PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

JUNIO - 2003

(RESUELTOS por Antonio Menguiano)

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

1°) a) Hallar el valor del parámetro a para que los planos $\begin{cases} \pi_1 \equiv 2x - y + z = 3 \\ \pi_2 \equiv x - y + z = 2 \end{cases}$ se corten $\pi_3 \equiv 3x - y + az = 4$

en una recta r.

b) Obtener la ecuación del plano π que pasa por el punto P(2, 1, 3) y contiene a la recta r del apartado anterior.

a)

Para que los planos se corten en una recta es necesario que el sistema sea compatible determinado con un grado de libertad, o sea, que los rangos de las matrices de coeficientes y ampliada sean iguales a dos, para lo cual es necesario que los determinantes de ambas matrices sean nulos.

Las matrices de coeficientes y ampliada son las siguientes:

$$M = \begin{pmatrix} 2 & -1 & 1 \\ 1 & -1 & 1 \\ 3 & -1 & a \end{pmatrix} \quad y \quad M' = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 1 & -1 & 1 & 2 \\ 3 & -1 & a & 4 \end{pmatrix}$$

Rango
$$M \Rightarrow \begin{vmatrix} 2 & -1 & 1 \\ 1 & -1 & 1 \\ 3 & -1 & a \end{vmatrix} = -2a - 1 - 3 + 3 + 2 + a = 1 - a = 0 ;; \underline{a = 1}$$

$$\underbrace{Para \ a = 1}_{} \Rightarrow M' = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 1 & -1 & 1 & 2 \\ 3 & -1 & 1 & 4 \end{pmatrix} \Rightarrow \{C_2 = -C_3\} \Rightarrow Rango \ M' \Rightarrow \{C_1, \ C_3, \ C_4\} \Rightarrow$$

$$\Rightarrow \begin{vmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \\ 3 & 1 & 4 \end{vmatrix} = 8 + 3 + 6 - 9 - 4 - 4 = 17 - 17 = 0 \Rightarrow \underline{Rango \ M' = 2}$$

Para $a = 1 \Rightarrow Rang \ M = Rang \ M' = 2 < n^{\circ} \ incóg. \Rightarrow Compatible \ In det er min ado$

Para a = 1 los planos π_1 , π_2 y π_3 se cor tan en una recta r

b)

La recta r que determinan los planos π_1 , π_2 y π_3 expresada por dos ecuaciones implícitas puede ser cualquier par de ecuaciones de los planos anteriores, por ejemplo, $r \equiv \begin{cases} 2x - y + z = 3 \\ x - y + z = 2 \end{cases}$, cuya expresión por unas ecuaciones paramétricas es la siguiente:

$$r \equiv \begin{cases} 2x - y + z = 3 \\ x - y + z = 2 \end{cases} \Rightarrow \underline{z = \lambda} \Rightarrow \frac{2x - y = 3 - \lambda}{x - y = 2 - \lambda} \begin{cases} 2x - y = 3 - \lambda \\ -x + y = -2 + \lambda \end{cases} \Rightarrow \underline{x = 1} ;;$$

$$-x+y=-2+\lambda \ ;; \ -1+y=-2+\lambda \ ;; \ \underline{y=-1+\lambda} \ \Rightarrow \ r\equiv \begin{cases} x=1\\ y=-1+\lambda\\ z=\lambda \end{cases}$$

Un punto y un vector de r son $\overrightarrow{v} = (0, 1, 1)$ y Q(1, -1, 0).

El plano π pedido, por pasas por el punto P(2, 1, 3) y contener a la recta r tiene como vectores directores a $\overrightarrow{v} = (0, 1, 1)$ y a $\overrightarrow{w} = \overrightarrow{QP} = PQ = (1, 2, 3)$.

La expresión general del plano π es la siguiente:

$$\pi(P; \overrightarrow{v}, \overrightarrow{w}) \equiv \begin{vmatrix} x-2 & y-1 & z-3 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0 \; ; \; 3(x-2) + (y-1) - (z-3) - 2(x-2) = 0 \; ; \;$$

$$(x-2)+(y-1)-(z-3)=0$$
;; $x-2+y-1-z+3=0$

$$\pi \equiv x + y - z = 0$$

- 2°) Dada la función $f(x) = \frac{x}{x^2 + 1}$, hallar:
- a) Los intervalos de crecimiento y decrecimiento y sus máximos y mínimos relativos.
- b) El área de la región limitada por la gráfica de f, el eje OX y las rectas x=-1 y x=1.

a)

Se trata de una función racional cuyo dominio es R, por no existir valores reales de x que anulen el denominador.

