ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI CHÍNH THỨC

Câu	Nội dung	Đi	iểm
I	1. Khi m = -1, ta có y = $\frac{-3x-1}{x-1} = -3 - \frac{4}{x-1}$ -TXĐ: $x \ne 1$	<u>ÐН</u> 3đ 1	<u>CĐ</u> 4đ 1,5
	- CBT : $y' = \frac{4}{(x-1)^2} > 0, \forall x \neq 1 \Rightarrow \text{hàm số không có cực trị.}$	1/4	1/4
	$\lim_{x \to \infty} y = -3 ; \lim_{x \to 1^{-}} y = +\infty; \lim_{x \to 1^{+}} y = -\infty .$ - BBT: $\frac{x \mid -\infty \qquad 1 \qquad +\infty}{y \mid + \qquad +\infty}$ $y \mid -3 \qquad -3$		
	TC: v=1 là tiêm côn đứng và lim v = co	1/4	1/4
	- TC: $x=1$ là tiệm cận đứng vì $\lim_{x\to 1} y = \infty$. $y=-3$ là tiệm cận ngang vì $\lim_{x\to \infty} y = -3$	1/4	1/4
	- Giao với các trục : x = 0 ⇒ y = 1; y = 0 ⇒ x = - 1/3. - Đồ thị : -8 -6 -4 -2 2 4 6 8 x -2 4 6 8 x -10		1/4
	.12 1	1/4	1/2

2.	1	1,5
Diện tích cần tính là:		
$S = \int_{-1/3}^{0} \left(\frac{-3x-1}{x-1} \right) dx$	1 /4	1 /2
1/2	1/4	1/2
$=-3\int_{-1/3}^{0} dx - 4\int_{-1/3}^{0} \frac{dx}{x-1}$	1/4	1/4
$= -3 \cdot \frac{1}{3} - 4 \ln \mathbf{x} - 1 \begin{vmatrix} 0 \\ -1/3 \end{vmatrix}$	1 //	1 /2
$= -1 + 4 \ln \frac{4}{3} $ ($dvdt$).	1/4	1/2
	1/4	1/4
3. $(2m 1)v m^2$	1	1
Ký hiệu $f(x) = \frac{(2m-1)x - m^2}{x-1}$. Yêu cầu bài toán tương đương với tìm		
m để hệ phương trình sau có nghiệm:		
(H) $\begin{cases} f(x) = x \\ f'(x) = (x)^{i}. \end{cases}$		
	1/4	1/4
Ta có $(H) \Leftrightarrow \begin{cases} \frac{-(x-m)^2}{x-1} = 0\\ \left(\frac{-(x-m)^2}{x-1}\right)^{r} = 0 \end{cases}$		
Ta có (H) $\Leftrightarrow \begin{cases} x-1 \\ (x-1)^2 \end{cases}$		
$\left \left(\frac{-(x-m)^2}{x-1} \right) \right = 0$		
	1/4	1/4
$\Leftrightarrow \begin{cases} \frac{-(x-m)^2}{x-1} = 0\\ \frac{-2(x-m)(x-1) + (x-m)^2}{(x-1)^2} = 0 \end{cases}$		
$\Leftrightarrow \begin{cases} x & 1 \\ -2(x-m)(x-1)+(x-m)^2 \end{cases}$		
$\frac{(x-1)^2}{(x-1)^2} = 0$	1/4	1/4
Ta thấy với $\forall m \neq 1$; $x = m$ luôn thoả mãn hệ (H) . Vì vậy $\forall m \neq 1$, (H)		
luôn có nghiệm, đồng thời khi $m = 1$ thì hệ (H) vô nghiệm. Do đó đồ thị hàm số (1) tiếp xúc với đường thẳng $y = x$ khi và chỉ khi $m \neq 1$.		
ÐS: m≠1.	1/4	1/4
1.	<u>2đ</u> 1	<u>3đ</u> 1,5
		•
Bất phương trình $\Leftrightarrow \sqrt{2x^2 - 3x - 2} > 0$		
Bất phương trình $ \Leftrightarrow \begin{bmatrix} \sqrt{2x^2 - 3x - 2} = 0 \\ \sqrt{2x^2 - 3x - 2} > 0 \\ x^2 - 3x \ge 0 \end{bmatrix}$	1/4	1/2
	1/4	1/2
TH 1: $\sqrt{2x^2 - 3x - 2} = 0 \Leftrightarrow 2x^2 - 3x - 2 = 0 \Leftrightarrow x = 2 \lor x = -\frac{1}{2}$.	4.44	4.44
$\sqrt{2v^2 + 2v + 2} > 0$ $\sqrt{2v^2 + 2v + 2} > 0$	1/4	1/4
TH 2: $\begin{cases} \sqrt{2x^2 - 3x - 2} > 0 \\ x^2 - 3x \ge 0 \end{cases} \Leftrightarrow \begin{cases} 2x^2 - 3x - 2 > 0 \\ x^2 - 3x \ge 0 \end{cases}$		
$\Leftrightarrow \begin{cases} x < -\frac{1}{2} \lor x > 2 \\ x \le 0 \lor x \ge 3 \end{cases}$		
$x \le 0 \lor x \ge 3$		1/4

