Problem Set - 8

Spring 2018

MATHEMATICS-II (MA10002)

1. (a) Find the jacobian of the following transformations T.

(i)
$$T: x + y = u, y = uv$$
. Find $J = \frac{\partial(x, y)}{\partial(u, v)}$.

(ii)
$$T: x = 2u + 3v, y = 2u - 3v.$$
 Find $J = \frac{\partial(x, y)}{\partial(u, v)}$.

(iii)
$$T: x+y+z=u, \ x+y=uv, \ x=uvw.$$
 Find $J=\frac{\partial(x,y,z)}{\partial(u,v,w)}.$

(iv)
$$T: x = r\cos\phi\sin\theta$$
, $y = r\sin\phi\sin\theta$, $z = r\cos\theta$. Find $J = \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$.

- (b) Evaluate the double integrations using change of variable.
 - (i) Evaluate $\iint_R \sqrt{x^2 + y^2} \, dx dy$, the field of integration being R, the region in xy plane bounded by the circle $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. [Hint: $x = r \cos \theta$, $y = r \sin \theta$.]
 - (ii) Using the transformation x+y=u, y=uv, show that $\iint_E e^{\frac{y}{x+y}} dxdy = \frac{1}{2}(e-1)$ where E is the triangle bounded by x=0, y=0, x+y=1.
 - (iii) Evaluate $\iint_R (x+y) dA$, where R is the trapezoidal region with vertices given by $(0,0), (5,0), (\frac{5}{2},\frac{5}{2})$ and $(\frac{5}{2},-\frac{5}{2})$ using the transformation x=2u+3v and y=2u-3v.
- (c) Evaluate

$$\iint\limits_{R} \frac{\sqrt{a^2b^2 - b^2x^2 - a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} \, dx dy,$$

the field of integration being R, the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. [Hint: change ellipse to a circle using x = au, y = bv.]

- 2. Show that $\iint_E y \, dx \, dy = \frac{1}{3}a^3 \frac{a^2}{2}k + \frac{b}{4}k^2 + \frac{1}{6}k^3$ where $k = -\frac{b}{2} + \sqrt{a^2 + \frac{b^2}{4}}$ and E is the region in the first quadrant bounded by x-axis, the curves $x^2 + y^2 = a^2$, $y^2 = bx$.
- 3. Find the value of the following triple integrals.

a)
$$\iiint_R (x + y + z) dx dy dz$$
 where $R : 0 \le x \le 1, 1 \le y \le 2, 2 \le z \le 3$.

b)
$$\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$$
.

- 4. Compute $\iiint \frac{dxdydz}{(1+x+y+z)^3}$ if the region of integration is bounded by the co-ordinate planes and the plane x+y+z=1.
- 5. Evaluate $\iiint x^2yz\,dxdydz$ throughout the volume bounded by the planes $x=0,\,y=0,$ z=0 and $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, by using $x=av,\,y=bv,\,z=cw$.
- 6. Using spherical co-ordinate evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ enclosed by the sphere $x^2 + y^2 + z^2 = 1$.
- 7. Evaluate $\iiint_R y \, dV$ where R is the region lies below the plane z = x + 1 above the xy-plane and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 8. Find the surface area of the cylinder $x^2 + z^2 = 4$ inside the cylinder $x^2 + y^2 = 4$.
- 9. Find the surface area of the sphere $x^2 + y^2 + z^2 = 9$ lying inside the cylinder $x^2 + y^2 = 3y$.
- 10. Find the surface area of the section of the cylinder $x^2 + y^2 = a^2$ made by the plane x + y + z = a.
- 11. Find the volume of the solid bounded by the parabolic $y^2 + z^2 = 4x$ and the plane x = 5.
- 12. Calculate the volume of the solid bounded by the following surfaces

$$z = 0, x^2 + y^2 = 1, x + y + z = 3.$$

13. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.

************* END ************