OrCAD - PCB Editor

Dr. Sarwan Singh ग.इ.सू.प्रो.सं NIELIT Chandigarh

- Regulated Power Supply
 - Creating schematic, PSpice simulation
- Creating Netlist
- Footprint
- Component placement
- Routing

Cadence OrCAD PCB Designer with

PSpice comprises three main applications

- Capture is used to drawn a circuit on the screen, known formally as schematic capture. It offers great flexibility compared with a traditional pencil and paper drawing, as design changes can be incorporated and errors corrected quickly and easily
- PSpice simulates the captured circuit. You can analyse its behaviour in many ways and confirm that it performs as specified.
- PCB Editor is used to design printed circuit

Bridge Rectifier-Power Supply

Placing regulator LM7805

Simulating Power Supply

Schematic - footprint

2						
10	Bill Of Ma	Page1				
11						
12	Item	Quantity	Reference	Part	PCB footp	rint
13						_
14						
15	1	1	C1	2200uf	cap196	
16	2	4	D1,D2,D3,	D1N4148	dax2do35	
17	3	1	D5	MLED81	dax1do35	
18	4	1	R1	1k	AXRC05	
19	5	1	U1	LM7805C	to3	
20						
21						

C:\Cadence\SPB_17.2\share\pcb\pcb_lib\symbols

Diode footprint

प्रमुणेसं Capacitor footprint

Changing footprint

Right click on component > Edit properties

Footprint - 7805

pdate BoM with Footprint

2								
8								
9								
10	Bill Of Ma	Page1						
11		_						
12	Item	Quantity	Reference	Part	PCB footprint			
13								
14								
15	1	1	C1	2200uf	cap196			
16	2	4	D1,D2,D3,	D1N4148	dax2do35			
17	3	1	D5	MLED81	dax1do35			
18	4	1	R1	1k	AXRC05			
19	5	1	U1	LM7805C	to202ab			
20								
21								

राहासूग्रीसं Creating Netlist

- 1. Tools > Create Netlist
- 2. check create or update PCB editor board

- 3. Blank PCB board created
- 4. Place> Components Manually

Adding jumper at Vin source

Center-tap transformer

■ P	Spice Modeling Application: Single P	hase Transformer With Linear Core	X
You shall be able to place		arameters accordingly to generate transformer model. and its model library file would be automatically	,
○ Two Winding ○ Cust	om Tap Centre Tap Flyback Fo	rward O Forward with reset winding	
resistance, leakage induc transformer with step up ratio calculation each TA leakage inductance shou	etance, turn ratio and winding with tap. Pratio of 10, turn ratio should be 10 and AP is considered as winding, i.e. 230v:	define primary winding inductance, primary winding Turn ratio is defined as N2/N1; thus for step up d for step down ratio of 10, it should be 0.1. For turn 23v-0-23v transformer turn ratio should be 10. All d modeled as single leakage inductance. Use leakage between windings.	
Parameter Name	Parameter Value		
Model Name	CETAPS_Model Model Name		
Primary Winding Inductance (LP)	1m Primary Winding Inductance in Henry		
Primary Winding Resistance (Rp1)	10m Primary Winding Resistance in Ohms	P1 S1	
Secondary Winding Resistance (Rs1)	10m Secondary Winding Resistance in Ohms	P2	
Turn ratio N2/N1	10 Turn Ratio		
Leakage Inductance	Leakage Inductance, referred to TAP winding		
○ Primary Tap % ● Secondary Tap % Place Close He	qle		

Fullwave Rectifier

D1

