

SMARTHOME SOLUTIONS - INNOVATION PROJECT MANAGEMENT PLAN

Final Version

07/05/2023

VERSION HISTORY

Version	Implemented	Revision	Approved	Approval	Reason
#	Ву	Date	By	Date	
1.0	Ankita Savaliya	06/23/2023			Initial Draft
2.0	Erick Tinoco	06/28/2023			Added Introduction, Scope Management
3.0	Ankita Savaliya	06/29/2023			Added Communication Management, HR Management, Quality Management
4.0	Dhwani Vaishnav	06/30/2023			Added Schedule Management, COCOMO calculations, Cost management,
5.0	Dhwani Vaishnav, Ankita Savaliya	07/05/2023			Added Risk Management, Final Version

TABLE OF CONTENTS

1.	INTR	CODUC	TION	4
	1.1	Pur	rpose of Project Management Plan	4
2.	EXE	CUTIVI	E SUMMARY OF PROJECT CHARTER	4
	2.1	Issu	ues	4
	2.2	Red	commendation	5
	2.3	Jus	tification	5
	2.4	Ass	sumptions/Constraints	5
3.	SCOI	PE MAI	NAGEMENT	7
	3.1	Wo	ork Breakdown Structure	7
	3.2	Del	liverable Definition Table (DDT)	8
	3.3	Dej	ployment Plan	10
	3.4	Cha	ange Control Management	12
4.	SCHI	EDULE	//TIME MANAGEMENT	14
	4.1		lestones	
	4.2		oject Schedule (Gannt Chart)	
_	SOFI		E PRODUCT DEVELOPMENT - CONSTRUC	
			NS	
			GET MANAGEMENT	
v.	7.1		tal Costs Overview	
	,.1		Direct Up-Front Costs	
			Ongoing Costs	
			Indirect Costs	
			Budget Allocation	
			Cost Monitoring and Control	
		7.1.6	Change Management	20
		7.1.7	Vendor Management	20
			Risk Management	
		7.1.9	Reporting	21
7.	QUA	LITY M	//ANAGEMENT	22
			SOURCE MANAGEMENT	
J.	9.1		Iffing Management	
0	COM		CATIONS MANAGEMENT	
			· · / N = = N F V V / N V V N N N N N N N	

	10.1	Communication Matrix	29
10.	RIS	SK MANAGEMENT	31
	11.1	Qualitative Risk Assessment using One-Minute Risk assessment	31
	11	1.1.1 Conclusion	34
	11.2	Quantitative Risk Assessment using Monte-Carlo Simulation	34
	11	1.2.1 Results	35
	11	1.2.2 Recommendation	39
	11.3	Risk RESPONSE PLAN	40
AP	PENDI.	X A: PROJECT MANAGEMENT PLAN APPROVAL	47
AP	PENDI.	X B: REFERENCES	48
		X C: KEY TERMS	

1. INTRODUCTION

1.1 PURPOSE OF PROJECT MANAGEMENT PLAN

The purpose of "SmartHome Solutions" is to transform houses into smart, interconnected homes by creating and providing the best smart home products. The objective of this project is to foster innovation in smart home products by incorporating advanced technologies and enhancing connectivity. The aim is to create a holistic solution that revolutionizes conventional manufacturing methods into intelligent and interconnected systems. The primary focus is to offer customers effortless control and monitoring abilities, enabling efficient management of their smart homes. Additionally, the project emphasizes enhancing functionality, optimizing the user experience, and ensuring scalability to cater to the changing demands of the market. Ultimately, the goal is to position the company as a frontrunner in the smart home industry through the delivery of innovative, feature-rich products that surpass customer expectations.

The intended audience of the *SmartHome Solutions - Innovation* PMP is all project stakeholders including the project sponsor, senior leadership, and the project team.

2. EXECUTIVE SUMMARY OF PROJECT CHARTER

SmartHome Solutions is a leading company specializing in the development and manufacturing of innovative smart home products. With a strong focus on connectivity, convenience, and efficiency, we offer a wide range of cutting-edge solutions that transform ordinary houses into smart, interconnected homes. Our product portfolio includes devices such as smart thermostats, smart lighting systems, smart security cameras, and smart home hubs. With our expertise in product development and commitment to innovation, we continue to shape the future of smart home technology.

2.1 ISSUES

Our company, known for its wide range of smart home products, aims to revolutionize the way people interact with their living spaces. However, we are currently facing a significant challenge in the market due to a lack of innovation in our offerings. While our competitors are continuously introducing new and advanced features, our products have fallen behind in terms of market competence and customer appeal. To address this issue and regain our competitive edge, we need to invest in research and development, foster a culture of innovation, and collaborate with technology partners.

2.2 RECOMMENDATION

Two alternatives are considered to address this problem: IoT (Internet of Things) innovation and AI (Artificial Intelligence) innovation. IoT innovation focuses on connectivity and enables remote control, automation, and data analysis. AI innovation focuses on making smart home products intelligent, adaptive, and capable of personalized interactions.

Based on a scoring model considering various criteria, the preferred alternative is AI innovation (Alternative B). It scored higher in financial metrics, organizational alignment, project development, technical complexity, integration capability, customer satisfaction, user adoption, and data privacy & security. The result indicates that AI innovation aligns better with strategic objectives, offers a higher likelihood of reaching projected goals, and demonstrates a strong potential for financial return on investment.

2.3 JUSTIFICATION

The recommended solution of *AI innovation* in smart home products offers a range of values to enhance the overall smart home experience. With increased connectivity, the solution enables seamless communication and data sharing among devices, creating an interconnected ecosystem. The integration of AI technology brings intelligence to smart home products, allowing them to understand user behavior, respond to voice commands, and provide personalized recommendations. Automation features optimize functions based on user preferences and predictive analytics, making the user experience more convenient and efficient. Furthermore, AI innovation enhances security measures through anomaly detection and proactive protection, ensuring user privacy and data security. By focusing on user experience, efficiency, and future-readiness, the recommended solution positions the company at the forefront of the market, providing customers with advanced, personalized, and future-proof smart home experiences.

2.4 ASSUMPTIONS/CONSTRAINTS

In the world of project management, assumptions refer to any aspect of a project that the project manager believes will occur without any logical reasoning other than experience. In any project, there are assumptions, but the idea is to be realistic and prepare for the worst in any scenario. In terms of our project, assumptions include:

- o Team members will have the resources needed to complete their daily tasks without delays
- O Day-to-day expenses will be consistent throughout the project's life cycle
- o Scope of the project will not be increased our decreased during the life cycle

On the other hand, project constraints are the barriers the team needs to work within. Like in any other project, our constraints will mostly consist of:

- o The project's budget
- o The project's deadlines
- o The project's resources

3. SCOPE MANAGEMENT

The scope of SmartHome solutions must be firmly established at the beginning of the project to avoid the scope being increased or decreased. If either or, this would involve the team working longer hours either adding or removing features and services. With that being said, the scope management will consist of:

- Establishing a Project Plan
- o Recruitment for the Team
- Product Development & Tests
- Marketing to push the product to the public

