The radiative transfer code POLARIS

Introduction and examples

Robert Brauer July 2-4, 2019

An introduction to radiative transfer & application in astrophysics and plasma physics École Doctorale « Sciences physique et de l'ingénieur »

What is POLARIS?

Radiative transfer simulation code

- Numerical approaches to solve the RT equation
 - Monte-Carlo (temperature and scattering)
 - Raytracing (continuum and line emission)
- Analytical models and (M)HD simulations
- · Emission maps and spectral energy distributions

Development

- C++ (main code) and Python (optional toolkit)
- By Stefan Reissl and Robert Brauer

History of POLARIS

```
Apr., 1999 - MC3D in version 1 (basis for POLARIS, Wolf et al. 1999)
 Feb., 2003 - ♦ MC3D in version 2 (basis for POLARIS, Wolf 2003)
      2010 - MC3D in version 4 (basis for POLARIS)
      2014 - Start of POLARIS development (version 1.0)
June, 2014 \rightarrow Reissl et al. (2014)
 July, 2015 - Mol3D (basis for line RT in POLARIS version 2.0, Ober et al. 2015)
 Apr., 2016 \rightarrow Brauer et al. (2016)
Sept., 2016 - → Reissl et al. (2016)
      2017 - Final merge of MC3D and Mol3D into POLARIS (version 3.0)
Sept., 2017 - First POLARIS workshop (in Heidelberg)
 May, 2017 \rightarrow \Rightarrow Brauer et al. (2017a)
 July, 2017 \rightarrow Reissl et al. (2017)
 Nov., 2017 \rightarrow \Rightarrow Brauer et al. (2017b)
 Mai. 2018 - ⇒ Reissl et al. (2018)
Aug., 2018 - First public release of POLARIS (version 4.0)
 Jan., 2019 - → Seifried et al. (2019)
  Jul., 2019 - Current stable release version 4.05.
```

Installation of POLARIS

Download from our homepage

- www1.astrophysik.uni-kiel.de/~polaris
- Execute ./polaris.run to start installation

Installation of POLARIS

Download from our homepage

- www1.astrophysik.uni-kiel.de/~polaris
- Execute ./polaris.run to start installation

Download from our GitHub repository

- https://github.com/robertbrauer1988/Polaris.git
- Use git clone to download the POLARIS repository
- Execute ./install_polaris.sh to start installation

Installation of POLARIS

Download from our homepage

- www1.astrophysik.uni-kiel.de/~polaris
- Execute ./polaris.run to start installation

Download from our GitHub repository

- https://github.com/robertbrauer1988/Polaris.git
- Use git clone to download the POLARIS repository
- Execute ./install_polaris.sh to start installation
- ⇒ Already installed on your training PCs

Using POLARIS

ASCII command files

- Most fundamental way of using POLARIS
- Files in UML-like script language to start simulation
- First choice when using (M)HD simulations

Using POLARIS

ASCII command files

- Most fundamental way of using POLARIS
- Files in UML-like script language to start simulation
- First choice when using (M)HD simulations

PolarisTools (Python scripts)

- Create grids, start simulations, and plot results
- Needs Python and other modules (e.g. numpy, matplotlib)
- First choice when using analytical models

Using POLARIS

ASCII command files

- Most fundamental way of using POLARIS
- Files in UML-like script language to start simulation
- First choice when using (M)HD simulations

PolarisTools (Python scripts)

- Create grids, start simulations, and plot results
- Needs Python and other modules (e.g. numpy, matplotlib)
- First choice when using analytical models
- ⇒ The following exercises are based on PolarisTools

PolarisTools (Python scripts)

polaris-gen

· Generates binary files that contain the grid/model

polaris-run

· Executes POLARIS simulations

polaris-plot

- · Creates plots of POLARIS results
- ⇒ Use the option --help for more information

Continuum radiative transfer

Create the grid

```
    polaris-gen sphere grid1.dat
```

Simulate the scattered light (dust_mc \rightarrow Monte-Carlo)

```
polaris-run sphere exercise_1 dust_mc
```

```
\hookrightarrow --grid grid1.dat --wavelength 650nm
```

```
→ --distance 1m --source laser
```

$$\hookrightarrow$$
 --rot_1 0 --rot_axis_1 1 0 0

Plot the emission map

Continuum emission.

