Projeto de cabeamento estruturado para Juushin SA

Fernando Rocha

Universidade Tecnológica Federal do Paraná - Câmpus Cornélio Procópio

ste projeto tem como propósito apresentar uma estrutura de cabeamento para uma empresa fictícia, consolidando assim o conhecimento adquirido na disciplina de cabeamento estruturado.

26 de novembro de 2019

Lista de figuras

1	Planta física
2	Planta Lógica
3	Encaminhamento
4	Identificação de Cabo
5	Cronograma de implantação
Lista	de tabelas
1	Organizações
2	Componentes Utilizados
3	Pontos
4	Custos do Projeto

Sumário

1	Introdução 1.1 Benefícios	
2	Estado atual	4
3	Requisitos	5
4	Usuários e Aplicativos 4.1 Usuários 4.2 Aplicativos	
5	Estrutura predial existente	5
6	Planta Lógica - Elementos estruturados6.1 Topologia6.2 Encaminhamento6.3 Memorial descritivo6.4 Identificação dos cabos	7 9
7	Implantação	11
8	Plano de certificação	11
9	Plano de manutenção 9.1 Plano de expansão	11 11
10) Risco	12
11	Orçamento	12
12	2 Recomendações	13
13	Referências bibliográficas	13

1 Introdução

A Juushin SA é uma empresa que atua no área de serviços e conta, atualmente, com um quadro de 25 pessoas, sendo 9 que atuam na sede da empresa; 3 equipes de 5 pessoas, mais 1 Supervisor de equipe que atuam fora da sede. Atualmente a empresa está mudando sua sede para um novo prédio, portanto todo cabeamento será configurado a partir deste projeto.

1.1 Benefícios

O planejamento de um sistema de cabeamento traz consideráveis benefícios às empresas que o adotam, dentre eles:

- Unifica a estrutura de dados, voz e vídeo reduzindo custos com manutenção e necessidade de atualização.
- Menor propensão a falhas, interrupções e interferências.
- Uma estrutura centralizada torna as alterações, que por ventura precisem ser feitas, mais rápidas e eficientes.
- Diminui drasticamente a inatividade do sistema, pois o diagnóstico de problemas é mais fácil que em uma rede não estruturada.
- O cabeamento estruturado tem maior durabilidade, pois sofre menos manipulação e tem melhor acondicinamento.

1.2 Organizações Envolvidas

Tabela 1: Organizações

Empresa	Serviço	Responsável
Copel Telecom	Provedor de Internet	Mévio
BH Construtora	Piso e Instalação das calhas	Caio
VyperNET	montagem Racks e cabos	Tício
Certfik	Certificação do Cabeamento	Plinio

2 Estado atual

Hoje, a rede da empresa encontra-se na seguinte situação:

- 1 Switch 24 portas HP 1420-24G-2SFP, 2 Switches HP 1420-8G JH329A, 500m de cabos cat5e e 1 roteador Wireless D-Link DIR-615 N .
- As principais reclamações dos usuários são as quedas constantes e lentidão da conexão e a demora para impressão de documentos. Aproveitando a construção da nova sede, os diretores optaram por fazer um projeto de cabeamento estruturado. Após análise da rede foi possível encontrar vários pontos que possam estar ocasionando os problemas relatados pelos usuários, entre eles:

- Cabos de rede e elétricos acondicionados juntos;
- Cabos de rede dobrados ou retorcidos;
- Cabos de rede sem identificação;
- Conectores não padronizados;
- Switch comportas danificadas;

3 Requisitos

A nova estrutura de rede deve eliminar os problemas atuais de conexão e ainda:

- Padronizar toda a estrutura de rede.
- Identificar os cabos.
- Separar o cabeamento de rede do cabeamento elétrico.
- Acondicionar adequadamente os equipamentos de rede.
- Atender demanda atual de rede e futuras expansões.

4 Usuários e Aplicativos

Atualmente a empresa tem como usuários seus 25 colaboradores mais os clientes que fazem uso da rede sem fio. Com a crescente demanda por serviços este número pode aumentar nos próximos anos, por isso é importante que o projeto preveja uma possível expansão da rede atual.

4.1 Usuários

• Diretores: 3;

• Atendentes: 2;

- Administrativo: 4;
- Membros das Equipes: 15;
- Clientes: até 20;

2

4.2 Aplicativos

- Sistema ERP: 9;
- Pacote Office: 9:
- Sistema de Vendas: 4:
- Software Contábil: 1;

5 Estrutura predial existente

Como a empresa está transferindo sua sede para um novo prédio, não convém falar sobre a estrutura predial existente. Este documento discorrerá apenas sobre a nova estrutura.

Figura 1: Planta física

6 Planta Lógica - Elementos estruturados

6.1 Topologia

A planta da nova sede conta com uma sala de recepção com $32,95m^2$ e 4 pontos de rede com espaçamento de 2 metros; quatro salas administrativas com aprox. $30m^2$ e 5 pontos de rede com espaçamento de 2 metros; uma sala de diretores com $48m^2$ e 6 pontos de rede com espaçamento de 2 metros; uma sala para reuniões com $46,78m^2$ e 8 pontos de rede com espaçamento de 2 metros; 3 banheiros e uma sala de arquivos com $31,37m^2$ e 4 pontos de rede com espaçamento de 2 metros, onde se encontra a sala de equipamentos.

Figura 2: Planta Lógica

6.2 Encaminhamento

Os cabos seguirão em eletrocalhas sob o piso elevado e sairão por eletrodutos até as tomadas, localizadas a 0,45m acima do piso. A Eletrocalha "A", identificada no projeto com a cor azul, conterá o cabeamento da sala 1, sala 2 e sala da diretoria, totalizando 14 cabos. A eletrocalha "B", identificada no projeto com a cor vermelha, conterá o cabeamento da sala 3, sala 4 e sala de reuniões. A eletrocalha "C", identificada no projeto com a cor verde, conterá o cabeamento da sala de arquivos, recepção, sala 3, sala 4 e sala de reuniões.

Figura 3: Encaminhamento

6.3 Memorial descritivo

Tabela 2: Componentes Utilizados

Componentes	Quantidade	Fabricante
Abraçadeira Nylon 2,5 x 100mm c/100	5	Western
Cabo De Rede Furukawa Cat 6 U/utp 305m	3	Furukawa
Kit 10U Cx+tampa + 1 Tomada Rj45 Cat6	5	Tramontina
Patch Cord Cat6 1,5m Gigalan Furukawa	50	Furukawa
Patch Cord Cat6 2,5m Gigalan Furukawa	20	Furukawa
Patch Panel Cat.6 48 Posições	1	Itcomtech
Rack 44 U	1	CWB Metal
Régua tomadas Com 12 Tomadas Bivolt	1	Ipec
Switch 48 portas	1	HP

6.4 Identificação dos cabos

De acordo com a norma ANSI/EIA/TIA - 606, cada unidade de terminação deve ter uma identificação exclusiva, conforme a norma ANSI/EIA/TIA - 606. Deste modo a identificação dos cabos seguirá o seguinte padrão:

Txx - Ponto de comunicação

W - Calha

Pxx - Porta do Patch Panel

Y - UTP(U), STP(S), FIBRA OTICA (Fo)

Cxx - Número do cabo

Exemplo:

T01.A.P1.U.01.C01

Figura 4: Identificação de Cabo

A figura 4 indica o cabo 01, que liga a porta 1 do Patch Panel ao Ponto de Telecomunicações 01, passando pela calha A no primeiro Andar. O tipo de cabo usado é UTP.

Tabela 3: Pontos

PONTO DE COMUNICAÇÃO	CALHA	PORTA	Nº CABO	DIST (M)
T01	A	1	001	8
T02	A	2	002	12,5
T03	A	3	003	14,5
T04	A	4	004	13
T05	A	5	005	15
T06	A	6	006	13
T07	A	7	007	17,5
T08	A	8	008	19,5
T09	A	9	009	18
T10	A	10	010	20
T11	A	11	011	18
T12	A	12	012	21
T13	A	13	013	25,5
T14	A	14	014	27,5
T15	В	15	015	8
T16	В	16	016	10
T17	В	17	017	7,5
T18	В	18	018	9,5
T19	В	19	019	20,5
T20	В	20	020	22,5
T21	В	21	021	21
T22	В	22	022	23
T23	В	23	023	25,5
T24	В	24	024	27,5
T25	В	25	025	26
T26	В	26	026	28
T27	В	27	027	26,5
T28	В	28	028	29
T29	С	29	029	8
T30	С	30	030	10
T31	С	31	031	8,5
T32	С	32	032	10,5
T33	С	33	033	15,5
T34	С	34	034	16,5
T35	С	35	035	15
T36	С	36	036	17
T37	С	37	037	22
T38	С	38	038	27,5
T39	С	39	039	32,5
T40	С	40	040	35
T41	С	41	041	39,5
T42	С	42	042	41,5

7 Implantação

A figura 5 apresenta tabela com o cronograma de implantação previsto. O cronograma já engloba eventuais atrasos, contudo a implantação deve ocorrer dentro de 4 semanas.

