Report 11406 22 February 1998

GENCORP AEROJET

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report AMSU-A1 Antenna Drive Subsystem P/N 1331720-2, S/N 106

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

•	- +		
			•

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE February 1999	3. REPORT TYPE A Contracto		COVERED
TITLE AND SUBTITLE Integrated Advanced Microwave Solverification Report AUTHOR(S) D. Luu			5. FUN	DING NUMBERS 5-32314
Aerojet 1100 W. Hollyvale Azusa, CA 91702	E(S) AND ADDRESS (ES)		1140	ORMING ORGANIZATION ORT NUMBER 66 ebruary 1999
National Aeronautics and Space Washington, DC 20546-0001	• •	S (ES)	AG	DNSORING / MONITORING ENCY REPORT NUMBER A/CR-1999-209500
a. DISTRIBUTION / AVAILABILITY STA Unclassified—Unlimited Subject Category: 18 Report available from the NASA 7121 Standard Drive, Hanover, ABSTRACT (Maximum 200 words) This is the Performance Verifical	A Center for AeroSpace MD 21076-1320. (301) 621-0390.		STRIBUTION CODE
Integrated Advanced Microwave So	unding Unit-A (AMSU-A	A).		2, 5.2. 100, 101 tile
4. SUBJECT TERMS EOS, Microwave System				15. NUMBER OF PAGES 102
	ECURITY CLASSIFICATION F THIS PAGE Unclassified	19. SECURITY CLASSII OF ABSTRACT Unclassified	TICATION	20. LIMITATION OF ABSTR

•

Report 11406 22 February 1998

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)
Performance Verification Report
AMSU-A1 Antenna Drive Subsystem
P/N 1331720-2, S/N 106

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

			,

AMSU-A VERIFICATION TEST REPORT

TEST ITEM:

AMSU- A1 ANTENNA DRIVE SUBSYSTEM

PART OF P/N: 1331720-2 SERIAL NUMBER: 106

LEVEL OF ASSEMBLY:

SUBASSEMBLY AND COMPLETE INSTRUMENT

ASSEMBLY

TYPE HARDWARE:

FLIGHT

VERIFICATION:

AE-26002/1D

PROCEDURE NO.

TEST DATE:

SUBSYSTEM:

START DATE:

29 July 1998

FINISH DATE:

10 Dec 1998

TABLE OF CONTENTS

<u>ITEM</u>

1.0	INTRODUCTION
2.0	SUMMARY
3.0	TEST CONFIGURATION
4.0	TEST SETUP
5.0	TEST RESULTS
5.1	REFLECTOR DRIVE ASSEMBLIES
5.2	CIRCUIT CARD ASSEMBLIES
5.3	SIGNAL PROCESSOR
5.4	TRANSISTOR ASSEMBLY
5.5	ANTENNA DRIVE SUBSYSTEM TESTS
5.5.1	SCAN MOTION AND JITTER
5.5.2	28V BUS PEAK CURRENT AND RISE TIME
5.5.3	RESOLVER READING AND POSITION ERROR
5.5.4	GAIN/PHASE MARGIN
5.5.5	OPERATIONAL GAIN MARGIN
6.0	CONCLUSIONS AND RECOMMENDATIONS
7.0	TEST DATA

_			
	-		

1.0 INTRODUCTION

An antenna drive subsystem test was performed on the METSAT AMSU-A1, S/N 106 instrument. The objective of the test was to demonstrate compliance with applicable paragraphs of AMSU-A specifications S-480-80. Tests were conducted at both the subassembly and instrument level.

2.0 SUMMARY

The antenna drive subsystem of the METSAT AMSU-A1, S/N 106, P/N 1331720-2, completed acceptance testing per AES Test Procedure AE-26002/1D. The test included: Scan Motion and Jitter, Pulse Load Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/Phase Margin, and Operational Gain Margin.

The drive motors and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356941-1) test. Refer to Figure 1 for test flow.

Antenna Subsystem and Subsystem Component Test Flow Figure 1.

The antenna drive subsystem satisfactorily passed all of the performance requirements. There were no failures in any of the antenna drive components during subsystem testing.

The results of the subsystem and component level testing are discussed in more detail in the following sections:

Reflector Drive Assembly	5.1
Circuit Card Assemblies	5.2
Signal Processor	5.3
Transistor Assembly	5.4
Antenna Drive Subsystem	5.5

3.0 TEST CONFIGURATION

The *Reflector Drive Assembly Tests* confirm the operability of the motor under test. The test configuration includes, the motor, motor shaft, bearings, and a supporting housing.

The Circuit Card Assembly (CCA) Tests confirm the operability of each CCA. Each test includes the CCA under test, electronic test fixtures, and the necessary loads.

A segment of the **Signal Processor Tests** ensures the scan drive electronics are functioning properly prior to it's assembly into the instrument. The test configuration includes:

- Timing and Control CCA
- Scan Control Interface CCA
- Relay Driver and Current Monitor CCA
- Interface Converter CCA
- Resolver Data Isolator CCA
- R/D Converter CCA
- Motor Driver CCA
- Test fixture and cabling to simulate the spacecraft bus interface
- Test fixture and cabling to interrogate and analyze positional data
- Test motor and inertia wheel

The *Transistor Assembly Test* verifies the correct wiring of the transistor assembly and associated cabling. Test configuration includes the CKT 1000 (continuity and Hi-Pot tester), and test fixtures.

The Antenna Drive Subsystem Tests:

- Are configured with the same motor control CCA's used in the signal processor test, interconnecting wiring, the power transistor assembly, and the drive assembly with reflector.
- The antenna drive subsystem components were all installed in the instrument when the subsystem test was performed.

 DC power for the motor control circuit cards was provided by a DC/DC converter simulator P/N: 1359322-1. The simulator operates on 120VAC facility supplied power. The power for the reflector motor drive circuits however was provided directly by the STE 28V Bus power supply.

4.0 TEST SETUP

The antenna drive subsystem tests are performed during system integration. During system integration testing, the instrument is proven electrically safe via ground isolation, and power distribution checks. Next, the communication link is exercised to ensure commands are received and interpreted correctly. The Antenna Drive Subsystem Test is then performed.

5.0 TEST RESULTS

The Antenna Drive Subsystem components designated for use in the METSAT AMSU-A1 instrument are shown in Table 1.

CCA (A1-1)	S/N
Resolver Data Isolator Assembly (A1-1)	F29
Interface Converter Assembly (A1-1)	F32
Motor Driver Assembly (A1-1)	F03
R/D Converter/ Oscillator Assembly (A1-1)	F17

CCA (A1-2)	S/N
Resolver Data Isolator Assembly (A1-2)	F30
Interface Converter Assembly (A1-2)	F33
Motor Driver Assembly (A1-2)	F05
R/D Converter/ Oscillator Assembly (A1-2)	F20

OTHER	S/N
Reflector Drive Motor (A1-1)	F08
Reflector Drive Motor (A1-2)	F09
Signal Processor	F02
Transistor Assembly (W3 cable)	N/A

Table 1.

METSAT AMSU-A1 S/N: 106 Antenna
Subsystem Component S/N Designations

All components designated for use in the METSAT AMSU-A1 instrument (pertaining to the scan drive circuitry) passed on the first time through component testing.

5.1 REFLECTOR DRIVE ASSEMBLIES

The tests performed on this unit are: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The Motor Commutation and Resolver Operation tests are performed both pre and post-vibration.

Starting Torque

The starting torque test is performed on the rotating segment of the drive assembly to verify the torque associated with bearing friction. Both reflector drive assemblies (F08 and F09) passed the starting torque test at ambient temperature as well as at the colder plateaus first time through testing.

Motor Commutation Test

This test is performed to determine the commutation characteristics of the motor under test. Both reflector drive assemblies (F08 and F09) passed the motor commutation test both pre- and post-vibration tests without incident.

Resolver Operation/ No-Load Speed Test

This test is performed to verify resolver operation as well as speed characteristics and back electromotive force of the motor. Both reflector drive assemblies (F08 and F09) passed the resolver operation/ no-load speed test both pre- and post-vibration tests without incident.

Random Vibration

Both reflector drive assemblies (F08 and F09) passed vibration testing first time through. The motor assembly also passed the pre- and post-vibration electronic tests as well as the post-vibration visual inspection without incident.

5.2 CIRCUIT CARD ASSEMBLIES

Test procedures were prepared for each motor control circuit card; document revision status is controlled by reference in the shop order. The cards were individually tested to the procedures and results were recorded on data sheets found in Appendix A. The following list indexes the CCA Test Data Sheets:

- Appendix A1 Resolver Data Isolator Assembly (A1-1)
- Appendix A2..... Resolver Data Isolator Assembly (A1-2)
- Appendix A3..... Interface Converter Assembly (A1-1)

- Appendix A4..... Interface Converter Assembly (A1-2)
- Appendix A5..... Motor Driver Assembly (A1-1)
- Appendix A6..... Motor Driver Assembly (A1-2)

All circuit card assemblies passed testing the first time through. The assembly build shop orders contain the part number and accept tag record the of test and select resistors.

5.3 SIGNAL PROCESSOR

For the first time, the entire antenna drive motor electronics is mated together. The test instrumentation commands and interrogates the electronics during this segment of testing. The instrumentation sends position commands to the Interface Converter CCA. The Interface Converter D/A's the command and provides inputs to the Motor Driver CCA. The test motor (instrumentation) responds to the drive signal and feeds back positional data via resolver outputs. The instrumentation then interrogates the Resolver Data Isolator CCA for position data. A comparison is made in the instrumentation between the position command sent and the actual position received. The pass/ fail indication is presented to the operator for test data sheet recording.

The signal processor assembly (F02) passed all scan drive tests.

5.4 TRANSISTOR ASSEMBLY

All transistor assemblies are tested along with their respective W3 cable. The cable is continuity, then hi-pot tested prior to attaching the transistor circuitry. Each transistor pair is exercised validating the turn on voltage, current drawn, and cable wiring as well.

The W3 cable and transistor assembly underwent component testing and passed without incident.

5.5 ANTENNA SUBSYSTEM DRIVE TESTS

The antenna drive motor electronics mates with the instrument microprocessor for the first time during this segment of testing. The microprocessor sends position commands from the memory CCA to the Interface Converter CCA. The Interface Converter D/A's the command and provides inputs to the Motor Driver CCA. The Reflector Drive Motor

responds to the drive signals and feeds back positional data via the resolver outputs. The microprocessor then interrogates the Resolver Data Isolator CCA for position data.. The microprocessor in turn communicates with the spacecraft interface.

During other segments of the test, positional data is monitored via a potentiometer attached to the shaft of each reflector drive assembly. This provides scan characteristic information in regard to overshoot, jitter, and beam position transition timing for each motor assembly.

