NOTE DI ANALISI 2

Manuel Deodato

Indice

T	Cal	colo differenziale in più variabili	3
	1.1	Derivate parziali	3
	1.2	Derivate direzionali	3
	1.3	Derivate successive	4
	1.4	Funzioni differenziabili	5
	1.5	Funzioni composte	7
	1.6	Massimi e minimi relativi	8
2	Cal	colo integrale in più variabili	9
	2.1	Integrazione in dimensioni superiori	9
	2.2	Misura di insiemi	10
		2.2.1 Insiemi generati da funzioni	11
	2.3	Integrabilità di funzioni continue	11
	2.4	Integrali doppi	12
	2.5	Integrali tripli	14
	2.6	Cambiamento di variabili	15
		2.6.1 Ammissibilità del cambiamento di variabili	16
		2.6.2 Matrice Jacobiana	17
	2.7	Integrali impropri	17
		2.7.1 Integrali in domini non limitati	17
		2.7.2 Integrali di funzioni non limitate	18
3	Cui	rve e superfici	20
	3.1	Curve in \mathbb{R}^n	20
	3.2	Lunghezza di una curva	22

$1\,$ Calcolo differenziale in più variabili

1.1 Derivate parziali

Una funzione di più variabili $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ può essere derivata mantenendo fissa una variabile e derivando rispetto all'altra. Questo corrisponde al valutare la variazione di f lungo un asse specifico.

Definizione 1.1 (Derivata parziale)

Sia $f(x_1,\ldots,x_n):\mathbb{R}^n\to\mathbb{R}$; la sua derivata parziale rispetto a x_k è:

$$\frac{\partial f}{\partial x_k}(x_1,\dots,x_n) = \lim_{h \to 0} \frac{f(x_1,\dots,x_k+h,\dots,x_n) - f(x_1,\dots,x_k,\dots,x_n)}{h}$$
(1.1.1)

Il vettore che ha per componenti le derivate di f rispetto a ciascuna delle sue variabili si chiama **gradiente** e si indica con ∇f .

1.2 Derivate direzionali

È possibile studiare la variazione di f lungo una particolare direzione individuata dal versore \hat{n} . Una retta parallela a \hat{n} e passante per un punto x si individua con $x + t\hat{n}$; fissando i punti x e \hat{n} , $g(t) := f(x + t\hat{n})$ è una funzione di una variabile e g'(0) è la derivata direzionale di f lungo \hat{n} :

$$\frac{\partial f}{\partial \hat{n}}(x) = g'(0) = \lim_{h \to 0} \frac{f(x + h\hat{n}) - f(x)}{h} \tag{1.2.1}$$

Più in generale:

$$g'(t) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{g(t+h) - g(t)}{h} = \lim_{h \to 0} \frac{f(x_t + h\hat{n}) - f(x_t)}{h} \equiv \frac{\partial f}{\partial \hat{n}}(x_t)$$
(1.2.2)

 $con x_t = x + t\hat{n}.$

Osservazione 1.1. Conoscendo ∇f , si può calcolare la derivata direzionale di f come $\nabla f \cdot \hat{n}$.

Esempio 1.1. Si calcola la derivata direzionale di $f(x,y) = x^2y - e^{x+y}$ lungo la direzione $\hat{n} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Svolgimento. Si ha

$$g(t) = f\left(x + \frac{t}{2}, y + \frac{\sqrt{3}}{2}t\right) = \left(x + \frac{t}{2}\right)^2 \left(y + \frac{\sqrt{3}}{2}t\right) - \exp\left[x + y + t\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)\right]$$

Allora

$$\frac{\partial f}{\partial \hat{n}}(x,y) = g'(0) = xy + \frac{\sqrt{3}}{2}x^2 - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)e^{x+y}$$

Alternativamente $\nabla f = \left(2xy - e^{x+y}, x^2 - e^{x+y}\right)$, quindi $\partial_{\hat{n}} f = \nabla f \cdot \hat{n} = xy - \frac{1}{2}e^{x+y} + \frac{\sqrt{3}}{2}x^2 - \frac{\sqrt{3}}{2}e^{x+y} = xy + \frac{\sqrt{3}}{2}x^2 - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)e^{x+y}$.

Teorema 1.1

Se $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ ha un massimo o minimo relativo in x_0 interno ad A e se ammette derivata lungo \hat{n} in x_0 , allora:

$$\frac{\partial f}{\partial \hat{n}}(x_0) = 0 \tag{1.2.3}$$

Dimostrazione. Si prende $g(t) = f(x_0 + t\hat{n})$ che, per costruzione, ha un minimo in t = 0, quindi g'(0) = 0, da cui segue la tesi.

In particolare, se f è derivabile in x_0 , tutte le derivate parziali si annullano in quel punto; in questo caso, x_0 è detto **punto stazionario**.

Osservazione 1.2. Nel caso a una variabile, i punti di massimo/minimo che cadevano sulla frontiera di un insieme erano, solitamente, un numero finito; qua chiaramente non è più così.

Esempio 1.2. Calcolare massimi e minimi di $f(x,y) = (x^2 + y^2 - 1)e^{x+y}$ nel cerchio chiuso centrato nell'origine e di raggio 1.

Svolgimento. Sul bordo del cerchio $x^2 + y^2 = 1$, quindi $f \equiv 0$. All'interno:

$$f_x = 2xe^{x+y} + (x^2 + y^2 - 1)e^{x+y}$$

$$f_y = 2ye^{x+y} + (x^2 + y^2 - 1)e^{x+y}$$

che si annullano quando

$$\frac{x^2 + y^2 + 2x - 1 = 0}{x^2 + y^2 + 2y - 1 = 0} \Rightarrow 2x - 2y = 0 \Rightarrow x = y$$

Sostituendo x = y nella prima equazione, ad esempio, si ottengono due soluzioni, una sola delle quali appartiene al cerchio; questo corrisponderà al punto di minimo della funzione:

$$f\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right) = (1-\sqrt{3})e^{\sqrt{3}-1} < 0$$

In più dimensioni vale un analogo del teorema di Lagrange:

Teorema 1.2

Sia $f(x): A \subset \mathbb{R}^n \to \mathbb{R}$ e $x_0 \in A$, con $I(x_0, r) \subset A$. Considerando una direzione \hat{n} , si definisce $g(s) = f(x_0 + s\hat{n})$ per |s| < r. Vale l'analogo del teorema di Lagrange:

$$f(x_0 + s\hat{n}) - f(x_0) = g(s) - g(0) = sg'(\tau) = s\frac{\partial f}{\partial \hat{n}}(x_0 + \tau\hat{n})$$
(1.2.4)

1.3 Derivate successive

Sia f una funzione per cui esistono le derivate prime e sono anch'esse derivabili; le derivate seconde potranno essere derivate prima rispetto a x_i e poi rispetto a x_j o viceversa. In generale se f è una funzione di m, si hanno m^n derivate di ordine n. Per le derivate seconde miste¹ vale il seguente.

¹Chiaramente il risultato vale in generale, ma si affronta per funzione di due variabili nel caso delle derivate seconde miste per semplicità.

Teorema 1.3 (Teorema di Schwarz)

Sia f una funzione derivabile in un intervallo I del punto (x, y) e siano queste continue nello stesso intervallo; allora $f_{xy}(x, y) = f_{yx}(x, y)$.

Dimostrazione. Siano $h, k \in \mathbb{R} : (x + h, y + k) \in I$ e sia

$$A(h,k) = f(x+h,y+k) - f(x+h,y) - f(x,y+k) + f(x,y)$$

Prendendo p(t) = f(t, y + k) - f(t, y), si ha A(h, k) = p(x + h) - p(x); per Lagrange:

$$A(h,k) = p'(\xi)h = [f_x(\xi, y+k) - f_x(\xi, y)]h, \ x < \xi < x+h$$

Applicando nuovamente Lagrange, si ha $A(h,k) = f_{yx}(\xi,\eta)hk$, $y < \eta < y + k$. Ripetendo il discorso con q(t) = f(x+h,t) - f(x,t), si trova $A(h,k) = f_{xy}(\sigma,\tau)hk$, quindi $f_{yx}(\xi,\eta) = f_{xy}(\sigma,\tau)$, dove $x < \sigma < x + h$ e $y < \tau < y + k$. Prendendo il limite per $h,k \to 0$, risulta $f_{xy}(x,y) = f_{yx}(x,y)$ per continuità delle derivate seconde.

Come per funzioni di una variabile, vale la formula di Taylor.

Teorema 1.4 (Formula di Taylor)

Sia f(x) di classe C^2 in $A \subset \mathbb{R}^n$ e x_0 punto interno ad A; in un intorno di x_0 , allora, si ha:

$$f(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2} \langle Hf(x_0)(x - x_0), x - x_0 \rangle + R_2(x; x_0)$$
 (1.3.1)

con

$$\lim_{x \to x_0} \frac{R_2(x; x_0)}{\|x - x_0\|^2} = 0$$

1.4 Funzioni differenziabili

Una funzione derivabile, anche in ogni direzione, non è necessariamente continua in più variabili.

Esempio 1.3. La funzione $f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} &, \ (x,y) \neq 0 \\ 0 &, \ (x,y) = 0 \end{cases}$ ha derivate in ogni direzione nel punto (0,0), ma non è continua; prendendo $x_k = (1/k,1/k^2)$ per $k \to \infty$, si ha $x_k \to (0,0)$, ma $f(x_k) = \frac{1/k^4}{2/k^4} \to \frac{1}{2}$.

Definizione 1.2 (Differenziabilità)

Una funzione f(x) si dice differenziabile in x_0 se è derivabile in x_0 e se:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - \langle \nabla f(x_0), x - x_0 \rangle}{\|x - x_0\|} = 0$$
 (1.4.1)

Questa definizione impone che una funzione sia differenziabile in punto se esiste un piano tangente che la approssima precisamente nel punto stesso.

Teorema 1.5

Una funzione f(x) differenziabile in x_0 è continua in x_0 ed è derivabile in ogni direzione.

Dimostrazione. Si mostra che è continua:

$$f(x) - f(x_0) = \frac{f(x) - f(x_0) - \langle \nabla f(x_0), x - x_0 \rangle}{\|x - x_0\|} \|x - x_0\| + \langle \nabla f(x_0), x - x_0 \rangle$$

Per $x \to x_0$ il primo termine di destra va a 0 per assunzione di differenziabilità e l'altro anche perché diventa un prodotto scalare per 0, quindi si verifica $\lim_{x\to x_0} f(x) = f(x_0)$. Data generica direzione \hat{v} con $x = x_0 + t\hat{v}$, usando ancora definizione di differenziabilità:

$$\lim_{t \to 0} \frac{f(x_0 + t\hat{v}) - f(x_0) - \langle \nabla f(x_0), t\hat{v} \rangle}{t} = 0$$

Visto che $\langle \nabla f(x_0), t\hat{v} \rangle = t \langle \nabla f(x_0), \hat{v} \rangle$, si ottiene la tesi.

La direzione di massimo incremento di una funzione è quella del gradiente. Per mostrarlo, si parte da x_0 , assumendo che non sia un punto stazionario; si definisce, allora, $\hat{n} = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$, da cui:

$$\frac{\partial f}{\partial \hat{n}}(x_0) = \langle \nabla f(x_0), \hat{n} \rangle = \|\nabla f(x_0)\|$$

Prendendo altra direzione generica \hat{v} , si ha:

$$\frac{\partial f}{\partial \hat{v}}(x_0) = \langle \nabla f(x_0), \hat{v} \rangle \le \|\nabla f(x_0)\| \|\hat{v}\| = \|\nabla f(x_0)\| \equiv \frac{\partial f}{\partial \hat{n}}(x_0)$$

Dalla definizione di funzione differenziabile il piano $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ è quello che meglio approssima la funzione in (x_0, y_0) .

Si è concluso che una funzione differenziabile è derivabile in ogni direzione, ma una funzione derivabile non è differenziabile in generale. Vale, però, il seguente.

Teorema 1.6 (Teorema del differenziale totale)

Sia f(x) derivabile in x_0 e siano le sue derivate continue nello stesso punto; allora f è differenziabile in x_0 .

Dimostrazione. Si vuole dimostrare che

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - f_x(x_0,y_0)(x-x_0) - f_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0$$

Si usa il teorema di Lagrange per riscrivere $f(x,y) - f(x_0,y_0)$:

$$f(x, y_0) - f(x_0, y_0) = f_x(\xi, y_0)(x - x_0), \ x_0 < \xi < x$$

$$f(x, y) - f(x, y_0) = f_y(x, \eta)(y - y_0), \ y_0 < \eta < y$$

$$\Rightarrow f(x, y) - f(x_0, y_0) = f_x(\xi, y_0)(x - x_0) + f_y(x, \eta)(y - y_0)$$

Il limite scritto sopra si riscrive come:

$$\lim_{(x,y)\to(x_0,y_0)} \left[f_x(\xi,y_0) - f_x(x_0,y_0) \right] \frac{x - x_0}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} + \\ + \left[f_y(x,\eta) - f_y(x_0,y_0) \right] \frac{y - y_0}{\sqrt{(x - x_0)^2 + (y - y_0)^2}}$$

Essendo le frazioni ≤ 1 e visto che le quantità fra parentesi quadre, questo limite si maggiora con la somma delle parentesi quadre, che tende a 0 per $(x, y) \rightarrow (x_0, y_0)$.

1.5 Funzioni composte

Data una funzione $x(t): \mathbb{R}^k \to \mathbb{R}^n$, si definisce, per una generica direzione v:

$$\frac{\partial x}{\partial v} = \left(\frac{\partial x_1}{\partial v}, \dots, \frac{\partial x_n}{\partial t}\right)^{\top} \tag{1.5.1}$$

Vale il seguente per la derivata della funzione composta.

Teorema 1.7

Siano $E \subset \mathbb{R}^k$, $F \subset \mathbb{R}^n$ e $x(t): E \to F$, $f(x): F \to \mathbb{R}$ funzioni di classe C^1 . Allora la funzione composta $g(t) = f(x(t)): E \to \mathbb{R}$ è di classe C^1 e per ogni direzione v:

$$\frac{\partial g}{\partial v}(t) = \left\langle \nabla f(x(t)), \frac{\partial x}{\partial v}(t) \right\rangle \tag{1.5.2}$$

Dimostrazione. Si ha g(t + hv) - g(t) = f(x(t + hv)) - f(x(t)) = f(x(t) + [x(t + hv) - x(t)]) - f(x(t)). Si prende s = ||x(t + hv) - x(t)|| e la direzione $w = \frac{x(t + hv) - x(t)}{s}$ e si usa il teorema di Lagrange:

$$g(t + hv) - g(t) = f(x(t) + sw) - f(x(t)) = s\frac{\partial f}{\partial w}(x(t) + \tau w) = s\langle \nabla f(x(t) + \tau w), w \rangle$$

con $0<\tau< s$. Dividendo per h e prendendo il limite $h\to 0$, per definizione $s\to 0$ e, quindi, $\tau\to 0$, mentre $\frac{x(t+hv)-x(t)}{h}\to \frac{\partial x}{\partial v}(t)$ quindi:

$$\lim_{h \to 0} \frac{g(t+hv) - g(t)}{h} = \lim_{h \to 0} \left\langle \nabla f \left(x(t) + \tau w \right), \frac{x(t+hv) - x(t)}{h} \right\rangle = \left\langle \nabla f \left(x(t) \right), \frac{\partial x}{\partial v}(t) \right\rangle$$

Nel caso particolare k=1, x(t) è una curva e g(t) è funzione di una sola variabile con

$$g'(t) = \sum_{h=1}^{n} \frac{\partial f}{\partial x_h} (x(t)) x'_h(t) \equiv \left\langle \nabla f(x(t)), x'(t) \right\rangle$$

Spesso si prende x(t) = x + tv, cioè retta passante per x lungo direzione v; in questo caso $g'(t) = \nabla f(x+tv) \cdot v$. Se le derivate seconde sono continue, le derivate prime sono differenziabili e si può scrivere:

$$g''(t) = \sum_{i=1}^{n} v_i \frac{d}{dt} D_i f(x+tv) = \sum_{i=1}^{n} v_i \sum_{j=1}^{n} v_j D_{ij} f(x+tv)$$
 (1.5.3)

Indicando con $Hf = \nabla f \nabla^{\top}$ la matrice Hessiana di f, allora $\sum_{j} v_{j} D_{ij} f(x+tv) \equiv [Hf(x+tv)v]_{i}$, cioè è la componente i-esima del vettore tra parentesi quadre, essendo Hf una matrice. Allora:

$$g'(0) = \nabla f(x) \cdot v$$

$$g''(0) = \langle Hf(x)v, v \rangle$$
(1.5.4)

1.6 Massimi e minimi relativi

Perché una funzione f di più variabili abbia un punto di massimo o di minimo in x_0 , è condizione necessaria che per ogni direzione v, valga g'(0) = 0 e $g''(0) \le 0$ o $g''(0) \ge 0$, cioè:

$$\langle Hf(x_0)v,v\rangle \leq 0$$
 punto di massimo
$$\langle Hf(x_0)v,v\rangle \geq 0$$
 punto di minimo
$$(1.6.1)$$

Allora vale il seguente.

Teorema 1.8

Sia f(x) una funzione con derivate seconde continue; se in x_0 , $\nabla f(x_0) = 0$ e la matrice Hessiana è tale che $Hf(x_0) > 0$ (definita positiva), allora x_0 è di minimo relativo per f. Se fosse $Hf(x_0) < 0$, x_0 sarebbe di massimo relativo.

Possono verificarsi altri due casi:

- se $\langle Hf(x_0)v,v\rangle$ assume sia valori positivi che negativi al variare di v, si ha un **punto di** sella;
- se la matrice Hessiana è semidefinita, ma non definita, non si può concludere niente e bisogna esaminare cosa accade attorno a x_0 .

2 Calcolo integrale in più variabili

2.1 Integrazione in dimensioni superiori

Per le definizioni di base, si deve definire cos'è un rettangolo.

Definizione 2.1

Dati due intervalli [a.b) e [c,d), il rettangolo che identificano è definito come $R = [a,b) \times [c,d)$, con $a \le x < b$ e $c \le y < d$.

Si suddividono due intervalli in intervalli più piccoli, cioè [a,b) si suddivide in n sotto-intervalli $I_h = [x_{h-1}, x_h)$, con $x_0 = a, \ldots x_n = b$ e [c,d) in m sotto-intervalli $J_k = [y_{k-1}, y_k)$. Allora il rettangolo sarà suddiviso in $n \times m$ sotto-rettangoli $R_{hk} = I_h \times J_k$.

Una funzione semplice $\varphi(x)$ è una funzione che assume un valore costante su ogni sottorettangolo e che vale 0 fuori da R. Indicando con λ_{hk} il valore costante che assume in R_{hk} :

$$\varphi(x) = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} \chi_{R_{hk}}(x)$$

$$(2.1.1)$$

con χ_D funzione caratteristica del dominio D. L'integrale di funzioni simili è dato da:

$$\int \varphi(x) \, dx dy = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} m(R_{hk}) = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} m(I_h) m(J_k) = \sum_{h=1}^{n} \sum_{k=1}^{m} \lambda_{hk} (x_h - x_{h-1}) (y_k - y_{k-1})$$
(2.1.2)

È necessario dare anche la definizione di supporto di una funzione:

Definizione 2.2

Il supporto di una funzione f è la chiusura dell'insieme in cui $f \neq 0$, cioè:

$$\operatorname{supp}(f) = \overline{\{x : f(x) \neq 0\}} \tag{2.1.3}$$

Infine, si indica con $\mathscr{S}^+(D)$ la classe delle funzioni semplici φ che maggiorano f in D e $\mathscr{S}^-(D)$ la classe delle funzioni semplici ψ che minorano f in D; da questo, si ha la seguente definizione di integrale di Riemann.

Definizione 2.3 (Integrazione di funzioni a supporto compatto)

Sia f una funzione a supporto compatto, con $\mathrm{supp}(f)\subset K;\ f$ è integrabile secondo Riemann se:

$$\sup_{\psi \in \mathscr{S}^{-}(K)} \int \psi \ dxdy = \inf_{\varphi \in \mathscr{S}^{+}(K)} \int \varphi \ dxdy \tag{2.1.4}$$

dove

$$\int_{*} f(x) \ dx = \inf_{\varphi \in \mathscr{S}^{+}(K)} \int \varphi \ dx dy \text{ integrale inferiore}$$

$$\int_{*}^{*} f(x) \ dx = \sup_{\psi \in \mathscr{S}^{-}(K)} \int \psi \ dx dy \text{ integrale superiore}$$
(2.1.5)

La condizione di integrabilità si può esprimere come:

$$\int f(x) dx = \int_{-\infty}^{\infty} f(x) dx \qquad (2.1.6)$$

Osservazione 2.1. Anche per più variabili, è condizione sufficiente e necessaria perché f a supporto compatto sia integrabile che $\forall \varepsilon > 0$, esistono funzioni semplici φ, ψ tali che:

$$\int \varphi \, dx dy - \int \psi \, dx dy < \varepsilon \tag{2.1.7}$$

2.2 Misura di insiemi

L'integrabilità di una funzione su un certo insieme E è legata alla misura dell'insieme stesso.

Definizione 2.4 (Misurabilità di insiemi)

Un insieme E è misurabile (secondo Peano-Jordan) se la sua funzione caratteristica φ_E è integrabile. In questo caso, la misura è:

$$m(E) = \int \varphi_E \ d\mathbf{x}$$

Se φ_E è integrabile, allora $\forall \varepsilon > 0$, si avrebbero ψ, φ funzioni semplici con $\psi \leq \varphi_E \leq \varphi$ tali che:

$$\int \varphi \ d\mathbf{x} - \int \psi \ d\mathbf{x} < \varepsilon$$

L'idea è suddividere il piano x,y in rettangoli R_{hk} dove $\varphi=1$ nei rettangoli R_{hk} che hanno punti in comune con E ed è nulla negli altri, mentre si prende $\psi=1$ nei rettangoli contenuti in E e pari a 0 negli altri. Così facendo, l'integrale di φ è la somma delle misure dei rettangoli R_{hk} che hanno punti in comune con E, mentre quello di ψ è la somma delle misure degli R_{hk} contenuti in E. Il risultato della differenza è la somma delle misure dei rettangoli che hanno punti in comune con E, ma che non vi sono contenuti, quindi sarà la somma delle misure dei rettangoli che hanno punti in comune con la frontiera di E.

Si definisce **plurirettangolo** l'unione P di un numero finito di rettangoli senza punti comuni, la cui misura coincide con la somma delle misure dei rettangoli che lo compongono; si ha la seguente.

Proposizione 2.1

Un insieme E è misurabile $\iff \forall \varepsilon > 0, \exists$ un plurirettangolo P contenuto in E e un plurirettangolo Q che contiene E tali che $m(Q) - m(E) < \varepsilon$.

Usando Prop 2.1, se P,Q plurirettangoli t.c. $P \subset E \subset Q$, con m(Q-P)=m(Q)-m(P), si ha che:

Un insieme E è misurabile $\iff \forall \varepsilon > 0$ esiste Z plurirettangolo che contiene ∂E , con $m(Z) < \varepsilon$.

Quindi:

Un insieme E è misurabile (secondo Peano-Jordan) \iff la sua frontiera ∂E ha misura nulla.

Proposizione 2.2

Se due insiemi A, B sono misurabili, allora sono misurabili anche $A \cup B$, $A \cap B$ e $A \setminus B$.

Dimostrazione. A, B misurabili $\Longrightarrow \partial A$, ∂B sono contenute in plurirettangoli Z_A, Z_B che hanno misura minore di ε , $\forall \varepsilon > 0$, quindi $m(Z_A \cup Z_B) < 2\varepsilon$. Questo vuol dire che $m(\partial A \cup \partial B) = 0$, quindi le frontiere di $A \cup B$, $A \cap B$ e $A \setminus B$ hanno misura nulla. \square

2.2.1 Insiemi generati da funzioni

Siano $g(x): [a,b] \subset \mathbb{R} \to \mathbb{R}^{\geq 0}$ e $G:=\{(x,y)\in \mathbb{R}^2: a\leq x\leq b,\ 0\leq y\leq g(x)\}$. Se g è integrabile, l'insieme G è misurabile, con

$$m(G) = \int_{a}^{b} g(x) dx$$
 (2.2.1)

Dimostrazione. Essendo g integrabile, $\forall \varepsilon > 0$, esistono φ, ψ con $\int (\varphi - \psi) dx < \varepsilon$. Considerando i plurirettangoli

$$\Phi:=\left\{(x,y)\in\mathbb{R}^2:a\leq x\leq b,\ 0\leq y\leq \varphi(x)\right\}\ ,\ \ \Psi:=\left\{(x,y)\in\mathbb{R}^2:a\leq x\leq b,\ 0\leq y\leq \psi(x)\right\}$$

per i quali

$$m(\Phi) = \int \varphi \ dx \ , \ m(\Psi) = \int \psi \ dx$$

si ha $\Psi \subset G \subset \Phi$ con $m(\Phi) - m(\Psi) < \varepsilon \Rightarrow G$ misurabile. Inoltre, per quanto detto, sia m(G) che $\int g \ dx$ sono contenuti tra $m(\Phi)$ e $m(\Psi)$, cioè:

$$\left| m(G) - \int_a^b g(x) \ dx \right| < m(\Phi) - m(\Psi) < \varepsilon, \ \forall \varepsilon \implies m(G) = \int_a^b g(x) \ dx$$

Siano, ora, g,h due funzioni integrabili in [a,b) con $0 \le g(x) \le h(x)$. L'insieme $E := \{(x,t) \in \mathbb{R}^2 : a \le x \le b, \ g(x) \le y \le h(x)\}$ è misurabile per quanto detto sopra, essendo E dato dalla differenza degli insiemi H,G definiti come sopra e misurabili a loro volta. Inoltre, sempre applicando quanto detto sopra alla differenza di H,G:

$$m(E) = \int_{a}^{b} \left[h(x) - g(x) \right] dx$$

Osservazione 2.2. Questo è valido anche per g, h non-positive; è, infatti, sufficiente applicare il ragionamento alle funzioni h + c, g + c, con c preso in modo che siano entrambe positive e osservando che E_c corrisponde a E traslato di c verso l'alto.

2.3 Integrabilità di funzioni continue

Teorema 2.1

Sia $f(\mathbf{x})$ continua in rettangolo chiuso R e sia E un insieme misurabile con $E \subset R$. Allora f è integrabile in E.

Dimostrazione. Si mostra che $f\varphi_E$ è integrabile. Per Weierstrass, f è uniformemente continua in R, quindi $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$ t.c. la divisione di R in rettangoli R_{hk} di diametro minore di $\delta(\varepsilon)$, risulta:

$$M_{hk} - m_{hk} = \sup_{R_{hk}} f - \inf_{R_{hk}} f < \varepsilon$$

Inoltre, f ha massimo e minimo in R, indicati, rispettivamente, con M e m. Allo stesso tempo, E è misurabile, quindi $\forall \varepsilon > 0$, \exists suddivisione di R in R_{hk} , assunta di diametro inferiore di $\delta(\varepsilon)$, tale che la misura dei rettangoli che hanno almeno un punto in comune con ∂E è minore di ε .

Con questa suddivisione, si classificano con $\mathcal{I}, \mathcal{E}, \mathcal{F}$ rispettivamente i rettangoli interni, esterni e a contatto con la frontiera di E. Per la misurabilità di E:

$$\sum_{R_{jk} \in \mathcal{F}} m(R_{hk}) < \varepsilon$$

Si definiscono:

- funzione maggiorante φ che è nulla nei rettangoli esterni, $\phi = \max\{M, 0\}$ in quelli di frontiera e $\phi = M_{hk}$ in quell interni.
- funzione minorante ψ che è nulla in quelli esterni, $\psi = \min\{m, 0\}$ in quelli di frontiera e $\psi = m_{hk}$ in quelli interni.

