Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

Examenul de bacalaureat national 2020 Proba E, d) **FIZICA**

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore.

A. MECANICĂ Test 6

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Un corp punctiform este lansat de-a lungul unei suprafete orizontale pe care se miscă cu frecare. Coeficientul de frecare la alunecare este constant. În timpul deplasării corpului:
- a. viteza corpului rămâne constantă
- b. viteza corpului va avea valoare mai mare decât viteza initială
- c. acceleratia si viteza corpului vor avea sensuri opuse
- **d**. acceleratia corpului scade.

(3p)

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia matematică a randamentului planului înclinat este:
- $\sin \alpha + \mu \sin \alpha$

- 3. Unitatea de măsură kg $\cdot \frac{m^2}{s^3}$ este unitate de măsură pentru:
- a. lucru mecanic
- b. putere
- d. energie
- (3p)F **(**N) **4.** Forța rezultantă care acționează asupra unui corp cu masa $m = 3 \,\mathrm{kg}$ își păstrează nemodificată orientarea. Modulul forței rezultante variază în timp conform graficului alăturat. Dacă viteza corpului la momentul t = 0 s este nulă, atunci viteza corpului la momentul t = 6 s t(s)
- este: **a.** 16 m/s
- **b.** 12 m/s
- c. 6 m/s
- **d.** 2m/s
- (3p)
- 5. Un elev împinge cu o fortă orizontală o ladă de masă $m = 12 \,\mathrm{kg}$, situată pe o suprafată orizontală. Puterea mecanică dezvoltată de elev este $P = 14.4 \,\mathrm{W}$. Lada se deplasează uniform, iar coeficientul de frecare la alunecare dintre ladă si suprafată este $\mu = 0.4$. Viteza lăzii are valoarea:
- a. 0.3 m/s
- **b.** 0.6 m/s
- **c.** 1,2 m/s

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Într-un experiment se utilizează: un plan înclinat, un corp de masă *m* necunoscută și un dinamometru. Unghiul lpha , format de suprafața planului înclinat cu orizontala, poate fi modificat. Corpul este atașat de dinamometru și este asezat pe suprafata planului înclinat. Corpul este ridicat de-a lungul planului cu viteză constantă, trăgând de capătul liber al dinamometrului cu o fortă paralelă cu suprafata planului înclinat. Experimentul este repetat pentru trei valori diferite ale unghiului α . Se măsoară, în fiecare caz, valoarea F a fortei indicate de dinamometru. Datele experimentale culese sunt prezentate în tabelul alăturat. Constanta elastică a resortului dinamometrului este $k = 500 \,\mathrm{Nm}$, iar coeficientul de frecare la alunecare dintre corp și plan este μ .

- a. Reprezentați toate forțele care acționează asupra corpului în timpul mișcării acestuia.
- **b.** Folosind rezultatele experimentale, calculati valoarea alungirii resortului pentru $\alpha = 30^{\circ}$.
- **c.** Stabiliți expresia dependenței forței indicate de dinamometru de unghiul α .
- d. Utilizând datele experimentale, determinati coeficientul de frecare la alunecare dintre corp si plan.

Nr. crt.	α	F(N)
1	30 ⁰	10,0
2	45 ⁰	12,0
3	60°	13,2

III. Rezolvati următoarea problemă:

(15 puncte)

În bena de masă $m = 100 \,\mathrm{kg}$ a unei macarale este încărcată o cantitate $M = 0.8 \,\mathrm{t}$ de ciment. Macaraua ridică **uniform** bena până la înălțimea H = 9.3m față de nivelul solului, unde cimentul este descărcat în întregime. Ulterior, bena goală este coborâtă cu viteza constantă v = 0.5m/s. După $\Delta t = 18$ s de la începutul coborârii, bena se desprinde din cârligul macaralei și cade pe sol. Se neglijează forțele de rezistență la înaintarea în aer. Energia potențială gravitațională este considerată nulă la nivelul solului. Determinați:

- a lucrul mecanic efectuat de forta de tensiune din cablul macaralei, la ridicarea benei împreună cu încărcătura, de la nivelul solului până la înăltimea H;
- b. înălțimea la care se află bena față de nivelul solului în momentul desprinderii din cârligul macaralei;
- c. energia mecanică a benei în momentul desprinderii din cârligul macaralei;
- d. viteza benei în momentul în care atinge solul.

Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Test 6

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametrii

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Alegeți afirmația adevărată referitoare la energia internă a unui gaz ideal:
- a. crește într-o destindere izotermă
- b. creşte într-o comprimare adiabatică
- c. este nulă într-o transformare izotermă
- d. creşte într-o comprimare izobară.

(3p)

- 2. Simbolurile unităților de măsură fiind cele utilizate în manualele de fizică, J·kg⁻¹·K⁻¹ este unitatea de măsură în S.I. pentru:
- a. lucru mecanic
- b. căldură
- c. căldură molară
- d. căldură specifică

(3p)

- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, pentru un proces izoterm al gazului ideal este corectă relația:
- **a.** $\Delta U = 0$
- **b.** $L = \nu R \Delta T$
- c. Q < L
- **d.** Q = 0

(3p)

4. Un sistem termodinamic evoluează după procesul ciclic reprezentat în coordonate p-V în figura alăturată. Lucrul mecanic schimbat de sistem cu exteriorul în cursul acestui proces ciclic, exprimat în în funcție de parametrii p_1 și V_1 , are expresia:

- **b.** $19p_1V_1$
- **c.** $8p_1V_1$
- **d.** $5p_iV_i$

- **5.** Numărul de molecule conținute într-o masă m = 6g de apă ($\mu = 18$ g/mol) este aproximativ egal cu:

- **c.** $6 \cdot 10^{23}$

II. Rezolvaţi următoarea problemă:

(15 puncte)

În curtea unui atelier, la temperatura $t_1 = -23^{\circ}\text{C}$, se află o butelie de volum V = 50L încărcată cu CO_2 ($\mu = 44 \text{ g/mol}$). Presiunea gazului din butelie este $p_1 = 5.10^5 \text{ Pa}$. Butelia este adusă în atelier, unde temperatura este $t_2 = 27^{\circ}$ C. Gazul se încălzește lent până ajunge la temperatura din atelier. Presiunea maximă până la care butelia a fost proiectată să reziste este $p_{max} = 7 \cdot 10^5$ Pa, calculați:

- a. Calculați masa inițială de dioxid de carbon din butelie;
- b. Calculați variatia presiunii gazului în timpul încălzirii;
- Calculați temperatura maximă până la care poate fi încălzit gazul din butelie;
- **d.** Butelia aflându-se la temperatura din atelier, un muncitor deschide robinetul buteliei timp de $\tau = 0.5$ h până când presiunea gazului din butelie redevine p. . Aflați numărul mediu de molecule care ies în unitatea de timp din butelie când robinetul este deschis.

III. Rezolvați următoarea problemă:

(15 puncte)

Un cilindru vertical, prevăzut cu un piston de masă neglijabilă, care se poate mișca liber fără frecări, are un opritor inelar AB cu rolul de a limita deplasarea pistonului, ca în figura alăturată. În cilindru este închisă o masă m = 29g de aer. Inițial aerul se află la presiunea $p_1 = 100$ kPa și la temperatura $t_1 = 27$ °C, iar

pistonul se află la jumătatea distanței dintre fundul cilindrului și dispozitivul inelar. Din exterior se transferă gazului căldură până când presiunea din interiorul său devine dublul celei inițiale. Masa molară a aerului este $\mu \cong 29 \,\mathrm{g/mol}$, iar căldura molară izobară este $C_p = 3.5 \cdot R$. Aerul poate fi considerat gaz ideal.

- **a.** Reprezentați grafic procesul descris mai sus, într-o diagramă p-V.
- b. Determinați energia internă a aerului în starea inițială.
- c. Calculați căldura totală primită de gaz.
- d. Calculați lucrul mecanic efectuat de gaz în decursul procesului descris mai sus.

