Automi e Linguaggi Formali - 12/6/2024

Seconda prova intermedia – Secondo Turno - Soluzioni

Esercizio 1 (12 punti) - Macchina di Turing con "save e restore" (SRTM)

(a) Definizione formale della funzione di transizione di una SRTM

Una **SRTM** (Save-Restore Turing Machine) è una macchina di Turing deterministica a singolo nastro che può salvare e ripristinare configurazioni.

Definizione formale:

Una SRTM è una 7-tupla M = $(Q, \Sigma, \Gamma, \delta, q_0, q_a ccept, q_r eject)$ dove:

- Q è l'insieme finito degli stati
- Σ è l'alfabeto di input ($\Sigma \subset \Gamma$)
- Γ è l'alfabeto del nastro
- $q_0 \in Q$ è lo stato iniziale
- qaccept ∈ Q è lo stato di accettazione
- q_reject ∈ Q è lo stato di rifiuto
- δ : Q × Γ \rightarrow Q × Γ × {L, R, SAVE, RESTORE} è la funzione di transizione estesa

Semantica operazionale:

- Una configurazione è rappresentata da (q, w, i, saved) dove:
 - $q \in Q$ è lo stato corrente
 - w ∈ Γ* è il contenuto del nastro
 - i è la posizione della testina
 - saved è la configurazione salvata (o Ø se nessuna)
- Le operazioni speciali sono:
 - **SAVE**: saved ← (q, w, i) (sovrascrive configurazione precedente)
 - **RESTORE**: se saved ≠ Ø, allora (q, w, i) ← saved; altrimenti nessun effetto

(b) Dimostrazione che le SRTM riconoscono i linguaggi Turing-riconoscibili

Teorema: Le SRTM riconoscono esattamente la classe dei linguaggi Turing-riconoscibili.

Dimostrazione:

(⊆) Ogni linguaggio riconosciuto da una SRTM è Turing-riconoscibile:

Data una SRTM M, costruiamo una TM standard N che la simula:

Descrizione implementativa di N:

N = "Su input w:

- 1. Inizializza una variabile saved = Ø
- 2. Simula M mantenendo traccia della configurazione corrente
- 3. Quando M eseque SAVE:
 - Copia la configurazione corrente in saved
- 4. Quando M esegue RESTORE:
 - Se saved ≠ Ø, ripristina la configurazione da saved
 - Altrimenti continua normalmente
- 5. Accetta se M accetta, rifiuta se M rifiuta"

N può rappresentare saved usando nastri multipli o codificandolo sul nastro principale.

(⊇) Ogni linguaggio Turing-riconoscibile è riconosciuto da una SRTM:

Data una TM standard M, costruiamo una SRTM N equivalente:

Descrizione implementativa di N:

N = "Su input w:

- 1. Simula esattamente M ignorando le operazioni SAVE e RESTORE
- 2. Accetta se M accetta, rifiuta se M rifiuta"

Poiché N non usa mai SAVE o RESTORE, si comporta come una TM standard. ■

Esercizio 2 (12 punti) - Linguaggio palindromo

(a) Formulazione come linguaggio PALTM

Definizione:

 $PALTM = {\langle M \rangle \mid M \text{ è una TM e L(M) è un linguaggio palindromo}}$

dove un linguaggio $B \subseteq \{0,1\}^*$ è palindromo se per ogni $w \in B$, $w = w^R$ (w è uguale al suo rovesciato).

(b) Dimostrazione che PALTM è indecidibile

Teorema: PALTM è indecidibile.

Dimostrazione per riduzione da ATM:

Supponiamo per contraddizione che PALTM sia decidibile e sia R un decisore per PALTM. Costruiamo un decisore S per ATM:

Descrizione implementativa di S:

```
S = "Su input (M, w):
```

1. Costruisci la seguente TM M':

M' = "Su input x:

a) Se x = 0: accetta

b) Se x = 1: accetta

c) Se x = 01: simula M su w

- Se M accetta w: accetta

- Se M rifiuta w: rifiuta

- Se M va in loop: va in loop

d) Per ogni altro input: rifiuta"

2. Esegui R su (M')

3. Se R accetta: rifiuta

4. Se R rifiuta: accetta"

Analisi della correttezza:

- Se M accetta w:
 - $L(M') = \{0, 1, 01\}$
 - Questo NON è palindromo (01 ≠ 10)
 - R rifiuta (M')
 - S accetta ⟨M, w⟩ √
- Se M non accetta w (rifiuta o va in loop):

- $L(M') = \{0, 1\}$
- Questo È palindromo (0 = 0^R, 1 = 1^R)
- R accetta (M')
- S rifiuta ⟨M, w⟩ ✓

Quindi S decide ATM, contraddicendo l'indecidibilità di ATM. Pertanto PALTM è indecidibile.

Esercizio 3 (12 punti) - Problema SUPPLY

(a) Dimostrazione che SUPPLY è in NP

Teorema: SUPPLY \in NP.

Dimostrazione:

Costruiamo un verificatore polinomiale V per SUPPLY:

Descrizione implementativa di V:

```
V = "Su input \langle\langle S_1, ..., S_n, k \rangle, T \rangle:

1. Verifica che T ⊆ {1, 2, ..., n}

2. Verifica che |T| = k

3. Calcola U = U_1 \in T S_1

4. Verifica che U = {1, 2, ..., m}

5. Se tutti i controlli passano: accetta

6. Altrimenti: rifiuta"
```

- Il certificato T ha dimensione $O(k) \le O(n)$
- Tutti i controlli richiedono tempo polinomiale
- V accetta $\langle \langle S_1, ..., S_n, k \rangle, T \rangle \Leftrightarrow T$ è una fornitura valida di dimensione k

Quindi SUPPLY ∈ NP. ■

(b) Dimostrazione che SUPPLY è NP-hard

Teorema: SUPPLY è NP-hard.

Dimostrazione per riduzione da VERTEX-COVER:

Data un'istanza (G, k) di VERTEX-COVER dove G = (V, E), costruiamo un'istanza di SUPPLY:

Costruzione della riduzione f:

$$f(\langle G, k \rangle) = \langle S_1, S_2, ..., S|V|, k \rangle$$

dove:

- Ogni vertice v_i ∈ V corrisponde a un fornitore i
- Ogni arco e_i ∈ E corrisponde a un ingrediente j
- $S_i = \{j \mid e_j \text{ è incidente al vertice } v_i\}$

Dimostrazione di correttezza:

(⇒) Se G ha una copertura di vertici T di dimensione k:

- Ogni arco e_i ha almeno un estremo in T
- Quindi U_i∈T S_i contiene tutti gli ingredienti {1, 2, ..., |E|}
- T è una fornitura valida di dimensione k per l'istanza di SUPPLY

(⇐) Se esiste una fornitura valida T di dimensione k:

- $U_i \in T S_i = \{1, 2, ..., |E|\}$
- Per ogni arco e_j , esiste almeno un $v_i \in T$ tale che $j \in S_i$
- Questo significa che e_j è incidente a v_i
- Quindi T è una copertura di vertici di dimensione k per G

Complessità: La riduzione opera in tempo O(|V| + |E|), che è polinomiale.

Quindi VERTEX-COVER \leq_p SUPPLY, e poiché VERTEX-COVER è NP-completo, SUPPLY è NP-hard.

Conclusione: SUPPLY è NP-completo (in NP e NP-hard).