Midterm Exam Mathematical Methods in Finance Fall 2014 Nov. 24th, 2014

Question #1 (20 points)

Let $\{W_1(t)\}\$ and $\{W_2(t)\}\$ be two independent standard one-dimensional Brownian motions.

- 1. (12 points) Find a constant c such that $\{B(t)\}$, where $B(t) = c(W_1(t) W_2(t))$, is also a standard one-dimensional Brownian motion. And, use the definition of Brownian motion to carefully justify your answer, i.e., to show that $\{B(t)\}$ satisfy the definition of a standard one-dimensional Brownian motion in this case.
- 2. (8 points) Is it True or False that "with probability 1, the path of $\{W_1(t)\}$ and $\{W_2(t)\}$ intersect infinitely many times?" Why? Clearly use a property we learnt in class to briefly justify your claim.

Suggested solution:

1. To make B a standard Brownian motion, we need

$$\mathbb{E}B(t)^2 = t.$$

Because

$$\mathbb{E}B(t)^{2} = c^{2}\mathbb{E}(W_{1}(t) - W_{2}(t))^{2}$$

$$= c^{2}\left[\mathbb{E}W_{1}(t)^{2} + \mathbb{E}W_{2}(t)^{2} - 2\mathbb{E}(W_{1}(t)W_{2}(t))\right]$$

$$= c^{2}\left[\mathbb{E}W_{1}(t)^{2} + \mathbb{E}W_{2}(t)^{2} - 2\mathbb{E}W_{1}(t)\mathbb{E}W_{2}(t)\right]$$

$$= 2c^{2}t,$$

we need

$$2c^2 = 1.$$

Thus, we have

$$c = \frac{1}{\sqrt{2}}.$$

Then, use the four points in the definition of Brownian motion to justify that $B(t) = \frac{1}{\sqrt{2}}(W_1(t) - W_2(t))$, is a standard one-dimensional Brownian motion.

- (1) It is obvious that B(0) = 0 since $W_1(0) = W_2(0) = 0$;
- (2) B(t) is a continuous function for any $\omega \in \Omega$. This can be easily obtained from continuity of $W_1(t)$ and $W_2(t)$.
 - (3) For any s < t, note that

$$B(t) - B(s) = \frac{1}{\sqrt{2}} \left((W_1(t) - W_1(s)) + (W_2(t) - W_2(s)) \right),$$

and

$$W_1(t) - W_1(s) \stackrel{d}{=} W_2(t) - W_2(s) \sim N(0, t - s).$$

Since $W_1(t)$ and $W_2(t)$ are independent, so do $W_1(t) - W_1(s)$ and $W_2(t) - W_2(s)$. Thus, we claim $B(t) - B(s) \sim N(0, t - s)$. Then, the stationary increment is verified.

- (4) Independent increment. This can be obtained from independent increment of $W_1(t)$ and $W_2(t)$, as well as their independence.
 - 2. The claim is TRUE!

As a Brownian motion B visits zero infinitely often (recurrence), thus $B(t) = \frac{1}{\sqrt{2}}(W_1(t) - W_2(t))$ equals zero infinitely often. This results in that the path of $\{W_1(t)\}$ and $\{W_2(t)\}$ intersect infinitely many times.

Question #2 (20 points)

Poisson process is very useful in modeling arrivals of market shocks. Let $\{N(t)\}$ be a Poisson process with intensity λ and suppose $\{\mathcal{F}(t)\}$ is the a filtration generated by $\{N(t)\}$ itself. i.e. $\mathcal{F}(t) = \sigma(N(s), s \le t)$. Intuitively, $\mathcal{F}(t)$ is the information of the Poisson process accumulated up to time t. Let $t_2 > t_1 > 0$.

- 1. (8 points) Compute the conditional probability $\mathbb{P}(N(t_2) = n_2 | N(t_1) = n_1)$ for some integers $n_2 > n_1 > 0$. Thus, are the two random variables $N(t_2)$ and $N(t_1)$ independent? Why?
- 2. (12 points) Find conditional expectations $\mathbb{E}(N(t_2)|N(t_1))$, $\mathbb{E}(N(t_2)|\mathcal{F}(t_1))$, $\mathbb{E}(N(t_1)|N(t_2))$, and $\mathbb{E}(N(t_1)|\mathcal{F}(t_2))$.

