形式语言与自动机理论

下推自动机

王春宇 chunyu@hit.edu.cn

> 计算学部 哈尔滨工业大学

2021 年 4 月

下推自动机

- 下推自动机
 - 形式定义
 - 瞬时描述和转移符号
- 下推自动机接受的语言
- 下推自动机与文法的等价性
- 确定型下推自动机

下推自动机

下推自动机的形式定义

定义

下推自动机(PDA, Pushdown Automata) P 为七元组

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- ❶ Q, 有穷状态集;
- ② Σ, 有穷输入符号集;
- ⑤ Γ, 有穷栈符号集;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$, 状态转移函数;
- **5** q₀ ∈ Q, 初始状态;
- 6 Z₀ ∈ Γ Σ, 栈底符号;
- **7**F ⊆ Q, 接收状态集或终态集.

PDA 的动作和状态转移图

如果 $q, p_i \in Q (1 \le i \le m)$, $a \in \Sigma$, $Z \in \Gamma$, $\beta_i \in \Gamma^*$, 可以有动作:

$$\delta(q, a, Z) = \{(p_1, \beta_1), (p_2, \beta_2), \dots, (p_m, \beta_m)\}, \ \vec{\boxtimes}$$
$$\delta(q, \varepsilon, Z) = \{(p_1, \beta_1), (p_2, \beta_2), \dots, (p_m, \beta_m)\}.$$

例1.	设计识别 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PI	DA.

例 1. 设计识别 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA.

$$0,0/00$$

$$0,Z_0/0Z_0$$

$$1,0/\varepsilon$$

$$(q_1) \qquad (q_2)$$

$$(q_2) \qquad (q_2)$$

例 2. 设计识别 $L_{wwr} = \{ww^R \mid w \in (\mathbf{0} + \mathbf{1})^*\}$ 的 PDA.

例 2. 设计识别 $L_{wwr} = \{ww^R \mid w \in (\mathbf{0} + \mathbf{1})^*\}$ 的 PDA.

$$0,0/00 \qquad 0,1/01$$

$$1,0/10 \qquad 1,1/11 \qquad 0,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,Z_0/1Z_0 \qquad 1,1/\varepsilon$$

$$\text{start} \longrightarrow Q_0 \qquad \varepsilon,Z_0/Z_0 \qquad Q_1 \qquad \varepsilon,Z_0/Z_0$$

$$\varepsilon,0/0 \qquad \varepsilon,1/1$$

瞬时描述

定义

为描述 PDA 瞬间的格局, 定义 $Q \times \Sigma^* \times \Gamma^*$ 中三元组

$$(q, w, \gamma)$$

为<mark>瞬时描述(ID, Instantaneous Description), 表示此时 PDA 处于状态 q, 剩余输入串 w, 栈为 γ .</mark>

转移符号

定义

在 PDAP 中如果 $(p,\beta) \in \delta(q,a,Z)$, 由 $(q,aw,Z\alpha)$ 到 $(p,w,\beta\alpha)$ 的变化, 称为 ID 的转移 \vdash , 记为

其中 $w \in \Sigma^*$, $\alpha \in \Gamma^*$.

若有 IDI, J 和 K, 递归定义 $^{\sharp}_{b}$ 为:

- \bullet $I \vdash_{P}^{*} I$;
- ② 若 I ԵJ, J Ե K, 则 I Ե K.

若 P 已知, 可省略, 记为 \vdash 和 $\stackrel{\bullet}{\vdash}$.

续例 1. 语言 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA, 识别 0011 时的 ID 序列.

$$0,0/00$$
 $0,Z_0/0Z_0$
 $1,0/arepsilon$
 $\varepsilon,Z_0/Z_0$

有关 ID 的序列

对 PDA P 的一个合法 ID 序列 (计算):

- ① 把相同字符串加到所有 ID 的输入串末尾, 得到的计算合法;
- ② 把相同栈符号串加到所有 ID 的栈底之下, 得到的计算合法;
- ③ 把所有 ID 中都未消耗的部分输入串去掉, 得到的计算合法.

对
$$\forall w \in \Sigma^*, \forall \gamma \in \Gamma^*,$$
 如果

$$(q,x,lpha)$$
 | $^*_{P}$ (p,y,eta) ,

 $(q, xw, \alpha\gamma) \stackrel{*}{\vdash} (p, yw, \beta\gamma).$

对
$$\forall w \in \Sigma^*$$
, 如果

$$\begin{array}{c|c}
\hline
g_i \\
\hline
\hline
q_i
\end{array}$$
Finite Control

 $(q, xw, \alpha) \stackrel{*}{\vdash} (p, yw, \beta),$

 $(q,x,\alpha) \stackrel{*}{\vdash} (p,y,\beta).$

下推自动机

- 下推自动机
- 下推自动机接受的语言
 - 从终态方式到空栈方式
 - 从空栈方式到终态方式
- 下推自动机与文法的等价性
- 确定型下推自动机

下推自动机接受的语言

定义

$$PDAP = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
, 以两种方式接受语言:

• P 以终态方式接受的语言, 记为L(P), 定义为

$$\mathbf{L}(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (p, \varepsilon, \gamma), \ p \in F \}.$$

 $\mathbf{N}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon) \}.$

• P 以空栈方式接受的语言, 记为 $\mathbf{N}(P)$, 定义为

续例 2. 识别 L_{wwr} 的 PDA P, 从终态方式, 改为空栈方式接受. 用 $\delta(q_1, \varepsilon, Z_0) = \{(q_1, \varepsilon)\}$ 代替 $\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$ 即可.

$$0,0/00 \qquad 0,1/01 \qquad \qquad \varepsilon, Z_0/\varepsilon$$

$$1,0/10 \qquad 1,1/11 \qquad 0,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,Z_0/1Z_0 \qquad 1,1/\varepsilon$$

$$\text{start} \longrightarrow \underbrace{q_0} \qquad \underbrace{\varepsilon,Z_0/Z_0}_{\varepsilon,0/0} \qquad \underbrace{q_1}_{\varepsilon,1/1}$$

从终态方式到空栈方式

定理 25

如果 PDA P_F 以终态方式接受语言 L, 则存在 PDA P_N 以空栈方式接受 L.

从终态方式到空栈方式

定理 25

如果 PDA P_F 以终态方式接受语言 L, 则存在 PDA P_N 以空栈方式接受 L.

证明: 设 $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, 构造 PDA P_N ,

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0, \varnothing).$$

其中 δ_N 定义如下:

 \bullet P_N 首先将 P_F 的栈底符号压栈, 开始模拟 P_{F} :

$$\delta_N(p_0,\varepsilon,X_0) = \{(q_0,Z_0X_0)\};$$

② P_N 模拟 P_F 的动作: $\forall q \in Q, \forall \alpha \in \Sigma \cup \{\varepsilon\}, \forall Y \in \Gamma$:

$$\delta_N(q,a,Y)$$
 包含 $\delta_F(q,a,Y)$ 的全部元素;

③ 从 $q_f \in F$ 开始弹出栈中符号, 即 $\forall q_f \in F$, $\forall Y \in \Gamma \cup \{X_0\}$:

$$\delta_N(q_f,\varepsilon,Y)$$
 包含 (p,ε) ;

④ 在状态 p 时, 弹出全部栈中符号, 即 $\forall Y \in \Gamma \cup \{X_0\}$:

$$\delta_N(p,\varepsilon,Y) = \{(p,\varepsilon)\}.$$

对 ∀w ∈ Σ* 有

$$w \in \mathbf{L}(P_{F}) \Rightarrow (q_{0}, w, Z_{0}) \stackrel{*}{\models}_{F} (q_{f}, \varepsilon, \gamma)$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\models}_{F} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\models}_{N} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \stackrel{*}{\models}_{N} (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\models}_{N} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \stackrel{*}{\models}_{N} (q_{0}, w, Z_{0}X_{0}) \stackrel{*}{\models}_{N} (q_{f}, \varepsilon, \gamma X_{0})$$

$$\Rightarrow (p_{0}, w, X_{0}) \stackrel{*}{\models}_{N} (q_{f}, \varepsilon, \gamma X_{0}) \stackrel{*}{\models}_{N} (p, \varepsilon, \varepsilon)$$

$$\Rightarrow w \in \mathbf{N}(P_{N})$$

$$\sum w \in \mathbf{N}(P_{N})$$

即 $\mathbf{L}(P_F) \subseteq \mathbf{N}(P_N)$.

