Sticky Expectations and Consumption Dynamics

Christopher D. Carroll¹ Edmund Crawley² Jiri Slacalek³ Kiichi Tokuoka⁴ Matthew N. White⁵

¹Johns Hopkins and NBER, ccarroll@jhu.edu

²Johns Hopkins, ecrawle2@jhu.edu

³European Central Bank, jiri.slacalek@ecb.int

⁴MoF Japan, kiichi.tokuoka@mof.go.jp

⁵University of Delaware, mnwecon@udel.edu

February 2018

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shocked
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{
 m Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- ullet Var of micro income shocks much larger than of macro shocks ${\sf var}(\Delta \log {f p}) pprox 100 { imes {\sf var}}(\Delta \log {f P})$
- ullet Evidence: "Habits" parameter $\chi^{
 m Micro} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{
 m Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- ullet Var of micro income shocks much larger than of macro shocks ${
 m var}(\Delta \log {f p}) pprox 100 imes {
 m var}(\Delta \log {f P})$
- ullet Evidence: "Habits" parameter $\chi^{
 m Micro} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{
 m Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- ullet Var of micro income shocks much larger than of macro shocks ${
 m var}(\Delta \log {f p}) pprox 100 { imes var}(\Delta \log {f P})$
- Evidence: "Habits" parameter $\chi^{
 m Micro} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{
 m Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- ullet Var of micro income shocks much larger than of macro shocks $ext{var}(\Delta \log \mathbf{p}) pprox 100 imes ext{var}(\Delta \log \mathbf{P})$
- ullet Evidence: "Habits" parameter $\chi^{
 m Micro} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\text{Macro}} \approx 0.6 \sim 0.8$

- Uninsurable risk is essential, changes everything
- ullet Var of micro income shocks much larger than of macro shocks $ext{var}(\Delta\log\mathbf{p})pprox100 imes ext{var}(\Delta\log\mathbf{P})$
- ullet Evidence: "Habits" parameter $\chi^{ ext{MICO}} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\rm Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- ullet Var of micro income shocks much larger than of macro shocks $ext{var}(\Delta \log \mathbf{p}) pprox 100 imes ext{var}(\Delta \log \mathbf{p})$
- ullet Evidence: "Habits" parameter $\chi^{ ext{IVIICPO}} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{
 m Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- Var of micro income shocks much larger than of macro shocks: ${\rm var}(\Delta\log {\bf p})\approx 100\times {\rm var}(\Delta\log {\bf P})$
- ullet Evidence: "Habits" parameter $\chi^{
 m Micro} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\rm Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- Var of micro income shocks much larger than of macro shocks: $var(\Delta \log \mathbf{p}) \approx 100 \times var(\Delta \log \mathbf{P})$
- ullet Evidence: "Habits" parameter $\chi^{
 m Micro} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\rm Macro} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- Var of micro income shocks much larger than of macro shocks: $var(\Delta \log \mathbf{p}) \approx 100 \times var(\Delta \log \mathbf{P})$
- Evidence: "Habits" parameter $\chi^{ extsf{Micro}} pprox 0.0 \sim 0.1$

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\text{Macro}} \approx 0.6 \sim 0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

- Uninsurable risk is essential, changes everything
- Var of micro income shocks much larger than of macro shocks: $var(\Delta \log \mathbf{p}) \approx 100 \times var(\Delta \log \mathbf{P})$
- ullet Evidence: "Habits" parameter $\chi^{ extsf{Micro}} pprox 0.0 \sim 0.1$

Persistence of Consumption Growth: Macro vs Micro

- New paper in EER, Havranek, Rusnak, and Sokolova (2017) Meta analysis of 597 estimates of χ
- $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$
- $\{\chi^{\text{Macro}}, \chi^{\text{Micro}}\} = \{0.6, 0.1\}$

Persistence of Consumption Growth: Macro vs Micro

- New paper in EER, Havranek, Rusnak, and Sokolova (2017) Meta analysis of 597 estimates of χ
- $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$
- $\{\chi^{\text{Macro}}, \chi^{\text{Micro}}\} = \{0.6, 0.1\}$

Persistence of Consumption Growth: Macro vs Micro

- New paper in EER, Havranek, Rusnak, and Sokolova (2017) Meta analysis of 597 estimates of χ
- $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$
- $\{\chi^{\text{Macro}}, \chi^{\text{Micro}}\} = \{0.6, 0.1\}$

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Reis (2006), Sims (2003),

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed

 | Industrial No. Color (1992) |

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Reis (2006), Sims (2003),

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

- Identical: Mankiw and Reis (2002), Carroll (2003)
 - Similar: Reis (2006), Sims (2003),

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

Not ad hoc

Identical: Mankiw and Reis (2002), Carroll (2003)
Similar: Reis (2006), Sims (2003), . . .

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Reis (2006), Sims (2003), ...

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Reis (2006), Sims (2003), ...

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Reis (2006), Sims (2003), ...

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U 10

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); . . .
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); ...
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); ...
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); ...
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); . . .
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); . . .
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

Quadratic Utility Frictionless Benchmark

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathbf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathbf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Quadratic Utility Frictionless Benchmark

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Quadratic Utility Frictionless Benchmark

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t)\mathsf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Quadratic Utility Frictionless Benchmark

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Quadratic Utility Frictionless Benchmark

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Sticky Expectations—Individual c

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (\mathsf{r}/\mathsf{R})\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (\mathsf{r}/\mathsf{R})\widetilde{\mathbf{o}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{o}_t = \mathbf{c}_t$
 $\vdots \qquad \vdots$
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

- Implies that $\Delta^n \mathbf{o}_{t+n} \equiv \mathbf{o}_{t+n} \mathbf{o}_t$ is white noise
- So individual c is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (r/R) \underbrace{(\mathbf{o}_{t+n} - \mathbf{o}_t)}_{\Delta^n \mathbf{o}_{t+n}}$$

Sticky Expectations—Individual c

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (\mathsf{r}/\mathsf{R})\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (\mathsf{r}/\mathsf{R})\widetilde{\mathbf{o}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{o}_t = \mathbf{c}_t$
 \vdots
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

