

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

07505700190010111000000 75.570 19 01 11 EX

Espacio para la etiqueta identificativa con el código personal del estudiante.

Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede consultar ningún material
- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Problema 1

- a) Formalizad las siguientes frases usando la lógica de enunciados. Usad los átomos propuestos.
 - C: Comprar un coche
 - T: Usar transporte público
 - M: Comprar una moto
 - P: Usar petróleo para desplazarse
 - A: Ir andando a todas partes
 - 1) Es necesario que no use el transporte público para que me compre un coche o me compre una moto.

$$C \ ^{\vee} M \rightarrow \neg T$$

2) Solo uso petróleo para desplazarme si me compro un coche, o me compro una moto o uso el transporte público

$$P \rightarrow C \ ^{\vee} M \ ^{\vee} T$$

3) Si no uso transporte público, o me compro una moto o me compro un coche, pero no las dos cosas a la vez.

$$\neg T \to (C \ ^{\vee} \ M) \ ^{\wedge} \ \neg (C \ ^{\wedge} \ M)$$

b) Formaliza las frases que se dan a continuación utilizando, únicamente y exclusivamente, los siguientes predicados atómicos:

Dominio: Un conjunto no vacío A(x): x es un principio activo F(x): x es una farmacéutica

G(x): x es genérico P(x, y): x produce y

- 1) Hay principios activos que son producidos por todas las farmacéuticas $\exists x (A(x)^{\wedge} \forall y (F(y) \rightarrow P(y,x))$
- 2) No hay ningún principio activo que no sea producido por ninguna farmacéutica $\neg \exists x (A(x)^{\land} \forall y (F(y) \rightarrow \neg P(y,x))$
- 3) Hay farmacéuticas que producen todos los principios activos genéricos. $\exists x (F(x)^{\wedge} \forall y (A(y)^{\wedge} G(y) \rightarrow P(x,y))$
- 4) No hay ninguna farmacéutica que no produzca ningún principio activo genérico. $\neg \exists x (F(x) \neg \exists y (A(y) \neg B(y) \neg B(x,y)))$ o també $\neg \exists x (F(x) \neg B(y) \neg B(x,y)))$
- 5) No hay ningún principio activo genérico que sea producido por todas las farmacéuticas. $\neg \exists x (A(x) \land G(x) \land \forall y (F(y) \rightarrow P(y,x)))$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Problema 2

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Utilizad únicamente las 9 reglas básicas (es decir, no utilizéis ni reglas derivadas ni equivalentes deductivos).

$$P \rightarrow F \land G$$

 $P \land G \rightarrow R$
 $(G \rightarrow \neg R) \rightarrow (F \land P)$
 $\therefore G \land R$

Solución:

$1 P \rightarrow F \land G$				P
$2 P^{\wedge} G \rightarrow R$				P
$3 (G \rightarrow \neg R) \rightarrow (F \land P)$				P
4	¬(G ^ R)			Н
5		G		Н
6			R	Н
7			G^R	I^ 5,6
8			$\neg (G \land R)$	It 4
9		$\neg R$		I¬ 6,7,8
10	$G \rightarrow \neg R$	-		I→ 6,9
11	F ^ P			E→ 3,10
12	P			E^ 11
13	F ^ G			E→ 1,12
14	G			E^ 13
15	P^G			I^ 12,14
16	R			E→ 2,15
17	$\neg R$			E→ 10,14
18 ¬¬(G ^ R)	-			I¬ 4,16,17
19 G ^ R				E¬ 18

Problema 3

Indicad aplicando resolución si el siguiente razonamiento es válido, indicad también si las premisas son consistentes.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Solución:

Formas normales

Premisa 1: $\neg P \ ^{\vee}Q \rightarrow \neg R = (P \ ^{\vee}\neg R) \ ^{\wedge} (\neg Q \ ^{\vee}\neg R)$ Premisa 2: $\neg (P \ ^{\wedge}\neg R) \rightarrow Q = (P \ ^{\vee}Q) \ ^{\wedge} (\neg R \ ^{\vee}Q)$ Premisa 3: $\neg Q \ ^{\vee}(R \ ^{\wedge}S) = (\neg Q \ ^{\vee}R) \ ^{\wedge} (\neg Q \ ^{\vee}S)$

Premisa 4: $P \rightarrow Q = \neg P \lor O$

Negación de la conclusión : $\neg(R \land S) = \neg R \lor \neg S$

El conjunto de cláusulas es:

 ${P \rightarrow R, \neg Q \rightarrow R, P \rightarrow Q, \neg R \rightarrow Q, \neg Q \rightarrow R, \neg Q \rightarrow S, \neg P \rightarrow Q, \neg R \rightarrow S}$

En negrilla el conjunto de soporte.

