AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Stručný přehled přednášky

- Automaty
 - Formální jazyky, operace
 - Konečné automaty a jejich varianty
 - Regulární jazyky, regulární výrazy
- Gramatiky
 - Chomského hierarchie jazyků
 - Bezkontextové a kontextové jazyky
 - Uzávěrové vlastnosti
- Souvislosti
 - Turingovy stroje
 - Algoritmicky nerozhodnutelné problémy

Automaty a gramatiky Pavel Surynek, 2015

Historie

- Teorie formálních jazyků
 - Počátky 50. léta
 - pokus o popis nekonečných objektů konečnými prostředky
 - □ 60. léta
 - vyšší programovací jazyky syntaxe
 - FORTRAN, ALGOL, PASCAL
- Biologické procesy (popis buňky)
 - 40. léta
 - umělý neuron, neuronová síť, celulární automat
- Výpočetní modely (theory of computation)
 - snaha o formalizaci algoritmu
- Osobnosti
 - Kleene, Post, Church, Turing, Markov, Huffmann, Shannon, von Neumann, McCulloch, Pitts, Chomsky

3 | Automaty a gramatiky Pavel Surynek, 2015

Zdroje

Původní

- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 2001.
- Jeffrey D. Ullman: Introduction to Automata and Complexity Theory, lecture notes. On-line: http://infolab.stanford.edu/~ullman, Stanford University, 2010.
- Jeffrey D. Ullman: Stanford Automata, video lecture. On-line: https://www.coursera.org/course/automata, Coursera, 2013.

Tuzemské

- □ Pavel Surynek: Současná přednáška. On-line: http://ktiml.mff.cuni.cz/~surynek, od 2014.
- Roman Barták: Automaty a gramatiky, slidy. On-line: http://ktiml.mff.cuni.cz/~bartak, 2005 2013.
- □ Václav Koubek: Automaty a gramatiky, skripta. On-line: http://ktiml.mff.cuni.cz, 1996.

Další zdroje

- M. Demlová, V. Koubek: Algebraická teorie automatů, SNTL Praha, 1990.
- M. Chytil: Teorie automatů a formálních jazyků, skripta, MFF UK.
- M. Chytil: Sbírka řešených příkladů z teorie automatů a formálních jazyků, skripta, MFF UK.

Automaty a gramatiky Pavel Surynek, 2015

Slova, jazyky

- Abeceda
 - X konečná neprázdná množina symbolů
- Slovo
 - □ konečná posloupnost prvků z X
 - w = $x_1x_2...x_n$, kde n ∈ \mathbb{N}_0 a x_i ∈ X pro i = 1,2, ..., n ■ n - délka slova, |w|= n
 - prázdná posloupnost pro n = 0
 - \blacksquare prázdné slovo λ (někdy Λ nebo ε)
 - X* množina všech slov nad X
 - X⁺ množina všech neprázdných slov nad X
 - $X^+ = X^* \{\lambda\}$
- Jazyk L nad abecedou X
 - (libovolná) množina slov nad X
 - $L \subseteq X^*$, tj. $L \in \mathcal{P}(X^*)$

Př.: $X = \{a, b, c\}$

Př.: abbcaa, |abbcaa| = 6

Př.: $L = \{abc, abcc, abccc, abcccc, abcccc, abcccc, abccc, abccc, abccc, abccc, abccc, abccc, abccc, abccc, abccc, ab$... }

Pozn.: X* spočetná $\mathcal{P}(X^*)$ nespočetná

Operace se slovy a jazyky

- Konkatenace zřetězení slov
 - $u,v \in X^*$, kde $u = x_1x_2...x_n$ a $v = y_1y_2...y_m$
 - $u.v = X_1X_2...X_nY_1Y_2...Y_m$
 - Př.: u = abba, v = cba, pak u.v = abbacba
- Mocnina slova
 - u ∈ X*
 - $u^0 = \lambda, u^1 = u, u^{i+1} = u.u^i$
- Prefix, sufix, zrcadlový obraz
 - $w \in X^*$, $u \in X^*$ je prefix w, jestliže $\exists v \in X^*$, že w = u.v
 - $\mathbf{u} \in X^*$, $\mathbf{u} \in X^*$ je sufix w, jestliže $\exists \mathbf{v} \in X^*$, že w = v.u
 - $w \in X^*$, kde $w = z_1 z_2 ... z_n$, pak $w^R = z_n z_{n-1} ... z_1$ je zrcadlový obraz w
- Množinové operace s jazyky
 - K, L ⊆ X*
 - \square K \cap L, K \cup L, K L (rozdíl), -L = X* L (doplněk)
 - K/L pravý kvocient K podle L
 - $K/L = \{u \mid (\exists v \in L) \ u.v \in K\}$
 - L\K levý kvocient K podle L
 - $L\K = \{u \mid (\exists v \in L) v.u \in K\}$

