Range Calculator for EV's

Variable Quantities:

- No of Passengers
- Battery Capacity (KWh)
- Charge Left (%)
- Speed of the Vehicle (*Km/hr*)

Constant Values:

- Air Density (1.204 Kg/m^3)
- Gravity (9.8 m/s^2)
- Rolling Resistance Coefficient (0.02)
- Coefficient of Drag (0.29)

Vehicle Specifications:

- Vehicle Weight (*Kg*)
- Motor Efficiency (85%)
- Length (m)
- Width (*m*)
- Height (m)
- Area = Length \times Width (m^2)

Battery Specifications(for LiPo Battery):

PevKerts

Range Calculation:

Total Battery Capacity = (Battery Capacity) × 1000 (Wh)

Total Weight = (Vehicle Weight) + (No of Passengers) × 65 (Kg)

Velocity = Speed ×
$$\frac{1000}{3600}$$
 (m/s)

Power = $((Total\ Weight)\times(Gravity)\times(Velocity)\times(Rolling\ Resistance\ Coefficient)) +$ $((Air\ Density)\times(Coefficient\ of\ Drag)\times(Area)\times(Velocity^3))$ (Watt)

WattHr per
$$Km = \frac{Power}{Speed}$$
 (WattHr/Km)

$$WattHr = \frac{(Total\ Battery\ Capacity\) \times (Charge\ Left) \times (PevKerts)}{100} \ (WattHr)$$

Range =
$$\frac{\text{WattHr}}{\text{(WattHr per Km)}}$$
 (Km)