	$x < -\frac{1}{2} \lor x \ge 3$	1/4	1//
	Từ hai trường hợp trên suy ra ĐS: $x \le -\frac{1}{2} \lor x = 2 \lor x \ge 3$		1/4
	2.	1/4 1	1/4 1,5
	Hệ phương trình $\Leftrightarrow \begin{cases} 2^{3x} = 5y^2 - 4y \\ 2^x = y \end{cases}$		
		1/4	1/2
	$\Leftrightarrow \begin{cases} 2^{x} = y > 0 \\ y^{3} - 5y^{2} + 4y = 0 \end{cases}$	1/4	1/4
	$\Leftrightarrow \begin{cases} 2^{x} = y > 0 \\ y = 0 \lor y = 1 \lor y = 4 \end{cases}$		
	$\begin{cases} y = 0 \lor y = 1 \lor y = 4 \\ x = 0 (x = 2) \end{cases}$	1/4	1/4
	$\Leftrightarrow \begin{cases} x = 0 \\ y = 1 \end{cases} \lor \begin{cases} x = 2 \\ y = 4 \end{cases}$	1/4	1/2
III		1.3	1.3
	Phương trình $\Leftrightarrow (\cos 3x + 3\cos x) - 4(\cos 2x + 1) = 0$	<u>1đ</u>	<u>1đ</u>
	$\Leftrightarrow 4\cos^3 x - 8\cos^2 x = 0$		
	$\Leftrightarrow 4\cos^2 x(\cos x - 2) = 0$	1 / 4	1 /0
	$\Leftrightarrow \cos x = 0$	1/4	1/2
	$\Leftrightarrow x = \frac{\pi}{2} + k\pi.$	1/4	1/4
	$x \in [0;14] \Leftrightarrow k = 0 \lor k = 1 \lor k = 2 \lor k = 3$	1/4	
	DS: $x = \frac{\pi}{2}$; $x = \frac{3\pi}{2}$; $x = \frac{5\pi}{2}$; $x = \frac{7\pi}{2}$.	1/4	1/4
IV	1.	<u>2đ</u> 1	<u>2đ</u> 1
	<u>Cách 1</u> Từ giả thiết suy ra tam giác ABC vuông tại A, do đó AB⊥AC.	1/4	1/4
	Lại có AD⊥mp(ABC) ⇒ AD⊥AB và AD⊥AC, nên AB, AC, AD đôi		
	một vuông góc với nhau. Do đó có thể chọn hệ toạ độ Đêcac vuông góc, gốc A sao cho B(3;0;0),	1/4	1/4
	C(0;4;0), D(0;0;4). Mặt phẳng (BCD) có phương trình:		
	$\frac{x}{3} + \frac{y}{4} + \frac{z}{4} - 1 = 0.$	1/4	1/4
	Khoảng cách cần tính là : $\frac{1}{1} = \frac{6\sqrt{34}}{1}$ (cm).		
	Khoảng cách cần tính là : $\frac{1}{\sqrt{\frac{1}{9} + \frac{1}{16} + \frac{1}{16}}} = \frac{6\sqrt{34}}{17}$ (cm).		
		1/4	1/4

