Instrument Recognition Software

Aleks Aner Axel Cuong Joe Thomas

Business Requirements Document

• We did not have any significant update in our BRD

Management Plan

We have updated our Sprint Board and Burndown Chart

Architecture and Design (Update)

- Included our primary data source
 - Philharmonia Orchestra
 - URL: philharmonia.co.uk/explore/sound_samples
 - Provides an adequate amount of audio recordings that we will use as our main dataset source for training and testing
 - The audio files are in a lossy MPEG Audio Layer-3 format (MP3), which we will be converting into a lossless Waveform audio file format (WAV)
 - This conversion will enhance the clarity and readability of the audio file, resulting in a more accurate sound data.
 - We also aim to have a built-in MP3 to WAV in our program.
 - There are a total of 57 instruments, each with an adequate amount of samples with varying pitches, lengths, dynamics, and articulation.
 - We are planning on only using a small fraction of the samples in our project (around two to three instruments)

- Client
 - The user's side of the software that contains a menu which allows them to interact with the software
- Server
 - The server handles the user registration and login authentication, machine learning model, and handles the calculation of the algorithms.

Client-Server interaction

- Controller
 - The controller manages the updates and serves as the main process for Model and View
- Model
 - The Model contains the login information and audio files
- View
 - The View provides the user with the final outcome

- Front-end
 - o JavaFX
 - Built using JavaFX SDK
 - Desktop application

- Back-end
 - o Server language: Python
 - Database: MongoDB (non-relational)
 - Connected using PyMongo
 - Stores the usernames and hashed passwords

File to Data Input

- In Python
 - Using LibROSA library
 - Have LibROSA analyze the file and output a stereo waveform and linear power spectrogram of the file data
 - Use Keras for machine learning in analysis and classification of the outputs from LibROSA

File to Data Input

- Current input: (60000, 28, 28, 1)
 - o (batch size, width, hight, channels)
- Final input: (training size, Xmax, Xmax, 1)
 - We cannot know the explicit input data to our function at the given time but can point to the factors that will define it

Figure 1: A CNN graphic of EEG PI (Electroencephalography Personal Identification) from ArXiv

Neural Network Layers

Anticipated number of layers: 15-20

- IRJET Oxford model (19)
 - 3x3 filters
 - 2x2 max pooling

Deep neural network layers:

- Input Layer
- Hidden Layers
- Output Layer

"In general, you cannot analytically calculate the number of layers or the number of nodes to use per layer in an artificial neural network to address a specific real-world predictive modeling problem." - Jason Brownlee, Ph. D.

Model Accuracy and Outputs

- Proof of Concept Model
 - o 10k samples given 10 trials
 - o Accuracy: 99.13%
 - Output: numeric labels

Over and Under fitting for PoC Model:

- 98.2% classification accuracy shows very minimal overfitting of data

- Musical Recognition Model
 - o Desired Accuracy: +90%
 - Acceptable Accuracy: +70%
 - Output: instrument labels

Sprint Retrospective

Sprint Board at the beginning of the sprint

Sprint Board at the end of the sprint

Sprint Summary

Sprint Goal

- Our main goal for this sprint was to develop testing and training datasets
- Determine a way CNN could interpret sound graphs
- Create a draft for CNN architecture

User Story Points

- Planned: 4 hours x 2.5 weeks x 6 members = 60 hours
- Achieved: 60

Next steps

- Run sample data through a CNN with 3 layers and 3 labels then test for accuracy
 - o Projected completion: Mid March

Thank You