

Audio Analytics

Serge Retkowsky EMEA AI GBB Team serge.retkowsky@microsoft.com

V1 - 22-03-2022

What is a sound?

sound

[saʊnd] ♠)

NOUN

 vibrations that travel through the air or another medium and can be heard when they reach a person's or animal's ear.

"light travels faster than sound"

- 2. sound produced by continuous and regular vibrations, as opposed to noise.
- music, speech, and sound effects when recorded and used to accompany a film, video, or broadcast.

"a sound studio"

A signal is the sound variation in a certain quantity over time

Fast Fourier Transform (FFT)

Jean-Baptiste Joseph Fourier 1768 – 1830

https://en.wikipedia.org/wiki/Joseph Fourier

The Fourier transform is a mathematical formula that converts the signal from the time domain into the frequency domain.

Spectrum

The **spectrum** is the distribution of amplitudes for each frequency component of the signal.

The spectrogram represents how the spectrum of frequencies vary over time

Chromagram display the intensity of each pitch for each time interval

Using spectrograms images as features, we can train a computer vision model to classify audio files

Or to predict an acoustic anomaly from the sound of a machine

In summary

Azure AutoML for Images Algorithm

MobileNet: Light models for

mobile applications

ResNet: Residual networks

ResNeSt: Split attention

networks

SE-ResNeXt50: Squeeze-and-

Excitation networks

ViT: Vision transformer

networks

YOLOv5: One stage object

detection

Faster RCNN ResNet FPN:

Two stage object detection

RetinaNet ResNet FPN:

address class imbalance with

focal loss

MaskRCNN ResNet FPN

Azure AutoML for Images

We can generate audio features from audio files and use a generic classification algorithm

Spectral features

- Mel-Frequency Cepstral Coefficients
 Spectral Centroid
- Zero Crossing Rate
- Chroma Frequencies
- Spectral Roll-off
- Spectral contrast
- Spectral flatness
- Nth order polynomial of spectrogram
- Tonal centroid features

Rhythm features

- Tempogram
- Fourier tempogram

4	E	F	G	Н	I	J	K	L	
1	filename	sampling rate	total_samples	duration	chroma mean 0	chroma mean 1	chroma mean 2	chroma mean 3	chrom
2	blues.00000.wav	22050	661794	30,0133333	0,26800678	0,251611333	0,226004798	0,095506201	0,2
3	blues.00001.wav	22050	661794	30,0133333	0,245332417	0,119800933	0,153988396	0,053337448	0,1
4	blues.00002.wav	22050	661794	30,0133333	0,044974575	0,053335268	0,213918681	0,299785802	0,4
5	blues.00003.wav	22050	661794	30,0133333	0,149017047	0,095013408	0,256969357	0,361600207	0,5
6	blues.00004.wav	22050	661794	30,0133333	0,149890471	0,324409668	0,231447684	0,049297483	0,3
7	blues.00005.wav	22050	661794	30,0133333	0,174924776	0,297632319	0,490159317	0,029940231	0,0
8	blues.00006.wav	22050	661794	30,0133333	0,303592247	0,044819245	0,033725801	0,071567812	0,2
9	blues.00007.wav	22050	661794	30,0133333	0,133722862	0,160319298	0,161420863	0,115934335	0,1
10	blues.00008.wav	22050	661794	30,0133333	0,369537793	0,167340323	0,241840856	0,198154131	0,4
11	blues.00009.wav	22050	661794	30,0133333	0,214746992	0,246957063	0,431365761	0,0903425	0,1
12	blues.00010.wav	22050	661794	30,0133333	0,269612392	0,065305786	0,187212141	0,257468495	0,3
13	blues.00011.wav	22050	661794	30,0133333	0,056971933	0,033895528	0,112376054	0,333991449	0,6
14	blues.00012.wav	22050	661794	30,0133333	0,18643648	0,164015898	0,249181222	0,168915739	0,1
15	blues.00013.wav	22050	661794	30,0133333	0,175153815	0,174307514	0,185878742	0,143578468	0,0
16	blues.00014.wav	22050	661794	30,0133333	0,308505654	0,298338033	0,372414037	0,185313681	0,2
17	blues.00015.wav	22050	661794	30,0133333	0,272835729	0,260926366	0,276364656	0,229465334	0,2
18	blues.00016.wav	22050	661794	30,0133333	0,254976744	0,301687379	0,172817155	0,261988886	0,3
19	blues.00017.wav	22050	661794	30,0133333	0,263373784	0,193970588	0,129297141	0,167151084	
20	blues.00018.wav	22050	661794	30,0133333	0,182916913	0,225288392	0,222885971	0,159066622	0,1
21	blues.00019.wav	22050	661794	30,0133333	0,2424882	0,295897792	0,204931068	0,227288107	0,3
22	blues.00020.wav	22050	661794	30,0133333	0,299063117	0,2324963	0,185303475	0,216888446	0,4
23	blues.00021.wav	22050	661794	30,0133333	0,207339627	0,167177949	0,11422442	0,117166118	0,1
24	blues.00022.wav	22050	661794	30,0133333	0,384442008	0,29263856	0,194021396	0,203634849	0,1
25	blues.00023.wav	22050	661794	30,0133333	0,17348474	0,192353927	0,105343125	0,209032257	0,3
26	blues.00024.wav	22050	661794	30,0133333	0,203956906	0,184026079	0,177608028	0,115847307	0
27	blues.00025.wav	22050	661794	30,0133333	0,203488798	0,154098805	0,236616226	0,093262482	0,1
28	blues.00026.wav	22050	661794	30,0133333	0,220660965	0,138306133	0,138505317	0,084929196	0,1
29	blues.00027.wav	22050	661794	30,0133333	0,336735659	0,142619544	0,19476544	0,105940677	0,3
30	blues.00028.wav	22050	661794	30,0133333	0,193278268	0,12818317	0,168773284	0,089887121	0,1

AutoML for Classification

Audio Processing with Azure ML

Audio processing can consist of extracting audio signal information into spectrograms (time vs frequency vs Db) images that we can use to build a custom vision model with Azure using AutoML for Images.

We can as well extract some audio components and use a generic classification model with Azure ML and its AutoML features.

Demo1: Music Genre Prediction

Problem:

• Is it possible to predict the music genre of an audio file?

• Solution:

- 1. We will build spectrograms for all the training music files
- 2. Then we will use these images to build, train and deploy an Image Computer Vision model with AutoML for Images
- 3. We will test the model to predict the genre based on an audio file

Demo2: Acoustic Anomaly
Detection for Machine Sounds
based on Images

• Problem:

 Is it possible to detect an anomaly (not normal noise) using a machine sound file?

• Solution:

- 1. We will collect some normal and anomaly sounds files
- 2. We will generate spectrograms for all the files
- 3. We will build and train a twoclass classification model (Anomaly vs no anomaly)
- 4. We will test the anomaly detection model

Links

• Azure ML

https://aka.ms/AIShow/AutoML/AzureML

• AutoML for Images

http://aka.ms/AutoMLforImagesDoc

• AutoML for Images Algorithms

http://aka.ms/AutoMLforImagesAlgorithms

• AutoML for Images tutorial

http://aka.ms/AutoMLforImagesTutorial