

Preliminary Datasheet

TMA525C TrueTouch® Multi-touch All-points Touchscreen Controller

Features

- Multi-touch capacitive touchscreen controller
 - ☐ 32-bit ARM® Cortex® CPU
 - □ Register-configurable
 - □ Noise-suppression technologies for battery charger and display
 - Effective 24-V TX drive for higher signal-to-noise ratio (SNR)
 - ChargerArmor[™] for charger noise immunity
 - · External display synchronization
 - □ Water rejection and wet-finger tracking using DualSense™
 - Multi-touch glove with automatic mode switching
 - □ Fingernail tracking
 - □ Large-object rejection
 - □ Automatic baseline tracking to environmental changes
 - □ Low-power Look-for-touch mode
 - □ Field upgrades via bootloader
 - ☐ Android™ and Windows® Phone 10 host driver support
 - □ Parade Technologies™ TrueTouch[®] Manufacturing Test Kit (MTK)
 - □ Touchscreen sensor self-test and Panel ID reporting
- System performance (configuration-dependent)
 - □ Screen sizes up to 3.0-in. diagonal
 - □ 24 touchscreen I/O
 - 140 intersections (14 × 10)
 - □ Reports up to four fingers
 - □ Small-object support down to 4 mm
 - □ Large-object support up to 30 mm
 - ☐ Refresh rate up to 300 Hz; other rates configurable
 - □ TX frequency up to 500 kHz
 - □ Best-in-class charger noise immurity
 - Immunity up to 35V peak-to-peak (Npp)
 - Immunity to AT&T® Zero charger

COU

- Power (configuration-dependent)
 - ☐ 1.71 to 1.95V or 2.0 to 5.5V digital and I/O suppl
 - □ 2.65 to 4.7V analog supply
 - □ 4-mW average power
 - □ 5.7-µW typical deep-sleep power
- Sensor and system design (configuration-dependent)
 - □ Supports a variety of touchscreen score and stackups
 - Manhattan, Diamond, Single Lawer Independent Multi-touch (SLIM[®]), and rote n-pole patterns
 - Sensor-on-lens (SQL)
 - On-cell/hybrid in-cell buch-integrated display modules
 - Plastic (PET) and pass-sensor substrates
 - LCD, AMOLEO, and IPS displays
 - Metal mest
 - □ Single-la (e) flexible printed circuit (FPC) routing enabled by flexible transmit/receive (TX/RX) configurations
- Communication interface
 - N²C Jave at 100 and 400 kHz
- Package
 - □ 34-ball WLCSP (2.495 × 2.44 × 0.4-mm, 0.4-mm ball pitch)

Notice

All information provided in this document on "AS IS" basis without any guarantee or warranty. Information in this document is provided in relation to Parade products and is subject to change without notice. No intellectual rights or licenses are implied.

Trademarks and registered trademarks are the property of their respective owners.

Parade Technologies, Inc.

http://www.paradetech.com

Revision Number: 3 Revised 20180110

© Parade Technologies, Inc., 2017 - 2018. All rights reserved.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 1 of 28

Contents

TEL: 408-329-5540

Features	
Touchscreen System Overview	
TrueTouch TMA525C Overview	
TrueTouch Features Overview	
ChargerArmor	5 F
Water Rejection	5 (
Wet-finger Tracking	5 I
Glove	5 I
Automatic Mode Switching	5
Grip Suppression	
Large-object Tracking	
Large-object Detection and Rejection	
Look-for-touch	5
Touchscreen System Specifications	
System Performance Specifications	
System Design Options	
Operating System Driver Support and Register Map.	
TrueTouch Button/FPC Support	
Sensors	
Example Application Schematic	
Component Recommendations	
Power Supply Information	
Required External Components	
Voltage Coefficient	
Power States Summary	13
	\mathbf{V}
	•
\O`	
O '	
4 •	
(',0	
MOYCOLL	
\sim	
•	

Ball Information	14
Electrical Specifications	16
Absolute Maximum Ratings	
Operating Temperature	
Flash Specifications	17
Chip-level DC Specifications	7
I/O Port 0 (P0[0:1]) DC Specifications	18
I/O Port 0 (P0[0:1]) DC SpecificationsI/O Port 1 (P1[0:3]) and XRES DC Specifications.	19
SWD Interface AC Specifications	20
Chip-level AC Specifications	20
I ² C Specifications	21
I ² C Specifications Packaging Information	23
Thermal Impedance and Moisture Sensitivity	23
Solder Reflow Specifications	
Ordering Information	
Ordering Code Definitions	24
Reference Documents	25
Document Convertions	
Units of Met sure	26
Port Nor exclature	
Bit Field No nenclature	
Acronyles, Abbreviations, and Initialisms	
Glossary	27
Document History	28

Touchscreen System Overview

Figure 1. TMA525C Typical System Diagram

TrueTouch TMA525C Overview

A capacitive touchscreen detects changes in capacitance to determine the location of one or more fingers on the touchscreen surface. A typical touchscreen system consists of a capacitive touchscreen sensor, an FPC bonded to the sanco and the touchscreen controller mounted on the FPC. The FPC connects the touchscreen controller to the host processor. Users can interact with the displayed user interface through finger movements and gestures on the touchscreen surface.

TMA525C is a capacitive touchscreen controller with the sensing and processing technology to resolve the locations and report the positions of up to four fingers on the touchscreen. The touchscreen controller converts an array of sensor

capacitances into an array of digital values, which are processed by touch-detection and position-resolution ligorithms within the controller. These algorithms determine the location and signal magnitude of each finger on the touchscreen.

Parade provides:

- Application firmware
- Android and Windows Phone 10 host drivers
- Design guidance for the sensor and FPC
- Touchscreen sensor MTK

Mary Co.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 3 of 28

The TMA525C block diagram is shown in Figure 2. This device contains a high-performance ARM 32-bit CPU with an integrated hardware multiply unit. This CPU controls all sensing and processing of measured capacitance results to allow tracking and reporting of touches. The controller is optimized for low power and fast response time, with built-in support for manufacturing test. The touchscreen controller communicates with a host through an I²C slave interface at up to 400 kHz.

TMA525C collects the touchscreen sensor information using the touch subsystem. This touch subsystem consists of a 5-V TX pump, TX drivers, RX channels, and a programmable multiplexer. The multiplexer electrically connects the analog front end of each RX channel and TX driver to the appropriate row and column electrodes of the touchscreen sensor.

The controller TX/RX multiplexer allows flexibility of chip placement on the FPC. All ball connecting to the touchscreen sensor are programmable as either TX or RX. See the specification, *TrueTouch® Touchscreen Controller Module Design Best Practices* (001-50467), for recommended configurations. Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 4 of 28

TrueTouch Features Overview

ChargerArmor

ChargerArmor enables touchscreens in handsets, cameras, global positioning systems (GPSs), and other mobile devices to function while connected to noisy chargers. Low-cost, third-party, and after-market battery chargers can generate high-amplitude common-mode noise that directly couples into the touchscreen sensor during a touch. This noise degrades touch performance, causing inaccurate and phantom touches. Many mobile phone vendors worked together to create the *EN62684* and *EN301489* standards, which set limits for the noise spectrum and magnitude for battery chargers. With ChargerArmor, TMA525C goes beyond these standards to operate with a broader range of chargers.

Water Rejection

Water droplets can cause false touches to be reported. However, TMA525C continues to operate in the presence of water droplets or condensation. TMA525C enables water rejection using DualSense, Parade's patented self- and mutual-capacitance sensing ability.

Wet-finger Tracking

In a touchscreen system, moisture on fingers can cause false touches to be reported and make tracking of fingers across the screen difficult. TMA525C can detect and track fingers that are wet and enable more robust functionality of the touchscreen. This includes sweaty fingers touching the screen or inguismoving across a mist-covered screen.

Glove

TMA525C detects and tracks gloved fingers. Glove support allows navigating the touchscreen without be ving to remove gloves or without the use of expensive conductive gloves. Tracking of gloved fingers is supported by automatic mode switching, which automatically transitions between tracking gloved fingers and other louch-tracking modes. Two-finger glove touch is supported.

Automatic Mode Switching

TMA525C supports automatic mode switching, which detects and tracks a new touch ebject type without requiring manual selection of the touch type from the user. Automatic mode switching allows an uninterrupted user experience

when switching between a bare finger, gloved finger, fingernail, or wet finger.

Grip Suppression

TMA525C enables grip suppression for a natural user experience. While using a touchscreen device, the user cal grip the device such that the gripping fingers touch the screen. This may cause a loss in touchscreen performance due to the detection of unintended fingers. Grip suppression is the ability to filter out unintended touches at the edge of the touchscreen while still supporting normal functionally in the remainder of the touchscreen. TMA525C interprets to equality and size of touches at the edge of a screen, tracks them as they move, and ensures that they do not trigger faise touches while keeping the touchscreen surface responsive to touch and finger tracking. The grip suppression areas are register-configurable.

Large-object Tracking

A well-designed ouchscreen system must correctly report a large finger of thumb as only a single touch. If this is not supported, a large finger can incorrectly be reported as two or more touches, hampering the user experience. When an object, such as a thumb, is pressed against the touchscreen sensor, TMAb25C ensures that only one touch is reported at the object's center.

Large-object Detection and Rejection

It is important to be able to detect the presence of a large object on the touchscreen sensor. Two common examples are touching a palm on the screen when typing and pressing the side of a face on the screen when talking on a phone. TMA525C can determine the presence of a large object, such as a fist, palm, or the side of a face from the touchscreen data. This presence may either be rejected or reported to the host.

Look-for-touch

Look-for-touch is a low-power and fast-wakeup mode in which the touchscreen sensor is measured for an increase in self-capacitance. An increase in self-capacitance indicates that a touch is present. Because it is only necessary to detect a finger's presence, and not location, the sensing can be done at a much lower SNR, which requires less time and power. Look-for-touch sensing is used to implement multiple functions, including wake-on-touch and fast first-touch response.

