Series de Tiempo 0

JIVB

"Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals."

— Stanislaw Ulam

- 1. Programa
- 2. Nociones Básicas
- 3. Contexto Histórico

130 años

de Gauss a Tinbergen

1809 - Theory of the motion of the heavenly bodies moving about the sun in conic sections

Sketch of the orbits of Ceres and Pallas (nachlaß Gauß, Handb. 4). Courtesy of Universitätsbibliothek Göttingen.

1809 - Theory of the motion of the heavenly bodies moving about the sun in conic sections

1870 - Galton - Regression Towards Mediocrity in Hereditary Stature

"I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the law of frequency of error. The law would have been personified by the Greeks if they had known of it. It reigns with serenity and complete self-effacement amidst the wildest confusion. The larger the mob, the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of unreason."(1889)

Lo continuo vs lo discreto: Biometricistas vs Mutacionistas

Mutacionistas: si no hubiera saltos los cambios no ocurrían

Biometricistas: no hacen falta saltos... los cambios ocurren igual

La genética de una variable aleatoria: su distribución

Tomorrows Hope Foundation

Lewis S. Ranieri
Chairman and Founder
Ranieri Partners LLC

Lewis S. Ranieri is Founder and Chairman of Ranieri Partners LLC which is focused on financial services and the use of cognitive technologies. Mr. Ranieri serves as Chairman and Senior Managing Partner of Ranieri Partners LLC, an advisor and manager of private investments. He is also the Chairman of the Board of Managers of Shellpoint Partners, LLC, a residential mortgage originator.

Nobel Laureates with Connections to Cowles

William D. Nordhaus, 2018, Robert J. Shiller, 2013, Lloyd S. Shapley, 2012, Christopher A. SIMS, 2011, Peter A. Diamond, 2010, Paul Krugman, 2008, Leonid Hurwicz, 2007, Edmund S. Phelps, 2006, Thomas C. Schelling, 2005, Robert J. Aumann, 2005, Vernon L. Smith, 2002, Joseph E. Stiglitz, 2001, James J. Heckman, 2000, Reinhard Selten, 1994, John Harsanyi, 1994, Gary S. Becker, 1991, Harry Markowitz, 1990, Trygve Haavelmo, 1989, Franco Modigliani, 1985, Gerard Debreu, 1983, James Tobin, 1981, Lawrence R. Klein, 1980, Theodore W. Schultz, 1979, Herbert Simon, 1978, Tjalling C. Koopmans, 1975, Kenneth Arrow, 1972, Ragnar Frisch, 1969 (Advisory Council: 1935–1943)

El modelo de Jan Tinbergen

1939 - Su modelo para la economía norteamericana tenía

48 ecuaciones

Cochrane y Orcutt

1949 - Levantan el punto de la autocorrelación de los residuos

El plan y los problemas

El plan A de la Cowles Comission: un supermodelo

Problemas

1. Los modelos empezaron a fallar... cada vez más covariadas y parches

2. La crítica de Lucas

3. Un nuevo tipo de modelos....

Box & Jenkins

George E. P. Box

Gwilym M. Jenkins

"Box-Jenkins Methods: An Alternative to Econometric Models"

(1972) Thomas H. Naylor, Seaks and Wichern

마르크리(1.8) [- 1.1.1 [) [- 1.2.2 [] [- 1.	Wharton Average absolute error	Box-Jenkins Average absolute error		
I_{p} (investment in billions)	1.09	0.59		
P (GNP price deflator in percentages)	0.22	0-11		
Un (unemployment in percentages)	0.186	0.109		
GNP (in billions)	2.51	2.01		

"The Predictive Performance of Quarterly Econometric Models"

