Module 2: Set Theory Operational math bootcamp

Emma Kroell

University of Toronto

June 19, 2022

Outline

- Review of basic set theory
- Ordered Sets
- Functions
- Cardinality
- The Axiom of Choice

Recall that for sets S. T:

- the union of S and T, denoted $S \cup T$, is all the elements that are in either S and
- and the *intersection* of S and T, denoted $S \cap T$, is all the elements that are in both S and T

We extend the definition of union and intersection to an arbitrary family of sets as follows:

Definition

Let S_{α} , $\alpha \in A$, be a family of sets. A is called the *index set*. We define

$$\bigcup_{\alpha \in A} S_{\alpha} := \{x : \exists \alpha \text{ such that } x \in S_{\alpha}\}$$

$$\bigcap_{\alpha \in A} S_{\alpha} := \{ x : x \in S_{\alpha} \forall \alpha \in A \}$$

$$\bigcup_{n=1}^{\infty} [-n, n] = \mathbb{R}$$

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

Theorem (De Morgan's Laws)

Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be an arbitrary collection of sets. Then

$$\left(\bigcup_{\alpha\in A}S_{\alpha}\right)^{c}=\bigcap_{\alpha\in A}S_{\alpha}^{c}\quad and\quad \left(\bigcap_{\alpha\in A}S_{\alpha}\right)^{c}=\bigcup_{\alpha\in A}S_{\alpha}^{c}$$

Proof.

Since a set is itself a mathematical object, a set can itself contain sets.

Definition

The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S.

Let $S = \{a, b, c\}$.

Then $\mathcal{P}(S) =$

Another way of building a new set from two old ones is the Cartesian product of two sets.

Definition

Let S, T be sets. The Cartesian product $S \times T$ is defined as the set of tuples with elements from S, T, i.e

$$S \times T = \{(s, t) : s \in S \text{ and } t \in T\}.$$

Ordered set

Definition

A relation R on a set X is a subset of $X \times X$. A relation \leq is called a partial order on X if it satisfies

- **1** reflexivity: x < x for all $x \in X$
- 2 transitivity: for $x, y, z \in X$, x < y and y < z implies x < z
- 3 anti-symmetry: for $x, y \in X$, $x \le y$ and $y \le x$ implies x = y

The pair (X, \leq) is called a partially ordered set.

A chain or totally ordered set $C \subseteq X$ is a subset with the property x < y or y < x for any $x, y \in C$.

Example

The real numbers with the usual ordering, (\mathbb{R}, \leq) are totally ordered.

Example

The power set of a set X with the ordering given by subsets, $(\mathcal{P}(X), \subseteq)$ is partially ordered set.

Example

Let $X = \{a, b, c, d\}$. What is $\mathcal{P}(X)$? Find a chain in $\mathcal{P}(X)$.

Consider the set $C([0,1],\mathbb{R}) := f : [0,1] \to \mathbb{R} : f$ is continuous.

For two function $f,g \in C([0,1],\mathbb{R})$, we define the ordering as $f \leq g$ if $f(x) \leq g(x)$ for $x \in [0,1]$. Then $(C([0,1],\mathbb{R}), \leq)$ is a partially ordered set. Can you think of a chain that is a subset of $(C([0,1],\mathbb{R})?$

Definition

A function f from a set X to a set Y is a subset of $X \times Y$ with the properties:

- **1** For every $x \in X$, there exists a $y \in Y$ such that $(x, y) \in f$
- 2 If $(x, y) \in f$ and $(x, z) \in f$, then y = z.

X is called the *domain* of f.

How does this connect to other descriptions of functions you may have seen?

Example

For a set X, the identity function is:

$$1_X: X \to X, \quad x \mapsto x$$

Definition (Image and pre-image)

Let $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$. The image of f is the set

$$f(A) := \{f(x) : x \in A\}$$
 and the pre-image of f is the set $f^{-1}(B) := \{x : f(x) \in B\}$

Helpful way to think about it for proofs:

If $y \in f(A)$, then $y \in Y$, and there exists an $x \in A$ such that y = f(x).

If $x \in f^{-1}(B)$, then $x \in X$ and $f(x) \in B$.

Definition (Surjective, injective and bijective)

Let $f: X \to Y$, where X and Y are sets. Then

- f is injective if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that y = f(x)
- f is bijective if it is both injective and bijective

Example

Let $f: X \to Y$, $x \mapsto x^2$.

f is surjective if

f is injective if

f is bijective if

f is neither surjective nor injective if

Proposition

Let $f: X \to Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality iff f is injective.

