



# Planning ahead: using Markov decision processes to optimize your life

Eric Cotner
Data Scientist, American Tire Distributors
Email: 2.71828cotner@gmail.com

# \$ whoami

- Former theoretical physicist studied dark matter and black holes in grad school
- Now I do data science at American Tire Distributors
- Focus on supply chain and logistics problems
  - Optimizing delivery routes/inventory
- Enjoy hiking, astronomy, and scuba diving in my free time



#### **Outline**

- What is a Markov decision process (MDP)?
- How to quantify risk/reward?
- Under the hood
  - States, actions, transitions, rewards, policy, value functions
- An example MDP
- Solving MDP's using pymdptoolbox a demo
- Working with more complex problems
- Reinforcement learning

# What is a Markov decision process?



# What is a Markov decision process?

#### Decision tree:







# What is a Markov decision process?

- MDP's are a mathematical formalism for solving sequential decision problems
  - Satisfies the *Markov* property: all states and rewards do *not* depend on past history
- Defined in terms of states, actions, rewards, and transitions, which are fixed by the nature of the problem/environment
  - Capital letters denote random variables, lower case denote actual samples
- Things to solve for are the policy (tells you which action to take) and value function(s) (how much reward you expect to get from taking an action)



# How to quantify risk/reward/value?

- Reward: some thing of value gained (money, game points, reddit karma, personal satisfaction, etc.) by achieving certain goals
- Risk = (reward) x (probability of reward)

```
Example: roll a 6-side die; \{1,4\} = -\$2.15, \{2,3,5,6\} = +\$1.34; risks associated with these two outcomes are (-\$2.15)x(2/6) = -\$0.72 and (+\$1.34)x(4/6) = +\$0.89
```

- Value: sum of all risks; i.e. the expected/average reward
  - Previous example: value = (-\$0.72) + (+\$0.89) = +\$0.17

# How to quantify risk/reward/value?

- Previous example's usefulness is limited
  - What if you need to plan multiple steps ahead?
  - What if rewards change with time or are random?
  - What if there is more than one available course of action?
  - What if actions don't always result in intended consequences?
- Value is (discounted) sum of expected future rewards:

$$v_t = \mathbb{E}\left[\sum_{t'=t}^T \gamma^{t'-t} R_{t'}\right]$$

 How do you determine the optimal sequence of actions to take? → Use MDP's!

#### States and actions

- States represent the current state of the environment
  - Usually denoted by symbols s,  $S_t$  (sometimes x in control theory); set of all states:  $\mathcal{S} = \{s_1, s_2, \ldots\}$
  - Previous die example:  $s_1=1$ ,  $s_2=2$ , ...,  $s_6=6$  (or  $s_1=\{1,4\}$ ,  $s_2=\{2,3,5,6\}$ )
- Actions represent the decisions you can make which will cause you to transition from state to state
  - Usually denoted by symbols  ${\it a}$ ,  ${\it A}_t$  (sometimes  ${\it u}$  in control theory); set of all actions:  ${\it A}=\{a_1,a_2,...\}$
  - Previous die example:  $a_1$ =roll,  $a_2$ =do nothing



$$a_1$$
=roll  $a_2$ =do nothing

#### State transitions and rewards

- Only some states lead to other states; sometimes taking one action can lead to multiple potential states
- Model this using the transition matrix/function T(s';s,a)
  - T(s';s,a) = the probability to transition to state s' given that you take action a from state s
  - 6-sided die example:  $T(s_1;s_0,a_1)=2/6$ ,  $T(s_2;s_0,a_1)=4/6$ ,  $T(s_0;*,a_2)=1$ , otherwise T=0
- Sometimes rewards can be stochastic too; model this using reward matrix/function R(r;s,a)
  - R(r;s,a) = probability of getting reward r when taking action a from state s
  - If reward is deterministic, reward matrix R(s,a) =reward received from taking action a from state s



$$a_1$$
=roll  $a_2$ =do nothing

# The policy

- How do you decide what to do in a given state?
- The *policy* function  $\pi$  determines which action to take
  - Could be deterministic:  $\pi(s): \mathcal{S} 
    ightarrow \mathcal{A}$
  - Could be stochastic:  $\pi(a|s): \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$
  - (deterministic is special case of stochastic where all probability mass is located at one action)
- The optimal policy is denoted by  $\pi^*$ , which is the policy that maximizes the sum of future expected rewards (value function)

#### Value functions

#### Two kinds of value functions:

- The state-value function  $V_{\pi}(s)$ : the future reward you expect when starting from state s and following policy  $\pi$
- The action-value function  $Q_{\pi}(s,a)$ : the future reward you expect when starting from state s and taking action s, and following policy s thereafter

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s, a)$$

$$Q_{\pi}(s, a) = \mathbb{E}_{A \sim \pi} \left[ \sum_{t'=t}^{T} \gamma^{t'-t} R_{t'} \middle| S_t = s_t, A_t = a \right]$$

# How do you actually solve these equations?

- Many different algorithms exist depending on size of state/action spaces, length of episodes, structure of reward/transition matrices...
- All of them use some form of the Bellman equation:

$$Q_{\pi}(s, a) \leftarrow \mathbb{E}_{\pi} \left[ R(s, a) + \gamma Q(s', a') \right]$$

- Consider one of the simplest: value iteration:
  - Randomly initialize Q(s,a)
  - Select policy by maximizing value function:  $\pi(s) = rgmax\,Q(s,a)$
  - Use Bellman equation to update estimate of Q
  - Repeat 2-3 until convergence

### An example MDP

- Let's look at a relatively simple example to solve roll or stay?
- You have a 20-sided die, and you get to roll repeatedly until the sum of your rolls either gets as close as possible to 21 or you bust
- Your score is the numerical value of the sum of your rolls; if you bust, you get zero.
- What is the optimal strategy?



# Using pymdptoolbox

- Let's solve the example from the previous slide in python.
- We will use pymdptoolbox, a toolkit for solving discrete-time MDP's
- For more details, see the github repo or the API documentation
- Install with `pip install pymdptoolbox`
- Check out my demo jupyter notebook

# **Example MDP solution**







# Working with more complex problems

- Previous example was very simple compared to most realistic problems
- For example, maybe you're trying to plan purchase orders for your supply chain
  - If you have 10 warehouses, each with 1,000 different products which can have stocking levels between 0-100, and you want to plan your orders for the next couple months... that's a 1M-dimensional state space and 1M-dimensional action space would need a transition matrix with 10^18 elements...
- For very large systems, you may have to resort to approximate solutions
  - Bucket similar products together
  - Find better state/action representations use dimensional reduction
  - Use function approximation to represent value/policy functions
- Some problems have continuous state/action spaces and can't be formulated with matrices at all
  - For example: self-driving car state is position+orientation+velocity vectors, actions are amount of gas/brake/wheel angle; all probably continuous variables
  - Would need to use a completely different approach from the value iteration method we used

# How do you handle these more complex problems?

# Reinforcement learning

- $\cdot$ MDP + ML = RL
- Type of machine learning that learns how to act optimally in an environment to maximize rewards
- MDP's are the underlying mathematical framework for RL - if you know MDP's you can easily learn RL





# Reinforcement learning

- Very advanced algorithms that try to solve MDP's in environments with enormous state spaces by only sampling states and actions encountered in simulation
- Can use neural networks to approximate complex value and/or policy functions





Deep Q-Network (DQN)

Actor-critic

# Reinforcement learning

 You can get started with reinforcement learning by using OpenAl's gym

Has out-of-the box environments you can experiment

with

Can make your own custom environments



Space Invaders



Cart-pole



**Breakout** 

#### Reference material

- pymdptoolbox; Steven Cordwell
  - https://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html
- Introduction to Reinforcement Learning; Sutton, Barto:
  - http://incompleteideas.net/sutton/book/the-book-2nd.html
- gym; OpenAI
  - https://gym.openai.com/
- Spinning up in Deep RL; OpenAl
  - https://spinningup.openai.com/en/latest/
- r/reinforcementlearning; Reddit
  - https://www.reddit.com/r/reinforcementlearning/

# Thank you!