Elements of Probability Theory (Part I)

Prof. Americo Cunha Jr.

Rio de Janeiro State University - UERJ

americo.cunha@uerj.br

www.americocunha.org

Probability in Dimension 1

Random experiment

An experiment which repeated under same fixed conditions produce different results is called random experiment.

Examples:

1. Rolling a cube-shaped fare die

2. Choosing an integer even number randomly

3. Measuring temperature

Probability space

The mathematical framework in which a random experiment is described consists of a triplet $(\Omega, \Sigma, \mathcal{P})$, called probability space.

The elements of a probability space are:

- Ω: sample space (set with all possible events)
- Σ : σ -algebra on Ω (set with relevant events only)
- P: probability measure (measure of expectation of an event occurrence)

Sample space

A non-empty set which contains all possible events for a certain random experiment is called sample space, being represented by Ω .

Examples:

1. Rolling a cube-shaped fare die (finite Ω)

$$\Omega = \{1,2,3,4,5,6\}$$

2. Choosing an integer even number randomly (denumerable Ω)

$$\Omega = \{\cdots, -8, -6, -4, -2, \ 0, \ 2, \ 4, \ 6, \ 8, \cdots\}$$

3. Measuring temperature in Kelvin (non-denumerable Ω)

$$\Omega = [a, b] \subset [0, +\infty)$$

σ -algebra of events

In general, not all of the events in Ω are of interest.

Intuitively, a σ -algebra on Ω is the set of relevant outcomes for a random experiment. Formally, Σ is a σ -algebra on Ω if

- $\phi \in \Sigma$ (contains the empty set)
- $\mathcal{A}^c \in \Sigma$ for any $\mathcal{A} \in \Sigma$ (closed under complementation)
- $\bigcup_{i=1}^{\infty} \mathcal{A}_i \in \Sigma$ for any $\mathcal{A}_i \in \Sigma$ (closed under denumerable unions)

Examples of σ -algebras

Sample space: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Are σ -algebras:

- $\Sigma = \{\phi, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}$
- $\Sigma = \{\phi, \{1, 2, 3, 4\}, \{5, 6\}, \Omega\}$
- $\Sigma = 2^{\Omega}$ (set of all subsets)

Are not σ -algebras:

- $\Sigma = \{\phi, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \Omega\}$
- $\Sigma = \{\phi, \{1, 2\}, \{3, 4\}, \{5, 6\}, \Omega\}$

Probability measure

A probability measure is a function $\mathcal{P}:\Sigma\to[0,1]\subset\mathbb{R}$ such that

- $\mathcal{P} \{ \mathcal{A} \} \ge 0$ for any $\mathcal{A} \in \Sigma$ (probability is nonnegative)
- $\mathcal{P} \{\Omega\} = 1$ (entire space has probability one)
- $\mathcal{P}\left\{\bigcup_{i=1}^{\infty} \mathcal{A}_i\right\} = \sum_{i=1}^{\infty} \mathcal{P}\left\{\mathcal{A}_i\right\}$ for any \mathcal{A}_i mutually disjoint $(\sigma$ -additivity)

Remark:

 $\mathcal{P}\left\{\phi\right\} = 0$ (empty set has probability zero)

A fair coin is thrown twice.

The number of faces is of interest.

A fair coin is thrown twice.

The number of faces is of interest.

Probability space 1:

$$\Omega_1 = \{(H,H), (H,T), (T,H), (T,T)\}$$

A fair coin is thrown twice.

The number of faces is of interest.

Probability space 1:

$$\begin{split} &\Omega_1 = \big\{ (\textit{H},\textit{H}), (\textit{H},\textit{T}), (\textit{T},\textit{H}), (\textit{T},\textit{T}) \big\} \\ &\mathcal{P}_1 \left\{ (\textit{H},\textit{H}) \right\} = 1/4, \quad \mathcal{P}_1 \left\{ (\textit{H},\textit{T}) \right\} = 1/4, \\ &\mathcal{P}_1 \left\{ (\textit{T},\textit{H}) \right\} = 1/4, \quad \mathcal{P}_1 \left\{ (\textit{T},\textit{T}) \right\} = 1/4 \end{split}$$

A fair coin is thrown twice.

