Laboratory 03

Table of contents

1	Reply on the feedback of Lab 2	1
	1.1 Normally on Line 4, Section 3.2 Question 2, Page 5	1
	1.2 About the cats	
2	Main scenario story (Context)	2
3	Main scenario quests (Objectives)	2
4	Solutions	3
	4.1 A peek on the dataset	3
	4.2 Q1: Distribution of the pain scores	4
	4.2.1 Q1a: Describe the distribution	4
	4.2.2 Q1b: One-sample t test on this variable $\dots \dots \dots \dots$	6
	4.3 Q2: Mean of pain score tested	7
	4.4 \hat{Q} 3: 95% confidence interval for the mean pain score	9
	4.5 Q4: Summarizing the findings \dots	10
	4.6 Q5: 95% CI for Switch players' mean pain score	10

1 Reply on the feedback of Lab 2

Thanks for the feedback on my Lab 2 Assignment! Here's my response:

1.1 Normally on Line 4, Section 3.2 Question 2, Page 5

"normally" have higher median?

What I mean is that based on the sample and the box-plot, we can generally infer that "cat people tend to have a higher life satisfaction score" than fish owners.

Apologies for the earlier miswording and ambiguity in the interpretation.

1.2 About the cats

They usually come out in the early morning and late at night, as cats *normally* do. However, they are all around at various times. I even once witnessed the police and firefighters at our faculty, rescuing a young cat trapped on the roof!

2 Main scenario story (Context)

Figure 1: Warning - Health and Safety

There are reports of increases in injuries related to playing games consoles. These injuries were attributed mainly to muscle and tendon strains. A researcher collected data from 120 participants who played on a Nintendo Switch or watched others playing. The outcome was a pain score from 0 to 10, where 0 is no pain and 10 is severe pain. The data are in switch.sav.

3 Main scenario quests (Objectives)

- 1. Describe the distribution of the pain scores. Do you think the one-sample t test is suitable for this variable?
- 2. A pain score of 2 is considered as minor pain. Test whether the mean pain score is equal to 2 (two tailed, 5% level) and obtain the corresponding effect size.
- 3. Obtain a 95% confidence interval for the mean pain score.
- 4. Summary your findings from the previous questions in several sentences.

5. (Extra credit) Obtain a 95% confidence interval for the mean pain score of those who played on a Nintendo Switch. That is, exclude those who only watched others playing. (Hint: You learned how to exclude cases in Laboratory Assignment 1.)

4 Solutions

4.1 A peek on the dataset

As usual, I load modules that I may need in this laboratory assignment, then the dataset to my RAM and check attributes of the given dataset.

```
import pandas as pd
  # Load the dataset
  switch = pd.read_spss('./datasets/switch.sav')
  # Descriptions
print(f'Shape: \n', switch.shape, '\n')
g print(f'Columns: \n', switch.columns, '\n')
print(f'First 5 rows: \n', switch.head(5), '\n')
  print(f'Describe the column `injury`: \n', switch.describe(), '\n')
  Shape:
   (120, 5)
  Columns:
   Index(['id', 'athlete', 'stretch', 'switch', 'injury'], dtype='object')
  First 5 rows:
       id athlete
                       stretch
                                       switch injury
  O ytv Athlete Stretching Playing switch
                                                 2.0
    wel Athlete Stretching Playing switch
                                                 2.0
  2 qfs Athlete Stretching Playing switch
                                                 1.0
     oln Athlete Stretching Playing switch
                                                 2.0
  4 wxi Athlete Stretching Playing switch
                                                 0.0
  Describe the column `injury`:
              injury
  count 120.000000
         2.891667
  mean
  std
           1.994934
```

```
min 0.000000
25% 2.000000
50% 2.000000
75% 4.000000
max 10.000000
```

4.2 Q1: Distribution of the pain scores

4.2.1 Q1a: Describe the distribution

Answer

To describe the distribution of the pain scores, I use histogram with a kernel density estimation curve as shown in Figure 2 as well as measurements (mean, mode and median) reflect central tendency (see Table 1).

Table 1: Mean, mode and median

Measurement	Value
Mode	2.00
Mean	2.89
Median	2.00

According to the graph:

- 1. Most of the observations are clustered around the lower pain scores (between 1 and 4), we can say that the distribution of pain scores is positively skewed rather than a perfect normal distribution.
- 2. There is a noticeable peak at a score of 2, which means the most frequent score is around 2.
- 3. A long tail extends to the higher scores, indicating the frequency of pain scores gradually decreases as the scores increase.

Solution

```
injury = switch['injury']

# Calculate measurements of central tendency
injury_mean = injury.mean()
injury_mode = injury.mode()[0]
injury_median = injury.median()

# Tell the result
print(f'Central Tendency: \n')
```

```
print(f'Mean: ', injury_mean)
print(f'Mode: ', injury_mode)
print(f'Median: ', injury_median)
```

Central Tendency:

Mode: 2.0 Median: 2.0

Figure 2: Distribution of the pain scores

4.2.2 Q1b: One-sample t test on this variable

Answer

Recall back the the slides in the lecture notes:

One-sample t test requires that:

• Sample mean describes central tendency.

The sample mean is slightly higher than the mode and median (see Table 1 and Figure 2, red dashed lines for the median and mode, blue for the mean) since the data is right-skewed. However, they are fairly close to each other, so the sample mean can still represent central tendency.

• Scores in the sample are randomly selected from the population

According to the description, the data was "collected from 120 participants who played on a Nintendo Switch or watched others playing." For the sake of this assignment, I will assume that the participants were randomly selected from patients worldwide to fulfill the random sampling assumption.

ullet Either N is large or X follows a normal distribution

Given the right-skewed distribution as seen in Figure 2, the data may violate the assumption of normality required for the one-sample t-test. However, the CentralLimit Theorem suggests that if the sample size is large (typically N>30), the sampling distribution of the sample mean tends to approach normality. Therefore, despite the skewed distribution, the sample size (N=120) makes the one-sample t-test acceptable in this case.

Additionally, question 2 specifically asks for a one-sample t-test without requiring further preprocessing of data (e.g., a log transformation), which further supports the applicability of the one-sample t-test to this data. If the data were unusable, there would be no reason to include the following questions.

In conclusion, a one-sample t-test is suitable for this dataset.

4.3 Q2: Mean of pain score tested

Answer

1. p value

$$p \approx 3.11 \times 10^{-6}$$

At a 5% significance level ($\alpha=0.05$), p<0.001, we reject the null hypothesis. The mean pain score is significantly different from 2 (a minor pain) at the 5% level.

2. The Cohen's d value

$$d \approx 0.45$$

The Cohen's d value indicates a medium effect. This suggests that the difference between the mean pain score (M=2.89) and the a minor pain ($\mu_{hyp}=2$) is meaningful in practical terms.

Solution

Given N=120, $M\approx 2.89$, $SD\approx 1.99$, $\mu_{hyp}=2$, the standard error SE_{M} is:

$$SE_M = \frac{SD}{\sqrt{N}} \approx 0.18$$

```
from math import sqrt

# Standard Error Mean
# Note: I can use injury.sem() directly to get the result,
# but I shall calculate by my own for this assignment.

injury_sem = injury.std(ddof=1) / sqrt(120)
print(f'Standard Error Mean: ', injury_sem)
```

Standard Error Mean: 0.1821117309227567

With $SE_M \approx 0.18$, the t ratio is:

$$t = \frac{M - \mu_{hyp}}{SE_M} \approx 4.90$$

```
# t statistic
injury_t = (injury.mean() - 2) / injury.sem()
print(f't: ', injury_t)
```

t: 4.8962615540943375

Unfortunately, I can't calculate the p-value on hand, so in this part I'll call scipy.stats.t for help. the degree of freedom (df) is:

$$df = N - 1 = 120 - 1 = 119$$

With $t \approx 4.90$ and df = 119, then use survivor function to reach the p-value:

$$p \approx 3.11 \times 10^{-6}$$

```
import scipy.stats as stats

# 119 is the degree of freedom; Two-sided times two
injury_p = stats.t.sf(injury_t, 119 ) * 2

print(f'p: ', injury_p)
```

p: 3.1051091723547962e-06

The p-value is much smaller than 0.001 (p < 0.001), the null hypothesis should be rejected.

I also did a sanity check with the ready-to-use function scipy.stats.ttest_1samp:

t: 4.8962615540943375

df: 119

p-value: 3.1051091723547962e-06

The Cohen's d value is:

$$d = \frac{M - \mu_{hyp}}{SD} = \frac{t}{\sqrt{N}} \approx 0.45$$

```
# Effect Size d

injury_d = injury_t / sqrt(120)
print(f'Cohen\'s d:', injury_d)
```

Cohen's d: 0.4469654834371283

4.4 Q3: 95% confidence interval for the mean pain score

Answer

Based on the sample of N=120 pain scores, with $M\approx 2.89$ and $SD\approx 1.99$, the 95% CI for pain scores is [2.53,3.25].

Solution

Given c=1.96 for a 95% confidence interval and $SE_M\approx 0.18$ as calculated in the last section, a 95% confidence interval of the mean pain score is:

$$[M - c \times SE_M, M + c \times SE_M] \approx [2.53, 3.25]$$

```
# CI for two-tailed t-statistics
  def confidence_interval(alpha, mean, sem, df):
      c = stats.t.interval(1 - alpha, df)[1]
3
      ci_upper = mean + (c * sem)
      ci_lower = mean - (c * sem)
      print(f'CI (Lower): ', ci_lower)
      print(f'CI (Upper): ', ci_upper)
      return str(f'[{ci_lower}, {ci_upper}]')
8
  injury_ci = confidence_interval(0.05, injury_mean, injury_sem, 119)
  print(injury_ci)
  CI (Lower): 2.53106725077079
  CI (Upper): 3.252266082562543
  [2.53106725077079, 3.252266082562543]
  # And scipy.stats.t does the same thing.
  stats.t.interval(confidence=0.95,
                   df=119,
3
                   loc=injury_mean,
4
                    scale=injury_sem)
```

(2.53106725077079, 3.252266082562543)

4.5 Q4: Summarizing the findings

Answer

A one-sample t-test is conducted to reveal whether mean pain score for a sample of N=120 patients differed from the minor pain with a score of 2. For this example, $M=2.89,\,SD=1.99$ and $SE_M=0.18$. The 95% CI for M was [2.53,3.25]. The result was $t(119)=4.90,\,p<0.001$, two tailed. The effect size is d=0.45 by Cohen's standards, which represents a medium effect. The difference between the sample mean (M=2.89) and the score of minor pain (2) is statistically significant using $\alpha=0.05$, two tailed.

4.6 Q5: 95% CI for Switch players' mean pain score

Answer

The 95% confidence interval for the mean pain score of those who played on a Nintendo Switch is [3.14, 4.33].

Solution

1. Check the structure of column switch then apply the filtering:

```
Variables in the column switch:
 switch
Playing switch
                   60
Watching switch
Name: count, dtype: int64
Filtered data:
         60.000000
 count
         3.733333
mean
std
        2.313312
        0.000000
min
25%
        2.000000
50%
          3.500000
75%
          5.000000
max
         10.000000
Name: injury, dtype: float64
```

2. Calculating the CI:

```
Given N_{player}=60, then the df_{player}=N_{player}-1=59, Based on the data we also have M_{player}\approx 3.73 and SE_{M_{player}}\approx 0.30
```

The 95% confidence interval for the mean pain score of those who played on a Nintendo Switch is:

$$[M-c\times SE_M, M+c\times SE_M]\approx [3.14, 4.33]$$

```
injury_ns_mean = injury_ns.mean()
injury_ns_sem = injury_ns.sem()
injury_ns_dregf = len(injury_ns) - 1

print(f'Sample size: {len(injury_ns)}, \n'
f'Degree of Freedom: {injury_ns_dregf},\n'
f'Mean: {injury_ns_mean},\n'
```

```
f'Standard Error: {injury_ns_sem}')

injury_ns_ci = confidence_interval(0.05, injury_ns_mean, injury_ns_sem,
    injury_ns_dregf)
print(f'\nThe 95% CI for Switch players: \n', injury_ns_ci)
```

Sample size: 60,

Degree of Freedom: 59, Mean: 3.7333333333333334,

Standard Error: 0.29864729557842784 CI (Lower): 3.1357414752023387 CI (Upper): 4.3309251914643285

The 95% CI for Switch players:

[3.1357414752023387, 4.3309251914643285]