

AD-A061 061 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/6 14/4
ANALYTICAL HAZARD REPRESENTATION FOR USE IN RELIABILITY, MORTAL--ETC(U)
AUG 78 D P GAVER, M ACAR

UNCLASSIFIED

NPS55-78-017

NL

END
DATE
FILED
1-79
DDC

ADA061061

DDC FILE COPY
DDC

NPS55-78-017

NAVAL POSTGRADUATE SCHOOL

Monterey, California

D D C
REFURBED
NOV 13 1978
REGULATED
B

6

9 Technical rept.

14 NPS55-78-017

10

11 August 1978

12 49 p.

16 RR 01405

17 RR 0140501

ANALYTICAL HAZARD REPRESENTATION FOR USE IN RELIABILITY, MORTALITY, AND SIMULATION STUDIES. Part I.
by D. P. Gaver and M. Acar

Approved for public release; distribution unlimited.

Prepared for:
Chief of Naval Research, Arlington, Va. 22217

251 450
78 10 30 045

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral T. F. Dedman
Superintendent

J. R. Borsting
Provost

Research supported in part by the National Science Foundation
under Grant MCS-77-07587 and the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

D. P. Gaver
D. P. Gaver, Professor
Department of Operations Research

M. Acar
M. Acar
Department of Operations Research

Reviewed by:

Michael G. Sovereign
Michael G. Sovereign, Chairman
Department of Operations Research

Released by:

William M. Tolles
William M. Tolles
Dean of Research

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NPS55-78-017	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Analytical Hazard Representation for Use in Reliability, Mortality, and Simulation Studies Part 1.		5. TYPE OF REPORT & PERIOD COVERED Technical
7. AUTHOR(s) D. P. Gaver and M. Acar		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, Ca. 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N, RR014-05-01, NR-042-363; N 0001478WR80009
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217		12. REPORT DATE August 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 48
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) Unclassified
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Reliability, availability, hazard, data analysis, simulation.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A simple parametric model is proposed to represent data of non-standard distributional form. An example is the "bath tub" hazard of reliability. The application of the approach to simulation and to data analysis is discussed and will be further explored in later reports.		

TABLE OF CONTENTS

	Page
I. INTRODUCTION	1
II. SYSTEM FAILURE PATTERNS	2
III. MODELS FOR THE HAZARD FUNCTION	5
IV. MATHEMATICAL PROPERTIES OF THE "BATHTUB" HAZARD MODEL	10
V. MATHEMATICAL PROPERTIES OF THE DECREASING FAILURE RATE MODEL	18
VI. AN ALTERNATIVE "BATHTUB" HAZARD REPRESENTATION	20
VII. OBTAINING SPECIFIED HAZARD BEHAVIOR BY SIMPLE SAMPLING	23
VIII. CONCLUSION	26
REFERENCES	27

ACCESSION for	
NTIS	White Cratton
DOC	Buff Section <input checked="" type="checkbox"/>
UNANNOUNCED <input type="checkbox"/>	
JUSTIFICATION	
BY	
INFORMATION AVAILABILITY CARD	
C.I.D. 4000 1000/00 5000	
A	

ANALYTICAL HAZARD REPRESENTATIONS FOR USE
IN RELIABILITY, MORTALITY, AND SIMULATION STUDIES

Part I

D. P. Gaver *

M. Acar

I. INTRODUCTION

The failure rate function, or hazard function (hazard for short) may be described as the conditional probability of an equipment's failing at operating age t , having survived to that age. The reliabilities of a variety of electronic and mechanical items are conveniently and naturally described in terms of the appropriate hazard function, and so is the longevity of human beings. The term force of mortality replaces hazard in the latter context.

This paper is devoted to a study of several simple analytical representations for hazard functions. These representations are in turn based upon representations of random variables having certain required properties, in terms of others having familiar distributions--in particular the exponential. Similar ideas are due to Tukey (1976) and recently have been examined by Parzen (1978). The hazard representations proposed are quite

* Research sponsored by the Office of Naval Research.

expeditiously used in simulation studies, e.g. of system reliability or availability in terms of component lifetimes. They may also be used in data analysis studies, in order to parsimoniously describe data sets in terms of perturbations of convenient and familiar standard distributions. Their use in data analysis and simulation is also described in Gaver, Lavenberg, and Price (1976), and in Gaver and Chu (1977).

II. SYSTEM FAILURE PATTERNS

It is plausible to think that the time series of failures in a system may involve these stages.

1. Early failures. There may be a relatively large number of failure soon after a system is introduced because of design defects, production errors, or errors stemming from maintenance personnel inexperience. This situation is characterized by a hazard function that is initially large, but that decreases with time. "Infant mortality" is in evidence.
2. Random Failures. Following the early failure period there may be a period during which failures occur at an essentially constant rate for a rather prolonged time. During this period the hazard function is nearly constant, so the times between failures are close to being exponentially distributed. The effect of age or wearout is not yet apparent.

3. Wearout Failures. Eventually following the period during which a constant hazard is evident there is likely to be a period of ever-increasing failure rate caused by wearout of system components.

A graphical representation of a hazard function that exhibits the behavior described is given below. Note that it has the legendary "bath tub" shape.

Some comments on the above follow:

A. The term "failure" may refer to an event that is analogous to human death, after which the entire system is replaced. On the other hand repair or component replacement may occur after failure; the system is only repaired, not entirely replaced. In the former case, a hazard function of the kind depicted in Figure 1 applies to each system event ("death"); when the system is installed (or is born) that hazard operates starting from scratch at $t = 0$ until system failure (human death, for instance) after which a similar hazard goes into effect, starting once again from zero. In the latter case, in which repair of a component occurs, a hazard function like that of Figure 1 applies at $t = 0$, but after the first event ("failure") at t_1 , a repair action is accomplished. The same hazard operates for $t \geq t_1$ until the next event at $t_2 > t_1$, and so on. Intermediate situations may be envisioned, in which after event n at t_n the hazard governing system failure $n+1$ starts at $t_n - \tau_n$, $0 < \tau_n < t_n$.

B. Although there is reason to assume that hazards somewhat like that of Figure 1 occur in general for systems, the possibility exists that the system hazard is "bumpy" because wearout failures of components or subsystems may well occur at intermediate times.

C. If the theory is applied to systems with little or no wearout propensity, as should be the case when dealing with computer software modules, then the hazard function may well exhibit the initial falloff of Figure 1 but not the rise at later times. In fact, a constant decline as bugs are found and removed could be (optimistically) anticipated for software. The right-hand side of the bath tub vanishes, and the picture is that of a ski slope.

III. MODELS FOR THE HAZARD FUNCTION

In this section mathematical models are presented for the failure rate or hazard function. Recall that the hazard may be defined as follows.

