Título do trabalho a ser apresentado à CPG para a dissertação/tese

Aarão Melo Lopes

DISSERTAÇÃO/TESE APRESENTADA
AO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DA
UNIVERSIDADE DE SÃO PAULO
PARA
OBTENÇÃO DO TÍTULO
DE
MESTRE/DOUTOR EM CIÊNCIAS

Programa: Nome do Programa

Orientador: Prof. Dr. Nome do Orientador

Coorientador: Prof. Dr. Nome do Coorientador

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da ${\rm CAPES/CNPq/FAPESP}$

São Paulo, fevereiro de 2011

Redes Neurais Convolucionais Quaternion

Esta é a versão original da dissertação elaborada pelo candidato (Aarão Melo Lopes), tal como submetida à Comissão Julgadora.

Título do trabalho a ser apresentado à CPG para a dissertação/tese

Esta versão da dissertação/tese contém as correções e alterações sugeridas pela Comissão Julgadora durante a defesa da versão original do trabalho, realizada em 14/12/2010. Uma cópia da versão original está disponível no Instituto de Matemática e Estatística da Universidade de São Paulo.

Comissão Julgadora:

- Prof^a. Dr^a. Nome Completo (orientadora) IME-USP [sem ponto final]
- Prof. Dr. Nome Completo IME-USP [sem ponto final]
- Prof. Dr. Nome Completo IMPA [sem ponto final]

Agradecimentos

Texto texto

Resumo

SOBRENOME, A. B. C. **Título do trabalho em português**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Texto texto

Palavra-chave: palavra-chave1, palavra-chave2, palavra-chave3.

Abstract

SOBRENOME, A. B. C. **Título do trabalho em inglês**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Keywords: keyword1, keyword2, keyword3.

Sumário

Li	sta d	le Abreviaturas	ix					
Lista de Símbolos								
Li	le Figuras	xiii						
Li	sta d	le Tabelas	xv					
1	Inti	rodução	1					
	1.1	Considerações Preliminares	. 1					
	1.2	Objetivos	. 1					
	1.3	Contribuições	. 2					
	1.4	Organização do Trabalho	. 2					
2	Cor	nceitos	3					
	2.1	Perceptrons de Camada Única	. 3					
		2.1.1 Teorema de convergência do perceptron	. 3					
	2.2	Perceptrons de Múltiplas Camadas	6					
3	Cor	nclusões	7					
	3.1	Considerações Finais	. 7					
	3.2	Sugestões para Pesquisas Futuras	. 7					
A	Seq	uências	9					
\mathbf{R}	eferê	ncias Bibliográficas	11					
Ín	dice	Remissivo	12					

Lista de Abreviaturas

 CFT Transformada contínua de Fourier (Continuous Fourier Transform) DFT Transformada discreta de Fourier (Discrete Fourier Transform) EIIP Potencial de interação elétron-íon (Electron-Ion Interaction Potentials) Tranformada de Fourier de tempo reduzido (Short-Time Fourier Transform) STFT

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

2.1	Grafo de fluxo do sinal do perceptron	3
2.2	Grafo de fluxo do sinal do perceptron	4
2.3	Número máximo de iterações	6

Lista de Tabelas

Capítulo 1

Introdução

Escrever bem é uma arte que exige muita técnica e dedicação. Há vários bons livros sobre como escrever uma boa dissertação ou tese. Um dos trabalhos pioneiros e mais conhecidos nesse sentido é o livro de Umberto Eco [Eco09] intitulado *Como se faz uma tese*; é uma leitura bem interessante mas, como foi escrito em 1977 e é voltado para teses de graduação na Itália, não se aplica tanto a nós.

Para a escrita de textos em Ciência da Computação, o livro de Justin Zobel, Writing for Computer Science [Zob04] é uma leitura obrigatória. O livro Metodologia de Pesquisa para Ciência da Computação de Raul Sidnei Wazlawick [Waz09] também merece uma boa lida. Já para a área de Matemática, dois livros recomendados são o de Nicholas Higham, Handbook of Writing for Mathematical Sciences [Hig98] e o do criador do T_EX, Donald Knuth, juntamente com Tracy Larrabee e Paul Roberts, Mathematical Writing [KLR96].

