Solution to Mathematics of

Graduate Entrance Examination

考研数学 试题解答

追求卓越排版, 巧解数学难题.

作者:向禹老师

完成时间: 2020年3月4日

Email: 739049687@qq.com

目录

1	2006 年考研数学一	2
2	2007 年考研数学一	10
3	2008年考研数学一	20
4	2009 年考研数学一	27
5	2010年考研数学一	36
6	2011 年考研数学一	44
7	2012 年考研数学一	52
8	2013 年考研数学一	60
9	2014 年考研数学一	69
10	2015 年考研数学一	78
11	2016 年考研数学—	86
12	2017 年考研数学一	95
13	2018年考研数学一	103
14	2019 年考研数学一	112
15	2020 年考研数学一	121

第1章 2006 年考研数学一

一、填空题, $1 \sim 6$ 题, 每题 4 分, 共 24 分.

1.
$$\lim_{x \to 0} \frac{x \ln(1+x)}{1 - \cos x} =$$
_____.

- **解:** 利用等价无穷小代换得 $\lim_{x\to 0} \frac{x \ln(1+x)}{1-\cos x} = \lim_{x\to 0} \frac{x^2}{\frac{1}{2}x^2} = 2.$
- 2. 微分方程 $y' = \frac{y(1-x)}{x}$ 的通解为_____.
- 解: 原方程变量分离得 $\frac{\mathrm{d}y}{y} = \frac{1-x}{x} \, \mathrm{d}x$, 解得 $\ln |y| = \ln |Cx| \ln \mathrm{e}^x$, 即 $y = Cx\mathrm{e}^{-x}$ $(x \neq 0)$, C 为任意常数.
- 3. 设 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq$ 1) 的下侧, 则 $\iint_{\Sigma} x \, dy \, dz + 2y \, dz \, dx + 3(z 1) \, dx \, dy =$
- **解:** 设曲面 $\Sigma_1 : z = 1$ ($x^2 + y^2 \le 1$), 取上侧, 则原积分

$$I = \iint_{\Sigma + \Sigma_1} x \, \mathrm{d}y \, \mathrm{d}z + 2y \, \mathrm{d}z \, \mathrm{d}x + 3(z - 1) \, \mathrm{d}x \, \mathrm{d}y - \iint_{\Sigma_1} x \, \mathrm{d}y \, \mathrm{d}z + 2y \, \mathrm{d}z \, \mathrm{d}x + 3(z - 1) \, \mathrm{d}x \, \mathrm{d}y$$
$$= \iiint_{\Omega} 6 \, \mathrm{d}V + 0 = 6 \int_0^{2\pi} \mathrm{d}\theta \int_0^1 r \, \mathrm{d}r \int_r^1 \mathrm{d}z = 2\pi.$$

- 4. 点 (2,1,0) 到平面 3x + 4y + 5z = 0 的距离 $d = _____$
- 解:利用点到平面的距离公式可得所求的距离为

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|3 \times 2 + 4 \times 1 + 5 \times 0 + 0|}{\sqrt{3^2 + 4^2 + 5^2}} = \sqrt{2}.$$

- 5. 设矩阵 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, E 是二阶单位矩阵, 矩阵 B 满足 BA = B + 2E, 则 $|B| = _____$.
- 解: 由条件可得

$$\mathbf{B}(\mathbf{A} - \mathbf{E}) = 2\mathbf{E} \Rightarrow |\mathbf{B}(\mathbf{A} - \mathbf{E})| = |2\mathbf{E}| \Rightarrow |\mathbf{B}| |\mathbf{A} - \mathbf{E}| = 2^2 = 4,$$

因为
$$|A - E| = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 2$$
, 所以 $|B| = 2$.

6. 设随机变量 X = Y 相互独立, 且均服从区间 [0,3] 上的均匀分布, 则 $P(\max\{X,Y\}) \le$ 1=____

- 解: $P(\max\{X,Y\}) \le 1 = P(X \le 1, Y \le 1) = P(X \le 1) P(Y \le 1) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$
- 二、选择题, $7 \sim 14$ 题, 每题 4 分, 共 32 分.
- 7. 设函数 y = f(x) 具有二阶导数, 且 f'(x) > 0, f''(x) > 0, Δx 为自变量 x 在点 x_0 处的增量, Δy 与 dy 分别为 f(x) 在点 x_0 处对应的增量与微分, 若 $\Delta x > 0$, 则 (A. $0 < dy < \Delta y$ B. $0 < \Delta y < dy$ C. $\Delta y < dy < 0$ D. $dy < \Delta y < 0$
- 解: 由拉格朗日中值定理知

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{1}{2}f''(\xi)(\Delta x)^2 > f(x_0) + f'(x_0)\Delta x,$$

于是 $f(x_0 + \Delta x) - f(x_0) > f'(x_0) \Delta x > 0$, 如 $0 < dy < \Delta y$, 选 A.

8. 设 f(x,y) 为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr$ 等于

A.
$$\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x, y) dy$$
B. $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$
C. $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x, y) dx$
D. $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{0}^{\sqrt{1-y^2}} f(x, y) dx$

B.
$$\int_0^{\frac{\sqrt{2}}{2}} dx \int_0^{\sqrt{1-x^2}} f(x, y) dy$$

D.
$$\int_0^{\frac{\sqrt{2}}{2}} dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$$

解: 如图所示, 积分区域是一个 Y 型区域, 则原式 = $\int_0^{\frac{\sqrt{2}}{2}} dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$, 选 C.

第8题图

9. 若级数 $\sum_{n=0}^{\infty} a_n$ 收敛, 则级数

A.
$$\sum_{n=1}^{\infty} |a_n|$$
 收敛
C. $\sum_{n=1}^{\infty} a_n a_{n+1}$ 收敛

B.
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 收敛

D.
$$\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$$
 收敛

解: 由 $\sum_{n=1}^{\infty} a_n$ 收敛知 $\sum_{n=1}^{\infty} a_{n+1}$ 收敛,因此 $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ 收敛,选 D. 而 A, B, C 均可取反例 $a_n = \frac{(-1)^n}{\sqrt{}}$

10.设 f(x, y) 与 $\varphi(x, y)$ 均为可微函数, 且 $\varphi'_{v}(x, y) \neq 0$. 已知 (x_{0}, y_{0}) 是 f(x, y) 在约 束条件 $\varphi(x,y) = 0$ 下的一个极值点, 下列选项正确的是 ()

解: 令 $F(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$, 并记对应 x_0, y_0 的参数 λ 的值为 λ_0 , 则

$$\begin{cases} F_x'(x_0,y_0,\lambda_0) = 0 \\ F_y'(x_0,y_0,\lambda_0) = 0 \end{cases}, \quad \mathbb{R}^{\square} \quad \begin{cases} f_x'(x_0,y_0) + \lambda_0 \varphi_x'(x_0,y_0) = 0 \\ f_y'(x_0,y_0) + \lambda_0 \varphi_y'(x_0,y_0) = 0 \end{cases},$$

那么当 $f_x'(x_0,y_0)\neq 0$ 时, 必有 $\lambda_0\neq 0, \varphi_x'(x_0,y_0)\neq 0$, 消去 λ_0 得

$$f_x'(x_0, y_0)\varphi_y'(x_0, y_0) - f_y'(x_0, y_0)\varphi_x'(x_0, y_0) = 0,$$

注意到 $\varphi'_{\nu}(x,y) \neq 0$, 于是 $f'_{\nu}(x_0,y_0) \neq 0$, 选 D.

- 11.设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为 n 维列向量, A 是 $m \times n$ 矩阵, 下列选项正确的是
 - A. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关
 - B. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关
 - C. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关
 - D. 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, 则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关
- **解:** 注意到 $(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) = A(\alpha_1, \alpha_2, \cdots, \alpha_s)$, 如果 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关, 则

$$r(A\alpha_1, A\alpha_2, \cdots, A\alpha_s) \leqslant r(\alpha_1, \alpha_2, \cdots, \alpha_s) < s$$

因此 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关, 选 A.

12.设 A 为三阶矩阵,将 A 的第 2 行加到第 1 行得 B, 再将 B 的第 1 列的 -1 倍加到第

2.设
$$A$$
 为三阶矩阵,将 A 的第 2 行加到第 1 行得 B , 再将 B 的第 1 列的 -1 倍加到第 2 列得 C ,记 $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则 () A. $C = P^{-1}AP$ B. $C = PAP^{-1}$ C. $C = P^{T}AP$ D. $C = PAP^{T}$ 解: 由初等变换与初等矩阵之间的关系可知

解: 由初等变换与初等矩阵之间的关系可知

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A, C = B \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = PAP^{-1},$$

因此选 B.

13.设 A, B 为随机事件, 且 P(B) = 0, P(A|B) = 1, 则必有 ()

A.
$$P(A \cup B) > P(A)$$

B.
$$P(A \cup B) > P(B)$$

C.
$$P(A \cup B) = P(A)$$

D.
$$P(A \cup B) = P(B)$$

解: 由 $P(A|B) = \frac{P(AB)}{P(B)} = 1$ 得 P(AB) = P(B), 则 $P(A \cup B) = P(A) + P(B) - P(AB) =$ P(A), 选 C.

14.设随机变量 X 服从正态分布 $N(\mu_1, \sigma_1^2), Y$ 服从正态分布 $N(\mu_2, \sigma_2^2),$ 且 $P(|X-\mu_1| <$

1) >
$$P(|Y - \mu_2| < 1)$$
, 则必有 ()

A. $\sigma_1 < \sigma_2$

B.
$$\sigma_1 > \sigma_2$$

C.
$$\mu_1 < \mu_2$$

D.
$$\mu_1 > \mu_2$$

解: 将 X, Y 标准化,则 $\frac{X-\mu_1}{\sigma_1} \sim N(0,1), \frac{Y-\mu_2}{\sigma_2} \sim N(0,1),$ 那么

$$P(|X - \mu_1| < 1) = P\left(\left|\frac{X - \mu_1}{\sigma_1}\right| < \frac{1}{\sigma_1}\right) = \Phi\left(\frac{1}{\sigma_1}\right) - \Phi\left(-\frac{1}{\sigma_1}\right) = 2\Phi\left(\frac{1}{\sigma_1}\right) - 1,$$

$$P(|Y - \mu_2| < 1) = 2\Phi\left(\frac{1}{\sigma_2}\right) - 1.$$

因此 $P(|X-\mu_1|<1)>P(|Y-\mu_2|<1)\Rightarrow \Phi\left(\frac{1}{\sigma_1}\right)>\Phi\left(\frac{1}{\sigma_2}\right)$,所以 $\frac{1}{\sigma_1}>\frac{1}{\sigma_2}$,即 $\sigma_1<\sigma_2$,选 A.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

设区域
$$D = \{(x, y) | x^2 + y^2 \le 1, x \ge 0\}$$
, 计算二重积分 $I = \iint_D \frac{1 + xy}{1 + x^2 + y^2} \, \mathrm{d}x \, \mathrm{d}y$.

解: 区域 D 关于 x 轴对称, 因此 $\iint_D \frac{xy}{1+x^2+y^2} dx dy = 0$, 于是

$$I = \iint_{D} \frac{1}{1 + x^2 + y^2} dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \frac{r}{1 + r^2} dr = \frac{\pi}{2} \ln(1 + r^2) \Big|_{0}^{1} = \frac{\pi}{2} \ln 2.$$

16.(本题满分 12 分)

设数列 x_n 满足 $0 < x_1 < \pi, x_{n+1} = \sin x_n (n = 1, 2, \cdots)$.

- (1) 证明 $\lim_{n\to\infty} x_n$ 存在, 并求该极限;
- (2) 计算 $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}}$.
- **解:** (1) 因为 $x_2 = \sin x_1 \in (0, 1]$, 那么归纳可知当 $n \ge 2$ 时, 均有 $0 < x_{n+1} = \sin x_n < x_n$, 即数列 $\{x_n\}$ 单调递减且有下界, 因此极限 $\lim_{n \to \infty} x_n = a$ 存在. 在 $x_{n+1} = \sin x_n$ 中令 $n \to \infty$ 可得 $a = \sin a$, 此方程的唯一解为 a = 0, 即 $\lim_{n \to \infty} x_n = 0$.
 - (2) 令 $t = x_n \rightarrow 0$,则

$$\begin{split} \lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right)^{\frac{1}{x_n^2}} &= \lim_{t \to 0} \left(\frac{\sin t}{t} \right)^{\frac{1}{t^2}} = \lim_{t \to 0} \exp\left(\frac{1}{t^2} \ln \frac{\sin t}{t} \right) \\ &= \exp\left[\lim_{t \to 0} \frac{1}{t^2} \ln \left(\frac{\sin t - t}{t} + 1 \right) \right] \\ &= \exp\left(\lim_{t \to 0} \frac{\sin t - t}{t^3} \right) = \mathrm{e}^{-\frac{1}{6}}. \end{split}$$

17.(本题满分 12 分)

将函数 $f(x) = \frac{x}{2 + x - x^2}$ 展开成 x 的幂级数.

ᅠ解:

$$f(x) = \frac{x}{(2-x)(1+x)} = \frac{2}{3(2-x)} - \frac{1}{3(1+x)} = \frac{1}{3} \frac{1}{1-\frac{x}{2}} - \frac{1}{3} \frac{1}{1+x}$$
$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n x^n = \sum_{n=0}^{\infty} \frac{1}{3} \left[\frac{1}{2^n} + (-1)^{n+1}\right] x^n, \quad |x| < 1.$$

18.(本题满分 12 分)

设函数 f(u) 在 $(0, +\infty)$ 内具有二阶导数,且 $z=f\left(\sqrt{x^2+y^2}\right)$ 满足中等式 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$.

(1) 验证
$$f''(u) + \frac{f'(u)}{u} = 0;$$

(2) 若
$$f(1) = 0$$
, $f'(1) = 1$, 求函数 $f(u)$ 的表达式.

解: (1) 令
$$u = \sqrt{x^2 + y^2}$$
, 由复合函数偏导数公式得

$$\frac{\partial z}{\partial x} = f'(u)\frac{\partial u}{\partial x} = f'(u)\frac{x}{\sqrt{x^2 + y^2}}, \frac{\partial z}{\partial y} = f'(u)\frac{\partial u}{\partial y} = f'(u)\frac{y}{\sqrt{x^2 + y^2}},$$

$$\frac{\partial^2 z}{\partial x^2} = f''(u)\frac{x^2}{x^2 + y^2} + f'(u)\frac{\sqrt{x^2 + y^2} - \frac{x^2}{\sqrt{x^2 + y^2}}}{x^2 + y^2}$$

$$= f''(u)\frac{x^2}{x^2 + y^2} + f'(u)\frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}},$$

$$\frac{\partial^2 z}{\partial y^2} = f''(u)\frac{y^2}{x^2 + y^2} + f'(u)\frac{x^2}{(x^2 + y^2)^{\frac{3}{2}}}.$$

代入
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 以及 $u = \sqrt{x^2 + y^2}$ 得 $f''(u) + \frac{f'(u)}{u} = 0$.

(2) 令
$$f'(u) = p$$
, 则 $\frac{\mathrm{d}p}{\mathrm{d}u} = -\frac{p}{u}$, 解得 $\ln |p| = \ln \left| \frac{C}{u} \right|$, 所以 $f'(u) = p = \frac{C}{u}$. 由 $f'(1) = 1$ 知 $C = 1$, 于是 $f(u) = \ln u + C_2$, $u > 0$. 再由 $f(1) = 0$ 知 $C_2 = 0$, 于是 $f(u) = \ln u$, $u > 0$.

19.(本题满分 12 分)

设在上半平面 $D = \{(x, y)|y > 0\}$ 内, 函数 f(x, y) 具有连续偏导数, 且对任意的 t > 0 都有 $f(tx, ty) = t^{-2} f(x, y)$. 证明: 对 D 内任意分段光滑的有向简单闭曲线 L, 都有

$$\oint_L y f(x, y) dx - x f(x, y) dy = 0.$$

 证明: 等式 $f(tx, ty) = t^{-2} f(x, y)$ 两边对 t 求导得

$$xf'_{x}(tx, ty) + yf'_{y}(tx, ty) = -2t^{-3}f(x, y),$$

$$xf_x'(x,y) + yf_y'(x,y) = -2f(x,y).$$
 (*)

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -f(x, y) - xf_x'(x, y) - [f(x, y) + yf_y'(x, y)] = 0$$

 $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -f(x,y) - xf_x'(x,y) - [f(x,y) + yf_y'(x,y)] = 0,$ 即 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, 因此对 D 内任意分段光滑的有向简单闭曲线 L, 都有

$$\oint_L y f(x, y) dx - x f(x, y) dy = 0.$$

20.(本题满分9分)

(本政内ガラガ)
己知非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \end{cases}$ 有三个线性无关的解. $ax_1 + x_2 + 3x_2 + bx_4 = 1$

- (1) 证明方程组系数矩阵 A 的秩 r(A) = 2;
- (2) 求 a,b 的值及方程组的通解.
- **解:** (1) 设 $\alpha_1, \alpha_2, \alpha_3$ 是非齐次线性方程组的三个线性无关的解, 那么 $\alpha_1 \alpha_2, \alpha_1 \alpha_3$ 是齐 次方程组 Ax = 0 的两个线性无关的解, 因此 $n - r(A) \ge 2$, 即 $r(A) \le 2$. 又显然矩阵 A 中 有 2 阶子式不为 0, 又有 $r(A) \ge 2$, 故 r(A) = 2.
 - (2) 对增广矩阵进行初等行变换得

$$\bar{A} = \begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 4 & 3 & 5 & -1 & | & -1 \\ a & 1 & 3 & b & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 0 & -1 & 1 & | & -5 & | & 3 \\ 0 & 1 - a & 3 - a & b - a & | & a + 1 \end{pmatrix} \\
\rightarrow \begin{pmatrix} 1 & 1 & 1 & | & | & -1 \\ 0 & 1 & -1 & | & 5 & | & -3 \\ 0 & 0 & 4 - 2a & b + 4a - 5 & | & 4 - 2a \end{pmatrix}.$$

由题设和第一问知, $r(A) = r(\overline{A}) = 2$, 则

$$4-2a = b + 4a - 5 = 0 \Rightarrow a = 2, b = -3.$$

此时 $\bar{A} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & -1 & 5 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, 那么 $\boldsymbol{\alpha} = (2, -3, 0, 0)^{\mathrm{T}}$ 是 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系, $\boldsymbol{\eta}_1 =$

$$x = \alpha + k_1 \eta_1 + k_2 \eta_2, k_1, k_2 \in \mathbb{R}.$$

21.(本题满分9分)

设 3 阶实对称矩阵 A 的各行元素之和均为 3, 向量 $\alpha_1 = (-1, 2, -1)^T$, $\alpha_2 = (0, -1, 1)^T$ 是线性方程组 Ax = 0 的两个解.

- (1) 求 A 的特征值与特征向量;
- (2) 求正交矩阵 Q 与对角矩阵 Λ , 使得 $Q^{T}\Lambda Q = \Lambda$.
- \mathbf{m} : (1) 因为 \mathbf{A} 的各行元素之和为 3, 即有

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

所以 3 是矩阵 A 的特征值, $\alpha = (1,1,1)^T$ 是 A 的属于 3 的特征向量. 又根据题意, α_1,α_2 是矩阵 A 的属于 $\lambda = 0$ 的两个线性无关的特征向量, 因此矩阵 A 的特征值是 3,0,0.

特征值 $\lambda = 3$ 的特征向量为 $k(1, 1, 1)^{T}, k \neq 0$;

特征值 $\lambda = 0$ 的特征向量为 $k_1(-1,2,-1)^T + k_2(0,-1,1)^T, k_1, k_2$ 不全为零.

(2) 先对 α_1, α_2 进行斯密特正交化,

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 = (-1, 2, -1)^{\mathrm{T}},$$

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} - \frac{-3}{6} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix},$$

单位化得
$$\gamma_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \gamma_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, 令$$

$$Q = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}, \Lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

则 $Q^{\mathrm{T}}AQ = \Lambda$.

22.(本题满分9分)

随机变量 X 的概率密度为 $f_X(x) = \begin{cases} \frac{1}{2}, & -1 < x < 0 \\ \frac{1}{4}, & 0 \leqslant x < 2 \end{cases}$,令 $Y = X^2$,F(x, y) 为二维 0 其他

随机变量 (X,Y) 的分布函数, 求:

(1) Y 的概率密度 $f_Y(y)$;

$$(2) F\left(-\frac{1}{2}, 4\right).$$

解: (1) Y 的分布函数为 $F_Y(y) = P(Y \leq y) = P(X^2 \leq y)$. 当 $y \leq 0$ 时, $F_Y(y) = 0$. 当 0 < y < 1 时,

$$F_Y(y) = P\left(-\sqrt{y} \leqslant X \leqslant \sqrt{y}\right) = P\left(-\sqrt{y} \leqslant X < 0\right) + P\left(0 \leqslant X \leqslant \sqrt{y}\right)$$
$$= \frac{1}{2}\sqrt{y} + \frac{1}{4}\sqrt{y} = \frac{3}{4}\sqrt{y}.$$

当
$$y \ge 4$$
 时, $F_Y(y) = 1$, 因此 Y 的概率密度 $f_Y(y) = F_Y'(y) = \begin{cases} \frac{3}{8\sqrt{y}}, & 0 < y < 1\\ \frac{1}{8\sqrt{y}}, & 1 \le y < 4. \\ 0, & 其他 \end{cases}$

(2)

$$F\left(-\frac{1}{2}, 4\right) = P\left(X \leqslant -\frac{1}{2}, Y \leqslant 4\right) = P\left(X \leqslant -\frac{1}{2}, X^2 \leqslant 4\right)$$
$$= P\left(X \leqslant -\frac{1}{2}, -2 \leqslant X \leqslant 2\right) = P\left(-2 \leqslant X \leqslant -\frac{1}{2}\right) = \int_{-1}^{-\frac{1}{2}} \frac{1}{2} \, \mathrm{d}x = \frac{1}{4}.$$

23.(本题满分9分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \theta, & 0 < x < 1 \\ 1 - \theta, & 1 \leq x < 2,$ 其中 θ 是未知参数 (0 < x < 1)

 $\theta < 1$), X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, 记 N 为样本值 x_1, x_2, \dots, x_n 中小于 1 的个数, 求 θ 的最大似然估计.

