

SINUSOIDAL WAVE

AC CIRCUITS

prepared by:

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Sinusoidal Wave Parameters

- Instantaneous Voltage
- Peak Voltage
- Root-Mean-Square Voltage
- Period and Frequency

SINUSOIDAL WAVE PARAMETERS

SINUSOIDAL WAVE

A <u>sinusoidal wave</u> is a periodic oscillation described mathematically by the <u>sine</u> or <u>cosine function</u>. It is the foundation for analyzing alternating current (AC) circuits, which are essential in power systems, communication systems, and signal processing.

INSTANTANEOUS VOLTAGE

Instantaneous voltage (v(t)) refers to the value of voltage at a specific instant in time during the cycle of a sinusoidal (AC) waveform.

Formula

$$v(t) = v_p \sin \omega t$$

where:

v(t) = instantaneous voltage (V)

 $v_P = \text{peak/maximum voltage (V)}$

 $\omega = 2\pi f = \text{angular speed } (rad/s)$

f = frequency (Hz)

t = time(s)

PEAK-TO-PEAK VOLTAGE

Peak-to-peak voltage (v_{PP}) is the total voltage range of an AC waveform. It is the difference between the highest positive point ($+v_P$) and the lowest negative point ($-v_P$) of the wave.

<u>Formula</u>

$$v_{PP} = 2v_P$$

ROOT-MEAN-SQUARE VOLTAGE

The <u>root-mean-square voltage</u> (v_{RMS}) is a measure of the <u>effective voltage</u> of an AC signal. When you measure an AC voltage using a multimeter, the displayed value is the RMS voltage.

<u>Formula</u>

$$v_{RMS} = \frac{v_p}{\sqrt{2}}$$

PERIOD AND FREQUENCY

The <u>period</u> (T) of a waveform describes the time it takes for <u>one complete cycle</u> of the waveform to occur. It is the inverse of the <u>frequency</u> (f), which is the <u>number of cycles</u> that the occur per second.

<u>Formula</u>

$$T=\frac{1}{f}$$

The rms value of the voltage in a 60-cycle circuit is 115 volts. Write the equation for the sinusoidal wave.

Solution

$$V(t) = V_{p} \sin x_{0}t$$

 $V(t) = 162.65 \sin 2t(60)t$

A sinusoidal voltage waveform is described by the equation:

$$v(t) = 120\sin 377t$$

Determine the following:

- a. Frequency (f)
- b. Period (T)
- c. RMS voltage (v_{RMS})
- d. Peak-to-peak voltage (v_{PP})
- e. If this voltage is applied across a 10Ω resistor, what is the average power dissipated in the resistor?

Solution

$$\int = \frac{377}{211}$$

b. period =
$$\frac{1}{f}$$

$$period = \frac{1}{60}$$

A sinusoidal voltage waveform is described by the equation:

$$v(t) = 120 \sin 377t$$

Determine the following:

- a. Frequency (f)
- b. Period (*T*)
- c. RMS voltage (v_{RMS})
- d. Peak-to-peak voltage (v_{PP})
- e. If this voltage is applied across a 10Ω resistor, what is the average power dissipated in the resistor?

Solution

$$C. Vrms = \frac{Vp}{\sqrt{2}}$$

$$Vrms = \frac{120}{\sqrt{2}}$$

d.
$$Vpp = 2Vp$$

$$Vpp = 2(100)$$

$$Vpp = 240V$$
and

A sinusoidal voltage waveform is described by the equation:

$$v(t) = 120 \sin 377t$$

Determine the following:

- a. Frequency (f)
- b. Period (*T*)
- c. RMS voltage (v_{RMS})
- d. Peak-to-peak voltage (v_{PP})
- e. If this voltage is applied across a 10Ω resistor, what is the average power dissipated in the resistor?

Solution

$$\phi = \frac{(84.85)^2}{10}$$

LABORATORY