对 $\forall w \in \Sigma^*$ 有

即 $\mathbf{N}(P_N) \subseteq \mathbf{L}(P_F)$. 所以 $\mathbf{N}(P_N) = \mathbf{L}(P_F)$.

从空栈方式到终态方式

定理 26

如果 PDA P_N 以空栈方式接受语言 L, 则存在 PDA P_F 以终态方式接受 L.

从空栈方式到终态方式

定理 26

如果 PDA P_N 以空栈方式接受语言 L, 则存在 PDA P_F 以终态方式接受 L.

证明: 设 $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, \varnothing)$. 构造 PDA P_F ,

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

其中 δ_F 定义如下:

 $lacksymbol{1}$ P_F 开始时,将 P_N 栈底符号压入栈,并开始模拟 P_N ,

$$\delta_F(p_0,\varepsilon,X_0) = \{(q_0,Z_0X_0)\};$$

② P_F 模拟 P_N , $\forall q \in Q$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall Y \in \Gamma$:

$$\delta_F(q,a,Y) = \delta_N(q,a,Y);$$

③ 在 $\forall q \in Q$ 时, 看到 P_F 的栈底 X_0 , 则转移到新终态 p_f : $\delta_F(q,\varepsilon,X_0) = \{(p_f,\varepsilon)\}.$

对 $\forall w \in \Sigma^*$ 有

$$w \in \mathbf{N}(I)$$

即 $\mathbf{N}(P_N) \subseteq \mathbf{L}(P_F)$.

$$w \in \mathbf{N}(P_N) \Rightarrow (q_0, w, Z_0) \stackrel{*}{\underset{P_N}{\vdash}} (q, \varepsilon, \varepsilon)$$
$$\Rightarrow (q_0, w, Z_0 X_0) \stackrel{*}{\underset{P_N}{\vdash}} (q, \varepsilon, X_0)$$

$$(q_0, w, Z_0X_0) \stackrel{*}{\models_{P_N}} (q, \epsilon)$$

$$\Rightarrow (q_0, w, Z_0 X_0) \stackrel{*}{\vdash_{P_N}} (q, \varepsilon, X_0)$$
$$\Rightarrow (q_0, w, Z_0 X_0) \stackrel{*}{\vdash_{P_n}} (q, \varepsilon, X_0)$$

$$(X_0) \models_N (q, \varepsilon, X_0) \stackrel{*}{\vdash} (q, \varepsilon, x_0)$$

$$(Q_0) \stackrel{r}{\vdash}_{P_F} (q, \varepsilon, X_0)$$

$$(q_0, w, z) \vdash_{P_F} (q_0, w, z)$$

$$| \stackrel{*}{\vdash_{P_F}} (q, \varepsilon, Z) |$$

$$(p_F, q, \varepsilon, \varepsilon)$$

$$\Rightarrow (p_0, w, X_0) \stackrel{*}{\vdash_{P_F}} (p_f, \varepsilon, \varepsilon)$$
$$\Rightarrow w \in \mathbf{L}(P_F)$$

$$(p_f, \varepsilon, \varepsilon)$$

$$\Rightarrow (p_0, w, X_0) \vdash_{F_F} (q_0, w, Z_0 X_0) \vdash_{F_F} (q, \varepsilon, X_0) \qquad \delta_F$$
 构造, p_0 部分
$$\Rightarrow (p_0, w, X_0) \vdash_{F_F} (q, \varepsilon, X_0) \vdash_{F_F} (p_f, \varepsilon, \varepsilon) \qquad \delta_F$$
 构造, p_f 部分

$$\delta_F$$
构造,

定理23

$$\delta_F$$
构造, p_0 部分

$$P_F$$
模拟 P_N δ_F 构造, p_0 部分

对 $\forall w \in \Sigma^*$ 有

即 $\mathbf{N}(P_F) \subseteq \mathbf{L}(P_N)$. 所以 $\mathbf{L}(P_F) = \mathbf{N}(P_N)$.

例 3. 接受 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 中字符 } 0 \text{ 和 } 1 \text{ 的数量相同} \}$ 的 PDA.

