

MAX78002

Click here to ask an associate for production status of specific part numbers.

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

General Description

Artificial intelligence (AI) requires extreme computational horsepower, but Analog Devices is cutting the power cord from AI insights. The MAX78002 is a new breed of AI microcontroller that enables neural networks to execute at ultra-low power and live at the edge of the IoT. This device combines the most energy-efficient AI processing with Analog Devices' proven ultra-low-power microcontrollers. Our hardware-based CNN accelerator enables battery-powered applications to execute AI inferences while expending only millijoules of energy.

The MAX78002 is an advanced system-on-chip featuring an Arm® Cortex®-M4 with FPU CPU for efficient system control with an ultra-low-power deep neural-network accelerator. The CNN engine has a weight storage memory of 2MB, and can support 1-, 2-, 4-, and 8-bit weights (supporting networks of up to 16 million weights). The CNN weight memory is SRAM-based so that AI network updates can be made on the fly. The CNN engine also has 1.3MB of data memory. The CNN architecture is highly flexible, allowing networks to be trained in conventional toolsets like PyTorch® and TensorFlow®, then converted for execution on the MAX78002 using tools provided by Analog Devices.

In addition to the memory in the CNN engine, the MAX78002 has large on-chip system memory for the microcontroller core with 2.5MB flash and up to 384KB SRAM. Multiple high-speed and low-power communications interfaces are supported, including I²S, MIPI[®] CSI-2[®] serial camera, parallel camera (PCIF), and SD 3.0/ SDIO 3.0/eMMC 4.51 secure digital.

The device is available in a 144 CSBGA, 12mm x 12mm, 0.8mm pitch package.

Applications

- Factory Robot and Drone Navigation
- Industrial Sensors and Process Control
- Inline Quality Assurance Vision Systems
- Smart Security Cameras
- Portable Medical Diagnostics Equipment

Arm and Cortex are registered trademarks of Arm Limited. Coremark is a registered trademark of EEMBC.

CSI-2 and MIPI are registered trademarks of MIPI Alliance, Inc.

PyTorch is a registered trademark of Facebook, Inc. TensorFlow is a registered trademark of Google, Inc.

Benefits and Features

- Dual-Core, Low-Power Microcontroller
 - Arm Cortex-M4 Processor with FPU up to 120MHz
 - 2.5MB Flash, 64KB ROM, and 384KB SRAM
 - Optimized Performance with 16KB Instruction Cache
 - Optional Error Correction Code (ECC SEC-DED) for SRAM
 - 32-Bit RISC-V Coprocessor up to 60MHz
 - Up to 60 General-Purpose I/O Pins
 - MIPI Camera Serial Interface 2 (MIPI CSI-2)
 Controller V2.1 Support for Two Data Lanes
 - 12-Bit Parallel Camera Interface
 - I²S Controller/Target for Digital Audio Interface
 - Secure Digital Interface Supports SD 3.0/SDIO 3.0/ eMMC 4.51
- Convolutional Neural Network (CNN) Accelerator
 - Highly Optimized for Deep CNNs
 - 2 Million 8-Bit Weight Capacity with 1-, 2-, 4-, and 8-bit Weights
 - 1.3MB CNN Data Memory
 - Programmable Input Image Size up to 2048 x 2048
 - Programmable Network Depth up to 128 Layers
 - Programmable per Layer Network Channel Widths up to 1024 Channels
 - 1- and 2-Dimensional Convolution Processing
 - Capable of Processing VGA Images at 30fps
- Power Management for Extending Battery Life
 - Integrated Single-Inductor Multiple-Output (SIMO) Switch-Mode Power Supply (SMPS)
 - 2.85V to 3.6V Supply Voltage Range
 - Support of Optional External Auxiliary CNN Power Supply
 - Dynamic Voltage Scaling Minimizes Active Core Power Consumption
 - 23.9µA/MHz While Loop Execution at 3.3V from Cache (CM4 only)
 - Selectable SRAM Retention in Low-Power Modes with Real-Time Clock (RTC) Enabled
- Security and Integrity
 - Available Secure Boot
 - AES 128/192/256 Hardware Acceleration Engine
 - True Random Number Generator (TRNG) Seed Generator

Ordering Information appears at the end of the data sheet.

19-101571; Rev 0; 6/22

Artificial Intelligence Microcontroller with

TABLE OF CONTENTS

General Description	
Applications	
Benefits and Features	
Simplified Block Diagram	
Absolute Maximum Ratings	
Package Information	
144 CSBGA	
Electrical Characteristics	
Electrical Characteristics—I ² C	21
Electrical Characteristics—SD/SDIO/SDHC/MMC	23
Electrical Characteristics—SPI	23
Electrical Characteristics—I ² S	24
Electrical Characteristics—PCIF	
Electrical Characteristics—1-Wire Controller	
Pin Configuration	
144 CSBGA	
Pin Description	
Detailed Description	
Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor	
Convolutional Neural Network Accelerator (CNN)	
Memory	
Internal Flash Memory	42
Internal SRAM	42
Dynamic Voltage Scaling (DVS) Controller	42
Clocking Scheme	
General-Purpose I/O (GPIO) and Special Function Pins	43
MIPI Camera Serial Interface 2 (MIPI CSI-2) Controller	
Parallel Camera Interface (PCIF)	44
Analog-to-Digital Converter (ADC)	44
Comparators	45
Single-Inductor Multiple-Output Switch-Mode Power Supply (SIMO SMPS)	45
Power Management	45
Power Management Unit	
ACTIVE Mode	45
SLEEP Mode	45
LOW POWER Mode (LPM)	45
MICRO POWER Mode (μPM)	
STANDBY Mode	
BACKUP Mode	46

PRELIMINARY

TABLE OF CONTENTS (CONTINUED)	
POWER DOWN Mode (PDM)	47
Wakeup Sources	47
Real-Time Clock	47
Programmable Timers	48
32-Bit Timer/Counter/PWM (TMR, LPTMR)	48
Watchdog Timer (WDT)	49
Pulse Train Engine (PT)	49
Serial Peripherals	50
High-Speed USB Peripheral	50
I ² C Interface (I2C)	50
I ² S Interface (I2S)	50
Serial Peripheral Interface (SPI)	51
UART (UART, LPUART)	51
1-Wire Controller (OWM)	52
Standard DMA Controller	52
Security	52
AES	52
True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator (NDRBG)	53
CRC Module	53
Bootloader	53
Secure Boot	53
Debug and Development Interface (SWD, JTAG)	53
Applications Information	54
Bypass Capacitors	54
Bootloader Activation	54
Ordering Information	54

LIST OF FIGURES

Figure 1. I²C Timing Diagram26Figure 2. SD/SDIO/SDHC/MMC Timing Diagram27Figure 3. SPI Controller Mode Timing Diagram27Figure 4. SPI Target Mode Timing Diagram28Figure 5. I²S Target ModeTiming Diagram28Figure 6. I²S Controller Timing Diagram29Figure 7. Parallel Camera Interface Timing Diagram29Figure 8. 1-Wire Controller Data Timing Diagram30Figure 9. Clocking Scheme43		
Figure 3. SPI Controller Mode Timing Diagram27Figure 4. SPI Target Mode Timing Diagram28Figure 5. I2S Target ModeTiming Diagram28Figure 6. I2S Controller Timing Diagram29Figure 7. Parallel Camera Interface Timing Diagram29Figure 8. 1-Wire Controller Data Timing Diagram30	Figure 1. I ² C Timing Diagram	26
Figure 4. SPI Target Mode Timing Diagram28Figure 5. I2S Target ModeTiming Diagram28Figure 6. I2S Controller Timing Diagram29Figure 7. Parallel Camera Interface Timing Diagram29Figure 8. 1-Wire Controller Data Timing Diagram30	Figure 2. SD/SDIO/SDHC/MMC Timing Diagram	27
Figure 5. I2S Target ModeTiming Diagram28Figure 6. I2S Controller Timing Diagram29Figure 7. Parallel Camera Interface Timing Diagram29Figure 8. 1-Wire Controller Data Timing Diagram30	Figure 3. SPI Controller Mode Timing Diagram	27
Figure 6. I ² S Controller Timing Diagram 29 Figure 7. Parallel Camera Interface Timing Diagram 29 Figure 8. 1-Wire Controller Data Timing Diagram 30	Figure 4. SPI Target Mode Timing Diagram	28
Figure 6. I ² S Controller Timing Diagram 29 Figure 7. Parallel Camera Interface Timing Diagram 29 Figure 8. 1-Wire Controller Data Timing Diagram 30	Figure 5. I ² S Target ModeTiming Diagram	28
Figure 8. 1-Wire Controller Data Timing Diagram	Figure 6. I ² S Controller Timing Diagram	29
	Figure 7. Parallel Camera Interface Timing Diagram	29
Figure 9. Clocking Scheme	Figure 8. 1-Wire Controller Data Timing Diagram	30
	Figure 9. Clocking Scheme	43

LIST OF TABLES

Table 1. BACKUP Mode SRAM Retention Block Sizes47Table 2. Wakeup Sources47Table 3. Timer Configuration Options48Table 4. Watchdog Timer Configuration Options49Table 5. SPI Configuration Options51Table 6. UART Configuration Options52Table 7. Common CRC Polynomials53Table 8. Bootloader Interface54		
Table 3. Timer Configuration Options48Table 4. Watchdog Timer Configuration Options49Table 5. SPI Configuration Options51Table 6. UART Configuration Options52Table 7. Common CRC Polynomials53		
Table 4. Watchdog Timer Configuration Options49Table 5. SPI Configuration Options51Table 6. UART Configuration Options52Table 7. Common CRC Polynomials53	Table 2. Wakeup Sources	47
Table 5. SPI Configuration Options.51Table 6. UART Configuration Options.52Table 7. Common CRC Polynomials.53	Table 3. Timer Configuration Options	48
Table 6. UART Configuration Options.52Table 7. Common CRC Polynomials.53	Table 4. Watchdog Timer Configuration Options	49
Table 7. Common CRC Polynomials	Table 5. SPI Configuration Options	51
•	Table 6. UART Configuration Options	52
Table 8. Bootloader Interface	Table 7. Common CRC Polynomials	53
	Table 8. Bootloader Interface	54

Absolute Maximum Ratings

VCOREA, VCOREB	HFXIN, HFXOUT0.3V to V _{COREA} + 0.2V CSI_CKP, CSI_CKN, CSI_DOP, CSI_DON, CSI_D1P, CSI_D1N0.3V to V _{CSI2P5}
VCNN0RAM, VCNN1RAM, VCNN2RAM, VCNN3RAM0.3V to +1.21V	V _{DDIO} Combined Pins (sink)100mA
V _{USB0P9} 0.3V to +1.21V	V _{DDIOH} Combined Pins (sink)100mA
V _{CSI2P5} 0.3V to +2.75V	V _{SSA} 100mA
V _{DDB} (with respect to V _{SSB})	V _{SS} 6A
V _{DDIO} 0.3V to +1.89V	V _{SSPWR} 100mA
V _{DDIOH} 0.3V to +3.6V	Output Current (sink) by any GPIO Pin25mA
V _{BAT} 0.3V to +3.6V	Output Current (source) by any GPIO Pin25mA
V _{REGI} 0.3V to +3.6V	Continuous Package Power Dissipation CSBGA (multilayer
V _{DDA} 0.3V to +1.89V	board) $T_A = +70^{\circ}C$ (derate 39.37mW/°C above +70°C)(Note
V _{REF} 0.3V to V _{BAT} + 0.3V	1)3149.61mW
DM, DP (with respect to V _{SSB})	Operating Temperature Range40°C to +105°C
GPIO (V _{DDIO})	Storage Temperature Range65°C to +125°C
RSTN, GPIO (V _{DDIOH})0.3V to V _{DDIOH} + 0.5V	Soldering Temperature+260°C
32KIN, 32KOUT0.3V to V _{DDA} + 0.2V	

Note 1: Continuous Package Power Dissipation CSBGA can be exceeded with special cooling considerations.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

