A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

10 1.1.4. ATP-sensitive Potassium (K) Channel (KATP)

ATP-sensitive Potassium (K) Channel (KATP)			Ref
	$I_{K,K_{ATP}} = g_{K_{ATP}} f_o^{K_{ATP}} \left(V_m^{M-N} - V_{K,rev}^{M-N} \right)$	(26)	[2, 10]
where	$g_{KATP} = g_{KATP}^{max} \left(\frac{[K]_o}{[K]_{ref}} \right)^{n_{KATP}}$	(27)	
	$f_o^{KATP} = \frac{1}{1 + \left(\frac{[ATP]_i}{k_{0.5}}\right)^{\eta_{KATP}}}$	(28)	

Table 2: The corresponding equations describing the ionic current transported via ATP-sensitive potassium (K) channel (KATP) across the cell membrane