Scaling Up Inductive Logic Programming by Learning From Interpretations

Hendrik Blockeel
Luc De Raedt
Nico Jacobs
Bart Demoen
Report CW 297, August 2000

Katholieke Universiteit Leuven Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Scaling Up Inductive Logic Programming by Learning From Interpretations*

Hendrik Blockeel
Luc De Raedt
Nico Jacobs
Bart Demoen
Report CW 297, August 2000

Department of Computer Science, K.U.Leuven

Abstract

When comparing inductive logic programming (ILP) and attributevalue learning techniques, there is a trade-off between expressive power and efficiency. Inductive logic programming techniques are typically more expressive but also less efficient. Therefore, the data sets handled by current inductive logic programming systems are small according to general standards within the data mining community. The main source of inefficiency lies in the assumption that several examples may be related to each other, so they cannot be handled independently.

Within the learning from interpretations framework for inductive logic programming this assumption is unnecessary, which allows to scale up existing ILP algorithms. In this paper we explain this learning setting in the context of relational databases. We relate the setting to propositional data mining and to the classical ILP setting, and show that learning from interpretations corresponds to learning from multiple relations and thus extends the expressiveness of propositional learning, while maintaining its efficiency to a large extent (which is not the case in the classical ILP setting).

As a case study, we present two alternative implementations of the ILP system Tilde (Top-down Induction of Logical DEcision trees): Tilde classic, which loads all data in main memory, and Tilde LDS, which loads the examples one by one. We experimentally compare the implementations, showing Tilde LDS can handle large data sets (in the order of 100,000 examples or 100 MB) and indeed scales up linearly in the number of examples.

Keywords: Inductive logic programming, machine learning, data mining. **AMS(MOS) Classification:** Primary: I.2.6, Secondary: I.2.3.

^{*}A version of this report has appeared in Data Mining and Knowledge Discovery 3(1), 1999

1 Introduction

There is a general trade-off in computer science between expressive power and efficiency. Theorem proving in first order logic is less efficient but more expressive than theorem proving in propositional logic. It is therefore no surprise that first order induction techniques (such as those studied within inductive logic programming) are less efficient than propositional or attribute-value learning techniques. On the other hand, inductive logic programming is able to solve induction problems beyond the scope of attribute value learning, cf. (Bratko and Muggleton, 1995).

The computational requirements of inductive logic programming systems are higher than those of propositional learners due to the following reasons: first, the space of clauses considered by inductive logic programming systems typically is much larger than that of propositional learners and can even be infinite. Second, testing whether a clause covers an example is more complex than in attribute value learners. In attribute value learners an example corresponds to a single tuple in a relational database, whereas in inductive logic programming one example may correspond to multiple tuples of multiple relations. Therefore, the coverage test in inductive logic programming needs a database system to solve complex queries or even a theorem prover. Third, and this is related to the second point, in attribute value learning testing whether an example is covered is done locally, i.e. independently of the other examples. Therefore, even if the data set is huge, a specific coverage test can be performed efficiently. This contrasts with the large majority of inductive logic programming systems, such as FOIL (Quinlan, 1990) or Progol (Muggleton, 1995), in which coverage is tested globally, i.e. to test the coverage of one example the whole ensemble of examples and background theory needs to be considered¹. Global coverage tests are much more expensive than local ones. Moreover, systems using global coverage tests are hard to scale up. Due to the fact that one single coverage test (on one example) typically takes more than constant time in the size of the database, the complexity of induction systems exploiting global coverage tests will grow more than linearly in the number of examples.

In a more recent setting for inductive logic programming, called learning from interpretations (De Raedt and Džeroski, 1994; De Raedt et al., 1998), it is assumed that each example is a small database (or a part of a global database), and local coverage tests are performed. Algorithms using local coverage tests are typically linear in the number of examples. Furthermore, as each example can be loaded independently of the other ones, there is no need to use a database system even when the whole data set cannot be loaded into main memory.

Within the setting of learning from interpretations, we investigate the issue of scaling up inductive logic programming. More specifically, we present two alternative implementations of the TILDE system (Blockeel and De Raedt, 1998): TILDE classic, which loads all data in main memory, and TILDE LDS, which loads the examples one by one. The latter is inspired by the work by Mehta et al. (1996), who propose a level-wise algorithm that needs one pass through the data per level of the tree it builds. Furthermore, we experimentally compare the algorithms on large data sets involving 100,000 examples (in the order of 100 MBytes). The experiments clearly show that inductive logic programming systems can be scaled up to satisfy the standards imposed by the data mining community. At the same time, this provides evidence in favor of local coverage tests (as in learning from interpretations) in inductive logic programming.

This article is organized as follows. In Section 2 we introduce the learning from interpretations setting and relate it to the relational database context. In Section 3 we introduce first order logical decision trees and discuss the ILP system TILDE,

¹E.g., testing the coverage of member(a, [b, a]) may depend on member(a, [a]).

which induces such trees. Section 4 shows how many propositional techniques can be upgraded to the learning from interpretations setting (using TILDE as an illustration), and discusses why this is much harder for the classical ILP setting. Section 5 reports on experiments with TILDE through which we empirically validate our claims, Section 6 discusses some related work and in Section 7 we conclude.

2 The learning setting

We first introduce the problem specification in a logical context, then discuss it in the context of relational databases, and finally relate it to the standard inductive logic programming setting.

We assume familiarity with Prolog or Datalog (see e.g. (Bratko, 1990)), and relational databases (see e.g. (Elmasri and Navathe, 1989)).

A word on our notation: in logical formulae we will adopt the Prolog convention that names starting with a capital denote variables, and names starting with a lowercase character denote constants.

2.1 Problem specification

In our framework, each example is a set of facts. These facts encode the specific properties of the examples in a database. Furthermore, each example is classified into one of a finite set of possible classes. One may also specify background knowledge in the form of a Prolog program.

More formally, the problem specification is:

Given:

- a set of classes C (each class label c is a nullary predicate),
- a set of classified examples E (each element of E is of the form (e, c) with e a set of facts and e a class label)
- and a background theory B,

Find: a hypothesis H (a Prolog program), such that for all $(e, c) \in E$,

- $H \wedge e \wedge B \models c$, and
- $\forall c' \in C \{c\} : H \land e \land B \not\models c'$

This setting is known in inductive logic programming under the label *learning* from interpretations (De Raedt and Džeroski, 1994; De Raedt, 1997; De Raedt et al., 1998) (an interpretation is just a set of facts). Notice that within this setting, one always learns first order definitions of propositional predicates (the classes). An implicit assumption is that the class of an example depends on that example only, not on any other examples. This is a reasonable assumption for many classification problems, though not for all; it precludes, e.g., recursive concept definitions.

Example 1 Figure 1 shows a set of pictures each of which is labelled \ominus or \ominus . The task is to classify new pictures into one of these classes by looking at the objects in the pictures. We call this kind of problems Bongard-problems, after Mikhail Bongard, who used similar problems for pattern recognition tests (Bongard, 1970).

Assuming we only consider the shape, configuration (pointing upwards or downwards, for triangles only) and relative position (objects may be inside other objects) of objects, the pictures in Figure 1 can be represented as follows:

Figure 1: Bongard problems

(The o_i are constants denoting geometric objects. The exact names of these constants are of no importance; they will not be referred to in the first order hypothesis.)

Background knowledge might be provided to the learner, e.g., the following definitions could be in the background:

```
doubletriangle(01,02) :- triangle(01), triangle(02), 01 \neq 02. polygon(0) :- triangle(0). polygon(0) :- square(0).
```

When considering a particular example (e.g. Picture 2) in conjunction with the background knowledge it is possible to deduce additional facts in the example. For instance, in Picture 2, the facts doubletriangle(04,05) and polygon(04) hold.

The format of a hypothesis in this setting will be illustrated later.

2.2 Learning from Multiple Relations

The learning from interpretations setting, as introduced before, can easily be related to learning from multiple relations in a relational database.

Typically, each predicate will correspond to one relation in the relational database. Each fact in an interpretation is a tuple in the database, and an interpretation corresponds to a part of the database (a set of tuples). Background knowledge can be expressed by means of views as well as extensional tables.

Example 2 For the Bongard example, the following database contains a description of the first two pictures in Figure 1 (note that an extra relation CONTAINS is introduced, linking objects to pictures; this relation was implicit in the previous representation):

CONTAINS

picture	object
1	01
1	o2
2	o3
2	04
2	o5

CIRCLE	TRIANGLE	POINTS		INSIDE	
object	object	object	direction	inner	outer
o1	02	02	up	02	01
03	04	04	up	04	o5
	05	05	down		

The background knowledge can be defined using views, as follows: (we are assuming here that a relation SQUARE is also defined)

```
DEFINE VIEW doubletriangle AS
SELECT c1.object, c2.object
FROM contains c1, c2
WHERE c1.object <> c2.object
AND c1.picture = c2.picture
AND c1.object IN triangle
AND c2.object IN triangle;
DEFINE VIEW polygon AS
SELECT object FROM triangle
```

SELECT object FROM square;

In this example the background knowledge is in a sense redundant: it is computed from the other relations. This is not necessarily the case. The following example illustrates this. It is also a more realistic example of an application where mining multiple relations is useful.

