AERSP 313 Computer Project Fall 2018

THE PENNSYLVANIA STATE UNIVERSITY

Kostandin Gjergo Trent Dempsey Alena Kim Ashley Bitto Kriston Ramdass Brody Clark Patrick Julich

Statement of the Problem

The displacement y(t) of a simple harmonic oscillator with a natural frequency w= sqrt(k/m)= 2rad/sec and damping c/m =1/sec is described by the differential equation

$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 4y = 0, \quad y(0) = 1 \text{ cm.}, \quad \frac{dy}{dt}(0) = 0.$$

For this problem we need to find the exact solution for the displacement. Also, we need to write a computer program to predict the displacement as a function of time t, for the set boundary conditions of 0<t<10 seconds.

After we gather the exact values from the exact function and the predicted values from the Improved Euler Method using a h=0.1 step size, we will compare the values to see the accuracy of the estimated to the exact. We will then repeat the test with estimated values that come from a higher step value, h=0.5. We predict this should be less accurate than the h=0.1 step value and the error should be larger.

The Exact Solution

$$\frac{d^{\frac{1}{4}}}{dt^{\frac{1}{4}}} + \frac{dy}{dt} + 4y = 0 \quad j \quad y(0) = 1 \quad i \quad \frac{dy}{dt}(0) = 0$$

$$\lambda^{n} + \lambda + 4 = 0$$

$$\lambda = \frac{-1 \pm \sqrt{1 - 16}}{2} = -\frac{1}{2} \pm \frac{\sqrt{15}}{2} \cdot \frac{1}{2} \cdot \frac{$$

Comparison of the Numerical and Exact Solution

1. h=0.1

n	х	Numerical y(x)	actual v(x)	numerical y'(x)	actual v'(x)	% error y(x)	y'(x)
0	0	1 1	1	0	0	0	0
1	0.1	0.9243	0.980714	-0.7087	_	_	
2	0.2	0.838488	0.926057	-0.978433		0.19	0.396
3	0.3	0.728767	0.841468	-1.18454		0.354	0.278
4	0.4	0.60166	0.733005	-1.32525	-1.18285	0.578	0.143
5	0.5	0.463728	0.607055	-1.40148	-1.32538	0.889	0.01
6	0.6	0.321314	0.47006	-1.41652	-1.40407	1.347	0.184
7	0.7	0.180318	0.328268	-1.37572	-1.42201	2.118	0.386
8	0.8	0.0460177	0.187515	-1.28603	-1.38428	3.838	0.618
9	0.9	-0.077075	0.0530432	-1.15563	-1.29763	13.245	0.894
10	1	-0.185319	-0.070644	-0.993441	-1.17	9.104	1.228
11	1.1	-0.275989	-0.179882	-0.808774	-1.01012	3.023	1.651
12	1.2	-0.347303	-0.271899	-0.610889	-0.82714	1.504	2.22
13	1.3	-0.398392	-0.344845	-0.408662	-0.630189	0.713	3.063
14	1.4	-0.429247	-0.397766	-0.210277	-0.428072	0.157	4.534
15	1.5	-0.440638	-0.43056	-0.022981	-0.228949	0.305	8.156
16	1.6	-0.434008	-0.443899	0.147104	-0.040088	0.735	42.674
17	1.7	-0.411353	-0.439127	0.29511	0.13232	1.166	11.173
18	1.8	-0.375091	-0.41815	0.417487	0.283302	1.625	4.168
19	1.9	-0.327928	-0.383305	0.51201	0.409168	2.143	2.033
20	2	-0.272728	-0.337235	0.577742	0.507534	2.76	0.882
21	2.1	-0.212388	-0.282754	0.614938	0.577283	3.546	0.08
22	2.2	-0.149721	-0.22273	0.624928	0.618494	4.643	0.575
23	2.3	-0.087358	-0.159969	0.609955	0.632318	6.406	1.169
24	2.4	-0.027665	-0.097111	0.573007	0.620838	10.043	1.753
25	2.5	0.0273232	-0.036551	0.517624	0.586897	24.309	2.367
26	2.6	0.075951	0.0196332	0.447714	0.533919	39.168	3.052

