

展门大学《大学物理 B (下)》课程期末试卷 (A 卷)

(考试时间: <u>2024</u>年<u>1</u>月)

一、选择题: 本题共 10 小题, 每小题 2 分, 共 20 分。请将每题答案写在答题纸的对应位置。
每小题给出的四个选项中只有一个选项正确。错选、多选或未选的得 0 分。
1. 白光是由赤、橙、黄、绿、青、蓝、紫七种颜色光构成的复色光。当白光射入玻璃三棱
镜时,会出现色散现象。根据折射定律可确定,在玻璃中,七种颜色光的光速最大的是(
)
(A) 赤光 (B) 绿光 (C) 蓝光 (D) 紫光
2. 一双凹面薄透镜折射率为 n ,置于折射率为 n "的介质中,则下列说法正确的是()
(A) 若 n>n′,平行光通过透镜是发散的;
(B) 若 n>n′,平行光通过透镜是汇聚的;
(C) 若 n <n′,平行光通过透镜是发散的;< td=""></n′,平行光通过透镜是发散的;<>
(D) 平行光通过双凹薄透镜是发散的,与周围介质无关。
3. 波长为 0.6μm 的单色光垂直照射到厚度为 1.2μm 的肥皂泡薄膜上,薄膜折射率为 1.5,
3. 波长为 0.6μm 的单色光垂直照射到厚度为 1.2μm 的肥皂泡薄膜上,薄膜折射率为 1.5,两束反射光的光程差为 ()
·
两束反射光的光程差为()
两束反射光的光程差为 () (C) 3.6μm (D) 1.8μm
两束反射光的光程差为 () (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ()
两束反射光的光程差为 () (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 () (A) 使屏靠近双缝 (B) 把两个缝的宽度稍微调窄
两束反射光的光程差为 () (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 () (A) 使屏靠近双缝 (B) 把两个缝的宽度稍微调窄 (C) 使两缝的间距变小 (D) 改用波长较小的单色光源
两束反射光的光程差为 () (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 () (A) 使屏靠近双缝 (B) 把两个缝的宽度稍微调窄 (C) 使两缝的间距变小 (D) 改用波长较小的单色光源 5. 如图,S1、S2是两个相干光源,它们到 P 点的距离分别为 r1 和 r2。路径 S1P 垂直穿过一
两束反射光的光程差为() (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是() (A) 使屏靠近双缝 (B) 把两个缝的宽度稍微调窄 (C) 使两缝的间距变小 (D) 改用波长较小的单色光源 5. 如图,S1、S2是两个相干光源,它们到 P 点的距离分别为 r1 和 r2。路径 S1P 垂直穿过一块厚度为 t1,折射率为 n1 的介质板,路径 S2P 垂直穿过厚度为 t2,折射率为 n2 的另一介质
两束反射光的光程差为() (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是() (A) 使屏靠近双缝 (B) 把两个缝的宽度稍微调窄 (C) 使两缝的间距变小 (D) 改用波长较小的单色光源 5. 如图,S1、S2是两个相干光源,它们到 P 点的距离分别为 r1 和 r2。路径 S1P 垂直穿过一块厚度为 t1,折射率为 m1 的介质板,路径 S2P 垂直穿过厚度为 t2,折射率为 m2 的另一介质板,其余部分可看作真空,这两条路径的光程差等于()
两束反射光的光程差为() (A) 4.2μm (B) 3.9μm (C) 3.6μm (D) 1.8μm 4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是() (A) 使屏靠近双缝 (B) 把两个缝的宽度稍微调窄 (C) 使两缝的间距变小 (D) 改用波长较小的单色光源 5. 如图,S1、S2是两个相干光源,它们到 P 点的距离分别为 r1 和 r2。路径 S1P 垂直穿过一块厚度为 t1,折射率为 m1 的介质板,路径 S2P 垂直穿过厚度为 t2,折射率为 m2 的另一介质板,其余部分可看作真空,这两条路径的光程差等于() (A) (r2+m2t2)- (r1+m1t1)

- 6. 一单色平行光束垂直照射在宽度为 1.0mm 的单缝上, 在缝后放一焦距为 2.0m 的会聚透 镜。已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0mm,则入射光波长约为(
- (A) 100 nm
- (B) 400 nm
- (C) 500 nm
- (D) 600 nm
- 7. 一束平行单色光垂直照射在光栅上,当光栅常数 b+b'为下列哪种情况(b 代表每条缝的 宽度),k=2、4、6 级主极大明纹均不出现? (
- (A) b+b'=2b
- (B) b+b'=3b
- (C) b+b'=4b
- (D) b+b'=6b
- 8. 一个质点作简谐振动,振幅为 4cm,周期为 2s,取平衡位置为坐标原点,若 t=0 时刻质 点第一次通过 x=-2cm 处,且向 x 轴正方向运动,则质点第二次经过 x=-2cm 处时刻为()
- (A) 1s