Exercise I: Questions

What will happen if the...

- Total mass is lower or higher?
- Wavelength is shorter or longer?
- Observer looks at a different angle or distance?
- · Laser has more power?
- Laser has a broader beam (spectrum)?
- + Own ideas

Create the grid

polaris-gen sphere grid2.dat

Simulate the scattered light (dust_mc \rightarrow Monte-Carlo)

polaris-run sphere exercise_2 dust_mc

```
\hookrightarrow --grid grid2.dat --wavelength 1microns
```

$$\hookrightarrow$$
 --source t_tauri --source_position 0 0 0

```
\hookrightarrow --source_temperature 4000
```

← --dust_size 5nm 250nm --photons 1e6

Plot the emission map

Continuum emission.

Exercise II: Questions

What will happen if the...

- Star is smaller or larger?
- Star is colder or hotter?
- · Dust grains are smaller or larger?
- Sphere has a smaller or larger inner radius?
- Number of photons is lower or higher?
- + Previous questions and own ideas

Simulate the heating of dust grains (Monte-Carlo)

Plot the temperature distribution

polaris-plot sphere exercise_3 temp midplane
 → output dust_temperature xy -v

Temperature distribution in a horizontal cut through the model.

Simulate the thermal emission (Raytracing)

polaris-run sphere exercise_3 dust

Plot the emission map

Continuum emission.

Exercise III: Questions

What will happen if the...

- · Dust is colder or hotter?
- · Emission map has less or more pixel?
- · Temperature midplane cut has less or more pixel?
- + Previous questions and own ideas

Polarized continuum RT

Create the grid

```
    polaris-gen sphere grid1.dat
```

Simulate the scattered light (dust_mc → Monte-Carlo)

```
polaris-run sphere exercise_1 dust_mc
```

```
\hookrightarrow --grid grid1.dat --wavelength 650nm
```

$$\hookrightarrow$$
 --source_direction 1 0 0 --source_power 1mW

$$\hookrightarrow$$
 --rot_1 0 --rot_axis_1 1 0 0

Plot the polarized emission maps

Left: Polarized emission. Right: Degree of polarization.

Exercise I: Questions

What will happen if the...

- Total mass is lower or higher?
- Wavelength is shorter or longer?
- Observer looks at a different angle or distance?
- Dust grains are smaller or larger?
- + Previous questions and own ideas

Create the grid

polaris-gen sphere grid2.dat

Simulate the scattered light (dust_mc → Monte-Carlo)

polaris-run sphere exercise_2 dust_mc

```
\hookrightarrow --grid grid2.dat --wavelength 1microns
```

 \hookrightarrow --source t_tauri --source_position 0 0 0

 \hookrightarrow --source_temperature 4000

← --dust_size 5nm 250nm --photons 1e6

Plot the polarized emission maps

Left: Polarized emission. Right: Degree of polarization.

Exercise II: Questions

What will happen if the...

- Total mass is lower or higher?
- Wavelength is shorter or longer?
- Observer looks at a different angle or distance?
- Dust grains are smaller or larger?
- + Previous questions and own ideas

Plot the magnetic field

Magnetic field in a horizontal cut through the model.

Exercise III: Thermal emission of an envelope

Simulate the polarized thermal emission (Raytracing, dust_pa \rightarrow perfect alignment)

Exercise III: Thermal emission of an envelope

Plot the polarized emission maps

polaris-plot sphere exercise_3 dust_pa map 1 -v

Left: Polarized emission. Right: Degree of polarization.

