粒子的散射

库仓散射公式
$$b = \frac{Ze^2}{4\pi\varepsilon_0} \cdot \frac{1}{\frac{1}{2}mv^2} \cdot \cot\frac{\theta}{2}$$
 金属箔 $\frac{\mathrm{d}n}{n} = \frac{NtA\,\mathrm{d}\sigma}{4}$, $\mathrm{d}\sigma = 2\pi b\,\mathrm{d}b$

量子力学初步

定态薛定谔方程
$$Hu=Eu,\ H=-\frac{\hbar^2}{2m}\nabla^2+V$$

不确定性原理 $\Delta p\Delta x=\Delta E\Delta t\geq\frac{\hbar}{2}$

原子的能级和辐射

里德伯常数
$$R = \frac{R_{\infty}}{1 + \frac{m}{M}}$$

	1V1
线系	波数 (氢原子)
赖曼系	$\tilde{\nu} = R_H \left[\frac{1}{1^2} - \frac{1}{n^2} \right]$
巴耳末系	$\tilde{\nu} = R_H \left[\frac{1}{2^2} - \frac{1}{n^2} \right]$
帕邢系	$\tilde{\nu} = R_H \left[\frac{1}{3^2} - \frac{1}{n^2} \right]$
布喇开系	$\tilde{\nu} = R_H \left[\frac{1}{4^2} - \frac{1}{n^2} \right]$
普丰特系	$\tilde{\nu} = R_H \left[\frac{1}{5^2} - \frac{1}{n^2} \right]$

波数
$$\tilde{\nu} = Z^2 R \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

4 原子的精细结构

线系	别名	跃迁
主线系	主线系	$P \rightarrow S$
第二辅线系	锐线系	$S \rightarrow P$
第一辅线系	漫线系	$D \rightarrow P$
伯格曼系	基线系	$F{ ightarrow}D$

选择定则

LS 耦合	jj 耦合
$\Delta S = 0$	$\Delta j_1 = 0, \pm 1$
$\Delta L = 0, \pm 1$	$\Delta j_2 = 0, \pm 1$
$\Delta J = 0, \pm 1 \ (0 \to 0)$	$\Delta J = 0, \pm 1 \ (0 \nrightarrow 0)$

泡利不相容原理: nsns 的三重态不存在

洪特定则: 先看 S 再看 L、J, S、L 大能级低, J 大能 级低的是倒转次序

朗德间隔定则:间隔的比例等于较大的 J 的比

磁场中的原子

玻尔磁子
$$\mu_B = \frac{\hbar}{2m}e$$

 朗徳 g 因子 $g = 1 + \frac{-L(L+1) + S(S+1) + J(J+1)}{2J(J+1)}$
 跃迁洗择定则

- $\Delta M = 0$ 产生 π 线,沿着磁场方向看不到
- $\Delta M = \pm 1$ 产生 σ 线,沿着磁场方向看得到

跃迁能量
$$\Delta E = (M_2g_2 - M_1g_1) \mu_B B$$
 波数 $\tilde{\nu} = \frac{\Delta E}{hc} = (M_2g_2 - M_1g_1) \frac{eB}{4\pi mc}$ 因此定义 $L = \frac{eB}{4\pi mc}$

原子的壳层结构

对某个 n, l 可以取值 $0, \ldots, n-1$, 一共 n 个 对某个 l, m_l 可以取值 -l,...,+l, 一共 2l+1 个 对某个 m_l , m_s 可以取值 -1/2, +1/2, 一共 2 个 n 壳层一共能容纳 $2n^2$ 个电子

分子物理

振动光谱 (近红外)

$$\tilde{\nu} = \frac{E_{v2} - E_{v1}}{hc} = \frac{f}{c} \quad f = \frac{1}{2\pi} \sqrt{\frac{K}{M}}$$

转动光谱 (远红外)

$$p = \sqrt{J(J+1)}\hbar$$
 $E_r = \frac{1}{2}I\omega^2 = \frac{p^2}{2I}$

定义
$$B = \frac{h}{8\pi^2 I_c}$$
 则 $\tilde{\nu} = 2BJ_2$

振动转动光谱(近红外

$$\tilde{\nu} = \begin{cases} \tilde{\nu}_0 + 2BJ_2 & \Delta J = +1 \\ \tilde{\nu}_0 - 2BJ_1 & \Delta J = -1 \end{cases} \qquad \tilde{\nu}_0 = \frac{E_{v2} - E_{v1}}{hc}$$