 $P\tilde{r}$: w = abbcaa abb je *prefix* w bcaa je *sufix* w

```
Př.: K = \{ 01w \mid w \in \{0,1\}^* \}
      L = \{ 0w1 \mid w \in \{0,1\}^* \}
      K/L = K \cup \{\lambda\}
      L\K = \{0, 1\}^*
```

Konečný automat

- **Konečný automat** A = (Q, X, δ, q_0, F)
 - Q konečná neprázdná množina stavů kde se necházíme ve stavu
 - X konečná neprázdná množina symbolů to co teme
 - abeceda (prvky písmena)
 - $\delta: Q \times X \longrightarrow Q$ přechodová funkce "tabulka p echod "
 - $q_0 \in Q počáteční stav$
 - F ⊆ Q množina přijímajících stavů ty co nás zajímají na konci výpo tu
- □ Výpočet automatu A nad w ∈ X*
 - rozšířená přechodová funkce δ^* : Q × X* \longrightarrow Q
 - $\delta^*(q, \lambda) = q$

∀q∈Q

delta bez hv zdy je pro písmeno delta* je pro slovo

- □ slovo w je přijímáno automatem A, jestliže $\delta^*(q_0, w) \in F$
 - $L(A) = \{ w \mid w \in X^* \text{ a } \delta^*(q_0, w) \in F \}$
- Regulární jazyk
 - □ jazyk L se nazývá regulární, jestliže existuje konečný automat A, že L(A) = L

7 | Automaty a gramatiky Pavel Surynek, 2015

Popis konečného automatu

- Stavový diagram (ohodnocený graf)
 - vrcholy odpovídají stavům Q
 - ohodnocené orientované hrany odpovídají přechodové funkci δ
 - speciálně vyznačený počáteční stav q_o
 a přijímající stavy F

Př.: $L(A) = \{w \in \{a,b\}^* \mid w \text{ neobsahuje bb}\}$

Tabulka

- řádky odpovídají stavům Q
- sloupce symbolům X
- místo na řádku q∈Q a ve sloupci x∈X obsahuje δ(q, x)
- vyznačení počátečního a přijímajících stavů

$\delta(1,\alpha)=1$			
	Α `	а	b
~	1	1	2
←	- 2	1	3
	3	3	3

Automaty a gramatiky Pavel Surynek, 2015

Výpočetní síla

- Charakterizace regulárních jazyků
 - Kongruence
 - Ekvivalence (tj. reflexivní, symetrická a tranzitivní relace) ~ nad X* se nazývá pravá kongruence, jestliže:
 ∀u, v, w∈X* u ~ v ⇒ uw ~ vw
 slu itelnost s operací: p idání slova zprava
 - rozkládá X* na třídy ekvivalence
 - [u]_~ třída ekvivalence určená slovem u∈X*
 - $v \in X^*$, $v \in [u]_{\sim}$, jestliže $v \sim u$
 - X*/~ množina tříd rozkladu (tj. [u]~ ∈ X*/~)
 - v je konečného indexu, jestliže rozkládá X* na konečně mnoho ekvivalenčních tříd
 - Myhill-Nerodova věta
 - Jazyk L lze přijímat konečným automatem, právě když existuje pravá kongruence ~ konečného indexu, že L je sjednocením některých jejích tříd.

9 | Automaty a gramatiky Pavel Surynek, 2015

Důkaz Myhill-Nerodovy věty

- $\Box \Rightarrow$
 - máme KA A = (Q, X, δ , q₀, F), že L(A) = L
 - □ pro u,v∈X* definujeme u ~ v, jestliže $\delta^*(q_0, u) = \delta^*(q_0, v)$
 - ~ je ekvivalence, tj. má smysl uvažovat o X*/~
 - Q je konečná ⇒ X*/~ je konečná
 - $\forall u,v,w \in X^* \text{ když } \delta^*(q_0, u) = \delta^*(q_0, v), \text{ pak } \delta^*(\delta^*(q_0, u), w) = \delta^*(\delta^*(q_0, v), w), \text{ tedy } \sim \text{je pravá kongruence}$
 - □ L(A) = { w | w∈X* a $\delta^*(q_0, w) \in F$ } = $\bigcup_{f \in F} \{ w | \delta^*(q_0, w) = f \}$ tedy to jsou t idy ekvivalence
- - máme pravou kongruenci ~
 - položíme Q = X*/_
 - $\mathbf{q}_0 = [\lambda]_{\sim}$
 - □ pro x∈X a w∈X* položíme $\delta([w]_{\sim}, x) = [wx]_{\sim}$
 - pro u,v∈X* by mělo platit, že $\delta([u]_{\sim}, x) = \delta([v]_{\sim}, x)$, pokud u ~ v
 - ux ~ vx je vlastnost pravé kongruence, tedy [ux] = [vx]
 - □ F = třídy z X*/~ tvořící L
 - $\mathbf{w} \in \mathbf{L}$, právě když $[\mathbf{w}]_{\sim} \in \mathbf{F} \Leftrightarrow \delta^*([\lambda]_{\sim}, \mathbf{w}) = [\mathbf{w}]_{\sim}$, což je, právě když $\mathbf{w} \in \mathbf{L}(A)$