Quindi $\psi \leq f\varphi_E \leq \varphi$ e

$$\int (\varphi - \psi) \, dx dy = \left(\max \{M, 0\} - \min \{m, 0\} \right) \sum_{R_{hk} \in \mathcal{F}} m(R_{hk}) + \sum_{R_{hk} \in \mathcal{I}} (M_{hk} - m_{hk}) m(R_{hk})$$
$$< \left(|M| + |m| \right) \varepsilon + \varepsilon \sum_{R_{hk} \in \mathcal{I}} m(R_{hk}) < \varepsilon \left(|M| + |m| + m(R) \right)$$

Allora f è integrabile su E.

Più in generale, vale il seguente.

Teorema 2.2

Sia f limitata in un rettangolo R. Questa è integrabile in $E \subset R$ se l'insieme D dei suoi punti di discontintuià ha misura nulla.

Dimostrazione. Si ripete la dimostrazione precedente con D al posto di ∂E .

2.4 Integrali doppi

Si analizza prima caso per funzioni semplici. Si considera suddivisione del rettangolo $R = I \times J$ in rettangoli $R_{hk} = I_h \times J_k$. Sia $\varphi = \sum \lambda_{hk} \varphi_{R_{hk}}$ funzione semplice; fissando $x \in I_h$, si considera φ come funzione della sola y e:

$$\int \phi(x,y) \ dy = \sum_{k} \lambda_{hk} m(J_k)$$

L'integrale a primo membro è costante per $x \in I_h$, pertanto è a sua volta una funzione semplice; integrandolo rispetto a x:

$$\int dx \int \phi(x,y) \, dy = \sum_{h} m(I_h) \sum_{k} \lambda_{hk} m(J_k) = \sum_{h,k} \lambda_{hk} m(I_h) m(J_k) = \sum_{h,k} \lambda_{hk} m(R_{hk}) = \int \varphi \, dx dy$$

Il discorso è analogo integrando prima rispetto a x e poi rispetto a y. Si generalizza con il seguente.

Teorema 2.3 (Teorema di Fubini)

Sia f(x,y) integrabile in $R=[a,b)\times[c,d)$ e sia questa integrabile $\forall x\in[a,b)$ rispetto alla variabile $y\in[c,d)$. Allora la funzione $F(x)=\int_c^d f(x,y)\ dy$ è integrabile in [a,b) e

$$\int_{R} f(x,y) \ dxdy = \int_{a}^{b} F(x) \ dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) \ dy$$

Dimostrazione. Visto che f è integrabile in R, allora esistono ψ, φ funzioni semplici t.c.

$$\psi \le f\varphi_R \le \varphi$$
, con $\int (\varphi - \psi) \, dx dy < \varepsilon$

Integrando le disuguaglianze rispetto alla y, si ottiene:

$$\Psi(x) = \int_{c}^{d} \psi \ dy \le F(x) = \int_{c}^{d} f \ dy \le \int_{c}^{d} \varphi \ dy = \Phi(x)$$
 (2.4.1)

Le funzioni Φ, Ψ sono ancora funzioni semplici, rispettivamente maggiorante e minorante di F, per le quali vale

$$\int_{a}^{b} (\Phi - \Psi) \ dx = \int (\varphi - \psi) \ dx dy < \varepsilon$$

Quindi F(x) è integrabile in [a, b). Ora, integrando in [a, b) l'eq. 2.4.1, si ha:

$$\int_{B} \psi \ dxdy \le \int_{a}^{b} F(x) \ dx \le \int_{B} \varphi(x,y) \ dxdy$$

Allo stesso tempo, integrando la disuguaglianza iniziale su R:

$$\int_{R} \psi \ dxdy \le \int_{R} f \ dxdy \le \int_{R} \varphi \ dxdy$$

Unendo le due disuguaglianze:

$$\left| \int_{R} f(x,y) \ dxdy - \int_{a}^{b} F(x) \ dx \right| \leq \int_{R} (\varphi - \psi) \ dxdy < \varepsilon$$

Valendo $\forall \varepsilon > 0$, si ottiene la tesi.

Questo teorema si applica anche a integrali su insiemi normali rispetto all'asse y^1

$$E := \{(x, y) \in \mathbb{R}^2 : a < x < b, \ q(x) < y < h(x)\}$$

con g,h continue in [a,b]. Per quanto visto, E è misurabile e, se f è continua su E, è anche integrabile in E stesso. In generale, la funzione $f^* = f\varphi_E$ è integrabile in ogni rettangolo $R = [a,b] \times [c,d] \supset E$.

Fissata $x \in [a, b)$, la funzione $f^*(x, y)$ vale f(x, y) se $g(x) \le y \le h(x)$ e 0 altrimenti, quindi è continua tranne, al più, nei punti g(x), h(x). Allora f^* è integrabile e si può applicare Fubini:

$$\int_R f^*(x,y) \ dxdy = \int_a^b dx \int_c^d f^*(x,y) \ dy \implies \int_E f \ dxdy = \int_a^b dx \int_{g(x)}^{h(x)} f \ dy$$

Esempio 2.1. Calcolare

$$\int_{E} x^{2}y \ dxdy, \ E := \left\{ (x, y) \in \mathbb{R}^{2} : -1 \le x \le 1, \ 0 \le y \le \sqrt{1 - x^{2}} \right\}$$

con E semicirconferenza di raggio 1 e centro l'origine.

 $^{^{1}}$ Insiemi, la cui intersezione con la retta verticale $x=\cos t$. è un segmento o un punto.

Svolgimento. L'insieme è normale rispetto all'asse y e, per Fubini:

$$\int_{E} x^{2}y \ dxdy = \int_{-1}^{+1} dx \int_{0}^{\sqrt{1-x^{2}}} x^{2}y \ dy = \frac{1}{2} \int_{-1}^{+1} \left[x^{2}y^{2} \right]_{0}^{\sqrt{1-x^{2}}} dx$$
$$= \frac{1}{2} \int_{-1}^{+1} x^{2} (1-x^{2}) \ dx = \left(\frac{x^{3}}{6} - \frac{x^{5}}{10} \right) \Big|_{-1}^{+1} = \frac{2}{15}$$

2.5 Integrali tripli

Il teorema di Fubini si applica anche nel caso di tre o più variabili: se f(x,y,z) è integrabile nel parallelepipedo $P=[a,b)\times[c,d)\times[r,s)$ e, $\forall (x,y)\in R=[a,b)\times[c,d)$, è integrabile rispetto a z, allora:

$$\int_{P} f(x, y, z) \ dxdydz = \int_{R} dxdy \int_{r}^{s} f(x, y, z) \ dz$$

In particolare, se f è continua in E insieme normale rispetto a z, cioè della forma $E:=\{(x,y,z)\in\mathbb{R}^3:(x,y)\in R,\ g(x,y)\leq z\leq h(x,y)\}$, si ha:

$$\int_{E} f(x, y, z) \, dx dy dz = \int_{R} dx dy \int_{g(x, y)}^{h(x, y)} f(x, y, z) \, dz \tag{2.5.1}$$

Ovviamente il ragionamento si può poi applicare quando si dovrà calcolare l'integrale doppio.

Esempio 2.2. Per $E := \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0, x + y + z < 2\}$, calcolare

$$\int_{E} (x+y-z) \ dxdydz$$

Svolgimento. L'insieme è normale rispetto a z, quindi:

$$\int_{E} (x+y-z) \ dxdydz = \int_{T} dxdy \int_{0}^{2-x-y} (x+y-z) \ dz$$

con $T := \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, \ x + y < 2\} = \{(x,y) \in \mathbb{R}^2 : 0 < x < 2, \ 0 < y < 2 - x\}.$ L'ultimo integrale è:

$$\int_0^{2-x-y} (x+y-z) dz = \left[xz + yz - \frac{z^2}{2} \right]_0^{2-x-y} = 4(x+y) - \frac{3}{2}(x+y)^2 - 2$$

L'integrale doppio rimanente si può nuovamente spezzare con Fubini:

$$\int_{T} \left[4(x+y) - \frac{3}{2}(x+y)^{2} - 2 \right] dx dy = \int_{0}^{2} dx \int_{0}^{2-x} \left[4(x+y) - \frac{3}{2}(x+y)^{2} - 2 \right] dy$$

$$= \int_{0}^{2} \left[4xy + 2y^{2} - \frac{3}{2} \left(x^{2}y + xy^{2} + \frac{1}{3}y^{3} \right) - 2y \right]_{y=0}^{y=x-2} dx$$

$$= \int_{0}^{2} \left(\frac{1}{2}x^{3} - 2x^{2} + 2x \right) dx = \left[\frac{1}{8}x^{4} - \frac{2}{3}x^{3} + x^{2} \right]_{0}^{2} = \frac{2}{3}$$

L'eq. 2.5.1 si può usare nel calcolo di volumi degli insiemi normali. Dato

$$E := \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in F, \ g(x, y) \le z \le h(x, y)\}$$

e posto f = 1 in eq. 2.5.1, si ha:

$$m(E) = \int_{E} \left[h(x,y) - g(x,y) \right] dxdy \tag{2.5.2}$$

Esempio 2.3. Per $Q = (0,1) \times (0,1)$, calcolare il volume dell'insieme

$$E := \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in Q, \ x + y \le z \le x^2 + y^2 + 1\}$$

Svolgimento. Usando direttamente eq. 2.5.2, si ha:

$$m(E) = \int_{Q} (1 + x^{2} + y^{2} - x - y) dx dy = \int_{0}^{1} dy \int_{0}^{1} (1 + x^{2} + y^{2} - x - y) dx$$
$$= \int_{0}^{1} \left(1 + \frac{1}{3} + y^{2} - \frac{1}{2} - y \right) dy = \frac{2}{3}$$

