Modellierung turbulenter technischer Strömungen

7. Fouriertransformation

Prof. Dr.-Ing. C. Hasse

Inhalt der Vorlesungsreihe

- Einführung/ Phänomenologie turbulenter Strömungen
- Statistische Betrachtungsweise (Reynolds-gemittelte Navier-Stokes Gleichungen)
 - → Behandlung von Schließungsansätzen
- Spektrale Sichtweise der Turbulenz
- Grobstruktursimulation (Large Eddy Simulation, LES)

Inhalt dieses Vorlesungsabschnitts

- 7.0 Motivation: Warum Spektralraum?
- 7.1 Grundlegendes zur Fourier-Analyse
 - ► Mathematische Beschreibung (anhand 1D)
 - ► Phänomenologie des 1D Wellenraumes
- 7.2 Beispiele für Fourierreihen und Transformationen
- 7.3 Typische Funktionen im Wellenraum und physikalischen Raum (Top Hat etc. →Filtern)

- ► Literaturempfehlung:

 J.F.James: A Student's Guide to

 Fourier Transforms

 A also book über Bibliothek verfügbe
 - → als e-book über Bibliothek verfügbar

https://doi.org/10.1017/CBO9780511762307

Motivation

Bei der Beschreibung der Längenmaße im physikalischen Raum mittels der Korrelationsfunktion konnten zwei Längenmaße mathematisch exakt definiert werden:

- ► Integrales Längenmaß
- ► Taylor-Mikrolängenmaß

Mittels Dimensionsanalyse wurde außerdem das Kolmogorov-Längenmaß definiert.

Offensichtlich beinhaltet eine turbulente Strömung Wirbelstrukturen über ein breites Spektrum an Längenmaßen und Frequenzbereichen.

Mit der Fourier-Analyse existiert ein mathematisches Hilfsmittel mit welchem jeder Wirbelgröße eine kinetische Energie zugeordnet werden kann.

7.1 Grundlegendes zur Fourier-Analyse

Die Fouriertransformation gehört zur Gruppe der Integraltransformationen. Eine Integraltransformation ist wie folgt definiert:

$$\hat{F}(\nu) = \int_{a}^{b} K(\nu, t) F(t) dt$$

Dabei sind:

ightharpoonup F(t) Transformierbare Funktion im Originalraum

 $\triangleright \hat{F}(\nu)$ Bildfunktion

ightharpoonup K(v,t) Kernfunktion ightharpoonup Abhängig von Integralfunktion

Neben der Fouriertransformation existiert eine Vielzahl an Integraltransformationen auf. Einige Beispiele hierfür sind:

K(u,t)	a	b	Bezeichnung
$\frac{1}{\sqrt{2\pi}}e^{-i\nu t}$	$-\infty$	$+\infty$	Fouriertransformation
$e^{-\nu t}$	0	$+\infty$	Laplacetransformation
$t^{\nu-1}$	0	$+\infty$	Mellintransformation
$\cos(\nu t)$	0	$+\infty$	Kosinustransformation
$\sin(u t)$	0	$+\infty$	Sinustransformation

Für die Anforderungen der Turbulenzanalyse ist die Fouriertransformation gut geeignet. Diese wird in dieser Vorlesung vorgestellt. Grundlage der Fouriertransformation sind die Fourierreihen. Diese werden als nächstes betrachtet.

Ausgangspunkt:

gemessene Signale: Überlagerte, zeitlich aufgelöste Wellen

Ziel:

Das Frequenzband: Welche Frequenzen sind mit welcher Amplitude vertreten?

→ Rückschluss auf Energieinhalt der verschiedene Längenmaße möglich!