CONFIDENTIAL - RELEASED ONLY UNDER NON-DISCLOSURE AGREEMENT (NDA)

Touchscreen System Specifications

This section specifies the touchscreen system performance delivered by TMA525C. For definitions, justification of parameters, and test methodologies, see the specification, *TrueTouch* $^{\otimes}$ *Touchscreen Controller Performance Parameters* (001-49389) $^{[1]}$.

System Performance Specifications

The specifications listed in Table 1^[2] and Table 2^[3] are valid under these conditions: $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, $1.71\text{V} \le V_{DDD} \le 1.15\text{V}$ or $2.0\text{V} \le V_{DDD} \le 5.5\text{V}$, $1.71\text{V} \le V_{CCD} \le 1.95\text{V}$, $2.65\text{V} \le V_{DDA} \le 4.7\text{V}$, unless otherwise noted. Typical values are specified at $T_A = 35^{\circ}\text{C}$, $V_{DDD} = V_{CCD} = 1.8\text{V}$, core low-dropout regulator (LDO) disabled, and $V_{DDA} = 2.7\text{V}$, unless otherwise noted. Data was taken on a sensor with 4.8-mm electrode pitch.

Contact your local Parade sales representative for information on the system performance conditions to guarantee the specifications listed in Table 1. The performance conditions and specifications are valid only for sensors approved by Para 😝 or use with TMA525C and produced by qualified Parade partners. Contact Sales@paradetech.com to discuss any deviations

Table 1. Typical System Performance Specifications (Configuration-dependent)

Category	Conditions		Core	Units
	4- to 6-mm diameter finger.		1	mm
Accuracy	6 mm < finger diameter ≤ 12 mm.		0.5	mm
	Glove (1 mm < thick ≤ 5 mm).	4	2	mm
Linearity	4- to 12-mm diameter finger.	Q,	0.5	mm
Linearity	Glove (1 mm < thick ≤ 5 mm).	X	1	mm

Table 2. System Performance Specifications (Configuration-dependent)

Category	Description	Conditions	Min	Тур	Max	Units
Jitter	Delta in Reported X,Y Position, for Non-moving Finger	4- to 12-mm diameter imger.	_	0.5	_	mm
Refresh Rate	-	One finger on panel.	60	120	300 ^[4]	Hz
Noise Handling	Charger Noise Immunity	10 to 500 kHz at 10-kHz steps, 50% duty cycle, no fals, touches, no false lift-offs, 9-mm finger, 6(7-h, refresh rate.	35	-	-	V _{PP}
Response Time	Active Look-for-touch State Response Time	First finger down.	_	_	40	ms
Response fille	Wake from Deep Sleep Response Time	Time from host wake of device to first touch report.	_	_	100	ms
	In Active State	One finger, 60-Hz refresh rate.	_	16	_	mW
	In Active Look for-touch State	-	_	4	_	mW
Power	Average Puwel ⁽⁵⁾	TrueTouch device in Active state for 25% of touch activity and in Deep Sleep state for 75% of touch activity.	-	4	_	mW
	In Deep Sleep State	-	-	5.7	_	μW

Notes

- Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.
 Typical, as represented by 85% of the sample data measured. Accuracy is measured at points across the entire panel at 1.1-mm intervals. Linearity is measured on lines drawn across the panel (vertically, horizontally, and diagonally) separated by 1.1 mm.
- Typical, as represented by the average values from the specification, TrueTouch® Touchscreen Controller Performance Parameters (001-49389).
- Requires setting TX pulses for mutual- and self-capacitance to 8 and no noise in the environment.
- See "Power States Summary" on page 13 for power state transition details and refresh interval configuration for each state. Average power is the power consumed during the Active and Deep Sleep states, and is calculated using this equation: 0.25 × 16 mW + 0.75 × 0.0057 mW = 4 mW.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 6 of 28

System Design Options

Operating System Driver Support and Register Map

Parade provides host drivers for Android and Windows Phone 10. These Parade drivers easily integrate into any product based on these operating systems. TMA525C has a standard host interface called Packet Interface Protocol (PIP), which allows device drivers to be repurposed for any devices within the TMA525C family. For full details of PIP, see TMA445A, TT21X/31X, TT41X Technical Reference Manual (TRM)TMA445A, TT21X/31X, TT41X Technical Reference Manual (TRM) – 001-88195^[6].

TrueTouch Button/FPC Support

The TMA525C controller supports a maximum of four physical TrueTouch buttons. These buttons are sensed using mutual-capacitance scanning.

Detailed FPC development guidelines, including EMI shielding, are available in the specification, *TrueTouch*[®] *Touchscreen Controller Module Design Best Practices* (001-50467)^[6].

Sensors

Parade supports the following sensor patterns:

- Single-Solid Diamond (SSD)
- Dual-Solid Diamond (DSD)
- Manhattan-3 (MH3)
- SLIM
- Totem-pole

Figure 3 through Figure 7 show examples of SSD, NSD, MH3, SLIM, and Totem-pole sensor patterns and unit cells, respectively.

Figure 3. Single-Solid Diamond Pattern and Unit Cell

Figure 4. Dual-Solid Damond Unit Cell

Figure 5. Manhattan-3 Pattern and Unit Cell

Note

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 7 of 28

^{6.} Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

SLIM is a low-cost, single-layer sensor that supports 4-finger Multi-touch for displays up to 3-in. diagonal. This pattern has the benefits of borderless displays and an ultra-thin touchscreen stackup.

Figure 6. SLIM Pattern Unit Cell

in control

Totem-pole is a new single-layer sensor pattern (with one bridge for each unit cell), which offers signal disparity comparable to DSD but with improved manufacturing yields.

Figure 7. Totem-Pole Pattern Unit Cell

Parade continues to develop additional patterns and materials to increase performance and decrease system cost.

The specific sensor pattern used varies based on the mechanical, electrical, optical, and cost constraints; these factors must all be considered for an optimal solution. Here are some examples:

- Overlays/lens thickness < 1 mm should not use SSD due to large signal disparity (SD)
- DCVCOM LCDs, with strong image-related noise, require an air gap, a shield layer, or a self-shielding pattern such as MH3

To learn more about how to design sensors using stackups and materials, see the specification, *TrueTouch*[®] *Touchscreen Controller Module Design Best Practices* (001-50467)^[7].

Note

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 8 of 28

^{7.} Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

Example Application Schematic

Figure 8. TMA525C-34FNI24ZZ Example Schematic ($V_{CCD} = 1.8V$, $V_{DDA} = 2.65$ to 4.7V)

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 9 of 28

Component Recommendations

V_{DDD} – Input 1.8-V, 0.1-μF high-frequency bypass capacitor^[8].

V_{CCD} – Input 1.8-V, 1-μF low-frequency bypass capacitor^[8].

 V_{DDA} – Input 2.65 to 4.7-V, 0.1-μF high-frequency, 1-μF low-frequency bypass capacitors^[8]. A 1.2-Ω, 5% tolerance resistor is required between V_{DDA} and the V_{DDA} filter capacitors to ensure safe operation under transient power conditions.

 V_{CCTX} – Connect a 0.1-µF capacitor between this ball and ground.

The minimum dielectric temperature rating for all capacitors is $X5R^{[8]}$.

- In the FPC and PCB layouts, place capacitors near the package ball. Route interrupt, SCL, and SDA lines perpendicular to the sensor traces or isolate them from the sensor traces with ground.
- This schematic is for a 8-column (X) by 10-row (Y) panel, which supports a 2.0-in. diagonal display using electrodes with 4.3-mm pitch (XY ball assignments chosen for a center-connected device mounted at the bottom of the panel). Because the TMA525C controller supports up to 14 RX channels, it may also be center connected to the longer

- side of the panel and still support single-pass scanning of the panel. See *TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual (TRM)TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual (TRM)* 001-88195^[9] for ball assignment considerations and slot mapping information.
- X and Y indium tin oxide (ITO) electrodes are defined by the screen orientation, as depicted in the left half of resure 8. X and Y refer to the column and row electrodes, respectively. The numbers begin with zero at the upper left. Touch coordinates are also reported beginning at the upper left.
- Touchscreen I/O assignments can be enanged to optimize the layout. This provides FPC routing fability. Any XY ball can be defined as either a TX or RX numbers are I/O to optimize performance and simplify routing of different sensors.
- COMM_INT is required by the Host connection.
- XRES is optional for Hot connection but strongly recommended. If driven by a host that can tri-state its output (for example, when in a suspend or sleep state), use an external 10-kΩ pullus resistor connected to XRES. If XRES is not driven by the host trips input must be biased HIGH, either with a resistor or directly connected to V_{DDD} (with no resistor).
- Chused RX or TX ball should remain unconnected.

WOA CONTROL

Notes

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 10 of 28

^{8.} See "Voltage Coefficient" on page 11 for detailed information regarding voltage coefficient requirements for external capacitors.

^{9.} Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

Power Supply Information

TMA525C contains up to five power ball: V_{DDA}, V_{DDD}, V_{CCD}, V_{CCTX}, and V_{SS}. V_{DDA} supplies power to the chip's analog circuitry, TX pump, and drivers. V_{DDD} supplies power to the digital I/Os, core LDO regulator, supply monitors, and external reset circuitry (XRES). V_{CCD} supplies power to the CPU core. Whether it is configured as an input or output depends on whether a 1.71 to 1.95-V V_{DDD} supply is used.

Required External Components

The TrueTouch device requires external components for proper device operation. Quantities are dependent on the power supply configuration used.