Definition. Suppose that the time to failure, X , is a random variable with distribution function $F(x)$, where $F(0) = 0$; the latter possesses the density function $f(x)$, $f(x) = dF/dx$, such that for any positive x ,

$$F(x) = \int_0^x f(y)dy . \quad (3.1)$$

Then the hazard function, or failure rate at age x , is given by

$$h(x) = \frac{f(x)}{1 - F(x)} . \quad (3.2)$$

The interpretation of $h(x)dx$ is that it is the conditional probability of failure in the interval $(x, x + dx)$, given that there has been no failure up to age x .

Express the hazard as

$$h(x) = \frac{dF/dx}{1 - F(x)}$$

$$h(x)dx = \frac{dF}{1 - F(x)} = - d\{\log[1 - F(x)]\},$$

it then follows after integration that

$$F(x) = 1 - \exp\left[- \int_0^x h(y)dy\right]. \quad (3.3)$$

Thus if the hazard is specified, so is the distribution function, and conversely.

Note that if

$$h(x) = \lambda > 0, \quad 0 \leq x$$

then

$$F(x) = 1 - e^{-\lambda x}, \quad 0 \leq x, \quad (3.4)$$

so a constant hazard function implies the exponential distribution of the random variable X , and conversely.

Obviously a constant hazard representation does not describe the bath tub hazard shape of Figure 1, nor does it represent a situation in which hazards decline, possibly because design defects or "bugs" are occasionally removed. Here are two hazard representations likely to be useful for such purposes.

(1) A Bath tub Model

Define the random variable Z in terms of X , X being exponentially distributed with mean λ^{-1} , as follows:

$$Z = G(X) = XL(X) R(X)$$

or

$$= X\phi(X), \quad \phi(X) = L(X)R(X)$$

where

- $L(x)$ is convex in x , $L(0) < 1$, $L(\infty) = 1$,
- $R(x)$ is concave in x , $R(0) = 1$, $R(0) > R(\infty)$.

Then the hazard of Z may be made to exhibit a bath tub shape, as in Figure 1, by proper choice of the function L and R .

Example. Suppose

$$\begin{aligned} L(x) &= \frac{\alpha x}{1 + \alpha x} \quad \alpha > 0, \quad 0 \leq x \\ R(x) &= \frac{1}{1 + \beta x} \quad \beta > 0, \end{aligned} \tag{3.6}$$

Clearly

$$z = xL(x) \quad R(x) = x \frac{\alpha x}{1 + \alpha x} \cdot \frac{1}{1 + \beta x} = \frac{\alpha x}{1 + \alpha x} \cdot \frac{x}{1 + \beta x}$$

is a monotonically increasing function of x . Furthermore, choose α large (e.g. $\alpha = 10$) and β small (e.g. $\beta = 10^{-3}$). Then it is intuitively clear that (i) small x -values transform into even smaller z -values, e.g. $x = 1$ corresponds to $z = 0.91$ and $x = 2$ corresponds to $z = 1.90$, but (ii) this effect dwindles as x increases, so $x = 10$ corresponds to $z = 9.8$ and $x = 50$ to $z = 47.5$ and the z -values closely resemble the x 's percentage-wise, but (iii) as x increases still further the z 's do not follow suit: $x = 10^3$ corresponds to $z = 500$. This suggests that if x is a value assumed by X , that Z shares the properties of X in mid-range, i.e. for intermediate x -values, but differs from X by having a disproportionate probability of assuming small values (near zero), or large values (near, but less than, $1/\beta$). Thus the hazard of Z will appear to be a "bath tubbed" version of X , particularly if X is exponential.

We focus attention on the representation (3.6) in what follows, mainly for analytical and computational convenience. Of course there are many other possibilities, such as

$$L(x) = 1 - e^{-\alpha x}$$

$$R(x) = e^{\beta x}; \quad (3.7)$$

these latter may be adjusted to provide sharper-edged bath tubs than can (3.6), but iteration of (3.6) may be induced to accomplish the same purpose.

(2) A Decreasing Failure Rate Model

Define the random variable W in terms of X , X again being exponential with parameter λ^{-1} :

$$W = XT(X) \quad (3.8)$$

where $T(x)$ is an increasing function of x , $L(0) = 1$. Then the hazard may be made to exhibit a decreasing behavior.

Example. Suppose

$$T(x) = 1 + cx, \quad c > 0, 0 \leq x. \quad (3.9)$$

Then

$$z = x(1 + cx) \quad (3.10)$$

is monotonic, and small x -values lead to comparable z -values (especially when c is small), but larger x -values are "amplified" by $1 + cx$ to yield increasingly large z -values.

Attention will be focused upon (3.9), although other possibilities exist that accomplish the same purpose, namely that of lengthening the right tail of the distribution of X (simulating outliers, for instance) while leaving the body of the distribution virtually unchanged.

IV. MATHEMATICAL PROPERTIES OF THE "BATH TUB" HAZARD MODEL

Various analytical properties of the previously described models will now be recorded. These provide useful insights into the behavior of the random variables Z and the underlying (generating) variables X .

A. Monotonicity; Quantiles

It is convenient to focus on monotonic increasing transformations, i.e. if

$$z = G(x) = x\phi(x) \quad (4.1)$$

then in order that the above function be monotonically increasing, $dz/dx > 0$. Observe that logarithmic differentiation of (4.1) provides

$$\frac{dz}{z} = \frac{dx}{x} + \frac{\phi'(x)}{\phi(x)} dx \quad (4.2)$$

and thus $dz/dx > 0$ if and only if

$$\frac{1}{x} + \frac{\phi'(x)}{\phi(x)} > 0 \quad (4.3)$$

Alternatively, the condition is, in terms of $L(x)$ and $R(x)$,

$$\frac{1}{x} + \frac{L'(x)}{L(x)} + \frac{R'(x)}{R(x)} > 0 \quad (4.4)$$

It is easily seen that the important example (3.6),

$$\phi(x) = \frac{\alpha x}{1 + \alpha x} \cdot \frac{1}{1 + \beta x},$$

yields a monotonic relationship between z and x . The fact that this transformation can be easily and explicitly inverted (solved for x in terms of z) will be exploited subsequently.

Of course if $z(x)$ is monotonically increasing then so is $x(z)$, the inverse function. The events $(Z \leq z)$ and $(X \leq x(z))$ are equivalent, and so

$$P\{Z \leq z\} = P\{X \leq x(z)\}, \quad (4.5)$$

from which it follows that if $x_p \equiv x(p)$ is the p.100% quantile of X , i.e.

$$P\{X \leq x(p)\} = p, \quad (4.6)$$

then

$$P\{Z \leq z(p)\} = P\{Z \leq z(x(p))\} = p \quad (4.7)$$

and so $z(p)$, the $p \cdot 100\%$ quantile of Z is simply obtained from

$$z(p) = x(p) \phi(x(p)) = x(p) L(x(p)) R(x(p)) \quad (4.8)$$

In other words we very easily translate from (points on) the inverse distribution of X to the inverse distribution of Z .

Explicit representation of the distribution of Z is however, not often easily possible.