27 2.7 0.116965 0.0697257 0.367366 0.465728 8.928 3.868 28 2.8 0.149525 0.112406 0.280672 0.386356 4.056 4.915 29 2.9 0.173199 0.14676 0.191575 0.29988 1.884 6.405 30 3 0.187934 0.172277 0.103729 0.210257 0.535 8.885 31 3.1 0.19403 0.18883 0.0203848 0.121185 0.475 14.404 32 3.2 0.192086 0.196644 -0.055691 0.035992 1.329 43.363 33 3.3 0.182953 0.196254 -0.122279 -0.042459 2.124 31.163 34 3.4 0.167678 0.188456 -0.177739 -0.111834 2.92 9.34 35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861								
29 2.9 0.173199 0.14676 0.191575 0.29988 1.884 6.405 30 3 0.187934 0.172277 0.103729 0.210257 0.535 8.885 31 3.1 0.19403 0.18883 0.0203848 0.121185 0.475 14.404 32 3.2 0.192086 0.196644 -0.055691 0.035992 1.329 43.363 33 3.3 0.182953 0.196254 -0.122279 -0.042459 2.124 31.163 34 3.4 0.167678 0.188456 -0.177739 -0.111834 2.92 9.34 35 3.5 0.147439 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275171 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280	27	2.7	0.116965	0.0697257	0.367366	0.465728	8.928	3.868
30 3 0.187934 0.172277 0.103729 0.210257 0.535 8.885 31 3.1 0.19403 0.18883 0.0203848 0.121185 0.475 14.404 32 3.2 0.192086 0.196644 -0.055691 0.035992 1.329 43.363 33 3.3 0.182953 0.196254 -0.122279 -0.042459 2.124 31.163 34 3.4 0.167678 0.188456 -0.1777739 -0.111834 2.92 9.34 35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -	28	2.8	0.149525	0.112406	0.280672	0.386356	4.056	4.915
31 3.1 0.19403 0.18883 0.0203848 0.121185 0.475 14.404 32 3.2 0.192086 0.196644 -0.055691 0.035992 1.329 43.363 33 3.3 0.182953 0.196254 -0.122279 -0.042459 2.124 31.163 34 3.4 0.167678 0.188456 -0.177739 -0.111834 2.92 9.34 35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.202066 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.251487 <	29	2.9	0.173199	0.14676	0.191575	0.29988	1.884	6.405
32 3.2 0.192086 0.196644 -0.055691 0.035992 1.329 43.363 33 3.3 0.182953 0.196254 -0.122279 -0.042459 2.124 31.163 34 3.4 0.167678 0.188456 -0.177739 -0.111834 2.92 9.34 35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.009066 0.0221068 -0.231687	30	3	0.187934	0.172277	0.103729	0.210257	0.535	8.885
33 3.3 0.182953 0.196254 -0.122279 -0.042459 2.124 31.163 34 3.4 0.167678 0.188456 -0.177739 -0.111834 2.92 9.34 35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.09066 0.0221068 -0.231687 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674	31	3.1	0.19403	0.18883	0.0203848	0.121185	0.475	14.404
34 3.4 0.167678 0.188456 -0.177739 -0.111834 2.92 9.34 35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.009066 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 <td>32</td> <td>3.2</td> <td>0.192086</td> <td>0.196644</td> <td>-0.055691</td> <td>0.035992</td> <td>1.329</td> <td>43.363</td>	32	3.2	0.192086	0.196644	-0.055691	0.035992	1.329	43.363
35 3.5 0.147439 0.174249 -0.221017 -0.170364 3.771 4.329 36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.009066 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.12872	33	3.3	0.182953	0.196254	-0.122279	-0.042459	2.124	31.163
36 3.6 0.123494 0.154785 -0.251627 -0.216861 4.746 1.916 37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.009066 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.084	34	3.4	0.167678	0.188456	-0.177739	-0.111834	2.92	9.34
37 3.7 0.0971193 0.1313 -0.269617 -0.250706 5.945 0.367 38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.09966 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.01	35	3.5	0.147439	0.174249	-0.221017	-0.170364	3.771	4.329
38 3.8 0.0695633 0.105068 -0.275517 -0.271818 7.565 0.81 39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.09966 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08338 -0.082607 -0	36	3.6	0.123494	0.154785	-0.251627	-0.216861	4.746	1.916