Example 3 Assume that one has a relational database describing molecules. The molecules themselves are described by listing the atoms and bonds that occur in them, as well as some properties of the molecule as a whole. Mendelev's periodic table of elements is a good example of background knowledge about this domain.

The following tables illustrate what such a chemical database could look like:

MENDELEV

UNION

number	symbol	atomic weight	electrons in outer layer	
1	H	1.0079	1	
2	He	4.0026	2	
3	Li	6.941	1	
4	Be	9.0121	2	
5	B	10.811	3	
6	C	12.011	4	
			• • •	

MOLECULES CONTAINS

formula	name	class	molecule	atom_id
H_2O	water	inorganic	H_2O	h2o-1
CO_2	$carbon\ dioxide$	in organic	H_2O	h2o-2
CO	$carbon\ monoxide$	in organic	H_2O	h2o-3
CH_4	methane	organic	CO_2	co2-1
CH_3OH	methanol	organic	CO_2	co2- 2

	ATOMS		BONDS		
•	atom_id	element	atom_id1	$atom_id2$	type
	h2o-1	H	h2o-1	h2o-2	single
	h2o-2	O	h2o-2	h2o-3	single
	h2o-3	H	co2-1	co2-2	double
	co2-1	O	co2-2	co2-3	double

A possible classification problem here is to classify unseen molecules into organic and inorganic molecules, based on their chemical structure.

Notice that this representation of examples and background knowledge upgrades the typical attribute value learning representation in two respects. First, in attribute value learning an example corresponds to a single tuple for a single relation. Our representation allows for *multiple* tuples in *multiple* relations. Second, it also allows for using background knowledge.

By joining all the relations in a database into one huge relation, one can of course eliminate the need for learning from multiple relations. The above example should make clear that in many cases this is not an option. The information in Mendelev's table, for instance, would be duplicated many times. Moreover, unless a multiple-instance learner is used (see e.g. (Dietterich et al., 1997)) all the atoms a molecule consists of, together with their properties, have to be stored in one tuple, so that an indefinite number of attributes is needed; see (De Raedt, 1998) for a more detailed discussion.

While mining such a database is not feasible using propositional techniques, it is feasible using learning from interpretations. We proceed to show how a relational database can be converted into a suitable format.

Conversion from relational database to interpretations

Converting a relational database to a set of interpretations can be done easily and in a semi-automated way, as follows:

Decide which relations are background knowledge.

Let DB be the original database without the background relations.

Choose an attribute in a relation that uniquely identifies the examples.

For each value i of that attribute:

S := set of all tuples in DB containing that value repeat

 $S:=S\cup$ set of all tuples in DB referred to by a foreign key in S until S does not change anymore

 $S_i := S$

The tuples in S are here assumed to be labelled with the name of the relation they are part of. A tuple $(attr_1, \ldots, attr_n)$ of a relation R can trivially be converted to a fact $R(attr_1, \ldots, attr_n)$. By doing this conversion for all S_i , each S_i becomes a set of facts describing an individual example i. The extensional background

relations can be converted in the same manner into one set of facts that forms the background knowledge. Background relations defined by views can be converted to equivalent Prolog programs.

The only parts in this conversion process that are hard to automate are the selection of the background knowledge (typically, one selects those relations where each tuple can be relevant for many examples) and the conversion of view definitions to Prolog programs. Also, the user must indicate which attribute should be chosen as an example identifier, as this depends on the learning task.

Example 4 In the chemical database, we choose as example identifier the molecular formula. The background knowledge consists of the table MENDELEV. In order to build a description of H_2O , one first collects the tuples containing H_2O ; these are present in MOLECULES and CONTAINS. These tuples contain references to $\mathbf{atom_id}$'s h2o-i, i=1,2,3, so the tuples containing those symbols are also collected (tuples from ATOMS and BONDS). These again refer to the elements H and O, which are foreign keys for the MENDELEV relation. Since this relation is in the background, no further tuples are collected. Converting the tuples to facts, we get the following description of H_2O :

{molecules('H2O', water, inorganic), contains('H2O', h2o-1), contains('H2O', h2o-2), contains('H2O', h2o-3), atoms(h2o-1, 'H'), atoms(h2o-2, 'O'), atoms(h2o-3, 'H'), bonds(h2o-1, h2o-2, single), bonds(h2o-2, h2o-3, single)}

Some variations of this algorithm can be considered. For instance, when the example identifier has no meaning except that it identifies the example (as the picture numbers 1 and 2 for the Bongard example), this attribute can be left out from the example description.

The key notion in this conversion process is *localization of information*. It is assumed that for each example only a relatively small part of the database is relevant, and that this part can be localized and extracted. From now on, we will refer to this assumption as the *locality assumption*.

2.3 The standard ILP setting

We now briefly discuss the standard ILP setting and how it differs from our setting. For a more thorough discussion of different ILP settings and the relationships among them we refer to (De Raedt, 1997).

The standard ILP setting (also known as *learning from entailment*) is usually formulated as follows:

Given:

- a set of positive examples E^+ and a set of negative examples E^-
- and a background theory B,

Find: a hypothesis H (a Prolog program), such that

- $\forall e \in E^+ : H \wedge B \models e$, and
- $\forall e \in E^- : H \land B \not\models e$

Note that in this setting, an example e is a fact (or clause) that is to be explained by $H \wedge B$, while in the learning from interpretations setting a property of the example (its class) is to be explained by $H \wedge B \wedge e$. Thus, the latter setting explicitates the separation between example-specific information and general background information.

The problem specification as given above is natural for the standard ILP setting, where one could, for instance, give the following examples for the predicate member:

```
+: member(a, [a,b,c]).
+: member(d, [e,d,c,b]).
+: member(d, [d,c,b]).
-: member(b, [a,c,d]).
-: member(a, []).
-: member(d, [c,b]).
and expect the ILP system to come up with the following definition:
member(X, [X|Y]).
member(X, [Y|Z]) :- member(X,Z).
```

Note that the class of an example (i.e., its truth value) now depends on the class of other examples; e.g., the class of member(d, [e,d,c,b]) depends on the class of member(d, [d,c,b]), which is a different example. Because of this property, it is in general not possible to find a small subset of the database that is relevant for a single example, i.e., local coverage tests cannot be used. Results from computational learning theory confirm that learning hypotheses in this setting generally is intractable (see e.g. (Džeroski et al., 1992; Cohen, 1995; Cohen and Page, 1995)).

Since in learning from interpretations the class of an example is assumed to be independent of other examples, this setting is less powerful than the standard ILP setting (e.g., for what concerns recursion). With this loss of power comes a gain in efficiency, through local coverage tests. The interesting point is that the full power of standard ILP is not used for most practical applications, and learning from interpretations usually turns out to be sufficient for practical applications, see e.g. the proceedings of the ILP workshops and conferences of the last few years (De Raedt, 1996; Muggleton, 1997; Lavrač and Džeroski, 1997; Page, 1998).

3 TILDE: Induction of First-Order Logical Decision Trees

In this section, we discuss one specific ILP system that learns from interpretations, called TILDE (which stands for Top-down Induction of Logical DEcision trees). This system will be used to illustrate the topics discussed in the following sections.

We first introduce the hypothesis representation formalism used by TILDE, then discuss an algorithm for the induction of hypotheses in this formalism.

3.1 First order logical decision trees

We will use first order logical decision trees for representing hypotheses. These are an upgrade of the well-known propositional decision trees to first order learning.

A first order logical decision tree (FOLDT) is a binary decision tree in which

- the nodes of the tree contain a conjunction of literals
- different nodes may share variables, under the following restriction: a variable that is introduced in a node (which means that it does not occur in higher nodes) must not occur in the right branch of that node. The need for this restriction follows from the semantics of the tree. A variable X that is introduced in a node, is quantified existentially within the conjunction of that node. The right subtree is only relevant when the conjunction fails ("there is no such X"), in which case further reference to X is meaningless.

An example of such a tree is shown in Figure 2.

Figure 2: A first order logical decision tree that allows to discriminate the two classes for the Bongard problem shown in Figure 1.

First order logical decision trees can be converted to normal logic programs (i.e. logic programs that allow negated literals in the body of a clause) and to Prolog programs. In the latter case the Prolog program represents a first order decision list, i.e. an ordered set of rules where a rule is only relevant if none of the rules before it succeed. Each clause in such a Prolog program ends with a cut. We refer to (Blockeel and De Raedt, 1998) for more information on the relationship between first order decision trees, first order decision lists and logic programs.

The Prolog program equivalent to the tree in Figure 2 is²

```
class(pos) :- triangle(X), inside(X,Y), !.
class(neg) :- triangle(X), !.
class(neg).
```

Figure 3 shows how to use FOLDTs for classification. We use the following notation: a tree T is either a leaf with class c, in which case we write $T = \mathbf{leaf}(c)$, or it is an internal node with conjunction conj, left branch left and right branch right, in which case we write $T = \mathbf{inode}(conj, left, right)$.

Because an example e is a Prolog program, a test in a node corresponds to checking whether a query $\leftarrow C$ succeeds in $e \land B$ (with B the background knowledge). Note that it is not sufficient to use for C the conjunction conj in the node itself. Since conj may share variables with nodes higher in the tree, C consists of several conjunctions that occur in the path from the root to the current node. More specifically, C is of the form $Q \land conj$, where Q is the conjunction of all the conditions that occur in those nodes on the path from the root to this node where the left branch was chosen. We call $\leftarrow Q$ the associated query of the node.

When an example is sorted to the left, Q is updated by adding conj to it. When sorting an example to the right, Q need not be updated: a failed test never introduces new variables. E.g., if in Figure 2 an example is sorted down the tree, in the node containing inside(X,Y) the correct test is triangle(X), inside(X,Y); it is not correct to test inside(X,Y) on its own.

3.2 The TILDE system

First order logical decision trees can be induced in very much the same manner as propositional decision trees. The generic algorithm for this is usually referred to

 $^{^{2}}$ The Prolog program entails class(c) instead of c, in order to ensure that the cuts have the intended meaning; this is a merely syntactical difference with the original task formulation.

```
\begin{aligned} \mathbf{procedure} & \operatorname{classify}(e:\mathbf{example}) & \mathbf{returns} & \mathbf{class}: \\ Q & := true \\ N & := \operatorname{root} \\ & \mathbf{while} & N \neq \mathbf{leaf}(c) & \mathbf{do} \\ & \mathbf{let} & N = \mathbf{inode}(conj, left, right) \\ & \mathbf{if} & Q \wedge conj & \operatorname{succeeds} & \operatorname{in} & e \wedge B \\ & \mathbf{then} & Q & := Q \wedge conj \\ & N & := left \\ & \mathbf{else} & N & := right \\ & \mathbf{return} & c \end{aligned}
```

Figure 3: Classification of an example using an FOLDT (with background knowledge B)

```
procedure buildtree(T: tree, E: set of examples, Q: query):
\leftarrow Q_b := \text{element of } \rho(\leftarrow Q) \text{ with highest gain (or gain ratio)}
if \leftarrow Q_b is not good /* e.g. does not yield any gain at all */
then T := \text{leaf}(\text{majority\_class}(E))
else
conj := Q_b - Q
E_1 := \{e \in E | \leftarrow Q_b \text{ succeeds in } e \land B\}
E_2 := \{e \in E | \leftarrow Q_b \text{ fails in } e \land B\}
buildtree(left, E_1, Q_b)
buildtree(right, E_2, Q)
T := \text{inode}(conj, left, right)
procedure Tilde(T: tree, E: set of examples):
buildtree(T, E, true)
```

Figure 4: Algorithm for first-order logical decision tree induction

as TDIDT: top-down induction of decision trees. Examples of systems using this approach are C4.5 (Quinlan, 1993a) and CART (Breiman et al., 1984).

The algorithm we use for inducing first order decision trees is shown in Figure 4. The TILDE system (Blockeel and De Raedt, 1998) is an implementation of this algorithm that is based on C4.5. It uses the same heuristics, the same post-pruning algorithm, etc.

The main point where our algorithm differs from C4.5 is in the computation of the set of tests to be considered at a node. C4.5 only considers tests comparing an attribute with a value. TILDE, on the other hand, generates possible tests by means of a user-defined refinement operator. Roughly, this operator specifies, given the associated query of a node, which literals or conjunctions can be added to the query.

More specifically, the refinement operator is a refinement operator under θ -subsumption (Plotkin, 1970; Muggleton and De Raedt, 1994). Such an operator ρ maps clauses onto sets of clauses, such that for any clause c and $\forall c' \in \rho(c)$, c θ -subsumes c'. A clause c_1 θ -subsumes another clause c_2 if and only if there exists a variable substitution θ such that $c_1\theta \subseteq c_2$. The operator could for instance add literals to the clause, or unify several variables in it. The use of such refinement operators is standard practice in ILP.

In order to refine a node with associated query $\leftarrow Q$, TILDE computes $\rho(\leftarrow Q)$ and chooses the query $\leftarrow Q_b \in \rho(\leftarrow Q)$ that results in the best split. The best split is the one that maximizes a certain quality criterion; in the case of TILDE this is by default the information gain ratio, as defined by Quinlan (1993a). The conjunction put in the node consists of $Q_b - Q$, i.e., the literals that have been added to Q in order to produce Q_b .

Example 5 Consider the tree in Figure 2. Assuming that the root node has already been filled in with the test triangle(X), how does TILDE process the left child of it? This child has as associated query \leftarrow triangle(X). TILDE now generates $\rho(\leftarrow \text{triangle}(X))$. According to the language bias specified by the user (see below), a possible result could be (we use semicolons to separate the elements of ρ , as the comma denotes a conjunction in Prolog)

```
\begin{split} \rho(\leftarrow \texttt{triangle(X)}) = \big\{ \leftarrow \texttt{triangle(X), inside(X,Y)}; \\ \leftarrow \texttt{triangle(X), inside(Y,X)}; \\ \leftarrow \texttt{triangle(X), square(Y)}; \\ \leftarrow \texttt{triangle(X), circle(Y)} \big\} \end{split}
```

Assuming the best of these refinements is $Q_b = \text{triangle(X)}$, inside(X,Y) the conjunction put in the node is $Q_b - Q = \text{inside(X,Y)}$.

Language bias

While propositional systems usually have a fixed language bias, most ILP systems make use of a language bias that has been provided by the user. The language bias specifies what kind of hypotheses are allowed; in the case of TILDE: what kind of literals or conjunctions of literals can be put in the nodes of the tree. This bias follows from the refinement operator, so it is sufficient to specify the latter. The specific refinement operator that is to be used is defined by the user in a PROGOL-like manner (Muggleton, 1995). A set of facts of the form rmode(n: conjunction) is provided, indicating which conjunctions can be added to a query, the maximal number of times the conjunction can be added (i.e. the maximal number of times it can occur in any path from root to leaf, n), and the modes and types of its variables.

To illustrate this, we return to the example of the Bongard problems. A suitable refinement operator definition in this case would be

```
rmode(5: triangle(+-V)).
rmode(5: square(+-V)).
rmode(5: circle(+-V)).
rmode(5: inside(+V,+-W)).
rmode(5: inside(-V,+W)).
rmode(5: config(+V,up)).
rmode(5: config(+V,down)).
```

The mode of an argument is indicated by a+,- or +- sign before a variable. + stands for input: the variable should already occur in the associated query of the node where the test is put. - stands for output: the variable has to be one that does not occur yet. +- means that the argument can be both input and output; i.e. the variable can be a new one or an already existing one. Note that the names of the variables in the rmode facts are formal names; when the literal is added to a clause actual variable names are substituted for them. Also note that a literal can have multiple modes, e.g. the above facts specify that at least one of the two arguments of inside has to be input.

This rmode definition tells TILDE that a test in a node may consist of checking whether an object that has already been referred to has a certain shape (e.g. triangle(X) with X an already existing variable), checking whether there exists an object with a certain shape in the picture (e.g. triangle(Y) with Y not occurring in the associated query), testing the configuration (up or down) of a certain object, and so on. At most 5 literals of a certain type can occur on any path from root to leaf (this is indicated by the 5 in the rmode facts).

The decision tree shown in Figure 2 conforms to this specification. When TILDE builds this tree, in the root node only the tests triangle(X), square(X) and circle(X) are considered, because each other test requires some variable to occur in the associated query of the node (which for the root node is true). The left child node of the root has as associated query $\leftarrow triangle(X)$, which contains one variable X, hence the tests that are considered for this node are:

triangle(X)	triangle(Y)	inside(X,Y)	<pre>points(X,up)</pre>
square(X)	square(Y)	inside(Y,X)	<pre>points(X,down)</pre>
circle(X)	circle(Y)		

Assuming that inside(X,Y) yields the best split, this literal is put in the node.

In addition to rmodes, so-called lookahead specifications can be provided. These allow TILDE to perform several successive refinement steps at once. This alleviates the well-known problem in ILP (see e.g. (Quinlan, 1993b)) that a refinement may not yield any gain, but may introduce new variables that are crucial for classification. By performing successive refinement steps at once, TILDE can look ahead in the refinement lattice and discover such situations.

For instance, lookahead(triangle(T), points(T,up)) specifies that whenever the literal triangle(T) is considered as possible addition to the current associated query, additional refinement by adding points(T,up) should be tried in the same refinement step. Thus, both triangle(T) and triangle(T), points(T,up) would be considered as possible addition. This is useful because normally TILDE can construct the test triangle(T), points(T,up) only by first putting triangle(T) in the node, then putting points(T,up) in its left child node. But if triangle(X) already occurs in the associated query, then triangle(T) cannot yield any gain (if you already know that there is a triangle, the question "is there a triangle" will not give you new information) and hence would never be selected, and this would prevent points(T,up) from being added as well.

This lookahead method is very similar to lookahead methods that have been proposed for propositional decision tree learners. While for propositional systems

the advantage of lookahead is generally considered to be marginal, it is much greater in ILP because of the occurrence of variables.

