南京大学

《运筹学》

案例研究报告

储能系统充放电优化问题

目录

一,	背景	1
二、	模型建立	2
	2.1 基本的储能系统充放电模型	2
	2.2 时段细化的储能系统充放电模型	4
	2.3 考虑损耗的储能系统充放电模型	6
	2.4 考虑损耗的带惩罚项的储能系统充放电模型	8
三	算例分析	. 10
	3.1 算例 1	. 10
	3.2 算例 2	. 11
	3.3 算例 3	. 13
	3.4 算例 4	. 15
附身	录 1	. 17
附录	录 2	. 18
附录	₹ 3	. 22

一、背景

储能系统充放电优化问题

2021 年年初,京能集团建设的首个大型用户侧储能电站在乐多港万达广场 投用。低谷时充电,高峰时放电,这个"充电宝"每次充放电达 8000 度,可节 省一大笔电费。这就相当于电价低时充电,电价高时再放电。通过"峰谷套利", 能产生巨大的经济效益,为工商业用户降低用电成本。储能电站的经济效益还在 于,"充电宝"同时还解决了商业区里高峰负荷需要追加电力设施投资的问题, 相当于实现一部分电力增容。

而在能源互联网背景下,新能源将逐渐成为发电主体,储能是电力系统实现 高比例新能源发电消纳不可或缺的资源。同时,随着分布式发电技术的发展,微 电网得到了电力工业的广泛关注。储能系统是微网系统中的重要组成部分,它在 一定程度上可以平抑风电和光伏等清洁能源发电的随机性、波动性和间歇性,实 现对清洁能源发电曲线进行削峰填谷和调峰调频,同时也可有效维持电力系统运 行的稳定性。

总的来说,从整个电力系统的角度看,储能的应用场景可以分为发电侧储能、 输配电侧储能和用户侧储能三大场景,如下所示:

1. 发电侧储能

从发电侧的角度看,储能的需求终端是发电厂。由于不同的电力来源对电网的不同影响,以及负载端难预测导致的发电和用电的动态不匹配,发电侧对储能的需求场景类型较多,包括能量时移、容量机组、负荷跟踪、系统调频、备用容量、可再生能源并网等六类场景。

2. 输配电侧储能

储能在输配电侧的应用主要是缓解输配电阻塞、延缓输配电设备扩容及无功 支持三类,相对于发电侧的应用,输配电侧的应用类型少,同时从效果的角度看 更多是替代效应。

3. 用户侧储能

用电侧是电力使用的终端,用户是电力的消费者和使用者,发电及输配电侧的成本及收益以电价的形式表现出来,转化成用户的成本,因此电价的高低会影响用户的需求。应用场景主要有用户分时电价管理、容量费用管理、提高电能质量和提升供电可靠性。

本案例主要研究用户侧储能的应用场景。目前,我国普遍针对工商业用户实行分时电价政策,部分省份对居民也执行了分时电价。分时电价制度根据用户电力需求和电网在不同时段的实际负荷情况,将每天的时间划分为高峰、平段、低谷几个时段,对各时段分别制定不同的电价水平,充分发挥价格杠杆作用,引导电能的生产和消费,以鼓励用户和发电企业在供、用电需求上削峰填谷,从而有效挖掘低谷用电市场,缓解高峰用电紧张局面,提高电力资源的利用效率。

分时电价的大力推行为储能套利提供可观空间,通过降低夜间低谷期电价,提高白天高峰期电价,来鼓励用户在低谷期间用电。利用分时电价的可套利性和储能系统的充放电性质,我们建立储能系统的充放电模型,使用户侧的用电成本最小化。

二、模型建立

2.1 基本的储能系统充放电模型

2.1.1 问题分析

研究一天的用电情况,将一天分为三个时段,分别对应着低谷、高峰和平段 电价,高峰电价最高,低谷电价最低。在电网的某一节点,对应用户的负荷主要

包括基础负荷和储能电池。已知三个时段基础负荷的用电量,储能电池的满电容量、初始荷电状态、终了荷电状态和最低荷电状态,求解储能电池在三个时段的充放电量,使得三个时段向电网的购电成本达到最低。且储能系统的损耗及单次充放电的成本忽略不计。

2.1.2 数学符号表示

符号	含义
i	i = 1,2,3分别表示低谷、高峰和平段三个时段
c_i	时段i的电价
E_i^c	时段i储能电池的充放电量
E_i^l	时段i基础负荷的用电量
E_N	储能电池的满电容量
SOC_0	储能电池初始荷电状态
SOC_N	储能电池终了荷电状态
SOC_{min}	储能电池最低荷电状态

表 1 模型一的数学符号

2.1.3 建模结果和分析

该问题的优化目标为:最小化所有时段向电网购电的成本,每个时段的用电量包含基础负荷的用电量 E_i^l 和储能电池的充放电量 E_i^c 两部分。其中, E_i^c 为决策变量,取值为正表示充电,取值为负表示放电。模型一如下所示:

$$C = \min \sum_{i=1}^{3} c_i (E_i^l + E_i^c)$$

$$s.t. E_N \cdot SOC_{min} \le E_N \cdot SOC_0 + E_1^c \le E_N \tag{1}$$

$$E_N \cdot SOC_{min} \le E_N \cdot SOC_0 + E_1^c + E_2^c \le E_N \tag{2}$$

$$E_N \cdot SOC_0 + E_1^c + E_2^c + E_3^c = E_N \cdot SOC_N$$
 (3)

$$-E_N \le E_i^c \le E_N \ i = 1,2,3$$
 (4)

其中,约束(1)和(2)表示电池在经历一个和两个时段充放电后的电量要在电池的最低电量和满电电量之间,约束(3)表示电池在经历三个时段充放电后的电量要和终了的电量相等,约束(4)表示电池的充放电量不能超过电池的满电容量。

