Семинар по сложности булевых функций

Лекция 11: Методы получения нижних оценок на размеры схем ограниченной глубины

Р. Колганов

Computer Science клуб при ПОМИ http://compsciclub.ru

11.12.2011

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- Упражнения

Чередующиеся схемы фиксированной глубины

С чем мы имеем дело?

- Мы рассматриваем схемы, состоящие из чередующихся уровней *AND* и *OR* гейтов с неограниченным числом входов (AC-схемы).
- На входе схемы переменные и их отрицания.
- Глубина схемы ограничена какой-либо функцией от числа входных переменных, размер же может быть произвольным.

Чередующиеся схемы фиксированной глубины

С чем мы имеем дело?

- Мы рассматриваем схемы, состоящие из чередующихся уровней AND и OR гейтов с неограниченным числом входов (АС-схемы).
- На входе схемы переменные и их отрицания.
- Глубина схемы ограничена какой-либо функцией от числа входных переменных, размер же может быть произвольным.

Как получать нижние оценки?

- Метод сокращения глубины схемы.
- Версия метода аппроксимаций Разборова.

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Лемма о переключении: общая идея

- Ключевой инструмент для сокращения глубины лемма о переключении (Håstad's Switching Lemma).
- Она позволяет заменить КНФ на ДНФ и наоборот.

Лемма о переключении: общая идея

- Ключевой инструмент для сокращения глубины лемма о переключении (Håstad's Switching Lemma).
- Она позволяет заменить КНФ на ДНФ и наоборот.
- Более того, лемма гарантирует ограниченность длины конъюнктов (дизъюнктов) получаемой формулы. В то же время она требует, чтобы дизъюнкты (конъюнкты) входной формулы так же были ограниченной длины.

Лемма о переключении: общая идея

- Ключевой инструмент для сокращения глубины лемма о переключении (Håstad's Switching Lemma).
- Она позволяет заменить КНФ на ДНФ и наоборот.
- Более того, лемма гарантирует ограниченность длины конъюнктов (дизъюнктов) получаемой формулы. В то же время она требует, чтобы дизъюнкты (конъюнкты) входной формулы так же были ограниченной длины.
- Замена достигается не бесплатно, но засчет подстановки константных значений некоторым входным переменным.

• Переключение позволит поменять типы гейтов на первых двух уровнях (следующих после входных переменных), затем по ассоциативности операций AND и OR можно будет объединить второй и третий уровни в один, уменьшив этим на один глубину схемы.

- Переключение позволит поменять типы гейтов на первых двух уровнях (следующих после входных переменных), затем по ассоциативности операций AND и OR можно будет объединить второй и третий уровни в один, уменьшив этим на один глубину схемы.
- Эту операцию можно повторять до тех пор, пока глубина схемы не станет равна двум.

- Переключение позволит поменять типы гейтов на первых двух уровнях (следующих после входных переменных), затем по ассоциативности операций AND и OR можно будет объединить второй и третий уровни в один, уменьшив этим на один глубину схемы.
- Эту операцию можно повторять до тех пор, пока глубина схемы не станет равна двум.
- Если число подставляемых переменных определенным образом зависит от размера схемы, то для маленькой схемы может получиться, что она превратится в схему глубины 2 малого размера после подстановки малого числа переменных по сравнениию их с общим числом. После чего подстановкой еще небольшого числа переменных она обратится в константу.

- Переключение позволит поменять типы гейтов на первых двух уровнях (следующих после входных переменных), затем по ассоциативности операций AND и OR можно будет объединить второй и третий уровни в один, уменьшив этим на один глубину схемы.
- Эту операцию можно повторять до тех пор, пока глубина схемы не станет равна двум.
- Если число подставляемых переменных определенным образом зависит от размера схемы, то для маленькой схемы может получиться, что она превратится в схему глубины 2 малого размера после подстановки малого числа переменных по сравнениию их с общим числом. После чего подстановкой еще небольшого числа переменных она обратится в константу.
- Некоторые функции, например, *Parity*_n, нельзя обратить в константу подстановкой малого числа переменных, для них и получаем большие нижние оценки.

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Минтермы и макстермы

Определение

1-терм (0-терм) булевой функции — подмножество ее переменных, таких, что эта функция может быть обращена в тождественную единицу (ноль) подстановкой этим переменным некоторых значений.

Определение

Минтерм (макстерм) — минимальный по включению 1-терм (0-терм).

Определение

Обозначим как $\min(f)$ $(\max(f))$ размер максимального минтерма (макстерма).

t-КНФ и s-ДНФ

Определение

t-КНФ — формула, записанная в КНФ, каждый дизъюнкт которой содержит не более t литералов.

Определение

s-ДНФ — формула, записанная в ДНФ, каждый конъюнкт которой содержит не более s литералов.

t-КНФ и s-ДНФ

Определение

t-КНФ — формула, записанная в КНФ, каждый дизъюнкт которой содержит не более t литералов.

Определение

s-ДНФ — формула, записанная в ДНФ, каждый конъюнкт которой содержит не более s литералов.

Замечание

Функция f представима как s-ДНФ \Leftrightarrow $min(f) \leq s$.

Функция f представима как t-КНФ \Leftrightarrow max $(f) \le t$.

Подстановки

Определение

ho-случайная подстановка ho, примененная к n переменным — присвоение части переменных константного значения так, что np случайно выбранных переменных остаются неприсвоенными, остальные n(1-p) равновероятно присваиваются нулю или единице.

Определение

Обозначим как f_{ρ} подфункцию f, получаемую из f после применениея к ее аргументам подстановки ρ .

Подстановки

Определение

ho-случайная подстановка ho, примененная к n переменным — присвоение части переменных константного значения так, что np случайно выбранных переменных остаются неприсвоенными, остальные n(1-p) равновероятно присваиваются нулю или единице.

Определение

Обозначим как f_{ρ} подфункцию f, получаемую из f после применениея к ее аргументам подстановки ρ .

Замечание

Далее мы будем отождествлять подстановку и множество переменных, которые она присваивает, напрмер, называть минтермом подстановку, присваивающую минимальное количество переменных и обращающую функцию в единицу.

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Лемма о переключении

Лемма (о переключении, Håstad, 86)

Пусть f представима как t-КНФ, ho — p-случайная подстановка. Тогда

$$\Pr[\min(f_{\rho}) > s] \leq (8pt)^s$$
.

Лемма о переключении

Лемма (о переключении, Håstad, 86)

Пусть f представима как t-КНФ, ho — p-случайная подстановка. Тогда

$$\Pr[\min(f_{\rho}) > s] \leq (8pt)^s$$
.

Замечание

Верно и симметричное утверждение, позволяющего переключать t-ДНФ на s-КНФ.

ullet представима как s-ДНФ с вероятностью не менее $1-(8pt)^s$.

- ullet представима как s-ДНФ с вероятностью не менее $1-(8pt)^s$.
- Возникает вопрос: как нам могут помочь вероятностные оценки?