<u>Cách 2</u> Từ giả thiết suy ra tam giác ABC vuông tại A , do đó AB⊥AC.	1/4	1/
Lại có $AD\perp mp(ABC) \Rightarrow AD\perp AB$ và $AD\perp AC$, nên AB , AC , AD đôi	1, 1	
một vuông góc với nhau.	1/4	1/
D H C		
Gọi AE là đường cao của tam giác ABC; AH là đường cao của tam giác ADE thì AH chính là khoảng cách cần tính. Dễ dàng chứng minh được hệ thức: $\frac{1}{AH^2} = \frac{1}{AD^2} + \frac{1}{AB^2} + \frac{1}{AC^2}.$	1/4	1.
Thay AC=AD=4 cm; AB = 3 cm vào hệ thức trên ta tính được:	1/4	1/
$AH = \frac{6\sqrt{34}}{17} \text{ cm}$	1/4	1/
<u>Cách 3:</u> Từ giả thiết suy ra tam giác ABC vuông tại A, do đó AB⊥AC.	1/4	1/
Lại có AD⊥mp(ABC) ⇒ AD⊥AB và AD⊥AC, nên AB, AC, AD đôi		
một vuông góc với nhau.	1/4	1,
Gọi V là thể tích tứ diện ABCD, ta có $V = \frac{1}{6} \cdot AB \cdot AC \cdot AD = 8$.		
Áp dụng công thức AH = $\frac{3V}{dt(\Delta BCD)}$ với V = 8 và dt(ΔBCD) = $2\sqrt{34}$		
ta tính được AH = $\frac{6\sqrt{34}}{17}$ cm.		
2	1/2	1/
Cách 1:	1	1
Mặt phẳng (P) có vectơ pháp tuyến $\stackrel{\rightarrow}{\text{n}}(2;-1;0)$. Đường thẳng d_{m} có vec		
tơ chỉ phương $\vec{u}((1-m)(2m+1);-(2m+1)^2;-m(1-m))$.	1/4	1,
Suy ra $\stackrel{\rightarrow}{\text{u}} \cdot \stackrel{\rightarrow}{\text{n}} = 3(2m+1).$		
d_{-} song song với (P) $\Leftrightarrow \begin{cases} \downarrow \rightarrow \\ u \perp n \end{cases}$		
d_m song song với (P) $\Leftrightarrow \{u \perp n\}$		