The remaining paragraphs in this section discuss tests that ensures the instrument complies with specific operating parameters. Prior to conducting these tests there is a series of preliminary checks that are run to select component values that customize the operating parameters of each motor. These checks perform the following functions:

- Program "on board" memory with Beam Position Pointing Angles for each reflector drive assembly
- Adjust for peak Motor Current Limits on both A1-1 and A1-2 motor drive circuits
- Observe Preliminary Scan Dynamics on both A1-1 and A1-2 motor drive circuits
- Identify Mechanical Resonant Frequencies of each reflector drive assembly

Beam Position Pointing Angles are calculated from Nadir pointing direction which is determined on the antenna range. The instrument's EPROMs (EPROMs for testing; PROMs for final configuration) are programmed to reflect the position commands. The initial programming may require fine tuning; fine tuning is determined during the remaining segments of the test procedure.

Motor Current Limits were adjusted, via selecting "test and select" resistors, to comply with the specification requirement; less than 1.1 amp peak current.

Preliminary Scan Dynamics looked good; transition times, overshoot and jitter were all acceptable at the sampled pointing directions (5).

The *Mechanical Resonant Frequencies* were identified; notch filters were calculated and installed to compensate for these resonant frequencies.

5.5.1 SCAN MOTION AND JITTER

In this test, the antenna position was measured in a series of five 8-sec full scans. The measurement was made with a 1-turn test potentiometer temporarily affixed to the rear end of the motor shaft. A Dynamic Signal Analyzer (DSA) was connected to the pot wiper to record the antenna position data.

During this test, an anomaly was discovered, and a Test Anomaly Record (TAR # 06398) was filed. It was observed that the A1 unit would not turn on correctly. In addition, there was no Dig A data stream coming back to the STE from the unit. The STE was changed, and the exact same results were observed. Subsequent investigation revealed that a bad U1 EPROM chip was installed. A new EPROM was programmed with the same code and was installed in the unit. Then a test was conducted, and the unit started to work correctly.

Five scans of each A1-1 and A1-2 were captured and stored on the AMSU-A1 Test Data File disc. One representative waveform from each subassembly is presented in Appendix B1 (A1-1) and Appendix B34 (A1-2).

Each 3.33 degrees scene step was expanded and checked for both a 35 msec max step time, and a 165 msec integration period. Expanded waveforms were plotted and are presented in Appendix B2 thru B31 for the A1-1 subassembly and Appendix B35 thru B64 for the A1-2 subassembly. All of the scene steps meet the step response requirement for transition time, overshoot, and jitter.

Slew periods to the cold and warm calibration stations were measured and met requirements. A time of 0.21 sec is allocated for the 35.0 degree slew to cold cal, and 0.40 sec for the 96.67 degree slew to warm cal. Calibration station jitter was less than the ± 5 % maximum permitted. Expanded waveforms for each subassembly were plotted and are presented in Appendix B32 and B33 (A1-1) and Appendix B65 and B66 (A1-2). The waveforms are also stored on the AMSU-A1 Test Data File disc. The test data sheets are presented in Appendix B67 (A1-1) and B68 (A1-2).

5.5.2 PULSE LOAD BUS PEAK CURRENT AND RISE TIME

The Pulse Load bus peak current and the rate of change of current were measured. The peak current must be less than 1.3A at any beam position along the scan. Peak current along the scan is 1.0356A. The current rate of change while transitioning from one beam position to the next (including the transition to the cold calibration and warm calibration targets) should be greater than 35 microseconds. A random 3.33° step was selected; the transition to the next step was 1.953 ms. The transition to the warm cal position start and stop was significantly longer than the required 35 ms; 2.344 and 4.687 ms respectively.

The peak bus current was measured across the entire scan and met the requirement. The full scan waveform was plotted and is presented in Appendix C1. The waveform is also stored on the AMSU-A1 Test Data File disc. The test data sheet is presented in Appendix C2.

5.5.3 RESOLVER READING AND POSITION ERROR

The 14-bit command position word is stored in the "on-board" memory and is read to the motor drive circuitry under microprocessor program control. The microprocessor also reads the resolver output at each of the thirty scene stations, and at the cold and warm calibration positions. The readings are made at the start of integration (LOOK 1), and halfway into the integration period (LOOK 2). The resolver data is sent to the spacecraft interface for subsequent transmission to the STE.

The purpose of this portion of the test is to demonstrate that the antenna is meeting beam pointing requirements.

If the antenna is out of the pointing tolerance of $> \pm 5$ counts at LOOK 2, the EPROM is reprogrammed to bring the pointing direction to within the prescribe tolerances. A copy of the STE computer print out showing the pointing direction is shown in Figure 2 for the A1-1 subassembly and Figure 3 for the A1-2 subassembly.

		Actual		Diffe	ence*
BP	Command	Look 1	Look2	Look 1	Look2
1	192	193	193	1	1
2	344	349	344	5	0
3	496	501	497	5	11
4	647	652	649	5	2
5	799	802	800	3	1
6	951	953	951	2	0
7	1102	1106	1103	4	1
8	1254	1257	1255	3	1
9	1406	1411	1407	5	1
10	1557	1559	1556	2	-1
11	1709	1713	1709	4	0
12	1861	1864	1861	3	0
13	2012	2016	2014	4	2
14	2164	2167	2165	3	1
15	2316	2319	2316	3	0
16	2467	2471	2467	4	0

		Actual		Differ	ence*
BP	Command	Look 1	Look2	Look 1	Look2
17	2619	2622	2620	3	1
18	2771	2775	<i>2</i> 771	4	0
19	2922	2927	2923	5	1
20	3074	3077	3075	3	1
21	3226	3230	3227	4	1
22	3377	3381	3379	4	2
23	3529	3532	3528	3	-1
24	3681	3685	3681	4	0
25	3832	3837	3833	5	1
26	3984	3987	3984	3	0
27	4136	4139	4136	3	0
28	4287	4291	4287	4	0
29	4439	4442	4440	3	1
30	4591	4594	4591	3	0
Œ1	6185	6186	6186	1	1
WC	10584	10585	10585	1	1

^{*} Difference between Command and Actual

Figure 2. Beam Position Pointing Directions and Error Calculation for A1-1

		Ac	tual	Differ	ence*
BP	Command	Look 1	Look2	Look 1	Look2
1	16112	16112	16112	0	0
2	16264	16272	16263	8	-1
3	32	41	31	9	-1
4	183	190	183	7	0
5	335	345	335	10	0
6	487	495	486	8	-1
7	638	647	638	9	0
8	790	800	790	10	0
9	942	950	941	8	-1
10	1093	1101	1093	8	0
11	1245	1255	1245	10	0
12	1397	1407	1397	10	0
13	1548	1557	1548	9	0
14	1700	1710	1700	10	0
15	1852	1861	1852	9	0
16	2003	2013	2003	10	0

		Ac	tual	Diffe	rence*
BP	Command	Look 1	Look2	Look 1	Look2
17	2155	2165	2155	10	0
18	2307	2316	2307	9	0
19	2458	2467	2458	9	0
20	2610	2620	2609	10	-1
21	2762	2772	2762	10	0
22	2913	2921	2912	8	-1
23	3065	3074	3065	9	0
24	3217	3225	3217	8	0
25	3368	3378	3368	10	0
26	3520	3531	3520	11	0
27	3672	3681	3671	9	-1
28	3823	3832	3823	9	0
29	3975	3986	3975	11	0
30	4127	4136	4127	9	0
CC1	5721	5721	5721	0	0
WC	10120	10120	10120	0	0

^{*} Difference between Command and Actual

Figure 3. Beam Position Pointing Directions and Error Calculation for A1-2

5.5.4 GAIN/PHASE MARGIN

A gain/phase margin test was performed on the antenna drive subsystem. The test was performed by obtaining a Bode plot of the control loop and measuring the gain at 180° phase differential and the phase margin at the 0db crossover point.

The Dynamic Signal Analyzer (DSA) was used to make the measurement operating in the swept sine mode. Three separate Bode plots were made on the antenna and the gain and phase margins were determined from each plot. The gain margin measured was 13.662 db (average of three) for the A1-1 subsystem and 13.044 db (average of three) for the A1-2 subsystem. The phase margin measured was 66.543° (average of three) for the A1-1 subsystem and 59.997° (average of three) for the A1-2 subsystem. These margins exceed the specification requirements of 9.2 db and 25 degrees and therefore are acceptable. The three Bode waveforms were plotted and are presented in Appendix D1 thru D3 for the A1-1 subsystem and Appendix D4 thru D6 for the A1-2 subsystem. The waveforms are also stored on the AMSU-A1 Test Data File disc. The test data sheets are presented in Appendix D7 and D8 for A1-1 and A1-2 respectively.

5.5.5 OPERATIONAL GAIN MARGIN

An operational gain margin test was performed on the instrument three times. This test consists of increasing the gain of the control loop until oscillation occurs. The gain increase and frequency of oscillation are measured. An increase in gain greater than 8 db is required; the frequency of oscillation is an observation.

A 50K pot was connected in series with the R58 feedback resistor on amplifier AR8. The resistance of the test pot was slowly added to the feedback resistor while observing the reflector for oscillations.

The reflector begins to produce an audible sound as gain is increased. The following added resistance values are calculated to have the following gain margins for the A1-1 and A1-2 subsystems:

Resistance	Gain
(ohms)	
35.93 K	9.0 db
37.34 K	9.2 db
37.39 K	9.2 db
A1-1	

Resistance) Gain
(ohms)	
38.90 K	9.4 d b
37.56 K	9.2 db
37.61 K	9.2 db
4 .	

A1-2

The first mode mechanical resonance of the shaft and reflector is about 176 Hz for the A1-1 subsystem. The power spectrum waveform was plotted and is presented in Appendix E1. The first mode mechanical resonance of the shaft and reflector is about 181 Hz for the A1-2 subsystem. The power spectrum waveform was plotted and is presented in Appendix E2. These waveforms are also stored on the AMSU-A1 Test Data File disc. The test data sheets are presented in Appendix E3 and E4 for the A1-1 and A1-2 subsystems respectively.

6.0 CONCLUSION

Based on the test results, it can be concluded that the METSAT AMSU-A1 S/N 106 antenna drive subsystem meets the AMSU-A specification requirements.

7.0 TEST DATA

Test data for the METSAT AMSU-A1 S/N 106 obtained in the antenna drive subsystem test is attached. Data sheet number and type of test is shown in the following Appendix Index.

