TEORIA DOS CONJUNTOS

Conceito: Teoria dos conjuntos

A noção de conjunto, fundamental na Matemática de nossos dias, não é suscetível de definição precisa a partir de noções mais simples, ou seja, é uma noção primitiva, introduzida de modo explicito no século passado pelo matemático Russo GEORG CANTOR (1845-1918).

Intuitivamente, sob a designação de conjunto entendemos toda coleção bem definida de objetos, não importa de que natureza, considerados globalmente.

Segundo N. BOURBAK: "Um conjunto é formado de elementos suscetíveis de possuírem certas propriedades e de terem entre si, ou com elementos de outros conjuntos certas relações".

Segundo CANTOR ; "Chama-se conjunto o agrupamento num todo de objetos, bem definidos e discerníveis, de nossa percepção ou de nosso entendimento, chamados os elementos do conjunto".

Portanto, conjunto é qualquer lista ou coleção bem definida de objetos.

Exemplos

- a) O conjunto dos alunos desta sala.
- b) O conjunto dos meses do ano.
- c) O conjunto das letras da palavra MATEMÁTICA.
- d) O conjunto das vogais do alfabeto.
- e) O conjunto dos números ímpares.
- f) O conjunto dos dias da semana.
- g) O conjunto dos triângulos isósceles.

Notação dos Conjuntos

Um conjunto designa-se por letras latinas maiúsculas: A, B, C, . . . , X, Y, Z. Os objetos que constituem um conjunto denominam-se <u>elementos</u> do conjunto, e representa-se habitualmente pelas letras minúsculas : a, b, c, . . . , x, y, z. Daí elementos são os componentes (objetos, integrantes) do conjunto.

Exemplo

O conjunto A cujos elementos são: a, b, c, . . . representa-se pela notação: A = { a, b, c, . . . } que se lê "A é o conjunto cujos elementos são: a, b, c, . . . "

Observe que os elementos estão separados por vírgula e incluídos entre chaves.

Relação de Pertinência

Para indicar que um elemento x pertence ao conjunto A, escreve-se x∈A, notação derivada ao matemático Italiano Giuseppe Peano (1858-1932) e que se lê "x pertence a A".

Para indicar que um elemento x não pertence ao conjunto A, escreve-se x∉A, e que se lê "x não pertence a A".

Daí, relação de pertinência é a relação que se estabelece entre elemento e conjunto.

Representação de um conjunto

Um conjunto pode ser representado por:

Extensão: Nomeando seus elementos entre chaves e separados por virgula

Exemplos

O conjunto das vogais do alfabeto português.

$$A = \{ a, e, i, o, u \}$$

O conjunto dos números ímpares positivos

$$B = \{1, 3, 5, \dots\}$$

O conjunto dos dias da semana

C = { Segunda feira, Terça feira, . . . , Domingo}

O conjunto dos números pares positivos menores que 500

$$D = \{ 2, 4, 6, 8, ..., 498 \}$$

Professor Georges

Compreensão: O conjunto será representado por meio de uma propriedade que caracteriza seus elementos.

Exemplos

Diagrama de Venn (ou circulo de Euler)

Por um recinto plano delimitado por uma linha fechada qualquer não entrelaçada.

Exemplo

O conjunto A = { v, x, y, z } é representado por :

Conjuntos finitos e infinitos

Os conjuntos podem ser finitos ou infinitos. Intuitivamente, um conjunto é finito se consiste de um número específico de elementos diferentes; caso contrario, é infinito.

Exemplos

Seja A o conjunto dos dias da semana

A = { Segunda feira, Terça feira, . . . , Domingo}

Assim A é finito.

Seja B o conjunto dos números pares positivos

$$B = \{ 2, 4, 6, 8, \dots \}$$

Assim B é infinito.

Conjunto unitário

Chama-se conjunto unitário todo conjunto constituído de um único elemento.

Exemplo

$$A = \{ x \in |N| | x^2 - 9 = 0 \} : \Rightarrow A = \{ 3 \}.$$

$$B = \{ x \in |N| | 3 < x < 5 \} : \Rightarrow B = \{ 4 \}.$$

Conjunto vazio

É o conjunto que não contém nenhum elemento, e representamo-lo pelo símbolo Ø ou { }.

Exemplo

Seja A =
$$\{x \in |N| | x^2 = 4, x \in \text{impar}\}$$
.

Então, A é vazio, isto é, $A = \emptyset$ ou $A = \{ \}$.

Subconjuntos

Um conjunto A é um subconjunto de B e indica-se por A \subset B ou B \supset A, se e somente se, cada elemento de A também pertence a B; isto é, $x \in A$ implica $x \in b$.

Podemos também dizer que A está contido em B ou que B contém A.

Exemplo

O conjunto A = { 0, 1, 2, 3, 4 } é um subconjunto do conjunto B = { 0, 1, 2, 3, 4, 5, 6 }, pois cada elemento pertencente a A também pertence a B.

 $A \subset B \text{ ou } B \supset A$.

OBS: a relação de inclusão: ⊂, ⊃, ⊄, ⊅ (relaciona um conjunto com outro conjunto).

Conjunto das Partes

Chama-se conjunto das partes de um conjunto A, denotado por P(A), o conjunto cujos elementos são todas as partes de A, isto é: $P(A) = \{x \mid x \in A\}$.

Exemplo

A =
$$\{1, 2, 3\}$$

P(A) = $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$

Conjunto universo

Em qualquer aplicação da Teoria dos Conjuntos, todos os conjuntos em estudo são considerados como subconjunto de um conjunto fixo.

Denominamos este conjunto fixo o conjunto universo e indicamo-lo por U.

Exemplos

- a) Na geometria plana, o conjunto universo consiste em todos os pontos do plano.
- b) No estudo sobre a população humana, o conjunto universo consiste em todas as pessoas do mundo.

Operações com conjuntos

Reunião ou união de dois conjuntos

Chama-se *reunião* (ou união) de dois conjuntos A e B ao conjunto de todos os elementos que pertence a A ou a B.

Indica-se esse conjunto por A ∪ B, que se lê "A ou B".

Simbolicamente, temos: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$

Interseção de dois conjuntos

Chama-se *intersecção* de dois conjuntos A e B ao conjunto de todos os elementos que pertencem simultaneamente a A e A B.

Indica-se esse conjunto por A ∩ B, que se lê "A e B".

Simbolicamente: $A \cap B = \{x \mid x \in A \in x \in B\}$.

Professor Georges

Complementar relativo (ou diferença) de dois conjuntos

Chama-se **complementar relativo** (ou diferença) entre dois conjuntos B e A ao conjunto de todos os elementos de B, mas que não pertence a A.

Indica-se esse conjunto por B – A, que se lê "B menos A".

Simbolicamente: $B - A = \{x \mid x \in B \ e \ x \notin A\}.$

Exemplo

Encontre:

- a) A∪B
- b) A \cap B
- c) A B

Exemplo

Encontre:

a) A ∪ B

$$A \cup B = \{1, 2, 4, 5, 6, 8, 9\}$$

b) $A \cap B$

$$A \cap B = \{4, 5\}$$

$$A - B = \{2, 6, 8\}$$

Leis da álgebra dos conjuntos

LEIS	UNIÃO	INTERSEÇÃO	
IDEMPOTENTES	$A \cup A = A$	$A \cap A = A$	
COMUTATIVAS	$A \cup B = B \cup A$	$A \cap B = B \cap A$	
ASSOCIATIVAS	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	
DISTRIBUTIVAS	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	

Produto Cartesiano

Par ordenado

Intuitivamente, um par ordenado consiste de dois elementos, digamos a e b, dos quais um, digamos a, é designado como primeiro elemento e o outro como segundo elemento.

Um par ordenado é designado por: (a, b)

Dois pares ordenados (a, b) e (c, d) são iguais se, e somente se a = c e b = d Exemplo: Os pares (4, 3) e (3, 4) são diferentes.

Professor Georges

Produto Cartesiano

Def: Sejam A e B dois conjuntos não vazios, chama-se produto cartesiano de A por B ou apenas produto de A por B ao conjunto de todos os pares ordenados (x, y) tais que o primeiro elemento x pertence a A e o segundo elemento Y pertence a B.

Simbolicamente: A X B = $\{(x, y) \in A \times B \mid x \in A \in y \in B\}$

Seu nome provém do matemático R. DESCARTES que no século XVII, foi o primeiro a pesquisar o conjunto |R* X |R*

OBS: 1°) Se A = \varnothing ou B = \varnothing , por definição A X B = \varnothing , isto é A X \varnothing = \varnothing ou B X \varnothing = \varnothing .

- 2°) se A = B, então podemos escrever o produto cartesiano A X A como A2, isto é: A X A = A2.
- 3°) Sendo A e B não vazios, temos A X B ≠ B X A
- 4°) n(A X B) = n(A) . n(B).

Diagrama de Venn

Exemplo

Sejam os conjuntos $A = \{1, 2, 3\} \in B = \{3, 4\}$

Então: A X B = $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$

Plano Cartesiano

Exemplo

Sejam os conjuntos: $A = \{a, b, c\} \in B = \{1, 2, 3\}$

Então A X B = $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3), (d, 1), (d, 2), (d, 4)\}$

Tabela de duas entradas

Exemplo

Sejam os conjuntos: $A = \{1, 2\} e B = \{a, b, c\}$

Então: A X B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

A \ B	a	b	С
1	(1, a)	(1,b)	(1,c)
2	(2, a)	(2, b)	(2,c)

Professor Georges