Wiederholung: Längen- und Zeitskalen der Turbulenz

- Erfassung von Längenskalen möglich
- Dazu folgendes einfaches Experiment (Lamb-Oseen-Vortex):
 - ► Wirbelstruktur wird konvektiv transportiert
 - ► Messung von u_2 an den Punkten P1, P2 und P3

Wiederholung: Längen- und Zeitskalen der Turbulenz

Das Signal kann mittels einer Fourierreihe dargestellt werden:

$$F(t) = \sum_{n=-\infty}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right]$$

- →Überlagerung vieler Schwingungen mit individueller
 - ightharpoonup Amplitude A_n, B_n
 - ► Kreisfrequenz $2\pi n\nu_0$
 - ▶ n Laufindex → ganze Zahlen
 - $\triangleright \nu_0$: Kleinste aufgelöste Frequenz

Veranschaulichung der Fourierreihenentwicklung

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{n^2 \pi^2} ((-1)^n - 1) \cos\left(n\frac{\pi x}{2}\right) + \frac{2}{n\pi} (-1)^{n+1} \sin\left(n\frac{\pi x}{2}\right) \right]$$

Das Signal kann mittels einer Fourierreihe dargestellt werden:

$$F(t) = \sum_{n=-\infty}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right]$$

- Darstellung mittels komplexer Zahlen:
- Euler-Formel:

$$e^{2\pi i\nu_0 nt} = \cos(2\pi\nu_0 nt) + i\sin(2\pi\nu_0 nt)$$
$$F(t) = \sum_{-\infty}^{\infty} C_n e^{2\pi i n\nu_0 t}$$

► Euler Formel: $e^{i\nu_0 nt} = \cos(\nu_0 nt) + i\sin(\nu_0 nt)$

Komplexer Zahlenraum:

Satz von Dirichlet:

Bedingungen:

- Das Intervall lässt sich in endlich viele stetige, monotone Teilintervalle zerlegen
- 2. Ist t_0 eine Unstetigkeitsstelle, so existieren $f(t_0 0)$ und $f(t_0 0)$

Die Fourierreihe

$$F(t) = A_0/2 + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n\nu_0 t) + B_n \sin(2\pi n\nu_0 t) \right]$$

konvergiert gegen
$$\begin{cases} f\left(t\right), \text{ wenn stetig} \\ \left(f\left(t-0\right)+f\left(f+0\right)\right)/2, \text{ wenn unstetig} \end{cases}$$

Satz von Dirichlet:

Symmetrien

$$F(t) = A_0/2 + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n\nu_0 t) + B_n \sin(2\pi n\nu_0 t) \right]$$

Wenn:

$$f(t) = f(-t)$$

 $(d.h. \text{ gerade Fkt.}):$
 $\rightarrow B_n = 0;$
 $f(t) = -f(-t):$
 $(d.h. \text{ ungerade Fkt.}):$
 $\rightarrow A_n = 0.$

Herleitung der Koeffizienten:

► Betrachtung einer Periode $P=1/v_0$:

$$F(t) = A_0/2 + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n\nu_0 t) + B_n \sin(2\pi n\nu_0 t) \right]$$

$$\int_{t=0}^{P} F(t) \sin(2\pi m\nu_0 t) dt$$

$$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sum_{n=0}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right] dt$$

$$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sum_{n=0}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right] dt$$

	$\int_{t=0}^{P} \sin(2\pi m\nu_0 t) \cos(2\pi n\nu_0 t) dt$	$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sin(2\pi n \nu_0 t) dt$
n ≠ m	= 0	
n = m		

$$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sum_{n=0}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right] dt$$

	$\int_{t=0}^{P} \sin(2\pi m\nu_0 t) \cos(2\pi n\nu_0 t) dt$	$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sin(2\pi n \nu_0 t) dt$
n ≠ m	= 0	= 0
n = m		

$$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sum_{n=0}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right] dt$$

	$\int_{t=0}^{P} \sin(2\pi m\nu_0 t) \cos(2\pi n\nu_0 t) dt$	$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sin(2\pi n \nu_0 t) dt$
n ≠ m	= 0	= 0
n = m	= 0	

$$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sum_{n=0}^{\infty} \left[A_n \cos(2\pi n \nu_0 t) + B_n \sin(2\pi n \nu_0 t) \right] dt$$

