

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
	EMAP-P0-100-2205 (wersje arkusza: A i B),	
Formy arkusza:	EMAP-P0-200-2205, EMAP-P0-300-2205,	
Formy arkusza.	EMAP-P0-400-2205, EMAP-P0-600-2205,	
	EMAP-P0-700-2205, EMAP-P0-Q00-2205	
Termin egzaminu:	5 maja 2022 r.	
Data publikacji dokumentu:	28 czerwca 2022 r.	

Uwaga:

Gdy wymaganie egzaminacyjne dotyczy treści z III etapu edukacyjnego – dopisano "G".

ZADANIA ZAMKNIĘTE

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2022¹	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.3) posługuje się w obliczeniach pierwiastkami dowolnego stopnia i stosuje prawa działań na pierwiastkach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

В

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: G1.6) oblicza wartości liczbowe wyrażeń algebraicznych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja B

¹ Załącznik nr 2 do rozporządzenia Ministra Edukacji Narodowej z dnia 20 marca 2020 r. w sprawie szczególnych rozwiązań w okresie czasowego ograniczenia funkcjonowania jednostek systemu oświaty w związku z zapobieganiem, przeciwdziałaniem i zwalczaniem COVID-19 (Dz.U. poz. 493, z późn. zm.).

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	1.6) wykorzystuje definicję logarytmu
	i stosuje w obliczeniach wzory na logarytm
	iloczynu [] i logarytm potęgi o wykładniku
	naturalnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

C

D

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	1.8) wykonuje obliczenia procentowe.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja B

B

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.4) oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

Α

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: G7.6) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

С

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający: 3.3) rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

C

В

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający:
	3.6) korzysta z własności iloczynu przy
	rozwiązywaniu równań [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

С

D

Zadanie 9. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: G8.3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

С

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2022		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 4.4) na podstawie wykresu funkcji	
Toprozoniaoji.	y = f(x) szkicuje wykresy funkcji	
	y = f(x + a), y = f(x) + a [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

С

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 4.2) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje się poznanymi metodami rozwiązywania
	równań do obliczenia, dla jakiego argumentu funkcja przyjmuje daną wartość.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

С

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający:
	4.10) interpretuje współczynniki
	występujące we wzorze funkcji
	kwadratowej w postaci kanonicznej,
	w postaci ogólnej i w postaci iloczynowej
	(o ile istnieje).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

Α

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający:
	5.1) wyznacza wyrazy ciągu określonego
	wzorem ogólnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

В

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	5.3) stosuje wzór na n –ty wyraz [] ciągu
	arytmetycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

D

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	5.4) stosuje wzór na <i>n-</i> ty wyraz […] ciągu
	geometrycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

Α

Zadanie 16. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	6.3) stosuje proste zależności między
	funkcjami trygonometrycznymi:
	$\sin^2 \alpha + \cos^2 \alpha = 1 \ [] \text{ oraz}$
	$\sin(90^{\circ} - \alpha) = \cos \alpha.$

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

Α

Zadanie 17. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający:
	7.1) stosuje zależności między kątem
	środkowym i kątem wpisanym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

ח

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający:
	G10.6) oblicza pole koła, wycinka kołowego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

Α

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: G10.9) oblicza pola i obwody trójkątów [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

В

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający: 7.4) korzysta [] ze wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

D

Zadanie 21. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	8.1) wyznacza równanie prostej
	przechodzącej przez dwa dane punkty [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

С

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	8.2) bada [] prostopadłość prostych na podstawie ich równań kierunkowych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

С

С

Zadanie 23. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	8.5) wyznacza współrzędne środka
	odcinka.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

В

Zadanie 24. (0-1)

Wymagania egzaminacyjne 2022						
Wymaganie ogólne Wymaganie szczegółowe						
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 8.6) oblicza odległość dwóch punktów.					

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

Α

D

Zadanie 25. (0-1)

Wymagania egzaminacyjne 2022				
Wymaganie ogólne	Wymaganie szczegółowe			
II. Wykorzystanie i interpretowanie	Zdający:			
reprezentacji.	G11.2) oblicza [] objętość graniastosłupa prostego [].			

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

Α

Zadanie 26. (0-1)

Wymagania egzaminacyjne 2022				
Wymaganie ogólne	Wymaganie szczegółowe			
I. Wykorzystanie i tworzenie informacji.	Zdający: G11.2) oblicza pole powierzchni [] ostrosłupa.			

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

D

C

Zadanie 27. (0-1)

Wymagania egzaminacyjne 2022					
Wymaganie ogólne Wymaganie szczegółowe					
III. Modelowanie matematyczne.	Zdający: 10.1) zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych, stosuje regułę mnożenia i regułę dodawania.				

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

В

Α

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2022					
Wymaganie ogólne Wymaganie szczegółowe					
III. Modelowanie matematyczne.	Zdający:				
	G9.3) wyznacza średnią arytmetyczną				
	i medianę zestawu danych.				

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja A

Rozwiązanie – wersja B

C

В

ZADANIA OTWARTE

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 29. (0-2)

Wymagania egzaminacyjne 2022				
Wymaganie ogólne	Wymaganie szczegółowe			
II. Wykorzystanie i interpretowanie	Zdający:			
reprezentacji.	3.5) rozwiązuje nierówności kwadratowe			
	z jedną niewiadomą.			

Zasady oceniania

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $3x^2 - 2x - 16$. **Drugi etap** to zapisanie zbioru rozwiązań nierówności kwadratowej $3x^2 - 2x - 16 \ge 0$.

