Polynômes et fractions rationnelles

M. Varvenne

Dans tout ce chapitre, \mathbb{K} désignera indifféremment \mathbb{R} ou \mathbb{C} .

1 Polynômes

1.1 Structure de $\mathbb{K}[X]$

1.1.1 Opérations et degré

Définition 1.1. Soit $n \in \mathbb{N}$. Un **polynôme** P est une expression de la forme

$$P = \sum_{k=0}^{n} a_k X^k = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n,$$

où a_0, a_1, \ldots, a_n sont des éléments de \mathbb{K} appelés **coefficients du polynôme** P et X est appelée **l'indéterminée**.

Le **degré** du polynôme P est le plus grand entier k tel que $a_k \neq 0$, on le note $\deg(P)$. Le coefficient a_k correspondant est appelé **coefficient dominant** de P. Par convention, le polynôme nul a pour degré $-\infty$.

Notation 1.2. L'ensemble des polynômes à coefficients dans \mathbb{K} est noté $\mathbb{K}[X]$.

Remarque 1.3. Un polynôme dont le coefficient dominant vaut 1 est dit unitaire.

Définition 1.4. Soient $\lambda \in \mathbb{K}$, $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{m} b_k X^k$ deux polynômes de $\mathbb{K}[X]$ avec $n \leq m$. On définit les opérations suivantes :

•
$$P + Q = \sum_{k=0}^{n} (a_k + b_k) X^k + \sum_{\substack{n+1 \ \text{n'apparaît que si } n < m}}^{m} b_k X^k$$
,

•
$$\lambda P = \sum_{k=0}^{n} (\lambda a_k) X^k$$
,

•
$$P \times Q = \sum_{k=0}^{m+n} c_k X^k$$
 où $c_k = \sum_{j=0}^k a_j b_{k-j}$.

On définit aussi le **polynôme dérivé** de P, que l'on note P',

$$P' = \begin{cases} \sum_{k=1}^{n-1} k a_k X^{k-1} & \text{si} \quad n \neq 0\\ 0 & \text{si} \quad n = 0. \end{cases}$$

Proposition 1.5. Soient $(P,Q) \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}^*$, alors

- $\deg(P+Q) \leq \max(\deg(P), \deg(Q)),$
- $\deg(P \times Q) = \deg(P) + \deg(Q)$,

•
$$\deg(P') = \begin{cases} \deg(P) - 1 & si & \deg(P) > 0 \\ -\infty & si & \deg(P) \leqslant 0. \end{cases}$$

Proposition 1.6. Soient $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{m} b_k X^k$.

deg(P) = deg(Q) et les coefficients sont égaux 2 à 2, c-à-d : $\forall k, a_k = b_k$.

Proposition 1.7 (Dérivées successives).

Soient $n \in \mathbb{N}$, $P \in \mathbb{K}[X]$ avec deg(P) = n et $p \in \mathbb{N}$. Alors,

$$P^{(p)} = \begin{cases} 0 & si \quad p > n \\ \sum_{k=p}^{n} k(k-1)\dots(k-p+1)X^{k-p} = \sum_{k=p}^{n} \frac{k!}{(k-p)!}X^{k-p} & si \quad p \leqslant n. \end{cases}$$

Remarque 1.8. Soient $P, Q \in \mathbb{K}[X], \lambda \in \mathbb{K}$ et $k \in \mathbb{N}$, alors

$$(\lambda P + Q)^{(k)} = \lambda P^{(k)} + Q^{(k)}.$$

Proposition 1.9 (Formule de Leibniz). Soient $P, Q \in \mathbb{K}[X]$ et $n \in \mathbb{N}$. Alors

$$(P \times Q)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}.$$

Arithmétique dans $\mathbb{K}[X]$ 1.1.2

Définition 1.10. Soient $A, B \in \mathbb{K}[X]$.

On dit que B divise A et on note $B \mid A$ si il existe $Q \in \mathbb{K}[X]$ tel que

$$A = B \times Q.$$

On dit que A et B sont **associés** si $A \mid B$ et $B \mid A$.

Proposition 1.11. Soient $A, B \in \mathbb{K}[X]$. Alors A et B sont associés si et seulement si il existe λ dans \mathbb{K}^* tel que $A = \lambda B$.

Théorème 1.12 (Division euclidienne). Soient $A, B \in \mathbb{K}[X]$ avec $B \neq 0$. Alors il existe un unique $couple (Q, R) \in \mathbb{K}[X]^2 \ tel \ que$ $\begin{cases} A = B \times Q + R \\ \deg(R) < \deg(B) \end{cases}$

Remarque 1.13. Avec les notations du théorème ci-dessus, on en déduit que $B \mid A$ si et seulement si R = 0.

Définition-Théorème 1.14. Soient $P, Q \in \mathbb{K}[X]$.

- Tout diviseur commun de P et Q de degré maximal est appelé **pgcd de** P **et** Q. Tous les pgcd de P et Q sont associés. En particulier, un seul est unitaire, on l'appelle parfois **le** pgcd de P et Q.
- P et Q sont dits **premiers entre eux** si leur pgcd unitaire vaut 1.

Définition 1.15. Soit $P \in \mathbb{K}[X]$.

On dit que P est **irréductible** si et seulement si P est non constant et

$$\forall (A, B) \in \mathbb{K}[X]^2, \quad P = AB \implies A \in \mathbb{K} \text{ ou } B \in \mathbb{K}.$$

1.2 Racines d'un polynôme

Définition 1.16. Soient $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$.

On dit que α est une **racine** de P si

$$P(\alpha) = \sum_{k=0}^{n} a_k \alpha^k = 0.$$

Théorème 1.17. Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. Alors

$$\begin{array}{lll} \alpha \ est \ une \ racine \ de \ P &\iff& (X-\alpha) \mid P \\ &\iff& \exists Q \in \mathbb{K}[X], \quad P(X) = (X-\alpha)Q(X). \end{array}$$

Définition 1.18. Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$ une racine de P.

On appelle **ordre de multiplicité** de α le plus grand entier $k \in \mathbb{N}^*$ tel que $(X - \alpha)^k \mid P$.

Théorème 1.19. Soient $P \in \mathbb{K}[X]$, $\alpha \in \mathbb{K}$ et $k \in \mathbb{N}^*$. Alors α est une racine d'ordre de multiplicité k si et seulement si

$$P(\alpha) = P'(\alpha) = \dots = P^{(k-1)}(\alpha) = 0$$
 et $P^{(k)}(\alpha) \neq 0$.

1.3 Factorisation d'un polynôme

Théorème 1.20 (Théorème de d'Alembert Gauss). Tout polynôme de $\mathbb{C}[X]$ non constant admet au moins une racine complexe.

Théorème 1.21. Tout polynôme de $\mathbb{K}[X]$ se factorise de manière unique sous la forme suivante :

• $si \mathbb{K} = \mathbb{C}$,

$$P = a(X - \alpha_1)^{r_1}(X - \alpha_2)^{r_2} \dots (X - \alpha_p)^{r_p} = a \prod_{k=1}^{p} (X - \alpha_k)^{r_k},$$

où $\alpha_1, \ldots, \alpha_p$ sont les racines **complexes** de P d'ordre de multiplicité $r_1, \ldots, r_p \in \mathbb{N}^*$ respectivement.

• $si \mathbb{K} = \mathbb{R}$,

$$P = a \prod_{k=1}^{p} (X - \alpha_k)^{r_k} \prod_{j=1}^{q} (X^2 + \beta_j X + \gamma_j)^{s_j},$$

où $\alpha_1, \ldots, \alpha_p$ sont les racines **réelles** de P d'ordre de multiplicité $r_1, \ldots, r_p \in \mathbb{N}^*$ respectivement, et pour tout $j \in \{1, \ldots, q\}, \ \Delta_j = \beta_j^2 - 4\gamma_j < 0.$

Remarque 1.22.

- Les polynômes irréductibles de $\mathbb{C}[X]$ sont de la forme aX + b avec $(a, b) \in \mathbb{C}^2$ et $a \neq 0$.
- Les polynômes irréductibles de $\mathbb{R}[X]$ sont de la forme aX + b avec $(a, b) \in \mathbb{R}^2$ et $a \neq 0$ et de la forme $aX^2 + bX + c$ avec $(a, b, c) \in \mathbb{R}^3$ et $\Delta = b^2 4ac < 0$.

Définition 1.23. Un polynôme $P \in \mathbb{K}[X]$ est dit **scindé** si il peut s'écrire sous la forme d'un produit de polynômes de degré 1, c'est-à-dire :

$$P = \lambda(X - x_1)(X - x_2) \dots (X - x_n),$$

où $n \in \mathbb{N}^*$, et $(\lambda, x_1, x_2, \dots, x_n) \in \mathbb{K}^{n+1}$.

Théorème 1.24 (corollaire au théorème 1.21). Tout polynôme de $\mathbb{C}[X]$ est scindé.

