Basics of Quantum Error Correction

Kishor Bharti

Credits: Samuel Velasco/Quanta Magazine

Asia-Pacific Quantum Error Correction Seminars

QUANTUM ERROR CORRECTION TUTORIALS

Contextual Stories

Home

^ Teaching

Quantum Error Correction, Part 1

Quantum Error Correction, Part 2

Quantum cryptography with computational assumptions

Hiring/Collaboration/M..

Research

Contact

Quantum Error Correction, Part 1

Content

- 1. Classical error correction, the basics of quantum error correction, and the stabilizer formalism (7 March, 08:30 PM SGT). Slides Video
- 2. Toric code (14 March, 08:30 PM SGT). Slides Video
- 3. Introduction to Topology (21 March, 08:30 PM SGT). Slides Video
- 4. Topological quantum codes, Bosonic codes, subsystem codes (28 March, 08:30 PM SGT) Slides Video
- 5. Approximate quantum error correction, Fault tolerance, Decoders (11 April, 08:30 PM SGT) Slides Video
- 6. Decoders continued, Connections with many-body physics, theoretical computer science and black holes (25 April, 08:30 PM SGT) Slides Video

Zoom link: https://nus-sg.zoom.us/i/89216843956?pwd=N2NrNUdmN0ozR3pDdW1Xa1V3VFN1UT09

Discord server (for discussions): https://discord.com/invite/tcWYQGg7tV

References

- 1. Lectures on Topological Codes and Quantum Computation
- 2. https://www.amazon.com/Quantum-Error-Correction-Daniel-Lidar/dp/0521897874
- 3. https://www.amazon.com/Ouantum-Computation-Information-10th-Anniversary/dp/1107002176
- 4. https://www.amazon.com/Classical-Quantum-Computation-Graduate-Mathematics/dp/0821832298
- 5. https://arxiv.org/abs/2111.08894

1

Simplest starting point: Classical three bit repetition code

(A) Classical three-bit repetition code

Encodes bits by repeating them

(1) Codewords

$$0_L = 000$$

$$1_L = 111$$

(2) Bit flip error

$$0 \rightarrow 1$$

$$1 \rightarrow 0$$

(3) Codewords after a single bit flip error

$$0_L \rightarrow 100$$

$$0_L \rightarrow 010$$

$$0_L \rightarrow 001$$

$$1_L \rightarrow 011$$

$$1_L \rightarrow 101$$

$$1_L \rightarrow 110$$

(4) Error detection

Bits in the string are not identical \implies Error

(5) Error correction

Reset all bits to majority value

$$010 \rightarrow 000$$

$$101 \rightarrow 111$$

(6) Code distance

Smallest number of bit flips required to transform any two code words into one another

000

3-bit repetition code n-bit repetition code r

Hamming distance (a,b): minimum number of bit flips to transform bitstring a to bitstring b

<u>a</u> 6

Code distance determines:

- Maximum number of errors which can be detected: d-1
- Maximum number of errors that can be corrected: (d-1)/2

(7) [n,k,d] notation

n: number of bits in the codewords

k: number of encoded bits

d: code distance

40 (a,6) =

Example: n-bit repetition code [n,1,n]

[3/1/3]

(8) Logical operations on the code

Goal: to perform computation on the encoded information

Exa: logical NOT gate

$$NOT(000) = 111$$

 $NOT(111) = 000$

(B) Quantum three qubit repetition code

(1) Code words

$$|0\rangle_L = |000\rangle$$
 $|1\rangle_L = |111\rangle$ $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \rightarrow |\psi\rangle_L = \alpha|000\rangle + \beta|111\rangle$

Codespace $\operatorname{span}(|0\rangle_L, |1\rangle_L)$

$$\operatorname{span}(|0\rangle_L,|1\rangle_L)$$

Error free encoding of a quantum state lies in this subspace

(2) Errors

(a) Bit flip error

$$X|0\rangle = |1\rangle$$
 $X|1\rangle = |0\rangle$

(b) Phase flip error

$$Z|0\rangle = |0\rangle$$
 $Z|1\rangle = -|1\rangle$

Remark: If both X and Z errors can be corrected, more general errors can be corrected as well.

