Assignment 2

1. Solve the given Travelling and Salesman Problem (TSP) using Genetic Algorithms. (Illustrate problem solving with next two generations, say generate offspring 1 and offspring 2).

- i) Create an initial population size (N = 4) for the candidate TSP solutions. Define the fitness function to minimize the travelling cost.
 - a. Apply tournament selection technique to select the parent for crossover.
 - b. Apply edge recombination crossover technique to generate offsprings.
 - c. Apply reversing/inversion mutation technique to mutate two genes of chromosome.
- ii) Create an initial population size (N = 4) for the candidate TSP solutions. Define the fitness function to minimize the travelling cost.
 - a. Apply elitism selection technique to select the parent for crossover.
 - b. Apply order crossover technique to generate offsprings.
 - c. Apply scramble mutation technique to mutate two genes of chromosome.
- 2. Solve the given Travelling and Salesman Problem (TSP) using Ant Colony Optimization. (Illustrate problem solving with next two generations)

Assume initially the pheromone value $(\tau) = 0.5$ of all the connected edges, $\alpha = 1$, $\beta = 1$, and evaporation rate $\rho = 0.6$.

- a) Consider three ants K_1 , K_2 , and K_3 randomly placed on the A, C, and F respectively. Compute the traveling path that has been chosen by ant K_1 , K_2 , and K_3
- b) Compute the pheromone deposited by each ant K_1 , K_2 and K_3 over their chosen edges.
- c) Compute the updated pheromone value over all the edges of the given graph at the end of the first iteration (evaporation rate $\rho = 0.6$).
- d) Draw the graphical representation with updated pheromone values over all the edges after the completion of each iteration.
- 3. Consider the Job Shop Scheduling Problem where you have been given n number of jobs and m number of machines. There are few constraints to the problem given below:
 - Multiple jobs on different machines can be executed simultaneously.
 - All the jobs should be executed in their given sequence only.
 - Single machine should not execute multiples job at the same time.

Jobs (J)	Machines (times)		
Sequence	S_1	S_2	S_3
J_1	M ₂ : 3	M ₁ : 3	M ₃ : 4
J_2	M ₃ : 2	M ₂ : 1	M ₁ : 4
J_3	M ₃ : 3	$M_1: 2$	M ₂ : 3

Solve the Job Shop Scheduling Problem using Ant Colony Optimization (ACO) (Illustrate the problem solving with only one iteration) Assume $\alpha = 1$, $\beta = 1$, and evaporation rate $\rho = 0.6$.

- a) Draw the graphical representations of these jobs and machines (say operations connected edges) to solve the problem using ACO. Assume initially the pheromone value $(\tau) = 0.5$ of all the connected edges)
- b) Consider three ants K_1 , K_2 and K_3 randomly placed on the J_1 , J_2 and J_3 respectively. Compute the order of executions of the jobs (say operations) that has been chosen by ant K_1 , K_2 and K_3
- c) Compute the pheromone deposited by each ant K_1 , K_2 and K_3 over their chosen jobs (say operations edges).
- d) Compute the updated pheromone value over all the edges of the given graph at the end of first iteration (evaporation rate ρ = 0.6).
- e) Draw the graphical representation of these jobs and machines (say operations) with updated pheromone values over all the edges after the completion of iteration 1.