異なる自生性有機物の添加に対する 富栄養湖堆積物中のメタン生成応答の違い

2024年2月13日 修士研究発表会 22SS613D Yang Chun Jet (岩田研究室)

はじめに

・湖は温室効果ガスであるCH₄の主要な自然発生源

(Bastviken et al., 2011)

- ・環境変化による湖からのCH₄生成促進
 - 1. 温暖化により微生物活性と群集が変化

(Dean et al., 2018)

2. 季節的な水生植物の繁茂

(Zhang et al., 2019)

3. 富栄養化による藻類の増殖

(Schulz and Conrad, 1995)

研究背景 湖底堆積物へ有機物添加した培養実験

有機物の添加によってCH』生成速度が増加

(Schwarz et al. 2008; West et al. 2012; Hiltunen et al. 2021; Grasset et al. 2018)

■ CH₄生成速度の増加要因

・CH₄生成菌の<mark>活性</mark>の上昇

(West et al. 2012)

・微生物群集の組成変化

(Schwarz et al. 2008)

■ 有機物の違い

(West et al. 2012; Grasset et al. 2018)

· CH₄生成促進率 自生性>他生性

(Grasset et al. 2018)

有機物種類の化学的構造により分解速度が影響される

(Rascio 2002; Dai et al. 2005)

・植物プランクトン種類によってCH₄生成ポテンシャルに 違いなし (Hiltunen et al. 2021)

課題

- ・有機物添加と温度変化の影響を同時に調べる
- ・添加する有機物の<mark>状態</mark>(乾燥vs未乾燥)がCH₄生成に及ぼす影響

目的

諏訪湖堆積物中のCH₄生成に対する 異なる自生性有機物添加の影響と温度との相乗効果を調べる

方法・サンプリングサイト

- 富栄養湖
- 平均水深4.3m
- 環境変化(湖外から水流入の増加, 夏季)で自生性有機物発生: 藻類および水生植物の繁茂

藻類

藍藻 珪藻 Microcystis aeruginosa Asterionella formosa

水生植物

クロモ Hydrilla verticillata

方法

堆積物コア表層0-4cm採取

未乾燥有機物添加培養実験

実際に湖底堆積物に供給される状態 の有機物に対するCH₄生成速度の時 間的変化の違い

* 未乾燥有機物

湿重量 0.15~0.5g(堆積物湿重量g あたり5mgの乾燥重量に相当)

- 窒素ガスでパージ、暗条件で培養
- ヘッドスペースのCH₄,CO₂濃度分析 Los Gatos Ultraportable Greenhouse Gas Analyzer (UGGA)

乾燥有機物添加培養実験|結果・考察

乾燥有機物添加培養実験|結果

- ・有機物添加でCH₄生成速度↑
- ・平均CH₄生成速度25°C>15°C
- ・珪藻添加区が低め

基準(15°C、添加なし)に対する平均CH₄生成速度の変化量(μmol g⁻¹h⁻¹)

温度15℃→25℃
0.001

	有機物添加	温度+ 有機物添加
藍藻	0.010	0.034
珪藻	0.003	0.009
ヒシ	0.009	0.027
クロモ	0.010	0.032

・CH₄生成の促進効果 温度+有機物添加> 単独の促進効果の合計 (相乗効果)

乾燥有機物添加培養実験|結果

乾燥有機物添加培養実験|結果

乾燥有機物添加培養実験|考察

- ■有機物の分解・発酵で基質が生成 され、CH₄生成に供給
 - ・珪藻添加区: ケイ素の殻, 低有機物量
- ■温度の上昇 微生物の活性
- ■相乗効果
 温度上昇による微生物の活性
 +
 有機物添加で微生物が消費できる
 基質の供給
- ■有機物添加で微生物群集の組成変化

未乾燥有機物添加培養実験|結果・考察

■CO₂はすぐに生成が開始、 CH₄は生成されるまで遅れがある

未乾燥有機物添加培養実験|結果・考察

未乾燥有機物添加培養実験|結果・考察

■藍藻→増殖に不適な環境にいるため 分解されにくい<mark>休眠状態</mark>に入る (Tsujimura, 2000; Yang, 2023)

まとめ

- ■自生性有機物の添加でCH₄生成が促進された
- ■有機物種類・状態
 - ・有機物それぞれの特性が基質供給を影響することで CH₄生成速度を制限する
 - ・生有機物添加: CH4生成には時間がかかる
- ■有機物添加と温度上昇の相乗効果
 - ・温度上昇:微生物の活性化
 - ・有機物添加:活性化された CH_4 生成菌が使用できる 基質の制限がなくなる

世界的に富栄養化の進行と温暖化

→将来、湖堆積物のCH₄生成と放出が大きく促進される 可能性がある