ООО «Научно-производственное предприятие Марс-Энерго»

«УТВЕРЖДАЮ»

пректор 000 АНПЛ Марс-Энерго»

И.А. Гиниятуллин

редприятие 5 05 20 10 г

ИНСТРУКЦИЯ

по применению прибора «Энергомонитор-3.3T1» для контроля измерительных каналов системы коммерческого учета электрической энергии, установленной по уровню 0,4 кВ, и счетчиков, установленных для учёта на стороне свыше 1 кВ в рабочем режиме эксплуатации

МС3.055.028 И1

Санкт-Петербург 2019

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. ТРЕБОВАНИЯ К ПОКАЗАТЕЛЯМ ТОЧНОСТИ ИЗМЕРЕНИЙ	
2. ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫМ УСТРОЙСТВАМ	7
3. ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ ИК	7
4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ	8
5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ	8
6. ТРЕБОВАНИЯ К УСЛОВИМ ИЗМЕРЕНИЙ	8
7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ	9
8. ПОРЯДОК ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ	14
9. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ	
10. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ	
БИБЛИОГРАФИЯ	15
Приложение А	16

ВВЕДЕНИЕ

Настоящая ИНСТРУКЦИЯ по применению прибора «Энергомонитор-3.3T1» устанавливает порядок контроля измерительных каналов системы коммерческого учета электрической энергии, установленной по уровню 0,4 кВ, и счетчиков, установленных для учёта на стороне свыше 1 кВ в рабочем режиме эксплуатации в диапазоне значений мощности от $0.01I_{\rm B}$: $U_{\rm H}$ до $1.5I_{\rm H} \cdot 1.2 \cdot U_{\rm H}$.

ИНСТРУКЦИЯ может быть использована для процедуры контроля измерительного канала (ИК) системы учёта активной и реактивной электрической энергии в однофазных или трехфазных сетях с помощью прибора «Энергомонитор-3.3T1» (далее – прибор ЭМ-3.3Т1) без вывода ИК из эксплуатации, при текущих значениях рабочих токов не менее 20% от их номинальных значений. Цель контроля ИК состоит в проверке соответствия ИК проектной документации, в частности, в проверке: правильности монтажа измерительных цепей; правильности ввода параметров измерительных трансформаторов тока (ТТ); корректности настройки программного обеспечения и в определении относительной погрешности измерения текущего значения электрической мощности. Указанные проверки выполняются при вводе ИК в эксплуатацию, после замены или ремонта комплектующих ИК средств измерений (СИ), после демонтажа СИ для периодической поверки и их выявлении возможного последующего монтажа, при неучтенного потребления электрической энергии и в иных случаях, когда возникают сомнения в достоверности результатов измерений при наличии действующих свидетельств о поверке на все СИ, входящие в состав ИК.

Контроль ИК, выполняемый в соответствии с настоящей Инструкцией, состоит в комплектном определении относительной погрешности измерения текущего значения электрической мощности и сравнения результата измерения с пределами допускаемой относительной погрешности ИК, полученной расчетным путем как композиции пределов допускаемых погрешностей счетчика электрической энергии и ТТ для значений токов и коэффициентов мощности близких к текущим при проведении измерений.

Возможность комплектного измерения мощности в рабочем режиме ИК (без разрыва токовой цепи) обеспечивается электроизмерительными клещами переменного тока, входящими в состав прибора ЭМ-3.3T1.

Инструкция распространяется на ИК, состоящие из счётчика электрической энергии однофазного или трехфазного и ТТ или только из счетчика электрической энергии.

