Chapter 3 – Kernel Methods Support Vector Machines

Maschinelles Lernen - Grundverfahren WS20/21

Prof. Gerhard Neumann KIT, Institut für Anthrophomatik und Robotik

A few announcements

- For interested students: Meetup group for ML at KIT
 https://www.meetup.com/de-DE/AI-Paper-Discussion-Group-ML-KA/
 - The Machine Learning Karlsruhe group (ML-KA) get together once per week and discuss a current research paper. The papers are mostly from the field of deep learning, computer vision, reinforcement lea...
- Specific questions about the slides or the notebooks?
 - Feel free to contact us
 - Also helps us to improve the content!
 - Any feedback is welcome

Learning Outcomes

What will we learn today?

- Understand the concept of Maximum Margin classifiers
- Define the corresponding optimization problem
- How do relax the problem using slack variables
- Connection to the hinge loss
- How do optimize the problem using sub-gradients

Agenda for Today

Recap: Linear Discriminators

Support Vector Machines:

- Maximum Margin
- Optimization Problem
- Soft-Margin
- Hinge-Loss

Basics:

Sub-gradients

Binary Classification: Previous Definition

Given the training data (x_i,y_i) , i = 1...N, with $x_i\in\mathbb{R}^d$ and $y_i\in\{0,1\}$, learn a classifier f(x) such that:

$$f(\boldsymbol{x}_i) = \begin{cases} > 0, & \text{if } y_i = 1\\ < 0, & \text{if } y_i = 0 \end{cases}$$

Binary Classification: New Definition

For SVMs, it simplifies notation to use +1 and -1 as class labels

New definition: Given the training data (x_i, y_i) , i = 1...N, with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$ learn a classifier f(x) such that:

$$f(\boldsymbol{x}_i) = \begin{cases} > 0, & \text{if } y_i = 1\\ < 0, & \text{if } y_i = -1 \end{cases}$$

Or: $f(x_i)y_i > 0$ for a correct classification

Recap: Linear Classifiers

A linear classifier is given in the form:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

In 2D, the classifier is a line

- w is the normal to the line
- b is the bias

Basics: Projections of vectors

The scalar product of 2 vectors can be used to compute the projection of vector **a** on vector **b**:

Geometric definition of scalar product

$$\boldsymbol{a}^T \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

Angle between 2 vectors

$$\cos \theta = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}$$

Scalar projection of a on b

$$a_b = \|\boldsymbol{a}\|\cos\theta = \frac{\boldsymbol{a}^T\boldsymbol{b}}{\|\boldsymbol{b}\|}$$

Observation: If 2 vectors are normal to each other, the projection is 0

Recap: Geometrical inspection

Observations:

The decision boundary is normal to w

Without b, it goes through the origin

Recap: Geometrical inspection

Observations:

- b shifts the decision boundary along (negative) direction of w
- The shift corresponds to adding $\frac{b}{||\mathbf{w}||}$ to the projection

$$\mathbf{w}^{T}\mathbf{x} + b = 0 \implies \underbrace{\frac{\mathbf{w}^{T}\mathbf{x}}{\|\mathbf{w}\|}}_{\text{projection } x_{w}} + \frac{b}{\|\mathbf{w}\|} = 0$$

 I.e. in order for x to be on the decision boundary, the projection has to be

$$x_w = -\frac{b}{\|\mathbf{w}\|}$$

Optimal Separation

Which is the optimal line?

Maximum Margin

- Support Vectors: Data points closes to the decision boundary
 - Other examples can be ignored
- Margin ρ is the distance between the support vectors and the decision boundary
- Margin should be maximized
 - I.e. minimum distance between decision boundary and examples should be maximized

Maximum Margin

- Maximize distance between hyper-plane and "difficult examples"
 - Examples next to decision boundary
 - Also called Support Vectors

Intuition:

Less examples close to decision boundary
 less uncertainty

Statistical Learning Theory:

- Maximum Margin Classifier has smaller complexity (VC-dimension)
- And therefore generalizes better

Geometric Inspection

Distance between point \mathbf{x}_i and line: $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$

Mathematical Formulation

Observation:

- $\mathbf{w}^T \mathbf{x} + b = 0$ and $c(\mathbf{w}^T \mathbf{x} + b) = 0$ define the same hyper-plane
- Scaling c can be chosen freely

