BPC - Work Plan for ChemBERTa

Adam Macudzinski, Data Engineering Manager

Executive Summary

Goal: to transform the BPC data architecture to support implementation of the ChemBERTa GNN model

We will focus on 4 key pillars for the system architecture and the initiative planning as well as understand the interdependencies between them to successfully migrate existing data, deploy new architecture, and mitigate risks.

Data Quality and Diversity	Data Storage and Accessibility	Model Performance	Model Deployment
Set data quality benchmarks: the better the data, the better the model.	Accessible data pipelines: maximizes modeling agility and minimizes turnaround times	Performance isn't just accuracy: beyond accuracy, agility should be optimized for	Enable iterative improvements: agile deployments will be key
Expanded data sets: explore other options beyond full PubChem SMILES.	Optimal data structure: distributed training efficacy strongly depends on the data storage model.	Robust compute hardware: cutting edge hardware increases productivity	API deployment: better API will maximize adoption Set KPIs: target usability, runtime performance, reliability, and flexibility

Recommendation: with a team of 8-10 over 3 quarters, we can build a top-of-the-line chemical fingerprint platform that will be able to achieve high velocity molecular property prediction performance.

High-level Software Architecture

Create a strong infrastructure foundation to support machine learning pipeline scalability, data accessibility, and operationalizing of GNN technology for the benefit of cheminformatics.

Project Roadmap

Resourcing recommendation (estimates)

Staffing Resources Recommended:

	Quantity	Skills Needed	
Data Scientists	3 senior-level	ML, Deep Learning, GNN, Applied Statistics, Tensorflow, Python	
Data Engineers	2 senior-level 1 junior-level	Cloud infrastructure, ML Ops, Big Data, Backend, Python, K8s	
Infrastructure Engineers	1 senior-level 1 junior-level	DevOps, GitOps, K8s, Linux Admin, NVIDIA, Python	
Product Manager	1 technical *Can be BPC internal or Deloitte embedded	Understanding of API development, and cheminformatics as a nice to have.	

Other Costs:

- Compute resources:
 - o Cloud: \$300-600k