

Instituto Superior de Engenharia de Lisboa

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores Redes de Internet (LEIC/LEETC/LEIM/LEIRT)

3ª Ficha de Avaliação - Teórica - 22/11/2020

- A resposta à ficha é individual. Para ter aprovação à disciplina deve realizar e entregar a maioria das fichas propostas.
- A bibliografia a consultar é a recomendada para a disciplina. Pode e deve procurar mais informação em outras fontes (ex: os livros da biblioteca, as normas e a Internet).
- Deve justificar convenientemente todas as suas respostas, quer das perguntas de desenvolvimento, quer das perguntas de escolha múltipla.
- Recorra ao seu professor para esclarecer as dúvidas.
- Data limite de entrega: Ver Moodle

Documentação

Para a elaboração deste trabalho pode consultar, entre outra, a seguinte bibliografia:

- "Sam Halabi, OSPF DESIGN GUIDE, Cisco Systems, April, 1996"
- Folhas/acetatos da disciplina
- RFC 2328 referente ao OSPFv2 (http://www.ietf.org/rfc/rfc2328.txt)

Para além da bibliografia aqui sugerida e da documentação disponibilizada pelo docente pode consultar a Internet e livros disponíveis na biblioteca do ISEL.

Considere a seguinte topologia de rede:

Para a realização da ficha estude previamente as funções dos diferentes *routers* OSPF: os diferentes tipos de LSA; como o OSPF descobre vizinhos e estabelece adjacências e o que são áreas *Stub, Totally Stub e Not-so-stubby*. Depois execute no GNS3 a topologia da rede, verifique o mapeamento de endereços IP efetuado e estude as configurações realizadas.

Pretende-se com esta ficha que o aluno tente responder às questões teóricas e que depois recorra ao resultado da simulação para a sua verificação e melhor compreensão. Na última página do guia estão exemplos de comandos IOS que podem ser úteis para a execução das configurações solicitadas no guia.

Descrição da topologia da rede

A rede pode ser considerada um sistema autónomo de uma empresa (AS) que utiliza maioritariamente *routing* OSPFv2 mas tem algumas filiais de pequena dimensão com encaminhamento RIP. A topologia de rede apresentada segue esse princípio sendo a rede principal OSPF constituída pela área de *backbone* e mais 3 áreas associadas. As filias 1 e 2 utiliza encaminhamento estático sendo as suas redes externas simuladas em GNS3 a partir das interfaces *loopback* 0 a 3 no *router* R3 e R9 respetivamente. A filial 3 utiliza *routing* RIP sendo as suas rotas, bem como as rotas das redes simuladas, injetadas por redistribuição no domínio OSPF.

Na simulação fornecida a rede OSPF tem a área 2 configurada como NSSA (*Not-so-stubby*) e a área 3, que viola a regra OSPF, está isolada da área de *backbone* (área 0) por não ter sido configurada a ligação virtual à área 0.

Os mapeamentos de endereços IPV4 atribuídos à rede principal e filiais estão indicados nos quadros abaixo.

	Bloco de endereços da área	Endereço de rede atribuída às redes da área	Rede	Comentário
ÁREA O	140.1.X.0/16	140.10.0.0/24 140.10.1.0/24 140.10.2.0/24 140.10.3.0/24 140.10.4.0/24	R5 <-> R4 R5 <-> R6 R4 <-> R6 R4 <-> R7 R6 <-> R7	Primeiro <i>router</i> Tem o 1º endereço IP da rede (.1)
ÁREA 1	140.11.X.0/16	140.11. <mark>0</mark> .0/24 140.11.1.0/24 140.11.2.0/24	R2 <-> R3 R2 <-> R4 R4 <-> R3	Segundo <i>router</i>
ÁREA 2	140.12.X.0/16	140.12.0.0/24 140.12.1.0/24 140.12.2.0/24	R8 <-> R6 R8 <-> R10 R6 <-> R9	Tem o 2º endereço IP da rede (.2)
ÁREA 3	140.13.X.0/16	140.12.3.0/24 140.13.0.0/24 140.13.1.0/24	R10 <-> R9 R1,R2,R13,R14 R2 <-> R15	

	Diago do endercos de	Endereço de rede da Filial	Interfaces de	Endarage de interfece de lecubeek
	Bloco de endereços da Filial	rede da Filial	Loopback	Endereço da interface de loopback
		10.0.0.0/24	Loopback 0	
		10.0.1.0/24	Loopback 1	
FILIAL 1	10.0.0.0/22	10.0.2.0/24	Loopback 2	1º endereço IP
		10.0.3.0/24	Loopback 3	da rede (.1)
		90.0.0.0/24	Loopback 0	
FILIAL 2	90.0.0.0/22	90.0.1.0/24	Loopback 1	
		90.0.2.0/24	Loopback 2	
		90.0.3.0/24	Loopback 3	
		20.1.0.0/24	R3 <-> R11	O 1º router tem o 1º endereço da rede
FILIAL 3	20.X.0.0/24	20.2.0.0/24	R11 <-> R12	(.1) e o 2º router o segundo endereço
		20.3.0.0/24	R9 <-> R12	(.2

