

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

The Pharmaceutical Benefits Scheme (PBS) is the Australian government drugs subsidy scheme.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.

6

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t) , trend (b_t) and seasonality (s_t) .

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1 + \varepsilon_t)$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t) , trend (b_t) and seasonality (s_t) .

How do we combine these elements?

Additively?

 $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$

Multiplicatively?

 $y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$

Perhaps a mix of both?

 $y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$

ETS models

General notation ETS: ExponenTial Smoothing

→ ↑

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

ETS models

```
General notation ETS: ExponenTial Smoothing

→ ↑ 

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

ETS models

```
General notation ETS: ExponenTial Smoothing

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

ETS(A,N,N): SES with additive errors

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_{t} \sim \text{NID}(0, \sigma^{2})$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- Transition/state equation(s): evolution of state(s) over

ETS(M,N,N): SES with multiplicative errors

Forecast equation

Measurement equation

State equation

$$\hat{y}_{T+h|T} = \ell_T$$

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

Holt's linear trend

Additive errors: ETS(A,A,N)

Forecast equation

Measurement equation

State equations

$$\begin{split} \hat{y}_{T+h|T} &= \ell_T + hb_T \\ y_t &= \ell_{t-1} + b_{t-1} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t \end{split}$$

Holt's linear trend

Additive errors: ETS(A,A,N)

Forecast equation

Measurement equation

State equations

$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

Multiplicative errors: ETS(M,A,N)

Forecast equation

Measurement equation

rement equation
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$

State equations $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$

 $\hat{y}_{T+h|T} = \ell_T + hb_T$

```
aus economy <- global economy |>
  filter(Country == "Australia") |>
  mutate(Pop = Population / 1e6)
fit <- aus economy |> model(AAN = ETS(Pop))
report(fit)
Series: Pop
Model: ETS(A,A,N)
  Smoothing parameters:
   alpha = 1
   beta = 0.327
 Initial states:
1[0] p[0]
10.1 0.222
 sigma^2: 0.0041
 AIC AICC BIC
-77.0 - 75.8 - 66.7
```

components(fit)

```
# A dable: 59 x 7 [1Y]
# Key: Country, .model [1]
          Pop = lag(level, 1) + lag(slope, 1) + remainder
  Country .model Year Pop level slope remainder
  <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Australia AAN
                   1959 NA
                              10.1 0.222 NA
2 Australia AAN
                   1960 10.3 10.3 0.222 -0.000145
3 Australia AAN
                   1961 10.5 10.5 0.217 -0.0159
4 Australia AAN
                   1962 10.7 10.7 0.231 0.0418
5 Australia AAN
                   1963 11.0 11.0 0.223 -0.0229
6 Australia AAN
                   1964
                         11.2 11.2 0.221 -0.00641
7 Australia AAN
                   1965
                         11.4 11.4 0.221 -0.000314
8 Australia AAN
                   1966
                         11.7
                              11.7 0.235 0.0418
9 Australia AAN
                   1967
                         11.8
                              11.8 0.206 -0.0869
10 Australia AAN
                   1968
                         12.0
                              12.0 0.208 0.00350
```

components(fit) |> autoplot()


```
fit |>
  forecast(h = 20) |>
  autoplot(aus_economy) +
  labs(y = "Population", x = "Year")
```


ETS(A,Ad,N): Damped trend method

Additive errors

Forecast equation

Measurement equation

State equations

$$\hat{y}_{T+h|T} = \ell_T + (\phi + \dots + \phi^{h-1})b_T$$

$$y_t = (\ell_{t-1} + \phi b_{t-1}) + \varepsilon_t$$

$$\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$$

$$b_t = \phi b_{t-1} + \beta \varepsilon_t$$

ETS(A,Ad,N): Damped trend method

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + (\phi + \cdots + \phi^{h-1})b_T$$
 Measurement equation
$$y_t = (\ell_{t-1} + \phi b_{t-1}) + \varepsilon_t$$
 State equations
$$\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$$

$$b_t = \phi b_{t-1} + \beta \varepsilon_t$$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

```
aus_economy |>
model(holt = ETS(Pop ~ trend("Ad"))) |>
forecast(h = 20) |>
autoplot(aus_economy)
```


