COMM8102 Econometric Analysis Assignment 2

Yuhao Liu z5097536

July 5, 2021

Excercise 4.1

(a)

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n Y_i^k$$

(b)

$$E\left[\hat{\mu}_{k}\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{k}\right]$$
$$= \frac{1}{n}\sum_{i=1}^{n}E\left[Y_{i}^{k}\right]$$
$$= \frac{1}{n}\cdot n\cdot \mu_{k}$$
$$= \mu_{k}$$

(c)

$$Var \left[\hat{\mu}_{k}\right] = E \left[\hat{\mu}_{k}^{2}\right] - \left(E \left[\hat{\mu}_{k}\right]\right)^{2}$$

$$= E \left[\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{k}\right)^{2}\right] - \mu_{k}^{2}$$

$$= \frac{1}{n^{2}} E \left[\left(\sum_{i=1}^{n} Y_{i}^{k}\right)^{2}\right] - \mu_{k}^{2}$$

$$= \frac{1}{n^{2}} E \left[\sum_{i=1}^{n} Y_{i}^{2k} + \sum_{i=1, j=1, i \neq j}^{n} Y_{i}^{k} Y_{j}^{k}\right] - \mu_{k}^{2}$$

$$= \frac{1}{n^{2}} \left(\sum_{i=1}^{n} E \left[Y_{i}^{2k}\right] + \sum_{i=1, j=1, i \neq j}^{n} E \left[Y_{i}^{k}\right] E \left[Y_{j}^{k}\right]\right) - \mu_{k}^{2}$$

$$= \frac{1}{n^{2}} \left(n \cdot \mu_{2k} + \left(n^{2} - n\right) \cdot \mu_{k}^{2}\right) - \mu_{k}^{2}$$

$$= \frac{1}{n} \cdot \mu_{2k} + \mu_{k}^{2} - \frac{1}{n} \cdot \mu_{k}^{2} - \mu_{k}^{2}$$

$$= \frac{1}{n} \left(\mu_{2k} - \mu_{k}^{2}\right)$$

We need to assume $\mu_{2k} = E[Y^{2k}] < \infty$.

(d)

$$\hat{V}_{\hat{\mu}_k} = \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^n Y_i^{2k} - \left(\frac{1}{n} \sum_{i=1}^n Y_i^k \right)^2 \right)$$

Excercise 4.5

(4.15)

$$E\left[\hat{\beta}\middle|X\right] = E\left[\left(X'X\right)^{-1}X'Y\middle|X\right]$$

$$= \left(X'X\right)^{-1}X'E\left[Y\middle|X\right]$$

$$= \left(X'X\right)^{-1}X'E\left[X\beta + e\middle|X\right]$$

$$= \beta + \left(X'X\right)^{-1}X'E\left[e\middle|X\right]$$

$$= \beta$$

(4.16)

$$Var \left[\hat{\beta} \middle| X \right] = Var \left[\hat{\beta} - \beta \middle| X \right]$$

$$= Var \left[(X'X)^{-1} X'Y - \beta \middle| X \right]$$

$$= Var \left[(X'X)^{-1} X' (X\beta + e) - \beta \middle| X \right]$$

$$= Var \left[(X'X)^{-1} X'e \middle| X \right]$$

$$= (X'X)^{-1} X'Var \left[e \middle| X \right] X (X'X)^{-1}$$

$$= (X'X)^{-1} X'\Omega X (X'X)^{-1}$$

$$= (X'X)^{-1} (X'\Omega X) (X'X)^{-1}$$

Excercise 4.12

$$E\left[\left(\bar{Y} - \mu\right)^{3}\right] = E\left[\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i} - \mu\right)^{3}\right]$$

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - \mu)\right)^{3}\right]$$

$$= \frac{1}{n^{3}}E\left[\left(\sum_{i=1}^{n}(Y_{i} - \mu)\right)^{3}\right]$$

$$= \frac{1}{n^{3}}E\left[\sum_{i=1}^{n}(Y_{i} - \mu)^{3} + 3 \cdot \sum_{i=1}^{n}\sum_{j=1, j \neq i}^{n}(Y_{i} - \mu)^{2}(Y_{j} - \mu) + \sum_{i=1}^{n}\sum_{j=1, j \neq i}^{n}\sum_{k=1, k \neq i, j}^{n}(Y_{i} - \mu)(Y_{j} - \mu)(Y_{k} - \mu)\right]$$

$$= \frac{1}{n^{3}}\cdot\left(\sum_{i=1}^{n}E\left[(Y_{i} - \mu)^{3}\right] + 3 \cdot \sum_{i=1}^{n}\sum_{j=1, j \neq i}^{n}E\left[(Y_{i} - \mu)^{2}\right]E\left[Y_{j} - \mu\right] + \sum_{i=1}^{n}\sum_{j=1, j \neq i}^{n}\sum_{k=1, k \neq i, j}^{n}E\left[Y_{i} - \mu\right]E\left[Y_{j} - \mu\right]E\left[Y_{k} - \mu\right]$$

$$= \frac{1}{n^{3}}\cdot\sum_{i=1}^{n}E\left[(Y_{i} - \mu)^{3}\right]$$

$$= \frac{\mu_{3}}{n^{2}}$$

Excercise 4.23

$$E\left[\hat{\beta}\middle|X\right] = E\left[\left(X'X + I_{k}\lambda\right)^{-1}X'Y\middle|X\right]$$

$$= E\left[\left(X'X + I_{k}\lambda\right)^{-1}X'\left(X\beta + e\right)\middle|X\right]$$

$$= E\left[\left(X'X + I_{k}\lambda\right)^{-1}X'X\beta + \left(X'X + I_{k}\lambda\right)^{-1}X'e\middle|X\right]$$

$$= \left(X'X + I_{k}\lambda\right)^{-1}X'X\beta + \left(X'X + I_{k}\lambda\right)^{-1}X'E\left[e\middle|X\right]$$

$$= \left(X'X + I_{k}\lambda\right)^{-1}X'X\beta$$

 $\hat{\beta}$ is biased for β , since $\forall \lambda > 0, E \left[\hat{\beta} \mid X \right] \neq \beta$.

Excercise 4.26

(a)

For the results of standard errors, see Table 1 below. In terms of absolute value, *Tracking* changes the most, and *Percentile* changes the least. In terms of proportion, *Tracking* still changes the most, but *Gender* changes the least.

Standard Errors	Tracking	Age	Gender	Assigned	Percentile	Intercept
Clustering based	0.07665	0.01339	0.02868	0.03771	0.00072	0.13319
Conventional robust	0.02417	0.00855	0.02424	0.02385	0.0004	0.08280

(b)

In comparison to the results from (4.55), the $\hat{\beta}$ on *Tracking* increases from 0.138 to 0.174 by inclusion of the individual controls, and the standard errors also decreases a bit in both clustering based on the school and conventional robust formula.

Q6

Paper: Miyazaki, T., 2019. Clarifying the response of gold return to financial indicators: An empirical comparative analysis using ordinary least squares, robust and quantile regressions. Journal of Risk and Financial Management, 12(1), p.33.

Main research questions: How gold return responds to the changes in various financial indicators, specifically stock return, stock return volatility, financial market stress, crude oil, and the value of the US dollar. Main estimation results: See appendix.

How standard error calculated: From lecture slides, we know that for OLS, $Var\left[\hat{\beta} \mid X\right] = \sigma^2 \left(X^{\intercal}X\right)^{-1}$.

The unbiased estimator for σ^2 is $\frac{e^{\tau}e}{n-k}$, with $e=Y-X\hat{\beta}$ and k is the number of regressors. The estimator of standard error is the square root of the diagonal elements of

$$\frac{e^{\mathsf{T}}e}{n-k}\left(X^{\mathsf{T}}X\right)^{-1}$$

.

J. Risk Financial Manag. 2019, 12, 33

Table 5. OLS and robust regression results.

					Depende	nt Variabl	e: GOLD					
	A. Ful	l Sample: 2/	16/1990–4/27/	2018	B. First Sample: 2/16/1990–1/26/1996				C. Second Sample: 2/02/1996-11/25/2005			
	Number of Observations: 1472				Number of Observations: 311				Number of Observations: 513			
	OLS		Robust regression		OLS		Robust regression		OLS		Robust regression	
	Coefficient	S.E.	Coefficient	S.E.	Coefficient	S.E.	Coefficient	S.E.	Coefficient	S.E.	Coefficient	S.E.
SPX	-0.099 **	0.036	-0.055 **	0.020	-0.228 **	0.045	-0.182 **	0.047	0.004	0.028	-0.011	0.02
SPVOL	-0.101	0.111	-0.099	0.063	-0.367 *	0.165	-0.672 **	0.146	-0.115	0.099	-0.183*	0.09
FSI1	0.096	0.058	0.078	0.041	0.145	0.120	0.160	0.113	0.148	0.076	0.201 **	0.06
WTI	0.065 **	0.015	0.046 **	0.011	0.090 **	0.019	0.083 **	0.018	0.015	0.016	0.018	0.01
TWEX	-0.962**	0.082	-0.892**	0.048	-0.155	0.105	-0.151	0.079	-0.850 **	0.091	-0.870 **	0.07
Constant	0.312	0.231	0.302 *	0.136	0.744 *	0.324	1.240 **	0.265	0.344	0.227	0.460 *	0.22
Adj R ²		0.186		0.263		0.126		0.232		0.200		0.33
	Breusch-Pagan-Godfrey test				Breusch-Pagan-Godfrey test				Breusch-Pagan-Godfrey test			
	$\chi^{2}(10)$			0.000	$\chi^{2}(10)$			0.136	$\chi^2(10)$			0.00
	White test				White test				White test			
	$\chi^{2}(65)$			0.000	$\chi^{2}(65)$			0.000	$\chi^{2}(65)$			0.00
	D. Third sample: 12/02/2005–5/03/2013			E. Fourt	h sample: 5	5/10/2013-4/27						
	Number of observations: 388				Number of observations: 260							
	OLS Robust OLS regression			Robust	regression							
	Coefficient	S.E.	Coefficient	S.E.	Coefficient	S.E.	Coefficient	S.E.				
SPX	-0.267 **	0.078	-0.177 **	0.049	-0.126	0.069	-0.095	0.065				
SPVOL	-0.063	0.249	0.157	0.149	0.222	0.163	0.092	0.210				
FSI1	0.045	0.127	-0.109	0.092	-0.062	0.139	-0.049	0.164				
WTI	0.154 **	0.032	0.129 **	0.030	-0.052	0.027	-0.046	0.029				
TWEX	-1.573**	0.182	-1.513**	0.129	-1.131 **	0.130	-1.102 **	0.117				
Constant	0.437	0.513	0.060	0.322	-0.329	0.297	-0.116	0.361				
Adj R ²		0.316		0.401		0.299		0.381				
	Breusch-Pag	gan-Godfrey	test		Breusch-Pag	an-Godfre	y test					
	$\chi^2(10)$ White test	, and the second		0.000	$\chi^2(10)$ White test			0.007				
	$\chi^{2}(65)$			0.000	$\chi^{2}(65)$			0.181				

Notes: S.E. stands for standard error. For the OLS regression, the standard errors are adjusted by using the Newey–West (1987) method. Adj R^2 for robust regression shows adjusted R^2 _W proposed by Renaud and Victoria-Feser (2010). * and ** denote statistical significance at the 5% and 1% levels, respectively.