例 3. 接受 $L_{eq} = \{ w \in \{0,1\}^* \mid w \text{ 中字符 } 0 \text{ 和 } 1 \text{ 的数量相同} \}$ 的 PDA.

$$0, Z_0/0Z_0$$
 $1, 0/10$ $0, 0/00$ $1, Z_0/1Z_0$ $1, 1/11$ $0, 1/01$ $\varepsilon, Z_0/\varepsilon$ $1, 0/\varepsilon$ $0, 1/\varepsilon$ start \longrightarrow

例 4. 接受 $L = \{0^n 1^m \mid 0 \le n \le m \le 2n\}$ 的 PDA.

例 4. 接受 $L = \{0^n 1^m \mid 0 \le n \le m \le 2n\}$ 的 PDA.

start
$$\longrightarrow$$

$$\begin{array}{c}
1,0/\varepsilon \\
\varepsilon,Z_0/Z_0 \\
0,Z_0/0Z_0 \\
0,0/00\end{array}$$

$$\begin{array}{c}
\varepsilon,Z_0/\varepsilon \\
1,0/\varepsilon \\
1,0/\varepsilon \\
0,0/00\end{array}$$

课堂练习. Design PDA for $L=\left\{a^ib^jc^k\ \middle|\ i,j,k\geq 0,\ j=i+k\right\}$.

下推自动机

- 下推自动机
- 下推自动机接受的语言
- 下推自动机与文法的等价性
 - 由 CFG 到 PDA
 - 由 PDA 到 CFG
- 确定型下推自动机

例 5. 设计语言 $L = \{0^n 1^m | 1 \le m \le n\}$ 的 PDA.

例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 PDA.

例 5. 设计语言 $L = \{0^n 1^m | 1 \le m \le n\}$ 的 PDA.

例 5. 设计语言 $L = \{0^n 1^m | 1 \le m \le n\}$ 的 PDA.

续例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 CFG.

CFG G:

$$S
ightarrow AB \ A
ightarrow 0A\mid arepsilon \ B
ightarrow 0B1\mid 01$$

字符串 00011 的最左派生:

G AB 0AB 0B 00B1 00011

$$S \underset{lm}{\Rightarrow} AB \underset{lm}{\Rightarrow} 0AB \underset{lm}{\Rightarrow} 0B \underset{lm}{\Rightarrow} 00B1 \underset{lm}{\Rightarrow} 000011$$

续例 5. 语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$. 用 PDA 栈顶符号的替换, 模拟文法的最左派生:

		CFG			
PDA	的 ID 转	移	PDA 的动作	产生式	最左派生
q_0	00011,	S)			S
$\vdash (q_0$,	00011,	AB)	arepsilon, S/AB	$S \rightarrow AB$	ightharpoonup AB
$\vdash (q_0,$	00011,	0AB)	$\varepsilon, A/0A$	$A \rightarrow 0A$	$\Rightarrow_{\text{lm}} 0AB$
$\vdash (q_0$,	0011,	AB)	0,0/arepsilon		****
$\vdash (q_0,$	0011,	B)	arepsilon, A/arepsilon	$A \to \varepsilon$	$\Rightarrow_{ m lm} 0$ B
$\vdash (q_0,$	0011,	0B1)	ε , B /0 B 1	$B \rightarrow 0B1$	$\Rightarrow_{\text{lm}} 00B1$
$\vdash (q_0,$	011,	B1)	0,0/arepsilon		
$\vdash (q_0,$	011,	011)	ε , B /01	$B \rightarrow 01$	ightharpoonup 00011
$\vdash (q_0,$	11,	11)	0,0/arepsilon		
$\vdash (q_0,$	1,	1)	1,1/arepsilon		
$\vdash (q_0,$	\mathcal{E} ,	$\varepsilon)$	1,1/arepsilon		

续例 5. 语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$.

任何 $CFL\ L$. 一定存在 $PDA\ P$. 使 $L = \mathbf{N}(P)$.

 $\forall \alpha \in T$:

那么 L(G) = N(P).

如果 CFG
$$G = (V, T, P', S)$$
,构造 PDA $P = (\{g\}, T, V)$

$$P = ig(\{q\}, T, V \cup T, \delta, q, S, oldsymbol{arnothing}ig),$$
甘山 δ 为:

其中
$$\delta$$
 为:

① $\forall A \in V$:

 $\delta(q,a,a) = \{(q,\varepsilon)\},\$

$$\delta(q,\varepsilon,A) = \{(q,\beta) \mid A \to \beta \in P'\},$$

例 6. 为文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 构造 PDA.

