```
## Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2 score, mean squared error
from math import sqrt
##1. Load the data
df = pd.read excel("housing.xlsx")
df.head()
   longitude latitude housing median age total rooms
total bedrooms
     -122.23
                 37.88
                                         41
                                                      880
129.0
     -122.22
                 37.86
                                         21
                                                     7099
1106.0
     -122.24
                 37.85
                                         52
                                                     1467
190.0
                 37.85
                                         52
                                                     1274
3
     -122.25
235.0
                 37.85
                                         52
                                                     1627
     -122.25
280.0
   population households median income ocean proximity
median_house_value
          322
                      126
                                   8.3252
                                                 NEAR BAY
452600
         2401
                     1138
                                   8.3014
                                                 NEAR BAY
1
358500
          496
                      177
                                   7.2574
                                                 NEAR BAY
352100
                      219
          558
                                   5.6431
                                                 NEAR BAY
341300
          565
                      259
                                   3.8462
                                                 NEAR BAY
342200
df['ocean proximity'].unique()
array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],</pre>
      dtype=object)
df
       longitude latitude housing_median_age total_rooms
total_bedrooms \
         -122.23
                     37.88
                                             41
                                                          880
129.0
         -122.22
                     37.86
                                             21
                                                         7099
```

1106.0	-122.24	37.85	52	1467	
190.0	-122.25	37.85	52	1274	
235.0	-122.25	37.85	52	1627	
280.0					
20635	-121.09	39.48	25	1665	
374.0 20636	-121.21	39.49	18	697	
150.0 20637	-121.22	39.43	17	2254	
485.0 20638	-121.32	39.43	18	1860	
409.0 20639 616.0	-121.24	39.37	16	2785	
0 1 2 3 4 20635 20636 20637 20638 20639	population 322 2401 496 558 565 845 356 1007 741 1387	households 126 1138 177 219 259 330 114 433 349 530	median_income o 8.3252 8.3014 7.2574 5.6431 3.8462 1.5603 2.5568 1.7000 1.8672 2.3886	cean_proximity \ NEAR BAY NEAR BAY NEAR BAY NEAR BAY NEAR BAY NEAR BAY INLAND INLAND INLAND INLAND INLAND INLAND	
0 1 2 3 4	median_hous	452600 358500 352100 341300 342200			
20635 20636 20637 20638 20639		78100 77100 92300 84700 89400			
[20640 rows x 10 columns]					

```
X = df.drop("median house value", axis = 1)
Y = df["median house value"]
## 2. Handle missing values
X.isnull().any()
longitude
                       False
latitude
                       False
housing median age
                       False
total rooms
                       False
total bedrooms
                       True
population
                       False
households
                       False
median income
                       False
ocean proximity
                       False
dtype: bool
X['total bedrooms'] =
X['total bedrooms'].fillna(X['total_bedrooms'].mean())
X.isnull().any()
                       False
longitude
                       False
latitude
housing median age
                       False
total rooms
                       False
total bedrooms
                       False
population
                       False
households
                       False
median income
                       False
ocean_proximity
                       False
dtype: bool
X.head()
   longitude latitude housing median age total rooms
total bedrooms \
     -122.23
                 37.88
                                         41
                                                      880
129.0
     -122.22
                 37.86
                                         21
                                                     7099
1
1106.0
     -122.24
                 37.85
                                         52
                                                     1467
190.0
                 37.85
                                         52
     -122.25
                                                     1274
235.0
     -122.25
                 37.85
                                         52
                                                     1627
280.0
   population households median_income ocean_proximity
0
                                   8.3252
          322
                       126
                                                  NEAR BAY
```

1	2401	1138	8.3014	NEAR BAY
2	496	177	7.2574	NEAR BAY
3	558	219	5.6431	NEAR BAY
4	565	259	3.8462	NEAR BAY

##Encode categorical data

df1 = pd.get_dummies(X['ocean_proximity'])
df1

	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
0	0	0	0	1	0
1	0	0	0	1	0
2	0	0	0	1	0
3	0	0	0	1	0
4	0	0	0	1	0
20635	0	1	0	0	0
20636	0	1	0	0	0
20637	0	1	0	0	0
20638	0	1	0	0	0
20639	0	1	0	Θ	0

[20640 rows x 5 columns]

X = pd.concat([X, df1], axis=1).reindex(df.index)

X.drop('ocean_proximity', axis=1, inplace=True)

Χ

	longitude	latitude	housing_median_age	total_rooms
0	bedrooms \ -122.23	37.88	41	880
129.0 1 1106.0	-122.22	37.86	21	7099
1100.0 2 190.0	-122.24	37.85	52	1467
3 235.0	-122.25	37.85	52	1274
4 280.0	-122.25	37.85	52	1627
20635 374.0	-121.09	39.48	25	1665
20636 150.0	-121.21	39.49	18	697
20637	-121.22	39.43	17	2254

485.0 20638 409.0 20639 616.0	-121.32 -121.24	39.43 39.37			860 785	
ISLAND 0		households	median_income	<1H OCEAN	INLAND	
	322	126	8.3252	Θ	0	
0 1	2401	1138	8.3014	0	0	
0 2	496	177	7.2574	0	0	
0 3	558	219	5.6431	0	0	
0 4 0	565	259	3.8462	0	0	
20635 0	845	330	1.5603	0	1	
20636 0	356	114	2.5568	0	1	
20637 0	1007	433	1.7000	0	1	
20638 0	741	349	1.8672	0	1	
20639 0	1387	530	2.3886	0	1	
NEAR BAY NEAR OCEAN						
0 1	1 1	0 0				
2 3 4	1 1 1	0 0 0				
20635						
20636 20637	0 0	0 0				
20638 20639	0 0	0 0				
_	J					

[20640 rows x 13 columns]

4. Split the dataset

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
random_state=0, train_size = .75)

```
X train = X train.to numpy()
X test = X test.to numpy()
Y_train = Y_train.to_numpy()
Y test = Y test.to_numpy()
type(X train)
numpy.ndarray
## 5. Standardize data
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
X train = object.fit_transform(X_train)
X test = object.fit transform(X test)
Y_train = Y_train.reshape(-1,1)
Y test = Y test.reshape(-1,1)
Y train = object.fit transform(Y train)
Y_test = object.fit_transform(Y_test)
##X train = X train.reshape(-1,1)
##X test = X test.reshape(-1,1)
## 6. Perform Linear Regression
from sklearn.linear model import LinearRegression
lm = LinearRegression()
lm.fit(X train,Y train)
LinearRegression()
lm.coef
array([[-0.46959202, -0.47524462, 0.12000773, -0.09168507, 0.2619366
        -0.37357447, 0.24309035, 0.64330638, 0.05030324, -
0.10440986,
         0.02086915, 0.02022685, 0.0502250711)
lm.intecet
lm.intercept
array([5.02596391e-16])
preds = lm.predict(X test)
preds
array([[ 0.08509055],
       [ 0.69571552],
       [-0.23304258],
       . . . ,
```

```
[ 0.15593717],
       [ 0.77111862],
       [ 0.70433327]])
print(sqrt(mean squared error(Y test,preds)))
0.6009916525619308
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, Y,
random state=0, train size = .75)
lm.rsquared
lm.conf_int()
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
## 7. Perform Decision Tree Regression
Classifier = DecisionTreeClassifier()
Classifier.fit(X train, Y train)
predict = Classifier.predict(X test)
print(sqrt(mean squared error(Y test,predict)))
79523.2537453181
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, Y,
random state=0, train size = .75)
## 8. Perform Random Forest Regression
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier()
classifier.fit(X train,Y train)
Y predict = classifier.predict(X test)
print(sqrt(mean_squared_error(Y_test,Y_predict)))
69827.99715587698
## 9. Bonus exercise: Perform Linear Regression with one independent
variable
X = df['median income']
Y = df["median house value"]
```

```
from sklearn.model selection import train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
random_state=0, train_size = .75)
X train = X train.to numpy()
Y train = Y_train.to_numpy()
Y test = Y test.to numpy()
X \text{ train} = X \text{ train.reshape}(-1,1)
X_test = X_test.reshape(-1,1)
Y_{\text{train}} = \overline{Y}_{\text{train.reshape}}(-1,1)
Y test = Y test.reshape(-1,1)
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
X train = object.fit transform(X train)
X_test = object.fit_transform(X_test)
Y train = object.fit transform(Y train)
Y test = object.fit transform(Y test)
from sklearn.linear model import LinearRegression
lm = LinearRegression()
lm.fit(X train,Y train)
LinearRegression()
preds 1 = lm.predict(X test)
preds 1
array([[ 0.10607599],
       [ 0.69531393],
       [ 0.17735068],
       [-0.08295218],
       [ 0.59891752],
       [ 0.32764654]])
import matplotlib.pyplot as plt
df.plot(kind = 'scatter', x = "median income", y =
'median house value')
plt.plot(X_test,preds_1, c = 'red', linewidth=2)
[<matplotlib.lines.Line2D at 0x7faac8d6ea00>]
```


print(sqrt(mean_squared_error(Y_test,Y_predict)))
242240.9643463396