ldots < v_n$. Dann ist $\eta = \{v_0, \ldots, v_n\} \setminus \{v_i, v_j\}$ mit i < j. Dann sind $\tau = \{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}$ und $\tau' = \{v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$ die gesuchten (n-1)-Simplizes und es gilt

$$\varepsilon_{\sigma}^{\tau}=(-1)^i \ , \ \varepsilon_{\sigma}^{\tau'}=(-1)^j \ , \ \varepsilon_{\tau}^{\eta}=(-1)^{j-1} \ , \ \varepsilon_{\tau'}^{\eta}=(-1)^i \ \Box$$

3.9 Notation Für $\sigma \in \Sigma_n$, $\sigma = \{v_0, \dots, v_n\}$ mit $v_0 < \dots < v_n$ schreiben wir

$$\delta^{j} \sigma := \{v_0, \dots, v_{j-1}, v_{j+1}, \dots, v_n\} \in \Sigma_{n-1}$$

Dann ist $\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta^j \sigma$.

3.10 Definition Sei K ein geordneter simplizialer Komplex. Der \mathbf{n} -te Homologiemodul von K über R ist definiert als

$$H_n(K;R) := \frac{\ker \partial_n \colon C_n(K;R) \to C_{n-1}(K;R)}{\operatorname{Im} \partial_{n+1} \colon C_{n+1}(K;R) \to C_n(K;R)}$$

Für n=0 interpretieren wir ∂_0 als die Nullabbildung. Daher gilt

$$H_0(K;R) = \frac{C_0(K;R)}{\text{Im } \partial_1 \colon C_1(K;R) \to C_0(K;R)}$$

3.11 Beispiele

- (1) Sei $K = \bullet$. Dann ist $C_0(K;R) \cong R$ und $C_i(K;R) = 0$ für i > 0. Weiter ist $H_0(K;R) = C_0(K;R) \cong R$ und $H_i(K;R) = 0$ für i > 0.
- (2) Sein nun $K=K_n$ das n-Eck, wobei $n\geqslant 3$. Also

$$\Sigma_0 = \{ \tau_1 = \{1\}, \tau_2 = \{2\}, \dots, \tau_n = \{n\} \}$$

$$\Sigma_1 = \{ \sigma_1 = \{1, 2\}, \dots, \sigma_{n-1} = \{n - 1, n\}, \sigma_n = \{1, n\} \}$$

Dann gilt

$$C_0(K;R)=R[\Sigma_0]\cong R^n$$

$$C_1(K;R)=R[\Sigma_1]\cong R^n$$

$$C_i(K;R)=0 \text{ für } i>1 \text{, insbesondere } H_i(K;R)=0 \text{ für } i>1$$

Es ist dann $\partial_2 = \partial_3 = \ldots = 0$. Interessant ist $\partial_1 : C_1(K;R) \to C_0(K;R)$, denn es gilt

$$\partial_1(\sigma_i) = egin{cases} au_{i+1} - au_i, & ext{falls } i = 1, \dots, n-1 \ au_n - au_1, & ext{falls } i = n \end{cases}$$

Mit $\sigma_1' := \sigma_1, \sigma_2' := \sigma_2, \dots, \sigma_{n-1}' := \sigma_{n-1}$ und $\sigma_n' := -\sigma_n$ gilt dann

$$\partial_1(\sigma_i') = \tau_{i+1} - \tau_i$$

mit der Konvention $\tau_{n+1} = \tau_1$. Also gilt

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n r_i (\tau_{i+1} - \tau_i) = \sum_{i=1}^n (r_{i-1} - r_i) \tau_i$$

In Aufgabe 3 von Blatt 3 haben wir gezeigt, dass die Homologiemoduln für verschiedene Ordnungen auf der gleichen Menge isomorph sind.

Es folgt

$$\ker \partial_1 = \left\{ \sum_{i=1}^n r_i \cdot \sigma_i' \middle| r_1 = r_2 = \dots = r_n \right\} \subseteq C_1(K; R)$$
$$\operatorname{Im} \partial_1 = \left\{ \sum_{i=1}^n s_i \cdot \tau_i \middle| \sum_{i=1}^n s_i = 0 \right\} \subseteq C_0(K; R)$$

Ist $\sum_{i=1}^n s_i = 0$, so folgt für $r_n = 0, r_1 = -s_1, r_2 = -s_1 - s_2, \ldots, r_{n-1} = -s_1 - s_2 - \ldots - s_{n-1}$

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n s_i \tau_i$$

Es folgt $H_1(K;R) = \ker \partial_1 / \operatorname{Im} \partial_2 = \ker \partial_1 \cong R$ und

$$H_0(K;R) = \ker \partial_0 / \operatorname{Im} \partial_1 = R[\Sigma_0] / \{\sum_{i=1}^n s_i \tau_i | \sum_{i=1}^n s_i = 0\} \cong R$$

(via $\sum_{i=1}^{n} s_i \tau_i \longmapsto \sum_{i=1}^{n} s_i$ und Homomorphiesatz)

3.12 Definition Sei R ein Ring. Ein \mathbf{R} -Kettenkomplex (C_*,d_*) ist eine Folge von R-Moduln $(C_n)_{n\in\mathbb{N}}$ zusammen mit R-linearen Abbildungen $(d_n\colon C_n\to C_{n-1})_{n\geqslant 1}$, so dass $d_n\circ d_{n+1}=0$. Die d_n heißen die Randabbildungen von (C_*,d_*) , die C_n die Kettenmoduln. Die \mathbf{n} -te Homologie eines Kettenkomplexes (C_*,d_*) ist definiert als

$$H_n(C_*, d_*) := \frac{\ker d_n \colon C_n \to C_{n-1}}{\operatorname{Im} d_{n+1} \colon C_{n+1} \to C_n}$$

3.13 Bemerkung

- (i) Oft werden auch Kettenkomplexe betrachtet, die \mathbb{Z} statt \mathbb{N} verwenden.
- (ii) Ein Kettenkomplex (C_*, d_*) heißt endlich erzeugt, wenn alle C_n endlich erzeugte RModuln sind und $C_n \neq 0$ nur für endlich viele n ist.

3.14 Definition Zu einem geordneten simplizialen Komplex K heißt $(C_*(K;R), \partial_*)$ der **simpliziale** Kettenkomplex von K über R.

BEMERKUNG: Ist K endlich, so ist $(C_*(K;R), \partial_*)$ endlich erzeugt.

10

4 Euler-Charakteristik von Kettenkomplexen

4.1 Wiederholung Sei A eine abelsche Gruppe. Dann ist

$$TA := \left\{ a \in A \,\middle|\, \exists n \geqslant 1 : n \cdot a = \underbrace{a + \ldots + a}_{n\text{-mal}} = 0 \right\}$$

die *Torsionsgruppe* von A. Ist A endlich erzeugt, so ist auch TA endlich erzeugt und es gibt Primzahlpotenzen $p_1^{n_1},\dots,p_k^{n_k}$ mit

abelsche Gruppen sind Z-Moduln

$$TA \cong \mathbb{Z}/(p_1^{n_1}) \oplus \ldots \oplus \mathbb{Z}/(p_k^{n_k})$$

Weiter gibt es dann n mit $A \cong \mathbb{Z}^n \oplus TA$. $\operatorname{Rg} A := n$ ist der **Rang** von A.

4.2 Lemma Sei A eine endlich erzeugte abelsche Gruppe. Dann gilt

$$\operatorname{Rg} A = \max\{m \mid \exists C \leqslant A, C \cong \mathbb{Z}^m\}.$$

BEWEIS: Da $A \cong \mathbb{Z}^n \oplus TA$ ist, genügt zu zeigen: Ist $\varphi \colon \mathbb{Z}^m \to \mathbb{Z}^n \oplus TA$ ein injektiver Gruppenhomomorphismus, so ist $m \leqslant n$. Schreibe $\varphi = \varphi_0 \oplus \varphi_1$, also $\varphi(a) = \varphi_0(a) + \varphi_1(a)$ mit $\varphi_0 \colon \mathbb{Z}^m \to \mathbb{Z}^n$, $\varphi_1 \colon \mathbb{Z}^m \to TA$.

Behauptung: φ_0 ist injektiv. Zu $v \in \mathbb{Z}^m$ wähle $k \geqslant 1$ mit $k \cdot \varphi_1(v) = 0 \in TA$. Dann ist $\varphi_1(kv) = k\varphi_1(v) = 0$. Ist $v \neq 0$, so ist $k \cdot v \neq 0 \in \mathbb{Z}^m$, also ist $\varphi(kv) \neq 0$ und damit $\varphi_0(kv) \neq 0$. Es folgt $\varphi_0(v) \neq 0$, da sonst $\varphi_0(k \cdot v) = k \cdot \varphi_0(v) = 0$. Damit ist die Behauptung gezeigt.

Gruppenhomomorphismen $\varphi_0 \colon \mathbb{Z}^m \to \mathbb{Z}^n$ werden durch $n \times m$ -Matrizen beschrieben: Es gibt $A = (a_{ij}) \in \mathbb{Z}^{n \times m}$ mit

$$\varphi_0 \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m a_{1j} \cdot z_j \\ \vdots \\ \sum_{j=1}^m a_{nj} \cdot z_j \end{pmatrix}$$

Ist m>n, so hat A, aufgefasst als Matrix über $\mathbb Q$, einen Kern. Es gibt also einen Vektor $w=\left(\begin{smallmatrix}a_1/b_1\\\vdots\\a_m/b_m\end{smallmatrix}\right)$ mit Aw=0, $w\neq 0$. Dann ist $(b_1,\dots,b_m)\cdot w\in \mathbb Z^m$ und

$$\varphi_0((b_1,\ldots,b_m)\cdot w) = A\cdot ((b_1,\ldots,b_m)\cdot w) = (b_1,\ldots,b_m)\cdot A\cdot w = 0 \quad \not \exists$$

Dies ist ein Widerspruch zur Injektivität von φ_0 . Also gilt $m \leqslant n$.

4.3 Definition Seien M_0, M_1, M_2 R-Moduln und $f_0 \colon M_0 \to M_1$, $f_1 \colon M_1 \to M_2$ R-lineare Abbildungen. Dann heißt

$$M_0 \stackrel{f_0}{\longleftrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2$$

eine kurze exakte Sequenz, wenn gilt:

- (i) f_0 ist injektiv,
- (ii) $\text{Im } f_0 = \ker f_1$,
- (iii) f_1 ist surjektiv.

BEMERKUNG: Oft sagt man $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist exakt in M_1 , wenn $\operatorname{Im} f_0 = \ker f_1$ ist. Dann ist (\star) eine kurze exakte Folge, wenn

$$0 \, \longrightarrow \, M_0 \, \stackrel{f_0}{\longrightarrow} \, M_1 \, \stackrel{f_1}{\longrightarrow} \, M_2 \, \longrightarrow \, 0$$

exakt in M_0, M_1 und M_2 ist.

4.4 Beispiele

1)

$$M_0 \stackrel{i}{\longleftarrow} M_0 \oplus M_1 \stackrel{p}{\longrightarrow} M_1$$

 $v_0 \stackrel{i}{\longmapsto} (v_0, 0) \ (v_0, v_1) \stackrel{p}{\longmapsto} v_1$

ist eine kurze exakte Folge.

- 2) $\mathbb{Z} \stackrel{n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ ist eine kurze exakte Folge.
- **4.5 Bemerkung** Eine **Spaltung** für eine kurze exakte Folge $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist eine R-lineare Abbildung $s \colon M_2 \to M_1$ mit $f_1 \circ s = \operatorname{id}_{M_2}$. In diesem Fall erhalten wir einen Isomorphismus $M_0 \oplus M_2 \to M_1$, $(v_0, v_2) \mapsto f_0(v_0) + s(v_2)$.

Injektivität: Sei $(v_0, v_2) \in M_0 \oplus M_2$ mit $f_0(v_0) + s(v_2) = 0$. Dann gilt

$$0 = f_1(f_0(v_0) + s(v_2)) = v_2 \implies f_0(v_0) = 0 \implies v_0 = 0$$

Surjektivität: Sei $v_1 \in M_1$. Betrachte $v_2 := f_1(v_1)$. Dann ist $v_1 - s(v_2) \in \ker f_1 = \operatorname{Im} f_0$, also gibt es v_0 in M_0 mit $f_0(v_0) = v_1 - s(v_1)$. Damit ist $v_1 = f_0(v_0) + s(v_1)$.

4.6 Bemerkung

- 1) Die kurze exakte Sequenz $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ spaltet nicht.
- 2) Ist $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ eine kurze exakte Folge mit M_2 frei, also $M_2 \cong R[S]$, so spaltet die Folge. Insbesondere ist $M_1 \cong M_0 \oplus M_2$. Dazu wenden wir Lemma 3.2 an und erhalten eine R-lineare Abbildung $s \colon M_2 \to M_1$, sodass folgendes Diagramm kommutiert

$$R[S] \xrightarrow{s} R[S] \xrightarrow{\text{id}} R[S]$$

 \boldsymbol{s} ist also die gesuchte Spaltung. Dieses Vorgehen funktioniert bei jedem projektiven Modul.

4.7 Bemerkung Der Rang für alle endlich erzeugten abelschen Gruppen ist additiv:

$$\operatorname{Rg}(A \oplus B) = \operatorname{Rg} A + \operatorname{Rg} B$$
,

da $A\cong \mathbb{Z}^{\operatorname{Rg} A}\oplus TA$, $B\cong \mathbb{Z}^{\operatorname{Rg} B}\oplus TB$, also

$$A \oplus B \cong \mathbb{Z}^{\operatorname{Rg} A + \operatorname{Rg} B} \oplus \underbrace{TA \oplus TB}_{=T(A \oplus B)}$$

4.8 Proposition Der Rang von endlich erzeugten abelschen Gruppen ist additiv für kurze exakte Folgen: Ist

$$A \stackrel{i}{\longleftrightarrow} B \stackrel{p}{\longrightarrow} C \qquad [\star]$$

eine kurze exakte Folge von endlich erzeugten abelschen Gruppen, so gilt $\operatorname{Rg} B = \operatorname{Rg} A + \operatorname{Rg} C$.

BEWEIS: Spaltet $[\star]$, so ist $B \cong A \oplus C$ und die Behauptung folgt aus der Bemerkung 4.7. Wir können annehmen, dass $C = \mathbb{Z}^n \oplus TC$ gilt. Wir erhalten folgendes Diagramm:

$$A \stackrel{i}{\longleftarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$$

$$\parallel \qquad \qquad \downarrow_{i''} \qquad \qquad \downarrow_{i'}$$

$$A \stackrel{i}{\longleftarrow} B \stackrel{p}{\longrightarrow} C$$

$$\downarrow^{p''} \qquad \qquad \downarrow^{p'}$$

$$B/p^{-1}(\mathbb{Z}^n) \stackrel{p'\circ p}{\longrightarrow} TC$$

$$[\star]$$

Ist $p'\circ p(b)=0$, so gibt es $v\in\mathbb{Z}^n$ mit i'(v)=p(b). Nun gibt es $v'\in p^{-1}(\mathbb{Z}^n)$ mit p(v')=v. Es folgt

$$p(i''(v')) = p(b)$$

also $i''(v') - b \in \ker p = i(A)$. Da $i(A) \subseteq i'' \left(p^{-1}(\mathbb{Z}^n) \right)$, folgt $b \in i'' \left(p^{-1}(\mathbb{Z}^n) \right)$. In dem Diagramm sind die Spalten und Zeilen exakt. Da \mathbb{Z}^n frei ist, spaltet $A \stackrel{i}{\longleftrightarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$ und es gilt

$$\operatorname{Rg} A + \operatorname{Rg} C = \operatorname{Rg} A + n = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$$

Es bleibt zu zeigen: $\operatorname{Rg} B = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$.

Nebenbei: Ist $A' \subseteq B'$, so gilt $\operatorname{Rg} A' \leqslant \operatorname{Rg} B'$, denn

$$\operatorname{Rg} A' = \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant A' \right\} \leqslant \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant B' \right\} = \operatorname{Rg} B'.$$

Betrachte die kurze exakte Folge

$$p^{-1}(\mathbb{Z}^n) \longrightarrow B \longrightarrow B/p^{-1}(\mathbb{Z}^n)$$

Wegen ${}^B/p^{-1}(\mathbb{Z}^n)\cong TC$ gibt es ein k mit $k\cdot \left(b+p^{-1}(\mathbb{Z}^n)\right)=0$ für alle $b\in B$. Also $k\cdot b\in p^{-1}(\mathbb{Z}^n)$. Es folgt $kB\subseteq p^{-1}(\mathbb{Z}^n)$. Ist $B\cong \mathbb{Z}^{\operatorname{Rg} B}+TB$, so ist $kB\cong (k\mathbb{Z})^{\operatorname{Rg} B}+T(kB)$ und $\operatorname{Rg} kB=n=\operatorname{Rg} B$. Mit der Nebenbemerkung folgt $\operatorname{Rg} p^{-1}(\mathbb{Z}^n)=\operatorname{Rg} B$ aus $kB\subseteq p^{-1}(\mathbb{Z}^n)\subseteq B$.

BEWEIS MIT TENSORPRODUKTEN (SKIZZE):

- $\mathbb{Q} \otimes_{\mathbb{Z}} \colon \mathbb{Z}\text{-Mod} \to \mathbb{Q}\text{-VR}$ ist ein Funktor.
- $\operatorname{Rg} A = \dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Z}} A)$
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} (X \oplus Y) = \mathbb{Q} \otimes_{\mathbb{Z}} X \oplus \mathbb{Q} \otimes_{\mathbb{Z}} Y$
 - **(b)** $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$
 - (c) $\mathbb{Q} \otimes_{\mathbb{Z}} T \cong 0$ für T ein Torsionsmodul.
- Ist $A \to B \to C$ eine kurze exakte Folge, so ist auch $\mathbb{Q} \otimes_{\mathbb{Z}} A \to \mathbb{Q} \otimes_{\mathbb{Z}} B \to \mathbb{Q} \otimes_{\mathbb{Z}} C$ eine kurze exakte Folge.
- Jede kurze exakte Folge $V_0 \longrightarrow V_1 \longrightarrow V_2$ von \mathbb{Q} -Vektorräumen spaltet und daher gilt $V_1 \cong V_0 \oplus V_2$ und $\dim_{\mathbb{Q}}(V \oplus W) = \dim_{\mathbb{Q}}(V) + \dim_{\mathbb{Q}}(W)$.

4.9 Definition Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex.

$$\chi(C_*) := \sum_{i=0}^{\infty} \text{Rg}(C_i) = \sum_{i=0}^{n_0} \text{Rg}(C_i)$$

heißt die **Eulercharakteristik** von (C_*, d_*) . Dabei ist n_0 so gewählt, dass $C_n = 0$ für alle $n > n_0$.

4.10 Satz Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex. Dann gilt

$$\chi(C_*) = \sum_{i=1}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*).$$

BEWEIS: Sei $B_{n+1} := \operatorname{Im} d_{n+1} : C_{n+1} \to C_n$ und $Z_n := \ker d_n : C_n \to C_{n-1}$. Also $H_n(C_*, d_*) = Z_n/B_{n+1}$. Als Untermoduln von C_n sind Z_n und B_n endlich erzeugt (LA2). Insbesondere ist auch $H_n(C_*, d_*)$ endlich erzeugt und der Rang somit definiert. Auch B_{n+1} ist Untermodul des endlich erzeugten \mathbb{Z} -Moduls C_n und somit endlich erzeugt. Wir erhalten kurze exakte Folgen:

$$B_{n+1} \longleftrightarrow Z_n \longrightarrow H_n(C_*, d_*)$$

$$Z_n \longleftrightarrow C_n \longrightarrow B_n$$

Nach Proposition 4.8 gilt $\operatorname{Rg} Z_n = \operatorname{Rg} B_{n+1} + \operatorname{Rg} H_n(C_*, d_*)$ und $\operatorname{Rg} C_n = \operatorname{Rg} Z_n + \operatorname{Rg} B_n$. Also gilt

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i = \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} Z_i + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} H_i(C_*, d_*) + \operatorname{Rg} B_{i+1} + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*) + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_{i+1} + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_i$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*)$$

4.11 Korollar Sei K ein endlicher, geordneter simplizialer Kettenkomplex. Dann gilt

$$\chi(K) = \sum_{i=1}^{\dim K} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z})$$

BEWEIS: Wende den Satz 4.10 auf den simplizialen Kettenkomplex von K an. Da

$$\operatorname{Rg} C_n(K; \mathbb{Z}) = \operatorname{Rg} \mathbb{Z}[\Sigma_n] = \# n\text{-Simplizes in } K$$

ist

$$\chi(K) = \chi(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z}) \qquad \Box$$

Eine vereinfachte
Variante dieser Aussage kam in Aufgabe 2 von Blatt3 vor:
Dort haben wir den
Homologiemodul
über einen Körper
betrachtet. Deshalb
konnte wir da dann
die Dimensionsformeln anwenden,
um die beiden Vorraussetzungen für
die Rechnung in
4.10 zu erhalten.

5 Singuläre Homologie

5.1 Definition Sei X ein topologischer Raum. Sei $S_n(X)$ die Menge aller stetigen Abbildungen $\sigma\colon |\Delta^n|\to X$. Elemente von $S_n(X)$ heißen **singuläre Simplizes** in X. Sei R ein Ring. Der \mathbf{n} -te (singuläre) Kettenmodul von X über R ist

$$C_n(X;R) := R[S_n(X)]$$

5.2 Definition Für $\sigma \in S_n(X)$ und $j \in \{0, \dots, n\}$ sei $\delta_j \sigma \in S_{n-1}(X)$ die Einschränkung von σ auf die j-te Seite von $|\Delta^n|$, also $\delta_j(\sigma) = \sigma \circ \iota_{n,j}$, wobei $\iota_{n,j} \colon |\Delta^{n-1}| \to |\Delta^n|$ die Inklusion der j-ten Seite ist:

$$\iota_{n,j}(x_0,\ldots,x_{n-1}) = (x_0,\ldots,x_{j-1},0,x_j,\ldots,x_{n-1})$$

5.3 Bemerkung Es gilt $\iota_{n,j} = |i_{n,j}|$ wobei $i_{n,j} \colon \Delta^{n-1} \to \Delta^n$ gegeben ist durch

vergleiche Blatt 2, Aufgabe 2

$$i_{n,j}(k) = egin{cases} k, & \text{falls } k < j \\ k+1, & \text{falls } k \geqslant j \end{cases}$$

5.4 Definition Die \mathbf{n} -te singuläre Randabbildung $\partial_n\colon C_n(X;R)\to C_{n-1}(X;R)$ ist definiert durch

$$\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta_j(\sigma).$$

5.5 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

BEWEIS (MIT LEMMA 5.6):

$$\begin{split} \partial_{n-1} \circ \partial_n(\sigma) &= \partial_{n-1} \left(\sum_{j=0}^n (-1)^j \delta_j(\sigma) \right) = \sum_{k=0}^{n-1} \sum_{j=0}^n (-1)^{j+k} \delta_k \delta_j(\sigma) \\ &= \sum_{0 \leqslant k < j \leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leqslant j \leqslant k \leqslant n-1} (-1)^{k+j} \delta_k \delta_j(\sigma) \\ &\stackrel{\text{Lemma 5.6}}{=} \sum_{0 \leqslant k < j \leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leqslant j \leqslant k \leqslant n-1} (-1)^{k+j} \delta_j \delta_{k+1}(\sigma) \\ &= \sum_{0 \leqslant k < j \leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leqslant j < k \leqslant n} (-1)^{k-1+j} \delta_j \delta_k(\sigma) \\ &= 0 \end{split}$$

5.6 Lemma Für $0 \le j \le k \le n-1$ und $\sigma \in S_n(X)$ ist $\delta_k \delta_j(\sigma) = \delta_j \delta_{k+1}(\sigma)$.

BEWEIS: Es ist

$$\delta_k(\delta_j(\sigma))(x_0, \dots, x_{n-2}) = \delta_j(\sigma)(x_0, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$$

= $(x_0, \dots, x_{j-1}, 0, x_j, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$

und

$$\delta_{j}\delta_{k+1}(\sigma)(x_{0},\ldots,x_{n-2}) = \delta_{k+1}(\sigma)(x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2})$$

$$= (x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{k-1},0,x_{k},\ldots,x_{n-2})$$

5.7 Definition Sei X ein topologischer Raum. Die Homologie des **singulären Kettenkomplex** über R_{\bullet} ($C_{*}(X;R),\partial_{*}$), heißt die **singuläre Homologie von** X mit Koeffizienten in R:

$$H_n(X;R) := H_n(C_*(X;R), \partial_*)$$

Für $R = \mathbb{Z}$ schreiben wir kürzer $C_*(X) := C_*(X; \mathbb{Z})$ und $H_n(X) := H_n(X; \mathbb{Z})$.

5.8 Definition

- Die Elemente von $C_n(X;R)$ heißen **n-Ketten**.
- Die Elemente von $\operatorname{Im} \partial_{n+1} \subseteq C_n(X;R)$ heißen **n-Ränder**.
- Die Elemente von $\ker \partial_n \subseteq C_n(X;R)$ heißen **n-Zykel**.

Jeder n-Zykel $\sigma \in C_n(X;R)$ bestimmt eine **Homologieklasse** $[\sigma] := \sigma + \operatorname{Im} \partial_{n+1} \in H_n(X;R)$.

5.9 Beispiel Ist $X = \{x_0\}$ der Ein-Punkt-Raum, so ist

$$H_* \big(\{x_0\}; R \big) \cong \begin{cases} R, & \text{falls } * = 0 \\ 0, & \text{sonst} \end{cases}$$

BEWEIS: Es gibt für jedes n genau eine Abbildung $\sigma_n\colon |\Delta^n|\to \{x_0\}$ nämlich die konstant. Diese ist offensichtlich stetig. Also ist $C_n(\{x_0\};R)=R[\sigma_n]$. Für alle j ist $\delta_j\sigma_n=\sigma_{n-1}$. Daher ist

$$\partial_n(\sigma_n) = \begin{cases} 0, & \text{falls } n \text{ ungerade} \\ \sigma_{n-1}, & \text{falls } n \text{ gerade} \end{cases}$$

Der singuläre Kettenkomplex von $\{x_0\}$ hat also folgende Gestalt:

Es folgt

$$H_n(\{x_0\};R)\cong \begin{cases} R, & \text{falls } n=0 \\ 0, & \text{sonst} \end{cases}$$

5.10 Proposition

- 1) Ist $X \neq \emptyset$, so ist $H_0(X) \neq 0$.
- 2) Ist X wegzusammenhängend, so gilt $H_0(X) \cong \mathbb{Z}^2$
- ² Tatsächlich gilt auch die Umkehrung, wie in Aufgabe 4 von Blatt 3 gezeigt.

Eine analoge Aussage für simpliziale Komplexe haben wir in Aufgabe 3 von Blatt 2 bewiesen

BEWEIS:

1) Sei die sogenannte Augmentierung $\epsilon\colon C_0(X)\to \mathbb{Z}$ definiert durch

$$\epsilon\left(\sum_{\sigma\in S_0(X)}\!\!\!r_\sigma\cdot\sigma\right):=\sum_\sigma r_\sigma.$$

Dann ist $\epsilon \circ \partial_1 \colon C_1(X) \to \mathbb{Z}$ trivial, denn für $\sigma \in S_1(X)$ ist $\epsilon \circ \partial_1(\sigma) = \epsilon(\delta_0 \sigma - \delta_1 \sigma) = 0$. Daher induziert ϵ eine Abbildung $\overline{\epsilon} \colon H_0(X) \to \mathbb{Z}$. Da $X \neq \emptyset$ ist, gibt es einen singulären 0-Simplex $\sigma \colon |\Delta^0| \to X$. Für σ gilt $\overline{\epsilon}([\sigma]) = 1$ und daher ist $\overline{\epsilon}$ surjektiv und $H_0(X) \neq 0$.

2) Wir zeigen, dass $\overline{\epsilon}\colon H_0(X) \to \mathbb{Z}$ ein Isomorphismus ist, falls X wegzusammenhängend ist. Dazu zeigen wir $\ker \epsilon = \operatorname{Im} \partial_1$. Dazu definieren wir $s\colon C_0(X) \to C_1(X)$ wie folgt: Sei σ_0 ein fest gewählter singulärer 0-Simplex. Zu $\sigma \in S_0(X)$ gibt es, da X wegzusammenhängend ist, $s(\sigma) \in S_1(X)$ mit $\delta_0 s(\sigma) = \sigma$, $\delta_1 s(\sigma) = \sigma_0$. Es gilt nun

$$\partial_1 \circ s(\sigma) = \sigma - \sigma_0 = (\mathrm{id}_{C_0(X)} - i \circ \epsilon)(\sigma)$$

wobei $i: \mathbb{Z} \to C_0(X)$, $n \mapsto n \cdot \sigma_0$. Ist nun $v \in \ker \epsilon$, so folgt

$$\partial_1 \circ s(v) = v - i \circ \underbrace{\epsilon(v)}_{=0} = v$$

also ist $v \in \operatorname{Im} \partial_1$ und es folgt die Behauptung.

