Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №8 "Эксперементальное построение областей устойчивости на плоскости двух параметров" Вариант - 2

Выполнил	Алякин С.	Алякин С.П.				
		(фамилия, и.о.)	(подпись)			
Проверил		(фамилия, и.о.)	(подпись)			
""	20 <u>17</u> г.	Санкт-Петербург,	20 <u>17</u> г.			
Работа выполнен	а с оценкой					
Дата защиты "	"	20 <u>17</u> г.				

Цель работы

Ознакомление с эксперементальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы её параметров.

Вариант задания

Задана линейная схема третьего порядка, схема которой представлена на рисунке 1. По условию параметр T_1 неизменен и равен 0,75с. Параметр T_2 в ходе работе будет изменяться в диапозоне от 0,1 с до 5 с. Коэффициент K выбирается для обеспечения устойчивости/границы устойчивости системы.

Рисунок 1 – Структурная схема линейной системы третьего порядка

1 Нахождение границы устойчивости методом математического моделирования

При постоянных коэффициетах T_1 и T_2 , изменяя значение коэффициента K, получим разные графики переходных процессов, соответствующие разным уровням устойчивости системы. Схема моделирования системы представлена на рисунке 2.

Рисунок 2 – Схема моделирования заданной системы

На рисунке 3 представлены результаты моделирования, на которых полученны устойчивое положение системы, не устойчивое и 2 состояния на границе устойчивости: на нейстральной и колебательной.

Рисунок 3 – Переходные процессы системы при разных значениях коэффициента к

2 Теоретический расчёт параметров устойчивости системы

Рассчитаем передаточную функцию заскнутой системы

$$W(s) = \frac{\Phi(s)}{1 + \Phi(s)},\tag{1}$$

где $\Phi(s)$ - передаточная функция разомкнутой системы.

$$\Phi(s) = K \cdot \frac{1}{T_1 s + 1} \cdot \frac{1}{T_2 s + 1} \cdot \frac{1}{s} = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s},\tag{2}$$

$$W(s) = \frac{(T_1 T_2 s^3 + (T_1 + T_2) s^2 + s) \cdot \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s}}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K} = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}.$$
(3)

На основании характеристического уравнения, построенного по передаточной функции замкнутой системы, составим матрицу Гурвица

$$\begin{pmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{pmatrix}$$

тогда главные миноры матрицы Гурвица равны

$$D_1 = T_1 + T_2, (4)$$

$$D_2 = \begin{vmatrix} T_1 + T_2 & K \\ T_1 T_2 & 1 \end{vmatrix} = T_1 + T_2 - T_1 T_2 K, \tag{5}$$

$$D_3 = D_2 \cdot K = (T_1 + T_2)K - T_1 T_2 K^2. \tag{6}$$

По критерию Гурвица для устойчивости системы необходимо, чтобы главные миноры матрицы были положительны. Если минор n-1 порядка равен 0, то система будет находится на колебательной границе устойчивости. Отсюда получаем уравнения коэффициентов для колебательной границы устойчивости

$$\begin{cases}
T_1 + T_2 > 0 \\
K = \frac{T_1 + T_2}{T_1 T_2}
\end{cases}$$
(7)

Так как по нашему условию T_1 и T_2 больше 0, то единственным условием для того, чтобы система находилась на колебательной границе устойчивости, является

$$K = \frac{T_1 + T_2}{T_1 T_2}. (8)$$

Используя полученное выражение, найдём K для $T_1=0,75$ и T_2 изменяющемся от 0,1 с до 5 с с шагом 0,5 с. Полученны значения K запишем в таблицу 1.

Таблица 1 – Значения К для колебательной границы устойчивости системы

	T_2	0,1	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
ĺ	K	11,33	3,33	2,33	2	1,83	1,73	1,66	1,62	1,58	1,56	1,53

Рисунок 4 — Граница устойчивости на плоскости двух параметров K и T_2

Вывод

В ходе работы был исследован способ управления устойчивастью системы, изменяя её параметры. Из трёх данных параметров K, T_1 и T_2 изменялись только K и T_2 . Аналитически и по средствам математического моделирования были рассчитаны значения, по которым был построен график границы устойчивости на плоскости двух параметров K и T_2 . Результаты, полученные обоими способами, совпадают.