B. Hazard and Density Function Relationships

In order to investigate the relationship between the hazards of Z and X , begin by writing

$$p = F_X(x(p)) = 1 - \exp[- \int_0^{x(p)} h_X(u) du] \quad (4.9)$$

or

$$\int_0^{x(p)} h_X(u) du = - \ln(1-p)$$

Now differentiate with respect to p to find

$$h_X(x(p)) \frac{dx(p)}{dp} = \frac{1}{1-p} \quad (4.10)$$

or

$$h_X(x(p)) = \frac{dp}{dx(p)} \cdot \frac{1}{1-p} = f_X(x(p)) \cdot \frac{1}{1-p} ; \quad (4.11)$$

where h_X and f_X are the hazard and density functions of the r.v. X . The relationship (4.11) holds for any distribution, of course.

Differentiation of (3.5) reveals the connection between h_z and h_x . From (4.2)

$$\begin{aligned}\frac{dz(p)}{dp} &= z(p) \left[\frac{1}{x(p)} + \frac{\phi'(x(p))}{\phi(x(p))} \right] \frac{dx(p)}{dp} \quad (4.12) \\ &= [\phi(x(p)) + x(p) \phi'(x(p))] \frac{dx(p)}{dp}\end{aligned}$$

From (4.11), applied now to the z -hazard, there results

$$\frac{1}{h_z(z(p))} = \frac{1}{h_x(x(p))} [\phi(x(p)) + x(p) \phi'(x(p))] \quad (4.13)$$

so

$$h_z(z(p)) = h_x(x(p)) \frac{1}{\phi(x(p)) + x(p) \phi'(x(p))} \quad (4.14)$$

Multiplication of both sides by $1-p$ then shows, in view of (4.11), that the density functions are similarly related:

$$f_z(z(p)) = f_x(x(p)) \frac{1}{\phi(x(p)) + x(p) \phi'(x(p))}$$

Example.

x is exponential(λ). Then

$$h_z(z(p)) = \frac{\lambda}{\phi(x(p)) + x(p) \phi'(x(p))} \quad (4.15)$$

Now use the specific $\phi(x)$ of (3.6):

$$\phi(x) = \frac{\alpha x}{1 + \alpha x} \cdot \frac{1}{1 + \beta x}$$

or, in terms of logarithms,

$$\ln \phi(x) = \ln \alpha x - \ln(1 + \alpha x) - \ln(1 + \beta x) ,$$

so

$$\frac{\phi'(x)}{\phi(x)} = \frac{1}{x} - \frac{\alpha}{1 + \alpha x} - \frac{\beta}{1 + \beta x} = \frac{1 - \alpha \beta x}{x(1 + \alpha x)(1 + \beta x)} , \quad (4.16)$$

and

$$\phi(x) + x\phi'(x) = \phi(x) \left[\frac{2 + (\alpha + \beta)x}{(1 + \alpha x)(1 + \beta x)} \right] ; \quad (4.17)$$

finally

$$h_z(z(p)) = \frac{\lambda(1 + \alpha x(p))^2 (1 + \beta x(p))^2}{\alpha x(p) [2 + (\alpha + \beta)x(p)]} \quad (4.18)$$

Although this expression is not quite explicit, qualitative properties of h_z can be deduced from it.

(a) If $p \rightarrow 0$, $x(p) = -\frac{1}{\lambda} \ln(1-p) \rightarrow 0$, and hence

$$h_z(z(p)) \sim \frac{\lambda}{2\alpha x(p)} , \quad (4.19)$$

or

$$\lim_{p \rightarrow 0} x(p) h_z(z(p)) = \frac{\lambda}{2\alpha} \quad (4.20)$$

Since for $p \rightarrow 0$,

$$z(p) \sim \alpha x^2(p)$$

and hence

$$x(p) \sim [z(p)/\alpha]^{1/2} \quad (4.21)$$

there results

$$h_z(z(p)) \sim \frac{\lambda}{2[z(p)]^{1/2} \sqrt{\alpha}}$$

or

$$\lim_{p \rightarrow 0} \sqrt{z(p)} h_z(z(p)) = \frac{\lambda}{2 \sqrt{\alpha}} \quad (4.22)$$

This shows that $h_z(z) \rightarrow \infty$ as $z \rightarrow 0$, creating the left-hand end of the bath tub of Figure 1.

(b) If $p \rightarrow 1$, $x(p) \rightarrow \infty$, and $z(p) \rightarrow 1/\beta$ so

$$h_z(z(p)) \sim \lambda \frac{\alpha \beta^2 x^2(p)}{(\alpha + \beta)}$$

or

$$\lim_{p \rightarrow \infty} \frac{1}{[x(p)]^2} h_z(z(p)) = \lambda \frac{\alpha \beta^2}{\alpha + \beta} \quad (4.23)$$

For $p \rightarrow 1$

$$1 - \beta z(p) \sim \frac{(\alpha + \beta)}{\alpha \beta} \frac{1}{x(p)} \quad (4.24)$$

so

$$x(p) \sim \frac{\alpha + \beta}{\alpha \beta} \frac{1}{1 - \beta z(p)} \quad (4.24)$$

and thus

$$h_z(z(p)) \sim \lambda \left(\frac{\alpha + \beta}{\alpha} \right) \frac{1}{(1 - \beta z)^2} \quad (4.26)$$

Once again it appears that the hazard rises rapidly, this time as $x(p) \uparrow \infty$ and $z(p) \uparrow \beta^{-1}$; the other end of the bath tub is thus fashioned.

(c) If $p = 1 - e^{-1}$, then $x(p) = \lambda^{-1}$. Then

$$h_z(z(1-e^{-1})) = \frac{\lambda [1 + \alpha/\lambda]^2 [1 + \beta/\lambda]^2}{\frac{\alpha}{\lambda} [2 + (\alpha + \beta)/\lambda]} \quad (4.27)$$

The bath tub effect is presumably achieved by choosing α large and β small. Let $\alpha \uparrow 0$ and $\beta \uparrow 0$ independently in (4.27); it is clear that the limiting value of the hazard is λ . This indicates that the hazard is (approximately) λ for middling values of z .

C. An Explicit Formula for a Hazard

The expression (3.6) leads to the relationship

$$z(p) = \frac{\alpha x^2(p)}{(1 + \alpha x(p))(1 + \beta x(p))} \quad (4.28)$$

and the latter may be explicitly inverted by solving a quadratic equation. The result is

$$x(p) = \frac{(\alpha + \beta) z(p) + \sqrt{(\alpha + \beta)^2 z^2(p) + 4z(p) \alpha(1 - \beta z(p))}}{2\alpha(1 - \beta z(p))} \quad (4.29)$$

Now a direct differentiation of this expression and invocation of (4.11) produces the expression

$$h_z(z) = \frac{\lambda}{2\alpha(1 - \beta z)} \left[\frac{\beta \{ (\alpha + \beta) z + \sqrt{(\alpha + \beta)^2 z^2 + 4\alpha z(1 - \beta z)} \}}{1 - \beta z} + (\alpha + \beta) \right. \\ \left. + \frac{\{ (\alpha - \beta)^2 z + 2\alpha \} \sqrt{(\alpha + \beta)^2 z^2 + 4\alpha z(1 - \beta z)}}{(\alpha + \beta)^2 z^2 + 4\alpha z(1 - \beta z)} \right] \quad (4.30)$$

This form, while explicit, provides no particularly useful insights; the bath tub end shapes already noted in (4.22) and (4.26) can be deduced directly from (4.30).

