

طراحی و بهینه سازی مدارات منطقی ترکیبی با استفاده از الگوریتم ژنتیک

سیدمحسن موسوی و دانیال خشابی دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر moosavi.sm,d.khashabi}@gmail.com

سرفصل ها

- ▶ طراحی مدارات منطقی ترکیبی
- · روش های تکاملی طراحی مدارات منطقی
 - → بهینه سازی تکاملی
 - ا بحثی بر معیارهای طراحی
 - ﴿ روش اول معرفي شده
 - ا روش دوم معرفی شده
 - نتایج 🕨
 - ◄ جمع بندي

- [1] Arturo Hernández Aguirreet al, "Using Genetic Programming and Multiplexers for the Synthesis of Logic Circuits", *Engineering Optimization*, Vol. 36, No. 4, pp. 491--511, August 2004.
- [2] Sushil J. Louis, Gregory J.E. Rawlins: "Designer Genetic Algorithms: Genetic algorithms in StructureDesign", *Procs of the Fourth InternationalConference on Genetic Algorithm*, pages 53-60, 1991
- [3] J. R. Koza, "Genetic Programming; On the Programming of Computers by Means of Natural Selection", MIT Press, 1992.
- [4] C.A.C. Coello et al, "Toward Automated Evolutionary Design of Combinational Circuits", Department of Computer Science, Tulane University, New Orleans, USA, 1999.

- ا طراحی از مدارات منطقی ترکیبی ◄ با داشتن جدول درستی
 - ا روش های متداول (فقط دو طبقه):
 - جدول کارنو
 - o الگورىتم Quine-McClusky

^[1] Arturo Hernández Aguirreet al, "Using Genetic Programming and Multiplexers for the Synthesis of Logic Circuits", *Engineering Optimization*, Vol. 36, No. 4, pp. 491--511, August 2004.

^[2] Sushil J. Louis, Gregory J.E. Rawlins: "Designer Genetic Algorithms: Genetic algorithms in StructureDesign", *Procs of the Fourth InternationalConference on Genetic Algorithm*, pages 53-60, 1991

^[3] J. R. Koza, "Genetic Programming; On the Programming of Computers by Means of Natural Selection", MIT Press, 1992.

^[4] C.A.C. Coello et al, "Toward Automated Evolutionary Design of Combinational Circuits", Department of Computer Science, Tulane University, New Orleans, USA, 1999.

مرات می است می

- ا طراحی از مدارات منطقی ترکیبی ◄ با داشتن جدول درستی
 - روش های متداول (فقط دو طبقه): ▶
 - جدول کارنو
 - o الگوريتم Quine-McClusky
- ل طراحی با استفاده از روش های تکاملی ◄ سخت افزار تکاملی⁵ (EHW)
 - ↓ تاریخچه:
- ° اولین سعی برای استفاده از الگوریتمهای تکاملی برای بهینه سازی مدارها ◄ توسط Fridman
 - ° اولين استفاده از الگوريتم ژنتيک براي طراحي مدارات منطقي ◄ توسط S. J. Louis •

- [1] Arturo Hernández Aguirreet al, "Using Genetic Programming and Multiplexers for the Synthesis of Logic Circuits", *Engineering Optimization*, Vol. 36, No. 4, pp. 491--511, August 2004.
- [2] Sushil J. Louis, Gregory J.E. Rawlins: "Designer Genetic Algorithms: Genetic algorithms in StructureDesign", *Procs of the Fourth InternationalConference on Genetic Algorithm*, pages 53-60, 1991
- [3] J. R. Koza, "Genetic Programming; On the Programming of Computers by Means of Natural Selection", MIT Press, 1992.
- [4] C.A.C. Coello et al, "Toward Automated Evolutionary Design of Combinational Circuits", Department of Computer Science, Tulane University, New Orleans, USA, 1999.

