Analysis I (WS 18/19)

Pavel Zwerschke

13. November 2018

Inhaltsverzeichnis

0	Organisatorisches	2
1	Was ist Analysis?	3
2	Etwas Logik	3
	2.1 Grundbegriffe	5
3	Die reellen Zahlen	8
	3.1 Körperaxiome (engl. field)	8
	3.2 Die Anordnungsaxiome	
	3.3 Obere und untere Schranken, Supremum und Infimum	
	3.4 Das Vollständigkeitsaxiom	
	3.5 Die natürlichen Zahlen \mathbb{N}	
	5.5 Die naturnenen Zamen N	10
4	Funktionen und Abbildungen	21
	4.1 Funktion als Abbildung	21
	4.2 Abbildungen als Graph	
	4.3 Schubfachprinzip und endliche Mengen	
۲	Ctarles Indultion and des Wahlanders remainsin	27
5	Starke Induktion und das Wohlordnungsprinzip	
	5.1 Starke Induktion und das Wohlordnungsprinzip	
	5.2 Anwendungen	28
6	Existenz von Wurzeln (in \mathbb{R})	30
7	Folgen und Konvergenz	32
	7.1 Grundlagen	32

0 Organisatorisches

Dozent

Prof. Dr. Dirk Hundertmark (20.30, 2.028)

dirk.hundertmark@kit.edu

Übungsleiter

Dr. Markus Lange (20.30, 2.030)

markus.lange@kit.edu

Übungszettel

Ausgabe:

donnerstags unter www.math.kit.edu/iana1/lehre/ana12018w/

Abgabe:

bis mittwochs um 19:00 in den Abgabekästen des Foyers des Mathematikgebäudes (20.30)

getackert, mit Namen, Matrikelnummer, Tutoriennummer und Deckblatt (optional) in das Fach mit der richtigen Kennzeichnung legen

Zettel dürfen zu zweit abgegeben werden

Übungsschein

Jede K-Aufgabe wird mit 4 Punkten bewertet. Einen Übungsschein erhält wer 50% der Punkte aller K-Aufgaben erzielt.

Klausur

Die Anmeldung findet über das Online-Portal statt. Die Klausur findet in KW 8 2019 statt. Der Übungsschein ist Voraussetzung für die Teilnahme an der Klausur.

1 Was ist Analysis?

Zentrale Begriffe:

Grenzwerte von Folgen und Reihen, Funktionen, stetig, differenzierbar, integrieren, Differential- und Integralrechnung, Differentialgleichungen (Newton, Maxwell, Schrödinger), unendlich dimensionale Räume

Beispiel.
$$S = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots$$

 $2S = 1 + \frac{1}{2} + \dots + \frac{1}{2} + \dots$
 $2S = 1 + S$

S entspricht der Wahrscheinlichkeit, dass irgendwann mal Kopf in einem Münzwurf kommt.

Vorsicht!

$$S = 1 + 2 + 4 + \dots$$

 $2S = 2 + 4 + 8 + \dots = -1 + 1 + 2 + 4 + \dots = -1 + S$
 $S = -1$

Natürlich Quatsch!

Formales Rechnen kann gefährlich sein!

- Was sind mathematische Aussagen?
- Wie macht man Beweise, wie findet man sie? (learning by doing)
- logische Zusammenhänge

2 Etwas Logik

Eine (mathematische) Aussage ist ein Ausdruck, der wahr oder falsch ist. z. B.

- 1. A: 1 + 1 = 2. (auch 1 + 1 = 3, 1 + 1 = 0)
- 2. B: "Es gibt unendlich viele Primzahlen."
- 3. C: "Es gibt unendlich viele Primzahlen p für die p+2 auch eine Primzahl ist."
- 4. D: "Die Gleichung $m\ddot{x}=F$ hat geg. $\dot{x}(0)=v_0, x(0)=x_0$ immer genau eine Lösung."
- 5. E : "Jede gerade natürliche Zahl größer als 2 ist die Summe zweier Primzahlen."
- 6. F: "Morgen ist das Wetter schön."

- 7. G: "Ein einzelnes Atom im Vakuum mit der Kernladungszahl Z kann höchstens Z + 1 Elektronen binden."
- 8. H(k, m, n): "Es gilt: $k^2 + m^2 = n^2$ " (z. B. H(3, 4, 5) ist wahr.)

Gegeben für natürliche Zahlen n, Aussagen A(n), dann gilt:

Für jede nat. Zahl n ist A(n) wahr, genau dann, wenn

- 1. A(1) ist wahr.
- 2. Unter der Annahme, dass A(n) wahr ist, folgt, dass A(n+1) wahr ist.

Beispiel.
$$A(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$
.

Beweis. Vollständige Induktion

Induktionsanfang:

$$1 = \frac{1(1+1)}{2} \checkmark$$

Induktionsschluss:

Wir nehmen an, dass A(n) wahr ist (für $n \in \mathbb{N}$)

D. h. Induktionsannahme:

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Dann folgt:

Dann loigt:

$$\underbrace{1+2+\cdots+n}_{=\frac{n(n+1)}{2}} + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}$$

Bemerkung. Gaußscher Trick:

1)
$$S = 1 + 2 + 3 + \dots + n = n + (n - 1) + (n - 2) + \dots + 2 + 1$$

$$2S = \underbrace{(n + 1) + (n + 1) + \dots + (n + 1)}_{n-m+1} \Leftrightarrow S = \frac{n(n+1)}{2}.$$

$$S_n = 0 + 1 + 2 + \dots + n$$

 \approx Fläche eines rechtwinkligen Dreiecks = $\frac{1}{2} * n * n$.

Also: Ansatz ("geschicktes Raten", "scientific guess", englisch: ansatz):
$$S_n = \underbrace{a_2 n^2 + a_1 n + a_0}_{\text{Polynom 2. Grades in n}}$$

$$a_2 = \frac{1}{2}$$

Wie bekommt man
$$a_0, a_1, (a_2)$$
? $n = 0$: $S_0 = 0 = a_2 * 0^2 + a_1 * 0 + a_0 \Rightarrow a_0 = 0$. $n = 1$: $S_1 = 1 = a_2 * 1^2 + a_1 * 1^2 = a_2 + a_1 = \frac{1}{2} + a_1$.

also:
$$a_1 = \frac{1}{2}$$

$$\Rightarrow$$
 Raten: $S_n = \frac{1}{2}n^2 + \frac{1}{2}n = \frac{n(n+1)}{2}$.

2.1Grundbegriffe

Aussagen: Notation "so, dass gilt" "es gibt mindestens ein", "es existiert" "für alle" "impliziert"($A \Rightarrow B$ "aus A folgt B") "genau dann, wenn" \Leftrightarrow $\neg A$ nicht A $A \wedge B$ A und B $A \vee B$ $A ext{ oder } B$

 $A := B \mid A$ ist per Definition gleich B

Satz 2.1.1. Folgende Aussagen sind allein aus logischen Gründen immer $\neg(\neg A) \Leftrightarrow A$ Gesetz der doppelten Verneinung

 $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$ Kontraposition

 $A \Rightarrow B \Leftrightarrow (\neg (A \land \neg B))$ beim Widerspruchsbeweis wahr. $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$ de Morgan $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$ de Morgan

Bemerkung. $A \Rightarrow B \Leftrightarrow B$ ist mindestens so wahr wie $A \Leftrightarrow A$ ist mindestens so falsch wie $B \Leftrightarrow \neg B \Rightarrow \neg A$.

 $(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B \land B \Rightarrow A).$

Beispiel. $n \in \mathbb{N}$ ist gerade, falls $k \in \mathbb{N}$ existiert mit n = 2k.

 $n \in \mathbb{N}$ ist ungerade, falls $\exists k \in \mathbb{N}_0 : \forall n = 2k + 1$.

Dann gilt: n ist gerade $\Leftrightarrow n^2$ ist gerade.

Beweis. " \Rightarrow ": $n \text{ gerade} \Rightarrow n = 2k$, für $k \in \mathbb{N}$ $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$ ist gerade.

Umgekehrt müssen wir zeigen:

 $, \Leftarrow$ ": n^2 gerade $\Rightarrow n$ gerade

Kontraposition: n ungerade $\Rightarrow n^2$ ungerade

Also sei $n = 2k+1, k \in \mathbb{N}_0 \Rightarrow n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = \underbrace{2(2k^2 + 2k)}_{\text{gerade}} + 1 \Rightarrow$

 n^2 ist ungerade.

Mengen (nach Cantor)

informell: Eine Menge ist eine Sammlung von Objekten (Elemente) zu einem neuen Objekt.

Vorsicht: Russels Paradox

genaue Definition von Zermelo-Fraenkel Axiome (\rightarrow Logik Mengenlehre)

 $a \in M : a \text{ ist Element von } M$

```
a \notin M: aist kein Element von Mz.B.: M = \{1,4\} 1 \in M 5 \notin M
```

Angabe von Mengen durch

- Auflistung $M = \{x_1, x_2, x_3, \dots, x_{17}\}$
- Eigenschaft $M = \{a | a \text{ hat Eigenschaft } E\}$

z.B.:

- $\mathbb{N} := \{1, 2, 3, \dots\}$
- $\mathbb{Z} := \{x | x \in \mathbb{N} \lor x \in -\mathbb{N} \lor x = 0\}$
- $\bullet \ -\mathbb{N} := \{-n|n \in \mathbb{N}\}\$

Definition 2.1.2. Sei M eine Menge und A(x) Aussagen mit $x \in M$

 $\forall x \in M : A(x) \text{ ist wahr, falls alle } A(x) \text{ wahr sind.}$

 $\exists x \in M : A(x)$ ist wahr, falls mindestens eine Aussage A(x) wahr ist.