Some graphical plots of h_z are presented later. They illustrate the behavior of the present hazard representation in a more understandable fashion than does the formula itself.

D. An Explicit Formula for the Failure Time Distribution

Because x and z are monotonically related through (4.28) we have

$$\begin{aligned}
 P\{Z \leq z\} &= P \left\{ X \leq x = \frac{(\alpha+\beta)z + \sqrt{(\alpha+\beta)^2 z^2 + 4\alpha z(1-\beta z)}}{2\alpha(1-\beta z)} \right\} \\
 &= 1 - \exp \left\{ -\lambda \left[\frac{(\alpha+\beta)z + \sqrt{(\alpha+\beta)^2 z^2 + 4\alpha z(1-\beta z)}}{2\alpha(1-\beta z)} \right] \right\} \quad (4.31)
 \end{aligned}$$

Again the explicit formula seems unproductive of insights.

V. MATHEMATICAL PROPERTIES OF THE DECREASING FAILURE RATE MODEL

A. The Hazard Behavior.

The expression (4.14) can be applied to deduce the hazard function of the representation (3.8), advertised to produce a decreasing failure rate. There we specified

$$\phi(x) \equiv T(x) = 1 + cx, \quad (5.1)$$

and thus, from (4.14),

$$h_w(w(p)) = \frac{\lambda}{(1 + cx(p)) + x(p)c} = \frac{\lambda}{1 + 2cx(p)} \quad (5.2)$$

Qualitative properties follow easily.

(a) If $p \rightarrow 0$, $x(p) \rightarrow 0$, and

$$h_w(w(p)) \sim \lambda \quad (5.3)$$

Thus the hazard is approximately λ for small z .

(b) if $p \neq 1$, $x(p) \rightarrow \infty$, and

$$w(p) \sim c[x(p)]^2$$

so

$$h_w(w(p)) \sim \frac{\lambda}{2\sqrt{cw(p)}} , \quad (5.5)$$

which clearly decreases, as claimed. It may be inferred that the distribution of W appears nearly exponential, but possesses an extraordinarily long right tail--possibly the result of outliers.

B. Explicit Formulas for the Hazard and the Distribution Function

Direct solution of the quadratic equation

$w = x(1 + cx) = x + cx^2$
presents

$$x(p) = \frac{\sqrt{1 + 4cw(p)} - 1}{2c} , \quad (5.6)$$

which, when differentiated, leads to

$$h_w(w) = \frac{1}{\sqrt{1 + 4cw}} h_x(x)$$

$$= \frac{\lambda}{\sqrt{1 + 4cw}} \quad (5.7)$$

The distribution function is

$$\begin{aligned} P\{W \leq w\} &= P\left\{X \leq x = \frac{\sqrt{1+4cw} - 1}{2c}\right\} \\ &= 1 - \exp\left\{-\lambda\left[\frac{\sqrt{1+4cw} - 1}{2c}\right]\right\} \end{aligned} \quad (5.8)$$

This distribution bears a close family resemblance to the Weibull distribution $1 - F(w) = \exp\{-k\sqrt{w}\}$, especially for large (right tail) values of w .

VI. AN ALTERNATIVE "BATHTUB" HAZARD REPRESENTATION

The simple parametric model (3.6) leading to a bathtub-shaped hazard is by no means the only possibility. We next describe another simple approach. It is that of defining a hazard function having an appropriate shape, and then deducing the corresponding distribution function, and a procedure for sampling from it, rather than proceeding in reverse order, as before.

Let the hazard be of the form

$$h(z) = g(z) + \lambda + k(z), \quad (6.1)$$

where $g(z) > 0$ is a decreasing function of z such that $\lim_{z \rightarrow \infty} g(z) = 0$, and $k(z)$ is an increasing function of z , such that (preferably) $k(0) = 0$ and $k(\infty) = \infty$. Such a function can yield a bathtub hazard.

Example.

$$h(z) = \frac{A}{z + \alpha} + Bz + \lambda \quad (6.2)$$

A, B, α , λ all positive.

Clearly, (6.2) has a generally "bath tub-like" appearance, since

$$h'(z) = - \frac{A}{(z + \alpha)^2} + B \quad (6.3)$$

for if

$$-\frac{A}{\alpha} + B < 0, \quad \text{then } h'(0) < 0 \quad (6.4)$$

while for

$$z > z_0 = \left(\frac{A}{B} \right)^{1/2} - \alpha \quad (6.5)$$

$h(z) > 0$.

Detailed behavior is adjustable by choice of the parameters.

Now the distribution function of time to failure, Z , is obtained from (6.2) :

$$\begin{aligned} P\{Z > z\} &= \exp \left\{ - \int_0^z h(x) dx \right\} \\ &= \exp \left\{ - \int_0^z \left(\frac{A}{x + \alpha} + Bx + \lambda \right) dx \right\} \\ &= \exp \left\{ - \left[A \ln(1 + \frac{z}{\alpha}) + \frac{B}{2} z^2 + \lambda z \right] \right\} \\ &= \left(\frac{\alpha}{\alpha + z} \right)^A \exp \left(- \frac{B}{2} z^2 \right) e^{-\lambda z} \\ &= \bar{F}_1(z) \bar{F}_2(z) \bar{F}_3(z), \end{aligned} \quad (6.6)$$

where

$$(6.6) \quad \bar{F}_1(z) = \left(\frac{\alpha}{\alpha + z} \right)^{\frac{A}{2}}$$

$$, \text{ obvious } \bar{F}_2(z) = \exp(-\frac{B}{2} z^2) \text{ and } (6.6) \text{ yields } (6.7)$$

$$(6.8) \quad \bar{F}_3(z) = e^{-\lambda z}.$$

All of the above are recognized as being the complements of distribution functions. In effect, the distribution of Z is that of the minimum of three independent random variables:

$$P\{Z > z\} = P\{X_1 > z\} \cdot P\{X_2 > z\} \cdot P\{X_3 > z\}, \quad (6.8)$$

X_i having the distribution $F_i = 1 - \bar{F}_i$ ($i = 1, 2, 3$). This fact leads directly to an easy procedure for simulation of Z by simply obtaining the smallest from among the realization of X_1 , X_2 , and X_3 . The advantage of the previous method, based on (3.6) for instance, is that only one realization--that of an exponential in that specific example--leads to the realization of Z . This is not only computationally attractive, but seems to facilitate the application of such Monte Carlo variance reduction techniques as control and antithetic variables cf. Hammersley and Handscomb (1964).