The number of faces is of interest.

Probability space 1:

$$\begin{split} &\Omega_1 = \big\{ (\textit{H},\textit{H}), (\textit{H},\textit{T}), (\textit{T},\textit{H}), (\textit{T},\textit{T}) \big\} \\ &\mathcal{P}_1 \left\{ (\textit{H},\textit{H}) \right\} = 1/4, \quad \mathcal{P}_1 \left\{ (\textit{H},\textit{T}) \right\} = 1/4, \\ &\mathcal{P}_1 \left\{ (\textit{T},\textit{H}) \right\} = 1/4, \quad \mathcal{P}_1 \left\{ (\textit{T},\textit{T}) \right\} = 1/4 \end{split}$$

Probability space 2:

$$\Omega_2 = \{{\scriptstyle 0,1,2}\}$$

A fair coin is thrown twice.

The number of faces is of interest.

Probability space 1:

$$\begin{split} &\Omega_1 = \big\{ (\textit{H},\textit{H}), (\textit{H},\textit{T}), (\textit{T},\textit{H}), (\textit{T},\textit{T}) \big\} \\ &\mathcal{P}_1 \left\{ (\textit{H},\textit{H}) \right\} = 1/4, \quad \mathcal{P}_1 \left\{ (\textit{H},\textit{T}) \right\} = 1/4, \\ &\mathcal{P}_1 \left\{ (\textit{T},\textit{H}) \right\} = 1/4, \quad \mathcal{P}_1 \left\{ (\textit{T},\textit{T}) \right\} = 1/4 \end{split}$$

Probability space 2:

$$\Omega_2=\{{\scriptstyle 0,1,2}\}$$

$$\mathcal{P}_{2} \{0\} = 1/4, \quad \mathcal{P}_{2} \{1\} = 1/2, \quad \mathcal{P}_{2} \{2\} = 1/4$$

A. C. Morgado, J. B. Pitombeira, P. C. P. Carvalho, P. J. Fernandez, Análise Combinatória e Probabilidade. SBM. 2016

A point is randomly choosen in a square (side b).

Event A: point lie above main diagonal

Event B: point lie in main diagonal

A point is randomly choosen in a square (side b).

Event A: point lie above main diagonal

Event B: point lie in main diagonal

$$\mathcal{P}\left\{A\right\} = \frac{\text{area of upper triangle}}{\text{area of square}} = \frac{0.5 \, b^2}{b^2} = \frac{1}{2}$$

A point is randomly choosen in a square (side b).

Event A: point lie above main diagonal

Event B: point lie in main diagonal

$$\mathcal{P}\left\{A\right\} = \frac{\text{area of upper triangle}}{\text{area of square}} = \frac{0.5 \, b^2}{b^2} = \frac{1}{2}$$

$$\mathcal{P}\left\{B\right\} = \frac{\text{area of main diagonal}}{\text{area of square}} = \frac{0}{b^2} = 0$$

A point is randomly choosen in a square (side b).

Event A: point lie above main diagonal

Event B: point lie in main diagonal

$$\mathcal{P}\left\{A\right\} = \frac{\text{area of upper triangle}}{\text{area of square}} = \frac{0.5 \, b^2}{b^2} = \frac{1}{2}$$

$$\mathcal{P}\left\{B\right\} = \frac{\text{area of main diagonal}}{\text{area of square}} = \frac{0}{b^2} = 0$$

$$\mathcal{P}\left\{\mathit{C}\right\} = \frac{\mathsf{area\ outside\ main\ diagonal}}{\mathsf{area\ of\ square}} = \frac{\mathit{b}^2 - \mathit{0}}{\mathit{b}^2} = 1$$

Remarks on probability

Probability zero

- An impossible event has probability zero
 (e.g. roll a six faces dice, numbered from 1 to 6, and get 7)
- Not every event with probability zero is impossible
 (e.g. randomly pick a point on the main diagonal of a square)

Probability one

- An event which occurrence is certain has probability one (e.g. throw a coin and obtain head or tail)
- Not every event with probability one occurs
 (e.g. randomly pick a point outside square's main diagonal)

Conditional probability

Consider a pair of random events A and B such that $\mathcal{P}\{B\} > 0$.

