

Lunes, 17 de enero 2022 Docente: Martín Marcano 5to Año "A" y "B"

Área de formación: Matemática

Conocimiento de nuestro entorno.

Tradiciones y evolución histórica.

Teorema del Resto. Teorema del Factor. Regla de Ruffini

Teorema del Resto y Teorema del Factor.

El teorema del resto y el teorema del factor son dos teoremas dentro del álgebra estrechamente relacionados con la divisibilidad de polinomios. Recordando nuevamente la división de polinomios tenemos:

Sean los polinomios $P(x) = 5x^4 + 2x^2 - 7x - 3x^3 + 3$ y Q(x) = x - 1. Determinar $P(x) \div Q(x)$.

Ordenando los polinomios y ejecutando la división usual:

Note que el cociente es: $5x^3 + 2x^2 + 4x - 3$ y el resto o residuo es: 0

Teorema del resto: El resto de dividir un polinomio P(x) entre (x-a) es P(a); es decir, R=P(a)

Para nuestro caso, tenemos la división polinomios:

$$(5x^4 - 3x^3 + 2x^2 - 7x + 3) \div (x - 1)$$
, aplicando el teorema del resto, tenemos:

$$P(1) = 5(1)^4 - 3(1)^3 + 2(1)^2 - 7(1) + 3 = 5 - 3 + 2 - 7 + 3 = 0$$
, note que el resto es el mismo encontrado realizando la división usual.

Veamos otros ejemplos:

Calculemos el resto de dividir;

a)
$$(3x^4-5x^3-4x+1) \div (x-2)$$

b)
$$(3x^4-5x^3-4x+1) \div (x+1)$$

Solución (a):

$$(3x^4-5x^3-4x+1) \div (x-2)$$

$$P(2) = 3 \cdot 2^4 - 5 \cdot 2^3 - 4 \cdot 2 + 1 = 48 - 40 - 8 + 1 = 1$$

Solución (b):

$$(3x^4-5x^3-4x+1) \div (x+1)$$

$$P(-1) = 3 \cdot (-1)^4 - 5 \cdot (-1)^3 - 4 \cdot (-1) + 1 = 3 + 5 + 4 + 1 = 13$$

Observa que (x+1)=(x-(-1)) y por eso tienes que calcular P(-1)

Teorema del factor

(x-a) es un factor del polinomio P(x) si y sólo si P(a)=0.

El teorema del factor es una consecuencia del teorema del resto, pues por este último sabes que el resto de dividir el polinomio P(x) entre x-a es P(a) y por otro lado, la definición de divisibilidad dice que si P(x) es divisible entre x-a el resto da 0, luego:

$$\left. \begin{array}{l} R = P(a) \\ R = 0 \end{array} \right\} \Rightarrow P(a) = 0$$

Y por último, llevando a la práctica lo aprendido:

Ejemplo:

a) ¿ Es x+2 un factor de $P(x) = 2x^4 - 3x + 1$?

Veamos:

$$P(-2) = 2 \cdot (-2)^4 - 3 \cdot (-2) + 1 = 32 + 6 + 1 = 39 \neq 0$$

Por lo tanto x+2 no es un factor de $P(x)=2x^4-3x+1$.

b) $\& Es \ x-1 \ \text{un factor de } P(x) = 2x^4 - 3x + 1?$

Veamos:

$$P(1) = 2 \cdot 1^4 - 3 \cdot 1 + 1 = 2 - 3 + 1 = 0$$

Por lo tanto x-1 es un factor de $P(x)=2x^4-3x+1$.

Regla de Ruffini

Es importante recordar que una raiz es un valor que satisface la ecuación P(x) = 0. Por otra parte se llama *conjunto solución* de una ecuación algebraica al conjunto de todas las raíces de una ecuación.

La regla de Ruffini es un algoritmo que permite obtener fácilmente el cociente y el residuo de la división de un polinomio por un binomio de la forma x - a.

Ejemplo.

Obtener el cociente y el residuo de $P(x) = x^3 - 2x^2 - 11x + 12 \div Q(x) = x + 3$.

