Correction of susceptibility distortion in EPI: A semi-supervised approach with deep learning.

- MIML workshop -

Antoine Legouhy

Echo planar imaging (EPI):

Most common approach for diffusion MRI.

Echo planar imaging (EPI):

Most common approach for diffusion MRI.

+ Fast acquisition.

EPI images

Echo planar imaging (EPI):

Most common approach for diffusion MRI.

- Fast acquisition.
- Severe geometric distortions. Caused by susceptibility-induced B0 field inhomogeneities.

•UCL

Echo planar imaging (EPI):

Most common approach for diffusion MRI.

- + Fast acquisition.
- Severe geometric distortions.
 Caused by susceptibility-induced B0 field inhomogeneities.
 - ightarrow Breaks correspondence with anatomical images.

EPI

anatomical

Susceptibility distortion:

UCL

Susceptibility distortion:

■ Only along PED.

EPI

distortion field

UCL

Susceptibility distortion:

- Only along PED.
- More severe around medium interfaces: air / tissue or soft tissue / hard tissue.

EPI

distortion field

LUCL

Susceptibility distortion:

- Only along PED.
- More severe around medium interfaces: air / tissue or soft tissue / hard tissue.
- Reverted for reverted PED: contractions ↔ expansions.

PA

Most effective correction method:

PA

Susceptibility distortion correction

•UCL

Most effective correction method:

Acquire extra data with same settings but opposite PED.

PA

Susceptibility distortion correction

UCL

Most effective correction method:

- Acquire extra data with same settings but opposite PED.
- Perform non-linear registration constrained along PED.

PA

An image registration problem

Optimization problem: find *best* field *U* such that:

An image registration problem

Optimization problem: find *best* field *U* such that:

Classic registration

- Usual method.
- Restart from scratch for each new image pair.
 - \rightarrow Intensive

An image registration problem

Optimization problem: find *best* field *U* such that:

Classic registration

- Usual method.
- Restart from scratch for each new image pair.
 - \rightarrow Intensive

Deep-learning registration

- Big optimization at training.
- One shot registration.

Existing methods

TOPUP

- Classic registration.
- Jacobian intensity modulation.
- Purely intensity-based.

Duong et al. 2020

- Deep-learning registration.
- No Jacobian intensity modulation.
- Purely intensity-based.

Existing methods

TOPUP

- Classic registration.
- Jacobian intensity modulation.
- Purely intensity-based.

Duong et al. 2020

- Deep-learning registration.
- No Jacobian intensity modulation.
- Purely intensity-based.

Intensity similarity between transformed images is only a surrogate measure of the goodness of the transformation.

Existing methods

Proposed method:

- Deep-learning architecture.
- Semi-supervised:
 - Image similarity between transformed images (unsupervised).
 - Distance between estimated and ground truth distortion fields (supervised).
 Ground truth only at training.
- Jacobian intensity modulation.
- Spatially weighted at training.

Results

UCL

Results

UCL