	$\int_{t=0}^{P} \sin(2\pi m\nu_0 t) \cos(2\pi n\nu_0 t) dt$	$\int_{t=0}^{P} \sin(2\pi m \nu_0 t) \sin(2\pi n \nu_0 t) dt$
n ≠ m	= 0	= 0
n = m	= 0	≠ 0

Herleitung der Koeffizienten:

► Betrachtung einer Periode $P=1/v_0$:

$$F(t) = A_0/2 + \sum_{n=1}^{\infty} [A_n \cos(2\pi n v_0 t) + B_n \sin(2\pi n v_0 t)]$$

$$\int_{t=0}^{P} F(t) \sin(2\pi m v_0 t) dt$$

$$B_n = (2/P) \int_{0}^{P} F(t) \sin(2\pi n v_0 t) dt$$

► Analog
$$A_n = (2/P) \int_0^P F(t) \cos(2\pi n v_0 t) dt$$

Herleitung der Koeffizienten:

Generelle Form der Fourierkoeffizienten:

$$A_n = (2\nu_0) \int_0^{1/\nu_0} F(t) \cos(2\pi n\nu_0 t) dt$$
$$B_n = (2\nu_0) \int_0^{1/\nu_0} F(t) \sin(2\pi n\nu_0 t) dt$$

Für komplexe Zahlen lässt sich der Koeffizient wie folgt berechnen:

$$C_n = (2\nu_0) \int_0^{1/\nu_0} F(t) e^{-2i\pi n\nu_0 t} dt$$

Einfacher Anwendungsfall einer Sägezahnfunktion:

$$f(t) = t$$
; für $-\pi < x < \pi$

Ungerade Funktion, deshalb

$$F(t) = A_0/2 + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n\nu_0 t) + B_n \sin(2\pi n\nu_0 t) \right]$$

- ► Für komplexe Darstellung: Reeller Term = 0
- ightharpoonup Herleitung B_n :

$$B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} t \sin(nt) dt = \frac{2}{\pi} \int_{0}^{\pi} t \sin(nt) dt$$
$$= \frac{2}{\pi} \left(-\frac{\pi \cos(n\pi)}{n} \right) = 2 \frac{(-1)^{n+1}}{n}$$

 \rightarrow Fourierreihe: $F(t) = 2(\sin(t)/1 - \sin(2t)/2 + \sin(3t)/3...)$

lacktriangle Dirichlet: Wert der Fourierreihe bei $\ t=n\pi:0$

 \rightarrow Fourierreihe: $F(t) = 2(\sin(t)/1 - \sin(2t)/2 + \sin(3t)/3...)$

ightharpoonup Dirichlet: Wert der Fourierreihe bei $t=n\pi:0$

- \triangleright Solange F(t) stets periodisch ist, kann F(t) stets gut beschrieben werden
- Nicht-periodisch: der gesamte, kontinuierliche Spektralbereich ist erforderlich

$$\sum_{n=-\infty}^{\infty} \Rightarrow \int_{-\infty}^{\infty} A_n \Rightarrow a(\nu) \qquad B_n \Rightarrow b(\nu)$$

Fourierreihe:

$$F(t) = \sum_{n=-\infty}^{\infty} \left[A_n \cos(2\pi n\nu_0 t) + B_n \sin(2\pi n\nu_0 t) \right]$$

$$F\left(t\right) = \sum_{n=-\infty}^{\infty} \left[A_n \cos\left(2\pi n\nu_0 t\right) + B_n \sin\left(2\pi n\nu_0 t\right)\right]$$
 Fouriertransformation:
$$F\left(t\right) = \int_{-\infty}^{\infty} a\left(\nu\right) \cos\left(2\pi \nu t\right) \mathrm{d}\nu + \int_{-\infty}^{\infty} b\left(\nu\right) \sin\left(2\pi \nu t\right) \mathrm{d}\nu$$