VII. OBTAINING SPECIFIED HAZARD BEHAVIOR BY SIMPLE SAMPLING

The development of the last section illustrates one manner in which hazard behavior may be conveniently represented and simulated. We now show how such behavior may alternatively be obtained by simple simulation, i.e. from one realization of a basic (possibly exponential) random variable.

Refer to (3.5), in which

$$z = G(x) \quad (7.1)$$

and, if $G(\cdot)$ is monotonically increasing,

$$z(p) = G(x(p)) , \quad (7.2)$$

$z(p)$ and $x(p)$ being the $p \cdot 100\%$ percentiles of z and x respectively. Then the counterpart to (4.14) that results from differentiation of (7.2) is the expression

$$h_z(z(p)) = h_x(x(p)) \frac{1}{G'(x(p))} = h_x(x(p)) \frac{1}{(dz/dx)} \quad (7.3)$$

Consequently, if one specifies $h_z(z)$ as a suitable function of the "time" z , and specifies the distribution of the stochastic variable x --and hence its hazard, h_x --there results a differential equation for $z(x) \equiv G(x)$:

$$h_z(z) \frac{dz}{dx} = h_x(x) ; \quad (7.4)$$

integration then provides the desired transformation, G . In other words, we seek $z(x)$ satisfying

$$\int_0^z h_z(u) du = \int_0^x h_x(v) dv, \quad (7.5)$$

which can sometimes be carried out in a useful closed form.

Example 7.1. Refer to the example of Section VI, wherein h_z is given by the expression (6.2) and we assume that X is exponential, so h_x is constant. Then in order to determine $G(x) \equiv z(x)$, solve the equation

$$\int_0^z \left[\frac{A}{v + \alpha} + Bv + \lambda \right] dv = \int_0^x du$$

$$A \ln(1 + \frac{z}{\alpha}) + \frac{B}{2} z^2 + \lambda z = x \quad (7.6)$$

Closed-form solution of this expression for z in terms of x is of course impossible. One possible approach is purely numerical: find an approximate solution, $z_0(x)$, e.g. the appropriate solution of the quadratic

$$\frac{B}{2} z^2 + \lambda z = x \quad (7.7)$$

and then correct the result by a few Newton-Raphson iterations.

In other words, put

$$z_1(x) = \frac{-\lambda + \sqrt{\lambda^2 + 2B\lambda x}}{B}; \quad (7.8)$$

now apply Newton to obtain an improved solution

$$z_2(x) = z_1 - \frac{A \ln(1 + z_1/\alpha)}{A/(z_1 + \alpha) + Bz_1 + \lambda} \quad (7.9)$$

which will be feasible if $0 < z_2$. The process can be iterated (the numerator will change after the first iteration). If one wishes to use this model it may actually be desirable to start by solving

$$\frac{B}{2} z^2 + (\lambda + \frac{A}{\alpha})z - x = 0 \quad (7.10)$$

for z_1 , in which case the numerator will not be as shown in (7.9); convergence may be more rapid.

Example 7.2. Change the hazard representation of the previous example as follows: let

$$h_z(v) = \frac{A}{(v + \alpha)^2} + Bv + \lambda; \quad (A, \alpha, B, \lambda > 0) \quad (7.11)$$

then

$$\int_0^z h_z(v) dv = \frac{Az}{\alpha(z + \alpha)} + \frac{B}{2} z^2 + \lambda z \quad (7.12)$$

Now the solution of the equation

$$\frac{Az}{\alpha(z + \alpha)} + \frac{B}{2} z^2 + \lambda z = x \quad (7.13)$$

can be carried out in closed (if cumbersome) form, since (7.13) is a cubic. Hence an explicit representation of $z(p)$ in terms of an exponential's $x(p)$ can be provided. Perhaps more importantly, a direct, simple, simulation of a bathtubbed random variable is at hand.

VIII. CONCLUSION

The purpose of this report has been to show that rather complex distributional behavior can be represented in terms of simple standard distributions. We have concentrated here upon alterations of the exponential, but it is obvious that other distributions can be treated similarly.

In a later report we will illustrate the use of this technique in data analysis, and in the simulation of non-homogeneous stochastic point processes.

asign to OR

TRI-STATISTICAL
REFERENCES

D. P. Gaver and Chu, B. (1977). Estimating equipment and system availability by use of the jackknife. EPRI Tech. Report; also Naval Postgraduate School Technical Report NPS55-77-4.

Gaver, D. P., Lavenburg, S., and Price, T. (1976). Exploratory analysis of access path length data for a data base management system. IBM J. of Research and Development, Vol. 20 pp. 449-464.

Hammersley, J., and Handscomb, D.C. (1964). Monte Carlo Methods. Wiley, New York.

Parzen, M. (1978). Nonparametric statistical data modeling. Paper presented at National Meeting American Statistical Association, San Diego, August 1978.

Tukey, J. W. (1976). Usable resistant/robust technique of analysis (p. 11). Proc. of the First ERDA Statistical Symposium. Battelle Pacific Northwest Laboratories, Richland, Washington.

DISTRIBUTION LIST

	No. of Copies
STATISTICS AND PROBABILITY PROGRAM OFFICE OF NAVAL RESEARCH CODE 436 ARLINGTON VA	1
22217	
OFFICE OF NAVAL RESEARCH NEW YORK AREA OFFICE 115 BROADWAY - 5TH FLOOR ATTN: DR. ROGER GRAFTON NEW YORK, NY	1
10003	
DIRECTOR OFFICE OF NAVAL RESEARCH BRANCH OFF 536 SOUTH CLARK STREET ATTN: DEPUTY AND CHIEF SCIENTIST CHICAGO, IL	1
60605	
LIBRARY NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA	1
92152	
NAVY LIBRARY NATIONAL SPACE TECHNOLOGY LAB ATTN: NAVY LIBRARIAN BAY ST. LOUIS MS	1
39522	
NAVAL ELECTRONIC SYSTEMS COMMAND NAVELEX 32C NATIONAL CENTER NO. 1 ARLINGTON VA	1
20360	
DIRECTOR NAVAL RESEARCH LABORATORY ATTN: LIBRARY (ONRL) CODE 2025 WASHINGTON, D.C.	1
20375	
DEFENSE DOCUMENTATION CENTER CAMERON STATION ALEXANDRIA VIRGINIA 22314	2
TECHNICAL INFORMATION DIVISION NAVAL RESEARCH LABORATORY WASHINGTON, D. C.	1
20375	

set to 100

No. of Copies

OFFICE OF NAVAL RESEARCH
SAN FRANCISCO AREA OFFICE
760 MARKET STREET
SAN FRANCISCO CALIFORNIA 94102

1

TECHNICAL LIBRARY
NAVAL ORDNANCE STATION
INIAN HEAD MARYLAND 20640

1

NAVAL SHIP ENGINEERING CENTER
PHILADELPHIA
DIVISION TECHNICAL LIBRARY
PHILADELPHIA PENNSYLVANIA 19112

1

BUREAU OF NAVAL PERSONNEL
DEPARTMENT OF THE NAVY
TECHNICAL LIBRARY
WASHINGTON D. C. 20370

1

LIBRARY CODE 0212
NAVAL POSTGRADUATE SCHOOL
MONTEREY CALIFORNIA 93940

2

PROF. M. ADEL-FAHEED
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NORTH CAROLINA
CHARLOTTE
NC

1

28223

PROF. T. W. ANDERSON
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

1

PROF. F. J. ANSCOMBE
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN
CONNECTICUT 06520