APPENDIX INDEX

Appendix A1 Resolver Data Isolator CCA TDS (A1-1)
Appendix A2Resolver Data Isolator CCA TDS (A1-2)
Appendix A3 Interface Converter CCA TDS (A1-1)
Appendix A4 Interface Converter CCA TDS (A1-2)
Appendix A5 Motor Driver CCA TDS (A1-1)
Appendix A6 Motor Driver CCA TDS (A1-2)
Appendix A7R/D Converter/ Oscillator CCA TDS (A1-1)
Appendix A8R/D Converter/ Oscillator CCA TDS (A1-2)
Appendix B1Full Scan Step Response (A1-1)
Appendix B1Full Scan Step Response (A1-1) Appendix B2 thru B31Single Step Responses (A1-1)
Appendix B2 thru B31 Single Step Responses (A1-1)
Appendix B2 thru B31 Single Step Responses (A1-1) Appendix B32 Cold Calibration Step Response (A1-1)
Appendix B2 thru B31 Single Step Responses (A1-1) Appendix B32 Cold Calibration Step Response (A1-1) Appendix B33 Warm Calibration Step Response (A1-1)
Appendix B2 thru B31 Single Step Responses (A1-1) Appendix B32 Cold Calibration Step Response (A1-1) Appendix B33 Warm Calibration Step Response (A1-1) Appendix B34 Full Scan Step Response (A1-2)
Appendix B2 thru B31 Single Step Responses (A1-1) Appendix B32 Cold Calibration Step Response (A1-1) Appendix B33 Warm Calibration Step Response (A1-1) Appendix B34 Full Scan Step Response (A1-2) Appendix B35 thru B64 Single Step Responses (A1-2)
Appendix B2 thru B31 Single Step Responses (A1-1) Appendix B32 Cold Calibration Step Response (A1-1) Appendix B33 Warm Calibration Step Response (A1-1) Appendix B34 Full Scan Step Response (A1-2) Appendix B35 thru B64 Single Step Responses (A1-2) Appendix B65 Cold Calibration Step Response (A1-2)

Appendix C1Peak Pulse Load Bus Current Waveform
Appendix C2Pulse Load Bus Current TDS
Appendix D1 thru D3Gain/Phase Margin Bode Plots (A1-1)
Appendix D4 thru D6Gain/Phase Margin Bode Plots (A1-2)
Appendix D7Gain/ Phase Margin TDS (A1-1)
Appendix D8Gain/ Phase Margin TDS (A1-2)
Appendix E1Operational Gain Margin Power Spectrum (A1-1)
Appendix E2Operational Gain Margin Power Spectrum (A1-2)
Appendix E3Operational Gain Margin TDS (A1-1)
Appendix E4Operational Gain Margin TDS (A1-2)

APPENDIX A

TEST DATA SHEETS FOR SCAN DRIVE CIRCUIT CARD ASSEMBLIES

TEST DATA SHEET B-6 (Sheet 1 of 2)

. .

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

Date: $\frac{4/14/17}{F-29}$ S/N: $\frac{F-29}{1334912}$

6.6.7.1 Supply Voltages

Supply*	Measured Value (V)	Limits (Vdc)	Pass/Fail
+5 V (I)	5,00	± 0.25	P
+5 V (U)	5,00	± 0.25	B

6.6.7.2 Supply Currents

Steps 1 and 2:

Γ	Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
Γ	+5 V (1)	53. 24	100 max	P
Γ	+5 V (U)	324.71	400 max	8

Steps 3 and 4:

Γ	Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
Γ	+5 V (I)	83.48	150 max	P
	+5 V (U)	11.18	30 max	e

^{*} I = Isolated, U = Unisolated

6.6.7.3 Resolver Data

Bit No.	Pass/Fail
API 0 - AP Bit 0	P
API 1 - AP Bit 1	· ·
API 2 - AP Bit 2	P
API 3 - AP Bit 3	P
API 4 - AP Bit 4	P
API 5 - AP Bit 5	P
API 6 - AP Bit 6	P
API 7 - AP Bit 7	P
API 8 - AP Bit 8	P
API 9 - AP Bit 9	P
API 10 - AP Bit 10	P
API 11 - AP Bit 11	P
API 12 - AP Bit 12	ę
API 13 - AP Bit 13	P

6.6.7.4 Converter Busy Pulse

Converter Busy Pulse	Measured Value (µsec)	Limits (µsec)	Pass/Fail
15.0	14.8	± 3.0	P

			-

TEST DATA SHEET B-6 (Sheet 2 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

Comments:		
		;
Conducted by:	Vest Engineer Date	
Verified by:	Quality Control Inspector Date Date Date	
Approved by:	DCMC Date 1/16/99	

TEST DATA SHEET B-6 (Sheet 1 of 2)

5.5

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

Date:

4/14/47

S/N:

F-30 1334972-1

6.6.7.1 Supply Voltages

Supply*	Measured Value (V)	Limits (Vdc)	Pass/Fail
+5 V (I)	5,00	± 0.25	8
+5 V (U)	5-01	± 0.25	P

6.6.7.2 Supply Currents

Steps 1 and 2:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	53.26	100 max	P
+5 V (U)	319.34	400 max	P

Steps 3 and 4:

ſ	Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
Ī	+5 V (I)	83.40	150 max	ſ
Ī	+5 V (U)	11.12	30 max	P

^{*} I = Isolated, U = Unisolated

6.6.7.3 Resolver Data

Bit No.	Pass/Fail
API 0 - AP Bit 0	l l
API 1 - AP Bit 1	8
API 2 - AP Bit 2	P
API 3 - AP Bit 3	ρ
API 4 - AP Bit 4	P
API 5 - AP Bit 5	Ţ₽
API 6 - AP Bit 6	9
API 7 - AP Bit 7	ρ
API 8 - AP Bit 8	P
API 9 - AP Bit 9	P
API 10 - AP Bit 10	f
API 11 - AP Bit 11	P
API 12 - AP Bit 12	Y
API 13 - AP Bit 13	P

6.6.7.4 Converter Busy Pulse

	Converter Busy Pulse	Measured Value (µsec)	Limits (µsec)	Pass/Fail
,	15.0	14.65	± 3.0	<u> </u>
The many training to the same of the same	The state of the s		•	

TEST DATA SHEET B-6 (Sheet 2 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

1		
	C	
	Comments:	
		·
	•	
	•	
		Denout 200 4/14/97
	Conducted by:	
		Test Engineer Date
	Verified by:	Sudie Merrey (263) 4-14-47
		Quality Control Inspector Date
α_{i}		NATT. (2) 4/1/0/07
The street street was	Approved by:	/// / / // // / / / / / / / / / / / /
There I was a second	10 m	DCMC Date

TEST DATA SHEET B-13 (Sheet 1 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date: 8119/97
CCA S/N: F32

1331697-1

6.13.7.1 Supply Voltages

Supply	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
+5V (U)	5.01	+5V± 0.05	P
+15V (I)	15.01	+15V± 0.15	8
-15V (I)	-14.97	-15V± 0.15	8
+5V (I)	5.02	+5V± 0.05	P

6.13.7.2 Supply Currents

Step 1 (CP and API Low):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	84.48	70 - 110	1 P
+5V (I)	3.34	1.5 - 5.5	P
+15V (I)	17.54	15 - 23	P
-15V (I)	20.21	18 - 26	P

Step 2 (CP and API High):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	56.46	40 - 70	1
+5V (I)	23.90	18 - 30	P
+15V (I)	17.54	15 - 23	P
-15V (I)	20.20	18 - 26	P

6.13.7.3 Amplifier Offsets

Amplifier	Measured Value (mV)	Limits (mV)	Pass/Fail
AR1	-0.03	0.0 ±0.15	1 P
AR2	+0.07	0.0 ±2.0	P

TEST DATA SHEET B-13 (Sheet 2 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

