Valid Codes & Descriptions for ANNOTATED INFORMATION in 1997 PDP Analytical Results

Annotate Code	Annotated Information
Q	Residue at below quantifiable level (BQL)
QC	Residue at <bql> considered as Mis-Use under FIFRA</bql>
QV	Residue at <bql> with presumptive violation - No Tolerance</bql>
V	Residue with a presumptive violation - No Tolerance
X	Residue with a presumptive violation - Exceeds Tolerance

Valid Codes & Descriptions for COMMODITY MARKETING CLAIM on 1997 PDP Samples

Claim Code	Commodity Marketing Claim	
NC	No Claim	
PD	No Pesticides Detected	
PO	Organic	
PP	Pesticide Free	

Valid Codes & Descriptions for COMMODITIES Sampled/Analyzed by PDP in 1997 (Fresh Product Unless Otherwise Noted)

Commodity Code	Commodity Name	# of Samples Analyzed
AJ	Apple Juice	689
CC	Peaches, Canned	758
GC	Green Beans, Canned	373
GZ	Green Beans, Frozen	334
MK	Milk	732
OJ	Orange Juice	698
PE	Pears	708
SC	Spinach, Canned	168
SP	Spinach	512
SW	Sweet Potatoes	696
SY	Soybean grain	159
TO	Tomatoes	724
WH	Wheat grain	623
WS	Winter Squash	440
WZ	Winter Squash, Frozen	221

Valid Codes & Descriptions for COMMODITY TYPE in 1997 PDP Samples

Commod Type Code	Commodity Type
CA	Canned
CO	Liquid Concentrate
FR	Fresh
FZ	Frozen
GR	Grain, Raw
RE	Liquid Ready-to-Serve

Valid Codes & Descriptions for Concentration/LOD Unit-of-Measure Code

Concen/LOD Unit Code	Concen/LOD Unit Description
В	Parts-per-Billion (ppb)
М	Parts-per-Million (ppm)
Т	Parts-per-Trillion (ppt)

Valid Codes & Descriptions for CONFIRMATION METHOD in 1997 PDP Analytical Results

ConfMethod Code	Confirmation Method
D	GC or LC Alternate Detector
I	GC/IT-Gas Chrom w/lon Trap MS-single stg
М	GC/MS - single quadropole
MO	Quant. & Confirm. by GC/MS only
Р	LC-AMP - Liquid Chrom Alt. Mobile Phase

Valid Codes & Descriptions for COUNTRIES Where PDP 1997 Samples Originated

Country Code	Country Name
150	Country Name Argentina
160	Australia
165	Austria
220	Brazil
260	Canada
275	Chile
280	
	China, Peoples Rep. (Com.) Costa Rica
295	
350	France
394	Germany, Federal Rep. of
400	Greece
430	Honduras
445	Hungary
475	Israel
480	Italy
595	Mexico
607	Monaco
630	Netherlands
660	New Zealand
730	Poland
801	South Africa
830	Spain
905	Turkey
M01	Brazil / USA
M02	Brazil / Mexico / USA
M03	Brazil / Costa Rica / USA
M04	Brazil / Mexico
M05	Honduras / Mexico / USA
M06	Mexico / USA
M07	Argentina / Germany / USA
M08	Austria / USA
M09	Argentina / Italy
M10	Germany / USA
M11	Argentina / Hungary
M12	Argentina / Austria / Chile / Germany / USA
M13	Germany / Italy / USA
UNK	Unknown

Valid Codes & Descriptions for DETERMINATIVE METHOD in 1997 PDP Analytical Results

Determin Code	Determinative Method
01	GC/ECD - Electron Capture Detector
02	GC/FPD - Flame Photometric Detector in Phosphorus Mode
05	GC/ELCD - Electrolytic Conductivity Detector in Halogen Mode
07	GC/MS - Gas Chrom w/Mass Spec - single quadrupole
08	GC/IT - Gas Chrom w/ Ion Trap Mass Spec - single stage
10	LC/FL - Liquid Chromatography w/ Fluorescense Detector
11	LC/UV - Liquid Chromatography w/ UV Detector
12	Liquid Chrom w/ POST-Column Derivatization & FL Detector
14	GC/NPD - Phosphorus Mode
15	GC/NPD - Nitrogen Mode
16	GC/NPD - Nitrogen/Phosphorus Detector
19	Liquid Chrom w/ PRE-Column Derivatization & FL Detector
30	GC/ELCD - Electrolytic Conductivity Detector in Sulfur Mode
59	LC - Liquid Chromatography w/ Detector other than Listed
98	Immunoassay Screen

Valid Codes & Descriptions for COLLECTION/DISTRIBUTION FACILITY TYPE in 1997 PDP Samples

DistType Code	Collection Facility Type
В	Broker
D	Distribution Center
0	Other Market Type
Р	Processing Plant
S	Storage Facility
Т	Terminal Market
U	Unknown

Valid Codes & Descriptions for EXTRACTION METHOD in 1997 PDP Analytical Results

Extract	
Code	Extraction Method
015	Modified Luke Extraction Method without Cleanup for Multi-Residues & Carbamates
017	Modified Luke Extraction Method with Cleanup for Multi-Residues & Carbamates
550	CDFA Lee et al C-18 Extraction Method
551	CDFA Chlorinated ACN Florisil SPE Extraction Method
552	CDFA MSD Aminopropyl Extraction Method
553	CDFA Carbamate SPE Extraction Method
600	LIB 3217 Extraction Method for Benomyl, MBC and Thiophanate-Methyl
998	OTHER Single-Analysis Methods
999	OTHER Multi-Residue Methods

Valid Codes & Descriptions for PDP Participating LABORATORIES in 1997

Lab Code	Lab Agency Name	Lab City/State
CA1	California Department of Food & Agriculture	Sacramento, CA
FL1	Florida Dept of Agriculture & Consumer Services	Tallahassee, FL
FL2	Florida Dept of Agriculture & Consumer Services #2	Winter Haven, FL
MI1	Michigan Department of Agriculture	East Lansing, MI
NY1	New York Department of Agriculture and Markets	Albany, NY
OH1	Ohio Department of Agriculture	Reynoldsburg, OH
TX1	Texas Department of Agriculture	College Station, TX
US1	USDA, APHIS, National Monitoring Residue Analysis Lab	Gulfport, MS
US2	USDA, AMS, National Science Laboratory	Gastonia, NC
US3	USDA, GIPSA, Technical Services Division	Kansas City, MO
WA1	Washington State Department of Agriculture	Yakima, WA

Valid Codes & Descriptions for MEAN RESULT in 1997 PDP Analytical Results (O, A, and R indicated Positive Detections)

Mean Code	Mean Result Finding
А	Detect - Avg of Original & Re-extract
N	Non-Detect - Original Analysis
0	Detect - Original Analysis Value
R	Detect - Re-extraction Analysis Value

Valid Codes & Descriptions for Sample ORIGIN Code

Origin Code	Origin of Sample
1	Domestic (U.S.)
2	Imported
3	Unknown origin

Valid Codes & Descriptions for Compounds (PESTICIDES) Analyzed by PDP in 1997

Pest	1		# of Analysis
Code	Pesticide Name	Test Class	Results
001	Aldrin	А	1373
011	Captan	А	6399
021	Dalapon	G	272
022	DDT	А	4637
023	Demeton	С	427
024	Diazinon	С	7587
026	2,4-D	G	727
028	Dieldrin	А	2725
032	Diuron	А	1319
033	Anilazine	А	427
034	Endrin	А	159
042	Azinphos methyl	С	7768
044	Heptachlor	А	2100
047	Dicofol	А	6576
050	Lindane (BHC gamma)	А	7002
052	Malathion	С	7798
055	Methoxychlor Total	А	7395
057	Parathion methyl	С	7589
065	Parathion ethyl	С	6835
069	Mevinphos Total	С	6576
070	Piperonyl butoxide	I	1047
083	o-Phenylphenol	I	5808
087	DDD (TDE)	А	4706
102	Carbaryl	E	7787
107	Ethion	С	7002
114	Chlorpropham	Е	7017
117	Disulfoton	С	7721
124	Coumaphos	С	757
125	Diphenylamine (DPA)	F	6847
129	Linuron	А	2081
134	DCPA	А	6561
143	Heptachlor epoxide	А	2461
144	Dicloran	А	6545
147	Tecnazene	А	1319
148	Phorate	С	7795
149	Simazine	R	1774
151	Trifluralin	А	7184
155	Dicamba	G	727
157	Thiabendazole	В	7203
159	Methomyl	E	7813
160	Chlorpyrifos	С	7794
163	Fonofos	С	385
164	Chlorothalonil	А	6348
165	Phosmet	С	5806
166	Phosalone	С	4092
167	Aldicarb	E	7200