Choose scaling such that

- For positive support vectors $\mathbf{w}^T \mathbf{x}_+ + b = +1$
- For negative support vectors $\mathbf{w}^T\mathbf{x}_- + b = -1$

Margin is then given by

$$\frac{\mathbf{w}^T \mathbf{x}_+ + b}{||\mathbf{w}||} - \frac{\mathbf{w}^T \mathbf{x}_- + b}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||}$$

SVM Optimization

Optimization problem:

$$\operatorname{argmax}_{\mathbf{w}} \quad \frac{2}{||\mathbf{w}||},$$
 Maximize margin
$$\text{s.t.} \quad \mathbf{w}^T \mathbf{x}_i + b \left\{ \begin{array}{l} \geq +1, & \text{if } y_i = +1 \\ \leq -1, & \text{if } y_i = -1 \end{array} \right.$$
 Condition for margin

Observations:

If the constraints are not satisfied, our definition of the margin would be wrong, i.e.

$$\min_{\mathbf{x}_{+} \in \mathbf{X}_{+}} (\mathbf{w}^{T}\mathbf{x}_{+} + b) = +$$
Positive support vectors

$$\min_{\mathbf{x}_{+} \in \mathbf{X}_{+}} (\mathbf{w}^{T} \mathbf{x}_{+} + b) = +1$$
 $\max_{\mathbf{x}_{-} \in \mathbf{X}_{-}} (\mathbf{w}^{T} \mathbf{x}_{-} + b) = -1$ \mathbf{X}_{-} : negative examples Negative support vectors \mathbf{X}_{+} : positive examples

- Support vectors have the smallest distance to the decision boundary
- There is at least one positive and one negative data point that satisfy the support vector condition exactly (i.e. equality instead of inequality) from above
 - Why? Because of the argmax! Norm of weight vector could be reduced otherwise

SVM Optimization

Optimization problem:

$$\operatorname{argmax}_{\mathbf{w}} \quad \frac{2}{||\mathbf{w}||},$$
s.t.
$$\mathbf{w}^{T}\mathbf{x}_{i} + b \begin{cases} \geq +1, & \text{falls } y_{i} = +1 \\ \leq -1, & \text{falls } y_{i} = -1 \end{cases}$$

Maximize margin

Condition for margin

Reformulation: Easier to solve, same solution

- Convex, single optimum

Back to linear Separability

What is the best w?

Linear separable but: small margin

Large margin but error in classification

We have to choose a trade-off between margin and classification accuracy!

Soft Max-Margin

Introduce slack-variables:

$$\xi_i \geq 0$$

Allows violating the margin conditions

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$

- $0 \le \xi_i \le 1$ sample is between margin and decision boundary: margin violation
- $\xi_i > 1$ sample is on the wrong side of the decision boundary: misclassified

Soft Max-Margin

Optimization problem:

$$\operatorname{argmin}_{\mathbf{w}, \boldsymbol{\xi}} \quad ||\mathbf{w}||^2 + C \sum_{i}^{N} \xi_i,$$
s.t.
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

Punish large slack variables

Condition for soft-margin

- C is a (inverse) regularization parameter
 - Small C: Constraints have little influence -> large margin -> large regularization
 - Large C: Constraints have large influence -> small margin -> small regularization
 - C infinite: Constraints are enforced-> hard margin -> no regularization

Illustration

Optimization

Constrained optimization:

$$\operatorname{argmin}_{\mathbf{w}, \boldsymbol{\xi}} \quad ||\mathbf{w}||^2 + C \sum_{i}^{N} \xi_i, \quad \text{s.t.} \quad y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0$$
Regularization parameter

SVMs can be reformulated into an unconstrained optimization problem

- Rewrite constraints: $\xi_i \geq 1 y_i(\mathbf{w}^T\mathbf{x}_i + b) = 1 y_i f(\mathbf{x}_i)$
- Together with $\xi_i \geq 0$ this results in $\xi_i = \max \left(0, 1 y_i f(\boldsymbol{x}_i)\right)$ (given that ξ_i should be minimized)

Unconstrained optimization (over w):

$$\operatorname{argmin}_{\mathbf{w}} \quad \underbrace{||\mathbf{w}||^2}_{\text{regularization}} + \quad C \underbrace{\sum_{i=1}^{N} \max(0, 1 - y_i f(\boldsymbol{x}_i))}_{\text{loss function}}$$