Si hacemos resolución:

¬R ^v ¬S	¬Q ^v S
¬R ^v ¬Q	P ^v Q
¬R ^v P	¬P ^v Q
¬R ^v Q	$\neg Q$ $^{v} \neg R$
¬R	¬Q YR
¬Q	P ^v Q
P	¬P ^v Q
Q	¬Q
•	

Si probamos si las premisas son inconsistentes, tenemos el conjunto de cláusulas: $\{P \ ^{V} \neg R, \ \neg Q \ ^{V} \neg R, \ P \ ^{V} Q, \ \neg R \ ^{V} Q, \ \neg Q \ ^{V} R, \ \neg Q \ ^{V} Q\}$

No hay ninguna S negada, por tanto podemos eliminar eliminar ¬Q 'S y queda el conjunto de cláusulas:

$$\{P \stackrel{\checkmark}{\neg} R, \neg Q \stackrel{\lor}{\neg} R, P \stackrel{\lor}{Q}, \neg R \stackrel{\lor}{Q}, \neg Q \stackrel{\lor}{R}, \neg P \stackrel{\lor}{Q}\}$$

Si intentamos hacer la resolución:

¬P ^v Q	$\neg Q ^{Y} \neg R$
¬P ^v ¬R	¬Q ^v R
¬P ^v ¬Q	¬P ^v Q
¬P	P ^v Q
Q	$\neg Q$ $^{V} \neg R$
¬R	¬Q ^v R
¬Q	Q
•	

Por tanto las premisas son inconsistentes.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Problema 4

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Podéis utilizar las reglas básicas, las reglas derivadas y los equivalentes deductivos.

```
\forall x[ P(x) \rightarrow \exists y(Q(y) \land R(x,y) ]
     \therefore \neg \exists z [Q(z)] \rightarrow \neg \exists u [P(u)]
1.
        \forall x [ P(x) \rightarrow \exists y (Q(y) \land R(x,y) ]
                                                                                                                                  Р
2.
                                                                 \exists z[Q(z)]
                                                                                                                                  Н
3.
                                                                                                                                  Н
                                                                                    \exists u[P(u)]
                                                                                    P(a)
                                                                                                                                  E ∃ 3
4.
                                                                                                                                  E ∀ 1
5.
                                                                                    P(a) \rightarrow \exists y(Q(y) \land R(a,y))
                                                                                                                                  E \rightarrow 4,5
6.
                                                                                    \exists y(Q(y) \land R(a,y)
7.
                                                                                    Q(b) ^ R(a, b)
                                                                                                                                  E ∃ 6
8.
                                                                                    Q(b)
                                                                                                                                  E ^ 7
9.
                                                                                    \forall z[\neg Q(z)]
                                                                                                                                  ED<sub>3</sub>
                                                                                                                                  E ∀ 9
10.
                                                                                    \neg Q(b)
                                                                 ¬∃u[P(u)]
                                                                                                                                  I = 3, 8, 10
11.
                                                                                                                                  I → 2, 11
12. \neg \exists z[Q(z)] \rightarrow \neg \exists u[P(u)]
```

Problema 5

Se quiere diseñar un circuito lógico usando únicamente puertas NOR para la expresión: A• (B + C)

a) Reescribe la fórmula usando únicamente el operador J.

$$A \cdot (B+C) = (A+A) \cdot (B+C) = \sim \sim ((A+A) \cdot (B+C)) = \sim (\sim (A+A) + \sim (B+C)) = (A \downarrow A) \downarrow (B \downarrow C)$$

b) Comprueba la equivalencia de las dos fórmulas construyendo su tabla de verdad.

Α	В	С	(B+C)	A·(B+C)	(A↓A	(B↓C)	$(A \downarrow A) \downarrow (B \downarrow C)$
)		
1	1	1	1	1	0	0	1
1	1	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	0	0	0	0	0	1	0
0	1	1	1	0	1	0	0
0	1	0	1	0	1	0	0
0	0	1	1	0	1	0	0
0	0	0	0	0	1	1	0

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	19/01/2011	15:30

c)