- Implies that $\Delta^n \mathbf{o}_{t+n} \equiv \mathbf{o}_{t+n} \mathbf{o}_t$ is white noise
- So individual c is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (r/R) \underbrace{(\mathbf{o}_{t+n} - \mathbf{o}_t)}_{\Delta^n \mathbf{o}_{t+n}}$$

Sticky Expectations—Individual c

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (\mathsf{r}/\mathsf{R})\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (\mathsf{r}/\mathsf{R})\widetilde{\mathbf{o}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{o}_t = \mathbf{c}_t$
 $\vdots \qquad \vdots$
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

- Implies that $\Delta^n \mathbf{o}_{t+n} \equiv \mathbf{o}_{t+n} \mathbf{o}_t$ is white noise
- So **individual c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathsf{r}/\mathsf{R}) \underbrace{(\mathbf{o}_{t+n} - \mathbf{o}_t)}_{\Delta^n \mathbf{o}_{t+n}}$$

- Pop normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo (1983)-Type Updating of Expectations:
 Probability ∏ = 0.25 (per quarter)
- Economy composed of many sticky- $\mathbb E$ consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi) \underbrace{\mathbf{C}_{t+1}^{\neq}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{=\gamma=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

- Pop normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo (1983)-Type Updating of Expectations:
 - Probability $\Pi = 0.25$ (per quarter)
- Economy composed of many sticky- \mathbb{E} consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi) \underbrace{\mathbf{C}_{t+1}^{\neq}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{=\chi=0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

- Pop normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo (1983)-Type Updating of Expectations:
 - Probability $\Pi = 0.25$ (per quarter)
- Economy composed of many sticky-**E** consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi) \underbrace{\mathbf{C}_{t+1}^{\pi}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \chi = 0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

- Pop normed to one, uniformly dist on [0,1]: $\mathbf{C}_t = \int_0^1 \mathbf{c}_{t,i} \, \mathrm{d}i$
- Calvo (1983)-Type Updating of Expectations:
 - Probability $\Pi = 0.25$ (per quarter)
- Economy composed of many sticky- \mathbb{E} consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi)\underbrace{\mathbf{C}_{t+1}^{\not \tau}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \chi = 0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

- ullet Pop normed to one, uniformly dist on [0,1]: ${f C}_t = \int_0^1 {f c}_{t,i} \, {
 m d}i$
- Calvo (1983)-Type Updating of Expectations:
 - Probability $\Pi = 0.25$ (per quarter)
- Economy composed of many sticky-E consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi) \underbrace{\mathbf{C}_{t+1}^{\not \uparrow}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \gamma = 0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

Differences: Idiosyncratic vs Aggregate shocks

- Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
- Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity

Result:

- Idiosyncratic Δc : dominated by frictionless RW part
- Aggregate △C: highly serially correlated
 Law of large numbers ⇒ idiosyncratic part vanishes

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result:
 - Idiosyncratic Δc : dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 - Law of large numbers \Rightarrow idiosyncratic part vanishes

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result:
 - Idiosyncratic Δc : dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 - Law of large numbers \Rightarrow idiosyncratic part vanishes

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result
 - Idiosyncratic Δc: dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 - Law of large numbers \Rightarrow idiosyncratic part vanishes

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result:
 - Idiosyncratic Δc : dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 - Law of large numbers ⇒ idiosyncratic part vanishes

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result
 - Idiosyncratic Δc: dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 - Law of large numbers \Rightarrow idiosyncratic part vanishes

Differences: Idiosyncratic vs Aggregate shocks

- Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
- Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity

Result:

- Idiosyncratic Δc : dominated by frictionless RW part
- Aggregate ΔC: highly serially correlated
 Law of large numbers ⇒ idiosyncratic part vanishes

- Differences: Idiosyncratic vs Aggregate shocks
 - Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
 - Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity
- Result:
 - Idiosyncratic Δc : dominated by frictionless RW part
 - Aggregate ΔC: highly serially correlated
 Law of large numbers ⇒ idiosyncratic part vanishes

Differences: Idiosyncratic vs Aggregate shocks

- Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
- Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity

Result:

- Idiosyncratic Δc : dominated by frictionless RW part
- Aggregate ΔC: highly serially correlated
 Law of large numbers ⇒ idiosyncratic part vanishes

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i} \psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

• Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i}\psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1}P_t \Psi_{t+1}$

- - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i}\psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1}P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i}\psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1}P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

• Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i}\psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1}P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

• Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i}\psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1}P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Blanchard (1985) Mortality and Insurance

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i} \psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchardian scheme:

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if HH } i \text{ dies, is replaced by newborn} \\ \mathbf{a}_{t,i}/(1-D) & \text{if household } i \text{ survives} \end{cases}$$

Implies for aggregate:

$$egin{array}{lcl} \mathbf{K}_{t+1} & = & \int_0^1 \left(rac{1 - \mathsf{d}_{t+1,i}}{1 - \mathsf{D}}
ight) \mathbf{a}_{t,i} \, \mathsf{d}i = \mathbf{A}_t \ K_{t+1} & = & A_t / (\Psi_{t+1} \Phi_{t+1}) \end{array}$$

Blanchard (1985) Mortality and Insurance

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchardian scheme:

$$\mathbf{k}_{t+1,i} = egin{cases} 0 & \text{if HH } i \text{ dies, is replaced by newborn} \\ \mathbf{a}_{t,i} / (1-D) & \text{if household } i \text{ survives} \end{cases}$$

Implies for aggregate:

$$egin{array}{lcl} \mathbf{K}_{t+1} & = & \int_0^1 \left(rac{1 - \mathsf{d}_{t+1,i}}{1 - \mathsf{D}}
ight) \mathbf{a}_{t,i} \, \mathsf{d}i = \mathbf{A}_t \ K_{t+1} & = & A_t / (\Psi_{t+1} \Phi_{t+1}) \end{array}$$

Blanchard (1985) Mortality and Insurance

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchardian scheme:

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if HH } i \text{ dies, is replaced by newborn} \\ \mathbf{a}_{t,i}/(1-D) & \text{if household } i \text{ survives} \end{cases}$$

