Spring 2021 MATH231 Section CDQ Discussion

WF 9-10am

This document can be found here or on my website. I will continue update it until the end of semester.

Contact

- TA for section CDQ: Xinran Yu
- Email: xinran4@illinois.edu. Please included MATH231 in your email subject.
- Office hour: Wed 10-11am¹

Zoom

- Please use your cameras and microphones in breakout rooms.
- Interrupt me/using the "Raise Hand" feature on Zoom to ask questions.
- You can call me into your breakout room/return to the main room to ask for help.
- It is also possible for me to join your breakout rooms randomly to check if you have any questions.

Worksheet

- Worksheet can be found on Moodle under Groupwork folder.
- Ask for hints when you get stuck on a problem.

Submission

- Submit on Moodle under Groupwork folder.
- 1 submission per group. Once a file is uploaded, everyone in the same group will be able to see/edit the file. ²
- Group remains the same until each midterm.
- 1st worksheet of the week is due on **Thursday** at **8AM** CST. ³
- 2nd worksheet of the week is due on **Saturday** at **8AM** CST.
- Worksheet solutions available at 12:30PM CST on the due date.

Grading

Worksheets are graded with 2, 1 or 0.

- 2 the worksheet uploaded is satisfactory
- 1 the worksheet uploaded is unsatisfactory and needs improvement. Your TA will comment on what should be improved for next time.
- 0 the worksheet was not uploaded

¹Office hour is run for all students in MATH231

²Groups are assigned randomly by Moodle

³Central Standard Time

Contents

1	Worksheet 1	3
2	Worksheet 2	4
3	Worksheet 3	5
4	Worksheet 4	6
5	Worksheet 5	7
6	Worksheet 6	8
7	Worksheet 7	9
8	Worksheet 8	9
9	Worksheet 9	10
10	Worksheet 10	11

Recall

Theorem 1.1 (Fundamental Theorem of Calculus). Ref p.26

Part 1 If f(x) is **continuous** over an interval [a,b], and the function F(x) is defined by

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b]$$

then F'(x) = f(x) over [a, b].

Part 2 If f(x) is **continuous** over an interval [a,b], and F(x) is any antiderivative of f(x) i.e. F'(x) = f(x), then

$$\int_{a}^{b} f(x) dx = F(a) - F(b).$$

Example 1.2. Let

$$g(x) = \int_{a}^{b(x)} f(t) \, \mathrm{d}t$$

Apply chain rule and FTC

$$g'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{b(x)} f(t) \, \mathrm{d}t = b'(x) \cdot f(b(x)).$$

Recall

• Substitution rule/Change of variable: let u = g(x), then

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du.$$
 (Q1-3)

• Compute area between curves.

(Q4-7)

- Draw the graph.
- Find intersection points by solving f(x) = g(x), say they are x = a and x = b.
- Area = $\int_a^b f(x) g(x) dx$.

Volume of a Solid of Revolution: Slices of volume are circles. Ref

$$Vol = \int_{a}^{b} \pi f(x)^{2} dx.$$

Q3. Slices are squares/triangles.

$$Vol = \int_{a}^{b} Area of slices dx.$$

E.g.

$$Vol = \int_{a}^{b} f(x)^{2} dx.$$

Volume by Cylindrical Shells:

$$Vol = \int_{a}^{b} 2\pi r \cdot f(x) \, \mathrm{d}x.$$

Rotation about y-axis: r = x. Rotation about the vertical line x = a: r = |a - x|.

Recall

- Since $\sin x$ is oscillating between -1 and 1, $\lim_{x\to\infty}\sin x$ does not exists.
- \bullet we can use L'Hopital's Rule to compute indeterminate forms " $\frac{0}{0}$ " and " $\frac{\infty}{\infty}$ ".

Theorem 5.1 (L'Hopital's Rule).

Assumptions:

$$f(x) \rightarrow 0$$
 as $x \rightarrow a$,
 $g(x) \rightarrow 0$,
 $g'(x) \neq 0$.

Conclusion:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Warning: check the assumptions before applying L'Hopital's Rule.

Integration by Parts:

$$(uv)' = u'v + uv' \implies \int u \, dv = uv - \int v \, du.$$

Choose u based on which of these comes first, (search "integration by parts what to choose as u"):

- (1) Logarithmic functions: $\ln x$
- (2) Inverse trigonometric functions: $\arcsin x$
- (3) Algebraic functions: x
- (4) Trigonometric functions: $\sin x$
- (5) Exponential functions: e^x

Worksheet 8

Recall: $1 + \tan^2 x = \sec^2 x$.

Substitution rule/Change of variable: let u = g(x), then

$$\int f(g(x)) \cdot g'(x) \, \mathrm{d}x = \int f(u) \, \mathrm{d}u.$$

Integration by Parts:

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

Partial Fractions decomposition: Find A, B such that

$$\frac{1}{(x-a)(x-b)} = \frac{A}{x-a} - \frac{B}{x-b}.$$

The following table is from this website

Factor in denominator	Term in partial fraction decomposition
ax+b	$rac{A}{ax+b}$
$(ax+b)^k$	$rac{A_1}{ax+b}+rac{A_2}{\left(ax+b ight)^2}+\cdots+rac{A_k}{\left(ax+b ight)^k},k=1,2,3,\ldots$
ax^2+bx+c	$\frac{Ax+B}{ax^2+bx+c}$
$\left(ax^2+bx+c\right)^k$	$rac{A_1x+B_1}{ax^2+bx+c}+rac{A_2x+B_2}{\left(ax^2+bx+c ight)^2}+\cdots+rac{A_kx+B_k}{\left(ax^2+bx+c ight)^k}, k=1,2,3,\ldots$