4300337 - Lista de exercícios 3

Louis Bergamo Radial 8992822

16 de abril de 2024

Exercício 1

No contexto da mecânica Newtoniana, a massa inercial m_i de uma partícula é relacionada à força resultante que age nela pela segunda lei de Newton, $F = m_i a$. Com sua lei de gravitação, temos que a força gravitacional é dada por $F_g = -m_g \nabla \Phi$, onde m_g é a massa gravitacional e Φ é o potencial gravitacional. O Princípio de Equivalência Fraco diz que a massa inercial inercial e a massa gravitacional são iguais, de modo que qualquer partícula em queda livre tem aceleração dada por $a = -\nabla \Phi$. A série de experimentos por Eötvös no fim do século XIX verificou o Princípio de Equivalência Fraco com precisão de 5×10^{-9} , enquanto que atualmente a precisão é da ordem de 10^{-15} .

Ainda, em uma região suficientemente pequena, podemos aproximar o gradiente $-\nabla\Phi$ para uma constante g, de modo que nesta região todas as partículas em queda livre têm aceleração uniforme igual a g. Assim, um campo gravitacional homogêneo é equivalente à uma aceleração do sistema de referência. O Princípio de Equivalência de Einstein diz que, em regiões suficientemente pequenas do espaço-tempo, vale a Relatividade Restrita e e que é impossível detectar a existência de um campo gravitacional por experimentos locais. Isto é, localmente um campo gravitacional é indistinguível à um referencial uniformemente acelerado, ilustrado pelo Gedankenexperiment do elevador de Einstein.

O Princípio de Equivalência Forte diz que para uma trajetória de uma partícula massiva em queda livre em um campo gravitacional qualquer, é possível escolher um sistema de coordenadas localmente inercial, de modo que, em uma região do espaço-tempo suficientemente pequena ao redor desta trajetória, todas as leis físicas são equivalentes às suas formulações em sistemas de referência não acelerados na ausência da gravidade.

Exercício 2

Sobre um espaço vetorial V de dimensão n, tensores de segunda ordem têm um total de n^2 componentes. Um tensor antissimétrico $A_{\omega\rho}$ deve satisfazer $A_{\omega\rho}=-A_{\rho\omega}$ para todo par de índices ω , ρ . Assim, temos que as n componentes $A_{\rho\rho}$ são nulas, e a condição das outras n^2-n componentes, $A_{\omega\rho}=-A_{\rho\omega}$ para $\rho\neq\omega$, reduz o número de componentes independentes para $\frac{n^2-n}{2}$. Semelhantemente, um tensor simétrico $S^{\mu\nu}$ deve satisfazer $S^{\mu\nu}=S^{\nu\mu}$ para todo par de índices μ,ν . Para $\mu=\nu$, esta condição é trivialmente satisfeita, de modo que o número de componentes independentes é $\frac{n^2+n}{2}$. Como exemplo, em um espaço vetorial de dimensão 4, tensores de segunda ordem antissimétricos têm seis componentes independentes e simétricos, dez.

Mostremos que a contração de um tensor simétrico com um tensor antissimétrico tem uma propriedade muito útil, $S^{\omega\rho}A_{\omega\rho}=0$. Por antissimetria e simetria temos

$$S^{\omega\rho}A_{\omega\rho} = -S^{\omega\rho}A_{\rho\omega} = -S^{\rho\omega}A_{\rho\omega}.$$

Como os índices estão sendo somados, podemos renomeá-los. Em particular, podemos renomear na soma à direita $\omega \to \rho$ e $\rho \to \omega$, obtendo

$$S^{\omega\rho}A_{\omega\rho} = -S^{\omega\rho}A_{\omega\rho}$$

isto é $S^{\omega\rho}A_{\omega\rho}=0$.

Exercício 3

Coordenadas esféricas em \mathbb{R}^3

Consideremos coordenadas esféricas para o espaço tridimensional Euclidiano, dadas por

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\cos \theta = \frac{z}{r}$, $\cot \phi = \frac{y}{x}$.

