(although this is a bit inaccurate). Realize that since u = 0 outside of Ω , also u_j is zero there and in particular it is zero on that "lower strip". Clearly then $u_j \in W^{k,p}(\Omega_j)$. Now pick $\delta \in (0, \frac{\beta}{2})$, where β is from the definition of $C^{0,0}$ and set

$$S_j^{\delta} = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta < x_d < a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right),$$

$$\Omega_j^{\delta} = \mathbb{R}^d / \overline{S_j^{\delta}},$$

i.e.,

$$"\Omega_j^{\delta} = \Omega \cup \mathbb{A}_j(\{(x', x_d)|a_j(x') - \delta < x_d < a_j(x')\}) \cup \mathbb{A}_j\left(\left\{(x', x_d)|x_d < a_j(x') - \frac{\beta}{2} - \delta\right\}\right)."$$

The trick is to shift the (support of) function u_i "into" Ω_i^{δ}

$$\tau_{\delta}u_{i}(\mathbb{A}_{i}(x',a_{i}(x'))) = u_{i}(\mathbb{A}_{i}(x',a_{i}(x')+\delta)), x' \in \mathbb{U}(0,\alpha) \subset \mathbb{R}^{d-1}$$

Realize that in fact

$$\operatorname{supp}(\tau_{\delta}u_j) = \operatorname{supp}(u_j) - \delta,$$

from which it follows $\tau_{\delta}u_{j} \in W^{k,p}(\Omega_{j}^{\delta})$; we have only shifted the function u_{j} , but since we have also shifted S_{j} , qualitatively there is no difference. Since $\Omega \subset \Omega_{j}^{\delta} \subset \Omega_{j}^{\delta} \cap \Omega_{j}$, $\Omega \subset \Omega_{j} \subset \Omega_{j}^{\delta} \cap \Omega_{j}$, and the fact τ_{δ} is an isometry between Sobolev spaces, we also have $u_{j}, \tau_{\delta}u_{j} \in W^{k,p}(\Omega_{j} \cap \Omega_{j}^{\delta})$. Moreover, from the properties of the shift operator it follows $\exists \delta > 0$ s.t.

$$\|u_j - \tau_\delta u_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \|u_j - \tau_\delta u_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_j \cap \Omega_j^\delta)} < \frac{\varepsilon}{2(m+1)}.$$

We are on a good track. Since we know $\tau_{\delta}u_j$ is already close to u_j , we are done once we approximate $\tau_{\delta}u_j$ by a function from $C^{\infty}\left(\overline{\Omega}\right)$. Notice that if we show $\overline{\Omega} \subset \Omega_j^{\delta}$, then clearly $C^{\infty}\left(\Omega_j^{\delta}\right) \subset C^{\infty}\left(\overline{\Omega}\right)$.

Show $\Omega \subset \Omega_j^{\delta}$: We already know $\Omega \subset \Omega_j^{\delta}$, so it suffices to show $\partial \Omega \subset \Omega_j^{\delta}$. Our parametrization of the boundary yields

$$\partial\Omega = \bigcup_{k=1}^{m} \mathbb{A}_k(\{(x',x_d)|x_d = a_k(x'), x' \in \mathrm{U}(0,\alpha)\}),$$

and the set Ω_j^{δ} is given as $\Omega_j^{\delta} = \mathbb{R}^d / \overline{S_j}$, where

$$S_j = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta < x_d < a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right).$$

Realize it suffices to show $\partial\Omega \notin \overline{S_j}$, as then it wont be excluded from \mathbb{R}^d and thus will end up in Ω_j^{δ} . Thanks to continuity of a_j , we may write

$$\overline{S_j} = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta \le x_d \le a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right).$$

i.e., the "<" have changed to " \leq ". Since we are doing everything locally, it is enough to show

$$\mathbb{A}_{j}(\{(x',x_{d})|x_{d}=a_{j}(x'),x'\in \mathrm{U}(0,\alpha)\}')\neq \mathbb{A}_{j}(\{(x',x_{d})|a_{j}(x')-\frac{\beta}{2}-\delta\leq x_{d}\leq a_{j}(x')-\delta,x'\in \mathrm{U}(0,\alpha)\}),$$