1

PROF. L. A. ARCIAN
INSTITUTE OF INDUSTRIAL
ADMINISTRATION
UNION COLLEGE
SCHENECTADY
NEW YORK 12308

1

assigned to .08

No. of Copies

PROF. C. R. BAKER
DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL,
NORTH CAROLINA
27514

PROF. R. E. BECHHOFER
DEPARTMENT OF OPERATIONS RESEARCH
CORNELL UNIVERSITY
ITHACA
NEW YORK 14850

PROF. M. J. BERSHAD
SCHOOL OF ENGINEERING
UNIVERSITY OF CALIFORNIA
IRVINE,
CALIFORNIA
92664

PROF. J. BICKEL
DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA
54720

PROF. F. W. BLOCK
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PITTSBURGH
PITTSBURGH
PA
15260

PROF. JOSEPH BLUM
DEPT. OF MATHEMATICS, STATISTICS
AND COMPUTER SCIENCE
THE AMERICAN UNIVERSITY
WASHINGTON
DC
20016

PROF. R. A. BRADLEY
DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA 32306

PROF. R. E. BARLOW
OPERATIONS RESEARCH CENTER
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY
CALIFORNIA 94720

MR. C. A. BENNETT
NAVAL COASTAL SYSTEMS LABORATORY
CCD P761
PARAMA CITY,
FLORIDA
32401

	No. of Copies
PRCF. L. N. BHAT COMPUTER SCIENCE / OPERATIONS RESEARCH CENTER SOUTHERN METHODIST UNIVERSITY DALLAS TEXAS 75275	1
PRCF. W. R. ELISCHKE DEPT. OF QUANTITATIVE BUSINESS ANALYSIS UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA 90007	1
DR. DERRILL J. BURDELON NAVAL UNDERWATER SYSTEMS CENTER CODE 21 NEWPORT RI 02840	1
J. E. BOYER JR DEPT. OF STATISTICS SOUTHERN METHODIST UNIVERSITY DALLAS TX 75275	1
DR. J. CHANDRA U. S. ARMY RESEARCH P. O. BOX 12211 RESEARCH TRIANGLE PARK NORTH CAROLINA 27706	1
PRCF. F. CHERNICK DEPT. OF MATHEMATICS MASS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139	1
PROF. C. GERMAN DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS COLUMBIA UNIVERSITY NEW YORK 10027	1
PRCF. R. L. DISNEY VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY DEPT. OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH BLACKSBURG, VA 24061	1
MR. J. DWYLING DEFENSE LOGISTICS STUDIES INFORMATION EXCHANGE ARMY LOGISTICS MANAGEMENT CENTER FORT LEE, VIRGINIA 20390	1

	No. of Copies
PROF. J. C. ESARY DEPT. OF OPERATIONS RESEARCH AND ADMINISTRATIVE SCIENCES NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940	1
PROF. M. J. FISCHER DEFENSE COMMUNICATIONS AGENCY 1860 WIEGLE AVENUE RESTON, VIRGINIA 22070	1
MR. GENE F. GLEISSNER AFFILIATED MATHEMATICS LABORATORY DAVID TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA, MD 20084	1
PROF. S. S. GUPTA DEPARTMENT OF STATISTICS PURDUE UNIVERSITY LAFAYETTE, INDIANA 47907	1
PROF. C. L. HANSEN DEPT. OF MATH. SCIENCES STATE UNIVERSITY OF NEW YORK, BINGHAMTON, NY	1
PROF. F. J. HARRIS DEPT. OF ELECTRICAL ENGINEERING SAN DIEGO STATE UNIVERSITY SAN DIEGO, CA 92182	1
PROF. L. F. HERBACH DEPT. OF OPERATIONS RESEARCH AND SYSTEMS ANALYSIS POLYTECHNIC INSTITUTE OF NEW YORK BROOKLYN, NY 11201	1
PROF. M. J. FINCH DEPARTMENT OF ECONOMICS VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA 24061	1

subject to 100

No. of Copies

PROF. W. M. FIRSCH
INSTITUTE OF MATHEMATICAL SCIENCES
NEW YORK UNIVERSITY
NEW YORK
NEW YORK 10453

1

PROF. J. B. KACANE
DEPARTMENT OF STATISTICS
CARNEGIE-MELLON
PITTSBURGH,
PENNSYLVANIA
15213

1

DR. RICHARD LAU
DIRECTOR
OFFICE OF NAVAL RESEARCH BRANCH OFF
1030 EAST GREEN STREET
PASADENA
CA

1

DR. A. R. LAUFER
DIRECTOR
OFFICE OF NAVAL RESEARCH BRANCH OFF
1030 EAST GREEN STREET
PASADENA
CA

1

PROF. M. LEADBETTER
DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL
NORTH CAROLINA 27514

1

DR. J. S. LEE
J. S. LEE ASSOCIATES, INC.
2001 JEFFERSON DAVIS HIGHWAY
SUITE 802
ARLINGTON
VA

1

22202

PROF. L. C. LEE
DEPARTMENT OF STATISTICS
VIRGINIA POLYTECHNIC INSTITUTE
AND STATE UNIVERSITY
BLACKSBURG
VA

1

24061

PROF. R. S. LEVENWORTH
DEPT. OF INDUSTRIAL AND SYSTEMS
ENGINEERING
UNIVERSITY OF FLORIDA
GAINESVILLE
FLORIDA 32611

1

	No. of Copies
FRCF. P. A. W. LEWIS DEPT. OF OPERATIONS RESEARCH AND ADMINISTRATIVE SCIENCES NAVAL POST GRADUATE SCHOOL MONTEREY, CALIFORNIA 93940	1
FRCF G. LIEBERMAN STANFORD UNIVERSITY DEPARTMENT OF OPERATIONS RESEARCH STANFORD CALIFORNIA 94305	1
DR. JAMES R. MAAR NATIONAL SECURITY AGENCY FORT MEADE, MARYLAND 20755	1
FRCF. R. W. MAESSEN DEPARTMENT OF STATISTICS UNIVERSITY OF MISSOURI COLUMBIA MO 65201	1
DR. N. R. MANN SCIENCE CENTER ROCKWELL INTERNATIONAL CORPORATION P.O. BOX 1085 THOUSAND OAKS, CALIFORNIA 91360	1
DR. W. F. MARLOW PROGRAM IN LOGISTICS THE GEORGE WASHINGTON UNIVERSITY 707 22ND STREET, N. W. WASHINGTON, D. C. 20037	1
PROF. E. MASRY DEPT. APPLIED PHYSICS AND INFORMATION SERVICE UNIVERSITY OF CALIFORNIA LA JOLLA CALIFORNIA 92093	1
DR. BELICE J. MCDONALD SCIENTIFIC DIRECTOR SCIENTIFIC LIAISON GROUP OFFICE OF NAVAL RESEARCH AMERICAN EMBASSY - TOKYO AFC SAN FRANCISCO 96503	1
PROF. J. A. MICKSTADT DEPT. OF OPERATIONS RESEARCH CORNELL UNIVERSITY ITHACA, NEW YORK 14850	1