Achtung: Zusammensetzen: Reihenfolge ist wichtig!

Beispiel. Töpfe := Menge der Töpfe

Deckel := Menge der Deckel

 $A: \forall T \in \text{T\"{o}pfe } \exists D \in \text{Deckel}: D \text{ passt auf } T$

(Für jeden Topf gibt es einen Deckel, der passt)

 $B: \exists D \in \text{Deckel } \forall T \in \text{T\"{o}pfe}: D \text{ passt auf } T$

(Es existiert mindestens ein Deckel, der auf alle Töpfe passt)

Negation:

$$\neg(\forall x \in M : A(x))$$

$$\Leftrightarrow \exists x \in M : \neg A(x)$$

$$\neg(\exists x \in M : A(x))$$

$$\Leftrightarrow \forall x \in M : \neg A(x)$$

Definition 2.1.3 (wichtige Mengen). Seien M, N Mengen.

 $\emptyset := \text{ die Menge ohne Elemente (leere Menge)}$

 $M \cap N := \{x | x \in M \land x \in N\}$ (Schnitt)

 $M \cup N := \{x | x \in M \lor x \in N\}$ (Vereinigung)

 $M \setminus N := \{x | x \in M \land x \notin N\}$ (Differenzmenge)

 $\mathcal{P}(M) := \{A | A \subset M\}$ die Menge aller Teilmengen von M (Potenzmenge)

Sei I eine Menge und für $i \in I$ eine Menge M_i .

$$\bigcap_{i \in I} M_i := \{x | \forall i \in I : x \in M_i\}.$$
$$\bigcup_{i \in I} M_i := \{x | \exists i \in I : x \in M_i\}.$$

Ist $M \cap N = \emptyset$, so heißen M und N divergent. $M \subset N$, falls $\forall x \in M : x \in N$ (M Teilmenge von N). M = N, falls M und N dieselben Elemente haben. Insbesondere ist $(M = N) \Leftrightarrow M \subset N \land N \subset M$. $M \subseteq N : M \subset N \land M \neq N$ (M echte Teilmenge von N).

Beispiel.
$$\emptyset \subset M$$

 $M = \{1, 2\} \Rightarrow \mathcal{P}(M) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

- 1. Eigenschaften von "⊂"
 - (a) $\emptyset \subset M$
 - (b) $M \subset M$
 - (c) $M = N \Leftrightarrow M \subset N \land N \subset M$
 - (d) $A \subset B \land B \subset C \Leftrightarrow A \subset C$
- 2. Assoziativität
 - (a) $(A \cup B) \cup C = A \cup (B \cup C)$
 - (b) $(A \cap B) \cap C = A \cap (B \cap C)$
- 3. Kommutativität
 - (a) $A \cup B = B \cup A$
 - (b) $A \cap B = B \cap A$
- 4. Distributivgesetz
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

3 Die reellen Zahlen

3.1 Körperaxiome (engl. field)

 \mathbb{K} : Menge mit zwei Operationen "+"und "·". $\forall a, b \in \mathbb{K}$ ist $a + b \in \mathbb{K} \land a \cdot b \in \mathbb{K}$ erklärt sollen kompatibel sein.

Definition 3.1.1 (Körperaxiome). In einem Körper gelten diese Axiome:

- 1. Kommutativität: $\forall a, b \in \mathbb{K} : a + b = b + a, a \cdot b = b \cdot a$
- 2. Assoziativität: $\forall a, b, c \in \mathbb{K} : a + (b + c) = (a + b) + c, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. Existenz des neutralen Elements:

$$\exists 0 \in \mathbb{K} : a+0 = 0 + a = a \forall a \in \mathbb{K} \\ \exists 1 \in \mathbb{K} : a \cdot 1 = 1 \cdot a = a \forall a \in \mathbb{K}$$

4. Existenz eines inversen Elements:

$$\forall a \in \mathbb{K} \exists -a \in \mathbb{K} : a + (-a) = 0$$
$$\forall a \in \mathbb{K} \setminus \{0\} \exists \frac{1}{a} \in \mathbb{K} : a \cdot \frac{1}{a} = 1$$
Es gilt: $0 \neq 1$.

5. Distributivgesetz: $\forall a, b, c \in \mathbb{K} : a \cdot (b+c) = a \cdot b + a \cdot c$

Beispiel. $\mathbb{Q} = \frac{m}{n}, n \in \mathbb{N}, m \in \mathbb{Z}$ ist ein Körper.

Bemerkung. .

- 1. Somit ist ein Körper \mathbb{K} mit "+"eine kommutative Gruppe und $\mathbb{K} \setminus \{0\}$ mit "·"auch eine kommutative Gruppe.
- 2. Die neutralen Elemente sind eindeutig bestimmt. z.B.: angenommen, 0_1 und 0_2 sind neutrale Elemente mit "+". $\Rightarrow 0_1 \stackrel{(3)}{=} 0_1 + 0_2 \stackrel{(1)}{=} 0_2 + 0_1 \stackrel{(2)}{=} 0_2$ analog für Multiplikation

Definition 3.1.2. Zu $a \in \mathbb{K}$ ist -a das Inverse bzgl. der Addition schreibe a - b := a + (-b). Zu $a \in \mathbb{K} \setminus \{0\}$ sei $a^{/1}$ das Inverse bzgl. der Multiplikation.

Ist $b \neq 0$, so schreiben wir $\frac{a}{b} := a \cdot b^{-1} = b^{-1} \cdot a$. schreibe $(ab) := a \cdot b$.

Lemma 3.1.3 (Rechnen in einem Körper). .

- 1. Umformen von Gleichungen $\forall a, b, c \in \mathbb{K}$: aus a + b = c folgt a = c b aus $a \cdot b = c$, $b \neq 0$ folgt $a = \frac{c}{b}$
- 2. Allgemeine Rechenregeln -(-a) = a $(a^{-1})^{-1} = a, \text{ falls } a \neq 0$ -(a+b) = (-a) + (-b) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} \cdot b^{-1}$ $a \cdot 0 = 0$ a(-b) = -(ab), (-a)(-b) = ab a(b-c) = ab ac $ab = 0 \Leftrightarrow a = 0 \lor b = 0 \text{ (Nullteilerfreiheit)}$

Beweis.
$$0 = a + (-a) = (-a) + a$$

 $\Rightarrow -(-a) = a$
 $(a+b) + ((-a) + (-b)) = (a + (-a)) + (b + (-b)) = 0 + 0 = 0$
 $\Rightarrow -(a+b) = (-a) + (-b)$
benutzen wir auch Eindeutigkeit des inversen Elements

analog zeigt man $(a^{-1})^{-1} = a$ und $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$ z.B.: $(ab) \cdot (b^{-1}a^{-1}) = a(b \cdot b^{-1})a^{-1} = (a \cdot 1)a^{-1} = a \cdot b^{-1} = 1$ Ferner $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 = a \cdot 0 + 0$ $\Rightarrow a \cdot 0 = a \cdot 0 - a \cdot 0 = 0$ $\Rightarrow a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0$ Eind. d. Inv. -ab = a(-b)

Somit auch
$$(-a)(-b) = -((-a)b) = -(b(-a)) = (-ba) = -(-ab) = ab$$
 und $a(b-c) = a(b+(-c)) = ab + a(-c) = ab + (-ac) = ab - ac$. ist $ab = 0$ und $a \neq 0 \Rightarrow 0 = (ab)\frac{1}{a} = \frac{1}{a} \cdot (ab) = (\frac{1}{a} \cdot a)b = 1b = b$ also ist $b = 0$.

Satz 3.1.4 (Bruchrechnen). $a, b, c, d \in \mathbb{K}, c \neq 0, d \neq 0$. Dann gilt

$$1. \ \frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

2.
$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

3.
$$\frac{a/c}{b/d} = \frac{ad}{bc}$$
, falls auch $b \neq 0$ ist.

Beweis. Übung

Beispiel. rationale Zahlen sind ein Körper schreiben ($\mathbb{K}, +, \cdot$) für einen Körper

3.2 Die Anordnungsaxiome

Definition 3.2.1. Sei \mathbb{K} (genauer $(\mathbb{K},+,\cdot)$) ein Körper. Dann heißt > eine Anordnung falls

- 1. Für jedes $a \in \mathbb{K}$ gilt genau eine der Aussagen a > 0, a = 0, -a > 0 (wenn $a \in \mathbb{K}$, mit a > 0 positiv)
- 2. Aus a > 0 und b > 0 folgt a + b > 0 und $a \cdot b > 0$

Wir nennen $(\mathbb{K}, +, \cdot, >)$ einen angeordneten Körper.

Bemerkung. Statt -a > 0 schreiben wir a < 0 Statt a - b > 0 schreiben wir a > b Bild:

Statt a - b < 0 schreiben wir a < b.

$$a \ge b$$
, falls $a > b \lor a = b$

$$a \le b$$
, falls $a < b \lor a = b$.