В настоящей Инструкции использованы следующие обозначения:

 $A_c;\ A_s$ [имп/(кВт·ч)] - постоянная, соответственно, счетчика и прибора ЭМ-3.3Т1 в импульсах на киловатт час;

- N_c; N_э количество импульсов, поступающих с выходного устройства (например, испытательного выхода) проверяемого счетчика и, соответственно, эталонного счетчика (прибора ЭМ-3.3T1);
- ο δ_{0-ИК} предел допускаемой относительной погрешности ИК;
- \circ δ_{ci} относительная погрешность измерения электрической энергии (мощности) измерительным каналом, определенная по настоящей Инструкции при i- м измерении :

$$\delta_{ci} = \left[\left(\Delta P_{1i} - \Delta P_{2i} \right) / \Delta P_{2i} \right] \cdot 100\%, \tag{1}$$

- где : ΔP_{1i} –электрической мощность, измеренная ИК за i-е определение погрешности ΔP_1 = $K_{\rm TT}$ • N_c / A_c
 - ΔP_{2i} электрической мощность, измеренная прибором «Энергомонитор- 3.3T1» за i-е определение погрешности $\Delta W_{2i} = N_9 / A_9$;
- \circ $\overline{\delta}_{\rm c}$ среднеарифметическое значение погрешности ИК при числе измерений равном n , определённое по формуле

$$\overline{\delta}_{c} = \frac{1}{n} \sum_{i=1}^{n} \delta_{ci} \tag{2}$$

- \circ $I_{\text{ном}}$ номинальное значение переменного тока;
- о U_н номинальное значение напряжения;
- о КР коэффициент мощности.

1. ТРЕБОВАНИЯ К ПОКАЗАТЕЛЯМ ТОЧНОСТИ ИЗМЕРЕНИЙ

- 1.1 Пределы допускаемой относительной погрешности измерений по данной инструкции составляют 0,25 значения $\delta_{\text{ИК}}$ определяемого по формуле (3).
 - 1.2 Оценка пределов допускаемой погрешности ИК

В рамках настоящей инструкции принято, что ИК соответствует требованиям контроля его функционирования в рабочих условиях, если его относительная погрешность измерения текущего значения электрической мощности, определенная с помощью прибора ЭМ-3.3T1, не превосходит:

$$\delta_{HK} = \pm (\delta_{0-HK} + 10) \%, \tag{3}$$

где ($\delta_{0\text{-}\text{ИK}}$) - предел допускаемой относительной погрешности ИК, полученный расчетным путем по формуле:

$$\delta_{0-\text{MK}} = \pm 1.1 \sqrt{\delta_I^2 + \delta_\theta^2 + \delta_{c.o}^2 + \delta_{c.T}^2}$$
 (4)

Где: $\delta_{\rm I}$ - токовая погрешность TT, %;

 δ_{θ} - угловая погрешность измерения мощности (энергии), вызванная угловой погрешностью ТТ (θ_{I}), %;

 $\delta_{c.o}$ - относительная погрешность счетчика, %;

 $\delta_{c.T}$ - дополнительная погрешность счетчика от температуры окружающей среды при измерении, %.

Все указанные в формуле (3) составляющие погрешности измерительного канала представляют собой пределы допускаемых значений $\pm \delta$ (с соответствующим индексом), числовые значения которых получены из технической документации на СИ.

При этом:

1) погрешность δ_{θ} при измерениях активной электроэнергии вычисляется по формуле:

$$\delta_{\theta} = 0.029 \cdot \Theta_I \frac{\sqrt{1 - \cos^2 \varphi}}{\cos \varphi} \tag{5}$$

где: θ_I - угловая погрешность TT, мин; $\cos \phi$ - коэффициент мощности;

2) погрешность δ_{θ} при измерениях реактивной энергии вычисляется по формуле:

$$\delta_{\theta} = 0.029 \cdot \Theta_I \frac{\cos \varphi}{\sqrt{1 - \cos^2 \varphi}} \tag{6}$$

где: $\theta_{\rm I}$ - угловая погрешность TT, мин; $\cos \phi$ – коэффициент мощности.

Расчет ($\delta_{0-\text{ИК}}$) должен быть выполнен для значений токов и коэффициентов мощности близким к текущим при проведении измерений.

Пределы допускаемой погрешности прибора 9M-3.3T1 (δ_{OCU}) для обеспечения достаточной достоверности результата не должны превышать 0,25 значения δ_{UK} , определяемого по формуле (3).

Прибор ЭМ-3.3T1 с комплектом токовых клещей (см. таблицу 2.1) соответствует необходимому соотношению точностей образцового СИ и контролируемого ИК.

