

Лекция №4 по дисциплине «ОПЕРАЦИОННЫЕ СИСТЕМЫ»

# ПОТОКИ В ОС

Преподаватель: Золотоверх Д.О.

#### ЗАДАЧИ ОС

- Управлять запуском нескольких процессов
- Предоставлять необходимые ресурсы процессу
- Защищать ресурсы процесса от других процессов
- Позволять процессам обмениваться информацией
- Позволять процессам синхронизироваться

#### НЕ ЗАБЫВАЕМ, ЧТО

- Компьютер состоит из нескольких типов ресурсов
- ОС должна предоставлять доступ к ресурсам
- Все ресурсы кроме процессора являются медленными
- Приложения не должны писаться под конкретное «железо»

## ПОНЯТИЕ ПРОЦЕССА

- Программа совокупность инструкций
- Процесс непосредственное выполнение этих инструкций
- Процессу могут принадлежать некоторые ресурсы
- Процесс имеет определенное состояние



#### ПРОЦЕСС С ТОЧКИ ЗРЕНИЯ ОС

- Ресурсы, над которыми владеет процесс
  - Память
  - Устройства ввода-вывода
- Планирование и исполнение процесса
  - Создание
  - Выполнение
  - Переключение
  - Уничтожение
  - Приоритеты

#### ПОТОК (ТРЕД, НИТЬ)

- Наименьшая единица обработки для ОС
- Поток существует как часть процесса
- Многопоточность способность ОС, платформы или приложения запускать много потоков в рамках одного процесса.



## ВОЗМОЖНОСТИ ОС, ПЛАТФОРМЫ, ПРОГРАММЫ



### КОМПОНЕНТЫ ПРОЦЕССА

- Идентификатор
- Контекст
- Состояние
- Приоритет
- Счетчик команд
- Указатель на память

- Информация о статусе устройств
- Другая информация

#### КОМПОНЕНТЫ ПОТОКА

- Состояние
- Контекст
- Стеки выполнения
- Ресурсы потока
- Ресурсы процесса

#### ОТЛИЧИЯ ОТ ПРОЦЕССА

- Поток зависим от процесса и является его частью
- Потоки и процессы используют одно адресное пространство
- Потоки более простая для ОС структура данных
- Переключение между потоками происходит быстрее



#### ОТЛИЧИЯ ОТ ПРОЦЕССА

- Решение ОС или пользователя по поводу процесса влияет на поток:
  - Приостановка процесса => приостановка всех потоков
  - Завершение процесса => завершение всех потоков

 Как и процессы, потоки имеют состояния и могут синхронизироваться с другими потоками



### СТРУКТУРА ПРОЦЕССА С ПОТОКАМИ

Процесс без многопоточности



Процесс с многопоточностю и несколькими потоками



#### выполнение потоков



#### РЕАЛИЗАЦИИ ПОТОКОВ

- На уровне Ядра (Kernel threads)
  - Потоки реализованы на уровне ОС
  - ОС хранит данные о потоках
- На уровне пользователя (User threads)
  - ОС не знает о существовании потока
  - Потоки реализованы на уровне приложения



### В ЧЕМ РАЗНИЦА?

- + ОС знает о потоках и может эффективно ими управлять
- + Хорошо подходит для приложений с частыми блокировками
- + ОС может запланировать выполнение потоков на разных ядрах процессора
- Передача контроля от одного потока к другому требует обращение к ядру ОС
- Реализация на уровне ОС является более медленной
- Дополнительные затраты на управление

# РЕАЛИЗАЦИИ ПОТОКОВ

#### Kernel-level Потоки



#### User-level Потоки



#### РЕАЛИЗАЦИЯ ПОТОКОВ

- На уровне Ядра (Kernel threads)
  - Потоки реализованы на уровне ОС
  - ОС хранит данные о потоках
- На уровне пользователя (User threads)
  - ОС не знает о существовании потока
  - Потоки реализованы на уровне приложения



# СПАСИБО ЗА ВНИМАНИЕ!

