PAT-NO:

JP359194518A

DOCUMENT-IDENTIFIER:

JP 59194518 A

TITLE:

MICROWAVE OSCILLATOR

PUBN-DATE:

November 5, 1984

INVENTOR-INFORMATION: NAME TAKAHASHI, HIROSHI MACHIDA, TAKASHI

ASSIGNEE-INFORMATION:

MATSUSHITA ELECTRIC IND CO LTD

COUNTRY

N/A

APPL-NO:

JP58070369

APPL-DATE: April 20, 1983

INT-CL (IPC): H03B005/18

US-CL-CURRENT: 331/16, 331/117D

ABSTRACT:

PURPOSE: To remove oscillation of unnecessary frequency based upon the resonance phenomenon of a metallic case and to obtain stable oscillation only by the resonance frequency of a dielectric resonator by thinning the thickness of the metallic case except a place to which a movable metallic plate is fitted.

CONSTITUTION: The movable metallic plate 8 is screwed to the metallic case 7 surrounding a microwave oscillating circuit provided with a micro-strip line 9,

a transistor 10 and the dielectric resonator 11 constituted on a dielectric

substrate 12 at the upper part of the dielectric resonator 11. The movable

metallic plate 8 can be moved vertically by turning the metallic plate 8, so

that the resonance frequency of the dielectric resonator 11 can be adjusted.

The height of the metallic case 7 is reduced except the fitting place of the

movable metallic plate 8. Thus, the resonance frequency of the metallic case 7

in the minimum- order mode can be increasd, so that the resonance frequency of

the dielectric resonator 11 can be separated from that of the metallic case 7.

COPYRIGHT: (C) 1984, JPO&Japio

⑫公開特許公報(A)

昭59—194518

விnt. Cl.3 H 03 B 5/18 識別記号

庁内整理番号 7928--5 J

43公開 昭和59年(1984)11月5日

発明の数 1 審査請求 未請求

(全 3 頁)

60マイクロ波発振器

204特 顧 昭58-70369

❷出 昭58(1983)4月20日

の発 明 者 高橋広志

> 門真市大字門真1006番地松下電 器産業株式会社内

@発 明 者 町田髙

門真市大字門真1006番地松下電 器産業株式会社内

の出 人 松下電器産業株式会社 門真市大字門真1006番地

分段 理 人 弁理士 中尾敏男 外1名

1、発明の名称

マイクロ放発振器

2、特許請求の範囲

誘電体基板上に構成されたマイクロストリップ 線路、トランジスタ、誘電体共振器を具備したマ イクロ波発振回路をとり囲む金属箇体の前記勝電 体共振器の上方に可動金属板を設け、前記可動金 脳板が取付けられた箇所以外では前記金属筐体の 高さを低くしたことを特徴とするマイクロ波発振 器。

3、発明の詳細な説明

産業上の利用分野

本発明は、主にマイクロ波通信装置の局部発振 器等に用いられるマイクロ波発振器に関するもの である。

従来例の構成とその問題点

近年、マイクロ波帯を利用した放送・通信が実 用段階に達し、マイクロ波通信装置等の開発が急 速に行われている。との中で、マイクロ波発振器

は高性能半導体や高の誘電体共振器の出現により、 回路の集積化(以下MIC化と呼ぶ)がなされて いる。

第1図は従来のNIC化マイクロ波発振器の主 要部の構成例を表わし、同図(a)はMIC基板の斜 視図、同図(b)は同図(a)のMIC基板を金属簡体に 組み込んだときの斜視図、同図(0)は同図(0)の断面 図である。1は誘電体基板、2はトランジスタ、 3 はマイクロストリップ線路、4 は誘電体共振器、 B は金属筐体、6 は可動金属板である。

以上のように構成されたマイクロ波発振器につ いて以下説明を行う。まず、誘電体基板1上に置 かれたトランジスタ2はマイクロストリップ線路 3に接続され、誘電体共振器4は共振回路を付加 ナベきトランジスタ2の端子に接続されたマイク ロストリップ線路3の近傍に配置され、発振回路 の主要部を構成する。この回路を金銭筐体5に組 込み、さらに発振周波数を可変できるように誘饵 体共振器4の上方に可動金属板8が取付けられて いる。

