

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Honours Thesis

Some Topics in Fractional Differential Equations

Author:

Adam J. Gray

Student Number: 3329798

Supervisor:

Dr Chris Tisdell

Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Bachelor of Science with Honours

Acknowledgements

I have many people to thank, especially after so long at UNSW. I would like to thank all the people, both staff and students of the School of Mathematics and Statistics for their support, friendship and guidance throughout my degree. These are years that I will always remember and cherish as they have enriched me in ways I could never had imagined.

I would like to specifically thank Dr Chris Tisdell for officially supervising me throughout my Honours year. Dr Chris Tisdell was one of my first lecturers in mathematics and he has been a formative influence on my mathematical view of the world. I would also like to thank Dr Chris Angstmann for his extensive comments, feedback and guidance on work I have been doing throughout the year. Without the talks I have had with him, my perspective on fractional calculus would be significantly narrower than it is today. I would also like to thank Dr Michael Hirschhorn and Dr Bill McLean for their assistance and feedback on a number of technical questions throughout the year.

I also must thank my colleagues for their kindness and understanding throughout the year. A special thanks must go to Ed McDonald for his mathematical assistance on countless problems throughout my degree. It is hard to overestimate how helpful Ed has been on so many occasions.

Finally, I would like to thank my mother and father, because without them I almost certainly would not have had the opportunities I do today, and I would have not gone to University. I will remain eternally indebted to them for their sacrifices and my mother's unwaivering support and inspiration.

Thankyou.

Adam J. Gray, 1 November 2014

Abstract

In this thesis I discuss many of the fundamental topics in the field of fractional differential equations. I start by looking at the history of fractional calculus, then define the operators which are fundamental to the field. In much the same way as ordinary differential equations have results about uniqueness and existence I go through similar results for ordinary fractional differential equations and extend some results. I also go through the analytic solutions to a small number of fractional differential equations before turning to numerical solutions. I go through a fractional Adam's Moulton Bashforth method and explain a multi-threaded implementation on the CPU and a new implementation on the GPU.

Contents

T	His	torical Introduction	5	
2	Fra	ctional Operators and Their Properties	12	
	2.1	Riemann Liouville Fractional Integral	12	
	2.2	Riemann-Liouville Fractional Derivative	14	
	2.3	Caputo Fractional Derivative	19	
	2.4	Grünwald-Letnikov Derivative	22	
3 Special Functions				
	3.1	Gamma Function	23	
	3.2	Mittag-Leffler Function	27	
4 Solution Methods for Fractional Differential Equations		ution Methods for Fractional Differential Equations	35	
	4.1	Solution to a linear initial value problem via Laplace transforms	35	
	4.2	Solution to a multi-order initial value problem via Laplace transforms	36	
	4.3	Other techniques for ordinary fractional differential equations	38	
	4.4	Solutions to partial fractional differential equations	38	
		4.4.1 A note on Fourier Transform techniques for space fractional diffusion	40	
5	Exis	stence and Uniqueness Results for Ordinary Fractional Differential Equations	41	
	5.1	A generalised Gronwall's Inequality	47	

6	Nur	merica.	Methods for Fractional Differential Equations	49
	6.1	Appro	ximations of Fractional Derivatives and Integrals	49
		6.1.1	Grünwald-Letnikov Approximation	49
		6.1.2	Quadrature Approximation	49
		6.1.3	An Initial Value Problem	49
		6.1.4	The Adams Moulton Bashforth Scheme	50
		6.1.5	Parallelising: A Task Based Approach	51
		6.1.6	Analysis of the Performance of the Scheme in C# and MONO $\ \ldots \ \ldots \ \ldots$	55
		6.1.7	Parallelising: A CUDA Approach	58
		6.1.8	Short Memory Principle	60
		6.1.9	Nested Mesh Technique	60
7				
•	App	oendix	A: Adams-Moulton-Bashforth FDE Solver Code	61
•	App 7.1		A: Adams-Moulton-Bashforth FDE Solver Code uplementation of AMB FDE Solver	61
•				
•		C# In	aplementation of AMB FDE Solver	61
•		C# In 7.1.1 7.1.2	pplementation of AMB FDE Solver	61 61
•	7.1	C# In 7.1.1 7.1.2	Program.cs	61 61 65
8	7.1	C# In 7.1.1 7.1.2 CUDA	Program.cs SpecialFunctions.cs C/C++ Implementation of AMB FDE Solver FDE_Solver.cu	61 61 65 66
	7.1	C# In 7.1.1 7.1.2 CUDA 7.2.1 cendix	Program.cs SpecialFunctions.cs C/C++ Implementation of AMB FDE Solver FDE_Solver.cu	61 61 65 66

1 Historical Introduction

Fractional calculus is a field which extends all the way back to the birth of *ordinary* calculus. In this section we wish to give an account of the development of this field. Like any historical recount this section will have its flaws, inaccuracies and omissions. One can get bogged down in the historiography of the field and criticise this recount as a story written with whiggish bias, but we seek to tell a story which is relevant to the rest of this thesis and contextualize modern fractional calculus.

In any historical introduction to fractional calculus one almost always starts with the letters exchanged between L'Hopital and Leibniz in the fall of 1695. Upon hearing of Leibniz's calculus and the differential operator

 $\frac{d}{dx}$

and it's generalisation

 $\frac{d^n}{dx^n}$

L'Hopital asked Leibniz what it would mean to set $n=\frac{1}{2}$. Leibniz responded saying that

$$d^{\frac{1}{2}}x = x\sqrt{dx:x}$$

and adding that "It will lead to a paradox, from which one day useful consequences will be drawn" (Or at least that is what most modern translations say) [1]. The notation is unfamiliar to modern mathematics, as it appeals to a notion of infinitesimals. This comment actually doesn't really reveal anything about how one might go about computing

$$\frac{d^{\frac{1}{2}}f}{dx^{\frac{1}{2}}}.$$

Two years later in letters to J. Wallis and J. Bernoulli Euler proposed a possible approach to dealing with fractional derivatives of exponential functions [1]. He noticed that

$$\frac{d^m}{dx^m}e^nx = n^m e^{nx} \tag{1}$$

and proposed that one could simply consider non-integer values of m in order to define a fraction differential operator [32]. It is perhaps on this note that we should point out that the name *fractional* calculus is a bit of a misnomer. As in the case above we do not require $m \in \mathbb{Q}$, but rather are allowed to select $m \in \mathbb{R}$ or even $m \in \mathbb{C}$.

Given the definition / motivation in (1) one might be tempted to use this result and extend it to other functions via the theory of Fourier analysis. We need to keep in mind, however, that this was the late 17th century and so Fourier had yet to be born, let alone develop the idea of Fourier decomposition or the notion of a basis for a function space. This meant that at the time there was not *obvious* way to extend this definition to other functions.

Figure 1: Bernhard Christoph Francke's portrait of Gottfried Wilhelm von Leibniz

Jumping forward a quarter of a century we arrive at the contributions of Euler. Euler made extremely important contributions in field of special functions, especially the Gamma function which turns out to be crucial in defining fractional integrals and fractional derivatives.

Figure 2: 1753 portrait of Leonhard Euler by Emanuel Handmann

The Gamma function is essentially a solution to an interpolation problem, that is, how to extend the factorial function to non-integer values of the argument.

Although the problem of extending the factorial function had been considered by Daniel Bernoulli and Christian Goldbach in the 1720s, it was eventually Euler who in a two letters, dated 13th October 1729 and 8th January 1730 respectively, gave two different representations of the factorial which could easily be extended to non-integer values. These were

$$n! = \prod_{k=1}^{\infty} \frac{\left(1 + \frac{1}{k}\right)^n}{1 + \frac{n}{k}} \tag{2}$$

and

$$n! = \int_0^1 (-\ln(s))^n ds.$$
 (3)

Upon finding the first representation Euler could have simply stopped. He had found a formula which extended the factorial function to non-integer values. However he noticed that a special case of his product had already been calculated by Wallis [8]. If we set $n=\frac{1}{2}$ we get

$$\prod_{k=1}^{\infty} \frac{\left(1 + \frac{1}{k}\right)^{\frac{1}{2}}}{1 + \frac{1}{2k}} \tag{4}$$

and squaring and multiplying by 2 we get

$$2\left[\prod_{k=1}^{\infty} \frac{(1+\frac{1}{k})^{\frac{1}{2}}}{1+\frac{1}{2k}}\right]^{2} = 2\prod_{k=1}^{\infty} \frac{1+\frac{1}{k}}{(1+\frac{1}{2k})^{2}}$$

$$= 2\prod_{k=1}^{\infty} \frac{k^{2}+1}{(k+\frac{1}{2})^{2}}$$

$$= 2\frac{2}{(1+\frac{1}{2})^{2}} \cdot \frac{5}{(2+\frac{1}{2})^{2}} \cdot \frac{10}{(3+\frac{1}{2})^{2}} \cdots$$

$$= \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdots$$

$$= \prod_{k=1}^{\infty} \frac{4n^{2}}{4n^{2}-1}$$

and this last product had previously been calculated by Wallis and was known to be equal to $\frac{\pi}{2}$. This meant that Euler had the result

$$\frac{1}{2}! = \frac{\sqrt{\pi}}{2}$$

We should point out that Wallis had calculated this result by considering

$$\int_0^\pi \sin^n(x) dx$$

but this result is actually more easily obtained as a special case of Euler's infinite product for the sine function,

$$\sin(x) = x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2 \pi^2} \right)$$

but Euler had not yet developed this.

The fact that Euler had $\frac{1}{2}! = \frac{\sqrt{\pi}}{2}$ piqued his curiosity and on nothing more than what appears to have been a hunch he went looking for an integral representation of n! [8]. He arrived at (3) and it is here that our story returns to the history of fractional calculus. Aware of the fact that a meaning for $\frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}}$ was sought he noted that

$$\frac{d^m}{dx^m}x^n = \frac{n!}{(n-m)!}x^{n-m} \tag{5}$$

and then suggested that using either (2) or (3) could give the necessary extension of meaning in order to define the derivative of the power function for non-integer orders of differentiation. In fact using Wallis' result along with a sleight extension, Samko et. al [8], not that he was able to suggest that

$$\frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}}x = \sqrt{\frac{4x}{\pi}}.$$

Although technically the modern notation we use for the Gamma function, and the fact that $\Gamma(n) = (n-1)!$, is due to Legendre, were developed some considerable time after these ideas were first worked on by Euler, we will adopt the modern gamma function notation so as to make our discussions from this point more readable.

We would like to point out just how good this idea for the definition of the fractional derivative by Euler was. Firstly note that if we take n = 1 in (5) we get that

$$\frac{d^{-1}}{dx^{-1}}x^m = \frac{\Gamma(m+1)}{\Gamma(m+2)}x^{m+1}$$
$$= \frac{1}{m+1}x^{m+1}$$
$$= \int_0^x t^m dt$$

which is consistent with the fundamental theorem of calculus. We discuss a modern version of this result in section 2 of this thesis.

Also in some formal sense this definition of the fractional derivative is consistent with that of Leibniz in that if we take a Taylor expansion of the exponential function we get that

$$e^{mx} = \sum_{k=0}^{\infty} \frac{m^k}{k!} x^k$$

and so without regard for convergence or any other technicalities one might be tempted to write

$$\frac{d^r}{dx^r}e^{mx} = \sum_{k=r}^{\infty} \frac{d^r}{dx^r} \frac{m^k}{k!} x^k \tag{6}$$

$$=\sum_{k=r}^{\infty} \frac{m^k}{\Gamma(k+1)} \frac{\Gamma(k+1)}{\Gamma(k-r+1)} x^{k-r}$$
(7)

$$=\sum_{k=r}^{\infty} \frac{m^k}{\Gamma(k-r+1)} x^{k-r} \tag{8}$$

$$= m^r \sum_{k=r}^{\infty} \frac{m^{k-r}}{\Gamma(k-r+1)} x^{k-r}.$$
(9)

Letting j = k - r we have

$$m^r \sum_{k=r}^{\infty} \frac{m^{k-r}}{\Gamma(k-r+1)} x^{k-r} = m^r \sum_{j=0}^{\infty} \frac{m^j}{\Gamma(j+1)} x^j$$
$$= m^r \sum_{j=0}^{\infty} \frac{m^j}{j!} x^j$$
$$= m^r e^{mx}.$$

and so in some formal sense these two definitions would at first glance appear to be consistent with each other.

This analysis has several problems. Firstly although the idea of expressing functions in terms of an infinite series dates back to perhaps the 14th century the formal notion of a Taylor series dates back to 1715 and Brook Taylor, only a few years before Euler's work in this field and it is not clear that such techniques would have been available to Euler.

Secondly, and more importantly from a mathematical point of view, is the slight of hand played in (6) where we essentially assume that if m > n, $\frac{d^m}{dx^m}x^n = 0$. This is not the case if $m \notin \mathbb{Z}$. For example, using Euler's definition above we would have that

$$\frac{d^{\frac{3}{2}}}{dx^{\frac{3}{2}}}x = \frac{1}{\sqrt{\pi}}x^{-\frac{1}{2}} \neq 0.$$

One can see that in the integer case we get 0 simply because of singularities in the Gamma function for the non-positive integers. This particular complication of non-zero derivatives for the case where m > n extends even into more modern fractional derivatives and is dealt with in a modern context in section 2 of this thesis.

It was almost a century later when in 1822 Fourier suggest that using the equality

$$\frac{d^m}{dx^m}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)u^m \cos\left(ux - tu - \frac{m\pi}{2}\right) dt du \tag{10}$$

could give meaning to fractional derivative of a function. This appear to have been the first definition of a fractional derivative for a general class of *sufficiently good* functions, in this case, for which (10) is defined.

The history of more modern fractional differential operators really begins with the Abel integral equation which was solved by Abel in papers dating back to 1823 and 1826. It was originally posed and solved in the context of the Tautochrone problem, which is finding the curve for which objects sliding under gravity without the effects of friction take equal times to reach their lowest point, independent of their starting point.

Abel's integral equation (of the first kind) is

$$\frac{1}{\Gamma(\alpha)} \int_0^x \frac{\phi(t)dt}{(x-t)^{1-\alpha}} = f(x)$$
 (11)

for x>0 and $0<\alpha<1$. Finding a *solution* to this equation essentially means making ϕ the subject [32]. We demonstrate the solution method of this integral equation as it turns out to be important in later formulations of fractional derivatives and integrals. Firstly let's consider the integral

Figure 3: Johan Grbitz's picture of Niels Henrik Abel.

$$I(x) := \int_a^x \frac{f(s)ds}{(x-s)^{1-\alpha}}.$$
 (12)

Now by substituting (11) into (12) we get

$$I(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{1}{(x-s)^{1-\alpha}} \left(\int_{a}^{s} \frac{\phi(t)dt}{(s-t)^{\alpha}} \right) ds$$
$$= \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \left(\int_{a}^{s} \frac{\phi(t)dt}{(x-s)^{1-\alpha}(s-t)^{\alpha}} \right) ds$$

Now noting that the region of integration in \mathbb{R}^2 is just

$$a \le s \le x$$
$$a < t < s$$

which is equivalent to

$$t \le s \le x$$
$$a < t < x$$

we can write

$$\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \left(\int_{a}^{s} \frac{\phi(t)dt}{(x-s)^{1-\alpha}(s-t)^{\alpha}} \right) ds = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \left(\int_{t}^{x} \frac{\phi(t)ds}{(x-s)^{1-\alpha}(s-t)^{\alpha}} \right) dt$$

$$= \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \phi(t) \left(\int_{t}^{x} (x-s)^{\alpha-1}(s-t)^{-\alpha} ds \right) dt. \tag{13}$$

Now performing the substitution $\tau = \frac{s-t}{r-t}$ yields

$$\int_{t}^{x} (x-s)^{\alpha-1} (s-t)^{-\alpha} ds = \int_{0}^{1} \tau^{-\alpha} (1-\tau)^{\alpha-1} d\tau$$
$$= B(1-\alpha,\alpha)$$
$$= \Gamma(1-\alpha)\Gamma(\alpha)$$

and so (13) becomes

$$\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \phi(t) \left(\int_{t}^{x} (x-s)^{\alpha-1} (s-t)^{-\alpha} ds \right) dt = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \phi(t) \Gamma(\alpha) \Gamma(1-\alpha) dt$$
$$= \Gamma(1-\alpha) \int_{a}^{x} \phi(t) dt.$$

So we have that

$$\int_{a}^{x} \frac{f(s)ds}{(x-s)^{1-\alpha}} = \Gamma(1-\alpha) \int_{a}^{x} \phi(t)dt$$

and by differentiating we get

$$\phi(x) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \int_{a}^{x} \frac{f(s)ds}{(x-s)^{1-\alpha}}$$

and so we have in some sense solved Abel's integral equation. Notice that we have not discussed which functions f are suitable. This is a bit of a tricky question and not really informative in the context of the rest of this thesis so we refer the interested reader to [32].

As mentioned earlier Abel solved this integral equation in the context of the Tautochrone problem which corresponded to $\alpha = \frac{1}{2}$. Abel seemingly had no actual desire to define a fractional integral or derivative but it turns out this problem can be recast in terms of fractional integral equation using a Riemann Liouville fractional integral and the result is in some sense a statement of a generalised fundamental theorem of calculus.

We'll leave these ideas and turn our attention to the development of the Riemann-Liouville fractional integral and derivative and return to see how these ideas relate.

It was in a collection of letters over six years from 1832 to 1837 that Liouville outlined ideas which resemble modern fraction calculus [32].

The first idea explored for a fractional derivative by Liouville bears someone of a resemblance to that of Fourier and Euler.

If a function f can be expanded as

$$f(x) = \sum_{k=0}^{\infty} c_k e^{a_k x}$$

then the fractional derivative of f of order α could be written as

$$\frac{d^{\alpha}}{dx^{\alpha}}f(x) = \sum_{k=0}^{\infty} c_k a_k^{\alpha} e^{a_k x}$$

Note that by allowing complex values for a_k this is essentially a Fourier series and so the resemblance to Fourier's definition is apparent.

Despite the fact that we could view this series as a Fourier series, its not clear that this was done. The convergence of the series is tricky and it makes any consideration of the fractional derivative of f restrictive [32].

Figure 4: An updated and unattributed early photograph of Joseph Liouville.

In this series of letters he went on to derive a fractional integral

$$I^{\alpha}f(x) = \frac{1}{(-1)^{\alpha}\Gamma(\alpha)} \int_{0}^{\infty} f(x+t)t^{\alpha-1}dt$$

Papers in 1832 and 1837 by Liouville were really the first papers which discussed an application of a fractional calculus, specifically to the solution of linear ordinary differential equations.

He also discussed the idea of a fractional difference quotient. Liouville didn't go far with this idea and it was considerably later in 1867 and 1868 that Grünwald and respectively Letnikov dealt with this idea in much more depth.

 $I^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \frac{f(t)dt}{(x-t)^{1-\alpha}}$

Interestingly it wasn't until 10 years after his death in 1866 that this definition was published. The astute reader will notice that for positive integral values of α this definition agrees with the Cauchy formula for repeated integration. We'll touch on this a little more in section 2, but this fact was important in the motivation of the defintion.

Given the similarity of Riemann's and Liouville's fractional integrals these two ideas have been combined and named the Riemann Liouville fractional integral. This particular definition has become extremely significant and it forms the basis for modern fractional calculus.

Figure 5: An 1863 image of Bernhard Riemann.

With a bit of technical fiddling it is quite easy to come up with a Riemann-Liouville fractional derivative. The idea behind this is discussed in section 2.

Although over the next hundred years or so there was significant development of other forms of fractional operators such the Grünwald Letnikov, Weyl, Miller Ross fractional derivatives. As we won't really explore these operators we will skip forward to Caputo in 1967.

One of the problems with the Riemann-Liouville fractional derivative is that for many fractional differential equations the associated initial or boundary conditions must be of fractional order. Also the Riemann-Liouville fractional derivative of a constant is not zero [30].

In two papers in 1967 and 1971 Michele Caputo [5] [6], introduced a new fractional differential operator. These papers dealt with linear models of dissipation and interestingly this new operator resolved the issues to do with initial and boundary conditions along with the property that the Caputo fractional derivative of a constant is zero. It is perhaps interesting to note that this operator arose from purely physical considerations.

2 Fractional Operators and Their Properties

There are a variety of ways to define fractional differential operators. Good introductions to the various differential operators can be found in [11,18,30,32]. In this section, and for the rest of the thesis we will focus of three main fractional operators, the Riemann-Liouville integral and derivative, the Caputo derivative and the Grünwald-Letnikov derivative. There are an abundance of other operators such that the Miller-Ross sequential fractional derivative [25,30], the Weyl fractional integral [18,31,32], the Caputo fractional integral [18] and fractional operators such that the Riesz fractional derivative defined using Fourier transforms [26,32].

2.1 Riemann Liouville Fractional Integral

In the introduction we considered the historical motivations of the Riemann Liouville fractional integral. Here we will reintroduce it formally and discuss it's properties.

Definition 1 (Riemann Liouville Fractional Integeral). The Riemann Liouville fractional integral, based at $a \in \mathbb{R}$ and of order $\alpha \in (0, \infty)$ of an admissible function f is given by

$$(I_0^{\alpha} f)(x) := \frac{1}{\Gamma(\alpha)} \int_a^x f(t)(x-t)^{\alpha-1} dt \tag{14}$$

From this point forward we refer to this as the *fractional integral* of the function.

It is possible to extend to the this definition to $\alpha \in \mathbb{C}$ and $a = \infty$. While we will touch on the $a = -\infty$ case we will neglect discussion of $\alpha \notin \mathbb{R}$ and refer the interested reader to Samko et al. [32]. It is also worthy of note that some authors define a fractional operator with the limits of integration reversed. We will not deal with these operators, but instead refer the interested reader to [30,32]. The definition given in 1 is the most common in the literature and is compatible with the rest of the theorems and definitions given here.

Although it might seem like a good idea to describe the class of function for which the integral in (14) is well defined, this is a very complicated problem and we refer the interested reader to [32]. Although we don't deal with defining the set of admissible functions, we assure the reader that this class of functions is sufficiently large for our purposes and all of the functions we intend to deal are in this class.

We firstly wish to show that this coincides with the ordinary integrals when $n \in \mathbb{N}$. That is we wish to show that

$$\int_{a}^{x} \int_{a}^{\xi_{1}} \cdots \int_{a}^{\xi_{n-1}} f(\xi_{n}) d\xi_{n} \cdots d\xi_{1} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt$$

but this is the Cauchy theorem for repeated integration which is a well known result. It follows from applying the fundamental theorem of calculus repeatedly.

What this means is that the Riemann-Liouville fractional integral makes sense in that it agrees with the ordinary integral. This is obviously a very desirable property.

The second property that we wish to explore is the semigroup property.

Lemma 1. Two fraction integrals I_0^{α} and I_0^{β} have the property that

$$I_a^{\alpha} I_a^{\beta} = I_a^{\alpha+\beta} = I_a^{\beta} I_a^{\alpha}.$$

Proof. For a function f we have that

$$\begin{split} (I_a^\alpha I_a^\beta)(f)(t) &= \frac{1}{\Gamma(\alpha)} \int_a^t (t-\tau)^{\alpha-1} \frac{1}{\Gamma(\beta)} \int_a^\tau (\tau-z)^{\beta-1} f(z) dz d\tau \\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_a^t \int_a^\tau (t-\tau)^{\alpha-1} (\tau-z)^{\beta-1} f(z) dz d\tau \\ &\circledast &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_a^t \int_z^t (t-\tau)^{\alpha-1} (\tau-z)^{\beta-1} f(z) d\tau dz. \end{split}$$

Now performing the change of variables $x = \frac{\tau - z}{t - z}$ we get that

$$\begin{split} \circledast &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_a^t \int_0^1 (t-z)^{\alpha-1} (1-x)^{\alpha-1} x^{\beta-1} (t-z)^{\beta-1} (t-z) dx dz \\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 (1-x)^{\alpha-1} x^{\beta-1} dx \int_a^t (t-z)^{\alpha+\beta-1} f(z) dz \\ &= \frac{B(\alpha,\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_a^t (t-z)^{\alpha+\beta-1} f(z) dz \\ &= \frac{1}{\Gamma(\alpha+\beta)} \int_a^t (t-z)^{\alpha+\beta-1} f(z) dz \\ &= I_a^{\alpha+\beta}(f)(t). \end{split}$$

This shows that $I_a^{\alpha}I_a^{\beta}=I_a^{\alpha+\beta}$ and hence immediately implies that $I_a^{\alpha}I_a^{\beta}=I_a^{\beta}I_a^{\alpha}$.

We now calculate the Laplace transform of the of the Riemann-Liouville fractional integral. While we will not immediately use this result it will prove useful when we attempt to solve fractional differential equations.

Lemma 2. The Laplace transform of $(I_0^{\alpha}f)$ is given by

$$\mathcal{L}\{(I_0^{\alpha}f)\} = \frac{\mathcal{L}\{f\}}{s^{\alpha}}$$

Proof. Noticing that

$$\int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau$$

is the Laplace convolution of $t^{\alpha-1}$ and f(t) we can simply use the Laplace convolution theorem to get that

$$\begin{split} \mathcal{L}\{(I_0^{\alpha}f)\} &= \mathcal{L}\{f\}\mathcal{L}\{t^{\alpha-1}\} \\ &= \frac{\mathcal{L}\{f\}}{e^{\alpha}}. \end{split}$$

Note that this proof hinges off the Laplace convolution theorem, and so it requires that the base of the fractional derivative, a, has to be 0. In a similar fashion we can deal with the Fourier transform of the fractional integral but with a base, a, of $-\infty$ instead so the Fourier convolution can be invoked. We formalise that with the next lemma.

Lemma 3. The Fourier transform of $(I_0^{\alpha} f)$ is given by

$$\mathcal{F}\{\left(I_{-\infty}^{\alpha}f\right)\} = \frac{\mathcal{F}\{f\}}{(i\omega)^{\alpha}}.$$

This proof follows ideas outlined in [30]

Proof. We firstly introduce

$$h_{+}^{\alpha}(t) = \begin{cases} \frac{t^{\alpha - 1}}{\Gamma(\alpha)} & t > 0\\ 0 & t \le 0 \end{cases}$$

and then note that it is clear that

$$(I_0^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} (t - \tau)^{\alpha - 1} f(\tau) d\tau$$
$$= \int_{-\infty}^{\infty} h_+^{\alpha} (t - \tau) f(\tau) d\tau$$
$$= (h_+^{\alpha} * f)(t)$$

where * represents the Fourier convolution. By employing the Fourier convolution theorem it follows that

$$\mathcal{F}\{\left(I_{-\infty}^{\alpha}f\right)\}=\mathcal{F}\{h_{+}^{\alpha}\}\mathcal{F}\{f\}.$$

It remains only to show that $\mathcal{F}\{h_+^{\alpha}\}=(i\omega)^{-\alpha}$. To see this note that the Laplace transform of h_+^{α} is given by

$$\mathcal{L}\{h_{+}^{\alpha}\} = s^{-\alpha}$$

and so by replacing s with $i\omega$, as in the Fourier transform we get the result. The convergence of the Fourier integral is guaranteed by Dirichlet's theorem for Fourier integrals as noted in [30].

2.2 Riemann-Liouville Fractional Derivative

Although one can approach a fractional derivative from somewhat of a *first principles* approach via the Grünwald-Letnikov derivative [30,32], we will not do that here, mainly because for a large class of functions the Grünwald-Letnikov derivative is actually equivalent to the Riemann-Liouville fractional derivative [30] and the Riemann-Liouville fractional derivative is more tractable from a symbolic manipulation perspective.

The idea behind the Riemann-Liouville fractional derivative is to exploit the Riemann-Liouville fractional integral to give the fractional part and then just use integer order derivatives to get the correct order. For example if one wanted to calculate the 1/2-th derivative of a function you would fractionally integrate by 1/2-th and then differentiate once.

Definition 2 (Riemann-Liouville Fractional Derivative). We define the Riemann-Liouville fractional derivative based at a and of order $\alpha \in (0, \infty)$ of a function f as

$$\left(_{a}\mathcal{D}^{\alpha}f\right)(x) := \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dx^{n}} \int_{a}^{x} \frac{f(t)}{(x-t)^{\alpha-n+1}} dt \tag{15}$$

where $n = \lfloor \alpha \rfloor + 1$.

We will not continually specify this condition on n. For all future cases, unless otherwise specified the definition of n should be the same.

Again, it should be observed that the precise definition of which functions this transform operates on is not given. As in the fractional integral case this is a complicated question, and we will simply refer to those functions for which (2) is well defined as admissible functions. The interested reader is referred to [32] for a discussion of these issues.

We can also see rather trivially that

$$\left(_{a}\mathcal{D}^{\alpha}f\right)(t) = \frac{d^{n}}{dt^{n}}\left[I_{a}^{n-\alpha}f(t)\right] \tag{16}$$

which aligns with our intuitive motivation of a fractional derivative above.

Like in the case of the fractional integral we would like to investigate the semi-group properties of the Riemann-Liouville fractional derivative and the relationship between the Riemann-Liouville fractional integral and derivative.

Lemma 4. The Riemann-Liouville derivative of order α is the left inverse of the Riemann-Liouville integral of order α in the sense that

$$(_{a}\mathcal{D}^{\alpha}I_{a}^{\alpha}f)(t) = f(t)$$

Proof. For an admissible function f we have that

$${}_a\mathcal{D}^\alpha I_a^\alpha f = \frac{1}{\Gamma(n-\alpha)\Gamma(\alpha)} \frac{d^n}{dt^n} \int_a^t (t-\tau)^{n-\alpha-1} \int_a^\tau (\tau-z)^{\alpha-1} f(z) dz d\tau$$

$$= \frac{1}{\Gamma(n-\alpha)\Gamma(\alpha)} \frac{d^n}{dt^n} \int_a^t \int_a^\tau (t-\tau)^{n-\alpha-1} (\tau-z)^{\alpha-1} f(z) dz d\tau$$

$$\circledast = \frac{1}{\Gamma(n-\alpha)\Gamma(\alpha)} \frac{d^n}{dt^n} \int_a^t \int_z^t (t-\tau)^{n-\alpha-1} (\tau-z)^{\alpha-1} f(z) d\tau dz.$$

Now with the change of variables $x = \frac{\tau - z}{t - z}$ we have that

$$\begin{split} \circledast &= \frac{d^n}{dt^n} \frac{1}{\Gamma(n-\alpha)\Gamma(\alpha)} \int_a^t \int_0^1 (t-z)^{n-\alpha-1} (1-x)^{n-\alpha-1} x^{\alpha-1} (t-z)^{\alpha-1} (t-z) f(z) dx dz \\ &= \frac{1}{\Gamma(n-\alpha)\Gamma(\alpha)} \int_0^1 (1-x)^{n-\alpha-1} x^{\alpha-1} dx \frac{d^n}{dt^n} \int_a^t (t-z)^{n-1} f(z) dz \\ &= \frac{B(n-\alpha,\alpha)}{\Gamma(n-\alpha)\Gamma(\alpha)} \frac{d^n}{dt^n} \int_a^t (t-z)^{n-1} f(z) dz \\ &= \frac{d^n}{dt^n} \frac{1}{(n-1)!} \int_a^t (t-z)^{n-1} f(z) dz \\ &= f(t) \end{split}$$

and so the result follows. \Box

We should note that by selecting $\alpha \in \mathbb{N}$ we could see almost by definition that that the Riemann-Liouville fractional derivative coincides with the ordinary derivative, however, we could also use this lemma to see it as well.

The Riemann-Liouville fractional derivative is *not* a right inverse of the fractional integral. The relationship is considerably more subtle and is formalized in the following lemma.

Lemma 5. For an admissible function f we have that

$$\left(I_{a\ a}^{\alpha}\mathcal{D}^{\alpha}f\right)(t) = f(t) - \sum_{j=1}^{n} \left[{}_{a}\mathcal{D}^{\alpha-j}f(t)\right]_{t=a} \frac{(t-a)^{\alpha-j}}{\Gamma(\alpha-j+1)}$$

The following proof follows closely to that of Podlubny [30].

Proof. See that

$$(I_{a\ a}^{\alpha}\mathcal{D}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-\tau)^{\alpha-1} {}_{a}\mathcal{D}^{\alpha}f(\tau)d\tau \tag{17}$$

$$= \frac{d}{dt} \left[\underbrace{\frac{1}{\Gamma(\alpha+1)} \int_{a}^{t} (t-\tau)^{\alpha} {}_{a} \mathcal{D}^{\alpha} f(\tau) d\tau}_{\text{\tiny R}} \right]. \tag{18}$$

So we turn our attention to computing **, and see that

$$\circledast = \frac{1}{\Gamma(\alpha+1)} \int_{a}^{t} (t-\tau)^{p} \frac{d}{dt^{n}} \left(I_{a}^{n-\alpha} f(\tau) \right) d\tau$$

and by repeated integration by parts we get

$$\circledast = \frac{1}{\Gamma(\alpha - n + 1)} \int_{a}^{t} (t - \tau)^{\alpha - n} \left(I_{a}^{n - \alpha} f(\tau) \right) d\tau \tag{19}$$

$$-\sum_{j=1}^{n} \left[\frac{d^{n-j}}{dt^{n-j}} \left(I_a^{n-\alpha} f(t) \right) \right]_{t=a} \frac{(t-a)^{\alpha-j-1}}{\Gamma(2+\alpha-j)}$$
 (20)

$$=I_a^{n-\alpha-1}\left(I_a^{\alpha-n}f(t)\right) - \sum_{j=1}^n \left[{}_a \mathcal{D}^{\alpha-j}f(t)\right]_{t=a} \frac{(t-a)^{\alpha-j+1}}{\Gamma(2+\alpha-j)}$$
(21)

$$= I_a^1 f(t) - \sum_{j=1}^n \left[{}_a \mathcal{D}^{\alpha - j} f(t) \right]_{t=a} \frac{(t-a)^{\alpha - j+1}}{\Gamma(2 + \alpha - j)}$$
 (22)

and then by applying the derivative from (18) we get the result.

The astute reader might have noticed that we have abused notation in (21) and (22) where we have permitted a negative order of differentiation in the last term of the sums. This is ok though, because $\alpha - n < 1$ and we formalise this in the next lemma.

Lemma 6. If we permit $-1 < \alpha < 0$ for an order of differentiation then formally we have that

$$_{a}\mathcal{D}^{\alpha}=I_{a}^{-\alpha}.$$

The proof is trivial and follows immediately from the definitions.

What lemmas 4 and 5 essentially amount to is an extended fundamental theorem of calculus. While these results generalise the FTC they not more fundamental than the ordinary fundamental theorem of calculus in that they cannot be used to prove the FTC. This is because implicitly in the definition of the Riemann-Liouville fractional integral and integral and in the proofs of 4 and 5 we have used the FTC.

It turns out that the semi-group property that we formulated for the fractional integral does not hold for the Riemann-Liouville fractional derivative. That is, it is not neseccerily true that ${}_{0}\mathcal{D}^{\alpha}{}_{0}\mathcal{D}^{\beta} = {}_{0}\mathcal{D}^{\alpha+\beta} = {}_{0}\mathcal{D}^{\beta}{}_{0}\mathcal{D}^{\alpha}$. Gorenflo and Mainardi give excellent examples of where these equalities break down [18].

Due to the utility of the Laplace transform of the Riemann-Liouville fractional derivative we calculate it here as it will prove useful for latter results.

Lemma 7. The Laplace transform the of the Riemann-Liouville derivative of an admissible function f is given by

$$\mathcal{L}\left\{\left({}_{0}\mathcal{D}^{\alpha}f\right)\right\} = s^{\alpha}\mathcal{L}\left\{f(x)\right\} - \sum_{k=0}^{n-1} s^{k}\left({}_{0}\mathcal{D}^{\alpha-k-1}f\right)(0).$$

Proof. See that

$$\begin{split} \mathcal{L}\left\{\left(_{0}\mathcal{D}^{\alpha}f\right)\right\} &= \mathcal{L}\left\{\frac{d^{n}}{dt^{n}}\left(I_{0}^{n-\alpha}f\right)\right\} \\ &= s^{n}\mathcal{L}\left\{\left(I_{0}^{n-\alpha}f\right)\right\} - \sum_{k=0}^{n-1} s^{k} \frac{d^{n-k-1}}{dt^{n-k-1}}\left(I_{0}^{n-\alpha}f\right)\left(0\right) \end{split}$$

and by applying the result of lemma 2 we get

$$\mathcal{L}\left\{\left(_{0}\mathcal{D}^{\alpha}f\right)\right\} = s^{\alpha}\mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1} s^{k}\left(_{0}\mathcal{D}^{\alpha-k-1}f\right)(0).$$

We also consider the Fourier transform of the Riemann-Liouville fractional derivative as it will also prove useful for latter results.

Lemma 8. For an admissible function f the Fourier transform of the Riemann-Liouville fractional derivative with $a = -\infty$ and of order α is given by

$$\mathcal{F}\left\{\left(_{-\infty}\mathcal{D}^{\alpha}f\right)(t)\right\} = (i\omega)^{\alpha}\mathcal{F}\left\{f(t)\right\}.$$

Proof. Since it is possible to regard the Riemann-Liouville fractional derivative in terms of the composition of integer order derivatives with the fractional integral this proof follows quickly from the result of lemma 3. Firstly we have that

$$\left(_{-\infty}\mathcal{D}^{\alpha}f\right)(t) = \frac{d^{n}}{dt^{n}} \left[I_{-\infty}^{n-\alpha}f(t)\right]$$

and so by elementary results for Fourier transforms we have that

$$\mathcal{F}\left\{\left(_{-\infty}\mathcal{D}^{\alpha}f\right)(t)\right\} = \mathcal{F}\left\{\frac{d^{n}}{dt^{n}}\left[I_{-\infty}^{n-\alpha}f(t)\right]\right\}$$
$$= (i\omega)^{n}\mathcal{F}\left\{I_{-\infty}^{n-\alpha}f(t)\right\}$$

and then by using the result of lemma 3 we have that

$$(i\omega)^n \mathcal{F}\left\{I_{-\infty}^{n-\alpha} f(t)\right\} = (-i\omega)^n (-i\omega)^{\alpha-n} \mathcal{F}\left\{f(t)\right\}$$
$$= (i\omega)^\alpha \mathcal{F}\left\{f(t)\right\}$$

Another very useful result is the fractional derivative of a power function.

Lemma 9. The Riemann-Liouville fractional derivative of a power function is as follows

$${}_0\mathcal{D}^{\alpha}z^{\nu} = \frac{\Gamma(\nu+1)}{\Gamma(\nu+1-\alpha)}z^{\nu-\alpha}.$$

Proof. Using lemma 7 we have that

$$\mathcal{L}\left\{_{0}\mathcal{D}^{\alpha}z^{\nu}\right\} = s^{\alpha}\mathcal{L}\left\{z^{\nu}\right\}$$

but it is well known that

$$\mathcal{L}\{z^{\nu}\} = \frac{\Gamma(\nu+1)}{s^{\nu+1}}$$

and so we have that

$$\mathcal{L}\left\{_{0}\mathcal{D}^{\alpha}z^{\nu}\right\} = \frac{\Gamma(\nu+1)}{s^{\nu+1-\alpha}}$$
$$= \frac{\Gamma(\nu+1)}{\Gamma(\nu+1-\alpha)} \frac{\Gamma(\nu+1-\nu)}{s^{\nu+1-\alpha}}$$

and so by inverting the Laplace transform we get

$${}_0\mathcal{D}^{\alpha}z^{\nu} = \frac{\Gamma(\nu+1)}{\Gamma(\nu+1-\alpha)}z^{\nu-\alpha}.$$

It should be noted that this result agrees with early historical results about how a fractional derivative of a power function should look.

2.3 Caputo Fractional Derivative

We now turn our attention to the last fractional differential operator that we will study in detail, the Caputo fractional derivative. The Caputo derivative first turned up in a 1967 paper by Caputo on linear models of dissipation [5] and again in 1971 in a paper by Caputo and Mainardi [6]. When specifying differential equations (both of the ordinary and partial type) Riemann-Liouville derivatives typically lead to intial conditions and boundary values of fractional order [6,22,30,32], however, physical intuition for what sensible values for these initial and boundary values can be is somewhat hard to come by [6,18,30,32]. The Caputo derivative, however, leads to systems where the initial and boundary values are of integer order, which leads to much greater physical usefulness [18,30,32]

Despite the fact that fractional differential equations with Riemann-Liouville operators in them often lead to initial and boundary conditions which are fractional, recent work has been done on interpreting these systems physically. c.f. [22]

We will now make formal a definition of the Caputo fractional derivative.

Definition 3. We define the Caputo fractional derivative based at a and of order $\alpha \in (0, \infty)$ of an admissible function f, as

$$\binom{C}{a}\mathcal{D}^{\alpha}f(x) := \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{\frac{d^{n}}{dt^{n}}f(t)}{(x-t)^{\alpha-n+1}} dt$$

where $n = |\alpha| + 1$.

Here an admissible function is taken to have the same general meaning as described in the Riemann-Liouville fractional integral and derivative cases.

We can easily see that

$$\begin{pmatrix} {}^{C}_{a}\mathcal{D}^{\alpha}f \end{pmatrix}(x) = I_{a}^{n-\alpha}\frac{d^{n}}{dx^{n}}f(x) \tag{23}$$

and when we compare this observation with that in (16) we see that the Caputo derivative essentially amounts to swapping the order of fractional integration and integer differentiation when compared to the Riemann-Liouville fractional derivative.

We would now like to develop similar a relationship between ${}^{C}_{a}\mathcal{D}^{\alpha}$ and I^{α}_{a} as was done for ${}_{a}\mathcal{D}^{\alpha}$ but to do that we will first give a relationship between the Riemann-Liouville fractional derivative and the Caputo fractional derivative.

Lemma 10. For an admissible function f we have that

$$\begin{pmatrix} {^C_a}\mathcal{D}^\alpha f \end{pmatrix}(t) = \left({_a}\mathcal{D}^\alpha f \right)(t) - \sum_{k=0}^{n-1} \frac{t^{k-\alpha}}{\Gamma(k-\alpha+1)} f^{(k)}(a).$$

Proof. A direct proof of this could be done, however it is simply quicker to use the results from lemmas 7 and 13 to see that the difference between these is simply a Maclaurin polynomial. \Box

Lemma 11. For an admissible function f we have that

The proof is immediate from lemmas 4 and 10. A similar result exists for $I_0^{\alpha} {}_{\rho}^{C} \mathcal{D}^{\alpha}$.

Lemma 12. For an admissible function f we have that,

$$(I_0^{\alpha} {}_0^C \mathcal{D}^{\alpha} f)(t) = f(t) + \sum_{k=0}^n \frac{f^{(k)}(0)t^k}{k!}.$$
 (24)

Proof. Again this proof could be done directly but as we note that by using 13 we can write

$$\mathcal{L}\left\{I_{0}^{\alpha}{}_{0}^{C}\mathcal{D}^{\alpha}f\right\} = \mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1} s^{n-k-1-\alpha} \left(\frac{d^{k}f}{dt^{k}}\right)(0)$$
(25)

and then by using well known results for Laplace transforms the result become immediate.

What will prove useful are results for the Laplace and Fourier transforms of the Caputo fractional derivative of a function.

Lemma 13. The Laplace transform of the Caputo derivative of an admissible function f is given by

$$\mathcal{L}\left\{ \begin{pmatrix} {}^{C}_{0}\mathcal{D}^{\alpha}_{t}f \end{pmatrix} \right\} = s^{\alpha-n} \left[s^{n}\mathcal{L}\left\{ f \right\} - \sum_{k=0}^{n-1} s^{n-k-1} \left(\frac{d^{k}f}{dt^{k}} \right) (0) \right].$$

Proof. See that

$$\mathcal{L}\left\{ \begin{pmatrix} {}^{C}_{0}\mathcal{D}^{\alpha}_{t}f \end{pmatrix} \right\} = \mathcal{L}\left\{ \left(I^{n-\alpha}_{0}\frac{d^{n}f}{dt^{n}} \right) \right\}$$
$$= \frac{1}{\Gamma(n-\alpha)} \mathcal{L}\left\{ \int_{0}^{t} (t-u)^{n-\alpha-1} \frac{d^{n}f}{dt^{n}} du \right\}$$

which is the Laplace transform of a convolution so

$$\begin{split} \Gamma(n-\alpha)\mathcal{L}\left\{\int_{0}^{t}(t-u)^{n-\alpha-1}\frac{d^{n}f}{dt^{n}}du\right\} &= \mathcal{L}\left\{t^{n-\alpha-1}\right\}\mathcal{L}\left\{\frac{d^{n}f}{dt^{n}}\right\} \\ &= \frac{1}{n-\alpha}\left(s^{-(n-\alpha)}\Gamma(n-\alpha)\right) \\ &\quad \times \left(s^{n}\mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1}s^{n-k-1}\left(\frac{d^{k}f}{dt^{k}}\right)(0)\right) \\ &= s^{\alpha-n}\left[s^{n}\mathcal{L}\left\{f\right\} - \sum_{k=0}^{n-1}s^{n-k-1}\left(\frac{d^{k}f}{dt^{k}}\right)(0)\right]. \end{split}$$

Lemma 14. For an admissible function f the Fourier transform of the Caputo fractional derivative with $a = -\infty$ and of order α is given by

$$\mathcal{F}\left\{ \left({_{-\infty}^{C}} \mathcal{D}^{\alpha} f \right)(t) \right\} = (i\omega)^{\alpha} \mathcal{F}\left\{ f(t) \right\}.$$

Proof. This proof follows in much the same way as the proof of lemma 8. Firstly we have that

$$\left({_{-\infty}^{C}} \mathcal{D}^{\alpha} f \right)(t) = I_{-\infty}^{n-\alpha} \frac{d^n}{dt^n} f(t)$$

and so by using the result of lemma 3 we have that

$$\mathcal{F}\left\{\left(-\infty\mathcal{D}^{\alpha}f\right)(t)\right\} = \mathcal{F}\left\{\left[I_{-\infty}^{n-\alpha}\frac{d^{n}}{dt^{n}}f(t)\right]\right\}$$
$$= (i\omega)^{\alpha-n}\mathcal{F}\left\{\frac{d^{n}}{dt^{n}}f(t)\right\}$$

and then by using elementary Fourier transform results we get

$$\begin{aligned} (-i\omega)^{\alpha-n} \mathcal{F} \left\{ I_{-\infty}^{n-\alpha} f(t) \right\} &= (-i\omega)^{\alpha-n} (i\omega)^n \mathcal{F} \left\{ f(t) \right\} \\ &= (i\omega)^{\alpha} \mathcal{F} \left\{ f(t) \right\} \end{aligned}$$

A careful reader might notice that the results of lemmas 8 and 14 are the same. This coincidence is actually hiding a more remarkable result which we formalise in the following lemma.

Lemma 15. For an admissible function f such that $\lim_{t \to -\infty} f^{(k)}(t) = 0$ for all $0 \le k \le n-1$ with n defined from α in the usual way we have that

$$\begin{pmatrix} {}^{C}\mathcal{D}^{\alpha}f \end{pmatrix}(t) = \begin{pmatrix} {}^{-\infty}\mathcal{D}^{\alpha}f \end{pmatrix}(t).$$

Proof. By using the result of lemma 10 we have that

$${}_{-\infty}^{C} \mathcal{D}^{\alpha} f(t) = {}_{-\infty} \mathcal{D}^{\alpha} f(t) - \sum_{k=0}^{n-1} \frac{t^{k-\alpha}}{\Gamma(k-\alpha+1)} \lim_{a \to -\infty} f^{(k)}(a)$$
$$= {}_{-\infty} \mathcal{D}^{\alpha} f(t).$$

The restriction on f is not as limiting as one might imagine because for the Fourier transform to have nice properties such as being an automorphism one would want f to come from some sort of Schwartz space and the membership criteria for a Schwartz space are considerably more restrictive than the conditions given in the above lemma. In fact, in defining precisely which functions are *admissible* one ends up having to place similar conditions on f. This is not a rabbit hole that we wish to explore further, and we refer the interested reader to [32] for a more thorough discussion of the matter.

2.4 Grünwald-Letnikov Derivative

We actually won't make much use of the Grünwald-Letnikov derivative in future discussions, however, any treatment of fractional calculus would be incomplete without at least a brief discussion of this operator.

In some sense we could say that the Grünwald-Letnikov derivative is a first principles derivative.

We define the first derivative of a function $f: R \longrightarrow R$ as

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

and if this limit exists we say that the function is differentiable. It turns out, rather unsurprisingly, that we can extend this definition to higher orders by writing

$$\frac{d^n f(x)}{dx^n} = \lim_{h \to 0} \frac{\Delta^n f(x)}{h^n}$$

where

$$\Delta f(x) = f(x) - f(x - h)$$

$$\Delta^2 f(x) = \Delta [f(x) - f(x - h)]$$

$$\vdots$$

$$\Delta^n f(x) = \sum_{n=0}^{n} \binom{n}{(-1)^k} f(x - ih)$$

 $\Delta^n f(x) = \sum_{k=0}^n \binom{n}{k} (-1)^k f(x - jh).$

Usually binomial coefficients are written in terms of integers, but as

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

we could just generalise this with gamma functions to take non-integer values of n. This would give us

$$\binom{\alpha}{k} = \frac{\Gamma(\alpha+1)}{k!\Gamma(\alpha-k+1)}.$$

So it makes sense to make the following definition.

Definition 4 (Grünwald-Letnikov Derivative). We define the Grünwald-Letnikov derivative of an admissible function f as

$$\frac{d^{\alpha}f(x)}{dx^{\alpha}} = \lim_{h \to 0} h^{-\alpha} \sum_{k=0}^{\infty} {\alpha \choose k} (-1)^k f(x - kh)$$
 (26)

Note that the binomial sum has become an infinite binomial series. This makes sense because unlike in the integer case $\binom{\alpha}{k}$ does not become 0 for $k > \alpha$ when $\alpha \notin \mathbb{N}$. In this case we can make some comment on what the set of admissible functions includes. Several authors have showed that if $f : \mathbb{R} \longrightarrow \mathbb{R}$ is bounded and has derivatives up to $\lceil \alpha \rceil$ then the fractional derivative (26) exists [24,30]. Podlubny also showed that if $f : \mathbb{R} \longrightarrow \mathbb{R}$ is n-1 times continuously differentiable and that $f^{(n)}$ is integrable then the Riemann-Liouville fractional derivative exists and coincides with Grünwald-Letnikov derivative.

3 Special Functions

The field of fractional calculus is intimately linked with the field of special functions. To express the fractional derivative of many functions one has to consider special functions. Just like the field of *ordinary* calculus has collections of functions which have a number of desirable properties like invariance (exponential) and *periodic invariance* (sine, cosine, hyperbolic sine, hyperbolic cosine) under the derivative map, fractional calculus has functions which have a very similar role.

We will look in detail at two functions, the Gamma function and the Mittag-Leffler function. It may seem that just looking at two functions will be limiting, but this is not the case. The Mittag-Leffler function is a very general function. Special cases of the Mittag-Leffler function include a number of more ordinary functions. The Gamma function is important in the definition of the Mittag-Leffler function and the fractional differential operators we have already discussed. The field of fractional calculus is surrounded by a virtual zoo of special functions including the Meijer G-function, Fox-H function, the generalised hyper-geometric functions, MacRobert E-function and the Mainardi function. This list could be made arbitrarily large by simply reading more and more literature on the subject, but these functions give us a way of formalising remarkable relationships [16, 17, 30, 32, 33]

3.1 Gamma Function

The Gamma function forms part of the definition of the fractional derivatives and integrals so far discussed. It also forms part of the definition of the Mittag-Leffler function, the Wright function, the Meijer G function and the Fox H function. These functions these are all very general functions important in the field of fractional calculus. It makes sense therefore to give a formal definition of the Gamma function and include some results.

Much of the results we prove here are setup to allow us to prove lemma 24 which will then be used to prove lemma 29.

Definition 5. Define the gamma function $\Gamma : \mathbb{R} \setminus \{0, -1, -2, \ldots\} \longrightarrow \mathbb{R}$

$$\Gamma(z) = \int_0^\infty e^t t^{z-1} dt.$$

The idea will be to lift this integral into the complex plain to get a contour integral representation of $\Gamma(z)$.

Lemma 16. A contour integral representation of $\Gamma(z)$ is given by

$$\Gamma(z) = \frac{1}{e^{2\pi i z} - 1} \int_C e^{-t} d^{z-1} dt$$

where C is the contour depicted in figure 6.

Figure 6: The Hankel contour C

This proof follows that of Podlubny [30].

Proof. Consider the contour integral

$$\int_C e^{(z-1)\log(t)-t} dt.$$

Due to the fact that the integrand involves a log function it is multivalued unless we specify a branch cut. We will adopt a branch cut along the non-negative real axis. As long as ε is chosen sufficiently small (ε < 1) then Cauchy's theorem guarantees that this contour integral has the same value for all choices of ε > 0 because the integrand has only one singularity at t=0.

Now consider the contour in three pieces, C_{ε} , the circle of radius ε centred at 0, (ε, ∞) , the bottom half of the contour and (∞, ε) , the top half of the contour.

As ε can be made arbitrarily small we take both straight parts of the contour to be real but on the lower half of the contour we must replace $\log(t)$ with $\log(t) + 2\pi i$.

This results in

$$\begin{split} \int_C e^{(z-1)\log(t)-t}dt &= \int_{-\infty}^{\varepsilon} e^{(z-1)\log(t)-t}dt + \int_{C_{\varepsilon}} e^{(z-1)\log(t)-t}dt + \int_{\varepsilon,\infty} e^{(z-1)\log(t)-t+2\pi i}dt \\ &= \int_{-\infty}^{\varepsilon} e^{-t}t^{z-1}dt + \int_{C_{\varepsilon}} e^{-t}t^{z-1}dt + e^{2(z-1)\pi i}\int_{\varepsilon}^{\infty} e^{-t}t^{z-1}dt \end{split}$$

It can be shown by simple application of the ML lemma, as in [30], that the integral along C_{ε} goes to zero as $\varepsilon \longrightarrow 0$.

Taking $\varepsilon \longrightarrow 0$ in the other two integrals and rearranging gives us the result

$$\int_0^\infty e^{-t}t^{z-1}dt = \frac{1}{e^{2\pi iz} - 1} \int_c e^{-t}t^{x-1}dt \tag{27}$$

We would like to exploit this result to give a simple contour integral representation of $\frac{1}{\Gamma(z)}$.

Lemma 17. A contour integral representation of $\frac{1}{\Gamma(z)}$ is given by

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{H_0} e^{\tau} \tau^{-z} d\tau$$

where the contour Ha is shown in figure 7.

This proof follows that of Podlubny [30]

Proof. By taking the result of 16 and substituting z-1 in (27) we get that

$$\int_C e^{-t} t^{-z} dt = (e^{-2\pi i z} - 1)\Gamma(1 - z).$$

Performing the substitution $\tau=-t$ rotates the contour integral clockwise 180 degrees and results in

$$\int_{C} e^{-t} t^{-z} dt = -e^{-z\pi i} \int_{H_{a}} e^{\tau} \tau^{-z} d\tau$$

and so

$$\Gamma(1-z) = \frac{1}{e^{z\pi i} - e^{-z\pi i}} \int_{Ha} e^{\tau} \tau^{-z} d\tau$$
$$= \frac{1}{2i\sin(\pi z)} \int_{Ha} e^{\tau} \tau^{-z} d\tau.$$

Now taking into account the well known Euler reflection formula, $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$, we get

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{Ha} e^{\tau} \tau^{-z} d\tau.$$

We now wish to give a pair of contour integral representations of the function $\frac{1}{\Gamma(z)}$ which we will then use in contour integrals representing $E_{\alpha,\beta}(z)$.

Lemma 18. The function $\frac{1}{\Gamma(z)}$ can be represented by the following contour integrals

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi\alpha i} \int_{\gamma(\varepsilon,\mu)} e^{\zeta^{1/\alpha}} \zeta^{(1-z-\alpha)/\alpha} d\zeta$$
 (28)

where

$$\left(\alpha<2,\frac{\pi\alpha}{2}<\mu<\min\{\pi,\pi\alpha\}\right)$$

or where Re(z) > 0

$$\frac{1}{\Gamma(z)} = \frac{1}{4\pi i} \int_{\gamma(\varepsilon,\pi)} e^{\zeta^{1/2}} \zeta^{-(z+1)/2} d\zeta \tag{29}$$

where the contour $\gamma(\varepsilon,\varphi)$ is depicted in figure 9.

Figure 7: The Hankel contour Ha

This proof follows that of Podlubny [30].

Proof. Firstly we show that we can rewrite the contour integral in lemma 17 can be rewritten as a contour integral about $\gamma(\varepsilon,\varphi)$ where $\gamma(\varepsilon,\varphi)$ is shown in figure 9. We restrict φ to $\frac{\pi}{2}<\varphi\pi$.

Now lets consider the contour integral diagram in figure 8 and note that as $f(\tau):=e^{\tau}t^{-z}$ does not have any singularities we have

$$\int_{A^+B^+C^+D^+} f(\tau)d\tau = \int_{A^-D^-C^-B^-} f(\tau) = 0.$$
 (30)

Considering just the arc A^+B^+ we note that $|\tau|=R$ and hence

$$|f(\tau)| = |e^{\tau} \tau^{-z}| = e^{R \cos(\arg \tau) - Re(z) \log(R) + Im(z) \arg \tau}$$

$$\leq e^{-R \cos(\pi - \phi) - x \log(R) + 2\pi y}$$

$$\sim \frac{1}{R} e^{-R}$$

Figure 8: Integration contour for $\gamma(\varepsilon, \varphi)$

and thus by application of the ML lemma we have

$$\lim_{R \to \infty} \int_{A^+}^{B^+} f(\tau) d\tau = 0.$$

A completely symmetric argument yields

$$\lim_{R \longrightarrow \infty} \int_{B^{-}}^{A^{-}} f(\tau) d\tau = 0$$

and so we can write

$$\int_{C^{+}}^{B_{\infty}^{+}} f(\tau)d\tau = \int_{C^{+}}^{D^{+}} f(\tau)d\tau + \int_{D^{+}}^{\infty^{+}} f(\tau)d\tau$$

and

$$\int_{B_{\infty}^{-}}^{C^{-}} f(\tau)d\tau = \int_{\infty^{-}}^{D^{-}} f(\tau)d\tau + \int_{D^{-}}^{C^{-}} f(\tau)d\tau.$$

Then

$$\int_{Ha} f(\tau) d\tau = \left(\int_{B_{\infty}^-}^{C^-} f(\tau) d\tau + \int_{C^-}^{C^+} f(\tau) d\tau + \int_{C^+}^{B_{\infty}^+} f(\tau) d\tau \right) = \int_{\gamma(\varepsilon,\varphi)} e^{\tau} \tau^- z d\tau.$$

To get the final results, we perform the substitution $\tau = \zeta^{1/\alpha}$ for $\alpha < 2$ which yields

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi\alpha i} \int_{\gamma(\varepsilon,\mu)} e^{\zeta^{1/\alpha}} \zeta^{(1-z-\alpha)/\alpha} d\zeta$$

so long as $\alpha < 2$ and $\frac{\pi \alpha}{2} < \mu < \min\{\pi, \pi \alpha\}$.

If, however, we perform the substitution $\tau = \sqrt{\zeta}$ and integrate over the contour $\gamma(\varepsilon, \frac{\pi}{2})$ we get

$$\frac{1}{\Gamma(z)} = \frac{1}{4\pi i} \int_{\gamma(\varepsilon,\pi)} e^{\zeta^{1/2}} \zeta^{-(z+1)/2} d\zeta$$

for Re(z) > 0.

3.2 Mittag-Leffler Function

Just like the exponential function has an invariance property under differentiation, we would like a function that has a similar property for fractional differentiation. With that in mind we define the Mittag-Leffler function.

Definition 6. Define the two parameter Mittag-Leffler function as

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}.$$

The reason we defined it as the two parameter Mittag-Leffler function is because some authors use the phrase Mittag-Leffler function to refer to a one parameter form, $E_{\alpha}(z) = E_{\alpha,1}(z)$. The two parameter version of this function is in common use and some more general results can be shown about the two parameter form. For the rest of our discussions we will use the phrase Mittag-Leffler function to refer to the two parameter version.

The first thing that any reader should notice about the Mittag-Leffer function is that it is an immediate generalisation of the exponential function, with $E_{1,1}(z) = \exp(z)$.

It should be clear to see that at least for $\alpha, \beta \in \mathbb{R}$ this series uniformly converges on compact subsets in much that same way that that the series for the exponential function converges. This fact is important as it will allow us to interchange sums and integrals in several of the results which follow.

Interestingly a considerable number of other functions can be expressed in terms of Mittag-Leffler functions. By setting $\alpha=0, \beta=1$ we can easily see that we have a geometric series and so when |z|<1 we have

$$E_{0,1}(z) = \frac{1}{z}.$$

Figure 9: The Hankel countour $\gamma(\varepsilon, \varphi)$

Setting $\alpha = 2, \beta = 1$ we get

$$E_{2,1}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(2k+1)}$$
$$= \sum_{k=0}^{\infty} \frac{z^k}{(2k)!}$$

Now also notice that Taylor expansion of $\cosh(\sqrt{z})$ about 0 is

$$\cosh(\sqrt{z}) = \sum_{k=0}^{\infty} \frac{z^k}{(2k)!}$$

and so $E_{2,1}(z) = \cosh(\sqrt{z})$.

There are considerably more relationships. We refer the interested reader to [30] or [32] for a more extensive listing of these relationships.

We will now calculate the Laplace transform of some special cases of the Mittag-Leffler function. These will prove useful for latter results.

Lemma 19. The Laplace transform of $E_{\alpha,1}(\gamma z^{\alpha})$ is given by

$$\mathcal{L}\left\{E_{\alpha,1}(\gamma z^{\alpha})\right\} = \frac{s^{\alpha-1}}{s^{\alpha} - \gamma}.$$

Proof. We have that

$$\mathcal{L}\left\{E_{\alpha,1}(\gamma z^{\alpha})\right\} = \int_{0}^{\infty} e^{-st} \sum_{k=0}^{\infty} \frac{(\gamma t^{\alpha})^{k}}{\Gamma(\alpha k+1)} dt$$
$$= \sum_{k=0}^{\infty} \int_{0}^{\infty} \frac{e^{-st}(\gamma t^{\alpha})^{k}}{\Gamma(\alpha k+1)} dt$$
$$\circledast = \sum_{k=0}^{\infty} \frac{\gamma^{k}}{\Gamma(\alpha k+1)} \int_{0}^{\infty} e^{-st} t^{\alpha k} dt.$$

With a change of variables x = st we get that

$$\begin{split} \circledast &= \sum_{k=0}^{\infty} \frac{\gamma^k s^{-(\alpha k+1)}}{\Gamma(\alpha k+1)} \int_0^{\infty} e^{-x} x^{\alpha} k dx \\ &= \sum_{k=0}^{\infty} \frac{\gamma^k s^{-(\alpha k+1)\Gamma(\alpha k+1)}}{\Gamma(\alpha k+1)} \\ &= \sum_{k=0}^{\infty} \gamma^k s^{-(\alpha k+1)} \\ &= \sum_{k=0}^{\infty} \gamma^k s^{-(\alpha k+1)} \\ &= \frac{s^{\alpha-1}}{s^{\alpha} - \gamma}. \end{split}$$

So we have that

$$\mathcal{L}\left\{E_{\alpha,1}(\gamma t^{\alpha})\right\} = \frac{s^{\alpha-1}}{s^{\alpha} - \gamma}$$

The following lemma is essentially a generalisation of lemma 19 but it is important as we will make use of it in future results.

