# Capacity Planning

Konstantin Knauf, Solutions Architect



### Preparations

#### Do the Math!

- Resource requirements in terms of
  - #keys, state per key
  - #records, record size
  - #state updates
- What are your SLAs?
  - latency during normal operations
  - latency during recovery after a process/machine/site-failure



### Preparations

#### Establish a Baseline

- Avoid back pressure during normal operations
- Add a margin for "catch up" during recovery
- Consider spiky load & expected growth in your application
- Consider checkpointing during capacity planning



### Data & Job

- Data
  - Message Size: 2KB
  - Throughput: 1,000,000 msg/s
  - Distinct keys: 500,000,000 (aggregation in widow: 4 longs per key)
  - Checkpoint every minute (Result of SLAs)
- Streaming Job





### Target Deployment Environment

- EKS
- S3 for Checkpoints
- Instance Storage for local RocksDB instance
- (20 Pods)



### A Pod's Perspective (20 Pods Overall)

#### Kinesis: 100 MB/s

2 KB \* 1,000,000 = 2GB/s 2GB/s / 20 = 100 MB/s

Shuffle: 95 MB/s

#### TaskManager *n*



100MB/s / 20 receivers = 5MB/s 1 receiver is local, 19 remote: 19 \* 5 = 95 MB/s out

Shuffle: 95 MB/s

Kinesis:?



#### Window Emit

How much data is the window emitting?

**Recap**: 500,000,000 unique users (4 longs per key) Sliding window of 5 minutes, 1 minute slide

**Assumption**: For each user, we emit 2 ints (user\_id, window\_ts) and 4 longs from the aggregation = 2 \* 4 bytes + 4 \* 8 bytes = 40 bytes per key

25,000,000 (users) \* 40 bytes = **1 GB every minute from each machine** 



### A Pod's Perspective (20 Pods)

#### Kinesis: 100 MB/s

2 KB \* 1,000,000 = 2GB/s 2GB/s / 20 = 100 MB/s

Shuffle: 95 MB/s

#### TaskManager *n*



100MB/s / 20 receivers = 5MB/s 1 receiver is local, 19 remote: 19 \* 5 = 95 MB/s out

Shuffle: 95 MB/s

1 GB/min => 17 MB/s (on average)

Kinesis: 17 MB/s



### A Pod's Perspective (20 Pods)

#### Kinesis: 100 MB/s

2 KB \* 1,000,000 = 2GB/s 2GB/s / 20 = 100 MB/s

Shuffle: 95 MB/s

#### TaskManager *n*



100MB/s / 20 receivers = 5MB/s 1 receiver is local, 19 remote: 19 \* 5 = 95 MB/s out

Shuffle: 95 MB/s

1 GB/min => 17 MB/s (on average)

Kinesis: 17 MB/s

**Total Out: 112 MB/s** 

A Pod's Perspective (20 Pods Overall) - Checkpointing

Kinesis: 100 MB/s

Shuffle: 95 MB/s



Shuffle: 95 MB/s

Kinesis: 17 MB/s

S3: ?



### Window State Checkpoints

How much state are we checkpointing?

#### **Step 1: State per Pod**

40 bytes \* 5 windows \* 25,000,000 keys = 5 GB

#### **Step 2: Checkpointing Configuration**

- Non-Incremental (Full Snapshots, (Space Amplification of RocksDB irrelevant))
- Checkpoint Interval: 1 min
- 5 GB / 60 seconds = 83 MB/s



A Pod's Perspective (20 Pods Overall)

Kinesis: 100 MB/s

Shuffle: 95 MB/s

TaskManager *n* 

Kinesis Source

keyBy

window

RocksDB

Kinesis Sink

Shuffle: 95 MB/s

Kinesis: 17 MB/s

S3: 83MB/s

Total In: 195 MB/s

Total Out: 195 MB/s

### Example - Final Result

### Possible EKS Setup

- Assume 3 CPUs per Pod -> 2 Pods per instance
- 10 x m5d.2xlarge
- Instance type m5d.2xlarge [1]
  - o 8 CPU
  - o 32 GiB RAM
  - 1 x 300 NVMe SSD attached storage
  - ~300MB/s baseline network bandwidth [2]
  - ~600MB/s average network bandwidth [2]
- Network Requirements (as derived):
  - 2x195MB/s=390MB/s (ingoing) continuously
  - 2x107MB/s=214MB/s (outgoing) continuously
  - 83MB/s (outgoing) on average for checkpointing
- [1] https://aws.amazon.com/ec2/instance-types/
- [2] https://docs.google.com/spreadsheets/d/1N2xQqry-zAKnK6FtW8X5zBYhMiFFnuMySMpx7f3K60s/edit#gid=533991784



