Número: Nome:

Sistemas Digitais 2008/2009

Departamento de Informática, Universidade de Évora

2° Exame

28 de Janeiro de 2008

Observações

• Duração: 2h30m

• Cálculos: Nas respostas apresente todos os cálculos efectuados

• *Identificação*: Não se esqueça de identificar todas as folhas entregues

Grupo 1

Efectue as seguintes operações indicando todos os cálculos:

- 1. Converta o número $-44_{(10)}$ para código de complemento para 2 com 8 bits
- 2. Converta o número $5A_{(16)}$ para BCD
- 3. Converta o número 3851₍₉₎ para base 3
- 4. Calcule $11100111_{(C2)} + 10000001_{(C2)}$ (complemento para 2 com 8 bits)

Grupo 2

Considere uma função booleana de 4 variáveis que assume o valor 1 sempre que $A\cdot 2^3+B\cdot 2^2+C\cdot 2^1+D\cdot 2^0$ for ímpar e inferior a 13.

- 1. Simplifique e implemente a função com o mínimo nº de portas lógicas que conseguir.
- 2. Implemente a função usando um multiplexer de 8 entradas.

Grupo 3

Considere o circuito da figura seguinte.

- 1. Simplifique a função F.
- 2. Construa a tabela de transição de estados da função F.
- 3. Desenhe o diagrama de transição de estados (modelo ASM) da função F.
- 4. Implemente a função com flip-flops SR (latch).

Grupo 4

Considerando que os flip-flops do circuito sequencial apresentado na figura seguinte são sensíveis à transição ascendente de relógio:

- 1. Complete o diagrama temporal, considerando o estado inicial $Q_2Q_1Q_0=000$.
- 2. Considere que a entrada X se mantém permanentemente a '0'. O que se passa quando o estado inicial é $Q_2Q_1Q_0=000$.

Grupo 5

Considerando que A, B, C e D são lâmpadas, projecte o circuito que gera a sequência representada na figura seguinte utilizando flip-flops T:

- 1. Desenhe o modelo ASM.
- 2. Escreva a tabela de transição de estados e saídas.
- 3. Obtenha as equações de entrada dos flip-flops das saídas.
- 4. Implemente o circuito.