解: 似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \theta^N (1 - \theta)^{n-N},$$

取对数得 $\ln L(\theta) = N \ln \theta + (n - N) \ln(1 - \theta)$, 令

$$\frac{\mathrm{d}\ln L(\theta)}{\mathrm{d}\theta} = \frac{N}{\theta} - \frac{n-N}{1-\theta} = 0,$$

解得 $\theta = \frac{N}{n}$, 因此 θ 的最大似然估计为 $\hat{\theta} = \frac{N}{n}$.

第 2 章 2007 年考研数学一

- 一、选择题, $1 \sim 10$ 题, 每题 4 分, 共 40 分.
- 1. 当 $x \to 0^+$ 时, 与 \sqrt{x} 等价的无穷小量是 A. $1 - e^{\sqrt{x}}$ B. $\ln \frac{1+x}{1-\sqrt{x}}$ C. $\sqrt{1+\sqrt{x}}-1$ D. $1-\cos \sqrt{x}$

$$1 - e^{\sqrt{x}} = -\sqrt{x}, \ln \frac{1+x}{1-\sqrt{x}} = \ln \left(\frac{1+x}{1-\sqrt{x}} - 1 + 1 \right) \sim \frac{1+x}{1-\sqrt{x}} - 1 = \frac{x+\sqrt{x}}{1-\sqrt{x}} \sim \sqrt{x},$$
$$\sqrt{1+\sqrt{x}} - 1 \sim \frac{1}{2}\sqrt{x}, 1 - \cos\sqrt{x} \sim \frac{1}{2}x.$$

因此选 B.

- 2. 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为 A. 0 B. 1 C. 2)
- **解:** 因为 $\lim_{x\to 0}\frac{1}{x}\ln(1+e^x)=\infty$, 所以 x=0 为垂直渐近线. 又 $\lim_{x\to -\infty}\frac{1}{x}\ln(1+e^x)=0$, 所以 y=0 为水平渐近线. 又

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left[\frac{1}{x^2} + \frac{\ln(1 + e^x)}{x} \right] = \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x} = \lim_{x \to +\infty} \frac{e^x}{1 + e^x} = 1.$$

$$\lim_{x \to +\infty} (y - x) = \lim_{x \to +\infty} \left[\frac{1}{x} + \ln(1 + e^x) - x \right]$$

$$= \lim_{x \to +\infty} [\ln(1 + e^x) - x] = \lim_{x \to +\infty} \ln(1 + e^{-x}) = 0,$$

所以有斜渐近线 y = x, 选 D.

3. 如图, 连续函数 y = f(x) 在区间 [-3, -2], [2, 3] 上的图形分别是直径为1的上、下半圆周,在区间 [-2,0],[0,2] 的图形分别是直径为2的下、上半圆 周, 设 $F(x) = \int_0^x f(t) dt$. 则下列结论正确的是 $\frac{1}{-3}$

A. $F(3) = -\frac{3}{4}F(-2)$ B. $F(3) = \frac{5}{4}F(2)$ C. $F(-3) = \frac{3}{4}F(2)$ D. $F(-3) = -\frac{5}{4}F(-2)$

第3题图

解: 根据定积分的几何意义知, F(2) 是半径为 1 的半圆面积, $F(2) = \frac{1}{2}\pi$, F(3) 是两个半圆

的面积之差,
$$F(3) = \frac{1}{2}\pi \left[1 - \left(\frac{1}{2}\right)^2\right] = \frac{3}{8}\pi = \frac{3}{4}F(2)$$
,

$$F(-3) = \int_0^{-3} f(x) \, \mathrm{d}x = -\int_{-3}^0 f(x) \, \mathrm{d}x = \int_0^3 f(x) \, \mathrm{d}x = F(3),$$

因此选 C.

4. 设函数 f(x) 在 x = 0 处连续, 下列命题错误的是

A. 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在, 则 $f(0) = 0$

B. 若
$$\lim_{x\to 0} \frac{f(x) + f(-x)}{x}$$
 存在,则 $f(0) = 0$
C. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 $f'(0) = 0$
D. 若 $\lim_{x\to 0} \frac{f(x) - f(-x)}{x}$ 存在,则 $f'(0)$ 存在

C. 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在, 则 $f'(0) = 0$

D. 若
$$\lim_{x\to 0} \frac{f(x) - f(-x)}{x}$$
 存在,则 $f'(0)$ 存在

解: A, B 两项中分母的极限均为 0, 因此分子的极限也为 0, 再由 f(x) 的连续性知 f(0) = 0. 若 $\lim_{x \to 0} \frac{f(x)}{x}$ 存在,则

$$f(0) = 0, f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x},$$

因此 C 正确. 可举反例 f(x) = |x| 说明 D 选项错误, 选 D.

- 5. 设函数 f(x) 在 $(0, +\infty)$ 上具有二阶导数,且 f''(x) > 0, 令 $u_n = f(n), n = 1, 2, \cdots$, 则下列结论正确的是
 - A. 若 $u_1 > u_2$, 则 $\{u_n\}$ 必收敛
- B. 若 $u_1 > u_2$. 则 $\{u_n\}$ 必发散
- $C. 若 u_1 < u_2, 则 \{u_n\}$ 必收敛
- D. 若 $u_1 < u_2$, 则 $\{u_n\}$ 必发散
- **解:** 如果 $u_2 > u_1$, 即 f(2) > f(1), 由于 f''(x) > 0, 那么 f'(x) 单调递增, 对任意正整数 n,

$$f(n+2) - f(n+1) = f'(\xi_1) > f'(\xi_2) > f(n+1) - f(n),$$

因此 f(n) 单调递增, 且 $f'(x) > f(2) - f(1), x \ge 2$, 那么

$$f(n) - f(2) = f'(\xi)(n-2) > [f(2) - f(1)](n-2),$$

因此 $\lim_{n\to\infty} f(n) = +\infty$, 即 $\{u_n\}$ 发散, 选 D. 对于 A 和 B 可分别取 $f(n) = n^2$ 和 $f(n) = \frac{1}{n}$

6. 设曲线 L: f(x,y) = 1 (f(x,y) 具有一阶连续偏导数)过第二象限内的点 M 和第 四象限内的点 N, Γ 为 L 上从点 M 到 N 的一段弧,则下列小于零的是 ()

A.
$$\int_{\Gamma} f(x, y) dx$$

C.
$$\int_{\Gamma} f(x, y) ds$$

B.
$$\int_{\Gamma} f(x, y) \, \mathrm{d}y$$

D.
$$\int_{\Gamma} f'_x(x, y) dx + f'_y(x, y) dy$$

7. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性相关的是

)

A.
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$

B.
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$

C.
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$

D.
$$\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$$

解: 不难知 A 中三个向量的和为 0, 因此选 A. B 选项中的向量是线性无关的, 因为

$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

其中 $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ 不可逆, 因此 B 中的向量线性无关, 类似可得 C, D 也线性无关.

- 8. 设矩阵 $\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $\mathbf{A} \subseteq \mathbf{B}$)
 - A. 合同, 且相但

C. 不合同, 但相似

- D. 既不合同, 也不相似
- № **解:** 由 $|\lambda E A| = 0$ 得 **A** 的特征值为 0, 3, 3, 而 **B** 的特征值为 0, 1, 1, 从而 **A** 与 **B** 合同而 不相似, 选 B.
- 9. 某人向同一目标独立重复射击,每次射击命中目标的概率为p(0 ,则此人第 4 次射击恰好第 2 次命中目标的概率为 B. $6p(1-p)^2$ C. $3p^2(1-p)^2$ D. $6p^2(1-p)^2$

A.
$$3p(1-p)^2$$

B.
$$6p(1-p)^2$$

C.
$$3n^2(1-n)^2$$

D.
$$6p^2(1-p)^2$$

- 解: "第4次射击恰好第2次命中"表示第4次射击命中目标,前3次中只有1次命中目标, 因此所求的概率为 $C_3^1 p^2 (1-p)^2 = 3p^2 (1-p)^2$, 选 C.
- 10.设随机变量 (X,Y) 服从二维正态分布, 且 X 与 Y 不相关, $f_X(x)$, $f_Y(y)$ 分别表示 X, Y 的概率密度,则在 Y = y 的条件下, X 的条件概率密度 $f_{X|Y}(x|y)$ 为

A.
$$f_X(x)$$

B.
$$f_Y(y)$$

B.
$$f_Y(y)$$
 C. $f_X(x)f_Y(y)$

D.
$$\frac{f_X(x)}{f_Y(y)}$$

- **解:** 因为 (X,Y) 服从二维正态分布,且 X 与 Y 不相关,故 X 与 Y 相互独立,于是 $f_{X|Y}(x|y)$ = $f_X(x)$, 因此选 A.
- 二、填空题, $11 \sim 16$ 题, 每题 4 分, 共 24 分.

$$11. \int_{1}^{2} \frac{1}{x^{3}} e^{\frac{1}{x}} dx = \underline{\qquad}.$$

12.设 f(u,v) 为二元可微函数, $z = f(x^y, y^x)$, 则 $\frac{\partial z}{\partial x} =$ _____.

- **解:** 由复合函数的偏导数公式得 $\frac{\partial z}{\partial x} = f_1' \cdot y x^{y-1} + f_2' \cdot y^x \ln y$.
- 13.二阶常系数非齐次线性方程 $y'' 4y' + 3y = 2e^{2x}$ 的通解为 $y = ____$.
- **解:** 齐次方程 y''-4y'+3y=0 的特征方程为 $\lambda^2-4\lambda+3=0$, 特征根为 $\lambda_1=1,\lambda_2=3$, 因此齐次方程的通解为 $Y=C_1\mathrm{e}^x+C_2\mathrm{e}^{3x}$. 设非齐次线性微分方程 $y''-4y'+3y=2\mathrm{e}^{2x}$ 的特解为 $y^*=k\mathrm{e}^{2x}$, 代入可得 k=-2, 因此原方程的通解为 $y=Y+y^*=C_1\mathrm{e}^x+C_2\mathrm{e}^{3x}-2\mathrm{e}^{2x}$.

14.设曲面 $\Sigma : |x| + |y| + |z| = 1$, 则 $\oint_{\Sigma} (x + |y|) dS = _____.$

解: 曲面关于 yOz 面对称, 因此 $\iint_{\Sigma} x \, \mathrm{d}S = 0$. 曲面 $\Sigma: |x| + |y| + |z| = 1$ 满足轮换对称性, 于是

$$\iint_{\Sigma} (x + |y|) dS = \iint_{\Sigma} |y| dS = \iint_{\Sigma} |z| dS = \iint_{\Sigma} |z| dS$$

$$= \frac{1}{3} \iint_{\Sigma} (|x| + |y| + |z|) dS = \frac{1}{3} \iint_{\Sigma} dS = \frac{1}{3} \times 8 \times \frac{\sqrt{3}}{2} = \frac{4}{3} \sqrt{3}.$$

15.设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 则 A^3 的秩为______.

16.在区间 (0,1) 中随机地取两个数,则这两个数之差的绝对值小于 $\frac{1}{2}$ 的概率为_____.

解: 这是一个几何概型, 设 x, y 为所取的两个数, 则样本空间 $\Omega = \{(x, y) | 0 < x, y < 1\}$, 记

$$A = \left\{ (x, y) \in \Omega, |x - y| < \frac{1}{2} \right\}.$$

于是所求概率为 $P(A) = \frac{S_A}{S_\Omega} = \frac{3}{4}$, 其中 S_A , S_Ω 分别表示 A 与 Ω 的面积.

- 三、解答题,17~24题,共86分.
- 17.(本题满分 11 分)

求函数 $f(x,y) = x^2 + 2y^2 - x^2y^2$ 在区域 $D = \{(x,y)|x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值和最小值.

解: 在区域 D 内, 令 $\begin{cases} f'_x = 2x - 2x^2y = 0 \\ f'_y = 4y - 2x^2y = 0 \end{cases}$, 得开区域内的可能极值点为 $\left(\pm\sqrt{2},1\right)$, 其对应的函数值为 $f\left(\pm\sqrt{2},1\right) = 2$.

由当 y = 0 时, $f(x, y) = x^2$ 在 $-2 \le x \le 2$ 上的最大值为 4, 最小值为 0.

当 $x^2 + y^2 = 4$, y > 0, -2 < x < 2 时, 构造拉格朗日函数

$$F(x, y, \lambda) = x^2 + 2y^2 - x^2y^2 + \lambda(x^2 + y^2 - 4),$$

解方程组

$$\begin{cases} F'_x = 2x - 2xy^2 + 2\lambda x = 0 \\ F'_y = 4y - 2x^2y + 2\lambda y = 0 \\ F'_1 = x^2 + y^2 - 4 = 0 \end{cases}$$

得可能的极值点为 (0,2), $\left(\pm\sqrt{\frac{5}{2}},\sqrt{\frac{3}{2}}\right)$, 其对应函数的值为 f(0,2)=8, $f\left(\pm\sqrt{\frac{5}{2}},\sqrt{\frac{3}{2}}\right)=\frac{7}{4}$. 比较以上各个函数值, 可知 f(x,y) 在区域 D 上的最大值为 8, 最小值为 0.

18.(本题满分 10 分)

计算曲面积分 $I=\iint\limits_{\Sigma}xz\,\mathrm{d}y\,\mathrm{d}z+2zy\,\mathrm{d}z\,\mathrm{d}x+3xy\,\mathrm{d}x\,\mathrm{d}y$, 其中 Σ 为曲面 $z=1-x^2-\frac{y^2}{4}$ (0 \leqslant z \leqslant 1) 的上侧.

解: 补充曲面 $\Sigma_1: x^2 + \frac{y^2}{4} = 1, z = 0$, 取下侧, 则

$$I = \iint_{\Sigma + \Sigma_{1}} xz \, dy \, dz + 2zy \, dz \, dx + 3xy \, dx \, dy - \iint_{\Sigma_{1}} xz \, dy \, dz + 2zy \, dz \, dx + 3xy \, dx \, dy$$
$$= \iiint_{\Omega} (z + 2z) \, dx \, dy \, dz - \iint_{\Sigma_{1}} 3xy \, dx \, dy = \iiint_{\Omega} 3z \, dx \, dy \, dz + \iint_{D} 3xy \, dx \, dy.$$

其中 Ω 为 Σ 与 Σ_1 所围成的空间区域, D 为平面区域 $x^2+\frac{y^2}{4}\leqslant 1$. 由于区域 D 关于 x 轴 对称, 因此 $\iint_D 3xy\,\mathrm{d}x\,\mathrm{d}y=0$. 于是

$$I = 3 \iiint\limits_{\Omega} z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = 3 \int_0^1 z \, \mathrm{d}z \iint\limits_{D_z} \mathrm{d}x \, \mathrm{d}y = 3 \int_0^1 z \cdot 2\pi (1-z) \, \mathrm{d}z = \pi.$$

其中 $D_z: x^2 + \frac{y^2}{4} \leqslant 1 - z$.

19.(本题满分 11 分)

设函数 f(x), g(x) 在 [a,b] 上连续, 在 (a,b) 内具有二阶导数存在相等的最大值, f(a) = g(a), f(b) = g(b), 证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$.

证明: 令 F(x) = f(x) - g(x), 由题意有 F(a) = F(b) = 0. 又 f(x), g(x) 在 (a,b) 内具有相等的最大值, 不妨设存在 $x_1 \le x_2, x_1, x_2 \in (a,b)$ 使得

$$f(x_1) = M = \max_{x \in [a,b]} g(x_2) = M = \max_{x \in [a,b]} g(x).$$

若 $x_1 = x_2$, 令 $c = x_1$, 则 F(c) = 0.

若 $x_1 < x_2$, 因 $F(x_1) = f(x_1) - g(x_1) \ge 0$, $F(x_2) = f(x_2) - g(x_2) \le 0$, 从而存在 $c \in [x_1, x_2] \subset (a, b)$, 使得 F(c) = 0.

在区间 [a,c],[c,b] 上分别利用罗尔定理知, 存在 $\xi_1 \in (a,c), \xi_2 \in (c,b)$, 使得

$$F'(\xi_1) = F'(\xi_2) = 0.$$

再对 F'(x) 在区间 $[\xi_1, \xi_2]$ 上应用罗尔定理, 存在 $\xi \in (\xi_1, \xi_2) \subset (a, b)$, 有 $F''(\xi) = 0$, 即 $f''(\xi) = g''(\xi)$.

20.(本题满分 10 分)

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-\infty, +\infty)$ 内收敛, 其和函数 y(x) 满足

$$y'' - 2xy' - 4y = 0, y(0) = 0, y'(0) = 1.$$

- (1) 证明: $a_{n+2} = \frac{2}{n+1}a_n, n = 1, 2, \dots;$
- (2) 求 y(x) 的表达式.

解: (1) 记
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
, 则

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n,$$
$$y'' = \sum_{n=1}^{\infty} (n+1) n a_{n+1} x^{n-1} = \sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n.$$

代入 y'' - 2xy' - 4y = 0 得

$$y'' - 2xy' - 4y = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - 2\sum_{n=1}^{\infty} na_n x^n - 4\sum_{n=0}^{\infty} a_n x^n$$

$$= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - 2\sum_{n=0}^{\infty} na_n x^n - 4\sum_{n=0}^{\infty} a_n x^n$$

$$= \sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - (2n+4)a_n]x^n = 0.$$

因此 $(n+2)(n+1)a_{n+2}-(2n+4)a_n=0$, 即 $a_{n+2}=\frac{2}{n+1}a_n, n=1,2,\cdots$.

(2) 由初值条件 y(0) = 0, y'(0) = 1 知 $a_0 = 0$, $a_1 = 1$, 那么由递推关系可得

$$a_{2n} = 0, a_{2n+1} = \frac{2}{2n}a_{2n-1} = \frac{1}{n}a_{2n-1} = \dots = \frac{1}{n!}a_1 = \frac{1}{n!}.$$

因此

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_{2n+1} x^{2n+1} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{2n+1} = x \sum_{n=0}^{\infty} \frac{1}{n!} (x^2)^n = x e^{x^2}.$$

21.(本题满分 11 分)

设线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$
 (1)

与方程

$$x_1 + 2x_2 + x_3 = a - 1 (2)$$

有公共解, 求 a 的值及所有公共解.

解: 因为方程组(1)、(2)有公共解,将(1)、(2)联立组成方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$
(3)

此非齐次线性方程组的解即为所求的公共解. 对增广矩阵 \bar{A} 进行初等行变换得

$$\overline{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 0 & (a - 2)(a - 1) & 0 \\ 0 & 0 & 1 - a & a - 1 \end{pmatrix}.$$

于是当 a=1 时, 有 $r(A)=r(\overline{A})=2<3$, 方程组 (3) 有解, 此时

方程组是齐次的, 基础解系为 $(-1,0,1)^{\mathrm{T}}$, 所以 (1)、(2) 的公共解为 $k(-1,0,1)^{\mathrm{T}}, k \in \mathbb{R}$.

当 a = 2 时, $r(A) = r(\bar{A}) = 3$, 方程组 (3) 有唯一解, 此时

$$\overline{A} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

故方程 (3) 的解为 $(0,1,-1)^{\mathrm{T}}$, 即 (1)、(2) 的公共解为 $(0,1,-1)^{\mathrm{T}}$.

22.(本题满分 11 分)

设 3 阶实对称矩阵 A 的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2$. $\alpha_1 = (1, -1, 1)^T$ 是 A 的属于特征值 λ_1 的一个特征向量, 记 $B = A^5 - 4A^3 + E$, 其中 E 为 3 阶单位矩阵.

- (1) 验证 α_1 是矩阵 **B** 的特征向量, 并求 **B** 的全部特征值与特征向量;
- (2) 求矩阵 B.
- **解:** (1) 由 $A\alpha_1 = \alpha_1$ 得 $A^2\alpha_1 = A\alpha_1 = \alpha_1$, $A^3\alpha_1 = \alpha_1$, $A^5\alpha_1 = \alpha_1$, 故

$$B\alpha_1 = (A^5 - 4A^4 + E)\alpha_1 = A^5\alpha_1 - 4A^4\alpha_1 + \alpha_1 = \alpha_1 - 4\alpha_1 + \alpha_1 = -2\alpha_1$$

因此 α_1 是矩阵 B 的属于特征值 -2 的特征向量.

因为 $\mathbf{B} = \mathbf{A}^5 - 4\mathbf{A}^4 + \mathbf{E}$, 及 \mathbf{A} 的三个特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2$, 得 \mathbf{B} 的 3 个特征值为 $\mu_1 = -2, \mu_2 = 1, \mu_3 = 1$.

设 α_2 , α_3 为 B 的属于 $\mu_2 = \mu_3 = 1$ 的两个线性无关的特征向量, 又 A 为对称矩阵,则 B 也为对称矩阵,因此 α_1 与 α_2 , α_3 正交,即

$$\boldsymbol{\alpha}_1^{\mathrm{T}}\boldsymbol{\alpha}_2 = 0, \boldsymbol{\alpha}_1^{\mathrm{T}}\boldsymbol{\alpha}_3 = 0.$$

所以 α_2,α_3 可取为下列齐次线性方程组两个线性无关的解:

$$(1, -1, 1) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0.$$

其基础解系为 $(1,1,0)^{\mathrm{T}}$, $(-1,0,1)^{\mathrm{T}}$, 故可取 $\boldsymbol{\alpha}_2 = (1,1,0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (-1,0,1)^{\mathrm{T}}$, 即 \boldsymbol{B} 的全部特征向量为 $k_1(1,-1,1)^{\mathrm{T}}$, $k_2(1,1,0)^{\mathrm{T}} + k_2(-1,0,1)^{\mathrm{T}}$, 其中 $k_1 \neq 0$, k_2 , k_3 不全为零.

23.(本题满分 11 分)

设二维随机变量 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}.$$

- (1) 求 P(X > 2Y);
- (2) 求 Z = X + Y 的概率密度.

解: (1)
$$P(X > 2Y) = \iint_{Y>2y} f(x,y) dx dy = \int_0^{\frac{1}{2}} dy \int_{2y}^1 (2-x-y) dx = \frac{7}{24}.$$

(2) 先求 Z 的分布函数:

$$F_Z(z) = P(X + Y \leqslant z) = \iint_{x+y \leqslant z} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

当 z < 0 时, $F_Z(z) = 0$;

当
$$1 \le z < 2$$
 时, $F_Z(z) = 1 - \iint_{D_2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1 - \int_{z-1}^1 \mathrm{d}y \int_{z-y}^1 (2 - x - y) \, \mathrm{d}x = 1 - \frac{1}{3} (2 - z)^3$;

当 $z \ge 2$ 时, $F_Z(z) = 1$. 故 Z = X + Y 的概率密度为

$$f_{Z}(z) = F'_{Z}(z) = \begin{cases} 2z - z^{2}, & 0 < z < 1 \\ (2 - z)^{2}, & 1 \leqslant z < 2 \\ 0, & \sharp \text{ } \end{cases}$$

24.(本题满分11分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta}, & 0 < x < \theta \\ \frac{1}{2(1-\theta)}, & \theta \leqslant x < 1, \\ 0, & \sharp \text{ th} \end{cases}$$

其中参数 θ (0 < θ < 1) 未知, X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本, \overline{X} 是样本均值.

- (1) 求参数 θ 的矩估计量 $\hat{\theta}$;
- (2) 判断 $4\bar{X}^2$ 是否为 θ^2 的无偏估计量, 并说明理由.
- 解: (1) 总体均值

$$E(X) = \int_0^\theta \frac{x}{2\theta} \, \mathrm{d}x + \int_\theta^1 \frac{x}{2(1-\theta)} \, \mathrm{d}x = \frac{\theta}{4} + \frac{1}{4}(1+\theta) = \frac{\theta}{2} + \frac{1}{4}.$$

样本均值为 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 令 $\bar{X} = \frac{\theta}{2} + \frac{1}{3}$, 解得 $\theta = 2\bar{X} - \frac{1}{2}$, 即 θ 的矩估计量为 $\hat{\theta} = 2\bar{X} - \frac{1}{2}$.

(2)
$$E(4\bar{X}^2) = 4E(\bar{X}^2) = 4\left[D(\bar{X}) + (E\bar{X})^2\right] = 4\left[\frac{D(X)}{n} + (EX)^2\right], \overline{m}$$

$$E(X^2) = \int_0^\theta \frac{x^2}{2\theta} \, \mathrm{d}x + \int_\theta^1 \frac{x^2}{2(1-\theta)} \, \mathrm{d}x = \frac{\theta^2}{3} + \frac{1}{6}\theta + \frac{1}{6},$$

$$D(X) = E(X^2) - (EX)^2 = \frac{\theta^2}{3} + \frac{1}{6}\theta + \frac{1}{6} - \left(\frac{1}{2}\theta + \frac{1}{4}\right)^2 = \frac{1}{12}\theta^2 - \frac{1}{12}\theta + \frac{5}{48}.$$

故 $E(4\bar{X}^2) = 4\left(\frac{D(X)}{n} + (EX)^2\right) = \frac{3n+1}{3n}\theta^2 + \frac{3n-1}{3n}\theta + \frac{3n+5}{12n} \neq \theta^2$, 所以 $4\bar{X}^2$ 不是 θ^2 的无偏估计量.

第 3 章 2008 年考研数学-

一、选择题、 $1 \sim 8$ 题、每题 4 分、共 32 分。

- 1. 设函数 $f(x) = \int_0^{x^2} \ln(2+t) dt$, 则 f'(x) 的零点个数为 C. 2 D. 3
- **解:** 求导可得 $f'(x) = 2x \ln(2 + x^2)$, 则 f'(x) 的零点只有一个 x = 0, 选 B
- 2. 函数 $f(x, y) = \arctan \frac{x}{y}$ 在点 (0, 1) 处的梯度等于 A. i B. -i C. j D. -j
- **解:** 直接计算偏导数可得 $\frac{\partial f}{\partial x} = \frac{\frac{1}{y}}{1 + \left(\frac{x}{y}\right)^2} = \frac{y}{x^2 + y^2}, \frac{\partial f}{\partial y} = \frac{-\frac{x}{y^2}}{1 + \left(\frac{x}{y}\right)^2} = -\frac{x}{x^2 + y^2},$ 于是 $\operatorname{grad} f(x,y)|_{(0,1)} = f'_x(0,1)\mathbf{i} + f'_y(0,1)\mathbf{j} = 1 \cdot \mathbf{i} + 0 \cdot \mathbf{j} = \mathbf{i}, \text{ i. } A$
- 3. 在下列微分方程中, 以 $y = C_1 e^x + C_2 \cos 2x + C_3 \sin 2x$ (C_1, C_2, C_3 为任意常数) 为 通解的是)
 - A. y''' + y'' 4y' 4y = 0
- B. y''' + y'' + 4y' + 4y = 0D. y''' y'' + 4y' 4y = 0
- C. v''' v'' 4v' + 4v = 0
- **解:** 从通解形式可知微分方程的特征根为 $\lambda_1 = 1, \lambda_{2,3} = \pm 2 i$. 因此对应的特征方程为 $(\lambda - 1)(\lambda^2 + 4) = \lambda^3 - \lambda^2 + 4\lambda - 4 = 0$, 故对应的微分方程为 y''' - y'' + 4y' - 4y = 0, 选 D.
- 4. 设函数 f(x) 在 $(-\infty, +\infty)$ 内单调有界, $\{x_n\}$ 为数列, 下列命题正确的是
 - A. 若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛
- B. 若 $\{x_n\}$ 单调, 则 $\{f(x_n)\}$ 收敛
- C. 若 { $f(x_n)$ } 收敛, 则 { x_n } 收敛
- D. 若 { $f(x_n)$ } 单调, 则 { x_n } 收敛
- **解:** 对 B 选项, 因为数列 $\{x_n\}$ 单调, f(x) 在 $(-\infty, +\infty)$ 内有界, 所以数列 $\{f(x_n)\}$ 单调有界, 由单调有界准则知数列 $\{f(x_n)\}$ 收敛. A 选项可取反例 $f(x) = \begin{cases} 1 - \frac{1}{2 + x^2}, & x \ge 0 \\ -1 - \frac{1}{2 + x^2}, & x < 0 \end{cases}$

 $\frac{(-1)^n}{n}$, C 和 D 选项可取反例 $f(x) = \arctan x, x_n = n$, 选 B.

- 5. 设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵, 若 $A^3 = O$. 则)
 - A. E A 不可逆, E + A 不可逆
- B. E A 不可逆, E + A 可逆
- C. E A 可逆, E + A 可逆
- D. E A 可逆, E + A 不可逆
- **解:** 因为 $A^3 = O$, 所以 A 的特征值 λ 满足 $\lambda^3 = 0$, 即 $\lambda = 0$. 因此 E A 和 E + A 的所 有特征值均为 1, 都可逆, 选 C.

6. 设 \boldsymbol{A} 为 3 阶实对称矩阵, 如果二次曲面方程 $(x,y,z)\boldsymbol{A}\begin{pmatrix} x\\y\\z \end{pmatrix}=1$ 在正交变换下的标准方程的图形如图, 则 \boldsymbol{A} 的正特征值个数为

第6题图

A. 0 B. 1 C. 2 D. 3

- **解:** 所给曲面是双叶双曲面, 其标准方程为 $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$, 因此二次型的标准形中, 正的平方项有 1 个, 负的平方项有 2 个, 即正特征值只有 1 个, 选 B.
- 7. 设随机变量 X, Y 独立同分布, 且 X 的分布函数为 F(x), 则 $Z = \max\{X, Y\}$ 的分布函数为

A. $F^{2}(x)$

B. F(x)F(y)

C. $1 - [1 - F(x)]^2$

D. [1 - F(x)][1 - F(y)]

解: 由分布函数的定义可得 Z 的分布函数为

$$F_Z(x) = P(Z \leqslant x) = P(\max\{X, Y\} \leqslant x) = P(X \leqslant x, Y \leqslant x)$$
$$= P(X \leqslant x)P(Y \leqslant x) = F(x)F(x) = F^2(x),$$

选 A.

8. 设随机变量 $X \sim N(0,1), Y \sim N(1,4),$ 且相关系数 $\rho_{XY} = 1,$ 则 ()

A. $P\{Y = -2X - 1\} = 1$

B. $P{Y = 2X - 1} = 1$

C. $P{Y = -2X + 1} = 1$

D. $P{Y = 2X + 1} = 1$

解: 由于 X, Y 都服从正态分布, 且 $\rho_{XY} = 1$, 所以一定存在常数 a, b 使得 P(Y = aX + b) = 1, 且 a > 0. 那么有 E(Y) = aE(X) + b, 即 1 = 0 + b, b = 1. 再由 $4 = D(Y) = a^2D(X) = a^2$ 可知 a = 2, 选 D.

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

- 9. 微分方程 xy' + y = 0 满足条件 y(1) = 1 的解是 $y = ____.$
- **解:** 由 xy' + y = (xy)' = 0 知 xy = C, 代入 y(1) = 1 知 C = 1, 所以方程的解为 $y = \frac{1}{x}$.
- 10.曲线 $\sin(xy) + \ln(y x) = x$ 在点 (0,1) 处的切线方程为_____.
- **解:** 原方程两边对 x 求导得 $\cos(xy)(y+xy')+\frac{y'-1}{y-x}=1$, 代入 x=0,y=1 得 y'(0)=1, 因此曲线在点 (0,1) 处的切线方程为 y=x+1.
- 11.已知幂级数 $\sum_{n=0}^{\infty} a_n(x+2)^n$ 在 x=0 处收敛, 在 x=-4 处发散, 则幂级数 $\sum_{n=0}^{\infty} a_n(x-3)^n$ 的收敛域为_____.
- 解:由条件知幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 x=2 处收敛,在 x=-2 处发散,因此 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半 径为 2,收敛域为 (-2,2],那么幂级数 $\sum_{n=0}^{\infty} a_n (x-3)^n$ 的收敛域为 (1,5].
- 12.设曲面 Σ 是 $z = \sqrt{4 x^2 y^2}$ 的上侧,则 $\iint_{\Sigma} xy dy dz + x dz dx + x^2 dx dy = _____.$
- **解:** 补充曲面 Σ_1 : $\begin{cases} x^2 + y^2 \leq 4 \\ z = 0 \end{cases}$, 取下侧, 记 $D = \{(x,y)|x^2 + y^2 \leq 4\}$, 由 Σ 与 Σ_1 包围的 有界区域为 Ω , 则

$$\iint_{\Sigma} xy \, \mathrm{d}y \, \mathrm{d}z + x \, \mathrm{d}z \, \mathrm{d}x + x^2 \, \mathrm{d}x \, \mathrm{d}y$$

$$= \iint_{\Sigma + \Sigma_1} xy \, \mathrm{d}y \, \mathrm{d}z + x \, \mathrm{d}z \, \mathrm{d}x + x^2 \, \mathrm{d}x \, \mathrm{d}y - \iint_{\Sigma_1} xy \, \mathrm{d}y \, \mathrm{d}z + x \, \mathrm{d}z \, \mathrm{d}x + x^2 \, \mathrm{d}x \, \mathrm{d}y$$

$$= \iiint_{\Omega} y \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z + \iint_{D} x^2 \, \mathrm{d}x \, \mathrm{d}y = 0 + \int_{0}^{2\pi} \cos^2\theta \, \mathrm{d}\theta \int_{0}^{2} r^3 \, \mathrm{d}r = 4\pi.$$

- 13.设 A 为 2 阶矩阵, α_1 , α_2 为线性无关的 2 维列向量, $A\alpha_1 = 0$, $A\alpha_2 = 2\alpha_1 + \alpha_2$, 则 A 的非零特征值为_____.
- 解: 由题意得 $A(\alpha_1, \alpha_2) = (0, 2\alpha_1 + \alpha_2) = (\alpha_1, \alpha_2) \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$. 记 $P = (\alpha_1, \alpha_2)$, 则 $P^{-1}AP = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$, 因此 $A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$ 相似, A 的非零特征值为 1.
- 14.设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = EX^2\} = ____.$
- **解:** 因为 $X \sim P(1)$, 所以 EX = DX = 1, 于是 $EX^2 = (EX)^2 + DX = 2$, $P(X = EX^2) = P(X = 2) = \frac{1}{2e}$.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

求极限
$$\lim_{x\to 0} \frac{\left[\sin x - \sin\left(\sin x\right)\right]\sin x}{x^4}$$
.

解: 利用等价无穷小可得

$$\lim_{x \to 0} \frac{\left[\sin x - \sin\left(\sin x\right)\right]\sin x}{x^4} = \lim_{x \to 0} \frac{\frac{1}{6}\sin^3 x \cdot \sin x}{\sin^4 x} = \frac{1}{6}.$$

16.(本题满分9分)

计算曲线积分 $\int_L \sin 2x dx + 2(x^2 - 1)y dy$, 其中 L 是曲线 $y = \sin x$ 上从点 (0,0) 到点 $(\pi,0)$ 的一段.

解:由条件可得

$$\int_{L} \sin 2x dx + 2(x^{2} - 1) y dy = \int_{0}^{\pi} \left[\sin 2x + 2(x^{2} - 1) \sin x \cos x \right] dx$$

$$= \int_{0}^{\pi} x^{2} \sin 2x dx = -\frac{x^{2}}{2} \cos 2x \Big|_{0}^{\pi} + \int_{0}^{\pi} x \cos 2x dx$$

$$= -\frac{\pi^{2}}{2} + \frac{x}{2} \sin 2x \Big|_{0}^{\pi} - \frac{1}{2} \int_{0}^{\pi} \sin 2x dx$$

$$= -\frac{\pi^{2}}{2}.$$

17.(本题满分11分)

已知曲线 $C: \begin{cases} x^2 + y^2 - 2z^2 = 0 \\ x + y + 3z = 5 \end{cases}$, 求 C 上距离 xOy 面最远的点和最近的点.

解: 设 P(x, y, z) 为曲线 C 上任意一点, 则点 P 到 xOy 面的距离为 |z|, 即原题化为求 z^2 在条件 $x^2 + y^2 - 2z^2 = 0$, x + y + 3z = 5 下的最值点. 令

$$F(x, y, z, \lambda, \mu) = z^2 + \lambda(x^2 + y^2 - 2z^2) + \mu(x + y + 3z - 5),$$

解方程

$$\begin{cases} F'_x = 2\lambda x + \mu = 0 \\ F'_y = 2\lambda y + \mu = 0 \end{cases}$$
$$\begin{cases} F'_z = 2z - 4\lambda z + 3\mu = 0 \\ F_\lambda = x^2 + y^2 = -2z^2 = 0 \end{cases}$$
$$F'_\mu = x + y + 3z - 5 = 0$$

可得 (x, y, z) = (1, 1, 1) 或 (-5, -5, 5). 因此曲线 C 上距离 xOy 面最远的点是 (-5, -5, 5), 最近的点是 (1, 1, 1).

18.(本题满分 10 分)

设 f(x) 是连续函数,

- (1) 利用定义证明函数 $F(x) = \int_0^x f(t) dt$ 可导, 且 F'(x) = f(x);
- (2) 当 f(x) 是以 2 为周期的周期函数时,证明函数 $G(x) = 2 \int_0^x f(t) dt x \int_0^2 f(t) dt$ 也是以 2 为周期的周期函数.
- ightharpoonup 证明: (1) 对任意的 x, 由于函数 f(x) 连续, 所以

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_0^{x + \Delta x} f(t) dt - \int_0^x f(t) dt}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\xi) \Delta x}{\Delta x} \quad ($$

$$= \lim_{\xi \to x} f(\xi) = f(x).$$

因此 F(x) 可导, 且 F'(x) = f(x).

$$(2) \Leftrightarrow g(x) = G(x+2) - G(x) = 2\int_0^{x+2} f(t) dt - 2\int_0^2 f(t) dt - 2\int_0^x f(t) dt,$$

$$g'(x) = 2f(x+2) - 2f(x) = 2f(x) - 2f(x) = 0,$$

因此 g(x) 为常函数, $g(x) = g(0) = 2 \int_0^2 f(t) dt - 2 \int_0^2 f(t) dt = 0$, 即 G(x+2) = G(x), 这说明 G(x) 是以 2 为周期的周期函数.

19.(本题满分 11 分)

将函数
$$f(x) = 1 - x^2$$
 ($0 \le x \le \pi$) 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ 的和.

解: 把 f(x) 作偶延拓以后再作周期为 2π 的周期延拓得到的函数是连续的偶函数, 其余弦级数为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$. 对 $n = 1, 2, \cdots$ 有

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{n\pi} \int_0^{\pi} (1 - x^2) \, d(\sin nx)$$

$$= \frac{2}{n\pi} \left[(1 - x^2) \sin nx \Big|_0^{\pi} + \int_0^{\pi} 2x \sin nx \, dx \right]$$

$$= \frac{4}{n\pi} \int_0^{\pi} x \sin nx \, dx = -\frac{4}{n^2\pi} \int_0^{\pi} x \, d(\cos nx)$$

$$= -\frac{4}{n^2\pi} \left(x \cos nx \Big|_0^{\pi} + \int_0^{\pi} \cos nx \, dx \right) = \frac{4(-1)^{n+1}}{n^2}.$$

而
$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$
,所以 $f(x) = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$. 令 $x = 0$ 得 $f(0) = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^2} = 1$,因此 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$.

20.(本题满分 10 分)

设 α, β 为3维列向量,矩阵 $A = \alpha \alpha^{T} + \beta \beta^{T}$,其中 α^{T}, β^{T} 为 α, β 的转置.证明:

- (1) 秩 $r(A) \leq 2$.
- (2) 若 α , β 线性相关, 则秩 r(A) < 2.
- **证明:** (1) 因为 α , β 均为 3 维列向量, 所以 $\alpha\alpha^{\mathrm{T}}$, $\beta\beta^{\mathrm{T}}$ 都是 3 阶矩阵, 且 $r(\alpha\alpha^{\mathrm{T}}) \leqslant 1$, 因此 $r(A) = r(\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}) \leqslant r(\alpha\alpha^{\mathrm{T}}) + r(\beta\beta^{\mathrm{T}}) \leqslant 2$.
 - (2) 如果 α , β 线性相关, 不妨设 $\alpha = k\beta$, 则 $r(A) = r(\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}) = r((1 + k^2)\beta\beta^{\mathrm{T}}) = r(\beta\beta^{\mathrm{T}}) \leq 1 < 2$.

21.(本题满分 12 分)

设n 元线性方程组Ax = b,其中

$$A = \begin{pmatrix} 2a & 1 & & & & \\ a^{2} & 2a & 1 & & & \\ & a^{2} & 2a & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^{2} & 2a & 1 \\ & & & & a^{2} & 2a \end{pmatrix}, x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

- (1) 证明行列式 $|A| = (n+1)a^n$;
- (2) 当 a 为何值时, 该方程组有唯一解, 并求 x_1 ;
- (3) 当 a 为何值时, 该方程组有无穷多解, 并求其通解.
- **解:** (1) 从第 2 行开始, 第 k 行减去上一行的 $\frac{k}{k+1}$ 倍, $k=2,3,\cdots,n$, 可得

$$|A| = \begin{vmatrix} 2a & 1 \\ \frac{3}{2}a & 1 \\ \frac{4}{3}a & 1 \\ \vdots & \ddots & \vdots \\ \frac{n}{n-1}a & 1 \\ \frac{n+1}{n}a \end{vmatrix} = 2a \cdot \frac{3}{2}a \cdot \frac{4}{3}a \cdot \dots \cdot \frac{n}{n-1}a \cdot \frac{n+1}{n}a = (n+1)a^{n}.$$

- (2) 由克拉默法则知当 $a \neq 0$ 时, $|A| \neq 0$, 此时方程组有唯一解, 且 $x_1 = \frac{D_{n-1}}{D_n} = \frac{n}{(n+1)a}$.
- (3) 当 a = 0 时, 容易得到 r(A) = r(A, b) = n 1, 方程组有无穷多解, 此时的通解为 $\mathbf{x} = (0, 1, 0 \cdots, 0)^{\mathrm{T}} + k(1, 0, \cdots, 0)^{\mathrm{T}}, k \in \mathbb{R}$.

22.(本题满分 11 分)

设随机变量 X 与 Y 相互独立, X 的概率分布为 $P(X=i)=\frac{1}{3}$ (i=-1,0,1), Y 的概率密度为 $f_Y(y)=\begin{cases} 1, & 0\leqslant y\leqslant 1\\ 0, & \text{其他} \end{cases}$,记 Z=X+Y.

$$(1) \stackrel{?}{R} P\left(Z \leqslant \frac{1}{2} \middle| X = 0\right);$$

(2) 求 Z 的概率密度.

◎ 解:(1)

$$P\left(\left.Z \leqslant \frac{1}{2} \right| X = 0\right) = P\left(\left.X + Y \leqslant \frac{1}{2} \right| X = 0\right)$$
$$= P\left(\left.Y \leqslant \frac{1}{2} \right| X = 0\right) = P\left(Y = \frac{1}{2}\right) = \frac{1}{2}.$$

(2) Z 的分布函数为

$$F_{Z}(z) = P(Z \le z) = P(X + Y \le z)$$

$$= P(X + Y \le z, X = -1) + P(X + Y \le z, X = 0) + P(X + Y \le z, X = 1)$$

$$= P(Y \le z + 1, X = -1) + P(Y \le z, X = 0) + P(Y \le z - 1, X = 1)$$

$$= P(Y \le z + 1) P(X = -1) + P(Y \le z) P(X = 0) + P(Y \le z - 1) P(X = 1)$$

$$= \frac{1}{3} [P(Y \le z - 1) + P(Y \le z) + P(Y \le z - 1)]$$

$$= \frac{1}{3} [F_{Y}(z + 1) + F_{Y}(z) + F_{Y}(z - 1)],$$

于是 Z 的概率密度为 $f_Z(z) = F_Z'(z) = \frac{1}{3} [f_Y(z+1) + f_Y(z) + f_Y(z-1)] = \begin{cases} \frac{1}{3}, & -1 \leqslant z \leqslant 2\\ 0, & 其他 \end{cases}$

23.(本题满分 11 分)

设 X_1, X_2, \dots, X_n 是总体为 $N(\mu, \sigma^2)$ 的简单随机样本, 记

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2, T = \bar{X}^2 - \frac{1}{n} S^2.$$

- (1) 证明 $T \in \mu^2$ 的无偏估计量;
- (2) 当 $\mu = 0, \sigma = 1$ 时, 求 DT.
- 解: (1) 因为

$$E(T) = E(\bar{X}^2 - \frac{1}{n}S^2) = E(\bar{X}^2) - \frac{1}{n}E(S^2)$$
$$= (E\bar{X})^2 + D(\bar{X}) - \frac{1}{n}E(S^2) = \mu^2 + \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = \mu^2,$$

所以 $T \in \mu^2$ 的无偏估计量.