No. of Copies	1
DR. JANET M. MYHRE THE INSTITUTE OF DECISION SCIENCE FOR BUSINESS AND PUBLIC POLICY CLAREMONT MEN'S COLLEGE CLAREMONT CA	51711
MR. F. NISSELSKA BUREAU OF THE CENSUS ROOM 2025 FEDERAL BUILDING 3 WASHINGTON, D. C. 2033	1
MISS B. S. CRLEANS NAVAL SEA SYSTEMS COMMAND (SEA 03F) RM 105C8 ARLINGTON VIRGINIA 20360	1
FRCF. D. E OWEN DEPARTMENT OF STATISTICS SOUTHERN METHODIST UNIVERSITY DALLAS TEXAS 75222	1
PROF. E. PARZEN STATISTICAL SCIENCE DIVISION STATE UNIVERSITY OF NEW YORK AT BUFFALO AMHERST NEW YORK	14226
DR. A. PETRASOVITS RCCM 207B, FOCC AND CRLG BLDG. TUNNEY'S PASTURE OTTAWA, ONTARIO K1A-CL2, CANADA	1
FRCF. S. L. PHOENIX SIBLEY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING CORNELL UNIVERSITY ITHACA NY	14850
DR. A. L. POWELL DIRECTOR OFFICE OF NAVAL RESEARCH BRANCH OFF 495 SUMMER STREET BOSTON MA	1
MR. F. R. FRICCI CODE 224 OPERATIONAL TEST AND DNR'S EVALUATION FORCE (OPTEVFOR) NCFOLK, VIRGINIA 20360	1

	No. of Copies
PROF. M. L. PURI DEPT. OF MATHEMATICS P.O. BOX F INDIANA UNIVERSITY FOUNDATION ELKHORN, IN	1 47401
PROF. H. REBINS DEPARTMENT OF MATHEMATICS COLUMBIA UNIVERSITY NEW YORK, NEW YORK 10027	1
PROF. M. ROSENBLATT DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SAN DIEGO LA JOLLA, CALIFORNIA	1 92093
PROF. S. M. ROSS COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA BERKELEY, CA	1 94720
PROF. I. RUBIN SCHOOL OF ENGINEERING AND APPLIED SCIENCE UNIVERSITY OF CALIFORNIA LOS ANGELES, CALIFORNIA 90024	1
PROF. I. R. SAVAGE DEPARTMENT OF STATISTICS YALE UNIVERSITY NEW HAVEN, CONNECTICUT 06520	1
PROF. L. L. SCHARF JR DEPARTMENT OF ELECTRICAL ENGINEERING COLORADO STATE UNIVERSITY FT. COLLINS, COLORADO 80521	1
PROF. R. SERFLING DEPARTMENT OF STATISTICS FLORIDA STATE UNIVERSITY TALLAHASSEE, FLORIDA 32306	1
PROF. W. R. SCHLCANY DEPARTMENT OF STATISTICS SOUTHERN METHODIST UNIVERSITY DALLAS, TEXAS 75222	1

	No. of Copies
PROF. C. C. SIEGMUND DEPT. OF STATISTICS STANFORD UNIVERSITY STANFORD CA	1
	\$4305
FRCF. M. L. SHODMAN DEPT. OF ELECTRICAL ENGINEERING POLYTECHNIC INSTITUTE OF NEW YORK BROOKLYN, NEW YORK 11201	1
	20052
PROF. N. SINGPURWALLA DEPT. OF OPERATIONS RESEARCH THE GEORGE WASHINGTON UNIVERSITY 707 22ND ST. N. W. WASHINGTON, D. C.	1
	20380
DR. A. L. SLAFKOSKY SCIENTIFIC ADVISOR COMMANDANT OF THE MARINE CORPS WASHINGTON, D. C.	1
	20301
MR. CHARLES S. SMITH CIA (I&L), PENTAGON WASHINGTON DC	1
	16801
CR. C. E. SMITH DESMATICS INC. P.O. BOX 618 STATE COLLEGE PENNSYLVANIA 16801	1
	27514
PROF. W. L. SMITH DEPARTMENT OF STATISTICS UNIVERSITY OF NORTH CAROLINA CHAPEL HILL NORTH CAROLINA 27514	1
	\$4305
FRCF. H. SIEGMUND DEPARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD, CALIFORNIA	1
	20755

	No. of Copies
MR. DAVID A. SWICK ADVANCED PROJECTS GROUP CODE 8103 NAVAL RESEARCH LAB. WASHINGTON DC	1
	20375
MR. WENDELL G. SYKES ARTHUR D. LITTLE, INC. ACERN PARK CAMBRIDGE MA	1
	02140
PROF. J. R. THOMPSON DEPARTMENT OF MATHEMATICAL SCIENCE RICE UNIVERSITY HOUSTON, TEXAS 77001	1
	20005
PROF. W. A. THOMPSON DEPARTMENT OF STATISTICS UNIVERSITY OF MISSOURI COLUMBIA, MISSOURI 65201	1
	20005
PROF. F. A. TILLMAN DEPT. OF INDUSTRIAL ENGINEERING KANSAS STATE UNIVERSITY MANHATTAN KS	1
	66506
PROF. A. F. VEINOTT DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD CALIFORNIA 94305	1
	20005
DANIEL H. WAGNER STATION SOLAR E ONE FAIRLAWN, PENNSYLVANIA 19301	1
	20005
PROF. GRACE WAMBIA DEPT. OF STATISTICS UNIVERSITY OF WISCONSIN MADISON WI	1
	53706

	No. of Copies
PROF. K. T. WALLENIUS DEPARTMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, SOUTH CAROLINA 29631	1
PROF. BERNARD WIDROW STANFORD ELECTRONICS LAB STANFORD UNIVERSITY STANFORD CA	11
PROF. G. E. WHITEHOUSE DEPT. OF INDUSTRIAL ENGINEERING LEHIGH UNIVERSITY BETHLEHEM PA	11
PROF. S. ZACKS DEPT. OF MATHEMATICS AND STATISTICS CASE WESTERN RESERVE UNIVERSITY CLEVELAND, OHIO 44106	11
PROF. M. ZIA-HASSAN DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING ILLINOIS INSTITUTE OF TECHNOLOGY CHICAGO IL	11
HEAD, MATH. SCI SECTION NAT. SCIENCE FOUNDATION 1801 G STREET, N.W. WASHINGTON, D.C.	11
PROF. A. F. ANDRUS DEPT. OF CP NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	11
PROF. C. R. BARR DEPT. OF CP NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	11

