Assignment 2	
By Mrunal Ghorpade	
by Wirdhar Griorpade	
UIN: 677441117 /Net ID: mghorp2	

1) Show that the ridge regression estimate is the mean (and mode) of the posterior distribution, under a Gaussian prior $\beta \sim N$ (0, τ I), and Gaussian sampling model y $\sim N(X\beta, \sigma 2I)$. Find the relationship between the regularization parameter λ in the ridge formula, and the variances τ and $\sigma 2$.

Ans:

gaussian sampling model y ~ N(XB, 52I) and gaussian prior B ~N(O, XI)
Posterior distribution is given as;
P(Ol Data) = P(Datalo) P(O) P(Data) Paking log of above
log P(Ol Data) = log P(Data 10) + log P(O) - log P(Data)
= P(Data 10) = P(Y=Y, X=x,) P(Y= /2, X=x2) = P(Y=Y; X=x;)
log P(Datal 0) = log = P(Y= xi x = xi)
Assum & is not random. 6 y = xTB + & where & N(0, 52) as X is fixed B has normal distribution with
mean 0 4 variance 2
Log P (Datalo) = Log P (Y=4, X=x)
log $P(O) = log P(B)$ Now using the expression of gavesian distribution log P(Data O) = log P(Y = Y, X = X) $= log(1 exp S - (Y; -x; TB)^2)$
$= \log \left(\frac{10 \exp (3 - (4 - x_i^T \beta)^2)}{2 \pi 6} \right)$
and leg $P(0) = log \left(\frac{1}{2\pi 7} exp \left\{ -\frac{g^2}{2T} \right\} \right)$
Substituting advove in Eq. (1) we get ;
The state of the s

Log P(0 Data) = log (1 exp (-(Yi-xiT)3)2) +
$\frac{\log\left(\frac{1}{\sqrt{2\pi}}\exp\left(\frac{-\beta^2}{2}\right) - \log\left(\frac{1}{\sqrt{2\pi}}\right)\right)}{\sqrt{2\pi}} = \frac{\log\left(\frac{1}{\sqrt{2\pi}}\exp\left(\frac{\beta^2}{2}\right)\right)}{\sqrt{2\pi}} = \frac{\log\left(\frac{1}{\sqrt{2\pi}}\exp\left(\frac{\beta^2}{2}\right)}{\sqrt{2\pi}} = \frac{\log\left(\frac{1}{\sqrt{2\pi}}\exp\left(\frac{\beta^2}{2}\right)\right)}{\sqrt{2\pi}} = \frac{\log\left(\frac{1}{\sqrt{2\pi}}\exp\left(\frac{\beta^2}{2}\right)}{\sqrt{2\pi}} = \frac{\log\left(\frac{1}{\sqrt{2\pi}}\exp\left(\frac{\beta^2}{2$
Taking derivative w.r.t B
d dog P(01Data) = d \$ log 1 - (Yi-xiTB)2+ log 1 - d B dB \ \frac{1}{2} \sqrt{278} \frac{2}{262} \sqrt{2772}
$B^2 - log P(Data)$?
$\frac{2d\left(1-(\gamma_i-\chi_i^TB)^2-2B\right)}{dB(6^2)}$
$\frac{z^{2}-2x^{2}y+2x^{2}x\beta}{6^{2}}-\frac{2\beta}{7}$
Setting the above Eq ho 0
$0 = \chi^{\gamma} - \chi^{\gamma} + \beta - \delta^{2} \beta$ \overline{t}
$\therefore \mathcal{B} = \left(X^{T} \times + \mathcal{E}^{2} I \right)^{-1} \times T Y \qquad -(2)$
Now the \$ for Ridge regression is given by
$\hat{\beta} = (X^T X + \lambda \pm)^{-1} X^T Y - (3)$
: from Eq ¹ (2) 4 (3) we can say that $X = 6^2$
: It is clear that PRBIY) is Gaussian and its mean. 4 median coincide.

- 2) This problem involves the Boston data set, which we saw in the lab for this chapter. We will now try to predict per capita crime rate using the other variables in this data set. In other words, per capita crime rate is the response, and the other variables are the predictors.
 - (a) For each predictor, fit a simple linear regression model to predict the response. Describe your results. In which of the models is there a statistically significant association between the predictor and the response? Create some plots to back up your assertions.

