

ALOHAの紹介

自己紹介

- **氏名**: 赤見坂篤記 (@aakamisaka)
- **所属**: 名古屋大学大学院情報学研究科 (博士後期課程)
- ・ Hi研究所での活動
 - 遠隔操作型ロボットの 模倣学習技術の開発検討
- ・ 個人活動(?)
 - AGIRobots株式会社を設立し 汎用人型AIロボットの実用化に向けて 研究開発を実施
 - 今月下旬(2024/11/20-22)に行われる EdgeTech+2024にてとある企業様の 展示ブース内で動態展示を実施予定

ALOHAとは

https://youtu.be/4VfNskoPUZg?si=Uz9gd7odgiqeySYB

ALOHA登場の背景

ファインマニピュレーションの難しさ

- ●ファインマニピュレーション
 - ▶ミリ単位の誤差でも失敗につながる ような高精度な操作が求められる
- ●具体例
 - ▶財布からお札を取り出す動作
 - ▶料理で必要な動作もろもろ

従来システムの課題

●ファインマニピュレーションを実 現するには一般的に以下が不可欠

高価なロボットや 高精度なセンサ

細かなチューニング

ハードウェアの コスト増加

人件費の増加

社会実装における大きな障壁

ALOHAの貢献

安価なハードウェアによる ファインマニピュレーション実現

人間のデモンストレーションから 学習する新たなモデル(ACT)の提案

ロボットの概要-八一ド側

ロボットアーム

フォロワー側: ViperX 300 リーダー側 : WidowX 250

カメラ

型番: Logitech C922X

設置場所:

- フロント
- トップ
- -右フォロワーアーム手首
- 左フォロワーアーム手首

ロボットの概要 – ソフト側

ACT – 概要

ACT: Action Chunking with Transformers

CVAE

ニューラルネットには Transformerを採用

Action Chunking

フォロワーの 現在角度を条件に 観測情報として画像を入力

全体でみるとCVAE (条件付き変分オートエンコーダ)

Degradation Prediction of Semiconductor Lasers using Conditional Variational Autoencodeより引用

CVAE

- -AE (オートエンコーダの一種)
- 潜在空間を正規分布で近似
- 条件付けに基づく生成が可能

ポイント

CVAEの条件情報はエンコーダと デコーダの両方に入力される

条件付き情報を考慮した潜在空間の 獲得がなされる

全体でみるとCVAE (条件付き変分オートエンコーダ)

フォロワーアームの現在角度が条件に

全体でみるとCVAE (条件付き変分オートエンコーダ)

画像入力は条件じゃなさそうだけど何?

全体でみるとCVAE (条件付き変分オートエンコーダ)

ACTでは新しい考え方として、 DecoderをPolicyだと見た時の 観測(observation)入力として解釈

画像入力は条件じゃなさそうだけど何?

ACT-アクションチャンキング

- Action Chunking
 - 短い行動系列として学習することで 再利用可能に
- Temporal Ensemble
 - 大きく軌道がズレることが無いように 少しずつズラすようにしてバッチ学習
 - ・ 誤差蓄積を軽減

研究所での実験紹介1

小さなペットボトルのキャップを開ける動作の獲得結果

研究所での実験紹介 2

CRANE-X7を用いた単腕遠隔操作システム

Bi-ACTを用いて紙コップを重ねる動作を学習