Applied Data Science - Notes

Dom Hutchinson

February 1, 2021

Contents

1	Introduction	2	
2	Data Ingress & Pre-Processing	3	
	2.1 Data Structures	3	
	2.2 Data Formats	3	
	2.3 Web-Scraping & APIs	5	
3	Storage & Management	6	
4	Transformation & Integration		
5	Exploration & Visualisation		
6	Deployment	6	
7	Sharing & Privacy		

1 Introduction

Remark 1.1 - Types of Data

Data comes in many forms including, but not limited to, the following

- Dense & Sparse data.
- Structured/Relational Data.
- Numerical; Categorical; Ordinal; or Boolean.
- Test (Emails, Tweets, Articles).
- Records (User-Level Data, Timestamped Event Data, Log Files).
- Geo-Based Location Data.
- Data-Time Data.
- Network Data.
- Sensor Data.
- Images and Video.
- Audio and Music.

Remark 1.2 - Big & Small Data

Whether a dataset is big or small depends on the computational-resources available, and thus will vary over time. Here are some ways to evaluate this

	Big Data	Small Data
Data Condition	Always unstructured, not read for	Ready for analysis, flat file, no need
	analysis, many relational database	to merge tables.
	tables that need to be merged.	
Location	Cloud, offshore, SQL server etc.	Database, local PC.
Data Size	Over 50k variables, over 50k	File that is in a spreadsheet, that
	individuals, random samples,	can be viewed on a few sheets of
	unstructured	paper.
Data Purpose	No intended purpose.	Intended purpose for data
		collection.

Remark 1.3 - What is Data Science?

Data-Driven Science. An interdisciplinary field about scientific processes and systems to extract knowledge or insights from data in various forms.

Data science incorporates fields from: Mathematics, Computer Science; &, Domain Expertise.

Remark 1.4 - Motivating Applications

Data science is motivated by its applications. Here are some examples of such applications

- Amazon use recommender systems to suggest products to customers.
- Energy Companies use data science to try and predict future usage of customers, so that resources can be applied efficiently.

- Agriculture use sensors in fields to collect data in order to monitor crops and predict weather.
- *Healthcare* use sensors in homes to monitor the health of people over long periods of time (especially when the person cannot go to the hospital).

Figure 1: The pipeline for approaching problems in data science.

Proposition 1.1 - Data Science Pipeline

See Figure 1 for a pipeline for approaching data science problems.

2 Data Ingress & Pre-Processing

2.1 Data Structures

Proposition 2.1 - Native Python Data Structures

Here are some data structures which are native to python and are popular in data science

- list List of elements of varying types.
- set List of unique elements of varying types.
- dict Key-Value pairings.

Proposition 2.2 - Non-Native Python Data Structures

Here are some data structures which are not native to python but are popular in data science.

- np.array.
- pandas.DataFrame.

2.2 Data Formats

Definition 2.1 - Object Persistence

Object Persistence is the process of ensuring that the objects which are created are kept through multiple sessions. This comes in two stages

- i). Serialisation Translating data structures or objects from memory into a format which can be stored.
- ii). Descrialisation The inverse. Translating data structures which have been stored, into memory.

Remark 2.1 - Bespoke Serialisation & Deserialisation

Bespoke serialisation and descrialisation methods can be crafted manually. (e.g. Instantiating an output file; Writing each element of a list to a different line in the file; Closing the file.)

However, there are limitations to be poke methods:

- Methods are specific to each use case (not standardised).
- Methods may not be robust.
- Methods require testing against many test cases.
- Object metadata is not encoded.

These limitations are rarely a problem in very controlled environments.

Definition 2.2 - Comma-Separated Values (CSV)

Comma-Separated Values (CSV) files are well suited to tabular data (inc. matrices). Each line of a CSV File stores one row of the table, and each element in a row is separated by a comma. CSV Files are generally very readable, as well as time- and space-efficient for tabular data.

Remark 2.2 - Using CSV Files

As CSV Files are very popular, there are many library methods which can interact with them. Including reading & writing to and from memory (e.g. pandas.read_csv).

Definition 2.3 - JavaScript Object Notation (JSON)

JavaScript Object Notation^[1] (JSON) is a standardised syntax for storing & exchanging data, used for serialisation. JSON uses text files which are human-readable and dict-like (i.e. have value-key pairs). JSON is designed to be simple so is a very robust language & suits many purposes.^[2]

Limitations of JSON are that a specific conversion process may be required to convert a JSON file into objects in memory, and JSON files can become large due to key repetition.

