COMP2610/6261 - Information Theory Assignmenture Peroportage to X am Help

https://eduassistpro.github.

Add We Australian National Add We Australian National Add West Part

Add West Part

Australian

National

Na

8 October, 2018

Assignment Project Exam Help

- https://eduassistpro.github.
- Summande WeChat edu_assist_pr

Channels: Recap

Source : Aditya WeChat edu_assist_presented in the phone handset and edu_assist_presented in the phone handset and

Channel: Analogue telephone line

Decoder: Telephone handset

Destination: Mark

Channels: Recap

A discrete channel Q consists of:

Assignment Project Exam Help

- an
- tranhttps://eduassistpro.github.

The channel Q can be expressed as a matrix Add $Well be expressed as a matrix <math>Q_{j,i} = P(y = b_j | edu_assist_pressed as a matrix <math>Q_{i,j} = P(y = b_j | edu_assist_pressed as a matrix <math>Q_{i,j} = P(y = b_j | edu_assist_pressed as a matrix <math>Q_{i,j} = Q_{i,j} =$

This represents the probability of observing b_j given that we transmit a_i

The Binary Noiseless Channel

One of the simplest channels is the **Binary Noiseless Channel** The preceived symbol is always equal to the transmitted symbol in there is no probability of error, hence *noiseless*.

https://eduassistpro.github.

Add WeChat edu_assist_pr

5/28

The Binary Symmetric Channel

Aash symposition and the being "flipped" to its counterpart $(0 \rightarrow 1; 1 \rightarrow 0)$

https://eduassistpro.github.

The Z Channel

Assignment Projects Exam Help

```
https://eduassistpro.github.
```

Communicating over Noisy Channels

Suppose we know we have to communicate over some channel Q and we Aast Sull Can Photoder part of the Bit send X massine sover 0.0 https://eduassistpro.github. Reliability is measured via probability of err incorrectly decading we given that input: $Add = \mathbf{S}_{in} \mathbf{s}_$

Assignment Project Exam Help

- https://eduassistpro.github.
- Summande WeChat edu_assist_pr

Mutual Information for a Channel

A lexchaptin where and a change is the country of the lips inputs X and outputs Y:

This mean https://eduassistpro.github.what was transmitted

This requires the contract pedu_assist_property and the contract peducate pedu_assist_property and the contract peducate p

A channel is only specified by its transition matr

Mutual Information for a Channel: Example

Assignment Project Exam Help

```
For noisel https://eduassistpro.github.
```

Add WeChat edu_assist_pr

Mutual Information for a Channel: Example

For binary symmetric channel with
$$f = 0.15$$
 and $\mathbf{p}_{X} = (0.9, 0.1)$ we have $\mathbf{A}_{p(Y)} = \mathbf{P}_{p(Y)} = \mathbf{P}_{p(Y)} + \mathbf{P$

https://eduassistpro.github.

and so
$$H(Y) = 0.76$$

Further, $H(Y | X = 0) = H(Y | X = 1) =$ edu_assist_pr

So, I(X; Y) = 0.15 bits

Mutual Information for a Channel: Example

Assignment Project Exam Help

For Z chan 42, H(Y|X) https://eduassistpro.github.

So, intuitively, the reliability is "noiseless > Z > symmetric"

Add WeChat edu_assist_pr

Channel Capacity

is its ca

The mutual information measure for a channel depends on the choice of input distribution \mathbf{p}_X . If H(X) is small then $I(X;Y) \leq H(X)$ is small. Assignment Project Exam Help The largest possible reduction in uncertainty achievable across a channel

The capa its input and output for any choice of input ensemble. T

Add WeChatedu_assist_pr

Later, we will see that the capacity determines the rate at which we can communicate across a channel with arbitrarily small error.

Assignment Project Exam Help

- https://eduassistpro.github.
- Add WeChat edu_assist_pr

Definition of capacity for a channel Q with inputs A_X and ouputs A_Y :

Assignment Project Exam Help How do we actually calculate this quantity?

- Det https://eduassistpro.github.

