6.2. Метод Ньютона. Итерации высшего порядка

Метод Ньютона. В случае одного уравнения формула *метода Ньютона* имеет вид

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$

Метод состоит в замене дуги кривой y = f(x) касательной к ней в процессе каждой итерации. Это видно из уравнения касательной, проведенной в точке $(x_n, f(x_n))$:

$$y - f(x_n) = f'(x_n)(x - x_n),$$

из которого следует формула итерационного процесса, если положить y=0 и $x=x_{n+1}$.

Метод Ньютона соответствует методу простой итерации $\frac{x_{n+1}-x_n}{\tau_n}+f(x_n)=0$ с оптимальным, в некотором смысле, переменным параметром τ_n . Действительно, пусть z- изолированный простой (т. е. $f'(z)\neq 0$) корень, пусть также z и все x_n принадлежат некоторому отрезку [a,b]. Тогда

$$z - x_{n+1} = z - x_n + \tau_n f(x_n) - \tau_n f(z) = (1 - \tau_n f'(\xi_n))(z - x_n),$$

следовательно, при $au_n = \frac{1}{f'(\xi_n)}$ метод сходится за одну итерацию. Точка

 ξ_n неизвестна, поэтому на текущем шаге выбираем $\tau_n = \frac{1}{f'(x_n)}$, при этом верна оценка

 $|z - x_{n+1}| \le \max_{\xi \in [a,b]} |1 - \tau_n f'(\xi)| |z - x_n|.$

Рассмотрим случай системы m нелинейных уравнений

$$\mathbf{F}(\mathbf{x}) = 0\,,$$

где $\mathbf{x}=(x^1,\ldots,x^m)^T$, $\mathbf{F}=(f_1,\ldots,f_m)^T$. Будем предполагать отображение $\mathbf{F}:\mathbf{R}^m\to\mathbf{R}^m$ непрерывно дифференцируемым в некоторой окрестности решения \mathbf{z} , так что

$$\mathbf{F}'(\mathbf{x}) = \left[\frac{\partial f_i}{\partial x^j}\right], \quad 1 \leqslant i, j \leqslant m.$$

В предположении обратимости этого оператора метод Ньютона можно записать в виде

 $\mathbf{x}_{n+1} = \mathbf{x}_n - (\mathbf{F}'(\mathbf{x}_n))^{-1} \mathbf{F}(\mathbf{x}_n).$

Введем обозначение: $\Omega_a = \{\mathbf{x} : \|\mathbf{x} - \mathbf{z}\| < a\}$, где $\|\cdot\|$ — норма в \mathbf{R}^m . Пусть при некоторых $a, a_1, a_2 : 0 < a, 0 < a_1, a_2 < \infty$, выполнены следующие условия:

- 1) $\|(\mathbf{F}'(\mathbf{x}))^{-1}\mathbf{y}\| \leqslant a_1\|\mathbf{y}\|$ при $\mathbf{x} \in \Omega_a$ и $\forall \mathbf{y}$;
- 2) $\|\mathbf{F}(\mathbf{u}_1) \mathbf{F}(\mathbf{u}_2) \mathbf{F}'(\mathbf{u}_2)(\mathbf{u}_1 \mathbf{u}_2)\| \leqslant a_2 \|\mathbf{u}_1 \mathbf{u}_2\|^2$ при $\mathbf{u}_1, \mathbf{u}_2 \in \Omega_a$. Обозначим также $c = a_1 a_2, b = \min(a, c^{-1})$.

Теорема. При условиях $1,\ 2\ u\ \mathbf{x}_0\in\Omega_b$ метод Ньютона сходится c оценкой погрешности

$$\|\mathbf{x}_n - \mathbf{z}\| \leqslant c^{-1} \left(c \|\mathbf{x}_0 - \mathbf{z}\| \right)^{2^n},$$

т. е. квадратично.

Условия теоремы гарантируют, что корень ${\bf z}$ простой. В случае двукратного корня (p=2) метод Ньютона сходится линейно; скорость сходимости замедляется при повышении кратности.

