TABLE OF INFORMATION FOR 2008 and 2009

CONSTANTS AND CONVERSION FACTORS						
Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$					
Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$	1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$					
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$					
Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$					
Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$					
Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$						
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/}c^2$					
Planck's constant,	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$					
	$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$					
Vacuum permittivity,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{N \cdot m}^2$					
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$					

LD VIT	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
UNIT SYMBOLS	second,	S	newton,	N	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	Α	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

Magnetic constant, $k' = \mu_0/4\pi = 10^{-7} \text{ (T-m)/A}$

Vacuum permeability,

1 atmosphere pressure,

PREFIXES					
Factor	Prefix	Symbol			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	c			
10^{-3}	milli	m			
10 ⁻⁶	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	p			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- IV. For mechanics and thermodynamics equations, W represents the work done on a system.

Ch. 17 Cornell notes

NEWTONIAN MECHANICS

ν	=	v_0	+	at

a = acceleration

$$F = force$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

f = frequency

h = height

$$v^2 = {v_0}^2 + 2a(x - x_0)$$

J = impulse

$$v = v_0 + 2u(x - x_0)$$

K = kinetic energyk = spring constant

$$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$$

 $\ell = length$

$$F_{fric} \leq \mu N$$

m = mass

N = normal force

$$a_c = \frac{v^2}{r}$$

P = power

p = momentumr = radius or distance

 $\tau = rF \sin \theta$

T = periodt = time

 $\mathbf{p} = m\mathbf{v}$

U = potential energy

 $\mathbf{J} = \mathbf{F} \Delta t = \Delta \mathbf{p}$

v = velocity or speed

 $K = \frac{1}{2}mv^2$

W =work done on a system

x = position

 μ = coefficient of friction

 $\Delta U_g = mgh$

 θ = angle τ = torque

 $W = F\Delta r \cos\theta$

$$P_{avg} = \frac{W}{\Delta t}$$

 $P = Fv \cos \theta$

$$\mathbf{F}_{s} = -k\mathbf{x}$$

$$U_s = \frac{1}{2}kx^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{1}{f}$$

$$F_G = -\frac{Gm_1m_2}{r^2}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

A = area

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

B = magnetic fieldC = capacitance

$$\mathbf{E} = \frac{\mathbf{F}}{q}$$

d = distanceE = electric field

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

F = forceI = current

$$E_{avg} = -\frac{V}{d}$$

 $\ell = length$ P = power

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

Q = chargeq = point charge

R = resistance

$$C = \frac{Q}{V}$$

r = distancet = time

$$C = \frac{\epsilon_0 A}{d}$$

U = potential (stored) energy

$$a$$
 1_{OV} 1_{OV}

V = electric potential or potential difference

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$$

v = velocity or speed

$$I_{avg} = \frac{\Delta Q}{\Delta t}$$

 ρ = resistivity θ = angle

 ϕ_m = magnetic flux

$$R = \frac{\rho \ell}{A}$$

$$V = IR$$

$$P = IV$$

$$C_p = \sum_i C_i$$

$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

$$R_{s} = \sum_{i} R_{i}$$

$$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$$

$$F_B = qv B \sin \theta$$

$$F_B = BI\ell \sin\theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$\phi_m = BA \cos \theta$$

$$\boldsymbol{\varepsilon}_{avg} = -\frac{\Delta\phi_m}{\Delta t}$$

$$\varepsilon = B\ell v$$