V_{DDA}

- \square 1.2- Ω , 5% tolerance resistor
- □ 0.1-µF capacitor
- □ 1-µF capacitor (2.2-µF capacitor in systems with high V_{DDA} noise)

□ 0.1-µF capacitor

TEL: 408-329-5540

$\mathsf{v}_{\mathsf{ccd}}$

- □ 1-µF capacitor when V_{CCD} and V_{DDD} are connected
- \square 0.1- μ F capacitor when V_{CCD} and V_{DDD} are **not** connected

V_{CCTX}

Jump en. □ 0.1-µF capacitor (configurations with the TX pump enab

Voltage Coefficient

The actual capacitance of external capacitors may be reduced with higher bias voltage. Check the capacitor datasheet for the voltage coefficient. External capacitors require a dielectric with an X5R temperature rating or better. It is recommended to use an X7R dielectric or better for high-frequency 0.1-µF capacitors. Capacitors used for power supply decoupling or filtering are operated under a continuous DC-bias. Many capacitors used with DC power across them provide less than their target capacitance, and their capacitance is not constant across their working voltage range. When selecting capacitors for use with this device verify that the selected opponents provide the required capacitance under the specific operating conditions of temperature and voltage used in your design. While the temperature ratings of a capactor are normally found as part of its catalog part number (for example, X7R, C0G, Y5V), the matching voltage coefficient may only be available on the component datasheer direct from the manufacturer. Use of components that do not provide the required capacitance under the actual operating conditions may cause the device to perform to less than the datasheet specifications.

Figure 9 through Figure 11 show the available power configurations that have the TX pump enabled. Figure 12 through Figure 14 show power supply configurations with the TX pump disabled.

Email: Sales@paradetech.com

Page 11 of 28

FAX: 408-329-5541

Figure 9. Lowest Power Consumption TX Pump Enabled

Figure 12. Lowest Power Consumption TX Pump Disabled

Figure 10. COM Interface > 2.0V TX Pump Enabled^[10]

Figure 13. COM late face > 2.0V TX Pump Disabled^[10]

Figure 11. Single Supply TX Pum Enabled[10]

Figure 14. Single Supply TX Pump Disabled^[10]

Note

10. 1.8-V communication is possible by using the 1.8-V mode for the digital inputs P0/P1, when $V_{DDD} \ge 2.0V$.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 12 of 28

Power States Summary

The TMA525C controller has four power states, shown in Figure 15:

- Active, where the touchscreen is actively scanned to determine the presence of a touch and identify the touch coordinates
- Active Look-for-touch, where the device performs a fast self-capacitive scan to determine whether a touch exists
- Low Power, where the touchscreen is scanned for touch presence at a much slower rate
- Deep Sleep, where the touchscreen is not scanned and TMA525C is in a low-power state with no processing

The TMA525C controller automatically manages transitions between three power states (Active, Active Look-for-touch, and Low Power). The host can force transition in and out of the fourth power state (Deep Sleep). PIP allows the user to control power management and Deep Sleep; see *TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual* (*TRM*)*TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual* (*TRM*) – 001-88195^[11].

The Active state emphasizes low refresh time for accurate finger tracking, the Active Look-for-touch state allows fast first-touch response, and the Low Power state enables low power consumption during periods of no touch activity. In all three states, the TMA525C controller periodically scans the panel to determine the presence of a touch. If a touch is present, the controller either enters or remains in the Active state when the presence of a touch is present, the controller either enters or remains in the Active state when the presence of the presen

identifies the touch coordinates. These tasks occur at different rates in the three states and the detection of touches affects transitions between the states. Transition from Active to Active Look-for-touch occurs when no touch is detected.

By requesting low power to be disabled over PIP, the host can force the TMA525C controller to stay out of the Low-power state at all times for fastest response to the first touck on the panel.

The following parameters configure power states, which can be configured over PIP:

- Refresh Interval (register ACT_INTR*) sets the minimum time between the start of subsequent puchscreen scans in the Active state.
- Active Look-for-touch interval (register ACT_LFT_INTRVL) sets the minimum refresh time in the Active Look-for-touch state.
- Active Mode Time out register TCH_TMOUT) sets the period of time of which no touch is detected during the Active look-ror-touch state before transitioning to the Low-rower state.
- Low we Interval (register LP_INTRVL) sets the time the Low-power state between touchscreen scans.
- Deep Sleep is entered via a command from the host to move the device into the Deep Sleep state. Automatic entry into the Low Power state is enabled by setting the LOW POWER ENABLE parameter.

Touch Detec Active No Touch Touch PIP Request Set Power = SLEEP Active Look-fortouch No Touch for Greater TCH_TMOUT PIP Request Set Power = SLEEP LOW_POWER_ENABLE PIP Request Wakeup from Low Power Requested Low Power Deep Sleep PIP Request Set Power = SLEEP

Figure 15. TMA5250 Power States and Transitions

Note

11. Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

CONFIDENTIAL - RELEASED ONLY UNDER NON-DISCLOSURE AGREEMENT (NDA)

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 13 of 28

Ball Information

TMA525C is available in a 34-ball WLCSP package. This section lists ball names, descriptions, and mapping to the physical package. Input and output balls may have more than one possible configuration. Guidance for each configuration option is provided below:

XY – XY ball may be configured as either transmit (TX) drive or receive (RX) touchscreen I/O, allowing each design to be optimized based on the sensor pattern and layout. See the specification, *TrueTouch® Touchscreen Controller Module Design Best Practices* (001-50467), for guidelines^[12]. To configure the device for lowest power, unused XY ball should remain unconnected. TX and RX ball are internally tied to V_{SS} during the Deep Sleep power state.

P1 – Unused Port 1 digital ball should remain unconnected.

 $\mathbf{SWD}-\mathbf{Serial}$ wire debug (SWD) is the recommended programming mode for all designs. If the SWD ball are used in the end product, shared Panel ID ball cannot be directly tied to V_{DDD} or $V_{SS}.$ If SWD is not used on the target board, use the bootloader to upgrade firmware.

COMM_INT – The COMM_INT ball may be configured to use the internal pullup/pulldown resistor. If an external component is used, use the same value specified for R_{INT} in Table 9. The COMM_INT ball may be shared with the SWDCLK ball on the target board.

I²C – The I²C ball require external pullup/pulldown resistors. Consult the *UM10204 PC-Bus Specification and User Magual* for minimum and maximum resistor values.

External Reset (\overline{XRES}) – If the \overline{XRES} ball is unused, it must be connected to V_{DDD} , either directly or through a pullup resistor.

SWDIO/SWDCLK – Serial wire debug (SWD) is the recommended programming mode for all designs.

Panel ID – The Panel ID ball allows TMA525C to automatically report to which panel it is connected when two panel veridors are used. The Panel ID ball is sensed after device reset (or power-up), and the 1-bit value is stored in the System Information registers. The Panel ID ball is available on P1[1]. Use the bootloader to upgrade firmware if the Panel ID ball is used. An unused Panel ID ball is configured as a high-Z output. See *TMA445A*, *TT21X/31X*, *N441*, *Technical Reference Manual (TRM)TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual (TRM)* – 001-88195 for configuration details^[12].

Ball Configuration Multiple ball configurations are supported using TrueTouch Host Emulator (TTHE) software. Balls are configured using the TTHE Pin Configuration Wizard.

Shared Rane ID Balls – If additional Panel ID ball are needed, external components may be added to allow sharing the Panel ID ball with SWD. If Panel ID ball are shared with another function, the ball must be pulled up or down with a 10 k Ω to 100 k Ω resistor. Panel ID ball shared with SWD ball must be high-Z when SWD is performed by the host controller from the me XRES is deasserted until the first COMM_INT. If SWD is performed from an external programmer, the host must not drive any of the Panel ID ball during programming.

Do Not Use (DNU) – DNU balls must remain unconnected to ensure proper device operation.

Note

12. Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 14 of 28

Table 3. 34-ball WLCSP, 24-Touchscreen I/O TMA525C-34FNI24ZZ^[13]

XY06 XY05 XY04	- -	I/O I/O	TX Drive or RX Touchscreen I/O TX Drive or RX Touchscreen I/O	C3	XY15	_	I/O	TX Drive or RX Touchscreen I/O
XY04			TX Drive or RX Touchscreen I/O	4.0				
	_	1/0		A2	XY14	-	I/O	TX Drive or RX Touchscreen I/O
0.400		I/O	TX Drive or RX Touchscreen I/O	В3	XY13	-	I/O	TX Drive or RX Touchscreen (
XY03	_	I/O	TX Drive or RX Touchscreen I/O	А3	XY12	-	I/O	TX Drive or RX Toucks reen I/O
XY02	_	I/O	TX Drive or RX Touchscreen I/O	C4	XY11	-	I/O	TX Drive or RX Touch screen I/O
XY01	-	I/O	TX Drive or RX Touchscreen I/O	A4	XY10	_	I/O	TX Drive or RX Touchscreen I/O
XY00	_	I/O	TX Drive or RX Touchscreen I/O	B4	XY09	-	I/O	TX Drive of DX Touchscreen I/O
KRES	I	_	External Active LOW Reset	A5	XY08	_	I/O	1X Drive or RX Touchscreen I/O
P0[0]	I/O	_	I ² C SCL	B5	XY07	_	1/0	TX Drive or RX Touchscreen I/O
P0[1]	I/O	_	I ² C SDA			Bal	ori. Ma	(Bottom View)
P1[0]	I/O	_	COMM_INT / SWDCLK		6	5	*	3 2 1
P1[1]	I/O	_	SWDIO / Panel ID					
V _{CCD}	Pov	wer	Digital Core Power Supply I/O			08)	XY)($\begin{pmatrix} XY \\ 12 \end{pmatrix} \begin{pmatrix} XY \\ 14 \end{pmatrix} \begin{pmatrix} XY \\ 16 \end{pmatrix} A$
√ _{DDD}	Pov	wer	Digital Power Supply Input					
V_{SS}	Pov	wer	Ground				XY)	$\begin{pmatrix} XY \\ 13 \end{pmatrix} \begin{pmatrix} XY \\ 17 \end{pmatrix} \begin{pmatrix} XY \\ 18 \end{pmatrix} = B$
V_{DDA}	Pov	wer	Analog Power Supply Input			07	09	13 17 10
′сстх	Po	wer	TX Pump Reservoir and Filter Capacitor Connection Point				XY	$\begin{pmatrix} XY \\ 15 \end{pmatrix} \begin{pmatrix} XY \\ 19 \end{pmatrix} \begin{pmatrix} XY \\ 20 \end{pmatrix} = C$
XY23	-	I/O	TX Drive or RX Touchscreen IN			05		15 19 20
XY22	-	I/O	TX Drive or RX Touchs reen I/O				XY	XY XY XY D
XY21	-	I/O	TX Drive or RX Touchstreen I/O		00	01	03	21 23 22
XY20	-	I/O	TX Drive or RX Touchscreen I/O	F			V (V _{DDD} V _{SS} V _{CCTX} E
XY19	-	I/O	TX Drive or RX Touchscreen I/O]	1] /	[1]	VCCD (VDDD VSS VCCIX
XY18	_	I/O	TX Lrive or RX Touchscreen I/O	F	20	XR /	P1	
XY17	_	I/O	TX Prive or RX Touchscreen I/O				[0]	(V _{DDA}) F
XY16	-	0	TX Drive or RX Touchscreen I/O					
x x < = = = 0 0 , 0 / x x x	(Y01 (Y00) RES (P0[0] P0[1] P1[0] P1[1] (CCD (DDD (DDD (YSS (Y23) (Y22) (Y21 (Y20)	(Y01 – (Y00 – RES I PO[0] I/O PO[1]	CY01	A	A I/O TX Drive or RX Touchscreen I/O A I/O TX Drive or RX Touchscreen I/O B I/O TX Drive or RX Touchscreen I/O B I/O RES I — External Active LOW Reset A I/O DI I/O — I/O SUDI I/O — I/O SUDI I/O — I/O SWDIO / Panel ID DI I/O — Digital Core Power Supply I/O DI I/	A4	A	CY01