Lemma 20. The Laplace transform of $t^{\alpha m+\gamma-1}E_{\alpha,\gamma}^{(m)}(t)$ is given by

$$\mathcal{L}\left\{t^{\alpha m + \gamma - 1} E_{\alpha, \gamma}^{(m)}(\beta t^{\alpha})\right\} = \frac{m! s^{\alpha - \gamma}}{(s^{\alpha} - \beta)^{m+1}}$$

Proof. Firstly see that

$$E_{\alpha,\gamma}^{(m)}(t) = \sum_{k=m}^{\infty} \frac{\frac{k!}{(k-m)!} t^{k-m}}{\gamma(\alpha k + \gamma)}$$
$$= \sum_{k=0}^{\infty} \frac{(k+m)! t^k}{k! \Gamma(\alpha k + \gamma)}$$

so we have that

$$E_{\alpha,\gamma}^{(m)}(\beta t^{\alpha}) = \sum_{k=0}^{\infty} \frac{(k+m)! t^{\alpha k} \beta^k}{k! \Gamma(\alpha(k+m)+\gamma)}.$$

We can then write that

$$\begin{split} \mathcal{L}\left\{t^{\alpha m+\gamma-1}E_{\alpha,\gamma}^{(m)}(t)\right\} &= \int_0^\infty t^{\alpha m+\gamma-1}\sum_{k=0}^\infty \frac{(k+m)!t^{\alpha k}\beta^k}{k!\Gamma(\alpha(k+m)+\gamma)} \\ &= \sum_{k=0}^\infty \frac{\beta^k(k+m)!}{\Gamma(\alpha(k+m)+\gamma)k!}\underbrace{\int_0^\infty e^{-st}t^{\alpha(k+m)+\gamma-1}dt}_{\circledast}. \end{split}$$

Considering just \circledast and performing the substitution x = st we get that

and so

$$\mathcal{L}\left\{t^{\alpha m + \gamma - 1} E_{\alpha, \gamma}^{(m)}(t)\right\} = s^{-\alpha m - \gamma} \sum_{k=0}^{\infty} \left(\frac{\beta}{s^{\alpha}}\right)^{k} \frac{(k+m)!}{k!}.$$

Now by the derivative rule for geometric series we get

$$\sum_{k=0}^{\infty} \left(\frac{\beta}{s^{\alpha}}\right)^k \frac{(k+m)!}{k!} = \frac{m!}{(1 - \frac{\beta}{s^{\alpha}})^{m+1}}$$
$$= \frac{s^{\alpha(m+1)}m!}{(s^{\alpha} - \beta)^{m+1}}$$

and so

$$\mathcal{L}\left\{t^{\alpha m + \gamma - 1} E_{\alpha, \gamma}^{(m)}(t)\right\} = \frac{m! s^{\alpha - \gamma}}{(s^{\alpha} - \beta)^{m+1}}.$$

We will use this result in solving fractional differential equations, along with proving some invariance results about the Mittag-Leffler function.

It should be clear that

$$\frac{d}{dz}E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{(k+1)z^k}{\Gamma(\alpha(k+1)+\beta)}$$

and further that

$$\frac{d^n}{dz^n} E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha(k+n)+\beta)} \prod_{j=1}^n (k+j).$$
(31)

So the Mittag-Leffler function retains a *similar* structure under differentiation. Obviously if $\alpha = 1$ and $\beta = 1$ this just reduces to the invariance of the exponential function under the differentiation map. It turns out that there are a whole collection of near-invariance and invariance properties of the Mittag-Leffler function. For a very general result we have the following lemma from [30].

Lemma 21. We have that the fractional derivative of $z^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}(\lambda z^{\alpha})$ is given by

$${}_0\mathcal{D}^{\gamma}z^{\alpha k+\beta-1}E^{(k)}_{\alpha,\beta}(\lambda z^{\alpha})=z^{\alpha k+\beta-\gamma-1}E^{(k)}_{\alpha,\beta-\gamma}(\lambda z^{\alpha})$$

Proof. We could prove this result by using lemma 9 and equation (31) but that turns out to be very convoluted. A simpler method is to get this result in Laplace space. Using lemma 7 we have that

$$\mathcal{L}\left\{{}_{0}\mathcal{D}^{\gamma}z^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}(\lambda z^{\alpha})\right\} = s^{\gamma}\mathcal{L}\left\{z^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}(\lambda z^{\alpha})\right\}$$

and by using the result of lemma 20 we have

$$\mathcal{L}\left\{z^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}(\lambda z^{\alpha})\right\} = \frac{k!s^{\alpha-\beta}}{(s^{\alpha}-\lambda)^{k+1}}$$

which means that

$$\mathcal{L}\left\{{}_{0}\mathcal{D}^{\gamma}z^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}(\lambda z^{\alpha})\right\} = \frac{k!s^{\alpha-(\beta-\gamma)}}{(s^{\alpha}-\lambda)^{k+1}}$$

and by inverting the Laplace transform by using the result of lemma 20 again we get that

$$_{0}\mathcal{D}^{\gamma}z^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}(\lambda z^{\alpha})=z^{\alpha k+\beta-\gamma-1}E_{\alpha,\beta-\gamma}^{(k)}(\lambda z^{\alpha}).$$

We can already use this result to construction fractional differential equations for which some form of the Mittag-Leffler function would the the solution to.

It's not hard to see that by setting $\gamma = \alpha = n$ with $n \in \mathbb{N}$ and selecting $\beta \in \{0, 1, \dots, m\}$ we have that

$$\frac{d^n}{dz^n}z^{\beta-1}E_{n,\beta}(z^n) = z^{\beta-1}E_{n,\beta}(z^n)$$

which generalises the derivative invariance property of exponential functions.

Another useful property that we will make use of in the proof of theorems 1 and 2 is formalised in the following lemma.

Lemma 22. For $\gamma > 0$ and $\alpha > 0$ we have that

$$I_0^{\alpha} E_{\alpha,1}(\gamma t^{\alpha}) = \frac{1}{\gamma} \left(E_{\alpha,1}(\gamma t^{\alpha}) - 1 \right).$$

Proof. Again this is easy to prove with in Laplace space. By using the results of lemmas 2 and 19 we have that

$$\mathcal{L}\{I_0^{\alpha} E_{\alpha,1}(\gamma t^{\alpha})\} = \frac{s^{-1}}{s^{\alpha} - \gamma}$$

also note that

$$\mathcal{L}\left\{\frac{1}{\gamma}(E_{\alpha,1}(\gamma t^{\alpha}) - 1)\right\} = \frac{1}{\gamma}\left(\frac{s^{\alpha - 1}}{s^{\alpha} - \gamma} - \frac{1}{s}\right)$$

$$= \frac{1}{\gamma}\left(\frac{s^{\alpha} - s^{\alpha} + \gamma}{s(s^{\alpha} - \gamma)}\right)$$

$$= \frac{1}{\gamma}\left(\frac{\gamma s^{-1}}{s^{\alpha} - \gamma}\right)$$

$$= \frac{s^{-1}}{s^{\alpha} - \gamma}$$

and so it is clear that

$$I_0^{\alpha} E_{\alpha,1}(\gamma t^{\alpha}) = \frac{1}{\gamma} \left(E_{\alpha,1}(\gamma t^{\alpha}) - 1 \right).$$

To prove a future result (theorem 2) we will several result on asymptotic expansions of the Mittag-Leffler function. To get to a position where we can adequately develop an asymptotic expansion we will need to develop similar ideas about the asymptotic expansion of the Mittag-Leffler function, as were developed for the Gamma function.

Lemma 23. For $\alpha \in \mathbb{R}$ with $0 < \alpha < 2$ and $\beta \in \mathbb{C}$ and $\varepsilon > 0$ such that

$$\frac{\pi\alpha}{2} < \mu \le \min\{\pi, \pi\alpha\} \tag{32}$$

we have that

$$E_{\alpha,\beta}(z) = \frac{1}{2\alpha\pi i} \int_{\gamma(\varepsilon,\mu)} \frac{e^{\zeta^{1/\alpha}} \zeta^{(1-\beta)/\alpha}}{\zeta - z} d\zeta$$
 (33)

for $z \in G^-(\varepsilon, \mu)$ and

$$\frac{1}{\alpha}z^{(1-\beta)/\alpha}e^{z^{1/\alpha}} + \frac{1}{2\alpha\pi i} \int_{\gamma(\varepsilon,\mu)} \frac{e^{\zeta^{1/\alpha}}\zeta^{(1-\beta)/\alpha}}{\zeta - z} d\zeta \tag{34}$$

for $z \in G^+(\varepsilon, \mu)$. The contour $\gamma(\varepsilon, \mu)$ is depicted in figure 9 as are the regions G^+ and G^- .

This proof follows that of Podlubny [30].

Proof. Starting from the definition of the Mittag-Leffler function noting the sum converges uniformly on compact subsets we have that

$$\begin{split} E_{\alpha,\beta}(z) &= \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} \\ &= \sum_{k=0}^{\infty} \frac{1}{2\pi \alpha i} z^k \int_{\gamma(\varepsilon,\mu)} e^{\zeta^{1/\alpha}} \zeta^{(1-\beta)/\alpha - k - 1} d\zeta \\ &= \frac{1}{2\pi \alpha i} \int_{\gamma(\varepsilon,\mu)} e^{\zeta^{1/\alpha}} \zeta^{(1-\beta)/\alpha - 1} \left(\sum_{k=0}^{\infty} \left(\frac{z}{\zeta} \right)^k \right) d\zeta. \end{split}$$

and if we assume that $|z| < \varepsilon$ then

$$\left|\frac{z}{\zeta}\right| < 1$$

because $\zeta \in \gamma(\varepsilon, \mu)$ and so

$$\sum_{k=0}^{\infty} \left(\frac{z}{\zeta} \right) = \frac{\zeta}{\zeta - z}$$

which means that

$$\circledast = \int_{\gamma(\varepsilon,\mu)} \frac{e^{\zeta^{1/\alpha}} \zeta^{(1-\beta)/\alpha}}{\zeta - z} d\zeta.$$

As argued in Podlubny [30], because of 32, this integral is absolutely convergent in $G^-(\varepsilon, \mu)$ and is an analytic function of z and so by the principle of analytic continuation this integral equals $E_{\alpha,\beta}(z)$ in all of $G^-(\varepsilon,\mu)$ rather than just $|z| < \varepsilon$.

If $z \in G^+(\varepsilon, \mu)$ we can say that $z \in G(\delta, \mu)$ where δ is chosen so that $|z| < \delta$. The idea here it to get z on the other side of a contour $\gamma(\delta, \mu)$. Then the above result still stands, but with a different contour. So if $\varepsilon < |z| < \delta$ and $-\mu < \arg(z) < \mu$ then we can use Cauchy's theorem to write

$$\frac{1}{2\alpha\pi i}\int_{\gamma(\varepsilon,\mu)-\gamma(\varepsilon,mu)}\frac{e^{\zeta^{1/\alpha}\zeta^{(1-\beta)/\alpha}}}{\zeta-z}d\zeta=\frac{z^{(1-\beta)/\alpha}e^{z^{1/\alpha}}}{\alpha}$$

and hence 34 follows.

We now wish to use these integral representations to develop the asymptotic expansions that we will need in future results.

Lemma 24. If $0 < \alpha < 2$ and μ is such that

$$\frac{\pi\alpha}{2} < \mu < \min\{\pi, \pi\alpha\}$$

and $|\arg(z)| \le \mu$ then for any integer $p \ge 1$

$$E_{\alpha,\beta}(z) = \frac{1}{\alpha} z^{(1-\beta)/\alpha} e^{z^{1/\alpha}} - \sum_{k=1}^{p} \frac{z^{-k}}{\Gamma(\beta - \alpha k)} + O(|z|^{-1-p})$$

 $as |z| \longrightarrow \infty.$

This proof follows that of Podlubny [30].

Proof. Take some φ such that $\mu < \varphi \leq \min\{\pi, \pi\alpha\}$ and set $\varepsilon = 1$. Note that

$$\frac{1}{\zeta - z} = \frac{1}{\zeta} \sum_{k=0}^{p} \left(\frac{\zeta}{z}\right)^k + \frac{\zeta^p}{z^p(\zeta - z)}.$$
 (35)

Now substituting this result into (34) we get that for $z \in G^+(1,\varphi)$

$$E_{\alpha,\beta}(z) = \frac{1}{\alpha} z^{(1-\beta)/\alpha} e^{z^{1/\alpha}}$$
(36)

$$-\sum_{k=1}^{p} \left(\frac{1}{2\pi\alpha i} \int_{\gamma(1,\varphi)} e^{\zeta^{1alpha}} \zeta^{(1-\beta)/\alpha+k-1} d\zeta \right) z^{-k}$$
(37)

$$+\frac{1}{2\pi\alpha i z^p} \int_{\gamma(1,\phi)} e^{\zeta^{\alpha/1}} \zeta^{(1-\beta)/\alpha+p} d\zeta. \tag{38}$$

Now (37) can be evaluated by using the result of lemma 18 which leaves us with

$$\sum_{k=1}^{p} \left(\frac{1}{2\pi\alpha i} \int_{\gamma(1,\varphi)} e^{\zeta^{1alpha}} \zeta^{(1-\beta)/\alpha+k-1} d\zeta \right) z^{-k} = \sum_{k=1}^{p} \frac{z^{-k}}{\Gamma(\beta - \alpha k)}. \tag{39}$$

It remains to estimate (38) when $|arg(z)| \le \mu$ and as $|z| \longrightarrow \infty$.

Firstly note that

$$\min_{\zeta \in \gamma(1,\varphi)} |\zeta - z| = |z| \sin(\varphi - \mu)$$

and therefore

$$\frac{1}{2\pi\alpha iz^{p}} \int_{\gamma(1,\phi)} e^{\zeta^{\alpha/1}} \zeta^{(1-\beta)/\alpha+p} d\zeta \leq \frac{|z|^{-1-p}}{2\pi\alpha \sin(\varphi-\mu)} \underbrace{\int_{\gamma(1,\varphi)} \left| e^{\zeta^{1/\alpha}} \right| \cdot \left| \zeta^{(1-\beta)+p} \right| d\zeta}_{\circledast}.$$
(40)

We wish to show that * converges, which is actually not hard because

$$\left| e^{\zeta^{1/\alpha}} \right| = e^{\left| \zeta \right|^{1/\alpha} \cos\left(\frac{\pi}{\alpha}\right)}$$

and $\cos\left(\frac{\varphi}{\alpha}\right)<0$ because $\frac{\pi\alpha}{2}<\varphi\leq\min\{\pi,\pi\alpha\}$. This means that

$$\frac{1}{2\pi\alpha i z^p} \int_{\gamma(1,\phi)} e^{\zeta^{\alpha/1}} \zeta^{(1-\beta)/\alpha+p} d\zeta = O(|z|^{-1-p})$$

$$\tag{41}$$

and so by combining (41) and (39) with the (34) the result follows.

4 Solution Methods for Fractional Differential Equations

In the following subsections we will explore by example some techniques for solving fractional differential equations.

4.1 Solution to a linear initial value problem via Laplace transforms

The following proposition gives a result to a single order linear fractional differential equation involving Caputo derivatives.

Proposition 1. The initial value problem defined in by

$$\begin{pmatrix} {}^{C}\mathcal{D}_{0}^{\alpha}y \end{pmatrix}(t) = \beta y(t) \tag{42}$$

along with the initial conditions

$$y^{(k)}(0) = \begin{cases} 1 & k = 0 \\ 0 & 1 \le k \le \lfloor \alpha \rfloor - 1 \end{cases}$$
 (43)

has solution $y(t) = E_{\alpha}(\beta t^{\alpha})$.

Proof. Taking the Laplace transform of both sides of (42) yields

$$\mathcal{L}\left\{ \begin{pmatrix} {}^{C}_{0}\mathcal{D}^{\alpha}_{t}y \end{pmatrix} \right\} = \beta \mathcal{L}\left\{ y \right\}$$
$$s^{-(n+\alpha)} \left[s^{n} \mathcal{L}\left\{ y \right\} - \sum_{k=0}^{n-1} s^{n-k-1} y^{(k)}(0) \right] = \beta \mathcal{L}\left\{ y \right\}$$

by the result of lemma 13. Then taking into account (43) we get

$$s^{-(n+\alpha)} \left[s^n \mathcal{L} \left\{ y \right\} - s^{n-1} \right] = \beta \mathcal{L} \left\{ y \right\}$$

and so

$$\mathcal{L}\left\{y\right\} = \frac{s^{\alpha - 1}}{s^{\alpha} - \beta}.$$

By using the result of lemma 19 we have that

$$y(t) = E_{\alpha}(\beta t^{\alpha})$$

Note that for this fractional differential equation it was specified in terms of Caputo fractional derivatives. It is important to note that this fractional differential equation is coupled with integer order initial conditions. As noted previously this makes Caputo fractional derivatives particularly useful from an applications standpoint.

Figure 10: Various solution curves for (42) with $\beta = 1$ and the initial conditions specified in (43)

•

4.2 Solution to a multi-order initial value problem via Laplace transforms

The Laplace transform technique can be applied to multi-order fractional differential equations as well. The following proposition demonstrates how.

$${}_{0}\mathcal{D}^{\Lambda}y(t) + {}_{0}\mathcal{D}^{\lambda}y(t) = f(t) \tag{44}$$

has solution, given by

$$y(t) = Cg(t) + \int_0^t g(t - \tau)f(\tau)d\tau$$

where

$$C = {}_{0}\mathcal{D}^{\Lambda-1}y(0) + {}_{0}\mathcal{D}^{\lambda-1}y(0)$$
$$g(t) = t^{\Lambda-1}E_{\Lambda-\lambda,\Lambda}(-t^{\Lambda-\lambda}).$$

This proof follows the technique outlined in [30].

Proof. Taking the Laplace transform of both sides of 44 and using the result of lemma 7 we get that

$$\begin{split} \mathcal{L}\left\{{}_{0}\mathcal{D}^{\Lambda}y(t)\right\} + \mathcal{L}\left\{{}_{0}\mathcal{D}^{\Lambda}y(t)\right\} &= \mathcal{L}\left\{f(t)\right\}\\ s^{\Lambda}Y(s) + s^{\lambda}Y(s) - {}_{0}\mathcal{D}^{\Lambda-1}y(0) - {}_{0}\mathcal{D}^{\lambda-1}y(0) &= F(s). \end{split}$$

Note that

$$C = {}_{0}\mathcal{D}^{\Lambda-1}y(0) + {}_{0}\mathcal{D}^{\lambda-1}y(0)$$

is a constant so we write

$$Y(s) = \frac{C + F(s)}{s^{\Lambda} + s^{\lambda}}$$
$$= (C + F(s)) \frac{s^{-\lambda}}{s^{\Lambda - \lambda} + 1}.$$

Let

$$G(s) = \frac{s^{-\lambda}}{s^{\Lambda - \lambda} + 1}$$

and by using lemma 20 with $\alpha = \Lambda - \lambda$ and $\gamma = \Lambda$ we get that

$$g(t) = t^{\Lambda - 1} E_{\Lambda - \lambda, \Lambda}(-t^{\Lambda - \lambda})$$

where $\mathcal{L}\left\{g(t)\right\} = G(s)$.

Then using the Laplace convolution theorem we get that

$$y(t) = Cg(t) + \int_0^t g(t - \tau)f(\tau)d\tau$$

where

$$\begin{split} C &= {}_0 \mathcal{D}^{\Lambda-1} y(0) + {}_0 \mathcal{D}^{\lambda-1} y(0) \\ g(t) &= t^{\Lambda-1} E_{\Lambda-\lambda,\Lambda} (-t^{\Lambda-\lambda}). \end{split}$$

Figure 11: A solution curve for (44), with $C=1, \Lambda=\frac{3}{2}, \lambda=\frac{1}{2}$ and $f(t)=\cos(t)$.

Also note that this differential equation is in terms of Riemann-Liouville derivatives. If we were to specify initial conditions we would be compelled to specify them in terms of fractional derivatives, so we leave them unspecified here to see the solution in general.

4.3 Other techniques for ordinary fractional differential equations

As hinted at previously we could just use the results of lemma 21 to potentially guess and check a solution to 44. This is certainly the case and especially when combined with the result of 9 this becomes quite possible. However direct application of fractional derivatives or integrals to functions is tricky. The techniques often hinge off changes of variables in integrals, such as in the proofs of many of the results in section 2 which are sometimes non-obvious. That's why we have presented these solutions via the Laplace transform methods. These results using these methods are almost trivial. In fact fractional differential equations are often solved by dual transform techniques. That is by using something like a Laplace or Fourier transform. (In the next subsection we will use the Fourier transform.)

There are other methods for solving fractiona differential equations. These include a technique using Mellin transforms [4, 23, 30, 32], orthogonal polynomials [30], power series [2, 30, 32] and a particularly interesting method called Babenko Symbolic Calculus [19, 30].

