Diferencialinės lygtys P5

Raimundas Vidunas *Vilniaus Universitetas*

MIF, 2023 spalio 2 d.

Einamos temos

Mes jau galime spresti:

- Pirmos eilės diferencialines lygtis su atsiskiriančiais kintamaisiais;
- ► Lygtis y' = F(ax + by), $y' = F\left(\frac{y}{x}\right)$, $y' = F\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$, suvedant j atsiskiriančių kintamųjų atvejį;
- Diferencialų lygtis, jei turime integruojanti daugikli.

Šiandien nagrinėsime tiesines pirmos eilės lygtis (homogenines ar nehomogenines):

- ► Tiesinių diferencialinių lygčių ir jų sprendinių forma
- ► Tiesiniai diferencialiniai operatoriai.
- Koši uždaviniai tiesinėms lygtims; jų sprendinių egzistavimas ir vienatis.
- Tiesinių lygčių sprendimas
- Konstantos variavimo metodas nehomogeninėms lygtims.
- Pateiksiu programavimo projektus įvykdymui iki tarpinio egzamino.

Pirmos eilės tiesinės lygtys

Bendroji pirmos eilės tiesinės lygties forma yra

$$a_1(x) \frac{dy(x)}{dx} + a_0(x) y(x) = f(x).$$

Padaliję iš $a_1(x)$ gauname lygtį

$$\frac{dy(x)}{dx} + b(x)y(x) = g(x),$$

su
$$b(x) = \frac{a_0(x)}{a_1(x)}$$
, $g(x) = \frac{f(x)}{a_1(x)}$.

Jei g(x) = 0 (arba ekvivalenčiai, f(x) = 0), tiesinė lygtis vadinama homogenine. Antraip tiesinė lygtis yra nehomogeninė.

Normalioji lygtis y' = G(x, y) yra tiesinė kaip tik tada, kai G(x, y) priklauso tiesiškai nuo y: G(x, y) = -b(x) y + g(x).

Tiesinis diferencialinis operatorius

Tiesines diferencialines lygtis galime užrašyti operatorine forma.

Apibėžiame diferencialinį operatorių $L = a_1(x) \frac{d}{dx} + a_0(x)$; t.y., jis

veikia diferencijuojamas funkcijas kaip $L[y(x)] = a_1(x) \frac{dy(x)}{dx} + a_0(x)y(x)$.

Diferencialinis operatorius L yra tiesinis:

- $\blacktriangleright \ L[C y(x)] = C L[y(x)].$
 - $L[Cy(x)] = a_1(x) C \frac{dy(x)}{dx} + a_0(x) C y(x) = C L[y(x)].$
- $L[y_1(x) + y_2(x)] = L[y_1(x)] + L[y_2(x)].$
 - $L[y_1 + y_2] = a_1 \frac{dy_1}{dx} + a_1 \frac{dy_2}{dx} + a_0 y_1 + a_0 y_2 = L[y_1] + L[y_2].$
- ▶ Bendrai tiesinei kombinacijai $C_1y_1(x) + C_2y_2(x)$:

$$L[C_1y_1(x) + C_2y_2(x)] = C_1L[y_1(x)] + C_2L[y_2(x)].$$

Homogeninės lygtis operatorine forma

Homogeninę tiesinę lygtį
$$a_1(x)\frac{dy(x)}{dx} + a_0(x)y(x) = 0$$

galime užrašyti operatorine forma
$$L[y(x)] = 0$$
, su $L = a_1(x) \frac{d}{dx} + a_0(x)$.

Iš tiesinų operatoriaus savybių išplaukia, kad homogeninės lygties sprendinių aibė yra tiesinė erdvė:

- igi y(x) yra sprendinys, tai ir Cy(x) yra sprendinys bet kuriai konstantai C;
- ▶ jei $y_1(x), y_2(x)$ yra sprendiniai, tai ir $y_1(x) + y_2(x)$ yra sprendinys;
- ▶ jei $y_1(x)$, $y_2(x)$ yra sprendiniai, tai ir $C_1y_1(x) + C_2y_2(x)$ yra sprendinys bet kurioms konstantoms C_1 , C_2 .
- y(x) = 0 visada yra homogeninės tiesinės lygties sprendinys.

Pirmos eilės homogeninių tiesinių lygčių atveju, sprendinių erdvė yra vienamatė srityje, kur galioja Koši uždavinio sprendinio egzistavimas ir vienatis.