Satz 3.2.2. Sei $(\mathbb{K},+,\cdot,>)$ ein angeordneter Körper. Dann gilt

- 1. für $a, b \in \mathbb{K}$ gilt genau eine der Relationen a > b, a = b, a < b (Trichotromie)
- 2. Aus a > b, b > c folgt a > c (Transitivität)
- 3. Aus a > b folgt:

$$\begin{cases} a+c > b+c, \forall c \in \mathbb{K} \\ ac > bc, \text{ falls } c > 0 \\ ac < bc, \text{ falls } c < 0 \end{cases}.$$

4. Aus a > b und c > d folgt:

$$\begin{cases} a+c > b+d \\ ac > bd, \text{ falls } b,d > 0 \end{cases}$$

5. Für $a \neq 0$ ist $a^2 > 0$.

- 6. Aus a > 0 folgt $\frac{1}{a} > 0$.
- 7. Aus a > b > 0 folgt $0 < \frac{1}{a} < \frac{1}{b}$.
- 8. Aus a > b, $0 < \lambda < 1$ folgt $b < \lambda b + (1 \lambda)a < a$.

Bemerkung. Auf \mathbb{F}_2 kann es keine Anordnung geben!

Beweis. 1. Direkt aus (A.1) und Def. von a > b.

2.
$$a-c = \underbrace{(a-b)}_{>0} + \underbrace{(b-c)}_{>0} \stackrel{(A.2)}{>} 0.$$

3.
$$(a+c) - (b+c) = a-b > 0$$

 $ac - bc = \underbrace{(a-b) \cdot c}_{>0} \cdot c \stackrel{\text{(A.2)}}{>} 0$, falls $c > 0$
Ist $c < 0$, so ist $-c > 0$
 $\Rightarrow bc - ac = \underbrace{(a-b) \cdot (-c)}_{>0} \stackrel{\text{(A.2)}}{>} 0$
 $ac - bd = ac - bc + bc - bd = \underbrace{(a-b) \cdot c}_{>0} \cdot \underbrace{c}_{>0} + \underbrace{b}_{>0} \cdot \underbrace{(c-d)}_{>0} \stackrel{\text{(A.2)}}{>} 0$.

4.
$$(a+c)-(b+d)=(a-b)+(c-d)>0$$
 nach (A.2)
 $ac-bd=ac-bc+bc-bd=(a-b)c+b(c-d)$
Ist $b=0\Rightarrow a>b=0\Rightarrow ac>0=bd$
Ist $b<0\Rightarrow (-b)d>0\Rightarrow -bd>0\Rightarrow bd<0\Rightarrow ac<-bd\Rightarrow$
 $\underbrace{ac}_{>0}+\underbrace{(-bd)}_{>0}\overset{(A.2)}{>}0$.

5. Fallunterscheidung:

ist
$$a > 0 \Rightarrow a^2 = a \cdot a > 0$$
 (A.2)
ist $a < 0 \Rightarrow a^2 = (-a) \cdot (-a) > 0$ (A.2)

6. sei a > 0:

$$\stackrel{5.}{\Rightarrow} \left(\frac{1}{a}\right) > 0 \Rightarrow \frac{1}{a} = \underbrace{\left(\frac{1}{a}\right)^2}_{>0} \cdot \underbrace{a}_{>0} > 0.$$

7. aus
$$a > b > 0$$

 $\Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{b}(a - b)\frac{1}{a} > 0.$

8.
$$a > b, 0 > \lambda > 1 \Rightarrow \lambda > 0 \land 1 - \lambda > 0$$

 $b = \lambda b + \underbrace{(1 - \lambda)b}_{<(1 - \lambda)a}$
 $< \lambda b + (1 - \lambda)a < \lambda a + (1 - \lambda)a = a$
 $\Rightarrow b < \lambda b + (1 - \lambda)a = a$.
Insbesondere $\lambda = 1/2 \Rightarrow b < 1/2b + 1/2a = \frac{a+b}{2} < a$.

Definition 3.2.3 (Betrag). Sei $(\mathbb{K}, +, \cdot, >)$ ein angeordneter Körper. Betrag von $a \in \mathbb{K}$ ist gegeben durch

$$|a| := \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$$

$$\text{auch noch } a, b \in \mathbb{K}$$

$$\max(a, b) := \begin{cases} a, & \text{falls } a \ge b \\ b, & \text{falls } a < b \end{cases}$$

$$\min(a, b) := \begin{cases} a, & \text{falls } a \le b \\ b, & \text{falls } a > b \end{cases}$$

Bemerkung. .

1.
$$a, b \in \mathbb{K}$$

 $|a - b| = \text{Abstand von } a \text{ zu } b.$
 $|a| = |a - 0| = \text{Abstand von } a \text{ zu } 0.$

2.
$$|a| = \max(a, -a)$$
.

Satz 3.2.4. $(\mathbb{K}, +, \cdot, >)$ ang. Körper Dann gilt $\forall a, b \in \mathbb{K}$:

1.
$$|-a| = |a| \text{ und } a \le |a|$$

2.
$$|a| \ge 0$$
 und $|a| = 0 \Leftrightarrow a = 0$

$$3. \ |ab|=|a|\,|b|$$

4.
$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

5.
$$||a| - |b|| \le |a - b|$$
 (umgekehrte Dreiecksungleichung)

Beweis. .

1.
$$|-a| = \begin{cases} -a, -a \ge 0 \\ -(-a), -a \le 0 \end{cases} = \begin{cases} -a, a \le 0 \\ a, a \ge 0 \end{cases} = |a|$$

$$|a| - a = \begin{cases} a - a, a \ge 0 \\ -a - a, a < 0 \end{cases} = \begin{cases} 0, a \ge 0 \\ -(a + a), a < 0 \end{cases} \ge 0.$$
alternativ: $a < \max(a, -a) = |a|$.

2.

3. Hier ändern sich die linke und rechte Seite nicht, wenn man a bzw. bdurch -a bzw. -b ersetzt.

Also, o.B.d.A. können wir annehmen, dass $a, b \ge 0$. $\Rightarrow |ab| = ab = |a||b|.$

5.
$$|a| = |a - b + b| = |(a - b) + b| \stackrel{(4)}{\leq} |a - b| + |b|$$

 $|a| - |b| \leq |a - b| \, \forall a, b \in \mathbb{K}.$
Jetzt: Symmetrieargument. (Vertausch von a und b)
 $\Rightarrow |b| - |a| \leq |b - a| = |(-b - a)| = |a - b|$
also $|b| - |a| \leq |a - b|$
 $|a| - |b| \leq |a - b|$
 $|a| - |b|| = \max(|a| - |b|, -(|a| - |b|)) = \max(|a| - |b|, |b| - |a|) \leq |a - b|.$

Beispiel. Sei $a,b\in\mathbb{K}$ ein angeordneter Körper. Aus $|b-a|\leq b/2, 2=1+1$ folgt a > b/2 Bild:

Beweis.
$$b-a \le |b-a| \le b/2 \Rightarrow a \ge b-b/2 = b/2$$
.

Korollar 3.2.5 ("geometrisch-arithmetische Ungleichung"). Sei $(\mathbb{K}, +, \cdot, >)$ ein ang. Körper, $a,b \in \mathbb{K}$

$$\Rightarrow ab \le \left(\frac{a+b}{2}\right)^2.$$

Wenn Gleichheit gilt, so folgt a = b.

Beweis. In Übung

Fakt:

- In jedem angeordneten Körper gilt 0 < 1!
- Es gibt keine Anordnung, die \mathbb{F}_2 zu einem angeordneten Körper macht. (H.A.)

3.3 Obere und untere Schranken, Supremum und Infimum

Notation: a ist nicht negativ, falls $a \ge 0$.

natürlich $a = b \Leftrightarrow a \leq b \land a \geq b$.

Im Folgenden ist \mathbb{K} immer ein angeordneter Körper. $A, B \subset \mathbb{K}, A, B \neq \emptyset$ und $\gamma \in \mathbb{K}$, so bedeutet $A \leq \gamma : \forall a \in A : a \leq \gamma \ (\gamma \text{ it obere Schranke für } A)$.

 $B \ge \beta : \forall b \in B : b \ge \beta$ (β ist untere Schranke für B).

Analog sind $a < \gamma, A > \gamma, A < B$, usw. definiert.

Hat A eine obere Schranke, so heißt A nach oben beschränkt. Hat B eine untere Schranke, so ist B nach unten beschränkt. A ist beschränkt, falls es nach oben und unten beschränkt ist.

Ist $A \leq \alpha$ und $\alpha \in A$, so heißt α größtes (maximales) Element von A, schreibe $\alpha = \max A$ (Maximum).

Ist $B \ge \beta$ und $\beta \in B$, so heißt B kleinstes (minimales) Element von B, schreibe $\beta = \min B$ (Minimum).

Man zeige, dass max und min eindeutig sind, sofern sie existieren.

 $[0,1):=\{x\in\mathbb{K}|0\leq x\leq 1\}$ hat kein Maximum bzw. kein maximales Element.

Definition 3.3.1. Sei $A \subset \mathbb{K}$, $A \neq \emptyset$. Dann ist $\gamma \in \mathbb{K}$ die kleinste obere Schranke (oder Supremum), falls $A \leq \gamma$ und aus $A \leq n$ folgt $\gamma \leq n$. Schreibe $\gamma = \sup A = \sup(A)$.

