Universidad Nacional de Colombia - Sistemas e Industrial

Métodos Numéricos

TALLER 2

Interpolación y Aproximación Polinomial - Ajuste de Curvas

- 1. Aproximación Polinomial de Lagrange
 - (a) Obtenga la aproximación polinomial de Lagrange que pase por todos los puntos

x	1	2	3	4
f(x)	120	94	75	62

(no olvide reducir el polinomio)

$$P_N(x) =$$

(b) Interpole el valor de la función para x=3.5

 $P_N(3.5) =$ _____

(c) Compare la respuesta con el valor dado por la fórmula empírica

$$y = 30.4 + 90.4x^{-0.507} \tag{1}$$

Escriba la error entre los dos valores obtenidos:

2. Aproximación Polinomial de Newton Dados los centros $x_0=1$, $x_1=3$, $x_0=4$ y $x_3=4.5$ con los coeficientes $a_0=5$, $a_1=-2$, $a_2=0.5$, $a_3=-0.1$ y $a_4=0.003$

- (a) Calcule $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$
- (b) Evalue cada uno de los polinomios en x = 3.4
- 3. Aproximacion Polinomial de Newton con Diferencias Divididas
 - (a) Elabore la tabla de diferencias divididas a partir de los valores dados en la siguiente tabla

x_k	$f[x_k]$	f[,]	f[,,]	f[,,,]
140	12.8			
180	7.5			
220	5			
240	3.8			

donde x es la carga que causa la ruptura de una columna de hierro dulce con los extremos redondeados y f(x) es la razon de la longitud de la columna al minimo radio de giro en la sección transversal

(b)	Obtenga la Aproximacion Polinomial de Newton con Diferencias Di	i-
	vididas con todo los puntos dados	

$$P_N(x) =$$

4. Dada la siguiente tabla

$oldsymbol{x}$	0	2	3	5
f(x)	-1	0	2	1

- (a) Encuentre la recta de minimos cuadrados ______
- (b) Encuentre el Error Cuadrático Medio______
- 5. Usando mínimos cuadrados para la siguiente tabla

$oxed{x}$	28	30	33	35	38
f(x)	-2410	-3033	-3895	-4491	-5717

- (a) Encuentre la curva $y = Ax^M _ _ _ _$
- (b) Use la curva para calcular el valor de y cuando x=37 _____
- 6. Usando mínimos cuadrados para la siguiente tabla (método de linealización de los datos)

\boldsymbol{x}	6.9	12.9	19.8	26.7	35.1
f(x)	21.4	15.7	12.1	8.5	5.2

- (a) Encuentre la curva $y = C e^{Ax}$
- (b) Use la curva para calcular el valor de x=15 ______