Nehomogeninė lygtis operatorine forma

Nehomogeninę tiesinę lygtį $a_1(x) \frac{dy(x)}{dx} + a_0(x) y(x) = f(x)$

galime užrašyti operatorine forma L[y(x)] = f(x), su $L = a_1(x) \frac{d}{dx} + a_0(x)$.

Jei $y_1(x)$, $y_2(x)$ yra nehomogeninės lygties sprendiniai, tai jų skirtumas $y_1(x) - y_2(x)$ yra homogeninės lygties sprendinys:

$$L[y_1(x) - y_2(x)] = L[y_1(x)] - L[y_2(x)] = f(x) - f(x) = 0.$$

Nehomogeninės lygties bendrasis sprendinys yra šios formos:

$$y(x) = h(x) + CY(x)$$
, kur

- \blacktriangleright h(x) yra atskirasis nehomogeninės lygties sprendinys;
- ightharpoonup CY(x) yra bendrasis homogeninės lygties sprendinys;

Superpozicijos principas: Jei žinome lygčių $L[y_1] = f_1$ ir $L[y_2] = f_2$ atskiruosius sprendinius y_1, y_2 , tada lygties $L[y] = f_1 + f_2$ atskirasis sprendinys yra $y_1 + y_2$.

Palyginimui: Tiesinės lygčių sistemos algebroje

Sios formos lygčių sistema yra vadinama *tiesine*:

$$a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n = c_1,$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n = c_2,$
 $\ldots \qquad \ldots \qquad \ldots$
 $a_{m,1}x_1 + a_{m,2}x_2 + \ldots + a_{m,n}x_n = c_m.$

Turime *m* lygčių ir *n* nežinomųjų x_1, x_2, \ldots, x_n .

Jei $c_1 = c_2 = \ldots = c_m = 0$, lygčių sistema vadinama homogenine.

Sudarome matrica
$$M = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$
 ir vektorius $\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$,

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}. \text{ Tada tiesinė lygčių sistema yra ekvivalenti uždaviniui:}$$

$$\text{Rasti } \vec{x} \in \mathbb{R}^m \text{ tenkinantį } M\vec{x} = \vec{c}.$$

Tiesinės sistemos sprendimas

Matrica M apibrėžia tiesinį atvaizdį $\mathbb{R}^m \to \mathbb{R}^n$.

Homogeninės sistemos $M\vec{x} = \vec{0}$ sprendiniai:

- Visada yra nulinis sprendinys $\vec{x} = \vec{0}$.
- Dviejų homogeninės lygties sprendinių $\vec{x} = \vec{u}_1$, $\vec{x} = \vec{u}_2$ tiesinė kombinacija $\vec{x} = \gamma_1 \vec{u}_1 + \gamma_2 \vec{u}_2$ yra tos pačios homogeninės sistemos sprendinys. Įrodymas: $M(\gamma_1 \vec{u}_1 + \gamma_2 \vec{u}_2) = \gamma_1 M \vec{u}_1 + \gamma_2 M \vec{u}_2 = \gamma_1 \vec{0} + \gamma_2 \vec{0} = \vec{0}$.

Homogeninės lygties sprendiniai sudaro *tiesinę* erdvę $\subset \mathbb{R}^m$.

Homogeninės sistemos $M\vec{x} = \vec{c}$ sprendiniai, su $\vec{c} \in \mathbb{R}^n$ ir $\vec{x} \in \mathbb{R}^m$:

- ▶ Jei turime du sprendinius $M\vec{x}_1 = \vec{c}$, $M\vec{x}_2 = \vec{c}$ tai pačiai lygčiai, tai jų skirtumas $\vec{x}_1 \vec{x}_2$ tenkina homogeninę lygtį: $M(\vec{x}_1 \vec{x}_2) = \vec{0}$.
- ▶ Jei lygtis $M\vec{x} = \vec{c}$ turi bent vieną sprendinį \vec{x}_1 , bendrasis jos sprendinys turi šią formą: $\vec{x} = \vec{x}_1 + \vec{x}_0$, kur \vec{x}_0 yra bendrasis homogeninės sistemos bendrasis sprendinys.