Assuming alpha to be 5% and p-values of all the predictor variables except "chas" are less than 5% so except for predictor "chas" there is statistically significant relationship between each of the predictor with response variable "crime".

```
print(summ)
Predictor
                      Estimate
                                          Std error
                                                              t_value
                                                                                    p_value
            -0.073934977404123
                                0.0160945961932254 -4.59377647730262 5.50647210767964e-06
        zn
     indus
             0.509776331104228
                                0.0510243323317304
                                                     9.99084765656433
                                                                      1.45034893302756e-21
             -1.89277655080378
                                   1.50611548365537
                                                    -1.25672737007522
                                                                          0.209434501535197
      chas
       nox
              31.2485312011229
                                   2.99919038061173
                                                     10.4189888721733
                                                                        3.7517392603569e-23
             -2.68405122411395
                                 0.532041083377015
                                                    -5.04481948476145 6.34670298468749e-07
        rm
             0.107786227139533
                                0.0127364362587918
                                                     8.46282468262108
                                                                      2.85486935024409e-16
       age
       dis
                                 0.168330030929704 -9.21345807307415
              -1.5509016824101
                                                                       8.5199487669261e-19
       rad
             0.617910927327201
                                0.0343318196678424
                                                      17.998199143111
                                                                      2.69384439818633e-56
       tax
            0.0297422528227653 0.00184741511910325
                                                     16.0993880125884
                                                                      2.35712683525685e-47
              1.15198278707059
                                 0.169373609252715
                                                     6.80143023552017 2.94292244735967e-11
   ptratio
     black -0.0362796405673308 0.00387315383170155
                                                    -9.36695058956449 2.48727397377375e-19
                                0.0477609709441814
                                                      11.490653795623 2.65427723147327e-27
     lstat
             0.548804782062398
      medv
            -0.363159922257603
                                0.0383901746742235 -9.45971007788721 1.17398708219449e-19
```

Below is the regression plot for the model which had predictor "chas"

It can be seen from the residual vs fitted plot that there is a non-linear relationship between "chas" and response variable "crim". The Normal Q-Q plot shows that the residuals are not normally distributed. This makes sense as "chas" is a qualitative variable.

(b) Fit a multiple regression model to predict the response using all of the predictors. Describe your results. For which predictors can we reject the null hypothesis Ho: $\beta = 0$?

Assuming alpha to be 5%, we can reject the null hypothesis for the predictors whose p-values is less than 5%. Hence, we can reject null hypothesis for: "zn", "dis", "rad", "black" and "medv".

```
> summary(lm_multi)
call:
lm(formula = crim \sim ... data = Boston)
Residuals:
  Min
          1Q Median
                        3Q
                              Max
-9.924 -2.120 -0.353 1.019 75.051
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.033228
                        7.234903
                                  2.354 0.018949 *
zn
             0.044855
                        0.018734
                                  2.394 0.017025 *
indus
            -0.063855
                       0.083407 -0.766 0.444294
chas
            -0.749134
                        1.180147 -0.635 0.525867
nox
           -10.313535
                        5.275536 -1.955 0.051152 .
rm
             0.430131
                        0.612830 0.702 0.483089
                        0.017925 0.081 0.935488
             0.001452
age
            -0.987176
                        0.281817 -3.503 0.000502 ***
dis
rad
             0.588209
                        0.088049 6.680 6.46e-11 ***
            -0.003780
tax
                        0.005156 -0.733 0.463793
ptratio
            -0.271081
                        0.186450 -1.454 0.146611
black
            -0.007538
                        0.003673 -2.052 0.040702 *
lstat
            0.126211
                        0.075725 1.667 0.096208 .
medv
            -0.198887
                        0.060516 -3.287 0.001087 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.439 on 492 degrees of freedom
Multiple R-squared: 0.454,
                              Adjusted R-squared: 0.4396
F-statistic: 31.47 on 13 and 492 DF, p-value: < 2.2e-16
```

(c) How do your results from (a) compare to your results from (b)? Create a plot displaying the univariate regression coefficients from (a) on the x-axis, and the multiple regression coefficients from (b) on the y-axis. That is, each predictor is displayed as a single point in the plot. Its coefficient in a simple linear regression model is shown on the x-axis, and its coefficient estimate in the multiple linear regression model is shown on the y-axis.

Observations after comparing the results from (a) and (b) are as follows;

- Predictor "chas" is not statistically significant in both results
- Predictors "indus", "nox", "rm", "age", "tax", "ptratio" and "Istat" are statistically significant for simple linear regression but not for multiple linear regression

This difference is because in the multiple regression the coefficients are correlated and in simple linear regression the response is only dependent on single independent predictor.