例 6. 为文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 构造 PDA.

$$\varepsilon, S/aAA$$
 $\varepsilon, A/aS$ $a, a/\varepsilon$
 $\varepsilon, A/a$ $\varepsilon, A/bS$ $b, b/\varepsilon$

证明: 往证

$$S \stackrel{*}{\Rightarrow} w \Longleftrightarrow (q, w, S) \stackrel{*}{\models} (q, \varepsilon, \varepsilon).$$

[充分性] 往证

$$S \stackrel{*}{\underset{\longrightarrow}{\mapsto}} w \implies (q, w, S) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon).$$

设 $S \stackrel{*}{\underset{lm}{lm}} w$ 中第 i 个左句型为 $x_i A_i \alpha_i$, 其中 $x_i \in \Sigma^*$, $A_i \in V$, $\alpha_i \in (V \cup T)^*$. 并将 S 看作第 0 个左句型 $x_0 A_0 \alpha_0 = S$. 那么

$$x_0 = \varepsilon, A_0 = S, \alpha_0 = \varepsilon.$$

将 w 看作为第 n 个左句型 $x_nA_n\alpha_n=w$. 那么

$$x_n = w, A_n = \varepsilon, \alpha_n = \varepsilon.$$

再对派生步骤 i 归纳, 往证

$$S \stackrel{i}{\underset{\longrightarrow}{\mapsto}} x_i A_i \alpha_i \wedge w = x_i y_i \Longrightarrow (q, w, S) \stackrel{*}{\vdash} (q, y_i, A_i \alpha_i).$$

归纳基础: 最左派生在第 0 步时, 显然成立

$$(q, w, S) \stackrel{*}{\vdash} (q, y_0, A_0 \alpha_0) = (q, w, S).$$

归纳递推: 假设第 i 步时成立, 当第 i+1 步时, 一定是 $A_i o eta$ 应用到 $x_i A_i \alpha_i$

$$S \stackrel{i}{\underset{\text{im}}{\longrightarrow}} x_i A_i \alpha_i \underset{\text{im}}{\Longrightarrow} x_i \beta \alpha_i = x_{i+1} A_{i+1} \alpha_{i+1}.$$

即最左变元 A_{i+1} 一定在 $\beta \alpha_i$ 中, 设 A_{i+1} 之前的终结符为 x', 那么由

$$x_i \beta \alpha_i = x_i x' A_{i+1} \alpha_{i+1} = x_{i+1} A_{i+1} \alpha_{i+1}$$

 $x_i y_i = x_i x' y_{i+1} = x_{i+1} y_{i+1} = w$

则有

$$\beta \alpha_i = x' A_{i+1} \alpha_{i+1},$$

$$y_i = x' y_{i+1}.$$

那么, 在 PDA 中从 ID $(q, y_i, A_i \alpha_i)$ 模拟最左派生, 用产生式 $A_i \rightarrow \beta$ 替换栈顶 A_i 后, 有

$$(q,w,S) \stackrel{*}{\vdash} (q,y_i,A_i\alpha_i)$$
 归纳假设 $\vdash (q,y_i,etalpha_i)$ 名 $i oeta$ 归纳假设 $\land A_i oeta$ $= (q,x'y_{i+1},x'A_{i+1}lpha_{i+1})$ 弹出栈顶终结符

因此 $S \xrightarrow{n} w \Longrightarrow (q, w, S) \stackrel{*}{\vdash} (q, y_n, A_n \alpha_n) = (q, \varepsilon, \varepsilon)$, 即充分性得证.

[必要性] 往证更一般的, 对任何变元 A, 都有:

$$(q,x,A) \stackrel{*}{\vdash} (q,\varepsilon,\varepsilon) \Longrightarrow A \stackrel{*}{\Rightarrow} x.$$

对 ID 转移 $(q,x,A) \vdash (q,\varepsilon,\varepsilon)$ 的次数 i 归纳证明.

归纳基础: 当 i=1 步时, 只能是 $x=\varepsilon$ 且 $A\to\varepsilon$ 为产生式, 所以 $A\stackrel{*}{\Rightarrow}\varepsilon$.

