

Department of Physics, Shandong University

Compressed EWK study(ISRC1N2)

Chengxin Liao

liaocx@ihep.ac.cn

Mar, Fri 7, 2025

Tasklist

- Summary for the SR in C1N2ISR
- BSc thesis: https://www.overleaf.com/project/674e7119837a2580151a0868
- ABCD method note/bkg estimation: any note or paper I can follow/ref?

Chengxin Liao IHEP SUSY Meeting

Outline

- 1. Hyperparameters optimization
 - 1.1 LH channel
 - 1.2 HH channel
- 2. Performance of Model
 - 2.1 LH channel
 - 2.2 HH channel
- 3. Backup

Hyperparameters Optimization

Input(LH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->21225 entries

Bkg: 1703476 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

```
Signal -- training events : 12735
Signal -- testing events : 4245
Signal -- training and testing events: 16980
Background -- training events : 1022092
Background -- testing events : 340692
Background -- training and testing events: 1362784
```

Pre-Selection

```
lep-had channel: nTaus \ge 1, nLeps \ge 1

pass\ MET\ trigger;\ MET \ge 200

1 \le nBaseJet \le 8

b-Veto

OS
```

Variables(30):

Obj kinematics

nBase_Jet mt_lep

e lep(energy of tau2)

Angular correlations

dPhitt
dRtt
dRt1x
dPhiMin_xj
dPhiMax tj

Event kinematics

Mll(Invariant Mass of tau1 and tau2)

METsig MT2 50

Mwh(Invariant Mass of tau1 and MET)

Mwl(Invariant Mass of tau2 and MET)

MCT(Transverse Mass Squared)

Proj_j(Projection of pt jet on zeta)

Proj_tt(Projection of tau1+tau2 on zeta)

mtx_tau

Mtx_lep

ht_tau

mt quad sum

mt_sum

frac_MET_tau1

frac_MET_tau2

frac_MET_tt

frac_MET_sqrtHT_40

frac_jet_tau1

frac_jet_tau2

frac_jet_tt

MT_taumin

pt_Vframe

High importance at shiyi's feature

Note:

zeta is bisector direction of tau1 and tau2[PhyUtils::bisector(tau1, tau2)]

Grid Search:

Ntrees: 200, 300, 400, 500

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn

Model Name Binned Significance Max Zn Max Zn Bin 400 8 1 001 4.31391 192 400_10_1_001 192 15.6755 4.26908 400 12 1 001 15.6890 4.21178 192 400 10 2 001 15.3196 4.11376 191 194 500 10 1 001 15.8304 4.11162 194 500 12 1 001 15.8210 4.05346 199 400 12 1 01 16.0665 4.02939 192 500 10 3 001 15.3232 4.02306 198 300_12_1_005 16.1734 4.01739 400 12 1 005 199 16.2126 4.00753 500 12 3 001 192 15.3067 4.00343 500 12 1 01 199 16.0441 4.00080 199 500 8 1 01 15.9307 3.99007 192 500 8 3 001 15.3061 3.97695 400 6 3 001 15.0010 3.97216 190 199 300_10_1_01 16.0095 3.96339 199 300 12 1 01 16.0204 3.94916 400 8 3 001 14.9962 3.93255 190 200_12_1_005 197 16.0375 3.93002 400_12_2_001 15.2724 3.92019 191 190 400 12 3 001 14.9991 3.91396

Shiyi's result of LH channel

Top Sig

hy	sig	zn
00 10 2 0.05	15.3225	3.72536
300 11 1 0.05	15.3127	3.87694
000 10 2 0.05	15.3099	3.60778
400 6 1 0.05	15.3075	3.91373
500 8 1 0.05	15.2990	3.58389
400 8 2 0.05	15.2980	3.74427
300 6 1 0.05	15.2929	4.09837
500 8 2 0.05	15.2891	3.63322
200 11 1 0.05	15.2849	3.92924
300 11 2 0.05	15.2804	3.85617
100 11 2 0.05	15.2780	3.68484
300 8 1 0.05	15.2753	3.82506
300 10 1 0.05	15.2733	3.71921
100 11 1 0.05	15.2701	3.60863
500 6 1 0.05	15.2593	3.84429
$200 \ \overline{6} \ \overline{1} \ 0.1$	15.2559	3.90950
100 12 1 0.05	15.2554	3.58328
00 10 1 0.05	15.2493	3.49410

