

CAI 4104/6108 – Machine Learning Engineering: Decision Trees

Prof. Vincent Bindschaedler

Spring 2024

Administrivia

- Midterm is coming up!
 - Monday 2/19 and Wednesday 2/21 during class time (10:40 11:30) in FLG 0220
 - Topics: everything until 2/16
 - Duration: 50 minutes
 - Format: **closed-books**, (blank) scratch paper, and physical calculator are allowed (no phones!)
 - Questions: short answers + problems
- Schedule:
 - CAI6108: take the exam on 2/19
 - CAI4104: take the exam on 2/21
 - Lecture that week (topic: Unsupervised Learning) will be pre-recorded

Reminder: Supervised Learning

Classification

- Task: predict the corresponding label
- Different types:
 - Binary classification: there are only two classes (0,1; +,-, etc.)
 - Multiclass: more than two classes
 - Multi-label: each instance can belong to more than one class
 - One-class: there is only one class, we want to distinguish it from everything else

Regression

- Task: predict the corresponding value (typically a real number) or target
 - * E.g.: you want to predict a person's future income based on their high school GPA

Sequence-to-sequence, similarity learning/metric learning, learning to rank, etc.

Reminder: Linear Regression

Dataset

- Matrix **X** $(n \times m)$ and the target vector **y** $(n \times 1)$
 - * Let x_i be the feature vector for example i and $y_i \in \mathbb{R}$ is the corresponding target/value
- Prediction task:
 - Given a feature vector x, predict the target/value $y \in \mathbb{R}$ as accurately as possible
- Linear Regression:
 - The model is: $h_{\theta}(x) = h_{w,b}(x) = w x + b$
 - The prediction is: $y = h_{\theta}(x)$
- Training:
 - We want to minimize the Mean Squared Error (MSE) [this is called OLS]
 - **SE**(w,b) := MSE($h_{w,b}$, X, y) = 1/n \sum_{i} [$h_{w,b}$ (x_i) y_i]² = 1/n \sum_{i} [w x_i + b y_i]²
 - Optimal parameters: $\theta^* = (w^*, b^*) = \operatorname{argmin}_{w,b} \operatorname{MSE}(w,b)$
 - Remark: MSE is the expected squared error loss
 - * Squared Error Loss (L₂ loss): $L(\theta) = [y h_{\theta}(x)]^2$

Reminder: Polynomial Regression

- What if the data is non-linear?
 - Then a linear model won't fit (it will have high bias)
- Can we still use linear regression?
 - Yes, we can fit a linear model on non-linear data!
 - How? Add features that can capture non-linearity!
 - Example: suppose we have a single feature
 - * The linear regression model is: $h_{\theta}(x) = wx + b$
 - # If we add x^2 as a feature, then the model is: $h_{\theta}(x) = w_1 x + w_2 x^2 + b$

Polynomial regression

- If we have several features, say x, y, z, then we can consider all combinations of features up to some degree. That is:
 - * x^3 , y^3 , z^3 , x^2y , x^2z , y^2x , y^2z , z^2x , z^2y , xyz (and x, y, z, 1)
- Q: If we have m features and want all combinations up to degree k, how many features do we get?
 - * m+k choose k: C(m+k, k) = (m+k)! / (m! k!)

Reminder: Bias-Variance Tradeoff

- Generalization error (aka out-of-sample error or risk)
 - Prediction error on unseen data
 - Related to overfitting
 - If the model overfits, then the generalization error will be large
- Bias-Variance Tradeoff
 - Generalization error: bias² + variance + irreducible error
 - For more details:
 - Geman et al. "Neural networks and the bias/variance dilemma." Neural computation (1992)
 - Kohavi et al. "Bias plus variance decomposition for zero-one loss functions." ICML, 1996.
 - Why is it a tradeoff?
 - Increasing model complexity => lower bias
 - Decreasing model complexity => lower variance
 - Note: there has been some debate of whether this applies to neural networks
 - E.g.: see Neal et al. "A modern take on the bias-variance tradeoff in neural networks." arXiv, 2018.

