

Agenda

- History of Cryptography
- Symmetric Encryption
- Asymmetric Crypto
- MACs and hash functions
- Digital signatures
- Certificates and PKI

_

Why do we need crypto

- Complex math!
- The core technology of cyberspace
 - Secret communication
 - Data confidentiality
 - Data integrity
 - Authentication
 - E-Commerce
 - Digital currency ...

https://flic.kr/p/brdXxC

History of Cryptography

• Egypt, China

- אתב"ש בספר ירמיהו
- A cipher or cryptosystem is used to encrypt the plaintext
- The result of encryption is ciphertext
- We decrypt ciphertext to recover plaintext

Key

- Need strong cipher
 - Need many different strong ciphers!
 - How to make someone to forget the cipher?
- A key is used to configure a cryptosystem

5

Caesar and its attacks

- The simplest substitution cipher
- What is the key?
- How to break it?
- How to make it stronger?

Plaintext Ciphertext

a	Ь	С	d	e	f	9	h	i	j	k	ı	m	n	0	р	q	r	s	t	u	٧	w	×	У	z
D	Ε	F	G	Н	Ι	J	K	L	M	2	0	Р	Q	R	5	Т	υ	٧	W	X	У	Z	Α	В	С

Substitution cyphers and attacks

- Shift by n for some n in {0,1,2,...,25}
- Then key is n
- Example: key n = 7

Plaintext	a	Ь	С	d	e	f	9	h	i	j	k	I	m	n	0	р	q	r	s	t	u	٧	w	×	у	z
Ciphertext	Н	Ι	J	Κ	L	M	2	0	Р	Q	R	S	Т	U	٧	W	X	У	Z	Α	В	С	D	Е	F	G

Cryptanalysis I: Try Them All

- A simple substitution (shift by n) is used
- But the key is unknown
- · Given ciphertext: **XIVQMREXIH**
- How to find the key?
- Only 26 possible keys try them all!
- Exhaustive key search (brute 3: ufsnjobufe
- Solution: key is n = 4
- 1: whuplqdwhg 2: vgtokpcvgf
- 4: terminated
- 5: sdqlhm`sdc

Least-Simple Simple Substitution

- In general, simple substitution key can be any permutation of letters
- · Not necessarily a shift of the alphabet
- Then 26! > 288 possible keys!
- A superfast computer testing 2⁴⁰ per second would take 8.900.000 years...

Plaintext	a	b	С	d	e	f	9	h	i	j	k	ı	m	n	0	р	q	r	s	t	u	v	w	X	у	z
Ciphertext	J	Ι	С	A	X	S	Е	ゝ	٧	۵	K	W	В	Ø	Τ	Z	R	Н	F	٨	Ρ	2	J	L	G	0

9

Cryptanalysis II

- Letter frequency analysis
- Letter combinations frequency
- Words frequency
- Huge key space != stronger cipher!

Types of crypto attacks

- Cipher text only (Caesar)
- Known plaintext (Enigma, RC4)
- Chosen plaintext
- Chosen ciphertext
- <u>Kerckhoffs</u> (1883) Algorithm can't stay secret (Enigma, A5, DVD, <u>US Navy</u>)
 - Security through obscurity

Claude Shannon

- The founder of Information Theory
- 1949 paper: <u>Communication Theory of Secrecy Systems</u>
- Fundamental concepts
 - Confusion obscure relationship between plaintext and ciphertext
 - Diffusion spread plaintext statistics through the ciphertext
- Proved that one-time pad is unbreakable

Symmetric encryption

- Symmetric algorithm the same key used for decryption and encryption
- All encryption algorithms used to be symmetric ...