Definition 2.4 - *Hierarchical Data Format (HDF5)*

Hierarchical Data Format (HDF5) is a standardised format for serialisation. HDF5 is a binary format and tries to mimic file system-like access. HDF5 files have the following three components

- i). Datasets Array-like collections of data. Thousands of datasets can be stored in a single file, and can be categorised and tagged however you want.
- ii). Groups Folder-like structures which groups datasets & other groups.
- iii). Metadata Information which pertains to all the datasets. (e.g. author, edit data & version).

^[1] JSON is not just compatible with JavaScript and is common for many languages & APIs

^[2]https://jsonlint.com/ is a useful site for JSON validation.

HDF5 files are ideal for large numerical data sets, and can easily be manipulated by numpy. HDF5 files support a variety of transparent storage features (inc. compression, error-detection and chunked I/O), which numpy.array do not.^[3]

Proposition 2.3 - HDF5 files vs Traditional File Systems

There are a few key differences between HDF5 Files and Traditional File Systems.

- i). *HDF5 Files* are portable, as the entire structure is contained in the file independent of the underlying file system.^[4]
- ii). Datasets in *HDF5 Files* are all homogeneous hyper-rectangular numerical arrays, whereas files in traditional file system can be anything.
- iii). Metadata can be added to groups in $HDF5\ Files$. This is not possible in traditional file systems.

Remark 2.3 - Other Standardised Serialisation Method

XML, Protocol Buffers & YAML are other popular standardised serialisation methods.

2.3 Web-Scraping & APIs

Remark 2.4 - Terms of Use

Web Scraping should be done within the website's terms of use.

Definition 2.5 - Web Scraping

Web Scraping is the practice of collecting data from websites. This can take many forms, but typically involves taking a raw webpage and parsing the desired data.

Proposition 2.4 - Approaching Web Scraping

To perform Web Scraping successfully, you need a good idea of how a webpage is structure. Typically webpages are based around a html file, which are well structured^[5]. Identifying combinations of tags, classes & ids in the html file can help locate the desired data.

It is harder, sometimes impossible, to navigate poorly designed websites as they are less structured and inconsistent.

Remark 2.5 - Tools for Web Scraping

Web Scraping technologies need to be tolerant to several artefacts of real-world data (known as "wrangling") as-well-as errors in the website.

Some popular tools for Web Scraping are

- BeautifulSoup A python library for parsing XML & HTML.
- scrapy A python library. Generally faster than BeautifulSoup.
- Selenium A web-browser plugin, generally used to test web services.

^[3] http://docs.h5py.org/en/latest/quick.html provides a quick-start guide to using HDF5 files in python.

^[4] However, it does depend on the HDF5 library.

^[5] Webpages are often interpreted to have a tree structure, with each tag being a node

Definition 2.6 - Web APIs

Web APIs greatly simplify Web Scraping by provide a portal for explicit data acquisition, and are generally less prone to the issues which arise when Web Scraping.^[6]

- The code running Web APIs is optimised for data requesting & retrieval. It does not waste time on visualisation or aesthetics. This means the bandwidth required for an API request is much lower than for a similar Web Scraping process (As images etc. do not need to be loaded).
- Web API querying is robust, reliable, well maintained and documented with a static schema (HTML-based Web Scraping is not).
- Web APIs use standardised Serialisation Tools (e.g. JSON).
- Web APIs have already extracted and organised the desired data, however this does mean the user can only access what the operator will allow. This is much better than HTML-based Web Scraping where you rely upon fickle naming conventions of tags.

Definition 2.7 - RESTful APIs

Representational State Transfer APIs (REST/RESTful) are a popular form of $Web\ API$ and generally require an $API\ Key$ to access data.

Request to *RESTful APIs* generally involves constructing a URL which contains your keys and the parameters of your query.

Remark 2.6 - Regular Expression (RegEx)

Regular Expression (ReGex) queries are useful for extracting data, either while web scraping or from API requests.^[7] Python has the re library for RegEx queries, two popular methods from this library are

- i). re.match Attempts to match a RegEx pattern to the whole string.
- ii). re.search Searches for the <u>first</u> occurrence of a *RegEx* pattern in a string.
- 3 Storage & Management
- 4 Transformation & Integration
- 5 Exploration & Visualisation
- 6 Deployment
- 7 Sharing & Privacy

^[6] See https://github.com/public-apis/public-apis for a categorised list of public APIs.

^[7] http://pythex.org/ is a website which can perform RegEx.