Suggested solution:

1. Since Poisson process admit independent and stationary increment, we have

$$\mathbb{P}(N(t_2) = n_2 | N(t_1) = n_1) = \mathbb{P}(N(t_2) - N(t_1) = n_2 - n_1)
= \mathbb{P}(N(t_2 - t_1) = n_2 - n_1)
= \frac{(\lambda (t_2 - t_1))^{n_2 - n_1}}{(n_2 - n_1)!} e^{-\lambda (t_2 - t_1)}.$$

We note that

$$\mathbb{P}(N(t_2) = n_2 | N(t_1) = n_1) \neq \mathbb{P}(N(t_2) = n_2),$$

i.e.,

$$\mathbb{P}(N(t_2) = n_2, N(t_1) = n_1) \neq \mathbb{P}(N(t_1) = n_1)\mathbb{P}(N(t_2) = n_2).$$

Thus, it is obvious that the two random variables $N(t_2)$ and $N(t_1)$ are not independent.

2. Using the definition and basic properties of conditional expectation, we obtain the following results. Because the Markov property, we have

$$\mathbb{E}\left(N(t_2)|N(t_1)\right) = \mathbb{E}(N(t_2)|\mathcal{F}(t_1)).$$

Because the compensated Poisson process $M(t) = N(t) - \lambda t$ is a martingale, we have

$$\mathbb{E}\left(M(t_2)|\mathcal{F}(t_1)\right) = M(t_1).$$

Thus, we have

$$\mathbb{E}\left(N(t_2) - \lambda t_2 | \mathcal{F}(t_1)\right) = N(t_1) - \lambda t_1.$$

So,

$$\mathbb{E}(N(t_2)|\mathcal{F}(t_1)) = N(t_1) + \lambda(t_2 - t_1).$$

Thus, we obtained

$$\mathbb{E}(N(t_2)|N(t_1)) = \mathbb{E}(N(t_2)|\mathcal{F}(t_1)) = N(t_1) + \lambda(t_2 - t_1).$$

To calculate $\mathbb{E}(N(t_1)|N(t_2))$, note that given $N(t_2)$, the arrivial times are order statistics of $N(t_2)$ random variables uniformly distributed on $(0, t_2)$. So, we conclude

$$\mathbb{E}(N(t_1)|N(t_2)) = \frac{t_1}{t_2}N(t_2).$$

Or we can either use the joint density of $(N(t_1)|N(t_2))$. Note that by definition of condition probability, we have

$$\mathbb{P}(N(t_1) = n_1 | N(t_2) = n_2) = \frac{\mathbb{P}(N(t_1) = n_1, N(t_2) = n_2)}{\mathbb{P}(N(t_2) = n_2)}.$$

Since $N(t_1)$ and $N(t_2) - N(t_1)$ are independent, we further derive

$$\mathbb{P}(N(t_1) = n_1 | N(t_2) = n_2) = \frac{\mathbb{P}(N(t_1) = n_1) \mathbb{P}(N(t_2) - N(t_1) = n_2 - n_1)}{\mathbb{P}(N(t_2) = n_2)} \\
= \frac{(\lambda t_1)^{n_1} (\lambda (t_2 - t_1))^{n_2 - n_1} n_2!}{(\lambda t_2)^{n_2} n_1! (n_2 - n_1)!} = \frac{t_1^{n_1} (t_2 - t_1)^{n_2 - n_1} n_2!}{t_2^{n_2} n_1! (n_2 - n_1)!}.$$

Then, the conditional expectation follows

$$\mathbb{E}(N(t_1)|N(t_2) = n_2) = \sum_{n_1=0}^{\infty} \frac{t_1^{n_1} (t_2 - t_1)^{n_2 - n_1} n_2!}{t_2^{n_2} (n_1 - 1)! (n_2 - n_1)!}$$

$$= n_2 \left(\frac{t_2 - t_1}{t_2}\right)^{n_2} \sum_{n_1=0}^{\infty} \left(\frac{t_1}{t_2 - t_1}\right)^{n_1} \frac{(n_2 - 1)!}{(n_1 - 1)! (n_2 - n_1)!}$$

$$= n_2 \left(\frac{t_2 - t_1}{t_2}\right)^{n_2} \left(1 + \frac{t_1}{t_2 - t_1}\right)^{n_2 - 1} = \frac{t_1 n_2}{t_2}.$$

So, we also obtain $\mathbb{E}(N(t_1)|N(t_2)) = t_1n_2/t_2$. Because $N(t_1)$ is $\mathcal{F}(t_1)$ measurable (known to the information), it is thus $\mathcal{F}(t_2)$ measurable. So

$$\mathbb{E}\left(N(t_1)|\mathcal{F}(t_2)\right) = N(t_1).$$

Note that other methods arriving to the same results are also acceptable!

