Module Interface Specification for SpectrumImageAnalysisPy

Isobel Bicket

November 29, 2017

1 Revision History

Date	Version	Notes
November 29, 2017	1.0	Initial draft

2 Symbols, Abbreviations and Acronyms

See SRS documentation at https://github.com/icbicket/SpectrumImageAnalysisPy/blob/SpectrumImageAnalysisPy_dev/Doc/SRS/SRS.pdf.

Contents

1	Rev	vision History						
2	Syn	Symbols, Abbreviations and Acronyms ii						
3	Inti	roduction						
4	Not	tation						
5	Mo	odule Decomposition						
6	MIS	S of Hardware Hiding Module						
	6.1	Module						
	6.2	Uses						
	6.3	Syntax						
		6.3.1 Exported Access Programs						
	6.4	Semantics						
		6.4.1 State Variables						
		6.4.2 Environment Variables						
		6.4.3 Access Routine Semantics						
7	MIS	S of Import csv Module						
	7.1	Module						
	7.2	Uses						
	7.3	Syntax						
		7.3.1 Exported Access Programs						
	7.4	Semantics						
		7.4.1 State Variables						
		7.4.2 Environment Variables						
		7.4.3 Access Routine Semantics						
8	MIS	S of Import dm3 Module						
_	8.1	Module						
	_	Uses						
	8.3	Syntax						
	0.0	8.3.1 Exported Access Programs						
	8.4	Semantics						
	0.4	8.4.1 State Variables						
		8.4.2 Environment Variables						
		8.4.3 Access Routine Semantics						

9	MIS	of Im	port h	5 Mo	dule	•												6
	9.1	Module	e									 						6
	9.2	Uses .										 			 			7
	9.3	Syntax										 			 			7
		9.3.1	Expor	ted Ac	cess	Prog	gram	S				 						7
	9.4	Semant	tics .									 			 			7
		9.4.1	State	Variabl	es							 			 			7
		9.4.2	Access	Routi	ne S	ema	ntics				•		•				•	7
10		of Im																8
	10.1	Module	e									 						8
	10.2	Uses .										 						8
	10.3	Syntax																8
		10.3.1	Expor	ted Ac	cess	Prog	gram	S										8
	10.4	Semant																8
		10.4.1																8
		10.4.2	Access	Routi	ne S	ema	ntics						•					8
11		of Ex																9
	11.1	Module	e									 						9
	11.2	Uses .										 						9
	11.3	Syntax																9
		11.3.1	Expor	ted Ac	cess	Prog	gram	S				 						9
	11.4	Semant	tics .									 						9
		11.4.1	State	Variabl	es													9
		11.4.2	Enviro	\mathbf{n} ment	Var	riable	es .											9
		11.4.3	Access	Routi	ne S	ema	ntics					 	•				•	10
12	MIS	of Ex	port h	5 Mo	dule	3												10
	12.1	Module	e									 						10
	12.2	Uses .										 						10
	12.3	Syntax																11
		12.3.1	Expor	ted Ac	cess	Prog	gram	S				 						11
	12.4	Semant	tics .									 						11
		12.4.1	State	Variabl	es							 						11
		12.4.2	Enviro	\mathbf{n} ment	Var	riable	es .											11
		12.4.3	Access	Routi	ne S	ema	ntics											11
13	MIS	of Ex	port p	$\mathbf{ng} \; \mathbf{M}_0$	odu	le												11
	13.1	Module	e									 			 			11
	13.2	Uses .										 						12
	13.3	Syntax										 						12
		13 3 1	Evpor	ted Ac	enge	Pro	ram	a										19

	13.4	Semantics	12
		13.4.1 State Variables	12
		13.4.2 Environment Variables	12
		13.4.3 Access Routine Semantics	12
1 1	МТС	of Evport val Module	13
14		1 1	13
		Module	
		Uses	13
	14.3	Syntax	13
	111		13
	14.4	Semantics	13
		14.4.1 State Variables	13
			13
		14.4.3 Access Routine Semantics	13
15	MIS	of Data Processing Richardson-Lucy Deconvolution Module	14
		Module	14
		Uses	14
		Syntax	14
	10.0	15.3.1 Exported Access Programs	14
	15 4	-	14
	10.1	15.4.1 State Variables	14
			15
			15
		10.4.9 Access Housing Demandes	10
16	MIS	of Data Processing Normalization Module	16
	16.1	Module	16
	16.2	Uses	16
	16.3	Syntax	16
		16.3.1 Exported Access Programs	16
	16.4	Semantics	16
		16.4.1 State Variables	16
		16.4.2 Access Routine Semantics	16
1 >	N/IIC		1 =
17		8	17
		Module	17
		Uses	17
	17.3	Syntax	17
		17.3.1 Exported Access Programs	17
	17.4	Semantics	17
		17.4.1 State Variables	17
		17.4.2 Access Routine Semantics	18

