Digital Logic Circuits ELEC2200 Summer 2009

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj

Office: Broun 360

Introduction

- Design of digital circuits
- Number representation
- Two common types of digital circuits
- Design Methods
- Validation Techniques

Digital vs. Analog

- Analog
 - · Continuous
 - Represented with real numbers
 - Manipulated with classical algebra
- Digital
 - · Discrete
 - Represented as whole numbers(digits)
 - Boolean algebra applies in this case

Title:01-analog.eps
Creator:GIMP PostScr
CreationDate:Sun Ma
LanguageLevel:2

Title:01-analog.eps Creator:GIMP PostScr CreationDate:Sun Ma LanguageLevel:2

Why Digital?

· We're not changing the signal, we're just

representing it differently

This representation is:

- more flexible
- cost effective
- more precise
- allows for error detection
- more easily minimized
- Care must be taken to avoid loss of accuracy
- Can also represent letters and symbols

Logic Types

Combinational

- A combination of logic operations
- The output is dependent solely on the inputs
- Analogous to a continuous function, y=f(x)
- All inputs, x, will generate an output,y
- Creating the mapping from input to output is one design problem we will be concerned with

Logic Types

Sequential

- Output is dependent on inputs AND previous values
- We must be able to 'remember' previous values to accomplish this
- Think of this as a difference equation, y_{K+1}=f(x,y_K)
- Generally described by the Huffman Model

Title:01-huffman.eps

Creator: GIMP PostScript file plugin V 1. CreationDate: Mon May 18 01:57:23 2009

CreationDate:Mon May 16 01:57:25 20

LanguageLevel:2

Abstraction

- How do we solve these design problems?
- Break a system down into simpler units
- Looking from the 'Top-Down' perspective:
 - System Level
 - Register Level Focus of Comp. Sys.
 - Gate Level Focus of this class
 - Transistor Level Focus of Dig. Elec.

Design Methods

- Top-Down
 - Begin on the system level
 - Subdivide into lower levels (Register, Gate, Transistor)
 - Focus on the end function of the system
- Bottom-Up
 - Uses many pre-defined subsystems to build a greater whole
 - Solution may be sub-optimal
 - · Results in an unclear system structure

Design Validation

- Checking your answers
- We can easily validate our work by simulating each input
- AUSIM is a simple digital logic simulator that will allow us to automate validation

Where Does This Leave Us?

- What are the particulars of representing things digitally?
- How do we manipulate these representations with boolean algebra?
- Can we methodically find a relationship between inputs and the desired outputs?
- Can we find a minimized version of this relationship?
- How is this employed on the system level?

