بِسَمِ اللَّهِ الرَّحْدِ الرَّحِيدِ الرَّحِيدِ فِي اللَّهِ الرَّحِيدِ الرّحِيدِ الرَّحِيدِ الرّحِيدِ الرَّحِيدِ الرّحِيدِ الرَّحِيدِ الرّحِيدِ ال

دانشگاه صنعتی شریف دانشکده علوم ریاضی و کامپیوتر

پروژهی درس آنالیز عددی پیشرفته(سوال ۵)

دانشجو

مرضيه عبدالحمدي(٩٩٢٠۴٨٠٢)

استاد

دکتر شریفی تبار

روش رانگه-کاتای مرتبه ۴ برای حل مساله مقدار اولیه

$$Y' = f(x, y), \quad y(a) = y1$$

- در قسمت اول(فایل que50) با تعریف یک فانکشن که ورودی های آن f, I, y1, h هستند، متد را پیاده سازی میکنیم به این صورت که با تعریف یک for مقادیر k1, k2, k3, k4 را هربار محاسبه و سپس Y بصورت بازگشتی محاسبه میشود و نتیجه حاصل میشود.
- در قسمت دوم(فایل que51)، متد را روی 7 تابع داده شده برای $^{10-5}$ در سوال بررسی و سپس یکبار هم مساله را بصورت دقیق توسط تابع 7 ode45 حل میکنیم و نهایتا روی یک نمودار آنها را ترسیم کرده و مقدار خطارا نیز نشان میدهیم. سپس در فایل 7 que512 هم همین کار را به ازای 7 $^{10-9}$ انجام میدهیم. هربار که 7 را 7 برابر میکنیم حدودا تایمی که طول میکشد تا نتیجه حاصل شود، 7 برابر میشود در نتیجه 7

الای محاسبات برای $h=10^{-10}$ و ارورهایی که برای حافظه گرفته شد، مساله را برای 10^{-9} انجام دادم.

نتایج این روش برای $^{-5}$ $^{-10}$ بر روی توابع داده شده بصورت زیر است:

1.

```
f =

x+y

y(1) ~
    0.718281828459043

Error between Runge-Kutta and ode45

err =

4.685422211281579e-17
```


2.

f = $exp(-x^2)$ y(1) ~ 0.746824132812409 Error between Runge-Kutta and ode45 err = 1.098553748058879e-17 Figure 21 — □ × Figure 22 File Edit View Insert Tools Desktop Window Help File Edit View Insert Tools Desktop Window Help $dy/dx = exp(-x^2)$ 0.8 0.7 0.7 0.6 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

solved using RK4 in 0.45313 seconds

```
f =
    x*sin(y)

y(1) ~
        0

Error between Runge-Kutta and ode45

err =
        0

$ >>
```


• در قسمت سوم(فایل que52) یک جدول مقادیر توزیع نرمال با تعریف یک for و استفاده از تابع قسمت اول تشکیل میدهیم که برای بهینه سازی تایم و حافظه، آن را بصورت بازگشتی تعریف میکنیم. در اینجا هم به ازای $h=10^{-9}$ مقادیر محاسبه شده اند و نتایج بصورت زیر حاصل شد:

همچنین تایمی که برای ران کردن کد نیاز بود، بصورت زیر است:

11892.3906

و بخشی از جدول A نیز بصورت زیر است:

1	2	3	4	5	6	7	8	9	10	11	12	13
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
	0.0398	0.0792	0.1177	0.1551	0.1910	0.2251	0.2572	0.2870	0.3146	0.3398	0.3625	0.3829
0.004	0.0438	0.0831	0.1215	0.1588	0.1945	0.2284	0.2602	0.2899	0.3172	0.3421	0.3647	0.3848
0.008	0.0477	0.0870	0.1253	0.1624	0.1980	0.2317	0.2633	0.2927	0.3198	0.3445	0.3668	0.3867
0.012	0.0517	0.0908	0.1291	0.1660	0.2014	0.2349	0.2664	0.2956	0.3224	0.3468	0.3689	0.3885
0.015	9 0.0556	0.0947	0.1328	0.1697	0.2049	0.2382	0.2694	0.2983	0.3250	0.3492	0.3709	0.3904
0.019	0.0596	0.0986	0.1366	0.1733	0.2083	0.2414	0.2724	0.3011	0.3275	0.3514	0.3730	0.3922
0.023	9 0.0635	0.1024	0.1403	0.1768	0.2117	0.2446	0.2754	0.3039	0.3300	0.3537	0.3750	0.3940
0.027	9 0.0674	0.1063	0.1440	0.1804	0.2151	0.2478	0.2783	0.3066	0.3325	0.3559	0.3770	0.3957
0.031	9 0.0714	0.1101	0.1477	0.1839	0.2184	0.2509	0.2812	0.3093	0.3349	0.3582	0.3790	0.3975
0.035	8 0.0753	0.1139	0.1514	0.1875	0.2218	0.2540	0.2842	0.3120	0.3374	0.3603	0.3809	0.3992