Note : cette série sera discutée au cours de la première séance d'exercices, le vendredi 22 septembre.

1. Soient A, B et C trois assertions. En écrivant les tables de vérités correspondantes, vérifier que les équivalences suivantes sont vraies :

a)
$$\neg(\neg A) \Leftrightarrow A$$

c)
$$\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$

$$e) \ \ (A \wedge B) \vee C \ \Leftrightarrow \ (A \vee C) \wedge (B \vee C) \qquad \qquad f) \ \ (A \Rightarrow B) \ \Leftrightarrow \ (\neg A) \vee B$$

g)
$$(A \Rightarrow B) \Leftrightarrow [(\neg B) \Rightarrow (\neg A)]$$

b) $\neg (A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$

d)
$$(A \lor B) \land C \Leftrightarrow (A \land C) \lor (B \land C)$$

f)
$$(A \Rightarrow B) \Leftrightarrow (\neg A) \lor B$$

h)
$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

2. Donner la contraposée et la négation des implications suivantes :

a)
$$x > 0 \Rightarrow f(x) \leq 0$$

b)
$$ab = 0 \Rightarrow (a = 0) \lor (b = 0)$$

3. Soit $f: \mathbb{R} \to \mathbb{R}$. Associer chaque assertion à la description correspondante :

b)
$$f$$
 ne s'annule jamais

c)
$$f$$
 ne peut s'annuler qu'en 0

d)
$$f$$
 s'annule au moins une fois hors de 0

e)
$$f$$
 s'annule en 0

i)
$$\exists x \neq 0, f(x) = 0$$

ii)
$$\forall x, y \in \mathbb{R}, [f(x) = f(y) = 0 \Rightarrow x = y]$$

iii)
$$f(0) = 0$$

iv)
$$\forall x \in \mathbb{R}, [f(x) = 0 \Rightarrow x = 0]$$

v)
$$\nexists x \in \mathbb{R}, f(x) = 0$$

4. Soit $f: E \to F$. Associer chaque assertion à la description correspondante :

i)
$$\forall y \in F, \exists! x \in E, f(x) = y$$

ii)
$$\forall y \in F, \exists x \in E, f(x) = y$$

iii)
$$\forall x, x' \in E, [f(x) = f(x') \Rightarrow x = x']$$

5. Décrire verbalement ce qu'affirment les assertions suivantes, puis écrire leur négation :

a)
$$\forall x \in \mathbb{R}, x^2 \geqslant 0$$

c)
$$\forall M \in \mathbb{R}, \exists n \in \mathbb{N}, n > M$$

b)
$$\forall x, y \in \mathbb{Q}, [x < y \Rightarrow \exists z \in \mathbb{Q}, x < z < y]$$

d)
$$\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, p \geqslant n, \forall r \in \mathbb{N}, \forall s \in \mathbb{N}, \\ \left[p = rs \Rightarrow (r = 1) \lor (s = 1) \right]$$

- 6. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Exprimer les assertions suivantes à l'aide de quantificateurs :
 - a) f s'annule
 - c) f n'est pas une fonction constante
 - e) f admet un minimum

- b) *f* est la fonction nulle
- d) f prend sa valeur maximale en 0
- f) f prend des valeurs arbitrairement grandes
- 7. Dire si les assertions suivantes sont vraies ou fausses :
 - a) $\mathbb{N} \in \mathbb{Z}$

b) $\mathbb{N} \subset \mathbb{Z}$

c) $\varnothing \in \mathbb{N}$

d) $\varnothing \subset \mathbb{N}$

- e) $\{1,2\} \in \mathscr{P}(\{1,2,3\})$ f) $\{1,2\} \subset \mathscr{P}(\{1,2,3\})$
- g) $\{\{1\}\}\subset \mathscr{P}(\{1,2,3\})$
- 8. Soient E, F et G trois ensembles. Montrer que $(E \subset F) \land (F \subset G) \Rightarrow E \subset G$.