

IF68E - Sistemas Embarcados

LISTA DE EXERCÍCIOS 1

Prof. André Sanches Fonseca Sobrinho

Valor: 0,8 pontos

Formato de entrega: esquemático Proteus e código C

1 - Construa um sistema embarcado simples, que opere com uma frequência de processamento de 4MHz. Se o botão 1 for pressionado e depois solto, o LED1 deve alternar seu funcionamento (se está ligado deve desligar e vice-versa).

Obs1: o foco do projeto deve ser o baixo custo e não há restrições quanto ao consumo do dispositivo.

Obs2: considerando a tensão no LED igual a 2,2V, a corrente sobre o mesmo deve ser 10mA;

- 2 Construa um sistema no Proteus para realizar as tarefas abaixo:
- a) Um dispositivo controle remoto formado por bateria, botão, resistor e led. Quando o botão é apertado, o led acende.

Obs1: utilize o led do circuito integrado PC817;

Obs2: considerando a tensão no LED do PC817 igual a 1V, a corrente sobre o mesmo deve ser 1mA.

- b) Um dispositivo formado por bateria, microcontrolador PIC18F4550, LED e fototransistor.
- O microcontrolador deve fazer o LED piscar na seguinte sequência: acende, aguarda, apaga, aguarda, acende, aguarda, apaga. Em seguida o microcontrolador deve entrar no modo SLEEP:
- Se o fototransistor for acionado, o microcontrolador deve sair do modo SLEEP e piscar o LED novamente na seguência, entrando novamente no modo SLEEP;

Obs1: utilize o fototransistor do circuito integrado PC817;

Obs2: considerando a tensão no LED igual a 2,2V, a corrente sobre o mesmo deve ser 10mA;

Obs3: o sistema deve operar com uma frequência de 10MHz a partir de um cristal com a mesma frequência.

- 3 Construa um sistema no Proteus para realizar as seguintes tarefas:
- a) Um dispositivo controle remoto é formado por bateria, botão, resistor e led. Quando o botão é apertado, o led acende;

Obs1: utilize o led do circuito integrado PC817;

Obs2: considerando a tensão no LED do PC817 igual a 1V, a corrente sobre o mesmo deve ser 1mA.

- b) Um dispositivo formado por uma fonte, microcontrolador PIC18F4550, motor de passo e fototransistor.
- O microcontrolador deve ser iniciado parado:
- Fazer o motor de passo girar a direita continuamente caso o fototransistor seja acionado apenas uma vez em uma janela de tempo de 2 segundos;
- Fazer o motor de passo girar a esquerda continuamente caso o fototransistor seja acionado duas vezes em uma janela de tempo de 2 segundos;
- Fazer o motor de passo parar caso o fototransistor seja acionado três vezes em uma janela de tempo de 2 segundos;

Obs1: utilize o modelo MOTOR-BISTEPPER como motor de passo;

Obs2: utilize o fototransistor do circuito integrado PC817;

Obs3: o sistema deve operar com uma frequência de 24MHz a partir de um cristal com frequência de 8MHz.

4 – Em relação ao exercício 3, qual dos microcontroladores abaixo poderia substituir o PIC18F4550?

Modelo	Características	Custo
μC1	Vin=5V, 3 pinos de I/O com Imáx=20mA por pino, conversor A/D com	U\$1,00
	1 canal (AN) de 8 bits, consumo máximo de 300mA	
μC2	Vin=5V, 3 pinos de I/O com Imáx=20mA por pino, 1 interrupção	U\$1,40
	externa (IE), 1 timer de 16 bits, consumo máximo de 300mA	

μC3	Vin=5V, 5 pinos de I/O com Imáx=20mA por pino, 1 interrupção	U\$1,50
	externa (IE), 1 timer de 16 bits, consumo máximo de 300mA	
μC4	Vin=5V, 5 pinos de I/O com Imáx=20mA por pino, 1 interrupção	U\$1,50
	externa (IE), 1 timer de 8 bits, consumo máximo de 300mA	
μC5	Vin=5V, 5 pinos de I/O com Imáx=20mA por pino, 1 timer de 16 bits,	U\$1,30
	consumo máximo de 300mA	

