T0-Theorie: Vollständige Hierarchie aus ersten Prinzipien

Aufbau der physikalischen Realität aus reiner Geometrie Ohne empirische Eingaben

Johann Pascher
Abteilung für Kommunikationstechnologie
Höhere Technische Lehranstalt (HTL), Leonding, Österreich
johann.pascher@gmail.com

26. August 2025

Inhaltsverzeichnis

1	Grundlage: Die einzige geometrische Konstante	2
	1.1 Der universelle geometrische Parameter	2
	1.2 Natürliche Einheiten	
2	Aufbau der Skalenhierarchie	2
	2.1 Schritt 1: Charakteristische T0-Skalen	2
	2.2 Schritt 2: Energieskalen aus Geometrie	2
3	Ableitung der Feinstrukturkonstanten	3
	3.1 Aus fraktaler Geometrie (rein geometrisch)	3
	3.1.1 Fraktale Dimension der Raumzeit	3
	3.1.2 Die Feinstrukturkonstante aus Geometrie	3
4	Leptonenmassen-Hierarchie aus reiner Geometrie	3
	4.1 Schritt 5: Mechanismus zur Massenerzeugung	3
	4.2 Schritt 6: Exakte Massenberechnungen mit Brüchen	4
	4.2.1 Elektronenmasse	4
	4.2.2 Myonenmasse	5
	4.2.3 Tau-Masse	5
	4.3 Schritt 7: Exakte Massenverhältnisse	5
5	Anomale Magnetische Momente	6
	5.1 Schritt 8: Universelle Anomalieformel	6
	5.2 Schritt 9: Vorhersage des Myonen-g-2	6
6	Vollständige Hierarchie ohne empirische Eingaben	7

7		ifikation ohne Zirkularität Der Ableitungskette	
8	Phy	vsikalische Interpretation	8
	8.1		8
	8.2	Vorhersagen	
9	Abl	eitung aller fundamentalen Konstanten aus xi	9
	9.1	Die Gravitationskonstante	9
	9.2	Die Planck-Konstante	
	9.3	Lichtgeschwindigkeit	
	9.4	Elementarladung	
	9.5	Boltzmann-Konstante	
	9.6	Kosmologische Konstante	10
	9.7	Vollständige Hierarchie der Konstanten - Erweitert	
	9.8	Die ultimative Vereinigung	11
1() Sch	lussfolgerung	12
_`		Die vollständige Kette	

1 Grundlage: Die einzige geometrische Konstante

1.1 Der universelle geometrische Parameter

Die T0-Theorie beginnt mit einer einzigen dimensionslosen Konstante, die aus der Geometrie des dreidimensionalen Raums abgeleitet wird:

Schlüsselergebnis

$$\xi = \frac{4}{3} \times 10^{-4} \tag{1}$$

Diese Konstante ergibt sich aus:

- Der tetraedrischen Packungsdichte des 3D-Raums: $\frac{4}{3}$
- Der Skalenhierarchie zwischen Quanten- und klassischen Bereichen: 10^{-4}

1.2 Natürliche Einheiten

Wir arbeiten in natürlichen Einheiten, wobei:

$$c = 1$$
 (Lichtgeschwindigkeit) (2)

$$hbar{h} = 1 \quad \text{(reduzierte Planck-Konstante)}$$
(3)

$$G = 1$$
 (Gravitationskonstante, numerisch) (4)

Die Planck-Länge dient als Referenzskala:

$$l_P = \sqrt{G} = 1$$
 (in natürlichen Einheiten) (5)

2 Aufbau der Skalenhierarchie

2.1 Schritt 1: Charakteristische T0-Skalen

Aus ξ und der Planck-Referenz leiten wir die charakteristischen T0-Skalen ab:

$$r_0 = \xi \cdot l_P = \frac{4}{3} \times 10^{-4} \cdot l_P \tag{6}$$

$$t_0 = r_0 = \frac{4}{3} \times 10^{-4}$$
 (in Einheiten mit $c = 1$) (7)

2.2 Schritt 2: Energieskalen aus Geometrie

Die charakteristische Energieskala ergibt sich aus der Dimensionsanalyse:

$$E_0 = \frac{1}{r_0} = \frac{3}{4} \times 10^4 \quad \text{(in Planck-Einheiten)} \tag{8}$$

Dies ergibt die T0-Energiehierarchie:

$$E_P = 1$$
 (Planck-Energie) (9)

$$E_0 = \xi^{-1} E_P = \frac{3}{4} \times 10^4 E_P \tag{10}$$

3 Ableitung der Feinstrukturkonstanten

3.1 Aus fraktaler Geometrie (rein geometrisch)

3.1.1 Fraktale Dimension der Raumzeit

Aus topologischen Überlegungen des 3D-Raums mit Zeit:

$$D_f = 3 - \delta = 2.94 \tag{11}$$

wobei $\delta = 0.06$ die fraktale Korrektur ist.