Note

13. See "Ball Information" on page 14 for details regarding ball configuration.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 15 of 28

Electrical Specifications

This section lists TMA525C DC and AC electrical specifications.

Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
Зуппоот	· ·	Conditions				
T_{STG}	Storage Temperature	-	– 55	25	100	°C
V_{DDD}	Digital Supply Voltage	-	$V_{SS} - 0.5$	_	6	V
V_{DDA}	Analog Supply Voltage	-	$V_{SS} - 0.5$	_	8	V
V _{CCTX}	TX Supply	-	$V_{SS} - 0.5$	0	6	V
V _{DDDR} ^[14]	Digital (V _{DDD}) Supply Ripple Voltage	Amplitude of AC riding on DC (V _{PP}), DC to 20 MHz.		119	100	mV
	Analog (V _{DDA}) Supply Ripple Frequency (TX Pump Enabled)	Amplitude of AC riding on DC (V _{PP}), DC to 20 MHz.	-	Ō	100	mV
V _{DDAR} ^[14]	Analog (V _{DDA}) Supply Ripple Frequency (TX Pump Disabled)	Amplitude of AC riding on DC (V _{PP}), 150 kHz to 20 MHz. A maximum of 15mV is supported for DC to 150 kHz, +dB/decade for >150 kHz (80 kHz when a 2.2 µF capacitor is used in place of a 1 µF capacitor), measured at the input	10	-	100	mV
V_{CCD}	Core Supply Voltage	-	$V_{SS} - 0.5$	_	2.3	V
V_{TX}	Touchscreen I/O Voltage (HIGH State)	-	V _{CCTX} -0.5	_	V _{CCTX}	V
	Port 0 Ball Voltage	Driver is enabled.	$V_{SS} - 0.5$	-	6	V
V_{GPIO}	Port 0 Ball Voltage	Driver is disable	$V_{SS} - 0.5$	-	7	V
	Port 1/XRES Ball Voltage	- 7.0	$V_{SS} - 0.5$	-	V _{DDD} + 0.5	V
I _{IO}	Current into I/O Ball	-	-25	-	50	mA
ESD _{CDM}	Electrostatic Discharge Voltage	Charge de vice model.	1500	-	_	V
ESD _{HBM}	Electrostatic Discharge Voltage	Human body model.	5000	-	_	V

Operating Temperature

Table 5. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient Temperature	_	-40	-	85	°C
	JA CON'T					
1						

Note

14. Analog supply ripple specifications are valid for the supply presented to the external resistor (shown in Figure 9 on page 12), not at the device V_{DDA} ball.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 16 of 28

Flash Specifications

The following specifications are valid under these conditions: $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $1.71\text{V} \le \text{V}_{\text{DDD}} \le 1.95\text{V}$ or $2.0\text{V} \le \text{V}_{\text{DDD}} \le 5.5\text{V}$, $1.71\text{V} \le \text{V}_{\text{CCD}} \le 1.95\text{V}$, and $2.65\text{V} \le \text{V}_{\text{DDA}} \le 4.7\text{V}$. Typical values are specified at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{DDD}} = \text{V}_{\text{CCD}} = 1.8\text{V}$, core LDO disabled, and $\text{V}_{\text{DDA}} = 2.7\text{V}$.

Table 6. Flash Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Flash _{ENPB}	Flash Write Endurance	Erase/write cycles per block.	10,000	-	4	cycles
Flash _{DR}	Flash Data Retention	Following maximum Flash write cycles (Flash _{ENPB}), $T_A \le 55^{\circ}C$.	20 ^[15]	_	9	years
1 IdSHDR	Hasii Data Neterition	Following maximum Flash write cycles (Flash _{ENPB}), $T_J \le 85$ °C.	10 ^[15]	-0	-	years

Chip-level DC Specifications

The following specifications are valid under these conditions: $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $1.71\text{V} \le \text{V}_{\text{DDD}} \le 1.95\text{V}$ or $2.0\text{V} \le \text{V}_{\text{DDD}} \le 5.5\text{V}$, $1.71\text{V} \le \text{V}_{\text{CCD}} \le 1.95\text{V}$, and $2.65\text{V} \le \text{V}_{\text{DDA}} \le 4.7\text{V}$. Typical values are specified at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{CCD}} = 1.8\text{V}$, core LDO disabled, and $\text{V}_{\text{DDA}} = 2.7\text{V}$.

Table 7. Chip-Level DC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{DDD}	Digital Cumply Valtage	Core LDO is enabled (V _{CCD} cutput)	2.0	_	5.5	V
	Digital Supply Voltage	Core LDO is disabled (V _{CCD} input) ^[16] .	1.71	1.8	1.95	V
\/	Digital Care Supply Voltage	Core LDO is enabled (V _{CCD} output).	_	1.8	_	V
V_{CCD}	Digital Core Supply Voltage	Core LDO is distabled (V _{CCD} input) ^[16] .	1.71	1.8	1.95	V
V _{DDA} ^[16]	Analog Supply Voltage	TX pump is enabled.	2.65	_	4.7	V
V _{CCTX}	V _{CCTX} Supply Operating Voltage Range	Input to external low-pass filter, TX Pump Disabled configuration.	3.0	- .	5.5	V _a
V_{TX}	Touchscreen I/O Voltage (HIGH State)	TX tump is enabled.	V _{CCTX} - 0.5	-	V _{CCTX}	V _a
PSA _{RAMP}	V _{DDA} Ramp Up	0,	_	_	100	mV/μs
I _{DDD_ACT}	V _{DDD} Active Current	9	_	15	30	mA
I _{DDA_ACT}	V _{DDA} Active Current	_	_	9	12	mA
I _{DDD_DS}	V _{DDD} Deep Sleep Current	_	_	1.65	_	μA
I _{DDA_DS}	V _{DDA} Deep Sleep Curren	_	_	1	_	μA
I_{DDD_XR}	V _{DDD} Current, XRES = VOW	_	_	2	_	μΑ
I _{DDA_XR}	V _{DDA} Current. THES = LOW	_	_	25	_	μА
I _{DDD_P}	V _{DDD} Flash Programming and Flash Verify Carrent	_	_	5	25	mA

Notes

CONFIDENTIAL - RELEASED ONLY UNDER NON-DISCLOSURE AGREEMENT (NDA)

^{15.} Storing programmed devices at or above the ambient temperature specified by Flash_{DR} may reduce flash data retention time.

^{16.} These minimum and maximum limits are absolute limits, inclusive of noise. For proper operation, V_{DDA} or V_{DDD} with combined noise cannot go below or above the specified minimum and maximum limits.

I/O Port 0 (P0[0:1]) DC Specifications

The following specifications are valid under these conditions: $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $1.71\text{V} \le \text{V}_{\text{DDD}} \le 1.95\text{V}$ or $2.0\text{V} \le \text{V}_{\text{DDD}} \le 5.5\text{V}$, $1.71\text{V} \le \text{V}_{\text{CCD}} \le 1.95\text{V}$, and $2.65\text{V} \le \text{V}_{\text{DDA}} \le 4.7\text{V}$. Typical values are specified at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{DDD}} = \text{V}_{\text{CCD}} = 1.8\text{V}$, core LDO disabled, and $\text{V}_{\text{DDA}} = 2.7\text{V}$.

