THERMOPLASTIC RESIN MOLDING EXCELLENT IN **ELECTROCONDUCTIVITY**

Patent Number:

JP2003192914

Publication date:

2003-07-09

Inventor(s):

MIYAGAWA MICHINARI

Applicant(s):

MITSUBISHI PLASTICS IND LTD.

Requested Patent:

□ JP2003192914

Application Number: JP20010399718 20011228

Priority Number(s):

IPC Classification: C08L101/00; C08J5/00; C08K3/04

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin molding excellent in electroconductivity and excellent in heat resistance and corrosion resistance.

SOLUTION: The thermoplastic resin molding is a molding made from a thermoplastic resin containing an electroconductivity improver, wherein the electroconductivity improver comprises carbon nanotubes.

Data supplied from the esp@cenet database - 12

JP2003-192914 [claim 4]

The thermoplastic resin molding according to any one of claims 1 to 3 $\overset{\cdot}{}$

wherein the ratio of the thermoplastic resin and the electroconductivity improver ranges from 40/60 to 85/15 (thermoplastic resin/electroconductivity improver, by weight).

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-192914 (P2003-192914A)

(43)公開日 平成15年7月9日(2003.7.9)

(51) Int.Cl.7 C 0 8 L 101/00		識別記号	F I デーマコート*(参考)			
			C 0 8 L 101/00 4 F 0 7 1			
C 0 8 J	5/00	CER CEZ	C 0 8 J 5/00 CER 4 J 0 0 2 CEZ			
C08K	3/04		C 0 8 K 3/04			
			審査請求 未請求 請求項の数4 OL (全 3 頁)			
(21)出願番号		特願2001-399718(P2001-399718)	(71)出顧人 000006172 三菱樹脂株式会社			
(22)出顧日		平成13年12月28日 (2001.12.28)	東京都千代田区丸の内2丁目5番2号 (72)発明者 宮川 倫成 滋賀県長浜市三ツ矢町5番8号 三菱樹脂 株式会 長浜工場内			
			F 夕一ム(参考) 4F071 AA06 AA07 AA13 AA15 AA20 AA21 AA26 AA27 AB03 AD07 AF37Y BB06 BC01			
			4J002 BB031 BB121 BB161 BD121 BD151 BD161 DA036 FD116			

(54) 【発明の名称】 導電性に優れた熱可塑性樹脂成形体

(57)【要約】

【課題】 導電性に優れ、耐熱性及び耐蝕性に優れた熱可塑性樹脂成形体を提供する。

【解決手段】 熱可塑性樹脂に導電剤を含んでなる成形体であって、その導電剤がカーボンナノチューブであることを特徴とする熱可塑性樹脂成形体。

20

【特許請求の範囲】

【請求項1】 熱可塑性樹脂に導電剤を含んでなる成形 体であって、その導電剤がカーボンナノチューブである ことを特徴とする熱可塑性樹脂成形体。

1

【請求項2】 成形体の体積抵抗値が0.5Q・cm以 下であることを特徴とする請求項1記載の熱可塑性樹脂 成形体。

【請求項3】 熱可塑性樹脂がフッ素樹脂、フッ素ゴ ム、ポリオレフィン及びポリオレフィンエラストマーか ら選ばれてなることを特徴とする請求項1又は2記載の 10 熱可塑性樹脂成形体。

【請求項4】 熱可塑性樹脂と導電剤の割合が、熱可塑 性樹脂/導電剤=40/60~85/15 (重量比)で あることを特徴とする請求項1乃至3ののいずれか1項 記載の熱可塑性樹脂成形体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂成形 体に係り、特に導電性とともに、耐熱性と耐蝕性に優れ た熱可塑性樹脂成形体に関するものである。

[0002]

【従来の技術】近代のエレクトロニクス分野において、 高分子材料に求められる主要特性は製品や用途によって 様々であるが、成形性、耐熱性、耐久性、高導電性、耐 蝕性、リサイクル性であり、これらの要求を箇々に満足 させる樹脂としては、エポキシ樹脂、フェノール樹脂等 に代表される熱硬化性樹脂や、ポリフェニレンオキサイ ド、液晶ポリマー、ポリイミド、ポリカーボネート等に 代表されるエンジニアリングプラスチック等が用いられ

