

Tartalomjegyzék

1. tétel: Számelmélet, kongruencia	2
2. tétel: Lineáris kongruencia	7
3. tétel: Euler-Fermat tétel	10
4. tétel: Algoritmusok, nyilvános kulcsú titkosítás, RSA	13
5. tétel: Térbeli koordinátageometria	21
6. tétel: Alterek, lineáris függetlenség	25
7. tétel: Bázis, dimenzió	31
8. tétel: Gauss-elimináció, RLA	35
9. tétel: Determináns	39
10. tétel: Kifejtési tétel, mátrix	44
11. tétel: Lineáris egyenletrendszer megoldhatósága	48
12. tétel: Mátrix inverze, rangja	
13. tétel: Lineáris leképzés, transzformáció	59
14. tétel: Magtér, képtér	63
15. tétel: Bázistranszformáció	66
16. tétel: Sajátvektor, karakterisztikus polinom	69

Felhasznált irodalom:

Szeszlér Dávid - Bevezetés a számításelméletbe 1

Fleiner Tamás - A számítástudomány alapjai

Talált HIBA esetén jelzés: nospatium@gmail.com

BACK

1. tétel:

Számelmélet, kongruencia

<u>Tételcím</u>

Oszthatóság, prímszámok, a számelmélet alaptétele (csak a felbonthatóság bizonyításával). Prímek száma, $\pi(n)$ nagyságrendje (bizonyítás nélkül). Kongruencia fogalma, alapműveletek kongruenciákkal.

1. Oszthatóság

- o Definíció
 - $a \in \mathbb{Z}$ osztója $b \in \mathbb{Z}$, ha létezik olyan $c \in \mathbb{Z}$, melyre $a \cdot c = b$
 - ugyanezt fejezzük ki, ha b-t az a többszörösének mondjuk
- o Jelölés
 - ha a osztója b-nek: a|b
 - ha a nem osztója b-nek: a ∤ b
 - valódi osztója, ha fennáll a|b és 1 < |a| < |b|
- o Példa
 - igaz: $13|91, -7|63, 2|0, -8 \nmid -36, \text{ még } 0|0 \text{ hiszen } 0 \cdot c = 0$ bármilyen c-re igaz

2. Prímszám

- o Definíció
 - $p \in \mathbb{Z}$ prímszámnak nevezzük, ha $|\mathbf{p}| > 1$ és p-nek nincs valódi osztója
 - |p|>1 kikötés a -1,0,1 számok miatt kell, ugyanis ezek se nem prímek, se nem összetettek
 - ullet tehát $p=a\cdot b$ csak akkor lehetséges, ha $a=\pm 1$ vagy $b=\pm 1$
 - ha |p| > 1 és p nem prím, akkor *összetett szám*

[K1] megjegyzést írt: A lilával szedett, dőlt szövegek általában egy addig elő nem fordult fontos szó, definíció vagy tétel neve, melynek ismerete fontos.

3. Számelmélet alaptétele

o Tétel

- (1) minden 1-től, 0-tól, (−1) -től különböző Z szám felbontható prímek szorzatára
- (2) ez a felbontás tényezők sorrendjétől, előjelétől eltekintve egyértelmű
 - pl. 100 felbontása lehet $2 \cdot 2 \cdot 5 \cdot 5$ vagy $(-5) \cdot 2 \cdot 5 \cdot (-2)$

o Bizonyítás (1)

- (felbonthatóság bizonyítása)
- tetszőleges $n \in \mathbb{Z}$ felbontása |n| > 1 prímtényezők szorzatára
- eljárás végig fenntartja az n egy (±1-től különböző) egészek szorzatára való bontását
- ha $n = a_1 \cdot ... \cdot a_k$, ahol a_i mind prím \rightarrow eljárás megáll
- ha tényezők között van összetett szám pl. $a_i \to$ van valódi osztója, így felírható: $a_i = |b \cdot c|$, ahol |b|, |c| > 1, a_i helyettesíthető $b \cdot c$ -vel \to eljárás folytatódik
- felbontáskor tényezők száma mindig 1-gyel nő, tényező | | legalább $2 \rightarrow$ eljárás véges sok lépésben elvégezhető (max. $\log_2 |n|$ tényezős szorzattal)

4. Prímek számossága

o Tétel

■ prímek száma végtelen

o Bizonyítás

- TFI. prímek száma véges
- p₁, ..., p₂ az összes +p
- ! $N = p_1 \cdot ... \cdot p_k + 1 \rightarrow N$ prímtényezők szorzatára bomlik vagy maga is prím
- N nem osztható egyik p-vel sem, mert +1 maradékot ad mindig, így N minden prímtényezője hiányzik p_k felsorolásból \rightarrow ellentmondás

[K2] megjegyzést írt: Szintén egészek.

[K3] megjegyzést írt: Tegyük fel indirekten, hogy..

[K4] megjegyzést írt: Pozitív prím.

[K5] megjegyzést írt: Legyen

[K6] megjegyzést írt: Előző tételnek megfelelően.

5. Szomszédos prímek

- o Tétel
 - minden N>1 $\mathbb Z$ találhatóak olyan p< q prímek, hogy p és q között nincs további prím és q-p>N
- Bizonyítás
 - be kell látni, hogy létezik N db szomszédos összetett szám
 - ezeknél kisebb prímek közül a legnagyobb p
 - ezeknél nagyobb prímek közül legkisebb q
 - ! $a_i = (N+1)! + i$
 - i = 2, 3, ..., (N + 1)
 - $N \text{ db } a_2, a_3, \dots, a_{N+1}$
 - összetettek, mert minden $2 \le i \le N+1$ esetén a_i -nek valódi osztója $i \to (N+1)!$ nyilván osztható $\to i$ -t adva ismét i-vel osztható számot kapunk

6. Nagy prímszámtétel

o Tétel

$$\pi(n) \approx \frac{n}{\ln n}$$
 vagyis $\lim_{n \to \infty} \frac{\pi(n)}{\frac{n}{\ln n}} = 1$

• $\pi(n)$ értékére jó becslés $\frac{n}{\ln n}$ abban az értelemben, hogy a becslés relatív hibája n növekedtével 0-hoz konvergál

7. Kongruencia

- o Definíció
 - $\| |a,b,m \neq 0$, $\in \mathbb{Z}$ kongruens b modulo m, ha a-t és b-t m-mel maradékosan osztva azonos maradékot kapunk
- o Jelölés
 - $a \equiv b (m)$
- o Állítás
 - fenti akkor és csak akkor igaz, ha m|a-b
- o Bizonyítás
 - ullet ! a maradéka r_1 és b maradéka r_2 , m-mel osztva
 - valamely $k_1, k_2 \in \mathbb{Z}$, and $0 \le r_1, r_2 \le m-1$

[K7] megjegyzést írt: Aszimptotikus egyenlőség: $a_n \approx b_n \rightarrow$ tehát a_n sorozat akkor aszimptotikusan egyenlő b_n -nel, ha a 2 sorozat hányadosa 1-hez konvergál.

[K8] megjegyzést írt: Legyen..

•
$$a = k_1 \cdot m + r_1$$

•
$$b = k_2 \cdot m + r_2$$

• a és b szerep szimmetrikus $\rightarrow r_1 \ge r_2$:

$$a - b = (k_1 - k_2) \cdot m + (r_1 - r_2)$$
 /: m

- maradék $r_1 r_2$
- m|a-b akkor teljesül, ha $r_1=r_2$,
- definíció szerint ez *ekvivalens* ezzel: $a \equiv b \ (m)$

8. Alapműveletek kongruenciákkal

- o Tétel
 - TFH. $a \equiv b \ (m)$ és $c \equiv d \ (m)$ fennállnak $a,b,c,d,m \in \mathbb{Z}$, k ≥ 1 tetszőleges

(1)
$$a + c \equiv b + d (m)$$

$$(1) a - c \equiv b - d (m)$$

(2)
$$a \cdot c \equiv b \cdot d (m)$$

(3)
$$a^k \equiv b^k (m)$$

- o Bizonyítás (1)
 - előző definícióra alapozva
 - m-mel osztható számok (+) és (-) is m-mel osztható \rightarrow

$$m|(a-b) + (c-d) = (a+c) - (b+d)$$

$$m|(a-b)-(c-d) = (a-c)-(b-d)$$

- definíció miatt ismét igaz
- o Bizonyítás (2)
 - mivel egy m-mel osztható szám bármely többszöröse is m-mel osztható, így

$$m|a-b$$

$$m|c\cdot(a-b)$$

$$m|a \cdot c - b \cdot c$$

• (hasonló b(c-d)), tehát:

$$m|(ac - bc) + (bc - bd) = ac - bd$$

o Bizonyítás (3)

- Bizonyítás (2)-re alapozva, de itt most c = a és d = b
- ekkora kapjuk: $a^2 \equiv b^2 (m)$
- újra alkalmazva előző bizonyítást kapjuk: $a^3 \equiv b^3 (m)$
- és ezt folytatva jutunk el: $a^k \equiv b^k (m)$

9. A kongruencia tétel

o Tétel

- ! a, b, c, m tetszőlegesek és d = |(c, m)|
- $a \cdot c \equiv b \cdot c (m)$
- akkor, és csak akkor igaz, ha $a \equiv b \left(\frac{m}{d}\right)$

o Bizonyítás

- ! $c' = \frac{c}{d}$ és $m' = \frac{m}{d}$ (c', $m' \in \mathbb{Z}$, mert d közös osztójuk)
- (c',m')=1, ellenkező esetben d egy d-nél nagyobb közös osztó volna
- kongruencia állítás:

$$a \cdot c \equiv b \cdot c \ (m) \rightarrow m | ac - bc = c(a - b)$$

- ez ekvivalens azzal, hogy:
- $m'|c'(a-b)| \rightarrow \text{tov\'abb ekvivalens } m'|a-b|$

[K9] megjegyzést írt: d = (c, m), tehát d = c és m legnagyobb közös osztójával.

[K10] megjegyzést írt: Mert az $m \cdot k = c(a - b)$ egyenlet is ekvivalens az $m' \cdot k = c'(a - b)$

BACK

2. tétel:

Lineáris kongruencia

<u>Tételcím</u>

Lineáris kongruenciák: a megoldhatóság szükséges és elégséges feltétele, a megoldások száma. Euklideszi algoritmus, annak lépésszáma, alkalmazása lineáris kongruenciák megoldására is (konkrét, megadott példán).

1. Eukleideszi algoritmus

- o Definíció
 - input: a, m (0 < a < m)
 - output: (*a*, *m*)
 - 1. lépés:
 - m-et maradékosan osztjuk a-val, megkapva a maradékot, felírjuk őket a következő módon:

$$a = b \cdot q_1 + r_1$$

- 2. lépés:
 - a-t elosztjuk a kapott maradékkal:

$$b = r_1 \cdot q_2 + r_2$$

- ... i. lépés:
 - (i 2) lépésben kapott maradékot elosztjuk (i 1).-ben kapottal:

$$r_{i-2} = ri - 1 + r_i$$

- utolsó lépés:
 - akkor érünk el ide, ha $r_i = 0$, ekkor r_{i-1} lesz az Inko

2. Eukleideszi algoritmus

- Állítás
 - Eukleideszi algoritmus végrehajtása után $r_k = (a, m)$

[K11] megjegyzést írt: Példa: (121,39) legnagyobb közös osztója: $121=39\cdot 3+4$ $39=4\cdot 9+3$ $4=3\cdot 1+1 \rightarrow$ maradék 1, megoldások száma tehát: 1

[K12] megjegyzést írt: a, m legnagyobb közös osztóját kapjuk meg.

- o Bizonyítás
 - $m \equiv r_1 \quad (a)$
 - ha $a \equiv b \pmod{m}$ teljesül, akkor (a, m) = (b, m)
 - ezt alkalmazva: $(a, m) = (a, r_1)$

$$a \equiv r_2 \ (r_1)$$

$$(a, r_1) = (r_1, r_2) \rightarrow$$

$$(a,m) = (a,r_1) = (r_1,r_2) = \dots = (r_{k-1},r_k)$$

■ legutolsó (k + 1) lépés szerint

$$r_k | r_{k-1} \to (r_{k-1}, r_k) = r_k$$

3. Eukleideszi algoritmus lépésszáma

- Állítás
 - Eukleideszi algoritmus polinomiális időben lefut
 - legfeljebb 2 · [log₂ a] maradékos osztás után áll meg
- o Bizonyítás
 - vizsgáljuk meg az eljárás egy tetszőleges lépést:
 - $r_{i-2} = t_i \cdot r_{i-1} + r_i$, ahol a fentiek szerint

$$r_{i-2} > r_{i-1} > r_i$$

- tehát:
 - $t_i \ge 1$ ($r_{i-2} > r_{i-1}$ miatt) következik:
 - $r_{i-2} \ge r_{i-1} + r_i$, ebből viszont
 - $r_{i-1} > r_i$ miatt $\rightarrow r_{i-2} > 2r_i$
- így az eljárás páros számú soraiból ezt kapjuk:

$$a = r_0 > 2r_2 > 4r_4 > ... > 2^k \cdot r_{2k}$$

- a $k = [\log_2 a]$ választással $2^k \ge a$
- (TFI r_{2k} maradékkal még nem ért véget)
 - $0 < r_{2k} < \frac{a}{2^k} \le 1 \rightarrow \frac{\text{ellentmondást kapnánk}}{2^k}$

[K13] megjegyzést írt: Ebből következik, hogy az Eukleideszi algoritmus polinomiális futásidejű (de még ezen belül is nagyon hatékony), hiszen $\log_2 a$ az a jegyei számának konstanszorosa.

4. Lineáris kongruenciák megoldhatósága

o Tétel

- $a \cdot x \equiv b \ (m)$ lineáris kongruencia akkor és csak akkor megoldható, ha (a,m)|b
- ha teljesül, akkor megoldásainak száma modulo m egyenlő (a, m)-val

o Bizonyítás

- (szükségesség igazolása)
 - !d = (a, m), a = a'd, m = m'd
 - ha az $a \cdot x \equiv b$ (m) megoldható, akkor

$$d \mid m \mid ax - b \rightarrow$$

$$d \mid a \mid ax \rightarrow$$

$$d \mid ax - (ax - b) = b$$

- TFH. $d \mid b$, azaz b = db' /: d (modulust is)
- $a'x \equiv b'(m')$
- mivel d = (m, a), így leosztás után (a', m') = 1
- Eukleideszi algoritmus segítségével Inko előáll \rightarrow kiszámíthatunk olyan $k,l \in \mathbb{Z}$, amire ka' + lm' = 1
 - k, l nem lehet közős prímosztója → relatív prímek

$$a'x \equiv b' (m') / k$$

$$ka'x \equiv kb' (m')$$

$$(1 - lm')x \equiv kb' (m') / + lm'x \equiv 0 (m')$$

$$x \equiv kb'(m')$$

- ullet megoldások modulo m megadása
 - mivel m = m'd, ezért minden m' szerinti maradékosztály pontosan d db m szerinti maradékosztály uniója
 - konkrét esetben:

$$x \equiv kb'(m)$$
 vagy...
 $x \equiv kb' + m'(m)$ vagy...
 $x \equiv kb' + 2m'(m)$...

[K14] megjegyzést írt: Ebből következik, hogy...

[K15] megjegyzést írt: Legnagyobb közös osztó.

[K16] megjegyzést írt: Az elvégzett átalakítások ekvivalens volta miatt az $a \cdot x = b$ kongruencia megoldásai pontosan azok az $x \in \mathbb{Z}$, amelyek modulo m' a kb'-vel egy maradékosztályba tartoznak.

ВАСК

3. tétel:

Euler-Fermat tétel

<u>Tételcím</u>

Euler-féle φ -függvény, képlet a meghatározására (csak prímhatvány esetre bizonyítva). Redukált maradékrendszer, Euler-Fermat-tétel, kis Fermat-tétel. Két kongruenciából álló kongruenciarendszer megoldása (konkrét, megadott példán).

1. Euler-féle φ-függvény

o Definíció:

■ ha $n \ge 2$, ∈ \mathbb{Z} , akkor az 1, ... , n-1 számok között n-hez relatív prímek számát $\varphi(n)$ -nel jelöljük

2. Euler-féle φ-függvény képlet

o Tétel

• ! az $n \geq 2$, $\in \mathbb{Z}$ kanonikus alakja $n = p_1^{\alpha_1} \cdot ... \cdot p_k^{\alpha_k}$, ekkor:

$$\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \cdot (p_2^{\alpha_2} - p_2^{\alpha_2 - 1}) \cdot \dots \cdot (p_k^{\alpha_k} - p_k^{\alpha_k - 1})$$

o Bizonyítás

■ TFH. $n \in \mathbb{Z}$ prímtényezős felbontásban csak 1 prím (p) van

 $n = p^{\alpha} (\alpha \ge 1)$

• ekkor (n, a) > 1, akkor és csak akkor igaz, ha $p \mid a$

• 1, ..., n számok közül $\frac{n}{p} = p^{\alpha-1}$ db nem relatív prím n-hez

• definíció szerint: $\varphi(n)=n-p^{\alpha-1}=p^{\alpha}-p^{\alpha-1}$

■ → tehát igaz minden prímhatványra

3. Redukált maradékrendszer

o Definíció

• $R = \{c_i, \dots, c_k\}$ számhalmaz *redukált maradékrendszer* modulo m, ha a következő feltételek teljesülnek:

[K17] megjegyzést írt: $n \to \varphi(n)$

[K18] megjegyzést írt: Különben $a \not\in s n$ prímtényezős felbontásában nem lehetne közös prím.

[K19] megjegyzést írt: Ugyanis nyilván ennyi a *p*-vel oszthatók száma.

- (1) $(c_i, m) = 1$ minden i = 1, ..., k esetén
- (2) $(c_i \neq c_j)$ (m) bármely $i \neq j$, $1 \leq i, j \leq k$ esetén
- **(3)** $k = \varphi(m)$
- o Példa
 - modulo 10 redmar. az {1, 3, 7, 9}, {21, 43, 67, 89}, {1, -1, 3, -3}

[K20] megjegyzést írt: Redukált maradékrendszer.

4. Redukált maradékrendszer állítás

- Állítás
 - ! $R = \{c_i, ..., c_k\}$ redmar. modulo $m \in \mathbb{Z}$, amely (a, m) = 1
 - $ightharpoonup A' = \{a \cdot c_i, \dots, a \cdot c_k\}$ szintén redmar. modulo m
- o Bizonyítás
 - megmutatni, hogy R'-re is igaz, ami R-re is
 - (1) (1. tétel, Számelmélet alaptétel szerint) $a \cdot c_i$ és m prímtényezős felbontásában nem lehet közös prím, ha külön a-ban és m-ben vagy c-ben és m-ben
 - (2) bizonyításához TFH.:

$$a \cdot c_i \equiv a \cdot c_j \quad (m) \quad /: a$$
 $c_i \equiv c_i \quad (m)$

- mivel R-re teljesül **(2)**, amely csak i=j esetben fordulhat elő
- mivel R és R' elemszáma =, így (3) teljesül R'-re

5. <u>Euler-Fermat-tétel</u>

- o <u>Tétel</u>
 - ha az |(a, m)| = 1, akkor $a^{\varphi(m)} \equiv 1 \ (m)$

[K24] megjegyzést írt: $a, m \ge 2, \in \mathbb{Z}$

[K21] megjegyzést írt: Nincs.

[K22] megjegyzést írt: Valamely $1 \le i, j \le k$

[K23] megjegyzést írt: (a, m) = 1 miatt modulus nem

- o Bizonyítás
 - ! $R = \{c_1, ..., c_k\}$ tetszőleges redmar. modulo m
 - mivel (a, m) = 1 redmar. def. miatt $R' = \{a \cdot c_1, ..., a \cdot c_k\}$ (m)
 - R és R' elemei párba állíthatók, párok kongruensek modulo m
 - (1. tétel, Alapműveletek kongruenciákkal (3) tulajdonságot használva) → R és R' elemeit összeszorozva modulo m kongruens eredményeket kapunk:

[K25] megjegyzést írt: Redukált maradékrendszer definíciója.

$$\begin{split} c_1 \cdot \ldots \cdot c_k &\equiv (a \cdot c_1) \cdot \ldots \cdot (a \cdot c_k) \quad (m) \\ c_1 \cdot \ldots \cdot c_k &\equiv a^{\varphi(m)} \cdot c_1 \cdot \ldots \cdot c_k \quad (m) \quad /: c_1 \cdot \ldots \cdot c_k \end{split}$$

- mivel $(c_i, m) = 1$, ezért (1. tétel, Számelmélet alaptétel következtében) $(c_1 \cdot ... \cdot c_k, m) = 1$ is igaz
- osztással a modulus nem változik, így megkaptuk a tételt

6. "Kis" Fermat-tétel

- o Tétel
 - ha p prím és $a \in \mathbb{Z}$, akkor $a^p \equiv a \ (p)$
- o Bizonyítás
 - ullet tétel állítása magától értetődő, ha p | a
 - ekkor $p|a^p$ is igaz $p|a \rightarrow a^p \equiv 0 \equiv a$ (p)
 - ha $p \nmid a \rightarrow (a, p) = 1$ is igaz
 - Euler-Fermat-tétel a-ra és p-re
 - $\varphi(p) = p 1$ miatt $a^{p-1} \equiv 1 \quad (p) \quad / \cdot a$ $a^p \equiv a \quad (p)$

[K26] megjegyzést írt: Mert p prím.

4. tétel:

Algoritmusok, nyilvános kulcsú titkosítás, RSA

<u>Tételcím</u>

Polinomiális futásidejű algoritmus (vázlatos) fogalma. Számelmélet és algoritmusok: alapműveletek, hatványozás az egészek körében és modulo m (ez utóbbi konkrét, megadott példán), ezek lépésszáma. Prímtesztelés, Carmichael számok. Nyilvános kulcsú titkosítás, megvalósítása RSA-kóddal.

1. Polinomiális futásidejű algoritmus

- o Definíció
 - az algoritmust polinomiális futásidejűnek tekintjük, ha n méretű bemenethez tartozó f(n) függvényre, mely az algoritmus lépésszámát határozza meg
 - minden n esetén fennáll:

 $f(n) \leq c \cdot n^k$

2. Számelméleti algoritmusok

- Összefoglaló (számelméleti algoritmusok hatékonysága)
 - bemenet méretét mindig a bemenetet adó számok összes számjegyének számával mérjük
 - algoritmus hatékony, ha:
 - n jegyű számokon max $c \cdot n$ vagy $c \cdot n^2$ vagy $c \cdot n^k$ lépést tesz meg

Alapműveletek

- összeadás feladata:
 - bemenet: $a, b \in \mathbb{Z}$
 - kimenet: a + b
 - · ezzel analóg a kivonás, szorzás

[K27] megjegyzést írt: c és k rögzített konstansok.

[K28] megjegyzést írt: Azonosítható a számok (pl. 10-es alapú) logaritmusával.

[K29] megjegyzést írt: Elméletben és többnyire gyakorlatban, gyakorlatban ezek többszáz jegyű számok, melyeket a példák kedvéért 2-3 jegyű számokon illusztrálják.

[K30] megjegyzést írt: Valamely fix k-ra.

- maradékos osztás feladata:
 - $\frac{a}{b}$ alsó egészrésze, jelölés: $\left|\frac{a}{b}\right|$
 - a-nak b szerint vett osztási maradéka, jelölése: a mod b
- már alsó tagozatból ismert "írásbeli" algoritmusok megfelelőek erre
- viszont, ha a és b jegyeinek száma k és l, akkor az algoritmusok lépésszáma a(z)...
 - írásbeli összeadás, kivonásnak: $c \cdot (k + l)$
 - szorzás, osztásnak: c · k · l
- -!n = k + l
 - összeadás, kivonás: $c \cdot n$
 - szorzás, osztás: $c \cdot n^2$
- tehát: polinomiális futásidejű → hatékony algoritmusok
- hatványozás feladat:
 - bemenet: $a, b \in \mathbb{Z}$
 - kimenet: a^b
- ennek már nem adható hatékony algoritmus, mert a kimenet kiírása is túl sok ideig tart
 - pl. a=2 esetében 2^b jegyeinek száma $\log_{10} 2^b = b \cdot \log_{10} 2 \ge \log_{10} 2 \cdot 10^{n-1} > 0.03 \cdot 10^n$
 - vagyis 2^b jegyeinek száma exponenciális függvénye b

o Hatványozás modulo m

- nyilvános kulcsú titkosításhoz alapvető
- kimenetet nem tudjuk kiszámítani a fentiek szerint, de annak adott
 m szerinti maradékát meg tudjuk határozni
- hatványozás feladat:
 - bemenet: $a, b, m \in \mathbb{Z}$
 - kimenet: a^b mod m vagyis a^b osztási maradéka m szerint
- kiírási probléma megoldva, mert a kimenet < m</p>
- a^b még mindig nem kiszámítható \rightarrow
- $a, a^2, ..., a^b m$ szerinti maradékokat sorra kiszámoljuk

[K31] megjegyzést írt: Maradékos osztásnál az alsó egészrész igazából egy lekerekítés, felső egészrésznél meg fel.

pl.: 12:5 = 2,4

12:5 = 2,4 ennek alsó egészrésze: 2, felső: 3

un Eact:

Jelölést Gauss vezette be az alsó egészrészre; a [x] és a [x] jelek Kenneth E. Iversontól származnak. A német nyelvben ma is használják a Gauß-Klammer nevet az alsó egészrészre.

[K32] megjegyzést írt: Valamilyen c konstansra

[K33] megjegyzést írt: Létezik ennél gyorsabb futásidejű algoritmus is, de ezeknél csak jóval nagyobb számok esetén sikerül futásidőt megtakarítani

[K34] megjegyzést írt: Ha b például 100 jegyű, akkor 2^b jegyeinek száma $3\cdot 10^{98}$ -nál több, így a kiírás még akkor is lehetetlen volna, ha a világegyetemben található minden protonra ráírhatnánk egy kimenet egy számjegyét.

[K35] megjegyzést irt: Előző maradék a-szorosának m szerinti maradékát vesszük.

- ullet ez az eljárás szintén használhatatlanul lassú: b-1 db ilyen lépést kell tenni, ez exponenciális lépésszámú algoritmus
- erre hatékony algoritmus: ismételt négyzetre emelések módszere
- példa: 13⁵³ maradéka 97-tel osztva

$$13^{1} \equiv 13 \quad (97)$$

$$13^{2} = 169 \equiv 72 \quad (97)$$

$$13^{4} = (13^{2})^{2} \equiv 72^{2} = 5184 \equiv 43 \quad (97)$$

$$\vdots$$

$$13^{32} = (13^{16})^{2} \equiv 36^{2} = 1296 \equiv 35 \quad (97)$$

- ezzel a módszerrel 13-nak a 2-hatvány kitevőjű hatványait tudjuk meghatározni
- a sort nem tudjuk tovább négyzetre emelni, így
- $13^{53} = 13^{1+4+16+32} = 13^1 \cdot 13^4 \cdot 13^{16} \cdot 13^{32}$
- részekre bontva:

$$13^5 = 13^1 \cdot 13^4 = 13 \cdot 43 = 559 \equiv 74$$
 (97)
 $13^{21} = 13^5 \cdot 13^{16} = 74 \cdot 36 = 2664 \equiv 45$ (97)
 $13^{53} = 13^{21} \cdot 13^{32} = 45 \cdot 35 = 1575 \equiv 23$ (97)

- végeredmény: $13^{53} \equiv 23$ (97)
- az algoritmus tehát meghatározza a^t maradékát m szerint minden $t \leq b$ 2-hatványra, vagyis $t = 2^k$ kitevőkre, ahol $k = 0, 1, \ldots, \lceil \log_2 b \rceil$
- az így kapott maradékokból áll elő a^b maradéka is
- tehát a maradékok kiszámítását érdemes párhuzamosan végezni a négyzetre emelésekkel, teljes leírása:

Ismételt négyzetre emelések módszere (a^b mod m kiszámítására)

- bemenet: a, b, m, (amelyekre teljesül, hogy $0 < a < m, b \ge 1$)
- 0. lépés
 - $c \leftarrow 1$
- 1. lépés
 - ha b páratlan, akkor: $c \leftarrow c \cdot a \mod m$
 - ha páros, akkor b változatlan marad

[K36] megjegyzést írt: Mindegyik sor az előző sor négyeztre emelésével keletkezik.

■ 2. lépés

•
$$b \leftarrow \left\lfloor \frac{b}{2} \right\rfloor$$

- 3. lépés
 - ha b=0, akkor: PRINT " $a^b \mod m =$ ",c; STOP
- 4. lépés
 - $a \leftarrow a^2 \mod m$
- folytassuk az 1. lépésnél
- o feladat újonnani végrehajtása ennek a módszernek a segítségével
- o a=13, b=53, m=97, k= ciklus hányadszorra hajtódott végre, c= végeredmény

\boldsymbol{k}	a	b	c
0	13	53	1
1	72	26	13
2	43	13	13
3	6	6	74
4	36	3	74
5	35	1	45
6	_	0	23

 sorra ugyanazok az értékek keletkeztek, mint amelyeket a korábbi számításban kaptunk

3. Prímtesztelés, Fermat-teszt

- $\circ\quad \text{bemenet: } m\in\mathbb{Z}$
- o 0. lépés
 - $k \leftarrow 1$
- o 1. lépés
 - ullet generáljunk véletlen számot 1 és m-1 között
- o 2. lépés
 - Euklideszi-algoritmussal számoljuk ki (a, m) értékét
 - ha $(a, m) \neq 1, m$ nem prím, STOP

3. lépés

- számítsuk ki a^{m-1} (mod m) értékét Ismételt négyzetre emelések módszerével
- ha \neq 1, m nem prím, STOP

o 4. lépés

• ha k=100, m valószínűleg prím

o 5. lépés

- $k \leftarrow k + 1$, vissza az 1. lépéshez
- o fenti eljárás más szavakkal, krimis stílusban:
 - a véletlen számokat sorban a tanúk padjára idézzük
 - a vallomása az $a^{m-1} \pmod{m}$ értéke
 - ha ez 1, akkor a nem közöl információt m prímségét illetően, ekkor a m cinkosa
 - ha ≠ 1, akkor a leleplezi m összetettségét, tehát a m árulója
 - nem szokás árulónak nevezni a-t, ha (a, m) > 1
 - ha találunk olyan 0 < a < m számot, melyre $(a, m) \neq 1$
 - ekkor az Eukleideszi algoritmus az m egy valódi osztóját megtalálja
 - így a további információkat ad ki m-ről, tehát a m leleplezője

4. Fermat-teszt árulók száma

o Tétel

• ha m>1 összetett szám és m-nek van árulója, akkor az 1 és m közötti, m-hez relatív prímszámoknak legalább a fele áruló

o Bizonyítás

- ullet ! a tetszőleges árulója m-nek, $c_1 \cdot \ldots \cdot c_k$ az m összes cinkosa
- mutassuk meg, hogy $a_i=(a\cdot c_i \ mod \ m),\ i=1,\dots,k$ számok páronként különböző árulói m-nek
- ebből következni fog, hogy az árulók száma legalább akkora, mint a cinkosok száma, amely ekvivalens a tétellel
- mivel (a, m) = 1 és $(c_i, m) = 1$ miatt $(a \cdot c_i, m) = 1$

[K37] megjegyzést írt: (a,m)=1 esetben, a vallomás csak is 1 és m közötti, m-hez relatív prím a-kra vonatkozik.

[K38] megjegyzést írt: $a^{m-1} \pmod{m} \equiv 1$

[K39] megjegyzést írt: és 1. tétel, Számelmélet alaptétel miatt.

- így (a 3. tétel, Euler-féle φ -függvény állítása szerint) $(a_i, m) = 1$ is igaz, mert $a_i \equiv a \cdot c_i$ (m)
- továbbá: $a_i \equiv a \cdot c_i \pmod{m-1}$ -edik hatványra emelve:

$$a^{m-1} \equiv (a \cdot c_i)^{m-1} = a^{m-1} \cdot c_i^{m-1} \equiv a^{m-1} \cdot 1 \not\equiv 1 \pmod{m}$$

- ebből következik, hogy a_i is áruló
- ${\color{red}\bullet}$ végül megmutatjuk, hogy az $a_1 \cdot a_2 \cdot \ldots \cdot a_k$ árulók páronként különbözők
- TFI $a_i = a_j$ valamely $1 \le i, j \le k, i \ne j$ esetén \rightarrow

$$a \cdot c_i \equiv a \cdot c_j \quad (m)$$
 /: a
 $c_i \equiv c_j \quad (m)$

ullet ez azonban $1 \leq i,j \leq k, i \neq j$ miatt ellentmondás, így beláttuk

5. Carmichael-számok

- o Definíció
 - az m > 1 összetett számot univerzális álprímnek más néven Carmichael-számnak nevezzük, ha nincs árulója
 - vagyis minden 1 < a < m, (a, m) = 1 esetén $a^{m-1} \equiv 1$ (m)

6. A nyilvános kulcsú titkosítás

- o generálunk 2 db 300 jegyű prímszámot: p, q
- o $N=p\cdot q o$ ha csak N-et ismerjük, nem fogjuk tudni megadni egy valódi osztóját
- o nyilvános kulcsú titkosítás alapfeladatát megoldó módszer
 - olyan $C, D: \{0, 1, ..., N-1\} \rightarrow \{0, 1, ..., N-1\}$ kölcsönösen egyértelmű függvényeket keresünk, melyek
 - minden $x \in \{0, 1, ..., N-1\}$ esetén D(C(x)) = x, vagyis C-D, egymás inverze
 - kód "tulajdonosa" C(x), D(x) értékét ki tudja számítani
 - C(x) kiszámítására vonatkozó eljárás nyilvánosságra hozható, D(x)-t nem lehet kiszámolni vele
- tehát N biztos sok számjegyű
- függvénypár birtokában a kód tulajdonosa biztonságosan tud üzenetet fogadni kódegyeztetés nélkül

[K40] megjegyzést írt: Felhasználtuk, hogy $c_i^{m-1} \equiv 1 \ (m)$, $a^{m-1} \not\equiv 1 \ (m)$, mert c_i cinkos és a áruló.

[K41] megjegyzést írt: Hiszen (a, m) = 1 miatt modulus nem változik.

[K42] megjegyzést írt: Ha kevés lenne, akkor x = 0, 1, ..., N-1 próbálgatással C(x)-ből megkapható x

- elküldi C függvényt kiszámító eljárást, partner pedig x üzenet helyett annak y=C(x) kódját küldi
- tulajdonos *D*-t (D(y) = D(C(x)) = x-el ki tudja számolni
- ha a két fél rendelkezik C, D függvénypárral, akkor a kommunikáció teljesen biztonságos
- RSA (Rivest-Shamir-Adleman) algoritmussal való megoldás a legszélesebb körű
- o (ehhez szükséges állítás:)
- Állítás
 - ! p, q különböző prímek és $N = p \cdot q$
 - ekkor tetszőleges x és $k \ge 1$ egészekre

$$x^{k \cdot \varphi(N) + 1} \equiv x \pmod{N}$$

o Bizonyítás

- ha (x, N) = 1, akkor az állítás következménye (a 3. tétel, Euler-Fermat tételnek): $x^{\varphi(N)} \equiv 1 \ (N) \ / ()^k, \cdot x \rightarrow$ állítást kapjuk
- ha $(x, N) \neq 1$, akkor p|x vagy q|x
- ha mindkettő teljesül, akkor N|x, így a bizonyítandó állítás $0\equiv 0$ (N), magától értetődő
- TFH p ∤ x vagy q ∤ x
- mivel p prím és $q \nmid x$, ezért $(x,p)=1, \varphi(p)=p-1$, Euler-Fermat tétel miatt

$$x^{p-1} \equiv 1 \quad (p) \qquad /()^{k \cdot (q-1)}, \quad x$$
$$x^{k \cdot \varphi(N)+1} \equiv x \quad (p)$$

- ugyanez a kongruencia modulo q és N is fennáll
- $p \left| x^{k \cdot \varphi(N) + 1} x \text{ \'es } q \left| x^{k \cdot \varphi(N) + 1} x \Rightarrow p \cdot q \left| x^{k \cdot \varphi(N) + 1} \right| x \right|$

7. RSA algoritmus

- ∘ előző $N = p \cdot q$ dolgozva, és legyen $c \in \mathbb{Z}$, amelyre: $(c, \varphi(N)) = 1$
- o tegyük közzé a C kódoló függvényünk

$$C: x \to x^c \mod N$$

- o kiszámolható ismételt négyzetre emelések módszerével
- o D keresése hasonló módon:

$$D: y \to y^d \mod N$$

[K43] megjegyzést írt: Ezen alapszik a https protokoll

[K44] megjegyzést írt: $p \mid x \mid q \nmid x$ bizonyítás ezzel analóg.