Es simétrica con respecto al origen por ser f(-x) = -f(x).

Para estudiar los intervalos de crecimiento y decrecimiento recurrimos a su derivada:

$$f'(x) = \frac{1 \cdot (x^2 + 1) - x \cdot 2x}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} = f'(x)$$

$$f'(x) = 0 \Rightarrow 1 - x^2 = 0 \; ; \; (1 + x)(1 - x) = 0 \Rightarrow \begin{cases} \frac{x_1 = 1}{x_2 = -1} \end{cases}$$

$$Para |x| > 1 \Rightarrow f'(x) < 0 \Rightarrow \underline{Decrecimiento: (-\infty, -1) \cup (1, +\infty)}$$

Para
$$|x| < 1 \Rightarrow f'(x) > 0 \Rightarrow Crecimiento : (-1, 1)$$

Los máximos y mínimos relativos de la función son los siguientes:

$$f''(x) = \frac{-2x \cdot (x^2 + 1)^2 - (1 - x^2) \cdot 2 \cdot (x^2 + 1) \cdot 2x}{(x^2 + 1)^4} = \frac{-2x \cdot (x^2 + 1) - 4x \cdot (1 - x^2)}{(x^2 + 1)^3} = \frac{-2x \cdot (x^2 + 1) - 4x \cdot (x^2 + 1)}{(x^2 + 1)^3} = \frac{-2x \cdot (x^2 + 1) - 4x \cdot (x^2 + 1)}{(x^2 + 1)^3} = \frac{-2x \cdot (x^2 + 1)}{(x^2 + 1)^3} = \frac{-2x \cdot (x^2 + 1)}{(x^2 + 1)^3} = \frac{-2x \cdot (x^$$

$$=\frac{-2x^3-2x-4x+4x^3}{\left(x^2+1\right)^3}=\frac{2x^3-6x}{\left(x^2+1\right)^3}=\frac{2x\left(x^2-3\right)}{\left(x^2+1\right)^3}=f''(x)$$

$$f''(1) = \frac{2 \cdot (1-3)}{(1+1)^3} = \frac{-4}{8} < 0 \implies \underline{M\acute{a}ximo} \implies f(1) = \frac{1}{2} \implies \underline{P(1, \frac{1}{2})}$$

$$f''(-1) = \frac{-2 \cdot (1-3)}{(1+1)^3} = \frac{4}{8} > 0 \implies \underline{Minimo} \implies f(-1) = -\frac{1}{2} \implies Q(-1, -\frac{1}{2})$$

Los puntos de inflexión son los siguientes:

$$f''(x) = 0 \Rightarrow \frac{2x(x^2 - 3)}{(x^2 + 1)^3} = 0 \Rightarrow 2x(x^2 - 3) = 0 \Rightarrow \begin{cases} \frac{x_1 = 0}{x_2 = \sqrt{3}} \\ \frac{x_3 = -\sqrt{3}}{x_3} \end{cases}$$

$$f'''(x) = \frac{(6x^2 - 6)(x^2 + 1)^3 - (2x^3 - 6x) \cdot 3(x^2 + 1)^2 \cdot 2x}{(x^2 + 1)^6} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 + 1) - 6x(2x^3 - 6x)}{(x^2 + 1)^4} = \frac{(6x^2 - 6)(x^2 - 6x)}{(x^2 - 6x)} = \frac{(6x^2 - 6x)}{(x^2 - 6x)} = \frac{(6x^2$$

$$= \frac{6x^4 + 6x^2 - 6x^2 - 6 - 12x^4 + 36x^2}{\left(x^2 + 1\right)^4} = \frac{-6x^4 + 36x^2 - 6}{\left(x^2 + 1\right)^4} = \frac{-6\left(x^4 - 6x^2 + 1\right)}{\left(x^2 + 1\right)^4} = f'''(x)$$

