# Chapter 6 Valuing Bonds

Financial Management (MGCM10018)

#### Preview

- Firms need money for investment in new plant and equipment.
- When previous earnings are not enough, firms need to raise cash from investors.
  - If the firms need money for just a short while, they may borrow from a bank.
  - If they need the money to make long-term investments, they generally issue bonds.
- This chapter discusses bond valuing.

#### Outline

- The Bond Market
- Interest Rates and Bond Prices
- Yield to Maturity
- Bond Rates of Return
- The Yield Curve
- Corporate Bonds and the Risk of Default

#### The Bond Market (6.1)

(Notes. Bills. Papers, Debentures) 万無擔係证券

- A bond is a debt instrument issued by governments or corporations to raise money.
  - It is a security that obligates the issuer to make specified payments to the bondholder.
  - It is the major type of fixed income security.
- The successful investor must be able to:
  - Understand bond structure.
  - Calculate bond rates of return.
  - Understand interest rate risk.
  - Differentiate between real and nominal returns. 4

#### **Bond Characteristics**

- When governments or companies issue bonds, they promise to make a series of interest payments and then repay the debt.
- Face Value (also called principal or par values)
  - Payment at the maturity of the bond.
- Coupon
  - The interest payments paid to the bondholder.
  - Zero coupon bonds do not pay coupon.
  - Coupon Rate: Annual interest payment as a percentage of face value.

(不考)

#### **Bond Example**

- Treasury bond prices are used to be quoted in 32nds rather than in decimals.
  - For a \$1,000 face value bond with a bid price of 103:05 and an asked price of 103:06, how much would an investor pay for the bond?

$$103\% + (06/32) = 103.1875\%$$
 of face value  $(1.031875) * (\$1,000) = \$1,031.875$ 

#### Sample Treasury Bond Quotes

| Maturity    | Coupon | Bid Price | Asked Price | Asked Yield, % |
|-------------|--------|-----------|-------------|----------------|
| 2012 May 15 | 1.375  | 101:05    | 101:06      | 0.78           |
| 2013 May 15 | 3.625  | 106:31    | 107:01      | 1.23           |
| 2014 May 15 | 4.75   | 111:22    | 111:23      | 1.70           |
| 2020 May 15 | 8.75   | 144:17    | 144:19      | 3.44           |
| 2025 Aug 15 | 6.875  | 133:07    | 133:11      | 3.94           |
| 2030 May 15 | 6.25   | 128:25    | 128:27      | 4.12           |
| 2040 May 15 | 4.375  | 100:28    | 100:29      | 4.32           |

Source: The Wall Street Journal Web site, www.wsj.com.

### Cash Flows to an investor in the 3.625% coupon bond maturing in the year of 2013



#### The Bond Market (continued)

protect bond 75 suer

- Most corporate bonds contain a call provision, which gives the issuing corporation the right to call the bonds for redemption.
  - The call provision generally states that the company must pay the bondholders an amount greater than the par value if they are called. The additional sum, which is termed a call premium.
  - Bonds are often not callable until several years (generally 5 to 10) after they are issued. This is known as a deferred call with call protection.

Instect bond holder

#### The Bond Market (continued)

償債基金

- Some bonds include a sinking fund provision that facilitates the orderly retirement of the bond issue.
- Owners of convertible bonds have the option to convert the bonds into a fixed number of shares of common stock.
- Corporate bonds are traded primarily in electronic/telephone markets rather than in organized exchanges.

#### Interest Rates and Bond Prices (6.2)

- Rationally, the bondholder must expected to earn a return from bonds where alternative instrument can provide.
  - The interest rate offered by the alternative instrument is the opportunity cost.
  - Thus, the current price (present value) of bonds must be

(Bond Price)
$$PV = \frac{coupon}{(1+r)^1} + \frac{coupon}{(1+r)^2} + \dots + \frac{(coupon+par)}{(1+r)^t}$$

$$r = \frac{coupon}{(1+r)^1} + \frac{coupon}{(1+r)^2} + \dots + \frac{(coupon+par)}{(1+r)^t}$$

$$\frac{\alpha(1-r^{n})}{1-r}$$

#### Bond Pricing: Example

What is the price of a 9% annual coupon bond with a par value of \$1,000 that matures in 3 years? Assume a required rate of return of 4%.