The <u>conditional probability</u> of A, given the occurrence of B, denoted as $\mathcal{P}\left\{A|B\right\}$, is defined as

$$\mathcal{P}\left\{A\mid B\right\} = \frac{\mathcal{P}\left\{A\cap B\right\}}{\mathcal{P}\left\{B\right\}}.$$

It follows that

$$\mathcal{P}\left\{A\cap B\right\} = \mathcal{P}\left\{A\mid B\right\} \times \mathcal{P}\left\{B\right\}.$$

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B =value rolled on die 2

What is the probability that A = 2 given that $A + B \le 5$?

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B =value rolled on die 2

What is the probability that A = 2 given that $A + B \le 5$?

			В						
•	•	1	2	3	4	5	6		
	1	2	3	4	5	6	7		
	2	3	4	5	6	7	8		
А	3	4	5	6	7	8	9		
A	4	5	6	7	8	9	10		
	5	6	7	8	9	10	11		
	6	7	8	9	10	11	12		

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B =value rolled on die 2

What is the probability that A = 2 given that $A + B \le 5$?

A-2										
					В					
1	•	1	2	3	4	5	6			
	1	2	3	4	5	6	7			
	2	3	4	5	6	7	8			
A	3	4	5	6	7	8	9			
٨	4	5	6	7	8	9	10			
	5	6	7	8	9	10	11			
	6	7	8	9	10	11	12			

4-2

$$\mathcal{P}\left\{A\right\} = 6/36$$

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B =value rolled on die 2

What is the probability that A = 2 given that $A + B \le 5$?

A=2

$$\mathcal{P}\left\{A\right\} = 6/36$$

					В		
_		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
A	3	4	5	6	7	8	9
^	4	5	6	7	8	9	10
	5	6	7	8	9	10	-11
	6	7	8	9	10	11	12

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B = value rolled on die 2

What is the probability that A = 2 given that A + B < 5?

A=2

			В							
1	•	1	2	3	4	5	6			
	1	2	3	4	5	6	7			
	2	3	4	5	6	7	8			
Α	3	4	5	6	7	8	9			
^	4	5	6	7	8	9	10			
	5	6	7	8	9	10	11			
	6	7	8	9	10	11	12			

$$\mathcal{P}\left\{A\right\} = 6/36$$

 $A+B \le 5$

	+		В						
'			2	3	4	5	6		
	1	2	3	4	5	6	7		
	2	3	4	5	6	7	8		
А	3	4	5	6	7	8	9		
^	4	5	6	7	8	9	10		
	5	6	7	8	9	10	11		
	6	7	8	9	10	11	12		

$$\mathcal{P}\left\{A+B\leq 5\right\}=10/36$$

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B =value rolled on die 2

What is the probability that A = 2 given that $A + B \le 5$?

A=2

			В							
+		1	2	3	4	5	6			
	1	2	3	4	5	6	7			
	2	3	4	5	6	7	8			
A	3	4	5	6	7	8	9			
Α.	4	5	6	7	8	9	10			
	5	6	7	8	9	10	11			
	6	7	8	9	10	11	12			

$$\mathcal{P}\left\{A\right\}=6/36$$

 $A+B \le 5$

+					В		
		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
A	3	4	5	6	7	8	9
^	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$\mathcal{P}\left\{ A+B\leq 5\right\} =10/36$$

4	<i>A</i> + <i>B</i> ≤5
---	------------------------

+					В		
			2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
А	3	4	5	6	7	8	9
^	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Somebody rolls a pair of six-sided dice.

A =value rolled on die 1

B =value rolled on die 2

What is the probability that A = 2 given that $A + B \le 5$?