O uso desnecessário de termos em lingua estrangeira deve ser evitado. No entanto, quando isso for necessário, os termos devem aparecer *em itálico*.

```
Modos de citação:
indesejável: [AF83] introduziu o algoritmo ótimo.
indesejável: (Andrew e Foster, 1983) introduziram o algoritmo ótimo.
certo: Andrew e Foster introduziram o algoritmo ótimo [AF83].
certo: Andrew e Foster introduziram o algoritmo ótimo (Andrew e Foster, 1983).
certo: Andrew e Foster (1983) introduziram o algoritmo ótimo.
```

Uma prática recomendável na escrita de textos é descrever as legendas das figuras e tabelas em forma auto-contida: as legendas devem ser razoavelmente completas, de modo que o leitor possa entender a figura sem ler o texto onde a figura ou tabela é citada.

Apresentar os resultados de forma simples, clara e completa é uma tarefa que requer inspiração. Nesse sentido, o livro de Edward Tufte [Tuf01], *The Visual Display of Quantitative Information*, serve de ajuda na criação de figuras que permitam entender e interpretar dados/resultados de forma eficiente.

1.1 Considerações Preliminares

Considerações preliminares¹. Texto texto.

1.2 Objetivos

Texto texto.

¹Nota de rodapé (não abuse).

2 Introdução 1.4

1.3 Contribuições

As principais contribuições deste trabalho são as seguintes:

• Item 1. Texto texto.

• Item 2. Texto texto.

1.4 Organização do Trabalho

No Capítulo 2, apresentamos os conceitos ... Finalmente, no Capítulo 3 discutimos algumas conclusões obtidas neste trabalho. Analisamos as vantagens e desvantagens do método proposto ... As sequências testadas no trabalho estão disponíveis no Apêndice A.

Capítulo 2

Conceitos

2.1 Perceptrons de Camada Única

O perceptron é construído em torno de um neurônio não-linear, isto é, o modelo de MacCulloch-Pitts de um neurônio. Este modelo de neurônio consite de um combinador linear seguido por um limitador abrupto (realizando a função sinal), como apresentador na Figura 2.1. O nó aditivo do modelo neuronal caucula uma combinação linear das entradas aplicadas às sua sinapses e também incorpora um bias aplicado externamente. A soma resultante, isto é, o campo local induzido, é aplicado ao limitador abrupto.

Figura 2.1: Grafo de fluxo do sinal do perceptron

2.1.1 Teorema de convergência do perceptron

Para derivar o algoritmo de aprendizagem por correção de erro para o perceptron, achamos mais conveniente trabalhar com o modelo modificado do grafo de fluxo de sinal da Figura 2.2. Neste segundo modelo, que é equivalete àquele da Figura 2.1, o bias b(n) é tratado como um peso sináptico acionado por uma entrada fixa igual a +1. Podemos assim definir o vetor de entrada (m+1)-por-1

$$\mathbf{x}(n) = [+1, x_1(n) x_2(n), \cdots, x_m(n)]^T$$

onde n representa o passo de iteração na aplicação do algoritmo. Correspondentemente, definimos o vetor de pesos (m+1)-por-1 como

$$\mathbf{w}(n) = [b(n), w_1(n) w_2(n), \cdots, w_m(n)]^T$$

Corespondentemente, a saída do combinador linear pode ser escrita na forma compacta

$$v(n) = \sum_{i=0}^{m} w_i(n)x_i(n)$$
$$= \mathbf{w}^T(n)\mathbf{x}(n)$$
(2.1)

4 CONCEITOS 2.1

onde $w_0(n)$ representa o bias b(n). Para n fixo, a equação $\mathbf{w}^T\mathbf{x} = 0$, traçada em um espaço multidimensional (traçada para um bias determinado) com coordenadas $x_1 x_2, \dots, x_m$, define um hiperplano como a superfície de decisão entre duas classes diferentes de entradas.

Figura 2.2: Grafo de fluxo do sinal do perceptron

Para o perceptron funcionar corretamente, as duas classes \mathcal{C}_1 e \mathcal{C}_2 devem ser linearmente separáveis. Por sua vez, isto significa que os mpadrões a serem classificados devem estar suficientemente separados entre si para assegurar que a superfície de dicisão consista de um hiperplano.

