# Computational Statistics Assignment

### By:

Raja Kumar Dubey 15MA20033

### **INDEX**

#### 1. Answer:

1.a – PCA Regression

1.b – RLS Regression

1.c – RLS Regression

1.d – LW Regression

### 2. Code

2.a – PCA Regression

2.b - RLS Regression

2.c – RLS Regression

2.d – LW Regression

## 1.a - PCA Regression

The data contained 4-dimensional input and 1 dimensional output.

1.The least square estimate gave following results-

RMSE = 0.938995291966

Coefficients = [b0=3.31034229, b1=-11.55135449, b2=-7.23717124, b3=-14.41072607, b4=13.80669419])

# Plot of predicted and actual values:



So estimator



# 2. Checking for Multicollinearity:

condition numbers are

5.16558698417 9.39286938742 66.7547028642 2145.30406831

So clearly the Multicollinearity is present.

- 3. So we decide to remove it, the variance explained are
- 0.76016785312
- 0.907327867161
- 0.988258179483
- 0.999645659623
- 1.0

so lets take take first 3 singular values and divide matrix U and V accordingly. For U we take first 60 column vectors and first 3 row vector for V.

4. Now we generate the estimator using SVD. We divide the above matrix into noise and non-noise part. And the estimator gave following results

RMSE = 1.0952521979 coefficients = [-0.42664246, 1.82105009, -6.94679601, -1.30434264, 0.51410469] (b0-b4)

Plots are as follows:



So clearly PCR estimator had almost same RMSE but removed Multicollinearity

## 1.b - RLS Regression

RMSE from Least square estimator = 1.82303968121 coefficients = array([[-12.56629909],[ 0.34782342],[ -0.7261294 ]])(b0-b2)

The plot from Least square model is:



Result from Recursive least square model is as follows:

With lambada as forgetting factor

#### a.

This is for lambada value 1 The error is 1.75388245306

The graphical description is as follows:



b.
This is for lambada value 0.99
The error is 1.68946133833
The graphical description is as follows:



c.
This is for lambada value 0.95
The error is 1.67315242421
The graphical description is as follows:



d.
This is for lambada value 0.2
The error is 2.26474148773
The graphical description is as follows:



So clearly the performance(RMSE wise) was

lambada = 0.95 > lambada = 0.99 > lambada = 1 > Least square > lambada = 0.2

# 1.c - RLS Regression

RMSE from Least square estimator = 1.89282800605 coefficients = array([[-11.96449068],[ -0.01691908],[ -0.76234721]])(b0-b2)

The plot from Least square model is:



Result from Recursive least square model is as follows:

With lambada as forgetting factor

a.

This is for lambada value 1 The error is 1.86971133096

The graphical description is as follows:



b.
This is for lambada value 0.99
The error is 1.82757110812
The graphical description is as follows:



c.
This is for lambada value 0.95
The error is 1.82592998912
The graphical description is as follows:



d.
This is for lambada value 0.2
The error is 2.56410119291
The graphical description is as follows:



So clearly the performance(RMSE wise)was

lambada = 0.95 > lambada = 0.99 >lambada = 1 > Least square>lambada = .2

## 1.d - LW Regression

1. For the first function we selected the points having weights 1 and used them to predict the particular data point.

RMSE without any tuning = 17.0141325039



We modeled for different values insteat of 1and got following RMSE D = ([ 10.0827665 , 14.72855027, 18.81187423, 22.31142199,25.91781807, 29.12573541, 33.48873716, 38.32762274,43.63625574, 61.54754169])

Respective RMSE RMSE = 6.04760682445 0.951587715293 0.904875682561 0.860949097348 0.849865035695 0.841473279668 0.820338051881 0.803163881336

0.797752716068

#### 0.799837755533

The initial distance used for weight is performing bad. Clearly by incresing the minimum distance for weight the model is performing good.

## 2. For second weighting function.

Due to explosion of weights I had to normalize the weight square by 2 before taking it's exponent. RMSE obtained = 0.798647576896

So clearly the model performed slightly better than Least square(RMSE =0.0.799837755533)

The plot is as given below:



### 3. For the third weighting function:

We again used the normalisation before using the weights.

The RMSE obtained is by far the best.