2.6 Cambiamento di variabili

Si inizia con il caso di f(x,y) funzione di due variabili, integrabile e a supporto compatto. Nell'ipotesi che valga il teorema di Fubini:

$$\int f(x,y) \ dxdy = \int dx \int (x,y) \ dy$$

Si fissa x nell'ultimo integrale e si cambia variabile con $y = \varphi(x, v) \Rightarrow dy = \varphi_v(x, v) dv$, da cui

$$\int f(x,y) \, dxdy = \int dx \int f(x,\varphi(x,v)) |\varphi_v(x,v)| dv$$

Usando il teorema di Fubini due volte, si può scrivere l'ultimo integrale prima come integrale doppio e poi come integrale prima rispetto a x e poi rispetto a v:

$$\int f(x,y) \ dxdy = \int f(x,\varphi(x,v)) |\varphi(x,v)| \ dxdv = \int dv \int f(x,\varphi(x,v)) |\varphi_v(x,v)| dxdv$$

Nell'ultimo integrale, si fissa v e si cambia variabile con $x = x(u, v) \Rightarrow dx = x_u(u, v)du$:

$$\int f(x,y) \, dxdy = \int dv \int f\Big(x(u,v),\varphi\big(x(u,v),v\big)\Big) \, \big|\varphi_v\big(x(u,v),v\big)x_u(u,v)\big| \, du$$

Infine, si prendono:

$$\begin{cases} x = x(u, v) \\ y = \varphi(x(u, v), v) = y(u, v) \end{cases} \implies \begin{cases} y_u(u, v) = \varphi_x(x(u, v), v)x_u(u, v) \\ y_v(u, v) = \varphi_x(x(u, v), v)x_v(u, v) + \varphi_v(x(u, v), v) \end{cases}$$

da cui

$$\varphi_v(x(u,v),v)x_u(u,v) = [y_v(u,v) - \varphi_x(x(u,v),v)x_v(u,v)]x_u(u,v)$$
$$= y_v(u,v)x_u(u,v) - y_u(u,v)x_v(u,v)$$

Sostituendo nell'integrale, si ottiene:

$$\int f(x,y) \, dxdy = \int f(x(u,v),y(u,v))|x_uy_v - x_vy_u|dudv$$
 (2.6.1)

Questa si adatta agli integrali su insieme E, notando che questo corrisponde a integrare $f\varphi_E$:

$$\int_{E} f(x,y) \ dxdy = \int f(x(u,v),y(u,v)) \varphi_{E}(x(u,v),y(u,v)) |x_{u}y_{v} - x_{v}y_{u}| dudv$$

Visto che φ_E vale 1 se $(x(u,v),y(u,v)) \in E$ e 0 altrimenti, essa è la funzione caratteristica dell'insieme F, immagine inversa di E attraverso la trasformazione $x=x(u,v),\ y=y(u,v)$. Quindi:

$$\int_{E} f(x,y) \, dx dy = \int_{E} f(x(u,v), y(u,v)) |x_{u}y_{v} - x_{v}y_{u}| du dv$$
 (2.6.2)

2.6.1 Ammissibilità del cambiamento di variabili

Si vuole capire quando è possibile trovare $\varphi(x,v)$ tale che $y(u,v)=\varphi(x(u,v),v)$. Questo è possibile quando x=x(u,v) si può risolvere rispetto a u, quindi se esiste $u=\gamma(x,v)$. L'equazione che occorre è $\varphi(x,v)=y(\gamma(x,v),v)$, infatti $\gamma(x(u,v),v)=u\Rightarrow\varphi(x(u,v),v)=y(u,v)$. L'equazione x=x(u,v) si può risolvere se $\forall v,\ x(u,v)$, considerata come funzione della sola u, è monotona, cioè se $x_u(u,v)\neq 0,\ \forall u,v$.

L'altra ipotesi necessaria è $\varphi_v(x,v) \neq 0$ che, dovendo valere $x_u(u,v) \neq 0$, equivale a richiedere $\varphi_v(x,v)x_u(u,v) \neq 0$, ossia $x_uy_v - x_vy_u \neq 0$.

Complessivamente, il cambio di variabili è lecito se sono verificate

$$\begin{cases} x_u \neq 0 \\ x_u y_v - x_v y_u \neq 0 \end{cases}$$
 (2.6.3)

Visto che lo stesso risultato si sarebbe ottenuto iniziando col cambio di variabili $y = \psi(x, u)$, dovendo comunque valere $x_u y_v - x_v y_u \neq 0$, si può sostituire $x_u \neq 0$ con $x_v \neq 0$. Per questo, è sufficiente che x_u, x_v non si annullino contemporaneamente¹ (altrimenti anche $x_u y_v - x_v y_u = 0$).

Siano, ora, x_u, x_v continue in rettangolo chiuso $R \supset F$. Si può dividere R in numero finito di rettangoli R_1, \ldots, R_N , in ognuno dei quali o x_u , o x_v è diversa da 0. Allora si riscrive la formula del cambio di variabili in $F_k = F \cap R_k$:

$$\int_{E_k} f(x,y) \ dxdy = \int_{F_k} f(x(u,v), y(u,v)) |x_u y_v - x_v y_u| dudv$$

con E_k immagine di F_k tramite la trasformazione $x=x(u,v),\ y=y(u,v).$ Sommando su k:

$$\sum_{k=1}^{N} \int_{E_k} f(x,y) \ dxdy = \int_{F} f\big(x(u,v),y(u,v)\big) |x_u y_v - x_v y_u| dudv$$

Se gli E_k sono tutti disgiunti, ossia se il cambio di variabili è invertibile, la somma dell'integrale al primo membro diventa un integrale su E e si riottiene l'eq. 2.6.2. Questa, quindi, risulta valida solo nell'ipotesi che l'applicazione $x=x(u,v),\ y=y(u,v)$ sia iniettiva e che $x_uy_v-x_vy_u\neq 0$ sempre. Allora vale il seguente.

Teorema 2.4

Sia f(x,y) integrabile in $E \subset \mathbb{R}^2$ e sia $x=x(u,v), \ y=y(u,v)$ un'applicazione biunivoca di classe C^1 , con inversa che va da un rettangolo $R \subset \mathbb{R}^2$ a un insieme contenente E e tale che $x_uy_v-x_vy_u\neq 0$ in R. Allora, indicando con F l'immagine inversa di E, l'equazione 2.6.2 è valida.

 $^{^1{\}rm Cio\grave{e}}$ negli stessi punti.

2.6.2 Matrice Jacobiana

Il ragionamento fatto per il caso di due variabili si generalizza a più variabili: se in $\int_E f(\mathbf{x}) dx_1 \dots dx_n$ si esegue la sostituzione $\mathbf{x} = \mathbf{x}(\mathbf{u}), \ \mathbf{u} = (u_1, \dots, u_n)$, la formula di cambio variabili diventa:

$$\int_{E} f(\mathbf{x}) \ dx_{1} \dots dx_{n} = \int_{E} f(\mathbf{x}(\mathbf{u})) |\det J(\mathbf{u})| \ du_{1} \dots du_{n}$$
(2.6.4)

dove det $J(\mathbf{u})$ è il determinante della matrice Jacobiana della trasformazione, definita come:

$$J(\mathbf{u}) = \begin{pmatrix} \frac{\partial x_1(\mathbf{u})}{\partial u_1} & \cdots & \frac{\partial x_1(\mathbf{u})}{\partial u_n} \\ \frac{\partial x_2(\mathbf{u})}{\partial u_1} & \cdots & \frac{\partial x_2(\mathbf{u})}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n(\mathbf{u})}{\partial u_1} & \cdots & \frac{\partial x_n(\mathbf{u})}{\partial u_n} \end{pmatrix}$$
(2.6.5)

2.7 Integrali impropri

Si distinguono i casi in cui il dominio di integrazione non è limitato e quelli in cui la funzione non è limitata nelle vicinanze di uno o più punti.

2.7.1 Integrali in domini non limitati

Si analizza prima il caso particolare di f positiva. L'idea è di tagliare il dominio di integrazione con una sfera di raggio r, integrare sull'insieme risultante e far tendere, poi, $r \to +\infty$. Si ha la seguente definizione.

Definizione 2.5

Sia $f(\mathbf{x})$ una funzione definita in $E \subset \mathbb{R}^n$, con $f(\mathbf{x}) \geq 0$, $\forall x \in E$. Si assume che per ogni intorno dell'origine (al variare di r) $I_r = {\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| < r}$, f sia integrabile in $E \cap I_r$. Si dice che f è integrabile in senso improprio su E se

$$\lim_{r \to +\infty} \int_{E \cap I_r} f(\mathbf{x}) \ d\mathbf{x} < +\infty$$

In tal caso, varrà:

$$\int_{E} f(\mathbf{x}) \ d\mathbf{x} = \lim_{r \to +\infty} \int_{E \cap I_{r}} f(\mathbf{x}) \ d\mathbf{x}$$
 (2.7.1)

Avendo assunto $f(\mathbf{x}) \geq 0$, la funzione $F(r) = \int_{E \cap I_r} f(\mathbf{x}) d\mathbf{x}$ è crescente, quindi il limite esiste sempre ed è uguale all'estremo superiore:

$$\lim_{r \to +\infty} \int_{E \cap I_r} f(\mathbf{x}) \ d\mathbf{x} = \sup_{r > 0} \int_{E \cap I_r} f(\mathbf{x}) \ d\mathbf{x}$$

Osservazione 2.3. Se si avesse E limitato, da un certo r_0 in poi, si avrà $E \subset I_r \Rightarrow E \cap I_r = E$, quindi l'integrale per $r \to +\infty$ coinciderebbe con l'usuale integrale su E.