144 CSBGA

Package Code	X14422+2C
Outline Number	<u>21-0163</u>
Land Pattern Number	<u>90-0185</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	25.4°C/W
Junction to Case (θ_{JC})	5.6°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Input Supply Voltage, Battery	V _{BAT}	V _{REGI} , V _{BAT} , and V _{DDIOH} must be connected together at the circuit-board level.	2.85	3.3	3.6	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Voltage, SIMO	V _{REGI}	V _{REGI} , V _{BAT} , and V _{DDIOH} must be connected together at the circuit-board level.	2.85	3.3	3.6	V
Input Supply Voltage Core A	V _{COREA}		0.9	1.1	1.21	V
Input Supply Voltage Core B	V _{COREB}		0.9	1.1	1.21	V
Input Supply Voltage, Analog	V _{DDA}	V _{DDA} and V _{DDIO} must be connected at the circuit-board level.	1.71	1.8	1.89	V
Input Supply Voltage, GPIO	V _{DDIO}	V _{DDA} and V _{DDIO} must be connected at the circuit-board level.	1.71	1.8	1.89	V
Input Supply Voltage, GPIO (High)	V _{DDIOH}	V _{REGI} , V _{BAT} , and V _{DDIOH} must be connected together at the circuit-board level.	2.85	3.3	3.6	V
Input Supply Voltage, CNN	V _{CNNX}	Switched off by V _{CNNX_EN} . When switched on, the voltage applied must be the same as V _{COREA} .	0.99	1.1	1.21	V
Input Supply Voltage, CNN RAM	V _{CNNXRAM}	Switched off by V _{CNNXRAM_EN} . When switched on, the voltage applied must be the same as V _{COREA} .	0.99	1.1	1.21	V
		Monitors V _{COREA}		0.76		
		Monitors V _{COREB}	0.72	0.76		
Power-Fail Reset		Monitors V _{DDA}	1.56	1.64	1.69	V
Voltage	V _{RST}	Monitors V _{DDIO}	1.56	1.64	1.69	\ \ \
		Monitors V _{DDIOH}	1.56	1.64	1.69	
		Monitors V _{BAT}		2.74		
Power-On Reset	V	Monitors V _{COREA}		0.63		V
Voltage	V _{POR}	Monitors V _{DDA}		1.25		V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, total current into V _{REGI} pin, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, CM4 in Active mode executing CoreMark [®] , RV32 in ACTIVE mode executing While(1), ECC disabled, all CNN quadrants disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA		32		
	^l regi_dact	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, total current into V _{REGI} pin, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, CM4, and RV32 in ACTIVE mode executing While(1), ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA		27.7		μΑ/MHz
V _{REGI} Current, ACTIVE Mode	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, total current into V _{REGI} pin, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, CM4 in ACTIVE mode executing While(1), RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA		23.9			
		Dynamic, total current into V_{REGI} pin, $V_{REGI} = 3.3V$, $V_{COREA} = V_{COREB} = 1.1V$, f_{SYS} CLK = ISO; CM4 in SLEEP mode, RV32 in ACTIVE mode running from PCLK executing While(1), ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/ sink 0mA		20.9		
I _{REGI_} FAC	^I REGI_FACT	Fixed, IPO enabled, ISO enabled, total current into V_{REGI} , V_{REGI} = 3.3V, V_{COREA} = V_{COREB} = 1.1V, CM4 in ACTIVE mode 0MHz, RV32 in ACTIVE mode 0MHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/ sink 0mA	823			μА

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
V _{REGI} Current, SLEEP Mode	I _{REGI_DSLP}	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 120MHz, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, standard DMA with 2 channels active; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	11.8		µA/MHz
	I _{REGI_FSLP}	Fixed, IPO enabled, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in SLEEP mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	1.3		mA
V _{REGI} Current, LOW POWER Mode	IREGI_DLP	Dynamic, ISO enabled, total current into V_{REGI} pins, $V_{REGI} = 3.3V$, $V_{COREA} = V_{COREB} = 1.1V$, CM4 powered off, RV32 in ACTIVE mode executing While(1), $f_{SYS_CLK(MAX)} = 60$ MHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/sink 0mA	18.9		μΑ/MHz
FOWER Mode	IREGI_FLP	Fixed, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, CM4 powered off, RV32 in ACTIVE mode 0MHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	393		μА
V _{REGI} Current, MICRO POWER Mode	^I REGI_DMP	Dynamic, ERTCO enabled, IBRO enabled, total current into V _{REGI} pins, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, LPUART active, f _{LPUART} = 32.768kHz, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA	230		μА
V _{REGI} Current, STANDBY Mode	I _{REGI_STBY}	Fixed, total current into V _{REGI} pins, V _{REGI} = 3.3V, V _{COREA} = V _{COREB} = 1.1V, all CNN quadrants disabled, all CNN memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/ sink 0mA	9.8		μА

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		Total current into	All SRAM retained		8.2		
		V _{REGI} pins, V _{REGI} = 3.3V, V _{COREA} =	No SRAM retention		3		1
		V _{COREB} = 1.1V,	SRAM0 retained		3.5		
V _{REGI} Current, BACKUP Mode	I _{REGI_BK}	RTC disabled, all CNN quadrants disabled, all CNN	SRAM0 and SRAM1 retained		4		μA
BACKUP WILLIE		memory disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	SRAM0, SRAM1, and SRAM2 retained		4.8		
V _{REGI} Current, POWER DOWN Mode	I _{REGI_PDM}	Total current into V _R 3.3V; inputs tied to V V _{DDIOH} ; outputs sou	SS, V _{DDIO} , or		0.76		μА
V _{REGO_A} Output Voltage Range	V _{REGO_A_RA}	V _{REGI} ≥V _{REGO_A} +	200mV	0.5	1.8	1.85	V
V _{REGO_B} Output Voltage Range	V _{REGO_B_RA} NGE	V _{REGI} ≥V _{REGO_B} +	200mV	0.5	1.0	1.25	V
V _{REGO_C} Output Voltage Range	V _{REGO_C_RA}	V _{REGI} ≥V _{REGO_C} +	Y _{REGI} ≥ V _{REGO_C} + 200mV		1.0	1.25	V
V _{REGO_A} Output Current	V _{REGO_A_IOU} T	V _{REGO_A} output cur	rent		5	50	mA
V _{REGO_B} Output Current	V _{REGO_B_IOU}	V _{REGO_B} output cur	rent		5	50	mA
V _{REGO_C} Output Current	V _{REGO_C_IOU}	V _{REGO_C} output cur	rent		10	100	mA
V _{REGO_X} Output Current Combined	V _{REGO_X_IOU} T_TOT	All three V _{REGO_X} o	utputs combined		20	100	mA
V _{REGO_X} Efficiency	V _{REGO_X_EFF}	V _{REGI} = 3.3V, V _{REG} load = 30mA	O_X = 1.1V,		90		%
SLEEP Mode Resume Time	tslp_on	Time from power mo of first user instruction			0.74		μs
LOW-POWER Mode Resume Time	t _{LP_ON}	Time from power mo			1.62		μs
MICROPOWER Mode Resume Time	t _{MP_ON}		Time from power mode exit to execution of first user instruction		17.4		μs
STANDBY Mode Resume Time	tstby_on	Time from power mo			29.6		μs
BACKUP Mode Resume Time	t _{BKU_ON}	Time from power mo			1.9		ms
POWER-DOWN Mode Resume Time	t _{PDM_ON}	Time from power mo			5		ms

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCKS						
System Clock Frequency	fsys_clk		0		120	MHz
Internal Phase Locked	f _{IPLL}	External 25MHz crystal connected to HFXIN and HFXOUT		100		N 41 1-
Loop (IPLL)	f _{IPLL_CNN} External 25MHz crystal connected to HFXIN and HFXOUT			200		MHz
Internal Primary Oscillator (IPO)	fIPO			120		MHz
Internal Secondary Oscillator (ISO)	fiso			60		MHz
Internal Baud Rate Oscillator (IBRO)	f _{IBRO}			7.3728		MHz
		8kHz selected		8		
Internal Nanoring Oscillator (INRO)	f _{INRO}	16kHz selected		16		kHz
Commuter (IIII (C)		30kHz selected		30		
External RTC Oscillator (ERTCO)	fertco	32kHz watch crystal, C_L = 6pF, ESR < 90kΩ, C_0 ≤ 2pF		32.768		kHz
RTC Operating Current	I _{RTC}	All power modes		0.3		μA
RTC Power-Up Time	t _{RTC_} ON			250		ms
External I ² S Clock Input Frequency	fEXT_I2S_CLK	I2S_CLKEXT selected			25	MHz
External System Clock Input Frequency	fEXT_CLK	EXT_CLK selected			80	MHz
External Low Power Timer1 Clock Input Frequency	fEXT_LPTMR1_ CLK	LPTMR1_CLK selected			8	MHz
External Low Power Timer2 Clock Input Frequency	fEXT_LPTMR2_ CLK	LPTMR2_CLK selected			8	MHz
CONVOLUTIONAL NEUI	RAL NETWORK	_				
	IVCNN_ALL_A			15.3		
	ICNN0RAM_A			0.12		
	ICNN1RAM_A	CNINI importive gurrant CNINI anglis d'		0.12		
CNN Current Mode A	ICNN2RAM_A	CNN inactive current, CNN enabled/ inactive, CNN clocks disabled, all CNN		0.12		mA
	ICNN3RAM_A quadrants and SRAMs powered	0.12				
	ICOREA_A			8.4		
	ICNN_TOTAL_ A			24.4		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS		
	IVCNN_ALL_B		59.5				
	ICNN0RAM_B	FOMELT clock rate CNN active current	11.9				
	ICNN1RAM_B	50MHz clock rate, CNN active current, max power network, random data and	0.13				
CNN Current Mode B	I _{CNN2RAM_B}	random mask configuration, CNN	0.13		mA		
	ICNN3RAM_B	quadrant 0 enabled, CNN quadrant 1/2/3 disabled, all CNN quadrants and SRAMs	0.13]		
	I _{COREA_B}	powered	4.5	4.5			
	ICNN_TOTAL_ B		76.2				
	IVCNN_ALL_C		89.1				
	ICNN0RAM_C		7.5				
	ICNN1RAM_C	FOMILE also de contra CNN autre a contra de la lace	4.9				
CNN Current Mode C	ICNN2RAM_C	50MHz clock rate, CNN active current, all CNN quadrants and SRAMs powered,	4.5		mA		
STATE GUITORIE MIGGO G	ICNN3RAM_C	unet_v5 functional test	4.5				
	ICOREA_C		4.5				
	ICNN_TOTAL_		115				
	I _{VCNN_ALL_D}		187				
	ICNN0RAM_D		13		mA		
	I _{CNN1RAM_D}	50MHz clock rate, CNN active current,	13				
CNN Current Mode D	I _{CNN2RAM_D}	max power network, random data and	13				
OTTIV Guiterit Mode B	I _{CNN3RAM_D}	random mask configuration, all CNN quadrants and SRAMs powered	13] ""`		
	ICOREA_D	quadrants and StAMS powered	4.5				
	ICNN_TOTAL_		243				
	I _{VCNN_ALL_E}		254				
	I _{CNN0RAM_E}		13.8				
	ICNN1RAM_E	50MHz clock rate, CNN active current,	13.9				
CNN Current Mode E	I _{CNN2RAM_E}	max power network, data, mask	13.8		mA		
O Odirone Mode L	ICNN3RAM_E	configuration, all CNN quadrants and SRAMs powered	13.8				
	I _{COREA_E}		4.5				
	ICNN_TOTAL_		313				

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS	
	I _{VCNN_ALL_F}		117		
	ICNN0RAM_F	200MHz clock rate, CNN active current,	24.5		
	ICNN1RAM_F	max power network, random data, and	0.132		
CNN Current Mode F	ICNN2RAM_F	random mask configuration, CNN	0.131	mA.	
	ICNN3RAM_F	quadrant 0 enabled, CNN quadrant 1/2/3 disabled, all CNN quadrants and SRAMs	0.128] ""\	
	ICOREA_F	powered	7.9		
	ICNN_TOTAL_ F		150		
	IVCNN_ALL_G		242		
	ICNN0RAM_G		16		
	ICNN1RAM_G		10.4		
CNN Current Mode G	ICNN2RAM_G	200MHz clock rate, CNN active current, all CNN quadrants and SRAMs powered,	9.5	mA	
OTHIT GUITOIR MIGGO G	ICNN3RAM_G	unet_v5 functional test	9.5] '''''	
	I _{COREA_G}		7.9		
	ICNN_TOTAL_		295		
	IVCNN_ALL_H		1060		
	ICNN0RAM_H		94		
	ICNN1RAM_H	200MHz clock rate, CNN active current,	94		
CNN Current Mode H	ICNN2RAM_H	max processing configuration, max power network, random data, and random mask configuration, all CNN quadrants and SRAMs powered	94	mA	
OTHIT GUITOIR MIGGOTT	ICNN3RAM_H		94		
	I _{COREA_H}		8.2		
	HI _{CNN_TOTAL}		1440		
	IVCNN_ALL_J		1450		
	ICNNORAM_J		99		
	I _{CNN1RAM_} J	200MHz clock rate, CNN active current,	99		
CNN Current Mode J	I _{CNN2RAM_} J	max processing configuration, max power	99	mA	
OTHIT GUITOIR MIGGO	I _{CNN3RAM_} J	network, data, mask configuration, all CNN quadrants and SRAMs powered	99] ''"'	
	I _{COREA_J}	Civiv quadrants and Civivis powered	8.4		
	ICNN_TOTAL_		1852		
GENERAL-PURPOSE I/O)				
Input Low Voltage for All GPIOs Except P3.0 and P3.1	V _{IL_VDDIO}	V _{DDIO} selected as I/O supply; P3.0 and P3.1 can only use V _{DDIOH} as I/O supply	0.3 × V _{DDIO}	V	
Input Low Voltage for All GPIOs	V _{IL_VDDIOH}	V _{DDIOH} selected as I/O supply	0.3 × V _{DDIOH}	V	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Input Low Voltage for RSTN	V _{IL_RSTN}				0.5 x V _{DDIOH}		V
Input High Voltage for All GPIOs Except P3.0 and P3.1	V _{IH_VDDIO}	V _{DDIO} selected as I/ P3.1 can only use V	O supply; P3.0 and DDIOH as I/O supply	0.7 × V _{DDIO}			V
Input High Voltage for All GPIOs	V _{IH} _VDDIOH	V _{DDIOH} selected as	I/O supply	0.7 × V _{DDIOH}			V
Input High Voltage for RSTN	V _{IH_RSTN}				0.5 x V _{DDIOH}		V
Output Low Voltage for All GPIOs Except P3.0 and P3.1			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 00, I _{OL} = 1mA		0.2	0.4	
	V	P3.0 and P3.1 can only use V _{DDIOH}	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 01, I _{OL} = 2mA		0.2	0.4	V
	V _{OL_VDDIO} only use V _{DDIOH} as I/O supply	as I/O supply	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 10, I _{OL} = 4mA		0.2	0.4	V
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 11, I _{OL} = 8mA		0.2	0.4	
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = 1mA			0.2	0.4	
Output Low Voltage for		V _{DDIOH} selected as = 2.85V, GPIOn_DS = 2mA	I/O supply, V _{DDIOH} _SEL[1:0] = 01, I _{OL}		0.2	0.4	
All GPIOs	V _{OL_} VDDIOH	V _{DDIOH} selected as = 2.85V, GPIOn_DS = 4mA	I/O supply, V _{DDIOH} _SEL[1:0] = 10, I _{OL}		0.2	0.4	V
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = 8mA	I/O supply, V _{DDIOH} _SEL[1:0] = 11, I _{OL}		0.2	0.4	
Combined I _{OL} , All GPIOs	I _{OL_TOTAL}					48	mA

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Output High Voltage for All GPIOs Except P3.0 and P3.1			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 00, I _{OL} = -1mA	V _{DDIO} - 0.4				
	Vou vinnia	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 01, I _{OL} = -2mA	V _{DDIO} - 0.4			V	
	VOH_VDDIO		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 10, I _{OL} = -4mA	V _{DDIO} - 0.4			V	
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 11, I _{OL} = -8mA	V _{DDIO} - 0.4				
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = -1mA	I/O supply, V_{DDIOH} _SEL[1:0] = 00, I_{OL}	V _{DDIOH} - 0.4				
Output High Voltage for All GPIOs Except P3.0		V _{DDIOH} selected as = 2.85V, GPIOn_DS = -2mA	I/O supply, V _{DDIOH} _SEL[1:0] = 01, I _{OL}	V _{DDIOH} - 0.4			V	
and P3.1	VOH_VDDIOH	V _{DDIOH} selected as = 2.85V, GPIOn_DS = -4mA	I/O supply, V _{DDIOH} _SEL[1:0] = 10, I _{OL}	V _{DDIOH} - 0.4			v	
		V _{DDIOH} selected as = 2.85V, GPIOn_DS = -8mA	I/O supply, V _{DDIOH} _SEL[1:0] = 11, I _{OL}	V _{DDIOH} - 0.4				
Output High Voltage for P3.0 and P3.1	V _{OH_VDDIOH}	V _{DDIOH} = 2.85V, GF fixed at 00, I _{OL} = -1r		V _{DDIOH} - 0.4			V	
Combined I _{OH} , All GPIOs	IOH_TOTAL					-48	mA	
Input Hysteresis (Schmitt)	V _{HYS}				300		mV	
Input Leakage Current Low	I _{IL}	V _{DDIO} = 1.89V, V _{DD} V _{DDIOH} selected as internal pull-up disab	I/O supply, $V_{IN} = 0V$,	-200		+200	nA	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
	I _{IH}	V _{DDIO} = 1.89V, V _{DD} selected as I/O supp internal pull-down dis	ly, V _{IN} = 3.6V,	-1000		+1000	nA
Input Leakage Current High	loff	V _{DDIO} = 0V, V _{DDIO} selected as I/O supp	V _{DDIO} = 0V, V _{DDIOH} = 0V, V _{DDIO} selected as I/O supply, V _{IN} < 1.89V			+1	
	I _{IH3V}	V _{DDIO} = 1.71V, V _{DDIOH} = 2.85V, V _{DDIO} selected as I/O supply, V _{IN} = 3.6V		-2		+2	μA
Input Pull-up Resistor RSTN	R _{PU_R}	Pull-up to V _{DDIOH}			25		kΩ
Input Pull-up/Pull-down	R _{PU1}	Normal resistance, F	P1M = 0		25		kΩ
Resistor for All GPIO	R _{PU2}	Highest resistance, F	P1M = 1		1		МΩ
12-BIT SAR ADC							
Resolution					12		bits
Effective Number of Bits	ENOB	ADC_CLKCTRL.clks pkpk = V _{REF} - 10m			10		bits
External Reference Voltage	V_{REF}	V _{REF} ≤ V _{DDIOH}		2.048		V _{DDIOH}	V
Internal Reference	V _{INT_REF}		MCR_ADC_CFG0.ext_ref = 0, MCR_ADC_CFG0.ref_sel = 0		1.25		V
Voltage	V _{INT_REF}	MCR_ADC_CFG0.ext_ref = 0, MCR_ADC_CFG0.ref_sel = 1			2.048		V
ADC Clock Rate	f _{ACLK}				1		MHz
ADC Clock Period	t _{ACLK}				1/f _{ACLK}		μs
			MCR_ADCCFG2.c hX = 00	V _{SSA} + 0.05		V _{REF}	
Input Voltage Range	V_{AIN}	AIN[7:0], ADC_DATA.chan = [7:0]	MCR_ADCCFG2.c hX = 01	V _{SSA} + 0.05		MIN(2 x V _{REF} ,V _D DIOH)	V
		[7.0]	MCR_ADCCFG2.c hX = 10	V _{SSA} + 0.05		MIN(2 x V _{REF} ,V _D DIOH)	
Input Impedance	D	MCR_ADCCFG2.ch	X = 01		5		kΩ
input impedance	R _{AIN}	MCR_ADCCFG2.ch	X = 10		50		K22
Analog Input	C	Fixed capacitance to	V _{SSA}		2		pF
Capacitance	C _{AIN}	Dynamically switche	d capacitance		1.2		pF
Integral Nonlinearity	INL				±1.5		LSb
Differential Nonlinearity	DNL				±0.75		LSb
Offset Error	\/oo	Chopping disabled			±9		LSb
Oliget Filoi	V_{OS}	Chopping enabled		±0.2			LSD

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN TYP	MAX	UNITS	
			MCR_ADCCFG0.e xt_ref = 0, MCR_ADCCFG0.r ef_sel = 0, V _{BAT} = 3.3V	361			
ADC Active Current			MCR_ADCCFG0.e xt_ref = 0, MCR_ADCCFG0.r ef_sel = 1, V _{BAT} = 3.3V	361			
	luna	ADC active, reference buffer enabled,	MCR_ADC_CFG0. ext_ref = 0, MCR_ADC_CFG0. ref_sel = 0, V _{BAT} = 3.3V	229			
	IADC	ADC_CLKCTRL.clk sel = 11, ADC_CLKCTRL.clk div = 100	MCR_ADCCFG0.e xt_ref = 0, MCR_ADCCFG0.r ef_sel = 1, V _{BAT} = 3.3V	229		· μΑ	
			MCR_ADCCFG0.e xt_ref = 0, MCR_ADCCFG0.r ef_sel = 0, V _{BAT} = 3.3V	162			
			MCR_ADCCFG0.e xt_ref = 0, MCR_ADCCFG0.r ef_sel = 1, V _{BAT} = 3.3V	162			
		ADC_CLKCTRL.clkc	liv = 0bX00		1		
ADC Sample Rate	fADC	ADC_CLKCTRL.clkc	liv = 0bX01		0.625	Msps	
		ADC_CLKCTRL.clkc	liv = 0bX10		0.125		
ADC Setup Time	t _{ADC_SU}	Any power-up of ADO to ADC_STATUS.rea			500	μs	
ADC Input Leakage	I _{ADC_LEAK}	ADC inactive or char	nnel not selected	1.5		nA	
Bandgap Temperature Coefficient	V _{TEMPCO}	Box method		± 45		ppm	
COMPARATORS							
Input Offset Voltage	V _{OFFSET}			±7		mV	
		AINCOMPHYST[1:0]	= 00	22			
Input Hysteresis	V _{HYST}	AINCOMPHYST[1:0] = 01		50		mV	
input riysteresis		AINCOMPHYST[1:0] = 10		2			
		AINCOMPHYST[1:0] = 11		7			
Input Voltage Range	V _{IN_CMP}	Common-mode rang	e	0.6	1.35	V	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
USB						
USB Transceiver Supply Voltage	V _{DDB}		3.0	3.3	3.6	V
Pin Capacitance (DP, DM)	C _{IN_USB}	Pin to V _{SSB}		8		pF
Driver Output Resistance	R_{DRV}	Steady state drive		44 ±10%		Ω
USB / FULL SPEED						
Single-Ended Input High Voltage (DP, DM)	V _{IH_USB}		2.1			V
Single-Ended Input Low Voltage (DP, DM)	V _{IL_USB}				0.5	V
Output High Voltage (DP, DM)	V _{OH_USB}	R_L = 1.5kΩ from DP and DM to V _{SSB} , I_{OH} = -4mA	2.8		V _{DDB}	V
Output Low Voltage (DP, DM)	V _{OL_USB}	R_L = 1.5kΩ from DP to V_{DDB} , I_{OL} = 4mA	V _{SS}		0.3	V
Differential Input Sensitivity	V_{DI}	DP to DM	0.2			V
Common-Mode Voltage Range	V _{CM}	Includes V _{DI} range	0.8		2.5	V
Transition Time (Rise/ Fall) DP, DM	t _{RF}	C _L = 50pF	4		20	ns
Pull-up Resistor on Upstream Ports	R _{PU}		1.05	1.5	1.95	kΩ
USB / HI-SPEED						
Hi-Speed Data Signaling Common-Mode Voltage Range	V _{HSCM}		-50		+500	mV
Hi-Speed Squelch	V_{HSSQ}	Squelch detected		100		mV
Detection Threshold	VHSSQ	No squelch detected		200		1117
Hi-Speed Idle Level Output Voltage	V_{HSOI}		-10		+10	mV
Hi-Speed Low-Level Output Voltage	V _{HSOL}		-10		+10	mV
Hi-Speed High-Level Output Voltage	V _{HSOH}			400 ±40		mV
Chirp-J Output Voltage (Differential)	V _{CHIRPJ}			900 ±200		mV
Chirp-K Output Voltage (Differential)	V _{CHIRPK}			-700 ±200		mV

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FLASH MEMORY			<u>'</u>			•
Floob Frood Time	t _{M_ERASE}	Mass erase		20		P
Flash Erase Time	t _{P_ERASE}	Page erase		20		ms
Flash Programming Time per Word	t _{PROG}	32-bit programming mode, fFLC_CLK = 1MHz		42		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +105°C	10			years
MIPI CSI-2			·			
Data Rate per CSI-2 Lane					600	Mbps
Frequency (CSI_CKP, CSI_CKN)	fck				300	MHz
MIPI CSI-2 / HIGH-SPEEI	D DC SPECIFIC	ATIONS				
DC Common-Mode Voltage (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	VCMDC		70		330	mV
Differential Input High Threshold (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{DIHT}			40		mV
Differential Input Low Threshold (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{DILT}			-40		mV
Differential Input Impedance (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	Z _{DI}		80	100	120	Ω
MIPI CSI-2 / HIGH-SPEEI	D AC SPECIFIC	ATIONS				
Data to Clock Setup Time (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	tSETUP		$0.15 \times \frac{1}{f_{CK}}$	-		ns
Data to Clock Hold Time (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	^t HOLD		0.15 × 1/f _{CK}	-		ns

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
MIPI CSI-2 / LOW-POWER DC SPECIFICATIONS									
Input High Voltage (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{IH}		850			mV			
Input Low Threshold (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{IL}				550	mV			
Input Hysteresis (CSI_D0P, CSI_D0N, CSI_D1P, CSI_D1N, CSI_CKP, CSI_CKN)	V _{HYS}		25			mV			

Electrical Characteristics—I²C

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STANDARD-MODE	O T WIDOL	CONDITIONS	IVIIIV		IVIAA	ONTO
Output Fall Time	t _{OF}	Standard-mode, from V _{IH(MIN)} to V _{IL(MAX)}		150		ns
SCL Clock Frequency	f _{SCL}		0		100	kHz
Low Period SCL Clock	t _{LOW}		4.7			μs
High Time SCL Clock	tHIGH		4.0			μs
Setup Time for Repeated Start Condition	tsu;sta		4.7			μѕ
Hold Time for Repeated Start Condition	t _{HD;STA}		4.0			μs
Data Setup Time	t _{SU;DAT}			300		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			800		ns
Fall Time for SDA and SCL	t _F			200		ns
Setup Time for a Stop Condition	tsu;sто		4.0			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μѕ
Data Valid Time	t _{VD;DAT}		3.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		3.45			μs

Electrical Characteristics—I²C (continued)

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FAST-MODE						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	t _{LOW}		1.3			μs
High Time SCL Clock	tHIGH		0.6			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.6			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.6			μs
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t_{F}			30		ns
Setup Time for a Stop Condition	tsu;sto		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs
FAST-MODE PLUS			·			
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	t_{LOW}		0.5			μs
High Time SCL Clock	^t HIGH		0.26			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.26			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.26			μs
Data Setup Time	t _{SU;DAT}			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			50		ns
Fall Time for SDA and SCL	t _F			30		ns

Electrical Characteristics—I²C (continued)

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Setup Time for a Stop Condition	tsu;sto		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

Electrical Characteristics—SD/SDIO/SDHC/MMC

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Frequency in Data Transfer Mode	fSDHC_CLK		0		f _{PCLK}	MHz
Clock Period	t _{CLK}			1/f _{SDHC} _CLK		ns
Clock Low Time	t _{WCL}			7		ns
Clock High Time	t _{WCH}			7		ns
Input Setup Time	t _{ISU}			5		ns
Input Hold Time	t _{IHLD}			1		ns
Output Valid Time	tovld			5		ns
Output Hold Time	tohld			6		ns

Electrical Characteristics—SPI

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONTROLLER MODE						
SPI Controller Operating Frequency for SPI0	f _{MCK0}	fsys_clk = 120MHz, fmck0(MAX) = fsys_clk/2			60	MHz
SPI Controller Operating Frequency for SPI1	f _{MCK1}	f _{SYS_CLK} = 120MHz, f _{MCK1(MAX)} = f _{SYS_CLK} /4			30	MHz
SPI Controller SCK Period	tMCKX			1/f _{MCKX}		ns
SCK Output Pulse- Width High/Low	t _{MCH} , t _{MCL}		t _{MCKX} /2			ns
MOSI Output Hold Time After SCK Sample Edge	tмон		t _{MCKX} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCKX} /2			ns
MOSI Output Hold Time After SCK Low Idle	t _{MLH}			t _{MCKX} /2		ns

PRELIMINARY

Electrical Characteristics—SPI (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCKX} /2		ns
TARGET MODE						
SPI Target Operating Frequency	f _{SCK}				60	MHz
SPI Target SCK Period	tsck			1/f _{SCK}		ns
SCK Input Pulse-Width High/Low	tsch, tscl			t _{SCK} /2		ns
SSx Active to First Shift Edge	t _{SSE}			10		ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	tsis			3		ns
MOSI Input from SCK Sample Edge Transition Hold	tsıн			3		ns
MISO Output Valid After SCLK Shift Edge Transition	t _{SOV}			10		ns
SCK Inactive to SSx Inactive	t _{SSD}			10		ns
SSx Inactive Time	tssh			1/f _{SCK}		ns
MISO Hold Time After SSx Deassertion	t _{SLH}			10		ns

Electrical Characteristics—I²S

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TARGET			1			'
Bit Clock Frequency	f _{BCLKS}				25	MHz
Bit Clock Period	t _{BCLKS}		1/f _{BCLKS}			μs
BCLK High Time	twbclkhs			$0.5 \times \frac{1}{f_{\text{BCL}}}$.KS	μs
BCLK Low Time	twbclkls			$0.5 \times \frac{1}{f_{\text{BCl}}}$		μs
Setup Time for LRCLK	tLRCLK_BLCKS			20		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDOS			20		ns
Setup Time for SD (Input)	tsu_sdis			10		ns
Hold Time SD (Input)	t _{HD_SDIS}			10		ns

PRELIMINARY

Electrical Characteristics—I²S (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONTROLLER						
Bit Clock Frequency	f _{BCLKM}	Source only from I2S_EXTCLK (P0.14 Alternate Function 2)			80	MHz
Bit Clock Period	t _{BCLKM}		1/f _{BCLK}			μs
BCLK High Time	twbclkhm			$0.5 \times \frac{1}{f_{\text{BCI}}}$	_KM	μs
BCLK Low Time	twbclklm			$0.5 \times \frac{1}{f_{\text{BCI}}}$	_KM	μs
Delay Time BCLK to LRCLK Valid	tBLCK_LRCLK M			20		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDOM			20		ns
Setup Time for SD (Input)	tsu_sdim			10		ns
Hold Time SD (Input)	thd_sdim			10		ns

Electrical Characteristics—PCIF

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PCIF			•			
PCIF Operating Frequency	fCLK				10	MHz
PCIF Clock Period	tCLK			1/f _{CLK}		ns
PCIF_PCLK Output Pulse-Width High/Low	t _{WCH} , t _{WCL}		t _{CLK} /2			ns
PCIF_VSYNC, PCIF_HSYNC Setup Time	tssu			5		ns
PCIF_VSYNC, PCIF_HSYNC Hold Time	tSHLD			5		ns
PCIF_D0-PCIF_D11 Setup TIme	t _{DSU}			5		ns
PCIF_D0-PCIF_D11 Hold Time	t _{DHLD}			5		ns

Electrical Characteristics—1-Wire Controller

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Write 0 Low Time	4	Standard		60		
White o Low Time	tWOL	Overdrive		8		μs

Electrical Characteristics—1-Wire Controller (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
		Standard	6		
Write 1 Low Time	t _{W1L}	Standard, Long Line mode	8	8	
		Overdrive	1		1
		Standard	70		
Presence Detect Sample	t _{MSP}	Standard, Long Line mode	85		μs
Campic		Overdrive	9		1
		Standard	15		
Read Data Value	t _{MSR}	Standard, Long Line mode	24		μs
		Overdrive	3		
		Standard	10		
Recovery Time	t _{REC0}	Standard, Long Line mode	20		μs
		Overdrive	4		
Deart Time High	1	Standard	480		
Reset Time High	^t RSTH	Overdrive	58		μs
Deart Time Law	1	Standard	600		
Reset Time Low	^t RSTL	Overdrive	70		μs
Time Olet		Standard	70	70	
Time Slot	tslot	Overdrive	12	12	

Figure 1. I²C Timing Diagram

Figure 2. SD/SDIO/SDHC/MMC Timing Diagram

Figure 3. SPI Controller Mode Timing Diagram

Figure 4. SPI Target Mode Timing Diagram

Figure 5. I²S Target ModeTiming Diagram

Figure 6. I²S Controller Timing Diagram

Figure 7. Parallel Camera Interface Timing Diagram

Figure 8. 1-Wire Controller Data Timing Diagram

RELIMINARY

Pin Configuration

144 CSBGA

Analog Devices | 31 www.analog.com

Pin Description

			FUNCTION MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
POWER	(See the Applic	ations Information	n section for bypa	ss capacitor rec	ommendations.)
A10	V _{BAT}	_	_	_	Battery Power Supply. Bypass device pin A10 with a 1 μ F capacitor placed as close as possible to this pin and the V _{SSPWR} pin. This pin must be connected to V _{REGI} and V _{DDIOH} at the circuit board level.
C13	V _{REGI}	_	_	_	Battery Power Supply for the SIMO Switch-Mode Power Supply (SMPS). Bypass this pin with 2 x 47 μ F capacitors placed as close as possible to this pin and the V _{SSPWR} pin. This pin must be connected to V _{BAT} and V _{DDIOH} . If the power to the device is cycled, the voltage applied to this pin must reach V _{REGLPOR} .
B10	V _{DDA}	_	ı	_	1.8V Analog Power Supply. Bypass this pin with a $1\mu F$ capacitor placed as close as possible to this pin and V_{SSA} . This device pin must be connected to V_{DDIO} .
D12	V _{DDB}	_	_	_	USB Transceiver Supply Voltage. Bypass this pin to V_{SSB} with a 1.0 μ F capacitor as close as possible to the package.
A4	V _{REF}	-	_	_	ADC External Reference Input. Bypass this pin with a 1µF capacitor placed as close as possible to this pin and V_{SSA} as possible. This is the reference input for the analog-to-digital converter (ADC). If the external reference is not used, tie this pin to V_{SSA} through a 500Ω resistor.
A8	V _{COREA}	_	_	_	Digital Core Supply Voltage A. Bypass this pin to V_{SS} with a $1\mu F$ capacitor placed as close to this pin as possible.
B8	V _{COREB}	_	_	_	Digital Core Supply Voltage B. Bypass this pin to V_{SS} with a $1\mu F$ capacitor placed as close to this pin as possible.
B12	V _{BST}	_	_	_	Boosted Supply Voltage for the Gate Drive of High-Side Switches. Bypass V _{BST} to LXB with a 3.3nF capacitor.
B11	V _{REGO_} A	_	_	_	Buck Converter A Voltage Output. Bypass this pin with a 22µF capacitor to V _{SS} placed as close as possible to this pin.
C11	V _{REGO_B}	_	_	_	Buck Converter B Voltage Output. Bypass this pin with a $22\mu F$ capacitor to V_{SS} placed as close as possible to this pin.
A11	V _{REGO_C}	_	_	_	Buck Converter C Voltage Output. Bypass this pin with a $22\mu\text{F}$ capacitor to V_{SS} placed as close as possible to this pin.
D1	V _{DDIO}	_	_	_	GPIO Supply Voltage. Bypass this pin to V_{SS} with a 1.0 μ F capacitor placed as close as possible to the package.