[K45] megjegyzést írt: $\varphi(N) = (p-1)(q-1)$

[K46] megjegyzést írt: N = csupa különböző prím szorzatára is megfelel ez a bizonyítás.

- \circ d-t úgy választjuk, hogy D C inverze legyen
- o ez akkor teljesül, ha D(C(x)) = x minden $0 \le x \le N 1$ esetén, ami

$$C(x) \equiv x^c \ (N) \rightarrow x^{c \cdot d} \equiv x \ (N)$$

- o a fent említett állítás miatt
 - D inverze lesz C-nek, ha d értékét sikerül úgy megválasztanunk, hogy $c \cdot d = k \cdot \varphi(N) + 1$ teljesül valamely $k \geq 1$ egészre
 - tehát a cél ezen kongruencia kielégítése
 - $c \cdot d \equiv 1 \ (\varphi(N))$
 - itt $c, \varphi(N)$ adottak, d-re egy lineáris kongruencia feladat, amely megoldható, de d kiszámítható Euklideszi algoritmussal is

[K47] megjegyzést írt: $D(C(x)) \equiv x^{c \cdot d}$ (N) miatt ekvivalens a második feltétellel.

[K48] megjegyzést írt: c választáskor előrelátóan teljesített és $\left(c,\varphi(N)\right)=1$ feltétel miatt.

ВАСК

5. tétel:

Térbeli koordinátageometria

<u>Tételcím</u>

Térbeli koordinátageometria: sík egyenlete, egyenes egyenletrendszerei. Skaláris szorzat fogalma és kiszámítása (bizonyítás nélkül); vektoriális szorzat fogalma és kiszámítása (bizonyítás nélkül). Adott térbeli vektorok lineáris függetlenségének, \mathbb{R}^3 -beli generátorrendszer voltának, illetve bázis voltának geometriai feltétele.

1. Térvektor tulajdonságok

o Tétel

• !
$$\underline{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$$
 és $\underline{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ térvektorok, $\lambda \in \mathbb{R}$

•
$$u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

•
$$u-v=(u_1-v_1,u_2-v_2,u_3-v_3)$$

•
$$\lambda \cdot \underline{u} = (\lambda \cdot u_1, \lambda \cdot u_2, \lambda \cdot u_3)$$

2. Skaláris szorzat

o Definíció

• \underline{u} és \underline{v} skaláris szorzatán az alábbit értjük:

•
$$\underline{u} \cdot \underline{v} = |u| \cdot |v| \cdot \cos \gamma$$

• ha $\gamma = k \cdot 90^{\circ}$, $k \in \mathbb{Z}$, akkor a szorzatösszeg 0

[K49] megjegyzést írt: $0^{\circ} \le \gamma \le 180^{\circ}$

3. Skaláris szorzat tétele

o Tétel

• !
$$\underline{u}=(u_1,u_2,u_3)\in\mathbb{R}^3$$
 és $\underline{v}=(v_1,v_2,v_3)\in\mathbb{R}^3$ térvektorok, ekkor:
$$u\cdot v=u_1\cdot v_1+u_2\cdot v_2+u_3\cdot v_3$$

4. Egyenes

- o Definíció
 - az e egyenes paraméteres egyenletrendszere (fenti Térvektor tulajdonságok tétel miatt)
 - $P_0(x_0, y_0, z_0)$ pont rajta van az egyenesen
 - $v = (a, b, c) \neq 0$ irányvektora

$$x = x_0 + \lambda \cdot a$$

$$y = y_0 + \lambda \cdot b$$

$$z = z_0 + \lambda \cdot c$$

$$\lambda \in \mathbb{R}$$

5. Egyenes tétele

- o Tétel
 - •! az e egyenesnek $P_0(x_0, y_0, z_0)$ pontja
 - $v = (a, b, c) \neq 0$ irányvektora
 - tetszőleges pontjának nem paraméteres alakja:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \quad a, b, c \neq 0$$
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} \quad \text{és } z = z_0 \quad c = 0$$

$$x = x_0 \ y = y_0 \quad a, b = 0$$

- o Bizonyítás
 - $P \in e$, akkor igaz, ha e paraméteres egyenletrendszerére $\lambda \in \mathbb{R}$ értékére P-t adja
 - ha $a,b,c \neq 0$, akkor a 3 egyenletből egy közös λ -ra kell jutnunk
 - ha c=0, akkor megfelelő λ létezése azt jelenti, hogy $z=z_0$ és az első 2 egyenletből közös λ értéket kell kapnunk
 - ha csak $c \neq 0$, akkor az első két egyenlet egyértelmű, míg a 3. egyenlet mindig kielégíthető a $\lambda = \frac{z-z_0}{c}$ választással

6. Sík tétele

- o Tétel
 - •! az adott S síknak $P_0(x_0, y_0, z_0)$
 - $n = (a, b, c) \neq 0$ normálvektora
 - ekkor $P(x, y, z) \in \mathbb{Z}$ akkor igaz, ha

$$a \cdot x + b \cdot y + c \cdot z = a \cdot x_0 + b \cdot y_0 + c \cdot z_0$$

- o Bizonyítás
 - $P \in e$, akkor igaz, ha $\overrightarrow{P_0P}||S$ -el
 - $\overrightarrow{P_0P}$ pedig akkor ||S-el, ha merőleges \underline{n} -el \rightarrow ez akkor teljesül, ha skaláris szorzatuk 0
 - tétel szerint:
 - $\overline{P_0P} \cdot \underline{n} = a(x x_0) + b(y y_0) + c(z z_0)$ $/\overline{P_0P} \cdot \underline{n} = 0$ beszorzás és átrendezés után megkapjuk a tételben kimondott egyenletet

7. Vektoriális szorzat

- o Definíció
 - \underline{u} és \underline{v} vektorok *vektoriális szorzat*a az az $\underline{u} \times \underline{v}$ -vel jelölt vektor, amelyre az alábbi feltételek fennállnak:
 - $u \times v$ hossza: $|u \times v| = |u| \cdot |v| \cdot siny$
 - $u \times v$ merőleges \underline{u} és \underline{v} -re
 - jobbsodrású rendszert alkotnak
 - ha valamelyik vektor <u>0</u>,akkor az eredmény is <u>0</u>

8. Vektoriális szorzat tétele

- o Tétel
 - ! $\underline{u} = (u_1, u_2, u_3)$ és $\underline{v} = (v_1, v_2, v_3)$ vektorok, ekkor $\underline{u} \times \underline{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$

9. Vegyesszorzat

- o Definíció
 - \underline{u} , \underline{v} , \underline{w} jelölt vektorok *vegyesszorzat*a $\underline{w} \cdot (\underline{u} \times \underline{v})$

10. Vegyesszorzat tétele

o Tétel

• a vegyesszorzat kapcsolata a térfogattal az \underline{u} , \underline{v} , \underline{w} által kifeszített paralelepipedon térfogata:

$$V = |\underline{u} \, \underline{v} \, \underline{w}|$$

o Bizonyítás

- lacktriangle térfogatot a paralelogramma T területének és m magasságának szorzatából kapjuk
- T terület egyenlő az $|\underline{u} \times \underline{v}|$ -vel
- m magasságot meg úgy kapjuk, hogy meghatározunk egy (tetszőlegesen megbetűzött) OMW háromszöget
 - O: origó
 - **M**: a W-ből az $u \times v$ -re állított merőleges talppontja
 - **W**: <u>w</u> végpontja
- Pitagorasz tétel \rightarrow OM= $m = \underline{w} \cdot cos\gamma$

BACK

6. tétel:

Alterek, lineáris függetlenség

<u>Tételcím</u>

 \mathbb{R}^n és \mathbb{R}^n alterének a fogalma. Lineáris kombináció, generált altér (és ennek altér volta), generátorrendszer. Lineáris függetlenség (ennek kétféle definíciója és ezek ekvivalenciája). Az "újonnan érkező vektor" lemmája. F-G egyenlőtlenség.

1. \mathbb{R}^n

- o Definíció
 - $n \geq 1$ esetén az n db valós számból álló számoszlopok halmazát \mathbb{R}^n jelöli
 - ezen értelmezett összeadás " + " és tetszőleges λ ∈ ℝ "·"
 skalárszorosát az alábbi alapján értelmezzük:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \text{ \'es } \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

2. \mathbb{R}^n tulajdonságok

- o Tétel
 - ! $u, v, w \in \mathbb{R}^n$ és $\lambda, \mu \in \mathbb{R}$, ekkor igazak az alábbiak:
 - $\underline{u} + \underline{v} = \underline{v} + \underline{u}$
 - $\bullet \quad (\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$
 - $\lambda \cdot (\underline{u} + \underline{v}) = \lambda \cdot \underline{u} + \lambda \cdot \underline{v}$
 - $\underline{v} \cdot (\lambda + \mu) = \underline{v} \cdot \lambda + \underline{v} \cdot \mu$
 - $\lambda \cdot (\mu \cdot \underline{v}) = (\lambda \cdot \mu) \cdot \underline{v}$

o Bizonyítás

 triviális, mert mindegyike azonnal következik a valós számok műveleti tulajdonságaiból [K50] megjegyzést írt: Kommutatív – felcserélhetőség.

[K51] megjegyzést írt: Asszociatív – felbonthatóság/csoportosíthatóság.

[K52] megjegyzést írt: Disztributív a vektorokra.

[K53] megjegyzést írt: Disztributív a skalárokra.

[K54] megjegyzést írt: Skalárszoros asszociatív.

3. \mathbb{R}^n altere

- o Definíció
 - $!V \subseteq \mathbb{R}^n \neq \emptyset$, tehát az \mathbb{R}^n tér egy nemüres *részhalmaz*a
 - *V*-t az *alteré*nek nevezzük, ha az alábbi két feltétel teljesül:
 - bármely $\underline{u}, \underline{v} \in V$ esetén $\underline{u} + \underline{v} \in V$ is igaz
 - bármely $\underline{u} \in V$, $\lambda \in \mathbb{R}$ esetén $\lambda \cdot \underline{u} \in V$ is igaz
- o Jelölés
 - $V \leq \mathbb{R}^n$

3. Lineáris kombináció

- o Definíció
 - ! \underline{v}_1 , ..., $\underline{v}_k \in \mathbb{R}^n$ vektorok és λ_1 , ..., $\lambda_k \in \mathbb{R}$ skalárok
 - $\lambda_1 \cdot \underline{v}_1 + \dots + \lambda_k \cdot \underline{v}_k$ vektort a $\underline{v}_1, \dots, \underline{v}_k$ vektorok $\lambda_1, \dots, \lambda_k$ skalárokkal vett *lineáris kombináció*ja

4. Generált altér

- o Definíció
 - ! $\underline{v}_1,\ldots,\underline{v}_k\in\mathbb{R}^n$ vektorok, ezeknek a lineáris kombinációival kifejezhető \mathbb{R}^n -beli vektorok halmazát $\underline{v}_1,\ldots,\underline{v}_k$ generált altérnek nevezzük
- o <u>Jelölés</u>
 - $\bullet \langle \underline{v}_1, \dots, \underline{v}_k \rangle$

5. Generátorrendszer

- o Definíció
 - ! $\underline{v}_1, ..., \underline{v}_k \in \mathbb{R}^n$ vektorok, ha $W = \langle \underline{v}_1, ..., \underline{v}_k \rangle$, akkor a $\underline{v}_1, ..., \underline{v}_k$ vektorhalmazt a W altér *generátorrendszer*ének nevezzük

6. Lineáris függetlenség, összefüggőség

- o Definíció
 - a $\underline{v}_1, \ldots, \underline{v}_k \in \mathbb{R}^n$ vektorrendszert akkor nevezzük *lineárisan független*nek, ha $\underline{v}_1, \ldots, \underline{v}_k$ vektorok közül semelyik sem fejezhető ki a többi lineáris kombinációjaként

• ha ez nem teljesül (*vagyis a* $\underline{v}_1, ..., \underline{v}_k$ *vektorok között legalább egy olyan, amely kifejezhető a többi lineáris kombinációjaként*), akkor a $\underline{v}_1, ..., \underline{v}_k$ vektorrendszert *lineárisan összefüggő*nek nevezzük

7. Triviális lineáris kombináció

o Tétel

• a $\underline{v}_1,\ldots,\underline{v}_k\in\mathbb{R}^n$ vektorrendszer akkor és csak akkor lineárisan független, ha $\lambda_1\cdot\underline{v}_1,\ldots,\lambda_k\cdot\underline{v}_k=\underline{0}$ egyenlőség kizárólag abban az esetben teljesül, ha $\lambda_1=\ldots=\lambda_k=0$ \rightarrow ezt nevezzük a triviális lineáris kombinációnak

o Bizonyítás

- ("akkor lineárisan független, ha…")
- TFH. $\lambda_1 \cdot \underline{v}_1$, ... , $\lambda_k \cdot \underline{v}_k = \underline{0}$ csak a triviális lineáris kombináció esetén teljesül
- belátjuk, hogy $\underline{v}_1, \dots, \underline{v}_k$ lineárisan független
- TFI.:
- feltesszük, hogy ez mégsem lineárisan független
- ha $\underline{v}_1, \dots, \underline{v}_k$ nem lineárisan független, akkor valamelyikük kifejezhető a többi lineáris kombinációjából: ! \underline{v}_1 , ekkor

$$\begin{array}{ll} \underline{v}_1 = \underline{\alpha}_2 \cdot \underline{v}_2 + \ldots + \underline{\alpha}_k \cdot \underline{v}_k & \underline{\alpha}_1, \ldots, \underline{\alpha}_k \in \mathbb{R} & \text{/átrendezve} \\ 1 \cdot \underline{v}_1 - \underline{\alpha}_2 \cdot \underline{v}_2 - \ldots - \underline{\alpha}_k \cdot \underline{v}_k = \underline{0} \end{array}$$

- ez ellentmondás \rightarrow nemtriviális lineáris kombináció esetén is teljesül ($\lambda_1=1,\lambda_2=-\alpha_2,\dots,\lambda_k=-\alpha_k$) \rightarrow igazolva
- ("csak akkor...")
- feltesszük, hogy $\underline{v}_1, \dots, \underline{v}_k$ lineárisan független és megmutatjuk, hogy ekkor $\lambda_1 \cdot \underline{v}_1, \dots, \lambda_k \cdot \underline{v}_k = \underline{0}$ csak a $\lambda_1 = \dots = \lambda_k = 0$ esetben teljesül
- TFI.:
- TFH. $\lambda_1\cdot\underline{v}_1,\dots,\lambda_k\cdot\underline{v}_k=\underline{0},$ de a lambdák között van nemnulla
 - pl.: $\lambda_1 \neq 0$

 ekkor átrendezés és λ₁ ≠ 0-val való osztás után a következő alakot kapjuk:

$$\underline{v}_1 = -\frac{\lambda_2}{\lambda_1} \cdot \underline{v}_2 - \dots - \frac{\lambda_k}{\lambda_1} \cdot \underline{v}_k$$

• ellentmondás, $\underline{v}_1, \dots, \underline{v}_k$ mégsem lineárisan független, mert \underline{v}_1 kifejezhető a többiből lineáris kombinációval

8. Újonnan érkező vektor lemmája (ÚÉVL)

o Tétel

- TFH. az f_1, \ldots, f_k rendszer lineárisan független, de $f_1, f_2, \ldots, f_k, f_{k+1}$ lineárisan összefüggő
- ekkora $f_{k+1} \in \langle f_1, \dots, f_k \rangle$, tehát f_{k+1} kifejezhető f_1, \dots, f_k lineáris kombinációjaként

o Bizonyítás

- lacktriangle mivel $f_1,\ldots,f_k,\;f_{k+1}$ lineárisan összefüggő, ezért lineáris függetlenség tétele alapján létezik nemtriviális lineáris kombináció, mely nullvektort adja végeredményül
- ha a $\lambda_1 \cdot f_1, \ldots, \lambda_k \cdot f_k$, $\lambda_{k+1} = \underline{0}$ egyenletben $\lambda_{k+1} = 0$ azt jelenti, hogy a maradék egyenlet így néz ki $\lambda_1 \cdot f_1 + \ldots + \lambda_k \cdot f_k = \underline{0}$ ÉS a $\lambda_1, \ldots, \lambda_k$ skalárok között van egy (vagy több) nemnulla tag
- ullet emiatt az eredeti f_1,\ldots,f_k rendszer lineárisan összefüggő ightarrow ellentmondás
- $\rightarrow \lambda_{k+1} \neq 0$, és az ezzel való osztás után kapott egyenletből következik, hogy f_{k+1} előállítható az f_1,\dots,f_k rendszer lineáris kombinációjaként
- $\bullet \to f_{k+1} \in \langle f_1, \dots, f_k \rangle$

9. F-G eqvenlőtlenséq

o Tétel

- ! $V \leq \mathbb{R}^n$ altér, $\underline{f_1}, \dots, \underline{f_k}$ V-beli vektorokból álló lineárisan független rendszer
- g_1, \dots, g_m pedig generátorrendszer V-ben $\to k \le m$

[K55] megjegyzést írt: Segédtétel.