RMSE = 0.0.780428369406 better that LS(RMSE = 0.799837755533)



#### 2.a - PCA Regression

```
import pandas as pd
import numpy as np
data = pd.read_csv("/home/stark/Downloads/cs_ass1/x1234y.csv")
input1 = np.array(data)
input1[:,0] = 1
ytest,ytrain = input1[:100:,5],input1[100:,5]
xtest,xtrain = input1[:100,0:5],input1[100:,0:5]
from numpy.linalg import inv
a = (xtrain.T).dot(xtrain)
ainv = inv(a)
a1 = ainv.dot(xtrain.T)
b = a1.dot(ytrain)
ycap = xtest.dot(b)
import matplotlib.pyplot as plt
%matplotlib inline
plt.subplot(3, 1, 1)
plt.title('Actual y')
plt.xlabel('x')
plt.subplot(3, 1, 1)
plt.plot(ytest, 'o', label='actual y')
plt.plot(ycap, 'o', label='predicted y')
plt.subplot(3, 1, 1)
plt.legend(loc='upper center', ncol=4)
plt.gcf().set_size_inches(10, 10)
plt.show()
print(np.sqrt(np.mean((ytest-ycap)**2)))
U, s, V = np.linalg.svd(xtrain, full_matrices=True)
S = np.zeros(xtrain.shape)
S[:5,:5] = np.diag(s)
print(s[0]/s[1],s[0]/s[2],s[0]/s[3],s[0]/s[4])
print(s[0]/np.sum(s))
print((s[0]+s[1])/np.sum(s))
print((s[0]+s[1]+s[2])/np.sum(s))
print((s[0]+s[1]+s[2]+s[3])/np.sum(s))
print((s[0]+s[1]+s[2]+s[3]+s[4])/np.sum(s))
U1 = U[:,:60]
S1 = S[:60,:3]
V1 = V[:3,:]
U2 = U[:,60:]
S2 = S[60:,3:]
V2 = V[3:,:]
usefull = np.dot(U1,np.dot(S1,V1))
noise = np.dot(U2,np.dot(S2,V2))
w = np.dot(xtrain,V1.T)
r1 = np.dot(w.T,w)
r2 = inv(r1)
r3 = np.dot(r2,w.T)
r = np.dot(r3,ytrain)
```

```
bnew = np.dot(V1.T,r)
ycap1 = np.dot(xtest,bnew)
print(np.sqrt(np.mean((ytest-ycap1)**2)))
import matplotlib.pyplot as plt
%matplotlib inline
plt.subplot(3, 1, 1)
plt.title('Actual y')
plt.xlabel('x')
plt.subplot(3, 1, 1)
plt.plot(ytest, 'o', label='actual v')
plt.plot(ycap1, 'o', label='predicted y')
plt.subplot(3, 1, 1)
plt.legend(loc='upper center', ncol=4)
plt.gcf().set size inches(10, 10)
plt.show()
2.b - RLS Regression
import pandas as pd
import numpy as np
input_train = pd.read_csv("/home/stark/Downloads/cs_ass2/Problem1_Input_Training.csv")
output train =
pd.read csv("/home/stark/Downloads/cs ass2/Problem1 Output Training.csv",header =
None)
input_test = pd.read_csv("/home/stark/Downloads/cs_ass2/Problem1_Input_Test.csv")
output_test =
pd.read csv("/home/stark/Downloads/cs ass2/Problem1 Output Test.csv",header = None)
input_train = np.array(input_train)
input_train[:,0] = 1
output_train = np.array(output_train)
input_test = np.array(input_test)
input test[:,0] = 1
output_test = np.array(output_test)
import matplotlib.pyplot as plt
%matplotlib inline
fig, ax = plt.subplots()
x = list(range(1,51))
v = output train
ax.plot(x,y)
fig.suptitle('test title')
ax.set_xlabel('xlabel')
ax.set vlabel('ylabel')
ax.xaxis.label.set_size(20)
plt.draw()
#generating Least square model
from numpy.linalg import inv
a = (input train.T).dot(input train)
ainv = inv(a)
a1 = ainv.dot(input_train.T)
b = a1.dot(output train)
ycap = input test.dot(b)
e = np.sqrt(np.sum(np.square(output_test-ycap))/50)
```

```
print(e)
import matplotlib.pyplot as plt
%matplotlib inline
plt.title('Actual y')
plt.xlabel('x')
plt.subplot(3, 1, 1)
plt.plot(output_test, 'o', label='actual y')
plt.plot(ycap, 'o', label='predicted y')
plt.subplot(3, 1, 1)
plt.legend(loc='upper center', ncol=4)
plt.gcf().set size inches(10, 8)
plt.show()
inp = np.zeros([100,3])
out = np.zeros([100,1])
inp[:50,:] = input_train