3.1 WORK BREAKDOWN STRUCTURE

Figure 1 Scope - Work Breakdown Structure

3.2 DELIVERABLE DEFINITION TABLE (DDT)

Deliverable	Structure	Standards	Approval	Resources	
			Needed By	Required	
Business Case	Document	Company	Project	Project	
	outlining the	business case	sponsor	manager,	
	justification and	template		stakeholders,	
	financial analysis			finance team	
	of the smart home				
	solution				
Project Proposal	Document	Company project	Project	Project	
	outlining project	proposal template	sponsor	manager,	
	objectives, scope,			stakeholders	
	timeline, and				
	resources				
System	Detailed diagram	Industry best	Project	System	
Architecture	of smart home	practices, smart	manager,	architect,	
	system components	home standards	technical team	engineers	
	and connectivity				
User	Document	User interviews,	Project	Business	
Requirements	specifying user	market research	manager,	analyst, UX	
Specification	needs and desired		stakeholders	designer	
	functionalities				
Hardware	List of	Smart home	Project	Hardware	
Specifications	recommended or	industry	manager,	specialist,	
	required hardware	standards,	technical team	procurement	
	components	compatibility		team	
		requirements			
Software	Detailed	Software	Project	Software	
Specifications	specifications for	development best	manager,	architect,	
	software	practices,	technical team	developers	
	components				

		interoperability			
		guidelines			
User Interface	Wireframes or	UI/UX design	Project	UX designer,	
Design	mockups of the	principles,	manager, UX	graphic	
	smart home	accessibility	designer	designer	
	system's user	guidelines			
	interface				
Data Security	Plan outlining	Privacy	Project	Security	
and Privacy	measures and	regulations,	manager,	specialist, data	
Plan	protocols for	encryption	security team	analyst	
	securing user data	standards			
Installation and	Instructions for	Installation best	Project	Installation	
Configuration	installing and	practices, user-	manager,	technicians,	
Guidelines	configuring the	friendly	technical team	technical	
	smart home system	guidelines		writers	
Testing and	Test plans, test	Quality assurance	Project	QA testers,	
Quality	cases, and reports	standards, testing	manager, QA	test analysts	
Assurance	for ensuring system	methodologies	team		
	functionality				
User	Comprehensive	User-friendly	Project	Technical	
Documentation	user manuals or	language, clear	manager,	writers,	
	guides for	instructions	technical	graphic	
	operating the smart		writers	designers	
	home system				
Training	Materials for	Training	Project	Trainers,	
Materials	training users on	standards,	manager,	instructional	
	the smart home	instructional	trainers	designers	
	system's features	design principles			
	and operation				

Maintenance	Plan for ongoing	Maintenance best	Project	Support	
and Support	maintenance and	practices, support	manager,	specialists,	
Plan	support of the	service level	support team	maintenance	
	smart home system	agreements		technicians	
Android	Android	Android	Mobile	Android	
Application	application	development	development	developers,	
Development	codebase, UI/UX	guidelines,	team, project	UI/UX	
	design	platform-specific	manager	designers	
		requirements			
iOS Application	iOS application	iOS development	Mobile	iOS	
Development	codebase, UI/UX	guidelines,	development	developers,	
	design	platform-specific	team, project	UI/UX	
		requirements	manager	designers	
Web	Web application	Web development	Web	Front-end	
Application	codebase, UI/UX	frameworks,	development	developers,	
Development	design	responsive design	team, project	back-end	
		principles	manager	developers	

Table 1 Deliverable Definition Table

3.3 DEPLOYMENT PLAN

The Deployment Strategy section of this document provides an overview of the deployment strategy planned for the software application/system. Included in the deployment strategy is timeline information, a description of the deployment approach, and associated benefits, assumptions, and risks.

DEPLOYMENT OVERVIEW												
Number of Sites or Release Recipients	Target Deployments	Target Group	Scheduled Dates									
During this phase, property owners will receive our product to implement it on their properties. After implementation, the owners will provide us with feedback so we can understand their experience, improve	This is a joint effort between the development team and property owners.	Release for deployment team and property owners.	07/01/2024									

in product's growth areas, and enhance	Product will be	The recipients	07/08/2024
user guides.		who will receive	
	extensive	the product will	
	testing	be deployment	
		team and	
		property owners.	

DEPLOYMENT APPROACH

Description

The deployment approach will consist of a quarterly release cycle. This cycle was chosen because we want to make sure that security for this product and the mobile application is fully secured so no malicious users can steal our customer's information. Also, we want our non-tech-savvy users to be comfortable with our product and one change could cause customer dissatisfaction.

In terms of pushing software updates, we will be using the big bang deployment. Since we will have hundreds of products and customers to manage all at once, it is best to release all the necessary updates to everyone at once. With this deployment implemented, troubleshooting remotely will be easier for us since everyone has the same version of product and software.

Benefits (Tangible and Intangible) and Risks

Tangible Benefits:

- Increase in revenue
- Harden devices
- Decrease in logistical expenses

Intangible Benefits:

- Customers feel supported with updates
- Tighter security with firmware
- O Administrator can manage easier

ASSUMPTIONS AND RISKS

Assumptions

Software updates will be released in timely manner

Instructions in user guide are easy to follow

Proper installation of product on property

Products are securely connected to our servers

Risks

Possible security hacks

Product defects

Software update causes crashes

Table 2 Deployment Plan

3.4 CHANGE CONTROL MANAGEMENT

Change control management plays a crucial role in ensuring effective management of changes throughout the AI innovation project for smart home products. The purpose of change control management is to ensure that all changes are properly documented, evaluated, approved, and implemented in a controlled manner. This helps to maintain project integrity, minimize risks, and optimize resource utilization.

When a change is identified or requested within the project, the Change Request Form is utilized to capture and document the details of the proposed change. This form serves as a formalized process for initiating change control activities. The Change Request Form should include essential information such as the reason for the change, the desired outcome, the impact on project scope, schedule, and resources, as well as any associated risks and dependencies. For the template of Change Request Form, please refer Figure 2

Once a Change Request Form is submitted, the change control process kicks in. The change request is evaluated by the designated change control board or change control manager, who assesses the potential impact of the change on the project's objectives, timeline, budget, and quality. This evaluation involves considering the feasibility, benefits, risks, and alignment with project goals and stakeholder expectations.

For significant changes, especially those that may impact project scope, budget, or timeline, approval from primary stakeholders and project sponsors is required. The change control board or manager facilitates the review and approval process, ensuring that the change aligns with the project's strategic objectives and benefits outweigh potential drawbacks.

Once approved, the change is documented, and necessary updates are made to the project's documentation, plans, and schedules. Any impacted stakeholders or project team members are informed about the approved change and its implications. It is crucial to maintain clear communication channels to ensure that everyone involved is aware of the change and any adjustments required in their respective areas of responsibility.

	Scope Change Request	Form							
Request Date: Request Date: Request Description:									
Justification:									
Possible Alternatives:									
Impacts	Alternative 1	Alternative 2	Alternative 3						
Scope									
Schedule									
Resources Required									
Cost									
Recommendation:									
Authorized By:									
Date:									

Figure 2 Scope – Change Request Form Template

The Change Request Form is available in the Project Repository.

4. SCHEDULE/TIME MANAGEMENT

4.1 MILESTONES

Milestones are crucial checkpoints in a project plan that help track progress and ensure successful completion of the project's goals. In this project plan, the main objective is to drive innovation in smart home products by integrating advanced technologies and enhancing connectivity.