Analog: β it die größte untere Schranke von A (Infimum), falls $\beta \leq A$ und aus $\eta \leq A$ folgt $\eta \leq \beta$

Schreibe $\beta = \inf A = \inf(A)$.

Beispiel.
$$P := \{x \in \mathbb{K} | x > 0\}$$

 \Rightarrow

- 1. P ist nicht nach oben beschränkt.
- 2. P hat kein Minimum, aber inf P = 0.

Beweis. .

- 1. Ang. γ ist obere Schranke für P. D.h. $\forall x \in P$ folgt $0 < x \le \gamma \Rightarrow \gamma > 0 \Rightarrow \gamma \in P \Rightarrow 0 < \gamma = \gamma + 0 < \gamma + 1 \in P \Rightarrow \gamma + 1 \in P$ und $\gamma + 1 > \gamma \gamma$ ist nicht obere Schranke für P (Widerspruch!) $\mathcal E$
- $2. \ 2 := 1 + 1 > 1 > 0$

Ang. min $P:=\eta$ existiert. $\Rightarrow \eta \in P, \eta > 0, \tilde{x}:=\frac{\eta}{2}=\frac{0+\eta}{2}<\eta$. Es gilt $0=\inf P$.

Sicherlich 0 < P, also ist 0 eine untere Schranke für P.

0 ist die größte untere Schranke, denn nach obigem Argument ist jede Zahl > 0 keine untere Schranke für P!

Lemma 3.3.2. $A \subset \mathbb{K}, A \neq \emptyset$.

- 1. $\alpha := \sup A \Leftrightarrow \alpha \ge A \land \forall \varepsilon > 0 \exists a \in A : \alpha \varepsilon < a$.
- 2. $\beta := \inf B \Leftrightarrow \beta \leq B \land \forall \varepsilon > 0 \exists b \in B : b < \beta + \varepsilon$.

Beweis. .

1. "⇒": Sei $\alpha = \sup A$. Also α ist die kleinste obere Schranke für A. D.h. $\alpha \geq A$ und $\forall \varepsilon > 0$ ist $\varepsilon > 0 < \alpha$, also ist $\alpha - \varepsilon$ keine obere Schranke für A. D.h. $\exists a \in A : \alpha - \varepsilon < a$.

" \Leftarrow ": Sei $\alpha \ge A \land \forall \varepsilon > 0 \exists a \in A : \alpha - \varepsilon < a$. Also ist α eine obere Schranke für A. Sei $\tilde{\alpha} < \alpha$.

Setze $\varepsilon := \alpha - \tilde{\alpha} > 0 \Rightarrow \exists a \in A : \tilde{\alpha} = \alpha - \varepsilon < a \Rightarrow \tilde{\alpha}$ ist keine obere Schranke für $a. \Rightarrow \alpha$ ist die kleinste obere Schranke.

2. $A := -B = \{-b | b \in B\}$. Beachte: $\sup A = \sup(-B) = -\inf B$.

3.4 Das Vollständigkeitsaxiom

Definition 3.4.1. Ein angeordneter Körper $(\mathbb{K}, +, \cdot, >)$ erfüllt das Vollständigkeitsaxiom, falls

Jede nichtleere, nach oben beschränkte Teilmenge hat ein Supremum.

Solch einen Körper nennt man ordnungsvollständig. \mathbb{R} , der Körper der reellen Zahlen, ist <u>der</u> ordnungsvollständige Körper. (Im Wesentlichen gibt es nur einen!)

$$\mathbb{Q}; A := \{r \in \mathbb{Q} | r^2 < 2\}$$
 Notation: $a, b \in \mathbb{R}$ $a < b$
$$[a, b] := \{x \in \mathbb{R} | a \leq x \leq b\} \text{ abgeschlossenes Intervall}$$

$$(a, b) := \{x \in \mathbb{R} | a < x < b\} \text{ offenes Intervall}$$

$$[a, b) := \{x \in \mathbb{R} | a \leq x < b\} \text{ nach rechts halboffenes Intervall}$$

$$(a, b] := \{x \in \mathbb{R} | a < x \leq b\} \text{ nach links halboffenes Intervall}$$
 Intervalllänge: $b - a$ unbeschränkte Intervalle:
$$(-\infty, a] := \{x \in \mathbb{R} | x \leq a\}$$

$$[a, \infty) := \{x \in \mathbb{R} | x \geq a\}$$

$$[-\infty, a) := \{x \in \mathbb{R} | x < a\}$$

$$(-\infty, a) := \{x \in \mathbb{R} | x < a\}$$

$$(a, \infty) := \{x \in \mathbb{R} | x > a\}.$$

3.5 Die natürlichen Zahlen \mathbb{N}

(als Teilmenge von
$$\mathbb{R}$$
)
 n natürliche Zahl, $n = \underbrace{1 + 1 + \ldots + 1}_{n - \text{mal}}$ (zirkulär \mathcal{I})

Definition 3.5.1. Eine Teilmenge $M \subset \mathbb{R}$ heißt induktiv, falls

- 1. $1 \in M$
- 2. Aus $x \in M$ folgt $x + 1 \in M$

Beispiel. $[1, \infty)$ ist induktiv.

 \mathbb{R} ist induktiv.

 $(1, \infty)$ ist nicht induktiv.

$$\{1\} \cup [1+1,\infty)$$
 ist induktiv.

Beobachtung: Ein beliebiger Schnitt induktiver Mengen ist wieder induktiv.

$$J: \text{Indexmenge } A_0 \text{ induktiv } \forall j \in J \\ \Rightarrow \forall i \in J: 1 \in A_j \Rightarrow 1 \in \bigcap_{j \in J} A_j \\ \text{Ist } x \in \bigcap_{j \in J} A_j \Rightarrow \forall j \in J: x \in A_j \Rightarrow x+1 \in A_j \Rightarrow x+1 \in \bigcap_{j \in J} A_j.$$

Definition 3.5.2 (natürliche Zahlen). .

$$\mathbb{N}:=\{x\in\mathbb{R}: \text{ für jede induktive Teilmenge }M\in\mathbb{R} \text{ gilt }x\in M\}:=\bigcap_{M\subset\mathbb{R} \text{ ist induktiv}}M$$

Bemerkung. \mathbb{N} ist induktiv und \mathbb{N} ist die kleinste induktive Teilmenge von \mathbb{R} .

Satz 3.5.3 (Archimedisches Prinzip für \mathbb{R}).

- 1. \mathbb{N} ist (in \mathbb{R}) nicht nach oben beschränkt!
- 2. $\forall x \in \mathbb{R} \text{ mit } x > 0 \exists n \in \mathbb{N} : \frac{1}{n} < x.$

Beweis. 1. Angenommen, $\mathbb{N} \subset R$ ist nach oben beschränkt.

$$\mathbb{N} \neq \emptyset$$
 (da $1 \in \mathbb{N}$)

Vollständigkeitsaxiom $\Rightarrow \alpha := \sup \mathbb{N} \in \mathbb{R}$.

Setze $\varepsilon = 1$ in Lemma 3.3.2

 $\alpha - 1$ ist nicht obere Schranke für N.

 $\exists n \in \mathbb{N} : n > \alpha - 1$

 $\Rightarrow n+1 > \alpha \in \mathbb{N}$ Zu α ist obere Schranke von \mathbb{N} .

2. Sei
$$x > 0 \stackrel{\text{Satz 3.2.1 (6)}}{\Rightarrow} \frac{1}{x} > 0 \Rightarrow \exists n \in \mathbb{N} : n > \frac{1}{x} \underset{\text{Satz 3.2.1 (7)}}{\Rightarrow} x = \frac{1}{1/x} > \frac{1}{n}.$$

Satz 3.5.4 (Induktionsprinzip). Sei $M \subset \mathbb{N}$ mit

- 1. $1 \in M$
- 2. Ist $x \in M \Rightarrow x + 1 \in M$

Dann ist $M = \mathbb{N}$.

 $\begin{array}{l} Beweis. \ \Rightarrow M \ \text{ist induktiv}. \ \mathbb{N} \ \text{kleinste induktive Teilmenge von} \ \mathbb{R} \\ \Rightarrow \mathbb{N} \subset M \\ M \subset \mathbb{N} \wedge \mathbb{N} \subset M \Leftrightarrow M = \mathbb{N}. \end{array}$

Korollar 3.5.5 (Vollständige Induktion). Für $n \in \mathbb{N}$ seien A(n) Aussagen. Es gelte:

- 1. A(1) ist wahr.
- 2. aus A(n) ist wahr folgt A(n+1) ist wahr.

Beweis. Definiere $M := \{n \in \mathbb{N} | A(n) \text{ ist wahr}\} \subset \mathbb{N}$.

- $1. \Rightarrow 1 \in M$, da A(1) wahr ist
- 2. \Rightarrow sei $n \in M$, d.h. A(n) ist wahr $\Rightarrow A(n+1)$ ist wahr, d.h. $n+1 \in M$.

 $\overset{\text{Ind.prinzip Satz 4}}{\Rightarrow} M = \mathbb{N}, \text{ also sind alle } A(n) \text{ wahr!} \qquad \square$

Notation: Induktive Definition von Summen und Produkten. $a_1 + a_2 + \ldots + a_n$ vage ...