▶ Solange F(t) stets periodisch ist, kann F(t) stets gut beschrieben werden

Nicht-periodisch: der gesamte, kontinuierliche Spektralbereich ist erforderlich

$$\sum_{n=-\infty}^{\infty} \Rightarrow \int_{-\infty}^{\infty} C_n \Rightarrow \hat{F}(\nu)$$

Fourierreihe:

$$F(t) = \sum_{-\infty}^{\infty} C_n e^{2\pi i \nu t}$$

Fouriertransformation:

$$F(t) = \int_{-\infty}^{\infty} \hat{F}(\nu) e^{2\pi i \nu t} d\nu$$

Analog zu der Fourierreihe, wo das Set an diskreten Koeffizienten C_n (bzw. A_n und B_n) aus F(t) ermittelt werden konnte, kann die kontinuierliche Bildfunktion $\hat{F}(v)$ in der Fouriertransformation ebenfalls ermittelt werden:

$$\hat{F}(\nu) = \int_{-\infty}^{\infty} F(t)e^{-2\pi i\nu t} dt$$

► Ebenso kann die Funktion im Originalraum mittels der Bildfunktion zurücktransformiert werden:

$$F(t) = \int_{-\infty}^{\infty} \hat{F}(\nu) e^{2\pi i \nu t} d\nu$$

Damit

$$\hat{F}(\nu) \rightleftharpoons F(t)$$

- "Klassische Fouriertransformation":
- ► Vorfaktor $1/(2\pi)$ notwendig bei einer Transformationen

$$\hat{F}(\nu) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t)e^{-i\nu t} dt$$

$$F(t) = \int_{-\infty}^{\infty} \hat{F}(\nu)e^{i\nu t} d\nu$$

Gebräuchlichste Definition in der Signaltechnik (wo keine "künstliche" Änderung der Signalhöhe auftritt).

$$\hat{F}(\nu) = \int_{-\infty}^{\infty} F(t)e^{-2\pi i\nu t} dt$$
$$F(t) = \int_{-\infty}^{\infty} \hat{F}(\nu)e^{2\pi i\nu t} d\nu$$

7.2 Beispiele für Fourierreihen und Transformationen

Fouriertransformation - Beispiel

Beispiel: Top-hat Funktion

$$\Pi_a(t) = \begin{cases} 0. & -\infty < t < -a/2 \\ 1. & -a/2 < t < a/2 \\ 0. & a/2 < t < \infty \end{cases}$$

$$\hat{F}(\nu) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Pi_a(t) e^{-i\nu t} dt$$

$$= \frac{1}{2\pi} \int_{-a/2}^{a/2} e^{-i\nu t} dt = \frac{1}{2\pi} \frac{1}{i\nu} \left[e^{\pi i\nu a} - e^{-\pi i\nu a} \right]$$

$$\int \sin(\pi \nu a)$$

$$= a \left\{ \frac{\sin(\pi \nu a)}{\pi \nu a} \right\}$$

$$= a \operatorname{sinc}(\pi \nu a)$$

$$\operatorname{sinc} = \sin / x$$
 Si

$$sinc = sin / x$$
 Sinus Cardinalis

Fouriertransformation - Beispiel

Beispiel: Gaußfunktion

$$\begin{split} G(t) &= e^{-t^2/a^2} \\ \hat{G}(\nu) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-t^2/a^2} e^{-i\nu t} dt \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(t/a + \frac{i\nu a}{2})^2 - \frac{\nu^2 a^2}{4}} dt \\ &= \frac{1}{2\pi} e^{-\frac{\nu^2 a^2}{4}} \int_{-\infty}^{\infty} e^{-(t/a + \frac{i\nu a}{2})^2} dt \\ &= \frac{1}{2\pi} a e^{-\frac{a^2 \nu^2}{4}} \int_{-\infty}^{\infty} e^{-z^2} dz \\ &= \frac{a}{2\pi} \sqrt{\pi} e^{-\frac{a^2 \nu^2}{4}} \end{split}$$

Die Gaußfunktion bleibt erhalten!