			1. 9-10-97	1 20.000	· ·
l:	• *	ं ? .		1 ± 0.000	30
Actual Posit	ion (API)	Command Position (CP)	AR1 Output	Test Result	
MSB	LSB	MSB LSB	Voltage Required (Vdc)	(Vdc)	Pass/Fa
00000000		00000000000000	0.00000	1-0.00001	<u> </u>
00000000		00000000000000	-0.00061	-0.000540	<u> </u>
00000000		00000000000000	-0.00122 \	- 0.001159	<u> </u>
00000000		00000000000000	-0.00184	-0.001798	
00000000		00000000000000	-0.00245	-0.002417	<u> </u>
00000000		00000000000000	-0.00490 ★	-0.004914	<u> </u>
00000000		000000000000000	-0.00979 ★	-0.009915	
00000000		00000000000000	-0.01958 *	-0.019902	
00000001		00000000000000	-0.03917 ★	-0.039872	
00000010		. 00000000000000	-0.07834 ≯	-0.079819	
00000100		00000000000000	-0.15667 ≯	-0.15970	<u> </u>
0000100		00000000000000	-0.31334 ★	-0.31947	P
. 0001000		00000000000000	-0.62669 ★	-0.63909	
0010000		0000000000000	-1.25338 *	_1.2783	
0100000		00000000000000	-2.50675 🛧	-2.5567	<u> </u>
10000000 Tolerance of	000000	00000000000000000000000000000000000000	-5.01350 * umfumme 9-10-97	-5.1135 ± 0.000 ± 0.000	60
10000000 Tolerance of	000000 n output vol	00000000000000000000000000000000000000	-5.01350 * wytumne 9-10-97	± 0.000 ± 0.000 ± 0.000	60
10000000 Tolerance of Actual Posit	000000 n output vol	00000000000000000000000000000000000000	-5.01350 * 477-4	1 0.000 1 0.000 1 0.000 Test Result	60 30
10000000 Tolerance of Actual Posit MSB	000000 n output vol ion (API) LSB	00000000000000000000000000000000000000	-5.01350 * Wyfumne 9-10-97 AR1 Output Voltage Required (Vgc)	1 0.000 1 0.000 1 0.000 Test Result (Vdc)	60 30
10000000 Tolerance of Actual Posit MSB 00000000	000000 n output vol ion (API) . LSB 000000	00000000000000000000000000000000000000	-5.01350 * 4.77 4.77 -9.10 - 9.7 AR1 Output Voltage Required (Vdc) 0.00000	1 0.000 ± 0.000 ± 0.000 Test Result (Vdc) - 0.00032	60 30
10000000 Tolerance of Actual Posit MSB 00000000	000000 n output vol ion (API) _ LSB 000000	00000000000000000000000000000000000000	-5.01350 * 477-4	1 0.000 1 0.000 1 0.000 Test Result (Vdc)	60 30
10000000 Tolerance of Actual Posit MSB 00000000 00000000	000000 n output vol ion (API) _ LSB 000000 000000	00000000000000000000000000000000000000	-5.01350 * 9-10-97 AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122	1 0.000 1 0.000 1 0.000 Test Result (Vdc) -0.00032 +0.000577 +0.000577	Pass/F
10000000 Tolerance of Actual Posit MSB 00000000 00000000 000000000	000000 n output vol ion (API) . LSB 000000 000000 000000	00000000000000000000000000000000000000	-5.01350 * 4	1 0.000 1 0.000 1 0.000 Test Result (Vdc) -0.00032 +0.000577	60 30
10000000 Tolerance of : : : Actual Posit MSB 00000000 00000000 00000000 00000000	000000 n output vol ion (API) LSB 000000 000000 000000	00000000000000000000000000000000000000	-5.01350 * 400 400 400 AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245	10.000 10.000 10.000 Test Result (Vdc) -0.00032 +0.000577 +0.001210 +0.001822 10.002450	Pass/F
10000000 Tolerance of Actual Posit MSB 00000000 00000000 00000000 000000000 0000	000000 n output vol ion (API)	00000000000000000000000000000000000000	-5.01350 * 477-4	10.000 10.000 10.000 Test Result (Vdc) -0.00032 10.000577 10.001210 10.001822	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API) LSB 000000 000000 000000 000000 000000	00000000000000000000000000000000000000	-5.01350 * 9-10-97 AR1 Output Voltage Required (Vdc) 0.000061 0.00122 0.00184 0.00245 0.00490 * 0.00979 *	10.000 10.000 10.000 10.000 Test Result (Vdc) -0.00032 10.00577 10.001210 10.002450 10.004949	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API)	00000000000000000000000000000000000000	-5.01350 * 407-40-97 AR1 Output Voltage Required (Vdc) 0.00000 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 *	10.000 10.000 10.000 10.000 Test Result (Vdc) -0.00032 10.00577 10.00110 10.001822 10.002450 10.004949 10.009967 10.019954 10.039917	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API) LSB 000000 000000 000000 000000 000000 0000	00000000000000000000000000000000000000	-5.01350 * One of the second	10.000 10.000 10.000 10.000 Test Result (Vdc) -0.00032 10.00577 10.00110 10.001822 10.002450 10.004949 10.009967 10.019954 10.039917	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API)	00000000000000000000000000000000000000	-5.01350 * -5.01350 * 9-10-97 AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 *	10.000 10.000 10.000 10.000 10.00032 10.000577 10.001822 10.002450 10.004949 10.009967 10.019954 10.039927 10.079873	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API) LSB 000000 000000 000000 000000 000000 0000	00000000000000000000000000000000000000	-5.01350 * -5.01350 * -5.01350 * AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 *	10.000 10.000 10.000 10.000 Test Result (Vdc) -0.00032 10.00577 10.00110 10.001822 10.002450 10.004949 10.009967 10.019954 10.039917	Pass/F
10000000 Tolerance of the control of	000000 n output vol ion (API) LSB 000000 000000 000000 000000 000000 0000	00000000000000000000000000000000000000	-5.01350 * 27	10.000 10.000 10.000 10.000 Test Result (Vdc) -0.00032 10.00037 10.001822 10.002450 10.004949 10.004949 10.019954 10.019954 10.019954 10.019954 10.019973 10.019980 10.31964	Pass/F
10000000 Tolerance of the control of	000000 n output vol ion (API)	00000000000000000000000000000000000000	-5.01350 * 3-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 * 0.62669 *	10.000 10.000 10.000 10.000 10.000 10.00032 10.00032 10.000577 10.001210 10.002450 10.004449 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API)	00000000000000000000000000000000000000	-5.01350 * -5.01350 * -5.01350 * AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 * 0.62669 * 1.25338 *	Test Result (Vdc) -0.00032 +0.000577 +0.000577 +0.000577 +0.001822 +0.002450 +0.004949 +0.009967 +0.019954 +0.039927 +0.079873 -0.15980 +0.31964 +0.63932 +1.278	Pass/F
10000000 Tolerance of Tolerance	000000 n output vol ion (API) LSB 000000 000000 000000 000000 000000 0000	00000000000000000000000000000000000000	-5.01350 * 3-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 * 0.62669 *	10.000 10.000 10.000 10.000 10.000 10.00032 10.00032 10.000577 10.001210 10.002450 10.004449 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949 10.004949	Pass/F:

TEST DATA SHEET B-13 (Sheet 3 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

ion		<u>. 2</u>
	Pass/Fail .	.
	- P	~
nges		
	Pace/Enil	
	P	
nges		
i <u>n</u>		
Measured Value (Vdc)	Limits (Vdc) Pass	/Fail
•		 ?
		Ρ
	10.7 - 11.3	
		·
	0	
> 100MN	>20	
D D	1110/97	_
Engineer // /	Date	
repul Sulm (190)		
uality Control Inspector	Date	•
Selse Shows	<i>JII J4 J 7 1</i> Date	
	In Measured Value (Vdc) 0.31971 3.5173 11.0 Measured Value (MΩ) 200 MV 200 MV April 190 Light April 19	Pass/Fail

TEST DATA SHEET B-13 (Sheet 1 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date: 8 | 1697 CCA S/N: F33 1331697-1

6.13.7.1 Supply Voltages

Supply	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
+5V (U)	5.02	+5V± 0.05	P
+15V (I)	15.01	+15V±0.15	P
-15V (I)	-14.97	-15V± 0.15	P
+5V (I)	5.02	+5V± 0.05	1 P

6.13.7.2 Supply Currents

Step 1 (CP and API Low):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	86.57	70 - 110	1 P
+5V (I)	3.36	1.5 - 5.5	8
+15V (I)	17.65	15 - 23	1
-15V (I)	20.45	18 - 26	P

Step 2 (CP and API High):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	56.47	40 - 70	8
+5V (I)	23.92	18 - 30	P
+15V (I)	17.65	15 - 23	1
-15V (I)	20.45	18 - 26	P

6.13.7.3 Amplifier Offsets

Amplifier	Measured Value (mV)	Limits (mV)	Pass/Fail
AR1	+0.05	0.0 ±0.15	
AR2	-0.15	0.0 ±2.0	

TEST DATA SHEET B-13 (Sheet 2 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

		Conversion	9-10-97	\$ 0.000	50
ep 1:				£0.000	30 .
	Actual Position (API)	Command Position (CP)	AR1 Output	Test Result	
'	MSB LSB	MSB LSB	Voltage Required (Vdc)	¹ (Vdc)	Pass/Fai
-	000000000000000000000000000000000000000	0000000000000	0.00000	0.00006	<u> </u>
-	000000000000000000000000000000000000000	00000000000000	-0.00061	-0. occ477	<u> </u>
-	000000000000000000000000000000000000000	00000000000000	-0.00122 7	-0.001120	ρ_
-	0000000000011	00000000000000	-0.00184	-0.001767	<u> </u>
-	0000000000011	00000000000000	-0.00245 J	- Qcc2413	<u> </u>
-	00000000001000	00000000000000	-0.00490 ★	-0.004975	<u> </u>
-	0000000001000	00000000000000	-0.00979 ★	-0.ci 0095	<u> </u>
-	00000000100000	00000000000000	-0.01958 🛧	-0.02351	<u> </u>
-	0000000100000	00000000000000	-0.03917 🗲	-0.040856	P
<u> </u>	0000001000000	. 00000000000000	-0.07834 ≯	-0.031369	<u> </u>
-	0000010000000	00000000000000	-0.15667 ≯*	-0.16388	<u> </u>
	0000100000000	00000000000000	-0.31334 ★	20.22795	
\vdash	0001000000000	00000000000000	-0.62669 ★	-0.65614	<u> </u>
 -	0010000000000	00000000000000	-1.25338 🛧	-1.3126	<u> </u>
-			a cocae t	- 206254	P
1	0100000000000000	1 00000000000000	-2.50675 ★		
	01000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * -5.01350 *	10.000 10.000 10.000 10.000	60
p 2:	1000000000000000 olerance on output vol	00000000000000000000000000000000000000	-5.01350 * implummed 9-10-97	10.0001 ± 0.000 ± 0.000	5 60
p 2:	1000000000000000 Tolerance on output vol Actual Position (API)	00000000000000000000000000000000000000	-5.01350 * WM-fummeQ 9-10-97 AR1 Output*	10.000 i d.000 i d.000 i d.000	5 60 30
p 2:	1000000000000000000 Tolerance on output vol Actual Position (API) MSB LSB	00000000000000000000000000000000000000	-5.01350 * Wyfuma 9-10-97 AR1 Output Voltage Required (Vgc)	10.000 10.000 10.000 10.000 Test Result (Vdc)	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * imfume 9-10-97 AR1 Output Voltage Required (Vgc) 0.00000	10.000 i 10.000 i 10.000 i 10.000 Vocable	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * Wy furme Q 9-10-97 AR1 Output Voltage Required (Vgc)/ 0.00000 0.00061	-5.2509 10.000 ± 6.000 ± 0.000 (Vdc) 0.0006 6.000697	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * -5.01350 * -5.01350 * AR1 Output* Voltage Required (Vgc) 0.00000 0.00061 0.00122	-5.2509 10.000 ± 0.000 ± 0.000 (Vdc) 0.0006 0.000697 0.001337	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	Test Result (Vdc) 0.0006 0.0006 0.0006 0.001337 0.001970	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * implumed 9-10-97 AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245	Test Result (Vdc) 0.0006 0.0006 0.0006 0.001337 0.001970 0.002615	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * When a Comput Solution of the second of the se	-5.2509 10.000 ± 0.000 ± 0.000 (Ydc) 0.00006 0.00067 0.001337 0.001970 0.002615 0.005186	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	Test Result (Vdc) 0.0006 0.0006 0.0006 0.001337 0.001970 0.002615	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	-5.2509 10.000 10.000 10.000 10.000 10.0006	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * -5.01350 * -5.01350 * AR1 Output Voltage Required (Vgc)/ 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 *	-5.2509 10.000 10.000 10.000 10.000 10.0006 0.0006 0.001337 0.001970 0.002615 0.005186 0.010344 0.020595 0.04102	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	-5.2509 ± 0.000 ± 0.000 ± 0.000 (Vdc) 0.0006 6.000697 0.001337 0.001970 0.002615 0.005186 0.010344 0.020595 0.04102 0.08 2114	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	-5.2509 10.000 10.000 10.000 10.000 10.0006	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * AR1 Output* Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00979 * 0.00979 * 0.01958 * 0.07834 * 0.15667 * 0.31334 *	-5.2509 10.000 10.000 10.000 10.000 10.000 0.0006 0.0006 0.0006 0.001337 0.001970 0.002615 0.005186 0.010344 0.020595 0.04102 0.082114 0.16420 0.32832	5 60
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the state of	-5.2509 10.000 10.000 10.000 10.000 10.0006 0.0006 0.0006 0.001337 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.0026186 0.01970 0.02595 0.041102 0.082114 0.16420 0.32832 0.65668	5 60 30
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * Online AR1 Output* Voltage Required (Vgc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.07834 * 0.15667 * 0.31334 * 0.62669 * 1.25338 *	-5.2509 10.000 10.000 10.000 10.000 10.000 0.0006 0.00697 0.001337 0.001970 0.002615 0.005186 0.010344 0.020595 0.04102 0.082114 0.16420 0.32832 0.65668 1.3127	Pass/Fai
p 2:	10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the state of	-5.2509 10.000 10.000 10.000 10.000 10.0006 0.0006 0.0006 0.001337 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.002615 0.001970 0.0026186 0.01970 0.02595 0.041102 0.082114 0.16420 0.32832 0.65668	Pass/Fai

