REPONSES A L'EXERCICE I de Mathématiques

I-1- Coordonnées du vecteur \overrightarrow{BA} (2 ; -8) Coordonnées du vecteur \overrightarrow{BC} (-8 ; -8)

I-2-
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = 2 \times (-8) - 8 \times (-8) = -16 + 64 = 48$$

I-3-
$$\|\overrightarrow{BA}\| = \sqrt{2^2 + (-8)^2} = \sqrt{68} = \sqrt{4 \times 17} = 2\sqrt{17}$$

 $\|\overrightarrow{BC}\| = \sqrt{(-8)^2 + (-8)^2} = \sqrt{64 + 64} = \sqrt{128} = \sqrt{64 \times 2} = 8\sqrt{2}$

$$I-4- \cos(\widehat{ABC}) = \frac{3}{\sqrt{34}}$$

En effet :
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\| \times \cos(\widehat{ABC})$$
 donc $\cos(\widehat{ABC}) = \frac{\overrightarrow{BA.BC}}{\|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\|} = \frac{48}{16\sqrt{34}} = \frac{3}{\sqrt{34}}$

$$I-5- \sin(\widehat{ABC}) = \frac{5}{\sqrt{34}}$$

En effet:
$$\cos^2(\widehat{ABC}) + \sin^2(\widehat{ABC}) = 1$$

donc
$$\sin(\widehat{ABC}) = \sqrt{1 - \cos^2(\widehat{ABC})} = \sqrt{1 - \frac{9}{34}} = \sqrt{\frac{25}{34}} = \frac{5}{\sqrt{34}}$$

I-6- La valeur exacte de l'aire du triangle *ABC* est 40 unités d'aire.

En effet:
$$A = \frac{1}{2}BA \times BC \times \sin(\widehat{ABC}) = \frac{1}{2}8\sqrt{2} \times 2\sqrt{17} \times \frac{5}{\sqrt{34}} = 8\sqrt{34} \times \frac{5}{\sqrt{34}} = 8 \times 5 = 40$$

I-7- Dans le tétraèdre ABCD, la droite (DC) représente la hauteur issue de D du tétraèdre.

I-8- $V = \frac{800}{3}$ unités de volume

En effet:
$$DC = 20$$
 et $V = \frac{1}{3} A_{ABC} \times DC = \frac{1}{3} 40 \times 20 = \frac{800}{3}$

I-9-
$$\overrightarrow{n}.\overrightarrow{BA} = 4 \times 2 + 1 \times (-8) + 0 = 0$$

I-10- \vec{n} est un vecteur normal au plan (*ABD*).

En effet :
$$\overrightarrow{n} \cdot \overrightarrow{BA} = 0$$
 donc $\overrightarrow{n} \perp \overrightarrow{BA}$

$$\overrightarrow{AD}$$
 (-10;0;20) et \overrightarrow{n} . \overrightarrow{AD} = $4 \times (-10) + 0 + 2 \times 20 = 0$ donc $\overrightarrow{n} \perp \overrightarrow{AD}$.

 \vec{n} est donc orthogonal à deux vecteurs non colinéaires du plan (ABD) donc c'est un vecteur normal au plan (ABD).

I-11- Une équation cartésienne du plan (*ABD*) est : 4x + y + 2z - 24 = 0

En effet : \vec{n} (4; 1; 2) est un vecteur normal au plan (*ABD*) donc une équation cartésienne du plan (*ABD*) est de la forme : 4x + y + 2z + d = 0.

$$A \in (ABD)$$
 donc $4 \times 6 + 0 + 0 + d = 0 \Leftrightarrow d = -24$

I-12- Coordonnées du point A' (0 ; 0 ; 12)

I-13-
$$k = \frac{2}{5}$$

En effet :
$$\overrightarrow{DA}$$
 (10; 0; -20) et $\overrightarrow{DA'}$ (4; 0; -8) donc $k = \frac{4}{10} = \frac{-8}{-20} = \frac{2}{5}$

I-14- (A) 17 u.v. (B) 107 u.v. (C) 160 u.v. (D) 250 u.v.

```
I-15- Coordonnées du point I(1; 0; 0)
```

I-16- Coordonnées du vecteur
$$\overrightarrow{AC}$$
 (-10 ; 0 ; 0)

I-17- Une équation du plan médiateur P_1 du segment [AC] est x=1. En effet :

```
\overrightarrow{AC} ( -10; 0; 0) est un vecteur normal au plan P_1 donc une équation de P_1 est -10x + d = 0. De plus I(1;0;0) est un point de P_1 donc -10 \times 1 + d = 0 \Leftrightarrow d = 10 Donc une équation du plan P_1 est -10x + 10 = 0 soit x = 1.
```

I-18- Une équation du plan médiateur P_2 du segment [AB] est x-4y+11=0. En effet :

 \overrightarrow{AB} (-2; 8; 0) est un vecteur normal au plan P_2 donc une équation de P_2 est -2x + 8y + d = 0. De plus J (5; 4; 0), milieu du segment [AB] est un point de P_2 donc $-2 \times 5 + 8 \times 4 + d = 0 \Leftrightarrow d = -22$

Donc une équation du plan P_2 est -2x + 8y - 22 = 0 soit x - 4y + 11 = 0.

