- 一. 在[0,1]区间上随机取一点,将区间分成两段. (1) 求分点到区间任一端点的距离小于 $\frac{1}{3}$ 的概率; (2) 求短的一段与长的一段之比大于 $\frac{1}{3}$ 的概率。
- 二. 一秘书负责 5 部电话的接听工作,在同一时刻每部电话需要接听的概率均为 0.3,设同一时刻有 X 部电话需要接听,(1)求同一时刻至少有 2 部电话需要接听的概率。(2)
- 三. 设星球 A 至最近的星球 B 的距离 X(光年)的分布函数为

求随机变量 X 的数学期望与方差。

$$F(x) = 1 - \theta^{-\frac{4}{3}\pi\lambda x^3}, x \ge 0$$

- (2) 求 B 对 A 的引力 $Y = \frac{k}{X^2}(k > 0)$ 为常数)的分布函数。
- 四 . 已 知 (X, Y) 的 概 率 密 度 为 $f(x,y) = \begin{cases} e^{-y} & 0 \le x \le y \\ 0 & \text{其它} \end{cases}$ (1) 求 X、Y 的概率密

度; (2) 问 X 与 Y 独立吗?

五. 设 $X \sim N(-1,1)$ $Y \sim N(1,1)$, (1) 若 X 与 Y 独立, , 求 $\{X+Y>1\}$ 的概率。(2) 若 X 与 Y 的相关系数为 $\rho=0.5$,求 $Z_1=\alpha X+\beta Y$ 和 $Z_2=\alpha X-\beta Y$ 的相关系数(其中 α 、 β 是不为零的常数)。

六. 一大批鸡蛋中有 15%是莱克亨品种,单枚重量 X (克) 服从正态分布 $N(60,5^2)$,其余 85%是当地品种,单枚重量 Y (克) 服从正态分布 $N(50,6^2)$. (1) 从这批鸡蛋中任取 1 枚,其重量小于 60 克的概率是多少?(2)从这批鸡蛋中抽取 500 枚,试用中心极限定理近似计算单枚重量大于 60 克的鸡蛋数不低于 80 枚的概率是多少?

七设总体 X 具有概率密度为

$$f(x;\lambda) = \begin{cases} \lambda \alpha x^{\alpha-1} e^{-\lambda x^{\alpha}}, & x > 0, \\ 0, & x \le 0 \end{cases}$$

其中 $\lambda > 0$ 是未知参数, $\alpha > 0$ 是已知常数,试根据来自总体X的简单随机样本 $(x_1, x_2, ..., x_n)$,(1)求 λ 的极大似然估计。(2)求 $\theta = \frac{1}{\lambda}$ 的极大似然估计。

- 八. 岩石密度的测量误差服从正态分布 $N(\mu,\sigma^2)$, 在某次岩石密度测定中,检查了 6 块标本,测得数据如下: 0.0987 0.11 0.101 0.0983 0.0997 0.0995
- (1) 试在水平 $\alpha = 0.05$ 下检验是否可以认为 平均测量误差为 0.1。
- (2) 若已知 $\mu = 0.1$,取 σ^2 的区间估计为 $\left(\sum_{i=1}^{6}(X_i 0.1)^2 / 171.2, \sum_{i=1}^{6}(X_i 0.1)^2 / 24.3\right)$,问此区间估计的置信度是多少?

九、设 $Y(t) = \sin(2\pi Xt), t = 1, 2, \cdots$,其中随机变量 X 服从区间(0,1)上的均匀分布,证明随机过程 $\{Y(t), t = 1, 2, \cdots\}$ 是平稳过程,但不是严平稳过程。

附表 I:
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

x	0. 71	1. 0	1.645	1. 67	1.96	2. 0	2. 33	2. 57	2. 75
$\Phi(x)$	0. 7611	0.8413	0. 95	0. 9525	0. 975	0. 977	0. 99	0. 9949	0. 997
						2			

附表 II: $P\{t(n)>t_{\alpha}(n)\}=\alpha$

n	5	6	8	10	12	14
α=0. 025	2. 5706	2. 4469	2. 3060	2. 2281	2. 1788	2. 1448
α=0.05	2.0150	1. 9432	1.8595	1.8125	1. 7823	1. 7613

附

$$\chi^{2}_{0.025}(5) = 12.833, \quad \chi^{2}_{0.975}(5) = 0.831, \quad \chi^{2}_{0.025}(6) = 14.449, \quad \chi^{2}_{0.975}(6) = 1.237$$

附表 IV: 正态总体均值检验表

已知 条件	$H_{_0}$	H_1	检 验 统计量	原假设为 真时检验统计 量的分布	拒绝域
σ ² 已 知	$\mu = \mu_0$	$\mu \neq \mu_0$	$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)	$ Z \ge z_{\alpha/2}$
σ ² 未 知	$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	<i>t</i> (<i>n</i> – 1)	$\left T\right \ge t_{\frac{\alpha}{2}}(n-1)$