(2) 当 $\mu = 0$, $\sigma = 1$ 时, 由于 \overline{X} 与 S^2 独立, 则有

$$DT = D\left(\bar{X}^2 - \frac{1}{n}S^2\right) = D\left(\bar{X}^2\right) + \frac{1}{n^2}D\left(S^2\right)$$

$$= \frac{1}{n^2}D\left(\sqrt{n}\bar{X}\right)^2 + \frac{1}{n^2} \cdot \frac{1}{(n-1)^2}D\left[(n-1)S^2\right]$$

$$= \frac{1}{n^2} \cdot 2 + \frac{1}{n^2} \cdot \frac{1}{(n-1)^2} \cdot 2(n-1) = \frac{2}{n^2}\left(1 + \frac{1}{n-1}\right) = \frac{2}{n(n-1)}.$$

第4章 2009 年考研数学一

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 当 $x \to 0$ 时, $f(x) = x \sin ax$ 与 $g(x) = x^2 \ln(1 bx)$ 是等价无穷小,则
 A. $a = 1, b = -\frac{1}{6}$ B. $a = 1, b = \frac{1}{6}$ C. $a = -1, b = -\frac{1}{6}$ D. $a = -1, b = \frac{1}{6}$
- **解:** 首先当 $x \to 0$ 时, $g(x) = x^2 \ln(1 bx) \sim -bx^3$, 利用泰勒公式得

$$f(x) = x - \sin ax = x - \left(ax - \frac{a^3}{6}x^3 + o(x^3)\right) = (1 - a)x + \frac{a^3}{6}x^3 + o(x^3),$$

由 f(x) 与 g(x) 是等价无穷小知 $\begin{cases} 1-a=0\\ \frac{a^3}{6}=-b \end{cases}$, 因此 $a=1,b=-\frac{1}{6}$, 选 A.

- 2. 如图所示, 正方形 $\{(x,y) | |x| \le 1, |y| \le 1\}$ 被其对角线划分为四个区域 $D_k(k=1,2,3,4), I_k = \iint_D y \cos x \, \mathrm{d}x \, \mathrm{d}y,$ 则 $\max_{1 \le k \le 4} I_k = 1$ () A. I_1 B. I_2 C. I_3 D. I_4
- **解:** 被积函数关于 y 为奇函数, 而 D_2, D_4 关于 x 轴对称, 因此 $I_2 = I_4 = 0$. 当 $(x, y) \in D_1$ 时, $y \cos x > 0$, 当 $(x, y) \in D_3$ 时, $y \cos x < 0$, 因此 $I_1 > 0 > I_3$, 最大的是 I_1 , 选 A.

3. 设函数 y = f(x) 在区间 [-1,3] 上的图形如图所示, 则函数 $F(x) = \int_0^x f(t) dt$ 的图形为

)

- ◎ **解:** 首先 F(x) 是连续函数, 排除 B 选项. 当 -1 < x < 0 时, F'(x) = f(x) = 1, 且此时 F(x) < 0, 排除 A, C 选项, 选 D.
- 4. 设有两个数列 $\{a_n\},\{b_n\}$, 若 $\lim_{n\to\infty}a_n=0$, 则
 - A. 当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛 B. 当 $\sum_{n=1}^{\infty} b_n$ 发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散 C. 当 $\sum_{n=1}^{\infty} |b_n|$ 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛 D. 当 $\sum_{n=1}^{\infty} |b_n|$ 发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散
- **解:** A 选项不对, 反例可取 $a_n = b_n = \frac{(-1)^n}{\sqrt{n}}$; B 选项和 D 选项不对, 反例可取 $a_n = 0, b_n = 0$ 1; C 选项是对的, 因为 $\lim_{n\to\infty} a_n = 0$ 且 $\sum_{n=1}^{\infty} |b_n|$ 收敛, 则 $\lim_{n\to\infty} b_n = 0$. 于是当 n 充分大时 $|a_n| < 1, |b_n| < 1$,此时 $a_n^2 b_n^2 < |b_n|$,由正项级数的比较判别法知 $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛,选 C.
- 5. 设 $\alpha_1, \alpha_2, \alpha_3$ 是 3 维向量空间 \mathbb{R}^3 的一组基,则由基 $\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3$ 到基 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3$ () $\alpha_3, \alpha_3 + \alpha_1$ 的过渡矩阵为

A.
$$\begin{pmatrix}
2 & 2 & 0 \\
0 & 3 & 3
\end{pmatrix}$$
C.
$$\begin{pmatrix}
\frac{1}{2} & \frac{1}{4} & -\frac{1}{6} \\
-\frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\
\frac{1}{2} & -\frac{1}{4} & \frac{1}{6}
\end{pmatrix}$$

B.
$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & 0 & 3 \end{pmatrix}$$
D.
$$\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

D.
$$\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

- **解:** 直接观察可得 $(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3)\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix}$, 因此选 A.
- 6. 设 A, B 均为 2 阶矩阵, A^* , B^* 分别为 A, B 的伴随矩阵, \overline{A} |A| = 2, |B| = 3, 则分 块矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的伴随矩阵为

A.
$$\begin{pmatrix} \mathbf{o} & 3\mathbf{B}^* \\ 2\mathbf{A}^* & \mathbf{o} \end{pmatrix}$$
 B. $\begin{pmatrix} \mathbf{o} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{o} \end{pmatrix}$ C. $\begin{pmatrix} \mathbf{o} & 3\mathbf{A}^* \\ 2\mathbf{B}^* & \mathbf{o} \end{pmatrix}$ D. $\begin{pmatrix} \mathbf{o} & 2\mathbf{A}^* \\ 3\mathbf{B}^* & \mathbf{o} \end{pmatrix}$

解: 由 $\begin{vmatrix} O & A \\ B & O \end{vmatrix} = (-1)^{2 \times 2} |A| |B| = 6$ 知矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 可逆, 则

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{vmatrix} O & A \\ B & O \end{vmatrix} \begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = 6 \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$$
$$= \begin{pmatrix} O & 6B^{-1} \\ 6A^{-1} & O \end{pmatrix} = \begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}.$$

- 7. 设随机变量 X 的分布函数为 $F(x) = 0.3\Phi(x) + 0.7\Phi\left(\frac{x-1}{2}\right)$, 其中 $\Phi(x)$ 为标准 正态分布的分布函数, 则 E(X) =
- A. 0 B. 0.3 C. 0.7 D. 1
- **解:** X 的概率密度为 $f(x) = F'(x) = 0.3\varphi(x) + 0.7\varphi\left(\frac{x-1}{2}\right) \cdot \frac{1}{2}$, 其中 $\varphi(x)$ 为标准正态分布的概率密度, 则

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = 0.3 \int_{-\infty}^{+\infty} x \varphi(x) dx + \frac{0.7}{2} \int_{-\infty}^{+\infty} x \varphi\left(\frac{x-1}{2}\right) dx$$
$$= 0 + 0.7 \int_{-\infty}^{+\infty} (2t+1) \varphi(t) dt = 0.7,$$

选 C.

A. 0

8. 设随机变量 X 与 Y 相互独立, 且 X 服从标准正态分布 N(0,1), Y 的概率分布为 $P(Y=0)=P(Y=1)=\frac{1}{2}$. 记 $F_Z(z)$ 为随机变量 Z=XY 的分布函数, 则函数 $F_Z(z)$ 的间断点个数为

C. 2

D. 3

解: Z 的分布函数为

$$F_{Z}(z) = P(Z \le z) = P(XY \le z)$$

$$= P(Y = 0) P(XY \le z | Y = 0) + P(Y = 1) P(XY \le z | Y = 1)$$

$$= \frac{1}{2} P(0 \le z | Y = 0) + \frac{1}{2} P(X \le z | Y = 1)$$

$$= \frac{1}{2}P(0 \le z) + \frac{1}{2}P(X \le z) = \begin{cases} \frac{1}{2}\Phi(z), & z < 0\\ \frac{1}{2} + \frac{1}{2}\Phi(z), & z \ge 0 \end{cases}$$

因此 $F_Z(z)$ 在 z=0 处有一个跳跃间断点, 选 B.

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设函数 f(u,v) 具有二阶连续偏导数, z = f(x,xy), 则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$
- **解:** $\frac{\partial z}{\partial x} = f_1'(x, xy) + yf_2'(x, xy), \frac{\partial^2 z}{\partial x \partial y} = xf_{12}''(x, xy) + f_2'(x, xy) + xyf_{22}''(x, xy).$
- 10.若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x)e^x$,则非齐次方程 y'' + ay' + by = x 满足条件 y(0) = 2, y'(0) = 0 的解为 y =.
- **解:** 由齐次方程的通解形式可知 $\lambda = 1$ 是特征方程的二重特征根, 因此齐次方程为 y'' 2y' + y = 0. 设非齐次方程 y'' 2y' + y = x 的一个特解为 $y^* = Ax + B$, 代入方程可得 A = 1, B = 2, 于是 $y^* = x + 2$, 非齐次方程的通解为 $y = (C_1 + C_2x)e^x + x + 2$. 由条件 y(0) = 2, y'(0) = 0 得 $C_1 = 0, C_2 = -1$, 故所求的特解为 $y = -xe^x + x + 2$.
- 11.己知曲线 $L: y = x^2 (0 \leqslant x \leqslant \sqrt{2}),$ 则 $\int_L x ds =$ ______.
- ◎ 解:利用一型曲线积分公式得

$$\int_{L} x \, \mathrm{d}s = \int_{0}^{\sqrt{2}} x \sqrt{1 + y'^{2}} \, \mathrm{d}x = \int_{0}^{\sqrt{2}} x \sqrt{1 + 4x^{2}} \, \mathrm{d}x = \frac{1}{12} \left(1 + 4x^{2} \right)^{\frac{3}{2}} \Big|_{0}^{\sqrt{2}} = \frac{13}{6}.$$

12.设
$$\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$$
, 则 $\iiint_{\Omega} z^2 dx dy dz = _____.$

解: 记 D_z 表示平面 z=z 与区域 Ω 相交所得平面区域, 利用切片法可得原积分

$$I = \int_{-1}^{1} z^{2} dz \iint_{D_{z}} dx dy = \int_{-1}^{1} \pi z^{2} (1 - z^{2}) dz = \frac{4}{15} \pi.$$

- 13.若 3 维列向量 α , β 满足 $\alpha^T\beta=2$, 其中 α^T 是 α 的转置矩阵, 则矩阵 $\beta\alpha^T$ 的非零特征值为_____.
- **解:** $\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha} = \mathrm{tr}(\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha}) = \mathrm{tr}(\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}) = 2.$
- 14.设 X_1, X_2, \dots, X_m 为来自总体 B(n, p) 的简单随机样本, \bar{X} 和 S^2 分别为样本均值 和样本方差. 若 $\bar{X} + kS^2$ 为 np^2 的无偏估计量, 则 $k = _____$.
- **解:** 由条件得 $E(\bar{X}) = np, E(S^2) = np(1-p)$, 所以 $E(\bar{X} + kS^2) = np^2$ 可得 $np + knp(1-p) = np^2, k = -1$.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分9分)

求二元函数 $f(x, y) = x^2(2 + y^2) + y \ln y$ 的极值.

解: 令
$$\begin{cases} f'_x(x,y) = 2x(2+y^2) = 0 \\ f'_y(x,y) = 2x^2y + \ln y + 1 = 0 \end{cases}$$
,解得唯一驻点为 $\left(0, \frac{1}{e}\right)$.由于

$$A = f_{xx}''\left(0, \frac{1}{e}\right) = 2(2+y^2)\Big|_{\left(0, \frac{1}{e}\right)} = 2\left(2 + \frac{1}{e^2}\right),$$

$$B = f_{xy}''\left(0, \frac{1}{e}\right) = 4xy\Big|_{\left(0, \frac{1}{e}\right)} = 0,$$

$$C = f_{yy}''\left(0, \frac{1}{e}\right) = \left(2x^2 + \frac{1}{y}\right)\Big|_{\left(0, \frac{1}{e}\right)} = e,$$

所以
$$AC - B^2 = -2e\left(2 + \frac{1}{e^2}\right) < 0$$
,且 $A > 0$,所以 $f(x, y)$ 的唯一极小值为 $f\left(0, \frac{1}{e}\right) = -\frac{1}{e}$.

16.(本题满分9分)

设 a_n 为曲线 $y = x^n$ 与 $y = x^{n+1} (n = 1, 2, \cdots)$ 所围成区域的面积, 记 $S_1 = \sum_{n=1}^{\infty} a_n, S_2 = \sum_{n=1}^{\infty} a_{2n-1}, 求 S_1$ 与 S_2 的值.

解: 曲线 $y = x^n$ 与 $y = x^{n+1}$ 的交点为 (0,0) 和 (1,1), 所围区域的面积

$$a_n = \int_0^1 (x^n - x^{n+1}) dx = \frac{1}{n+1} - \frac{1}{n+2}.$$

于是

$$S_1 = \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{2},$$

$$S_2 = \sum_{n=1}^{\infty} a_{2n-1} = \sum_{n=1}^{\infty} \left(\frac{1}{2n} - \frac{1}{2n+1} \right) = \sum_{n=2}^{\infty} \frac{(-1)^n}{n} = 1 - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \ln 2.$$

17.(本题满分 11 分)

设椭球面 S_1 是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 绕 x 轴旋转而成, 圆锥面 S_2 是由过点 (4,0) 且与 椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 相切的直线绕 x 轴旋转而成.

- (1) 求 S_1 及 S_2 的方程;
- (2) 求 S_1 与 S_2 之间立体的体积.
- **解:** (1) S_1 的方程为 $\frac{x^2}{4} + \frac{y^2 + z^2}{3} = 1$. 过点 (4,0) 且与椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 相切的直线方程为 $y = \pm \left(\frac{1}{2}x 2\right)$, 所以 S_2 的方程为 $y^2 + z^2 = \left(\frac{1}{2}x 2\right)^2$.

(2) 记
$$y_1 = \frac{1}{2}x - 2$$
, 由 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 记 $y_2 = \sqrt{3\left(1 - \frac{x^2}{4}\right)}$, 则 $S_1 \ni S_2$ 之间立体的体积为
$$V = \int_1^4 \pi y_1^2 dx - \int_1^2 \pi y_2^2 dx$$
$$= \pi \int_1^4 \left(\frac{1}{4}x^2 - 2x + 4\right) dx - \pi \int_1^2 \left(3 - \frac{3}{4}x^2\right) dx = \pi.$$

18.(本题满分 11 分)

- (1) 证明拉格朗日中值定理: 若函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导,则存在 $\xi \in (a,b)$, 使得 $f(b) f(a) = f'(\xi)(b-a)$.
- (2) 证明: 若函数 f(x) 在 x = 0 处连续, 在 $(0, \delta)(\delta > 0)$ 内可导, 且 $\lim_{x \to 0^+} f'(x) = A$, 则 $f'_+(0)$ 存在, 且 $f'_+(0) = A$.
- **证明:** (1) \Leftrightarrow $F(x) = f(x) \frac{f(b) f(a)}{b a}x$, 则

$$F(b) - F(a) = \left(f(b) - \frac{f(b) - f(a)}{b - a} b \right) - \left(f(a) - \frac{f(b) - f(a)}{b - a} a \right)$$
$$= f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0,$$

因此由罗尔定理知存在 $\xi \in (a,b)$ 使得 $F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b-a} = 0$, 即 $f(b) - f(a) = f'(\xi)(b-a)$.

(2) 利用导数的定义与拉格朗日中值定理得

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{xf'(\xi)}{x} = \lim_{\xi \to 0} f'(\xi) = A.$$

注:本题第二问的结论叫做导函数极限定理,它还可以用洛必达法则得出.

19.(本题满分 10 分)

计算曲面积分 $I = \iint_{\Sigma} \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$ 其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

解: 记 $P = \frac{x}{(x^2 + y^2 + z^2)^{3/2}}, Q = \frac{y}{(x^2 + y^2 + z^2)^{3/2}}, R = \frac{z}{(x^2 + y^2 + z^2)^{3/2}},$ 则原积分为 $I = \bigoplus_{\Sigma} P dy dz + Q dz dx + R dx dy$. 因为 $\frac{\partial P}{\partial x} = \frac{y^2 + z^2 - 2x^2}{(x^2 + y^2 + z^2)^{5/2}}$,那么利用对称性得

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \frac{y^2 + z^2 - 2x^2 + x^2 + z^2 - 2y^2 + x^2 + y^2 - 2z^2}{\left(x^2 + y^2 + z^2\right)^{5/2}} = 0.$$

记曲面 $\Sigma_1: x^2 + y^2 + z^2 = r^2, r$ 充分小使得 Σ_1 包含在 Σ 内, 方向取外侧. 那么由高斯公式可知

$$\oint_{\Sigma + \Sigma_{1}^{-}} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = 0.$$

记 Σ_1 包围的有界闭区域为 Ω , 则

$$\iint_{\Sigma} P \, dy dz + Q \, dz dx + R dx dy = \iint_{\Sigma_{1}} P \, dy dz + Q \, dz dx + R dx dy$$

$$= \frac{1}{r^{3}} \iint_{\Sigma_{1}} x \, dy dz + y \, dz dx + z dx dy$$

$$= \frac{1}{r^{3}} \iint_{\Omega} 3 \, dV = \frac{3}{r^{3}} \cdot \frac{4\pi r^{3}}{3} = 4\pi.$$

20.(本题满分 11 分)

设
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \xi_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}.$$

- (1) 求满足 $A\xi_2 = \xi_1, A^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (2) 对 (1) 中的任意向量 ξ_2, ξ_3 , 证明 ξ_1, ξ_2, ξ_3 线性无关.
- **解:** (1) 对增广矩阵 (A, ξ_1) 作初等行变换得

$$(A \ \xi_1) = \begin{pmatrix} 1 & -1 & -1 & -1 \\ -1 & 1 & 1 & 1 \\ 0 & -4 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & -1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\xi}_1$ 的通解为 $\mathbf{x} = (0,0,1)^{\mathrm{T}} + k(-1,1,-2)^{\mathrm{T}}$, 从而 $\boldsymbol{\xi}_2 = (-k,k,1-2k)^{\mathrm{T}}$, k 为任意常数.

$$A^{2} = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 0 \end{pmatrix}, 对增广矩阵 (A^{2}, \xi_{1}) 作初等行变换得$$

$$(A^{2}, \xi_{1}) = \begin{pmatrix} 2 & 2 & 0 & 1 \\ -2 & -2 & 0 & -1 \\ 4 & 4 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

于是方程组 $A^2x = \xi_1$ 的通解为 $x_1 = -\frac{1}{2} - u$, $x_2 = u$, $x_3 = v$, 即 $\xi_3 = \left(-\frac{1}{2} - u, u, v\right)^T$, 其中 u, v 为任意常数.

(2) 对任意的常数 k, u, v 有

$$|\xi_{1}, \xi_{2}, \xi_{3}| = \begin{vmatrix} -1 & -k & -\frac{1}{2} - u \\ 1 & k & u \\ -2 & 1 - 2k & v \end{vmatrix} = \begin{vmatrix} 0 & 0 & -\frac{1}{2} \\ 1 & k & u \\ -2 & 1 - 2k & v \end{vmatrix} = -\frac{1}{2} \neq 0,$$

因此对任意向量 $\boldsymbol{\xi}_2, \boldsymbol{\xi}_3$, 恒有 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3$ 线性无关.

21.(本题满分 11 分)

设二次型
$$f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 - 2x_2x_3$$
.

- (1) 求二次型 f 的矩阵的所有特征值;
- (2) 若二次型 f 的规范形为 $y_1^2 + y_2^2$, 求 a 的值.

解: (1) 二次型
$$f$$
 的矩阵为 $A = \begin{pmatrix} a & 0 & 1 \\ 0 & a & -1 \\ 1 & -1 & a - 1 \end{pmatrix}$, 由于

$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - a & 0 & -1 \\ 0 & \lambda - a & 1 \\ -1 & 1 & \lambda - a + 1 \end{vmatrix} = (\lambda - a) \left(\lambda - (a+1)\right) \left(\lambda - (a-2)\right),$$

所以 *A* 的特征值为 $\lambda_1 = a, \lambda_2 = a + 1, \lambda_3 = a - 2$

(2) 因为二次型 f 的规范形为 $y_1^2 + y_2^2$, 说明正惯性指数 p = 2, 负惯性指数 q = 0, 因此矩阵 A 的特征值为两正一零, 显然 a - 2 < a < a + 1, 因此必有 a = 2.

22.(本题满分 11 分)

袋中有 1 个红球、2 个黑球与 3 个白球. 现有放回地从袋中取两次,每次取一个球. 以 X,Y,Z 分别表示两次取球所得的红球、黑球与白球的个数.

- (1) \vec{x} P(X = 1|Z = 0);
- (2) 求二维随机变量 (X,Y) 的概率分布.

解: (1)
$$P(X = 1|Z = 0) = \frac{P(X = 1, Z = 0)}{P(Z = 0)} = \frac{C_2^{\frac{1}{6}} \times \frac{1}{3}}{\left(\frac{1}{2}\right)^2} = \frac{4}{9}$$
.

(2) 由题意知 X, Y 的所有可能取值均为 0, 1, 2.

$$P(X = 0, Y = 0) = \frac{3}{6} \times \frac{3}{6} = \frac{1}{4}, \quad P(X = 0, Y = 1) = 2 \times \frac{2}{6} \times 36 = \frac{1}{3},$$

$$P(X = 0, Y = 2) = \left(\frac{2}{6}\right)^2 = \frac{1}{9}, \quad P(X = 1, Y = 0) = 2 \times \frac{1}{6} \times \frac{3}{6} = \frac{1}{6},$$

$$P(X = 1, Y = 1) = 2 \times \frac{1}{6} \times \frac{2}{6} = \frac{1}{9}, \quad P(X = 2, Y = 0) = \left(\frac{1}{6}\right)^2 = \frac{1}{36},$$

$$P(X = 1, Y = 2) = P(X = 2, Y = 1) = P(X = 2, Y = 2) = 0.$$

因此 (X,Y) 的概率分布为

XY	0	1	2
0	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{9}$
1	$\frac{1}{6}$	$\frac{1}{9}$	0
2	$\frac{1}{36}$	0	0

23.(本题满分 11 分)

设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0 \\ 0, & \text{其他} \end{cases}$, 其中参数 $\lambda(\lambda > 0)$ 未知,

 X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本

- (1) 求参数 λ 的矩估计量;
- (2) 求参数 λ 的最大似然估计量.
- 解: (1) 总体均值 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} \lambda^{2} x^{2} e^{-\lambda x} dx = \frac{2}{\lambda}$, 令 $\overline{X} = E(X)$, 即 $\overline{X} = \frac{2}{\lambda}$, 得 $\lambda = \frac{2}{\overline{X}}$, 即 λ 的矩估计量为 $\hat{\lambda}_{1} = \frac{2}{\overline{X}}$.

