有机化学

自若鹏 重庆大学化学化工学院 理科楼LC220 ruopeng@cqu.edu.cn

第十五章 有机含氮化合物

芳香族硝基化合物及其性质

胺类(Amine)的类型、结构

胺类化合物的性质

胺类化合物的制备方法

重氮盐(Diazonium salts)及其反应

季铵盐及季铵碱

Ar—NO₂

- ▶ 重要的化工原料
- > 多硝基化合物——炸药

结构:

π₃4大π键

硝基的还原

▶ 合成上的应用 —— 制备芳香族胺类化合物 (向芳环上引入氨基)

芳环上的亲核取代反应——加成一消除机理

>一般条件下芳环上的亲核取代较难发生

■含硝基芳香卤代物的取代

■ 取代反应的机理 ——加成 – 消除机理

- i. 动力学证据:双分子反应
- ii. NO2在间位时反应难发生
- iii. X 为 Cl, Br, I 时反应的速率接近
- iv. X = F 时反应速率较快
- v. 邻对位硝基增加, 反应更加容易

■其它底物的类似取代反应

各类吸电子基对反应速率的促进作用比较:

W:
$$-N_2 > -NR_3 > -NO > -NO_2 > -CF_3$$

$$> -CR > -CN > -COOH$$

胺类(Amine)的类型、结构

类型

R = 烷基: **脂肪胺**

芳基: 芳香胺

季铵盐(四级铵盐)

麻黄碱

胺类(Amine)的类型、结构

胺类化合物的命名

11

胺类(Amine)的类型、结构

胺类化合物的结构

脂肪胺 N 原子一般为 sp³ 杂化

结构分析

芳香胺的结构和性质

氨基

- ●碱性和亲核性
- 易被氧化
- ●与亚硝酸反应

芳环

- 氨基的活化亲电 取代反应易进行
- 使苯环易被氧化

胺类化合物的碱性

脂肪胺的碱性

```
NH_3 CH_3NH_2 (CH_3)_2NH (CH_3)_3N pK_b 4.76 3.38 3.27 4.21
```

碱性: $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$

电子效应: 甲基推电子,推论: $3^{\circ} > 2^{\circ} > 1^{\circ} > 1^{\circ}$ NH₃

溶剂化效应:形成铵盐的溶剂化作用越大,其稳定性越好,胺碱性越强,推论: 3°<2°<1°<NH₃

芳香胺的碱性

A. 与脂肪胺相比

PhNH₂ Ph₂NH Ph₃N NH₃ CH₃NH₂ pK_b 9.40 13.8 中性 4.76 3.38

碱性:脂肪胺>NH3>芳香胺

原因: PhNH2中存在p-π共轭

B. 取代芳香胺的碱性

$$G$$
 NH_2
 pK_b
 G
 $-o$
 $-m$
 $-p$
 H
 9.40
 9.40
 9.40
 9.40
 OCH_3
 9.48
 9.77
 8.66
 NO_2
 14.2
 11.53
 13.00

```
碱性: 邻、对位 (+C&-I) > 间位 (-I) : OCH<sub>3</sub>
间位 (-I) > 邻、对位 (-I&-C) : NO<sub>2</sub>
```

中胺与烷基锂的反应 (弱酸性)

胺类化合物的亲核性(复习)

- 与卤代烃的亲核取代反应 (胺的烷基化)
- 与醛酮的亲核加成反应
- 与羧酸衍生物的亲核取代反应——胺的酰化
- $= 5\alpha, β$ -不饱和羰基化合物的共轭加成反应 (Michael加成)

胺的氧化

■伯胺和仲胺的氧化

产物一般较为复杂, 合成上意义不大

■ 叔胺的氧化

脂肪胺与 HNO2 的反应

早期有机分析中用作 区分胺的类型

芳香胺与 HNO。的反应

早期有机分析中用作区分芳香胺的类型

脂肪族伯胺的制备

■ 氨的烷基化(卤代烷的取代, S_N2 机理)

