Exercices : Barbara Tumpach Relecture : François Lescure

Fonctions mesurables, intégrale de Lebesgue

Exercice 1

Montrer les égalités ensemblistes suivantes :

$$[a,b] = \bigcap_{n=1}^{\infty}]a - \frac{1}{n}, b + \frac{1}{n}[$$
 et $]a,b[=\bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b - \frac{1}{n}]$

Correction ▼ [005933]

Exercice 2

Soit (Ω, Σ, μ) un espace mesuré et $f: \Omega \to \mathbb{R}$ une fonction $(\Sigma - \mathscr{B}(\mathbb{R}))$ -mesurable. Montrer que la troncature f_A de f définie par :

$$f_A(x) = \begin{cases} -A & \text{si} \quad f(x) < -A \\ f(x) & \text{si} \quad |f(x)| \leqslant A \\ A & \text{si} \quad f(x) > A \end{cases}$$

est $(\Sigma - \mathcal{B}(\mathbb{R}))$ -mesurable.

Correction ▼ [005934]

Exercice 3

Soit $\Omega = \mathbb{N}$, $\Sigma = \mathscr{P}(\mathbb{N})$ et μ la mesure de comptage sur \mathbb{N} définie par :

$$\mu(E) = \sharp E = \sum_{k \in E} 1,$$

où $E \in \Sigma$. Soit $f : \mathbb{N} \to \mathbb{R}$ une fonction positive ou nulle. Montrer que f est $(\Sigma - \mathscr{B}(\mathbb{R}))$ -mesurable et que :

$$\int_{\Omega} f d\mu = \sum_{n=1}^{\infty} f(n).$$

Correction ▼ [005935]

Exercice 4

Soit (Ω, Σ) un espace mesurable. On dit que $\varphi: \Omega \to \mathbb{R}$ est une *fonction simple* ou *étagée* si φ est mesurable et ne prend qu'un nombre fini de valeurs, i.e. si φ s'écrit :

$$\varphi = \sum_{i \in J} c_j \mathbf{1}_{E_j},$$

où J est un ensemble fini, les ensembles E_j sont mesurables et où, pour $i \neq j$, $c_i \neq c_j$ et $E_i \cap E_j = \emptyset$. Soit φ une fonction simple positive. On rappelle que l'intégrale de φ par rapport à une mesure μ est définie par :

$$\int_{\Omega} \varphi \, d\mu = \int_{0}^{\infty} \mu \left(S_{\varphi}(t) \right) \, dt,$$

où $S_{\varphi}(t) = \{x \in \Omega, \varphi(x) > t\}.$

1. Montrer que

$$\int_{\Omega} \varphi \, d\mu = \sum_{j \in J} c_j \mu(E_j).$$

- 2. Montrer que pour toute fonction réelle mesurable positive, $f \in \mathcal{M}^+(\Omega, \Sigma)$, il existe une suite $\{\varphi_n\}_{n \in \mathbb{N}}$ de fonctions simples positives telle que :
 - (a) $0 \le \varphi_n(x) \le \varphi_{n+1}(x)$ pour tout $x \in \Omega$ et pour tout $n \in \mathbb{N}$;
 - (b) $\lim_{n\to+\infty} \varphi_n(x) = f(x)$ pour tout $x \in \Omega$.

Correction ▼ [005936]

Exercice 5

Soit (Ω, Σ, μ) un espace mesuré et $f \in \mathcal{M}^+(\Omega, \Sigma)$ (i.e f est une fonction réelle mesurable positive). Pour tout $E \in \Sigma$, on pose :

$$\lambda(E) = \int_E f d\mu = \int_{\Omega} \mathbf{1}_A \cdot f d\mu.$$

Monter que λ définit une mesure sur (Ω, Σ) .

Correction ▼ [005937]

Exercice 6

Soit p > 0. Soit $f : \mathbb{R}^n \to \mathbb{R}^+$ la fonction définie par

$$f(x) = |x|^{-p} \mathbf{1}_{\{|x| < 1\}}(x).$$

Calculer l'intégrale de f par rapport à la mesure de Lebesgue de \mathbb{R}^n de deux manières différentes :

- (i) En utilisant les coordonnées polaires et les méthodes standard de calcul d'intégrales;
- (ii) En calculant la mesure des ensembles $S_f(a) = \{x \in \Omega, f(x) > a\}$ et la définition de l'intégrale de Lebesgue.

