### Algoritmusok és adatszerkezetek II. Bináris keresőfák és műveleteik

Szegedi Tudományegyetem





# Gyakorlati követelmények

- 2 db ZH (ápr. 9. és máj. 7.): 40-40 pont (min. 18 pont/ZH)
- Kvízek: 4 darab 5-5 pontos Coospace kvíz (min. 0 pont)
- Pluszpontok (minimumba nem számítanak bele)
- Javítás: a nagy ZH-k bármelyike javítható az utolsó előadáson



# Gyakorlati követelmények

- 2 db ZH (ápr. 9. és máj. 7.): 40-40 pont (min. 18 pont/ZH)
- Kvízek: 4 darab 5-5 pontos Coospace kvíz (min. 0 pont)
- Pluszpontok (minimumba nem számítanak bele)
- Javítás: a nagy ZH-k bármelyike javítható az utolsó előadáson

| Gyakorlati jegy      |               |
|----------------------|---------------|
| [ 0-51) pont         | elégtelen (1) |
| [51-66) pont         | elégséges (2) |
| [66-76) pont         | közepes (3)   |
| [76-86) pont         | jó (4)        |
| [86– $\infty$ ) pont | jeles (5)     |





# Gyakorlati követelmények – Coospace kvízek

- Coospace-en az előadás színterében lesznek közzétéve (de a gyakorlati teljesítés részét képezik)
- Közzététel: febr. 26., márc. 19, ápr. 16, máj. 14
- Beadási határidő: ápr. 9, máj. 14 az előadás kezdetéig
- 3 kitöltés/kvíz, amelyek közül a legjobbat vesszük figyelembe





# Gyakorlati követelmények – Coospace kvízek

- Coospace-en az előadás színterében lesznek közzétéve (de a gyakorlati teljesítés részét képezik)
- Közzététel: febr. 26., márc. 19, ápr. 16, máj. 14
- Beadási határidő: ápr. 9, máj. 14 az előadás kezdetéig
- 3 kitöltés/kvíz, amelyek közül a legjobbat vesszük figyelembe
- A 10 leggyorsabb hibátlan kitöltőnek pluszpont jár





### Követelmények – kollokvium

- A gyakorlat sikeres teljesítése esetén kollokvium tehető
- 10 db 5 pontos elméleti és gyakorlati kiskérdéssel
- Pluszpontok (minimumba nem számítanak bele)
- Elővizsga az utolsó előadáson (vizsgaalkalomnak számít)





# Követelmények – kollokvium

- A gyakorlat sikeres teljesítése esetén kollokvium tehető
- 10 db 5 pontos elméleti és gyakorlati kiskérdéssel
- Pluszpontok (minimumba nem számítanak bele)
- Elővizsga az utolsó előadáson (vizsgaalkalomnak számít)

| Kollokviumi jegy     |               |
|----------------------|---------------|
| [ 0-25) pont         | elégtelen (1) |
| [26-32) pont         | elégséges (2) |
| [32-38) pont         | közepes (3)   |
| [38-44) pont         | jó (4)        |
| [44– $\infty$ ) pont | jeles (5)     |





#### A félév során érintett főbb témakörök

- Kiegyensúlyozott és augmentált keresőfák
- Binomiális és Fibonacci kupacok
- Geometriai algoritmusok
- Számelméleti algoritmusok
- Mintaillesztő algoritmusok





#### Hasznos források

- Ajánlott irodalom
  - Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest
     Clifford Stein: Új algoritmusok. Kiadó: SCOLAR
- Hackerrank versenyek
- Algoritmusok vizualizációja





# lsmétlés — Aszimptotikus jelölések: $\Omega$







## Ismétlés — Aszimptotikus jelölések: Θ







## lsmétlés — Aszimptotikus jelölések: O







### Ismétlés – Aszimptotikus jelölések

#### Kérdés

Hatékony-e az az algoritmus, amelyik futási ideje n méretű inputra legal abb O(n log n)?



### Ismétlés – Aszimptotikus jelölések

#### (beugratós) Kérdés

Hatékony-e az az algoritmus, amelyik futási ideje n méretű inputra  $legalább\ O(n\log n)$ ?

Másképp szólva, mit tudunk arról az algoritmusról, amelynek futási ideje  $\Omega(1)$ ?