Im allgemeinen gelten für die Fouriertransformation folgende Voraussetzungen (unter anderem):

- Die zu transformierende Funktion muss innerhalb der Integrationsgrenzen existieren
- Die zu transformierende Funktion muss innerhalb der Integrationsgrenzen konvergieren
- ► Im Rahmen unserer Betrachtungen sind alle Signale transformierbar
- Im Rahmen unserer Betrachtung existiert immer eine Rücktransformation

7.3 Typische Funktionen im Wellenraum und physikalischen Raum

Turbulenz im Spektralraum

Eine Fouriertransformation kann in Raum und Zeit durchgeführt werden. Der Einfachheit halber wird zunächst eine Fourier-Analyse in der Zeit betrachtet (im Raum analog):

$$\hat{F}(\nu) = \mathcal{F}\{F(t)\} \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t) e^{-i\nu t} dt \quad \text{Hin-Transformation (vom physikalischen zum Fourier-Raum)}$$

zum Fourier-Raum)

$$F(t) = \mathcal{F}\{\hat{F}(\nu)\} = \int_{-\infty}^{\infty} \hat{F}(\nu)e^{i\nu t}d\nu$$

Rück-Transformation (vom Fourierzum physikalischen Raum)

Keine eindeutige Definition bezüglich:

- Vorfaktors (1/2π)
- Vorzeichen des Exponenten

variiert in Literatur

Wichtige Funktionen im Original- und Bildraum:

$\frac{d^n F(t)}{dt^n}$	$(i\nu)^n \hat{F}(\nu)$
$(-it)^n F(t)$	$\frac{d^n \hat{F}(\nu)}{d\nu^n}$
$\int_{-\infty}^{\infty} F(\tau) d\tau$	$\frac{\hat{F}(\nu)}{i\nu} + \pi \hat{F}(0)\delta(\nu)$
$\delta(t)$	1
$e^{i u_0t}$	$2\pi\delta(\nu-\nu_0)$

Die wichtigsten Rechenregeln für Original- und Bildraum (1):

	Spektralfolge	Signalfolge
Linearität	$a\hat{F}(\nu) + b\hat{G}(\nu)$	aF(t) + bG(t)
Spiegelung	$\hat{F}(- u)$	F(-t)
Gerade Folge	$\hat{F}'(\nu) = \frac{\hat{F}(\nu) + \hat{F}(-\nu)}{2}$	$F'(t) = \frac{F(t) + F(-t)}{2}$
Reelle Signalfolge	$\hat{F}(\nu) = \hat{F}^*(\nu)$	$Re\{F(-t)\} = Re\{F(t)\}$
		$Im\{F(-t)\} = -Im\{F(t)\}$
Realteil	$Re\{\hat{F}(u)\}$	$\frac{F(t)+F^*(-t)}{2}$
	$\frac{\hat{F}(\nu) + \hat{F}^*(-\nu)}{2}$	$Re\{F(t)\}$
Imaginärteil	$Im\{\hat{F}(u)\}$	$\frac{F(t) - F^*(-t)}{2}$
	$\frac{\hat{F}(\nu) - \hat{F}^*(-\nu)}{2i}$	$Im\{F(t)\}$

Die wichtigsten Rechenregeln für Original- und Bildraum (2):

	Spektralfolge	Signalfolge
Verschiebung	$\hat{F}(\nu - \nu_0)$	$e^{2\pi i\nu t_0/N}F(t)$
Modulation	$e^{2\pi i\nu t_0/N}\hat{F}(\nu)$	$F(t-t_0)$
Multiplikation	$\hat{F}(u)\hat{G}(u)$	$\frac{1}{N}F(t)*G(t)$
Faltung	$\hat{F}(u) * \hat{G}(u)$	F(t)G(t)
Symmetrie	$\hat{F}(u)$	NF(-t)
Kreuzkorrelation	$r_{x,y}(\nu) = \hat{F}(\nu) * \hat{G}^*(-\nu)$	$R_{x,y} = F(t)G^*(t)$

