Use of ggprism and ggsci packages

Yifan Jiang

Overview

ggprism and ggsci can respectively set the style and color of the picture generated by ggplot. This style and color are used in a large number of papers.

Package

- library(ggprism)
- library(ggsci)

ggprism

theme_prism()

Change the style of the graph, similar to the style of the Prism software.

- scale_color_prism(palette="colors")
- scale_fill_prism(palette="colors")
- scale_colour_prism(palette="colors")

There are many optional color schemes to change the color of the picture, which is very convenient.

scale_shape_prism()

Shape scales that approximate those used in GraphPad Prism.

scale_x_discrete(guide = "prism_bracket")

Segment the coordinate axis. add_pvalue(data_frame)

Add a hypothesis test p-value to the picture

ggsci

- scale_color_aaas()
- scale_color_d3()
- scale_color_npg() • There are too many coloring scheme to write...
- This function can directly call the color scheme of various scientific journals, which is very beautiful and very convenient to use.

The picture on the left does not use theme_prism, the picture on the right uses it.

Example

p1 <- iris %>% ggplot(aes(Sepal.Length,Sepal.Width,color=Species))+geom_point()+theme_prism()+ggtitle("Original") p2 <- iris %>% ggplot(aes(Sepal.Length,Sepal.Width,color=Species))+geom_point()+theme_prism()+scale_color_prism(p

ggprism's high-contrast color matching is very suitable for scientific research articles.

The default coordination of ggplot and the color scheme of ggprism are respectively shown.

alette = "flames")+ggtitle("Flames") p3 <- iris %>% ggplot(aes(Sepal.Length,Sepal.Width,color=Species))+geom_point()+theme_prism()+scale_color_prism(p alette = "floral")+ggtitle("Floral") p4 <- iris %>% ggplot(aes(Sepal.Length,Sepal.Width,color=Species))+geom point()+theme prism()+scale color prism(p alette = "candy bright")+ggtitle("candy bright") (p1+p2)/(p3+p4)Original **Flames**

axis segmentation.

p1/p2

(p1+p2)

3.5

p1 <- iris %>% ggplot(aes(Species,Sepal.Length))+geom_jitter(aes(shape=Species))+theme_prism() p2 <- iris %>% ggplot(aes(Species,Sepal.Length))+geom_jitter(aes(shape=Species))+theme_prism()+scale_x_discrete(g uide = "prism_bracket")+scale_shape_prism()

8

~group1, ~group2, ~p, ~y.position, "virginica", "versicolor", 1.866e-07, 36

p <- data.frame(</pre> group1="virginica", group2="versicolor", p.adj = 1.866e-07,y.position = 8 p2 <- iris %>% filter(Species %in% c("virginica", "versicolor")) %>% ggplot(aes(factor(Species), Sepal.Length))+ge om_boxplot(aes(fill=Species))+theme_prism()+scale_fill_prism("floral")+theme(legend.position = "none")+add_pvalue (data=p) p1+p2 8-1.866e-07

Original **AAAS** 4.0-4.0-

setosa

3.5-

setosa