5.11 Bemerkung Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_o,\ldots,v_n\}\in\Sigma_n$ ein n-Simplex von K mit $v_0< v_1<\ldots< v_n$. Wir ordnen σ den singulären n-Simplex $f_\sigma\colon |\Delta^n|\to |\Delta^\sigma|\subseteq |K|$ zu, wobei

$$f_{\sigma}\left(\sum_{i=0}^{n} t_{i} \cdot e_{i}\right) = \sum_{i=0}^{n} t_{i} \cdot v_{i}.$$

Nun erhalten wir eine Abbildung

$$C_*(K;R) \to C_*(|K|,R)$$
 , $\sum_{\sigma \in \Sigma_n} r_\sigma \cdot \sigma \longmapsto \sum_{\sigma \in \Sigma_n} r_\sigma \cdot f_\sigma$.

Diese Abbildung induziert(!) eine weitere Abbildung $H_*(K;R) \xrightarrow{\cong} H_*(|K|;R)$ von der wir später zeigen werden, dass sie ein Isomorphismus ist.

5 Singuläre Homologie 17

6 Funktorialität

6.1 Definition Seien (C_*, d_*) und (C'_*, d'_*) zwei R-Kettenkomplexe. Eine \mathbf{R} -Kettenabbildung $f_* \colon (C_*, d_*) \to (C'_*, d'_*)$ ist eine Folge von R-linearen Abbildungen $f_n \colon C_n \to C'_n$, sodass

$$d'_n \circ f_n = f_{n-1} \circ d_n$$

für alle $n\geqslant 1$ gilt. Also kommutiert folgendes Diagramm

$$C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \xleftarrow{d_3} C_3 \longleftarrow \dots$$

$$\downarrow^{f_0} \qquad \downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$C'_0 \xleftarrow{d'_1} C'_1 \xleftarrow{d'_2} C'_2 \xleftarrow{d'_3} C'_3 \longleftarrow \dots$$

6.2 Bemerkung Ist $f_* \colon (C_*, d_*) \to (C'_*, d'_*)$ eine Kettenabbildung, so erhalten wir eine induzierte Abbildung auf Homologie $H_n(f_*) \colon H_n(C_*, d_*) \to H_n(C'_*, d'_*)$ durch

$$H_n(f_*)([v]) := [f_n(v)]$$

für $v \in \ker d_n$. Dies ist wohldefiniert, denn:

- $d_n'(f_n(v)) = f_{n-1}(d_n(v)) = 0$, also $f_n(v) \in \ker d_n'$ für $v \in \ker d_n$.
- Ist [v] = [w], mit $v, w \in \ker d_n$, so gibt es $x \in C_{n+1}$ mit $d_{n+1}(x) = v w$. Dann ist

$$d'_{n+1}(f_{n+1}(x)) = f_n(d_{n+1}(x)) = f_n(v) - f_n(w)$$

also
$$[f_n(v)] = [f_n(w)] \in H_n(C'_*, d'_*)$$
.

6.3 Bemerkung

- a) R-Kettenkomplexe mit R-Kettenabbildungen bilden die Kategorie R-KETTEN.
- **b)** Homologie definiert nun einen Funktor: $H_n \colon R ext{-KETTEN} \to R ext{-MOD}.$ Es gilt $H_n(\mathrm{id}_{(C_*,d_*)}) = \mathrm{id}_{H_n(C_*,d_*)}$ und $H_n(f\circ g) = H_n(f)\circ H_n(g)$, da

$$H_n(f \circ g)([v]) = [f_n \circ g_n(v)] = [f_n(g_n(v))] = H_n(f)([g_n(v)]) = H_n(f)(H_n(g)(v))$$

c) Definiert man die Kategorie der *graduierten* R-Moduln als die Kategorie, deren Objekte Folgen $(V_n)_n$ von \mathbb{R} -Moduln sind und deren Morphismen Folgen von R-linearen Abbildungen $(f_n)_n$ sind, so kann man die H_n , $n \in \mathbb{N}$ zu einem Funktor

$$H_* \colon R\text{-KETTEN} \longrightarrow \mathsf{GR}\text{-}R\text{-MOD}$$
 , $(C_*, d_*) \longmapsto \big(H_n(C_*, d_*)\big)_n$

zusammensetzen.

6.4 Definition Sei $f: X \to Y$ stetig. Wir definieren $C_n(f;R): C_n(X;R) \to C_n(Y;R)$ durch

$$C_n(f;R)\left(\sum_{\sigma\in S_n(X)} r_{\sigma}\cdot\sigma\right) := \sum_{\sigma\in S_n(X)} r_{\sigma}\cdot(f\circ\sigma)$$

Dies ist wohldefiniert, denn für $\sigma \in S_n(X)$ ist $f \circ \sigma \in S_n(Y)$.

18 6 Funktorialität

6.5 Proposition Mit dieser Definition von $C_*(f;R)$ wird der singuläre Kettenkomplex über R zu einem Funktor

$$C_*(-;R)\colon \mathsf{TOP} \to R\mathsf{-KETTEN}$$

BEWEIS:

(i) $C_*(f;R)$ ist eine R-Kettenabbildung: Es gilt

$$C_{n-1}(f;R) \circ \partial_n(\sigma) = C_{n-1}(f;R) \left(\sum_{l=0}^n (-1)^l \cdot \sigma \circ \iota_{n,l} \right) = \sum_{l=0}^n (-1)^l \cdot (f \circ \sigma) \circ \iota_{n,l}$$
$$= \partial_n(f \circ \sigma) = \partial \left(C_n(f;R)(\sigma) \right).$$

(ii) Zu zeigen: $C_*(f \circ g; R) = C_*(f; R) \circ C_*(g; R)$. Es gilt

$$C_n(f \circ g; R)(\sigma) = f \circ (g \circ \sigma) = C_n(f; R)(g \circ \sigma) = C_n(f; R)(C_n(g; R)(\sigma)).$$

(iii) Zu zeigen: $C_*(\mathrm{id}_X;R)=\mathrm{id}_{C_*(X;R)}$. Es gilt

$$C_n(\mathrm{id}_X; R)(\sigma) = \mathrm{id}_X \circ \sigma = \sigma$$

6.6 Korollar Mit $H_n(f;R):=H_n(C_*(f;R))$ wird $H_n(-;R)$ zu einem Funktor: $H_n(-;R)$: TOP \to R-MOD.

BEWEIS: $H_n(-;R)$ ist die Komposition des Funktors $C_*(-;R)$: TOP $\to R$ -KETTEN aus 6.5 mit dem Funktor $H_n\colon R$ -KETTEN $\to R$ -MOD aus 6.3.

6.7 Bemerkung

- Oft schreiben wir kurz $f_* = H_n(f; R)$.
- $\bullet \ \ \mathsf{F\"{u}r} \ \left[\textstyle \sum_{\sigma \in S_n(X)} r_\sigma \sigma \right] \in H_n(X;R) \ \mathsf{ist} \ f_* \left(\left[\textstyle \sum_{\sigma \in S_n(X)} r_\sigma \sigma \right] \right) = \left[\textstyle \sum_{\sigma \in S_n(X)} r_\sigma f \circ \sigma \right] \in H_n(Y;R)$
- **6.8 Definition** Seien X_i , $i \in I$ topologische Räume. Mit

$$X := \coprod_{i \in I} X_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der X_i . Als Menge ist X die disjunkte Vereinigung der X_i . $U\subseteq X$ ist offen genau dann, wenn $X_i\cap U\subseteq X_i$ offen ist für jedes $i\in I$. Für jedes i_0 erhalten wir eine stetige Inklusion $j_{i_0}\colon X_{i_0}\to \coprod_i X_i$.

BEMERKUNG: Für jedes i_0 ist $X_{i_0} \subseteq \coprod_i X_i$ offen und abgeschlossen.

6 Funktorialität 19

6.9 Definition Seien V_i , $i \in I$ R-Moduln. Mit

$$V := \bigoplus_{i \in I} V_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der V_i . Elemente von V sind I-Folgen $(v_i)_{i\in I}$ mit $v_i\in V_i$ und $v_i=0$ für alle bis auf endlich viele i. Die R-Modulstruktur ist erklärt durch:

$$(v_i)_{i \in I} + (w_i)_{i \in I} := (v_i + w_i)_{i \in I}$$
 , $r \cdot (v_i)_{i \in I} := (r \cdot v_i)_{i \in I}$

Für jedes $i_0 \in I$ erhalten wir eine R-lineare Abbildung $j_{i_0} \colon V_{i_0} \to V$ mit

$$(j_{i_0}(v))_i = \begin{cases} v, & \text{falls } i = i_0 \\ 0, & \text{sonst} \end{cases}$$

BEMERKUNG: Seien V_i für $i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $f_i \colon V_i \to W$ von R-linearen Abbildungen eine R-lineare Abbildung $\bigoplus_{i \in I} f_i \colon \bigoplus_{i \in I} V_i \to W$ mit

$$(\bigoplus_{i\in I} f_i)\big((v_i)_{i\in I}\big) = \sum_{i\in I} f_i(v_i)$$

Ist umgekehrt $f\colon \bigoplus_{i\in I} V_i \to W$ eine R-lineare Abbildung, so ist $f_i:=f\circ j_i$ eine Folge von R-linearen Abbildungen mit $f=\bigoplus_{i\in I} f_i$.

6.10 Satz Sei $X = \coprod_{i \in I} X_i$. Dann induzieren die Inklusionen $j_i \colon X_i \hookrightarrow X$ einen Isomorphismus

$$\bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\bigoplus_{i \in I} (j_i)_*} H_n(X; R)$$

Beweis: Da die $X_i \subseteq X$ offen und abgeschlossen sind und $|\Delta^n|$ zusammenhängend ist (sogar wegzusammenhängend), gibt es für jedes $\sigma \colon |\Delta^n| \to X$ ein eindeutiges i mit $\operatorname{Im} \sigma \subseteq X_i$. Es gilt also $S_n(X) = \bigcup S_n(X_i)$. Daher induzieren die j_i für jedes n einen Isomorphismus

$$\bigoplus_{i \in I} C_n(j_i; R) \colon \bigoplus_{i \in I} C_n(X_i; R) \xrightarrow{\cong} C_n(X; R)$$

Da diese Isomorphismen mit den Randabbildungen vertauschen, erhalten wir einen Isomorphismus von R-Kettenkomplexen

$$\varphi := \bigoplus_{i \in I} C_*(j_i; R) : \bigoplus C_*(X_i; R) \xrightarrow{\cong} C_*(X; R)$$

Da $\bigoplus_i H_n \big(C_*(X_i;R) \big) \cong H_n \big(\bigoplus_i C_*(X_i;R) \big)$ induzieren dann auch die $(j_i)_*$ einen Isomorphismus

$$\bigoplus_{i \in I} (j_i)_* \colon \bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\cong} H_n(X; R) \qquad \Box$$

20 6 Funktorialität

7 Homotopieinvarianz

7.1 Bemerkung Sei $f: X \to Y$ ein Homöomorphismus. Dann ist $f_*: H_n(X;R) \longrightarrow H_n(Y;R)$ ein Isomorphismus.

BEWEIS: Da Homologie ein Funktor ist, gilt

$$f_* \circ (f^{-1})_* = (f \circ f^{-1})_* = (\mathrm{id}_Y)_* = \mathrm{id}_{H_n(Y;R)}$$
 und
$$(f^{-1})_* \circ f_* = (f^{-1} \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{H_n(X;R)}$$

Also ist $(f_*)^{-1} = (f^{-1})_*$. Insbesondere ist f_* ein Isomorphismus.

7.2 Definition Eine stetige Abbildung $f\colon X\to Y$ heißt eine **Homotopieäquivalenz**, falls es eine stetige Abbildung $g\colon Y\to X$ gibt, so dass $g\circ f$ homotop zu id_X ist und $f\circ g$ homotop zu id_Y ist. g heißt dann eine **Homotopieinverse** zu f.

BEMERKUNG:

- (i) f ist genau dann eine Homotopieäquivalenz, wenn [f] in HTop invertierbar ist. In HTop ist dann $[f]^{-1} = [g]$.
- (ii) Die Homotopieinverse ist eindeutig bis auf Homotopie.

7.3 Satz Seien $f,g\colon X\to Y$ stetige Abbildungen. Sind f und g homotop, so gilt für die induzierten Abbildungen $H_n(f;R)=H_n(g;R)$ für alle $n\in\mathbb{N}$.

Beweis: Siehe 7.8, sowie 7.13 □

7.4 Korollar Ist $f: X \to Y$ eine Homotopieäquivalenz, so ist $f_*: H_n(X; R) \to H_n(Y; R)$ ein Isomorphismus.

BEWEIS: Sei $g: Y \to X$ ein Homotopieinverses zu f. Es folgt

7.5 Korollar Ist X kontrahierbar, d.h. es gibt eine Homotopie $H\colon X\times [0,1]\to X$ mit $H_0=\mathrm{id}_X$ und H_1 konstant, so gilt

$$H_n(X;R)\cong \begin{cases} R, & \text{ falls } n=0\\ 0, & \text{ sonst} \end{cases}$$

BEWEIS: Sei $\{x_0\} = \operatorname{Im} H_1$. Dann ist die Inklusion $\{x_0\} \to X$ eine Homotopieäquivalenz. Also gilt nach 7.4

$$H_n(X;R) \cong H_n\big(\{x_0\};R\big) \stackrel{5.9}{=} \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

7 Homotopieinvarianz 21

BEISPIEL:

$$H_n(\mathbb{R}^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases} \quad \text{und} \quad H_n(D^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

Kettenhomotopie definiert eine Äquivalenzrelation wie in Aufgabe 2 von Blatt 5 gezeigt. **7.6 Definition** Seien (C_*,d_*) und (C'_*,d'_*) R-Kettenkomplexe. Seien $f_*,g_*\colon (C_*,d_*)\to (C'_*,d'_*)$ R-Kettenabbildungen. Eine **Kettenhomotopie** von f_* nach g_* ist eine Folge von R-linearen Abbildungen $h_n\colon C_n\to C'_{n+1}$, $n\in\mathbb{N}$, sodass für alle n gilt:

$$d'_{n+1} \circ h_n + h_{n-1} \circ d_n = f_n - g_n$$

In diesem fall heißen f_* und g_* kettenhomotop.

7.7 Proposition Seien $f_*, g_* \colon (C_*, d_*) \to (C'_*, d'_*)$ Kettenabbildungen. Sind f_* und g_* kettenhomotop, so gilt für alle n

$$H_n(f_*) = H_n(g_*)$$

BEWEIS: Sei $x \in H_n(C_*, d_*)$. Also x = [v] mit $v \in \ker d_n \colon C_n \to C_{n-1}$. Dann gilt, da $v \in \ker d_n$

$$H_n(f_*)(x) = H_n(f_*)([v]) = [f_n(v)] = \left[g_n(v) + \underbrace{d'_{n+1} \circ h_n(v)}_{\in \operatorname{Im} d'_{n+1}} + \underbrace{h_{n-1} \circ d_n(v)}_{=0}\right]$$
$$= [g_n(v)] = H_n(g_*)([v]) = H_n(g_*)(x) \qquad \Box$$

7.8 Lemma Die Homotopieinvarianz von $H_n(-;R)$, also Satz 7.3, folgt aus folgenden Spezialfall:

Seien $i_0, i_1: X \hookrightarrow X \times [0,1]$ Inklusionen mit $i_0(x) = (x,0)$, $i_1(x) = (x,1)$. $\Longrightarrow (i_0)_* = (i_1)_*$ [#]

BEWEIS: Sei $H\colon X\times [0,1]\to Y$ eine Homotopie zwischen $f,g\colon X\to Y$, also $f=H\circ i_0$ und $g=H\circ i_1$. Dann folgt mittels Funktorialität

$$f_* = (H \circ i_0)_* = H_* \circ (i_0)_* = H_* \circ (i_1)_* = (H \circ i_1)_* = g_*$$

7.9 Bemerkung Zum Beweis von [#] werden wir eine explizite Kettenhomotopie h_* zwischen $C_*(i_0;R)$ und $C_*(i_1;R)$ konstruieren. Wir brauchen also $h_n\colon C_n(X;R)\to C_{n+1}(X\times[0,1];R)$ für alle $n\in\mathbb{N}$ mit

$$\partial_{n+1} \circ h_n + h_{n-1} \circ \partial_n = C_n(i_0; R) - C_n(i_1; R).$$
 [##]

"Ansatz" Für $\sigma\colon |\Delta^n| \to X$ setze $h_n(\sigma) = \sigma \times \mathrm{id}_{[0,1]}\colon |\Delta^n| \times [0,1] \to X \times [0,1]$. Dann ist $h_{n-1}(\partial_n \sigma) = \partial_n \sigma \times \mathrm{id}_{[0,1]}$ und

$$\partial_{n+1}(h_n\sigma) = \partial_{n+1}(\sigma \times \mathrm{id}_{[0,1]}) = (\sigma \times \mathrm{id})\Big|_{\partial(|\Delta^n| \times [0,1])} = \partial_n\sigma \times \mathrm{id}_{[0,1]} + i_0\sigma + i_1\sigma$$

 $\mathrm{da}\ \partial(|\Delta^n|\times[0,1])=\partial|\Delta^n|\times[0,1]\,\dot{\cup}|, |\Delta^n|\times\{0,1\}.$

Um daraus Sinn zu machen, zerlegen wir $|\Delta^n| \times [0,1]$ in eine Vereinigung von (n+1)-Simplizes. $\Delta^n \times [0,1]$ hat die folgende Form für $n \in \{0,1,2\}$:

Abbildung 1: $\Delta^n \times [0,1]$ für n=0,1,2

Die Zerlegung in 3-Simplizes ist für $\Delta^2 \times [0,1]$ gegeben durch

Abbildung 2: Zerlegung von $\Delta^2 \times [0,1]$ in 3-Simplizes

Dieses Vorgehen verallgemeinern wir jetzt für beliebiges $n \in \mathbb{N}$:

7.10 Definition Für $j=0,\ldots,n$ seien $k_{n,j}\colon |\Delta^{n+1}|\to |\Delta^n|\times [0,1]$ und $\iota_{n,j}\colon |\Delta^{n-1}|\to |\Delta^n|$ die e_1,\ldots,e_n sind eindeutigen affin linearen Abbildungn, für die gilt:

wieder die Einheitsvektoren von \mathbb{R}^n

$$k_{n,j}(e_0) = (e_0, 0)$$
 $\iota_{n,j}(e_0) = e_0$
 $k_{n,j}(e_1) = (e_1, 0)$... $\iota_{n,j}(e_1) = e_1$... $\iota_{n,j}(e_{j-1}) = e_{j-1}$
 $k_{n,j}(e_{j+1}) = (e_j, 1)$... $\iota_{n,j}(e_j) = e_{j+1}$... $\iota_{n,j}(e_{n-1}) = e_n$

7.11 Lemma Es gelten folgende fünf Gleichungen für die Abbildungen $k_{n,j}$ und $\iota_{n,j}$:

(i) Für
$$0\leqslant l< j\leqslant n$$
 gilt $k_{n,j}\circ\iota_{n+1,l}=\left(\iota_{n,l}\times\mathrm{id}_{[0,1]}\right)\circ k_{n-1,j-1}$

(ii) Für
$$1 \leqslant j+1 < l \leqslant n+1$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = \left(\iota_{n,l-1} \times \mathrm{id}_{[0,1]}\right) \circ k_{n-1,j}$

(iii) Für
$$1 \leqslant j+1=l \leqslant n$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = k_{n,j+1} \circ \iota_{n+1,l}$

(iv) Für
$$l=0, j=0$$
 ist $k_{n,j} \circ \iota_{n+1,l} = i_1 : \Delta^n \to \Delta^n \times [0,1]$

(v) Für
$$l=n, j=n+1$$
 ist $k_{n,j} \circ \iota_{n+1,l}=i_0:\Delta^n \to \Delta^n \times [0,1]$

Beweis: Wir zeigen hier nur exemplarisch die erste Gleichung: Die linke Seite der Gleichung entspricht

und die rechte Seite entspricht

Also folgt insgesamt die Gleichheit. Die anderen Gleichungen folgen genauso.

7.12 Beweis von [##] Sei $h_n \colon C_n(X;R) \to C_{n+1}(X \times [0,1];R)$ definiert durch

$$h_n(\sigma) := \sum_{j=0}^n (-1)^j \cdot (\sigma \times \mathrm{id}) \circ k_{n,j}$$

24

 h_* ist die gesuchte Kettenhomotopie, da für $n \in \mathbb{N}$ unter Anwendung der Gleichungen aus 7.12 gilt:

$$\begin{split} \partial_{n+1} \big(h_n(\sigma) \big) &= \partial_{n+1} \left(\sum_{j=0}^n (-1)^j \cdot (\sigma \times \operatorname{id}) \circ k_{n,j} \right) \\ &= \sum_{l=0}^{n+1} \sum_{j=0}^n (-1)^{j+l} \cdot (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} \qquad \qquad \text{(nach Definition 5.2)} \\ &= \sum_{0 \leqslant l < j \leqslant n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j-1} + \sum_{1 \leqslant j+1 < l \leqslant n+1} (-1)^{j+l} \big((\sigma \circ \iota_{n,l-1}) \times \operatorname{id} \big) \circ k_{n-1,j} \\ &+ \sum_{1 \leqslant j+1 = l \leqslant n} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ k_{n,j+1} \circ \iota_{n+1,l} + \sum_{1 \leqslant j=l \leqslant n} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 = l = j} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_0 \\ &= \sum_{0 \leqslant l \leqslant j \leqslant n-1} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + \sum_{1 \leqslant j+1 \leqslant l \leqslant n} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} \\ &+ \sum_{0 = l = j} (-1)^{j+l-1} (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} + \sum_{1 \leqslant j=l \leqslant n} (-1)^{j+l} \big(\sigma \times \operatorname{id} \big) \circ k_{n,j} \circ \iota_{n+1,l} \\ &= -\sum_{0 \leqslant l \leqslant n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + (\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0 \\ &= -\sum_{0 \leqslant j \leqslant n-1} (-1)^j \sum_{l=0}^n (-1)^l \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + \underbrace{(\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0}_{=i_0 \circ \sigma} \\ &= -k_{n-1} (\partial_n \sigma) + C_n(i_1; R)(\sigma) - C_n(i_0; R)(\sigma) \end{split}$$

7.13 Bemerkung Ist $H: X \times [0,1] \to Y$ eine Homotopie zwischen f und g, so erhalten wir eine Kettenhomotopie k zwischen $C_*(f;R)$ und $C_*(g;R)$ durch

$$k_n(\sigma) := C_{n+1}(H; R) \circ h_n = \sum_{j=0}^n (-1)^j H \circ (\sigma \times \mathrm{id}) \circ k_{n,j}$$

8 Homologie von Paaren

8.1 Definition Sei A ein Teilraum von X, dann heißt (X,A) ein **Paar von topologischen Räumen**. Eine Abbildung von Paaren $f\colon (X,A)\to (Y,B)$ ist eine stetige Abbildung $f\colon X\to Y$ mit $f(A)\subseteq B$. Manchmal schreiben wir $(f,f|_A)\colon (X,A)\to (Y,B)$. Die Kategorie von Paaren von topologischen Räumen bezeichnen wir mit TOP 2 .

8.2 Definition Sei (X,A) ein Paar. Dann definieren wir den **singulären Kettenkomplex** von (X,A) über R durch

$$C_n(X, A; R) := \frac{C_n(X; R)}{C_n(A; R)}$$
$$\partial_n(\sigma + C_n(A; R)) := \partial_n \sigma + C_{n-1}(A; R)$$

Dies ist wohldefiniert, da $\partial_n(C_n(A;R)) \subseteq C_{n-1}(A;R)$. Weiter heißt

$$H_n(X, A; R) := H_n(C_*(X, A; R), \partial_*)$$

der \mathbf{n} -te singuläre Homologiemodul von (X,A) mit Koeffizienten in R.

8.3 Bemerkung Der singuläre Kettenkomplex von Paaren definiert einen Funktor $\mathsf{TOP}^2 \to R$ -Ketten. Durch Komposition mit Homologie (als Funktor R-Ketten $\to R$ -Mod) erhalten wir einen Funktor

$$H_n(-,-;R) \colon \mathsf{TOP}^2 \longrightarrow R\mathsf{-MOD}$$

8.4 Bemerkung Via $X \mapsto (X, \emptyset)$ können wir jeden Raum auch als Paar auffassen. Es gilt $H_n(X, \emptyset; R) = H_n(X; R)$.

8.5 Frage Können wir $H_n(X,A;R)$ durch $H_n(X;R)$ und $H_n(A;R)$ ausdrücken?

Ansatz 1:

$$H_n(X, A; R) \cong H_n(X; R)/H_n(A; R)$$

A Problem: $H_n(A;R)$ ist kein Untermodul von $H_n(X;R)$.

Ansatz 2: Ist $H_n(X;R) \to H_n(X,A;R)$ surjektiv?

Sei $x \in H_n(X,A;R)$. Dann gibt es $\sigma + C_n(A;R) \in C_n(X,A;R)$ mit $\partial_n \left(\sigma + C_n(A;R)\right) = 0$ und $x = [\sigma]$. Es ist $\sigma \in C_n(X;R)$, aber wir wissen nur $\partial_n \sigma \in C_{n-1}(A;R)$, nicht $\partial_n(\sigma) = 0$. 2

8.6 Beispiel In $C_n(|\Delta^n|, |\partial\Delta^n|; R)$ gilt für $\sigma := \mathrm{id} \colon |\Delta^n| \to |\Delta^n|$, dass $\partial_n([\sigma]) = 0$ ist, da $\partial_n \sigma \in C_{n-1}(|\partial\Delta^n|; R)$. Wir werden später sehen, dass $[\sigma]$ den Homologiemodul

$$H_n(|\Delta^n|, |\partial \Delta^n|; R) \cong R$$

erzeugt.

8.7 Definition Eine Folge von R-linearen Abbildungen zwischen R-Moduln M_i

$$\cdots \longrightarrow M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0$$

heißt *lange exakte Folge*, wenn sie exakt an jeder Stelle M_i ist, d.h. für alle i gilt $\mathrm{Im}\, f_i = \ker f_{i-1}$.

Homologie von Paaren ist auch wieder homotopieinvariant, wie in Aufgabe 1 von Blatt 7 gezeigt.

8.8 Satz Es gibt eine natürliche Transformation ∂_n von $(X,A)\mapsto H_n(X,A;R)$ nach $(X,A)\mapsto H_{n-1}(A;R)$, sodass für jedes Paar (X,A)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \longrightarrow \cdots$$

$$[*]$$

$$\cdots \xrightarrow{\partial_1} H_0(A;R) \longrightarrow H_0(X;R) \longrightarrow H_0(X,A;R) \longrightarrow 0$$

eine lange exakte Folge ist. Dabei sind $i\colon A\hookrightarrow X$ und $j\colon (X,\emptyset)\hookrightarrow (X,A)$ die Inklusionen. Das bedeutet:

Für jedes Paar (X,A) haben wir eine R-lineare Abbildung $\partial_n\colon H_n(X,A;R)\to H_{n-1}(A;R)$, sodass für jede Abbildung $(f,f|_A)\colon (X,A)\to (Y,B)$ von Paaren folgendes Diagramm kommutiert

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow^{(f,f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

Beweis: siehe 8.13.

8.9 Korollar

- (1) Ist die Inklusion $i: A \to X$ eine Homotopieäquivalenz, so ist $H_n(X, A; R) = 0$ für alle n.
- (2) Sei A kontraktibel. Dann gilt für alle $n \ge 1$. $H_n(X; R) \cong H_n(X, A; R)$

BEWEIS:

(1) Betrachte den folgenden Ausschnitt aus der langen exakten Folge:

$$H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \xrightarrow{i_*} H_n(X;R)$$

Nach 7.4 ist $i_*\colon H_n(A;R)\to H_n(X;R)$ ein Isomorphismus. Wegen der Exaktheit gilt $\ker j_*=\operatorname{Im} i_*=H_n(X;R)$, also folgt $j_*=0$. Da $\operatorname{Im} \partial_n=\ker i_*=0$, folgt $\partial_n=0$. Nun ist

$$H_n(X, A; R) = \ker \partial_n = \operatorname{Im} j_* = 0$$

(2) Folgt leicht aus 7.5 und der Exaktheit der Paarsequenz [*]. Für n=1 brauchen wir außerdem, dass ∂_1 für A wegzusammenhängend trivial ist. Dies folgt aus Aufgabe 1a) von Blatt 6, denn dort wurde gezeigt, dass $i_* \colon H_0(A) \to H_0(X)$ injektiv ist.

