	Rollno	Sonali Jindal - 102115117 - 30512 Classmate Date Page
		Parameter Estimation
	#1	$f(\kappa) = \frac{\left(\kappa - y\right)^2}{2\sigma^2}$ $\sqrt{2\pi\sigma^2}$
		X, X2, X3, Xn = sample of size n
+	1	$L(X_1, X_2; X_n) = f(X_1) \cdot f(K_2) \cdot f(K_n)$ $= \begin{pmatrix} 1 & e^{-(K_1 - Y)^2} \\ 2\sigma^2 \end{pmatrix} \cdot \begin{pmatrix} 1 & e^{-(K_1 - Y)^2} \\ 1 & 1 \end{pmatrix}$
1		1270-2
+	(9-1	taking in on both sides
1	10-1	$in(L) = -n ln(2\pi\sigma^2) + \sum_{i=1}^{n} (\pi_i - y)^2 - 0$
	(42)	take partial derivative writ p of the above
/		equation.
/		$\frac{1}{3} \ln (L) = 0 + \sum_{i=1}^{n} - (2(\kappa_i - H)) = 0$
		$\frac{1}{1} = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right) = 0$
/		$\frac{1}{x} - n\mu = 0$
		Hence, $\theta_1 = \bar{x}$ is therefore sample mean
	1	Taking derivative w. r. t. o-2 (of eqn 1)
/		$\frac{\partial \ln(L) = -n + \left(- \left(\frac{\kappa_i - \mu}{2} \right)^2 = 0}{2\sigma^2}$
/		$-n + \frac{n}{2} - (\kappa_i - \mu)^2 = \sigma$ $n = \frac{\kappa_i - \mu}{2}$
/		$n = \underbrace{\{(\kappa_i - \mu)^2\}}_{i=1}$