Bizonyítás

- ha k=1, akkor V-ben van a nullvektortól különb vektor (mert $\underline{f_1} \neq 0$) \rightarrow minden generátorrendszer legalább 1 elemű (üres halmaz esetén 0 alteret generálja csak)
- tétel k = 1 esetén igaz
- TFH. $k \ge 2$ és már igaz k 1-re igaz \rightarrow belátni k-ra is
- mivel g_1, \dots, g_k generátorrendszer V-ben, ezért minden V-beli vektor $\to f_k$ is előáll ennek lineáris kombinációjaként:

$$\bullet \quad \underline{f_k} = \lambda_1 \cdot \underline{g_1}, \dots, \lambda_m \cdot \underline{g_m}$$

- ! $\lambda_m \neq 0, W = \langle g_1, \dots, g_k \rangle$
- megmutatjuk, hogy minden $1 \le j \le k-1$ esetén az $\underline{f_j}$ -hez található olyan α_j skalár, hogy $f_j + a_j \cdot \underline{f_k} \in W$
- f_j felírható $\underline{g_1}, \dots, \underline{g_k}$ lineáris kombinációjaként:

$$\underline{f_j} = \beta_1 \underline{g_1}, \dots, \beta_m \underline{g_m}$$

ullet ekkor $lpha_j=-rac{eta_m}{\lambda_m}$ megfelel:

$$\underline{f_j} + \alpha_j \cdot \underline{f_k} = \underline{g_1} \cdot \left(\beta_1 - \frac{\beta_m}{\lambda_m} \cdot \gamma_1\right) + \underline{g_2} \cdot \left(\beta_2 - \frac{\beta_m}{\lambda_m} \cdot \gamma_2\right) + \ldots + \underline{g_m} \cdot \left(\beta_m - \frac{\beta_m}{\lambda_m} \cdot \gamma_m\right)$$

- $\underline{g_m}$ együtthatója $\beta_m \frac{\beta_m}{\lambda_m} \cdot \gamma_m = 0$, így $\underline{f_j} + \alpha_j \cdot \underline{f_k}$ W-beli
- megmutatjuk, hogy $\underline{f_j} + \alpha_j \cdot \underline{f_k}$, $j=1,2,\dots,k-1$ vektorok lineárisan függetlenek
- vegyük egy $\underline{0}$ -t adó lineáris kombinációjukat a $\lambda_1, \lambda_2, \dots, \lambda_{k-1}$ skalárokkal

$$\lambda_1 \cdot \left(\underline{f_1} + \alpha_1 \cdot \underline{f_k} \right) + \lambda_2 \cdot \left(\underline{f_2} + \alpha_2 \cdot \underline{f_k} \right) + \dots + \lambda_{k-1} \cdot \left(\underline{f_{k-1}} + \alpha_{k-1} \cdot \underline{f_k} \right) = \underline{0}$$

$$\lambda_1 \cdot \underline{f_1} + \lambda_2 \cdot \underline{f_2} + \dots + \lambda_{k-1} \cdot \underline{f_{k-1}} + \underline{f_k} \cdot (\lambda_1 \cdot \underline{\alpha_1} + \lambda_1 \cdot \underline{\alpha_1} + \dots + \lambda_{k-1} \cdot \underline{\alpha_{k-1}} + \underline{0}$$

- \blacksquare ezzel az $\underline{f_1}, \dots, \underline{f_k}$ egy $\underline{0}$ -t adó lineáris kombinációját kaptuk
- tudjuk, hogy ezek lineárisan független → lineáris kombináció minden együtthatója 0 kell legyen

[K56] megjegyzést írt: Legyen.

[K57] megjegyzést írt: Mert felírható g_1, \dots, g_{m-1} lineáris kombinációjaként.

• vagyis $\lambda_1=\lambda_2=\ldots=\lambda_{k-1}=0 o \underline{f_j}+\alpha_j\cdot\underline{f_k}$ vektorok valóban lineárisan független

ВАСК

7. tétel: Bázis, dimenzió

<u>Tételcím</u>

Bázis és dimenzió fogalma, a dimenzió egyértelműsége. Standard bázis, \mathbb{R}^n dimenziója. Koordinátavektor fogalma és annak egyértelműsége. Bázis létezése \mathbb{R}^n tetszőleges altérben.

1. Bázis

- o Definíció
 - $!V \leq \mathbb{R}^n$ altér
 - V-beli vektorokból álló $\underline{b}_1,\dots,\underline{b}_k$ rendszert $b\acute{a}z\acute{s}$ nak nevezzük V-ben, ha
 - a rendszer lineárisan független
 - generátorrendszert alkot

2. Bázis egyértelműsége

- o Tétel
 - TFH. a $V \leq \mathbb{R}^n$ altérben a $\underline{b}_1, \dots, \underline{b}_k$ rendszer és a $\underline{c}_1, \dots, \underline{c}_m$ rendszer egyaránt bázisok $\to k = m$
- o Bizonyítás
 - mindkét rendszer bázis, ezért V-ben
 - $\underline{b}_1, \dots, \underline{b}_k$ lineárisan független
 - $\underline{c}_1, \dots, \underline{c}_m$ generátorrendszer
 - (6. tétel, F-G egyenlőtlenséget tétel miatt)

$$k \leq m$$

- ennek fordítottját is kimondhatjuk, így V-ben
 - $\underline{b}_1, \dots, \underline{b}_k$ generátorrendszer
 - $\underline{c}_1, \dots, \underline{c}_m$ lineárisan független
 - (ismét F-G miatt) $m \le k$

mivel egyszerre igazak, így k = m

3. Dimenzió

- o Definíció
 - $!V \leq \mathbb{R}^n$ altérben $\underline{b}_1, ..., \underline{b}_k$ rendszer bázis
 - ekkor V dimenziója k
- o Jelölés
 - $\dim V = k$

4. Standard bázis

- o Definíció
 - jelölje minden $1 \leq i \leq n$ esetén e_i azt az \mathbb{R}^n -beli vektort, melynek (felülről) az i-edik koordinátája 1, összes többi koordinátája 0 ekkor $\underline{e}_1,\dots,\underline{e}_n$ bázis az \mathbb{R}^n -ben \to ez a standard bázis
- o <u>Jelölés</u>
 - \bullet E_n
- o Bizonyítás
 - $\underline{e}_1,\ldots,\underline{e}_n$ lineáris kombinációja $\underline{\lambda}_1,\ldots,\underline{\lambda}_n$ skalárokkal

$$\lambda_1 \cdot \underline{e}_1 + \ldots + \lambda_n \cdot \underline{e}_n = \lambda_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \lambda_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

- látszik, hogy $\underline{e_1},\dots,\underline{e_n}$ generátorrendszer \mathbb{R}^n -ben, hiszen lineáris kombinációjukként tetszőleges vektor előállhat
- ha nullvektort akarjuk kifejezni, akkor csak a triviális lineáris kombináció esetén fog az előállni
- tehát a rendszer lineárisan független $\to \underline{e_1}, \dots, \underline{e_n}$ tényleg bázist alkot az \mathbb{R}^n -ben
- fenti állításból következik, hogy dim $\mathbb{R}^n=n$
- viszont \mathbb{R}^n csak az egyike az "n dimenziós tereknek" és minden $(n \leq m) \mathbb{R}^m$ -nek van n-dimenziós altere

5. Bázis tétele

- o Tétel
 - $V \leq \mathbb{R}^n$ altérben a $\underline{b}_1, \dots, \underline{b}_k$ vektorok akkor és csak akkor alkotnak bázist, ha minden $\underline{v} \in V$ egyértelműen, azaz pontosan egyféleképpen fejezhető ki lineáris kombinációjukként
- o Bizonyítás
 - ("csak akkor" alkotnak bázist... kifejtése)
 - akkor bázis, ha V-ben generátorrendszer és lineárisan független (bázis tételből)
 - ("akkor" ... kifejtése)
 - \blacksquare minden $\underline{v} \in \mathbb{R}$ kifejezhető $\underline{b}_1, \dots, \underline{b}_k$ lineáris kombinációjaként
 - TFI. valamely $\underline{v} \in V$ kétféleképpen kifejezhető:

$$\underline{v} = \lambda_1 \underline{b}_1 + \ldots + \lambda_k \underline{b}_k = \mu_1 \underline{b}_1 + \ldots + \mu_k \underline{b}_k$$
 és $\lambda_i \neq \mu_i$

kettő különbségét véve:

$$0 = b_1(\lambda_1 - \mu_1) + \ldots + b_k(\lambda_k - \mu_k)$$

tehát $\underline{0}$ kifejezhető a $\underline{b}_1,\dots,\underline{b}_k$ nemtriviális lineáris kombinációjaként, hiszen $(\lambda_i-\mu_i)\neq 0$, ez ellentmondás

6. Koordinátavektor

- o Definíció
 - ! $V \leq \mathbb{R}^n$, $B = \{\underline{b}_1, \dots, \underline{b}_k\}$ bázis V-ben, $\underline{v} \in V$ tetszőleges vektor
 - azt mondjuk, hogy $\underline{k} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} \in \mathbb{R}^k$ vektor a \underline{v} vektor B szerinti koordinátavektora, ha $\underline{v} = \lambda_1 \cdot \underline{b}_1 + \ldots + \lambda_k \cdot \underline{b}_k$
- o <u>Jelölés</u>
 - $k = [\underline{v}]_{R}$
 - $[\underline{v}]_{R}$ nem csak \underline{v} -től függ:
 - ugyanannak a vektornak más-más bázis esetén más-más koordinátavektorok felelnek meg

[K58] megjegyzést írt: Tegyük Fel Indirekten, hogy...

7. Bázis létezése tétele

o Tétel

- $!V \leq \mathbb{R}^n$ altér, f_1, \dots, f_k V-beli vektorokból álló lineárisan független rendszer
- $f_1, ..., f_k$ kiegészíthető véges sok további vektorral úgy, hogy a kapott rendszer bázis legyen

o Bizonyítás

- $\bullet ! W = \langle f_1, \dots, f_k \rangle$
- igaz, hogy $W \subseteq V$, mivel V altér
 - ha V=W, akkor f_1,\dots,f_k generátorrendszer, így bázis V-ben \rightarrow tétel belátva
 - ha $V \neq W$, akkor létezik egy $\underline{v} \in V$, $\underline{v} \notin V$ vektor
 - *újonnan érkező vektor lemmája* szerint ekkor $f_1, ..., f_k, \underline{v}$ lineárisan független
 - ha ez már generátorrendszer V-ben, akkor kész
 - különben be kell látni, hogy ez a folyamat leáll egy idő után → F-G egyenlőtlenség igénybevétele
 - ez alapján n-nél nagyobb elemszámú lineárisan független rendszer $\bowtie \mathbb{R}^n$ -ben, de létezik n elemű generátorrendszer ebben a térben
 - az eljárás tehát n-k lépés után biztos megáll
 - \rightarrow minden $V \leq \mathbb{R}^n$ altérben van bázis $\rightarrow \dim V$ létezik
- ha V = 0, akkor az üres halmaz bázis V-ben
- ha V tartalmaz egy $\underline{v} \neq \underline{0}$, akkor \underline{v} -re alkalmazva a fenti tételt kapunk egy V-beli bázist

[K59] megjegyzést írt: Ugyanis ezt már beláttuk egyszer.

ВАСК

8. tétel: Gauss-elimináció, RLA

<u>Tételcím</u>

Lineáris egyenletrendszer megoldása Gauss-eliminációval. Megoldhatóság, a megoldás egyértelműségének feltétele. Lépcsős alak és redukált lépcsős alak fogalma. Kapcsolat az egyenletek és ismeretlenek száma, illetve a megoldás egyértelműségé között.

1. Lineáris egyenletrendszer

- o Definíció
 - egy k egyenletből álló n változós röviden: (k × n)-es lineáris egyenletrendszer
 - kettős indexelésű együtthatók bevezetése: a_{i, i}
 - *i*-edik egyenletben a *j*-edik változó együtthatója minden:
 - $1 \le i \le k$
 - $1 \le j \le n$ esetén
 - b_i konstans tag
 - lineáris egyenletrendszer "hagyományos" alakja:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,n}x_n = b_k$$

• kibővített együtthatómátrixos alakja

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{k,1} & a_{k,2} & \dots & a_{k,n} & b_k \end{pmatrix}$$

- (fontos elméleti következmény:)
- TFH. adott egy *k* egyenletből álló, *n* ismeretlenes lineáris egyenletrendszer
- megoldhatóságával kapcsolatos következmények, ha csak k és n relációját ismerjük
 - nem igaz, hogy ha k = n, akkor biztosan van megoldás
 - nem igaz, hogy ha k < n, akkor biztosan végtelen sok megoldás van
 - nem igaz, hogy ha k > n, akkor biztosan nincs megoldás
 → ellenpélda lásd (lentebb): Lineáris rendszer megoldhatóság tétele

2. Elemi sorekvivalens lépések

- o Definíció
 - kibővített együtthatómátrixával adott lineáris egyenletrendszer esetén elemi sorekvivalens lépésnek nevezzük alábbiakat
 - $(1 \le i, j \le k, i \ne j \text{ és } \lambda \in \mathbb{R}, \lambda \ne 0 \text{ skalár esetén})$:
 - (1) a mátrix i-edik sorának (tagonként való) megszorzása λ -val
 - **(2)** a mátrix *i*-edik sorának helyettesítése sajátmagának és a *j*-edik sor λ-szorosának (tagonként vett) összegével
 - (3) az i-edik és j-edik sor felcserélése
 - (4) egy csupa nulla elemeket tartalmazó sor elhagyása

3. Gauss elimináció

- Állítás
 - előző definícióban felsorolt lépések ekvivalens átalakítások
 - → egyenletrendszer megoldásait nem változtatják meg
 - (részletesebben: ha az x_1, \ldots, x_n számok kielégítik az egyenletrendszert egy lépés megtétele előtt, akkor annak megtétele után is, és fordítva is)
- Bizonyítás
 - (csak a (2 lépésre bizonyítva...)
 - ha $x_1, ..., x_n$ kielégítik az egyenletrendszert, akkor:

$$a_{i,1} \cdot x_1 + \dots + a_{i,n} \cdot x_n = b_i$$

$$a_{j,1}\cdot x_1+\ldots+a_{j,n}\cdot x_n=b_j \qquad /\!\!\cdot \lambda, +\!\!\uparrow \text{ fentihez adva}$$

$$x_1\cdot \left(a_{i,1}+\lambda\cdot a_{j,1}\right)+\ldots+x_n\cdot \left(a_{i,n}+\lambda\cdot a_{j,n}\right)=b_i+\lambda\cdot b_j$$

- tehát az új i-edik egyenlet teljesül
- megfordítva: ha $x_1, ..., x_n$ megoldása a rendszernek a (2 lépés megtétele után, akkor a $b_i + \lambda \cdot b_i$ és b_i egyenletek igazak
- $b_i + \lambda \cdot b_i$ ebből kivonva λ -szorosát b_i egyenletét kapjuk
- tehát lépés megtétel előtt is teljesül

4. Lépcsős alak, redukált lépcsős alak

- o Definíció
 - egy kibővített együtthatómátrixával adott lineáris egyenletrendszert lépcsős alakúnak (LA) mondunk, ha az alábbiak teljesülnek:
 - a mátrix minden sorában van nemnulla elem és (balról) az első nemnulla elem egy 1-es, úgynevezett vezéregyes
 - (Vezéregyeseket nem tartalmazó oszlopok szabad paramétereknek felelnek meg. A sorok adják meg átrendezés után, hogy a többi változó hogyan fejezhető ki a szabad paraméterekből.)
 - ha 1 ≤ i, j ≤ k, akkor az i-edik sorban álló vezéregyes kisebb sorszámú oszlopban van, mint a j-edik sor vezéregyese
 - a vezéregyesekkel egy oszlopban, azok alatt álló minden elem 0
 - redukált lépcsős alakúnak (RLA) mondjuk a mátrixot, ha még az alábbi is teljesül:
 - vezéregyesekkel egy oszlopban, azok fölött álló minden elem 0

5. Gauss elemináció tétel

o Tétel

- tetszőleges, kibővített együtthatómátrixával adott lineáris egyenletrendszer esetén a Gauss-eleminációt futtatva az alábbi esetek közül pontosan az egyik valósul meg
 - az első fázis 3. lépésének végrehajtásakor az eljárás "tilos sort" talál → az egyenletrendszer nem megoldható
 - az algoritmus RLA-ra hozza a kibővített együtthatómátrixot, amelynek minden oszlopában van

- vezéregyes ightarrow az egyenletrendszer egyértelműen megoldható
- az algoritmus RLA-ra hozza a kibővített együtthatómátrixot, de annak nem minden oszlopában van vezéregyes → az egyenletrendszernek végtelensok megoldása van
- a második és harmadik esetben a megoldások a RLA-ból közvetlenül kiolvashatóak

6. Lineáris egyenletrendszer megoldhatóság

o Tétel

• ha egy k egyenletből álló, n ismeretlenes lineáris egyenletrendszer egyértelműen megoldható, akkor $k \geq n$

o Bizonyítás

- lefuttatjuk a Gauss-eliminációt az egyenletrendszerre
- megoldható (tehát nincs tilos sor), az algoritmus egy RLA-t hoz létre
- •! ebben a sorok száma: k'
- nyilván $k' \le k$, mert az algoritmus csökkentheti a sorok számát (első fázis 3. lépésben), de nem növelheti
- mivel az egyenletrendszer egyértelműen megoldható, ezért RLA minden oszlopa tartalmaz vezéregyest → k' = n
- ullet ezeket összevetve: $k \ge k' = n$, ezzel a tétel belátva

[K60] megjegyzést írt: Ebből következik, hogy...