Aplikace Myhill-Nerodovy věty

- Konstrukce konečného automatu
 - □ L = $\{w \mid w \in \{0,1\}^* \land (\exists k \in \mathbb{N}_0) \mid w \mid_1 = 3k+1\}$
 - definujeme u ~ v, jestliže $|u|_1$ mod 3 = $|v|_1$ mod 3
 - jedná se o pravou kongruenci
 - třídy [λ], [1], [11].
 - L = [1]
- Důkaz neregularity jazyka
 - $L = \{0^{n}1^{n} \mid n \in \mathbb{N}_{0}\}$ není kam si poznamenat kolik za lo nul
 - předpokládejme, že L je regulární
 - máme pravou kongruenci ~ konečného indexu, nechť k je index
 - L je sjednocením některých jejích tříd
 - volme slova 0, 00, ..., 0^k, 0^{k+1}
 - existují i,j∈{1, ..., k+1}, i \neq j, že 0ⁱ ~ 0^j
 - přidáme 1ⁱ, z vlastnosti pravé kongruence je 0ⁱ1ⁱ ~ 0^j1ⁱ
 - 0ⁱ1ⁱ ∈L, ale 0^j1ⁱ ∉L, přitom 0ⁱ1ⁱ a 0^j1ⁱ jsou ve stejné ekvivalenční třídě

zv tším po et jedni ek na obou stranách stejn , takže se mod zachová

Pumping (iterační) lemma

Pumping lemma

■ Nechť L je regulární jazyk, pak existuje $n \in \mathbb{N}$, že libovolné slovo $z \in L$ takové, že $|z| \ge n$, lze napsat ve tvaru z = u.v.w, kde $|u.v| \le n$, $|v| \ge 1$ a $u.v^i.w \in L$ pro všechna $i \in \mathbb{N}_0$.

Více logicky

■ Nechť L je regulární jazyk, pak existuje $n \in \mathbb{N}$, že $(\forall z \in L)[|z| \ge n \Rightarrow (\exists u,v,w \in X^*)(z = u.v.w \land |u.v| \le n \land |v| \ge 1 \land (\forall i \in \mathbb{N}_0)u.v^i.w \in L)].$

12 | Automaty a gramatiky Pavel Surynek, 2015

Důkaz pumping lemmatu

- Je-li L regulární, pak existuje KA A, že L(A) = L
 - n = počet stavů automatu A
 - výpočet nad slovem z, kde |z|≥n, navštíví některý stav aspoň dvakrát, nechť první takový stav je p
 - při první návštěvě p byl přečten prefix u
 - $\delta^*(q_0, u) = p$
 - při druhé návštěvě p byl přečten prefix uv
 - $\delta^*(q_0, uv) = p$
 - |uv|≤n

vynecháním v, m žu pokra ovat

- byl uvažován první opakující se stav
- |v|≥1
 - návrat do p se uskutečnil čtením aspoň jednoho písmena
- $\delta^*(q_0, uvw) = f \in F$, pak $\delta^*(q_0, uw) = f$ a $\delta^*(q_0, uv^iw) = f$ pro i = 2, 3, ...

Použití pumping lemmatu

- Vyloučení, že daný jazyk L je regulární
 - dívejme se na pumping lemma jako na implikaci
 - regulární L ⇒ pro L platí pravá strana lemmatu
 - pro L neplatí pravá strana lemmatu ⇒ L není regulární
 - neplatí pravá pumping lemmatu
 - využijeme logické vyjádření, vytvoříme negaci
 - $\forall n \in \mathbb{N} (\exists z \in L)[|z| \ge n \land (\forall u, v, w \in X^*)((z = u.v.w \land |u.v| \le n \land |v| \ge 1) \Rightarrow$ $(\exists i \in \mathbb{N}_0)u.v^i.w \notin L)$].
- \Box L={0^k1^k | k ∈ N₀}
 - n (od nepřítele, tedy libovolné)
 - pro n vezmeme slovo $z = 0^n1^n$
 - ijistě $|0^n1^n|$ ≥n, pro libovolný rozklad splňující z = u.v.w ∧ |u.v| ≤n ∧ |v| ≥1 je v = 0^{j} pro $j \in \mathbb{N}$, $j \ge 1$
 - zvolme i = 2 a dostáváme, že u.v².w = 0^{n+j}1ⁿ∉L
- Jedná se nutnou podmínku, nikoli postačující (lemma je implikace).
 - □ L = $\{w \in \{a,b,c\}^* \mid w = a^+b^ic^i \lor w = b^ic^j \}$ není regulární, pravá strana platí