This is page vii
Printer: Opaque this

Contents

Pı	reface	5	xvii
Pı	reface	e to the Second Edition	xix
R	Softv	ware and Functions	xx
D	ata S	ets	xxii
O:	pen I	Problems in Mixed Models	xxiii
1	Intr	oduction: Why Mixed Models?	1
	1.1	Mixed effects for clustered data	. 2
	1.2	ANOVA, variance components, and the mixed model	. 4
	1.3	Other special cases of the mixed effects model	. 6
	1.4	Compromise between Bayesian and frequentist approaches	. 7
	1.5	Penalized likelihood and mixed effects	. 9
	1.6	Healthy Akaike information criterion	. 11
	1.7	Penalized smoothing	. 13
	1.8	Penalized polynomial fitting	16
	1.9	Restraining parameters, or what to eat	. 18
	1.10	Ill-posed problems, Tikhonov regularization, and mixed effects	20
		Computerized tomography and linear image reconstruction	
	1.12	GLMM for PET	. 26
	1.13	Maple leaf shape analysis	. 29
	1.14	DNA Western blot analysis	. 31
	1.15	Where does the wind blow?	. 33
	1.16	Software and books	. 36

2	ML	E for the LME Model	41
	2.1	Example: weight versus height	. 42
		2.1.1 The first R script	. 43
	2.2	The model and log-likelihood functions	
		2.2.1 The model	. 45
		2.2.2 Log-likelihood functions	. 48
		2.2.3 Dimension-reduction formulas	. 49
		2.2.4 Profile log-likelihood functions	. 53
		2.2.5 Dimension-reduction GLS estimate	. 55
		2.2.6 Restricted maximum likelihood	. 56
		2.2.7 Weight versus height (continued)	. 59
	2.3	Balanced random-coefficient model	. 60
	2.4	LME model with random intercepts	
		2.4.1 Balanced random-intercept model	. 67
		2.4.2 How random effect affects the variance of MLE	. 71
	2.5	Criterion for MLE existence	
	2.6	Criterion for the positive definiteness of matrix D	
		2.6.1 Example of an invalid LME model	
	2.7	Pre-estimation bounds for variance parameters	
	2.8	Maximization algorithms	
	2.9	Derivatives of the log-likelihood function	
	2.10	Newton–Raphson algorithm	
		Fisher scoring algorithm	
		2.11.1 Simplified FS algorithm	
		2.11.2 Empirical FS algorithm	
		2.11.3 Variance-profile FS algorithm	
	2.12	EM algorithm	
		2.12.1 Fixed-point algorithm	
	2.13	Starting point	
		2.13.1 FS starting point	
		2.13.2 FP starting point	
	2.14	Algorithms for restricted MLE	
		2.14.1 Fisher scoring algorithm	
		2.14.2 EM algorithm	
	2.15	Optimization on nonnegative definite matrices	
		2.15.1 How often can one hit the boundary?	
		2.15.2 Allow matrix D to be not nonnegative definite	
		2.15.3 Force matrix D to stay nonnegative definite	
		2.15.4 Matrix D reparameterization	
		2.15.5 Criteria for convergence	
	2.16	lmeFS and lme in R	
		Appendix: proof of the existence of MLE	
		Summary points	
3	Stat	cistical Properties of the LME Model	117
-		Introduction	. 117

