# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра безопасности жизнедеятельности

#### ОТЧЕТ

### по лабораторной работе №2

## по дисциплине «Безопасность жизнедеятельности» Тема: ИССЛЕДОВАНИЕ УСЛОВИЙ ЭЛЕКТРОБЕЗОПАСНОСТИ В ТРЁХФАЗНЫХСЕТЯХ С ЗАЗЕМЛЁННОЙ НЕЙТРАЛЬЮ

| Студент гр. 1384   | Бобков В. Д.     |
|--------------------|------------------|
| Студентка гр. 1384 | Усачева Д. В.    |
| Студент гр. 1384   | Степаненко Д. В. |
| Преподаватель      | Трусов А. А.     |

Санкт-Петербург

2024

#### Цель работы

- Исследование режимов однофазного прикосновения человека
- Изучение принципа действия зануления
- Ознакомление с опасностями непрямого прикосновения пи использовании защитного заземления и зануления

#### Основные теоретические положения

Согласно существующим правилам электроустановки напряжением до 1000 В жилых, общественных и промышленных зданий, а также наружные установки, должны получать питание от источника (генератора или трансформатора), как правило, с глухо заземлённой нейтралью.

Системы, состоящие из сети и электроприёмников, условно могут быть обозначены как TN-C, TN-S и TN-C-S. Первая буква означает отношение нейтрали к земле: нейтраль источника соединена с землёй (T - terra), то есть выполнено рабочее заземление, а вторая буква - отношение корпуса нейтрали: электроприёмника К ПО существующим правилам электробезопасности он должен быть соединён с нейтралью (N - neutro). Обозначение N-C означает, что нейтральный и защитный провода являются общими; N-S - нейтральный и защитный провода отделены друг от друга (С commune, S separate); N-C-S - защитный провод на каком-то участке сети отделён от общего. Применение защитного заземления в такой системе запрещено!

Трёхфазные четырёхпроводные сети с заземлённой нейтралью имеют большое экономическое преимущество: наряду с трёхфазными приёмниками напряжением 380 В (станки, насосы, вентиляторы и другое силовое могут оборудование) от них получать питание без применения трансформаторов и однофазные приёмники напряжением 220 В (сети потребители п.). По освещения, переносные т. условиям электробезопасности данная сеть является не лучшей, поскольку в ней может создаваться целый ряд опасных ситуаций.

#### Экспериментальные результаты

1. Был установлен режим прямого прикосновения человека к фазе A – S6 вкл, схема соединения представлена ниже (рис. 1).



Рисунок 1 – Схема прямого прикосновения

Для прямого прикосновения были измерены напряжения при  $R_A=R_B=R_C=5$ кОм и  $R_A=R_B=R_C=150$ кОм. Значения напряжений представлены ниже(табл. 1).

Табл. 1 – Прямое прикосновение в системе TN

| Значения сопротивления,<br>кОм |       |       | Значения напряжений относительно земли, В |           |                         |               |  |  |
|--------------------------------|-------|-------|-------------------------------------------|-----------|-------------------------|---------------|--|--|
| $R_A$                          | $R_B$ | $R_C$ | $U_{A01}$                                 | $U_{B01}$ | <i>U</i> <sub>C01</sub> | $U_{K3}, U_h$ |  |  |
| 5                              | 5     | 5     | 25                                        | 25        | 22                      | 24            |  |  |
| 150                            | 150   | 150   | 25                                        | 25        | 22                      | 24            |  |  |

Можно заметить, что при изменении сопротивлений  $R_A$ ,  $R_B$ ,  $R_C$  не изменяется значение напряжения  $U_h$ , так как большая часть тока течет через

человека из-за того, что сопротивление человека  $R_h$  гораздо меньше сопротивления  $R_A$ .

