Orderable groups A group G is orderable if its elements can be ordered in a which is preserved by group multiplication. This is an extra requirement to ask of a group, because not all gps can be orderable. In this talk, we will 2 motivate the study of orders on gps · introduce the different notions of orderability of give some important examples of orderable gps · consider the properties of the class of orderable gos Ultimately well will prove a thin of Vinogrador: a free product of left-orderable gps is left orderable. Refs: E. Ghys, gps acting a the airde 2001 A Mura, Rhemfalla, ordrable gps 1977

Navas, On the dynamics of (left) orderable gps 2010
Groups, Orders, Dynamics

Def Total order < on a set X: a binary relation satisfai Aint-Symmetric x sy & y sx => x=y. ∀x,y €X Reflective $x \leq y \leq y \leq z \implies x \leq z$ X, 5, 5 Total X ≤ y or y ≤ x Vx,y eX (cry two elms are comparable) (total =) reflexive, X ≤ X. Po: just reflexion Note total nears that x < x when x = y, so total orders are reflexive. Also called "linear ordes" b/c think of as laid out in a line * Corder type, ordinals (well-ordings Examples . Z, Q or R with usual < Ters. - not total week " wel: fotal I min of) · dictionary order on A = { Poste strings over A} (free monoid) X, Xn & y, ... ym iff x, sy, or (x, -y, and x2 x1< 91) iff or (x1=y1 & x2< y2) or (x1x2=3192 & ×3 < y3) or (x) xer Jr Jerl & xes ye, l=min(a, m) (X1... Xn-1 = y1 - yn-1 & xn < yn) X={1,2,3} Non example: P(X) under = (not total) pick disjoint sets {1,2} {2,3} {3,1} Thm: { orders } · fle or = Conter 1

lef Agp G is left-orderable if ∃ a told wohr ≤ a G night - orderable
bi - orderable Such Hut X & y => 9× ≤ 99 ∀x,5,5,€G X & y = xg≤ yg $\times \leq y^{-1} \Rightarrow$ gxh & gxy Zi, Z, Q, R under addition. Alo: LO iff BO Nonaxuyle (R1203, x) 集 型一1≤1 a -1x-1 < -1x1 · ay gp with tosia $(\times \neq id, \times^{n} = id)$ Exi Braid gps (Deharnoy) Lo Pure: Bo · Diagra sps & inc Thysals F (Galon/Sepir) Bo Whi · Connections to topology. Space -> Try (Space) · Interesting! Full : no vestricties Pure Braid sp: · Measures how resiliant / may relatives a gg has? Strad 1 2 3 4 · Another invariat , 234 · Order 2 = certain action (pre is subgp) · Orderable = forsin-free nilpotent gps [6562 G: free gps

fte lower control & series G=GODG=DGD. DGn= ?13

Breid grs

Basics · LO iff RO (different orders?)
Establish to the second of the
give \leq_{L} left order define \leq_{L} by $\times \leq_{R} y$ iff $\times_{i} \leq_{L} y$.
$\begin{array}{ll} \text{iff } g^{-1}x^{-1} \leq L \ (99)^{-1} & \text{inverse order} \\ \text{iff } g^{-1}x^{-1} \leq L \ 9^{-1}9^{-1} \end{array}$
iff $x' \leq_L \mathfrak{I}'$ iff $x \leq_R \mathfrak{I}$.
$\frac{\text{Apply to 7/2}}{\text{Apply to 7/2}} = -2 \leq_{\text{L}} 3 \iff 2 \leq_{\text{R}} -3 \text{ reverse order}$
$\frac{4}{7} \frac{4}{7} \frac{4}$
Note that $g \mapsto g^{-1}$ is an isomo $G \longrightarrow G^{opp}$ $\times \circ g \longrightarrow g^{-1} \otimes g \otimes $
(or an "antiquitomorphisn f(xy) = f(y)f(x))
Misleading example: IL is Abelian, so any LO is a BO. Abo: reverse order This shows that IL has > 2 orderigs. In fact, IL has = 2 orderigs. (determined by 1 < 0) invesse order

How may orderis? • dictionary order: $(x,y) \leq (x',y') \iff \int_{-\infty}^{\infty} x \leq x'$ or |x=x' and y \le y' $(x+a, y+b) \leq (x'+a, y'+b) \Longrightarrow \int x+a \leq x'+a$ or x+a=x'+a and y+b < g'+b Inatiand type: I invalid.

(x,g) >(0,0) iff lx ty >0 $\lambda_{x+y} = (\lambda) \cdot (x,y)$ More "rational types" (I think lex is one of)
these 9 + Jx >0 许 y>-lx I topology on { ardrige of 67. Thin G confulle fordarys ? The U Cantar perturbation of orders?

Prop G: combable Other orderable:

o Lattice - orderable: partid, not total order.

can define may

f

g

Vi

4

F

V9 ternary relation defines circular paths, proserved by mult. Con have torsion now! G (0 =) G (51)

Class of LO gps: closed not
- Serbaps (cat prod)
- products (lex; need core for infinite products)
- extensions => E To Q (K, Q LO) lex ordin
- extensions = E To Q (K, Q LO) lex ordin (if K & E & E/K LO)
$g \leq g' \iff \bigcap \pi(g) \leq \mathbf{R}\pi(g')$ or $\pi(g) = \pi(g')$ and $g' \circ g \leq \mathbf{K} 1$
(c.f.lex.)
- free products (cat coprod) Ex Z/2 * Z/2 = (x,y x²=y²) inf directed gp 2 Z/2 x Z/2
$A * B = \langle X \cup Y \mid R \cup S \rangle$ $A = \langle X \mid R \rangle \times, Y \text{ disjort}$ $B = \langle Y \mid S \rangle$ $\langle UX : UR : \rangle$
Thm (Vinogradou)
Gi a family of 20 gps. (countable at least)
XG; LO ► all G; LO
PC. =>: eary, rostrict orders (cos G: C> * G;)
Set P = force prod.
E: herdr.

