EXERCÍCIO PRÁTICO 02 PARTES 1 & 2 PROF. ROMANELLI

ALUNA: Yasmin Casemiro Viegas

Criação de uma ULA de 1 bit e de 4 bits

ULA 1 bit:

Yasmin Cassemiro Viegas - 800989

Testando a ULA com roteiro fornecido pelo item 6:

AND(A,B):

OR(A,B):

SOMA(A,B):

NOT(A):

AND(B,A):

Preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução:

Instrução Realizada	Binário (<mark>A</mark> ,B,Op.Code)	Valor em Hexa (0x)	Resultado em binário
AND(A,B)	0010 0001 00	(00 <mark>00 10</mark> 00 0100) = 0x084	0000
OR(A,B)	0010 0011 01	(00 <mark>00 10</mark> 00 1101) = 0x08D	0011
SOMA(A,B)	0010 0011 11	(00 <mark>00 10</mark> 00 1111) = 0x08F	0101
NOT(A)	1100 0011 10	(00 <mark>11 00</mark> 00 1110) = 0x30E	0011
AND(B,A)	1100 1101 00	(00 <mark>11 00</mark> 11 0100) = 0x334	1100

Complete agora a tabela a seguir onde todas as instruções que a ULA pode fazer serão testadas:

Instruções	Binário	Resultado da operação
450	0100 0101 0000	В
CB1	1100 1011 0001	0
A32	1010 0011 0010	1
C43	1100 0100 0011	0
124	0001 0010 0100	F
785	0111 1000 0101	7
9B6	1001 1011 0101	2
CD7	1100 1101 0111	0
FE8	1111 1110 1000	E
649	0110 0100 1001	D
D9A	1101 1001 1010	9
FCB	1111 1100 1011	С
63C	0110 0011 1100	F
98D	1001 1000 1101	F
76F	0111 0110 1110	7
23F	0010 0011 1111	2

O projeto da ULA no Logisim com um printscreen de alguma instrução da tabela sendo executada:

Instrução sendo executada: 124

Se o objetivo fosse realmente testar esta ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja na verdade a tabela que você preencheu deveria ter quantas linhas?

Resposta: Considerando o objetivo de testar realmente a ULA com todas as suas possibilidades, a tabela verdade resultante possuiria 2^12 linhas ou 4096 linhas. Isso acontece por trabalharmos com 12 Bits no total que são divididos igualmente entre as entradas A, B e na Seleção, 4 bits em cada uma dessas 3 entradas, totalizando 12.