(3) Encoded state after a single bit flip error

$$|\psi\rangle_L = \alpha|000\rangle + \beta|111\rangle$$

$$(I \otimes X \otimes I)|\psi\rangle_L = \alpha|010\rangle + \beta|101\rangle$$

(4) Error detection

- Do not measure individual qubits in the computational basis
- it would detect the error, it would also result in the collapse of the encoded qubit.

- Measure symmetries of the state rather than individual bits
- Example: parity of any pair of bits

Even parity: 00,11 Odd parity: 01, 10

Quantum circuit to measure parity

Equivalent to measuring $Z \otimes Z$ on first two qubits

$$Z \otimes Z |00\rangle = |00\rangle$$

$$Z \otimes Z | 11 \rangle = | 11 \rangle$$

$$Z \otimes Z | 01 \rangle = - | 01 \rangle$$

$$Z \otimes Z | 10 \rangle = - | 10 \rangle$$

Error
$$Z \otimes Z \otimes I$$
 $Z \otimes I \otimes Z$ $I \otimes Z \otimes Z$ $X \otimes I \otimes I$ -1-1+1 $I \otimes X \otimes I$ -1+1-1 $I \otimes I \otimes X$ +1-1-1

(5) Error correction

Apply the inverse of the error operator to correct the error

(6) Logical operations on encoded states

We want $ar{X}$ and $ar{Z}$ such that

$$\bar{X}|0\rangle_L = |1\rangle_L \qquad \bar{X}|1\rangle_L = |0\rangle_L$$

$$\bar{Z}|0\rangle_{I} = |0\rangle_{I}$$
 $\bar{Z}|1\rangle_{L} = -|1\rangle_{L}$

$$Z|0\rangle_L = |0\rangle_L$$

One possible choice of $ar{X}$ and $ar{Z}$

One possible choice of
$$X$$
 and Z
$$\bar{X} = XXX$$

$$\bar{Z} = ZII$$

$$\bar{X} = XXX$$

$$\bar{Z} = ZII$$

(7) Distance of a quantum code

Weight of an operator: number of qubits it acts non-trivially on

Operator	Weight
XII	1
IXI	1
XXI	2
ZII	1
ZZZ	3

Distance of a quantum code: minimal weight of any (non-identity) encoded logical operator on the code

Minimal weight of encoded
$$X = 3$$
 $\times \times \times$ $Z = 1$ $Z = 1$ $Z = 1$

Remark: the quantum 3-qubit repetition code can detect 2 X errors and no Z errors.

(C) Stabilizer formalism

Most error correcting codes can be studied via the stabilizer formalism

Examples: Shor code

Steane code

5-qubit code

All CSS codes

Toric code

Planar surface codes

- Widely used formalism to describe topological codes
- Systematic approach to <u>derive encoded logical operators</u>

Stabilizer code: a quantum error correcting code that can be defined in the stabilizer formalism

Stabilizer codes are defined by specifying two sets of operators

- (1) (Stabilizer) generators
- (2) Encoded logical operators

(1) The stabilizer group

Let $\{ |\psi_j \rangle \}_j$: code-word basis states

Let $\{|\psi_i\rangle\}_i$: code-word basis states

Stabilizer group: the set of Pauli operators which leave all codeword basis states $|\psi_i\rangle$ invariant.

$$P_k | \psi_i \rangle = | \psi_i \rangle \quad \forall P_k \in \mathscr{P}$$

Stabilizer operator (or stabilizer element): member of the stabilizer group

Claim: The set of stabilizer operators must commute.

(2) Stabilizer generators

Any group G can be specified by a set of generators $\{g_j\}_{j=1}^m$.

