Diseño de columnas.

• $M_n = M_c + \Sigma M_si$ | M_c : momento q vesiste el concreta | M_si : momento q vesiste enda capa

Fc: conga axial q resiste d conce Fsi: conga axial q resiste d accro

Tabla 22.2.2.4.3 — Valores de
$$\beta_{\rm I}$$
 para la distribución

f_c' , MPa	β_1	
$17 \le f'_c \le 28$	0.85	(a)
28 < f'_c < 55	$0.85 - \frac{0.05(f'_c - 28)}{2}$	(b)

Resistencia del acevo:

Asi: Area de acero por capa [cm2]

di : Distancia al eje de la barra por capa [cm]

Esi: Deformación on el refuerzo Asi

$$\xi si = \xi u * \left(\frac{c - di}{c}\right) \implies \xi si = 0.003 \left(\frac{c - di}{c}\right)$$

fsi: Esquerzo a fluencia

- Deformación unitaria de fluencia del acero

$$\varepsilon_s = \frac{f_y}{\xi_s} = 0.002 \longrightarrow \varepsilon_s = \frac{f_y}{0.002}$$

$$fsi = Es * Esi$$
 \Rightarrow $fsi = \frac{fy}{\sigma_1 \circ \sigma_2} * Esi$

* Se debe condicionar fsi - - 420 Mpa & fsi & 420 Mpa

* Cálculo de Fsi - Fsi = fsi * Asi

* Cálcolo de Zsi
$$\rightarrow$$
 Zsi = $\frac{h}{2}$ - di

* Cálculo de Msi - Msi = Fsi * Zsi

* Factor de reducción

Et = deformación unitaria.