8.10 Definition Seien

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$
 [#]

R-Kettenabbildungen. Ist für jedes n die Folge $C_n \xrightarrow{i_n} C'_n \xrightarrow{p_n} C''_n$ kurz exakt, so heißt [#] eine kurze exakte Folge von Kettenkomplexen.

8.11 Beispiel Für jedes Paar (X, A) ist

$$(C_*(A;R),\partial_*) \xrightarrow{i_*} (C_*(X;R),\partial_*) \xrightarrow{j_*} (C_*(X,A;R),\partial_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

8.12 Schlangenlemma Sei

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

a) Für jedes n gibt es eine eindeutige wohldefinierte R-lineare Abbildung $\partial_n\colon H_n(C_*'',d_*'')\to H_{n-1}(C_*,d_*)$ mit: Für $v'\in C_n'$ mit $d_n''\circ p_n(v')=0$ ist

$$\partial_n \underbrace{\left[p_n(v') \right]}_{\in H_n(C'', d_*')} = [v] \in H_{n-1}(C_*, d_*)$$

wobei $v \in C_{n-1}$ bestimmt ist durch $i_{n-1}(v) = d'_n(v')$.

b)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(C_*, d_*) \xrightarrow{i_*} H_n(C'_*, d'_*) \xrightarrow{p_*} H_n(C''_*, d''_*) \xrightarrow{\partial_n}$$

$$\downarrow H_{n-1}(C_*, d_*) \xrightarrow{i_*} H_{n-1}(C'_*, d'_*) \xrightarrow{p_*} \cdots \xrightarrow{\partial_1}$$

$$\downarrow H_0(C_*, d_*) \xrightarrow{i_*} H_0(C'_*, d'_*) \xrightarrow{p_*} H_0(C''_*, d''_*) \xrightarrow{0} 0$$

ist eine lange exakte Folge.

BEWEIS:

$$C_{n+1} \xrightarrow{i_{n+1}} C'_{n+1} \xrightarrow{p_{n+1}} C''_{n+1}$$

$$\downarrow d_{n+1} \qquad \downarrow d'_{n+1} \qquad \downarrow d''_{n+1}$$

$$C_{n} \xrightarrow{i_{n}} C'_{n} \xrightarrow{p_{n}} C''_{n}$$

$$\downarrow d_{n} \qquad \downarrow d'_{n} \qquad \downarrow d''_{n}$$

$$C_{n-1} \xrightarrow{i_{n-1}} C'_{n-1} \xrightarrow{p_{n-1}} C''_{n-1}$$

$$\downarrow d_{n-1} \qquad \downarrow d'_{n-1} \qquad \downarrow d''_{n-1}$$

$$C_{n-2} \xrightarrow{i_{n-2}} C'_{n-2} \xrightarrow{p_{n-2}} C''_{n-2}$$

a) Sei $x'' \in H_n(C_*'', d_*'')$, also x'' = [v''] mit $v'' \in \ker d_n''$. Da p_n surjektiv ist, existiert $v' \in C_n'$ mit $p_n(v') = v''$. Es gilt

$$p_{n-1} \circ d'_n(v') = d''_n \circ p_n(v') = d''_n(v'') = 0$$

Also ist $d'_n(v') \in \ker p_{n-1}$. Weiter gilt $\ker p_{n-1} = \operatorname{Im} i_{n-1}$, also existiert $\operatorname{ein} v \in C_{n-1}$ mit $i_{n-1}(v) = d'_n(v')$. Dann gilt

$$i_{n-2}(d_{n-1}(v)) = d'_{n-1}(i_{n-1}(v)) = d'_{n-1}(d'_n(v')) = 0$$

Da i_{n-2} injektiv ist, folgt somit $d_{n-1}(v)=0$. Also setzen wir $\partial_n(x''):=[v]\in H_{n-1}(C_*,d_*)$. Es bleibt zu zeigen, dass $[v]\in H_{n-1}(C_*,d_*)$ unabhängig von der Wahl von v'' und v' ist. Seien $w''\in\ker d_n'',w'\in C_n'$ und $w\in C_{n-1}$ mit $x''=[w''],p_n(w')=w''$ und $i_{n-1}(w)=d_n'(w')$. Es ist [v'']=[w''], also existiert ein $a''\in C_{n+1}''$ mit $d_{n+1}''(a'')=v''-w''$. p_{n+1} ist surjektiv, also existiert $a'\in C_{n+1}'$ mit $p_{n+1}(a')=a''$. Es gilt

$$p_n(v'-w'-d'_{n+1}(a')) = v''-w'' - \underbrace{d''_{n+1}(p_{n+1}(a'))}_{=v''-w''} = 0$$

Mit $\ker p_n = \operatorname{Im} i_n$ folgt die Existenz von $a \in C_n$ mit $i_n(a) = v' - w' - d_{n+1}(a')$. Es gilt nun

$$i_{n-1}(d_n(a) - (v - w)) = i_{n-1}(d_n(a)) - i_{n-1}(v - w)$$

$$= d'_n(i_n(a)) - (d'_n(v') - d'_n(w'))$$

$$= d'_n(-d'_{n+1}(a') + v' - w') - d'_n(v' - w')$$

$$= -d'_n d'_{n+1}(a') + d'_n(v' - w') - d'_n(v' - w') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a) - (v - w) = 0$, also $d_n(a) = (v - w)$. Es folgt [v] = [w].

b) Exaktheit der langen Folge:

$$\overline{\text{Im}(i_n)_* = \ker(p_n)_*}$$
: " \subseteq " folgt aus $(p_n)_* \circ (i_n)_* = (p_n \circ i_n)_* = (0)_* = 0$.

Für " \supseteq " betrachte $x' \in \ker(p_n)_*$, wobei x' = [v'] mit $v' \in C_n'$ und $d_n'(v') = 0$. Da nun $[p_n(v')] = (p_n)_*[x'] = 0$ ist, gibt es $a'' \in C_n''$ mit $d_{n+1}''(a'') = p_n(v')$. Da p_{n+1} surjektiv ist, existiert $a' \in C_{n+1}'$ mit $p_{n+1}(a') = a''$. Dann gilt

$$p_n(v' - d'_{n+1}(a')) = p_n(v') - p_n \circ d'_{n+1}(a') = p_n(v') - d''_{n+1}(\underbrace{p_{n+1}(a')}_{=a''}) = 0$$

Da $\ker p_n = \operatorname{Im} i_n$, gibt es $a \in C_n$ mit $i_n(a) = v' - d'_{n+1}(a')$. Nun ist

$$i_{n-1}(d_n(a)) = d'_n(i_n(a)) = d'_n(v' - d'_{n+1}(a')) = d'_n(v') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a) = 0$. Insbesondere $[a] \in H_n(C_*, d_*)$. Nun ist

$$(i_n)_*[a] = [i_n(a)] = [v' - d'_{n+1}(a')] = [v'] = x'$$

Also ist $x' \in \operatorname{Im}(i_n)_*$.

 $\boxed{ \text{Im}(p_n)_* = \ker \partial_n } \text{: Für "\subseteq" betrachte $x'' \in \text{Im}(p_n)_*$. Dann gibt es $v' \in C_n'$ mit $d_n'(v') = 0$ und $x'' = [p_n(v')]$. Es ist $d_n'(v') \in \ker p_{n-1} = \text{Im}\,i_{n-1}$, also existiert ein $v \in C_{n-1}$ mit $i_{n-1}(v) = d_n'(v')$. Es gilt nun $\partial_n(x'') = [v]$. Wegen der Injektivität von i_{n-1} ist $v = 0$, also $\partial_n(x'') = [0]$.}$

Sei nun umgekehrt $x'' \in \ker \partial_n$. Wir finden wieder $v' \in C_n'$ und $v \in C_{n-1}$ mit $x'' = [p_n(v')]$, $i_{n-1}(v) = d_n'(v')$ und $0 = \partial_n(x'') = [v]$. Daher gibt es $a \in C_n$ mit $d_n(a) = v$. Es folgt

$$d'_n(v'-i_n(a)) = i_{n-1}(v) - i_{n-1}(d_n(a)) = 0$$

Es gilt nun $(p_n)_*[v'-i_n(a)] = [p_n(v')-p_n(i_n(a))] = [p_n(v')] = x''$.

 $\boxed{\mathrm{Im}\,\partial_n=\ker(i_{n-1})_*}$: Für " \subseteq " sei $x\in\mathrm{Im}\,\partial_n$. Dann gibt es wieder $v'\in C_n'$ und $v\in C_{n-1}$ mit $d_n''(p_n(v'))=0$, $d_n'(v')=i_{n-1}(v)$ und x=[v]. Dann gilt

$$(i_{n-1})_*(x) = (i_{n-1})_*[v] = [i_{n-1}(v)] = [d'_n(v')] = 0$$

Sei nun umgekehrt $x \in \ker(i_{n-1})_*$ und $v \in C_{n-1}$ mit $d_{n-1}(v) = 0$ und x = [v]. Da nun $(i_{n-1})_*(x) = [i_{n-1}(v)]$ und $x \in \ker(i_{n-1})_*$ ist, gibt es $v' \in C_n'$ mit $d_n'(v') = i_{n-1}(v)$. Es gilt nun

$$d_n''(p_n(v'))=p_{n-1}(d_n'(v'))=p_{n-1}(i_{n-1}(v))=0$$
 Daraus folgt $\partial_n[p_n(v')]=x.$ $\hfill\Box$

8.13 Beweis von Satz 8.8 Für jedes Paar (X,A) ist die Folge der singulären Kettenkomplexe

$$\left(C_*(A;R),\partial_*^A\right) \overset{C_*(i;R)}{\longrightarrow} \left(C_*(X;R),\partial_*^X\right) \overset{C_*(j;R)}{\longrightarrow} \left(C_*(X,A;R),\partial_*^{(X,A)}\right)$$

kurz exakt. Das Schlangenlemma 8.12 produziert $\partial_n\colon H_n(X,A;R)\to H_{n-1}(A;R)$ und die lange exakte Sequenz [*]. Es bleibt zu zeigen, dass die Randabbildungen aus dem Schlangenlemma wie behauptet eine natürliche Transformation definieren: Sei $(f,f|_A)\colon (X,A)\to (Y,B)$ eine Abbildung von Paaren. Zu zeigen ist, dass

$$H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R)$$

$$\downarrow^{(f,f|A)_*} \qquad \downarrow^{(f|A)_*}$$

$$H_n(Y,B;R) \xrightarrow{\partial_n} H_{n-1}(B;R)$$

kommutiert. Sei $x'' \in H_n(X,A;R)$. Sei $v' \in C_n(X;R)$ mit $\partial_n^X(v') \in C_n(A;R)$ und $[v' + C_n(A;R)] = x''$. Dann ist $\partial_n(x'') = \left[\partial_n^X(v')\right] \in H_{n-1}(A;R)$. Dann ist

$$(f, f|_A)_*(x'') = (f, f|_A)_*[v' + C_n(A; R)] = [f_*(v') + C_n(B; R)] \in H_n(Y, B; R)$$

Es ist
$$\partial_n^Y \big(f_*(v')\big) = (f|_A)_* \Big(\underbrace{\partial_n^X(v')}_{\in C_n(A;R)}\Big) \in C_n(B;R)$$
. Also

$$\partial_n^Y \left((f, f|_A)_*(x'') \right) = \left[\partial_n^Y \left(f_*(v') \right) \right] = \left[f_* \circ \partial_n^X (v') \right] = f_* \circ \partial_n(x'')$$

8.14 Bemerkung Für eine Abbildung $(f, f|_A)$: $(X, A) \rightarrow (Y, B)$ erhalten wir ein kommutierendes Diagramm:

8.15 Fünfer-Lemma Seien die Zeilen in folgendem kommutativen Diagramm von *R*-Moduln exakt.

$$A_{4} \xrightarrow{\alpha_{4}} A_{3} \xrightarrow{\alpha_{3}} A_{2} \xrightarrow{\alpha_{2}} A_{1} \xrightarrow{\alpha_{1}} A_{0}$$

$$f_{4} \downarrow \cong \qquad f_{3} \downarrow \cong \qquad f_{2} \downarrow \qquad f_{1} \downarrow \cong \qquad f_{0} \downarrow \cong$$

$$B_{4} \xrightarrow{\beta_{4}} B_{3} \xrightarrow{\beta_{3}} B_{2} \xrightarrow{\beta_{2}} B_{1} \xrightarrow{\beta_{1}} B_{0}$$

Sind f_4, f_3, f_1 und f_0 Isomorphismen, so ist auch f_2 ein Isomorphismus.

BEWEIS:

Injektivität: Sei $a_2 \in A_2$ mit $f_2(a_2) = 0$. Wir erhalten

$$f_1(\alpha_2(a_2)) = \beta_2(f_2(a_2)) = \beta_2(0) = 0.$$

Da f_1 ein Isomorphismus ist, folgt $\alpha_2(a_2)=0$. Damit ist $a_2\in\ker\alpha_2=\operatorname{Im}\alpha_3$, also existiert $a_3\in A_3$ mit $\alpha_3(a_3)=a_2$. Es gilt

$$\beta_3(f_3(a_3)) = f_2(\alpha_3(a_3)) = f_2(a_2) = 0$$

Also ist $f_3(a_3) \in \ker \beta_3 = \operatorname{Im} \beta_4$. Da f_4 Isomorphismus ist, gibt es $a_4 \in A_4$ mit $\beta_4(f_4(a_4)) = f_3(a_3)$. Nun gilt

$$f_3(\alpha_4(a_4) - a_3) = f_3(\alpha_4(a_4)) - f_3(a_3) = \beta_4(f_4(a_4)) - f_3(a_3) = f_3(a_3) - f_3(a_3) = 0$$

Da f_3 ein Isomorphismus ist, folgt nun $\alpha_4(a_4)=a_3$. Nun ist

$$a_2 = \alpha_3(\alpha_3) = \alpha_3(\alpha_4(a_4)) = \underbrace{\alpha_3 \circ \alpha_4}_{=0}(a_4) = 0$$

Surjektivität: Sei $b_2 \in B_2$. Fall 1: $\beta_2(b_2) = 0$. Da $\operatorname{Im} \beta_3 = \ker \beta_2$ und f_3 Isomorphismus, existiert $a_3 \in A_3$ mit $\beta_3(f_3(a_3)) = b_2$. Also ist $b_2 = \beta_3(f_3(a_3)) = f_2(\alpha_3(a_3)) \in \operatorname{Im} f_2$.

Ist b_2 beliebig, so genügt es zu zeigen: Es existiert ein $a_2 \in A_2$ mit $\beta_2 (b_2 - f_2(a_2)) = 0$. f_1 ist ein Isomorphismus, also existiert ein $a_1 \in A_1$ mit $f_1(a_1) = \beta_2(b_2)$. Dann folgt

$$f_0(\alpha_1(a_1)) = \beta_1(f_1(a_1)) = \beta_1(\beta_2(b_2)) = \underbrace{\beta_1 \circ \beta_2}_{=0}(b_2) = 0$$

Da f_0 ein Isomorphismus ist, folgt $\alpha_1(a_1)=0$. Da $\ker \alpha_1=\operatorname{Im} \alpha_2$, folgt $\alpha_2(a_2)=a_1$. Es gilt nun

$$\beta_2(b_2 - f_2(a_2)) = \beta_2(b_2) - \beta_2(f_2(a_2)) = \beta_2(b_2) - f_1(\alpha_2(a_2))$$
$$= \beta_2(b_2) - f_1(a_1) = \beta_2(b_2) - \beta_2(b_2) = 0 \qquad \Box$$

8.16 Lemma ("2 von 3") Sei $f:(X,A)\to (Y,B)$ eine Abbildung von Paaren. Seien von den drei Abbildungen

- (i) $(f|_A)_*: H_n(A;R) \to H_n(B;R)$
- (ii) $f_*: H_n(X;R) \to H_n(Y;R)$
- (iii) $(f, f|_A)_*: H_n(X, A; R) \to H_n(Y, B; R)$

zwei für jeweils alle n Isomorphismen. Dann ist auch die dritte für alle n ein Isomorphismus.

Beweis: Da die Randabbildung in der Paarfolge eine natürliche Transformation ist, erhalten wir ein kommutatives Leiterdiagramm:

$$H_{n+1}(A) \longrightarrow H_{n+1}(X) \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}} H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A)$$

$$\downarrow (f|_A)_* \qquad \downarrow f_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_* \qquad$$

Da die Zeilen lang exakt sind, folgt die Behauptung aus dem Fünfer-Lemma.

9 Ausschneidung und die Mayer-Vietoris Folge

9.1 Satz Sei (X,A) ein Paar und $L\subseteq A$, sodass der Abschluss \overline{L} von im Inneren \mathring{A} von A liegt. Dann induziert die Inklusion $(X\setminus L,A\setminus L)\xrightarrow{\mathring{\jmath}}(X,A)$ einen Isomorphismus $j_*\colon H_n(X\setminus L,A\setminus L;R)\to H_n(X,A;R)$.

BEWEIS: Siehe Kapitel 13.

Für simpliziale Homologie gibt es auch eine Mayer-Vietoris-Folge, siehe Aufgabe 4 von Blatt 6 "R"aus Platzarün-

den weggelassen

9.2 Satz (Mayer-Vietoris-Folge) Seien $A,B\subseteq X$ offen und $X=A\cup B$. Seien $i_A\colon A\hookrightarrow X$, $i_B\colon B\hookrightarrow X$, $j_A\colon A\cap B\hookrightarrow A$ und $j_B\colon A\cap B\hookrightarrow B$ die Inklusionen. Dann gibt es eine Randabbildung $\partial_n=\partial_n^{X=A\cup B}\colon H_n(X;R)\to H_{n-1}(A\cap B;R)$, sodass

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A \cap B) \xrightarrow{\binom{(j_A)_*}{(j_B)_*}} \bigoplus_{H_n(B)}^{H_n(A)} \xrightarrow{(i_A)_* - (i_B)_*} H_n(X) \xrightarrow{\partial_n} H_{n-1}(A \cap B) \xrightarrow{} \cdots$$

eine lange exakte Folge ist. Die Randabbildung ist dabei eine natürlicher Transformation: Seien $A',B'\subseteq X'$ offen mit $X'=A'\cup B'$ und sei $f\colon X\to X'$ mit $f(A)\subseteq A'$ und $f(B)\subseteq B'$. Dann kommutiert

$$H_n(X;R) \xrightarrow{\partial_n^{X=A\cup B}} H_{n-1}(A\cap B;R)$$

$$\downarrow^{f_*} \qquad \downarrow^{(f|_{A\cap B})_*}$$

$$H_n(X';R) \xrightarrow{\partial_n^{X'=A'\cup B'}} H_n(A'\cap B';R)$$

BEWEIS: Sei $L:=X\setminus B$. Dann ist L abgeschlossen und $L\subseteq A=\mathring{A}$. Wir erhalten daher einen Ausschneideisomorphismus

$$H_n(B, A \cap B; R) = H_n(X \setminus L, A \setminus L; R) \xrightarrow{\cong} H_n(X, A; R)$$

Betrachte nun das folgende kommutative Leiterdiagramm, das zwei Paarfolgen vergleicht:

$$\cdots \longrightarrow H_{n+1}(B, A \cap B) \xrightarrow{\partial_{n+1}^{B,A \cap B}} H_n(A \cap B) \xrightarrow{(j_B)_*} H_n(B) \xrightarrow{(l_B)_*} H_n(B, A \cap B) \xrightarrow{\partial_n^{B,A \cap B}} H_{n-1}(A \cap B) \longrightarrow \cdots$$

$$\cong \downarrow (i_B, j_A)_* \qquad \downarrow (j_A)_* \qquad \downarrow (i_B)_* \qquad \cong \downarrow (i_B, j_A)_* \qquad \downarrow (j_A)_*$$

$$\cdots \longrightarrow H_{n+1}(X, A) \xrightarrow{\partial_{n+1}^{X,A}} H_n(A) \xrightarrow{(i_A)_*} H_n(X) \xrightarrow{(l_X)_*} H_n(X, A) \xrightarrow{\partial_n^{X,A}} H_{n-1}(A) \longrightarrow \cdots$$

"R"aus Platzgründen weggelassen

dabei sind $l_B\colon (B,\emptyset)\to (B,A\cap B)$ und $l_X\colon (X,\emptyset)\to (X,A)$ die Inklusionen von Paaren. Definiere nun $\partial_n\colon H_n(X;R)\to H_{n-1}(A\cap B;R)$ durch

$$\partial_n := \partial_n^{B,A \cap B} \circ (i_B, j_A)_*^{-1} \circ (l_X)_*$$

Die Natürlichkeit von $\partial_n^{B,A\cap B}$ impliziert die Natürlichkeit von ∂_n (siehe auch 8.8). Wir müssen noch die Exaktheit zeigen:

• Zu zeigen: $\operatorname{Im}\left(\frac{(j_A)_*}{(j_B)_*}\right) = \ker\left((i_A)_* - (i_B)_*\right)$:

"
$$\supseteq$$
": Sei $(a,b) \in \ker((i_A)_* - (i_B)_*)$. Also $(i_A)_*(a) = (i_B)_*(b)$. Es ist

$$(i_B, j_A)_* ((l_B)_*(b)) = (l_X)_* \circ (i_B)_*(b) = \underbrace{(l_X)_* \circ (i_A)_*}_{=0} (a) = 0$$

 $(i_B,j_A)_*$ ist ein Isomorphismus, also $(l_B)_*(b)=0$. Es gilt $\ker(l_B)_*=\operatorname{Im}(j_B)_*$, also folgt $\exists x\in H_n(A\cap B;R):(j_B)_*(x)=b$. Dann gilt

$$(i_A)_*(a - (j_A)_*(x)) = (i_A)_*(a) - (i_B)_*((j_B)_*(x)) = (i_A)_*(a) - (i_B)_*(b) = 0$$

Mit $\ker(i_A)_* = \operatorname{Im} \partial_{n+1}^{X,A}$ und $(i_B, j_A)_*$ ist Isomorphismus, folgt $\exists y \in H_{n+1}(B, A \cap B; R)$ mit

$$\partial_{n+1}^{X,A} \circ (i_B, j_A)_*(y) = a - (j_A)_*(x)$$

Es folgt für $z:=x+\partial_{n+1}^{B,A\cap B}(y)$ nun $(j_B)_*(z)=(j_B)_*(x)=b$ und

$$(j_A)_*(z) = (j_A)_*(x) + (j_A)_* \left(\partial_{n+1}^{B,A\cap B}(y)\right) = (j_A)_*(x) + \partial_{n+1}^{X,A} \circ (i_B, j_A)_*(y)$$
$$= (j_A)_*(x) + a - (j_A)_*(x) = a$$

" \subseteq ": Sei $x \in H_n(A \cap B; R)$. Dann gilt

$$((i_A)_* - (i_B)_*) \binom{(j_A)_*}{(j_B)_*} (x) = (i_A)_* \circ (j_A)_* (x) - (i_B)_* \circ (j_B)_* (x)$$
$$= (i_A)_* \circ (j_A)_* (x) - (i_A)_* \circ (j_A)_* (x) = 0$$

da $i_A \circ j_A = i_B \circ j_B$.

- Wir zeigen nun $\operatorname{Im}((i_A)_* (i_B)_*) = \ker \partial_n$:
 - " \supseteq ": Sei $v \in \ker \partial_n$, also $\partial_n^{B,A\cap B} \circ (i_B,j_A)_*^{-1} \circ (l_X)_*(v) = 0$. Da $\ker \partial_n^{B,A\cap B} = \operatorname{Im}(l_B)_*$, gibt es ein $b \in H_n(B;R)$ mit

$$(l_B)_*(b) = (i_B, j_A)_*^{-1} \circ (l_X)_*(v) \iff (i_B, j_A)_* \circ (l_B)_*(b) = (l_X)_*(v)$$

Nun ist

$$(l_X)_*(v - (i_B)_*b) = (l_X)_*(v) - (l_X)_* \circ (i_B)_*(b) = (l_X)_*(v) - (i_B, j_A)_* \circ (l_B)_*(b) = 0$$

Da $\ker(l_X)_* = \operatorname{Im}(i_A)_*$ ist, gibt es ein $a \in H_n(A; R)$ mit $(i_A)_*(a) = v - (i_B)_*(b)$ und somit ist $((i_A)_* - (i_B)_*)(a, -b) = v$.

" \subseteq ": Sei $\binom{a}{b} \in \bigoplus_{H_n(B)}^{H_n(A)}$. Dann gilt

$$\begin{split} \partial_n \big((i_A)_* - (i_B)_* \big) \big(\begin{smallmatrix} a \\ b \end{smallmatrix} \big) &= \partial_n^{B,A \cap B} \circ (i_B, j_A)_*^{-1} \circ (l_X)_* \big((i_A)_* (a) - (i_B)_* (b) \big) \\ &= \partial_n^{B,A \cap B} \circ (i_B, j_A)_*^{-1} \circ \underbrace{(l_X)_* \circ (i_A)_*}_{=0} (a) \\ &- \underbrace{\partial_n^{B,A \cap B} \circ (l_B)_*}_{=0} (b) = 0 \end{split}$$

• Noch zu zeigen: $\operatorname{Im} \partial_n = \ker \left(\begin{smallmatrix} (j_A)_* \\ (j_B)_* \end{smallmatrix} \right)$.

"\(\text{"}:\) Sei $x \in \ker((j_A)_* \oplus (j_B)_*)$, also $(j_A)_*(x) = 0 = (j_B)_*(x)$. Da $\operatorname{Im} \partial_n^{B,A\cap B} = \ker(j_B)_*$ ist, gibt es $v \in H_n(B,A\cap B;R)$ mit $\partial_n^{B,A\cap B}(v) = x$. Nun ist

$$\partial_n^{X,A} \circ (i_B, J_A)_*(v) = (j_A)_* (\partial_n^{B,A \cap B}(v)) = (j_A)_*(x) = 0$$

Da $\ker \partial_n^{X,A} = \operatorname{Im}(l_X)_*$, finden wir $w \in H_n(X;R)$ mit $(l_X)_*(w) = (i_B,j_A)_*(v)$. Also folgt

$$\partial_n(w) = \partial_n^{B,A \cap B} \circ (i_B, j_A)_*^{-1} \circ (l_X)_*(w) = \partial_n^{B,A \cap B} \circ (i_B, j_A)_*^{-1} \circ (i_B, j_A)_*(v) = \partial_n^{B,A \cap B}(v) = x$$

" \subseteq ": Für $v \in H_n(X;R)$ ist

$$\begin{aligned} & \left((j_A)_* \oplus (j_B)_* \right) \circ \partial_n(v) \\ &= \left((j_A)_* \circ \partial_n^{B,A \cap B} \circ (i_B, j_A)_*^{-1} \circ (l_X)_*(v), \underbrace{(j_B)_* \circ \partial_n^{B,A \cap B}}_{=0} \circ (i_B, j_A)_*^{-1} \circ (l_X)_*(v) \right) \\ &= \left(\underbrace{\partial_n^{X,A} \circ (l_X)_*}_{=0}(v), 0 \right) = (0,0) \end{aligned}$$

- **9.3 Bemerkung** Für die Mayer-Vietoris-Folge müssen A und B nicht notwendig offen sein. Es genügt, dass die Inklusion $(B,A\cap B)\hookrightarrow (X,A)$ einen Isomorphismus $H_*(B,A\cap B;R)\to H_*(X,A;R)$ induziert.
- **9.4 Satz** Für die Homologie der n-Sphäre S^n gilt

9.5 Definition Sei X ein nichtleerer topologischer Raum. Sei $p\colon X\to \{\mathrm{pt}\}$ die Projektion auf den Ein-Punkt-Raum. Die *reduzierte singuläre Homologie* von X ist definiert durch

$$\tilde{H}_k(X;R) := \ker \Big(p_* \colon H_k(X;R) \to H_k(\{\text{pt}\};R) \Big)$$

BEMERKUNG:

• Es gilt $\tilde{H}_k(X;R) = H_k(X;R)$ für k > 0, da $H_k(\{\text{pt}\};R) = 0$ ist für k > 0 (siehe 5.9) und somit p_* die Nullabbildung ist.

