Lista 10

Zadania spisane:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X	Х	Х	Х		Х					Х				

Zadanie 1

Grafy G_1, G_2 wczytane są jako listy krawędzi grafów:

Mamy zatem listę wierzchołków:

Oraz do każdego z wierzchołków podpięta jest lista sąsiadów:

```
Dopóki G2[i][k] istnieje:

Jeśli V[idx(G2[i][k])] nierówne 1

Zwróć fałsz

Wpp.

V[idx(G2[i][k])] = 0

j = j-1

k = k + 1

Jeśli j nierówne 0

Zwróć fałsz
```

Zwróć prawdę

Złożoność:

Sprawdzamy wszystkie wierzchołki oraz ich sąsiadów dla obu grafów.

Musimy przeczytać n wierzchołków, a dla każdego z nich sprawdzimy tyle elementów jaki jest stopień wierzchołka, zatem łącznie sprawdzimy: $\sum_{v \in V(G)} \deg(v) = 2m$. Ponieważ robimy to dla dwóch grafów to mamy złożoność 2n + 4m = O(n + m).

Zadanie 2

a) Graf prosty o ciągu stopni wierzchołków 1,2,2,3,3.

Z lematu o uściskach dłoni mamy:

$$\sum_{v \in V(G)} \deg(v) = 2 \cdot |E(G)|$$

$$1+2+2+3+3=11=2m$$

 $m=5,5$

Ponieważ liczba krawędzi musi być całkowita to taki graf nie istnieje.

b) Graf prosty o ciągu stopni wierzchołków 1,1,1,3,4.

Z lematu o uściskach dłoni $1+1+1+3+4=5\cdot 2$ nasz graf musiałby mieć 5 krawędzi.

Chcemy narysować graf o 5 krawędziach i wierzchołkiem stopnia 4. Ponieważ graf jest prosty to aby uzyskać wierzchołek 4 stopnia musimy wstawić krawędź z każdym pozostałym wierzchołkiem. Następnie pozostaje nam jedna krawędź aby z jednego z 1 stopniowych wierzchołków utworzyć wierzchołek stopnia 3, a do tego potrzebujemy dokładnie dwóch krawędzi.

c) Graf prosty o ciągu stopni wierzchołków 2,2,2,2,2.

Zadanie 3

$$d(G) = max\{d(x,y): x,y \in V(G)\}$$

Załóżmy, że d(G)>3. Zatem G ma conajmniej 4 wierzchołki. Niech $x,y\in V(G)$ oraz $d(x,y)=d(G)\geq 4$. Niech d oznacza odległość w G, natomiast \bar{d} odległość w \bar{G} . Weźmy dowolne $u,w\in V(G\backslash\{x,y\})$ i rozpatrzmy przypadki.

 1° Jeśli $\{u,w\}
ot\in E(G)$ to wtedy $\{u,w\}\in E(ar{G})$ i $ar{d}\ (u,w)=1.$

 2° Jeśli $\{u,w\}\in E(G)$ to wtedy $\{u,w\}
ot\in E(ar{G})$.

 2.1° Zauważmy, że nie może zachodzić $\{x,u\},\{u,y\}\in E(G)$ (analogicznie dla w), ponieważ $d(x,y)\geq 4$.

 2.2° Jeśli zachodzi $\{u,x\},\{x,w\}(\operatorname{lub}\{u,y\},\{y,w\})
ot\in E(G)$ to mamy $\overset{-}{d}(u,w)=2$.

 2.3° Pozostają przypadki, w których:

- ullet $\{x,u\},\{w,y\}\in E(G)$ oraz $\{x,w\},\{u,y\}
 ot\in E(G)$ lub
- ullet $\{x,w\},\{u,y\}\in E(G)$ oraz $\{x,u\},\{w,y\}
 ot\in E(G)$

Ale wtedy d(x,y)=3, zatem nie może dość do takiej sytuacji.

Ponieważ rozważyliśmy wszystkie przypadki to mamy $\overset{-}{d}(\overset{-}{G}) < 3$ o ile d(G) > 3.

Zadanie 4

Załóżmy, że d(G)=2 i $\max\{\deg(v)|v\in V(G)\}=n-2$.