Question #3 (20 points)

Consider a two-period binomial lattice model with $S_0 = 6$, u = 2, $d = \frac{1}{2}$. Suppose that the real-world probability for the stock to go up at each period is $p = \frac{5}{6}$. We assume the risk-free rate as $r = \frac{1}{4}$.

1. (4 points) What is the risk-neutral probability measure?

- 2. (8 points) Find the initial no-arbitrage price of a put option with strike K = 6. You may use either the backward induction or the forward pricing method to calculate it.
- 3. (8 points) Find the corresponding Delta-hedging strategy, i.e., the number of stock shares in the replicating portfolio, and briefly describe how the replication is done.

Suggested solution:

- 1. Risk-neutral measure is an equivalent probability measure under which the discounted security prices of the market are martingales.
 - 2. According to binomial lattice pricing, the risk-neutral probability can be given as

$$\tilde{p} = \frac{1+r-d}{u-d} = \frac{1}{2},$$

 $\tilde{q} = \frac{u-(1+r)}{u-d} = \frac{1}{2}.$

Also, the ternimal value of option is

$$V_2(HH) = (6 \times 2 \times 2 - 6)^+ = 18,$$

$$V_2(HT) = V_2(TH) = \left(6 \times 2 \times \frac{1}{2} - 6\right)^+ = 0,$$

$$V_2(TT) = \left(6 \times \frac{1}{2} \times \frac{1}{2} - 6\right)^+ = 0.$$

Thus, backward induction implies

$$V_1(H) = 18 \times \frac{1}{2} \times \frac{4}{5} = \frac{36}{5}, V_1(T) = 0,$$

 $V_0 = \frac{36}{5} \times \frac{1}{2} \times \frac{4}{5} = \frac{72}{25}.$

3. We have

$$\begin{split} \Delta_0 &= \frac{V_1(H) - V_1(T)}{S_1(H) - S_1(T)} = \frac{4}{5}, \ V_0 - \Delta_0 S_0 = -\frac{48}{25}, \text{(borrow)} \\ \Delta_1(H) &= \frac{V_2(HH) - V_2(HT)}{S_2(HH) - S_2(HT)} = 1, \ V_1(H) - \Delta_1(H) S_1(H) = -\frac{24}{5}, \text{(borrow)} \\ \Delta_1(T) &= \frac{V_2(TH) - V_2(TT)}{S_2(TH) - S_2(TT)} = 0, \ V_1(T) - \Delta_1(T) S_1(T) = 0. \end{split}$$

Question #4 (20 points)

Suppose a geometric Brownian motion is employed to model the USD/CNY foreign exchange rate, i.e.

$$R(t) = R_0 \exp \left(\sigma W(t) + \mu t\right),\,$$

where W is a standard one-dimensional Brownian motion; R_0 , μ and σ are positive constants representing the initial exchange rate, the drift and the volatility, respectively.

- 1. (12 points) In general cases, do we have $\mathbb{E}(1/R(t)) = 1/(\mathbb{E}R(t))$? Please justify your answer!
- 2. (8 points) Under what relation between μ and σ , the CNY/USD exchange rate process $\{1/R(t)\}$ is a martingale?

Suggested solution:

- 1. No, it doesn't hold. Note that R(t) is log-normal distributed whose mean is $\exp\left(\log R_0 + \mu t + \sigma^2 t/2\right)$. On the other hand, 1/R(t) is also log-normal distributed whose mean is $\exp\left(-\log R_0 \mu t + \sigma^2 t/2\right)$. Then, we can see the relation doesn't hold.
 - 2. From the last question, it is necessary and sufficient that

$$\mu = \frac{1}{2}\sigma^2.$$

Or, we can see

$$\frac{1}{R(t)} = \frac{1}{R_0} \exp \left(-\sigma W(t) - \mu t \right),$$

which is a geometric Brownian motion. Since we know

$$\exp\left(-\sigma W(t) - \frac{1}{2}\sigma^2 t\right)$$

is an expoenntial martingale, we can also obtain the relation.

Question #5 (plus additional 20 points)

The price of an asset with an initial value S_0 follows a binomial lattice model

$$S_{k+1} = S_k X_{k+1},$$

for $k = 0, 1, 2, \dots$, where X_1, X_2, \dots , are independently and identically distributed according to a Bernoulli distribution taking value u > 1 with probability p and taking value 1/u with probability 1 - p. Suppose 0 .