Exercise III: Questions

What will happen if the...

- Total mass is lower or higher?
- Wavelength is shorter or longer?
- Observer looks at a different angle or distance?
- Dust grains are smaller or larger?
- + Previous questions and own ideas

Create the grid

polaris-gen disk grid.dat

```
← --inner_radius 0.1au --outer_radius 100au
← --gas mass 1e-3M sun
```

Simulate the heating of dust grains (Monte-Carlo)

polaris-run disk exercise_4 temp

 \hookrightarrow --source t_tauri --source_position 0 0 0

 \hookrightarrow --source_temperature 4000

→ --dust_size 5nm 250nm --photons 1e6

Plot the temperature distributions

polaris-plot disk exercise_4 temp midplane

 \hookrightarrow output dust_temperature xy -v

Temperature distribution in a horizontal (left) or vertical (right) cut through the model.

Simulate the full emission (Raytracing)

Plot the polarized emission maps

Left: Continuum emission. Right: Degree of polarization.

Exercise IV: Questions

What will happen if the...

- · Star is at a different position?
- Total mass is lower or higher?
- Wavelength is shorter or longer?
- · Observer looks at a different angle or distance?
- Dust grains are smaller or larger?
- + Previous questions and own ideas

Simulate the spectral line emission (Raytracing)

Plot the spectrum

polaris-plot disk exercise_4 line spectrum 1 -v

Spectral line profile

Plot the integrated velocity channel map

polaris-plot disk exercise_4 line int_map 1 -v

Integrated velocity channel map

Plot the velocity channels maps

polaris-plot disk exercise_4 line vel_map 1 -v

Velocity channels maps

Simulate the spectral line emission (Raytracing)

Plot the spectrum

polaris-plot disk exercise_4 line spectrum 1 -v

Spectral line profile

Plot the integrated velocity channel map

polaris-plot disk exercise_4 line int_map 1 -v

Integrated velocity channel map

Plot the velocity channels maps

polaris-plot disk exercise_4 line vel_map 1 -v

Velocity channels maps

Exercise V: Questions

What will happen if the...

- · Line transition is different?
- Maximum velocity is lower or higher?
- · Number of channels is lower or higher?
- · Level population is calculated differently?
- Turbulence is weaker or stronger?
- Mass of the star is lower or higher?
- + Previous questions and own ideas

Create the grid

polaris-gen sphere grid3.dat

Simulate the heating of dust grains (Monte-Carlo)

```
polaris-run sphere exercise_5 temp
```

$$\hookrightarrow$$
 --source_temperature 4000

Simulate the polarized spectral line emission (Raytracing)

Plot the integrated velocity channel map

polaris-plot sphere exercise_5 zeeman

Spectral line intensity (left) and circular polarization (right) integrated velocity channel map.

Plot the velocity channel maps

Spectral line intensity velocity channel maps.

Plot the velocity channel maps

Spectral line circular polarization velocity channel maps.

Plot the spectrum

Spectral line intensity (left) and circular polarization (right) profiles.

Plot the LOS magnetic field strength

Derived LOS magnetic field strength (left) and difference to model value (right).

Exercise VI: Questions

What will happen if the...

- · Magnetic field if weaker or stronger?
- · Line transition is different?
- · Number of channels is lower or higher?
- Maximum velocity is lower or higher?
- + Previous questions and own ideas

Overview of POLARIS

Grid types - Cartesian (OcTree) - Spherical - Cylindrical

- Voronoi

Grid quantities

- Velocity field

- Densities (aas, dust, electrons)

- Magnetic field strength

- Properties (gas, dust, electrons)

Calculation modes

- Dust temperature distribution (including stochastic heating)
- Stellar and dust emission scattered at spherical dust grains
- Thermal emission of dust grains (including dust grain alignment)
- Spectral line emission (including Zeeman splitting and N-LTE level populations)
- Synchrotron radiation and Faraday rotation

Thank you all for your participation!