- ▶ 有多取代产物,分离有难度
- ▶ 2°或 3°R X 可能有消除产物

■腈、酰胺、肟、腙的还原

■ 醛酮的还原氨化

NH₃ 过量 — 伯胺

NH3: 醛酮=1:2 — 对称仲胺

■ Gabriel 伯胺合成法

邻苯二甲酰亚胺

■酰胺的 Hofmann 降解 (Hofmann重排)

脂肪族仲胺的制备

■伯胺的烷基化(卤代烷的取代)

- 醛酮的还原胺化(亚胺的还原)

■N-取代酰胺的还原

脂肪族叔胺的制备

■ 仲胺的烷基化

■通过烯胺的还原

胺的氧化及Cope消除反应

氧化反应

CI
$$CF_{2}CO_{3}H$$

$$CI$$

$$NH_{2}$$

$$CI$$

$$NO_{2}$$

$$CI$$

$$CI$$

$$NO_{2}$$

$$CI$$

$$CI$$

$$N(CH_{3})_{2}$$

$$H_{2}O_{2}$$

$$N(CH_{3})_{2}$$

Cope消除

联苯胺重排

芳香胺的制备

■ 硝基的还原

■ 芳香族卤代物的取代

■ 酰胺的Hofmann降解

$$RCONH_2 \xrightarrow{Br_2/OH^-} RNH_2$$

重氮盐(Diazonium salts)及其反应

重氮盐的制备和稳定性

现制现用

- 温度升高易水解成酚
- 干燥时易爆炸

增加重氮盐稳定性几个因素:

• 环上有吸电子基

$$N_2 \stackrel{\bigoplus}{\text{CI}}$$

 $W = CI, NO_2, SO_3H$

• 阴离子为

$$Ar - \stackrel{\oplus}{N_2} \stackrel{\ominus}{X} \qquad Ar - \stackrel{\oplus}{N_2} \stackrel{\ominus}{SHO_4} \qquad Ar - \stackrel{\oplus}{N_2} \stackrel{\ominus}{BF_4}$$

$$Ar - \stackrel{\oplus}{N_2} \stackrel{\ominus}{BF_4}$$

• 分子内重氮盐

$$\Theta_{O_3}S$$
 $-N_2^{\oplus}$

30-40°C时仍稳定

重氮盐(Diazonium salts)及其反应

重氮盐的反应类型

- •取代(主要反应)
- 偶联
- 还原

重氮盐的取代反应

重氮盐的水解 (取代成酚)

- ▶ 合成上应用——制备酚类化合物
 - 产率不高(用ArN₂SO₄H较好)
 - 有偶联副反应 (酸性不够时易发生)

$$Ar-N_2^{\oplus}X^{\ominus} + Ar-OH \longrightarrow Ar-N=N-$$

Sandmeyer反应(重氮盐被Cl、Br或CN 取代)

$$Ar$$
— N_2 $\stackrel{\Theta}{\lambda}$ Ar — X $(X = CI, Br)$

$$Ar$$
— CN

$$Ar$$
— CN

Gattermann反应

$$Ar \xrightarrow{\bigoplus_{N_2} \bigoplus_{X}} \begin{cases} HCI, Cu \\ HBr, Cu \end{cases} Ar \xrightarrow{} Ar \xrightarrow{} CN$$

$$Cu, KCN \\ Ar \xrightarrow{} CN$$

重氮盐碘代

$$Ar - N_2^{\oplus} X^{\ominus} + Nai \xrightarrow{\Delta} Ar - I + N_2$$

机理 (离子型反应)

$$Ar - N_2 X^{\Theta}$$
 $Ar + N_2 + X^{\Theta}$
 $Ar - I$

Schiemann 反应 (重氮盐被F取代)

$$Ar - N_2 \stackrel{\oplus}{X} + NaBF_4$$
 $Ar - N_2 \stackrel{\oplus}{BF_4} + NaX$
 $Ar - F + N_2 + BF_3$

反应的扩展

$$Ar - N_{2}^{\oplus} BCI_{4}^{\ominus} Ar - CI$$

$$Ar - N_{2}^{\oplus} BCI_{4}^{\ominus} Ar - CI$$

$$Ar - N_{2}^{\oplus} BBI_{4}^{\ominus} Ar - Br$$

重氮盐去氨基化反应(被H取代)