• zapisze zbiór rozwiązań nierówności: $(-\infty, -2) \cup \left(\frac{8}{3}, +\infty\right)$ lub $x \in (-\infty, -2) \cup \left(\frac{8}{3}, +\infty\right)$

ALBO

 przedstawi zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi:

- 1. Jeżeli zdający, realizując pierwszy etap rozwiązania zadania, popełni błędy (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionych błędów zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy błędnie obliczony przez zdającego wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeżeli zdający, rozpoczynając realizację pierwszego etapu rozwiązania, rozpatruje inny niż podany w zadaniu trójmian kwadratowy, który nie wynika z błędu przekształcenia (np. $3x^2-2x-9$) i w konsekwencji rozpatruje inną nierówność (np. $3x^2-2x-9\geq 0$), to oznacza, że nie podjął realizacji 1. etapu rozwiązania i otrzymuje **0 punktów** za całe rozwiązanie.
- 4. Akceptowane jest zapisanie pierwiastków trójmianu w postaci $a+b\sqrt{c}$, gdzie a,b,c są liczbami wymiernymi.
- 5. Jeżeli zdający poda zbiór rozwiązań w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów oraz zapisze: $x \in (-\infty, -2) \cup \left(\frac{8}{3}, +\infty\right)$, to otrzymuje **1 punkt** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty, \frac{8}{3}) \cup (-2, +\infty)$, $(+\infty, \frac{8}{3}) \cup (-2, -\infty)$, to otrzymuje **2 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy etap rozwiązania

Zapisujemy nierówność w postaci $3x^2-2x-16\geq 0$ i obliczamy pierwiastki trójmianu $3x^2-2x-16$.

Obliczamy wyróżnik tego trójmianu: $\Delta=196\,$ i stąd $x_1=-2\,$ oraz $x_2=\frac{8}{3}\,$

ALBC

podajemy pierwiastki trójmianu bezpośrednio, zapisując je lub zaznaczając je na wykresie:

$$x_1 = -2 \text{ oraz } x_2 = \frac{8}{3}.$$

Drugi etap rozwiązania

Podajemy zbiór rozwiązań nierówności: $(-\infty, -2) \cup \left(\frac{8}{3}, +\infty\right)$ lub $x \in (-\infty, -2) \cup \left(\frac{8}{3}, +\infty\right)$ lub zaznaczamy zbiór rozwiązań na osi liczbowej

Zadanie 30. (0-2)

Wymagania egzaminacyjne 2022						
Wymaganie ogólne Wymaganie szczegółowe						
III. Modelowanie matematyczne. Zdający:						
	5.3) stosuje wzór na n –ty wyraz i na sumę					
	n początkowych wyrazów ciągu					
	arytmetycznego.					

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

zapisze równania wynikające z zastosowania poprawnych wzorów na n-ty wyraz ciągu arytmetycznego i sumę n początkowych wyrazów ciągu arytmetycznego, np.

$$a_4 = a_1 + 3r$$
 i $S_{100} = \frac{2a_1 + (100 - 1) \cdot r}{2} \cdot 100$

$$a_4 = a_1 + 3r$$
 i $a_{100} = a_1 + 99r$ i $S_{100} = \frac{a_1 + a_{100}}{2} \cdot 100$

ALBO

poda/obliczy różnicę r ciągu arytmetycznego (a_n) : r=3 lub przyjmuje w rozwiązaniu, że r=3.

Zdający otrzymuje 2 pkt gdy obliczy sumę stu początkowych kolejnych wyrazów ciągu (a_n) : $S_{100} = 14750$.

Uwagi:

- 1. Jeśli zdający błędnie obliczy r i konsekwentnie do otrzymanej wartości r obliczy sumę stu początkowych wyrazów ciągu (a_n) , to otrzymuje **1 punkt** za całe rozwiązanie.
- 2. Jeśli zdający myli ciąg arytmetyczny z geometrycznym, to otrzymuje 0 punktów za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Korzystamy ze wzoru na n –ty wyraz ciągu arytmetycznego i zapisujemy wzór na a_4 :

$$a_4 = a_1 + 3 \cdot r$$

Zatem 8 = -1 + 3r, wiec r = 3.

Korzystamy ze wzoru na sumę n początkowych wyrazów ciągu arytmetycznego i obliczamy S_{100} :

$$S_{100} = \frac{2a_1 + (100 - 1) \cdot r}{2} \cdot 100 = \frac{-2 + 297}{2} \cdot 100 = 14750$$

Sposób 2.

Korzystamy ze wzoru na n —ty wyraz ciągu arytmetycznego i zapisujemy wzór na czwarty wyraz tego ciągu:

$$a_4 = a_1 + 3 \cdot r$$

gdzie r oznacza różnicę ciągu.

Podstawiamy $a_1 = -1$ oraz $a_4 = 8$ i otrzymujemy równanie 8 = -1 + 3r, skąd r = 3. Sumę n początkowych wyrazów ciągu arytmetycznego obliczymy ze wzoru

$$S_n = \frac{a_1 + a_n}{2} \cdot n$$

Obliczamy setny wyraz ciągu (a_n) :

$$a_{100} = a_1 + 99 \cdot r = -1 + 99 \cdot 3 = 296$$

Zatem suma stu początkowych wyrazów tego ciągu jest równa

$$S_{100} = \frac{-1 + 296}{2} \cdot 100 = 295 \cdot 50 = 14750$$

Zadanie 31. (0-2)

Wymagania egzaminacyjne 2022					
Wymaganie ogólne Wymaganie szczegółowe					
V. Rozumowanie i argumentacja.	Zdający:				
	2.1) używa wzorów skróconego mnożenia				
	na $(a \pm b)^2$ [].				