Table 8. I/O Port 0 (P0[0:1]) DC Specifications

Vih Input High Voltage CMOS mode. 0.7 × V _{DDD} − 1.8 V mode, V _{EXT} = 1.8V, V _{DDD} = 1.8, 3.0, 3.3, 5.0V. 0.7 × V _{EXT} − 0.3 × V _{DDD}	Input High Voltage	V _{IL}	, ,	1.8-V mode, V _{EXT} = 1.8V, V _{DDD} = 1.8, 3.0, 3.3, 5.0V. CMOS mode.		- - - -	0.3 × V _{DDD}	V V V
$V_{DDD} = 1.8, 3.0, 3.3, 5.0 V. \\ V_{DDD} = 1.8, 3.0, 3.3, 5.0 V. \\ V_{DDD} = 1.8, 3.0, 3.3, 5.0 V. \\ V_{DDD} = 1.8 V. and b. $	Composition	V _{IL}	, ,	CMOS mode.	0.7 × V _{EXT}		0.3 × V _{DDD}	
$ \begin{array}{c} V_{IL} & \text{Input Low Voltage} \\ V_{ODD} = 1.8, 3.0, 3.3, 5.0V. \\ V_{DDD} = 1.8, 3.0, 3.3, 5.0V. \\ V_{DDD} = 1.8, 3.0, 3.3, 5.0V. \\ \end{array} \\ \begin{array}{c} V_{ODD} = 1.8, 3.0, 3.3, 5.0V. \\ \end{array} \\ \begin{array}{c} V_{DDD} = 0.8, 0.00,$	Input Low Voltage 1.8-V mode, $V_{EXT} = 1.8V$, $V_{DDD} = 1.8$, 3.0 , 3.3 , $5.0V$. -		Input Low Voltage		_	-0	0.3 × V _{DDD}	V
Reference to V _{DDD} , I _{OH} = 1 mA, V _{DDD} = 0.5	$ \begin{array}{c} \text{Noh} \\ \text{Noh} \\ \text{Pigh-Output Voltage} \end{array} \end{array} \begin{array}{c} \text{Reference to V}_{\text{DDD}}, I_{\text{OH}} = 1 \text{mA}, \\ V_{\text{DDD}} = 1.8 \text{V.} \\ \text{Reference to V}_{\text{DDD}}, I_{\text{OH}} = 4 \text{mA}, \\ V_{\text{DDD}} = 3.0 \text{V.} \\ \text{Vobb} = 3.0 \text{V.} \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 10 \text{mA}. \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 3 \text{mA}. \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 3 \text{mA}. \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 3 \text{mA}. \\ \text{Output Rise Time Fast-Strong} \\ \text{Output Rise Time Fast-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Rise Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Fast-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Eaklage Current (Absolute Value)} \end{array} \begin{array}{c} T_A = 25^{\circ} \text{C, V}_{\text{DD}} = 3.0 \text{V.} \\ T_A = 25^{\circ} \text{C, V}_{\text{DD}} = 3.0 \text{V.} \\ T_A = 25^{\circ} \text{C, V}_{\text{DD}} = 3.0 \text{V.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 14 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c$		Input Low Voltage	1.8-V mode, V _{EXT} = 1.8V, V _{DDD} = 1.8, 3.0, 3.3, 5.0V.	_		<u> </u>	
Reference to V _{DDD} , I _{OH} = 1 mA, V _{DDD} = 0.5	$ \begin{array}{c} \text{Noh} \\ \text{Noh} \\ \text{Pigh-Output Voltage} \end{array} \end{array} \begin{array}{c} \text{Reference to V}_{\text{DDD}}, I_{\text{OH}} = 1 \text{mA}, \\ V_{\text{DDD}} = 1.8 \text{V.} \\ \text{Reference to V}_{\text{DDD}}, I_{\text{OH}} = 4 \text{mA}, \\ V_{\text{DDD}} = 3.0 \text{V.} \\ \text{Vobb} = 3.0 \text{V.} \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 10 \text{mA}. \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 3 \text{mA}. \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 3 \text{mA}. \\ \text{Vobb} \geq 1.71 \text{V,} I_{\text{OL}} = 3 \text{mA}. \\ \text{Output Rise Time Fast-Strong} \\ \text{Output Rise Time Fast-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Rise Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Fast-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Fall Time Slow-Strong} \end{array} \begin{array}{c} 25 \text{pF load, } 10 \text{to } 90\% \text{V}_{\text{DDD}} = 3.3 \text{V.} \\ \text{Output Eaklage Current (Absolute Value)} \end{array} \begin{array}{c} T_A = 25^{\circ} \text{C, V}_{\text{DD}} = 3.0 \text{V.} \\ T_A = 25^{\circ} \text{C, V}_{\text{DD}} = 3.0 \text{V.} \\ T_A = 25^{\circ} \text{C, V}_{\text{DD}} = 3.0 \text{V.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 14 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c} - 10 \text{m.} \\ T_A = 25^{\circ} \text{C.} \end{array} \begin{array}{c$	V _{OH}					0.3 × V _{EXT}	V
Reference to V_{DDD} , $I_{OH} = 4$ mA, $V_{DDD} = 0.6$	Reference to V_{DDD} , $I_{OH} = 4$ mA, $V_{DDD} = 0.6$ $ 0.6$ $V_{DDD} = 3.0V$. Low-Output Voltage $V_{DDD} \ge 1.71V$, $I_{OL} = 10$ mA. $V_{DDD} \ge 1.71V$, $I_{OL} = 3$ mA. $V_{DDD} \ge$	VOH	High-Output Voltage	Reference to V _{DDD} , I _{OH} = 1 mA,	V _{DDD} – 0.5	7-	-	V
$V_{\text{DDD}} \geq 1.71 \text{V}, \ I_{\text{OL}} = 3 \text{ mA}. \qquad - \qquad - \qquad 0.4$ $V_{\text{H}} \qquad \text{Input Hysteresis Voltage} \qquad - \qquad 0.1 \times V_{\text{DDD}} \qquad - \qquad - \qquad - \qquad 12$ $T_{\text{RISE_OV}} \qquad \text{Output Rise Time Fast-Strong} \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{V}. \qquad 2 \qquad - \qquad 12$ $Output Rise Time Slow-Strong \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{V}. \qquad 10 \qquad - \qquad 60$ $T_{\text{FALL_OV}} \qquad \text{Output Fall Time Fast-Strong} \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{V}. \qquad 1.5 \qquad - \qquad 12$ $Output Fall Time Slow-Strong \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{V}. \qquad 10 \qquad - \qquad 60$ $I_{\text{IL}} \qquad \text{Input Leakage Current (Absolute Value)} \qquad T_{\text{A}} = 25^{\circ}\text{C}, \text{ V}_{\text{DDD}} = 3.0 \text{V}. \qquad - \qquad - \qquad 14$ $T_{\text{A}} = 25^{\circ}\text{C}, \text{ V}_{\text{DDD}} = 3.0 \text{V}. \qquad - \qquad - \qquad 10$ $C_{\text{IN}} \qquad \text{Input Ball Capacitance} \qquad P_{\text{ackage and Lall' dependent}} \qquad - \qquad - \qquad 7$ $C_{\text{OUT}} \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Output Ball Capacitance} \qquad P_{\text{ackage-and ball-dependent}} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C}. \qquad \text{Ball configured for internal pullup} \qquad 3.5 \qquad 5.6 \qquad 8.5$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tigh-Output Voltage	Reference to V_{DDD} , $I_{OH} = 4$ mA, $V_{DDD} = 3.0V$.	V _{DDD} - 0.6	_	_	V
$V_{\text{H}} \qquad \text{Input Hysteresis Voltage} \qquad - \qquad 0.4$ $V_{\text{H}} \qquad \text{Input Hysteresis Voltage} \qquad - \qquad 0.1 \times V_{\text{DDD}} \qquad - \qquad - \qquad 0.4$ $T_{\text{RISE_OV}} \qquad \text{Output Rise Time Fast-Strong} \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{ V.} \qquad 2 \qquad - \qquad 12$ $Output Rise Time Slow-Strong \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{ V.} \qquad 10 \qquad - \qquad 60$ $T_{\text{FALL_OV}} \qquad \text{Output Fall Time Fast-Strong} \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{ V.} \qquad 1.5 \qquad - \qquad 12$ $Output Fall Time Slow-Strong \qquad 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} = 3.3 \text{ V.} \qquad 10 \qquad - \qquad 60$ $T_{\text{Input Leakage Current (Absolute Value)}} \qquad T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.3 \text{ V.} \qquad 10 \qquad - \qquad - \qquad 14$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 14$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} = 3.0 \text{ V.} \qquad - \qquad - \qquad - \qquad 10$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad - \qquad - \qquad 7$ $T_{\text{A}} = 25^{\circ}\text{C.} \qquad - \qquad $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	Low Output Voltage		7.0	_	0.6	V
$T_{RISE_OV} = \begin{array}{c} \text{Output Rise Time Fast-Strong} & 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{DDD} = 3.3\% & 2 & - & 12 \\ \text{Output Rise Time Slow-Strong} & 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{DDD} = 3.3\% & 10 & - & 60 \\ \text{Output Fall Time Fast-Strong} & 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{DDD} = 3.3\% & 1.5 & - & 12 \\ \text{Output Fall Time Slow-Strong} & 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{DDD} = 3.3\% & 1.5 & - & 12 \\ \text{Output Fall Time Slow-Strong} & 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{DDD} = 3.3\% & 10 & - & 60 \\ \text{Input Leakage Current (Absolute Value)} & T_A = 25^{\circ}\text{C, V}_{DDD} = 3.3\% & 10 & - & - & 14 \\ T_A = 25^{\circ}\text{C, V}_{DDD} = 3.3\% & - & - & - & 14 \\ T_A = 25^{\circ}\text{C, V}_{DDD} = 3.0\% & - & - & - & 14 \\ T_A = 25^{\circ}\text{C, V}_{DDD} = 0.0\% & - & - & - & 10 \\ \text{Cout} & \text{Input Ball Capacitance} & P_{ackage and ball-dependent} & - & - & 7 \\ \text{Cout} & \text{Output Ball Capacitance} & P_{ackage-and ball-dependent} & - & - & 7 \\ \text{Results Internal Pullum/Pulldown Resistance} & Ball configured for internal pullup & 3.5 & 5.6 & 8.5 \\ \text{Ball configured for internal pullup} & 3.5 & 5.6 & 8.5 \\ \end{array}$	Output Rise Time Fast-Strong Output Rise Time Fast-Strong Output Rise Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n Output Fall Time Fast-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n Output Fall Time Fast-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 1.5 - 12 n Output Fall Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n T _A = 25°C, V _{DDD} = 3.3V. 10 - 60 n T _A = 25°C, V _{DDD} = 3.0V. T _A = 25°C,	V OL	Low-Output Voltage	$V_{DDD} \ge 1.71V$, $I_{OL} = 3$ mA.	_	-	0.4	'
Output Rise Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10	Output Rise Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n Output Fall Time Fast-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 1.5 - 12 n Output Fall Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.3V$ 10 - 60 n $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.3V$ 10 - 60 n $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C 10 $T_{A} = 25^{\circ}$ C 11 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 11 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 11 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 13 $T_{A} = 25^{\circ}$ C 15 $T_{A} = 25^{\circ}$ C 16 $T_{A} = 25^{\circ}$ C 17 $T_{A} = 25^{\circ}$ C 17 $T_{A} = 25^{\circ}$ C 18 $T_{A} = 25^{\circ}$ C 19 $T_{A} = 25^{\circ}$ C 10 $T_{A} = 25^{\circ}$	√ _H	Input Hysteresis Voltage	-	0.1 × V _{DDD}	_	_	V
Output Rise Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 The contraction of the property	Output Rise Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n Output Fall Time Fast-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 1.5 - 12 n Output Fall Time Slow-Strong 25-pF load, 10 to 90% $V_{DDD} = 3.3V$ 10 - 60 n $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.3V$ 10 - 60 n $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.3V$ 10 - 60 n $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C, $V_{DDD} = 3.0V$ 10 - 7 10 $T_{A} = 25^{\circ}$ C 10 $T_{A} = 25^{\circ}$ C 11 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 11 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 11 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 12 $T_{A} = 25^{\circ}$ C 13 $T_{A} = 25^{\circ}$ C 15 $T_{A} = 25^{\circ}$ C 16 $T_{A} = 25^{\circ}$ C 17 $T_{A} = 25^{\circ}$ C 17 $T_{A} = 25^{\circ}$ C 18 $T_{A} = 25^{\circ}$ C 19 $T_{A} = 25^{\circ}$ C 10 $T_{A} = 25^{\circ}$	-	Output Rise Time Fast-Strong	25-pF load, 10 to 90% V _{DDD} = 33V.	2	-	12	ns
$T_{\text{FALL_OV}} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output Fall Time Fast-Strong $ \begin{array}{c} 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{OD}} \text{ s.3.3V.} \\ 0 \text{ output Fall Time Slow-Strong} \end{array} $ $ \begin{array}{c} 25\text{-pF load, } 10 \text{ to } 90\% \text{ V}_{\text{DDD}} \text{ s.3.3V.} \\ 10 - 60 \text{n} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \\ T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \\ T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \\ T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \\ T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C, V}_{\text{DDD}} \text{ s.0.V.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ Output Ball Capacitance $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ Output Ball Capacitance $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ Ball Configured for internal pullup $ \begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C.} \end{array} $ Ball Configured for internal pullup	RISE_OV	Output Rise Time Slow-Strong	25-pF load, 10 to 90% V _{DDD} = 3.3	10	_	60	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Fall Time Slow-Strong $ \begin{bmatrix} $		Output Fall Time Fast-Strong		1.5	_	12	ns
Input Leakage Current (Absolute Value) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Leakage Current (Absolute Value) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FALL_OV	Output Fall Time Slow-Strong		10	_	60	ns
T _A = 25°C, V _{DDD} = 0 V. $-$ 10 C _{IN} Input Ball Capacitance Package and ball-dependent $-$ 7 Cour Output Ball Capacitance Package- and ball-dependent $-$ 7 Package- and ball-dependent $-$ 7 Package- and ball-dependent $-$ 7 Results Internal Pullum/Pulldown Resistance Ball configured for internal pullup 3.5 5.6 8.5	T _A = 25°C, V _{DD} = 0.V 10 μ Input Ball Capacitance Package and half-dependent T _A = 25°C Output Ball Capacitance Package and ball-dependent T _A = 25°C Internal Pullup/Pulldown Resistance Ball configured for internal pullup 3.5 5.6 8.5	[17]			_	_	14	nA
Package and half-dependent TA = 25°C Output Ball Capacitance Package and half-dependent TA = 25°C Output Ball Capacitance Package and ball-dependent TA = 25°C Package and ball-dependent TA = 25°C Package and ball-dependent TA = 25°C A = 25°C Ball configured for internal pullup 3.5 5.6 8.5	Package and half dependent TA = 25°C Output Ball Capacitance Package and half dependent TA = 25°C Output Ball Capacitance Package and half dependent TA = 25°C Package	الالنابا	Input Leakage Current (Absolute Value)		_	_	10	μA
T _A 25°C. T _A 25°C. Internal Pullup/Pulldown Resistance Ball configured for internal pullup 3.5 5.6 8.5	T _A 25°C. Internal Pullun/Pulldown Resistance Ball configured for internal pullup 3.5 5.6 8.5	C _{IN}	Input Ball Capacitance	Package and sall dependent	-		7	pF
		C _{OUT}	Output Ball Capacitance	Package- and ball-dependent T _A < 25°C.	-	_	7	pF
		₹ _{INT}	Internal Pullup/Pulldown Resistance		3.5	5.6	8.5	kΩ
$\mathcal{L}_{\mathcal{O}}$				•				
			(2)					
c_0	$^{\prime\prime}$							
Coll		_						
Coll		•	/					
COLL			y '					
NOF COLL			•					
MDV COLL	MA CO							
The internal and i	MDA CO							
MOV	MDA CO							
MOV	MOA							