	No. of Copies
PROF. PETER BLOOMFIELD STATISTICAL DEPT. PRINCETON UNIVERSITY PRINCETON, N. J.	1
	08540
PROF. G. G. BROWN DEPT. OF OR NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
R. W. BUTTERWORTH SYSTEMS EXPLORATION WEBSTER ST. MONTEREY CALIFORNIA	1
	93940
DR. JAMES CAPRA 7218 BELFIELD STREET CHEVY CHASE MARYLAND	1
	20015
DR. C. R. COX DEPT. OF MATHEMATICS IMPERIAL COLLEGE LONDON SW7	1
	ENGLAN
ECON. AND MAN. SCI. CTR. NORTHWESTERN UNIV. EVANSTON ILLINOIS	1
	602 C1
MAN. SCE. RES. CTR. FACULTY OF COM. AND BUS. ADMIN. UNIV. OF BRITISH COLUMBIA VANCOUVER BRITISH COLUMBIA V6T 1W5 CANADA	1
	602 01
DR. M. CHASS MAN. DEPT. NORTHWESTERN UNIV. EVANSTON ILLINOIS	1

No. of Copies

No. of Copies

DR. R. ELASHOFF
BIOMATHEMATICS
UNIV. OF CALIF.
LOS ANGELES
CALIFORNIA

90024

1

PROF. GEORGE S. FISHMAN
UNIV. OF NORTH CAROLINA
CUR. IN OR AND SYS. ANALYSIS
PHILLIPS ANNEX
CHAPEL HILL, NORTH CAROLINA

20742

1

DR. R. GRANAGESIKAN
BELL TELEPHONE LAB
HOLMDEL, N. J.

07733

1

DR. A. J. COLEMAN
CHIEF, CR
DIV. 2C5.C2, ADMIN. A428
U.S. DEPT. OF COMMERCE
WASHINGTON, D.C.

20234

1

DR. H. FIGGINS
53 BONN 1, POSTFACH 589
NASSESTRASSE 2

1

WEST GERMANY

DR. P. T. HOLMES
DEPT. OF MATH.
CLEMSON UNIV.
CLEMSON
SCOUTH CAROLINA

29631

1

DR. J. A. HOCKI
BELL TELEPHONE LABS
HOLMDEL
NEW JERSEY

07733

1

DR. ROBERT HOCKE
MATH. DEPT.
WESTINGHOUSE RES. LABS
CHURCHILL BLDG.
PITTSBURGH, PENNSYLVANIA

15235

1

DR. D. L. IGGLESTAD
DEPT. OF C.H.
STANFORD UNIV.
STANFORD
CALIFORNIA

94305

1

	No. of Copies
DR. PATRICIA JACOBS CR DEPT. NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
DR. H. KOBAYASHI IBM YORKTOWN HEIGHTS NEW YORK	1
	10598
DR. JOHN LEHOVSKY STATISTICS DEPARTMENT CARNEGIE-MELLON UNIVERSITY PITTSBURGH PENNSYLVANIA	1
	15213
LIBRARY CODE 55 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
DR. A. LEMOINE 1020 GUINEA ST. FALO ALTC. CALIFORNIA	1
	94301
DR. J. MACCUEEN UNIV. OF CALIF. LOS ANGELES CALIFORNIA	1
	90024
FFCF. K. T. MARSHALL DEPT. OF CF NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
DR. M. MADMAR MATH. DEPT. ESTANCHEHOUSE RES. LABS CHURCHILL BCF PITTSBURGH PENNSYLVANIA	1
	15235
DR. LEON F. MCGINNIS SCHOOL OF IND. AND SYS. ENG. GEORGIA INST. OF TECH. ATLANTA GEORGIA	1
	30332

	No. of Copies
DR. D. R. MCNEIL DEPT. OF STATISTICS PRINCETON UNIV. PRINCETON NEW JERSEY	1
	08540
PRCF. P. R. MILCH DEPT. OF OR NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
DR. F. MOSTELLER STAT. DEPT. HARVARD UNIV. CAMBRIDGE MASSACHUSETTS	1
	02139
PRCF. R. R. READ DEPT. OF CR NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
DR. M. REISER IBM THOMAS J. WATSON RES. CTR. YORKTOWN HEIGHTS NEW YORK	1
	10598
PRCF. F. F. RICHARDS DEPT. OF OR NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	93940
DR. J. RICREAN DEPT. OF MATHEMATICS ROCKEFELLER UNIV. NEW YORK NEW YORK	1
	10021
DR. LINUS SCHRAGE UNIV. OF CHICAGO GRAD. SCHOOL OF BLS. 5826 GREENWICH AVE. CHICAGO, ILLINOIS	1
	60637

	No. of Copies
DR. PAUL SCHWEITZER THOMAS J. WATSON RESEARCH CTR. 9 PCST OFFICE BOX 218 YORKTOWN HEIGHTS NEW YORK	1
	10598
DR. RICHARD SCRENSON CODE 303 NPRODC 271 CATALINA BLVD. SAN DIEGO CALIFORNIA	1
	92152
PROF. M. G. SOVEREIGN DEPT. OF OR NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA	1
	53940
DR. V. Srinivasan GRADUATE SCHOOL OF BUSINESS STANFORD UNIVERSITY STANFORD CALIFORNIA	1
	94305
DR. R. M. STARK STATISTICS AND COMPUTER SCI. UNIV. OF DELAWARE NEWARK DELAWARE	1
	19711
PROF. RICHARD VANSLYKE RES. ANALYSIS CCRP. BEECHWOOD CLIFF TAFFEN ROAD GLEN COVE, NEW YORK	1
	11542
PROF. JOHN W. TUKEY FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY	1
	08540
DR. THOMAS C. VARLEY OFFICE OF NAVAL RESEARCH CODE 434 ARLINGTON VA	1
	22217
PROF. G. WATSON FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY	1
	08540

	No. of Copies
Dr. Roy Welsch M.I.T., Sloan School Cambridge, MA 02139	1
Dean of Research 012 Naval Postgraduate School Monterey, Ca. 93940	1
Professor D. P. Gaver Code 55Gv Naval Postgraduate School Monterey, Ca. 93940	50
Professor Peter Lewis Code 55Lw Naval Postgraduate School Monterey, Ca. 93940	1
R. J. Stampfel Code 55 Naval Postgraduate School Monterey, Ca. 93940	1
Lt. Mustafa Acar, Turkish Navy Kasimpasa, Kadimehmet mah. Akide Sok. No. 7/1, Istanbul Turkey	5
Deniz Kuvvetleri Komutanlığı Bakanlıklar, Ankara, Turkey	1
Orta-Dogu Teknik Universitesi Yon-Eylem Arastirmasi Bolumu Ankara, Turkey	1