

CM 1606 Computational Mathematics

Tutorial No 09

1) Use the vector addition laws to find the addition of given vectors.

<u>a</u>

 $\stackrel{\underline{a}}{\longrightarrow}$

- 2) Identify the position vector for the points given and find the magnitude of each position vector. Sketch all the vectors in the same XOY plane.
 - A(-3,4)
 - B(0, 2)
 - C(-2,0)
 - D(3,-2)
 - E(4,5)

- 3) Given that $\underline{a}=2\underline{i}+3\underline{j}-4\underline{k}$, $\underline{b}=-2\underline{i}+\underline{j}+\underline{k}$ and $\underline{c}=\underline{i}+\underline{j}$ find the following.
 - i) -a+2b
 - ii) $\underline{a}+0.5\underline{c}$
 - \underline{a} - \underline{b} + \underline{c}
 - iv) $-2\underline{a}+3\underline{c}$
- 4) Find the scalar product_between each pair of vectors given below.

$$i)2i+3j-4k, 2i+j+k$$

$$(ii) - i + 3j + k, 2i - j$$

$$iii$$
) $i + 3j, -3i + j + 5k$

$$(iv)5i + 4j - k, 4i + 5j - k$$

$$v)0.5i + 2j - k, 2i - 3.5j$$

5) Determine if the following vectors are perpendicular, parallel and same direction, parallel and opposite direction or neither.

i)
$$2i - j, -\frac{1}{2}i + \frac{1}{4}j$$

ii)
$$6i - 2j - k$$
, $2i + 5j + 2k$

iii)
$$3i-4j+2k, 5j+2k$$

iv)
$$3i-2j+k, 9i-6j+3k$$

- 6) If $\vec{a} = 2i j + k$ and $\vec{b} = i + 3j + 2k$ find the following.
 - $i)\vec{a}.\vec{b}$

$$ii)\vec{a}\times\vec{b}$$

$$iii)(2\vec{a}-\vec{b}).\vec{b}$$

$$iv)(\vec{a}-\vec{b}).\vec{a}$$

$$v)(\vec{a}-\vec{b}).(\vec{a}+\vec{b})$$

$$vi)(\vec{a} \times \vec{b}).3\vec{a}$$

$$vii)\vec{a}.(\vec{a}\times\vec{b})$$

$$viii)(\vec{a}\times\vec{b}).(\vec{b}\times\vec{a})$$

- 7) Given that $\vec{a}=i-3j+2k$ and $\vec{b}=-2i+j+k$, find the direction cosines of the following.
 - $i)\vec{a}$
 - $ii)\vec{b}$
 - $iii)\vec{a} + 2\vec{b}$
 - $iv)\vec{a}\times\vec{b}$
 - $v)\vec{b} \times \vec{a}$

8) Determine the total surface area and the volume of the parallelepiped where three adjacent lines are represented by $\underline{a} = \underline{i} + \underline{j} + \underline{k}$, $\underline{b} = 2\underline{i} - 3\underline{j}$ and $\underline{c} = -\underline{i} + 2\underline{j} - \underline{k}$.

Hint: For a parallelogram ABCD with the two vectors \underline{a} and \underline{b} along the adjacent sides AB and AD, its are is given by

Area of the parallelogram ABCD= $AB \times DE = |\underline{a}| |\underline{b}| \sin \theta = |\underline{a} \times \underline{b}|$

Volume of a parallelepiped:

For a parallelepiped where three adjacent lines are represented by three vectors \underline{a} , \underline{b} , \underline{c} its volume is given by

Volume = Height × Area of the bottom
=
$$|\underline{a}| \cos \theta \ |\underline{b} \times \underline{c}|$$

= $|\underline{a}| \ |\underline{b} \times \underline{c}| \cos \theta \ = \underline{a} \cdot (\underline{b} \times \underline{c})$

9) Write the following using summation convention

$$i)(x^{1})^{1} + (x^{1})^{2} + (x^{1})^{3} + \dots + (x^{1})^{n}$$

 $ii)(x^{1})^{3} + (x^{2})^{3} + (x^{3})^{3} + \dots + (x^{n})^{3}$

10) Write the tensor contained in $x_{pq}.x_{qr}$ if n=2