Koši uždavinys pirmos eilės lygčiai (egzistavimas)

Prisimename iš trečios paskaitos (skaidrės 3–5):

Teorema (Koši ir Peano)

Nagrinėjame diferencialinę lygtį $\frac{dy}{dx} = \varphi(x, y)$

su Koši pradine sąlyga $y(x_0) = y_0$.

Tarkime, funkcija $\varphi(x,y)$ yra tolydi uždarame stačiakampyje

$$\Gamma = \{(x,y) : |x-x_0| \le a, |y-y_0| \le b, a > 0, b > 0\}.$$

Tegu
$$|\varphi(x,y)| \le M < \infty$$
, ir $h = \min\left(a, \frac{b}{M}\right)$.

Tada intervale $|x - x_0| \le h$ egzistuoja diferencialinės lygties sprendinys y(x), tenkinantis sąlygą $y(x_0) = y_0$.

Koši uždavinio egzistavimas ir vienatis

Teorema (Pikaro)

Nagrinėjame lygtį $\frac{dy}{dx}=\varphi(x,y)$ su Koši pradine sąlyga $y(x_0)=y_0$. Tarkime, funkcijos $\varphi(x,y)$ ir $\frac{\partial \varphi(x,y)}{\partial v}$ yra tolydžios stačiakampyje

$$\Gamma = \{(x,y) : |x - x_0| \le a, |y - y_0| \le b, a > 0, b > 0\}.$$

Tegu
$$|\varphi(x,y)| \le M < \infty$$
, ir $h = \min\left(a, \frac{b}{M}\right)$

Tada intervale $|x - x_0| \le h$ egzistuoja vienas ir vienintelis diferencialinės lygties sprendinys y(x), tenkinantis sąlygą $y(x_0) = y_0$.

Žr. Golokvosčiaus skyrių 4. Funkcijos $\frac{\partial \varphi(x,y)}{\partial y}$ tolydumą galima pakeisti Lipšico sąlyga: $|\varphi(x, y_1) - \varphi(x, y_2)| \le L|y_1 - y_2|$. Įrodymui nagrinėjama funkcijų seka $y_0(x) = y_0$, $y_k(x) = y_0 + \int_{-\infty}^{x} \varphi(s, y_{k-1}(s)) ds$.

Koši uždavinys pirmos eilės tiesinei lygčiai

Teorema

Nagrinėjame tiesinę diferencialinę lygtį
$$\frac{dy(x)}{dx} + b(x)y(x) = g(x)$$
 su Koši pradine sąlyga $y(x_0) = y_0$.

Tarkime, funkcijos b(x) ir g(x) yra tolydžios intervale $[x_0 - a, x_0 + a]$.

Tada šiame intervale egzistuoja diferencialinės lygties sprendinys y(x), tenkinantis sąlygą $y(x_0) = y_0$.

Pikaro teoremos atskiras atvejis, su
$$\varphi(x,y)=-b(x)y+g(x)$$
, ir $\frac{\partial \varphi}{\partial y}=-b(x)$, abi tolydžios juostoje $\{(x,y):|x-x_0|\leq a,y\in\mathbb{R}\}$. Jei tolydi $|b(x)|< K$ kažkurioje x-srityje, apribojus $|y-y_0|< b$ turime $h=\min(a,\frac{1}{K})$ pakankamai dideliems y . Tad galime pratęsinėti sprendinio apibrėžimo sritį per $\frac{1}{K}$ kol pasieksime $b(x)$ ir $g(x)$ tolydumo ribas.

Homogeninės lygties sprendimas

Pirmos eilės homogeninė tiesinė lygtis

$$\frac{dy(x)}{dx} + b(x)y(x) = 0$$

yra su atsiskiriančiais kintamaisiais:

$$\frac{dy(x)}{dx} = -b(x)y(x), \quad \text{tad} \quad \frac{dy(x)}{y(x)} = -b(x)dx.$$

Integruojame:
$$\int \frac{dy(x)}{y(x)} = -\int b(x) dx$$
,

gauname
$$\ln |y(x)| = -\int b(x) dx + C_0$$
,

arba
$$y(x) = C_1 \exp\left(-\int b(x) dx\right)$$
.

Sprendinys y(x) = 0 yra įtrauktas automatiškai, su $C_1 = 0$.