Примечание. При проведении операций контроля ИК на энергообъекте перечень дополнительных погрешностей счетчика может быть дополнен.

1.3 Оценка влияния случайной погрешности измерений.

В связи с тем, что определение погрешности ИК производится при рабочих напряжении и токе сети, возможен разброс результатов отдельных измерений, вызванный нестабильностью напряжения сети и возможными изменениями нагрузки. В качестве результата определения погрешности ИК принимается $\overline{\delta}_{\rm c}$ – среднее арифметическое значение результатов n измерений, определённое по формуле:

$$\bar{\delta}_{c} = \frac{1}{n} \sum_{i=1}^{n} \delta_{ci} , \qquad (7)$$

где δ_{ci} - результат і-го измерения.

Погрешность ИК рассчитывается по результатам не менее 5 измерений (n=5). По результатам п измерений выполняется расчет среднеквадратического отклонения результата измерений (S_{δ}) по формуле:

$$S_{\delta} = \sqrt{\frac{1}{(n-1)} \cdot \sum_{i=1}^{n} \left(\delta_{ci} - \overline{\delta}_{c} \right)^{2}}$$
 (8)

Результат измерения признается достоверным и заносится в протокол (Приложение A), если полученное значение S_δ не превышает 0,5%. Если полученное при этом значение S_δ превышает 0,5%, измерения следует повторить либо при большем числе измерений п, рассчитывая в каждом случае S_δ , либо повторить операции контроля при меньшей нестабильности сети, например, в ночное время.

Примечание. При оформлении результатов измерений может быть использована форма протокола, соответствующая требованиям отраслевых нормативных документов, действующих на энергообъекте.

2. ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫМ УСТРОЙСТВАМ

2.1. При выполнении измерений применяют средства измерений (далее — СИ), приведенные в таблице 2.1.

Таблина 2.1

	Обозначение и	Метрологические характеристики					
Наименование СИ	наименование документов	Наименование измеряемой величины	Диапазон измерений	погрешность измерений			
1 Прибор для измерений электроэнергетических величин и показателей качества электроэнергии «Энергомонитор-3.3T1» 1) в комплекте с	TY 4220-30- 49976497-2007	Активная электрическая мощность, прямого и обратного направления, Вт	от $0.01I_{\rm H}U_{\rm H}$ до $1.5I_{\rm H}\cdot 1.2U_{\rm H}$	$\pm 1,0 \%$ ³⁾ или $\pm 2,0 \%$ ⁴⁾ при $K_P = 0,5$ L 1 0,5C			
токоизмерительными клещами ⁵⁾ и набором УФС		Реактивная электрическая мощность, прямого и обратного направления, вар	от $0.01I_{ m H}U_{ m H}$ до $1.5I_{ m H}\cdot 1.2U_{ m H}$	$\pm 1,0 \%$ ³⁾ или $\pm 2,0 \%$ ⁴⁾ при $K_P = 0,45$ L $0 \dots -0,45$ C, $K_P = 0,45$ C $0 \dots -0,45$ L			
		Среднеквадратическое значение силы переменного тока (I), А	от $0,05I_{\rm H}$ до $1,5I_{\rm H}$, где: $I_{\rm H}{=}$ 10 A; 100 A; 30/300/3000 A	$\pm[1,0+0,05((I_{\text{H}}/I)-1)]$ %			
		Среднеквадратическое значение напряжения переменного тока (U), В	от $0.01U_{\rm H}$ до $1.5U_{\rm H}$, где: $U_{\rm H}=60;120;240$ В	$\pm[0,1+0,01((U_{\rm H}/U)-1)]$ %			
2 «Метеоскоп-М» ²⁾		Параметры окружающего воздуха: - температура - отн. влажность - давление воздуха	От -20 до +55 °C От 3 до 97% От 600 до 825	±0,2 °C ±3,0 % ±1 мм рт.ст.			
		2.27	мм рт.ст.				

^{1) -} допускается применение приборов «Энергомонитор-3.3Т»; «Энергомонитор-3.3Т1-С»

2.2. СИ должны иметь действующие свидетельства о поверке.

3. ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ ИК

Погрешность проверяемого ИК определяется путем сравнения результатов измерения электрической мощности (энергии), выполненных этим ИК с результатами измерений эталонного (образцового) ИК, в качестве которого используется прибор «Энергомонитор 3.3T1» в комплекте с токоизмерительными клещами (см. таблицу 2.1).

^{2) -} СИ не требуется при измерениях в закрытых помещениях

^{3) -} для Прибора ЭМ-3.3Т1 повышенной точности

^{4) -} для Прибора ЭМ-3.3Т1 обычной точности

 $^{^{5)}}$ - состав токоизмерительных клещей выбирается по ${
m I}_{
m H}$ ИК и реальным значениям тока в ПУ

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

- 4.1 ГОСТ 12.3.019-80 [1], «Правилами технической эксплуатации электрических станций и сетей РФ», «Правилами технической эксплуатации электроустановок потребителей», «Правилами по охране труда и эксплуатации электроустановок»
- 4.2 При выполнении измерений электрической мощности соблюдают требования нормативных документов, указанных в 4.1.

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

- 5.1. К выполнению измерений допускают лиц, подготовленных в соответствии с «Правилами технической эксплуатации электрических станций и сетей РФ», «Правилами эксплуатации электроустановок потребителей», «Правилами по охране труда и эксплуатации электроустановок», имеющие квалификационную группу не ниже ІІІ до и свыше 1000 В и обученные проведению измерений при учете электроэнергии.
- 5.2. К обработке результатов измерений допускаются лица с образованием не ниже среднего специального.

6. ТРЕБОВАНИЯ К УСЛОВИМ ИЗМЕРЕНИЙ

6.1. При выполнении измерений соблюдают требования, приведенные в Руководствах по эксплуатации приборов «Энергомонитор-3.3Т» или «Энергомонитор-3.3Т1», а также технической документации на средства измерений, входящих в состав измерительных каналов.

7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

7.1 При подготовке к выполнению измерений проводят следующие работы. Внесите в протокол (приложение A) паспортные данные СИ, входящих в ИК, результаты визуального осмотра и условия проведения измерений. Установите прибор ЭМ-3.3Т1 и подготовьте к работе в соответствии с руководством по эксплуатации МС3.055.028 РЭ. Для измерений используется прибор ЭМ-3.3Т1, укомплектованный токоизмерительными клещами с $I_{\rm H}$, соответствующим первичному номинальному току ТТ ($I_{\rm IIH}$). При отсутствии ТТ в ИК (или если первичные цепи ТТ находятся под напряжением выше 0,6 кВ) используются токоизмерительные клещи с $I_{\rm H}$ =10 A.

ВНИМАНИЕ! Запрещается подключение токоизмерительных клещей на токовые цепи под напряжением более 600 В.

Для измерения токов клещи прибора ЭМ-3.3T1 установите на первичные цепи ТТ (или токовые цепи счетчика) в соответствии с Руководством по эксплуатации прибора ЭМ-3.3T1.

Для измерения напряжения зажимы щупов прибора ЭМ-3.3Т1 подключите к соответствующим фазам первичной цепи ТТ (или к клеммам напряжения в ИКК счетчика при отсутствии ТТ в ИК). Допускается использование щупов с проколом изоляции.

Для проверки ИК счетчика с электрическим испытательным импульсным выходом необходимо соединить частотный (ТМ) выход проверяемого счетчика с частотным входом прибора "Fвх" через ПФИ (входит в комплект прибора ЭМ-3.3Т1).

Для проверки ИК счетчика с оптическим испытательным импульсным выходом (светдиодным) необходимо использовать фотосчитывающее устройство УФС-Э (входит в комплект прибора ЭМ-3.3T1), которое соединяется с частотным входом "Fвх".

Для проверки ИК электромеханического (индукционного) счетчика без испытательного выхода (с диском) необходимо использовать фотосчитывающее устройство УФС-И, которое соединяется с частотным входом "Fвх" прибора ЭМ-3.3T1.