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Test 6

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Privitor la legea a I-a a lui Kirchhoff se poate afirma:
- a. este o consecintă a legii conservării energiei într-un circuit electric
- b. pentru o rețea dată, furnizează un număr de relații independente egal cu numărul ochiurilor din acea rețea
- c. se poate aplica numai pentru ramurile rețelei

d. este o consecință a legii conservării sarcinii electrice

(3p)

2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, mărimea fizică dată de expresia are ca unitate de măsură în S.I.: $\rho_0 \ell (1 + \alpha t)$

a. A

b. V

d. W

3. La capetele unui conductor metalic de rezistență R se aplică o tensiune electrică U. Dacă e este sarcina electrică elementară, numărul de electroni care trec prin secțiunea transversală a conductorului în intervalul de timp t este:

b. $N = \frac{Ut}{eR}$

c. $N = \frac{eR}{Ht}$

d. $N = \frac{Rt}{Ue}$

(3p)

- 4. Dependența tensiunii electrice de la bornele unui rezistor de intensitatea curentului electric prin rezistor este reprezentată în graficul alăturat. Rezistența electrică a rezistorului are valoarea:
- **a.** $0,1\Omega$
- **b.** 1Ω
- c. 10Ω

d. 100Ω

5. Un circuit simplu contine o sursă de tensiune si un consumator. Relatia dintre rezistenta interioară a sursei și rezistența consumatorului este R=3r. Se mărește valoarea tensiunii electromotoare a sursei cu o fracțiune $f_1 = 0.6$ din valoarea inițială, rezistența interioară rămânând constantă. Pentru ca intensitatea curentului din circuit să nu se schimbe, valoarea rezistenței R trebuie mărită cu o fracțiune f_2 egală cu:

a. 0.25

b. 0.50

c. 0.80

d. 1.00

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

- O baterie cu tensiunea electromotoare *E* și rezistența interioară *r* este conectată la bornele unui reostat. Modificând valoarea rezistenței reostatului și măsurând intensitatea curentului prin circuit și tensiunea la bornele sursei se obține graficul din figura alăturată.
- a. Determinați valoarea rezistenței reostatului când intensitatea curentului electric prin acesta este I = 8 A.
- **b.** Determinati tensiunea electromotoare a bateriei.
- c. Determinati intensitatea curentului ce străbate bateria dacă la bornele acesteia se conectează un fir cu rezistență electrică neglijabilă.

d. După efectuarea măsurătorilor, bateria este montată la bornele unei grupări paralel formată din două rezistoare având rezistențele electrice $R_1 = 3\Omega$ și respectiv $R_2 = 6\Omega$. Calculați intensitatea curentului care străbate rezistorul de rezistență R₂.

III. Rezolvaţi următoarea problemă:

în figura alăturată este reprezentată schema unu circuit electric. Reostatul este conectat în serie cu un bec B pe care sunt înscrise valorile 0,75 W; 1,5 V . Gruparea este conectată la bornele unui generator având tensiunea electromotoare E = 9,6 V. Se deplasează cursorul C al reostatului până în momentul în care becul funcționează la parametri nominali. În aceste condiții puterea dezvoltată de reostat reprezintă o fracțiune f = 60%din puterea totală dezvoltată de generator. Calculati:

- a. valoarea intensității curentului electric prin generator când becul funcționează la parametri nominali;
- **b.** valoarea rezistentei interioare a generatorului;
- c. tensiunea de la bornele generatorului;
- d. valoarea rezistentei reostatului astfel încât generatorul să furnizeze circuitului exterior puterea maximă.

Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore.

