$10_{70} (K10a_{22})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{34} + 2u^{33} + \dots + 2b + 1, \ u^{12} - 5u^{10} - 2u^9 + 9u^8 + 8u^7 - 4u^6 - 10u^5 - 6u^4 + 2u^3 + 5u^2 + a + 2u + 1, \ u^{35} - 3u^{34} + \dots + u + 1 \rangle$$

$$I_2^u = \langle b^2 - b + 1, \ a + 1, \ u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -u^{34} + 2u^{33} + \dots + 2b + 1, \ u^{12} - 5u^{10} + \dots + a + 1, \ u^{35} - 3u^{34} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{12} + 5u^{10} + \dots - 2u - 1 \\ \frac{1}{2}u^{34} - u^{33} + \dots + u - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{34} + u^{33} + \dots - u + \frac{3}{2} \\ -\frac{5}{2}u^{34} + 4u^{33} + \dots + 2u + \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{34} + 3u^{33} + \dots + 6u + 1 \\ \frac{7}{2}u^{34} - 6u^{33} + \dots - 3u - \frac{5}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3u^{34} + 5u^{33} + \dots + u + 3 \\ -\frac{5}{2}u^{34} + 4u^{33} + \dots + 2u + \frac{3}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -7u^{34} + 7u^{33} + 100u^{32} - 67u^{31} - 665u^{30} + 193u^{29} + 2656u^{28} + 332u^{27} - 6763u^{26} - 4013u^{25} + 10334u^{24} + 13042u^{23} - 5838u^{22} - 22006u^{21} - 10452u^{20} + 17336u^{19} + 25367u^{18} + 3521u^{17} - 19332u^{16} - 18920u^{15} - 1888u^{14} + 11508u^{13} + 11034u^{12} + 2874u^{11} - 3024u^{10} - 4152u^{9} - 2538u^{8} - 542u^{7} + 450u^{6} + 658u^{5} + 514u^{4} + 230u^{3} + 79u^{2} + 25u + 8u^{14} + 11508u^{13} + 11034u^{14} + 230u^{14} + 25u^{14} +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{35} + 2u^{34} + \dots - 2u^2 + 1$
c_2, c_3, c_6	$u^{35} + 3u^{34} + \dots + u - 1$
c_4, c_9	$u^{35} + u^{34} + \dots - 8u - 4$
<i>C</i> 5	$u^{35} - 15u^{34} + \dots - 72u + 16$
c_7, c_{10}	$u^{35} + 12u^{34} + \dots + 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{35} + 12y^{34} + \dots + 4y - 1$
c_2, c_3, c_6	$y^{35} - 31y^{34} + \dots - 17y - 1$
c_4, c_9	$y^{35} + 15y^{34} + \dots - 72y - 16$
<i>C</i> ₅	$y^{35} + 7y^{34} + \dots - 2016y - 256$
c_7, c_{10}	$y^{35} + 24y^{34} + \dots + 40y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.827242 + 0.510777I		
a = -1.257960 - 0.317928I	3.61521 - 1.86508I	8.01949 + 2.70414I
b = 0.711723 - 0.774742I		
u = -0.827242 - 0.510777I		
a = -1.257960 + 0.317928I	3.61521 + 1.86508I	8.01949 - 2.70414I
b = 0.711723 + 0.774742I		
u = -0.943343 + 0.501099I		
a = -0.582372 - 0.149507I	3.09693 + 3.49535I	6.37889 - 3.75014I
b = 0.684104 + 0.942114I		
u = -0.943343 - 0.501099I		
a = -0.582372 + 0.149507I	3.09693 - 3.49535I	6.37889 + 3.75014I
b = 0.684104 - 0.942114I		
u = -0.253334 + 0.839514I		
a = -1.18782 - 1.13183I	0.97304 - 8.24742I	2.56945 + 7.59916I
b = 0.696750 - 1.005540I		
u = -0.253334 - 0.839514I		
a = -1.18782 + 1.13183I	0.97304 + 8.24742I	2.56945 - 7.59916I
b = 0.696750 + 1.005540I		
u = -1.15725		
a = -1.05692	2.21114	4.02480
b = 0.346138		
u = -0.295449 + 0.784598I		
a = -0.058917 - 0.230488I	1.97084 - 2.68874I	4.58889 + 2.89622I
b = 0.766564 + 0.673327I		
u = -0.295449 - 0.784598I		
a = -0.058917 + 0.230488I	1.97084 + 2.68874I	4.58889 - 2.89622I
b = 0.766564 - 0.673327I		
u = -1.164960 + 0.288871I		
a = -1.174190 - 0.528323I	-0.612022 - 1.167710I	-0.594633 + 0.482422I
b = 0.051770 - 0.955164I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.164960 - 0.288871I		
a = -1.174190 + 0.528323I	-0.612022 + 1.167710I	-0.594633 - 0.482422I
b = 0.051770 + 0.955164I		
u = -0.098834 + 0.725130I		
a = -0.03188 + 1.73645I	-3.83291 - 2.53588I	-3.84686 + 3.83326I
b = -0.071862 + 1.038610I		
u = -0.098834 - 0.725130I		
a = -0.03188 - 1.73645I	-3.83291 + 2.53588I	-3.84686 - 3.83326I
b = -0.071862 - 1.038610I		
u = 1.275860 + 0.152636I		
a = 0.756171 + 0.131779I	2.76473 - 0.81126I	6.02594 + 0.I
b = -0.493777 + 1.054750I		
u = 1.275860 - 0.152636I		
a = 0.756171 - 0.131779I	2.76473 + 0.81126I	6.02594 + 0.I
b = -0.493777 - 1.054750I		
u = -1.343360 + 0.175547I		
a = 1.08136 + 1.66784I	4.76978 - 0.62379I	6.88558 + 0.I
b = -0.750068 - 0.725396I		
u = -1.343360 - 0.175547I		
a = 1.08136 - 1.66784I	4.76978 + 0.62379I	6.88558 + 0.I
b = -0.750068 + 0.725396I		
u = 1.328700 + 0.290772I		
a = 0.892510 - 0.521672I	0.65547 + 6.20108I	1.95124 - 5.89177I
b = -0.144398 - 1.112500I		
u = 1.328700 - 0.290772I		
a = 0.892510 + 0.521672I	0.65547 - 6.20108I	1.95124 + 5.89177I
b = -0.144398 + 1.112500I		
u = -1.349650 + 0.231790I		
a = 2.67880 - 0.00517I	4.00753 - 6.15318I	5.27676 + 5.00692I
b = -0.701280 + 0.976265I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.349650 - 0.231790I		
a = 2.67880 + 0.00517I	4.00753 + 6.15318I	5.27676 - 5.00692I
b = -0.701280 - 0.976265I		
u = 1.360060 + 0.198169I		
a = 0.993954 - 0.073655I	5.16768 + 3.59908I	8.99233 - 3.96847I
b = -0.734023 - 0.241674I		
u = 1.360060 - 0.198169I		
a = 0.993954 + 0.073655I	5.16768 - 3.59908I	8.99233 + 3.96847I
b = -0.734023 + 0.241674I		
u = 0.130391 + 0.566931I		
a = 1.74005 - 1.54748I	-0.69789 + 3.19845I	-1.06265 - 3.08489I
b = -0.611964 - 0.968100I		
u = 0.130391 - 0.566931I		
a = 1.74005 + 1.54748I	-0.69789 - 3.19845I	-1.06265 + 3.08489I
b = -0.611964 + 0.968100I		
u = 1.42263 + 0.31147I		
a = -0.746326 + 1.154990I	7.44255 + 6.65019I	0
b = 0.845304 - 0.658411I		
u = 1.42263 - 0.31147I		
a = -0.746326 - 1.154990I	7.44255 - 6.65019I	0
b = 0.845304 + 0.658411I		
u = 1.41674 + 0.34279I		
a = -2.20298 + 0.34664I	6.28512 + 12.51090I	0 8.16035I
b = 0.724315 + 1.038040I		
u = 1.41674 - 0.34279I		
a = -2.20298 - 0.34664I	6.28512 - 12.51090I	0. + 8.16035I
b = 0.724315 - 1.038040I		
u = 1.49697 + 0.02263I		
a = -1.77693 - 0.78513I	11.46670 + 3.01120I	0
b = 0.807430 + 0.880445I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.49697 - 0.02263I		
a = -1.77693 + 0.78513I	11.46670 - 3.01120I	0
b = 0.807430 - 0.880445I		
u = -0.223261 + 0.425121I		
a = -0.321375 + 0.194137I	0.236326 - 1.154630I	3.51275 + 5.51426I
b = -0.417087 + 0.308331I		
u = -0.223261 - 0.425121I		
a = -0.321375 - 0.194137I	0.236326 + 1.154630I	3.51275 - 5.51426I
b = -0.417087 - 0.308331I		
u = 0.146719 + 0.318162I		
a = -0.77364 - 1.20062I	0.11091 - 1.46996I	-0.94917 + 3.34118I
b = -0.536572 + 0.742317I		
u = 0.146719 - 0.318162I		
a = -0.77364 + 1.20062I	0.11091 + 1.46996I	-0.94917 - 3.34118I
b = -0.536572 - 0.742317I		