归纳递推: 假设 $i \le n \ (n \ge 1)$ 步时上式成立. 当 i = n + 1 时, 因为 A 是变元, 其第 1 步转移一定是应用某产生式 $A \to Y_1 Y_2 \cdots Y_m$

$$(q,x,A) \vdash (q,x,Y_1Y_2 \cdots Y_m)$$

其中 Y_i 是变元或终结符. 而其余的 n 步转移

$$(q, x, Y_1Y_2\cdots Y_m) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon)$$

中每个 Y_i 从栈中被完全弹出时,将消耗掉的那部分 x 记为 x_i ,那么显然有

$$x = x_1 x_2 \cdots x_m$$
.

而每个 Y_i 从栈中被完全弹出时,都不超过 n 步,所以由归纳假设,

$$(q, x_i, Y_i) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow Y_i \stackrel{*}{\Rightarrow} x_i.$$

再由产生式 $A \rightarrow Y_1 Y_2 \cdots Y_m$, 有

$$A \Rightarrow Y_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots x_m = x.$$

因此当 A = S, x = w 时,

$$(q, w, S) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Rightarrow} w$$

成立, 即必要性得证.

所以, 任何 CFL 都可由 PDA 识别.

构造与 GNF 格式文法等价的 PDA

为每个产生式, 定义 δ 为:

如果 GNF 格式的 CFG
$$G = (V, T, P', S)$$
, 那么构造 PDA

$$P=\big(\{q\},\,\,T,\,\,V,\,\,\delta,\,\,q,\,\,S,\,\,\varnothing\big),$$

 $\delta(q, a, A) = \{ (q, \beta) \mid A \to a\beta \in P' \}.$

续例 6. 文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 为 GNF 格式, 构造等价的 PDA.

续例 6. 文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 为 GNF 格式, 构造等价的 PDA.

$$\begin{array}{c} a,S/AA \\ \text{start} \longrightarrow \bigcirc \begin{array}{c} a,A/S \\ b,A/S \end{array}$$

由 PDA 到 CFG

定理 28

如果 PDA P, 有 L = N(P), 那么 L 是上下文无关语言.

构造与 PDA 等价的 CFG

如果 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \varnothing)$, 那么构造 CFG $G = (V, \Sigma, P', S)$, 其中V和P'为

- **1** $V = \{ [qXp] \mid p,q \in Q, X \in \Gamma \} \cup \{S\} \}$
- ② 对 $\forall p \in Q$. 构造产生式 $S \rightarrow [a_0Z_0p]$:

若 n=0. 为 $[aXp] \rightarrow a$.

③ 对 $\forall (p, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$, 构造 $|Q|^n$ 个产生式

其中 $a \in \Sigma \cup \{\varepsilon\}$, $X, Y_i \in \Gamma$, 而 $r_i \in Q$ 是 n 次 |Q| 种状态的组合:

 $[aXr_n] \to a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n]$

证明: 只需证明

$$(q,w,X) \stackrel{*}{\vdash} (p,\varepsilon,\varepsilon) \iff [qXp] \stackrel{*}{\Rightarrow} w.$$

并令 $X = Z_0$, $q = q_0$, 与开始符号 S 的产生式一起, 即可完成定理的证明.

[充分性] 对 PDA 中 $(q, w, X) \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon)$ 的转移次数 i 归纳证明.

归纳基础: 当 i=1 时, P 只能消耗不超过一个的字符, 即 w=a

$$(q,w,X) = (q,a,X) \vdash (p,\varepsilon,\varepsilon),$$

其中 $a \in \Sigma \cup \{\varepsilon\}$ 且 $(p,\varepsilon) \in \delta(q,a,X)$, 则由文法的构造会有

$$[aXp] \rightarrow a$$
.

因此 $[qXp] \stackrel{*}{\Rightarrow} a = w$.

