Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	28 October 2022
Team ID	PNT2022TMID26020
Project Name	Classification Of Arrhythmia By Using Deep Learning With 2-D ECG Spectral
	Image Representation
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement (Epic)	Story		Points		
		Number				
Sprint-1	Download The	USN-1	We will download the Dataset contains	2	Low	Madheshwaran.
	Dataset		Six classes			R,
						Ajay.D
Sprint-1	Import The Image	USN-2	We will import Image Data Generator	1	Low	Logesh.D,
	Data Generator					Rithick Roy.A.S
	Library					-
Sprint-1	Configure Image	USN-3	We will configure the	1	Low	Ajay.D,
	Data Generator class		Image Data Generator			Logesh.D,
			class			Rithick Roy.A.S
Sprint-2	Apply the Image	USN-4	We will apply Image Data Generator to	2	Medium	Madheshwaran.
	Data Generator		train dataset			R,

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
	functionality to Trainset and Dataset					Ajay.D
Sprint-2	Import Libraries	USN-5	We will import required Libraries	1	Low	Madheshwaran.R Logesh.D
Sprint-2	Initialize the Model	USN-6	Initializing the Image recognition model	2	Medium	Rithick Roy.A.S, Logesh.D,
Sprint-4	Adding CNN layer	USN-7	We will add Convolutional Neural Network (CNN) used for image/object recognition and classification	4	High	Ajay.D, Madheshwaran.R
Sprint-4	Adding Dense Layer	USN-8	We will add Dense Layer in which each neuron receives input from all the neurons of previous layer	4	High	Rithick Roy.A.S, Ajay.D, Madheshwaran.R
Sprint-3	Configure The Learning Process	USN-9	We will configure The Learning process which is a method, mathematical logic or algorithm that improves the network's performance and/or training time.	3	Medium	Logesh.D Ajay.D, Madheshwaran.R
Sprint-4	Train the Model	USN-10	We will train our model with our image dataset. Fit generator functions used to train a deep learning neural network	4	High	Madheshwaran.R, Logesh.D
Sprint-4	Save the Model	USN-11	We will save The model with .h5 extension	2	Medium	Ajay.D,' Rithick Roy.A.S
Sprint-4	Test the model	USN-12	We will Test the model through Loaded necessary libraries, the saved model	3	Medium	Madheshwaran.R, Logesh.D

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Create Html files	USN-13	We use HTML to create the front end part of the web page.	3	High	Ajay.D, Logesh.D
Sprint-3	Build Python code	USN-14	We build the flask file 'app.py' which is a web framework written in python for server-side scripting.	4	High	Madheshwaran. R, Rithick Roy.A.S
Sprint-4	Run the App	USN-15	We can run the App	3	Medium	Ajay.D, Madheshwaran.R
Sprint-1	Register IBM Cloud	USN-16	We can register IBM Cloud	2	Medium	Madheshwaran.R, Logesh.D, Ajay.D, Rithick Roy.A.S
Sprint-3	Train the model on IBM	USN-17	We can Train Out model on IBM	3	High	Logesh.D, Madheshwaran.R, Ajay.D

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	24 Oct 2022	28 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	30 Oct 2022	04 Nov 2022	20	4 Nov 2022
Sprint-3	20	5 Days	06 Nov 2022	11 Nov 2022	20	11 Nov 2022
Sprint-4	20	5 Days	13 Nov 2022	18 Nov 2022	20	18 Nov 2022

Velocity:

To calculate the team's average velocity (AV) per iteration unit

$$Av = \underbrace{Velocity}_{Sprint duration}$$

Where

Average Velocity - Story points per day

Sprint duration - Number of days (Duration) for Sprints

Velocity - Points per Sprint

$$Av = \frac{20}{5} = 4$$

Average Velocity is **4** points per Sprint