18	MIS	S of Data Processing Background Correction Module	18
	18.1	Module	18
	18.2	Uses	18
	18.3	Syntax	19
		18.3.1 Exported Access Programs	19
	18.4	Semantics	19
		18.4.1 State Variables	19
		18.4.2 Access Routine Semantics	19
19	MIS	of Data Extraction 1D Slice Module	19
	19.1	Module	19
	19.2	Uses	20
	19.3	Syntax	20
		19.3.1 Exported Access Programs	20
	19.4	Semantics	20
		19.4.1 State Variables	20
		19.4.2 Access Routine Semantics	20
20	MIS	of Data Extraction 2D Mask Module	21
	20.1	Module	21
		Uses	21
	20.3	Syntax	21
		20.3.1 Exported Access Programs	21
	20.4	Semantics	21
		20.4.1 State Variables	21
		20.4.2 Access Routine Semantics	22
21	MIS	of Data Extraction 3D Mask Module	23
		Module	
		Uses	
	21.3	Syntax	23
		21.3.1 Exported Access Programs	
	21.4	Semantics	23
		21.4.1 State Variables	24
		21.4.2 Access Routine Semantics	24
22	MIS	of Display 1D Spectrum Module	26
		Module	26
		Uses	26
	22.3	Syntax	26
		22.3.1 Exported Access Programs	26
	22.4	Semantics	26
		22 / 1 State Variables	26

		22.4.2 Access Routine Semantics
23	MIS	of Display 2D Image Module
		Module
	23.2	Uses
	23.3	Syntax
		23.3.1 Exported Access Programs
	23.4	Semantics
		23.4.1 State Variables
		23.4.2 Access Routine Semantics
24	MIS	of Display 3D Spectrum Image Module 2
	24.1	Module
	24.2	<u>Uses</u>
	24.3	Syntax
		24.3.1 Exported Access Programs
	24.4	Semantics
		24.4.1 State Variables
		24.4.2 Access Routine Semantics
25	MIS	of Data 1D Spectrum Module 3
		Template Module
		Uses
		Syntax
		25.3.1 Types
		25.3.2 Exported Access Programs
		Semantics
		25.4.1 State Variables
		25.4.2 Access Routine Semantics
26	MIS	of Data 2D Image Module 3
		Template Module
		Uses
		Syntax
		26.3.1 Types
		26.3.2 Exported Access Programs
		Semantics
		26.4.1 State Variables
		26.4.2 Access Routine Semantics
27	MIS	of Data 3D Spectrum Image Module 3
41		Template Module
		Uses 3

		27.2.1 Types
		27.2.2 Exported Access Programs
	27.3	<u>Semantics</u>
		27.3.1 State Variables
		27.3.2 Access Routine Semantics
28	MIS	of Array Data Structure Module 35
	28.1	Template Module
	28.2	Uses
	28.3	Syntax
		28.3.1 Type
		28.3.2 Exported Access Programs
	28.4	<u>Semantics</u>
		28.4.1 State Variables
		28.4.2 Access Routine Semantics
29	MIS	of Plotting Library Module 36
	29.1	Module
	29.2	<u>Uses</u>
	29.3	Syntax
		29.3.1 Exported Access Programs
	29.4	<u>Semantics</u>
		29.4.1 State Variables
		29.4.2 Environment Variables
		29.4.3 Access Routine Semantics

3 Introduction

The following document details the Module Interface Specifications for SpectrumImageAnalysisPy, a library created for the data processing of spectrum image datasets.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/icbicket/SpectrumImageAnalysisPy/tree/SpectrumImageAnalysisPy_dev.

All modules within SpectrumImageAnalysisPy are accessible by the user from terminal commands. Some modules will interface with each other, but the workflow of SpectrumImageAnalysisPyis driven by the user.

4 Notation

The structure of the MIS for modules comes from [1], with the addition that template modules have been adapted from [2]. The mathematical notation comes from Chapter 3 of [1]. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SpectrumImageAnalysisPy.

Data Type	Notation	Description
character	char	a single symbol or digit
string	str	a sequence of characters
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
complex	\mathbb{C}	any combination of real and imaginary numbers, in the form $a+bi$, where a and b are real and i is the imaginary number

The specification of SpectrumImageAnalysisPy uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, SpectrumImageAnalysisPy uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification. It should be noted that each state variable is assumed to have a setter and getter accessible through module.variable_name.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project. The modules in this document are listed in the order in which they appear in this table.

Level 1	Level 2	Level 3
Hardware-Hiding Module		
	Import	csv dm3 h5 rpl
	Export	csv h5 png rpl
Behaviour-Hiding Module	Data processing	Richardson-Lucy Deconvolution Normalization Gain correction Background correction
	Data extraction	1D slice 2D mask 3D mask
	Display	1D spectrum plot 2D image plot 3D spectrum image plot
Software Decision Module	Data	Spectrum Image Spectrum Image
	Array Data Structure Plotting Library	

Table 1: Module Hierarchy

6 MIS of Hardware Hiding Module

6.1 Module

HardwareHiding

6.2 Uses

N/A

6.3 Syntax

6.3.1 Exported Access Programs

Name	In	Out	Exceptions
InputDevices	Hardware	Read out	_
OutputDevices	Hardware	Write out	

6.4 Semantics

This module handles the interface between the hardware being used and inputs to the software

6.4.1 State Variables

N/A

6.4.2 Environment Variables

- Keyboard
- Mouse
- Screen
- Long Term Storage
- Temporary storage

6.4.3 Access Routine Semantics

InputDevices():

- input: Hardware allowing the user to input instructions to the computer software, e.g. mouse, keyboard, long term or temporary memory
- transition: N/A

- output: Software instructions corresponding to the desire of the user (e.g. registering a mouse click, reading a variable from memory, accessing a file on the harddrive)
- exception: N/A

OutputDevices():

- input: Hardware allowing the user to see output from the computer software, e.g. screen, storage
- transition: N/A
- output: Interface to allow software to communicate output to the user (e.g., it provides the capability for the software to output something onto the screen or write to a file on a harddrive, or write to memory)
- exception: N/A

7 MIS of Import csv Module

7.1 Module

ImportCSV

7.2 Uses

- Data 1D Spectrum
- Array data structure
- Hardware-hiding

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions
ReadCSV	fname: str	Spectrum	NO FILE, NOT CSV

7.4 Semantics

This module imports data from csv files and initializes a Spectrum object.