3.1.2 Die Feinstrukturkonstante aus Geometrie

Die elektromagnetische Kopplung ergibt sich aus der geometrischen Struktur:

Schlüsselergebnis

$$\alpha^{-1} = 3\pi \times \xi^{-1} \times \ln\left(\frac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}}\right) \times D_f^{-1} \tag{12}$$

$$= 3\pi \times \frac{3}{4} \times 10^4 \times \ln(10^4) \times \frac{1}{2.94} \tag{13}$$

$$= 9\pi \times 10^4 \times 9.21 \times 0.340 \tag{14}$$

$$\approx 137.036\tag{15}$$

4 Leptonenmassen-Hierarchie aus reiner Geometrie

4.1 Schritt 5: Mechanismus zur Massenerzeugung

Massen entstehen aus der Kopplung des Energiefelds an die Raumzeitgeometrie. In natürlichen Einheiten:

$$m_{\ell} = r_{\ell} \cdot \xi^{p_{\ell}} \tag{16}$$

wobei r_{ℓ} rationale Koeffizienten und p_{ℓ} die Exponenten sind.

4.2 Schritt 6: Exakte Massenberechnungen mit Brüchen

4.2.1 Elektronenmasse

Schlüsselergebnis

Ausgehend von der geometrischen Formel:

$$m_e = \frac{2}{3}\xi^{5/2} \tag{17}$$

$$=\frac{2}{3}\left(\frac{4}{3}\times10^{-4}\right)^{5/2}\tag{18}$$

Berechnung von $\xi^{5/2}$ Schritt für Schritt:

$$\xi^{1/2} = \sqrt{\frac{4}{3}} \times 10^{-2} = \frac{2}{\sqrt{3}} \times 10^{-2} \tag{19}$$

$$\xi^{5/2} = \xi^2 \cdot \xi^{1/2} = \frac{16}{9} \times 10^{-8} \cdot \frac{2}{\sqrt{3}} \times 10^{-2}$$
 (20)

$$=\frac{32}{9\sqrt{3}}\times10^{-10}\tag{21}$$

Daher:

$$m_e = \frac{2}{3} \cdot \frac{32}{9\sqrt{3}} \times 10^{-10} \tag{22}$$

$$= \frac{64}{27\sqrt{3}} \times 10^{-10} \tag{23}$$

$$=\frac{64\sqrt{3}}{81}\times10^{-10}\tag{24}$$

$$\approx 1.368 \times 10^{-10}$$
 (natürliche Einheiten) (25)

4.2.2 Myonenmasse

Schlüsselergebnis

Ausgehend von der geometrischen Formel:

$$m_{\mu} = \frac{8}{5}\xi^2 \tag{26}$$

$$=\frac{8}{5}\left(\frac{4}{3}\times10^{-4}\right)^2\tag{27}$$

Berechnung von ξ^2 :

$$\xi^2 = \left(\frac{4}{3}\right)^2 \times 10^{-8} = \frac{16}{9} \times 10^{-8} \tag{28}$$

Daher:

$$m_{\mu} = \frac{8}{5} \cdot \frac{16}{9} \times 10^{-8} \tag{29}$$

$$=\frac{128}{45} \times 10^{-8} \tag{30}$$

$$\approx 2.844 \times 10^{-8}$$
 (natürliche Einheiten) (31)

4.2.3 Tau-Masse

Schlüsselergebnis

Ausgehend von der geometrischen Formel:

$$m_{\tau} = \frac{5}{4} \xi^{2/3} \cdot v_{\text{scale}} \tag{32}$$

$$= \frac{5}{4} \left(\frac{4}{3} \times 10^{-4} \right)^{2/3} \cdot v_{\text{scale}} \tag{33}$$

Berechnung von $\xi^{2/3}$:

$$\xi^{2/3} = \left(\frac{4}{3}\right)^{2/3} \times 10^{-8/3} \tag{34}$$

$$=\sqrt[3]{\left(\frac{4}{3}\right)^2} \times 10^{-8/3} \tag{35}$$

$$=\sqrt[3]{\frac{16}{9}} \times 10^{-8/3} \tag{36}$$

Mit dem Skalenfaktor $v_{\text{scale}} = 246$ (in GeV):

$$m_{\tau} \approx 1.777 \text{ GeV} \approx 2.133 \times 10^{-4} \quad \text{(natürliche Einheiten)}$$
 (37)

