

Knowledge Graphs

5.1 Beyond the Limits of OWL

Excursion 7: The Semantic Web Rule Language SWRL

- 5.2 How to design your own Ontology
- 5.3 How to design better Ontologies
- 5.4 Ontological Engineering
- 5.5 Knowledge Graph Construction
- 5.6 Ontologies & Knowledge Graphs Best Practices

Beyond OWL

Consider the following example:

"A younger sibling of x is a sibling that is younger than x."

```
:Paul :youngerThan :Mary .:Paul :siblingOf :Mary .youngerSiblingOf a owl:ObjectProperty; ??
```

- We need a constructor to create an intersection of Properties.
- Problem: OWL does not provide any way to entail a property intersection.

Beyond OWL

Karlsruher Institut für Technologie

FIZ Karlsruhe
Leibniz Institute for Information Infrastructure

- More expressivity also means more complexity.
 This might lead to undecidability (as for FOL).
- Do we really need more expressivity than OWL DL offers?
- Consider the following example:

"A squanderer is a person whose expenses are higher than their income."

- ∘ Squanderer ⊑ Person

- We need a constructor to combine Classes and Properties.
- Problem: Mixing of TBox and ABox.

Rules Beyond OWL

• The following example can be expressed via a **FOL-Rule**:

"A squanderer is a person whose expenses are higher than their income."

Arithmetics can be part of rules and modeled like a predicate:

Rules and the Semantic Web

- The Semantic Web focuses on declarative forms of knowledge representation
 Description Logics, OWL, RDFS
- Rules are a common form of procedural knowledge representation in Knowledge Engineering Expert Systems, Prolog, etc.
- Rules:

IF A ... THEN B ... A
$$\rightarrow$$
 B

Premise → **Conclusion**

FOL as Rule Language

Rules as FOL implications (Horn Clause)

- semantically equivalent with $\neg A_1 \lor \neg A_2 \lor \dots \lor \neg A_n \lor H$
- where A_i, H are atomic formulas
- Quantification most times omitted,
 free variables are considered to be universally quantified
 i.e. the rule holds for all possible assignments

FOL as Rule Language

Rules as FOL implications (Horn Clause)

• often written also from right to left (\leftarrow or :-)

Example Revisited

• The following example can be expressed via a **FOL-Rule**:

"A squanderer is a person whose expenses are higher than their income."

DL and Rules

- Rules are usually considered to apply only to known constants.
- No possibility to "create" new things "on the fly" by using existential quantification ∃

Human ⊑ ∃hasParent.Human

- If rules are considered FOL formulas,
 then combining rules with ALC leads to undecidability.
- What about decidable FOL-Rules....?
 - DATALOG

DATALOG

- is a **logical rule language** that consists of
 - horn clauses without function symbols
 - conjunction, constants, universally quantified variables, predicate symbols
 - no disjunction, no negation, no existential quantification, no function symbols
- originally developed as foundation of deductive databases (Gallaire, Minkers, 1978)
- Knowledge Bases (Datalog Programs)
 are sets of horn clauses (without function symbols)
- DATALOG is decidable and computationally efficient, ExpTime

DATALOG Syntax

DATALOG Term: constant c or variable v

• DATALOG Atom: $p(t_1,...,t_n)$

with predicate p, and terms $t_1, ..., t_n$

• DATALOG Rule: $\forall x_1 ... \forall x_n (B_1 \land ... \land B_n \rightarrow H)$

with $B_1, ..., B_n$, H atoms and $X_1, ..., X_n$ variables

DATALOG Program: set of DATALOG rules

DATALOG Examples

- Vegetarian(x) \ FishProduct(y) → dislikes(x,y)
- orderedDish(x,y) \land dislikes(x,y) \rightarrow Unhappy(x)
- orderedDish(x,y) \rightarrow Dish(y)
- dislikes(x,z)\Dish(y)\contains(y,z)→ dislikes(x,y)
- → Vegetarian(Matthias)
- Happy(x) \land Unhappy(x) \rightarrow

- DATALOG Rules allow mixing classes and relations (i.e. unary and binary predicates). Therefore, it can be more expressive than DL.
- A combination of DATALOG and OWL is the SWRL Language.

THE TYPEOE THREE AS BEIN HE MAN

THE SUCURAS

Excursion 7: e Semantic Web Ru

Language SWRL

Next Lecture...

HEET RACH EILIB

[4]

Knowledge Graphs

5. Ontological Engineering for smarter Knowledge Graphs / 5.1 Beyond the Limits of OWL

Bibliographic References:

- Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, Sebastian Rudolph (eds., 2012), <u>OWL 2 Web Ontology Language</u>

 Primer (Second Edition), W3C Recommendation 11 December 2012.
- Stefano Ceri, Georg Gottlob, Letizia Tanca (March 1989). "What you always wanted to know about Datalog (and never dared to ask)". IEEE Transactions on Knowledge and Data Engineering. 1 (1): 146–166.
- Aidan Hogan (2020), The Web of Data, Springer.
 Chap. 5.4.7 Features not supported in OWL, pp. 244–250.

Picture References:

- (1) "A large owl in a space suit floating in deep space next to its spaceship over the surface of Mars.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot
- [2] Benjamin Nowack, *The Semantic Web Not a Piece of cake...*, at bnode.org, 2009-07-08 , [CC BY 3.0], https://web.archive.org/web/20220628120341/http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
- "The Greek philosopher Heraclitus", created via ArtBot, Ceipher Female Model, 2023, [CC-BY-4.0], https://tinybots.net/artbot
- [4] "A large owl in a space suit floating in deep space next to its spaceship over the surface of Mars.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot