Expectation

- 1. Consider a sequence of n coin flips of a biased coin, with probability p of landing heads. Let X be the number of heads observed and let Y be the number of tails observed. Compute E[X+Y] in two ways:
 - (a) Using linearity of expectation.
 - (b) By thinking about what the "random" variable X + Y represents.
- 2. We often abbreviate the expression $E[X^2]$ as EX^2 . But care should be taken to distinguish this from $(E[X])^2$. Show that $E[X^2]$ and $(E[X])^2$ are not in general equal. Hint: Consider $X \sim \text{DUnif}\{-1,1\}$.
- 3. (*) Player A chooses a random integer between 1 and 100, with probability p_j of choosing j (for j = 1, 2, ..., 100). Player B guesses the number that player A picked, and receives from player A that amount of dollars if the guess is correct (i.e. if player A picks 10 and player B guesses correctly, then player B gets \$10).
 - (a) Suppose for this part that player B knows the values of p_j . What is player B's optimal strategy to maximize **expected** earnings?
 - (b) Show that if both players choose their numbers so that the probability of picking j is proportional to 1/j, then neither player has an incentive to change strategies, assuming the opponent's strategy is fixed. (In game theory terminology, this says that we have found a *Nash equilibrium*).
 - (c) Suppose player B follows the strategy outlined in the previous part. Find this player's expected earnings. Express your answer both as a sum of simple terms, and as a numerical approximation. Does the value depend on the strategy that player A uses?