БГУИР

Кафедра ЭВМ

Отчет по лабораторной работе № 4 Тема: «Исследование характеристик аналоговых компараторов напряжения»

Выполнили: студенты группы 150502 Альхимович Н.Г. Скалозуб К.А.

Проверил: Калютчик А.А.

1 ЦЕЛЬ РАБОТЫ

Изучить характеристики аналоговых компараторов напряжения.

2 ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Компаратором называется устройство сравнения двух аналоговых сигналов, один из которых может быть задан как эталонный. При этом на выходе устройства формируются только два значения выходного сигнала: напряжение на выходе будет иметь высокий уровень U_B , если разность между входными сигналами ΔU положительна и, наоборот, низкий уровень U_H , если разностное напряжение ΔU отрицательно. Эти условия записываются следующим образом:

$$U_{_{\mathit{BLX}}} = egin{cases} U_{_{\mathit{B}}}, npu \, U_{_{\mathit{BX}\,1}} \!\!>\! U_{_{\mathit{BX}\,2}} \mathit{unu} \, \Delta \, U \! >\! 0 \,, \ U_{_{\mathit{BX}\,2}} \mathit{unu} \, \Delta \, U \! >\! 0 \,. \end{cases}$$

В общем случае напряжение U_{вых} может отличаться как по величине, так и по знаку. На практике наибольшее распространение получили устройства, формирующие на выходе либо напряжения противоположной полярности при практически равных абсолютных значениях, либо напряжения одной полярности. Первый случай характерен для использования в качестве схемы сравнения операционного усилителя (ОУ), второй — при использовании специализированных интегральных схем. Во втором случае выходные напряжения компаратора согласованы по величине и полярности с сигналами, используемыми в цифровой технике. Поэтому, можно сказать, что входной сигнал компаратора носит аналоговый характер, а выходной — цифровой. Вследствие этого компараторы часто используются в качестве элементов связи между аналоговыми и цифровыми устройствами.

На рисунке 2.1 приведена схема инвертирующего усилителя без обратной связи и его передаточная характеристика.

Рисунок 2.1 – Схема инвертирующего усилителя (a) и его передаточная характеристика (б)

Пока входной сигнал удовлетворяет соотношению:

$$\frac{U_{-opp}}{K_{oy}} < U_{ex} < \frac{U_{+opp}}{K_{oy}}$$
 ,

где $U_{\text{-orp}}$ и $U_{\text{-orp}}$ – положительный и отрицательный уровни ограничения выходного сигнала ОУ, $K_{\text{оу}}$ – коэффициент усиления ОУ, схема работает в линейном режиме и выходной сигнал изменяется пропорционально входному.

При нарушении условия ОУ переходит в режим ограничения, и выходное напряжение может принимать одно из двух предельных значений: $U_B = U_{\text{-orp}}$ или $U_H = U_{\text{-orp}}$. Пусть абсолютные значения уровней ограничения выходного сигнала ОУ равны $|U_{\text{+orp}}| = |U_{\text{-orp}}| = U_{\text{orp}}$. Тогда при использовании ОУ в качестве компаратора должно выполняться соотношение:

$$|(\Delta U_{ex})| > \frac{|U_{orp}|}{K_{ov}}$$

В рассмотренной схеме (рисунок 2.1) эталонный уровень напряжения, с которым сравнивается входной сигнал, равен нулю и её часто называют детектором нуля сигнала или схемой определения прохождения напряжения через нуль. Диапазон значений входного сигнала, соответствующий условию (3.2), является зоной неопределённости компаратора и определяет его погрешность. Абсолютная величина этой погрешности равна:

$$\Delta = \frac{|U_{osp}|}{K_{oy}}$$

Для уменьшения погрешности компаратора необходимо уменьшить интервал неопределённости входных напряжений. Это можно обеспечить одним из следующих способов:

- использование ОУ с большим коэффициентом усиления;
- введение в схему положительной обратной связи (ПОС).

3 ВЫПОЛНЕНИЕ РАБОТЫ

3.1 Получение передаточной характеристики однопорогового компаратора

Для получения передаточной характеристики необходимо подключить схему, изображенную на рисунке 4.1.

