WHAT IS CLAIMED IS:

- 1. A fiberglass insulation binder composition comprising a polycarboxy polymer, a polyhydroxy crosslinking agent, and a surfactant selected from the group consisting of cationic surfactants, amphoteric surfactants, nonionic surfactants, and mixtures thereof.
- 2. The fiberglass insulation binder composition of claim 1, wherein the surfactant is a nonionic surfactant selected from the group consisting of: ethylene oxide and propylene oxide condensates which include straight and branched chain alkyl and alkaryl polyethylene glycol and polypropylene glycol ethers and thioethers; alkylphenoxypoly(ethyleneoxy)ethanols having alkyl groups containing 7 to 18 carbon atoms and having 4 to 240 ethyleneoxy units; polyoxyalkylene derivatives of hexitol; partial long-chain fatty acids esters; condensates of ethylene oxide with a hydrophobic base formed by condensing propylene oxide with propylene glycol; sulfur containing condensates prepared by condensing ethylene oxide with higher alkyl mercaptans or with alkylthiophenols wherein the alkyl group contains 6 to 15 carbon atoms; ethylene oxide derivatives of long-chain carboxylic acids or oleic acids or mixtures of acids; ethylene oxide derivatives of long-chain alcohols; and ethylene oxide/propylene oxide copolymers.

20

30

5

10

15

- 3. The fiberglass insulation binder composition of claim 2, wherein the surfactant is an ethoxylated 2,4,7,9-tetramethyl-5-decyn-4,7-diol surfactant.
- 4. The fiberglass insulation binder composition of claim 1, wherein the polycarboxy polymer is a polyacrylic acid polymer.
 - 5. A process for producing a fiberglass insulation binder comprising the steps of preparing a mixture of a polycarboxy polymer, a polyhydroxy crosslinking agent, a surfactant selected from the group consisting of cationic surfactants, amphoteric surfactants, nonionic surfactants, and mixtures thereof, and sufficient water to provide a mixture comprising up to 98 wt-% water based on the total weight of solids in the mixture, and

15

blending the mixture to form a polymeric composition useful as a fiberglass insulation binder.

- 6. The process of claim 5, wherein the amount of surfactant employed ranges from about 0.01 to about 10 weight percent based on the total weight of binder solids.
 - 7. The process of claim 6, wherein the amount of surfactant employed ranges from about 0.2 to about 5 weight percent based on the total weight of binder solids.
- 10 8. The process of claim 5, wherein a pre-mixture containing the polymer and crosslinking agent comprises about 50 to 60 wt-% water.
 - 9. The process of claim 5, further comprising the step of adding a hydrolyzed silane coupling agent to the mixture.
 - 10. The process of claim 9, wherein the weight of hydrolyzed silane coupling agent added is from 0.01 to 10 wt-% based upon the weight of the mixture.
- 11. The process of claim 5, further comprising the step of adding a mineral oil dust suppressing agent to the mixture.
 - 12. The process of claim 11, wherein the weight of mineral oil dust suppressing agent added is up to 20 wt-% based upon the weight of the mixture.
- 25 13. The process of claim 5, wherein the polycarboxy polymer is a polyacrylic acid polymer.
 - 14. The product of the process of claim 5.
- 30 15. A process for manufacturing a fiberglass insulation product, which comprises the step of applying the binder composition of claim 14 onto a fiberglass substrate, and curing the fiberglass substrate so treated.

- 16. The process of claim 15, wherein curing is carried out in a curing oven at a temperature from 200°C to 350°C for ½ to 3 minutes.
 - 17. The product of the process of claim 15.

5

- 18. A process for manufacturing a fiberglass insulation product, which comprises the step of applying the binder composition of claim 1 onto a fiberglass substrate, and curing the fiberglass substrate so treated.
- 10 19. The process of claim 18, wherein curing is carried out in a curing oven at a temperature from 200°C to 350°C for ½ to 3 minutes.
 - 20. The product of the process of claim 18.