ВАСК

9. tétel:

Determináns

<u>Tételcím</u>

Determináns definíciója, alaptulajdonságai, kiszámítása.

1. Determináns

- o Definíció
 - ! egy adott $(n \times n)$ A mátrix
 - minden *bástyaelhelyezés*re szorozzuk össze az azt alkotó *n* elemet
 - szorzathoz adjunk előjelet következő szabály szerint:
 - ha a bástyaelhelyezésnek megfelelő permutáció inverziószáma páros, akkor az előjel pozitív (+)
 - ha páratlan, akkor az előjel negatív (-)
 - az így kapott n! db, n tényezős szorzat összegét az A determinánsának nevezzük
- o Jelölés
 - |*A*| vagy det *A*

2. Determináns alaptulajdonságai (1)

- o Tétel
 - ! $A(n \times n)$ -es mátrix
 - ha annak van csupa 0 elemet tartalmazó sora vagy oszlopa, akkor idet A = 0
 - ha A felsőháromszög mátrix vagy alsóháromszög mátrix, akkor a determinánsa a főátlóbeli elemek szorzata:

$$\det A = a_{1,1} \cdot a_{2,2} \cdot \dots \cdot a_{n,n}$$

- o Bizonyítás
 - csupa 0 állítás azonnal következik a determináns definíciójából:
 - mivel mind az n! db szorzat tartalmaz elemet abból a sorból/oszlopból, amelyiknek minden tagja 0, ezért minden szorzat értéke és ezek összege is 0 lesz

[K61] megjegyzést írt: Akkor is $\det A = 0$, ha van két azonos sora: 1 3 2 1 4 6 9 2 det = 01 3 2 1 6 5 5 8 vagy egyik sor a másik sor számszorosa: 1 3 2 1 4 6 9 2 det = 02 6 4 2 6 5 5 8 , egyik sor a másik sorok lineáris kombinációja: $(1 \ 3 \ 2 \ 1)$ 1 1 3 2 det 4 6 9 2 = 02 0 5 0 Oszlopokra is igazak.

- (második állítás bizonyítása)
- vegyük A felsőháromszög-mátrixot
- a bástyaelhelyezések akkor nem tartalmaznak 0 elemet, ha az első oszlopból az első elemet, a második oszlopból a második elemet, választjuk ki (többit nem lehetne) és így tovább...
- a kapott permutáció inverziószáma 0, így pozitív előjelű ez a tag, és mivel ez az egyetlen tag, amiben nem szerepel 0, ezért ez lesz az előjeles összeg eredménye
- ezt megismételve (fent az oszlop és a sor szavak megcserélésével) megkapjuk ugyanezt a bizonyítást alsóháromszög-mátrixra is

3. Determináns alaptulajdonságai (2)

o Tétel

- ! $A(n \times n)$ -es mátrix, $\lambda \in \mathbb{R}$ skalár, $1 \le i, j \le n, i \ne j \in \mathbb{Z}$
- (1) ha A egy sorát megszorozzuk λ-val, akkor a kapott A' mátrix determinánsa λ-szorosa A-énak:

$$\det A' = \lambda \cdot \det A$$

• (2) ha A két sorát felcseréljük, akkor a kapott A' mátrix determinánsa ellentétje A-énak:

$$\det A' = (-1) \cdot \det A$$

(3) ha A i-edik sorát helyettesítjük sajátmagának és a j-edik sor λ-szorosának összegével, akkor a kapott A' mátrix determinánsa megegyezik A-éval:

$$\det A' = \det A$$

oszlopokra igaz ugyanez

o Bizonyítás (egy hosszú bizonyítás következik... készülj fel rá lelkileg)

- (1) TFH. A'-t az i-edik sor λ szorzásával kaptuk
- hasonlítsuk össze A és A' determinánsának definíció szerinti kiszámítását:
- mivel minden bástyaelhelyezés pontosan egy elemet tartalmaz az i-edik sorból, ezért az A kiszámítása közben keletkező szorzatok mindegyikében egy tényező a λ -szorosára változik, amikor $\det A'$ -t számítjuk
- maga a szorzat értéke is a λ-szoros lesz, előjel nem változik
- mindegyik összeadandó a λ-szorosára változik, ezért ezek (előjeles) összege, vagyis a determináns értéke is

[K65] megjeqyzést írt:

$$\det \begin{pmatrix} 1 & 3 & 2 & 1 \\ 1 & 0 & 2 & 4 \\ 4 & 3 & 0 & 7 \\ 6 & 5 & 5 & 8 \end{pmatrix} = -\det \begin{pmatrix} 4 & 3 & 0 & 7 \\ 1 & 0 & 2 & 4 \\ 1 & 3 & 2 & 1 \\ 6 & 5 & 5 & 8 \end{pmatrix}$$

[K67] megjegyzést írt: Az azt meghatározó bástyaelhelyezés ugyanaz.

- bizonyítás érvényes a j-edik oszlopra is
- (2) példán keresztüli bemutatása:

$$A = \begin{pmatrix} 2 & 3 & 4 & \boxed{5} & 6 \\ 7 & \boxed{8} & 9 & 10 & 11 \\ \boxed{12} & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & \boxed{21} \\ 22 & 23 & \boxed{24} & 25 & 26 \end{pmatrix} \qquad A' = \begin{pmatrix} 2 & 3 & 4 & \boxed{5} & 6 \\ 7 & \boxed{8} & 9 & 10 & 11 \\ 22 & 23 & \boxed{24} & 25 & 26 \\ 17 & 18 & 19 & 20 & \boxed{21} \\ \boxed{12} & 13 & 14 & 15 & 16 \end{pmatrix}$$

- a 3. és az 5. sor felcserélésével kaptuk A'-t
- A-ban bekeretezett rész a bástyaelhelyezés
- ennek megfelelő permutáció π = (4, 2, 1, 5, 3), ennek inverziószáma 5 → keletkező szorzat negatív előjelet kap
- A' kiszámításánál ugyanez, különbség a tényezők sorrendjében, és a bástyaelhelyezésben
- $\pi' = (4, 2, 3, 5, 1)$, ekkor inverziószám már 6, előjel pozitív
- π -ből $\pi_3=1$ és $\pi_5=3$ felcserélésével kapjuk π'
- ugyanígy A és A'
- tehát: bástyaelhelyezés szorzatok sorrendtől eltekintve azonosak, előjelük ellentétes
- oszlopcserénél lényegében azonos
- (3) lemmával/segédtétellel bizonyítjuk:

Determináns alaptulajdonságai lemma

o Tétel

- TFH. az $(n \times n)$ -es X,Y,Z mátrixok az i-edik soraiktól eltekintve elemről elemre megegyeznek
- i-edik soraikra viszont fennáll, hogy $z_{i,j} = x_{i,j} + y_{i,j}$ minden $1 \le j \le n$ esetén
- a Z i-edik sora épp az X és az Y i-edik sorának (tagonkénti) összege
- ekkor $\det Z = \det X + \det Y$
- az állítás érvényes oszlopokra is

[K68] megjegyzést írt: π -ből nem π_i és π_j , hanem i és j felcserélésével kapjuk π' .

Lemma bizonyítása

- vegyünk egy tetszőleges bástyaelhelyezést Z-ben
- feleljen meg a π permutációinak, ebből keletkező szorzat tehát:

$$(-1)^{I(\pi)} \cdot z_{1,\pi_1} \cdot \ldots \cdot z_{i,\pi_i} \cdot \ldots \cdot z_{n,\pi_n}$$

 \blacksquare a $z_{i,\pi_i} = x_{i,\pi_i} + y_{i,\pi_i}$ behelyettesítéssel:

$$(-1)^{I(\pi)} \cdot z_{1,\pi_1} \cdot \ldots \cdot (x_{i,\pi_i} + y_{i,\pi_i}) \cdot \ldots \cdot z_{n,\,\pi_n}$$

• felbontva a zárójelet, és felhasználva, hogy minden $k \neq i$ esetén $z_{k,\pi_k} = x_{k,\pi_k} = y_{k,\pi_k}$:

$$\begin{array}{c} (-1)^{I(\pi)} \cdot x_{1,\pi_1} \cdot \ldots \cdot x_{i,\pi_i} \cdot \ldots \cdot x_{n,\,\pi_n} + (-1)^{I(\pi)} \cdot y_{1,\pi_1} \cdot \ldots \cdot y_{i,\pi_i} \cdot \ldots \cdot y_{n,\,\pi_n} \\ + (-1)^{I(\pi)} \cdot z_{1,\pi_1} \cdot \ldots \cdot z_{i,\pi_i} \cdot \ldots \cdot z_{n,\,\pi_n} \end{array}$$

- mivel minden bástyaelhelyezésre összegezve definíció szerint det Z és (det X + det Y)-t kapjuk, a lemmát belátva
- (oszlopok esetén bizonyítás lényegében azonos)

o Bizonyítás

- (3) folytatás...
- lemma alkalmazható az A' mátrixra, hiszen abban az i-edik sor minden eleme egy kéttagú összeg:
- $a'_{i,k} = a_{i,k} + \lambda \cdot a_{j,k}$ minden k-ra
- lemmát alkalmazva: Z = A', X = A, és Y pedig az a mátrix, amely az i-edik sorától eltekintve azonos A-val
- az i-edik sorában pedig az A j-edik sorának λ -szorosa áll: $y_{i,k} = \lambda \cdot a_{j,k}$
- lemmát ezekre alkalmazva: $\det A' = \det A + \det Y$
- már csak det Y = 0 bizonyítása kell
- Y i-edik sorára alkalmazható a tétel (már bebizonyított) (1 állítás:
- ha Y' jelöli azt a mátrixot, amely az i-edik sorától eltekintve azonos Y-nal (és így A-val), az i-edik sorában pedig az A j-edik sorának másolata áll
 - vagyis $y'_{i,k} = a_{j,k}$ minden k-ra, akkor (1-ből $\det Y = \lambda \cdot \det Y$ következik

[K69] megjegyzést írt: Mindjárt vége, mély levegő..

- Y'-re pedig a tétel (2 állítását alkalmazzuk:
- ha Y'-ben felcseréljük az i-edik és j-edik sort, akkor a determináns az ellentétjére változik, és változatlan is marad (hiszen Y'-n a sorcsere "nem látszik", annak i-edik és j-edik sora azonos)
- $\rightarrow \det Y' = -(\det Y') \rightarrow \det Y = 0$, tétel bizonyítva
- $\det Y = \lambda \cdot \det Y' \to \det Y = 0 \to \det A' = \det A + \det Y \to \det A' = \det A$
- oszlopokra ismét változtatás nélkül elmondható

4. Determináns kiszámolása - Gauss eliminációval

- o Bemenet: $(n \times n)$ es A mátrix
- o 0. lépés
 - $i \leftarrow 1, D \leftarrow 1$
- o 1. lépés
 - ha $a_{i,j}=0$, akkor folytassuk a **2. lépés**nél
 - lacktriangledown szorozzuk meg $i\text{-edik sort}\,rac{1}{a_{i,j}}\text{-vel}$
 - D \leftarrow D \cdot $a_{i,i}$
 - ha i = n, akkor PRINT " detA = ", D; STOP
 - minden i < t ≤ n esetén adjuk a t-edik sorhoz az i-edik sor $(-a_{t,i})$ -szeresét
 - \bullet i ← i + 1
- o 2. lépés
 - ha i < n, és van olyan $i < t \le k$, melyre $a_{t,i} \ne 0$, akkor:
 - cseréljük fel az i-edik sort a t-edikkel
 - $D \leftarrow (-1) \cdot D$
 - folytassuk az 1. lépésnél
 - PRINT " detA = 0"; STOP

6. Sarrus-szabály, speciális

o csak (3 × 3)- as mátrixoknál működik

[K70] megjegyzést írt: Többi állításban is az oszlopos verziókat kell használni.

[K71] megjegyzést írt:

Hozzuk felső háromszög alakra, és adjuk meg $\begin{bmatrix} 1 & -1 & -2 & 1 \ 2 & 1 & 1 & 0 \ -1 & -2 & 0 & 1 \ 3 & -2 & 2 & -1 \end{bmatrix}$ értékétl

ВАСК

10. tétel: Kifejtési tétel, mátrix

<u>Tételcím</u>

A determinánsok kifejtési tétele (bizonyítás nélkül). Műveletek mátrixokkal (összeadás, skalárral szorzás, transzponálás), ezek tulajdonságai. A transzponált determinánsa. Determinánsok szorzástétele (bizonyítás nélkül).

1. Kifejtési tétel

o Tétel

- az (n x n)-es A mátrix valamelyik sorának vagy oszlopának minden elemét megszorozzuk a hozzá tartozó előjeles aldetermináns értékével
- lack a a kapott n db kéttényezős szorzatot összeadjuk o A determináns értékét kapjuk

2. Mátrix

o Definíció

- adott egy $k,n \ge 1$ -es egészek esetén $(k \times n)$ -es mátrixnak nevezzük egy k sorból, és n oszlopból álló táblázatot
- minden cellájában valós szám áll
- $(k \times n)$ -es mátrixok halmazát $\mathbb{R}^{k \times n}$ jelöli
- lacktriangle A mátrix i-edik sorának és j-edik oszlopának kereszteződésében álló elemet $a_{i,j}$ jelöli
- $\mathbb{R}^{k \times n}$ -en értelmezett, " + "-al jelölt összeadást és tetszőleges $\lambda \in \mathbb{R}$ esetén " · "-tal jelölt skalárral való szorzást tudjuk értelmezni

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \dots & a_{k,n} \end{pmatrix} + \begin{pmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k,1} & b_{k,2} & \dots & b_{k,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \dots & a_{1,n} + b_{1,n} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \dots & a_{2,n} + b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} + b_{k,1} & a_{k,2} + b_{k,2} & \dots & a_{k,n} + b_{k,n} \end{pmatrix},$$

$$\lambda \cdot \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \dots & a_{k,n} \end{pmatrix} = \begin{pmatrix} \lambda a_{1,1} & \lambda a_{1,2} & \dots & \lambda a_{1,n} \\ \lambda a_{2,1} & \lambda a_{2,2} & \dots & \lambda a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{k,1} & \lambda a_{k,2} & \dots & \lambda a_{k,n} \end{pmatrix}$$

3. Mátrixműveletek

- o Tétel
 - ! $A, B, C \in \mathbb{R}^{k \times n}$ és $\lambda, \mu \in \mathbb{R}$
 - ekkor igazak az alábbiak:
 - (1) A | + B = B + |A|
 - (2) (A + B) + C = A + (B + C)
 - (3) $|\lambda| \cdot |(A+B) = \lambda \cdot A + \lambda \cdot B$
 - (4) $A \cdot (\lambda + \mu) = A \cdot \lambda + A \cdot \mu$
 - **(5)** $\lambda \cdot (\mu \cdot A) = (\lambda \cdot \mu) \cdot A$

4. Transzponált

- o Definíció
 - egy $(k \times n)$ -es A mátrixának nevezzük az $(n \times k)$ -as B mátrixot, ha $b_{i,j} = a_{j,i}$ teljesül minden $1 \le i \le n$ és $1 \le j \le k$ esetén
- Jelölés
 - $\bullet B = A^T$

5. Mátrixszorzás

- o Definíció
 - a $(k \times n)$ -es A $(n \times m)$ -es B mátrixok szorzatának nevezzük

[K73] megjegyzést írt: Kommutatív - felcserélhetőség

[K74] megjegyzést írt: Asszociatív – felbonthatóság/csoportosíthatóság

[K75] megjegyzést írt: Szorzásra nem kommutatív!!

[K76] megjegyzést írt: Hasonló igazak: Mátrixszorzás az összeadásra nézve disztributív $A \cdot (B + C) = A \cdot B + A \cdot C$ $(B + C) \cdot A = B \cdot A + C \cdot A$ Mátrixszorzás asszociatív $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

K771 medicavzést írt:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 7 \\ 4 & 9 & 2 \\ 6 & 0 & 5 \end{bmatrix}, \ A^T = \begin{bmatrix} 1 & 1 & 4 & 6 \\ 2 & 2 & 9 & 0 \\ 3 & 7 & 2 & 5 \end{bmatrix}$$

• $A\cdot B$ -vel jelöljük azt a $(k\times m)$ -es C mátrixot, melyre minden $1\le i\le k$ és $1\le j\le m$ esetén

$$c_{i,j} = a_{i,1} \cdot b_{1,j} + \ldots + a_{i,n} \cdot b_{n,j}$$

- Állítás
 - ha az A és B mátrixokra $A \cdot B$ szorzat létezik, akkor $B^T \cdot A^T$ is létezik és $(A \cdot B)^T = B^T \cdot A^T$

6. Transzponált determinánsa

- o Tétel
 - minden négyzetes mátrixra $\det A^T = \det A$
- o Bizonyítás
 - (példán mutatjuk be, felhasználva a 9. tételben látott mátrixokat:)

$$A = \begin{pmatrix} 2 & 3 & 4 & \boxed{5} & 6 \\ 7 & \boxed{8} & 9 & 10 & 11 \\ \boxed{12} & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & \boxed{21} \\ 22 & 23 & \boxed{24} & 25 & 26 \end{pmatrix}, A^{T} = B = \begin{pmatrix} 2 & 7 & \boxed{12} & 17 & 22 \\ 3 & \boxed{8} & 13 & 18 & 23 \\ 4 & 9 & 14 & 19 & \boxed{24} \\ \boxed{5} & 10 & 15 & 20 & 25 \\ 6 & 11 & 16 & \boxed{21} & 26 \end{pmatrix}$$

- A^T determinánsának definíció szerinti kiszámításakor is megjelenik ez a szorzat
- itt a megfelelő permutáció $\pi'=(3,2,5,1,4)$, amelynek az inverziószáma "véletlenül" szintén 5, előjel marad negatív
- ! A tetszőleges $(n \times n)$ -es mátrix és $B = A^T$
- bizonyítjuk, hogy det A és det B kiszámításakor ugyanazok a szorzatok keletkeznek, ugyanolyan előjellel
- $!\pi = (\pi_1, \pi_2, ..., \pi_n)$ tetszőleges permutáció
- ennek $\det A$ kiszámításakor $(-1)^{I(\pi)} \cdot a_{1,\pi_1} \cdot a_{2,\pi_2} \cdot \ldots \cdot a_{n,\pi_n}$ előjelezett szorzat felel meg
- mivel $a_{i,j}=b_{j,i}$ minden $1\leq i$ és $j\leq n$ esetén, ezért ugyanez a szorzat (egyelőre előjeltől eltekintve) megjelenik B-ben is $b_{\pi_1,1}\cdot b_{\pi_2,2}\cdot\ldots\cdot b_{\pi_n,n}$ alakban
- ezért ! π' permutáció, amiben az 1 és a π_1 -edik helyen, a 2 és a π_2 -edik helyen stb. az n és a π_n -edik helyen áll
- ekkor π'-t π inverzének hívjuk

[K78] megjegyzést írt: Melyekről tudjuk, hogy permutáció $\pi=(4,2,1,5,3)$, inverziószám 5, szorzat negatív előjelet kap.