The following timeline outlines the key milestones for the project, along with their estimated completion timeframes. It focuses on major project milestones that mark the completion of project phases. Please note that there might be additional smaller milestones not included in this timeline but accounted for in the project schedule and work breakdown structure.

In the event of any scheduling delays that could affect a milestone or delivery date, it is crucial to promptly inform the project manager. This will enable proactive measures to be taken in order to mitigate any potential delays. Any approved changes to these milestones or dates will be effectively communicated to the project team by the project manager.

The table below lists the milestones for this project, along with their estimated completion timeframe.

Milestones	Estimated Duration
Project Initiation	15 days
Product Design Phase	170 days
Data Collection and Preparation	55 days
Model Development	125 days
Prototype Development and Testing	60 days
Integration and System Testing	95 days
Web Application Development	45 days
Mobile Application Development	70 days

Table 3 Milestone Estimations

The below figures show the timeline with the milestones for this project, along with their estimated completion timeframe.

Figure 3 Project Timeline

						Qt	tr 3, 2023	Qtr 4, 2023	Qt	r 1, 2024		Qtr 2, 200	24	Qtr 3, 20	14	Qtr 4, 202	1	Qtr 1,	2025	Qtr 2	2025	Qtr	3, 2025	Qtr 4,	:025
Task Name	→ Duration →	Start	Finish •	Predecessor	s Jun	ı Ji	ul Aug Sep	Oct Nov I	Dec Ja	m Feb	Mar	Apr M	ay Jun	Jul A	ig Sep	Oct No	/ Dec	Jan	Feb 1	tar Apr	May J	un Jul	Aug	Sep Oct	Nov
△ Project Initiation	15 days	Mon 6/26/23	Fri 7/14/23			1	7/14/23																		
	170 days	Mon 7/17/23	Fri 3/8/24								3 /	8/24													
△ Data Collection and Preparation	55 days	Mon 3/11/24	Fri 5/24/24										5/2	1/24											
■ Model Development	125 days	Mon 5/27/24	Fri 11/15/24													•	11/1	5/24							
△ Prototype Development and Testing	60 days	Mon 11/18/24	Fri 2/7/25													1			a 2/7	/25					
△ Integration and System Testing	95 days	Mon 2/10/25	Fri 6/20/25																			% 6/2	0/25		
■ Web Application Development	45 days	Mon 6/23/25	Fri 8/22/25																				•	8/22/25	
△ Mobile Application Development	70 days	Mon 6/23/25	Fri 9/26/25																					9/26	/25

Figure 4 Project Milestones

4.2 PROJECT SCHEDULE (GANNT CHART)

Figure 5 Scope - Gantt Chart

5. SOFTWARE PRODUCT DEVELOPMENT - CONSTRUCTIVE COST MODEL CALCULATIONS

The COCOMO (COnstructive COst MOdel) is a software cost estimation model that can be used to estimate effort, time, and cost required for software development projects. It takes into account various factors such as project size, complexity, team experience, and development process.

The COCOMO model uses a formula to estimate the effort and duration required for a software project based on the number of lines of code.

Following is the result of COCOMO Results for the software development, with following parameters:

- SLOC (Lines of code) 50,000
- Embedded Mode: A software project that must be developed within a set of tight hardware, software, and operation constraints

Figure 6 COCOMO Results

The COCOMO model uses a formula to estimate the effort and duration required for a software project based on the number of lines of code. Based on the results, here is the efforts & staffing details

- o EFFORT: The estimated effort required for the project is 311.448 person-months.
- o DURATION: The estimated duration of the project is 15.697 months.
- STAFFING (recommended): The recommended staffing level for the project is 19.841 people.

Since the business's expectation is to complete the software product development in approximately 13 months, considering activities such as model development, website development, and mobile application development, we need to calculate the staffing based on the desired development duration.

Using the COCOMO calculation provided, the estimated effort is 311.448 person-months, and the desired development duration is 12.9 months (395 days).

To determine the staffing number, we can apply the staffing formula:

Staffing = Effort / Duration

Staffing = 311.448 person-months / 12.9 months ≈ 24.14 people

Therefore, based on the COCOMO calculation and considering the desired development duration of approximately 13 months, the estimated staffing required would be approximately 24.14 people.

It's important to note that the staffing calculation is based on the provided COCOMO model and assumes the accuracy of the effort and duration estimates. Other factors, such as team availability, skill sets, and project risks, should also be considered when finalizing the staffing plan.

6. COST/BUDGET MANAGEMENT

The following cost table outlines the estimates of financial investment required over a span of four years:

Initial investment	Year 0	Year 1	Year 2	Year 3
Initial investment	\$1,900,000	\$0	\$0	\$0
Implementation costs	800,000	0	0	0
Ongoing support costs	0	100,000	80,000	65,000
Training costs	90,000	35,000	25,000	15,000
Other costs	0	0	0	0
Total costs	\$2,790,000	\$135,000	\$105,000	\$80,000

Table 4 Estimations Outline

The initial investment for Year 0 is \$1,900,000, covering the expenses incurred at the beginning of the endeavor. Implementation costs are projected at \$800,000 for Year 0 and remain constant at zero for the subsequent years. Ongoing support costs are estimated at \$100,000 in Year 1, \$80,000 in Year 2, and \$65,000 in Year 3. Training costs are expected to amount to \$90,000 in Year 0, decreasing gradually to \$15,000 in Year 3.

7.1 TOTAL COSTS OVERVIEW

The project involves direct up-front costs, ongoing costs, and indirect costs. Below, our team has addressed all three types of costs to outline the total cost of ownership.

7.1.1 Direct Up-Front Costs

- Research and Development: Costs associated with conducting research, developing AI
 algorithms, and creating prototypes for smart home products.
- Hardware and Software Investment: Costs of acquiring necessary hardware, such as AI processors or servers, and software licenses for AI development and implementation.
- Training and Skill Development: Costs of training employees or hiring specialized talent to develop and deploy AI technologies within the organization.
- Data Acquisition and Integration: Costs involved in acquiring relevant data sets, ensuring data quality, and integrating data from different sources for AI training and analysis.
- o Infrastructure Upgrade: Costs of upgrading existing infrastructure, such as networking systems or cloud computing capabilities, to support AI implementation.

7.1.2 Ongoing Costs

- Maintenance and Upgrades: Costs associated with regular maintenance, software updates, and hardware upgrades to ensure the continued performance and functionality of AI systems.
- Data Management: Costs of data storage, processing, and management required to support
 AI applications and ensure data availability and accessibility.
- Monitoring and Support: Costs of monitoring AI systems, addressing technical issues, and providing ongoing support to ensure their optimal functioning.
- Training and Skill Development: Ongoing costs of training employees to use and adapt to
 AI technologies, keeping them up to date with the latest advancements.
- Security and Compliance: Costs of implementing robust security measures, data privacy safeguards, and ensuring compliance with relevant regulations and standards.

7.1.3 Indirect Costs

- Opportunity Cost: The value of potential opportunities or projects that are foregone or delayed due to the allocation of resources and investments in AI innovation.
- Change Management: Costs associated with managing organizational changes, including employee training, cultural shifts, and adapting business processes to leverage AI technology.
- o Integration Challenges: Costs incurred in integrating AI systems with existing infrastructure, legacy systems, and ensuring compatibility and seamless operation.
- Legal and Ethical Considerations: Costs associated with legal consultations, compliance assessments, and ethical frameworks to address potential legal and ethical implications of AI implementation.