Suponhamos então que as variáveis de entrada do perceptron se originem de duas classes linearmente separáveis. Seja \mathcal{X}_1 o subconjunto de vetores de treinamento $\mathbf{x}_1(1)$, $\mathbf{x}_1(2)$, \cdots que pertencem à classe \mathcal{C}_1 e seja \mathcal{X}_2 o subconjunto de vetores de treinamento $\mathbf{x}_2(1)$, $\mathbf{x}_2(2)$, \cdots que pertencem à classe \mathcal{C}_2 . A união de \mathcal{X}_1 e \mathcal{X}_2 é o conjunto de treinamento completo \mathcal{X} . Dados os conjuntos de vetores \mathcal{X}_1 e \mathcal{X}_2 para treinar o classificador, o processo de treinamento envolve o ajuste de peso \mathbf{w} de tal forma que as duas classes \mathcal{C}_1 e \mathcal{C}_2 sejam linearmente separáveis. Isto é, existe um vetor de peso \mathbf{w} para o qual podemos afirmar

$$\mathbf{w}^T \mathbf{x} > 0$$
 para todo vetor de entrada \mathbf{x} pertencente à classe \mathscr{C}_1
 $\mathbf{w}^T \mathbf{x} \leq 0$ para todo vetor de entrada \mathbf{x} pertencente à classe \mathscr{C}_2 (2.2)

Na segunda linha da Equação 2.2, escolhemos arbitrariamente que o vetor de entrada \mathbf{x} pertence à classe \mathscr{C}_2 se $\mathbf{w}^T\mathbf{x} = 0$. Dados os sobconjuntos de vetores de treinamento \mathscr{X}_1 e \mathscr{X}_2 , o problema de treinamento para o perceptron elementar é, então, encontrar um vetor de peso \mathbf{w} tal que as duas desigualdades da Equação 2.2 sejam satisfeitas.

O algoritmo para adaptar o vetor de peso do perceptron elementar pode ser formulado como segue:

1. Se o n-ésimo membro do conjunto de treinamento, $\mathbf{x}(n)$, é corretamente classificado pelo vetor de peso $\mathbf{w}(n)$ calculado na n-ésima iteração do algoritmo, então o vetor de peso do perceptron não é corrigido de acordo com a regra:

$$\mathbf{w}(n+1) = \mathbf{w}(n)$$
 se $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$ e $\mathbf{x}(n)$ pertencente à classe \mathscr{C}_{1}
$$\mathbf{w}(n+1) = \mathbf{w}(n)$$
 se $\mathbf{w}^{T}(n)\mathbf{x}(n) \leq 0$ e $\mathbf{x}(n)$ pertencente à classe \mathscr{C}_{2} (2.3)

2. Caso contrário, o vetor de peso do percptron é atualizado de acordo com a regra

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\mathbf{x}(n) \quad \text{se } \mathbf{w}^{T}(n)\mathbf{x}(n) > 0 \text{ e } \mathbf{x}(n) \text{ pertencente à classe } \mathscr{C}_{2}$$

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n) \quad \text{se } \mathbf{w}^{T}(n)\mathbf{x}(n) \leq 0 \text{ e } \mathbf{x}(n) \text{ pertencente à classe } \mathscr{C}_{1}$$

$$(2.4)$$

onde o parâmetro da taxa de aprendizagem $\eta(n)$ controla o ajuste aplicado ao vetor de peso na iteração n.

Se $\eta(n) = \eta > 0$, onde η é uma constante independente do número da iteração n, temos uma regra de adaptação com incremento fixo para o perceptron.

No que segue, primeiro provamos a convergência de uma regra de adaptação com incremento fixo para a qual $\eta=1$. Claramente, o valor de η não é importante, desde que seja positivo. Um valor de $\eta \neq 1$ meramente escala os vetores de padrões sem afetar a sua separabilidade.