39 3.9 0.041998 0.0773472 -0.270266 -0.280609 10.064 1.815 40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.009066 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.087542 <t< td=""><td>37</td><td>3.7</td><td>0.0971193</td><td>0.1313</td><td>-0.269617</td><td>-0.250706</td><td>5.945</td><td>0.367</td></t<>	37	3.7	0.0971193	0.1313	-0.269617	-0.250706	5.945	0.367
40 4 0.0154827 0.0493296 -0.255145 -0.277918 14.862 2.753 41 4.1 -0.009066 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 <	38	3.8	0.0695633	0.105068	-0.275517	-0.271818	7.565	0.81
41 4.1 -0.009066 0.0221068 -0.231687 -0.264939 29.964 3.697 42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 <t< td=""><td>39</td><td>3.9</td><td>0.041998</td><td>0.0773472</td><td>-0.270266</td><td>-0.280609</td><td>10.064</td><td>1.815</td></t<>	39	3.9	0.041998	0.0773472	-0.270266	-0.280609	10.064	1.815
42 4.2 -0.030895 -0.003364 -0.201598 -0.243144 169.479 4.712 43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 <t< td=""><td>40</td><td>4</td><td>0.0154827</td><td>0.0493296</td><td>-0.255145</td><td>-0.277918</td><td>14.862</td><td>2.753</td></t<>	40	4	0.0154827	0.0493296	-0.255145	-0.277918	14.862	2.753
43 4.3 -0.049429 -0.026284 -0.166674 -0.214199 17.543 5.883 44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0	41	4.1	-0.009066	0.0221068	-0.231687	-0.264939	29.964	3.697
44 4.4 -0.064274 -0.046025 -0.128724 -0.179881 7.395 7.342 45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.882 55 5.5 -0	42	4.2	-0.030895	-0.003364	-0.201598	-0.243144	169.479	4.712
45 4.5 -0.075217 -0.062141 -0.089496 -0.142005 3.432 9.352 46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.882 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.0	43	4.3	-0.049429	-0.026284	-0.166674	-0.214199	17.543	5.883
46 4.6 -0.082215 -0.074367 -0.050622 -0.102346 1.144 12.555 47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.882 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.00	44	4.4	-0.064274	-0.046025	-0.128724	-0.179881	7.395	7.342
47 4.7 -0.08538 -0.082607 -0.013559 -0.062578 0.474 19.106 48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	45	4.5	-0.075217	-0.062141	-0.089496	-0.142005	3.432	9.352
48 4.8 -0.084960 -0.086929 0.0204451 -0.024221 1.783 44.021 49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	46	4.6	-0.082215	-0.074367	-0.050622	-0.102346	1.144	12.555
49 4.9 -0.081319 -0.087542 0.0503788 0.0114056 2.95 79.255 50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	47	4.7	-0.08538	-0.082607	-0.013559	-0.062578	0.474	19.106
50 5 -0.074906 -0.084776 0.0754864 0.0432089 4.078 16.594 51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	48	4.8	-0.084960	-0.086929	0.0204451	-0.024221	1.783	44.021
51 5.1 -0.066237 -0.079057 0.0952699 0.0703464 5.25 7.307 52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	49	4.9	-0.081319	-0.087542	0.0503788	0.0114056	2.95	79.255
52 5.2 -0.05586 -0.070882 0.109484 0.0922326 6.553 3.293 53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	50	5	-0.074906	-0.084776	0.0754864	0.0432089	4.078	16.594
53 5.3 -0.044343 -0.060796 0.118121 0.108537 8.117 0.873 54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	51	5.1	-0.066237	-0.079057	0.0952699	0.0703464	5.25	7.307
54 5.4 -0.032235 -0.049364 0.121387 0.119172 10.17 0.882 55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	52	5.2	-0.05586	-0.070882	0.109484	0.0922326	6.553	3.293
55 5.5 -0.020058 -0.037146 0.119677 0.124274 13.222 2.323 56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	53	5.3	-0.044343	-0.060796	0.118121	0.108537	8.117	0.873
56 5.6 -0.008288 -0.024682 0.113537 0.124175 18.734 3.622	54	5.4	-0.032235	-0.049364	0.121387	0.119172	10.17	0.882
	55	5.5	-0.020058	-0.037146	0.119677	0.124274	13.222	2.323
57 5.7 0.0026636 -0.012468 0.103629 0.119375 33.527 4.89	56	5.6	-0.008288	-0.024682	0.113537	0.124175	18.734	3.622
	57	5.7	0.0026636	-0.012468	0.103629	0.119375	33.527	4.89

