假设检验问题:所谓假设检验,是指先对总体提出某项假设,然后利用<u>抽样调查的样本值</u>来检验所提出的假设是否合理,从而做出接受或拒绝的决策.

假设检验 指参数检验

【例 3.1(P₇₀)】某厂家向一百货商店长期供应某种货物,双方根据厂家的传统生产水平,写出质量标准,即若次品率超过3%,百货商店拒收该批货物.今有一批货物,随机抽43件检验,发现有次品2件,问应如何处理这批货物?——参数检验问题

【例 3.2(P71)】某研究所推出一种感冒特效新药,为证明其疗效,选择 200 名患者为志愿者. 将他们等分为两组, 分别不服药或服药, 观察 三日后痊愈的情况,得出下列数据:

是否痊愈服何种药	痊愈者数	未痊愈者数	合计
未服药者数	48	52	100
服药者数	56	44	100
合计	104	96	200

问新药是否疗效明显? ——非参数检验问题

一、问题的提出

【补例1】设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知. 设 X_1 , X_2 , ..., X_n 是来自X的样 本, 试利用样本检验假设 $H_0: \mu = \mu_0$ 是否可信.

1. 分析:

- (1) 检验: $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$
- (2) 如何决定接受还是拒绝Ho?

$$|\bar{X} - \mu_0| > k (k 待定) \longrightarrow \mu \neq \mu_0 \longrightarrow 拒绝H_0.$$

$$|\bar{X} - \mu_0| \leq k \longrightarrow \mu = \mu_0 \longrightarrow 接受H_0.$$

(3) 控制犯错的概率 $P\{126H_0|H_0为真\} \leq \alpha$ 以确定k, 得 H_0 的拒绝域:

$$P{拒绝H0|H0为真} = P{|\bar{X} - \mu_0| > k | H_0: \mu = \mu_0 真}$$

$$\frac{H_0: \mu = \mu_0 \ddagger}{\bar{X} - \mu_0} P\left\{\left|\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}\right| > \frac{k}{\sigma/\sqrt{n}}\right\} = \alpha \Rightarrow \frac{k}{\sigma/\sqrt{n}} = u_{1-\alpha/2}$$

$$\Rightarrow H_0$$
的拒绝域:
$$\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} > u_{1-\alpha/2}$$

2. 相关概念:

检验假设: $H_0: \mu = \mu_0$ 一原假设, $H_1: \mu \neq \mu_0$ 一备择假设

$$H_0: \mu = \mu_0$$
的拒绝域为: $\left|rac{ar{X} - \mu_0}{\sigma/\sqrt{n}}\right| > u_{1-lpha/2}$

 α —显著性水平,

$$U=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$$
—检验统计量,

$$|u| = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| > u_{1-\alpha/2}$$
 一拒绝域,

$$u_{\alpha/2}, u_{1-\alpha/2}$$
—临界点.

二、假设检验的目的与基本原理

1. 假设检验的目的:

从理论上说是检验原假设的总体与样本抽自的总体是否发生了显 著性差异;

从实际上说是因为事先已对原假设产生了怀疑,而为了推翻或拒绝它.

拒绝原假设的理由要充分,而接受原假设只不过是在当前α下没有 充分的理由去拒绝.

2. 假设检验的基本原理是应用小概率原理(或实际推断原理).

两个概率:
$$-----\to$$

$$\begin{cases} P\left\{\left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right| \le u_{1-\alpha/2}\right\} = 1-\alpha \quad (大概率) \\ P\left\{\left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right| > u_{1-\alpha/2}\right\} = \alpha \quad (小概率) \end{cases}$$

3. 原假设H₀与备选假设H₁的地位是不对等的. 由于一般α较小, 故检验推断是"偏向"H₀而"歧视"H₁的, 从而造成对同一问题, 不同的假设可能有完全不同的结论. 因此H₀与H₁的位置不能随意更换.

如无特殊背景, 通常把想要得到的新结论设成H1, 而把已有的

结论设成H₀.

4. 两类错误:

P{第Ⅰ类错误(弃真错误)}= P{拒绝 H_0 | H_0 为真} $\triangleq \alpha$;

P{第Ⅱ类错误(纳伪错误)}= P{接受 H_0 | H_0 为假} $\triangleq \beta$.

显著性检验——只控制 α 而不考虑 β 的检验, 称为显著性检验.

制作人:中国民用航空飞行学院 曾艳

三、假设检验的步骤

【*例3.4(P_{76})】一台包装机装洗衣粉,额定标准重量为500g,据以往经验,包装机的实际装袋重量服从正态分布 $N(\mu,\sigma^2)$,其中 $\sigma=15$ g恒定,为检验包装机工作是否正常,随机抽取9袋,称得洗衣粉净重数据如下:

497 506 518 524 488 517 510 515 516 若取显著性水平 $\alpha = 0.01$,问这包装机工作是否正常?

解: (1) 检验假设
$$H_0: \mu = \mu_0$$
, $H_1: \mu \neq \mu_0$ ($\mu_0 = 500$)

- (2) 由于 σ 已知,故选取检验统计量 $U=\frac{X-\mu_0}{\sigma/\sqrt{n}}$,
- (3) H_0 的拒绝域为 $|u| > u_{1-\alpha/2}$,
- (4) 代入样本值检验:

$$\overline{x} = 510.1, \ \mu_0 = 500, \ \sigma = 15, \ n = 9 \implies u = \frac{510.1 - 500}{15/\sqrt{9}} = 2.02,$$

$$\alpha = 0.01 \implies u_{1-\alpha/2} = u_{0.995} = 2.57,$$

可见 $|u|>u_{1-\alpha/2}$ 不成立,从而不拒绝 H_0 ,即认为机器工作正常.

假设检验的步骤:

- (1)提出 H₀和 H₁;
- (2)构造检验统计量;
- (3)对于 α ,确定 H_0 的拒绝域;
- (4)代入样本值 (x_1, \dots, x_n) 进行检验.

注意 2: 正确提出 H,和 H,是首要步骤,

关键步骤是确定检验统计量,该统计量至少应该满足在 H₀成立的情况下,其抽样分布易于计算(查找).