- **5** Caso houvesse a necessidade do sistema embarcado funcionar em modo SLEEP, qual microcontrolador da tabela acima seria mais indicado para substituir o PIC18F4550?
- **6** O sinal analógico de um eletrocardiograma é disponibilizado por um sensor com valor de tensão de pico a pico igual a 2V de forma senoidal. Construa um sistema portátil (com bateria) no Proteus que realize as seguintes tarefas:
- Se a frequência deste sinal é maior do que 95 bpm, um led de diagnóstico deve acender indicando que o paciente está com taquicardia;
- Se a frequência deste sinal é menor do que 55 bpm, um outro led de diagnóstico deve acender indicando que o paciente está com bradicardia;

Obs1: utilize o microcontrolador PIC18F4550;

Obs2: o sistema deve operar com uma frequência de 10MHz.

- **7** Em relação ao exercício anterior, adicione mais um led que acenda caso a amplitude do sinal em qualquer momento fique superior a 4Vpp, indicando outras patologias.
- 8 Refaça o exercício 7 considerando um valor de tensão de pico a pico igual a 50 mV.
- **9** Refaça o exercício 7 considerando que o microcontrolador não disponibiliza um conversor A/D. Se for o caso utilize o AMP-OP LM358N.
- **10** Para o desenvolvimento de um produto, o qual deixa um led aceso caso a amplitude de um sinal senoidal fique acima de 48,82 mVp, responda:
- a) Qual dos microcontroladores abaixo melhor se aplica ao projeto? Justifique sua resposta levando em consideração que a alimentação é igual a 5V e não é possível a utilização de nenhum componente eletrônico extra, com exceção de apenas **um** resistor sem custo. Desenhe o esquemático considerando a tensão de polarização do LED igual a 1,4V.

Modelo	Periféricos	Custo (U\$)
μC1	Int. externa, timer 16 bits e 3 pinos	1,0
	de I/O com Imax=20mA	
μC2	Timer 16 bits e Conversor A/D 8 bits	1,4
	e 2 pinos de I/O com Imax=20mA	
μC3	Conversor A/D 8 bits e 3 pinos de	1,2
	I/O com Imax=20mA	
μC4	Conversor A/D 10 bits e 3 pinos de	1,4
	I/O com Imax=20mA	

- b) Caso seja necessário monitorar se a amplitude do sinal fique acima de 56,12mV e mantendo as características do item a, qual dos microcontroladores da tabela é o mais indicado?
- c) Considerando o item b e sendo possível a utilização de mais dois resistores sem custo, qual dos microcontroladores da tabela é o mais indicado? Desenhe o esquemático.
- **11** Para o desenvolvimento de um produto, o qual acende um led caso a frequência do sinal da rede elétrica (127 V/220 V) figue acima de 61 Hz ou abaixo de 59 Hz, responda:
- a) Qual dos microcontroladores (Tabela do Ex. 10) melhor se aplica ao projeto? Justifique sua resposta e monte o esquemático considerando a tensão de polarização do LED igual a 1,4V. Considere também que o custo de um amp-op é igual a U\$0,30 e há uma quantidade grande de resistores sem custo.

- b) Considerando o item a e sendo necessário também verificar se a amplitude do sinal é superior a 311V, qual microcontrolador melhor se aplica ao projeto? Monte o esquemático.
- 12 Caso o led do Exercício 10 necessite de uma corrente de 2 A para acender, responda:
- Qual dos componentes abaixo seria o mais indicado para ser utilizado junto ao microcontrolador? Justifique sua resposta levando em consideração que a corrente máxima dos pinos de I/O do microcontrolador é igual a 15 mA e o nível lógico '1' corresponde a 5 V.

