University of Trieste Master in Data Science and Scientific Computing Master Thesis

An information-theoretic investigation into epigenetic regulation of gene expression

Candidate: Davide Scassola Supervisors: Guido Sanguinetti, Matteo Marsili

Outline

- 1. Epigenetics and methylation
- 2. Application of Multi-Scale Relevance to Methylation Data
- 3. Relationship with Gene Expression

Genetics Recap

In each cell of an individual the same copy of the genetic information is stored in DNA

DNA encodes information for the synthesis of useful molecules: RNAs and proteins

Genetics Recap

- About 98,5% of the genome does not encode proteins
- The remaining regions are the genes

non coding dna can have a function

Epigenetics

Cells have the same DNA but express genes differently

 Epigenetics: heritable molecular changes that do not involve DNA base sequence

DNA Methylation

- It's the addition of a methyl group to a base
- In humans it mainly involves cytosines of CpG dinucleotides

Methylation Data

 "Averaged" data from a sample of cells

DNA Methylation regulatory role

- Poor understanding of its influence on gene expression
- Common practice is to analyze mean methylation level for a region
- Just a slight negative correlation with gene-expression "genome-wide"
- Recent studies are focusing on more complex features (Kapourani and Sanguinetti 2016)

Problem statement

How much does methylation influences gene expression?

Does methylation patterns encode useful information?

We explored the application of MSR to dna methylation data

Multi Scale Relevance

- MSR is a recently developed statistic: $\mathbb{R}^n \to \mathbb{R}$
- Motivations rooted in Information Theory
- measure of "information" based on richness of density of states at different scales

MSR on Methylation Data

→ MSR on indexes of methylated (or unmethylated) CpGs

Genome-wide application

†autocorrelation

Positive autocorrelation

Negative autocorrelation

****entropy

Correlation with expression (at gene bodies)

Models (for gene bodies)

Expression is generally higher where:

- Neat separation between methylated and unmethylated regions
- Homogeneity between cells
- Coexistence of methylated and unmethylated regions

Coherent with recent research

Results

- We found methylation characteristics that seem determinant in gene expression
- Considerable improvement with respect to the model that only consider mean methylation level and CpG density
- Models hold for arbitrary regions

Limits

- Focus on correct functional region could be needed
- Not purely epigenetic study
- This application of MSR was not more useful in prediction than some a posteriori extracted features

H1 true: -3.43, predicted: 4.06

H1 true: 6.74, predicted: -3.73

Possible improvements

- Consider larger areas around genes
- More detailed description
- Investigate the role of these features in tissue-specific genes
- Apply MSR in a different way (genomic positions)

Thank you!

- [1] Moore, L. D., Le, T., and Fan, G. (2013). Dna methylation and its basic function.
- [2] Cubero, R. J., Marsili, M., and Roudi, Y. (2020). Multiscale relevance and informative encoding in neuronal spike trains.
- [3] Cubero, R. J., Jo, J., Marsili, M., Roudi, Y., and Song, J. (2019). Statistical criticality arises in most informative representations.
- [4] Marsili, M., Mastromatteo, I., and Roudi, Y. (2013). On sampling and modeling complex systems
- [5] Kapourani, C.-A. and Sanguinetti, G. (2016). Higher order methylation features for clustering and prediction in epigenomic studies.

MIROSOME, Luisa Lente