### Disclaimer

- This was just a "back of the napkin" calculation
- Ignored network factors
  - Protocol overheads (Ethernet, IP, TCP, ...)
  - K8s Overlay Network
  - RPC (Flink's own RPC, K8s, checkpoint store)
  - Checkpointing causes network bursts
  - A window emission causes bursts
- CPU, memory, disk access speed have all been ignored





konstantin@ververica.com

www.ververica.com

@VervericaData

# Backup: Disk Access



A Pod's Perspective (20 Pods Overall)

Local Disk: ?

TaskManager *n* Kinesis Source keyBy window RocksDB Kinesis Sink

Local Disk: ?



#### Window State Access

How is the Window operator accessing state?

**Recap:** 1,000,000 msg/sec. Sliding window of 5 minutes, 1 minute slide

**Assumption:** For each user, we store 2 ints (user\_id, window\_ts) and 4 longs from the aggregation = 2 \* 4 bytes + 4 \* 8

bytes = 40 bytes per key





#### Window State Access

How much state is read/written from/to local RocksDB instance?

#### **Step 1: Updates to RocksDB database**

40 bytes \* 5 windows \* 50,000 msg/s = 10 MB/s

#### **Step 2: Incorporating RockDB's disk usage**

• write amplification: 15

• read amplification: 7

• Disk Write: 10 MB/s \* 13 = 150 MB/s

 Disk Reads: 10 MB/s \* (14 (reads during compaction)+7) = 210 MB/s **Aside:** RocksDB Write/Read Amplification

Size of Data: 5 GB (see previous slides)

RocksDB Level Structure in Stable State:

Size of L0: 256 MB

Size of L1: 256 MB

Size of L2: 2.56 GB

Size of L3: 5GB

#### Write Amplification:

1 (L0) + 2(L0 -> L1) + 10(L1 -> L2) + 2(L2 -> L3) = 15

#### **Read Amplification:**

4 (#L0 files) + 3 (#Levels) = 7



A Pod's Perspective (20 Pods Overall)

Local Disk: 150MB/s

TaskManager *n* 

Kinesis Source

keyBy

window

RocksDB

Kinesis Sink

Local Disk: 210 MB/s



A Pod's Perspective (20 Pods Overall) - Checkpointing

TaskManager *n* 

Kinesis Source

keyBy

window

RocksDB

Kinesis Sink

Local Disk: 190 MB/s

Local Disk: ? MB/s



Local Disk: 130MB/s

### Window State Checkpoints

How much state are we checkpointing?

#### **Step 1: State per Pod**

40 bytes \* 5 windows \* 25,000,000 keys = 5 GB

#### **Step 2: Size of RocksDB Instance on Disk**

- Database Size \* Space Amplification = 5 \* 1.6 = 8 GB
- 8GB/min = 125MB/s

**Aside:** RocksDB Space Amplification

Size of Data: 5 GB (see previous slides)

RocksDB Level Structure in Stable State:

Size of L0: 256 MB

Size of L1: 256 MB

Size of L2: 2.56 GB

Size of L3: 5GB

#### **Space Amplification**:

(256 MB + 256 MB + 2.56 GB + 5G) / 5G = 1.6



A Pod's Perspective (20 Pods Overall) - Checkpointing

TaskManager *n* 

Kinesis Source

keyBy

window

RocksDB

Kinesis Sink

Local Disk: 210 MB/s

Local Disk: 125 MB/s



Local Disk: 150MB/s

# Example - Final Result

### Possible EKS Setup

- 10 x m5d.2xlarge
- Instance type m5d.2xlarge [1]
  - o 8 CPU
  - o 32 GiB RAM
  - 1 x 300 NVMe SSD attached storage
- NVMe SSD
  - Max IOPS: ~1.1M IOPS
  - Sequential Reads: ~6.8 GB/s
- Disk IO Requirements
  - o 2\* (150 MB/s +210 MB/s +125 MB/s) = 2 \* 485 MB/s =~ 1GB/s
- [1] https://aws.amazon.com/ec2/instance-types/
- [2] https://docs.google.com/spreadsheets/d/1N2xQqry-zAKnK6FtW8X5zBYhMiFFnuMySMpx7f3K60s/edit#gid=533991784

