PRÁCTICA 2: Conjuntos Inductivos

Dante Zanarini

Alejandro Hernández

Guido De Luca

Denise Marzorati

Santiago Coronel

- 1. Defina inductivamente los siguientes conjuntos:
 - (a) El conjunto de los números naturales múltiplos de 3.
 - (b) El conjunto de los números enteros múltiplos de 3.
- 2. Sea $\Sigma = \{a, b, c\}$. Defina inductivamente los siguientes conjuntos y enuncie el principio de inducción primitiva para cada uno de ellos:
 - (a) Σ^*
 - (b) $B = \{a^n b c^{2n} \mid n \in \mathbb{N}\}\$
- 3. Defina inductivamente los siguientes conjuntos:
 - (a) $A = \{a\}^*$
 - (b) $B = \{\alpha \in \{a, b, c\}^* \mid \alpha \text{ es un palíndromo}\}$
 - (c) $C = \{a, b, ab, ba\}$
- 4. Considere el conjunto de las matrices

$$M = \left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \mid a, b, c \in \mathbb{N}_0 \text{ donde } a, b, c \text{ tienen la misma paridad} \right\}$$

- (a) Defina inductivamente al conjunto M.
- (b) Enuncie el principio de inducción primitiva para M.
- 5. Enuncie el principio de inducción primitiva para el conjunto \mathbb{P} , definido inductivamente como el menor conjunto tal que:
 - $0 \in \mathbb{P}$
 - si $n \in \mathbb{P}$ entonces $(n+2) \in \mathbb{P}$

Utilice este principio para probar que para todo $n \in \mathbb{P}$ existe $m \in \mathbb{N}_0$ tal que n = m + m.

- 6. Sea $\Sigma = \{a, b, c\}$. Definimos Δ inductivamente como el menor conjunto tal que:
 - $a \in \Delta$
 - si $\alpha \in \Delta$ entonces $b\alpha b \in \Delta$
 - (a) Enuncie el principio de inducción primitiva para Δ .
 - (b) Demuestre que cualquier cadena de Δ tiene un número par de símbolos b.
- 7. Sea $\Sigma = \{a, b, c\}$. Definimos Γ inductivamente como el menor conjunto tal que:
 - $\lambda \in \Gamma$
 - si $\alpha \in \Gamma$ entonces $b\alpha \in \Gamma$
 - si $\alpha \in \Gamma$ entonces $a\alpha \in \Gamma$
 - (a) Enuncie el principio de inducción primitiva para Γ .
 - (b) Determine cuáles de las siguientes afirmaciones son correctas:
 - $b \in \Gamma$
 - $a \in \Gamma$
 - $babacbaca \in \Gamma$
 - $aba \in \Gamma$
 - (c) Considere ahora el conjunto Δ definido inductivamente como el menor conjunto tal que:
 - $\lambda \in \Delta$
 - si $\alpha \in \Delta$ entonces $\alpha b \in \Delta$
 - si $\alpha \in \Delta$ entonces $\alpha a \in \Delta$

Determine cuáles de las siguientes afirmaciones son correctas:

- si $\alpha \in \Delta$ entonces $b\alpha \in \Delta$
- si $\alpha \in \Delta$ entonces $a\alpha \in \Delta$
- $\Gamma \subseteq \Delta$
- $\Delta \subset \Gamma$
- $\Delta = \Gamma$

- 8. Definimos inductivamente la relación $S \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ como el menor conjunto tal que:
 - si $n \in \mathbb{N}_0$ entonces $(n, n) \in S$
 - si $(n,m) \in S$ entonces $(n,m+1) \in S$
 - (a) Determine cuáles de las siguientes afirmaciones son correctas:
 - $(0,0) \in S$
 - $0 \in S$
 - $(2,3) \in S$
 - $(3,4) \in S$
 - (b) Enuncie el principio de inducción primitiva para S. Demuestre, utilizando este principio, que para todo par $(n, m) \in S$ se tiene $n \leq m$.
 - (c) Definimos inductivamente $Q \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ como el menor conjunto tal que:
 - si $n \in \mathbb{N}_0$ entonces $(0, n) \in Q$
 - si $(n,m) \in Q$ entonces $(n+1,m+1) \in Q$

Determine cuáles de las siguientes afirmaciones son correctas:

- $S \subseteq Q$
- \bullet $Q \subseteq S$
- \bullet Q = S
- 9. Mostraremos, por inducción en la cantidad de caballos, que todos los caballos son del mismo color.
 - Caso base, n = 1: para un conjunto de un único caballo $\{c_1\}$ la proposición es trivial.
 - Caso inductivo, n = k: Supongamos que, para cualquier conjunto de k caballos, todos resultan ser del mismo color. Sea $C = \{c_1, \ldots, c_k, c_{k+1}\}$ un conjunto de k+1 caballos. Por hipótesis inductiva, los caballos en $C_1 = \{c_1, \ldots, c_k\}$ son todos del mismo color. Por la misma razón, los de $C_2 = \{c_2, \ldots, c_k, c_{k+1}\}$ también resultan del mismo color. Luego todos los caballos de C son del mismo color.

Explique cuál es el error en el razonamiento dado.