144 CSBGA

			FUNCTION MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
E1	V _{DDIOH}	_	_	_	GPIO Supply Voltage, High. $V_{DDIOH} \ge V_{DDIO}$. Bypass this pin to V_{SS} with a 1.0 μ F capacitor placed as close as possible to the package. This device pin must be connected to V_{REGI} and V_{BAT} .
E12	V _{USB0P9}	_	_	_	Bypass with $1\mu F$ capacitor to V_{SSB} . Do not connect this device pin to any other external circuitry.
C8	V _{CSI2P5}		_	_	Bypass with 1µF capacitor to V _{SS} . Do not connect this device pin to any other external circuitry.
F1, G1, A2, G2, G3, G4, A5, B5, C5, D5, M6, N6, K7, L7, M7, N7, C9, F10, F11, F12, G12, F13, G13	V _{SS}	_	_	_	Digital Ground.
B4	V_{SSA}	_	_	_	Analog Ground. This pin is the return path for V_{REF} and V_{DDA} .
A13	V _{SSPWR}	_	_	_	Ground for the SIMO Switch-Mode Power Supply (SMPS). This device pin is the return path for the V _{REG} .
C12	V _{SSB}	_	_	_	USB Transceiver Ground.
B13	LXA	_	_	_	Switching Inductor Input A. Connect a 2.2µH inductor between LXA and LXB.
A12	LXB	_	_	_	Switching Inductor Input B. Connect a 2.2µH inductor between LXA and LXB.
N1, N2, N3	V _{CNN0}	_	_	_	Voltage Supply for CNN x16 Processor Quadrant 0. Bypass this pin with 3 x 1µF capacitors as close to this pin as possible and a 22µF capacitor as close as possible to the package.
H1, H2, H3	V _{CNN1}	_	_	_	Voltage Supply for CNN x16 Processor Quadrant 1. Bypass this pin with 3 x 1µF capacitors as close to this pin as possible and a 22µF capacitor as close as possible to the package.

144 CSBGA

			FUNCTION MODE				
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION		
N11, N12, N13	V _{CNN2}	_	_	_	Voltage Supply for CNN x16 Processor Quadrant 2. Bypass this pin with 3 x 1µF capacitors as close to this pin as possible and a 22µF capacitor as close as possible to the package.		
H11, H12, H13	V _{СNN3}	I	П	_	Voltage Supply for CNN x16 Processor Quadrant 3. Bypass this pin with 3 x 1µF capacitors as close to this pin as possible and a 22µF capacitor as close as possible to the package.		
M1, M2	VCNNORAM	-	_	_	Voltage Supply for the RAM for the CNN x16 Processor Quadrant 0. Bypass this pin with 2 x 1μ F capacitors as close to this pin as possible and a 22μ F capacitor as close as possible to the package.		
J1, J2	V _{CNN1} RAM	-	-	_	Voltage Supply for the RAM for the CNN x16 Processor Quadrant 1. Bypass this pin with 2 x 1μ F capacitors as close to this pin as possible and a 22μ F capacitor as close as possible to the package.		
M12, M13	V _{CNN2} RAM	_	_	_	Voltage Supply for the RAM for the CNN x16 Processor Quadrant 2. Bypass this pin with 2 x 1µF capacitors as close to this pin as possible and a 22µF capacitor as close as possible to the package.		
J12, J13	VCNN3RAM	-	_	_	Voltage Supply for the RAM for the CNN x16 Processor Quadrant 3. Bypass this pin with 2 x 1μ F capacitors as close to this pin as possible and a 22μ F capacitor as close as possible to the package.		
K9	V _{CNN0_EN}	_	_	_	Enable Output for the Voltage Supply for CNN x16 Processor Quadrant 0.		
M9	V _{CNN1_EN}	_	_	_	Enable Output for the Voltage Supply for CNN x16 Processor Quadrant 1.		
L10	V _{CNN2_EN}	_	_	_	Enable Output for the Voltage Supply for CNN x16 Processor Quadrant 2.		
N10	V _{CNN3_EN}	_	_	_	Enable Output for the Voltage Supply for CNN x16 Processor Quadrant 3.		
L9	V _{CNN0RAM_E}	_	_	_	Enable Output for the Voltage Supply for the RAM for the CNN x16 Processor Quadrant 0.		
N9	VCNN1RAM_E	_			Enable Output for the Voltage Supply for the RAM for the CNN x16 Processor Quadrant 1.		
K10	V _{CNN2RAM_E}	_	_	_	Enable Output for the Voltage Supply for the RAM for the CNN x16 Processor Quadrant 2.		
M10	V _{CNN3RAM_E}			_	Enable Output for the Voltage Supply for the RAM for the CNN x16 Processor Quadrant 3.		

144 CSBGA

			FUNCTION MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
RESET A	ND CONTROL				
C10	RSTN	_	_	_	Active-Low, External System Reset Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for RTC circuitry) and begins execution. This pin has an internal pull-up to the V _{DDIOH} supply.
CLOCK		T		T	T
B9	32KOUT	_	_	_	32kHz Crystal Oscillator Output.
A9	32KIN	_	_	_	32kHz Crystal Oscillator Input. Connect a 32kHz crystal between 32kIN and 32kOUT for RTC operation. Optionally, this pin can be configured as the input for an external CMOS-level clock source.
А3	HFXIN	_	_	_	25MHz Crystal Oscillator Input. Connect a 25MHz crystal between HFXIN and HFXOUT. Optionally, this pin can be configured as the input for an external CMOS-level clock source.
В3	HFXOUT	_	_	_	25MHz Crystal Oscillator Output.
GPIO AN	D ALTERNATE	FUNCTION (See 1	the Applications I	nformation section	on for GPIO and Alternate Function Matrices.)
K6	P0.0	P0.0	UART0A_RX	_	UART0 Receive Port Map A. See <u>Bootloader</u> <u>Activation</u> for details on this pin's usage and suggested pull-up.
L6	P0.1	P0.1	UART0A_TX	_	UART0 Transmit Port Map A.
E11	P0.2	P0.2	TMR0AIOA	UART0B_CTS	Timer0 I/O 32 Bits or Lower 16 Bits Port Map A; UART0 Clear to Send Port Map B.
E10	P0.3	P0.3/EXT_CLK	TMR0A_IOB	UART0B_RTS	External Clock for Use as SYS_OSC/Timer0 I/O Upper 16 Bits Port Map A; UART0 Request to Send Port Map B.
H4	P0.4	P0.4	SPI0A_SS0	TMR0B_IOAN	SPI0 Port Map A Target Select 0; Timer0 Inverted Output Port Map B.
B2	P0.5	P0.5	SPI0A_MOSI	TMR0B_IOBN	SPI0 Port Map A Controller-Out Target-In Serial Data 0; Timer0 Inverted Output Upper 16 Bits Port Map B.
C2	P0.6	P0.6	SPI0A_MISO	OWM_IO	SPI0 Port Map A Controller-In Target-Out Serial Data 1; 1-Wire Controller Data I/O.
D2	P0.7	P0.7	SPI0A_SCK	OWM_PE	SPI0 Port Map A Clock; 1-Wire Controller Pull- up Enable Output.
E2	P0.8	P0.8	SPI0A_SDIO2	TMR0B_IOA	SPI0 Port Map A Data 2 I/O; Timer0 I/O 32 Bits or Lower 16 Bits Port Map B.
F2	P0.9	P0.9	SPI0A_SDIO3	TMR0B_IOB	SPI0 Port Map A Data 3 I/O; Timer0 I/O Upper 16 Bits Port Map B.
D9	P0.10	P0.10	I2C0A_SCL	SPI0_SS2	I2C0 Port Map A Clock; SPI0 Target Select 2.
D8	P0.11	P0.11	I2C0A_SDA	SPI0_SS1	I2C0 Port Map A Serial Data; SPI0 Target Select 1.

144 CSBGA

PIN	NAME	FUNCTION MODE			
		Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
J3	P0.12	P0.12	UART1A_RX	TMR1B_IOAN	UART1 Receive Port Map A; Timer1 Inverted Output Port Map B.
K3	P0.13	P0.13	UART1A_TX	TMR1B_IOBN	UART1 Transmit Port Map A; Timer1 Inverted Output Upper 16 Bits Port Map B.
G11	P0.14	P0.14	TMR1A_IOA	I2S_CLKEXT	Timer1 I/O 32 Bits or Lower 16 Bits Port Map A; I ² S External Clock Input.
G10	P0.15	P0.15	TMR1A_IOB	PCIF_VSYNC	Timer1 I/O Upper 16 Bits Port Map A; Parallel Camera Interface Vertical Sync.
D7	P0.16	P0.16	I2C1A_SCL	PT2	I2C1 Port Map A Clock; Pulse Train 2.
D6	P0.17	P0.17	I2C1A_SDA	PT3	I2C1 Port Map A Serial Data; Pulse Train 3.
H10	P0.18	P0.18	PT0	OWM_IO	Pulse Train 0; 1-Wire Controller Data I/O.
J10	P0.19	P0.19	PT1	OWM_PE	Pulse Train 1; 1-Wire Controller Pull-up Enable Output.
J4	P0.20	P0.20	SPI1A_SS0	PCIF_D0	SPI1 Port Map A Target Select 0; Parallel Camera Interface Data 0.
A1	P0.21	P0.21	SPI1A_MOSI	PCIF_D1	SPI1 Port Map A Controller-Out Target-In Serial Data 0; Parallel Camera Interface Data 1.
B1	P0.22	P0.22	SPI1A_MISO	PCIF_D2	SPI1 Port Map A Controller-In Target-Out Serial Data 1; Parallel Camera Interface Data 2.
C1	P0.23	P0.23	SPI1A_SCK	PCIF_D3	SPI1 Port Map A Clock; Parallel Camera Interface Data 3.
K1	P0.24	P0.24	SPI1A_SDIO2	PCIF_D4	SPI1 Port Map A Data 2; Parallel Camera Interface Data 4.
L1	P0.25	P0.25	SPI1A_SDIO3	PCIF_D5	SPI1 Port Map A Data 3; Parallel Camera Interface Data 5.
M5	P0.26	P0.26	TMR2A_IOA	PCIF_D6	Timer2 I/O 32 Bits or Lower 16 Bits Port Map A; Parallel Camera Interface Data 6.
N5	P0.27	P0.27/ USB_EXTCLK	TMR2A_IOB	PCIF_D7	USB External Clock/Timer2 I/O Upper 16 Bits Port Map A; Parallel Camera Interface Data 7.
M8	P0.28	P0.28/SWDIO	_	_	Serial Wire Debug Data I/O. Following any reset, this device pin defaults to AF1 SWDIO.
N8	P0.29	P0.29/SWDCLK	_	_	Serial Wire Debug Clock. Following any reset, this device pin defaults to AF1 SWDCLK. See <u>Bootloader Activation</u> for details on this pin's usage and suggested pullup.
K5	P0.30	P0.30	I2C2A_SCL	PCIF_D8	I2C2 Port Map A Clock; Parallel Camera Interface Data 8.
L5	P0.31	P0.31	I2C2A_SDA	PCIF_D9	I2C2 Port Map A Serial Data; Parallel Camera Interface Data 9.
K2	P1.0	P1.0	UART2A_RX	RV_TCK	UART2 Receive Port Map A; 32-bit RISC-V Test Port Clock.
L2	P1.1	P1.1	UART2A_TX	RV_TMS	UART2 Transmit Port Map A; 32-bit RISC-V Test Port Select.
L3	P1.2	P1.2	I2S0A_SCK	RV_TDI	I2S0 Port Map A Bit Clock; 32-bit RISC-V Test Port Data Input.

