■ README.md

cs390_lab1

Author: Rishabh Rajesh

Email: rajeshr@purdue.edu

How to use

1. Run python lab1.py --dataset {iris/mnist} --model {guesser,custom_net_3layer,custom_net_nlayer,tf_net} , *Note:* quesser will not work with iris dataset.

Report:

My custom neural net made heavy use of matrix multiplication using numpy to speed up the training process.

Weight and Bias initialization attempted to normalize it via a gaussian by taking the square root of n. I don't remember where I read it, but I do remember reading that it helps "speed up convergence."

The forward process simply involved applying an activation function to the summed matrix rows which was passed on to each subsequent layer and computed till output.

My backpropagation algorithm has two stages, one for the first backprop iteration and then the rest. For the first one, we take the derivative of the cost function with respect to output, then multiply it by the activation function derivative and multiply that with its previous hidden layer activation. This product is our first delta for output weights, and we store the product and use it "recursively" in the next layer's calculations.

The backprop algorithm essentially follow these formulas:

$$dZ^{[l]} = dA^{[l]} * g^{[l]'}(Z^{[l]})$$

$$dW^{[l]} = \frac{\partial \mathcal{L}}{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1]T}$$

$$db^{[l]} = \frac{\partial \mathcal{L}}{\partial b^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} dZ^{[l](i)}$$

$$dA^{[l-1]} = \frac{\partial \mathcal{L}}{\partial A^{[l-1]}} = W^{[l]T} dZ^{[l]}$$

Results:

1. Custom 2 layer Neural Net on mnist (batch_size=64,Ir=0.5,epochs=10,hidden_layers=[64])

Heatmap:

Program Text Output:

Classifier algorithm: custom_net												
Classifier accuracy: 94.020000%												
[[966	0	10	1	1	7	10	3	6	11]		
[0 13	116	2	0	4	2	3	8	4	8]		
[1	2	952	20	4	1	5	21	3	1]		
[2	3	6	929	0	26	1	4	13	13]		
[0	0	11	1	929	4	5	6	12	38]		
[3	2	4	27	0	813	14	2	14	11]		
[5	4	12	3	11	14	918	0	9	1]		
[2	2	13	13	3	1	0	965	7	11]		
[1	6	20	14	5	18	2	3	905	6]		
[0	0	2	2	25	6	0	16	1	909]]		
				precision			recall f1-score			support		
0				0.9	9	0.9	5	0.97	7	1015		
	1			0.9	8	0.9	7	0.98	3	1147		
	2			0.9	2	0.9	4	0.93	3	1010		
	3			0.9	2	0.9	3	0.93	3	997		
	4			0.95		0.92		0.93	3	1006		
	5			0.91		0.91		0.91		890		
	6			0.96		0.94		0.95		977		
7			0.94		0.95		0.94		1017			
8		0.93		0.92		0.93		980				
9		0.90		0.95		0.92		961				
	accur	acy						0.94	4	10000		
1	macro	avg		0.94		0.94		0.94		10000		
wei	ghted	avg		0.9	4	0.9	4	0.94	4	10000		

2. Custom Neural Net 3 layers on mnist [EC +3] (batch_size=64,Ir=0.5,epochs=10,hidden_layers=[64, 32])

Program Text Output:

Classifier algorithm: custom_net_3layer										
Cla	assifi	er a	ccura	cy: 9	4.126	9000%				
[[962	0	13	1	1	8	9	3	4	11]
[0 13	L1 3	4	1	1	2	3	12	2	7]
[1	2	952	16	3	2	5	20	2	0]
[2	4	4	946	1	30	0	3	15	16]
[0	0	15	1	937	3	13	8	12	41]
[4	1	2	18	0	807	12	1	14	9]
[5	4	7	1	12	14	910	0	10	1]
[4	2	15	11	2	4	0	971	7	11]
[2	9	19	10	5	17	6	1	907	6]
[0	0	1	5	20	5	0	9	1	907]]
pre			cisio	n	recal	1 f1	-scor	e s	upport	
		0		0.9	8	0.9	5	0.9	7	1012
	1		0.9	8	0.9	7	0.9	8	1145	
	2		0.9	2	0.9	5	0.9	4	1003	
	3		0.9	4	0.9	3	0.9	3	1021	
	4		0.9	5	0.91		0.9	3	1030	
5			0.9	0	0.93		0.92		868	
	6		0.95		0.94		0.95		964	
7			0.94		0.95		0.95		1027	
8			0.93		0.92		0.93		982	
		9		0.9	0	0.9	6	0.9	3	948
accuracy								0.9	4	10000
	macro	avg		0.9	4	0.9	4	0.9	4	10000
we	ighted	avg		0.9	4	0.9	4	0.9	4	10000

