Facultad de Matemática, Astronomía y Física y Computación Universidad Nacional de Córdoba

Ciencia de Datos

Práctico N°3: Estimación de Parámetros

Problema 1: La variable aleatoria X tiene distribución exponencial,

$$p(x|\theta) = \begin{cases} \theta e^{-\theta x} & \text{si } x \ge 0\\ 0 & \text{en caso contrario} \end{cases}$$

- a) Graficar $p(x|\theta)$ versus x para $\theta = 1$. Graficar $p(x|\theta)$ versus θ , $(0 \le \theta \le 5)$, para x = 2.
- **b)** Suponiendo que n ejemplos x_1, \dots, x_n se generan de forma independiente de acuerdo a $p(x|\theta)$, mostrar que el estimador de máxima verosimilitud para θ viene dado por

$$\hat{\theta} = \left(\frac{1}{n} \sum_{k=1}^{n} x_k\right)^{-1} .$$

c) En el gráfico generado en el ítem (a) para $\theta = 1$, trazar una vertical en el valor del estimador de máxima verosimilitud correspondiente a un valor de n grande.

Problema 2: Suponer que la variable aleatoria X tiene distribución uniforme con parámetro θ ,

$$p(x|\theta) \sim U(0,\theta) = \begin{cases} \frac{1}{\theta}, & \text{si } 0 \le x \le \theta, \\ 0, & \text{en caso contrario.} \end{cases}$$

- a) Dados n ejemplos $\mathcal{D} = \{x_1, \dots, x_n\}$ generados de manera independiente de acuerdo a $p(x|\theta)$, mostrar que el estimador de máxima verosimilitud para θ es máx (\mathcal{D}) ; esto es, el valor del máximo elemento de \mathcal{D} .
- b) Se generan n=5 datos con esta distribución y el máximo valor de esos puntos resulta $\max_k\{x_k\}=0,6$. Graficar la verosimilitud $p(\mathcal{D}|\theta)$ en el rango $0 \leq \theta \leq 1$. Argumentar con palabras por que no es necesario conocer los otros 4 datos de la muestra.

Problema 3: Para la estimación Bayesiana de la media μ desconocida de una distribución Gaussiana unidimensional de varianza σ^2 conocida, suponer como distribución a priori para el parámetro desconocido una distribución normal con parámetros (μ_0, σ_0) , $p(\mu) \sim N(\mu_0, \sigma_0)$.

- a) Calcular con todo detalle $p(\mu|\mathcal{D})$ y $p(x|\mathcal{D})$. Escribir la expresión de dogmatismo; es decir, el balance entre el conocimiento previo y el conocimiento empírico proveniente de los datos.
- b) Graficar la densidad $p(x|\mathcal{D})$ obtenida por estimación bayesiana eligiendo los valores μ_0 , σ_0 y σ y una muestra de entrenamiento $\mathcal{D} = \{x_1, \dots, x_n\}$ generada conociendo el valor de μ .

Problema 4: Utilizando los datos empíricos tridimensionales correspondientes a tres clases independientes, dados en la siguiente tabla, construir modelos gaussianos de clasificación para cada uno de los ítems a continuación.

a) Calcular los valores de máxima verosimilitud $\hat{\mu}$ y $\hat{\sigma}^2$ de forma individual para cada una de las tres característica x_i de la categoria w_1 (problema unidimensional).

clase		w_1			w_2			w_3	
	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	0.42	-0.087	0.58	-0.4	0.58	0.089	0.83	1.6	-0.014
2	-0.2	-3.3	-3.4	-0.31	0.27	-0.04	1.1	1.6	0.48
3	1.3	-0.32	1.7	0.38	0.055	-0.035	-0.44	-0.41	0.32
4	0.39	0.71	0.23	-0.15	0.53	0.011	0.047	-0.45	1.4
5	-1.6	-5.3	-0.15	-0.35	0.47	0.034	0.28	0.35	3.1
6	-0.029	0.89	-4.7	0.17	0.69	0.1	-0.39	-0.48	0.11
7	-0.23	1.9	2.2	-0.011	0.55	-0.18	0.34	-0.079	0.14
8	0.27	-0.3	-0.87	-0.27	0.61	0.12	-0.3	-0.22	2.2
9	-1.9	0.76	-2.1	-0.065	0.49	0.0012	1.1	1.2	-0.46
10	0.87	-1.0	-2.6	-0.12	0.054	-0.063	0.18	-0.11	-0.49

- b) Calcular los valores de máxima verosimilitud $\hat{\mu}$ y $\hat{\Sigma}$ para cada una de las tres formas de apareamiento de a dos características para w_1 (problema bidimensional).
- c) Calcular los valores de máxima verosimilitud $\hat{\mu}$ y $\hat{\Sigma}$ usando las tres características x_i de la categoria w_1 (problema tridimensional).
- d) Si se supone que las características son independientes entre sí el modelo gaussino es separable y la matriz Σ resulta diagonal, $\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2, \sigma_3^2)$. Estimar por máxima verosimilitud la media y las componentes diagonales de Σ con los datos de las clases w_1 y w_2 .
- e) Comparar los resultados para la media de cada característica μ_i calculada en las formas previas. Explicar porqué son iguales o diferentes.
- f) Comparar sus resultados para la varianza de cada característica σ_i^2 calculada de las formas previas. Explicar por que los resultados son iguales o diferentes.

