ЛРЗ

В этой лабе используем интегро-интерполяционный метод, он же метод баланса, он же метод контрольных объёмов. Суть метода: задаём сетку, для каждого узла сетки определяем окресность* (контрольный объём), интегрируем по этим объёмам - получаем разностную схему.

*окрестность в курсе называется ячейкой

Поскольку имеем диффур второго порядка, интегрируем мы дважды, получая разностные уравнения относительно F(z) и u(z):

Рис. 1: Вычислительная схема

Первое уравнение задачи:

$$F = a(z)\frac{du}{dz} \Leftrightarrow \frac{F}{a(z)}dz = du \tag{1}$$

Интегрируем (1) на ячейке $z \in \{(n-1)h, nh\}$:

$$\int_{n-1}^{n} \frac{F}{a(z)} dz = \int_{n-1}^{n} du$$

$$\int_{n-1}^{n} \frac{F}{a(z)} dz \approx F_{n-\frac{1}{2}} \int_{n-1}^{n} \frac{1}{a(z)} dz = u_n - u_{n-1}$$

Можно использовать разные приближения $\int_{n-1}^{n} \frac{1}{a(z)} dz$:

$$\int_{n-1}^{n} \frac{1}{a(z)} dz \approx h \frac{a_n + a_{n-1}}{2a_n a_{n-1}}$$
$$\int_{n-1}^{n} \frac{1}{a(z)} dz \approx \frac{2h}{a_n + a_{n-1}}$$

Оба сходятся к значению в центре ячейки, но второе вычисляется быстрее (используем его). На ячейке $z \in \{(n-1)h, nh\}$ получаем:

$$F_{n-\frac{1}{2}} \approx \frac{(a_n + a_{n-1})(u_n - u_{n-1})}{2h} = \alpha_n \frac{u_n - u_{n-1}}{h}$$
 (2)

Аналогично, на ячейке $z \in \{nh, (n+1)h\}$:

$$F_{n+\frac{1}{2}} \approx \frac{(a_n + a_{n+1})(u_{n+1} - u_n)}{2h} = \beta_n \frac{u_{n+1} - u_n}{h}$$
(3)

 $\alpha_n=rac{a_n+a_{n-1}}{2}$ и $\beta_n=rac{a_n+a_{n+1}}{2}$ - введённые здесь замены.

Второе уравнение задачи:

$$\frac{1}{z}\frac{d}{dz}(zF) = b(z)(u_p - u) \Leftrightarrow d(zF) = zb(z)(u_p - u)dz \tag{4}$$

Интегрируем (4) на ячейке $z \in \{(n-1/2)h, (n+1/2)h\}$:

$$\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} d(zF) = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} zb(z)(u_p(z) - u) dz$$

$$z_{n+\frac{1}{2}} F_{n+\frac{1}{2}} - z_{n-\frac{1}{2}} F_{n-\frac{1}{2}} \approx \frac{z_{n+\frac{1}{2}}^2 - z_{n-\frac{1}{2}}^2}{2} b_n(u_{p_n} - u_n) = \gamma_n b_n(u_{p_n} - u_n)$$

 $\gamma_n = rac{z_{n+rac{1}{2}}^2 - z_{n-rac{1}{2}}^2}{2}$ - введённая здесь замена.

 Γ руппируем по u:

$$z_{n-\frac{1}{2}}\beta_n u_{n-1} + (h\gamma_n b_n - z_{n-\frac{1}{2}}\beta_n - z_{n+\frac{1}{2}}\alpha_n)u_n + z_{n+\frac{1}{2}}\alpha_n u_{n+1} = h\gamma_n b_n u_{p_n}$$
(5)

Уравнение (5) определяет трёх-диагональную матрицу для прогонки, кроме первой и последней строк - они задаются краевыми условиями.

$$A_{n}u_{n-1} + B_{n}u_{n} + C_{n}u_{n+1} = D_{n}$$

$$A_{n} = z_{n-\frac{1}{2}}\beta_{n}$$

$$B_{n} = h\gamma_{n}b_{n} - z_{n-\frac{1}{2}}\beta_{n} - z_{n+\frac{1}{2}}\alpha_{n}$$

$$C_{n} = z_{n+\frac{1}{2}}\alpha_{n}$$

$$D_{n} = h\gamma_{n}b_{n}u_{p_{n}}$$
(6)