58 59 60 61	5.8 5.9 6	0.0124551	-0.000943 0.0095205	0.0906998		382.322	6.221
60	6		0.0095205	0.0755004	0.000000		
				0.0755364	0.0982828	30.824	7.715
61	<i>c</i> 1	0.027582	0.0186276	0.0589372	0.0834968	11.783	9.534
	6.1	0.0326294	0.0261612	0.0416782	0.0669502	5.431	11.969
62	6.2	0.0359362	0.0319855	0.0244861	0.0494382	2.013	15.696
63	6.3	0.0375437	0.036042	0.0080144	0.0317171	0.294	22.798
64	6.4	0.0375542	0.0383451	-0.007174	0.0144791	2.09	44.648
65	6.5	0.0361216	0.0389743	-0.020619	-0.001667	3.644	330.137
66	6.6	0.0334403	0.038065	-0.031974	-0.016215	5.105	27.164
67	6.7	0.0297339	0.0357981	-0.041004	-0.028762	6.586	11.167
68	6.8	0.0252438	0.0323888	-0.047588	-0.039024	8.197	5.074
69	6.9	0.0202181	0.0280752	-0.051708	-0.046829	10.085	1.619
70	7	0.0149014	0.0231069	-0.053444	-0.052115	12.502	0.782
71	7.1	0.0095262	0.0177348	-0.052961	-0.054921	15.976	2.689
72	7.2	0.0043043	0.0122011	-0.050490	-0.055376	21.924	4.362
73	7.3	-0.000578	0.0067310	-0.046319	-0.053687	36.052	5.954
74	7.4	-0.004967	0.0015262	-0.040773	-0.050121	137.89	7.586
75	7.5	-0.008741	-0.003241	-0.034196	-0.044994	53.251	9.382
76	7.6	-0.011815	-0.007432	-0.026942	-0.038647	17.617	11.517
77	7.7	-0.014138	-0.010942	-0.019354	-0.031438	7.979	14.302
78	7.8	-0.015694	-0.013702	-0.011756	-0.023723	3.178	18.416
79	7.9	-0.016497	-0.015681	-0.004440	-0.015841	0.084	25.792
80	8	-0.016589	-0.016876	0.0023392	-0.008109	2.246	45.246
81	8.1	-0.016035	-0.017317	0.0083740	-0.000805	4.206	390.461
82	8.2	-0.014918	-0.017059	0.0135044	0.0058343	6.005	43.532
83	8.3	-0.013337	-0.016179	0.0176205	0.0116208	7.789	16.209
84	8.4	-0.011396	-0.014768	0.0206624	0.0164157	9.689	7.339
85	8.5	-0.009205	-0.012931	0.022617	0.0201316	11.871	2.637
86	8.6	-0.006873	-0.010779	0.0235143	0.0227301	14.597	0.498
87	8.7	-0.004501	-0.008422	0.023422	0.0242189	18.398	2.909
88	8.8	-0.002186	-0.005971	0.0224391	0.0246473	24.605	4.971