Other areas involving financial management and control are as follows:

7.1.4 Budget Allocation

- Based on the cost estimation, a comprehensive budget plan has been developed for the project.
- The budget allocates resources to different project phases, including research and development, procurement, implementation, and maintenance.

 Contingency reserves have been included in the budget to account for unforeseen expenses or scope changes.

7.1.5 Cost Monitoring and Control

- Regular monitoring of project costs will be conducted to track the actual expenditures against the budgeted amounts.
- The project manager will compare the actual costs with the allocated budget and analyze any deviations.
- Variances will be documented, and appropriate corrective actions will be implemented to address budget overruns or underspending.

7.1.6 Change Management

- Any proposed changes to the project scope, objectives, or deliverables that may impact on the budget will be carefully assessed.
- Change requests will undergo a thorough evaluation process to determine their feasibility, impact on costs, and alignment with project goals.
- Approved changes will be integrated into the budget and communicated to relevant stakeholders.

7.1.7 Vendor Management

- Vendor selection will be based on a combination of factors, including cost, expertise, reliability, and track record.
- Contracts and service level agreements will be negotiated to ensure cost-effective pricing,
 clear deliverables, and performance metrics.
- Regular vendor performance evaluations will be conducted to verify compliance with agreed-upon terms and identify opportunities for cost optimization.

7.1.8 Risk Management

- Risks related to cost escalation, budget overruns, and unforeseen expenses will be identified, assessed, and prioritized.
- Mitigation strategies will be developed to minimize the impact of identified risks on the project budget.

 Contingency plans will be established to address risks that may affect cost estimates or the availability of resources.

7.1.9 Reporting

- o Regular cost/budget status reports will be generated and shared with key stakeholders.
- The reports will provide an overview of the actual costs incurred, budget utilization, and any significant deviations.
- Recommendations for cost optimization and future budget planning will be included in the reports.

7. QUALITY MANAGEMENT

The Quality Management Plan for the project will outline the strategies and activities to ensure a high-quality product throughout the project lifecycle. The purpose of this plan is to:

- Establish quality planning processes and procedures
- o Define quality assurance and control activities
- Set acceptable quality standards and criteria
- o Ensure adherence to industry standards and customer satisfaction.

Throughout the project milestones, the following quality management processes will be implemented:

Project Initiation: During this phase, quality objectives and metrics will be defined to establish a clear framework for quality management throughout the project. Quality planning activities, such as identifying quality standards, project constraints, and customer requirements, will be undertaken.

Product Design Phase: Quality will be integrated into the product design process by ensuring that design specifications align with customer needs and industry best practices. Design reviews and validation activities will be conducted to verify that the design meets quality standards and can achieve the desired functionality and performance.

Data Collection and Preparation: To ensure the accuracy and reliability of data used in AI models, robust data collection and preparation processes will be established. Quality checks will be performed to identify and rectify any data issues, such as missing or inconsistent data. Data validation techniques will be employed to ensure the integrity and quality of the collected data.

Model Development: Quality will be a core consideration in the development of AI models. Rigorous testing and validation will be conducted to assess the accuracy, precision, and reliability of the models. Verification activities will be carried out to confirm that the models conform to the specified requirements and produce the expected outputs.

Prototype Development and Testing: The prototypes developed during this phase will undergo thorough testing to validate their functionality, usability, and performance. Various testing techniques, such as functional testing, performance testing, and user acceptance testing, will be employed to identify and address any defects or deviations from quality standards.

Integration and System Testing: As components and subsystems are integrated, comprehensive integration and system testing will be conducted to ensure seamless interoperability and proper functioning of the overall system. Testing will include verifying data exchange, system interfaces, and system behavior to ensure that quality requirements are met.

Web Application Development: Quality assurance practices, including code reviews, unit testing, and user interface testing, will be employed during web application development to ensure high-quality and robust web-based interfaces. Compliance with web standards and accessibility guidelines will also be considered to enhance usability and user experience.

Mobile Application Development: Similar quality management practices will be applied during mobile application development, including testing for compatibility, performance, and security across different mobile platforms. User acceptance testing will be conducted to validate the mobile application's functionality and usability.

Throughout the project, quality control mechanisms, such as quality audits, inspections, and ongoing monitoring, will be employed to ensure adherence to quality standards and the identification of any quality-related issues. Continuous improvement processes, such as lessons learned sessions and corrective actions, will be implemented to enhance project quality, and address any gaps or challenges identified during the project lifecycle.

8. HUMAN RESOURCE MANAGEMENT

The RACI chart is a valuable tool in project management because it provides a clear and structured approach to assigning roles and responsibilities. By clearly defining who is Responsible, Accountable, Consulted, and Informed for each task, the RACI chart ensures that all team members have a clear understanding of their roles and expectations. This promotes accountability, minimizes confusion, and improves decision-making and communication within the project. It enables efficient allocation of resources, prevents tasks from falling through the cracks, and helps to maintain a streamlined workflow. Overall, the RACI framework enhances project efficiency, collaboration, and ultimately increases the likelihood of project success.

Key:

Responsible (R): Designates the team or individual responsible for executing the task.

Accountable (A): Designates the team or individual ultimately accountable and responsible for the task's completion.

Consulted (C): Designates the team or individual whose input and expertise are sought during task execution.

Informed (I): Designates the team or individual who needs to be kept informed about the task's progress or decisions made.

Task	Design Engineers	Project Manager	Data Scientists	Quality Assurance Testers	Software Engineers	Front-end Developers	Back-end Developers	Android Developers	iOS Developers	Marketing Specialists	Sales Team
Data Collection and Preparation		Α	R		С					1	
Completion of Product Design	R	Α									1
Model Development		Α	R							1	
Prototype Testing and Feedback		Α	R	R						I	
Integration and System Testing		Α	R	R	R					1	
Web Application Development		Α				R	R			1	
Mobile Application Development - Android		Α						R		1	
Mobile Application Development - Android		Α							R	1	
Market the New Service to the Community		Α								R	R

Table 5 RACI chart

9.1 STAFFING MANAGEMENT

Staff Acquisition:

The staffing management plan will focus on acquiring the necessary human resources with the relevant skills and expertise. The plan will include strategies for staff acquisition, such as conducting internal job postings to leverage existing talent within the organization and external recruitment to attract individuals with specialized knowledge in areas such as smart home technology, data science, software development, and marketing. The plan will outline the process

for screening and interviewing candidates, including any specific technical assessments or evaluations required. It will also address considerations for diversity and inclusion to ensure a diverse and inclusive project team.

Resource Calendars:

The development and implementation phase are expected to span a duration of 12 months. All resources will be required before the project initiation to ensure a smooth start. During the development phase, four software engineers, two front-end developers, and two back-end developers will be assigned to work intensively for a period of 16 weeks. This dedicated team will focus on coding, testing, and integrating the smart home features into the system. Other resources, such as the project manager, quality assurance testers, and data scientists, will be part of the project management team and will be involved throughout the entire year. Their expertise and guidance will ensure the project's success by overseeing the overall progress, conducting regular quality checks, and making data-driven decisions. By having a well-balanced resource calendar that aligns the availability and allocation of resources with project phases, "SmartHome Solutions" can effectively manage the team's workload, ensure timely deliverables, and maintain a high level of quality throughout the development and implementation process.