とのようにして構成されたマイクロ波発振器で 属像体をが第1図に示すよりに方形金属簡体であ る場合には、その共振周波数fo は、方形の各辺 の長さをa, b, cとすると、

$$f_0 = \frac{u_c}{2} \sqrt{\left(\frac{n}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{\ell}{c}\right)^2 \cdots \cdots (1)}$$

ただし、 u c : 光速

m, n, l:Oまたは正の整数で全てが 一同時化口になることはない。

で与えられる。つまり、金属筐体5にはその形状 によって定まる固有の共振周波数が存在する。た だし、実際には金属筺体5内に基板等の誘電体が あるため、f。は(1)式から若干ずれる。一方、誘 忙体共振器の共振周波数すなわち所望の発振周波 数をfaとすると、金属筺体5の形状によっては foとfdが接近し、金属箆体5の共振現象によ り所望の発振周波数が得られないという欠点があ

発明の目的

ながら説明する。

第2図(a)は本発明の一実施例における斜視図、 同図(b)は同図(a)の A - A′線における断面図で表 わす。7は金属僚体、8は可動金属板、9はマイ クロストリップ線路、10はトランジスタ、11 は誘電体共振器、12は誘電体基板である。そし て、可動金属板8はねじで誘電体基板12上に構 成されたマイクロストリップ線路8,トランジス タ10、誘電体共振器11を具備したマイクロ波 発振回路をとり朗む金属鏡体での前記誘電体共振 器11の上方に取付けられており、これを回すこ とにより、可動金属板8は上下に可効し、誘電体 共振器11の共振周波数を調整できるようにして. ある。また、金属管体では可動金属板8の取付け 簡所以外では、その高さを低くしてある。とのよ うにすれば、金属筐体での最低次モードの共振周 波数を高くすることができるから、誘電体共振器 11の共振周波数と金属館体での共振周波数を引 き離すことができる。

発明の効果

本発明の目的は前記のようを従来の欠点に鑑み、 、、、、、、は、金属僚体、5.が一種の空洞共振器を形成し、金 金属僚体の共振現象にもとづく不要周波数の発振 をなくし、誘電体共振器の共振周波数のみで安定 **化発振するマイクロ波発振器を提供しようとする** ものである。

登明の機成

この目的を達成するために本発明のマイクロ波 発振器は、誘電体基板上に構成したマイクロスト リップ線路、トランジスタ、誘電体基板を具備し たマイクロ波発振回路を金属管体に組込み、前記 誘電体共振器の共振周波数を可変できるようその 上方に可動金属板を取付け、その箇所以外では前 記金属筐体の高さを低くして構成されている。と の構成によって前記金属箇体の最低次モードの共・ 振周波数が高くなり、前記誘電体共振器の共振周 波数と前配金属箆体の共振周波数を引き離すこと ができ、前記誘電体共振器の共振周波数で安定し た発振が得られることになる。

実施例の説明

以下、本発明の一奥施例について図面を参照し

以上のように本発明のマイクロ波発振器は、誘 電体共振器の共振周波数を調整するための可動金 属板が取付けられている箇所以外の金属筐体の厚 みを薄くすることにより、金属筺体の共振現象に もとづく不要周波数での発振を防止し、誘電体共 振器の共振周波数で安定した発振が得られるため、 その実用的効果は大なるものがある。

4、図面の簡単を説明

第1図は従来のMIC化マイクロ波発振器の主 要部の構成例を表わし、同図(a)は MIC基板の斜 視図、同図(b)は同図(a)の MIC基板を金属管体に 組込んだときの斜視図、同図(c)は同図(b)の断面図 第2図は本発明の一実施例におけるHIC化マイ クロ波発振器の主要部の構成を表わし、同図(a)は その斜視図、同図(b)は同図(a)の Δ → Δ ′ 線におけ る断面図である。

7 … … 金属筐体、8 … … 可動金属板、9 … … マ イクロストリップ顧路、10……トランジスタ、 111……誘電体共振器、12……誘電体基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名

(b)

(b)