	(I	
	$\Leftrightarrow \begin{cases} \rightarrow & \rightarrow \\ \mathbf{u} \cdot \mathbf{n} = \end{cases}$	0		
	$\exists A \in d$	$A_{\rm m}, A \notin (P)$		
Ta có: điều kiên	$\overrightarrow{u} \cdot \overrightarrow{n} = 0 \iff$			
Ta co . dicu kiçii	u.n − 0 ←	_	1/4	1/4
Mặt khác khi m = - 1/2	thì d _m có p	hương trình : $\begin{cases} y - 1 = 0 \\ x = 0 \end{cases}$, mọi điểm		
$\exists A \in d_m, A \notin (P) \text{ divoc } t$		nông nằm trong (P), nên điều kiện S: m = - 1/2	1/4	1/4
$\begin{array}{c} \underline{\text{Cách 2:}} \\ \text{Viết phương trình } d_{m} \text{ du} \end{array}$	ới dang tham	số ta được		
	$\mathbf{x} = (1 -$	m)(2m+1)t		
}	y = 1 - (2m)	$(1+1)^2 t$		
	z = -2 - m(1	-m)t.	1/4	1/4
		$\int x = (1-m)(2m+1)t$	1/4	1/-
		$y = 1 - (2m + 1)^2 t$		
$d_m /\!/ (P) \Leftrightarrow h\hat{e} \text{ phương tr}$	ình ấn t sau	$\begin{vmatrix} z = -2 - m(1 - m)t \end{vmatrix}$ vô nghiệm		
		2x - y + 2 = 0	1/4	1/4
⇔ phương trình ẩn t sau	3(2m+1)t	+1 = 0 vô nghiệm	1/4	1/4
⇔ m=-1/2			1/4	1/4
$\frac{\text{Cách 3:}}{d_m // (P)} \Leftrightarrow \text{hệ phương}$	trình ẩn v v	7 (21)		
	x - y + 2 = 0			
	•	-x)y+m-1=0		
		3z + 4m + 2 = 0		
vô nghiệm	,		1/4	1/4
Từ 2 phương trình đầu củ	ıa hệ phương	trình trên suy ra $\begin{cases} x = \frac{m-1}{3} \\ y = \frac{2m+4}{3} \end{cases}$	1/4	1/4
Thế x , y tìm được vào pl	nương trình t	hứ ba ta có :	1/十	1/2
(2n	$(x + 1)z = -\frac{1}{2}(x + 1)z$	$(m^2 + 11m + 6)$		
	1	/	1/4	1/4
Hệ (H) vô nghiệm ⇔ m	$=-\frac{1}{2}$		1/4	1/4
1.			<u>2đ</u> 1	
Та со́:	$(x+1)^n = \sum_{k}^n$	$\sum_{k=0}^{n} C_n^k X^k,$	1/4	
	n			
Cho $x = 2$ ta được	$3^n = \sum_{k=0}^n C_n^k$	32^{k}	1/4	

	1	
2. <u>Cách 1</u>	I	
Giả sử $M(m;0)$ và $N(0;n)$ với $m > 0$, $n > 0$ là hai điểm chuyển động trên		
hai tia Ox và Oy.		
•		
Đường thẳng MN có phương trình : $\frac{x}{m} + \frac{y}{n} - 1 = 0$	1/4	
Đường thẳng này tiếp xúc với (E) khi và chỉ khi:		
$(1)^2$ $(1)^2$		
$16\left(\frac{1}{m}\right)^2 + 9\left(\frac{1}{n}\right)^2 = 1$.	1/4	
Theo BDT Côsi ta có:	1/4	
$MN^2 = m^2 + n^2 = (m^2 + n^2)(\frac{16}{m^2} + \frac{9}{n^2}) = 25 + 16\frac{n^2}{m^2} + 9\frac{m^2}{n^2}$		
,		
$\geq 25 + 2\sqrt{16.9} = 49 \Rightarrow MN \geq 7$	1/4	
$\left(\frac{16n^2}{m^2} = \frac{9m^2}{n^2}\right)$		
$\frac{1}{m^2} - \frac{1}{n^2}$		
Đẳng thức xảy ra $\Leftrightarrow \begin{cases} m^2 + n^2 = 49 \\ \Leftrightarrow m = 2\sqrt{7}, n = \sqrt{21} \end{cases}$.		
m > 0, n > 0		
111 / 0,11 / 0		
KL: Với $M(2\sqrt{7};0)$, $N(0;\sqrt{21})$ thì MN đạt GTNN và GTNN (MN) = 7.	1/4	
Cách 2		
Giả sử $M(m;0)$ và $N(0;n)$ với $m > 0$, $n > 0$ là hai điểm chuyển động trên		
hai tia Ox và Oy.		
Đường thẳng MN có phương trình : $\frac{x}{-} + \frac{y}{-} - 1 = 0$		
m n	1/4	
Đường thẳng này tiếp xúc với (E) khi và chỉ khi:		
$16\left(\frac{1}{m}\right)^2 + 9\left(\frac{1}{n}\right)^2 = 1.$		
1 7 7	1/4	
Theo bất đẳng thức Bunhiacốpski ta có		
101^2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		
$MN^2 = m^2 + n^2 = (m^2 + n^2) \left(\frac{16}{m^2} + \frac{9}{n^2} \right) \ge \left(m \cdot \frac{4}{m} + n \cdot \frac{3}{n} \right)^2 = 49.$		
\Rightarrow MN \geq 7	1/4	
	-, '	
$m: \frac{4}{m} = n: \frac{3}{n}$		
- Đẳng thức xảy ra $\Leftrightarrow \begin{cases} m^2 + n^2 = 7 \end{cases} \Leftrightarrow m = 2\sqrt{7}, n = \sqrt{21}$.		
m > 0, n > 0		
KL: Với $M(2\sqrt{7};0)$ $N(0;\sqrt{21})$ thì MN đạt GTNN và GTNN (MN) = 7.	1/4	
<u>Cách 3:</u>	1/7	
Phương trình tiếp tuyến tại điểm $(x_0; y_0)$ thuộc $(E): \frac{xx_0}{16} + \frac{yy_0}{9} = 1$		
	1/4	

