|                                                                                                                                                                                                   | Дык Мань<br>ЦИОННЫЙ ТЕСТ<br>иотехника                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Построить в масштабе АЧС и ФЧС. Указывать числ                                                                                                                                                 |                                                                                                                                                        |
| Сигнала вида $x=A_1\mathrm{cos}2\pi F_1+A_2\mathrm{cos}2\pi F_2+A_3\mathrm{cos}2\pi F_3$ $A_1$ = 2 B, $A_2$ = 1 B, $A_3$ = 1,5 B $F_1$ = 300 к $\Gamma$ ц, $F_2$ = 0,5 M $F_3$ =0, 2 М $\Gamma$ ц | Амплитудно-модулированного радиосигнала с несущей частотой 2πf (f=10 МГц) и низкочастотным модулирующим сигналом вида (л – на рисунке в первом столбце |
| АЧС                                                                                                                                                                                               | АЧС                                                                                                                                                    |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
| ФЧС                                                                                                                                                                                               | ФЧС                                                                                                                                                    |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   | I                                                                                                                                                      |
|                                                                                                                                                                                                   |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |
| 2. Какова <b>ширина спектра <u>частотно-мо</u>д</b>                                                                                                                                               | <b>цулированного радиосигнала</b> при однотональной                                                                                                    |
| модуляции: $F_1$ = 0,5 М $\Gamma$ ц                                                                                                                                                               |                                                                                                                                                        |
| При девиаци частоты $\Delta f = 100 \; \mathrm{к\Gamma}$ цк $\Gamma$ ц                                                                                                                            |                                                                                                                                                        |
|                                                                                                                                                                                                   |                                                                                                                                                        |

Поясните: Считать  $m = \Delta f/F1$  При девиаци частоты  $\Delta f = 100$  к $\Gamma$ ц, m < 1 то ширина спектра = 2\*F1,

При девиаци частоты m>1,  $\Delta f = 2000$  к $\Gamma$ ц то ширина спектра = 2 \*  $\Delta f$ 

nskarmanovsky@itmo.ru Название файла: Чан Дык Мань N33492

**\_4000**\_\_\_\_ кГц

3. На рисунке изображена схема радиоприемника супергетеродинного типа.



а) **название** элементов U1 и U2. и их **назначение** 

<u>U1 – смеситель осуществляющий операцию преобразования сигнала по частоте, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции</u>

## **U2 - детектор-выделение из радиочастотного сигнал полезного сигнал**

б) Укажите соотношение между  $f_1$ ,  $f_2$  и  $f_3$ 

$$f3 = f2 - f1$$

в) Как нужно изменить частоту  $f_2$ , если частота принимаемого сигнала будет на 100 к $\Gamma$ ц меньше?

## Уменшить на 100 кГц

**4.** При исследовании амплитудно-частотного спектра радиосигнала при однотональной модуляции получен спектр вида.

Изобразите последовательно в том же масштабе, как изменится спектр при:

| изооразите последовательно <b>в том же масштаое</b> , как изменится спектр при: |                                                                         |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Исходный спектр                                                                 | при увеличении частоты высокочастотного задающего генератора в 1,5 раза |  |
| $C_n$ $A$ $\omega_0$                                                            |                                                                         |  |
| при уменьшении коэффициента амплитудной модуляции в 2 раза                      | при уменьшении амплитуды сигнала<br>несущей частоты в 2 раза            |  |
|                                                                                 |                                                                         |  |

5. Если амплитуда гармоники несущей частоты A, то какова максимальная и минимальная амплитуда верхней боковой и нижней боковых гармоник? При каких значениях коэффициента амплитудной модуляции?

| Гармоника                 | Амплитуда | Значение т |
|---------------------------|-----------|------------|
| Несущая частота           | A         | -          |
| Верхняя боковая гармоника | 0.15A     | 30%        |
| Нижняя боковая гармоника  | 0.25A     | 50%        |

6.Какова максимально применимая частота при работе радиостанции в коротковолновом диапазоне при критической частоте ионосферы 150 МГц и угле излучения относительно поверхности земли в 30 градусов

Fмпч = Fкрит /  $\sin$  a, то  $150/\sin(30) = 300$  М $\Gamma$ ц

## **7.** Имеется **синфазная** антенна вида



Изобразите ее **нормированную** диаграмму направленности в двух плоскостях XOZ и YOZ, точка 0 в центре антенны

- полная антенна, как показано на рисунке (обозначьте цифрой 1
- одного симметроичного вибратора (обозначьте цифрой 2)
- два горизонтальных ряда (цифра 3)
- два вертикальных ряда (цифра 4)

X

Ζ

Y

| <b>8.</b> Как изменится ширина луча диаграммы направленности параболической антенны при работе этой антенны на частоте в 2 раза большей и при одновременном уменьшении диаметра антенны 2 раза в раз? |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Пояснитене изменить, потому что $\Theta = k\lambda/d = k/(fd)$ антенны на частоте в 2 раза большей и при одновременном уменьшении диаметра антенны 2 раза, то ширина луча диаграммы не изменить       |
| <b>9.</b> Имеется низкочастотный сигнал $x=A_1\cos 2\pi F_1t+A_2\cos 2\pi F_2t+A_3\cos 2\pi F_3t+A_4\cos 2\pi F_4t$ - Сколько полос на АЧС дает этот сигнал? <b>4</b>                                 |
| - Сколько полос на АЧС имеет радиосигнал, промодулированный <b>по амплитуде</b> таким низкочастотным сигналом?                                                                                        |
| - Сколько полос на АЧС имеет радиосигнал, промодулированный <b>по частоте</b> таким низкочастотным сигналом? <b>бесконечное множество</b>                                                             |
| <b>10.</b> На каких длинах волн может осуществляться радиосвязь <u>только</u> поверхностными волнами (подчеркните: сверхдлинные, длинные, средние, короткие, ультракороткие)                          |
| Пояснитеультракороткие (не поглощаются и не отражаются от ионосферы, проходят сквозь нее, исп. Только для поверхностного распространения)                                                             |
| —— 11.В какой части антенны симметричной антенны мощность излучения будет максимальной?По центре аттен                                                                                                |