Path Maps:

Visualization of Trajectories in Large-Scale Temporal Data

David Borland¹

Eugenia McPeek Hinz²

Leigh Ann Herhold³

Vivian L. West³

W. Ed Hammond³

¹RENCI, University of North Carolina at Chapel Hill

²Duke Health Technology Solutions

³Duke Center for Health Informatics

Background

Diabetes mellitus (DM)

- Complex disease
- Different disease trajectories can lead to different outcomes

Data

Hemoglobin A1c (HbA1c) levels

- 546 and 3638 patient cohorts
- Sampled every six months
- Aligned by death at right
- Categorized as

Controlled

Borderline

Normal

Problem

Understand temporal patterns of HbA1c levels representing different disease trajectories

- Many patients
- Multiple temporal samples
- Missing data
- Standard line plots too confusing

Sorting at -4 years from death, then at death, shows the breakdown of patients that moved from one value to another in that time period, while also showing the intervening variability.

Basic path map

- 546 patients
- Each row a patient
- Sort rows by value at userselected columns
- Generate cells from contiguous regions per column
- Information-dense display

Column summary

Row hierarchy

Row compression

Data aggregation

- 3638 patients
 - Results in over-plotting with one patient per row
- Aggregation map methods
 - Column summary
 - Show general trends over time
 - Row hierarchy
 - Row compression
 - Select groups of rows with certain characteristics