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

• przekształci nierówność $\frac{a^2+b^2}{2}>\left(\frac{a+b}{2}\right)^2$ do postaci równoważnej $(a-b)^2>0$ lub $a^2+b^2>2ab$ (dla sposobu 1.), o ile na tym zakończy lub z tej postaci wyciągnie wniosek

ALBO

• wykorzysta założenie $a \neq b$ (lub równoważnie $(a-b)^2 > 0$) i zapisze $a^2 + b^2 > 2ab$ (dla sposobu 2.),

ALBO

• wykorzysta założenie $a \neq b$ oraz zapisze nierówność pomiędzy średnimi: kwadratową i arytmetyczną, dla liczb nieujemnych (dla sposobu 3.).

 spełni kryterium określone w zasadach oceniania w pierwszej kropce za 1 pkt oraz sformułuje poprawny wniosek z powołaniem się na założenie

ALBO

• spełni kryterium określone w zasadach oceniania w drugiej kropce za 1 pkt oraz doprowadzi nierówność do postaci tezy,

ALBO

• w sposobie 3., opierając się na nierówności pomiędzy średnią kwadratową i średnią arytmetyczną, wykaże prawdziwość nierówności $\frac{a^2+b^2}{2}>\left(\frac{a+b}{2}\right)^2$ dla każdych liczb rzeczywistych a i b takich, że $a\neq b$.

Uwaga:

Jeśli zdający sprawdza prawdziwość nierówności tylko dla wybranych wartości a i b, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Przekształcamy równoważnie nierówność $\frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2$:

$$\frac{a^2 + b^2}{2} > \left(\frac{a+b}{2}\right)^2$$

$$\frac{a^2 + b^2}{2} > \frac{a^2 + 2ab + b^2}{4}$$

$$2a^2 + 2b^2 > a^2 + 2ab + b^2$$

$$a^2 - 2ab + b^2 > 0$$

$$(a-b)^2 > 0$$

Z założenia wiadomo, że $b \neq a$, więc $(a-b)^2$ jest liczbą dodatnią jako kwadrat liczby rzeczywistej a-b różnej od zera. Ponieważ nierówność $(a-b)^2>0$ jest prawdziwa, więc nierówność $\frac{a^2+b^2}{2}>\left(\frac{a+b}{2}\right)^2$ również jest prawdziwa. To należało pokazać.

Sposób 2. (od założenia do tezy)

Z założenia wiadomo, że $a \neq b$, zatem różnica $a - b \neq 0$. Stąd wynika, że $(a - b)^2$ jest liczbą dodatnią. Nierówność $(a - b)^2 > 0$ jest równoważna nierówności

$$a^2 + h^2 > 2ah$$

Zauważmy teraz, że tożsamość $(a+b)^2=a^2+2ab+b^2\,$ można zapisać w równoważnej postaci

$$(a+b)^2 - (a^2 + b^2) = 2ab$$

Nierówność $a^2 + b^2 > 2ab$ zapisujemy więc w postaci

$$a^2 + b^2 > (a+b)^2 - (a^2 + b^2)$$

Egzamin maturalny z matematyki. Poziom podstawowy – termin główny 2022 r.

Zatem

$$2(a^2 + b^2) > (a + b)^2$$

Dzielimy obie strony tej nierówności przez 4 i otrzymujemy nierówność

$$\frac{a^2 + b^2}{2} > \frac{(a+b)^2}{4}$$

Ta nierówność jest równoważna nierówności

$$\frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2$$

zapisanej w tezie twierdzenia. To należało pokazać.

Sposób 3. (nierówność między średnimi)

Obie strony nierówności $\frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2$ są nieujemne, więc pierwiastkując je, otrzymujemy nierówność równoważną

$$\sqrt{\frac{a^2+b^2}{2}} > \left| \frac{a+b}{2} \right|$$

czyli

$$\sqrt{\frac{a^2+b^2}{2}} > \frac{|a+b|}{2}$$

Wykażemy, że jest ona prawdziwa dla każdych liczb rzeczywistych a i b takich, że $a \neq b$. Dla liczb rzeczywistych a i b liczby |a| i |b| są nieujemne, więc prawdziwa jest nierówność między średnią kwadratową i średnią arytmetyczną

$$\sqrt{\frac{|a|^2 + |b|^2}{2}} \ge \frac{|a| + |b|}{2}$$

przy czym równość zachodzi tylko wtedy, gdy |a| = |b|.

Ponieważ $x^2 = |x|^2$, $|x| + |y| \ge |x + y|$, $|x| \ge x$ dla każdych liczb rzeczywistych x oraz y, więc otrzymujemy

$$\sqrt{\frac{a^2 + b^2}{2}} = \sqrt{\frac{|a|^2 + |b|^2}{2}} \ge \frac{|a| + |b|}{2} \ge \frac{|a + b|}{2} \ge \frac{a + b}{2}$$

Pozostaje wykazać, że jeżeli $a \neq b$, to prawdziwa jest nierówność ostra

$$\sqrt{\frac{a^2+b^2}{2}} > \frac{|a+b|}{2}$$

Gdy $|a| \neq |b|$, to prawdziwość nierówności ostrej wynika z nierówności między średnią kwadratową i średnią arytmetyczną. Równość |a| = |b| oznacza, że liczby a i b są równe lub przeciwne. Jednak z założenia liczby a i b są różne. Jeśli są przeciwne, czyli

a+b=0, to wtedy prawa strona tej nierówności jest równa zero, natomiast lewa strona jest dodatnia – zerem byłaby tylko wtedy, gdyby a=b=0, co jest sprzeczne z założeniem $a \neq b$.