【0003】しかしながら、上記に挙げた各機能を総合 的に具備した材料に対する要望は強いものがあるが、技 術的に困難であり、価格面で不利となることが多いとい う問題があった。そのような技術課題のひとつに導電性 があり、更に耐熱性と耐蝕性を兼ね備えた高分子材料の 開発が求められている。特に髙分子電解質がプロトン伝 導性を有する固体高分子型燃料電池や電解液に硫酸水溶 液を用いる大容量キャパシタなどは強い酸性を呈するた め、使用される部材は高導電性と耐酸性が要求される。 [0004]

【発明が解決しようとする課題】本発明の目的は、導電 性に優れ、耐熱性及び耐蝕性に優れた熱可塑性樹脂成形 体を提供することにある。

[0005]

【課題を解決するための手段】本発明は上述の問題点を 解消できる熱可塑性樹脂成形体を見出したものであり、 その要旨とするところは、熱可塑性樹脂に導電剤を含ん でなる成形体であって、その導電剤がカーボンナノチュ ーブであることを特徴とする熱可塑性樹脂成形体にあ

.ることを含み、熱可塑性樹脂がフッ素樹脂、フッ素ゴ ム、ポリオレフィン及びポリオレフィンエラストマーか ら選ばれてなること、熱可塑性樹脂と導電剤の割合が、 熱可塑性樹脂/導電剤=40/60~85/15 (重量 比)であることを含んでいる。

[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明の熱可塑性樹脂成形体に使用する熱可塑性樹脂と しては耐酸性の点からフッ素樹脂、フッ素ゴム、ポリオ レフィン及びポリオレフィンエラストマーが好適に使用 できる。フッ素樹脂、フッ素ゴムの具体例としては、P TFE (ポリテトラフルオロエチレン)、PFA (テト ラフルオロエチレン・バーフルオロアルキルピニルエー テル共重合体)、FEP (テトラフルオロエチレンーへ キサフルオロプロピレン共重合体)、EPE (テトラフ ルオロエチレン-ヘキサフルオロプロピレン-パーフル オロアルキルビニルエーテル共重合体)、ETFE(テ トラフルオロエチレン-エチレン共重合体)、PCTF E (ポリクロロトリフルオロエチレン)、ECTFE (クロロトリフルオロエチレン-エチレン共重合体)、 PVDF (ポリフッ化ビニリデン)、PVF (ポリビニ ルフルオライド)、THV (テトラフルオロエチレン-ヘキサフルオロプロピレン・フッ化ビニリデン共重合 体)、VDF-HFP(フッ化ビニリデン-ヘキサフル オロプロピレン共重合体)、TFE-P(フッ化ビニリ デンープロピレン共重合体)、

【0007】含フッ素シリコーン系ゴム、含フッ素ビニ ルエーテル系ゴム、含フッ素フォスファゼン系ゴム、含 フッ素熱可塑性エラストマーからなる少なくとも1種類 30 以上のフッ素樹脂又はフッ素ゴムが使用できる。上記例 示した樹脂では、成形性の点から特にフッ化ビニリデン を含むPVDF、THV、VDF-HFP及びTFE-Pが好ましい。

【0008】ポリオレフィン及びポリオレフィンエラス トマーの具体例としては、ポリエチレン、ポリプロピレ ン、ポリプテン、ポリ4メチル1ペンテン、ポリヘキセ ン、ポリオクテン、

【0009】水素添加スチレンプタジエンゴム、EPD M、EPM、EBMからなる少なくとも1種類以上のポ リオレフィン及びポリオレフィンエラストマーが使用で 40 きる。上記例示した樹脂では、耐熱性、成形性の点から 特にポリプロピレン及びEPDMが好ましい。

