BARF – Selling Quality Dog Food in the US

Assignment

Jonas Debrabandere, Margret Dupslaff, Felipe Hollanda Lima, Sebastian Gili, Talha Reza, Bruh Terfie

30.05.2020

US pet food market is a \$30B industry, of which dog food is 67%

Global pet food market (2016),

$$% (100 = $75.2B)$$

2

Problem statement

Status Quo

- Most Pet allergies caused by commercial dog food
- Before commercial pet food, dogs barely experienced chronic allergies, ear infections, hot spots, itchy skin
- "BARF" (Biologically Appropriate Raw Food) → eradicates allergies

Challenges

- Time-consuming to prepare and expensive compared to kibbles
- Some breeds of dogs are dramatically affected by allergies compared to others
- Seba Gili's wife to the rescue want to set up a business to provide this

Solution

 A model that could allow the team to predict where these dogs live, based on their family's general information, could provide the solution!

Input data provides total number of allergic dogs in New York

Input data from New York based on income level, population, ethnicity, type of work, household size, etc.

→ Need to apply the data on Florida

Objective	Implementation	Standard Error of the model		
Total # dogs in Florida based on New York dataIncome	 Simple linear regression Simple linear regression using log of independent variables ~500 ~439 			
DemographicsLicenses of dogsZIP code	 Random Forrest Random Forrest using log of independent variables Principle Component Analysis (scaled) Principle Component Analysis (not scaled) 	512.35530.23521.60518.81		
Percentage of allergic dogs in Florida	Random Forest prediction of the % of allergic susceptible dogs using PCA	Reference / Prediction	0	1
		1	2	24

1a Log-Linear regression


```
Call:
Im(formula = Total dogs ~ Black + IncomePerCap + Poverty + Service +
 Construction + Drive + Transit + OtherTransp + WorkAtHome +
 Employed + PublicWork + Unemployment, data = linear_regression_log)
Residuals:
                          Max
        1Q Median
-1.76710 -0.27290 0.03406 0.38544 1.62535
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) -25.60019  4.64349 -5.513 1.80e-07 ***
        -0.16450 0.05104 -3.223 0.001601
Black
IncomePerCap 1.87315 0.32819 5.708 7.30e-08 ***
         Poverty
         Service
Construction 0.28263 0.17100 1.653 0.100763
         0.25226  0.15582  1.619  0.107876
Drive
         Transit
OtherTransp 0.22928 0.11757 1.950 0.053302.
WorkAtHome 0.29947 0.11779 2.542 0.012172 *
           0.24349 0.14171 1.718 0.088113.
Employed
PublicWork 0.45227 0.18041 2.507 0.013405 *
Unemployment -0.27250 0.19835 -1.374 0.171840
```

Signif. codes: 0 '***' 0.001 " 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.549 on 131 degrees of freedom Multiple R-squared: 0.5425, Adjusted R-squared: 0.5006 F-statistic: 12.94 on 12 and 131 DF, p-value: < 2.2e-16

2a Random Forest

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 8 1

1 2 24

Accuracy: 0.9143

95% CI: (0.7694, 0.982)

No Information Rate: 0.7143

P-Value [Acc > NIR]: 0.004065

Kappa: 0.7835

Mcnemar's Test P-Value: 1.000000

Sensitivity: 0.8000

Specificity: 0.9600 Pos Pred Value: 0.8889 Neg Pred Value: 0.9231 Prevalence: 0.2857 Detection Rate: 0.2286

Detection Rate: 0.2266

Detection Prevalence: 0.2571

Balanced Accuracy: 0.8800

'Positive' Class: 0

AUC = 0.88

Threshold = 11%

2a Dimensionality Reduction - Principal Component Analysis

•	All the factors were reduced to 5 components
	the factors were reduced to a components

- Component 1 Wealth & Work
- Component 2 Type of employment, transport type
- Component 3 Population size
- Component 4 Specific ethnicities
- Component 5 Specific ethnicity

