```
In [1]: import numpy as np #linear algebra
import pandas as pd #data processing
```

```
In [3]: df=pd.read_csv("Advertising.csv")
    df.head()
```

Out[3]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

In [4]: df.tail()

Out[4]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

```
In [5]: df.shape
```

Out[5]: (200, 5)

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	Radio	200 non-null	float64
3	Newspaper	200 non-null	float64
4	Sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

In [7]: df.describe()

Out[7]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [8]: df=df.drop(columns=["Unnamed: 0"])

In [9]: df

	• •		papo.	O u.00
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [10]: x=df.iloc[:, 0:-1]
x
```

Out[10]:

	TV	Radio	Newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [11]: | y=df.iloc[:,-1]
Out[11]: 0
                 22.1
          1
                 10.4
          2
                 9.3
          3
                 18.5
          4
                 12.9
          195
                  7.6
                 9.7
          196
          197
                 12.8
          198
                 25.5
          199
                 13.4
          Name: Sales, Length: 200, dtype: float64
```

```
In [12]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_star)
```

In [13]: x_train

Out[13]:

	TV	Radio	Newspaper
116	139.2	14.3	25.6
138	43.0	25.9	20.5
155	4.1	11.6	5.7
82	75.3	20.3	32.5
160	172.5	18.1	30.7
58	210.8	49.6	37.7
21	237.4	5.1	23.5
49	66.9	11.7	36.8
64	131.1	42.8	28.9
68	237.4	27.5	11.0

160 rows × 3 columns

In [14]: x_test

Out[14]:

	TV	Radio	Newspaper
56	7.3	28.1	41.4
37	74.7	49.4	45.7
67	139.3	14.5	10.2
79	116.0	7.7	23.1
80	76.4	26.7	22.3
188	286.0	13.9	3.7
183	287.6	43.0	71.8
10	66.1	5.8	24.2
128	220.3	49.0	3.2
62	239.3	15.5	27.3
65	69.0	9.3	0.9
17	281.4	39.6	55.8
133	219.8	33.5	45.1
195	38.2	3.7	13.8
146	240.1	7.3	8.7
38	43.1	26.7	35.1
173	168.4	7.1	12.8
149	44.7	25.8	20.6
93	250.9	36.5	72.3
29	70.6	16.0	40.8
0	230.1	37.8	69.2
2	17.2	45.9	69.3
122	224.0	2.4	15.6
180	156.6	2.6	8.3
95	163.3	31.6	52.9
121	18.8	21.7	50.4
185	205.0	45.1	19.6
39	228.0	37.7	32.0
66	31.5	24.6	2.2
19	147.3	23.9	19.1
11	214.7	24.0	4.0
45	175.1	22.5	31.5
41	177.0	33.4	38.7
92	217.7	33.5	59.0
168	215.4	23.6	57.6
1	44.5	39.3	45.1
57	136.2	19.2	16.6
189	18.7	12.1	23.4

TV Radio Newspaper

	151	121.0	8.4	48.7	
	167	206.8	5.2	19.4	
In [15]:	y_tra: x_tes	in=y_t t=x_te		<pre>cype(int) pe(int)</pre>	
In [16]:	Sc=Sta x_tra	andard in_sca	Scaler() led=Sc.f	it_trans	<pre>import StandardScaler form(x_train) orm(x_test)</pre>
In [17]:	from	sklear	n.linear	_model i	mport LinearRegression
In [18]:	lr=Li	nearRe	gressior	1()	
In [19]:	lr.fi	t(x_tr	ain_scal	led,y_tra	in)
Out[19]:			ression	·	
In [20]:	y_pre	d=lr.p	redict(x	_test_sc	aled)
In [21]:	from :	sklear	n.metric	s import	r2_score

In [22]: r2_score(y_test,y_pred)

Out[22]: 0.9222988021105913

```
In [23]: import matplotlib.pyplot as plt
plt.scatter(y_test,y_pred,c='g')
```

Out[23]: <matplotlib.collections.PathCollection at 0x2999f1bb110>


```
In [24]: r=r2_score(y_test,y_pred)*100
```

In [25]: r

Out[25]: 92.22988021105914

In []: