UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Posgrado en Ciencia e Ingeniería de la Computación

Aprendizaje Profundo

Redes convolucionales con PyTorch

Bere & Ricardo Montalvo Lezama

Octubre 2020

Representación de imágenes

Problemática de usar MPL para imágenes

➤ Supongamos que queremos entrenar una red que tome una imagen RGB de 200 × 200 como entrada.

- > ¡Se requieren muchos parámetros!
 - ightharpoonup Entrada = 200 × 200 × 3 = 120,000.
 - Parámetros = $120,000 \times 1000 = 120,000,000$.

Red neuronal convolucional

Zeiler et al. Visualizing and Understanding Convolutional Networks. 2013.

Convolución 2D

ventaneo por columnas

Convolución: entrada 5 × 5, salida 3 × 3, filtro 3x3,

Hiperparámetros

- ► Entrada: $I \times H_1 \times W_1$
- ► Hiperparámetros:
 - Número de filtros *K*: profundidad de la salida.
 - Tamaño del filtro F: extensión espacial del filtro.
 - Paso *S*: cantidad de desplazamiento del filtro.
 - Relleno P: cantidad de aumento de ceros.
- ► Salida: $O \times H_2 \times W_2$
 - $W_2 = \frac{(W_1 F + 2P)}{S} + 1$
 - $H_2 = \frac{(H_1 F + 2P)}{S} + 1$
 - \triangleright O = K

Convolución con relleno

ventaneo ×2 en columnas

0	0	0	0	0	0	0				C		0	0	0	0	0	0					0	0	0	0	0	0	0			
0	3	3	2	1	0	0				C	Ī	3	3	2	1	0	0				- 1	0	3	3	2	1	0	0			
0	0	0	1	3	1	0	6	17	3	C		0	0	1	3	1	0	6	17	3		0	0	0	1	3	1	0	6	17	I
0	3	1	2	2	3	0	8	17	13	C)	3	1	2	2	3	0	8	17	13		0	3	1	2	2	3	0	8	17	1
0	2	0	0	2	2	0	6	4	4	C		2	0	0	2	2	0	6	4	4		0	2	0	0	2	2	0	6	4	Ι
0	2	0	0	0	1	0				C		2	0	0	0	1	0					0	2	0	0	0	1	0	Т		
0	0	0	0	0	0	0				C		0	0	0	0	0	0					0	0	0	0	0	0	0			
0	0	0	0	0	0	0				i	V.	0	0	0	0	0	0					0	0	0	0	0	0	0			
0	3	3	2	1	0	0				C	Ť	3	3	2	1	0	0				- 1	0	3	3	2	1	0	0			
0	0	0	1	3	1	0	6	17	3	C	-	0	0	1	3	1	0	6	17	3		0	0	0	1	3	1	0	6	17	Ť
0	3	1	2	2	3	0	8	17		C		3	1	2	2	3	0	8	17	13			3	1	2	2	3	0	8	17	
0	2	0	0	2	2	0	6	4	4			2	0	0	2	2	0	6	4	4	5.4	0	2	0	0	2	2	0	6		ť
0	2	0	0	0	1	0	U	۰		C		2	0	0	0	1	0	Ü	÷	_	-	0	2	0	0	0	1	0	U	-	+
0	0	0	0	0	0	0				C	- 50	_	0	0	0	0	0				1	0	0	0	0	0	0	0			
0	0	0	0	0	0	0				C	e.	0	0	0	0	0	0					0	0	0	0	0	0	0			
0	3	3	2	1	0	0				Č	-	3	3	2	1	0	0				5.0	0	3	3	2	1	0	0			
0	0	0	1	3	1	0	6	17	3	C			0	1	3	1	0	6	17	3	5.0	0	0	0	1	3	1	0	6	17	T
0	3	1	2	2	3	0	8	17		C	- 4-	3	1	2	2	3	0	8	17	13	5.0	0	3	1	2	2	3	0	8	17	
0	2	0	0	2	2	0	6	4	4		- J-	2	0	0	2	2	0	6	4	4	5.	0	2	0	0	2	2	0	6	4	
0	2	0	0	0	1	0	U	4	-				0	0	0	1	0	U	-1	-	5.	0	2	0	0	0	1	0	0	14	+
0	0	0	0	0	0	0				Č			0		0	0	0				- 2	0		0	0	0	0	0			

Convolución: entrada 5 × 5, salida 3 × 3, filtro 3x3, paso ×2, relleno ×1.

Capa de convolución (I)

Convolución: entrada 7 × 7 × 3, salida 3 × 3 × 2, filtro 3 × 3 × 3, paso × 2, relleno × 1.

Capa de convolución (II)

Convolución: entrada 7 × 7 × 3, salida 3 × 3 × 2, filtro 3 × 3 × 3, paso × 2, relleno × 1.

Capa de convolución: ejercicio

➤ ¿Cuál sería las dimensiones del bloque de salida para una capa convolucional con siguientes características?

$$W_2 = \frac{(W_1 - F + 2P)}{S} + 1$$

$$H_2 = \frac{(H_1 - F + 2P)}{S} + 1$$

$$ightharpoonup O = K$$

Capa de muestreo máximo

Muestreo máximo: entrada 5×5 , salida 3×3 , paso 1x1.

Dumoulin et al. A guide to convolution arithmetic for deep learning, 2018.

Hiperparámetros

- ▶ Reducen el tamaño de la entrada mediante el uso de alguna función para resumir subregiones.
 - ► Entrada: $I \times H_1 \times W_1$
 - Hiperparámetros:
 - ► Tamaño del filtro *K*: extensión espacial del filtro.
 - Paso *S*: cantidad de desplazamiento del filtro.
 - Salida: $O \times H_2 \times W_2$
 - $W_2 = \frac{W_1 F}{S} + 1$
 - $H_2 = \frac{H_1 F}{S} + 1$
 - ightharpoonup O = I

Capa de muestreo: ejercicio

¿Cuál sería las dimensiones del bloque de salida para una capa de muestreo con siguientes características?

- ► Entrada: $4 \times 28 \times 28$
- ► Tamaño del filtro: 2
- ► Salto: 2

$$W_2 = \frac{W_1 - F}{S} + 1$$

$$H_2 = \frac{H_1 - F}{S} + 1$$

$$ightharpoonup O = I$$

Arquitecturas de CNNs

Aumentar canales con capas convolucionales, reducir dimensiones con capas de muestreo.

Convoluciones paralelas

► Aprenden representaciones complementarias por medio de dispersión².

 $AlexNet^1$

Convoluciones Agrupadas²

^{1.} Zhang et al. ImageNet Classification with Deep Convolutional Neural Networks. 2012.

^{2.} loannou et al. Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups. 2016.

GoogLeNet

Zhang et al. Dive into Deep Learning. 2020.

Conexiones residuales

Zhang et al. Dive into Deep Learning. 2020.

He et al. Deep Residual Learning for Image Recognition. 2015

ResNet

Zhang et al. Dive into Deep Learning. 2020.

He et al. Deep Residual Learning for Image Recognition. 2015

Normalización por lote

$$\begin{array}{ll} \textbf{Input:} \ \, \text{Values of } x \ \text{over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ \quad \quad \text{Parameters to be learned: } \gamma, \beta \\ \textbf{Output:} \ \, \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\ \\ \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \qquad \text{// mini-batch mean} \\ \\ \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \qquad \text{// mini-batch variance} \\ \\ \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \qquad \text{// normalize} \\ \\ y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \qquad \qquad \text{// scale and shift} \\ \end{array}$$

loffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015 Wu et al. Group normalization. 2018