MIDTERM 1

Introduction to Computer Science COMP 250Wed. Oct. 5, 2016 Professor Michael Langer

Use the name that corr	responds to your McGill email:	FIRSTNAME.LASTNAM	E@mail.mcgill.ca
LAST NAME:			
FIRST NAME :			
McGILL ID:		GRADE:	/10
Instructions:			
• This is a closed b	ook exam. You are not allowed	ed a crib sheet.	
• No electronic dev	ices. You may use your cell ph	one as a clock only.	
• Turn over the exa	am when you are done (or leave	e, if you are close to a row of	exit.)
• Do not talk until	$\it all$ the exams are collected.		
1. (1 point)			
What is the follow	wing sum? The numbers are in	n base 8 and your answer sl	nould be in base 8.
	$ \begin{array}{r} (143)_8 \\ + $		

2. **(1 point)**

Convert the decimal number 85 to binary.

3. **(2 points)**

Add two missing instructions into the pseudocode below.

The method should insert an element e into position i in an array list a[].

You may assume that the index i is valid and that the array is not yet full.

Use arrows to indicate where your instructions go.

```
insert(i,e){
   for (j = size; j > i; j--){
    }
   size = size + 1
}
```

4. (2 points)

Add two missing pseudocode instructions below. The method should remove the last element of a doubly linked list. Unlike the doubly linked list in the lectures, here you should assume there are no dummy nodes.

Use arrows to indicate where your instructions go.

```
removeLast(){
   tmp = tail
   return tmp.element
}
```

5. (1 point)

Consider a stack. Give a sequence of exactly five push and pop operations such that:

- the elements are pushed onto the stack in the following order: A, B, C, D, E.
- elements are popped from the stack in the following order: B, D, E, C, A.

Note that your answer should have five pushes and five pops. You just need to determine the order.

6. (1 point)

Suppose a circular array of size 4 is used to implement a queue. Show the contents of the array after the following sequence of operations: enqueue(D), dequeue(), enqueue(E).

Assume the array state before these operations is [-, B, C, -] where B is the head. Note the array indices are [0, 1, 2, 3].

7. (2 points)

Use mathematical induction to prove that, for all $n \geq 4, ~~2^n \leq n!$.