(1972) Ronald L Cooper 1972

Variables	Econometric Models							
	Friend- Taubman	Fromm	Liu	Klein	ОВЕ	Wharton- EFU	Gold- feld	Auto- regressive Schemes
Real total consumer ex-								
expenditures Current total consumer	13.5	10.1*	8.899	17.02	11.11	25.44	39.14*	7.11
expenditures	11.6*	7.86	7.714*	50.98	33.93	20.92	14.87	5.791
Real consumer durables	+	+	3.526	8.65	5.308	9.313	10.99*	3.711
Real consumer automobile								
expenditures	+	+	+	+	2.787	6.410	+	1.841
Real nonautomobile du-								
rables	+	+	+	+	0.7594	1.080	+	0.657
Current consumer du- rables		0.00	3.040*	0.02	4.500	7.07	0.63	2.002
Real consumer nondu-	+	+	3.040*	9.03	4.580	7.07	9.67	2.992
rables	+	+	2.094	2.50	2.403	+	+	1.369
Current consumer non-		,	2.074	2.50	2.403	28162		1.507
durables	+	+	1.860*	10.80	10.59	+	+	1.436
Real consumer services	+	+	0.275	0.336	0.3421	+	+	0.2176
Current consumer ser-								
vices	+	0.571	0.215*	3.23	2.660	+	+	0.1532
Real consumer nondu-			2 (12	2 502	2 402	10.50	10.244	2 .05
rables and services Current consumer nondu-	+	+	2.643	2.503	2.403	12.58	10.34*	2.195
rables and services	+	+	2.322*	3.230	20.41	9.042	8.21	1.847

Note: In this and following tables, asterisks indicate addition of exogenous deflators. Pluses signify that the variable is not explained in this model.

ICTIVE PERFORMANCE OF QUARTERLY MODELS .

"The Prediction Performance of the FRB-MIT-PENN Model of the U.S. Economy"

(1972) Charles R Nelson

TABLE 5—SUMMARY STATISTICS FOR FMP MODEL AND ARIMA MODEL POST-SAMPLE PREDICTION ERRORS

Endogenous Variables	FMP Model Errors Standard			ARIMA Model Errors Standard			Errors of Jointly Estimated Composite Predictions Standard		
	MSE	Mean	Deviation	MSE	Mean	Deviation	MSE	Mean	Deviation
Gross National Product Consumers' Expenditures on	77.259	3.782	7.934	36.652	2.632	5.452	55.468	2.979	6.826
Nondurable Goods 3. Consumers' Expenditures on	25.540	-3.914	3.197	11.605	1.464	3.076	18.944	-3.050	3,105
Durable Goods	14.440	2.152	3,132	5.369	.990	2.095	13.270	2.065	3.001
4. Nonfarm Inventory Investment	11.161	1.474	2.998	49.589	166	7.040	12.285	.586	3.456
5. Expenditures on Producers' Durables	22.288	2.752	3.836	6.211	.668	2.401	15.939	2.261	3.291
6. Expenditures on Producers' Structures	1.038	.220	.995	4.427	.337	2.077	1.596	.349	1.214
State and Local Government									
Expenditures	8.065	.693	2.754	. 766	.001	.875	1.414	.118	1.183
8. Housing Expenditures	1.935	1.002	. 965	2.646	.764	1.436	1.572	.873	.899
9. Unemployment Rate	. 412	522	. 374	.081	141	. 247	. 114	- .287	. 178
 GNP Deflator-Price Index 	.068	016	. 260	. 120	.237	. 253	.051	.025	. 225
11. Consumer Goods Price Index	.098	191	. 249	. 200	. 295	.336	.068	074	. 249
12. Yield on U.S. Treasury Bills	. 425	.176	. 628	. 305	.091	. 545	. 280	.132	.512
13. Yield on Commercial Paper	.240	.282	. 400	. 190	.085	. 427	. 168	. 172	.372
14. Yield on Corporate Bonds	.066	. 156	. 204	.055	.116	. 205	.058	.133	.200

Nociones Básicas

¿Qué es la econometría?

 La Sociedad de Econometría fundada por Frisch definía el término como la confluencia de la estadística, la teoría económica y las matemáticas, ya que cada una de estas por separado no es suficiente para tener una comprensión real de las relaciones cuantitativas en la vida económica moderna. (Frisch)

 La Econometría de SdT estudia la estimación de ecuaciones en diferencia con componentes estocásticas. El método general para hacer pronósticos consiste en encontrar la ecuación de movimiento subyacente al proceso estocástico, y usar dicha ecuación para predecir los resultados subsiguientes (Enders)

Modelos econométricos

v. económicas ⇒ v. aleatorias

v.a. ⇒ tienen funciones de densidad conjuntas

 $f.d.c. \Rightarrow obtenemos f.d. condicionales \Rightarrow modelos$

Si los modelos están bien formulados y contrastados empíricamente \Rightarrow son estables

si son estables ⇒ sirven para analizar la *realidad*

¿para qué la econometría?

