Deep-Learning based Classification of Executed and Imagined Motor Movement EEG Signals

(Pre) Final Project Presentation of the courcse Advanced Topics in Machine Learning (ATML)
-Prof. Favaro-

Members: Özhan Özen, Joaquin Penalver-Andres, <u>Tim Fischer</u>

What is an EEG?

 Representation of an electrical voltage curve in time.

- Most important variables for describing an EEG curve: Amplitude and Frequency
- Non-invasive and cost-effective method for direct measurement of electrical brain activity
- Advantage: High temporal resolution
- Disadvantage: Relatively low spatial resolution

Why do we record an EEG?

Diagnose of brain related diseases

- Identifaction of mal functioning areas
- Level of brain function (e.g. coma)

• BMI: Applications in prosthetics

Why Deep Learning?

- Standard approaches are domain specific
 - Highly trained personal
 - Preprocessing
 - Inter subject variability
- 64 Channels -> Huge amount of data
- DL very successfull on image text and audio signals

Difficulties

- Characteristics of the EEG Signal
 - Low SNR
 - Limited Data available + Collection is difficult
 - Not as many competitions and contributors as in CV
 - Inter subject variability (+ quality of measurements)
 - Images vs Time Series from 3D scalp surface

=> Hot Research Topic!

Literature

[Roy, Yannick et al. 2019. "Deep Learning-Based Electroencephalography Analysis: A Systematic Review."]

Data

Physionet Dataset: EEG Motor Movement/Imaginery Dataset (bci2000.org)

[Goldberger et al. 2000 PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220 2000 (June 13)]

Label	Description
0	Baseline, eyes open
1	Baseline, eyes closed
2	Motor execution: Left Hand
3	Motor execution: Right Hand
4	Motor imagery: Left Hand
5	Motor imagery: Right Hand
6	Motor execution: Both Hands
7	Motor execution: Both Feet
8	Motor Im: Both Hands
9	Motor imagery: Both Feet

Input Data

- Raw EEG Data (normalized -1 to 1), split into trials
 - Epoch begins 1s before trial and ends 4s after the trial (Experimental)

[Schirrmeister et al. 2017. "Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization"]

Input Data

- Adding white noise to augment the training data*
 - Generalization

✓ Adding White Noise increased the performance on the testset

[Wang, Fang et al. 2018. "Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Networks." In , 82–93.]

^{* 5}x increasement of the training data size

Models ... we tried and tried...

- Simple FC Models
 - Deeper and wider FC Models
 - → Very low results on the test set + shallow traning curves

Simple, deep and wide combinations of CNNs 1D and 2D

→ Regularization: Dropout ... batch normalization Weight decay ...

Literature and EEG Models

• EEGNet, Deep4Net, EEGNetv4

→ Already way better results than "our" models!

[Lawhern, Vernon J. et al. 2016. "EEGNet: A Compact Convolutional Network for EEG-Based Brain-Computer Interfaces."]

[Schirrmeister et al. 2017. "Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization"]

- *Train accuracies = Test accuracies* → UNDERFITTING
 - Make it **deeper** and wider -> No improvement

ConvNetFBCSP

[Schirrmeister et al. 2017. "Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization"]

ConvNetFBCSP — Why so shallow?

ConvNetFBCSP*

- Filtering in the frequency domain is equivalent to convolution in the time domain.
- Whats the characteristics?
 - Mimiques Bandpasses and CSP filter steps for each bandpass
 - Select discriminative pairs of frequency bands and corresponding CSP features
 - Several Pooling Regions within one trial
 - Learns temporal structure of the band power changes

[Sakhavi S, Guan C, Yan S. (2015): Parallel convolutional-linearneural network for motor imagery classification. In 2015 23rd European Signal Processing Conference (EUSIPCO), IEEE, 2736–40]

*FBCSP = Filter Bank Common Spatial Pattern => Selects the best CSP Features. CSP = CSP **Common spatial pattern (CSP)** is a procedure for separating a signal into additive subcomponents which have maximum differences in variance

[Kai Keng et al. 2008. "Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface." In 2008 IEEE International Joint Conference on Neural Networks, IEEE, 2390-97.]