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5
ChildPoverty	0.92	0.10	0.10-	0.15-	0.03-
Service	0.89	0.30-	0.11-	0.17-	0.01
Poverty	0.88	0.19	0.06-	0.20-	0.02
Hispanic	0.82	0.11	0.09	0.05	0.20-
Production	0.80	0.41-	0.22-	0.16	0.03-
Unemployment	0.74	0.21-	0.06-	0.42-	0.06
Transit	0.51	0.57	0.06	0.37-	0.11-
Construction	0.48	0.60-	0.23-	0.25	0.13-
MeanCommute	0.47	0.75-	0.12-	0.14-	0.08-
Black	0.32	0.28-	0.07-	0.74-	0.23
Office	0.26	0.53-	0.00	0.20	0.26
Carpool	0.07	0.73-	0.14-	0.49	0.02-
PrivateWork	0.07	0.79	0.06	0.40	0.23
Men	0.00	0.12	0.98	0.05	0.02-
TotalPop	0.01-	0.09	0.99	0.01-	0.01-
Women	0.02-	0.06	0.99	0.05-	0.01-
PublicWork	0.04-	0.87-	0.03-	0.41-	0.06-
Native	0.07-	0.10	0.01-	0.01	0.75
FamilyWork	0.07-	0.08-	0.01	0.20	0.04-
SelfEmployed	0.08-	0.64	0.03-	0.18	0.40-
Asian	0.12-	0.02	0.10-	0.77	0.26
Drive	0.20-	0.90-	0.13-	0.21	0.04-
Citizen	0.24-	0.06	0.95	0.08-	0.01
Walk	0.28-	0.73	0.13	0.08	0.31
Employed	0.29-	0.30	0.89	0.04	0.02
OtherTransp	0.34-	0.72	0.21	0.06-	0.03-
WorkAtHome	0.43-	0.73	0.16	0.14-	0.10-
IncomePerCap	0.73-	0.55	0.20	0.03	0.06
White	0.80-	0.17	0.06	0.23	0.21-
Professional	0.84-	0.48	0.16	0.03-	0.02-
Income	0.85-	0.22	0.11	0.12	0.02

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5
ChildPoverty	0.92				
Service	0.89				
Poverty	0.88				
Hispanic	0.82				
Production	0.80				
Unemployment	0.74				
Transit	0.51	0.57			
Construction		0.60-			
MeanCommute		0.75-			
Black				0.74-	
Office		0.53-			
Carpool		0.73-			
PrivateWork		0.79			
Men			0.98		
TotalPop			0.99		
Women			0.99		
PublicWork		0.87-			
Native					0.75
FamilyWork					
SelfEmployed		0.64			
Asian				0.77	
Drive		0.90-			
Citizen			0.95		
Walk		0.73			
Employed			0.89		
OtherTransp		0.72			
WorkAtHome		0.73			
IncomePerCap	0.73-	0.55			
White	0.80-				
Professional	0.84-				
Income	0.85-				

Total market size of BARF is US\$ 5.6m in Florida

Total allergic dogs in Florida

Key Takeaway

- On average, 2.78
 allergic dogs in
 Florida per ZIP code
- US\$ 4,200 revenue potential in Florida per ZIP code¹
- Not a valid business
 case to open a dog food
 shop in a single ZIP
 code in Florida; however
 an online platform
 delivering to whole
 Florida makes a case

1. Assuming US\$ 1,500 revenue per allergic dog

Further steps required to improve the model

Objective	Worked well	Worked not so well	Next steps
1 Total # dogs in Florida	 Some predictive power in the demographic data Principle component analysis shows some key drivers of the presence of dogs in a certain neighbourhood 	 Not sure if data contains fundamental drivers of dogs Not sure if NY and FL are comparable 	 Analyze the similarities between florida and newyork Add additional data sources (e.g. dog parks, pet shops etc)
Percentage of allergic dogs in Florida	Fairly consistent results in predicting above average number of allergic dogs	 Low data volume Not sure if data contains fundamental drivers of dogs Not sure if NY and FL are comparable 	Add additional data sources (e.g. dog parks, pet shops etc)