Weiter gilt $H_0(X;R) = R \oplus \tilde{H}_0(X;R)$, da $H_0(\{\text{pt}\};R) = R$ frei ist.

- ullet Es ist nicht schwer die Eigenschaften von singulärer Homologie auf die reduzierte singuläre Homologie zu übertragen. Insbesondere ist \tilde{H}_* homotopieinvariant und es gibt eine Mayer-Vietoris-Folge.
- Es ist $\tilde{H}_k(\{\mathrm{pt}\})=0$ und für jeden kontrahierbaren Raum X ist somit $\tilde{H}_n(X;R)=0$ für alle n.
- 9.6 Bemerkung In reduzierter singulärer Homologie wird [#] zu

9.7 Beweis von [##] Wir berechnen die reduzierte Homologie der Sphäre per Induktion nach n:

Induktionsanfang: n = 0: Es gilt

$$H_k(S^0;R) \stackrel{\varphi}{\cong} H_k\big(\{\mathrm{pt}\};R\big) \oplus H_k\big(\{\mathrm{pt}\};R\big) = \begin{cases} R \oplus R, & \text{falls } k = 0 \\ 0, & \text{sonst} \end{cases}$$

Seien $i_-\colon \{\mathrm{pt}\} \hookrightarrow S^0$ und $i_+\colon \{\mathrm{pt}\} \hookrightarrow S^0$ die Inklusionen mit $\mathrm{Im}\, i_\pm = \{\pm 1\}$. Der Isomorphismus φ ist gegeben durch $\varphi = (i_-)_* + (i_+)_*$. Für $(a,b) \in H_k(\{-1\};R) \oplus H_k(\{+1\};R)$ gilt dann

$$p_*(i_-(a) + i_+(b)) = (p \circ i_-)_*(a) + (p \circ i_+)(b) = \mathrm{id}_*(a) + \mathrm{id}_*(b) = a + b$$

Also ist $\ker p_* = \{(a, -a) \mid a \in H_k(\{\text{pt}\}; R)\}$ und damit folgt

$$ilde{H}_k(S^0;R) = egin{cases} 0, & \text{falls } k
eq 0 \\ R, & \text{falls } k = 0 \end{cases}$$

Induktionsschritt: $n-1\mapsto n$: Sei $D^n_+=S^n\setminus\{(1,0,\dots,0)\}$ und $D^n_-=S^n\setminus\{-1,0,\dots,0\}$. Dann sind D^n_+ und D^n_- offene Teilmengen von S^n mit $S^n=D^n_+\cup D^n_-$. Weiter gilt $D^n_+\simeq \{{\rm pt}\}$ und $D^n_- \simeq \{ \mathrm{pt} \}$. Für den Schnitt der beiden Mengen erhalten wir

$$D_{+}^{n} \cap D_{-}^{n} = \left\{ x = (x_{0}, \dots, x_{n}) \in S^{n} \, \middle| \, x_{0} \notin \{\pm 1\} \right\} \simeq S^{n-1} = \left\{ x = (0, x_{1}, \dots, x_{n}) \in S^{n} \right\}.$$

Betrachte nun die Mayer-Vietoris-Folge zu $S^n = D^n_+ \cup D^n_-$:

"R"aus Platzaründen weggelassen

10 Anwendungen

10.1 Satz (Invarianz der Dimension) Sind \mathbb{R}^n und \mathbb{R}^m homöomorph, so gilt n=m.

BEWEIS: Sei $h\colon \mathbb{R}^n \to \mathbb{R}^m$ ein Homöomorphismus. Sei $x_0 \in \mathbb{R}^n$ beliebig. Dann erhalten wir auch einen Homöomorphismus $k:=h|_{\mathbb{R}^n\setminus\{x_0\}}\colon \mathbb{R}^n\setminus\{x_0\}\to \mathbb{R}^m\setminus\{h(x_0)\}$. Nun ist $\mathbb{R}^n\setminus\{x_0\}$ homotopieäquivalent zu S^{n-1} und $\mathbb{R}^m\setminus\{h(x_0)\}$ ist homotopieäquivalent zu S^{m-1} . Da k ein Homöomorphismus ist, ist k_* ein Isomorphismus. Wir erhalten

$$H_*(S^{n-1}) \cong H_*(\mathbb{R}^n \setminus \{x_0\}) \cong H_*(\mathbb{R}^m \setminus \{h(x_0)\}) \cong H_*(S^{m-1})$$

Es ist aber $H_*(S^{n-1}) \cong H_*(S^{m-1})$ genau dann, wenn n = m.

10.2 Fixpunktsatz von Brouwer Jede stetige Abbildung $f: D^n \to D^n$ besitzt einen Fixpunkt.

BEWEIS: Durch Widerspruch: Angenommen es gibt $f\colon D^n\to D^n$ ohne Fixpunkt. Aus dem letzten Semester wissen wir, dass es dann eine stetige Abbildung $F\colon D^n\to S^{n-1}$ gibt mit $F|_{S^{n-1}}=\operatorname{id}_{S^{n-1}}$. In Homologie erhalten wir folgendes kommutatives Diagramm

wobei $i: S^{n-1} \hookrightarrow D^n$ die Inklusion ist. Da $F \circ i = \mathrm{id}_{S^{n-1}}$ ist, gilt $F_* \circ i_* = \mathrm{id}_{H_{n-1}(S^{n-1})}$. $\not\downarrow$

Der Abbildungsgrad

reduzierte Homologie!

 \mathbb{C} : $n \geqslant 2$, n = 1

Semester bewiesen

haben wir bereits im letzen

10.3 Definition Sei $f\colon S^n\to S^n$ eine stetige Abbildung. Da $\tilde{H}_n(S^n)\cong \mathbb{Z}$ ist, gibt es eine ganze Zahl d(f), so dass $f_*(x)=d(f)\cdot x$ für alle $x\in \tilde{H}_n(S^n)$. Diese Zahl heißt der **Abbildungsgrad** von f.

10.4 Proposition Für den Abbildungsgrad d gilt

- a) $d(id_{S^n}) = 1$.
- **b)** Sind f und g homotop, so gilt d(f) = d(g).
- **c)** $d(f \circ q) = d(f) \cdot d(q)$.

BEWEIS:

- a) Es ist $(\mathrm{id}_{S^n})_*(x) = \mathrm{id}_{\mathbb{Z}}(x) = x$.
- **b)** Sind f und g homotop, so gilt $f_* = g_*$ und damit folgt d(f) = d(g).
- c) Für alle $x \in \tilde{H}_n(S^n)$ gilt: $d(f \circ g) \cdot x = (f \circ g)_*(x) = f_* \circ g_*(x) = d(f) \cdot d(g) \cdot x$. Da $\tilde{H}_n(S^n) \cong \mathbb{Z}$ folgt $d(f \circ g) = d(f) \cdot d(g)$.

36

10.5 Beispiel Sei $i \in \{0, ..., n\}$ und $R_i : S^n \to S^n$ die Spiegelung an der x_i -Achse, also

$$R_i(x_0,\ldots,x_n)=(x_0,\ldots,-x_i,\ldots,x_n)$$

Dann ist $d(R_i) = -1$.

BEWEIS: Sei $f\colon S^n\to S^n$ der Homöomorphismus, der die 0-te und die i-te Koordinate vertauscht, also gilt $f(x_0,\dots,x_n)=(x_i,\dots,x_0,\dots,x_m)$. Dann ist $R_i=f\circ R_0\circ f$. Da f ein Homöomorphismus ist, ist f_* ein Isomorphismus und daher ist d(f) invertierbar, also $d(f)\in\{\pm 1\}$. Mit $d(R_i)=d(f)\cdot d(R_0)\cdot d(f)$ folgt $d(R_0)=d(R_i)$. Es genügt also R_0 zu betrachten. Wir zeigen $d(R_0)=-1$ durch Induktion nach n.

Induktionsanfang: Sei $i_-: \{ pt \} \to S^0$ die Abbildung mit $\operatorname{Im} i_- = \{ -1 \}$ und $i_+: \{ pt \} \to S^0$ die Abbildung mit $\operatorname{Im} i_+ = \{ +1 \}$. Dann ist

Unter $H_0(S_0) \cong \mathbb{Z} \otimes \mathbb{Z}$ induziert $R_0(x,y) \mapsto (y,x)$

$$H_0(S^0) = \left\{ (i_-)_*(a) + (i_+)_*(b) \, \middle| \, a, b \in H_0(\{\text{pt}\}) \right\} \qquad \text{un}$$

$$\tilde{H}_0(S^0) = \left\{ (i_-)_*(a) - (i_+)_*(a) \, \middle| \, a \in H_0(\{\text{pt}\}) \right\}$$

Nun ist

$$(R_0)_* \Big((i_-)_*(a) - (i_+)_*(a) \Big) = (R_0)_*(i_-)_*(a) - (R_0)_*(i_+)_*(a) = (R_0 \circ i_-)_*(a) - (R_0 \circ i_+)_*(a)$$

$$= (i_+)_*(a) - (i_-)_*(a)$$

$$= -((i_-)_*(a) - (i_+)_*(a))$$

Also folgt $d(R_0)=-1$, da wir den Abbildungsgrad für reduzierte Homologie definiert hatten.

Induktionsschritt: Wir definieren zwei offene Teilmengen von S^n wie folgt

$$D_{+}^{n} = \{(x_0, \dots, x_n) \in S^n \mid x_n \neq -1\}$$

$$D_{-}^{n} = \{(x_0, \dots, x_m) \in S^n \mid x_n \neq +1\}$$

Wir wissen schon aus 9.7, dass die Randabbildung aus der dazugehörigen Mayer-Vietoris-Folge $\tilde{H}_n(S^n) \xrightarrow{\partial_n} \tilde{H}_{n-1}(D^n_+ \cap D^n_-)$ ein Isomorphismus ist. Da die Randabbildung natürlich ist, erhalten wir ein kommutatives Diagramm

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\frac{\partial_{n}}{\cong}} \tilde{H}_{n-1}(D_{-}^{n} \cap D_{+}^{n}) \xleftarrow{\cong} \tilde{H}_{n-1}(S^{n-1})$$

$$\downarrow^{(R_{0})_{*}} \qquad \downarrow^{(R_{0}|_{D_{-}^{n} \cap D_{+}^{n}})_{*}} \qquad \downarrow^{(R_{0}|_{S^{n-1}})_{*}}$$

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\frac{\partial_{n}}{\cong}} \tilde{H}_{n-1}(D_{-}^{n} \cap D_{+}^{n}) \xleftarrow{\cong} \tilde{H}_{n-1}(S^{n-1})$$

dabei ist $i\colon S^{n-1}\to D^n_-\cap D^n_+$ die Homotopieäquivalenz $i(x_0,\dots,x_{n-1})=(x_0,\dots,x_{n-1},0).$ Nach Induktionsannahme ist $\left(R_0\big|_{S^{n-1}}\right)_*(y)=-y$ für alle $y\in \tilde{H}_{n-1}(S^{n-1}).$ Für $x\in \tilde{H}_n(S^n)$ folgt dann

$$(R_0)_*(x) = (\partial_n)^{-1} \circ (i_*) \circ (R_0|_{S^{n-1}})_* ((i_*^{-1} \circ \partial_n)(x))$$

= $(\partial_n)^{-1} \circ (i_*) (-i_*^{-1} (\partial_n(x)))$
= $-\partial_n^{-1} \circ (i_*) \circ (i_*)^{-1} \circ \partial_n(x) = -x$

Also gilt für den Abbildungsgrad der Spiegelung $d(R_0) = -1$.

10 Anwendungen 37

10.6 Beispiel Der Grad der Punktspiegelung $R: S^n \to S^n$, $x \mapsto -x$ ist $d(R) = (-1)^{n+1}$.

Beweis:
$$d(R) = d(R_0 \circ R_1 \circ \ldots \circ R_n) = d(R_0) \cdot \ldots \cdot d(R_n) = (-1)^{n+1}$$
.

10.7 Erinnerung Sei M eine C^{∞} -Mannigfaltigkeit. Ein **Vektorfeld** auf M ist eine stetige Abbildung $v \colon M \to \mathrm{T} M$ mit $v(x) \in \mathrm{T}_x M$ für alle $x \in M$. Für $M = S^n$ entspricht ein Vektorfeld genau einer stetigen Abbildung $v \colon S^n \to \mathbb{R}^{n+1}$ mit $\langle v(x) \, | \, x \rangle = 0$ für alle $x \in S^n$.

Abbildung 3: Ein nirgends verschwindendes Vektorfeld auf S^1

10.8 Satz Es gibt genau dann ein Vektorfeld ohne Nullstellen auf S^n , wenn n ungerade ist.

BEWEIS: Ist n ungerade, so ist $S^n\subseteq\mathbb{R}^{n+1}=\mathbb{C}^k$ mit $k=\frac{n+1}{2}$. Punkte in S^n sind dann genau k-Tupel $z=(z_1,\ldots,z_k)$ mit $|z_1|^2+\ldots+|z_k|^2=1$. Ein Vektorfeld entspricht dann einer stetigen Abbildung $v\colon S^n\to\mathbb{C}^k$, so dass für das kanonische komplexe Skalarprodukt $\langle\cdot\,|\,\cdot\,\rangle_{\mathbb{C}}$ auf \mathbb{C}^k gilt

einfach nachzurechnen

$$\langle z \, | \, v(z) \rangle_{\mathbb{C}} \in i\mathbb{R}$$

Definiere nun $v\colon S^n\to\mathbb{C}^k$ durch v(z):=iz. Dann $iz\neq 0$ für alle $z\in S^n$ und $\langle z\,|\,iz\rangle=-i\|z\|_2\in i\mathbb{R}$. Sei umgekehrt $v\colon S^n\to\mathbb{R}^{n+1}$ ein Vektorfeld ohne Nullstellen. Zu zeigen: d(R)=1, denn dann folgt die Behauptung, da $d(R)=(-1)^{n+1}$. Zeige dazu: R ist homotop zu id. Seien $H,K\colon S^n\times [0,1]\to S^n$ definiert durch

$$H(x,t) := \frac{tx + (1-t)v(x)}{\|tx + (1-t)v(x)\|} \qquad \text{bzw.} \qquad K(x,t) := \frac{-tx + (1-t)v(x)}{\|-tx + (1-t)v(x)\|}$$

für orthogonale Vektoren gilt der Satz von Pythagoras Da $\langle v(x) \, | \, x \rangle = 0$ und $v(x) \neq 0$ folgt für alle $x \in S^n$, folgt

$$||tx + (1 - t)v(x)||^2 = ||tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$
$$||-tx + (1 - t)v(x)||^2 = ||-tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$

Also sind H und K wohldefiniert. H ist Homotopie zwischen id und $x\mapsto \frac{v(x)}{\|v(x)\|}$ und K ist Homotopie zwischen $-\mathrm{id}=R$ und $x\mapsto \frac{v(x)}{\|v(x)\|}$.

10.9 Satz (Jordanscher Kurvensatz) Sei $f\colon S^1\to\mathbb{R}^2$ eine stetige, injektive Abbildung. Dann hat $\mathbb{R}^2\setminus f(S^1)$ genau zwei Wegzusammenhangskomponenten. Eine davon ist beschränkt, die andere nicht.

BEWEIS (MIT 10.10): Wir können f auch als injektive Abbildung $f\colon S^1\to\mathbb{R}^2\subseteq S^2=\mathbb{R}^2\cup\{\infty\}$ auffassen. Nun ist $\tilde{H}_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}$ nach Satz 10.10 b). Also $H_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}\oplus\mathbb{Z}$. Daher besteht $S^2\setminus f(S^1)$ aus zwei Wegzusammenhangskomponenten U_1 und U_2 . Sei ohne Einschränkungen $\infty\in U_2$. Dann ist $U_2\setminus\{\infty\}$ immer noch wegzusammenhängend: Seien $x,y\in U_2$, dann gibt es eine Umgebung V von $\infty\in S^2$ mit $V\setminus\{\infty\}\cong D^2\setminus\{0\}$, $x,y\not\in V$ und $f(S^1)\cap V=\emptyset$. Also sind U_1 und $U_2\setminus\{\infty\}$ die Wegzusammenhangskomponenten von $\mathbb{R}^2\setminus f(S^1)$. U_1 ist beschränkt und U_2 ist unbeschränkt.

10.10 Satz

- **a)** Sei $f \colon D^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt $\tilde{H}_i \big(S^n \setminus f(D^k) \big) = 0$ für alle i.
- **b)** Sei $f: S^k \to S^n$ eine stetige, injektive Abbildung mit $0 \le k < n$. Dann gilt

$$\tilde{H}_i(S^n \setminus f(S^k)) = \begin{cases} \mathbb{Z}, & \text{falls } i = n - k - 1 \\ 0, & \text{sonst} \end{cases}$$

10.11 Proposition Seien $U_1 \subseteq U_2 \subseteq \ldots \subseteq X$ offen mit $X = \bigcup_{i=1}^{\infty} U_i$. Seien $i_{a,b} \colon U_a \hookrightarrow U_b$ für a < b und $i_a \colon U_a \hookrightarrow X$ die entsprechenden Inklusionen. Dann gilt

- (1) Für jedes $x \in H_k(X;R)$ gibt es a > 0 und $x_a \in H_k(U_a;R)$ mit $(i_a)_*(x_a) = x$.
- (2) Ist $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x_a) = 0$, so gibt es b > a mit $(i_{a,b})_*(x_a) = 0$.

BEMERKUNG: Diese Proposition gilt genauso für reduzierte Homologie.

Beweis: Sei $\sigma\colon |\Delta^n| \to X$ ein singulärer Simplex in X. Dann ist $\left\{\sigma^{-1}(U_a)\right\}_{a\in\mathbb{N}}$ eine offene Überdeckung von $|\Delta^n|$. Da $|\Delta^n|$ kompakt ist, gibt es a mit $|\Delta^n|\subseteq \sigma^{-1}(U_a)$, also $\sigma(|\Delta^n|)\subseteq U_a$. Da Elemente von $C_n(X;R)$ endliche R-Linearkombinationen von singulären Simplizes sind, folgt

$$C_n(X;R) = \bigcup_a C_n(U_a;R).$$

Damit ergeben sich direkt (1) und (2).

10.12 Beweis von Satz 10.10

a) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(D^0)$ homöomorph zu \mathbb{R}^n und die Behauptung folgt.

Induktionsschritt $k \mapsto k+1$: Da D^{k+1} und $[0,1]^{k+1}$ homöomorph sind, können wir D^{k+1} durch $[0,1]^{k+1}$ ersetzen. Sei $x \in \tilde{H}_i(S^n \setminus f([0,1]^{k+1}))$. Es ist

$$S^n \setminus f \left(\{1/2\} \times [0,1]^k \right) = \underbrace{S^n \setminus f \left([0,1/2] \times [0,1]^k \right)}_{=:A} \cup \underbrace{S^n \setminus f \left([1/2,1] \times [0,1]^k \right)}_{=:B} = A \cup B$$

eine Vereinigung von offenen Mengen. Weiter ist

$$A\cap B=\left(S^n\setminus f\left([0,1/2]\times [0,1]^k\right)\right)\cap \left(S^n\setminus f\left([1/2,1]\times [0,1]^k\right)\right)=S^n\setminus f\left([0,1]^{k+1}\right)$$

10 Anwendungen 39

Die zugehörige Mayer-Vietoris-Folge liefert nun einen Isomorphismus:

Angenommen $x \neq 0$. Dann ist das Bild von x in $\tilde{H}_i(A)$ ungleich Null oder in $\tilde{H}_i(B)$ ungleich Null. Indem wir dieses Argument iterieren, erhalten wir eine Folge von Intervallen

$$[0,1]\supseteq I_1\supseteq I_2\supseteq\dots$$
 sodass $\bigcap_a I_a=\{t\}$

und das Bild von $x \in \tilde{H}_i(S^n \setminus f([0,1]^{k+1}))$ unter der von der Inklusion $\iota_{0,a} \colon S^n \setminus f([0,1]^{k+1}) \to S^n \setminus f(I_a \times [0,1]^k)$ induzierten Abbildung $(\iota_{0,a})_*$ ungleich Null ist. Nun ist aber

$$\bigcup_{a} \left(S^{n} \setminus f(I_{a} \times [0,1]^{k}) \right) = S^{n} \setminus f(\lbrace t \rbrace \times [0,1]^{k})$$

und wieder nach Induktionsannahme ist $\tilde{H}_i \big(S^n \setminus f \big(\{t\} \times [0,1]^k \big) \big) = 0$. Für die von der Inklusion $\iota_a \colon S^n \setminus f \big(I_a \times [0,1]^k \big) \to S^n \setminus f \big(\{t\} \times [0,1]^k \big)$ induzierte Abbildung gilt also $(\iota_a)_*(x) = 0$. Nach Proposition 10.11(2) muss x dann aber schon für ein i in der reduzierten Homologie $\tilde{H}_i \big(S^n \setminus f \big(I_a \times [0,1]^k \big) \big)$ trivial sein. f

b) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(S^0)\cong \mathbb{R}^n\setminus \{0\}$. Da $\mathbb{R}^n\setminus \{0\}\simeq S^{n-1}$ folgt für k=0 die Behauptung.

Induktionsschritt $k-1 \mapsto k$: Wir setzen

$$D_{+}^{k} := \{(x_{0}, \dots, x_{k}) \in S^{k} \mid x_{k} \ge 0\}$$

$$D_{-}^{k} := \{(x_{0}, \dots, x_{k}) \in S^{k} \mid x_{k} \le 0\}$$

Dann ist $D_+^k \cap D_-^k = \big\{(x_0,\ldots,x_k) \in S^k \, \big| \, x_k = 0 \big\} \cong S^{k-1}.$ Wieder ist

$$S^n \setminus f \left(D^k_+ \cap D^k_- \right) = \left(S^n \setminus f(D^k_+) \right) \cup \left(S^n \setminus f(D^k_-) \right)$$

eine offene Vereinigung mit $\left(S^n\setminus f(D^k_+)\right)\cap (S^n\setminus f(D^k_-))=S^n\setminus f(S^k)$. Es ist $D^k_\pm\cong D^k$, also ist wegen a) ist die Randabbildung in der zugehörigen Mayer-Vietoris-Folge

$$\tilde{H}_i(S^n \setminus f(D_+^k \cap D_-^k)) \xrightarrow{\partial_i} \tilde{H}_{i-1}(S^n \setminus f(S^k))$$

ein Isomorphismus. Die Behauptung folgt dann per Induktion.

40 10 Anwendungen

11 CW-Komplexe

11.1 Definition Ein kommutatives Diagramm von topologischen Räumen der Form

$$A \xrightarrow{f} X$$

$$\downarrow^{g} \qquad \downarrow_{\overline{g}}$$

$$Y \xrightarrow{\overline{f}} Z$$
[#]

heißt ein **Pushout**, falls es folgende universelle Eigenschaft

$$\begin{split} \forall \hat{f} \colon X \to \hat{Z} \text{, } \hat{g} \colon Y \to \hat{Z} \text{ mit } \hat{f} \circ f &= \hat{g} \circ g \text{ gilt:} \\ \exists ! \varphi \colon Z \to \hat{Z} \text{ mit } \hat{f} &= \varphi \circ \overline{g}, \hat{g} &= \varphi \circ \overline{f}. \end{split}$$

Wir sagen dann auch: [#] ist der Pushout von $Y \xleftarrow{g} A \xrightarrow{f} X$.

11.2 Bemerkung Jedes Diagramm $Y \stackrel{g}{\longleftarrow} A \stackrel{f}{\longrightarrow} X$ lässt sich zu einem Pushout vervollständigen: Betrachte dazu den Raum $X \cup_A Y := X \coprod Y/f(a) \sim g(a) \forall a \in A$ mit der Quotiententopologie. Sind $\overline{f}: Y \to X \cup_A Y$ und $\overline{g}: X \to X \cup_A Y$ die von den Inklusionen $X \hookrightarrow X \coprod Y$ und $Y \hookrightarrow X \coprod Y$ induzierten Abbildungen, so ist

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
g \downarrow & & \downarrow \overline{g} \\
Y & \xrightarrow{\overline{f}} & X \cup_A Y
\end{array}$$

ein Pushout. Existenz und Eindeutigkeit aus der universellen Eigenschaft können benutzt werden um zu zeigen, dass der Pushout eindeutig bis auf kanonischen Homöomorphismus ist.

11.3 Definition Ein CW-Komplex³ ist ein topologischer Raum X zusammen mit einer Filtrierung⁴ durch Unterräume von X:

$$\emptyset = X^{(-1)} \subseteq X^{(0)} \subseteq X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(n)} \subseteq X^{(n+1)} \subseteq \ldots \subseteq X$$

(i) **Zellstruktur**: Zu jedem $n \in \mathbb{N}$ gibt einen Pushout von topologischen Räumen

$$\begin{split} & \coprod_{i \in I^{(n)}} S^{n-1} \xrightarrow{\coprod_{i \in I^{(n)}} q_i^{(n)}} X^{(n-1)} \\ & \coprod_{i \in I^{(n)}} j_i \\ & \coprod_{i \in I^{(n)}} D^n \xrightarrow{\coprod_{i \in I^{(n)}} Q_i^{(n)}} X^{(n)} \end{split}$$

sodass die folgenden zwei Eigenschaften erfüllt sind:

 $X^{(i)}$ bezeichnet man auch als i-Gerüst oder i-Skelett

³ Zitat von Wikipedia 🗹 zum Namen: The C stands for "closure-finite", and the W for "weak topology". C für "cell" scheint mir allerdings auch sinnvoll.

⁴ siehe auch https://de.wikipedia.org/wiki/Filter_(Mathematik)☐

wobei $j_i: S^{n-1} \hookrightarrow D^n$ und $k_n: X^{(n-1)} \hookrightarrow X^{(n)}$ die Inklusionen sind.

(ii) Schwache Topologie: Es ist $X=\bigcup_{n\in\mathbb{N}}X^{(n)}$ und $U\subseteq X$ ist genau dann offen, wenn $U\cap X^{(n)}\subseteq X^{(n)}$ für alle n offen ist.

Eine Abbildung $f\colon X\to Y$ zwischen CW-Komplexen heißt **zellulär**, falls $f(X^{(n)})\subseteq Y^{(n)}$ für alle $n\in\mathbb{N}$ gilt.

11.4 Bemerkung

- (i) Die Abbildungen $q_i^{(n)}$ und $Q_i^{(n)}$ sind nicht Teil der Struktur eines CW-Komplex. Nur die Existenz von $q_i^{(n)}$ und $Q_i^{(n)}$ wird gefordert sie ist nicht notwendig eindeutig. Hat man $q_i^{(n)}$ und $Q_i^{(n)}$ gewählt, so heißt $q_i^{(n)}$ die anklebende Abbildung der i-ten n-Zelle und $Q_i^{(n)}$ die charakteristische Abbildung der i-ten n-Zelle.
- (ii) Sei $\mathring{D}^n = D^n \setminus S^{n-1}$ das Innere von D^n . Die Abbildungen $Q_i^{(n)}$ schränken sich zu einem Homöomorphismus $\coprod_{i \in I^{(n)}} \mathring{D}^n \to X^{(n)} \setminus X^{(n-1)}$ ein. 5 Insbesondere lässt ich $I^{(n)}$ mit der Menge der Wegzusammenhangskomponenten von $X^{(n)} \setminus X^{(n-1)}$ identifizieren. Die Wegzusammenhangskomponenten heißen die *offenen Zellen* von X. Damit ist jeder CW-Komplex die disjunkte Vereinigung seiner offenen Zellen.

A Achtung: Jede offene n-Zelle ist offen in $X^{(n)}$, aber nicht notwendig in X.

(iii) Der Abschluss einer offenen Zelle $Q_i^{(n)}(\mathring{D}^n)$ ist $Q_i^{(n)}(D^n)$ und insbesondere kompakt. Die $Q_i^{(n)}(D^n)$ heißen die **abgeschlossenen Zellen** und sind als Abschluss von offenen Zellen unabhängig von der Wahl der $Q_i^{(n)}$.

f A Achtung: Abgeschlossene Zellen sind Bilder von D^n unter stetigen Abbildungen, aber nicht notwendig homöomorph zu D^n .

(iv) Ein CW-Komplex X heißt **endlich**, wenn er nur aus endlich vielen Zellen besteht, also wenn $I=\bigcup_{n\in\mathbb{N}}I^{(n)}$ endlich ist. Insbesondere gibt es dann ein n mit $X=X^{(n)}$.

Die Dimension von X ist die maximale Dimension von Zellen von X, also $\dim X := N$, falls $X^{(N)} = X$, $X^{(N-1)} \subseteq X$. Gibt es kein solches N so setzen wir $\dim X := \infty$.

