PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 02

Paradoja de los Cumpleaños

IIC3253 – Criptografía

Fecha: 2021-04-06

Dado una función de HASH con output space O(n = |O|), queremos encontrar dos cosas:

- 1) Un $d \in \mathbb{N}$ "pequeño" tal que $\mathbb{P}[X = d] \geq \frac{1}{2}$, donde $\mathbb{P}[X = d]$ es la probabilidad de que haya al menos dos colisiones después de d intentos distintos.
- 2) Un $d \in \mathbb{N}$ "pequeño" tal que $\mathbb{E}[Y_d] \geq 1$, donde Y_d es la variable aleatoria que cuenta la cantidad de colisiones después de d intentos distintos.

$$\mathbb{P}[X=d] \ge \frac{1}{2}$$

Para el primero notemos que es más fácil calcular $1 - \mathbb{P}[X = i]$ (la probabilidad de que no hayan colisiones en i intentos):

$$1 - \mathbb{P}[X = i] = \prod_{j=0}^{i-1} \left(1 - \frac{j}{n}\right)$$

Usando esto, y el hecho de que $e^x \ge 1 + x$, se tienen las siguientes desigualdades

$$1 - \mathbb{P}[X = i] = \prod_{j=0}^{i-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{i-1} \exp\left(-\frac{j}{n}\right)$$

$$\leq \exp\left(\sum_{j=0}^{i-1} - \frac{j}{n}\right)$$

$$\leq \exp\left(\frac{-d(d-1)}{2n}\right)$$

$$\leq \exp\left(\frac{-(d-1)^2}{2n}\right)$$

Por lo que si $\exp\left(\frac{-(d-1)^2}{2n}\right) \leq \frac{1}{2}$ se tiene que $\mathbb{P}[X=d] \geq \frac{1}{2}$. Desarrollemos la primera expresión:

$$\exp\left(\frac{-(d-1)^2}{2n}\right) \le \frac{1}{2}$$

$$\frac{-(d-1)^2}{2n} \le \log\frac{1}{2}$$

$$(d-1)^2 \ge -2n\log\frac{1}{2}$$

$$(d-1)^2 \ge 2n\log 2$$

$$d-1 \ge \sqrt{2n\log 2}$$

$$d \ge \sqrt{2n\log 2} + 1$$

Con lo que tomando $d = \lceil \sqrt{2n \log 2} + 1 \rceil$ se tiene la desigualdad.

$$\mathbb{E}[Y_d] \geq 1$$

Para calcular el segundo, notemos que $Y_d = \sum_{i=1}^d \sum_{j=i+1}^d X_{ij}$ donde $\mathbb{P}[X_{ij} = 1] = \frac{1}{n}$ y $\mathbb{P}[X_{ij} = k] = 0$ para $k \neq 1$. Por lo que $\mathbb{E}[Y_d] = \sum_{i=1}^d \sum_{j=i+1}^d \mathbb{E}[X_{ij}] = \frac{d(d-1)}{2n} \geq \frac{(d-1)^2}{2n}$, por lo que tomando $d = \lceil \sqrt{2n} + 1 \rceil$ es suficiente.