Key Concepts and Entities:

- Operating System (OS): Manages hardware, applications, and user interaction.
- Computer System: Includes hardware, OS, applications, and users.

Important Examples and Figures:

- Figure 1.1: Components of a computer system.
- Figure 1.2: Example of a typical PC system.

Relationships between Ideas:

- OS allocates resources (e.g., CPU time, memory) to programs and users.
- OS manages I/O devices and user programs to prevent conflicts.
- Interrupts signal the CPU of events requiring attention.
- Storage includes memory and storage devices.
- I/O structure consists of device controllers, drivers, and buses.

Summary:

Operating System Functions:

- Provides user interface for hardware interaction.
- Optimizes system performance by allocating resources.
- Controls I/O devices and programs to ensure error-free operation.

Computer System Organization:

- Multiple CPUs and device controllers manage system resources.
- Interrupts enable timely handling of hardware events.
- Storage structure includes memory and storage devices.
- Manages hardware, applications, and user interactions.
- Allocates resources to programs and users.
- Controls I/O devices to prevent conflicts.

Computer System Organization:

- Includes hardware, OS, applications, and users.
- Interrupts signal the CPU of events requiring attention.
- Storage structure consists of memory (RAM, EEPROM) and storage devices (HDDs, NVM).
- I/O structure involves device controllers, drivers, and buses.

Additional Details:

- Interrupts: Notify the CPU of events and are mapped to service routines.
- Main memory (RAM) stores active programs and data.
- Secondary storage provides permanent data storage.
- Device controllers connect I/O devices to the computer.
- Important Figures: Timeline and I/O cycle illustrate interrupt handling.

- Relationship: Interrupt vector table maps interrupts to service routines.

1.2.2 Storage Structure

- Main memory (RAM) stores active programs and data.
- EEPROM stores nonvolatile data.
- Secondary storage (HDDs, NVM) provides permanent data storage.
- Notation: Bits (units of storage), bytes (8 bits), KB (1,024 bytes), MB (1,0242 bytes), Structure 1.2.3 I/O Structure
 - Device controllers connect I/O devices to the computer.
 - Device drivers provide a standardized interface to devices.
 - Manages hardware, applications, and user interactions.
 - Allocates resources (CPU time, memory) to programs and users.
 - Controls I/O devices to prevent conflicts.
 - Key Concepts: Bit, byte, word, storage units (KB, MB, GB, TB, PB)
 - Examples: 1 byte = 8 bits, 1 KB = 1,024 bytes

Computer-System Organization

- Key Concepts: Main memory, secondary storage, tertiary storage, cache memory
- Entities: HDDs (mechanical), NVM devices (electrical)

I/O Structure

- Key Concepts: DMA, interrupt
- Relationship: DMA bypasses CPU for data transfers, interrupts notify CPU of eveComputer-System Architecture
 - Key Concepts: Single-processor, multiprocessor, SMP, multicore
- Relationships: SMP distributes tasks equally, multicore integrates computing coreDefinitions of Computer System Components
- Entities: CPU, processor, core, multicore, multiprocessorKey Concepts:
 - Storage: Bits, bytes, storage units (KB, MB, GB, TB, PB)
 - System Organization: Main memory, secondary storage, cache memory
 - I/O Structure: DMA, interrupts
 - Architecture: Single-processor, multiprocessor, SMP, multicore

Entities and Relationships:

- CPU: Executes instructions
- Processor: Contains multiple CPUs (cores)
- Multicore: Multiple cores per CPU
- Multiprocessor: Equal CPUs sharing tasks
- Clustered Systems: Multiple systems connected for high availability

- Bootstrap: Initializes system and loads OS
- Kernel: Provides services to user programs
- Process: Program execution

Key Concepts:

- CPU: Executes instructions
- Processor: Chip with multiple CPUs (cores)
- Multicore: Multiple cores per CPU

1.3.2 Multiprocessor Systems

- Symmetric multiprocessing (SMP): Equal CPUs sharing tasks
- Multicore systems: Multiple cores on a single chip
- NUMA: Local memory for each CPU, shared interconnect
- Blade servers: Multiple processor boards in a single chassis

1.3.3 Clustered Systems

- Multiple individual systems (nodes)
- Loosely coupled
- High availability: Continuous service despite failures
- Graceful degradation: Reliability decreases with hardware failures
- Fault tolerance: Can handle single-component failures

1.4 Operating-System Operations

Key Concepts:

- Bootstrap program: Initializes system and loads OS
- Kernel: Provides services to user programs
- Process: Program execution
- Manages hardware, applications, and user interactions.
- Allocates resources (CPU time, memory) to programs and users.
- Controls I/O devices to prevent conflicts.

