Algorithms for neighborhood searches: The Voronoi diagram approach

Course in Computational Geometry

BORELLI ROBERTO borelli.roberto@spes.uniud.it

University of Udine

Abstract

In this presentation I consider the neighborhood selection problem which I started to study in my bachelor's thesis and in a previous work¹. I briefly recap the main results which I have already studied, namely, I define the problem in a precise way and I show a straightforward solution, then I review the common algorithmic approaches toghether with complexity analisies and I show the curse of dimensionality problem. Then I consider the Voronoi diagram approach to solve the neighborhood selection problem. First, I present the algorithm which shows how to properly use the data structure to implement an efficient solution, and second, I compare this method by the previous ones both with theoretical and experimental results.

¹R. Borelli, A. Dovier, and F. Fogolari (2022). "Data Structures and Algorithms for k-th Nearest Neighbours Conformational Entropy Estimation". In: *Biophysica* 2.4, pp. 340–352. DOI: 10.3390/biophysica2040031.

Contents

- Problem overview
- 2 The Voronoi diagram approach
- Comparison
- 4 Conclusion

Problem overview

 ALL-MNN: Given n point in a d dimensional space, find for each point p its m nearest neighbors

 ALL-MNN: Given n point in a d dimensional space, find for each point p its m nearest neighbors

- The problem has a wide range of real applications
 - ► Conformational entropy estimation on biomolecular systems
 - ► Machine learning

- I propose a very simple formulation (which I didn't found in the literature) based on integer linear programming
- It evidences the optimization nature of the problem
- It's usefull to define precisely the broblem
- It doesn't touch the geometry of the problem and it's very inefficient

Le S the betthe inpunt set $S = \vec{p_1}, \ldots, \vec{p_n}$ and let m be the number of neighbors 0 < m < nWe call N_1, \ldots, N_n the sets of m neighbors for $\vec{p_1}, \ldots, \vec{p_n}$.

Le S the be the inpunt set $S = \vec{p_1}, \dots, \vec{p_n}$ and let m be the number of neighbors 0 < m < n

We call N_1, \ldots, N_n the sets of m neighbors for $\vec{p_1}, \ldots, \vec{p_n}$. Let us introduce $n^2 - n$ binary variables of the form x_{ij} , $i \neq j$ with the meaning

$$x_{ij} = \begin{cases} 1 & \text{if } \vec{p_j} \in N_i \\ 0 & \text{otherwise} \end{cases} \quad \forall i, j \in [n], i \neq j$$
 (1)

Le S the betthe inpunt set $S = \vec{p_1}, \dots, \vec{p_n}$ and let m be the number of neighbors 0 < m < n

We call N_1, \ldots, N_n the sets of m neighbors for $\vec{p_1}, \ldots, \vec{p_n}$. Let us introduce $n^2 - n$ binary variables of the form x_{ij} , $i \neq j$ with the meaning

$$x_{ij} = \begin{cases} 1 & \text{if } \vec{p_j} \in N_i \\ 0 & \text{otherwise} \end{cases} \quad \forall i, j \in [n], i \neq j$$
 (1)

The integer programming model is now the following

$$\min \sum_{i \in [n]} \sum_{j \in [n] \setminus \{i\}} (x_{ij} \operatorname{dist}(\vec{p_i}, \vec{p_j})) \tag{2}$$

subject to:

$$\sum_{i \in [n] \setminus \{i\}} x_{ij} = m \qquad \forall i \in [n]$$
 (3)

• First lower bound: we have to read the input and print the output:

$$\Omega(nd) + \Omega(nmd) \tag{4}$$

• First lower bound: we have to read the input and print the output:

$$\Omega(nd) + \Omega(nmd) \tag{4}$$

• I can improve the lower bound by a reduction through ELEMENT-UNIQUENESS:

ELEMENT-UNIQUENESS ≺ CLOSEST-PAIR ≺ ALL-1NN

Element-Uniqueness ≤ Closest-Pair ≤ all-1nn

ullet Start from a list of numbers (points in one dimension) S on which we want to check the uniqueness property

- Start from a list of numbers (points in one dimension) *S* on which we want to check the uniqueness property
- ② For each point p_i , obtain the nearest neighbor q_i by solving the ALL-1NN problem

- Start from a list of numbers (points in one dimension) S on which we want to check the uniqueness property
- ② For each point p_i , obtain the nearest neighbor q_i by solving the ALL-1NN problem
- **3** Compute the vector \vec{d} such that $d_i = dist(p_i, q_i)$

- Start from a list of numbers (points in one dimension) S on which we want to check the uniqueness property
- ② For each point p_i , obtain the nearest neighbor q_i by solving the ALL-1NN problem
- **3** Compute the vector \vec{d} such that $d_i = dist(p_i, q_i)$
- Look for the index j such that d_j is minimum and so we have solved the Closest-Pair problem

Element-Uniqueness ≤ Closest-Pair ≤ all-1nn

- Start from a list of numbers (points in one dimension) S on which we want to check the uniqueness property
- ② For each point p_i , obtain the nearest neighbor q_i by solving the ALL-1NN problem
- **3** Compute the vector \vec{d} such that $d_i = dist(p_i, q_i)$
- **1** Look for the index j such that d_j is minimum and so we have solved the Closest-Pair problem
- **5** To solve the Element-Uniqueness problem, check if $d_j=0$

Element-Uniqueness ≤ Closest-Pair ≤ all-1nn

- Start from a list of numbers (points in one dimension) S on which we want to check the uniqueness property
- ② For each point p_i , obtain the nearest neighbor q_i by solving the ALL-1NN problem
- **3** Compute the vector \vec{d} such that $d_i = dist(p_i, q_i)$
- **1** Look for the index j such that d_j is minimum and so we have solved the Closest-Pair problem
- $oldsymbol{\circ}$ To solve the <code>Element-Uniqueness</code> problem, check if $d_j=0$
- Steps 3 and 4 take linear time
- Solving the Element-Uniqueness takes $\Omega(n \log n)$ time
- Solving the ALL-1NN problem in $o(n \log n)$ implies a contraddiction

Some details on the reduction:

- Note that Element-Uniqueness is a decision problem while the other 2 are functional problems. So we are referring to the more general definition of reduction between functional problems
- One (implicit) key assumption: the ALL-1NN takes as input a list (and not a set) of points. Otherwise the reduction doesn't make sense: a set always satisfies the uniqueness property
- In real world situations S is always a set
- By implementing the classical algorithms I observed that the code doesn't change much if we allow or not S to be a list
- ullet To be precise I should also prove that ALL-1NN_{lists} \preceq ALL-1NN_{sets}

The naive approach

• If we consider just one dimension we can easily come up with an optimal algorithm which takes linear space and $\Theta(n \log n + mn)$ time

The naive approach

- If we consider just one dimension we can easily come up with an optimal algorithm which takes linear space and $\Theta(n \log n + mn)$ time
- If we consider more dimensions:

NAIVE-ALL-MNN(S)

- For each point p in S, compute the vector $\vec{d_p}$ which contains the distances between p and all the other points
- ② Order each vector $\vec{d_p}$
- 3 Return the *m* nearest neighbors for each *p*

The naive approach

- If we consider just one dimension we can easily come up with an optimal algorithm which takes linear space and $\Theta(n \log n + mn)$ time
- If we consider more dimensions:

Naive-all-mnn(S)

- For each point p in S, compute the vector $\vec{d_p}$ which contains the distances between p and all the other points
- ② Order each vector $\vec{d_p}$
- 3 Return the *m* nearest neighbors for each *p*
- Ordering (which takes $\Theta(n \log n)$) is not really necessary. After computing $\vec{d_p}$ we could just select (in linerar time) the *m*-th smallest distance
- So in the general case we have an algorithm which always takes linear space and $O(dn^2)$ time
- ... which of course is unaceptable

