1. 在三角形 $\triangle ABC$ 中, $\angle BAD = 30^{\circ}$, $\angle CAD = 45^{\circ}$,AB = 2,AC = 2 则 $\frac{BD}{DC} =$ _____.

-)
 - (A) 充分不必要条件

(B) 必要不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- 3. 已知函数 $f(x) = \begin{cases} \sin(x+a), x \leq 0 \\ \cos(x+b), x > 0 \end{cases}$ 是偶函数,则下列结论可能成立的是)
 - (A) $a = \frac{\pi}{4}, b = -\frac{\pi}{4}$

(B) $a = \frac{2\pi}{3}, b = \frac{\pi}{6}$

(C) $a = \frac{\pi}{2}, b = \frac{\pi}{6}$

- (D) $a = \frac{5\pi}{6}, b = \frac{2\pi}{2}$
- 4. 已知函数 $f(x) = \sin(\omega x \frac{\pi}{3})$, 点 A(m,n), $B(m+\pi,n)(|n| \neq 1)$ 都在曲线 y = f(x) 上,且线段 AB 与曲 线 y = f(x) 有五个公共点,则 ω 的值为)
 - (A) 4

(B) 2

- (C) $\frac{1}{2}$
- 5. 在 $\triangle ABC$ 中,角 A,B,C 所对的边分别是 a,b,c,且 a,b,c 成等差数列,则角 B 的取值范围是()
 - $(A)\left(0,\frac{\pi}{3}\right)$
- (B) $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ (C) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
- (D) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
- 6. 已知函数 $f(x) = \sin(2x + \varphi)$,若 $f(\frac{\pi}{12}) f(\frac{-5\pi}{12}) = 2$,则函数 f(x) 的单调增区间为_____.
- 7. 已知函数 $y = 2\sin(\omega x + \varphi)\left(w > 0, |\varphi| < \frac{\pi}{2}\right)$.
 - ①若 f(0) = 1,则 $\varphi = _____;$
 - ②若 $\exists x \in \mathbf{R}$,使 f(x+2) f(x) = 4 成立,则 ω 的最小值为_____.

- 8. 如图,在四边形 ACBD 中, $\cos \angle CAD = -\frac{1}{7}$,且 $\triangle ABC$ 为正三角形.
- (1) 求 cos ∠BAD 的值;
- (2) 若 CD = 4, $BD = \sqrt{3}$, 求 AB 和 AD 的长.

- 9. 已知函数 $f(x) = -2\sin x \cos 2x$.
- (1) 比较 $f(\frac{\pi}{4})$, $f(\frac{\pi}{6})$ 的大小;
- (2) 求函数 f(x) 的最大值.

- 10. 在锐角 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c,已知 $a=\sqrt{7},\ b=3,\ \sqrt{7}\sin B+\sin A=2\sqrt{3}.$
- (1) 求角 A 的大小;
- (2) 求 △ABC 的面积

- 11. 在三角形 $\triangle ABC$ 中,角 A, B, C 所对的边分别为 a, b, c, 且 $\sin^2 A = \sin B \sin C$.
- (1) 若 $\angle A = \frac{\pi}{3}$,求 $\angle B$ 的大小;
- (2) 若 bc = 1, 求 $\triangle ABC$ 的面积的最大值.

- 12. 如图,在三角形 $\triangle ABC$ 中, $\angle ABC=90^{\circ}, AB=4, BC=3$,点 D 在线段 AC 上,且 AD=4DC.
- (1) 求 BD 的长;
- (2) 求 sin CBD 的值.

- 13. 已知函数 $f(x) = (1 + \sqrt{3} \tan x) \cos^2 x$.
- (1) 若 α 是第二象限角,且 $\sin \alpha = \frac{\sqrt{6}}{3}$,求 $f(\alpha)$ 的值;
- (2) 求函数 f(x) 的定义域和值域.

- 14. 在三角形 $\triangle ABC$ 中,角 A, B, C 所对的边分别为 a, b, c, 已知 $b^2+c^2=a^2+bc$.
- (1) 求 A 的大小;
- (2) 如果 $\cos B = \frac{\sqrt{6}}{3}, b = 2$,求三角形 $\triangle ABC$ 的面积.

- 15. 已知函数 $f(x) = 2\sin\frac{\pi}{6}x\cos\frac{\pi}{6}x$,过两点 A(t,f(t)),B(t+1,f(t+1)) 的直线的斜率记为 g(t).
- (1) 求 g(0) 的值;
- (2) 写出函数 g(t) 的解析式,求 g(t) 在 $\left[-\frac{3}{2}, \frac{3}{2}\right]$ 上的取值范围.

- 16. 已知函数 $f(x) = \sin \omega x (\cos \omega x \sqrt{3} \sin \omega x) + \frac{\sqrt{3}}{2} (\omega > 0)$ 的最小正周期为 $\frac{\pi}{2}$.
- (1) 求ω的值;
- (2) 求函数 f(x) 的单调递减区间.

17. 如图,在三角形 $\triangle ABC$ 中,点 D 在边 AB 上,且 $\frac{AD}{DB}=\frac{1}{3}$. 记 $\angle ACD=\alpha$ $\angle BCD=\beta$.

(1) 求证:
$$\frac{AC}{BC} = \frac{\sin \beta}{3 \sin \alpha}$$
;

(2) 若
$$\alpha = \frac{\pi}{6}$$
, $AB = \sqrt{19}$, 求 BC 的长.

18. 已知函数 $f(x) = \sin^2(x + \frac{\pi}{4})$.

(1) 求 f(x) 的最小正周期及其图象的对称轴方程;

(2) 求
$$f\left(\frac{\pi}{3} - x\right)$$
的单调递减区间.