Fall 2016: COT3210–Computability and Automata Answers to Supplementary Exercises II

Develop a Turing machine that will make a copy of the input right next to the input after leaving a blank space. Note that it does not matter what the alphabet contains, but to make things simple, we will assume that the input alphabet contains at least 0 and 1. The left end of the tape is marked by the tape symbol ▷, at which the machine starts. Tape alphabet contains at least the input alphabet, ▷, and the blank symbol (□). You may add symbols to the tape alphabet if needed for any other reason.

The desired Turing Machine is formally defined as follows:

$$Q: \{q_s, q_1, q_2, q_3, q_4, q_5, q_6, q_h\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, \sqcup, \rhd, \$, \#\}$$

Start state $=q_s$; Accept State $=q_h$; $\delta=$ Transition diagram as shown below.

2. Develop a Turing machine to compute f(x) = x+1, assuming that x is a natural number represented in "unary" form. The unary representation of a natural number k is a sequence of k 1s. There is no 0 in this representation. The input alphabet accordingly contains just 1. The left end of the tape is marked by the tape symbol \triangleright , at which the machine starts. The tape alphabet contains at least the input alphabet, \triangleright , and the blank symbol (\sqcup). You may add symbols to the tape alphabet if needed for any other reason. The Turing machine will begin with a tape that contains a sequence of 1s and produce an output consisting of a 1 appended to the input sequence.

The desired Turing Machine is formally defined as follows:

$$Q: \{q_s, q_1, q_h\}; \Sigma = \{1\}; \Gamma = \{1, \sqcup, \rhd\}$$

Start state = q_s ; Accept State = q_h ; δ = Transition diagram as shown below.

$$\langle q_s, \triangleright, q_1, \triangleright, R \rangle$$

 $\langle q_1, 1, q_1, 1, R \rangle$
 $\langle q_1, \sqcup, q_h, 1, - \rangle$

3. Write a Turing machine to compute $f(x) = x \mod 2$, assuming that x is a natural number represented in unary form. The Turing machine should begin with a tape that contains a finite sequence of 1s followed by an infinite number of blanks and rewrite the tape to contain a 1 followed by an infinite number of blanks if the initial number of 1s on the tape were odd, or to contain a 0 followed by an infinite number of blanks. Note that 0 is used only to represent the answer. There are no 0s in the input. The input alphabet contains 1, and the tape alphabet contains at the minimum the symbols, 1, 0, \square , and \triangleright . You may add symbols to the tape alphabet if needed for any other reason. The left end of the tape is marked by the tape symbol \triangleright , at which the machine starts. The machine will halt at the cell following the \triangleright where the machine writes a 1 or a 0. The rest of the tape should be all blanks when the machine halts.

The desired Turing Machine is formally defined as follows:

$$Q: \{q_s, q_1, q_2, q_3, q_4, q_5, q_6, q_h\}; \Sigma = \{1\}; \Gamma = \{0, 1, \sqcup, \rhd\}$$

Start state = q_s ; Accept State = q_h ; δ = Transition diagram as shown below.

