

Outline

- Issues with evaporation/condensation at interface
- Temperature jumps at an interface—sharp gradients
- Interface physics: mass and energy transfer
- Model equation: solved two ways
- Numerical methods: subgrid model & coupling
- Results: practical demonstration of method

K-Site: Slow Self-Pressurization Captures Pressure Evolution

CNES Low-g Slosh: Heavy Boiling Phase with Condensation and Transit

00:26 in data

T=96.75 s in CNES_5C_7

CNES Low-g Slosh: Pressure Evolution

Temperature "Jumps" at the Interface

$$W = -\int p \ dV$$

Work done on the vapor phase

Pressurization caused by:

- Pressurant
- Boiling liquid
- Clouds rise/fall
- Temperature gradients

Temperature gradient established

Pressurization of a Compressible Gas

	Latent Heat ΔH_{vap} (J/kg)	T _{sat} (K)	ΔT _{compress} 1->2 atm (K)	Vapor $\Delta H_{vap}/C_p$ (K)	Liquid $\Delta H_{vap}/C_p$ (K)	Vapor α	Liquid $lpha$
Helium	20,752.	4.2304	1.342	2.3	3.9	5.95E-05	2.82E-05
Methane	510,830.	111.67	20.433	230.3	146.7	2.88E-03	1.25E-04
Nitrogen	199,178.	77.355	16.942	177.2	97.6	1.45E-03	8.86E-05
Oxygen	213,050	90.188	19.752	219.5	125.4	1.93E-03	7.82E-05
Parahydrogen	445,440.	20.277	4.441	36.4	46.1	1.04E-03	2.81E-06
Water	2,256,440.	373.12	70.019	1084.9	535.3	2.02E-02	1.68E-04

Energy/Heat Equation

- Fluid motion
- Temperature variation in interface plane

Heat Equation: Series of Exact Solutions

$$\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{interface} + \dot{q}_{vap}$$

$$T^{vap}(x,t) = T_{\infty}^{vap}(t) + \sum_{j=1}^{t_{j} \le t} \frac{Q_{j}^{vap}}{(4\pi\alpha_{vap}(t-t_{j}))^{1/2}} e^{\frac{-x^{2}}{4\alpha_{vap}(t-t_{j})}}, \quad x \ge 0$$

$$T^{liq}(x,t) = T_{-\infty}^{liq} + \sum_{j=1}^{t_{j} \le t} \frac{Q_{j}^{liq}}{(4\pi\alpha_{liq}(t-t_{j}))^{1/2}} e^{\frac{-x^{2}}{4\alpha_{liq}(t-t_{j})}}, \quad x \le 0$$

 $T_{-\infty}^{liq}$, is assumed constant

$$T_{\infty}^{vap}(t)$$
, from isentropic compression $\frac{T_1}{T_0} = e^{\frac{dS}{C_p}} \left(\frac{V_0}{V_1}\right)^{\gamma-1}$

$$\left(-k_{liq} \frac{dT}{dx}\right)_{interf\ ace\ -lig} - \left(-k_{vap} \frac{dT}{dx}\right)_{interface\ -vap} = \dot{q}_{flux} = \dot{m}_{flux} \left(p_{interface}, T_{interface}\right) \Delta H_{vap} \left(T_{int\ erface}\right)$$

Heat Equation: Numerical Solutions

$$\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{interface} + \dot{q}_{vap}$$

$$D(T_i^+ - T_i^-) - (T_{i+1}^+ - T_i^+) + (T_i^+ - T_{i-1}^+) + \frac{(\omega - 1)}{\omega}(T_{i+1}^- - T_i^-) - \frac{(\omega - 1)}{\omega}(T_i^- - T_{i-1}^-) = \frac{\Delta x^2}{\omega k} \dot{q}_{vap}$$

$$D = \frac{\rho C_p \Delta x^2}{\omega k \Delta t}$$

Solved as a tridiagonal matrix

 $T_{-\infty}^{liq}$, is assumed constant

 $T_{\infty}^{vap}(t)$, from isentropic compression

$$\frac{T_1}{T_0} = e^{\frac{dS}{C_p}} \left(\frac{V_0}{V_1}\right)^{\gamma - 1} :$$

$$\left(-k_{liq} \frac{dT}{dx}\right)_{interf\ ace\ -lig} - \left(-k_{vap} \frac{dT}{dx}\right)_{interface\ -vap} = \dot{q}_{flux} = \dot{m}_{flux} \left(p_{interface}, T_{interface}\right) \Delta H_{vap} \left(T_{int\ erface}\right)$$