Below plot shows each predictor as a single plot;

(d) Is there evidence of non-linear association between any of the predictors and the response? To answer this question, for each predictor X, fit a model of the form $Y = \beta 0 + \beta 1X + \beta 2X2 + \beta 3X3 + \epsilon$.

Predictors "zn", "rm", "rad", "tax", "black", "Istat" have p-values which are not statistically significant but Variables "dis", "rad", "black" and "medv" have quandratic and cubic coefficients p-values less than 5% (assuming alpha = 5%) and hence are statistically significant which means non-linear effect is visible.

This is also shown in the below summary of all the variables:

(<u>Note:</u> Each predictor is shown 3 times as it represents 3-degree polynomial. For e.g. first 3 rows are "zn" as 1st row represents polynomial with degree 1, 2nd row of "zn" represents polynomial with degree 2 and 3nd row of "zn" represents polynomial with degree 3)

```
print(sum_n1)
   Predictor
                      Estimate
                                      Std_error
                                                            t_value
                                                                                 p_value
          zn -38.7498352143429 8.37220717285403
                                                  -4.62838943355165 4.69780623880854e-06
          zn 23.9398319819671 8.37220717285411
                                                  2.85944094403076
                                                                    0.00442050690870274
3
          zn -10.0718681276877 8.37220717285406
                                                  -1.20301229051577
                                                                       0.229538620491058
       indus 78.5908191761241 7.42312095470352
                                                  10.5873014404173 8.85424265543496e-24
5
       indus -24.3947964321387 7.42312095470354
                                                  -3.28632613977296
                                                                    0.00108605713680062
6
       indus -54.1297629340319 7.42312095470356
                                                  -7.29204916157715 1.19640469153317e-12
              81.3720154835587 7.23360503019171
                                                  11.2491648554112 2.45749078247418e-26
         nox
8
         nox -28.8285942921083
                                7.2336050301917
                                                  -3.98537025062652 7.73675464939025e-05
         nox -60.3618943369193 7.23360503019172
                                                  -8.34464891087915 6.9611100342705e-16
10
          rm -42.3794416993869 8.32967578502905
                                                  -5.08776605393881 5.12804838748863e-07
11
               26.576769998347 8.32967578502904
                                                   3.19061277824445
                                                                    0.00150854548563956
          rm
12
          rm -5.51034200537751 8.32967578502904
                                                 -0.661531390607215
                                                                       0.508575109404836
13
         age 68.1820087886353 7.83970265051263
                                                   8.69701464814829 4.87880300225115e-17
14
              37.4844703846942 7.83970265051263
                                                   4.78136379091408 2.29115552484841e-06
         age
15
         age 21.3532069846943 7.83970265051262
                                                   2.72372664329279
                                                                    0.00667991535096612
16
         dis -73.3885896794169
                                 7.331478998213
                                                  -10.0100661404479 1.25324918497518e-21
17
         dis
              56.3730356004305
                                 7.331478998213
                                                   7.68917644232099 7.86976668301466e-14
18
         dis -42.6218774031266 7.33147899821301
                                                  -5.81354422668541 1.08883202821445e-08
19
         rad 120.907445768733 6.68240174645161
                                                   18.0934116738694 1.05321131813638e-56
20
                                                   2.61766643551962
         rad 17.4922987603441 6.6824017464516
                                                                    0.00912055797292577
21
         rad
              4.69845672514562 6.68240174645159
                                                   0.70310898736978
                                                                       0.482313774035658
22
         tax 112.645827115381 6.8537073690599
                                                  16.4357509081734 6.97631356496829e-49
23
         tax 32.0872509619434 6.85370736905989
                                                   4.68173635582938 3.66534762329281e-06
24
         tax -7.99681123775891 6.85370736905992
                                                  -1.16678620885674
                                                                       0.243850681055567
25
     ptratio
              56.0452294727408 8.12158302699871
                                                     6.900776521822 1.56548404181813e-11
26
     ptratio
              24.7748242612162 8.12158302699867
                                                   3.05049202585962
                                                                     0.00240546785935064
27
              -22.279736819769 8.12158302699873
                                                  -2.74327514053653 0.00630051363404586
     ptratio
28
       black -74.4311985868883 7.95464273514312
                                                  -9.35695053381289 2.73008174791173e-19
29
       black 5.92641883518133 7.95464273514312
                                                  0.745026399362824
                                                                       0.456604413926252
30
       black -4.83456546848473 7.95464273514313
                                                -0.607766511891969
                                                                       0.543617181726899
31
       lstat
              88.0696661484618 7.62943609302887
                                                    11.543404397729 1.67807172578562e-27
32
       lstat 15.8881643007844 7.62943609302888
                                                   2.08248212673302
                                                                      0.0378041809094279
33
              -11.574022255841 7.62943609302888
                                                  -1.51702198101067
                                                                        0.12989058725197
34
        medv -75.0576054570241
                                6.5691520012923
                                                  -11.4257678072084 4.93081829258389e-27
35
        medv
              88.0862105806024
                                6.5691520012923
                                                  13.4090687143902 2.92857691192942e-35
36
        medv -48.0334345541105
                                6.5691520012923
                                                  -7.31196881190468 1.04651002433606e-12
```