Summe:

$$\sum_{k=1}^{1} a_k := a_1, (n=1), \sum_{k=1}^{n+1} a_k := \left(\sum_{k=1}^{n} a_k\right) + a_{n+1}, n \in \mathbb{N}$$

Allgemein: untere Grenze k=m, obere Grenze k=n, Laufindex kann verschoben werden.

z.B.:
$$k = j + 1$$

$$\sum_{k=m}^{n} a_k = \sum_{j=m-1}^{n-1} a_{j+1} = \dots = \sum_{l=0}^{n-m} a_{l+m}$$

Ist m > n, definieren $\sum_{k=m}^{n-m} a_k := 0$ (leere Summe)

Produkt:

$$\prod_{k=1}^{1} a_k := a_1, \prod_{k=1}^{n+1} a_k := \left(\prod_{k=1}^{n} a_k\right) \cdot a_{n+1}, n \in \mathbb{N}$$

Ähnlich $\prod_{k=m}^n a_n$, setzen für $m > n \prod_{k=m} .a_k := 1$ (leeres Produkt) z.B.

$$a \in \mathbb{R}, a^n = \prod_{k=1}^n a, \text{ d.h. } a^1 = a, a^{n+1} = a^n \cdot a, n \in \mathbb{N} \text{ (induktive Definition)}$$

Rechenregeln gelten z.B.

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k a_j, b_j \in \mathbb{R}, j = 1, \dots, n$$
$$c \in \mathbb{R}, \sum_{k=1}^{n} (c \cdot a_k) = c \cdot \sum_{k=1}^{n} a_k$$

Satz 3.5.6 (Bernoullische Ungleichung).

$$x \in \mathbb{R}, x \ge -1, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

gilt
$$(1+x)^n \ge 1 + n + x (\forall m \in \mathbb{N}, x \ge -1)$$

mit ">", falls $n > 1, x \ne 0$
 $(\forall n \in \mathbb{N}, x \ge -1(1+x)^n \ge 1 + nx)$

Beweis. Vollständige Induktion: Induktionsanfang:

$$n = 0: (1+x)^0 = 1 = 1 + 0x\checkmark$$
$$n = 1: (1+x)^1 = 1 + x = 1 + 1x\checkmark$$

Induktionsschritt: Induktionsvoraussetzung: es gelte für ein festes, aber beliebiges $n \in \mathbb{N}$:

$$(1+x)^n \ge 1 + nx$$

$$(1+x)^{n+1} = \underbrace{(1+x)^n}_{\ge 1+nx} \cdot \underbrace{(1+x)}_{>0} \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2$$

$$= \begin{cases} \ge 1 + (n+1)x, x > -1 \\ > 1 + (n+1)x, x > -1, x \ne 0 \end{cases}$$

Satz 3.5.7 (geometrische Summe). Sei $x \neq 1$, dann ist

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

Beweis. Vollständige Induktion:

IA:

$$n = 0: \sum_{k=0}^{0} x^{k} = x^{0} = 1 = \frac{1-0}{1+0} \checkmark$$

$$n = 1: \sum_{n=0}^{1} x^{k} = 1 + x = \frac{1-x}{1-x} (1+x) = \frac{1-x^{2}}{1-x} \checkmark$$

IS:

IV: Es gelte für ein festes, aber beliebiges $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$$

$$\Rightarrow \sum_{k=0}^{n} x^{k} + x^{n+1} \stackrel{\text{IV}}{=} \frac{1 - x^{n+1}}{1 - x} + x^{n+1}$$

$$= \frac{1 - x^{n+1} + (1 - x)x^{n+1}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}.$$
(1)

Beweis. ohne vollständige Induktion:

$$S_n := \sum_{k=0}^n x^k$$

$$x \cdot S_n = \sum_{k=0}^n x^k = \sum_{k=0}^n x^{k+1} = \sum_{j=1}^{n+1} x^j,$$

$$\Rightarrow (1-x)S_n = S_n - xS_n = \sum_{k=0}^n x^k - \sum_{k=1}^{n+1} x^k = x^0 - x^{n+1} = 1 - x^{n+1}$$

$$\Rightarrow S_n = \frac{1-x^{n+1}}{1-x}$$

Satz 3.5.8 (Eigenschaften von \mathbb{N}). Es gilt

- 1. $\forall m, n \in \mathbb{N} : n + m \in \mathbb{N} \text{ imd } n \cdot m \in \mathbb{N}.$
- 2. $\forall n \in \mathbb{N} : n = 1 \text{ oder } (n > 1 \text{ und demnach } n 1 \in \mathbb{N}).$
- 3. $\forall m, n \in \mathbb{N} : m \leq n : n m \in \mathbb{N}_0$.
- 4. $\forall n \in \mathbb{N}$ gibt es kein $m \in \mathbb{N} : n < m < n + 1$.

Beweis. .

- 1. Gegeben $m \in \mathbb{N} : A := \{n \in \mathbb{N} | n + m \in \mathbb{N}\} \subset \mathbb{N}$
 - (a) $1 \in A$, denn $m \in \mathbb{N} : 1 + m = m + 1 \in \mathbb{N}$.

(b) Angenommen,
$$n \in A \Rightarrow (n+1) + m = \underbrace{n+m}_{\in \mathbb{N}} + 1 \in \mathbb{N}$$

 $\Rightarrow n+1 \in A$

somit ist A induktiv, also $\mathbb{N} \subset A \Rightarrow A = \mathbb{N}$.

- 2. Definiere $B:=\{n\in\mathbb{N}|n=1\vee(n-1\in\mathbb{N}\wedge n-1\geq 1)\}\subset\mathbb{N}$ Dann ist B induktiv, denn
 - (a) $1 \in B, 2 = 1 + 1 \in B$
 - (b) Sei $1 \neq n \in B$, so folgt $1 \leq n 1$ und somit $n = (\underbrace{n-1}) + 1 \in \mathbb{N}$ $\Rightarrow n+1 \in \mathbb{N}$ und $(n+1)-1 = n \geq 1+1 > 1$. Somit ist $n+1 \in B$.

- 3. $C := \{ n \in \mathbb{N} | \forall m \in \mathbb{N} \text{ mit } m \leq n \text{ ist } n m \in \mathbb{N}_0 \} \Rightarrow$
 - (a) $1 \in C$, denn ist $m \in \mathbb{N}$ und m = 1. folgt nach b): m = 1 $\Rightarrow n - m = 1 - 1 = 0 \in \mathbb{N}_0$.
 - (b) ang. $n \in C$ und $m \in \mathbb{N}$ mit $m \le n + 1$. Fallunterscheidung:
 - $n = 1 \Rightarrow n + 1 m = (n + 1) 1 = n \in \mathbb{N}.\checkmark$ $\Rightarrow n + 1 \in C.$
 - n > 1 (und $m \le n + 1$) $\stackrel{2:}{\Rightarrow} m 1 \in \mathbb{N} \text{ und } m 1 \le (n + 1) 1 = n$ Da $n \in C, m 1 \in \mathbb{N}, m 1 \le n \Rightarrow \underbrace{n (m 1)}_{=(n + 1) m} \in \mathbb{N}_0$ $\Rightarrow n + 1 \in C.$

4. H.A.

4 Funktionen und Abbildungen

4.1 Funktion als Abbildung

Definition 4.1.1. Eine Funktion (oder Abbildung) von einer Menge A in eine Menge B ordnet jedem Element $a \in A$ ein eindeutiges Element $b \in B$

Wir schreiben:

$$f: A \to B, a \mapsto f(a) \quad (=b)$$

A: Definitionsbereich

B: Zielbereich (Target(space))

z.B. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$

Die Abbildung $f: A \to B$ ist

injektiv | aus $f(a) = f(a'), a, a' \in A$, folgt a = a'

surjektiv $| \forall b \in B \exists a \in A : b = f(a)$

bijektiv sie ist injektiv und surjektiv

Bemerkung. $f: A \to B$ injektiv $\Leftrightarrow a, a' \in A, a \neq a' \Rightarrow f(a) \neq f(a')$

 $f: A \to B$ ist bijektiv $\Rightarrow \forall b \in B \exists ! a \in A : f(a) = b$.

Definiere $f^{-1}: B \to A, b \mapsto a, a \in A: f(a) = b$ (inverse Funktion).

Ist $f: A \to B$ nicht bijektiv. (Verallgemeinerte Inverse)

$$\begin{split} f^{-1}: P(B) &\to P(A), M \mapsto \{a \in A | f(a) \in M\} \\ \text{Verkettung:} \\ \text{gegeben:} \ f: A \to B, g: B \to C \\ g \circ f: A \to C \qquad g \circ f(a) := g(f(a)). \\ A \xrightarrow{f} B \xrightarrow{g} C \\ f: A \to B \text{ ist bijektiv} \Rightarrow f^{-1} \circ f = \mathrm{id}_A, f \circ f^{-1} = \mathrm{id}_B \\ \mathrm{id}_A: A \to A, a \mapsto a. \end{split}$$

4.2 Abbildungen als Graph

Definition 4.2.1. Seien A, B Mengen. Dann ist (a, b) ein sog. <u>Tupel.</u> in der Mengenlehre: $(a, b) := \{\{a\}, \{a, b\}\}.$

Beachte: Reihenfolge ist wichtig! im Allg. $(a, b) \neq (b, a)$

Menge $A \times B := \{(a, b) | a \in A, b \in B\}$

heißt kartesisches Produkt (von A und B)

2. Abbildungen Projektionen

 $\Pi_1 = \Pi_A : A \times B \to A, (a, b) \mapsto a$ (Projektion auf 1. Koordinate)

 $\Pi_2 = \Pi_B : A \times B \to B, (a, b) \mapsto b$ (Projektion auf 2. Koordinate)

 $\Pi_A(a,b) = a$

 $\Pi_B(a,b) = b$

n-Tupel: Mengen $A_1, \ldots, A_n, n \in \mathbb{N}$.