II.
$$I_2^u = \langle b^2 - b + 1, \ a + 1, \ u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -b+1 \\ b-1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ b-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4b + 5

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^2 - u + 1$
c_2, c_3	$(u+1)^2$
c_4, c_5, c_9	u^2
<i>C</i> ₆	$(u-1)^2$
c ₈	$u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_8 c_{10}	$y^2 + y + 1$
c_2, c_3, c_6	$(y-1)^2$
c_4, c_5, c_9	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	1.64493 + 2.02988I	3.00000 - 3.46410I
b = 0.500000 + 0.866025I		
u = -1.00000	1 0 4 4 0 0 0 0 0 0 0 0 7	0.00000 . 0.404107
a = -1.00000	1.64493 - 2.02988I	3.00000 + 3.46410I
b = 0.500000 - 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)(u^{35} + 2u^{34} + \dots - 2u^2 + 1)$
c_{2}, c_{3}	$((u+1)^2)(u^{35}+3u^{34}+\cdots+u-1)$
c_4,c_9	$u^2(u^{35} + u^{34} + \dots - 8u - 4)$
c_5	$u^2(u^{35} - 15u^{34} + \dots - 72u + 16)$
c_6	$((u-1)^2)(u^{35} + 3u^{34} + \dots + u - 1)$
c_7, c_{10}	$(u^2 - u + 1)(u^{35} + 12u^{34} + \dots + 4u - 1)$
c ₈	$(u^2 + u + 1)(u^{35} + 2u^{34} + \dots - 2u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^2 + y + 1)(y^{35} + 12y^{34} + \dots + 4y - 1)$
c_2, c_3, c_6	$((y-1)^2)(y^{35} - 31y^{34} + \dots - 17y - 1)$
c_4, c_9	$y^2(y^{35} + 15y^{34} + \dots - 72y - 16)$
<i>C</i> ₅	$y^2(y^{35} + 7y^{34} + \dots - 2016y - 256)$
c_7, c_{10}	$(y^2 + y + 1)(y^{35} + 24y^{34} + \dots + 40y - 1)$