inp[50:,:] = input_test
out[:50,:] = output_train
out[50:,:] = output test
#inp = np.array(inp,dtype=np.float32)
#out = np.array(out,dtype=np.float32)
y_pred = np.zeros([50,1])
import matplotlib.pyplot as plt
%matplotlib inline
lam = [1,0.99,0.95,0.2]
a = (input_train.T).dot(input_train)
ainv = inv(a)
a1 = ainv.dot(input_train.T)
b0 = a1.dot(output_train)
y_pred[0] = inp[50].dot(b0)
M0 = ainv
for l in lam:
  for i in range(50):
    D1 = 1
    D2 = inp[50+i].dot(M0)
    D2 = D2.dot(inp[50+i].T)
    D = D1 + D2
    N = M0.dot(inp[50+i].T)
    N = N.dot(inp[50+i])
    N = np.dot(N,M0)
    M1 = M0 - N/D
    M1 = M1/D1
    C = M1.dot(inp[50+i].T)
    P = out[50+i]-np.dot(inp[50+i],b0)
    T2 = C*P
    TR = np.reshape(T2,b0.shape)
    b1 = b0 + TR
    if(i!=49):
       y_pred[i+1] = inp[51+i].dot(b1)
    b0 = b1
    M0 = M1
  e = np.sqrt(np.sum(np.square(output_test-y_pred))/50)
```

```
print("This is for lambada value "+str(l))
  print("The error is "+str(e))
  print("The graphical description is as follows:")
  plt.title('Actual y')
  plt.xlabel('x')
  plt.subplot(3, 1, 1)
  plt.plot(output_test, 'o', label='actual y')
  plt.plot(y_pred, 'o', label='predicted y')
  plt.subplot(3, 1, 1)
  plt.legend(loc='upper center', ncol=4)
  plt.gcf().set_size_inches(13, 10)
  plt.show()
2.c - RLS Regression
import pandas as pd
import numpy as np
input_train = pd.read_csv("/home/stark/Downloads/cs_ass2/Problem1_Input_Training.csv")
output train =
pd.read_csv("/home/stark/Downloads/cs_ass2/Problem2_Output_Training.csv",header =
None)
input_test = pd.read_csv("/home/stark/Downloads/cs_ass2/Problem1_Input_Test.csv")
output test =
pd.read_csv("/home/stark/Downloads/cs_ass2/Problem2_Output_Test.csv",header = None)
input_train = np.array(input_train)
input_train[:,0] = 1
output train = np.array(output train)
input_test = np.array(input_test)
input_test[:,0] = 1
output_test = np.array(output_test)
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x = list(range(1,51))
y = output_train
ax.plot(x,y)
fig.suptitle('test title')
ax.set xlabel('xlabel')
ax.set vlabel('ylabel')
ax.xaxis.label.set_size(20)
plt.draw()
#plotting input
import matplotlib.pyplot as plt
%matplotlib inline
plt.title('Actual y')
plt.xlabel('x')
plt.subplot(3, 1, 1)
plt.plot(output_train, 'o', label='actual y')
plt.legend(loc='upper center', ncol=4)
plt.gcf().set size inches(15, 10)
plt.show()
```

```
#generating Least square model
from numpy.linalg import inv
a = (input_train.T).dot(input_train)
ainv = inv(a)
a1 = ainv.dot(input_train.T)
b = a1.dot(output_train)
ycap = input_test.dot(b)
e = np.sqrt(np.sum(np.square(output_test-ycap))/50)
print(e)
import matplotlib.pyplot as plt
%matplotlib inline
plt.title('Actual y')
plt.xlabel('x')
plt.subplot(3, 1, 1)
plt.plot(output_test, 'o', label='actual y')
plt.plot(ycap, 'o', label='predicted y')
plt.subplot(3, 1, 1)
plt.legend(loc='upper center', ncol=4)
plt.gcf().set_size_inches(15, 10)
plt.show()
# Recursive least square algorithm
inp = np.zeros([100,3])
out = np.zeros([100,1])
inp[:50,:] = input_train
inp[50:,:] = input_test
out[:50,:] = output train
out[50:,:] = output_test
#inp = np.array(inp,dtype=np.float32)
#out = np.array(out,dtype=np.float32)
y_pred = np.zeros([50,1])
import matplotlib.pyplot as plt
%matplotlib inline