Computer System Organization:

- Includes hardware, OS, applications, and users.
- Interrupts signal the CPU of events requiring attention.
- Storage structure consists of memory (RAM, EEPROM) and storage devices (HDDs, NVM).
- I/O structure facilitates communication between devices and the OS.

Additional Details:

- Interrupts: Notify the CPU of events and are mapped to service routines.
- Main memory (RAM) stores active programs and data.
- Secondary storage provides permanent data storage.
- Device controllers connect I/O devices to the computer.
- Device drivers provide a standardized interface to devices.

Operating System Operations:

- Initializes system and loads OS (Bootstrap program).
- Provides services to user programs (Kernel).
- Executes instructions (CPU).
- Executes operating system code and protects it from user errors (Kernel Mode).
- Interface for user programs to access operating system services (System Calls).

Resource Management:

- Enables shared data access for multiple hosts with software like Oracle Real Application Cluster
- Ensures conflict prevention through access control and locking (DLM).

Hadoop

- Framework for large data processing across distributed systems (single to thousands of nodes).
- Comprises a distributed file system, resource manager (YARN), and processing system (MapReducestrong>Operating System Operations

Dual-Mode and Multimode Operation:

- Shared data access for multiple hosts using Oracle Real Application Cluster.
- Prevents conflicts through access control and locking (DLM).

Hadoop

- Framework for processing large data in distributed systems.
- Components: distributed file system, resource manager (YARN), processing system (MapReduce).
 Operating System Operations

Multiprogramming and Multitasking:

- Multiple programs run concurrently, maximizing CPU utilization.
- Multitasking allows switching between processes, improving responsiveness.

Virtual Memory:

- Extends memory capacity beyond physical limits.
- Maps logical memory to physical memory, optimizing memory usage.

File System:

- Manages data on secondary storage devices.

Dual-Mode Operation:

- User Mode: Executes user programs.
- Kernel Mode: Executes operating system code, providing protection.

System Calls:

- Interface for user programs to access operating system services.

Resource Management

- Process Management: Manages running programs (processes).
- Memory Management: Allocates and deallocates memory for processes.
- File-System Management: Organizes and controls file access.
- Key Concepts: Kernel mode (0) and user mode (1)
- Examples: I/O control instructions require kernel mode.
- Relationships: Mode bit determines protection levels.

1.4.3 Timer

- Key Concept: Timer interrupts prevent CPU monopolization.
- Example: Timer triggers interrupts to regain control from user programs.
- Relationships: Ensures fair CPU allocation and prevents infinite loops.

1.5 Resource Management

1.5.1 Process Management

- Key Concept: Process as a running program instance.
- Examples: Compilers, word processors, social media apps.
- Relationships: Processes consume resources (CPU, memory, I/O).

1.5.2 Memory Management

- Key Concept: Main memory stores data and instructions.
- Examples: Algorithms allocate and deallocate memory space.
- Relationships: Optimizes CPU utilization and system response.

1.5.3 File-System Management

- Key Concept: Files as organized information storage units.
- Examples: Programs, data files (numeric, text, binary).
- Relationships: Organizes and controls file access.

1.5.4 Mass-Storage Management

- Key Concept: Secondary storage (HDDs, NVM) stores programs and data.
- Examples: OS manages storage devices for optimal access and performance.
- Allows multiple hosts to share data (e.g., Oracle Real Application Cluster)
- Prevents conflicts through access control and locking (DLM)

Operating System Operations:

Key Concepts:

- Memory management: Memory allocation for programs and data.
- File-system management: File organization and access.
- Mass-storage management: Secondary and tertiary storage handling.
- Cache management: Faster data storage for improved performance.
- I/O system management: Input/Output device control.

File-System Management

- Files as storage units, organized in directories.
- File creation, deletion, and access controlled by the operating system.

Mass-Storage Management

- Secondary storage (HDDs, NVM) for backup.
- Disk operations (mounting, unmounting, scheduling).
- Tertiary storage (tapes, optical media) for long-term storage.

Cache Management

- Caching for performance improvement.
- Cache size and replacement policies.
- Cache coherency for data synchronization.

I/O System Management

- I/O subsystem conceals device peculiarities.
- Device drivers for specific hardware.
- Buffering, caching, and spooling for I/O operations.