TEST DATA SHEET B-13 (Sheet 3 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.5 Strobe Fu	unction		
Step 1: Strobe Lov No E11 Chang with Input CP	ee .	Pass/Fail	
Step 2: <u>Strobe Hig</u> E11 Change with Input CP (Pass/Fail	
6.13.7.6 Amplifier	r Gain		
E11 E10 <u>E10 Voltage</u> E11 Voltage	Measured Value (Vdc) 6. 32 832 3. 6083	Limits (Vdc) Pass/Fail	
6.13.7.7 Ground Is Pin 91 to Pin 7 DC Resistance	$\frac{\text{Measured Value }(M\Omega)}{\sum \int_{C} M }$	Limits (MΩ) Pass/Fail >20	
Comments: NONE			
Conducted by: Verified by:	Test Engineer Control Inspector	Date OCT 10 '97 Date	·
Approved by:	BILLE Chomes	10/14/9-1 Date	

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N: Date:

FØ3 4130197

1331694-3 6.4.3.2 <u>Input Signal Offset</u>

Step No.	Test Results	Limits
4	-1.14 mV	0.0 ±1 mVdc
- 6	-1.60 mV	0.0 ±1 mVdc
- 0	-1.47 h.l	0.0 ±1 mVdc

Step No.	Test Resistor	Resistance Measured
13	E7-E8 (R25)	3.16K
	E9-E10 (R52)	4,60K
	E11-E12 (R33)	3.16 K
	E13-E14 (R53)	5.65k
	E15-E16 (R42)	3.16k
	E17-E18 (R54)	5.18K

Step No.	Resistors	Selected Trim Resistors
14	R25	LNC5553161FS
T	R52	RNC 55 J 453) F S
	R33	RNCSSJ3161FS
	R53	RNCSSJS621FS
	R42	RNC 5553161F8
<u> </u>	R54	RNC55J5231FS

Step No.	E Point	Test Results	Limits	Pass/Fail
19	E19	0.09mV	0.0 ±1 mVdc	P
l ''	E20	0-02mV	0.0 ±1 mVdc	P
 	E21	-0.03nV	0.0 ±1 mVdc	P

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
2	4.93V	+5V±0.05Vdc	P
- }	51.4 MA	70mAdc max	<u> </u>
	15.c7V	+15V±0.15Vdc	P
Ì	1.5 MA	3.0mAdc max	P
ļ	-14.98V	-15V±0.15Vdc	P
	18.7 mA	25mAdc max	P
	+28.10V	+28V±0.5Vdc	P
Ì	5.6 MA	8mAdc max	P
3	275 mV	400mVdc max	P
4	41.9 NA	50mAdc max	P
	47.6 KM	50mAdc max	Ρ

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
Step No.	2.73 mV	400mVdc max	P
- 3	36.4 mA	50mAdc max	P
	40.2 NA	50mAdc max	1

6.4.3.4 Current Limit Test

Step No.	Test Results	Limits	Pass/Fail
3.2	453mA	350-500mAdc	l P

worthumned (227) 2/3/97

Comments:	NONE	
		

Conducted by:

Test Engineer

4/30/97

Verified by:

Judeo Ollrvey

5-3-97

Approved by:

DOMO

11/8/19/1 Date

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N: Date: FØ5

8/21/97 1331694-3

6.4.3.2 Input Signal Offset

Step No.	Test Results	Limits
3100 110.	1. 12 hV	0.0 ±1 mVdc
4	1.11 mV	0.0 ±1 mVdc
0	1.11 MV	0.0 ±1 mVdc
8	1.14 MU	

Step No.	Test Resistor	Resistance Measured
13	E7-E8 (R25)	3.16 k
13	E9-E10 (R52)	4.75K
•	E11-E12 (R33)	3,16 K
	E13-E14 (R53)	4.75k
	E15-E16 (R42)	3.16k
	E17-E18 (R54)	4.75K

Step No.	Resistors	Selected Trim Resistors
3(e) 1(0.	R25	RNCSSJ 31(1FS
' [*]	R52	RNC5554751FS
<u> </u>	R33	RNC55J3161FS
F	R53	RNC5554751FS
F	R42	RNCSSJ 3161FS
-	R54	RNC55J4751FS

		Test Results	Limits	Pass/Fail
Step No.	E Point	-0.076 hV	0.0 ±1 mVdc	PASS
19	E19		0.0 ±1 mVdc	PASS
<u> </u>	E20	-0.047 mV	0.0 ±1 mVdc	PACS
1 [E21	-0.034 mV	0.0 ±1 m vac	11435

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

C: No	Test Results	Limits	Pass/Fail
Step No.	5- CI V	+5V±0.05Vdc	PASS
2	52.6 MA	70mAdc max	PASS
-	15.0)V	+15V±0.15Vdc	PASS
<u> </u>	1-55 MA	3.0mAdc max	PASS
-	-14-97V	-15V±0.15Vdc	PASS
·	18.92MA	25mAdc max	PASS
-	27.99 V	+28V±0.5Vdc	PASS
	5. 61 mA	8mAdc max	PASS
	28cmV	400mVdc max	PASS
- J	42 mA	50mAdc max	PASS
5	47 in A	50mAdc max	PASS

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
3	281 mV	400mVdc max	PASS
1	37 MA	50mAdc max	PASS
1 - 7	HIMA	50mAdc max	PASS

6.4.3.4 Current Limit Test

Comments:

ſ	Step No.	Test Results	Limits	Pass/Fail
ł	3	460 MA	350-500mAdc	PASS

Comments.	ions
	Denne Len 8/21/97
Conducted by:	Test Engineer Date Date Date Date
Verified by:	Orality Control Inspector Date Out 14 14 14 14 14 14 14 14 14 14 14 14 14
Approved by:	DCMC Date

DCMC

TEST DATA SHEET B-5 (Sheet 1 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date >//4/91 CCA S/N F 17 1337739 - 1 6.5.7.1 <u>UUT Pre-Test</u>

Step 2:

Supply Currents (Without UUT)

Supply (Vdc)	(Baseline) Measured Value (mA) (Without UUT)	Limits (mA)	Pass/Fail
+15	0.06mA	0-1	P
-15	-0-28mA	-1 - 0	P
+5	0-06mA	0-1	Р

Supply Voltages (Without UUT)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.02V	± 0.50	P
-15V (I)	-15.01V	± 0.50	P
+5V (I)	5 c3V	±0.25	P

Step 6:

Supply Currents (UUT Installed)

Supply (Vdc)	Measured Value (mA) (UUT Installed)	Difference (mA) (Measured - Baseline)	Limits (mA)	Pass/Fail
+15	33.57mA	33.51 MA	20-40	Ρ
-15	-41.75m1	-41.47 mA	-3050	'β
+5	59.76 m A	59.70 MA	30-70	ρ

6.5.7.2 Supply Voltages (UUT Installed)

	Supply	Measured Value (V)	Limits (V)	Pass/Fail
	+15V (I)	15.017	± 0.50	P
	-15V (I)	-14.96V	± 0.50	P
-	+5V (I)	5.02 V	±0.25	P

6.5.7.3 Oscillator Frequency, Duty Cycle, and Output Voltage

Parameter	Measured Value	Limits	Pass/Fail
Frequency	1598 Hz	1550-1650 Hz	P
Duty Cycle	52 %	45-55 %	Р
Output Voltage	8.052 VRUS	7.6-8.4 Vrms	P

TEST DATA SHEET B-5 (Sheet 2 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.4	R-D Conv	erter Operation						
Stan I.								
Step 1:								
		Bit Number/		CW		CCW		
		Test Fixture Label		Pass/Fail		Pass/Fail		
		API 0/1		<u> </u>		<u>r_</u> _		
		API 1/2				P		
		API 2/3		P		<u>}</u>		
		API 3/4		P		<u> </u>		
		API 4/5		P		<u>P</u>		
		API 5/6		<u> </u>		<u> </u>		
		API 6/7`				<u> </u>		
		API 7/8		<u> </u>		<u>P</u>		
		API 8/9		<u>P</u>		<u> </u>		
		API 9/10				<u> </u>		
		API 10/11	_	<u> </u>				
	<u></u>	API 11/12		<u>r</u>		P		
	<u> </u>	API 12/13		<u></u>		p		
		API 13/14		0		P		
		Converter Busy						
Step 2:	mount	(6	フ					
•	3-4-	97 Measured Val	ue	Calculated Value			Value (Vdc) *	Pass/Fail
•	3-4- RSQ-	Measured Val	ue	CCA -1 As		CCA	-2 Assy	Pass/Fail
PES	3-4- RSQ- (10)	Measured Val (Vdc) -11.58V	ue	CCA -1 As		CCA	-2 Assy	
PES RS (E CW Rotatio	3-4- RSQ- E10) n**	Measured Val		CCA -1 As	ssy	CCA	-2 Assy	P
PES RS (E CW Rotatio	3-4- RS9- E10) n**	Measured Vale (Vdc) -1.58V -1.86V	ion gai	CCA -1 As - 1.79 V - 1.79 V	ssy	CCA V/ d value and n	-2 Assy A neasured value	Measured
PES RS (E CW Rotatio	7-4- RS 9- FIO) n** ion** vel function be within ±	Measured Vale (Vdc) 11.58V -1.86V of test and calibrat 10 percent of calcu	ion gai	CCA -1 As - 1.79 V - 1.19 V in resistors. Recordalue.	ssy	CCA	-2 Assy A measured value as foele	Measured
PES RS (E CW Rotatio	7-4- RS 9- FIO) n** ion** vel function be within ±	Measured Val	ion gai	CCA -1 As - 1.79 V - 1.19 V in resistors. Recordalue.	ssy	CCA V[F V] d value and n	A heasured value $20 = 59$ k	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	7-4- RSQ- E10) n** ion** vel function be within ±	Measured Vale (Vdc) 11.58V 11.58V of test and calibrat 10 percent of calcu	ion gai	CCA -1 As - 1.79 V - 1.19 V in resistors. Recordalue.	d calculate	CCA VIII d value and n	-2 Assy A measured value as foele	Measured
PES RS (E CW Rotatio	7-4- RS 9- FIO) n** ion** vel function be within ±	Measured Vale (Vdc) 11.58V -1.86V of test and calibrat 10 percent of calcu	ion gai	CCA -1 As - 1.79 V - 1.19 V in resistors. Recordalue.	d calculate	CCA VIII d value and n	A Assy A measured value 20 = 59k 7 = 5.11k	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	7-4- RS 0- R	Measured Value (Vdc) 11.5 & V -1.8 & V of test and calibrat 10 percent of calcue of	ion gai lated v	CCA-1 As - 1.79 V - 1.79 V in resistors. Recordation. The second relations. Record relations. Recor	d calculate	d value and n	A heasured value $20 = 59$ k	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	7-4- RS 0- R	Measured Vale (Vdc) 11.58V -1.86V of test and calibrat 10 percent of calcu Gain PES-RS	ion gailated v	CCA -1 As - 1.79 V - 1.79 V in resistors. Recordalue. The second P-20 P-17 wn seasured Value (Vdc)	d calculate	d value and n	Pass/Fail	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	RSO-RSO-RSO-RSO-RSO-RSO-RSO-RSO-RSO-RSO-	Measured Vale (Vdc) 11.58V -1.86V of test and calibrat 10 percent of calcu Gain PES-RS	ion gailated v	CCA -1 As - 1.19 V - 1.19 V in resistors. Recorralue. The service P.17 with the service part of the ser	d calculate 1.0 Lim	d value and n	Pass/Fail	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	7-4- RS 0- R	Measured Vale (Vdc) 11.58V 11.58V 10 percent of calcu Gain PES-RS 0.300 Vdc	ion gailated v	CCA -1 As - 1.19 V - 1.19 V in resistors. Recorralue. The service P.17 with the service part of the ser	d calculate 1.0 Lim	d value and n	Pass/Fail	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	Amplifier PES = +0	Measured Vale (Vdc) 11.58V 11.58V 10 percent of calcu Gain PES-RS 0.300 Vdc	ion gailated v	CCA -1 As - 1.79 V - 1.79 V in resistors. Record value. The seasured Value (Vdc) - 1.70 L.170	d calculate 1.0 Lim	d value and n	Pass/Fail	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	PES = +0 PES = -0.	Measured Value (Vdc) 11.5 & V -1.8 & V of test and calibrat 10 percent of calcue of	ion gailated v	CCA -1 As - 1.79 V - 1.79 V in resistors. Record value. The seasured Value (Vdc) - 1.70 L.170	d calculate 1.0 Lim	d value and n	Pass/Fail	Measured
PES PS (E CW Rotatio CCW Rotati * Signal lev value shall	PES = +0 PES = -0.	Measured Vale (Vdc) 11.58V 11.58V 10 percent of calcu Gain PES-RS 0.300 Vdc	ion gailated v	CCA -1 As - 1.79 V - 1.79 V in resistors. Record value. The seasured Value (Vdc) - 1.70 L.170	d calculate 1.0 Lim	d value and n	Pass/Fail	Measured
PES RS (E CW Rotatio CCW Rotati * Signal lev value shall 6.5.7.5	PES = +0 Direction	Measured Value (Vdc) 11.58V 11.58V 10 percent of calcue (Vdc) Gain PES-RS 0.300 Vdc 1 Control Signal	ion gailated v	CCA-1 As - 1.19 V - 1.19 V in resistors. Recordance. The second value (Vdc) 1.06 V	d calculate 010 1.00 1.00	d value and no Report of the Control	Pass/Fail	Measured
PES RS (E CW Rotatio CCW Rotati * Signal lev value shall 6.5.7.5	PES = +0 Direction	Measured Value (Vdc) 11.5 & V -1.8 & V of test and calibrat 10 percent of calcue of	ion gailated v	CCA -1 As - 1.79 V - 1.79 V in resistors. Record value. The seasured Value (Vdc) 1.06 V CCA -1 As - 1.79 V - 1.17 V - 1.17 V - 1.06 V	d calculate 010 1.00 1.00	d value and n	Pass/Fail	Measured
PES RS (E CW Rotatio CCW Rotati * Signal lev value shall 6.5.7.5	PES = +0 Direction	Measured Value (Vdc) 11.58V 11.58V 10 percent of calcue (Vdc) Gain PES-RS 0.300 Vdc 1 Control Signal R CNTRL	ion gai lated v S (- Ma Plan 7/14/61	CCA-1 As - 1.19 V - 1.19 V in resistors. Recordance. The second value (Vdc) 1.06 V	d calculate 0 10 1.0 1.00	d value and no Report of the Control	Pass/Fail	Measured

TEST DATA SHEET B-5 (Sheet 3 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Frequency	Measured Value (Hz)	Calculated Value (Hz) * CCA -1 Assy	Calculated Value (Hz) * CCA -2 Assy	Pass/Fa
AR3 Notch	VIK	NIA	N/A	N/A
AR4 Notch	NIA	NA	NA	N/A
ADC March	NIA	NA	MA nd calibration resistors. Rec	NIA
Comments:	IE .			
	No This test a system love subseystem	to bell be perfore during on	rmed at the tenna drii ing.	- ve
		カー	t-97	
- -				
Conducted by:	Test Engineer	5/4/97 Date	7	
Verified by: Approved by:	Quality Control Inspector	Date (12/15/97	•	

TEST DATA SHEET B-5 (Sheet 1 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date	8/27/97
CCA S/N	F20
	133 7739-1
6.5.7.1	UUT Pre-Test

Step 2:

Supply Currents (Without UUT)

Supply (Vdc)	(Baseline) Measured Value (mA) (Without UUT)	Limits (mA)	Pass/Fail
+15	0.06	0-1	P
-15	-0.28	-1 - 0	P
+5	. 0.00	0-1	ρ

Supply Voltages (Without UUT)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	+15.02	± 0.50	P
-15V (I)	-15.01 Dun	± 0.50	P
+5V (I)	5. 03	±0.25	P

Step 6:

Supply Currents (UUT Installed)

Supply (Vdc)	Measured Value (mA) (UUT Installed)	Difference (mA) (Measured - Baseline)	Limits (mA)	Pass/Fail
+15	32.85	32.79	20-40	<u> </u>
-15	-41.27	-40.99	-3050	P
+5	57.36	57.30	30-70	P

6.5.7.2 Supply Voltages (UUT Installed)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.01	± 0.50	Ρ
-15V (Ī)	-14.96	± 0.50	P
+5V (I)	5.02	±0.25	P

6.5.7.3 Oscillator Frequency, Duty Cycle, and Output Voltage

Parameter	Measured Value	Limits	Pass/Fail
Frequency	1610 HZ	1550-1650 Hz	P
Duty Cycle	51.3%	45-55 %	Р
Output Voltage	7.97V	7.6-8.4 Vrms	<u> </u>

TEST DATA SHEET B-5 (Sheet 2 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.4 R-D Converter Operation

Step 1:

Bit Number/ Test Fixture Label	CW Pass/Fail	CCW Pass/Fail
API 0/1	Ρ	P
API 1/2	Ρ	<u> </u>
API 2/3	P	P
API 3/4	P	
API 4/5	P	
API 5/6	P	
API 6/7	P	
API 7/8	<u> </u>	<u> </u>
API 8/9		
API 9/10	P	ļ
API 10/11		0
API 11/12		- P
API 12/13		
API 13/14	<u>f</u>	
Converter Busy		

Step 2:

RS	Measured Value (Vdc)	Calculated Value (Vdc) * CCA -1 Assy	Calculated Value (Vdc) * CCA -2 Assy	Pass/Fail
(E10) CW Rotation**	1.496	(+)).79 ô	(+) N/A	P
CCW Rotation**	-1.764	(-) 1.790	(-) N/A	Massured

* Signal level function of test and calibration gain resistors. Record calculated value and measured value. Measured value shall be within ±10 percent of calculated value. The equation is as follows:

$$V = \pm 0.155 \left(\frac{R20}{R17}\right) \pm 10\%$$
 $V = \pm 0.155 \left(\frac{R20}{R17}\right) \pm 10\%$
 $V = \pm 0.155 \left(\frac{R20}{R17}\right) \pm 10\%$
 $V = \pm 0.155 \left(\frac{S9k}{S.11k}\right) = 1.79k$

6.5.7.5 Amplifier Gain

6.5.7.6 <u>Direction Control Signal</u>

DIR CNTRL	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
CW Rotation	5.000	4.5 to 5.5	
CCW Rotation	C.117	0.0 to 0.4	P

TEST DATA SHEET B-5 (Sheet 3 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.7 <u>1</u>	Notch Fil	ter Frequency Response	•				
Frequenc	у	Measured Value (Hz)		ated Value (Hz) * CA -1 Assy		ted Value (Hz) * CA -2 Assy	Pass/Fail
AR3 Notch		NA		N/A		N/A	N/A
AR4 Notch		1		1			1
A D S Motob							1
* Notch freque and measured	encies sha values.	all be within ±3 percent of	of values of	letermined by test	and calibrat	tion resistors. Rec	ord calculated
Comments:	N0 NE			. '			
·							
				:			
		_				•	
Conducted by	/: (:	Derviz Lun Test Engineer	<u> </u>	8/27/97 Date	<u>1</u> .		
Verified by:		Quality Control Inspector Richal Homo	RU (CO)) <u>09 02 9</u> Date <i>9/9 19</i> 1	_/		
Approved by:		DCMC	·	Date	-		

APPENDIX B SCAN MOTION AND JITTER RESPONSE PLOTS

知についい

Test Ens. (all)

PN: 1331720-2-11 SN: 106

B12

834

ΔX=218.7mS Y=9.86884 ΔY=32.97mV Δ Yα=585.5mV		J. J. = 18.91 my 0.5. = 0.0 mv		SCENE 18	2.4.4.5 A1-2 Test Eng (8) MIS 28 78 MIS 28 78
X=3.625 S ΔX=218.7 Yα=9.48118 ΔΥα=585.					5/0: 3732.19 8/N: 133.1720-2-17 511: 106

AY=38. 79mV

Y=10.2349

$\frac{3150}{113}$ $\frac{113}{113}$	771 = 18.42 my $0.5. = 0.0 my$	
CH = 18.	0.5. = 0.0 mV	
CHI = 18.	Ciyl = 18.42 mV $Ciyl = 32.97 mV$ $O.5. = 0.0 mV$ O	

B57

B**5**8

AY-37. 33mV

Y=12,015

ΔX=218. 7mS ΔYα=538. 4mV

X=4.84 S Ya=11.6333

364

TEST DATA SHEET 7 (Sheet 1 Of 4) Scan Motion and Jitter Test (A1-1) (Paragraph 3.4.4.5)

Test Setup Verified: Ray Harb W.14 Shop Order No. 373249
Signature

Step No.	Description	Requirement	Test Result	Pass/Fail
7		Stepping Slewing <8 sec period per Figure 6	< 8.0 Sec	
9	Scene 1-2 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
·	•	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	17.14 MV 0.0 MV	F
10	Scene 2-3 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	21.33 mV <1.0 mV	P
11	Scene 3-4 3.33° step	<35 msec rise time per Figure 7	< 35 Msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	20.36 mV 0.0 MV	P
12	Scene 4-5 3.33° step	<35 msec rise time per Figure 7	235 msec	P
	•	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	25.21 mV	P
13	Scene 5-6 3.33° step	<35 msec rise time per Figure 7	<35 msec	F
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	30.06 MV	P
14	Scene 6-7 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	22.3 MV 5.0 MV	f
15	Scene 7-8 3.33° step	<35 msec rise time per Figure 7	<35 msec	F
	'	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	19.88 mV 4.53 mV	F
16	Scene 8-9 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
	'	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	21.82 MV	f