- (B) $\frac{2}{3}$ s (C) $\frac{4}{3}$ s
- 9. 一质点同时参与两个在同一直线上的简谐振动,振动方程分别为 $x_1 = 4\cos\left(2t + \frac{\pi}{6}\right)$ 和
- $x_2 = 3\cos\left(2t + \frac{7\pi}{6}\right)$,则关于合振动下列说法正确的是(
- (A) 振幅为 1, 初相为 π;

- (B) 振幅为 7,初相为 $\frac{4\pi}{2}$;
- (C) 振幅为 1, 初相为 $\frac{7\pi}{6}$;
- (D) 振幅为 1, 初相为 $\frac{\pi}{6}$
- 10. 一列机械波t时刻的波形图如图所示,则该时刻能量为最大值的媒质质元位置为(
- (A) A

(B) B

(C) C

(D) D

二、填空题: 本大题共 10 题,每题 2 分,共 20 分。请将每题答案写在答题纸的对应位置。

错填、不填均无分。 1. 一束光在某种透明介质中的传播速度大小为 2.00×108 米/秒,则这种透明介质对这束光的 折射率为。 2. 一束真空中波长为λ的光线,投射到一双缝上,在屏幕上形成明、暗相问的干涉条纹,那 么对应于第一级明纹的光程差为。 3. 波长为 λ 的平行单色光垂直照射到劈形膜上,劈尖角为 θ (θ 很小),劈形膜的折射率为 n, 第 k 级明条纹与第 k+5 级明纹的间距是 4. 波长为 500nm 的平行单色光垂直入射在光栅上,其光栅常数为 2×10⁻³ mm,宽度为 1×10-3 mm, 屏上将出现 条明条纹。 5. 一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0mm。若整个装置放在水中,干涉条 纹的间距将为_____mm。(设水的折射率为 $\frac{4}{2}$) 6. 根据布儒斯特定律可以测定不透明介质的折射率。今以一束自然光从空气射向釉质,测得 其布儒斯特角 $i=58^\circ$,则釉质的折射率为。 7. 一物体作简谐振动,振动方程为 $x = A\cos\left(\omega t + \frac{\pi}{2}\right)$ 。则该物体在 t=0 时刻的动能与 t=T/8(T)为振动周期)时刻的动能之比为 。 8. 一平面简谐波,波速为 16 m/s,频率为 10 Hz。在波的传播方向上,若两质点(其间距离 小于波长)的振动相位差为 $\frac{4}{5}\pi$,则此两质点相距_____m。 9. 已知驻波的表达式为 $y = 0.02\cos(0.16\pi x)\cos(750\pi t)$, 式中 $x \cdot y$ 以 m 为单位, t 以 s 为单 位,则相邻两波节之间的距离为 m。 10. 劲度系数为 k 的轻质弹簧下面挂有一质量为 m 的物体,其振动周期为 T。现将该弹簧分 割成四等份,取其中一根弹簧挂上质量为 2m 的物体,则此系统的振动周期为 。 。

- 三、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。
- 一支蜡烛位于一凹面镜前 12cm 处, 其像位于距镜顶 4m 远处的屏上, 求:
- (1) 凹面镜的半径和焦距;
- (2) 如果蜡烛火焰的高度为 3mm,则屏上火焰的像高为多少?

参考答案

1) 已知物距 p=12cm, 像距 p'=4m, 球面镜的物像公式为

解得凹面镜的焦距为

$$f = \frac{pp'}{p+p'} = 0.117m \dots 2 \, \text{f}$$

凹面镜的半径为

(2) 凹面镜的横向放大率为

$$m = \frac{y'}{y} = -\frac{p'}{p} = -33.3....$$
 3 \(\frac{1}{2}\)

已知火焰的高度y=3mm,有上式解得火焰的像高为

四、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

- (1)若用波长不同的光观察牛顿环, λ_1 =6000 $\overset{\circ}{A}$, λ_2 =4500 $\overset{\circ}{A}$,观察到用 λ_1 时的第k个暗环与用 λ_2 时的第k+1个暗环重合,已知透镜的曲率半径是190cm。求用 λ_1 时第k个暗环的半径。
- (2)又如在牛顿环中用波长为5000 $\overset{\circ}{A}$ 的第5个明环与用波长为 λ_3 的第6个明环重合,求未知波长 λ_3 。

参考答案

(1)由牛顿环暗环公式

据题意有 $r = \sqrt{kR\lambda_1} = \sqrt{(k+1)R\lambda_2}$

$$\therefore k = \frac{\lambda_2}{\lambda_1 - \lambda_2} \dots 2 \, \text{f}$$

代入上式得

$$r = \sqrt{\frac{R\lambda_1\lambda_2}{\lambda_1 - \lambda_2}} = \sqrt{\frac{190 \times 10^{-2} \times 6000 \times 10^{-10} \times 4500 \times 10^{-10}}{6000 \times 10^{-10} - 4500 \times 10^{-10}}} = 1.85 \times 10^{-3} \text{ m} \dots 2 \text{ }$$

