Math 109 – Winter Quarter 2018 – Midterm II

Full name:		
Student ID:		

Instructions:

- (1) Please print your full name and your student ID.
- (2) Using calculators, books, or phones is **not** allowed.
- (3) You have 50 minutes to complete the test.
- (4) Show your work.

Problem	Points
1	
2	
3	
4	
5	
6	
\sum	

1

Problem 1 (6 points)

Prove that for all $n \in \mathbb{N}$ we have

$$n^2 = \sum_{k=1}^{n} (2k - 1).$$

Solution

We prove the statement by induction.

For the induction base, we consider n = 1. In that case we have

$$1^2 = 1 = \sum_{k=1}^{1} (2 \cdot 1 - 1) = 1.$$

If the claim is true for n, then we show it is true for n+1. Indeed, we have

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1$$
$$= n^2 + 2(n+1) - 1$$
$$= n^2 + 2n + 2 - 1$$
$$= n^2 + 2n + 1 = (n+1)^2.$$

By the principle of induction, the claim follows.

Solution

The sum on the right-hand side is the sum of the first n odd numbers: $1, 3, \ldots, 2n-1$. We let A be the sum of the first n even numbers:

$$A = \sum_{k=1}^{n} 2k = 2\sum_{k=1}^{n} k = n(n+1),$$

where we have used the well-known formula for the sum of consecutive numbers. Furthermore, we let B be the sum of the first 2n numbers, which is the union of the first n odd and even numbers:

$$B := \sum_{k=1}^{2n} k = \frac{2n(2n+1)}{2} = n(2n+1) = 2n^2 + n.$$

We obviously have

$$\sum_{k=1}^{n} (2k-1) = B - A = 2n^2 + n - n^2 - n = n^2.$$

This had to be shown.

Solution

Let $n \in \mathbb{N}$. We compute that

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{n} 2k - \sum_{k=1}^{n} 1 = 2\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 = n(n+1) - n = n^{2}.$$

The proof is complete.

Problem 2 (6 points)

Let $x \in \mathbb{R}$ with x > 0 and $p \in \mathbb{N}$. Prove that

$$(x+1)^p \ge 1 + px.$$

Solution

We prove the claim by induction.

For the induction base we consider the case p = 1, where we have

$$(x+1)^p = x+1 = 1+px.$$

In particular, the inequality holds.

For the induction step we consider we assume that the claim is true for some $p \in \mathbb{N}$ and show that it is true for p+1 too. Using the induction assumption, we observe:

(1)
$$(x+1)^{p+1} = (x+1)^p(x+1) \ge (1+px)(x+1) = x+1+px^2+px = (p+1)x+1.$$

Hence the claim is valid for the case p + 1 too.

By the principle of induction, the claim follows.

Solution

Using the binomial theorem, we get

$$(x+1)^p = \sum_{k=0}^p \binom{p}{k} x^k 1^{p-k} = \sum_{k=0}^p \binom{p}{k} x^k$$
$$\ge \sum_{k=0}^1 \binom{p}{k} x^k = \binom{p}{0} x^0 + \binom{p}{1} x^1 = 1 + px.$$

This proves the claim.

Solution

Let $p \in \mathbb{N}$ and define functions $L, R : \mathbb{R} \to \mathbb{R}$ by setting

$$L(x) := (1+x)^p$$
, $R(x) := 1 + px$

At x = 0 we have that L(0) = 1 = R(0). We consider the derivatives:

$$L'(x) = p(1+x)^{p-1}, \quad R'(x) = p.$$

For x>0 we have $L'(x)\geq R'(x)$. Using the fundamental theorem of calculus we have

$$L(x) = L(0) + \int_0^x L'(t)dt, \quad R(x) = R(0) + \int_0^x R'(t)dt.$$

Since L(0) = R(0) and $L'(t) \ge R'(t)$ for all $t \ge 0$, we have $L(x) \ge R(x)$, which had to be shown.

Problem 3 (6 points)

Show that for all $a,b\in\mathbb{N}$ with $a\geq 2$ we have $a\nmid b$ or $a\nmid b+1.$

Solution

We prove the claim via contradiction. Assume that $a,b\in\mathbb{N}$ with $a\geq 2$ such that it is not true that $a\nmid b$ or $a\nmid b+1$. Then $a\mid b$ and $a\mid b+1$. Hence there exist $c,d\in\mathbb{N}$ such that b=ac and b+1=ad. So ac+1=ad, which gives

$$1 = a(d - c).$$

We have d > c, since 1 is positive. But now a(d-c) > 1 because $a \ge 2$. This is a contradiction.

Solution

We prove the claim via contradiction. Assume that $a, b \in \mathbb{N}$ with $a \ge 2$ such that it is not true that $a \nmid b$ or $a \nmid b+1$. Then $a \mid b$ and $a \mid b+1$. But we observe

$$\frac{b+1}{a} = \frac{b}{a} + \frac{1}{a}.$$

By assumption, $\frac{b}{a}, \frac{b+1}{a} \in \mathbb{Z}$. Hence $\frac{1}{a}$ is an integer. But this can only be true if a = 1. Since $a \ge 2$, we get a contradiction.

Problem 4 (6 points)

Prove the following statements about the greatest common divisor:

- (1) Let $a, b, d \in \mathbb{N}$. Show that if $d \mid a$ and $d \mid b$, then $d \mid \gcd(a, b)$. Hint: Use Bezout's Lemma.
- (2) Let $a, b, c \in \mathbb{N}$. Show that

$$gcd(a, gcd(b, c)) = gcd(gcd(a, b), c).$$

Hint: Use the previous part of the problem.

Solution

(1) Let $g := \gcd(a, b)$. By Bezout's lemma there exist $s, t \in \mathbb{Z}$ such that g = sa + tb. Let $d \in \mathbb{N}$ be a divisor of a and b. We find

$$\frac{g}{d} = s\frac{a}{d} + t\frac{b}{d}.$$

Since $d \mid a$ and $d \mid b$, we have $\frac{a}{d} \in \mathbb{Z}$ and $\frac{b}{d} \in \mathbb{Z}$. We conclude that $\frac{g}{d} \in \mathbb{Z}$.

(2) We write

$$d = \mathbf{gcd}(a, \mathbf{gcd}(b, c)), \quad d' = \mathbf{gcd}(\mathbf{gcd}(a, b), c),$$

We get $d \mid a$ and $d \mid \mathbf{gcd}(b, c)$, so $d \mid b$ and $d \mid c$ too. Using the previous part of the problem, we first get $d \mid \mathbf{gcd}(a, b)$ and then $d \mid \mathbf{gcd}(\mathbf{gcd}(a, b), c)$, i.e., $d \mid d'$.

Similarly We get $d' \mid \mathbf{gcd}(a, b)$ and $d' \mid c$, so $d' \mid a$ and $d' \mid b$ too. Using the previous part of the

problem, we first get $d' \mid \mathbf{gcd}(b, c)$ and then $d' \mid \mathbf{gcd}(a, \mathbf{gcd}(b, c))$, i.e., $d' \mid d$. We have shown that $d' \mid d$ and $d \mid d'$. In other words, $\frac{d}{d'}$ and $\frac{d'}{d}$ are both integers. So these ratios must be 1 and hence d = d'. This had to be shown.

Problem 5 (6 points)

Consider the function

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^4 - 2.$$

With respect to this function:

- Describe the image of the interval (-3,3),
- Describe the preimage of the interval [-5, 5],
- Describe the preimage of the interval $(6, \infty)$,
- Describe the preimage of the set {14}.
- \bullet Describe an open interval A such that the restriction of f to A is injective.

Solution

- (-2,79)• $[-\sqrt[4]{7},\sqrt[4]{7}]$ $(-\infty,\sqrt[4]{8}) \cup (\sqrt[4]{8},\infty)$ $\{-2,2\}$
- For example, (0,1) or (-3,-1) or $(0,\infty)$ or ...

Problem 6 (6 points)

Suppose we have three non-empty sets X, Y, Z and two functions

$$f: X \to Y, \quad g: Y \to Z.$$

- (1) Write down what it means when f is injective.
- (2) Write down what it means when g is surjective.
- (3) Prove the following statement:

If the composition $g \circ f$ is bijective, then f is injective and g is surjective.

Solution

- (1) Possible definitions include:
 - f is injective if for all $x, x' \in X$ with $x \neq x'$ we have $f(x) \neq f(x')$.
 - f is injective if for all $x, x' \in X$ with f(x) = f(x') we have x = x'.
 - f is injective if for all $x, x' \in X$ we have f(x) = f(x') if and only if x = x'.
 - f is injective if for all $x, x' \in X$ we have $f(x) \neq f(x')$ if and only if $x \neq x'$.
- (2) Possible definitions include:
 - g is surjective if for all $y \in Y$ there exists $x \in X$ such that f(x) = y.
 - f(X) = Y.
- (3) Let $g \circ f$ be bijective. Then $g \circ f$ is both injective and surjective.

We first show that g is surjective. Since $g \circ f$ is surjective, for every $z \in Z$ there exists $x \in X$ with $g \circ f(x) = z$. Let y := f(x), so g(y) = z. So for every $z \in Z$ there exists $y \in Y$ with g(y) = z, i.e., g is surjective.

We now show that f is injective. If f were not injective, then there would exist $x, x' \in X$ such that $x \neq x'$ but f(x) = f(x'). But then we have $g \circ f(x) = g \circ f(x')$ even though x = x', which contradicts $g \circ f$ being injective.