3.2	Identifiability of the LME model	117
	3.2.1 Linear regression with random coefficients	119
3.3	Information matrix for variance parameters	120
	3.3.1 Efficiency of variance parameters for balanced data	129
3.4	Profile-likelihood confidence intervals	131
3.5	Statistical testing of the presence of random effects	133
3.6	Statistical properties of MLE	137
	3.6.1 Small-sample properties	137
	3.6.2 Large-sample properties	140
	3.6.3 ML and RML are asymptotically equivalent	144
3.7	Estimation of random effects	145
	3.7.1 Implementation in R	148
3.8	Hypothesis and membership testing	151
	3.8.1 Membership test	152
3.9	Ignoring random effects	154
	MINQUE for variance parameters	157
	3.10.1 Example: linear regression	158
	3.10.2 MINQUE for σ^2	160
	3.10.3 MINQUE for \mathbf{D}_*	162
	3.10.4 Linear model with random intercepts	165
	3.10.5 MINQUE for the balanced model	165
	3.10.6 lmevarMINQUE function	166
3.11	Method of moments	166
0.11	3.11.1 lmevarMM function	171
3.12	Variance least squares estimator	171
0.12	3.12.1 Unbiased VLS estimator	173
	3.12.2 Linear model with random intercepts	174
	3.12.3 Balanced design	174
	3.12.4 VLS as the first iteration of ML	175
	3.12.5 lmevarUVLS function	175
3 13	Projection on \mathbb{D}_+ space	176
	Comparison of the variance parameter estimation	176
0.11	3.14.1 lmesim function	179
3 15	Asymptotically efficient estimation for β	180
	Summary points	181
0.10	Summer points	101
Gro	owth Curve Model and Generalizations	185
4.1	Linear growth curve model	185
	4.1.1 Known matrix D	187
	4.1.2 Maximum likelihood estimation	189
	4.1.3 Method of moments for variance parameters	192
	4.1.4 Two-stage estimation	196
	4.1.5 Special growth curve models	196
	4.1.6 Unbiasedness and efficient estimation for β	200
4.2	General linear growth curve model	201
	4.2.1 Example: Calcium supplementation for bone gain	202
	4.2.2 Variance parameters are known	204
	4 2 3 Balanced model	207

4

Contents

ix

x Contents

		4.2.4	Likelihood-based estimation	. 208
		4.2.5	MM estimator for variance parameters	. 213
		4.2.6	Two-stage estimator and asymptotic properties	. 214
		4.2.7	Analysis of misspecification	
	4.3	Linear	r model with linear covariance structure	
		4.3.1	Method of maximum likelihood	
		4.3.2	Variance least squares	
		4.3.3	Statistical properties	
		4.3.4	LME model for longitudinal autocorrelated data	
		4.3.5	Multidimensional LME model	
	4.4	Robus	st linear mixed effects model	
		4.4.1	Robust estimation of the location parameter with estimated	
			σ and c	
		4.4.2	Robust linear regression with estimated threshold	
		4.4.3	Robust LME model	
		4.4.4	Alternative robust functions	
		4.4.5	Robust random effect model	
	4.5		ndix: derivation of the MM estimator	
	4.6		nary points	
5	Met		lysis Model	245
	5.1	Simple	e meta-analysis model	. 246
		5.1.1	Estimation of random effects	. 248
		5.1.2	Maximum likelihood estimation	
		5.1.3	Quadratic unbiased estimation for σ^2	
		5.1.4	Statistical inference	. 260
		5.1.5	Robust/median meta-analysis	. 266
		5.1.6	Random effect coefficient of determination	. 271
	5.2	Meta-	analysis model with covariates	. 273
		5.2.1	Maximum likelihood estimation	. 274
		5.2.2	Quadratic unbiased estimation for σ^2	
		5.2.3	Hypothesis testing	. 278
	5.3	Multir	variate meta-analysis model	. 278
		5.3.1	The model	. 280
		5.3.2	Maximum likelihood estimation	. 283
		5.3.3	Quadratic estimation of the heterogeneity matrix	
		5.3.4	Test for homogeneity	. 288
	5.4	Summ	nary points	. 289
6	Nor	ılinear	Marginal Model	291
	6.1		matrix of random effects	. 292
		6.1.1	Log-likelihood function	
		6.1.2	nls function in R	
		6.1.3	Computational issues of nonlinear least squares	
		6.1.4	Distribution-free estimation	
		6.1.5	Testing for the presence of random effects	
		6.1.6	Asymptotic properties	
		6.1.7	Example: log-Gompertz growth curve	
			· · · · · · · · · · · · · · · · · · ·	

