

Projet ANDROIDE: Attribution multi-critère d'UE en master

Jules MAZLUM - Camélia BOUALI

Encadrants : Aurélie Beynier, Olivier Spanjaard

01

CONTEXTE ET OBJECTIF

04

MODÉLISATION

02

OBJECTIFS CONSIDÉRÉS

05

EXPLORATION DES COMPROMIS

03

MÉTHODE DE RÉSOLUTION

06

CONCLUSION

01

CONTEXTE ET OBJECTIF

CONTEXTE ET OBJECTIF DU PROJET

Un enjeu universitaire complexe

- Attribution d'emplois du temps avec contraintes académiques (horaires, capacités, UE obligatoires)
- Diversité des parcours
- Préférences des étudiants

Notre système actuel

*

 Approche mono-objectif : minimisation du nombre d'étudiants sans emploi du temps valide

Limites

- Aucune prise en compte des préférences
- Possibilité d'affectations incohérentes avec le parcours
- Résultats valides mais peu satisfaisants pour les étudiants

Notre approche : l'optimisation multi-objectif

- Modélisation en programmation linéaire
- Résolution avec Gurobi
- Recherche de compromis équilibrés entre plusieurs objectifs

02

OBJECTIFS CONSIDÉRÉS

OBJECTIFS CONSIDÉRÉS

Minimiser le nombre d'étudiants n'obtenant pas leur emploi du temps préféré.

Minimiser le nombre d'étudiants n'obtenant pas les UE de leur parcours.

Minimiser le nombre d'étudiants sans emploi du temps valide.

03

MÉTHODE DE RÉSOLUTION

MÉTHODE DE TCHEBYCHEFF PONDÉRÉE AUGMENTÉE

$$\min \max_i \left(\lambda_i \cdot |f_i(x) - t_i^*|
ight) + arepsilon \cdot \sum_{i=1}^n \lambda_i \cdot |f_i(x) - t_i^*|$$

- $f_i(x)$ représente la valeur de l'objectif t_i pour la solution x,
- t_i^* est la valeur idéale (la meilleure valeur atteignable) de l'objectif t_i ,
- λ_i est le poids associé à l'objectif t_i ,
- $-\varepsilon$ est un petit paramètre strictement positif

MÉTHODE DE TCHEBYCHEFF UTILISÉE

MODÉLISATION

VARIABLES

 $x_{e,u} = 1$ si l'étudiant e est inscrit à l'UE u, 0 sinon.

 $y_{e,u,g} = 1$ si l'étudiant e est inscrit dans le groupe g de l'UE u, 0 sinon.

CONTRAINTES

UE Obligatoires

$$x_{e,u} = 1 \quad \forall u \in U_e^{\text{oblig}}, \quad \forall e \in E$$

Emploi du temps valide

$$\sum_{u \in U_e^{\text{choix}}} x_{e,u} \cdot \text{ECTS}_u = \text{totalECTS}_e, \quad \forall e \in E$$

Incompatibilité entre UE

$$x_{e,u_1} + x_{e,u_2} \le 1$$

Nombre d'UE hors parcours autorisé

$$\sum_{u \in U \setminus U_e^{\text{parcours}}} x_{e,u} \le \text{maxHorsParcours}_e \quad \forall e \in E$$

Incompatibilité entre cours magistraux

$$x_{e,u_1} + x_{e,u_2} \le 1 \quad \forall e \in E, \quad \forall (u_1, u_2) \in \text{IncompCM}$$

Incompatibilité entre TD/TME

$$y_{e,u_1,g_1} + y_{e,u_2,g_2} \le 1 \quad \forall e \in E, \quad \forall ((u_1,g_1),(u_2,g_2)) \in \text{IncompTD}$$

CONTRAINTES

Incompatibilité entre cours magistraux et TD/TME

$$x_{e,u_1} + y_{e,u_2,g_2} \le 1 \quad \forall e \in E, \quad \forall (u_1,(u_2,g_2)) \in \text{IncompCM_TD}$$

Unicité de groupe par UE

$$\sum_{g \in G_u} y_{e,u,g} = x_{e,u} \quad \forall e \in E, \quad \forall u \in U$$

Capacité des groupes de TD/TME

$$\sum_{e \in E} y_{e,u,g} \le \text{cap}_{u,g} \quad \forall u \in U, \quad \forall g \in G_u$$