89	8.9	-1.13E-05	-0.003525	0.0206896	0.0240998	37.982	6.891
90	9	1.95E-03	-0.001179	0.0183146	0.0226901	99.042	8.817
91	9.1	0.0036552	0.0009878	0.0154657	0.0205538	97.856	10.894
92	9.2	0.0050513	0.0029117	0.0122982	0.0178409	25.536	13.313
93	9.3	0.0061186	0.0045420	0.0089643	0.0147094	11.214	16.392
94	9.4	0.0068479	0.0058449	0.0056083	0.0113178	4.684	20.794
95	9.5	0.0072437	0.0068020	0.0023612	0.0078196	0.674	28.278
96	9.6	0.0073231	0.0074100	-0.000662	0.0043576	2.244	45.815
97	9.7	0.0071137	0.0076790	-0.003369	0.0010597	4.634	162.556
98	9.8	0.0066513	0.0076311	-0.005685	-0.001964	6.78	71.528
99	9.9	0.0059782	0.0072982	-0.007558	-0.004626	8.864	22.89
100	10	0.0051405	0.0067202	-0.008961	-0.006859	23.51	30.64

2. h=0.5

n	Х	Numerical y(x)	actual y(x)	numerical y'(x)	actual y'(x)	error y(x)	y'(x)
0	0	1	1	0	0	0	0
1	0.5	0.5	0.607055	-1.5	-1.32538	17.635	13.175
2	1	-0.3125	-0.070644	-0.9375	-1.17	342.355	19.872
3	1.5	-0.507813	-0.43056	0.351563	-0.228949	17.942	253.555
4	2	-0.12207	-0.337235	0.805664	0.507534	63.803	58.741
5	2.5	0.241089	-0.036550	0.283813	0.586897	759.6	51.642
6	3	0.226974	0.172277	-0.326157	0.210257	31.749	255.123
7	3.5	-0.008821	0.174249	-0.381231	-0.170364	105.063	123.774
8	4	-0.147372	0.0493296	-0.034421	-0.277918	398.75	87.614
9	4.5	-0.086594	-0.062141	0.216756	-0.142005	39.351	252.64
10	5	0.0379863	-0.084776	0.156986	0.0432089	144.808	263.319
11	5.5	0.0778629	-0.037146	-0.037356	0.124274	309.61	130.06
12	6	0.0249229	0.0186276	-0.121464	0.0834968	33.796	245.471
13	6.5	-0.033087	0.0389743	-0.052567	-0.001667	184.896	3051.876
14	7	-0.036256	0.0231069	0.0430604	-0.052115	256.908	182.625
15	7.5	-0.001980	-0.003241	0.0597673	-0.044994	38.892	232.833

16	8	0.0214224	-0.016876	0.0104418	-0.008109	226.939	228.759
17	8.5	0.0146269	-0.012931	-0.030828	0.0201316	213.107	253.134
18	9	-0.004247	-0.001179	-0.025793	0.0226901	259.985	213.679
19	9.5	-0.011796	0.0068020	0.0031465	0.0078196	273.423	59.76
20	10	-0.004718	0.0067202	0.0180878	-0.006859	170.209	363.694

The Result Showing Effect of Time Step Size

Discussion of the Results

Process

Once given the project, we began with finding the exact solution for the displacement of the simple harmonic oscillator by computing it by hand using constant coefficients. Then we used C++ to predict the displacement as a function of time between zero and ten seconds—this used the Improved Euler method. The C++ code gave us the values for the differential equation which we compared with the exact solution. In order to compare these values, we used graphical comparison and error analysis. We continued to use graphical comparison to highlight the effect of time step size on the predicted displacement.

Discuss values and meaning

The graphs provided give a visual representation of what was calculated numerically in the exact solution and by the code with the Improved Euler Method (IEM). We ran the tests at three values: the exact at h=0.1, the IEM at h=0.1, and the IEM at h=0.5. The point of doing so was to show the comparison between the exact and the IEM when h is small, and IEM when h is larger and show how it is less accurate—and that is what we found. The errors between the h=0.1 step and the exact ranged primarily from 0% - 25% which is very reasonable. When we compared the values with a h=0.5 step size and the exact, we received errors reaching over 200%, which goes to show the effectiveness of a small step size. Additionally, the h=0.1 step values were very similar to the exact values, however, there were still areas of large error, and we believe that can be fixed by making the step size smaller, like h=0.05 for example.

Methods used

We coded the improved Euler method in C++ and used the constant coefficient method to solve the equation for the exact solution. We did this together to check each other's work and make sure everyone agreed that the solution was correct. Then we copied the work down neatly to be scanned onto the submission. Once we gathered the values for the exact solution and the Improved Euler Method, we used MATLAB to quickly graph the trends to we could see a visual representation of the differences between the values.

Divided and conquered

We broke the project up into small steps so that all members in the groups had something to work on—this allowed us to easily complete all the tasks. We had parts of the group creating the code, others wrote down the report, some copied the solution, and everyone participated in formatting the results. This allowed us to get the work done quickly even though we had a few scheduling conflicts.