7.4.1 State Variables

N/A

7.4.2 Environment Variables

filesystem

7.4.3 Access Routine Semantics

ReadCSV():

ReadCSV reads a .csv file and creates a Spectrum object with the appropriate assignations to intensity and energy range.

• input: fname: str

• transition: N/A

• output: Spectrum

• exceptions:

Exception	Condition
NO FILE	The filename does not correspond to any file in the file system $fname \notin filesystem$
NOT CSV	The indicated file is not a *.csv format $fname \notin \{files files \in .csv\}$

8 MIS of Import dm3 Module

8.1 Module

ImportDM3

8.2 Uses

- Array data structure
- Hardware hiding
- Data Spectrum Image
- Data 1D Spectrum
- Data 2D Image

8.3 Syntax

8.3.1 Exported Access Programs

Name	In	Out	Exceptions
ReadDM3	fname: string	SI Spectrum Image	NO FILE, NOT DM3

8.4 Semantics

This module imports data from .dm3 and initializes the appropriate data type.

8.4.1 State Variables

N/A

8.4.2 Environment Variables

 \bullet file system: the file system of the computer on which Spectrum ImageAnalysisPy is being run

8.4.3 Access Routine Semantics

ImportDM3():

 \bullet input: fname: str

 \bullet transition: N/A

• output: Spectrum Image or Spectrum or Image

• exception:

Exception	Condition
NO FILE	The filename does not correspond to any file in the file system $fname \notin filesystem$
NOT DM3	The indicated file is not a *.dm3 format

9 MIS of Import h5 Module

9.1 Module

ImportH5

9.2 Uses

- Array data structure
- Hardware hiding
- Data Spectrum Image
- Data 1D Spectrum
- Data 2D Image

9.3 Syntax

9.3.1 Exported Access Programs

Name	In	Out	Exceptions
ReadH5	fname: string	SI Spectrum Image	NO FILE,
			NOT H5

9.4 Semantics

This module handles the reading of .h5 files and assignation of the data contained therein to the appropriate data type.

9.4.1 State Variables

N/A

9.4.2 Access Routine Semantics

ImportDM3():

• input: fname: str

• transition: N/A

• output: Spectrum Image or Spectrum or Image

• exception:

Exception	Condition
NO FILE	The filename does not correspond to any file in the file system $fname \notin filesystem \Rightarrow \text{NO_FILE}$
NOT H5	The indicated file is not a *.h5 format

10 MIS of Import rpl Module

10.1 Module

 $\operatorname{ImportRPL}$

10.2 Uses

- Array data structure
- Hardware hiding
- Data Spectrum Image
- Data 1D Spectrum
- Data 2D Image

10.3 Syntax

10.3.1 Exported Access Programs

Name	In	Out	Exceptions
ReadRPL	fname: string	SI Spectrum Image	NO FILE,
			NOT RPL

10.4 Semantics

This module handles the reading of .rpl files and assigns the data contained within to the appropriate data type.

10.4.1 State Variables

N/A

10.4.2 Access Routine Semantics

ImportRPL():

• input: fname: str

• transition: N/A

• output: Spectrum Image or Spectrum or Image

• exception:

Exception	Condition
NO FILE	The filename does not correspond to any file in the file system $fname \notin filesystem \Rightarrow \text{NO_FILE}$
NOT RPL	The indicated file is not a *.rpl format

11 MIS of Export csv Module

11.1 Module

ExportCSV

11.2 Uses

- Data Extraction 1D Slice
- Data Extraction 3D Mask
- Data 1D Spectrum
- Display 1D Spectrum
- Hardware Hiding

11.3 Syntax

11.3.1 Exported Access Programs

Name	In	Out	Exceptions	_
WriteCSV	Spectrum	file	FILE EXISTS	

11.4 Semantics

This module writes Spectrum data to a csv file.

11.4.1 State Variables

N/A

11.4.2 Environment Variables

• filesystem

11.4.3 Access Routine Semantics

WriteCSV():

• input: Spectrum

• transition: N/A

• output: csv file containing spectrum data, written to filesystem

• exception:

Exception	Condition
FILE EXISTS	The filename already exists in the filesystem $fname \in filesystem \Rightarrow \text{FILE_EXISTS}$

12 MIS of Export h5 Module

12.1 Module

ExportH5

12.2 Uses

- Data 1D Spectrum
- Data 2D Image
- Data 3D Spectrum Image
- Data Extraction 1D Slice
- Data Extraction 2D Mask
- Data Extraction 3D Mask
- Display 1D Spectrum
- Display 2D Image
- Hardware Hiding

12.3 Syntax

12.3.1 Exported Access Programs

Name	In	Out	Exceptions
WriteH5	Spectrum Image	file	FILE EXISTS
	Spectrum Image		

12.4 Semantics

This module writes Spectrum data, Image data, or Spectrum Image data to an h5 file.

