TEMA D'ESAME

Domanda A

Utilizzando unicamente

- Un multiplexer a 4 ingressi dati e due di controllo
- Tutte le porte NOT necessarie

Si sintetizzi la funzione descritta dalla tabella della verità a lato.

Il risultato ottenuto indica che è possibile realizzare la funzione di 3 variabili data mediante un multiplexer a 2 ingressi di controllo. Si dimostri per via algebrica che è sempre possibile realizzare in questo modo qualsiasi funzione di 3 ingressi.

x_2	x_{I}	x_0	z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Domanda B

Dimostrare, procedendo esclusivamente per via algebrica, che:

$$f(x)g(y) = 1 \implies af(x) + \overline{a}g(y) = 1$$

Domanda C

Minimizzare la macchina a stati descritta dalle equazioni a lato e ricavare la tabella di transizione della macchina ridotta.

Sintetizzare quindi la macchina minima così ottenuta mediante flip-flop di tipo T.

$$\begin{split} d_2 &= q1(q2+x) \\ t_1 &= x(q_1 \oplus q_2) + \overline{x}\overline{q}_1q_2 \\ z &= q_2 \oplus q_1 \oplus x \end{split}$$

Domanda D

Si progetti, procedendo sia in modo comportamentele sia secondo un approccio strutturale, una macchina a stati finiti in grado di riconoscere la sequneza $\alpha\alpha\overline{\alpha}$ in cui $\alpha=\{0,1\}$. A questo scopo, e in entrambi i casi, si utilizzino flip-flop del tipo ritenuto migliore.