2.2 时段细化的储能系统充放电模型

2.2.1 问题分析

在实际生活中,充放电功率是在时刻变化的,将若干分钟为一个优化时段,使用时段内的平均充放电功率作为控制变量,这样能够更精准地跟踪负荷的变化。同时考虑网络节点上每个时段的基础负荷的平均功率和储能电池的充放电平均功率,以及相应的购电成本。优化目标仍然是使所有时段向电网的购电成本达到最低,但相较于最基本的充放电模型,时间段更加精细化,对于电池充放电的模拟更加精确。且暂不考虑储能系统的损耗。

2.2.2 数学符号表示

表 2 模型二的数学符号

符号	含义
i	第i个时段
n	时段总数
Δt	时段长度(以小时为单位)
c_i	时段i的电价
P_i^c	时段i储能电池的充放电平均功率
P_i^l	时段i基础负荷的平均功率

P_{max}^d	最大放电功率
P_{max}^c	最大充电功率
E_N	储能电池的满电容量
SOC_i	时段i结束储能电池的荷电状态
SOC_0	储能电池初始荷电状态
SOC_N	储能电池终了荷电状态
SOC_{min}	储能电池最低荷电状态

2.2.3 建模结果和分析

该问题的优化目标为:最小化所有时段向电网购电的成本,每个时段的用电量包含基础负荷的用电量 $P_i^l \cdot \Delta t$ 和储能电池的充放电量 $P_i^c \cdot \Delta t$ 两部分。电池的充放电平均功率 P_i^c 和时段i结束电池的荷电状态值 SOC_i 为决策变量,模型二如下所示:

$$C = \min \sum_{i=1}^{n} c_i (P_i^l + P_i^c) \Delta t$$

s.t.
$$P_i^c \cdot \Delta t = E_N \cdot (SOC_i - SOC_{i-1}) \ i = 1, 2, \dots n$$
 (1)

$$SOC_n = SOC_N \tag{2}$$

$$SOC_{min} \le SOC_i \le 1 \quad i = 1, 2, \dots n \tag{3}$$

$$-P_{max}^d \le P_i^c \le P_{max}^c \quad i = 1, 2, \dots n \tag{4}$$

其中,约束(1)表示电池充放电量和时段荷电状态变化的关系,即某个时段电池充放电量和电池电量的变化量相等;约束(2)表示电池在经历所有时段充放电后的电量要和终了的电量相等;约束(3)表示电池的荷电状态的阈值,最大为1,表示满电电量;约束(4)表示电池的充放电功率不能超过充放电功率的阈值。

2.3 考虑损耗的储能系统充放电模型

2.3.1 问题分析

在实际中,还需要考虑储能充放电的损耗,充放电的损耗是和充放电功率的绝对值相关的。如果直接引入绝对值,问题将变为非线性的。可以通过引入两个辅助变量来处理绝对值问题,使得问题仍保持线性。优化目标仍然是使所有时段向电网的购电成本达到最低,但相较于最基本的充放电模型,时间段更加精细化,对于电池充放电的模拟更加精确,且考虑储能系统充放电过程的损耗。

2.3.2 数学符号表示

表 3 模型三的数学符号

符号	含义
i	第i个时段
n	时段总数
Δt	时段长度(以小时为单位)
c_i	时段i的电价
P_i^c	时段i储能电池的充放电平均功率
$ P_i^c $	时段i储能电池的充放电平均功率的绝对值
P_i^{cc}	时段i储能电池的充电平均功率
$m{P}_i^{dc}$	时段i储能电池的放电平均功率
pl	时段i基础负荷的平均功率
P_i^l	可权还面灰何的「初勿干
P_i^d P_{max}^d	最大放电功率

E_N	储能电池的满电容量
SOC_i	时段i结束储能电池的荷电状态
SOC_0	储能电池初始荷电状态
SOC_N	储能电池终了荷电状态
SOC_{min}	储能电池最低荷电状态
loss	电池充放电的损耗率

2.3.3 建模结果和分析

该问题的优化目标为:最小化所有时段向电网购电的成本。时段i储能电池的充电平均功率 P_i^{cc} 、放电平均功率 P_i^{dc} 和时段i结束电池的荷电状态值 SOC_i 为决策变量,而电池的充放电平均功率 P_i^{c} 及其绝对值 $|P_i^{c}|$ 为过程变量,模型三如下所示:

$$C = \min \sum_{i=1}^{n} c_i (P_i^l + P_i^c) \Delta t$$

s.t.
$$P_i^c \cdot \Delta t - |P_i^c| \cdot \Delta t \cdot loss = E_N \cdot (SOC_i - SOC_{i-1}) \ i = 1, 2, \dots n$$
 (1)

$$SOC_n = SOC_N \tag{2}$$

$$SOC_{min} \le SOC_i \le 1 \ i = 1, 2, \cdots n$$
 (3)

$$P_i^c = P_i^{cc} - P_i^{dc} \quad i = 1, 2, \dots n \tag{4}$$

$$|P_i^c| = P_i^{cc} + P_i^{dc} \ i = 1, 2, \dots n$$
 (5)

$$0 \le P_i^{cc} \le P_{max}^c \quad i = 1, 2, \dots n \tag{6}$$

$$0 \le P_i^{dc} \le P_{max}^d \quad i = 1, 2, \cdots n \tag{7}$$

其中,约束(1)表示电池充放电量和时段荷电状态变化的关系,即某个时段电池充放电量减去充放电过程中损耗的电量等于电池电量的变化量,而损耗是和充放电平均功率的绝对值相关的;约束(2)表示电池在经历所有时段充放电后的电量要和终了的电量相等;约束(3)表示电池的荷电状态的阈值,最大为1,表示满电电量。为了使 $|P_i^c|$ 线性化,考虑分开充放电功率的方向,引入辅助变量充电平均功率 P_i^{cc} 和放电平均功率 P_i^{dc} , P_i^c 可以用约束(4)来表示,取值可正