Note

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 18 of 28

I/O Port 1 (P1[0:3]) and XRES DC Specifications

The following specifications are valid under these conditions: $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $1.71\text{V} \le \text{V}_{\text{DDD}} \le 1.95\text{V}$ or $2.0\text{V} \le \text{V}_{\text{DDD}} \le 5.5\text{V}$, $1.71\text{V} \le \text{V}_{\text{CCD}} \le 1.95\text{V}$, and $2.65\text{V} \le \text{V}_{\text{DDA}} \le 4.7\text{V}$. Typical values are specified at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{DDD}} = \text{V}_{\text{CCD}} = 1.8\text{V}$, core LDO disabled, and $\text{V}_{\text{DDA}} = 2.7\text{V}$.

Table 9. I/O Port 1 (P1[0:3]) and XRES DC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
		1.8-V configuration.	1.26	-	~V,	V
/ _{IH}	Input Voltage High Threshold, 1.8V ≤ V _{DDD} ≤ 5.5V	CMOS configuration.	0.7 × V _{DDD}	-	(J	V
		XRES.	1.35	-	Q	V
		1.8-V configuration.	_	-0	0.54	V
√ _{IL}	Input Voltage Low Threshold, 1.8V ≤ V _{DDD} ≤ 5.5V	CMOS configuration.		S	0.3 × V _{DDD}	V
	1.00 = 0000 = 0.00	XRES.	-		0.45	V
	Library A.V. Harra	I _{OH} = 4 mA, V _{DDD} = 3.0V.	V _{DDR} - 0.6	-	_	V
V _{OH}	High-output Voltage	I _{OH} = 1 mA, V _{DDD} = 1.8V.	V _{DDD} - 0.5	-	-	V
.,	Low output Voltage	I _{OL} = 8 mA, V _{DDD} = 3.3V.	-A	-	0.6	V
V _{OL}	Low-output Voltage	I _{OL} = 4 mA, V _{DDD} = 1.8V.	4	_	0.6	V
V _H	Input Hysteresis Voltage	-	0.1 × V _{DDD}	-	_	V
т	Output Rise Time Fast-Strong	25-pF load, 10 to 90% V _{DDD} = 3.3V.	2	-	12	ns
T _{RISE_G}	Output Rise Time Slow-Strong	25-pF load, 10 to 90% V _{DDD} = 3.3V.	_	_	60	ns
т	Output Fall Time Fast-Strong	25-pF load, 10 to 90% V _{DDD} = 3.3	2	-	12	ns
T _{FALL_G}	Output Fall Time Slow-Strong	25-pF load, 10 to 90% V _{DDD} = 3. V.	_	-	60	ns
I _{IL} [17]	Input Leakage Current (Absolute Value)	- 10	-	-	2	nA
C _{IN}	Input Ball Capacitance	Package- and ball-Nependent T _A = 25°C.	_	-	7	pF
C _{OUT}	Output Ball Capacitance	Package- and balkdependent T _A = 25°C	_	1	7	pF
R _{INT^[18]}	Internal Pullup/Pulldown Resistance	Ball configured for internal pullup or pulldown.	3.5	5.6	8.5	kΩ
	Ontro)					
	COL					
	A					
4	,					

Note

18. XRES is input only with no internal pullup or pulldown resistor.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 19 of 28

SWD Interface AC Specifications

The following specifications are valid under these conditions: $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $1.71\text{V} \le \text{V}_{\text{DDD}} \le 1.95\text{V}$ or $2.0\text{V} \le \text{V}_{\text{DDD}} \le 5.5\text{V}$, $1.71\text{V} \le \text{V}_{\text{CCD}} \le 1.95\text{V}$, and $2.65\text{V} \le \text{V}_{\text{DDA}} \le 4.7\text{V}$. Typical values are specified at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{DDD}} = \text{V}_{\text{CCD}} = 1.8\text{V}$, core LDO disabled, and $\text{V}_{\text{DDA}} = 2.7\text{V}$.

Table 10. SWD Interface AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
f _{SWDCLK}	SWDCLK Frequency	$3.3V \le V_{DDD} \le 5V$.	_	_	14	MHz
	SWDOLK Frequency	$1.71V \le V_{DDD} < 3.3V$.	_	_	8	MHz
T _{SWDI_SETUP}	SWDIO Input Setup before SWDCLK HIGH	T = 1 / f _{SWDCLK} .	T / 4	-	· -	ns
T _{SWDI_HOLD}	SWDIO Input Hold after SWDCLK HIGH	T = 1 / f _{SWDCLK} .	T / 4	,\5	_	ns
T _{SWDO_VALID}	SWDCLK HIGH to SWDIO Output valid	T = 1 / f _{SWDCLK} .	-	0	T/2	ns
T _{SWDO_HOLD}	SWDIO Output Hold after SWDCLK HIGH	T = 1 / f _{SWDCLK} .	1	-	_	ns

Chip-level AC Specifications

TEL: 408-329-5540

The following specifications are valid under these conditions: $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$, $71\text{V} \le V_{DDD} \le 1.95\text{V}$ or $2.0\text{V} \le V_{DDD} \le 5.5\text{V}$, $1.71\text{V} \le V_{CCD} \le 1.95\text{V}$, and $2.65\text{V} \le V_{DDA} \le 4.7\text{V}$. Typical values are specified at $T_{A} = 25^{\circ}\text{C}$, $V_{DDD} = V_{CCD} = 1.8\text{V}$, core LDO disabled, and $V_{DDA} = 2.7\text{V}$.