Hinge Loss

$$\operatorname{argmin}_{\mathbf{w}} \quad \underbrace{||\mathbf{w}||^2}_{\text{regularization}} + C \underbrace{\sum_{i=1}^{N} \max(0, 1 - y_i f(\boldsymbol{x}_i))}_{\text{loss function}}$$

Points are in 3 categories:

- $y_i f(x_i) > 1$: Point outside margin, no contribution to loss
- $y_i f(x_i) = 1$: Point is on the margin, no contribution to loss as in hard margin
- $y_i f(x_i) \leq 1$: Point violates the margin, contributes to loss

Loss function is convex

- There is only one minimum
- We can find it with gradient descent
- However: Hinge loss is not differentiable!

Comparison to logistic loss function

SVM-hinge loss

$$\operatorname{argmin}_{\mathbf{w}} \quad \lambda \underbrace{||\mathbf{w}||^2}_{\text{regularization}} + \underbrace{\sum_{i=1}^{N} \max (0, 1 - y_i f(\mathbf{x}_i))}_{\text{data loss}}, \quad \text{with } \lambda = \frac{1}{C}$$

(Regularized) logistic regression loss (see lecture 2)

$$\operatorname{argmax}_{\mathbf{w}} - \lambda ||\mathbf{w}||^{2} + \sum_{i=1}^{N} c_{i} \log(\sigma(f(\mathbf{x}_{i})) + (1 - c_{i}) \log(1 - \sigma(f(\mathbf{x}_{i}))), \quad \text{with } c_{i} \in \{0, 1\}$$

$$= \dots$$

$$= \operatorname{argmin}_{\mathbf{w}} \lambda \underbrace{||\mathbf{w}||^{2}}_{\text{regularization}} + \underbrace{\sum_{i=1}^{N} \log(1 + \exp(-y_{i}f(\mathbf{x}_{i})))}_{\text{regularization}}, \quad \text{with } y_{i} \in \{-1, 1\}$$

Both loss functions have similar interpretations

- Keep weights small + $y_i f(x_i)$ should be large
- Saturates if $y_i f(x_i)$ gets too large

Comparison to logistic loss function

SVM (hinge) loss:

$$\max\left(0,1-y_if(\boldsymbol{x}_i)\right)$$

- Outputs -1 or 1
- Estimates maximum margin solution
- Loss contribution is 0 for correct classification

Logistic loss:

$$\log\left(1+\exp(-y_i f(\boldsymbol{x}_i))\right)$$

- Outputs probabilities
- Contribution never 0
 - Often results in slightly less accurate classification
- Diverges faster than hinge loss
 - More sensitive to outliers

Comparison to logistic regression (LR)

SVM finds more balanced decision boundary

 SVM is less sensitive to outliers

Agenda for Today

Recap: Linear Discriminators

Support Vector Machines:

- Maximum Margin
- Optimization Problem
- Soft-Margin
- Hinge-Loss

Basics:

Sub-gradients

Basics: Sub-gradients

Remember: For any convex function $f: \mathbb{R}^d \to \mathbb{R}$

$$f(z) \ge f(x) + \nabla f(x)^T (z - x)$$

• I.e. linear approximation underestimates function

A **subgradient** of a convex function *f* at point **x** is any **g** such that

$$f(z) \ge f(x) + g^T(z - x)$$

- Always exists (also if *f* is not differentiable)
- If f is differentiable at \mathbf{x} , then $\mathbf{g} = \nabla f(\mathbf{x})$

Examples

Consider f(x) = |x|

- For $x \neq 0$, unique sub-gradient of $g = \operatorname{sign}(x)$
- For x=0 , sub-gradient is any element of $\left[-1,1\right]$

Examples

Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ be convex, differentiable, and consider $f(x) = \max\{f_1(x), f_2(x)\}$

- For $f_1(x) > f_2(x)$, unique subgradient $g = \nabla f_1(x)$
- For $f_2(x) > f_1(x)$, unique subgradient $g = \nabla f_2(x)$
- For $f_1(x) = f_2(x)$, subgradient g is any point on the line segment between $\nabla f_1(x)$ and $\nabla f_2(x)$

Sub-Gradient Method

Like gradient descent, but replacing gradients with sub-gradients

Sub-gradient Descent:

- Given convex f, not necessarily differentiable
- Initialize $oldsymbol{x}_0$
- Repeat: $oldsymbol{x}_{t+1} = oldsymbol{x}_t + \eta oldsymbol{g}$, where $oldsymbol{g}$ is any sub-gradient of f at point $oldsymbol{x}_t$

Notes:

- Sub-gradients do not necessarily decrease f at every step (no real descent method)
- We need to keep track of the best iterate $oldsymbol{x}^*$

Sub-gradients for hinge loss

$$\mathcal{L}(\mathbf{x}_i, y_i; \mathbf{w}) = \max(0, 1 - y_i f(\mathbf{x}_i))$$
 $f(\mathbf{x}_i) = \mathbf{w}^{\top} \mathbf{x}_i + b$

Sub-gradient descent for SVMs

$$\operatorname{argmin}_{\mathbf{w}} \qquad C \underbrace{\sum_{i=1}^{N} \max (0, 1 - y_i f(\boldsymbol{x}_i))}_{\text{loss function}} + \underbrace{||\mathbf{w}||^2}_{\text{regularization}}$$

At each iteration, pick random training sample (x_i, y_i)

• If
$$y_i f(x_i) < 1$$
: $w_{t+1} = w_t - \eta(2w_t - Cy_i x_i)$

• Otherwise:
$$oldsymbol{w}_{t+1} = oldsymbol{w}_t - \eta 2 oldsymbol{w}_t$$

Application: Pedestrian Tracking

Objective: Detect (localize) standing humans in images

Detection with a sliding window approach:

- Reduces object detection to binary classification
- Does an image window contain a person or not?

Training Data

Positive Data: 1208 examples

Negative Data: 1218 examples

Features: Histogram of oriented Gradients (HoG features)

Feature vector dimension = 16×8 (for tiling) $\times 8$ (orientations) = 1024

Example HoG features

Averaged Positive Example

Example detection

Learned model

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + b$$

Wrap-up

SVMs have been the "gold standard" in the 90s and 2000s for classification

- SVM have been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification, cancer classification)
 - hand-written character recognition
- Can be extended to complex feature spaces using kernels (next part)
- ... and regression problems (support vector regression, not covered)

In the last 7-10 years, neural networks have outperformed SVMs on most applications

However, similar insights are still used (e.g, hinge loss)

SVMs with Kernels

Support Vector Machines (continued...)

SVMs with features:

- Maximum margin principle
- Slack variables allow for margin violation

$$\operatorname{argmin}_{\mathbf{w},\boldsymbol{\xi}} \quad ||\mathbf{w}||^2 + C \sum_{i}^{N} \xi_i,$$
s.t. $y_i(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

Simpler formulation without slack variables

$$\operatorname{argmin}_{\mathbf{w}} \quad ||\mathbf{w}||^2,$$
s.t. $y_i(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) + b) \ge 1$

In order to apply the kernel trick, we need to apply our Constrained Optimization knowledge!

Recap: Constrained Optimization

Simple constrained optimization problem:

$$\underset{x}{\operatorname{arg\,min}} x^2 \quad \text{s.t. } x \ge b$$

How do we solve the constrained optimization problem? Lagrangian Multipliers!

Recap: General formulation

General Formulation:
$$\min_{\boldsymbol{x}} f(\boldsymbol{x}),$$

s.t. $h_i(\boldsymbol{x}) \geq b_i, \text{ for } i = 1 \dots K$

Several inequality constraints (equality constraints also possible)

Lagrangian optimization:
$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda}} L(\boldsymbol{x}, \boldsymbol{\lambda}), \quad L(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) - \sum_{i=1}^K \lambda_i (h_i(\boldsymbol{x}) - b_i)$$

s.t. $\lambda_i \geq 0$, for $i = 1 \dots K$

Recap: Dual optimization

Primal optimization problem:

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}),$$
s.t. $h_i(\boldsymbol{x}) \ge b_i$, for $i = 1 \dots K$

Dual optimization problem:

$$\lambda^* = \underset{\lambda}{\operatorname{arg \, max}} g(\lambda), \quad g(\lambda) = \underset{x}{\min} L(x, \lambda)$$
s.t. $\lambda_i \ge 0$, for $i = 1 \dots K$

- g is also called the dual function of the optimization problem
- We essentially swapped min and max in the definition of L

Slaters condition: For a convex objective and convex constraints, solving the dual is equivalent to solving the primal!