Aplicando la regla de Ruffini se realiza la división de la siguiente manera:

1. Se ordena el polinomio P(x) de mayor a menor grado y se colocan los coeficientes de cada término. Si no hay algún término entre el de mayor grado y el de menor se coloca un 0. A la izquierda se coloca el número opuesto que tiene Q(x), en este caso -3 y se baja el coeficiente del término de mayor grado:

$$-3 \left| \begin{array}{cccccc} 1 & -2 & -11 & 12 \\ \hline 1 & & & \end{array} \right|$$

2. Se multiplica el coeficiente que se ha bajado (1) por el que se ha colocado a la izquierda (-3). El resultado del producto se coloca debajo del coeficiente del término siguiente y se suman:

3. El resultado de la suma se vuelve a multiplicar por el número situado a la izquierda y se repite el proceso:

4. El último número corresponde con al residuo de la división mientras que el resto de números de la fila inferior son los coeficientes del cociente.

En este caso, tenemos que:

R=0 (resto o residuo) y $C(x)=x^2-5x+4$, es importante recordar que, aplicando la regla básica de la división, tenemos:

$$D = C.d + R$$

Luego:

$$x^3 - 2x^2 - 11x + 12 = (x^2 - 5x + 4)(x + 3) + 0$$

Veamos otros ejemplos:

a)
$$(x^5 + x^4 - x^3 + x^2 - 3x + 5) \div (x - 1)$$

Cociente: $x^4 + 2x^4 + x^3 + 2x - 1$

Resto: 4

b)
$$(3x^5 + 2x + 4) \div (x + 2)$$

Cociente: $3x^4 - 6x^3 + 12x^2 - 24x + 50$

Resto: - 96

c)
$$(x^4 - 5x^2 + 2) \div (5x - 10)$$

Para poder aplicar la regla de Ruffini, el polinomio divisor debe ser de la forma (x-a). Por lo tanto, dividimos el divisor entre 5, quedando la división de la siguiente manera:

$$(x^4 - 5x^2 + 2) : (5x - 10) \xrightarrow{(5x - 10) : 5}$$

$$\longrightarrow (x^4 - 5x^2 + 2) : (x - 2)$$

Luego, se divide por 5 para obtener el cociente.

Cociente:
$$x^3 + 2x^2 - x - 2 \longrightarrow 5$$

$$\longrightarrow \frac{1}{5}x^3 + \frac{2}{5}x^2 - \frac{1}{5}x - \frac{2}{5}$$

Resto: - 2

d)
$$(x^3 + 2x^2 - 5x + 2) : (2x + 3)$$

Para poder aplicar la regla de Ruffini, el polinomio divisor debe ser de la forma (x-a). Por lo tanto, dividimos el divisor entre 2, quedando la división de la siguiente manera:

$$(x^3 + 2x^2 - 5x + 2) : (2x + 3) \xrightarrow{(2x + 3) : 2}$$

$$\longrightarrow \left(x^3 + 2x^2 - 5x + 2\right) : \left(x + \frac{3}{2}\right)$$

Luego, se divide por 2 para obtener el cociente.

Cociente:
$$x^2 + \frac{1}{2}x - \frac{23}{4} \longrightarrow$$

$$\longrightarrow \frac{1}{2}x^2 + \frac{1}{4}x - \frac{23}{8}$$

Resto: $\frac{85}{8}$

e)
$$(81x^4 - 9x^2 + 6x - 5) \div (x - 1/3)$$

Cociente: $81x^3 + 27x^2 + 6$

Resto: - 3

f)
$$(6x^3) \div (x - 1)$$

Cociente: $6x^2 + 6x + 6$

Resto: 6

Factorización de polinomios aplicando la regla de Ruffini.

Es importante destacar que cada vez que se hace una tabla a partir de los coeficientes del polinomio y el residuo es cero, se obtiene una raíz. En ese orden de ideas se puede aplicar nuevamente el proceso con los coeficientes del cociente o polinomio reducido hasta llegar a uno cuyas raíces se puedan calcular fácilmente.

