1. Purpose of LabWork-1 This Lab Work aims to introduce you the interplanetary environment (solar wind) near the Earth. You are expected to analyze spacecraft data located at L1 position using simple statistical methods. For this purpose event date and hours are chosen as $2000/19/11\ 00.00$ to $2000/19/11\ 06.00$.

2. Time Series Plots

Figure 1: Time Series Plots of Solar Wind Quantities using Cdaweb

Student Number: 110160111 Report Date: 04.11.2021

3. Name of the Instruments

MAG - ACE Magnetic Field Instrument : To measure local interplanetary magnetic field (IMF) direction and magnitude.

SWEPAM - Solar Wind Electron Proton Alpha Monitor : To measure solar wind plasma electron and ion fluxes direction and energy.

4. Orbit Plot for ONE full ORBIT

Figure 2: Orbit Plot for ONE Full ORBIT Obtained From sscweb - 4 July to 31 Dec 2000 -

Student Name-Surname : Neslihan Gülsoy

Student Number: 110160111 Report Date: 04.11.2021

5. Table-1 : Statistical properties of Solar wind at 1 AU

SPACECRAFT NAME : ACE					
PERIOD FROM : 2000/11/19 00:00:00 to 2000/11/19 06:00:00					
	Mean	Median	Max	Min	Standart Deviation
Density($\#/cm^3$)	5.62	5.48	7.73	4.06	0.65
$V_{tot}(km/sec)$	376.81	376.29	403.76	356.02	8.12
$V_x \ge 0(km/sec)$					
$V_x < 0(km/sec)$	-375.91	-375.24	-355.35	-403.60	8.09
$V_y \ge 0(km/sec)$	20.86	18.87	59.10	0.256	11.97
$V_y < 0(km/sec)$	-7.84	-7.58	-0.358	-21.20	4.50
$V_z \ge 0(km/sec)$	4.61	3.93	21.45	0.005	3.89
$V_z < 0(km/sec)$	-13.11	-11.02	-0.048	-46.84	10.83
Temp(eV)	8.06	7.43	14.06	4.14	2.49
IMF $B_{tot}(nT)$	6.39	6.73	8.14	0.79	1.27
IMF $Bx \ge 0(nT)$	0.974	1.10	2.36	0.000	0.69
IMF $Bx < 0(nT)$	-3.43	-3.63	-0.043	-6.19	1.46
IMF $By \ge 0(nT)$	4.49	4.46	7.98	0.012	1.93
IMF $B_y < 0(nT)$	-1.43	-1.07	-0.001	-5.19	1.31
IMF $Bz \ge 0(nT)$	1.60	1.36	5.51	0.016	1.16
IMF $Bz < 0(nT)$	-2.57	-2.79	-0.013	-5.66	1.34
$P_{dyn}(nPa)$	1.33	1.30	1.85	1.01	0.16
$P_{gas}(nPa)$	0.015	0.013	0.029	0.006	0.005
$P_{mag}(nPa)$	0.017	0.018	0.026	0.00025	0.006
$C_s(km/sec)$	50.17	48.75	67.03	36.38	7.66
Mach Number	7.68	7.74	10.51	5.61	1.14

6. Calculation and Comparison of Pressures

 $\boxed{P_{dyn} = \rho \times V_{bulk}^2} \; ; \; \text{where} \; n_e = n_p = n \; \text{and also} \; m_p >>> m_e \; \text{so} \; \rho = n m_p \; , \; m_p = 1.67 \times 10^{-27} \; kg \; \text{and} \\ n \; \text{is proton density with unit of} \; \#/cc. \; \boxed{P_{gas} = nk(T_p + T_e)} \; ; \; \text{where} \; k \; \text{is Boltzmann's constant} \; (k = 1.38 \times 10^{-23} \; joule/°K); \; \text{With assuming} \; T_p = T_m = T; \; P_{gas} = 2nkT. \; \boxed{P_{mag} = B^2/(2\mu_0)} \; ; \; \text{where} \; \mu_0 = 4\pi \times 10^{-7} \; Henry/m \; or \; kgm/coul^2 \; \text{also noting that} \; 1 \; Tesla = 1 \; kg/coul.sec$

After the units were converted to MKS system, the calculations were made with obtained n, V_{bulk} and B_{tot} data from ACE satellite. Results are given in the CGS system. According to Table-1 all pressure values of solar wind relatively small with order of 10^{-9} Pascal. Also even P_{gas} and P_{mag} are close to each other, they are much more smaller than P_{dyn} -max value of P_{gas} is smaller than 1/3 times of min value of P_{dyn} - so they can be ignored. Total pressure can be assumed as equal to P_{dyn} .

Student Number: 110160111 Report Date: 04.11.2021

7. Bar Plots

Student Number: 110160111 Report Date: 04.11.2021

8. Interpretations

When above table and bar plots are examined, comments listed below were made.

• Proton number density ranges from 4 to $8/cm^3$. But average density ($5.6/cm^3$) is slightly lower than expected when evaluated together with the bulk velocity values.

- Bulk velocity changes from 380 to 400 km/sec with relatively low deviation, 8.12, for velocity property. values can be categorized as low speeds. Because of low velocity with relatively low density value, as expected, calculated dynamic pressure P_{dyn} values are lightly smaller than expected value at 1 AU. Additionally, X component of bulk speed, V_x , has no positive part and also it affects the overall speed the most.
- IMF B_{tot} ranges between 0.79 and 8.14 nT with deviations of 1.27. Mean value, 6.39 nT, is as expected 7 nT.
- Normally, IMF B_z values are expected to be much smaller or not at all than IMF B_x and B_y values, but in the chosen event IMF B_z values increased enough to dominate the total IMF magnetic field at some intervals. In total negative z component of IMF B_z data are observed more than positive component. It may be said that solar activity strength is low or moderate.
- Sound of speed, C_s , is dependent on P_{gas} and reciprocal of density, ρ . High deviation of C_s values, 7.66, can be explained with deviations of these properties.
 - Mach number is related with reciprocal of C_s and V_{tot} . Mean is 8.
 - In general there are no relatively sharp changes in observed properties.

9. Learning Outcomes

What are done?

• Continuous data of interplanetary magnetic field and solar wind plasma properties (proton number density, temperature, velocity) are obtained from ACE (Advanced Composition Explorer), robotic spacecraft which is located at Sun-Earth L1 Lagrange point, for chosen 6 hours. One full orbit of ACE are drawn. Pressures $(P_{dyn}, P_{gas}, P_{mag})$, sound of speed (C_s) and Mach number values are calculated with proper equations and obtained data. Using pressure formulas is given and comparison is made. Statistic of quantities belong to chosen event are made then Table-1 and bar plots are prepared and interpreted. Report is written with \LaTeX Lagrange point, for chosen event are made then Table-1 and bar plots are prepared and interpreted. Report is written with \LaTeX

What are learned?

- In order to understand and predict the Sun-Earth interaction, it is important to examine the solar winds that spread from the corona holes of Sun to the interplanetary space and carry magnetic energy with them. Therefore, simultaneous information is received from the spacecrafts specially at L1 Lagrange point.
- Solar wind has low density, relatively high temperature, high velocity and low pressure effects. They are supersonic.