4.4 Solutions to partial fractional differential equations

Its not just ordinary fractional differential equations that can be solved by analytic techniques. Some partial fractional differential equations admit an analytic solution and that is what we will look at in this subsection.

Proposition 2. The following time fractional partial differential equation ^a

$${}_{0}\mathcal{D}^{\alpha}_{t}u(x,t) = \lambda^{2}\frac{\partial^{2}}{\partial x^{2}}u(x,t) \tag{45}$$

with $0 < \alpha < 1$ along with the initial condition

$$_{0}\mathcal{D}_{t}^{\alpha-1}u(x,t)\Big|_{t=0}=\psi(x)$$

has the solution

$$u(x,t) = \int_{-\infty}^{\infty} \xi(x - \eta, t) \psi(\eta) d\eta$$

where

$$\xi(x,t) = \frac{1}{\pi} \int_0^\infty t^{\alpha-1} E_{\alpha,\alpha}(-\lambda^2 \omega^2 t^{\alpha}) \cos(\omega x) d\omega.$$

Proof. Taking the Fourier transform of both sides of (45) yields

$$_{0}\mathcal{D}_{t}^{\alpha}\hat{u}(\omega,t) = -\omega^{2}\lambda^{2}\hat{u}(\omega,t)$$

^aHere ${}_0\mathcal{D}^{\alpha}_t$ refers to the Riemann-Liouville fractional derivative with respect to t.

where $\hat{u}(\omega,t) = \mathcal{F}_x\{u(x,t)\}$. Rearranging and taking the Laplace transform with the help of lemma 7 gives us

$$s^{\alpha}\hat{U}(\omega, s) + \lambda^2 \omega^2 \hat{U}(\omega, s) = \hat{\psi}(\omega)$$

where $\hat{U}(\omega, s)$ is the Fourier and Laplace transform of u(x, t) with respect to x and t respectively. So we have that

$$\hat{U}(\omega, s) = \frac{\hat{\psi}(\omega)}{s^{\alpha} + \lambda^{2} \beta^{2}}.$$

By appealing to lemma 20 we can invert the Laplace transform to get

$$\hat{u}(\omega, t) = \psi(\omega) t^{\alpha - 1} E_{\alpha, \alpha}(-\lambda^2 \beta^2 t^{\alpha}).$$

Now this is clearly the product of Fourier transforms so the inverse transform is given by the convolution of two functions, and so

$$u(x,t) = \int_{-\infty}^{\infty} \xi(x - \eta, t)\psi(\eta)d\eta$$

where

$$\xi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{\alpha-1} E_{\alpha,\alpha}(-\lambda^2 \omega^2 t^{\alpha}) e^{i\omega x} d\omega.$$

but by acknowledging that $E_{\alpha,\alpha}(-\lambda^2\omega^2t^{\alpha})e^{i\omega x}$ is even in ω this can be written as

$$\xi(x,t) = \frac{1}{\pi} \int_0^\infty t^{\alpha - 1} E_{\alpha,\alpha}(-\lambda^2 \omega^2 t^{\alpha}) \cos(\omega x) d\omega.$$

Podlubny [30] takes this result further and shows that when coupled with the limiting condition

$$\lim_{x \to \pm \infty} u(x, t) = 0$$

we have

$$\xi(x,t) = \frac{1}{2\lambda} t^{\rho-1} W_{-\rho,\rho} \left(-\frac{|x|}{\lambda t^{\rho}} \right)$$

but showing this result requires a number of techniques not otherwise explored in this thesis.

Note that this fractional partial differential equation is essentially a time fractional heat equation. It's actually known as the Nigmatullin fractional diffusion equation [27,30]. Interestingly Nigmatullin has published many papers on physical notions and examples of fractional differential equations and this particular version of the diffusion equation can be seen as having physical significance [24,27,28].

It should be noted that by replacing the Riemann-Liouville fractional derivative with a Caputo fractional derivative we get a similar result [29]. We'll formalize this assertion with the following proposition.

²Here \mathcal{F}_x refers to the Fourier transform with respect to x

Proposition 3. The following time fractional partial differential equation

$${}_{0}^{C}\mathcal{D}_{t}^{\alpha}u(x,t) = \lambda^{2}\frac{\partial^{2}}{\partial x^{2}}u(x,t)$$

$$\tag{46}$$

with $0 < \alpha < 1$ along with the initial condition

$$u(x,t)|_{t=0} = \psi(x)$$

has a solution given by

$$u(x,t) = \int_{-\infty}^{\infty} \xi(x - \eta, t)\psi(\eta)d\eta$$

where

$$\xi(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega x} E_{\alpha,1}(-\lambda^2 \omega^2 t^{\alpha}) d\omega.$$

This proof follows in much the same way as for proposition 2 but with lemma 13 instead of lemma 7. We also use the same notation as in the previous solution.

Proof. Taking the Fourier and Laplace transforms of (46) with the help of lemma 13 results in

$$s^{\alpha}\hat{U}(\omega, s) - s^{\alpha - 1}\hat{\psi}(\omega) = -\lambda^{2}\omega^{2}\hat{U}(\omega, s)$$

and thus

$$\hat{U}(\omega,s) = \frac{s^{\alpha-1}\hat{\psi}(\omega)}{(s^{\alpha} + \lambda^2 \omega^2)}.$$

Again, inverting the Laplace transform with the help of 20 we get that

$$\hat{u}(\omega, t) = E_{\alpha, 1}(-\omega^2 \lambda^2 t^\alpha) \hat{\psi}(\omega)$$

and now by following exactly the same steps as for proposition 2 the result follows.

Due to the fact that this fractional partial differential equation is specified with an integer order initial condition it is in some sense more useful from a physical modelling perspective.

4.4.1 A note on Fourier Transform techniques for space fractional diffusion

It might look like a good idea to use the results in lemmas 8 and 14 to try and attack a space fractional diffusion problem. Unfortunately it is not as simple as that. The reason comes down to the fact that $(i\omega)^{\alpha}$ hasn't been defined for non-integer α and negative ω . If you use the definition $(i\omega)^{\alpha} = |\omega|^{\alpha} \left(\cos\left(\frac{\alpha\pi}{2}\right) + i\operatorname{sgn}(\omega)\sin\left(\frac{\alpha\pi}{2}\right)\right)$ then one can use this along with the Riesz fractional derivative to tackle space fractional diffusion. The definition of the Riesz fractional derivative of a function is

$${}^{R}D^{\alpha}f(x) = \mathcal{F}\{-|\omega|^{\alpha}\hat{f}(\omega)\}\tag{47}$$

and this definition along with principle value definition of $(i\omega)^{\alpha}$ given above give a way of dealing with space fractional diffusion.

Although we won't really investigate this field in this thesis fractional diffusion has a very rapidly growing and important field with applications in mathematical biology, finance and physics [21]. ma

5 Existence and Uniqueness Results for Ordinary Fractional Differential Equations

In this section we establish some analytical results for ordinary fractional differential equations. These results allow us to solve some simple initial value problems and establish a theoretical framework from which results in other sections can draw.

We will first outline a set of ideas which can guarantee the existence of a solution to an initial value problem involving fractional derivatives. These ideas are outlined in [34] but we present these ideas here because they form the basis for a generalisation we would like to present in theorem 2.

Proposition - Definition 1. Let $\beta > 0, \alpha > 0$ and a > 0. For $x, y \in C([0, a])$ the function

$$d_{\beta}(x,y) := \max_{t \in [0,a]} \frac{|x(t) - y(t)|}{E_{\alpha,1}(\beta t^{\alpha})}$$

defines a metric on the space of functions C([0, a]).

This metric, as presented by Tisdell, [34], is a generalisation of the Bielecki metric [3,34].

Proof. It is well known that $d(x,y) = \max_{t \in [0,a]} |x(t) - y(t)|$ defines a metric on C([0,a]). Now it is easy to see that for t > 0, $E_{\alpha,1}(\beta t^{\alpha}) > 0$. It is also well known that $E_{\alpha,1}(t)$ is continuous on [0,a] so it follows that $d_{\beta}(x,y)$ is a metric.

Lemma 26. The metric space $(C([0,a]), d_{\beta})$ is complete.

Proof. We only have to show that d_{β} is equivalent to the max metric $(d(x,y) = \max_{t \in [0,a]} |x(t) - y(t)|)$ to get this result because it is well known that (C([0,a]),d) is a complete metric space. It is easy to see that $E_{\alpha,1}(\beta t^{\alpha})$ is strictly increasing on [0,a] and so

$$\frac{1}{E_{\alpha,1}(\beta t^{\alpha})}d(x,y) \le d_{\beta}(x,y) \le d(x,y). \tag{48}$$

This shows that the metrics are equivalent and hence $(C([0,a]),d_{\beta})$ is complete.

Using these definitions and results we can now say something about the existence and uniqueness of solutions to an initial value problem. The following lemma is from Tisdell [34]. Our proof is also the same, but with more justifications for each step. These justifications are important as they will be required somewhat more in the proof of theorem 2.

Theorem 1 (Uniqueness). Consider the initial value problem

$${}_{0}^{C}\mathcal{D}x(t) = f(t, x(t)) \tag{49}$$

$$x(0) = a_0, x'(0) = a_1, \dots, x^{(n-1)}(0) = a_{n-1}.$$
 (50)

Let

$$S:=\{(t,p)\in\mathbb{R}^2:t\in[0,a],p\in\mathbb{R}\}$$

and let $f: S \longrightarrow \mathcal{R}$ be continuous. If there is a positive constant L such that

$$|f(t,u) - f(t,v)| \le L|u-v| \tag{51}$$

for all $(t, u), (t, v) \in S$ then (49) and (50) has a unique solution on [0, a].

Proof. Choose β so that $\frac{L}{\beta} < 1$.

$$d_{\beta}(x,y) = \max_{t \in [0,a]} \frac{|x(t) - y(t)|}{E_{\alpha,1}(\beta t^{\alpha})}$$

combined with the space C([0, a]) forms a complete metric space. By applying I_0^{α} to both sides of (49) and applying lemma 12 we get that (49) and (50) are equivalent to the integral equation

$$x(t) = \sum_{k=0}^{n-1} \frac{a_k t^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, x(s)) ds$$
 (52)

for $t \in [0, a]$. The idea is to prove that the right hand side of (52) is a contraction in the space $(C([0, a]), d_{\beta})$. By (an immediate corollary to) Banach's fixed point theorem this shows the existence of a unique solution to the integral equation, and hence the IVP defined in (49) and (50). Define $F: C([0, a]) \longrightarrow C([0, a])$ as

$$[Fx](t) = \sum_{k=0}^{n-1} \frac{a_k t^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, x(s)) ds.$$

For any $x, y \in C([0, a])$ and consider

$$d_{\beta}(Fx, Fy) = \max_{t \in [0, a]} \frac{|[Fx](t) - [Fy](t)|}{E_{\alpha, 1}(\beta t^{\alpha})}$$

$$\leq \max_{t \in [0, a]} \left[\frac{1}{E_{\alpha, 1}(\beta t^{\alpha})} \frac{1}{\gamma(\alpha)} \int_{0}^{t} (t - s)^{\alpha - 1} |f(s, x(s)) - f(s, y(x))| ds \right]$$

and by using the Lipschitz condition in (51) we get that

$$\begin{split} d_{\beta}(Fx,Fy) &\leq \max_{t \in [0,a]} \left[\frac{1}{E_{\alpha,1}(\beta t^{\alpha})} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} L |x(s)-y(x)| ds \right] \\ &= L \max_{t \in [0,a]} \left[\frac{1}{E_{\alpha,1}(\beta t^{\alpha})} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,1}(\beta s^{\alpha}) \frac{|x(s)-y(s)|}{E_{\alpha,1}(\beta s^{\alpha})} ds \right] \\ &\leq \underbrace{L d_{\beta}(x,y) \max_{t \in [0,a]} \left[\frac{1}{E_{\alpha,1}(\beta t^{\alpha})} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,1}(\beta s^{\alpha}) ds \right]}_{\varnothing} \end{split}$$

Now noticing the fractional integral we have that

$$\circledast = Ld_{\beta}(x, y) \max_{t \in [0, a]} \left[\frac{1}{E_{\alpha, 1}(\beta t^{\alpha})} I_0^{\alpha} E_{\alpha, 1}(\beta s^{\alpha}) \right]$$

by using the result of lemma 22 we have that

From the definition of $E_{\alpha,1}$ it should be clear to see that $E_{\alpha,1}(\beta t^{\alpha})$ is monotonically increasing for $t \geq 0$ and so

$$\circledast = \frac{L}{\beta} d_{\beta}(x, y) \left[1 - \frac{1}{\beta a^{\alpha}} \right]$$

and hence by the assumption that $\frac{L}{\beta} < 1$ we have that $\circledast < 1$ and hence $d_{\beta}(Fx, Fy) < d_{\beta}(x, y)$ and so the right hand side of (52) is a contraction and thus by (an immediate corollary to) Banach's fixed point theorem (52) has a unique solution on [0, a].

The following theorem generalizes the result above by Tisdell [34] but a similar result for Miller-Ross sequential fractional differential equations can be found in [30].

Theorem 2 (Uniqueness). Consider the following initial value problem,

$$\sum_{j=1}^{N} \beta_j \begin{pmatrix} {}^{C}_0 \mathcal{D}_t^{\alpha_j} x \end{pmatrix} (t) = f(t, x(t))$$
 (53)

$$x(0) = A_0, x_1(0) = A_1, \dots, x^{n_N}(0) = A_{n_N}$$
(54)

where $\alpha_1 > \alpha_2 > \ldots > \alpha_N$.

Define

$$S := \{(t, p) \in \mathbb{R}^2 : t \in [0, a], p \in \mathbb{R}\}$$

Let $f: S \longrightarrow \mathbb{R}$ be continuous. If there is a positive constant L such that

$$|f(t,u) - f(t,v)| \le L|u-v|, \text{ for all } (t,u), (t,v) \in S$$
 (55)

and the set of constants $\{\alpha_j\}_{j=1}^N$, $\{\beta_j\}_{j=1}^N$ such that we can choose γ sufficiently large such that the following holds on [0,a]

$$\sum_{j=2}^{N} |\beta_j| a^{\alpha_1 - \alpha_j} \frac{E_{\alpha_1, 1 + \alpha_1 - \alpha_j}(\gamma t^{\alpha_1})}{E_{\alpha_1, 1}(\gamma t^{\alpha_1})} < 1$$

$$(56)$$

then the initial value problem defined in 53 and 54 has a unique solution on [0, a].

To prove this we will need two lemmas.

Lemma 27. The IVP defined in (53), (54) is equivalent to the integral equation

$$x(t) = \sum_{k=1}^{n_1} \frac{A_k t^k}{k!} + \frac{1}{\beta_1} \left(\frac{1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1 - 1} f(s, x(s)) ds \right)$$
 (57)

$$-\sum_{j=2}^{N} \beta_{j} \frac{1}{\Gamma(\alpha_{1} - \alpha_{j})} \int_{0}^{t} (t - s)^{\alpha_{1} - \alpha_{j} - 1} \left(x(s) - \sum_{k=1}^{n_{j}} \frac{A_{k} s^{k}}{k!} \right) ds$$
 (58)

Proof. Apply $I_0^{\alpha_1}$ to both sides of (53) and then apply lemma 12. Alternatively apply lemma 11 to either side of (57).

Lemma 28. For $\xi > 0$, $\gamma > 0$ and $\alpha > 0$ we have that

$$I_0^{\xi} E_{\alpha,1}(\gamma t^{\alpha}) = t^{\xi} E_{\alpha,1+\xi}(\gamma t^{\alpha}).$$

Proof. This can be proved rather easily with Laplace transform methods. By using the results of lemmas 2 and 19 we have that

$$\mathcal{L}\{I_0^{\xi} E_{\alpha,1}(\gamma t^{\alpha})\} = \frac{s^{\alpha-\xi-1}}{s^{\alpha}-\gamma}$$
(59)

then by inverting the with the help of lemma 20 we have the result.

Proof of theorem 2. To arrive at this we only have to prove that the map

$$[Fx](t) := \sum_{k=1}^{n_1} \frac{A_k t^k}{k!} + \frac{1}{\beta_1} \left(\frac{1}{\Gamma(\alpha_1)} \int_0^t (t-s)^{\alpha_1 - 1} f(s, x(s)) ds - \sum_{j=2}^N \frac{\beta_j}{\Gamma(\alpha_1 - \alpha_j)} \int_0^t (t-s)^{\alpha_1 - \alpha_j - 1} \left(x(s) - \sum_{k=1}^{n_j} \frac{A_k s^k}{k!} \right) ds \right)$$

is contractive in the metric space $(C[0,a],d_{\gamma}^{\alpha_1})$ where

$$d_{\gamma}^{\alpha_1}(x,y) = \max_{t \in [0,a]} \frac{|x(t) - y(t)|}{E_{\alpha_1,1}(\gamma t^{\alpha_1})}.$$

To see this note that

$$\begin{split} d_{\gamma}^{\alpha_{1}}(Fx,Fy) &= \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}})} \left| \frac{1}{\beta_{1}} \right| \left| \frac{1}{\Gamma(\alpha_{1})} \int_{0}^{t} (t-s)^{\alpha_{1}-1} (f(s,x(s)) - f(s,y(s)) ds \right| \\ &- \sum_{j=2}^{N} \frac{\beta_{j}}{\Gamma(\alpha_{1} - \alpha_{j})} \int_{0}^{t} (t-s)^{\alpha_{1} - \alpha_{j} - 1} (x(s) - y(s)) ds \right| \\ &\leq \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}}) |\beta_{1}|} \left(\frac{1}{\Gamma(\alpha_{1})} \int_{0}^{t} (t-s)^{\alpha_{1} - 1} |f(s,x(s)) - f(s,y(s))| ds \right. \\ &+ \sum_{j=2}^{N} \frac{|\beta_{j}|}{\Gamma(\alpha_{1} - \alpha_{j})} \int_{0}^{t} (t-s)^{\alpha_{1} - \alpha_{j} - 1} |x(s) - y(s)| ds \right). \end{split}$$

By exploiting the Lipshitz condition (55) we can further write that

$$\begin{split} d_{\gamma}^{\alpha_{1}}(Fx,Fy) &\leq \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}})|\beta_{1}|} \Big(\frac{L}{\Gamma(\alpha_{1})} \int_{0}^{t} (t-s)^{\alpha_{1}-1}|x(s)-y(s)|ds \\ &+ \sum_{j=2}^{N} \frac{|\beta_{j}|}{\Gamma(\alpha_{1}-\alpha_{j})} \int_{0}^{t} (t-s)^{\alpha_{1}-\alpha_{j}-1}|x(s)-y(s))|ds \Big) \\ &= \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}})|\beta_{1}|} \Big(\frac{L}{\Gamma(\alpha_{1})} \int_{0}^{t} (t-s)^{\alpha_{1}-1} \frac{|x(s)-y(s)|}{E_{\alpha_{1}}(\gamma s^{\alpha_{1}})} E_{\alpha_{1}}(\gamma s^{\alpha_{1}}) ds \\ &+ \sum_{j=2}^{N} \frac{|\beta_{j}|}{\Gamma(\alpha_{1}-\alpha_{j})} \int_{0}^{t} (t-s)^{\alpha_{1}-\alpha_{j}-1} \frac{|x(s)-y(s)|}{E_{\alpha_{1}}(\gamma s^{\alpha_{1}})} E_{\alpha_{1}}(\gamma s^{\alpha_{1}}) ds \Big) \\ &\leq d_{\gamma}^{\alpha_{1}}(x,y) \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}})|\beta_{1}|} \Big(\frac{L}{\Gamma(\alpha_{1})} \int_{0}^{t} (t-s)^{\alpha_{1}-1} E_{\alpha_{1}}(\gamma s^{\alpha_{1}}) ds \\ &+ \sum_{j=2}^{N} \frac{|\beta_{j}|}{\Gamma(\alpha_{1}-\alpha_{j})} \int_{0}^{t} (t-s)^{\alpha_{1}-\alpha_{j}-1} E_{\alpha_{1}}(\gamma s^{\alpha_{1}}) ds \Big) \\ &= d_{\gamma}^{\alpha_{1}}(x,y) \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}})|\beta_{1}|} \Big(L\left(I_{0}^{\alpha_{1}} E_{\alpha_{1}}(\gamma t^{\alpha_{1}})\right) \\ &+ \sum_{j=2}^{N} |\beta_{j}| \left(I_{0}^{\alpha_{1}-\alpha_{j}} E_{\alpha_{1}}(\gamma t^{\alpha_{1}})\right) \Big). \end{split}$$

We can now use the results of lemmas 28 and 22 to write

$$\begin{split} d_{\gamma}^{\alpha_{1}}(Fx,Fy) & \leq d_{\gamma}^{\alpha_{1}}(x,y) \max_{t \in [0,a]} \frac{1}{E_{\alpha_{1},1}(\gamma t^{\alpha_{1}})|\beta_{1}|} \Big(\frac{L}{\gamma} \left(E_{\alpha_{1},1}(\gamma t^{\alpha_{1}}) - 1\right) \\ & + \sum_{j=2}^{N} |\beta_{j}| t^{\alpha_{1} - \alpha_{j}} E_{\alpha_{1},1 + \alpha_{1} - \alpha_{j}}(\gamma t^{\alpha_{1}}) \Big) \\ & = d_{\gamma}^{\alpha_{1}}(x,y) \max_{t \in [0,a]} \frac{1}{|\beta_{1}|} \Big(\frac{L}{\gamma} \left(1 - \frac{1}{E_{\alpha_{1}}(\gamma t^{\alpha_{1}})}\right) + \sum_{j=2}^{N} |\beta_{j}| t^{\alpha_{1} - \alpha_{j}} \frac{E_{\alpha_{1},1 + \alpha_{1} - \alpha_{j}}(\gamma t^{\alpha_{1}})}{E_{\alpha_{1},1}(\gamma t^{\alpha_{1}})} \Big) \end{split}$$

and finally we get that

$$d_{\gamma}^{\alpha_1}(Fx, Fy) \le d_{\gamma}^{\alpha_1}(x, y) \frac{1}{|\beta_1|} \left(\frac{L}{\gamma} + \sum_{j=2}^{N} |\beta_j| a^{\alpha_1 - \alpha_j} \frac{E_{\alpha_1, 1 + \alpha_1 - \alpha_j}(\gamma t^{\alpha_1})}{E_{\alpha_1, 1}(\gamma t^{\alpha_1})} \right).$$

By choosing γ sufficiently large we get that

$$\frac{1}{|\beta_1|} \left(\frac{L}{\gamma} + \sum_{j=2}^N |\beta_j| a^{\alpha_1 - \alpha_j} \frac{E_{\alpha_1, 1 + \alpha_1 - \alpha_j}(\gamma t^{\alpha_1})}{E_{\alpha_1, 1}(\gamma t^{\alpha_1})} \right) < 1$$

and so F is a contractive mapping and thus the IVP defined in (53), (54) has a unique solution on [0,a]. \square

This result could be improved by removing the condition in (56). This can be done in the case of $0 < \alpha < 2$ because we can use lemma 24. For this let us state and prove the following lemma.