- ullet представима как s-ДНФ с вероятностью не менее $1-(8pt)^s$.
- Возникает вопрос: как нам могут помочь вероятностные оценки?
- Достаточно большая оценка на вероятность показывает, что существует такая подстановка ρ , что f_{ρ} представима как s-ДНФ.

- ullet представима как s-ДНФ c вероятностью не менее $1-(8pt)^s$.
- Возникает вопрос: как нам могут помочь вероятностные оценки?
- Достаточно большая оценка на вероятность показывает, что существует такая подстановка ρ , что f_{ρ} представима как s-ДНФ.
- В частности, если оценка на вероятность успеха превосходит 1/2, то искомая подстановка существует.

- \bullet f представима как s-ДНФ c вероятностью не менее $1-(8pt)^s$.
- Возникает вопрос: как нам могут помочь вероятностные оценки?
- Достаточно большая оценка на вероятность показывает, что существует такая подстановка ρ , что f_{ρ} представима как s-ДНФ.
- В частности, если оценка на вероятность успеха превосходит 1/2, то искомая подстановка существует.
- Можно применять лемму одновременно к нескольким функциям.

Лемма Разборова

Определение

Обозначим как \mathcal{R}^{ℓ} множество всех подстановок, оставляющих неприсвоенными ровно ℓ переменных (при фиксированном общем числе переменных n).

Определение

Обозначим как $Bad_f(\ell, s)$ множество $\{\rho \in \mathcal{R}^\ell \mid \min(f_\rho) > s\}$.

Лемма Разборова

Определение

Обозначим как \mathcal{R}^{ℓ} множество всех подстановок, оставляющих неприсвоенными ровно ℓ переменных (при фиксированном общем числе переменных n).

Определение

Обозначим как $Bad_f(\ell, s)$ множество $\{\rho \in \mathcal{R}^\ell \mid \min(f_\rho) > s\}$.

Замечание

$$|\mathcal{R}^{\ell}| = \binom{n}{\ell} 2^{n-\ell}.$$

Лемма Разборова

Определение

Обозначим как \mathcal{R}^{ℓ} множество всех подстановок, оставляющих неприсвоенными ровно ℓ переменных (при фиксированном общем числе переменных n).

Определение

Обозначим как $Bad_f(\ell, s)$ множество $\{\rho \in \mathcal{R}^\ell \mid \min(f_\rho) > s\}$.

Замечание

$$|\mathcal{R}^{\ell}| = \binom{n}{\ell} 2^{n-\ell}.$$

Лемма (Разборов, 95)

f представима как $t ext{-}KH\Phi \Rightarrow |Bad_f(\ell,s)| \leq |\mathcal{R}^{\ell-s}| \cdot (2t)^s.$

Доказательство

Положим $\ell=np$. Тогда

$$\mathsf{Pr}[\mathsf{min}(f_
ho) > s] = rac{|\mathit{Bad}_f(\ell,s)|}{|\mathcal{R}^\ell|}.$$

Доказательство

Положим $\ell=np$. Тогда

$$\mathsf{Pr}[\mathsf{min}(f_
ho) > s] = rac{|Bad_f(\ell,s)|}{|\mathcal{R}^\ell|}.$$

По лемме Разборова это не превосходит

$$\frac{\binom{n}{\ell-s}2^{n-\ell+s}(2t)^s}{\binom{n}{\ell}2^{n-\ell}} \leq \left(\frac{\ell}{n-\ell}\right)^s (4t)^s = \left(\frac{4tp}{1-p}\right)^s.$$

Доказательство

Положим $\ell=np$. Тогда

$$\mathsf{Pr}[\mathsf{min}(f_
ho) > s] = rac{|Bad_f(\ell,s)|}{|\mathcal{R}^\ell|}.$$

По лемме Разборова это не превосходит

$$\frac{\binom{n}{\ell-s}2^{n-\ell+s}(2t)^s}{\binom{n}{\ell}2^{n-\ell}} \leq \left(\frac{\ell}{n-\ell}\right)^s (4t)^s = \left(\frac{4tp}{1-p}\right)^s.$$

При $p \leq 1/2$, получаем требуемое, то есть верхнюю оценку $(8pt)^s$.

Доказательство

Положим $\ell=np$. Тогда

$$\mathsf{Pr}[\mathsf{min}(f_
ho) > s] = rac{|Bad_f(\ell,s)|}{|\mathcal{R}^\ell|}.$$

По лемме Разборова это не превосходит

$$\frac{\binom{n}{\ell-s}2^{n-\ell+s}(2t)^s}{\binom{n}{\ell}2^{n-\ell}} \leq \left(\frac{\ell}{n-\ell}\right)^s (4t)^s = \left(\frac{4tp}{1-p}\right)^s.$$

При $p \leq 1/2$, получаем требуемое, то есть верхнюю оценку $(8pt)^s$. Ясно, что из этого следует истинность леммы при любом p.

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Идея доказательства леммы Разборова

① Построим кодирование $Code: Bad_f(\ell,s) o C.$

Идея доказательства леммы Разборова

- **1** Построим кодирование $Code: Bad_f(\ell, s) \to C$.
- ② Предъявим способ получения подстановки ρ по ее коду $Code(\rho)$ единственным образом, показав этим инъективность кода.

Идея доказательства леммы Разборова

- **1** Построим кодирование $Code: Bad_f(\ell, s) \to C$.
- ② Предъявим способ получения подстановки ρ по ее коду $Code(\rho)$ единственным образом, показав этим инъективность кода.
- ullet Покажем, что $|C| \leq |\mathcal{R}^{\ell-s}| \cdot (2t)^s$.

Построение кода: инициализация

① Зафиксируем формулу F, являющуюся представлением функции f в виде t-КНФ. Зафиксируем в ней порядок дизъюнктов и литералов внутри каждого дизъюнкта.

Построение кода: инициализация

- Зафиксируем формулу F, являющуюся представлением функции f в виде t-КНФ. Зафиксируем в ней порядок дизъюнктов и литералов внутри каждого дизъюнкта.
- ② Рассмотрим «плохую» подстановку $\rho \in Bad_f(\ell,s)$. После ее применения в формуле F может быть обращена в единицу и выкинута часть дизъюнктов, но не все.

Построение кода: инициализация

- **3** Зафиксируем формулу F, являющуюся представлением функции f в виде t-КНФ. Зафиксируем в ней порядок дизъюнктов и литералов внутри каждого дизъюнкта.
- ② Рассмотрим «плохую» подстановку $\rho \in Bad_f(\ell,s)$. После ее применения в формуле F может быть обращена в единицу и выкинута часть дизъюнктов, но не все.
- ③ f_{ρ} имеет минтерм π' размера больше s. Выберем из него первые s переменных в порядке первого дизънкта, который они обращают в единицу. Полученное подмножество обозначим как π .

① Пусть C_1 — первый дизъюнкт, не обращенный в единицу ρ , но обращенный в единицу $\rho\pi$.