11.5 Beispiele

(i) S^n mit

$$(S^n)^{(k)} = \begin{cases} \emptyset, & \text{falls } k = -1 \\ \{(1, 0, \dots, 0)\}, & \text{falls } k = 0, \dots n - 1 \\ S^n, & \text{falls } k \geqslant n \end{cases}$$

ist ein CW-Komplex via $S^n \cong D^n/S^{n-1}$

$$S^{n-1} \longrightarrow (S^n)^{(n-1)} = \{(1,0,\ldots,0)\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \longrightarrow S^n$$

(ii) S^n mit $(S^n)^{(k)}=\{(x_0,\ldots,x_k,0,\ldots,0)\in S^n\}$ ist ebenfalls eine CW-Struktur auf S^n .

42

 $^{^5}$ Dass dies ein Homöomorphismus ist, folgt aus der Pushout-Eigenschaft und dem letzen Teil der Bemerkung 11.2, denn es gilt demnach $X^{(n)} \cong X^{(n-1)} \cup_{\coprod S^{n-1}} \coprod D^n$.

- (iii) Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Es ist $|\Delta^n|\cong D^n$ und $|\partial\Delta^n|\cong S^{n-1}$. Sei $\Sigma^{(n)}:=\Sigma_0\cup\Sigma_1\cup\ldots\cup\Sigma_n$. Dann wird |K| durch $|K|^{(n)}:=\left|\left(V,\Sigma^{(n)}\right)\right|$ für $n\geqslant 0$ zu einem CW-Komplex. Ist $f\colon K\to L$ eine simpliziale Abbildung, so ist $|f|\colon |K|\to |L|$ eine zelluläre Abbildung.
- (iv) Der n-dimensionale reelle projektive Raum $\mathbb{R}P^n$ kann definiert werden durch

$$\mathbb{R}P^n := \mathbb{R}^{n+1} \setminus \{0\}/_{x \sim \lambda x} = S^n/_{x \sim -x}$$

Punkte in $\mathbb{R}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln reeller Zahlen und werden als die sogenannten homogenen Koordinaten $[x_0:\ldots:x_n]$ geschrieben. Es ist

$$\mathbb{R}P^{n} = \left\{ [x_{0}: \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n} \right\} = \left\{ [x_{0}: \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n}, x_{n} \geqslant 0 \right\}$$

Wir erhalten einen Homöomorphismus $f^{(n)}: D^n/x \sim -x, x \in S^{n-1} \to \mathbb{R}P^n$ mit

$$f^{(n)}(x_1, \dots, x_n) = \left[x_1 : \dots : x_n : \sqrt{1 - \sum_{i=1}^n x_i^2} \right]$$

Ist $Q^{(n)}\colon D^n\to \mathbb{R}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^n\twoheadrightarrow D^n/x\sim -x,x\in S^{n-1}$ und $q^{(n)}\colon S^{n-1}\twoheadrightarrow \mathbb{R}P^{n-1}$ die Projektion, so erhalten wir einen Pushout

$$S^{n-1} \xrightarrow{q^{(n)}} \mathbb{R}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{Q^{(n)}} \mathbb{R}P^n$$

Induktiv erhalten wir einen CW-Struktur auf $\mathbb{R}P^n$ mit genau einer k-Zelle für $k=0,\dots,n$ und

$$\left(\mathbb{R}P^n\right)^{(k)} \cong \mathbb{R}P^k$$

(v) Der n-dimensionale komplexe projektive Raum $\mathbb{C}P^n$ kann definiert werden durch

$$\mathbb{C}P^n := \mathbb{C}^{n+1} \setminus \{0\}/z \sim \lambda z = S^{2n+1}/z \sim \lambda z, \lambda \in S^1 \subseteq \mathbb{C}$$

Punkte in $\mathbb{C}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln komplexer Zahlen und werden als homogenen Koordinaten $[z_0:\ldots:z_n]$ geschrieben. Es ist wieder

$$\mathbb{C}P^{n} = \left\{ [z_{0}: \ldots: z_{n}] \mid (z_{0}, \ldots, z_{n}) \in S^{2n+1} \right\} = \left\{ [z_{0}: \ldots: z_{n}] \mid (z_{0}, \ldots, z_{n}) \in S^{2n+1}, |z_{n}| \geqslant 0 \right\}$$

Wir erhalten wieder einen Homöomorphismus $f^{(n)}: D^{2n+1}/z \sim \lambda z, z \in S^{2n-1}, \lambda \in S^1 \to \mathbb{C}P^n$ durch

$$f^{(n)}(z_1,...,z_n) = \left[z_1:...:z_n:\sqrt{1-\sum_{i=1}^n|z_i|^2}\right]$$

Ist $Q^{(2n)}\colon D^{2n}\to \mathbb{C}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^{2n} \twoheadrightarrow D^{2n}/z\sim \lambda z, z\in S^{2n}$ und $q^{(n)}\colon S^{2n+1}\to \mathbb{C}P^{n-1}$ die Projektion, so erhalten wir auch wieder einen Pushout

$$S^{2n-1} \xrightarrow{q^{(n)}} \mathbb{C}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{2n} \xrightarrow{Q^{(n)}} \mathbb{C}P^{n}$$

Induktiv erhalten wir einen CW-Struktur auf $\mathbb{C}P^n$ mit genau einer k-Zelle für $k=0,2,\dots,2n$ und

$$(\mathbb{C}P^n)^{(k)} \cong \mathbb{C}P^{\left\lfloor \frac{k}{2} \right\rfloor}$$

11 CW-Komplexe 43

11.6 Lemma Sei X ein CW-Komplex und $K \subseteq X$. Dann ist K genau dann kompakt, wenn K abgeschlossen ist und K nur endlich viele offene Zellen von X schneidet.

Beweis: Zunächst: Ist $S\subseteq X$ ein Unterraum der jede offene Zelle höchstens in einem Punkt schneidet, so ist S diskret. Für $S_0\subseteq S$ ist $S_0\cap (X^{(n)}\setminus X^{(n-1)})$ abgeschlossen in $X^{(n)}$, da S_0 jede offene n-Zelle von X höchstens in einem Punkt schneidet. Daher ist $S_0\cap X^{(n)}\subseteq X^{(n)}$ abgeschlossen für alle n. Damit ist also jede Teilmenge $S_0\subseteq S$ abgeschlossen in X und S somit diskret.

Sei nun $K\subseteq X$ kompakt. Dann ist K sicher abgeschlossen. Sei $S\subseteq K$ ein Teilraum, der aus jeder offenen Zelle von X, die K schneidet, genau einen Punkt enthält. Wegen der Vorüberlegung ist S diskret. Da $S\subseteq K$ abgeschlossen und K kompakt ist, ist K auch kompakt. Damit ist K endlich und K schneidet nur endlich viele offene Zellen.

Ist nun umgekehrt K abgeschlossen und schneidet nur endlich viele offene Zellen, so ist K enthalten in einer endlichen Vereinigung von abgeschlossen Zellen von X. Da diese abgeschlossen Zellen kompakt sind, ist auch diese Vereinigung kompakt, K ist also ein abgeschlossener Teilraum eines kompakten Teilraums und damit selbst kompakt.

11.7 Korollar Ein CW-Komplex ist genau dann kompakt, wenn er endlich ist.

44 11 CW-Komplexe

12 Zelluläre Homologie

12.1 Definition Sei X ein CW-Komplex. Dann heißt

$$C_n^{\text{cell}}(X;R) := H_n(X^{(n)}, X^{(n-1)}; R)$$

der \mathbf{n} -te zelluläre Kettenmodul von X mit Koeffizienten in R. Wir definieren die \mathbf{n} -te Randabbildung $\partial_n^{\mathrm{cell}}\colon C_n^{\mathrm{cell}}(X;R) \to C_{n-1}^{\mathrm{cell}}(X;R)$ durch die Komposition

$$H_n(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\partial_n^{(X^{(n)}, X^{(n-1)})}} H_{n-1}(X^{(n-1)}; R)$$

$$\downarrow (j^{(n-1)})_*$$

$$H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

Dabei ist $\partial_n^{(X^{(n)},X^{(n-1)})}$ die Randabbildung aus der Paarfolge für $(X^{(n)},X^{(n-1)})$ und $j^{(n-1)}$ die Inklusion $(X^{(n-1)},\emptyset)\hookrightarrow (X^{(n-1)},X^{(n-2)})$.

12.2 Lemma

$$\partial_{n-1}^{\operatorname{cell}} \circ \partial_n^{\operatorname{cell}} = 0$$

BEWEIS: Wir schreiben die Paarsequenz für $(X^{(n)}, X^{(n-1)})$ dreimal übereinander und erhalten:

$$H_{n}(X^{(n)}, X^{(n-1)}) \xrightarrow{\partial_{n}} H_{n-1}(X^{(n-1)}) \xrightarrow{\qquad \qquad \cdots } \cdots$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

"R"aus Platzgründen weggelassen

Also $\partial_{n-1}^{\mathrm{cell}} \circ \partial_{n}^{\mathrm{cell}} = 0$, da wegen der Exaktheit der Paarfolge schon $\partial_{n-1} \circ j_*^{(n-1)} = 0$ ist.

- **12.3 Definition** $\left(C^{\operatorname{cell}}_*(X;R),\partial^{\operatorname{cell}}_*\right)$ heißt der **zelluläre Kettenkomplex** von X über R. Seine Homologie $H^{\operatorname{cell}}_*(X;R)$ heißt die **zelluläre Homologie** von X.
- **12.4 Bemerkung** Der zelluläre Kettenkomplex und die zelluläre Homologie sind Funktoren auf der Kategorie der CW-Komplexe und zellulären Abbildungen.
- **12.5 Lemma** Sei X ein CW-Komplex. Wähle $q_i^{\scriptscriptstyle (n)}$ und $Q_i^{\scriptscriptstyle (n)}$ für die Zellstruktur auf X. Dann gilt
 - a) Die Abbildung

$$\left(\coprod_{i \in I^{(n)}} Q_i^{(n)}, \coprod_{i \in I^{(n)}} q_i^{(n)} \right) \colon \left(\coprod_i D^n, \coprod_i S^{n-1}; R \right) \longrightarrow (X^{(n)}, X^{(n-1)}; R)$$

induziert einen Isomorphismus in Homologie.

b) Es gilt

$$H_k\Biggl(\coprod_{i\in I^{(n)}} D^n, \coprod_{i\in I^{(n)}} S^{n-1}; R\Biggr) = \begin{cases} R[I^{(n)}], & \text{ falls } k=n\\ 0, & \text{ sonst} \end{cases}$$

12 Zelluläre Homologie 45

BEWEIS:

a) Sei $D_0^n := D^n \setminus \{0\}$, $\frac{1}{2}D^n := \left\{ \frac{x}{2} \mid x \in D^n \right\}$ und $\frac{1}{2}D_0^n := \frac{1}{2}D^n \setminus \{0\}$. Wir definieren

$$X^{\scriptscriptstyle (n-1)}_{++} := X^{\scriptscriptstyle (n)} \setminus \bigcup_{i \in I^{\scriptscriptstyle (n)}} Q^{\scriptscriptstyle (n)}_i(\{0\}) \quad \text{ und } \quad X^{\scriptscriptstyle (n-1)}_{+} := X^{\scriptscriptstyle (n)} \setminus \bigcup_{i \in I^{\scriptscriptstyle (n)}} Q^{\scriptscriptstyle (n)}_i\left(\frac{1}{2}D^n\right)$$

Dann sind $X^{(n-1)}\hookrightarrow X^{(n-1)}_+\hookrightarrow X^{(n-1)}_{++}$ Homotopieäquivalenzen, da $\coprod_{i\in I^{(n)}}Q^{(n)}_i$ ein Homöomorphismus auf den offenen n-Zellen ist. Betrachte:

(1), (2) und (5) sind Homotopieäquivalenzen und induzieren Isomorphismen in Homologie. (3) ist ein Homöomorphismus und induziert einen Isomorphismus in Homologie. (4) erfüllt die Vorraussetzungen für den Ausschneideisomorphismus und induziert daher auch einen Isomorphismus in Homologie. Damit folgt a).

b) Da die Randabbildung aus der Paarsequenz in diesem Fall ein Isomorphismus ist, gilt

$$\begin{split} H_k\bigg(\coprod_i D^n, \coprod_i S^{n-1}; R\bigg) & \stackrel{\cong}{\longleftarrow} \bigoplus_i H_k(D^n, S^{n-1}; R) \stackrel{\cong}{\longrightarrow} \bigoplus_i \tilde{H}_{k-1}(S^{n-1}; R) \\ & \cong \bigoplus_i \begin{cases} R, & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \\ & \cong \begin{cases} R[I^{(n)}], & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \quad \Box \end{split}$$

12.6 Bemerkung Wir haben soeben gezeigt, dass die folgenden Isomorphismen existieren:

$$C_{n}^{\text{cell}}(X;R) \xrightarrow{\partial_{n}^{\text{cell}}} C_{n-1}^{\text{cell}}(X;R)$$

$$H_{n}(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\parallel} H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

$$R[I^{(n)}] \xrightarrow{\parallel} R[I^{(n-1)}]$$

Die Randabbildung $\partial_n^{\mathrm{cell}}$ wird unter diesen Isomorphismen zu einer $I^{(n-1)} \times I^{(n)}$ -Matrix. Für $j \in I^{(n-1)}$ und $k \in I^{(n)}$ ist der (j,k)-Eintrag dieser Matrix genau der Abbildungsgrad einer Selbstabbildung der (n-1)-Sphäre:

Die $(Q_i^{(n-1)},q_i^{(n-1)})$ induzieren einen Homöomorphismus $\coprod_i D^{n-1}/\coprod_i S^{n-2} \cong X^{(n)}/X^{(n-1)}$. Durch Komposition mit der Projektion auf die j-te Zelle erhalten wir die folgenden Abbildung

$$\coprod_i D^{n-1} / \coprod_i S^{n-2} \xrightarrow{p_j^{(n-1)}} D^{n-1} / S^{n-2} \cong S^{n-1}.$$

Der (j, k)-te Eintrag ist nun der Abbildungsgrad von

$$S^{n-1} \overset{q_k^{(n-2)}}{\longrightarrow} X^{(n-1)} \overset{}{\longrightarrow} X^{(n-1)}/X^{(n-2)} \overset{\cong}{\longrightarrow} \coprod_i D^{n-1}/\coprod_i S^{n-2} \overset{p_j^{(n-1)}}{\longrightarrow} S^{n-1}$$

46

12.7 Definition Eine natürliche Transformation τ zwischen Funktoren $F,G\colon\mathcal{C}\to\mathcal{D}$ heißt ein **natürlicher Isomorphismus**, wenn $\tau_C\colon F(C)\to G(C)$ für alle Objekte C von \mathcal{C} ein Isomorphismus in \mathcal{D} ist.

12.8 Satz Für CW-Komplexe gibt es einen natürlichen Isomorphismus $\tau_X \colon H^{\operatorname{cell}}_*(X;R) \xrightarrow{\cong} H_*(X;R)$.

Beweis (MIT LEMMA 12.9): Betrachte folgendes Diagramm; die diagonalen Folgen sind Ausschnitte aus den Paarsequenzen:

Es folgt, dass $j_*^{(n)}$ wegen Exaktheit einen Isomorphismus $H_n(X^{(n)};R) \stackrel{\cong}{\to} \ker \partial_n^{\operatorname{cell}}$ induziert. Da $j_*^{(n)}$ injektiv ist, induziert $j_*^{(n)}$ außerdem einen Isomorphismus $\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}} \stackrel{\cong}{\to} \operatorname{Im} \partial_{n+1}^{\operatorname{cell}}$. Insgesamt erhalten wir natürliche Isomorphismen

$$H_n(X;R) \cong H_n(X^{(n+1)};R) \cong H_n(X^{(n)};R)/\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}} \cong \ker \partial_n^{\operatorname{cell}}/\operatorname{Im} \partial_{n+1}^{\operatorname{cell}} \cong H_n^{\operatorname{cell}}(X;R) \qquad \Box$$

12.9 Lemma Sei X ein CW-Komplex.

- **a)** Für k > n ist $H_k(X^{(n)}; R) = 0$.
- **b)** Für k < n induziert die Inklusion $l_n \colon X^{(n)} \hookrightarrow X$ einen Isomorphismus $(l_n)_* \colon H_k(X^{(n)}; R) \to H_k(X; R)$.

BEWEIS:

12 Zelluläre Homologie 47

a) Ist k > n, so erhalten wir aus der Paarfolge einen Isomorphismus

$$H_{k+1}(X^{(n)}, X^{(n-1)}; R) \to H_k(X^{(n-1)}; R) \xrightarrow{\cong} H_k(X^{(n)}; R) \to H_k(X^{(n)}, X^{(n-1)}; R)$$

$$\stackrel{12.5}{=} 0$$

Da $H_k(X^{(0)};R)=0$ für k>0, folgt a) nun durch endliche Induktion für $n=0,1,\ldots,k-1$.

b) Ist n > k, so erhalten wir aus der Paarfolge

$$H_{k+1}(X^{(n+1)}, X^{(n)}; R) \to H_k(X^{(n)}; R) \xrightarrow{\cong} H_k(X^{(n+1)}; R) \to H_k(X^{(n+1)}, X^{(n)}; R)$$

$$\stackrel{12.5}{=} 0$$

Für $m\geqslant n>k$ induziert die Inklusion $X^{(n)}\hookrightarrow X^{(m)}$ daher einen Isomorphismus in Homologie $H_k(X^{(n)};R)\to H_k(X^{(m)};R)$. Ist $\dim X$ endlich, so folgt die Behauptung.

Für den allgemeinen Fall beobachten wir zunächst, dass es zu jeder stetigen Abbildung $\sigma\colon |\Delta^j|\to X$ ein n gibt mit $\mathrm{Im}\,\sigma\subseteq X^{(n)}$, da $\mathrm{Im}\,\sigma\subseteq X$ kompakt ist und daher nur endlich viele offene Zellen von X trifft (siehe 11.5). Also gilt $C_*(X;R)=\bigcup_n C_*(X^{(n)};R)$. Damit folgt

- (1) $\forall x \in H_k(X;R)$ existiert ein n, sodass x im Bild von $H_k(X^{(n)};R) \to H_k(X;R)$.
- (2) $\forall x \in H_k(X^{(n)}; R)$ mit trivialem Bild von x in $H_k(X; R)$, gibt es ein $m \ge n$, sodass das Bild von x in $H_k(X^{(m)}; R)$ trivial ist.

Da für $m \geqslant n > k$ die Abbildung $H_k(X^{(n)};R) \to H_k(X^{(m)};R)$ ein Isomorphismus ist, ergibt sich damit die Behauptung.

12.10 Korollar Die Eulercharakteristik eines endlichen simplizialen Komplexes ist eine topologische Invariante.

BEWEIS: Sei a_n die Anzahl der n-Simplizes von K. Dann gibt es eine CW-Struktur auf |K|, die für jedes n genau a_n Zellen hat.

$$\chi(K) = \sum_{i=0}^{\infty} (-1)^{i} a_{i} \stackrel{\text{12.5}}{=} \sum_{i=0}^{\infty} (-1)^{i} \operatorname{Rg} C_{i}^{\operatorname{cell}} (|K|) \stackrel{\text{4.10}}{=} \sum_{i=0}^{\infty} (-1)^{i} \operatorname{Rg} H_{i}^{\operatorname{cell}} (|K|) = \sum_{i=0}^{\infty} (-1)^{i} \operatorname{Rg} H_{i} (|K|)$$

Da die $H_i\bigl(|K|\bigr)$ eine topologische Invariante sind, ist auch $\chi(K)$ eine topologische Invariante. \Box

12.11 Bemerkung Ist X ein $\operatorname{CW-Komplex}$ mit endlich vielen n- und n+1-Zellen, so ist $H_n(X)$ ein endlich erzeugter \mathbb{Z} -Modul. Man definiert dann die \mathbf{n} -te Bettizahl von X als $b_n:=\operatorname{Rg} H_n(X)$. Ist X ein endlicher $\operatorname{CW-Komplex}$, so definiert man die Euler-Charakteristik von X als

$$\chi(X) := \sum_{n=0}^{\infty} (-1)^n b_n.$$

Ist a_n die Anzahl der n-Zellen von X, so gilt $\chi(X) = \sum_{n=0}^{\infty} (-1)^n a_n$.

12.12 Beispiel Es gilt

Man beachte, dass 4.10 für beliebige Z-Kettenkomplexe und deren Homologie gilt

BEWEIS: Aus Beispiel 11.5 ((v)) wissen wir, dass es auf $\mathbb{C}P^n$ eine CW-Struktur gibt mit genau einer Zelle in der Dimension $0, 2, 4, \ldots, 2n$ (und keine weiteren Zellen). Der zelluläre Kettenkomplex hat daher folgende Form:

$$0 1 2 3 4 \cdots 2n-1 2n 2n+1 \cdots$$

$$R \longleftarrow 0 \longleftarrow R \longleftarrow 0 \longleftarrow R \longleftarrow \cdots \longleftarrow 0 \longleftarrow R \longleftarrow \cdots$$

Alle Randabbildungen sind trivial und die Homologie von $\mathbb{C}P^n$ stimmt mit den zellulären Kettenkomplexen überein.

12.13 Beispiel Es gilt

$$H_k(\mathbb{R}P^n;\mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & \text{falls } k = 0 \text{ oder } (k = n \text{ und } k \text{ ungerade}) \\ \mathbb{Z}/2\mathbb{Z}, & \text{falls } 0 < k < n \text{ und } k \text{ ungerade} \\ 0, & \text{sonst} \end{cases}$$

BEWEIS: Aus Beispiel 11.5 ((iv)) wissen wir, dass es eine CW-Struktur auf $\mathbb{R}P^n$ gibt, die für $k=0,\ldots,n$ genau eine k-Zelle und keine weiteren Zellen besitzt. Der zelluläre Kettenkomplex von $\mathbb{R}P^n$ (über \mathbb{Z}) hat also die Form:

$$\mathbb{Z} \xleftarrow{\partial_1^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{\partial_2^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{\partial_2^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{} \cdots \xleftarrow{} \mathbb{Z} \xleftarrow{\partial_n^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{} 0$$

Wir müssen die Randabbildung verstehen. In der CW-Struktur können wir $(\mathbb{R}P^n)^{(k)}$ mit $\mathbb{R}P^k$ identifizieren. Die anklebende Abbildung $q^{(k+1)}\colon S^k\to\mathbb{R}P^k$ der (k+1)-Zelle ist die Projektion $(x_0,\ldots,x_k)\mapsto [x_0:\ldots:x_k]$. Die charakteristische Abbildung $Q^{(k+1)}\colon D^{k+1}\to\mathbb{R}P^{k+1}$ der (k+1)-Zelle ist gegeben durch

$$(x_0,\ldots,x_k) \mapsto \left[x_0:\ldots:x_k:\sqrt{1-\|(x_1,\ldots,x_k)\|^2}\right]$$

Betrachte folgendes kommutatives Diagramm:

$$C_{k+1}^{\text{cell}}(\mathbb{R}P^{n}) \xrightarrow{\partial_{k+1}^{\text{cell}}} C_{k}^{\text{cell}}(\mathbb{R}P^{n})$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$H_{k+1}(\mathbb{R}P^{k+1}, \mathbb{R}P^{k}) \xrightarrow{\partial^{\mathbb{R}P^{k+1}, \mathbb{R}P^{k}}} H_{k}(\mathbb{R}P^{k}) \xrightarrow{} H_{k}(\mathbb{R}P^{k}, \mathbb{R}P^{k-1})$$

$$(Q^{(k+1)}, q^{(k+1)})_{*} \stackrel{\cong}{=} (q^{(k+1)})_{*} \stackrel{\uparrow}{=} (q^{(k+1)}, q^{(k)})_{*}$$

$$H_{k+1}(D^{k+1}, S^{k}) \xrightarrow{\partial^{D^{k+1}, S^{k}}} \tilde{H}_{k}(S^{k}) \xrightarrow{j_{*}} H_{k}(S^{k}, S^{k-1})$$

Das linke untere Quadrat kommutiert, da die Randabildung aus der Paarfolge eine natürliche Transformation ist. Das rechte, da die zugrunde liegenden Abbildungen kommutieren.

Das Bild von $\partial_{k+1}^{\mathrm{cell}}$ stimmt also mit dem Bild der Komposition

$$H_k(S^k) \xrightarrow{j_*} H_k(S^k, S^{k-1}) \xrightarrow{\left(q^{(k+1)}, q^{(k)}\right)_*} H_k\left(\mathbb{R}P^k, \mathbb{R}P^{k-1}\right)$$

faktorisieren über 0

Ich sehe noch im-

mer nicht ganz ein, warum dies so ist.

Über genauere Ausführungen wäre ich sehr dankbar überein. Sei $i_\pm\colon D^k\to S^k$ definiert durch $i_\pm(x)=\left(\pm x,\pm\sqrt{1-\|x\|^2}\right)$. Sei $l\colon S^{k-1}\hookrightarrow i_-(D^k)$ die Inklusion und $R\colon S^k\to S^k$ die Punktspiegelung $x\mapsto -x$. Es ist $i_+=R\circ i_-$. Betrachte

$$y_{+} \in H_{k}(D^{k}, S^{k-1}) \xrightarrow{(i_{+}, i_{+}|_{S^{k-1}})_{*}} \xrightarrow{(i_{-}, i_{-}|_{S^{k-1}})_{*}} H_{k}(S^{k}, S^{k-1}) \xrightarrow{\cong} H_{k}(S^{k}, S^{k-1}) \xrightarrow{\cong} H_{k}(S^{k}, i_{-}(D^{k})) \ni x_{+}$$

$$\downarrow (q^{(k+1)}, q^{(k)})_{*}$$

In der Übungen haben wir gesehen, dass die horizontalen Abbildungen Isomorphismen sind. Sei $x\in \tilde{H}_k(S^k)$ ein Erzeuger. Seien (x_+,x_-) und (y_+,y_-) die Elemente, die $j_*(x)$ unter den horizontalen Isomorphismen in $[{\it \textbf{#}}]$ entsprechen. Mit Hilfe der Paarfolge zu $(S^k,i_-(D^k))$ sehen wir, dass die Inklusion $j_-\colon (S^k,\emptyset)\hookrightarrow (S^k,i_-(D^k))$ einen Isomorphismus $(j_-)_*\colon \tilde{H}_k(S^k)\to \tilde{H}_k(S^k,i_-(D^k))$ induziert. Es ist nun $(\mathrm{id}_{S^k},l)\circ j=j_-$ und $(R,R|_{S^{k-1}})\circ j=j_-\circ R$. Damit ist x_+ ein Erzeuger von $H_k(S^k,i_+(D^k))$. Weiter entspricht R_* der Multiplikation mit $(-1)^{k+1}$ nach 10.6. Damit folgt

$$x_{-} = \left(R, R \big|_{S^{k+1}} \right)_{*} \circ j_{*}(x) = (\mathrm{id}_{S^{k}}, l) \circ j_{*} \circ R_{*}(x) = (\mathrm{id}_{S^{k}}, l)_{*} \circ j_{*} \left((-1)^{k+1} x \right) = (-1)^{k+1} \cdot x_{+} = (-1)^{k+1} \cdot$$

Die Komposition der horizontalen Isomorphismen in [#] ist gegeben durch

$$\begin{pmatrix} (i_+, l \circ i_+|_{S^{k-1}})_* & 0 \\ 0 & (R, R|_{S^{k-1}})_* \circ (i_-, i_-|_{S^{k-1}})_* \end{pmatrix} = \begin{pmatrix} (i_+, l \circ i_+|_{S^{k-1}})_* \\ & (i_+, l \circ i_+|_{S^{k-1}})_* \end{pmatrix}$$

Es folgt, dass y_+ ein Erzeuger von $H_k(D^k,S^{k-1})$ ist und $y_-=(-1)^{k+1}y_+$ ist. In [#] wird y_+ auf $(q^{(k+1)},q^{(k)})_*\circ (i_+,i_+|_{S^{k-1}})_*(y_+)=(Q^{(k)},q^{(k)})_*(y_+)$ abgebildet. Insbesondere wird y_+ auf einen Erzeuger $z_k\in H_k(\mathbb{R}P^k,\mathbb{R}P^{k-1})$ abgebildet, da diese Abbildung nach 12.5 ein Isomorphismus ist. Es folgt

$$\begin{split} \left(q^{(k+1)},q^{(k)}\right)_* & \left(j_*(x)\right) = \left(q^{(k+1)},q^{(k)}\right)_* \left(\left(i_+,i_+\big|_{S^{k-1}}\right)_* (y_+) + \left(i_-,i_-\big|_{S^{k-1}}\right)_* (y_-)\right) \\ & = \left(Q^{(k)},q^{(k)}\right)_* \left(y_+ + (-1)^{k+1}y_+\right) \\ & = \begin{cases} 2z_k, & \text{falls k ungerade} \\ 0, & \text{sonst} \end{cases} \end{split}$$

Es folgt

$$\operatorname{Im} \partial_{k+1}^{\operatorname{cell}} = \begin{cases} 2 \cdot C_k^{\operatorname{cell}}(X), & \text{falls } k \text{ ungerade} \\ 0, & \text{sonst} \end{cases}$$

Der zelluläre Kettenkomplex ist daher isomorph zu:

$$\mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \longleftarrow \cdots \longleftarrow \stackrel{n}{\mathbb{Z}} \longleftarrow 0 \longleftarrow 0$$

Womit die Behauptung folgt.

