

B2 – Mathématiques :

Les suites numériques

Amine ILMANE

106bombyx

Bombyx booming bylaw

Le chaos

La théorie du chaos est un domaine à la frontière en mathématique est physique. On étudie dans cette théorie le comportement des systèmes dynamiques sensibles aux conditions initiales.

$$\left\{egin{array}{l} rac{\mathrm{d}x(t)}{\mathrm{d}t} &= \sigmaig(y(t)-x(t)ig) \ rac{\mathrm{d}y(t)}{\mathrm{d}t} &=
ho\,x(t)-y(t)-x(t)\,z(t) \ rac{\mathrm{d}z(t)}{\mathrm{d}t} &= x(t)\,y(t)-eta\,z(t) \end{array}
ight.$$

Attracteur étrange de Lorenz (fractale)

Bifurcation vers le chaos

Let's call x_i the number of the i^{th} generation of butterflys. Here is a model for the evolution of x_i :

$$\begin{cases} x_1 = n & \text{where } n \text{ is the number of first generation individuals} \\ x_{i+1} = kx_i \frac{1000 - x_i}{1000}, & \text{for } i \geq 1, k \text{ being the } \textit{growth rate}, \text{ from 1 to 4}. \end{cases}$$

The curve representing the number of individuals in relation to the generation (varying from 1 to 100)

```
\begin{cases} x_1 = n & \text{where } n \text{ is the number of first generation individuals} \\ x_{i+1} = kx_i \frac{1000 - x_i}{1000}, & \text{for } i \geq 1, k \text{ being the } \textit{growth rate}, \text{ from 1 to 4}. \end{cases}
```

```
Terminal
\sim/B-MAT-200> ./106bombyx 10 3.3 > data
\sim/B-MAT-200> head data
1 10.00
2 32.67
3 104.29
4 308.26
5 703.68
                                 (n; u_n)
6 688.10
7 708.24
8 681.89
9 715.82
10 671.29
\sim/B-MAT-200> tail data
91 823.60
92 479.43
93 823.60
94 479.43
95 823.60
96 479.43
97 823.60
98 479.43
99 823.60
100 479.43
```

$$\begin{cases} x_1 = n \\ x_{i+1} = kx_i \frac{1000 - x_i}{1000}, \end{cases}$$

 $\begin{cases} x_1 = n & \text{where } n \text{ is the number of first generation individuals} \\ x_{i+1} = kx_i \frac{1000 - x_i}{1000}, & \text{for } i \geq 1, k \text{ being the } \textit{growth rate}, \text{ from 1 to 4}. \end{cases}$

```
Terminal
\sim/B-MAT-200> ./106bombyx 10 10000 10010 > data
\sim/B-MAT-200> head -n 30 data
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
                      (k; u_{10\ 000}) \rightarrow (k; u_{10\ 010})
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.00 0.10
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.01 9.90
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
1.02 19.61
```


Définitions

Application (fonction):

Une application est une **correspondance** entre **deux ensemble**, i.e., à chaque élément de l'ensemble de départ (noté \mathbf{x} par tradition) j'associe un élément de l'ensemble d'arrivée (noté $\mathbf{f}(\mathbf{x})$ par tradition).

A priori, l'ensemble de départ et d'arrivée peuvent être n'importe quoi.

Définitions pratiques

- La fonction : est une application dont l'ensemble de départ est $\mathbb R$, notée $\mathbf f(\mathbf x)$
- La suite : est une application dont l'ensemble de départ est $\mathbb N$, notée $(u_n)_{n\in\mathbb N}$
- La suite numérique: référence au mot : numéro, est une suite dont l'ensemble d'arrivée est $\mathbb R$