Faltung

Definition:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

- Beispiel:
 - ► Original- und Gewichtungsfunktion beide Rechtecksfunktionen

Faltung

Definition:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

- ► Weitere Anwendungsbeispiele:
 - ▶ Rechteck mit Gaußfunktion
 - ► Filterung eines Messsignals mit unterschiedlichen Filtern

Wichtige Funktionen im Original- und Bildraum:

Name	Filter function	Transfer function
General	G(t)	$\hat{G}(\nu) \equiv \int_{-\infty}^{\infty} e^{-i\nu t} G(t) dt$
Box	$\frac{1}{\Delta}H\left(\frac{1}{2}\Delta - t \right)$	$rac{\sin\left(rac{1}{2} u\Delta ight)}{rac{1}{2} u\Delta}$
Gaussian	$\left(\frac{6}{\pi\Delta^2}\right)^{1/2} \exp\left(-\frac{6t^2}{\Delta^2}\right)$	$\exp\left(-\frac{\nu^2\Delta^2}{24}\right)$
Sharp spectral	$rac{\sin(\pi t/\Delta)}{\pi t}$	$H(\nu_c - \nu)$
		$ u_c \equiv \pi/\Delta$
Cauchy	$\frac{a}{\pi\Delta[(t/\Delta)^2 + a^2]}, a = \frac{\pi}{24}$	$\exp(-a\Delta \nu)$
Pao		$\exp\left(-\frac{\pi^{2/3}}{24}(\Delta \nu)^{4/3}\right)$

Diskrete Fouriertransformation

- Messsignale: Punktuelle Messdaten a(n), keine kontinuierliche Funktion F(t)
 - → Diskrete Fouriertransformation
- Darstellung der Messpunkte mittels Dirac-Peaks δ(t-na) im physikalischen Raum:

$$\hat{F}(\nu) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} F(t)e^{-2\pi i \nu t} \delta(t-na)dt$$
$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} F(t)e^{-2\pi i \nu t} \delta(t-na)dt$$

Mit N Messwerten:

$$\hat{F}(\nu) = \sum_{n=0}^{N-1} F(na)e^{-2\pi i \, \nu na}$$

Diskrete Fouriertransformation

Man erhält aus:

$$\hat{F}_m = \sum_{n=0}^{N-1} F_n e^{-2\pi i \, nm/N}$$

in der Matrix-Notation

$$F_n = \sum_{m=0}^{M-1} \hat{F}_m e^{2\pi i \, nm/M}$$

$$\begin{bmatrix} \hat{F}_{0} \\ \hat{F}_{1} \\ \hat{F}_{2} \\ \hat{F}_{3} \\ \vdots \\ \hat{F}_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & e^{-2\pi i/N} & e^{-4\pi i/N} & \dots & e^{-2(N-1)\pi i/N} \\ 1 & e^{-4\pi i/N} & e^{-8\pi i/N} & \dots & e^{-4(N-1)\pi i/N} \\ 1 & e^{-6\pi i/N} & e^{-12\pi i/N} & \dots & e^{-6(N-1)\pi i/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \dots & \dots & e^{-(N-1)^{2}2\pi i/N} \end{bmatrix} \begin{bmatrix} F_{0} \\ F_{1} \\ F_{2} \\ F_{3} \\ \vdots \\ F_{N-1} \end{bmatrix}$$

Lernziele: Sie sollen ...

- wissen, warum Fouriertransformationen relevant für turbulente Strömungen (und andere technische Prozesse) sind.
- den Unterschied zwischen Fourierreihe und Fouriertransformation kennen
- die groben Schritte zur Herleitung der Fouriertransformation verstanden haben
- die Beziehung zwischen Original und Spektralfunktion kennen
- ► Fouriertransformationen einfacher Funktionen selber durchzuführen können
- ▶ den Bezug von Filterungen/Faltungen und anderen mathematischen Operationen zur Fouriertransformation verstanden haben.

