

2017 Specialist Mathematics Trial Exam 1 Solutions © 2017 itute

Q1a

Q1b
$$|y| = \sqrt{|x|}$$
, $y^2 = |x|$, $y^2 = \sqrt{x^2}$,
 $2y \frac{dy}{dx} = \frac{x}{\sqrt{x^2}} = \frac{x}{|x|}$, $\frac{dy}{dx} = \frac{x}{2y|x|} = \pm \frac{1}{2\sqrt{|x|}}$

Q1c
$$(-9,0)\cup(0,9)$$

Q2a
$$\tilde{a} + \tilde{b} + \tilde{c} + \tilde{d} = \tilde{0}$$
, .: $\tilde{d} = -(\tilde{a} + \tilde{b} + \tilde{c})$

Q2b
$$\overrightarrow{PQ} = \frac{1}{2} (\widetilde{a} + \widetilde{b}) = \frac{1}{2} \overrightarrow{AC}$$
, $\overrightarrow{SR} = \frac{1}{2} (-\widetilde{c} - \widetilde{d}) = \frac{1}{2} \overrightarrow{AC}$

 $\overrightarrow{PQ} = \overrightarrow{SR}$, .: PQRS is a parallelogram.

Q3a
$$v = \frac{\overline{z}}{1-i}$$
, $\overline{v} = \frac{z}{1+i}$, $u\overline{v} = (1+i)z \times \frac{z}{1+i} = z^2$

Q3b
$$uv = (1+i)z \times \frac{\overline{z}}{1-i} = \frac{(1+i)z\overline{z}}{1-i} = \frac{(1+i)^2 |z|^2}{2} = i$$

Q3c uvz = iz, uvz is the image of z after an anticlockwise rotation by 90° about O.

Q4a $x = \sqrt{3} \sin 2t + \cos 2t$, $\dot{x} = 2\sqrt{3} \cos 2t - 2 \sin 2t$ $\ddot{x} = -4\sqrt{3} \sin 2t - 4 \cos 2t$, maximum speed occurs when $\ddot{x} = 0$ $4\sqrt{3} \sin 2t = -4 \cos 2t$, $\tan 2t = -\frac{1}{\sqrt{3}}$, $2t = \frac{5\pi}{6}$, $t = \frac{5\pi}{12}$

Q4b Max. speed =
$$\left| \dot{x} \left(\frac{5\pi}{12} \right) \right| = \left| 2\sqrt{3} \cos \frac{5\pi}{6} - 2\sin \frac{5\pi}{6} \right| = \left| -3 - 2 \right| = 5$$

http://www.learning-with-meaning.com/

Q5a
$$x = 3\sin 2t$$
, $y = -2\cos 2t$, $\frac{x^2}{9} + \frac{y^2}{4} = 1$, $0 \le t \le \frac{\pi}{4}$
 $0 \le x \le 3$, $-2 \le y \le 0$

Q5b Arc length = $\frac{1}{4} \times 2\pi \times 1 \times 3 \times 2 = 3\pi$ metres

Q6a
$$\frac{dy}{dx} - \frac{x}{2y} = 0$$
, $\int 2y \, dy = \int x \, dx$, $y^2 = \frac{x^2}{2} + c$

(2,1) is on the curve, .:
$$c = -1$$
 and $y^2 = \frac{x^2}{2} - 1$ or $\frac{x^2}{2} - y^2 = 1$

Q6b Hyperbola: x-intercepts are $\left(-\sqrt{2}, 0\right)$ and $\left(\sqrt{2}, 0\right)$, asymptotes are $y = \pm \frac{1}{\sqrt{2}}x$

Q7a
$$\mu = \frac{3}{5} \times 32 + \frac{2}{5} \times 29 = 30.8$$
, $E(\overline{X}) = \mu = 30.8$

Q7b Var =
$$\left(\frac{3}{5}\right)^2 \times 8^2 + \left(\frac{2}{5}\right)^2 \times 10^2 = 39.04$$
, $\sigma = \sqrt{39.04} \approx 6.2482$
sd $\left(\overline{X}\right) = \frac{\sigma}{\sqrt{n}} = \frac{6.2482}{\sqrt{10}} \approx 1.98$

Q8a All 6 roots lie on the unit circle centred at O, their arguments are separated by $\frac{\pi}{3}$.

Given z = -1 is a root, then z = 1 is also a root.

The others are:
$$z = cis\left(\pm\frac{\pi}{3}\right) = \cos\left(\pm\frac{\pi}{3}\right) + i\sin\left(\pm\frac{\pi}{3}\right) = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

and
$$z = cis\left(\pm\frac{2\pi}{3}\right) = \cos\left(\pm\frac{2\pi}{3}\right) + i\sin\left(\pm\frac{2\pi}{3}\right) = -\frac{1}{2}\pm\frac{\sqrt{3}}{2}i$$

Q8b
$$z-2i = \pm 1, \frac{1}{2} \pm \frac{\sqrt{3}}{2}i, -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

$$z = \pm 1 + 2i, \frac{1}{2} \pm \left(2 + \frac{\sqrt{3}}{2}\right)i, -\frac{1}{2} \pm \left(2 + \frac{\sqrt{3}}{2}\right)i$$

$$\begin{split} &Q9a \qquad \widetilde{s} = -2\widetilde{p} + 3\widetilde{q} - \widetilde{r} \\ &= -2\left(2\widetilde{i} + \widetilde{j} + 2\widetilde{k}\right) + 3\left(-\widetilde{i} - 2\widetilde{j} + 2\widetilde{k}\right) - \left(2\widetilde{i} - 2\widetilde{j} - \widetilde{k}\right) \\ &= -9\widetilde{i} - 6\widetilde{j} + 3\widetilde{k} \end{split}$$

Q9b Let
$$l(2\tilde{i} + \tilde{j} + 2\tilde{k}) + m(-\tilde{i} - 2\tilde{j} + 2\tilde{k}) + n(2\tilde{i} - 2\tilde{j} - \tilde{k}) = \tilde{0}$$

$$2l - m + 2n = 0$$
, $l - 2m - 2n = 0$ and $2l + 2m - n = 0$

$$l = m = n = 0$$
, \tilde{p} , \tilde{q} and \tilde{r} are linearly independent vectors.

Q10a

Refer to the above diagram, $\sin \theta = \frac{2}{3}$.

Q10b

Refer to the above diagram, $2T \cos \theta = g$

$$2T\sqrt{1-\sin^2\theta} = g$$
, $2T\sqrt{1-\left(\frac{2}{3}\right)^2} = g$, $T = \frac{3\sqrt{5}}{10}g$ N

Please inform mathline@itute.com re conceptual and/or mathematical errors

http://www.learning-with-meaning.com/