Objectifs : Connaitre les définitions et les propriétés des figures usuelles

- Triangles : triangles particuliers, hauteurs
- Quadrilatères : quadrilatères particuliers, diagonales
- Cercle et disque

I. Triangles

1. Définition

Un triangle est un polygone à trois côtés et à trois sommets. Dans le triangle ci-contre, les points A; B et C sont les sommets. Les segments [AB]; [AC] et [BC] sont les côtés.

2. Construction

Pour tracer le triangle ABC tel que AB = 3 cm ; AC = 2,5 cm et BC = 1,5 cm :

3. Triangles particuliers

Si un triangle n'est pas particulier, on peut dire qu'il est quelconque.

(a) Triangle rectangle

Un triangle rectangle possède un angle droit : $\widehat{A}=90^{\circ}$.

On dit que le triangle ABC est rectangle en A.

(b) Triangle isocèle

Un triangle isocèle possède deux côtés de même longueur : AC=BC

et deux angles égaux : $\hat{A} = \hat{B}$

Dans l'exemple ci-contre, le côté [AB] est la base du triangle et le sommet C le sommet principal.

On dit que le triangle ABC est isocèle en C.

(c) Triangle équilatéral

Un triangle équilatéral possède trois côtés de même longueur.

(d) Triangle isocèle rectangle

Le triangle isocèle rectangle est à la

fois isocèle : AB = AC

et rectangle : $\hat{C} = 90^{\circ}$.

4. Hauteurs

Une hauteur est une droite perpendiculaire à un côté du triangle et qui passe par le sommet opposé. Pour la tracer, il peut être nécessaire de prolonger un côté (si le triangle est obtus).

Un triangle a donc trois hauteurs. Elles se coupent en un même point.

Dans les figures ci-dessous, on dit que la hauteur **est issue de** A ou qu'elle **est relative à** [BC]. On appelle le point H le **pied** de la hauteur.

II. Quadrilatères

1. Définition

Un quadrilatère est un polygone à quatre côtés. On le nomme d'après ses sommets, dans l'ordre dans lequel on les rencontre.

Dans le quadrilatère ABCD cicontre, les côtés [AB] et [CD] sont **opposés** et les côtés [AB] et

[BC] sont **consécutifs**. Les segements [AC] et [BD] sont les **diagonales** du quadrilatère ABCD.

2. Quadrilatères particuliers

(a) Carré

Définition

Ses quatre angles sont droits :

$$(AB) \perp (BC)$$
; $(BC) \perp (CD)$; $(CD) \perp (DA)$ et $(DA) \perp (AB)$

Ses quatre côtés sont de même longueur :

$$AB = BC = CD = DA$$

Méthodes de construction

En connaissant la longueur de ses côtés

- 1. Tracer un premier côté [DA] avec la règle graduée puis sa perpendiculaire avec l'équerre.
- 2. Avec le compas ou la règle graduée, mesurer la longueur de ce côté pour trouver le point K.
- 3. Avec l'équerre, tracer la perpendiculaire au côté [DK]
- 4. Avec l'équerre, tracer la perpendiculaire au côté [KR] passant par A.

• En connaissant la longueur de ses diagonales

- 1. Tracer la diagonale [AC] avec la règle graduée et repérer son milieu.
- 2. Avec l'équerre ou le compas, tracer la médiatrice à [AC].
- 3. Reporter de part et d'autre de la médiatrice la demi-longueur de [AC] pour obtenir les points B et D.
- 4. Relier les points A, B, C et D pour obtenir le carré ABCD.

(b) Rectangle

Définition

Ses quatre angles sont droits :

(AB) \bot (BC); (BC) \bot (CD); (CD) \bot (DA); (DA) \bot (AB) Ses côtés opposés sont deux à deux de même longueur :

AB = CD et BC = DA

Méthodes de construction

• En connaissant la longueur de ses côtés

1. Tracer le côté [MA] avec la règle graduée et sa perpendiculaire passant par M.

- 2. Mesurer avec la règle graduée ou le compas la longueur de [MH].
- 3. Tracer la perpendiculaire à [MH] passant par H.
- 4. Tracer la perpendiculaire à [MT] passant par A.
- En connaissant la longueur d'un côté et de ses diagonales

- 1. Tracer le côté [AB].
- 2. Tracer la perpendiculaire à [AB] passant par A
- 3. Reporter avec le compas la longueur de la diagonale sur cette perpendiculaire pour trouver le point D.
- 4. Tracer la perpendiculaire à [AD] passant par D.
- 5. Tracer la perpendiculaire à [DC] passant par B.