可负,而 $|P_i^c|$ 可以用约束(5)来表示,取值为非负数;约束(6)和(7)表示电池的充电平均功率和放电平均功率不能超过各自的阈值。

2.4 考虑损耗的带惩罚项的储能系统充放电模型

2.4.1 问题分析

通常来说,电池充放电功率变化剧烈会加快电池的损耗。如何使电池充放电功率曲线更平坦一些?一种方法是引入充放电功率的平方作为罚函数,但这又引入了非线性。另一种方法是引入两个优化时段内充放电功率变化量的 L1 范数作为罚函数,同时引入辅助变量消除绝对值带来的非线性。相较于考虑损耗的充放电模型,决策目标增加了一项惩罚项使电池充放电功率在连续的一段时间内变化幅度尽可能的小,其他考虑因素不变。

2.4.2 数学符号表示

表 4 模型四的数学符号

符号	含义
i	第i个时段
n	时段总数
Δt	时段长度(以小时为单位)
c_i	时段i的电价
P_i^c	时段i储能电池的充放电平均功率
$ P_i^c $	时段i储能电池的充放电平均功率的绝对值
P_i^{cc}	时段i储能电池的充电平均功率
P_i^{dc}	时段i储能电池的放电平均功率
P_i^l	时段i基础负荷的平均功率

P_{max}^d	最大放电功率
P_{max}^c	最大充电功率
E_N	储能电池的满电容量
SOC_i	时段i结束储能电池的荷电状态
SOC_0	储能电池初始荷电状态
SOC_N	储能电池终了荷电状态
SOC_{min}	储能电池最低荷电状态
loss	电池充放电的损耗率
u_i	惩罚项辅助变量
v_i	惩罚项辅助变量
p	惩罚因子

2.4.3 建模结果和分析

该问题的优化目标为:最小化所有时段向电网购电的成本和对于两个优化时段内充放电功率变化的惩罚,以该变化量的L1 范数作为罚函数。时段i储能电池的充电平均功率 P_i^{cc} 、放电平均功率 P_i^{dc} 、惩罚项辅助变量 u_i 、 Δv_i 和时段i结束电池的荷电状态值 SOC_i 为决策变量,而电池的充放电平均功率 P_i^c 及其绝对值 $|P_i^c|$ 为过程变量,模型四如下所示:

$$C = \min \sum_{i=1}^{n} c_i (P_i^l + P_i^c) \Delta t + p \sum_{i=1}^{n-1} (u_i + v_i)$$

s.t.
$$P_i^c \cdot \Delta t - |P_i^c| \cdot \Delta t \cdot loss = E_N \cdot (SOC_i - SOC_{i-1})$$
 $i = 1, 2, \dots n$ (1)

$$SOC_n = SOC_N \tag{2}$$

$$SOC_{min} \le SOC_i \le 1 \ i = 1, 2, \cdots n \tag{3}$$

$$P_i^c = P_i^{cc} - P_i^{dc} \quad i = 1, 2, \dots n$$
 (4)

$$|P_i^c| = P_i^{cc} + P_i^{dc} \quad i = 1, 2, \dots n$$
 (5)

$$0 \le P_i^{cc} \le P_{max}^c \quad i = 1, 2, \dots n \tag{6}$$

$$0 \le P_i^{dc} \le P_{max}^d \quad i = 1, 2, \dots n \tag{7}$$

$$u_i - v_i = P_{i+1}^c - P_i^c \quad i = 1, 2 \cdots n - 1$$
 (8)

$$u_i \ge 0 \quad i = 1, 2, \dots n - 1 \tag{9}$$

$$v_i \ge 0 \ i = 1, 2, \dots n - 1$$
 (10)

其中,约束(1)表示电池充放电量和时段荷电状态变化的关系,即某个时段电池充放电量减去充放电过程中损耗的电量等于电池电量的变化量,而损耗是和充放电平均功率的绝对值相关的;约束(2)表示电池在经历所有时段充放电后的电量要和终了的电量相等;约束(3)表示电池的荷电状态的阈值,最大为1,表示满电电量。为了使 $|P_i^c|$ 线性化,引入辅助变量充电平均功率 P_i^{cc} 和放电平均功率 P_i^{dc} , P_i^c 可以用约束(4)来表示,取值可正可负,而 $|P_i^c|$ 可以用约束(5)来表示,取值为非负数;约束(6)和(7)表示电池的充电平均功率和放电平均功率不能超过各自的阈值。类似的,为了使两个优化时段内充放电功率变化量的绝对值线性化,引入两个辅助变量 u_i 、 v_i ,如约束(8-10)所示。

三 算例分析

3.1 算例 1

3.1.1 算例描述

研究一天的用电情况,将一天分为三个时段,分别对应着低谷、高峰和平段电价,低谷电价为 0.3 元/千瓦时,高峰电价为 1.5 元/千瓦时,平段电价为 0.6 元/千瓦时。已知三个时段基础负荷的用电量分别为 200 千瓦时、900 千瓦时和 60 千瓦时,储能电池的满电容量为 500 千瓦时,初始荷电状态为 0.2,经历三个时段终了荷电状态仍然为 0.2,且在任意时段的荷电状态不得低于 0.1。我们的目标是通过储能电池的充放电,使得三个时段向电网的购电成本达到最低。

3.1.2 建立模型

根据以上的条件,得到的模型如下:

$$C = min \ 0.3(200 + E_1^c) + 1.5(900 + E_2^c) + 0.6(60 + E_3^c)$$

$$s.t. 50 \le 100 + E_1^c \le 500 (1)$$

$$50 \le 100 + E_1^c + E_2^c \le 500 \tag{2}$$

$$100 + E_1^c + E_2^c + E_3^c = 100 (3)$$

$$-500 \le E_i^c \le 500 \ i = 1,2,3 \tag{4}$$

显然,模型中一共有 3 个变量,约束(4)中包含三个约束条件,一共包含 6 个约束条件,求解的变量和约束条件比较少,我们可以用 python 编程来求解这个线性规划模型。

