Tommy O'Shaughnessy Prof. Feng Luo Abstract Algebra I 12/05/2019

Chapter 1

Problem 9.1. The objects of **Rel** are sets, and an arrow $A \to B$ is a relation from A to B, that is, a subset $R \subseteq A \times B$. The equality relation $\{\langle a,a \rangle \in A \times A \mid a \in A\}$ is the identity arrow on a set A. Composition in Rel is to be given by

$$S \circ R = \{ \langle a, c \rangle \in A \times C \mid \exists b (\langle a, b \rangle \in R \& \langle b, c \rangle \in S) \}$$

for $R \subseteq A \times B$ and $S \subseteq B \times C$.

Solution. (a) Show that Rel is a category.

Composability:

Identity:

Associativity:

Unit:

(b) Show also that there is a functor $G: Sets \to Rel$ taking objects to themselves and each function $f: A \to B$ to its graph,

$$G(f) = \{ \langle a, f(a) \rangle \in A \times B \mid a \in A \}$$

(c) Finally, show that there is a functor $C: \mathbf{Rel}^{\mathrm{Op}} \to \mathrm{Rel}$ taking each relation $R \subseteq A \times B$ to its converse $R^c \subseteq B \times A$, where,

$$\langle a,b\rangle \in R^c \Leftrightarrow \langle b,a\rangle \in R$$

Problem 9.2.

 \square