Eliminando la condizione $f(\mathbf{x}) \geq 0$, l'esistenza del limite non sarebbe più garantita, ma si potrebbe aggiungere alla condizione di integrabilità, oltre alla richiesta di limite finito, l'esistenza stessa del limite.

Il problema risiede, però, nel fatto che se invece di tagliaere il dominio di integrazione con delle sfere, si usassero dei cubi (per esempio), il limite potrebbe divergere con le sfere e convergere con i cubi, o convergere con entrambe, ma dare un risultato diverso. Questo non accade se f è positiva.

Dimostrazione. Si considerano per esempio le sfere I_r e i cubi $Q_t = \{ \mathbf{x} \in \mathbb{R}^n : \max\{|x_1|, \dots, |x_n| < t \} \}$. Ogni sfera è contenuta in un cubo (infatti si ha proprio $I_r \subset Q_r$) e, viceversa, ogni cubo Q_h è contenuto in una sfera I_s , con $s = \sqrt{nh}$.

Visto che l'integrando è positivo:

$$\int_{I_r} f \ d\mathbf{x} \leq \int_{Q_t} f \ d\mathbf{x} \leq \lim_{t \to +\infty} \int_{Q_t} f \ d\mathbf{x} \quad \text{e} \quad \int_{Q_h} f \ d\mathbf{x} \leq \int_{I_s} f \ d\mathbf{x} \leq \lim_{s \to +\infty} \int_{I_s} f \ d\mathbf{x}$$

Mandando $r \to +\infty$ nella prima e $h \to +\infty$ nella seconda:

$$\lim_{r\to +\infty} \int_{I_r} f \ d\mathbf{x} \leq \lim_{t\to +\infty} \int_{Q_t} f \ d\mathbf{x} \quad \text{e} \quad \lim_{h\to +\infty} \int_{Q_h} f \ d\mathbf{x} \leq \lim_{s\to +\infty} \int_{I_s} f \ d\mathbf{x}$$

quindi i due limiti coincidono.

2.7.2 Integrali di funzioni non limitate

Similmente al caso precedente, per f non limitata attorno all'origine (per esempio), si taglia il dominio di integrazione E con una sfera I_r e si calcola l'integrale su $E \setminus I_r$, per poi far tendere $r \to 0^+$.

Definizione 2.6

Sia $f(\mathbf{x})$ definita su $E \subset \mathbb{R}^n$, con $f(\mathbf{x}) \geq 0$, $\forall \mathbf{x} \in E$. Sia \mathbf{x}_0 un punto di accumulazione per E e che per ogni intorno I_r di \mathbf{x}_0 , la funzione f sia integrabile in $E \setminus I_r$. Allora si dice che f è integrabile in senso improprio su E se il limite

$$\lim_{r \to 0^+} \int_{E \setminus I_r} f(\mathbf{x}) \ d\mathbf{x} = \sup_{r > 0} \int_{E \setminus I_r} f(\mathbf{x}) \ d\mathbf{x}$$

è finito. In questo caso:

$$\int_{E} f(\mathbf{x}) \ d\mathbf{x} = \lim_{r \to 0^{+}} \int_{E \setminus I_{r}} f(\mathbf{x}) \ d\mathbf{x}$$
 (2.7.2)

Se $f(\mathbf{x})$ fosse di segno variabile, si possono considerare le due funzioni non negative

$$\frac{f^{+}(\mathbf{x}) = \max\{f(\mathbf{x}), 0\}}{f^{-}(\mathbf{x}) = \max\{-f(\mathbf{x}), 0\}} \implies f^{+} - f^{-} = f$$

Allora si dirà che f è integrabile in senso improprio su E se ambedue le funzioni f^+ , f^- lo sono e

$$\int_{E} f(\mathbf{x}) d\mathbf{x} = \int_{E} f^{+}(\mathbf{x}) d\mathbf{x} - \int_{E} f^{-}(\mathbf{x}) d\mathbf{x}$$
(2.7.3)

Esempio 2.4. Dato E l'insieme esterno al cerchio di raggio 1, calcolare

$$\int_{E} \frac{dxdy}{(x^2 + y^2)^{\alpha}}$$

Svolgimento. Se r > 1, l'insieme $E \cap I_r$ è la corona circolare C_r di raggi 1 e r. In coordinate

polari, per $\alpha \neq 1$:

$$\int_{C_r} \frac{dxdy}{(x^2+y^2)^{\alpha}} = \int_1^r \frac{\rho \ d\rho}{\rho^{2\alpha}} \int_0^{2\pi} d\varphi = 2\pi \int_1^r \rho^{1-2\alpha} \ d\rho = 2\pi \left. \frac{\rho^{2-2\alpha}}{2-2\alpha} \right|_1^r = \frac{\pi}{1-\alpha} (r^{2-2\alpha}-1)$$

Se $\alpha=1$, ripetendo un calcolo analogo, si ottiene $2\pi \log r$. Mandando $r\to +\infty$, quest'ultimo diverge a $+\infty$, come anche quello precedente per $\alpha<1$. Se, invece, $\alpha>1$:

$$\lim_{r\to +\infty} \int_{C_r} \frac{dxdy}{(x^2+y^2)^\alpha} = \frac{\pi}{\alpha-1}$$

19

3 Curve e superfici

3.1 Curve in \mathbb{R}^n

Definizione 3.1 (Curva e parametrizzazione)

Una curva è un'applicazione $\gamma:[a,b]\to\mathbb{R}^n$. L'equazione parametrica della curva è un'equazione della forma $\mathbf{x}=\gamma(t)$.

Esempio 3.1. L'equazione $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$ è l'equazione parametrica in \mathbb{R}^2 della circonferenza di raggio 1 e centro l'origine.

Si vede t come variabile temporale, per cui $\gamma(t)$ è la posizione al tempo t di un punto mobile nello spazio \mathbb{R}^n . Si fissano due istanti t_0,t ; nel tempo $t-t_0$ che intercorre fra i due istanti, la velocità media (vettoriale) del punto è data da $\frac{\gamma(t)-\gamma(t_0)}{t-t_0}$. Facendo tendere $t\to t_0$, se le componenti della curva $\gamma_1(t),\ldots,\gamma_n(t)$ sono derivabili in t_0 , si ottiene la velocità istantanea del punto in t_0 :

$$\mathbf{v}(t_0) \equiv \gamma'(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}$$

Se $\gamma'(t_0) \neq 0$, la retta tangente alla curva nel punto $\gamma(t_0)$ è $\mathbf{x} = \gamma(t_0) + \gamma'(t_0)(t - t_0)$, infatti la relazione

$$\lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0) - \mathbf{v}(t - t_0)}{t - t_0} = 0 \iff \mathbf{v} = \gamma'(t_0) \neq 0$$

Quindi, perché esista la retta tangente a γ , è necessario che la derivata esista e sia anche diversa da 0, altrimenti la curva non avrebbe una direzione ben definita in tale punto. Da qui la seguente definizione.

Definizione 3.2 (Regolarità di una curva)

Una curva $\gamma:[a,b]\to\mathbb{R}^n$ si dice regolare se ha derivata continua, che non si annulla in nessun punto di (a,b).

La curva γ si dice regolare a tratti se è continua e si può dividere l'intervallo [a.b] in un numero finito di intervalli, in ognuno dei quali γ è regolare.

Esempio 3.2. Sia $f(x) \in C^1([a,b])$; la curva piana di equazioni x(t) = t, y(t) = f(t) è regolare perché il vettore velocità (1, f'(t)) ha prima componente sempre pari a 1. Il suo sostegno coincide con il grafico della funzione f.

Supponendo che la curva sia di classe C^1 senza assumere che $\gamma'(t)$ sia diversa da zero, il suo sostegno può avere dei punti angolosi. Ad esempio, nel caso di

$$\begin{cases} x = t^3 \\ y = t^2 \end{cases}$$

si ha $\gamma'(t)=(3t^2,2t)$, che si annulla per t=0. Eliminando t dalle precedenti equazioni, si verifica che il sostegno della curva ha, effettivamente, una cuspide nell'origine; infatti da $t=\sqrt[3]{x}$, si ottiene $y=x^{2/3}$, che ha una cuspide nell'origine.

Osservazione 3.1. Un altro modo per convincersi della necessità di richiedere $\gamma' \neq 0$ è dovuto al fatto che se un punto si muove con velocità non-nulla, non può cambiare direzione della velocità senza avere una discontinuità nella velocità stessa; se, invece, ad un certo istante avesse velocità nulla, potrebbe riprendere il moto in direzione generica senza discontinuità.

20

Si considera una curva piana (x(t), y(t)); l'equazione della retta ad essa tangente nel punto $(x(t_0), y(t_0))$ è, quindi:

$$x = x(t_0) + x'(t_0)(t - t_0)$$
$$y = y(t_0) + y'(t_0)(t - t_0)$$

Se $y'(t_0) \neq 0^1$, si ricava

$$t - t_0 = \frac{y - y(t_0)}{y'(t_0)}$$

che sostituito nella prima, permette di concludere che

$$y'(t_0)(x - x(t_0)) = x'(t_0)(y - y(t_0))$$
(3.1.1)

Esempio 3.3. Calcolare la retta tangente alla curva γ di equazioni ^a

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$

in $P = (\pi/2 - 1, 1)$.

