NLP - Fake news detection

Simbiat Musa Georg F.K. Höhn

Ironhack

19 June 2025

Project overview

Given

▶ dataset of headlines annotated as fake (0) or real (1)

Aim

classify news headlines in unseen data (using machine learning)

Deliverables

- ► Python pipeline (+ csv with model training results)
- csv with predictions for test set

Data overview

Methodology

Training results

Conclusion

- ► 34152 rows of annotated data
 - ▶ fake news: 17572
 - ► real news: 16580

► relatively balanced

Word cloud for data annotated as real

Figure 1: Word cloud for real headlines

Word cloud for data annotated as fake

Figure 2: Word cloud for fake headlines

Structure

- one main .py file for data exploration, model experimentation and output generation
- helper.py with functions for
 - cleaning strings
 - generate, print and save model evaluations (to csv)
 - removing stop words (not needed with TF-IDF vectoriser)
 - lemmatizer (currently not used)
 - huggingface pipeline for transformer models

General pipeline

- ► EDA
- clean data (generate new columns)
- ► train-test split (20% test size)
- vectorise train and test sets
- ► train (and tune?) models
- compare based on test accuracy
- run best model(s) on target data and save
- (run best models of different types on target data and calculate inter-annotator agreement)

Vectorisation

- ► TF-IDF
- ► GloVE (glove-wiki-gigaword-100)

ML-algorithms

- Logistic Regression

 (sklearn linear model LinearRegression)
- (sklearn.linear_model.LinearRegression)
 ▶ Random Forest
 - (sklearn.ensemble.RandomForestClassifier)
- ► KNN (sklearn.neighbors.KNeighborsClassifier)
- ► XGBoost (xgboost.XGBClassifier)

Regarding transformer models

- tried pipelines with
 - 1) jy46604790/Fake-News-Bert-Detect
 - 2) omykhailiv/bert-fake-news-recognition
- both performed abysmally: everything is fake, see result for 1
- over-sensitive? issue with our data pre-processing?

Figure 3: jy46604790/Fake-News-Bert-Detect

_model_id	params	acc_train	accuracy
logreg_lemma	miter=500	0.9209	0.9133
xgb_lemma	est=500,depth=100,lr=0.3, α =0.1	0.9963	0.9130
logreg_final	miter=500	0.9172	0.9084
logreg_1000	miter=1000	0.9172	0.9084
xgb_final	$est=500, depth=100, lr=0.3, \alpha=0.1$	0.9899	0.9065
xgb	$est=500, depth=200, lr=0.07, \alpha=0.1$	0.9896	0.9037
xgb_2	est=200,depth=0,lr=0.1	0.9896	0.9026
rndforest_lemma	est=300,minsleaf=2	0.9409	0.9002
xgb_2	est=200,depth=50,lr=0.04	0.9407	0.8971
rndforest_final	est=300,minsleaf=2	0.9382	0.8949
xgb_1	defaults	0.9002	0.8807
logreg_glove	miter=500	0.8689	0.8703
rndforest_2	est=300,depth=30	0.8677	0.8418
xgb_2	est=10,depth=50,lr=0.04	0.8611	0.8371
knn_3	k=3	0.9154	0.8172
knn_5	k=5	0.8829	0.8037
knn_3_lemma	k=3	0.8901	0.7993
knn_10	k=10	0.8158	0.7804
omykhailiv	defaults	0.5140	0.5166
jy46604790	defaults	0.5140	0.5166

- best performing: logistic regression model with lemmatized dataset
 - max-iterations did not seem to make a difference
- xgb and RandomForest very close by
 - but: high risk of overfittinglonger training times/higher complexity
- longer training times/higher complexknn not performing very well
- using lemmatized dataset actually leads to drop in accuracy

Confusion matrices LogReg

Figure 4: Confusion matrix for logistic regression model

Figure 5: LogReg lemmatized

Confusion matrices XGBoost

Figure 6: XGB model

Figure 7: XGB lemmatized

Confusion matrices RandomForest

Figure 8: RandomForest

Figure 9: RandomForest lemmatized

Confusion matrices KNN

Figure 10: KNN, k=3

Figure 11: KNN lemmatized

▶ logistic regression model offers best performance

Collaboration

- using py files to avoid notebook consistency issues with git
- ▶ # %: useful VS Code option for generating jupyter-like cells

Outlook/reflection

- further experimentation with vectoriser settings
- actually implement lemmatisation (oops)
- some confusion in our raw performance results.csv
 - some RandomForest models seemed to perform better than final model, but probably due to earlier mistakes in preprocessing?
 - lesson: also note changes to preprocessing or cleanly reset logging files

- ► for annotation of the test set, the xgb model falls into the same issue as the transformers: everything is 0
- comparing the other three (Logistic Regression, Random Forest, KNN) yields an inter-annotator agreement Cohen's κ value of 0.32, which is 'fair agreement'

Thanks for your attention!