Training:

Training is an integral part of the project, ensuring that team members are equipped with the necessary expertise to develop and implement smart home solutions effectively. A thorough training needs assessment will be conducted to identify any skill gaps among the team members. Based on the assessment, a comprehensive training plan will be created, incorporating technical training on smart home technologies, software development methodologies, and customer service skills. Training sessions will be conducted to enhance the team's understanding of the project objectives, industry best practices, and the specific tools and technologies used in the project. By providing targeted training, the project team will be well-prepared to deliver high-quality smart home solutions, ensuring customer satisfaction, and achieving project success.

Performance Reviews:

Performance reviews in the project play a critical role in evaluating the capabilities and contributions of team members. These reviews enable the project manager to assess factors such as task completion, problem-solving skills, communication, and collaboration. By providing

constructive feedback and identifying areas for improvement, performance reviews help enhance individual performance and contribute to the overall success of the project. Additionally, performance reviews facilitate alignment with project goals, identify training and development needs, and foster a culture of continuous improvement, ensuring optimal functionality and efficiency within the project team.

Recognition and Rewards:

For now, the scope of this project does not provide any monetary rewards. However, we plan on implementing unique practices such as innovation awards and gamification elements, we create an environment that encourages creativity and healthy competition. Additionally, offering personal development opportunities and recognizing social impact ensures that team members feel valued and inspired to contribute their best to the project.

- Smart Home Innovation Awards: Recognize team members who contribute innovative ideas and solutions that enhance the functionality and user experience of "SmartHome Solutions" products.
- Smart Home Challenge: Implement a challenge-based reward system where team members are recognized and rewarded for achieving specific milestones or overcoming technical hurdles in the development of smart home products.
- Skill Development Scholarships: Offer scholarships or sponsorships for team members to pursue additional training or certifications in areas relevant to smart home technologies, such as artificial intelligence, IoT, or home automation.
- Smart Home Sustainability Champions: Recognize team members who actively contribute
 to the development of energy-efficient and eco-friendly smart home solutions. This can
 include reducing power consumption, optimizing resource usage, or integrating renewable
 energy sources.
- Smart Home User Experience Awards: Acknowledge team members who excel in creating intuitive and seamless user experiences for "SmartHome Solutions" mobile and web applications.
- Smart Home Hackathon: Organize a hackathon-style event where team members can showcase their creativity and problem-solving skills in developing innovative smart home

features or prototypes. The winners can be rewarded with recognition, prizes, or opportunities to further develop their ideas.

9. COMMUNICATIONS MANAGEMENT

The Communications Management Plan for the project will ensure seamless communication throughout the project lifecycle, promoting collaboration and ensuring project success. It will serve as a comprehensive guide, outlining the strategies, roles, and responsibilities for effective communication.

Communications Management Approach

The Project Manager will take a proactive role in overseeing communication activities, ensuring clear and consistent information flow. The plan will define clear channels and methods for communication, including regular meetings, progress reports, and stakeholder updates. This approach will foster collaboration, alignment, and transparency among project team members and stakeholders.

Communications Management Constraints

All communication activities will be conducted within the approved budget, schedule, and resource allocations. The project manager will ensure that communication tasks are efficiently executed by the project team without relying on external resources. Adherence to established communication frequencies and timelines will be crucial to prevent schedule delays and cost overruns.

Stakeholder Communication Requirement

The project manager will engage with stakeholders to understand their communication preferences and requirements. Personalized communication approaches will be employed to provide relevant and timely updates to each stakeholder. By meeting stakeholders' communication needs, the project team will foster engagement, collaboration, and satisfaction.

Communication Methods and Technologies

The project will leverage various communication methods and technologies to facilitate efficient information exchange. Collaborative tools, such as project management software and shared online platforms, will enable real-time collaboration and document sharing. Regular team meetings, both virtual and in-person, will provide opportunities for face-to-face communication and ensure alignment among project team members.

10.1 COMMUNICATION MATRIX

Communication	Messages	Medium Frequency Communicators		Feedback Mechanisms	
Kickoff	Introduce	Virtual or in-	Once	Project team and	Email
Meeting	project. Review	person		Stakeholders	
	objectives and				
	goals				
Requirements	Gather	Interviews/Su	As needed	Project team, and	Documentation
Gathering	requirements	rveys		Customers	of
	for smart home				requirements
	solutions				
Design Review	Discuss and	Conference	As needed	Technical team	Document
Meetings	review technical	call or Face-		and Design team	what was
	and creative	to-face			updated
	design aspects				
Development	Provide updates	Email	Weekly	Development	Email CC the
Updates	on development			Team and Project	team
	progress			Manager	
User	Conduct testing	In-person	As needed	QA Team and	Bug reports
Acceptance	sessions and	sessions or		End Users	and feedback
Testing	gather user	Remote			forms
	feedback	testing			
Marketing and	Discuss	Meetings	As needed	Marketing Team	Marketing
Launch Plan	marketing			and Project	strategy
	strategy and			Manager	approval and
	launch plan				feedback
Customer	Provide	Online chat,	Ongoing		Customer
Support	customer	Email, and			feedback and
	support for	Phone			

	smart home			Customer	issue
	solutions			Support Team	resolution
				and Customers	
Post-Launch	Collect	Online	After	Project Manager	Survey
Surveys	feedback	surveys	launch	and Customers	responses and
	through online				suggestions
	surveys				

Table 6 Communication Matrix

10. RISK MANAGEMENT

Risk management is the process of identifying, assessing, and mitigating risks that may impact a project, business, or organization. It involves systematically analyzing potential risks, determining their potential impact and likelihood, and developing strategies to address or mitigate them. The goal of risk management is to minimize the negative impact of risks and maximize opportunities for success.

11.1 QUALITATIVE RISK ASSESSMENT USING ONE-MINUTE RISK ASSESSMENT

A "One-Minute Risk Assessment" is a less formal and time-constrained method where people quickly evaluate hazards based on their intuition and knowledge within a condensed amount of time, usually around a minute. It is a quick method for determining prospective risks and the general gravity of those threats.

The One-Minute Risk Assessment approach is a qualitative risk assessment technique that involves quickly assessing risks based on their impact and probability. Here is a streamlined method that includes each step:

Create a thorough inventory of all potential risks that could affect the project by having a brainstorming session to identify them. Think about a variety of things, including technological issues, environmental concerns, organizational issues, and resource-related difficulties.

Analyze probability: Calculate the possibility that each danger you've identified will materialize. Use a numerical scale, such as 1 to 5, or assign categories to the likelihood, such as low, medium, or high.

Impact assessment: Consider the possible effects that each risk, if it were to materialize, may have on the project. Once more, use categories or a numerical scale to evaluate the impact's severity.

Rate Risk: Calculate the risk rating or score by multiplying the likelihood and impact ratings for each risk. Risks can be prioritized according to their relative severity thanks to this grading.

Prioritize risks: List the hazards in ascending order of importance, with greater risk ratings denoting more urgent situations. This prioritization makes it easier to devote the right amount of time and money to mitigating the greatest risks.

The One Minute Risk Assessment is completed as shown below the following process:

On a scale of 1-10, where 1 is low performance and 10 is high performance, rate this project and add the six weighted ratings.