12.4.1 State Variables

N/A

12.4.2 Environment Variables

• filesystem

12.4.3 Access Routine Semantics

WriteH5():

• input: Spectrum | Image | Spectrum Image

• transition: N/A

• output: h5 file containing spectrum data, image data, or spectrum image data (including any metadata), written to filesystem

• exception:

Exception	Condition
FILE EXISTS	The filename already exists in the filesystem $fname \in filesystem \Rightarrow \text{FILE_EXISTS}$

13 MIS of Export png Module

13.1 Module

ExportPNG

13.2 Uses

- Data Extraction 2D Mask
- Data Extraction 3D Mask
- Data 2D Image
- Display 2D Image
- Hardware Hiding

13.3 Syntax

13.3.1 Exported Access Programs

Name	In	Out	Exceptions
WritePNG	Image	file	FILE EXISTS

13.4 Semantics

This module writes Image data to a png file.

13.4.1 State Variables

N/A

13.4.2 Environment Variables

• filesystem

13.4.3 Access Routine Semantics

WritePNG():

• input: Image

• transition: N/A

• output: png file containing image data, written to filesystem

• exception:

Exception	Condition
FILE EXISTS	The filename already exists in the filesystem $fname \in filesystem \Rightarrow \text{FILE_EXISTS}$

14 MIS of Export rpl Module

14.1 Module

 $\operatorname{ExportRPL}$

14.2 Uses

- Data 1D Spectrum
- Data 2D Image
- Data 3D Spectrum Image
- Hardware Hiding

14.3 Syntax

14.3.1 Exported Access Programs

Name	In	Out	Exceptions
WriteRPL	Spectrum Image	file	FILE EXISTS
	Spectrum Image		

14.4 Semantics

This module writes Spectrum data, Image data, or Spectrum Image data to an rpl file.

14.4.1 State Variables

N/A

14.4.2 Environment Variables

filesystem

14.4.3 Access Routine Semantics

WriteRPL():

- input: Spectrum | Image | Spectrum Image
- transition: N/A
- output: rpl file containing spectrum data, image data, or spectrum image data (including any metadata), written to filesystem

• exception:

Exception	Condition
FILE EXISTS	The filename already exists in the filesystem $fname \in filesystem \Rightarrow FILE_EXISTS$

15 MIS of Data Processing Richardson-Lucy Deconvolution Module

15.1 Module

RLDeconvolution

15.2 Uses

- Array Data Structure
- Hardware Hiding
- Data 3D Spectrum Image
- Data 1D Spectrum

15.3 Syntax

15.3.1 Exported Access Programs

Name	In	Out	Exceptions
RLDeconvolution	Spectrum, PSF, itera	- deconvolved Spectrum	DIVIDE
	tions		BY ZERO
SIDeconvolution	Spectrum Image	, deconvolved Spectrum	-
	PSF, iterations	, Image	
	threads		

15.4 Semantics

This module performs the Richardson-Lucy deconvolution algorithm on either a Spectrum or Spectrum Image, following IM2 in the SRS.

15.4.1 State Variables

N/A

15.4.2 Environment Variables

• threads: N, number of processing threads to use during Spectrum Image deconvolution

15.4.3 Access Routine Semantics

RLDeconvolution():

- input:
 - Spectrum, the spectrum to be deconvolved
 - Point Spread Function: Spectrum, the point spread function to deconvolve from Spectrum
 - iterations: N, the number of iterations of the algorithm to perform
- transition: N/A
- output: Deconvolved Spectrum
- \bullet exception:

Exception	Condition
DIVIDE BY ZERO	The algorithm encounters a 0 in the denominator $\sum_{l} I_{PSF}(E) I_{real(l)}^{c}(E) = 0 \Rightarrow \text{DIVIDE_BY_ZERO}$

SIDeconvolution():

- input:
 - Spectrum Image, the spectrum image to be deconvolved
 - Point Spread Function: Spectrum, the point spread function to deconvolve from Spectrum Image
 - iterations: \mathbb{N} , the number of iterations of the algorithm to perform
 - threads: \mathbb{N} , the number of processing threads to use in deconvolving the Spectrum Image
- transition: N/A
- output: Deconvolved Spectrum Image
- exception: N/A

16 MIS of Data Processing Normalization Module

16.1 Module

Normalization

16.2 Uses

- Array Data Structure
- Data 3D Spectrum Image
- Data 1D Spectrum
- Data Extraction 1D Slice

16.3 Syntax

16.3.1 Exported Access Programs

Name	In	Out	Exceptions
Normalization	Spectrum Spectrum	Normalized Spectrum	DIVIDE
	Image, slice		BY ZERO

16.4 Semantics

This module normalizes either a Spectrum or Spectrum Image to the sum over the range defined by the user, following IM1 in the SRS.