Pest Code	Pesticide Name	Test Class	# of Analysis Results
	Aldicarb sulfone		
168		E	7200
169	Aldicarb sulfoxide	E	7015
170	Methamidophos	C	6521
171	Dimethoate	_	7780
172	Chlordane trans	A	1774
173	Chlordane cis	A	1774
175	Ethoprop	С	427
176	Tetrachlorvinphos	C	3453
177	Fenthion	С	1774
178	Omethoate	С	7605
180	Carbofuran	Е	7809
181	Metribuzin	F	159
189	Phorate sulfone	С	6266
190	Phorate sulfoxide	С	3716
192	Benomyl	В	3712
195	Methiocarb	E	4010
197	Methidathion	С	7016
202	Carbophenothion	С	1774
203	Phosphamidon	С	6576
204	Acephate	С	6946
205	Terbufos	С	6561
208	Malathion oxygen analog	С	61
216	Disulfoton sulfone	С	4345
217	DEF (Tribufos)	С	757
224	Profenofos	С	757
226	Demeton-S sulfone	С	1319
227	Alachlor	A	159
230	Pendimethalin	F	159
235	Chlorpyrifos methyl	С	2396
236	Fenamiphos	С	7190
245	Oxydemeton methyl sulfone	C	1319
283	Metolachlor	A	159
292	Fluazifop butyl	G	159
299	Diclofop methyl	G	782
300	DDE	A	7002
304	Quintozene (PCNB)	A	7009
305	Atrazine	R	7654
316	Pentachlorophenol	A	272
317	2,4-DB	G	272
318	MCPA	G	481
321	Hexachlorobenzene (HCB)	A	6527
329	Picloram	G	272
338	Dichlorvos (DDVP)	C	7642
349	Oxychlordane	A	1712
351	•	A	
	Pentachloroaniline (PCA)		428
370	Parathion oxygen analog	С	1
382	1-Naphthol	E	840
387	Pentachlorobenzene (PCB)	A	6561
391	Fenitrothion	С	1375

Pest Code	Pesticide Name	Test Class	# of Analysis Results	
395	Diazinon Oxygen Analog	С	1	
512	3-Hydroxycarbofuran	E	7811	
529	Vinclozolin	A	6526	
537	Oxamyl	E	7567	
539	Permethrin Total	0	7152	
546	Fenvalerate	0	7152	
547	Azinphos ethyl	C	1625	
558	Demeton-S	C	1050	
562	Pirimiphos methyl	C	1765	
597	Cypermethrin	0	2467	
604	Imazalil	N	7024	
607	Metalaxyl	F	1448	
609	Sulprofos	C	1774	
	·			
614	Coumaphos oxygen analog	С	642	
616	Chlorfenvinghas hate	С	1565	
617	Chlorfenvinphos beta	С	1528	
621	Tri Allate	P	623	
623	Propargite	l	6851	
624	Tetrahydrophthalimide (THPI)	A	30	
626	Iprodione	A	7001	
648	Fenitrothion oxygen analog	С	1315	
666	Carbendazim (MBC)	В	424	
679	Myclobutanil	L	6576	
713	Oxyfluorfen	A	1774	
714	Esfenvalerate	0	5030	
721	Ethalfluralin	A	1774	
723	Formetanate hydrochloride	E	171	
731	Triclopyr	G	272	
745	Fenamiphos sulfone	С	5916	
746	Fenamiphos sulfoxide	С	3833	
781	Cyfluthrin	0	1319	
808	Fenpropathrin	0	1	
900	Endosulfan I	А	7641	
901	Endosulfan II	А	7654	
902	Endosulfan sulfate	А	7639	
903	BHC alpha	A	1933	
904	BHC beta	A	1933	
905	BHC delta	A	1933	
928	Phorate oxygen analog	C	1319	
930	Bifenthrin	0	3	
948	Abamectin	D	424	
963	Terbufos sulfone	C	5456	
966	Phorate oxygen analog sulfone	C	1319	
A39	Lambda cyhalothrin total	0	7	
A76	Fenitrothion metabolite (3-Methyl-4-nitrophenol)	C	133	
AAA	Doramectin	D	2	
AAB	Ivermectin	D	424	
770	Pirimiphos methyl degradate		424	
AAR	(Diethylaminomethylpyrimidonol)	С	134	

Pest Code	Pesticide Name	Test Class	# of Analysis Results
B19	4-Hydroxydiphenylamine	F	677
B28	5-Hydroxythiabendazole	В	424

Valid Codes & Descriptions for QUANTITATION METHOD in 1997 PDP Analytical Results

Quantitate Code	Quantitation Method
Н	Standard NOT In Matrix
М	Standard In Matrix

Valid Codes & Descriptions for All 50 STATES (plus Washington D.C. and Puerto Rico)

State			
Code	State		
AK	Alaska		
AL	Alabama		
AR	Arkansas		
AZ	Arizona		
CA	California		
СН	Check Sample		
CK	Check Sample		
CO	Colorado		
CT	Connecticut		
DC	Washington D.C.		
DE	Delaware		
FL	Florida		
GA	Georgia		
HI	Hawaii		
IA	lowa		
ID	Idaho		
IL	Illinois		
IN	Indiana		
KS	Kansas		
KY	Kentucky		
LA	Louisiana		
MA	Massachusetts		
MD	Maryland		
ME	Maine		
MI	Michigan		
MN	Minnesota		
MO	Missouri		
MS	Mississippi		
MT	Montana		
NC	North Carolina		
ND	North Dakota		
NE	Nebraska		
NH	New Hampshire		
NJ	New Jersey		
NM	New Mexico		
NV	Nevada		
NY	New York		
OH	Ohio		
OK	Oklahoma		
OR	Oregon		
PA	Pennsylvania		
PR	Puerto Rico		

State Code	State		
RI	Rhode Island		
SC	South Carolina		
SD	South Dakota		
TN	Tennessee		
TX	Texas		
US	United States (exact State not available)		
UT	Utah		
VA	Virginia		
VT	Vermont		
WA	Washington		
WI	Wisconsin		
WV	West Virginia		
WY	Wyoming		

Valid Codes & Descriptions for TEST (COMPOUND) CLASS in 1997 PDP Analytical Results

Test Class Code	Test (Compound) Class
А	Halogenated
В	Benzimidazole
С	Organophosphorus
D	Avermectin
Е	Carbamate
F	Organonitrogen
G	2,4-D / Acid Herbicides
Н	Formetanate HCL
I	Other Compounds
L	Conazoles / Triazoles
N	Imidazoles
0	Pyrethroids
Р	Thiocarbamates
R	Triazines

EPA Tolerance Levels for Commodity/Pesticide Pairs Analyzed by PDP in 1997

Tolerance Level Code: NT = No Tolerance Established

NA = Not Applicable

Commod	Pest	EPA Tolerance	Units		
Commod	Code	Level	pp_	Note	Comment
AJ	001	0.03		AL	Action Level
AJ		25	M	AL	Action Level
	011		M	Λ1	A ation Laval
AJ	022	0.1	M	AL	Action Level
AJ	024	0.5	M	Λ1	A atiana Laural
AJ	028	0.03	M	AL	Action Level
AJ	032	1	M		
AJ	042	2.0	M	A 1	A 4: 1
AJ	044	0.01	M	AL	Action Level
AJ	047	5	M		
AJ	050	1	M		
AJ	052	8	M		
AJ	055	14	M		
AJ	057	1	М		
AJ	065	1	М		
AJ	069	0.5	М		
AJ	070	8	М		
AJ	083	25	M		
AJ	087	0.1	M	AL	Action Level
AJ	102	10.0	М		
AJ	107	2.0	М		
AJ	114	NT	M		
AJ	117	NT	M		
AJ	124	NT	М		
AJ	125	10	М		
AJ	129	NT	М		
AJ	134	NT	М		
AJ	143	0.01	М	AL	Action Level
AJ	144	NT	М		
AJ	147	NT	М		
AJ	148	NT	М		
AJ	149	0.25	М		
AJ	151	NT	М		
AJ	157	10	М		
AJ	159	1	М		
AJ	160	1.5	М		
AJ	163	NT	М		
AJ	164	NT	М		
AJ	165	10	М		
AJ	166	10.0	М		
AJ	167	NT	М		
_	-				