1. Let

$$M_k = \left(\prod_{l=1}^k X_l\right)^{\frac{\log(1-p)-\log p}{\log u}}.$$

And, denote by $\{\mathcal{F}_k\}$ is a filtration generated by $\{X_k\}$ itself, i.e., $\mathcal{F}_k = \sigma\left(X_l, l \leq k\right)$. Intuitively, \mathcal{F}_k is the information of the process $\{X_k\}$ accumulated up to the time k. Prove that $\{M_k\}$ is a martingale adapted to the filtration $\{\mathcal{F}_k\}$.

2. Find the probability that the stock price hit the level S_0u^m before hitting S_0u^n . Here, m > 0 and n < 0 are two integers.

Suggested solution:

1. It suffice to prove that

$$\mathbb{E}\left[M_{k+1}|M_k\right] = M_k,$$

i.e.,

$$\mathbb{E}\left[\left(\prod_{l=1}^k X_l\right)^{\frac{\log(1-p)-\log p}{\log u}} X_{k+1}^{\frac{\log(1-p)-\log p}{\log u}}\right] = \left(\prod_{l=1}^k X_l\right)^{\frac{\log(1-p)-\log p}{\log u}}.$$

Since X_1, X_2, \cdots , are independently and identically distributed, we have

$$\mathbb{E}\left[\left(\prod_{l=1}^k X_l\right)^{\frac{\log(1-p)-\log p}{\log u}} X_{k+1}^{\frac{\log(1-p)-\log p}{\log u}}\right] = \mathbb{E}\left[\left(\prod_{l=1}^k X_l\right)^{\frac{\log(1-p)-\log p}{\log u}}\right] \mathbb{E}\left[X_{k+1}^{\frac{\log(1-p)-\log p}{\log u}}\right].$$

Thus, it is equivalent to veirfy that

$$\mathbb{E}\left[X_{k+1}^{\frac{\log(1-p)-\log p}{\log u}}\right]=1.$$

By definition, we deduce

$$\mathbb{E}\left[X_{k+1}^{\frac{\log(1-p)-\log p}{\log u}}\right] = pu^{\frac{\log(1-p)-\log p}{\log u}} + (1-p)\,u^{\frac{\log p - \log(1-p)}{\log u}}.$$

Note that

$$u = e^{\log u},$$

which implies

$$u^{\frac{1}{\log u}} = e.$$

Thus, we have

$$u^{\frac{\log(1-p)-\log p}{\log u}} = e^{\log(1-p)-\log p} = e^{\log\left(\frac{1-p}{p}\right)} = \frac{1-p}{p},$$

$$u^{\frac{\log p - \log(1-p)}{\log u}} = e^{\log p - \log(1-p)} = e^{\log\left(\frac{p}{1-p}\right)} = \frac{p}{1-p}.$$

Finally, we have

$$\mathbb{E}\left[X_{k+1}^{\frac{\log(1-p)-\log p}{\log u}}\right] = p\frac{1-p}{p} + (1-p)\,\frac{p}{1-p} = 1-p+p = 1.$$

2. Define

$$\tau = \min \{ k \in \mathbb{N} : S_k = S_0 u^m \text{ or } S_k = S_0 u^n \}.$$

It is obvious that τ is a stopping time. Note that

$$M_k = \left(\frac{S_k}{S_0}\right)^{\frac{\log(1-p) - \log p}{\log u}}$$

Since for any integer t>0, $|M_{k\wedge t}|$ is uniformly bounded by a constant $\max\{|u^{\frac{m(\log(1-p)-\log p)}{\log u}}|, |u^{\frac{n(\log(1-p)-\log p)}{\log u}}|\}$ almost surely, optional sampling theorem implies M_{τ} is a martingale. Thus, we have $\mathbb{E}\left[M_{\tau}\right]=M_{1}=1$. On the other hand, assuming the probability we want is p_{0} , we can rewrite $\mathbb{E}\left[M_{\tau}\right]$ by definition as follow

$$1 = \mathbb{E}[M_{\tau}] = u^{\frac{m(\log(1-p)-\log p)}{\log u}} p_0 + u^{\frac{n(\log(1-p)-\log p)}{\log u}} (1-p_0)$$
$$= \left(\frac{1-p}{p}\right)^m p_0 + \left(\frac{1-p}{p}\right)^n (1-p_0),$$

which implies

$$p_0 = \frac{1 - \left(\frac{1-p}{p}\right)^n}{\left(\frac{1-p}{p}\right)^m - \left(\frac{1-p}{p}\right)^n}.$$