• Implies for aggregate:

$$\begin{aligned} \mathbf{K}_{t+1} &= \int_0^1 \left(\frac{1 - \mathsf{d}_{t+1,i}}{1 - \mathsf{D}} \right) \mathbf{a}_{t,i} \, \mathsf{d}i = \mathbf{A}_t \\ \mathcal{K}_{t+1} &= A_t / (\Psi_{t+1} \Phi_{t+1}) \end{aligned}$$

Resources

Market resources:

$$\mathbf{m}_{t,i} = \underbrace{\mathbf{W}_{t}\boldsymbol{\ell}_{t,i}}_{\equiv \mathbf{y}_{t}} + \underbrace{\mathcal{R}_{t}}_{\mathsf{T}+\mathsf{r}_{t}} \mathbf{k}_{t,i}$$

End-of-Period 'Assets'—Unspent resources:

$$\mathbf{a}_{t,i} = \mathbf{m}_{t,i} - \mathbf{c}_{t,i}$$

• Capital transition depends on prob of survival 1 - D:

$$\mathbf{k}_{t+1,i} = \mathbf{a}_{t,i}/(1-D)$$

Resources

Market resources:

$$\mathbf{m}_{t,i} = \underbrace{\mathbf{W}_{t}\boldsymbol{\ell}_{t,i}}_{\equiv \mathbf{y}_{t}} + \underbrace{\mathcal{R}_{t}}_{\mathsf{T}+\mathsf{r}_{t}} \mathbf{k}_{t,i}$$

• End-of-Period 'Assets'—Unspent resources:

$$\mathbf{a}_{t,i} = \mathbf{m}_{t,i} - \mathbf{c}_{t,i}$$

• Capital transition depends on prob of survival 1 - D:

$$\mathbf{k}_{t+1,i} = \mathbf{a}_{t,i}/(1-D)$$

Resources

Market resources:

$$\mathbf{m}_{t,i} = \underbrace{\mathbf{W}_{t}\boldsymbol{\ell}_{t,i}}_{\equiv \mathbf{y}_{t}} + \underbrace{\mathscr{R}_{t}}_{\mathsf{T}+\mathsf{r}_{t}} \mathbf{k}_{t,i}$$

• End-of-Period 'Assets'—Unspent resources:

$$\mathbf{a}_{t,i} = \mathbf{m}_{t,i} - \mathbf{c}_{t,i}$$

• Capital transition depends on prob of survival 1 - D:

$$\mathbf{k}_{t+1,i} = \mathbf{a}_{t,i}/(1-\mathsf{D})$$

- ullet For exposition: Assume constant W and $\mathscr R$
- Normalize everything by $\mathbf{p}_{t,i} \equiv p_{t,i}P_t$, e.g. $m_{t,i} = \mathbf{m}_{t,i}/(p_{t,i}P_t)$
- $c(m, \Phi)$ is the function that solves:

$$v(m_{t,i}, \Phi_t) = \max_{c} u(c) + \emptyset \beta \mathbb{E}_t [(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, \Phi_{t+1})]$$

$$\mathbf{c}_{t,i} = \mathrm{c}(m_{t,i}, \Phi_t) \times p_{t,i} P_t$$

- ullet For exposition: Assume constant W and $\mathscr R$
- Normalize everything by $\mathbf{p}_{t,i} \equiv p_{t,i} P_t$, e.g. $m_{t,i} = \mathbf{m}_{t,i}/(p_{t,i} P_t)$
- $c(m, \Phi)$ is the function that solves:

$$v(m_{t,i}, \Phi_t) = \max_{c} u(c) + \mathcal{D}\beta \mathbb{E}_t [(\Phi_{t+1}\psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, \Phi_{t+1})]$$

$$\mathbf{c}_{t,i} = \mathrm{c}(m_{t,i}, \Phi_t) \times p_{t,i} P_t$$

- ullet For exposition: Assume constant W and $\mathscr R$
- Normalize everything by $\mathbf{p}_{t,i} \equiv p_{t,i}P_t$, e.g. $m_{t,i} = \mathbf{m}_{t,i}/(p_{t,i}P_t)$
- $c(m, \Phi)$ is the function that solves:

$$v(m_{t,i},\Phi_t) = \max_c u(c) + \mathcal{D}\beta \mathbb{E}_t \big[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i},\Phi_{t+1}) \big]$$

$$\mathbf{c}_{t,i} = \mathrm{c}(m_{t,i}, \Phi_t) \times p_{t,i} P_t$$

- ullet For exposition: Assume constant W and $\mathscr R$
- Normalize everything by $\mathbf{p}_{t,i} \equiv p_{t,i}P_t$, e.g. $m_{t,i} = \mathbf{m}_{t,i}/(p_{t,i}P_t)$
- $c(m, \Phi)$ is the function that solves:

$$v(m_{t,i},\Phi_t) = \max_c u(c) + \mathcal{D}\beta \mathbb{E}_t \big[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i},\Phi_{t+1}) \big]$$

$$\mathbf{c}_{t,i} = \mathrm{c}(m_{t,i}, \Phi_t) \times p_{t,i} P_t$$

Calvo Updating of Perceptions of Aggregate Shocks

- True Permanent income: $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$
- Tilde (P) denotes perceived variables
- Perception for consumer who has not updated for *n* periods:

$$\widetilde{P}_{t,i} = \mathbb{E}_{t-n}[P_t | \Omega_{t-n}] = \Phi_{t-n}^n P_{t-n}$$

because Φ is random walk

Calvo Updating of Perceptions of Aggregate Shocks

- True Permanent income: $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$
- Tilde (\widetilde{P}) denotes perceived variables
- Perception for consumer who has not updated for *n* periods:

$$\widetilde{P}_{t,i} = \mathbb{E}_{t-n}[P_t | \Omega_{t-n}] = \Phi_{t-n}^n P_{t-n}$$

because Φ is random walk

Calvo Updating of Perceptions of Aggregate Shocks

- True Permanent income: $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$
- Tilde (\widetilde{P}) denotes perceived variables
- Perception for consumer who has not updated for *n* periods:

$$\widetilde{P}_{t,i} = \mathbb{E}_{t-n} [P_t | \Omega_{t-n}] = \Phi_{t-n}^n P_{t-n}$$

because Φ is random walk

- **1** Income shocks are realized and every individual sees her true **y** and **m**, i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- ② Updating shocks realized: *i* observes true P_t , Φ_t w/ prob Π; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$
- **3** Consumes based on her perception, using $c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$ **Key Assumption:**
 - People act as if their perceptions about aggregate state $\{\widetilde{P}_t, \widetilde{\Phi}_t\}$ are the true aggregate state $\{P_t, \Phi_t\}$