Top Zn

hy	sig	zn
200 6 3 0.05	15.0164	4.29022
200 6 1 0.05	15.0755	4.10077
300 6 1 0.05	15.2929	4.09837
200 10 2 0.05	15.1606	4.09228
200 12 2 0.05	15.1803	4.04800
200 8 2 0.05	15.0857	4.01373
200 8 3 0.05	14.9662	4.01324
200 6 2 0.05	14.9743	3.94396
200 11 1 0.05	15.2849	3.92924
300 6 2 0.05	15.1858	3.91508
400 6 1 0.05	15.3075	3.91373
200 6 1 0.1	15.2559	3.90950
200 12 1 0.05	15.2279	3.90380
400 8 1 0.01	14.6829	3.90189
300 11 1 0.05	15.3127	3.87694
200 8 1 0.05	15.1285	3.85623
300 11 2 0.05	15.2804	3.85617
500_6_1_0.05	15.2593	3.84429

```
Binned significance: Z = \sqrt{2((s_i + b_i)\log(1 + \frac{s_i}{b_i}) - s_i)}
```

```
400_10_1_001,15.6755,4.26908,192,200
400_10_1_001,15.4762,3.53693,96,100
400_10_1_001,15.1985,3.40439,49,50
400_10_1_001,15.3013,3.53693,39,40
400_10_1_001,14.8172,3.40439,25,25
400_10_1_001,15.06,3.53693,20,20
400_10_1_001,13.9532,1.6563,10,10
```

```
400_12_1_001,15.689,4.21178,192,200
400_12_1_001,15.4949,3.52564,97,100
400_12_1_001,15.2434,3.52564,49,50
400_12_1_001,15.3089,3.52196,39,40
400_12_1_001,14.8653,3.52564,25,25
400_12_1_001,15.0506,3.52196,20,20
400_12_1_001,13.9276,1.6473,10,10
```

hyper parameter: NTrees=400, learning rate=0.01, max depth=10, MinNodeSize=1%(default)

Cut at BDT_score = 0.8

hyper parameter: NTrees=400, learning rate=0.01, max depth=12, MinNodeSize=1%(default)

Input(HH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->12180 entries

Bkg: 513850 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

Pre-Selection

```
had-had channel: nTaus \ge 2, nLeps = 0
pass \ MET \ trigger; \ MET \ge 200
1 \le nBaseJet \le 8
b - Veto
OS
```

```
Variables (26): Obj kinematics
               Pt tt
               Angular correlations
               dPhit1x
               dEtatt
               dPhiMax xt
               dPhiztt
               dPhitt
               dPhizxe
               dPhiMin xt
               dPhit2x
               dPhiMin tj1
               dRt2x
               dRMax xt
```

```
Event kinematics
MII(Invariant Mass of tau1 and tau2)
MIA
MT2 150
MET Tau
Proj tt
MstauA
MCT
frac MET tt
frac_MET_tau1
frac_MET_MeffInc_40
frac MET Meff
```

These vars are selected based on the importance

dRMin tj

sum cos dphi

dRtt

Grid Search:

Ntrees: 200, 300, 400, 500

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn

Model Name	Binned	Significance	Max Zn	Max Zn Bin
500_12_1_005		14.2770	3.83857	199
300_10_1_01		13.9648	3.76965	198
200_6_1_01		13.9250	3.74940	198
500_6_3_01		14.2740	3.72616	199
400_10_1_01		13.9553	3.70167	199
300_6_2_01		13.9366	3.69620	199
300_10_2_01		14.0094	3.67743	199
300_8_1_01		14.0434	3.67624	198
200_8_1_01		14.1925	3.67005	198
400_12_1_005		14.1384	3.66529	199
200_6_2_01		14.2209	3.65978	199
200_6_3_01		13.7197	3.64427	199
500_10_1_01		13.8227	3.63722	198
500_8_1_01		13.8369	3.61405	198
400_10_2_01		14.2001	3.60950	199
500_6_1_005		14.0399	3.60132	197
		40 0000		222