I - Considere apenas a área 3 nas questões 1 a 19

Fase inicial - Considere área 3 sem a ligação virtual ao backbone

- 1) Verifique a tabela de encaminhamento do R14 e interprete os valores da distância administrativa e métrica indicados na/s rota/s.
- 2) Comente a seguinte afirmação: "As rotas *Inter-area* são encaminhadas num protocolo baseado na distância" (vector-distance).
- 3) Indique quais são os DR ativos e os BDR nas redes desta área.
- 4) Quem são os vizinhos do R1?
- 5) Quais os *routers* que são adjacentes a R1?
- 6) O estado 2WAY/DROTHER significa de houve falha na sincronização entre as bases de dados dos routers?
- 7) Indique uma solução possível de configuração de modo a que o R1 passe a ser o DR ativo na rede do *switch*1.
- 8) Ao alterar o DR (*designated router*) na rede onde se encontra o SW1 isso afeta as LSDB (*Link State Database*) e as tabelas de *routing* de todos os outros *routers* da área?
- 9) Se no R1 pretender diminuir o intervalo de tempo associado à deteção de problemas entre ele e o R13. O que teria de fazer para que a rede continuasse a funcionar sem problemas?
- 10) Qual a quantidade de LSA de cada tipo na base de dados (LSDB) da área 3 (R1)

Type 1	Type 2	Type 3	Type 4	Type 5	Type 7

Verifique o resultado através do comando R1#show ip ospf database

Fase 1 – Configure a ligação virtual através de área 1 entre o R2 e o R7.

- 11) Verifique a tabela de encaminhamento do R1 e interprete as rotas indicadas
- 12) Qual a quantidade de LSA de cada tipo na base de dados (LSDB) da área 3 (R1)

Type 1	Type 2	Type 3	Type 4	Type 5	Type 7
--------	--------	--------	--------	--------	--------

13) Qual a razão pela qual a existir sumarização em OSPF esta apenas é efetuada nos ABR?

Fase 2 – Configure a área 3 como *Stub*.

- 14) Verifique a tabela de encaminhamento do R1 e interprete as rotas indicadas
- 15) Qual a quantidade de LSA de cada tipo na base de dados (LSDB) da área 3 (R1)

_ ,					
Type 1	IIVna冫	Type 3	Type 4	IVnah	Type 7
iype i	INPEZ	I ype o	IYPCT	I ype o	I ype i

 	 	<u> </u>	

16) Quais os LSA gerados e filtrados pelo R2

Fase 3 – Configure a área 3 como *Totally-stub*.

- 17) Verifique a tabela de encaminhamento do R1 e interprete as rotas indicadas
- 18) Qual a quantidade de LSA de cada tipo na base de dados (LSDB) da área 3 (R1)

Type 1	Type 2	Type 3	Type 4	Type 5	Type 7

19) Quais os LSA gerados e filtrados pelo R2

II - Considere agora a topologia completa com a área 3 configurada como Totally-stub

20) Identifique os *routers* internos, *Area Border Routers* (ABR) e *Autonomus System Border Routers* (ASBR) (marque com um X na tabela seguinte)

	_	•					
Router/Tipo	Interno	ABR	ASBR	Router/Tipo	Interno	ABR	ASBR
R1				R9			
R2				R10			
R3				R11			
R4				R12			
R5				R13			
R6				R14			
R7				R15			
R8							

b) E1 – OSPF external type 2:_____ E2 – OSPF external type 1:____

- c) Justifique a métrica indicada para o acesso às rotas externas 10.0.0.0/22 e 90.0.0.0/22.
- 22) A Qual a quantidade de LSA de cada tipo na base de dados (LSDB) da área 2 (R8)

Type 1	Type 2	Type 3	Type 4	Type 5	Type 7

- 23) A área 2 consegue comunicar com a filial 1?
- 24) Face à eventual impossibilidade de comunicação da área 2 com a filial 1 indique uma possível solução para ultrapassar essa situação.

25) A partir dos LSA indicados e retirados da LSDB do R5, justifique, de uma forma resumida, a necessidade da existência dos LSA tipo 4.