We finally mention that TILDE handles numerical data by means of a discretization algorithm that is based on Fayyad and Irani's (1993) and Dougherty et al.'s (1995) work, but extends it to first order logic (Van Laer et al., 1997). The algorithm accepts input of the form discretize(Query, Var), with Var a variable occurring in Query. It runs Query in all the examples, collecting all instantiations of Var that can be found, and finally generates discretization thresholds based on this set of instantiations. Since this discretization procedure is not crucial to this paper, we refer to (Van Laer et al., 1997; Blockeel and De Raedt, 1997) for more details.

Input Format

A data set is presented to TILDE in the form of a set of interpretations. Each interpretation consists of a number of Prolog facts, surrounded by a begin and end line. The background knowledge is simply a Prolog program. Examples of this will be shown in Section 5.

Applications of TILDE

Although the above discussion of TILDE takes the viewpoint of induction of classifiers, the use of first order logical decision trees is not limited to classification. Numerical predictions can be made by storing numbers instead of classes in the leaves; such trees are usually called regression trees. Another task that is important for data mining, is clustering. Induction of cluster hierarchies can also be done using a TDIDT approach, as is explained in (Blockeel et al., 1998).

It should be clear, therefore, that the techniques that will be described later in this text should not be seen as specific for the classification context. They have a much broader application domain.

4 Upgrading Propositional KDD Techniques for Tilde

In this section we discuss how existing propositional KDD techniques can be upgraded to first order learning in our setting. The TILDE system will serve as a case study here. Indeed, all of the techniques proposed below (except sampling) have been implemented in TILDE. We stress, however, that the methodology of upgrading KDD techniques is not specific for TILDE, nor for induction of decision trees. It can also be used for rule induction, discovery of association rules, and other kinds of discovery. Systems such as CLAUDIEN (De Raedt and Dehaspe, 1997), ICL (De Raedt and Van Laer, 1995) and WARMR (Dehaspe and De Raedt, 1997) are illustrations of this. Both learn from interpretations and upgrade propositional techniques. ICL learns first order rule sets, upgrading the techniques used in CN2, and WARMR learns a first order equivalent of association rules ("association rules over multiple relations"). WARMR has been designed specifically for large databases and employs an efficient algorithm that is an upgrade of Apriori (Agrawal et al., 1996).

4.1 Different Implementations of TILDE

We discuss two different implementations of TILDE: one is a straightforward implementation, following closely the TDIDT algorithm. The other is a more sophisticated implementation that aims specifically at handling large data sets; it is

```
 \begin{array}{lll} \textbf{for each} & \text{refinement} \leftarrow Q_i: \\ & /^* & counter[true] & and & counter[false] & are & class & distributions, \\ & & i.e. & arrays & mapping & classes & onto & their & frequencies & */ \\ & \textbf{for each} & class & c: & counter[true][c]:=0, & counter[false][c]:=0 \\ & \textbf{for each} & example & e: \\ & & \textbf{if} \leftarrow Q_i & \text{succeeds in } e \\ & & \textbf{then} & \text{increase counter}[true][class(e)] & \text{by } 1 \\ & & \textbf{else} & \text{increase counter}[false][class(e)] & \text{by } 1 \\ & s_i := & \text{weighted\_average\_class\_entropy}(\text{counter}[\text{true}], & \text{counter}[\text{false}]) \\ & Q_b := & \text{that } Q_i & \text{for which } s_i & \text{is minimal} & /^* & highest & gain & */ \\ \end{array}
```

Figure 5: Computation of the best test Q_b in Tildeclassic.

based on work by Mehta et al. (1996), and as such is our first example of how propositional techniques can be upgraded.

4.1.1 A straightforward implementation: Tildeclassic

The original TILDE implementation, which we will refer to as TILDE classic, is based on the algorithm shown in Figure 4. This is the most straightforward way of implementing TDIDT.

Noteworthy characteristics are that the tree is built depth-first, and that the best test is chosen by enumerating the possible tests and for each test computing its quality (to this aim the test needs to be evaluated on every single example), as is shown in Figure 5. This algorithm should be seen as a detailed description of line 6 in Figure 4.

Note that with this implementation, it is crucial that fetching an example from the database in order to query it is done as efficiently as possible, because this operation is inside the innermost loop. For this reason, Tildeclassic loads all data into main memory when it starts up. Localization is then achieved by using the module system of the Prolog engine in which Tilde runs. Each example is loaded into a different module, and accessing an example is done by changing the currently active module, which is a very cheap operation. One could also load all the examples into one module; no example selection is necessary then, and all data can always be accessed directly. The disadvantage is that the relevant data needs to be looked up in a large set of data, so that a good indexing scheme is necessary in order to make this approach efficient. We will return to this in the section on experiments.

We point out that, when examples are loaded into different modules, Tildeclassic partially exploits the locality assumption (in that it handles each individual example independently from the others, but still loads all the examples in main memory). It does not exploit this assumption at all when all the examples are loaded into one module.

4.1.2 A more sophisticated implementation: TildeLDS

Mehta et al. (1996) proposed an alternative implementation of TDIDT that is oriented towards mining large databases. With their approach, the database is accessed less intensively, which results in an important efficiency gain. We have adopted this approach for an alternative implementation of TILDE, which we call TILDE LDS (LDS stands for $Large\ Data\ Sets$).

The alternative algorithm is shown in Figure 6. It differs from TILDE classic in that the tree is now built breadth-first, and examples are loaded into main memory

```
procedure TildeLDS:
     S := \{root\}
     while S \neq \phi do
           /* add one level to the tree */
           for each example e that is not covered by a leaf node:
                 N := the node in S that covers e
                 \leftarrow Q := associated\_query(N)
                 for each refinement \leftarrow Q_i of \leftarrow Q:
                       if \leftarrow Q_i succeeds in e
                       then increase counter [N, i, \text{true}][\text{class}(e)] by 1
                       else increase counter [N, i, \text{false}][\text{class}(e)] by 1
           for each node N \in S:
                 remove N from S
                 \leftarrow Q_b := \text{best\_test}(N)
                 if \leftarrow Q_b is not good
                 then N := leaf(majority\_class(N))
                       \leftarrow Q := \operatorname{associated\_query}(N)
                       conj := Q_b - Q
                       N := \mathbf{inode}(\mathit{conj}, \mathit{left}, \mathit{right})
                       add left and right to S
function best_test(N: node) returns query:
      \leftarrow Q := \operatorname{associated\_query}(N)
     for each refinement \leftarrow Q_i of \leftarrow Q:
           CD_l := counter[N, i, true]
           CD_r := \operatorname{counter}[N, i, \operatorname{false}]
           s_i := \text{weighted\_average\_class\_entropy}(CD_l, CD_r)
     Q_b := \text{that } Q_i \text{ for which } s_i \text{ is minimal}
     return \leftarrow Q_b
```

Figure 6: The TILDELDS algorithm

one at a time.

The algorithm works level-wise. Each iteration through the **while** loop will expand one level of the decision tree. S contains all nodes at the current level of the decision tree. To expand this level, the algorithm considers all nodes N in S. For each node and for each refinement in that node, a separate counter (to compute class distributions) is kept. The algorithms makes one pass through the data, during which for each example that belongs to a non-leaf node N it tests all refinements for N on the example and updates the corresponding counters.

Note that while for TILDE classic the example loop was inside the refinement loop, the opposite is true now. This minimizes the number of times a new example must be loaded, which is an expensive operation (in contrast with the previous approach where all examples were in main memory and examples only had to be "selected" in order to access them, examples are now loaded from disk). In the current implementation each example needs to be loaded at most once per level of the tree ("at most" because once it is in a leaf it need not be loaded anymore), hence the total number of passes through the data file is equal to the depth of the tree, which is the same as was obtained for propositional learning algorithms (Mehta et

al., 1996).

The disadvantage of this algorithm is that a four-dimensional array of counters needs to be stored instead of a two-dimensional one (as in TILDE classic), because different counters are kept for each node and for each refinement.

Care has been taken to implement TILDELDS in such a way that the size of the data set that can be handled is not restricted by internal memory (in contrast to TILDEclassic). Whenever information needs to be stored the size of which depends on the size of the data set, this information is stored on disk.³ When processing a certain level of the tree, the space complexity of TILDELDS therefore contains a component $O(r \cdot n)$ with n the number of nodes on that level and r the (average) number of refinements of those nodes (because counters are kept for each refinement in each node), but is constant in the number of examples. This contrasts with TILDEclassic where space complexity contains a component O(m) with m the number of examples (because all examples are loaded at once).

While memory now restricts the number of refinements that can be considered in each node and the maximal size of the tree, this restriction is unimportant in practice, as the number of refinements and the tree size are usually much smaller than the upper bounds imposed by the available memory. Therefore ${\tt TILDE}LDS$ typically consumes less memory than ${\tt TILDE}classic$, and may be preferable even when the whole data set can be loaded into main memory.

4.2 Sampling

While the above implementation is one step towards handling large data sets, there will always be data sets that are too large to handle. An approach that is often taken by data mining systems when there are too many examples, is to select a sample from the data and learn from that sample. Such techniques are incorporated in e.g. C4.5 (Quinlan, 1993a) and CART (Breiman et al., 1984).

In the standard ILP context there are some difficulties with sampling, which can be ascribed to the lack of a locality assumption. When one example contains information that is relevant for another example, either both examples have to be included together in the sample, or none of them should. Otherwise, one obtains a sample in which some examples have an incomplete description (and hence are noisy). It is even possible that no good sample can be drawn because all the examples are related to one another. To the best of our knowledge sampling has received little attention inside ILP, as is also noted by Fürnkranz (1997a) and Srinivasan (1998).

If the locality assumption can be made, such sampling problems do not occur. Picking individual examples from the population in a random fashion, independently from one another, is sufficient to create a good sample.

Automatic sampling has not been included in the current TILDE implementations. We do not give this high priority because TILDE learns from a flat file of data which is produced by extracting information from a database and putting related information together (as explained earlier in this text). Sampling should be done at the level of the extraction of information, not by TILDE itself. It is rather inefficient to convert the whole database into a flat file and then use only a part of that file, instead of only converting the part of the database that will be used.

We do not present experiments with sampling, as the effect of sampling in data mining is out of the scope of this paper; instead we refer to the already existing studies on this subject (see e.g. (Muggleton, 1993; Fürnkranz, 1997b; Srinivasan, 1999)).

³The results of all queries for each example are stored in this manner, so that when the best query is chosen after one pass through the data, these results can be retrieved from the auxiliary file, avoiding a second pass through the data.

4.3 Internal Validation

Internal validation means that a part of the learning set (the validation set) is kept apart for validation purposes, and the rest is used as the training set for building the hypothesis. Such a methodology is often followed for tuning parameters of a system or for pruning. Similar to sampling, partitioning the learning set is easy if the locality assumption holds, otherwise it may be hard; hence learning from interpretations makes it easier to incorporate validation based techniques in an ILP system.

4.4 Scalability

De Raedt and Džeroski (1994) have shown that in the learning from interpretations setting, learning first-order clausal theories is tractable. More specifically, given fixed bounds on the maximal length of clauses and the maximal arity of literals, such theories are polynomial-sample polynomial-time PAC-learnable. This positive result is related directly to the learning from interpretations setting.

Quinlan (1986) has shown that induction of decision trees has time complexity $O(a \cdot N \cdot n)$ where a is the number of attributes of each example, N is the number of examples and n is the number of nodes in the tree. Since TILDE uses basically the same algorithm as Quinlan, it inherits the linearity in the number of examples and in the number of nodes. The main difference between TILDE and C4.5, as we already noted, is the generation of tests in a node.

The number of tests to be considered in a node depends on the refinement operator. There is no theoretical bound on this, as it is possible to define refinement operators that cause an infinite branching factor. In practice, useful refinement operators always generate a finite number of refinements, but even then this number may not be bounded: the number of refinements typically increases with the length of the associated query of the node. Also, the time for performing one single test on a single example depends on the complexity of that test (it is in the worst case exponential in the length of the conjunction).

Thus, we can say that induction of first order decision trees has time complexity $O(N \cdot n \cdot t \cdot c)$ with t the average number of tests performed in each node and c the average time complexity of performing one test for one example, if those averages exist. If one is willing to accept an upper bound on the complexity of the theory that is to be learned (which was done for the PAC-learning results) and defines a finite refinement operator, both the complexity of performing a single test on a single example and the number of tests are bounded and the averages do exist.

Our main conclusion from this is that the time complexity of TILDE is linear in the number of examples. This is a stronger claim than can be made for the standard ILP setting. The time complexity also depends on the global complexity of the theory and the branching factor of the refinement operator, which are domain-dependent parameters.

5 Experiments

In this experimental section we try to validate our claims about time complexity empirically, and explore some influences on scalability. More specifically, we want to:

• validate the claim that when the localization assumption is exploited, induction time is linear in the number of examples (all other things being equal, i.e. we control for other influences on induction time such as the size of the tree)

- study the influence of localization on induction time (by quantifying the amount of localization and investigating its effect on the time complexity)
- investigate how the induction time varies with the size of the data set in more practical situations (if we do *not* control other influences; i.e. a larger data set may cause the learner to induce a more complex theory, which in itself has an effect on the induction time)

Before discussing the experiments themselves, we describe the data sets that we have used.

5.1 Description of the Data Sets

5.1.1 RoboCup Data Set

This is a data set containing data about soccer games played by software agents training for the RoboCup competition (Kitano et al., 1997). It contains 88594 examples and is 100MB large. Each example consists of a description of the state of the soccer terrain as observed by one specific player on a single moment. This description includes the identity of the player, the positions of all players and of the ball, the time at which the example was recorded, the action the player performed, and the time at which this action was executed. Figure 7 shows one example.

While this data set would allow rather complicated theories to be constructed, for our experiments the language bias was very simple and consisted of a propositional language (only high-level commands are learned). This use of the data set reflects the learning tasks considered up till now by the people who are using it, see (Jacobs et al., 1998). This does not influence the validity of our results for relational languages, because the propositions are defined by the background knowledge and their truth values are computed at runtime, so the query that is really executed is relational. For instance, the proposition have_ball, indicating whether some player of the team has the ball in its possession, is computed from the position of the player and of the ball.

5.1.2 Poker Data Sets

The Poker data sets are artificially created data sets where each example is a description of a hand of five cards, together with a name for the hand (pair, three of a kind, ...). The aim is to learn definitions for several poker concepts from a set of examples. The classes that are considered here are nothing, pair, two_pairs, three_of_a_kind, full_house and four_of_a_kind. This is, of course, a simplification of the real poker domain, where more classes exist and it is necessary to distinguish between e.g. a pair of queens and a pair of kings; but this simplified version suffices to illustrate the relevant topics and keeps learning times sufficiently low to allow for reasonably extensive experiments.

Figure 8 illustrates how one example in the poker domain can be represented. We have created the data sets for this domain using a program that randomly generates examples for this domain. The advantage of this approach is its flexibility: it is easy to create multiple training sets of increasing size, as well as an independent test set.

An interesting property of this data set is that some classes, e.g. four_of_a_kind, are very rare, hence a large data set is needed to learn these classes (assuming the data are generated randomly).

5.1.3 Mutagenesis Data Set

The Mutagenesis dataset (Srinivasan et al., 1996) is a classic benchmark in Inductive Logic Programming. The set that has been used most often in the literature consists

```
begin(model(e71)).
   player(my,1,-48.804436,-0.16494742,339).
   player(my,2,-34.39789,1.0097091,362).
   player(my,3,-32.628735,-18.981379,304).
   player (my, 4, -27.1478, 1.3262547, 362).
   player(my,5,-31.55078,18.985638,362).
   player(my,6,-41.653893,15.659259,357).
   player(my,7,-48.964966,25.731588,352).
   player(my,8,-18.363993,3.815975,362).
   player(my,9,-22.757153,32.208805,347).
   player(my,10,-12.914384,11.456045,362).
   player(my,11,-10.190831,14.468359,18).
   player(other,1,-4.242554,11.635328,314).
   player(other, 2, 0.0, 0.0, 0).
   player(other, 3, -13.048958, 23.604038, 299).
   player(other, 4, 0.0, 0.0, 0).
   player(other, 5, 2.4806643, 9.412553, 341).
   player(other, 6, -9.907758, 2.6764495, 362).
   player(other,7,0.0,0.0,0).
   player(other, 8, 0.0, 0.0, 0).
   player(other, 9, -4.2189126, 9.296844, 339).
   player(other, 10, 0.4492856, 11.43235, 158).
   player(other, 11, 0.0, 0.0, 0).
   ball(-32.503292,0.81057936,362).
   mynumber(5).
   rctime(362).
   turn(137.4931640625).
   actiontime(362).
end(model(e71)).
```

Figure 7: The Prolog representation of one example in the RoboCup data set. A fact such as player(other,3,-13.048958,23.604038,299) means that player 3 of the other team was last seen at position (-13,23.6) at time 299. A position of (0,0) means that that player has never been observed by the player that has generated this model. The action performed currently by this player is turn(137.4931640625): it is turning towards the ball.

```
begin(model(4)).
  card(7,spades).
  card(queen,hearts).
  card(9,clubs).
  card(9,spades).
  card(ace,diamonds).
  pair.
end(model(4)).
```

Figure 8: An example from the Poker data set.

```
begin(model(1)).
   pos.
   atom(d1_1, c, 22, -0.117).
   atom(d1_2,c,22,-0.117).
   atom(d1_3,c,22,-0.117).
   atom(d1_4,c,195,-0.087).
   atom(d1_5,c,195,0.013).
   atom(d1_6, c, 22, -0.117).
   (\ldots)
   atom(d1_25,0,40,-0.388).
   atom(d1_26,0,40,-0.388).
   bond(d1_1, d1_2, 7).
   bond(d1_2, d1_3, 7).
   bond(d1_3,d1_4,7).
   bond(d1_4, d1_5, 7).
   bond(d1_5, d1_6, 7).
   bond(d1_6, d1_1, 7).
   bond (d1_1, d1_7, 1).
   bond(d1_2, d1_8, 1).
   bond(d1_3, d1_9, 1).
   (...)
   bond(d1_24,d1_19,1).
   bond (d1_24, d1_25, 2).
   bond(d1_24,d1_26,2).
end(model(1)).
```

Figure 9: The Prolog representation of one example in the Mutagenesis data set. The atom facts enumerate the atoms in the molecule. For each atom its element (e.g. carbon), type (e.g. carbon can occur in several configurations; each type corresponds to one specific configuration) and partial charge. The bond facts enumerate all the bonds between the atoms (the last argument is the type of the bond: single, double, aromatic, etc.). pos denotes that the molecule belongs to the positive class (i.e. is mutagenic).

of 188 examples. Each example describes a molecule. Some of these molecules are mutagenic (i.e., may cause DNA mutations), others are not. The task is to predict the mutagenicity of a molecule from its description.

The data set is a typical ILP data set in that the example descriptions are highly structured, and there is background knowledge about the domain. Several levels of background knowledge have been studied in the literature (see again Srinivasan et al. (1996)); for our experiments we have always used the simplest background knowledge, i.e. only structural information about the molecules (the atoms and bonds occurring in them) are available.

Figure 9 shows a part of the description of one molecule.

5.2 Materials and Settings

All experiments were performed with the two implementations of TILDE we discussed: $TILDE\,classic$ and $TILDE\,LDS$. These programs are implemented in Prolog and run under the MasterProlog engine (formerly named ProLog-by-BIM). The hardware we used is a Sun Ultra-2 at 167 MHz, running the Solaris system (except

when stated otherwise).

Both TILDE classic and TILDE LDS offer the possibility to precompile the data file. We exploited this feature for all our experiments. For TILDE LDS this raises the problem that in order to load one example at a time, a different object file has to be created for each example (Master Prolog offers no predicates for loading only a part of an object file). This can be rather impractical. For this reason several examples are usually compiled into one object file; a parameter called granularity (G) controls how many examples can be included in one object file.

Object files are then loaded one by one by TILDE LDS, which means that G examples at a time are loaded into main memory (instead of one). Because of this, the granularity parameter can affect the efficiency of TILDE LDS. This is investigated in our experiments.

By default, a value of 10 was used for G.

5.3 Experiment 1: Time Complexity

5.3.1 Aim of the Experiment

As mentioned before, induction of trees with TILDE LDS should in principle have a time complexity that is linear in the number of examples. With our first experiment we empirically test whether our implementation indeed exhibits this property. We also compare it with other approaches where the locality assumption is exploited less or not at all.

We distinguish the following approaches:

- loading all data at once in main memory without exploiting the locality assumption (the standard ILP approach)
- loading all data at once in main memory, exploiting the locality assumption; this is what TILDEclassic does
- ullet loading examples one at a time in main memory; this is what Tilde LDS does

To the best of our knowledge all ILP systems that do not learn from interpretations follow the first approach (with the exception of a few systems that access an external database directly instead of loading the data into main memory, e.g. RDT/DB (Morik and Brockhausen, 1997); but these systems still do not make a locality assumption). We can easily simulate this approach with TILDEclassic by specifying all information about the examples as background knowledge. For the background knowledge no locality assumption can be made, since all background knowledge is potentially relevant for each example.

The performance of a Prolog system that works with a large database is improved significantly if indexes are built for the predicates. On the other hand, adding indexes for predicates creates some overhead with respect to the internal space that is needed, and a lot of overhead for the compiler. The MasterProlog system by default indexes all predicates, but this indexing can be switched off. We have performed experiments for the standard ILP approach both with and without indexing (thus, the first approach in the above list is actually subdivided into "indexed" and "not indexed").

5.3.2 Methodology

Since the aim of this experiment is to determine the influence of the number of examples (and only that) on time complexity, we want to control as much as possible other factors that might also have an influence. We have seen in Section 4.4 that these other factors include the number of nodes n, the average number of tests per

node t and the average complexity of performing one test on one single example c. c depends on both the complexity of the queries themselves and on the example sizes.

When varying the number of examples for our experiments, we want to keep these factors constant. This means that first of all the refinement operator should be the same for all the experiments. This is automatically the case if the user does not change the refinement operator specification (the rmode facts) between consecutive experiments.

The other factors can be kept constant by ensuring that the same tree is built in each experiment, and that the average complexity of the examples does not change. In order to achieve this, we adopt the following methodology. We create, from a small data set, larger data sets by including each single example several times. By ensuring that all the examples occur an equal number of times in the resulting data set, the class distribution, average complexity of testing a query on an example etc. are all kept constant. In other words, all variation due to the influence of individual examples is removed.

Because the class distribution stays the same, the test that is chosen in each node also stays the same. This is necessary to ensure that the same tree is grown, but not sufficient: the stopping criterion needs to be adapted as well so that a node that cannot be split further for the small data set is not split when using the larger data set either. In order to achieve this, the minimal number of examples that have to be covered by each leaf (which is a parameter of TILDE) is increased proportionally to the size of the data set.

By following this methodology, the mentioned unwanted influences are filtered out of the results.

5.3.3 Materials

We used the Mutagenesis data set for this experiment. Other materials are as described in Section 5.2.

5.3.4 Setup of the Experiment

Four different versions of TILDE are compared:

- Tildeclassic without locality assumption, without indexing
- Tildeclassic without locality assumption, with indexing
- Tildeclassic with locality assumption
- TildeLDS

The first three "versions" are actually the same version of TILDE as far as the implementation of the learning algorithm is concerned, but differ in the way the data are represented and in the way the underlying Prolog system handles them.

Each TILDE version was first run on the original data set, then on data sets that contain each original example 2^n times, with n ranging from 1 to 9. Table 1 summarizes some properties of the data sets that were obtained in this fashion.

For each run on each data set we have recorded the following:

- the time needed for the induction process itself (in CPU-seconds)
- the time needed to compile the data (in CPU-seconds). The different systems compile the data in different ways (e.g. according to whether indexes need to be built). As compilation of the data need only be done once, even if afterwards several runs of the induction system are done, compilation time

Table 1: Properties of the example sets

multiplication factor	#examples	#facts	size (MB)
1	188	10512	0.25
2	376	21024	0.5
4	752	42048	1
8	1504	84096	2
16	3008	168192	4
32	6016	336384	8
64	12032	672768	16
128	24064	1,345,536	32
256	48128	2,691,072	65
512	96256	5,382,144	130

Table 2: Scaling properties of TILDE LDS in terms of the number of examples

multiplication	time (CPU seconds)			
factor	induction	compilation		
1	123	3		
2	245	6.3		
4	496	12.7		
8	992	25		
16	2026	50		
32	3980	97		
64	7816	194		
128	15794	391		
256	32634	799		
512	76138	1619		

may seem less relevant. Still, it is important to see how the compilation scales up, since it is not really useful to have an induction method that scales linearly if it needs a preprocessing step that scales super-linearly.

5.3.5 Discussion of the Results

Tables 2, 3, 4 and 5 give an overview of the time each TILDE version needed to induce a tree for each set, as well as the time it took to compile the data into the correct format. The results are shown graphically in Figure 10. Note that both the number of examples and time are indicated on a logarithmic scale. Care must be taken when interpreting these graphs: a straight line does not indicate a linear relationship between the variables. Indeed, if $\log y = n * \log x$, then $y = x^n$. This means the slope of the line should be 1 in order to have a linear relationship, while 2 indicates a quadratic relationship, and so on. In order to make it easier to recognize a linear relationship (slope 1), the function y = x has been drawn on the graphs as a reference.

Note that only Tilde LDS scales up well to large data sets. The other versions of Tilde had problems loading or compiling the data from a multiplication factor of 16 or 32 on.

The graphs and tables show that induction time is linear in the number of examples for TILDE*LDS*, for TILDE*classic* with locality, and for TILDE*classic* without locality but with indexing. For TILDE*classic* without locality or indexing the induction time increases quadratically with the number of examples. This is not unexpected, as in this setting the time needed to run a test on one single example increases with the size of the dataset.

Table 3: Scaling properties of Tildeclassic in terms of the number of examples

multiplication	time (CPU seconds)			
factor	induction	compilation		
1	26.3	6.8		
2	42.5	13.7		
4	75.4	27.1		
8	148.7	54.2		
16	296.1	110.1		
32	?*	217.1		

^{*} Prolog engine failed to load the data

Table 4: Scaling properties of TILDE without locality assumption, with indexing, in terms of number of examples

multiplication	time (CPU seconds)			
factor	induction	compilation		
1	26.1	20.6		
2	45.2	293		
4	83.9	572		
8	176.7	1640		
16	?*	5381		
32	?*	18388		

^{*} Prolog engine failed to load the data

Table 5: Scaling properties of TILDE without locality assumption, without indexing, in terms of number of examples

multiplication	time (CPU seconds)			
factor	induction	compilation		
1	2501	2.85		
2	12385	5.91		
4	51953	12.21		
8	207966	25.47		
16	?*	52.25		
32		?**		

^{*} Prolog engine failed to load the data

^{**} Prolog compiler failed to compile the data

Figure 10: Scaling properties of TILDE LDS in terms of number of examples

With respect to compilation times, we note that all are linear in the size of the data set, except Tildeclassic without locality and with indexing. This is in correspondence with the fact that building an index for the predicates in a deductive database is an expensive operation, super-linear in the size of the database.

Furthermore, the experiments confirm that Tilde classic with locality scales as well as Tilde LDS with respect to time complexity, but for large data sets runs into problems because it cannot load all the data.