MONOCRITÈRE

Minimisation du nombre d'étudiants n'obtenant pas leur emploi du temps préféré

$$\min f_1 = \sum_{e \in E} z_e^1$$

Minimisation du nombre d'étudiants n'obtenant pas les UE de leur parcours

$$\min f_2 = \sum_{e \in E} z_e^2$$

Minimisation du nombre d'étudiants sans emploi du temps valide

$$\min f_3 = \sum_{e \in E} z_e^3$$

MULTICRITÈRE

$$\min\max_{i=1,2,3} \left(\lambda_i \cdot \left| rac{f_i(x) - t_i^*}{t_i^*} \right|
ight) + arepsilon \cdot \sum_{i=1}^3 \lambda_i \cdot \left| rac{f_i(x) - t_i^*}{t_i^*} \right|$$

$$z = \max_{i=1,2,3} \left(\lambda_i \cdot \left| \frac{f_i(x) - t_i^*}{t_i^*} \right| \right)$$
$$e_i = \left| \frac{f_i(x) - t_i^*}{t_i^*} \right|$$

O5EXPLORATION DES COMPROMIS

- (<u>)</u> *
 - Trois graphes 2D représentant les compromis entre les objectifs **f1, f2** et **f3** :
 - f1 vs f2
 - **f2** vs **f3**
 - f1 vs f3

DÉTERMINATION D'UNE SOLUTION DE MEILLEUR COMPROMIS

- Méthode: Choix basé sur la distance euclidienne au point idéal (61,15,3).
- $d = \sqrt{(f_1 t_1^*)^2 + (f_2 t_2^*)^2 + (f_3 t_3^*)^2}$ Calcul:
- **Meilleur compromis:**

Solutions par poids

Poids (w_1, w_2, w_3)	Solutions (f1, f2, f3)	Nb solutions
(0.8, 0.1, 0.1)	(61, 18, 4), (62, 17, 4)	2
(0.1, 0.8, 0.1)	(64, 15, 4)	1
(0.1, 0.1, 0.8)	(67, 18, 3)	1
(0.6, 0.3, 0.1)	(64, 15, 4), (63, 16, 4)	2
(0.5, 0.3, 0.2)	(67, 18, 3)	1
(0.33, 0.33, 0.34)	(67, 18, 3)	1
(0.2, 0.5, 0.3)	(67, 18, 3), (65, 16, 4), (63, 18, 4)	3
(0.1, 0.6, 0.3)	(65, 15, 4)	1

Solutions non dominées globales

f1	f2	f3
61	18	4
62	17	4
63	16	4
64	15	4
67	18	3

RELÂCHEMENT DES CAPACITÉS DES GROUPES

- Objectif : Étudier l'impact d'un relâchement progressif sur la capacité des groupes
- Ontrainte modfiée : $\sum_{e \in E} y_{e,u,g} \leq \mathrm{cap}_{u,g} + \delta \quad \forall u \in U, \quad \forall g \in G_u$

Optimisation à 3 objectifs avec relâchement de la capacité

Résultats en fonction du relâchement des capacités

delta	f1	f2	f3	Remarque
0	61	18	4	
1	56	12	4	
2	53	8	4	
3	52	6	4	
4	51	5	3	
5	50	4	3	Pareto-optimal

Contrainte d'encadrement :

$$e_i \le e_i^* - \delta$$

COMPARAISON AVEC LA MÉTHODE EXISTANTE

	Nombre d'étu	diants ayant un n du temps	Moyenne de la somme des rangs		
Parcours	Méthode actuelle	Nouvelle méthode	Égalité	Méthode actuelle	Nouvelle méthode
ANDROIDE	14	18	17	26.69	27.00
CCA	5	4	13	29.45	28.55
DAC	0	0	30	27.50	27.50
IMA	7	1	7	29.40	29.80
QI	1	11	5	26.06	22.35
SAR	3	4	23	29.60	30.43
SESI	3	7	15	28.48	28.84
STL	1	0	40	20.51	20.56
				27.21	26.87

CONCLUSION

CONCLUSION

- Optimisation multi-objectif appliquée à l'attribution des emplois du temps
 - Modèle linéaire résolu avec la méthode de Tchebycheff
 - Résultats satisfaisants et flexibles
- Limites et perspectives
 - Préférences des étudiants non hiérarchisées
 - Satisfaction encore améliorable

MERCI!