(2) 设 x_1, x_2, \cdots, x_n 为样本 X_1, X_2, \cdots, X_n 的观测值,则似然函数为

$$L(\lambda) = \prod_{i=1}^{n} f(x_i) = \begin{cases} \lambda^{2n} e^{-\lambda \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} x_i, & x_1, x_2, \dots, x_n > 0 \\ 0, & \text{ #$dt} \end{cases},$$

当 $x_1, x_2, \dots, x_n > 0$ 时,取对数得 $\ln L = 2n \ln \lambda - \lambda \sum_{i=1}^n x_i + \sum_{i=1}^n \ln x_i$,由 $\frac{d(\ln L)}{d\lambda} = \frac{2n}{\lambda}$ $\sum_{i=1}^{n} x_i = 0 \ \text{得} \ \lambda = \frac{2n}{\sum_{i=1}^{n} x_i} = \frac{2}{\overline{x}}, \text{ 即 } \lambda \text{ 的最大似然估计量为 } \hat{\lambda}_2 = \frac{2}{\overline{X}}.$

第5章 2010年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 极限
$$\lim_{x \to \infty} \left(\frac{x^2}{(x-a)(x+b)} \right)^x =$$
A. 1 B. e C. e^{a-b} D. e^{b-a}

解: 先取倒数和对数得

$$\lim_{x \to \infty} x \ln \left(\frac{(x-a)(x+b)}{x^2} \right) = \lim_{x \to \infty} x \ln \left(\frac{x^2 + (b-a)x - ab}{x^2} \right)$$

$$= \lim_{x \to \infty} x \ln \left(1 + \frac{(b-a)x - ab}{x^2} \right) = \lim_{x \to \infty} x \frac{(b-a)x - ab}{x^2}$$

$$= b - a,$$

因此原极限为 e^{a-b} , 选 C.

2. 设函数 z = z(x, y) 由方程 $F\left(\frac{y}{x}, \frac{z}{x}\right) = 0$ 确定, 其中 F 为可微函数, 且 $F_2' \neq 0$, 则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =$ () A. x B. z C. -x D. -z

 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =$ A. xB. zC. -xD. -z $F'_1 \cdot \left(-\frac{y}{x^2}\right) + F'_2 \cdot \left(-\frac{z}{x^2} + \frac{1}{x}\frac{\partial z}{\partial x}\right) = 0$ $F'_1 \cdot \frac{1}{x} + F'_2 \cdot \frac{1}{x}\frac{\partial z}{\partial y} = 0$ $\frac{\partial z}{\partial x} yF'_1 + z$

得
$$\begin{cases} \frac{\partial z}{\partial x} = \frac{yF_1'}{xF_2'} + \frac{z}{x} \\ \frac{\partial z}{\partial y} = -\frac{F_1'}{F_2'} \end{cases}$$
, 因此 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$, 选 B.

3. 设 m, n 是正整数,则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性 ()

A. 仅与m 的取值有关

B. 仅与n 的取值有关

C. 与 m,n 的取值都有关

D. 与 m,n 的取值都无关

解: 任取 $c \in (0,1)$, 原反常积分 $I = \int_0^c \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx + \int_c^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx = I_1 + I_2.$ 对 I_1 而言, x = 0 是瑕点, 当 $x \to 0^+$ 时, $\frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} \sim \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}}$, 而 $\frac{1}{n} - \frac{2}{m} < 1$, 所以 $\int_0^c \frac{dx}{x^{\frac{1}{n}-\frac{2}{m}}}$, 由比较判别法知 I_1 收敛.

对 I_2 而言, x = 1 是瑕点, 且 $\lim_{x \to 1^-} \sqrt{1-x} \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} = 0$, 积分 $\int_c^1 \frac{\mathrm{d}x}{\sqrt{1-x}}$ 收敛, 于是 I_2 收敛, 所以原积分 I 收敛, 与 m,n 的取值都无关, 选 D.

4.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^{2}+j^{2})} =$$
A.
$$\int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y^{2})} dy$$
B.
$$\int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$
C.
$$\int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy$$
D.
$$\int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^{2})} dy$$

☜ 解:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} = \lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\left(1+\frac{i}{n}\right)\left(1+\left(\frac{j}{n}\right)^2\right)}$$

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}}\right) \left(\frac{1}{n} \sum_{j=1}^{n} \frac{1}{1+\left(\frac{j}{n}\right)^2}\right)$$

$$= \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^2)} dy,$$

选 D.

- 5. 设 $A ext{ 为 } m imes n$ 矩阵, $B ext{ 为 } n imes m$ 矩阵, $E ext{ 为 } m$ 阶单位矩阵, 若 AB = E, 则

 A. 秩 r(A) = m, 秩 r(B) = mB. 秩 r(A) = m, 秩 r(B) = nC. 秩 r(A) = n, 秩 r(B) = mD. 秩 r(A) = n, 秩 r(B) = n
- **解:** 由题意有 $m = r(E) = r(AB) \leqslant r(A) \leqslant \min\{m,n\}$, 因此 $r(A) = m \leqslant n$, 同理 $r(B) = m \leqslant n$, 选 A.
- 6. 设 A 为 4 阶实对称矩阵, 且 $A^2 + A = O$, 若 A 的秩为 3, 则 A 相似于 ()

A.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
B.
$$\begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$
C.
$$\begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix}$$
D.
$$\begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

解: 由 $A^2 + A = O$ 知 A 的任一特征值 λ 必满足 $\lambda^2 + \lambda = 0$,则 $\lambda = 0$ 或 -1. 又 r(A) = 3, 所以 A 的特征值为 -1, -1, -1, 0, 且 A 为实对称矩阵,则它相似于 diag{-1, -1, -1, 0}, 选 D.

7. 设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \leqslant x < 1, 则 $P(X = 1) = () \\ 1 - e^{-x}, & x \geqslant 1 \end{cases}$
A. 0 B. $\frac{1}{2}$ C. $\frac{1}{2} - e^{-1}$ D. $1 - e^{-1}$$

- **解:** $P(X = 1) = F(1) F(1^{-}) = 1 e^{-1} \frac{1}{2} = \frac{1}{2} e^{-1}$, 选 C.

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9. 设
$$\begin{cases} x = e^{-t} \\ y = \int_0^t \ln(1 + u^2) du \end{cases}, \, \text{则} \left. \frac{d^2 y}{dx^2} \right|_{t=0} = \underline{\qquad}.$$

解: 利用参数方程求导公式得 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{\ln\left(1+t^2\right)}{-\mathrm{e}^{-t}} = -\mathrm{e}^t\ln\left(1+t^2\right),$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) / \frac{\mathrm{d}x}{\mathrm{d}t} = \left(\mathrm{e}^t \frac{2t}{1+t^2} + \mathrm{e}^t \ln\left(1+t^2\right) \right) \mathrm{e}^t,$$

于是
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\bigg|_{t=0} = 0.$$

$$10. \int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} \, \mathrm{d}x = \underline{\qquad}.$$

◎ 解:

$$\int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} \, dx = 2 \int_0^{\pi} t^2 \cos t \, dt = 2 \int_0^{\pi} t^2 \, d(\sin t)$$
$$= -2 \int_0^{\pi} t \sin t \, dt = -\pi \int_0^{\pi} \sin t \, dt = -4\pi.$$

- 11.已知曲线 L 的方程为 y=1-|x| $\big(x\in[-1,1]\big)$, 起点是 (-1,0), 终点是 (1,0), 则曲线 积分 $\int_{X} xy dx + x^2 dy = \underline{\qquad}$
- **解:** L 可分为两段 l_1 和 l_2 , 其中 $l_1: y = 1 + x, x: -1 \rightarrow 0, l_2: y = 1 x, x: 0 \rightarrow 1$, 故

$$I = \left(\int_{l_1} + \int_{l_2} xy \, \mathrm{d}x + x^2 \, \mathrm{d}y \right)$$

$$= \int_{-1}^{0} \left[x (1+x) + x^2 \right] dx + \int_{0}^{1} \left[x (1-x) - x^2 \right] dx$$
$$= \int_{-1}^{0} \left(2x^2 + x \right) dx + \int_{0}^{1} \left(x - 2x^2 \right) dx = 0.$$

12.设 $\Omega = \{(x, y, z) | x^2 + y^2 \le z \le 1\}$, 则 Ω 的形心的竖坐标 $\overline{z} =$ _____.

解: 利用切片法可得

$$\iiint\limits_{\Omega} \mathrm{d}V = \int_0^1 \mathrm{d}z \iint_{D_z} \mathrm{d}x \mathrm{d}y = \int_0^1 \pi z \mathrm{d}z = \frac{\pi}{2},$$

$$\iiint\limits_{\Omega} z \mathrm{d}V = \int_0^1 z \mathrm{d}z \iint_{D_z} \mathrm{d}x \mathrm{d}y = \int_0^1 \pi z^2 \mathrm{d}z = \frac{\pi}{3},$$

所以 $\overline{z} = \frac{2}{3}$.

- 13.设 $\boldsymbol{\alpha}_1 = (1, 2, -1, 0)^T$, $\boldsymbol{\alpha}_2 = (1, 1, 0, 2)^T$, $\boldsymbol{\alpha}_3 = (2, 1, 1, a)^T$, 若由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 生成的向量空间的维数为 2, 则 a =
- **解:** 由条件知 $r(\alpha_1, \alpha_2, \alpha_3) = 2$, 对矩阵 $(\alpha_1, \alpha_2, \alpha_3)$ 作初等行变换得

$$(\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 2 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & a - 6 \\ 0 & 0 & 0 \end{pmatrix},$$

因此 a=6.

- 14.设随机变量 X 的概率分布为 $P(X = k) = \frac{C}{k!}, k = 0, 1, 2, \dots, 则 <math>E(X^2) = \underline{\hspace{1cm}}$.
- **解:** 根据概率分布的归一性得 $\sum_{k=0}^{\infty} P(X = k) = \sum_{k=0}^{\infty} \frac{C}{k!} = Ce = 1$, 所以 $C = e^{-1}$, 则 $X \sim P(1)$, $E(X^2) = (EX)^2 + D(X) = 2$.
- 三、解答题, 15~23题, 共94分.
- 15.(本题满分 10 分)

求微分方程 $y'' - 3y' + 2y = 2xe^x$ 的通解.

解: 齐次方程 y'' - 3y' + 2y = 0 的特征方程为 $\lambda^2 - 3\lambda + 2\lambda = 0$, 特征根为 $\lambda_1 = 1$, $\lambda_2 = 2$, 齐次方程的通解为 $Y = C_1 e^x + C_2 e^{2x}$. 非齐次项 $2xe^x$ 的特解形式可设为 $y^* = x(ax+b)e^x$, 于是 $(y^*)' = [ax^2 + (2a+b)x + b]e^x$, $(y^*)'' = [ax^2 + (4a+b)x + 2(a+b)]e^x$, 代入原方程并约去 e^x 可得

$$[ax^{2} + (4a + b)x + 2(a + b)] - 3[ax^{2} + (2a + b)x + b] + 2(ax^{2} + bx) = 2x,$$

即 -2ax + 2a - b = 2x, 故 a = -1, b = -2, 所以 $y^* = -(x^2 + 2x)e^x$, 原方程的通解为 $y = Y + y^* = C_1e^x + C_2e^{2x} - (x^2 + 2x)e^x$.

16.(本题满分 10 分)

求函数 $f(x) = \int_{1}^{x^2} (x^2 - t) e^{-t^2} dt$ 的单调区间与极值.

解: $f(x) = x^2 \int_1^{x^2} e^{-t^2} dt - \int_1^{x^2} t e^{-t^2} dt$, $f'(x) = 2x \int_1^{x^2} e^{-t^2} dt$. 分析 f'(x) 的零点及正负可知 f(x) 的单调递增区间为 (-1,0) 和 $(1,+\infty)$, 单调递减区间为 $(-\infty,-1)$ 和 (0,1), 极小值为 f(-1) = f(1) = 0, 极大值为 $f(0) = \int_1^0 (0-t) e^{-t^2} dt = \frac{1}{2} (1-e^{-1})$.

17.(本题满分 10 分)

(1) 比较
$$\int_0^1 |\ln t| [\ln(1+t)]^n dt$$
 与 $\int_0^1 t^n |\ln t| dt (n=1,2,\cdots)$ 的大小, 说明理由.

(2)
$$\[\exists u_n = \int_0^1 |\ln t| [\ln(1+t)]^n \, \mathrm{d}t (n=1,2,\cdots), \, \[\[\] \] \] \[\] \[\] \[\] \$$

- 解: (1) 当 0 < t < 1 时, $0 < \ln(1+t) < t$, 所以 $|\ln t| [\ln(1+t)]^n < t^n |\ln t|$, 由定积分保序性可知 $\int_0^1 |\ln t| [\ln(1+t)]^n dt < \int_0^1 t^n |\ln t| dt$.
 - (2) 由 (1) 可知, 当 0 < t < 1 时, $0 < \int_0^1 |\ln t \ln^n (1+t)| dt < \int_0^1 |\ln t| t^n dt$. 由分部积分得

$$\int_0^1 |\ln t| \, t^n \, \mathrm{d}t = -\int_0^1 \ln t \, \mathrm{d}\left(\frac{t^{n+1}}{n+1}\right) = \frac{1}{n+1} \int_0^1 t^n \, \mathrm{d}t = \frac{1}{(n+1)^2},$$

因此 $0 < u_n < \frac{1}{(n+1)^2}$, 由夹逼准则知 $\lim_{n \to \infty} u_n = 0$.

18.(本题满分 10 分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

解: 令 $u_n = \frac{(-1)^{n-1}}{2n-1} x^{2n}$,由 $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(2n-1) x^2}{2n+1} \right| = x^2 < 1$ 得 -1 < x < 1,因此幂级数收敛半径为 1. 当 $x = \pm 1$ 时,根据莱布尼茨判别法知 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 收敛,因此收敛域为 [-1,1]. 当 $x \in (-1,1)$ 时,和函数

$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n} = x \left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1} \right)$$
$$= x \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n-1} t^{2n-2} dt = x \int_{0}^{x} \frac{1}{1+t^{2}} dt$$
$$= x \cdot \arctan x.$$

由幂级数在收敛域内的连续性知 $S(-1) = S(1) = \lim_{x \to 1^+} S(x)$, 因此 $S(x) = x \arctan x$, $x \in [-1, 1]$.

19.(本题满分 10 分)

设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点, 若 S 在点 P 处的切平面与 xOy 面垂直, 求点 P 的轨迹 C, 并计算曲面积分 $I = \iint_{\Sigma} \frac{\left(x + \sqrt{3}\right)|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} \, \mathrm{d}S$, 其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

解: P(x, y, z) 是曲面 S 上任一点, S 在 P 处的法向量为 n = (2x, 2y - z, 2z - y), 而 xOy 面的法向量为 k = (0, 0, 1), 由题意知 $n \perp k$, 于是 $n \cdot k = 2z - y = 0$, 于是 P 的轨迹 C 的方程为 $\begin{cases} x^2 + y^2 + z^2 - yz = 1 \\ y = 2z \end{cases}$, 即 $\begin{cases} x^2 + \frac{3}{4}y^2 = 1 \\ y = 2z \end{cases}$.

记 xOy 面的平面区域 $D = \left\{ (x,y) \middle| x^2 + \frac{3}{4}y^2 \leqslant 1 \right\}$, 曲面 Σ 可表示为 z = z(x,y), $(x,y) \in D$, 在方程 $S: x^2 + y^2 + z^2 - yz = 1$ 两边求全微分得 2xdx + 2ydy + 2zdz - zdy - ydz = 0, 因此 $dz = \frac{2xdx + (2y-z)dy}{y-2z}$, 故 $\frac{\partial z}{\partial x} = \frac{2x}{y-2z}$, 那么曲面 Σ 的面微元为

$$dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy = \sqrt{1 + \left(\frac{2x}{y - 2z}\right)^2 + \left(\frac{2y - z}{y - 2z}\right)^2} dxdy$$
$$= \frac{\sqrt{4 + y^2 + z^2 - 4yz}}{|y - 2z|} dxdy,$$

则将曲面积分化为二重积分可得

$$I = \iint_{D} \frac{\left(x + \sqrt{3}\right)|y - 2z|}{\sqrt{4 + y^{2} + z^{2} - 4yz}} \frac{\sqrt{4 + y^{2} + z^{2} - 4yz}}{|y - 2z|} dxdy$$
$$= \iint_{D} \left(x + \sqrt{3}\right) dxdy = \sqrt{3} \iint_{D} dxdy = \sqrt{3}\pi \cdot 1 \cdot \frac{2}{\sqrt{3}} = 2\pi.$$

20.(本题满分11分)

设
$$\mathbf{A} = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, \mathbf{b} = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在两个不同的解.

- (1) 求 λ , a;
- (2) 求方程组 Ax = b 的通解.
- **解:** (1) 因为方程组 Ax = b 有两个不同的解, 所以 $r(A) = r(\bar{A}) < 3$, 于是

$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = (\lambda + 1) (\lambda - 1)^2 = 0,$$

因此 $\lambda = \pm 1$. 当 $\lambda = 1$ 时, $A = \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, 显然 r(A) = 1, $r(\overline{A}) = 2$, 方程组无解, 因

此 $\lambda = 1$ 舍去. 当 $\lambda = -1$ 时, 对Ax = b 的增广矩阵进行初等行变换得

$$(A, b) = \begin{pmatrix} -1 & 1 & 1 & a \\ 0 & -2 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & a+2 \end{pmatrix},$$

因为方程组 Ax = b 有解, 所以 a = -2.

(2) 当
$$\lambda = -1, a = -2$$
 时, $\overline{A} = (A, b) \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 因此方程组 $Ax = b$ 的通解为 $x = \left(\frac{3}{2}, -\frac{1}{2}, 0\right)^{\mathrm{T}} + k(1, 0, 1)^{\mathrm{T}}$, 其中 k 为任意常数.

21.(本题满分 11 分)

已知二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2$, 且 \mathbf{Q} 的第 3 列为 $\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$.

- (1) 求矩阵 A;
- (2) 证明 A + E 为正定矩阵, 其中 E 为 3 阶单位矩阵.
- **解:** (1) 二次型 f 在正交变换 x = Qy 下的标准形为 $y_1^2 + y_2^2$, 因此矩阵 A 的特征值为 1, 1, 0, 于是 $Q^{-1}AQ = Q^TAQ = \text{diag}\{1, 1, 0\}$, 且矩阵 Q 的第三列就是属于特征值 0 的特征向量. 设 $(x_1, x_2, x_3)^T$ 是 A 的属于特征值 1 的特征向量, 由于实对称矩阵不同特征值 对应的特征向量互相正交, 则 $x_1 + x_3 = 0$, 解得 $\xi_1 = \frac{\sqrt{2}}{2}(1, 0, -1)^T$, $\xi_2 = (0, 1, 0)^T$ 为

$$m{A}$$
 的属于特征值 1 的两个正交的单位特征向量,于是可取 $m{Q} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$,此时有

 $\mathbf{Q}^{\mathrm{T}}\mathbf{A}\mathbf{Q} = \mathrm{diag}\{1, 1, 0\},$ 于是

$$A = Q \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix} Q^{T} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

(2) 因为 A 的特征值为 1, 1, 0, 所以 A + E 的特征值为 2, 2, 1, 且 A + E 为实对称矩阵, 所以 A + E 为正定矩阵.

22.(本题满分 11 分)

设二维随机变量 (X, Y) 的概率密度为

$$f(x, y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty,$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

解: X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = A \int_{-\infty}^{+\infty} e^{-2x^2 + 2xy - y^2} \, dy$$
$$= A \int_{-\infty}^{+\infty} e^{-(y - x)^2 - x^2} \, dy = A e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y - x)^2} \, dy = A \sqrt{\pi} e^{-x^2},$$

于是
$$1 = \int_{-\infty}^{+\infty} f_X(x) dx = A\sqrt{\pi} \int_{-\infty}^{+\infty} e^{-x^2} dx = A\pi \Rightarrow A = \frac{1}{\pi}.$$

当 $x \in (-\infty, +\infty)$ 时,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{1}{\pi}e^{-2x^2 + 2xy - y^2}}{\frac{1}{\sqrt{\pi}}e^{-x^2}} = \frac{1}{\sqrt{\pi}}e^{-x^2 + 2xy - y^2}$$
$$= \frac{1}{\sqrt{\pi}}e^{-(x-y)^2}, \quad -\infty < y < +\infty.$$

23.(本题满分 11 分)

设总体 X 的概率分布为

X	1	2	3
P	$1-\theta$	$\theta - \theta^2$	θ^2

其中参数 $\theta \in (0,1)$ 未知, 以 N_i 表示来自总体 X 的简单随机样本 (样本容量为 n) 中等于 i 的个数 (i=1,2,3). 试求常数 a_1,a_2,a_3 , 使 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量, 并求 T 的方差.