Напряжение прямого однофазного прикосновения определяется как:

$$R_{Ah} = \left(\frac{1}{R_h} + \frac{1}{R_A}\right)^{-1} = \frac{1000 * 5000}{1000 + 5000} = 833.3 \text{ OM}$$
 $U_h = U_{A01} * \frac{R_{Ah}}{R_0 + R_{Ah}} = 25 * \frac{833.3}{837.3} = 24.9 \approx U_{A01}$ 
 $I_h = \frac{U_h}{R_h} \approx 0.025 \text{ A}$ 

Как можно заметить, значение напряжения прямого однофазного прикосновения практически не отличается от фазного напряжения из-за малого значения сопротивления заземления нейтрали  $R_0(4 \text{ Om})$ .

Ниже представлена векторная диаграмма (рис. 2).



Рис. 2 – Векторная диаграмма для однофазного прикосновения

2. Далее было установлено замыкание фазы С на землю. Схема прямого однофазного прикосновения при одновременном замыкании фазы на землю представлены на рис. 3, результаты измерений записаны в табл. 2.

В дальнейшем  $R_A = R_B = R_C = 150$  кОм.



Рис. 3 — Схема прямого прикосновения к A при замыкании C на землю Табл. 2 — Однофазное прямое прикосновение к A при замыкании C на землю

| Значения сопротивл | ений, Ом  | Значения напряжений относительно земли, В |           |           |                  |          |                  |  |
|--------------------|-----------|-------------------------------------------|-----------|-----------|------------------|----------|------------------|--|
| $R_{\text{зам}}$   | $R_{3a3}$ | $U_{A01}$                                 | $U_{B01}$ | $U_{C01}$ | $U_{K1}$ , $U_0$ | $U_{K2}$ | $U_{K3}$ , $U_h$ |  |
| 50                 | -         | 32                                        | 32        | 11        | 9                | 9        | 32               |  |
| 100                | -         | 25                                        | 26        | 20        | 0                | 0        | 26               |  |

$$U_h \approx U_{A01} * \frac{(1.5 - j\frac{\sqrt{3}}{2})\frac{1}{R_{3\text{am}}} + \frac{1}{R_0}}{\frac{1}{R_{3\text{am}}} + \frac{1}{R_0}}$$

При  $R_{3am} = 50 \text{ Om}$ :

$$U_h = 33.2 - 2.05j$$
 B

$$|U_h| = 33.3 \text{ B}$$

$$I_h = 0.0333A$$

При  $R_{3am} = 100 O_{M}$ :

$$U_h = 25.5 - 0.83j$$
 B

$$|U_h|=25.5~\mathrm{B}$$

$$I_h = 0.025A$$

Ниже построена векторная диаграмма для схемы прямого прикосновения к A при замыкании C на землю (рис. 5).



Рис. 5 – Векторная диаграмма прямого прикосновения к A при замыкании C на землю

По построенной диаграмме можно найти напряжение на человеке – это будет длина вектора  $\overrightarrow{U_h} = \overrightarrow{U_A} + \overrightarrow{U_C'}$ .

3. Установлен режим прикосновения человека к корпусу  $K_3$ , на который замкнута фаза А. При этом напряжение на человеке не изменилось в сравнении с напряжением прямого прикосновения. Далее корпус  $K_3$  был заземлен. Схема и результаты измерений представлены на рис. 6 и в табл. 3.



Рис. 6 – Схема прикосновения к замкнутому на фазу заземленному корпусу

Табл. 3 – Результаты измерений при непрямом прикосновении

| Значения сопротивлений, Ом | Значения напряжений относительно земли, В |           |           |                  |          |                  |  |
|----------------------------|-------------------------------------------|-----------|-----------|------------------|----------|------------------|--|
| $R_{3a3}$                  | $U_{A01}$                                 | $U_{B01}$ | $U_{C01}$ | $U_{K1}$ , $U_h$ | $U_{K2}$ | $U_{K3}$ , $U_h$ |  |
| -                          | 24                                        | 25        | 22        | 0                | 0        | 24               |  |
| 4                          | 10                                        | 35        | 32        | 13               | 13       | 10               |  |
| 100                        | 22                                        | 27        | 23        | 2                | 2        | 22               |  |

