Noncrossing Bonds in Ferrers Graphs

Alexander Lazar

Université Libre de Bruxelles

February 17, 2025

Preliminaries: The Bond Lattice

G = (V, E) a graph.

Preliminaries: The Bond Lattice

$$G = (V, E)$$
 a graph.

The **bond lattice** is Π_G : subposet of Π_V given by

$$\Pi_G = \{\pi = B_1 | \cdots | B_k \in \Pi_V \mid G|_{B_i} \text{ is connected for all } i\}$$

Preliminaries: The Bond Lattice

$$G = (V, E)$$
 a graph.

The **bond lattice** is Π_G : subposet of Π_V given by

$$\Pi_G = \{\pi = B_1 | \cdots | B_k \in \Pi_V \mid G|_{B_i} \text{ is connected for all } i\}$$

 Π_G

Preliminaries: Noncrossing Bond Posets

 NC_G = subposet of Π_G consisting of noncrossing partitions.

Preliminaries: Noncrossing Bond Posets

 NC_G = subposet of Π_G consisting of noncrossing partitions.

Unlike Π_G , structure depends on <u>labeling</u> of G.

Preliminaries: Noncrossing Bond Posets

 NC_G = subposet of Π_G consisting of noncrossing partitions.

Unlike Π_G , structure depends on <u>labeling</u> of G.

Studied systematically by Farmer–Hallam–Smyth (2020); some special cases were studied independently in my dissertation (2020).

EL-Shellability

$$\mathcal{E}(P) = \{ \text{edges of Hasse diagram of } P \}$$

$$\Lambda: \mathcal{E}(P) \to \mathbb{N}$$

A chain $c \subseteq \mathcal{E}(P)$ is increasing wrt Λ if the labels **strictly** increase along c. A chain is decreasing wrt Λ if the labels **weakly** decrease.

Definition

 Λ is an **EL-labeling** if, for all $x \leq_P y$, the interval [x,y] has a <u>unique</u> increasing maximal chain whose Λ -word is lex-least among those of all maximal chains.

If P has an EL-labeling, we say that it's **EL-shellable**.

EL-Shellability

Poset topology (Stanley + Björner + Philip Hall + \dots):

If P has an EL-labelling,

$$\mu_P(x,y) = (-1)^{\operatorname{rk}(y) - \operatorname{rk}(x)} \cdot \#\{\text{decreasing maximal chains in } [x,y]\}.$$

A Nice Family of Labeled Graphs

V= finite set of positive integers s.t. $\min(V)$ is odd and $\max(V)$ is even

 $\Gamma_V = \mathsf{graph}$ with vertex set V and edge $\{2i-1,2j\}$ whenever 2i-1 < 2j

A Nice Family of Labeled Graphs

 $V = \text{finite set of positive integers s.t. } \min(V) \text{ is odd and } \max(V) \text{ is even}$

 $\Gamma_V = {\sf graph}$ with vertex set V and edge $\{2i-1,2j\}$ whenever 2i-1 < 2j

 Γ_V appear naturally in the study of a certain family of hyperplane arrangements.

The Γ_V are also exactly the <u>Ferrers graphs</u> (each V encodes a Ferrers diagram)

A Nice Family of Bond Lattices

Theorem (L-Wachs)

A partition π of V belongs to Π_{Γ_V} iff $\min(B_i)$ is odd and $\max(B_i)$ is even for all nontrivial blocks B_i of π .

A Nice Family of Bond Lattices

Theorem (L–Wachs)

A partition π of V belongs to Π_{Γ_V} iff $\min(B_i)$ is odd and $\max(B_i)$ is even for all nontrivial blocks B_i of π .

All bond lattices are EL-shellable (Björner characterizes all geometric lattices in terms of EL-labelings), so Π_{Γ_V} is EL-shellable.

A Nice Family of Bond Lattices

Theorem (L–Wachs)

A partition π of V belongs to Π_{Γ_V} iff $\min(B_i)$ is odd and $\max(B_i)$ is even for all nontrivial blocks B_i of π .