- 1) Un análisis estructural, para entender cómo funciona la economía.
- 2) Un **análisis predictivo**, para estimar los valores futuros de las variables económicas.
- 3) Evaluación de nuevas observaciones
- 4) Simulación de escenarios para la planificación
- 5) Simular con fines de control los valores óptimos de variables instrumentales con el fin de alcanzar intervalos deseados en las variables endógenas.

Tipos de Datos

- 1. Corte Transversal i.i.d.
- 2. Series Temporales
- 3.Datos de Panel

¿Qué es una Serie de Tiempo?

Llamamos Serie de Tiempo $\{y_t\}^T$ a un set de datos ordenados en el tiempo

Habitualmente se habla de SdT de 3 objetos distintos pero relacionados:

- 1. Series de variables aleatorias $\{y_t, y_{t-1}, y_{t-2}, \dots, y_{t-m}\}$
- 2. Series de realizaciones de aquellas variables $\{y_{t}^*, y_{t-1}^*, y_{t-2}^*, ..., y_{t-m}^*\}$
- 3. Procesos estocásticos generadores de series de variables aleatorias y sus realizaciones { Y, }

What Makes Time-Series Econometrics Unique?

Fig. 1.1 Two different types of data. (a) Cross-sectional data. (b) Time-series data

Descriptores Básicos de una SdT

- 1. Frecuencia h
- 2. Rango T
- 3. Media μ_{t}
- 4. Varianza $\sigma_{_{\mathrm{t}}}$ ŷy
- 5. Covarianza cov(y_t, y_{t-s})

Nos Interesa la componente irregular

Trend: $T_t = 1 + 0.1t$ Seasonal: $S_t = 1.6 \sin(t\pi/6)$ Irregular: $I_t = 0.7I_{t-1} + \varepsilon_t$

where: T_t = value of the trend component in period t S_t = value of the seasonal component in t I_t = the value of the irregular component in t ε_t = a pure random disturbance in t

Nos Interesa la componente irregular

Buscamos la componente irregular

Si por ejemplo tomamos una versión estocástica de las ecuaciones del modelo de Samuelson (1939), tenemos el siguiente **sistema de ecuaciones**:

$$y_t = c_t + i_t \tag{1.1}$$

$$c_t = \alpha y_{t-1} + \varepsilon_{ct} \qquad 0 < \alpha < 1 \tag{1.2}$$

$$i_t = \beta(c_t - c_{t-1}) + \varepsilon_{it} \qquad \beta > 0 \tag{1.3}$$

donde interesa estimar α y β .

(1.3) es la ecuación estructural que describe el principio de aceleración.

Es estructural porque expresa la variable endógena $\emph{\textbf{i}}_{t}$ como dependiente de la realización de otra variable endógena $\emph{\textbf{C}}_{t}$

Buscando la componente irregular

La **forma reducida** de una ecuación consiste en expresar el valor de esa variable a partir de sus propios retardos (lags), los retardos de otras variables endógenas, valores actuales y con retardos de variables exógenas, y perturbaciones.

Si reemplazamos (1.2) en (1.3) tenemos la forma reducida para la la inversión:

$$i_{t} = \beta[\alpha y_{t-1} + \varepsilon_{ct} - c_{t-1}] + \varepsilon_{it}$$
$$= \alpha \beta y_{t-1} - \beta c_{t-1} + \beta \varepsilon_{ct} + \varepsilon_{it}$$

Si hacemos lo mismo para el producto, obtenemos:

$$\begin{split} y_t &= \alpha y_{t-1} + \varepsilon_{ct} + \alpha \beta (y_{t-1} - y_{t-2}) + \beta (\varepsilon_{ct} - \varepsilon_{ct-1}) + \varepsilon_{it} \\ &= \alpha (1 + \beta) y_{t-1} - \alpha \beta y_{t-2} + (1 + \beta) \varepsilon_{ct} + \varepsilon_{it} - \beta \varepsilon_{ct-1} \\ y_t &= a y_{t-1} + b y_{t-2} + x_t \end{split}$$

Buscando la componente irregular (ci)

Si hacemos lo mismo para el producto, obtenemos:

$$\begin{aligned} y_t &= \alpha y_{t-1} + \varepsilon_{ct} + \alpha \beta (y_{t-1} - y_{t-2}) + \beta (\varepsilon_{ct} - \varepsilon_{ct-1}) + \varepsilon_{it} \\ &= \alpha (1 + \beta) y_{t-1} - \alpha \beta y_{t-2} + (1 + \beta) \varepsilon_{ct} + \varepsilon_{it} - \beta \varepsilon_{ct-1} \end{aligned}$$

que podemos abreviar como:

$$y_t = ay_{t-1} + by_{t-2} + x_t (1.5)$$

Esta es una forma reducida univariada (fru) de y_t .