A=2

$$\mathcal{P}\left\{A\right\}=6/36$$

 $A+B \le 5$

+			В							
,		1	2	3	4	5	6			
	1	2	3	4	5	6	7			
	2	3	4	5	6	7	8			
A	3	4	5	6	7	8	9			
^	4	5	6	7	8	9	10			
	5	6	7	8	9	10	11			
	6	7	8	9	10	11	12			

$$\mathcal{P}\left\{A+B\leq 5\right\}=10/36$$

 $A \mid A+B \leq 5$

					В		
1	•	1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
Α	3	4	5	6	7	8	9
A	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$\mathcal{P}\left\{A \mid A+B \leq 5\right\} = 3/10$$

Independence of events

If the occurrence of an event B does not affect the occurrence of an event A one has

$$\mathcal{P}\left\{A\mid B\right\} = \mathcal{P}\left\{A\right\}.$$

In this way, once $\mathcal{P}\left\{A\cap B\right\} = \mathcal{P}\left\{A\mid B\right\} \times \mathcal{P}\left\{B\right\}$ it is true that

$$\mathcal{P}\left\{A\cap B\right\} = \mathcal{P}\left\{A\right\} \times \mathcal{P}\left\{B\right\}.$$

Events A and B in which the latter holds are said to be independent.

Remark:

This notion generalizes itself naturally to n events.

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen" Event 2: ♠ "spade"

Are these events independent?

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen" Event 2: ♠ "spade"

Are these events independent?

$$\mathsf{cards} = \left\{ \begin{array}{c} 2\lozenge, 3\lozenge, 4\lozenge, 5\lozenge, 6\lozenge, 7\lozenge, 8\lozenge, 9\lozenge, 10\lozenge, J\lozenge, Q\lozenge, K\lozenge, A\lozenge, \\ 2\$, 3\$, 4\$, 5\$, 6\$, 7\$, 8\$, 9\$, 10\$, J\$, Q\$, K\$, A\$, \\ 2\heartsuit, 3\heartsuit, 4\heartsuit, 5\heartsuit, 6\heartsuit, 7\heartsuit, 8\heartsuit, 9\heartsuit, 10\heartsuit, J\heartsuit, Q\heartsuit, K\heartsuit, A\heartsuit, \\ 2\$, 3\$, 4\$, 5\$, 6\$, 7\$, 8\$, 9\$, 10\$, J\$, Q\$, K\$, A\$ \end{array} \right\}$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: 🏚 "spade"

Are these events independent?

$$cards = \left\{ \begin{array}{c} 2 \lozenge, 3 \lozenge, 4 \lozenge, 5 \lozenge, 6 \lozenge, 7 \lozenge, 8 \lozenge, 9 \lozenge, 10 \lozenge, J \lozenge, Q \lozenge, K \lozenge, A \lozenge, \\ 2 \clubsuit, 3 \clubsuit, 4 \clubsuit, 5 \clubsuit, 6 \clubsuit, 7 \clubsuit, 8 \clubsuit, 9 \clubsuit, 10 \clubsuit, J \clubsuit, Q \clubsuit, K \clubsuit, A \clubsuit, \\ 2 \heartsuit, 3 \heartsuit, 4 \heartsuit, 5 \heartsuit, 6 \heartsuit, 7 \heartsuit, 8 \heartsuit, 9 \heartsuit, 10 \heartsuit, J \heartsuit, Q \heartsuit, K \heartsuit, A \heartsuit, \\ 2 \spadesuit, 3 \spadesuit, 4 \spadesuit, 5 \spadesuit, 6 \spadesuit, 7 \spadesuit, 8 \spadesuit, 9 \spadesuit, 10 \spadesuit, J \spadesuit, Q \spadesuit, K \spadesuit, A \spadesuit \end{array} \right\}$$

$$\mathcal{P}_1\left\{Q\right\}=4/52$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: \spadesuit "spade"

Are these events independent?

$$\mathsf{cards} = \left\{ \begin{array}{c} 2\lozenge, 3\lozenge, 4\lozenge, 5\lozenge, 6\lozenge, 7\lozenge, 8\lozenge, 9\lozenge, 10\lozenge, J\lozenge, Q\lozenge, K\lozenge, A\lozenge, \\ 2\$, 3\$, 4\$, 5\$, 6\$, 7\$, 8\$, 9\$, 10\$, J\$, Q\$, K\$, A\$, \\ 2\heartsuit, 3\heartsuit, 4\heartsuit, 5\heartsuit, 6\heartsuit, 7\heartsuit, 8\heartsuit, 9\heartsuit, 10\heartsuit, J\heartsuit, Q\heartsuit, K\heartsuit, A\heartsuit, \\ 2\$, 3\$, 4\$, 5\$, 6\$, 7\$, 8\$, 9\$, 10\$, J\$, Q\$, K\$, A\$, A\$ \end{array} \right\}$$

$$\mathcal{P}_1\left\{ Q
ight\} = 4/52 \ \mathcal{P}_1\left\{ lack
ight\} = 13/52$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen" Event 2: ♠ "spade"