Homogeninės lygties Koši uždavinys

Tarkime $b(x) \in C([a,b])$ ir $x_0 \in [a,b]$. Koši uždavinį

$$\frac{dy(x)}{dx} + b(x)y(x) = 0, \quad y(x_0) = y_0,$$

galima spręsti

$$y(x) = C_1 \exp\left(-\int_{x_0}^x b(t) dt\right).$$

Konstanta C_1 randama įstačius $x = x_0$. Gauname $C_1 = y_0$.

Koši uždavinio sprendinys yra

$$y(x) = y_0 \exp\left(-\int_{x_0}^x b(t) dt\right).$$

Pavyzdys

Spręskime diferencialinę lygtį
$$\frac{dy(x)}{dx} - y(x)\cos x = 0.$$

Atskyrę kintamuosius, integruojame: $\int \frac{dy}{y} = \int \cos x \, dx$.

Gauname
$$\ln |y(x)| = \sin x + C_0$$
, arba $y(x) = C_1 e^{\sin x}$.

Jei duotas Koši uždavinys y(0) = 1, tada sprendžiame $C_1 = 1$.

Nehomogeninės lygties sprendimas

Tegu $L = \frac{dy(x)}{dx} + b(x)$. Nehomogeninės tiesinės lygties Ly(x) = g(x) atskirąjį sprendinį galime rasti:

- Lagranžo laisvosios konstantos variavimo metodu (dabar);
- Oilerio interguojančio daugiklio metodu (kitą savaitę).

Lagranžo metodas: Tarkime, išsprendėme homogeninę lygtį Ly(x) = 0, ir turime jos bendrąjį sprendinį y(x) = C Y(x).

leškome nehomogeninės lygties sprendinio šios formos: y(x) = C(x)Y(x).

Įstatę į nehomogeninę lygtį Ly(x) = g(x), turime:

$$Y(x) \frac{dC(x)}{dx} + C(x) \frac{dY(x)}{dx} + C(x)b(x)Y(x) = g(x),$$
$$Y(x) \frac{dC(x)}{dx} + C(x)LY(x) = g(x),$$
$$Y(x) \frac{dC(x)}{dx} = g(x).$$

Lagranžo metodas (tęsinys)

Pasirenkame pirmykštę funkciją $Y(x) = \exp\left(-\int b(x) dx\right)$ ir sprendžiame $Y(x) \frac{dC(x)}{dx} = g(x)$: $C(x) = \int \frac{g(x)}{Y(x)} dx$.

Pasirinkę pirmykštę funkciją
$$\widehat{C}(x) = \int \frac{g(x)}{Y(x)} dx$$
, turime $C(x) = \widehat{C}(x) + \widetilde{C}$.

Nagrinėjamos lygties Ly(x) = g(x) bendrasis sprendinys yra

$$y(x) = C(x)Y(x)$$

= $\widehat{C}(x)Y(x) + \widetilde{C}Y(x)$.

Laisvoji konstanta yra $\widetilde{\mathcal{C}}$. Ne visai formaliai galime užrašyti:

$$y(x) = \exp\left(-\int b(x) dx\right) \left(\int g(x) \exp\left(\int b(x) dx\right) dx + \widetilde{C}\right),$$

kur integralai representuoja konkrečias pirmykštes funkcijas, ir abu integralai $\int b(x) dx$ sutampa kaip pirmykštės funkcijos.

Nehomogeninis pavyzdys

Spręskime diferencialinę lygtį $\frac{dy(x)}{dx} - y(x)\cos x = -e^{\sin x}$.

Jau sprendėme atitinkamą homogeninę lygtį $\frac{dy(x)}{dx}-y(x)\cos x=0$. Jos bendrąsis sprendinys yra $Y(x)=C\,\mathrm{e}^{\sin x}$.

leškome sprendinio $y(x) = C(x) e^{\sin x}$.

Gauname

$$C'(x) e^{\sin x} + C(x) e^{\sin x} \cos x - C(x) e^{\sin x} \cos x = -e^{\sin x},$$

$$C'(x) e^{\sin x} + C(x) \left(e^{\sin x} \cos x - e^{\sin x} \cos x\right) = -e^{\sin x},$$

$$C'(x) e^{\sin x} = -e^{\sin x},$$

$$C'(x) = -1,$$

$$C(x) = -x + \widetilde{C}.$$

Bendrasis nehomogeninės lygties sprendinys yra $y(x) = (\widetilde{C} - x) e^{\sin x}$.