- **1** Income shocks are realized and every individual sees her true **y** and **m**, i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- **②** Updating shocks realized: i observes true P_t, Φ_t w/ prob Π ; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$
- **3** Consumes based on her perception, using $c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$ Key Assumption:
 - People act as if their perceptions about aggregate state $\{\widetilde{P}_{t,i}, \widetilde{\Phi}_{t,i}\}$ are the true aggregate state $\{P_t, \Phi_t\}$

- **1** Income shocks are realized and every individual sees her true **y** and **m**, i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- **②** Updating shocks realized: i observes true P_t, Φ_t w/ prob Π ; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$
- **3** Consumes based on her perception, using $c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$ Key Assumption:
 - People act as if their perceptions about aggregate state $\{\widetilde{P}_{t,i}, \widetilde{\Phi}_{t,i}\}$ are the true aggregate state $\{P_t, \Phi_t\}$

- **1** Income shocks are realized and every individual sees her true **y** and **m**, i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- **②** Updating shocks realized: i observes true P_t , Φ_t w/ prob Π ; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$
- **3** Consumes based on her perception, using $c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$ Key Assumption:
 - People act as if their perceptions about aggregate state $\{\widetilde{P}_{t,i}, \widetilde{\Phi}_{t,i}\}$ are the true aggregate state $\{P_t, \Phi_t\}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}\widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But based on $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}\widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_t$
- Consumers behave according to frictionless consumption function
- But based on $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But based on $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But based on $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But based on $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$egin{array}{lll} \widetilde{c}_{t,i} &=& \mathrm{c}(\widetilde{m}_{t,i},\widetilde{\Phi}_{t,i}) \ \mathbf{c}_{t,i} &=& \widetilde{c}_{t,i} imes p_{t,i}\widetilde{P}_{t,i} \end{array}$$

• Correctly perceive level of their own spending $\mathbf{c}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But based on $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

• Correctly perceive level of their own spending $\mathbf{c}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But **based on** $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But **based on** $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

- Idiosyncratic and aggregate shocks same as PE/SOE
- Endogenous W_t and \mathcal{R}_t
- Aggregate market resources M_t is a state variable

$$v(m_{t,i}, M_t, \Phi_t) = \max_{c} u(c) + \emptyset \beta \mathbb{E}_t \left[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, M_{t+1}, \Phi_{t+1}) \right]$$

- Solved using Krusell and Smith (1998)
- Perception dynamics identical to sticky PE/SOE:

$$\mathbf{c}_{t,i} = \mathrm{c}(\widetilde{m}_{t,i}, \widetilde{M}_{t,i}, \widetilde{\Phi}_{t,i}) \times p_{t,i} \widetilde{P}_{t,i}$$

- Idiosyncratic and aggregate shocks same as PE/SOE
- Endogenous W_t and \mathcal{R}_t
- Aggregate market resources M_t is a state variable

$$v(m_{t,i}, M_t, \Phi_t) = \max_{c} u(c) + \emptyset \beta \mathbb{E}_t \left[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, M_{t+1}, \Phi_{t+1}) \right]$$

- Solved using Krusell and Smith (1998)
- Perception dynamics identical to sticky PE/SOE:

$$\mathbf{c}_{t,i} = \mathrm{c}(\widetilde{m}_{t,i}, \widetilde{M}_{t,i}, \widetilde{\Phi}_{t,i}) \times p_{t,i} \widetilde{P}_{t,i}$$

- Idiosyncratic and aggregate shocks same as PE/SOE
- Endogenous W_t and \mathcal{R}_t
- Aggregate market resources M_t is a state variable

$$v(m_{t,i}, M_t, \Phi_t) = \max_{c} u(c) + \varnothing \beta \mathbb{E}_t \big[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, M_{t+1}, \Phi_{t+1}) \big]$$

- Solved using Krusell and Smith (1998)
- Perception dynamics identical to sticky PE/SOE:

$$\mathbf{c}_{t,i} = \mathrm{c}(\widetilde{m}_{t,i}, \widetilde{M}_{t,i}, \widetilde{\Phi}_{t,i}) \times p_{t,i} \widetilde{P}_{t,i}$$

- Idiosyncratic and aggregate shocks same as PE/SOE
- Endogenous W_t and \mathcal{R}_t
- Aggregate market resources M_t is a state variable

$$v(m_{t,i}, M_t, \Phi_t) = \max_{c} u(c) + \mathcal{D}\beta \mathbb{E}_t [(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, M_{t+1}, \Phi_{t+1})]$$

- Solved using Krusell and Smith (1998)
- Perception dynamics identical to sticky PE/SOE:

$$\mathbf{c}_{t,i} = \mathrm{c}(\widetilde{m}_{t,i}, \widetilde{M}_{t,i}, \widetilde{\Phi}_{t,i}) \times p_{t,i} \widetilde{P}_{t,i}$$

- Idiosyncratic and aggregate shocks same as PE/SOE
- Endogenous W_t and \mathcal{R}_t
- Aggregate market resources M_t is a state variable

$$v(m_{t,i}, M_t, \Phi_t) = \max_{c} u(c) + \mathcal{D}\beta \mathbb{E}_t [(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, M_{t+1}, \Phi_{t+1})]$$