Es decir, (1.5) expresa a \mathbf{y}_t solamente en función de sus propios retardos y perturbaciones.

Esto es particularmente útil para predecir, dado que permite predecir a la variable en función de sus propias *realizaciones* pasadas (lags/backshifts/retardos).

Solución por Iteración la fru de la ci

Sea $y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$ con la **condición inicial** y_0 **conocida**, entonces podemos obtener sin dificultad:

$$y_1 = a_0 + a_1 y_0 + \varepsilon_1$$

Y si seguimos, podemos obtener

$$y_2 = a_0 + a_1 y_1 + \varepsilon_2$$

= $a_0 + a_1 [a_0 + a_1 y_0 + \varepsilon_1] + \varepsilon_2$
= $a_0 + a_0 a_1 + (a_1)^2 y_0 + a_1 \varepsilon_1 + \varepsilon_2$

Hasta llegar a cada observación, o en su fórmula general

$$y_t = a_0 \sum_{i=0}^{t-1} a_i^i + a_1^t y_0 + \sum_{i=0}^{t-1} a_i^i \varepsilon_{t-i}$$

Solución por Iteración la fru de la ci

Partiendo de la ecuación final anterior $y_t = a_0 \sum_{i=0}^{t-1} a_i^i + a_1^t y_0 + \sum_{i=0}^{t-1} a_i^i \varepsilon_{t-i}$

Sea y_0 desconocida, entonces podemos reemplazarla por $a_0 + a_1 y_{-1} + \varepsilon_0$ y así

$$y_{t} = a_{0} \sum_{i=0}^{t-1} a_{1}^{i} + a_{1}^{t} (a_{0} + a_{1} y_{-1} + \varepsilon_{0}) + \sum_{i=0}^{t-1} a_{1}^{i} \varepsilon_{t-i}$$
$$= a_{0} \sum_{i=0}^{t} a_{1}^{i} + \sum_{i=0}^{t} a_{1}^{i} \varepsilon_{t-i} + a_{1}^{t+1} y_{-1}$$

Si retrocedemos m períodos obtenemos

$$y_t = a_0 \sum_{i=0}^{t+m} a_1^i + \sum_{i=0}^{t+m} a_1^i \varepsilon_{t-i} + a_1^{t+m+1} y_{-m-1}$$

Solución por Iteración la fru de la ci

$$y_t = a_0 \sum_{i=0}^{t+m} a_1^i + \sum_{i=0}^{t+m} a_1^i \varepsilon_{t-i} + a_1^{t+m+1} y_{-m-1}$$

Pero con m como potencia ver que si m tiende a m $\Rightarrow \infty$ y $|a_1| < 1$

$$y_t = a_0/(1 - a_1) + \sum_{i=0}^{\infty} a_1^i \varepsilon_{t-i}$$

Vemos que una clave de la solución es que $|a_1| < 1$

*El cálculo diferencial hace que h tienda a cero. La expresión discreta (ecuaciones en diferencia) normaliza las unidades de tiempo, de manera tal que un cambio en t sea igual a 1 (h=1).

Veamos algunos casos 2/3

Veamos algunos casos 3/3

¿Cómo alcanzamos la estabilidad?

Condiciones de estabilidad en primer orden

Para una ecuación lineal homogénea en diferencias de primer orden del tipo

$$y_t = a_1 \cdot y_{t-1}$$

Tenemos los siguientes escenarios:

- 1. Si $|a_1| < 1$, \Rightarrow la ecuación y sus soluciones son **estables**
- 2. Si $|a_1| > 1$, \Rightarrow la ecuación y sus soluciones son *inestables*
- 3. Si $|a_1| = 1$, \Rightarrow la ecuación y sus soluciones son *inestables y contiene una* raíz unitaria.

