```
gato(garfield).

tM(john, odie).

tM(john, garfield).

aALG(X):-tM(X, Y), gato(Y).

?- aALG(Z)
```

 $\frac{aALG(Z) \quad aALG(X) := tM(X, Y), \ gato(Y). \quad S = mgu \left\{ aALG(Z) \stackrel{!}{=} aALG(X) \right\} = \left\{ Z := X \right\}}{tM(X, Y), \ gato(Y) \qquad tM(john, odie). \quad S = mgu \left\{ tM(X, Y) \stackrel{!}{=} tM(john, odie) \right\} = \left\{ X := john, Y := odie \right\}}$ $\frac{aALG(Z) \quad aALG(X) := tM(X, Y), \ gato(Y) \qquad tM(john, odie). \quad S = mgu \left\{ tM(X, Y) \stackrel{!}{=} tM(john, odie) \right\} = \left\{ X := john, Y := odie \right\}}{gato(odie)}$

gato(garfield)

$$tM(X, Y)$$
, $gato(Y)$ $tM(john, garfield)$. $S = mgu { $tM(X, Y) \stackrel{.}{=} tM(john, garfield) } = { $X := john, Y := garfield }$$$

上

gato(garfield).

S = mgu { gato(garfield) = gato(garfield) } = { }

?-
$$aALG(Z)$$
 $S1 = \{ Z := X \}$
 $Z = john.$ $S2 = \{ X := john, Y := garfield \}$
 $S3 = \{ \}$