All bond lattices are EL-shellable (Björner characterizes all geometric lattices in terms of EL-labelings), so Π_{Γ_V} is EL-shellable.

What about the noncrossing bond lattices?

NC_V^*

Let
$$\mathrm{NC}_V^* := \mathrm{NC}_{\Gamma_V}$$
.

Result of Björner gives conditions for EL-labelings to be inherited by subposets; L.–Wachs frequently use a "good" edge-order of Γ_V that gives an EL-labeling of Π_{Γ_V} .

NC_V^*

Let
$$\mathrm{NC}_{V}^{*} := \mathrm{NC}_{\Gamma_{V}}$$
.

Result of Björner gives conditions for EL-labelings to be inherited by subposets; L.–Wachs frequently use a "good" edge-order of Γ_V that gives an EL-labeling of Π_{Γ_V} .

Corollary (L.)

 NC_V^* is EL-shellable for all V, using the same EL-labeling from L.–Wachs.

NC_V^*

Let $\mathrm{NC}_{V}^{*} := \mathrm{NC}_{\Gamma_{V}}$.

Result of Björner gives conditions for EL-labelings to be inherited by subposets; L.–Wachs frequently use a "good" edge-order of Γ_V that gives an EL-labeling of Π_{Γ_V} .

Corollary (L.)

 NC_V^* is EL-shellable for all V, using the same EL-labeling from L.–Wachs.

Farmer–Hallam–Smyth give several sufficient conditions for NC_G to be EL-shellable; NC_V^* satisfies some, but not all of them (so shellability also follows from their results).

Some more notation: Any V consists of alternating runs of odd and even integers, e.g.,

$$V_1 = \{1, 3, 5, 6, 8, 10, 11, 13, 14, 16\}.$$

tp(V) = vector whose entries count the lengths of these runs.

$$tp(V_1) = (3,3,2,2).$$

Some more notation: Any V consists of alternating runs of odd and even integers, e.g.,

$$V_1 = \{1, 3, 5, 6, 8, 10, 11, 13, 14, 16\}.$$

tp(V) = vector whose entries count the lengths of these runs.

$$tp(V_1) = (3, 3, 2, 2).$$

Proposition (L.)

 NC_V^* depends only on tp(V).

Decreasing Chains in NC_V^* : the Key Recurrence

Fix a representative $P_{\mathfrak{a}}$ among all NC_V^* with $\operatorname{tp}(V) = \mathfrak{a}$.

 $N_{\mathfrak{a}} = \text{number of decreasing maximal chains in } P_{\mathfrak{a}}.$

If
$$\mathfrak{a}=(a_1,b_1,\ldots,a_t,b_t)$$
, write

$$\downarrow \mathfrak{a} = (a_1 - 1, b_1, \ldots, a_t, b_t)$$

$$\mathfrak{a}\downarrow=(a_1,b_1,\ldots,a_t,b_t-1).$$

Decreasing Chains in NC_V^* : the Key Recurrence

Fix a representative $P_{\mathfrak{a}}$ among all NC_V^* with $tp(V) = \mathfrak{a}$.

 $N_{\mathfrak{a}}=$ number of decreasing maximal chains in $P_{\mathfrak{a}}.$

If
$$\mathfrak{a}=(a_1,b_1,\ldots,a_t,b_t)$$
, write

$$\downarrow \mathfrak{a} = (a_1 - 1, b_1, \dots, a_t, b_t)$$

$$\mathfrak{a} \downarrow = (a_1, b_1, \dots, a_t, b_t - 1).$$

Theorem (L.)

We have

$$N_{\mathfrak{a}} = N_{\downarrow \mathfrak{a}} + N_{\mathfrak{a}\downarrow} + \sum_{k=1}^{t-1} N_{(a_1,\ldots,b_k)} N_{(a_{k+1},\ldots,b_t)},$$

with $N_{(1,1)}=1$ and $N_{\mathfrak{a}}=0$ if any entry of \mathfrak{a} is ≤ 0 .

