CENG443 Heterogeneous Parallel Programming

Deep Learning Inference with Jetson Nano Developer Kit

Işıl ÖZ, IZTECH, Fall 2023 22 December 2023

NVIDIA Jetson Nano 2GB Developer Kit

TECHNICAL SPECIFICATIONS

GPU	128-core NVIDIA Maxwell		
CPU	Quad-core ARM A57 @ 1.43 GHz		
Memory	2 GB 64-bit LPDDR4 25.6 GB/s		
Storage	microSD (Card not included)		
Video Encode	4Kp30 4x 1080p30 9x 720p30 (H.264/H.265)		
Video Decode	4Kp60 2x 4Kp30 8x 1080p30 18x 720p30 (H.264/H.265)		
Connectivity	Gigabit Ethernet 802.11ac wireless⁺		
Camera	1x MIPI CSI-2 connector		
Display	HDMI		
USB	1x USB 3.0 Type A, 2x USB 2.0 Type A, 1x USB 2.0 Micro-B		
Others	40-pin header (GPIO, I²C, I²S, SPI, UART) 12-pin header (Power and related signals, UART) 4-pin Fan header†		
Mechanical	100 mm x 80 mm x 29 mm		

^{*} Not initially available in all regions

5 USB 2.0 ports (x2)

Jetson Nano

Jetson Nano is a small, powerful computer for embedded applications and AI IoT that delivers the power of modern AI

NVIDIA JetPack SDK powering the Jetson modules is the most comprehensive solution and provides full development environment for building end-to-end accelerated AI applications and shortens time to market

JetPack 4.6.1

CUDA 10.2
cuDNN 8.2.1
TensorRT 8.2.1
NVIDIA Nsight Systems 2021.5
Other utility software

\$ sudo apt-get install nvidia-jetpack

GPU Activities on Jetson Nano

Jetson Stats

package for monitoring and controlling your NVIDIA Jetson

```
$ sudo apt install python-pip -y
# install jetson-stats
$ sudo -H pip install jetson-stats
# reboot jetson
$ sudo reboot
$ jtop
```

```
jtop NVIDIA Jetson Xavier NX Developer Kit - JC: Inactive - ... □ □ □
Model: NVIDIA Jetson Xavier NX Developer Kit - Jetpack 5.0.2 GA [L4T 35.1.0]
    [||||||||Schedutil - 37%] 1.4GHz CPU4 [|||||||Schedutil - 100%] 1.4GHz
    [||||||| Schedutil - 34%] 1.4GHz CPUS [||||||| Schedutil - 35%] 1.4GHz
              Schedutil - 3%] 1.4GHz CPU6 [||||||||Schedutil - 36%] 1.4GHz
                                                    2.5G/7.7GB] (lfb 943x4MB)
                                                    0.0GB/3.8GB] (cached 0MB)
          [info]
                             [Sensor] — [Temp]
                                                  [Power/mW] - [Cur]
UpT: 0 days 0:15:28
                                                  CPU GPU CV
                                                                      1609
               51%] Ta= 51%
                                                               1145
                                                  ALL
Jetson Clocks: inactive
                                                               5160
                                                                      5296
NV Power[8]: 20W 6CORE
                             thermal
       [HW engines]
APE: [OFF]
              CVNAS: [OFF]
              DLA1c: [OFF]
NVENC: [OFF]
              NVDEC: [OFF]
NVJPG: [OFF]
             PVA0a: [OFF]
SE: [OFF]
              VIC: [OFF]
TALL 2GPU 3CPU 4MEM 5ENG 6CTRL 7INFO Quit
                                                                 (c) 2023, RB
```

Al And Deep Learning

Deep Learning Models

Accelerating DNNs Using GPUs

The extensive calculations required for <u>training</u> DNN models and running <u>inference</u> through trained models can be quite large in number, requiring intensive compute resources and time

Deep learning frameworks such as Caffe, TensorFlow, and PyTorch, are optimized to run faster on GPUs

The Jetson Nano includes a 128-core NVIDIA Maxwell GPU, it can accelerate both training and inference

NVIDIA Inference Stack

TensorRT

SDK for high-performance deep learning inference, includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for inference applications Built on the CUDA parallel programming model

https://github.com/NVIDIA/TensorRT

Hello Al World Guide

Deploying deep-learning inference networks and deep vision primitives with TensorRT and NVIDIA

Jetson

https://github.com/dusty-nv/jetson-inference

Object Detection - Inference

Inference with TensorRT Detecting objects from images

/jetson-inference-master/examples/detectnet /jetson-inference-master/c/detectNet.cu /jetson-inference-master/c/detectNet.cpp /jetson-inference-master/c/tensorNet.cpp

Code/Execution Flow

Load network model Load engine Process network

/jetson-inference-master/c/tensorNet.cpp

Pretrained Detection Models

Model	CLI argument	NetworkType enum	Object classes
SSD-Mobilenet-v1	ssd-mobilenet-v1	SSD_MOBILENET_V1	91 (COCO classes)
SSD-Mobilenet-v2	ssd-mobilenet-v2	SSD_MOBILENET_V2	91 (COCO classes)
SSD-Inception-v2	ssd-inception-v2	SSD_INCEPTION_V2	91 (COCO classes)
TAO PeopleNet	peoplenet	PEOPLENET	person, bag, face
TAO PeopleNet (pruned)	peoplenet-pruned	PEOPLENET_PRUNED	person, bag, face
TAO DashCamNet	dashcamnet	DASHCAMNET	person, car, bike, sign
TAO TrafficCamNet	trafficcamnet	TRAFFICCAMNET	person, car, bike, sign
TAO FaceDetect	facedetect	FACEDETECT	face

./detectnet --network=ssd-inception-v2 input.jpg output.jpg

Build Project from Source

Quick Reference

If you aren't using the Docker container, here's a condensed form of the commands to build/install the project directly on your Jetson:

```
sudo apt-get update
sudo apt-get install git cmake libpython3-dev python3-numpy
git clone --recursive --depth=1 https://github.com/dusty-nv/jetson-inference
cd jetson-inference
mkdir build
cd build
cmake ../
make -j$(nproc)
sudo make install
sudo ldconfig
```

Execute and Profile on Jetson Nano

- \$ cd /jetson-inference-master/build/aarch64/bin
- \$./detectnet --network=ssd-mobilenet-v2 images/peds 0.jpg images/test/output.jpg
- \$./detectnet "images/humans_*.jpg" images/test/humans_output_%i.jpg

Profile nsys or nvprof

\$ nsys -profile --stats=true ./detectnet ...

\$ sudo /usr/local/cuda/bin/nvprof --csv --log-file output.csv --metrics sm efficiency ./detectnet ...

Project Description

Install JetPack Build the inference project

https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md

Run and profile (nvprof) detectNet with different networks for all available images in the project

ssd-mobilenet-v2 (default)

ssd-inception-v2

peoplenet

Report the results (execution time, profile results, image outputs)

References

Self-Paced DLI Course: Getting Started with AI on Jetson Nano

https://courses.nvidia.com/courses/course-v1:DLI+S-RX-02+V2/

Deploying Deep Learning project

https://developer.nvidia.com/embedded/twodaystoademo

https://github.com/dusty-nv/jetson-inference/

https://www.youtube.com/watch?v=bcM5AQSAzUY

NVIDIA TensorRT

https://developer.nvidia.com/tensorrt