Temperature "Jumps" at the Interface

Intermission Mid-Review

- Thermal Layers: role of heat near the interface
- Exact & numerical solutions: verification
- Evaporation/Condensation rates:
 - Temperature gradients at interface, O(1 mm)
 - Heat transfer near interface is important-- if not rate limiting
- From Physics, application to CFD
 simulation

CFD: Subgrid Model for Interface

- Fine grid needed to resolve thermal layers ~1mm
- Interface can move and curve
 - grid generation nightmare, even unstructured, adaptive grid
- Subgrid model moves with the interface
- Solves the 1-D heat equation normal to interface
- Four couplings between subgrid model and Fluent
- Energy & mass source terms in liquid/vapor equations

Coupling Between Subgrid Model and Simulation

$$x_{interface} = \frac{\sum_{\Re} x \varphi(1 - \varphi)}{\sum_{\Re} \varphi(1 - \varphi)}$$

$$y_{interface} = \frac{\sum_{\mathcal{R}} y \varphi(1-\varphi)}{\sum_{\mathcal{R}} \varphi(1-\varphi)}$$

$$p_{interface} = rac{\int_{\mathscr{R}} p \, \varphi_{vap} \, dV}{\int_{\mathscr{R}} \varphi_{vap} \, dV}$$

 $m_{interface}$

(liquid & vapor)

Coupling 4: Fluent Source Term *q*_{interface}

(liquid & vapor)

Mass and Energy are conserved Must be careful about sizing Fluent source terms!!

EDU Tank

- 2219 Aluminum; Volume 4.34 m³; I.D. 1.70 m; I. H. 2.33 m
- 1.25" SOFI, 60 layers MLI; 2.54 mm wall thickness

EDU CAD Geometry

Axisymmetric geometry/grid

EDU CAD Geometry

Phase A Test Data

- Test HT-15, 16 on day 3 of Phase A testing
- 90% Fill level
- Pressurant gas at 290 K through the unsubmerged diffuser supply line
- Small drain flow, less than 1% of volume

Press_11 at 87.23 seconds

Q_{vapor} -4.04 W/m²; Q_{liquid} -54.03 W/m²; Condense Heat Flux 52.7 W/m²; Condense Mass Rate -1.13e-4 kg/m²-s;

Results

- Good measure of condensation rate?
- For duration, pressurant inflow to condensation is between 1.5:-1 and 2:-1
- After 123 s, pressurant declines
- Assuming pressure release after 131 s

Conclusions

- Proof of concept for improved interface mass & energy transfer
- Accommodation coefficient of 1.0
- Extension to curved surfaces, multiple surfaces
- Need to examine other problems in the context of this result

Mass & Heat Equations

$$\rho C_p \frac{\partial T}{\partial t} - k \frac{\partial^2 T}{\partial x^2} = \dot{q}_{interface} + \dot{q}_{vap}$$

$$\dot{m}_{flux}\left(p_{interface}, T_{interface}\right) = \frac{2}{2 - \sigma_{cond}} \sqrt{\frac{MW}{2\pi R_u}} \left(\sigma_{evap} \frac{p_{sat}\left(T_{liq}\right)}{\sqrt{T_{liq}}} - \sigma_{cond} \frac{p_{vap}}{\sqrt{T_{vap}}}\right)$$

$$\dot{q}_{flux} = \dot{m}_{flux} \left(p_{interface}, T_{interface} \right) \Delta H_{vap} \left(T_{Interface} \right)$$

$$\frac{T_1}{T_0} = e^{\frac{dS}{C_p}} \left(\frac{V_0}{V_1}\right)^{\gamma - 1} = e^{\frac{dS}{C_p}} \left(\frac{p_1}{p_0}\right)^{1 - \frac{1}{\gamma}}$$