С помощью полученных данных, были вычислены следующие значения: значения положительного и отрицательного выходных напряжений компаратора.

Рисунок 4.1 – Схема однопорогового компаратора

Установленное значение диапазона измерения входного сигнала $U_{{\rm Bx}.min}=-10~{\rm B},~U_{{\rm Bx}.max}=10~{\rm B}$ и пределы измерения выходного сигнала $U_{{\rm Bbix}.min}=-10~{\rm B},~U_{{\rm Bbix}.max}=10~{\rm B},~$ пороговое значение срабатывания компаратора $U_{{\rm пор}}=0~{\rm B}.$

По передаточной характеристике были определены значения положительного и отрицательного выходных напряжений компаратора: $U_{\rm BMX-} = -8~{\rm B}, U_{\rm BMX+} = 7.6~{\rm B}$ и величина входного сигнала $U_{\rm BX} = 0~{\rm B}$.

Рисунок 3.2 – Передаточная характеристика полевого транзистора

Измерения были повторены с установленными пороговыми значениями $U_{\text{пор}} = -2,5 \text{ B}, U_{\text{пор}} = 1,7 \text{ B}.$ Результаты измерений соответственно:

Рисунок 3.3 — Передаточная характеристика компаратора при пороговом значении $U_{\text{пор}} = -2,5 \text{ B}$

 $U_{\scriptscriptstyle
m BЫX-} = -8$ В, $U_{\scriptscriptstyle
m BЫX+} = 7.6$ В и величина входного сигнала $U_{\scriptscriptstyle
m BX} = -2.5$ В.

Рисунок 3.4 — Передаточная характеристика компаратора при пороговом значении $U_{\rm nop} = 1,7~{\rm B}$

 $U_{\rm вых-} = -8$ В, $U_{\rm вых+} = 7$,6 В и величина входного сигнала $U_{\rm вx} = 1$,7 В.

3.2 Исследование работы однопорогового компаратора

Был установлен следующий режим измерения: форма сигнала — синусоидальная, частота сигнала — 200 Гц, амплитуда входного сигнала 7,0 В, порог срабатывания компаратора 0 В.

Полученное изображение входного и выходного сигналов представлено на рисунке 3.5.

Рисунок 3.5 – Изображение входного и выходного сигналов компаратора

Пороговое значение входного напряжения $U_{\text{вх.пор}} = 7 \text{ B}.$

При установлении порога срабатывания -5 В были получены входной и выходной сигналы, изображение которых представлено на рисунке 3.6.

Рисунок 3.6 – Изображение входного и выходного сигналов компаратора

Пороговое значение входного напряжения $U_{\text{вх.пор}} = 7 \text{ B}.$

При установлении порога срабатывания +5 В были получены входной и выходной сигналы, изображение которых представлено на рисунке 3.7.

Рисунок 3.7 – Изображение входного и выходного сигналов компаратора

Пороговое значение входного напряжения $U_{\text{вх.пор}} = 7 \text{ B}.$

Изображение входного и выходного сигналов компаратора при треугольной форме входного сигнала и пороге срабатывания компаратора 0 В представлено на рисунке 3.8.

Рисунок 3.8 – Изображение входного и выходного сигналов компаратора

Изображение входного и выходного сигналов компаратора при треугольной форме входного сигнала, пороге срабатывания компаратора -5 В представлено на рисунке 3.9.

Рисунок 3.9 – Изображение входного и выходного сигналов компаратора

Изображение входного и выходного сигналов компаратора при треугольной форме входного сигнала, пороге срабатывания компаратора +5 В представлено на рисунке 3.10.

Рисунок 3.10 – Изображение входного и выходного сигналов компаратора

Изображение входного и выходного сигналов компаратора при прямоугольной форме входного сигнала, порогах срабатывания компаратора 0 В, -5 В, +5 В представлены на рисунках 3.11, 3.12 и 3.13 соответственно.

