Basic Proof Methods

Direct Proof: To prove an implication $P \Rightarrow Q$, assume P and derive Q.

$$\begin{array}{c|c} Assume & Goal \\ \hline P & Q \\ \end{array}$$

Proof by Cases: To prove $(P \text{ or } Q) \Rightarrow R$, prove $P \Rightarrow R$ and $Q \Rightarrow R$.

case 1: case 2

 $\begin{array}{c|cccc} Assume & Goal \\ \hline P & R & \hline & Q & R \\ \hline \end{array}$

Proving "and" statements: To prove $P \Rightarrow (Q \text{ and } R)$, prove $P \Rightarrow Q \text{ and } P \Rightarrow R$.

 $\begin{array}{c|cccc} \underline{\text{Assume}} & \underline{\text{Goal}} \\ \hline P & Q & & \underline{P} & R \end{array}$

Proving the Contraposotive: To prove $P \Rightarrow Q$, it is equivalent to prove the contrapositive $((\text{not } Q) \Rightarrow (\text{not } P))$.

 $\begin{array}{c|cc} \text{Assume} & \text{Goal} \\ \hline \text{not } Q & \text{not} P \end{array}$

Proof by Contradiction: To prove P, assume not P and prove any contradiction (Q and (not Q)).

 $\begin{array}{c|c} \text{Assume} & \text{Goal} \\ \hline \text{not } P & \text{contradiction} \end{array}$

Proving "or" statements: To prove $P \Rightarrow (Q \text{ or } R)$, procede by contradiction. Assume P, not Q and not R and derive a contradiction.

 $\begin{array}{c|cc} Assume & Goal \\ \hline P, \ \text{not} \ Q, \ \text{not} \ R & \text{contradiction} \\ \end{array}$

Proofs of "if and only if"s: To prove $P \Leftrightarrow Q$. Prove both $P \Rightarrow Q$ and $Q \Rightarrow P$.

 $\begin{array}{c|cccc} Assume & Goal \\ \hline P & Q & \hline & Q & P \\ \hline \end{array}$