Android Concurrency: Evaluation Android's Concurrency Frameworks

Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

> Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Module

 Understand how to evaluate the Android concurrency frameworks along several dimensions to select the appropriate framework for your applications

Evaluating ThreadedDownloads Solutions (Part 1)

	Async Task	Posting Runnables	Sending Messages
Usability (Simple)			
Usability (Complex)			
Scalability			
Flexibility			
Efficiency			

See www.dre.vanderbilt.edu/ ~schmidt/PDF/INFOCOM-94.pdf

Evaluating ThreadedDownloads Solutions (Part 2)

	Async Task	Posting Runnables	Sending Messages
Usability (Simple)			
Usability (Complex)			
Scalability			
Flexibility			
Efficiency			

Choosing the right concurrency model depends on requirements & expertise

 Threaded Downloads implements three different concurrency models

- Threaded Downloads implements three different concurrency models
 - Uses the Android HaMeR & AsyncTask frameworks

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
 - Long duration operations run in a background Thread

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
 - Long duration operations run in a background Thread
 - Short duration operations run in the UI Thread

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
 - Background Threads & UI Thread communicate in different ways

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
 - Background Threads & UI Thread communicate in different ways
 - Background Threads in HaMeR framework explicitly communicate with UI Thread

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
 - Background Threads & UI Thread communicate in different ways
 - Background Threads in HaMeR framework explicitly communicate with UI Thread

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
 - Background Threads & UI Thread communicate in different ways
 - Background Threads in HaMeR framework explicitly communicate with UI Thread

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
 - Background Threads & UI Thread communicate in different ways
 - Background Threads in HaMeR framework explicitly communicate with UI Thread

See earlier parts on using the Android Handler class

 Threaded Downloads implements Message three different concurrency models onPreExecute() Queue Solutions share some thing in common doInBackground() Solutions also have some differences. onPostExecute() Background Threads & UI Thread execute() communicate in different ways Message Background Threads in HaMeR Handler Looper **Future Task** framework explicitly communicate Message with UI Thread Message **Executor** Background Thread in AsyncTask framework implicitly communicates Message **AsyncTask** with UI Thread Message Message **UI Thread** (main thread)

 Threaded Downloads implements Message three different concurrency models onPreExecute() Queue Solutions share some thing in common doInBackground() Solutions also have some differences. onPostExecute() Background Threads & UI Thread execute() communicate in different ways Message Background Threads in HaMeR Handler Looper **Future Task** framework explicitly communicate Message with UI Thread Message **Executor** Background Thread in AsyncTask framework implicitly communicates Message **AsyncTask** with UI Thread Message Message **UI Thread** (main thread)

 Threaded Downloads implements Message three different concurrency models onPreExecute() Queue Solutions share some thing in common doInBackground() Solutions also have some differences. onPostExecute() Background Threads & UI Thread execute() communicate in different ways Message Background Threads in HaMeR Handler Looper **Future Task** framework explicitly communicate Message with UI Thread Message **Executor** Background Thread in AsyncTask framework implicitly communicates Message **AsyncTask** with UI Thread Message Message

UI Thread _
(main thread)

 Threaded Downloads implements Message three different concurrency models onPreExecute() Queue Solutions share some thing in common doInBackground() Solutions also have some differences. onPostExecute() Background Threads & UI Thread execute() communicate in different ways Message Background Threads in HaMeR Handler Looper **Future Task** framework explicitly communicate Message with UI Thread Message Background Thread in AsyncTask framework implicitly communicates Message **AsyncTask** with UI Thread Message Message **UI Thread** (main thread)

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
 - Background Threads & UI Thread communicate in different ways
 - Background Threads in HaMeR framework explicitly communicate with UI Thread
 - Background Thread in AsyncTask framework implicitly communicates with UI Thread

See earlier parts on "The AsyncTask Framework"

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
- Each solution has pros & cons

	Async Task	Posting Runnables	Sending Messages
Usability (Simple)			
Usability (Complex)			
Scalability			
Flexibility			
Efficiency			

It's important to understand application requirements to make the right choice

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
- Each solution has pros & cons

These solutions are based on GoF
 POSA patterns

- Threaded Downloads implements three different concurrency models
- Solutions share some thing in common
- Solutions also have some differences
- Each solution has pros & cons

These solutions are based on GoF
 & POSA patterns