В приборе ЭМ-3.3Т1 установите предел измерения по току, соответствующий $I_{\rm H}$ клещей. Выберите тип схемы подключения и при необходимости измените диапазон измерения напряжения. Для изменения пределов измерения Прибора ЭМ-3.3Т1 можно пользоваться клавишей « \mathbf{F} ».

7.2 Проверка правильности подключения приборов учёта в ИК.

Выберите пункт меню прибора ЭМ-3.3Т1 «**ИЗМЕРЕНИЯ»-«УГЛЫ»** и измерьте углы между током и напряжением, углы сдвига фаз. Убедитесь в прямом чередовании фаз. Запишите показания прибора ЭМ-3.3Т1 в протокол (приложение A).

Выберите пункт меню прибора ЭМ-3.3Т1 «**ИЗМЕРЕНИЯ»-«МОЩНОСТЬ»**. Измерьте активную мощность, напряжение и силу тока по фазам. Запишите показания прибора ЭМ-3.3Т1 в протокол (приложение А). Силы тока в любой из фаз не должна выходить за установленные в таблице 2.1 пределы измерения.

Схема ИК смонтирована правильно, если:

- чередование фаз напряжений прямое,
- измеренные значения углов сдвига фаз напряжений положительны и примерно равны (120±10)°;
- углы между током и напряжением (U^I) лежат в пределах $90...0...-90^{\circ}$ для счётчиков потребляемой энергии и +90...180...-90 для счётчиков генерируемой энергии ;
- знак активной мощности в трех фазах одинаков: положительный идет потребление, или отрицательный идет генерация.
 - 7.3. Подготовка к определению погрешности.

Выберите пункт меню прибора «ПОВЕРКА СЧЕТЧИКОВ», при этом на дисплее отобразится окно входа в очередную поверку. В данном окне (рис. 7.1) отображаются параметры проверяемого счетчика. Перемещение по пунктам осуществляется с помощью клавиш ▼ и ▲. Для возврата в главное меню необходимо нажать клавишу «ESC», для перехода к следующему окну режима поверки счетчиков выбрать пункт «ВХОД В ПОВЕРКУ №» и нажать клавишу «ENT».

В окне входа в очередную поверку (рис. 7.1) задаются следующие параметры проверяемого ИК (или только счетчика):

- тип поверяемого счетчика (для архива);
- заводской номер счетчика (для архива);
- год выпуска счетчика (для архива);
- класс точности счетчика:
- постоянная счетчика;
- коэффициент трансформации измерительных трансформаторов тока;
- номинальные значения напряжения и тока счетчика (для архива);
- тип мощности, по которой будет производиться поверка (активная или один из трех видов реактивной мощности).

Рис. 7.1. Окно входа в режим поверки счетчиков

В этом окне возможно удаление ранее созданных архивов поверенных счетчиков (ИК). Для изменения пределов измерения Прибора 3M-3.3T1 можно пользоваться клавишей « \mathbf{F} ».

При необходимости изменения значений каких-либо параметров надо подвести указатель к данному параметру и нажать клавишу «**ENT**», после чего произойдет переход в окно, где возможно редактирование его значения.

ВНИМАНИЕ! При повторном включении Прибора ЭМ-3.3Т1 по умолчанию применяются значения перечисленных выше параметров, установленные при предыдущем включении.

В окне «ТИП СЧЕТЧИКА» можно выбрать один из десяти типов счетчиков (рис. 7.2), которые есть в библиотеке, либо ввести имя нового типа.

Рис. 7.2. Окно выбора типа поверяемого счетчика

Процедура ввода имени нового типа счетчика описана в РЭ.

Параметр «Коэффициент трансформации тока» используется в случае, если нужно определить погрешность ИК, состоящего из измерительных трансформаторов тока и счетчика. Значение данного параметра задается как отношение номинальных токов первичной и вторичной обмоток TT (I_{IIH} / I_{BH}).

В случае, если измерительные TT не используются, введенные значения токов первичной и вторичной обмоток должны быть одинаковыми, например, 5/5.

При выборе пункта «**ВХОД В ПОВЕРКУ** №» открывается окно входа в очередной замер (рис. 7.3).