Svolgimento. Intanto si deve verificare che il punto P si trovi sulla curva, cioè che corrisponda a qualche t_0 . Sia $y(t_0) = 1 - \cos t_0 \stackrel{!}{=} 1 \iff t_0 = \pi/2 + k\pi$. Da questa condizione, si ottiene

$$x(t_0) = t_0 - \sin t_0 = \frac{\pi}{2} + k\pi - 1 \stackrel{!}{=} \frac{\pi}{2} - 1 \iff k = 0$$

Allora il punto si trova sulla curva in corrispondenza di $t_0 = \pi/2$. Per finire, si ha $x'(t) = 1 - \cos t$ e $y'(t) = \sin t$, quindi $x'(t_0) = 1$ e $y'(t_0) = 1$. La retta tangente, allora, è:

$$y = x - \frac{\pi}{2} + 2$$

^aQuesta curva è detta cicloide ed è quella descritta da un punto su una circonferenza di raggio 1 che rotola

Definizione 3.3 (Curve equivalenti)

Due curve regolari $\varphi:[a,b]\to\mathbb{R}^n$ e $\gamma:[c,d]\to\mathbb{R}^n$ si dicono equivalenti se esiste una funzione $p:[a,b]\to[c,d]$, di classe C^1 , suriettiva e sempre diversa da 0, tale che $\varphi(t)=\gamma(p(t))$.

Due curve equivalenti hanno, evidentemente, stesso sostegno. Inoltre, se p' > 0, allora p(t) è crescente e, quindi, p(c) = a, p(d) = b; in questo caso, le curve hanno stesso verso, mentre se fosse p' < 0, avrebbero verso opposto con estremi scambiati, cioè p(c) = b, p(d) = a.

Definizione 3.4 (Versore tangente)

Il versore tangente ad una curva regolare φ è definito come

$$\tau_{\varphi}(t) = \frac{\varphi'(t)}{\|\varphi'(t)\|}$$

Questo ha stesso verso e direzione della velocità della curva e ha lunghezza unitaria.

 $^{^1}$ Altrimenti, si ricava $t-t_0$ dalla prima perché deve essere $x'(t_0) \neq 0$ altrimenti al curva non sarebbe regolare.

Teorema 3.1

Se due curve φ, γ sono equivalenti e hanno lo stesso verso, allora i loro versori tangenti coincidono.

Dimostrazione. Si abbia, allora, $\varphi'(t) = \gamma'(p(t))p'(t)$ e $\|\varphi'(t)\| = \|\gamma'(p(t))\| \, p'(t)$, visto che, per assunzione, le curve hanno stesso verso (ossia p'>0).

La tesi è dimostrata per calcolo diretto:

$$\tau_{\varphi}(t) = \frac{\varphi'(t)}{\|\varphi'(t)\|} = \frac{\gamma'(p(t))p'(t)}{\|\gamma'(p(t))\| \, p'(t)} = \frac{\gamma'(p(t))}{\|\gamma'(p(t))\|} \equiv \tau_{\gamma}(p(t))$$

3.2 Lunghezza di una curva

Definizione 3.5 (Lunghezza di una curva)

Sia $\gamma(t)$, $a \le t \le b$ una curva di classe C^1 . La sua lunghezza è data da:

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt$$

Si nota che

$$\Delta x \stackrel{\text{def}}{=} \int_{a}^{b} \gamma'(t) \ dt \equiv \gamma(b) - \gamma(a)$$

non coincide sempre con la lunghezza della curva perché questo rappresenta lo spostamento: se la curva avesse estremi coincidenti, questo integrale restituirebbe 0. Quindi si ha il seguente.

Teorema 3.2

La lunghezza di una curva è sempre maggiore o uguale della norma dello spostamento, cioè:

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt \ge \left\| \int_a^b \gamma'(t) dt \right\| \equiv \|\gamma(b) - \gamma(a)\|$$

Dimostrazione. Se lo spostamento è nullo, questo è automaticamente verificato. Nel caso di $\Delta x \neq 0$, allora, si ha, per generico vettore **u**:

$$\int_{a}^{b} \gamma'(t) dt \cdot \mathbf{u} = \int_{a}^{b} \gamma'(t) \cdot \mathbf{u} dt \le \int_{a}^{b} \|\gamma'(t)\| \|\mathbf{u}\| dt = \|\mathbf{u}\| L$$

con · prodotto scalare. Nel caso particolare di $\mathbf{u} = \int_a^b \gamma'(t) \ dt$, si ha:

$$\left\| \int_{a}^{b} \gamma'(t) \ dt \right\|^{2} \le \left\| \int_{a}^{b} \gamma'(t) \ dt \right\| L$$

da cui segue la tesi.

Sia γ il segmento che unisce due punti $\mathbf{x}_1, \mathbf{x}_2$; questo ha equazione parametrica $\mathbf{x} = \mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)$, $0 \le t \le 1$. Allora $\gamma'(t) = \mathbf{x}_2 - \mathbf{x}_1$, pertanto:

$$L(\gamma) = \int_0^1 \|\gamma'(t)\| \ dt = \|\mathbf{x}_2 - \mathbf{x}_1\|$$

Allora la lunghezza di un segmento che unisce due punti è uguale alla distanza tra i punti stessi.

Esempio 3.4. Si considera nuovamente la curva di equazioni

$$\begin{cases} x = t^3 \\ y = t^2 \end{cases}$$

Calcolare la lunghezza di tale curva per $0 \le t \le a$, con a > 0.

Svolgimento. Per calcolo diretto, si ha:

$$L = \int_0^a \sqrt{9t^4 + 4t^2} \ dt = \int_0^a t\sqrt{9t^2 + 4} \ dt$$

Per $u = t^2$, si ottiene:

$$L = \frac{1}{2} \int_0^{a^2} \sqrt{9u + 4} \ du = \frac{1}{27} (9u + 4)^{3/2} \Big|_0^{a^2} = \frac{1}{27} \left[(9a^2 + 4)^{3/2} - 8 \right]$$

Sia data la curva in coordinate polari

$$\begin{cases} \rho = \rho(t) \\ \varphi = \varphi(t) \end{cases}, \ a \le t \le b$$

corrispondente alle equazioni parametriche

$$\begin{cases} x = \rho(t)\cos\varphi(t) \\ y = \rho(t)\sin\varphi(t) \end{cases}, \ a \le t \le b$$

Allora

$$\begin{cases} x'(t) = \rho'(t)\cos\varphi(t) - \rho(t)\varphi'(t)\sin\varphi(t) \\ y'(t) = \rho'(t)\sin\varphi(t) + \rho(t)\varphi'(t)\cos\varphi(t) \end{cases} \Rightarrow x'^{2}(t) + y'^{2}(t) = \rho'^{2}(t) + \rho^{2}(t)\varphi'^{2}(t)$$

La lunghezza della curva sarà, allora, data da:

$$L = \int_{a}^{b} \sqrt{\rho'^{2}(t) + \rho^{2}(t)\varphi'^{2}(t)} dt$$
 (3.2.1)

Talvolta, si prende come t lo stesso angolo φ ; in questo caso si ha $\rho = \rho(\varphi), \ \varphi_0 \le \varphi \le \varphi_1$, quindi l'equazione diventa

$$L = \int_{\varphi_1}^{\varphi_1} \sqrt{\rho'^2(\varphi) + \rho^2(\varphi)} \, d\varphi \tag{3.2.2}$$

essendo $\varphi' = 1$.

Esempio 3.5. Si considera un *cardioide*, di equazione $\rho = (1+\cos\varphi), \ 0 \le \varphi \le 2\pi$. Calcolarne la lunghezza.

Svolgimento. Si ha

$$L = \int_0^{2\pi} \sqrt{\sin^2 \varphi + (1 + \cos \varphi)^2} \ d\varphi = \int_0^{2\pi} \sqrt{2 + 2\cos \varphi} \ d\varphi = 2 \int_0^{2\pi} \left| \cos \frac{\varphi}{2} \right| \ d\varphi$$

Prendendo $2u = \varphi$:

$$L = 4 \int_0^{\pi} |\cos u| \ du = 8 \int_0^{\pi/2} \cos u \ du = 8$$

Teorema 3.3 (Lunghezza di curve equivalenti)

Due curve equivalenti σ, γ hanno stessa lunghezza.

Dimostrazione. Sia $\sigma(t) = \gamma(p(t))$, con $p'(t) \neq 0$. Si assume, senza perdita di generalità, p' > 0, quindi $\|\sigma'(t)\| = \|\gamma'(p(t))\| p'(t)$, pertanto:

$$L(\sigma) = \int_{c}^{d} \|\sigma'(t)\| dt = \int_{c}^{d} \|\gamma'(p(t))\| p'(t) dt$$

Cambiando variabili con u=p(t) e usando che p'>0, per cui si ha $p(c)=a,\ p(d)=b,$ si ha:

$$L(\sigma) = \int_{c}^{d} \|\gamma'(p(t))\| \, p'(t) \, dt = \int_{a}^{b} \|\gamma'(u)\| \, du \equiv L(\gamma)$$

Se, invece, fosse p' < 0, si avrebbe un segno – dovuto a p', ma gli estremi di integrazione verrebbero invertiti, quindi il risultato è consistente:

$$L(\sigma) = -\int_{c}^{d} \|\gamma'(p(t))\| p'(t) dt = \int_{b}^{a} \|\gamma'(u)\| du \equiv L(\gamma)$$

Inscrivendo in una circonferenza un poligono regolare, il perimetro dell'ultimo è sempre minore della lunghezza della circonferenza e la approssima tanto meglio, quanto più aumenta il numero di lati. Di fatto, la lunghezza della circonferenza si definisce come il limite dei perimetri dei poligono regolari inscritti.