- ugyanis π permutációt olyan kölcsönösen egyértelmű függvénynek fogjuk fel, amely az 1, 2, ..., n számokhoz rendre π₁, π₂, ..., π_n értékeket rendel
- függvénytani értelemben $\pi \pi'$ inverze, és π' is permutáció
- B elemeiből készített szorozat $b_{1,\pi'_1} \cdot b_{2,\pi'_2} \cdot \ldots \cdot b_{n,\pi'_n}$ alakban írható fel, így $I(\pi')$ előjelet kapja
- meg kell mutatni, hogy $I(\pi) = I(\pi')$ igaz minden π permutációra és annak a π' inverzére
- ! π permutációban $\pi_i=k$, $\pi_j=m$, ekkor a π' inverz permutációban $\pi'_k=i$ és $\pi'_m=j$
- k és m tagok π -ben definíció szerint akkor állnak inverzióban, ha i < j, de m < k
- definíció szerint ez azt jelenti, hogy π' -ben az i,j tagok állnak inverzióban, hiszen m < k, de $\pi'_m = j > i = \pi'_k$
- összefoglalva:
 - π-ben π_i, π_j, akkor és csak akkor állnak inverzióban, ha π'-ben i, j állnak inverzióban
- így π -ben inverzióban álló elempárok kölcsönösen egyértelműen megfeleltethetők a π' -ben inverzióban álló elempároknak
- $\rightarrow I(\pi) = I(\pi')$ valóban következik

7. Determinánsok szorzástétele

- o Tétel
 - ullet bármely A és B (n imes n)-es mátrixokra:

$$\det(A \cdot B) = \det A \cdot \det B$$

[K79] megjegyzést írt: És hogy minden permutáció inverze egyértelműen létezik, valamint π' inverze π Vica versa dolog...

[K80] megjegyzést írt: ezt a fenti példán illusztrálva: π -ben a $\pi_1=4,\pi_3=1$ tagok inverzióban állank, ennek megfelelően π' -ben az 1 és 3 állnak inverzióban.

11. tétel:

Lineáris egyenletrendszer megoldhatósága

<u>Tételcím</u>

 $(n \times n)$ -es lineáris egyenletrendszer egyértelmű megoldhatóságának jellemzése a determináns segítségével. Kapcsolat a lineáris egyenletrendszerek, az \mathbb{R}^n -beli generált altérhez tartozás kérdése, illetve a mátrixszorzáson alapuló mátrixegyenletek között. Kapcsolat négyzetes mátrix determinánsa, illetve a sorok és az oszlopok lineáris függetlensége között.

1. Lineáris egyenletrendszer megoldhatósága

o Tétel

- !(A|b) egy n változós, n egyenletből álló lineáris egyenletrendszer kibővített együtthatómátrixa
- az egyenletrendszer akkor és csak akkor egyértelműen megoldható, ha det A ≠ 0

o Bizonyítás

- futtassuk (A|b)-re Gauss-eliminációt
- az algoritmus által megtett sorekvivalens lépések az együtthatómátrix determinánsát megváltoztatják ugyan, de annak nulla/ nemnulla mivoltán nem változtatnak
- Gauss-elimináció az alábbi három lehetőség valamelyikével ér véget:
 - · tilos sor: egyenletrendszer nem megoldható
 - egyenletrendszernek végtelen sok megoldása van:
 - kevesebb sor, mint oszlop (és fordítva), mivel eredetileg A (n × n)-es volt
 - → az első fázis 3. lépésében keletkeznie kellett csupa 0 sornak, emiatt det A eredetileg is 0
 - · egyenletrendszer megoldása egyértelmű:
 - RLA, determinánsa 1
 - főátlóban csupa 1

[K81] megjegyzést írt: A tehát csak a változók együtthatóit tartalmazza, <u>b</u> az egyenletek jobb oldalaiból áll

- mindenhol máshol 0
- → mivel determináns végül nem 0, ezért eredetileg sem volt 0

2. \mathbb{R}^k -n ekvivalens állítások

o Tétel

- ! $\underline{a_1}, \dots, \underline{a_n}, \underline{b} \in \mathbb{R}^k$ vektorok és A az $\underline{a_i}$ -k egyesítésével keletkező $(k \times n)$ -es A mátrix
- az alábbi állítások ekvivalensek:
 - (1) megoldható $A \cdot \underline{x} = \underline{b}$ "mátrixegyenlet"
 - (2) megoldható az $(A|\underline{b})$ kibővített együtthatómátrixú lineáris egyenletrendszer
 - (3) $\underline{b} \in \langle a_1, \dots, a_n \rangle$

o Bizonyítás

- (2) és (3) állítás ekvivalens
- (3) állítás teljesülése azt jelenti, hogy létezik a $\lambda_1\underline{a}_1+\ldots+\lambda_n\underline{a}_n=\underline{b}$ lineáris kombináció
- vektor i-edik koordinátája minden $1 \le i \le k$ esetén $a_{i,1}\lambda_1 + \ldots + a_{i,n}\lambda_n = b_i$
- tehát az alsó és a felső egyenlet ekvivalens, és ezzel $(A|\underline{b})$ lineáris egyenletrendszert kapjuk
- (1) és (2) ekvivalenciájához azt kell észrevennünk, hogy \underline{x} csak \mathbb{R}^n -beli oszlopvektor lehet
- \underline{x} j-edik koordinátája minden $1 \leq j \leq n$ esetén x_j -vel jelölve az $A \cdot \underline{x}$ szorzat i-edik koordinátája a mátrixszorzás definíciója szerint $a_{i,1}x_1+\ldots+a_{i,n}x_n$
- ezért $A \cdot \underline{x} = \underline{b}$ azzal ekvivalens, hogy $a_{i,1}x_1 + \ldots + a_{i,n}x_n = b_i$ teljesül minden $1 \le i \le k$ esetén \to ismét $(A|\underline{b})$ lineáris egyenletrendszert kapjuk

[K82] megjegyzést írt: Mert n sora van, ha $A \cdot \underline{x}$, másrészt 1 oszlopa van, ha $A \cdot \underline{x}$ 1 oszlopú

o Következmény:

- ! $\underline{a_1}, \dots, \underline{a_n} \in \mathbb{R}^k$ vektorok és A az $\underline{a_i}$ -k egyesítésével keletkező $(k \times n)$ -es A mátrix
- az alábbi állítások ekvivalensek:
 - $A \cdot \underline{x} = 0$ lineáris egyenletrendszernek az egyetlen megoldása $\underline{x} = \underline{0}$
 - $\underline{a_1}, \dots, \underline{a_n}$ vektorok lineárisan függetlenek

Bizonyítás

- $\underline{a_1},\ldots,\underline{a_n}$ akkor és csak akkor lineárisan független, ha $\overline{\lambda_1}\underline{a_1},\ldots,\lambda_n\underline{a_n}=\underline{0}$, triviális lineáris kombináció esetén
 - vagyis: $\lambda_1 = \ldots = \lambda_n = 0$
- ez ekvivalens azzal, hogy $A\cdot \underline{x}=\underline{0}$ lineáris egyenletnek egyetlen megoldása az, hogy minden változó értéke 0

3. Sor/oszlopvektor lineáris függetlenség

o Tétel

- ! $A(n \times n)$ -es mátrix
- az alábbi állítások ekvivalensek:
 - (1) A oszlopai, mint \mathbb{R}^n -beli vektorok, lineárisan függetlenek
 - **(2)** $\det A \neq 0$
 - **(3)** *A* sorai, mint *n* hosszú sorvektorok lineárisan függetlenek

o Bizonyítás

- (1) állítás az előző következmény miatt azzal ekvivalens, hogy az
 (A|b) kibővített együtthatómátrixú lineáris egyenletrendszer
 egyértelműen megoldható
- mivel A négyzetes mátrix, ezért a lineáris egyenletrendszer megoldhatósága tétel szerint, akkor és csak akkor teljesül, ha det A ≠ 0 ((1) és (2) állítás bizonyítva)
- (2) és (3) állítás közötti ekvivalenciához A transzponáltjára alkalmazzuk az (1) és (2) állítás közötti, már bizonyított ekvivalenciát

- mivel A^T oszlopai megegyeznek A soraival, és fordítva, ezért A sorai akkor és csak akkor lineárisan függetlenek, ha $\det A^T \neq 0$
- lacktriangledown azonban transzponált-determináns tétel miatt $\det A = \det A^T$, ezért ez valóban ekvivalens $\det A
 eq 0$ feltétellel

BACK

12. tétel: Mátrix inverze, rangja

<u>Tételcím</u>

Mátrix inverze, létezésének szükséges és elégséges feltétele, az inverz kiszámítása. Mátrix rangja, rangfogalmak egyenlősége, rang meghatározása.

1. Inverz mátrix

- o Definíció
 - egy (n x n)-es A mátrix inverzének nevezzük az (n x n)-es X mátrixot, ha teljesül:

$$A \cdot X = E = X \cdot A$$

- o Jelölés
 - $X = A^{-1}$

2. Inverz mátrix létezése

- o Tétel
 - A (n × n)-es mátrixnak akkor és csak akkor létezik inverze, ha det A ≠ 0
 - ha A⁻¹ létezik, akkor az egyértelmű
- o Bizonyítás
 - TFH. $X = A^{-1}$ létezik
 - megmutatjuk, hogy $\det A \neq 0$
 - definíció szerint $A \cdot X = E$ egyenlet mindkét oldalának determinánsát véve: $\det(A \cdot X) = \det E$, ahol
 - $\det E = 1$
 - alkalmazzuk szorzástételt: $\det A \cdot \det X = 1 \rightarrow \det A \neq 0$

[K83] megjegyzést írt: A mátrix inverzének a kiszámításánál nem számít a szorzatok sorrendje, mindkét esetben, tehát $A \cdot A^{-1} = A^{-1} \cdot A = 1$. Ez kizárólag csak négyzetes, azaz $(n \times n)$ -es mátrixokra igaz.

3. Inverz mátrix létezés lemmája

o Tétel

■ ha $A \in \mathbb{R}^{n \times n}$ és $\det A \neq 0$, akkor egyértelműen létezik $X \in \mathbb{R}^{n \times n}$ mátrix, hogy $A \cdot X = E$

o Bizonyítás

• fenti szorzás ekvivalens, mátrixszorzás szerint a következővel:

$$A \cdot \underline{x}_1 = \underline{e}_1$$

$$A \cdot \underline{x}_2 = \underline{e}_2$$

$$\vdots$$

$$A \cdot \underline{x}_n = \underline{e}_n$$

- az $A \cdot \underline{x}_i = \underline{e}_i$ lineáris egyenletrendszer, amely úgy jelölhető, hogy $(A|e_i)$
- mivel $\det A \neq 0$, ezért ez az egyenletrendszer egyértelműen megoldható
- beláttuk a lemmát: a keresett X i-edik oszlopa a $A \cdot \underline{x}_i = \underline{e}_i$ rendszer egyértelmű megoldása minden $1 \le i \le n$ esetén

o Inverz kiszámítása Gauss-eliminációval

- egymás mellé felírjuk az (n × n)-es A mátrixot, valamint az (n × n)-es egységmátrixot
- lefuttatjuk a Gauss-eliminációt az A-n, úgy, hogy sorekvivalens lépéseket megismételjük, az E-n is
- addig folytatjuk a Gauss-eliminációt, amíg az A RLA-ban nem lesz
- ekkor az $E' = A^{-1}$

4. Négyzetes részmátrix

o Definíció

- •! $A(n \times n)$ -es mátrix és $r \leq k, n \in \mathbb{Z}$
- válasszuk ki tetszőlegesen A sorai és oszlopai közül r- r db
- ekkor kiválasztott sorok és oszlopok kereszteződéseiben kialakuló (r × r)-es mátrixot A egy négyzetes részmátrixának nevezzük

5. Rang (1)

- o Definíció
 - ■! A tetszőleges mátrix, azt mondjuk, hogy
 - A oszloprangja r, ha A oszlopai közül kiválasztható r db úgy, hogy a kiválasztott oszlopok lineárisan függetlenek, de r+1 már nem válaszható ki így
 - A sorrangja r, ha A sorai közül kiválasztható r db úgy, hogy a kiválasztott sorok lineárisan függetlenek, de r+1 már nem válaszható ki így
 - A determinánsrangja r, ha A-nak van nemnulla determinánsú (r x r)-es részmátrixa, de (r + 1 x r + 1)es nemnulla determinánsú már nincs

6. Rangfogalmak egyenlősége

- o Tétel
 - minden A mátrixra o(A) = s(A) = d(A)
- Bizonyítás
 - elég belátni, hogy o(A) = d(A) igaz minden A mátrixra
 - mivel A^T oszlopai megegyeznek A soraival, ezért $s(A) = o(A^T)$, valamint $d(A) = d(A^T)$
 - ullet mivel az A^T -ből válaszható négyzetes részmátrixok az A-ból választhatók transzponáltjai
 - legnagyobb nemnulla determinánsú is ugyanazon méretű
 - ha az o(A) = d(A) állítást minden mátrixra, így A^T -ra is igaznak feltételezzük, akkor összesítve az $s(A) = o(A^T) = d(A^T) = d(A) = o(A)$ egyenlőséget kapjuk
 - csak o(A) = d(A)-t kell bizonyítani:
 - ullet először megmutatjuk, hogy $1{:}\,o(A)\geq d(A)$, majd, hogy $2{:}\,o(A)\leq d(A)$
 - **1**:TFH. d(A) = r
 - meg kell mutatnunk, hogy $o(A) \ge r$, vagyis, hogy A oszlopai közül kiválasztható r db lineárisan független
 - A-ból d(A) = r miatt kiválasztható egy $(r \times r)$ -es nemnulla determinánsú M részmátrix

- ullet ! A_M A-nak abból az r oszlopából álló mátrixa, amelyeket az M készítésekor választunk ki
- ekkor tehát M sorai A_M sorainak részhalmaza, és A_M oszlopairól állítjuk, hogy lineárisan függetlenek
 - ha nem így volna, akkor (*a 11-es tételben levő következmény miatt*) $A_{\it M} \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszernek volna egy $x * \neq 0$ megoldása
 - ekkor azonban \underline{x} * megoldása volna az $M \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszernek is, hiszen az utóbbi rendszert az előbbiből kapjuk
 - tehát M oszlopai lineárisan összefüggők volnának, ami a sorvektor lineáris függetlenség tétele miatt (előző tétel) ellentmondana annak, hogy det M ≠ 0
 - így $o(A) \ge d(A)$ valóban igaz
- 2: ezt lemmával bizonyítjuk

Mátrix oszlopok lineáris függetlenség lemmája

o Tétel

- ! $C(k \times n)$ -es mátrix, amelynek az oszlopai (mint \mathbb{R}^k -beli vektorok) lineárisan függetlenek
- ha k>n, akkor $\mathcal C$ sorai közül kiválasztható egy úgy, hogy ezt a sort elhagyva a kapott $(k-1)\times n$ -es $\mathcal C'$ mátrix oszlopai szintén lineárisan függetlenek

Bizonyítás

- ! C oszlopai $\underline{c_1}, \dots, \underline{c_n}$, az ezek által generált \mathbb{R}^k -beli altért $W = \langle \underline{c_1}, \dots, \underline{c_n} \rangle$
- lacktriangle mivel W-ben van n elemű generátorrendszer, és k>n F-G egyenlőtlenség miatt nem lehet benne k elemű lineárisan független rendszer
- $\blacksquare \mathbb{R}^k$ -beli standard bázis vektorai között van olyan, amelyik nem tartozik W-hez
- ! \underline{e}_i ilyen, állítjuk, hogy C j-edik sora teljesíti a lemma feltételeit:
 - az elhagyásával a kapott C' mátrix oszlopai lineárisan függetlenek
- TFI nem így van

[K85] megjegyzést írt: M-hez nem tartozó A_M -beli soroknak megfelelő egyenleteket elhagyjuk

[K86] megjegyzést írt: Amelyben tehát az 1-es a j-edik helyen áll.