Zadanie 32. (0-2)

Wymagania egzaminacyjne 2022						
Wymaganie ogólne Wymagania szczegółowe						
IV. Użycie i tworzenie strategii.	Zdający:					
	6.3) stosuje proste zależności między					
	funkcjami trygonometrycznymi [];					
	6.4) znając wartość jednej z funkcji: sinus					
	lub cosinus, wyznacza wartości					
	pozostałych funkcji tego samego kąta.					

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

• zapisze układ równań $\frac{\sin\alpha}{\cos\alpha}=2$ i $\sin^2\alpha+\cos^2\alpha=1$ (lub jedno równanie równoważne temu układowi, np. $(2\cos\alpha)^2+\cos^2\alpha=1$, $\sin^2\alpha+\left(\frac{1}{2}\sin\alpha\right)^2=1$, $\sin^2\alpha=4(1-\sin^2\alpha)$)

ALBO

• narysuje trójkąt prostokątny, zaznaczy na rysunku kąt α (lub z rozwiązania wynika, że poprawnie go interpretuje) i zapisze relację między przyprostokątnymi tego trójkąta wynikającą z warunku zadania oraz relację między długościami boków trójkąta wynikającą z twierdzenia Pitagorasa.

Uwaga:

Jeśli zdający odczyta przybliżoną wartość kąta, dla którego $~{\rm tg}~\alpha=2~(\alpha=63^\circ~{\rm lub}~\alpha=64^\circ)$ i na tej podstawie oblicza $~{\rm sin}^2~\alpha$, stosując poprawnie regułę zaokrąglania, to otrzymuje **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ $\operatorname{tg}\alpha=2$, więc $\frac{\sin\alpha}{\cos\alpha}=2$ i stąd $\sin\alpha=2\cos\alpha$. Korzystając z tego związku i tożsamości $\sin^2\alpha+\cos^2\alpha=1$, otrzymujemy

Egzamin maturalny z matematyki. Poziom podstawowy – termin główny 2022 r.

$$(2\cos\alpha)^2 + \cos^2\alpha = 1$$
$$5\cos^2\alpha = 1$$
$$\cos^2\alpha = \frac{1}{5}$$

Ponownie korzystamy z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ i obliczamy $\sin^2 \alpha$:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
$$\sin^2 \alpha + \frac{1}{5} = 1$$
$$\sin^2 \alpha = \frac{4}{5}$$

Sposób 2.

Niech ABC będzie trójkątem prostokątnym, w którym $| \angle CAB | = 90^{\circ}$ oraz $| \angle ABC | = \alpha$.

Ponieważ $\operatorname{tg}\alpha=2$, więc $\frac{|AC|}{|AB|}=2$, czyli $|AC|=2\cdot|AB|$. Wyznaczamy długość odcinka BC w zależności od długości odcinka AB. Korzystamy z twierdzenia Pitagorasa i otrzymujemy

$$|BC|^2 = |AC|^2 + |AB|^2$$
$$|BC|^2 = (2 \cdot |AB|)^2 + |AB|^2$$
$$|BC|^2 = 5 \cdot |AB|^2$$
$$|BC| = \sqrt{5} \cdot |AB|$$

$${\rm Zatem} \ \sin^2\alpha = \left(\frac{|AC|}{|BC|}\right)^2 = \left(\frac{2\cdot |AB|}{\sqrt{5}\cdot |AB|}\right)^2 = \frac{4}{5} \ .$$

Zadanie 33. (0-2)

Wymagania egzaminacyjne 2022					
Wymaganie ogólne Wymaganie szczegółowe					
IV. Użycie i tworzenie strategii.	Zdający: 7.3) rozpoznaje trójkąty podobne i wykorzystuje cechy podobieństwa trójkątów.				

Zasady oceniania

• zauważy, że trójkąt ABD jest równoramienny i zapisze |AB| = |AD| lub $| \not ABD | = | \not ADB |$

ALBO

• zapisze, że $| \angle ADB | = | \angle BAC |$,

ALBO

• zapisze, że $| \angle BAD | = | \angle ACB |$.

Uwagi:

- 1. Jeżeli zdający przyjmuje, że odcinek AD jest prostopadły do boku BC i korzysta z tego w rozwiązaniu, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeśli zdający zapisze tylko $| \angle BAC | = 72^{\circ}$, to otrzymuje **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Oznaczmy przez 2α miarę kąta BAC. Odcinek AD jest zawarty w dwusiecznej kąta BAC, więc $| \not \perp BAD | = | \not \perp CAD | = \alpha$. Ponieważ |AC| = |BC|, więc $| \not \perp ABC | = 2\alpha$ (zobacz rysunek obok).

Trójkąty ABC i BDA są podobne, miary kątów przy podstawie AB trójkąta ABC są równe 2α i ponadto $| \not ABD | = 2\alpha$, więc trójkąt ABD jest równoramienny oraz $| \not ADB | = | \not ABD | = 2\alpha$.