lam = [1,0.99,0.95,0.2]
a = (input_train.T).dot(input_train)
ainv = inv(a)
a1 = ainv.dot(input_train.T)
b0 = a1.dot(output train)
y \text{ pred}[0] = inp[50].dot(b0)
M0 = ainv
for l in lam:
  for i in range(50):
    D1 = 1
    D2 = inp[50+i].dot(M0)
    D2 = D2.dot(inp[50+i].T)
    D = D1+D2
    N = M0.dot(inp[50+i].T)
    N = N.dot(inp[50+i])
    N = np.dot(N,M0)
    M1 = M0 - N/D
    M1 = M1/D1
    C = M1.dot(inp[50+i].T)
```

```
P = out[50+i]-np.dot(inp[50+i],b0)
    T2 = C*P
    TR = np.reshape(T2,b0.shape)
    b1 = b0 + TR
    if(i!=49):
       y_pred[i+1] = inp[51+i].dot(b1)
    b0 = b1
    M0 = M1
  e = np.sqrt(np.sum(np.square(output_test-y_pred))/50)
  print("This is for lambada value "+str(l))
  print("The error is "+str(e))
  print("The graphical description is as follows:")
  plt.title('Actual v')
  plt.xlabel('x')
  plt.subplot(3, 1, 1)
  plt.plot(output_test, 'o', label='actual y')
  plt.plot(y_pred, 'o', label='predicted y')
  plt.subplot(3, 1, 1)
  plt.legend(loc='upper center', ncol=4)
  plt.gcf().set_size_inches(15, 10)
  plt.show()
2.d – LW Regression
import pandas as pd
import numpy as np
from numpy.linalg import inv
input_train = pd.read_csv("/home/stark/Downloads/cs_ass2/Problem1_Input_Training.csv")
output train =
pd.read_csv("/home/stark/Downloads/cs_ass2/Problem3_Output_Training.csv",header =
None)
input_test = pd.read_csv("/home/stark/Downloads/cs_ass2/Problem1_Input_Test.csv")
output_test =
pd.read csv("/home/stark/Downloads/cs ass2/Problem3 Output Test.csv",header = None)
input train = np.array(input train)
input train[:,0] = 1
output_train = np.array(output_train)
input test = np.array(input test)
input test[:,0] = 1
output_test = np.array(output_test)
import matplotlib.pyplot as plt
%matplotlib inline
fig, ax = plt.subplots()
x = list(range(1,51))
y = output_train
ax.plot(x,y)
fig.suptitle('test title')
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')
ax.xaxis.label.set size(20)
plt.draw()
dist_mat = np.zeros([input_test.shape[0],input_train.shape[0]])
```

```
for te in range(input_test.shape[0]):
  for tr in range(input train.shape[0]):
     dist_mat[te][tr] = np.sqrt(np.sum(np.square(input_test[te]- input_train[tr])))
percent = np.zeros([10])
for i in range(10):
  percent[i] = (np.percentile(dist_mat,10*(i+1)))
from numpy.linalg import inv
x_{inp} = np.zeros([50,3])
y out = np.zeros([50,1])
y_final = np.zeros([50,1])
k = percent
for l in k:
  for i in range(input_test.shape[0]):
     count = 0
    for j in range(input_train.shape[0]):
       if(dist_mat[i][j]<=l):
         x_inp[count,:] = input_train[j,:]
         y_out[count,:] = output_train[j,:]
         count = count+1
    x = x_{inp}[:count,:]
    y = y_out[:count,:]
    a = (x.T).dot(x)
    ainv = inv(a)
    a1 = ainv.dot(x.T)
    b = a1.dot(v)
    y_final[i] = input_test[i].dot(b)
  e = np.sqrt(np.sum(np.square(output_test-y_final))/50)
  print(e)
  from numpy import *
  import matplotlib.pyplot as plt
  %matplotlib inline
  x = list(range(1,51))
  plt.plot(x,y_final,'r')
  plt.plot(x,output_test,'b')
  #plt.show()
#print(y final-output test)
#two dimensional data hard to visualise
#clearly from the plot of the data it can be said that local points are not able to predict the
point.
for i in range(input_test.shape[0]):
  coun = 0