$$f'''(0) = \frac{-6}{2} \neq 0 \Rightarrow P$$
. Inflexión ;; $f(0) = 0 \Rightarrow \underline{O(0, 0)}$

$$f^{\prime\prime\prime}\left(\sqrt{3}\right) = \frac{-6\left(9 - 18 + 1\right)}{16} \neq 0 \Rightarrow P. \ Inflexion \ ;; \ f\left(\sqrt{3}\right) = \frac{\sqrt{3}}{4} \Rightarrow M\left(\sqrt{3}, \ \frac{\sqrt{3}}{4}\right)$$

$$f^{\prime\prime\prime}\left(-\sqrt{3}\right) = \frac{-6(9-18+1)}{16} \neq 0 \Rightarrow P. \quad Inflexion \ ;; \ f\left(-\sqrt{3}\right) = -\frac{\sqrt{3}}{4} \Rightarrow N\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$$

Las asíntotas son las siguientes:

Horizontales:

Son los valores finitos de f(x) cuando x tiende a $\pm \infty$:

$$y = k \Rightarrow y = \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{x^2 + 1} = \underbrace{0 = y}_{===} \Rightarrow \begin{cases} \lim_{x \to +\infty} f(x) = \underbrace{0^+}_{===} \\ \lim_{x \to -\infty} f(x) = \underbrace{0^-}_{===} \end{cases}$$

La solución de este apartado es lógica si tenemos en cuenta que la función es simétrica con respecto al origen de coordenadas.

Verticales:

Son los valores finitos que anulan el denominador: <u>no tiene</u>.

Oblicuas:

Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador.

En el caso que nos ocupa: no tiene.

La representación gráfica de la función es, aproximadamente, la siguiente:

b)

Teniendo en cuenta la simetría de la función y de la observación de la gráfica siguiente, se deduce que el área pedida es:

$$S = 2 \cdot \int_{0}^{1} f(x) \cdot dx = 2 \cdot \int_{0}^{1} \frac{x}{x^{2} + 1} \cdot dx \quad \Rightarrow \quad \begin{cases} x^{2} + 1 = t \\ x \, dx = \frac{1}{2} \, dt \end{cases} \quad x = 1 \to t = 2 \\ x \, dx = \frac{1}{2} \, dt \end{cases} \Rightarrow$$

$$S = 2 \cdot \frac{1}{2} \int_{1}^{2} \frac{dt}{t} = [Lt]_{1}^{2} = L2 - L1 = \underbrace{L2 \cong 0'69 \ u^{2} = S}_{1}$$

CUESTIONES

1^a) Estudiar el rango de la matriz $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & m \end{pmatrix}$, según los distintos valores de m.

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & m \end{vmatrix} = 2m + 2 + 2 - 2 - 4 - m = m - 2 = 0 ;; \underline{m = 2}$$

$$Para \ m \neq 2 \implies Rang \ A = 3$$

Teniendo en cuenta, por ejemplo, que el menor complementario del elemento a_{31} es $\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1 = 1 \neq 0$, es:

$$Para \ m=2 \ \Rightarrow \ Rang \ A=2$$

2^a) Hallar la distancia del punto P(2, 1, 1) a la recta
$$r = \begin{cases} x = \frac{1}{3} \\ y = \frac{2}{3} + \lambda \\ z = \lambda \end{cases}$$

La distancia del punto P a la recta r puede determinarse teniendo en cuenta que Q es un punto de r y \overrightarrow{v} es el vector director de la recta.

Teniendo en cuenta que $S = d \cdot |\overrightarrow{v}|$ y que también puede ser $S = |\overrightarrow{v} \wedge \overrightarrow{QP}|$, se deduce que la distancia es: $d(P, r) = \frac{|\overrightarrow{v} \wedge \overrightarrow{QP}|}{|\overrightarrow{v}|}$.

