

1.5 计算机网络的性能指标

	速 率	速率	
		□ 连接在计算机网络上的主机在数字信道上传送比特的速率,也称为比特率或数据率;	
	带 宽	☐ 基本单位:bit/s(b/s, bps),常用单位:kb/s, Mb/s, Gb/s, Tb/s	
	吞吐量	 一	
	时 延	■ 吞吐量	
-	时延带宽积	□ 吞吐量表示在单位时间内通过某个网络(或信道、接口)的数据量;	
H2		□ 吞吐量被经常用于对现实世界中的网络的一种测量,以便知道实际上到底有多少数据量能够通过网络;吞吐量受网络的带宽或额定速率的限制。	
1	往返时间	时延	
	利用率		
	丟包率	□ 传播时延 =	
		□ 处理时延 一般不便于计算	
1	利用率	万延	

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

丟包率

时延带宽积 =

传播时延

- 若发送端连续发送数据,则在所发送的第一个比特即将到达终点时,发送端就已经发送了时延带宽积个比特;
- 链路的时延带宽积又称为以比特为单位的链路长度。

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 在许多情况下,因特网上的信息不仅仅单方向传输,而是双向交互;
- 我们有时很需要知道双向交互一次所需的时间;
- 因此,往返时间RTT(Round-Trip Time)也是一个重要的性能指标。

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 在许多情况下,因特网上的信息不仅仅单方向传输,而是双向交互;
- 我们有时很需要知道双向交互一次所需的时间;
- 因此,往返时间RTT(Round-Trip Time)也是一个重要的性能指标。

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 在许多情况下,因特网上的信息不仅仅单方向传输,而是双向交互;
- 我们有时很需要知道双向交互一次所需的时间;
- 因此,往返时间RTT(Round-Trip Time)也是一个重要的性能指标。

1.5 计算机网络的性能指标

利用率

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

丟包率

_ 信道利用率 用来表示某信道有百分之几的时间是被利用的(有数据通过)。

网络利用率 全网络的信道利用率的加权平均。

- 根据排队论, 当某信道的利用率增大时, 该信道引起的时延也会迅速增加;
- 因此,信道利用率并非越高越好;
- 如果令Do表示网络空闲时的时延,D表示网络当前的时延,那么在适当的假定条件下,可以用下面的简单公式来表示D、Do和利用率U之间的关系:

$$D = \frac{D_0}{I - U}$$

1.5 计算机网络的性能指标

利用率

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

丟包率

_ 信道利用率 用来表示某信道有百分之几的时间是被利用的(有数据通过)。

网络利用率 全网络的信道利用率的加权平均。

- 根据排队论,当某信道的利用率增大时,该信道引起的时延也会迅速增加;
- 因此,信道利用率并非越高越好;
- 如果令Do表示网络空闲时的时延,D表示网络当前的时延,那么在适当的假定条件下,可以用下面的简单公式来表示D、Do和利用率U之间的关系:

$$D = \frac{D_0}{I - U}$$

- □ 当网络的利用率达到50%时,时延就要加倍;
- □ 当网络的利用率超过50%时,时延急剧增大;
- 当网络的利用率接近100%时,时延就趋于无穷大;
- □ 因此,一些拥有较大主干网的ISP通常会控制它们的信道利用率 不超过50%。如果超过了,就要准备扩容,增大线路的带宽。

1.5 计算机网络的性能指标

利用率

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

丟包率

_ 信道利用率 用来表示某信道有百分之几的时间是被利用的(有数据通过)。

网络利用率 全网络的信道利用率的加权平均。

- 根据排队论, 当某信道的利用率增大时, 该信道引起的时延也会迅速增加;
- 因此,信道利用率并非越高越好;
- 如果令Do表示网络空闲时的时延,D表示网络当前的时延,那么在适当的假定条件下,可以用下面的简单公式来表示D、Do和利用率U之间的关系:

$$D = \frac{D_0}{I - U}$$

- □ 当网络的利用率达到50%时,时延就要加倍;
- □ 当网络的利用率超过50%时,时延急剧增大;
- □ 当网络的利用率接近100%时,时延就趋于无穷大;
- □ 因此,一些拥有较大主干网的ISP通常会控制它们的信道利用率 不超过50%。如果超过了,就要准备扩容,增大线路的带宽。
- 也不能使信道利用率太低,这会使宝贵的通信资源被白白浪费。应该使用一些机制,可以根据情况动态调整输入到网络中的通信量,使网络利用率保持在一个合理的范围内。

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 丢包率即分组丢失率,是指在一定的时间范围内,传输过程中丢失的分组数量与总分组数量的比率。
- 丟包率具体可分为接口丟包率、结点丟包率、链路丟包率、路径丟包率、网络丟包率等。
- 丢包率是网络运维人员非常关心的一个网络性能指标,但对于普通用户来说往往并不关心这个指标, 因为他们通常意识不到网络丢包。
- 分组丢失主要有两种情况:

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 丢包率即分组丢失率,是指在一定的时间范围内,传输过程中丢失的分组数量与总分组数量的比率。
- 丟包率具体可分为接口丟包率、结点丟包率、链路丟包率、路径丟包率、网络丟包率等。
- 丢包率是网络运维人员非常关心的一个网络性能指标,但对于普通用户来说往往并不关心这个指标, 因为他们通常意识不到网络丢包。
- 分组丢失主要有两种情况:
 - **一** 分组在传输过程中出现<mark>误码</mark>,被结点丢弃;

