Dynamik & Kinematik von Punktmassen (Kugeln)

Game Physics

Sommersemester 2015

Kinematik vs Dynamik

Kinematik:

Lehre der Bewegung von Punkten und Körpern im Raum,

- beschrieben durch die Größen Position, Geschwindigkeit und Beschleunigung,
- ohne die Ursachen der Bewegung (Kräfte) zu betrachten.

Dynamik:

Beschreibung der Bewegung von Körpern unter Berücksichtigung der Ursachen

Ursachen: Kräfte, Trägheit

Welche "Körper"?

Punktmassen, definiert durch die Größen

- Position $\vec{x} = [x, y, z]$
- Geschwindigkeit $\vec{v} = [v_x, v_y, v_z] = \vec{x}$
- Beschleunigung $\vec{a} = [a_x, a_y, a_z] = \dot{\vec{v}} = \ddot{\vec{x}}$
- Masse
- Kugeln (idealisiert keine Rotation)
 - Position (des Mittelpunktes)
 - Geschwindigkeit, Beschleunigung
 - Radius
 - Masse $m = \rho \cdot V = \rho \cdot \frac{4\pi}{3} \cdot r^3$

Kinematik & Dynamik von Punktmassen

• Newtonsche Mechanik : $\vec{F} = m \cdot \vec{a}$

- Wirkt auf die Punktmasse die Kraft \vec{F} , so erfährt sie eine Beschleunigung $\vec{a} = \vec{F}/m$
- Wichtige Kräfte
 - Gravitationskraft zweier (Punkt-)Massen

$$\vec{F}_{1} = const \cdot \frac{m_{1} \cdot m_{2}}{\|\vec{x}_{2} - \vec{x}_{1}\|_{2}^{2}} \cdot \frac{\vec{x}_{2} - \vec{x}_{1}}{\|\vec{x}_{2} - \vec{x}_{1}\|_{2}}$$

$$\vec{F}_{1} = -const \cdot \frac{q_{1} \cdot q_{2}}{\|\vec{x}_{2} - \vec{x}_{1}\|_{2}^{2}} \cdot \frac{\vec{x}_{2} - \vec{x}_{1}}{\|\vec{x}_{2} - \vec{x}_{1}\|_{2}}$$

$$\vec{F} = [0,0,-m \cdot g]^T$$
, $\left(g \approx 9.81 \frac{m}{s^2}\right)$

Bestimmung der Bahn eines Teilchens/einer Kugel

- Kein Kontakt mit Umgebung bzw. anderen Teilchen:
 - → freie Bewegung
- Falls Kontakt entsteht
 - Kollisionserkennung (collision detection):
 - Kollisionsbehandlung (collision response)

Freie Bewegung von Massepunkten/Kugeln

- Kraft bekannt → Beschleunigung bekannt (Newton)
- Beschleunigung = 2.-te Ableitung \Rightarrow "integrieren" genauer: Differentialgleichung lösen $\dot{\vec{x}} = \vec{v}$, $\vec{x}(t_0) = \vec{x}_0$ $\dot{\vec{v}} = \vec{a} = \vec{F}/m$, $\vec{v}(t_0) = \vec{v}_0$
- i.A. mit numerischen Verf. lösen, z.B. Euler

$$\begin{split} \vec{x}(t_{i+1}) &= \vec{x}(t_i) + (t_{i+1} - t_i) \cdot \vec{v}(t_i) \\ \vec{v}(t_{i+1}) &= \vec{v}(t_i) + (t_{i+1} - t_i) \cdot \vec{a}(t_i) = \vec{v}(t_i) + (t_{i+1} - t_i) \cdot \vec{F}(t_i) / m \end{split}$$

- Spezialfall: Kraft konstant, dann exakt integrierbar: $\vec{a} = \vec{F}/m$ $\vec{v}(t) = \vec{v}_0 + (t t_0) \cdot \vec{a}, \ \vec{x}(t) = \vec{x}_o + (t t_0) \cdot \vec{v}_0 + \frac{(t t_0)^2}{2} \cdot \vec{a}$
 - → die Bahnen sind Parabeln!!

Interaktion bei Kontakt

- Bewegung von Objekten wird wesentlich beeinflusst von Kontakten
 - Interaktionen mit der (statischen) Umgebung
 - Interaktion mit anderen (bewegten) Objekten
- Dies erfordert zwei Schritte
 - Kollisionserkennung
 - Kollisionsbehandlung
- Im folgenden werden starre Objekte betrachten, d.h.
 Objekte, die sich nicht verformen hauptsächlich Kugeln

- Gibt es n Objekte müssen (theoretisch) in jedem
 Zeitschritt n² Tests auf Kollision durchgeführt werden
 → erfordert effiziente Verfahren
- Effizienzsteigerung durch bounding volumes mit einfacher Geometrie
 - potentielle Kandidaten f
 ür Kollisionen
 - schneller Test der Bounding Volumes
 - ggf auch Bounding Volume Hierarchien
 - Nur Objekte deren bounding volumes kollidieren können kollidieren diese Kandidatenpaare genauer untersuchen

Typen von Bounding Volumes

 zwei Objekte können sich nur überschneiden, wenn sich auch deren Bounding Volumes überschneiden

bounding spheres

Bestimmung einer (nicht optimalen) bounding sphere [Anm: der Algorithmus von Welzl liefert die optimale]

$$- \ \, \text{Bestimme} \quad x_{\text{min}}, \, P_{x,\text{min}} \,, \quad x_{\text{max}}, \, P_{x,\text{max}} \\ y_{\text{min}}, \, P_{y,\text{min}} \,, \quad y_{\text{max}}, \, P_{y,\text{max}} \\ z_{\text{min}}, \, P_{z,\text{min}} \,, \quad z_{\text{max}}, \, P_{z,\text{max}} \\$$

- Initiale Kugel : Mittelpunkt $(P_{o,min} + P_{o,max})/2$ Radius $||P_{o,min} - P_{o,max}||/2$
- Sukzessives Anpassen der initialen Kugel (für jeden äußeren Punkt)

axis aligned bounding box (AABB)

- kompakte Darstellung: $x_{min}, x_{max}, y_{min}, y_{max}, z_{min}, z_{max}$,
- einfache Überschneidungstests (s.u.)
- einfach zu bestimmen
 - x_{min} = min {x-Wert aller Eckpunkte}
 x_{max} = max {x-Wert aller Eckpunkte}
 - ...
- muss bei Rotation angepasst werden
- oftmals viel größer als Objekt

- Überschneidungstest für AABBs
 - Reduktion auf 1D-Probleme:
 - Sowohl die x-, die y-, und die z-Intervalle müssen sich überschneiden

- Schnitt-Test für <u>alle</u> 1D-Intervalle $[a_i, b_i]$: $\cap [a_i, b_i] = \emptyset$; genau dann wenn $\max \{a_i\} > \min\{b_i\}$

- Überschneidungstest für AABBs
 - -n Objekte: Welche überschneiden sich? (Brute force: n^2 Tests)
 - Besseres Verfahren: Reduktion auf 1D-Probleme (wie oben):
 - Sowohl die x-, die y-, **und** die z-Intervalle müssen sich überschneiden
- Test für 1D-Intervalle $I_i = [a_i, b_i]$ $(1 \le i \le n)$:
 - Ordne die Menge $M = \{a_i\} \cup \{b_i\} = \{(m_1, index, typ), (m_2, index, typ), ...\}$
 - Verwalte Intervall Liste $\,L\,$

```
• Initialisiere L = [\ ]; for j = 1 \dots 2n do if \operatorname{typ}(m_j) = b // m_j ist eine Endpunkt remove I_{index} from L; else // m_j ist eine Anfangspunkt I_{index} schneidet jedes Intervall I \in L; add I_{index} to L; end if end do;
```

- Überschneidungstest für zwei Kugeln:
- Mittelpunkte x_1 , x_2 und Radien r_1 , r_2 Schnitt genau dann wenn $||x_1-x_2||^2 \le (r_1+r_2)^2$
- Nun betrachten wir n Kugeln:
 Welche überschneiden sich? Brute force: n² Tests.

