Number Sets & GCD

3.AB PrelB Maths – Resit Exam

Unless specified otherwise, you are to **always** (at least briefly) explain your reasoning. Even in closed questions.

Natural Numbers

a) Remember that we defined **addition** and **multiplication** as:

$$succ(n) = n + 1$$

$$n * 0 = 0$$

$$\operatorname{succ}(n+m) = n + \operatorname{succ}(m)$$
 $\operatorname{succ}(n*m) = n*m+m$

Using **only** those axioms calculate:

- 2 · 3
- $1 + (2 \cdot 2)$

b) Assuming x + y = y + x, show that x + succ(y) = succ(y) + x. In your prove use [10 %] only those **axioms** that **define addition**.

[20 %]

Integers & Rationals

a) Connect the pairs that correspond to the **same equivalence classes** and write [20 %] down the value of **represented rational**.

(2,20) (5,50) (35,28)

(10,8) (25,2) (-50,-2)

(-2,2) (4,4) (7,8)

b) Integers and rationals share some similarities on their definition. They are defined as **equivalence classes** on $\mathbb{N} \times \mathbb{N}$ and $\mathbb{Z} \times \mathbb{Z}$ respectively. Create **at least one equivalence** on $\mathbb{N} \times \mathbb{N}$ and one on $\mathbb{Z} \times \mathbb{Z}$. Comment on the equivalence classes, **how many are there**? do they have a specific shape?

[10 %]

For example one equivalence **A** may be: $a\mathbf{A}b$ if a = b. Other example **B** is: $a\mathbf{B}b$ for all a, b either in \mathbb{N} or \mathbb{Z} . These are the trivial equivalences so they will **not** earn you any points.

Divisibility & GCD

a) Some **natural number** n can be decomposed into primes as $n=p_1\cdot p_2...p_k$. [20 %] Use the primes $p_1,p_2,...,p_k$ to find **all the divisors** of n.

b) Compute gcd(1029, 1617). Write down performed calculations in full detail. [20 %]