Représentation des suites : Exemples

Par un vecteur :

$$(u_n) = (\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots)$$
 $(u_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots)$ $(u_n) = (1, 2, 3, \dots)$

$$(u_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots)$$

$$(u_n)=(1,2,3,\ldots)$$

Par un tableau indexé : ressemble beaucoup au schéma avec les ensembles

n	0	1	2	 122	123	
u_n						

Par une expression (terme générique) : $u_n=rac{n}{n+1}$ $u_n=rac{1}{n}$ $u_n=n!$ $u_n=n$

$$u_n = \frac{n}{n+1}$$

$$u_n = \frac{1}{n}$$

$$u_n = n!$$

$$u_n = n$$

Par une relation de récurrence à un pas :

$$u_n = u_{n-1} + d$$

$$u_n = u_{n-1} \times q$$

$$u_{n+1} = \sin u_n$$

Par une relation de récurrence à deux pas :

$$u_{n+2} = 2u_{n+1} - u_n$$

$$u_n = u_{n-1} + u_{n-2}$$

Fibonacci: 0, 1, 1, 2, 3, 5, 8

Dans la pratique : exemples

Résolution d'une équation :

$$x^4 + x^2 + 4x - 2 = 0$$

	Bissection	Point fixe	Steffenson	Newton	Sécante
Solution	0,441707229614258	0,441707269052940	0,441707179090632	0,441707179090649	0,4417071 <mark>84105876</mark>
f(x)	2,6 E-07	4,7 E-07	-1,9 E-17	8,9 E-14	2,6 E-08
Nb. d'étapes	18	11	3	3	4

Traitement de données :

	V										
ii C	1	2	3	4	5	6	7	8	9	10	Moyenne de la série
Série 1	375	327	328	374	378	359	327	359	671	312	381
Série 2	374	375	327	328	405	343	378	312	312	325	347,9
Série 3	328	297	296	312	297	375	374	343	405	356	338,3
Série 4	297	343	390	312	312	312	390	312	327	296	329,1
Série 5	343	312	312	359	343	297	281	296	328	297	316,8
Série 6	352	302	298	322	367	302	315	296	320	333	320,7
Série 7	302	326	314	286	332	347	296	314	301	320	313,8
Série 8	353	302	312	349	343	297	291	296	325	296	316,4
Série 9	323	356	298	310	310	317	303	297	289	346	314,9
Série 10	310	259	260	306	310	291	300	291	561	285	317,3

Un peu de jargon

Suite constante : tous les termes sont égaux (au premier) $u_n = u_0$

Suite stationnaire : à partir d'un certain rang (d'un certain indice) la suite devient constante

Suite Périodique: les mêmes valeurs reviennent chaque N fois $\forall n \in \mathbb{N}, \quad u_{n+N} = u_n$

Un peu de jargon

Suite monotone : quand elle n'a qu'un sens de variation

(u_n) est constante si	$u_n = u_{n+1}$
(u_n) est croissante si	$u_n \le u_{n+1}$
(u_n) est strictement croissante si	$u_n < u_{n+1}$
(u_n) est décroissante si	$u_n \ge u_{n+1}$
(u_n) est strictement décroissante si	$u_n > u_{n+1}$

Un peu de jargon

Suite bornée : est une suite qui ne dépassera pas un certain nombre

$$(u_n)$$
 est majorée s'il existe M tel que $u_n \leq M$ (u_n) est minorée s'il existe m tel que $u_n \geq m$

 (u_n) est bornée si elle est à la fois majorée et minorée.

La limite

On parle de limite quand on veut savoir ce qui se passe, en avançant pas à pas, lorsque l'on se rapproche de quelque chose qu'on sait qu'on n'atteindra jamais. Ou, que l'on essaye d'atteindre un point qui nous est interdit.

Ce qui nous donne pour :

- o "on sait que l'on n'atteindra jamais": c'est essayer d'atteindre l'infini ±∞;
- o "un point qui nous est interdit": un point qui génère des divisions par 0.

N.B.

- Pour notre étude des suites nous nous intéresserons qu'à l'infini $\mathbf{n} = (\pm \infty)$.
- L'infini dans la pratique représente les très grand nombre.

La limite d'une suite : 1/3 - limite infinie

$$\lim_{n\to\infty}u_n=\pm\infty$$

Intérêt de la monotonie d'une suite :

- Suite décroissante non minorée
- Suite croissante non majorée

La limite d'une suite : 2/3 - limite non existante

$$\lim_{n\to\infty}u_n=??$$

N.B.

Ça arrive quand la suite oscille de façon périodique ou aléatoire

La limite d'une suite : 3/3 - limite finie

$$\lim_{n\to\infty}u_n=l$$

La limite finie est souvent ce que l'on attend d'une suite car dans la majorité des cas à la solution recherché n'est autre que cette limite. On parle, dans le cas ou elle existe, de **convergence**.