3.1.3 求解—python

我们在 python 上导入 cvxpy 模块,使用该模块可以采用统一的建模语言建立和求解凸优化模型,适合求解本算例的线性规划问题,具体代码见附录 3(一)。模型的求解思路如下:

- 1) 导入模块和数据;
- 2) 分别表示模型中的目标函数还有约束条件;
- 3) 求解模型。

模型最后得出的结果如下: 400,-450,50。即低谷充电 400 千瓦时,高峰放电 450 千瓦时和平段充电 50 千瓦时,电池终了荷电状态和初始时一样。

3.2 算例 2

3.2.1 算例描述

在算例 1 中我们只考虑三个时段的充放电,这里将时段进一步细化,考虑一天的充放电情况,一个时段为 5 分钟($\frac{1}{12}$ 小时),则一天有 288 个时段。一天中电

价依旧只分三个时段:低谷、高峰和平段,电价分别为 0.3 元/千瓦时、1.1 元/千瓦时和 0.7 元/千瓦时。低谷时段是从 0:00-6:00,高峰时段是从 8:00-16:00,其他时间都是平段。

已知储能电池的满电容量为 300 千瓦时,初始荷电状态为 0.3,经历三个时段终了荷电状态仍然为 0.3,且在任意时段的荷电状态不得低于 0.2,最大充电功率和放电功率都是 80 千瓦。一天中 288 个时段的基础负荷通过随机数生成,具体数据见附录 1 表 5。在算例 2 我们的目标是通过储能电池的充放电,使得一天中所有时段向电网的购电成本达到最低。

3.2.2 建立模型

根据以上的条件,得到的模型如下:

$$C = \min \sum_{i=1}^{288} \frac{1}{12} c_i (P_i^l + P_i^c)$$

s.t.
$$\frac{1}{12}P_i^c = 300(SOC_i - SOC_{i-1})$$
 $i = 1, 2, \dots 288$ (1)

$$SOC_n = 0.3 \tag{2}$$

$$0.2 \le SOC_i \le 1 \ i = 1, 2, \cdots 288$$
 (3)

$$-80 \le P_i^c \le 80 \ i = 1, 2, \cdots 288 \tag{4}$$

显然,模型中一共有 576 个变量,约束(1)、(3)、(4)各包含 288 个约束条件,一共包含 865 个约束条件,求解的变量和约束条件都很多,我们可以用 python 求解这个线性规划模型。

3.2.3 求解—python

我们在 python 上导入 cvxpy 模块进行求解,具体代码见附录 3<u>(二)</u>,模型的求解思路与 3.1.3 相同。模型最后得出的电池每个时段的充放电功率见附录 2 <u>表 6</u>。画出电池充放电功率(缩小 299 倍)和电价随时间变化的曲线,如下图 1 所示:

图 1 算例 2 电池充放电功率和电价随时间变化的曲线

图 1 中,绿色曲线表示电池充放电功率,红色曲线表示电价。可以看出,电池主要在电价低谷和平段进行充电,高峰进行放电,与算例 1 得到的结果相似。但是,电池的充放电功率曲线波动幅度较大。

3.3 算例 3

3.3.1 算例描述

在实际中,需要考虑储能充放电的损耗,损耗率为0.08,其他参数设置同算例2。在算例3我们的目标是通过储能电池的充放电,使得一天中所有时段向电网的购电成本达到最低,且考虑储能系统充放电过程的损耗。

3.3.2 建立模型

根据以上的条件,得到的模型如下:

$$C = \min \sum_{i=1}^{288} \frac{1}{12} c_i (P_i^l + P_i^c)$$

s.t.
$$P_i^c \cdot \frac{1}{12} - |P_i^c| \cdot \frac{1}{12} \cdot 0.08 = 300 \cdot (SOC_i - SOC_{i-1}) \ i = 1, 2, \dots 288 \ (1)$$

$$SOC_n = 0.3 \tag{2}$$

$$0.2 \le SOC_i \le 1 \ i = 1, 2, \dots 288$$
 (3)

$$P_i^c = P_i^{cc} - P_i^{dc} \quad i = 1, 2, \cdots 288 \tag{4}$$

$$|P_i^c| = P_i^{cc} + P_i^{dc} \ i = 1, 2, \dots 288$$
 (5)

$$0 \le P_i^{cc} \le 80 \ i = 1, 2, \cdots 288 \tag{6}$$

$$0 \le P_i^{dc} \le 80 \ i = 1, 2, \dots 288 \tag{7}$$

显然,模型中一共有 1440 个变量,除约束(2)外其他约束各包含 288 个约束条件,一共包含 1729 个约束条件,求解的变量和约束条件都很多,我们可以用 python 求解这个线性规划模型。

3.3.3 求解—python

我们在 python 上导入 cvxpy 模块进行求解,具体代码见附录 3<u>(三)</u>,模型的求解思路与 3.1.3 相同。模型最后得出的电池每个时段的充放电功率见附录 2 <u>表 7</u>。画出电池充放电功率(缩小 299 倍)和电价随时间变化的曲线,如下图 2 所示:

图 2 算例 3 电池充放电功率和电价随时间变化的曲线

可以看出,电池主要在电价低谷和平段进行充电,高峰进行放电,与算例 1 得到的结果相似。相较于图 1,充放电功率曲线更加平缓。

3.4 算例 4

3.4.1 算例描述

为了进一步减小电池充放电功率的变化幅度,引入两个优化时段内充放电功率变化量的 L1 范数作为罚函数,惩罚因子设置为10⁻⁵,其他参数设置同算例 2。在算例 4,我们在算例 3 的基础上目标增加了一项惩罚项,使电池充放电功率在连续的一段时间内变化幅度尽可能的小,其他考虑因素不变。