Un punto de r es $Q\left(\frac{1}{3}, \frac{2}{3}, 0\right)$ y $\overrightarrow{v} = (0, 1, 1)$ es un vector director de la recta r.

$$\overrightarrow{QP} = P - Q = (2, 1, 1) - (\frac{1}{3}, \frac{2}{3}, 0) = (\frac{5}{3}, \frac{1}{3}, 1) = \overrightarrow{QP}$$

$$d(P, r) = \frac{\left| \overrightarrow{QP} \wedge \overrightarrow{v} \right|}{\left| \overrightarrow{v} \right|} = \frac{\left\| \begin{matrix} i & j & k \\ 0 & 1 & 1 \\ \frac{5}{3} & \frac{1}{3} & 1 \end{matrix} \right\|}{\sqrt{0^2 + 1^2 + 1^2}} = \frac{\frac{1}{3} \cdot \left\| \begin{matrix} i & j & k \\ 0 & 1 & 1 \\ 5 & 1 & 3 \end{matrix} \right\|}{\sqrt{2}} = \frac{\left| 3i + 5j - 5k - i \right|}{3\sqrt{2}} = \frac{\left| 2i + 5j - 5k \right$$

$$=\frac{\sqrt{2^2+5^2+(-5)^2}}{3\sqrt{2}}=\frac{\sqrt{4+25+25}}{3\sqrt{2}}=\frac{\sqrt{54}}{3\sqrt{2}}=\frac{\sqrt{9\cdot 6}}{3\sqrt{2}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3\sqrt{6}=\frac{3\sqrt{6}}{3\sqrt{6}}=\frac{3\sqrt{6}}{3$$

3^a) Calcular $\lim_{x \to 0} \frac{e^x - x - \cos x}{sen^2 x}.$

$$\lim_{x \to 0} \frac{e^x - x - \cos x}{sen^2 x} = \frac{e^0 - 0 - \cos 0}{sen^2 0} = \frac{1 - 1}{0} = \frac{0}{0} \implies Ind. \implies (L'Hopital) \implies$$

$$\Rightarrow \frac{lím}{x \to 0} \frac{e^x - 1 + sen \ x}{2 \cdot sen \ x \cdot \cos x} = \frac{lím}{x \to 0} \frac{e^x - 1 + sen \ x}{sen \ (2x)} = \frac{1 - 1 + 0}{0} = \frac{0}{0} \Rightarrow Ind. \Rightarrow$$

$$\Rightarrow (L'Hopital) \Rightarrow \frac{lím}{x \to 0} \frac{e^x + \cos x}{2 \cdot \cos (2x)} = \frac{e^0 + \cos 0}{2 \cdot \cos 0} = \frac{1+1}{2 \cdot 1} = \frac{2}{2} = \frac{1}{2}$$

4ª) Demostrar que la ecuación $x^5 + 4x^3 + 3 = 0$ tiene exactamente una raíz en el intervalo [-1, 1]. ¿En qué resultados te basas?

Considerando la función $f(x) = x^5 + 4x^3 + 3$, que es continua en su dominio, que es R, por lo tanto lo será en cualquier intervalo considerado y, naturalmente, en el intervalo dado [-1, 1].

Por ser la función f(x) continua en todos los puntos del intervalo [-1, 1] y derivable en todos los puntos del intervalo (-1, 1) le es aplicable el Teorema de Bolzano, que dice que: "si una función f es continua en un intervalo cerrado [a, b] y en los extremos de éste toma valores de distinto signo, entonces existe al menos un valor $c \in (a, b)$ tal que f(c)=0".

$$f(x) = x^5 + 4x^3 + 3 \implies \begin{cases} f(-1) = (-1)^5 + 4(-1)^3 + 3 = -1 - 4 + 3 = -2 < 0 \\ f(1) = 1^5 + 4 \cdot 1^3 + 3 = 1 + 4 + 3 = 9 > 0 \end{cases} \implies$$

$$\Rightarrow \exists c \in R, c \in [-1, 1] \Rightarrow f(c) = 0$$

 $f'(x) = 5x^4 + 12x^2 > 0$, $\Rightarrow \underline{f(x)}$ es creciente $\forall x \in R$, lo cual implica que f(x) no puede anularse en ningún otro punto distinto de c, siendo $-1 \le c \le 1$, por lo tanto:

La ecuación $x^5 + 4x^3 + 3 = 0$ tiene exactamente una raíz en el intervalo [-1, 1], c.q.d.

