

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Recuperatorio Segundo Examen Parcial										
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información										
Apellido y Nombre:	LU:	Hojas entregadas:								
(en ese orden)		(sin enunciado)								
Profesor:										
NOTA · Resolver los ejercicios en hojas senaradas Poner n	nombre LII u núm	ero en cada hoja								

Ejercicio 1. Hacer.

Ejercicio 2. Hacer.

Ejercicio 3. Hacer.

Ejercicio 4. Dados los valores indicados tanto para el banco de registros como para las etiquetas de memoria, indicar para cada modo de direccionamiento, el registro R y/o el número hexadecimal xxxx necesarios para mover el operando 100h al registro R6. Luego, indicar en cada paso cuántos accesos a memoria se realizan por la instrucción.

					(1) mov $R6, \#$
Reg.	Cont.		Dir.	Cont.	$(2) \mod R6, 1$
R1	100h		100h	500h	$(3) \mod R6, ($
R2	200h		200h	400h	$(4) \mod R6, $
R3	300h	Ì	400h	100h	$(5) \mod R6, ($
R4	400h		600h	400h	$(6) \mod R6, ($
					(7) DC

Interpretación #xxxxInmediato #xxxx R \mathbf{R} Registro (R)(R)Registro indirecto XXXX XXXX Absoluto (xxxx)(xxxx)Memoria indirecto (R2)xxxx(R)xxxxBase (7) mov R6, @300(R)Pre-indexado indirecto @xxxx(R)

Ejercicio 5. Considerando el programa A para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar, y los pseudocódigos 1 y 2 indicados a continuación:

Programa A:

LDA RO, FFh
LOAD R1, O(RO)
ADD R2, RF, RF
JZ R1, 1b12

1b11: ADD R2, R2, R1
DEC R1
JG R1, 1b11

1b12: STORE R2, O(RO)
HLT

Pseudocódigo 1 if (R1 <= 4) R2++; else R2--;

Pseudocódigo 2 R3 = 0; for (R4 = 0; R4 < 10; R4++) R3 += R4;

	1								
OP.	Descr.	FORM.	Pseudocódigo						
0	add	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} + \texttt{R[t]}$						
1	sub	${f I}$	$\texttt{R[d]} \leftarrow \texttt{R[s]} - \texttt{R[t]}$						
2	and	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$						
3	xor	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$						
4	lsh	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} << \texttt{R[t]}$						
5	rsh	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} >> \texttt{R[t]}$						
6	load	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{mem[offset} + \texttt{R[s]]}$						
7	store	I	$\texttt{mem[offset + R[d]]} \leftarrow \texttt{R[s]}$						
8	lda	\mathbf{II}	$R[d] \leftarrow addr$						
9	jz	\mathbf{II}	if (R[d] == 0) PC \leftarrow PC + addr						
A	jg	II	if (R[d] > 0) PC \leftarrow PC + addr						
В	call	II	$R[d] \leftarrow PC; PC \leftarrow addr$						
\mathbf{C}	jmp	III	$PC \leftarrow R[d]$						
D	inc	III	$R[d] \leftarrow R[d] + 1$						
\mathbf{E}	dec	III	$R[d] \leftarrow R[d] - 1$						
\mathbf{F}	hlt	III	exit						

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	×	×	×		dest.	d			src	. s		sr	c. t	/ o	ff.
II	1	0	×	×	dest. d				address addr							
III	1	1	×	×		dest.	d						-			

- a) Ensamblar el programa A a partir de la dirección 00h.
- b) Suponiendo que se ingresa por teclado el valor 04h, realice una traza del programa A mostrando la evolución del contenido de cada registro y del PC (paso a paso), y luego describa el propósito del programa en su conjunto.
- c) Indique una secuencia de instrucciones para la arquitectura OCUNS, que sea equivalente al pseudocódigo 1.
- d) Indique una secuencia de instrucciones para la arquitectura OCUNS, que sea equivalente al pseudocódigo 2.