Petite illustration de la convergence, Cliquez pour y aller !!

La limite d'une suite : 3/3 - limite finie

$$\lim_{n \to \infty} u_n = Signe(u_0)\sqrt{r}$$
 ; $r = 2$

$$u_{n} = \frac{1}{2} \left(u_{n-1} + \frac{r}{u_{n-1}} \right)$$

$$u_{n-1} = \frac{1}{2} \left(u_{n-1} + \frac{r}{u_{n-1}} \right)$$

La convergence d'une suite

- Si u_n est une suite convergente. Alors u_n admet une seule limite;
- Si $\mathbf{w_n} \le \mathbf{u_n} \le \mathbf{v_n}$ et $\mathbf{v_n}$ et $\mathbf{w_n}$ convergent vers I alors $\mathbf{u_n}$ est convergente est a pour limite I

Monotonie et convergence :

- Si u_n est croissante est majorée alors u_n est convergente ;
- \circ Si $\mathbf{u_n}$ est décroissante est minorée alors $\mathbf{u_n}$ est convergente.

Propriétés des limites

$$\lim_{n\to\infty}(u_n+v_n) = \lim_{n\to\infty}u_n + \lim_{n\to\infty}v_n$$

Propriétés des limites

$$\lim_{n\to\infty}(u_n.v_n) = \lim_{n\to\infty}u_n \cdot \lim_{n\to\infty}v_n$$

Propriétés des limites

$$\lim_{n \to \infty} \left(\frac{u_n}{v_n} \right) = \frac{\lim_{n \to \infty} u_n}{\lim_{n \to \infty} v_n} \qquad si \lim_{n \to \infty} v_n \neq 0$$

- $u_n = (1 + \frac{1}{n})^n \rightarrow e = 2.71828$
- $v_n = -\frac{n}{n+1} + 2 \to 1$
- $\frac{u_n}{v_n} \rightarrow 0.36787$

Les séries numérique

Une série $\bf S$ est suite particulière où chacun de ses termes est la somme d'un certains nombre de termes d'une autre suite $\bf u_n$.

Ça a commencé ainsi : Après avoir compris les suites, on s'est dit tiens faisons la chose suivante :

Soit S_n la somme des n premiers termes d'une suite u_n (on parle de somme partielle), et voyons ce qui se passe quand n devient grand (tend vers l'infini).

Est-ce qu'il y aura convergence ou pas ?

$$\mathbf{S}(u)_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k.$$

$$\lim_{N \to +\infty} S_N = \lim_{N \to +\infty} \sum_{n=0}^N u_n$$

Les séries numériques

Les réponse est : dans certains oui dans d'autres non !

Quelques critères de convergence :

- Critère de Cauchy
- Critère de d'Alembert

Leur utilité:

• **Série et intégrale :** les séries permettent de définir l'intégrale au sens de Riemann.

$$\sum_{n=1}^{\infty} f(n) \longrightarrow \int_{1}^{\infty} f(t)$$

• **Série de fonctions :** permet d'approximer les fonctions.

$$orall z \in \mathbb{C} \qquad \mathrm{e}^z = \sum_{n=0}^{+\infty} rac{z^n}{n!}$$
 .

- **Séries vectorielles :** permet d'écrire le développement d'une vecteur dans une base.
- Séries trigonométrique : utilisée beaucoup dans le traitement de signal (série de Fourier)

Étude d'une suite

$$u_0 = 0$$

$$u_{n+1} = f(u_n) \quad \text{où } f(x) = x^2 + c$$

- Pour c < -2 ou c > 0,25, la suite diverge vers l'infini
- Pour $c \in [-2, 0,25]$ la suite reste bornée avec $u_n \in [-2,2]$
- o Traçons le graphique de $\mathbf{u}_{\mathbf{n}}$ en fonction de \mathbf{c} :
 - Les points ont des coordonnées du type (c, u_n);
 - N varie de 10000 à 10 100 :on s'intéresse au comportement limite ;
 - c varie avec un pas de $\Delta c = 0.01$?

Cherchez ce que veut dire discrétisation d'une variable continue