- ا طراحی از مدارات منطقی ترکیبی ◄ با داشتن جدول درستی
 - روش های متداول (فقط دو طبقه): ▶
 - جدول کارنو
 - o الگوريتم Quine-McClusky
- - ↓ تاریخچه:
- ° اولين سعى براى استفاده از الگوريتمهاى تكاملى براى بهينه سازى مدارها ◄ توسط Fridman
 - ولين استفاده از الگوريتم ژنتيک برای طراحی مدارات منطقی ◄ توسط S. J. Louis
 - · برنامه ریزی ژنتیک م Koza با تاکید بر بدست آوردن جواب و طراحی [3]
- o پیاده سازی بهینه سازی ژنتیک بصورت باینری(BGA) و اعداد صحیح (N-cardinal) یا N-cardinal (AGA) و اعداد صحیح
 - $^{\circ}$ پیاده سازی چند هدفه (MGA) توسط $^{\circ}$
 - ۰ کار های دیگر برای بهینه سازی تکاملی روی مدارات منطقی
 - .ACO . PSO . GA+SA •
- [1] Arturo Hernández Aguirreet al, "Using Genetic Programming and Multiplexers for the Synthesis of Logic Circuits", *Engineering Optimization*, Vol. 36, No. 4, pp. 491--511, August 2004.
- [2] Sushil J. Louis, Gregory J.E. Rawlins: "Designer Genetic Algorithms: Genetic algorithms in StructureDesign", *Procs of the Fourth InternationalConference on Genetic Algorithm*, pages 53-60, 1991
- [3] J. R. Koza, "Genetic Programming; On the Programming of Computers by Means of Natural Selection", MIT Press, 1992.
- [4] C.A.C. Coello et al, "Toward Automated Evolutionary Design of Combinational Circuits", Department of Computer Science, Tulane University, New Orleans, USA, 1999.

هینه سازی تکاملی

- ا الگوریتمهای ژنتیک ◄ الگوریتم تکاملی ◄ با الهام از الگوی طبیعی گذار نسل ها و نظریهی انتخاب طبیعی داروین
 - ◄ جمعیتی از جواب ها ◄ بهبود در هر نسل
- تابع برازندگی 7 ، میزان انطباق کروموزم (میزان مناسب بودن جواب متناطر) را در مقایسه با مقادیر خواسته شده نمایش می دهد.

بحثی برمعیارهای طراحی

بحثی برمعیارهای طراحی

- ﴿ معيارها:
- ۰ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!

بحثی برمعیارهای طراحی

﴿ معيارها:

- ∘ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!
- ۰ نوع ترانزیستورهای بکاررفته ◄ ساختار برخی گیت ها ساده تراست!

بحثی برمعیارهای طراحی

- ∘ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!
- ∘ نوع ترانزیستورهای بکاررفته ◄ ساختار برخی گیت ها ساده تراست!
 - ∘ تعداد سطوح طراحی مدار ◄ سطوح بیشتر موجب تاخیر است!

بحثی برمعیارهای طراحی

◄ معیارها:

- ∘ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!
- ∘ نوع ترانزیستورهای بکاررفته ◄ ساختار برخی گیت ها ساده تراست!
 - ∘ تعداد سطوح طراحی مدار ◄ سطوح بیشتر موجب تاخیر است!
 - ∘ پیچیدگی الگوریتم ◄ الگوریتم با پیچیدگی کمتر مطلوب است.

بحثی برمعیارهای طراحی

- ∘ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!
- ۰ نوع ترانزیستورهای بکاررفته ◄ ساختار برخی گیت ها ساده تراست!
 - ∘ تعداد سطوح طراحی مدار ◄ سطوح بیشتر موجب تاخیر است!
 - ∘ پیچیدگی الگوریتم ◄ الگوریتم با پیچیدگی کمتر مطلوب است.
 - اجزای متغیر در افراد ◄ گیت ها، ورودی گیت ها
- ▶ باید مطمئن بود ساختار مورد نظر می تواند تمامی حالات را شامل شود ◄ کامل بودن
 - {AND,OR,NOT}-1
 - $\{AND,NOT\}_{-2}$
 - $\{OR, NOT\}$ -3
 - {NAND}-4
 - **NOR**}-5

بحثی برمعیارهای طراحی

- ∘ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!
- ∘ نوع ترانزیستورهای بکاررفته ◄ ساختار برخی گیت ها ساده تراست!
 - ∘ تعداد سطوح طراحی مدار ◄ سطوح بیشتر موجب تاخیر است!
 - ∘ پیچیدگی الگوریتم ◄ الگوریتم با پیچیدگی کمتر مطلوب است.
 - اجزای متغیر در افراد ◄ گیت ها، ورودی گیت ها
- ▶ باید مطمئن بود ساختار مورد نظر می تواند تمامی حالات را شامل شود ◄ کامل بودن
 - {AND,OR,NOT}-1
 - $\{AND,NOT\}_{-2}$
 - $\{OR, NOT\}$ -3
 - {NAND}-4
 - **NOR**}-5
 - ▶ افزایش مجموعه گیت ها:

بحثی برمعیارهای طراحی

- ۰ تعداد گیت های بکاررفته ◄ گیت کمتر، زندگی بهتر!
- ۰ نوع ترانزیستورهای بکاررفته ◄ ساختار برخی گیت ها ساده تراست!
 - ∘ تعداد سطوح طراحی مدار ◄ سطوح بیشتر موجب تاخیر است!
 - ∘ پیچیدگی الگوریتم ◄ الگوریتم با پیچیدگی کمتر مطلوب است.
 - اجزای متغیر در افراد ◄ گیت ها، ورودی گیت ها
- ▶ باید مطمئن بود ساختار مورد نظر می تواند تمامی حالات را شامل شود ◄ کامل بودن
 - {AND,OR,NOT}-1
 - $\{AND,NOT\}_{-2}$
 - $\{OR, NOT\}$ -3
 - {NAND}-4
 - **NOR**}-5
 - ▶ افزایش مجموعه گیت ها:
 - · موجب افزایش فضای جستجو
 - ا مکان کوچک تر شدن مدارات

کدینگ اول

- ﴿ هدف: طراحی مدار با گیت های دو ورودی
- مبدا ورودی ها: تمامی طبقات قبلی از جمله ورودی
- ♦ مجموعه گیت ها: NOR 'NAND 'OR 'AND 'NULL و NOR 'NAND 'OR 'AND 'NULL

ایران **کدینگ دوم**

- ▶ هدف: طراحی مدار منطقی با گیت های چندین ورودی
 - ♦ ورودی گیت ها: تمامی طبقات قبل از جمله ورودی
- ♦ NOR 'NAND 'OR 'AND 'NULL و NOR 'NAND 'NULL

- $f = \frac{w_{match} \times N_{match} + w_{null} \times N_{null}}{w_{match} + w_{null}}$
- تابع برازندگی:
 Null ۰
 تعداد گیت های Null ۰
- N-Match: تعداد خروجی های منطبق بر خروجی مطلوب
 - $\frac{w_{match}}{w_{null}} \cong 10$ نتایج مناسب به ازای $^{\circ}$

▶ تابع برازندگی:

- $f = \frac{w_{match} \times N_{match} + w_{null} \times N_{null}}{w_{match} + w_{null}}$
- Null عداد گیت های N-Null •
- N-Match: تعداد خروجی های منطبق بر خروجی مطلوب
 - $\frac{w_{match}}{w_{null}} \cong 10$ نتایج مناسب به ازای °
 - w_{null} جمعیت اولیه: تصادفی: افزایش پراکندگی جواب ها

▶ تابع برازندگی:

- $f = \frac{w_{match} \times N_{match} + w_{null} \times N_{null}}{w_{match} + w_{null}}$
- N-Null: تعداد گیت های N-Null •
- N-Match: تعداد خروجی های منطبق بر خروجی مطلوب
 - $\frac{w_{match}}{w_{mull}} \cong 10$ نتایج مناسب به ازای $^{\circ}$
 - w_{null} جمعیت اولیه: تصادفی: افزایش پراکندگی جواب ها
- \star عملگرژنتیکی ترکیب: روش یک نقطه ای : با انتخاب اندیس تصادفی $\dot{\mathbf{J}}$ به عنوان سطح، مدارات دو سمت اندیس را دو به دو به هم متصل کرده و مدار جدیدی را بدست می دهد.