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 丢包率即分组丢失率,是指在一定的时间范围内,传输过程中丢失的分组数量与总分组数量的比率。
- 丟包率具体可分为接口丟包率、结点丟包率、链路丟包率、路径丟包率、网络丟包率等。
- 丢包率是网络运维人员非常关心的一个网络性能指标,但对于普通用户来说往往并不关心这个指标, 因为他们通常意识不到网络丢包。
- 分组丢失主要有两种情况:
 - 分组在传输过程中出现误码,被结点丢弃;

1.5 计算机网络的性能指标

速率

带宽

吞吐量

时 延

时延带宽积

往返时间

利用率

- 丢包率即分组丢失率,是指在一定的时间范围内,传输过程中丢失的分组数量与总分组数量的比率。
- 丟包率具体可分为接口丟包率、结点丟包率、链路丟包率、路径丟包率、网络丟包率等。
- 丢包率是网络运维人员非常关心的一个网络性能指标,但对于普通用户来说往往并不关心这个指标, 因为他们通常意识不到网络丢包。
- 分组丢失主要有两种情况:
 - □ 分组在传输过程中出现误码,被结点丢弃;
 - 分组到达一台队列已满的分组交换机时被丢弃;在通信量较大时就可能造成网络拥塞。

丟包率

计算机网络

1.5 计算机网络的性能指标

速率	■ 丢包率即分组丢失率,是指在一定的时间范围内,传输过程中 丢失的分组数量与总分组数量的比率 。
444 1000	■ 丢包率具体可分为接口丢包率、结点丢包率、链路丢包率、路径丢包率、网络丢包率等。
带 宽 吞吐量	丢包率是网络运维人员非常关心的一个网络性能指标,但对于普通用户来说往往并不关心这个指标,因为他们通常意识不到网络丢包。
口叶玉	■ 分组丢失主要有两种情况:
时 延	□ 分组在传输过程中出现误码,被结点丢弃;
时延带宽积	□ 分组到达一台队列已满的分组交换机时被丢弃; R2 N13 P3 C2 R3 在通信量较大时就可能造成 <mark>网络拥塞</mark> 。
往返时间	因此,丢包率反映了网络的拥塞情况:
	□ 无拥塞时路径丢包率为0 H ₅
利用率	□ 轻度拥塞时路径丢包率为1%~4%

严重拥塞时路径丢包率为5%~15%

1.5 计算机网络的性能指标

速 率	■ 时延带宽积
	□ 传播时延和带宽的成绩;
带宽	☐ 若发送端连续发送数据,则在所发送的第一个比特即将到达终点时,发送端就已经发送了时延带宽积个比特;
	□ 链路的时延带宽积又称为以比特为单位的链路长度。
吞吐量	往返时间RTT
H	□ 在许多情况下,因特网上的信息不仅仅单方向传输,而是双向交互;
时 延	■ 我们有时很需要知道双向交互一次所需的时间。
HJ XE	利用率
时延带宽积	□ 信道利用率: 用来表示某信道有百分之几的时间是被利用的(有数据通过);
机矩带现代	□ 网络利用率: 全网络的信道利用率的加权平均;
64-15 n4/51	□ 利用率并非越高越好: 当某信道的利用率增大时,该信道引起的时延也会迅速增加;
往返时间	□ <mark>也不能</mark> 使信道利用率 <mark>太低</mark> ,这会使宝贵的通信资源被白白浪费。
and consider	医包率
利用率	■ 丟包率即分组丟失率,是指在一定的时间范围内,传输过程中丢失的分组数量与总
	分组数量的比率; □ 公组主生的东西主要原见,公组得见,结点充格机得有以利滞(网络现象)。
丟包率	☐ 分组丟失的两个主要原因: 分组误码, 结点交换机缓存队列满(网络拥塞);

1.5 计算机网络的性能指标

速 率	■ 时延带宽积
	□ 传播时延和带宽的成绩;
带宽	☐ 若发送端连续发送数据,则在所发送的第一个比特即将到达终点时,发送端就已经发送了时延带宽积个比特;
50	□ 链路的时延带宽积又称为以比特为单位的链路长度。
吞吐量	往返时间RTT
口吐玉	□ 在许多情况下,因特网上的信息不仅仅单方向传输,而是双向交互;
D→ Z7E	■ 我们有时很需要知道双向交互一次所需的时间。
时 延	利用率
nder Historia	□ 信道利用率: 用来表示某信道有百分之几的时间是被利用的(有数据通过);
时延带宽积	□ 网络利用率: 全网络的信道利用率的加权平均;
	□ 利用率并非越高越好: 当某信道的利用率增大时,该信道引起的时延也会迅速增加;
往返时间	□ <mark>也不能</mark> 使信道利用率 <mark>太低</mark> ,这会使宝贵的通信资源被白白浪费。
	表包率
利用率	□ 丟包率即分组丟失率,是指在一定的时间范围内,传输过程中 <mark>丢失的分组数量与总</mark>
	分组数量的比率;
丟包率	□ 分组丟失的两个主要原因: 分组误码, 结点交换机缓存队列满(网络拥塞);