Probabilidad II

Curso 2024

Licenciatura en Estadística

DEPARTAMENTO DE MÉTODOS CUANTITATIVOS

Examen – 8 de julio 2024

- 1. Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad. Sea $X : \Omega \to \mathbb{R}$ la variable aleatoria uniforme sobre $\{1, 2, \dots, 10\}$.
 - a) Describir la medida de distribución X en \mathbb{R} , que denotamos μ_X .
 - b) Sean $A, B \subset [0, 10]$ borelianos, tales que $\mu_X(A) = \mu_X(B) = \frac{1}{2}$ y $\mu_X(A \setminus B) = \frac{1}{10}$, entonces ¿cuántos números naturales hay en $A \cap B$? Justificar.
 - c) ¿Puede existir un intervalo $[a,b] \subset [0,10]$, tal que b-a>1 y $\mu_X([a,b])=0$? Justificar.
 - d) Sea λ la medida de Lebesgue en \mathbb{R} . ¿Puede existir un conjunto $C \subset [0, 10]$, con $\lambda(C) > 1$ y $\mu_X(C) = 0$? Justificar.
 - e) ¿Puede existir un conjunto $D \subset [0, 10]$ tal que $\mu_X(D) = 1$ y $\lambda(D) = 0$? Justificar.
- 2. Sea X una variable aleatoria.
 - a) Sea $X_n = X + Y_n$ donde Y_n es una variable aleatoria tal que $\mathbb{E}(Y_n) = 1/n$ y var $(Y_n) = 1/n$. Probar que X_n tiende en probabilidad a X.
 - b) Supongamos que $|X| \leq M$, para alguna constante M > 0. Consideremos $W_n = X \cdot Z_n$, con Z_n una variable aleatoria tal que $\mathbb{E}(Z_n) = 1$, y var $(Z_n) = 1/n$. Probar convergencia en probabilidad de W_n a X.
- 3. a) Sean a, b dos números reales distintos. Sea Y una variable aleatoria que toma el valor a con probabilidad p_a y el valor b con probabilidad p_b . Hallar φ_Y , la función característica de Y.
 - b) Sea $\varphi_W(t) = \frac{1}{2} + \frac{1}{2}e^{ita}$, la función característica de una variable aleatoria W. Describir una variable aleatoria W con φ_W como función característica.
 - c) Sea $c \in \mathbb{R}$, y sea $\varphi_n(t) = (1 \frac{1}{n})e^{itc} + \frac{1}{n}e^{itd}$.

Hallar $\varphi = \lim_n \varphi_n$.

¿Cuál es la variable aleatoria X, tal que φ es su función característica? Hallar $\mathbb{E}(X).$