3 formas =!= de Representar la Estabilidad

1. Álgebra Matricial del Proceso Autorregresivo

Las características de los autovalores de la ecuación característica

2. Operadores Lag

Estudiar los autovalores de la ecuación característica de la nueva representación

3. Revisar los coeficientes del modelo con representación autorregresiva

Estudiar los coeficientes del proceso autorregresivo/ma

Condiciones de estabilidad generalizadas para orden n **COEFICIENTES**

Para una ecuación lineal homogénea en diferencias de primer orden del tipo

$$y_t = \sum_{i=1}^p a_i y_{t-i},$$

Tenemos la siguiente ecuación característica:

$$\alpha^{p}-a_1\alpha^{p-1}-a_2\alpha^{p-2}-\cdots-a_p=0.$$

- 1. Si $\sum |a_i| < 1 \implies$ son **estable**
- 2. Si $\sum |a_i| > 1 \implies$ son inestables
- 3. Si $\exists |a_i| = 1 \Rightarrow$ la ecuación y sus soluciones son inestables y contienen una **raíz unitaria**.

Condiciones de estabilidad generalizadas para orden n

Para una ecuación lineal homogénea en diferencias de primer orden del tipo

$$y_t = \sum_{i=1}^p a_i y_{t-i} ,$$

Tenemos la siguiente ecuación característica:

$$\alpha^{p}-a_1\alpha^{p-1}-a_2\alpha^{p-2}-\cdots-a_p=0.$$

- 1. Si $|a_1| < 1 \Rightarrow$ son estable
- 2. Si $\sum |\boldsymbol{a}_i| > 1 \implies$ son inestables
- 3. Si $\exists |a_i| = 1 \Rightarrow$ la ecuación y sus soluciones son *inestables y contienen una* raíz unitaria.

Más fácil, las condiciones a partir de los coeficientes

Tenemos las siguientes condiciones:

1. $\sum_{i=1}^{p} |a_{i}| < 1$ es **condición** *necesaria y suficiente* de estabilidad

2. $\sum_{i=1}^{p} |a_{i}| = 1 \Rightarrow \exists$ al menos 1 raíz unitaria

Más ejemplos

Estacionariedad y Ergodicidad

Para realizar inferencia sobre los parámetros de un proceso estocástico con una única serie temporal, se necesita restringir conjuntamente:

- 1. la heterogeneidad temporal del proceso (condición de estacionariedad) y
- 2. su memoria (ergodicidad)

Condiciones de estacionariedad débil y fuerte

Una SdT es estacionaria si los momentos de su fdc son invariantes respecto a t.

fuerte ⇒ para todos los momentos

débil \Rightarrow para la media, las varianzas, y las autocovarianzas respecto de los mismos rezagos (t, t+a).

[1] media, [2] varianzas y [3] autocovarianzas constantes respecto a t .

$$E(X_t) = \mu$$
 $Var(X_t) = \sigma^2$

$$Cov(X_t, X_{t+k}) = Cov(X_{t+a}, X_{t+k+a})$$

La condición de invertibilidad

sistema dinámico simple:

$$Y_{t} = a_{1} * Y_{t-1}$$

sistema dinámico con aleatoriedad I:

$$Y_t = a_1 * Y_{t-1} + \varepsilon_t$$

sistema dinámico con aleatoriedad II:

$$Y_t = b_1 * \epsilon_{t-1} + \epsilon_t$$

sistema dinámico con aleatoriedad III:

$$Y_{t} = a_{1} * Y_{t-1} + b_{1} * \varepsilon_{t-1} + \varepsilon_{t}$$

La condición de invertibilidad

Un proceso $\{y_t\}$ es invertible si puede representarse como un proceso autorregresivo convergente (de orden finito p).

Esta condición es para los procesos MA(q), lo que la estabilidad para los AR(p).

La condición de **ergodicidad**

La dependencia respecto al pasado infinito, recogida en las condiciones iniciales es convergente.

Es decir, los momentos pueden estimarse consistentemente a partir de los correspondientes momentos muestrales.

Model: stochastic process X(t) with trajectories $\{x_n(t)\}$

X(t) is **ergodic** if $\bar{X} = \langle X \rangle$