- ① Пусть C_1 первый дизъюнкт, не обращенный в единицу ρ , но обращенный в единицу $\rho\pi$.
- ② Пусть $\pi_1 \subseteq \pi$ множество переменных, содержахихся в C_1 .

- ① Пусть C_1 первый дизъюнкт, не обращенный в единицу ρ , но обращенный в единицу $\rho\pi$.
- ② Пусть $\pi_1 \subseteq \pi$ множество переменных, содержахихся в C_1 .
- ③ Пусть $\overline{\pi}_1$ подстановка, содержащая те же переменные, что и π_1 , но НЕ обращающая в единицу C_1 .

- Пусть C_1 первый дизъюнкт, не обращенный в единицу ρ , но обращенный в единицу $\rho\pi$.
- ② Пусть $\pi_1 \subseteq \pi$ множество переменных, содержахихся в C_1 .
- ③ Пусть $\overline{\pi}_1$ подстановка, содержащая те же переменные, что и π_1 , но НЕ обращающая в единицу C_1 .
- **①** Пусть $\vec{a}_1 \in \{0,1\}^t$ бинарная строка, в которой единицами отмечены позиции литералов C_1 , затронутых π_1 .

- Пусть C_1 первый дизъюнкт, не обращенный в единицу ρ , но обращенный в единицу $\rho\pi$.
- ② Пусть $\pi_1 \subseteq \pi$ множество переменных, содержахихся в \mathcal{C}_1 .
- **③** Пусть $\overline{\pi}_1$ подстановка, содержащая те же переменные, что и π_1 , но HE обращающая в единицу C_1 .
- **①** Пусть $\vec{a}_1 \in \{0,1\}^t$ бинарная строка, в которой единицами отмечены позиции литералов C_1 , затронутых π_1 .

Пример

C_1	=	<i>X</i> 3	\vee	$\neg x_4$	\vee	<i>x</i> ₆	\vee	<i>X</i> 7	\vee	<i>X</i> ₁₂
π_1	=	*		0		*		1		0
$\overline{\pi}_{1}$	=	*		1		*		0		0
$ec{a}_1$	=	0		1		0		1		1

① Теперь положим $\rho = \rho \pi_1$, $\pi = \pi \setminus \pi_1$.

- **①** Теперь положим $\rho = \rho \pi_1$, $\pi = \pi \setminus \pi_1$.
- ② Аналогичным первому шагу образом получим C_2 , π_2 , \vec{a}_2 .

- **1** Теперь положим $\rho = \rho \pi_1$, $\pi = \pi \setminus \pi_1$.
- ② Аналогичным первому шагу образом получим C_2 , π_2 , \vec{a}_2 .
- lacktriangle Продолжаем процесс, пока π не пусто.

- **①** Теперь положим $\rho = \rho \pi_1$, $\pi = \pi \setminus \pi_1$.
- $oldsymbol{arrho}$ Аналогичным первому шагу образом получим C_2 , π_2 , $\overline{\pi}_2$, $ec{a}_2$.
- **3** Продолжаем процесс, пока π не пусто.
- lacktriangle Получим последовательности π_1,\ldots,π_m , $\overline{\pi}_1,\ldots,\overline{\pi}_m$, $\vec{a}_1,\ldots,\vec{a}_m$.

Построение кода: получение результата

① Положим $\vec{b} \in \{0,1\}^s$ равным бинарной строке, в которой единицами отмечены совпадающие позиции подстановок π и $\overline{\pi} = \overline{\pi}_1 \dots \overline{\pi}_m$, нулем, соответственно, различающиеся. Переменные при этом упорядочим в порядке их повления в \mathcal{C}_1 , затем в \mathcal{C}_2 и так далее.

Построение кода: получение результата

① Положим $\vec{b} \in \{0,1\}^s$ равным бинарной строке, в которой единицами отмечены совпадающие позиции подстановок π и $\overline{\pi} = \overline{\pi}_1 \dots \overline{\pi}_m$, нулем, соответственно, различающиеся. Переменные при этом упорядочим в порядке их повления в C_1 , затем в C_2 и так далее.

Пример

Построение кода: получение результата

① Положим $\vec{b} \in \{0,1\}^s$ равным бинарной строке, в которой единицами отмечены совпадающие позиции подстановок π и $\overline{\pi} = \overline{\pi}_1 \dots \overline{\pi}_m$, нулем, соответственно, различающиеся. Переменные при этом упорядочим в порядке их повления в C_1 , затем в C_2 и так далее.

Пример

В результате положим

$$\mathit{Code}(\rho) = \left\langle \rho \overline{\pi}_1 \dots \overline{\pi}_m, \ \vec{a}_1, \dots, \vec{a}_m, \ \vec{b} \right\rangle.$$

• Рассмотрим первый дизъюнкт F, который не обращается в единицу подстановкой $\rho \overline{\pi}_1 \dots \overline{\pi}_m$. Им будет C_1 .

• Рассмотрим первый дизъюнкт F, который не обращается в единицу подстановкой $\rho \overline{\pi}_1 \dots \overline{\pi}_m$. Им будет C_1 . Это видно из того, что $\overline{\pi}_2 \dots \overline{\pi}_m$ не содержит переменных из C_1 в силу выбора π_1 .

- Рассмотрим первый дизъюнкт F, который не обращается в единицу подстановкой $\rho\overline{\pi}_1\dots\overline{\pi}_m$. Им будет C_1 . Это видно из того, что $\overline{\pi}_2\dots\overline{\pi}_m$ не содержит переменных из C_1 в силу выбора π_1 .
- \bigcirc Имея C_1 , \vec{a}_1 и \vec{b} восстановим π_1 .

- Рассмотрим первый дизъюнкт F, который не обращается в единицу подстановкой $\rho\overline{\pi}_1\dots\overline{\pi}_m$. Им будет C_1 . Это видно из того, что $\overline{\pi}_2\dots\overline{\pi}_m$ не содержит переменных из C_1 в силу выбора π_1 .
- ullet Имея C_1 , \vec{a}_1 и \vec{b} восстановим π_1 .
- **③** Теперь рассмотрим $\rho \pi_1 \overline{\pi}_2 \dots \overline{\pi}_m$. Аналогично получим π_2 .

- ① Рассмотрим первый дизъюнкт F, который не обращается в единицу подстановкой $\rho\overline{\pi}_1\dots\overline{\pi}_m$. Им будет C_1 . Это видно из того, что $\overline{\pi}_2\dots\overline{\pi}_m$ не содержит переменных из C_1 в силу выбора π_1 .
- ullet Имея C_1 , \vec{a}_1 и \vec{b} восстановим π_1 .
- ullet Теперь рассмотрим $ho\pi_1\overline{\pi}_2\dots\overline{\pi}_m$. Аналогично получим π_2 .
- lacktriangled Повторяя процесс, в итоге получаем $\pi=\pi_1\dots\pi_m$.