Stosujemy do trójkąta ABD twierdzenie o sumie miar kątów wewnętrznych trójkąta i otrzymujemy

$$|\angle BAD| + |\angle ABD| + |\angle ADB| = 180^{\circ}$$

Egzamin maturalny z matematyki. Poziom podstawowy – termin główny 2022 r.

$$\alpha + 2\alpha + 2\alpha = 180^{\circ}$$
$$5\alpha = 180^{\circ}$$
$$\alpha = 36^{\circ}$$

Zatem $| \angle BAC | = 2\alpha = 2 \cdot 36^{\circ} = 72^{\circ}$.

Sposób 2.

Oznaczmy przez 2α miarę kąta BAC. Odcinek AD jest zawarty w dwusiecznej kąta BAC, więc $| \not \perp BAD | = | \not \perp CAD | = \alpha$. Ponieważ |AC| = |BC|, więc $| \not \perp ABC | = 2\alpha$ (zobacz rysunek).

Stosujemy do trójkąta ABD twierdzenie o sumie miar kątów wewnętrznych trójkąta i otrzymujemy

$$| \angle ADB | = 180^{\circ} - (\alpha + 2\alpha) = 180^{\circ} - 3\alpha$$

Kąty ADC i ADB są przyległe, zatem $| 4ADC | = 3\alpha$.

Stosujemy do trójkąta ADC twierdzenie o sumie miar kątów wewnętrznych trójkąta i otrzymujemy

$$| \angle ACD | = 180^{\circ} - 4\alpha$$

Trójkąty ABC i BDA są podobne, miary kątów między ramionami są równe, więc

$$180^{\circ} - 4\alpha = \alpha$$
$$5\alpha = 180^{\circ}$$
$$\alpha = 36^{\circ}$$

Zatem $| \angle BAC | = 2\alpha = 2 \cdot 36^{\circ} = 72^{\circ}$.

Zadanie 34. (0-2)

Wymagania egzaminacyjne 2022						
Wymaganie ogólne Wymaganie szczegółowe						
III. Modelowanie matematyczne.	Zdający: 10.2) oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa.					

Zasady oceniania

Zdający otrzymuje 1 pkt gdy:

- wypisze wszystkie zdarzenia elementarne lub obliczy/poda ich liczbę: $|\Omega|=9\cdot 9$ ALBO
 - wypisze (zaznaczy w tabeli) wszystkie zdarzenia elementarne sprzyjające zdarzeniu A
 i nie wypisze żadnego niewłaściwego:

 (3,8), (4,6), (6,4), (8,3),

ALBO

- poda liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=4, ALBO
 - sporządzi fragment drzewa stochastycznego, które zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisze prawdopodobieństwo $\frac{1}{9}$ na co najmniej jednym odcinku każdego z etapów doświadczenia,

ALBO

• zapisze tylko $P(A) = \frac{4}{81}$.

- 1. Jeżeli zdający zapisuje tylko liczby 4 lub 81 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający sporządzi jedynie tabelę o 81 pustych polach, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1. (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a, b), gdzie $a, b \in M$.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 9 \cdot 9 = 81$.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne:

wiec
$$|A| = 4$$
.

Prawdopodobieństwo zdarzenia A jest równe: $P(A) = \frac{|A|}{|\Omega|} = \frac{4}{81}$.

Sposób 2.

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a, b), gdzie $a, b \in M$. Jest to model klasyczny. Budujemy tabelę ilustrującą sytuację opisaną w zadaniu.

I losowanie

		1	2	3	4	5	6	7	8	9
	1									
	2									
II losowanie	3								×	
SOW	4						×			
 	5									
	6				×					
	7									
	8			×						
	9									

Symbolem \times oznaczono pola odpowiadające zdarzeniom elementarnym sprzyjającym zdarzeniu A.

Wszystkich zdarzeń elementarnych w tym doświadczeniu jest 81.

Liczba wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A jest równa 4.

Stąd
$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{81}$$
.

Sposób 3. (drzewo stochastyczne)

Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia z uwzględnieniem wszystkich istotnych gałęzi.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{1}{9} \cdot \frac{1}{9} + \frac{1}{9} \cdot \frac{1}{9} + \frac{1}{9} \cdot \frac{1}{9} + \frac{1}{9} \cdot \frac{1}{9} = \frac{4}{81}$$

Zadanie 35. (0-5)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 4.9) wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o funkcji lub o jej wykresie.

Zasady oceniania dla sposobów 1.-5.

• zapisze wzór funkcji f w postaci f(x) = a(x+5)(x-3)

ALBO

• poda/obliczy odciętą p wierzchołka paraboli: p = -1,

ALBO

• zapisze jedno równanie z niewiadomymi $\,a,\,b\,$ oraz $\,c\,$ wynikające z treści zadania, np.

$$a \cdot (-5)^2 + b \cdot (-5) + c = 0$$
 lub $a \cdot 3^2 + b \cdot 3 + c = 0$, lub $6 = \frac{-(b^2 - 4ac)}{4a}$, lub $-\frac{b}{a} = -2$, lub $\frac{c}{a} = -15$,

ALBO

• zapisze, że rzędna q wierzchołka paraboli jest równa 6: q = 6.

