Embedded Systems Design, Spring 2025 Lecture 4

State machines and counters

Review from last time

•

State machine analysis

- States
- State machines
- Clocked synchronous state machines
- Next state logic
- Output logic

Mealy machine

- Next state = F(current state, input)
- Output = G(currrent state, input)

Figure 7-35 Clocked synchronous state-machine structure (Mealy machine).

Moore Machine

- Next state = F(current state, input)
- Output = G(current state)

Figure 7-36 Clocked synchronous state-machine structure (Moore machine).

Characteristic equations

Device Type	Characteristic Equation				
S-R latch	$Q* = S + R' \cdot Q$				
D latch	Q* = D				
Edge-triggered D flip-flop	Q* = D				
D flip-flop with enable	$Q * = EN \cdot D + EN' \cdot Q$				
Master/slave S-R flip-flop	$Q * = S + R' \cdot Q$				
Master/slave J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$				
Edge-triggered J-K flip-flop	$Q*=J\cdot Q'+K'\cdot Q$				
T flip-flop	Q* = Q'				
T flip-flop with enable	$Q * = EN \cdot Q' + EN' \cdot Q$				

Table 7-1 Latch and flip-flop characteristic equations.

Example

Steps

- 1. Write the excitation equations for the FF inputs
- 2. Obtain transition equations
- 3. Determine output equations
- 4. Make transition table
- 5. Add the outputs into the transition table
- 6. Name the states and make substitutions, show the output with respect to inputs and current states
- 7. Draw state diagram

Example

Steps:1, 2, 3

Q0* = D0

Q1* = D1

 $Q0* = Q0 \cdot EN' + Q0' \cdot EN$

 $Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$

 $MAX = Q1 \cdot Q0 \cdot EN$

Steps 4, 5, 6

(a)		EN			
	Q1 Q0	0	1		
	00	00	01		
	01	01	10		
	10	10	11		
	11	11	00		
		Q1* Q0*			

	Е	EN			
S	0	1			
Α	Α	В			
В	В	С			
С	С	D			
D	D	Α			
	S	S*			

c)		EN				
	s	0	1			
	Α	A, 0	B, 0			
	В	B, 0	C, 0			
	С	C, 0	D, 0			
	D	D, 0	A, 1			
		S*, MAX				

Table 7-2
Transition, state, and state/output tables for the state machine in Figure 7-38.

Step 7

Timing diagram

Same example, different circuit

Figure 7-41 Redrawn logic diagram for a clocked synchronous state machine.

Drill state machine problem

- About 15 minutes
- Remember the steps
 - 1. Write the excitation equations for the FF inputs
 - 2. Obtain transition equations
 - 3. Determine output equations
 - 4. Make transition table
 - 5. Add the outputs into the transition table
 - 6. Name the states and make substitutions, show the output with respect to inputs and current states
 - 7. Draw state diagram

Counters

Figure 8-23
General structure
of a counter's state
diagram—a single
cycle.

Figure 7-31 Positive-edge-triggered T flip-flop: (a) logic symbol; (b) functional behavior.

Figure 7-32

Possible circuit designs for a T flip-flop: (a) using a D flip-flop; (b) using a J-K flip-flop.

Figure 7-33 Positive-edge-triggered T flip-flop with enable: (a) logic symbol; (b) functional behavior.

Ripple counter

Serial enable logic

Figure 8-25
A synchronous 4-bit binary counter with serial enable logic.

Parallel enable logic

Figure 8-26 A synchronous 4-bit binary counter with parallel enable logic.

20

Logic symbol for the 74x163 timer

Table 8-13 State table for a 74x163 4-bit binary counter.

Inputs			Current State			Next State					
CLR_L	LD_L	ENT	ENP	QD	аc	QB	QA	QD*	QC*	QB*	QA:
0	х	х	x	х	x	х	x	0	0	0	0
1	0	X	X	x	х	X	x	D	C	В	Α
1	1	0	X	X	X	X	X	QD	QC	QB	QA
1	1	x	0	x	X	X	x	QD	QC	QB	QA
1	1	1	1	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	1	0	0	1	0
1	1	1	1	0	0	1	0	0	0	1	1
1	1	1	1	0	0	1	1	0	1	0	0
1	1	1	1	0	1	0	0	0	1	0	1
1	1	1	1	0	1	0	1	0	1	1	0
1	1	1	1	0	1	1	0	0	1	1	1
1	1	1	1	0	1	1	1	1	0	0	0
1	1	1	I	1	0	0	0	1	0	0	1
1	1	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	0	1	0	1	0	1	1
1	1	1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1	0	0	1	1	0	1
1	1	1	1	1	1	0	1	1	1	1	0
1	1	1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	0

Figure 8-28 Logic diagram for the 74x163 synchronous 4-bit binary counter, including pin numbers for a standard 16-pin DIP package.

Divide by 16 counter

Example of binary counter

https://www.youtube.com/watch?v=U7ARbuAPPs4

- **Task:** simulate a 4 bit counter using the following template
- https://simulator.io/board/lrBpIXomS7/229

Assignment 2

...discussion