PRUEBA B

PROBLEMAS

- 1°) Dadas las matrices $A = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$ $y B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ -2 & 0 & 0 \end{pmatrix}$, se define la siguiente matriz: C = A + mB.
- a) Hallar para qué valores de m la matriz C tiene rango menor que 3.
- b) Para m = -1, resolver el sistema lineal homogéneo cuya matriz de coeficientes es C.

a)

$$C = A + mB = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & -1 \end{pmatrix} + m \cdot \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ -2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & -1 \end{pmatrix} + \begin{pmatrix} m & 0 & -m \\ m & m & m \\ -2m & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} m-1 & 0 & 1-m \\ m+2 & m+1 & m \\ 3-2m & 2 & -1 \end{pmatrix} = C$$

$$|C| = \begin{vmatrix} m-1 & 0 & 1-m \\ m+2 & m+1 & m \\ 3-2m & 2 & -1 \end{vmatrix} = -(m^2-1) + 2(m+2)(1-m) - (1-m)(m+1)(3-2m) - (1-m)(3-2m) - (1-m)$$

$$-2m(m-1) = -m^2 + 1 + 2(m-m^2 + 2 - 2m) + (m^2 - 1)(3 - 2m) - 2m^2 + 2m =$$

$$= -2m^{2}(m+1) + 2(m+1) = (m+1)(2-2m^{2}) = 2(m+1)(1-m^{2}) = 2(m+1)(1-m)(1+m) =$$

$$=2(m+1)^2(1-m)=0 \implies m_1=1 ;; m_2=-1$$

$$Para \begin{cases} m=1 \\ m=-1 \end{cases} \Rightarrow Rang \ C < 3$$

Para m = -1 la matriz C es
$$C = \begin{pmatrix} -2 & 0 & 2 \\ 1 & 0 & -1 \\ 5 & 2 & -1 \end{pmatrix}$$
.

El sistema homogéneo cuya matriz de coeficientes es C es $\begin{cases} -2x + 2z = 0 \\ x - z = 0 \end{cases}$, equi-

valente al sistema
$$x-z=0$$

 $5x+2y-z=0$, equivalente a su vez a $x-z=0$
 $5x+2y-z=0$.

Su resolución es evidente haciendo $x = z = \lambda$:

$$5x + 2y - z = 0$$
 ;; $5\lambda + 2y - \lambda = 0$;; $2y = -4\lambda$;; $y = -2\lambda$

Solución:
$$\begin{cases} x = \lambda \\ y = -2\lambda \;\; ;; \;\; \forall \lambda \in R \\ z = \lambda \end{cases}$$

2°) a) Hallar a y b para que la función $f(x) = \begin{cases} L(e + sen x) & si \ x < 0 \\ x^3 + ax + b & si \ x \ge 0 \end{cases}$ sea continua en x = 0.

b) Calcular $f'(-\frac{\pi}{2})$.

Para que la función f(x) sea continua para x=0 tiene que cumplirse que los límites por la izquierda y por la derecha sean iguales, e igual al valor de la función en ese punto:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} \left[L(e + sen \ x) \right] = Le = \underline{1}$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} \left(x^{3} + ax + b \right) = f(0) = \underline{b}$$

$$\Rightarrow \underline{b = 1}$$

La función es continua en x = 0 para b = 5 y cualquier valor real de a.

Para
$$x = -\frac{\pi}{2}$$
 es $f(x) = L(e + sen x)$ y $f'(x) = \frac{\cos x}{e + sen x}$.

Teniendo en cuenta que $\begin{cases} sen (-\alpha) = -sen \alpha \\ cos (-\alpha) = cos \alpha \end{cases}$ sería:

$$f'(-\frac{\pi}{2}) = \frac{\cos(-\frac{\pi}{2})}{e + sen(-\frac{\pi}{2})} = \frac{\cos\frac{\pi}{2}}{e - sen\frac{\pi}{2}} = \frac{0}{e - 1} = 0$$

$$f'\left(-\frac{\pi}{2}\right) = 0$$

CUESTIONES

1^a) Si A es una matriz cuadrada, ¿la matriz $A + A^{T}$ es igual a su traspuesta? Razonar la respuesta. (A^{T} es la matriz traspuesta de A).

La respuesta es que en general no.

Como razonamiento de la respuesta puede considerarse, por ejemplo, que si la matriz A tiene todos sus elementos iguales o es simétrica, coincide con su traspuesta y, entonces sería $A + A^{T} = A + A = 2A$, lo cual obligaría a que se cumpliera que $2A = A^{T}$, lo cual es en general falso.