50

BEISPIEL: Für $R = \mathbb{Z}/2\mathbb{Z}$ ist

$$H_k(\mathbb{R}P^n; \mathbb{Z}/2\mathbb{Z}) = egin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{falls } k = 0, \dots, n \\ 0, & \text{sonst} \end{cases}$$

12.14 Satz Sei K ein geordneter simplizialer Komplex. Für $\sigma=\{v_0,\ldots,v_n\}\in\Sigma_n$ mit $v_0< v_1<\ldots< v_n$ sei $f_\sigma\colon |\Delta^n|\to |K|$ gegeben durch $f_\sigma(\sum_{i=0}^n t_ie_i)=\sum_{i=0}^n t_iv_i$. Wir erhalten

$$[f_{\sigma}] \in H_n(|K|^{(n)}, |K|^{(n-1)}; R) = C_n^{\text{cell}}(|K|; R).$$

Diese Zuordnung definiert einen Isomorphismus zwischen dem simplizialen Kettenkomplex von K und dem zellulären Kettenkomplex von |K|

$$\tau \colon C_*(K;R) \longrightarrow C_*^{\operatorname{cell}}(|K|,R)$$

Insbesondere ist $H_*(K;R) \cong H_*(|K|;R)$ eine topologische Invariante von K.

Beweis: Betrachte

$$\bigoplus_{\sigma \in \Sigma_n} R \xrightarrow{\cong} \bigoplus_{\sigma \in \Sigma_n} H_n(|\Delta^{\sigma}|, |\partial \Delta^{\sigma}|; R)$$

$$\cong \downarrow \qquad \qquad \cong \downarrow$$

$$C_n(K; R) \xrightarrow{\tau} H_n(|K|^{(n)}, |K|^{(n-1)}; R)$$

Nun ist auch τ ein Isomorphismus, da $[f_{\sigma}]$ ein Erzeuger von $H_n(|\Delta^{\sigma}|, |\partial \Delta^{\sigma}|; R)$ ist, siehe Blatt 8. Es bleibt zu zeigen, dass $\sigma \mapsto [f_{\sigma}]$ mit den Randabbildungen vertauscht. Dies ergibt sich sofort aus $f_{\partial_j \sigma} = \partial_j f_{\sigma}$.

12 Zelluläre Homologie 51

13 Kleine Simplizes

13.1 Ausschneindungssatz Sei (X,A) ein Paar von topologische Räumen. Sei $L\subseteq A$ mit $\overline{L}\subseteq \mathring{A}$. Dann induziert die Inklusion $(X\setminus L,A\setminus L)\hookrightarrow (X,A)$ den Ausschneidungs-Isomorphismus $H_*(X\setminus L,A\setminus L;R)\stackrel{\cong}{\longrightarrow} H_*(X,A;R)$.

Abbildung 4: Skizze zur Ausschneidung mit kleinen Simplizes

13.2 Definition Sei \mathcal{U} eine offene Überdeckung von X. Ein singulärer Simplex $\sigma\colon |\Delta^n|\to X$ heißt \mathcal{U} -klein, falls es ein $U\in\mathcal{U}$ gibt mit $\operatorname{Im}\sigma\subseteq U$. Die \mathcal{U} -kleinen Simplizes erzeugen den Unterkettenkomplex $(C^{\mathcal{U}}_*(X;R),\partial_*)$ des simplizialen Kettenkomplexes $(C_*(X;R),\partial_*)$.

13.3 Satz über kleine Simplizes Die Inklusion $C_*^{\mathcal{U}}(X;R) \hookrightarrow C_*(X;R)$ induziert einen Isomorphismus in Homologie.

13.4 Bemerkung Der Satz über kleine Simplizes lässt sich leicht auf Paare von topologischen Räumen verallgemeinern. Für eine Überdeckung \mathcal{U} von X setzen wir

$$C_*^{\mathcal{U}}(X, A; R) := C_*^{\mathcal{U}}(X; R) / C_*(A; R) \cap C_*^{\mathcal{U}}(X; R)$$

Dann induziert die Inklusion $C_*^{\mathcal{U}}(X,A;R) \hookrightarrow C_*(X,A;R)$ einen Isomorphismus in Homologie. Der Beweis benutzt die Paarfolge und das Fünfer-Lemma.

13.5 Beweis des Ausschneidungssatzes (13.1) Seien $\mathcal{U} := \left\{ \mathring{A}, X \setminus \overline{L} \right\}$ und $\mathcal{U}_L := \left\{ \mathring{A} \setminus L, X \setminus \overline{L} \right\}$. Nach dem Satz über kleine Simplizes induzieren die beiden vertikalen Inklusionen in folgendem Diagramm Isomorphismen in Homologie:

$$C_*^{\mathcal{U}_L}(X \setminus L, A \setminus L; R) \xrightarrow{\cong} C_*^{\mathcal{U}}(X, A; R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_*(X \setminus L, A \setminus L; R) \xrightarrow{(\star)} C_*(X, A; R)$$

Wie man sich leicht überlegt, ist außerdem die obere Abbildung ein Isomorphismus. Daher induziert auch die Inklusion (\star) einen Isomorphismus in H_* .

13.6 Idee zum Beweis des Satzes über kleine Simplizes Um den Satz über kleine Simplizes beweisen zu können, müssen wir uns überlegen, wie wir einen Simplex systematisch in kleinere zerlegen können:

52 13 Kleine Simplizes

Abbildung 5: Zerteilung eines 2-Simplex

13.7 Definition $s_n:=\left(\frac{1}{n+1},\ldots,\frac{1}{n+1}\right)\in |\Delta^n|$ heißt der **Schwerpunkt** von $|\Delta^n|$. Ist $\sigma\colon |\Delta^p|\to |\Delta^n|$ ein singulärer p-Simplex, so definieren wir $(K_{\Delta^n})(\sigma)\colon |\Delta^{p+1}|\to |\Delta^n|$ durch

"Abkegeln"

$$(K_{\Delta^n})(\sigma)(t_0,\ldots,t_{p+1}) = t_0 \cdot s_n + (1-t_0) \cdot \sigma\left(\frac{(t_1,\ldots,t_{p+1})}{1-t_0}\right)$$

Abb. 6: Skizze des "Abkegelns"

Wir erhalten eine Abbildung $(K_{\Delta^n})_p\colon C_p(|\Delta^n|;R) \to C_{p+1}(|\Delta^n|;R).$

13.8 Lemma Sei $\operatorname{const}_{s_n}: |\Delta^n| \to |\Delta^n|$ die konstante Abbildung mit $\operatorname{Im}(\operatorname{const}_{s_n}) = \{s_n\}$. Dann ist $(K_{\Delta^n})_*$ eine Kettenhomotopie zwischen id und $(\operatorname{const}_{s_n})_*$.

BEWEIS: Sei σ ein singulärer p-Simplex in $|\Delta^n|$. Dann ist

$$\begin{split} \partial_{p+1} \circ (K_{\Delta^n})_p(\sigma) &= \sum_{j=0}^{p+1} (-1)^j (K_{\Delta^n})_p(\sigma) \circ \iota_{p+1,j} = \sigma + \sum_{j=1}^{p+1} (-1)^j (K_{\Delta^n})_p(\sigma) \circ \iota_{p+1,j} \\ &= \sigma + \begin{cases} \sum_{j=0}^p (-1)^{j+1} (K_{\Delta^n})_{p-1} (\sigma \circ \iota_{p,j}), & p \geqslant 1 \\ -\mathrm{const}_{s_n} \colon \left| \Delta^0 \right| \to \{s_n\}, & p = 0 \end{cases} \\ &= \sigma - \begin{cases} (K_{\Delta^n})_{p-1} (\partial_p \circ \sigma), & \text{falls } p \geqslant 1 \\ \mathrm{const}_{s_n}, & \text{falls } p = 0 \end{cases} \end{split}$$

Also ist
$$\partial_{p+1} \circ (K_{\Delta^n})_p + (K_{\Delta^n})_{p-1} \circ \partial_p = \operatorname{id} - (\operatorname{const}_{s_n})_*$$
.

13.9 Definition Wir definieren induktiv natürliche Transformationen $B_n\colon C_n(-;R)\to C_n(-;R)$ und $H_n\colon C_n(-;R)\to C_{n+1}(-;R)$ wie folgt: Für n=0 setzen wir $(B_0)_X=\mathrm{id}$. Sei B_k nun schon für $k=0,\ldots,n-1$ definiert. Betrachte zunächst $\mathrm{id}_{|\Delta^n|}\in C_n(|\Delta^n|;R)$. Dafür setzen wir

$$(B_n)_{|\Delta^n|} (\mathrm{id}_{|\Delta^n|}) := (K_{\Delta^n})_{n-1} \circ (B_{n-1})_{|\Delta^n|} \circ \partial_n (\mathrm{id}_{|\Delta^n|})$$

13 Kleine Simplizes 53

Ist $\sigma: |\Delta^n| \to X$ ein beliebiger singulärer n-Simplex in X, so ist $\sigma = \sigma_*(\mathrm{id}_{|\Delta^n|})$, also setzen wir⁶

$$(B_n)_X(\sigma) := \sigma_* ((B_n)_{|\Delta^n|} (\mathrm{id}_{|\Delta^n|}))$$

Für n=0 und $\sigma\colon \left|\Delta^0\right| \to X$ setzen wir $(H_0)_X(\sigma)$ als den konstanten 1-Simplex, dessen Bild der Punkt $\sigma\left(\left|\Delta^0\right|\right)$ ist. Ist H_{n-1} schon definiert, so setzen wir für einen singulären n-Simplex $\sigma\colon \left|\Delta^n\right| \to X$

$$(H_n)_X(\sigma) := \sigma_* \Big((K_{\Delta^n})_n \Big(\mathrm{id}_{|\Delta^n|} - (H_{n-1})_{|\Delta^n|} \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \Big) \Big)$$

Abbildung 7: Die natürlichen Transformationen B_n und H_n für n=0,1,2

13.10 Lemma 1 Für jeden topologischen Raum X ist $(B_*)_X$ eine Kettenabbildung und $(H_*)_X$ eine Kettenhomotopie zwischen $(B_*)_X$ und der Identität.

BEWEIS: Wir müssen zeigen, dass folgende Gleichung gilt

$$\partial_{n+1} \circ (H_n)_X + (H_{n-1})_X \circ \partial_n = (B_n)_X - \mathrm{id}$$

Da id eine Kettenabbildung ist, ist dann auch $(B_*)_X$ eine Kettenabbildung und $(H_*)_X$ eine Kettenhomotopie zwischen id und $(B_*)_X$. Wir beweisen [#] durch Induktion nach n. Für n=0 und $\sigma\colon \left|\Delta^0\right|\to X$ ist

$$\partial_1 ((H_0)_X(\sigma)) = 0$$
 und $(B_0)_X(\sigma) = \sigma$

54

 $^{^{6}\}left(B_{n}\right)_{X}(\sigma)=(B_{n})_{X}\left(\sigma_{*}(\mathrm{id}_{|\Delta^{n}|})\right)=\sigma_{*}\left((B_{n})_{|\Delta^{n}|(\mathrm{id}_{|\Delta^{n}|})}\right) \text{ muss wegen Natürlichkeit gelten}$

Also gilt [#] für n=0. Für den Induktionsschritt $n-1\mapsto n$ betrachten wir $\sigma\colon |\Delta^n|\to X$. Es gilt

$$\begin{split} \partial_{n+1} \circ (H_n)_X(\sigma) &= \sigma_* \circ \partial_{n+1} \circ (H_n)_{|\Delta^n|} \big(\mathrm{id}_{|\Delta^n|} \big) \\ &= \sigma_* \circ \partial_{n+1} \Big((K_{|\Delta^n|})_n \big(\mathrm{id}_{|\Delta^n|} - (H_{n-1})_{|\Delta^n|} \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \big) \Big) \\ &\overset{\mathsf{vgl. } 13.8}{=} \sigma_* \Big(- (K_{|\Delta^n|})_{n-1} \circ \partial_n \big(\mathrm{id}_{|\Delta^n|} - (H_{n-1})_{|\Delta^n|} \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \big) \Big) \\ &+ \sigma_* \big(\mathrm{id}_{|\Delta^n|} - (H_{n-1})_{|\Delta^n|} \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \big) \\ &\overset{\mathsf{l.A}}{=} \sigma_* \big(- (K_{|\Delta^n|})_{n-1} \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \big) - \sigma_* \Big(- (K_{|\Delta^n|})_{n-1} \circ \big(\mathrm{id} - (B_{n-1})_{|\Delta^n|} \big) \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \big) \\ &+ \sigma - (H_{n-1})_X \circ \partial_n (\sigma) \\ &= -\sigma_* \big((K_{|\Delta^n|})_{n-1} \circ (B_{n-1})_{|\Delta^n|} \circ \partial_n (\mathrm{id}_{|\Delta^n|}) \big) + \sigma - (H_{n-1})_X \circ \partial_n (\sigma) \\ &= -\sigma_* \big((B_n)_{|\Delta^n|} (\mathrm{id}_{|\Delta^n|}) \big) + \sigma - (H_{n-1})_X \circ \partial_n (\sigma) \\ &= -(B_n)_X (\sigma) + \sigma - (H_{n-1})_X \circ \partial_n (\sigma) \end{split}$$

Also ist $\partial_{n+1} \circ H_n(\sigma) + H_{n-1} \circ \partial_n(\sigma) = \sigma - (B_n)_X(\sigma)$.

13.11 Lemma 2 Sei \mathcal{U} eine offene Überdeckung von X. Sei $\alpha \in C_n(X;R)$. Dann existiert ein $k_0 \geqslant 0$ so, dass $(B_n)_X^k(\alpha) \in C_n^{\mathcal{U}}(X;R)$ für alle $k \geqslant k_0$.

 $(B_n)_X^k$ meint die kfache Komposition
von $(B_n)-X$

Beweis (MIT Lemma 3, 13.16): Es genügt einen singulären Simplex $\sigma\colon |\Delta^n|\to X$ zu betrachten. Wir setzen $\sigma^*\mathcal{U}:=\left\{\sigma^{-1}(U)\,\middle|\, U\in\mathcal{U}\right\}$. Dann gilt

$$\sigma_*(C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R)) \subseteq C_*^{\mathcal{U}}(X;R).$$

Da $(B_n)_X^k(\sigma) = \sigma_* \left((B_n)_{|\Delta^n|}^k (\operatorname{id}_{|\Delta^n|}) \right)$ genügt es zu zeigen, dass $(B_n)_{|\Delta^n|}^k (\operatorname{id}_{|\Delta^n|}) \in C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R)$ für ein geeignetes k > 0. Sei $\varepsilon > 0$ eine Lebesguezahl⁷ für $\sigma^*\mathcal{U}$, das heißt

$$\forall x \in |\Delta^n| : \exists V \in \sigma^* \mathcal{U} : B_{\varepsilon}(x) \subseteq V$$

Wähle nun k>0 mit $\left(\frac{n}{n+1}\right)^k\cdot \mathrm{diam}(\mathrm{id}_{|\Delta^n|})<\varepsilon$. Dann gilt nach Lemma 3 (iii)

$$(B_n)_{|\Delta^n|}^k(\mathrm{id}_{|\Delta^n|}) \in C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R)$$

13.12 Beweis des Satzes über kleine Simplizes (13.3) Sei $x \in H_n(X;R)$. Wähle $\alpha \in C_n(X;R)$ mit $[\alpha] = x$. Nach Lemma 2 gibt es ein k mit $(B_n)_X^k(\alpha) \in C_n^{\mathcal{U}}(X;R)$. Mit Lemma 1 folgt $x = [\alpha] = [(B_n)_X^k(\alpha)]$. Daher ist die von $C_*^{\mathcal{U}}(X;R) \hookrightarrow C_*(X;R)$ induzierte Abbildung in H_* surjektiv.

Sei nun x im Kern von $H_n\big(C_*^{\mathcal{U}}(X;R)\big) \to H_n(C_*(X;R))$. Sei $\alpha \in C_n^{\mathcal{U}}(X;R)$ mit $x = [\alpha]$. Da x im Kern liegt, gibt es $\beta \in C_{n+1}(X;R)$ mit $\partial_{n+1}(\beta) = \alpha$. Nach Lemma 2 gibt es ein k mit $(B_n)_X^k(\beta) \in C_n^{\mathcal{U}}(X;R)$. Mit Lemma 1 folgt nun

$$x = [\alpha] = \left[(B_n)_X^k(\alpha) \right] = \left[(B_n)_X^k(\partial_{n+1}\beta) \right] = \left[\partial_n \left((B_{n+1})_X^k(\beta) \right) \right]$$

Also ist x = 0 in $H_*(C_*^{\mathcal{U}}(X;R))$.

13.13 Bemerkung Seien (C_*, ∂_*) und (C'_*, ∂'_*) Kettenkomplexe und $s_n \colon C_n \to C'_{n+1}$ eine Abbildung, die den Grad um 1 erhöht. Dann ist $s_{n-1} \circ \partial_n + \partial'_{n+1} \circ s_n$ eine Kettenabbildung, da

$$(s_{n-1} \circ \partial_n + \partial'_{n+1} \circ s_n) \circ \partial_{n+1} = \partial'_{n+1} \circ (s_n \circ \partial_{n+1} + \partial'_{n+2} \circ s_{n+1})$$

Insbesondere gilt: Wenn $s\circ\partial+\partial'\circ s=f-g$ für eine Kettenabbildung $f\colon C_*\to C'_*$, dann ist auch g eine Kettenabbildung.

13 Kleine Simplizes 55

⁷ siehe https://de.wikipedia.org/wiki/Lebesguezahl⊄

13.14 Definition Seien $v_0,\ldots,v_p\in |\Delta^n|$. Dann bezeichnen wir mit $[v_0,\ldots,v_p]$ den singulären p-Simplex mit $\sum_{i=0}^p t_i e_i \to \sum_{i=1}^p t_i v_i$. Singuläre Simplizes dieser Form heißen *affin*.

13.15 Definition Sei $\|\cdot\|$ eine Norm auf \mathbb{R}^{n+1} . Für einen singulären Simplex $\sigma\colon |\Delta^p|\to |\Delta^n|$ definieren wir den *Durchmesser* von σ durch

$$\operatorname{diam}(\sigma) := \max \{ \|\sigma(x) - \sigma(y)\| \mid x, y \in |\Delta^p| \}$$

13.16 Lemma 3 Sei $[v_0,\ldots,v_p]$ ein affiner singulärer p-Simplex in $|\Delta^n|$. Dann gilt:

- (i) Es gilt $diam([v_0, ..., v_p]) = max\{||v_i v_j|| | 0 \le i, j \le p\}$
- (ii) Es ist

$$(B_p)_{|\Delta^n|}([v_0,\ldots,v_p]) = \sum_{\sigma \in \sum_{\{v_0,\ldots,v_p\}}} \operatorname{sgn}(\sigma) \cdot \underbrace{\left[\frac{\sum_{i=0}^p \sigma(v_i)}{p+1}, \frac{\sum_{i=0}^{p-1} \sigma(v_i)}{p}, \ldots, \sigma(v_0)\right]}_{=:\tau_{\sigma}}$$

(iii) Für $\sigma \in \sum_{\{v_0,\dots,v_p\}}$ ist $\dim \tau_\sigma \leqslant \frac{n}{n+1} \dim [v_0,\dots,v_p]$.

BEWEIS:

(i) Seien $v,v'\in \mathrm{Im}([v_0,\dots,v_p])$. Dann ist $v=\sum_{i=0}^p t_iv_i$ und $v'=\sum_{i=0}^p t_i'v_i$ mit $t_i,t_i'\in [0,1]$, sowie $\sum_{i=0}^p t_i=1=\sum_{i=0}^p t_i'$. Es gilt nun

$$\|v - v'\| = \left\| \sum_{i=0}^{p} t_i v_i - v' \right\| = \left\| \sum_{i=0}^{p} t_i v_i - \sum_{i=0}^{p} t_i v' \right\| = \left\| \sum_{i=0}^{p} t_i (v_i - v') \right\| \leqslant \sum_{i=0}^{p} t_i \|v_i - v'\|$$

$$\leqslant \left(\sum_{i=0}^{p} t_i \right) \max_i \|v_i - v'\| = \max_i \|v_i - v\|$$

$$= \max_i \left\| v_i - \sum_{j=0}^{p} t_j' v_j \right\|$$

$$= \max_i \left\| \sum_{j=0}^{p} t_j' v_i + \sum_{j=0}^{p} t_j' v_j \right\|$$

$$\leqslant \dots \leqslant \max_{i,j} \|v_i - v_j\|.$$

(ii) Per Induktion nach p. Für p=0 ist $(B_0)_{|\Delta^n|}=\operatorname{id}$ und die Aussage wahr.

56 13 Kleine Simplizes

Für $p-1\mapsto p$ genügt es n=p und $[v_0,\dots,v_p]=[e_0,\dots,e_p]$ zu betrachten. Es gilt

$$\begin{split} B_{p} \big([v_{0}, \dots, v_{p}] \big) &= K_{p-1} \circ B_{p-1} \circ \partial_{p} \big([e_{0}, \dots, e_{p}] \big) \\ &= \sum_{i=0}^{p} (-1)^{i} \cdot K_{p-1} \circ B_{p-1} \big([e_{0}, \dots, e_{i-1}, e_{i+1}, \dots, e_{p}] \big) \\ &\stackrel{\text{I.V.}}{=} \sum_{i=0}^{p} (-1)^{i} \cdot \sum_{\sigma \in \sum_{\{e_{0}, \dots, e_{p}\} \setminus \{e_{i}\}}} & \operatorname{sgn}(\sigma) \cdot K_{p-1} \Big(\Big[\frac{\sigma(e_{0}) + \dots + \sigma(e_{i-1}) + \sigma(e_{i+1}) + \dots + \sigma(e_{p})}{p}, \dots \Big] \Big) \\ &= \sum_{i=0}^{p} (-1)^{i} \cdot \sum_{\sigma \in \sum_{\{e_{0}, \dots, e_{p}\} \setminus \{e_{i}\}}} & \operatorname{sgn}(\sigma) \cdot \Big[\frac{e_{0} + \dots + e_{p}}{p+1}, \frac{\sigma(e_{0}) + \dots + \sigma(e_{i-1}) + \sigma(e_{i+1}) + \dots + \sigma(e_{p})}{p}, \dots \Big] \\ &= \dots = \sum_{\sigma \in \sum_{\{e_{0}, \dots, e_{p}\}}} & \operatorname{sgn}(\sigma) \cdot \Big[\frac{\sum_{i=0}^{p} \sigma(e_{i})}{p+1}, \dots, \sigma(e_{0}) \Big] \end{split}$$

Aus Platzgründen wird der Index $|\Delta^p|$ bei den Abbildugen $(K_{|\Delta^p|})_*$ und $(B_*)_{|\Delta^p|}$ weggelassen

(iii) Es genügt $\sigma=\mathrm{id}$ zu betrachten. Es ist

$$\begin{split} \operatorname{diam}\left[\frac{v_0+\ldots+v_p}{p+1},\frac{v_0+\ldots+v_{p-1}}{p},\ldots,v_0\right] &\stackrel{\text{(i)}}{=} \max_{i < j} \left\|\frac{v_0+\ldots+v_i}{i+1} - \frac{v_0+\ldots+v_i}{j+1} - \frac{v_{i+1}+\ldots+v_j}{j+1} \right\| \\ &= \max_{i < j} \left\|\frac{v_0+\ldots+v_i}{i+1} - \frac{v_0+\ldots+v_i}{j+1} - \frac{v_{i+1}+\ldots+v_j}{j+1} \right\| \\ &= \max_{i < j} \left\|\frac{(j+1)-(i+1)}{(i+1)(j+1)} \left(v_0+\ldots+v_i\right) - \frac{1}{j+1} \left(v_{i+1}+\ldots+v_j\right) \right\| \\ &= \max_{i < j} \frac{j-i}{j+1} \cdot \left\|\underbrace{v_0+\ldots+v_i}_{i+1} - \underbrace{v_{i+1}+\ldots+v_j}_{j-i} \right\| \\ &\leqslant \max_{i < j} \frac{j-i}{j+1} \operatorname{diam}[v_0,\ldots,v_n] \\ &\leqslant \max_{j} \frac{j}{j+1} \operatorname{diam}[v_0,\ldots,v_n] \leqslant \frac{n}{n+1} \operatorname{diam}[v_0,\ldots,v_n] \end{split}$$

13 Kleine Simplizes 57

14 Axiome für Homologie

14.1 Bezeichnung Mit $V: \mathsf{TOP}^2 \to \mathsf{TOP}^2$ bezeichnen wir den Funktor $V(X,A) = (A,\emptyset) = A$.

14.2 Definition Eine *Homologietheorie* mit Werten in *R*-Moduln ist ein Funktor

$$E_* \colon \mathsf{HTOP}^2 \longrightarrow \mathsf{GR}\text{-}R\text{-}\mathsf{MOD}$$

zusammen mit einer natürlichen Transformation $\partial_{*+1} \colon E_{*+1} \to E_* \circ V$,8 sodass folgende Axiome gelten:

(i) *Paarfolge*: Sei (X,A) ein Paar von topologischen Räumen. Seien $X=(X,\emptyset) \xrightarrow{j} (X,A)$ und $A=(A,\emptyset) \xrightarrow{i} X=(X,\emptyset)$ die Inklusionen. Dann ist

$$\cdots \longrightarrow E_{n+1}(X,A) \xrightarrow{\partial_{n+1}} E_n(A) \xrightarrow{E_n(i)} E_n(X) \xrightarrow{E_n(j)} E_n(X,A) \xrightarrow{\partial_n} E_{n-1}(A) \longrightarrow \cdots$$

eine lange exakte Folge.

(ii) Ausschneidung: Sei (X,A) ein Paar von topologischen Räumen und $L\subseteq A$ mit $\overline{L}\subseteq \mathring{A}$. Dann induziert die Inklusion $i\colon (X\setminus L,A\setminus L)\hookrightarrow (X,A)$ einen Isomorphismus

$$E_*(i) \colon E_*(X \setminus L, A \setminus L) \xrightarrow{\cong} E_*(X, A)$$

14.3 Bemerkung Homologietheorien sind homotopieinvariant. Oft wird dies als eigenes Axiom formuliert.

14.4 Bemerkung Für jede Homologietheorie gibt es eine Mayer-Vietoris-Folge. Dies ist eine formale Konsequenz aus der Paarfolge und dem Ausschneidungsisomorphismus. Eine einfache Folgerung aus der Mayer-Vietoris-Folge ist, dass jede Homologietheorie mit endlichen disjunkten Vereinigungen verträglich ist: Sei dazu $X=X_1 \coprod \cdots \coprod X_n$ und $j_i\colon X_i \to X$ die Inklusion, dann ist

$$E_*(X_1) \oplus \cdots \oplus E_*(X_n) \xrightarrow{E_*(j_1) \oplus \cdots \oplus E_*(j_n)} E_*(X)$$

ein Isomorphismus.

14.5 Definition Zwei weitere Axiome, die Homologietheorien mit Werten in R-Moduln erfüllen können, sind:

Dimensionsaxiom: Für den Einpunktraum $\{x_0\}$ ist $E_0(\{x_0\}) \cong R$ und $E_n(\{x_0\}) = 0$ für $n \neq 0$.

Disjunkte Vereinigung: Sei $X = \coprod_{i \in I} X_i$ und $j_i \colon X_i \to X$ die Inklusion. Dann ist

$$\bigoplus_{i\in I} E_*(j_i) \colon \bigoplus_{i\in I} E_*(X_i) \longrightarrow E_*(X)$$

ein Isomorphismus.