При  $\overline{R_{3a3}} = 4 \text{ O}_{M}$ :

$$U_h = U_{\Phi} \frac{R_{3a3}}{R_{3a3} + R_0} = 12B$$
  
 $I_h = 0.012 A$ 

При  $R_{3a3} = 4$  Ом:

$$U_h = 120B$$

$$I_h = 0.12 A$$

При  $R_{3a3} = 100 \text{ Om}$ :

$$U_h = U_{\phi} \frac{R_{3a3}}{R_{3a3} + R_0} = 24B$$
  
 $I_h = 0.024 A$ 

Действительно, при заземлении в 4 Ома напряжение на человеке равно половине фазного напряжения, а при большом значении заземления напряжение на человеке равно фазному напряжению.

Ниже представлена векторная диаграмма для непрямого прикосновения (рис 7).



Рис. 7 — Векторная диаграмма для непрямого прикосновения при  $R_{3a3} = 4$  Ом



Рис. 8 — Векторная диаграмма для непрямого прикосновения при  $R_{3a3} = 100$  Ом

4. Было установлено замыкание фазы A на корпус  $K_{1.1}$ . Схема и результаты измерений представлены на рис. 8 и в табл. 4.



Рис. 9 – Схема защитного зануления с замыканием

Табл. 4 – Результаты измерений при замыкании на зануленный корпус

| Значения сопротивлений, Ом Значения напряжений относительно земли, В |           |           |           |           |               |          |               |
|----------------------------------------------------------------------|-----------|-----------|-----------|-----------|---------------|----------|---------------|
| $R_{\text{зам}}$                                                     | $R_{3a3}$ | $U_{A01}$ | $U_{B01}$ | $U_{C01}$ | $U_{K1}, U_h$ | $U_{K2}$ | $U_{K3}, U_h$ |
| -                                                                    | -         | 0         | 0         | 0         | 0             | 0        | 0             |

5. Фаза А замкнута на корпус  $K_{1.2}$ . Схема полученной сети и результаты измерений представлены на рис. 9 и в табл. 5.



Рис. 10 — Схема замыкания на корпус  $K_{1.2}$ 

Табл. 5 — Результаты измерений замыкания на корпус  $K_{1.2}$ 

| Значения сопротивл             | начения относительно земли, В опротивлений, Ом |           |           |           |               |          |               |
|--------------------------------|------------------------------------------------|-----------|-----------|-----------|---------------|----------|---------------|
| $R_{\scriptscriptstyle 3 a M}$ | $R_{3a3}$                                      | $U_{A01}$ | $U_{B01}$ | $U_{C01}$ | $U_{K1}, U_h$ | $U_{K2}$ | $U_{K3}, U_h$ |
| -                              | -                                              | 25        | 26        | 22        | 15            | 15       | 0             |

Замыкание привело к возникновению на нулевом проводе напряжения, равного половине фазного (т.к.  $Z_A \approx Z_N$ ), а также появлению достаточно больших токов. Однако, вследствие неправильной настройки токовой защиты, отключения тока не произошло.

6. Выполнен обрыв нулевого провода. Для этой ситуации была построена схема сети и выполнены результаты измерений для включенной и выключенной осветительной нагрузки (рис. 10, табл. 6).

Табл. 6 – Результаты измерений

| Параметры          | Значения напряжений относительно земли, В |           |           |               |          |                  |  |
|--------------------|-------------------------------------------|-----------|-----------|---------------|----------|------------------|--|
|                    | $U_{A01}$                                 | $U_{B01}$ | $U_{C01}$ | $U_{K1}, U_h$ | $U_{K2}$ | $U_{K3}$ , $U_h$ |  |
| S-10 off, S-16 off | 25                                        | 26        | 22        | 0             | 0        | 0                |  |

| S-10 on, S-16 off | 25 | 26 | 22 | 0 | 22 | 0 |
|-------------------|----|----|----|---|----|---|
| S-10 on, S-10 on  | 29 | 28 | 16 | 4 | 11 | 0 |



Рис. 11 – Схема обрыва нейтрали

Для отключенной световой нагрузки напряжение на корпусе  $K_2$  равно нулю, напряжение прикосновения также отсутствует, так как цепь разомкнута.