Correction ▼ [005938]

Correction de l'exercice 1

- 1. Montrons que $[a,b] = \bigcap_{n=1}^{\infty}]a \frac{1}{n}, b + \frac{1}{n}[$.

 Pour tout $n \in \mathbb{N}$, on a $[a,b] \subset]a \frac{1}{n}, b + \frac{1}{n}[$. Donc $[a,b] \subset \bigcap_{n=1}^{\infty}]a \frac{1}{n}, b + \frac{1}{n}[$.

 Soit $x \in \bigcap_{n=1}^{\infty}]a \frac{1}{n}, b + \frac{1}{n}[$. Alors pour tout $n \in \mathbb{N}$, on a :

$$a - \frac{1}{n} < x < b + \frac{1}{n}.$$

Ainsi

$$\lim_{n \to +\infty} (a - \frac{1}{n}) \le x \le \lim_{n \to +\infty} (b + \frac{1}{n}),$$

c'est-à-dire $x \in [a,b]$. Donc $\bigcap_{n=1}^{\infty}]a - \frac{1}{n}, b + \frac{1}{n} [\subset [a,b]]$ et on a démontré l'égalité entre ces deux ensembles.

- 2. Montrons que $]a,b[=\bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}].$ Pour tout $n\in\mathbb{N}$, on a $[a+\frac{1}{n},b-\frac{1}{n}]\subset]a,b[$, donc $\bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}]\subset]a,b[$.

 Soit $x\in\bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}].$ Alors il existe $n\in\mathbb{N}$ tel que $x\in[a+\frac{1}{n},b-\frac{1}{n}].$ Ainsi $x\in]a,b[$ et $\bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}]\subset]a,b[$, d'où l'égalité de ces deux ensembles.

Correction de l'exercice 2 A

Soit (Ω, Σ, μ) un espace mesuré et $f: \Omega \to \mathbb{R}$ une fonction $(\Sigma - \mathcal{B}(\mathbb{R}))$ -mesurable. Montrons que la troncature f_A de f définie par :

$$f_A(x) = \begin{cases} -A & \text{si} \quad f(x) < -A \\ f(x) & \text{si} \quad |f(x)| \leqslant A \\ A & \text{si} \quad f(x) > A \end{cases}$$

est mesurable. Notons

$$\begin{split} E_1 &:= \{x \in \Omega \mid f(x) < -A\} = f^{-1} \left(\left] - \infty, -A \right[\right), \\ E_2 &:= \{x \in \Omega \mid |f(x)| \leqslant A\} = f^{-1} \left(\left[-A, A \right] \right), \\ E_3 &:= \{x \in \Omega \mid f(x) > A\} = f^{-1} \left(\left[A, +\infty \right] \right). \end{split}$$

Comme $]-\infty, -A[, [-A,A],]A, +\infty[$ appartiennent à la tribu borélienne et f est $(\Sigma - \mathcal{B}(\mathbb{R}))$ -mesurable, les ensembles E_1 , E_2 , et E_3 appartiennent à Σ . Alors $f_A = f \cdot \mathbf{1}_{E_2} - A \cdot \mathbf{1}_{E_1} + A \cdot \mathbf{1}_{E_3}$ est mesurable comme somme de produits de fonctions mesurables.

Correction de l'exercice 3

Soit $\Omega = \mathbb{N}$, $\Sigma = \mathscr{P}(\mathbb{N})$ et μ la mesure de comptage sur \mathbb{N} définie par :

$$\mu(E) = \sharp E = \sum_{k \in E} 1,$$

où $E \in \Sigma$. Soit $f : \mathbb{N} \to \mathbb{R}$ une fonction positive ou nulle. Pour tout borélien $E, f^{-1}(E)$ appartient à $\mathscr{P}(\mathbb{N})$, donc f est $(\Sigma$ - $\mathscr{B}(\mathbb{R}))$ -mesurable. Par définition de l'intégrale,

$$\int_{\Omega} f d\mu = \int_{0}^{\infty} \mu \left(S_{f}(t) \right) dt,$$

où $S_f(t) = \{n \in \Sigma, f(n) > t\}$. Pour tout $y \in [0, +\infty[$, posons $A_y := \{n \in \mathbb{N}, f(n) = y\}$. Alors

$$S_f(t) = \bigcup_{y>t} A_y$$

où l'union est disjointe et où A_y est vide sauf pour un ensemble dénombrable $\{y_i\}_{i\in\mathbb{N}}$ de valeurs de y. Par σ -additivité de la mesure μ ,

$$\mu\left(S_{f}(t)\right) = \mu\left(\bigcup_{y_{i}>t}A_{y_{i}}\right) = \sum_{y_{i}>t}\mu\left(A_{y_{i}}\right) = \sum_{y_{i}>t}\mu\left(\left\{f = y_{i}\right\}\right).$$