16.4.1 State Variables

N/A

16.4.2 Access Routine Semantics

Normalization():

- input:
 - Spectrum, the spectrum to be normalized, or Spectrum Image, the spectrum image to be normalized
 - slice
- transition: N/A
- output: Normalized Spectrum or Spectrum Image

• exception:

Exception	Condition
DIVIDE BY ZERO	The algorithm encounters a 0 in the denominator $\sum_{E(k=k_1)}^{E(k=k_2)} I(E(k)) = 0 \Rightarrow \text{DIVIDE_BY_ZERO}$

17 MIS of Data Processing Gain Correction Module

17.1 Module

GainCorr

17.2 Uses

- Array Data Structure
- Data 3D Spectrum Image
- Data 1D Spectrum

17.3 Syntax

17.3.1 Exported Access Programs

Name	In	Out	Exceptions
GainCorrection	data, Gain Reference	Gain Corrected Spec-	DIVIDE BY ZERO,
		trum	SIZE MISMATCH

17.4 Semantics

This module corrects either a Spectrum or Spectrum Image using a gain reference (obtained from the acquisition camera hardware), following IM4 in the SRS.

17.4.1 State Variables

N/A

17.4.2 Access Routine Semantics

GainCorrection():

- input:
 - data: Spectrum, the spectrum to be corrected, or Spectrum Image, the spectrum image to be corrected
 - Gain Reference: Spectrum, a reference Spectrum obtained from the hardware
- transition: N/A
- output: Gain-corrected Spectrum or Spectrum Image
- exception:

Exception	Condition
DIVIDE BY ZERO	The algorithm encounters a 0 in the denominator $g(E) = 0 \Rightarrow \text{DIVIDE_BY_ZERO}$
SIZE MISMATCH	The size of the gain correction is different from the size of the input data spectral range $len(g(E)) \neq len(data.Srange) = 0 \Rightarrow \text{SIZE_MISMATCH}$

18 MIS of Data Processing Background Correction Module

18.1 Module

 ${\bf BkgndCorr}$

18.2 Uses

- Array Data Structure
- Data 3D Spectrum Image
- Data 1D Spectrum

18.3 Syntax

18.3.1 Exported Access Programs

Name	In		Out		Exceptio	ns
BackgroundCorrection	data,	Background	Background	Cor-	SIZE	MIS-
	Refere	nce	rected Spectrum		MATCH	

18.4 Semantics

This module corrects the background noise for either a Spectrum or Spectrum Image, following IM3 in the SRS.

18.4.1 State Variables

N/A

18.4.2 Access Routine Semantics

BackgroundCorrection():

- input:
 - data: Spectrum, the spectrum to be corrected, or Spectrum Image, the spectrum image to be corrected
 - Background Reference: Spectrum, a reference Spectrum representing the background noise in the camera
- transition: N/A
- output: Background-corrected Spectrum or Spectrum Image
- exception:

Exception	Condition
SIZE MISMATCH	The size of the background correction is different from the size of the input data spectral range $len(b(E)) \neq len(data.Srange) = 0 \Rightarrow \text{SIZE_MISMATCH}$

19 MIS of Data Extraction 1D Slice Module

19.1 Module

Slice1D

19.2 Uses

- Data 1D Spectrum
- Display 1D Spectrum

19.3 Syntax

19.3.1 Exported Access Programs

Name	In	Out	Exceptions
CreateSlice	$data, [k_1, k_2]$	slice	RANGE
			OUTSIDE
			BOUNDS
Integrate Slice	slice	integral	-

19.4 Semantics

This module allows the user to extract slices from a 1D dataset for further analysis with other modules.

19.4.1 State Variables

• slice: interval of Spectrum between $[k_1, k_2]$

19.4.2 Access Routine Semantics

CreateSlice():

- input:
 - $[k_1, k_2] \in \mathbb{R}^2 | [max(min(k_1, k_2), min(data.Srange)..min(max(k_1, k_2), max(data.Srange)))] \in data.Srange$
 - data: Spectrum

• transition: Creation of slice

• output: slice

• exception:

Exception	Condition
RANGE OUTSIDE BOUNDS	The user tried to select a range of values which was wholly outside the data's spectral range $[max(min(k_1, k_2), min(data.Srange)min(max(k_1, k_2), max(data.Srange) data.Srange) \Rightarrow RANGE_OUTSIDE_BOUNDS$

IntegrateSlice():

• input

- slice

• transition: N/A

• output: integral over slice, $\sum_{k_1}^{k_2} data.data$

• exception: N/A

20 MIS of Data Extraction 2D Mask Module

20.1 Module

Mask2D

20.2 Uses

- Data 2D Image
- Display 2D Image

20.3 Syntax

20.3.1 Exported Access Programs

Name	In	Out	Exceptions
CreateMask	vertex list, size(data)	mask2D	RANGE OUT-
			SIDE BOUNDS
ApplyMask	data	masked data	SIZE MIS-
			MATCH
ModifyMask	vertex list	mask2D	RANGE OUT-
			SIDE BOUNDS

20.4 Semantics

This module allows the user to extract portions of a 2D dataset for further analysis with other modules.