Decision Trees

A decision tree is

 An acyclic graph (i.e., a directed rooted tree) that can be used to make predictions

- Nonparametric model suitable for classification or regression
 - What is the other nonparametric model we have seen?
- Prediction:
 - Start at the root
 - Traverse the tree (branching according to feature values)
 - The leaf gives the predicted label or value/target
- How is the tree constructed from the training data?
 - There are many algorithms and many different kinds of decision trees!

Learning Decision Trees

- A simplified (generic) training algorithm:
 - Input: set of examples $S=\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
 - If stopping criterion is met:
 - * (For classification:) set leaf label to be the majority label of examples in $\mathcal S$
 - st (For regression:) set leaf value to be mean value of examples in ${\cal S}$
 - Find the next best feature j and threshold t for split
 - Split S into S_< and S_≥
 - * S_{\leq} contains examples with $x_j \leq t$ and S_{\geq} contains examples with $x_j \geq t$
 - Recurse on $S_{<}$ and S_{\geq}
- There are many algorithms to train decision trees
 - Popular examples: ID3, C4.5, CART (used by scikit-learn)
 - They differ in stopping criterion, ways to find the best split, how they are regularized

Learning Decision Trees

How to find the best split?

- Intuition: split so as to maximally distinguish between the classes
 - * Ideal case: $S_{<}$ has all examples of one class; S_{\geq} has all examples of the other class
- Metrics:
 - * Gini impurity (\neq as Gini coefficient): $G_j = 1 \sum_c [p_j(c)]^2$ where $p_j(c)$ is the probability of class c in node j
 - * Entropy: $H_j = -\sum_c p_j(c) \log_2 p_j(c)$
- For example (CART): Split to minimize 1/n [n_< G_< + n_≥ G_≥]
 - Note: CART only ever splits a node in two so that the tree is a binary tree (in contrast to some other algorithms)

When to stop?

- If any of the conditions are met:
 - All examples in leaves are classified correctly
 - Tree reaches some max depth
 - Cannot find a feature to split
 - Split does not significantly improve Gini impurity or entropy

Examples

Example

Overfitting & Regularization

- Decision trees make almost no assumption about the data
 - So unless we control complexity, the tree structure will be made to (over)fit the data!
- How do we avoid overfitting?
 - Prevent the tree from growing too deep (e.g., set a maximum depth)
 - Restrict splitting (e.g., set a minimum number of examples to split)
 - Pruning: after the tree is created, prune branches that do not significantly reduce the error
- Regularization hyperparameters
 - Example: Scikit-learn CART
 - max_depth: maximum depth of tree (default = unlimited)
 - * min_samples_split: minimum number of examples to split a node (default = 2)
 - * min_samples_leaf: minimum number of examples for a leaf (default = 1)

Decision Trees: Advantages

- Scales to very large datasets easily
 - Training complexity: $O(m \ n^2 \ d)$ with depth $d = O(\log_2(n))$ (if tree is balanced)
 - * Note: smarter implementations can achieve $O(m \ n \log_2(n))$
 - Prediction complexity: O(d)
- Applicable to many supervised learning tasks
 - Supports classification, regression, even multi-output/multi-target
- Decisions are easy to understand and interpret
 - You can even visualize the tree (in theory at least...)
- Almost no data preprocessing / feature engineering required
 - Can handle both categorical and numerical features
 - No need to do feature scaling (Q: why?)
 - Irrelevant features typically don't get used (so not need to remove them)
 - (Some) algorithms can deal with missing feature values

Decision Trees: Drawbacks

- Finding the optimal decision tree is an NP-complete problem
 - But in practice greedy algorithms perform well
- Can create complex trees that overfit the data
 - Mitigation: constrain the structure of the tree somehow
- Trees are unstable to small variation in the data (high variance)
 - Adding/removing a single training example can change splits and thus the entire structure of the tree
- If data is imbalanced, trees may be biased

Next Time

■ Wednesday (2/7): Lecture

- Upcoming:
 - Homework 2 will be out soon (due 2/14) by 11:59pm