Problema 5: Usando los datos de la tabla del problema anterior, calcular las tasas de error de clasificación en diferentes dimensiones.

- a) Usar máxima verosimilitud para entrenar un dicotomizador gaussiano con los datos tridimensionales de las categorias w_1 y w_2 . Integrar numéricamente para estimar la proporción del error.
- **b)** Proyectar los datos sobre un subespacio bidimensional. Para cada uno de los tres subespacios definidos por $x_1 = 0$ ó $x_2 = 0$ ó $x_3 = 0$ entrenar un dicotomizador gaussiano. Integre numéricamente para estimar la proporción del error.
- c) Proyectar ahora en subespacios unidimensionales, definidos por cada uno de los tres ejes. Entrenar un clasificador gaussiano e integre numéricamente para estimar la proporción del error.
- d) Discutir el orden del rango de las tasas de error calculadas.
- e) Suponiendo que se reestima la distribución en las diferentes dimensiones, el error de Bayes es mayor en los espacios proyectados?

Problema 6: Naïve Bayes

- a) Descargar el dataset Loan Data disponible en Kaggle. Indagar el diccionario de las columnas del dataset y en qué consiste el problema de predicción.
- b) Estudiar el tutorial de datacamp para aprender a implementar un clasificador Naïve Bayes y cómo evaluar sus resultados usando Scikit-learn.
- c) Estudiar las métricas de clasificación binaria derivadas de la matriz de confusión e interpretar el resultado del clasificador Naïve Bayes aplicado al dataset sobre cráditos.

Soluciones:

Problema 3

a) Conocida σ y dada una muestra independiente $\mathcal{D}=\{\S_\infty,\S_\in,\dots,\S_{\setminus}\}$, se tiene que

$$p(x_i|\mu) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right).$$

La estimación a posteriori de μ dada la muestra \mathcal{D} está dada por

$$p(\mu|\mathcal{D}) = \frac{p(\mathcal{D}|\mu)p(\mu)}{\int p(\mathcal{D}|\mu) p(\mu) d\mu}.$$

A continuación se usará la notación

$$\alpha = p(\mathcal{D})^{-1} = \left(\int p(\mathcal{D}|\mu) \, p(\mu) \, d\mu \right)^{-1}.$$

Por otra parte, como \mathcal{D} es una muestra de observaciones independientes, su probabilidad es el producto de las probabilidades de los valores individuales individuales. Así resulta

$$p(\mu|\mathcal{D}) = \alpha p(\mathcal{D}|\mu)p(\mu) = \alpha \left(\prod_{i=1}^{n} p(x_i|\mu)\right) p(\mu)$$
 y entonces

$$p(\mu|\mathcal{D}) = \alpha \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right) \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}} = \frac{\alpha}{(2\pi)^{(n+1)/2} \sigma^n \sigma_0} e^{-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}}$$

Sumando los exponentes resulta

$$-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} - \frac{(\mu - \mu_0)^2}{2\sigma_0^2} = -\frac{1}{2} \left(\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma^2} + \frac{(\mu - \mu_0)^2}{\sigma_0^2} \right)$$

$$= -\frac{1}{2} \left(\sum_{i=1}^{n} \frac{x_i^2}{\sigma^2} - 2\sum_{i=1}^{n} \frac{x_i \mu}{\sigma^2} + n \frac{\mu^2}{\sigma^2} + \frac{\mu^2}{\sigma_0^2} - 2\frac{\mu_0 \mu}{\sigma_0^2} + \frac{\mu_0^2}{\sigma_0^2} \right)$$

$$= -\frac{1}{2} \left(\sum_{i=1}^{n} \frac{x_i^2}{\sigma^2} + \frac{\mu_0^2}{\sigma_0^2} \right) - \frac{1}{2} \left(\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 - 2 \left(\sum_{i=1}^{n} \frac{x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2} \right) \mu \right)$$

$$= A + B + C$$

El término A no depende de μ por lo que e^A se absorve en la constante de normalización α . Por su lado, con los términos B y C se puede completar el cuadrado de un binomio. Para ello se definen las constantes

$$a = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}, \qquad b = \sum_{i=1}^n \frac{x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2} = \frac{n}{\sigma^2} \overline{x_n} + \frac{\mu_0}{\sigma_0^2}, \quad \text{con } \overline{x_n} = \frac{1}{n} \sum_{i=1}^n x_i,$$

siendo $\overline{x_n}$ la media muestral de los n datos observados. De esta forma, se puede escribir

$$\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\sum_{i=1}^n \frac{x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right)\mu = a\mu^2 - 2b\mu = a\left(\mu^2 - 2\frac{b}{a}\mu + \left(\frac{b}{a}\right)^2 - \left(\frac{b}{a}\right)^2\right) = \frac{(\mu - \frac{b}{a})^2}{1/a} - \frac{b^2}{a}.$$