Левое краевое условие:

$$z = 0, F(0) = 0$$

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{zF}{dz} dz = \int_{-\frac{1}{2}}^{\frac{1}{2}} zb(z)(u_p(z) - u) dz$$

$$z_{\frac{1}{2}}F_{\frac{1}{2}} - z_{-\frac{1}{2}}F_{-\frac{1}{2}} \approx z_{\frac{1}{2}}F_{\frac{1}{2}} - z_0F_0 = z_{\frac{1}{2}}F_{\frac{1}{2}} = \gamma_0 b_0(u_p(0) - u_0)$$

 Γ руппируем по u:

$$(h\gamma_0 b_0 - z_{\frac{1}{2}}\alpha_0)u_0 + z_{\frac{1}{2}}\alpha_0 u_1 = h\gamma_0 b_0 u_{p_0}$$

$$B_{0}u_{0} + C_{0}u_{1} = D_{0}$$

$$A_{0} = 0$$

$$B_{0} = h\gamma_{0}b_{0} - z_{\frac{1}{2}}\alpha_{0}$$

$$C_{0} = z_{\frac{1}{2}}\alpha_{0}$$

$$D_{0} = h\gamma_{0}b_{0}u_{p_{0}}$$

$$(7)$$

Правое краевое условие:

$$z = 1, F(1) = 0.393cu(1)$$

$$\int_{N-\frac{1}{2}}^{N+\frac{1}{2}} \frac{zF}{dz} dz = \int_{N-\frac{1}{2}}^{N+\frac{1}{2}} zb(z)(u_p(z) - u) dz$$

$$z_{N+\frac{1}{2}} F_{N+\frac{1}{2}} - z_{N-\frac{1}{2}} F_{N-\frac{1}{2}} \approx z_N F_N - z_{N-\frac{1}{2}} F_{N-\frac{1}{2}} = z_N 0.393cu_N - z_{N-\frac{1}{2}} F_{N-\frac{1}{2}} = \gamma_N b_N (u_{p_N} - u_N)$$

 Γ руппируем по u:

$$z_{N-\frac{1}{2}}\beta_{N}u_{N-1} + (h\gamma_{N}b_{N} + z_{N}0.393cu_{N}h - z_{N-\frac{1}{2}}\beta_{N})u_{N} = h\gamma_{N}b_{N}u_{p_{N}}$$

$$A_{N}u_{N-1} + B_{N}u_{N} = D_{N}$$

$$A_{N} = z_{N-\frac{1}{2}}\beta_{N}$$

$$B_{N} = h\gamma_{N}b_{N} + z_{N}0.393cu_{N}h - z_{N-\frac{1}{2}}\beta_{N}$$

$$C_{N} = 0$$

$$D_{N} = h\gamma_{N}b_{N}u_{p_{N}}$$

$$(9)$$

Имеем матричное уравнение:

B_0	C_0	0	:	0	0	0		u_0		D_0
A_1	B_1	C_1	•	0	0	0		u_1		D_1
0	A_2	B_1	:	0	0	0		u_2		D_2
							×	• • • • • • • • • • • • • • • • • • • •	=	•
0	0	0	:	B_{N-2}	B_{N-2}	0		u_{N-2}		D_{N-2}
0	0	0	:	A_{N-1}	B_{N-1}	C_{N-1}		u_{N-1}		D_{N-1}
0	0	0	:	0	A_N	B_N		u_N		D_N

Прогоночные коэффициенты: $\zeta_0 = -\frac{C_0}{B_0}$, $\xi_0 = \frac{D_0}{B_0}$

$$\zeta_0 = -\frac{C_0}{B_0} \ , \ \xi_0 = \frac{D_0}{B_0}$$

$$\zeta_i = -\frac{C_i}{B_i + A_i \zeta_{i-1}}$$
, $\xi_i = \frac{D_i - A_i \xi_{i-1}}{B_i + A_i \zeta_{i-1}}$

Обратный счёт: $u_N = \xi_N$, $u_i = \zeta_i u_{i+1} + \xi_i$

Так же, как и в методе стрельбы, итерация вычислений по методу даёт лишь следующее приближение интегральной кривой, поэтому также нужно использовать критерий точности.

"Разболтки"при решении задачи не происходит, поэтому метод релаксации применять не требуется.

Решения

Решение для варианта 1 совпадает с решением в Π P2. Решение для варианта 2:

Рис. 2: Вариант 2

^{*}Зелёная кривая - функция Планка $(u_p(z))$.