 $A_1 \times A_2$ wie vorhin

 $A_1 \times \cdots \times A_{n+1} := (A_1 \times \cdots \times A_n) \times A_{n+1}, n \in \mathbb{N} \text{ (induktiv)}$

Beobachtung:

 $\overline{(A \times B) \times C} = A \times (B \times C) + \{(a, b, c) | a \in A, b \in B, c \in C\} = ((a, b), c) = (a, (b, c))$

Genauer: \exists Bijektion $\Phi: (A \times B) \times C \rightarrow A \times (B \times C)$

Definition 4.2.2 (Graph einer Abbildung). Geg: $f: A \to B$ Funktion

 $\Gamma := \Gamma_f := \{(a, b) \in A \times B : b = f(a)\} \subset A \times B$

 $P \subset A \times B$ ist der Graph einer Funktion genau dann, wenn aus $(a_1, b_1), (a_2, b_2) \in \Gamma$ folgt $b_1 = b_2$. (und $\forall a \in A \exists b \in B : (a, b) \in \Gamma$)

Satz 4.2.3. $\Gamma \subset A \times B$ ist genau dann Graph einer Abbildung $f: A \to B$, wenn die Projektion $\Pi_A|_{\Gamma}: \Gamma \to A$ bijektiv ist.

Notation: $g:D\to E, X\subset D$

 $g|_X: X \to E, x \mapsto g(x)$

Beweis. Sei $\Gamma = \Gamma_f$ mit $f:A \to B$ Funktion

 $(a,b) \in \Gamma_f \Leftrightarrow b = f(a) \\ \Rightarrow \forall a \in A \text{ existient genau ein } b \in B \text{ mit } f(a) = b.$

 $\Rightarrow \Pi_A|_{\Gamma}$ ist bijektiv.

Umgekehrt: Sei $\Pi_A|_{\Gamma} \to A$ bijektiv.

D.h. ist $(a_j, b_j) \in \Gamma, j \in \{1, 2\}$

und $\Pi_A(a_1, b_1) = \Pi_A(a_2, b_2) \Rightarrow (a_1, b_1) = (a_2, b_2)$

 $\Leftrightarrow a_1 = a_2, b_1 = b_2$

 \Rightarrow zu $a \in A \exists ! b \in B, (a, b) \in \Gamma.$

Da $b = \Pi_B(a, b) = \Pi_B((\Pi_A|_{\Gamma})^{-1}(a))$

Definiere $f := \Pi_B \circ (\Pi_A|_{\Gamma})^{-1} : A \to B$ ist Funktion

Bemerkung. In Satz 3 gilt $f = \Pi_B \circ (\Pi_A|_{\Gamma})^{-1}$

Beispiel. Ist $f: A \to B$ bijektiv

 $b = f(a), \quad f^{-1}(b) = a$

Dann gilt: $\Gamma_f^{-1} = \{(b, f^{-1}(b)) | b \in B\}$ = $\{(f(a), a) : a \in A\} = S(\Gamma_f), S : A \times B \to B \times A \text{ (swap)}, (a, b) \mapsto (b, a).$

 $\Gamma_{f^{-1}} = \text{Spiegeln von } \Gamma_f \text{ an Winkelhalbierenden.}$

4.3 Schubfachprinzip und endliche Mengen

Notation: Sei $n \in \mathbb{N}.[n] := \{1, \dots, n\}$ ist gegeben durch:

$$[1]=\{1,\dots,1\}=\{1\}$$

$$[n+1]=\{1,\dots,n,n+1\}=[n]\cup\{n+1\} \text{ induktive Def}.n\in\mathbb{N}$$

$$[2]=\{1,2\},[3]=\{1,2,3\}$$

Satz 4.3.1 (Schubfachprinzip). Ist $f:[m] \to [n](m,n \in \mathbb{N})$ injektiv, dann ist $m \leq n$.

Beweis. Fassen obige Aussage als A(n) auf, die für alle $m \in \mathbb{N}$ zu zeigen ist. Induktionsanfang:

 $n=1:f:[m] \to \{1\}$ injektiv $\Rightarrow m=1, \text{ da sonst } f(1)=1=f(2)$ zu Injektivität.

Induktionsschritt:

Induktionsvoraussetzung: A(n) ist wahr für $n \in \mathbb{N}$.

Zu zeigen: A(n+1) ist wahr.

Angenommen, $f:[m] \to [n+1] = [n] \cup \{n+1\}$ sei injektiv.

Zu zeigen: $m \le n + 1$ Fallunterscheidung:

- 1. Ang. $m = 1 \Rightarrow m = 1 \le n + 1$
- 2. Ang. $m > 1, m \in \mathbb{N} \overset{\text{Satz } 3.5.8}{\Rightarrow} m 1 \in \mathbb{N}$ (*) Beh.: $\exists \text{ inj. } \tilde{f} : \{1, \dots, m - 1\} \to \{1, \dots, n\}.$

$$\overset{(*)+\mathrm{IV}}{\Rightarrow} m-1 \leq n, \text{ d.h. } m \leq n+1 \Rightarrow A(n+1) \text{ ist wahr.}$$

Beweis von (*):

Angenommen, $\exists f : [m] \to [n+1]$ inj.

Dann $\exists \tilde{f} : [m+1] \to [m+1] \to [n]$ inj.

Fallunterscheidung:

- Ang. $f(k) \in [n] \forall 1 \le k \le m-1$. Dann setze $\tilde{f}(k) := f|_{[m-1]}$ $\tilde{f}(k) := f(k), 1 \le k \le m-1$ (Nachrechnen \tilde{f} ist injektiv.)
- $\exists j \in \mathbb{N}, 1 \leq j \leq m-1 \text{ mit } f(j) = n+1.$ Dann def. $\tilde{f}: [m-1] \to [n]$

$$\tilde{f}(k) := \begin{cases} f(k), 1 \le k \le m - 1, k \ne j \\ f(m), k = j \end{cases}$$

Man prüfe nach $\tilde{f}:[m-1]\to [n]$ injektiv!

Korollar 4.3.2. Sind $n, m \in \mathbb{N}$ und $f : [m] \to [n]$ bijektiv $\Rightarrow m = n$.

Beweis. Nach Voraussetzung ist $f:[m] \to [n]$ injektiv und $f^{-1}:[n] \to [m]$ auch injektiv.

$$\Rightarrow m \le n \land n \le m \Rightarrow m = n.$$

Definition 4.3.3. Eine Menge M ist endlich, falls $M = \emptyset$ oder falls $n \in \mathbb{N}_0$ und eine Bijektion $f: 1, \ldots, n \to M$ existiert.

Die Anzahl der Elemente von M (#M) ist dann #M := n, setzen $\#\emptyset := 0$. Eine Menge ist unendlich, falls sie nicht endlich ist.

Bemerkung. Ist M endlich, so ist #M wohldefiniert. Angenommen:

$$\begin{array}{l} f:[n]\to M\\ g:[m]\to M \end{array} \text{ beide bijektiv.}$$

$$[n] \xrightarrow{f} M \xleftarrow{g} [m]$$

 $h:=f^{-1}\circ g=[m]\to [n]$ ist auch bijektiv. $\overset{\mathrm{Korr. \ 2}}{\Rightarrow} m=n.$

Weiter in Definition:

Zwei Mengen A, B heißen gleichmächtig, falls es eine Bijektion $f: A \to B$ gibt, schreiben $A \sim B$. Eine Menge A heißt abzählbar, falls A endlich ist oder es eine Bijektion $f: \mathbb{N} \to A$ gibt. Ist A abzählbar und unendlich, so heißt A abzählbar unendlich.

Bemerkung. Satz von Cantor und Berenstein:

Ang. \exists Injektion $f: A \to B, f: B \to A,$ dann \exists Bijektion $h: A \to B.$

Beweis. Siehe Kolmogorov-Fomin: Introductory Real Analysis. Könnten definieren $A \leq B$, falls es eine inj. Funktion $f: A \to B$ gibt. $A \leq B \land B \leq A \Leftrightarrow A \sim B$.

Bemerkung. $A \leq B$ heißt Kardinalität von A ist kleiner gleich der Kardinalität von B.

- 1. Ist $B \subset A$ und A endlich, so ist B endlich und $\#B \leq \#A$.
- 2. A, B endlich und disjunkt, $A \cap B = \emptyset \Rightarrow \#(A \cup B) = \#A + \#B$.

Satz 4.3.4. Inhalt...

