

BDD-Based Logic Decomposition

Sources:

C. Yang, M. Ciesielski

F. Brewer, J. Roy, I. Markov

Logic Synthesis Flow

Physical Design: Placement & route

Multi-Level Logic Synthesis

(b+c)(d+e+ag) + (d+e+g)af

abg + acg + adf + aef + afg + bd + ce + be + cd

Minimizing # of product terms
Quine-McCluskey method (minterm)
Espresso (SOP)

Minimizing # literals, gates, delay. Algebraic factorization. SIS (factored form)

Global Representation of Boolean Network

(i) Two-level SOP representation

(j) Global BDD representation

Boolean Network

(g) Multi-level SOP representation

(h) Local BDD representation

Boolean Decomposition – previous work

- Ashenhurst [1959], Curtis [1962]
 - Tabular method based on cut: bound/free variables
 - BDD implementation:
 - Lai et al. [1993, 1996], Chang et al. [1996]
 - Stanion et al. [1995]
- Roth, Karp [1962]
 - Similar to Ashenhurst, but using cubes, covers
 - Also used by SIS
- Factorization based
 - SIS, algebraic factorization using cube notation
 - Bertacco et al. [1997], BDD-based recursive bidecomp.

Functional Decomposition

- Decompose Network into Composed Functions
 - Minimize Depth and Redundancy

$$f(x_1, x_2..x_n) = g(h(x_1, x_2..x_m), x_{m+1}..x_n)$$

- Decomposition is disjoint if support of g and h are.
- Disjoint decomposition exists iff each

$$f|_{x_{m+1}..x_n}(x_1, x_2..x_m) = f_1(x_1, x_2..x_m) \vee f_2(x_1, x_2..x_m)$$

- I.e. high degree of internal symmetry
- Non-disjoint decompositions are more common

Ashenhurst Decomposition

Goal: $f(X) = F(\Phi(Y), Z)$.

Example: $F = w'x'z' + wx'z + w'yz + wyz' = f(\Phi(w, z), x, y) = \Phi x' + \Phi'y$.

ху	0	1	2	3
0	1	0	0	1
1	1	1	1	1
2	0	0	0	0
3	0	1	1	0

(a) $\mu = 2$

(b) $\mu > 2$

u is the number of distinct columns

Boolean AND Decomposition

Goal: find D, Q such that F = Q * D.

$$F = e + bd$$
; $Q = e + b$; $D = e + d$

Bool

Boolean Division

- G is a Boolean divisor of F if there exist H and R such that F = G H + R, and $G H \neq 0$.
- G is said to be a factor of F if, in addition, R=0, that is:
 F = G H.

where H is the quotient, R is the remainder.

Note: H and R are not unique.

Many Boolean Factors!

G is a Boolean factor of F iff $F \subseteq G$

(i.e.
$$FG' = 0$$
, or $G' \subseteq F'$).

Example:

$$F = a + bc; G = (a+c)$$

 $F = (a+b)(a+c); R = 0$

Proof:

- \Rightarrow : G is a Boolean factor of F. Then $\exists H$ s.t. F = GH; Hence, $F \subseteq G$ (as well as $F \subseteq H$).
- \Leftarrow : $F \subseteq G \Rightarrow F = GF = G(F + R) = GH$. (Here R is any function $R \subseteq G$ ')

4

More Boolean Divisiors

G is a Boolean divisor of F if and only if F G \neq 0.

Example:

$$F = ab+ac+bc$$
; $G = b+c$
 $F = a(b+c)+bc$; $R = bc$

Proof:

$$\Rightarrow$$
: $F = GH + R$, $GH \neq 0 \Rightarrow FG = GH + GR$. Since $GH \neq 0$, $FG \neq 0$.

 \Leftarrow : Assume that $FG \neq 0$. F = FG + FG' = G(F + K) + FG'. (Here $K \subseteq G'$.) Then F = GH + R, with H = F + K, R = FG'. Since $GH = FG \neq 0$, then $GH \neq 0$.

Algebraic Factorization

- Objective: Obtain a minimized factored form
- x and x' treated as different variables
- Boolean algebra rules: x + x' = 1; x x' = 0, not applied.
- A Boolean formula treated as polynomial formula
- Two-level techniques for Boolean simplification.
- Polynomial representation is the bottleneck in Boolean factorization

Boolean Division

•
$$F = abg + acg + adf + aef + afg + bd + ce + be + cd$$
. (23 lits)

• Algebraic :
$$F = (b + c)(d + e + ag) + (d + e + g)af$$
. (11 lits)

• Boolean:
$$F = (af + b + c)(ag + d + e)$$
. (8 lits)

Algebraic Logic Synthesis Issues

- Weak Boolean factorization
- Difficult to perform XOR and MUX decomposition.
- Separate platforms for Boolean operations and factorization.
- Goal: use BDD platform for both Boolean operations and Factorization
 - BDD structure used to find good factors
 - Maybe form *non*-conjunctive decompositions

BDD – Synthesis

- BDD is canonical
 - Variable reordering implicit logic simplification
 - Some redundancy removed
- BDD is efficient factored form
 - Reduced representation should lead to efficient matching
- Problem: How to translate a BDD into a multi-level (circuit) representation?