R5#sh ip ospf database external adv-router 3.3.3.3 OSPF Router with ID (5.5.5.5) (Process ID 1)

Type-5 AS External Link States

Routing Bit Set on this LSA

LS age: 1221

Options: (No TOS-capability, DC) LS Type: AS External Link

Link State ID: 10.0.0.0 (External Network Number)

Advertising Router: 3.3.3.3 LS Seg Number: 80000004 Checksum: 0x703F

Length: 36 Network Mask: /24

Metric Type: 2 (Larger than any link state path)

TOS: 0 Metric: 1000

Forward Address: 0.0.0.0

External Route Tag: 0

R5#sh ip ospf database asbr-summary adv-router 4.4.4.4

OSPF Router with ID (5.5.5.5) (Process ID 1)

Summary ASB Link States (Area 0)

Routing Bit Set on this LSA

LS age: 1004

Options: (No TOS-capability, DC, Upward) LS Type: Summary Links(AS Boundary Router) Link State ID: 3.3.3.3 (AS Boundary Router address)

Advertising Router: 4.4.4.4 LS Seg Number: 80000004 Checksum: 0x7C9F

Length: 28 Network Mask: /0 TOS: 0 Metric:

- 26) Assumindo que a rede representada na topologia já convergiu, qual seria o percurso de dois pacotes IPv4 consecutivos enviados do R3 para o R10?
- 27) Qual o motivo da inclusão do comando "auto-cost reference-bandwith 1000" na configuração dos routers?

II - Rede RIP da Filial 3 e sua ligação ao domínio OSPF

- 28) O R3 anuncia as redes do domínio OSPF para o domínio RIP através da interface f1/1?
- 29) As redes de interligação (R3<->R11 e R9<-R12) são propagadas para a rede principal por OSPF ou redistribuição RIP?
- 30) Poder-se-ia utilizar RIPv1 na rede da Filial 3?
- 31) Em funcionamento normal (sem falhas nos equipamentos e ligações) a comunicação da rede OSPF com a rede da Filial 3 é feira através de R3 ou R9?

III - Utilização do Wireshark

32) No arranque da simulação visualize através do Wireshark as mensagens OSPF trocadas entre os routers R4 e R5 em que se elegem o DR e BDR e se sincronizam as LSDB. Inspecione o conteúdo de mensagens "Hello", "Database Description", "Link State Request", "Link State Update" e "Link State Acknowledge".

IV Comandos IOS

Indicam-se a seguir exemplos de comandos OSPF e RIP úteis para a compreensão e realização da ficha.

Comandos show

Verificar as tabelas de encaminhamento:

show ip route show ip route rip show ip roure ospf

Verificar as relações de adjacência do OSPF:

```
show ip ospf neighbor
show ip ospf neighbor detail
```

Verificar a configuração ospf da/s interface/s:

```
show ip ospf interface (todas)
show ip ospf interface brief
show ip ospf interface f1/0
show ip ospf interface loopback 0
```

Verificar a base de dados OSPF:

```
show ip ospf database
show ip ospf database router
show ip ospf database network
```

Verificar a base de dados RIP:

```
show ip rip database
```

Verificar a configuração do router:

```
show running-config
show run | session ospf
Show run | include ip route
```

Comandos Ping

Ping normal

```
Ping 140.12.0.1
```

Ping estendido

```
R5#ping
Protocol [ip]: ip
Target IP address: 140.13.0.2
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 140.10.1.1
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 140.13.0.2, timeout is 2 seconds:
Packet sent with a source address of 140.10.1.1
!!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 64/80/88 ms
```

Pings múltiplos através da ferramenta tclsh: (Tool command language shell)

```
tclsh
foreach address {
140.11.0.1
140.11.0.2
140.12.0.1} {ping $address}
exit
```

Comandos OSPF

Configurar do ID do router:

router ospf 1 router-id 2.2.2.2

Alterar a prioridade do ID do router na relação de vizinhança:

R1#(config-if)# ip ospf priority 5

Configurar o OSPF nos routers - Área normal:

router ospf 1

network 140.10.1.1 0.0.0.0. area 0

Configurar o OSPF nos routers - Áreas com filtragem de LSA:

router ospf 1

area 3 stub

area 3 stub no-summary (Totally-stub) (Todos os routers da área são stub e só o ABR configurado como stub no-summary)

área 3 nssa

área 3 nssa no summary (totally-stub)

Configurar virtual-link (Nos dois ABRs):

router ospf 1

area 3 virtual-link 4.4.4.4

Propagar um rota de default gateway pelo domínio OSPF:

router ospf 1

default-information originate (não gera se o router não tiver uma rota de saída por default)

default-information originate always metric 5 (gera incondicionalmente e com métrica na origem igual a 5)

Redistribuição de rotas externas RIP tipo 1 para o OSPF (no ASBR):

router ospf 1

redistribute rip metric 100 metric-type 1 subnets (métrica tipo 2 por defeito)

Comandos RIP`

Nos equipamentos a executar RIP a configuração é a seguinte:

router rip

version 2

network 172.16.0.0 (classefull)

no auto-summary

Redistribuir de rotas OSPF para dentro do domínio RIP:

router rip

redistribute ospf 1 metric 50 metric-type 1 subnets

Visualização das mensagens RIP enviadas e recebidas pelo router

R11#debug ip rip

R11# no debug ip rip

R11#undebug all

Comandos OSPF e RIP

R5(config-router)#passive-interface fa1/0 (não envia mensagens do protocolo de routing através desta interface)