Are these events independent?

$$\mathsf{cards} = \left\{ \begin{array}{c} 2\lozenge, 3\lozenge, 4\lozenge, 5\lozenge, 6\lozenge, 7\lozenge, 8\lozenge, 9\lozenge, 10\lozenge, J\lozenge, Q\lozenge, K\lozenge, A\lozenge, \\ 2\clubsuit, 3\clubsuit, 4\clubsuit, 5\clubsuit, 6\clubsuit, 7\clubsuit, 8\clubsuit, 9\clubsuit, 10\clubsuit, J\clubsuit, Q\clubsuit, K\clubsuit, A\clubsuit, \\ 2\heartsuit, 3\heartsuit, 4\heartsuit, 5\heartsuit, 6\heartsuit, 7\heartsuit, 8\heartsuit, 9\heartsuit, 10\heartsuit, J\heartsuit, Q\heartsuit, K\heartsuit, A\heartsuit, \\ 2\spadesuit, 3\spadesuit, 4\spadesuit, 5\spadesuit, 6\spadesuit, 7\spadesuit, 8\spadesuit, 9\spadesuit, 10\spadesuit, J\spadesuit, Q♠, K♠, A♠ \end{array} \right\}$$

$$\mathcal{P}_1 \{Q\} = 4/52$$

$$\mathcal{P}_1 \{ \spadesuit \} = 13/52$$

$$\mathcal{P}_1 \{Q \spadesuit \} = 1/52$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: ♠ "spade"

Are these events independent?

$$cards = \left\{ \begin{array}{c} 2 \lozenge, 3 \lozenge, 4 \lozenge, 5 \lozenge, 6 \lozenge, 7 \lozenge, 8 \lozenge, 9 \lozenge, 10 \lozenge, J \lozenge, Q \lozenge, K \lozenge, A \lozenge, \\ 2 \clubsuit, 3 \clubsuit, 4 \clubsuit, 5 \clubsuit, 6 \clubsuit, 7 \clubsuit, 8 \clubsuit, 9 \clubsuit, 10 \clubsuit, J \clubsuit, Q \clubsuit, K \clubsuit, A \clubsuit, \\ 2 \heartsuit, 3 \heartsuit, 4 \heartsuit, 5 \heartsuit, 6 \heartsuit, 7 \heartsuit, 8 \heartsuit, 9 \heartsuit, 10 \heartsuit, J \heartsuit, Q \heartsuit, K \heartsuit, A \heartsuit, \\ 2 \spadesuit, 3 \spadesuit, 4 \spadesuit, 5 \spadesuit, 6 \spadesuit, 7 \spadesuit, 8 \spadesuit, 9 \spadesuit, 10 \spadesuit, J \spadesuit, Q \spadesuit, K \spadesuit, A \spadesuit \end{array} \right\}$$

$$\mathcal{P}_1 \left\{ Q \right\} = 4/52$$

$$\mathcal{P}_1 \left\{ A \right\} = 13/52$$

$$\mathcal{P}_1 \left\{ Q \right\} = 1/52 = \underbrace{4/52}_{\mathcal{P}_1 \left\{ Q \right\}} \times \underbrace{13/52}_{\mathcal{P}_1 \left\{ A \right\}}$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: ♠ "spade"

Are these events independent?

