Math 76 Exercises - 7.3A Polar Coordinates

- 1. Graph and label each polar point. You can plot them all on one set of (large!) axes.
 - (a) $(1, \pi)$

(c) $\left(0, \frac{\pi}{2}\right)$

(e) $\left(\frac{\pi}{2}, -1\right)$ (Careful!)

(b) $(2, \frac{\pi}{4})$

(d) $\left(-1, \frac{\pi}{2}\right)$

(f) $\left(-\frac{2}{3}, \frac{73\pi}{4}\right)$

2. Convert each polar point above to rectangular (Cartesian) coordinates.

$$(a) (-1,0)$$

$$(c)$$
 $(0,0)$

(e)
$$\chi = \frac{\pi}{2} \cos(-1)$$

$$y = \frac{\pi}{2} \sin(-1)$$

 ≈ -1.3218

≈ 0.8487

$$\frac{2}{\sqrt{2}} = \sqrt{2}$$
So $(\sqrt{2}, \sqrt{2})$

So
$$(\frac{\pi}{2}\cos(-1), \frac{\pi}{2}\sin(-1))$$
 $\approx (0.8487, -1.3218)$

(f)
$$\chi = -\frac{2}{3}\cos(\frac{73\pi}{4}) = -\frac{2}{3}\cdot\frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{3}$$

 $y = -\frac{2}{3}\sin(\frac{73\pi}{4}) = -\frac{2}{3}\cdot\frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{3}$
 $\left(-\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\right)$

$$(-\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})$$

3. For each Cartesian point, find two equivalent polar points (r, θ) , one with r > 0 and one with r < 0.

- $(2, \frac{3\pi}{2})$
- $=\left(-2,\frac{\pi}{2}\right)$

- $=(-2,\frac{5\pi}{4})$

- (5,0) (same in polar!)
- $=(-5,\pi)$

 $\tan \Theta_{R} = \frac{4\sqrt{3}}{4} = \sqrt{3}$

OR = 3 So 0 = 45 (one choice).

- So (8, 45) = (-8, 7)

- = (-1/2, 74)

 $|r| = \sqrt{(-2)^2 + 3^2} = \sqrt{13}$

 $\tan \theta = -\frac{3}{2}$ $\theta_{\varrho} = \tan^{-1}(\frac{3}{2})$

So one choice for O is $\pi - \tan(\frac{3}{2})$

 $(\sqrt{13}, \pi - \tan^{2}(\frac{3}{2})) = (-\sqrt{13}, \tan^{2}(\frac{3}{2}))$

4. Sketch the curve with the given polar equation.

(a)
$$r = -1$$

(b)
$$\theta = -\frac{\pi}{3}$$

5. Sketch and shade the region of points that satisfy each polar inequality.

(a)
$$0 < r < 2$$

Disk of radius 2 centered at 10,0), but with the boundary circle and origin not included.

(b) $\frac{7\pi}{2} \le \theta < 4\pi$