Lemma 29. For $0 < \alpha < 2$, $\beta > 0$ and $\varepsilon > 0$ we have

$$\lim_{z \to \infty} \frac{E_{\alpha,\beta+\varepsilon}(z)}{E_{\alpha,\beta}(z)} = 0.$$
 (60)

Proof. Using lemma 24 we have that since $z \in G^+$,

$$\lim_{z \longrightarrow \infty} \frac{E_{\alpha,\beta+\varepsilon}(z)}{E_{\alpha,\beta}(z)} = \lim_{z \longrightarrow \infty} \frac{\frac{1}{\alpha} z^{(1-\beta-\varepsilon)/\alpha} e^{z^{1/\alpha}} - \sum_{k=1}^p \frac{z^{-k}}{\Gamma(\beta+\varepsilon-\alpha k)} + O(|z|^{-1-p})}{\frac{1}{\alpha} z^{(1-\beta)/\alpha} e^{z^{1/\alpha}} - \sum_{k=1}^p \frac{z^{-k}}{\Gamma(\beta-\alpha k)} + O(|z|^{-1-p})}$$

for some arbitrary integer p > 0. With sufficiently many applications of L'Hopital's rule we are left with

$$\lim_{z \to \infty} z^{\frac{-\varepsilon}{\alpha}}$$

which is clearly equal to zero. Some care must be taken if we choose β , α , and ε such that $\beta - \alpha k$ or $\beta + \varepsilon - \alpha k$ are ever integers due to singularities in the Gamma function, but it should be clear that these issues do not break the argument as we could just regard those terms in the sums for which this does occur as 0.

Interestingly this limit converges *very* slowly for some choices of $\alpha, \beta, \varepsilon$. Figure 12 gives an good illustration of this slow convergence.

Figure 12: $E_{\alpha,\beta+\varepsilon}(z)/E_{\alpha,\beta}(z)$ for $\alpha=1,\beta=1$ and $\varepsilon=0.1$.

It should be clear that if $\alpha_1 < 2$ then the conditions in 56 is fulfilled and so we can always choose a γ large enough that (56) holds.

Both theorems 1 and 2 are important as they give us some guarantees about the existence and uniqueness of solutions the initial value problems involving fractional derivatives. The generalisation in 2 is important as it could be applied to showing the existence of solutions equations like the Bagley-Torvick equation which is a multi-order fractional differential equation that models the motion of a plate in a viscus fluid [14, 30, 35].

In fact these results can be taken quite a bit further. The proof techniques used in theorems 1 and 2 suggest a constructive method for arriving at a solution to fractional differential equations. This is formalised by Tisdell [34] through the method of successive approximations. A similar idea is also outlined in [30].

5.1 A generalised Gronwall's Inequality

There are obviously other techniques for guaranteeing uniqueness, or non-multiplicity, to solutions, many of these are outlined in [34] and [30]. We would like to present here a result that hinges off a *generalised Gronwall's inequality*. The *generalised Gronwall's inequality* was shown by Diethlem [12].

Lemma 30 (Generalised Gronwall's Inequality). Let a, A, B and C all be non-negative real constants and let $\rho : [0, a] \longrightarrow [0, \infty)$ be continuous. If

$$\rho(t) \le A + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} [B\rho(s) + C] ds$$

for all $t \in [0, a]$ then

$$\rho(t) \le \begin{cases} AE_{\alpha,1}(Bt^{\alpha}) + \frac{C}{B}[E_{\alpha,1}(Bt^{\alpha}) - 1] & B > 0\\ A + \frac{Ct^{\alpha}}{\Gamma(\alpha + 1)} & B = 0. \end{cases}$$

$$(61)$$

Proof. To begin let B > 0 and $\varepsilon > 0$ then define the function

$$\phi(t) = \varepsilon + A + \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} [B\rho(s) + C] ds. \tag{62}$$

By recognising the fractional integral we can see by direct substitution and use of lemma 22 we get that

$$\phi(t) = \left(\varepsilon + A + \frac{C}{B}\right) E_{\alpha,1}(Bt^{\alpha}) - \frac{C}{B}$$

is a solution to (62) for $t \in [0, a]$.

The idea is show that $\rho(t) < \phi(t)$ for all $t \in [0, a]$ so for a contraction let's assume that there exists a t^* such that $\rho(t) < \phi(t)$ for all $t \in [0, t^*)$ and $\rho(t^*) = \phi(t^*)$. Not that the intermediate value theorem would guarantee the existence of t^* and it is that reason why we require ρ continuous. Let us next see that

$$\rho(t^*) \le A + \frac{1}{\Gamma(\alpha)} \int_0^{t^*} (t^* - s)^{\alpha - 1} [B\rho(s) + C] ds$$

$$< \varepsilon + A + \frac{1}{\Gamma(\alpha)} \int_0^{t^*} (t^* - s)^{\alpha - 1} [B\rho(s) + C] ds$$

which must contradict $\rho(t^*) = \phi(t^*)$. This means that $\rho(t) < (\varepsilon + A + \frac{C}{B}) E_{\alpha,1}(Bt^{\alpha}) - \frac{C}{B}$ and since this holds for any $\varepsilon > 0$ then we have

$$\rho(t) \le AE_{\alpha,1}(Bt^{\alpha}) + \frac{C}{B}[E_{\alpha,1}(Bt^{\alpha}) - 1].$$

In the case of B=0 then direct integration using the result of lemma 9 gives the result.

It turns out that this lemma is powerful enough to prove uniqueness or non-multiplicity of solutions in a particular case and we formalise this in the following lemma.

Lemma 31. If $f:[0,a] \longrightarrow [0,\infty)$ is continuous and there exists an L such that

$$|f(t,u) - f(t,v)| \le L|u - v| \tag{63}$$

then the initial value problem (49) and (50), restated here for completeness

$$_{0}^{C}\mathcal{D}x(t) = f(t, x(t))$$

$$x(0) = a_0, x'(0) = a_1, \dots, x^{(n-1)}(0) = a_{n-1}.$$

has at most one solution.

Proof. As was noted in the proof of theorem 1 the initial value problem (49) and (50) are equivalent to the integral equation (52), restated here for completeness

$$x(t) = \sum_{k=0}^{n-1} \frac{a_k t^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, x(s)) ds$$
 (64)

for $t \in [0, a]$. Now suppose there are two solutions, x(t), y(t) to (52) then we have that

$$|x(t) - y(t)| = \left| \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} (f(s, x(s)) - f(s, y(s))) ds \right|$$

$$\leq \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} |(f(s, x(s)) - f(s, y(s)))| ds$$

$$\leq \frac{L}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} |(x(s) - y(s))| ds.$$

Then letting $\rho(t) = |x(t) - y(t)|$ we have

$$\rho(t) \leq \frac{L}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \rho(s) ds$$

but then by lemma 30 with A=0, B=L and C=0 we have that $\rho(t) \leq 0$ which implies that $|x(t)-y(t)| \leq 0$ for $t \in [0,a]$ and hence there can be at most one solution.

We should note that this result technique is analogous to a well known result and technique used for non-fractional ordinary differential equations. Although this is a weaker result than theorem 1 it's illustrative of an important technique.

It turns out lemma 30 has significant utility as it has been used to show a number of results. For example Tisdell [34] used it to give an *a priori* bound on solutions to the initial value problem given in (49) and (50).

6 Numerical Methods for Fractional Differential Equations

In this section we describe a numerical method which can be used to solve a fractional differential equation. We begin by looking at two ways for approximating a fractional derivative and then look at a specific scheme outlined by Diethelm [10].

6.1 Approximations of Fractional Derivatives and Integrals

6.1.1 Grünwald-Letnikov Approximation

In much the same was as we might use a finite difference method to approximate an integer order derivative we apply a similar approach here. By choosing some small, but non-zero value of h we can approximate the fractional derivative of a function by

$$\frac{\widehat{d^{\alpha}f(t)}}{dt^{\alpha}} = \frac{1}{h^{\alpha}} \sum_{j=0}^{n} (-1)^{j} {\alpha \choose j} f(t-jh).$$
(65)

Also note that we have *chopped* off the top of the series, taking on the first n terms in the sum. It can be shown [30] that this yields a first order approximation of the Riemann-Liouville fractional derivative.

6.1.2 Quadrature Approximation

A completely different approach is to use a quadrature rule to evaluate the a fractional integral. This has particular utility when we wish to solve the equivelent integral equation.

There is no set way to do the quadrature approximation and it will all depend on the scheme being used.

In the following sections we will examine a general initial value problem and an Adams Moulton Bashforth scheme which is based off of a quadrature method. [10]

6.1.3 An Initial Value Problem

Lets consider the initial value problem

$$\begin{pmatrix} {}^{C}_{0}\mathcal{D}^{\alpha}_{x}y \end{pmatrix} = f(x,y) \tag{66}$$

$$y^{(k)}(0) = y_0^{(k)} (67)$$

for $0 \le k < \lfloor \alpha \rfloor$. Note that this initial value problem is stated in terms of Caputo derivatives. The motivation for such initial value problems was discussed in section 2.3.

One of the most important things to note about this equation is that for non-integer values of α it is non-local, in the sense that the value of the solution at $y(x_0 + h)$ depends not only on $y(x_0)$ but also on $y(x), x \in [0, x_0]$ [9]. This is in contrast to ordinary differential equations and this fact is what makes fractional differential equations considerably more complex to solve. Even multi-step methods which can be used to solve ordinary differential equations, only rely on some fixed number previous time steps. As a solution to a fractional differential equation progresses it relies on more and more previous time steps. As one might suspect this fundamentally increases the computational complexity of the schemes used to solve fractional differential equations as compared with the schemes used to solve traditional ordinary differential equations. ³

 $^{^{3}}$ It is possible to reduce these computations to look at some large but fixed number of previous grid-points but this results in a speed vs. accuracy tradeoff which will be discussed in section 6.1.8

6.1.4 The Adams Moulton Bashforth Scheme

We briefly outline a method explained and analysed in detail in [13]. As shown in the proof of theorem 1 the initial value problem (66), (67) is equivalent to the Volterra equation.

$$y(x) = \sum_{k=0}^{\lceil \alpha \rceil - 1} y_0^{(k)} \frac{x^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_0^x (x - t)^{\alpha - 1} f(t, y(t)) dt$$
 (68)

In order to approximate the solution to this integral equation over the interval [0,T], we select a number of grid points N so that h = T/N and $x_k = hk$ where $k \in \{0, 1, ..., N\}$.

We apply the approximation

$$\int_0^{x_{k+1}} (x_{k+1} - t)^{\alpha - 1} g(t) dt \approx \int_0^{x_{k+1}} (x_{k+1} - t)^{\alpha - 1} \tilde{g}_{k+1}(t) dt$$
 (69)

where g(t) = f(t, y(t)) and $\tilde{g}_{k+1}(t)$ is the piecewise linear approximation of g(t) with nodes at the grid-points x_k . As outlined in [13] we can approximate the integral in (6.1.8) as

$$\int_0^{x_{k+1}} (x_{k+1} - t)^{\alpha - 1} \tilde{g}_{k+1}(t) dt = \sum_{j=0}^{k+1} a_{j,k+1} g(x_j)$$
 (70)

where

$$a_{j,k+1} = \frac{h^{\alpha}}{\alpha(\alpha+1)} \times \begin{cases} (k^{\alpha+1} - (k-\alpha)(k+1)^{\alpha}) & \text{if } j = 0\\ ((k-j+2)^{\alpha+1} + (k-j)^{\alpha+1} - 2(k-j+1)^{\alpha+1}) & \text{if } 1 \le j \le k\\ 1 & \text{if } j = k+1. \end{cases}$$
(71)

By separating the final term in the sum we can write

$$y_{k+1} = \sum_{j=0}^{\lceil \alpha \rceil - 1} y_0^{(j)} \frac{x_{k+1}^j}{j!} + \frac{1}{\Gamma(\alpha)} \left(\sum_{j=0}^k a_{j,k+1} f(x_j, y_j) + a_{k+1,k+1} f(x_{k+1}, y_{k+1}^P) \right)$$
(72)

where y_{k+1}^P is a *predicted* value for y_{k+1} which must be calculated due to the potential non-linearity of f [13].

This predicted value is calculated by taking a rectangle approximation to the integral in (6.1.8), to get

$$\int_0^{x_{k+1}} (x_{k+1} - t)^{\alpha - 1} g(t) dt \approx \sum_{j=0}^k b_{j,k+1} g(x_j)$$
 (73)

where

$$b_{j,k+1} = \frac{h^{\alpha}}{\alpha} \left((k+1-j)^{\alpha} - (k-j)^{\alpha} \right). \tag{74}$$

and thus a predicted value of y_{k+1} can be calculated by

$$y_{k+1}^{P} = \sum_{j=0}^{\lceil \alpha \rceil - 1} \frac{x_{k+1}^{j}}{j!} y_0^{(j)} + \frac{1}{\Gamma(\alpha)} \sum_{j=0}^{k} b_{j,k+1} f(x_j, y_j).$$
 (75)

This outlines a fractional Adams Moulton Bashforth scheme. Of particular note are the sums which arise in (70) and (73). These sums do not arise in the integer order Adams Moulton Bashforth method. They arise as a result of the non-local nature of the fractional derivative [13]. These sums represent a significant computational cost as the number of terms grow linearly as the solution progress. This means in the fractional case the Adams Moulton Bashforth method has computational complexity $O(N^2)$ [10]. Section 6.1.5 will outline a task based parallel approach and section 6.1.7 will outline a massively parallel approach to solving (66), (67) with NVIDIA's CUDA.

6.1.5 Parallelising: A Task Based Approach

Diethelm's paper [10] outlines a parallel method of numerically approximating the solution to (66), (67) by using a thread based parallel implementation of the Adams Moulton Bashforth method outlined in 6.1.4. We base our approach in this section broadly on those of [10] but reformulate the scheme in terms of tasks instead of threads. This has a number of distinct benefits including scalability, especially from an implementation standpoint and clarity.

After we have setup the grid-points x_0, \ldots, x_{N-1} we create an array of solution values y_0, \ldots, y_{N-1} which are to be populated with the calculated solution. From the initial conditions we can immediately calculate y_0 . We then break up the vector (array) \mathbf{y} into blocks of size p. Suppose that p=2 for example. Then the first block would contain y_1 and y_2 . Each of the p variables in each block can be calculated almost entirely in parallel. There is some dependency between values in each block (i.e. y_2 depends on y_1) but this can be done after the bulk of the parallel computations have been completed.

To illustrate this idea we consider figure 13. We have broken the vector (array) \mathbf{y} up into $K = \lceil \frac{N}{p} \rceil$ blocks of p variables.

The center row shows how \mathbf{y} is broken up into blocks, and the bottom row is a detailed view of the contents of the *current block* being computed.

The red lines indicate dependency, in that $\mathbf{y}_{(\ell-1)p+1}$ depends on all the y_j values calculated in the previous blocks. $\mathbf{y}_{(\ell-1)p+2}$ depends on all the y_j values calculated in previous blocks and on $\mathbf{y}_{(\ell-1)p+1}$.

The idea is that in each block we can do all of the computations which only depend on previous blocks in parallel and then perform the calculations which are dependent on other values within the same block in sequence. After all the values in a particular block are calculated we move on to the next block and repeat the process.

An exploded view of the last block is also provided to emphasize the fact that this block might not contain p variables if p does not divide N-1. This fact causes us no bother as it is easy to handle in code.

As in [10] we rewrite the equations (72) and (75) as

$$y_{j+1}^{P} = I_{j+1} + h^{\alpha} H_{j,\ell}^{P} + h^{\alpha} L_{j,\ell}^{P}$$
(76)

Figure 13: Computation diagram for the values in the vector (array) y.

and

$$y_{j+1} = I_{j+1} + h^{\alpha} H_{j,\ell} + h^{\alpha} L_{j,\ell} \tag{77}$$

where

$$I_{j+1} := \sum_{k=0}^{\lceil \alpha \rceil - 1} \frac{x_{j+1}^k}{k!} y_0^{(k)} \tag{78}$$

$$H_{j,\ell}^{P} := \sum_{k=0}^{(\ell-1)p} b_{j-k} f(x_k, y_k)$$
 (79)

$$L_{j,\ell}^{P} := \sum_{k=(\ell-1)p+1}^{j} b_{j-k} f(x_k, y_k)$$
(80)

$$H_{j,\ell} := c_j f(x_0, y_0) + \sum_{k=1}^{(\ell-1)p} a_{j-k} f(x_k, y_k)$$
(81)

$$L_{j,\ell} := \sum_{k=(\ell-1)p+1}^{j} aj - kf(x_k, y_k) + \frac{f(x_{j+1}, y_{j+1}^P)}{\Gamma(\alpha + 2.)}$$
(82)

In each block the values of H, I and H^P can be calculated in parallel for each y_j in the block. Then there is a somewhat more complex dependency between these sums.

To best explain how the processes proceeds in each block and what dependencies there are we will consider a specific example where there are two values to be calculated per block (i.e. p = 2). Consider figure 14.

Each box in the figure represents a task. A task can execute when all the tasks with arrows pointing to it have completed. The little red number represents the index of the variable within the block which is being

calculated. All the task names are reasonably self explanatory except for perhaps S^P and S. These take the values calculated in the other sums and add them together to get y^P and y respectively. These are very small tasks which take very little time to execute.

The red arrow illustrate the interdependency of variables within a block. The second variable cannot have the sum L^P calculate until the first variable is calculated. This means that in effect each of the L tasks have to execute in series but these sums are relatively small so the time taken is quite short. Each block is then executed in sequence as each block depends on the blocks before it. See Appendix A for a C# implementation of this.

Figure 14: Task flow diagram for each block in the case when p=2

6.1.6 Analysis of the Performance of the Scheme in C# and MONO

We wish to analyze the performance of this scheme both from a theoretical standpoint and from at practical standpoint.

For the theoretical analysis of the scheme we introduce Amdahl's Law or Amdahl's principle.

Principle 1 (Amdahl). Let P be the proportion of a computation which can be parallelised in a given progress. Then the speedup given by Q cores is

$$S(Q) = \frac{1}{(1-P) + \frac{P}{Q}} \tag{83}$$

This law was first introduced in a 1967 paper by computer architect Amdahl. We introduce a new notion of Amdahl efficiency to characterize the how *good* a parallel algorithm is in comparison with it serial counterpart in the limit of large input.

To formalize this notion we introduce the following definition.

Definition 7 (Amdahl Efficiency). Let S(N,Q) represent the parallel speedup for a problem with input size N and executed with Q cores. Then we define the Amdahl efficiency of parallel scheme as

$$E(Q) = \lim_{N \to \infty} \frac{S(N, Q)}{Q}.$$
 (84)

Further we say that a parallel scheme is Amdahl efficient with respect to its serial counterpart if E(p) = 1.

Proposition 4. The parallel Adams Moulton Bashforth scheme is Amdahl efficient with respect to its serial counterpart.

Proof. We present the paralellizable fraction of computation in each block of variables in the following table. The order column represents the number of *multiply-add* operations per task.