20.4.1 State Variables

• mask2D, $\forall value \in mask, value \in \{True, False\}$, mask of boolean values representing the desired mask from the user

20.4.2 Access Routine Semantics

CreateMask():

• input

- vertex list: $[x_i, y_i], x_i, y_i \in \mathbb{N}$, a list of (x, y) ordered pairs of indices to access an array of size(data)

- size(data): \mathbb{N}^2 , the size of the data to which the mask and vertex list refers

• transition: Creates mask

• output: mask2D

• exception:

Exception	Condition
RANGE OUTSIDE BOUNDS	The user tried to select a mask with a vertex outside the data boundaries
	$[x_i, y_i] \notin [0size(data_x), 0size(data_y)] \Rightarrow RANGE_OUTSIDE_BOUNDS$

ApplyMask():

• input

- data: Image

• transition:

• output: masked data: Image

• exception:

Exception	Condition
SIZE MISMATCH	The size of the data is not the same as the size of the mask $size(mask) \neq size(data) \Rightarrow SIZE_MISMATCH$

ModifyMask():

• input

– vertex list: $[x_i, y_i], x_i, y_i \in \mathbb{N}$, a list of (x, y) ordered pairs of indices to access an array of size(data)

• transition: Update mask to the new set of input vertices

• output: mask2D

• exception:

Exception	Condition
RANGE OUTSIDE BOUNDS	The user tried to select a mask with a vertex outside the data boundaries
	$[x_i, y_i] \notin [0size(data_x), 0size(data_y)] \Rightarrow RANGE_OUTSIDE_BOUNDS$

21 MIS of Data Extraction 3D Mask Module

21.1 Module

Mask3D

21.2 Uses

- Data 3D Spectrum Image
- Display 3D Spectrum Image

21.3 Syntax

21.3.1 Exported Access Programs

Name	In	Out	Exceptions
CreateMask3D	vertex list, size(data)	mask3d	RANGE OUTSIDE
			BOUNDS
ExtrudeMask2D	mask2D, size(data)	mask3d	SIZE MISMATCH
ExtrudeMask1D	slice, size(data)	mask3d	SIZE MISMATCH
ApplyMask3D	data	masked data	SIZE MISMATCH
ModifyMask3D	vertex list	mask3d	RANGE OUTSIDE
			BOUNDS

21.4 Semantics

This module allows the user to extract portions of a 3D dataset for further analysis with other modules.

21.4.1 State Variables

• mask3D, $\forall value \in mask, value \in \{True, False\}, size(mask3D) = size(data),$ mask of boolean values representing the desired mask from the user

21.4.2 Access Routine Semantics

CreateMask3D():

- input
 - vertex list: $[x_i, y_i, k_i], x_i, y_i, k_i \in \mathbb{N}$, a list of (x, y, k) ordered pairs of indices to access an array of size(data)
 - size(data): \mathbb{N}^3 , the size of the data to which the mask and vertex list refers
- transition: Creates mask
- output: mask2D
- exception:

Exception	Condition
RANGE OUTSIDE BOUNDS	The user tried to select a mask with a vertex outside the data boundaries $[x_i,y_i,k_i] \notin [0size(data_x),0size(data_y),0size(data_k)] \Rightarrow RANGE_OUTSIDE_BOUNDS$

ExtrudeMask2D():

- input
 - mask2D: mask2D
 - size(data): \mathbb{N}^3 , the size of the data to which the mask and vertex list refers
- transition: Creates mask3D from mask2D by extruding it along the third dimension
- output: mask3D
- exception:

Exception	Condition
SIZE MISMATCH	The size of the data is not the same as the size of the mask $size(mask) \neq size(data) \Rightarrow SIZE_MISMATCH$

ExtrudeMask1D():

• input

- slice: slice

- size(data): \mathbb{N}^3 , the size of the data to which the mask and vertex list refers

• transition: Creates mask3D from slice by extruding it along the two extra dimensions

• output: mask3D

• exception:

Exception	Condition
SIZE MISMATCH	The size of the data is not the same as the size of the mask $size(mask) \neq size(data) \Rightarrow SIZE_MISMATCH$

ApplyMask3D():

• input

- data: Spectrum Image

• transition:

• output: Masked data, Spectrum Image

• exception:

Exception	Condition
SIZE MISMATCH	The size of the data is not the same as the size of the mask $size(mask) \neq size(data) \Rightarrow SIZE_MISMATCH$

ModifyMask3D():

- input
 - vertex list: $[x_i, y_i, k_i], x_i, y_i, k_i \in \mathbb{N}$, a list of (x, y, k) ordered pairs of indices to access an array of size(data)
 - size(data): \mathbb{N}^3 , the size of the data to which the mask and vertex list refers
- transition: Creates mask

• output: mask3D

• exception:

Exception	Condition
RANGE OUTSIDE BOUNDS	The user tried to select a mask with a vertex outside the data boundaries $[x_i, y_i, k_i] \notin [0size(data_x), 0size(data_y), 0size(data_k)] \Rightarrow$
	RANGE_OUTSIDE_BOUNDS

22 MIS of Display 1D Spectrum Module

22.1 Module

Disp1D

22.2 Uses

- Data 1D Spectrum
- Plotting library

22.3 Syntax

22.3.1 Exported Access Programs

Name	In	Out	Exceptions
plot	data	axis1D, event handler	_

22.4 Semantics

This module plots 1D spectrum data and allows event handling (eg, to slice the spectrum).

22.4.1 State Variables

• Spectrum axis: axis1D containing the plotted data and event handler

22.4.2 Access Routine Semantics

plot():

- input:
 - data: Spectrum

• transition: create axis and plot data on axis, initialize event handler for axis

• output:

- axis1D: axis1D

- event handler: axis1D

• exception: N/A

23 MIS of Display 2D Image Module

23.1 Module

Disp2D

23.2 Uses

- Data 1D Spectrum
- Plotting library

23.3 Syntax

23.3.1 Exported Access Programs

Name	In	Out	Exceptions
plot	data	axis2D, event	-
		handler	
AddScalebar	-	-	NO CALIBRATION
ChangeContrast	$[\min C, \max C],$ data	-	OUT OF RANGE

23.4 Semantics

This module plots 2D image data and allows event handling (eg, to create masks on the image).