AJ	168	NT	M		
AJ	169	NT	М		
AJ	170	NT	M		
AJ	171	2	M		
AJ	172	0.1	M	AL	Action Level
AJ	173	0.1	M	AL	Action Level
AJ	176	10	M		
AJ	177	NT	M		
AJ	178	2	M		
AJ	180	NT	M		
AJ	189	NT	M		
AJ	190	NT	M		
AJ	192	7.0	M		
AJ	195	NT	М		
AJ	197	0.05	М		
AJ	202	NT	М		
AJ	203	1	М		
AJ	204	NT	М		
AJ	205	NT	М		
AJ	216	NT	М		
AJ	217	NT	M		
AJ	224	NT	M		
AJ	226	NT	M		
AJ	235	NT	M		
AJ	236	0.25	М		
AJ	245	1	М		
AJ	300	0.1	М	AL	Action Level
AJ	304	NT	М		
AJ	305	NT	М		
AJ	321	NT	М		
AJ	338	0.5	М		
AJ	349	0.1	М	AL	Action Level
AJ	382	10.0	М		
AJ	387	NT	M		
AJ	391	NT	М		
AJ	512	NT	М		
AJ	529	NT	М		
AJ	537	2	М		
AJ	539	0.05	М		
AJ	546	2.0	М		
AJ	547	2.0	М		
AJ	562	NT	М		
AJ	597	NT	М		
AJ	604	NT	М		
AJ	607	0.2	М		
AJ	609	NT	М		
AJ	614	NT	М		

AJ	616	NT	М		
AJ	617	NT	М		
AJ	623	3	М		
AJ	624	25	М		
AJ	626	NT	М		
AJ	648	NT	М		
AJ	679	0.5	М		
AJ	713	0.05	М		
AJ	714	2.0	М		
AJ	721	NT	М		
AJ	745	0.25	М		
AJ	746	0.25	М		
AJ	781	NT	М		
AJ	900	2.0	М		
AJ	901	2.0	М		
AJ	902	2.0	М		
AJ	903	0.05	М	AL	Action Level
AJ	904	0.05	М	AL	Action Level
AJ	905	0.05	М	AL	Action Level
AJ	928	NT	М		
AJ	963	NT	М		
AJ	966	NT	М		
AJ	B19	NT	М		
CC	001	0.02	М	AL	Action Level
CC	011	50	М		
CC	022	0.2	М	AL	Action Level
CC	023	NT	М		
CC	024	0.7	M		
CC	028	0.02	М	AL	Action Level
CC	032	0.1	M		
CC	033	NT	M		
CC	042	2.0	M		
CC	044	0.01	М	AL	Action Level
CC	047	10	M		
CC	050	1	М		
CC	052	8	M		
CC	055	14	М		
CC	057	1	М		
CC	065	1	М		
CC	069	1.0	М		
CC	070	8	М		
CC	083	20	М		
CC	087	0.2	М	AL	Action Level
CC	102	10	М		
CC	107	1.0	М		
CC	114	NT	М		
CC	117	NT	М		

CC	124	NT	M		
CC	125	NT	M		
CC	129	NT	M		
CC	134	NT	M		
CC	143	0.01	M	AL	Action Level
CC	144	20	M		
CC	147	NT	M		
CC	148	NT	M		
CC	149	0.25	M		
CC	151	0.05	M		
CC	157	NT	M		
CC	159	5	М		
CC	160	0.05	М		
CC	164	0.5	М		
CC	165	10	М		
CC	166	15.0	М		
CC	167	NT	М		
CC	168	NT	М		
CC	169	NT	М		
CC	170	NT	М		
CC	171	NT	М		
CC	172	0.1	М	AL	Action Level
CC	173	0.1	М	AL	Action Level
CC	175	NT	М		
CC	176	0.1	М		
CC	177	NT	М		
CC	178	NT	М		
CC	180	NT	М		
CC	189	NT	М		
CC	190	NT	М		
CC	192	15.0	М		
CC	195	15	М		
CC	197	0.05	М		
CC	202	NT	М		
CC	203	NT	М		
CC	204	NT	М		
CC	205	NT	M		
CC	216	NT	M		
CC	217	NT	M		
CC	224	NT	M		
CC	226	NT	M		
CC	235	NT	M		
CC	236	0.25	M		
CC	245	NT	M		
CC	300	0.2	M	AL	Action Level
CC	304	NT	M	,	7.00.011 20101
CC	305	NT	M		

CC	321	NT	М		
CC	338	0.5	М		
CC	349	0.1	М	AL	Action Level
CC	351	NT	М		
CC	387	NT	M		
CC	391	NT	М		
CC	512	NT	М		
CC	529	25.0	М		
CC	537	NT	М		
CC	539	5.0	М		
CC	546	10.0	M		
CC	547	2.0	М		
CC	558	NT	М		
CC	562	NT	М		
CC	597	NT	М		
CC	604	NT	М		
CC	607	1.0	М		
CC	609	NT	М		
CC	614	NT	М		
CC	616	NT	М		
CC	617	NT	М		
CC	623	7	М		
CC	626	20.0	М		
CC	648	NT	М		
CC	679	2.0	М		
CC	713	0.05	М		
CC	714	10.0	М		
CC	721	NT	М		
CC	745	0.25	М		
CC	746	0.25	М		
CC	781	NT	М		
CC	900	2.0	М		
CC	901	2.0	М		
CC	902	2.0	М		
CC	903	0.05	М	AL	Action Level
CC	904	0.05	М	AL	Action Level
CC	905	0.05	М	AL	Action Level
CC	928	NT	М		
CC	963	NT	М		
CC	966	NT	М		
CC	B19	NT	М		
GC	001	0.05	М	AL	Action Level
GC	011	25	М		
GC	022	0.2	М	AL	Action Level
GC	024	0.5	M		
GC	028	0.05	M	AL	Action Level
GC	032	NT	М		

GC	042	2.0	М		
GC	044	0.01	M	AL	Action Level
GC	047	5	M	AL	Action Level
GC	050	0.5	M		
GC	050	8	M		
GC		14	M		
GC	055 057	14	M		
		1			
GC	065		M		
GC	069	0.25	M		
GC	070	8	M		
GC	083	NT	M		A (' 1 1
GC	087	0.2	M	AL	Action Level
GC	102	10	M		
GC	107	2.0	M		
GC	114	0.3	М		
GC	117	0.75	M		
GC	124	NT	М		
GC	125	NT	M		
GC	129	NT	M		
GC	134	2	M		
GC	143	0.01	M	AL	Action Level
GC	144	20	M		
GC	147	NT	M		
GC	148	0.1	М		
GC	149	NT	М		
GC	151	0.05	М		
GC	157	NT	M		
GC	159	2	M		
GC	160	0.05	М		
GC	163	0.01	М		
GC	164	5	М		
GC	165	NT	М		
GC	166	NT	М		
GC	167	NT	М		
GC	168	NT	М		
GC	169	NT	М		
GC	170	NT	М		
GC	171	2	М		
GC	172	0.1	М	AL	Action Level
GC	173	0.1	М	AL	Action Level
GC	176	NT	М		
GC	177	NT	М		
GC	178	2	М		
GC	180	NT	М		
GC	189	0.1	M		
GC	190	0.1	M		
GC	192	2.0	M		