El método consiste escoger una posible raíz y desarrollar una tabla. Si el último resultado de la tabla es ⁰, el procedimiento habrá finalizado correctamente. Si no es así, se tiene que probar con otra posible raíz.

Consideremos el siguiente polinomio: $P(x) = x^3 - 7x - 6$. Las posibles raíces del polinomio anterior serán los divisores enteros del término independiente, así tenemos: Divisores de -6: ± 1 , ± 2 , ± 3 , ± 6 .

Luego, tenemos que:

1	0	-7	-6
	1	1	6
1	1	-6	0
	2	6	
1	3	0	
	-3		
1	0	_	
	1	1 1 1 2 1 3 -3	1 1 1 1 -6 2 6 1 3 0 -3

Por lo tanto: 1, 2 y -3 son las raíces del polinomio P(x). Es importante señalar que como el polinomio es de grado 3, implica entonces que tendrá a la sumo 3 raíces. Luego, en virtud del teorema del factor se cumple que:

$$P(x) = x^3 - 7x - 6 = (x - 1)(x - 2)(x + 3)$$

Veamos otro ejemplo. Factorizar aplicando la regla de ruffini el siguiente polinomio:

$$H(x) = x^4 - 10x^3 + 35x^2 - 50x + 24$$

Divisores enteros de 24: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 , ± 24 . Luego:

	1	-10		-50	
2		2	-16	38	-24
	1	-8	19	-12	0
3		3	-15	12	3
	1	-5	4	0	
1		1	4 -4		
4	1	-4 4	0		
\neg	1	0			

Por lo tanto: $x^4 - 10x^3 + 35x^2 - 50x + 24 = (x - 2)(x - 3)(x - 1)(x - 4)$

Note que no existe un orden específico para buscar las raíces del polinomio. También es importante indicar que pueden darse casos donde las raíces se repiten.

Actividades de Evaluación

Pongamos en práctica lo aprendido.

1) En cada caso, realice la división usual y luego aplique el teorema del resto. Verifique que los residuos encontrados en cada método son iguales.

a)
$$\left(-2 + 3x - x^2 + 5x^3 - \frac{2x^4}{3}\right) \div (x - 1)$$

b)
$$\left(x^3 - 5x^2 - \frac{3x}{2} - 4\right) \div (x + 3)$$

2)
$$\dot{c}$$
 Es $x-3$ un factor de $H(x)=2x^4-x^3+2x^2-\frac{2}{3}x+2$?

4) Aplique la regla de Ruffini en cada caso para hallar el cociente y el resto

a)
$$\left(-1 + 2x - x^2 + 2x^3 - \frac{2x^4}{3}\right) \div (x - 2)$$

b)
$$\left(x^3 - 3x^2 - \frac{3x}{2} - 4\right) \div (x + 1)$$

c)
$$(2x^4 - x^3 + 2x^2 - 5 + x) \div (3x - 6)$$

d)
$$\left(3x^3 - x^2 - x + \frac{1}{2}\right) \div \left(x + \frac{2}{3}\right)$$

5) Factorice los siguientes polinomios aplicando la regla de Ruffini.

a)
$$P(x) = x^3 - 5x^2 - 9x + 45$$

b)
$$H(x) = x^4 - 10x^2 + 9$$

c)
$$Q(x) = x^3 - 30 - 19x$$

Aspectos a Evaluar.

i) Responsabilidad y puntualidad en la realización del trabajo requerido. (3pts)

Nota: la fecha tope para entregar esta actividad es **04/02/2022**, cualquier entrega después de la fecha implica perder los 3 puntos indicados.

- i) Presentación y trabajo legible (2pts)
- ii) Resolución de los ejercicios planteados mediante procesos explicados en la guía. (15pts)

Puedes **COMPLEMENTAR** la información de la guía utilizando:

Canal oficial de cada familia una escuela.

Matemática de 5to año (Colección Bicentenario)

Matemática de 5to año (Santillana, cualquier edición)

www.wikipedia.org.

Nota: En esta fase, la entrega de las guías se realizará vía online al correo **marcanom05@gmail.com** y también se estarán recibiendo en las instalaciones de la escuela y del ESEM en fechas que con antelación se les notificará.