$Solution\ de\ l'examen\ final\ (SERIES\ CHRONOLOGIQUES)$

1) Moyennes mobiles centrées 4pts

$$\left\{ \begin{array}{l} \textit{Question 1} \; \; / \; \textbf{4point} \\ \textit{Question 2} \; \; / \; \textbf{4point} \\ \textit{Question 3} \; \; / \; \textbf{4point} \\ \textit{Question 4} \; \; / \; \textbf{4point} \\ \textit{Question 5} \; / \; \textbf{4point} \end{array} \right.$$

	\mathbf{t}_i	\mathbf{y}_i	MMC	$\frac{\mathbf{y}_i}{\mathbf{MMC}}$	
2003	1	524	_	_	
	2	378	_	_	
	3	354	474	0.746	
	4	636	480	1.325	
2004	5	532	488	1.090	
	6	418	498	0.839	
	7	378	508	0.744	
	8	692	512	1.351	
2005	9	556	515	1.079	
	10	426	520	0.819	
	11	394	536	0.735	
	12	716	556	1.287	
2006	13	660	568	1.162	
	14	482	574	0.839	
	15	434	_	_	
	16	724	_	_	

$$\begin{array}{lll} \text{MMC3} & = & \frac{1/2 \times 524 + 378 + 354 + 636 + 1/2 \times 532}{4} = 474 \\ \text{MMC4} & = & \frac{1/2 \times 378 + 354 + 636 + 532 + 1/2 \times 418}{4} = 480 \end{array}$$

3) Calcul de l'indice saisonnier (coefficients saisonniers) :

Il est égal à la valeur observée y_i par rapport à la **MMCI**.

	$\mid \mathbf{T}_1 \mid$	\mathbf{T}_2	\mathbf{T}_3	\mathbf{T}_4	
2003	-	_	0.746	1.325	$^{4 ext{pts}}$
2004 2005	1.090	0.839	0.744	1.351	
	1.079	0.819	0.735	1.287	
2006	1.161	0.839	_	_	
Total des indices par trimestre	3.330	2.497	2.225	3.963	
Coefficients S_t	1.110	0.832	0.741	1.321	

$$\begin{cases} 0.746 = \frac{354}{474} \\ 1.325 = \frac{636}{480} \\ 1.090 = \frac{532}{488} \\ 0.839 = \frac{418}{498} \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{cases}$$

On a
$$1.110 + 0.832 + 0.741 + 1.321 = 4.004 \neq 4$$

$$\left\{egin{array}{l} rac{3.330}{3} = 1.110 \ & rac{2.497}{3} = 0.832 \ & rac{2.225}{3} = 0.741 \ & rac{3.963}{3} = 1.321 \end{array}
ight.$$

Le modèle est multiplicatif.

Le principe de conservation des aires se traduit par le fait que la moyenne des coefficients saisonniers \bar{S} doit être égale à 1.

Donc si \bar{S} est différente de 1, on calcule les coefficients saisonniers corrigés en divisant chacun des S_i par la moyenne \bar{S} :

, :

La somme des coefficients bruts est égale à : 4.004. Pour cela on commence par calculer **la moyenne** des coefficients saisonniers

$$ar{\mathbf{S}} = 4.004/4 = 1.001 \neq 1$$

par rapport à la valeur attendue (la périodicité étant de 4, la somme devrait être de cette valeur)

4) Correction des coefficients saisonniers Il y a lieu de **corriger** les coefficients de saisonnalité :

5) Estimation des ventes (la prévision) 2007 :

$$T_1 = [(\mathbf{9} \times \mathbf{17}) + \mathbf{460}] \times \mathbf{1.1087} = \mathbf{679.63} \xrightarrow{\qquad \qquad \mathbf{1pt}}$$

$$\mathbf{1.320} + \mathbf{0.740} + \mathbf{0.831} + \mathbf{1.109} = \mathbf{4.0}$$

$$\begin{array}{l} T_2 = [(\mathbf{9} \times \mathbf{18})) + \mathbf{460}] \times \mathbf{0.8313} = \mathbf{517.07} \underline{\hspace{1cm}} \mathbf{1pt} \\ T_3 = [(\mathbf{9} \times \mathbf{19}) + \mathbf{460}] \times \mathbf{0.7407} = \mathbf{467.38} \underline{\hspace{1cm}} \mathbf{1pt} \\ T_4 = [(\mathbf{9} \times \mathbf{20}) + \mathbf{460}] \times \mathbf{0.1.3193} = \mathbf{844.35} \underline{\hspace{1cm}} \mathbf{1pt} \\ TOTAL : \mathbf{2508.43} \end{array}$$

FIG. 1 – Représentation graphique

3) Représentation graphique 4pts