  for j in range(input train.shape[0]):
    if(dist_mat[i][j]<=7):
       coun = coun + 1
  #print(coun)
# we need atleast 4% of the test to make a staright line.
from numpy.linalg import inv
x_{inp} = np.zeros([50,3])
y_out = np.zeros([50,1])
y_final = np.zeros([50,1])
for i in range(input test.shape[0]):
  count = 0
```

```
for j in range(input_train.shape[0]):
    if(dist_mat[i][j]<=1):
       x_inp[count,:] = input_train[j,:]
       v out[count,:] = output train[j,:]
       count = count+1
  if(count<2):
    ind = np.argpartition(dist_mat[i,:], 2)[:2]
    for i in range(2):
       x_inp[i,:] = input_train[ind[i],:]
       y_out[i,:] = output_train[ind[i],:]
    count = 2
  x = x inp[:count,:]
  y = y_out[:count,:]
  a = (x.T).dot(x)
  ainv = inv(a)
  a1 = ainv.dot(x.T)
  b = a1.dot(y)
  y_final[i] = input_test[i].dot(b)
  #print(y_final[i])
e = np.sqrt(np.sum(np.square(output_test-y_final))/50)
print(e)
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inline
x = list(range(1,51))
plt.plot(x,y_final,'r')
plt.plot(x,output test,'b')
plt.xlabel('Data point')
plt.ylabel('Predicted(Red) and actual Y(Blue)')
plt.show()
#only 2% improvement
#even after finding the minimum distanced 2 points in case when no points exist in radius of
1.very less improvement
y_final = np.zeros([50,1])
x = np.zeros(input_train.shape[0])
for i in range(input test.shape[0]):
  for j in range(input_train.shape[0]):
    x[i] = (-0.5*dist mat[i][i]*dist mat[i][i])
  norms = np.linalg.norm(x, keepdims = True)
  x /= norms
  x = np.exp(x)
  #print(x)
  dist_new = np.diag(x)
  winv = inv(dist_new)
  a1 = (input_train.T).dot(winv)
  a2 = a1.dot(input train)
  ainv = inv(a2)
  a3 = ainv.dot(input_train.T)
  a4 = a3.dot(winv)
  a5 = a4.dot(output_train)
  y final[i] = input test[i].dot(a5)
e = np.sqrt(np.sum(np.square(output_test-y_final))/50)
```

```
print(e)
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inline
x = list(range(1,51))
plt.plot(x,y_final,'r')
plt.plot(x,output_test,'b')
plt.xlabel('Data point')
plt.ylabel('Predicted(Red) and actual Y(Blue)')
plt.show()
y_final = np.zeros([50,1])
x = np.zeros(input train.shape[0])
for i in range(input_test.shape[0]):
  for j in range(input_train.shape[0]):
    if(1/dist_mat[i][j]>10):
       x[j] = 10
    else:
       x[j] = 1/dist_mat[i][j]
  norms = np.linalg.norm(x, keepdims = True)
  x = norms
  dist_new = np.diag(x)
  winv = inv(dist_new)
  a1 = (input_train.T).dot(winv)
  a2 = a1.dot(input_train)
  ainv = inv(a2)
  a3 = ainv.dot(input_train.T)
  a4 = a3.dot(winv)
  a5 = a4.dot(output_train)
  y_final[i] = input_test[i].dot(a5)
e = np.sqrt(np.sum(np.square(output_test-y_final))/50)
print(e)
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inline
x = list(range(1,51))
plt.plot(x,y_final,'r')
plt.plot(x,output_test,'b')
plt.xlabel('Data point')
plt.ylabel('Predicted(Red) and actual Y(Blue)')
plt.show()
# from LSE
from numpy.linalg import inv
a = (input_train.T).dot(input_train)
ainv = inv(a)
a1 = ainv.dot(input_train.T)
b = a1.dot(output train)
ycap = input_test.dot(b)
e = np.sqrt(np.sum(np.square(output_test-ycap))/50)
print(e)
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inline
```

x = list(range(1,51))
plt.plot(x,ycap,'r')
plt.plot(x,output\_test,'b')
plt.show()

THE END

- RAJA KUMAR DUBEY
- -15MA20033