【0010】上記フッ素樹脂、フッ素ゴム、ポリオレフ ィン及びポリオレフィンエラストマー等の熱可塑性樹脂 に混合するカーボンナノチューブは、繊維径が0.00 1~0.5 µm、好ましくは0.005~0.3 µmで あり、繊維長が0.1~100 µm、好ましくは0.5 ~30 µ mが導電性向上において好ましい。カーボンナ ノチューブとしては先端部が閉じたカーボンナノホーン る。上記成形体の体積抵抗値が0.5Ω·cm以下であ 50 も含んでいる。また、導電剤として他の炭素系導電剤と

混合して用いることもできる。他の炭素系導電剤として は、人造黒鉛、天然黒鉛、カーボンブラック、膨張黒 ' 鉛、カーボンファイバー、カーボン短繊維等及を用いる ことができる。

【0011】熱可塑性樹脂と導電剤の割合は、熱可塑性 樹脂/導電剤=40/60~85/15(重量比)、好 ましくは熱可塑性樹脂/導電剤=50/50~85/1 5 (重量比)が良い。上記熱可塑性樹脂と導電剤の割合 が、40/60未満では熱可塑性樹脂の割合が少ないの で成形が困難となり、85/15を越える場合では導電 10 比重0.07g/cc、真比重1.77g/ccのもの 剤の割合が少ないので導電性に劣るという問題がある。 【0012】本発明の熱可塑性樹脂成形体の製造方法は 特に限定されないが、通常の押出成形、ロール成形法、 射出成形法又はトランスファー成形法によればよい。 【0013】以下、実施例について説明するが、本発明 はこれに限定されるものではない。

【実施例】(実施例)フッ素樹脂(住友スリーエム (株) 製 「THV220G」) とカーボンナノチュー ブ(昭和電工(株)製 気相法炭素繊維「VGCF」) を重量比で70/30、75/25、80/20の配合 20 で二軸押出機(混合温度250℃)にて混合した。使用 したカーボンナノチューブは、直径0. 15μm、長さ 1~20μm、嵩比重0.04g/cc、真比重2.0 g/ccのものを使用した。作成した混合物を、二軸押*

*出機(押出機温度250℃)にて口金から押出しシート を作成した。得られた成形体の厚みは0.3mmであっ た。

【0014】(比較例)比較例としてカーボン短繊維 (東邦テナックス (株) 製 「HTA-0040」) と フッ素樹脂(住友スリーエム(株)製 「THV220 G」)を重量比で、70/30の配合で二軸押出機(混 合温度250℃) にて混合した。使用したカーボン短機 維は、直径4~7μm、長さ40~1,000μm、嵩 を使用した。作成した混合物を、二軸押出機(押出機温 度250℃) にて口金から押出しシートを作成した。得 られた成形体の厚みは0.3mmであった。

【0015】得られた熱可塑性成形体の体積抵抗値を測 定した。測定方法はJIS K 7194に準じて、以 下のように行った。

1. 測定装置

Loresta HP (三菱化学(株)製)

2. 測定方式

四端子四探針法(ASPタイプブローブ)

3. 測定印可電流100mA

【0016】上記方式にて測定した体積抵抗値を表1に 示した。

【表1】

表1

	樹脂		導電剤		体積抵抗抗
	グレード	重量比	グレード	重量比	(Ω +cm)
実施例	THV2206	80%	VGCF	20%	0. 38
	THV220G	75%	VQCF	25%	0. 11
	THV220G	70%	VGCF	30%	0. 045
比較例	THV220G	70%	^*አ7ァብትHTA— 0040	30%	1. 2

【0017】表1に示す通り、カーボン短繊維に比べ、 フッ素樹脂とカーボンナノチューブの割合が本発明の範 囲にある熱可塑性樹脂成形体は、体積抵抗値が0.5Ω ・cm以下となり、優れた導電性を示すことがわかっ た。

[0018]

【発明の効果】上述したように、本発明の熱可塑性樹脂 成形体は、導電性が高く、耐熱性と耐蝕性を兼ね備えた 高分子材料である。特に、体積抵抗値が小さく、耐食性 に優れ、比較的低コストで生産可能なことから、固体高 分子型燃料電池や大容量キャバシタなどへの利用性が大 きい。