This is a familiar recurrence!

Corollary

We have

$$N_{(\underbrace{1,1,\ldots,1}_{2n})}=C_{n-1},$$

the (n-1)st Catalan number.

This is a familiar recurrence!

Corollary

We have

$$N_{(\underbrace{1,1,\ldots,1}_{2n})}=C_{n-1},$$

the (n-1)st Catalan number.

Recall,
$$C_{n-1} = \frac{1}{n} {2n-2 \choose n-1}$$
.

This is a familiar recurrence!

Corollary

We have

$$N_{(\underbrace{1,1,\ldots,1}_{2n})}=C_{n-1},$$

the (n-1)st Catalan number.

Recall,
$$C_{n-1} = \frac{1}{n} {2n-2 \choose n-1}$$
.

Can also construct a bijection between decreasing saturated chains starting at $\hat{0}$ and partial triangulations of the (n+1)-gon.

Other N_a

Have also solved the recurrence for $\mathfrak{a}=(1,b,1,b,\ldots,1,b)$ (equivalently for $(a,1,a,1,\ldots,a,1)$).

Theorem (L.)

We have

$$N_{(\underbrace{1,b,\ldots,1,b}_{2n})} = \frac{1}{n} {(b+1)n-2 \choose bn-1}.$$

Other N_a

Have also solved the recurrence for $\mathfrak{a}=(1,b,1,b,\ldots,1,b)$ (equivalently for $(a,1,a,1,\ldots,a,1)$).

Theorem (L.)

We have

$$N_{(\underbrace{1,b,\ldots,1,b}_{2n})} = \frac{1}{n} {(b+1)n-2 \choose bn-1}.$$

Proof by generating functions and Lagrange inversion; no bijective proof yet.

Also open: give a good characterization of corresponding decorated triangulations of the (n + 1)-gon.

$(a, b, a, b, \ldots, a, b)$

Natural next step: compute $N_{(a,b,\ldots,a,b)}$.

Recurrence is **much** harder to solve. Numerical evidence suggests:

$$(a, b, a, b, \ldots, a, b)$$

Natural next step: compute $N_{(a,b,...,a,b)}$.

Recurrence is much harder to solve. Numerical evidence suggests:

Conjecture

For all $n \ge 1$

$$N_{(\underbrace{a,b,\ldots,a,b}_{2n})} = \frac{1}{n} {(a+b)n-2 \choose an-1}.$$

(a,b,a,b,\ldots,a,b)

Natural next step: compute $N_{(a,b,...,a,b)}$.

Recurrence is **much** harder to solve. Numerical evidence suggests:

Conjecture

For all $n \ge 1$

$$N_{(\underbrace{a,b,\ldots,a,b}_{2n})} = \frac{1}{n} {(a+b)n-2 \choose an-1}.$$

Theorem (Special case of Bandrier-Wallner)

Suppose a < b, and let

 $A_n(k) := \#\{Dyck \text{ walks under } y = \frac{a}{b}x + \frac{k}{b} \text{ ending at } (bn-1, an-1)\}.$ Then

Then
$$\sum_{k=1}^{a}A_{n}(k)=\frac{1}{n}\binom{(a+b)n-2}{an-1}.$$

Question for the Audience

Can we find a bijection?

Future Questions

- Dyck walks under PL curves?
- Other types?
- Wreath product groups?
- FHS describe "noncrossing NBC" sets that compute the char poly for some NC bond posets; can we count NCNBC sets for NC_V^* ?
- Char poly of $\Pi_{\Gamma_{2n}}$ refines the median Genocchi numbers and has the ordinary Genocchi numbers as its constant term. So why do the <u>Catalan</u> numbers appear in char poly of NC_{2n}^* ?
- We have an inclusion $NC_G \hookrightarrow \Pi_G$; induces an inclusion of order complexes (no matter what labeling of G we pick). Can we analyze topology of NC_G in general (e.g. with Quillen's fiber theorem)?