Figura 5: Cronograma de implantação

8 Plano de certificação

Quais seriam as etapas para a certificação? Quais os locais e horários para execução da certificação na rede? Toda rede será certificada? Como os testes seriam executados? Quais relatórios de certificação serão (ou deveriam ser) entregues?

9 Plano de manutenção

Revisões periódicas na rede, emissão de certificados para novos pontos.

9.1 Plano de expansão

A empresa acaba de passar por um processo de expansão, mas tem se preparado para crescimentos futuros, por isso o projeto de rede atual já conta com pontos de comunicação sobressalentes e a própria estrutura predial já prevê uma possível ampliação para até 3 andares. A sala de equipamentos está localizada em um ponto onde será possível a criação de um backbone para esta ampliação, sendo recomendado o uso de fibra ótica para este fim. O Rack atual já tem espaço para instalação de novos equipamentos que atendam a demanda futura.

10 Risco

A estrutura de rede em si não apresenta grandes riscos, uma vez que os cabos de rede passam sob o piso elevado, devidamente acondicionados dentro de eletrocalhas e longe do cabeamento elétrico. A sala de Equipamentos possui portas com trancas assim como o Rack onde ficarão os equipamentos, impedindo assim o acesso não autorizado. A sala de equipamentos possui refrigeração, pois está localizada dentro da sala de Arquivos, que possui também sistema de combate a incendios. A parte elétrica conta ainda com protetores de surto e o aterramento dos equipamentos de rede é separado do aterramento do prédio em si.

11 Orçamento

Tabela 4: Custos do Projeto

Componente	Fabricante	Preço	Total
Abraçadeira Nylon 2,5 x 100mm c/100 Branca	Western	R\$ 1,83	R\$ 9,15
Cabo De Rede Furukawa Sohoplus Cat 6 U/utp 305m	Furukawa	R\$ 590,00	R\$ 1.770,00
Kit 10 Uni Cj Cx+tampa + 1 Tomada Rj 45 Cat.6	Tramontina	R\$ 144,28	R\$ 721,40
Patch Cord Cat6 1,5m Gigalan Furukawa vermelho	Furukawa	R\$ 26,90	R\$ 1.345,00
Patch Cord Cat6 2,5m Gigalan Furukawa vermelho	Furukawa	R\$ 37,90	R\$ 758,00
Patch Panel Cat.6 24 Posicoes	Furukawa	R\$ 599,99	R\$ 1.199,98
Rack 44 U	Mundo dos Racks	R\$ 1.673,76	R\$ 1.673,76
Régua tomadas Regua Rack 19"Com 12 Tomadas Bivolt	Ipec	R\$ 33,90	R\$ 33,90
Switch 48 portas	HP	R\$ 2.535,90	R\$ 2.535,90
Eletrocalha 50x50 3m	Prime Metal	R\$ 33,21	R\$ 2.092,23
Eletrocalha Curva Horiz 90 50x50	Prime Metal	R\$ 18,15	R\$ 145,2
Eletrocalha Te 90 50x50	Prime Metal	R\$ 23,48	R\$ 93,92
Eletroduto Em Pvc c/ 3 Metros	Tigre	R\$ 12,99	R\$ 90,93
TOTAL GERAL			R\$ 12.469,37

12 Recomendações

Observações e recomendações para o cliente.

13 Referências bibliográficas

Utilize o mendley, o jabref ou diretamente o bibtex para gerenciar suas referências biliográficas. As referências são criadas automaticamente de acordo com o uso no texto.

Exemplo: Redes de computadores, segundo [1] é considerada..... Já [2] apresenta uma versão...

Analisando os pressupostos de [3] e [4] concluimos que....

- [1] A. Tanenbaum and D. Wetherall, "Computer networks: Pearson new international edition," 2013.
- [2] J. F. Kurose, K. W. Ross, A. S. Marques, and W. L. Zucchi, *Redes de Computadores ea Internet: uma abordagem top-down*. Pearson, 2010.
- [3] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, "Research challenges for traffic engineering in software defined networks," *IEEE Network*, vol. 30, pp. 52–58, May 2016.
- [4] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester, "Redes ad hoc móveis," *RTI*, *Redes*, *Telecom e Instalações*, vol. 6, no. 69, pp. 64–74, 2006.