插值法

拉格朗日插值:

● 拉格朗曰插值:
两点一次:
$$L_1(x) = \frac{x-x_1}{x_0-x_1} y_0 + \frac{x-x_0}{x_1-x_0} y_1$$
 三点二次: $L_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2$ 插值余项:

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=1}^{n} (x - x_i)$$

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x-x_i)$$
 当 $n=1$ 时, $R_1(x) = \frac{1}{2} f^{(n)}(\xi)(x-x_0)(x-x_1)$, $\xi \in [x_0,x_1]$ 当 $n=2$ 时,抛物插值余项为

$$R_2(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2), \xi \in [x_0, x_2]$$

 $N_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) + \dots + c_{n-1}$

\mathcal{X}_{i}	$f(x_i)$	一阶差商	二阶差商	三阶差商
x_0	$f(x_0)$			
x_1	$f(x_1)$	$f[x_0,x_1]$		
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$	
X_3	$f(x_3)$	$f[x_2,x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$

$$f[x,x_0,...,x_n]\omega_{n+1}(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}\omega_{n+1}(x)$$

Hermite 插值: 先求牛顿+再满足导数 两点三次:

X	x_0	x_1
f(x)	${\cal Y}_0$	\mathcal{Y}_1
f'(x)	m_0	m_1

$$f[x_0, x_0] = f'(x_0)$$
 $f[x_0, x_0, \dots, x_0] = \frac{f^{(k)}(x_0)}{k!}$

X_i	$f(x_i)$	一阶差商	二阶差商	三阶差商
x_0	$f(x_0)$			
x_0	$f(x_0)$	$f[x_0,x_0]$)	
$-x_1$	$f(x_1)$	$f[x_0, x_1]$	$f[x_0, x_0, x_1]$	
x_1	$f(x_1)$	$f[x_1,x_1]$	$f[x_0, x_1, x_1]$	$f[x_0, x_0, x_1, x_1]$

 $f\left[x_{0},x_{0}\right]=f'\left(x_{0}\right) \qquad f\left[x_{0},x_{0},\cdots,x_{0}\right]=\frac{f^{(k)}(x_{0})}{k!} \qquad$ 插值余项 $\frac{\text{证明两点三次埃尔米特插值余项是}}{R_{\scriptscriptstyle 3}(x)=\frac{f^{\scriptscriptstyle (4)}(\xi)}{4!}(x-x_{k})^{2}(x-x_{k+1})^{2}}, \quad \xi\in(x_{k},x_{k+1}),$

三点三次:

X	x_0	x_1	x_2
f(x)	\mathcal{Y}_0	\mathcal{Y}_1	${\mathcal Y}_2$
f'(x)		m_1	

$$H_3(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + k(x - x_0)(x - x_1)(x - x_2)$$