Alternativamente, temos

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $e^{-z} = r \cos \theta$,

de modo que os vetores da base no sistema de coordenadas esféricas são dados por

$$e_r = \frac{\partial x}{\partial r} e_x + \frac{\partial y}{\partial r} e_y + \frac{\partial z}{\partial r} e_z$$

= $\sin \theta \cos \phi e_x + \sin \theta \sin \phi e_y + \cos \theta e_z$,

$$e_{\theta} = \frac{\partial x}{\partial \theta} e_x + \frac{\partial y}{\partial \theta} e_y + \frac{\partial z}{\partial \theta} e_z$$

= $r \cos \theta \cos \phi e_x + r \cos \theta \sin \phi e_y - r \sin \theta e_z$,

e

$$e_{\phi} = \frac{\partial x}{\partial \phi} e_x + \frac{\partial y}{\partial \phi} e_y + \frac{\partial z}{\partial \phi} e_z$$
$$= -r \sin \theta \sin \phi e_x + r \sin \theta \cos \phi e_y.$$

Com os vetores da base desse sistema de coordenadas, podemos obter os coeficientes da métrica por

$$g'_{ij} = g(e'_i, e'_j),$$

utilizando os valores do tensor métrico na base de coordenadas cartesianas, dados por

$$g(e_x, e_x) = g(e_y, e_y) = g(e_z, e_z) = 1$$

e os demais são iguais a zero. Assim, os coeficientes da métrica Euclidiana nas coordenadas esféricas são dados por

$$g'_{rr} = 1$$
, $g'_{\theta\theta} = r^2$, e $g'_{\phi\phi} = r^2 \sin^2 \theta$,

e as outras componentes nulas.

Coordenadas em rotação no espaço-tempo de Minkowski

Consideremos agora a métrica da relatividade restrita $\eta_{\mu\nu}$ e as coordenadas em rotação

$$\begin{cases} t' = t \\ x' = \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ y' = \sqrt{x^2 + y^2} \sin(\phi - \omega t) \\ z' = z \end{cases}$$

onde $\tan \phi = \frac{y}{x}$. Notemos que

$$x' = x \cos \omega t + y \sin \omega t$$
 e $y' = -x \sin \omega t + y \cos \omega t$

então ao tomar combinações lineares das equações acima e utilizando t' = t, temos

$$\begin{cases} t = t' \\ x = x' \cos \omega t' - y' \sin \omega t' \\ y = x' \sin \omega t' + y' \cos \omega t' \\ z = z' \end{cases}$$

2

Assim, os vetores da base são dados por $e_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} e_{\nu}$, isto é,

da base são dados por
$$e_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} e_{\nu}$$
, isto é,
$$\begin{cases} e_{0'} = e_0 - \omega(x'\sin\omega t' + y'\cos\omega t')e_1 + \omega(x'\cos\omega t' - y'\cos\omega t')e_2 \\ e_{1'} = \cos\omega t'e_1 + \sin\omega t'e_2 \\ e_{2'} = -\sin\omega t'e_1 + \cos\omega t'e_2 \\ e_{3'} = e_3 \end{cases}$$

Utilizando a bilinearidade do tensor métrico e que $g(e_{\mu},e_{\nu})=\eta_{\mu\nu}$, temos que

$$g_{\mu'\nu'} = \begin{pmatrix} -1 + \omega^2(x'^2 + y'^2) & -\omega y' & \omega x' & 0 \\ -\omega y' & 1 & 0 & 0 \\ \omega x' & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{\mu'\nu'}$$

são os componentes da métrica nas coordenadas em rotação. Desse modo, obtemos as componentes da métrica inversa $g^{\mu'\nu'}$ por escalonamento, resultando em

$$g^{\mu'\nu'} = \begin{pmatrix} -1 & -\omega y' & \omega x' & 0 \\ -\omega y' & 1 - \omega^2 y'^2 & \omega^2 x' y' & 0 \\ \omega x' & \omega^2 x' y' & 1 - \omega^2 x'^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{\mu'\nu'}.$$

Exercício 4

Para uma conexão de Levi-Civita, isto é, simétrica e compatível com o tensor métrico, os seus coeficientes $\Gamma^{\rho}_{\alpha\beta}$ são dados por

$$\Gamma^{\rho}_{\alpha\beta} = -\frac{1}{2}g^{\rho\sigma}\left(\partial_{\sigma}g_{\alpha\beta} - \partial_{\alpha}g_{\beta\sigma} - \partial_{\beta}g_{\sigma\alpha}\right)$$

para todas as triplas de índices ρ , α , β .