解: 由题意可知 $N_1 \sim B(n, 1-\theta), N_2 \sim B(n, \theta-\theta^2), N_3 \sim B(n, \theta^2)$. 因为 $T = \sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量, 所以 $E(T) = \theta$, 即

$$E(T) = a_1 E(N_1) + a_2 E(N_2) + a_3 E(N_3) = a_1 n (1 - \theta) + a_2 n (\theta - \theta^2) + a_3 n \theta^2 = \theta,$$
解得 $a_1 = 0, a_2 = a_3 = \frac{1}{n}$. 由于 $N_1 + N_2 + N_3 = n$, 所以 $T = \frac{N_2 + N_1}{2} = \frac{n - N_1}{n}$, 则
$$D(T) = D\left(1 - \frac{N_1}{n}\right) = \frac{1}{n^2} D(N_1) = \frac{1}{n^2} n (1 - \theta) \theta = \frac{\theta (1 - \theta)}{n}.$$

第6章 2011年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

- 1. 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 A. (1,0) B. (2,0) C. (3,0) D. (4,0)
- **解:** 首先可知 1,2,3,4 分别是 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的一、二、三、四重根, 不难得知 $y'(1) \neq 0$, y''(2) = y'(3) = y'(4) = 0, $y''(2) \neq 0$, y''(3) = y''(4) = 0, $y'''(4) \neq 0$, 因此唯一的拐点是 (3,0), 选 C.
- 2. 设数列 $\{a_n\}$ 单调减少, $\lim_{n\to\infty}a_n=0, S_n=\sum_{k=1}^na_k(n=1,2,\cdots)$ 无界, 则幂级数

$$\sum_{n=1}^{\infty} a_n (x-1)^n$$
的收敛域为
A. $(-1,1]$ B. $[-1,1)$ C. $[0,2)$ D. $(0,2]$

- 解: 由题意知正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, 即幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 x=1 处发散. 由莱布尼茨判别 法知级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛, 即幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 x=-1 处收敛, 那么这两个点就是幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛区间的端点, 因此它的收敛域为 [-1,1), 从而幂级数 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 的收敛域为 [0,2), 选 C.
- 3. 设函数 f(x) 具有二阶连续导数,且 f(x) > 0, f'(0) = 0,则函数 $z = f(x) \ln f(y)$ 在点 (0,0) 处取得极小值的一个充分条件是

A.
$$f(0) > 1$$
, $f''(0) > 0$
B. $f(0) > 1$, $f''(0) < 0$

C. f(0) < 1, f''(0) > 0 D. f(0) < 1, f''(0) < 0

- 解: 由 $z = f(x) \ln f(y)$ 可知 $z'_x = f'(x) \ln f(y)$, $z'_y = \frac{f(x)}{f(y)}$, $z''_{xx} = f''(x) \ln f(y)$, $z''_{xy} = \frac{f'(x)}{f(y)}$, f'(y), $z''_{yy} = f(x) \frac{f''(y)f(y) f'^2(y)}{f^2(y)}$. 在点 (0,0) 处, $z''_{xx} = f''(0) \ln f(0)$, $z''_{xy} = 0$, $z''_{yy} = f''(0)$. 由二元函数极小值的充分条件, 需要满足 $f''(0) \ln f(0) > 0$, $f''(0) \ln f(0) > 0$, 因此 f(0) > 1, f''(0) > 0, 选 C.
- 4. 设 $I = \int_0^{\frac{\pi}{4}} \ln \sin x dx$, $J = \int_0^{\frac{\pi}{4}} \ln \cot x dx$, $K = \int_0^{\frac{\pi}{4}} \ln \cos x dx$, 则 I, J, K 的大小关系是

A. I < J < K B. I < K < J C. J < I < K D. K < J < I

- **解:** 当 $0 < x < \frac{\pi}{4}$ 时, $\sin x < \cos x < \cot x$, 即 $\ln \sin x < \ln \cos x < \ln \cot x$, 因此 I < K < J,
- 5. 设 A 为 3 阶矩阵,将 A 的第二列加到第一列得矩阵 B,再交换 B 的第二行与第一

行得单位矩阵. 记
$$P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, 则 A =$$
A. $P_1 P_2$ B. $P_1^{-1} P_2$ C. $P_2 P_1$ D. $P_2 P_1^{-1}$

- **解:** 由初等变换与初等矩阵的关系知 $AP_1 = B$, $P_2B = E$, 所以 $A = BP_1^{-1} = P_2^{-1}P_1^{-1} =$ $P_2P_1^{-1}$, 选 D.
- 6. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, A^* 为 A 的伴随矩阵. 若 $(1, 0, 1, 0)^T$ 是方程组 Ax = 0 的一个基础解系, 则 $A^*x = 0$ 的基础解系可为 $C. \alpha_1, \alpha_2, \alpha_3$ A. α_1, α_3 B. α_1, α_2
- **鄭**: 方程组 Ax = 0 的基础解系只有一个向量 $(1,0,1,0)^{\mathrm{T}}$, 则 r(A) = 3 且 $\alpha_1 + \alpha_3 = 0$, 所以 $r(A^*) = 1$. 再由 $A^*A = |A|E = 0$ 可知 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 都是方程组 $A^*x = 0$ 的解. $A^*x=0$ 的基础解系中有三个线性无关的向量, 而向量组 $\alpha_1,\alpha_2,\alpha_4$ 和 $\alpha_2,\alpha_3,\alpha_4$ 都是线性 无关的, 选 D.
- 7. 设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数, 其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数, 则必为概率密度的是 ()
 - A. $f_1(x) f_2(x)$

B. $2 f_2(x) F_1(x)$

C. $f_1(x)F_2(x)$

D. $f_1(x)F_2(x) + f_2(x)F_1(x)$

解:概率密度需要满足非负性和归一性,非负性都满足,直接验证

$$\int_{-\infty}^{+\infty} \left[f_1(x) F_2(x) + f_2(x) F_1(x) \right] \mathrm{d}x = F_1(x) F_2(x) \Big|_{-\infty}^{+\infty} = 1,$$

因此 $f_1(x)F_2(x) + f_2(x)F_1(x)$ 为概率密度, 其他都不满足, 选 D.

- $\stackrel{\P}{\cong}$ 注: 在此题的条件下, $2f_1(x)F_1(x)$, $2f_2(x)F_2(x)$ 和 $f_1(x)F_1(x)+f_2(x)F_2(x)$ 都是概 率密度.
- 8. 设随机变量 X 与 Y 相互独立, 且 E(X) 与 E(Y) 存在. 记 $U = \max\{X,Y\}, V =$ $\min\{X,Y\}, \bigcup E(UV) =$ A. $E(U) \cdot E(V)$ B. $E(X) \cdot E(Y)$ C. $E(U) \cdot E(Y)$

D. $E(X) \cdot E(V)$

№ 解: 由于 $U = \max\{X,Y\}, V = \min\{X,Y\},$ 所以 UV = XY, 再根据独立性得 E(UV) = $E(XY) = E(X) \cdot E(Y)$, & B.

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9. 曲线
$$y = \int_0^x \tan t \, \mathrm{d}t \left(0 \leqslant x \leqslant \frac{\pi}{4}\right) = \underline{\qquad}$$

解:根据曲线的弧长公式得

$$s = \int_0^{\frac{\pi}{4}} \sqrt{1 + y'^2} \, dx = \int_0^{\frac{\pi}{4}} \sqrt{1 + \tan^2 x} \, dx$$
$$= \int_0^{\frac{\pi}{4}} \sec x \, dx = \ln\left(\sec x + \tan x\right) \Big|_0^{\frac{\pi}{4}} = \ln\left(1 + \sqrt{2}\right).$$

- 10.微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0) = 0 的解为 $y = _____$.
- **解:** 由条件得 $e^x(y'+y) = (ye^x)' = \cos x$, 于是 $ye^x = \sin x + C$. 由 y(0) = 0 得 C = 0, 因 此 $ye^x = \sin x$, $y = e^{-x} \sin x$.

11. 设函数
$$F(x,y) = \int_0^{xy} \frac{\sin t}{1+t^2} dt$$
, 则 $\frac{\partial^2 F}{\partial x^2}\Big|_{\substack{x=0\\y=2}} = \underline{\qquad}$.

解:
$$\frac{\partial F}{\partial x} = \frac{y \sin xy}{1 + x^2 y^2}, \frac{\partial^2 F}{\partial^2 x} = \frac{y^2 \cos xy \cdot (1 + x^2 y^2) - 2xy^3 \sin xy}{(1 + x^2 y^2)^2},$$
 因此 $\frac{\partial^2 F}{\partial x^2}\Big|_{\substack{x=0 \ y=2}} = 4.$

- 12.设 L 是柱面 $x^2 + y^2 = 1$ 与平面 z = x + y 的交线, 从 z 轴正向往 z 轴负向看去为 逆时针方向, 则曲线积分 $\oint_L xz dx + x dy + \frac{y^2}{2} dz = _____.$
- **解:** 曲线 L 的参数方程为 $x = \cos t$, $y = \sin t$, $z = \cos t + \sin t$, $t: 0 \to 2\pi$, 因此

$$\oint_{L} xz dx + x dy + \frac{y^{2}}{2} dz$$

$$= \int_{0}^{2\pi} \left(\cos t \left(\cos t + \sin t \right) \left(-\sin t \right) + \cos t \cdot \cos t + \frac{\sin^{2} t}{2} \left(\cos t - \sin t \right) \right) dt$$

$$= \int_{0}^{2\pi} \left(-\sin t \cos^{2} t - \frac{\sin^{2} t \cos t}{2} + \cos^{2} t - \frac{\sin^{3} t}{2} \right) dt = \pi.$$

- 13.若二次曲面的方程 $x^2+3y^2+z^2+2axy+2xz+2yz=4$ 经正交变换化为 $y_1^2+4z_1^2=4$,则 a=_____.
- **解:** 由题意知二次型的矩阵 $A = \begin{pmatrix} 1 & a & 1 \\ a & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ 的秩为 2, 所以 $|A| = -(a-1)^2 = 0$, a = 1.
- 14.设二维随机变量 (X,Y) 服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2)=$ _____.
- **解:** 由条件知 X, Y 相互独立且都服从正态分布 $N(\mu, \sigma^2)$, 于是 $E(XY^2) = E(X)E(Y^2) = \mu((EX)^2 + D(X)) = \mu(\mu^2 + \sigma^2) = \mu^3 + \mu\sigma^2$.

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

求极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right)^{\frac{1}{e^x-1}}$$
.

解: 先取对数得

$$\lim_{x \to 0} \frac{1}{e^x - 1} \ln \left(\frac{\ln (1 + x)}{x} \right) = \lim_{x \to 0} \frac{1}{x} \ln \left(\frac{\ln (1 + x)}{x} - 1 + 1 \right)$$

$$= \lim_{x \to 0} \frac{1}{x} \left(\frac{\ln (1 + x)}{x} - 1 \right) = \lim_{x \to 0} \frac{\ln (1 + x) - x}{x^2}$$

$$= \lim_{x \to 0} \frac{-\frac{1}{2}x^2}{x^2} = -\frac{1}{2},$$

因此原极限为 $e^{-\frac{1}{2}}$.

16.(本题满分9分)

设函数 $z=f\left(xy,yg(x)\right)$, 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导且在 x=1 处取得极值 g(1)=1, 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{x=1}$.

解: 因为
$$\frac{\partial z}{\partial x} = f_1'(xy, yg(x)) \cdot y + f_2'(xy, yg(x)) \cdot g'(x) \cdot y$$
, 所以 $\frac{\partial z}{\partial x}\Big|_{x=1} = yf_1'(y, y)$. 故
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1 \ y=1}} = \frac{d}{dy} \left(\frac{\partial z}{\partial x}\Big|_{x=1}\right)\Big|_{y=1} = \frac{d}{dy} \left[yf_1'(y, y)\right]\Big|_{y=1}$$

$$= \left[f_1'(y, y) + y\left(f_{11}''(y, y) + f_{12}''(y, y)\right)\right]\Big|_{y=1}$$

$$= f_1'(1,1) + f_{11}''(1,1) + f_{12}''(1,1).$$

17.(本题满分 10 分)

求方程 k arctan x - x = 0 不同实根的个数, 其中 k 为参数.

解: 令
$$f(x) = k \arctan x - x$$
, 则 $f(0) = 0$, $f'(x) = \frac{k}{1 + x^2} - 1 = \frac{k - 1 - x^2}{1 + x^2}$. 则

- $k \le 1$ 时, $f'(x) \le 0$ (且等号至多在一个点处成立), 则 f(x) 在 $(-\infty, +\infty)$ 内单调递减, 此时 f(x) 的图像与 x 轴只有一个交点, 方程 k arctan x x = 0 只有一个实根.
- k > 1 时,由 f(x) 为偶函数,先考虑 x > 0 的情形.此时 f'(x) $\begin{cases} > 0, \quad 0 < x < \sqrt{k-1} \\ < 0, \quad x > \sqrt{k-1} \end{cases}$, 且 $f(0) = 0, f(\sqrt{k-1}) > 0, f(+\infty) = -\infty$,因此 f(x) 在 $(\sqrt{k-1}, +\infty)$ 内有一个零点 x_0 ,于是 $f(-x_0) = -f(x_0) = 0$,故此时方程 k arctan x x = 0 有三个实根.

18.(本题满分 10 分)

(1) 证明: 对任意的正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$ 成立.

(2) 设
$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n (n = 1, 2, \dots)$$
, 证明数列 $\{a_n\}$ 收敛.

運明: (1) 由拉格朗日中值定理得 $\ln\left(1+\frac{1}{n}\right) = \ln(1+n) - \ln n = \frac{1}{\xi} \in \left(\frac{1}{n+1}, \frac{1}{n}\right)$, 其中 $\xi \in (n, n+1)$, 得证.

(2) 首先有

$$a_{n+1} - a_n = \sum_{k=1}^{n+1} \frac{1}{k} - \ln(n+1) - \left(\sum_{k=1}^n \frac{1}{k} - \ln n\right)$$
$$= \frac{1}{n+1} - \left[\ln(n+1) - \ln n\right] = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0,$$

因此数列 $\{a_n\}$ 单调递减. 再将不等式 $\frac{1}{k} > \ln\left(1 + \frac{1}{k}\right) = \ln\left(1 + k\right) - \ln k$ 对 k 从 1 到 n 求和得 $\sum_{k=1}^{n} \frac{1}{k} > \ln\left(n + 1\right) > \ln n$,因此 $a_n > 0$. 根据单调有界准则知数列 $\{a_n\}$ 收敛.

19.(本题满分 11 分)

已知函数 f(x, y) 具有二阶连续偏导数,且 f(1, y) = 0, f(x, 1) = 0, $\iint_D f(x, y) dx dy$ = a,其中 $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$, 计算二重积分 $I = \iint_D f''_{xy}(x, y) dx dy$.

解: 由 f(1,y) = f(x,1) = 0 知 $f'_y(1,y) = f'_x(x,1) = 0$, 原积分化为累次积分利用分部积分得

$$I = \iint_{D} f''_{xy}(x, y) dxdy = \int_{0}^{1} dy \int_{0}^{1} xy f''_{xy}(x, y) dx$$

$$= \int_{0}^{1} dy \int_{0}^{1} xy d(f'_{y}(x, y)) = \int_{0}^{1} \left(xy f'_{y}(x, y) \Big|_{0}^{1} - \int_{0}^{1} y f'_{y}(x, y) dx \right) dy$$

$$= \int_{0}^{1} \left(y f'_{y}(1, y) - \int_{0}^{1} y f'_{y}(x, 1) dx \right) dy = -\int_{0}^{1} dy \int_{0}^{1} y f'_{y}(x, y) dx$$

$$= -\int_{0}^{1} dx \int_{0}^{1} y f'_{y}(x, y) dy = -\int_{0}^{1} dx \int_{0}^{1} y d(f(x, y))$$

$$= -\int_{0}^{1} \left(y f(x, y) \Big|_{0}^{1} - \int_{0}^{1} f(x, y) dy \right) dx = \int_{0}^{1} \int_{0}^{1} f(x, y) dx dy$$

$$= \iint_{D} f(x, y) dx dy = a.$$

20.(本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1,0,1)^T, \boldsymbol{\alpha}_2 = (0,1,1)^T, \boldsymbol{\alpha}_3 = (1,3,5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1,1,1)^T, \boldsymbol{\beta}_2 = (1,2,3)^T, \boldsymbol{\beta}_3 = (3,4,a)^T$ 线性表示.

(1) 求 a 的值;

(2) 将 β_1 , β_2 , β_3 用 α_1 , α_2 , α_3 线性表示.

- 解: (1) 首先有 $|\alpha_1, \alpha_2, \alpha_3| = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{vmatrix} = 1 \neq 0$,于是向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 因此 $\alpha_1 = (1, 0, 1)^T, \alpha_2 = (0, 1, 1)^T, \alpha_3 = (1, 3, 5)^T$ 不能被 $\beta_1 = (1, 1, 1)^T, \beta_2 = (1, 2, 3)^T, \beta_3 = (3, 4, a)^T$ 线性表示等价于 $\beta_1, \beta_2, \beta_3$ 线性相关,于是 $|\beta_1, \beta_2, \beta_3| = \begin{vmatrix} 0 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & a 3 \end{vmatrix} = a 5 = 0$, 所以 a = 5.
 - (2) 对增广矩阵 $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$ 作初等行变换得

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 1 & 1 & 5 & 1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 0 & 1 & 3 & 0 & 2 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 0 & 0 & 1 & -1 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & 5 \\ 0 & 1 & 0 & 4 & 2 & 10 \\ 0 & 0 & 1 & -1 & 0 & -2 \end{pmatrix}.$$

于是 $\boldsymbol{\beta}_1 = 2\boldsymbol{\alpha}_1 + 4\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3$, $\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$, $\boldsymbol{\beta}_3 = 5\boldsymbol{\alpha}_1 + 10\boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3$.

21.(本题满分 11 分)

设
$$A$$
 为 3 阶实对称矩阵, A 的秩为 2, 且 A $\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$.

- (1) 求 A 的所有特征值与特征向量;
- (2) 求矩阵 A.
- 解: (1) 由条件知 $A \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, 因此 -1 是一个特征值,且它对应的特征向量为 $k_1(1,0,-1)^T$, $k_1 \neq 0$; 1 是一个特征值,它所对应的特征向量为 $k_2(1,0,1)^T$, $k_2 \neq 0$. 再由 r(A) = 2 知 0 也是 A 的特征值,设它的特征向量为 $(x_1,x_2,x_3)^T$, 那么由对称矩阵不同特征值对应的特征向量的正交性得 $\begin{cases} x_1 + x_3 = 0 \\ -x_1 + x_3 = 0 \end{cases}$, 解得特征值 0 对应的特征向量为 $k_3(0,1,0)^T$, $k_3 \neq 0$.

$$(2) \diamondsuit \mathbf{\Lambda} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \mathbf{M} \mathbf{P}^{-1} \mathbf{\Lambda} \mathbf{P} = \mathbf{\Lambda}, \quad \mathbf{M} \mathbf{K}$$

$$\mathbf{\Lambda} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

22.(本题满分 11 分)

设随机变量 X 与 Y 的概率分布分别为

X	0	1
D	1	2
Р	$\overline{3}$	$\overline{3}$

Y	-1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

$$\mathbb{H} P(X^2 = Y^2) = 1.$$

- (1) 求二维随机变量 (X, Y) 的概率分布;
- (2) 求 Z = XY 的概率分布;
- (3) 求 X 与 Y 的相关系数 ρ_{XY} .
- 解: (1) 由于 $P(X^2 = Y^2) = 1$, 所以 $P(X^2 \neq Y^2) = 0$, 即 P(X = 0, Y = 1) = P(X = 0, Y = -1) = P(X = 1, Y = 0) = 0, 于是

$$P(X = 1, Y = 1) = P(Y = 1) - P(X = 0, Y = 1) = P(Y = 1) = \frac{1}{3},$$

$$P(X = 1, Y = -1) = P(Y = -1) - P(X = 0, Y = -1) = P(Y = -1) = \frac{1}{3},$$

$$P(X = 0, Y = 0) = P(Y = 0) - P(X = 1, Y = 0) = P(Y = 0) = \frac{1}{3}.$$

因此二维随机变量 (X,Y) 的概率分布为

Y X	-1	0	1
0	0	$\frac{1}{3}$	0
1	$\frac{1}{3}$	0	$\frac{1}{3}$

(2) Z = XY 取值只有 -1, 0, 1, 且由 (X, Y) 的概率分布不难得到 Z 的概率分布为

Z	-1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

博客: yuxtech.github.io

(3) $E(X) = \frac{2}{3}$, E(Y) = 0, E(XY) = 0, Cov(X, Y) = E(XY) - E(X)E(Y) = 0, 因此 X 与 Y 的相关系数为 $\rho_{XY} = 0$.

23.(本题满分 11 分)

设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本, 其中 μ_0 已知, $\sigma^2 > 0$ 未知. \bar{X} 和 S^2 分别表示样本均值和样本方差.

- (1) 求参数 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
- (2) 计算 $E(\hat{\sigma}^2)$ 和 $D(\hat{\sigma}^2)$.
- **解:** (1) 设 x_1, x_2, \dots, x_n 为样本 X_1, X_2, \dots, X_n 的观测值,则似然函数为

$$L(\sigma^{2}) = (2\pi\sigma^{2})^{-\frac{n}{2}} \cdot e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu_{0})^{2}}$$

取对数得 $\ln L(\sigma^2) = \frac{n}{2} \ln (2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_0)^2$, 令

$$\frac{d(\ln L)}{d(\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \mu_0)^2 = 0$$

解得
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2$$
, 故 σ^2 的最大似然估计为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$.

(2) 首先有
$$\frac{n\hat{\sigma}^2}{\sigma^2} = \frac{1}{n} \sum_{i=1}^n \frac{(X_i - \mu_0)^2}{\sigma^2} \sim \chi^2(n)$$
, 所以 $E(\hat{\sigma}^2) = \frac{\sigma^2}{n} E\left(\frac{n\sigma^2}{\sigma^2}\right) = \frac{\sigma^2}{n} \cdot n = \sigma^2$, $D(\hat{\sigma}^2) = D\left(\frac{\sigma^2}{n} \cdot \frac{n\sigma^2}{\sigma^2}\right) = \frac{\sigma^4}{n^2} \cdot 2n = \frac{2\sigma^4}{n}$.

第7章 2012年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 曲线
$$y = \frac{x^2 + x}{x^2 - 1}$$
 的渐近线的条数为
A. 0 B. 1 C. 2 D. 3

- A. 0 B. 1 C. 2 D. 3 **解:** 因为 $\lim_{x \to \infty} \frac{x^2 + x}{x^2 1} = 1$, 所以直线 y = 1 是曲线 $y = \frac{x^2 + x}{x^2 1}$ 的水平渐近线, 从而它没有斜渐近线. 又 $\lim_{x \to 1} \frac{x^2 + x}{x^2 1} = \infty$, 所以 x = 1 是一条垂直渐近线, 而 x = -1 不是渐近线, 因此有两条渐近线, 选 C.
- 2. 设函数 $f(x) = (e^x 1)(e^{2x} 2)\cdots(e^{nx} n)$, 其中 n 为正整数, 则 $f'(0) = (1)^{n-1}(n-1)!$ B. $(-1)^n(n-1)!$ C. $(-1)^{n-1}n!$ D. $(-1)^nn!$
- 解: 利用导数的定义得

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{(e^x - 1)(e^{2x} - 2) \cdots (e^{nx} - n)}{x}$$
$$= \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \lim_{x \to 0} \left[(e^{2x} - 2) \cdots (e^{nx} - n) \right] = (-1)^{n-1} (n - 1)!,$$

)

选 A.