Observing that without indexing induction time increases quadratically, and with indexing compilation time increases quadratically, we conclude that the locality assumption is indeed crucial to our linearity results, and that loading only a few examples at a time in main memory makes it possible to handle much larger data sets.

5.4 Experiment 2: The Effect of Localization

5.4.1 Aim of the experiment

In the previous experiment we studied the effect of the number of examples on time complexity, and observed that this effect is different according to whether the locality assumption is made. In this experiment we do not just distinguish between localized and not localized, but consider gradual changes in localization, and thus try to quantify the effect of localization on the induction time.

5.4.2 Methodology

We can test the influence of localization on the efficiency of TILDE LDS by varying the granularity parameter G in TILDE LDS. G is the number of examples that are loaded into main memory at the same time. Localization of information is stronger when G is smaller.

The effect of G was tested by running TILDELDS successively on the same data set, under the same circumstances, but with different values for G. In these experiments G ranged from 1 to 200. For each value of G both compilation and induction were performed ten times; the reported times are the means of these ten runs.

5.4.3 Materials

We have used three data sets: a RoboCup data set with 10000 examples, a Poker data set containing 3000 examples, and the Mutagenesis data set with a multiplication factor of 8 (i.e. 1504 examples). The data sets were chosen to contain a sufficient number of examples to make it possible to let G vary over a relatively broad range, but not more (to limit the experimentation time).

Other materials are as described in Section 5.2.

5.4.4 Discussion of the Results

Induction times and compilation times are plotted versus granularity in Figure 11. It can be seen from these plots that induction time increases approximately linearly with granularity. For very small granularities, too, the induction time can increase. We suspect that this effect can be attributed to an overhead of disk access (loading many small files, instead of fewer larger files). A similar effect is seen when we look at the compilation times: these decrease when the granularity increases, but asymptotically approach a constant. This again suggests an overhead caused by compiling many small files instead of one large file. The fact that the observed

effect is smallest for Mutagenesis, where individual examples are larger, increases the plausibility of this explanation.

This experiment clearly shows that the performance of TILDE LDS strongly depends on G, and that a reasonably small value for G is preferable. It thus confirms the hypothesis that localization of information is advantageous with respect to time complexity.

5.5 Experiment 3: Practical Scaling Properties

5.5.1 Aim of the experiment

With this experiment we want to measure how well TILDELDS scales up in practice, without controlling any influences. This means that the tree that is induced is not guaranteed to be the same one or have the same size, and that a natural variation is allowed with respect to the complexity of the examples as well as the complexity of the queries. This experiment is thus meant to mimic the situations that arise in practice.

Since different trees may be grown on different data sets, the quality of these trees may differ. We investigate this as well.

5.5.2 Methodology

The methodology we follow is to choose some domain and then create data sets with different sizes for this domain. TILDE LDS is then run on each data set, and for each run the induction time is recorded, as well as the quality of the tree (according to different criteria, see below).

5.5.3 Materials

Data sets from two domains were used: RoboCup and Poker. These domains were chosen because large data sets were available for them. For each domain several data sets of increasing size were created.

Whereas induction times have been measured on both data sets, predictive accuracy has been measured only for the Poker data set. This was done using a separate test set of 100,000 examples, which was the same for all the hypotheses.

For the RoboCup data set interpretability of the hypotheses by domain experts is the main evaluation criterion (because these theories are used for verification of the behavior of agents, see (Jacobs *et al.*, 1998)).

The RoboCup experiments have been run on a SUN SPARC station-20 at 100 MHz; for the Poker experiments a SUN Ultra-2 at 167 MHz was used.

5.5.4 Discussion of the Results

Table 6 shows the consumed CPU-times in function of the number of examples, as well as the predictive accuracy. These figures are plotted in Figure 12. Note that the CPU-time graph is again plotted on a double logarithmic scale.

With respect to accuracy, the Poker hypotheses show the expected behavior: when more data are available, the hypotheses can predict very rare classes (for which no examples occur in smaller data sets), which results in higher accuracy.

The graphs further show that in the Poker domain, TILDELDS scales up linearly, even though more accurate (and slightly more complex) theories are found for larger data sets.

In the RoboCup domain, the induced hypotheses were the same for all runs except the 10000 examples run. In this single case the hypothesis was more simple and, according to the domain expert, less informative than for the other runs. This

Figure 11: The effect of granularity on induction time (full range, and zoomed in on interval [0-30]) and compilation time

Table 6: Consumed CPU-time and accuracy of hypotheses produced by TILDE LDS in the Poker domain

#examples	compilation	induction	accuracy
	(CPU-seconds)	(CPU-seconds)	
300	1.36	288	0.98822
1000	4.20	1021	0.99844
3000	12.36	3231	0.99844
10000	41.94	12325	0.99976
30000	125.47	33394	0.99976
100000	402.63	121266	1.0

Figure 12: Consumed CPU-time and accuracy of hypotheses produced by ${\tt TILDE}LDS$ in the Poker domain, plotted against the number of examples

Table 7: Consumed CPU-time of hypotheses produced by ${\tt TILDE}LDS$ in the RoboCup domain

#examples	compilation	induction
10000	274	1448 ± 44
20000	522	4429 ± 83
30000	862	7678 ± 154
40000	1120	9285 ± 552
50000	1302	6607 ± 704
60000	1793	13665 ± 441
70000	1964	29113 ± 304
80000	2373	28504 ± 657
88594	2615	50353 ± 3063

Figure 13: Consumed CPU-time for ${\tt TILDE}LDS$ in the RoboCup domain, plotted against the number of examples

suggests that in this domain a relatively small set of examples (20000) suffices to learn from.

It is harder to see how TILDELDS scales up for the RoboCup data. Since the same tree is returned in all runs except the 10000 examples run, one would expect the induction times to grow linearly. However, the observed curve does not seem linear, although it does not show a clear tendency to be super-linear either. Because large variations in induction time were observed, we performed these runs 10 times; the estimated mean induction times are reported together with their standard errors. The standard errors alone cannot explain the observed deviations, nor can variations in example complexity (all examples are of equal complexity in this domain).

A possible explanation is the fact that the Prolog engine performs a number of tasks that are not controlled by TILDE, such as garbage collection. In specific cases, the Prolog engine may perform many garbage collections before expanding its memory space (this happens when the amount of free memory after garbage collection is always just above some threshold), and the time needed for these garbage collections is included in the measured CPU-times. The MasterProlog engine is known to sometimes exhibit such behavior.

In order to sort this out, TILDE LDS would have to be reimplemented in a lower-level language than Prolog, where one has full control over all computations that occur. Such a reimplementation is planned.

Due to the domain-dependent character of these complexity results, one should be careful when generalizing them; it seems safe to conclude, however, that the linear scaling property has at least a reasonable chance of occurring in practice.

6 Related Work

Our work is closely related to efforts in the propositional learning field to increase the capability of machine learning systems to handle large databases. It has been influenced more specifically by a tutorial on data mining by Usama Fayyad, in which the work of Mehta and others was mentioned (Mehta et al., 1996; Shafer et al., 1996). They were the first to propose the level-wise tree building algorithm we adopted, and to implement it in the SLIQ (Mehta et al., 1996) and SPRINT (Shafer et al., 1996) systems. The main difference with our approach is that SLIQ and SPRINT learn from one single relation, while TILDELDS can learn from multiple relations.

Related work inside ILP includes the RDT/DB system (Morik and Brockhausen, 1997), which presents the first approach to coupling an ILP system with a relational database management system (RDBMS). Being an ILP system, RDT/DB also learns from multiple relations. The approach followed is that a logical test that is to be performed is converted into an SQL query and sent to an external relational database management system. This approach is essentially different from ours, in that it exploits as much as possible the power of the RDBMS to efficiently evaluate queries. Also, there is no need for preprocessing the data. Disadvantages are that for each query an external database is accessed, which is relatively slow, and that it is less flexible with respect to background knowledge. Furthermore, to obtain good performance complex modifications to the RDBMS system (tailoring it towards data mining) are needed. Preliminary experiments with coupling Claudien and TILDE to an Oracle RDBMS confirmed these claims and caused us to abandon such an approach.

We also mention the KEPLER system (Wrobel et al., 1996), a data mining tool that provides a framework for applying a broad range of data mining systems to data sets; this includes ILP systems. KEPLER was deliberately designed to be very open, and systems using the learning from interpretations setting can be plugged into it as easily as other systems.

At this moment few systems use the learning from interpretations setting (De Raedt and Van Laer, 1995; De Raedt and Dehaspe, 1997; Dehaspe and De Raedt, 1997). Of these the research described in (Dehaspe and De Raedt, 1997) (the WARMR system: finding association rules over multiple relations; see also Dehaspe and Toivonen's contribution in this issue) is most closely related to the work described in this paper, in the sense that there, too, an effort was made to adapt the system for large databases. The focus of that text is not on the advantages of learning from interpretations in general, however, but on the power of first order association rules.

More loosely related work inside ILP would include all efforts to make ILP systems more efficient. Since most of this work concerns ILP systems that work in the classical ILP setting, the ways in which this is done usually differ substantially from what we describe in this paper. For instance, the well-known ILP system Progol (Muggleton, 1995) has recently been extended with caching and other efficiency improvements (Cussens, 1997). Other directions are the use of sampling techniques and stochastic methods, such as proposed by, e.g., Srinivasan (1999) and Sebag (1998).