- $C' \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszernek van egy $\underline{x} * \neq \underline{0}$ megoldása
- ekkor $C' \cdot \underline{x} * \neq \underline{0}$, mert C oszlopai lineárisan függetlenek
- mivel C · <u>x</u> * szorzat abban különbözik C' · <u>x</u> *-től, hogy az utóbbiba a *j*-edik helyre "beszúródik" a C *j*-edik sorának és a x *-nak a skaláris szorzata
- ezért C · <u>x</u> * oszlopvektor *j*-edik koordinátája egy α ≠ 0
 szám, többi 0
- következik, hogy $C \cdot \left(\frac{1}{\alpha} \cdot \underline{x} *\right) = \frac{1}{\alpha} \cdot \left(C \cdot \underline{x} *\right) = \underline{e}_j$
- ez ellentmond annak, hogy $e_i \notin W$
 - viszont ez ellentmond a 11.tétel Mátrixszorzás tételének
- mely szerint a C oszlopainak az $\left(\frac{1}{\alpha} \cdot \underline{x} *\right)$ kombinációja épp e_i -t adja vissza, lemma bizonyítva
- 2: bizonyítás folytatása:
- ! o(A) = r és válasszunk A oszlopai közül r lineárisan függetlent \rightarrow alkossák ezek C mátrixot
- mutassuk meg, hogy $d(A) \ge r$
- C, A sorainak számát k-val jelölve C oszlopai \mathbb{R}^k -beli vektorok, így az F-G egyenlőtlenség miatt $k \geq n$
- k>r, akkor a fenti lemmát $\mathcal C$ -re alkalmazva kapjuk a $(k-1)\times r$ es $\mathcal C'$ mátrixot, amelynek az oszlopai továbbra is lineárisan függetlenek
- ha k-1>r, akkor ismét alkalmazhatjuk a lemmát \mathcal{C}' -re és ezt folytathatjuk egészen amíg k-r lépés után egy $(r\times r)$ -es \mathcal{C} * mátrixot kapunk
- (11. tétel Sorvektor lineáris függetlenség tétel miatt) det C * ≠ 0
- mivel C* az A-nak $(r \times r)$ -es részmátrixa, ezért ez bizonyítja $d(A) \ge r$, és a tételt is

7. Rang (2)

- o Definíció
 - az A mátrix rangjának nevezzük az o(A), s(A), d(A) közös értékét

[K87] megjegyzést írt: Hiszen \mathbb{R}^k -ban van k elemű generátorrendszer: bármely bázis ilyen.

[K88] megjegyzést írt: Mert C * oszlopai lineárisan függetlenek.

- o Jelölés
 - r(A)

8. Rang kiszámolása (1)

o Tétel

- ! $A(k \times n)$ -es mátrix és az oszlopai legyenek $\underline{a}_1, \dots, \underline{a}_n$
- ekkor $r(A) = \dim \langle \underline{a}_1, \dots, \underline{a}_n \rangle$

o Bizonyítás

- ${\ }^{\blacksquare}$ válasszuk ki A oszlopai közül a legtöbbet úgy, hogy ezek lineárisan függetlenek legyenek
- oszloprang definíció szerint ekkor r = r(A)
- állítjuk, hogy $\underline{a}_1, \dots, \underline{a}_n$ bázist alkot a $W = \dim(\underline{a}_1, \dots, \underline{a}_n)$ altérben
- be kell látni, hogy $\underline{a}_1, \dots, \underline{a}_n$ generátorrendszer W-ben
- ! $U = \langle \underline{a}_1, \dots, \underline{a}_n \rangle$, lássuk be, hogy U = W
- $r < i \le n$ esetén $\underline{a_1}, \ldots, \underline{a_n}$ lineárisan összefüggő, mivel A-ból r+1 lineárisan független oszlopot nem lehet kiválasztani
- az Újonnan érkező vektor lemmája szerint ekkor $\underline{a}_i \in \langle \underline{a}_1, \dots, \underline{a}_n \rangle = U$, tehát $\underline{a}_1, \dots, \underline{a}_n$ mind U-beli
- mivel U altér, ezért minden W-beli, tehát $\underline{a}_1, \dots, \underline{a}_n$ vektorokból lineáris kombinációval kifejezhető vektor is U-beli kell, hogy legyen
- bizonyítottuk, hogy $W \subseteq U$

9. Rang kiszámolása (2)

o Tétel

- az elemi sorekvivalens lépések a mátrix rangját nem változtatják meg
- a LA mátrix sorainak a száma egyenlő a mátrix rangjával

o Bizonyítás

- (elemi sorekvivalens lépések bizonyítása)
- válasszunk ki A oszlopai közül tetszőleges néhányat, ezek együtt az A'
- A' oszlopai az előző tétel Következménye miatt akkor és csak akkor lineárisan független, ha az $A' \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszernek az egyetlen megoldása $\underline{x} = \underline{0}$

- amikor A-ra alkalmazzuk valamelyik elemi sorekvivalens lépést, akkor ugyanezt alkalmazzuk az $(A'|\underline{0})$ kibővített együtthatómátrixra is
- egyrészt A' sorai az A sorainak részei, másrészt, ha a jobb oldalakon csupa 0 áll, akkor ezt a tulajdonságot mindegyik elemi sorekvivalens lépés fenntartja
- azonban $(A'|\underline{0})$ -n végzett lépések az $A' \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszer megoldásait nem változtatják meg
- → A-n végzett elemi sorekvivalens lépések nem változtatnak azon, hogy A' oszlopai lineárisan függetlenek-e
- így A oszlopai közül kiválasztható legnagyobb lineárisan független rendszer mérete, vagyis az oszloprang se változik
- (LA mátrix sorainak száma egyenlő a... bizonyítás)
- ha a LA mátrix sorainak száma k, akkor A-ból az összes sor és a vezéregyeseket tartalmazó oszlopok kiválasztásával keletkező M négyzetes részmátrix egy felsőháromszög-mátrix
- ennek főátlójában minden elem 1 (vezéregyesek)
- így det M = 1 ≠ 0 vagyis A-nak van (k × k)-as, nemnulla determinánsú négyzetes részmátrixa
- ennél nagyobb nyilván nincs, mert A-nak csak k sora van
- tehát determináns rangja valóban k

[K89] megjegyzést írt: Így az A teljes sorain végzett lépés A'-re is azonos hatással van.

[K90] megjegyzést írt: Ezt mondja ki a Gausseliminációs állítás a 8. tételben, és épp ezért lettek ezek a Gauss-elimináció megengedett lépései.

[K91] megjegyzést írt: A'-n is.

BACK

13. tétel:

Lineáris leképzés, transzformáció

<u>Tételcím</u>

Lineáris leképzés fogalma, mátrixa. Szükséges és elégséges feltétel egy függvény lineáris leképzés voltára. Lineáris leképzések szorzata, szorzat mátrixa. Következmény: addíciós tételek a sinus és cosinus függvényekre. Lineáris transzformáció invertálhatósága.

1. Lineáris leképzés

- o Definíció
 - $f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképzésnek hívjuk, ha
 - létezik olyan $(k \times n)$ -es mátrix, melyre $f(\underline{x}) = A \cdot \underline{x}$ minden $x \in \mathbb{R}^n$
 - n = k esetben f-et lineáris transzformációnak is nevezzük
 - ha : $\mathbb{R}^n \to \mathbb{R}^k$ leképzésnek és $f(\underline{x}) = A \cdot \underline{x}$ minden $\underline{x} \in \mathbb{R}^n$ -re, akkor mátrixa A
- Jelölés
 - A = [f] (3. állítás jelölése)

2. Lineáris leképzés feltétele

- o Tétel
 - $f: \mathbb{R}^n \to \mathbb{R}^k$ függvény akkor és csak akkor lineáris leképzés, ha:
 - (1) $f(\underline{x} + \underline{y}) = f(\underline{x}) + f(\underline{y})$ igaz minden $x, y \in \mathbb{R}^n$
 - (2) $f(\lambda \cdot \underline{x}) = \lambda \cdot f(\underline{x})$ igaz minden $x \in \mathbb{R}^n$ és $\lambda \in \mathbb{R}$ esetén
 - ha f teljesíti ezt a 2 tulajdonságot, akkor:
 - [f] egyértelmű
 - és azonos azzal a $(k \times n)$ -es mátrixszal, melynek minden $1 \le i \le n$ esetén az i-edik oszlopa $f(e_i)$

[K92] megjegyzést írt: Itt $\underline{e_i}$ az \mathbb{R}^n -beli standard bázis vektora.

Bizonyítás

- (szükségesség belátása)
- ullet TFH. f lineáris leképzés és A=[f]
- (10. tétel, Mátrixműveletek tétel, Megjegyzések: mátrixszorzás összeadásra nézve disztributivitás miatt:)

$$f\left(\underline{x} + \underline{y}\right) = A\left(\underline{x} + \underline{y}\right) = A\underline{x} + A\underline{y} = f\left(\underline{x}\right) + f\left(\underline{y}\right)$$

 (10. tétel, Mátrixműveletek tétel, Megjegyzések: mátrixszorzás asszociativitás miatt:)

$$f(\lambda \cdot x) = A(\lambda \cdot x) = \lambda(A \cdot x) = \lambda \cdot f(x)$$

- (egyértelműség belátása)
- ! f-nek A egyik mátrixa, a_i : A-nak i-edik oszlopa minden i-re
- (10. tétel, Mátrixszorzás definíció miatt:)

$$A \cdot e_i = a_i$$

- ebből A = [f] miatt: $f(\underline{e_i}) = A \cdot \underline{e_i} = \underline{a_i}$, amely bizonyítja [f] egyértelműségét
 - [f] csak az a mátrix lehet, amelynek i-edik oszlopa $f(\underline{e_i})$, vagyis csak A
- (elégségesség bizonyítása)
- ha az első 2 tulajdonság teljesül, akkor f lineáris leképzés
- mutassunk olyan mátrixot, amelyre: $f(x) = A \cdot x$ minden $x \in \mathbb{R}^n$
- A mátrix *i*-edik oszlopa $f(\underline{e_i})$ minden *i*-re, jelölje a_i
- ekkor: $f(\underline{x}) = A \cdot \underline{x}$ teljesül $\underline{x} = \underline{e}_i$ vektorokra
- belátjuk, hogy (1) n tagú összegekre is teljesül

$$f(\underline{v}_1 + \dots + \underline{v}_n) = f(\underline{v}_1) + f(\underline{v}_2 + \dots + \underline{v}_n) = f(\underline{v}_1) + f(\underline{v}_2) + f(\underline{v}_3 + \dots + \underline{v}_n)$$

= $f(\underline{v}_1) + f(\underline{v}_2) + \dots + f(\underline{v}_n)$

- vagyis (n-1)x egymás után alkalmazva az (1)
- ! $x \in \mathbb{R}^n$ tetszőleges *i*-edik koordinátáját jelölje: x_i , ekkor:

$$\underline{x} = x_1 \cdot \underline{e_1} + \dots + \underline{x_n} \cdot \underline{e_n}$$

$$f(\underline{x}) = f(x_1 \cdot \underline{e_1} + \dots + x_n \cdot \underline{e_n}) =$$

$$= f(x_1 \cdot \underline{e_1}) + \dots + f(x_n \cdot \underline{e_n}) =$$

$$= x_1 \cdot f(e_1) + \dots + x_n \cdot f(e_n) =$$

[K93] megjegyzést írt: Fenti bekezdés segít.

[K94] megjegyzést írt: Be kell látni, hogy minden más x-re is.

[K95] megjegyzést írt: Lásd 7. tétel, Standard bázis definíció bizonyítás.

$$= f(\underline{e}_n) = (x_1 \cdot \underline{a}_1 + \dots + x_n \cdot \underline{a}_n)$$
$$= A \cdot x$$

3. Lineáris leképzés szorzata

- o Tétel
 - •! $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^m$ lineáris leképzések
 - ezeknek a $g \circ f$ szorzata is lineáris leképzés, melyre $[g \circ f] = [g]$
- o Bizonyítás
 - •! [f] = A, minden $\underline{x} \in \mathbb{R}^n$ -re, $f(\underline{x}) = A \cdot \underline{x}$
 - [g] = B, minden $y \in \mathbb{R}^k$ -re, $f(y) = B \cdot y$
 - alkalmazzuk a $g \circ f$ függvényt tetszőleges $x \in \mathbb{R}^n$ -re

$$(g \circ f) \cdot (\underline{x}) = g \cdot (f(\underline{x})) = g \cdot (A \cdot \underline{x}) = B \cdot (A \cdot \underline{x}) = (B \cdot A) \cdot \underline{x}$$
• tehát $B \cdot A = [g] \cdot [f]$

4. Addíciós tételek

- o Tétel
 - ullet tetszőleges lpha és eta szögekre teljesülnek az alábbi összefüggések
 - $\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$
 - $\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta \sin \alpha \cdot \sin \beta$
- o Bizonyítás
 - ! $f: \mathbb{R}^2 \to \mathbb{R}^2$ a síkban az origó körüli α, β szöggel való elforgatás
 - ezek lineáris leképzések
 - alkalmazzuk a fenti Lineáris leképzés szorzata tételt
 - igaz, hogy $f_{\alpha}\circ f_{\beta}=f_{\alpha+\beta}$ az origó körüli $\alpha+\beta$ szögű elforgatással
 - hiszen egy tetszőleges v-t először β , majd α szöggel elforgatva ugyanazt kapjuk, mintha $\alpha + \beta$ szöggel forgattuk volna
 - f_{α} , f_{β} és $f_{\alpha+\beta}$ lineáris transzformációk mátrixa kiolvasható az állításból, ezekre lineáris leképzés szorzata fennáll:

$$[f_{\alpha+\beta}] = [f_{\alpha}] \cdot [f_{\beta}]$$

[K96] megjegyzést írt: Egy állításból tudjuk, hogy! $f: \mathbb{R}^2 \to \mathbb{R}^2$ az a függvény, minden $\underline{v} \in \mathbb{R}$ síkvektorban annak az origó körüli α szöggel való elforgatottját rendeli, ekkor f α lineáris transzformáció, melynek mátrixa $[f\alpha] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$

[K97] megjegyzést írt: Előbbi megjegyzésben leírva

$$\begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} = [f_{\beta}]$$

$$[f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} = [f_{\alpha + \beta}]$$

5. Lineáris transzformáció invertálhatósága

- o Tétel
 - $f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris transzformáció akkor és csak akkor invertálható, ha $\det[f] \neq 0$
 - ha ez a feltétel fennáll, akkor $[f^{-1}] = [f]^{-1}$, vagyis az f^{-1} inverz transzformáció mátrixa az f mátrixnak az inverze
- o Bizonyítás
 - ![f] = A, vagyis $f(\underline{x}) = A \cdot \underline{x}$ minden $\underline{x} \in \mathbb{R}^n$
 - (szükségesség bizonyítása)
 - ha f invertálható, akkor $\det A \neq 0$
 - TFI det *A* = 0, ekkor (*8. tétel, Lineáris egyenletrendszer megoldhatósága tétel miatt) A* oszlopai lineárisan összefüggők, ellentmond annak, hogy *f* invertálható
 - (elégségesség bizonyítása)
 - ha $\det A \neq 0$, akkor f invertálható
 - mivel $\det A \neq 0$, ezért (12. tétel, Inverz mátrix tétel miatt) létezik A^{-1} inverz mátrix
 - tetszőleges $\underline{x} \in \mathbb{R}^n$ esetén $f(\underline{x}) = y$ azt jelenti, hogy

$$\underline{y} = A \cdot \underline{x} / A^{-1}$$

$$A^{-1} \cdot \underline{y} = A^{-1} \cdot (A \cdot \underline{x}) = (A^{-1} \cdot A) \cdot \underline{x} = \underline{E} \cdot \underline{x} = \underline{x}$$

• tehát $y \to A^{-1} \cdot y$ függvény azonos az f inverzével

[K98] megjegyzést írt: $(n \times n)$ -es egységmátrix.

[K99] megjegyzést írt: Beláttuk tehát, hogy létezik f^{-1} , másrészt, hogy $[f^{-1}] = A = [f]^{-1}$.

BACK

14. tétel: Magtér, képtér

<u>Tételcím</u>

Lineáris leképzések magtere, képtere, ezek altér volta. Dimenziótétel.

Magtér, képtér

- o Definíció
 - $!f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképzés
 - f magtere:
 - jelölés: Ker f
 - azon \mathbb{R}^n -beli vektorok halmazát (V_1), melyeknek a képe az \mathbb{R}^k -beli 0

$$Ker f = \{\underline{x} \in \mathbb{R}^n : f(\underline{x}) = \underline{0}\}$$

- f képtere:
 - jelölés: Im f
 - azon \mathbb{R}^k -beli vektorok halmazát (V_2) , melyek megkaphatók (legalább) 1 alkalmas \mathbb{R}^n -beli vektor f-fel vett képeként

$$Im \, f = \{ y \in \mathbb{R}^k \colon \exists \, \underline{x} \in \mathbb{R}^n, f(\underline{x}) = y \}$$

2. Mag - és képtér altér volta

- o Tétel
 - $!f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképzés, ekkor
 - $Ker f \leq \mathbb{R}^n$, vagyis Ker f altér \mathbb{R}^n -ben
 - $Im f \leq \mathbb{R}^k$, vagyis Im f altér \mathbb{R}^k -ban
- o Bizonyítás
 - (Ker f bizonyítása)
 - (6. tétel, \mathbb{R}^n alterei definíció miatt) meg kell mutatnunk, hogy bármely $\underline{x}_1,\underline{x}_2 \in Ker\ f$ és $\lambda \in \mathbb{R}$ esetén
 - $\underline{x}_1 + \underline{x}_2$, $\lambda \cdot \underline{x}_1 \in Ker f$ teljesülnek

- ha $\underline{x}_1, \underline{x}_2 \in Ker f$, akkor $f(\underline{x}_1) = \underline{0}$ és $f(\underline{x}_2) = \underline{0}$
- (13. tétel, Lineáris leképzés feltétele tétel tulajdonság (1) miatt) $f(x_1 + x_2) = f(x_1) + f(x_2) = 0 + 0 = 0 \rightarrow x_1 + x_2 \in Ker f$
- (13. tétel, Lineáris leképzés feltétele tétel tulajdonság (2) miatt)

$$f(\lambda \cdot \underline{x}_1) = \lambda \cdot \underline{0} = \underline{0} \to \lambda \in Ker f$$

- $Ker\ f$ nem lehet üres, hiszen $\underline{0} \in Ker\ f$ definíció szerint mindig igaz
- (Im f bizonyítása)
- ha [f]=A, akkor $Im\ f$ definíció szerint azokból az $\underline{y}\in\mathbb{R}^k$ vektorokból áll, melyek kifejezhetők $A\cdot\underline{x}=y$ alakban
- (11. tétel, Mátrixszorzás tétel szerint) ez ekvivalens $\underline{y} \in \langle \underline{a}_1, \dots, \underline{a}_n \rangle$, ahol A oszlopait \underline{a}_i -k jelölik
- $Im f(\underline{a_1}, ..., \underline{a_n})$ generált altér

3. Dimenziótétel

o Tétel

• ha $f: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképzés, akkor $\dim Ker f + \dim Im f = \dim V_1$

o Bizonyítás

- ! $\dim Ker f = m$, válasszunk egy tetszőleges bázist Ker f-ben, $\underline{b}_1, \dots, \underline{b}_m$, amely lineárisan független
- (7. tétel, Bázis létezése tétel szerint) ez a rendszer kiegészíthető \mathbb{R}^n egy bázisává
- mivel $\dim \mathbb{R}^n=n$, kellenek további n-m vektor szükséges: $\underline{c}_1,\dots,\underline{c}_{n-m}$
- megmutatjuk, hogy $f(\underline{c_1}), \dots, f(\underline{c_{n-m}})$ rendszer bázis $Im\ f$ -ben \to dim $Im\ f=n-m$
- lássuk be: $f(\underline{c_1}), ..., f(\underline{c_{n-m}})$ generátorrendszer Im f-ben
- ! $y \in Imf$ tetszőleges, ekkor $y = f(\underline{x})$ valamely $\underline{x} \in \mathbb{R}^n$
- mivel $\underline{b}_1,\dots,\underline{b}_m,\underline{c}_1,\dots,\underline{c}_{n-m}$ generátorrendszer \mathbb{R}^n -ben, ezért \underline{x} kifejezhető lineáris kombinációjukként

$$\underline{x} = \beta_1 \underline{b}_1 + \dots + \beta_m \underline{b}_m + \gamma_1 \underline{c}_1 + \dots + \gamma_{n-m} \underline{c}_{n-m}$$
 / f

[K101] megjegyzést írt: A képtér és a magtér dimenziója összesen éppen kiadja a V_1 dimenzióját

[K102] megjegyzést írt: 7. tétel, Bázis létezése következmény miatt.