- Solved using Krusell and Smith (1998)
- Perception dynamics identical to sticky PE/SOE:

$$\mathbf{c}_{t,i} = \mathrm{c}(\widetilde{m}_{t,i}, \widetilde{M}_{t,i}, \widetilde{\Phi}_{t,i}) \times p_{t,i} \widetilde{P}_{t,i}$$

Regressions on Simulated and Actual Data

Dynan (2000)/Sommer (2007) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• χ : Extent of habits

Data: Micro:
$$\chi^{\text{Micro}} = 0.1$$
 (EER 2017 paper)
Macro: $\chi^{\text{Macro}} = 0.6$

- η : Fraction of Y going to 'rule-of-thumb' C = Y types Data: Micro: $0 < \eta^{\text{Micro}} < 1$ (Depends ...)
- Macro: $\eta^{ ext{Macro}} pprox 0.5$ (Campbell and Mankiw (1989))
- α : Precautionary saving (micro) or IES (Macro)

 Data: Micro: $\alpha^{\text{Micro}} < 0$ (Zeldes (1989))

 Macro: $\alpha^{\text{Macro}} < 0$ (but small)

 [In GE r depends roughly linearly on A]

Regressions on Simulated and Actual Data

Dynan (2000)/Sommer (2007) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• χ : Extent of habits

```
Data: Micro: \chi^{\text{Micro}} = 0.1 (EER 2017 paper)
Macro: \chi^{\text{Macro}} = 0.6
```

• η : Fraction of Y going to 'rule-of-thumb' C = Y types

```
Data: Micro: 0 < \eta^{\text{Micro}} < 1 (Depends ...)
Macro: \eta^{\text{Macro}} \approx 0.5 (Campbell and Mankiw (1989))
```

• α : Precautionary saving (micro) or IES (Macro)

Data: Micro: $\alpha^{\text{Micro}} < 0$ (Zeldes (1989))

Macro: $\alpha^{\text{Macro}} < 0$ (but small)

[In GE r depends roughly linearly on A]

Regressions on Simulated and Actual Data

Dynan (2000)/Sommer (2007) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• χ : Extent of habits

Data: Micro:
$$\chi^{\text{Micro}} = 0.1$$
 (EER 2017 paper)
Macro: $\chi^{\text{Macro}} = 0.6$

• η : Fraction of Y going to 'rule-of-thumb' C = Y types

```
Data: Micro: 0 < \eta^{\text{Micro}} < 1 (Depends ...)
Macro: \eta^{\text{Macro}} \approx 0.5 (Campbell and Mankiw (1989))
```

• α: Precautionary saving (micro) or IES (Macro)

```
Data: Micro: \alpha^{\text{Micro}} < 0 (Zeldes (1989))

Macro: \alpha^{\text{Macro}} < 0 (but small)

[In GE r depends roughly linearly on A]
```


Micro vs Macro: Theory and Empirics

$$\Delta \log \mathbf{C}_{t+1} \ \approx \ \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro (Separable)			
Theory	≈ 0	$0<\eta<1$	< 0
Data	≈ 0	$0 < \eta < 1$	< 0
Macro			
Theory: Separable	≈ 0	pprox 0	< 0
Theory: CampMan	≈ 0	≈ 0.5	< 0
Theory: Habits	≈ 0.75	≈ 0	< 0

Calibration I

Macroeconomic Parameters					
γ	0.36	Capital's Share of Income			
٦	$0.94^{1/4}$	Depreciation Factor			
$\sigma^2_{\Theta} \ \sigma^2_{\Psi}$	0.00001	Variance Aggregate Transitory Shocks			
$\sigma_{f \Psi}^2$	0.00004	Variance Aggregate Permanent Shocks			
Steady State of Perfect Foresight DSGE Model					
$\left(\sigma_{\Psi}=\sigma_{\Theta}=\sigma_{\psi}=\sigma_{ heta}=\wp=D=0, \Phi_t=1 ight)$					
$reve{K}/reve{K}^\gamma \ reve{K}$	12.0	SS Capital to Output Ratio			
K	48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\gamma)}$)			
Ŭ	2.59	SS Wage Rate $(=(1-\gamma) reve{K}^\gamma)$			
ř	0.03	SS Interest Rate $(=\gamma \breve{\mathcal{K}}^{\gamma-1})$			
$reve{\mathscr{R}}$	1.015	SS Between-Period Return Factor $(= 7 + \check{r})$			

Calibration II

Preference Parameters					
ho	2.	Coefficient of Relative Risk Aversion			
β_{SOE}	0.970	SOE Discount Factor			
β_{DSGE}	0.986	HA-DSGE Discount Factor $(=ec{\mathscr{R}}^{-1})$			
П	0.25	Probability of Updating Expectations (if Sticky)			
Idiosyncratic Shock Parameters					
$\sigma_{ heta}^2 \ \sigma_{\psi}^2$	0.120	Variance Idiosyncratic Tran Shocks (= $4 \times$ Annual)			
σ_{ψ}^2	σ_{ψ}^2 0.003 Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times Annu$				
Ø	0.050	Probability of Unemployment Spell			
D	0.005	Probability of Mortality			

Micro Regressions: Frictionless

$$\Delta \log \mathbf{c}_{t+1,i} \quad = \quad \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{\mathbf{a}}_{t,i} + \epsilon_{t+1,i}.$$

Model of Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.019			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.190	0.010
			(-)	
	0.061	0.016	-0.183	0.017
	(-)	(-)	(-)	

Micro Regressions: Sticky

$$\Delta \log \mathbf{c}_{t+1,i} \quad = \quad \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{\mathbf{a}}_{t,i} + \epsilon_{t+1,i}.$$

Model of Expectations	χ	η	α	$ar{R}^2$
Sticky				
-	0.012			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.191	0.010
			(-)	
	0.051	0.015	-0.185	0.016
	(-)	(-)	(-)	

Empirical Results for U.S.