	6.2	Varied	matrix of random effects	. :	305
		6.2.1	Maximum likelihood estimation	. :	305
		6.2.2	Distribution-free variance parameter estimation	. :	308
		6.2.3	GEE and iteratively reweighted least squares	. :	309
		6.2.4	Example: logistic curve with random asymptote	. :	310
	6.3	Three	types of nonlinear marginal models	. :	316
		6.3.1	Type I nonlinear marginal model	. :	317
		6.3.2	Type II nonlinear marginal model	. :	319
		6.3.3	Type III nonlinear marginal model	. :	319
		6.3.4	Asymptotic properties under distribution misspecification .	. :	320
	6.4	Total g	generalized estimating equations approach		
		6.4.1	Robust feature of total GEE	. :	323
		6.4.2	Expected Newton–Raphson algorithm for total GEE $$. :	323
		6.4.3	Total GEE for the mixed effects model		
		6.4.4	Total GEE for the LME model	. ;	324
		6.4.5	Example (continued): log-Gompertz curve		
		6.4.6	Photodynamic tumor therapy		
	6.5	Summ	ary points	. :	328
_	~		171 20 126 1	_	
7			ed Linear Mixed Models		331
	7.1		sion models for binary data		
		7.1.1	Approximate relationship between logit and probit		
		7.1.2	Computation of the logistic-normal integral		338
		7.1.3	Gauss-Hermite numerical quadrature for multidimensional in-		250
		714	tegrals in R		
		7.1.4	Log-likelihood and its numerical properties		
	7.0	7.1.5	Unit step algorithm		
	7.2	_	model with subject-specific intercept		
		7.2.1	Consequences of ignoring a random effect		
		7.2.2	ML logistic regression with a fixed subject-specific intercept		358
	7.9	7.2.3	Conditional logistic regression		
	7.3	_	ic regression with random intercept		
		7.3.1	Maximum likelihood		
		7.3.2	Fixed sample likelihood approximation		
		7.3.3	Quadratic approximation		
		7.3.4 $7.3.5$	VARLINK estimation		374
		7.3.6	Beta-binomial model		374 376
		7.3.0 $7.3.7$	Statistical test of homogeneity		378
		7.3.7			381
	7.4		Asymptotic properties		382
	1.4		<u>•</u>		
		$7.4.1 \\ 7.4.2$	Laplace and PQL approximations		382 383
		7.4.2 $7.4.3$	Heckman method for the probit model		383
		7.4.3 $7.4.4$	Generalized estimating equations approach		384
		7.4.4 $7.4.5$	Implementation in R		386
	7.5		n model with random intercept		386
	1.0	7.5.1	Poisson regression for count data		
		1.0.1	i organi regression for count data	. •	100

Contents

xi

		7.5.2	Clustered count data	. 388
		7.5.3	Fixed intercepts	. 389
		7.5.4	Conditional Poisson regression	
		7.5.5	Negative binomial regression	. 391
		7.5.6	Normally distributed intercepts	
		7.5.7	Exact GEE for any distribution	
		7.5.8	Exact GEE for balanced count data	
		7.5.9	Heckman method for the Poisson model	
		7.5.10		
		7.5.11	Implementation in R	
	7.6		om intercept model: overview	
	7.7		models with multiple random effects	
		7.7.1	Multivariate Laplace approximation	
		7.7.2	Logistic regression	
		7.7.3	Probit regression	
		7.7.4	Poisson regression	
		7.7.5	Homogeneity tests	
	7.8	GLMN	M and simulation methods	
		7.8.1	General form of GLMM via the exponential family	
		7.8.2	Monte Carlo for ML	
		7.8.3	Fixed sample likelihood approach	
	7.9	GEE f	For clustered marginal GLM	
		7.9.1	Variance least squares	
		7.9.2	Limitations of the GEE approach	
		7.9.3	Marginal or conditional model?	
		7.9.4	Implementation in R	
	7.10	Criteri	ia for MLE existence for a binary model	
			ary points	
8	Non	linear	Mixed Effects Model	433
O	8.1		uction	
	8.2		odel	
	8.3		ble: height of girls and boys	
	8.4	_	num likelihood estimation	
	8.5		tage estimator	
	0.0	8.5.1	Maximum likelihood estimation	
		8.5.2	Method of moments	
		8.5.3	Disadvantage of two-stage estimation	
		8.5.4	Further discussion	
		8.5.5	Two-stage method in the presence of a common parameter	
	8.6		order approximation	
	0.0	8.6.1	GEE and MLE	
		8.6.2	Method of moments and VLS	
	8.7		rom-Bates estimator	
	0.1	8.7.1	What if matrix D is not positive definite?	
		8.7.2	Relation to the two-stage estimator	
		8.7.3	Computational aspects of penalized least squares	
		8.7.4	Implementation in R: the function nlme	
		0.1.4	impromentation in it. the function filling	. 404