Appendix: Copy of Computer Code

```
#include <iostream>
#include <iomanip>
#include <cmath>
#include <fstream>
using namespace std;
void exact(double i, double &ex1, double &ex2);
                                                           //prototype for exact equation
function
void IEM(double h, double &y1, double &y2); //prototype for improved euler method function
int main()
double y1, y2, ex1, ex2;
                             //variable for storing initial conditions. will be changed during
process
double h;
                             //variable for step size
double e1, e2;
                      //variable for error
       //asks user to enter initial conditions
       cout << "please enter the initial conditions:" << endl;
       cout << "Y(0) = ";
       cin >> y1;
       cout << endl;
       cout << "Y'(0) = ";
       cin >> y2;
       cout << endl;
       cout << "please enter the step size: ";
       cin >> h;
       //creates files for outputting estimated and exact values
       ofstream output1;
       output1.open("output1.txt");
       ofstream output2;
       output2.open("output2.txt");
       ofstream exactans1;
       exactans1.open("exact solutions1.txt");
       ofstream exactans2;
       exactans2.open("exact solutions2.txt");
       ofstream errors1;
       errors1.open("percent errors.txt");
       ofstream errors2;
       errors2.open("percent errors2.txt");
```

```
for (double t = 0; t \le 10; t += h) //loop for reiterating functions to produce values each step
       {
       IEM(h, y1, y2);
                             //improved euler method function
       output1 << y1 << endl;
                                            //outputs estimated answers for Y1 and Y2 to a file
       output2 << y2 << endl;
exact(t, ex1, ex2); //exact equation function
       exactans1 << ex1 <<endl;
                                            //outputs exact answers for Y1 and Y2 to a file
       exactans2 << ex2 << endl;
       }
       output1.close();
                                     //closes files
       exactans1.close();
       exactans2.close();
       output2.close();
ifstream errorvalues; //creates file for error percentages
errorvalues.open("output1.txt");
double estimated1[100], estimated2[100]; //creates two arrays whose elements will be
compared for calculation
estimated 1[0] = 1;
                     //initializes the estimated values for Y1 and Y2 to 1 and 0 for comparing to
exact values.
estimated2[0] = 0;
for (int i = 1; i < (10 / h); i++)
       {
       errorvalues >> estimated1[i]; //reads the estimated values file and puts values in array
```

```
}
        errorvalues.close();
        errorvalues.open("output2.txt");
               for (int i = 1; i < (10 / h); i++)
               {
                       //reads the estimated values file and puts values in array
               errorvalues >> estimated2[i];
               }
        errorvalues.close();
        errorvalues.open("exact solutions1.txt"); //opens exact solutions file
        double exacts1[100], exacts2[100];
                                                              //creates exact solution array
        for (int i = 0; i < (10 / h); i++)
        errorvalues >> exacts1[i];
                                       //reads file and puts values from exact solution file to array
       }
        errorvalues.close();
        errorvalues.open("exact solutions2.txt");
       for (int i = 0; i < (10 / h); i++)
       {
               //reads file and puts values from exact solution file to array
               errorvalues >> exacts2[i];
       }
       errorvalues.close();
for (int i = 0; i < (10 / h); i ++)
```

{

```
for Y1 values
errors1 << setw(4)<<fixed<<setprecision(3) << e1<<endl; //outputs to file
e2 = 100 * (abs(exacts2[i] - estimated2[i]) / abs(exacts2[i]));
                                                                                                                                                                                                 //creates percent error value
for Y2 values
errors2 << setw(4) << fixed<<setprecision(3)<<e2<< endl;
                     }
                                                                                     //closes files
                     errors1.close();
                     errors2.close();
                                           return 0;
}
void exact(double i, double &ex1, double &ex2) //exact equation file, accepts the step value,
and two reference variables as parameters
                                           double eq1 = \exp(-i/2)*(\cos(pow(15, .5)*i/2) + (1/pow(15, .5))*sin(pow(15, .
                                           //calculates actual Y1 based on actual equation
.5)*i / 2));
                                           ex1 = eq1;//changes value of ex1
                                           double eq2 = (((-1) / pow(15, .5))*(8 * exp(-i / 2)*sin(pow(15, .5)*i / 2)));
                     //calculates actual value of Y2 based on derivative of actual equation
                                           ex2 = eq2;
                                                                                     //changes value of ex2
}
void IEM(double h, double &y1, double &y2)
                                                                                                                                                      //improved euler method function. accepts
step size and two reference variables as parameters.
{
                     double y11, y22;
                                                                                                           //new values of Y1 and Y2
                     double a = y2; //first function created by differential equation
```

//creates percent error value

e1 = 100 * (abs(exacts1[i] - estimated1[i]) / abs(exacts1[i]));

```
double b = -a - 4 * y1;
                                     //second function created by differential equation
       double k1[2] = { a, b };//K1 array, has element K11 and K12. K11 = a function and K12 =
b function
       double astar = a + h*b;
                                     //placeholder for new function called astar. increases b by
step size
       double bstar = -astar - 4*(y1 + h*a);
                                                    //placeholder for new function called bstar.
replaces a with astar and increases Y1
                                            //new K values based on astar and bstar
       double k2[2] = { astar, bstar };
       y11 = y1 + (h/2)*(k1[0] + k2[0]);
                                                    //solves for new values of Y1 and Y2
       y22 = y2 + (h / 2)*(k1[1] + k2[1]);
       y1 = y11;
                      //changes vale of y1 and y2 for next iteration to use.
       y2 = y22;
}
```