\(\Delta \) lo	$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
χ	η	α	Method OLS/IV	$2^{\sf nd}$ Stage $ar{R}^2$	KP <i>p</i> -val Hansen J <i>p</i> val	
Nondurab	les and Se	rvices				
0.468***			OLS	0.216		
(0.076)						
0.830***			IV	0.278	0.222	
(0.098)					0.439	
	0.587***		IV	0.203	0.263	
	(0.110)				0.319	
		-0.17e-4	IV	-0.005	0.081	
		(5.71e-4)			0.181	
0.618***	0.305^{*}	-4.96e-4*	IV	0.304	0.415	
(0.159)	,	(2.94e-4)			0.825	
Memo: Fo	or instrume	ents $\mathbf{Z}_t, \Delta \log$	$\mathbf{C}_t = \mathbf{Z}_t \zeta,$	$R^2 = 0.358$		

Small Open Economy: Sticky

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + r$	$\eta \mathbb{E}_t[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var Independent Variables	OLS or IV	$2^{\rm nd}$ Stage \bar{R}^2	KP <i>p</i> -val Hansen J <i>p</i> -val
--	--------------	--------------------------------	--

Sticky : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log C_t^*$ $\Delta \log \mathbf{Y}_{t+1}$ A_{t} 0.508 OLS 0.263 (0.058)0.802 IV 0.260 0.000 (0.104)0.554 0.859 IV 0.198 0.060 (0.182)0.233 -8.26e-4^{••} IV 0.066 0.000 (3.99e-4)0.002 0.192 0.60e-4IV 0.660 0.2610.359 (0.187)(0.277) (5.03e-4)0.546

Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.260$; $\text{var}(\log(\xi_t)) = 5.99\text{e}-6$

Reported statistics are the average values for 100 samples of 200 Notes: simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t =$ $\{\Delta \log C_{t-2}, \Delta \log C_{t-3}, \Delta \log Y_{t-2}, \Delta \log Y_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log C_{t-2}, \Delta_8 \log Y_{t-2}\}.$

Small Open Economy: Frictionless

$\Delta \log \mathbf{C}_{t+1}$	$= \varsigma + \chi \Delta \log \mathbf{C}_t$	$+ \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}]$	$_{1}]+\alpha A_{t}+\epsilon _{t+1}$

Expectations : Dep Var OLS $2^{\rm nd}$ Stage KP p-val Independent Variables or IV \bar{R}^2 Hansen J p-val

Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_{t}^{*}$ $\Delta \log \mathbf{Y}_{t+1}$ A_{t} 0.295 OLS 0.087 (0.066)0.660 IV 0.040 0.237 (0.309)0.600 0.457 IV 0.035 0.059 (0.209)0.421-6.92e-4IV 0.026 0.000 (5.87e-4)0.365 0.258 0.45e-4IV 0.420 0.041 0.516 (0.428)(0.365) (9.51e-4)0.529 Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.039$; $\text{var}(\log(\xi_t)) = 5.99\text{e}-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coeffi-

Similared quarters each. Similar indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Heterogeneous Agents DSGE: Sticky

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_{t+1}$	$\mathbf{C}_t + \eta \mathbb{E}_t[$	$\Delta \log \mathbf{Y}_{t+1}] + \mathbf{Y}_{t+1}$	$\alpha A_t + \epsilon_{t+1}$
Expectations : Dep Var	OLS	2 nd Stage	KP <i>p</i> -val
Indopondent Variables	or IV	\bar{R}^2	Hansen I n-val

ınde	pendent varia	ibles	or IV	K-	Hansen J p-vai		
	Sticky : $\Delta \log C^*_{t+1}$ (with measurement error $C^*_t = C_t imes \xi_t$);						
٠ .	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.467			OLS	0.223			
(0.061)							
0.773			IV	0.230	0.000		
(0.108)					0.542		
	0.912		IV	0.145	0.105		
	(0.245)				0.187		
		$-0.97e-4^{\bullet}$	IV	0.059	0.000		
		(0.56e-4)			0.002		
0.670	0.171	0.12e-4	IV	0.231	0.460		
(0.181)	(0.363)	(0.86e-4)			0.551		
Memo: For	instruments	\mathbf{Z}_t , $\Delta \log \mathbf{C}_t^*$	$= \mathbf{Z}_t \zeta,$	$\bar{R}^2 = 0.232;$	$var(log(\xi_t)) = 4.16e6$		

Heterogeneous Agents DSGE: Frictionless

$\Delta \log \mathbf{C}_{t+1} =$	$\varsigma + \chi \Delta \log \mathbf{C}_t +$	$-\eta \mathbb{E}_t[\Delta \log \mathbf{Y}_t]$	$[+1] + \alpha A_t + \epsilon_{t+1}$
----------------------------------	---	--	--------------------------------------

Expectations : Dep Var	OLS	2 nd Stage	KP <i>p</i> -val
Independent Variables	or IV	\bar{R}^2	Hansen J <i>p</i> -val

Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_{t}^{*}$ $\Delta \log \mathbf{Y}_{t+1}$ A_{t} 0.189 OLS 0.036 (0.072)0.476 IV 0.020 0.318 (0.354)0.556 0.368 IV 0.017 0.107 (0.321)0.457 -0.34e-4IV 0.015 0.000 (0.98e-4)0.433 0.289 0.214 0.01e-4IV 0.020 0.572 (0.463)(0.583) (1.87e-4)0.531 Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.023$; $\text{var}(\log(\xi_t)) = 4.16\text{e}-6$

Reported statistics are the average values for 100 samples of 200 Notes: simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t =$ $\{\Delta \log C_{t-2}, \Delta \log C_{t-3}, \Delta \log Y_{t-2}, \Delta \log Y_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log C_{t-2}, \Delta_8 \log Y_{t-2}\}.$

 Simulate expected lifetime utility when market resources nonstochastically equal to W_t at birth under frictionless

$$\overline{\mathrm{v}}_0 \equiv \mathbb{E}[\mathrm{v}(W_t,\cdot)]$$

and sticky expectations: $\overline{\widetilde{v}}_0 \equiv \mathbb{E}[\widetilde{v}(W_t,\cdot)]$

- Expectations taken over state variables other than $m_{t,i}$
- Newborn's willingness to pay (as fraction of permanent income) to avoid having sticky expectations:

$$\omega = 1 - \left(\frac{\overline{\widetilde{v}}_0}{\overline{v}_0}\right)^{\frac{1}{1-\rho}}$$