Интерполяционные методы построения итераций высшего порядка. Пусть $x_n, ..., x_{n-m+1}$ — набор из m приближений к корню z функции f(x). Тогда в качестве очередного приближения x_{n+1} целесообразно выбрать ближайший к x_n нуль интерполяционного многочлена $L_m(x)$, построенного по узлам $x_n, ..., x_{n-m+1}$. Это требует нахождения корней многочлена $L_m(x)$. Как следствие, широкое применение имеют только алгоритмы при m=2,3, т. е. метод секущих и метод парабол.

Чтобы избежать проблем, связанных с решением алгебраического уравнения $L_m(x) = 0$, естественно интерполировать обратную к y = f(x) функцию x = F(y) по узлам $y_{n-i} = f(x_{n-i})$, i = 0, ..., m-1, и в качестве очередного приближения взять значение полученного интерполяционного многочлена в нуле. Линейная обратная интерполяция (m = 2) соответствует методу секущих, но уже при m = 3 прямая и обратная интерполяция приводят к различным алгоритмам.

Метод Чебышёва. Пусть z- простой корень уравнения f(x)=0 и F(y)- обратная к f(x) функция. Тогда $x\equiv F(f(x))$ и z=F(0). Разложим F(0) в ряд Тейлора в окрестности некоторой точки y

$$F(0) = F(y) + \sum_{k=1}^{m} F^{(k)}(y) \frac{(-y)^k}{k!} + \dots$$

Приблизим значение F(0) значением частичной суммы в точке y = f(x)

$$z = F(0) \approx \varphi_m(x) = x + \sum_{k=1}^{m} (-1)^k F^{(k)}(f(x)) \frac{(f(x))^k}{k!},$$

что соответствует замене функции F многочленом φ_m , производные которого совпадают с соответствующими производными F в точке y=f(x). Итерационный метод вида $x_{n+1}=\varphi_m(x_n)$ имеет порядок сходимости m+1.

 δ^2 -процесс Эйткена. Вычислим по имеющемуся приближению x_n значения $x_{n+1}=\varphi(x_n)$ и $x_{n+2}=\varphi(x_{n+1})$. Так как в малой окрестности простого корня z имеются представления

$$x_{n+1} - z \approx \varphi'(z)(x_n - z), \quad x_{n+2} - z \approx \varphi'(z)(x_{n+1} - z),$$

 \triangleright

то из данных соотношений получаем

$$\varphi'(z) \approx \frac{x_{n+2} - x_{n+1}}{x_{n+1} - x_n}, \quad z \approx \frac{x_{n+2} - \varphi'(z)x_{n+1}}{1 - \varphi'(z)} \approx \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n}.$$

Таким образом, за следующее после x_n приближение разумно принять

$$x_{n+1} = \frac{x_n \varphi(\varphi(x_n)) - \varphi(x_n)\varphi(x_n)}{\varphi(\varphi(x_n)) - 2\varphi(x_n) + x_n} = \varphi(\varphi(x_n)) - \frac{(\varphi(\varphi(x_n)) - \varphi(x_n))^2}{\varphi(\varphi(x_n)) - 2\varphi(x_n) + x_n}.$$

Известно, что если процесс $x_{n+1} = \varphi(x_n)$ имел линейную скорость сходимости, то данная модификация имеет скорость сходимости более высокого порядка, но возможно, только сверхлинейную. Применение рассмотренной модификации, например, к квадратично сходящейся последовательности формально не приводит к повышению порядка сходимости. Данное преобразование является частным случаем (при $\varphi_1 = \varphi_2 = \varphi$) метода Стеффенсона—Хаусхолдера—Островского построения итерационной функции φ_3 более высокого порядка по известным φ_1 и φ_2 :

$$\varphi_3(x) = \frac{x\varphi_1(\varphi_2(x)) - \varphi_1(x)\varphi_2(x)}{x - \varphi_1(x) - \varphi_2(x) + \varphi_1(\varphi_2(x))}.$$

6.26. Построить итерационный метод Ньютона для вычисления $\sqrt[p]{a}$, a > 0, где p — положительное вещественное число.