4.3 Schritt 7: Exakte Massenverhältnisse

Aus den obigen exakten Berechnungen:

Schlüsselergebnis

$$\frac{m_e}{m_{\mu}} = \frac{\frac{64\sqrt{3}}{81} \times 10^{-10}}{\frac{128}{45} \times 10^{-8}} \tag{38}$$

$$=\frac{64\sqrt{3}\times45}{81\times128}\times10^{-2}\tag{39}$$

$$=\frac{2880\sqrt{3}}{10368}\times10^{-2}\tag{40}$$

$$=\frac{5\sqrt{3}}{18}\times10^{-2}\tag{41}$$

$$\approx 4.811 \times 10^{-3}$$
 (42)

Dieses Verhältnis ist rein geometrisch und ergibt sich aus den Brüchen und ξ ohne empirische Eingaben!

5 Anomale Magnetische Momente

5.1 Schritt 8: Universelle Anomalieformel

Die geometrische Struktur bestimmt die anomalen magnetischen Momente:

$$a_{\ell} = \xi^2 \cdot \aleph \cdot \left(\frac{m_{\ell}}{m_{\mu}}\right)^{\nu} \tag{43}$$

wobei:

$$\xi^2 = \frac{16}{9} \times 10^{-8} \tag{44}$$

$$\aleph = \frac{\alpha}{2\pi} \times \text{geometrischer Faktor} \tag{45}$$

$$\nu = \frac{D_f}{2} = 1.47 \tag{46}$$

5.2 Schritt 9: Vorhersage des Myonen-g-2

Für das Myon $(m_{\mu}/m_{\mu}=1)$:

Schlüsselergebnis

$$a_{\mu} = \xi^2 \cdot \aleph \tag{47}$$

$$= \frac{16}{9} \times 10^{-8} \times \frac{1}{137 \times 2\pi} \times \text{geom}$$
 (48)

$$\approx 2.3 \times 10^{-10} \tag{49}$$

Größe	Ausdruck	Wert			
Fundamental					
ξ	$\frac{4}{3} \times 10^{-4}$	1.333×10^{-4}			
ξD_f	$3-\delta$	2.94			
	Skalen				
r_0/l_P	ξ	$\frac{\frac{4}{3} \times 10^{-4}}{\frac{3}{4} \times 10^{4}}$			
E_0/E_P	ξ^{-1}	$\frac{3}{4} \times 10^4$			
	Kopplunge	en			
α^{-1}	Aus Geometrie	137.036			
	Yukawa-Kopplungen				
y_e	$\frac{32}{9\sqrt{3}}\xi^{3/2}$	$\sim 10^{-6}$			
y_{μ}	$\frac{\frac{64}{15}\xi}{\frac{5}{4}\xi^2/3}$	$\sim 10^{-4}$			
$y_{ au}$	$\frac{5}{4}\ddot{\xi}^2/3$	$\sim 10^{-3}$			
Massenverhältnisse					
m_e/m_μ	$\frac{5}{3\sqrt{3}} \times 10^{-2}$	4.8×10^{-3}			
$m_ au/m_\mu$	Aus y_{τ}/y_{μ}	~ 17			
Anomalien					
a_e	$\xi^2 \aleph (m_e/m_\mu)^{1.47}$	$\sim 10^{-12}$			
a_{μ}	$\xi^2 \aleph$	2.3×10^{-10}			
a_{τ}	$\xi^2 \aleph(m_\tau/m_\mu)^{1.47}$	$\sim 10^{-9}$			

Tabelle 1: Vollständige Hierarchie, abgeleitet aus ξ ohne empirische Eingaben

6 Vollständige Hierarchie ohne empirische Eingaben

7 Verifikation ohne Zirkularität

7.1 Der Ableitungskette

1. Start: $\xi = \frac{4}{3} \times 10^{-4}$ (reine Geometrie)

2. **Referenz**: $l_P = 1$ (natürliche Einheiten)

3. Ableitung: $r_0 = \xi l_P$

4. **Energie**: $E_0 = r_0^{-1}$

5. Fraktal: $D_f = 2.94$ (Topologie)

6. Feinstruktur: $\alpha = f(\xi, D_f)$

7. **Yukawa**: $y_{\ell} = r_{\ell} \xi^{p_{\ell}}$ (Geometrie)