3.4.2 建立模型

根据以上的条件,得到的模型如下:

$$C = \min \sum_{i=1}^{288} \frac{1}{12} c_i (P_i^l + P_i^c) + 10^{-5} \sum_{i=1}^{287} (u_i + v_i)$$

s.t.
$$P_i^c \cdot \frac{1}{12} - |P_i^c| \cdot \frac{1}{12} \cdot 0.08 = 300 \cdot (SOC_i - SOC_{i-1}) \ i = 1, 2, \dots 288 \ (1)$$

$$SOC_n = 0.3 \tag{2}$$

$$0.2 \le SOC_i \le 1 \ i = 1, 2, \dots 288$$
 (3)

$$P_i^c = P_i^{cc} - P_i^{dc} \quad i = 1, 2, \dots 288 \tag{4}$$

$$|P_i^c| = P_i^{cc} + P_i^{dc} \ i = 1, 2, \dots 288$$
 (5)

$$0 \le P_i^{cc} \le 80 \ i = 1, 2, \dots 288 \tag{6}$$

$$0 \le P_i^{dc} \le 80 \ i = 1, 2, \cdots 288 \tag{7}$$

$$u_i - v_i = P_{i+1}^c - P_i^c \quad i = 1, 2 \cdots 287$$
 (8)

$$u_i \ge 0 \ i = 1, 2, \dots 287$$
 (9)

$$v_i \ge 0 \ i = 1, 2, \dots 287$$
 (10)

显然,模型中一共有 2014 个变量,约束 (1-7)除(2)外各包含 288 个约束条件,约束 (8-10)各包含 287 个约束条件,一共包含 2590 个约束条件,求解的变量和约束条件都很多,我们可以用 python 求解这个线性规划模型。

3.4.3 求解—python

我们在 python 上导入 cvxpy 模块进行求解,具体代码见附录 3<u>(四)</u>,模型的求解思路与 3.1.3 相同。模型最后得出的电池每个时段的充放电功率见附录 2 <u>表 8</u>。画出电池充放电功率(缩小 299 倍)和电价随时间变化的曲线,如下图 3 所示:

图 3 算例 4 电池充放电功率和电价随时间变化的曲线

可以看出,电池主要在电价低谷和平段进行充电,高峰进行放电,与算例 1 得到的结果相似。相较于图 1 和图 2,充放电功率曲线更加平缓,在一段时间内平稳,可以明显看出和电价曲线平行,电池充放电规律更加明显:依次进行充电-放电-充电。

附录 1

表 5 一天中 288 个时段的基础负荷数据

 下标	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
数值	19750	21550	2050	13250	26150	24850	20750	15550	24450	18350	11150	25850	7150	14450	7150	4850	12850	27250	7550	15850
下标	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
数值	5050	3750	16950	24150	28650	5150	18150	22250	16150	10450	28250	24450	22650	26650	13350	3150	28050	750	4750	20450
下标	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
数值	50	25250	17050	12450	16650	3250	9750	11350	12250	7250	27850	22950	4650	4150	16350	26050	25050	5550	15450	28250
下标	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
数值	14950	6350	28050	17050	27650	10450	28050	14750	22750	4650	19750	16250	12350	14850	9450	9650	9550	1650	13350	24350
下标	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
数值	3550	4550	6650	7650	1950	4150	27650	20050	26850	14150	26750	12050	11050	21450	14050	23050	25250	18250	4250	16650
下标	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
数值	5950	24950	17150	9750	12450	850	13850	5950	11250	19050	8750	17050	21850	3150	5150	7450	11250	2350	27350	3750
下标	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
数值	1350	6350	9650	6150	20050	4650	18950	5950	1850	1150	9950	9450	6350	24550	10750	3150	1150	27850	21750	5150
下标	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
数值	13350	3550	11350	3650	15450	17950	22350	9250	3150	25750	23950	2050	5150	20050	10250	13350	18350	24050	8650	10450
下标	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
数值	2950	8150	8250	17550	27150	12850	6050	22650	8950	650	24150	20950	26050	15950	18250	19850	12850	7850	28750	650
下标	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
数值	23450	4050	17150	2350	27850	14350	6950	12250	24650	18050	14750	18350	6750	15850	19850	21250	4150	50	9850	17150
下标	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220

数值	8150	12250	11450	22950	19350	21250	1650	20550	21450	2350	8450	22850	3250	13250	8050	22850	27050	24950	28750	50
下标	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
数值	1950	25350	16650	15950	23950	2550	21250	9650	28050	4250	6650	750	20550	21350	16150	150	10950	750	150	27050
下标	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
数值	5050	9750	6050	10150	15450	14350	9350	5150	24350	20350	4150	1150	14050	23150	5950	13150	6850	26650	17750	5850
下标	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
数值	7950	14250	950	2150	2050	10550	13250	28550	16150	18750	2150	25350	23450	22250	19050	27550	9150	10650	19250	14950
下标	281	282	283	284	285	286	287	288												
数值	450	7050	7750	13850	17050	17250	18850	4750												

附录 2

表 6 算例 2 电池每个时段的充放电功率数据

下标	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
数值	14.08	26.21	23.61	20.87	18.27	16.11	14.39	13.03	11.96	11.11	10.44	9.91	9.50	9.20	8.99	8.87	8.83	8.87	8.99	9.20
下标	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
数值	9.49	9.87	10.33	10.89	11.54	12.28	13.12	14.06	15.09	16.22	17.45	18.78	20.23	21.78	23.47	25.32	27.34	29.56	32.01	34.72
下标	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
数值	37.69	40.92	44.41	48.13	52.03	56.06	60.12	64.11	67.88	71.26	74.07	76.09	77.14	77.04	75.70	73.15	69.56	65.25	60.71	56.49
下标	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
数值	53.11	50.98	50.26	50.88	52.59	55.04	57.90	60.93	64.10	67.71	72.69	-72.73	-65.00	-58.97	-53.81	-48.97	-44.14	-39.12	-33.70	-27.70
下标	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
数值	-20.87	-13.07	-4.41	4.59	13.21	20.96	27.75	33.72	39.10	44.10	48.91	53.73	58.88	64.91	72.63	-72.68	-67.71	-64.07	-60.86	-57.79
下标	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
数值	-54.91	-52.44	-50.74	-50.16	-50.96	-53.20	-56.70	-61.04	-65.68	-70.04	-73.66	-76.18	-77.46	-77.48	-76.35	-74.23	-71.34	-67.87	-64.04	-59.99