El término b^2/a nuevamente se puede absorber en la normalización y así resulta que $p(\mu|\mathcal{D})$ es una densidad normal con media

$$\mu_n = \frac{b}{a} = \frac{n \, \overline{x_n} \, \sigma_0^2 + \mu_0 \, \sigma^2}{n, \, \sigma_0^2 + \sigma^2}$$

y desviación estándar

$$\sigma_n = \frac{1}{a} = \frac{n \,\sigma_0^2 + \sigma^2}{\sigma^2 \,\sigma_0^2}.$$

Conociendo $p(x|\mu)$ (modelo de los datos) y $p(\mu|\mathcal{D})$ puede ahora calcularse $p(x|\mathcal{D})$.

$$\begin{split} p(x|\mathcal{D}) &= \int p(x|\mu) \, p(\mu|\mathcal{D}) \, d\mu \\ &= \int \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \frac{1}{\sqrt{2\pi}\sigma_n} e^{-\frac{(\mu-\mu_n)^2}{2\sigma_n^2}} \, d\mu \\ &= \frac{1}{2\pi\sigma\sigma_n} \int \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} - \frac{(\mu-\mu_n)^2}{2\sigma_n^2}\right) \, d\mu \\ &= \frac{1}{2\pi\sigma\sigma_n} \int \exp\left(-\frac{\sigma_n^2 \left(x^2 - 2\mu x + \mu^2\right)}{2\sigma^2\sigma_n^2} - \frac{\sigma^2 \left(\mu^2 - 2\mu\mu_n + \mu_n^2\right)}{2\sigma_n^2\sigma^2}\right) \, d\mu \\ &= \frac{1}{2\pi\sigma\sigma_n} \int \exp\left(-\frac{(\sigma_n^2 + \sigma^2) \, \mu^2 - 2\left(\sigma_n^2 \, x + \sigma^2\mu_n\right) \, \mu + \sigma_n^2 \, x^2 + \sigma^2\mu_n^2}{2\sigma_n^2\sigma^2}\right) \, d\mu \\ &= \frac{1}{2\pi\sigma\sigma_n} \int \exp\left(-\frac{\left(\mu - \frac{\sigma_n^2 \, x + \sigma^2\mu_n}{\sigma_n^2 + \sigma^2}\right)^2}{\frac{2\sigma_n^2 \, \sigma^2}{\sigma_n^2 + \sigma^2}}\right) \, d\mu \, \exp\left(-\frac{\sigma_n^2 \, x^2 + \sigma^2\mu_n^2 - \frac{(\sigma_n^2 \, x + \sigma^2\mu_n)^2}{\sigma_n^2 + \sigma^2}}{2\sigma_n^2\sigma^2}\right) \end{split}$$

El integrando de la integral respecto de μ es proporcional a una densidad normal con media y desvío estándar dado por

$$\mu_1 = \frac{\sigma_n^2 x + \sigma^2 \mu_n}{\sigma_n^2 + \sigma^2}$$
 $\sigma_1 = \sqrt{\frac{\sigma_n^2 \sigma^2}{\sigma_n^2 + \sigma^2}}$

Por lo tanto la integral es igual a $\sqrt{2\pi} \sigma_1$, lo cual es independiente del valor de x. El otro factor se compacta observando que el numerador puede reescribirse según

$$\sigma_n^2 x^2 + \sigma^2 \mu_n^2 - \frac{(\sigma_n^2 x + \sigma^2 \mu_n)^2}{\sigma_n^2 + \sigma^2}$$

$$= \frac{1}{\sigma_n^2 + \sigma^2} \left(\sigma_n^4 x^2 + \sigma_n^2 \sigma^2 \mu_n^2 + \sigma_n^2 \sigma^2 x^2 + \sigma^4 \mu_n^2 - \sigma_n^4 x^2 - 2 \sigma_n^2 \sigma^2 \mu_n x - \sigma^4 \mu_n^2 \right)$$

$$= \frac{\sigma_n^2 \sigma^2}{\sigma_n^2 + \sigma^2} \left(x^2 - 2 \mu_n x + \mu_n^2 \right) = \frac{\sigma_n^2 \sigma^2}{\sigma_n^2 + \sigma^2} (x - \mu_n)^2.$$

De estos resultados se concluye finalmente que

$$p(x|\mathcal{D}) = \mathcal{N}\left(\mu_n, \sqrt{\sigma_n^2 + \sigma^2}\right).$$

 $Dogmatismo = \frac{\sigma^2}{\sigma_0^2}.$