- 3. 如果函数 f(x, y) 在 (0, 0) 处连续, 那么下列命题正确的是 A. 若极限 $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x, y)}{|x| + |y|}$ 存在, 则 f(x, y) 在点 (0, 0) 处可微
 - B. 若极限 $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x,y)}{x^2 + y^2}$ 存在,则 f(x,y) 在点 (0,0) 处可微
 - C. 若 f(x, y) 在点 (0, 0) 处可微, 则极限 $\lim_{\substack{x \to 0 \ |x| + |y|}} \frac{f(x, y)}{|x| + |y|}$ 存在
 - D. 若 f(x, y) 在点 (0, 0) 处可微, 则极限 $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x, y)}{x^2 + y^2}$ 存在
- 解: 正确的选项是 B, 因为极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在, 由连续性可知 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y) = f(0,0) = 0$, 且在 (0,0) 的邻域内有 $f(x,y) = f(0,0) + 0 \cdot x + 0 \cdot y + o\left(\sqrt{x^2+y^2}\right)$, 因此由可微的定义知 f(x,y) 在点 (0,0) 处可微. A 选项可取反例 f(x) = |x| + |y|, C 和 D 选项可取反例 f(x,y) = 1, 因此选 B.

4. 设
$$I_k = \int_0^{k\pi} e^{x^2} \sin x dx (k = 1, 2, 3)$$
, 则有 ()

A.
$$I_1 < I_2 < I_3$$
 B. $I_3 < I_2 < I_1$ C. $I_2 < I_3 < I_1$ D. $I_2 < I_1 < I_3$

B.
$$I_3 < I_2 < I_3$$

C.
$$I_2 < I_3 < I_3$$

D.
$$I_2 < I_1 < I_3$$

◎ 解:

$$\begin{split} I_2 &= \int_0^{2\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x = \int_0^{\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x + \int_{\pi}^{2\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x = I_1 + \int_{\pi}^{2\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x < I_1, \\ I_3 &= \int_0^{3\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x = \int_0^{\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x + \int_{\pi}^{3\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x = I_1 + \int_{\pi}^{3\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x \\ &= I_1 + \int_{\pi}^{2\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x + \int_{2\pi}^{3\pi} \mathrm{e}^{x^2} \sin x \mathrm{d}x = I_1 + \int_0^{\pi} \mathrm{e}^{(2\pi - t)^2} \sin t \mathrm{d}t + \int_0^{\pi} \mathrm{e}^{(2\pi + t)^2} \sin t \mathrm{d}t \\ &= I_1 + \int_0^{\pi} \left[\mathrm{e}^{(2\pi + t)^2} - \mathrm{e}^{(2\pi - t)^2} \right] \sin t \mathrm{d}t > I_1. \end{split}$$

选 D.

5. 设
$$\alpha_1 \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$, 其中 c_1, c_2, c_3, c_4 为任意常数,则下列向量线性相关的为

A. $\alpha_1, \alpha_2, \alpha_3$

B.
$$\alpha_1, \alpha_2, \alpha_4$$

$$C. \alpha_1, \alpha_3, \alpha_4$$

D.
$$\alpha_2, \alpha_3, \alpha_4$$

A.
$$\alpha_1, \alpha_2, \alpha_3$$
 B. $\alpha_1, \alpha_2, \alpha_4$ C. $\alpha_1, \alpha_3, \alpha_4$ D. $\alpha_2, \alpha_3, \alpha_4$

解: 显然可得 $|\alpha_1, \alpha_3, \alpha_4| = \begin{vmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$, 所以 $\alpha_1, \alpha_3, \alpha_4$ 一定线性相关, 选 C.

6. 设
$$A$$
 为 3 阶矩阵, P 为 3 阶可逆矩阵, 且 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. 若 $P = (\alpha_1, \alpha_2, \alpha_3)$,

$$Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3), \ \mathbb{M} \ Q^{-1} A Q =$$

$$A. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad C. \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad D. \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

解: 由初等变换与初等矩阵的关系可知
$$Q = P \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 因此

$$Q^{-1}AQ = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} P^{-1}AP \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

选 B.

7. 设随机变量 X 与 Y 相互独立, 且分别服从参数为 1 与参数为 4 的指数分布, 则

$$P(X < Y) =$$
A. $\frac{1}{5}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{5}$

解: 由条件可知 X 与 Y 的联合概率密度函数为 $f(x,y) = \begin{cases} 4e^{-x-4y}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$

$$P(X < Y) = \iint_{x < y} f(x, y) dx dy = 4 \int_{0}^{+\infty} \int_{x}^{+\infty} e^{-x - 4y} dx dy = \frac{1}{5},$$

选 A.

- **解:** 设截成的两段长分别为 X 和 Y, 则 Y = 1 X, 因此 X 与 Y 存在线性关系, 且为负相 关, 因此 $\rho_{XY} = -1$, 选 D.
- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设函数 f(x) 满足方程 f''(x) + f'(x) 2f(x) = 0 及 $f''(x) + f(x) = 2e^x$,则 $f(x) = e^x$
- 解: 微分方程 f''(x) + f'(x) 2f(x) = 0 的特征方程为 $\lambda^2 + \lambda 2 = 0$, 特征根为 $\lambda_1 = 1$, $\lambda_2 = -2$, 故方程的通解为 $f(x) = C_1 e^x + C_2 e^{-2x}$. 将 $f(x) = C_1 e^x + C_2 e^{-2x}$, $f''(x) = C_1 e^x + 4C_2 e^{-2x}$ 代入方程 $f''(x) + f(x) = 2e^x$ 得 $2C_1 e^x + 5C_2 e^{-2x} = 2e^x$, 所以 $C_1 = 1$, $C_2 = 0$, 故 $f(x) = e^x$.

$$10. \int_0^2 x \sqrt{2x - x^2} \, \mathrm{d}x = \underline{\qquad}.$$

◎ 解:

$$\int_0^2 x \sqrt{2x - x^2} \, dx = \int_0^2 x \sqrt{1 - (x - 1)^2} \, dx = \int_{-1}^1 (t + 1) \sqrt{1 - t^2} \, dt$$
$$= \int_{-1}^1 t \sqrt{1 - t^2} \, dt + \int_{-1}^1 \sqrt{1 - t^2} \, dt = \frac{\pi}{2}.$$

11.**grad**
$$\left(xy + \frac{z}{y} \right) \Big|_{(2,1,1)} = \underline{\qquad}$$

解: 令
$$f(x,y,z) = xy + \frac{z}{y}$$
,则 $\frac{\partial f}{\partial x} = y$, $\frac{\partial f}{\partial y} = x - \frac{z}{y^2}$, $\frac{\partial f}{\partial z} = \frac{1}{y}$,所以 $\frac{\partial f}{\partial x}\Big|_{(2,1,1)} = 1$, $\frac{\partial f}{\partial y}\Big|_{(2,1,1)} = 1$,因此 $\operatorname{grad}\left(xy + \frac{z}{y}\right)\Big|_{(2,1,1)} = (1,1,1)$.

12.设
$$\Sigma = \{(x, y, z) | x + y + z = 1, x \ge 0, y \ge 0, z \ge 0\}$$
, 则 $\iint_{\Sigma} y^2 dS = \underline{\qquad}$.

解: 记 $D = \{(x, y) | x + y \leq 1, x \geq 0, y \geq 0\}$, 则

$$\iint_{\Sigma} y^2 dS = \iint_{D} y^2 \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy$$
$$= \sqrt{3} \iint_{D} y^2 dx dy = \sqrt{3} \int_{0}^{1} dy \int_{0}^{1-y} y^2 dx = \frac{\sqrt{3}}{12}.$$

13.设 α 为3维单位列向量, E为3阶单位矩阵, 则矩阵 $E-\alpha\alpha^{T}$ 的秩为_____

解: $\alpha \alpha^{\text{T}}$ 是秩为 1 的实对称矩阵, 故它可以对角化, 且它的特征值为 $\alpha^{\text{T}} \alpha$, 0, 0, 即 1, 0, 0. 则 $E - \alpha \alpha^{\text{T}}$ 也可以对角化, 且它的特征值为 0, 1, 1, 因此 $r(E - \alpha \alpha^{\text{T}}) = 2$.

14.设 A, B, C 是随机事件, A 与 C 互不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3}, 则 P(AB|\overline{C}) =$

解: 由 A 与 C 互不相容可知 P(AC) = P(ABC) = 0, 于是

$$P(AB|\bar{C}) = \frac{P(AB\bar{C})}{P(\bar{C})} = \frac{P(AB) - P(ABC)}{1 - P(C)} = \frac{1/2}{1 - 1/3} = \frac{3}{4}.$$

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

证明:
$$x \ln \frac{1+x}{1-x} + \cos x \geqslant 1 + \frac{x^2}{2} (-1 < x < 1).$$

证明: 注意到 f(x) 是偶函数,因此只需要证明 $f'(x) \ge 0, x \in [0,1)$ 即可. 首先有 $f'(x) = \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x, x \in (0,1)$,且 $\ln \frac{1+x}{1-x} > 0$, $\frac{2x}{1-x^2} > 2x > x + \sin x$,因此 $f'(x) > 0, x \in (0,1)$. 而 f(0) = 0,则有 $f(x) \ge 0, x \in [0,1)$,证毕.

16.(本题满分 10 分)

求函数 $f(x, y) = xe^{-\frac{x^2+y^2}{2}}$ 的极值.

解:由 $\begin{cases} f'_x(x,y) = (1-x^2)e^{-\frac{x^2+y^2}{2}} = 0\\ f'_y(x,y) = -xye^{-\frac{x^2+y^2}{2}} = 0 \end{cases}$ 解得 f(x,y) 的驻点为 (1,0) 和 (-1,0). 记

$$A = f_{xx}''(x, y) = x (x^2 - 3) e^{-\frac{x^2 + y^2}{2}}, B = f_{xy}''(x, y) = y (x^2 - 1) e^{-\frac{x^2 + y^2}{2}},$$
$$C = f_{yy}''(x, y) = x (y^2 - 1) e^{-\frac{x^2 + y^2}{2}}.$$

在驻点 (1,0) 处, 由于 $AC - B^2 = 2e^{-1} > 0$, $A = -2e^{-\frac{1}{2}} < 0$, 所以 $f(1,0) = e^{-\frac{1}{2}}$ 为 f(x,y) 的极大值. 在驻点 (-1,0) 处, 由于 $AC - B^2 = 2e^{-1} > 0$, $A = 2e^{-\frac{1}{2}} > 0$, 所以 $f(-1,0) = -e^{-\frac{1}{2}}$ 为 f(x,y) 的极小值.

17.(本题满分 10 分)

求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

解: 令 $u_n = \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$, $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = x^2 < 1 \Rightarrow -1 < x < 1$, 因此原幂级数的收敛 半径 R = 1. 当 $x = \pm 1$ 时,级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1}$ 发散,因此原幂级数收敛域为 (-1, 1). 当 $x \in (-1, 0) \cup (0, 1)$ 时,和函数为

$$S(x) = \sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n} = \sum_{n=0}^{\infty} \frac{(2n+1)^2 + 2}{2n + 1} x^{2n}$$

$$= \sum_{n=0}^{\infty} (2n+1) x^{2n} + 2 \sum_{n=0}^{\infty} \frac{x^{2n}}{2n+1} = \left(\sum_{n=0}^{\infty} x^{2n+1}\right)' + \frac{2}{x} \sum_{n=0}^{\infty} \int_{0}^{x} t^{2n} dt$$

$$= \left(\frac{x}{1-x^2}\right)' + \frac{2}{x} \int_{0}^{x} \frac{1}{1-t^2} dt = \frac{1+x^2}{(1-x^2)^2} + \frac{1}{x} \ln \frac{1+x}{1-x}.$$

而
$$S(0) = 3$$
, 因此 $S(x) = \begin{cases} \frac{1+x^2}{\left(1-x^2\right)^2} + \frac{1}{x} \ln \frac{1+x}{1-x}, & x \in (-1,0) \cup (0,1) \\ 3, & x = 0 \end{cases}$

18.(本题满分 10 分)

已知曲线 $L: \begin{cases} x = f(t) \\ y = \cos t \end{cases} (0 \le t < \frac{\pi}{2})$, 其中函数 f(t) 具有连续导数, 且 f(0) = 0, $f'(t) > 0 \left(0 < t < \frac{\pi}{2}\right)$, 若曲线 L 的切线与 x 轴的交点到切点的距离恒为 1, 求函数 f(t) 的表达式, 并求以曲线 L 及 x 轴和 y 轴为边界的区域的面积.

解: 由参数方程求导公式知 $y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\sin t}{f'(t)}$, 因此曲线 L 上任一点 $(x,y) = (f(t),\cos t)$ 处的切线方程为 $Y - \cos t = -\frac{\sin t}{f'(t)}(X - f(t))$. 令 Y = 0, 得此切线与 x 轴交点的横坐标为 $X = f'(t)\cot t + f(t)$, 由题意得 $(f'(t)\cot t)^2 + \cos^2 t = 1$. 又 f'(t) > 0, 所以 $f'(t) = \sec t - \cot t$, 从而 $f(t) = \ln(\sec t + \tan t) - \sin t + C$. 再由 f(0) = 0 得 C = 0, 故 $f(t) = \ln(\sec t + \tan t) - \sin t$. 以曲线 L 及 x 轴和 y 轴为边界的区域的面积为

$$S = \int_0^{\frac{\pi}{2}} \cos t \cdot f'(t) dt = \int_0^{\frac{\pi}{2}} \cos t (\sec t - \cos t) dt = \int_0^{\frac{\pi}{2}} \sin^2 t dt = \frac{\pi}{4}.$$

19.(本题满分 10 分)

已知 L 是第一象限中从点 (0,0) 沿圆周 $x^2+y^2=2x$ 到点 (2,0), 再沿圆周 $x^2+y^2=4$ 到点 (0,2) 的曲线段. 计算曲线积分 $I=\oint_L 3x^2y\mathrm{d}x+(x^3+x-2y)\mathrm{d}y$.

解: 取有向线段 L_1 的方程为 x=0, 起点为 (0,2), 终点为 (0,0). 由 L 与 L_1 围成的平面区域记为 D, 则

$$I = \oint_L 3x^2 y \mathrm{d}x + (x^3 + x - 2y) \mathrm{d}y$$

$$= \oint_{L+L_1} 3x^2 y dx + (x^3 + x - 2y) dy - \oint_{L_1} 3x^2 y dx + (x^3 + x - 2y) dy$$

$$= \iint_D \left(\frac{\partial}{\partial x} \left(x^3 + x - 2y \right) - \frac{\partial}{\partial y} \left(3x^2 y \right) \right) dx dy - \int_2^0 (-2y) dy$$

$$= \iint_D dx dy - 4 = \frac{\pi}{2} - 4.$$

20.(本题满分 11 分)

设
$$\mathbf{A} = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}.$$

- (1) 计算行列式 |A|;
- (2) 当实数 a 为何值时, 方程组 $Ax = \beta$ 有无穷多解, 并求其通解.

解:(1)行列式按照第一行展开得

$$|A| = \begin{vmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{vmatrix} - a \begin{vmatrix} 0 & a & 0 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 - a^{4}.$$

(2) 对增广矩阵 (A, β) 作初等行变换得

$$(A, \beta) = \begin{pmatrix} 1 & a & 0 & 0 & 1 \\ 0 & 1 & a & 0 & -1 \\ 0 & 0 & 1 & a & 0 \\ a & 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & 0 & 0 & 1 \\ 0 & 1 & a & 0 & -1 \\ 0 & 0 & 1 & a & 0 \\ 0 & -a^2 & 0 & 1 & -a \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & a & 0 & 0 & 1 \\ 0 & 1 & a & 0 & -1 \\ 0 & 0 & 1 & a & 0 \\ 0 & 0 & 0 & 1 - a^4 & -a - a^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & 0 & 0 & 1 \\ 0 & 1 & a & 0 & -1 \\ 0 & 0 & 1 & a & 0 \\ 0 & 0 & 0 & 1 - a^4 & -a - a^2 \end{pmatrix}.$$

由于方程组 $Ax = \beta$ 有无穷多解当且仅当 $r(A) = r(A, \beta) < 4$, 因此 $1 - a^4 = -a - a^2 = 0$, 解得 a = -1, 此时方程组 $Ax = \beta$ 有无穷多解, 且容易得到方程组的通解为 $x = (0, -1, 0, 0)^T + k(1, 1, 1, 1)^T$, 其中 k 为任意常数.

21.(本题满分 11 分)

已知
$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
, 二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}}(\mathbf{A}^{\mathrm{T}}\mathbf{A})\mathbf{x}$ 的秩为 2.

- (1) 求实数 a 的值;
- (2) 求正交变换 x = Qy 将二次型 f 化为标准形.
- **解:** (1) 因为 $r(A) = r(A^{T}A) = 2$, 对矩阵 A 作初等行变换得

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a+1 \\ 0 & 0 & -a-1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a+1 \\ 0 & 0 & 0 \end{pmatrix},$$

所以 a = -1.

(2) 由
$$a = -1$$
 可得 $A^{T}A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$, 故矩阵 $A^{T}A$ 的特征多项式为

$$|\lambda E - A^{\mathrm{T}} A| = \begin{vmatrix} \lambda - 2 & 0 & 2 \\ 0 & \lambda - 2 & -2 \\ -2 & -2 & \lambda - 4 \end{vmatrix} = \lambda (\lambda - 2) (\lambda - 6),$$

于是 $A^{T}A$ 的特征值为 $\lambda_{1} = 0, \lambda_{2} = 2, \lambda_{3} = 6$.

当
$$\lambda_1 = 0$$
 时, 解方程组 $A^{T}Ax = \mathbf{0}$ 得 λ_1 的单位特征向量 $\boldsymbol{\xi}_1 = \frac{1}{\sqrt{3}}(1, 1, -1)^{T}$;

当
$$\lambda_2 = 2$$
 时,解方程组 $(2E - A^T A)x = 0$ 得 λ_2 的单位特征向量 $\xi_2 = \frac{1}{\sqrt{2}}(1, -1, 0)^T$;

当
$$\lambda_3 = 6$$
 时,解方程组 $(6E - A^T A)x = 0$ 得 λ_3 的单位特征向量 $\xi_3 = \frac{1}{\sqrt{6}}(1,1,2)^T$.

令
$$Q = (\xi_1, \xi_2, \xi_3)$$
, 则在正交变换 $x = Qy$ 下, 原二次型化为标准形 $f = 2y_2^2 + 6y_3^2$.

22.(本题满分 11 分)

设二维离散型随机变量 (X,Y) 的概率分布为

XY	0	1	2
0	$\frac{1}{4}$	0	$\frac{1}{4}$
1	0	$\frac{1}{3}$	0
2	$\frac{1}{12}$	0	$\frac{1}{12}$

- (1) 求 P(X = 2Y)
- (2) 求 Cov(X Y, Y).

解: (1) 由 (*X*, *Y*) 的概率分布知 $P(X = 2Y) = P(X = 0, Y = 0) + P(X = 2, Y = 1) = \frac{1}{4}$. (2) 由 (*X*, *Y*) 的概率分布知 *X*, *Y*, *XY* 的概率分布分别为

$$X \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{pmatrix}, Y \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, XY \sim \begin{pmatrix} 0 & 1 & 4 \\ \frac{7}{12} & \frac{1}{3} & \frac{1}{12} \end{pmatrix}.$$

所以
$$E(X) = \frac{2}{3}$$
, $E(Y) = 1$, $E(Y^2) = \frac{5}{3}$, $D(Y) = \frac{2}{3}$, $E(XY) = \frac{2}{3}$, 于是 $Cov(X, Y) = E(XY) - E(X)E(Y) = 0$, $Cov(X - Y) = Cov(X, Y) - D(Y) = -\frac{2}{3}$.

23.(本题满分 11 分)

设随机变量 X 与 Y 相互独立且分别服从正态分布 $N(\mu, \sigma^2)$ 与 $N(\mu, 2\sigma^2)$, 其中 σ 是未知参数且 $\sigma > 0$. 记 Z = X - Y.

- (1) 求 Z 的概率密度 $f(z;\sigma^2)$;
- (2) 设 Z_1, Z_2, \dots, Z_n 为来自总体 Z 的简单随机样本, 求 σ^2 的最大似然估计 $\hat{\sigma}^2$;
- (3) 证明 $\hat{\sigma}^2$ 为 σ^2 的无偏估计量.
- **解:** (1) 由 $X \sim N(\mu, \sigma^2), Y \sim N(\mu, 2\sigma^2)$, 且 X, Y 相互独立知 $Z = X Y \sim N(0, 3\sigma^2)$, 因此 Z 的概率密度 $f(z; \sigma^2) = \frac{1}{\sqrt{6\pi}\sigma} e^{-\frac{z^2}{6\sigma^2}}, -\infty < z < +\infty$.
 - (2) 设样本 Z_1, Z_2, \cdots, Z_n 的观测值为 z_1, z_2, \cdots, z_n ,则似然函数

$$L(\sigma^2) = \prod_{i=1}^{n} f(z_i; \sigma^2) = (6\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{6\sigma^2} \sum_{i=1}^{n} z_i^2},$$

取对数得 $\ln L(\sigma^2) = -\frac{n}{2} \ln (6\pi\sigma^2) - \frac{1}{6\sigma^2} \sum_{i=1}^n z_i^2, \, \diamondsuit \, \frac{\mathrm{d} \, (\ln L)}{\mathrm{d} \, (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{6\sigma^4} \sum_{i=1}^n z_i^2 = 0$ 得 $\sigma^2 = \frac{1}{3n} \sum_{i=1}^n z_i^2, \, 因此 \, \sigma^2$ 的最大似然估计量为 $\hat{\sigma}^2 = \frac{1}{3n} \sum_{i=1}^n Z_i^2.$

(3) 因为 $E(\hat{\sigma}^2) = \frac{1}{3n} \sum_{i=1}^n E(Z_i^2) = \frac{1}{3} E(Z^2) = \frac{1}{3} D(Z) = \sigma^2$, 所以 $\hat{\sigma}^2$ 为 σ^2 的无偏估计量.