144 CSBGA

			FUNCTION MODE	•			
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION		
МЗ	P1.3	P1.3	12S0A_WS	RV_TDO	I2S0 Port Map A Left/Right Clock; 32-bit RISC-V Test Port Data Output.		
M4	P1.4	P1.4	I2S0A_SDI	TMR3B_IOA	I2S0 Port Map A Serial Data Input; Timer3 I/O 32 Bits or Lower 16 Bits Port Map B.		
N4	P1.5	P1.5	I2S0A_SDO	TMR3B_IOB	I2S0 Port Map A Serial Data Output; Timer3 I/O Upper 16 Bits Port Map B.		
K8	P1.6	P1.6	TMR3A_IOA	PCIF_D10	Timer3 I/O 32 Bits or Lower 16 Bits Port Map A; Parallel Camera Interface Data 10.		
L8	P1.7	P1.7	TMR3A_IOB	PCIF_D11	Timer3 I/O Upper 16 Bits Port Map A; Parallel Camera Interface Data 11.		
K4	P1.8	P1.8	PCIF_HSYNC	RXEV0	Parallel Camera Interface Horizontal Sync; CM4 Rx Event Input.		
L4	P1.9	P1.9	PCIF_PCLK	TXEV0	Parallel Camera Interface Pixel Clock; CM4 Tx Event Output.		
K13	P1.10	P1.10	SDHC_CDN	ADC_CLK_EXT	Secure Digital Interface Card Present; ADC External Clock Input.		
K11	P1.11	P1.11	SDHC_DAT3	_	Secure Digital Interface Data Bus Bit 3.		
L11	P1.12	P1.12	SDHC_DAT2	ADC_HW_TRIG _A	Secure Digital Interface Data Bus Bit 2; ADC Trigger Input A.		
K12	P1.13	P1.13	SDHC_DAT1	ADC_HW_TRIG _B	Secure Digital Interface Data Bus Bit 1; ADC Trigger Input B.		
L12	P1.14	P1.14	SDHC_DAT0	ADC_HW_TRIG _C	Secure Digital Interface Data Bus Bit 0; ADC Trigger Input C.		
J11	P1.15	P1.15	SDHC_WP	_	Secure Digital Interface Write Protect.		
M11	P1.16	P1.16	SDHC_CMD	_	Secure Digital Interface Bus Command.		
L13	P1.17	P1.17	SDHC_CLK	_	Secure Digital Interface Clock.		
F4	P2.0	P2.0	AIN0/AIN0N	_	ADC Input 0/Comparator 0 Negative Input.		
E4	P2.1	P2.1	AIN1/AIN0P	_	ADC Input 1/Comparator 0 Positive Input.		
D4	P2.2	P2.2	AIN2/AIN1N	_	ADC Input 2/Comparator 1 Negative Input.		
C4	P2.3	P2.3	AIN3/AIN1P	_	ADC Input 3/Comparator 1 Positive Input.		
F3	P2.4	P2.4	AIN4/AIN2N	LPTMR0B_IOA	ADC Input 4/Comparator 2 Negative Input; Low-Power Timer0 I/O Port Map B.		
E3	P2.5	P2.5	AIN5/AIN2P	LPTMR1B_IOA	ADC Input 5/Comparator 2 Positive Input; Low-Power Timer1 I/O Port Map B.		
D3	P2.6	P2.6/ LPTMR0_CLK	AIN6/AIN3N	LPUARTB_RX	Low-Power Timer0 External Clock Input/ADC Input 6/Comparator 3 Negative Input; Low-Power UART0 Receive Port Map B.		
C3	P2.7	P2.7/ LPTMR1_CLK	AIN7/AIN3P	LPUARTB_TX	Low-Power Timer1 External Clock Input/ADC Input 7/Comparator 3 Positive Input; Low-Power UART Transmit Port Map B.		
D11	P3.0	P3.0/PDOWN/ WAKEUP	_	_	Power-Down Output; Wakeup Input. This device pin can only be powered by V _{DDIOH} .		
D10	P3.1	P3.1/SQWOUT/ WAKEUP	_	_	RTC Square-Wave Output; Wakeup Input. This device pin can only be powered by V _{DDIOH} .		

PRELIMINARY

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

144 CSBGA

			FUNCTION MODE		
PIN	NAME	Primary Signal Alternate Alternate (Default) Function 1 Function 2			FUNCTION
USB					
E13	DP	_	-	_	USB DP Signal. This bidirectional pin carries the positive differential data or single-ended data. This pin is weakly pulled high internally when the USB is disabled.
D13	DM	_		_	USB DM Signal. This bidirectional pin carries the negative differential data or single-ended data. This pin is weakly pulled high internally when the USB is disabled.
MIPI CSI-	-2				
В6	CSI_CKP	_	_	_	MIPI CSI-2 receiver differential clock positive input.
A6	CSI_CKN	_	_	_	MIPI CSI-2 receiver differential clock negative input.
C7	CSI_D0P	_	_	_	MIPI CSI-2 receiver differential data lane 0 positive input.
C6	CSI_D0N	_	_	_	MIPI CSI-2 receiver differential data lane 0 negative input.
В7	CSI_D1P			_	MIPI CSI-2 receiver differential data lane 1 positive input.
A7	CSI_D1N	_	_	_	MIPI CSI-2 receiver differential data lane 1 negative input.

Detailed Description

Artificial intelligence (AI) requires extreme computational horsepower, but Analog Devices is cutting the power cord from AI insights. The MAX78002 is a new breed of AI microcontroller built to enable neural networks to execute at ultra-low power and live at the edge of the IoT. This product combines the most energy-efficient AI processing with Analog Devices' proven ultra-low-power microcontrollers. Our hardware-based convolutional neural network (CNN) accelerator enables battery-powered applications to execute AI inferences while spending only microjoules of energy.

The MAX78002 is an advanced system-on-chip featuring an Arm Cortex-M4 with FPU CPU for efficient system control with an ultra-low-power deep neural network accelerator. The CNN engine has a weight storage memory of 2MB, and can support 1-, 2-, 4-, and 8-bit weights (supporting networks of up to 16 million weights). The CNN weight memory is SRAM-based so that AI network updates can be made on the fly. The CNN engine also has 1.3MB of data memory. The CNN architecture is highly flexible, allowing networks to be trained in conventional toolsets like PyTorch and TensorFlow, then converted for execution on the MAX78002 using tools provided by Analog Devices.

In addition to the memory in the CNN engine, the MAX78002 has large on-chip system memory for the microcontroller core, with 2.5MB flash and up to 384KB SRAM. Multiple high-speed and low-power communications interfaces are supported, including I²S, MIPI CSI-2 serial camera, parallel camera (PCIF), and SD 3.0/SDIO 3.0/eMMC 4.51 secure digital.

Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor

The Arm Cortex-M4 with FPU processor (CM4) is ideal for AI system control. The architecture combines high-efficiency signal processing functionality with low power, low cost, and ease of use.

The Arm Cortex-M4 with FPU DSP supports single instruction, multiple data (SIMD) path DSP extensions, providing:

- Four parallel 8-bit add/sub
- Floating point single precision
- Two parallel 16-bit add/sub
- Two parallel MACs
- 32- or 64-bit accumulate
- Signed or unsigned data with or without saturation

The addition of a 32-bit RISC-V coprocessor (RV32) provides the system with ultra-low power consumption signal processing.

Convolutional Neural Network Accelerator (CNN)

The CNN accelerator consists of 64 parallel processors with 1.31MB of SRAM-based storage. Each processor includes a pooling unit and a convolutional engine with dedicated weight memory. Four processors share one data memory. These are further organized into groups of 16 processors that share common controls. A group of 16 processors operates as a peripheral to another group or independently. Data is read from SRAM associated with each processor and written to any data memory located within the accelerator. Any given processor has visibility of its dedicated weight memory and the data memory instance it shares with the three others.

The features of the CNN accelerator include:

- Data storage
 - 1.31MB SRAM-based data storage
 - Configured as 20Kx8-bit integers x64 channels or 80Kx8-bit integers x4 channels for input layers
 - Input data format 8-bit signed values
 - Selectable output data format 8-bit signed integer or 32-bit signed integer for last layer
 - · Arm AMBA APB accessible
 - · Hardware CNN results data unload assist
- Weight storage
 - SRAM based with selectable data retention mode
 - Configurable from 2M 8-bit integer weights to 16M 1-bit logical weights

- Optional 4x processing mode splits each weight memory into four parallel memories with a common address generating 4x the number of masks each cycle
- · All processors include the following dedicated weight storage:
 - 1x processing mode
 - 4096x9x8-bit weights
 - 8192x9x4-bit weights
 - 16384x9x2-bit weights
 - 32768x9x1-bit weights
 - · 4x processing mode
 - 4x1024x9x8-bit weights
 - 4x2048x9x4-bit weights
 - 4x4096x9x2-bit weights
 - 4x8192x9x1-bit weights
- The first processor in each x16 includes additional weight storage for input layer processing:
 - 1x processing mode
 - 1024x9x8-bit weights
 - 2048x9x4-bit weights
 - 4096x9x2-bit weights
 - 8196x9x1-bit weights
 - · 4x processing mode
 - 4x256x9x8-bit weights
 - 4x512x9x4-bit weights
 - 4x1024x9x2-bit weights
 - 4x2048x9x1-bit weights
- Programmable per x16 processor weight RAM start address, start pointer, and mask count
- Arm AMBA APB accessible
- · Optional weight load hardware assist for packed weight storage
- 128 independently configurable layers (per x16 processor)
 - Programmable start layer any of the 128 layers
 - · Linked layer mode allows arbitrary nonsequential layer execution
 - · Configurable per layer parameters
 - Processor and mask enables (16 channels)
 - Input data format byte-wide input data or 4x8-bit wide input data (x16 processors 0, 4, 8, or 12 only)
 - · Per layer data streaming
 - · Up to eight simultaneous streaming layers available for the first eight layers
 - Optional FIFO input data paths (first layer only)
 - Selectable streaming termination layer transition to nonstream processing mode
 - Programmable per stream configuration
 - Stream start relative to prior stream
 - Three stream processing delay counters two column counters for noninteger ratios, 1-row delta counter
 - · Data SRAM circular buffer size
 - Programmable input data size (separate row, column fields)
 - Programmable row and column padding 0 to 3 bytes
 - Configurable number of input channels 1 to 1024
 - Configurable number of output channels 1 to 1024 (determined by the kernel count value)
 - Selectable kernel bit width size (1, 2, 4, or 8)
 - · Selectable kernel SRAM pointer start address and count
 - Optional in-flight input image pooling
 - Pool mode none, maximum, or average
 - Pool size 2x2 to 16x16 with independent row and column counts
 - Pool dilation 0 to 15
 - Programmable stride 1 to 4 common row/column stride value
 - Data SRAM read pointer base address
 - · Configurable read pointer increment value for flexible input channel access

PRELIMINARY

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

- · Data SRAM write pointer configuration
 - · Base address
 - · Independent offsets for output channel storage in SRAM
 - · Programmable stride increment offset
- Bias 8192 8-bit integers with an option for 1024 10-bit integers using multiple x16 processors
 - Optionally configurable as 4x2048x8-bit bias for 4x mode (with an option for 10-bit bias using multiple x16 processors)
- Pre-activation output scaling direction (up/down) and 0 to 15-bit shift magnitude
- · Output activation none, ReLU, absolute value
- Pass-through mode allows input data to be passed directly through to the output with programmable data relocation.
- Element-wise operations (add, subtract, XOR, OR) with optional convolution up to 16 elements
- Deconvolution
- · Flattening for MLP processing
- · Depthwise convolution
- Simple logic modes support single mask bit +1/-1, 0/-1 modes
- · No mask mode supports convolutions with a fixed mask value of 1

Processing

- 64 parallel physical channel processors
 - Organized as 4 x 16 processors
 - · 8-bit integer data path with an option for 32-bit integers on the output layer
 - · Per channel processor enable/disable
 - Expandable to 1024 parallel logical channel processors
- Configurable 3x3 or 1x1 2D kernel size
- Configurable 1D kernel size to 1x9
- Full-resolution sum-of-products arithmetic for 1024 8-bit integer (data and weight) channels
- Two maximum operating frequency modes up to 50MHz in nonpipelined mode or up to 200MHz in pipeline mode
- Up to 16 output channels per clock processing rate
- Conditional execution allows early layer termination and branching based on the programmable address and/or data and/or count match
- Input layer maximum input size
 - · 20KB, 64 channels, non-streaming, APB I/F
 - · 80KB, 16 channels, non-streaming, APB I/F
 - 80KB, 4 channels, non-streaming, FIFO I/F
 - 2048x2048 bytes, 4 channels, streaming, FIFO I/F
- Hidden layers maximum input size
 - Up to 20KB per channel, x64 channels, nonstreaming
 - 20KB can be split equally across 1 to 16 logical channels, nonstreaming
 - 4MB per channel, x64 channels, streaming
 - 4MB can be split equally across eight layers, streaming
- Optional interrupt on CNN completion and FIFO full and empty statuses
- User accessible BIST on all internal memories
- User accessible zeroization of all internal memories
- Single-step operation with full data SRAM access for CNN operation debug
- Power management
 - Independent x16 processor supply enables
 - Independent x16 processor mask retention enables
 - Independent x16 data path clock enables
 - Functional APB clock gating with per x16 processor override registers clocked only during APB write access.
 - CNN clock frequency scaling (divide by 2, 4, 8, or 16)
 - Chip-level voltage control for power-performance optimization
- Input data row buffer memory (TRAM)

- Organized as 12Kx16 or optionally as 4x3Kx16 in read-ahead mode
- · Programmable per layer TRAM read/write pointer start and rollover values
- · Automatically allocates memory based on the programmed number of input channels
- Read ahead input processing mode allows the next input data byte to be preprocessed while the current input byte
 output channel generation is active.

