

José Javier Calvo Moratilla

Puntos

Introducción

Trabajos relacionados 3

Cerebro, Emociones

Datos

5

Selección hiperparámetros 6

Random Forest

MLP

XGBoost

Conclusiones

1. Introducción

2. Trabajos relacionados

Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition (2020)

Input data:

Datos dominio tiempo

Modelo:

- InceptionResnetV2 (Obtener Caract.)
- Fully Connected (Clasificación)

Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network (2017)

Input data:

- Power Spectral Density (PSD)
 Dominio tiempo → frecuencias
 - Frontal EEG Asymmetry

Modelo:

 Fully Connected, 4 hidden layers (2194, 1310, 786, 472) Emotion Recognition Based on DEAP Database using EEGTime-Frequency Features and Machine Learning Methods (2019)

Input data:

- Dominio temporal (peak to peak mean, mean squared value, variance, maximum power spectral frequency, power spectral density and power sum)
- Dominio de frecuencia (parameters, complexity, mobility and activity)

Modelo:

Random Forest

3. Cerebro, emociones

Nivel fisiológico de activación del cerebro:

4. Datos

"DEAP: A Database for Emotion Analysis using Physiological Signals"

32 Características (Dominio temporal)

Método de Welch

32 características Theta 32 características Alpha

32 características Beta 32 características Gamma

128 Características (Dominio frecuencia)

Banda	Rango de frecuencias	Referencia
Delta	[1-4] Hz	Niedermeyer & da Silva, 2012
Theta	[4-8] Hz	Niedermeyer & da Silva, 2012
Alpha	[8-12] Hz	Hans Berger, 1929
Beta	[12-25] Hz	Niedermeyer & da Silva, 2012
Gamma	> 25 Hz	Dimigen, 2009

5. Selección hiperparámetros

Alterantivas:

Optuna

6. Random Forest

Valencia

Zonas: Left Right Frontal Parietal Occipital Central

Arousal

Onda: Tetha

Zonas: Izquierda, Frontal, Derecha

Onda: Tetha

Zonas: Izquierda, Central, Parietal

6.1 Resultados

7. MLP

Valencia

Zonas: Left Right Frontal Parietal Occipital Central

Arousal

Onda: Tetha

Zonas: Izquierda, Frontal, Derecha

Onda: Tetha

Zonas: Izquierda, Central, Parietal

7.1 Resultados

8. XGBoost

Onda: Beta

Zonas: Parietal, Occipital

Onda: Alpha

Zonas: Izquierda, Parietal, Occipital

8.1 Resultados

9. Conclusiones

Random Forest 60% Valencia

Random Forest 66% Arousal

Modelo	Precisión
Random Forest, Nuestra aproximación, Arousal	66%
T.D. Kusumaningrum [5] Valencia, Arousal	62%
Random Forest, Nuestra aproximación, Valencia	60%

MLP 50% Valencia

MLP 53% Arousal

Modelo	Precisión
Al-Nafjan [6], Valencia, Arousal	82 %
Yucel Cimtay[4], Valencia, Arousal	72 %
MLP, Nuestra aproximación, Arousal	53 %
MLP, Nuestra aproximación, Valencia	50 %

XGBoost 62% Valencia

XGBoost 60% Arousal

Modelo	Precisión
T.D. Kusumaningrum, Valencia, Arousal [5]	62%
XGBoost, Nuestra aproximación, Valencia	62%
XGBoost, Nuestra aproximación, Arousal	60%

José Javier Calvo Moratilla

Jocalmo@upv.es