Theorem: For an Abelian group of self-inverse operators, any element $g \in G$ can be written as $g = \prod_{j} g_{j}^{\alpha_{j}}$ where $\alpha_{j} \in \{0,1\}$.

$$|G|=2^m$$

$$|G| = 2^m$$

2 2

k: # of logical qubits

n: # of physical qubits

m: # of stabilizer generators

$$\frac{2^n}{2^m} = 2^k$$

$$m = n - k$$

n=m+k

k: # of logical qubits

m = n - k

n: # of physical qubits

m: # of stabilizer generators

Three qubit repetition code

$$|0\rangle_L = |000\rangle \qquad |1\rangle_L = |111\rangle$$

$$n = 3$$
 $k = 1$ \Longrightarrow $m = 3 - 1 = 2$

Order of the stabilizer group $= 2^m = 4$

2 = 4

ZZI, ZIZ, IZZ, III

(3) Error detection in the stabilizer formalism

- We can detect errors on stabilizer codes by <u>measuring the stabilizer operators</u>
- m measuremnts suffice (corresponding to stabilizer generators)
- Since m = n-k, m scales linearly with the # of physical qubits.
- Syndrome: outcome of the measurement of a given stabilizer generator

Circuit to measure $P_1 \otimes P_2 \otimes P_3$

(4) Encoded logical operators in the stabilizer formalism

For the three qubit repetition code, we had

$$|0\rangle_L = |000\rangle$$
 $|1\rangle_L = |111\rangle$ $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \rightarrow |\psi\rangle_L = \alpha|000\rangle + \beta|111\rangle$

$$\bar{X} = XXX$$
 $\bar{Z} = ZII$

Instead of ZII, we could have also used IZI and IIZ.

Equivalent set of logical operators

- Let S be the stabilizer group
- $|\psi\rangle$ be a state in the codespace
- L be a logical operator

$$S_{j} | \psi \rangle = | \psi \rangle \quad S_{j} \in S$$

$$\implies LS_{j} | \psi \rangle = L | \psi \rangle \quad S_{j} \in S$$

Remark: Given a logical operator L, there exists a family of $|S| = 2^m$ operators $\{LS_i\}_i$ that act equivalently on the codespace.

Claim: A logical Pauli operator must belong to the centralizer of the stabilizer group.

Centralizer

The centralizer of an element z of a group G is the set of elements of G which commute with z,

 $C_G(z) = \{x \in G, xz = z x\}.$

Likewise, the centralizer of a subgroup H of a group G is the set of elements of G which commute with every element of H,

 $C_G(H) = \{x \in G, \forall h \in H, xh = hx\}.$

(5) Distance

The minimal weight of any operator in the centralizer of the code

Three qubit repetition code

Stabilizer group *S*

 $\{ZZI, ZIZ, IZZ, III\}$

Centralizer of *S*

[[3,1,1]]

[[5,1,3]]

XZZXI

IXZZX

XIXZZ

ZXIXZ

M= m-1K

• Simplest example of a topological code

• The two loops cannot be deformed to a point or to each other.

Kitaev spin liquid
Kitaev's periodic table
Toric code
Sachdev-Ye-Kitaev model
Quantum phase estimation
Solovay-Kitaev theorem
Magic state distillation
Gottesman-Kitaev-Preskill
codes
Quantum threshold theorem
QIP
QMA

Fault-tolerant quantum computation by anyons

A. Yu. Kitaev

L.D.Landau Institute for Theoretical Physics, 117940, Kosygina St. 2 e-mail: kitaev@itp.ac.ru

Annals Phys. 303 (2003) 2-30

arXiv:quant-ph/9707021

(1) Physical qubits

[[n, k, d]]

$$n = 2L^2$$

- # of edges = $L^2 + L^2 = 2L^2$
- Each edge corresponds to a physical qubit
- # of physical qubits = $2L^2$

(2) Stabilizer generators

Plaquette generator

 L^2

Vertex generator

 L^2

(Baby) claim: Plaquette and vertex operators commute.

Proof:

(x,2)to (xx,2)=0

(3) Multiplication of plaquette operators

(Baby) claim: A pair of plaquette operators either do not share a boundary or have only one shared boundary.