Table 11. Chip-level AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{XRST}	External Reset (XRES) Pulse Width	After V _{POD} is valid.	10	_	_	μs
T _{READY}	Time from XRES Deassertion to COMM_INT	- (_	_	10	ms
T _{CAL}	Calibration Routine Execution Time	9,	_	_	1100	ms

Figure 16. COMM_INT Timing Diagram

FAX: 408-329-5541 Email: Sales@paradetech.com Page 20 of 28

I²C Specifications

The specifications listed in Table 12 are valid under these conditions: $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $1.71\text{V} \le \text{V}_{\text{DDD}} \le 1.95\text{V}$ or $2.0\text{V} \le \text{V}_{\text{DDD}} \le 5.5\text{V}$, $1.71\text{V} \le \text{V}_{\text{CCD}} \le 1.95\text{V}$, and $2.65\text{V} \le \text{V}_{\text{DDA}} \le 4.7\text{V}$. Typical values are specified at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$, $\text{V}_{\text{DDD}} = \text{V}_{\text{CCD}} = 1.8\text{V}$, core LDO disabled, and $\text{V}_{\text{DDA}} = 2.7\text{V}$. TMA525C does not require a clock-stretch capable host, but is fully compatible with systems that perform clock stretching.

To ensure proper I²C functionality in extreme bus conditions, see the application note, *Using TMA4/5XX I²C in Systems With Slow* Clock Edges (001-81514)[19].

Important Note: The P0[0] and P0[1] ball have I/O cells optimized for use on multi-drop buses. When the True Touch device is powered off, the ball drivers do not load the attached bus, such that other devices attached to them may continue to communicate. During the V_{DDD} power-up and power-down transitions, the P0[0] and P0[1] drivers may be momentarily enabled. To ensure error-free communication during these power transitions, the host should suspend communication with other devices on the shared communication bus.

Legend

S: I²C Start Condition

Sr: I²C Repeat Start Condition

P: I²C Stop Condition

Note

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 21 of 28

^{19.} Extreme bus conditions are considered to be a combination of the following conditions: High-capacitive bus load, slow SCL fall time, and fast SDA rise/fall time. Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

TEL: 408-329-5540

Table 12. I²C SDA and SCL Line AC and DC Characteristics

Symbol Description Min Max Min Max	400 kHz - μs - ν - ν - ν - ν - ν - ν - ν -
Hold Time (Repeated) START Condition (First Clock Pulse Is Generated after this Period) 4	- µs - µs - µs - µs - µs - ns 0.9 µs - µs - µs - V
SCL Clock LOW Period	- µs - µs - µs - µs - ns 0.9 µs 0.9 µs - µs - V - µs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ря ря ря ря ря ря ря ря ря ря
FINALIZED Repeated START Condition Setup Time 4.7 - 0.6 IF_HDDATIZC Data Hold Time 0 - 0 - IF_SUDATIZC Data Setup Time 250 - 100 - IF_VDDATIZC Data Valid Time - 3.45 0.9 IF_VDACKIZC Data Acknowledge Time - 3.45 - 0.9 IF_SUSTOIZC Setup Time for STOP Condition 4 - 0.6 - IF_BUSTOIZC Setup Time for STOP Condition 4 - 0.6 - Input Hysteresis High Voltage, 1.71V ≤ V _{DDD} ≤ 1.95V or 2.0V ≤ V _{DDD} ≤ 5.5V 0.1 × V _{DDD} - 0.1 × V _{DDD} - IF_BUFIZC Bus Free Time between STOP and START Condition 4.7 - 1.3 - IF_BUSIC Pulse Width of Spikes Suppressed by Input Filter - - 50 - IF_BUSIC Pulse Width of Spikes Suppressed by Input Filter - - 50 - IF_BUSIC Input Low Voltage 0.3 × V _{DDD} - 0.3 × V _{DDD} - IF_BUSIC Input High Voltage 0.7	ря - ря - пя 0.9 ря 0.9 ря - ря - ря - у
Thind the content of the content	- µs - ns 0.9 µs 0.9 µs - µs - V - µs
TSUDATI2C Data Setup Time 250	- ns 0.9 μs 0.9 μs - μs - ν - ν
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9
$T_{VDACK 2C} Data \ Acknowledge \ Time \qquad \qquad - \qquad 3.45 \qquad - \qquad 0.9$ $T_{SUSTO 2C} Setup \ Time \ for \ STOP \ Condition \qquad \qquad 4 \qquad - \qquad 0.6 \qquad - \qquad \qquad -$	0.9
$T_{SUSTOI2C} \text{Setup Time for STOP Condition} \qquad \qquad$	- µs - V - µs
Input Hysteresis High Voltage, 1.71V \leq V _{DDD} \leq 1.95V or 2.0V \leq V _{DDD} \leq 5.5V 0.1 \times V _{DDD} - 1.3 - 1.	- V
I_{BUFI2C} Bus Free Time between STOP and START Condition 4.7 1.3 - I_{SPI2C} Pulse Width of Spikes Suppressed by Input Filter - 50 - I_{BUS} SDA or SCL Capacitance Load - 400 - 400 I_{IL_I2C} Input Low Voltage - 0.3 × V_{DDD} - 0.3 × V_{DDD} I_{IL_I2C} Input High Voltage 0.7 × V_{DDD} - 0.7 × V_{DDD} - I_{IL_I2C} Output Low Voltage (I_{DDD} ≤ 2-V, 3-mA Sink) - 0.2 × I_{DDD} - 0.2 × I_{DDD} $I_{IL_I2C_H}$ Output Low Voltage (I_{DDD} > 2-V, 3-mA Sink) - 0.4 - 0.4 $I_{IL_I2C_H}$ Output Low Current I_{OL} - 0.4 - 0.4 $I_{IL_I2C_H}$ Output Low Current I_{OL} - 0.4 - 0.4	- µs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>'</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	– ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400 pF
$V_{\text{OL_I2C_L}}$ Output Low Voltage ($V_{\text{DDD}} \le 2\text{-V}$, 3-mA Sink) - $0.2 \times V_{\text{DDD}}$ - $0.2 \times V_{\text{DDD}}$ - $0.4 \times V_{\text{DDD}}$ Output Low Voltage ($V_{\text{DDD}} > 2\text{-V}$, 3-mA Sink) - $0.4 \times V_{\text{DDD}}$ - $0.4 \times$	× V _{DDD} V
$V_{OL_I2C_L}$ Output Low Voltage ($V_{DDD} \le 2$ -V, 3-mA Sink) - 0.2 × V_{DDD} - 0.2 × V_{DDD} - 0.4 - 0.4 Output Low Current $V_{OL} = 0.4$ - 3 - 3	- V
V _{OL_I2C_H} Output Low Voltage (V _{DDD} > 2-V, 3-mA Sink) - 0.4 - 0.4 Output Low Current V _{OI} = 0.4V - 3 - 3	× V _{DDD} V
Output Low Current V _{OI} = 0.4V - 3 - 3	0.4 V
	3 mA
OL_I2C Output Low Current V _{OL} = 0.6V 6	6 mA
V _{H_I2C} Input Hysteresis	_ mV
V _{H_I2C} Input Hysteresis 0.1 × V _{DDD} - 0.1 × V _{DDD} -	

FAX: 408-329-5541 Email: Sales@paradetech.com Page 22 of 28

Packaging Information

This section shows the TMA525C device packaging specifications.

Figure 18. 34-ball WLCSP (2.495 × 2.44 × 0.4-mm)

Important Note

For information on the thermal conditions, PCB layout, SMT guidelines, and preferred dimensions for mounting the package, see the application note, AN69061 - Design, Manufacturing, and Handling Guidelines for Parade Wafer Level Chip Scale Packages (001-69061).^[20]

Thermal Impedance and Moisture Sensitivity

Table 13. Thermal Impedance and Moisture Sensitivity

Package		Typical θ _{JA}	Moisture Sensitivity Level
34-Ball WLCSP		43°C/W	1

Solder Reflow Specifications

The following table lists we maximum solder reflow peak temperatures. Thermal ramp rate during preheat should be 3°C/s or lower.

Table 14. Solder Reflow Specifications

Rackage	Maximum Peak Temperature	Time at Maximum Temperature
34 Pall WLCSP	260°C	30 seconds

Note

20. Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 23 of 28

Ordering Information

Table 15 lists the TMA525C TrueTouch Multi-touch all-points touchscreen controller ordering information. For information on other TrueTouch families, visit http://www.paradetech.com/products/products-overview/.

Table 15. Device Ordering Information^[21]

Devi	evice Part Number Features							. 1	
Segmentation	Part Number	# of Touch- screen I/O	35V _{PP} ChargerArmor	DualSense	Glove	Pac	kage)
Custom	TMA525C-34FNI24ZZ(T)	24	~	~	~	34-Ball WLCSP			

Ordering Code Definitions

Note

21. All devices have the following base features: ChargerArmor, TrueTouch Buttons, Large-object Detection and Rejection, and Grip Suppression.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 24 of 28

Reference Documents

Parade has created a collection of documents to support the design of TrueTouch touchscreen controllers. The following list will guide you in identifying the proper document for your task.