[K103] megjegyzést írt: Kihasználjuk f lineáris leképzés tételbeli tulajdonságát.

$$\underline{y} = f(\underline{x}) = f(\beta_1 \underline{b}_1 + \dots + \beta_m \underline{b}_m + \gamma_1 \underline{c}_1 + \dots + \gamma_{n-m} \underline{c}_{n-m})$$

$$= f(\beta_1 \underline{b}_1) + \dots + f(\beta_m \underline{b}_m) + f(\gamma_1 \underline{c}_1) + \dots + f(\gamma_{n-m} \underline{c}_{n-m})$$

$$= \beta_1 f(\underline{b}_1) + \dots + \beta_m f(\underline{b}_m) + \gamma_1 f(\underline{c}_1) + \dots + \gamma_{n-m} f(\underline{c}_{n-m})$$

$$= \beta_1 \underline{0} + \dots + \beta_m \underline{0} + \gamma_1 f(\underline{c}_1) + \dots + \gamma_{n-m} f(\underline{c}_{n-m})$$

$$= \gamma_1 f(\underline{c}_1) + \dots + \gamma_{n-m} f(\underline{c}_{n-m})$$

- utolsó lépésben felhasználjuk, hogy $f(\underline{b}_1) = \dots = f(\underline{b}_m) = \underline{0}$
- tetszőlegesen választott $\underline{y} \in Imf$ kifejezhető $f(\underline{c}_1), \dots, f(\underline{c}_{n-m})$ lineáris kombinációja
- most belátjuk, hogy $f(\underline{c_1}), \dots, f(\underline{c_{n-m}})$ lineárisan független
- TFH. $\gamma_1 f(\underline{c}_1) + \ldots + \gamma_{n-m} f(\underline{c}_{n-m}) = \underline{0}$
- meg kell mutatnunk, hogy (7. tétel, Standard bázis tétele miatt) ekkor $\gamma_1 = \gamma_2 = \ldots = \gamma_{n-m} = 0$

$$\underline{0} = \gamma_1 f(\underline{c}_1) + \dots + \gamma_{n-m} f(\underline{c}_{n-m})$$

$$= f(\gamma_1 \underline{c}_1) + \dots + f(\gamma_{n-m} \underline{c}_{n-m})$$

$$= f(\gamma_1 \underline{c}_1 + \dots + \gamma_{n-m} \underline{c}_{n-m})$$

■ ebből Kerf definíció szerint $\in Kerf$ → kifejezhető $\underline{b}_1,\dots,\underline{b}_m$ lineáris kombinációjaként

$$\gamma_1\underline{c}_1+\ldots+\gamma_{n-m}\underline{c}_{n-m}=\beta_1\underline{b}_1+\ldots+\beta_m\underline{b}_m \quad \text{/átrendezve}$$
$$-\beta_1\underline{b}_1-\ldots-\beta_m\underline{b}_m+\gamma_1\underline{c}_1+\ldots+\gamma_{n-m}\underline{c}_{n-m}=\underline{0}$$

- azonban $\underline{b}_1, \dots, \underline{b}_m, \underline{c}_1, \dots, \underline{c}_{n-m}$ lineárisan független
- triviális lineáris kombinációja adhatja $\underline{0} \rightarrow \gamma_1 = \gamma_2 = \ldots = \gamma_{n-m} = 0$
- megmutattuk, hogy $f(\underline{c_1}) + \cdots + f(\underline{c_{n-m}})$ lineárisan független, így bázis is

[K104] megjegyzést írt: $\underline{b}_1, ..., \underline{b}_m \in Kerf$ miatt igaz.

[K105] megjegyzést írt: 13. tétel, Lineáris leképzés feltétele tétel tulajdonság használata.

[K106] megjegyzést írt: $\underline{b}_1, \dots, \underline{b}_m \in \mathit{Kerf}$ miatt igaz

[K107] megjegyzést írt: β is.

[K108] megjegyzést írt: Mert már beláttuk, hogy generátorrendszer.

BACK

15. tétel: Bázistranszformáció

<u>Tételcím</u>

Bázistranszformáció fogalma, lineáris transzformáció mátrixa adott bázis szerint, annak kiszámítása.

1. Bázistranszformáció

o Tétel

- ! $f:\mathbb{R}^n\to\mathbb{R}^n$ lineáris transzformáció és B egy $f(n\times n)$ -es mátrix, melynek oszlopai bázist alkotnak \mathbb{R}^n -ben
- $!g:\mathbb{R}^n \to \mathbb{R}^n$ az a függvény, mely minden $\underline{x} \in \mathbb{R}^n$ esetén $[\underline{x}]_B$ -hez $[f(\underline{x})]_B$ -t rendel
- ekkor g is lineáris transzformáció, melynek mátrixa $[g] = B^{-1} \cdot [f] \cdot B$

o Bizonyítás

- B oszlopai akkor és csak akkor alkotnak bázist, ha $\det B \neq 0$
- alteres következmény szerint \mathbb{R}^n bázisai az n tagú lineárisan független rendszerek
- (11. tétel, Sorvektor lineáris függetlenség tétel miatt) B oszlopainak lineáris függetlensége ekvivalens $\det B \neq 0$
- (12. tétel, Inverz mátrix létezése tétel miatt) B⁻¹ inverz mátrix valóban létezik
- folytatáshoz lemmát használunk

• folytatva a tételt a lenti lemma segítségével:

• $g: [\underline{x}]_B \to [f(\underline{x})]_B$ függvény azonos $h^{-1} \circ f \circ h$ függvénnyel

• ha $[\underline{x}]_B$ -re alkalmazzuk h-t, akkor \underline{x} -et kapjuk, erre f-et alkalmazva $f(\underline{x})$ -et kapjuk, végül erre h^{-1} -et alkalmazva $[f(\underline{x})]_B$ -t kapjuk

[K109] megjegyzést írt: $!V \leq \mathbb{R}^n$ altér $\underline{f_1}, ..., \underline{f_k}$ V-beli vektorokból álló lineárisan független rendszer. Ha $\dim V = k$, akkor $\underline{f_1}, ..., \underline{f_k}$ bázis V-ben.

[K110] megjegyzést írt: Az itt bevezetett g lineáris transzformáció mátrixnak a lemmát követő definíció ad nevet

[K111] megjegyzést írt: Kompozíció.

• (13. tétel, Lineáris leképzés szorzata tétel miatt) $g=h^{-1}\circ f\circ h$ valóban lineáris transzformáció, mátrixa:

$$[g] = [h^{-1}] \cdot [f] \cdot [h] = B^{-1} \cdot [f] \cdot B$$

2. Bázistranszformáció lemmája

- o Tétel
 - ! $h: \mathbb{R}^n \to \mathbb{R}^n$ az a függvény, mely minden $\underline{x} \in \mathbb{R}^n$ esetén $\left[\underline{x}\right]_B$ -hez x-et rendel
 - ekkor h lineáris transzformáció, melynek mátrixa [h] = B
- o Bizonyítás
 - ! $\underline{x} \in \mathbb{R}^n$ -re $[\underline{x}]_{_B}$ koordinátavektor i-edik koordinátája α_i minden $1 \le i \le n$ esetén
 - ekkor $\underline{x} = \alpha_1 \underline{b}_1 + \dots + \alpha_n \underline{b}_n$
 - (10. tétel, Mátrixszorzás definíciója szerint) $B \cdot [\underline{x}]_B$ azonos B oszlopaiból $[\underline{x}]_B$ koordinátáival, mint együtthatókkal képzett lineáris kombinációval
 - így $\underline{x} = B \cdot [\underline{x}]_B$, amely mutatja, hogy a $h : [\underline{x}]_B \to \underline{x}$ függvény lineáris transzformáció, melynek mátrixa B
 - mivel det $B \neq 0$, ezért (13. tétel, Lineáris transzformációk invertálhatósága tétel szerint) h^{-1} inverz transzformáció is létezik, mátrixa: $[h^{-1}] = [h]^{-1} = B^{-1}$
 - ullet ez minden $\underline{x} \in \mathbb{R}^n$ esetén $\left[\underline{x}\right]_{\mathcal{B}}$ -hez \underline{x} -et rendel

3. Lineáris transzformáció adott bázis szerint

- o Definíció
 - ! $f: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció és B bázis \mathbb{R}^n -ben
 - ekkor $g\colon \left[\underline{x}\right]_B o \left[f\left(\underline{x}\right)\right]_B$ lineáris transzformáció mátrixát az f transzformáció B bázis szerinti mátrixának nevezzük
- o <u>Jelölés</u>
 - $[f]_B$

[K112] megjegyzést írt: \underline{b}_i -kből [K113] megjegyzést írt: \underline{a}_i -kkel

4. Lineáris transzformáció kiszámítása adott bázis szerint

o Tétel

- ! $f: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció
- B egy $(n \times n)$ -es mátrix, melynek oszlopai bázist alkotnak \mathbb{R}^n -ben
- ekkor $[f]_B$ mátrixra alábbiak teljesülnek:

• (1)
$$[f(\underline{x})]_B = [f]_B \cdot [\underline{x}]_B$$
 minden $\underline{x} \in \mathbb{R}^n$ -re

• **(2)**
$$[f]_B = B^{-1} \cdot [f] \cdot B$$

• (3) $[f]_B$ i-edik oszlopa egyenlő $[f(\underline{b}_i)]_B$ koordinátavektorral minden $1 \le i \le n$ esetén

o Bizonyítás

- (2) már beláttuk az előző tétel bizonyításában
- (1) közvetlenül következik a Lineáris transzformáció adott bázis szerinti definíciójából és annak tételéből
 - mivel $[f]_B$ annak a g lineáris transzformációnak a mátrixa, amely minden $\underline{x} \in \mathbb{R}^n$ -re $[f(\underline{x})]_B$ -t rendel, az állítás igaz
- (3) (13. tétel, Lineáris leképzés feltétele tétel következménye):
 - mivel $[f]_B$ a $g: [\underline{x}]_B \to [f(\underline{x})]_B$ lineáris transzformáció mátrixa, ezért i-edik oszlopa $g(\underline{e}_i)$ -vel egyenlő minden i-re
 - (7. tétel, Koordinátavektor definíciója szerint) \underline{e}_i éppen \underline{b}_i koordinátavektora
 - vagyis:

•
$$\underline{e}_i = [\underline{b}_i]_B \rightarrow g(\underline{e}_i) = g([\underline{b}_i]_B) = [f(\underline{b}_i)]_B$$

[K114] megjegyzést írt: + a Lineáris leképzés definíciója miatt.

BACK

16. tétel:

Sajátvektor, karakterisztikus polinom

<u>Tételcím</u>

Négyzetes mátrixok sajátértékei és sajátvektorai, ezek meghatározása. Karakterisztikus polinom. A sajátértékek és sajátvektorok kapcsolata lineáris transzformáció valamely bázis szerinti mátrixának diagonalitásával.

1. Sajátérték, sajátvektor

- o Definíció
 - ! $A(n \times n)$ -es mátrix
 - sajátérték
 - olyan $\lambda \in \mathbb{R}$ skalár
 - ha létezik olyan $x \in \mathbb{R}^n$, $x \neq 0$ vektor, melyre

$$A \cdot \underline{x} = \lambda \cdot \underline{x}$$

- sajátvektor
 - olyan $\underline{x} \in \mathbb{R}$ vektor
 - ha $\underline{x} \neq \underline{0}$, létezik olyan $\lambda \in \mathbb{R}$ skalár, melyre

$$A \cdot \underline{x} = \lambda \cdot \underline{x}$$

- röviden:
 - ha $A \cdot \underline{x} = \lambda \cdot \underline{x}$, $\underline{x} \neq \underline{0}$, akkor λ sajátértéke, \underline{x} sajátvektora A-nak

2. Sajátérték meghatározása

- o Tétel
 - négyzetes A mátrixnak a $\lambda \in \mathbb{R}$ skalár akkor és csak akkor sajátértéke, ha $\det(A \lambda \cdot E) = 0$

o Bizonyítás

- λ definíció szerint akkor sajátérték, ha $A \cdot \underline{x} = \lambda \cdot \underline{x}, \, \underline{x} \neq \underline{0}$, van megoldása
- irhatunk $\lambda \cdot x$ helyett $(\lambda \cdot E) \cdot x$
- (10. tétel, Mátrixműveletek tétel (1) szerint)

[K115] megjegyzést írt: Egységmátrix.

69 | Vizsgatételek

$$(\lambda \cdot E) \cdot \underline{x} = \lambda \cdot (E \cdot \underline{x}) = \lambda \cdot \underline{x}$$

• $A \cdot \underline{x} = (\lambda \cdot E) \cdot \underline{x}$ egyenletet átrendezve, majd (*Mátrixműveletek tétel* (2) szerint):

$$A \cdot \underline{x} - (\lambda \cdot E) \cdot \underline{x} = \underline{0}$$
$$(A - \lambda \cdot E) \cdot x = 0$$

- λ akkor és csak akkor sajátértéke A-nak, ha az $A \cdot \underline{x} (\lambda \cdot E) \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszernek van $\underline{x} \neq \underline{0}$ megoldása
- **a** *következmény* szerint ekvivalens $A \lambda \cdot E$ mátrix oszlopai lineárisan összefüggőek
- (11. tétel, Sorvektor lineáris függetlenség tétel szerint) valóban azzal ekvivalens, hogy $\det(A \lambda \cdot E) = 0$

3. Karakterisztikus polinom

- o Definíció
 - A $(n \times n)$ -es mátrix *karakterisztikus polinom*jának nevezzük a $\det(A \lambda \cdot E)$ determináns értékét, ahol λ változó
- o Jelölés
 - $k_a(\lambda)$
- (sajátérték definíciója átfogalmazva az előző tétel és definíció felhasználásával:
 - A mátrix sajátértékei a $k_a(\lambda)$ karakterisztikus polinom gyökei, tehát $k_a(\lambda) 0$ egyenlet megoldásai
 - algebra egyik tétele szerint tehát n-edfokú polinomnak legfeljebb n gyöke lehet $\rightarrow (n \times n)$ -es mátrixnak legfeljebb n sajátértéke van)

4. Diagonális mátrix

- o Definíció
 - A $(n \times n)$ -es mátrix akkor nevezzük *diagonális mátrix*nak, ha minden $i \neq j$ esetén $a_{i,j} = 0$ teljesül

5. Kapcsolat sajátérték és lineáris leképzések közt

- o ! $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ tetszőleges bázis
- o TFH. $[f]_B$ mátrix diagonális, a főátlóban álló elemeket jelölje sorba $\underline{\lambda}_1, \dots, \underline{\lambda}_n$
- o $[f]_B$ i-edik oszlopa $\lambda_i \cdot \underline{e_i}$ -vel egyenlő

[K116] megjegyzést írt: Legyenek $\underline{a}_1,...,\underline{a}_n\epsilon\mathbb{R}^k$ vektorok és legyen A az ezek egyesítésével keletkező $(k\times n)$ -es mátrix. Ekkor az alábbi állítások ekvivalensek:

 $A \cdot \underline{x} = \underline{0}$ lineáris egyenletrendszerek az egyetlen megoldása $\underline{x} = \underline{0}$

 $\underline{a}_1, \dots, \underline{a}_n$ vektorok lineárisan függetlenek

 \circ ebből kifolyólag $\left[f\left(\underline{b}_i
ight)
ight]_{\!\scriptscriptstyle B}=\lambda_i\cdot\underline{e}_i$, ez viszont azt jelenti, hogy

$$f(\underline{b}_i) = 0 \cdot \underline{b}_i + \ldots + \lambda_i \cdot \underline{b}_i + \ldots + 0 \cdot \underline{b}_n$$
, vagyis $f(\underline{b}_i) = \lambda_i \cdot \underline{b}_i$

- o összefoglalva:
 - $[f]_B$ akkor lesz diagonális, ha B minden tagjára $f\left(\underline{b}_i\right)=\lambda_i\cdot\underline{b}_i$ teljesül valamilyen λ skalárral