下标	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
数值	-55.89	-51.83	-47.90	-44.16	-40.64	-37.37	-34.36	-31.60	-29.09	-26.80	-24.70	-22.78	-21.00	-19.34	-17.79	-16.34	-14.99	-13.73	-12.55	-11.46
下标	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
数值	-10.45	-9.52	-8.67	-7.90	-7.20	-6.57	-6.00	-5.49	-5.04	-4.65	-4.30	-4.01	-3.76	-3.55	-3.39	-3.27	-3.18	-3.14	-3.13	-3.16
下标	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
数值	-3.23	-3.35	-3.50	-3.70	-3.95	-4.25	-4.61	-5.03	-5.52	-6.08	-6.73	-7.47	-8.32	-9.29	-10.40	-11.66	-13.10	-14.73	-16.57	-18.66
下标	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
数值	-21.00	-23.63	-26.56	-29.80	-33.36	-37.25	-41.49	-46.12	-51.23	-57.03	-64.08	64.00	56.95	51.15	46.04	41.41	37.17	33.28	29.72	26.48
下标	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
数值	23.54	20.90	18.54	16.43	14.57	12.91	11.45	10.16	9.01	8.00	7.11	6.32	5.62	5.00	4.45	3.96	3.53	3.14	2.80	2.49
下标	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
数值	2.22	1.97	1.75	1.56	1.38	1.22	1.08	0.95	0.84	0.73	0.63	0.55	0.47	0.39	0.32	0.26	0.19	0.14	0.08	0.02
下标	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
数值	-0.03	-0.09	-0.15	-0.20	-0.27	-0.33	-0.40	-0.47	-0.55	-0.63	-0.72	-0.82	-0.93	-1.05	-1.18	-1.32	-1.48	-1.65	-1.84	-2.05
下标	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
数值	-2.28	-2.53	-2.80	-3.09	-3.42	-3.77	-4.15	-4.56	-5.00	-5.48	-6.00	-6.56	-7.17	-7.84	-8.58	-9.42	-10.39	-11.52	-12.88	-14.54
下标	281	282	283	284	285	286	287	288												
数值	-16.60	-19.17	-22.35	-26.17	-30.34	-34.16	20.71	43.31						•		•				

表 7 算例 3 电池每个时段的充放电功率数据

下标	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
数值	20.66	20.55	20.40	20.24	20.11	20.01	19.95	19.92	19.93	19.98	20.06	20.17	20.32	20.51	20.73	20.98	21.26	21.59	21.95	22.34
下标	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
数值	22.78	23.26	23.79	24.36	24.98	25.65	26.36	27.12	27.92	28.76	29.61	30.49	31.36	32.22	33.06	33.86	34.62	35.33	36.00	36.64
下标	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

运筹学案例——储能系统充放电优化问题

数值	37.26	37.89	38.56	39.27	40.07	40.95	41.93	43.05	44.42	46.20	48.57	51.50	54.75	57.98	60.91	63.37	65.29	66.66	67.52	67.91
下标	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
数值	67.93	67.63	67.13	66.51	65.87	65.30	64.86	64.61	64.58	64.92	65.86	-4.69E-10	-5.70E-10	-5.19E-10	-4.60E-10	-3.87E-10	-3.11E-10	-2.38E-10	-1.69E-10	-1.04E-10
下标	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
数值	-4.05E-11	2.09E-11	8.14E-11	1.42E-10	2.02E-10	2.64E-10	3.26E-10	3.91E-10	4.57E-10	5.23E-10	5.84E-10	6.28E-10	6.39E-10	6.00E-10	7.81E-10	-66.08	-65.20	-65.59	-66.19	-66.86
下标	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
数值	-67.49	-67.96	-68.12	-67.89	-67.20	-66.00	-64.30	-62.12	-59.51	-56.57	-53.40	-50.15	-46.99	-44.06	-41.48	-39.29	-37.48	-36.00	-34.75	-33.66
下标	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
数值	-32.66	-31.68	-30.70	-29.70	-28.68	-27.66	-26.65	-25.66	-24.70	-23.78	-22.92	-22.11	-21.35	-20.65	-19.99	-19.39	-18.84	-18.33	-17.85	-17.42
下标	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
数值	-17.02	-16.64	-16.30	-15.98	-15.68	-15.40	-15.14	-14.90	-14.67	-14.46	-14.26	-14.08	-13.91	-13.75	-13.60	-13.46	-13.33	-13.21	-13.10	-13.00
下标	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
数值	-12.91	-12.83	-12.75	-12.69	-12.64	-12.60	-12.56	-12.54	-12.53	-12.53	-12.54	-12.57	-12.61	-12.66	-12.74	-12.84	-12.96	-13.11	-13.30	-13.53
下标	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
数值	-13.82	-14.18	-14.64	-15.23	-16.03	-17.14	-18.78	-21.39	-25.99	-34.89	-52.25	29.11	18.77	13.53	10.71	9.10	8.09	7.39	6.87	6.46
下标	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
数值	6.14	5.86	5.63	5.42	5.24	5.09	4.94	4.81	4.69	4.58	4.48	4.38	4.30	4.21	4.14	4.06	3.99	3.93	3.86	3.80
下标	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
数值	3.75	3.69	3.64	3.59	3.55	3.50	3.46	3.41	3.37	3.34	3.30	3.26	3.23	3.19	3.16	3.13	3.10	3.07	3.04	3.01
下标	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
数值	2.99	2.96	2.93	2.91	2.89	2.86	2.84	2.82	2.80	2.78	2.76	2.74	2.72	2.70	2.68	2.66	2.65	2.63	2.61	2.60
下标	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
数值	2.58	2.56	2.55	2.53	2.52	2.50	2.49	2.47	2.46	2.44	2.43	2.41	2.40	2.38	2.36	2.34	2.32	2.30	2.28	2.25
下标	281	282	283	284	285	286	287	288												
数值	2.22	2.19	2.16	2.12	2.09	2.05	2.01	1.99												