Рис. 7.3. Окно входа в поверку счетчиков

В окне входа в очередной замер режима «ПОВЕРКА СЧЕТЧИКОВ» (рис. 7.3) отображаются:

- расчетное число входных импульсов, поступающих со счетчика через УФС (ПФИ), которое планируется получить на частотном входе Прибора ЭМ-3.3Т1, пропорциональное энергии, измеренной счетчиком;
- соответствующее расчетное число выходных импульсов, пропорциональное энергии, измеренной Прибором ЭМ-3.3T1 за время измерения погрешности.

Число входных импульсов рассчитывается прибором ЭМ-3.3T1. При необходимости оно может быть изменено в данном окне.

Для возврата в окно входа в очередную поверку (рис. 7.1) необходимо выбрать пункт «**ВЫХО**Д» и нажать клавишу «**ENT**».

Для перехода к режиму определения погрешности выберите пункт «ВХОД В ЗАМЕР №» и нажмите «ENT». После этого открывается окно поверки (рис. 7.4). В данном окне отображаются текущие значения действующих значений напряжения и тока, коэффициента мощности и значение того типа мощности, по которой проводится поверка, а также ожидаемое время поверки счетчика «время счета». Изменяя (увеличивая) на экране рис. 7.3 значение «число входных импульсов», получите значение «время счета» не менее 30 с.

Рис. 7.4. Окно поверки счетчика

ВНИМАНИЕ! Непосредственно перед измерениями убедитесь по показаниям прибора ЭМ-3.3T1 (рисунок 7.4), что текущие значения токов фаз соответствуют диапазону 20...120~% от $I_{\rm H}$ и значение Kp - не менее 0.5.

8. ПОРЯДОК ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

8.1. При выполнении измерений электрической мощности и определения погрешности выполняют следующие операции.

Для запуска определения погрешности подведите курсор на дисплее прибора ЭМ-3.3T1 (рис. 7.4) к пункту «запуск замера» и нажмите «ENT».

- 8.2 По завершению цикла определения погрешности (накопления импульсов) на дисплее прибора ЭМ-3.3T1 отображается относительная погрешность ИК (или проверяемого счетчика) «ПОГРЕШНОСТЬ» (δ_{ci}). При этом прибор ЭМ-3.3T1 автоматически начинает новый цикл определения погрешности (начинается новое накопление импульсов). Запишите показания прибора ЭМ-3.3T1 («ПОГРЕШНОСТЬ») в протокол (приложение A).
 - 8.3. Повторите измерения и записи по п. 8.2 не менее 7 раз.

Примечания. 1. При необходимости можно остановить автоматическое повторение измерений: после нажатия клавиши «ENT» на пункте «остановка замера» появляется пункт «запомнить замер N_2 ». Для проведения следующего измерения необходимо перейти к пункту «запуск замера» и нажать клавишу «ENT».

2. Можно занести результат измерения в архив прибора ЭМ-3.3Т1. Для этого подведите курсор к пункту «запомнить замер №», и нажмите клавишу «ENT». В памяти прибора сохраняются архивы данных о погрешности вместе с параметрами испытательных сигналов. Архивная информация доступна в дальнейшем для просмотра на ПК после считывания архива из прибора ЭМ-3.3Т1 с помощью ПО «Энергомониторинг СИ».

9. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 9.1. Обработку результатов измерений выполняют следующим способом. Рассчитайте среднее арифметическое значение погрешности ИК, используя только учтенные значения (δ_{ci}), исключая максимальное и минимальное значения, по формуле (7), и внесите его значение в протокол (Приложение A).
- 9.2. Рассчитайте среднее квадратическое отклонение результата измерений S_{δ} по формуле (8) и внесите его в протокол. В случае, если S_{δ} превышает установленные в п.1.2 значения, измерения по п. 8 следует повторить.

10. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 10.1. Результаты испытаний оформляют протоколом испытаний (далее протокол). Рекомендуемая форма протокола приведена в приложении A.
- 10.2 В приложениях к протоколу приводят дополнительные сведения, необходимость представления которых определяют организация, выполняющая измерения, и (или) заказчик, например, суточные графики изменения нагрузки, схема подключений электросчётчика и т.д.
- 10.3. Результаты измерений, оформленные документально по п. 11.1, 11.2, удостоверяет лицо, проводившее измерения, а при необходимости административно ответственное лицо.
- 10.4. Протоколы измерений должны содержать заключение о соответствии или несоответствии неопределенности измерений установленным требованиям.