Modelo	β	I _c (Max mA)	Custo (U\$)
Transistor NPN 1	50	3000	0,3
Transistor NPN 2	200	3000	0,4
Transistor NPN 3	200	2500	0,3

13 – Construa um sistema de irrigação no Proteus, alimentado por uma bateria de 5V e composto por dois motores de passo, onde cada um desses motores é associado a um sensor de temperatura modelo DS1621. Quando o sensor1 verifica que a temperatura é igual ou superior a 20°C, o motor de passo associado a este sensor deve ser acionado. Quando o sensor2 verifica que a temperatura é igual ou superior a 23°C, o motor de passo associado a este sensor deve ser acionado.

Obs1: Utilize somente a porta D do PIC18F4550 para controlar os dois motores de passo (MOTOR-BISTEPPER).

Obs2: O tempo entre verificar a temperatura e acionar/desligar o motor de passo não deve ser superior a um passo.

Obs3: o sistema deve operar com uma frequência de 20MHz.

- **14** Modifique o Exercício 13, substituindo os sensores de temperatura DS1621 pelos sensores de temperatura LM35, o qual apresenta em sua saída um sinal linear de 10mV/°C.
- 15 Construa um sistema embarcado no Proteus, alimentado por uma bateria de 5V e composto por um sensor de temperatura modelo DS1621 e um botão. Quando o botão é acionado, o PIC18F4550 sai do modo sleep e requisita a temperatura, mostrando o valor no display e voltando para o modo sleep.

Obs1: o sistema deve operar com uma frequência de 20MHz.

16 – Um sistema embarcado será alimentado com uma bateria de 12V. Quando a temperatura indicada por um sensor PTC for superior a 25°C, o motor de passo deverá ser acionado. Construa o sistema indicado (esquemático), escolhendo os componentes abaixo e justificando suas escolhas:

Reguladores de tensão:

Modelo	Características	Custo
REG1	Linear com Vin entre 7V e 11V, Vout=5V e lout=1A	U\$0,20
REG2	Linear com Vin entre 7V e 15V, Vout=5V e lout=1A	U\$0,25
REG3	Chaveado com Vin entre 0V e 30V, Vout entre 0 e 15V e lout=800mA	U\$0,30
REG4	Chaveado com Vin entre 0V e 30V, Vout entre 0 e 15V e lout=1A	U\$0,35

•	P	I	C	:

Modelo	Características
PTC1	Resistência linear com a relação 100Ω/°C

• Microcontroladores:

Modelo	Características	Custo
μC1	Vin=5V, 3 pinos de I/O com Imáx=20mA por pino, conversor A/D com	U\$1,00
	1 canal (AN) de 8 bits, consumo máximo de 300mA	
μC2	Vin=5V, 5 pinos de I/O com Imáx=20mA por pino, conversor A/D com	U\$1,20
	1 canal (AN) de 8 bits, consumo máximo de 400mA	
μC3	Vin=5V, 4 pinos de I/O com Imáx=20mA por pino, conversor A/D com	U\$1,50
	1 canal (AN) de 10 bits, consumo máximo de 400mA	
μC4	Vin=5V, 4 pinos de I/O com Imáx=20mA por pino, conversor A/D com	U\$1,50
	1 canal (AN) de 8 bits, 1 timer de 16 bits, consumo máximo de 400mA	
μC5	Vin=5V, 5 pinos de I/O com Imáx=20mA por pino, 1 interrupção	U\$1,40
	externa (IE), 1 timer de 16 bits, consumo máximo de 300mA	
μC6	Vin=5V, 5 pinos de I/O com Imáx=20mA por pino, 1 interrupção	U\$1,40
	externa (IE), conversor A/D com 1 canal (AN) de 8 bits, consumo	
	máximo de 300mA	

• Motor de passo:

Modelo	Características
MP1	- Diferença de potencial máxima em
	cada terminal = 5V
	- 1 terminal comum (5) e 4 terminais
	de controle
	- Corrente necessária para o
	acionamento de cada bobina = 500
	mA.
	- Sequencia dos terminais de controle
	= 1,2,3 e 4, sendo acionado apenas
	uma bobina de cada vez.