表 8 算例 4 电池每个时段的充放电功率数据

下标	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
数值	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58
下标	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
数值	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58
下标	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
数值	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58	38.58
下标	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
数值	38.58	38.58	38.58	38.58	38.58	38.57	38.57	38.57	38.57	38.57	38.56	-5.16E-07	-2.33E-07	-1.60E-07	-1.17E-07	-8.86E-08	-6.69E-08	-4.88E-08	-3.46E-08	-2.25E-08
下标	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
数值	-1.16E-08	-1.85E-09	7.44E-09	1.70E-08	2.66E-08	3.71E-08	4.97E-08	6.39E-08	8.09E-08	1.01E-07	1.25E-07	1.56E-07	2.02E-07	2.84E-07	6.41E-07	-27.77	-27.77	-27.77	-27.77	-27.78
下标	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
数值	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78
下标	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
数值	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78
下标	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
数值	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78
下标	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
数值	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78
下标	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
数值	-27.78	-27.78	-27.78	-27.78	-27.78	-27.78	-27.77	-27.77	-27.77	-27.77	-27.77	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02
下标	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
数值	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03
下标	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
数值	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.03	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04
下标	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
数值	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04

下标	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
数值	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04
下标	281	282	283	284	285	286	287	288												_
数值	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04												

附录 3

(一) 算例 1 python 代码

import cvxpy as cp

import numpy as np

三个时段的电价(元/kWh)

n = 3

c = np.array([0.3, 1.5, 0.6])

三个时段的用电量(kWh)

El = np.array([200, 900, 60])

电池容量(kWh)

EN = 500

初始 SOC

SOC0 = 0.2

终了 SOC

SOCN = 0.2

最低 SOC

SOCmin = 0.1

```
# 决策变量, 电池在三个时段的充电量, 正表示充电, 负表示放电
Ec = cp.Variable(n)
# 目标函数
obj = cp.Minimize(c @ (Ec + El))
# 约束条件
cons1 = [EN * SOCmin \le EN * SOC0 + Ec[0], EN * SOC0 + Ec[0] \le EN,
          EN * SOCmin \le EN * SOC0 + Ec[0] + Ec[1], EN * SOC0 + Ec[0] + Ec[1] \le EN,
          EN * SOC0 + Ec[0] + Ec[1] + Ec[2] == EN * SOCN]
cons2 = [Ec[i] \le EN \text{ for } i \text{ in } range(n)]
cons3 = [Ec[i] \ge -EN \text{ for } i \text{ in } range(n)]
# 模型
prob1 = cp.Problem(obj, cons1 + cons2 + cons3)
prob1.solve()
# 展示结果
print("status1:", prob1.status)
print("optimal value1", prob1.value)
print("optimal Ec", Ec.value)
 (二)算例 2 python 代码
import cvxpy as cp
import numpy as np
import random
import matplotlib.pyplot as plt
```

```
# 时段设置
MINS1HR = 60
HRS1DAY = 24
MINS1DAY = MINS1HR * HRS1DAY
slice_minutes = 5
t = slice\_minutes / MINS1HR
n = int(MINS1DAY / slice_minutes)
# 电价设置
flat period price = 0.7 # Yuan
peak period price = 1.1 # Yuan
valley_period_price = 0.3 # Yuan
c = np.empty(n)
for i in range(n):
    c[i] = flat period price
c[0: int(n / 4 - 1)] = valley_period_price
c[int(n/3-1): int(2*n/3-1)] = peak_period_price
# 负荷设置
random.seed(0)
```

```
mean load power = 100
Pl = np.empty(n)
for i in range(n):
    Pl[i] = (random.randrange(n) + 0.5) * mean load power
print(Pl)
# 电池信息
EN = 300 \# kWh
Pd_max = 80 \# kW
Pc max = 80 \# kW
SOCmin = 0.2
SOC0 = 0.3
SOCN = 0.3
# 决策变量
Pc = cp.Variable(n) # 电池在三个时段的充电量,正表示充电,负表示放电
SOC = cp. Variable(n + 1) # 时段 i 结束电池的 SOC
# 目标函数
obj = cp.Minimize((c @ (Pc + Pl)) * t)
# 约束条件
```

```
cons1 = [Pc[i] * t == EN * (SOC[i+1] - SOC[i])  for i in range(n)]
cons2 = [SOC[i] \le 1 \text{ for } i \text{ in } range(n+1)]
cons3 = [SOC[i] \ge SOCmin for i in range(n + 1)]
cons4 = [Pc[i] \le Pc max for i in range(n)]
cons5 = [Pc[i] \ge -Pd_max \text{ for } i \text{ in } range(n)]
cons6 = [SOC[0] == SOC0, SOC[n] == SOCN]
# 模型
prob2 = cp.Problem(obj, cons1 + cons2 + cons3 + cons4 + cons5 + cons6)
prob2.solve()
# 展示结果
print("status2:", prob2.status)
print("optimal value2", prob2.value)
print("optimal Pc", Pc.value)
N = np.empty(n)
for i in range(n):
     N[i] = i
plt.plot(N, Pc.value / EN, color='green', label='energy')
plt.plot(N, c, color='red', label='price')
```

```
plt.legend()
plt.show()
 (三)算例 3 python 代码
import cvxpy as cp
import numpy as np
import random
import matplotlib.pyplot as plt
# 时段设置
MINS1HR = 60
HRS1DAY = 24
MINS1DAY = MINS1HR * HRS1DAY
slice minutes = 5
t = slice\_minutes / MINS1HR
n = int(MINS1DAY / slice_minutes)
# 电价设置
flat_period_price = 0.7 # Yuan
peak period price = 1.1 # Yuan
```

```
valley period price = 0.3 # Yuan
c = np.empty(n)
for i in range(n):
    c[i] = flat_period_price
c[0: int(n / 4 - 1)] = valley_period_price
c[int(n/3-1): int(2*n/3-1)] = peak period price
# 负荷设置
random.seed(0)
mean load power = 100
Pl = np.empty(n)
for i in range(n):
    Pl[i] = (random.randrange(n) + 0.5) * mean\_load\_power
# 电池信息
EN = 300 \# kWh
Pd max = 80 \# kW
Pc_{max} = 80 \# kW
SOCmin = 0.2
SOC0 = 0.3
```

```
SOCN = 0.3
loss = 0.08
# 决策变量
Pc = cp.Variable(n) # 电池在三个时段的充电量,正表示充电,负表示放电
Pc abs = cp.Variable(n)
Pcc = cp.Variable(n)
Pdc = cp.Variable(n)
SOC = cp. Variable(n + 1) # 时段 i 结束电池的 SOC
# 目标函数
obj = cp.Minimize((c @ (Pc + Pl)) * t)
# 约束条件
cons1 = [Pc[i] * t - Pc_abs[i] * t * loss == EN * (SOC[i+1] - SOC[i])  for i in range(n)]
cons2 = [SOC[i] \le 1 \text{ for } i \text{ in } range(n+1)]
cons3 = [SOC[i] \ge SOCmin for i in range(n + 1)]
cons4 = [Pc[i] == Pcc[i] - Pdc[i] for i in range(n)]
cons5 = [Pc_abs[i] == Pcc[i] + Pdc[i]  for i in range(n)]
cons6 = [Pcc[i] \le Pc_max \text{ for } i \text{ in } range(n)]
cons7 = [Pcc[i] \ge 0 \text{ for } i \text{ in } range(n)]
```

```
cons8 = [Pdc[i] \le Pd max for i in range(n)]
cons9 = [Pdc[i] \ge 0 \text{ for } i \text{ in } range(n)]
cons10 = [SOC[0] == SOC0, SOC[n] == SOCN]
# 模型
prob3 = cp.Problem(obj, cons1 + cons2 + cons3 + cons4 + cons5 + cons6 + cons7 + cons8 + cons9 + cons10)
prob3.solve()
# 展示结果
print("status3:", prob3.status)
print("optimal value3", prob3.value)
print("optimal Pc", Pc.value)
N = np.empty(n)
for i in range(n):
     N[i] = i
plt.plot(N, Pc.value / EN, color='green', label='energy')
plt.plot(N, c, color='red', label='price')
plt.legend()
plt.show()
```

