HSS 611 - Week 15: Machine Learning

2023-12-04

Agenda

- What is machine learning?
 - Supervised vs. unsupervised learning
- Fundamental concepts
 - Parameters and hyperparameters
 - Bias, variance, overfit
 - Train, test, (cross)validation
- scikit-learn
 - Linear regression (house price prediction)
 - Logistic regression (text classification)

Machine learning

- Enable computers "machine" to "learn" from data
- Algorithms and models
 - Algorithms: a sequence of instructions (or a computational procedure) that specifies how a task should be performed
 - Models: created by applying algorithms to data during through "training" by learning parameters from labeled or unlabeled data

Two fundamental approaches in machine learning

	Supervised	Unsupervised
Objective	Trained on a labeled data to learn a mapping from input to output	Find patterns or structures within data wihtout labeled data
Outcome	Pre-defined categories	Not quite pre-defined
Common tasks	Regression, classification	Clustering, dimensionality reduction
Model evaluation	Explicit metrics such as accuracy, precision, recall, or MSE	Can involve qualitative assessment

- Python is a really popular language in ML
- Traditional machine learning: scikit-learn
- Deep learning: PyTorch, Tensorflow & Keras

We will focus on supervised learning

- Involves a training and a test set
- Train a model using the training set
- Test the performance of the model on the **test** set

Parameter and hyperparameters

- Parameter
 - Learned (estimated) from data (internal to the model)
 - E.g., regression weights/coefficients
- Hyper-parameters
 - Controls the learning process (thus hyper)Model structures,
 - Model structures (e..g, number of layers in NN), optimization approaches (e.g, learning rate in NN), etc.

Bias

- The degree to which the model's predictions deviate from the actual values in a consistent manner
- A model with high bias tends to make predictions that are consistently off-target

Variance

- The degree to which the model generalizes to different data
- High variance means low generalizability

Overfit

- If a model learns the training data "too well", it can lead to overfit
- This happens when the model mistakes noise for signal
- The model will perform well on the training set but would not generalize to unseen data (i.e., test set)

Validation

• A validation set is used to fine-tune hyperparameters

Figure 1: Train, Test, Validation sets (Wikimedia Commons)

Figure 2: Cross Validation (scikit Learn)

Linear regression

Most basic ML method for continuous outcome variables

Figure 3: A linear regression model (Wikimedia Commons)

Ames housing data

- A dataset to predict house prices in Ames, lowa
- Available through Kaggle
- We'll use it to apply some machine learning using scikit-learn

Load the Ames housing dataset

```
import pandas as pd
# urls
train_url = 'https://raw.githubusercontent.com/taegyoon-kim/programming_dhcss_2
test_url = 'https://raw.githubusercontent.com/taegyoon-kim/programming_dhcss_23
# load training set
train_df = pd.read_csv(train_url)
# load test set
test_df = pd.read_csv(test_url)
# number of observations
print(len(train_df))
print(len(test df))
```

1460 1459

Inspect the training set

train_df.columns

```
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
       'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
       'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
       'RoofStvle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrTvpe',
       'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinTvpe1', 'BsmtFinSF1',
       'BsmtFinTvpe2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
       'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
       'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
       'SaleCondition', 'SalePrice'].
     dtvpe='object')
```

Inspect the test set

 The 'SalePrice' column in the test set is withheld by Kaggle

test_df.columns

```
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
       'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
       'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
       'RoofStvle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrTvpe',
       'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinTvpe1', 'BsmtFinSF1',
       'BsmtFinTvpe2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
       'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
       'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
       'SaleCondition'].
      dtvpe='object')
```

Select features

- The data set has a lot of features
- Let's use some of them to build a predictive model
- We can select them using a list

Slice

```
X_train = train_df[selected_features]
y_train = train_df[target_variable]
```

print(X_train)

	FullBath	LotArea	OverallQual	YearBuilt
0	2	8450	7	2003
1	2	9600	6	1976
2	2	11250	7	2001
3	1	9550	7	1915
4	2	14260	8	2000
1455	2	7917	6	1999
1456	2	13175	6	1978
1457	2	9042	7	1941
1458	1	9717	5	1950
1459	1	9937	5	1965