 \triangleleft Значение $\sqrt[p]{a}$ является корнем уравнения

$$f(x) \equiv x^p - a = 0.$$

Для этого уравнения метод Ньютона имеет вид

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^p - a}{px_n^{p-1}} = \frac{p-1}{p} x_n + \frac{a}{px_n^{p-1}}.$$

Для
$$p = 2$$
 получаем $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$.

6.27. Пусть уравнение f(x) = 0 имеет на отрезке [a, b] простой корень, причем f(x) — трижды непрерывно дифференцируемая функция. Показать, что при этих условиях метод Ньютона имеет квадратичную скорость сходимости.

 \triangleleft Метод Ньютона имеет вид $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Обозначим через z

искомый корень. Тогда z — корень уравнения $x = \varphi(x), \ \varphi(x) = x - \frac{f(x)}{f'(x)}$.

Таким образом, можно рассматривать метод Ньютона как частный случай метода простой итерации, для которого

$$\varphi'(x) = \frac{f(x) f''(x)}{\left(f'(x)\right)^2}$$
, следовательно, $\varphi'(z) = 0$.

Согласно 6.1, найдется такая окрестность корня Q_{δ} , что $\varphi(Q_{\delta}) \subset Q_{\delta}$. Оценим скорость сходимости метода Ньютона, используя разложение в ряд Тейлора в окрестности точки z

$$x_{n+1} - z = \varphi(x_n) - \varphi(z) = \frac{1}{2} (x_n - z)^2 \varphi''(\xi), \xi \in [x_n, z].$$

Итак, вблизи корня метод Ньютона имеет квадратичную скорость сходимости.

6.28. Пусть уравнение f(x) = 0 имеет на отрезке [a, b] корень z кратности p, причем f(x) — дважды непрерывно дифференцируемая функция.

Показать, что при этих условиях метод Ньютона сходится со скоростью геометрической прогрессии со знаменателем $\frac{p-1}{p}$.

 \triangleleft Поступая так же, как и в случае простого корня 6.27, получим $x_{n+1}-z=(x_n-z)\,\varphi'(z)+0, 5(x_n-z)^2\,\varphi''(\xi),$ где $\xi\in[x_n,z].$ Однако в случае p>1 в выражении

$$\varphi'(x) = \frac{f(x) f''(x)}{(f'(x))^2}$$

при x=z содержится неопределенность «нуль на нуль», так как z — одновременно корень уравнения f'(x)=0. Оценим $\varphi'(x)$.

Функция f(x) в окрестности корня z кратности p ведет себя как $a\,(x-z)^p+o(|x-z|^p)$, где a — ненулевая константа. Тогда в малой окрестности корня

$$\varphi'(x) = \frac{f(x)f''(x)}{(f'(x))^2} = \frac{a(x-z)^p ap(p-1)(x-z)^{p-2}}{a^2p^2(x-z)^{2p-2}} + o(1),$$
$$\varphi'(z) = \frac{p-1}{n} < 1.$$

Отсюда следует, что чем выше кратность корня, тем медленнее сходимость. \triangleright

6.29. Пусть уравнение f(x) = 0 имеет на отрезке [a,b] корень z кратности p, причем f(x) — дважды непрерывно дифференцируемая функция. Построить модификацию метода Ньютона, имеющую квадратичную скорость сходимости.

Требуемую модификацию будем искать в виде

$$x_{n+1} = x_n - \alpha \frac{f(x_n)}{f'(x_n)}$$

и подберем параметр α так, чтобы имела место квадратичная сходимость. Рассмотрим данную модификацию как специальный случай метода простой итерации $x_{n+1} = \varphi(x)$, для которого выполнено $z = \varphi(z)$, причем

вблизи корня

$$\varphi'(x) = 1 - \alpha + \alpha \frac{f(x)f''(x)}{(f'(x))^2} = 1 - \alpha + \alpha \frac{p-1}{p} + o(1),$$
$$\varphi'(z) = \frac{p-\alpha}{p}.$$

Для обеспечения квадратичной сходимости параметр α надо подобрать таким, чтобы $\varphi'(z) = 0$, что и выполняется при $\alpha = p$.

