Практическая работа №5

Модели линейной и логистической регрессии.

Оглавление

Цель работы	1
' ' Задачи работы	
Перечень обеспечивающих средств	
Общие теоретические сведения	
Линейная регрессия	
Градиентный спуск	
Допущения линейной регрессии	
Ограничения линейной регрессии	3
Регуляризация	3
L1-регуляризация (lasso)	3
L2-регуляризация (ridge)	4
Elastic Net регуляризация	4
Задание	5
Требования к отчету	5
Литература	5

Цель работы

Получить практические навыки использования линейной регрессии.

Задачи работы

- 1. Научиться аналитически решать задачу линейной регрессии.
- 2. Научиться решать задачу линейной регрессии с помощью библиотеки sklearn.

Перечень обеспечивающих средств

- 1. **ПК**.
- 2. Учебно-методическая литература.
- 3. Задания для самостоятельного выполнения.

Общие теоретические сведения

Линейная регрессия

Данные: пары значений (x_i, y_i) , где i = 1, ..., N.

x называется предиктором или регрессором,

у называется зависимой переменной.

Задача: Найти такие значения a и b, чтобы функция f(x) = ax + b как можно точнее аппроксимировала y, т.е. чтобы $f(x_i) \approx y_i$ для всех i.

Метрика производительности – среднеквадратичная ошибка:

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

где y_i - значение из данных, $f(x_i)$ - результат работы модели.

Градиентный спуск

- 1. Случайным образом выбираем точку (a_0, b_0) .
- 2. Вычисляем значения частных производных ошибки.
- 3. Изменяем координаты так, чтобы двигаться в сторону уменьшения производной:

$$a_i = a_{i-1} - \alpha \frac{\partial \text{MSE}}{\partial a}(a_{i-1}), b_i = b_{i-1} - \beta \frac{\partial \text{MSE}}{\partial b}(b_{i-1}).$$

4. Если $\mathrm{MSE}(a_i,b_i) - \mathrm{MSE}(a_{i-1},b_{i-1})$ достаточно мало, то завершаем. Иначе — возвращаемся к шагу 2.

Допущения линейной регрессии

Остатки: величины $y_i - f(x_i)$.

Допущения линейной регрессии

- Между х и у есть линейная зависимость.
- Остатки распределены нормальным образом.
- Среднее значение остатков равно нулю.
- Дисперсия остатков постоянна.

Ограничения линейной регрессии

- Низкая точность при аппроксимации нелинейных функций.
- Нельзя использовать для вычислений вне известного интервала.
- Считаем, что предикторы не содержат ошибок измерений.
- Нет ограничений области значений.

Регуляризация

Если данных мало, а модель сложная, то высока вероятность переобучения.

Регуляризация — добавление дополнительных слагаемых к метрике производительности для того, чтобы штрафовать модель за излишне сложные решения и, таким образом, препятствовать переобучению.

Смещение увеличивается, разброс уменьшается.

L1-регуляризация (lasso)

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda_1 \sum_{i} |a_i|$$

$$\sum_{i} -y_{i} \log f(z_{i}) - (1 - y_{i}) \log(1 - f(z_{i})) + \lambda_{1} \sum_{i} |a_{i}|$$

L1-регуляризация обнуляет параметры a_i , которые вносят в основном шум.

L2-регуляризация (ridge)

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda_2 \sum_{i} a_i^2$$

$$\sum_{i} -y_i \log f(z_i) - (1 - y_i) \log(1 - f(z_i)) + \lambda_2 \sum_{i} a_i^2$$

L2-регуляризация не даёт значениям параметров a_i бесконтрольно увеличиваться.

Elastic Net регуляризация

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda_1 \sum_{i} |a_i| + \lambda_2 \sum_{i} a_i^2$$

$$\sum_{i} -y_i \log f(z_i) - (1 - y_i) \log(1 - f(z_i)) + \lambda_1 \sum_{i} |a_i| + \lambda_2 \sum_{i} a_i^2$$

Задание

Пояснение

Для сохранения результатов данной работы вам понадобится два файла: doc/docx — для текста и ipynb — для кода. Назовите их одинаково: «Фамилия — задание 5».

Часть 1

- Решите аналитически задачу линейной регрессии для следующего набора данных (x_i, y_i) , аналогично тому, как это было сделано в лекции: (0,0), (1,1), (2,3).
- Сохраните результат в своём docx/doc-файле.

Часть 2

• Обновите свой репозиторий, созданный в практической работе №1, из оригинального репозитория: https://github.com/mosalov/Notebook For Al Main.

Часть 3

- Откройте свой репозиторий в Binder (https://mybinder.org/).
- Откройте файл «task5.ipynb».
- Изучите, при необходимости выполните повторно, приведённый в файле код.
- По аналогии с изученным выполните задание, приведённое в последней ячейке.
- Сохраните код в ipynb-файле. Необходимые пояснения опишите в своём docx/doc-файле.

Требования к отчету

Оба файла (doc/docs и ipynb) загрузите в свой репозиторий, созданный в практическом задании №1 по пути: «Notebook_For_AI_Main/2021 Осенний семестр/Практическое задание 5/» и сделайте пул-реквест.

Литература

- https://habr.com/ru/post/514818/
- https://habr.com/ru/post/474602/
- http://statistica.ru/theory/osnovy-lineynoy-regressii/
- http://statistica.ru/theory/logisticheskaya-regressiya/

- https://habr.com/ru/post/485872/
- https://habr.com/ru/company/ods/blog/323890/#metod-maksimalnogo-pravdopodobiya
- https://dyakonov.org/2018/03/12/%D0%BB%D0%BE%D0%B3%D0%B8%D1
 %81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F %D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F %D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B8/