НИУ «МЭИ»

Кафедра «Инженерной экологии и охраны труда» Безопасность жизнедеятельности

ЛАБОРАТОРНАЯ РАБОТА №2 «ОЦЕНКА ОПАСНОСТИ ПОРАЖЕНИЯ ТОКОМ В ТРЁХФАЗНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЯХ НАПРЯЖЕНИЕМ ДО 1000 В»

Группа: А-03-21

Бригада: №4

ФИО студентов: Михайловский М.

Рехалов А.

Озеров С.

Юрасов А.

Максимов А.

ФИО преподавателя: Мирошниченко Д.А.

Звонкова Н.В.

Дата выполнения: 20.03.2025

Цель работы

Оценить опасность прикосновения человека к токоведущим частям трёхфазных сетей напряжением до 1000 В.

Изучить влияние параметров сетей (режима нейтрали, сопротивлений изоляции и ёмкости фазных проводников относительно земли) на опасность поражения человека электрическим током.

1 Оценка опасности прямого прикосновения к токоведущими частям

В ходе работы были проведены измерения тока, протекающего через тело человека, при прикосновении к токоведущим частям трёхфазной линии с фазным напряжением 220 В. Результаты измерений для разных типов сетей и прикосновений к различным проводам приведены в таблице 1.

Сопротивление тела человека вместе с основанием было принято равным $R_h + R_{\rm och} = 1$ кОм, а ёмкость изоляции проводов $C_1 = C_2 = C_3 = 15$ мк Φ .

Электрическая сеть	Режим работы	кОм		щии про-	Сопротивление замыкания, Ом		Ток через человека при прикосновении к проводникам, мА I_{h1} I_{h2} I_{h3} I_{hN}			
с изолированной ней-	нормальный		100	1	100	178	178	178	0	
тралью	аварийный					362	362	28	-	
с глухозаземлённой	нормальный					220	220	220	0	
нейтралью	аварийный					212	230	230	8	

Таблица 1. Токи протекающие через человека при прикосновении к токоведущим частям

1.1 Сеть с изолированной нейтралью

Принципиальная схема для случая прикосновения к фазному проводу IT сети в нормальном режиме представлена на рис. 1.1. Прикасаясь к фазному проводу человек оказывается под фазным напряжением и через него течёт ток:

$$I_h = \frac{U_{\Phi}}{R_h + R_{\text{och}} + \frac{Z}{3}}$$

Измеренное значение тока составило 178 мА. Такой ток является фибрилляционным и смертельно опасен.

При прикосновении к нейтрали в нормальном режиме никакой ток через человека не будет течь, потому что на ней нет напряжения.

Рис. 1.1. Прикосновение в IT сети в нормальном режиме

Рассмотрим аварийный режим сети IT. Соответствующие принципиальные схемы представлены на рис. 1.2-1.3. При прикосновении к исправному проводу человек оказывается под линейным напряжением:

$$I_h = \frac{U_{\Phi}\sqrt{3}}{R_h + R_{\text{och}} + r_{\text{3M}}}$$

Измеренное значение тока составило 362 мА. Это смертельно опасный фибрилляционный ток.

Рассмотрим случай, если человек берётся за неисправный провод. Этот случай аналогичен прикосновению к сети IT в нормальном режиме с точки зрения контурного тока. Однако, большая часть этого контурного тока будет протекать через сопротивление пробоя. Ток через человека составит:

$$I_{h} = \underbrace{\frac{U_{\phi}}{\left|r_{3M}\right|\left|\left(R_{h} + R_{\text{och}}\right) + \frac{Z}{3}\right|}}_{I_{r}} \cdot \frac{r_{3M}}{r_{3M} + R_{h} + R_{\text{och}}}$$

В результате измерения получили значение в 28 мА. Это значение соответствует неотпускающему току, который тоже является опасным для человека, но,

можно заметить, что это значение значительно меньше, чем если человек прикасается к исправному проводу.

Рис. 1.2. Прикосновение к фазному проводу в IT сети в аварийном режиме

Рис. 1.3. Прикосновение к аварийному проводу в IT сети в аварийном режиме

1.2 Сеть с глухозаземлённой нейтралью

Принципиальная схема прикосновения человека к токоведущим частям TN сети приведена на рис. 1.4. Когда человек касается фазного провода — ток в основном идёт через тело человека и заземляющее устройство, которое в данном случае имеет сопротивление $r_0 = 4$ Ом. Сила тока проходящего через человека:

$$I_h = \frac{U_{\Phi}}{R_h + R + r_0}$$

Измеренное значение тока составило 220 мА. Это смертельно опасная величина значительно превышающая пороговый фибрилляционный ток.