- ① Рассмотрим первый дизъюнкт F, который не обращается в единицу подстановкой $\rho\overline{\pi}_1\dots\overline{\pi}_m$. Им будет C_1 . Это видно из того, что $\overline{\pi}_2\dots\overline{\pi}_m$ не содержит переменных из C_1 в силу выбора π_1 .
- $m{Q}$ Имея C_1 , \vec{a}_1 и \vec{b} восстановим π_1 .
- ullet Теперь рассмотрим $ho\pi_1\overline{\pi}_2\dots\overline{\pi}_m$. Аналогично получим π_2 .
- lacktriangled Повторяя процесс, в итоге получаем $\pi=\pi_1\dots\pi_m$.
- **5** Наконец, получаем $\rho = \rho \pi \setminus \pi$.

 $oldsymbol{0}$ $ho\overline{\pi}_1\dots\overline{\pi}_m\in\mathcal{R}^{\ell-s}$, число таких подстановок не превосходит $|\mathcal{R}^{\ell-s}|$.

- $oldsymbol{0}$ $ho\overline{\pi}_1\dots\overline{\pi}_m\in\mathcal{R}^{\ell-s}$, число таких подстановок не превосходит $|\mathcal{R}^{\ell-s}|$.
- $oldsymbol{2}$ Число возможных строк $ec{b}$ равно $|\{0,1\}^s|=2^s.$

- $oldsymbol{0}$ $ho\overline{\pi}_1\dots\overline{\pi}_m\in\mathcal{R}^{\ell-s}$, число таких подстановок не превосходит $|\mathcal{R}^{\ell-s}|$.
- **2** Число возможных строк \vec{b} равно $|\{0,1\}^s| = 2^s$.
- § Число возможных строк \vec{a} это число разбиений s-элементного множетва на подмножества размера от 1 до t.

- $oldsymbol{0}$ $ho\overline{\pi}_1\dots\overline{\pi}_m\in\mathcal{R}^{\ell-s}$, число таких подстановок не превосходит $|\mathcal{R}^{\ell-s}|$.
- **2** Число возможных строк \vec{b} равно $|\{0,1\}^s| = 2^s$.
- ③ Число возможных строк \vec{a} это число разбиений s-элементного множетва на подмножества размера от 1 до t. Индукцией по s можно покзать, что это не превосходит t^s .

План лекции

- 🚺 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Oценка на R(f)

Определение

Обозначим как R(f) минимальное число переменных, подстановка которых обращает f в константу.

Oценка на R(f)

Определение

Обозначим как R(f) минимальное число переменных, подстановка которых обращает f в константу.

Пример

$$R(Parity_n) = n.$$

$$R(Maj_n) = n/2$$
.

Oценка на R(f)

Определение

Обозначим как R(f) минимальное число переменных, подстановка которых обращает f в константу.

Пример

$$R(Parity_n) = n$$
.
 $R(Maj_n) = n/2$.

Теорема

Пусть булева функция f от n переменных может быть вычислена AC-схемой глубины (d+1) размера S. Тогда

$$R(f) \le n - \frac{n}{c_d(\log S)^{d-1}} + 2\log S,$$

где c_d зависит только от глубины схемы.

Пусть на первом уровне расположены OR гейты (случай AND гейтов разбирается аналогично).

- Пусть на первом уровне расположены *OR* гейты (случай *AND* гейтов разбирается аналогично).
- Каждый такой гейт представляет собой 1-ДНФ.

- Пусть на первом уровне расположены *OR* гейты (случай *AND* гейтов разбирается аналогично).
- Каждый такой гейт представляет собой 1-ДНФ.
- Применим лемму о переключении с параметрами t=1, $s=2\log S,\ p=1/16$.

- Пусть на первом уровне расположены *OR* гейты (случай *AND* гейтов разбирается аналогично).
- Каждый такой гейт представляет собой 1-ДНФ.
- Применим лемму о переключении с параметрами t=1, $s=2\log S,\ p=1/16.$
- $1 (8pt)^s = 1 \left(\frac{8}{16}\right)^{2\log S} = 1 S^{-2}$.

- Пусть на первом уровне расположены OR гейты (случай AND гейтов разбирается аналогично).
- Каждый такой гейт представляет собой 1-ДНФ.
- Применим лемму о переключении с параметрами t=1, $s=2\log S,\ p=1/16.$
- $1 (8pt)^s = 1 \left(\frac{8}{16}\right)^{2 \log S} = 1 S^{-2}$.
- Гейтов на первом уровне не более S, вероятность заменить их все сразу не менее $(1-S^{-2})^S \ge 1/2$. Значит, нужная подстановка существует.

Доказательство оценки на R(f): ограничение входной степени

- Пусть на первом уровне расположены *OR* гейты (случай *AND* гейтов разбирается аналогично).
- Каждый такой гейт представляет собой 1-ДНФ.
- Применим лемму о переключении с параметрами t=1, $s=2\log S,\ p=1/16.$
- $1 (8pt)^s = 1 \left(\frac{8}{16}\right)^{2 \log S} = 1 S^{-2}$.
- Гейтов на первом уровне не более S, вероятность заменить их все сразу не менее $(1-S^{-2})^S \ge 1/2$. Значит, нужная подстановка существует.
- Полученные КНФ будут содержать ровно один дизъюнкт. Иными словами, такая подстановка ограничит входную степень гейтов на первом уровне до $2 \log S$.

• Применим лемму о переключении к гейтам на втором уровне с параметрами $t = 2 \log S$, $s = 2 \log S$, $p = \frac{1}{32 \log S}$.

• Применим лемму о переключении к гейтам на втором уровне с параметрами $t = 2 \log S$, $s = 2 \log S$, $p = \frac{1}{32 \log S}$.

•
$$1 - (8pt)^s = 1 - \left(\frac{16\log S}{32\log S}\right)^{2\log S} = 1 - S^{-2}$$
.

• Применим лемму о переключении к гейтам на втором уровне с параметрами $t = 2 \log S$, $s = 2 \log S$, $p = \frac{1}{32 \log S}$.

•
$$1 - (8pt)^s = 1 - \left(\frac{16\log S}{32\log S}\right)^{2\log S} = 1 - S^{-2}$$
.

• Аналогично предыдущему шагу, искомая подстановка существует.

- Применим лемму о переключении к гейтам на втором уровне с параметрами $t = 2 \log S$, $s = 2 \log S$, $p = \frac{1}{32 \log S}$.
- $1 (8pt)^s = 1 \left(\frac{16\log S}{32\log S}\right)^{2\log S} = 1 S^{-2}$.
- Аналогично предыдущему шагу, искомая подстановка существует.
- Заменили типы гейтов на первых двух уровнях, объединяем второй и третий уровни.

• Применим лемму о переключении к гейтам на втором уровне с параметрами $t = 2 \log S$, $s = 2 \log S$, $p = \frac{1}{32 \log S}$.

•
$$1 - (8pt)^s = 1 - \left(\frac{16\log S}{32\log S}\right)^{2\log S} = 1 - S^{-2}$$
.

- Аналогично предыдущему шагу, искомая подстановка существует.
- Заменили типы гейтов на первых двух уровнях, объединяем второй и третий уровни.
- Повторим (d-1) раз, получим схему глубины 2, представляющую собой $(2\log S)$ -КНФ или $(2\log S)$ -ДНФ.