Binary Sympletic Charnet Charle Edu_assist_properties to binary symmetric chann and flip probability f. It has transition matrix

$$Q = \begin{bmatrix} 1 - f & f \\ f & 1 - f \end{bmatrix}$$

Binary Symmetric Channel - Step 1

The mutual information can be expressed as I(X;Y) = H(Y) - H(Y|X). We therefore need to compute two terms: H(Y) and H(Y|X) so we need Applicating the property of the p

Comput

- ្នំ P(y)https://eduassistpro.g/វេក្សប្លុំb.
- In general, $\mathbf{q} := \mathbf{p}_Y = Q\mathbf{p}_X$, so above calculat

Add WeChat edu_assist_pr

Using
$$H_2(q) = -q \log_2 q - (1-q) \log_2 (1-q)$$
 and letting $q = q_1 = P(y=1)$ we see the entropy

$$H(Y) = H_2(q_1) = H_2(f \cdot p_0 + (1 - f) \cdot p_1)$$

Binary Symmetric Channel - Step 1

Computing H(Y|X):

Since F(vix) is described by Proting Cwe have an Help and similarly.

H(Y|x)

So,

https://eduassistpro.github.

$$H(Y|X) = H(Y|X)P(X) = H_2(f)P(X) = H(f) P(X) = H_2(f)$$

Add WeChat edu_assist_pr

Putting it all together gives

$$I(X; Y) = H(Y) - H(Y|X) = H_2(f \cdot p_0 + (1 - f) \cdot p_1) - H_2(f)$$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0, 1]$:

Assignment Project Exam Help

Example

- BSC https://eduassistpro.github.
- BSC (f = 0.15) and $\mathbf{p}_X = (0.5, 0.5)$:
- BSC (A=0 G) and $(x \in (0.15) \approx 0.39)$ $H_2(0.22) H_2(0.15) \approx 0.1$

$$I(X; Y), f = 0.15$$

Maximise I(X; Y): Since I(X; Y) is symmetric in p_1 it is maximised when $p_0 = p_1 = 0.5$ in which case C = 0.39 for BSC with f = 0.15.

Channel Capacity: Example

https://eduassistpro.github.

Add WeChat edu_assist_pr

where equality of the last line holds for **uniform** \mathbf{p}_X

Symmetric Channels

Assignment Project Examy Help

Symme

A channe https://eduassistpro.github. containing only rows for outputs Y' has:

- Columns that are all permutations of each oth
 Rows that are all permutations of each oth
 Assist

Symmetric Channels: Examples

$$A_X = A_Y = \{0, 1\}$$
 $A_X = \{0, 1\}, A_Y = \{0, ?, 1\}$ $A_X = A_Y = \{0, 1\}$

Subse https://eduassistpro.github.

If one of our partitions has just one row, then every ele equal for the country bear mutations of the assist_preserved assist_preserved assist_preserved.

Simplest case: all rows and columns are permutations of each other

But this is not a requirement

Channel Capacity for Symmetric Channels

Assignment Project Exam Help For symmetric channels, the optimal distribution for the capacity has a simple for

Theore https://eduassistpro.github. If Q is sy over X.

Exercise And draw eChat edu_assist_pr

Computing Capacities in General

What can we do if the channel is not symmetric?

As we constitute that P_{y} or agency at the polynomial polynomial P_{x} is more challenging

What to do

- vxhttps://eduassistpro.github.
- For binary inputs, just look for stationary poi 2) i.e., where $\frac{d}{d}(t^{2})$ we attached assist_property of the state of the state
- In general, need to consider distributions that place 0 probability on one of the inputs

Computing Capacities in General

Example (Z Channel with
$$P(y = 0 | x = 1) = f$$
):

$$H(Y) = H_2(P(y=1)) = H_2(0p_0 + (1-f)p_1)$$

https://eduassistpro.github.

Add We Chat edu_assist_pr

Computing Capacities in General

Example (Z Channel):

Showed earlier that $I(X; Y) = H_2((1 - f)p) - pH_2(f)$ so solve

https://eduassistpro.github.

For
$$f = A_5$$
 equive $C = H_2(0.38) - 0.44 H_2(0.15) \approx 0.685$

Homework: Show that $\frac{d}{dp}H_2(p) = \log_2 \frac{1-p}{p}$

Why Do We Care?

We have a template for computing channel capacity for generic channels

Aut what does this tell us? Project Exam Help Hower at all, does it relate to the error probability when decoding?

Wh can

https://eduassistpro.github.

We will se

and the best achievable rate of transmission

Rates about the capacity carrent the active u_assist_preserved arbitrarily small error probabilities

Summary and Conclusions

Mutual information between input and output should be large

• Depends on input distribution Assignment Project Exam Help Capacity of the maximal possible mutual information

• Ca https://eduassistpro.github.

Add WeChat edu_assist_pr