(2)用 $\lambda_1 = 5000$ \dot{A} 照射, $k_1 = 5$ 级明环与 λ_2 的 $k_2 = 6$ 级明环重合,则有

$$r = \sqrt{\frac{(2k_1 - 1)R\lambda_1}{2}} = \sqrt{\frac{(2k_2 - 1)R\lambda_2}{2}} \dots 3 \, \text{f}$$

$$\lambda_2 = \frac{2k_1 - 1}{2k_2 - 1}\lambda_1 = \frac{2 \times 5 - 1}{2 \times 6 - 1} \times 5000 = 4091 \, \text{Å} \dots 3 \, \text{f}$$

五、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级主极大明纹的衍射角为 60°。

- (1) 若换用另一单色光,测得其第二级主极大明纹的衍射角为30°, 求该单色光的波长;
- (2) 若以白光(400 nm~760 nm) 照射在该光栅上,求其第二级主极大明纹的衍射角范围。 参考答案

(1)
$$d \sin \varphi = 3\lambda$$
 $d = 3\lambda / \sin \varphi$, $\varphi = 60^{\circ}$ (2分) $d = 2\lambda / \sin \varphi'$, $\varphi' = 30^{\circ}$ (2分) $\lambda / \sin \varphi = 2\lambda / \sin \varphi'$ (2分) $\lambda / \sin \varphi = 2\lambda / \sin \varphi'$ (2分) $\lambda / \sin \varphi = 2\lambda / \sin \varphi = 2041.4 \text{ nm}$ (2分) $\varphi'_2 = \sin^{-1}(2 \times 400 / 2041.4)$ ($\lambda = 400 \text{ nm}$) $\varphi''_2 = \sin^{-1}(2 \times 760 / 2041.4)$ ($\lambda = 760 \text{ nm}$) (2分) 白光第二级光谱的张角 $\Delta \varphi = \varphi''_2 - \varphi'_2 = 25^{\circ}$ (2分)

六、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

一弹簧振子沿x 轴作简谐振动,已知振动物体最大位移为 x_m =0.4m,最大回复力为 F_m =0.8N,最大速度为 v_m =0.8 π m/s,又已知t=0 的初始位移为+0.2m,且初速度与所选x 轴方向相反。

- (1) 求振动总能量:
- (2) 求此振动的表达式。

参考答案

(1)

:.

$$x=A\cos(\omega t + \varphi_0) \Rightarrow x_m = A = 0.4(m) \cdots 2$$

七、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

设入射波的方程式为 $y_1 = A\cos 2\pi (x/\lambda + t/T)$ 。在 x=0 处发生反射,反射点为一个固定端,设反射时无能量损失,试求:

- (1) 反射波的表达式;
- (2) 合成驻波的表达式;
- (3) 波腹和波节的位置。

参考答案

(1) 由题可知,反射波在 x=0 处引起的分振动为

$$y_{2O} = A\cos\left(\frac{2\pi t}{T} + \pi\right) - 2 \, \text{f}$$

反射波是沿着 x 正方向传播的, 故反射波的表达式为

(2) 合成驻波的表达式为

$$y = y_1 + y_2 = 2A\cos\left(\frac{2\pi x}{\lambda} - \frac{\pi}{2}\right)\cos\left(\frac{2\pi t}{T} + \frac{\pi}{2}\right) \cdots 4$$

(3) 波腹处
$$\left|\cos\left(\frac{2\pi x}{\lambda} - \frac{\pi}{2}\right)\right| = 1$$
,故有

$$\frac{2\pi x}{\lambda} - \frac{\pi}{2} = k\pi$$

$$x = \left(k + \frac{1}{2}\right)\frac{\lambda}{2} \quad (k = 0, 1, 2, \dots) \dots 2 \, \text{f}$$

波节处
$$\cos\left(\frac{2\pi x}{\lambda} - \frac{\pi}{2}\right) = 0$$
,故有

$$\frac{2\pi x}{\lambda} - \frac{\pi}{2} = \left(k + \frac{1}{2}\right)\pi$$

或者

$$x = k \frac{\lambda}{2} \qquad (k = 0, 1, 2, \dots)$$

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	A	A	В	С	В	С	A	С	D	C

二、填空题

- 1. 1.50
- 2. λ
- $3. \ \frac{5\lambda}{2n\theta}$
- 4. 5
- 5. $0.75 \ (\vec{x} \frac{3}{4})$
- 6. 1.60
- 7. 2:1
- 8. 0.64
- 9. 6.25
- $10. \ \frac{\sqrt{2}}{2}T$