GC	195	NT	M		
GC	197	NT	М		
GC	202	NT	М		
GC	203	NT	М		
GC	204	3	М		
GC	205	NT	М		
GC	216	0.75	М		
GC	217	NT	М		
GC	224	NT	М		
GC	226	NT	М		
GC	235	NT	М		
GC	236	NT	М		
GC	245	0.5	М		
GC	300	0.2	М	AL	Action Level
GC	304	0.1	М		
GC	305	NT	М		
GC	321	0.1	M		
GC	338	0.5	M		
GC	349	0.1	M	AL	Action Level
GC	382	10	М		
GC	387	0.1	М		
GC	391	NT	M		
GC	512	NT	M		
GC	529	2.0	М	Т	Temporary Tolerance
GC	537	NT	М		
GC	539	NT	М		
GC	546	2.0	М		
GC	547	2.0	М		
GC	562	NT	M		
GC	597	NT	М		
GC	604	NT	M		
GC	607	0.2	M		
GC	609	NT	M		
GC	614	NT	M		
GC	616	NT	M		
GC	617	NT	M		
GC	623	20	M		
GC	626	2.0	M		
GC	648	NT	M		
GC	679	NT	M		
GC	713	NT	M		
GC	714	2.0	M		
GC	721	NT	M		
GC	745	NT	M		
GC	746	NT	M		
GC	781	NT	M		
GC	900	2.0	M		

GC	901	2.0	М		
GC	902	2.0	M		
				ΛΙ	Action Lovel
GC	903	0.05	M	AL	Action Level
GC	904	0.05	M	AL	Action Level
GC	905	0.05	M	AL	Action Level
GC	928	0.1	M		
GC	963	NT	M		
GC	966	0.1	M		
GC	AAA	NT	M		
GC	B19	NT	M		
GZ	001	0.05	M	AL	Action Level
GZ	011	25	M		
GZ	022	0.2	M	AL	Action Level
GZ	024	0.5	M		
GZ	028	0.05	M	AL	Action Level
GZ	032	NT	М		
GZ	042	2.0	М		
GZ	044	0.01	М	AL	Action Level
GZ	047	5	M		
GZ	050	0.5	М		
GZ	052	8	М		
GZ	055	14	М		
GZ	057	1	М		
GZ	065	1	М		
GZ	069	0.25	М		
GZ	070	8	М		
GZ	083	NT	М		
GZ	087	0.2	М	AL	Action Level
GZ	102	10	М		
GZ	107	2.0	М		
GZ	114	0.3	М		
GZ	117	0.75	М		
GZ	124	NT	М		
GZ	125	NT	M		
GZ	129	NT	M		
GZ	134	2	M		
GZ	143	0.01	M	AL	Action Level
GZ	144	20	M	=	, .55 25.01
GZ	147	NT	M		
GZ	148	0.1	M		
GZ	149	NT	M		
GZ	151	0.05	M		
GZ	157	NT	M		
GZ	159	2	M		
GZ	160	0.05	M		
GZ	163	0.03	M		
GZ	164	5	M		
- 02	104	J	IVI		

GZ	165	NT	M		
GZ	166	NT	M		
GZ	167	NT	M		
GZ	168	NT	M		
GZ	169	NT	M		
GZ	170	NT	M		
GZ	171	2	M		
GZ	172	0.1	M	AL	Action Level
GZ	173	0.1	M	AL	Action Level
GZ	176	NT	M		
GZ	177	NT	M		
GZ	178	2	M		
GZ	180	NT	М		
GZ	189	0.1	М		
GZ	190	0.1	М		
GZ	192	2.0	М		
GZ	195	NT	М		
GZ	197	NT	М		
GZ	202	NT	М		
GZ	203	NT	М		
GZ	204	3	М		
GZ	205	NT	М		
GZ	216	0.75	М		
GZ	217	NT	М		
GZ	224	NT	М		
GZ	226	NT	М		
GZ	235	NT	М		
GZ	236	NT	М		
GZ	245	0.5	М		
GZ	300	0.2	М	AL	Action Level
GZ	304	0.1	М		
GZ	305	NT	М		
GZ	321	0.1	М		
GZ	338	0.5	М		
GZ	349	0.1	М	AL	Action Level
GZ	382	10	М		
GZ	387	0.1	М		
GZ	391	NT	М		
GZ	512	NT	М		
GZ	529	2.0	М	Т	Temporary Tolerance
GZ	537	NT	М		. ,
GZ	539	NT	М		
GZ	546	2.0	M		
GZ	547	2.0	M		
GZ	562	NT	М		
GZ	597	NT	M		
GZ	604	NT	М		

GZ	607	0.2	М		
GZ	609	NT	M		
GZ	614	NT	M		
GZ	616	NT	M		
GZ	617	NT	M		
GZ	623	20	M		
GZ	626	2.0	M		
GZ	648	NT	M		
GZ	679	NT	M		
GZ		NT			
	713		M		
GZ	714	2.0	M		
GZ	721	NT	M		
GZ	745	NT	M		
GZ	746	NT	M		
GZ	781	NT	M		
GZ	900	2.0	M		
GZ	901	2.0	M		
GZ	902	2.0	М		
GZ	903	0.05	М	AL	Action Level
GZ	904	0.05	M	AL	Action Level
GZ	905	0.05	M	AL	Action Level
GZ	928	0.1	M		
GZ	963	NT	М		
GZ	966	0.1	М		
GZ	B19	NT	М		
MK	011	NT	В		
MK	021	100	В		Whole Milk Tolerance
MK	022	1250	В	AL	Action Level, Fat Basis
MK	024	NT	В		
MK	026	100	В		Whole Milk Tolerance
MK	028	300	В	AL	Action Level, Fat Basis
MK	032	NT	В		· · · · · · · · · · · · · · · · · · ·
MK	042	40	В		Whole Milk Tolerance
MK	044	10	В	AL	Action Level, Fat Basis
MK	047	NT	В		,
MK	050	300	В		Fat Basis
MK	052	500	В		Fat Basis
MK	055	1250	В		Fat Basis
MK	057	NT	В		200.0
MK	065	NT	В		
MK	069	NT	В		
MK	083	NT	В		
MK	087	1250	В	AL	Action Level, Fat Basis
MK	102	300	В	, \L	Whole Milk Tolerance
MK	102	500	В		Fat Basis
MK	114	500	В	1	Interim Tolerance
				1	IIIICIIII I DICIALICE
MK	117	NT	В		

N ALZ	404	500			F-(D'-
MK	124	500	В		Fat Basis
MK	125	NT	В		
MK	129	NT	В		
MK	134	NT	В		
MK	143	10	В	AL	Action Level, Fat Basis
MK	144	NT	В		
MK	147	NT	В		
MK	148	20	В		Whole Milk Tolerance
MK	149	20	В		Whole Milk Tolerance
MK	151	NT	В		
MK	155	300	В		Whole Milk Tolerance
MK	157	400	В		Whole Milk Tolerance
MK	159	NT	В		TTTTETE THINK TETETATIES
IVIIX	100	141			
MK	160	250	В		Fat Basis, 0.01 ppm Whole
MK	164	NT	В		. at basis, s.o.i ppini whole
MK	165	NT	В		
MK	166	NT	В		NA/Is als NA'IIs Talanana
MK	167	2	В		Whole Milk Tolerance
MK	168	2	В		Whole Milk Tolerance
MK	169	2	В		Whole Milk Tolerance
MK	170	NT	В		
MK	171	2	В		Whole Milk Tolerance
MK	172	NT	В		
MK	173	NT	В		
MK	176	500	В		Fat Basis
MK	177	10	В		Whole Milk Tolerance
MK	178	2	В		Whole Milk Tolerance
MK	180	20	В	Т	Temporary Tolerance
MK	189	20	В		Whole Milk Tolerance
MK	190	20	В		Whole Milk Tolerance
MK	195	NT	В		WHOIC WIIIK TOICIAITEC
MK	193	30	В		Whole Milk Tolerance
					vynole ivilik Tolerance
MK	202	NT	В		
MK	203	NT	В		
MK	204	100	В		Whole Milk Tolerance
MK	205	NT	В		
MK	208	500	В		Fat Basis
MK	216	NT	В		
MK	217	2	В		Whole Milk Tolerance
MK	224	10	В		Whole Milk Tolerance
MK	226	NT	В		
MK	235	1250	В		Fat Basis, 0.05 ppm Whole
				-	
MK	236	10	В		Whole Milk Tolerance
MK	245	10	В		Whole Milk Tolerance
MK	300	1250	В	AL	Action Level, Fat Basis

