that the diagonals of a parallelogram bisect each other.

If
$$A \longrightarrow C$$
 is a parallelogram

we know by definition that
$$\overrightarrow{AB} = \overrightarrow{CD}$$
 and $\overrightarrow{BD} = \overrightarrow{AC}$

$$midpoint(B,C) = \frac{1}{2}(BtC) = \frac{1}{2}(AtD) = midpoint(A,D)$$
.

Prove that if ABCD is an arbitrary quadrilateral then the midpoints of the sides form a parallelogram.

$$\frac{2[A+B]}{2}$$
 B $\frac{1}{2}(B+C)$ We need to show $\frac{1}{2}(C+D)$ (1) $\frac{1}{2}(C+D)$ (2) $\frac{1}{2}(C+D)$ (2) $\frac{1}{2}(C+D)$

We need to show that

(1)
$$\overrightarrow{PQ} = \overrightarrow{RS}$$

And indeed:

(1)
$$\overrightarrow{PQ} = Q - P = \frac{1}{2}(B+C) - \frac{1}{2}(A+B)$$

= $\frac{1}{2}(C-A)$
= $\frac{1}{2}(C+D) - \frac{1}{2}(A+D)$
= $S-R = \overrightarrow{RS}$

(2)
$$\overrightarrow{RP} = P - R = \frac{1}{2}(A+B) - \frac{1}{2}(A+D)$$

= $\frac{1}{2}(B-D)$
= $\frac{1}{2}(B+c) - \frac{1}{2}(C+D)$
= $Q-S = \overrightarrow{SQ}$.