Shannon Expansion

A Boolean function $f(x_1, x_2, \dots, x_i, \dots, x_n)$ can be expressed as,

$$f(\cdots, x_i, \cdots) = x_i f(\cdots, 1, \cdots) + x'_i f(\cdots, 0, \cdots)$$
$$= x_i f_i^1 + x'_i f_i^0;$$

$$f(\dots, x_i, \dots) = (x_i + f(\dots, 0, \dots))(x'_i + f(\dots, 1, \dots))$$

= $(x_i + f_i^0)(x'_i + f_i^1);$

 f_i^1 : positive cofactor; f_i^0 : negative cofactor

Orthogonal Expansion

Shannon Expansion is just a special case of linear orthonormal expansion:

Given set of functions:
$$g_i(x_1..x_n)$$

Where $\bigcup_i g_i = T$ and $\forall_{i,j,i\neq j} g_i g_j = 0$
 $f(x_1..x_n) = \bigcup_i g_i(x_1..x_n) f\big|_g$

 $f|_{g}(x_{1}..x_{n})$ is the generalized co-factor of f by g.

BDD Reduction

Example: F = ac + bc + a'b'c';

Reduction Rules:

BDD -- Synthesis

A BDD is an implicitly factored representation

$$b'f + bf = f$$

$$af + bf = (a + b)f$$

Variable Ordering

Non-Disjoint Decomposition

- Bi-decomposition: F = D ⊕ Q
 - uses BDD cut
 - Not a partition of input support variables!
 - The top set defines a divisor D
 - The bottom set defines the quotient Q (sort of ...)

1-dominator: Karplus [1988]:

 1-dominator is a node that belongs to every path from root to 1-terminal.

• 1-dominator defines <u>algebraic</u> conjunctive (AND) decomposition: F = (a+b)(c+d).

Eg. AND Decomposition: F = D Q

1

0-dominator

O-dominator is a node belonging to every path from root

• *0-dominator* defines <u>algebraic</u> disjunctive (OR) decomposition: F = ab + cd.

Disjunctive Decomposition

• Disjunctive (OR) decomposition: F = G + H.

Boolean function F has disjunctive decomposition iff $F \supseteq G$. For a given G, H must satisfy:

$$F' \subseteq H' \subseteq F' + G$$
.

For a given (F,G), this provides a recipe for H.

Generalized Dominator (And)

Generalized Dominator (or)

Boolean Division via Dominator

Special Case: 1-dominator

$$F = (a+b)(c+d)$$

1

Special Case: 0-dominator

$$F = ab + cd$$

Algebraic XOR Decomposition

= complement edge

= 1-edge edge

----- = 0-edge edge

Algebraic XOR Decomposition: x-dominator

- X-dominator nodes contain every path in BDD
 - Denotes equivalence of upper and lower parts
 - Complement Edges are the key to finding such nodes

Boolean XOR Decomposition: Generalized x-dominators

Generalized X-dom: any node with incoming true and complement edges.

Given F and G, there exists $H : F = G \otimes H$; $H = F \otimes G$.

MUX Decomposition

Simple MUX decomposition

Complex MUX decomposition

Functional MUX Decomposition

- If two nodes u and v cover all paths in a BDD we can decompose f=hu+h'v where h comes from forcing u=1 and v=0 in F.
 - Useful if u and v share little

Synthesis Flow of BDDlopt

Summary BDD Decomposition

- Ordering allows diagnosis of good cut points
- Cut of BDD Sponsored by redirecting edges of cofactors to constants to minimize the cut portion(s)
- Redirected edges create don't cares for remaining BDD nodes
- Don't care minimization by Restrict, Constrain, or GFRC
- Linear Decomposition theorem allows non-binary decompositions as a generalization of cuts.