Memory

Internal Flash Memory

2.5MB of internal flash memory provides nonvolatile storage of program and data memory.

Internal SRAM

The internal 384KB SRAM provides low-power retention of application information in all power modes except POWER DOWN. The SRAM is divided into eight banks. SRAM0 and SRAM1 are both 32KB; SRAM2, SRAM3, SRAM4, and SRAM5 are all 64KB each. SRAM6 is 48KB, and SRAM7 is 16KB. SRAM4, SRAM5, SRAM6, and SRAM7 are accessible by the RV32 in LOW POWER mode. For enhanced system reliability, SRAM0 (32KB) can be configured with error correction coded (ECC) single error correction-double error detection (SEC-DED). This data retention feature is optional and configurable. This granularity allows the application to minimize its power consumption by only retaining the most essential data.

Dynamic Voltage Scaling (DVS) Controller

The DVS controller works using the fixed high-speed oscillator and the V_{COREA} supply voltage to optimally operate the Arm core at the lowest practical voltage. The ability to adaptively adjust the voltage provides a significant reduction in dynamic power consumption.

The DVS controller provides the following features:

- Controls DVS monitoring and adjustment functions
- Continuous monitoring with programmable monitor sample period
- Controlled transition to a programmable operating point
- Independent high and low operating limits for safe, bounded operation
- Independent high, center, and low operating range delay line delay monitors
- Programmable adjustment rate when an adjustment is required
- Single clock operation
- Arm peripheral bus interface provides control and status access
- · Interrupt capability during error

Clocking Scheme

Multiple clock sources can be selected as the system clock:

- Internal phase-locked loop (IPLL) provides 100MHz and 200MHz clock sources
- Internal primary oscillator (IPO) at a nominal frequency of 120MHz
- Internal secondary oscillator (ISO) at a nominal frequency of 60MHz
- Configurable internal nanoring oscillator (INRO) at 8kHz, 16kHz, or 30kHz
- External RTC oscillator at 32.768kHz (ERTCO) (external crystal required)
- Internal baud rate oscillator at 7.3728MHz (IBRO)
- External square-wave clock up to 80MHz

There are multiple external clock inputs:

- LPTMR0 and LPTMR1 can be clocked from unique external sources.
- I²S can be be clocked from its own external source.
- USB can be clocked from its own external source.

Figure 9. Clocking Scheme

General-Purpose I/O (GPIO) and Special Function Pins

Most GPIO pins share both a firmware-controlled I/O function and one or more alternate functions associated with peripheral modules. Pins can be individually enabled for GPIO or peripheral special function use. Configuring a pin as a special function usually supersedes its use as a firmware-controlled I/O. Although this multiplexing between peripheral and GPIO functions is usually static, it can also be done dynamically. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or special function, except where explicitly noted in the <u>Electrical Characteristics</u> tables.

In GPIO mode, pins are logically divided into ports of 32 pins. Each pin of a port has an interrupt function that can be

independently enabled, and configured as a level- or edge-sensitive interrupt. All GPIOs of a given port share the same interrupt vector.

When configured as GPIO, the following features are provided. The features can be independently enabled or disabled on a per-pin basis.

- Configurable as input, output, bidirectional, or high impedance
- Optional internal pull-up resistor or internal pull-down resistor when configured as input
- Exit from low-power modes on rising or falling edge
- Selectable standard- or high-drive modes

The MAX78002 provides up to 60 GPIO pins. Caution is needed since Port 3 (P3.0 and P3.1 device pins) are configured in a different manner from the above description. Refer to the MAX78002 User Guide for details.

MIPI Camera Serial Interface 2 (MIPI CSI-2) Controller

The MIPI CSI-2 is a low voltage interface suited for CMOS image sensors with the following features:

- D-PHY 2.1
- MIPI Alliance Standard for Camera Serial Interface 2 Version 2.1 compliant
- Implements all three CSI-2 MIPI Layers (Pixel to Byte packing, Low-Level Protocol, Lane Management)
- Receiver only
- Two data lanes, one clock lane
- Supports high speed (4.5+ Gbps) D-PHY operation
- Support for all CSI-2 data types
- Error correction support

Parallel Camera Interface (PCIF)

The PCIF is a low-voltage interface suited for CMOS image sensors. It provides up to 12-bits of parallel access capability with single capture and continuous mode operation.

Analog-to-Digital Converter (ADC)

The 12-bit successive approximation register (SAR) ADC provides an external reference input and a single-ended input multiplexer. The multiplexer selects an input channel from one of the eight external analog input signals (AIN0–AIN7) or the internal power supply inputs.

The reference for the ADC can be:

- External V_{RFF} input
- Internal 1.25V or 2.048V selectable

An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a power mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the CPU is in SLEEP, LOW POWER, or MICRO POWER mode. The eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent comparators.

The ADC measures the following voltages:

- AIN[7:0] up to 3.3V
- VBAT
- V_{SS}
- VCOREA
- V_{COREB}
- 2.5V internal LDO
- 0.9V internal LDO
- V_{DDB}
- V_{DDA}
- Internal die temperature sensor output

Comparators

The eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent comparators with the following features:

- Comparison events can trigger interrupts
- Events can wake the CM4 from SLEEP, LOW POWER, MICRO POWER, STANDBY, or BACKUP operating modes
- Can be active in all power modes

Single-Inductor Multiple-Output Switch-Mode Power Supply (SIMO SMPS)

The SIMO SMPS built into the device provides a monolithic power supply architecture for operation from a single lithium cell. The SIMO provides three buck regulator outputs that are voltage programmable. This architecture optimizes power consumption efficiency of the device and minimizes the bill of materials for the circuit design since only a single inductor/capacitor pair is required.

Power Management

Power Management Unit

The power management unit (PMU) provides high-performance operation while minimizing power consumption. It exercises intelligent, precise control of power distribution to the CPUs and peripheral circuitry.

The PMU provides the following features:

- User-configurable system clock
- Automatic enabling and disabling of crystal oscillators based on power mode
- Multiple power domains
- Fast wake-up of powered-down peripherals when activity detected
- Optional control of external switches to provide the CNN with dedicated power from an external source

ACTIVE Mode

In this mode, the CM4 and the RV32 can execute application code and all digital and analog peripherals are available on demand. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power consumption. The CM4 has access to all system SRAM. The RV32 has access to SRAM4, SRAM5, SRAM6, and SRAM7. Both the CM4 and the RV32 can execute from internal flash simultaneously. SRAM7 can be configured as an instruction cache for the RV32.

SLEEP Mode

This mode consumes less power, but wakes faster because the clocks can optionally be enabled.

The device status is as follows:

- CM4 is asleep.
- RV32 is asleep.
- CNN quadrants and memory are configurable.
- Peripherals are on.
- Standard DMA is available for optional use.

LOW POWER Mode (LPM)

This mode is suitable for running the RV32 processor to collect and move data from enabled peripherals.

The device status is as follows:

- The CM4, SRAM0, SRAM1, SRAM2, and SRAM3 are in state retention.
- CNN quadrants and memory are configurable and active.
- The RV32 can access the SPI, all UARTS, all timers, I²C, 1-Wire, pulse train engines, I²S, CRC, AES, TRNG, PCIF, and comparators, as well as SRAM4, SRAM5, SRAM6, and SRAM7. SRAM7 can be configured to operate as RV32 instruction cache.
- The transition from LOW POWER mode to ACTIVE mode is faster than the transition from BACKUP mode because system initialization is not required.

- The DMA can access flash.
- IPO and IPLL can be optionally powered down.
- The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
 - ISO

MICRO POWER Mode (µPM)

This mode is used for extremely low power consumption while using a minimal set of peripherals to provide wakeup capability.

The device status is as follows:

- Both CM4 and RV32 are state retained. System state and all SRAM is retained.
- CNN quadrants are powered off.
- CNN memory provides selectable retention.
- The GPIO pins retain their state.
- All non-MICRO POWER peripherals are state retained.
- The following oscillators are powered down:
 - IPO
 - IPLL
 - ISO
- · The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
- The following MICRO POWER mode peripherals are available to wake up the device:
 - LPUART0
 - WWDT1
 - · All four low-power analog comparators

STANDBY Mode

This mode is used to maintain the system operation while keeping time with the RTC.

The device status is as follows:

- Both CM4 and RV32 are state retained. System state and all SRAM are retained.
- CNN quadrants are powered off.
- CNN memory provides selectable retention.
- GPIO pins retain their state.
- All peripherals are state retained.
- The following oscillators are powered down:
 - IPO
 - IPLL
 - ISO
 - IBRO
- The following oscillators are enabled:
 - ERTCO
 - INRO

BACKUP Mode

This mode is used to maintain the system RAM. The device status is as follows:

• CM4 and RV32 are powered off.

- SRAM0 thru SRAM7 can be configured to be state retained as per Table 1.
- CNN memory provides selectable retention.
- All peripherals are powered off.

The following oscillators are powered down:

- IPO
- IPLL
- ISO
- IBRO

The following oscillators are enabled:

- ERTCO
- INRO

Table 1. BACKUP Mode SRAM Retention Block Sizes

RAM BLOCK	RAM SIZE
SRAM0	32KB + ECC
SRAM1	32KB
SRAM2	64KB
SRAM3	64KB
SRAM4	64KB
SRAM5	64KB
SRAM6	48KB
SRAM7	16KB

POWER DOWN Mode (PDM)

This mode is used during product level distribution and storage. The device status is as follows:

- CM4 and RV32 are powered off.
- All peripherals and SRAM are powered down.
- All oscillators are powered down.
- There is no data retention in this mode, but values in flash memory are preserved.
- Voltage monitors are operational.

Wakeup Sources

The sources of wakeup from the SLEEP, LOW POWER, MICRO POWER, STANDBY, BACKUP, and POWER DOWN operating modes are summarized in <u>Table 2</u>.

Table 2. Wakeup Sources

OPERATING MODE	WAKEUP SOURCE					
SLEEP	Any enabled peripheral with interrupt capability; RSTN					
LOW POWER (LPM)	SPI0, I ² S, I ² C, UARTs, timers, watchdog timers, wakeup timer, all comparators, RTC, GPIOs, RSTN, and RV32					
MICRO POWER (µPM)	All comparators, LPUART, LPTMR1, LPTIMER2, LPWDT0, RTC, wakeup timer, GPIOs, and RSTN					
STANDBY	RTC, wakeup timer, GPIOs, CMP0, and RSTN					
BACKUP	RTC, wakeup timer, GPIOs, CMP0, and RSTN					
POWER DOWN (PDM)	P3.0, P3.1, and RSTN					

Real-Time Clock

An RTC keeps the time of day in absolute seconds. The 32-bit seconds register can count up to approximately 136 years

and be translated to calendar format by application software.

The RTC provides a time-of-day alarm that can be programmed to any future value between 1 second and 12 days. When configured for long intervals, the time-of-day alarm can be used as a power-saving timer, allowing the device to remain in an extremely low-power mode, but still awaken periodically to perform assigned tasks. A second independent 32-bit 1/4096 subsecond alarm can be programmed with a tick resolution of 244µs. Both can be configured as recurring alarms. When enabled, either alarm can cause an interrupt or wake the device from most low-power modes.

The time base is generated by a 32.768kHz crystal or an external clock source that must meet the electrical/timing requirements in the *Electrical Characteristics* table.

The RTC calibration feature provides the ability for user software to compensate for minor variations in the RTC oscillator, crystal, temperature, and board layout. Enabling the SQWOUT alternate function outputs a timing signal derived from the RTC. External hardware can measure the frequency and adjust the RTC frequency in increments of ±127ppm with 1ppm resolution. Under most circumstances, the oscillator does not require any calibration.

Programmable Timers

32-Bit Timer/Counter/PWM (TMR, LPTMR)

General-purpose, 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals with minimal software interaction.

The timer provides the following features:

- 32-bit up/down autoreload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External pin multiplexed with GPIO for timer input, clock gating, or capture
- Timer output pin
- TMR0–TMR3 can be configured as 2 × 16-bit general-purpose timers
- Timer interrupt

The MAX78002 provides six 32-bit timers (TMR0, TMR1, TMR2, TMR3, LPTMR0, and LPTMR1). LPTMR0 and LPTMR1 are capable of operation in the SLEEP, LOW POWER, and MICRO POWER modes.