归纳递推: 假设当 $i \le m \ (m \ge 1)$ 时命题成立. 当 i = m+1 时, 转移的第 1 步, 一定由某个 $(r_0, Y_1 Y_2 \cdots Y_n) \in \delta(q, a, X)$ 开始

$$(q,ax,X) \vdash (r_0,x,Y_1Y_2\cdots Y_n),$$

其中 $a \in \Sigma \cup \{\varepsilon\}, w = ax$. 而其余的 m 步为

$$(r_0, x, Y_1Y_2\cdots Y_n) \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon).$$

而这些转移,会从栈中依次弹出 Y_i 并消耗掉部分 x_i 若分别记为 x_i , 则有

$$w = ax = ax_1x_2\cdots x_n$$
.

若设弹出 Y_i 之前和之后的状态分别是 r_{i-1} 和 r_i , 这里 $i=1,2,\cdots n$, 那么有

$$(r_{i-1},x_i,Y_i) \stackrel{*}{\vdash} (r_i,\varepsilon,\varepsilon),$$

且转移步数都不会超过 m. 那么, 由归纳假设有

$$(r_{i-1}, x_i, Y_i) \stackrel{*}{\vdash} (r_i, \varepsilon, \varepsilon) \Longrightarrow [r_{i-1}Y_i r_i] \stackrel{*}{\Rightarrow} x_i.$$

而由动作 $(r_0, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$ 所构造的产生式会包含

$$[qXr_n] \to a[r_0Y_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n].$$

而显然弹出 X 后的状态 p 与弹出 Y_n 后的状态 r_n 是同一个, 所以

$$[qXp] = [qXr_n] \Rightarrow a[r_0Y_1r_1][r_1Y_2r_2] \cdots [r_{n-1}Y_nr_n] \stackrel{*}{\Rightarrow} ax_1x_2 \cdots x_n = w$$

因此充分性得证. 那么当 $X = Z_0, q = q_0$ 时有

$$(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon) \Longrightarrow [q_0 Z_0 p] \stackrel{*}{\Rightarrow} w,$$

以及产生式 $S \rightarrow [q_0 Z_0 p]$ 有 $S \stackrel{*}{\Rightarrow} w$, 即 PDA 接受的串可由文法派生得到.

[必要性]: 略.

例7. 将 PDA $P = (\{p,q\},(0,1),\{X,Z\},\delta,q,Z)$ 转为 CFG, 其中 δ 如下:

(1) $\delta(q,1,Z) = \{(q,XZ)\}$ (2) $\delta(q,1,X) = \{(q,XX)\}$ (3) $\delta(q,0,X) = \{(p,X)\}$

(4) $\delta(q, \varepsilon, Z) = \{(q, \varepsilon)\}$ (5) $\delta(p, 1, X) = \{(p, \varepsilon)\}$ (6) $\delta(p, 0, Z) = \{(q, Z)\}$

δ	产生式		
(0)	$\frac{S \to [qZq]}{S \to [qZq]}$		
(0)	$S \rightarrow [qZp]$		
(1)	$[qZq] \rightarrow 1[qXq][qZq]$		
` ,	$[qZq] \rightarrow 1[qXp][pZq]$	消除无用符号	重命名 (可选)
	$[qZp] \rightarrow 1[qXq][qZp]$	$S \rightarrow [qZq]$	$S \rightarrow A$
	$[qZp] \rightarrow 1[qXp][pZp]$	$[qZq] \rightarrow [[qXp][pZq]$	$A \rightarrow 1BC$
(2)	$[qXq] \to 1[qXq][qXq]$	$[qXp] \to 1[qXp][pXp]$	$B \rightarrow 1BD$
	$[qXq] \to 1[qXp][pXq]$	$[qXp] \to 0[pXp]$	$B \to 0D$
	$[qXp] \to 1[qXq][qXp]$	$[qZq] \rightarrow \varepsilon$	$A \to \varepsilon$
(2)	$[qXp] \to 1[qXp][pXp]$	$[pXp] \rightarrow 1$	$D \rightarrow 1$
(3)	$[qXq] \to 0[pXq]$	$[pZq] \rightarrow 0[qZq]$	$C \rightarrow 0A$
(1)	$[qXp] \rightarrow 0[pXp]$		1
(4) (5)	$ [qZq] \to \varepsilon [pXp] \to 1 $		
(6)	$[pZp] \to 1$ $[pZp] \to 0[qZp]$		
(0)	$[pZq] \to 0[qZq]$		

下推自动机

- 下推自动机
- 下推自动机接受的语言
- 下推自动机与文法的等价性
- 确定型下推自动机
 - 正则语言与 DPDA
 - DPDA 与无歧义文法

确定型下推自动机

定义

如果 $PDA P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ 满足

- ① $\forall a \in \Sigma \cup \{\varepsilon\}$, $\delta(q,a,X)$ 至多有一个动作;
- ② $\exists a \in \Sigma$, 如果 $\delta(q,a,X) \neq \emptyset$, 那么 $\delta(q,\varepsilon,X) = \emptyset$.