6.30. Построить метод Ньютона для вычисления значения a^{-1} так, чтобы расчетные формулы не содержали операций деления. Определить область сходимости метода при a>0.

 \triangleleft Искомое число является корнем уравнения $\frac{1}{ax}-1=0$. Для этого уравнения метод Ньютона имеет вид: $x_{n+1}=2\,x_n\,-\,a\,x_n^2$, или $x_{n+1}=x_n(2-a\,x_n)$.

Если $x_0 = 0$ или $x_0 = \frac{2}{a}$, то сходимость к корню не имеет места, так как все x_n равны нулю. Если $x_0 < 0$, то сходимости также не будет, поскольку все x_n останутся отрицательными. Если взять $x_0 > \frac{2}{a}$, то также все $x_n < 0$.

Из вида итерационного процесса следует, если $x_n \in \left(0,\frac{1}{a}\right]$, то $x_{n+1} \in \left(0,\frac{1}{a}\right]$, если же $x_n \in \left[\frac{1}{a},\frac{2}{a}\right)$, то $x_{n+1} \in \left[0,\frac{1}{a}\right)$. Пусть $x_n \in \left(0,\frac{1}{a}\right]$. Тогда из равенства $x_{n+1}-x_n=x_n(1-ax_n)$ получаем, что $x_{n+1}>x_n$, а из условия $x_{n+1}=x_n(2-ax_n)$, что $x_{n+1}\leqslant \frac{1}{a}$. Так как итерационный процесс имеет две неподвижные точки 0 и $\frac{1}{a}$, то приближения сходятся к $\frac{1}{a}$.

Таким образом, сходимость к корню имеет место, если начальное приближение берется из интервала $\left(0,\frac{2}{a}\right)$.

6.31. Пусть уравнение f(x) = 0 имеет на отрезке [a,b] корень z неизвестной кратности p > 1, причем f(x) — трижды непрерывно дифференцируемая функция. Построить модификацию метода Ньютона с квадратичной скоростью сходимости и предложить способ численной оценки величины кратности корня.

 \triangleleft Для уравнения $g(x) \equiv \frac{f(x)}{f'(x)} = 0$ корень z- простой, следовательно, для уравнения g(x) = 0 метод Ньютона выглядит так:

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{f(x_n)f'(x_n)}{(f'(x_n))^2 - f(x_n)f''(x_n)}$$

и имеет квадратичный порядок сходимости.

В окрестности z функция $f(x) \approx a (x-z)^p$, поэтому

$$g(x) = \frac{f(x)}{f'(x)} \approx \frac{a(x-z)^p}{ap(x-z)^{p-1}} = \frac{1}{p} (x-z).$$

Из двух соседних итераций для x_1 и x_2 имеем систему приближенных уравнений

 $g(x_1) \approx \frac{1}{p} (x_1 - z), \quad g(x_2) \approx \frac{1}{p} (x_2 - z).$

Отсюда получаем оценку для кратности p корня z:

$$p \approx \frac{x_2 - x_1}{g(x_2) - g(x_1)} \,.$$

Такой способ оценивания р можно применять на каждой итерации.

6.32. Для решения уравнения $x^3 - x = 0$ применяют метод Ньютона. При каком начальном приближении он сходится и к какому корню?