PS2 code

R Markdown

```
This is the code part of PS2
library(readxl)
## Warning: package 'readxl' was built under R version 3.6.2
data <- read excel("ddk2011test.xlsx")</pre>
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AV2296 / R2296C48: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AV2480 / R2480C48: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AV2492 / R2492C48: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AV3592 / R3592C48: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AV3901 / R3901C48: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AA4904 / R4904C27: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AA5107 / R5107C27: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AA5116 / R5116C27: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AA5121 / R5121C27: got '.'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting numeric in AA5122 / R5122C27: got '.'
#data clean
data<-data.frame(data$schoolid,data$totalscore,data$tracking,data$etpteacher,data$girl,data$agetest,dat
data<-data[data$data.girl!='.',]</pre>
data<-data[data$data.agetest!='.',]
data$data.girl<-sapply(data$data.girl,as.numeric)-2
data$data.agetest<-sapply(data$data.agetest,as.numeric)</pre>
data$data.percentile<-sapply(data$data.percentile,as.numeric)</pre>
#cluster based
y <- scale(as.matrix(data$data.totalscore))</pre>
n \leftarrow nrow(y)
x<-cbind(data$data.tracking,data$data.agetest,data$data.girl,data$data.etpteacher,data$data.percentile,
```

schoolid <- as.matrix(data\$data.schoolid)</pre>

 $k \leftarrow ncol(x)$

```
xx \leftarrow t(x)%*%x
invx <- solve(xx)</pre>
beta <- solve(xx,t(x)%*%y)
xe <- x*rep(y-x%*%beta,times=k)</pre>
# Clustered robust standard error
xe_sum <- rowsum(xe,schoolid)</pre>
G <- nrow(xe_sum)</pre>
omega <- t(xe sum) %*%xe sum
scalee <- G/(G-1)*(n-1)/(n-k)
V_clustered <- scalee*invx%*%omega%*%invx
se_clustered <- sqrt(diag(V_clustered))</pre>
print(beta,digits = 5)
##
              [,1]
## [1,] 0.173580
## [2,] -0.041056
## [3,] 0.081706
## [4,] 0.180989
## [5,] 0.017424
## [6,] -0.576944
print(se_clustered,digits = 5)
## [1] 0.07665351 0.01339398 0.02867527 0.03770844 0.00072473 0.13318931
#conventional robust
e <- y-x%*%beta
leverage <- rowSums(x*(x%*%invx))</pre>
a \leftarrow n/(n-k)
sig2 <- (t(e) %*% e)/(n-k)
u1 <- x*(e%*%matrix(1,1,k))
u2 <- x*((e/sqrt(1-leverage))%*%matrix(1,1,k))
u3 <- x*((e/(1-leverage))%*%matrix(1,1,k))
v0 <- invx*as.numeric(sig2)</pre>
v1 <- invx %*% (t(u1)%*%u1) %*% invx
v1a <- a * invx %*% (t(u1)%*%u1) %*% invx
v2 <- invx %*% (t(u2)%*%u2) %*% invx
v3 <- invx %*% (t(u3)%*%u3) %*% invx
s0 <- sqrt(diag(v0)) # Homoskedastic formula
s1 <- sqrt(diag(v1)) # HCO</pre>
s1a <- sqrt(diag(v1a)) # HC1</pre>
s2 <- sqrt(diag(v2)) # HC2
s3 <- sqrt(diag(v3)) # HC3
print(s0)
## [1] 0.0241654219 0.0084575472 0.0241484133 0.0239139818 0.0004292976
## [6] 0.0834363938
print(s1)
## [1] 0.0241571564 0.0085405393 0.0242239304 0.0238385277 0.0004269618
## [6] 0.0827288533
print(s1a)
```

[1] 0.0241709225 0.0085454062 0.0242377345 0.0238521122 0.0004272051

```
## [6] 0.0827759967
```

print(s2)

```
## [1] 0.0241710799 0.0085487064 0.0242377785 0.0238521380 0.0004272418 ## [6] 0.0827994159
```

print(s3)

```
## [1] 0.0241850131 0.0085568932 0.0242516361 0.0238657582 0.0004275219
```

[6] 0.0828701442