Computer Science & Information Technology

Discrete Mathematics

DPP: 1

Set Theory and Algebra

- Q1 Which of the following statements are true?
 - I. $\phi \in \phi$
 - II. $\phi \subset \phi$
 - III. $\phi \subseteq \phi$
 - IV. $\phi \in \{\phi\}$
 - $V. \quad \phi \subset \{\phi\}$
 - Vi. $\phi \subseteq \{\phi\}$
- **Q2** If a set A has 63 proper subsets, then what is the cardinality of A?
- Q3 If a set A has 64 subsets of odd cardinality, then what is |A|?
 - (A) 6

(B) 63

(C)7

- (D) 128
- **Q4** How many subset of {1, 2, 3, ..., 11} contain atleast one even integer?
- **Q5** Let A = {1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 17, 18} How many subsets of A contain six elements?
- Q6 Let A = {2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15}

 How many six-elements subsets of A contain four even integers and two odd integers?
- **Q7** Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

How many subsets of A contain only odd integers?

- **Q8** Suppose A, B, C and D are subsets of U (the universe) with A as a subset of B and C as subset of D
 - i.e A \subseteq B and C \subseteq D, then consider the following statements
 - I. A∩C⊆B∩D
 - II. AUC CBUD

Which of the following is correct options?

- (A) Only I is true
- (B) Only II is true
- (C) Neither I nor II is true
- (D) Both I and II are true
- Q9 Let A = {1, 2, 3, ... 15}. How many subsets of A contains all of the odd integers in A?
- **Q10** Let $A,B\subseteq$, where $A=\left\{x\mid x^2-7x=-12\right\}$ and $B=\left\{x\mid x^2-x=6\right\}$. Determine $A\cup B$ and $A\cap B$.
 - (A) $A \cup B = \{5\}$ and $A \cap B = \{-2, 3, 4\}$
 - (B) $A \cup B = \{3\}$ and $A \cap B = \{-2, 3, 4\}$
 - (C) $A \cup B = \{-2, 3, 4\}$ and $A \cap B = \{3\}$
 - (D) $A \cup B$ = {2, 3, 4} and $A \cap B$ = {5}

Answer Key

Q1 4~4

Q2 6~6

Q3 (C)

Q4 1984~1984

Q5 924~924

Q6 225~225

Q7 63~63

Q8 (D)

Q9 128~128

Q10 (C)

Hints & Solutions

Q1 Text Solution:

I. $\phi \in \phi$ is false. The empty set has no members.

II. $\phi \subset \phi$ is false. The empty set is not a proper subset of itself.

III. $\phi \subseteq \phi$ is true. The empty set is a subset of every set

: subset of itself

IV. $\phi \in \{\phi\}$ is true. phi is a member here.

V. $\phi \subset \{\phi\}$ is true. The empty set is a proper subset of itself.

VI. $\phi \subseteq \{\phi\}$ is true. The empty set is a subset of every set.

Q2 Text Solution:

If a set has n elements then the number of subsets will be 2^n and the number of proper subsets will be $2^n - 1$.

A has 63 proper subsets, so $2^n - 1 = 63$

 $2^{n} = 63 + 1$

 $2^{n} = 64$

 $2^n = 2^6$

∴n = 6

The cardinality of A is 6

Q3 Text Solution:

The number of subsets for $\{1, 2, 3, ... n\}$ with odd cardinality is 2^{n-1} .

Number of subsets with cardinality $i = {}^{n}C_{i}$

So, the number of subsets with odd cardinality

$$\sum i = 1, 3 \dots n - 1 {}^{n}C_{i} = 2^{n-1}.$$

Now, given

 $2^{n-1} = 64$

 $2^{n-1} = 2^6$

n - 1 = 6

[Bases are same, so equating power]

n = 7

Q4 Text Solution:

2¹¹ subset for {1, 2, 3,11}

 2^6 subset for {1, 3, 5, 7, 9, 11} contains none of the even integers {2, 4, 6, 8, 10}.

Hence, there are $2^{11} - 2^6 = 1984$ subsets that contain at least one even integer.

Q5 Text Solution:

If we choose 6 elements from a set of 12 elements where order does not matter. Then we can do it in $^{12}\mathrm{C}_6$ ways.

For example consider a set = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} out of this set we have to choose a subset of 6 elements. This can be done in following ways:

1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7},{3, 4, 5, 6, 7, 8}, {4, 7, 8, 3, 11, 12}, {5, 7, 9, 10, 11, 12}.... and so on.

That means the arrangement or order of elements does not matter, therefore we can do it using combinations.

$$^{12}C_{6} = \frac{\overset{12 \times 11 \times 10^{2} \times 9^{3} \times 8^{2} \times 7 \times 6!}{6! \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{= 11 \times 12 \times 7}$$
$$= 77 \times 12$$
$$= 924$$

Q6 Text Solution:

Out of 6 element subsets, we can choose 4 even integers in ${}^6\mathrm{C}_4$ ways.

Similarly to find 2 odd integers out of 6 element subset, can be done in ${}^6\mathrm{C}_2$ ways.

Therefore

$$^{6}\mathrm{C_{4}} * {^{6}\mathrm{C}_{2}} = \frac{{^{6}}^{^{3}} \times 5 \times 4!}{2 \times 4!} \times \frac{{^{6}}^{^{3}} \times 5 \times 4!}{4! \times 2}$$
= 15 * 15 = 225

Q7 Text Solution:

In the given set, there are 6 odd integers, we have two choices for each odd integer to be included or not included, therefore total possibilities = $2^6 - 1 = 63$.

Q8 Text Solution:

I. $A \cap C \subseteq B \cap D$, is True.

Let a be an arbitrary element of $A \cap C$, so $a \in A \cap C$ then $a \in A \subseteq B$, so $a \in B$ and $a \in C \subseteq D$, so $a \in D$. That concludes that $a \in B$ and $a \in D$, therefore by definition $a \in B \cap D$. If follows that

every element of A \cap C belongs to B \cap D, which by definition means A \cap C \subseteq B \cap D.

II. $A \cup C \subseteq B \cup D$, is True.

If a is an arbitrary element that belongs to A \cup C then it definitely belongs to B \cup D as A \subseteq B and C \subseteq D.

Q9 Text Solution:

In the given set A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

There are 8 odd integers. For all odd integer we have choices whether to include it or not with the 7 even integers in the set.

Therefore possiblities = 2^7 = 128.

Q10 Text Solution:

$$x^{2}-7x = -12 \Rightarrow x^{2}-7x+12 = 0 \Rightarrow (x-4)(x-3) = 0 \Rightarrow x = 4, x = 3.$$

$$x^{2}-x = 6 \Rightarrow x^{2}-x-6 = 0 \Rightarrow (x-3)(x+2) = 0 \Rightarrow x = 3, x = -2.$$

Consequently,
$$A\cap B=\{3\}$$
 and $A\cup B=\{-2,3,4\}$.