5 Starke Induktion und das Wohlordnungsprinzip

5.1 Starke Induktion und das Wohlordnungsprinzip

Satz 5.1.1 (starke Induktion). Seien A(n) Aussagen für $n \in \mathbb{N}$. Dann gilt

- 1. A(1) ist wahr
- 2. $\forall n \in \mathbb{N} : A(1), \dots, A(n) \text{ wahr } \Rightarrow A(n+1) \text{ ist wahr}$
- $\Rightarrow \forall n \in \mathbb{N} \text{ ist } A(n) \text{ wahr}$

Beweis. Definiere die Aussage $B(n) := \{ \text{alle } A(k) \text{ mit } k \leq n \text{ sind wahr} \} \Rightarrow$

- 1. B(1) ist wahr
- 2. Ist B(n) wahr für ein $n \in \mathbb{N}$, so ist B(n+1) wahr
- $\Rightarrow B(n)$ ist wahr für alle $n \in \mathbb{N}$.

Bemerkung. $(\forall n \in \mathbb{N} : A(k) \forall k < n \Rightarrow A(n)) \Leftrightarrow \forall n \in \mathbb{N} A(n)$.

Satz 5.1.2 (Wohlordnungsprinzip für \mathbb{N}). Jede nichtleere Teilmenge der natürlichen Zahlen \mathbb{N} hat ein kleinstes Element.

Beweis. Sei $A(n) := \{ \text{Jede Teilmenge } b \subset \mathbb{N} \text{ mit } m \in B \text{ hat ein kleinstes } Element \}.$

Müssen zeigen: A(n) ist wahr für alle $n \in \mathbb{N}$.

- 1. A(1) ist wahr, denn ist $B \subset \mathbb{N}$ mit $1 \in B$, so folgt $\forall k \in B : l \geq 1$. Also ist 1 kleinstes Element in B.
- 2. Angenommen für $n \in \mathbb{N}$ sind $A(1), \ldots, A(n)$ wahr. Sei $B \subset \mathbb{N}$ mit $n+1 \in B$.
 - 1. Fall: $\{1,\ldots,n\}\cap B=\emptyset \Rightarrow n+1$ ist kleinstes Element in B.
 - 2. Fall: $\{1,\ldots,n\}\cap B\neq\emptyset\Rightarrow \exists k\in\{1,\ldots,n\} \text{ mit } k\in B.$

Aus der Induktionsannahme folgt also A(k) ist wahr. $\Rightarrow B$ hat ein kleinstes Element.

In beiden Fällen hat B ein kleinstes Element, also ist A(n+1) wahr. $\stackrel{\text{Satz 1}}{\Rightarrow} \forall n \in \mathbb{N} A(n)$ wahr.

Notation:

Ganze Zahlen $\mathbb{Z} := (-\mathbb{N}) \cup \mathbb{N}_0 = \{0, \pm 1, \pm 2, \ldots\} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$ Rationale Zahlen: $\mathbb{Q} := \{\frac{m}{n} | n \in \mathbb{N}, m \in \mathbb{Z}\}.$

Korollar 5.1.3. Jede nichtleere, nach unten beschränkte Teilmenge in \mathbb{Z} hat ein kleinstes Element.

Beweis. Sei
$$A \subsetneq \mathbb{Z}, A \neq \emptyset, A \geq \beta$$
 für $B \in \mathbb{Z}$
Setze $B := A + \beta + 1 = \{\alpha + |\beta| + 1 | \alpha \in A\} \subsetneq \mathbb{N}, B \neq \emptyset$
Satz $\beta = \exists n_0 := \min B \Rightarrow z_0 := n_0 - |\beta| - 1 \in \mathbb{Z}$ ist kleinstes Element von $\beta = \mathbb{Z}$

5.2 Anwendungen

Lemma 5.2.1. Sei $a \in \mathbb{R}$ mit a > 0. Dann existiert $q \in \mathbb{N}_0$ mit $q \le a < q+1$

Beweis. Ist 0 < a < 1, so nehme q = 0.

Also $a \ge 1$ und setze $B := \{ n \in \mathbb{N} | a < n \}.$

Da N nicht nach oben beschränkt ist (archim. Prinzip), gilt $B \neq \emptyset$.

 $\overset{\text{Satz 2}}{\Rightarrow} m := \min B$ existiert. Da $m \in B$, ist $m > a \ge 1$.

Somit gilt nach Satz 3.5.8, dass $q := m - 1 \in \mathbb{N}$.

Da m die kleinste natürliche Zahl mit m < a ist, folgt $q = m - 1 \le a < m = q + 1$.

Bemerkung. Dieselbe Beweisidee zeigt auch

$$\forall a \in \mathbb{R} \exists q \in \mathbb{Z} \text{ mit } q \leq a < q + 1.$$

Satz 5.2.2 (\mathbb{Q} ist dicht in \mathbb{R}). Seien $a, b \in \mathbb{R}, a < b$. Dann existiert $r \in \mathbb{Q}$ mit a < r < b.

Beweis. O.B.d.A. $b \ge 0$, ansonsten betrachte a' = -a, b' = -b.

Weiter können wir $a \ge 0$ annehmen, sonst nehme r = 0. Also sei $0 \le a < b \stackrel{\text{Archimedes}}{\Rightarrow} \exists n \in \mathbb{N} : n(b-a) > 1$.

Setze $B := \{l \in \mathbb{N} | l > na\} \subset \mathbb{N}.$

$$\stackrel{\text{Satz 5.1.2}}{\Rightarrow} m = \min B \text{ existient.}$$

Da $m = \min B$ ist, gilt

$$m - a \le na < m$$
,

somit gilt auch

$$na < m = \underbrace{m-1}_{< na} + \underbrace{1}_{< n(b-a)} = nb$$

$$\Rightarrow na < m, nb \Leftrightarrow a < \frac{m}{n} < b.$$

Exkurs

Beh.: $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Beweis. [Beweis durch Widerspruch] Sei $r^2 = 2$ mit $r = \frac{m}{n}, n \in \mathbb{N}, m \in \mathbb{Z}$. Wir definieren

$$A := \{ n \in \mathbb{N} | \exists m \in \mathbb{Z} \frac{m^2}{n^2} = 2 \} \neq \emptyset$$

$$\overset{\text{Satz 5.1.2}}{\Rightarrow} n_* = \min A \in \mathbb{N}$$

Also existiert $m \in \mathbb{Z}_+$ mit

$$m^2 = 2 \cdot m_*^2 \Rightarrow m > n_*$$

Außerdem gilt

$$m = \sqrt{2}n_* \overset{\sqrt{2} > 1}{\Leftrightarrow} 0 < \underbrace{m - n_*}_{\in \mathbb{N}} = \underbrace{(\sqrt{2} - 1)}_{<1} n_* < n_*$$

Nun gilt:

$$\sqrt{2} = \frac{m}{n_*} = \frac{m(m - n_*)}{n_*(m - n_*)} \stackrel{m^2 = 2n_*^2}{=} \frac{2n_*^2 - mn_*}{n_*(m - n_*)} = \frac{2n_* - m}{m - n_*}$$

 $f2n_* - m \in \mathbb{Z}, m - n_* < n_*, \text{ aber } n_* = \min A$ Somit kann kein $m \in \mathbb{Z}$ existieren, sodass $\frac{m^2}{n^2} = 2$ für beliebiges $n \in \mathbb{N}$. Also ist $\sqrt{2}$ per Definition der rationalen Zahlen in $\mathbb{R} \setminus \mathbb{Q}$.

Satz 5.2.3. Sei $k \in \mathbb{N}$, dann gilt entweder $\sqrt{k} \in \mathbb{N}$ oder $\sqrt{k} \in \mathbb{R} \setminus \mathbb{Q}$.

Beweis. Sei $k \in \mathbb{N}$ und $\sqrt{k} \notin \mathbb{N}$. Angenommen $\sqrt{k} \in \mathbb{Q}$, also $\sqrt{k} = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$ $A := \{n \in \mathbb{N} | \exists m \in \mathbb{Z} \frac{m^2}{n^2} = k\}$

$$\stackrel{\text{Satz 5.1.2}}{\Rightarrow} \exists n_* = \min A \in \mathbb{N}$$

Sei $\frac{m}{n_{rr}} = \sqrt{k}$, dann gilt

$$m - n_* = \underbrace{(\sqrt{k} - 1)}_{<1} n_*$$

Aber wähle $q \in \mathbb{N}$: $q \leq \sqrt{k} < q+1$ Existiert nach Lemma 5.2.1. Da $\sqrt{k} \notin \mathbb{N}$ gilt $q < \sqrt{k} < q+1$. Also gilt:

$$0 \stackrel{q < \sqrt{k}}{\leq} \underbrace{m - qn_*}_{\in \mathbb{N}} = \underbrace{(\sqrt{k} - q)n_*}_{\leq 1} n_* < n_*$$

Somit

$$\sqrt{k} = \frac{m}{n_*} = \frac{m(m - qn_*)}{n_*(m - qn_*)} = \frac{kn_*^2 - mqn_*}{n_*(m - qn_*)} = \frac{kn_* - mq}{m - qn_*}$$

 $\ell n_* = \min A, m - q n_* < n_*$ Somit muss $\sqrt{k} \in \mathbb{R} \setminus \mathbb{Q}$ sein.