Task	Computational Complexity	Number of Variables per Block	Total Complexity
H	$O(\ell p)$	p	$O(\ell p^2)$
H_p	$O(\ell p)$	p	$O(\ell p^2)$
I	O(lpha)	p	O(p)
L	O(p)	p	$O(p^2)$
L_p	O(p)	p	$O(p^2)$

In each block H, H_p and I can be computed in parallel across all variables in the block. For the purposes of simplicity we assume that the tasks L and L_p must all be computed in serial across all variables in a block. This means that in the ℓ -th block the non-paralellizable fraction of computation is

$$\overline{P}_{block}(\ell) \sim \frac{2p^2}{2p^2(\ell+1)} \sim \frac{1}{\ell}$$
(85)

The amount of computation in the ℓ -th block is $O(\ell p^2)$ and there are $K \approx \frac{N}{p}$ blocks in the total computation. This means that the total amount of computation is

$$\sum_{\ell=1}^{K} \ell p^2 \sim \frac{K^2 p^2}{2} \tag{86}$$

and by taking a weighted average sum, the total fraction of non-paralellizable computation is

$$\overline{P}_{total} \sim \sum_{\ell=1}^{K} \frac{2\ell p^2}{K^2 \ell p^2} = \frac{2}{K} = \frac{2p}{N}.$$
 (87)

Noticing the fact that the computation in the task I is insignificant compared to H and H_p we would suppose using Q=2p cores would be in some sense optimal. Applying Amdahl's principle with the result in 87 and with Q=2p we get

$$S(N,Q) = S(N,2p) \tag{88}$$

$$\sim \frac{1}{(\frac{2p}{N}) + \frac{1 - \frac{2p}{N}}{2n}} \tag{89}$$

(90)

then letting $N \longrightarrow \infty$ we get

$$E(p) = \lim_{N \to \infty} \left(\frac{1}{\left(\frac{2p}{N}\right) + \frac{1 - \frac{2p}{N}}{2p}} \right) / p = 1.$$

$$(91)$$

What this result means is that if we have 2p free cores this parallel method should take $\frac{1}{2p}$ the amount of time to run compared to its serial counterpart given a sufficiently large number of grid points, N. Due to the fact that this a task based scheme this is also dependent on an efficient scheduler.

We now compare this with practical experimentation. This method was developed in C# with MONO (see Appendix A for C# code) and run on a machine with an Intel $\$ Core TM i7-4930K CPU $\$ 3.40GHz. This particular CPU has 6 physical cores with 12 logical cores provided by hyper-threading.

We solved the following initial value problem

$$\begin{pmatrix} {}^{C}_{0}\mathcal{D}_{x}^{\frac{1}{2}}y \end{pmatrix}(x) = -y(x) \qquad \qquad y(0) = 1$$

$$(92)$$

with N=2000 through to N=10000 time steps over the interval [0,10] with p ranging from 1 though to 12. Each solution was computed 5 times and the average runtime was computed, yielding the *performance surface* shown in figure 15. 4

⁴See Appendix B for a full table of runtimes.

Figure 15: Average runtime of the scheme for different values of p and N.

Figure 15 clearly shows the $O(N^2)$ complexity of the algorithm, especially in the case where p=1. We present some of the results from the N=10000 computations in a figure 6.1.6 to illustrate the speedup.

р	Runtime (s)	Speedup (wrt $p = 1$)
1	22.89	1
2	12.35	1.85
3	10.28	2.22
4	8.58	2.66
5	7.53	3.04
6	7.70	2.97

From a theoretical perspective we would expect speedups of 2, 3 and 4 for the cases p = 2, 3, 4 respectively, however, this is not achieved. There are a number of possible reasons for this. Firstly the MONO task scheduler (based of the .Net scheduler) is not performance optimized [7].

There is the possibility that we haven't chosen a large enough value of N to get the full relative speedup. This is supported by the fact that for the N=8000 case the speedup from p=1 to p=2 was 1.53 (less than that in the N=10000 case).

Also for cases where p > 3 we have 6 computationally heavy tasks (H and H_p) being completed per block and are therefore reaching the limit of the number of physical cores on the system. Obviously we cannot expect an improvement once p gets too large as the number of tasks to be executed in parallel exceeds the number of available cores. We see the full effect of this in the p=6 case where the runtime was actually longer than that for p=5.

6.1.7 Parallelising: A CUDA Approach

One of the main benefits of the scheme outlined in section 6.1.5, especially noted in it's form presented by Diethelm in [10] is the ability for this scheme to be implemented across multiple machines with a small amount of message passing between executing threads (or in this case tasks). The main reason for wanting to minimize message passing is that it can significantly impact performance to the point where most of the time is actually spent communicating updates between execution nodes. This is given significant consideration in [10]. In this section we abandon these measures in favour of massive performance gains when executing in a massively parallel manner on a GPU.

Modern graphics cards have the advantage of being able to efficiently perform massively parallel computations, especially calculations involving floating point arithmetic [20]. For example the NVIDIA GeForce GTX 780 has 2304 cores clocked at 863MHz. We use one of these graphics cards in an effort to dramatically speed up the fractional Adams Moulton Bashforth Method using NVIDIA's CUDA tool-chain.

Instead of using blocks of variables as was done in [10] and reimplemented by us in section 6.1.5 we return to the original specification of the scheme in section 6.1.4 and seek out other opportunities of parallelism.

The essential problem with the scheme is that the number of terms in the sums defined in (75) and (72) grows linearly with each time step taken. It is clear that the actual terms in each sum are independent and so breaking the sum up into smaller parts to be calculated and then summed together is a reasonable approach. This works so long as communication between cores doing different parts of the sum is sufficiently fast and global memory access is sufficiently fast. In the case of a GPU both of these criteria are satisfied and so this approach is reasonable.⁵

We aim to use as much of the GPU as possible to perform the calculations and so, unlike the scheme outlined in section 6.1.5 we will automatically scale the number of threads to use as many cores as possible. We define one performance tuning parameter opsPerThread which define the number of multiply-add operations per thread. Figure 16 shows a performance surface showing runtime against number of time steps N and opsPerThread 6. The actual initial value problem being solved is exactly the same as in section 6.1.5.

⁵It is easy to see that this scheme would be Amdahl efficient in the sense of definition 7.

⁶See appendix B for a full table of runtimes

Figure 16: Runtime for the scheme for various values of opsPerThread and N.

Firstly we note the size of the problems being solved here. The last point on the N axis is 10^6 time-steps, 100 times larger than was computed in the CPU based C# approach. Given the quadratic computational complexity of this algorithm that means this CUDA implementation is solving problems which would take roughly 2.5 days to compute using the previous parallel scheme, in less than 6 minutes.

As can be seen from this chart, as N increases it makes sense to perform more operations per thread. This arises from the fact that there is an overhead in dealing with each thread and this overhead becomes significant as N gets large. This effect is also exacerbated by the fact that for small values of N the overhead of managing more threads on the GPU is offset by the increased parallelism that a smaller number of operations per thread affords. Once, however, every core is being utilized it makes sense to start to increase the number of operations per thread as N is increased.

The speedup from running these computation on CUDA is enormous. It is arguable that any advantage achieved through reducing the number of messages passed between multiple threads and nodes by using the scheme outlined in [10] and in section 6.1.5, is completely outweighed by the sheer speed of computation on a GPU.

6.1.8 Short Memory Principle

We can actually completely change the complexity class of the problem by improving our solution so as to take advantage of the so-called *short memory principle*. [15, 30].

The most basic approach is the fixed memory principle as outlined in [30] and again in [15]. The idea is to truncate the integral in the equivalent integral equation, such as in . We would like to characterise the trade off in terms of accuracy that occurs when one takes this approach. That is, how much accuracy is sacrificed for different *look back* lengths.

For simplicity let's consider $\alpha \in (0,1)$ and let's consider the Caputo fractional derivative of some admissible function f. We wish to approximate

$$\frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(t)}{(t-s)^{\alpha}} ds \tag{93}$$

by

$$\frac{1}{\Gamma(1-\alpha)} \int_{(t-T)\vee 0}^{t} \frac{f'(t)}{(t-s)^{\alpha}} ds \tag{94}$$

where T is essentially some lookback length. The difference between these two integrals is

$$\left| \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(t)}{t-s)^{\alpha}} ds - \frac{1}{\Gamma(1-\alpha)} \int_{t-T}^t \frac{f'(t)}{t-s)^{\alpha}} ds \right| = \left| \frac{1}{\Gamma(1-\alpha)} \int_0^{(t-T)\vee 0} \frac{f'(t)}{(t-s)^{\alpha}} ds \right|$$
(95)

which we refer to as the truncation error, E. So long as f' is bonded (by say M) on some interval [0, a] then we can say that

$$E \le \frac{M}{\Gamma(1-\alpha)} \int_0^{(t-T)\vee 0} \frac{1}{(t-s)^{\alpha}} ds$$
 (96)

$$= \left(\frac{M}{\Gamma(2-\alpha)} (t^{1-\alpha} - T^{1-\alpha})\right) \vee 0 \tag{97}$$

on [0,a]. As noted in [15] such an approach would result in a loss of order. If we insist that $E \leq \varepsilon$ then we would have to choose T such that

$$T^{1-\alpha} \ge t^{1-\alpha} - \left(\frac{\varepsilon\Gamma(2-\alpha)}{M}\right). \tag{98}$$

As noted in [15] it turns out that such a requirement essentially removes any computational benefit from truncating the integral so although such a technique would reduce the complexity of each step to $\mathcal{O}(1)$ and hence the overall complexity to $\mathcal{O}(n)$ we would be making significant accuracy trade-offs.

6.1.9 Nested Mesh Technique

Another technique which could reduce the computational complexity of the problem is the so called *nested* mesh technique. This technique is also well known and a good explanation of it is given by Ford [15]. The basic idea is to change the step-size for the approximation of the integral across different parts of the integral. Specifically it would mean logarithmically increasing the step size for the quadrature approximation of the integral for points further back in time.

6.2 A final note

As a final note we include a solution surface for the relaxation-oscilation equation given below.

$${}_{0}^{C}D^{\alpha}x(t) = -x(t) \tag{99}$$

along with x(0) = 1 and x'(0) = x''(0) = 0 for $0 < \alpha \le 2$.

Note that at $\alpha = 1$ we have the usual exponential solution but as $\alpha \longrightarrow 2$ we can see the oscilatory solution appearing.

7 Appendix A: Adams-Moulton-Bashforth FDE Solver Code

7.1 C# Implementation of AMB FDE Solver

7.1.1 Program.cs

```
using System;
using System. Threading;
using System. Threading. Tasks;
using System.Collections.Generic;
using System. IO;
using System. Text;
namespace FDE_Solver
{
       class MainClass
              /// <summary>
              /// This is the delegate use for the right hand side of the
              /// differential equation. It define the signature that the
              /// forcing function / right hand side must satisfy.
              /// </summary>
              public delegate double ForcingFunction (double x, double y);
              /// <summary>
              /// Main entry point of the program.
              /// </summary>
              /// <param name="args">The command-line arguments.</param>
              public static void Main (string[] args)
                  double[] y = Compute (0.5, new double[] { 1 }, 10, 10000, 12, new
                      ForcingFunction (ff));
              /// <summary>
              /\!/\!/ This is the RHS of the differential equation.
              /\!/\!/ For the purposes of demonstation this code is setup to
              /// solve D^{1/2}y = -y
              /// </summary>
              public static double ff(double x, double y)
              {
                      return -y;
              }
              /// <summary>
              /// This calculates the a coefficient described in the K. Diethelm paper
              /// referenced in the body of thesis.
              /// </summary>
              public static double a(int mu, double alpha)
                      return (Math.Pow(mu + 2, alpha + 1) - 2 * Math.Pow(mu + 1, alpha + 1) +
                          Math.Pow(mu, alpha + 1))/SpecialFunctions.Gamma(alpha + 2);
              /// <summary>
```

```
/// This calculates the c coefficient described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double c(int mu, double alpha)
{
       return (Math.Pow(mu, alpha+1) - (mu - alpha)*Math.Pow(mu + 1, alpha)) /
           SpecialFunctions.Gamma(alpha + 2);
}
/// <summary>
/// This calculates the b coefficient described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double b(int mu, double alpha)
       return (Math.Pow (mu + 1, alpha) - Math.Pow (mu, alpha)) /
           SpecialFunctions.Gamma (alpha + 1);
}
/// <summary>
/// This calculates the sum I_{j+1} described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double I_1(int j, double alpha, double[] y_0_diffs, double[] x)
{
       double value = 0;
       for (int k = 0; k <= Math.Ceiling (alpha) - 1; k++) {</pre>
              value += Math.Pow (x [j + 1], k) / SpecialFunctions.Factorial (k) *
                   y_0_diffs [k];
       }
       return value;
}
/// <summary>
/// This calculates the sum H^p_{j, ell} described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double H_p(int j, int ell, int p, double[] x, double[] y, double
    alpha, ForcingFunction f)
       double value = 0;
       for (int k = 0; k <= (ell - 1) * p; k++) {</pre>
              value += b (j - k, alpha) * f (x [k], y [k]);
       return value;
}
/// <summary>
/// This calculates the sum L^p_{j,\ell} described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double L_p(int j, int ell, int p, double[] x, double[] y, double
    alpha, ForcingFunction f)
{
       double value = 0;
       for (int k = (ell - 1) * p + 1; k <= j; k++) {
              value += b (j - k, alpha) * f (x [k], y [k]);
```

```
}
       return value;
}
/// <summary>
/// This calculates the sum H^_{j,\ell} described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double H(int j, int ell, int p, double[] x, double[] y, double alpha,
    ForcingFunction f)
       double value = 0;
       value += c(j, alpha) + f(x[0], y[0]);
       for (int k = 1; k <= (ell - 1) * p; k++) {</pre>
              value += a (j - k, alpha) * f (x [k], y [k]);
       return value;
}
/// <summary>
/// This calculates the sum L_{j,\ell} described in the K. Diethelm paper
/// referenced in the body of thesis.
/// </summary>
public static double L(int j, int ell, int p, double[] x, double[] y, double alpha,
    ForcingFunction f, double y_p_1)
{
       double value = 0;
       for (int k = (ell - 1)*p + 1; k <= j; k++) {
              value += a(j-k, alpha) * f(x[k], y[k]);
       value += f(x[j+1], y_p_1) / SpecialFunctions.Gamma(alpha + 2);
       return value;
}
/// <summary>
/// This does the actual parallel computation for the method.
/// This is done by setting up a series of tasks with a carefully defined
/// continuation / dependency structure which ensures that computations which
/// can run in parallel are allowed to, and ones which are dependent on other
/// computations run in the right order. For a full description of the dependency
    structure
/// see the body of the thesis.
/// </summary>
/// <param name="alpha">The order of differentiation.</param>
/// <param name="y_0_diffs">An array containing the initial conditions in order of
    increasing
/// differentiation order.</param>
/// <param name="T">The last time to compute to.</param>
/// <param name="N">The number of time steps to use.</param>
/// <param name="p">Task granularity. This essentially defined the maximum level or
    concurrency.
/// <param name="f">The right hand side of the differential equation.</param>
public static double[] Compute(double alpha, double[] y_0_diffs, double T, int N,
    int p, ForcingFunction f)
{
       double[] x = new double[N];
       double[] y = new double[N];
       double[] y_p = new double[N];
```

```
y [0] = y_0_diffs [0];
               //Calculates the time step.
               double h = T / N;
              //Sets up all the x values.
              for (int i = 0; i < N; i++)</pre>
                      x [i] = h * i;
              }
               //Compute each block
               for (int ell = 1; ell <= Math.Ceiling ((double)N / (double)p); ell++) {</pre>
                      Task<double> taskSum_p = null;
                      Task<double> taskSum = null;
                      //Compute each variable in each block.
                      for (int i = 0; i < p && ((ell - 1) * p) + i < N - 1; i++) {
                             //Calculate the j (index) for this variable.
                             int j = ((ell - 1) * p) + i;
                             //Setup the task dependency structure and set each task
                                 running.
                             Task<double> taskI = Task.Factory.StartNew (() => I_1 (j,
                                  alpha, y_0_diffs, x));
                             Task<double> taskH_p = Task.Factory.StartNew (() => H_p (j,
                                  ell, p, x, y, alpha, f));
                             Task<double> taskH = Task.Factory.StartNew (() => H (j, ell,
                                 p, x, y, alpha, f));
                             Task<double> taskL_p = null;
                             if (taskSum != null) {
                                     taskL_p = taskSum.ContinueWith ((t) => L_p (j, ell, p,
                                         x, y, alpha, f));
                             } else {
                                     taskL_p = Task.Factory.StartNew (() => L_p (j, ell, p,
                                         x, y, alpha, f));
                             taskSum_p = Task.Factory.ContinueWhenAll(new [] { taskL_p,
                                  taskH_p, taskI}, (ts) => y_p[j + 1] = taskI.Result +
                                 Math.Pow(h, alpha) * ( taskH_p.Result + taskL_p.Result ) );
                             Task<double> taskL = taskSum_p.ContinueWith ((t) => L (j, ell,
                                 p, x, y, alpha, f, y_p [j + 1]));
                             taskSum = Task.Factory.ContinueWhenAll(new [] { taskH, taskL,
                                 taskI }, (ts) => y[j+1] = taskI.Result + Math.Pow(h,
                                  alpha) * (taskH.Result + taskL.Result ));
                      }
                      // Wait for the block to complete.
                      if (taskSum != null) {
                             taskSum.Wait ();
              //Return the solution.
               return y;
       }
}
```

//Drops in the Oth order initial condition.

7.1.2 SpecialFunctions.cs

```
using System;
namespace FDE_Solver
       /// <summary>
       /// Provides special functions that are not available
       /// in System.Math
       /// </summary>
       public class SpecialFunctions
              /// <summary>
              /// Gamma the specified z.
              /// This uses the Lanczos approximation and is only valid
              /// for positive real values of z. This code is essentially
              /// a translation of a python implementation available
              /// at http://en.wikipedia.org/wiki/Lanczos_approximation
              /// on 22nd July 2014
              /// </summary>
              /// <param name="z">The z value.</param>
              public static double Gamma(double z)
              {
                      double g = 7;
                      double[] p = new double[] { 0.999999999999993, 676.5203681218851,
                          -1259.1392167224028,
                                                                          771.32342877765313,
                                                                               -176.61502916214059,
                                                                               12.507343278686905,
                             -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7 };
                      if (z < 0.5) {
                             return Math.PI / (Math.Sin (Math.PI * z) * Gamma (1 - z));
                      } else {
                             z = 1;
                             double x = p [0];
                             for (int i = 1; i < g + 2; i++)</pre>
                                    x += p [i] / (z + i);
                             }
                             double t = z + g + 0.5;
                             return Math.Sqrt (2 * Math.PI) * Math.Pow (t, z + 0.5) * Math.Exp
                                 (-t) * x;
                      }
              }
              /// <summary>
              /\!/\!/ Calculates the factorial of k.
              /// One could use the gamma function above but it does have slight inaccuracies
              /// so the factorial function has also been provided which returns an integer.
              /// </summary>
              /// <param name="k">The value to take the factorial of.</param>  
              public static int Factorial(int k)
                      int value = 1;
                      for (int i = 1; i <= k; i++) {</pre>
                             value *= i;
```

```
return value;
}
}
```