Рисунок 3.11 – Изображение входного и выходного сигналов компаратора

Рисунок 3.12 – Изображение входного и выходного сигналов компаратора

Рисунок 3.12 – Изображение входного и выходного сигналов компаратора

3.3 Получение передаточной характеристики гистерезисного компаратора

Для исследования характеристик гистерезисного компаратора используется схема, изображенная на рисунке 3.13.

Рисунок 3.13 — Схема для исследования характеристик гистерезисного компаратора

С помощью элементов управления ВП установлен диапазон изменения входного сигнала: $U_{\text{вх.min}} =$ -10 B, $U_{\text{вх.max}} =$ 10 B, пределы изменения выходного сигнала: $U_{\text{вых.min}} =$ -10 B, $U_{\text{вых.max}} =$ 10 B, а также с помощью ползункового регулятора установлено напряжение источника смещения передаточной характеристики $U_{\text{см}} =$ 0 B.

Полученный график передаточной характеристики компаратора приведен на рисунке 3.14.

Рисунок 3.14 — Передаточная характеристика гистерезисного компаратора

По графику определены значения положительного и отрицательного выходных напряжений компаратора, а также уровни переключения компаратора: $U_{\text{вых}^+} = 7.6 \text{ B}, U_{\text{вых}^-} = -8 \text{ B}, U_{\text{ср}} = 0.56 \text{ B}$ и $U_{\text{от}} = -0.56 \text{ B}$.

Вычислены напряжения срабатывания и отпускания компаратора:

$$U_{\rm CP} = \frac{\frac{U_{CM}}{R2} + \frac{U_{\rm BbIX}^+}{R4}}{\frac{1}{R2} + \frac{1}{R3} + \frac{1}{R4}} = \frac{\frac{0}{1000} + \frac{7,6}{9100}}{\frac{1}{1000} + \frac{1}{9100}} \approx 0,58 \text{ B}$$

$$U_{\text{OT}} = \frac{\frac{U_{CM}}{R2} + \frac{U_{\text{BbIX}}^{-}}{R4}}{\frac{1}{R2} + \frac{1}{R3} + \frac{1}{R4}} = \frac{\frac{0}{1000} + \frac{-8}{9100}}{\frac{1}{1000} + \frac{1}{3000} + \frac{1}{9100}} \approx -0.6 \text{ B}$$

Рассчитанные значения приближенно равны экспериментальным.

Таблица 3.1 – Экспериментальные значения напряжений компаратора

U_{cM} , B	U_{sblx^+} , B	U_{6blx} -, B	U_{cp} , B	Uom, B	$\boldsymbol{U}_{\mathrm{CP}},\boldsymbol{B}$	$\boldsymbol{U}_{\mathrm{OT}},\boldsymbol{B}$
-10	7,6	-8	-6,41	-7,54	-6,35	-7,54
-5	7,6	-8	-2,82	-4,15	-2,88	-4,07
5	7,6	-8	4,05	2,82	4,04	2,85
10	7,6	-8	7,64	6,31	7,5	6,31

Графики передаточной характеристики компаратора для значений напряжения смещения, представленных в таблице 3.1, изображены на рисунках 3.15-3.18.

Рисунок 3.15 — Передаточная характеристика гистерезисного компаратора ($U_{\text{см}}$ = -10 B)

Рисунок 3.16 — Передаточная характеристика гистерезисного компаратора ($U_{\text{см}}$ = -5 B)

Рисунок 3.17 — Передаточная характеристика гистерезисного компаратора ($U_{\text{см}} = 5 \text{ B}$)

Рисунок 3.18 — Передаточная характеристика гистерезисного компаратора ($U_{\text{см}} = 10 \text{ B}$)

Таким образом, смещение уровней срабатывания компаратора происходит на величину. Величина гистерезиса изменяется.

3.4 Исследование работы гистерезисного компаратора

С помощью элементов управления ВП установлен следующий режим измерения: форма сигнала — синусоидальная, частота сигнала — 200 Гц, амплитуда входного сигнала 7,0 В. Также установлено напряжение источника смещения передаточной характеристики $U_{\text{см}} = 0$ В.