(四)算例 4 python 代码 import cvxpy as cp import numpy as np import random import matplotlib.pyplot as plt # 时段设置 MINS1HR = 60HRS1DAY = 24MINS1DAY = MINS1HR * HRS1DAY slice minutes = 5 $t = slice_minutes / MINS1HR$ n = int(MINS1DAY / slice_minutes) # 电价设置 flat period price = 0.7 # Yuan peak_period_price = 1.1 # Yuan valley_period_price = 0.3 # Yuan c = np.empty(n)for i in range(n):

```
c[i] = flat period price
c[0: int(n/4-1)] = valley_period_price
c[int(n/3-1): int(2*n/3-1)] = peak period price
# 负荷设置
random.seed(0)
mean load power = 100
Pl = np.empty(n)
for i in range(n):
    Pl[i] = (random.randrange(n) + 0.5) * mean load power
# 电池信息
EN = 300 \# kWh
Pd_{max} = 80 \# kW
Pc max = 80 \# kW
SOCmin = 0.2
SOC0 = 0.3
SOCN = 0.3
loss = 0.08
# 惩罚因子
```

```
p = 1.e-5
# 决策变量
Pc = cp.Variable(n) # 电池在三个时段的充电量,正表示充电,负表示放电
Pc abs = cp.Variable(n)
Pcc = cp.Variable(n)
Pdc = cp.Variable(n)
SOC = cp. Variable(n + 1) # 时段 i 结束电池的 SOC
u = cp.Variable(n - 1)
v = cp.Variable(n - 1)
# 目标函数
obj = cp.Minimize((c @ (Pc + Pl)) * t + p * cp.sum(u + v))
# 约束条件
cons1 = [Pc[i] * t - Pc abs[i] * t * loss == EN * (SOC[i+1] - SOC[i]) for i in range(n)]
cons2 = [SOC[i] \le 1 \text{ for } i \text{ in } range(n+1)]
cons3 = [SOC[i] \ge SOCmin for i in range(n + 1)]
cons4 = [Pc[i] == Pcc[i] - Pdc[i] for i in range(n)]
cons5 = [Pc_abs[i] == Pcc[i] + Pdc[i]  for i in range(n)]
cons6 = [Pcc[i] \le Pc max for i in range(n)]
```

```
cons7 = [Pcc[i] \ge 0 \text{ for } i \text{ in } range(n)]
cons8 = [Pdc[i] \le Pd max for i in range(n)]
cons9 = [Pdc[i] \ge 0 \text{ for } i \text{ in } range(n)]
cons10 = [u[i] - v[i] == Pc[i + 1] - Pc[i] for i in range(0, n - 1)]
cons11 = [u[i] \ge 0 \text{ for } i \text{ in } range(n - 1)]
cons12 = [v[i] >= 0 \text{ for } i \text{ in } range(n - 1)]
cons13 = [SOC[0] == SOC0, SOC[n] == SOCN]
# 模型
prob4 = cp.Problem(obj,
                          cons1 + cons2 + cons3 + cons4 + cons5 + cons6 + cons7 + cons8 + cons9 + cons10 + cons11 + cons12 + cons13
prob4.solve()
# 展示结果
print("status4:", prob4.status)
print("optimal value3", prob4.value)
print("optimal Pc", Pc.value)
N = np.empty(n)
for i in range(n):
     N[i] = i
```

```
plt.plot(N, Pc.value / EN, color='green', label='energy')
plt.plot(N, c, color='red', label='price')
plt.legend()
plt.show ( )
```