A prova é apresentada para a condição inicial $\mathbf{w}(0) = \mathbf{0}$. Suponhamos que $\mathbf{w}^T(n)\mathbf{x}(n) < 0$ para $n = 1, 2, \dots$, e que o vetor de entrada $\mathbf{x}(n)$ pertença ao sbconjunto \mathscr{X}_1 . Isto é, o perceptron classifica incorretamente os vetores $\mathbf{x}(1), \mathbf{x}(2), \dots$, já que a segunda condição da Equação 2.2 é violada. Então, com a constante $\eta(n) = 1$, podemos a segunda linha da Equação 2.4 para escrever

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mathbf{x}(n)$$
 para $\mathbf{x}(n)$ pertencente à classe \mathscr{C}_1 . (2.5)

Dada a condição inicial $\mathbf{w}(0) = \mathbf{0}$, podemos resolver iterativamente esta equação para $\mathbf{w}(n+1)$ obtendo o resultado

$$\mathbf{w}(n+1) = \mathbf{x}(1) + \mathbf{x}(2) + \dots + \mathbf{x}(n) \tag{2.6}$$

Como as classes \mathscr{C}_1 e \mathscr{C}_2 são assumidas como sendo linearmnete separáveis, existe uma solução \mathbf{w}_0 para a qual $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ para os vetores $\mathbf{x}(1), \dots, \mathbf{x}(n)$ pertencentes ao subconjunto \mathscr{X}_1 . Para uma solução fixa \mathbf{w}_0 , podemos então definir um número positivo α como

$$\alpha = \min_{\mathbf{x}(n) \in \mathcal{X}_1} \mathbf{w}_0^T \mathbf{x}(n) \tag{2.7}$$

Assim, multiplicando ambos os lados da Equação 2.6 pelo vetor linha \mathbf{w}_0^T , obtemos

$$\mathbf{w}_0^T \mathbf{w}(n+1) = \mathbf{w}_0^T \mathbf{x}(1) + \mathbf{w}_0^T \mathbf{x}(2) + \dots + \mathbf{w}_0^T \mathbf{x}(n)$$

Consequentemente, com base na definição dada na Equação 2.7, temos

$$\mathbf{w}_0^T \mathbf{w}(n+1) \ge n\alpha$$

Da desiqualdade de Cauchy-Schwarz segue que

$$\|\mathbf{w}_0\|^2 \|\mathbf{w}(n+1)\|^2 \ge n^2 \alpha^2$$

ou de forma equivalente,

$$\|\mathbf{w}(n+1)\|^2 \ge \frac{n^2 \alpha^2}{\|\mathbf{w}_0\|^2}$$
 (2.8)

A seguir, seguimos com um outro caminho de desenvolvimento. Em particular, reescrevemos a Equação 2.5 na forma

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mathbf{x}(k) \quad \text{para } k = 1, \dots, n \in \mathbf{x}(k) \in \mathcal{X}_1$$
 (2.9)

Calculando a morma euclidiana quadrática de ambos os lados da Equação 2.9, obtemos

$$\|\mathbf{w}(k+1)\|^2 = \|\mathbf{w}(k)\|^2 + \|\mathbf{x}(k)\|^2 + 2\mathbf{w}^T(k)\mathbf{x}(k)$$
(2.10)

Mas, sob a suposição que o perceptron classifica incorretamente um vetor de entrada $\mathbf{x}(k)$ pertencente ao subconjunto \mathcal{X}_1 , temos $\mathbf{w}^T(k)\mathbf{x}(k) < 0$. Consequentemente, deduzimos da Equação 2.10 que

$$\|\mathbf{w}(k+1)\|^2 - \|\mathbf{w}(k)\|^2 \le \|\mathbf{x}(k)\|^2, \quad k = 1, \dots, n$$

Somando estas desigualdades para $k=1,\cdots,n$ e invocando a condição inicial assumida $\mathbf{w}(0)=\mathbf{0},$ obtemos a desigualdade:

$$\|\mathbf{w}(k+1)\|^2 \le \sum_{k=1}^n \|\mathbf{x}(k)\|^2$$

 $\le n\beta$ (2.11)

6 CONCEITOS 2.2

onde β é um número positivo definido por

$$\beta = \max_{\mathbf{x}(k) \in \mathcal{X}_1} \|\mathbf{x}(k)\|^2 \tag{2.12}$$

