2018年度 中間試験問題・解答

試験実施日 2018 年 6 月 12 日 6 時限

出題者記入欄

試 験 科 目 名 微分方程式		出題者名_佐藤	弘康
試 験 時 間 <u>60</u> 分	平常授業	美日<u>月</u>曜日<u>3</u>時	 持限
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印を 持ち込み可のものを○で囲ん	
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・ コピーも可 ₎ ・ 電卓)	き・辞書
本紙以外に必要とする用紙	解答用紙_	0 枚 計算用紙	0 枚
通信欄			

受験者記入欄

学 科	学 年		学	籍 礼	番	号	氏	名
		1						

採点者記入欄

	31.7.11 H HZ; 11/13
採点欄	評価

1 微分方程式

- **(7)** $(xy^2 y) dx + dy = 0$
- (1) $(x^2 y^2) dx 2xy dy = 0$
- (ウ) $(3x^2 2y) dx + (3y^2 2x) dy = 0$
- **(I)** $4xy \, dx dy = 0$

について、各間に答えなさい.

(1) **(ア)** ~ **(エ)** の中から,変数分離形微分方程式を すべて選びなさい.

(解答欄)	

(2) **(ア)** ~ **(エ)** の中から, 同次形微分方程式をすべて選びなさい.

(解答欄)	

(3) (2) で選んだものの中から 1 つ選び, $v=\frac{y}{x}$ とおくことにより, v と x の変数分離形微分方程式に変換しなさい.

(4) **(ア) ~ (エ)** の中から,線形微分方程式をすべて 選びなさい.

(解答欄)	

(5) **(ア) ~ (エ)** の中から, ベルヌーイの微分方程式 をすべて選びなさい.

(6) (5) で選んだものの中から 1 つ選び, $z=y^{1-n}$ とおくことにより, z と x の線形微分方程式に変換しなさい.

(7) (ア) ~ (エ) の中から、完全微分方程式をすべて 選びなさい。

(解答欄)	

(8) **(ア) ~ (エ)** の中から 1 つ選び、その一般解を求めなさい。 ただし、線形微分方程式 y'+P(x)y=Q(x)、および完全微分方程式 $P(x,y)\,dx+Q(x,y)\,dy=0$ の一般解がそれぞれ

$$y = e^{-\int P(x) dx} \left(\int Q(x) e^{\int P(x) dx} dx + c \right),$$
$$\int_{a}^{x} P(x, y) dx + \int_{b}^{y} Q(a, y) dy = c$$

で与えられることを利用してよい.

選んだ微分方程式

2 微分方程式

$$2(x^2 + y) dx + x dy = 0 (*)$$

について, 次の問に答えなさい.

(1) (*) が完全微分方程式ではないことを示しなさい.

(2) $\lambda = x$ が(*)の積分因子であることを示しなさい.

(3) 初期条件 (x,y) = (1,2) を満たす特殊解を求めなさい.