Weźmy wierzchołek $x \in V(G)$ incydentny do n-2 krawędzi. Mamy zatem n-1 wierzchołków.

Jeśli n-ty wierzchołek – nazwijmy go y – byłby rozłączny to $d(G)=\infty$.

Jeśli dla dowolnego u ($u \neq x$) utworzylibyśmy krawędź $\{u,y\}$ to d(G)=4 (dla $w \neq u, w \neq x$, d(w,y)=4). Analogiczny przypadek zachodzi dla 1,2...n-3 takich krawędzi.

Jeśli dla każdego u ($u \neq x$) dołożymy krawędź $\{u,y\}$ to nie istnieje takie w jak w powyższym przypadku i średnicą jest d(x,y)=3.

Mamy zatem n-2 krawędzi incydentnych do wierzchołka x oraz n-2 krawędzi incydentnych do y. Stąd liczba krawędzi dla grafu spełniającego te warunki musi wynosić co najmiej 2n-4.

Zadanie 5

$$d(G) = \max\{d(x,y) : x,y \in V(G)\}$$

 $r(v) = \max\{d(x,v) : x \in V(G)\}$
 $r(G) = \min r(v) : v \in V(G)$

$$a) \ r(G) \le d(G) \le 2 \cdot r(G)$$

 $1^{\circ}\ r(G) \leq d(G)$ wynika bezpośrednio z definicji – d jest najdłuższą drogą w grafie G, zatem jakakolwiek inna droga w grafie jest od niej mniejsza lub równa.

$$2^{\circ} d(G) \leq 2 \cdot r(G)$$

Weźmy dwa wierzchołki $u,v\in V(G)$, takie że d(u,v)=d(G). Niech $x\in V(G)$ będzie wierzchołkiem centralnym. Wtedy $d(u,x)\leq r(G)$ oraz $d(x,v)\leq r(G)$, czyli $d(G)=d(u,x)+d(x,v)\leq 2\cdot r(G)$.

b) Wykaż, że zbiór wierzchołków centralnych drzewa składa się z jednego wierzchołka albo dwóch sąsiednich.

Jeśli w drzewie jest jeden wierzchołek - wierzchołkiem centralnym jest ten wierzchołek.

Jeśli w drzewie są dwa wierzchołki – to obydwa są wierzchołkami centralnymi.

Załóżmy, że drzewo o n wierzchołkach ma 1 lub 2 wierzchołki centralne.

Zadanie 6

Niech w drzewie T będą dane wierzchołki a, b, c, d.

Załóżmy, że drogi łączące a z b i c z d nie mają wspólnego wierzchołka. Załóżmy nie wprost, że drogi a z c i b z d są rozłączne.

Wtedy, możemy przejść z a do do wierzchołka b: drogą a – b oraz złączonymi drogami a – c – d – b , ale ponieważ c – d i a – b są rozłączne to musi istnieć cykl, zatem sprzeczność z założeniem, że T to drzewo.

Zadanie 11

Liczba różnych drzew o wierzchołkach $\{1,2,...,n\}$ wynosi n^{n-2} (tw. Cayleya)

Weźmy zatem wierzchołki $\{2,...,n\}$. Wszystkich drzew o takich wierzchołkach jest $(n-1)^{(n-3)}$. Następnie, weźmy wierzchołek o indeksie 1 i spróbujmy dołączyć go do tego drzewa. Możemy połączyć go z każdym z wierzchołków w utworzonym drzewie tworząc nowe odgałęzienie.

Zatem wszystkich takich drzew, że wierzchołek 1 jest liściem jest $(n-1)^{(n-3)} \cdot (n-1) = (n-1)^{(n-2)}$.

Prawdopodobieństwo uzyskania takiego drzewa wynosi: $\frac{(n-1)^{(n-2)}}{n^{(n-2)}} = (\frac{n-1}{n})^{(n-2)}$.

$$\lim_{n o \infty} (rac{n-1}{n})^{(n-2)} = \lim_{n o \infty} (1-rac{1}{n})^{(n-2)} = rac{1}{e}$$