Para uma métrica diagonal, isto é, $g_{\mu\nu}=0 \iff \mu \neq \nu$, temos $g^{\mu\nu}=0 \iff \mu \neq \nu$, de modo que os coeficientes da conexão são dados por

$$\Gamma^{\rho}_{\ \alpha\beta} = -\frac{1}{2g_{\rho\rho}} \left(\partial_{\rho} g_{\alpha\beta} - \partial_{\alpha} g_{\beta\rho} - \partial_{\beta} g_{\rho\alpha} \right)$$

neste caso, e nesta expressão índices repetidos não são somados. Podemos simplificar adiante separando em casos: sejam μ, ν, λ índices todos distintos, então

$$\Gamma^{\lambda}_{\lambda\lambda} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\lambda} \right) \qquad \qquad \Gamma^{\lambda}_{\mu\lambda} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\mu\lambda} - \partial_{\mu}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\mu} \right)$$

$$= \frac{\partial_{\lambda}g_{\lambda\lambda}}{2g_{\lambda\lambda}} = \partial_{\lambda} \ln \sqrt{|g_{\lambda\lambda}|} \qquad \qquad = \frac{\partial_{\mu}g_{\lambda\lambda}}{2g_{\lambda\lambda}} = \partial_{\mu} \ln \sqrt{|g_{\lambda\lambda}|}$$

$$\Gamma^{\lambda}{}_{\mu\mu} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda} g_{\mu\mu} - \partial_{\mu} g_{\mu\lambda} - \partial_{\mu} g_{\lambda\mu} \right) \qquad \qquad \Gamma^{\lambda}{}_{\mu\nu} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda} g_{\mu\nu} - \partial_{\mu} g_{\nu\lambda} - \partial_{\nu} g_{\lambda\mu} \right)$$

$$= -\frac{\partial_{\lambda} g_{\mu\mu}}{2g_{\lambda\lambda}} \qquad \qquad = 0$$

são todos os coeficientes da conexão para o caso de uma métrica diagonal.

Exercício 5

Utilizando os resultados do exercício anterior, os coeficientes da conexão de Levi-Civita para as coordenadas esféricas no espaço Euclidiano são dados por

$$\begin{split} \Gamma^r_{\ \theta\theta} &= -\frac{\partial_r(r^2)}{2} = -r \\ \Gamma^\theta_{\ \theta\tau} &= \frac{\partial_r(r^2)}{2r^2} = \frac{1}{r} \\ \Gamma^\phi_{\ \phi\tau} &= \frac{\partial_r(r^2\sin^2\theta)}{2r^2} = -\sin\theta\cos\theta \\ \Gamma^\phi_{\ \phi\tau} &= \frac{\partial_r(r^2\sin^2\theta)}{r^2\sin^2\theta} = \frac{1}{r} \\ \Gamma^\phi_{\ \phi\theta} &= \frac{\partial_\theta(r^2\sin^2\theta)}{2r^2} = -\sin\theta\cos\theta \\ \Gamma^\phi_{\ \phi\theta} &= \frac{\partial_\theta(r^2\sin^2\theta)}{r^2\sin^2\theta} = \cot\theta, \end{split}$$

e os outros termos são ou nulos ou obtidos pela simetria da conexão.

Seja uma curva

$$\gamma: I \subset \mathbb{R} \to \mathbb{R}^3$$
$$\lambda \mapsto (x^r(\lambda), x^{\theta}(\lambda), x^{\phi}(\lambda)).$$

Assim, para que γ seja uma geodésica, devemos ter

$$\frac{\mathrm{d}^2 x^k}{\mathrm{d}\lambda^2} + \Gamma^k_{ij} \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} \frac{\mathrm{d}x^j}{\mathrm{d}\lambda} = 0$$

para k igual a r, θ e ϕ . Assim, de forma explícita, as equações da geodésica são dadas por

$$\begin{cases} \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta = 0 \\ \ddot{\theta} + \frac{2}{r}\dot{r}\dot{\theta} - \dot{\phi}^2\sin\theta\cos\theta = 0 \\ \ddot{\phi} + \frac{2}{r}\dot{r}\dot{\phi} + 2\dot{\phi}\dot{\theta}\cot\theta = 0 \end{cases} \implies \begin{cases} \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta = 0 \\ r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta = 0 \\ r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi} + 2\dot{\phi}\dot{\theta}\cos\theta = 0 \end{cases},$$

onde, para simplificar, denotamos $r=x^r$, $\theta=x^\theta$ e $\phi=x^\phi$ e os pontos sobre as variáveis denotam que estas funções componente foram derivadas em relação ao parâmetro afim λ .