- PCB/FPC Schematic and Layout Design
- ITO Panel Design
- Driver Development

- Manufacturing (MFG)
- System Performance Evaluation

Parade's TrueTouch technology is Parade confidential information and is protected through a Non-Disclosure Agreement (NDA). These documents are not publicly available on the Parade website. Contact your local Parade office to request any of these documents pursuant to the aforementioned NDA. You can also direct your requests to Sales@paradetech.com. For a complete list of product documentation, see *TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual (TRM)TMA445A*, *TT21X/31X*, *TT41X Technical Reference Manual (TRM)* – 001-88195.

Table 16. Reference Specifications

Document Number	Document Title	Description	PCB FPC	ITO Panel	Driver	MFG	System
Product Spe	cifications	9					
001-88195	TMA445A, TT21X/31X, TT41X Technical Reference Manual (TRM)	Contains detailed information on communication protocol, modes and registers, power states, and instructions on getting states with supporting tools.	~	V	V		V
Solution Spe	ecifications						
001-49389	TrueTouch [®] Touchscreen Controller Performance Parameters	Contains Parade touchso een performance parameter definitions, justing ation for parameters, and parameter test methodologies.		V			~
001-50467	TrueTouch [®] Touchscreen Controller Module Design Best Practices	System-level design guide for building a capacitive touchscreen module, covering topics such as suchscreen traces, shielding, mechanical design, FPC/PCB design, and LCD considerations.	~	V			
001-69061	Design, Manufacturing, and Handling Guidelines for Parade Wafer-level Chip Scale Packages (WLCSP) - AN69061	Describes the design guidelines to be followed for using WLCSP packages on Parade.	~				
001-81514	Using TMA4/5XX PC in Systems With Slow Clock Edges	Discusses how to ensure proper I ² C functionality in extreme bus conditions ^[22] .	~				
001-83948	TrueTouch [®] Host Emulator Guide	Describes the TrueTouch® Host Emulator Software.					~
001-63571	TK3295-MTK TrueTou h [®] manufacturing Test Kit User Guide	Describes the TK3295-MTK Manufacturing Test Kit.				~	
001-81891	TrueTouch [®] Driver for Android (TTDA) User Guide	Contains information on the Android TrueTouch host driver.			~		
001-85104	TrueTruch Driver for WinPhone (TTDW) User Guide	Contains information on the Windows Phone host driver.			V		
External Spe	acifications – These specifications are	not created by Parade or owned by Parade, but paradetech.com.	t direction	s on how	to acquir	e or acc	ess them
UM1020-	C-Bus Specification and User Manua	nl .	~				~
EN301489	Electromagnetic Compatibility and Rac Compatibility (EMC) Standard for Radi Technical Requirements	~				~	
EN62684	Interoperability specifications of commedata-enabled mobile telephones.	on external power supply (EPS) for use with	~				~
JEP95	JEDEC Publication 95, Design Guide 4	4.18.	~				

Note

22. Extreme bus conditions are considered to be a combination of the following conditions: High-capacitive bus load, slow SCL fall time, and fast SDA rise/fall time.

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 25 of 28

Document Conventions

Units of Measure

Table 17. Units of Measure

Symbol	Unit of Measure				
°C	degrees Celsius				
μΑ	microampere				
μF	microfarad				
μs	microsecond				
μW	microwatt				
Ω	ohm				
Hz	hertz				
kΩ	kilo-ohm				
kHz	kilohertz				
mA	milliampere				
mm	millimeter				
ms	millisecond				
mV	millivolt				
mW	milliwatt				
MHz	megahertz				
nA	nanoampere				
ns	nanosecond				
pF	picofarad				
S	second				

Port Nomenclature

TEL: 408-329-5540

Px[y] describes a particular bit "y" available vit in in I/O port "x." For example, P1[2] reads "Port 1, bit 2.

Bit Field Nomenclature

'UK COI,

Px[y:z] describes a particular range of bits "y to z" within an I/O port named "Px." For example, P1[0:3] refers to bits 0 through 3 within an I/O port named P1.

Acronyms, Abbreviations, and Initialisms

Table 18. Acronyms, Abbreviations, and Initialisms Used in This Document

Acronym	Description
CPU	central processing unit
DSD	dual-solid diamond pattern (Figure V
EMI	electromagnetic interference
ESD	electrostatic discharge
FPC	flexible printed circuit
GPS	global positioning system
I ² C	inter-integrated circuit
I/O	input/output
ITO	indium in Oide
LCD	liquit crystal display
LDO	low dropout regulator
мнз 🗶	Nanhattan-3 pattern (Figure 5)
MTK	manufacturing test kit
PCB	printed circuit board
PET	polyethylene terephthalate
PIP	packet interface protocol
RF	radio frequency
SCL	serial I ² C clock
SD	signal disparity
SDA	serial I ² C data
SLIM	single-layer independent Multi-touch (Figure 6)
SMT	surface mount technology
SNR	signal-to-noise ratio
SOL	sensor-on-lens
SSD	single-solid diamond pattern (Figure 3)
SWD	serial wire debug
SWDCLK	serial wire debug clock
SWDIO	serial wire debug input/output
TRM	technical reference manual
TTHE	TrueTouch® host emulator
V _{PP}	volts peak-to-peak

Page 26 of 28

FAX: 408-329-5541 Email: Sales@paradetech.com

TMA525C TrueTouch® Multi-touch All-points Touchscreen Controller

Glossary

Maximum position error across the touchscreen, measured in millimeters, along a straight line between the actual finger accuracy

position and the reported finger position. Accuracy is measured across the core and full panel. See the specification,

TrueTouch® Touchscreen Controller Performance Parameters (001-49389)[23], for more information.

All-points Parade brand name for TrueTouch® devices capable of tracking the motion of multiple fingers.

AMOLED/OLED Type of display using Active Matrix (AM) Organic Light Emitting Diodes (OLED).

channel Analog circuitry responsible for measuring capacitance. Contains RX and TX sections and a multiple er

the touchscreen I/Os to the RX and TX sections. Fourteen parallel channels are available for capacital

capacitance conversion

Process of measuring the capacitance of an electrode connected to a ball (self capacitance) or the capacitance between a pair of electrodes connected to different ball (mutual capacitance). The result is a number that the processed by the

channel engine and CPU.

is the larger of 3.5 mm or half the That portion of the touchscreen, responsive to touch, less a perimeter area whose width core

width of the finger (for example, less a perimeter band 4.5-mm wide for a 9-mm finger)

Low-dropout regulator that sources power to the digital core when enabled. Input to the LDO is VDDD. LDO output is connected core LDO

to V_{CCD}. When the core LDO is disabled, power must be externally applied to

DCVCOM Type of liquid crystal display (LCD) in which the common electrode (V OM is driven by DC voltage.

DualSense Parade's patented self plus mutual capacitance sensing

FPC Flexible printed circuit. Pattern of conductive traces bonded on a bin, flexible substrate.

linearity Deviation of the position data from a best-fit straight line across the touchscreen, measured in millimeters. Linearity is

measured across the core and full panel. See the specification, TrueTouch® Touchscreen Controller Performance Parameters

 $(001-49389)^{[23]}$, for more information.

mutual capacitance

Capacitance between two touchscreen el

refresh rate Frequency at which consecutive frames of Luchscreen data are made available in a data buffer while a finger is present

on the touchscreen. See the specification, TrueTouch® Touchscreen Controller Performance Parameters (001-49389)[23], for

more information.

Receive. Touchscreen electrod RX touchscreen controller I/O, mapped or switched to a charge-sensing circuit within the

controller (known as a rece (e channel).

Conversion of all se sor capacitances to digital values. scan

self-capacitance Capacitance bet *y*eei a touchscreen electrode and ground.

signal-to-noise ratio (SNR)

signal disparity (SD)

Ratio between a capacitive finger signal and system noise.

iso ated from ground.

stackup yers of materials, in defined assembly order, that make up a touchscreen sensor.

Ball that can be multiplexed to RX or TX.

Transmit. Touchscreen electrode or touchscreen controller I/O, mapped or switched to a charge-forcing circuit within the controller. This charge forcing circuit drives a periodic waveform onto one or more touchscreen electrodes, which are coupled through mutual capacitance to adjacent receive electrodes.

f maximum measured signal when the touchscreen is grounded and maximum measured signal when the touchscreen

Note

23. Parade reference documents are available under NDA through your local Parade sales representative. You can also direct your requests to Sales@paradetech.com.

CONFIDENTIAL - RELEASED ONLY UNDER NON-DISCLOSURE AGREEMENT (NDA) Do Not Distribute Without Permission

TEL: 408-329-5540 FAX: 408-329-5541 Email: Sales@paradetech.com Page 27 of 28

TEL: 408-329-5540

Document History

Document Title: TMA525C TrueTouch® Multi-touch All-points Touchscreen Controller Datasheet					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
3	-	Chitiz.Mathema	01/10/2018	TX pump-related content – Added globally. Included updates to Figure 2 and Figure 9 through Figure 11, adding Figure 12 through Figure 14, and renumbering all subsequent figures. Chip-level AC Specifications – Added missing V _{DDD} information. Table 4 – Corrected ESD _{HBM} condition. Footnote 8 – Corrected cross-reference.	
2	_	Yi.Hang. Wang	05/11/2017	Figure 8 – Corrected XY16 through XY23 ball labels.	
1	_	Yi.Hang. Wang	04/10/2017	Required External Components – Clarified V _{DDA} 2.2 µ Conactor information. Figure 1 – Changed "Interrupt/Wake" with double ended arrow to "Interrupt" with right arrow only. Figure 8 – Replaced. Table 4 – Added V _{CCTX} and XRES information. Table 7 – Added V _{CCTX} and V _{TX} information. Table 8 and Table 9 – Removed temperature condition from V _H entries. Table 12 – Added "and DC" to caption, and changed V _{OL_I2C_L} , V _{OL_I2C_H} , and I _{OL_I2C} information. Clarified Android and Windows Pflone driver type (host). Updated TRM document in time. Corrected miscellaneous types.	
0	_	Chitiz.Mathema	02/14/2017	Initial release preliminaly Parade datasheet.	

Page 28 of 28