• $\omega \approx 0.05\%$ of permanent income

 Simulate expected lifetime utility when market resources nonstochastically equal to W_t at birth under frictionless

$$\overline{\mathbf{v}}_0 \equiv \mathbb{E}[\mathbf{v}(\mathbf{W}_t, \cdot)]$$

and sticky expectations: $\overline{\widetilde{v}}_0 \equiv \mathbb{E}[\widetilde{v}(W_t,\cdot)]$

- Expectations taken over state variables other than $m_{t,i}$
- Newborn's willingness to pay (as fraction of permanent income) to avoid having sticky expectations:

$$\omega = 1 - \left(\frac{\overline{\widetilde{v}}_0}{\overline{v}_0}\right)^{\frac{1}{1-\rho}}$$

• $\omega \approx 0.05\%$ of permanent income $\omega_{SOF} = 4.82e-4$: ω_{HA} psc = 4.510

 Simulate expected lifetime utility when market resources nonstochastically equal to W_t at birth under frictionless

$$\overline{\mathbf{v}}_0 \equiv \mathbb{E}[\mathbf{v}(\mathbf{W}_t, \cdot)]$$

and sticky expectations: $\overline{\widetilde{v}}_0 \equiv \mathbb{E}[\widetilde{v}(W_t,\cdot)]$

- Expectations taken over state variables other than $m_{t,i}$
- Newborn's willingness to pay (as fraction of permanent income) to avoid having sticky expectations:

$$\omega = 1 - \left(\frac{\overline{\widetilde{v}}_0}{\overline{v}_0}\right)^{\frac{1}{1-\rho}}$$

• $\omega \approx 0.05\%$ of permanent income $\omega_{SOE} = 4.82 \text{e-}4$; $\omega_{HA-DSGE} = 4.51 \text{e-}$

 Simulate expected lifetime utility when market resources nonstochastically equal to W_t at birth under frictionless

$$\overline{\mathbf{v}}_0 \equiv \mathbb{E}[\mathbf{v}(\mathbf{W}_t, \cdot)]$$

and sticky expectations: $\overline{\widetilde{v}}_0 \equiv \mathbb{E}[\widetilde{v}(W_t,\cdot)]$

- Expectations taken over state variables other than $m_{t,i}$
- Newborn's willingness to pay (as fraction of permanent income) to avoid having sticky expectations:

$$\omega = 1 - \left(\frac{\overline{\widetilde{v}}_0}{\overline{v}_0}\right)^{\frac{1}{1-\rho}}$$

• $\omega \approx 0.05\%$ of permanent income $\omega_{SOE} = 4.82 \text{e-4}; \ \omega_{HA-DSGE} = 4.51 \text{e-4}$

Conclusion

Model with 'Sticky Expectations' of aggregate variables can match both micro and macro consumption dynamics

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro			
Data	≈ 0	$0<\eta<1$	< 0
Theory: Habits	≈ 0.75	$0<\eta<1$	< 0
Theory: Sticky Expectations	≈ 0	$0 < \eta < 1$	< 0
Macro			
Data	≈ 0.75	pprox 0	< 0
Theory: Habits	≈ 0.75	pprox 0	< 0
Theory: Habits	≈ 0.75	pprox 0	< 0

References I

- ABEL, ANDREW B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80(2), 38–42.
- ALVAREZ, FERNANDO, LUIGI GUISO, AND FRANCESCO LIPPI (2012): "Durable Consumption and Asset Management with Transaction and Observation Costs," American Economic Review, 102(5), 2272–2300.
- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93(2), 223–247.
- CALVO, GUILLERMO A. (1983): "Staggered Contracts in a Utility-Maximizing Framework," Journal of Monetary Economics, 12(3), 383–98.
- CAMPBELL, JOHN, AND ANGUS DEATON (1989): "Why is Consumption So Smooth?," The Review of Economic Studies, 56(3), 357-373, http://www.jstor.org/stable/2297552.
- CAMPBELL, JOHN Y., AND N. GREGORY MANKIW (1989): "Consumption, Income, and Interest Rates: Reinterpreting the Time-Series Evidence," in NBER Macroeconomics Annual, 1989, ed. by Olivier J. Blanchard, and Stanley Fischer, pp. 185–216. MIT Press, Cambridge, MA, http://www.nber.org/papers/w2924.pdf.
- CARROLL, CHRISTOPHER D. (2003): "Macroeconomic Expectations of Households and Professional Forecasters," Quarterly Journal of Economics, 118(1), 269–298, http://econ.jhu.edu/people/ccarroll/epidemiologyQJE.pdf.
- CHETTY, RAJ, AND ADAM SZEIDL (2016): "Consumption Commitments and Habit Formation," Econometrica, 84, 855–890.
- CHRISTIANO, LAURENCE J., MARTIN EICHENBAUM, AND CHARLES L. EVANS (2005): "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 113(1), 1–45.
- COIBION, OLIVIER, AND YURIY GORODNICHENKO (2015): "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," *American Economic Review*, 105(8), 2644–2678.
- CONSTANTINIDES, GEORGE M. (1990): "Habit Formation: A Resolution of the Equity Premium Puzzle," Journal of Political Economy, 98(3), 519-543.

