RAPROT – Hybrydy metaheurystyk

Ernest przybył

Metaheurysytka hybrydowa 1 – GaSa

Opis działania:

- Jest to algorytm genetyczny w którym raz na N pokoleń x osobników zostaje potraktowana algorytmem SA i podmieniona przez wynik działania tego algorytmu.
- Pierwszy osobnik do "podciągnięcia" za pomocą SA jest najlepszym w generacji. Pozostałe są wybierane losowo

Parametry:

- N ile pokoleń GA musi minąć, żeby uruchomić SA
- x ile osobników będzie poddawane działaniu SA

Przykład przebiegu (25/50 podciąganych za pomocą SA raz na 50 pokoleń):

uwaga: dla GaSa przestrzeń rozwiązań jest o 20 razy większa

Wnioski i obserwacje:

- Podczas porównywania różnych rozwiązań okazało się, że wrzucanie niewielkiej ilości (3/50 osobników) elementów "podciągniętych" za pomocą TS w krótkich odstępach (3 pokolenia) nie sprawdza się. Być może dochodzi do ich zadeptania przez resztę w szczególności, że stosujemy ruletkę.
- Efekty przyniosły rzadsze (raz na 30-50 pokoleń) i bardziej obszerne (25/50 osobników) działania TS w obrębie GA.
- Na wykresie obserwujemy, że GA (szara linie przykrywana nieco przez min(GASA)) utyka w optimum i od około 1300 pokolenia nie jest w stanie robić progresu, dłuższe uruchomienia nie przynoszą znaczących rezultatów.
- Ga wspomagany TS również utyka. Jednak ze względu na większą ilość przejrzanej przestrzeni zbiega nieco wcześniej na wykresie.
- Ciekawe zjawisko zachodzi, od około 800 pokolenia w GaSa. Prawdopodobnie ze względu na limit 2000 iteracji w Sa. Sa nie jest w stanie osiągnąć lepszych wyników niż wejściowe (wykr. greedylnit), ale zamiast tego zwiększa on **eksplorację** co pozwoliło wyrwać się z lokalnego optimum i osiągnąć lepsze wyniki od Ga. Zwiększoną eksplorację możemy zaobserwować w postaci skaczącego min dla GaTs, gdzie dla Ga min trzyma się zachowawczo blisko, avg. To działa tylko dla przypadków hard. Dla medium preferowane są duże ilości iteracji Sa. Być może w hardzie powinienem mieć większą mutację.
- Parametr max iteracji dla SA okazał się być ważniejszy niż myślałem. A znaczenie SA dla GA zupełnie inne niż się spodziewałem.

Metaheurystyka 2 – GaTe

- Algorytm generyczny z dynamiczną wartością częstotliwości mutacji
- Mutację schładzamy stopniowo zmniejszając jej wartość lub ogrzewamy zwiększając jej wartość
- Wykorzystano chłodzenie w postaci funkcji liniowej

Przykład przebiegu:

Wyniki:

instancja	Opt.	Alg. L	osowy	[10k]		Alg. Zachłanny [10k]				Alg. EA				Alg. TS				Alg. SA			
	wyni k																				
		best	wors t	avg	std	best	wors t	avg	std	best	worst	avg	std	best	wors t	avg	st d	best	wors t	avg	st d
Easy_0		-26358	- 14508 7	-66827	2167 6	-25529	- 12229 8	-61057	19710	3144	3144	3144	0	-23034	-23034	-23034	0	-23034	-23034	-23034	0
Medium_ 0		26257	- 10685 3	-14237	1836 1	26317	-54509	-7811	12147	48125	35729	40077	3874	32070	30429	31324	513	32068	31757	31856	109
Medium_ 1		73674	-8107	45002	1250 0	74706	23242	48648	8631	104661	95884	101047	2690	81409	80372	80960	393	82046	81338	81656	193
Medium_ 2		12370 1	58369	10103 9	9495	12537 3	90612	10366 5	6149	159483	151736	157151	2430	13126 7	12932 4	13075 8	644	13193 7	13072 8	13146 7	470
Hard_3		- 10537 7	- 54407 3	- 27832 8	6004 6	11151 7	- 45261 9	-72894	13455 9	944941	681482	873517	8235 9	18275 9	18095 3	18187 8	695	18275 9	18095 3	18187 8	695
Hard_4		78223	- 28742 2	-77611	5048 5	24042 9	- 23736 7	84981	11270 1	129530 0	111137 2	122854 3	4883 0	32592 7	32393 7	32490 6	660	32742 0	32364 6	32554 3	956

GaSa				GaTe(cooli	ing)			GaTe(heating)				
best	worst	avg	std	best	worst	avg	std	best	worst	avg	std	
3144	3144	3144	0	3144	3144	3144	0	3144	3144	3144	0	
47462,89	35887,65	42094,17	3887,279	44966,42	36543,6	40216,51	3219,438	48007,67	35481,97	41006,16	4098,172	
106005,2	99219,99	101743,9	2067,186	105635,1	96036,36	100839,6	2985,692	100819,4	93418,35	97024,48	2198,402	
158867,9	153462,6	157184,9	1860,32	160721,6	151726,4	156238,2	2823,62	157892,2	151674	154417,1	2804,444	
1138336	836835,9	1057997	127997,2	906499,8	828508,3	873126,1	31465,26	917114,9	827822,2	881412	31191,68	
1486399	1116711	1306198	93036,76	1208304	1105998	1178289	37939,18	1230288	1110933	1176423	46792,02	

Wykresy:

Medium 2

