

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: May 11 ~ 17, 2007, June 16, 2007

Test Report S/N: LR500190705F Test Site: LTA CO., LTD.

CERTIFICATIO OF COMPLIANCE

FCC ID.

APPLICANT

VASEBT100

eb Corp.

FCC Classification : FCC Part 15 Spread Spectrum Transceiver (DSS)

Manufacturing Description : Driver's Console

Manufacturer : eb Corp.

Model name : EBT-100

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Frequency Range : 2412MHz ~ 2462MHz (DSSS)

Max. Output Power : 19.89dBm Peak Conducted (802.11b)

Data of issue : May 21, 2007

Data of re-issue : June 16, 2007

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST(802.11b)	6
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	8
3.2.3 POWER SPECTRAL DENSITY	13
	15
3.2.5 BAND - EDGE (Radiated)	23
3.2.6 FIELD STRENGTH OF HARMONICS	28
3.2.7 AC CONDUCTED EMISSIONS	33
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	40

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2007-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2007-07-13	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : eb Corp.

Address : 14th Fl., HIGH-END TOWER, 235-2, Guro-Dong, Guro-Ku, Seoul, Korea

Tel / Fax : +82.2.6220.3085 / +82.2.6220.5001

2-2 Equipment Under Test (EUT)

Trade name : Driver's Console

Model name : EBT-100

Serial number : Identical prototype

Date of receipt : April 10, 2007

EUT condition : Pre-production, not damaged

PCMCIA Module : Interepoch Technology, Inc. / CMPCb11

Antenna type : MAGNET ARRY ANTENNA with -4dBi gain for 802.11B

Antenna connector : SMA REVERSE TYPE

Frequency Range : 2412MHz ~ 2462MHz (DSSS)

RF output power Range : 19.89 dBm Peak Conducted (802.11b)

Number of channels : 11(DSSS)

Type of Modulation : CCK, DQPSK, DBPSK for DSSS

Transfer Rate : 11/5.5/2/1Mbps for 802.11b

Power Source : DC/DC Converter: Input 24VDC, Output 12VDC/5VDC/3.3VDC

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz) for 802.11b	2412	2437	2462

2-3 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
DC/DC Converter	PA-9000695	N/A	eb Corp.
-	-	-	-

3. Test Report

3.1 Summary of tests

FCC Part	Parameter	Limit	Test	Status
Section(s)	rarameter	Limit	Condition	(note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1Watt		С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz	Conducted	С
15.247(d)	Band Edge	> 20 dBc		С
15.247(d)	Band Edge	< 54 dBuV (at 3m)	Radiated	С
15.209	Field Strength of Harmonics	Emission – CLASS A	Kadiated	С
15.207	AC Conducted Emissions	Emissions – CLASS A	Line Conducted	С
15.203	Antenna requirement	-	-	С

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

→ Antenna Requirement

The eb Corp. EBT-100 unit complies with the requirement of §15.203. The antenna is connected to EUT by a special connector (a reverse SMA type connector).

3.2 Technical Characteristics Test (802.11b/g)

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 40 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

Mode Frequency	Channel No.	Test Results		
Mode	(MHz)	Channel No.	Measured Bandwidth (MHz)	Result
	2412	1	9.3	Complies
802.11b	2437	6	11.0	Complies
-	2462	11	11.1	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

802.11b

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

Measurement Data:

Frequency (MHz)	Channel	Rate (MBps)	Power (dBm)
		1	18.59
2412	1	2	18.62
2412	1	5.5	18.97
		11	18.75
	6	1	18.98
2425		2	19.43
2437		5.5	19.86
		11	19.46
		1	19.48
2462	11	2	19.12
		5.5	19.89
		11	19.61

Minimum Standard:

Peak output power	< 1W
-------------------	------

Measurement Data: CH 1 / 1 Mbps

CH 1 / 2 Mbps

CH 1/5.5 Mbps

Measurement Data:

CH 1 / 11 Mbps

CH 6/1 Mbps

CH 6 / 2 Mbps

Measurement Data:

CH 6 / 5.5 Mbps

CH 6 / 11 Mbps

CH 11 / 1 Mbps

Measurement Data:

CH 11 / 2 Mbps

CH 11 / 5.5 Mbps

CH 11 / 11 Mbps

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Span = 3 MHz

The spectrum analyzer is set to:

RBW = VBW = 3 kHz

Sweep = 1000 sec Trace = $\max \text{ hold}$

Detector function = peak

Measurement Data:

Mode	Frequency (MHz)	Ch.	Test R	Results
Mode			dBm	Result
	2412	1	-6.28	Complies
802.11b	2437	6	-6.55	Complies
	2462	11	-6.82	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Power Spectral Density	< 8dBm @ 3kHz BW

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

802.11b Power Density Measurement

3.2.4 Band - edge - Conducted Measurement

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 40 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

802.11b Band-edge Measurements

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

- Continues

Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

- Continues

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

- Continues

3.2.5 Band Edge - Radiated Measurement-

Procedure:

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:

Center frequency = the highest, the lowest channels

PEAK: RBW = VBW = 1MHz, Sweep=Auto

Average: RBW = 1MHz, VBW=10Hz, Sweep=Auto

Measurement Distance: 3m

Polarization: Horizontal / Vertical

Measurement Data:

- Refer to the next page.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Band Edge – CH-LOW

Detector mode: PEAK / Polarity: Vertical

Band Edge – CH-LOW

Detector mode: Average / Polarity: Vertical

Band Edge – CH-LOW

Detector mode: PEAK / Polarity: Horizontal

Band Edge – CH-LOW

Detector mode: Average / Polarity: Horizontal

Band Edge – CH-HIGH

Detector mode: PEAK / Polarity: Vertical

Band Edge – CH-HIGH

Detector mode: Average / Polarity: Vertical

Band Edge – CH-HIGH
Detector mode: PEAK / Polarity: Horizontal

Band Edge – CH-HIGH

Detector mode: Average / Polarity: Horizontal

3.2.6 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data: Complies

- See next pages for actual measured data.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m	
30 ~ 88	100 **	
88 ~ 216	150 **	
216 ~ 960	200 **	
Above 960	500	

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Minimum Standard: FCC Part 15.109

Frequency (MHz)	Limit (uV/m) @ 10m
30 ~ 88	90
88 ~ 216	150
216 ~ 960	210
Above 960	300

802.11b Measurement Data:

Low channel		Mid channel		High channel		
Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	
-	-	-	-	-	-	
-	-	-	-	-	-	
	No emissions were detected at a level greater than 20dB below limit.					
-	-	-	-	-	-	
-	-	-	-	-	-	
Measurement uncertainty		± 6 dB				

Radiated Emissions –WLAN

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: EBT-100 TEST MODE: WLAN mode

Temp Humi : 18 / 48 Tested by: B. S. KIM

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions –GSM850+WLAN

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emissions -PCS1900+WLAN

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Class A

Frequency Range	quasi-peak	Average	
0.15 ~ 0.5 MHz	79 dBuV	66 dBuV	
0.5 ~ 30 MHz	73 dBuV	60 dBuV	

AC Conducted Emissions –WLAN-Line

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EBT-100 Phase : LINE

Test Mode : WLAN mode Test Power : 120 / 60

Temp./Humi. : 25 / 44 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – WLAN - Neutral

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EBT-100 Phase : NEUTRAL

Test Mode : WLAN mode Test Power : 120 / 60

Temp./Humi. : 25 / 44 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions - GSM850 + WLAN - Line

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EBT-100 Phase : LINE

Test Mode : GSM850 + WLAN mode Test Power : 120 / 60

Temp./Humi. : 24 / 41 Test Engineer : B.S.KIM

Remarks: U.F (Correction Factor) = Insertion loss + Cable los

AC Conducted Emissions – GSM850 + WLAN - Neutral

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EBT-100 Phase : NEUTRAL

Test Mode : GSM850 + WLAN mode Test Power : 120 / 60

Temp./Humi. : 24 / 41 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions - PCS1900 + WLAN - Line

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EBT-100 Phase : LINE

Test Mode : GSM1900 + WLAN mode Test Power : 120 / 60

Temp./Humi. : 24 / 41 Test Engineer : B.S.KIM

AC Conducted Emissions - PCS1900 + WLAN - Neutral

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : EBT-100 Phase : NEUTRAL

Test Mode : GSM1900 + WLAN mode Test Power : 120 / 60

Temp./Humi. : 24 / 41 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Apr-08
2	Signal Generater	8648C	3623A02597	НР	Apr-08
3	Attenuator (3dB)	8491A	37822	НР	Nov-07
4	Attenuator (10dB)	8491A	63196	НР	Nov-07
5	EMI Test Receiver	ESVD	843748/001	R&S	Jan-08
6	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-08
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-08
8	RF Amplifier	8447D	2949A02670	НР	Jan-08
9	RF Amplifier	8447D	2439A09058	НР	Jan-08
10	RF Amplifier	8449B	3008A02126	НР	Apr-09
11	Test Receiver	ESHS10	828404009	R&S	Jan-08
12	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Jul-07
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-09
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-09
15	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-09
16	Horn Antenna	BBHA 9120D	0499	Schwarzbeck	Jun-07
17	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-07
18	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-07
19	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-07
20	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-07
21	Spectrum Analyzer	8591E	3649A05888	HP	Jan-08
22	Spectrum Analyzer	8563E	3425A02505	HP	Apr-08
23	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-08
24	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-07
25	RF Switch	MP59B	6200414971	ANRITSU	Jun-07
26	RF Switch	MP59B	6200438565	ANRITSU	Jun-07
27	Power Divider	11636A	6243	HP	Nov-07
28	DC Power Supply	6622A	3448A03079	HP	Oct-07
29	Attenuator (30dB)	11636A	6243	НР	Nov-07
30	Frequency Counter	5342A	2826A12411	HP	Apr-08
31	Power Meter	EPM-441A	GB32481702	НР	Apr-08
32	Power Sensor	8481A	2702A64048	НР	Apr-08
33	Audio Analyzer	8903B	3729A18901	НР	Nov-07
34	Modulation Analyzer	8901B	3749A05878	НР	Nov-07
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-07
36	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-09