

30V N-Channel Enhancement Mode Power MOSFET

Description

WMK75N03T1 uses advanced power trench technology that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Features

• V_{DS} = 30V, I_{D} = 75A $R_{DS(on)}$ < 6m Ω @ V_{GS} = 10V

 $R_{DS(on)}$ < 9m Ω @ V_{GS} = 4.5V

- Green Device Available
- Low Gate Charge
- Advanced High Cell Density Trench Technology
- 100% EAS Guaranteed

- Power Management Switches
- DC/DC Converter

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS} ±20		V	
Continuous Drain Current	T _C =25°C	- I _D	75		
	Tc=100°C		47.5	A	
Pulsed Drain Current ⁴		Ірм	300	А	
Single Pulse Avalanche Energy³		EAS	64.8	mJ	
Total Power Dissipation	T _C =25°C	P _D	59	W	
Operating Junction and Storage Temperature Range		TJ, TSTG	-55 to+150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ¹	Reja	62	°C/W
Thermal Resistance from Junction-to-Case	R _{θJC}	2.1	°C/W

Electrical Characteristics T_c = 25°C, unless otherwise noted

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics		- 1	,				I.	
Drain-Source Breakdown Voltage		V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250\mu A$	30	-	-	V	
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain Current	T _J =25°C	l	V 00V V 0V	-	-	1	μА	
	T _J =55°C	- I _{DSS}	V _{DS} = 30V, V _{GS} = 0V	-	-	5		
Gate-Threshold Voltage		V _{GS(th)}	$V_{DS}=V_{GS},I_D=250\mu A$	1.0	-	2.5	V	
Drain-Source On-Resistance ²		D	V _G S = 10V, I _D = 20A	-	5	6	m0	
		R _{DS(on)}	V _{GS} = 4.5V, I _D = 15A	-	6.5	9	mΩ	
Forward Transconductance	Forward Transconductance		V _{DS} =5V , I _D =20A	-	45	-	S	
Dynamic Characteristic	s							
Input Capacitance		C _{iss}		-	1995	-		
Output Capacitance		Coss	V _{DS} = 15V, V _{GS} =0V, f =1MHz	-	285	-	pF	
Reverse Transfer Capacitar	ice	Crss		-	198	-		
Switching Characteristi	cs							
Gate Resistance		Rg	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	-	2.0	-	Ω	
Total Gate Charge		Qg		-	19	-		
Gate-Source Charge		Q _{gs}	$V_{GS} = 4.5V, V_{DS} = 15V,$ $I_{D} = 15A$	-	7.7	-	nC	
Gate-Drain Charge		Q _{gd}		-	7	-		
Turn-On Delay Time		t _{d(on)}		-	7.9	-		
Rise Time Turn-Off Delay Time		t _r	V _{GS} =10V, V _{DD} = 15V,	-	14.8	-	ns	
		t _{d(off)}	$R_G = 3.3\Omega$, $I_D = 15A$	-	37	-		
Fall Time		tf		-	10.4	-		
Drain-Source Body Dio	de Character	istics	,	1	1	1	ı	
Diode Forward Voltage ²		V _{SD}	I _S = 1A, V _{GS} = 0V	-	-	1	V	
Continuous Source Current	Continuous Source Current ^{1,5} Is V _G =V _D =0		Vg=VD=0V , Force Current	-	-	75	Α	
Body Diode Reverse Recov	ery Time	t _{rr}	1 004 41/4: 4004/	-	15	-	ns	
Body Diode Reverse Recovery Charge		Qrr	l _F = 20A, dl/dt = 100A/μs	-	5.5	-	nC	

Notes:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =36A
- 4. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications , should be limited by total power dissipation.

Typical Characteristics

Test Circuit

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Mechanical Dimensions for TO-220

COMMON DIMENSIONS

SYMBOL	MM			
	MIN	MAX		
Α	9.70	10.30		
В	3.40	3.80		
С	8.80	9.40		
D	1.17	1.47		
E	2.60	3.50		
F	15.10	16.70		
G	19.55MAX			
Н	2.54REF			
I	0.70	0.95		
J	9.35	11.00		
K	4.30	4.77		
L	1.20	1.45		
M	0.40	0.65		
N	2.20	2.60		

Ordering Information

Part	Package	Marking	Packing method
WMK75N03T1	TO-220	WMK75N03T1	Tube

Marking Information

WMK75N03T1 = Device code WWXX XXX= Date code

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-50310888 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

Ⅲ N ® is registered trademarks of Wayon Corporation.

Disclaimer

WAYON reserves the right to make changes without further notice to any Products herein to improve reliability, function, or design. The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. WAYON does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.