▶ تابع برازندگی:

- $f = \frac{w_{match} \times N_{match} + w_{null} \times N_{null}}{w_{match} + w_{null}}$
- Null: تعداد گیت های N-Null •
- N-Match: تعداد خروجی های منطبق بر خروجی مطلوب
 - $\frac{W_{match}}{W_{mull}} \cong 10$ نتایج مناسب به ازای °
 - w_{null} جمعیت اولیه: تصادفی: افزایش پراکندگی جواب ها
- \star عملگرژنتیکی ترکیب: روش یک نقطه ای: با انتخاب اندیس تصادفی $\dot{\mathbf{J}}$ به عنوان سطح، مدارات دو سمت اندیس را دو به دو به هم متصل کرده و مدار جدیدی را بدست می دهد.
- ◄ عملگرژنتیکی جهش: خانه ای به طور تصادفی انتخاب کرده و مقادیر آن را به طور تصادفی
 عوض می کند.

- $f = \frac{w_{match} \times N_{match} + w_{null} \times N_{null}}{w_{match} + w_{null}}$
- تابع برازندگی:
 Null اتعداد گیت های Null
- N-Match: تعداد خروجی های منطبق بر خروجی مطلوب
 - $\frac{w_{match}}{w_{mull}} \cong 10$ نتایج مناسب به ازای °
 - w_{null} جمعیت اولیه: تصادفی: افزایش پراکندگی جواب ها
- \star عملگرژنتیکی ترکیب: روش یک نقطه ای: با انتخاب اندیس تصادفی $\dot{\mathbf{J}}$ به عنوان سطح، مدارات دو سمت اندیس را دو به دو به هم متصل کرده و مدار جدیدی را بدست می دهد.
- ◄ عملگرژنتیکی جهش: خانه ای به طور تصادفی انتخاب کرده و مقادیر آن را به طور تصادفی
 عوض می کند.
 - ✓ تضمین همگرایی برای هر تابعی: با استفاده از شکستن به دو قسمت

▶ تابع برازندگی:

- $f = \frac{w_{match} \times N_{match} + w_{null} \times N_{null}}{w_{match} + w_{null}}$
- Null: تعداد گیت های N-Null •
- N-Match: تعداد خروجی های منطبق بر خروجی مطلوب
 - $\frac{W_{match}}{W_{mull}} \cong 10$ نتایج مناسب به ازای °
 - w_{null} جمعیت اولیه: تصادفی: افزایش پراکندگی جواب ها
- \star عملگرژنتیکی ترکیب: روش یک نقطه ای: با انتخاب اندیس تصادفی $\dot{\mathbf{J}}$ به عنوان سطح، مدارات دو سمت اندیس را دو به دو به هم متصل کرده و مدار جدیدی را بدست می دهد.
- ◄ عملگرژنتیکی جهش: خانه ای به طور تصادفی انتخاب کرده و مقادیر آن را به طور تصادفی
 عوض می کند.
 - ▶ تضمین همگرایی برای هر تابعی: با استفاده از شکستن به دو قسمت
 - **روش انتخاب**: چرخ رولت: موجب پراکندگی اعضای نسل بعدی

تعداد سطوح	تعداد گیت ها	طراح
٣	(XOR ۱ ، OR ۱ ،NAND ۲ گیت (XOR ۱ ، OR ۱ ،NAND ۲	روش اول ارائه شده
٢	۳ گیت (XOR۱(سه ورودی)، NOR ۲ (سه ورودی))	روش اول ارائه شده
٣	(XOR ۱ ،OR ۱ ، AND ۲ گیت (XOR ۱ ،OR ۱ ،AND ۲	روش MGA
*	۵ گیت (NOT ۱ ،XOR ۲ ،OR ۱ ،AND ۱)	روش NGA
٣	۵ گیت (XOR ۲ ،1OR ،AND ۲)	طراحي انساني