• Transistores:

Modelo	β	I _c (Max mA)	Custo (U\$)
Transistor NPN 1	30	400	0,3
Transistor NPN 2	25	600	0,4
Transistor NPN 3	50	500	0,35

• Resistores: qualquer valor ou quantidade, com valor máximo de 10 kΩ

- 17 Um sistema embarcado é alimentado com a tensão fornecida pela rede elétrica (110/220V). Quando a umidade indicada por um sensor for inferior a 20%, um "buzzer" deverá ser acionado para alertar essa situação.
- a) Construa o sistema indicado (esquemático), escolhendo os componentes abaixo e justificando suas escolhas.

• Fonte/Reguladores:

Modelo	Características	Custo
REG1	Vin entre 0VDC e 30VDC, Vout entre 0 e 15VDC e lout=800mA	U\$0,30
REG2	Vin entre 0VDC e 30VDC, Vout entre 0 e 15VDC e lout=1A	U\$0,35
FON1	Vin entre 100VAC(RMS) e 180VAC(RMS), Vout=5VDC e lout=800mA	U\$3,00
FON2	Vin entre 80VAC(RMS) e 250VAC(RMS), Vout=5VDC e lout=800mA	U\$3,50
FON3	Vin entre 80VAC(RMS) e 250VAC(RMS), Vout=5VDC e lout=1,2A	U\$4,00

• Sensor de umidade:

Modelo	Características
S1	- Alimentação: 5V. Consumo: 100 mA
	- Comunicação I2C, resolução da umidade: 1%
	- Endereço do dispositivo: 0b 0 0 1 1 0 A1 A0
	- Comandos:
	Desligar o sensor: 1 byte (0x00) (apenas escrita)
	• Ligar o sensor: 1 byte (0x01) (apenas escrita)
	• Ler a umidade: 1 byte (0x02) (leitura/escrita). O sensor retorna 1 byte com o
	valor da umidade (em %) em decimal.

• Microcontroladores:

Modelo	Características	Custo
μC1	Vin=5V, 1 pino de I/O com Imáx=20mA por pino, conversor A/D com 1	U\$1,00
	canal (AN) de 8 bits, consumo máximo de 300mA	
μC2	Vin=5V, 2 pinos de I/O com Imáx=20mA por pino, conversor A/D com 1	U\$1,50
	canal (AN) de 10 bits, 1 timer de 16 bits, consumo máximo de 400mA	
μC3	Vin=5V, 2 pinos de I/O com Imáx=20mA por pino, 1 canal I2C, 1	U\$1,40
	interrupção externa (IE), consumo máximo de 300mA	
μC4	Vin=5V, 2 pinos de I/O com Imáx=20mA por pino, 1 canal I2C, 1 timer	U\$1,30
	de 16 bits, consumo máximo de 300mA	

• Buzzer:

Modelo	Características			
B1	- No terminal ACION, é necessário			
	uma onda quadrada com amplitude			
	de 5V e frequência de 1 KHz.			
	- Corrente necessária para o			
	acionamento do buzzer = 20 mA.			

• Resistores: qualquer valor ou quantidade, com valor máximo de 10 k Ω

b) Escreva a sequencia de bytes necessária na comunicação I2C para ligar a medição no sensor e para ler uma medida proveniente do mesmo.

18 – Construa um sistema embarcado no Proteus, alimentado por uma bateria de 24V de um caminhão e composto por quatro sensores de temperatura modelo DS1621 e dois botões. De acordo com a tabela de acionamento abaixo, o PIC18F4550 requisita a temperatura do sensor selecionado e mostra o valor no display.

Obs1: utilize o regulador LM7805.

Obs2: o sistema deve operar com uma frequência de 20MHz.

Botão 1	Botão 2	Sensor
OFF	OFF	1
OFF	ON	2
ON	OFF	3
ON	ON	4