Usando questo ragionamento, si ottiene la lunghezza di una curva approssimandola con delle spezzate con vertici sul suo sostegno.

Sia $\gamma:[a,b]\to\mathbb{R}^n$ una curva di classe C^1 . Si divide [a,b] in N sottintervalli con estremi $a=t_0< t_1<\ldots< t_N=b;$ unendo i corrispondenti $\gamma(t_0),\gamma(t_1),\ldots,\gamma(t_N),$ si ottiene una spezzata Σ , i cui vertici sono sul sostegno della curva γ .

La lunghezza di Σ sarà, evidentemente, minore della lunghezza della curva perché, per quanto visto:

$$\|\gamma(t_i) - \gamma(t_{i-1})\| = \left\| \int_{t_{i-1}}^{t_i} \gamma'(t) \ dt \right\| \le \int_{t_{i-1}}^{t_i} \|\gamma'(t)\| \ dt$$

$$\Rightarrow L(\Sigma) = \sum_{i=1}^N \|\gamma(t_i) - \gamma(t_{i-1})\| \le \sum_{i=1}^N \int_{t_{i-1}}^{t_i} \|\gamma'(t)\| \ dt = \int_a^b \|\gamma'(t)\| \ dt$$

Tuttavia, prendendo t_i molto vicini fra loro, si può far avvicinare $L(\Sigma)$ a $L(\gamma)$ a piacimento. Per dimostrare questo, occorre il seguente lemma.

Lemma 3.1

Sia $\mathbf{v}(t): [\alpha, \beta] \to \mathbb{R}^n$ e sia $\tau \in [\alpha, \beta]$; allora si ha:

$$\left\| \int_{\alpha}^{\beta} \mathbf{v}(t) \ dt \right\| \ge \int_{\alpha}^{\beta} \|\mathbf{v}(t)\| \ dt - 2 \int_{\alpha}^{\beta} \|\mathbf{v}(t) - \mathbf{v}(\tau)\| \ dt$$

Dimostrazione. Si ha:

$$\mathbf{v}(\tau)(\beta - \alpha) = \int_{\alpha}^{\beta} \mathbf{v}(\tau) dt = \int_{\alpha}^{\beta} \mathbf{v}(t) dt - \int_{\alpha}^{\beta} \left[\mathbf{v}(t) - \mathbf{v}(\tau) \right] dt$$

Usando la disuguaglianza triangolare:

$$\|\mathbf{v}(\tau)\| (\beta - \alpha) \le \left\| \int_{\alpha}^{\beta} \mathbf{v}(t) \ dt \right\| + \left\| \int_{\alpha}^{\beta} \left[\mathbf{v}(t) - \mathbf{v}(\tau) \right] \ dt \right\| \le \left\| \int_{\alpha}^{\beta} \mathbf{v}(t) \ dt \right\| + \int_{\alpha}^{\beta} \|\mathbf{v}(t) - \mathbf{v}(\tau)\| \ dt$$

Sempre per la disuguaglianza triangolare, risulta $\|\mathbf{v}(\tau)\| \ge \|\mathbf{v}(t)\| - \|\mathbf{v}(t) - \mathbf{v}(\tau)\|$, quindi, integrando:

$$\|\mathbf{v}(\tau)\| (\beta - \alpha) \ge \int_{\alpha}^{\beta} \|\mathbf{v}(t)\| dt - \int_{\alpha}^{\beta} \|\mathbf{v}(t) - \mathbf{v}(\tau)\| dt$$

Confrontando le due disuguaglianze ottenute, si ottiene direttamente la tesi.

Teorema 3.4

La lunghezza di una curva regolare γ è l'estremo superiore delle lunghezze delle spezzate con i vertici sul suo sostegno.

Dimostrazione. La funzione γ' è continua in [a,b], quindi è uniformemente continua nello stesso. Fissato, dunque, $\varepsilon > 0$, $\exists \delta > 0$ tale che se $t,\tau \in [a,b]$, allora $|t-\tau| < \delta \Rightarrow \|\gamma'(t) - \gamma'(\tau)\| < \varepsilon$.

Si divide [a, b] in intervalli più piccoli, con estremi $a = t_0 < t_1 < \ldots < t_N = b$ in modo tale che ogni $[t_{i-1}, t_i]$ abbia lunghezza $|t_i - t_{i-1}| < \delta$.

Per il lemma 3.1, si ha:

$$\|\gamma(t_i) - \gamma(t_{i-1})\| = \left\| \int_{t_{i-1}}^{t_i} \gamma'(t) \ dt \right\| \ge \int_{t_{i-1}}^{t_i} \|\gamma'(t)\| \ dt - 2 \int_{t_{i-1}}^{t_i} \|\gamma'(t) - \gamma'(\tau)\| \ dt$$

con τ punto generico in [a,b]. Per costruzione, risulta $\|\gamma'(t) - \gamma'(\tau)\| < \varepsilon$, pertanto

$$\|\gamma(t_i) - \gamma(t_{i-1})\| \ge \int_{t_{i-1}}^{t_i} \|\gamma'(t)\| dt - 2\varepsilon(t_i - t_{i-1})$$

Sommando su $i=1,\ldots,N$ al primo membro, si ottiene la lunghezza della spezzata. Al secondo membro, la somma degli integrali restituisce la lunghezza della curva, mentre quella dell'altro termine restituisce $2\varepsilon(b-a)$. In conclusione, si è trovato

$$L(\Sigma) \ge \int_a^b \|\gamma'(t)\| dt - 2\varepsilon(b-a)$$

Conseguentemente, anche l'estremo superiore delle lunghezze delle spezzate è maggiore della stessa quantità; per l'arbitrarietà di ε , tale sup è maggiore o uguale alla lunghezza della curva

Avendo già mostrato la disuguaglianza opposta, segue l'uguaglianza e, al contempo, anche la tesi. $\hfill\Box$

Si definisce la lunghezza di una porzione di curva γ nell'estremo [a,t] come

$$s(t) = \int_{a}^{t} \|\gamma'(r)\| dr$$

Al variare di $t \in [a, b]$, s(t) varia in [0, L]; se γ è regolare, allora s(t) è strettamente crescente,

visto che $s'(t) = ||\gamma'(t)|| > 0$.

Sia, allora, t(s) la sua inversa, che mappa $[0, L] \rightarrow [a, b]$ e

$$t'(s) = \frac{1}{s'(t)}\Big|_{t=t(s)} = \frac{1}{\|\gamma'(t(s))\|}$$

Ponendo $\psi(s) = \gamma(t(s))$, la curva ψ è equivalente a γ e ha stesso verso; inoltre

$$\psi'(s) = \gamma'(t(s))t'(s) = \frac{\gamma'(t(s))}{\|\gamma'(t(s))\|}$$

cioè $\|\psi'(s)\| = 1$ e la velocità coincide col versore tangente.

Nel caso in cui γ è il grafico di una funzione y(x), si ha $s'(x) = \sqrt{1 + y'^2(x)}$; la qantità s è detta **ascissa curvilinea**. In casi del genere, la lunghezza della curva coincide con l'integrale $\int_{sh} ds$.

In generale, la notazione $\int_{\gamma} ds$ si può usare per indicare la lunghezza di una generica curva γ , essendo $ds = \|\gamma'(t)\| dt$. Tale notazione è dovuta al fatto che la lunghezza del segmento infinitesimo tra i punti $\gamma(t)$ e $\gamma(t+dt)$ è

$$ds = \|\gamma(t + dt) - \gamma(t)\| = \|d\gamma(t)\| = \|\gamma'(t)\| dt$$

In questo modo, si può dare la definizione di integrale curvilineo di una funzione f.

Definizione 3.6 (Integrale curvilineo)

Sia f una funzione; il suo integrale curvilineo è definito come:

$$\int_{\gamma} f \ ds = \int_{a}^{b} f(\gamma(t)) \| \gamma'(t) \| \ dt$$

Se, poi, γ e σ sono due curve equivalenti, l'integrale curvilineo di f su σ coincide con quello su γ :

$$\int_{\gamma} f \, ds = \int_{\sigma} f \, ds \tag{3.2.3}$$

Dimostrazione. Sia $\sigma(t) = \gamma(p(t))$. Per conto diretto, assumendo senza perdita di generalità che p' > 0:

$$\int_{\sigma} f \ ds = \int_{c}^{d} f(\sigma(t)) \|\sigma'(t)\| \ dt = \int_{c}^{d} f(\gamma(p(t))) \|\gamma'(p(t))\| p'(t) \ dt$$
$$= \int_{a}^{b} f(\gamma(r)) \|\gamma'(r)\| \ dr \equiv \int_{\gamma} f \ ds$$

dove si è preso $r = p(t) \Rightarrow dr = p'(t) dt$. Se fosse p' < 0, si otterrebbe lo stesso risultato.

Esempio 3.6. Calcolare, per γ arco di parabola di equazioni $x=t,\ y=t^2,\ 0\leq t\leq 1,$ l'integrale

$$\int_{\gamma} \sqrt{1 + 3x^2 + y} \ ds$$

Svolgimento. Si ha $ds = \sqrt{1+4t^2}dt$, quindi:

$$\int_{\gamma} \sqrt{1+3x^2+y} \ ds = \int_{0}^{1} (1+4t^2) \ dt = \frac{7}{3}$$