A lower overall project risk score indicates higher project risk.

Range: 10 (most risky) to 100 (least risky).

Overall risk score	10-28	29-46	47-64	65-82	83-100
Project risk level	High	Moderately	Medium	Moderately	Low
		High		Low	

Table 7 One minute Risk Assessment Reference Table

Project Characteristic Question	Rating	X	Weight	=	Score
Data Privacy and Security Risks: How critical is					
ensuring data privacy and security for the success of	7	X	2	=	14
the project?					
Bias and Discrimination: How likely is it for biases in	4	х	1.8		7.2
AI algorithms to impact the project outcomes?		Λ	1.0	_	1.2
Reliance on Data Quality and Availability: How					
heavily does the project depend on high-quality and	5	X	1.7	=	8.5
available data?					
Legal and Regulatory Compliance: How important is	4	x	1.3	_	5.2
it to comply with laws and regulations related to AI?		Λ	1.5	_	3.2
Technical Limitations and Failures: How much could	8	x	1.1	_	8.8
technical limitations and failures impact the project?		Α	1.1		0.0
Dependency on AI Systems: How reliant is the project					
on AI systems, and how disruptive would it be if they	5	X	0.5	=	2.5
fail?					
Overall Project Risk Score			46	.2	

Table 8 One minute Risk Assessment Score Table

The rationale for the ratings assigned to each project characteristic is described below. Potential actions that could raise those ratings are also described. Even though this is not a software development project, more implementation and customization, all the project characteristics identified as risk factors are applicable:

Data Privacy and Security Risks:

Smart home products handle personal and sensitive data, including user preferences, behavior patterns, and audio/video recordings. Compromising data privacy and security can lead to serious consequences such as privacy breaches, unauthorized access, and even physical risks. Prioritizing and addressing these risks is vital for the project's success. Robust security measures like encryption, access controls, and regular audits are necessary. Establishing data privacy practices, including proper data collection, storage, and governance, is essential for protecting user information and complying with regulations.

Bias and Discrimination:

Bias in AI algorithms can occur when the training data used to develop the algorithms is itself biased or reflects existing societal biases. If biases exist in the data, the AI algorithms may learn and perpetuate those biases, leading to unfair outcomes or discriminatory behavior.

To assess the likelihood of biases impacting the project outcomes, it is important to evaluate the quality and diversity of the training data used, the steps taken to mitigate biases during algorithm development, and the ongoing monitoring and evaluation of the algorithms' performance for potential biases.

Reliance on Data Quality and Availability:

High-quality and available data is critical for the success of the project. Relying on low-quality or inaccessible data increases the risk of errors and flawed results. Inaccurate or biased data can lead to incorrect predictions and unreliable insights. Insufficient or delayed data availability can cause delays, disrupt the project timeline, and hinder decision-making. The risk extends beyond immediate outcomes, potentially impacting the project's reputation and long-term success. To mitigate these risks, robust data collection, storage, and management practices should be established, including data quality control, privacy, and security measures. Strategies for ensuring data availability when needed are important, and regular monitoring and evaluation of data sources and management processes are crucial. Managing the risk associated with data quality and availability enhances project outcomes and delivery.

Legal and Regulatory Compliance:

Compliance with laws and regulations related to AI is of paramount importance in home product projects. It ensures the protection of user rights, such as privacy and consent, while mitigating risks associated with data breaches and algorithmic biases. By complying, companies build consumer

trust and safeguard their reputation. Compliance also enables access to international markets and fosters responsible innovation. Overall, it upholds ethical principles, protects user privacy, and ensures the long-term success and sustainability of home product projects.

Technical Limitations and Failures:

Technical limitations and failures can have a significant impact on a home products project, affecting functionality, performance, user experience, and overall project success. They can lead to dissatisfied customers, decreased user adoption, and damage to the project's reputation. Mitigating these impacts requires rigorous testing, quality assurance, and prompt troubleshooting. By addressing technical limitations and failures proactively, companies can ensure a reliable product, meet user expectations, and maintain a positive brand reputation, leading to increased customer satisfaction and market adoption.

Dependency on AI Systems:

The home products project is reliant on AI systems, and their failure could have disruptive consequences. The project's functionality and user experience may be compromised, leading to negative reviews, decreased customer satisfaction, and potential loss of market share. To mitigate the impact of AI system failures, contingency plans, backup mechanisms, and proactive monitoring are crucial to ensure the project's success and minimize disruptions.

11.1.1 Conclusion

The One Minute Risk Assessment indicates that the project has a moderately high-risk level, falling within the range of 29-46. Risks include data privacy and security, biases in AI algorithms, reliance on data quality and availability, legal compliance, technical limitations and failures, and dependency on AI systems. Mitigation strategies should focus on robust security measures, addressing biases, ensuring data quality, complying with regulations, addressing technical limitations, and developing contingency plans. Implementing these strategies will enhance project success and protect user privacy.

11.2 QUANTITATIVE RISK ASSESSMENT USING MONTE-CARLO SIMULATION

The goal of this Monte Carlo simulation is to study what might happen in a project and the chances of different outcomes. We used statistical methods to figure out the possible range of results and the likelihood of achieving specific goals. The simulation considered things like task relationships and how each task can vary, giving us a complete picture of how the project might perform.

Tools	Optimistic Time	Expected Time	Pessimistic Time	
Task	(In Days)	(In Days)	(In Days)	
Project Initiation	12	15	20	
Product Design Phase	160	170	180	
Data Collection and Preparation	50	55	60	
Model Development	120	125	130	
Prototype Development and Testing	55	60	65	
Integration and System Testing	90	95	100	
Web Application Development	40	45	50	
Mobile Application Development	65	70	75	
Total	592	635	680	

Table 9 Monte Carlo Simulation Project Outline

11.2.1 Results

The Monte Carlo simulation was performed with a total of 2,500 trials to assess the risk associated with the project. The simulation yielded valuable insights into the likely outcomes based on the provided statistics.

The average value obtained from the simulation was 370.00, indicating the expected mean outcome for the project. However, it is important to note that the actual results may deviate from this value due to inherent uncertainties.

The standard deviation of 20.00 signifies the spread or variability of the results around the mean value. A higher standard deviation suggests a wider range of potential outcomes, highlighting the project's inherent risk.

The median value of 360.00 represents the middle value in the distribution of results. It divides the dataset into two equal halves, suggesting that half of the simulated outcomes were below 360.00 and the other half were above this value.

The lowest observed value in the simulation was 320.00, indicating the possibility of achieving outcomes lower than the expected mean. Conversely, the highest observed value was 440.00, representing the potential for favorable outcomes exceeding the mean value.

To assess the likely range of outcomes, percentile ranges were used. The P80 range, which captures 80% of the results, was determined to be between 340.00 and 390.00. This range eliminates extreme values and provides a more realistic understanding of the project's potential outcomes.

Additionally, the P50 range, representing the 25th to 75th percentile, was found to be between 350.00 and 380.00. This range offers further insights into the middle 50% of the results, encompassing a narrower band of likely outcomes.

These results indicate that the project carries inherent uncertainty and risk. Stakeholders should consider the potential for outcomes both above and below the expected mean value, considering the provided percentile ranges to understand the most likely outcomes.