БИБЛИОГРАФИЯ

- 1 . ГОСТ 12.3.019-80 ССБТ Испытания и измерения электрические. Общие требования безопасности.
- 2. . МС3.055.028 РЭ Приборы для измерений электроэнергетических величин и показателей качества электрической энергии «Энергомонитор-3.3T1». Руководство по эксплуатации.

Приложение А

(рекомендуемое)

			Протокол исі	тытаний Л	<u> </u>		_	
		От «	<u> </u>	г. (на л	истах)		
	Представители	и потреб	бителя					
	1 Цель исп	ытаний:						
	комплектное	определ	ение относителы	ной погрец	шности	измерите	эльного кана	іла (ИК)
	комплекса (с	истемы) учёта электри	ической эн	нергии	в сети	0,4 кВ (счётчика
	электроэнерги	<u>и</u>) в раб	очем режиме экс	плуатации				
	2 Идентифі	икацион	ные данные пунк	та учёта				
	Адрес электро	установ	вки:					_
	Место установ	вки ИК ((ПУ):			-		
	Центр питания	я:						
	Данные средс	тв изме	рений, входящих	в состав И	К			
Наим	енование		электросчетчик	TT - A	TT-	В	TT - C	
тип								
зав. У	<u>√o</u>							
год в	ыпуска							
дата	поверки							
класс	точности							
Ном.	напряжение, В			-	-		-	
Ном.	первичный ток	:, A	-					
Ном.	вторичный ток,	, A						
Макс	имальный ток,	A		-	-		-	
Тип з	онергии (P, Q)			-	-		-	
				I	1		_1	
	3 Сроки пр	оведен	ия испытаний					
c	час мин	""_	<u>20</u> г. п	очас _	МИ	н "" _	20_	Γ.
	4 Перечен	ь этало	нных (образцовн	ых) средст	в измер	ений.		
	Наименование		Тип СИ	Заводскої	-		ельства о повер	
	СИ Прибор	«Энепг	омонитор-3.3T1»	год вы	пуска	дата оч	ередной повері	КИ

5 Условия проведения измерений Температура окружающей среды C										
 6 Результаты измерений и вычислений 6.1 Результаты внешнего осмотра 6.1.1 Состояние электросчетчика:										
фазировк	a	а Фаза А			Фаза В			Фаза С		
Прямая		U (B)	I (A)	угол(U^I)	U (B)	I (A)	угол(U^I)	U (B)	I (A)	угол(U^I)
6.3 Определение погрешности ИК Постоянная счётчика: имп./кВт•час Коэф. трансформации ТТ (I _{пн} / I _{вн}):/ (при наличии) Вид мощности: актив./реактив. Показания прибора ЭМ-3.3Т1:										
№ измерения ПОГРЕШНОСТЬ (показания прибора, δ _{c i}) - относительная погрешность измерения электрической мощности (энергии) , %					для ра арифм 5 изме	счёта сред етического рений), %	ь, учтённая цнего о (всего не в щей Инстру	менее		
2										
3										
4										
5										
6										
7										

Количество измерений n= _____

7. Результат определения погрешности ИК

8. Заключение

$$\bar{\delta}_{\mathrm{c}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{ci} =$$
 ______ % (среднеарифметическое значение)

Среднее квадратическое отклонение результата измерений

$$S_{\delta} = \sqrt{\frac{1}{(n-1)} \cdot \sum_{i=1}^{n} (\delta_{ci} - \overline{\delta}_{c})^{2}} = _{-} \%$$

Показатель S_{δ} соответствует (не соответствует) требованиям п.1.2 Методики.

Значение погрешности ИК (счётчика)	$\overline{\delta}_{ m c}$ соответствует (не соответствует) тр	ребованиям

Приложения.....

Измерения произвел

Представители потребителя