23.4.1 State Variables

• Image axis: axis2D containing the plotted data and event handler

23.4.2 Access Routine Semantics

plot():

- input:
 - data: Image
- transition: create axis and plot data on axis, initialize event handler for axis
- output:
 - axis2D: axis2D
 - event handler: axis2D
- exception: N/A

AddScalebar():

- input: N/A
- transition: Add scalebar to Image axis
- output: N/A
- exception:

Exception	Condition
NO CALIBRATION	No calibration exists in the image, so a scale bar cannot be added $\not\equiv data.Imcal \Rightarrow$ NO_CALIBRATION

ChangeContrast():

- input:
 - [minC, maxC], $\in \mathbb{R}^2$, the minimum and maximum contrast to stretch the colourscale
 - data: Image
- \bullet transition: Change the contrast of the displayed image
- \bullet output: N/A
- exception:

Exception	Condition
OUT OF RANGE	The user tried to select a contrast range of values which was wholly outside the data's intensity limits $[max(minC, min(data.data)maxC, max(data.data)))] \notin \\ data.Srange \Rightarrow \text{OUT_OF_RANGE}$

24 MIS of Display 3D Spectrum Image Module

24.1 Module

Disp3D

24.2 Uses

- Data
- Plotting library
- 2D image plot
- 1D spectrum plot

24.3 Syntax

24.3.1 Exported Access Programs

Name	In	Out	Exceptions
plot	data	figure3d, event handler	-

24.4 Semantics

This module arranges the elements of the 1D and 2D display modules to suit a 3D dataset, and allows connection of the different axes (through event handling) such that within one figure, all axes refer to the same dataset.

24.4.1 State Variables

- figure 3d: figure containing image plot, spectrum plot, mask plot, colourbar, and image contrast histogram
- image plot: axis2D for plotting images extracted from slicing the spectrum axis
- spectrum plot: axis1D for plotting spectra extracted from masks on the image axis

- mask plot: axis2D
- colourbar axis: colourbar axis for image plot
- image contrast axis: histogram axis for image plot

24.4.2 Access Routine Semantics

plot():

- input:
 - data: Image
- transition: create axis and plot data on axis, initialize event handler for axis
- output:
 - figure3D: contains axis1D, axis2D
 - event handler for axis1D
 - event handler for axis2D
- exception: N/A

25 MIS of Data 1D Spectrum Module

25.1 Template Module

Spectrum

25.2 Uses

• Array data structure

25.3 Syntax

25.3.1 Types

Spectrum

25.3.2 Exported Access Programs

Name	In	Out	Exceptions
init	data, (Srange (dispersion & [index, value])), Slabel, Sunit		WRONG DATA TYPE, LENGTH MISMATCH

25.4 Semantics

This module contains the abstract data type Spectrum, including the following state variables.

25.4.1 State Variables

- $SRange: \mathbb{R}^K$
- $data: \mathbb{R}^K$
- $index: \mathbb{Z}$
- $value: \mathbb{R}$
- dispersion: \mathbb{R}
- Slabel: str
- Sunit: str
- metadata: dict

25.4.2 Access Routine Semantics

init(): init initializes a Spectrum object.

- input:
 - data: intensity values, $\in \mathbb{R}^K$
 - Srange: spectral axis values, $\in \mathbb{R}^K$
 - dispersion: difference between neighbouring channels along the spectral axis, $\mathbb R$
 - index: location on the spectral axis at which value is, \mathbb{Z}
 - − value: value of the spectral axis (in spectral axis units) at the location given by index, \mathbb{R}
 - Slabel: spectrum label, the name for the spectral axis (e.g. Energy, Wavelength), str
 - Sunit: spectrum units, the units which the spectral axis uses (e.g. eV, nm), str
- transition: Creates all state variables
- output: N/A
- exception:

Exception	Condition
WRONG DATA TYPE	Any of the input data are the wrong type
LENGTH MIS- MATCH	The length of Srange is not the same as the length of data
	$len(Srange) \neq len(data)$

26 MIS of Data 2D Image Module

26.1 Template Module

Image

26.2 Uses

• Array data structure

26.3 Syntax

26.3.1 Types

Image

26.3.2 Exported Access Programs

Name	In	Out	Exceptions
init	data, Imcal, metadata	-	WRONG DATA TYPE, WRONG
			DIMENSIONS

26.4 Semantics

This module contains the abstract data type Spectrum, including the following state variables.

26.4.1 State Variables

• data: $\mathbb{R}^{X \times Y}$

• Imcal: \mathbb{R}

• metadata: dict

26.4.2 Access Routine Semantics

init(): init initializes an Image object.