Coupon payment = 
$$|000 \times 9\%| = 90$$

$$PV = \frac{90}{1.04} + \frac{90}{1.04^{2}} + \frac{(90 + 1000)}{1.04^{3}}$$

$$= \frac{90}{1.04} (1 - \frac{1}{1.04^{3}}) + \frac{1000}{1.04^{3}} = \frac{90 (1 - \frac{1}{1.04^{3}})}{1.04 - 1} + \frac{1000}{1.04^{3}}$$

$$= 1,138.75$$

12

#### **Bond Pricing**

• A bond is a package of two investments: an annuity + a final repayment.

$$\begin{split} PV_{Bond} &= PV_{Coupons} + PV_{ParValue} \\ PV_{Bond} &= coupon \times (Annuity Factor) + par value \times (Discount Factor) \\ \text{where } Annuity Factor &= \frac{1 - (1 + r)^{-t}}{r} \\ \text{and } Discount Factor &= \frac{1}{(1 + r)^t} \end{split}$$

#### Bond Pricing: Example

• What is the value of a 3-year annuity that pays \$90 each year and an additional \$1,000 at the date of the final repayment? Assume a discount rate of 4%.

```
PV_{bond} = (coupon × annuity factor) + 
(par value × discount factor)
```

#### Bond Prices vs. Interest Rates

What is the present value of a 4% coupon bond with face value \$1,000 that matures in 3 years? Assume a discount rate of 5%.

$$PV_{bond} = \frac{\$40}{(1.05)^{1}} + \frac{\$40}{(1.05)^{2}} + \frac{(\$1,040)}{(1.05)^{3}} = \$972.77$$

What is the present value of this same bond at a discount rate of 2%?

$$PV_{bond} = \frac{\$40}{(1.02)^1} + \frac{\$40}{(1.02)^2} + \frac{\$1,040}{(1.02)^3} = \$1,057.68$$

#### Bond Prices vs. Interest Rates

- When the interest rate *rises*, the PV of the payment to be received by the bondholders *falls*.
  - A *decline* in the interest rate increases the PV of those payments and results in a *higher* bond price.
- Interest rate risk is the risk in bond prices due to fluctuations in interest rate.
  - This risk is higher for distant cash flows than for near-term cash flows.

### The value of the 3.625% bond falls as interest rates rise



### Interest rate of 10-year U.S. Treasury bonds, 1900-2010



#### Bond prices as a function of interest rate



19

#### Maturity Risk Premium

- Interest rate risk is part of maturity risk premium.
  - It shows that bond prices would drop when interest rates rise.
- Now suppose that interest rates decline. When the short-term bonds mature, they will have to be replaced with lower-yielding bonds.
  - In addition, many of the remaining long-term bonds may be called, and as calls occur, the investor will have to replace high coupon bonds with low coupon bonds.
  - The risk of an income decline due to a drop in interest rates is called reinvestment risk.

#### 殖利率

#### Yield to Maturity (6.3)

- To calculate how much we earn on a bond investment, we can calculate two types of bond yields.
  - Current yield 目前預料率
    - Annual coupon payments divided by bond price.
    - It focuses only on current income and ignores prospective changes in bond price.
  - Yield to maturity (YTM) 到期預划等
    - Interest rate for which the present value of the bond's payments equals the price.

#### Current Yield: Example

• Suppose you spend \$1,150 for a \$1,000 face value bond that pays a \$60 annual coupon payment for 3 years. What is the bond's current yield?

yield?  $CR = \frac{60}{1150} = 5.22\%$ 

#### Yield to Maturity (continued)

- Note that current yield does not measure the bond's total rate of return.
  - Since it focuses only on current income and ignores prospective price increases or decreases.
  - Current yield overstates the return of premium bonds and understates that of discount bonds.
    - Premium (discount) bonds are the ones with current prices higher (lower) than par value.

