Skin Lesion Analysis

By Umut Celik Email: umut.celik@cix.csi.cuny.edu

CSC 741 - Digital Image Processing Midterm Project

1. Introduction

The Challenge

- · Automated analysis of dermoscopic images is crucial for early skin cancer detection.
- These images present challenges: varying illumination, hair, diverse skin tones, and subtle lesion characteristics.

Project Goal

- To develop an image processing pipeline to:
 - 1. Segment (isolate) skin lesions from dermoscopic images.
 - 2. Extract a comprehensive set of visual features from the segmented lesions.
- Apply fundamental Digital Image Processing techniques to a real-world medical imaging problem.

Dataset

- Source: SIIM-ISIC Melanoma Classification (Kaggle).
- Content: Dermoscopic images (JPEG format) and associated metadata (e.g., labels).

2. Image Processing Pipeline

A multi-step approach to process images and extract meaningful data:

Image Loading & Conversion -> Preprocessing -> Color Space Transformation -> Segmentation -> Feature Extraction

Step 1: Image Loading & Initial Conversion

- Action: Load JPEG images.
- Conversion: Convert from BGR (OpenCV default) to RGB for consistency in processing and display.
 - Files involved: src/data_loader.py

Step 2: Preprocessing

- Grayscale Conversion:
 - o Convert RGB images to grayscale for intensity-based operations.
 - Function: rgb_to_grayscale in src/color_utils.py
- Hair Removal:
 - Technique: Morphological Black-Hat filtering to identify hair structures, followed by inpainting to remove them.
 - Reduces noise and artifacts caused by hair.
 - Function: remove_hair in src/preprocessing.py
- (Illumination Correction):
 - o Concept: Use morphological opening to estimate and correct non-uniform background illumination.
 - Status: Implemented (correct_illumination in src/preprocessing.py), but noted as potentially skipped in some display pipelines for directness to segmentation.

Step 3: Color Space Transformation

- RGB to HSV:
 - o Convert RGB images to Hue, Saturation, Value (HSV) color space.
 - HSV is often more intuitive for color-based feature extraction:
 - H (Hue): Dominant color.
 - S (Saturation): Purity/intensity of color.
 - V (Value): Brightness.
 - Function: rgb_to_hsv in src/color_utils.py

- Goal: Create a binary mask that accurately isolates the lesion area.
- Method: Otsu's Thresholding
 - o Applied to the preprocessed (hair-removed) grayscale image.
 - Automatically determines an optimal threshold value to separate lesion pixels from background.
 - Function: otsu_threshold in src/segmentation.py
- Mask Refinement:
 - Technique: Morphological operations.
 - Opening: Erosion followed by dilation (removes small noise/objects).
 - Closing: Dilation followed by erosion (fills small holes within the lesion).
 - o Improves the quality and contiguity of the mask.
 - Functions: opening, closing in src/morphology.py, utilized by apply_threshold in src/segmentation.py

Step 5: Feature Extraction

Extracted from the segmented lesion area (defined by the refined mask):

Feature Extraction: Intensity Features

- From Grayscale image:
 - Mean pixel intensity
 - o Standard deviation of pixel intensities
 - Minimum pixel intensity
 - · Maximum pixel intensity
 - Module: calculate_intensity_stats in src/feature_extraction.py

Feature Extraction: Color Features (HSV)

- · From HSV channels:
 - Hue (H):
 - Mean Hue (using circular mean calculation for angular data)
 - Standard deviation of Hue
 - o Saturation (S):
 - Mean Saturation
 - Standard deviation of Saturation
 - Value (V):
 - Mean Value (Brightness)
 - Standard deviation of Value
 - Module: calculate_hsv_stats in src/feature_extraction.py

Feature Extraction: Border Features

- From Grayscale image & mask:
 - Calculated using morphological gradient on the lesion border.
 - Features include:
 - Mean, Standard Deviation, and Max of border gradient values.
 - Border Irregularity (ratio of border pixels to mask area).
 - Module: calculate_gradient_features in src/border_texture_utils.py

Feature Extraction: Texture Features

- From Grayscale image & mask:
 - o Calculated using Morphological Top-Hat (highlights bright details) and Bottom-Hat (highlights dark details) transforms.
 - Features include:
 - Mean and Standard Deviation of Top-Hat transform values.
 - Mean and Standard Deviation of Bottom-Hat transform values.
 - Texture Contrast Index (sum of Top-Hat and Bottom-Hat means).
 - Module: calculate_texture_features in src/border_texture_utils.py