⁸ Genauer: Sei S: GR-R-MoD \to GR-R-MoD der Funktor $(SM)_n = M_{n+1}$. Dann ist ∂_* eine natürliche Transformation $S \circ E_* \to E_* \circ V$, für (X,A) also $S(E_*(X,A)) \to E_*(V(X,A))$, $E_{n+1}(X,A) \xrightarrow{\partial_*} E_n(A)$.

14.6 Bemerkung In Kapitel 6 haben wir GR-R-Mod als die Kategorie der \mathbb{N} -graduierten R-Moduln definiert. Für viele Homologietheorien muss man diese Kategorie etwas vergrößern und \mathbb{Z} -graduierte R-Moduln zulassen. Objekte sind dann Folgen $(M_n)_{n\in\mathbb{Z}}$ über \mathbb{Z} von R-Moduln M_n .

14.7 Bemerkung

• Für jede Homologietheorie E_* gilt: $E_*(S^n) \cong E_*(\{\text{pt}\}) \oplus E_{*-n}(\{\text{pt}\})$

Aufgabe 1 Blatt 12

 Die Konstruktion des zellulären Kettenkomplexes in singulärer Homologie benutzte nur die Axiome aus 14.2. Für die Identifikation der zellulären Homologie mit der singulären Homologie waren zusätzlich die Axiome aus 14.5 notwendig. Ohne das Axiom über disjunkte Vereinigungen kann man nur endliche CW-Komplexe behandeln. Ohne das Dimensionsaxiom erhält man an der Stelle der zellulären Kettenkomplex eine sogenannte Spektralfolge, die Atiyah-Hirzebruch Spektralfolge.

14.8 Definition Seien (E_*, ∂_*^E) und (F_*, ∂_*^F) Homologietheorien. Ein **Morphismus von Homologietheorien** ist eine natürliche Transformation $\tau_* \colon E_* \to F_*$, sodass $\tau_* \circ \partial_{*+1}^E = \partial_*^F \circ \tau_{*+1}$. Also kommutiert für alle (X, A) das folgende Diagramm

$$E_{n+1}(X,A) \xrightarrow{\partial_{n+1}^E} E_n(A)$$

$$\downarrow^{\tau_{n+1,(X,A)}} \qquad \downarrow^{\tau_{n,A}}$$

$$F_{n+1}(X,A) \xrightarrow{\partial_{n+1}^F} F_n(A)$$

14.9 Satz Sei $\tau_*: (E_*, \partial_*^E) \to (F_*, \partial_*^F)$ ein Morphismus von Homologietheorien. Ist

$$(\tau_*)_{\{\mathrm{pt}\}} : E_*(\{\mathrm{pt}\}) \to F_*(\{\mathrm{pt}\})$$

ein Isomorphismus, dann ist $(\tau_*)_X$ für jeden endlichen CW-Komplex ein Isomorphismus. Sind E_* und F_* mit beliebigen disjunkten Vereinigungen verträglich, so ist $(\tau_*)_X$ für alle CW-Komplexe ein Isomorphismus.

BEWEIS:

Schritt 1: Sei X ein 0-dimensionaler endlicher CW-Komplex, also eine endliche Menge mit der diskreten Topologie. Für $x \in X$ sei $i_x \colon \{x\} \to X$ die Inklusion. Wir erhalten folgendes Diagramm:

$$E_*(X) \xrightarrow{(\tau_*)_X} F_*(X)$$

$$\cong \uparrow \qquad \qquad \cong \uparrow$$

$$\bigoplus_{x \in X} E_*(\{x\}) \xrightarrow{\bigoplus_{x \in X} (\tau_*)_{\{x\}}} \bigoplus_{x \in X} F_*(\{x\})$$

Das Diagramm kommutiert, da τ_* eine natürliche Transformation ist.

14 Axiome für Homologie 59

Schritt 2: Angenommen $(\tau_*)_X$ ist ein Isomorphismus für jeden endlichen CW-Komplex von Dimension echt kleiner als n. Sei X ein n-dimensionaler endlicher CW-Komplex:

Sei $X_+^{(n-1)}:=X^{(n-1)}\cup\coprod_{i\in I}Q_i^{(n)}(D^n\setminus\{0\})$ und $Z:=\coprod_{i\in I}Q_i^{(n)}(\mathring{D}^n)$. Dann sind $X_+^{(n-1)}$, Z und $Z\cap X_+^{(n-1)}$ homotopieäquivalent zu endlichen CW-Komplexen mit Dimension echt kleiner n. Insbesondere sind $(\tau_*)_{X_+^{(n-1)}}$, $(\tau_*)_Z$ und $(\tau_*)_{X_+^{(n-1)}\cap Z}$ Isomorphismen. Da $X_+^{(n-1)}\subseteq X$ und $Z\subseteq X$ offen sind, erhalten wir in E_* und F_* zugehörigen Mayer-Vietoris-Folgen:

$$\cdots \longrightarrow E_*(X_+^{(n-1)} \cap Z) \longrightarrow E_*(X_+^{(n-1)}) \oplus E_*(Z) \longrightarrow E_*(X) \xrightarrow{\partial_*^{\mathrm{MV}, E}} E_{*-1}(X_+^{(n-1)} \cap Z) \longrightarrow \cdots$$

$$\cong \downarrow^{(\tau_*)} X_+^{(n-1)} \cap Z \qquad \cong \downarrow^{(\tau_*)} X_+^{(n-1)} \oplus (\tau_*)_Z \qquad \downarrow^{(\tau_*)} X \qquad \cong \downarrow^{(\tau_{*-1})} X_+^{(n-1)} \cap Z$$

$$\cdots \longrightarrow F_*(X_+^{(n-1)} \cap Z) \longrightarrow F_*(X_+^{(n-1)}) \oplus F_*(Z) \longrightarrow F_*(X) \xrightarrow{\partial_*^{\mathrm{MV}, F}} F_{*-1}(X_+^{(n-1)} \cap Z) \longrightarrow \cdots$$

Da τ_* eine natürliche Transformation ist, kommutierten die beiden linken Vierecke. Da τ_* mit der Randabbildung der Paarfolgen von E_* und F_* kommutiert, kommutiert auch τ_* mit den Randabbildungen der Mayer-Vietoris-Folgen in E_* und F_* . Also kommutiert auch das das dritte Viereck. Mit dem 5er-Lemma (8.15) folgt, dass auch $(\tau_*)_X$ ein Isomorphismus ist.

Erfüllen E_* und F_* auch das Dimensionsaxiom, so zeigen die Argumente aus Schritt 1 und 2, dass $(\tau_*)_X$ ein Isomorphismus ist für jeden endlich dimensionalen CW-Komplex.

Schritt 3: Sei X ein CW-Komplex. Sei

$$X^+ := \left\{ (x,t) \,\middle|\, x \in X^{(n)}, t \in (n+1/2,\infty) \right\} \subseteq X \times (1/2,\infty)$$

Sei weiter

$$X_0 := X^+ \cap \left(X \times \left((1/2, \infty) \setminus \{1, 3, 4, \ldots\} \right) \right) \quad X_1 := X^+ \cap \left(X \times \left((1/2, \infty) \setminus \{2, 4, 6, \ldots\} \right) \right)$$

Dann sind X_0, X_1 und $X_0 \cap X_1$ homotopieäquivalent zu disjunkten Vereinigungen von endlichen dimensionalen CW-Komplexen. Sind E_* und F_* mit beliebigen Vereinigungen verträglich, so folgt dass $(\tau_*)_{X_0}$, $(\tau_*)_{X_1}$ und $(\tau_*)_{X_0 \cap X_1}$ Isomorphismen sind. Da X homotopieäquivalent zu X^+ ist, $X^+ = X_0 \cup X_1$ und X_0 und X_1 offen in X^+ sind, folgt wie in Schritt 2 mit der 5er-Lemma und der Mayer-Vietoris-Folge, dass auch $(\tau_*)_X$ ein Isomorphismus ist.

60

15 Zusammenhang zwischen $\pi_1(X, x_0)$ und $H_1(X; \mathbb{Z})$

Zur Vorbereitung müssen wir kurz wiederholen, was eine Abelisierung ist:

15.1 Definition Sei G eine Gruppe. Dann heißt die Untergruppe von G, die von Elementen der Form $[g,h]:=ghg^{-1}h^{-1}$ erzeugt wird, **Kommutatorgruppe** von G. Wir schreiben hierfür auch $[G,G]\subset G$.

15.2 Lemma $[G,G] \subset G$ ist ein Normalteiler von G.

BEWEIS: Seien $g_0, \ldots, g_n, h \in G$. Dann ist

$$h[g_0, g_1] \cdot \dots \cdot [g_{n-1}, g_n] \cdot h^{-1} = [hg_0h^{-1}, hg_1h^{-1}] \cdot \dots \cdot [hg_{n-1}h^{-1}, hg_nh^{-1}]$$

15.3 Definition Der Quotient $G^{ab} := G/[G,G]$ heißt **Abelisierung** (manchmal auch Abelianisierung) von G und ist offensichtlich stets abelsch.

Für eine abelsche Gruppe G ist sinnigerweise $G^{ab}=G$.

15.4 Bemerkung

- ullet GRUPPEN $\stackrel{
 m ab}{\longrightarrow}$ ABEL.GRUPPEN, $G \longmapsto G^{
 m ab}$ definiert einen Funktor.
- Dieser Funktor hat die folgende universelle Eigenschaft: Zu jeder abelschen Gruppe A und einem Homomorphismus $\varphi\colon G\to A$ existiert ein eindeutiger Gruppenhomomorphismus $\varphi^{\mathrm{ab}}\colon G^{\mathrm{ab}}\to A$, sodass folgendes Diagramm kommutiert

15.5 Schleifen und 1-Zykel Sei X ein topologischer Raum. Da $\left|\Delta^1\right|\cong [0,1]$, liefert jeder Pfad $\omega\colon [0,1]\to X$ einen 1-Simplex in $C_1(X;\mathbb{Z})$.

15.6 Lemma 1 Seien $\omega,\omega'\colon [0,1]\to X$ Pfade in X mit $\omega(1)=\omega'(0)$, dann ist $\omega*\omega'-\omega-\omega'\in C_1(X;\mathbb{Z})$ der Rand eines 2-Simplex.

"*" bezeichnet die Verkettung von Pfaden und wird noch links nach rechts gelesen

Beweis: Zur Erinnerung: Die geometrische Realisierung des 2-Simplex ist gegeben durch

$$\left|\Delta^{2}\right| = \left\{ (x_{0}, x_{1}, x_{2}) \in \mathbb{R}^{3} \left| \sum_{i=0}^{2} x_{i} = 1, x_{j} \geqslant 0 \,\forall j \in \{0, 1, 2\} \right. \right\}.$$

Betrachte nun folgenden singulären Simplex $\sigma\colon |\Delta^2| \to X$ definiert durch

$$(x_0, x_1, x_2) \longmapsto (\omega * \omega') \left(\frac{1}{2}(1 + x_0 - x_2)\right) = \omega * \omega' \left(\frac{1}{2}(2x_0 + x_1)\right)$$

Die Ränder sind

$$(\delta_0 \sigma)(s) = \sigma(0, s, 1 - s) = \omega * \omega' \left(\frac{1}{2}s\right) = \omega(s)$$

$$(\delta_1 \sigma)(s) = \sigma(s, 0, 1 - s) = \omega * \omega'(s)$$

$$(\delta_2 \sigma)(s) = \sigma(s, 1 - s, 0) = (\omega * \omega') \left(\frac{1}{2}(1 + s)\right) = \omega'(s)$$

Abbildung 8: Skizze zum Beweis von Lemma 15.6

Dann folgt
$$\partial \sigma = \delta_0 \sigma - \delta_1 \sigma + \delta_2 \sigma = \omega - \omega * \omega' + \omega'$$
.

15.7 Lemma 2

- a) Sei $\omega \colon [0,1] \to X$ ein Pfad und $\omega^{-1}(s) = \omega(1-s)$ der umgekehrte Pfad. Dann ist $\omega + \omega^{-1}$ der Rand einer 2-Kette, also von einem Element aus $C_2(X;\mathbb{Z})$.
- b) Der konstante Pfad ist der Rand einer 2-Kette.

BEWEIS:

a) Sei $\sigma \colon |\Delta^2| \to X$ gegeben durch $\sigma(x_0, x_1, x_2) = \omega(x_1)$. Dann ist

$$\partial \sigma = \omega - \underbrace{\operatorname{const}_{\omega(0)}}_{-:\partial \tau} + \omega^{-1}$$

Also gilt nach b) $\omega + \omega^{-1} = \partial(\sigma + \tau)$.

b) Der Rand des konstanten 2-Simplex ist der konstante Pfad.

Abbildung 9: Skizze zum Beweis von Lemma 15.7

15.8 Lemma 3 Sind $\omega, \omega' \colon [0,1] \to X$ Pfade in X mit $\omega(0) = \omega'(0)$ und $\omega(1) = \omega'(1)$, dann gilt: Ist ω homotop zu ω' relativ zu den Endpunkten, dann ist $\omega - \omega'$ der Rand einer 2-Kette.

BEWEIS: Sei $H\colon [0,1]\times [0,1]\to X$ eine Homotopie zwischen ω und ω' mit $H(0,s)=\omega(s)$, $H(1,s)=\omega'(s)$, $H(t,0)=\mathrm{const}_{\omega(0)}$ und $H(t,1)=\mathrm{const}_{\omega(1)}$. Wähle einen Homöomorphismus durch

$$\kappa \colon {}^{[0,1]\times[0,1]/[0,1]\times\{0\}} \to \left|\Delta^2\right|, \qquad [t,s] \longmapsto \left(st,s(1-t),(1-s)\right)$$

Betrachte nun $\sigma:=H\circ\kappa^{-1}\colon \left|\Delta^2\right|\to X$. Die Ränder sind $\delta_0\sigma=\omega$ und $\delta_1\sigma=\omega'$ und $\delta_2\sigma=\mathrm{const}_{\omega(1)}$. Also folgt, dass $\omega-\omega'$ der Rand einer 2-Kette ist.

Abbildung 10: Skizze zum Beweis von Lemma 15.8

15.9 Die Hurewicz-Abbildung Falls $\omega\colon [0,1]\to X$ eine Schleife ist, dann ist $\partial\omega=\omega(1)-\omega(0)=0$. Also repräsentiert ω ein Element $[\![\omega]\!]\in H_1(X)$. Nach Lemma 3 erhalten wir eine wohldefinierte Abbildung $\theta\colon \pi_1(X,x_0)\to H_1(X)$. Nach Lemma 1 bildet diese Abbildung die Verknüpfung von Schleifen auf Summen von 1-Ketten ab.

[·] für die Homologieklassen und [·] für Homotopieklassen

$$\llbracket \omega * \omega' \rrbracket = \llbracket \omega \rrbracket + \llbracket \omega' \rrbracket \quad , \quad \llbracket \omega^{-1} \rrbracket = - \llbracket \omega \rrbracket$$

Zusammen mit Lemma 2 erhalten wir einen Gruppenhomomorphismus. Aus der universellen Eigenschaft der Abelisierung erhalten wir

$$\theta^{\mathrm{ab}} \colon \pi_1(X, x_0)^{\mathrm{ab}} \longrightarrow H_1(X; \mathbb{Z})$$

15.10 Theorem (Hurewicz) Für wegzusammenhängende Räume ist θ^{ab} ein Isomorphismus.

Beweis (MIT LEMMA 4 UND 5): Sei X wegzusammenhängend. Wähle für jedes $x \in X$ einen Pfad λ_x von x_0 nach x. Wähle $\lambda_{x_0} = \mathrm{const}_{x_0}$. Betrachte

$$\overline{\rho} \colon C_1(X; \mathbb{Z}) \longrightarrow \pi_1(X, x_0)^{\mathrm{ab}} \quad , \qquad \omega \longmapsto \left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1} \right]$$

Dies ist ein Gruppenhomomorphismus, den wir auf den Generatoren angegeben haben. Hier benutzen wir, dass $\pi_1(X,x_0)^{\mathrm{ab}}$ abelsch ist. Nach Lemma 4 induziert $\overline{\rho}$ einen Homomorphismus $\rho\colon H_1(X;\mathbb{Z})\to \pi_1(X,x_0)^{\mathrm{ab}}$. Für eine Schleife ω in x_0 gilt

$$(\rho \circ \theta)[\omega] = \left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(0)}^{-1}\right] = \left[\lambda_{x_0} * \omega * \lambda_{x_0}^{-1}\right] = [\omega]$$

Die Zuordnung $x \mapsto \lambda_x$ liefert einen Gruppenhomomorphismus $\lambda \colon C_0(X; \mathbb{Z}) \to C_1(X; \mathbb{Z})$

$$\sum_i n_i \cdot x_i \longmapsto \sum_i n_i \cdot \lambda_{x_i}$$

Mit Lemma 5 folgt $(\theta \circ \rho) \big(\llbracket c \rrbracket \big) = \llbracket c \rrbracket$ für alle $\llbracket c \rrbracket \in H_1(X)$. Damit ist θ^{ab} ein Isomorphismus für wegzusammenhängende Räume X.

15.11 Lemma 4 $\overline{\rho}$ bildet die Ränder von 2-Simplizes auf $1 \in \pi_1(X, x_0)^{\mathrm{ab}}$ ab.

BEWEIS: Sei $\sigma \in C_2(X; \mathbb{Z})$ ein 2-Simplex. Es gilt mit $\omega_i := \delta_i \sigma$

$$\begin{split} \overline{\rho}(\partial\sigma) &= \overline{\rho}(\delta_0\sigma - \delta_1\sigma + \delta_2\sigma) = \overline{\rho}(\omega_0) \cdot \overline{\rho}(\omega_1)^{-1} \cdot \overline{\rho}(\omega_2) \\ &= \left[\lambda_{\omega_0(0)} * \omega_0 * \lambda_{\omega_0(1)}^{-1} * \underbrace{\left(\lambda_{\omega_1(0)} * \omega_1 * \lambda_{\omega_1(1)}^{-1}\right)^{-1}}_{=\lambda_{\omega_0(1)} * \omega_1^{-1} * \lambda_{\omega_1(0)}^{-1}} * \lambda_{\omega_2(0)} * \omega_2 * \lambda_{\omega_2(1)}\right] \\ &= \left[\lambda_{\omega_0(0)} * \underbrace{\omega_0 * \omega_1^{-1} * \omega_2}_{=:\gamma} * \lambda_{\omega_2(1)=\omega_0(0)}^{-1}\right] \end{split}$$

Der Pfad γ ist die Schleife, die einmal auf dem Rand des 2-Simplex herumläuft. Also $\gamma\colon [0,1] \to \left|\partial \Delta^2\right| \hookrightarrow \left|\Delta^2\right| \to X$. Aber $\left|\partial \Delta^2\right| \hookrightarrow \left|\Delta^2\right|$ ist homotop zur konstanten Abbildung auf $\omega_0(0)$ mit einer Homotopie, die den Punkt $\omega_0(0)$ fixiert.

$$= \left[\lambda_{\omega_0(0)} * \lambda_{\omega_0(0)}^{-1}\right] = 1 \qquad \qquad \Box$$

Abbildung 11: Skizze zum Beweis von Lemma 15.11

15.12 Lemma 5 Sei $\omega \colon |\Delta^1| \to X$ ein 1-Simplex, dann gilt $\theta \circ \overline{\rho}(\omega) = \llbracket \omega + \lambda_{\partial \omega} \rrbracket$

$$\begin{array}{ll} \text{Beweis:} & \text{Es gilt } (\theta \circ \overline{\rho})(\omega) = \theta \Big(\Big[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1} \Big] \Big) = \Big[\!\! \Big[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1} \Big] \!\! \Big] = \Big[\!\! \Big[\omega \Big] \!\! \Big] \underbrace{ - \Big[\!\! \Big[\lambda_{\omega(0)} \Big] \!\! + \Big[\!\! \Big[\lambda_{\omega(0)} \Big] \!\! \Big] }_{\lambda_{\omega(0) - \omega(1)} = \lambda_{\partial \omega}} \Big] \\ \Box \\ \end{array}$$

15.13 Corollar Sind X_1, \ldots, X_n wegzusammenhängende Räume, dann gilt

$$H_1(X_1 \times \ldots \times X_n) \cong H_1(X_1) \oplus \ldots \oplus H_1(X_n)$$

BEWEIS:

$$\begin{split} H_1(X_1 \times \ldots \times X_n) &\cong \pi_1 \big(X_1 \times \ldots \times X_n, (x_0^{\scriptscriptstyle (1)}, \ldots, x_0^{\scriptscriptstyle (n)}) \big)^{\mathrm{ab}} \\ &\cong \big(\pi_1 \big(X_1, x_0^{\scriptscriptstyle (1)} \big) \times \ldots \times \pi_1 \big(X_n, x_0^{\scriptscriptstyle (n)} \big) \big)^{\mathrm{ab}} \\ &\cong \pi_1 \big(X_1, x_0^{\scriptscriptstyle (1)} \big)^{\mathrm{ab}} \oplus \ldots \oplus \pi_1 \big(X_n, x_0^{\scriptscriptstyle (n)} \big)^{\mathrm{ab}} \\ &\cong H_1(X_1) \oplus \ldots \oplus H_1(X_n) \end{split}$$
 (Übungsaufgabe)

Der Satz von Hurewicz

15.14 Definition Sei X ein topologischer Raum mit Basispunkt $x_0 \in X$, sei I = [0,1] und $n \in \mathbb{N}_0$. Die \mathbf{n} -te absolute Homotopiegruppe $\pi_n(X,x_0)$ ist die Menge der Äquivalenzklassen von stetigen Abbildungen $\omega \colon I^n \to X$ mit $\omega(\partial I^n) = \{x_0\}$. Die Äquivalenzrelation ist Homotopie relativ zu ∂I^n , d.h. $H \colon I^n \times [0,1] \to X$ erfüllt $H_t(\partial I^n) = \{x_0\}$ für alle $t \in [0,1]$. Die Gruppenverknüpfung in $\pi_n(X,x_0)$ ist gegeben durch

$$(\omega*\omega')(s_1,\ldots,s_n) = \begin{cases} \omega(2s_1,s_2,\ldots,s_n), & \text{falls } 0\leqslant s_1\leqslant \frac{1}{2}\\ \omega'(2s_1-1,s_2,\ldots,s_n), & \text{falls } \frac{1}{2}\leqslant s_1\leqslant 1 \end{cases}$$

Bild für n=2:

$$\boxed{ \quad \omega \quad * \quad \omega' \quad = \quad \omega \quad \omega' }$$

15.15 Eigenschaften von $\pi_n(X, x_0)$

- Die Verknüpfung "*" ist assoziativ, hat const_{x_0} , also die konstante Abbildung auf x_0 , als neutrales Element und $\omega^{-1}(s_1,\ldots,s_n)=\omega(1-s_1,s_2,\ldots,s_n)$ als inverses Element.
- Die Verknüpfung "*" ist abelsch für $n \geqslant 2$ (Eckmann-Hilton Argument⁹)

- $\pi_n \colon \mathsf{TOP} \to \mathsf{ABEL}.\mathsf{GRUPPEN}$ ist ein Funktor, das heißt eine stetige Abbildung $f \colon (X, x_0) \to (Y, y_0)$ induziert einen Gruppenhomomorphismus $\pi_n(f) \colon \pi_n(X, x_0) \to \pi_n(Y, y_0)$.
- Da $I^n/\partial I^n \cong S^n$ ist, ergibt sich $\pi_n(X,x_0)$ auch aus den punktierten Homotopieklassen von Abbildungen $(S^n,*) \to (X,x_0)$.
- Falls x_0 und x_0' in der gleichen Wegzusammenhangskomponente von X liegen, dann induziert ein Weg von x_0 nach x_0' einen Isomorphismus $\pi_n(X,x_0)\cong\pi_n(X,x_0')$.

15.16 Definition Sei $n \in \mathbb{N}_0$. Ein topologischer Raum X heißt \mathbf{n} -zusammenhängend, falls $\pi_0(X) = \{*\}$ und $\pi_k(X, x_0)$ trivial ist für alle $k \leq n$ und einen Basispunkt $x_0 \in X$.

15.17 Bemerkung Da ein n-zusammenhängender Raum X für $n \geqslant 0$ mindestens wegzusammenhängend ist, gilt $\pi_k(X,x_0) \cong \pi_k(X,x_0')$. Somit ist die Definition unabhängig von der Wahl des Basispunktes.

15.18 Beispiel 0-zusammenhängend entspricht wegzusammenhängend und 1-zusammenhängend entspricht wegzusammenhängend und einfach zusammenhängend.

⁹ siehe auch letztes Semester 14.5 und 14.6

15.19 Definition: Relative Homotopiegruppen Sei X ein topologischer Raum, $A \subset X$ ein Unterraum und $x_0 \in A$ ein Basispunkt von A und X. Wir identifizieren $I^{n-1} \subset I^n$ mit der Seitenfläche von I^n , für die $s_n = 0$ gilt. Außerdem setzen wir

$$J^{n-1} := \overline{\partial I^n \setminus I^{n-1}}$$

Die *relative Homotopiegruppe* $\pi_n(X,A,x_0)$ besteht aus den Homotopieklassen von stetigen Abbildungen $\omega\colon I^n\to X$ mit $\omega(I^{n-1})\subset A$ und $\omega(J^{n-1})=\{x_0\}$. Die Homotopien müssen ebenfalls $H_t(I^{n-1})\subset A$ und $H_t(J^{n-1})=\{x_0\}$ für alle $t\in[0,1]$ erfüllen. $\pi_n(X,A,x_0)$ ist eine Menge

Abbildung 12: Verknüpfung in der relativen Homotopiegruppe für n=2

für $n \geqslant 1$, eine Gruppe für $n \geqslant 2$ und eine abelsche Gruppe für n > 2. Alternativ können wir relative Homotopiegruppen auch wie folgt beschreiben: $\pi_n(X,A,x_0)$ sind Homotopieklassen von Abbildungen $(D^n,S^{n-1},*) \to (X,A,x_0)$.

15.20 Bemerkung

- Homotopiegruppen bilden *keine* verallgemeinerte Homologietheorie, da sie nicht das Ausschneidungsaxiom erfüllen.
- Es gibt eine lange exakte Sequenz von Homotopiegruppen:

$$\cdots \longrightarrow \pi_n(A, x_0) \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(X, A, x_0) \stackrel{\partial}{\longrightarrow} \pi_{n-1}(A, x_0) \longrightarrow \cdots$$

15.21 Die Hurewicz-Abbildung Sei $\vartheta\colon |\Delta^n| \xrightarrow{\cong} D^n$ ein Homöomorphismus. Dann gilt $\vartheta(|\partial\Delta^n|) = S^{n-1}$ und ϑ liefert eine Homologieklasse $[\![\vartheta]\!] \in H_n(D^n,S^{n-1}) \cong \mathbb{Z}$. Diese Klasse ist ein Generator der Gruppe $H_n(D^n,S^{n-1})$. Sei nun $[\omega] \in \pi_n(X,A,x_0)$ repräsentiert durch $\omega\colon (D^n,S^{n-1},*) \to (X,A,x_0)$. Setze

$$\theta_n : \pi_n(X, A, x_0) \longrightarrow H_n(X, A) , [\omega] \longmapsto \omega_* \llbracket \vartheta \rrbracket$$

für $n \geqslant 2$. Dies ist wohldefiniert, denn falls ω homotop zu ω' ist (bezüglich (A, x_0)), dann ist $\omega_* = \omega'_*$.