Sin embargo, si la matriz A es nula se cumpliría que $A + A^T = A^T$, lo cual también se deduce de: $A + A^T = A^T \Rightarrow A = O$, siendo O la matriz nula de la misma dimensión que la matriz A.

2^a) Hallar la ecuación de la recta s que pasa por el punto A(1, 2, -1), es paralela al plano $\pi = 2x + y - z - 3 = 0$ y es perpendicular a la recta $r = x = \frac{y-1}{-1} = \frac{z-4}{3}$.

Existen diversas formas de resolver este ejercicio; una de ellas puede ser la siguiente:

Un vector normal del plano π es $\overrightarrow{n} = (2, 1, -1)$ y un vector director de la recta r es $\overrightarrow{v} = (1, -1, 3)$.

La recta s, por ser paralela al plano π es perpendicular al vector normal del plano. Por ser perpendicular a r, sus vectores directores tienen que ser perpendiculares, por lo tanto: el vector director de s tiene que ser perpendicular, a la vez, a los vectores \overrightarrow{n} y \overrightarrow{s} .

Sabiendo que el producto vectorial de dos vectores es otro vector perpendicular a los dos vectores que se multiplican, el vector director de la recta s puede ser cualquiera que sea linealmente dependiente del producto vectorial de los vectores \overrightarrow{n} y \overrightarrow{s} .

$$\overrightarrow{w} = \overrightarrow{n} \wedge \overrightarrow{v} = \begin{vmatrix} i & j & k \\ 2 & 1 & -1 \\ 1 & -1 & 3 \end{vmatrix} = 3i - j - 2k - k - i - 6j = 2i - 7j - 3k = (2, -7, -3) = \overrightarrow{w}$$

Teniendo en cuenta que la recta r pasa por el punto A(1, 2, -1), su ecuación vectorial es:

$$\underline{s \equiv (x, y, z) = (1, 2, -1) + \lambda(2, -7, -3)}$$

3^a) Hallar el área de la región limitada por la curva $y = x^2$ y la recta y = 2x + 3.

En primer lugar dibujamos la situación, para lo cual determinamos los puntos de corte de ambas funciones:

$$\begin{vmatrix} y = x^2 \\ y = 2x + 3 \end{vmatrix} \Rightarrow x^2 = 2x + 3 \ ;; \ x^2 - 2x - 3 = 0 \ ;; \ x = \frac{2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm 4}{2} \Rightarrow \begin{cases} x_1 = 3 \\ x_2 = -1 \end{cases}$$

Los puntos de corte son: A(3, 9) y B(-1, 1).

Todas las ordenadas de la recta son iguales o mayores que las de la parábola en el intervalo determinado por los límites de integración que es el siguiente: (-1, 3). El área pedida es:

$$S = \int_{-1}^{3} (2x+3) \cdot dx - \int_{-1}^{3} x^{2} \cdot dx = \int_{-1}^{3} (2x+3-x^{2}) \cdot dx =$$

$$= \left[\frac{2x^2}{2} + 3x - \frac{x^3}{3} \right]_{-1}^3 = \left[x^2 + 3x - \frac{x^3}{3} \right]_{-1}^3 =$$

$$= \left(9 + 9 - \frac{27}{3}\right) - \left(1 - 3 + \frac{1}{3}\right) = 18 - 9 + 2 - \frac{1}{3} = 11 - \frac{1}{3} = \frac{33 - 1}{3} = \frac{32}{3} u^2 = S$$

4ª) ¿Cuál es la ecuación de la circunferencia de centro O'(3, 2) que es tangente al eje de abscisas?

Del triángulo rectángulo de la figura se deduce, aplicando el Teorema de Pitágoras, que:

$$r^{2} = (x-3)^{2} + (y-2)^{2}$$
 (*)

Teniendo en cuenta que la circunferencia es tangente en el punto T de coordenadas T(3, 0), el radio de la circunferencia es 2.

Sustituyendo y operando en la expresión (*) resulta:

$$2^2 = x^2 - 6x + 9 + y^2 - 4y + 4$$
;; $x^2 + y^2 - 6x - 4y + 9 = 0$

La expresión analítica de la circunferencia c es la siguiente:

$$c \equiv x^2 + y^2 - 6x - 4y + 9 = 0$$