Em analogia ao movimento de uma partícula em mecânica clássica, sabemos que as equações acima especificam uma partícula se movendo ao longo de uma curva γ com aceleração nula, isto é, cada equação é uma componente da aceleração desta partícula. Desse modo, como o parâmetro λ é afim, uma vez que buscamos uma geodésica, sabemos que o vetor tangente à curva é constante. Integrando mais uma vez, obtemos que a solução deste sistema de equações é uma reta.

Exercício 6

Um espaço topológico é uma dupla (M, O_M) composta por um conjunto M e uma topologia O_M . Um subconjunto U de M é dito ser aberto em relação a este espaço topológico se $U \in O_M$. Uma aplicação $f: M \to N$ entre espaços topológicos (M, O_M) e (N, O_N) é dita contínua se sua pré-imagem de um aberto é aberta, e é dita um homeomorfismo se for bijetiva e tanto f quanto f^{-1} forem contínuas. Se existe um homeomorfismo entre dois espaços topológicos, estes são ditos homeomorfos.

Se existe um número inteiro n tal que todo aberto $U \in O_M$ é homeomorfo a \mathbb{R}^n , em relação à topologia usual do espaço Euclidiano, dizemos que (M,O_M) é um espaço topológico localmente Euclidiano de dimensão n. Ainda, para cada aberto $U \in O_M$ existe um homeomorfismo $x: U \to x(U) \subset \mathbb{R}^n$, e chamamos o par (U,x) de carta local. Um atlas \mathscr{A}_M é uma coleção de cartas locais tal que a união dos abertos cobre o conjunto M.

Consideremos agora duas cartas $(U, x), (V, x) \in \mathcal{A}_M$ tal que $U \cap V \neq \emptyset$.

Como uma composição de homeomorfismos, segue que a aplicação de transição $y \circ x^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ é um homeomorfismo, isto é, contínua. Como uma função em \mathbb{R}^n , podemos utilizar análise usual para decidir se esta função é diferenciável. Duas cartas locais (U, x), (V, y) são ditas C^k -compatíveis se ou $U \cap V \neq \emptyset$ e a aplicação de transição $y \circ x^{-1}$ é de classe C^k ou se $U \cap V = \emptyset$. Ainda, um atlas é dito C^k -compatível se todo par de cartas locais são C^k -compatíveis.

Uma variedade diferenciável (M, O_M, \mathcal{A}_M) é um espaço topológico (M, O_M) localmente Euclidiano munido de um atlas maximal suave \mathcal{A}_M , isto é, um atlas C^∞ -compatível com a propriedade de que se uma carta (U, x) é compatível com uma carta $(V, y) \in \mathcal{A}_M$, então $(U, x) \in \mathcal{A}_M$. A estrutura diferencial dada pelo atlas permite definir em todo ponto $p \in M$ um espaço vetorial T_pM , chamado de espaço tangente no ponto p, cujos elementos são derivações na álgebra $C^\infty(M)$ de funções suaves $f: M \to \mathbb{R}$. Geometricamente, cada elemento $X \in T_pM$ é um operador de derivada direcional ao longo de alguma curva suave $\gamma: (-\varepsilon, \varepsilon) \to M$ que passa por $p = \gamma(0)$. O espaço dual T_p^*M é chamado de espaço cotangente no ponto p, cujos elementos são relacionados com as curvas de nível de funções suaves $C^\infty(M)$.