15.22 Lemma $\theta_n \colon \pi_n(X,A,x_0) \longrightarrow H_n(X,A)$ ist ein Gruppenhomomorphismus.

BEWEIS: Wir brauchen eine alternative Beschreibung der Gruppenverknüpfung: Sei dazu γ die Projektion $D^n \to {}^{D^n}\!/{}^{S^{n-2}} \cong D^n \vee D^n$. Dann gilt $\gamma(S^{n-1}) = S^{n-1} \vee S^{n-1}$ und folglich ist γ eine Abbildung von Raumpaaren $\gamma \colon (D^n, S^{n-1}) \to (D^n \vee D^n, S^{n-1} \vee S^{n-1})$. Seien nun $\omega, \omega' \colon (D^n, S^{n-1}, *) \to (X, A, x_0)$ Für die Verknüpfung $[\omega * \omega'] \in \pi_n(X, A, x_0)$ gilt

$$\big[(\omega\vee\omega')\circ\gamma\big]=[\omega*\omega']$$

Abbildung 13: Die Abbildung γ aus Lemma 15.22

Sei $p_j\colon (D^n\vee D^n,S^{n-1}\vee S^{n-1})\to (D^n,S^{n-1})$ die Abbildung, die die j-te Kopie von D^n auf den Basispunkt abbildet und auf der anderen Kopie die Identität ist. Sei weiter $i_k\colon (D^n,S^{n-1})\to (D^n\vee D^n,S^{n-1}\vee S^{n-1})$ die Inklusion auf die k-te Kopie von (D^n,S^{n-1}) . Betrachte nun die Abbildung

$$((p_1)_*, (p_2)_*): H_n(D^n \vee D^n, S^{n-1} \vee S^{n-1}) \longrightarrow H_n(D^n, S^{n-1}) \oplus H_n(D^n, S^{n-1})$$

Dies ist ein Isomorphismus mit inverser Abbildung

$$(i_1)_* + (i_2)_* : H_n(D^n, S^{n-1}) \oplus H_n(D^n, S^{n-1}) \longrightarrow H_n(D^n \vee D^n, S^{n-1} \vee S^{n-1})$$

denn es gilt

$$\left((p_1)_*,(p_2)_*\right)\circ\left((i_1)_*+(i_2)_*\right)=\left(\left(\underbrace{p_1\circ i_1}_{\mathrm{id}}\right)_*+\left(\underbrace{p_1\circ i_2}_{\mathrm{const}}\right)_*,\left(\underbrace{p_2\circ i_1}_{\mathrm{const}}\right)_*+\left(\underbrace{p_2\circ i_2}_{\mathrm{id}}\right)_*\right)=\mathrm{id}$$

Also ist $((p_1)_*, (p_2)_*)$ eine surjektive Abbildung und Quelle und Ziel sind freie abelsche Gruppen von gleichem Rang. Die Abbildung $p_j \circ \gamma$ ist homotop zur Identität (Übung). Also folgt $((p_1)_*, (p_2)_*) \circ \gamma(\llbracket \vartheta \rrbracket) = (\llbracket \vartheta \rrbracket, \llbracket \vartheta \rrbracket)$ und weiter

$$\theta_{n}([\omega * \omega']) = (\omega \vee \omega')_{*} \circ \gamma_{*}(\llbracket \vartheta \rrbracket) = (\omega \vee \omega')_{*} \circ ((i_{1})_{*} + (i_{2})_{*}) \circ ((p_{1})_{*}, (p_{2})_{*}) \circ \gamma_{*}(\llbracket \vartheta \rrbracket)$$

$$= (\omega \vee \omega')_{*} \circ ((i_{1})_{*}(\llbracket \vartheta \rrbracket) + (i_{2})_{*}(\llbracket \vartheta \rrbracket))$$

$$= \omega_{*}(\llbracket \vartheta \rrbracket) + \omega'_{*}(\llbracket \vartheta \rrbracket)$$

15.23 Theorem (Hurewicz) Seien (X,A) mit $A\subset X$ beide wegzusammenhängend. Es gelte $\pi_1(A,x_0)=1$ und $\pi_k(X,A,x_0)=0$ für $1\leqslant k\leqslant n-1$, $n\geqslant 2$. Dann ist

$$\theta_n \colon \pi_n(X, A, x_0) \longrightarrow H_n(X, A)$$

ein Isomorphismus.

15.24 Korollar Ist X ein (n-1)-zusammenhängender Raum für ein $n \ge 2$, dann ist

$$\theta_n: \underbrace{\pi_n(X, x_0)}_{=\pi_n(X, \{x_0\}, x_0)} \longrightarrow H_n(X, x_0) \cong H_n(X)$$

ein Isomorphismus.

15.25 Satz Sei $n \ge 1$. Dann ist $\pi_n(S^n, *) \cong \mathbb{Z}$ und $\pi_k(S^n, *) = 0$ für k < n.

BEWEIS: Für n=1 gilt $\pi_0(S^n,*)=\{*\}$ und $\pi_1(S^1,*)\cong \mathbb{Z}$. Für n>1 wissen wir aus dem letzten Semester, dass $\pi_1(S^n,*)=1$ und S^n wegzusammenhängend ist, also 1-zusammenhängend ist. Angenommen $\pi_i(S^n,*)=0$ für $i=0,\dots,k$ und $0\leqslant k< n$. Dann ist S^n k-zusammenhängend und wir erhalten aus dem vorigen Korollar

$$\pi_{k+1}(S^n,*) \xrightarrow{\cong} H_{k+1}(S^n) = \begin{cases} \mathbb{Z}, & \text{falls } k+1 = n \\ 0, & \text{sonst} \end{cases}$$

Falls k+1 < n ist, so ist auch $\pi_{k+1}(S^n,*) = 0$, sonst sind wir fertig.

16 Die Fundamentalklasse

16.1 Beispiel Wir betrachten zu einigen uns gut bekannten Mannigfaltigkeiten die Homologiegruppen in der Dimension der Mannigfaltigkeit:

•
$$H_n(\mathbb{R}^n) = 0$$

•
$$H_{2n}(\mathbb{C}P^n)=\mathbb{Z}$$

•
$$H_n(S^n) = \mathbb{Z}$$

•
$$H_{2n}(S^n \times \mathbb{R}^n) = 0$$

•
$$H_2(T^2) = \mathbb{Z}$$

•
$$H_n(\mathbb{R}P^n)=\mathbb{Z}$$
, falls n ungerade, 0 sonst.

16.2 Bemerkung Sei M ein n-Mannigfaltigkeit und $x \in M$. Da x in M eine Umgebung hat, die homöomorph zu \mathbb{R}^n ist, folgt mit dem Ausschneidungsisomorphismus und der Paarfolge

Ausgeschnitten wird das Komplement dieser Umgebung!

$$H_k\big(M,M\backslash\{x\};R\big)\cong H_k\big(\mathbb{R}^n,\mathbb{R}^n\backslash\{0\};R\big)\cong H_{k-1}\big(\mathbb{R}^n\backslash\{0\};R\big)\cong H_{k-1}(S^{n-1};R)\cong \begin{cases} R & \text{ falls } k=n\\ 0 & \text{ sonst } \end{cases}$$

16.3 Definition Sei M eine n-Mannigfaltigkeit und $x \in M$. Eine (homologische) *Orientierung* (über R) im Punkt x ist ein Erzeuger μ_x von $H_n(M, M \setminus \{x\}; R)$.

BEMERKUNG: Über $R=\mathbb{Z}$ gibt es in jedem Punkt genau zwei Orientierungen, da \mathbb{Z} genau zwei Erzeuger hat. Über $R=\mathbb{F}_2$ gibt es in jedem Punkt eine eindeutige Orientierung, da \mathbb{F}_2 genau einen Erzeuger hat.

16.4 Notation Seien $A \subseteq B \subseteq X$ Unterräume. Sei $i: (X, X \setminus B) \hookrightarrow (X, X \setminus A)$ die Inklusion. Ist $v \in H_n(X, X \setminus B; R)$, so nennen wir

$$v\big|_A := i_*(v)$$

die Einschränkung von v auf A. Für $A = \{x\}$ schreiben wir $v|_x := v|_{\{x\}}$.

16.5 Definition Sei M eine n-Mannigfaltigkeit. Eine (homologische) *Orientierung* von M über R ist eine Zuordnung $M\ni x\mapsto \mu_x\in H_n(M,M\setminus\{x\};R)$, die für jeden Punkt $x\in M$ eine Orientierung über R im Punkt x auswählt, sodass folgende Bedingung erfüllt ist: Für alle $x\in M$ gibt es eine Umgebung U von $x\in M$ und $\mu_U\in H_n(M,M\setminus U;R)$ mit $\mu_y=\mu_U|_y$ für alle $y\in U$. Gibt es eine solche Orientierung, so heißt M R-orientierbar. Eine Mannigfaltigkeit zusammen mit einer Orientierung heißt eine R-orientierte Mannigfaltigkeit. Lassen wir R in den Bezeichnungen weg, so ist immer $R=\mathbb{Z}$ gemeint.

16.6 Beispiel Für $M=\mathbb{R}^n$ betrachte $U=\{x\in\mathbb{R}^n\,|\,\|x\|<1\}$. Dann ist wegen Homotopieinvarianz

$$H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}; R) \cong H_n(\overline{U}, \overline{U} \setminus U; R) \cong H_n(D^n, S^{n-1}; R) = R$$

mit $\overline{U}=D^n=\{x\in\mathbb{R}^n\,|\,\|x\|\leqslant 1\}$ und $\overline{U}\setminus U=S^{n-1}=\{x\in\mathbb{R}^n\,|\,\|x\|=1\}$. Für jedes $y\in U$ ist $(\mathbb{R}^n,\mathbb{R}^n\setminus U)\to (\mathbb{R}^n,\mathbb{R}^n\setminus\{y\})$ eine Homotopieäquivalenz. Ist $\mu_U\in H_n(\mathbb{R}^n,\mathbb{R}^n\setminus\{0\};R)$ eine Erzeuger, so ist also $\mu_y=\mu_U|_y$ eine Orientierung von \mathbb{R}^n in y für alle $y\in U$.

16.7 Beispiel Sei $\mu_{S^n}\in \tilde{H}_n(S^n;R)$ ein Erzeuger. Für $x\in S^n$ ist $\tilde{H}_*(S^n\setminus\{x\};R)=0$ und daher die Einschränkungsabbildung $\tilde{H}_n(S^n;R)\to \tilde{H}_*(S^n,S^n\setminus\{x\};R)=0$ ein Isomorphismus und $\mu_{S^n}|_x$ ist ein Erzeuger von $\tilde{H}_n(S^n,S^n\setminus\{x\};R)$. Daher ist $x\mapsto \mu_{S^n}|_x$ eine Orientierung von M über R.

16.8 Bezeichnung Eine *geschlossene Mannigfaltigkeit* ist eine kompakte Mannigfaltigkeit (ohne Rand).

16.9 Satz Sei M eine geschlossene n-Mannigfaltigkeit. Dann ist M genau dann R-orientierbar, wenn es $\mu \in H_n(M;R)$ gibt, sodass $\mu|_x \in H_n(M,M\setminus\{x\};R)$ für jedes x eine Orientierung von M in x ist. Ist M zusammenhängend, so ist μ ein Erzeuger von $H_n(M;R)$ und $H_n(M;R)\cong R$.

BEWEIS (MIT 16.13): $H_n(M;R)$ und $\Gamma(M,\mathcal{H})$ sind beide mit \coprod verträglich. Daher können wir auch annehmen, dass M zusammenhängend ist. Da M kompakt ist, können wir in dem Lemma 16.13 A=M setzen und wir erhalten für jede Orientierung $s\in\Gamma(M,\mathcal{H})$ eine Klasse $\mu\in H_n(M;R)$ mit $\mu|_x=s(x)$. Nach der Überlagerungstheorie aus dem letzten Semester ist jeder Schnitt von \mathcal{H} schon durch seinen Wert an einem Punkt festgelegt. Insbesondere ist $\mathrm{ev}_x\colon\Gamma(M,\mathcal{H})\to H_n(M,M\setminus\{x\};R)\cong R$ injektiv. Ist M R-orientierbar, so ist ev_x ein Isomorphismus und es folgt

$$H_n(M;R) \cong \Gamma(M,\mathcal{H}) \cong H_n(M,M \setminus \{x\};R) \cong R$$

16.10 Definition Sei M eine geschlossene n-Mannigfaltigkeit. Wir definieren $\mathcal{H}=\mathcal{H}_R$ als die disjunkte Vereinigung aller $H_n(M,M\setminus\{x\};R)$ mit $x\in M$. Auf \mathcal{H} definieren wir nun eine Topologie durch:

 $V \subseteq H$ offen $\Leftrightarrow \forall v \in V$ mit $v \in H_n(M, M \setminus \{x\}; R)$ gibt es eine Umgebung U von x in M und $v_U \in H_n(M, M \setminus U, R)$ mit $v_U\big|_x = v$ und $v_U\big|_y \in V$ für alle $y \in U$.

Wir definieren $\pi\colon\mathcal{H}\to M$ durch $\pi(v)=x$ für $v\in H_n(M,M\setminus\{x\};R)$. Es gilt $\pi^{-1}(\{x\})=H_n(M,M\setminus\{x\};R)$. Mit $\Gamma(M,\mathcal{H})$ bezeichnen wir die Menge aller stetigen Schnitte $s\colon M\to\mathcal{H}$ für π , das heißt

$$\Gamma(M, \mathcal{H}) = \{s \colon M \to \mathcal{H} \text{ stetig} \mid \pi \circ s = \mathrm{id}_M \}$$

16.11 Bemerkungen

- **1)** Für jedes $x \in M$ erbt $H_n(M, M \setminus \{x\}; R) \subseteq \mathcal{H}$ die diskrete Topologie.
- **2)** $\pi \colon \mathcal{H} \to M$ ist eine Überlagerung.
- **3)** $\Gamma(M,\mathcal{H})$ ist ein R-Modul. Sind $s,s'\in\Gamma(M,\mathcal{H})$ und $r\in R$, so können wir s+s' und $r\cdot s$ punktweise erklären:

$$(s+s')(x) := s(x) + s'(x) \in H_n(M, M \setminus \{x\}; R)$$
$$(r \cdot s)(x) := r \cdot s(x) \in H_n(M, M \setminus \{x\}; R)$$

- **4)** R-Orientierungen von M entsprechen genau den Schnitten $s \in \Gamma(M, \mathcal{H})$, für die gilt: Für alle $x \in M$ ist $s(x) \in H_n(M, m \setminus \{x\}; R)$ ein Erzeuger.
- **5)** Eine Folgerung aus der Eindeutigkeit im Hebungssatz aus der Überlagerungstheorie ist folgende Aussage:
 - Sei M zusammenhängend. Dann ist für jedes $x \in M$ die offensichtliche Auswertungsabbildung $\operatorname{ev}_x \colon \Gamma(M,\mathcal{H}) \to H_n(M,M\setminus\{x\};R)$, $\operatorname{ev}_x(s) = s(x)$ injektiv.
- **6)** Sei $v \in H_n(M;R)$. Dann erhalten wir durch $(s_v)(x) := v|_x$ einen Schnitt $s_v \in \Gamma(M,\mathcal{H})$. Dies definiert einen R-Modul-Homomorphismus $H_n(M;R) \to \Gamma(M,\mathcal{H})$, $v \mapsto s_v$.

70

- **7)** Es gibt immer den Nullschnitt in $\Gamma(M,\mathcal{H})$, $x\mapsto 0\in H_n(M,M\setminus\{x\};R)$.
- 8) Ist M zusammenhängend, so ist $\Gamma(M,\mathcal{H}) \neq 0$ genau dann, wenn M R-orientierbar ist.
- **9)** Für M zusammenhängend gilt: M ist R-orientierbar $\iff H_n(M;R) \cong R$.

16.12 Beispiel Für $R = \mathbb{F}_2$ ist $\pi \colon \mathcal{H} \to M$ eine 2-fache Überlagerung. Da \mathcal{H} immer den Nullschnitt zulässt, ist \mathcal{H} dann trivial. Insbesondere ist jede n-Mannigfaltigkeit \mathbb{F}_2 -orientierbar.

16.13 Lemma Sei M eine n-Mannigfaltigkeit und $A \subseteq M$ kompakt. Dann gilt

- **a)** Zu jedem $s \in \Gamma(M, \mathcal{H})$ gibt es ein eindeutiges $v_A \in H_n(M, M \setminus A; R)$ mit $v_A|_x = s(x)$ für alle $x \in A$.
- **b)** Für i > n ist $H_i(M, M \setminus A; R) = 0$.

BEWEIS: Wir beweisen die Aussage in vier Schritten:

Schritt 1: Seien $A_1, A_2 \subseteq M$ kompakt. Wir zeigen: Gelten a) und b) für A_1, A_2 und $A_1 \cap A_2$, so auch für $A_1 \cup A_2$. Mit der Mayer-Vietoris-Sequenz aus 16.14 folgt aus

$$H_i(M, M \setminus A_1; R) = H_i(M, M \setminus A_2; R) = H_{i+1}(M, M \setminus A_1 \cap A_2; R) = 0$$

direkt $H_i(M, M \setminus A_1 \cup A_2; R) = 0$. Daher gilt b) für $A_1 \cup A_2$. Seien $v_1 \in H_n(M, M \setminus A_1; R)$ und $v_2 \in H_n(M, M \setminus A_2; R)$ mit $v_1|_x = s(x)$ für alle $x \in A_1$ und $v_2|_x = s(x)$ für alle $x \in A_2$. Dann gilt

$$(v_1|_{A_1\cap A_2})\Big|_x = s(x) = (v_2|_{A_1\cap A_2})\Big|_x$$

für alle $x\in A_1\cap A_2$. Da $A_1\cap A_2$ die Eindeutigkeitsaussage aus a) erfüllt, folgt $v_1\big|_{A_1\cap A_2}=v_2\big|_{A_1\cap A_2}$. Betrachte nun die Mayer-Vietoris-Folge

"R"aus Platzgründen weggelassen

Daher gibt es ein eindeutiges $v\in H_n(M,M\setminus A_1\cup A_2;R)$ mit $v|_{A_1}=v_1$ und $v|_{A_2}=v_2$. Für $x\in A_1$ folgt $v|_x=v_1|_x=s(x)$ und für $x\in A_2$ folgt genauso $v|_x=v_2|_x=s(x)$. Ist nun $v'\in H_n(M,M\setminus A_1\cup A_2;R)$ eine weitere Homologieklasse mit $v'|_x=s(x)$ für alle $x\in A_1\cup A_2$, so folgt $v'|_{A_1}=v_1$ und $v'|_{A_2}=v_2$ aus der Eindeutigkeit von v_1 und v_2 . Daher gilt auch v=v'.

Schritt 2: Das Lemma ist richtig, wenn A eine abgeschlossene konvexe Teilmenge von $M=\mathbb{R}^n$ ist. Dann ist $(\mathbb{R}^n,\mathbb{R}^n\setminus A)\to (\mathbb{R}^n,\mathbb{R}^n\setminus \{x\})$ eine Homotopieäquivalenz von Paaren und daher $H_n(\mathbb{R}^n,\mathbb{R}^n\setminus A;R)\to H_n(\mathbb{R}^n,\mathbb{R}^n\setminus \{x\};R)$ ein Isomorphismus. Folglich gibt es $v\in H_n(\mathbb{R}^n,\mathbb{R}^n\setminus A;R)$ mit $v|_x=s(x)$. Da $s|_A$ und s_v beides Schnitte der Überlagerung $\pi^{-1}(A)\to A$ sind, folgt mit der Eindeutigkeit im Hebungssatz für alle $y\in A$

$$v\big|_{y} = s_v(y) = s(y)$$

Ist $v' \in H_n(\mathbb{R}^n, \mathbb{R}^n \setminus A; R)$ eine zweite Homologieklasse mit $v'|_x = s(x)$, so folgt v = v', da $v'|_x = s(x) = v|_x$ ist und $w \mapsto w|_x$ ein Isomorphismus $H_n(\mathbb{R}^n, \mathbb{R}^n \setminus A; R) \to H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\}; R)$ ist. Offenbar ist $\mathbb{R}^n \setminus A \simeq S^{n-1}$ und daher $H_i(\mathbb{R}^n \setminus A; R) = 0$ für alle i > n.

16 Die Fundamentalklasse 71

Schritt 3: Das Lemma gilt für $M=\mathbb{R}^n$ und eine beliebige kompakte Teilmenge $A\subseteq M$: Ist A die Vereinigung von endlichen vielen konvexen und kompakten Teilmengen von \mathbb{R}^n , so folgt die Behauptung für A aus Schritt 1 und 2. Für ein beliebiges kompaktes $A\subseteq \mathbb{R}^n$ folgt die Existenzaussage in a) aus Schritt 2. Wähle dazu $B\subseteq \mathbb{R}^n$ konvex und kompakt mit $A\subseteq B$. Nach Schritt 2 gibt es $v\in H_n(\mathbb{R}^n,\mathbb{R}^n\setminus B;R)$ mit $v|_x=s(x)$ für alle $x\in B$. Für $v|_A\in H_n(\mathbb{R}^n,\mathbb{R}^n\setminus A;R)$ gilt dann $(v|_A)|_x=v|_x=s(x)$ für alle $x\in A$.

Sei nun $v \in H_d(\mathbb{R}^n, \mathbb{R}^n \setminus A; R)$ mit $d \geqslant n$. Falls d = n ist, so sei $v|_x = 0$ für alle $x \in A$. Wir müssen zeigen: v = 0. Sei $z \in C_d(\mathbb{R}^n; R)$ ein Repräsentant von v. Insbesondere ist $\partial z \in C_{d-1}(\mathbb{R}^n \setminus A; R)$. ∂z ist eine R-Linearkombination von endlich vielen singulären d-1-Simplizes in $\mathbb{R}^n \setminus A$. Da jeder dieser singulären d-1-Simplizes ein kompaktes Bild in $\mathbb{R}^n \setminus A$ hat, finden wir endlich viele Bälle $B_i \subseteq \mathbb{R}^n$ mit

(1)
$$\forall i: B_i \cap A \neq \emptyset$$
, (2) $A \subseteq B_1 \cup \ldots \cup B_n$ und (3) $\partial z \in C_{d-1}(\mathbb{R}^n \setminus (B_1 \cup \ldots \cup B_n); R)$

Es folgt, dass z auch eine Homologieklasse $v'\in H_d\big(\mathbb{R}^n,\mathbb{R}^n\setminus (B_1\cup\ldots\cup B_n);R\big)$ repräsentiert mit $v'|_A=v$. Ist d>n, so folgt v'=0 und daher auch $v=v'|_A=0$. Ist d=n, so wählen wir $x_i\in B_i\cap A$. Da $v'|_{x_i}=v|_{x_i}=0$ ist, folgt $v'|_{B_i}=0$, weil die Einschränkungsabbildung $w\mapsto w|_{x_i}$ einen Isomorphismus $H_n(\mathbb{R}^n,\mathbb{R}^n\setminus B_i;R)\to H_n(\mathbb{R}^n,\mathbb{R}^n\setminus \{x_i\};R)$ definiert. Daher gilt $v'|_y=0$ für alle $y\in B_1\cup\ldots\cup B_n$. Es folgt v'=0 und damit auch $v=v'|_A=0$.

Schritt 4: Für den allgemeinen Fall schreibt man $A=A_1\cup\ldots\cup A_n$, sodass jedes A_i kompakt ist und in einem Kartengebiet U_i von M enthalten ist. Da wir Ausschneidungsisomorphismen $H_*(U_i,U_i\setminus A;R)\to H_*(M,M\setminus A;R)$ erhalten und $U_i\cong \mathbb{R}^n$ ist, gilt die Behauptung nach Schritt 3 für jedes A_i . Mit Schritt 1 folgt die Behauptung auch für A.

16.14 Bemerkung

1) Zu Unterräumen $A \subseteq B \subseteq X$ gibt es eine kurze exakte Folge von Kettenkomplexen $C_*(B,A;R) \hookrightarrow C_*(X,A;R) \twoheadrightarrow C_*(X,B;R)$. Damit erhalten wir eine lange exakte Folge in Homologie, die man als lange exakte Folge des Tripels bezeichnet:

$$\cdots \to H_{n+1}(X,B;R) \xrightarrow{\partial} H_n(B,A;R) \to H_n(X,A;R) \to H_n(X,B;R) \to \cdots$$

2) Zu abgeschlossenen Unterräumen $A, B \subseteq X$ ist $A \setminus B \subseteq X \setminus A \cap B$ abgeschlossen und $X \setminus B \subseteq X \setminus A \cap B$ offen. Da $A \setminus B \subseteq X \setminus B$ und

$$(X\setminus A\cap B)\setminus (A\setminus B)=X\setminus A\qquad\text{sowie}$$

$$(X\setminus B)\setminus (A\setminus B)=X\setminus (A\cup B)$$

erhalten wir einen Ausschneideisomorphismus

$$H_*(X \setminus A, X \setminus (A \cup B)) \cong H_*(X \setminus A \cap B, X \setminus B; R)$$

Zusammen mit der Paarfolge aus 1) erhalten wir eine Mayer-Vietoris-Folge:

$$\cdots \to H_{n+1}(X, X \setminus A \cap B) \xrightarrow{\partial} H_n(X, X \setminus A \cup B) \to \bigoplus_{H_n(X, X \setminus B)}^{H_n(X, X \setminus A)} \to H_n(X, X \setminus A \cap B) \to \cdots$$

"R" aus Platzgründen weggelassen

Index

Die **Seitenzahlen** sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar

Abbildungsgrad, 36 Abelisierung, 61 abgeschlossene Zelle, 42 affiner singulärer Simplex, 56 anklebende Abbildung, 42 assoziativ, 1 Augmentierung, 17 Ausschneidung, 58

charakteristische Abbildung, 42 CW-Komplex, 41 endlicher, 42

Dimensionsaxiom, 58 disjunkte Vereinigung Axiom, 58 Durchmesser, 56

Ecken, 4
Euler-Charakteristik, 6
eines CW-Komplex, 48
von Z-Kettenkomplexen, 14

freier Modul, 7 Funktor, 2 dargestellter, 2

geometrische Realisierung, 5 geschlossene Mannigfaltigkeit, 70 graduierten, 18 Graphen, 4

homogene Koordinaten, 43 Homologieklasse, 16 Homologietheorie, 58 homologische Orientierun global, 69 im Punkt, 69 Homotopiegruppe, 65 Homotopieinverse, 21 Homotopieäquivalenz, 21 Jordanscher Kurvensatz, 38

Kategorie, 1
klein, 2
kettenhomotop, 22
Kettenhomotopie, 22
Kettenmoduln, 10
Kommutatorgruppe, 61
Komposition, 1
kontrahierbar, 21
Koprodukt
topologischer Räume, 19
von *R*-Moduln, 20
kurze exakte Folge von Kettenkomplexen, 27

lange exakte Folge, 26

n-Ketten, 16

kurze exakte Sequenz, 11

Morphismen, 1 Morphismus von Homologietheorien, 59

n-Ränder, 16
n-Simplex, 4
n-te Bettizahl, 48
n-te Homologie, 10
n-te Randabbildung
simplizial, 8
singulär, 15
zellulär, 45
n-ter Homologiemodul
simplizial, 9
singulär, von Paaren, 26
n-ter Kettenmodul
simplizial, 8
singulär, 15
n-ter zelluläre Kettenmodul, 45
n-zusammonhängend, 65

n-zusammenhängend, 65
n-Zykel, 16
natürliche Transformation, 3, 32
natürlicher Isomorphismus, 47

Objekte, 1 offene Zelle, 42 orientierbare Mannigfaltigkeit, 69 orientierte Mannigfaltigkeit, 69

Index A

Paar von topologischen Räumen, 26 Paarfolge, 58 Polyeder, 6 projektiver Modul, 7, 12 Pushout, 41

R-Kettenabbildung, 18
R-Kettenkomplex, 10
Rand des n-Simplizes, 5
Randabbildungen, 10
Rang einer abelschen Gruppe, 11
reduzierte singuläre Homologie, 34
reell projektiver Raum, 43
relative Homotopiegruppe, 66

Schwache Topologie, 42 Schwerpunkt, 53 Seite, 4 Simplizes, 4 simpliziale Abbildung, 5 simplizialer Kettenkomplex, 10 simplizialer Komplex, 4 singuläre Homologie von X, 16 singuläre Simplizes, 15 singulärer Kettenkomplex, 16 von Paaren, 26 Skalarprodukt, 38 Spaltung, 12 Spektralfolge, 59 Summe topologischer Räume, 19 von R-Moduln, 20

Torsionsgruppe, 11

U-klein, 52unital, 1Unterkomplex, 4

Vektorfeld, 38 Vertices, 4

Zellstruktur, 41 zelluläre Abbildung, 42 zelluläre Homologie, 45 zellulärer Kettenkomplex, 45

B

Abbildungsverzeichnis

1	$\Delta^n imes [0,1]$ für $n=0,1,2$	23
2	Zerlegung von $\Delta^2 \times [0,1]$ in 3-Simplizes	23
3	Ein nirgends verschwindendes Vektorfeld auf S^1	38
4	Skizze zur Ausschneidung mit kleinen Simplizes	52
5	Zerteilung eines 2-Simplex	53
6	Skizze des "Abkegelns"	53
7	Die natürlichen Transformationen ${\cal B}_n$ und ${\cal H}_n$ für $n=0,1,2$	54
8	Skizze zum Beweis von Lemma 15.6	62
9	Skizze zum Beweis von Lemma 15.7	62
10	Skizze zum Beweis von Lemma 15.8	63
11	Skizze zum Beweis von Lemma 15.11	64
12	Verknüpfung in der relativen Homotopiegruppe für $n=2$	66
13	Die Abbildung γ aus Lemma 15.22	67

Abbildungsverzeichnis