	Contents	xiii
8.8	Likelihood approximations	456
	8.8.1 Linear approximation of the likelihood at zero	456
	8.8.2 Laplace and PQL approximations	457
8.9	One-parameter exponential model	459
	8.9.1 Maximum likelihood estimator	459
	8.9.2 First-order approximation	460
	8.9.3 Two-stage estimator	461
	8.9.4 Lindstrom–Bates estimator	463
8.10	Asymptotic equivalence of the TS and LB estimators	466
8.11	Bias-corrected two-stage estimator	468
8.12	Distribution misspecification	470
8.13	Partially nonlinear marginal mixed model	473
8.14	Fixed sample likelihood approach	474
	8.14.1 Example: one-parameter exponential model	475
8.15	Estimation of random effects and hypothesis testing	476
	8.15.1 Estimation of the random effects	476
	8.15.2 Hypothesis testing for the NLME model	477
8.16	Example (continued)	478
8.17	Practical recommendations	480
8.18	Appendix: Proof of theorem on equivalence	481
8.19	Summary points	484
D:s	mostics and Influence Analysis	487
9.1	gnostics and Influence Analysis Introduction	
9.1 9.2	Influence analysis for linear regression	
9.2 9.3	The idea of infinitesimal influence	
9.5	9.3.1 Data influence	
0.4		
9.4	Linear regression model	495
	9.4.1 Influence of the dependent variable	404
	9.4.2 Influence of the continuous explanatory variable $\dots \dots$	495
	9.4.2 Influence of the continuous explanatory variable9.4.3 Influence of the binary explanatory variable	$495 \\ 497$
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable	495 497 497
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion	495 497 497 498
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code	495 497 497 498 500
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value	495 497 497 498 500 501
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat	495 497 497 498 500 501 503
0.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study	495 497 497 498 500 501 503 507
9.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model	495 497 497 498 500 501 503 507 510
9.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE	495 497 497 498 500 501 503 507 510
9.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE	495 497 497 498 500 501 503 507 510 510
9.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE 9.5.3 Influence on the predicted value	495 497 498 500 501 503 507 510 510 511
9.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE 9.5.3 Influence on the predicted value 9.5.4 Influence of case deletion	495 497 497 498 500 501 503 507 510 510 511 511
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE 9.5.3 Influence on the predicted value 9.5.4 Influence of case deletion 9.5.5 Example 3: logistic growth curve model	495 497 497 498 500 501 503 507 510 510 511 511 512
9.5	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE 9.5.3 Influence on the predicted value 9.5.4 Influence of case deletion 9.5.5 Example 3: logistic growth curve model Logistic regression for binary outcome	495 497 497 498 500 501 503 507 510 511 511 512 515
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE 9.5.3 Influence on the predicted value 9.5.4 Influence of case deletion 9.5.5 Example 3: logistic growth curve model Logistic regression for binary outcome 9.6.1 Influence of the covariate on the MLE	495 497 497 498 500 501 503 507 510 510 511 511 512 515
	9.4.2 Influence of the continuous explanatory variable 9.4.3 Influence of the binary explanatory variable 9.4.4 Influence on the predicted value 9.4.5 Case or group deletion 9.4.6 R code 9.4.7 Influence on regression characteristics 9.4.8 Example 1: Women's body fat 9.4.9 Example 2: gypsy moth study Nonlinear regression model 9.5.1 Influence of the dependent variable on the LSE 9.5.2 Influence of the explanatory variable on the LSE 9.5.3 Influence on the predicted value 9.5.4 Influence of case deletion 9.5.5 Example 3: logistic growth curve model Logistic regression for binary outcome	495 497 497 498 500 501 503 507 510 510 511 511 512 515 516 516