- Besser: Packe die Kugeln in AABBs und berechne die potentiellen Kandidaten wie oben erläutert.
 - Abmessung der AABB: $[x_i r_i, x_i + r_i] \times [y_i r_i, y_i + r_i] \times [z_i r_i, z_i + r_i]$

(object) oriented bounding box (OBB oder OOBB)

- passt sich besser dem Objekt an
- bei rotierenden Objekten: einfach mit rotieren
- aufwändigere Bestimmung (s.u.)
- aufwändigere Tests (wird nicht behandelt, aber machbar)

Bestimmung OBBs

- Eckpunkte seien V_i
- bestimme Schwerpunkt (Mittelpunkt) aller Punkte
- Balanciere die Punkte und bestimme Kovarianzmatrix $\mathbf{K} = \sum \mathbf{W}_i \mathbf{W}_i^T$
- bestimme Eigenvektoren von K (K symmetrisch $\rightarrow \dots$)
- Eigenvektor a zu größtem Eigenwert ist "Hauptrichtung"
- verwende (normierte) Eigenvektoren a,b,c als Richtung der OBB
- Box so anpassen, dass alle Punkte enthalten sind
 - \rightarrow neuer Mittelpunkt, Kantenlängen α, β, γ

- Kugel mit Mittelpunkt x und Radius r trifft auf Ebene
- Bewegte Kugel vom Radius r trifft im Zeitintervall $[t_i, t_{i+1}]$ auf die (ebene) Wand $\{(x,y,z): n_x x + n_y y + n_z z = d\}$ $n = (n_x, n_y, n_z)^T$ ist die äußere Normale
- Position zum Zeitpunkt $t_i : x_i$ es gelte $n \circ x_i > d+r||n||$
- Position zum Zeitpunkt $t_{i+1}: x_{i+1}$
 - falls $n \circ x_{i+1} > d+r||n||$ keine Kollision
 - falls $\boldsymbol{n} \circ \boldsymbol{x}_{i+1} \leq d + r||\boldsymbol{n}||$

dann Kollision; Zeitpunkt der Kollision (lineare Interpolation)

$$t_{coll} = \frac{d + r \|\boldsymbol{n}\| - \boldsymbol{n} \circ \boldsymbol{x}_{i+1}}{\boldsymbol{n} \circ \boldsymbol{x}_{i} - \boldsymbol{n} \circ \boldsymbol{x}_{i+1}} \cdot t_{i} + \frac{\boldsymbol{n} \circ \boldsymbol{x}_{i} - d - r \|\boldsymbol{n}\|}{\boldsymbol{n} \circ \boldsymbol{x}_{i} - \boldsymbol{n} \circ \boldsymbol{x}_{i+1}} \cdot t_{i+1}$$

Problem: Treffen sich die beiden Kugeln?
 Wenn ja,

- wann : $t_{coll} = ?$

- Kontaktpunkt : $x_{coll} = ?$

$$\boldsymbol{x}_1$$
, \boldsymbol{v}_1 , r_1

• Einfacher Fall: $r_1 = 0$, $v_2 = 0$:

- kein Treffer wenn $(x_2 x_1) \circ v_1 < 0$
- kein Treffer wenn $(x_2 x_1) \circ (x_2 x_1) \frac{[(x_2 x_1) \circ v_1]^2}{v_1 \circ v_1} > r_2^2$
- sonst kleinere Lösung der quadratischen Gleichung

$$\begin{aligned} ||x_1 + t v_1 - x_2||^2 &= r^2 \text{ . Man erhält:} \\ t_{coll} &= \frac{v_1 \circ (x_2 - x_1) - \sqrt{\left[v_1 \circ (x_1 - x_2)\right]^2 - {v_1}^2 \cdot \left[(x_1 - x_2)^2 - r^2\right]}}{v_1^2} \\ x_{coll} &= x_1 + t_{coll} \cdot v_1 \end{aligned}$$

- Allgemeiner Fall kann auf den speziellen Fall zurück geführt werden:
- Betrachte das Problem
 - Kugel 1: x_1 , $v_1 v_2$, 0
 - Kugel 2: x_2 , **0**, $r_1 + r_2$

falls Kollision, dann t_{coll} und x_{coll} bestimmen.

Für das ursprüngliche Problem erhält man

$$\begin{split} &\boldsymbol{t}_{coll} = \boldsymbol{t}_{coll} \\ & \left[\boldsymbol{x}_1 \right]_{coll} = \boldsymbol{x}_{coll} - \boldsymbol{t}_{coll} \cdot \boldsymbol{v}_2 \\ & \left[\boldsymbol{x}_2 \right]_{coll} = \boldsymbol{x}_2 + \boldsymbol{t}_{coll} \cdot \boldsymbol{v}_2 \\ & \boldsymbol{x}_{coll} = \frac{r_2}{r_1 + r_2} \cdot \left[\boldsymbol{x}_1 \right]_{coll} + \frac{r_1}{r_1 + r_2} \cdot \left[\boldsymbol{x}_2 \right]_{coll} \end{split}$$

