

AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-8. (cancelled)

9. (new) A method for monitoring an exhaust system of a motor vehicle having an internal combustion engine (1) and having monitoring electronics (7), a temperature sensor (6) for measuring an outlet-side exhaust-gas temperature (T2) being arranged at the outlet side (14) of an exhaust pipe section (15) which is intended to accommodate a component (4) with a purifying activity, and the monitoring electronics (7) compare a time curve of the outlet-side exhaust-gas temperature (T2) with a time curve of an inlet-side exhaust-gas temperature (T1) at the inlet side (13) of the exhaust pipe section (15), wherein the comparison comprises forming a time derivative.

10. (new) The method as claimed in claim 9, wherein the monitoring electronics (7) determine the time derivatives (dT_1/dt) and (dT_2/dt) of the inlet-side exhaust-gas temperature (T1) and the outlet-side exhaust-gas temperature (T2), and the difference ($dT_1/dt - dT_2/dt$) between the derivatives.

11. (new) The method as claimed in claim 10, wherein the monitoring electronics (7) generate a signal which indicates the absence of the component (4) with a purifying activity or the presence of an incorrect component if the difference ($dT_1/dt - dT_2/dt$) between the derivatives is within a predetermined range of values.

12. (new) The method as claimed in claim 10, wherein the monitoring electronics (7) generate a signal which indicates the absence of the component (4) with a purifying activity or the presence of an incorrect component if the

difference ($dT_1/dt - dT_2/dt$) between the derivatives is within a predetermined range of values and the time derivative (dT_1/dt) of the inlet-side exhaust-gas temperature (T_1) is outside a predetermined range of values.

13. (new) The method as claimed in claim 9, wherein the monitoring electronics (7) determine the time derivatives (dT_1/dt) and (dT_2/dt) of the inlet-side exhaust-gas temperature (T_1) and the outlet-side exhaust-gas temperature (T_2), and also the time derivative (dT_{2^*}/dt) of a calculated value (T_{2^*}) for the exhaust-gas temperature at the outlet side (14) of the exhaust pipe section (15) and generate a signal which indicates the absence of the component (4) with a purifying activity or the presence of an incorrect component if the difference ($dT_{2^*}/dt - dT_2/dt$) between the derivatives is outside a predetermined range of values and the time derivative (dT_1/dt) of the inlet-side exhaust-gas temperature (T_1) is outside a predetermined range of values.

14. (new) A method for monitoring an exhaust system of a motor vehicle having an internal combustion engine (1) and having monitoring electronics (7), a temperature sensor (6) for measuring an outlet-side exhaust-gas temperature (T_2) being arranged at the outlet side (14) of an exhaust pipe section (15) which is intended to accommodate a component (4) with a purifying activity, and the monitoring electronics (7) compare a time curve of the outlet-side exhaust-gas temperature (T_2) with a time curve of a calculated value (T_{2^*}) for the exhaust-gas temperature at the outlet side (14) of the exhaust pipe section (15), wherein the calculated value (T_{2^*}) is determined on the basis of the heat-storing and/or fluid-dynamic action of the component (4) with a purifying activity.

15. (new) The method as claimed in claim 14, wherein the monitoring electronics (7) determine the time derivatives (dT_2/dt) and (dT_{2^*}/dt) of the outlet-side exhaust-gas temperature (T_2) and of the calculated temperature (T_{2^*}) and the difference ($dT_{2^*}/dt - dT_2/dt$) between the derivatives.

16. (new) The method as claimed in claim 15, wherein the monitoring electronics (7) generate a signal which indicates the absence of the component (4) with a purifying activity or the presence of an incorrect component if the difference ($dT2^*/dt - dT2/dt$) between the derivatives is outside a predetermined range of values.

17. (new) The method as claimed in claim 14, wherein the monitoring electronics (7) determine the time derivative ($dT1/dt$) of an inlet-side exhaust-gas temperature (T1) at the inlet side (13) of the exhaust pipe section (15) and the time derivative ($dT2/dt$) of the outlet-side exhaust-gas temperature (T2), as well as the time derivative ($dT2^*/dt$) of the calculated value (T2*) for the exhaust-gas temperature at the outlet side (14) of the exhaust pipe section (15) and generate a signal which indicates the absence of the component (4) with a purifying activity or the presence of an incorrect component if the difference ($dT2^*/dt - dT2/dt$) between the derivatives is outside a predetermined range of values and the time derivative ($dT1/dt$) of the inlet-side exhaust-gas temperature (T1) is outside a predetermined range of values.