Systèmes dynamiques

Feuille d'exercices 3

Exercice 1. Croissance des orbites périodiques et entropie des applications expansives

Soit (X, d) un espace métrique compact et $f: X \to X$ une application continue et expansive, c'est-à-dire qu'il existe $\delta > 0$ tel que pour tous $x, y \in X$,

$$\sup_{n \in \mathbf{N}} d(f^n(x), f^n(y)) \le \delta \implies x = y.$$

Pour tout $n \in \mathbb{N}$, on note

$$p_n(f) = \#\{x \in X, f^n(x) = x\}.$$

On définit aussi le taux de croissance exponentielle de la séquence $p_n(f)$,

$$p(f) = \limsup_{n \to \infty} \frac{\log(1 + p_n(f))}{n}.$$

1. Montrer que $p_n(f)$ est fini pour tout n et qu'on a

$$p(f) \le h_{\text{top}}(f),\tag{1}$$

où $h_{\text{top}}(f)$ est l'entropie topologique de f.

- 2. Donner un exemple d'application f telle que (1) soit une égalité.
- 3. Montrer que pour toute matrice $A \in GL(m, \mathbb{Z})$ hyperbolique (i.e. dont les valeurs propres sont toutes de module différent de 1), on a

$$\sum_{\substack{\lambda \in \operatorname{sp}(A) \\ |\lambda| > 1}} \log |\lambda| \le h_{\operatorname{top}}(f_A),$$

où $f_A: \mathbf{T}^m \to \mathbf{T}^m$ est l'automorphisme toral associé à A.

Exercice 2. Chaîne topologique de Markov

Soit $k \in \mathbb{N}^*$ et soit $A = (a_{i,j})_{1 \leq i,j \leq k}$ une matrice à coefficients dans $\{0,1\}$. On considère l'ensemble suivant:

$$\Sigma_A^+ = \{ \omega \in Y^\mathbf{N} \mid \forall n \in \mathbf{N}, \ a_{\omega_n, \omega_{n+1}} = 1 \},$$

où $Y = \{1, \dots, k\}$. On vérifie que Σ_A^+ est une partie fermée de $Y^{\mathbf{N}}$: muni du décalage de Bernoulli usuel, noté S, de tels systèmes dynamiques sont appelés chaînes de Markov topologiques.

- 1. Pour $m \in \mathbf{N}^*$, prouver que le nombre de point m-périodiques de (Σ_A^+, S) est égale à $\mathrm{Tr}(A^m)$.
- 2. Montrer qu'une chaîne de Markov topologique est expansive. En déduire l'inégalité suivante

$$\ln(\rho(A)) \le h_{top}(S_{\Sigma_A^+}),$$

où $\rho(A)$ désigne le rayon spectral de A.

3. En utlisant de nouveau la propriété d'expansivité, montrer qu'en réalité, il y a égalité:

$$h_{top}(S_{\Sigma_A^+}) = \ln(\rho(A)).$$

Exercice 3. Codage symbolique de l'application du Chat d'Arnold

On considère la matrice

$$L = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Alors L induit un automorphisme $f_L: \mathbf{T}^2 \to \mathbf{T}^2$ appelé application du Chat d'Arnold. On observe que L a deux valeurs propres $\lambda = \frac{3+\sqrt{5}}{2}$ et λ^{-1} . Les vecteurs propres associés respectifs sont $v = \begin{pmatrix} 1 \\ 1-\lambda^{-1} \end{pmatrix}$ et $w = \begin{pmatrix} 1 \\ -1-\lambda \end{pmatrix}$.

On considère une partition de \mathbf{T}^2 en deux rectangles $R^{(1)}$ et $R^{(2)}$ dont les côtés sont parallèles à v ou w (voir Figure 1). On constate que $f_L(R^{(1)})$ se décompose en trois rectangles Δ_0, Δ_1 et Δ_3 tandis que $f_L(R^{(2)})$ se décompose en deux rectangles Δ_2 et Δ_4 (voir Figure 1).

Figure 1: Partition de \mathbf{T}^2 en deux rectangles (à gauche) et image des relevés de ceux ci par $F: x \mapsto Lx$ (à droite)

- 1. En utilisant la partition $\mathbf{T}^2 = \bigcup_{j=0}^4 \Delta_j$, montrer que f_L est un facteur d'une chaîne de Markov topologique dont on précisera la matrice de transition.
- 2. En déduire l'entropie topologique de f_L .

Exercice 4. Fonctions zêta dynamiques

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue et expansive de X. On définit la fonction zêta dynamique de f par

$$\zeta_f(z) = \exp \sum_{n=1}^{\infty} \frac{p_n(f)}{n} z^n, \quad z \in \mathbf{C}, \quad |z| < \exp(-p(f)),$$

où $p_n(f)$ et p(f) sont définis dans l'exercice 2.

- 1. Montrer que ζ_f est bien définie.
- 2. Montrer, dans les cas suivants, que ζ_f est une fonction rationnelle admettant un pôle simple au point $z = \exp(-h_{\text{top}}(f))$, et que

$$p_n(f) \sim \exp\left(nh_{\text{top}}(f)\right) \quad (n \to \infty).$$

- (a) $X = \mathbf{T}$ et $f: x \mapsto mx$ où $m \in \mathbb{N}_{\geq 2}$.
- (b) $X = \mathbf{T}^2$ et $f = f_L$ est l'application du Chat d'Arnold.
- (c) $X = \Sigma_A$ où A est une matrice $n \times n$ à coefficients dans $\{0,1\}$ irréductible¹,

$$\Sigma_A = \{(x_j)_{j \in \mathbf{Z}} \in \{1, \dots, n\}^{\mathbf{Z}} \mid \forall j \in \mathbf{Z}, \ A_{x_j, x_{j+1}} = 1\},$$

et $f = \sigma_A$ est le décalage sur Σ_A .

¹En particulier, par le théorème de Perron-Frobenius, il existe une valeur propre $\lambda > 0$ telle que $\lambda = \rho(A)$ et sp(A) ∩ { $|z| \in \mathbb{C}$, $|z| = \lambda$ } = { $\lambda, \lambda \omega, \ldots, \lambda \omega^{p-1}$ } où $p \in \mathbb{N}$ et $\omega = \exp(2i\pi/p)$.