Enrollment No: 230305 1051232

Date: (02/04/2024) Time: (1hr: 30min)

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech Mid Semester Exam

Semester: 2

Subject Code: 303192102

Subject Name: (Engineering Physics-II)		Total Marks: 40	
Q.1 1.	Objective Type Questions (Each of one mark) The Einstein's photoelectric equation is $h\nu = X + h\nu_0$. Here X represents Planck's constant, ν is the frequency of incident radiation, ν_0 is threshold (a) The velocity of ejected electrons. (b) The kinetic energy of ejected electrons. (c) The intensity of incident light	the (h is frequency)	10
	(d) None of the above		
2.	The intensity of a Black body radiation is not uniform with wavelength. (a) False (b) True (c) Cannot be predicted (d) None of the above		
3.	 When H operates on a ψ(r), then the corresponding eigen value is Hamiltonian operator, ψ (r) is wave function) (a) Potential energy of the system (b) Kinetic energy of the system (c) Total energy of the system. (d) None of the above 	(Ĥ is	
4.	Einstein's Coefficient of stimulated emission gives (a) Rate of stimulated emission . (b) Probability of stimulated emission (c) Probability of upward transition (d) Rate of spontaneous emission		
5.	Laser light is, (a) Monochromatic (b) Unidirectional (c) Highly intense (d) All of above. Optical Fibres transmit the light beam using the principle of		
6.	1 's Uncertainty Principle.		
7.	De Broglie hypothesis says that a moving particle is associated with a w	ave, the wave is	
8.	called . (Matter wave, cross and		
9.	The numerical aperture of an optical fibre is related to only (Core diameter/ Core and cladding refractive indices)		
10.			

4.4	Attempt any four (Short Questions)	
1.	Waite any three applications of Laser.	12
2.	What is quantum tunneling effect? *	
3.	State conditions for lasing action	
4.	Calculate the numerical aperture and acceptance angle of an optical fiber from the	
	following data fiber from the .	
	$n_1(core) = 1.55$, $n_2(cladding) = 1.50$	
5.	What is wave function? Explain physical significance of a wave function.	
Q.3	Attempt any two questions	
1.	Explain Briefly: (i) Population Inversion (ii) Meta-stable States	08
2.	Explain Compton Effect in brief	
3.	Classify optical fibres based on the modes of propagation and refractive index. (A) Explain working of He-Ne I occur.	
Q.4		
	(B) Explain wave-particle duality. Derive de Broglie's formula for the wavelength of matter	05
	wave.	05
	OR	
	(B) Explain construction of optical fibre with necessary diagram.	
	diagram.	05