Ответ: обозначим области сходимости метода Ньютона

$$x_{n+1} = \varphi(x_n), \quad \varphi(x) = \frac{2x^3}{3x^2 - 1}$$

к корням z=-1,0,+1 через X_-,X_0,X_+ соответственно. Кроме того, определим последовательности точек $\{x_n^\pm\}$ для $n\geqslant 0$ следующими условиями:

$$\varphi(x_{n+1}^{\pm}) = x_n^{\pm}, \quad x_0^{\pm} = \pm \frac{1}{\sqrt{3}},$$

для элементов которых справедливы неравенства

$$-\frac{1}{\sqrt{3}} = x_0^- < x_1^+ < x_2^- < \dots < -\frac{1}{\sqrt{5}} < 0 < \frac{1}{\sqrt{5}} < \dots < x_2^+ < x_1^- < x_0^+ = \frac{1}{\sqrt{3}}$$

и существуют пределы

$$\lim_{k \to \infty} x_{2k}^- = \lim_{k \to \infty} x_{2k-1}^+ = -\frac{1}{\sqrt{5}}, \qquad \lim_{k \to \infty} x_{2k}^+ = \lim_{k \to \infty} x_{2k-1}^- = \frac{1}{\sqrt{5}}.$$

Тогда

$$X_{-} = \left(-\infty, x_{0}^{-}\right) \cup \bigcup_{k=1}^{\infty} \left[\left(x_{2k-1}^{+}, x_{2k}^{-}\right) \cup \left(x_{2k-1}^{-}, x_{2(k-1)}^{+}\right)\right],$$

$$X_{0} = \left(-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right),$$

$$X_{+} = \left(x_{0}^{+}, \infty\right) \cup \bigcup_{k=1}^{\infty} \left[\left(x_{2(k-1)}^{-}, x_{2k-1}^{+}\right) \cup \left(x_{2k}^{+}, x_{2k-1}^{-}\right)\right].$$

Кроме того, если $x_0=x_n^\pm,\, n\geqslant 0$, то метод не определен, а при $x_0=\pm\frac{1}{\sqrt{5}}$ имеем $x_1=\pm\frac{1}{\sqrt{5}}$, т. е. метод «зацикливается».

Таким образом, области сходимости к корням $z=\pm 1$ являются объединениями перемежающихся открытых интервалов, разделенных точками зацикливания метода.

6.33. Доказать, что если на отрезке [a,b] функция f'(x) не обращается в нуль, функция f''(x) непрерывна и не меняет знака, кроме того, выполнены условия

$$f(a)f(b) < 0$$
, $\max \left[\left| \frac{f(a)}{f'(a)} \right|, \left| \frac{f(b)}{f'(b)} \right| \right] \leqslant b - a$,

то метод Ньютона для решения уравнения f(x) = 0 сходится при любом $x_0 \in [a, b]$.

6.34. Указать область сходимости метода решения уравнения $x=\frac{1}{a},$ не содержащего операций деления:

$$x_{n+1} = (1+C) x_n - a C x_n^2,$$

в зависимости от параметра $C \neq 0$.

- **6.35.** Рассматривается метод Ньютона вычисления \sqrt{a} при $1\leqslant a\leqslant 4,\ x_0$ полагают равным значению многочлена наилучшего равномерного приближения для \sqrt{a} на [1,4]: $x_0=Q_1^0(a)=\frac{17}{24}+\frac{a}{3}$. Доказать справедливость оценки $|x_4-\sqrt{a}|\leqslant 0, 5\cdot 10^{-25}$.
- **6.36.** Для нахождения $a^{1/3}$ используют итерационный процесс

$$x_{n+1} = A x_n + B \frac{a}{x_n^2} + C \frac{a^2}{x_n^5}$$
.

Найти значения параметров A,B,C, обеспечивающие максимальный порядок сходимости.

6.37. Записать формулы метода Чебышёва для функции $f(x) = x^p - a$. \triangleleft Обратная к f функция имеет вид $F(y) = (a+y)^{1/p}$, а производные F определяются формулой

$$F^{(k)}(y) = x^{1-kp} \prod_{j=0}^{k-1} \left(\frac{1}{p} - j\right).$$

Таким образом,

$$\varphi_m(x) = x + x \sum_{k=1}^{m-1} \frac{1}{k!} \left(\frac{a - x^p}{px^p} \right)^k \prod_{j=0}^{k-1} (1 - jp).$$

В частности, $\varphi_2(x)=\left(\frac{x}{p}\right)\left(p-1+\frac{a}{x^p}\right)$. При p=2 получаем формулу Ньютона—Херона $x_{n+1}=\varphi_2(x_n)$ для приближенного вычисления квадратных корней.

