Equivalence

Iwo categories (C&D) ove isomorphic if they are isomorphic objects in the Centegory of categories (of some size), that is, there are

functors

(in which case, as usual, we write $C\cong D$)

Sortisfying

Ido = GoF

FoG= IdD

Equivalence

Two categories C&D one equivalent if there are

in which case one writes $C \simeq D$

$$\mathbb{C} \simeq \mathbb{D}$$

Some deep results in mathematics take the form of equivalences:

E.g.
Stone duality: (category of category) ~
algebras

Category of Compact, tet. disconn. Hours diff spaces

Gelfand duality: (abelian C*algebras) ~

Compact Hausdorft Spaces

Example: Set = Set | I

Set/I is a slice category [5x.5h.4, qu.6]

- objects are (x,f) Where $f \in Set(x,T)$
- morphisms $g:(x,f) \rightarrow (x',f')$ one $g \in Set(x,x')$ subisfying $f' \circ g = f$ in Set
- · composition & identities as for set

For each I E obj Set, let Set be the cartegory with

- obj (Set $^{\text{I}}$) $\stackrel{\triangle}{=}$ (obj Set) so objects are I-indexed families of sets $X = (X_i \mid i \in I)$
- morphisms $f: X \rightarrow Y$ in Set are I-indexed families of functions $f = (f; \in Set(X_i, Y_i)) \mid i \in I$ in Set
- composition: $(g \circ f) = (g \circ f) \mid i \in I$ identities: $id_{X} = (id_{Xi} \mid i \in I)$

Example: Set = Set I

functor
$$F: Set^{I} \longrightarrow Set/I$$

on objects:
$$F(X) \stackrel{\triangle}{=} \left\{ \begin{cases} (in) | i \in I \times x \in X_i \end{cases} \right\}$$

on morphisms:

$$F(X^f, X') \stackrel{\triangle}{=}$$

$$\left\{ (iix) \middle| i \in I_{\mathcal{K}} \right\} \longrightarrow \left\{ (iix') \middle| \chi' \in \chi'; \right\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(iix) \longmapsto (iix') \mapsto (iix')$$

Example: Set = Set/I functor G: Set/I -> Set

on objects: $G(\frac{E}{IP}) \triangleq (\{eeE\}|pe=i\}|ieI)$

on morphisms:

$$G(P)_{I} = GF$$
 $G(GF)_{i} = GF$
 $G(GF)_{i} = GF$
 $G(GF)_{i} = GF$

Example: Set = Set | I There over natural isomorphisms

$$\eta: \mathrm{Id}_{\mathrm{Set}^{\mathrm{I}}} \cong \mathrm{GoF}$$

$$\mathrm{E}: \mathrm{Fo} \; \mathrm{G} \cong \mathrm{Id}_{\mathrm{Set}/\mathrm{I}}$$
defined as follows...

Example: Set = Set/I

 $\eta: \mathrm{Id}_{\mathrm{Set}^{\mathrm{I}}} \cong \mathrm{GoF}$ for each $x \in \mathrm{Set}^{\mathrm{I}} \& i \in \mathrm{I}$, there is a bijection

$$(G(Fx))_{i} = \{(i,x) \mid x \in X_{i}\} \stackrel{(N_{x})_{i}}{\cong} X_{i}$$

$$(i,x) \longmapsto x$$

$$(i,x) \longleftarrow x$$

$$(check that this is natural in X)$$

Example: Set = Set | I

$$E: F \circ G \cong Id_{Set/I}$$
For each $\underset{I}{E}_{p}$ in Set/I

$$F(G(\underbrace{E}_{p})) = \begin{cases} (i,e) \in I \times E | p(e|-i) \end{cases} \cong E$$

$$(check this is natural in \underset{I}{E}_{p})$$

FACT Given p: I -> J in Set, Set/J ~ Set J px Set ~ Set/I is the functor "pullback along p" Can generalize from Set to any Centegory C with pullbacks & model E/TT types by left/right adjoints to pullback functor—see locally cartesian closed categories in literature.

Presheaf Categories

Let (be a small category.

The functor category Set Cop

is called the category of presheaves on C

- objects are contravariant functors from Cto Set
- morphisms are natural transformations

Much used at the moment to give scmantics for various dependently-typed languages.

y: C -> Set Cop where I is a small category

is the Curried version of the hom functor

$$\mathbb{C} \times \mathbb{C}^{op} \cong \mathbb{C}^{op} \times \mathbb{C} \xrightarrow{H_{\mathfrak{C}}} \operatorname{Set}$$

is the Curried version of the hom functor

$$\mathbb{C} \times \mathbb{C}^{op} \cong \mathbb{C}^{op} \times \mathbb{C} \xrightarrow{H_{\mathfrak{C}}} \operatorname{Set}$$

So for each X ∈ C, y(X) ∈ Set cor is the function

$$C(-, \times): C^{\circ p} \rightarrow Set$$
 $f \downarrow \text{ in } C \longmapsto C(\overline{z}, \times) = g \circ f$
 $C(\gamma, \times) \Rightarrow g$

y: C -> Set where I is a small category

is the Curried version of the hom functor

$$\mathbb{C} \times \mathbb{C}^{op} \cong \mathbb{C}^{op} \times \mathbb{C} \xrightarrow{H_{\mathbb{C}}} \operatorname{Set}$$

So for each $X \in \mathbb{C}$, $y(X) \in Set^{Cop}$ is the function

$$\mathbb{C}(-,\times):\mathbb{C}^{op}\to Set$$

$$f_{\gamma}^{\xi}$$
 in $C \mapsto C(\xi, x)$ this function is often $C(\gamma, x)$ written as f_{γ}^{*}

(N.B. C(-,x) is a functor)

where I is a Small category

is the Curried version of the hom functor

$$\mathbb{C} \times \mathbb{C}^{op} \cong \mathbb{C}^{op} \times \mathbb{C} \xrightarrow{H_{\mathbb{C}}} \mathbb{S}et$$

So for each $Y \xrightarrow{f} X$ in \mathbb{C} , $y(Y) \xrightarrow{y(f)} y(X)$ in Set copies the natural transformation whose component at any $Z \in \mathbb{C}^{op}$ is the function

$$y(Y)(Z) \xrightarrow{y(f)_{Z}} y(X)(Z)$$

$$\mathbb{C}(Z,Y) \xrightarrow{g} f \circ g$$

15.16

y: C -> Set Cop

where I is a Small category

is the Curried version of the hom functor

$$\mathbb{C} \times \mathbb{C}^{op} \cong \mathbb{C}^{op} \times \mathbb{C} \xrightarrow{H_{\mathbb{C}}} \operatorname{Set}$$

So for each $Y \xrightarrow{F} X$ in C, $y(Y) \xrightarrow{y(f)} y(X)$ in Set op is the natural transformation whose component at any $Z \in C^{op}$ is the function

Yoneda Lemma

For each small category, C, each $X \in C$ and each $F \in Set$ C^{op} , there is a bijection of sets

$$\gamma_{x,F}: Set^{C^{op}}(y(x),F) \cong F(x)$$

He value of
F: Cor > Set
at x

The set of natural transformations
from the functor y(x): C°P -> Set
to the functor F: C°P -> Set

Yoneda Lemma

For each small category, C, each $X \in C$ and each $F \in Set$ C^{op} , there is a bijection of sets

$$\gamma_{x,F}: Set^{C^{op}}(y(x),F) \cong F(x)$$

the value of F: Cor > Set at x

The set of natural transformations from the functor y(x): C°P-) Set to the functor F: C°P-, Set

which is natural in both X and F.