副反应——生成芳基醚

$$Ar - N_2 \xrightarrow{-N_2} Ar \xrightarrow{HOC_2H_5} Ar - \overset{\oplus}{OC_2H_5} \xrightarrow{-H^{\textcircled{\tiny \textcircled{\tiny \textbf{B}}}}} Ar - OC_2H_5$$

重氮盐(Diazonium salts)及其反应

重氮盐的偶联反应 (亲电取代反应)

重氮酸盐

重氮盐与芳香叔胺偶联

注意反应条件

■重氮盐与芳香伯胺、芳香仲胺的反应

■偶氮化合物与染料

甲基橙 (酸碱指示剂)

pH<3.1 红色, pH>4.4 黄色

重氮盐(Diazonium salts)及其反应

重氮盐的还原

重氮盐(Diazonium salts)及其反应

重氮盐的取代反应在合成中的应用

- ■重氮盐反应小结
 - (i) 取代
 - 水解成酚
 - 卤代成卤代芳烃
 - 转变为芳香腈(Sandemeyer反应)
 - 转变为芳烃 (去氨基化)
 - (ii) 与酚或胺类偶联:成偶氮芳烃

(iii) 还原: 成芳基肼

Sandemeyer反应引入CI、Br Schiemann 反应引入 F 与 Nal反应引入I

> H₃PO₂法 HOC₂H₅法

>提示: 磺酸碱熔法制备酚

通过重氮盐制备酚

•合成路线

一合成路线
$$H_3C \longrightarrow \frac{HNO_3}{H_2SO_4} \quad H_3C \longrightarrow \frac{Br_2}{Fe} \quad H_3C \longrightarrow \frac{Fe}{HBr}$$
 除去邻位产物
$$\frac{Br}{H_3C} \longrightarrow \frac{NaNO_2}{H_2SO_4} \quad H_3C \longrightarrow \frac{\Theta}{NaNO_2} \quad H_3C \longrightarrow \frac{\Theta}{NaNO_4} \quad H_3C \longrightarrow \frac{\Theta}{N$$

•直接溴代,得不到目标产物

•分析:考虑定位基团及应用去氨基化

- •直接溴代得邻、对位产物
- •考虑氨基的定位及去氨基化

季铵盐及季铵碱

季铵盐

- ▶ 季铵盐有盐类的特性:固体,熔点高,易溶于水
- > 季铵盐与普通铵盐不同

■季铵盐的应用

i. 用作阳离子型表面活性剂,降低表面张力 (如:洗涤剂、乳化剂、悬浮剂、起泡剂、分散剂等)

ii. 合成上用作相转移催化剂(PTC, phase transfer catalyst)

例:一些带有长链烷基的季铵盐

► 相转移催化剂 (PTC) 的应用举例

季铵盐及季铵碱

季铵碱和Hofmann消除

■季铵碱的形成

强碱,碱性类似于NaOH、KOH

■季铵碱的反应 —— Hofmann消除反应

$$\begin{bmatrix} H_3C - N - CH_2 - C - R \\ CH_3 \end{bmatrix} OH \xrightarrow{\Delta} CH_2 = CH - R + H_3C - N + H_2O$$

$$CH_3 + H_2O$$

β - 消除

■ Hofmann消除的取向

消除时主要生成取代基少的烯 烃——Hofmann取向

➤比较:卤代烷的消除取向—— Zaitsev 取向

$$H_3$$
C-C H_2 -CH-CH-CH₂ NaOC₂H₅ H_3 C-C H_2 -CH=CH-CH₂ 主要

➤ Hofmann消除例子

➤ Hofmann消除取向的解释

- (i) 从β-氢的酸性的差别分析
- (ii) 从位阻的差别分析

本章要求:

- > 掌握各类脂肪胺的制备方法
- ➤ 掌握Hofmann降解反应
- > 掌握胺类的基本化学性质及其应用
- > 掌握重氮盐各类取代反应及其在合成中的应用
- ▶ 掌握Hofmann消除反应及在合成中的应用
- > 掌握芳环上的亲核取代反应及其合成上的应用