* Nehomogeninės lygties Koši uždavinys

Nehomogeninės lygties $\frac{dy(x)}{dx} + b(x)y(x) = g(x)$ Koši uždavinį $y(x_0) = y_0$ praktiškiausia yra spręsti randant tinkamą laisvąją konstantą bendrajame sprendinyje.

Yra ir bendra formulė su neapibrėžtiniais integralais Koši uždavinio sprendiniui:

$$y(x) = \exp\left(-\int_{x_0}^x b(t) dt\right) \left(y_0 + \int_{x_0}^x g(s) \exp\left(\int_{x_0}^s b(t) dt\right) ds\right).$$

Yra panašumas su neformalia bendrojo sprendinio išraiška dvejomis skairdrėmis anksčiau:

$$y(x) = \exp\left(-\int b(x) dx\right) \left(\int g(x) \exp\left(\int b(x) dx\right) dx + \widetilde{C}\right).$$

Uždaviniai

Raskite bendruosius sprendinius šioms lygtims:

1.
$$xy' = 2y + x^4$$
.

2.
$$y' = 2x(y + x^2)$$
.

3.
$$(2x+1)y'=2y+4x$$
.

4.
$$xy' = xy + e^x$$
.

$$5. \quad y' - x \cos x = \frac{y}{x}.$$

$$6. \quad y' + y \tan x = \frac{1}{\cos x}.$$

Išspręskite šiuos Koši uždavinius:

7.
$$\frac{dy(x)}{dx} + \cos(x)y(x) = \sin(2x), \quad y(0) = 0.$$

8.
$$\frac{dy(x)}{dx} = \tan(x)y(x) + 2\sin(x), \quad y(0) = -1.$$

9.
$$(1-x^2)\frac{dy(x)}{dx} - xy(x) = \sqrt{1-x^2}, \ y(\frac{3}{5}) = 2.$$

10. Nurodykite kokią nors atkarpą [a, b], kurioje egzistuoja sprendinys šiam Koši uždaviniui: $y' = x + e^y$, y(1) = 0.

Ketvirtos paskaitos uždavinių atsakymai

1.
$$(y-2x)^3 = C(y-x-1)^2$$
 ir $y(x) = x+1$.

2.
$$y(x) = x - 2 \pm \sqrt{C - 2x}$$
.

3.
$$y(x) = C - 2 \pm \sqrt{2Cx + C^2 - 6C}$$
 ir $y(x) = 1 - x$.

4.
$$(y-x+5)^5(x+2y-2)=C$$
.

5.
$$y+2=C\exp\left(-2+\arctan\frac{y+2}{x-3}\right)$$
.

6.
$$x^2 - 3x^3y^2 + y^4 = C$$
, arba $y(x) = \pm \sqrt{\frac{3}{2}}x^3 \pm \sqrt{\frac{9}{4}x^6 - x^3 + C}$.

7.
$$xe^{-y} = y^2 + C$$
.

8.
$$x + \frac{x^3}{y^2} + \frac{5}{y} = C$$
, arba $y(x) = \frac{5 \pm \sqrt{4Cx^3 - 4x^4 + 25}}{2(C - x)}$

9.
$$\ln \sqrt{x^2 + y^2} + \arctan \frac{y}{x} = C$$
.

10.
$$2x + \ln(x^2 + y^2) = C$$
.

Programavimo projektai

Tarpinio egzamino (spalio 30 d.) įskaitymui reikalausiu vienos iš šių programavimo užduočių įvykdymo. Programavimui bus skirta iki 25% tarpinio egzamino įvertinimo. Spalio 30 d. "teorinis" kontrolinis tad bus vertas 75% – 100% visų balų).

- Duotai pirmos eilės diferencialinei lygčiai su Koši pradine sąlyga, nubrėžti atitinkamo sprendinio grafiką, kartu su dar dviejų "sutrikdytų" sprendinių grafikais, kurių pradinė sąlyga skiriasi gan mažai.
- Dviejų pirmos eilės diferencialinių lygčių su ortogonaliais krypčių laukais (žr. antros paskaitos 9-ą skaidrę) integralinių kreivių braižymas.
- Duotai pirmos eilės diferencialinei lygčiai, informatyvus izoklinių, krypčio lauko vektorių (ir galimai kelių integralinių kreivių) braižymas.

Platesnis aprašymas: paskaitos metu ir Python'o notebook'e.