Feature Extraction: Histograms

- · Pixel intensity distributions calculated for:
 - Gravscale channel
 - Hue (H) channel
 - o Saturation (S) channel
 - Value (V) channel
- All calculated within the masked lesion area.
- Module: calc_all_histograms in src/histogram_utils.py

3. Results & Visualizations

This section showcases outputs from processing sample images. (Assume images are in a local img/ directory for this markdown)

Pipeline Stages Visualization

- Illustrates key steps in processing an image.
- Example (ISIC_0015719.jpg):
 - o Original RGB
 - o Grayscale Conversion
 - HSV (Hue Channel shown)

 - Hair Removed (Grayscale)
 After Hair Removal (Illumination Correction typically skipped for this view)
 - Final Binary Mask (from Otsu's thresholding)

Full Pipeline Stages for: ISIC_0015719.jpg

Fig 1: Pipeline stages for ISIC_0015719.jpg (generated by src/full_pipeline_display.py or src/all_features_display.py)

Feature Summaries

- Textual and visual representation of extracted intensity and color features.
- Example (ISIC_0015719.jpg):

Intensity Features for ISIC_0015719.jpg

Grayscale Intensity: Mean: 186.8315

Std: 10.0121

HSV Channels: Hue (H):

Mean: 0.0000 Std: 0.0000 Saturation (S): Mean: 0.0000 Std: 0.0000

Value (V): Mean: 0.0000 Std: 0.0000

Fig 2: Intensity and HSV Color Features for ISIC_0015719.jpg (generated by src/intensity_features_display.py or similar)

Channel Histograms (Masked Region)

- Visualizes pixel distribution for different channels within the segmented lesion.
- Example (ISIC_0015719.jpg): Shows histograms for Grayscale, Hue, Saturation, and Value.

Channel Histograms (Masked Region) for: ISIC_0015719.jpg

Fig 3: Channel Histograms for ISIC_0015719.jpg (generated by $src/masked_histogram_display.py$ or $src/full_pipeline_display.py$)

More Examples:

ISIC_0052212.jpg

ISIC_1132496.jpg

4. Code Structure & Key Modules

The project is organized into several Python modules within the src/ directory:

- color_utils.py : Color space conversions.
- preprocessing.py: Hair removal, illumination correction.
- segmentation.py: Thresholding methods, mask application.
- morphology.py: Morphological operations (opening, closing).
- histogram_utils.py: Masked histogram calculations.
- feature_extraction.py: Core logic for calculating intensity, color features.
- border_texture_utils.py : Calculates border and texture specific features.
- data_loader.py: Handles image and metadata loading.
- batch_processor.py : Enables processing of multiple images.

Display Scripts: Numerous scripts like full_pipeline_display.py, all_features_display.py, intensity_features_display.py, etc., allow visualization of different pipeline stages and extracted features.

5. Challenges & Learnings

- Segmentation Accuracy: Achieving perfect lesion segmentation is challenging due to image variability (hair, bubbles, skin lines, low contrast). Otsu's method provides a good baseline, and morphological cleanup helps significantly.
- Feature Relevance: Understanding how different features (intensity, color, texture, border) capture various aspects of lesion appearance.
- · Pipeline Integration: Ensuring each step correctly feeds into the next and that data formats are consistent.
- Modularity: Structuring the code into reusable functions and modules (e.g., for color conversion, preprocessing, feature calculation) was key for development
 and testing.

6. Conclusion & Future Work

Achievements

• Successfully implemented an end-to-end image processing pipeline for skin lesion analysis.

- Developed modules for key DIP tasks: preprocessing, segmentation, and feature extraction.
- Extracted a diverse set of features:
 - Intensity (Grayscale statistics)
 - Color (HSV channel statistics)
 - Border (Gradient-based metrics)
 - Texture (Top-hat/Bottom-hat based metrics)
- · Created comprehensive visualization tools to inspect pipeline stages and results.

Future Work

- Advanced Segmentation: Explore more robust segmentation techniques (e.g., active contours, watershed, machine learning-based segmentation).
- Implement PRD Feature Set (f1-f28):
 - Introduce the "Ida (Darkness)" channel.
 - Implement the specific Brightness, Saturation, and Darkness features (f1-f28) involving higher-order statistics (skewness, kurtosis), entropy, etc., as outlined in the project's PRD.
- Machine Learning Integration: Use the extracted features to train classification models (e.g., SVM, Random Forest, Neural Networks) to predict lesion malignancy.
- Quantitative Evaluation: If detailed ground truth masks become available, perform quantitative evaluation of segmentation accuracy (e.g., Dice coefficient, Jaccard index).
- Expanded Dataset Processing: Utilize the batch_processor.py to analyze a larger subset of the dataset.

Thank You & Questions?