Comparative Examples 1 and 2

except for using the components shown in Table 2. Compositions of Comparative Examples 1 and 2 were prepared in the same manner as in Example 1

Comparative Example 3

using the components shown in Table 2. Compositions of Comparative Example 3 was prepared in the same manner as in Example 2 except for

Table 2

	PAGIIIPTC				Comparative	ve Example	
1	Ъ	2	ω	4	ר		w
able							
in Dispersion Liquid	53				53	υ N	
in Dispersion Liquid		53					ກ ລ
in Dispersion			53	-		-	
Liquid				78			
Compound with polymerizable unsaturated							
groups (C)							
M1	23.5	23.5	23.5	<u></u> پ	رر در	,	
M2	23.5	23.5	23.5	9	2 1) J J J	47 0
Oligomer-type radiation polymerization					1	- (H
tor (B)							
KIP150	4.0	4.5	7.5	4. Л			
Radiation polymerization initiator (D)							
R1			1.0			0.9	o o
R2						0.9	0.9
Organic solvent					#.		
	بد	103	מ	0	ر د	ر 1)
Toluene		1	ŀ	143	ŀ	۲	70
MIBK	122				122	122	
Isopropanol			226		; ;	t	- 1
Cyclohexanone		55	62				л л
	257.0	262.0	414.5	338.5	257.0	254.8	254.8
Nonvolatile components (%)	40	40	26	31	40	40	-
Properties of cured product							
less	H8	8H	H8	H8	7H	H8	и И
hesion (100	100	100	100	100	100	100
SW scratch resistance	Excel-	Excel-	Excel-	Excel-	Excel-	Excel-	Excel-
	lent	lent	lent	lent	lent	lent	lent
(11111)	10	TO	15	9	35	40	10