(c) Losange

Définition

Ses quatre côtés sont de même longueur :

$$AB = BC = CD = DA$$

Méthodes de construction

• En connaissant la longueur de ses côtés

- 1. On trace deux côtés [AB] et [AD] de longueur 5 cm.
- 2. On trace un arc de cercle de centre B et de rayon 5 cm.
- 3. On trace un arc de cercle de centre D et de même rayon 5 cm.
- 4. Le point C est le point d'intersection des deux arcs et on trace les côtés [BC] et [DC].
- En connaissant la longueur de ses côtés et la longueur d'une diagonale

- 1. Tracer la diagonale [AC] avec la règle graduée.
- 2. Ouvrir le compas à la longueur des côtés du losange et faire des arcs de cercle de centre A.
- 3. Faire la même chose de centre C.
- 4. Tracer le losange ABCD.

• En connaissant ses diagonales

- 1. Tracer la diagonale [AC] et repérer son milieu
- 2. Tracer la perpendiculaire à [AC] passant par son milieu (donc sa médiatrice).
- 3. Avec le compas ouvert à la moitié de la longueur de la deuxième diagonale, repérer les points B et D.
- 4. Tracer le losange ABCD.

(d) Parallélogramme

Définition

Ses côtés opposés sont deux à deux parallèles :

(AB) // (CD) et (BC) // (AD)

Méthodes de construction

• Avec la règle et l'équerre, en connaissant la longueur de ses côtés

- 1. Tracer les côtés [BG] et [BH] à la règle graduée.
- 2. Tracer la parallèle à [BG] passant par H.
- 3. Tracer la parallèle à [BH] passant par G.

- 4. Le point d'intersection des deux parallèles donne le point U et on peut finir de tracer BGUH.
- Avec la règle et le compas, en connaissant la longueur de ses côtés

- 1. Tracer les côtés [TY] et [TI] avec la règle graduée.
- 2. Avec le compas, reporter la longueur de [TI] depuis Y.
- 3. Avec le compas, reporter la longueur de [TY] depuis I. L'intersection des deux arcs de cercle donne le point U.
- 4. Finir de tracer le parallélogramme TYUI.

III. Cercles et disques

1. Cercle

Définition

Un cercle de **centre** O est l'ensemble des points situés à une même distance du point O. On appelle cette distance le **rayon** du cercle, souvent noté r.

Tracé

Pour tracer le cercle 6 de centre O et de rayon 1,5 cm, il faut

- Ouvrir le compas à 1,5 cm.
- Le piquer en O
- Tracer le cercle %.

C

Rayon

Un rayon du cercle \mathscr{C} est un segment qui a pour extrémités le centre O du cercle \mathscr{C} et un point du cercle \mathscr{C} .

Exemple: [OA] et [OB] sont des rayons du cercle %.

Diamètre

Un diamètre du cercle 🔏 est un segment qui a pour extrémités deux point du cercle 🔏 et qui passe par son centre O.

Exemple: [CD] est une corde du cercle %.

Corde

Une corde du cercle 🔏 est un segment qui a pour extrémités deux point du cercle 🔏.

La longueur d'un diamètre est le double du rayon.

Exemple: [BC] est un diamètre du cercle %.

2. Disque

Définition

Un disque de **centre** O et de **rayon** r est l'ensemble des points situés au plus à une distance r du point O. Il s'agit donc du cercle de centre O et de rayon r et de tout ce qu'il y a à l'intérieur.

Un cercle est une ligne alors qu'un disque est une surface.

Tracé

On procède comme pour le cercle de centre O et de rayon r, mais il faut bien indiquer que l'intérieur du cercle fait partie du disque (par exemple en hachurant).

3. Propriétés du cercle

Les deux propriétés suivantes sont vraies pour tout cercle.

Propriété 1

Tous les points d'un cercle de centre O sont à la même distance du point O.

Je sais que les points A et B appartiennent à un même cercle de centre O.

J'en conclus que OA = OB.

Propriété 2

Deux points situés à la même distance du point O appartiennent à un même cercle de centre O.

Je sais que OA = OB.

J'en conclus que les points A et B appartiennent à un même cercle de centre O.