References II

- DYNAN, KAREN E. (2000): "Habit Formation in Consumer Preferences: Evidence from Panel Data," *American Economic Review*, 90(3), http://www.jstor.org/stable/117335.
- FUHRER, JEFFREY C. (2017): "Intrinsic Persistence in Expectations: Evidence from Micro Data," Presentation at NBER Summer Institute, Federal Reserve Bank of Boston.
- GABAIX, XAVIER (2014): "A Sparsity-Based Model of Bounded Rationality," The Quarterly Journal of Economics, 129(4), 1661–1710.
- HALL, ROBERT E. (1978): "Stochastic Implications of the Life-Cycle/Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, 96, 971-87, Available at http://www.stanford.edu/~rehall/Stochastic-JPE-Dec-1978.pdf.
- HAVRANEK, TOMAS, MAREK RUSNAK, AND ANNA SOKOLOVA (2017): "Habit Formation in Consumption: A Meta-Analysis," European Economic Review, 95(C), 142–167.
- KRUSELL, PER, AND ANTHONY A. SMITH (1998): "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, 106(5), 867–896.
- LUCAS, ROBERT E. (1973): "Some International Evidence on Output-Inflation Tradeoffs," American Economic Review, 63, 326–334.
- MAĆKOWIAK, BARTOSZ, AND MIRKO WIEDERHOLT (2015): "Business Cycle Dynamics under Rational Inattention," The Review of Economic Studies, 82(4), 1502–1532.
- Mankiw, N. Gregory, and Ricardo Reis (2002): "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," *Quarterly Journal of Economics*, 117(4), 1295–1328.
- MUTH, JOHN F. (1960): "Optimal Properties of Exponentially Weighted Forecasts," Journal of the American Statistical Association, 55(290), 299–306.
- PISCHKE, JÖRN-STEFFEN (1995): "Individual Income, Incomplete Information, and Aggregate Consumption," Econometrica, 63(4), 805–40.
- REIS, RICARDO (2006): "Inattentive Consumers," Journal of Monetary Economics, 53(8), 1761-1800.

References III

- ROTEMBERG, JULIO J., AND MICHAEL WOODFORD (1997): "An Optimization-Based Econometric Model for the Evaluation of Monetary Policy," in *NBER Macroeconomics Annual*, 1997, ed. by Benjamin S. Bernanke, and Julio J. Rotemberg, vol. 12, pp. 297–346. MIT Press, Cambridge, MA.
- SIMS, CHRISTOPHER (2003): "Implications of Rational Inattention," Journal of Monetary Economics, 50(3), 665-690, available at http://ideas.repec.org/a/eee/moneco/v50y2003i3p665-690.html.
- SOMMER, MARTIN (2007): "Habit Formation and Aggregate Consumption Dynamics," Advances in Macroeconomics, 7(1), Article 21.
- Zeldes, Stephen P. (1989): "Consumption and Liquidity Constraints: An Empirical Investigation," Journal of Political Economy, 97, 305-46, Available at http://www.jstor.org/stable/1831315.

Markov Process for Aggregate Productivity Growth Φ

$$\ell_{t,i} = \theta_{t,i} \Theta p_{t,i} P_t, \quad p_{t+1,i} = p_{t,i} \psi_{t+1,i}, \quad P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$$

- Φ_t follows bounded (discrete) RW
- 11 states; average persistence 2 quarters
- Flexible way to match actual pty growth data

Equilibrium

	SOE Mod	SOE Model		Model
	Frictionless	Sticky	Frictionless	Sticky
Means				
Α	7.49	7.43	56.85	56.72
С	2.71	2.71	3.44	3.44
Standard Deviations				
Aggregate Time Se	ries ('Macro')			
log A	0.332	0.321	0.276	0.272
$\Delta \log \mathbf{C}$	0.010	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.010	0.010	0.007	0.007
Individual Cross Se	ctional ('Micro')			
log a	0.926	0.927	1.015	1.014
log c	0.790	0.791	0.598	0.599
log p	0.796	0.796	0.796	0.796
$\log \mathbf{y} \mathbf{y} > 0$	0.863	0.863	0.863	0.863
$\Delta \log c$	0.098	0.098	0.054	0.055
Cost of Stickiness	4.82e-4		4.51e-	-4

Cost of Stickiness

Define (for given parameter values):

- $v(W_t, \cdot)$ Newborns' expected value for frictionless model
- $\grave{v}(\mathsf{W},\cdot)$ Newborns' expected value if $\sigma_{\psi}^2=0$
- $\widetilde{v}(W,\cdot)$ Newborns' expected value from sticky behavior

Fact suggested by theory (and confirmed numerically):

$$v(W_t, \cdot) \approx \dot{v}(W_t, \cdot) - \kappa \sigma_{\Psi}^2,$$
 (1)

Guess (and verify) that:

$$\widetilde{\mathbf{v}}(\mathbf{W}_t, \cdot) \approx \dot{\mathbf{v}}(\mathbf{W}_t, \cdot) - (\kappa/\Pi)\sigma_{\mathbf{\Psi}}^2.$$
 (2)

Cost of Stickiness: ω and Π

Costs of stickiness ω and prob of aggr info updating Π

Notes: The figure shows how the utility costs of updating ω depend on the probability of updating of aggregate information Π in the SOE model.

Cost of Stickiness: Solution

Suppose utility cost of attention is $\iota\Pi$.

If Newborns Pick Optimal Π, they solve

$$\max_{\Pi} \ \hat{\mathbf{v}}(\mathbf{W}_t, \cdot) - (\kappa/\Pi)\sigma_{\Psi}^2 - \iota \Pi. \tag{3}$$

Solution:

$$\Pi = (\kappa/\iota)^{0.5} \sigma_{\Psi}. \tag{4}$$

Optimal Π characteristics:

- ullet Increasing in κ ('importance' to value of perm shocks)
- Increasing in σ_{ψ} ('magnitude' of perm shocks)
- ullet Decreasing as attention becomes more costly: $\iota\uparrow$

Is Muth-Lucas-Pischke Kalman Filter Equivalent?

No.

Muth (1960)-Lucas (1973)-Pischke (1995) Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth-Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- Signal extraction for aggregate \mathbf{Y}_t gives too little persistence in $\Delta \mathbf{C}_t$: $\chi \approx 0.17$

Muth-Pischke Perception Dynamics

- Optimal signal extraction problem (Kalman filter):
 Observe Y (aggregate income), estimate P, Θ
- Optimal estimate of P:

$$\hat{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi)\hat{P}_t,$$

where for signal-to-noise ratio $\varphi = \sigma_{\Psi}/\sigma_{\Theta}$:

$$\Pi = \varphi \sqrt{1 + \varphi^2/4} - \varphi^2/2, \tag{5}$$

- ullet But if we calibrate φ using observed macro data
 - ullet $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx \mathbf{0.17} \ \Delta \log \mathbf{C}_{t}$
 - Too little persistence!