I-19- Coordonnées du centre Ω de la sphère (\mathcal{S}): Ω (1 ; 3 ; 10)

En effet : Ω est le point d'intersection des trois plans médiateurs donc ses coordonnées vérifient le x = 1 x = 1 x = 1

système:
$$\begin{cases} x = 1 \\ x - 4y + 11 = 0 \\ z = 10 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ 4y = 12 \\ z = 10 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 3 \\ z = 10 \end{cases}$$

I-20- $R = \sqrt{134}$

En effet: $R = \Omega A = \sqrt{(6-1)^2 + (0-3)^2 + (0-10)^2} = \sqrt{25+9+100} = \sqrt{134}$

REPONSES A L'EXERCICE II de Mathématiques

11-2-

X	0	1	2	3
P(X = x)	3 16	15 32	7 32	1 8

II-3-
$$E(X) = 0 + \frac{15}{32} + \frac{14}{32} + \frac{3}{8} = \frac{41}{32}$$

II-4-
$$u_1 = 1$$

$$u_2 = \frac{1}{2}$$

II-5-a-
$$v_0 = -\frac{8}{5}$$

II-5-b-
$$(v_n)$$
 est une suite géométrique de raison $-\frac{1}{4}$.

En effet:
$$v_{n+1} = u_{n+1} - \frac{3}{5} = -\frac{1}{4}u_n + \frac{3}{4} - \frac{3}{5} = -\frac{1}{4}u_n + \frac{3}{20} = -\frac{1}{4}\left(u_n - \frac{3}{5}\right) = -\frac{1}{4}v_n$$

II-6- Pour tout
$$n \ge 0$$
, $u_n = -\frac{8}{5} \left(-\frac{1}{4}\right)^n + \frac{3}{5}$.

En effet: Pour tout entier
$$n$$
, $v_n = v_0 \left(-\frac{1}{4}\right)^n = -\frac{8}{5} \left(-\frac{1}{4}\right)^n$ et $u_n = v_n + \frac{3}{5}$

II-7- La suite
$$(u_n)$$
 est convergente de limite $\frac{3}{5}$.

En effet :
$$\lim_{n \to +\infty} \left(-\frac{1}{4} \right)^n = 0 \text{ car } -1 < -\frac{1}{4} < 1 \text{ donc } \lim_{n \to +\infty} -\frac{8}{5} \left(-\frac{1}{4} \right)^n = 0 \text{ et } \lim_{n \to +\infty} -\frac{8}{5} \left(-\frac{1}{4} \right)^n + \frac{3}{5} = \frac{3}{5}$$

II-8-
$$P_{A_n}(A_{n+1}) = \frac{1}{2}$$

$$P_{\overline{A_n}}(A_{n+1}) = \frac{3}{4}$$

II-9-
$$P(\overline{A_n}) = 1 - p_n$$

$$P(A_{n+1} \cap A_n) = \frac{1}{2} \, p_n$$

$$P_{\overline{A_n}}(A_{n+1}) = \frac{3}{4}$$

$$P(A_{n+1} \cap A_n) = \frac{1}{2} p_n \qquad P(A_{n+1} \cap \overline{A_n}) = \frac{3}{4} (1 - p_n)$$

II-10-
$$p_{n+1} = -\frac{1}{4}p_n + \frac{3}{4}$$
.

En effet:
$$p_{n+1} = P(A_{n+1}) = P(A_{n+1} \cap A_n) + P(A_{n+1} \cap \overline{A_n}) = \frac{1}{2} p_n + \frac{3}{4} (1 - p_n) = -\frac{1}{4} p_$$

II-11-a-
$$P(F_n \cap A_n) = \frac{1}{2} p_n$$

$$P(F_n \cap \overline{A_n}) = \frac{1}{4}(1 - p_n)$$

II-11-b-
$$\lim_{n\to+\infty} P(F_n) = \frac{2}{5}$$

En effet:
$$P(F_n) = P(F_n \cap A_n) + P(F_n \cap \overline{A_n}) = \frac{1}{2} p_n + \frac{1}{4} (1 - p_n) = \frac{1}{4} p_n + \frac{1}{4}$$

Comme $\lim_{n \to +\infty} p_n = \lim_{n \to +\infty} u_n = \frac{3}{5}, \lim_{n \to +\infty} P(F_n) = \frac{1}{4} \frac{3}{5} + \frac{1}{4} = \frac{8}{20} = \frac{2}{5}$

REPONSES A L'EXERCICE III de Mathématiques

III-1- Solution générale de $(E_1): y = ke^{-\lambda t}$ où $k \in \mathbb{R}$.

III-2- $Q(x) = 0.6 e^{-\lambda t}$

En effet: $Q(0) = 0, 6 \Leftrightarrow ke^0 = 0, 6 \Leftrightarrow k = 0, 6$

III-3- $\lim_{t\to+\infty}Q(t)=\mathbf{0}$

La fonction Q est strictement décroissante

III-4- $\lambda = -\ln(0,7) = \ln(\frac{10}{7})$

$$\lambda \approx 0.3567$$

En effet: $Q(1) = (1 - 0.3) \times 0.6 = 0.7 \times 0.6 = 0.42$

Ce qui donne $0, 6 e^{-\lambda \times 1} = 0, 42 \Leftrightarrow e^{-\lambda} = 0, 7 \Leftrightarrow -\lambda = \ln(0, 7) \Leftrightarrow \lambda = -\ln(0, 7)$

III-5- $t_e = -\frac{\ln 6}{\ln 0.7}$

$$t_e \approx 5,02 \text{ heures}$$

 $\text{En effet: } Q(t) \geq 0, 1 \iff 0, 6 \ e^{(\ln 0, 7) \ t} \geq 0, 1 \iff e^{(\ln 0, 7) \ t} \geq \frac{1}{6} \iff (\ln 0, 7) t \geq -\ln 6 \iff t \leq -\frac{\ln 6}{\ln 0, 7} \text{ Car } \ln 0, 7 < 0.$

III-6- g est une solution de (E_2) .

En effet: $g'(t) = -\frac{1}{2}e^{-\frac{t}{2}}$ et $g'(t) + g(t) = -\frac{1}{2}e^{-\frac{t}{2}} + e^{-\frac{t}{2}} = \frac{1}{2}e^{-\frac{t}{2}}$

III-7- Solution générale de (E_2) : $y = e^{-\frac{t}{2}} + ke^{-t}$ où $k \in \mathbb{R}$.

III-8- $f(t) = e^{-\frac{t}{2}} - e^{-t}$

En effet: $f(0) = 0 \Leftrightarrow e^0 + ke^0 = 0 \Leftrightarrow 1 + k = 0 \Leftrightarrow k = -1$

III-9- $\lim_{t\to+\infty}q(t)=\mathbf{0}$

Equation de
$$\Delta$$
 : $y = 0$

III-10- a = 1

$$b=-\frac{1}{2}$$

En effet: $q'(t) = -\frac{1}{2}e^{-\frac{t}{2}} + e^{-t} = e^{-\frac{t}{2}}\left(-\frac{1}{2} + e^{-\frac{t}{2}}\right)$

III-11- q'(t) > 0 pour $t \in [0; ln4[$

En effet: $q'(t) > 0 \Leftrightarrow e^{-\frac{t}{2}} \left(-\frac{1}{2} + e^{-\frac{t}{2}} \right) > 0 \Leftrightarrow -\frac{1}{2} + e^{-\frac{t}{2}} > 0 \operatorname{car} e^{-\frac{t}{2}} > 0$ $\Leftrightarrow e^{-\frac{t}{2}} > \frac{1}{2} \Leftrightarrow -\frac{t}{2} > \ln \frac{1}{2} \Leftrightarrow -\frac{t}{2} > -\ln 2 \Leftrightarrow t < 2\ln 2$

III-12- $y_A = \frac{1}{4}$

En effet: $y_A = e^{-\frac{\ln 4}{2}} - e^{-\ln 4}$ = $e^{-\ln 2} - e^{-\ln 4} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$

II-13-	X	0		ln4		+∞
	Signe de $q'(x)$		+	0	-	
	Variations de			$\sqrt{\frac{1}{4}}$		

III-14- Le médicament ne va pas causer des effets indésirables au patient.

En effet : la valeur maximale de q(t) est $\frac{1}{4}$ ce qui est inférieur à 0, 3 mg/L.

III-15-	A) Voie orale	B) Voie intraveineuse	C) Peu importe lequel
III-16-	A) Voie orale	B) Voie intraveineuse	C) Peu importe lequel