Zdający otrzymuje 2 pkt gdy:

• zapisze wzór funkcji f w postaci f(x) = a(x+5)(x-3) lub w postaci $f(x) = ax^2 + 2ax - 15a$ oraz zapisze, że rzędna wierzchołka paraboli jest równa 6

ALBO

• zapisze wzór funkcji f w postaci $f(x) = a(x+1)^2 + 6$,

ALBO

• poda/obliczy odciętą wierzchołka paraboli i poda rzędną wierzchołka paraboli: $p=-1,\;q=6,$

ALBO

 zapisze układ dwóch równań z trzema niewiadomymi a, b, c, z których jedno jest jednym z równań

$$6 = \frac{-(b^2 - 4ac)}{4a} \text{ lub } 6 = a \cdot (-1)^2 + b \cdot (-1) + c,$$

natomiast drugie jest jednym z równań

$$a \cdot (-5)^2 + b \cdot (-5) + c = 0$$
 lub $a \cdot 3^2 + b \cdot 3 + c = 0$, lub $-\frac{b}{2a} = -1$, lub $-\frac{b}{a} = -2$, lub $\frac{c}{a} = -15$,

ALBO

• zapisze równanie a(x+5)(x-3)-6=0 (dla sposobu 5.).

Zdający otrzymuje 3 pkt gdy:

• zapisze równanie z jedną niewiadomą $\,a,\,{\rm np}.\,$

$$6 = a(-1+5)(-1-3)$$
 lub $0 = a(3+1)^2 + 6$, lub $0 = a(-5+1)^2 + 6$

ALBO

zapisze układ trzech niezależnych równań z trzema niewiadomymi a, b, c
 prowadzący do obliczenia wartości współczynników a, b oraz c, np.

$$a \cdot (-5)^2 + b \cdot (-5) + c = 0$$
 i $a \cdot 3^2 + b \cdot 3 + c = 0$ i $6 = \frac{-(b^2 - 4ac)}{4a}$

LUB

$$-\frac{b}{a} = -2$$
 i $\frac{c}{a} = -15$ i $6 = \frac{-(b^2 - 4ac)}{4a}$,

LUB

$$a \cdot (-5)^2 + b \cdot (-5) + c = 0$$
 i $a \cdot 3^2 + b \cdot 3 + c = 0$ i $6 = a \cdot (-1)^2 + b \cdot (-1) + c$, LUB

$$-\frac{b}{2a} = -1 \ i \ a \cdot 3^2 + b \cdot 3 + c = 0 \ i \ 6 = a \cdot (-1)^2 + b \cdot (-1) + c,$$

LUB

$$a \cdot (-5)^2 + b \cdot (-5) + c = 0$$
 i $-\frac{b}{2a} = -1$ i $6 = a \cdot (-1)^2 + b \cdot (-1) + c$,

ALBO

• uzależni współczynniki b oraz c od a i zapisze współrzędne wierzchołka paraboli, np. b=2a oraz c=-15a oraz W=(-1,6),

ALBO

• zapisze wzór funkcji w postaci $f(x) = ax^2 + 2ax - 15a$ **oraz** zapisze współrzędne wierzchołka paraboli: W = (-1, 6) (lub zapisze wzór funkcji w postaci $f(x) = ax^2 + 2ax + a + 6$ **oraz** zapisze równość f(-5) = 0 lub f(3) = 0),

ALBO

• zapisze wzór funkcji w postaciach $f(x) = ax^2 - 2apx + ap^2 + 6$ i $f(x) = ax^2 + 2ax - 15a$ **oraz** zapisze układ równań -2ap = 2a i $ap^2 + 6 = -15a$,

ALBO

• uzależni współczynniki b oraz c od a (np. b=2a oraz c=-15a) oraz zapisze związki $\Delta=64a^2$ i q=6,

ALBO

• zapisze, że wyróżnik trójmianu $ax^2 + 2ax - 15a - 6$ musi być równy 0 (dla sposobu 5.).

Zdający otrzymuje 4 pkt gdy:

• zapisze wzór funkcji f w postaci f(x)=a(x+5)(x-3) i obliczy współczynnik a: $a=-\frac{3}{8}$

ALBO

• zapisze wzór funkcji f w postaci $f(x) = a(x+1)^2 + 6$ i obliczy współczynnik a: $a = -\frac{3}{8}$,

ALBO

 obliczy poprawnie tylko dwa współczynniki spośród a, b oraz c, pomijając w obliczeniach trzeci współczynnik,

ALBO

• obliczy współczynniki a,b oraz c, popełniając w trakcie rozwiązywania jedynie błędy rachunkowe.

Uwagi:

- 1. Jeśli zdający poprawnie obliczy/poda obie współrzędne wierzchołka paraboli, ale zapisze błędne równanie $0 = a(3-1)^2 + 6$ lub $0 = a(-5-1)^2 + 6$, a następnie konsekwentnie do popełnionego błędu rozwiąże zadanie do końca, to otrzymuje **3 punkty** za całe rozwiązanie.
- 2. Jeśli zdający poprawnie zidentyfikuje miejsca zerowe funkcji, ale zapisze błędne równanie 6 = a(-1-5)(-1-3) i konsekwentnie do popełnionego błędu rozwiąże zadanie do końca, to otrzymuje **3 punkty** za całe rozwiązanie.
- 3. Jeśli zdający ustali poprawną wartość współczynnika *a* i konsekwentnie rozwiąże zadanie do końca, nie popełniając błędu, to może otrzymać **5 punktów** za całe rozwiązanie.
- 4. Jeśli zdający przyjmie współrzędne wierzchołka paraboli (6,-1) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **3 punkty** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ parabola, która jest wykresem funkcji f, przecina oś Ox układu współrzędnych w punktach A=(-5,0) i B=(3,0), więc pierwiastkami trójmianu są liczby $x_1=-5$ oraz $x_2=3$. Zatem wzór funkcji f możemy zapisać w postaci iloczynowej f(x)=a(x+5)(x-3).

Znając pierwiastki trójmianu, obliczamy odciętą p wierzchołka tej paraboli

$$p = \frac{x_1 + x_2}{2} = \frac{-5 + 3}{2} = -1$$

Ponieważ parabola ma z prostą o równaniu y=6 dokładnie jeden punkt wspólny, więc rzędna q wierzchołka tej paraboli jest równa 6. Podstawiając współrzędne wierzchołka paraboli do wzoru funkcji f, otrzymujemy

$$6 = a(-1+5)(-1-3)$$
$$6 = -16a$$
$$a = -\frac{6}{16} = -\frac{3}{8}$$

Zapisujemy funkcję kwadratową w postaci ogólnej

$$f(x) = -\frac{3}{8}(x+5)(x-3) = -\frac{3}{8}x^2 - \frac{3}{4}x + \frac{45}{8}$$

Stąd odczytujemy wartości współczynników trójmianu: $a=-\frac{3}{8}$, $b=-\frac{3}{4}$, $c=\frac{45}{8}$.

Sposób 2.

Ponieważ parabola, która jest wykresem funkcji f, przecina oś Ox układu współrzędnych w punktach A=(-5,0) i B=(3,0), więc pierwiastkami trójmianu są liczby $x_1=-5$ oraz $x_2=3$. Znając pierwiastki trójmianu, obliczamy odciętą p wierzchołka tej paraboli

$$p = \frac{x_1 + x_2}{2} = \frac{-5 + 3}{2} = -1$$

Ponieważ parabola ma z prostą o równaniu $y=6\,$ dokładnie jeden punkt wspólny, więc rzędna $q\,$ wierzchołka tej paraboli jest równa 6.

Zapisujemy wzór funkcji f w postaci kanonicznej $f(x) = a(x+1)^2 + 6$. Ponieważ f(3) = 0, więc

$$0 = a(3+1)^{2} + 6$$
$$0 = 16a + 6$$
$$a = -\frac{6}{16} = -\frac{3}{8}$$

Zatem
$$f(x) = -\frac{3}{8}(x+1)^2 + 6 = -\frac{3}{8}(x^2 + 2x + 1) + 6 = -\frac{3}{8}x^2 - \frac{3}{4}x + \frac{45}{8}$$
.

Stąd odczytujemy wartości współczynników trójmianu: $a=-\frac{3}{8}$, $b=-\frac{3}{4}$, $c=\frac{45}{8}$.

Sposób 3.

Punkty A = (-5,0) i B = (3,0) należą do wykresu funkcji f, więc

$$a \cdot (-5)^2 + b \cdot (-5) + c = 0$$
 i $a \cdot 3^2 + b \cdot 3 + c = 0$

Odejmując stronami te dwa równania otrzymujemy

$$(25a - 5b + c) - (9a + 3b + c) = 0$$
$$16a - 8b = 0$$
$$b = 2a$$

Ponieważ parabola ma z prostą o równaniu y=6 dokładnie jeden punkt wspólny, więc rzędna q wierzchołka paraboli jest równa 6. Zatem

$$q = \frac{-\Delta}{4a}$$
$$6 = \frac{-(b^2 - 4ac)}{4a}$$

Podstawiamy do ostatniego równania w miejsce b wyrażenie 2a i otrzymujemy

$$6 = \frac{-((2a)^2 - 4ac)}{4a}$$
$$6 = \frac{-4a^2 + 4ac}{4a}$$
$$6 = \frac{4a(-a+c)}{4a}$$
$$6 = -a+c$$

$$c = 6 + a$$

Z uzyskanych wcześniej równań $a \cdot 3^2 + b \cdot 3 + c = 0$, b = 2a i c = 6 + a obliczamy a:

$$a \cdot 3^2 + 2a \cdot 3 + 6 + a = 0$$

$$16a = -6$$

$$a = -\frac{6}{16} = -\frac{3}{8}$$

Stąd
$$b = 2a = 2 \cdot \left(-\frac{3}{8}\right) = -\frac{3}{4}$$
 oraz $c = 6 + a = 6 - \frac{3}{8} = \frac{45}{8}$.

Sposób 4.

Ponieważ parabola, która jest wykresem funkcji f, przecina oś Ox układu współrzędnych w punktach A=(-5,0) i B=(3,0), więc pierwiastkami trójmianu są liczby $x_1=-5$ oraz $x_2=3$. Zatem wzór funkcji f możemy zapisać w postaci iloczynowej

$$f(x) = a(x+5)(x-3)$$

Po rozwinięciu tego wzoru otrzymujemy

$$f(x) = ax^2 + 2ax - 15a$$

Ponieważ parabola ma z prostą o równaniu $y=6\,$ dokładnie jeden punkt wspólny, więc rzędna $q\,$ wierzchołka tej paraboli jest równa 6. Zatem wzór funkcji $f\,$ możemy zapisać w postaci kanonicznej

$$f(x) = a(x - p)^2 + 6$$

Po rozwinięciu tego wzoru otrzymujemy

$$f(x) = ax^2 - 2apx + ap^2 + 6$$

Z twierdzenia o równości wielomianów otrzymujemy układ równań

$$2a = -2ap$$
 oraz $-15a = ap^2 + 6$

Z pierwszego równania otrzymujemy p = -1, więc stąd i z drugiego równania otrzymujemy

$$-15a = a + 6$$
$$-16a = 6$$
$$a = -\frac{6}{16} = -\frac{3}{8}$$

Zatem

$$f(x) = -\frac{3}{8}x^2 + 2 \cdot \left(-\frac{3}{8}\right)x - 15 \cdot \left(-\frac{3}{8}\right)$$
$$f(x) = -\frac{3}{8}x^2 - \frac{3}{4}x + \frac{45}{8}$$

Stąd odczytujemy wartości współczynników trójmianu: $a=-\frac{3}{8}$, $b=-\frac{3}{4}$, $c=\frac{45}{8}$.