Suppose we collect data for a group of students in a statistics class with variables X1 =hours studied, X2 = undergrad GPA, and Y = receive an A. We fit a logistic regression and produce estimated coefficient, $\beta 0 = -6$, $\beta 1 = 0.05$, $\beta 2 = 1$.

Ans:

We know that Logistic regression is given as

$$Log(p/(1-p)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Given:
$$\beta_0 = -6$$
, $\beta_1 = 0.05$ and $\beta_2 = 1$

Therefore,

$$Log(p/(1-p)) = -6 + 0.05x_1 + x_2$$

(a) Estimate the probability that a student who studies for 40 h and has an undergrad GPA of 3.5 gets an A in the class.

Ans:

Given Study Hours, $x_1 = 40$ and undergrad GPA, $x_2 = 3.5$

Probability that class gets A is;

$$P = \frac{e^{-6+0.05x1+x2}}{1+e^{-6+0.05x1+x2}}$$

$$P = \frac{e^{-6+0.05*40+3.5}}{1+e^{-6+0.05*40+3.5}}$$

$$P = 0.3775$$

(b) How many hours would the student in part (a) need to study to have a 50% chance of getting an A in the class?

Ans: Given Probability of the class getting A is P=0.5 and undergrad GPA, x2= 3.5

$$\frac{e^{-6+0.05x1+3.5}}{1+e^{-6+0.05x1+3.5}} = 0.5$$

$$X1 = 50$$

- (4) This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter's lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
 - (a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

The pairwise correlations between the numeric variables is shown below;

```
> cor(Weekly[,-9])
                                                                                        Volume
              Year
                           Lag1
                                       Lag2
                                                   Lag3
                                                                 Lag4
                                                                              Lag5
                                                                                                      Today
       1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923 -0.030519101
                                                                                   0.84194162 -0.032459894
Year
Lag1
       -0.03228927
                   1.000000000 -0.07485305
                                             0.05863568 -0.071273876 -0.008183096
                                                                                   -0.06495131
                                                                                               -0.075031842
Lag2
       -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535 -0.072499482 -0.08551314
       -0.03000649
                   0.058635682 -0.07572091
                                             1.00000000
                                                        -0.075395865
                                                                      0.060657175
Lag3
                                                                                   -0.06928771
Lag4
       -0.03112792 -0.071273876
                                 0.05838153 -0.07539587
                                                         1.000000000 -0.075675027
                                                                                   -0.06107462
                                                                                               -0.007825873
       -0.03051910 -0.008183096 -0.07249948
                                             0.06065717
                                                        -0.075675027
                                                                      1.000000000 -0.05851741
                                                                                                0.011012698
Volume 0.84194162 -0.064951313
                                -0.08551314 -0.06928771 -0.061074617 -0.058517414
                                                                                   1.00000000
                                                                                               -0.033077783
       -0.03245989 -0.075031842
                                 0.05916672 -0.07124364 -0.007825873
                                                                      0.011012698
                                                                                   -0.03307778
                                                                                                1,000000000
Today
```

- There is very little correlation between the lag variables i.e previous day's returns and today's returns as their values are close to zero.
- The only correlation that we see is between Year and Volume.

Below plot of correlation also shows that volume increases over time;

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

Summary of the logistic function is given below;

```
> summary(glm.fits)
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
    volume, family = binomial, data = weekly)
Deviance Residuals:
                  Median
             1Q
-1.6949 -1.2565
                           1.0849
                                    1.4579
                  0.9913
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                       0.08593
(Intercept)
            0.26686
                                 3.106
                                          0.0019 **
            -0.04127
                        0.02641
Lag1
Lag2
             0.05844
                        0.02686
                                 2.175
                                          0.0296
Lag3
            -0.01606
                        0.02666
                                -0.602
                                          0.5469
Lag4
            -0.02779
                        0.02646
                                -1.050
            -0.01447
                        0.02638
                                -0.549
                                          0.5833
volume
            -0.02274
                       0.03690
                                -0.616
                                         0.5377
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1496.2 on 1088 degrees of freedom
Residual deviance: 1486.4 on 1082 degrees of freedom
AIC: 1500.4
Number of Fisher Scoring iterations: 4
```