(Baby) claim: When we multiply plaquette operators, the resulting operators will include Z operators that act on the boundary of the combined plaquettes.

(Baby) claim: # of independent plaquette generators $= L^2 - 1$

Proof:

$$\prod_{\alpha} P_{\alpha} = I$$

(4) Dual lattice

Dashed lines indicate dual lattice.

(3)

Plaquette operators are vertex operators in the dual lattice and vice versa.

How to construct dual of a lattice

- Interchange plaquettes with vertices
- Reorient edges accordingly

<u>Self-dual lattice:</u> primal = dual

(Baby) claim: # of independent vertex generators $= L^2 - 1$

Proof:

$$\prod_{\alpha} P_{\alpha} = I$$

$$\prod_{\alpha} V_{\alpha} = I$$

$$= 2l^{2} - 2$$

(5) Encoded qubits

(Baby) claim: # of encoded qubits = 2

Proof:

(6) Encoded logical operators

$$\bar{Z}_1 \qquad \bar{X}_1$$

$$\bar{Z}_2$$
 \bar{X}_2

Requirements for the encoded logical operators

- 1. Must commute with all elements of the stabilizer group
- 2. Must not be an element of the stabilizer group
- 3. Must satisfy the commutation and anti-commutation relations of the Pauli operators they encode

Requirements for the encoded logical operators

- 1. Must commute with all elements of the stabilizer group
- 2. Must not be an element of the stabilizer group
- 3. Must satisfy the commutation and anti-commutation relations of the Pauli operators they encode

If we form a string of Z operators, regardless of its shape, it will always anticommute with the vertex operators at the ends of the string. The only solution is to find a string of operators which has no end - a loop!

Requirements for the encoded logical operators

- 1. Must commute with all elements of the stabilizer group
- 2. Must not be an element of the stabilizer group
- 3. Must satisfy the commutation and anti-commutation relations of the Pauli operators they encode

(7) Equivalence of logical operators under stabilizer multiplication

(8) Code distance

- Minimum weight of any logical operator in the code
- Lowest weight of any undetectable error

(1) Error detection

- We can detect errors on stabilizer codes by <u>measuring the stabilizer generators</u>
- Syndrome: outcome of the measurement of a given stabilizer generator

When error E happens, the stabilizer generators that don't commute with E will output -1.

When error E happens, the stabilizer generators that don't commute with E will output -1.

Example: Z error on a single qubit

Which stabilizer generators anticommute with it?

Vertex operators immediately adjacent to it

(Baby) claim: Given any string of errors on the primal lattice, the only stabilizer generators have their outcome -1 are the vertices at the two ends of the string.

Proof:

The ends of a string can be considered its "bounday"

Given any string of errors on the primal lattice, the only stabilizer generators have their outcome -1 are the vertices at the two ends of the string.

What about X errors

Similar analysis can be done for the dual lattice for the X errors.

(2) Error correction

- Main task in error correction: identification of the error operator to apply given the syndrome
- For exa: apply the inverse of the error operator
- For self-inverse Pauli errors, apply the same operator

(Baby) claim: If E'E=S, where S is a stabilizer, then E' will correct E.

THE TORIC CODE HAMILTONIAN

THE TORIC CODE HAMILTONIAN

spin- $\frac{1}{2}$ particles on the bonds of the lattice

$$A_s = \prod_{j \in s} X_j$$

$$B_p = \prod_{j \in p} Z_j$$

$$H_{tc} = -\sum_{s} A_s - \sum_{p} B_p$$

17.8: An Exactly Solvable Model of \mathbb{Z}_2 Spin Liquid

THE TORIC CODE HAMILTONIAN

$$A_s = \prod_{j \in s} X_j$$

$$B_p = \prod_{j \in p} Z_j$$

$$H_{tc} = -\sum_{s} A_s - \sum_{p} B_p$$

$$[A_s, A_{s'}] = [B_p, B_{p'}] = [A_s, B_p] = 0.$$

The ground state has degeneracy D = 4.

17.8: An Exactly Solvable Model of \mathbb{Z}_2 Spin Liquid