Example: National populations

10 Armenia

i 253 more rows

```
fit <- global economy |>
  mutate(Pop = Population / 1e6) |>
  model(ets = ETS(Pop))
fit
# A mable: 263 x 2
# Kev: Country [263]
  Country
                                ets
   <fct>
                            <model>
 1 Afghanistan
                       \langle ETS(A,A,N) \rangle
 2 Albania
                       <ETS(M,A,N)>
 3 Algeria
                       <ETS(M,A,N)>
 4 American Samoa
                       <ETS(M,A,N)>
 5 Andorra
                       <ETS(M,A,N)>
 6 Angola
                       <ETS(M,A,N)>
 7 Antigua and Barbuda <ETS(M,A,N)>
 8 Arab World
                       <ETS(M.A.N)>
 9 Argentina
                       <ETS(A,A,N)>
```

<ETS(M,A,N)>

Example: National populations

```
fit |>
 forecast(h = 5)
# A fable: 1,315 x 5 [1Y]
# Key: Country, .model [263]
  Country
             .model Year
                                   Pop .mean
  <fct> <chr> <dbl>
                                <dist> <dbl>
1 Afghanistan ets 2018
                           N(36, 0.012) 36.4
2 Afghanistan ets 2019
                           N(37, 0.059) 37.3
3 Afghanistan ets 2020
                            N(38, 0.16) 38.2
4 Afghanistan ets 2021
                            N(39, 0.35) 39.0
5 Afghanistan ets
                    2022 N(40, 0.64) 39.9
6 Albania ets
                    2018 N(2.9, 0.00012) 2.87
                    2019 N(2.9, 6e-04) 2.87
7 Albania ets
8 Albania ets
                    2020 N(2.9, 0.0017) 2.87
9 Albania
         ets
                    2021
                         N(2.9, 0.0036) 2.86
```

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

Lab Session 14

Try forecasting the Chinese GDP from the global_economy data set using an ETS model.

Experiment with the various options in the ETS() function to see how much the forecasts change with damped trend, or with a Box-Cox transformation. Try to develop an intuition of what each is doing to the forecasts.

[Hint: use h=20 when forecasting, so you can clearly see the differences between the various options when plotting the forecasts.]

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

ETS(A,A,A): Holt-Winters additive method

Forecast equation $\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$ Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$

- \blacksquare k = integer part of (h-1)/m.
- \square $\sum_i s_i \approx 0.$
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

ETS(M,A,M): Holt-Winters multiplicative method

Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$
Observation equation
$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$$
State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1}(1 + \beta \varepsilon_t)$$

$$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$$

- \blacksquare *k* is integer part of (h-1)/m.
- \square $\sum_i s_i \approx m$.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

```
holidays <- tourism |>
  filter(Purpose == "Holiday")
fit <- holidays |> model(ets = ETS(Trips))
fit
# A mable: 76 x 4
# Key: Region, State, Purpose [76]
  Region
                State Purpose
                                     ets
  <chr> <chr> <chr> <chr> <model>
 1 Adelaide SA Holiday <ETS(A,N,A)>
 2 Adelaide Hills SA Holiday <ETS(A,A,N)>
 3 Alice Springs NT
                     Holiday <ETS(M,N,A)>
 4 Ballarat
                VIC
                      Holiday <ETS(M,N,A)>
 5 Barklv
                NT
                      Holiday <ETS(A,N,A)>
6 Barossa
                SA
                      Holiday <ETS(A,N,N)>
 7 Bendigo Loddon VIC
                      Holiday <ETS(M.N.N)>
 8 Blue Mountains NSW
                      Holiday <ETS(M,N,M)>
 9 Brishane
                QLD
                      Holiday <ETS(A,A,N)>
10 Bundaberg
                QLD
                      Holiday <ETS(A,N,A)>
```

```
fit |>
  filter(Region == "Snowy Mountains") |>
  report()
Series: Trips
Model: ETS(M,N,A)
  Smoothing parameters:
    alpha = 0.157
    gamma = 1e-04
 Initial states:
l[0] s[0] s[-1] s[-2] s[-3]
 142 -61 131 -42.2 -27.7
 sigma^2: 0.0388
AIC AICC BIC
852 854 869
```