- Применим лемму о переключении к гейтам на втором уровне с параметрами $t = 2 \log S$, $s = 2 \log S$, $p = \frac{1}{32 \log S}$.
- $1 (8pt)^s = 1 \left(\frac{16\log S}{32\log S}\right)^{2\log S} = 1 S^{-2}$.
- Аналогично предыдущему шагу, искомая подстановка существует.
- Заменили типы гейтов на первых двух уровнях, объединяем второй и третий уровни.
- Повторим (d-1) раз, получим схему глубины 2, представляющую собой $(2\log S)$ -КНФ или $(2\log S)$ -ДНФ.
- У нас уже подставлено $n-\frac{n}{16(32\log S)^{d-1}}$ переменных. Из оставшихся достаточно подставить $2\log S$, чтобы обратить схему в константу. Таким образом, теорема доказана.

Следствия из оценки на R(f)

Teopeмa (Håstad, 86)

Любая АС-схема глубины (d+1), вычисляющая Parity $_n$, имеет размер не менее $2^{\Omega(n^{1/d})}$.

Следствия из оценки на R(f)

Teopeмa (Håstad, 86)

Любая АС-схема глубины (d+1), вычисляющая Parity $_n$, имеет размер не менее $2^{\Omega(n^{1/d})}$.

Определение

 AC^k - класс булевых функций, вычислимых AC-схемами глубины $\mathcal{O}(\log^k n)$ полиномиального размера.

Следствия из оценки на R(f)

Teopeмa (Håstad, 86)

Любая АС-схема глубины (d+1), вычисляющая Parity $_n$, имеет размер не менее $2^{\Omega(n^{1/d})}$.

Определение

 AC^k - класс булевых функций, вычислимых АС-схемами глубины $\mathcal{O}(\log^k n)$ полиномиального размера.

Утверждение

$$f \in AC^0 \Rightarrow R(f) \leq n - \frac{n}{polylog(n)}$$
.

Утверждение

Любая AC-схема глубины d, вычисляющая Maj_n , имеет размер не менее $2^{\Omega(n^{1/d})}$.

Утверждение

Любая AC-схема глубины d, вычисляющая Maj_n , имеет размер не менее $2^{\Omega(n^{1/d})}$.

Доказательство

• Прямое использование оценки на R(f) не поможет: $R(Maj_n) = n/2$.

Утверждение

Любая AC-схема глубины d, вычисляющая Maj_n , имеет размер не менее $2^{\Omega(n^{1/d})}$.

- Прямое использование оценки на R(f) не поможет: $R(Maj_n) = n/2$.
- $E_k^{n/2}(x) = Th_k^{n/2}(x) \wedge \neg Th_{k+1}^{n/2}(x) = Th_k^{n/2}(x) \wedge Th_{n/2-k-1}^{n/2}(\neg x).$

Утверждение

Любая AC-схема глубины d, вычисляющая Maj_n , имеет размер не менее $2^{\Omega(n^{1/d})}$.

- Прямое использование оценки на R(f) не поможет: $R(Maj_n) = n/2$.
- $E_k^{n/2}(x) = Th_k^{n/2}(x) \wedge \neg Th_{k+1}^{n/2}(x) = Th_k^{n/2}(x) \wedge Th_{n/2-k-1}^{n/2}(\neg x).$
- $Th_k^{n/2}(x) = Maj_n(x\underbrace{1\dots 1}_{n/2-k}\underbrace{0\dots 0}_k)$

Оценка для Мај_п

Утверждение

Любая AC-схема глубины d, вычисляющая Maj_n , имеет размер не менее $2^{\Omega(n^{1/d})}$.

- Прямое использование оценки на R(f) не поможет: $R(Maj_n) = n/2$.
- $E_k^{n/2}(x) = Th_k^{n/2}(x) \wedge \neg Th_{k+1}^{n/2}(x) = Th_k^{n/2}(x) \wedge Th_{n/2-k-1}^{n/2}(\neg x).$
- $Th_k^{n/2}(x) = Maj_n(x\underbrace{1\dots 1}_{n/2-k}\underbrace{0\dots 0}_{k})$
- $Parity_n = \bigvee_{k \le n/2, \ k \equiv 1 \bmod 2} E_k^{n/2} = \bigwedge_{k \le n/2, \ k \equiv 0 \bmod 2} \neg E_k^{n/2}.$

Утверждение

Любая AC-схема глубины d, вычисляющая Maj_n , имеет размер не менее $2^{\Omega(n^{1/d})}$.

- Прямое использование оценки на R(f) не поможет: $R(Maj_n) = n/2$.
- $E_k^{n/2}(x) = Th_k^{n/2}(x) \land \neg Th_{k+1}^{n/2}(x) = Th_k^{n/2}(x) \land Th_{n/2-k-1}^{n/2}(\neg x).$
- $Th_k^{n/2}(x) = Maj_n(x\underbrace{1\dots 1}_{n/2-k}\underbrace{0\dots 0}_{k})$
- $Parity_n = \bigvee_{k \le n/2, \ k \equiv 1 \bmod 2} E_k^{n/2} = \bigwedge_{k \le n/2, \ k \equiv 0 \bmod 2} \neg E_k^{n/2}.$
- Можно вычислить $Parity_{n/2}$ схемой глубины (d+1) размера $\mathcal{O}(nS)$, получаем требуемое.

План лекции

- 🕕 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Идея метода аппроксимаций

 Аппроксимация схем: покажем, что функции, вычисляемые маленькими схемами из определенного класса, могут быть аппроксимированы полиномами маленькой степени.

Идея метода аппроксимаций

- Аппроксимация схем: покажем, что функции, вычисляемые маленькими схемами из определенного класса, могут быть аппроксимированы полиномами маленькой степени.
- Аппроксимация функций: покажем, что какие-то функции не могут быть аппроксимирована таким образом, в итоге получим для них нижнюю оценку.