Proof.

Cardinality

Definition

The *cardinality* of a set A, denoted |A|, is the number of elements in the set.

We say that the empty set has cardinality 0 and is finite.

Proposition

If X is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^n .

Proof.

Definition

Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f : A \to B$.

${\sf Example}$

Which is bigger, \mathbb{N} or \mathbb{N}_0 ?

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \le |B|$ if there exists an injection $f: A \to B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

 $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$

Proof.

Definition

Let A be a set.

- **1** A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f: \{1, \ldots, n\} \to A$
- **2** A is countably infinite if there exists a bijection $f: \mathbb{N} \to A$
- 3 A is countable if it is finite or countably infinite
- **4** A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Let's look at $\mathbb{Q}^+ := \{x \in \mathbb{Q} : x > 0\}$. The fact that the rationals are countable relies on this famous way of listing the rational numbers:

- $1 \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \quad \dots$
- $2 \quad \frac{2}{2} \quad \frac{2}{3} \quad \frac{2}{4} \quad \frac{2}{5} \quad \dots$
- $3 \quad \frac{3}{2} \quad \frac{3}{3} \quad \frac{3}{4} \quad \frac{3}{5} \quad \dots$
- $4 \quad \frac{4}{2} \quad \frac{4}{3} \quad \frac{4}{4} \quad \frac{4}{5} \quad \dots$

This is a map from \mathbb{N} to \mathbb{O}^+ . As long as we skip any fraction that is already in our list as we go along, it is injective. Since we can find an injection from \mathbb{Q}^+ to $\mathbb{N} \times \mathbb{N}$ (exercise), we have that $|\mathbb{Q}^+| = |\mathbb{N}|$. We can extend this to \mathbb{Q} . To do so, let $f: \mathbb{N} \to \mathbb{O}^+$ be a bijection (which exists by the previous part). Then we can define another bijection $g: \mathbb{N} \to \mathbb{O}$ by setting g(1) = 0 and

$$g(n) = \begin{cases} f(n) & \text{if } n \text{ is even,} \\ -f(n) & \text{if } n \text{ is odd,} \end{cases}$$

for n > 1.

Theorem

The cardinality of \mathbb{N} is smaller than that of (0,1).

Proof.

First, we show that there is an injective map from $\mathbb N$ to (0,1).

Next, we show that there is no surjective map from $\mathbb N$ to (0,1). We use the fact that every number $r\in(0,1)$ has a binary expansion of the form $r=0.\sigma_1\sigma_2\sigma_3\ldots$ where $\sigma_i\in\{0,1\},\ i\in\mathbb N$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to (0, 1), i.e. for $n \in \mathbb{N}$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\dots$ This means we can list out the binary expansions, for example like

$$f(1) = 0.00000000...$$

$$f(2) = 0.11111111111...$$

$$f(3) = 0.0101010101...$$

$$f(4) = 0.1010101010...$$

We will construct a number $\tilde{r} \in (0,1)$ that is not in the image of f.

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \dots$ where we define the *n*th entry of \tilde{r} to be the the opposite of the nth entry of the nth item in our list:

$$\tilde{\sigma}_n = \begin{cases} 1 & \text{if } \sigma_n(n) = 0, \\ 0 & \text{if } \sigma_n(n) = 1. \end{cases}$$

Then \tilde{r} differs from f(n) at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

(0.1) and \mathbb{R} have the same cardinality.

Proof.

The map $f: \mathbb{R} \to (0,1)$ defined by $x \mapsto \frac{1}{\pi} \left(\arctan(x) + \frac{\pi}{2} \right)$ is a bijection.

We have shown that there are different sizes of infinity, as the cardinality of $\mathbb N$ is infinite but still smaller than that of \mathbb{R} or (0,1). In fact, we have

$$|\mathbb{N}| = |\mathbb{N}_0| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|.$$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_0 , while the cardinality of \mathbb{R} is denoted \mathfrak{c} . There is even a relationship between them: $\mathfrak{c}=2^{\aleph_0}$, i.e. the cardinality of $\mathbb R$ is the same as the cardinality of $\mathcal P(\mathbb N)$.

References

Marcoux, Laurent W. (2019). PMATH 351 Notes. url: https://www.math.uwaterloo.ca/lwmarcou/notes/pmath351.pdf

Runde , Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/piotr/docs/RealAnalysisNotes.pdf