#### Yield to Maturity (continued)

- Yield to maturity (YTM):
  - In addition to cash flow, we need to consider the par payment into return calculation.

$$PV = \frac{coupon}{(1+r)^{1}} + \frac{coupon}{(1+r)^{2}} + \dots + \frac{(coupon+par)}{(1+r)^{t}}$$

#### Same Example

• Suppose you spend \$1,150 for a \$1,000 face value bond that pays a \$60 annual coupon payment for 3 years. What is the bond's yield to maturity?

$$(x)/150 = \frac{60}{1+r} + \frac{60}{(1+r)^{3}} + \frac{60+1000}{(1+r)^{3}} \qquad r = 0.91\%$$

#### Yield to Maturity (continued)

Approximate formula of YTM:

$$YTM = \frac{Coupon + \frac{Face - PV}{t}}{\frac{Face + PV}{2}}$$

### How bond prices change as they approach maturity, assuming constant yield



#### Rates of Return (6.4)

• The rate of return for bond is the total income per period per dollar invested.

Rate of Return = 
$$\frac{Coupon\ Income + P_1 - P_0}{P_0}$$

- $P_0$ : the price paid for the bond initially
- $P_1$ : the sell price of the bond

#### Rate of Return: Example

• Suppose you purchase a 5% coupon bond, par value \$1,000, with 5 years until maturity, for \$975.00 today. After one year you sell the bond for \$965.00. What was the rate of return during the period?

$$RoR = \frac{1000 \times 5\% + 965 - 915}{995} = 4.1\%$$

#### The Yield Curve (6.5)

- The yield curve is a plot of relationship between bond yields to maturity and time to maturity.
- The U.S. Treasury can split its bond into a series of mini-bonds, each of which makes a single payment.
  - These single payment bonds are called strips.
  - They provide a convenient way to measure the yield curve.

#### The Yield Curve: Example, May 2010



#### The Yield Curve (continued)

- The above figure with the yield curve as upward sloping.
  - Such phenomenon is often called normal yield curve.
  - If it is downward sloping, it is an inverted yield curve.

    <u>質料等的は 今の流表型的北</u>
    - This is when high inflation is expected in the shortrun, so the inflation premium becomes larger for short-term bonds than for long-term bonds.

#### Indexed Bond 指標債券

• From chapter 5, we know that in the presence of inflation, an investor's real interest rate is always less than the nominal interest rate.

$$1 + \text{real interest rate} = \frac{1 + \text{nominal interest rate}}{1 + \text{inflation rate}}$$

 We can nail down a real rate of interest by buying an index bond, whose payment are linked to inflation.

#### Indexed Bond (continued)

- The most appearing example of indexed bond is the Treasury Inflation-Protected Securities (TIPS). 確保購買力程
  - It was first issued by the U.S. Treasury in 1997.
  - The real cash flows on TIPS are fixed, and its nominal cash flows increase when CPI increases.

#### Indexed Bond (continued)

- A 3% coupon, 2-year TIPS (face of \$1,000) would have nominal cash flows as follow:
  - Assuming inflations are 5% and 4% in year 1 and
    2, respectively.

|                 | Year 1 | Year 2  |
|-----------------|--------|---------|
| Real cash flows | \$30   | \$1,030 |

|                    | Year 1               | Year 2                                       |
|--------------------|----------------------|----------------------------------------------|
| Nominal cash flows | \$30 × 1.05 = \$31.5 | $$1,030 \times 1.05 \times 1.04 = $1,124.76$ |

#### U.K. Indexed and Nominal Bonds



#### Risk of Default (6.6)

- When investing in bonds, there is always the risk that the issuer may default.
  - Default (or credit) risk is the risk that a bond issuer may default on its bond.
- Default premium is the additional yield on a bond that investors require for bearing credit risk.
  - Investment grade: bonds rated Baa or above by Moody's or BBB or above by Standard & Poor's.
  - Junk bond: non-investment grade bonds.