Rebin result

```
Model Name, Binned Significance, Max Zn, Max Zn Bin, bin num 500_12_1_005, 16.0862, 3.8635, 198, 200 500_12_1_005, 15.9967, 3.62563, 99, 100 500_12_1_005, 15.9318, 3.62563, 50, 50 500_12_1_005, 15.6612, 3.07372, 40, 40 500_12_1_005, 15.3086, 2.45396, 25, 25 500_12_1_005, 15.0825, 2.20391, 20, 20
```

Binned significance: $Z = \sqrt{2((s_i + b_i)\log(1 + \frac{s_i}{b_i}) - s_i)}$

Compared with form result, there has a significant improvement in Zn

- 1		Model Name	Binned Significance 12.1380 12.9663 12.1254 12.1150 13.1608 12.8853 12.7673 12.9952 12.8248 13.1256 12.9703 12.4457 12.9285 12.8685 12.7388 12.6318 12.9369 12.7388 12.6318 12.9393 12.9179 12.8501 12.9854 12.9337 12.8854 12.9337 12.8854 12.9337 12.8854 12.9906 12.8406 13.2400	Max Zn	Max Zn Bin
	137	100 8 3 005	12.1380	3.27179	48
	128	100 6 1 01	12.9663	3.24539	49
	15	100 12 3 005	12,1254	3.22901	48
	85	100 10 3 005	12.1150	3.20722	48
	105	200 10 1 01	13.1608	3.19603	50
	104	100_8_1_01	12.8853	3.18398	50
	63	200_6_1_005	12.7673	3.17520	49
	2	200_6_1_01	12.9052	3.17138	50
	38	100_6_2_01	12.8248	3.16297	49
	131	300_8_2_01	13.1256	3.16255	50
	93	300_6_1_005	12.9703	3.14200	50
	73	100_6_1_005	12.4457	3.14142	48
	69	400_6_1_01	12.9285	3.14074	50
	54	200_8_3_01	12.8685	3.13397	50
	12	200_6_2_005	12.7035	3.12582	49
	33	100_6_2_005	12.2453	3.11746	48
	66	400_6_1_005	12.9369	3.10400	50
	45	100_10_3_01	12.7388	3.10074	49
	7	100_12_3_01	12.6318	3.10071	49
	48	400_12_2_01	12.9393	3.09236	50
	72	400_12_2_005	12.9179	3.06882	50
	62	300_6_1_01	12.8501	3.06869	50
	133	400_10_1_01	12.9846	3.06413	50
	91	100_6_3_01	12.6291	3.06320	49
	9	400_8_3_01	12.9337	3.06226	50
	58	300_10_3_005	12.8854	3.05992	49
	36	300_10_1_01	12.9906	3.05755	50
	89	100_10_2_01	12.8406	3.05210	49
	43	200_8_2_01	13.2400	3.04952	50
	19	400_6_2_005	12.8263	3.04206	50

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

Apply a rough cut at 0.80 to check the distribution

It has a wider peak than LH signal region

Precise cut at 0.91 to define signal region

Rebin to: [0.91, 0.94, 0.97, 1.00]

Performance of Model

Performance of Model(LH)

hyper parameter: NTrees=400, learning rate=0.01, max depth=10, MinNodeSize=1%(default)