1

Modern symmetric encryption

- Translates the bytes of plaintext into ciphertext
- DES, 3-DES and now <u>AES</u> are standard symmetric encryption algorithms
- Problem key distribution (n*n keys for n pairs)
- Problem key management
- Problem non-repudiation

1.0

Asymmetric crypto

- Motivation: solve the key distribution problem
 - Secure banking online
- Secret communication without agreed shared key!
- Some operations are easy to do in one direction, but hard to do in the reverse direction
 - · Scrambling an egg vs. undoing it*
 - Insulting a person vs. making him/her forget it*
 - · Closing a padlock vs. opening it

1

Asymmetric crypto

- Asymmetrical mathematical problems:
 - Assigning values to variables vs. solving equations
 - Multiplying numbers vs. factoring (7919 *6967 = 55171673)(RSA)
 - Discrete Log (<u>Diffie Hellman</u>)
 - You'll learn how they work in other courses!
- Modular calculus

$$8 + 5 \mod 12 = 13 \mod 12 = 1$$

^{*}Credits to Yaron Sella for this example

Public and Private Keys

- A user generates a pair of keys: public and private.
- Public is published to the whole world and is used for encryption
- Private is secret and is used for decryption
- It is hard to get the private key from the public
- Public key cryptography is very slow, used to pass a symmetric session key

 $C = M^e \mod N$ $M = C^d \mod N$

1

RSA simplified simulation

Message Authentication Code (MAC)

- Why do we need it?
- A number added to a message
- Uses a shared secret key
- Authentication and Integrity (no confidentiality)

20

Message Authentication Code (MAC)

- Example last block of AES-CBC encryption
- Any change in the plaintext must result in a different MAC!
- Can't fake the message for the given MAC
- Based on block cipher symmetric encryption and hashes

One Way Hash Functions

- Hash function: maps a large object to a small fingerprint (e.g. length of string, first character)
 - Many collisions
 - Data $X = (X_0, X_1, X_2, \dots, X_{n-1})$, each X_i is a byte
 - Define $h(X) = X_0 + X_1 + X_2 + ... + X_{n-1}$
 - Is this a secure cryptographic hash?

- Cryptographic hash functions practically uninvertible:
 - Easy to compute
 - Infeasible to find a message given a hash (preimage)
 - Infeasible to change the message without changing hash
 - Infeasible to find two messages with the same hash (collision resistance)

22

One Way Hash Functions

- Provide integrity (no key!)
- Hashed MAC (HMAC) uses a key to provide also authentication
- Widely used: software packages, firmware updates, digital signatures...
- SHA (1 deprecated, 256),
 MD5 also deprecated,
 see here why

Digital signatures

- Using the private key for encryption uniquely authenticates the sender
- Everyone can verify that Alice sent this messagesignature
- Can't be reused for another message
- Can prove it was Alice who sent the message (unlike in shared secret schemes)

24

Digital signing

- Authentication + integrity
- RSA
- DSA
- Used in: secure mail, official documents, software images, certificates, ...

Certificates

- · Where all public keys are kept?
- What guarantees that this is indeed Alice's public key?
- · Certificate:
 - Credentials (name, organization, email)
 - Public key
 - Signed by someone you trust
 - · Chain Of Trust
- X.509 is the standard format

26

Public Key Infrastructure

 In real life we need lots of certificates, who will sign all of them?

 A small amount of trusted Certificates Authorities (CA) – root CAs

 Root CA's public keys are preinstalled

PKI challenges

- Is the name enough? (Think of a phone book)
- How does the CA verifies trustfulness of the applicant?
- What makes CA trusted
 Stolen CA private keys
- Key revocation handling (CRL)
- Can we trust the code that verifies that the certificate content is correct?

Terms learnt

- Cipher, plaintext, ciphertext
- Key
- Cryptanalysis
- Brute force
- Confusion, diffusion

- Symmetric and asymmetric crypto
- Public and private key
- MAC, one way hash, HMAC
- Digital signatures
- PKI

3

Summary

- Cryptography helps with Confidentiality and Integrity
- Classic crypto is easy to understand and break
- Symmetric ciphers are fast, but keys are a mess
- Asymmetric crypto solves the key management problem
- Digital signatures provide authentication and integrity