Définition 1.25. Soit
$$P = \sum_{k=0}^{n} a_k X^k = a_n (X - x_1) (X - x_2) \dots (X - x_n)$$

un polynôme de $\mathbb{K}[X]$ scindé de degré n. Pour $k \in \{1, 2, ..., n\}$, on définit les **fonctions** symétriques élémentaires de $x_1, x_2, ..., x_n$, notées σ_k , par

$$\sigma_k = \sum_{1 \leqslant i_1 \leqslant i_2 \leqslant \dots \leqslant i_k \leqslant n} x_{i_1} x_{i_2} \dots x_{i_k}.$$

Proposition 1.26 (Relations coefficients-racines). Avec les mêmes notations que la définition ci-dessus, on a pour tout $k \in \{1, 2, ..., n\}$,

$$\sigma_k = (-1)^k \ \frac{a_{n-k}}{a_n}.$$

2 Fractions rationnelles

2.1 Généralités

Définition 2.1. Une fraction rationnelle dans K est un élément de la forme

$$F = \frac{P}{Q}$$

où $(P,Q) \in \mathbb{K}[X]^2$ et $Q \neq 0$.

On note $\mathbb{K}(X)$ l'ensemble des fractions rationnelles à coefficients dans \mathbb{K} .

Remarque 2.2.

- On a $\mathbb{K}[X] \subset \mathbb{K}(X)$. En effet, si $P \in \mathbb{K}[X]$, alors $P = \frac{P}{1} \in \mathbb{K}(X)$.
- Pour $F \in \mathbb{K}(X)$, l'écriture sous la forme $F = \frac{P}{Q}$ n'est pas unique. Par exemple,

$$F = \frac{X^3 + 2X^2 + 4X + 8}{X^2 + 7X + 10} = \frac{(X+2)(X^2+4)}{(X+2)(X+5)} = \frac{X^2+4}{X+5}.$$

Définition-Théorème 2.3. Soit $F \in \mathbb{K}(X)$. Alors il existe un unique couple $(A, B) \in \mathbb{K}[X]$ tel que : $F = \frac{A}{B}$ avec B unitaire et A et B premiers entre eux.

Cette fraction $\frac{A}{B}$ s'appelle la **représentation irréductible** de F.

La division euclidienne de A par B : A = BQ + R avec $(Q, R) \in \mathbb{K}[X]$ et $\deg(R) < \deg(B)$, nous donne

 $F = \frac{A}{B} = \underbrace{Q}_{partie\ entière\ de\ F} + \frac{R}{B}.$

2.2 Décomposition en éléments simples

Définition 2.4. Un élément simple de $\mathbb{K}(X)$ est une fraction rationnelle de la forme

$$S = \frac{P}{Q^{\alpha}}$$

où

- Q est un polynôme irréductible de $\mathbb{K}[X]$,
- P est un polynôme de $\mathbb{K}[X]$ tel que $\deg(P) < \deg(Q)$,
- $\alpha \in \mathbb{N}$.

Si deg(Q) = 1, on dit que S est un élément simple de **première espèce** et si deg(Q) = 2, on dit que S est un élément simple de **deuxième espèce**.

5

Remarque 2.5.

• Dans $\mathbb{C}(X)$, il n'y a que des éléments simples de première espèce, donc de la forme

$$\frac{\lambda}{(X-\beta)^{\alpha}}$$

avec $\lambda, \beta \in \mathbb{C}$ et $\alpha \in \mathbb{N}$.

• Dans $\mathbb{R}(X)$, il y a des éléments simples de première et de deuxième espèce, respectivement de la forme

$$\frac{\lambda}{(X-\beta)^{\alpha}}$$
 et $\frac{aX+b}{(X^2+\beta X+\gamma)^{\alpha}}$

avec $a, b, \lambda, \beta, \gamma \in \mathbb{R}$, $\alpha \in \mathbb{N}$ et $\Delta = \beta^2 - 4\gamma < 0$.

Théorème 2.6. Toute fraction rationnelle F irréductible peut se décomposer sous la forme

$$F = E + \sum_{k=1}^{n} S_k$$

où $E \in \mathbb{K}[X]$ est la partie entière de F et S_k est un élément simple de $\mathbb{K}(X)$.

Exemple 1. Décomposer en éléments simples dans $\mathbb{C}(X)$

$$F = \frac{1}{(X-1)^2(X-i)(X+i)}.$$

On doit déterminer $a, b, c, d \in \mathbb{C}$ tels que

$$F = \frac{a}{X-1} + \frac{b}{(X-1)^2} + \frac{c}{(X-i)} + \frac{d}{(X+i)}.$$

Exemple 2. Décomposer en éléments simples dans $\mathbb{R}(X)$

$$F = \frac{1}{(X-1)^2(X^2+1)}.$$

On doit déterminer $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \in \mathbb{R}$ tels que

$$F = \frac{\tilde{a}}{X - 1} + \frac{\tilde{b}}{(X - 1)^2} + \frac{\tilde{c}X + \tilde{d}}{X^2 + 1}.$$