

Model Development Phase Template

Date	27th July 2024	
Team ID	740076 FETAL AI: USING MACHINE LEARNING TO PREDICT AND MONITOR FETAL HEALTH	
Project Title		
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

In The initial model training for Fetal AI involved using a dataset of fetal health indicators to train a machine learning model, optimizing parameters to maximize accuracy and predictive power. Validation was conducted using a holdout dataset to assess the model's generalizability, while evaluation metrics such as precision, recall, and F1-score were calculated to ensure robust performance. This approach ensures the model effectively identifies critical fetal health patterns, supporting timely and accurate clinical decision-making.

Initial Model Training Code:

```
#Random forest model
from sklearn.ensemble import RandomForestClassifier
RF_model = RandomForestClassifier()
RF_model.fit(X_train_smote,y_train_smote)
predictions = RF_model.predict(X_test)
print(accuracy_score(y_test, predictions))

6.95141065830721

from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay
import matplotlib.pyplot as plt

Empty markdown cell, double-click or press enter to edit.

size = X_train_smote.shape[0];
print("For the amounts of training data is:",size)
print("accuracy of the RandomForestClassifier:",RF_model.score(X_test,y_test))
cm = confusion_matrix(y_test, predictions)
cm_display = ConfusionMatrixDisplay(cm).plot()
plt.show()
```

Model Validation and Evaluation Report:

			Confusion Matrix
Model	Classification Report	Accuracy	
Random Forest Regressor	#Random forest model from sklearn.ensemble import RandomForestClassifier RF model = RandomForestClassifier() RF_model.fit(X_train_smote,y_train_smote) predictions = RF_model.predict(X_test) print(accuracy_score(y_test, predictions)) 0.95141065830721 from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixOisplay import matplotlib.pyplot as plt Empty markdown cell, double-click or press enter to edit. size = X_train_smote.shape[0]: print("For the amounts of training data is:",size) print("accuracy of the RandomForestClassifier:",RF_model.score(X_test,y_test)) cm = confusion_matrix(y_test, predictions) cm display = ConfusionMatrixDisplay(cm).plot() plt.show()	95%	-
Decision		91%	
Tree	<pre>from sklearn.tree import DecisionTreeClassifier</pre>		
Regressor	<pre>#Decision Tree model DT_model = DecisionTreeClassifier() DT_model.fit(X_train_smote, y_train_smote) predictions = DT_model.predict(X_test) print(accuracy_score(y_test,predictions)) 0.9184952978056427 print("For the amounts of training data is:",size) print("Accuracy of DecisionTreeClassifier:",DT_model.score(X_test,y_test)) cm = confusion_matrix(y_test, predictions) cm_display = ConfusionMatrixDisplay(cm).plot() plt.show()</pre>		-
	For the amounts of training data is: 3474 Accuracy of DecisionTreeClassifier: 0.9184952978056427		

Logistic regression

