Exercise 13

(i) Atomic projections

(ii) Merge-and-Shrink abstraction

R and g1

Merge:

Shrink:

Result and g2:

Merge:

Heuristic value for the initial state = 4

Exercise 14

(i) Necessary subgoals

(ii)

Facts of Π:

- r=1 No, it is in the initial state.
- r=2 Yes, there is no delete relaxed plan without this fact.
- r=3 Yes, there is no delete relaxed plan without this fact.
- g1=1 No, there is a delete relaxed plan without this fact.
- g1=2 No, it is in the initial state.
- g1=3 Yes, this is part of the goal.
- g1=R Yes, there is no delete relaxed plan without this fact.
- g2=1 No, there is a delete relaxed plan without this fact.
- g2=2 Yes, this is part of the goal.
- g2=3 No, it is in the initial state.
- g2=R Yes, there is no delete relaxed plan without this fact.
- c=0 Yes, there is no delete relaxed plan without this fact.
- c=1 No, it is in the initial state.

(iii) Induced action landmarks:

r=2: {drive(1,2)}

 $r=3: \{drive(2,3)\}\$

g1=3: {putdown(1,3)}

g1=R: {puton(1,1), puton(1,2), puton(1,3)}

 $g2=2: \{putdown(2,2)\}$

g2=R: {puton(2,1), puton(2,2), puton(2,3)}

c=0: {puton(1,1), puton(1,2), puton(1,3), puton(2,1), puton(2,2), puton(2,3)}

Cliques: {r=2, r=3, g1=3, g2=2, g2=r, g1=R}, {c=0, r=2, r=3, g1=3, g2=2} $h^{C}(I) = 6$

Exercise 15

(i) Each optimal plan consists of one increment actions for each variable, Heuristic value return for initial state is 8.

Heuristic	at	${\mathcal V}$ Ad	${\mathcal V}$ Br	${\mathcal V}$ Pe	${\mathcal V}$ Da
$h^{\{Sy,Br\}}(I) = 1$	Br	F	Т	F	F
$h^{\{Br,Sy\}}(I) = 1$	Sy	F	Т	F	F
$h^{\{Sy,Ad\}}(I) = 1$	Ad	Т	Т	F	F
$h^{\{Ad,Pe\}}(I) = 1$	Pe	Т	Т	Т	F
$h^{\{Pe,Ad\}}(I) = 1$	Ad	Т	Т	Т	F
$h^{\{Ad,Da\}}(I) = 1$	Da	Т	Т	Т	Т
$h^{\{Da,Ad\}}(I) = 1$	Ad	Т	Т	Т	Т
$h^{\{Ad,Sy\}}(I) = 1$	Sy	Т	Т	Т	Т

Variables: Minimize unit cost instead of each action to return. Objective Function:

$$h^*(I) = 8$$

(ii) Landmarks:
$$D(at) = \{Sy\}$$
, $D(at) = \{Br\}$, $D(at) = \{Ad\}$, $D(at) = \{Da\}$, $vAd = T$, $vBr = T$, $vPe = T$, $vDa = T$ $h^*(I) = 4$