filter(Region == "Snowy Mountains") |>

fit |>

components(fit)

```
# A dable: 84 x 9 [10]
# Kev:
         Region, State, Purpose, .model [1]
         Trips = (lag(level, 1) + lag(season, 4)) * (1 + remainder)
  Region
                 State Purpose .model Quarter Trips level season remainder
  <chr>
                <dbl>
                      Holiday ets
                                    1997 01 NA
1 Snowy Mountains NSW
                                                   NA
                                                        -27.7
                                                               NA
2 Snowy Mountains NSW
                      Holiday ets
                                   1997 Q2 NA
                                                   NA
                                                        -42.2
                                                               NA
3 Snowy Mountains NSW
                      Holiday ets
                                   1997 Q3 NA
                                                   NA
                                                        131.
                                                               NA
4 Snowy Mountains NSW
                      Holidav ets
                                   1997 O4 NA
                                                  142.
                                                        -61.0
                                                               NA
5 Snowy Mountains NSW
                      Holiday ets
                                    1998 Q1 101.
                                                  140.
                                                        -27.7
                                                               -0.113
6 Snowy Mountains NSW
                       Holiday ets
                                    1998 Q2 112.
                                                  142.
                                                        -42.2
                                                                0.154
7 Snowy Mountains NSW
                      Holidav ets
                                    1998 03 310.
                                                  148.
                                                        131.
                                                                0.137
8 Snowy Mountains NSW
                      Holiday ets
                                    1998 04 89.8
                                                  148.
                                                        -61.0
                                                                0.0335
9 Snowy Mountains NSW
                      Holiday ets
                                    1999 Q1 112.
                                                  147.
                                                        -27.7
                                                               -0.0687
10 Snowy Mountains NSW
                       Holiday ets
                                    1999 Q2 103.
                                                  147. -42.2
                                                               -0.0199
```

```
fit |>
  filter(Region == "Snowy Mountains") |>
  components(fit) |>
  autoplot()
```

ETS(M,N,A) decomposition Trips = (lag(level, 1) + lag(season, 4)) * (1 + remainder)

fit |> forecast()

```
# A fable: 608 x 7 [10]
# Key: Region, State, Purpose, .model [76]
  Region
               State Purpose .model Quarter Trips .mean
  <chr>
               <chr> <chr> <chr> <qtr> <dist> <dbl>
1 Adelaide
               SA
                     Holiday ets 2018 01 N(210, 457) 210.
2 Adelaide
                     Holiday ets 2018 Q2 N(173, 473) 173.
               SA
3 Adelaide
               SA
                     Holiday ets
                                  2018 Q3 N(169, 489) 169.
4 Adelaide
               SA
                     Holidav ets
                                  2018 04 N(186, 505) 186.
5 Adelaide
               SA
                     Holidav ets
                                  2019 01 N(210, 521) 210.
6 Adelaide
               SA
                     Holiday ets
                                  2019 Q2 N(173, 537) 173.
7 Adelaide
               SA
                     Holiday ets
                                  2019 Q3 N(169, 553) 169.
8 Adelaide
                     Holidav ets
                                  2019 04 N(186, 569) 186.
               SA
9 Adelaide Hills SA
                     Holiday ets
                                  2018 Q1 N(19, 36) 19.4
10 Adelaide Hills SA
                     Holiday ets
                                  2018 Q2 N(20, 36) 19.6
# i 598 more rows
```

```
fit |>
  forecast() |>
  filter(Region == "Snowy Mountains") |>
  autoplot(holidays) +
  labs(x = "Year", y = "Overnight trips (thousands)")
```


Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

Exponential smoothing models

Additive Error		Seasonal Component			
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	A,N,N	A,N,A	<u> </u>	
Α	(Additive)	A,A,N	A,A,A	<u>^,^,^</u>	
A_d	(Additive damped)	A,A _d ,N	A,A_d,A	۸,۸۵,۸ ۱	

Multiplicative Error		Seasonal Component			
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	M,N,N	M,N,A	M,N,M	
Α	(Additive)	M,A,N	M,A,A	M,A,M	
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A _d ,M	

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, **not** equivalent to minimising SSE.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters & initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters & initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2k(k+1)}{T - k - 1}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters & initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2k(k+1)}{T - k - 1}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

BIC = AIC +
$$k(\log(T) - 2)$$
.

AIC and cross-validation

Minimizing the AIC assuming Gaussian residuals is asymptotically equivalent to minimizing one-step time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data.

 Optimize parameters and initial values using MLE.
- Select best method using AICc.
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.
 - Method performed very well in M3 competition.
- Used as a benchmark in the M4 competition.

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

Lab Session 15

Find an ETS model for the Gas data from aus_production.

- Why is multiplicative seasonality necessary here?
- Experiment with making the trend damped. Does it improve the forecasts?