7.2 CUDA C/C++ Implementation of AMB FDE Solver

7.2.1 FDE_Solver.cu

```
#include <iostream>
#include <ctime>
// This is the size of the memory that we will have in each thread block
// Currently thread blocks can be at most 1024 in size so we allocate double
// that for good measure.
#define SHARED_MEMORY_SIZE 2048
using namespace std;
// The RHS of the differential equation
__device__ float f(float x, float y) {
   return -y;
// This uses the Lanczos approximation and is only valid
// for positive real values of z. This code is essentially
// a translation of a python implementation available
// at http://en.wikipedia.org/wiki/Lanczos_approximation
// on 22nd July 2014
__device__ float Gamma(float z) {
   float g = 7;
   float p [] = { 0.999999999999999999, 676.5203681218851, -1259.1392167224028,
                                771.32342877765313, -176.61502916214059, 12.507343278686905,
                                -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7
                                    };
       float result = 0;
       if (z < 0.5) {
           result = M_PI / (\sin(M_PI * z) * Gamma(1-z));
       } else {
          z = 1;
          float x = p[0];
          for (int i = 1; i < g + 2; i++) {</pre>
              x += p[i] / (z +i);
          }
          float t = z + g + 0.5;
          result = sqrt(2 * M_PI) * pow(t, z + 0.5f) * exp(-t) * x;
       return result;
}
// Calculates the factorial of an integer
__device__ int Factorial(int k) {
```

```
int value = 1;
   for (int i = 1; i <= k; i++) {</pre>
       value *= i;
   return value;
}
// This calculates the a coefficient described in the K. Diethelm paper
// referenced in the body of thesis.
__device__ float a(int mu, float alpha) {
   return (pow((float)mu + 2, alpha + 1) - 2 * pow((float)mu + 1, alpha + 1) + pow((float)mu,
       alpha + 1))/Gamma(alpha + 2);
}
// This calculates the b coefficient described in the K. Diethelm paper
// referenced in the body of thesis.
__device__ float b(int mu, float alpha) {
   return (pow ((float)mu + 1, alpha) - pow ((float)mu, alpha)) / Gamma (alpha + 1);
}
// This calculates the c coefficient described in the K. Diethelm paper
// referenced in the body of thesis.
__device__ float c(int mu, float alpha) {
   return (pow((float)mu, alpha+1) - (mu - alpha)*pow((float)mu + 1, alpha)) / Gamma(alpha + 2);
}
// This calculates the sum R in parallel on the GPU. The sum R is discussed in the body of the
__global__ void calcR(int j, float* x, float* y, float alpha, int opsPerThread, float* R) {
   __shared__ float temp[SHARED_MEMORY_SIZE];
   int i
                                 = (blockDim.x * blockIdx.x + threadIdx.x) * opsPerThread;
                         = 0;
       for (int 1 = 0; 1 < opsPerThread && i + 1 <= j; ++1) {</pre>
                                += b(j - (i + 1), alpha) * f(x[i+1], y[i+1]);
       }
       temp[threadIdx.x] = sum;
       __syncthreads();
   if ( 0 == threadIdx.x ) {
                     = 0;
       sum
       for (int k
                     = 0; k < blockDim.x; ++k) {
                     += temp[k];
          sum
       atomicAdd( &R[j], sum );
   }
}
// This calculates the sum S in parallel on the GPU. The sum R is discussed in the body of the
__global__ void calcS(int j, float* x, float* y, float alpha, int opsPerThread, float* S) {
   __shared__ float temp[SHARED_MEMORY_SIZE];
   int i
                                 = (blockDim.x * blockIdx.x + threadIdx.x) * opsPerThread;
   float sum
                         = 0;
       for (int 1 = 0; 1 < opsPerThread && i + 1 <= j; ++1) {</pre>
                                += a(j - (i + 1), alpha) * f(x[i+1], y[i+1]);
       }
```

```
temp[threadIdx.x] = sum;
       __syncthreads();
   if ( 0 == threadIdx.x ) {
                     = 0;
       sum
                     = 0; k < blockDim.x; ++k) {
       for (int k
                     += temp[k];
       }
       atomicAdd( &S[j], sum );
   }
}
// This is used to initialize the very first value in the solution array
// from the initial conditions.
__global__ void setYO(float* y, float y0) {
   y[0] = y0;
// This is used to initialize the x array with the correct grid points.
// This will execute in parallel
__global__ void initialize_x(float* x, float h, int N, int opsPerThread) {
   int j = (blockIdx.x * blockDim.x + threadIdx.x) * opsPerThread;
   for (int i = 0; i < opsPerThread && <math>i + j < N; i++) {
       x[j + i] = (j + i) * h;
   }
}
// This calculate the predictor value from the sums already calculated.
// This does not run in parallel and should be called with <<< 1, 1 >>>
__global__ void calcYp(int j, float* I, float* R, float* Yp, float h, float alpha) {
   Yp[j+1] = I[j+1] + pow(h, alpha) * R[j];
// This calculate the y value from the sums already calculated.
// This does not run in parallel and should be called with <<< 1, 1 >>>
__global__ void calcY(int j, float* I, float* S, float* Yp, float* x, float* x, float h, float
    alpha) {
   y[j+1] = I[j+1] + pow(h, alpha) * (c(j, alpha) * f(x[0], y[0]) + S[j] + f(x[j+1], Yp[j+1]) /
       Gamma(alpha + 2) );
}
/\!/ This calculates the I sum discussed in the body of the thesis. The entirety of
/\!/ the I sums can be precalculated and so that is what this does. This does run
// in parallel with as many threads as there are steps.
__global__ void initialize_I(float* I, float* x, float* y_0_diffs, float alpha, int N) {
       float sum = 0;
       int j = blockIdx.x * blockDim.x + threadIdx.x;
   if (j < N) {
       for (int k = 0; k <= (ceil(alpha) - 1); k++) {</pre>
                     sum += pow(x[j], (float)k) / Factorial(k) * y_0_diffs[k];
              I[j] = sum;
   }
}
// This sets up the actual computations on the graphics card and launches them.
```

```
// N
                     - Number of steps
                     - Maximum value of x
// y_0_diffs - The initial conditions
                - The vector into which the solution should be copied. (This needs to be
// y
                              malloced out by the caller of this function.
// opsPerThread - Number of operations per thread to actually perform.
void compute(int N, float alpha, float T, float* y_0_diffs, float* y, int opsPerThread){
       float*
                                                         = NULL;
                            dev_x
       float*
                            dev_y
                                                         = NULL;
       float*
                                                         = NULL;
                            dev_R
                                                         = NULL;
       float*
                            dev_S
                            dev_y_0_diffs
                                                  = NULL;
       float*
                                                         = NULL;
       float*
                            dev_y_p
       float*
                            dev_I
                                                         = NULL;
       cudaDeviceProp* props
                                                  = NULL;
                                                                = 0;
       float
       int
                                                         = 0;
                            size
       int
                            size_ics
                                                         = 0;
       int
                            blocks
                                                         = 0;
       float
                           blocksf
                                                         = 0;
                            threads
                                                         = 0;
       int
                            threadsf
       float
                                                         = 0;
       // The amount of space needed for the main arrays
                            = sizeof(float) * N;
       // The amount of space needed for the initial conditions
                            = sizeof(float) * ceil(alpha);
       // Allocate memory on device for computations
       cudaMalloc( (void**)&dev_x, size );
       cudaMalloc( (void**)&dev_y, size );
       cudaMalloc( (void**)&dev_R, size );
       cudaMalloc( (void**)&dev_S, size );
       cudaMalloc( (void**)&dev_I, size );
       cudaMalloc( (void**)&dev_y_p, size );
       cudaMalloc( (void**)&dev_y_0_diffs, size_ics );
       // Set the device memory up so that it is otherwise set to 0
       cudaMemset( dev_y, 0, size );
       cudaMemset( dev_y_p, 0, size );
       cudaMemset( dev_R, 0, size );
       cudaMemset( dev_S, 0, size );
       // Move the Oth order initial condition across.
       setY0<<< 1, 1 >>>( dev_y, y_0_diffs[0] );
       // Move the initial conditions across.
       cudaMemcpy( dev_y_0_diffs, y_0_diffs, size_ics, cudaMemcpyHostToDevice );
       // Query device capabilities.
                            = (cudaDeviceProp*) malloc( sizeof(cudaDeviceProp) );
       cudaGetDeviceProperties( props, 0 ); // Assume that we will always use device 1.
       // initialize the x vector
```

```
blocksf
                            = (float) N / (float) (props->maxThreadsPerBlock * opsPerThread);
       blocks
                             = ceil(blocksf);
       threads
                             = props->maxThreadsPerBlock;
       if (1 == blocks) {
              threadsf
                            = (float) N / (float)opsPerThread;
              threads
                            = ceil(threadsf);
       }
       initialize_x<<< blocks, threads >>>(dev_x, h, N, opsPerThread);
       // initialize the I vector
       blocksf
                           = (float) N / (float) props->maxThreadsPerBlock;
       blocks
                            = ceil(blocksf);
       if (1 == blocks) {
              threads
                            = N;
       } else {
              threads
                            = props->maxThreadsPerBlock;
       }
       initialize_I<<< blocks, threads >>>(dev_I, dev_x, dev_y_0_diffs, alpha, N);
       // Perform the actual calculations.
       for (int j = 0; j < N; ++j) {
              blocksf
                                    = (float) ( j + 1 )/ (float) (props->maxThreadsPerBlock *
                  opsPerThread);
                                    = ceil(blocksf);
              blocks
              if (1 == blocks) {
                     threadsf
                                    = (float) j / (float)opsPerThread;
                     threads
                                   = ceil(threadsf) + 1;
              } else {
                     threads = props->maxThreadsPerBlock;
              }
              calcR<<< blocks, threads >>>(j, dev_x, dev_y, alpha, opsPerThread, dev_R);
              calcYp<<< 1, 1 >>>(j, dev_I, dev_R, dev_y_p, h, alpha);
              calcS<<< blocks, threads >>>(j, dev_x, dev_y, alpha, opsPerThread, dev_S);
              calcY<<< 1, 1 >>>(j, dev_I, dev_S, dev_y_p, dev_y, dev_x, h, alpha);
       }
       // Copy y vector back onto host memory
       cudaMemcpy( y, dev_R, size, cudaMemcpyDeviceToHost );
       // Free up all resources that were used.
       cudaFree( dev_x );
       cudaFree( dev_y );
       cudaFree( dev_R );
       cudaFree( dev_S );
       cudaFree( dev_I );
       cudaFree( dev_y_0_diffs );
       cudaFree( dev_y_p );
       // Free up all space used on the host.
       free( props );
}
int main( void ) {
       // This code will benchmark the performance of this solver with different
       // paramters for the number of steps and number of operations per thread.
```

= T / N;

h

```
float
           y_0_diffs[] = { 1 };
   int
            N
                                          = 10000;
   int
            Т
                                          = 10;
   clock_t start
                            = 0;
                             = 0;
   clock_t end
                         = 0;
   double duration
   for (int i = 0; i <= 50; i+=5) {</pre>
         // Need to make sure that the correct ammount of memory is available.
          int
                  size
                                         = N * i * sizeof( float );
         float*
                                       = (float*) malloc( size );
      for (int j = 1; j <= 20; ++j) {</pre>
          start = clock();
          compute(N * i, 0.5f, T, y_0_diffs, y, j);
          end
                      = clock();
          duration
                     = (end - start) / (double) CLOCKS_PER_SEC;
          cout << duration << "\t" << flush;</pre>
      }
      free(y);
      cout << "\n";
   }
return 0;
```

8 Appendix B

8.1 Runtimes for C# implementation described in section 6.1.4

$N \setminus p$	1	2	3	4	5	5	7	8	9	10	11	12
1000	0.4070868	0.2362202	0.1191832	0.1293034	0.0938632	0.1450464	0.1427508	0.1377472	0.133987	0.125388	0.1216968	0.1200818
2000	1.0937832	0.558851	0.556602	0.46559	0.430715	0.403747	0.4425184	0.4152856	0.4051934	0.3774052	0.3794404	0.3809334
3000	1.9052022	1.4103498	1.0329988	0.895754	0.883083	0.8648174	0.8972584	0.820875	0.813499	0.7662662	0.7725402	0.7604456
4000	3.6316786	2.5111496	1.9091866	1.5481538	1.4340788	1.4993042	1.5020828	1.3928906	1.3221538	1.27441	1.2869578	1.263289
5000	6.2298358	3.7344554	2.9771892	2.3199244	2.1266484	2.220891	2.2675012	2.068062	1.980582	1.9098458	1.921069	1.9492734
6000	7.4398042	4.9997078	4.135724	3.1844926	2.9543306	3.1121518	3.1542058	2.8458522	2.7509526	2.6820768	2.6935614	2.6925528
7000	10.055285	6.8022498	5.2268638	4.3256554	3.9238724	4.0993682	4.2330766	3.845559	3.6778138	3.5685162	3.5791386	3.5445644
8000	12.8123234	7.6822148	7.023647	5.5118882	4.962013	5.1901768	5.3650102	4.9373976	4.7257116	4.549266	4.6082242	4.571809
9000	16.2015754	10.5661146	8.3860596	6.959551	6.2022426	6.3978686	6.6804982	6.1248574	5.9008362	5.6928986	5.8067794	5.600407
10000	22.8870988	12.3470092	10.2837944	8.575945	7.5265192	7.7042254	8.1302114	7.4418008	7.2273678	6.9739174	6.9767076	6.7921516

7

8.2 Runtimes for CUDA implementation described in section 6.1.7

N \ opsPerThread	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
50,000	4.87108	3.32297	3.37962	3.46946	3.64845	3.87464	4.13553	4.43697	4.57786	4.71845	4.85645	4.99309	5.12561	5.2565	5.38823	5.58507	5.87955	6.1915	6.5155	6.85466
100,000	13.7332	9.2564	8.29588	7.51481	7.89867	8.36102	8.77676	9.19788	9.52294	9.85837	10.1958	10.5321	10.8622	11.1902	11.5218	11.9984	12.7003	13.4505	14.2386	15.069
150,000	27.9077	17.7804	14.7961	14.2085	13.8015	13.4937	14.4337	15.507	15.7728	15.9378	16.0039	16.1438	16.6539	17.1985	17.7416	18.5025	19.609	20.7922	22.0386	23.3795
200,000	47.0168	28.939	23.8399	21.6257	21.6106	21.677	21.8518	22.1316	22.628	23.2031	23.6663	24.039	24.3042	24.5237	24.7081	25.3161	26.8756	28.4815	30.2146	32.0608
250,000	71.0519	42.6913	34.5362	31.5671	30.0385	30.939	31.7693	32.404	31.6023	30.755	31.4151	32.2341	32.9353	33.7153	34.6383	35.7562	38.0052	39.8973	41.2286	42.9506
300,000	100.033	59.0803	46.8046	42.238	41.1102	40.6073	42.502	44.0988	43.1857	42.2975	41.477	40.7721	41.6668	43.0575	44.9286	46.8037	51.3096	54.6343	57.8365	60.6987
350,000	133.784	77.9304	61.372	55.2624	53.0512	53.5426	53.5646	56.3827	56.1513	55.4469	54.2999	53.8824	53.206	53.5035	56.1716	58.2979	64.7001	69.3878	74.0164	78.8297
400,000	172.509	99.4371	77.6313	69.2178	66.592	67.1919	68.302	69.2099	69.3106	69.2914	68.8276	68.4649	69.3828	70.6512	72.3131	71.232	79.6719	84.8636	90.7919	97.2622
450,000	215.96	123.333	95.4081	85.2786	81.7588	81.2605	83.8495	86.0194	82.8356	83.161	83.6226	83.8407	86.6134	90.099	94.5162	91.1048	102.314	105.757	110.677	116.999
500,000	264.41	149.922	115.271	102.267	97.4631	98.4406	99.3867	103.704	100.777	97.5023	98.3143	99.3144	103.798	109.351	117.381	113.081	131.434	135.395	139.066	143.586
550,000	317.531	178.85	136.995	121.337	115.664	116.319	117.559	121.546	119.587	116.542	113.796	115.009	121.197	129.498	141.149	135.374	160.621	167.084	173.385	179.086
600,000	375.574	210.454	160.125	141.451	134.63	134.439	137.721	139.959	138.566	136.459	133.901	131.22	138.704	148.854	164.37	158.017	190.778	200.624	209.304	218.444
650,000	438.333	244.445	185.481	163.521	155.259	155.915	157.971	162.504	157.517	156.625	155.25	152.742	157.018	169.943	189.083	181.18	220.261	233.223	245.357	257.474
700,000	506.486	281.27	212.58	186.674	177.392	177.773	178.82	185.737	179.677	176.794	176.563	175.212	179.988	189.953	212.321	204.599	251.396	267.425	281.956	297.777
750,000	578.928	320.209	241.267	211.658	200.474	200.262	203.419	208.98	204.186	197.723	198.007	197.835	204.805	217.196	239.112	228.087	281.324	300.706	318.765	337.085
800,000	656.638	362.042	271.795	237.863	225.392	225.654	228.412	233.173	229.111	223.378	219.488	220.567	229.216	243.557	267.325	253.588	314.309	336.544	356.23	378.126
850,000	738.779	406.038	304.418	265.773	251.271	251.736	253.47	261.266	253.93	249.597	244.374	243.305	254.169	272.859	301.262	284.64	348.23	372.77	394.878	418.79
900,000	826.216	452.979	338.473	295.148	279.101	278.412	281.179	290.1	279.968	275.995	272.18	267.148	279.3	299.379	331.805	315.486	389.705	413.51	436.016	462.42
950,000	918.002	501.929	374.475	326.098	308.433	308.072	311.171	318.883	310.039	302.488	300.025	295.68	305.017	329.237	366.771	349.544	430.481	458.217	480.702	508.34
1,000,000	1015.2	553.967	412.362	358.399	338.406	337.998	340.872	348.722	340.862	330.045	328.021	325.068	332.821	355.923	398.319	381.349	475.024	507.402	530.949	560.252

R

 $^{^{7}}$ The times listed are in seconds and are calculated as the average over 5 runs.

⁸The times listed are in seconds and are for one run.

References

- [1] S. Abbas, M. Benchohra, and N'Guérékata G.M. Topics in Fractional Differential Equations. Springer, 2012.
- [2] A. Arikoglu and I. Ozkol. Solution of fractional differential equations by using differential transform method. *Chaos, Solitons & Fractals*, 34(5):1473–1481, 2007.
- [3] A. Bielecki. Une remarque sur l'application de la mthode de banach-caccioppoli-tikhonov dans la thorie de l'quations diffentielles ordinaires. Bulletin of the Polish Academy of Sciences, 4:261–264, 1956.
- [4] S. Butera and M. Di Paola. Fractional differential equations solved using mellin transform. *Communications in Nonlinear Science and Numerical Simulation*, 19:2220–2227, 2014.
- [5] M. Caputo. Linear models of dissipation whose q is almost frequency independent-ii. Geophysical Journal of the Royal Astronomical Society, 13:529–539, November 1967.
- [6] M. Caputo and Mainardi F. Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento, 1:161–198, 1971.
- [7] Microsoft Copropration. Task schedulers. http://msdn.microsoft.com/en-us/library/dd997402% 28v=vs.110%29.aspx. Accessed: 2014-08-01.
- [8] P.J. Davis. Leonhard euler's integral: A historical profile of the gamma function: In memoriam: Milton abramowitz. *The American Mathematical Monthly*, 66(10):pp. 849–869, 1959.
- [9] K. Diethelm. The Analysis of Fractional Differential Equations. Springer, 2010.
- [10] K. Diethelm. An efficient parallel algorithm for the numerical solution of fractional differential equations. Fractional Calculus and Applied Analysis, 14:475–490, 2011.
- [11] K. Diethelm and N.J. Ford. Analysis of fractional differential equations. *Journal of Mathematical Analysis and Applications*, 265:229–248, 2002.
- [12] K. Diethelm and N.J. Ford. Multi-order fractional differential equations and their numerical solution. *Applied Mathematics and Computation*, 154(3):621–640, 2004.
- [13] K. Diethelm, N.J. Ford, and A.D. Freed. Detailed error analysis for a fractional adams method. *Numerical Algorithms*, pages 31–52, 2004.
- [14] Kai Diethelm and J Ford. Numerical solution of the bagley-torvik equation. BIT Numerical Mathematics, 42(3):490–507, 2002.
- [15] N.J. Ford and A.C. Simpson. The numerical solution of fractional differential equations: Speed versus accuracy. *Numerical Algorithms*, pages 333–346, 2001.
- [16] C. Fox. The g and h functions as symmetrical fourier kernels. Transactions of the American Mathematical Society, pages 395–429, 1961.
- [17] R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin. *Mittag-Leffler Functions: Related Topics and Applications*. Springer, 2014.
- [18] R. Gorenflo and F. Mainardi. Fractals and Fractional Calculus in Continuum Mechanics. CISM Courses and Lectures. Springer Verlag, 1997.
- [19] R. Gorenflo and F. Mainardi. Fractional calculus. Springer, 1997.

- [20] M. Harris. Mapping computational concepts to gpus. In M. Pharr, R. Fernando, and T. Sweeney, editors, *GPU Gems 2*. Addison-Wesley Professional, 2005.
- [21] B.I. Henry, T.A.M. Langlands, and P. Straka. An introduction to fractional diffusion. In *Complex Physical, Biophysical and Econophysical Systems*, volume 1, pages 37–89. World Scientific, 2010.
- [22] N. Heymans and I. Podlubny. Physical interpretation of initial conditions for fractional differential equations with riemann-liouville fractional derivatives. *Rheologica Acta*, 45(5):765–771, 2005.
- [23] H. Kober. On fractional integrals and derivatives. The Quarterly Journal of Mathematics, 11:193–211, 1940.
- [24] Mark M Meerschaert and Alla Sikorskii. Stochastic models for fractional calculus, volume 43. Walter de Gruyter, 2011.
- [25] K.S. Miller and Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, 1993.
- [26] V.A. Narayanan and Prabhu K.M.M. The fractional fourier transform: theory, implementation and error analysis. *Microprocessors and Microsystems*, 27:511–521, 2003.
- [27] R.R. Nigmatullin. The realization of the generalized transfer equation in a medium with fractal geometry. *physica status solidi* (b), 133(1):425–430, 1986.
- [28] R.R. Nigmatullin. Fractional integral and its physical interpretation. *Theoretical and Mathematical Physics*, 90(3):242–251, 1992.
- [29] Y. Nikolova and L. Boyadjiev. Integral transforms method to solve a time-space fractional diffusion equation. Fractional Calculus and Applied Analysis, 13(1):57–68, 2010.
- [30] I. Podlubny. Fractional Differential Equations. Academic Press, 1999.
- [31] R. K. Raina and C. L. Koul. On weyl fractional calculus. *Proceedings of the American Mathematical Society*, 73:188–192, February 1979.
- [32] S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional Integrals and Derivatives. Breach Science Publishers, 1993.
- [33] H.M. Srivastava and R.K. Saxena. Operators of fractional integration and their applications. *Applied Mathematics and Computation*, 118(1):1–52, 2001.
- [34] C.C. Tisdell. On the application of sequential and fixed-point methods to fractional differential equations of arbitrary order. *Journal of Integral Equations and Applications*, 24, 2012.
- [35] Peter J Torvik and Ronald L Bagley. On the appearance of the fractional derivative in the behavior of real materials. *Journal of Applied Mechanics*, 51(2):294–298, 1984.