План лекции

- 🕕 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- З Упражнения

Аппроксимация OR_n

Лемма (Aspnes, Beigel, Furst, Rudich, 94)

Для любого целого r>0 существует полином p с вещестенными коэффициентами от n переменных степени не более $\mathcal{O}(r\log n)$, такой, что $\Pr[p(x) \neq OR_n(x)] \leq 2^{-r}$ при любом вероятностном распределении x.

$$S_0,\ldots,S_{\lceil\log n\rceil}\subseteq\{1,\ldots,n\}:\Pr[j\in S_k]=2^{-k}.$$

$$S_0,\ldots,S_{\lceil\log n\rceil}\subseteq\{1,\ldots,n\}:\Pr[j\in S_k]=2^{-k}.$$

$$q_k(x) := \sum_{i \in S_k} x_i.$$

$$S_0,\ldots,S_{\lceil\log n
ceil}\subseteq\{1,\ldots,n\}:\Pr[j\in S_k]=2^{-k}.$$
 $q_k(x):=\sum_{i\in S_k}x_i.$ $q(x):=1-\prod_{i=0}^{\lceil\log n
ceil}(1-q_k(x)).$

$$S_0, \dots, S_{\lceil \log n \rceil} \subseteq \{1, \dots, n\} : \Pr[j \in S_k] = 2^{-k}.$$
 $q_k(x) := \sum_{i \in S_k} x_i.$ $q(x) := 1 - \prod_{k=0}^{\lceil \log n \rceil} (1 - q_k(x)).$ $\Pr[q(x) = 1] \ge \Pr_{2^{k-1} < |x|_1 < 2^k} [q_k(x) = 1]$

$$S_0, \dots, S_{\lceil \log n \rceil} \subseteq \{1, \dots, n\} : \Pr[j \in S_k] = 2^{-k}.$$
 $q_k(x) := \sum_{i \in S_k} x_i.$ $q(x) := 1 - \prod_{k=0}^{\lceil \log n \rceil} (1 - q_k(x)).$ $\Pr[q(x) = 1] \ge \Pr_{2^{k-1} \le |x|_1 < 2^k} [q_k(x) = 1] = |x|_1 2^{-k} (1 - 2^{-k})^{|x|_1 - 1}$

$$S_0, \dots, S_{\lceil \log n \rceil} \subseteq \{1, \dots, n\} : \Pr[j \in S_k] = 2^{-k}.$$
 $q_k(x) := \sum_{i \in S_k} x_i.$ $q(x) := 1 - \prod_{k=0}^{\lceil \log n \rceil} (1 - q_k(x)).$ $\Pr[q(x) = 1] \ge \Pr_{2^{k-1} \le |x|_1 < 2^k} [q_k(x) = 1]$ $= |x|_1 2^{-k} (1 - 2^{-k})^{|x|_1 - 1}$ $\ge \frac{1}{2} (1 - 2^{-k})^{2^k - 1}$

$$S_0, \dots, S_{\lceil \log n \rceil} \subseteq \{1, \dots, n\} : \Pr[j \in S_k] = 2^{-k}.$$

$$q_k(x) := \sum_{i \in S_k} x_i.$$

$$q(x) := 1 - \prod_{k=0}^{\lceil \log n \rceil} (1 - q_k(x)).$$

$$\Pr[q(x) = 1] \ge \Pr_{\substack{2^{k-1} \le |x|_1 < 2^k \\ 2^k (1 - 2^{-k})^{|x|_1 - 1}}} [q_k(x) = 1]$$

$$= |x|_1 2^{-k} (1 - 2^{-k})^{|x|_1 - 1}$$

$$\ge \frac{1}{6}.$$

Доказательство

Доказательство

$$p(x) := 1 - \prod_{i=1}^{4r} (1 - p_i(x)).$$

Доказательство

 p_1,\ldots,p_{4r} строятся, как q (могут отличаться семейством $\{S_k\}_{k=0}^m$).

$$p(x) := 1 - \prod_{i=1}^{4r} (1 - p_i(x)).$$

 $\deg(p) = 4r \cdot \deg(q) = 4r(\lceil \log n \rceil + 1) = \mathcal{O}(r \log n).$

Доказательство

$$p(x) := 1 - \prod_{i=1}^{4r} (1 - p_i(x)).$$

$$\deg(p) = 4r \cdot \deg(q) = 4r(\lceil \log n \rceil + 1) = \mathcal{O}(r \log n).$$

$$\Pr[p(x) = 1] \ge \Pr[\exists i : p_i(x) = 1]$$

Доказательство

$$p(x) := 1 - \prod_{i=1}^{4r} (1 - p_i(x)).$$

$$\deg(p) = 4r \cdot \deg(q) = 4r(\lceil \log n \rceil + 1) = \mathcal{O}(r \log n).$$

$$\Pr[p(x) = 1] \ge \Pr[\exists i : p_i(x) = 1]$$

= $1 - \Pr[q(x) \neq 1]^{r4}$

Доказательство

$$p(x) := 1 - \prod_{i=1}^{4r} (1 - p_i(x)).$$

$$\deg(p) = 4r \cdot \deg(q) = 4r(\lceil \log n \rceil + 1) = \mathcal{O}(r \log n).$$

$$\Pr[p(x) = 1] \ge \Pr[\exists i : p_i(x) = 1]$$

= $1 - \Pr[q(x) \neq 1]^{r4}$
 $\ge 1 - \left(\frac{5}{6}\right)^{4r}$

Доказательство

$$p(x) := 1 - \prod_{i=1}^{4r} (1 - p_i(x)).$$

$$\deg(p) = 4r \cdot \deg(q) = 4r(\lceil \log n \rceil + 1) = \mathcal{O}(r \log n).$$

$$\Pr[p(x) = 1] \ge \Pr[\exists i : p_i(x) = 1]$$

= $1 - \Pr[q(x) \neq 1]^{r4}$
 $\ge 1 - \left(\frac{5}{6}\right)^{4r}$
 $> 1 - 2^{-r}$.

Произвольность распеределения x

Замечание

Мы еще не показали, почему эта оценка верна при любом распределении x. В общих чертах:

• мы всегда можем построить полином, ошибающийся не более, чем на 2^{n-r} заданных входных последовательностях;

Произвольность распеределения x

Замечание

Мы еще не показали, почему эта оценка верна при любом распределении x. В общих чертах:

- мы всегда можем построить полином, ошибающийся не более, чем на 2^{n-r} заданных входных последовательностях;
- далее, ясно, что при любом распределении этих входных последовательностей найдутся такие 2^{n-r} , что вероятность появления любой из них не превышает 2^{-r} .

Утверждение

Для любого $\epsilon > 0$ и любой функции f, вычислимой AC-схемой глубины d размера S существует полином c вещестенными коэффициентами от n переменных степени не более $\mathcal{O}((\log(S/\epsilon)\log S)^d)$, значения которого не совпадают c f на не более, чем $\epsilon 2^n$ входах.

Утверждение

Для любого $\epsilon > 0$ и любой функции f, вычислимой AC-схемой глубины d размера S существует полином c вещестенными коэффициентами от n переменных степени не более $\mathcal{O}((\log(S/\epsilon)\log S)^d)$, значения которого не совпадают c f на не более, чем $\epsilon 2^n$ входах.

Доказательство

ullet Каждый гейт — OR_k или AND_k , $k \leq S$.

Утверждение

Для любого $\epsilon > 0$ и любой функции f, вычислимой AC-схемой глубины d размера S существует полином c вещестенными коэффициентами от n переменных степени не более $\mathcal{O}((\log(S/\epsilon)\log S)^d)$, значения которого не совпадают c f на не более, чем $\epsilon 2^n$ входах.

- ullet Каждый гейт OR_k или AND_k , $k \leq S$.
- Применим предыдущую лемму с $r = \lfloor (\log(S/\epsilon)) \rfloor$ и равномерно распределенной входной последовательностью.

