CMA-209

DHANAMANJURI UNIVERSITY

Examination- 2024 (Dec)

Four-year course B.Sc./B.A. 3rd Semester

Name of Programme : B.Sc./B.A. Mathematics

Paper Type : Theory

Paper Code

CMA-209

Paper Title

: Group Theory-I

Full Marks:

80

Pass Marks : 32

Duration: 3 Hours

The figures in the margin indicate full marks for the questions: Answer all the question.

1. Answer the following questions:

 $1 \times 3 = 3$

- a) The order of the group U_{15} is
 - i) 15

ii) 9

- iii) 10
- iv) 8
- b) Number of generators of an infinite cyclic group is
 - exactly two

ii) only one

iii) infinite

- iv) zero
- c) The inverse of the permutation (1234) is
 - i) (1234)

ii) (4321)

iii) (3214)

iv) (1324)

2. Answer the following questions: $1 \times 6 = 6$

- a) For any a, x in a group G, show that $(x^{-1}ax)^3 = x^{-1}a^3x$.
- b) Define a cyclic group.

- c) Let $G = \{-1, 1, -i, i, -j, j, -k, k\}$ be the Quaternion group. Find the normalizer of i in G.
- d) Define even permutation of a finite set.
- e) If $f: G \to G'$ is a homomorphism then show that $f(x^{-1}) = (f(x))^{-1}$.
- f) Find the kernel of $f: Z_6 \to Z_6$ where f(x) = 2x.

3. Answer any five of the following questions:

 $3 \times 5 = 15$

- 2) If G is a group in which $(ab)^i = a^i b^i$ for three consecutive integers i and any a, b in G, then show that G is abelian.
- b) Let $G = \{(a,b) \mid a,b \in \mathbb{Q}, a \neq 0\}$. Define a binary composition * on G by $(a,b)*(c,d) = (ac,ad+b) \forall a,b,c,d \in \mathbb{Q}$, $a \neq 0, c \neq 0$. Then show that (G, *) is a non-abelian group.
- Prove that a non-empty subset H of a group G is a subgroup of G if $a, b \in H \Rightarrow ab^{-1} \in H$.
 - d) Show that a subgroup of a cyclic group is cyclic.
- A) Prove that every quotient group of a cyclic group is cyclic.
 - g) Show that any finite cyclic group of order n is isomorphic to Z_n the group of integers addition modulo n.

4. Answer any five of the following questions:

 $4\times5=20$

- a) Define centre of the group G. Also, show that a centre of a group G is a subgroup of G.
- b) Prove that union of two subgroups is a subgroup if one of them is contained in the other.
- c) State and prove Lagrange's theorem.
- d) Show that homomorphic image of
 - i) an abelian group is abelian

Page 2 of 4

- ii) a cyclic group is cyclic
- e) Prove that order of any permutation f in S_n is equal to the l.c.m of the orders of the disjoint cycles of f. What is the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 1 & 3 \end{pmatrix}$
- f) Let $f: G \to G'$ be a homomorphism, then show that the Kernel of f, Ker f is a normal subgroup of G.
 - g) If $f: G \to G'$ be an onto homomorphism with K = Ker f, then prove that $\frac{G}{K} \cong G'$.

5. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) Let G be a group. Then prove the following results
 - i) Identity element in G is unique.
 - ii) $(ab)^{-1} = b^{-1}a^{-1}$ for all $a, b \in G$, where a^{-1} denotes inverse of a.
 - iii) The equations ax = b and ya = b have unique solutions for x and y in G. 1+2+3=6
- Write the set of all the symmetries of an equilateral triangle. Then show that this set of symmetries D_3 forms a non-abelian group under a binary composition * defined by $(ab) * = a(b *), \forall a, b \in D_3$ where a * means the effect of a on the triangle.
 - c) Define Special Linear Group of order 2×2 . Show that the set of all matrices $G = \{M_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \theta \in \mathbb{R} \}$ forms a group under matrix multiplication.

6. Answer any two of the following questions: $6 \times 2 = 12$
a) Define centralizer $C(H)$ of H in group G . Show that $C(H)$ is a subgroup of G . Also, find the $C(H)$, if $H = \{-1, 1, -i, i\}$ is a subgroup of the Quaternion group $G = \{-1, 1, -i, i, -j, j, -k, k\}$.
b) Let H and K be two subgroups of a group G and define $HK = \{hk: h \in H, k \in K\}$. Show that HK is a subgroup of G if $HK = KH$.
c) Show that order of a cyclic group is equal to the order of its generator.
7. Answer any two of the following questions: $6 \times 2 = 12$
a) Prove that a subgroup H of a group G is normal subgroup of G if product of two right cosets of H in G is again a right coset of H in G.
b) Let H be a subgroup of a group G , then prove that
i) $Ha = H \Leftrightarrow a \in H$
ii) $Ha = Hb \Leftrightarrow ab^{-1} \in H$
iii) There is always a bijective mapping between any two right cosets of H in G . $2+2+2=6$
c) If H and K are two normal subgroups of group G such that
$H \subseteq K$, then prove that $\frac{G}{K} \cong \frac{G/H}{K/H}$.
