A.I. and human gait analysis

French-German Summerschool on Artificial Intelligence with Industry 2021

Charles Truong¹ (charles.doffy.net)

¹Centre Borelli Université Paris-Saclay ENS Paris-Saclay, CNRS

Tuesday 22nd June

Table of contents

1. Medical context

2. Adopted approach

3. Gait analysis

4. Pattern detection

5. Conclusion

Medical context: monitoring frailty

- A pre-frail person can return to a robust state.
- A frail state is almost always irreversible. Evolution toward repeated hospitalisations, loss of autonomy and, 5 years later, premature death in nearly 70% of cases.
- In addition, frailty is a predictor of morbidity and mortality after major surgery.

Usual criteria to measure frailty: Fried's criteria.

- cognitive function tests,
- fatigue state,
- walking ability,
- muscle strength,
- weight.

If one or two of these criteria are abnormal, the person is classified as pre-frail; with more than two criteria, the person is classified as frail.

The objective is to monitor frailty over the long run.

Medical context: clinical constraints

Monitored population.

- Ederly (from nursing home)
- Orthopedic pathologies (lower limb osteoarthrosis cruciate ligament injury, etc.)
- Neurological pathology (stroke, Parkinson's disease, neuropathy, etc.)

Constraints on the data processing.

- Non-intrusive or burdening for the patients or the clinicians (no camera or image)
- Instantaneous feedback to medical doctors
- Interpretable
- Integrate well with the daily routine

Table of contents

2. Adopted approach

3. Gait analysis

4. Pattern detection

5. Conclusio

Adopted approach

General methodology.

- Collect multimodal data from a variety of sources:
 - answers to questionnaires,
 - movements from several well-known physical tests (Timed Up and Go, Romberg, etc.).
- Merge those composite data and compute intraand inter-individual standards.
- Score the frailty state.

In this session, we will focus on gait analysis.

- This complex mechanism can be altered by a wide range of pathologies (such as Parkinson's disease, arthritis, stroke, etc.).
- Degraded walk results in a significant loss of autonomy and an increased risk of fall.

Table of contents

2. Adopted approach

3. Gait analysis

4. Pattern detection

5. Conclusion

Subjects undergo a fixed protocol:

- Standing,
- Walk forward (10m),
- Turn around,
- Walk back (10m),
- Standing.

- low-cost,
- no need for a dedicated room,
- easy to handle in day-to-day clinical situations.

Subjects undergo a fixed protocol:

- Standing,
- Walk forward (10m),
- Turn around,
- Walk back (10m),
- Standing.

- low-cost,
- no need for a dedicated room,
- easy to handle in day-to-day clinical situations.

Subjects undergo a fixed protocol:

- Standing,
- Walk forward (10m),
- Turn around,
- Walk back (10m),
- Standing.

- low-cost,
- no need for a dedicated room,
- easy to handle in day-to-day clinical situations.

Subjects undergo a fixed protocol:

- Standing,
- Walk forward (10m),
- Turn around,
- Walk back (10m),
- Standing.

- low-cost,
- no need for a dedicated room,
- easy to handle in day-to-day clinical situations.

Subjects undergo a fixed protocol:

- Standing,
- Walk forward (10m),
- Turn around,
- Walk back (10m),
- Standing.

- low-cost,
- no need for a dedicated room,
- easy to handle in day-to-day clinical situations.

Subjects undergo a fixed protocol:

- Standing,
- Walk forward (10m),
- Turn around,
- Walk back (10m),
- Standing.

- low-cost,
- no need for a dedicated room,
- easy to handle in day-to-day clinical situations.

Footsteps, at the core of locomotion

- In many studies, features related to footsteps (step duration, length, symmetry between feet, etc.) are the most important to quantify a pathology.
- Footsteps are the core atoms of locomotion.

Medical definition of a gait cycle.

HS, TS, HO and TO stand for heel-strike, toe-strike, heel-off and toe-off,

- This complex mechanism can be altered by a wide range of pathologies (such as Parkinson's disease, arthritis, stroke, etc.).
- Degraded walk results in a significant loss of autonomy and an increased risk of fall.

Signal example with foot activity annotations (here, right foot). (Top) Vertical acceleration (RAV), the Z-axis acceleration (RAZ) and the Y-axis angular velocity (RRY) are shown, (Bottom) A close-upon a single foot movement.

Represent the gait: the locogram

- The locogram is a visual tool to assess the gait of a patient.
- lt is relies on the step detection.
- All pairwise correlation distances between steps are computed in a distance matrix.

Locogram of an healthy subject (left foot).

Locogram of an neurologically impaired patient.

(Top) Left foot. (Bottom) Right foot.

Table of contents

2. Adopted approach

3. Gait analysis

4. Pattern detection

5. Conclusion

Pattern detection: motivations

Pattern detection: motivations

Power consumption

Pattern detection: schematic view

Given a dictionary of two atoms:

Atom 1

Find where the atoms occur in a signal:

Pattern detection: schematic view

Given a dictionary of two atoms:

Atom 2

Find where the atoms occur in a signal:

Pattern detection: problem statement

Pattern detection

Given a dictionary of patterns \mathcal{P} , retrieve these patterns in an input time serie x.

- ▶ The templates and time series can be multivariate.
- ightharpoonup The templates in \mathcal{P} can have different lengths.
- ▶ The templates can be annotated, i.e. be linked to a specific phenomenon of interest: in this context, pattern recognition will provide an automated annotation of the input time series.

Pattern detection: convolutional representation

We can model the N-sample-long signal \mathbf{x} as a sparse combination of patterns/atoms.

Formally, let \mathbf{d}_k (k = 1, ..., K) be K patterns of length L.

These patterns can be activated: activations \mathbf{z}_k of length N-L+1

 $\mathbf{z}_k[n] \neq 0$ if pattern \mathbf{d}_k is activated at time n.

or, alternatively:

$$\mathbf{x}[n] = \sum_{k=1}^{K} (\mathbf{z}_k \star \mathbf{z}_k)[n] + e[n].$$

Pattern detection: convolutional representation

Model

$$\mathbf{x}[n] = \sum_{k=1}^{K} (\mathbf{z}_k \star \mathbf{d}_k)[n] + e[n].$$

Illustrative example

Pattern detection: optimization problem

The optimization problem to find the activations is:

$$\mathbf{Z}^{\star} = \arg\min_{(\mathbf{z}_k)} \left\| \mathbf{x} - \sum_{k=1}^K (\mathbf{z}_k \star \mathbf{d}_k) \right\|_2^2 + \lambda \sum_{k=1}^K \|\mathbf{z}_k\|_1$$

- **Sparsity constraint** for the activations \mathbf{z}_k , that improves the interpretability of the learned patterns.
- ► Convex problem, so several methods exist to solve it (ISTA, ADMM, FISTA, CD, etc.)

This task is called **convolutional sparse coding**.

Conclusion

Time to code!