# Bináris fa implementációja

 Egy olyan "megengedő" kétszeresen láncolt lista, ahol az elemek (egy helyett) két elemhez is kapcsolódhatnak







# Bináris fa implementációja

```
class Node {
    Object kulcs;
    Node* apa;
    Node* bal;
    Node* jobb;
}
```







# Fabejárások<sup>1</sup>

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
  - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
  if(x==nil){return}
  inorder(x.bal)
  print(x.kulcs)
  inorder(x.jobb)
}
```





# Fabejárások<sup>1</sup>

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
  - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
  if(x==nil){return}
  inorder(x.bal)
  print(x.kulcs)
  inorder(x.jobb)
}
void preorder(x){
  if(x==nil){return}
  print(x.kulcs)
  preorder(x.bal)
  preorder(x.jobb)
}
```





# Fabejárások

- Inorder/preorder/posztorder bejárások
- Legegyszerűbb megvalósításuk rekurzióval történik
  - Jó azonban tudni, hogy rekurzió nélkül is megtehető mindez

```
void inorder(x){
                       void preorder(x){
                                              void postorder(x){
  if(x==nil){return}
                         if(x==nil){return}
                                                if(x==nil){return}
  inorder(x.bal)
                         print(x.kulcs)
                                                postorder(x.bal)
                                                postorder(x.jobb)
  print(x.kulcs)
                         preorder(x.bal)
  inorder(x.jobb)
                         preorder(x.jobb)
                                                print(x.kulcs)
                       }
```





### Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

#### Fában lévő kulcsok száma

A fa i-edik szintjén  $2^i$  csúcs található





### Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

#### Fában lévő kulcsok száma

A fa *i*-edik szintjén 2<sup>*i*</sup> csúcs található

$$\Rightarrow$$
 a fában  $n=\sum\limits_{i=0}^{h}2^{i}=2^{h+1}$  csúcsot található $^{a}$ 

Állítás: h magas fában  $O(2^h)$  csúcs található





### Teljes bináris fa

• Olyan bináris fa, amelynek minden belső csúcsának 2 fia van

#### Fában lévő kulcsok száma

A fa i-edik szintjén  $2^i$  csúcs található

$$\Rightarrow$$
 a fában  $n = \sum_{i=0}^{h} 2^i = 2^{h+1}$  csúcsot található<sup>a</sup>

Állítás: h magas fában  $O(2^h)$  csúcs található

**Megfordítva**: n csúcsból álló fa magassága  $\Omega(\log n)$ 





<sup>&</sup>lt;sup>a</sup>bizonyítás teljes indukcióval

#### Bináris keresőfa

#### Keresőfa tulajdonság

A fa minden x csúcsára teljesül, hogy

- x.bal.kulcs < x.kulcs (amennyiben x.bal! = nil)
- x.kulcs < x.jobb.kulcs (amennyiben x.jobb! = nil)



#### Bináris keresőfa

#### Keresőfa tulajdonság

A fa minden x csúcsára teljesül, hogy

- x.bal.kulcs < x.kulcs (amennyiben x.bal! = nil)
- x.kulcs < x.jobb.kulcs (amennyiben x.jobb! = nil)

< rendezés tranzitivitásából adódóan







### Kulcs keresése fában

```
FÁBANKERES(x, k) {
  if x == nil or k == x.kulcs
    return x

  if k < x.kulcs
    FÁBANKERES(x.bal, k)
  else
    FÁBANKERES(x.jobb, k)
}</pre>
```





#### Kulcs keresése fában





#### Elem beszúrása bináris keresőfába

- A keresőfa tulajdonság fenntartása mellett levélként szúrunk be
- h magas fa esetén O(h) idejű







### Elem törlése bináris keresőfából





### Elem törlése bináris keresőfából

- 3 esetet különböztetünk meg x csúcs törlése kapcsán
  - x-nek nincs gyereke
    - x apjának az x-re vonatkozó mutatóját nil-re állítjuk
  - 2 x-nek pontosan egy gyereke van
    - x apját "átkötjük" x egyedüli fiához
  - x-nek 2 gyereke van
    - x-et megelőzőjével (bal oldali részfájának maximális elemével) helyettesítjük
- h magas fa esetén O(h) idejű