3

Ainsi:

$$\int_{\Omega} f d\mu = \int_{0}^{\infty} \sum_{y_{i} > t} \mu \left(\{ f = y_{i} \} \right) dt = \sum_{i=0}^{\infty} \int_{0 \le t < y_{i}} \mu \left(\{ f = y_{i} \} \right) dt
= \sum_{i=0}^{\infty} y_{i} \cdot \mu \left(\{ f = y_{i} \} \right) = \sum_{i=0}^{\infty} y_{i} \cdot \sharp \{ n \in \mathbb{N}, f(n) = y_{i} \} = \sum_{n=0}^{\infty} f(n).$$

Correction de l'exercice 4 A

Soit φ une fonction simple positive :

$$\varphi = \sum_{i \in I} c_i \mathbf{1}_{E_i},$$

où J est un ensemble fini, les ensembles E_i sont mesurables et où, pour $i \neq j$, $c_i \neq c_j$ et $E_i \cap E_j = \emptyset$.

1. On a

$$\int_{\Omega} \varphi \, d\mu = \int_{0}^{\infty} \mu \left(S_{\varphi}(t) \right) \, dt,$$

où $S_{\varphi}(t) = \{x \in \Omega, \varphi(x) > t\} = \bigcup_{c_j > t} E_j$ et où $\mu\left(S_{\varphi}(t)\right) = \sum_{c_j > t} \mu\left(E_j\right)$. Ainsi

$$\int_{\Omega} \varphi \, d\mu = \int_{0}^{\infty} \sum_{c_{i} > t} \mu \left(E_{j} \right) \, dt = \sum_{i \in J} \int_{0}^{c_{j}} \mu \left(E_{j} \right) \, dt = \sum_{i \in J} c_{j} \mu \left(E_{j} \right).$$

2. Pour tout $n \in \mathbb{N}$, posons

$$E_{k,n} := \{x \in \Omega, k2^{-n} \le f(x) < (k+1)2^{-n}\} \text{ pour } k = 0, \dots, n2^n - 1,$$

 $E_{n,n} := \{x \in \Omega, f(x) \ge n\} \text{ pour } k = n2^n.$

Puisque f est mesurable, les ensembles $E_{k,n}$ appartiennent à Σ . Pour tout $n \in \mathbb{N}$ fixé, les ensembles $E_{k,n}$, $0 \le k \le n2^n - 1$ sont deux à deux disjoints et $\bigcup_k E_{k,n} = \Omega$. Posons

$$\varphi_n = \sum_{k=0}^{n2^{-n}-1} k 2^{-n} \mathbf{1}_{E_{k,n}}.$$

Alors φ_n est une fonction simple positive vérifiant $\varphi_n \leqslant f$. En outre $0 \leqslant \varphi_n(x) \leqslant \varphi_{n+1}(x)$ pour tout $x \in \Omega$ et pour tout $n \in \mathbb{N}$. De plus, $\lim_{n \to +\infty} \varphi_n(x) = f(x)$ pour tout $x \in \Omega$.

Correction de l'exercice 5

Soit (Ω, Σ, μ) un espace mesuré et $f \in \mathcal{M}^+(\Omega, \Sigma)$. Pour tout $E \in \Sigma$, on pose :

$$\lambda(E) = \int_E f \, d\mu = \int_{\Omega} \mathbf{1}_A \cdot f \, d\mu.$$

Montrons que λ définit une mesure sur (Ω, Σ) .

 $1^{\grave{e}re}$ méthode : On montre d'abord que l'affirmation est vraie pour les fonctions simples. D'après l'exercice 4, toute fonction $f\in \mathscr{M}^+(\Omega,\Sigma)$ s'écrit $f=\sup_{n\in\mathbb{N}}\varphi_n$, où les φ_n sont des fonctions simples. Puisque le supremum d'une famille quelconque de mesure est une mesure, on conclut que λ est une mesure.

