Rozpady jądrowe

Rozpady jądrowe zachodzą jeśli jądro znajdzie się w stanie energetycznym, nie będącym najniższym możliwym dla układu o danej liczbie nukleonów.

Jądra nietrwałe pochodzenia naturalnego są nazywane promieniotwórczymi, a ich rozpady noszą nazwę rozpadów promieniotwórczych.

Informacje o jądrach atomowych, ich budowie, stanach energetycznych, oddziaływaniach; również informacje o pochodzeniu Wszechświata.

Znane są trzy rodzaje promieniowania:

- alfa (α) jądra helu,
- beta (β) elektrony lub pozytony,
- gamma (γ) fotony.

Maria Curie Skłodowska, Pierre Curie i Antoine Henri Becquerel

Maria Curie – Skłodowska została dwukrotnie uhonorowana Nagrodą Nobla:

W dziedzinie fizyki w 1903 r. wraz z mężem Piotrem Curie oraz Becquerelem za prace nad promieniotwórczością (Becquerel odkrył promieniotwórczość).

W dziedzinie chemii 1911 r. za rozwój chemii dzięki odkryciu polonu i radu oraz za zbadanie metalicznego radu i jego związków chemicznych.

Rozpad alfa

Rozpad alfa \rightarrow przemiana niestabilnego jądra w nowe jądro przy emisji jądra ⁴He tzn. cząstki α . Występuje zazwyczaj w jądrach o Z \geq 82.

Dla ciężkich jąder energia wiązania nukleonu maleje ze wzrostem liczby masowej → zmniejszenie liczby nukleonów (w wyniku wypromieniowania cząstki α) → powstanie silniej związanego jądra.

Proces zachodzi samorzutnie bo jest korzystny energetycznie.

Energia wyzwolona w czasie rozpadu (energetyczny równoważnik niedoboru masy) jest unoszona przez cząstkę α w postaci energii kinetycznej.

Przykład: $^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\text{He} + 4.2 \text{ MeV}$

Rozpad beta

Jeżeli jądro ma większą od optymalnej liczbę neutronów to w jądrze takim zachodzi przemiana neutronu w proton - rozpad beta (minus) β^{-} .

$$n \rightarrow p + e^- + \overline{v}$$
 - antyneutrino

Przykład:
$$^{239}\text{U} \rightarrow ^{239}\text{Np} + e^- + \bar{v}$$
 \longrightarrow $^{239}\text{Np} \rightarrow ^{239}\text{Pu} + e^- + \bar{v}$

Gdy jądro ma nadmiar protonów to zachodzi proces przemiany protonu w neutron - rozpad beta (plus) β +.

$$p \rightarrow n + e^+ + v$$
 v - neutrino

Promieniowanie gamma

Rozpadom alfa i beta towarzyszy zazwyczaj emisja wysokoenergetycznego promieniowania elektromagnetycznego zwanego promieniowaniem gamma (γ). Kwanty promieniowania γ mają bardzo wysoką energię (tysiące razy większą od energii fotonów wysyłanych przez atomy).

Prawo rozpadu nuklidów

Eksperyment → liczba jąder rozpadających się w jednostce czasu jest proporcjonalna do aktualnej liczby jąder N.

$$dN = -\lambda N dt$$

λ - stała rozpadu

$$\frac{\mathrm{d}N}{N} = -\lambda \,\mathrm{d}t$$

$$\int_{N(0)}^{N(t)} \frac{\mathrm{d}N}{N} = -\lambda \int_{0}^{t} \mathrm{d}t \qquad \Longrightarrow \qquad \ln N(t) - \ln N(0) = \ln \frac{N(t)}{N(0)} = -\lambda t \qquad \Longrightarrow \qquad \frac{N(t)}{N(0)} = e^{-\lambda t}$$

$$N(t) = N(0) e^{-\lambda t}$$

N(0) jest liczbą jąder w chwili t = 0, a N(t) liczbą jąder po czasie t.

$$N(t) = N_0 e^{-\lambda t}$$

N można opisać poprzez średni czas życia jąder τ :

$$au = rac{1}{\lambda}$$
 $N = N_0 e^{-t/ au}$

Szybkość rozpadu → czas połowicznego rozpadu (zaniku) T.

T czas, po którym liczba jąder danego rodzaju maleje do połowy

$$\frac{1}{2}N_0 = N_0 e^{-T/\tau}$$
 2 = $e^{T/\tau}$

$$T = \tau \ln 2 = 0.693 \tau$$

Czasy połowicznego zaniku pierwiastków leżą w bardzo szerokim przedziale.

 238 U → $T = 4.5 \cdot 10^9$ lat (porównywalny z wiekiem Ziemi), 212 Po → $T = 10^{-6}$ s.

Datowanie

Znajomość czasu połowicznego rozpadu -> rozpad radionuklidów = zegar

Przykłady:

• $^{40}\text{K} \rightarrow ^{40}\text{Ar} \text{ z } T = 1.25\text{x}10^9 \text{ lat } \rightarrow \text{pomiar proporcji } ^{40}\text{K}/^{40}\text{Ar w skałach pozwala ustalić ich wiek. Podobnie } ^{235}\text{U} \rightarrow ^{207}\text{Pb} \text{ (cykl rozpadów).}$ Pomiary meteorytów, skał ziemskich i księżycowych \rightarrow wiek Ziemi około $5\text{x}10^9$ lat

Krótsze okresy czasu \rightarrow datowanie radioaktywnym węglem ¹⁴C (T = 5730 lat)

¹⁴C powstaje w atmosferze w wyniku bombardowania przez promieniowanie kosmiczne azotu. 1 atom ¹⁴C przypada na 1013 atomów ¹²C → w organizmach żywych równowaga izotopowa.

Po śmierci wymiana z atmosferą ustaje → ilość radioaktywnego węgla maleje (rozpad) → określenie wieku materiałów pochodzenia biologicznego.

Przypomnienie/podsumowanie:

$$N(t) = N_0 e^{-\lambda t}$$

Prawo rozpadu promieniotwórczego

(λ - stała rozpadu)

 N_0 jest liczbą jąder w chwili t = 0, a N(t) liczbą jąder po czasie t.

$$N = N_0 e^{-t/\tau}$$

$$au=rac{1}{\lambda}$$

τ - średni czas życia jąder

$$T = \tau \ln 2 = 0.693 \tau$$

czas połowicznego zaniku (okres połowicznego rozpadu)