Stat 461		1-1W9		Jiagi L
1.	Factor	R/F	N/C	
i=	State	R		
j=	Environment	F	$\langle \rangle_{N}$	
t=	Lake	R	> N	

Thus, we use the <u>Mixed Model</u>: $(\alpha\beta)_{ij} \stackrel{iid}{=} N(0, \sigma_{int})$ $Y_{ijt} = \mu + \alpha_{i} + \beta_{j} + (\alpha\beta)_{ij} + \epsilon_{ijt}$, $\alpha_{i} \stackrel{iid}{=} N(0, \sigma_{finte})$, $\epsilon_{ijt} \stackrel{iid}{=} N(0, \sigma_{int})$. $Y_{ijt} = \text{the phosphorous level of } t^{th} \text{ (ake in jth environment of state } i$. i = New York, Pennsylvania, Vermount. j = agriculture land, forest t = 1, 2, 3, 4

2.	Factor	R/F	NC
ì=	Туре	F	N N
j=	Road	R	
k =	Paint	F	\sim
t <u>-</u>	Year (replicate)	R	

Thus, we use the <u>Mixed Model</u>:

Yijkt = μ + α : + β is: + δ k + ϵ ijkt, β is: $\frac{1}{2}$ N(0, ϵ ijkt). Eijkt $\frac{1}{2}$ N(0, ϵ ijkt). The inverse of crashes on road j of type i with or without paint.

i = mountainous, city

j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

k = with, without

t = 1, 2, 3.