CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By:

KARTHIK M S

P.E.S. COLLEGE OF ENGINEERING, MANDYA, KARNATAKA

Department: AIML

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Predictive Maintenance of Industrial Machinery

- Develop a predictive maintenance model for a fleet of industrial machines to anticipate failures before they occur.
- This project will involve analyzing sensor data from machinery to identify patterns that precede a failure.
- The goal is to create a classification model that can predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data.
- This will enable proactive maintenance, reducing downtime and operational costs.

PROPOSED SOLUTION

Sensor Data Collection:

Collect real-time and historical sensor data from industrial machines, including parameters such as temperature, torque, speed, and tool wear.

Data Preprocessing:

Clean and preprocess the data to handle missing values and outliers. Apply normalization and feature encoding as needed.

• Feature Engineering:

Extract meaningful features from raw sensor inputs that contribute to machinery failures (e.g., tool wear thresholds, speed anomalies).

PROPOSED SOLUTION

Machine Learning Model:

Utilize IBM AutoAI to automatically test, tune, and select the best classification model (e.g., Random Forest) for predicting failure types.

• Deployment:

Deploy the best-performing model using IBM Watsonx.ai Studio. Enable users to input real-time machine data and get instant failure predictions.

• Evaluation:

Assess model accuracy using cross-validation metrics (Accuracy: 99.5%). Continuously monitor and retrain if needed for improved reliability.

SYSTEM APPROACH

The System Approach outlines the technical environment and tools used to build the predictive maintenance system.

System Requirements

Software:

- IBM Cloud account
- IBM Watsonx.ai Studio
- IBM Cloud Object Storage
- Watson Online Deployment

Input Data:

Industrial sensor data (CSV format) which includes features such as Air Temp, Process Temp, Torque, Speed, Tool Wear, etc.

Output:

Predicted machine failure type (e.g., No Failure, Heat Dissipation, Power Failure)

ALGORITHM & DEPLOYMENT

Algorithm Used:

- Snap Random Forest Classifier
- It has high accuracy (99.5%), Robust with structured sensor data, Good for multi-class classification, Handles complex relationships between features

Input Features:

• Product Name, Machine Type, Air & Process Temperature, Rotational Speed, Torque, Tool Wear etc.

Training Process:

- AutoAI handled preprocessing, feature engineering, and model tuning
- Used cross-validation and hyperparameter optimization (HPO)

Prediction:

- Real-time failure type prediction
- Deployed on IBM Cloud for live input and output

Test data

UDI	Product ID	Type	Air tempera	Process tem	Rotationals	Torque [Nm	Tool wear [17	Target
	1 L58642	L	290.5	400.1	1553	45.9	0	0
	2 L89421	L	270.6	280.5	1441	36.2	54	1
	3 M98723	M	315.8	300.7	1523	40.5	12	0
	4 L15489	L	309.5	350	1365	46.8	25	1
	5 M36478	M	296.1	309	1523	36.9	24	0
	6 L47230	L	298	309	2861	4.6	143	1
	7 M25846	M	309.2	299	1400	43.7	19	1
	8 H73485	Н	320.7	290	1652	38.5	13	1

CONCLUSION

- Achieved 99.5% accuracy in predicting machine failures using IBM AutoAI.
- Enabled proactive maintenance, reducing machine downtime and operational costs.
- Ensured accurate classification of different failure types (e.g., tool wear, power failure).
- Faced challenges in understanding AutoAI workflow and interpreting multi-class predictions.
- Demonstrated the effectiveness of AI in improving industrial machinery reliability.

FUTURE SCOPE

- Add more data sources like vibration and maintenance logs.
- Use advanced ML models for better performance.
- Expand the system to multiple factories or regions.
- Explore deep learning and edge computing for real-time predictions.
- Build a dashboard with live alerts for maintenance teams.

REFERENCES

Kaggle Dataset:

Machine Predictive Maintenance Classification Dataset

https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification

IBM Documentation:

IBM Watsonx.ai – AutoAI User Guide

https://www.ibm.com/docs/en/watsonx

IBM AutoAI Overview

https://www.ibm.com/cloud/watson-studio/autoai

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Karthik M S

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 21, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/4be2ed5b-3f4f-4699-8285-606ab98942ce

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Karthik M S

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

edune

Learning hours: 20 mins

THANK YOU