#### Credit Ratings by Credit Agencies

| Moody's      | Standard<br>& Poor's   | Percent of Bonds<br>Defaulting within<br>10 Years of Issue | Safety                                                                                     |  |  |
|--------------|------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Investmen    | Investment Grade Bonds |                                                            |                                                                                            |  |  |
| Aaa          | AAA                    | 0.6%                                                       | The strongest rating; ability to repay interest and principal is very strong.              |  |  |
| Aa           | AA                     | 0.8                                                        | Very strong likelihood that interest and<br>principal will be repaid.                      |  |  |
| Α            | Α                      | 1.9                                                        | Strong ability to repay, but some vulnerability to changes in circumstances.               |  |  |
| Baa<br>高息债券/ | BBB<br>/垃圾债券/          | 5.2<br>段机债券                                                | Adequate capacity to repay; more<br>vulnerability to changes in economic<br>circumstances. |  |  |
| High-Yield   | l Bonds                |                                                            |                                                                                            |  |  |
| Ва           | BB                     | 16.0                                                       | Considerable uncertainty about ability to repay.                                           |  |  |
| В            | В                      | 28.4                                                       | Likelihood of interest and principal payments<br>over sustained periods is questionable.   |  |  |
| Caa<br>Ca    | ccc }                  | 50.3                                                       | Bonds that may already be in default or in<br>danger of imminent default.                  |  |  |
| С            | С                      | _                                                          | Little prospect for interest or principal on the debt ever to be repaid.                   |  |  |

#### Risk of Default (continued)

- Note that junk bonds are also called high yield bonds or speculative grade.
  - In the 1980s, large investors like T. Boone Pickens and Henry Kravis thought that certain old-line, established companies were run inefficiently and were financed too conservatively.
  - These corporate raiders were able to put in some of their own money, borrow the rest via junk bonds, and take over the target company.
  - Because these deal used lots of debt, they were called leveraged buyouts (LBOs).

## Prices and yields of a sample of heavily traded corporate bonds, June 1, 2010

| Issuer Name      | Coupon, % | Maturity | Moody's Rating | Last Price | Yield, % |
|------------------|-----------|----------|----------------|------------|----------|
| JPMorgan Chase   | 3.700     | Jan 2015 | Aa             | 101.512    | 3.344    |
| Cisco Systems    | 5.900     | Feb 2039 | Α              | 109.106    | 5.280    |
| Goldman Sachs    | 5.375     | Mar 2020 | Α              | 96.287     | 5.878    |
| Time Warner      | 4.875     | Mar 2020 | Baa            | 100.650    | 4.790    |
| NewPage Corp.    | 11.375    | Dec 2014 | В              | 93.000     | 13.460   |
| First Data Corp. | 9.875     | Sep 2015 | Caa            | 80.125     | 15.494   |

Source: www.wsj.com.

#### Risk of Default (continued)

- The difference between yields of corporate bonds and Treasuries is called yield spread.
- It measures the additional premium for the corporate bonds over the risk-free rate, which is proxied by the yields of Treasury bills, notes, or bonds.

### Yield spread b/w corporate and 10-year Treasury bonds



#### Steps to minimize default risk

#### **微债顺序**

- Seniority
  - Some bonds are subordinated.
- Security
  - Use of collateral, the assets that are set as security for the bonds.
  - Secured debt.
- Protective covenants
  - Conditions imposed on borrowers to protect lenders from unreasonable risks.

#### Variations in Corporate Bonds

- Zero-coupon bonds
  - These bonds do not pay coupon and are often issued at prices well below face value.
- Floating-rate bonds
  - The coupon rate changes over time and is often tied to some measure of current market rates.
- Convertible bonds
  - When the bonds mature, the bondholders can choose to exchange the bond for a specified number of common stocks.