Your grade: 90%

Your latest: 90% • Your highest: 90% • To pass you need at least 80%. We keep your highest score.

Next item \rightarrow

 A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture). 1/1 point

- True
- False
- **⊘** Correct

Correct! A Transformer Network can ingest entire sentences all at the same time.

2. The major innovation of the transformer architecture is combining the use of LSTMs and RNN sequential processing.

1/1 point

- O True
- False
- **⊘** Correct

The major innovation of the transformer architecture is combining the use of attention based representations and a CNN convolutional neural network style of processing.

3. The concept of Self-Attention is that:

1/1 point

- O Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.
- **⊘** Correct
- $\textbf{4.} \quad \text{What letter does the "?" represent in the following representation of \textit{Attention?} \\$

1/1 point

 $Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{7}}})V$

- O v
- k
- O q
- O t
- \bigcirc Correct

k is represented by the ? in the representation.

output layers(s)).

	What does the output of the <i>encoder</i> block contain?	
	O Softmax layer followed by a linear layer.	
	Contextual semantic embedding and positional encoding information	
	O Prediction of the next word.	
	O Linear layer followed by a softmax layer.	
	♥ Correct The output of the encoder block contains contextual semantic embedding and positional encoding information.	
9.	Why is positional encoding important in the translation process? (Check all that apply)	1/1 point
	Position and word order are essential in sentence construction of any language.	
	⊘ Correct	
	☐ It helps to locate every word within a sentence.	
	☐ It is used in CNN and works well there.	
	Providing extra information to our model.	
	⊘ Correct	
10.	Which of these is not a good criterion for a good positional encoding algorithm?	0 / 1 point
	It must be deterministic.	
	The algorithm should be able to generalize to longer sentences.	
	O Distance between any two time-steps should be consistent for all sentence lengths.	
	O It should output a common encoding for each time-step (word's position in a sentence).	