 2^{de} *méthode*: On a clairement $\lambda(\emptyset) = 0$. Il suffit donc de vérifier la σ -additivité de λ . Soit $\{E_i\}_{i\in\mathbb{N}} \subset \Sigma$ une suite d'éléments deux à deux disjoints. On a

$$\lambda \left(\bigcup_{i=1}^{\infty} E_{i} \right) = \int_{\bigcup_{i=1}^{\infty} E_{i}} f d\mu = \int_{\Omega} \mathbf{1}_{\bigcup_{i=1}^{\infty} E_{i}} f d\mu$$

$$= \int_{\Omega} \left(\sum_{i=1}^{\infty} \mathbf{1}_{E_{i}} \right) f d\mu = \int_{\Omega} \sum_{i=1}^{\infty} \left(\mathbf{1}_{E_{i}} f \right) d\mu$$

$$= \sum_{i=1}^{\infty} \int_{\Omega} \left(\mathbf{1}_{E_{i}} f \right) d\mu = \sum_{i=1}^{\infty} \int_{E_{i}} f d\mu$$

$$= \sum_{i=1}^{\infty} \lambda(E_{i}).$$

Correction de l'exercice 6

Soit $f: \mathbb{R}^n \to \mathbb{R}^+$ la fonction définie par

$$f(x) = |x|^{-p} \mathbf{1}_{\{|x| < 1\}}(x).$$

(i) On a:

$$\int_{\mathbb{R}^{n}} f(x) dx = \int_{\mathbb{R}^{n}} |x|^{-p} \mathbf{1}_{\{|x|<1\}}(x) dx = \int_{|x|<1} |x|^{-p} dx = \int_{r=0}^{1} \int_{\sigma \in \mathscr{S}_{n-1}} r^{n-p-1} dr d\sigma \\
= \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \int_{0}^{1} r^{n-p-1} dr.$$

Pour $n \leq p$, il vient

$$\int_{\mathbb{R}^n} f(x) \, dx = +\infty.$$

Pour p < n, il vient

$$\int_{\mathbb{R}^n} f(x) dx = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \left[\frac{r^{n-p}}{(n-p)}\right]_0^1 = \frac{2\pi^{\frac{n}{2}}}{(n-p)\Gamma\left(\frac{n}{2}\right)}$$

(ii) Pour $a \in [0, +\infty[$,

$$S_f(a) = \{x \in \mathbb{R}^n, |x|^{-p} \mathbf{1}_{|x| < 1} > a\} = \{x \in \mathbb{R}^n, |x|^{-p} > a\} \cap \mathcal{B}(0, 1),$$

où $\mathcal{B}(0,1)$ est la boule de centre 0 et de rayon 1. Ainsi

$$S_f(a) = \{x \in \mathbb{R}^n, a^{-\frac{1}{p}} > |x|\} \cap \mathcal{B}(0,1).$$

On en déduit que $S_f(a) = \mathcal{B}(0,1)$ si $a^{-\frac{1}{p}} > 1$, i.e. si a < 1 et que $S_f(a)$ est égale à la boule $\mathcal{B}(0,a^{-\frac{1}{p}})$ de centre 0 et de rayon $a^{-\frac{1}{p}}$ lorsque $a \ge 1$. Il vient alors :

$$\int_{\mathbb{R}^{n}} f(x) dx = \int_{0}^{+\infty} \mu(S_{f}(a)) da = \int_{0}^{1} \mu(\mathscr{B}(0,1)) da + \int_{1}^{+\infty} \mu(\mathscr{B}(0,a^{-\frac{1}{p}})) da$$

$$= \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} + \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} \int_{1}^{+\infty} a^{-\frac{n}{p}} da.$$

Si $p \ge n$, on obtient $\int_{\mathbb{R}^n} f(x) dx = +\infty$ et pour p < n, on a :

$$\int_{\mathbb{R}^{n}} f(x) dx = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} + \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} \left[\frac{a^{-\frac{n}{p}+1}}{-\frac{n}{p}+1} \right]_{1}^{+\infty}$$
$$= \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} \left(1 + \frac{p}{n-p} \right) = \frac{2\pi^{\frac{n}{2}}}{(n-p)\Gamma(\frac{n}{2})}.$$