## Game Theoretical Analysis of Resource Allocation in the InterPlanetary File System

David Grisham

TBD

Background

## IPFS (InterPlanetery File System)

- P2P hypermedia distribution protocol
- Content-addressed, versioned filesystem
- Git repo in a torrent
- Many use-cases

Background 00000

Goal: Replace HTTP, decentralize Internet

#### **IPFS Stack**

Background



Figure 1: The IPFS Stack

## Bitswap

Background 000000

- IPFS's block exchange protocol
- Inspired by BitTorrent
- Given a set of peers who want data, how to allocate resources?
  - Reciprocation function

## Bitswap

Background 000000

Given a set of peers who want data, how to allocate resources?

- Ever user maintains reputation for each peer
- Very complex dynamics

## Objectives

Background 00000

- Discover Bitswap peer behavior that gives desired behavior
  - Will depend on conditions
  - Break down Bitswap dynamics
- Analytical and empirical analyses
- Implementation

# System Model

# IPFS Network as Graph

Nodes: Users

Edges: Peerings; unweighted, undirected

### Reputation

- Each user distributes B bits among peers in each round
- $b_{ii}^t$ : Total bits sent from user j to peer i from round 0 to t-1
- $d_{ii}$ : debt ratio of j as viewed by i
  - Used as peer-wise reputation

$$d_{ji}^t = \frac{b_{ji}^{t-1}}{b_{ij}^{t-1} + 1}$$

## Reciprocation Function

- Input: Peer debt ratio
- Output: Peer weight
- $S_j(d_{ji}^t, \mathbf{d}_j^{-i,t}) \in [0,1]$ 
  - e.g.  $S_j(d_{ji}^t, \mathbf{d}_j^{-i,t}) = d_{ji}^t$

### Data Distribution

B bits distributed among peers via weighted round-robin

Wii

TODO: show this with math

### Game Formulation

- Players: Users/nodes
- Strategy: Reciprocation function

**TODO: utility function** 

#### Model Iterations

- Complexity vs. accuracy
- Attempted formulations
  - Evolutionary game theory
  - Statistical mechanics
  - Repeated games

### Game Characteristics

- Infinitely repeated
  - Discrete rounds, denoted by t
- Incomplete information

**TODO:** remember to mention simultaneous moves

## Objectives

#### TODO: be more clear about goals here

- Classify Bitswap strategy functions
  - Conditions where useful
- Analytical work: Repeated game model
- **Empirical work:** Simulations

# **Preliminary Results**

## Strategy Simulator

- 3 node network
- Parameters
  - Resource distribution
  - Initial peer-wise reputations
- Tests whether given strategy function is NE

# Strategy Simulator

TODO: figures illustrating full exchange example

## Strategy Simulator

#### Conclusions

- Homogeneous resource distributions
  - Any RF (trivially) NE
- Non-homogeneous resource distributions
  - NE not yet found

## Symbolic Analysis

- Verified results of strategy simulator
- Mathematica notebook
- Intractable for nontrivial strategy functions
  - **Next step:** Alternative functions/representations

## Implementation

- Beta strategy-integration into go-ipfs
- IPTB: IPFS nodes in Docker containers
- Scripted tests

Plan

## Analytical Work

- Repeated game analysis
  - Balances model accuracy with complexity
- Evolutionary game theory (if time allows)
  - Good model, but high complexity

#### Simulations

- Strategy simulator
  - Complements repeated game analysis
- Bitswap tests
  - Test actual IPFS nodes

### Timeline



TODO: need this

Timeline ○•