则称 P 为确定型下推自动机(DPDA).

定义

DPDAP 以终态方式接受的语言 L(P) 称为确定的上下文无关语言 (DCFL).

• DPDA 中 $\forall (q,a,Z) \in Q \times \Sigma \times \Gamma$ 満足 $|\delta(q,a,Z)| + |\delta(q,\varepsilon,Z)| \le 1$

DPDA 与 PDA 不等价

例 8. 任何 DPDA 都无法接受 L_{wwr} , 但是可以接受

$$L_{wcwr} = \left\{ wcw^R \mid w \in (\mathbf{0} + \mathbf{1})^* \right\}.$$

正则语言与 DPDA

定理 29

如果 L 是正则语言, 那么存在 DPDA P 以终态方式接受 L, 即 $L = \mathbf{L}(P)$.

证明: 显然, 因为 DPDA P 可以不用栈而模拟任何 DFA.

- L_{wcwr} 显然是 CFL, 所以 DCFL 语言类真包含正则语言
- DPDA 无法识别 L_{wwr} , 所以 DCFL 语言类真包含于 CFL

定义

如果语言 L 中不存在两个不同的字符串 x 和 y, 使 x 是 y 的前缀, 称语言 L 满足前缀性质.

定理 30

如果有 DPDA P 且 $L = \mathbf{N}(P)$, 当且仅当 L 有前缀性质且存在 DPDA P' 使 $L = \mathbf{L}(P')$.

证明: [\Rightarrow] $\forall x \in \mathbf{N}(P)$ 会弹空 P 的栈, 所以不会接受以 x 为前缀的其他串; 而转换为终态方式不改变确定性. [\leftarrow] 到达终态则弹空栈, 即可.

• DPDA P 的 $\mathbf{N}(P)$ 更有限, 即使正则语言 $\mathbf{0}^*$ 也无法接受

DPDA 与无歧义文法

定理 31

DPDAP, 语言 L = N(P), 那么 L 有无歧义的 CFG.

证明: 利用定理 28 由 P 构造的文法 G 一定无歧义, 因为:

- \bullet P 是确定的, 那么它接受 w 的 ID 序列也是确定的;
- ② 而由 $\delta(q,a,X) = \{(p,Y_1 \cdots Y_n)\}$ 继续弹出 Y_i 后的状态 r_i 也是确定的;
- ③ 那么由每个动作构造的一组产生式

$$[qXr_n] \rightarrow a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n]$$

中, 仅会有一个是有效的;

4 那么, G 中最左派生 $S \stackrel{*}{\longrightarrow} w$ 就是唯一的, 所以是无歧义的.

定理 32

DPDAP, 语言 $L = \mathbf{L}(P)$, 那么 L 有无歧义的 CFG.

证明:

- ① 设符号 \$ 不在 L 中出现, 令 $L' = \{w \mid w \in L\}$, 则 L' 具有前缀性质;
- ② 可修改 *P* 接受 *L'*,则由定理 30,存在 DPDA *P'* 使 **N**(*P'*) = *L'*;
- 3 由定理 31, 存在无歧义文法 G' 使 $\mathbf{L}(G') = L'$;
- ④ 将 \$ 看作变元, 增加产生式 \$ → ϵ , 修改 G' 为文法 G;
- ⑤ 则文法 G 和 G' 一样无歧义, 且 $\mathbf{L}(G) = L$.

DCFL/DPDA 的重要应用

• 程序设计语言的语法分析器

• 非固有歧义语言的真子集

如 LR(k) 文法, Yacc 的基础, 解析的时间复杂度为 O(n) 的算法

如 L_{wwr} 有无歧义文法 $S \rightarrow 0S0 \mid 1S1 \mid \varepsilon$

语言类之间的关系

chunyu@hit.edu.cn
http://nclab.net/~chunyu