Утверждение

Для любого $\epsilon > 0$ и любой функции f, вычислимой AC-схемой глубины d размера S существует полином c вещестенными коэффициентами от n переменных степени не более $\mathcal{O}((\log(S/\epsilon)\log S)^d)$, значения которого не совпадают c f на не более, чем $\epsilon 2^n$ входах.

- ullet Каждый гейт OR_k или AND_k , $k \leq S$.
- Применим предыдущую лемму с $r = \lfloor (\log(S/\epsilon)) \rfloor$ и равномерно распределенной входной последовательностью.
- Композиция полиномов для каждого гейта дает полином, вычисляющий значение выходного гейта.

Утверждение

Для любого $\epsilon > 0$ и любой функции f, вычислимой AC-схемой глубины d размера S существует полином c вещестенными коэффициентами от n переменных степени не более $\mathcal{O}((\log(S/\epsilon)\log S)^d)$, значения которого не совпадают c f на не более, чем $\epsilon 2^n$ входах.

- ullet Каждый гейт OR_k или AND_k , $k \leq S$.
- Применим предыдущую лемму с $r = \lfloor (\log(S/\epsilon)) \rfloor$ и равномерно распределенной входной последовательностью.
- Композиция полиномов для каждого гейта дает полином, вычисляющий значение выходного гейта. Его степень не более $\mathcal{O}((r\log S)^d)$.

Утверждение

Для любого $\epsilon > 0$ и любой функции f, вычислимой AC-схемой глубины d размера S существует полином c вещестенными коэффициентами от n переменных степени не более $\mathcal{O}((\log(S/\epsilon)\log S)^d)$, значения которого не совпадают c f на не более, чем $\epsilon 2^n$ входах.

- Каждый гейт OR_k или AND_k , $k \leq S$.
- Применим предыдущую лемму с $r = \lfloor (\log(S/\epsilon)) \rfloor$ и равномерно распределенной входной последовательностью.
- Композиция полиномов для каждого гейта дает полином, вычисляющий значение выходного гейта. Его степень не более $\mathcal{O}((r\log S)^d)$. Вероятность его ошибки не более $S2^{-r}=\epsilon$.

План лекции

- 🕕 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- Упражнения

ullet Рассмотрим пространство функций из $\{0,1\}^n$ в $\mathbb{R}.$

- Рассмотрим пространство функций из $\{0,1\}^n$ в \mathbb{R} .
- \bullet Его размерность равна 2^n .

- Рассмотрим пространство функций из $\{0,1\}^n$ в \mathbb{R} .
- Его размерность равна 2^n .
- Можно определить на нем скалярное произведение $\langle f,g \rangle = rac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) g(x).$

- Рассмотрим пространство функций из $\{0,1\}^n$ в \mathbb{R} .
- \bullet Его размерность равна 2^n .
- Можно определить на нем скалярное произведение $\langle f,g \rangle = rac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) g(x).$
- ullet Функции вида $\chi_S(x) = \prod_{i \in S} (-1)^{x_i} = \prod_{i \in S} (1-2x_i)$, где $S \subseteq \{1,\dots,n\}$, составляют ортонормированный базис.

Слабая степень

Определение

Слабая степень $d_w(f)$ функции f — минимальная возможная степень такого полинома p, что $p\not\equiv 0$ и $p(-1)^f\geq 0$, т. е. знак p соответствует значению f в тех точках, где $p\not\equiv 0$.

Слабая степень

Определение

Слабая степень $d_w(f)$ функции f — минимальная возможная степень такого полинома p, что $p\not\equiv 0$ и $p(-1)^f\geq 0$, т. е. знак p соответствует значению f в тех точках, где $p\not\equiv 0$.

Лемма

 $d_w(Parity_n) = n.$

Слабая степень

Определение

Слабая степень $d_w(f)$ функции f — минимальная возможная степень такого полинома p, что $p\not\equiv 0$ и $p(-1)^f\geq 0$, т. е. знак p соответствует значению f в тех точках, где $p\not\equiv 0$.

Лемма

$$d_w(Parity_n) = n.$$

$$p(-1)^{\textit{Parity}_n} \geq 0, p \not\equiv 0 \Rightarrow \langle p, \chi_{\{1,\dots,n\}} \rangle > 0 \Rightarrow \deg(p) = n.$$

Оценка на слабую степень

Лемма

Пусть р — полином степени k, f — булева функция от n переменных, $Error(p,f)=\{x\in\{0,1\}^n\mid p(x)(-1)^{f(x)}\leq 0\},\ \Delta=\lfloor (d_w(f)-k-1)/2\rfloor.$ Тогда если $d_w(f)>k$, то

$$|Error(p,f)| \ge \sum_{i=0}^{\Delta} \binom{n}{i}.$$

Оценка на слабую степень

Лемма

Пусть р — полином степени k, f — булева функция от n переменных, $Error(p,f)=\{x\in\{0,1\}^n\mid p(x)(-1)^{f(x)}\leq 0\},\ \Delta=\lfloor (d_w(f)-k-1)/2\rfloor.$ Тогда если $d_w(f)>k$, то

$$|Error(p,f)| \ge \sum_{i=0}^{\Delta} {n \choose i}.$$

Доказательство

Предположим противное. Тогда найдется невырожденный полином q степени Δ , такой, что $x \in Error(p,f) \Rightarrow q(x)=0$: его коэффиценты являются решением системы из |Error(p,f)| линейных уравнений от $\sum\limits_{i=0}^{\Delta} \binom{n}{i}$ переменных.

Оценка на слабую степень

Лемма

Пусть р — полином степени k, f — булева функция от n переменных, $Error(p,f)=\{x\in\{0,1\}^n\mid p(x)(-1)^{f(x)}\leq 0\},\ \Delta=\lfloor (d_w(f)-k-1)/2\rfloor.$ Тогда если $d_w(f)>k$, то

$$|Error(p,f)| \ge \sum_{i=0}^{\Delta} \binom{n}{i}.$$

Доказательство

Предположим противное. Тогда найдется невырожденный полином q степени Δ , такой, что $x\in Error(p,f)\Rightarrow q(x)=0$: его коэффиценты являются решением системы из |Error(p,f)| линейных уравнений от $\sum\limits_{i=0}^{\Delta} \binom{n}{i}$ переменных. Тогда $pq^2\not\equiv 0$ и $pq^2(-1)^f\geq 0$, значит,

 $d_w(f) \le \deg(pq^2) \le d_w(f) - 1$. Получили противоречие.

Аппроксимация Parity_n

Утверждение

Пусть р — полином от п переменных степени не более $\delta \sqrt{n}+1$, где $0<\delta<1/2$. Тогда

 $|Error(p, Patity_n)| \ge (1/2 - \delta)2^n$.