Полученные изображения входного и выходного сигналов компаратора представлены на рисунке 3.19.

Рисунок 3.19 – Входной и выходной сигналы компаратора ($U_{cm} = 0$ В)

Используя изображение входного сигнала, можно определить напряжения срабатывания и отпускания компаратора: $U_{cp} = 0.8 \text{ B } \text{ u } U_{or} = -1 \text{ B}.$

Таблица 3.2 – Значения напряжений срабатывания и отпускания компаратора

U_{cM} , B	U_{cp} , B	Uom, B
-5	-2,2	-4,1
5	4,1	2,2

Полученные изображения входного и выходного сигналов компаратора для значений напряжения смещения, представленных в таблице 3.2, изображены на рисунках 3.20 и 3.21.

Рисунок 3.20 – Входной и выходной сигналы компаратора ($U_{cm} = -5$ В)

Рисунок $3.21 - Входной и выходной сигналы компаратора (<math>U_{cm} = 5 B$)

Аналогичные исследования работы однопорогового компаратора проведены при треугольной форме входного сигнала. Полученные изображения входного и выходного сигналов компаратора для значений напряжения смещения $U_{\text{см}}$, равных $0\ B$, -5 B и 5 B, изображены на рисунках 3.22-3.24 соотвественно.

Рисунок $3.22 - Входной и выходной сигналы компаратора (<math>U_{cm} = 0 \ B$)

Рисунок 3.23 – Входной и выходной сигналы компаратора ($U_{cm} = -5$ В)

Рисунок 3.24 — Входной и выходной сигналы компаратора ($U_{cm} = 5$ В)

Используя изображение входного сигнала, можно определить напряжения срабатывания и отпускания компаратора (см. таблицу 3.3).

Таблица 3.3 – Значения напряжений срабатывания и отпускания компаратора

U_{cM} , B	U_{cp} , B	Uom, B
0	0,8	-0,8
-5	-2,6	-4,2
5	4,2	2,6

Аналогичные исследования работы однопорогового компаратора проведены при прямоугольной форме входного сигнала. Полученные изображения входного и выходного сигналов компаратора для значений напряжения смещения $U_{\text{см}}$, равных 0~B, -5~B и 5~B, изображены на рисунках 3.25-3.27 соотвественно.

Рисунок 3.25 – Входной и выходной сигналы компаратора ($U_{cm} = 0$ В)

Рисунок 3.26 – Входной и выходной сигналы компаратора ($U_{cm} = -5$ В)

Рисунок 3.27 – Входной и выходной сигналы компаратора ($U_{cm} = 5$ В)

Используя изображение входного сигнала, можно определить напряжения срабатывания и отпускания компаратора (см. таблицу 3.4).

Таблица 3.4 – Значения напряжений срабатывания и отпускания компаратора

U_{cM} , B	U_{cp} , B	Uom, B
0	?	?
-5	?	?
5	?	?

Аналогичные исследования работы однопорогового компаратора проведены при пилообразной форме входного сигнала. Полученные изображения входного и выходного сигналов компаратора для значений напряжения смещения $U_{\text{см}}$, равных 0~B, -5 B и 5~B, изображены на рисунках 3.28-3.30 соотвественно.

Рисунок 3.28 – Входной и выходной сигналы компаратора ($U_{cm} = 0$ В)

Рисунок $3.29 - Входной и выходной сигналы компаратора (<math>U_{cm} = -5 B$)

Рисунок 3.30 – Входной и выходной сигналы компаратора ($U_{\text{см}}$ = 5 B)

Используя изображение входного сигнала, можно определить напряжения срабатывания и отпускания компаратора (см. таблицу 3.5).

Таблица 3.5 – Значения напряжений срабатывания и отпускания компаратора

U_{cm} , B	U_{cp} , B	Uom, B
0	0,75	?
-5	-2,9	?
5	4	?

4 ВЫВОДЫ

В ходе выполнения лабораторной работы были получены передаточные характеристики однопорогового и гистерезисного компараторов, исследована работа однопорогового компаратора при разных формах сигналов.