Utilizando o atlas da variedade, podemos definir um atlas para a união disjunta dos espaços tangentes, construindo assim o fibrado tangente TM, que é também uma variedade diferenciável. Uma aplicação suave $p\mapsto X_p$ que associa um ponto p da variedade a um vetor $X_p\in T_pM\subset TM$ do fibrado tangente é chamada de campo de vetores. Analogamente, definimos o fibrado cotangente T^*M , em que uma aplicação suave $p\mapsto \omega_p$ que associa um ponto $p\in M$ a um elemento $\omega_p\in T_p^*M\subset T^*M$ é chamada de 1-forma diferencial, ou campo de covetores. Uma função multilinear de campos de vetores e de 1-formas diferenciais é chamada de tensor na variedade.

Resumindo de forma mais informal, uma variedade diferenciável é um conjunto M que localmente se parece com algum espaço Euclidiano \mathbb{R}^n , e no qual podemos definir ponto a ponto um espaço vetorial, que é intimamente relacionado à estrutura diferencial fornecida à M por um atlas de cartas de coordenadas locais. Um tensor no contexto de uma variedade diferenciável é uma função multilinear de vetores e 1-formas definida em todo ponto da variedade.

Exercício 7

Consideremos duas cartas locais de coordenadas locais (U, x) e (U, x'), com

$$\partial_{\alpha} = \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \partial'_{\mu} \quad e \quad g_{\alpha\beta} = \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} g'_{\mu\nu}.$$

Pela definição dos coeficientes da conexão de Levi-Civita em uma carta \tilde{x} ,

$$\tilde{\Gamma}^{\lambda}{}_{\rho\sigma} = \frac{1}{2} \tilde{g}^{\lambda\omega} \left(\tilde{\partial}_{\rho} \tilde{g}_{\omega\sigma} + \tilde{\partial}_{\sigma} \tilde{g}_{\omega\sigma} - \tilde{\partial}_{\omega} \tilde{g}_{\rho\sigma} \right),$$

podemos obter a transformação destes coeficientes. Temos

$$\begin{split} \partial_{\gamma}g_{\alpha\beta} &= \partial_{\gamma} \left(\frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} g'_{\mu\nu} \right) \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\gamma}g'_{\mu\nu} + g'_{\mu\nu}\partial_{\gamma} \left(\frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial'_{\lambda}g'_{\mu\nu} + g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\gamma}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} + \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\nu}}{\partial x^{\gamma}} \frac{\partial^{2} x'^{\nu}}{\partial x^{\beta}} \right) \end{split}$$

portanto, por permutações cíclicas de α , β , γ e renomeando alguns índices que estão sendo somados, temos

$$\begin{split} \partial_{\alpha}g_{\beta\gamma} &= \frac{\partial x'^{\lambda}}{\partial x^{\alpha}} \frac{\partial x'^{\mu}}{\partial x^{\beta}} \frac{\partial x'^{\nu}}{\partial x^{\gamma}} \partial_{\lambda}' g'_{\mu\nu} + g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x'^{\nu}}{\partial x^{\gamma}} + \frac{\partial x'^{\mu}}{\partial x^{\beta}} \frac{\partial^{2} x'^{\nu}}{\partial x^{\alpha} \partial x^{\gamma}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\mu}' g'_{\nu\lambda} + g'_{\nu\mu} \left(\frac{\partial^{2} x'^{\nu}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\gamma}} + \frac{\partial x'^{\nu}}{\partial x^{\beta}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha} \partial x^{\gamma}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\mu}' g'_{\nu\lambda} + g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\nu}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\gamma}} + \frac{\partial x'^{\nu}}{\partial x^{\beta}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha} \partial x^{\gamma}} \right) \end{split}$$

$$\begin{split} \partial_{\beta}g_{\gamma\alpha} &= \frac{\partial x'^{\lambda}}{\partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial x'^{\nu}}{\partial x^{\alpha}} \partial_{\lambda}' g_{\mu\nu}' + g_{\mu\nu}' \left(\frac{\partial^{2}x'^{\mu}}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial x'^{\nu}}{\partial x^{\alpha}} + \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\alpha}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\nu}' g_{\lambda\mu}' + g_{\nu\mu}' \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} + g_{\mu\nu}' \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\alpha}} \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\nu}' g_{\lambda\mu}' + g_{\mu\nu}' \left(\frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} + \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\alpha}} \right), \end{split}$$

onde utilizamos que as componentes da métrica são simétricos. Utilizando o guia dos termos sublinhados, obtemos a transformação dos coeficientes da conexão sob mudança de cartas,