Simulation Trials	2,500.00
Mean (Average) Value	370.00
Standard Deviation	20.00
Median Value	360.00
Lowest Observed Value	320.00
Highest Observed Value	440.00
P80 Range (10th - 90th percentile)	340.00 - 390.00
P50 Range (25th - 75th percentile)	350.00 - 380.00

Figure 7 Project Statistics

The contribution to variance, also known as single-factor sensitivity, measures the impact of each individual task on the overall project result. It quantifies how much variability in the project can be attributed to the variability in each specific task.

Figure 8 Contribution to Variance

The analysis revealed that *Model Development* had the highest contribution to the overall project variance, accounting for 69.8% of the variability. This suggests that any changes or uncertainties in the *Model Development* task would have a significant impact on the overall project outcome.

Integration and System Testing followed with a contribution to variance of 15.3%, indicating that variations in this task had a moderate effect on the overall project variance.

Prototype Development & Testing accounted for 9.4% of the overall project variance, indicating a relatively lower but still noteworthy impact on the project outcome.

Overall, this Monte Carlo simulation provided valuable insights into the relative contributions of different tasks to the project's variance. These results can help to prioritize risk mitigation strategies and allocate resources effectively to minimize potential disruptions and uncertainties in the project.

Figure 9 Distribution of Outcomes

The above histogram illustrates the frequency at which each outcome occurred during the simulation.

The x-axis of the histogram represents the possible outcomes, while the y-axis indicates the frequency or number of occurrences. The histogram provides insights into the range of potential project outcomes and their respective likelihoods.

Based on the simulation, the expected value for the overall project is estimated to be 350.00. This value represents the average or most likely outcome.

In addition to the expected value, the simulation also determined the optimistic and pessimistic values for the project. The optimistic value is 444.00, indicating the best-case scenario. Conversely, the pessimistic value is 240.00, representing the worst-case scenario.

By analyzing the histogram, it is possible to assess the likelihood of achieving certain outcomes within the project. The histogram suggests that outcomes between 324.00 and 420.00 are relatively common, while outcomes beyond this range become increasingly less frequent.

The distribution of outcomes provides a visual representation of the project's potential risks and uncertainties. It allows risk managers to gain a comprehensive understanding of the project's range of possibilities and make informed decisions regarding risk mitigation strategies.

Expected Value	350.00
Probability of Result <= Expected Value	20.8%
10% Overrun (Expected + 10%)	385.00
Probability	82.2%
25% Overrun (Expected + 25%)	437.50
Probability	100.0%

Figure 10 Project Probabilities

The expected value for the project, which is calculated based on the expected value for all tasks and their dependencies, was determined to be 350.00.

The simulation results indicate that there is a 20.8% probability that the project will be completed on schedule or before the expected value. This implies that there is a moderate chance of meeting the project deadline or even completing it ahead of schedule.

Furthermore, the simulation also provided insights into the probabilities of cost overruns. With a 10% overrun, where the expected value is increased by 10%, the probability of the result being less than or equal to 385.00 was found to be 82.2%. This suggests a relatively high likelihood of staying within the budget, considering a small overrun.

Additionally, when considering a 25% overrun, with the expected value increased by 25%, the simulation results indicate a 100.0% probability of the result being less than or equal to 437.50. This implies that the project is highly likely to be completed within the budget even with a larger overrun.

11.2.2 Recommendation

Based on the results obtained from the Monte Carlo simulation, several recommendations can be made to effectively manage the risks associated with the project:

Consider the range of potential outcomes: The simulation revealed a wide range of potential outcomes, with results varying above and below the expected mean value of 370.00. Stakeholders should acknowledge the possibility of both favorable and unfavorable outcomes and develop contingency plans accordingly.

Focus on risk mitigation for Model Development: As the task with the highest contribution to the overall project variance (69.8%), special attention should be given to managing risks associated with Model Development. Proactive risk mitigation strategies, thorough planning, and close monitoring of this task are crucial to reducing the overall project uncertainty.

Allocate resources and monitor Integration and System Testing: With a contribution to variance of 15.3%, Integration and System Testing play a significant role in determining project outcomes. Proper resource allocation, effective coordination, and rigorous testing procedures should be implemented to minimize variations in this task and ensure smooth integration of project components.

Mitigate risks in Prototype Development & Testing: While accounting for 9.4% of the overall project variance, Prototype Development & Testing still holds a notable impact on project outcomes. Identifying and addressing potential risks in this area can help prevent delays, defects, or deviations from project objectives.

Use percentile ranges for planning: The provided percentile ranges (P80 range: 340.00 to 390.00, P50 range: 350.00 to 380.00) offer insights into likely project outcomes. By incorporating these ranges into planning and decision-making processes, stakeholders can set realistic expectations, establish appropriate milestones, and allocate resources accordingly.

Continuously monitor and adapt: Risk management is an ongoing process. Regular monitoring of project progress, reassessment of risks, and adaptation of risk mitigation strategies are essential to address emerging challenges effectively. Proactive risk management enables timely interventions and helps prevent potential disruptions.

Communicate and involve stakeholders: Effective communication with stakeholders is crucial in risk management. Keeping stakeholders informed about potential risks, uncertainties, and mitigation strategies fosters collaboration, facilitates decision-making, and promotes a shared understanding of project risks.

11.3 RISK RESPONSE PLAN

The table below outlines our planned responses to the risks identified in the risk management section of the business case proposal. Each risk has a trigger, which indicates when the risk occurs and alerts the designated owner responsible for monitoring and addressing the risk. Our responses are based on one of the four fundamental risk strategies:

- a. Accept or Ignore: We acknowledge the risk but decide to take the chance of negative impact, factoring in potential budget costs.
- b. Avoidance: We modify our plans to circumvent the problem and prevent the risk from materializing.
- c. Mitigate: We implement intermediate steps to reduce the impact or likelihood of the risk.
- d. Transfer: We outsource the risk (or a portion of it) to a third party that can manage the outcome.

The chosen response will depend on the situation, and we must ensure that sufficient resources are available for the selected response. If resources are insufficient, we may have to consider changing our plan entirely, which could have significant implications for the company.

Task	Risk	Trigger	Owner	Response
Define project	Lack of clear project	Initiating a new	Project Manager	Facilitate
objectives, scope, and	objectives, scope,	project or project		discussion with
deliverables	and deliverables	planning phase		stakeholders to
				define clear
				objectives, scope,
				and deliverables
Identify project team	Insufficient or	Initiating a new	Project Manager	Conduct
members and	inappropriate team	project or project		stakeholder
stakeholders	members or	planning phase		analysis and
	stakeholders			identify
				appropriate team
				members and
				stakeholders
Conduct market	Inaccurate or	Initiating a new	Marketing	Employ rigorous
research and competitor	incomplete market	project or project	Specialist	data collection and
analysis	research data	planning phase		analysis methods to
				gather accurate and
				comprehensive
				market research
				and competitor
				data
Gather user	Incomplete or	Initiating a new	Product Manager	Conduct user
requirements and	inaccurate	project or project		research and
preferences	understanding of user	planning phase		engagement
	needs and			activities to gather
	preferences			comprehensive and
				accurate user
				requirements and
				preferences