Only Predictor "Lag2" appears to be statistically significant.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

Confusion matrix for above logistic regression is given below;

The confusion matrix can tell us how many values are correctly and incorrectly predicted. The diagonal elements in the matrix are the correct predictions i.e. For 54 days the Directions are predicted as "Down" are actually "Down" and for 557 days of Directions which were predicted as "Up" are actually "Up". The off-diagonal represents the incorrect predictions. We can calculate overall Accuracy and the error rate of the model using confusion matrix.

The overall fraction of correctly predicted = 54+557/1089 = 56.106%

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

Confusion matrix and the overall fraction of correct predictions for the data from 2009 to 2010 is given below;

```
> table(glm_tst,week_tst$Direction)
glm_tst Down Up
    Down 9 5
    Up 34 56
> mean(glm_tst==Week_tst$Direction)
[1] 0.625
```

Overall Fraction of correct prediction = 62.5%

(e) Repeat (d) using LDA.

Confusion matrix and the overall fraction of correct predictions (i.e. 62.5%)using LDA for the data from 2009 to 2010 is given below;

(f) Repeat (d) using QDA.

Confusion matrix and the overall fraction of correct predictions using QDA for the data from 2009 to 2010 is given below;

Overall Fraction of correct prediction = 58.65%

Even though the error rate is 41.35%, the model is not performing well as it is classifying all of the data to be "Up".

(g) Repeat (d) using KNN with K = 1.

Confusion matrix and the overall fraction of correct predictions using K-n-n for the data from 2009 to 2010 is given below;

```
> table(knn_trn, Week_tst$Direction)
knn_trn Down Up
    Down 21 29
    Up 22 32
> mean(knn_trn==Week_tst$Direction)
[1] 0.5096154
```

Overall Fraction of correct prediction = 50.9%

Even though the overall Accuracy is less than other models, unlike other models it can identify approximately 49% of "Down" directions i.e. True negatives correctly

(h) Which of these methods appears to provide the best results on this data?

By comparing the above model LDA and Logistic Regression would give better results as have performed well on the test data compared to others.

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

Ans:

Different combinations of predictors and methods were tried and below are the results of their confusion matrix and overall fraction of correct predictions;

- 1) Logistic regression
 - (1) Variables: Lag1 and (Lag2)^2

(2) Variables: Lag2 and Lag 5

(3) Variables: Lag1, Lag2, and interaction between Lag3 and Lag4(Lag3:Lag4)

- 2) LDA
 - (1) Variables: Lag2 and interaction term between Lad2 and Lag 5 (Lag2*Lag5)

(2) Variables: Lag1, Lag2, Lag3 and Volume

```
> table(lda_tst_2$class,Week_tst$Direction)

Down Up

Down 30 37

Up 13 24

> mean(lda_tst_2$class==Week_tst$Direction)

[1] 0.5192308
```

(3) Variables: Lag2 and (Volume)^3

- 3) QDA
 - (1) Variables: Lag1, Lag2 and poly(Volume,3)

(2) Variables: Lag1, (Lag2)^2, Lag3, interaction between Lag4 and Lag5 (Lag4:Lag5)

```
> table(qda_tst_2$class,week_tst$Direction)

Down Up
Down 5 13
Up 38 48
> mean(qda_tst_2$class==Week_tst$Direction)

[1] 0.5096154
```

(3) Variables: Lag2 and Lag5

- 4) KNN
 - (1) Variables: Lag2, Lag3 and Lag4; K= 3

```
> table(knn_trn1, week_tst$Direction)
knn_trn1 Down Up
    Down 17 26
    Up 26 35
> mean(knn_trn1==week_tst$Direction)
[1] 0.5
```

(2) Variables: Lag2, Lag4 and Volume; K= 5

```
> table(knn_trn2, week_tst$Direction)
knn_trn2 Down Up
    Down 21 33
    Up 22 28
> mean(knn_trn2==week_tst$Direction)
[1] 0.4711538
```

(3) Variables: Lag1 and Lag5; K= 4

```
> table(knn_trn3, week_tst$Direction)
knn_trn3 Down Up
    Down 17 25
    Up 26 36
> mean(knn_trn3==week_tst$Direction)
[1] 0.5096154
```