Classical approaches and results

In the literature we can find algorithms based on tree structures (like VP trees, K-D trees, Quad trees, ...) which are made up of the following steps:

Classical approaches and results

In the literature we can find algorithms based on tree strutures (like VP trees, K-D trees, Quad trees, ...) which are made up of the following steps:

• **Preprocessing:** In this step we prepare a data structure (for example a tree) which tries to partition the space in small regions containing points. For each point in *S* the we then invoke a query algorithm which should take advantage of the structure created.

Classical approaches and results

In the literature we can find algorithms based on tree structures (like VP trees, K-D trees, Quad trees, ...) which are made up of the following steps:

- Preprocessing: In this step we prepare a data structure (for example a tree) which tries to partition the space in small regions containing points. For each point in S the we then invoke a query algorithm which should take advantage of the structure created.
- Querying: Given a point $p \in S$ we visit the data structure (possibly a small part of it) in order to find the m nearest neighbors of p.

Classical approaches and results: The K-D Tree

- Each internal node corresponds to a binary test which involves the projection operation
- At each node the set of points is split into two almost-balanced sets

Classical approaches and results: The VP Tree

- Similar idea to K-D Trees but more general
- Each internal node is no more associated with a projection but only involves the dicotomy far/near with respect to the vantage point

Classical approaches and results: Costs

- The preprocessing steps is in some sense *easy* and takes $\Theta(n \log n)$ time
- The query should take $\Theta(\log n)$ time, but with currently-avalaible methods this happens only in the avarage case
- We get the worst case when d is sufficiently large. In such case the
 query algorithm takes linear time (we essentially visit the entire tree
 structure) and the entire ALL-MNN algorithm degenretes to an
 exhaustive search which takes quadratic time
- This problem is known in the literature as curse of dimensionality and we currently don't know if the problem admits an optimal solution when the number of dimension increases

Classical approaches and results: Comparison

- Whith d = 6 dimensions and m = 20 VP Tree and the K-D tree performances are the same expect for a multiplicative constant
- Recall: In double logarithmic scale different lines inclinations means different polinomials

Classical approaches and results: Curse of dimensionality

• While working with n=100000 points and m=20 neighbors per point, advantages of tree-based methods are completely lost at d=20

Classical approaches and results: Curse of dimensionality

- We observed that *curse of dimensionality* tends to attenuate when we increase *n*
- We also observed that the tree-based approaches degenerate in an exhaustive search when $d \in \Omega(\log n)$

The Voronoi diagram approach

The Voronoi diagram

Optimal solution to ALL-1NN in 2d

The *k*-th order Voronoi diagram

Optimal solution to ALL-MNN in 2d

Comparison

Comparison

Comparison

Conclusion

Concluding remarks

Bibliography I

Borelli, R., A. Dovier, and F. Fogolari (2022). "Data Structures and Algorithms for k-th Nearest Neighbours Conformational Entropy Estimation". In: *Biophysica* 2.4, pp. 340–352. DOI: 10.3390/biophysica2040031.

Chazelle, B. and H. Edelsbrunner (1987). "An Improved Algorithm for Constructing kth-Order Voronoi Diagrams". In: *IEEE Transactions on Computers* C-36.11, pp. 1349–1354. DOI: 10.1109/TC.1987.5009474.

Lee, D.-T. (1982). "On k-Nearest Neighbor Voronoi Diagrams in the Plane". In: *IEEE Transactions on Computers* C-31.6, pp. 478–487. DOI: 10.1109/TC.1982.1676031.

Bibliography II

Shamos, M. I. and D. Hoey (1975). "Closest-point problems". In: 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), pp. 151–162. DOI: 10.1109/SFCS.1975.8.