Apply BDT score cut at 0.87

Root of square sum of Zn of each bin: 5.8479

Rebin to: [0.87, 0.89, 0.91, 0.94]

bin	max Zn	C1N2ISR (100,70)	bkg	Higgs	OtherTop	SingleTop	TopPair	VV	Wjets	Zlljets	Zttjets
(0.87-0.89)	2.59868	59.238+- 1.484	76.648+- 5.530(7.21%)	0.126+- 0.034	0.033+- 0.021	2.619+- 0.548	8.311+- 1.141	9.569+- 0.520	39.971+- 5.074	0.760+- 0.130	15.259 +-1.718
(0.89-0.91)	3.03656	57.663+- 1.447	59.803+- 3.946(6.59%)	0.053+- 0.020	0.078+- 0.030	1.761+- 0.420	4.401+- 0.823	6.851+- 0.399	33.586+- 3.367	0.453+- 0.128	12.620 +-1.792
(0.91-0.94)	4.26908	42.715+- 1.251	16.632+- 1.683(10.11%)	0.005+- 0.004	0.006+- 0.004	0.450+- 0.202	1.819+- 0.532	2.858+- 0.249	9.733+- 1.536	0.039+- 0.020	1.722+- 0.298

Performance of Model(LH)

hyper parameter: NTrees=400, learning rate=0.01, max depth=10, MinNodeSize=1%(default)

BDT score distribution of Validation set

BDT score distribution of Test set

BDT score distribution of test set and data (Blind with events with score > 0.6)

Performance of Model(HH)

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

Root of quadratic sum of Zn = 5.3163

Rebin to: [0.91, 0.94, 0.97, 1.00]

bin	Zn	C1N2ISR (100,70)	bkg	SingleTop	Zttjets	Wjets	OtherTop	VV	ZIIjets	TopPair	Higgs
bin1	2.8678146	38.472+- 1.192	42.986+- 6.490(15.09%)	0.958+- 0.303	4.090+- 0.675	28.198+- 6.388	0.026+- 0.020	5.144+- 0.289	0.265+- 0.185	4.156+- 0.802	0.150+- 0.041
bin2	3.1193828	53.206+- 1.399	44.788+- 6.647(14.86%)	0.473+- 0.239	2.435+- 0.612	32.118+- 6.547	0.033+- 0.022	4.512+- 0.303	0.040+- 0.026	5.158+- 0.888	0.019+- 0.014
bin3	3.4088980	49.550+- 1.350	26.640+- 3.905(14.65%)	0.348+- 0.184	0.600+- 0.129	21.041+- 3.850	0.034+- 0.017	2.363+- 0.189	0.196+- 0.123	2.050+- 0.570	0.007+- 0.007

Performance of Model(LH)

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

BDT score distribution of Validation set

BDT score distribution of Test set

BDT score distribution of test set and data (Blind with events with score > 0.6)

TODO

1. Reading notes about ABCD method

2.

Chengxin Liao

Backup

BackUp

An Interesting Method to Rebin

It can be proved that there are 2^{n-1} ways to rebin if histgram have n bins except 2 bins

2 bins

- 1. [0] [1] (separate)
- 2. [0+1] (merged)

Oredered the method and trun into binary number

3 bins

4 bins

- 1. [0] [1] [2]
- 2. [0+1][2]
- 3. [0] [1+2]
- 4. [0+1+2]

Based on Mathmatical Induction

 2^{n-1} ways to rebin

- 1. [0] [1] [2] [3]
- 2. [0+1][2][3]
- 3. [0] [1+2] [3]
- 4. [0] [1] [2+3]
- 5. [0+1+2][3]
- 6. [0] [1+2+3]
- 7. [0+1] [2+3]
- 8. [0+1+2+3]

Example in 4 bins

- 000 (no walls): [0+1+2+3]
- 001 (wall at 2-3): [0+1+2] [3]
- 010 (wall at 1-2): [0+1] [2+3]
- 011 (walls at 1-2, 2-3): [0+1] [2] [3]
- 100 (wall at 0-1): [0] [1+2+3]
- 101 (walls at 0-1, 2-3): [0] [1+2] [3]
- 110 (walls at 0–1, 1–2): [0] [1] [2+3]
- 111 (all walls): [0] [1] [2] [3]
- That's $2^3 = 8$ options (3 gaps).

BackUp

Feature_distribution

Chengxin Liao