Рис. 1.4. Прикосновение в TN сети в нормальном режиме

Рассмотрим аварийный режим в сети TN. При прикосновении к исправному фазному проводу человек попадает под напряжение несколько большее, чем фазное. Это следует из рассмотрения худшего и лучшего случая ($r_{\text{3M}} \ll r_0$ и $r_{\text{3M}} \gg r_0$ соответственно):

$$\frac{U_{\rm \varphi}}{R_h + R_{\rm och}} < I_h < \frac{U_{\rm \varphi} \sqrt{3}}{R_h + R_{\rm och}}$$

Измеренное значение тока составило 230 мА. Это смертельно опасное значение значительно превышающее пороговый фибрилляционный ток.

Рис. 1.5. Прикосновение к фазному проводу в TN сети в аварийном режиме

Рассмотрим случай, когда человек прикоснулся к аварийному проводу, рис. 1.6. Ток через человека составляет:

$$I_{h} = \underbrace{\frac{U_{\phi}}{r_{\text{3M}}||(R_{h} + R_{\text{OCH}}) + r_{0}} \cdot \frac{r_{\text{3M}}}{r_{\text{3M}} + R_{h} + R_{\text{OCH}}}}_{I_{K}}$$

Измерение составило 212 мА. Это смертельно опасное значение значительно превышающее пороговый фибрилляционный ток.

Рис. 1.6. Прикосновение к аварийному проводу в TN сети в аварийном режиме

Рассмотрим прикосновение человека к глухозаземлённой нейтрали в аварийном режиме, рис. 1.7. В такой ситуации ток по человеку тоже течёт, но большая часть контурного тока проходит через заземляющее устройство:

$$I_h = \underbrace{\frac{U_{\Phi}}{r_{\text{3M}} + r_0 || (R_h + R_{\text{och}})}}_{I_{\text{K}}} \cdot \underbrace{\frac{r_0}{r_0 + R_h + R_{\text{och}}}}$$

Измерение составило 8 мА. Это ощутимый ток, но он не является опасным.

Рис. 1.7. Прикосновение к аварийному проводу в TN сети в аварийном режиме

2 Влияние параметров изоляции на ток I_h

Полученные зависимости $I_h(R)$ и $I_h(C)$ представлены в табл.2-3. Полученные графики представлены на рис. 2.1-2.2. Как видно, в нормальном режиме работы в сетях с глухозаземлённой нейтралью значение тока, которому подвергается человек дотронувшийся до фазного провода не изменяется. В сетях же с изолированной нейтралью значение этого тока меньше и его значение тем больше, чем больше сопротивление или ёмкость изоляции проводов.

Тип сети	F	$R_1 = R$	$R_2 = R$	$C_1 = C_2 = C_3$, мк Φ		
тип ссти	10	25	50	100	200	$C_1 - C_2 - C_3$, MK Φ
Сеть IT. I_h , мА	166	173	176	178	179	15
Сеть TN. I_h , мА	220	220	220	220	220	15

Таблица 2. Зависимость поражающего человека тока от сопротивления изоляции

Тип сети	($C_1 = C_2$	$c_2 = C_3$	$R_1 = R_2 = R_3$, кОм		
	0	5	10	15	20	$K_1 - K_2 - K_3$, KOM
Сеть IT. I_h , мА	6.41	91.7	149	178	193	100
Сеть TN. I_h , мА	220	220	220	220	220	100

Таблица 3. Зависимость поражающего человека тока от ёмкости проводов

Рис. 2.1. Зависимость $I_h(R)$

Рис. 2.2. Зависимость $I_h(C)$

3 Выводы

В ходе этой работы была проанализирована опасность прикосновения человека к токоведущим частям трёхфазной сети с номинальным фазным напряжением в 220 В. Во многих случаях такое прикосновение несёт опасность для человека.

Можно отметить, что наименее опасным является прикосновение к нейтрали. В нормальном режиме она не находится под напряжением и никакой опасности не несёт. В аварийном режиме прикосновение к ней пропускает через человека ток, но его значение невелико и будет лишь ощутимо.

Прикосновение к фазным проводам вне зависимости от общей исправности системы и этого конкретно провода опасно. Почти во всех случаях человек подвергается фибрилляционному току. В случае взятия за неисправный провод в сети с изолированной нейтралью человек подвергается неотпускающему току, что тоже несёт опасность, но значение такого тока меньше, чем фибрилляционного.