D. OPTICĂ Test 6

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Energia cinetică maximă a fotoelectronilor emisi prin efect fotoelectric extern:
- a. este direct proportională cu fluxul radiatiilor electromagnetice incidente
- b. este obligatoriu mai mare dacât o valoare de prag, specifică fiecărei substante
- c. nu depinde de frecventa radiatiilor electromagnetice incidente
- d. crește liniar cu frecvența radiațiilor electromagnetice incidente

(3p)

2. Convergența unui sistem optic format din două lentile alipite, ale căror distanțe focale sunt f_1 , respectiv

- **a.** $\frac{f_1 \cdot f_2}{f_1 + f_2}$
- **b.** $f_1 + f_2$
- **c.** $\frac{f_1 + f_2}{f_1 \cdot f_2}$ **d.** $\frac{2 \cdot f_1 \cdot f_2}{f_1 + f_2}$ (3p)
- 3. Unitatea de măsură în S.I. a interfranjei este:
- \mathbf{b} , m/s^2

(3p)

4. O rază de lumină traversează suprafața de separare dintre două medii, trecând dintr-un mediu cu un anumit indice de refracție în altul, al cărui indice de refracție este de două ori mai mare decât cel al primului mediu. Raza incidentă este perpendiculară pe suprafața de separare dintre cele două medii. Valoarea unghiului de refacție este:

- **a.** 0°
- **b.** 45°
- **c.** 60°
- **d.** 90°

5. Convergența unei lentile a ochelarilor recomandați unei persoane în vederea corectării miopiei este $C = -1,25 \,\mathrm{m}^{-1}$. Modulul distanței focale a lentilei este:

- a. 8 cm
- **b.** 12 cm
- c. 25 cm
- **d.** 80 cm
- (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În vederea realizării unui experiment, pe un banc optic sunt montate: un obiect, o lentilă subtire si un ecran. În timpul experimentului se modifică distanta dintre obiect si lentilă iar ecranul se deplasează în mod

corespunzător, astfel încât pentru fiecare poziție a obiectului să se obțină o imagine clară a obiectului pe ecran. Se măsoară distanța lentilă-ecran și dimensiunea transversală a imaginii. Datele experimentale sunt prezentate în tabelul alăturat (d_2 reprezintă distanța lentilă-ecran, iar $h_2 = -y_2$ reprezintă înălțimea imaginii).

Poziția	<i>d</i> ₂ (cm)	<i>h</i> ₂ (mm)
Α	16	10
В	18	15
С	20	20
D	24	30
Ш	30	45

- a. Determinați raportul dintre distanța obiect-lentilă și înălțimea obiectului pentru cazul în care înălțimea imaginii este $h_2 = 30 \,\text{mm}$.
- **b.** Stabiliți relația care exprimă dependența măririi liniare transversale β de distanța focală f a lentilei și de distanța d_2 dintre lentilă și ecran.
- c. Utilizând datele experimentale culese, calculați valoarea distanței focale a lentilei.
- **d.** Folosind rezultatele experimentale din tabel, trasați graficul $\beta = f(d_2)$ pentru $d_2 \in [16 \text{ cm}; 30 \text{ cm}]$, știind că distanța focală a lentilei este f = 12 cm.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Distanța dintre fantele unui dispozitiv Young plasat în aer este $2\ell = 1$ mm, iar distanța care separă planul fantelor de ecranul pe care se observă figura de interferență este $D = 2 \,\mathrm{m}$. Sursa de lumină monocromatică utilizată este plasată pe axa de simetrie a dispozitivului. Distanta măsurată pe ecran între maximul de ordinul 1 și maximul de ordinul 2 situate de o parte și de cealaltă a maximului central este $d = 3,6\,\mathrm{mm}$.

- a. Determinați valoarea interfranjei din figura de interferență observată pe ecran.
- **b.** Calculați lungimea de undă a luminii utilizate.
- c. Determinați deplasarea figurii de interferență în lumină monocromatică dacă se plasează în fața primei fante o lamă transparentă de grosime $e_1 = 1,5 \mu m$ și indice de refracție $n_1 = 1,5$
- **d.** Calculați indicele de refracție al unei lame transparente, de grosime $e_2 = 1 \mu m$, plasată în fața celei de a doua fante astfel încât maximul central să revină pe axa de simetrie a dispozitivului.

4 D. Optică Probă scrisă la Fizică