Suy ra toạ độ của M và N là $M\left(\frac{16}{x_0};0\right)$ và $N\left(0;\frac{9}{y_0}\right)$		
$\Rightarrow MN^{2} = \frac{16^{2}}{x_{0}^{2}} + \frac{9^{2}}{y_{0}^{2}} = \left(\frac{x_{0}^{2}}{16} + \frac{y_{0}^{2}}{9}\right) \left(\frac{16^{2}}{x_{0}^{2}} + \frac{9^{2}}{y_{0}^{2}}\right)$	1/4	
Sử dụng bất đẳng thức Côsi hoặc Bunhiacôpski (như cách 1 hoặc cách 2) ta có : $MN^2 \ge 7^2$	1/4	
- Đẳng thức xảy ra \Leftrightarrow $x_0 = \frac{8\sqrt{7}}{7}$; $y_0 = \frac{3\sqrt{21}}{7}$. - Khi đó $M(2\sqrt{7};0)$, $N(0;\sqrt{21})$ và GTNN (MN) = 7	1/4	
	1/4	

Hướng dẫn chấm thi môn toán khối D

<u>Câu I</u>:

- 1. -Nếu TS làm sai ở bước nào thì kể từ đó trở đi sẽ không được điểm.
 - -Nếu TS xác định đúng hàm số và chỉ tìm đúng 2 tiệm cận thì được 1/4 điểm.
- 2. Nếu TS làm sai ở bước nào thì kể từ đó trở đi sẽ không được điểm.
- 3. -Nếu TS dùng điều kiện nghiệm kép thì không được điểm.
 - -Nếu TS không loại giá trị m = 1 thì bị trừ 1/4 điểm.

Câu II:

- 1. -Nếu TS làm sai ở bước nào thì kể từ đó trở đi sẽ không được điểm.
 - -Nếu TS kết luận nghiệm sai bị trừ 1/4 điểm.

-Nếu TS sử dụng điều kiện sai:
$$f(x).g(x) \ge 0 \Leftrightarrow \begin{cases} \int f(x) \ge 0 \\ g(x) \ge 0 \\ \int f(x) < 0 \end{cases}$$
 và dẫn đến kết quả đúng sẽ $g(x) \le 0$

bị trừ 1/4 điểm.

2. TS làm đúng ở bước nào được điểm ở bước đó.

Câu III:

TS làm đúng bước nào được điểm bước đó.

Câu IV:

TS làm đúng bước nào được điểm bước đó.

Câu V:

- 1. TS làm đúng bước nào được điểm bước đó.
- 2. TS làm đúng bước nào được điểm bước đó.

-----Hết-----