Finally, the TILDE system is related to other systems that induce first order decision trees, such as the STRUCT system (Watanabe and Rendell, 1991) (which uses a less explicitly logic-based approach) and the regression tree learner SRT (Kramer, 1996).

7 Conclusions

We have argued and demonstrated empirically that the use of ILP is not limited to small databases, as is often assumed. Mining databases of a hundred megabytes was shown to be feasible, and this does not seem to be a limit.

The positive results that have been obtained are due mainly to the use of the learning from interpretations setting, which is more scalable than the classical ILP setting and makes the link with propositional learning more clear. This means that a lot of results obtained for propositional learning can be extrapolated to learning from interpretations. We have discussed a number of such upgrades, using the TILDE LDS system as an illustration. The possibility to upgrade the work by Mehta et al. (1996) has turned out to be crucial for handling large data sets. It is not clear how the same technique could be incorporated in a system using the classical ILP setting.

Although we obtained specific results only for a specific kind of data mining (induction of decision trees), the results are generalizable not only to other approaches within the classification context (e.g. rule based approaches) but also to other inductive tasks within the learning from interpretations setting, such as clustering, regression and induction of association rules.

Acknowledgements

Nico Jacobs and Hendrik Blockeel are supported by the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT). Luc De Raedt is supported by the Fund for Scientific Research, Flanders. This work is also part of the European Community Esprit project no. 20237, Inductive Logic Programming 2.

The authors thank Luc Dehaspe, Kurt Driessens, Hélène Legras and Jan Ramon for proofreading this text, as well as the anonymous reviewers and Sašo Džeroski for their very valuable comments on an earlier draft.

References

- R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, *Advances in Knowledge Discovery and Data Mining*, pages 307–328. The MIT Press, 1996.
- [2] H. Blockeel and L. De Raedt. Lookahead and discretization in ILP. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages 77–85. Springer-Verlag, 1997.
- [3] H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. *Artificial Intelligence*, 101(1-2):285–297, June 1998.
- [4] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. In *Proceedings of the 15th International Conference on Machine Learning*, pages 55-63, 1998. http://www.cs.kuleuven.ac.be/~ml/-PS/ML98-56.ps.
- [5] M. Bongard. Pattern Recognition. Spartan Books, 1970.
- [6] I. Bratko. *Prolog Programming for Artificial Intelligence*. Addison-Wesley, Wokingham, England, 1990. 2nd Edition.
- [7] I. Bratko and S. Muggleton. Applications of inductive logic programming. Communications of the ACM, 38(11):65–70, 1995.
- [8] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Wadsworth, Belmont, 1984.
- [9] W.W. Cohen. Pac-learning recursive logic programs: Negative results. *Journal of Artificial Intelligence Research*, 2:541–573, 1995.
- [10] W.W. Cohen and D. Page. Polynomial learnability and inductive logic programming: Methods and results. *New Generation Computing*, 13, 1995.
- [11] J. Cussens. Part-of-speech tagging using progol. In *Proceedings of the Seventh International Workshop on Inductive Logic Programming*, Lecture Notes in Artificial Intelligence, pages 93–108. Springer-Verlag, 1997.
- [12] L. De Raedt, editor. Advances in Inductive Logic Programming, volume 32 of Frontiers in Artificial Intelligence and Applications. IOS Press, 1996.
- [13] L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95:187–201, 1997.
- [14] L. De Raedt. Attribute-value learning versus inductive logic programming: the missing links (extended abstract). In D. Page, editor, *Proceedings of the Eighth International Conference on Inductive Logic Programming*, volume 1446 of *Lecture Notes in Artificial Intelligence*, pages 1–8. Springer-Verlag, 1998.
- [15] L. De Raedt, H. Blockeel, L. Dehaspe, and W. Van Laer. Three companions for first order data mining. In S. Džeroski and N. Lavrač, editors, *Inductive Logic Programming for Knowledge Discovery in Databases*, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1998. To appear.
- [16] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146, 1997.

- [17] L. De Raedt and S. Džeroski. First order jk-clausal theories are PAC-learnable. Artificial Intelligence, 70:375–392, 1994.
- [18] L. De Raedt and W. Van Laer. Inductive constraint logic. In Klaus P. Jantke, Takeshi Shinohara, and Thomas Zeugmann, editors, Proceedings of the Sixth International Workshop on Algorithmic Learning Theory, volume 997 of Lecture Notes in Artificial Intelligence, pages 80–94. Springer-Verlag, 1995.
- [19] L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages 125–132, Berlin, 1997. Springer-Verlag.
- [20] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multipleinstance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31-71, 1997.
- [21] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth International Conference on Machine Learning. Morgan Kaufmann, 1995.
- [22] S. Džeroski, S. Muggleton, and S. Russell. PAC-learnability of determinate logic programs. In *Proceedings of the 5th ACM workshop on Computational Learning Theory*, pages 128–135, 1992.
- [23] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings, 2nd edition, 1989.
- [24] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In *Proceedings of the Thirteenth Interna*tional Joint Conference on Artificial Intelligence, pages 1022–1027, San Mateo, CA, 1993. Morgan Kaufmann.
- [25] J. Fürnkranz. Dimensionality reduction in ILP: a call to arms. In L. De Raedt and S. Muggleton, editors, *Proceedings of the IJCAI-97 Workshop on Frontiers* of ILP, 1997. http://www.cs.kuleuven.ac.be/lucdr/filp.html.
- [26] J. Fürnkranz. Noise-tolerant windowing. In M. E. Pollack, editor, Proceedings of the 15th International Joint Conference on Artificial Intelligence, pages 852– 857. Morgan Kaufmann, 1997.
- [27] N. Jacobs, K. Driessens, and L. De Raedt. Using ILP systems for verification and validation of multi agent systems. In *Proceedings of the Eighth International Conference on Inductive Logic Programming*, volume 1446, pages 145–154. Springer-Verlag, 1998.
- [28] H. Kitano, M. Veloso, H. Matsubara, M. Tambe, S. Coradeschi, I. Noda, P. Stone, E. Osawa, and M. Asada. The robocup synthetic agent challenge 97. In *Proceedings of the 15th International Joint Conference on Artificial Intelligence*, pages 24–29. Morgan Kaufmann, 1997.
- [29] Stefan Kramer. Structural regression trees. In *Proceedings of the Thirteenth National Conference on Artificial Intelligence*, pages 812–819, Cambridge/Menlo Park, 1996. AAAI Press/MIT Press.
- [30] N. Lavrač and S. Džeroski, editors. Proceedings of the Seventh International Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1997.

- [31] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. In *Proceedings of the Fifth International Conference on Extending Database Technology*, 1996.
- [32] K. Morik and P. Brockhausen. A multistrategy approach to relational discovery in databases. *Machine Learning*, 27(3):287–312, 1997.
- [33] S. Muggleton. Optimal layered learning: a PAC approach to incremental sampling. In *Proceedings of the 4th conference on algorithmic learning theory*. Ohmsma, Tokyo, Japan, 1993. Invited paper.
- [34] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.
- [35] S. Muggleton, editor. Proceedings of the Sixth International Workshop on Inductive Logic Programming, volume 1314 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1997.
- [36] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. *Journal of Logic Programming*, 19,20:629–679, 1994.
- [37] D. Page, editor. Proceedings of the Eighth International Conference on Inductive Logic Programming, volume 1446 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1998.
- [38] G. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie, editors, *Machine Intelligence*, volume 5, pages 153–163. Edinburgh University Press, 1970.
- [39] J. Ross Quinlan. *C4.5: Programs for Machine Learning*. Morgan Kaufmann series in machine learning. Morgan Kaufmann, 1993.
- [40] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
- [41] J.R. Quinlan. Learning logical definitions from relations. *Machine Learning*, 5:239–266, 1990.
- [42] J.R. Quinlan. FOIL: A midterm report. In P. Brazdil, editor, *Proceedings of the 6th European Conference on Machine Learning*, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1993.
- [43] J.C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In *Proceedings of the 22th International Conference on Very Large Databases*, 1996.
- [44] A. Srinivasan. A study of two sampling methods for analysing large datasets with ILP. *Data Mining and Knowledge Discovery*, 3(1):95–123, 1999.
- [45] A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: A study in first-order and feature-based induction. *Artificial Intelligence*, 85(1,2), 1996.
- [46] W. Van Laer, L. De Raedt, and S. Džeroski. On multi-class problems and discretization in inductive logic programming. In Zbigniew W. Ras and Andrzej Skowron, editors, Proceedings of the Tenth International Symposium on Methodologies for Intelligent Systems, volume 1325 of Lecture Notes in Artificial Intelligence, pages 277–286. Springer-Verlag, 1997.

- [47] L. Watanabe and L. Rendell. Learning structural decision trees from examples. In *Proceedings of the 12th International Joint Conference on Artificial Intelligence*, pages 770–776, 1991.
- [48] S. Wrobel, D. Wettschereck, E. Sommer, and W. Emde. Extensibility in data mining systems. In *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)*. AAAI Press, 1996.