Zajęcie 0. Analiza macierzowa. Podstawowe pojęcia. Rozkład SVD

Abstract

Celem jest nabycie podstawowej znajomości użycia w informatyce rachunku macierzowego - podstawowe pojęcia oraz zagadnienia.

1. Podstawowe pojęcia

Macierz $A \in \mathbb{R}^{n \times n}$

Definition 1. Wektor własny $x \in \mathbb{R}^n$ odpowiadający wartości własnej $\lambda \in \mathbb{R}$:

$$Ax = \lambda x$$

Definition 2. Macierz U nazywa się **ortogonalną** jeżeli $UU^T = I$. Co więcej $U^{-1} = U^T$.

Definition 3. Macierz V nazywa się **ortonormalną** jeżeli ona jest ortogonalną i jeżeli ||V|| = 1

.

Definition 4. Macierz S nazywa się symetryczną jeżeli $S=S^T$

.

Definition 5. Macierz $D = \{d_i^j\}_{i,j=1}^n$ nazywa się **diagonalną** jeżeli $d_i^j = 0$, $i, j = \overline{1, n}, i \neq j$.

.

Twierdzenie 1. Dla dowolnej symetrycznej macierzy S istnieje rozrład $S = UDU^T$, gdzie U - macierz ortogonalna, $D = diag(\lambda_1, \ldots, \lambda_n)$ - macierz diagonalna, $\lambda_1, \ldots, \lambda_n$ - wartości własne macierzy S. W takim razie mówią że macierz D jest podobna do macierzy S.

Do tej pory używaliśmy macierzy kwadratowe!!! Dalej macierzy prostokątne!

Twierdzenie 2. (SVD) Dla dowolnej prostokątnej macierzy $X \in \mathbb{R}^{n \times n}$ istnieje rozrład $X = U \Sigma V^T$, gdzie $U \in \mathbb{R}^{n \times r}$, $V \in \mathbb{R}^{m \times r}$ - macierzy ortogonalne, $\Sigma = diag(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{r \times r}$ - macierz diagonalna, $\sigma_1, \ldots, \sigma_n$ - wartości singularne.

Twierdzenie 3. Jeżeli $\sigma_1, \ldots, \sigma_n$ - wartości singularne rozkładu SVD macierzy X, to macierz XX^T jest podobna do macierzy diagonalnej $\operatorname{diag}(\sigma_1^2, \ldots, \sigma_n^2)$, czyli

$$XX^T = U\operatorname{diag}(\sigma_1^2,\ldots,\sigma_n^2)U^T$$

Zagadnienia:

• macierz psewdoodwrotna A^+ ;

$$Ax=b$$
dowolna prostokątna macierz $A,n\neq m$
$$x=A^+b$$

- redukcja danych (kompresja obrazów);
- klasyfikacja (obrazów)

2. Zadanie 1

Zadanie dotyczy kompresji obrazu metodą SVD zgodnie z wariantem zadania. Jaka powinna być użyta liczba wartości singularnych żeby zachoważ 90% informacji na obrazie

Sprawozdania w postaci:

- 1. Sprawozdanie (plik .pdf)
- 2. plik .ipynb
- 3. pdf-eksport pliku .pynb

zachować w zdalnym repozytorium (np Github) link na który umieściś w sprawozdaniu. Sprawozdanie należy wysłać na e-uczelnię w ustalonym terminem.

References

References

[pandasUG] Pandas User's Guide https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html

[DA2016] Data Analysis with Python and pandas using Jupyter Notebook https://dev.socrata.com/blog/2016/02/01/pandas-and-jupyter-notebook.html