A Equação 2.11 afirma que a norma euclidana quadrática do vetor de peso $\mathbf{w}(n+1)$ cresce no máximo linearmente como o número de iterações n. O segundo resultado da Equação 2.11 está claramente em conflito com o resultado anterior da Equação 2.8 para valores suficientemente grandes de n. De fato, podemos afirmar que n não pode ser maior que um valor n_{max} para o qual as Equações 2.8 2.11 são ambas satisfeitas com um sinal de igualdade. Isto é, dada uma solução \mathbf{w}_0 temos

$$n_{\text{max}} = \frac{\beta \|\mathbf{w}_0\|^2}{\alpha^2} \tag{2.13}$$

Provamos assim que para $\eta(n)=1$ para todo n, e $\mathbf{w}(0)=\mathbf{0}$, e desde que exista um vetor solução \mathbf{w}_0 , a regra para adaptar os pesos sinápticos do perceptron deve terminar após no máximo n_{\max} iterações. Note também que das Equações 2.7, 2.12 e 2.13 que não existe uma solução única para \mathbf{w}_0 ou n_{\max} .

Figura 2.3: Número máximo de iterações

Procedure 1 Algoritmo de convergência do perceptron

```
1: \mathbf{X}_1 \leftarrow \text{Entradas pertencentes à classe } \mathscr{X}_1
 2: \mathbf{X}_2 \leftarrow Entradas pertencentes à classe \mathscr{X}_2
 3: Inicialize w com zeros
 4: while !convergence do
            Escolha aleatoriamente \mathbf{x} \in \mathbf{X}_1 \cup \mathbf{X}_2
 5:
 6:
            if \mathbf{x} \in \mathbf{X}_1 \in \mathbf{w} \cdot \mathbf{x} < 0 then
                  \mathbf{w} = \mathbf{w} + \mathbf{x}
 7:
            end if
 8:
            if \mathbf{x} \in \mathbf{X}_2 \in \mathbf{w} \cdot \mathbf{x} \ge 0 then
 9:
                  \mathbf{w} = \mathbf{w} - \mathbf{x}
10:
            end if
11:
12: end while
```

2.2 Perceptrons de Múltiplas Camadas

Capítulo 3

Conclusões

Texto texto.

3.1 Considerações Finais

Texto texto.

3.2 Sugestões para Pesquisas Futuras

Texto texto.

Finalmente, leia o trabalho de Uri Alon [Alo09] no qual apresenta-se uma reflexão sobre a utilização da Lei de Pareto para tentar definir/escolher problemas para as diferentes fases da vida acadêmica. A direção dos novos passos para a continuidade da vida acadêmica deveriam ser discutidos com seu orientador.

¹Exemplo de referência para página Web: www.vision.ime.usp.br/~jmena/stuff/tese-exemplo

Apêndice A

Sequências

Texto texto.

Limiar	MGWT				AMI		Spect		Fourier	Carao		cas espectrais
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC
1	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08
2	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09
2	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
4 5	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11
6	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12
7	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.13
8	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13
9	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14
10	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
11	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
12	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16
13	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
14	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
15	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18
16	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19
17	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19
17	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20
19	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21
20	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22

Tabela A.1: Exemplo de tabela.

Referências Bibliográficas

- [Alo09] Uri Alon. How To Choose a Good Scientific Problem. *Molecular Cell*, 35(6):726–728, Setembro 2009. 7
- [Eco09] Umberto Eco. *Como se Faz uma Tese*. Perspectiva, 22º edição, 2009. Tradução Gilson Cesar Cardoso de Souza. 1
- [Hig98] Nicholas J. Higham. *Handbook of Writing for the Mathematical Sciences*. SIAM: Society for Industrial and Applied Mathematics, segunda edição, Agosto 1998. 1
- [KLR96] Donald E. Knuth, Tracy Larrabee e Paul M. Roberts. *Mathematical Writing*. The Mathematical Association of America, Setembro 1996. 1
 - [Tuf01] Edward Tufte. The Visual Display of Quantitative Information. Graphics Pr, 2nd edição, Maio 2001. 1
- [Waz09] Raul S. Wazlawick. *Metodologia de Pesquisa em Ciencia da Computação*. Campus, primeira edição, 2009. 1
- [Zob04] Justin Zobel. Writing for Computer Science: The art of effective communication. Springer, segunda edição, 2004. 1

Índice Remissivo

DFT, veja transformada discreta de Fourier DSP, veja processamento digital de sinais

Fourier

transformada, veja transformada de Fourier

genoma

projetos, 1

STFT, veja transformada de Fourier de tempo reduzido

TBP, veja periodicidade região codificante

área do trabalho fundamentos, 3