[1460 rows x 4 columns]

Slice

```
print(y_train)
       208500
       181500
       223500
3
       140000
4
       250000
1455
       175000
1456 210000
1457 266500
1458
     142125
1459
       147500
Name: SalePrice, Length: 1460, dtype: int64
```

Fit model

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
```

```
LinearRegression()
```

```
model.coef_
```

```
array([2.07725220e+04, 1.40273782e+00, 3.70559379e+04, 2.20233453e+02])
```

- In a machine learning context, coefficients and standard errors are secondary
- Predictive performance is more important
- scikit-learn does not produce standard errors, p-values, confidence intervals, etc.
- See Shmueli 2010 for the differences between prediction and explanation

Make predictions

• Slice the test set in the same way

```
X_test = test_df[selected_features]
y_pred = model.predict(X_test)
y_pred
```

```
array([127736.09887712, 167841.57795785, 159534.27025935, ..., 139268.00289048, 132906.70253888, 226869.50518936])
```

Add predictions to test set

• Now that we have predictions, we can add them to the test set

```
test_df['SalePrice'] = y_pred
test_df
```

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotS
0	1461	20	RH	80.0	11622	Pave	NaN	Reg
1	1462	20	RL	81.0	14267	Pave	NaN	IR1
2	1463	60	RL	74.0	13830	Pave	NaN	IR1
3	1464	60	RL	78.0	9978	Pave	NaN	IR1
4	1465	120	RL	43.0	5005	Pave	NaN	IR1
1454	2915	160	RM	21.0	1936	Pave	NaN	Reg
1455	2916	160	RM	21.0	1894	Pave	NaN	Reg
1456	2917	20	RL	160.0	20000	Pave	NaN	Reg
1457	2918	85	RL	62.0	10441	Pave	NaN	Reg
1458	2919	60	RL	74.0	9627	Pave	NaN	Reg

Let's do better

- We can create and use a validation set
- Estimate what the performance of the model is going to be
- Adjust model based on that (e.g. add parameters, regularization, etc.)

Create validation set

Create validation set from the training set

```
from sklearn.model_selection import train_test_split
```

Approximately 20% of the observations will go to the validation set

```
X_train_small, X_val, y_train_small, y_val = train_test_split(
    X_train,
    y_train,
    test_size = 0.2,
    random_state = 7)
```

Train the model on the new training set

• Train on the new (smaller) training set

```
model.fit(X_train_small, y_train_small)
```

LinearRegression()

Use the rest as the validation set; make prediction

```
y_val_pred = model.predict(X_val)
```

Predict Performance

Predict Performance

```
from sklearn.metrics import mean_squared_error
```

 Now, because we know the actual values, we can guess performance

```
import numpy as np
mse = mean_squared_error(y_val, y_val_pred) # MSE
np.sqrt(mse) # RMSE
```

48743.65433824328

Predict performance

```
from sklearn.metrics import r2_score
r2 = r2_score(y_val, y_val_pred)
r2
```

0.6714784029706313

K-fold cross-validation

- K-fold cross-validation usually a better method to estimate performance
- Not too sensitive to the randomness in the split
- Split data into k folds (usually 5 or 10)
 - Each fold takes turns being validation set
 - Each time, remaining folds serve as training set
 - Fit k models, predict for validation set
 - Estimate performance by averaging over all folds

K-fold cross-validation

Import cross_val_score, create a LinearRegression()
 object (the latter not strictly necessary)

```
from sklearn.model_selection import cross_val_score
model = LinearRegression()
```

```
cv_scores = cross_val_score(model, X_train, y_train,
cv = 5, scoring = 'r2')
```

K-fold cross-validation

```
print(cv_scores)
print(np.std(cv_scores))
```

[0.70933564 0.65961618 0.66394196 0.67502642 0.6430035] 0.022116607595075617

Resources

- Introduction to Statistical Learning with Python (free!)
- Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc.".