

Elenco Esercizi Pratici

Prof. Filippo Milotta milotta@dmi.unict.it

Come leggere l'elenco

Parte 1 Acustica, Psicoacustica, Digitalizzazione

Esercizio pratico	Autov	Slide
Parametri fisici – Onda sinusoidale	1	1-27
RMS	1	1-32
Decibel Assoluti	1	1-41
Legge dell'inverso del quadrato	2	2-4
Velocità del suono	2	2-8
Riflessione del suono	2	2-19
Frequenza delle note	3	3-10
SQNR	9	9-2
Memoria necessaria per un file audio	9	9-12

Parametri fisici Onda sinusoidale

Data l'equazione sinusoidale

$$y(t) = 10sin(4 * \pi * t + 4)$$

- Quanto vale l'ampiezza?
 - **10**
- Quanto vale la frequenza?
 - **2**
- Quanto vale la fase?
 - **4**

RMS

- Dati i seguenti valori campionati di ampiezza:
- -1, 2, -3, 1, 0, 3
- Calcolare l'RMS

$$RMS = \sqrt{\frac{(-1^2) + 2^2 + (-3^2) + 1^2 + 0^2 + 3^2}{6}} = \sqrt{\frac{1 + 4 + 9 + 1 + 9}{6}} = \sqrt{\frac{24}{6}} = \sqrt{4} = 2$$

Decibel Assoluti

 Una zavorra per mongolfiere ha un peso di 5000Kg. Calcolare i dB assoluti rispetto al peso di riferimento standard di 5Kg.

$$P_{dB_{Kg}} = 10\log_{10} \frac{5000}{5} = 10\log_{10} 1000 = 10 * 3 = 30$$

Legge dell'inverso del quadrato

Un suono viene percepito con intensità 90 dB a distanza 5 metri. Quale sarà la sua intensità percepita a distanza 15 metri?

- **15/5 = 3**
 - Il quadrato di 3 è 9
 - L'intensità è data da 90/9: 10dB

Velocità del suono

- Calcolare la velocità del suono nell'aria a 42°C
 - Moltiplicare la temperatura per 0.6
 - 42*0.62 = 26.04
 - Sommare la velocità a 0 gradi
 - 26.04 + 331.45 = 369.89 m/s
- A che temperatura il suono viaggia nell'aria se ha una velocità di a 320 m/s?
 - Sottrarre la velocità a 0 gradi
 - **320 331.45 = -11.45**
 - Dividere la velocità per 0.6
 - -11.45 / 0.6 = -19.03°C

Riflessione del suono

- Sapendo che un dispositivo nell'aria a 40°C emette un suono al tempo t e registra lo stesso suono tornare indietro dopo 5 secondi, calcolare la distanza dell'oggetto che ha riflesso il suono all'indietro.
 - Calcolare la velocità del suono misurato
 - 40*0,62 = 24.8) + 331,45 = 356,25 m/s
 - Moltiplicare per il tempo
 - **356,25** * 5 = 1781,25
 - Dividere per 2 (Round Trip Time)
 - 1781,25 / 2 = 890 m

Frequenza delle note

- Fissata a 1397Hz la frequenza del Fa6 (cioè il Fa della 6[^] ottava, con ottave che iniziano e terminano con Do), calcolare quanto vale il Si6
 - Fra Fa6 e Si6 ci sono 6 incrementi tonali
 - □ L'incremento è dato da $2^{\frac{6}{12}} = 2^{\frac{1}{2}} = \sqrt{2} = 1,414$
 - □ 1397 * 1,414 = 1975

SQNR

- Dato N=10, quanto vale il SQNR?
 - \Box 10 * 6 = 60 dB

- Dato un SQNR pari a 66, quanto vale N?
 - □ 66 / 6 = 11

Memoria necessaria per un file audio

Dato un tasso di campionamento pari a 44.1kHz e una PCM a 8bit, quanti byte servono per memorizzare un audio stereo di 2 secondi?

$$\frac{44100*8*2*2}{8} = 176400 = 176KB$$