Рис. 12 – Схема при включенной световой нагрузке

Видно, что напряжение на корпусе  $K_2$  равно фазному при включенной световой нагрузке. Схема цепи представлена на рис. 12.

При включенной световой нагрузке на корпусе 2 возникает опасное напряжение, которое можно уменьшить, подключив повторное заземление. Схема при включенном повторном заземлении представлена на рис. 13



Рис. 13 – Схема при включенной световой нагрузке и повторном заземлении

7. Было смоделировано замыкание фазы C на землю с повторным заземлением и без него (табл. 8).

При обрыве рабочего заземления появляется опасное для здоровья напряжение на корпусах К1 и К2. При включении повторного заземления нулевого провода напряжение на зануленных корпусах уменьшается до 2 В.

Табл. 8 – Результаты измерений замыкания фазы на землю

| Значения сопротивл | ений, Ом          | Значения напряжений относительно земли, В |           |           |               |          |               |  |
|--------------------|-------------------|-------------------------------------------|-----------|-----------|---------------|----------|---------------|--|
| $R_{\text{зам}}$   | $R_{\text{повт}}$ | <i>U</i> <sub>A01</sub>                   | $U_{B01}$ | $U_{C01}$ | $U_{K1}, U_h$ | $U_{K2}$ | $U_{K3}, U_h$ |  |
| 100                | -                 | 31                                        | 38        | 0         | 14            | 14       | 0             |  |
| 100                | 10                | 26                                        | 27        | 19        | 2             | 2        | 0             |  |

Схемы прикосновения с повторным заземлением (рис. 14) и без него представлены ниже (рис. 15).



Рис. 14 – Схема прикосновения без повторного заземления



Рис. 14 – Схема прикосновения без повторного заземления Векторная диаграмма напряжений для рассмотренного случая представлена ниже (рис. 17).



Рис. 17 — Диаграмма напряжений для напряжения касания при замыкании фазы на землю

#### Выводы

В ходе обработки результатов лабораторной работы были исследованы режимы однофазного прикосновения человека:

Прямое однофазное прикосновение считается опасным из-за того, что напряжение при прикосновении определяется фазовым напряжением, так как сопротивление рабочего заземления нейтрали мало (4 Ом) и не зависит от сопротивлений относительно земли.

Ток проходит через рабочее заземление и человека, что создает опасные значения токов.

Если же мы замыкаем фазу на землю, то напряжение прикосновение становится больше фазного, что более опасно, чем при прямом соприкосновении.

При выполнении защитного заземления с соблюдением требований к заземляющему устройству ( $R_{3a3} = 4$  Ом) напряжение может быть уменьшено максимум в 2 раза, а если заземлить корпус на элементы, случайным образом связанные с землей ( $R_{3a3} = 100$  Ом), то напряжение прикосновения практически не будет отличаться от фазного напряжения.

При замыкании фазы на корпус зануленного приемника ток протекает по контуру фаза-ноль и ток достигает максимального значения  $I_{\rm K3}$ , что приводит к срабатыванию защиты и снятию напряжения со стенда.

При неправильно выбранной уставки срабатывания максимальной токовой защиты  $I_{\rm K3}$  недостаточен и предохранитель не срабатывает: он не отключил поврежденный электроприемник, снятие напряжение не произошло (при этом напряжение на нулевом проводе и на всех корпусах неповрежденных электроприемников большое). В этом случае прикосновение к нулевому проводу небезопасно.

В случае обрыва цепи заземления нейтрали источника при наличии замыкания фазы на землю напряжение на нулевом проводе и на всех корпусах неповрежденных электроприемников оказывается очень большим, что является опасным для человека, а при включении повторного заземления

образуется контур фаза-земля- $R_{\text{повт}}$ -ноль, что приводит к уменьшению напряжения на нулевом проводе и фазах.