Kollisionsbehandlung: Kugel trifft Ebene

- Elastischer Rückstoß: Spiegelung der Geschwindigkeit:
- vorher v, nachher $w: w = v 2[v \circ \vec{n}] \cdot \vec{n}$ (dabei $||\vec{n}|| = 1!$)

Kollisionsbehandlung: Kugel trifft Ebene

Andere Sichtweise: Zerlege Geschwindigkeit in normalen

und tangentialen Anteil:
$$v_{normal} = \frac{v \circ \vec{n}}{\vec{n} \circ \vec{n}} \cdot \vec{n}$$
, $v_{tang} = v - v_{normal}$

- Dann $v = v_{tang} + v_{normal}$, $w = v_{tang} v_{normal}$.
- Modifikation: mit Dämpfung α und Reibung μ :

$$\mathbf{w} = (1 - \mu)\mathbf{v}_{tang} - (1 - \alpha)\mathbf{v}_{normal} \quad (0 \le \alpha, \mu \le 1)$$

Kollisionsbehandlung: Kollision zweier Kugel

Zwei Kugeln mit Masse m₁ bzw. m₂ und Geschwindigkeit v₁ bzw. v₂ kollidieren.
 Welche Geschwindigkeit w₁ bzw. w₂ haben sie nach der Kollision?

Impulserhaltung

$$m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 = m_1 \mathbf{w}_1 + m_2 \mathbf{w}_2$$

- Energieerhaltung $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1w_1^2 + \frac{1}{2}m_2w_2^2$
- Im 1D Fall (skalare Geschwindigkeit) sind dies zwei Gleichungen für die beiden Geschwindigkeit w_1 und w_2 nach der Kollision

Kollisionsbehandlung: Kollision zweier Kugel

Impulserhaltung

$$m_1 \boldsymbol{v}_1 + m_2 \boldsymbol{v}_2 = m_1 \boldsymbol{w}_1 + m_2 \boldsymbol{w}_2$$

Energieerhaltung

$$\frac{1}{2}m_1 \mathbf{v}_1^2 + \frac{1}{2}m_2 \mathbf{v}_2^2 = \frac{1}{2}m_1 \mathbf{w}_1^2 + \frac{1}{2}m_2 \mathbf{w}_2^2$$

Lösung im 1D Fall: (triviale Lösung: $w_1 = v_1$ und $w_2 = v_2$)

$$\mathbf{w}_{1} = \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \cdot \mathbf{v}_{1} + \frac{2m_{2}}{m_{1} + m_{2}} \cdot \mathbf{v}_{2}, \quad \mathbf{w}_{2} = \frac{2m_{1}}{m_{1} + m_{2}} \cdot \mathbf{v}_{1} + \frac{m_{2} - m_{1}}{m_{1} + m_{2}} \cdot \mathbf{v}_{2}$$

Spezialfall $m_1 = m_2$: $w_1 = v_2$, $w_2 = v_1$

Kollisionsbehandlung: Kollision zweier Kugel

Nun zum 2D bzw. 3D-Fall (sh oben)

$$\begin{aligned} & \left[\boldsymbol{x}_{1} \right]_{coll} = \boldsymbol{x}_{coll} - t_{coll} \cdot \boldsymbol{v}_{2} \\ & \left[\boldsymbol{x}_{2} \right]_{coll} = \boldsymbol{x}_{2} + t_{coll} \cdot \boldsymbol{v}_{2} \\ & \boldsymbol{x}_{coll} = \frac{r_{2}}{r_{1} + r_{2}} \cdot \left[\boldsymbol{x}_{1} \right]_{coll} + \frac{r_{1}}{r_{1} + r_{2}} \cdot \left[\boldsymbol{x}_{2} \right]_{coll} \end{aligned}$$

- Bestimme zum Zeitpunkt der Kollision die Kollisions-Ebene:
 - Normale: $\vec{n} = [x_1]_{coll} [x_2]_{coll}$
 - Zerlege v_1 und v_2 in tangential und normalen Anteil
 - Transformiere $[v_1]_{nor}$ und $[v_2]_{nor}$ gemäß den 1D-Regeln (s.o.) $\rightarrow [w_1]_{nor}$ und $[w_2]_{nor}$

Elastischer Stoß zweier Kugeln - Beispiele

Elastischer Stoß zweier Kugeln - Beispiele