		9.6.4 Sensitivity to misclassification	517
		9.6.5 Example: Finney data	522
	9.7	Influence of correlation structure	
	9.8	Influence of measurement error	525
	9.9	Influence analysis for the LME model	
		9.9.1 Example: Weight versus height	
	9.10	Appendix: MLE derivative with respect to σ^2	
			535
10	Tun	nor Regrowth Curves	539
		Survival curves	
		Double-exponential regrowth curve	
	10.2	10.2.1 Time to regrowth, T_R	
		10.2.2 Time to reach specific tumor volume, T_*	
		10.2.3 Doubling time, T_D	
		10.2.4 Statistical model for regrowth	
		10.2.5 Variance estimation for tumor regrowth outcomes	
		10.2.6 Starting values	
		10.2.7 Example: chemotherapy treatment comparison	
	10.3	Exponential growth with fixed regrowth time	
	10.5	10.3.1 Statistical hypothesis testing	
		10.3.2 Synergistic or supra-additive effect	
	10.4	10.3.3 Example: combination of treatments	
		General regrowth curve	
	10.5	Double-exponential transient regrowth curve	
	10.0	10.5.1 Example: treatment of cellular spheroids	
	10.6	Gompertz transient regrowth curve	
	10 -	10.6.1 Example: tumor treated in mice	
	10.7	Summary points	574
11		<i>J</i>	577
		Introduction	
		Statistical analysis of random triangles	
		Face recognition	
	11.4	Scale-irrelevant shape model	
		11.4.1 Random effects scale-irrelevant shape model	
		11.4.2 Scale-irrelevant shape model on the log scale	
		11.4.3 Fixed or random size?	587
	11.5	Gorilla vertebrae analysis	587
	11.6	Procrustes estimation of the mean shape	589
		11.6.1 Polygon estimation	592
		11.6.2 Generalized Procrustes model	592
		11.6.3 Random effects shape model	593
		11.6.4 Random or fixed (Procrustes) effects model?	594
		11.6.5 Maple leaf analysis	594
	11.7	Fourier descriptor analysis	596
		11.7.1 Analysis of a star shape	596
			602

			Contents	xv
		11.7.3 Potato project		604
	11.8	Summary points		
		V 1		
12	Stat	istical Image Analysis		607
	12.1	${\bf Introduction} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $		607
		12.1.1 What is a digital image?		608
		12.1.2 Image arithmetic		609
		12.1.3 Ensemble and repeated measurements		609
		12.1.4 Image and spatial statistics		610
		12.1.5 Structured and unstructured images $\ \ldots \ \ldots \ \ldots$		610
	12.2	Testing for uniform lighting		610
		12.2.1 Estimating light direction and position		612
	12.3	$\label{prop:comparison} Kolmogorov-Smirnov\ image\ comparison\ \dots\dots\dots\dots.$		614
		12.3.1 Kolmogorov–Smirnov test for image comparison .		614
		12.3.2 Example: histological analysis of cancer treatment		615
	12.4	Multinomial statistical model for images		618
		12.4.1 Multinomial image comparison		620
	12.5	Image entropy		621
		12.5.1 Reduction of a gray image to binary		623
		12.5.2 Entropy of a gray image and histogram equalization	1	623
	12.6	Ensemble of unstructured images		625
		12.6.1 Fixed-shift model		626
		12.6.2 Random-shift model		628
		12.6.3 Mixed model for gray images		631
		12.6.4 Two-stage estimation		633
		12.6.5 Schizophrenia MRI analysis		635
	12.7	Image alignment and registration		638
		12.7.1 Affine image registration		641
		12.7.2 Weighted sum of squares		642
		12.7.3 Nonlinear transformations		643
		12.7.4 Random registration		643
		12.7.5 Linear image interpolation		644
		12.7.6 Computational aspects		645
		12.7.7 Derivative-free algorithm for image registration		646
		12.7.8 Example: clock alignment		647
	12.8	Ensemble of structured images		
		12.8.1 Fixed affine transformations		
		12.8.2 Random affine transformations		651
	12.9	Modeling spatial correlation		652
		12.9.1 Toeplitz correlation structure		654
		12.9.2 Simultaneous estimation of variance and transform		
	12.10	Summary points		658

xvi Contents

	Jseful Facts and Formulas	661
13.1 Basic fac	ets of asymptotic theory	. 661
13.1.1 C	Central Limit Theorem	. 661
13.1.2 G	Generalized Slutsky theorem	. 662
13.1.3 P	Seudo-maximum likelihood	. 664
13.1.4 E	stimating equations approach and the sandwich formula .	. 665
13.1.5 G	Generalized estimating equations approach	. 667
13.2 Some for	mulas of matrix algebra	. 668
13.2.1 Se	ome matrix identities	. 668
13.2.2 Fe	ormulas for generalized matrix inverse	. 668
$13.2.3 \ V$	Vec and vech functions; duplication matrix	. 669
13.2.4 N	Matrix differentiation	. 670
13.3 Basic fac	ets of optimization theory	. 672
13.3.1 C	Criteria for unimodality	. 673
13.3.2 C	Criteria for global optimum	. 674
13.3.3 C	Criteria for minimum existence	. 674
13.3.4 O	Optimization algorithms in statistics	. 675
13.3.5 N	Jecessary condition for optimization and criteria for conver-	
ge	ence	. 678
References		681
Index		711