تعداد سطوح	تعداد گیت ها	طراح
٣	۶ گیت (NOR ۱ ،NAND ۲ ،XOR ۳)	روش دوم ارائه شده
۵	(NOT ۱ ،XOR۳ ،OR۲، AND ۱ گیت	روش MGA
۶	۱۰ گیت (NOT ۲ ،XOR ۳ ،OR ۳ ،AND ۲)	روش NGA
۵	(NOT ۱ ،XOR۳ ،OR۳، AND ۱ گیت	روش BGA
*	۱۲ گیت (NOR ۳ ،NOT ۴ ،AND ۲ ،XOR ۳	روش Saso
٣	(XOR ۲،NOR ۲،NAND ۲ گیت	روش عسگریان
*	۱۱ گیت (NOT ۴ ، XOR ۲ ،OR ۱ ،AND ۴)	طراحی انسانی

 $f_3(W,X,Y,Z) = \sum (1,0,1,0,1,0,1,1,1,1,0,0,1,1,1) :$

تعداد سطوح	تعداد گيت ها	طراح
٣	(OR ۱،NAND ۱، XOR۲ ،NOR۲ گیت (روش اول ارائه شده
۴	۷ گیت (NOT ۱ ، AND ۲ ، OR ۲ ، XOR ۲)	روش NGA
۴	(NOT ۱ ، OR ۲ ، AND ۳ ، XOR ۲) گیت	روش BGA

ایران نمونه ای ازاجرای بهینه سازی

- بهینه سازی تحت MATLAB انجام می گیرند.
- نمایش دهنده ای با استفاده از کتابخانه ی Qt 4.6 طراحی شده است!
- کدهای بهینه سازی در این آدرس قابل دسترسی است: http://ele.aut.ac.ir/~khashabi/wp/?p=82

- ا پیچیدگی طراحی مدارات منطقی چند سطحی◄ استفاده از روش های بهینه سازی تکاملی
 - ﴿ دو روش ◄ طراحي مدارت منطقي ◄ با استفاده از الگوريتم ژنتيك.
 - ا با توجه به مقایسه ی نتایج ◄ نتایج بهتری ارائه شد.

- ا پیچیدگی طراحی مدارات منطقی چند سطحی◄ استفاده از روش های بهینه سازی تکاملی
 - ﴿ دو روش ◄ طراحي مدارت منطقي ◄ با استفاده از الگوريتم ژنتيك.
 - ا با توجه به مقایسه ی نتایج ◄ نتایج بهتری ارائه شد.
 - مزیت: ▶
 - طراحی مدارات با سطوح بیشتر
 - · هینه سازی چندین تابع بطور همزمان

- ا پیچیدگی طراحی مدارات منطقی چند سطحی◄ استفاده از روش های بهینه سازی تکاملی
 - ﴿ دو روش ◄ طراحي مدارت منطقي ◄ با استفاده از الگوريتم ژنتيك.
 - ا با توجه به مقایسه ی نتایج ◄ نتایج بهتری ارائه شد.
 - 🕨 مزیت:
 - طراحی مدارات با سطوح بیشتر
 - پینهسازی چندین تابع بطور همزمان
 - عیب:
 - عدم کارامدی عملی برای تعداد متغیر های زیاد

- ۷ پیچیدگی طراحی مدارات منطقی چند سطحی◄ استفاده از روش های بهینه سازی تکاملی
 - ﴿ دو روش ◄ طراحي مدارت منطقي ◄ با استفاده از الگوريتم ژنتيك.
 - ا با توجه به مقایسه ی نتایج ◄ نتایج بهتری ارائه شد.
 - 🕨 مزیت:
 - طراحی مدارات با سطوح بیشتر
 - هینه سازی چندین تابع بطور همزمان
 - عیب:
 - عدم کارامدی عملی برای تعداد متغیر های زیاد
 - کار های پیشنهادی برای آینده:
 - تمرکز روی بهینه سازی چند منظوره
 - ترکیب بهینه سازی تکاملی با روش های ابتکاری(Heuristic):
 - نیاز به بدست آوردن جواب های با خروجی دقیق و شبه بهینه روی اندازه ی گیت
 - افزایش سرعت و توانایی برای بهینه سازی با تعداد متغیر های بالا (مثلا 50 متغیر)

سوال/پیشنهاد/انتقاد؟ با تشکراز توجه شما!