Overview + (Pre) Final Results

Intensive literature research

+

Applying data augmentation

+

Applying regularization

+

Trying + tweaking our own models

+

Implementing models from papers

+

Tweaking models from papers

Testset overall Accuracy: 51.2144%

```
Accuracy of class 0 : 25 % of 4 labels
Accuracy of class 1 : 0 % of 3 labels
Accuracy of class 2 : 60 % of 237 labels
Accuracy of class 3 : 54 % of 235 labels
Accuracy of class 4 : 50 % of 238 labels
Accuracy of class 5 : 52 % of 234 labels
Accuracy of class 6 : 48 % of 234 labels
Accuracy of class 7 : 56 % of 237 labels
Accuracy of class 8 : 37 % of 236 labels
Accuracy of class 9 : 50 % of 236 labels
```

(Train/Val) Test Split: (90/10) /10

Loss: Cross-Entropy Loss Optimizer: AdamW

Learning Rate Adaption: Cosine Annealing Curve [Loshchilov, Ilya, and Frank Hutter. 2016. "SGDR: Stochastic Gradient Descent with Warm Restarts."]

Discussion

• Regarding results in Computer Vision, poor.

Low SNR

Limited Data available + Collection is difficult

Not as many competitions and contributors as in CV

But our problem is more difficult (see "Difficulties" slide)

Inter subject variability (+ quality of measurements)

Images vs Time Series from 3D scalp surface

No Paper used all subjects (cherry picking) nor all 10 classes (max. 5).

Future Work

- Further Methodologies:
 - Try light preprocessing of obvious artifacts
 - Try more data augmentation (changing electrodes for symmetric tasks)

[Deiss, et al. 2018. "HAMLET: Interpretable Human And Machine Co-Learning Technique."]

- Try convert EEG to video and use optical flow
 - Apply transferlearning on established classifiers

[Tan, Chuanqi, Fuchun Sun, and Wenchang Zhang. 2018. "Deep Transfer Learning for EEG-Based Brain Computer Interface."]

 Make a combination with RNN (or LSTM) network to extract temporal patterns in the frame sequences

[Bashivan et al. 2015. "Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks."]

[Zhang, Dalin et al. 2018. "Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition." In Springer, Cham, 156–68.]

Thank you very much for your attention!

Tim Fischer tim.fischer@artorg.unibe.ch

Sources:

Siuly, Siuly, Yan Li, and Yanchun Zhang. 2016. *EEG Signal Analysis and Classification*. Cham: Springer International Publishing. Lawhern, Vernon J. et al. 2016. "EEGNet: A Compact Convolutional Network for EEG-Based Brain-Computer Interfaces." Loshchilov, Ilya, and Frank Hutter. 2016. "SGDR: Stochastic Gradient Descent with Warm Restarts." Roy, Yannick et al. 2019. "Deep Learning-Based Electroencephalography Analysis: A Systematic Review" Schirrmeister, Robin Tibor et al. 2017. "Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization."

Wang, Fang et al. 2018. "Data Augmentation for EEG-- Based Emotion Recognition with Deep Convolutional Neural Networks." In , 82–93.

Sakhavi, Siavash, Cuntai Guan, and Shuicheng Yan. 2015. "Parallel Convolutional-Linear Neural Network for Motor Imagery Classification."

Kai Keng Ang, Zhang Yang Chin, Haihong Zhang, and Cuntai Guan. 2008. "Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface."

Bashivan, Pouya, Irina Rish, Mohammed Yeasin, and Noel Codella. 2015. "Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks."

Deiss, Olivier et al. 2018. "HAMLET: Interpretable Human And Machine Co-LEarning Technique."

Tan, Chuanqi, Fuchun Sun, and Wenchang Zhang. 2018. "Deep Transfer Learning for EEG-Based Brain Computer Interface."

Zhang, Dalin et al. 2018. "Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition." In Springer, Cham, 156–68.