$$\begin{split} &\Gamma^{\rho}_{\alpha\beta} = \frac{1}{2}g^{\rho\gamma}\left(\partial_{\alpha}g_{\beta\gamma} + \partial_{\beta}g_{\gamma\alpha} - \partial_{\gamma}g_{\alpha\beta}\right) \\ &= \frac{1}{2}\left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x^{\gamma}}{\partial x'^{\xi}}g'^{\sigma\xi}\right)\left[\frac{\partial x'^{\lambda}}{\partial x^{\gamma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\left(\partial'_{\mu}g'_{\nu\lambda} + \partial'_{\nu}g'_{\lambda\mu} - \partial'_{\lambda}g'_{\mu\nu}\right) + 2g'_{\mu\nu}\left(\frac{\partial^{2}x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\gamma}}\frac{\partial x'^{\nu}}{\partial x^{\gamma}}\right)\right] \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\left[\frac{1}{2}\frac{\partial x^{\gamma}}{\partial x'^{\xi}}\frac{\partial x'^{\lambda}}{\partial x^{\gamma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}g'^{\sigma\xi}\left(\partial'_{\mu}g'_{\nu\lambda} + \partial'_{\nu}g'_{\lambda\mu} - \partial'_{\lambda}g'_{\mu\nu}\right) + \frac{\partial x^{\gamma}}{\partial x'^{\xi}}\frac{\partial x'^{\nu}}{\partial x^{\gamma}}g'^{\sigma\xi}g'_{\mu\nu}\left(\frac{\partial^{2}x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\right)\right] \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\left[\frac{1}{2}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\delta^{\lambda}_{\xi}g'^{\sigma\xi}\left(\partial'_{\mu}g'_{\nu\lambda} + \partial'_{\nu}g'_{\lambda\mu} - \partial'_{\lambda}g'_{\mu\nu}\right) + \delta^{\nu}_{\xi}g'^{\sigma\xi}g'_{\mu\nu}\left(\frac{\partial^{2}x'^{\mu}}{\partial x^{\alpha}\partial x^{\beta}}\right)\right] \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\left[\frac{1}{2}g'^{\sigma\lambda}\left(\partial'_{\mu}g'_{\nu\lambda} + \partial'_{\nu}g'_{\lambda\mu} - \partial'_{\lambda}g'_{\mu\nu}\right)\right] + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}g'^{\sigma\nu}g'_{\mu\nu}\left(\frac{\partial^{2}x'^{\mu}}{\partial x^{\alpha}\partial x^{\beta}}\right) \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma'^{\sigma}_{\mu\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}, \end{split}$$

então pela presença do termo afim $\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2} x'^{\sigma}}{\partial x^{\alpha} \partial x^{\beta}}$ não necessariamente nulo, estes coeficientes não se transformam como tensores.

Para um vetor V^{ρ} , consideremos o objeto $\partial_{\alpha}V^{\rho}$ na carta local de coordenadas x. Em outra carta de coordenadas x', temos

$$V^{\rho} = \frac{\partial x^{\rho}}{\partial x^{\prime \nu}} V^{\prime \nu},$$

de modo que

$$\partial_{\alpha}V^{\rho} = \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \partial'_{\mu} \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} V'^{\sigma} \right)$$

$$= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \partial'_{\mu} V'^{\sigma} + \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} V'^{\sigma},$$

e por conta do termo afim $\frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^2 x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} V'^{\sigma}$ não necessariamente nulo, este objeto não se transforma como um tensor.

Mostremos que $\nabla_{\alpha}V^{\rho}=\partial_{\alpha}V^{\rho}+\Gamma^{\rho}_{\alpha\beta}V^{\beta}$ se transforma como um tensor. Notemos que

$$\begin{split} \Gamma^{\rho}_{\alpha\beta}V^{\beta} &= \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma'^{\sigma}_{\mu\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}\right)V^{\beta} \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\Gamma'^{\sigma}_{\mu\nu}V'^{\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}V^{\beta}. \end{split}$$

Assim, temos que

$$\begin{split} \nabla_{\alpha}V^{\rho} &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \left(\partial'_{\mu}V'^{\sigma} + \Gamma'^{\sigma}{}_{\mu\nu}V'^{\nu} \right) + \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha} \partial x^{\beta}} V^{\beta} + \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2}x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} V'^{\sigma} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha} \partial x^{\beta}} + \frac{\partial x'^{\sigma}}{\partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2}x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x^{\rho}}{\partial x^{\alpha}} \frac{\partial x'^{\sigma}}{\partial x^{\beta}} + \frac{\partial x'^{\sigma}}{\partial x^{\beta}} \frac{\partial x^{\rho}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\partial_{\alpha}\delta^{\rho}_{\beta} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\partial_{\alpha}\delta^{\rho}_{\beta} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} , \end{split}$$

já que o $\partial_{\alpha}\delta^{\rho}_{\ \beta}$ = 0. Segue que este objeto se transforma como um tensor.

Para um tensor Q^{ρ}_{τ}, a sua derivada covariante é dada por

$$\nabla_{\alpha} Q^{\rho}_{\tau} = \partial_{\alpha} Q^{\rho}_{\tau} + \Gamma^{\rho}_{\alpha\beta} Q^{\beta}_{\tau} - \Gamma^{\gamma}_{\alpha\tau} Q^{\rho}_{\gamma}.$$

Em relação à carta de coordenadas x', temos

$$\begin{split} \partial_{\alpha}Q^{\rho}_{\ \tau} &= \partial_{\alpha} \left(\frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial x^{\prime\xi}}{\partial x^{\tau}} Q^{\prime\sigma}_{\ \xi} \right) \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial x^{\prime\xi}}{\partial x^{\tau}} \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime\sigma}_{\ \xi} + \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial^{2}x^{\prime\xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime\sigma}_{\ \xi} + \frac{\partial x^{\prime\xi}}{\partial x^{\tau}} Q^{\prime\sigma}_{\ \xi} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial x^{\prime\xi}}{\partial x^{\tau}} \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime\sigma}_{\ \xi} + \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial^{2}x^{\prime\xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime\sigma}_{\ \xi} + \frac{\partial x^{\prime\xi}}{\partial x^{\tau}} \frac{\partial x^{\prime\sigma}}{\partial x^{\delta}} \frac{\partial x^{\delta}}{\partial x^{\prime\xi}} Q^{\beta}_{\ \delta} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial x^{\prime\xi}}{\partial x^{\tau}} \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime\sigma}_{\ \xi} + \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \frac{\partial^{2}x^{\prime\xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime\sigma}_{\ \xi} + \frac{\partial x^{\prime\sigma}}{\partial x^{\delta}} Q^{\beta}_{\ \tau} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime\sigma}} \end{split}$$

$$\Gamma^{\rho}_{\alpha\beta}Q^{\beta}_{\tau} = \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma^{\prime\sigma}_{\mu\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}\right)Q^{\beta}_{\tau}
= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma^{\prime\sigma}_{\mu\nu}\frac{\partial x^{\beta}}{\partial x'^{\lambda}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}Q^{\prime\lambda}_{\xi} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}Q^{\beta}_{\tau}
= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\Gamma^{\prime\sigma}_{\mu\nu}Q^{\prime\nu}_{\xi} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}Q^{\beta}_{\tau}\partial_{\alpha}\frac{\partial x'^{\sigma}}{\partial x^{\beta}}$$

$$\begin{split} \Gamma^{\gamma}{}_{\alpha\tau}Q^{\rho}{}_{\gamma} &= \left(\frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\Gamma^{\prime\omega}{}_{\mu\xi} + \frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial^{2}x'^{\omega}}{\partial x^{\alpha}}\frac{\partial^{2}x'^{\zeta}}{\partial x^{\tau}}\right) \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\zeta}}{\partial x^{\gamma}}Q^{\prime\sigma}{}_{\zeta}\right) \\ &= \frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\zeta}}{\partial x^{\gamma}}\Gamma^{\prime\omega}{}_{\mu\xi}Q^{\prime\sigma}{}_{\zeta} + \frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\zeta}}{\partial x^{\gamma}}Q^{\prime\sigma}{}_{\zeta}\frac{\partial^{2}x'^{\omega}}{\partial x^{\alpha}\partial x^{\tau}} \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\Gamma^{\prime\zeta}{}_{\mu\xi}Q^{\prime\sigma}{}_{\zeta} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}Q^{\prime\sigma}{}_{\zeta}\frac{\partial^{2}x'^{\zeta}}{\partial x^{\alpha}\partial x^{\tau}} \end{split}$$

