

GE32/MM12 - Introduction to Data

Prof. Dr. Boas Pucker (Plant Biotechnology and Bioinformatics)

Availability of slides

- All materials are freely available (CC BY) after the lectures:
 - StudIP: GE32/MM12
 - GitHub: https://github.com/bpucker/teaching
- Questions: Feel free to ask at any time
- Feedback, comments, or questions: b.pucker[a]tu-braunschweig.de

My figures and content can be re-used in accordance with CC BY 4.0, but this might not apply to all images/logos. Some figure were constructed using bioRender.com.

What is Data Literacy?

What is Data Literacy?

- 'Competency to handle data properly'
- 'Read, understand, create, communicate data as information' (wikipedia)

Why is Data Literacy important?

- We live in a world of data: important for science, business, and society
- Objective: data informed decision making
- Sizes and complexity of data sets are increasing ('BigData')
- Data is accumulating over time

More definitions

Data: collection of observations

2020: 312 red flowers; 95 white flowers

2021: 298 red flowers; 98 white flowers

Ratio of red flowers to white flowers is 3:1

- Insights: grasping the underlying nature of knowledge; understanding general concepts
 - Flower color has a genetic basis
 - Red flower allele dominant over white flower allele

What collections/databases do you know?

Data management

- Larger data sets require more efficient data management
- Data management plans required in project proposals
- Many services and organizations emerging (NFDI)

Data protection and security

- Data protection is becoming a huge issue in the EU
- Avoid any personal data in your research data sets
- Data security is gaining relevance
- German universities are frequently attacked:
 - Gießen (2019): offline for weeks + 1.7 million direct costs
 - HHU Düsseldorf (2020): ransom attack on clinic
 - o Bochum, Dresden, Freiburg, Berlin

Growth of databases

- Data generation costs are dropping
 - Rapid sequencing technology development
 - Resolution of pictures is increasing
 - Robotics supports data acquisition
- Data storage capacities are increasing
- Potential of data reuse is recognized

How to structure your data?

- Document every step (e.g. in a README)
 - Origin of data sets; versions of tools, parameters of analyses
- Keep raw data sets separated from scripts and results
- Sort data by project
- Structure analysis related data sets/results by date

Example: Linux file system

Naming files

- File names should be informative
- Never use 'new' or 'final'; use version numbers instead
- Use date as file name prefix (e.g. 2022-06-27 or 20220627)
- Never use spaces in file or folder names (underscore or minus as replacement)
- Include your initials as suffix in collaborative projects

What types of (plant) data do you know?

Types of data in plant sciences

- Sequence data
- Enzyme information
- Scientific publications
- Geographic positions
- Transcriptomics/Proteomics/Metabolomics
- Pictures/Videos
- Phenotyping data

Documentation

- Document as much as possible
- Others must be able to repeat your experiments/analyses
- Document dates of data acquisition and processing
- Document all steps of data processing
- Document versions and parameters of applied tools

Electronic Laboratory Notebooks (ELN)

- Links between data sets and documentation
- Avoids repetitive documentation (copy&paste); version control
- Automatic search
- No issues with handwriting
- Quick and regular backups possible
- Accessible from everywhere
- Collaborative

Technical solutions for electronic lab notebooks

- Simple wiki page
- Dedicated systems developed by research institutions
 - GABI-Kat LIMS
 - Chemotion
 - o e!DAL
 - gitlab
- Commercial offers
 - Benchling
 - Dotmatic's
 - Signals Notebook (Perkin Elmer)
 - LabArchives

Example: wiki

- Electronic lab notebook for collaborative learning
- iGEM wiki to document team projects
- Github wiki to document tools

Laboratory Information Management System (LIMS)

- Workflows are represented and samples are tracked
- Information are linked between analysis
- Different levels of permissions/access
- Examples:
 - Handle a collection of T-DNA insertion lines (GABI-Kat)
 - Manage all samples submitted for sequencing
 - Manage all oligonucleotide orders

Example: Chemotion

- Research data management tool for chemists
- Electronic Laboratory Notebook (ELN)
- Repository for research data (easy transfer from ELN)
- DOIs are assigned to datasets and protocols

Example: e!DAL

- Maintained at IPK; supported by de.NBI
- DOIs are assigned to submitted data sets
- Reporting about access statistics
- Version tracking
- FAIR compatible and data linkage

Example: gitlab

- Free version control solution
- Can be used for software development, but also suitable as ELN
- GITZ offers a central service at TUBS: https://doku.rz.tu-bs.de/doku.php?id=server:gitlab
- Non-commercial alternative to github

https://gitlab.com/gitlab-org/gitlab

https://doku.rz.tu-bs.de/doku.php?id=server:gitlab

Example: Benchling

- Cloud-based platform for biotechnology
- Templates for documentations
- Convenient to use
- Compatible with various platforms
- Suitable for certified processes

Lab 4.0: digital lab for higher efficiency

- Connection of lab and analysis processes
- Data from different instruments are synchronized through a cloud
 - Values and pictures are directly inserted into the lab book
- Automation of processes (robotics)
 - Pipetting robot for large scale sample processing
 - Automatic phenotyping facilities
- Samples are labeled with barcodes
 - Barcodes and scanning avoid human errors
 - Can also prevent fraud

Summary: data is everywhere

- Size of data sets is growing
- More sophisticated data collection methods
- Databases enable dissemination/reuse
- Electronic documentation
- Digitalization makes processes more efficient

Linux introduction (1)

Connection to virtual machine (VM):

```
$ ssh -i /path/to/private_key ubuntu@123.133.7.49 -p 1234
(base) ubuntu@agilezuse-10552:~$
```

'\$' is used to indicate that following text needs to go into terminal '#' indicates comment (should not be transferred into terminal)

Frequent issues:

- 1) Path to private key file not correct
- 2) Private key file too public

Linux introduction (2)

- Moving through the folder structure:
 - \$ cd /full/path/to/folder #change into specific folder
 - \$ cd subfolder #change into subfolder
 - \$ cd .. #change into parent directory
- Checking content of a folder:
 - \$ Is #shows content of current folder
 - \$ Is -Ih #shows more details
 - -I triggers display of additional details
 - -h human readable
 - -a show also hidden files

Linux introduction (3)

- Python scripts:
 - \$ python3 contig_stats3.py --inputfile assembly.fasta
 - \$ python3 contig_stats3.py --inputfile assembly.fasta --min_contig_len 1000
 - Different parts of command are separated by space
 - Spaces in filenames are not tolerated
- Other tools:
 - toolname parameter1 parameter2 parameter3

Time for questions!

Questions

- 1. What is Data Literacy?
- 2. Why is Data Literacy important?
- 3. What are important considerations when naming files?
- 4. What types of data exist?
- 5. What needs to be documented?
- 6. What are advantages of an ELN?
- 7. What is LIMS?
- 8. What characterizes lab 4.0?

