Analysis and Differential Equations

Solve every problem.

Problem 1. Prove that $f(x) \equiv 0$ is the only solution in $L^2(\mathbf{R}^n)$ such that

$$\triangle f = 0.$$

Problem 2. Let $X \subset C([0,1])$ be a finite dimensional linear subspace of the space of real-valued continuous functions on [0,1]. Show that, for a sequence of functions $\{f_k\}_{k\geqslant 1}\subset X$, if it converges pointwise, it converges uniformly.

Problem 3.

- (a) For $f \in L^1(\mathbb{R}^n)$, $g \in L^{\infty}(\mathbb{R}^n)$, show that their convolution f * g is a well-defined continuous function.
- (b) Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable set with Lebesgue measure m(E) > 0. Prove that

$$E - E := \{x - y \mid x \in E, y \in E\}$$

contains an open neighborhood of $0 \in \mathbb{R}^n$.

Problem 4. Assume that P is a polynomial with complex coefficients. Prove that there exists infinitely many solutions of the following equations on \mathbb{C} :

$$e^z = P(z)$$
.

Problem 5. Let f be a bounded holomorphic function defined on $B = \{z \mid 0 < \text{Re}(z) < 1\}$ that can be extended as a continuous function on \overline{B} . Let

$$A_0 = \sup_{\text{Re}(z)=0} |f(z)| > 0, \ A_0 = \sup_{\text{Re}(z)=1} |f(z)| > 0.$$

Prove that for all $z \in B$, we have

$$|f(z)| \le (A_0)^{1-\text{Re}(z)} (A_1)^{\text{Re}(z)}.$$

Problem 6. Assume that $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary. Prove that there exists a positive constant ε_0 so that for all real numbers $\varepsilon < \varepsilon_0$, for all $f \in L^2(\Omega)$, there exist a unique $u \in H^1_0(\Omega)$ so that

$$-\Delta u + \varepsilon \sin(u) = f$$

in the sense of distributions.