MK	304	NT	В		
MK	305	20	В		Whole Milk Tolerance
MK	316	NT	В		
MK	317	NT	В		
MK	318	10	В		Whole Milk Tolerance
MK	321	NT	В		
MK	329	50	В		Whole Milk Tolerance
MK	338	20	В		Whole Milk Tolerance
MK	349	NT	В		Titles iiiiik reieranee
MK	387	NT	В		
MK	391	NT	В		
MK	512	20	В	Т	Temporary Tolerance
MK	529	NT	В	'	Temporary Tolerance
MK	537	NT	В		
IVIIX	557	INI	Ь		
MK	539	6250	В		Fat Basis, 0.25 ppm Whole
MK	546	7000	В		Fat Basis, 0.3 ppm Whole
MK	562	3000	В		Fat Basis, 0.1 ppm Whole
MK	597	50	В	I	Interim Tolerance
MK	604	10	В		Whole Milk Tolerance
MK	609	10	В		Whole Milk Tolerance
MK	614	500	В		Fat Basis
MK	616	NT	В		
MK	617	NT	В		
MK	623	2000	В		Fat Basis, 0.08 ppm Whole
MK	626	500	В		Whole Milk Tolerance
MK	648	NT	В		
MK	666	100	В		Whole Milk Tolerance
MK	679	200	В		Whole Milk Tolerance
MK	713	50	В		Whole Milk Tolerance
MK	714	7000	В		Fat Basis, 0.3 ppm Whole
MK	721	500	В		Whole Milk Tolerance
MK	731	100	В		Whole Milk Tolerance
MK	745	10	В		Whole Milk Tolerance
MK	746	10	В		Whole Milk Tolerance
MK	781	15000	В		Fat Basis, 0.5 ppm Whole
MK	900	500	В		Fat Basis
MK	901	500	В		Fat Basis
MK	902	500	В		Fat Basis
MK	903	300	В	AL	Action Level, Fat Basis
MK	903	300	В	AL	Action Level, Fat Basis
MK	905	300	В	AL	Action Level, Fat Basis
				AL	
MK	928	20	В		Whole Milk Tolerance
MK	948	5 NT	В	Т	Temporary Tolerance
MK	963	NT	В		VA/Is als NATH T I
MK	966	20	В		Whole Milk Tolerance

MK	A76	NT	В		
					Not Applicable
MK	AAB	NA	В		(anthelmintic)
MK	AAR	3000	В		Fat Basis, 0.1 ppm Whole
MK	B19	NT	В		
MK	B28	400	В		Whole Milk Tolerance
OJ	001	0.02	M	AL	Action Level
OJ	011	NT	М		
OJ	022	0.1	М	AL	Action Level
OJ	023	NT	M		
OJ	024	0.7	M		
OJ	028	0.02	M	AL	Action Level
OJ	032	1	M		
OJ	033	NT	M		
OJ	042	2.0	M		
OJ	044	0.01	M	AL	Action Level
OJ	047	10	М		
OJ	050	0.5	М		
OJ	052	8	М		
OJ	055	NT	М		
OJ	057	1	М		
OJ	065	1	М		
OJ	069	0.2	М		
OJ	070	8	М		
OJ	083	10	М		
OJ	087	0.1	М	AL	Action Level
OJ	102	10	М		
OJ	107	2.0	М		
OJ	114	NT	М		
OJ	117	NT	М		
OJ	124	NT	М		
OJ	125	NT	М		
OJ	129	NT	М		
OJ	134	NT	М		
OJ	143	0.01	М	AL	Action Level
OJ	144	NT	М		
OJ	147	NT	М		
OJ	148	NT	М		
OJ	149	0.25	М		
OJ	151	0.05	М		
OJ	157	10	М		
OJ	159	2	М		
OJ	160	1.0	М		
OJ	164	NT	М		
OJ	165	5	М		
OJ	166	3.0	М		
OJ	167	0.3	M		

OJ	168	0.3	M		
OJ	169	0.3	M		
OJ	170	NT	M		
OJ	171	2	M		
OJ	172	0.1	M	AL	Action Level
OJ	173	0.1	M	AL	Action Level
OJ	175	NT	M		
OJ	176	NT	M		
OJ	177	NT	M		
OJ	178	2	M		
OJ	180	2.5	M		
OJ	189	NT	M		
OJ	190	NT	М		
OJ	192	10.0	М		
OJ	195	0.02	М		
OJ	197	2.0	М		
OJ	202	NT	M		
OJ	203	0.75	М		
OJ	204	NT	M		
OJ	205	NT	М		
OJ	216	NT	M		
OJ	217	NT	M		
OJ	224	NT	M		
OJ	226	NT	M		
OJ	235	NT	M		
OJ	236	0.60	M		
OJ	245	1	M		
OJ	300	0.1	M	AL	Action Level
OJ	304	NT	M	712	7 totion Lovei
OJ	305	NT	M		
OJ	321	NT	M		
OJ	338	3	M		
OJ	349	0.1	M	AL	Action Level
OJ	351	NT	M	AL	Action Level
OJ	387	NT	M		
OJ	391	NT	M		
OJ	512	2.5	M		
OJ	529	NT	M		
OJ OJ	529	3	M		
OJ	539	NT	M		
OJ		NT			
OJ OJ	546		M		
	547	2.0	M		
OJ	558	NT	M		
OJ	562	NT	M		
OJ	597	NT	M		
OJ	604	10.0	M		
OJ	607	1.0	M		

0.1	000	NIT	N 4		
OJ	609	NT	M		
OJ	614	NT	M		
OJ	616	NT	M		
OJ	617	NT	M		
OJ	623	5	M		
OJ	626	NT	M		
OJ	648	NT	М		
OJ	679	NT	М		
OJ	713	NT	M		
OJ	714	NT	М		
OJ	721	NT	M		
OJ	745	0.60	М		
OJ	746	0.60	M		
OJ	781	0.2	M		
OJ	900	NT	М		
OJ	901	NT	М		
OJ	902	NT	М		
OJ	903	0.05	М	AL	Action Level
OJ	904	0.05	М	AL	Action Level
OJ	905	0.05	М	AL	Action Level
OJ	928	NT	M		
OJ	963	NT	M		
OJ	966	NT	M		
OJ	B19	NT	M		
PE	001	0.03	M	AL	Action Level
PE	011	25	M		
PE	022	0.1	M	AL	Action Level
PE	024	0.5	M		
PE	028	0.03	М	AL	Action Level
PE	032	1	М		
PE	042	2.0	М		
PE	044	0.01	М	AL	Action Level
PE	047	5	М		
PE	050	1	М		
PE	052	8	М		
PE	055	14	М		
PE	057	1	М		
PE	065	1	М		
PE	069	0.5	М		
PE	070	8	М		
PE	083	25	М		
PE	087	0.1	М	AL	Action Level
PE	102	10.0	М		-
PE	107	2.0	M		
PE	114	NT	М		
PE	117	NT	M		
PE	124	NT	М		
- -	. = .	• • •			

PE	125	NT	М		
PE	129	NT	M		
PE	134	NT	M		
PE	143	0.01	M	AL	Action Level
PE	144	NT	M		
PE	147	NT	M		
PE	148	NT	M		
PE	149	0.25	M		
PE	151	NT	M		
PE	157	10	M		
PE	159	4	M	R	Regional Tolerance
PE	160	0.05	M	1	Trogional Toloranoo
PE	163	NT	M		
PE	164	NT	M		
PE	165	10	M		
PE	166	10.0	M		
PE	167	NT	M		
PE	168	NT	M		
PE	169	NT	M		
PE	170	NT	M		
PE	171	2	M		
PE	172	0.1	M	AL	Action Level
PE	172	0.1	M	AL	Action Level
PE	176	10	M	,	, totion Lovoi
PE	177	NT	M		
PE	178	2	M		
PE	180	NT	M		
PE	189	NT	M		
PE	190	NT	M		
PE	195	NT	M		
PE	197	0.05	M		
PE	202	NT	M		
PE	202	NT	M		
PE	203	NT	M		
PE	204	NT	M		
PE	216	NT	M		
PE	217	NT	M		
PE	217	NT	M		
PE	224	NT	M		
PE	235	NT	M		
PE	236	NT	M		
PE	236	0.3	M		
PE	300	0.3	M	AL	Action Level
PE	304	NT	M	AL	ACTION LEVEL
PE	304	NT	M		
PE	305	NT	M		
PE	338	0.5	M		

