VE477

Introduction to Algorithms

Discussion

Manuel — UM-JI (Fall 2020)

Gaussian integers

- Study a set of number
- Define divisibility
- Compute a gcd

The subset of \mathbb{C} consisting of the complex numbers a+ib, with a and b in \mathbb{Z} , is called the set of the *Gaussian integers*, and is denoted $\mathbb{Z}[i]$.

Ex. 1 — Norm of elements

We define the norm of $\alpha \in \mathbb{Z}[i]$ is defined as $N(\alpha) = \alpha \bar{\alpha}$, where $\bar{\alpha}$ is the complex conjugate of a.

- 1. Calculate the norm of N(7+2i).
- 2. Prove that for any $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha\beta) = N(\alpha)N(\beta)$.
- 3. Show that the only invertible elements of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.
- 4. Show that the norm of any Gaussian integer is an integer but that not every integer is the norm of a Gaussian integer.

Ex. 2 — Prime elements

- 1. For $\alpha \in \mathbb{Z}[i]$, prove that if $N(\alpha)$ is prime in \mathbb{Z} , then α is prime in $\mathbb{Z}[i]$.
- 2. Is the converse of 1. true? Explain.
- 3. Prove that a prime in \mathbb{Z} is composite in $\mathbb{Z}[i]$, if and only if it can be written as a sum of two squares.

Ex. 3 — Divisibility and gcd

For any $\alpha, \beta \in \mathbb{Z}[i]$, we say that β divides α if there exists $\gamma \in \mathbb{Z}[i]$ such that $\alpha = \beta \gamma$.

- 1. Show that if β divides α in $\mathbb{Z}[i]$, then $N(\beta)$ divides $N(\alpha)$ in \mathbb{Z} .
- 2. For $\alpha \in \mathbb{Z}[i]$, show that $N(\alpha)$ is even if and only if it is a multiple of 1+i.
- 3. Let $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$.
 - a) Prove the existence of q_1, q_2, r_1, r_2 such that $q_1, q_2 \in \mathbb{Z}$, $0 \le |r_1|, |r_2| \le \frac{1}{2}N(\beta)$, and

$$\frac{lpha}{eta} = q_1 + q_2 i + \frac{r_1 + r_2 i}{N(eta)}.$$

- b) Setting $\gamma = q_1 + q_2 i$, prove that $N(\alpha \beta \gamma) \leq \frac{1}{2} N(\beta)$.
- c) Conclude on the existence of γ , $\rho \in \mathbb{Z}[i]$, with $N(\rho) < N(\beta)$ and such that $\alpha = \beta \gamma + \rho$.
- 4. Derive an algorithm taking as input $\alpha, \beta \in \mathbb{Z}[i]$ and returning $gcd(\alpha, \beta)$.
- 5. Applications.
 - a) Compute gcd(32 + 9i, 4 + 11i).
 - b) Show that 4 + 5i and 4 5i are coprime in $\mathbb{Z}[i]$.