I/O functionality is supported for all of the timers. Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all of the ports depending on the device configuration. See Table 3 for individual timer features.

Table 3. Timer Configuration Options

	REGISTER	SINGLE	DUAL	SINGLE	POWER	CLOCK SOURCE						
INSTANCE	ACCESS NAME	32 BIT	16 BIT	16 BIT	MODE	PCLK	ISO	IBRO	INRO	ERTCO	LPTMR0_CLK	LPTMR1_CLK
TMR0	TMR0	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No
TMR1	TMR1	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No
TMR2	TMR2	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No

Table 3. Timer Configuration Options (continued)

TMR3	TMR3	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	Yes	No	No
LPTMR0	TMR4	No	No	Yes	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	No	Yes	Yes	Yes	Yes	No
LPTMR1	TMR5	No	No	Yes	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	No	Yes	Yes	Yes	No	Yes

Watchdog Timer (WDT)

Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the windowed watchdog timer (WDT), which detects runaway code or system unresponsiveness.

The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution. The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be reset within a specific window of time. See Table 4 for individual timer features.

The MAX78002 provides two instances of the watchdog timer—WDT0 and LPWDT0.

Table 4. Watchdog Timer Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	DOWED MODE	POWER MODE CLOCK SOURCE					
INSTANCE NAME	REGISTER ACCESS NAME	POWER WIDDE	PCLK	IBRO	INRO	ERTCO		
WDT0	WDT0	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No	No		
LPWDT0	WDT1	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	Yes	Yes	Yes		

Pulse Train Engine (PT)

Multiple, independent pulse train generators can provide either a square-wave or a repeating pattern from 2 to 32 bits in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit level, allowing for multibit patterns. Each pulse train generator is independently configurable.

The pulse train generators provide the following features:

- Independently enabled
- · Safe enable and disable for pulse trains without bit banding
- Multiple pin configurations allow for flexible layout
- Pulse trains can be started/synchronized independently or as a group
- Frequency of each enabled pulse train generator is also set separately, based on a divide down (such as divide by 2, divide by 4, and divide by 8) of the input pulse train module clock

PRELIMINARY

Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

- Input pulse train module clock can be optionally configured to be independent from the system AHB clock
- Multiple repetition options
 - Single shot (nonrepeating pattern of 2 to 32 bits)
 - Pattern repeats user-configurable number of times or indefinitely
 - · Termination of one pulse train loop count can restart one or more other pulse trains

The pulse train engine feature is an alternate function associated with a GPIO pin. In most cases, enabling the pulse train engine function supersedes the GPIO function.

The MAX78002 provide up to four instances of the pulse train engine peripheral (PT[3:0]).

Serial Peripherals

High-Speed USB Peripheral

The integrated USB peripheral is compliant with the High-Speed (480Mb/s) USB 2.0 specification. The integrated USB physical interface (PHY) reduces board space and system cost. An integrated voltage regulator enables smart switching between the main supply and V_{DDB} when connected to a USB host controller. The USB peripheral supports DMA for the endpoint buffers. A total of 11 endpoint buffers are supported with configurable selection of IN or OUT in addition to endpoint 0.

I²C Interface (I2C)

The I²C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many or many-to-many communications medium. These engines support Standard-mode, Fast-mode, Fast-mode Plus, and High-speed mode I²C speeds. It provides the following features:

- Controller or target mode operation
 - Supports up to four different target addresses in target mode
- Supports standard 7-bit addressing or 10-bit addressing
- RESTART condition
- Interactive receive mode
- Tx FIFO preloading
- Support for clock stretching to allow slower target devices to operate on higher speed busses
 - Multiple transfer rates
 - Standard-mode: 100kbps
 Fast-mode: 400kbps
 Fast-mode Plus: 1000kbps
 High-speed mode: 3.4Mbps
 - Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes

The MAX78002 provides three instances of the I²C peripheral—I2C0, I2C1, and I2C2.

I²S Interface (I2S)

The I²S interface is a bidirectional, four-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I²S Bus Specification, June 5, 1996. It provides the following features:

- Controller and target mode operation
- 8, 16, 24, and 32 bit frames
- Receive and transmit DMA support
- Wakeup on FIFO status (full/empty/threshold)
- Pulse density modulation support for receive channel
- Word select polarity control
- First bit position selection
- Interrupts generated for FIFO status
- Receiver FIFO depth of 32 bytes

• Transmitter FIFO depth of 32 bytes

The MAX78002 provides one instance of the I²S peripheral (I2S).

Serial Peripheral Interface (SPI)

SPI is a highly configurable, flexible, and efficient synchronous interface among multiple SPI devices on a single bus. The bus uses a single clock signal and multiple data signals, and one or more target select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead.

The provided SPI peripherals can operate in either target or controller mode and provide the following features:

- SPI modes 0, 1, 2, or 3 for single-bit communication
- 3- or 4-wire mode for single-bit target device communication
- Full-duplex operation in single-bit, 4-wire mode
- · Dual and quad data modes supported
- Multiple target selects on some instances
- Multicontroller mode fault detection
- Programmable interface timing
- Programmable SCK frequency and duty cycle
- 32-byte transmit and receive FIFOs
- Target select assertion and deassertion timing with respect to leading/trailing SCK edge

The MAX78002 provides two instances of the SPI peripheral—SPI0 and SPI1. See Table 5 for configuration options.

Table 5. SPI Configuration Options

INSTANCE	DATA	TARGET SELECT LINES	MAXIMUM FREQUENCY CONTROLLER MODE (MHz)	MAXIMUM FREQUENCY TARGET MODE (MHz)
SPI0	3-wire, 4-wire, dual, or quad data support	3	60	60
SPI1	3-wire, 4-wire, dual, or quad data support	1	30	60

UART (UART, LPUART)

The universal asynchronous receiver-transmitter (UART, LPUART) interface supports full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry-standard request to send (RTS) and clear to send (CTS) flow control signaling. Each instance is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 8-byte send/receive FIFO
- Full-duplex operation for asynchronous data transfers
- Interrupts available for frame error, parity error, CTS, Rx FIFO overrun, and FIFO full/partially full conditions
- Automatic parity and frame error detection
- Independent baud-rate generator
- Programmable 9th-bit parity support
- Multidrop support
- Start/stop bit support
- Hardware flow control using RTS/CTS
- 12.5Mbps for UART maximum bit rate
- 1.85Mbps for LPUART maximum bit rate
- Two DMA channels can be connected (read and write FIFOs)
- Programmable word size (5 bits to 8 bits)

The MAX78002 provides four instances of the UART peripheral—UART0, UART1, UART2, and LPUART0. LPUART0 is capable of operation in the SLEEP, LOW POWER, and MICRO POWER modes. See Table 6 for configuration options.

Table 6. UART Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	HARDWARE FLOW CONTROL	POWER MODE	CLC	CK SO	URCE
INSTANCE NAME	REGISTER ACCESS NAIVIE	HARDWARE FLOW CONTROL	POWER MODE	PCLK	IBRO	ERTCO
UART0	UART0	Yes	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No
UART1	UART1	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No
UART2	UART2	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	No
LPUART0	UART3	No	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	Yes	Yes

1-Wire Controller (OWM)

Analog Device's 1-Wire bus consists of one signal that carries data and also supplies power to the target devices and a ground return. The bus controller communicates serially with one or more target devices through the bidirectional, multidrop 1-Wire bus. The single-contact serial interface is ideal for communication networks requiring minimal interconnection.

The provided 1-Wire controller supports the following features:

- Single contact for control and operation
- Unique factory identifier for any 1-Wire device
- · Multiple device capability on a single line

The OWM supports both standard (15.6kbps) and overdrive (110kbps) speeds.

Standard DMA Controller

The standard DMA controller allows automatic one-way data transfer between two entities. These entities can be either memories or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported:

- 4-channel
- · Peripheral to data memory
- Data memory to peripheral
- Data memory to data memory
- Event support

All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from the FIFO.

The MAX78002 provides one instance of the standard DMA controller.

Security

AES

The dedicated hardware-based AES engine supports the following algorithms:

- AES-128
- AES-192
- AES-256

The AES keys are automatically generated by the engine and stored in dedicated flash to protect against tampering. Key generation and storage is transparent to the user.

True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator (NDRBG)

The device provides a non-deterministic entropy source that can be used to generate cryptographic seeds or strong encryption keys as part of an overall framework for a secure customer application.

Software can use random numbers to trigger asynchronous events that add complexity to program execution to thwart replay attacks or key search methodologies.

The TRNG can support the system-level validation of many security standards. Analog Devices will work directly with the customer's validation laboratory to provide the laboratory with any required information. Contact Analog Devices for details of compliance with specific standards.

CRC Module

A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application software. It supports a user-defined programmable polynomial up to 32-bits. Direct memory access copies data into the CRC module so that CRC calculations on large blocks of memory are performed with minimal CPU intervention. Examples of common polynomials are depicted in <u>Table 7</u>.

Table 7. Common CRC Polynomials

ALGORITHM	POLYNOMIAL EXPRESSION
CRC-32-ETHERNET	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x^{1} + x^{0}$
CRC-CCITT	$x^{16} + x^{12} + x^{5} + x^{0}$
CRC-16	$x^{16} + x^{15} + x^2 + x^0$
USB DATA	$x^{16} + x^{15} + x^2 + x^0$
PARITY	x ¹ + x ⁰

Bootloader

The bootloader allows loading and verification of program memory through a serial interface. It provides the following features:

- Bootloader interface through UART
- Program loading of Motorola® SREC format files
- Permanent lock state prevents altering or erasing program memory
- Access to the USN for device or customer application identification
- Disabling of the SWD interface to block debug access port functionality

The bootloader interface pins listed in Table 8 must be accessible to the host to use the bootloader.

Secure Boot

The secure boot feature available on some devices ensures software integrity by automatically comparing program memory against a stored HMAC SHA-256 hash value after every reset. Programs that fail the integrity check indicate corrupted or modified program memory and are prevented from executing any instructions. Devices with the secure boot feature provide additional security through an optional challenge/response feature that authenticates before executing bootloader commands.

Debug and Development Interface (SWD, JTAG)

The serial wire debug interface is used for code loading and ICE debug activities for the CM4. A JTAG interface is provided for the RV32. All devices in mass production have the debugging/development interface enabled.

Motorola is a registered trademark of Motorola Trademark Holdings, LLC.

Applications Information

Bypass Capacitors

The proper use of bypass capacitors reduces noise generated by the IC into the ground plane. The *Pin Descriptions* table indicates which pins should be connected to bypass capacitors, and the appropriate ground plane.

It is recommended that one instance of a bypass capacitor should be connected to each power pin/ball of the IC package. For example, if the <u>Pin Descriptions</u> table shows four device pins associated with voltage supply A, a separate capacitor should be connected to each pin for a total of four capacitors.

Capacitors should be placed as close as possible to their corresponding device pins. When more than one value of capacitor per pin is recommended, the capacitors should be placed in parallel starting with the lowest value capacitor closest to the pin.

Bootloader Activation

The bootloader interface options are shown in <u>Table 8</u>. The bootloader is activated if the activation pins are in their active state before exiting any reset and remain in that state until the bootloader sends the first command prompt through the interface. If the pins are not in their active state, the device will perform a secure boot and, if successful, begin execution of the application code. The design must ensure the activation pins and the RSTN pin are available to the host so it can activate the bootloader.

Note: It is recommended that at least one of the bootloader activation pins are connected to a $10k\Omega$ pull-up resistor to ensure that the pins are in their inactive state during reset.

Table 8. Bootloader Interface

ACTIVATION PINS	INTERFACE
P0.0 UART0A_RX (Active Low)	P0.0 UART0A_RX
P0.29 SWDCLK (Active Low)	P0.1 UART0A_TX

Ordering Information

PART	FLASH (MB)	SYSTEM RAM (KB)	BOOTLOADER	SECURE BOOT	PIN-PACKAGE
MAX78002GXE+	2.5	384 + ECC 8	Yes	No	144 CSBGA, 12mm x 12mm x 1.3mm, 0.8mm pitch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/22	Initial release	_

