What is claimed is:

10

- 1. A single charge trapping layer for storing electrical charge in a memory device comprising a high-k dielectric material.
- A charge trapping layer as in claim 1 further subjected to a
 treatment process to improve the charge trapping characteristic.
 - 3. A charge trapping layer as in claim 2 wherein the treatment process is a plasma exposure or an ion implantation exposure.
 - 4. A charge trapping layer as in claim 3 wherein the plasma exposure comprises at least a plasma oxygen exposure, a plasma nitrogen exposure, or a plasma hydrogen exposure.
 - 5. A charge trapping layer as in claim 3 wherein the plasma exposure time is between 10 seconds and 100 seconds.
- 6. A charge trapping layer as in claim 1 wherein the high-k dielectric material comprises at least one of aluminum oxide (Al₂O₃), hafnium oxide (HfO₂), zirconium oxide (ZrO₂), titanium oxide (TiO₂), tantalum oxide (Ta₂O₅), cesium oxide (CeO₂), lanthanum oxide (La₂O₃), tungsten oxide (WO₃), yttrium oxide (Y₂O₃), bismuth silicon oxide (Bi₄Si₂O₁₂), barium strontium oxide (Ba_{1-x}Sr_xO₃), lanthanum aluminum oxide (LaAlO₃), hafnium silicate (HfSiO₄), zirconium silicate (ZrSiO₄), aluminum hafnium oxide (AlHfO), aluminum oxynitride (AlON), hafnium silicon oxynitride (HfSiON), zirconium silicon oxynitride (ZrSiON), barium titanate (BaTiO₃), strontium titanate (SrTiO₃), lead titanate (PbTiO₃), barium strontium titanate, bismuth titanate, strontium titanate, lead lanthanum titanate,

barium zirconium titanate, strontium bismuth tantalate, lead zirconate (PbZrO₃), PZN (PbZn_xNb_{1-x}O₃), PST (PbSc_xTa_{1-x}O₃), or PMN (PbMg_xNb_{1-x}O₃).

- 7. A non-volatile memory transistor comprising: source and drain regions provided in a substrate; and
- a gate structure on the substrate between the source and drain regions, the gate structure comprising

a single charge trapping layer overlying the substrate, the charge trapping layer comprising a high-k dielectric material; and

an electrode layer overlying the charge trapping layer.

- 8. A memory transistor as in claim 7 wherein the high-k dielectric material comprises at least hafnium oxide (HfO₂).
 - 9. A memory transistor as in claim 7 wherein the high-k dielectric material comprises at least one of aluminum oxide (Al₂O₃), zirconium oxide (ZrO₂), titanium oxide (TiO₂), tantalum oxide (Ta₂O₅), cesium oxide (CeO₂), lanthanum oxide (La₂O₃), tungsten oxide (WO₃), yttrium oxide (Y₂O₃), bismuth silicon oxide (Bi₄Si₂O₁₂), barium strontium oxide (Ba_{1-x}Sr_xO₃), lanthanum aluminum oxide (LaAlO₃), hafnium silicate (HfSiO₄), zirconium silicate (ZrSiO₄), aluminum hafnium oxide (AlHfO), aluminum oxynitride (AlON), hafnium silicon oxynitride (HfSiON), zirconium silicon oxynitride (ZrSiON), barium titanate (BaTiO₃), strontium titanate (SrTiO₃), lead titanate (PbTiO₃), barium strontium titanate (BST) (Ba_{1-x}Sr_xTiO₃), lead zirconium titanate, lead lanthanum titanate, bismuth titanate, strontium titanate, lead zirconium titanate (PZT (PbZr_xTi_{1-x}O₃)) barium zirconium titanate, strontium bismuth tantalate, lead zirconate (PbZrO₃), PZN (PbZn_xNb_{1-x}O₃), PST (PbSc_xTa_{1-x}O₃), or PMN (PbMg_xNb_{1-x}O₃).

15

20

- 10. A memory transistor as in claim 7 wherein the charge trapping layer is subjected to a treatment process to improve the charge trapping characteristic.
- 11. A charge trapping layer as in claim 10 wherein the treatment process is a plasma exposure or an ion implantation exposure.
- 5 12. A charge trapping layer as in claim 11 wherein the plasma exposure comprises at least a plasma oxygen exposure, a plasma nitrogen exposure, or a plasma hydrogen exposure.
 - 13. A charge trapping layer as in claim 11 wherein the plasma exposure time is between 10 seconds and 100 seconds.
- 14. A memory transistor as in claim 7 wherein the electrode layer is a layer of doped polysilicon, a layer of silicide, or a layer of metal.
 - 15. A memory transistor as in claim 7 wherein the memory transistor is a multi-bit memory transistor.
- 16. A method of fabricating a non-volatile memory transistor

 comprising the steps of:

preparing a semiconductor substrate;

20

forming a gate stack on the substrate, the gate stack comprising
a single charge trapping layer overlying the substrate wherein the
charge trapping layer comprises a high-k dielectric material; and

- an electrode layer overlying the charge trapping layer; and forming drain and source regions on opposite sides of the gate stack.
- 17. A method as in claim 16 wherein the high-k dielectric material comprises at least one of aluminum oxide (Al₂O₃), hafnium oxide (HfO₂), zirconium

oxide (ZrO₂), titanium oxide (TiO₂), tantalum oxide (Ta₂O₅), cesium oxide (CeO₂), lanthanum oxide (La₂O₃), tungsten oxide (WO₃), yttrium oxide (Y₂O₃), bismuth silicon oxide (Bi₄Si₂O₁₂), barium strontium oxide (Ba_{1-x}Sr_xO₃), lanthanum aluminum oxide (LaAlO₃), hafnium silicate (HfSiO₄), zirconium silicate (ZrSiO₄), aluminum 5 hafnium oxide (AlHfO), aluminum oxynitride (AlON), hafnium silicon oxynitride (HfSiON), zirconium silicon oxynitride (ZrSiON), barium titanate (BaTiO₃), strontium titanate (SrTiO₃), lead titanate (PbTiO₃), barium strontium titanate (BST) (Ba_{1-x}Sr_xTiO₃), lead zirconium titanate, lead lanthanum titanate, bismuth titanate, strontium titanate, lead zirconium titanate (PZT (PbZr_xTi_{1-x}O₃)) barium zirconium titanate, strontium bismuth tantalate, lead zirconate (PbZrO₃), PZN (PbZn_xNb_{1-x}O₃), PST (PbSc_xTa_{1-x}O₃), or PMN (PbMg_xNb_{1-x}O₃).

- 18. A method as in claim 16 wherein the charge trapping layer is subjected to a treatment process to improve the charge trapping characteristic.
- 19. A method as in claim 18 wherein the treatment process is a plasma exposure or an ion implantation exposure.
 - 20. A method as in claim 19 wherein the plasma exposure comprises at least a plasma oxygen exposure, a plasma nitrogen exposure, or a plasma hydrogen exposure.
- 21. A method as in claim 19 wherein the plasma exposure time is between 10 seconds and 100 seconds.
 - 22. A method as in claim 16 wherein the charge trapping layer is deposited by ALD method.
 - 23. A method as in claim 16 further comprising a densification anneal step after deposition of the charge trapping layer.

- 24. A method as in claim 16 wherein the formation of the drain and source regions comprises an angle source and drain implantation.
- 25. A method as in claim 16 wherein the semiconductor substrate is selected from a group consisted of SOI substrate, bulk silicon substrate, and insulator substrate.
 - 26. A method as in claim 16 wherein the memory transistor is a multi-bit memory transistor.

5