6 Existenz von Wurzeln (in \mathbb{R})

Sei $n \in \mathbb{N}$ und a > 0. Dann heißt eine Zahl α n-te Wurzel von a, schreiben $\alpha = a^{\frac{1}{n}}$ oder $\sqrt[n]{a}$, falls $a^n = a$.

Satz 6.0.1. Sei $\alpha \in \mathbb{R}$, a > 0 und $n \in \mathbb{N}$. Dann existiert die n-te Wurzel von a als reelle Zahl. D.h. $\exists!\alpha \in \mathbb{R}$ mit $\alpha > 0$ und $\alpha^n = a$.

Bemerkung. Für die rationalen Zahlen ist dies falsch!

Beweis. Angenommen, die Beh. gilt für $a \ge 1$. Sei 0 < b < 1. Setze $a := \frac{1}{b} > 1 \Rightarrow \exists! \alpha > 0 : \alpha^n = a = \frac{1}{b}$. Setze $\beta := \frac{1}{\alpha}$.

Dann gilt also

$$\beta^n = \left(\frac{1}{\alpha}\right)^n = \frac{1}{\alpha^n} = \frac{1}{a} = b.$$

Also nehme an $a \ge 1$. Ist a=1, so ist $\alpha=1$ die einzige Lösung von $\alpha^n=1$. Außerdem können wir $n \in \mathbb{N}$ mit n>1 wählen. Also sei $a>1, n\in \mathbb{N}, n>1$. Setze

$$A := \{ x \in \mathbb{R} | 0 < x, x^n < a \}$$

Dann ist $1 \in A$ und somit $A \neq \emptyset$. Außerdem ist A nach oben beschränkt, denn ist $y \geq a$, so folgt

$$y^n \ge a^n = \underbrace{a \cdot a \dots \cdot a}_{n\text{-mal}} > \underbrace{1 \cdot 1 \dots \cdot 1}_{n\text{-mal}} \cdot a = a$$

Also ist $A \leq a$.

 $\overset{\text{Vollst.axiom}}{\Rightarrow} \alpha := \sup A \in \mathbb{R} \text{ existiert.}$

Da $1 \in A \Rightarrow \alpha \ge 1 > 0$.

 α^n ist eine reelle Zahl für die gilt nach Anordnungsaxiom entweder $\alpha^n < a, \alpha^n > a$ oder $\alpha^n = a$.

1. Fall: Annahme: $\alpha^n < a$.

Sei $0 < \delta \le 1$. Dann gilt (binom. Formel)

$$(\alpha + \delta)^n = \sum_{k=0}^n \binom{n}{k} \alpha^k \delta^{n-k}$$

$$= \alpha^n + \sum_{k=0}^{n-1} \binom{n}{k} \alpha^k \delta^{n-k}$$

$$= \alpha^n + \sum_{k=1}^{n-1} \binom{n}{k-1} \underbrace{\alpha^{k-1}}_{\leq a^{k-1}} \underbrace{\delta^{n+1-k}}_{\leq \delta \cdot \delta^{n-k} \leq \delta}$$

$$\leq \alpha^n \delta \sum_{k=1}^{n-1} \binom{n}{k-1} \alpha^{k-1}$$

$$\leq \alpha^n \delta \sum_{k=0}^n \binom{n}{k} \alpha^k$$

$$= \alpha^n + \delta(a+1)^n (*)$$

 $\alpha^n < a$ nach Annahme und $\delta := \frac{1}{2} \min \left(1, \frac{a - \alpha^n}{(a+1)^n}\right)$ Dann gilt $0 < \delta \le 1$ und (*)

$$(\alpha + \delta)^n \le \alpha^n + \delta(a+1)^n \le \alpha^n + \frac{1}{2}(a-\alpha^n) = \frac{1}{2}(\alpha^n + a) < \frac{1}{2}(a+a) = a$$

Somit ist $\alpha < \alpha + \delta \alpha$ ist sup A.

2. Fall: Annahme: $\alpha^n > a, 0 < \delta \le 1$

$$\Rightarrow (\alpha - \delta)^n = \sum_{k=0}^n \binom{n}{k} \alpha^{n-k} (-\delta)^k = \sum_{k=0}^n \binom{n}{k} \alpha^{n-k} (-1)^k \delta^k$$

$$= \alpha^n + \sum_{k=0}^{n-1} \binom{n}{k+1} \alpha^{n-1-k} (-1)^{k+1} \delta^{k+1}$$

$$= \alpha^n - \sum_{k=0}^{n-1} \binom{n}{k+1} \alpha^{n-1-k} (-1)^k \delta^k$$

$$\geq \alpha^n - \delta \sum_{k=0}^{n-1} \binom{n}{k+1} a^{n-k+1}$$

$$= \alpha^n - \delta \sum_{k=1}^n \binom{n}{k} a^k$$

$$\geq \alpha^n - \delta (a+1)^n (**)$$

Setze $\delta := \frac{1}{2} \min \left(1, \frac{\alpha^n - a}{(a+1)^n} \right)$. Dann gilt $0 \le \delta \le \frac{1}{2} < 1$.

$$(\alpha - \delta)^n \ge \alpha^n - \frac{1}{2}(\alpha^n + a) = \frac{1}{2}(\alpha^n + a) > \frac{1}{2}(a + a) \ge a.$$

Somit $\alpha - \delta$ eine obere Schranke für A. Da $\alpha - \delta < \alpha$, ist das ein Widerspruch zu $\alpha = \sup A$. Somit bleibt nur $\alpha^n = a$.

7 Folgen und Konvergenz

7.1 Grundlagen

Definition 7.1.1. Sei $X \neq \emptyset$ eine Menge. Eine Folge (mit Werten in X oder auch X-wertige Folge) ist eine Funktion

$$f: \mathbb{N} \to X, n \mapsto f(n) \in X$$

Wir setzen $a_n := f(n), n \in \mathbb{N}$.

 a_n heißt n-tes Folgenglied. Wir schreiben auch $(a_n)_{n\in\mathbb{N}}$ oder kurz $(a_n)_n$. Ist $X = \mathbb{R}$, so heißt die Folge reellwertig oder reelle Folge (Folge reeller Zahlen). $(a_n)_{n\in\mathbb{N}} \subset \mathbb{R}$.

Definition 7.1.2 (Konvergenz (reeller Folgen)). Eine reelle Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert (mit $n\to\infty$) gegen ein $a\in\mathbb{R}$, falls

$$\forall \varepsilon > 0 \exists k \in \mathbb{N} : \forall n > k \text{ folgt } |a_n - a| < \varepsilon.$$

Die Zahl a heißt Grenzwert der Folge, wir schreiben $\lim_{n\to\infty} a_n = a$ oder $a_n \to a$ (für $n\to\infty$).

Eine (reelle) Folge heißt konvergent, falls ein $a \in \mathbb{R}$ der Grenzwert der Folge ist, andernfalls heißt die Folge divergent.

Bemerkung.

$$\lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \exists k \in \mathbb{N} : \forall n \ge k \text{ folgt } |a_n - a| \le \varepsilon.$$

Beispiel. .

1. $a_n:=\frac{1}{n}$ konvergiert gegen 0. Denn zu geg
. $\varepsilon>0$ wähle $k\in\mathbb{N}$ mit $k>\frac{1}{\varepsilon}.$ Dann gilt für $n\geq k$

$$|a_n - a| = |\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{k} < \varepsilon.$$

2. Konstante Folge . Sei $a \in \mathbb{R}$ und sei $a_n = a$ für $n \in \mathbb{N}$. Dann folgt $\lim_{n \to \infty} a_n = a$, denn für $\varepsilon > 0$

$$|a_n - a| = |a - a| = 0 < \varepsilon$$
, wähle $k = 1$

3. Sei $a_n := (-1)^n$, also $a_1 = -1, a_2 = 1, a_3 = -1, ...$ Dann ist $(a_n)_{n \in \mathbb{N}}$ nicht konvergent.

Beweis. Angenommen: $(a_n)_n$ konvergiert und $a \in \mathbb{R}$ ist Grenzwert. Zu $\varepsilon = 1$ existiert dann $k \in \mathbb{N}$ so, dass $|a_n - a| < \varepsilon = 1 \quad \forall n \geq k$ Also gilt für $n \geq k$:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a - a_{n+1}| < 1 + 1 = 2$$

- 4. Die Folge (a_n) konvergiert gegen a. Dann konvergiert auch $(|a_n|)_n$ gegeen |a|. (Hinweis: Umgekehrte Dreiecksungleichung)
- 5. Geometrische Folge: Sei $q \in \mathbb{R}, |q| < 1$. Dann gilt

$$\lim_{n \to \infty} q^n = 0.$$

Beweis. Annahme: $q \neq 0$, dann gilt $\frac{1}{|q|} > 1$ und es existiert x > 0, sodass $\frac{1}{|q|} = 1 + x$.

Aus Bernoullischer Ungleichung folgt

$$(1+x)^n \ge 1 + nx$$

und somit

$$|q^n - 0| = |q^n| = |q|^n = \frac{1}{(1+x)^n} \le \frac{1}{1+nx}.$$

Also zu $\varepsilon > 0$ wähle $k \in \mathbb{N} \forall n \geq k$ gilt $nx > \frac{1}{\varepsilon}$.

$$|q^n - 0| \le \frac{1}{1 + nx} \le \frac{1}{nx} < \varepsilon \text{ für } n \ge k.$$