PE	349	0.1	М	AL	Action Level
PE	370	1	М		
PE	382	10	М		
PE	387	NT	М		
PE	391	NT	M		
PE	512	NT	M		
PE	529	NT	M		
PE	537	2.0	М		
PE	539	3.0	М		
PE	546	2.0	М		
PE	547	2.0	М		
PE	562	NT	М		
PE	597	NT	М		
PE	604	NT	М		
PE	607	NT	М		
PE	609	NT	М		
PE	614	NT	М		
PE	616	NT	М		
PE	617	NT	М		
PE	623	3	М		
PE	626	NT	М		
PE	648	NT	М		
PE	679	NT	М		
PE	713	0.05	М		
PE	714	2.0	М		
PE	721	NT	М		
PE	723	3	М		
PE	745	NT	М		
PE	746	NT	М		
PE	781	NT	М		
PE	900	2.0	М		
PE	901	2.0	М		
PE	902	2.0	M		
PE	903	0.05	M	AL	Action Level
PE	904	0.05	M	AL	Action Level
PE	905	0.05	M	AL	Action Level
PE	928	NT	M	· · -	
PE	930	NT	M		
PE	963	NT	M		
PE	966	NT	M		
PE	B19	NT	M		
SC	001	0.05	M	AL	Action Level
SC	011	100	M	, .L	7.00011 E0 VOI
SC	022	0.5	M	AL	Action Level
SC	023	NT	M	/ (_	7.00.017 20 701
SC	023	0.7	M		
SC	024	0.05	M	AL	Action Level
	020	0.00	IVI	/ \L	/ TOUGHT EGACI

SC	032	NT	М		
SC	032	NT	M		
SC					
	042	2.0	M	۸۱	A ations I assal
SC	044	0.01	M	AL	Action Level
SC	047	NT	M		
SC	050	1	M		
SC	052	8	M		
SC	055	14	M		
SC	057	1	М		
SC	065	1	М		
SC	069	1.0	M		
SC	070	NT	M		
SC	083	NT	M		
SC	087	0.5	M	AL	Action Level
SC	102	12	M		
SC	107	NT	М		
SC	114	0.3	М		
SC	117	0.75	М		
SC	124	NT	М		
SC	125	NT	М		
SC	129	NT	М		
SC	134	NT	М		
SC	143	0.01	М	AL	Action Level
SC	144	NT	М		
SC	147	NT	М		
SC	148	NT	М		
SC	149	NT	М		
SC	151	0.05	М		
SC	157	NT	M		
SC	159	6	M		
SC	160	NT	M		
SC	164	NT	M		
SC	165	NT	M		
SC	166	NT	M		
SC	167	NT	M		
SC	168	NT	M		
SC	169	NT	M		
SC			M		
SC	170	NT 2			
	171		M	٨١	Action Level
SC	172	0.1	M	AL	
SC	173	0.1	M	AL	Action Level
SC	175	NT	M		
SC	176	NT	M		
SC	177	NT	M		
SC	178	2	M		
SC	180	NT	M		
SC	189	NT	M		

SC	190	NT	М		
SC	195	NT	M		
SC	197	NT	M		
SC	202	NT	M		
SC	203	NT	M		
SC	204	NT	M		
SC	205	NT	M		
SC	216	0.75	M		
SC	217	NT	M		
SC	224	NT	M		
SC	226	NT	M		
SC	235	NT	M		
SC	236	NT	M		
SC	245	NT	M		
SC	300	0.5	M	AL	Action Level
SC	304	NT	M		
SC	305	NT	M		
SC	321	NT	M		
SC	338	3	М		
SC	349	0.1	М	AL	Action Level
SC	351	NT	M		
SC	387	NT	M		
SC	391	NT	M		
SC	512	NT	М		
SC	529	NT	M		
SC	537	NT	M		
SC	539	20.0	M		
SC	546	NT	M		
SC	547	2.0	M		
SC	558	NT	M		
SC	562	NT	M		
SC	597	NT	M		
SC	604	NT	M		
SC	607	10.0	M		
SC	609	NT	M		
SC	614	NT	M		
SC	616	NT	M		
SC	617	NT	M		
SC	623	NT	M		
SC	626	NT	M		
SC			M		
	648	NT			
SC	679	NT 0.05	M		
SC	713	0.05	M		
SC	714	NT	M		
SC	721	NT	M		
SC	745	NT	M		
SC	746	NT	M		

SC	781	NT	M		
SC	_		M		
SC	900	2.0	M		
	901	2.0			
SC	902	2.0	M	A 1	A - ('
SC	903	0.05	M	AL	Action Level
SC	904	0.05	M	AL	Action Level
SC	905	0.05	M	AL	Action Level
SC	928	NT	M		
SC	963	NT	M		
SC	966	NT	M		
SC	A39	NT	M		
SP	001	0.05	M	AL	Action Level
SP	011	100	M		
SP	022	0.5	M	AL	Action Level
SP	023	NT	М		
SP	024	0.7	М		
SP	028	0.05	M	AL	Action Level
SP	032	NT	М		
SP	033	NT	М		
SP	042	2.0	М		
SP	044	0.01	М	AL	Action Level
SP	047	NT	М		
SP	050	1	М		
SP	052	8	М		
SP	055	14	М		
SP	057	1	М		
SP	065	1	М		
SP	069	1.0	М		
SP	070	NT	М		
SP	083	NT	M		
SP	087	0.5	М	AL	Action Level
SP	102	12	M	· · -	
SP	107	NT	M		
SP	114	0.3	M		
SP	117	0.75	M		
SP	124	NT	M		
SP	125	NT	M		
SP	129	NT	M		
SP	134	NT	M		
SP	143	0.01	M	AL	Action Level
SP	144	NT	M	/L	ACTION LEVEL
SP	144	NT	M		
SP	147	NT	M		
SP		NT	M		
	149				
SP	151	0.05	M		
SP	157	NT	M		
SP	159	6	M		

SP	160	NT	M		
SP	164	NT	M		
SP	165	NT	М		
SP	166	NT	М		
SP	167	NT	M		
SP	168	NT	М		
SP	169	NT	М		
SP	170	NT	М		
SP	171	2	М		
SP	172	0.1	М	AL	Action Level
SP	173	0.1	М	AL	Action Level
SP	175	NT	M		
SP	176	NT	M		
SP	177	NT	M		
SP	178	2	M		
SP	180	NT	M		
SP	189	NT	M		
SP	190	NT	M		
SP	195	NT	M		
SP	197	NT	M		
SP	202	NT	M		
SP	203	NT	M		
SP	204	NT	M		
SP	205	NT	M		
SP	216	0.75	M		
SP	217	NT	M		
SP	224	NT	M		
SP	226	NT	M		
SP	235	NT	M		
SP	236	NT	M		
SP	245	NT	M		
SP	300	0.5	M	AL	Action Level
SP	304	NT	M		
SP	305	NT	M		
SP	321	NT	M		
SP	338	3	M		
SP	349	0.1	M	AL	Action Level
SP	351	NT	M		
SP	387	NT	M		
SP	391	NT	M		
SP	395	0.7	M		
SP	512	NT	M		
SP	529	NT	M		
SP	537	NT	M		
SP	539	20.0	M		
SP	546	NT	M		
SP	547	2.0	M		