Optimal primal parameters can be obtained from optimal dual parameters, i.e.

$$oldsymbol{x}^* = rg\min_{oldsymbol{x}} L(oldsymbol{x}, oldsymbol{\lambda}^*)$$

Lagrangian Optimization

Basic "Cookbook":

1. Write down Lagrangian

$$L(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) - \sum_{i=1}^{K} \lambda_i (h_i(\boldsymbol{x}) - b_i)$$

- 2. Obtain optimal solution for primal parameters
 - Compute derivative, set to zero and solve for x

$$\frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}} = 0 \to \boldsymbol{x}^* = f(\boldsymbol{\lambda})$$

3. Set $oldsymbol{x}^*$ back into Lagrangian to obtain the dual function

$$g(\lambda) = L(f(\lambda), \lambda)$$

- 4. Obtain optimal solution for the dual function
 - Set derivative to zero or gradient descent

$$\lambda^* = \operatorname{argmax}_{\lambda} g(\lambda), \quad \text{s.t. } \lambda_i \ge 0, \forall i$$

$$\boldsymbol{x}^* = f(\boldsymbol{\lambda}^*)$$

Dual derivation of the SVM

SVM optimization:

• Lagrangian: $\operatorname{argmin}_{\mathbf{w}} ||\mathbf{w}||^2$, s.t. $y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b) \ge 1$

Compute optimal
$$w$$
: $L(w, \lambda) = \frac{1}{2} w^T w - \sum_i \lambda_i (y_i (w^T \phi(x_i) + b) - 1)$

$$\frac{\partial L}{\partial w} = w - \sum_i \lambda_i y_i \phi(x_i) = 0,$$

$$w^* = \sum_i \lambda_i y_i \phi(x_i)$$

- Many of the α_i will be zero (constraint satisfied)
- If α_i is not zero, $\phi(x_i)$ is a support vector
- The optimal weight vector w is a linear combination of the support vectors!

Dual derivation of the SVM

SVM optimization:

• Lagrangian: $\operatorname{argmin}_{\mathbf{w}} ||\mathbf{w}||^2$, s.t. $y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b) \ge 1$

Optimality condition for b:

$$L(\boldsymbol{w}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i} \lambda_i (y_i (\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x_i}) + b) - 1)$$

- We do not obtain a solution for b
- But an additional condition for the lambdas

$$\frac{\partial L}{\partial b} = -\sum_{i} \lambda_{i} y_{i} \Rightarrow \sum_{i} \lambda_{i} y_{i} = 0$$

b can be computed from w:

• If $\lambda_i>0$, then $m{x}_i$ is on the margin, i.e.: $y_i(\mathbf{w}^Tm{\phi}(m{x}_i)+b)=1$ $y_iy_i(\mathbf{w}^Tm{\phi}(m{x}_i)+b)=y_i$ $b=y_i-\mathbf{w}^Tm{\phi}(m{x}_i)$

Kernel Trick in SVMs

Lagrangian:
$$L(\boldsymbol{w}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_i \lambda_i \left(y_i (\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i) + b) - 1 \right), \quad \boldsymbol{w}^* = \sum_i \lambda_i y_i \boldsymbol{\phi}(\boldsymbol{x}_i)$$
Dualfunction:
$$g(\boldsymbol{\lambda}) = L(\boldsymbol{w}^*, \boldsymbol{\lambda})$$

$$= \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j \boldsymbol{\phi}(\boldsymbol{x}_i)^T \boldsymbol{\phi}(\boldsymbol{x}_j) - \sum_i \lambda_i y_i \left(\sum_j \lambda_j y_j \boldsymbol{\phi}(\boldsymbol{x}_j) \right)^T \boldsymbol{\phi}(\boldsymbol{x}_i) + \sum_i \lambda_i$$

$$= \sum_i \lambda_i - \frac{1}{2} \sum_j \sum_i \lambda_i \lambda_j y_i y_j \boldsymbol{\phi}(\boldsymbol{x}_i)^T \boldsymbol{\phi}(\boldsymbol{x}_j)$$

$$= \sum_i \lambda_i - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j \boldsymbol{\phi}(\boldsymbol{x}_i)^T \boldsymbol{\phi}(\boldsymbol{x}_j)$$

We just derived the kernel trick for SVMs

$$g(\boldsymbol{\lambda}) = \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{k}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$