Assim, ao somar os dois primeiros termos e subtrair o terceiro, os termos sublinhados em verde são cancelados e os termos sublinhados em laranja também uma vez que

$$\frac{\partial x'^{\sigma}}{\partial x^{\beta}}\partial_{\alpha}\frac{\partial x^{\rho}}{\partial x'^{\sigma}} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\partial_{\alpha}\frac{\partial x'^{\sigma}}{\partial =}\partial_{\alpha}\left(\frac{\partial x'^{\sigma}}{\partial x^{\beta}}\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\right) = \partial_{\alpha}\delta^{\rho}_{\ \beta} = 0,$$

portanto segue que restam apenas os termos sublinhados em rosa, obtendo

$$\nabla_{\alpha}Q^{\rho}_{\ \tau} = \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x'^{\xi}}{\partial x^{\tau}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \left(\partial'_{\mu}Q'^{\sigma}_{\ \xi} + \Gamma'^{\sigma}_{\ \mu\nu}Q'^{\nu}_{\ \xi} + \Gamma'^{\zeta}_{\ \mu\xi}Q'^{\sigma}_{\ \zeta} \right) = \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x'^{\xi}}{\partial x^{\tau}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \nabla'_{\alpha}Q'^{\sigma}_{\ \xi}.$$

Dessa forma, verificamos a transformação tensorial da derivada covariante de um tensor Q_{τ}^{ρ} .

Exercício 8

Consideremos a *D*-forma $dx^0 \wedge \cdots \wedge dx^{D-1}$, então em outra carta de coordenadas x', temos

$$dx^{0} \wedge \cdots \wedge dx^{D-1} = \left(\frac{\partial x^{0}}{\partial x'^{\mu_{0}}} dx'^{\mu_{0}}\right) \wedge \cdots \wedge \left(\frac{\partial x^{D-1}}{\partial x'^{\mu_{D-1}}} dx'^{\mu_{D-1}}\right)$$

$$= \epsilon^{\mu_{0} \dots \mu_{D-1}} \left(\frac{\partial x^{0}}{\partial x'^{\mu}_{0}} \dots \frac{\partial x^{D-1}}{\partial x'^{\mu_{D-1}}}\right) dx'^{0} \wedge \cdots \wedge dx'^{D-1}$$

$$= \int dx'^{0} \wedge \cdots \wedge dx'^{D-1},$$

onde J é o determinante do jacobiano $\frac{\partial x^{\alpha}}{\partial x'^{\beta}}$, isto é, $J = \epsilon^{\mu_0 \dots \mu_{D-1}} \frac{\partial x^0}{\partial x'^{\mu_0}} \dots \frac{\partial x^{D-1}}{\partial x'^{\mu_{D-1}}}$. Consideremos agora a transformação da métrica $g_{\mu\nu}$ das coordenadas x para as coordenadas x'

$$g_{\mu\nu} = \frac{\partial x^{\prime\alpha}}{\partial x^{\mu}} \frac{\partial x^{\prime\beta}}{\partial x^{\nu}} g_{\alpha\beta}^{\prime}.$$

Notemos que podemos arranjar esta última equação como uma multiplicação matricial

$$(g_{\mu\nu}) = \left(\frac{\partial x'^{\alpha}}{\partial x^{\mu}}\right)^{\top} (g_{\alpha\beta}) \left(\frac{\partial x'^{\beta}}{\partial x^{\nu}}\right),\,$$

donde segue que

$$g = J^{-2}g',$$

onde g e g' são os determinantes das matrizes que representam a métrica nas cartas de coordenadas locais x e x'. Desse modo, o objeto \sqrt{g} se transforma de forma inversa à D-forma considerada e obtemos

$$\sqrt{g} dx^0 \wedge \cdots \wedge dx^{D-1} = \sqrt{g'} dx'^0 \wedge \cdots \wedge dx'^{D-1}$$
.

oi

Exercício 9

Exercício 10