Outline

- 1 Exponential smoothing
- 2 Trend methods
- 3 Lab Session 14
- 4 Seasonal methods
- 5 ETS taxonomy
- 6 Lab Session 15
- 7 Non-Gaussian forecast distributions

Non-Gaussian forecast distributions

Monthly turnover of Victorian cafes


```
vic_cafe |> autoplot(box_cox(Turnover, lambda = 0.2))
```



```
fit <- vic cafe |>
 model(ets = ETS(box_cox(Turnover, 0.2)))
fit
# A mable: 1 x 1
          ets
      <model>
1 <ETS(A,A,A)>
(fc <- fit |> forecast(h = "3 years"))
# A fable: 36 x 4 [1M]
# Key: .model [1]
  model Month
                       Turnover .mean
  <chr> <mth> <dist> <dbl>
1 ets 2019 Jan t(N(13, 0.02)) 608.
         2019 Feb t(N(13, 0.028)) 563.
2 ets
3 ets
         2019 Mar t(N(13, 0.036)) 629.
4 ets
         2019 Apr t(N(13, 0.044)) 615.
5 ets
         2019 May t(N(13, 0.052)) 613.
         2010 \text{ Jun} + (N/12 0 061)) = 02
6 0+0
```

```
fit <- vic cafe |>
  model(ets = ETS(box_cox(Turnover, 0.2)))
fit
# A mable: 1 x 1
          ets
      <model>
1 <ETS(A,A,A)>
(fc <- fit |> forecast(h = "3 years"))
# A fable: 36 x 4 [1M]
# Key:
      .model [1]
  model Month
                       Turnover mean
  <chr>
        <mth>
                       <dist> <dbl>
1 ets
        2019 Jan t(N(13, 0.02)) 608.
2 ets
         2019 Feb t(N(13, 0.028))
                                 563.
3 ets
         2019 Mar t(N(13, 0.036))
                                 629.
4 ets
         2019 Apr t(N(13, 0.044)) 615.
5 ets
         2019 May t(N(13, 0.052))
                                 613.
         2010 Jun + (N(12 0 061))
6 0+0
```

- t(N) denotes a transformed normal distribution.
- back-transformation and bias adjustment is done automatically.

fc |> autoplot(vic_cafe)


```
sim <- fit |> generate(h = "3 years", times = 5, bootstrap = TRUE)
sim
```

```
# A tsibble: 180 x 5 [1M]
# Key: .model, .rep [5]
  .model .rep Month .innov .sim
 <chr> <chr> <chr> <mth> <dbl> <dbl>
        1 2019 Jan -0.0664
1 ets
                             596.
2 ets 1 2019 Feb 0.00344 556.
3 ets
             2019 Mar -0.0395
                             614.
4 ets
              2019 Apr -0.116
                             584.
5 ets
              2019 May 0.0535
                              597.
6 ets
              2019 Jun -0.357
                              519.
7 ets
             2019 Jul -0.245
                             530.
8 ets
              2019 Aug -0.0570
                             549.
9 ets
              2019 Sep 0.0212
                             547.
10 ets
              2019 Oct 0.0278
                              560.
# i 170 more rows
```

```
vic_cafe |>
  filter(year(Month) >= 2008) |>
  ggplot(aes(x = Month)) +
  geom_line(aes(y = Turnover)) +
  geom_line(aes(y = .sim, colour = as.factor(.rep)), data = sim) +
  labs(title = "Monthly turnover of Victorian cafes") +
  guides(col = FALSE)
```



```
fc <- fit |> forecast(h = "3 years", bootstrap = TRUE)
fc
# A fable: 36 x 4 [1M]
# Key:
          .model [1]
   .model Month Turnover .mean
  <chr>
        <mth> <dist> <dbl>
         2019 Jan sample[5000]
1 ets
                               608.
2 ets
         2019 Feb sample[5000]
                               563.
3 ets
         2019 Mar sample[5000]
                               629.
4 ets
         2019 Apr sample[5000]
                               615.
         2019 May sample[5000]
5 ets
                               612.
6 ets
         2019 Jun sample[5000]
                               592.
7 ets
         2019 Jul sample[5000]
                               623.
8 ets
         2019 Aug sample[5000]
                               640.
         2019 Sep sample[5000]
9 ets
                               630.
10 ets
         2019 Oct sample[5000]
                               641.
# i 26 more rows
```

```
fc |> autoplot(vic_cafe) +
  labs(title = "Monthly turnover of Victorian cafes")
```