BDD Cut selection

Synthesis Example I

Synthesis Example II (g)

Synthesis Example III (h)

Synthesis Example IV (share)

- Keep hash of BDD fragments
 - Equivalence and inverse are trivial since hashes are equal
 - Bias recursive cuts to enhance chance of reuse

Experimental Results

Average ratio of AND/OR-intensive

Average ratio of XOR-intensive

- BDD decomposition is a good alternative to traditional logic optimization.
- BDD decomposition-based logic optimization is fast.
- Stand-alone BDD decomposition is not amenable to large circuits.
 - SCALABILITY

Local vs. Global BDD Representation

Circuits	Global BDDs	Local BDDs		
C1355	33450	893		
C1908	6734	1229		
C2670	5554	1712		
C3540	25828	2326		
C432	1226	283		
C499	26890	341		
C5315	2942	3516		
C7552	19322	5012		
C880	15004	601		
pair	4940	1808		
rot	7340	934		

Trade-off Between Local and Global Representation

Trade-off Between Local and Global Representation

BDD-Based Logic Synthesis System (BDS)

Goal: Network preprocessing.

- Constant propagation. a + 1 = 1; a + a' = 1; etc
- Remove single-input Boolean nodes.
- Remove functionally duplicated Boolean nodes.

Sweep Boolean Network (e.g.)

Sweep Duplicated Nodes

Circuits	Total Nodes	Duplicated Nodes		
C1908	441	118		
C2670	787	72		
C3540	956	247		
C5315	1467	197		
C6228	2353	30		
C7552	2165	355		
C880	302	10		
dalu	985	249		
i8	1183	186		
i9	329	22		
i10	1634	84		
pair	830	16		
vda	123	3		

Boolean Node Elimination

Eliminate Algorithm

Conventional

```
while(candidate) {
   execute(bddmgr, candidate);
   reorder(bddmgr);
   candidate = collect(bddmgr, network);
}
```

candidate = collect (bddmgr, network);

BDS

```
candidate = collect(bddmgr,network);
while(candidate) {
  execute(bddmgr,candidate);
  newbddmgr = bddMapping(bddmgr,network);
  reorder(newbddmgr);
  free(bddmgr);
  bddmgr = newbddmgr;
  candidate = collect(bddmgr,network);
}
```


Circuits	Chaudhry et al [42]		BDS		
	BDD nodes	CPU (s)	BDD nodes	CPU (s)	
C1355	211	270	207	0.3	
C1908	310	25.4	276	0.6	
C2670	615	197	527	1.7	
C3540	974	101.7	901	3.2	
C432	181	4.5	183	0.5	
C499	196	2.4	228	0.2	
C5315	1008	307.6	918	4.0	
C6288	1677	540.7	1507	4.4	
C7552	1592	382.1	1227	6.4	
C880	298	7.5	300	0.4	
Total	7066	1838.9	6274	21.7	

BDS Experimental Results

Circuits	SIS			BDS				
	Area	Delay	CPU (s)	Mem (M)	Area	Delay	CPU (s)	Mem (M)
C1355	689	39.40	6.6	1.2	711	45.60	0.4	1.0
C1908	695	68.60	8.1	1.2	730	65.00	0.8	1.0
C3540	1695	81.40	16.1	3.3	1713	81.20	3.6	1.9
C432	290	75.90	46.1	0.7	357	78.40	0.2	0.5
C499	689	39.40	6.8	0.9	708	43.60	0.6	0.5
C5315	2286	68.60	10.2	3.1	2402	70.50	5.3	3.0
C6288	4631	237.8	21.8	4.1	4677	178.3	3.8	1.1
C7552	3038	115.70	54.2	4.9	3112	83.30	4.2	4.8
C880	567	56.10	1.9	1.0	563	43.20	0.7	0.8
pair	2274	74.30	16.1	2.5	2466	52.60	2.1	2.0
rot	965	51.60	4.5	2.0	1025	51.90	1.0	0.9
Total	17819	908.8	192.4	24.9	18464	793.6	22.7	17.5

Synthesis of Multipliers

Result of *m64X64*

Size: ~ 41 K

CPU (SIS): 6.6 hrs

CPU (BDS): 5.3 minutes

Synthesis Results for bshift

Result of bshift512

Size: $\sim 7K$

CPU (SIS): > 15 hrs

CPU (BDS): 1.5 minutes

Synthesis for Mixed CMOS/PTL Logic

CMOS

PTL

- Concise AND, OR logic
- High noise immunity
- Level-restoring capability

- Inefficient MUX, XOR
- Higher power

- Concise MUX, XOR logic
- Low power
- Small area (faster)

- Inefficient AND, OR
- Low noise immunity

Results of Mixed CMOS/PTL Synthesis

XOR-intensive functions

AND/OR-intensive functions

Conclusions

- New theory of BDD decomposition. For the first time BDD is used to perform Boolean AND/OR, XOR decompositions.
- First unified approach to both AND/OR- and XOR-intensive Boolean functions.
- Implementation of first working BDD-based multi-level logic synthesis system (BDS).
- Efficient BDD manipulation techniques.
- First systematic approach to mixed CMOS/PTL synthesis