

MOSFET - N-Channel, POWERTRENCH®

100 V, 240 A, 4.1 m Ω

FDBL86066-F085AW

Features

- Typical $R_{DS(on)} = 3.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 80 \text{ A}$
- Typical $Q_{g(tot)} = 47 \text{ nC}$ at $V_{GS} = 10 \text{ V}$, $I_D = 80 \text{ A}$
- UIS Capability
- Qualified to AEC Q101
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Electrical Power Steering
- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain-to-Source Voltage	100	V	
V _{GS}	Gate-to-Source Voltage	±20	V	
I _D	Drain Current – Continuous, (V _{GS} = 10 V) T _C = 25°C (Note 1)	185	Α	
	Pulsed Drain Current, T _C = 25°C	(See Figure 4)	Α	
E _{AS}	Single Pulse Avalanche Energy (Note 2)	93.6	mJ	
P_{D}	Power Dissipation	300	W	
	Derate Above 25°C	2	W/°C	
T _J , T _{STG}	Operating and Storage Temperature	–55 to +175	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Current is limited by silicon.
- 2. Starting $T_J=25^{\circ}C$, $L=30~\mu H$, $I_{AS}=-79~A$, $V_{DD}=100~V$ during inductor charging and $V_{DD}=0~V$ during time in avalanche.

1

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	4.1 mΩ @ 10 V	240 A

N-CHANNEL MOSFET

H-PSOF8L CASE 100BQ

MARKING DIAGRAM

&Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code

FDBL86066 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 3)	43	

^{3.} R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design, while R_{θJA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS		•	•		
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	-	_	V
I _{DSS}	Drain-to-Source Leakage Current	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $T_J = 175^{\circ}\text{C} \text{ (Note 4)}$	_ _	- -	1	μΑ
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V	_	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.9	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V, } I_D = 80 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $T_J = 175^{\circ}\text{C (Note 4)}$	_ _	3.3 7.3	4.1 8.8	mΩ
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	_	3240	_	pF
C _{oss}	Output Capacitance]	_	1950	_	pF
C _{rss}	Reverse Transfer Capacitance]	_	26	-	pF
Rg	Gate Resistance	V _{GS} = 0.5 V, f = 1 MHz	_	0.5	-	Ω
Q _{g(tot)}	Total Gate Charge	V _{GS} = 0 V to 10 V, V _{DD} = 50 V, I _D = 80 A	_	47	69	nC
Q _{g(th)}	Threshold Gate Charge	V _{GS} = 0 V to 2 V, V _{DD} = 50 V, I _D = 80 A	_	6	-	nC
Q_{gs}	Gate to Source Charge	V _{DD} = 50 V, I _D = 80 A	-	15	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = 50 V, I _D = 80 A	-	10	-	nC
SWITCHING	CHARACTERISTICS					
t _{on}	Turn-On Time	$V_{DD} = 50 \text{ V}, I_D = 80 \text{ A}, V_{GS} = 10 \text{ V},$	_	-	35	ns
t _{d(on)}	Turn-On Delay	$R_{GEN} = 6 \Omega$	_	18	_	ns
t _r	Rise Time		_	9	-	ns
t _{d(off)}	Turn-Off Delay		=	36	-	ns
t _f	Fall Time		=	13	-	ns
t _{off}	Turn-Off Time		=	-	68	ns
DRAIN-SOU	RCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward	I _{SD} = 80 A, V _{GS} = 0 V	_	0.9	1.25	٧
	Voltage	I _{SD} = 40 A, V _{GS} = 0 V	_	0.85	1.2	
t _{rr}	Reverse Recovery Time	I _F = 80 A, dI _{SD} /dt = 300 A/μs	_	36	54	ns
Q _{rr}	Reverse Recovery Charge	1	_	84	126	nC
t _{rr}	Reverse Recovery Time	I _F = 80 A, dI _{SD} /dt = 1000 A/μs	_	32	48	ns
Q _{rr}	Reverse Recovery Charge]	-	243	365	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

200 CURRENT LIMITED V_{GS} = 10 V BY SILICON ID, DRAIN CURRENT (A) 160 120 80 40 0 25 50 75 100 125 150 175 T_C, CASE TEMPERATURE(°C)

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Saturation Characteristics

Figure 6. Unclamped Inductive Switching Capability

Figure 8. Forward Diode Characteristics

Figure 10. Saturation Characteristics

TYPICAL CHARACTERISTICS

Figure 11. $R_{DS(on)}$ vs. Gate Voltage

Figure 13. Normalized Gate Threshold Voltage vs. Temperature

Figure 15. Capacitance vs. Drain to Source Voltage

Figure 12. Normalized R_{DS(on)} vs. Junction Temperature

Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Figure 16. Gate Charge vs. Gate to Source Voltage

PACKAGE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Reel Size	Tape Width	Quantity [†]
FDBL86066-F085AW	FDBL86066	H-PSOF8L (Pb-Free / Halogen Free)	13″	24 mm	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

H-PSOF8L 9.90x10.38x2.30

CASE 100BQ **ISSUE O**

BOTTOM VIEW

RECOMMENDED MOUNTING FOOTPRINT*

1.20 PITCH

Α1

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NDTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS 3. DIMENSION IS APPLIES TO PLATE TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
 4. PROFILE TOLERANCE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 5. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
 6. SEATING PLANE IS DEFINED BY THE TERMINALS. AI IS DEFINED BY THE TERMINALS. AI IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
 7. A VISUAL INDICATOR FOR PIN 1 MUST BE LOCATED IN THIS AREA.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	2.20		2.40	
b	0.70		0.90	
b1	9.70		9.90	
b2	0.42		0.50	
C	0.40		0.60	
D	10.28		10.58	
D2	3.10	3.30	3.50	
Ε	9.70	9.90	10.10	
E1	7.90	8.10	8.30	
e	1.20 BSC			
Н	11.48	11.68	11.880	
H1	6.75	6.95	7.15	
N	8			
J	3.00	3.15	3.30	
K1	3.98	4.18	4.38	
L	1.40	1.60	1.80	
L1	0.60	0.70	0.80	
L2	0.50	0.60	0.70	
L4	1.00	1.15	1.30	
ê	4°	7 °	10°	

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales