Quantitative Methods 2

Tutorial 10 Nhan La

Last week

Multiple linear regression

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

- General F test
 - Compare unrestricted against restricted model
 - Test linear restriction of parameters
 - General expression: $F = \frac{n-k-1}{m} \frac{SSE_r SSE}{SSE}$
 - Same dependent variable: $F = \frac{n-k-1}{m} \frac{R^2 R_r^2}{1 R^2} = \frac{(R^2 R_r^2)/m}{(1 R^2)/(n k 1)}$
- Conduct the linear restriction test
 - Use EViews' coefficient restriction test, or
 - Estimate separately restricted and unrestricted models

MLR assumptions and violations

	Assumption	Violation
MLR1	$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \varepsilon_i$	Nonlinearity
MLR2	$E(\varepsilon_i x_i)=0$	Omitted variable
MLR3	$Var(\varepsilon_i x_i) = \sigma^2$	Heteroskedasticity
MLR4	$E(\varepsilon_i \varepsilon_j \big x_i, x_j) = 0$	Autocorrelation
MLR5	No exact linear relationship among x_i	(Perfect) multicollinearity
MLR6	$\varepsilon_i x_i \sim N(0, \sigma^2)$	Unreliable hypothesis testing

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

- Multicollinearity
 - Effect of X_i on Y, holding all other X's constant?
- Heteroskedasticity : $Var(\varepsilon_i|x_i) = \sigma_i^2$
- Consequence:
 - $-\hat{\beta}$ are still linear and unbiased
 - $SE(\hat{\beta})$ are incorrect, thus hypothesis tests are incorrect

Violation of MLR5: Multicollinearity

• High R^2 but only a few significant t-ratios with the logical signs

$$- t_k = \frac{\widehat{\beta}_k - 0}{SE(\widehat{\beta}_k)}$$

$$- R^2 \ge 0.5$$

• Strong correlation between *X*'s. Stronger correlation between some *X*'s than between these variables and *Y*

$$-|r| > 0.8$$

$$\bullet \quad VIF_j = \frac{1}{1 - R_j^2} \ge 5$$

Violation of MLR3: Heteroskedascity

$$Var(\varepsilon_i|x_i) = \sigma_i^2$$

- OLS estimators $(\hat{\beta})$ are still linear, unbiased, consistent and normally distributed
- $Var(\hat{\beta})$ is often underestimated
 - Inflate significance of the hypothesis testing

Violation of MLR3: Heteroskedascity

- Plot e_i against independent variables and observe patterns
- White test

i.
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + e_i$$

ii. Auxiliary model

$$e_i^2 = \hat{\alpha}_0 + \hat{\alpha}_1 X_{1i} + \hat{\alpha}_2 X_{2i} + \hat{\alpha}_3 X_{1i}^2 + \hat{\alpha}_4 X_{2i}^2 + \hat{\alpha}_5 X_{1i} X_{2i} + v_i$$

Why?

$$Var(e_i|X_i) = E(e_i^2|X_i) - [E(e_i)|X_i]^2$$

$$Var(e_i|X_i) = E(e_i^2|X_i)$$
0

iii. Test statistic

$$W = nR_{aux}^2 \sim \chi_{df}^2$$

 H_0 : model is homoskedastic; H_A : model is heteroskedastic df = number of regressors (independent variables) in the auxiliary model n = sample size