Утверждение

Пусть р — полином от п переменных степени не более $\delta \sqrt{n}+1$, где $0<\delta<1/2$. Тогда

$$|Error(p, Patity_n)| \ge (1/2 - \delta)2^n$$
.

$$|Error(p, Patity_n)| \ge \sum_{i=0}^{n/2-\delta\sqrt{n}} {n \choose i}$$

Утверждение

Пусть р — полином от п переменных степени не более $\delta \sqrt{n}+1$, где $0<\delta<1/2$. Тогда

$$|Error(p, Patity_n)| \ge (1/2 - \delta)2^n$$
.

$$|Error(p, Patity_n)| \geq \sum_{i=0}^{n/2-\delta\sqrt{n}} {n \choose i}$$

$$= \sum_{i=0}^{n/2} {n \choose i} - \sum_{i=n/2-\delta\sqrt{n}+1}^{n/2} {n \choose i}$$

Утверждение

Пусть р — полином от п переменных степени не более $\delta \sqrt{n}+1$, где $0<\delta<1/2$. Тогда

$$|Error(p, Patity_n)| \ge (1/2 - \delta)2^n$$
.

$$|\mathit{Error}(p, \mathit{Patity}_n)| \geq \sum_{i=0}^{n/2 - \delta \sqrt{n}} \binom{n}{i}$$

$$= \sum_{i=0}^{n/2} \binom{n}{i} - \sum_{i=n/2 - \delta \sqrt{n} + 1}^{n/2} \binom{n}{i}$$

$$\geq 2^{n-1} - \delta \sqrt{n} \binom{n}{n/2}$$

Утверждение

Пусть р — полином от п переменных степени не более $\delta \sqrt{n}+1$, где $0<\delta<1/2$. Тогда

$$|Error(p, Patity_n)| \ge (1/2 - \delta)2^n$$
.

$$|Error(p, Patity_n)| \geq \sum_{i=0}^{n/2 - \delta\sqrt{n}} {n \choose i}$$

$$= \sum_{i=0}^{n/2} {n \choose i} - \sum_{i=n/2 - \delta\sqrt{n}+1}^{n/2} {n \choose i}$$

$$\geq 2^{n-1} - \delta\sqrt{n} {n \choose n/2}$$

$$\geq (1/2 - \delta)2^n. \qquad \Box$$

Теорема ((почти) Aspnes и пр., 94)

Любая АС-схема глубины (d+1), вычисляющая Parity_n, имеет размер не менее $2^{\Omega(n^{1/4d})}$.

Теорема ((почти) Aspnes и пр., 94)

Любая АС-схема глубины (d+1), вычисляющая Parity_n, имеет размер не менее $2^{\Omega(n^{1/4d})}$.

Доказательство

• Применим утверждение об аппроксимации схемы с $\epsilon=1/4$.

Теорема ((почти) Aspnes и пр., 94)

Любая АС-схема глубины (d+1), вычисляющая Parity_n, имеет размер не менее $2^{\Omega(n^{1/4d})}$.

- ullet Применим утверждение об аппроксимации схемы с $\epsilon = 1/4$.
- Можно приблизить $Parity_n$ полиномом p степени не более $\mathcal{O}((\log(4S)\log S)^d) = \mathcal{O}((\log S)^{2d})$, ошибающемся не более, чем на $2^n/4$ входах.

Теорема ((почти) Aspnes и пр., 94)

Любая АС-схема глубины (d+1), вычисляющая Parity_n, имеет размер не менее $2^{\Omega(n^{1/4d})}$.

- ullet Применим утверждение об аппроксимации схемы с $\epsilon = 1/4$.
- Можно приблизить $Parity_n$ полиномом p степени не более $\mathcal{O}((\log(4S)\log S)^d) = \mathcal{O}((\log S)^{2d})$, ошибающемся не более, чем на $2^n/4$ входах.
- Тогда $|Error(1-2p, Patity_n)| \leq 2^n/4$.

Теорема ((почти) Aspnes и пр., 94)

Любая АС-схема глубины (d+1), вычисляющая Parity $_n$, имеет размер не менее $2^{\Omega(n^{1/4d})}$.

- ullet Применим утверждение об аппроксимации схемы с $\epsilon = 1/4$.
- Можно приблизить $Parity_n$ полиномом p степени не более $\mathcal{O}((\log(4S)\log S)^d) = \mathcal{O}((\log S)^{2d})$, ошибающемся не более, чем на $2^n/4$ входах.
- Тогда $|Error(1-2p, Patity_n)| \leq 2^n/4$.
- ullet Значит, $\mathcal{O}((\log S)^{2d}) \geq \deg(p) \geq \mathcal{O}(\sqrt{n})$.

План лекции

- 🕕 Метод сокращения глубины: лемма о переключении
 - Общие идеи
 - Вводные определения
 - Лемма о переключении, доказательство через лемму Разборова
 - Доказательство леммы Разборова
 - Получение оценок
- 2 Метод аппроксимаций
 - Аппроксимация схем
 - Аппроксимация функций
- Упражнения

Упражнения

- **①** Покажите, что для любого $d \geq 3$ функция $Parity_n$ может быть вычислена схемой над базисом $\{\land,\lor,\lnot\}$ глубины (d+1) размера $2^{\Omega(n^{1/d})}$.
- ② Пусть $h(x) = \bigwedge_{i \in S} x_i$, где |S| < n, и пусть a = 0-1-вектор, содержащий не менее (d+1) единиц. Покажите, что $\bigoplus_{b \leq a} h(b) = 0$.
- ullet Пусть ho —p-случайная подстановка, $p=1/\sqrt{n}$.
 - (a) Пусть C конъюнкт/дизъюнкт. Покажите, что C_{ρ} зависит от более, чем t переменных, с вероятностью не более $n^{-t/3}$.
 - (b) Докажите ослабленную версию леммы о переключении: $\forall t, k \exists s : F-t\text{-KH}\Phi \Rightarrow \Pr[F_{\rho} \text{ зависит от } \geq s \text{ переменных}] \leq n^{-k}.$

Подсказки

- Расмотреть схему глубины d с гейтами, считающими $Parity_{n^{1/d}}$. Каждый такой гейт заменить на $KH\Phi/ДH\Phi$ размера $2^{n^{1/d}}$. При этом глубина увеличится вдвое; для уменьшения использовать ассоциативность AND и OR.
- **2** Рассмотерть два случая: либо $\forall i \in Sa_i = 1$, либо нет.
- (a) Если C содержит $> m = t \log n$ литералов, то C_{ρ} не константа с вероятностью $\leq ((1+p)/2)^m$; иначе C_{ρ} содержит хотя бы t переменных с вероятностью $\leq {m \choose t} p^t$.
 - (b) Индукция по t. База: s(1,k)=3k. Для перехода рассмотреть максимальное множество попарно непересекающихся дизъюнктов F. Пусть Y объединение множеств переменных этих дизъюнктов. Если $|Y| \geq k2^t \log n$, то F_ρ константа с вероятностью $\geq 1-n^{-k}$. Иначе $\forall i$ в Y остается >i неприсвоенных переменных с вероятностью $\leq n^{-i/3}$. Взять i=4k и установить этим 4k переменным из Y константные значения всеми возможноыми способами, чтобы получить (t-1)-КНФ и применить предположение индукции.

Спасибо за внимание!