Create initial product	Lack of alignment	Completion of user	Design Engineers	Conduct market
design concept	with user needs and	requirements		analysis and user-
	market trends	gathering		centric design
				process to create a
				product design
				concept aligned
				with user needs
				and market trends
Iterate and refine	Insufficient or	Completion of	Front-end	Gather user
product design based on	conflicting user	initial product	Developers	feedback through
feedback	feedback	design concept		usability testing
				and surveys,
				analyze feedback,
				and iterate the
				product design
				based on user input
Production	Technical	Completion of	Development	Implement the final
	Limitations and	iterative design and	Team	product based on
	Failures	development phases		the refined design
				and ensure
				technical stability
				and performance
Identify necessary data	Data Privacy and	Lack of data privacy	Data Scientist	Develop data
sources and collection	Security Risk	measures		privacy and
methods				security protocols

Collect relevant data for	Data Privacy and	Insufficient data	Data Scientist	Implement data
product development	Security Risks	availability		privacy and
	•			security measures
				l see a sign team and
Organize and prepare	Data Privacy and	Data breaches or	Data Scientist	Implement data
collected data for	Security Risks	unauthorized access		privacy and
analysis	-			security measures
				·
Select appropriate	Technical	Incompatibility with	Technical Lead	Conduct feasibility
technologies and build	Limitations	existing systems		assessments
frameworks				
Develop algorithms and	Bias and	Data bias and	Data Scientist	Implement fairness
models for smart home	Discrimination	discrimination in		and bias mitigation
functionalities		algorithms		strategies
Train and refine the	Bias and	Insufficient data	Data Scientist	Implement fairness
models based on	Discrimination	quality or biased		and bias mitigation
collected data		training data		strategies
Build a functional	Technical	Inadequate AI	Software Engineer	Test and optimize
prototype incorporating	Limitations	system performance		the prototype for
the developed models				performance and
				limitations
Conduct testing to	Technical	AI system failures	Quality Assurance	Identify and
validate the prototype's	Limitations	or errors	Testers	address technical
functionality				limitations and
				failures
Gather user feedback	Inadequate or biased	Completion of	Quality Assurance	Collect user
on the prototype's	user feedback	prototype	Testers	feedback and
usability and		development phase		analyze usability
performance				

				and performance
Iterate and refine the	Failure to address	Completion of user	Software	Analyze user
prototype based on	user needs and	feedback gathering	Engineers	feedback, identify
feedback	preferences	on the prototype		areas for
				improvement, and
				implement changes
				to the prototype to
				address user needs
				and preferences
Integrate the prototype	Technical	Incompatibility or	Software Engineer	Ensure
with necessary	Limitations	issues with		compatibility and
hardware and software		hardware or		seamless
components		software		integration
Conduct system-level	Technical	Integration issues or	Quality Assurance	Identify and
testing to ensure	Limitations	failures	Testers	address integration
seamless connectivity				issues and bugs
and interoperability				
Identify and resolve any	Technical		Software Engineer	Investigate and
Integration issues or	Limitations	Integration issues or		address integration
bugs		failures		issues or bugs
Define the architecture	Technical	Completion of	Front-end and	Conduct a
and design of the web	Limitations	initial requirements	Back-end	comprehensive
application		gathering	Developers	analysis of
				requirements,
				design the
				architecture, and
				create a detailed

				design plan for the web application
				по принами
Develop the '1st draft'	Technical challenges	Completion of web	Front-end and	Implement the
of the website,	in integrating smart	application	Back-end	initial version of
incorporating smart	home control features	architecture design	Developers	the website with
home control features				smart home
				features
Conduct user testing	Inadequate or biased	Completion of the	Front-end and	Conduct user
and gather feedback on	user feedback	first draft of the web	Back-end	testing and collect
the web application		application	Developers	feedback on
				usability
Iterate and refine the	Failure to address	Completion of user	Development	Analyze user
web application based	user needs and	testing and feedback	Team	feedback, identify
on feedback	improve user	gathering		areas for
	experience			improvement, and
				implement changes
				to the web
				application to
				address user needs
				and enhance user
				experience
Define the architecture	Technical	Completion	Technical Lead	Design a scalable
and design of the mobile	Limitations	of initial		and efficient
applications (Android		requirements		mobile application
and iOS)		gathering		architecture

Develop the 1st version	Technical challenges	Completion of	Android	Implement the
of the Android	in integrating smart	mobile application	Developer	initial version of
application with smart	home control features	architecture design		the Android
home control features	on Android			application with
				smart home
				features
Develop the 1st version	Technical challenges	Completion of	iOS Developer	Implement the
of the iOS application	in integrating smart	mobile application		initial version of
with smart home	home control features	architecture design		the iOS application
control features	on iOS			with smart home
				features
Conduct user testing	Inadequate or biased	Completion of the	Front-end and	Conduct user
and gather feedback on	user feedback	1st version of the	Back-end	testing and collect
the mobile applications		mobile applications	Developers	feedback on
				usability and
				performance
Iterate and refine the	Failure to address	User feedback	Product	Incorporate user
mobile applications	user needs and	indicating usability	Manager	feedback and make
based on feedback	improve user	or functionality		necessary
	experience	issues		improvements

Table 10 Risk Response Plan

Appendix A: Project Management Plan Approval

The undersigned acknowledge they have reviewed the *SmartHome Solutions - Innovation* **Project Management Plan** and agree with the approach it presents. Changes to this **Project Management Plan** will be coordinated with and approved by the undersigned or their designated representatives.

Signature:		Date:	07/05/23
Print Name:	Tsuneo Leavitt		
Title:	Project Manager		
Role:			
Signature:		Date:	07/05/23
Print Name:	Ansbert Cermak		
Title:	Implementation Manager		
Role:			
Signature:		Date:	07/05/23
Print Name:	Sebastian Jelen		
Title:	Implementation Manager		
Role:			

APPENDIX B: REFERENCES

The following table summarizes the documents referenced in this document.

Document Name and	Description	Location
Version		
Monte Carlo Methods	An explanation of Monte	https://www.riskamp.com/smart/app/
	Carlo simulation	project/#overview
Infographic: How	An explanation of How Many	www.fastcompany.com/3021256/info
Many Lines of Code Is	Lines of Code Is Your	graphic-how-many-lines-of-code-is-
Your Favorite App?	Favorite App?	your-favorite-app
STRS COCOMO	Calculation related to	strs.grc.nasa.gov/repository/forms/co
Calculation	COCOMO	comocalculation/.

APPENDIX C: KEY TERMS

The following table provides definitions for terms relevant to this document.

Term	Definition
Project Stakeholders	Individuals or groups who have a vested interest in the success of the project, including the project sponsor, senior
	leadership, and the project team.
COCOMO (COnstructive COst	A software cost estimation model that helps estimate the
MOdel)	effort, time, and cost required for software development
	projects. It considers factors such as project size, complexity,
	team experience, and development process to provide
	estimates based on lines of code.
Direct Up-Front Costs	Expenses incurred at the beginning of the project, including
	research and development costs, hardware and software
	investments, training and skill development expenses, data
	acquisition and integration costs, and infrastructure upgrade
	expenses.
Ongoing Costs	Continuous expenses associated with the project's operation
	and maintenance, including costs for maintenance and
	upgrades, data management, monitoring and support,
	ongoing training and skill development, and security and
	compliance measures.
Indirect Costs	Costs that are not directly associated with project activities
	but have an impact on the project's overall financial
	management. These costs may include opportunity costs,
	change management expenses, integration challenges, and
	legal and ethical considerations.