Scalar products of the feature vectors can be written as kernels

Kernelized SVM

Solve dual optimization problem:

$$\max_{\lambda} \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$
s.t. $\lambda_{i} \geq 0, \forall i \in [1 \dots N], \sum_{i} \lambda_{i} y_{i} = 0$

Compute primal from dual parameters

- Weight vector (can not be represented): $m{w}^* = \sum_i \lambda_i y_i m{\phi(x_i)}$
- Bias: for any i with $\ \lambda_i>0$: $b=y_k-{m\phi}({m x}_k)^T{m w}^*$ $=y_k-\sum_i y_i\lambda_i k({m x}_i,{m x}_k)$
- Decision function: $f({m x}) = {m \phi}({m x})^T {m w}^* + b$ $= \sum_i y_i \lambda_i k({m x}_i, {m x}) + b$

Relaxed constraints with slack

Primal optimization problem:

$$\operatorname{argmin}_{\mathbf{w}, \boldsymbol{\xi}} \quad ||\mathbf{w}||^2 + C \sum_{i}^{N} \xi_i,$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

What changed?

• Added upper bound of C on λ_i !

Dual optimization problem:

$$\max_{\boldsymbol{\lambda}} \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{k}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$
s.t. $C \ge \lambda_{i} \ge 0, \forall i \in [1 \dots N], \quad \sum_{i} \lambda_{i} y_{i} = 0$

• For computing b, we now take an example where $C > \lambda_i > 0$

Intuitive explanation:

- Without slack, $\lambda_i \to \infty$ when constraints are violated (points misclassified)
- Upper bound of C limits the λ_i , so misclassifications are allowed

Example: SVM with RBF kernel

Data is non-linearly separable in feature space

RBF-kernel:

$$k(\boldsymbol{x}, \boldsymbol{y}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{y}\|^2}{2\sigma}\right)$$

Example: SVM with RBF kernel

Data is non-linearly separable in feature space

Example: Different Cs

$$\sigma = 1.0$$
 $C = \infty$

$$\sigma = 1.0$$
 $C = 10$

$$\sigma = 1.0$$
 $C = 100$

Example: Different sigma

$$\sigma = 1.0$$
 $C = \infty$

$$\sigma = 0.25$$
 $C = \infty$

$$\sigma = 0.1$$
 $C = \infty$

Overfitting

Huge feature space with kernels: should we worry about overfitting?

- SVM objective seeks a solution with large margin
- Theory says that large margin leads to good generalization
- But everything overfits sometimes!!!

Can control overfitting by:

- Setting C (low C -> smaller Complexity)
- Choosing a better Kernel
- Varying parameters of the Kernel (width of Gaussian, etc.)

Model Selection Problem

Handwritten Digit Clasification

US postal service database

Human performance: 2.5% error

Various learning algorithms (pre-deep learning)

- 16.2%: Decision tree (C4.5)
- 5.9%: 2-layer neural network
- 5.1%: LeNet 1 5-layer neural network

Various SVM results

- 4.0%: Polynomial kernel (274 support vectors)
- 4.1%: Gaussian kernel

Handwritten Digit Clasification

Very little overfitting due to max-margin

degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	≈ 33000	227	4.7
3	$\approx 1 \times 10^6$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$\approx 1 \times 10^{12}$	374	4.3
6	$\approx 1 \times 10^{14}$	377	4.5
7	$\approx 1 \times 10^{16}$	422	4.5

Recent results

- With more training data, better modeling of invariances, etc.
- Error down to about 0.5% with SVMs and 0.4% with neural networks

Takeaway messages

What have we learned today?

Maximum Margin Classifiers:

- A robust formulation for classification
- Margin can be expressed as constrained optimization
- Slack variables allow for constrained violation and regularization
- Can be efficiently optimized using hinge-loss and subgradient descent

Sub-gradients:

Use it for non-differentiable convex functions

Kernel trick for SVMs:

- Results from the Lagrangian dual formulation
- Optimal solution for w is a linear combination of the support vectors (compare to kernel regression)

Self-test questions

You should understand now:

- Why is it good to use a maximum margin objective for classification?
- How can we define the margin as optimization problem?
- What are slack variables and how can they be used to get a "soft" margin?
- How is the hinge loss defined?
- What is the relation between the slack variables and the hinge loss?
- What are the advantages and disadvantages in comparison to logistic regression?
- What is the difference between gradients and sub-gradients