- input:
 - data: intensity values, $\in \mathbb{R}^{X \times Y}$
 - Imcal: image calibration values (e.g. number of nm per pixel), $\in \mathbb{R}$
 - metadata: dictionary containing extra information about the source of the image (e.g. experimental parameters)
- transition: Creates all state variables
- output: N/A
- exception:

Exception		Condition
WRONG TYPE	DATA	The input data are not real numbers or the Imcal value is not a real float $data \notin \mathbb{R}^{X \times Y} Imcal \notin \mathbb{R} \Rightarrow \text{WRONG_DATA_TYPE}$
WRONG SIONS	DIMEN-	The input data is not 2D $size(data) \notin \mathbb{N}^2 \Rightarrow \text{WRONG_DIMENSIONS}$

27 MIS of Data 3D Spectrum Image Module

27.1 Template Module

SI

27.2 Uses

• Array Data Structure

27.2.1 Types

Spectrum Image

27.2.2 Exported Access Programs

Name	In	Out	Exception	ns
init	data, Srange dispersion & [index, value], Slabel, Sunit, Imcal, metadata	-	WRONG TYPE, DIMENSIO	DATA WRONG DNS

27.3 Semantics

This module holds spectrum image data (a 3D dataset) and associated calibrations and other related information.

27.3.1 State Variables

• $data: \mathbb{R}^{X \times Y \times K}$

• $Imcal: \mathbb{R}$

• dispersion: \mathbb{R}

• $Srange: \mathbb{R}^K$

• index: \mathbb{Z}

• $value: \mathbb{R}$

• Slabel: string

• Sunit: string

• metadata: dict

27.3.2 Access Routine Semantics

init

- input:
 - data: intensity values, $\in \mathbb{R}^{X \times Y \times K}$
 - Srange: spectral axis values, $\in \mathbb{R}^K$
 - dispersion: difference between neighbouring channels along the spectral axis, $\mathbb R$
 - index: location on the spectral axis at which value is, \mathbb{Z}
 - value: value of the spectral axis (in spectral axis units) at the location given by $index,\,\mathbb{R}$

- Slabel: spectrum label, the name for the spectral axis (e.g. Energy, Wavelength), str
- Sunit: spectrum units, the units which the spectral axis uses (e.g. eV, nm), str
- *Imcal*: image calibration values (e.g. number of nm per pixel), $\in \mathbb{R}$
- metadata: dictionary containing extra information about the source of the image (e.g. experimental parameters)
- transition: Initialize all state variables
- output: N/A
- exception:

Exception	Condition
WRONG DATA TYPE	Any of the input data are the wrong type
	$ \begin{array}{l} (data \notin \mathbb{R}^{X \times Y \times K}) (Srange \notin \mathbb{R}^K) (dispersion \notin \mathbb{R}) (index \notin \mathbb{Z}) (value \notin \mathbb{R}) (Slabel \notin str) (Sunit \notin str) (Imcal \notin \mathbb{R}) \Rightarrow \\ \text{WRONG_DATA_TYPE} \end{array} $
LENGTH MIS- MATCH	The length of Srange is not the same as the length of data's spectral axis $len(Srange) \neq size(data)[2] \Rightarrow LENGTH_MISMATCH$
WRONG DATA TYPE	The input data are not real numbers or the Imcal value is not a real float $data \notin \mathbb{R}^{X \times Y} Imcal \notin \mathbb{R} \Rightarrow WRONG_DATA_TYPE$
WRONG DI- MENSIONS	The input data is not 2D $size(data) \notin \mathbb{N}^2 \Rightarrow \text{WRONG_DIMENSIONS}$

28 MIS of Array Data Structure Module

28.1 Template Module

Array

28.2 Uses

N/A

28.3 Syntax

28.3.1 Type

• Array

28.3.2 Exported Access Programs

Name In	Out	Exceptions
CreateArray data	Array	-
ModifyArray Array	Array	-

28.4 Semantics

This module holds the array structure and functions for performing various calculations on arrays.

28.4.1 State Variables

• Array: \mathbb{C}^N , $dim(N) \in \mathbb{N}$

28.4.2 Access Routine Semantics

CreateArray():

• input: data, \mathbb{C}^N

 $\bullet\,$ transition: Create array variable

• output: Array, \mathbb{C}^N

• exception: N/A

ModifyArray():

• input: Array, \mathbb{C}^N

• transition: Modify array by some operation, including but not limited to, addition, subtraction, multiplication, division, etc.

 \bullet output: Array, \mathbb{C}^N

• exception: N/A

29 MIS of Plotting Library Module

29.1 Module

Plotting

29.2 Uses

• Hardware Hiding Module

29.3 Syntax

29.3.1 Exported Access Programs

Name	In	Out	Exceptions
plot	data	window	-

29.4 Semantics

This module is the basis for plotting 1D and 2D data and handling events such as mouse clicks and keyboard presses.

29.4.1 State Variables

- figure
- axis1D
- axis2D
- event handler

29.4.2 Environment Variables

• window: 2D on-screen display of plot figure

29.4.3 Access Routine Semantics

plot():

- input: data, $\mathbb{R}^K | \mathbb{R}^{X \times Y}$
- transition: Creates a figure to display the input data, with a 1D plot axis for 1D data or a 2D plot axis for 2D data. Provides handling for events such as mouse clicks or keyboard key presses and options to format the display.
- output: window
- exception:

References

- [1] D. M. Hoffman and P. A. Strooper, Software Design, Automated Testing, and Maintenance: A Practical Approach. New York, NY, USA: International Thomson Computer Press, 1995.
- [2] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering. Upper Saddle River, NJ, USA: Prentice Hall, 2nd ed., 2003.