ÉCHANTILLONNEUR DE GIBBS

L'échantilloneur de Gibbs est un exemple d'algorithme de type Metropolis-Hastings dans le cas où nous cherchons à simuler une loi π sur $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ et où pour tout $x\in\mathbb{R}^d$, x peut être écrit $x=(x_1,\ldots,x_d)$ de telle sorte à ce que pour tout $1\leq j\leq d$, nous sachions simuler $\pi(\cdot|x_{-j})$ où $x_{-j}=(x_\ell)_{\ell\neq j}$. Une itération de l'algorithme consiste alors simplement à simuler alternativement chaque $x_j, 1\leq j\leq d$, conditionnellement aux autres.

Warm-up

Soit (X,Y) un couple de variables de loi gaussienne centrée de matrice de covariance

$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \,,$$

où $\rho \in (0,1)$. Écrire un échantillonneur de Gibbs permettant de simuler approximativement la loi de (X,Y).

Échantillonneur pour un mélange gaussien

Soit $K \geq 2$ et $n \geq 1$. Notons S_K le K-simplexe i.e. l'ensemble des K-uplets de réels positifs de somme égale à 1. On considère le modèle suivant.

- Le vecteur $p = (p_1, \ldots, p_K) \in S_K$ suit une loi de densité proportionnelle à $p \mapsto \prod_{k=1}^K p_k^{\gamma_k 1}$ où pour tout $1 \le k \le K$, $\gamma_k > 0$. Il s'agit d'une loi de Dirichlet permettant d'obtenir des échantillons sur S_K .
- Le vecteur $s^2=(s_1^2,\dots,s_K^2)$ contient des variables mutuellement indépendantes, et telles que pour tout $1\leq k\leq K$, s_k^2 a une loi inverse-gamma de paramètres, $\lambda_k/2$ et $\beta_k/2$, i.e. de densité proportionnelle à $u\mapsto u^{-\lambda_k/2-1}\exp(-\beta_k/(2u))$ sur \mathbb{R}_+^* .
- Conditionnellement à (p, s^2) , le vecteur $m = (m_1, ..., m_K)$ est constitué de variables indépendantes et pour tout $1 \le k \le K$, la loi conditionnelle de m_k est gaussienne de moyenne α_k et de variance s_k^2/λ_k .
- Conditionnellement à $\theta = (p, m, s^2)$, les $(Z_i, X_i)_{1 \le i \le n}$ sont indépendantes et telles que :
 - pour tout $1 \le k \le K$, $Z_i \in \{1, ..., K\}$ et $Z_i = k$ avec probabilité p_k ;
 - conditionnellement à (θ, Z_i) , $X_i \sim \mathcal{N}(m_{Z_i}, s_{Z_i}^2)$.

La densité jointe de toutes les variables peut alors s'écrire :

$$\pi: (\theta, x, z) \mapsto \pi(p) \left\{ \prod_{k=1}^{K} \pi(s_k^2) \pi(m_k | s_k^2) \right\} \left\{ \prod_{i=1}^{n} \pi(z_i | \theta) \pi(x_i | z_i, \theta) \right\} ,$$

où $\pi(w_1|w_2)$ (resp. $\pi(w_1)$) est une notation générique pour la densité de la loi conditionnelle de la variable W_1 sachant W_2 (resp. pour la densité marginale de W_1).

1. Montrer que la loi a posteriori de θ s'écrit :

$$\pi(\theta|x) \propto \pi(\theta) \prod_{i=1}^{n} \left(\sum_{k=1}^{K} p_k \varphi_{m_k, s_k^2}(x_i) \right) ,$$

où φ_{m_k,s_k^2} est la densité gaussienne de moyenne m_k et de variance s_k^2 .

- 2. Écrire la densité de la loi conditionnelle de Z sachant (X,θ) .
- 3. Écrire la densité de la loi conditionnelle de θ sachant (Z,X).
- 4. Écrire le pseudo-code de l'échantillonneur de Gibbs.