TEST DATA SHEET 7 (Sheet 2 Of 4) Scan Motion and Jitter Test (A1-1)

Step No.	Description	Requirement	Test Result	Pass/Fai
17	Scene 9-10 3.33° step	<35 msec rise time per Figure 7	< 35MSEC	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	22.3 MV 3.07 mV	P
18	Scene 10-11 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	25.21 mV 5.5 mv	P
19	Scene 11-12 3.33° step	<35 msec rise time per Figure 7	< 35 mscc	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	16.0 MU 2.1 MV	P
20	Scene 12-13 3.33° step	<35 msec rise time per Figure 7	235msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	17.45 mv	P
21	Scene 13-14 3.33° step	<35 msec rise time per Figure 7	<35 msec	ρ
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	20.85 mV 3.07 mV	F
22	Scene 14-15 3.33° step	<35 msec rise time per Figure 7	< 35 MSEC	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	26,18 MU 9.37 MU	P
23	Scene 15-16 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	17.45 MV	P
24	Scene 16-17 3.33° step	<35 msec rise time per Figure 7	<35 M SCC	F
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	27.15 MU 4.53 MU	ρ

TEST DATA SHEET 7 (Sheet 3 Of 4) Scan Motion and Jitter Test (A1-1)

Step No.	Description	Requirement	Test Result	Pass/Fai
25	Scene 17-18 3.33° step	<35 msec rise time per Figure 7	< 35 msle	Ρ
	0.00	< ±5% jitter per Figure 7	23.27 mV	P
		< 3% overshoot for 10 msec	5.5 mV	
26	Scene 18-19 3.33° step	<35 msec rise time per Figure 7	< 35 msee	f
	,	< ±5% jitter per Figure 7	25.21 MU	P
		< 3% overshoot for 10 msec	9.38 MV	
27	Scene 19-20 3.33° step	<35 msec rise time per Figure 7	< 35 msc-	P
	•	< ±5% jitter per Figure 7	16.49 mu	P
		< 3% overshoot for 10 msec	0.0 M	1
28	Scene 20-21 3.33° step	<35 msec rise time per Figure 7	<35 msc	P
	•	< ±5% jitter per Figure 7	25.7 MJ,	P
		< 3% overshoot for 10 msec	11.32 mV	
29	Scene 21-22 3.33° step	<35 msec rise time per Figure 7	< 35 Msec	P
1	•	< ±5% jitter per Figure 7	21.82 mv	16
_1		< 3% overshoot for 10 msec	0.0 mV	<u> </u>
30	Scene 22-23 3.33° step	<35 msec rise time per Figure 7	< 35 m sec	P
		< ±5% jitter per Figure 7	23,76 m	4
		< 3% overshoot for 10 msec	000 MU	1
31	Scene 23-24 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7	16.49 MV	ρ
		< 3% overshoot for 10 msec	0.0 MV	
32	Scene 24-25 3.33° step	<35 msec rise time per Figure 7	<35 mscc	P
		< ±5% jitter per Figure 7	23.76 mV	4
		< 3% overshoot for 10 msec	5.49 MV	1'

TEST DATA SHEET 7 (Sheet 4 Of 4) Scan Motion and Jitter Test (A1-1)

Step No.	Description	Requirement	Test Result	Pass/Fai
33	Scene 25-26 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	20.37 MU 0.0 MU	P
34	Scene 26-27 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	16.48 mu 0.0 mu	P
35	Scene 27-28 3.33° step	<35 msec rise time per Figure 7	<35 mscc	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	15.51 mV	P
36	Scene 28-29 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	19.39 mv	P
37	Scene 29-30 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	14.55 mV 0.0 mV	P
38	Scene 30 Cold Cal	<0.21 sec slew time per Figure 10	< Z 10 mscc	x
	35.0° slew	< ±0.165° jitter per Figure 11	-0-266° ±.1591°	P
39	Cold Cal - Warm Cal	<0.40 sec slew time per Figure 12	<.405ec	ρ
	96.67° slew	< ±0.165° jitter per Figure 13	10.3/9°+ 13348	P

Pass = P Fail = F

METSAT 5/0: 373249 Unit: AMSU AL P/N: 1331720-2-1T Serial No.: 106

Date: 8-24-98

Quality Assurance:

Test Engineer:_

JUG 24 98

TEST DATA SHEET 8 (Sheet 1 Of 4) Scan Motion and Jitter Test (A1-2) (Paragraph 3.4.4.5)

Test Setup Verified: Ray Hero 1919 Shop Order No. 373249
Signature

Step No.	Description	Requirement	Test Result	Pass/Fai
44		Stepping Slewing <8 sec period per Figure 6	< 8.0 Sec	4
9	Scene 1-2 3.33° step	<35 msec rise time per Figure 7	< 35 msex	F
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	16.97 mv 2.9 mv	P
10	Scene 2-3 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	14.55 mV 10.00 mV	P
11	Scene 3-4 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	14.55 MV (0.0 MV	P
12	Scene 4-5 3.33° step	<35 msec rise time per Figure 7	~35 msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	16.0 mV 3.38 mV	P
13	Scene 5-6 3.33° step	<35 msec rise time per Figure 7	<35msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	13.09 mV 0.47 mV	ρ
14	Scene 6-7 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	15.52 my	P
15	Scene 7-8 3.33° step	<35 msec rise time per Figure 7	<35 mscc	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	17,46 mV	P
16	Scene 8-9 3.33° step	<35 msec rise time per Figure 7	=35msuc	P
	'	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	16.97 MU	P

TEST DATA SHEET 8 (Sheet 2 Of 4) Scan Motion and Jitter Test (A1-2)

Step No.	Description	Requirement	Test Result	Pass/Fa
17	Scene 9-10 3.33° step	<35 msec rise time per Figure 7	<35 MSec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	16.49 mu 0.0 mu	P
18	Scene 10-11 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	14.06 mV 5-32 mV	P
19	Scene 11-12 3.33° step	<35 msec rise time per Figure 7	< 35M sec	<i>ب</i>
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	11.15 mV	P
20	Scene 12-13 3.33° step	<35 msec rise time per Figure 7	<35msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	13.58 MU 0.0 MV	P
21	Scene 13-14 3.33° step	<35 msec rise time per Figure 7	<35 MSEC	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	21.82 mu 2.90 mu	P
22	Scene 14-15 3.33° step	<35 msec rise time per Figure 7	<35 MSec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	23.27 mV 2.90 mV	P
23	Scene 15-16 3.33° step	<35 msec rise time per Figure 7	< 35 m sec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	17.45 MV	P
24	Scene 16-17 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	20.36 MV	P

TEST DATA SHEET 8 (Sheet 3 Of 4) Scan Motion and Jitter Test (A1-2)

Step No.	Description	Requirement	Test Result	Pass/Fai
25	Scene 17-18 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
	•	< ±5% jitter per Figure 7	15.03 MV	P
		< 3% overshoot for 10 msec	0.0 MV	
26	Scene 18-19 3.33° step	<35 msec rise time per Figure 7	235 mscc	P
	•	< ±5% jitter per Figure 7	18.91 MU	P
ļ		< 3% overshoot for 10 msec	0.0 MU	/
27	Scene 19-20 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
	•	< ±5% jitter per Figure 7	19.39 mV	P
Ì		< 3% overshoot for 10 msec	3.01 MU	/
28	Scene 20-21 3.33° step	<35 msec rise time per Figure 7	~35 msuc	P
	·	< ±5% jitter per Figure 7	18.42 MSEV	P
		< 3% overshoot for 10 msec	0.0 mV	<i>T</i>
29	Scene 21-22 3.33° step	<35 msec rise time per Figure 7	< 35 msi.c	P
	•	< ±5% jitter per Figure 7	19.39 mu	P
		< 3% overshoot for 10 msec	0.0 MU	
30	Scene 22-23 3.33° step	<35 msec rise time per Figure 7	< 55 msec	β
	·	< ±5% jitter per Figure 7	17.45 mV	P
	_	< 3% overshoot for 10 msec	0.0 MV	
31	Scene 23-24 3.33° step	<35 msec rise time per Figure 7	<35 MSEC	P
1		< ±5% jitter per Figure 7	19:39 my	P
I		< 3% overshoot for 10 msec	0.0 MU	ΙΡ
32	Scene 24-25 3.33° step	<35 msec rise time per Figure 7	<35 msec	P
•	•	< ±5% jitter per Figure 7	19.88 MV	P
		< 3% overshoot for 10 msec	1.44 MV	

Pass = P Fail = F $\mathcal{F}_{\mathcal{F}}$

TEST DATA SHEET 8 (Sheet 4 Of 4) Scan Motion and Jitter Test (A1-2)

Step No.	Description	Requirement	Test Result	Pass/Fail
33	Scene 25-26 3.33° step	<35 msec rise time per Figure 7	< 35 mscc	A
	,	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	24.73 mV 0.47 mV	P
34	Scene 26-27 3.33° step	<35 msec rise time per Figure 7	-35 m sec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	18.42 mV	P
35	Scene 27-28 3.33° step	<35 msec rise time per Figure 7	<35 MSEC	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	19.88 MV 0.0 MV	A
36	Scene 28-29 3.33° step	<35 msec rise time per Figure 7	-35 MSec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	23.27 MV	P
37	Scene 29-30 3.33° step	<35 msec rise time per Figure 7	<35msec	P
	·	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	19.88 mV	4
38	Scene 30 Cold Cal	<0.21 sec slew time per Figure 10	319 M5	P
	35.0° slew	< ±0.165° jitter per Figure 11	± .126°	P
39	Cold Cal - Warm Cal	<0.40 sec slew time per Figure 12	174ms	P
Ì	96.67° slew	< ±0.165° jitter per Figure 13	± .135°	PASS

5/0: 373249	
METSAT Unit: <u>AMSU A 1 </u>	Test Engineer:
Serial No.:	Quality Assurance: (269) WE 24 9
Date: 8-24-98	Customer Representative: R. Pour 12-16-98

APPENDIX C

PULSE LOAD CURRENT WAVEFORM AND TEST DATA SHEET

·H	me Capture	7 0	A MATERIAL T	
CHAN 1 Power Spec	O	CHAN 2 Off		
CHAN 1 Hanning		CHAN 2 Hanning		
TYPE Avg Off	# AVGS 10	OVERLAP O%	TIME AVG	_
CENTER 500 Hz		SPAN 1. OKHN	BW 1.87 HZ	
REC LGTH 800mS	Δt 391μS			
TYPE External	LEVEL 1. O VPK	SLOPE Neg		
RANGE AutoRng AutoRng↑	ENG UNITS 1.0 V/EU 1.0 V/EU	COUPLING DC (Gnd)	0.0 S	
TYPE Off		LEVEL O.O VPK	0FFSET 0.0 Vpk	
3.4.6 W: 106	Test Eng - Quality :	(kg)	Date: 8-27-7:	1

TRIGGER:

IN UNITED AND THE STREET OF TH

SOURCE

MEASURE:

AVERAGE:

FREQ.

