4to2 Encoder

Putta Shreyash Chandra IITH - Future Wireless Communication (FWC)

1

2

Contents

1 Components

2 Implementation

2.1 SOLUTION: ..

binary encoder, is a multi-input combinational logic circuit that converts the logic level "1" data at its inputs into an equivalent binary code at its output.

Karnugh Map:

K-map for Q0 :

Abstract 00 01 11 10

This manual shows the implementation of 4to2 encoder using Arduino ide.

00	0	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	0

D2D3

D2D3

K-map for Q1:

D

D0D1

		00	01	11	10
0 <i>D</i> 1	00	0	0	0	0
	01	0	1	0	0
	11	0	0	0	0
	10	1	0	0	0

Figure 1.1

1 Components

Components	Values	Quantity
Arduino	UNO	1
JumperWires	M-M	7
Breadboard		1
LEDs	-	2

2 Implementation

The truth table for Figure -1.1 is available in Table-1

D3	D2	D1	D0	Q1	Q0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

TABLE 1.1

The Digital Encoder more commonly called a Binary Encoder takes ALL its data inputs one at a time and then converts them into a single encoded output. So we can say that a

Figure 2.1

Using Boolean logic, output Q0 Q1 in Table 1 can be expressed in terms of the inputs D0,D1,D2,D3 as

$$Q0=D3'.D2'.D1.D0' + D3.D2'.D1'.D0' (eq2.1)$$

The expressions in (2.1) AND (2.2) can be minimized by the observing the outputs logic

Thus, after minimization can be expressed as

$$Q0=D1 + D3$$
 by eq2.1

 ${
m Q1} = {
m D2} + {
m D3}$ by eq2.2 Verify the truth table for Q0 and Q1 in TABLE 1.1.

2.1 SOLUTION:

5,6,7,8 Pins of Arduino are manually given inputs as D1,D2,D3,D0 and verify the logic of Q0,Q1 in Table 1

Encode	r D1	D2	D3	D0	Q1	Q0
Arduino	5	6	7	8	13	4

TABLE 2.1

The code below realizes the Boolean logic for 4to2 encoder in 1.1~using~5V,GND of Arduino as binary Inputs with the help of breadboard and jumperwires. Built in LED at pin- 13~of~Arduino~will~glow~for~the~logic'1'~of~Q1,and~off~for~the~logic'0'~of~Q1~and~a~LED~circuit~at~pin-4~of~Arduino~will~glow~for~the~logic'1'~of~Q0,and~off~for~the~logic'0'~of~Q0

 $https://github.com/chanduputta/FWC-Module1/blob/\\ main/Assembly%20assigntment/code/encoder.asm$