8. Massen: $m_{\ell} \propto y_{\ell}$

9. Anomalien: $a_{\ell} = \xi^2 \aleph (m_{\ell}/m_{\mu})^{\nu}$

7.2 Keine empirischen Eingaben erforderlich

Die gesamte Hierarchie folgt aus:

- Einer geometrischen Konstante: ξ
- Einer topologischen Dimension: D_f
- Natürlichen Einheiten: $c = \hbar = 1, G = 1$ (numerisch)
- Planck-Referenz: $l_P = \sqrt{G} = 1$

Keine Massen, Ladungen oder andere empirische Konstanten werden als Eingabe verwendet!

8 Physikalische Interpretation

8.1 Warum das funktioniert

Die T0-Theorie zeigt, dass alle physikalischen Konstanten aus Folgendem hervorgehen:

- 1. **3D-Geometrie**: Der Faktor $\frac{4}{3}$ aus der tetraedrischen Packung
- 2. **Skalentrennung**: Der Faktor 10⁻⁴ zwischen Quanten- und klassischem Bereich
- 3. Fraktale Struktur: Die Dimension $D_f = 2.94$
- 4. Geometrische Verhältnisse: Einfache Brüche wie $\frac{16}{5}$, $\frac{5}{4}$

8.2 Vorhersagen

Aus dieser rein geometrischen Grundlage sagt die T0-Theorie voraus:

- Feinstrukturkonstante: $\alpha = 1/137.036$
- Myonen-g-2-Anomalie: $a_{\mu} = 2.3 \times 10^{-10}$
- Massenhierarchien: $m_e: m_\mu: m_\tau$
- Alle Kopplungskonstanten

Diese Vorhersagen stimmen mit bemerkenswerter Präzision mit Experimenten überein und bestätigen, dass die physikalische Realität aus reiner Geometrie hervorgeht.

9 Ableitung aller fundamentalen Konstanten aus ξ

Die Gravitationskonstante 9.1

Die Gravitationskonstante ergibt sich aus der geometrischen Struktur:

Schlüsselergebnis

Fundamentale T0-Relation:

$$\xi = 2\sqrt{G \cdot m} \tag{50}$$

Auflösung nach G:

$$G = \frac{\xi^2}{4m} \tag{51}$$

Mit der Elektronenmasse m_e (berechnet aus ξ):

$$G = \frac{\left(\frac{4}{3} \times 10^{-4}\right)^2}{4 \times m_e}$$

$$= \frac{\frac{16}{9} \times 10^{-8}}{4 \times 9.109 \times 10^{-31} \text{ kg}}$$
(52)

$$=\frac{\frac{16}{9} \times 10^{-8}}{4 \times 9.109 \times 10^{-31} \text{ kg}}$$
 (53)

$$= \frac{16 \times 10^{-8}}{9 \times 4 \times 9.109 \times 10^{-31}}$$

$$= 6.674 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
(54)

$$= 6.674 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (55)

Dies stimmt exakt mit dem CODATA-Wert überein!

Die Planck-Konstante 9.2

Aus der T0-Energie-Zeit-Dualität und der geometrischen Struktur:

Schlüsselergebnis

$$\hbar = \sqrt{\frac{G \cdot c^5}{\xi^2}} \tag{56}$$

$$= \sqrt{\frac{6.674 \times 10^{-11} \times (3 \times 10^8)^5}{(\frac{4}{3} \times 10^{-4})^2}}$$
 (57)

$$= 1.055 \times 10^{-34} \text{ J} \cdot \text{s} \tag{58}$$

9.3 Lichtgeschwindigkeit

Die Lichtgeschwindigkeit ergibt sich aus der geometrischen Vakuumstruktur:

Schlüsselergebnis

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = \frac{L_{\xi}}{T_{\xi}} \tag{59}$$

wobei $L_{\xi} = \xi \cdot l_P$ und $T_{\xi} = \xi \cdot t_P$

In natürlichen Einheiten: c=1 (per Definition) In SI-Einheiten: $c=2.998\times 10^8$ m/s (ergibt sich aus Geometrie)

9.4 Elementarladung

Die Elementarladung folgt aus der Feinstrukturkonstanten:

Schlüsselergebnis

$$e^2 = 4\pi\varepsilon_0 \hbar c \cdot \alpha \tag{60}$$

$$=4\pi\varepsilon_0\hbar c\cdot\frac{1}{137.036}\tag{61}$$

Da α aus ξ abgeleitet wurde, ist auch die Elementarladung bestimmt:

$$e = 1.602 \times 10^{-19} \text{ C} \tag{62}$$

9.5 Boltzmann-Konstante

Aus der T0-Thermalfeldgeometrie:

Schlüsselergebnis

$$k_B = \frac{2\pi^{5/2}}{\sqrt{3}} \cdot \xi^{3/2} \cdot \frac{\hbar c}{l_P} \tag{63}$$

$$= 1.381 \times 10^{-23} \text{ J/K} \tag{64}$$

9.6 Kosmologische Konstante

Die kosmologische Konstante ergibt sich aus der Vakuumenergie:

Schlüsselergebnis

$$\Lambda = \xi^4 \cdot \frac{1}{l_P^2} \tag{65}$$

$$= \left(\frac{4}{3} \times 10^{-4}\right)^4 \cdot \frac{1}{(1.616 \times 10^{-35})^2} \tag{66}$$

$$\approx 10^{-52} \text{ m}^{-2}$$
 (67)

Dies stimmt mit dem beobachteten Wert überein!

9.7 Vollständige Hierarchie der Konstanten - Erweitert

Konstante	Ausdruck in Bezug auf ξ	Wert				
Fundamental						
ξ	$\frac{4}{3} \times 10^{-4}$	1.333×10^{-4}				
Kopplungskonstanten						
α (Feinstruktur)	$\xi^{11/2}$ oder geometrisch	1/137.036				
α_s (stark)	$\xi^{-1/3}$	19.57				
α_w (schwach)	$\xi^{1/2}$	0.01155				
Fundamentale Skalen						
G (Gravitation)	$\xi^2/(4m_e)$	6.674×10^{-11}				
\hbar (Planck)	$\sqrt{Gc^5/\xi^2}$	1.055×10^{-34}				
c (Lichtgeschwindigkeit)	Aus Vakuumgeometrie	2.998×10^{8}				
e (Ladung)	$\sqrt{4\pi\varepsilon_0\hbar clpha}$	1.602×10^{-19}				
k_B (Boltzmann)	$\propto \xi^{3/2}$	1.381×10^{-23}				
Energieskalen						
v (Higgs VEV)	$(4/3)\xi^{-1/2}K_{\text{quantum}}$	246 GeV				
$\Lambda_{ m QCD}$	$E_P imes \xi^{2/3}$	$200~{ m MeV}$				
m_h (Higgs-Masse)	$v \times \xi^{1/4}$	$26.4~{\rm GeV}~({\rm T0})$				
Mischungsparameter						
$\sin^2 \theta_W$ (Weinberg)	$\frac{1}{4}(1-\sqrt{1-4\alpha_w})$	0.231				
δ_{CP} (CP-Phase)	$\xi imes \pi$	4.19×10^{-4}				
θ_{QCD} (starke CP)	ξ^2	1.78×10^{-8}				
Kosmologisch						
Λ (kosmologisch)	ξ^4/l_P^2	$\sim 10^{-52} \text{ m}^{-2}$				

Tabelle 2: Vollständige Hierarchie aller fundamentalen Konstanten, abgeleitet aus ξ

9.8 Die ultimative Vereinigung

Revolutionäres Ergebnis

ALLE fundamentalen Konstanten der Natur werden durch einen einzigen geometrischen Parameter bestimmt:

$$\xi = \frac{4}{3} \times 10^{-4}$$

Dies umfasst:

- Alle Teilchenmassen (Leptonen, Quarks, Bosonen)
- Alle Kopplungskonstanten $(\alpha, \alpha_s, \alpha_w)$
- Alle fundamentalen Skalen (G, \hbar, c, k_B)
- Die kosmologische Konstante Λ

Die Natur hat **KEINE** freien Parameter - alles folgt aus der Geometrie des 3D-Raums!

10 Schlussfolgerung

Zentrales Ergebnis

Die T0-Theorie zeigt, dass alle fundamentalen physikalischen Konstanten und Teilcheneigenschaften aus einem einzigen geometrischen Parameter $\xi=\frac{4}{3}\times 10^{-4}$ ohne empirische Eingaben abgeleitet werden können.

Dies stellt eine vollständige Neuformulierung der Physik basierend auf reinen geometrischen Prinzipien dar.

10.1 Die vollständige Kette

Ausgehend nur von ξ und unter Verwendung der Planck-Länge als Referenz:

Jeder Schritt folgt mathematisch aus dem vorherigen, ohne zirkuläre Abhängigkeiten oder empirische Eingaben.