WINDOW

810' 3732 49 0/N; 1331720-2-17 5N: 106

TEST DATA SHEET 9

28V Bus Peak Current and Rise Time Test (Paragraph 3.4.4.6)

1818 CROPE	$\mathcal{O} \cup \mathcal{O}_{\mathcal{A}}$		
Test Setup Verified:_	Signature	Shop Order No.	3732 49

Step No.	Requirement	Test Result	Pass/Fail
4	< 1 A peak any place in the scan	1.0356 Amps	ρ
5	> 35 µsec rise time, 3.33° step	1.953 msec	P
6	> 35 µsec rise time, start of WC slew	2,344 msc	P
6	> 35 µsec rise time, end of WC slew	4687 msle	P

	\$/6:
Unit: METSAT A 1	P/N: 1331720-2-17
Serial No.: 106	

Test Engineer:		
Quality Assurance:	AUG 25 '98	
Date: 8-24-98		

APPENDIX D

GAIN AND PHASE MARGIN PLOTS AND TEST DATA SHEETS

		-

					. Lander of the second of the second		-
		3.0 Dec 16.7 Pt/	EST RATE 91.7 S/De			OFFSE O・O < で スロ	Onti. 5
iле	# AVGS	SPAN RESLTN	EST TIME 4.58 Min		COUPLING DC (F1t) DC (F1t)	LEVEL 1.0 VDK	TEST LING; (ME)
wept S	Ш	N	0 I R U P		ENG UNITS 1.0 V/EU 1.0 V/EU		3.4.4.8-128
S	INTGRT TI	999. 99 HIN 1 KIN	TYPE Log	ርት ት	RANGE A∪toRng^ A∪toRng^	TYPE Off	3.4.
	AVERAGE.	ГКЕО.	SWEEP.	AU GAIN		SOURCE:	56: 373249
							12

5.4.4.8-120

PN: 1331720-2-1T SN: 106

Test Eng: (The Chalift:

Cate: 5 - 18

-10

	•

	SHEET	

		Shop Order No. 373249	
Test Setup Veri	ified: f(u) \fuf bfeld Signature	Shop Order No. S/22-7	
Temperature:	7/,5°F ℃		
	Requirement	Test Result	Pass/Fail
	9.2 dB minimum	1 13.665dB 2 13.671dB 3 13.65 dB	Note: These mi are from Eco Deleted Par Coustomer
	25 degrees minimum	1 66.39 deg 2 66.65 deg 3 66.59 deg 4	Request Request 1-21-i8 8/25/9
			Pass = P Fail = F
AMSU		AMSU SEIT	
Unit: METSAT	A) P/N: 1331720-	Lest Engineer:	
Serial No.:_//		Quality Assurance:	AUG 25 '98
Date: 8-2	4-98	Customer Representative: V	89-2121 anom.

TEST DATA SHEET 11 Gain/Phase Margin (A1-2) (Paragraph 3.4.4.8)				
7 / 1?				
Test Setup Verified: Kay 1116/11/20 Shop Order No. 373249 Signature				
Temperature:°C				
Requirement Test Result Pass/Fail	ti. These			
9.2 dB minimum 3 12.969 1B	ti. These whis art A war 1828 Per omer 1828			
1 59.93 deg 2 60.07 deg 3 59.99 deg 4	1-29-98			
Pass	= P			
Fail	= F			
Unit: METSAT A! F/N: 133/720-2-17 Test Engineer:				
Serial No.: 106 Quality Assurance: Quality Assurance: (7A)				
Date: 8-24-98 Customer Representative: R, Brum 12.	<u> 1828-</u>			

APPENDIX E

OPERATIONAL GAIN MARGIN POWER SPECTRUM PLOTS AND TEST DATA SHEETS

	÷	•

				Resolution	
	MEASURE	CHAN 1 Off		CHAN 2 Power Spec	O CT
	M I N I N	CHAN 1 Uniform		CHAN 2 Uniform	
	AVERAGE	TYPE Stable	# AVGS	OVERLAP O%	TIME AVG
	T T T T	CENTER 156.25 Hz		SPAN 312 Hz	BW 391mHz
		REC LGTH 2.56 S	Δt 1.25mS		
	TRIGGER:	1≺PE Chan 2	LEVEL O. O VPK	SLOPE Neg	PREVIEW Off
	IN N N N N N N N N N N N N N N N N N N	RANGE AutoRng AutoRng	ENG UNITS 1.0 V/EU 1.0 V/EU	COUPLING DC (F1t) DC (F1t)	0.0 S
	SOURCE	TYPE Off		LEVEL O.O VPK	OFFSET O.O Vpk
5/0/2	5/0: 373249 P/N: 1331720-2-17 SN'106	3.4.4.9	Test E.	Test Ens: (ms) Reality	11A Date: 8-11.

TEST DATA SHEET 12 Operational Gain Margin (A1-1) (Paragraph 3.4.4.9)

\sim 11 10		
Test Setup Verified:	Shop Order No. <u>373249</u>	
Temperature: 7/66°C		

Step No.	Requirement	Test Result	Pass/Fail
	R58 Resistance (kohms)	-39.13 Ks-	
11	·	1 -138.84 KJL] P
	Test Pot Resistance (kohms)	2] (
		3 38.87 KR	
		1 176.56 Hg	
12	Oscillation Frequency (Hz)	2 176.56 Hz] /
		3 176,17 Hz	
		1 9.47 dB	
16	Gain Margin, 8 dB minimum	2 9.435 dB] <i>†</i>
		3 9.435 dB	

Pass = P Fail = F

Unit: <u>METSAT A) P/N:.1331720-2-17</u>	Test Engineer:
Serial No.: 106	Quality Assurance:
	Date: 8 - 24 - 98

TEST DATA SHEET 13

Operational Gain Margin (A1-2) (Paragraph 3.4.4.9)

Test Setup	Verified:_	Ray	\mathcal{A}	erh	Very	3/
		$\neg \overline{}$				

Shop Order No. 37 32 49

Temperature: 71.6°C

Step No.	Requirement	Test Result	Pass/Fail
	R58 Resistance (kohms)		
11		1 38.89 KS-	$\neg \neg \rho$
	Test Pot Resistance (kohms)	2 38.15 KS-	
		3 39,9 KIL	
		1 181.25 Hz	^
12 Oscillation Freque	Oscillation Frequency (Hz)	2 181,25 H3	
		3 181.64 kg	
		1 9.4379 dB	^
16 Gain Mai	Gain Margin, 8 dB minimum	2 9.327 d.B	\longrightarrow ρ
		3 9.586 dB	

Pass = P Fail = F

Unit: METSAT AL P/N: 133/720-2-1T

Serial No.: 106

(42) E SE''

Test Engineer:_

Quality Assurance: 7A 268

Date: 8-24-98

FORMS

National Aeronautics and Space Administration Report Documentation Page						
1. Report No.	2. Government Accession N	0.	3. Recipient's Catalog I	No.		
Title and Subtitle		_	5. Report Date			
			22 Febru	arv 1999		
Integrated Advanced Mi (AMSU-A), Performance		ınıt-A	6. Performing Organizat	<u> </u>		
7. Author(s)			Performing Organizat	ion Report No.		
			11406	·		
D. Luu			10. Work Unit No.			
Performing Organization Name and						
Aerojet	771001000		11. Contract or Grant No).		
1100 W. H		NAS	5-32314			
Azusa, CA		13. Type of Report and I	Period Covered			
12. Sponsoring Agency Name and Ad		Final				
NASA		14. Sponsoring Agency	Code			
Goddard S Greenbelt						
15. Supplementary Notes	, Waryland 2011					
16. ABSTRACT (Maximum 200 words)						
	This is the Performance Verification Report, AMSU-A1 Antenna Drive Subsystem, P/N 1331720-2, S/N 106, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).					
17. Key Words (Suggested by Author	(s))	18. Distribution Statement				
F00			Hardwell 1	Harris at		
EOS Microwave Sys	tom		Unclassified Un	ııımıtea		
wildrowave Sys	rent					
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of pages	22. Price		
Unclassified	Unclassified					
NASA FORM 1626 OCT 86			<u> </u>	L		

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. <u>Recipient's Catalog No.</u> Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution</u> <u>Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of <u>STAR</u>) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Self-explanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

DOCUMENT APPROVAL SHEET

TITLE			DOCUMENT NO.	
Performance Verification Report			Report 11406	
AMSU-A1 Antenna Drive Subsysten	n , P/N 1331720-2,	S/N 106	22 February 1999	
	Loppi	L ODEOUEIOATION ENOINEED	· · · · · · · · · · · · · · · · · · ·	DATE
INPUT FROM: D. Luu	CDRL: 208	SPECIFICATION ENGINEER: N/A		DATE
D. Lud				
CHECKED BY:	DATE	JOB NUMBER:	<u> </u>	DATE
N/A		N/A		
APPROVED SIGNATURES			DEPT. NO.	DATE
	1.17			1 - 1
Product Team Leader (A. Nieto)	_////2		7888	2/25/98
	O_1	00 1		3/5/99
Systems Engineer (B. Blott)	Klast At D	Ratt	8341	3/-100
Systems Engineer (R. Platt) // // // // // // // // // // // // //			0341	2/5///
				3/4/00
Design Assurance (E. Lorenz)			8331	2/1/19
Quality Assurance (R. Taylor)	16/02	- Fer	7831	3/3/99
Quality Assurance (IX. Taylor)	4.7	<u> </u>	7001	
•	n P- R- 6	2 tel		3/3/99
Technical Director/PMO (P. Pate	1) <u>V · K · 0</u>	2010	8341	373, 19
	^	\mathcal{A}		
Released:		1		3/4/99
Configuration Management (J. C	avanaugh) 🔀 📉	avanaugh	8361	214111
By my signature, I certify the above document ha	as been reviewed by me ar	nd concurs with the technical		
requirements related to my area of responsibility.				<u> </u>
(Data Center) FINAL				
(Data Center) 1 HYAL			<u> </u>	
Please return this sheet and the reproducible	master to Jim Kirk (Bldg.	1/Dept. 8631), ext. 2081.		
				<u></u>