Если p=-1, то $\varphi_m(x)=x\sum_{k=0}^{m-1}(1-ax)^k$. В этом случае итерационный процесс $x_{n+1}=\varphi_m(x_n)$ при |1-ax|<1 сходится к решению уравнения $x-\frac{1}{a}=0$. Данный метод позволяет находить значение $\frac{1}{a}$ с произвольной точностью, не используя операцию деления.

6.38. Показать, что метод вычисления $a^{1/p}$

$$x_{n+1} = \varphi(x_n), \ \varphi(x) = x \frac{(p-1)x^p + (p+1)a}{(p+1)x^p + (p-1)a}$$

имеет третий порядок.

6.39. Определить порядок сходимости метода

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{f''(x_n)(f(x_n))^2}{2(f'(x_n))^3}$$
.

Ответ: порядок сходимости m = 3.

- **6.40.** Определить порядок сходимости модифицированного метода Ньютона $x_{n+1} = x_n \frac{f(x_n)}{f'(x_0)}$.
- 6.41. Определить порядок сходимости метода

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{f(x_n - (f'(x_n))^{-1}f(x_n))}{f'(x_n)}.$$

Ответ: порядок сходимости m=3.

6.42. Для нахождения простого нуля z функции $f(x) \in C^{(4)}$ используют итерационный метод

$$x_{n+1} = 0, 5 (y_{n+1} + v_{n+1}),$$

где

$$y_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}, \quad v_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}, \quad g(x) = \frac{f(x)}{f'(x)}.$$

Доказать, что если метод сходится, то скорость сходимости— кубичная.

6.43. Для нахождения нуля z функции f(x) используют итерационный метод

$$x_{n+1} = g(x_n), \quad g(x) = x - \frac{(f(x))^2}{f(x+f(x)) - f(x)}.$$

Исследовать поведение функции g(x) в окрестности корня z.

6.44. Записать расчетную формулу метода Ньютона для системы уравнений:

1)
$$\begin{cases} \sin(x+y) - 1, 3x = 0, 1, \\ x^2 + y^2 = 1; \end{cases}$$
 2)
$$\begin{cases} x^{10} + y^{10} = 1024, \\ e^x - e^y = 1. \end{cases}$$

6.45. Указать начальное приближение и оценить число итераций в методе Ньютона, требующихся для достижения точности 10^{-3} при решении системы уравнений

 $\begin{cases} x^3 - y^2 = 1, \\ xy^3 - y = 4. \end{cases}$

6.46. Проверить, что $\mathbf{z}=(1,1,1)^T$ —одно из решений системы уравнений $\mathbf{F}(\mathbf{x})=0$, где $\mathbf{F}:\mathbf{R}^3\to\mathbf{R}^3$ имеет вид

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} x_1 x_2^3 + x_2 x_3 - x_1^4 - 1 \\ x_2 + x_2^2 + x_3 - 3 \\ x_2 x_3 - 1 \end{bmatrix}.$$

Сходится ли метод Ньютона к **z** при достаточно близких начальных приближениях?

6.47. Для решения нелинейной краевой задачи

$$y'' = f(x, y)$$
 при $x \in (0, X)$, $y(0) = a$, $y(X) = b$

рассматривается система нелинейных алгебраических уравнений с параметром $h = \frac{X}{N}$:

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} = f(x_k, y_k), \ k = 1, 2, \dots, N - 1, \quad y_0 = a, \ y_N = b.$$

Здесь y_k — приближения к значениям y(kh). Записать расчетные формулы метода Ньютона для решения приведенной системы. Указать способ их реализации: $1)f(x,y) = x^2 + y^3$; $2)f(x,y) = y^2 \exp(x)$; $3)f(x,y) = \cos x \sin y$.