Week 2 Video 4

Metrics for Regressors

Metrics for Regressors

- Linear Correlation
- □ MAE/RMSE
- Information Criteria

Linear correlation (Pearson's correlation)

- \Box r(A,B) =
- When A's value changes, does B change in the same direction?

Assumes a linear relationship

What is a "good correlation"?

- 1.0 perfect
- □ 0.0 none
- -1.0 perfectly negatively correlated

□ In between – depends on the field

What is a "good correlation"?

- □ 1.0 perfect
- □ 0.0 none
- -1.0 perfectly negatively correlated

- □ In between depends on the field
- □ In physics correlation of 0.8 is weak!
- □ In education correlation of 0.3 is good

Why are small correlations OK in education?

 Lots and lots of factors contribute to just about any dependent measure

Examples of correlation values

Same correlation, different functions

The correlation, squared

 Also a measure of what percentage of variance in dependent measure is explained by a model

- □ If you are predicting A with B,C,D,E
 - rather than r (depends on the community)

RMSE/MAE

Mean Absolute Error

Average of

Absolute value (actual value minus predicted value)

Root Mean Squared Error (RMSE)

□ Square Root of average of

(actual value minus predicted value)²

MAE vs. RMSE

- MAE tells you the average amount to which the predictions deviate from the actual values
 - Very interpretable
- RMSE can be interpreted the same way (mostly) but penalizes large deviation more than small deviation

However

■ RMSE is largely preferred to MAE

The example to follow is courtesy of Radek Pelanek, Masaryk University

Radek's Example

 Take a student who makes correct responses 70% of the time

- And two models
 - Model A predicts 70% correctness
 - Model B predicts 100% correctness

In other words

- □ 70% of the time the student gets it right
 - \square Response = 1
- 30% of the time the student gets it wrong
 - \square Response = 0
- Model A Prediction = 0.7
- Model B Prediction = 1.0

Which of these seems more reasonable?

MAE

- □ 70% of the time the student gets it right
 - \square Response = 1
 - Model A (0.7) Absolute Error = 0.3
 - Model B (1.0) Absolute Error = 0
- □ 30% of the time the student gets it wrong
 - \square Response = 0
 - Model A (0.7) Absolute Error = 0.7
 - Model B (1.0) Absolute Error = 1

MAE

- Model A
 - \square (0.7)(0.3)+(0.3)(0.7)
 - \square 0.21+0.21
 - **0.42**

- Model B
 - \square (0.7)(0)+(0.3)(1)
 - □ 0+0.3
 - **0.3**

MAE

- Model A
 - \square (0.7)(0.3)+(0.3)(0.7)
 - \square 0.21+0.21
 - **0.42**

- Model B is better, according to MAE
 - \square (0.7)(0)+(0.3)(1)
 - □ 0+0.3
 - **0.3**

Do you believe it?

- Model A
 - \square (0.7)(0.3)+(0.3)(0.7)
 - \square 0.21+0.21
 - **0.42**

- Model B is better, according to MAE
 - \square (0.7)(0)+(0.3)(1)
 - **0+0.3**
 - **0.3**

- □ 70% of the time the student gets it right
 - \square Response = 1
 - \square Model A (0.7) Squared Error = 0.09
 - Model B (1.0) Squared Error = 0
- □ 30% of the time the student gets it wrong
 - \square Response = 0
 - Model A (0.7) Squared Error = 0.49
 - Model B (1.0) Squared Error = 1

- Model A
 - \square (0.7)(0.09)+(0.3)(0.49)
 - 0.063+0.147
 - **0.21**

- Model B
 - \square (0.7)(0)+(0.3)(1)
 - □ 0+0.3
 - **0.3**

■ Model A is better, according to RMSE.

- \square (0.7)(0.09)+(0.3)(0.49)
- 0.063+0.147
- **0.21**

■ Model B

- \square (0.7)(0)+(0.3)(1)
- □ 0+0.3
- **0.3**

- Model A is better, according to RMSE.
 Does this seem more reasonable?
 - \square (0.7)(0.09)+(0.3)(0.49)
 - 0.063+0.147
 - **0.21**
- Model B
 - \Box (0.7)(0)+(0.3)(1)
 - **0+0.3**
 - **0.3**

Note

- □ Low RMSE is good
- □ High Correlation is good

What does it mean?

- Low RMSE/MAE, High Correlation = Good model
- □ High RMSE/MAE, Low Correlation = Bad model

What does it mean?

- High RMSE/MAE, High Correlation = Model goes in the right direction, but is systematically biased
 - A model that says that adults are taller than children
 - But that adults are 8 feet tall, and children are 6 feet tall

What does it mean?

- Low RMSE/MAE, Low Correlation = Model values are in the right range, but model doesn't capture relative change
 - Particularly common if there's not much variation in data

Information Criteria

BiC

- Bayesian Information Criterion (Raftery, 1995)
- Makes trade-off between goodness of fit and flexibility of fit (number of parameters)
- Formula for linear regression
 - \square BiC' = n log (1- r²) + p log n
- n is number of students, p is number of variables

BiC'

- Values over 0: worse than expected given number of variables
- Values under 0: better than expected given number of variables

 Can be used to understand significance of difference between models (Raftery, 1995)

BiC

 Said to be statistically equivalent to k-fold crossvalidation for optimal k

□ The derivation is... somewhat complex

- BiC is easier to compute than cross-validation, but different formulas must be used for different modeling frameworks
 - No BiC formula available for many modeling frameworks

AIC

Alternative to BiC

- Stands for
 - An Information Criterion (Akaike, 1971)
 - Akaike's Information Criterion (Akaike, 1974)

 Makes slightly different trade-off between goodness of fit and flexibility of fit (number of parameters)

AIC

 Said to be statistically equivalent to Leave-Out-One-Cross-Validation

AIC or BIC: Which one should you use?

<shrug>

All the metrics: Which one should you use?

 "The idea of looking for a single best measure to choose between classifiers is wrongheaded." – Powers (2012)

Next Lecture

Cross-validation and over-fitting