

Analysis of Stop and Wait

- How well does it perform?
 - calculate throughput or efficiency
 - throughput U = rate of transfer of useful bits (payload) (unit: bit/s)
 - **efficiency** η = throughput as fraction of physical layer bit rate
- Define some symbols
 - -D = maximum data bits in each frame
 - -H =overhead bits in frame (header + trailer)
 - -F = D + H = max. total bits in frame
 - -A = bits in acknowledgement (ACK or NAK)
 - -R = physical layer bit rate
 - $-\tau$ = time delay through physical layer

Assumptions

UCD DUBLIN

Cycle Time
$$T_C = \frac{F}{R} + \tau + \frac{A}{R} + \tau = \frac{D + H + A + 2\tau R}{R}$$

- To simplify analysis, assume
 - no processing delays at either end
 - ACK sent as soon as frame received, etc.
 - plenty of data to waiting to be sent
 - so all frames carry full payload of D data bits
 - no delay waiting for more data to become available
 - timeout set just longer than time needed
 - so even if no reply, cycle time remains ~same
 - no enquiries just re-send data block
 - no enquiries just re-sena a
- Cycle time is time used in sending one frame
 - but does it transfer useful data?

Probability of Success

- Success = frame received with no errors
 - and ACK received with no errors
 - so no need to re-send data
- More definitions
 - $-P_{SF}$ = probability of successful reception of frame
 - $-P_{SA}$ = prob. of successful reception of ACK
 - $-P_S = P_{SF}P_{SA}$ = overall probability of success
- Multiplication of probabilities

- independent events
- need both to happen for overall success

5

Efficiency Examples

- Frame: 2000 data bits, 50 overhead bits
 - physical layer 1 Mbit/s, so 2.05 ms to send
 - ACK or NAK: 50 bits, so 50 µs to send
 - probability of success 0.9
- Short link 200 m, propagation delay 1 μs
 - cycle time 2.102 ms
 - throughput $U = \frac{2000 \text{ bits}}{2.102 \text{ ms}} 0.9 \approx 856 \text{ kbit/s}$
 - efficiency 0.856

- Long link 5000 km, propagation delay 25 ms
 - cycle time 52.1 ms
 - throughput 34.5 kbit/s, efficiency 0.0345

Throughput

- With our assumptions
 - send one frame in each cycle time
 - some succeed fraction P_s
 - if succeed, transfer D data bits
 - others fail, transfer nothing useful
- So throughput $U = \frac{DP_S}{T_C} = \frac{DP_SR}{D+H+A+2\tau R}$

- efficiency $\eta = \frac{U}{R} = \frac{DP_S}{D+H+A+2\tau R}$

Improving Efficiency

$$\eta = \frac{DP_S}{D+H+A+2\tau R}$$

- Assume physical layer is fixed: τ , R, errors
 - we design link layer protocol
 - we control D, H, A
- What should we do?
- Make H, A small?
 - but cannot reduce to zero...
- Make D very large?

- but P_S will depend on size of frame...
 - exact relationship depends on physical layer
- longer frame more likely to have errors

Probability of Success - Example 1

- One simple model of physical layer
 - independent decision on each bit (no bursts)
 - every bit has probability of error p
 - so probability of good bit is 1 p
- For successful reception of frame
 - need all bits good, prob. $P_{SF} = (1-p)^{(D+H)}$
 - similarly for ACK, $P_{SA} = (1 p)^A$
 - so prob. overall success $P_{S} = (1-p)^{(D+H+A)}$
- Example as earlier (D = 2000, H = 50, A = 50)
 - $-p = 10^{-5}$ gives $P_{SF} = 0.9797$, $P_{SA} = 0.9995$
 - overall prob. success $P_S = 0.9792$
 - overall prob. success $r_g = 0$.
 - $-p = 10^{-4}$ gives $P_S = 0.81$
 - $-p = 10^{-3}$ gives $P_S = 0.122$

Optimum Block Size
$$\eta = \frac{D(1-p)^{(D+H+A)}}{D+H+A+2\tau R}$$

- Differentiate with respect to D, set = 0 ?
 - ${\it D}$ is integer, but η is continuous function of ${\it D}$
 - so OK to differentiate w.r.t. D
- To simplify, replace constants
 - use B = H + A, $C = H + A + 2\tau R$, s = 1 p

- then
$$\eta = \frac{Ds^{(D+B)}}{D+C}$$

- so
$$\frac{d\eta}{dD} = \frac{(D+C)[s^{(D+B)} + Ds^{(D+B)} \ln(s)] - Ds^{(D+B)}}{(D+C)^2} = 0$$

$$- \Rightarrow (D+C)[1+D\ln(s)] - D = 0$$

$$- \Rightarrow D^2 \ln(s) + DC \ln(s) + C = 0$$

Solving...

$$D^2 \ln(s) + DC \ln(s) + C = 0$$

- quadratic equation: $D_{opt} = -\frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 \frac{c}{\ln(s)}}$
- $-\ln(s) = \ln(1-p) \approx -p$ for $p \ll 1$ (Taylor series)
- $get D_{opt} \approx \sqrt{\left(\frac{c}{2}\right)^2 + \frac{c}{p}} \frac{c}{2} = \frac{c}{2} \left[\sqrt{1 + \frac{4}{pc}} 1 \right]$
- note $C = H + A + 2\tau R$ = wasted bit times/cvcle • = 102 in our 1 µs example
- with $p = 10^{-5}$, get $D_{opt} \approx 3143$ bit
- in our 10 μ s example, C = 120 bit times
- with $p = 10^{-3}$, get $D_{opt} \approx 291$ bit

Success?

- Frame received successfully if no error burst
 - duration $\frac{D+H}{R}$, so $P_{SF} = e^{-\lambda \frac{D+H}{R}}$
- ACK received successfully if no error burst
 - duration $\frac{A}{R}$, so $P_{SA} = e^{-\lambda \frac{A}{R}}$
- Overall probability of success

$$-P_{S} = e^{-\lambda \frac{D+H}{R}} e^{-\lambda \frac{A}{R}} = e^{-\lambda \frac{D+H+A}{R}} = e^{-\frac{\lambda}{R}(D+H+A)}$$

- Example as earlier (2000, 50, 50, 1 Mbit/s)
 - $-\lambda = 2 \text{ burst/s}, P_{SE} = 0.9959, P_{SA} = 0.9999$
 - overall prob. success $P_s = 0.9958$
 - $-\lambda = 20$ burst/s gives $P_S = 0.959$
 - $-\lambda = 200$ burst/s gives $P_S = 0.657$

Probability of Success - Example 2

- Another simple model burst errors
 - model error bursts as Poisson random process
 - average rate λ burst/s
- Poisson random process:
 - models occurrence of discrete events
 - no memory: events in non-overlapping time intervals are independent
 - in small time interval Δt , probability of exactly one event occurring $\rightarrow \lambda \Delta t$ as $\Delta t \rightarrow 0$
 - and probability of no event $\rightarrow 1-\lambda \Delta t$ as $\Delta t \rightarrow 0$

• Results:

- in longer interval T, expect λT events
- prob. no event in interval T is $e^{-\lambda T}$

- graph is for H = A = 50 bit,
- $R = 1 \text{ Mbit/s}, \quad \tau = 1 \text{ µs}, \quad \lambda = 20 \text{ burst/s}$

- Still send one frame in time $T_C = \frac{D+H}{R}$
- How many frames to send one data block?
 - if succeed on first attempt, use 1 frame probability P_s
 - if succeed on second try, use N + 1 frames
 - fail once, then succeed, probability $(1 P_S)P_S = P_F P_S$
 - if succeed on third try, use 2N + 1 frames
 - fail twice, then succeed, probability $P_F^2 P_S$

average =
$$\sum_{k=1}^{\infty} \{(k-1)N + 1\} P_F^{k-1} P_S$$

Analysis...

· Geometric series:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{for } |r| < 1, \quad \text{so } \sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$
differentiating this:
$$\sum_{n=0}^{\infty} nr^{n-1} = \frac{1}{(1-r)^2}$$

- So average no. frames to send one block $= P_S \left[NP_F \frac{1}{(1 - P_F)^2} + \frac{1}{1 - P_F} \right] = \frac{N(1 - P_S) + P_S}{P_S}$
- So fraction of frames carrying useful data

$$=\frac{P_S}{P_S+N(1-P_S)}$$

32

- Stop & Wait
 - simple, can use "one way at a time" channel
 - OK if waiting time short, relative to frame
 poor with long link, high bit rate
- Sliding Window, Go Back N
 - need storage at sender, but simple receiver
 - need bi-directional channel
 - OK with short-medium delay
 - or longer delay if probability of success is high
- Sliding Window, Selective Reject

- need storage at sender and receiver
- if well designed, windows large enough...
 - performance ~independent of delay or bit rate

Example for H = A = 50 bit, Comparison $p = 10^{-5}$, R = 1 Mbit/s, $\tau = 10$ ms —GBN efficiency 0.9 ---Ps 0.8 -SR efficiency 0.7 —S&W efficiency 0.6 0.5 0.4 0.3 0.2 0.1 Data bits per frame 1000 10000 100000 10000000 - efficiency falls with longer delay, larger N UCD DUBLIN • small fall if probability of success high... ullet jagged curve due to step changes in N- still better than stop and wait... 34