CST 311 Algorithm Analysis & Design

Al Lake
Oregon Institute of Technology
Chapter 3
Growth of Functions

Asymptotic Notation

 The notations used to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers:

$$- N = \{0,1,2...\}.$$

 Such notations are convenient for describing the worst-case runningtime function T(n), which is usually defined only on integer input sizes.

⊕-notation

 The worst-case running time of insertion sort is:

$$- T(n) = \Theta(n^2)$$

- $\Theta(g(n)) = (f(n) : \in \text{ positive contants}$ $c_1, c_2, \text{ and } n_0 \exists$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$
- ∈ there exists
- ∃ such that
- ∀ for all

O-notation

- O-notation is used to give an upper bound on a function within a constant factor.
- O-notation is used when there is only an asymptotic upper bound.
- O(g(n)) = (f(n) : ∈ positive contants c and n₀ ∃

$$0 \leq f(n) \leq cg(n) \ \forall \ n \geq n_0$$

- ∈ there exists
- ∃ such that
- ∀ for all

Ω -notation

- Ω -notation provides an asymptotic lower bound.
- For a given function g(n), $\Omega(g(n))$ (pronounced "big omega of g of n")
- $\Omega(g(n)) = (f(n) : \in positive contants c and <math>n_0 \exists$

$$0 \leq cg(n) \leq f(n) \ \forall \ n \geq n_0$$

- ∈ there exists
- ∃ such that
- ∀ for all

Comparing Notations

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

o-notation

- The asymptotic upper bound provided by O-notation may or may not be asymptotically tight.
- For example:
 - $-2n^2 = O(n^2)$ is asymptotically tight
 - $-2n = O(n^2)$ is not asymptotically tight
- o-notation is used to denote an upper bound on a function that is not asymptotically tight.
- O(g(n)) = (f(n) : \in positive contants c and n_0 \exists 0 \leq f(n) \leq cg(n) \forall n \geq n₀
- ∈ there exists
- ∃ such that
- ∀ for all

Comparison of functions

- Transitivity
- Reflexivity
- Symmetry
- Transpose symmetry

Standard Notations

- Monotonicity
- Floors and ceilings
- Modular arithmetic
- Polynomials
- Exponentials
- Logarithms
- Factorials
- Functional iteration
- Fibonacci numbers