3. Custom Neural Net N-Layer on MNIST [+5 EC] (batch_size=64,lr=0.5,epochs=10,hidden_layers=[128, 64, 32])

Program Text Output:

Classifier algorithm: custom_net_nlayer										
Classifier accuracy: 93.800000%										
[[:	964	0	14	0	1	12	16	3	5	9]
[0 1:	111	2	2	0	3	3	10	4	6]
[1	2	963	25	4	4	3	23	6	1]
[1	4	7	932	0	32	0	5	23	14]
[1	1	12	1	938	8	8	5	10	37]
[3	3	0	17	0	795	11	1	14	11]
[6	3	10	1	10	10	914	0	14	2]
[4	2	10	16	1	6	0	967	7	13]
[0	9	13	14	4	16	3	1	889	9]
[0	0	1	2	24	6	0	1 3	2	907]]
pre			cisio	n	recal	.l f1	-scor	e s	upport	
0				0.9	8	0.9	94	0.9	6	1024
	1		0.9	8	0.9	97	0.9	8	1141	
2		0.9	3	0.9	93	0.9	3	1032		
3		0.9	2	0.9	92	0.9	2	1018		
	4			0.9	6	0.92		0.94		1021
	5		0.89		0.93		0.91		855	
	6		0.95		0.94		0.95		970	
	7		0.94		0.94		0.94		1026	
8			0.91		0.93		0.92		958	
		9		0.9	0	0.9	95	0.9	2	955
accuracy								0.9	4	10000
-	macro	avg		0.94		0.94		0.94		10000
wei	ghted	avg		0.9	4	0.9	94	0.9	4	10000

^{4.} Keras Neural Network 2 layer on mnist (batch_size=64,lr=0.5,epochs=10,hidden_layers=[64], optimizer='adam', hidden_layer_activation='relu', output_layer_activation='softmax', loss='categorical_cross_entropy')

Program Text Output:

Cla	assifi	er a	algori	thm:	tf_ne	et					
Cla	assifi	er a	accura	cy: 9	7.940	0000%					
[[969	0	2	0	1	2	4	1	0	2]	
[1 1	131	1	0	1	0	3	10	0	3]	
[0	2	1010	1	4	0	3	7	3	0]	
[0	1	4	998	1	15	1	7	5	5]	
[1	0	1	0	963	1	3	1	0	6]	
[1	1	1	4	0	864	12	0	4	4]	
[3	0	1	0	2	1	929	0	0	0]	
[1	0	3	2	1	1	0	992	1	1]	
[2	0	9	3	2	7	3	4	960	10]	
[2	0	0	2	7	1	0	6	1	978]]	
pr			pre	cisio	n	recal	.1 f1	-scor	e s	upport	
		6)	0.9	9	0.9	19	0.9	9	981	
	1			1.0	0	0.9	8	0.9	9	1150	
2			0.9	8	0.9	8	0.9	8	1030		
	3			0.9	9	0.9	6	0.9	8	1037	
4			0.9	8	0.9	19	0.9	8	976		
5			0.9	7	0.97		0.9	7	891		
	6			0.9	0.97		0.99		8	936	
	7			0.96		0.99		0.9	8	1002	
	8			0.99		0.96		0.9	7	1000	
		ç)	0.9	7	0.9	8	0.9	8	997	
accuracy			/					0.9	8	10000	
	macro	avg	3	0.9	8	0.9	8	0.9	8	10000	
we:	ighted	avg	3	0.9	8	0.9	8	0.9	8	10000	

5. Custom Neural Net 2 layer on iris dataset [EC +5] (batch_size=2,lr=0.1,epochs=100,hidden_layers=[8])

Program Text Output:

```
Classifier algorithm: custom_net
Classifier accuracy: 94.666667%
[[27 0 0]
[ 0 22 3]
[ 0 1 22]]
             precision
                          recall f1-score
                                             support
          0
                                                  27
                  1.00
                            1.00
                                      1.00
                  0.96
                            0.88
                                      0.92
                                                  25
          1
                  0.88
                            0.96
                                      0.92
                                                  23
                                                  75
                                      0.95
    accuracy
                                                  75
  macro avg
                  0.95
                            0.95
                                      0.94
weighted avg
                  0.95
                            0.95
                                      0.95
                                                  75
```

References

- 1. https://janakiev.com/blog/keras-iris/ (Iris Initialization)
- 2. https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd (Backprop Math)
- 3. youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi (3blue1brown videos on NNs)
- 4. https://towardsdatascience.com/code-a-deep-neural-network-a5fd26ec41c4 (Understanding implementation details for N-layer NN)

Github repo link:

https://github.com/rishyraj/cs390_lab1