Sposób 5.

Ponieważ parabola, która jest wykresem funkcji f, przecina oś Ox układu współrzędnych w punktach A=(-5,0) i B=(3,0), więc pierwiastkami trójmianu są liczby $x_1=-5$ oraz $x_2=3$. Zatem wzór funkcji f możemy zapisać w postaci iloczynowej f(x)=a(x+5)(x-3).

Ponieważ parabola ma z prostą o równaniu y=6 dokładnie jeden punkt wspólny, więc równanie a(x+5)(x-3)=6 ma dokładnie jedno rozwiązanie. Przekształcając kolejno, otrzymujemy

$$a(x^{2} + 2x - 15) = 6$$
$$ax^{2} + 2ax - 15a = 6$$
$$ax^{2} + 2ax - 15a - 6 = 0$$

Równanie $ax^2 + 2ax - 15a - 6 = 0$ ma dokładnie jedno rozwiązanie, gdy $\Delta = 0$. Zatem

$$\Delta = (2a)^2 - 4a(-15a - 6) = 64a^2 + 24a$$
$$64a^2 + 24a = 0$$

Stąd

$$a = 0$$
 lub $a = -\frac{6}{16} = -\frac{3}{8}$

Wartość a=0 nie spełnia warunków zadania. Zapisujemy wzór funkcji kwadratowej w postaci ogólnej

$$f(x) = -\frac{3}{8}(x+5)(x-3) = -\frac{3}{8}x^2 - \frac{3}{4}x + \frac{45}{8}$$

Stąd odczytujemy wartości współczynników trójmianu: $a=-\frac{3}{8}$, $b=-\frac{3}{4}$, $c=\frac{45}{8}$.

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.)
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią matura z matematyki, poziom podstawowy, termin główny 2022.

I. Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzona dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.

- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku</u> <u>arkuszy osób ze stwierdzoną dyskalkulią</u>

Zadanie 29.

Zdający otrzymuje 1 pkt, jeżeli:

• stosuje poprawną metodę obliczenia pierwiastków trójmianu kwadratowego $3x^2 - 2x - 16$, tzn. stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki, popełniając błędy o charakterze dyskalkulicznym

ALBO

• w wyniku obliczeń otrzyma wyróżnik ujemny, ale konsekwentnie narysuje parabolę,

ALBO

• poprawnie rozwiązuje nierówność $3x^2 - 2x - 9 \ge 0$ (tzn. stosuje się punkt 6. ogólnych zasad oceniania),

ALBO

• dla wyznaczonych przez siebie pierwiastków oraz rozpatrywanego trójmianu i nierówności konsekwentnie wyznaczy zbiór rozwiązań tej nierówności.

Uwagi:

- 1. Jeżeli zdający zapisze zbiór rozwiązań nierówności w postaci sumy przedziałów otwartych, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający, rozwiązując nierówność, pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $\left(-\infty,\frac{8}{3}\right) \cup \left\langle-2,+\infty\right\rangle$, $\left(+\infty,\frac{8}{3}\right) \cup \left\langle-2,-\infty\right\rangle$, to może otrzymać **2 punkty** za całe rozwiązanie.
- 3. Nie stosuje się uwag 2. i 3. z zasad oceniania arkusza standardowego.

Zadanie 30.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze jedno z równań: $a_4 = a_1 + 3r$ lub $a_{100} = a_1 + 99r$, lub $S_{100} = \frac{a_1 + a_{100}}{2} \cdot 100$.

Zadanie 31.

Zdający otrzymuje 1 pkt, jeżeli:

przekształcając nierówność $\frac{a^2+b^2}{2}>\left(\frac{a+b}{2}\right)^2$, zastosuje wzór skróconego mnożenia na kwadrat sumy, popełniając błędy dyskalkuliczne.

Zadanie 32.

Zdający otrzymuje 1 pkt, jeżeli:

odczyta przybliżoną wartość kąta, dla którego $\, {\rm tg} \, \alpha = 2 \, (\alpha = 63^{\circ} \, {\rm lub} \, \alpha = 64^{\circ}) \, {\rm i} \, {\rm na} \, {\rm tej} \,$ podstawie oblicza $\, {\rm sin}^2 \, \alpha .$

Uwaga:

W ocenie rozwiązania zadania 32. (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi do zadania ze standardowych zasad oceniania.

Zadanie 33.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 34.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze jedynie liczbę 81 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

Zdający otrzymuje 2 pkt, jeżeli:

poprawnie wypisze (lub zaznaczy) wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, lecz popełni błąd w ich zliczeniu (|A|=3) i konsekwentnie zapisze wynik $\frac{3}{81}$.

Uwaga:

W ocenie rozwiązania zadania 34. (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwag do zadania ze standardowych zasad oceniania.

Zadanie 35.

Stosuje się zasady oceniania arkusza standardowego.