SP	558	NT	M		
SP	562	NT	М		
SP	597	NT	М		
SP	604	NT	М		
SP	607	10.0	M		
SP	609	NT	M		
SP	614	NT	M		
SP	616	NT	М		
SP	617	NT	М		
SP	623	NT	М		
SP	626	NT	М		
SP	648	NT	М		
SP	679	NT	М		
SP	713	0.05	М		
SP	714	NT	М		
SP	721	NT	М		
SP	745	NT	М		
SP	746	NT	М		
SP	781	NT	М		
SP	900	2.0	М		
SP	901	2.0	М		
SP	902	2.0	М		
SP	903	0.05	М	AL	Action Level
SP	904	0.05	М	AL	Action Level
SP	905	0.05	M	AL	Action Level
SP	928	NT	M		· · ·
SP	963	NT	M		
SP	966	NT	М		
SP	A39	NT	М		
SP	B19	NT	M		
SW	001	0.1	M	AL	Action Level
SW	011	NT	M		
SW	022	1	M	AL	Action Level
SW	024	0.1	M	-	
SW	028	0.1	M	AL	Action Level
SW	032	NT	M		
SW	042	NT	M		
SW	044	0.01	M	AL	Action Level
SW	047	NT	M		
SW	050	0.5	M		
SW	052	1	M		
SW	055	7	M		
SW	057	0.1	M		
SW	065	0.1	M		
SW	069	NT	M		
SW	070	0.25	M		
SW	083	15	M		

SW	087	1	М	AL	Action Level
SW	102	0.2	M	712	7 totion Lovei
SW	107	NT	M		
SW	114	NT	M		
SW	117	NT	M		
SW	124	NT	M		
SW	125	NT	M		
SW	129	NT	M		
SW	134	2	M		
SW	143	0.01	M	AL	Action Level
SW	144	10	M	/ \L	7 TOTION LOVOI
SW	147	NT	M		
SW	148	NT	M		
SW	149	NT	M		
SW	151	0.05	M		
SW	157	NT	M		
SW	159	0.2	M		
SW	160	0.05	M		
SW	163	0.03	M		
SW	164	NT	M		
SW	165	10	M		
SW	166	NT	M		
SW	167	0.1	M		
SW	168	0.1	M		
SW	169	0.1	M		
SW		NT	M		
SW	170 171	NT	M		
SW	172	0.1	M	AL	Action Level
SW	173				Action Level
SW		0.1 NT	M	AL	Action Level
	176		M		
SW	177	NT			
	178	NT	M		
SW	180	NT	M		
SW	189	NT	M		
SW	190	NT	M		
SW	192	0.2	M		
SW	195	NT	M		
SW	197	NT	M		
SW	202	NT	M		
SW	203	NT	M		
SW	204	NT	M		
SW	205	NT	M		
SW	216	NT	M		
SW	217	NT	M		
SW	224	NT	M		
SW	226	NT	M		
SW	235	NT	M		

SW	236	NT	М		
SW	245	NT	M		
SW	300	1	M	AL	Action Level
SW	304	NT	M	712	7 (Ottori Ecver
SW	305	NT	M		
SW	321	NT	M		
SW	338	0.5	M		
SW	349	0.1	M	AL	Action Level
SW	382	0.1	M	AL	Action Level
SW	387	NT	M		
SW	391	NT	M		
		NT			
SW	512		M		
SW	529	NT 0.4	M		
SW	537	0.1	M		
SW	539	NT	M		
SW	546	NT	M		
SW	547	NT	M		
SW	562	NT	M		
SW	597	NT	M		
SW	604	NT	M		
SW	607	0.5	M		
SW	609	NT	M		
SW	614	NT	M		
SW	616	NT	M		
SW	617	NT	M		
SW	623	NT	M		
SW	626	NT	M		
SW	648	NT	M		
SW	679	NT	M		
SW	713	NT	M		
SW	714	NT	M		
SW	721	NT	M		
SW	745	NT	M		
SW	746	NT	M		
SW	781	NT	M		
SW	900	0.2	M		
SW	901	0.2	M		
SW	902	0.2	M		
SW	903	0.05	M	AL	Action Level
SW	904	0.05	M	AL	Action Level
SW	905	0.05	M	AL	Action Level
SW	928	NT	М		
SW	963	NT	М		
SW	966	NT	М		
SW	B19	NT	М		
SY	022	200	В	AL	Action Level
SY	024	100	В		

SY	028	50	В	AL	Action Level
SY	034	NT	В		
SY	042	200	В		
SY	052	8000	В		
SY	057	100	В		
SY	065	100	В		
SY	087	200	В	AL	Action Level
SY	102	5000	В		
SY	117	100	В		
SY	129	1000	В		
SY	148	100	В		
SY	157	100	В		
SY	159	200	В		
SY	160	300	В		
SY	167	20	В		
SY	168	20	В		
SY	171	50	В		
SY	180	200	В		
SY	181	100	В		
SY	195	NT	В		
SY	227	200	В		
SY	230	100	В		
SY	236	50	В		
SY	283	200	В		
SY	292	1000	В		
SY	299	100	В		
SY	512	200	В		
SY	537	200	В		
SY	539	50	В		
SY	546	50	В		
SY	903	NT	В		
SY	904	NT	В		
SY	905	NT	В		
TO	001	0.05	М	AL	Action Level
TO	011	25	М		
TO	022	0.05	М	AL	Action Level
TO	024	0.75	М		
TO	028	0.05	М	AL	Action Level
TO	032	NT	М		
TO	042	2.0	М		
TO	044	0.01	М	AL	Action Level
TO	047	5	М		
TO	050	3	М		
TO	052	8	М		
TO	055	14	М		
TO	057	1	М		
TO	065	1	М		

TO	000	0.0			
TO	069	0.2	M		
TO	070	8	M		
TO	083	10	M	A 1	A (' 1 1
TO	087	0.05	M	AL	Action Level
TO	102	10	M		
TO	107	2.0	M		
TO	114	0.1	M		
TO	117	0.75	M		
TO	124	NT	M		
TO	125	NT	М		
TO	129	NT	M		
TO	134	1	M		
TO	143	0.01	M	AL	Action Level
TO	144	5	M		
TO	147	NT	M		
TO	148	0.1	M		
TO	149	NT	M		
TO	151	0.05	М		
TO	157	NT	М		
TO	159	1	М		
TO	160	0.5	М		
TO	163	0.1	М		
TO	164	5	М		
TO	165	2.0	М		
TO	166	NT	М		
TO	167	NT	М		
TO	168	NT	М		
TO	169	NT	М		
TO	170	1.0	М		
TO	171	2	М		
TO	172	0.1	М	AL	Action Level
TO	173	0.1	М	AL	Action Level
TO	176	5	M		
TO	177	NT	M		
TO	178	2	M		
TO	180	NT	M		
TO	189	0.1	M		
TO	190	0.1	M		
TO	192	5.0	M		
TO	195	NT	M		
TO	197	NT	M		
TO	202	NT	M		
TO	203	0.1	M		
TO	203	NT	M		
TO	205	NT	M		
TO	216	0.75	M		
TO	217	NT	M		
10	Z11	INI	IVI		

TO	224	NT	M		
TO	226	NT	M		
TO	235	NT	M		
TO	236	NT	M		
TO	245	NT	М		
TO	300	0.05	М	AL	Action Level
TO	304	0.1	М		
TO	305	NT	М		
TO	321	NT	М		
TO	338	0.5	М		
TO	349	0.1	М	AL	Action Level
TO	382	10	М		
TO	387	NT	М		
TO	391	NT	М		
TO	512	NT	М		
TO	529	NT	М		
TO	537	2	M		
TO	539	2	M		
TO	546	1.0	M		
TO	547	2.0	M		
TO	562	NT	M		
TO	597	NT	M		
TO	604	NT	M		
TO	607	1.0	M		
TO	609	NT	M		
TO	614	NT	M		
TO	616	NT	M		
TO	617	NT	M		
TO		NT	M		
TO	623	NT	M		
	626				
TO	648	NT	M	D	Degional Talegones
TO	679	0.3	M	R	Regional Tolerance
TO	713	NT	M		
TO	714	1.0	M		
TO	721	NT	M		
TO	745	NT	M		
TO	746	NT	M		
TO	781	0.20	M		
TO	808	0.6	M		
TO	900	2.0	M		
TO	901	2.0	M		
TO	902	2.0	M		
TO	903	0.05	M	AL	Action Level
TO	904	0.05	M	AL	Action Level
TO	905	0.05	M	AL	Action Level
TO	928	0.1	M		
TO	963	NT	M		

