H06T2A3

Es seien $f:\mathbb{R}\to\mathbb{R}$ und $g:]a,b[\to\mathbb{R}$ zwei C^∞ -Funktionen. Wir betrachten die Differentialgleichung mit getrennten Variablen

$$\dot{x} = f(t)g(x)$$

Sei x_0 eine Zahl zwischen zwei Nullstellen von g, dh. $x_1 < x_0 < x_2$ und $g(x_1) = g(x_2) = 0$. Folgt aus diesen Angaben bereits, dass die maximale Lösung von

$$\dot{x} = f(t)g(x) \quad x(0) = x_0$$

auf ganz \mathbb{R} definiert ist? Beweise deine Antwort.

Lösung:

$$h: \mathbb{R} \times]a, b[\to \mathbb{R}, \quad (t, x) \mapsto f(t) \cdot g(x) \in C^1(\underbrace{\mathbb{R} \times]a, b[}_{\text{offen, zusammenhängend}}), \quad (0, x_0) \in \mathbb{R} \times]a, b[$$

Nach dem globalen Existenz- und Eindeutigkeitssatz hat $\dot{x} = h(t,x) = f(t)g(x)$, $x(0) = x_0$ eine eindeutige maximale Lösung $\lambda_{(0,x_0)} : I_{(0,x_0)} \to \mathbb{R}$ (mit offenem Intervall $I_{(0,x_0)}$, $0 \in I_{(0,x_0)}$)

(Linear beschränkte rechte Seite kann hier nicht angewendet werden, da das Definitionsintervall von x nicht ganz \mathbb{R} ist und zudem haben wir gar keine Informationen zu g(x))

Da $g(x_1) = 0 = g(x_2)$ sind $\mathbb{R} \to \mathbb{R}$, $t \mapsto x_1$ und $\mathbb{R} \to \mathbb{R}$, $t \mapsto x_2$ Lösungen von $\dot{x} = f(t)g(x)$ zu den Anfangsbedingungen $x(0) = x_1$ bzw. $x(0) = x_2$, sind auf \mathbb{R} definiert und haben somit Randverhalten einer maximalen Lösung, also gilt $\lambda_{(0,x_1)} : \mathbb{R} \to \mathbb{R}$, $t \mapsto x_1$ und $\lambda_{(0,x_2)} : \mathbb{R} \to \mathbb{R}$, $t \mapsto x_2$

Der Graph ist $\Gamma(\lambda_{(0,x_0)}) = \{(t,\lambda_{(0,x_0)}(t)) : t \in I_{(0,x_0)}\} \subseteq \mathbb{R} \times]x_1, x_2[$, denn sobald es ein $T \in I_{(0,x_0)}$ mit $\lambda_{(0,x_0)}(T) \in]x_1, x_2[$ gibt (dann ist $T \neq 0$) und laut Zwischenwertsatz werden auch alle Werte zwischen $x_0 = \lambda_{(0,x_0)}(0)$ und $\lambda_{(0,x_0)}(T)$ angenommen, was einen Schnittpunkt des Graphen $\Gamma(\lambda_{(0,x_0)})$ mit $\Gamma(\lambda_{(0,x_1)})$ oder $\Gamma(\lambda_{(0,x_2)})$ gibt und dies widerspricht dem Eindeutigkeitssatz!

Ist
$$I_{(0,x_0)} =]c,d[$$

Angenommen $d < \infty$, dann ist

$$\Gamma_{+}(\lambda_{(0,x_0)}) = \{(t,\lambda_{(0,x_0)}(t)) : t \ge 0, t \in I_{(0,x_0)}\} \subseteq [0,d[\times]x_1,x_2[$$

 $\Rightarrow \overline{\Gamma_+(\lambda_{(0,x_0)})} \subseteq [0,d[\times[x_1,x_2] \text{ ist relativ kompakt in } \mathbb{R}\times]a,b[\text{ im Widerspruch zur Charakterisierung maximaler Lösungen.}]$

Angenommen $c > -\infty$,

$$\Rightarrow \Gamma_{-}(\lambda_{(0,x_{0})}) = \{(t,\lambda_{(0,x_{0})}(t)) : t \leq 0, \ t \in I_{(0,x_{0})}\} \subseteq]c,0] \times]x_{1},x_{2}[$$

 $\Rightarrow \overline{\Gamma_{-}(\lambda_{(0,x_0)})} \subseteq [c,0[\times[x_1,x_2] \text{ ist relativ kompakt in } \mathbb{R}\times]a,b[\text{ im Widerspruch zur Charakterisierung maximaler Lösungen.}]$

$$\Rightarrow I_{(0,x_0)} = \mathbb{R}$$