$$\mathsf{cards} = \left\{ \begin{array}{c} 2\lozenge, 3\lozenge, 4\lozenge, 5\lozenge, 6\lozenge, 7\lozenge, 8\lozenge, 9\lozenge, 10\lozenge, J\lozenge, Q\lozenge, K\lozenge, A\lozenge, \\ 2\$, 3\$, 4\$, 5\$, 6\$, 7\$, 8\$, 9\$, 10\$, J\$, Q\$, K\$, A\$, \\ 2\heartsuit, 3\heartsuit, 4\heartsuit, 5\heartsuit, 6\heartsuit, 7\heartsuit, 8\heartsuit, 9\heartsuit, 10\heartsuit, J\heartsuit, Q\heartsuit, K\heartsuit, A\heartsuit, \\ 2\$, 3\$, 4\$, 5\$, 6\$, 7\$, 8\$, 9\$, 10\$, J\$, Q\$, K\$, A\$ \end{array} \right\}$$

$$\begin{array}{l} \mathcal{P}_1 \left\{ Q \right\} = 4/52 \\ \mathcal{P}_1 \left\{ \spadesuit \right\} = 13/52 \\ \mathcal{P}_1 \left\{ Q \spadesuit \right\} = 1/52 = \underbrace{4/52}_{\mathcal{P}_1 \left\{ Q \right\}} \times \underbrace{13/52}_{\mathcal{P}_1 \left\{ \spadesuit \right\}} \\ \end{array}$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen" Event 2: ♠ "spade"

Are these events independent?

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen" Event 2: ♠ "spade"

Are these events independent?

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: 🏚 "spade"

Are these events independent?

$$\mathcal{P}_2\left\{Q\right\} = 28/52$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: 🏚 "spade"

Are these events independent?

$$\mathcal{P}_2\left\{ Q
ight\} = 28/52$$
 $\mathcal{P}_2\left\{
ightharpoonup
ight\} = 1/2$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: 🏚 "spade"

Are these events independent?

$$\mathcal{P}_2 \{Q\} = 28/52$$

$$\mathcal{P}_2 \{\spadesuit\} = 1/2$$

$$\mathcal{P}_2 \{Q\spadesuit\} = 1/2$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen"

Event 2: 🏚 "spade"

Are these events independent?

$$\mathcal{P}_{2} \{Q\} = 28/52$$

$$\mathcal{P}_{2} \{ \mathbf{A} \} = 1/2$$

$$\mathcal{P}_{2} \{Q\mathbf{A} \} = 1/2 \neq \underbrace{28/52}_{\mathcal{P}_{2} \{\mathbf{A} \}} \times \underbrace{1/2}_{\mathcal{P}_{2} \{\mathbf{A} \}}$$

A card is drawn from a deck with 52 unknown cards.

Event 1: Q "queen" Event 2: ♠ "spade"

Are these events independent?

$$\mathcal{P}_{2} \{Q\} = 28/52$$

$$\mathcal{P}_{2} \{ \mathbf{A} \} = 1/2$$

$$\mathcal{P}_{2} \{Q\mathbf{A} \} = 1/2 \neq \underbrace{28/52}_{\mathcal{P}_{2} \{Q\}} \times \underbrace{1/2}_{\mathcal{P}_{2} \{\mathbf{A} \}}$$

Further remarks on probability

The last example shows that:

- Different probability spaces, for the same random experiment, can produce different predictions
- A probability space that does not accurately describe a random event can produce completely erroneous predictions
- The notion of independence strongly depends on the probability measure employed

A. Cunha Jr (UERJ)

References

G. Grimmett and D. Welsh, Probability: An Introduction. Oxford University Press, 2 edition, 2014.

J. Jacod and P. Protter, Probability Essentials. Springer, 2nd edition, 2004.

A. Klenke, Probability Theory: A Comprehensive Course. Springer, 2nd edition, 2014.

A. Papoulis and S. U. Pillai, **Probability, Random Variables and Stochastic Processes**. McGraw-Hill Europe: 4th edition, 2002.

How to cite this material?

A. Cunha Jr, *Elements of Probability Theory (Part I)*, Rio de Janeiro State University – UERJ, 2021.

These class notes may be shared under the terms of Creative Commons BY-NC-ND 4.0 license, for educational purposes only.

Content excluded from our Creative Commons license

- Die: Google images, several sources.
- Even / Odd: Google images, several sources.
- Thermometers: Google images, several sources.
- Portinari Coin: https://www.bcb.gov.br/cedulasemoedas/moedascomemorativas
- Yellow box: Google images, several sources.
- Dice: Google images, several sources.
- Conditional probability tables: https://en.wikipedia.org/wiki/Conditional_probability