TO	966	0.1	М		
TO	A39	0.1	М		
TO	B19	NT	М		
WH	024	0.05	М		
WH	042	0.2	М		
WH	052	8	М		
WH	055	2	М		
WH	057	1	М		
WH	065	1	М		
WH	102	3	М		
WH	117	0.3	М		
WH	129	0.25	М		
WH	148	0.05	М		
WH	151	0.05	М		
WH	157	1.0	М		
WH	159	1	М		
WH	160	0.5	М		
WH	167	NT	М		
WH	168	NT	М		
WH	171	0.04	М		
WH	178	0.04	М		
WH	180	0.1	М		
WH	189	0.05	М		
WH	195	NT	М		
WH	216	0.3	М		
WH	235	6.0	М		
WH	299	0.1	М		
WH	305	0.25	М		
WH	338	0.5	М		
WH	391	NT	М		
WH	512	0.1	М		
WH	537	NT	М		
WH	558	NT	М		
WH	562	NT	М		
WH	604	0.05	М		
WH	621	0.05	М		
WH	648	NT	М		
WH	900	0.1	М		
WH	901	0.1	М		
WH	902	0.1	М		
WS	001	0.1	М	AL	Action Level
WS	011	25	М		
WS	022	0.1	М	AL	Action Level
WS	024	0.75	М		
WS	028	0.1	М	AL	Action Level
WS	032	NT	М		
WS	042	NT	М		

WS	044	0.01	M	AL	Action Level
WS	047	5	M	,	71011011 20101
WS	050	3	М		
WS	052	8	М		
WS	055	14	М		
WS	057	1	М		
WS	065	1	М		
WS	069	NT	М		
WS	070	NT	М		
WS	083	NT	М		
WS	087	0.1	M	AL	Action Level
WS	102	10	M		
WS	107	NT	M		
WS	114	NT	M		
WS	117	NT	M		
WS	124	NT	M		
WS	125	NT	M		
WS	129	NT	M		
WS	134	1	M	Δ1	A ation I arral
WS WS	143 144	0.01 NT	M	AL	Action Level
WS	144	NT	M		
WS	148	NT	M		
WS	149	NT	M		
WS	151	0.05	M		
WS	157	NT	M		
WS	159	0.2	M		
WS	160	NT	M		
WS	163	NT	М		
WS	164	5	М		
WS	165	NT	М		
WS	166	NT	М		
WS	167	NT	М		
WS	168	NT	М		
WS	169	NT	М		
WS	170	NT	М		
WS	171	NT	М		
WS	172	0.1	М	AL	Action Level
WS	173	0.1	М	AL	Action Level
WS	176	NT	M		
WS	177	NT	M		
WS	178	NT	M		
WS	180	0.6	M		
WS	189	NT	M		
WS	190	NT	M		
WS	195	NT	M		
WS	197	NT	M		

WS	202	NT	M		
WS	202	NT	M		
WS	203	NT	M		
WS		NT	M		
	205				
WS	216	NT	M		
WS	217	NT	M		
WS	224	NT	M		
WS	226	NT	M		
WS	235	NT	М		
WS	236	NT	М		
WS	245	0.3	M		
WS	300	0.1	M	AL	Action Level
WS	304	NT	M		
WS	305	NT	M		
WS	321	NT	M		
WS	338	0.5	М		
WS	349	0.1	M	AL	Action Level
WS	351	NT	М		
WS	382	10	М		
WS	387	NT	М		
WS	391	NT	М		
WS	512	0.6	M		
WS	529	NT	М		
WS	537	2.0	М		
WS	539	3.0	М		
WS	546	1.0	М		
WS	547	NT	M		
WS	562	NT	M		
WS	597	NT	M		
WS	604	NT	M		
WS	607	1.0	M		
WS	609	NT	M		
WS	614	NT			
			M		
WS	616	NT	M		
WS	617	NT	M		
WS	623	NT	M		
WS	626	NT	M		
WS	648	NT	M		
WS	679	0.3	M		
WS	713	NT	M		
WS	714	1.0	М		
WS	721	0.05	М		
WS	745	NT	М		
WS	746	NT	М		
WS	781	NT	М		
WS	900	2.0	М		
WS	901	2.0	М		

WS	902	2.0	М		
WS	903	0.05	М	AL	Action Level
WS	904	0.05	М	AL	Action Level
WS	905	0.05	М	AL	Action Level
WS	928	NT	М		
WS	930	0.1	М	R	Regional Tolerance
WS	963	NT	М		
WS	966	NT	М		
WS	B19	NT	М		
WZ	001	0.1	М	AL	Action Level
WZ	011	25	М		
WZ	022	0.1	М	AL	Action Level
WZ	024	0.75	М		
WZ	028	0.1	М	AL	Action Level
WZ	032	NT	М		
WZ	042	NT	М		
WZ	044	0.01	М	AL	Action Level
WZ	047	5	М		
WZ	050	3	М		
WZ	052	8	М		
WZ	055	14	М		
WZ	057	1	М		
WZ	065	1	М		
WZ	069	NT	М		
WZ	070	NT	М		
WZ	083	NT	М		
WZ	087	0.1	М	AL	Action Level
WZ	102	10	М		
WZ	107	NT	М		
WZ	114	NT	М		
WZ	117	NT	М		
WZ	124	NT	М		
WZ	125	NT	М		
WZ	129	NT	М		
WZ	134	1	М		
WZ	143	0.01	М	AL	Action Level
WZ	144	NT	М		
WZ	147	NT	М		
WZ	148	NT	М		
WZ	149	NT	М		
WZ	151	0.05	М		
WZ	157	NT	М		
WZ	159	0.2	М		
WZ	160	NT	М		
WZ	163	NT	М		
WZ	164	5	М		
WZ	165	NT	М		

WZ	166	NT	M		
WZ	167	NT	М		
WZ	168	NT	M		
WZ	169	NT	M		
WZ	170	NT	M		
WZ	171	NT	M		
WZ	172	0.1	M	AL	Action Level
WZ	173	0.1	M	AL	Action Level
WZ	176	NT	M		
WZ	177	NT	M		
WZ	178	NT	M		
WZ	180	0.6	M		
WZ	189	NT	M		
WZ	190	NT	M		
WZ	195	NT	M		
WZ	197	NT	М		
WZ	202	NT	М		
WZ	203	NT	М		
WZ	204	NT	M		
WZ	205	NT	M		
WZ	216	NT	M		
WZ	217	NT	M		
WZ	224	NT	M		
WZ	226	NT	M		
WZ	235	NT	M		
WZ	236	NT	M		
WZ	245	0.3	M		
WZ	300	0.1	M	AL	Action Level
WZ	304	NT	M		
WZ	305	NT	M		
WZ	321	NT	M		
WZ	338	0.5	M		
WZ	349	0.1	M	AL	Action Level
WZ	382	10	M		
WZ	387	NT	М		
WZ	391	NT	М		
WZ	512	0.6	М		
WZ	529	NT	M		
WZ	537	2.0	М		
WZ	539	3.0	М		
WZ	546	1.0	M		
WZ	547	NT	M		
WZ	562	NT	М		
WZ	597	NT	М		
WZ	604	NT	М		
WZ	607	1.0	М		
WZ	609	NT	М		

WZ	614	NT	М		
WZ	616	NT	М		
WZ	617	NT	М		
WZ	623	NT	М		
WZ	626	NT	М		
WZ	648	NT	М		
WZ	679	0.3	М		
WZ	713	NT	М		
WZ	714	1.0	М		
WZ	721	0.05	М		
WZ	745	NT	М		
WZ	746	NT	М		
WZ	781	NT	М		
WZ	900	2.0	М		
WZ	901	2.0	М		
WZ	902	2.0	М		
WZ	903	0.05	М	AL	Action Level
WZ	904	0.05	М	AL	Action Level
WZ	905	0.05	М	AL	Action Level
WZ	928	NT	М		
WZ	963	NT	М		
WZ	966	NT	М		
WZ	B19	NT	М		