第8章 2013年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 已知极限
$$\lim_{x\to 0} \frac{x - \arctan x}{x^k} = c$$
, 其中 k , c 为常数, 且 $c \neq 0$, 则
A. $k = 2$, $c = -\frac{1}{2}$ B. $k = 2$, $c = \frac{1}{2}$ C. $k = 3$, $c = -\frac{1}{3}$ D. $k = 3$, $c = \frac{1}{3}$

解: 利用等价无穷小可知当 $x \to 0$ 时, $x - \arctan x \sim \frac{1}{3}x^3$, 由题意就有 $k = 3, c = \frac{1}{3}$.

2. 曲面
$$x^2 + \cos(xy) + yz + x = 0$$
 在点 $(0, 1, -1)$ 处的切平面方程为
A. $x - y + z = -2$
B. $x + y + z = 0$
C. $x - 2y + z = -3$
D. $x - y - z = 0$

解: 记 $F(x, y, z) = x^2 + \cos(xy) + yz + x$, 则 $\frac{\partial F(x, y, z)}{\partial x} = 2x - y \sin xy + 1, \frac{\partial F(x, y, z)}{\partial y} = -x \sin xy + z, \frac{\partial F(x, y, z)}{\partial z} = y,$ 因为 $\frac{\partial F(0, 1, -1)}{\partial x} = 1, \frac{\partial F(0, 1, -1)}{\partial y} = -1, \frac{\partial F(0, 1, -1)}{\partial z} = 1,$ 所以曲面 F(x, y, z) = 0 在点 (0, 1, -1) 处的切平面方程为 x - (y - 1) + z = 1, 即 x - y + z = -2, 选 A.

3. 没
$$f(x) = \left| x - \frac{1}{2} \right|, b_n = 2 \int_0^1 f(x) \sin n\pi x dx (n = 1, 2, \dots), 令 S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x,$$
则 $S\left(-\frac{9}{4}\right) =$
A. $\frac{3}{4}$
B. $\frac{1}{4}$
C. $-\frac{1}{4}$
D. $-\frac{3}{4}$

- **解:** 由题意可知 S(x) 是 f(x) 作周期为 2 的奇延拓得到的函数所对应的傅里叶级数, 因此 $S\left(-\frac{9}{4}\right) = S\left(-\frac{1}{4}\right) = -S\left(\frac{1}{4}\right) = -f\left(\frac{1}{4}\right) = -\frac{1}{4}$, 选 C.
- 4. 设 $L_1: x^2 + y^2 = 1$, $L_2: x^2 + y^2 = 2$, $L_3: x^2 + 2y^2 = 2$, $L_4: 2x^2 + y^2 = 2$ 为四条 逆时针方向的平面曲线, 记

解: 设 L_i 所包围的有限区域为 $D_i(i = 1, 2, 3, 4)$, 首先由格林公式可得

$$I_{i} = \oint_{L_{i}} \left(y + \frac{y^{3}}{6} \right) dx + \left(2x - \frac{x^{3}}{3} \right) dy = \iint_{D_{i}} \left[(2 - x^{2}) - \left(1 + \frac{1}{2} y^{2} \right) \right] dx dy$$

$$= \iint\limits_{D_i} \left[1 - \left(x^2 + \frac{1}{2} y^2 \right) \right] \mathrm{d}x \mathrm{d}y.$$

被积函数取非负值得最大区域为 $x^2 + \frac{y^2}{2} \le 1$, 刚好就是区域 D_4 , 因此 $\max\{I_1, I_2, I_3, I_4\} = I_4$, 选 D.

- 5. 设 A, B, C 均为 n 阶矩阵, 若 AB = C, 且 B 可逆, 则 ()
 - A. 矩阵 C 的行向量组与矩阵 A 的行向量组等价
 - B. 矩阵 C 的列向量组与矩阵 A 的列向量组等价
 - C. 矩阵 C 的行向量组与矩阵 B 的行向量组等价
 - D. 矩阵 C 的列向量组与矩阵 B 的列向量组等价
- **解:** 对一个矩阵 A 右乘一个可逆矩阵 B 就是对 A 进行一系列的初等列变换后得到矩阵 C,因此矩阵 C 的行向量组与矩阵 A 的列向量组等价, 选 B.

6. 矩阵
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为

A. $a = 0, b = 2$

B. $a = 0, b$ 为任意常数

C. $a = 2, b = 0$

D. $a = 2, b$ 为任意常数

解: 两个同阶实对称矩阵相似的充要条件是它们具有相同的特征值, 矩阵 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$

的特征值为 2, b, 0, 而 $|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -a & -1 \\ -a & \lambda - b & -a \\ -1 & -a & \lambda - 1 \end{vmatrix} = \lambda \left((\lambda - 2) (\lambda - b) - 2a^2 \right),$ 因此

当且仅当 a = 0 时, A 的特征值为 2, b, 0, 其中 b 可为任意常数, 选 B.

7. 设 X_1, X_2, X_3 是随机变量, 且 $X_1 \sim N(0,1), X_2 \sim N(0,2^2), X_3 \sim N(5,3^2), p_i = P(-2 \leqslant X_i \leqslant 2)$ (i=1,2,3),则

A. $p_1 > p_2 > p_3$ B. $p_2 > p_1 > p_3$ C. $p_3 > p_1 > p_2$ D. $p_1 > p_3 > p_2$

解: 利用正态分布的性质可得

$$p_{1} = \Phi(2) - \Phi(-2) = 2\Phi(2) - 1,$$

$$p_{2} = \Phi\left(\frac{2}{2}\right) - \Phi\left(\frac{-2}{2}\right) = 2\Phi(1) - 1,$$

$$p_{3} = \Phi\left(\frac{2-5}{3}\right) - \Phi\left(\frac{-2-5}{3}\right) = \Phi(-1) - \Phi\left(\frac{-7}{3}\right).$$

利用标准正态分布的概率分布函数性质不难得到 $p_1 > p_2 > p_3$, 选 A.

8. 设随机变量 $X \sim t(n), Y \sim F(1,n)$, 给定 α (0 < α < 0.5), 常数 c 满足 $P(X > c) = \alpha$, 则 $P(Y > c^2) =$

Α. α

B. $1 - \alpha$

 $C. 2\alpha$

D. $1 - 2\alpha$

解: 由 $X \sim t(n)$ 可知 $X^2 \sim F(1,n)$, 因此

$$P(Y > c^2) = P(X^2 > c^2) = P(X > c) + P(X < -c) = 2a,$$

选 C.

- 二、填空题, 9~14题, 每题 4分, 共24分.
- 9. 设函数 y = f(x) 由方程 $y x = e^{x(1-y)}$ 确定, 则 $\lim_{n \to \infty} n \left[f\left(\frac{1}{n}\right) 1 \right] = _____.$
- 解: 由 $y-x=e^{x(1-y)}$ 可知当 x=0 时 y=1. 等式两边关于 x 求导得 $y-1=e^{x(1-y)}\left(1-y-xy'\right)$,代入 x=0,y=1 得 y'(0)=f'(0)=1,因此

$$\lim_{n\to\infty} n \left[f\left(\frac{1}{n}\right) - 1 \right] = \lim_{x\to 0^+} \frac{f\left(x\right) - f\left(0\right)}{x} = f'\left(0\right) = 1.$$

- 10.已知 $y_1 = e^{3x} xe^{2x}$, $y_2 = e^x xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的三个解, 则该方程的通解为 $y = _____$.
- **解:** 因为 $y_1 y_3 = e^{3x}$, $y_2 y_3 = e^x$ 是该非齐次线性微分方程对应的齐次线性微分方程的两个解,且 e^{3x} 与 e^x 线性无关. 又因为 $y_3 = -xe^{2x}$ 是非齐次线性微分方程的特解, 所以该方程的通解为 $y = C_1 e^x + C_2 e^{3x} xe^{2x}$.

解: 由参数方程求导公式得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = t, \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) / \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{\cos t},$$

因此
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\bigg|_{t=\frac{\pi}{4}} = \frac{1}{\cos\frac{\pi}{4}} = \sqrt{2}.$$

$$12. \int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} \mathrm{d}x = \underline{\qquad}.$$

◎ 解:

$$\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx = -\int_{1}^{+\infty} \ln x d\left(\frac{1}{1+x}\right)$$
$$= -\frac{\ln x}{1+x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{dx}{x(1+x)}$$
$$= \ln\left(\frac{x}{x+1}\right) \Big|_{1}^{+\infty} = \ln 2.$$

13.设 $A = (a_{ij})$ 是 3 阶非零矩阵, |A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式, 若 $a_{ij} + A_{ij} = 0$ (i, j = 1, 2, 3), 则 |A| =_____.

- 解: 由 $a_{ij} + A_{ij} = 0$ (i, j = 1, 2, 3) 可知 $A^{\mathrm{T}} = -A^*$,于是 $|A| = |A^{\mathrm{T}}| = |-A^*| = -|A^*| = -|A|^2$,因此 |A| = 0 或 -1. 又 A 是非零矩阵,不妨设 $a_{11} \neq 0$,于是 $|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = -(a_{11}^2 + a_{12}^2 + a_{13}^2) \neq 0$,所以 |A| = -1.
- 14.设随机变量 Y 服从参数为 1 的指数分布, a 为常数且大于零, 则 $P(Y \le a + 1 | Y > a) =$.
- **解:** Y 的分布函数为 $F(y) = \begin{cases} 1 e^{-y}, & y > 0 \\ 0, & y \leq 0 \end{cases}$, 由条件概率公式得

$$P(Y \le a + 1|Y > a) = \frac{P(a < Y \le a + 1)}{P(Y > a)}$$
$$= \frac{F(a + 1) - F(a)}{1 - F(a)} = \frac{e^{-a} - e^{-(a+1)}}{e^{-a}} = 1 - \frac{1}{e}.$$

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$.

解: 方法一 由条件有 f(1) = 0, $f'(x) = \frac{\ln(1+x)}{x}$, 利用分部积分得

$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx = 2 \int_0^1 f(x) d(\sqrt{x}) = -2 \int_0^1 \sqrt{x} f'(x) dx$$

$$= -2 \int_0^1 \frac{\ln(1+x)}{\sqrt{x}} dx = -4 \int_0^1 \ln(1+x) d(\sqrt{x})$$

$$= -4 \ln 2 + 4 \int_0^1 \frac{\sqrt{x}}{1+x} dx = 8 \int_0^1 \frac{u^2}{1+u^2} du - 4 \ln 2$$

$$= 8 - 2\pi - 4 \ln 2.$$

方法一 利用二重积分交换次序得

$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx = -\int_0^1 \left(\int_x^1 \frac{\ln(1+t)}{t} dt \right) \frac{dx}{\sqrt{x}} = -\int_0^1 \frac{\ln(1+t)}{t} \left(\int_0^t \frac{dx}{\sqrt{x}} \right) dt$$
$$= -2 \int_0^1 \frac{\ln(1+t)}{\sqrt{t}} dt = 8 - 2\pi - 4 \ln 2.$$

16.(本题满分 10 分)

设数列 $\{a_n\}$ 满足条件: $a_0=3, a_1=1, a_{n-2}-n(n-1)a_n=0 (n\geqslant 2), S(x)$ 是幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的和函数.

- (1) 证明: S''(x) S(x) = 0;
- (2) 求 S(x) 的表达式.
- **解:** (1) 由 $S(x) = \sum_{n=0}^{\infty} a_n x^n$ 得 $S'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$, 结合条件 $a_{n-2} n(n-1)a_n = 0$ 可得

$$S''(x) = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=2}^{\infty} a_{n-2} x^{n-2} = \sum_{n=0}^{\infty} a_n x^n = S(x),$$

 $\mathbb{P} S''(x) - S(x) = 0.$

(2) 二阶常系数齐次线性微分方程 S''(x) - S(x) = 0 的通解为 $S(x) = C_1 e^x + C_2 e^{-x}$. 由初值条件 $S(0) = a_0 = 3$, $S'(0) = a_1 = 1$ 得 $C_1 + C_2 = 3$, $C_1 - C_2 = 1$, 所以 $C_1 = 2$, $C_2 = 1$, $S(x) = 2e^x + e^{-x}$.

17.(本题满分 10 分)

求函数 $f(x, y) = \left(y + \frac{x^3}{3}\right) e^{x+y}$ 的极值.

解: 由
$$\begin{cases} f'_x(x,y) = \left(x^2 + y + \frac{x^3}{3}\right) e^{x+y} = 0 \\ f'_y(x,y) = \left(1 + y + \frac{x^3}{3}\right) e^{x+y} = 0 \end{cases}$$
 得驻点
$$\begin{cases} x = -1 \\ y = -\frac{2}{3} \end{cases} \begin{cases} x = 1 \\ y = -\frac{4}{3} \end{cases}$$
 进一步可得
$$f''_{xx}(x,y) = \left(2x + 2x^2 + y + \frac{x^3}{3}\right) e^{x+y}, f''_{xy}(x,y) = \left(1 + x^2 + y + \frac{x^3}{3}\right) e^{x+y}, f''_{yy}(x,y) = \left(2 + y + \frac{x^3}{3}\right) e^{x+y}.$$
 在驻点
$$\left(-1, -\frac{2}{3}\right) \pounds,$$

$$A = f_{xx}''\left(-1, -\frac{2}{3}\right) = -e^{-\frac{5}{3}}, B = f_{xy}''\left(-1, -\frac{2}{3}\right) = e^{-\frac{5}{3}}, C = f_{yy}''\left(-1, -\frac{2}{3}\right) = e^{-\frac{5}{3}}.$$

此时 $AC - B^2 < 0$, 因此 $\left(-1, -\frac{2}{3}\right)$ 不是极值点. 在驻点 $\left(1, -\frac{4}{3}\right)$ 处,

$$A = f_{xx}''\left(1, -\frac{4}{3}\right) = 3e^{-\frac{1}{3}}, B = f_{xy}''\left(1, -\frac{4}{3}\right) = e^{-\frac{1}{3}}, C = f_{yy}''\left(1, -\frac{4}{3}\right) = e^{-\frac{1}{3}}.$$

此时 A > 0 且 $AC - B^2 > 0$, 因此 $\left(1, -\frac{4}{3}\right)$ 是极小值点, 且极小值为 $f\left(1, -\frac{4}{3}\right) = -e^{-\frac{1}{3}}$.

18.(本题满分 10 分)

奇函数 f(x) 在 [-1,1] 上具有二阶导数,且 f(1) = 1,证明:

- (1) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
- (2) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.
- **证明:** (1) 令 F(x) = f(x) x, 则 F(0) = f(0) = 0, F(1) = f(1) 1 = 0, 由罗尔定理知存在 $\xi \in (0,1)$ 使得 $F'(\xi) = f'(\xi) 1 = 0$, 即 $f'(\xi) = 1$.

(2) 因为 f(x) 是 [-1,1] 上的奇函数, 所以 f(x) 为偶函数.

方法一 令
$$G(x) = f(x) + f'(x) - x$$
, 则

$$G(1) = f'(1) + f(1) - 1 = f'(1),$$

$$G(-1) = f'(-1) + f(-1) + 1.$$

由罗尔定理知存在 $\eta \in (-1,1)$ 使得 $G'(\eta) = f''(\eta) + f'(\eta) - 1 = 0$, 即 $f''(\eta) + f'(\eta) = 1$. 方法二 令 $H(x) = e^x (f'(x) - 1)$, 由 (1) 可知 $f'(\xi) = f'(-\xi) = 1$, 因此 $H(\xi) = H(-\xi) = 0$, 由罗尔定理知存在 $\eta \in (-\xi, \xi) \subset (-1, 1)$ 使得 $H'(\eta) = e^{\eta} (f''(\eta) + f'(\eta) - 1) = 0$, 即 $f''(\eta) + f'(\eta) = 1$.

19.(本题满分 10 分)

设直线 L 过 A(1,0,0), B(0,1,1) 两点, 将 L 绕 z 轴旋转一周得到曲面 Σ , Σ 与平面 z=0,z=2 所围成的立体为 Ω .

- (1) 求曲面 Σ 的方程;
- (2) 求 Ω 的形心坐标.
- **解:** (1) 直线 L 的方程为 $\frac{x-1}{1} = \frac{y}{-1} = \frac{z}{-1}$, 写成参数方程即 x = 1 + t, y = -t, z = -t. 曲面 Σ 是 L 绕 z 轴旋转而成,设 (x, y, z) 为曲面 Σ 上的任意点,则 $x^2 + y^2 = (1+t)^2 + t^2$, z = -t, 所以曲面 Σ 的方程为 $x^2 + y^2 2z^2 + 2z 1 = 0$.
 - (2) 设 Ω 的形心坐标为 $(\bar{x}, \bar{y}, \bar{z})$, 由对称性得 $\bar{x} = \bar{y} = 0$. 用平面 z = z 截区域 Ω 所得的截面为 $D_z = \{(x, y)|x^2 + y^2 \le 2z^2 2z + 1\}$, 由切片法可得

$$\iiint_{\Omega} dx dy dz = \int_{0}^{2} dz \iint_{D_{z}} dx dy = \pi \int_{0}^{2} (2z^{2} - 2z + 1) dz$$

$$= \pi \left(\frac{2}{3}z^{3} - z^{2} + z\right) \Big|_{0}^{2} = \frac{10\pi}{3},$$

$$\iiint_{\Omega} z dx dy dz = \int_{0}^{2} z dz \iint_{D_{z}} dx dy = \pi \int_{0}^{2} z (2z^{2} - 2z + 1) dz$$

$$= \pi \left(\frac{1}{2}z^{4} - \frac{2}{3}z^{3} + \frac{1}{2}z^{2}\right) \Big|_{0}^{2} = \frac{14\pi}{3}.$$

因此
$$\overline{z} = \frac{\iiint_{\Omega} z dx dy dz}{\iiint_{\Omega} dx dy dz} = \frac{7}{5}, \Omega$$
 的形心坐标为 $\left(0,0,\frac{7}{5}\right)$.

20.(本题满分 11 分)

设 $\mathbf{A} = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a, b 为何值时, 存在矩阵 \mathbf{C} 使得 $\mathbf{AC} - \mathbf{CA} = \mathbf{B}$, 并求所有矩阵 \mathbf{C} .

解: 设矩阵 $A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$, 代入 AC - CA = B 得方程组

$$\begin{cases}
-x_2 + ax_3 = 0 \\
-ax_1 + x_2 + ax_4 = 1 \\
x_1 - x_3 - x_4 = 1 \\
x_2 - ax_3 = b
\end{cases}$$
(*)

对该方程组的增广矩阵作初等行变换得

$$\begin{pmatrix} 0 & -1 & a & 0 & 0 \\ -a & 1 & 0 & a & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & 1 \\ 0 & 1 & -a & 0 & 0 \\ 0 & 0 & 0 & a + 1 \\ 0 & 0 & 0 & b \end{pmatrix}.$$

由此可知当 $a \neq -1$ 或 $b \neq 0$ 时,方程组(*)无解. 当 a = -1 且 b = 0 时,方程组(*)有解,且此时方程组的通解为 $\mathbf{x} = (x_1, x_2, x_3, x_4)^{\mathrm{T}} = k_1(1, -1, 1, 0)^{\mathrm{T}} + k_2(1, 0, 0, 1)^{\mathrm{T}} + (1, 0, 0, 0)^{\mathrm{T}}$,其中 k_1, k_2 为任意常数. 因此,当且仅当 a = -1, b = 0 时存在矩阵 $\mathbf{C} = \begin{pmatrix} k_1 + k_2 + 1 & -k_1 \\ k_1 & k_2 \end{pmatrix} (k_1, k_2 \in \mathbb{R})$ 使得 $\mathbf{AC} - \mathbf{CA} = \mathbf{B}$.

21.(本题满分 11 分)

设二次型 $f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$, 记

$$\boldsymbol{\alpha} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

- (1) 证明二次型 f 对应的矩阵为 $2\alpha\alpha^{T} + \beta\beta^{T}$;
- (2) 若 α , β 正交且均为单位向量, 证明 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$.

证明: (1) 记
$$\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$$
,则 $a_1x_1 + a_2x_2 + a_3x_3 = (x_1, x_2, x_3) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = (a_1, a_2, a_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. 因此

$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$

= $2(x^{\mathrm{T}}\alpha)(\alpha^{\mathrm{T}}x) + (x^{\mathrm{T}}\beta)(\beta^{\mathrm{T}}x) = x^{\mathrm{T}}(2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}})x.$

且 $2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}$ 为对称矩阵, 所以二次型 f 对应的矩阵为 $A = 2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}$.

(2) 因为 α , β 正交且均为单位向量, 所以

$$\boldsymbol{A}\boldsymbol{\alpha} = (2\boldsymbol{\alpha}\boldsymbol{\alpha}^{\mathrm{T}} + \boldsymbol{\beta}\boldsymbol{\beta}^{\mathrm{T}})\boldsymbol{\alpha} = 2\boldsymbol{\alpha}(\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\alpha}) + \boldsymbol{\beta}(\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha}) = 2\boldsymbol{\alpha},$$

$$A\beta = (2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}})\beta = 2\alpha(\alpha^{\mathrm{T}}\beta) + \beta(\beta^{\mathrm{T}}\alpha) = \beta,$$

故 $\lambda_1 = 2, \lambda_2 = 1$ 是矩阵 A 的特征值. 又 A 的秩 $r(A) = r(2\alpha\alpha^{\mathrm{T}} + \beta\beta^{\mathrm{T}}) \leq r(2\alpha\alpha^{\mathrm{T}}) + r(\beta\beta^{\mathrm{T}}) = 2$, 即 A 不是满秩矩阵, 所以 $\lambda_3 = 0$ 也是 A 的特征值, 故二次型 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$.

22.(本题满分 11 分)

设随机变量 X 概率密度为 $f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3 \\ 0, & 其他 \end{cases}$,令随机变量 $Y = \begin{cases} 2, & X \leqslant 1 \\ X, & 1 < X < 2. \\ 1, & X \geqslant 2 \end{cases}$

- (1) 求 Y 的分布函数;
- (2) 求概率 $P(X \leqslant Y)$.
- **解:** (1) 记 Y 分布函数为 F(y), 则当 y < 1 时, F(y) = 0; 当 $y \ge 2$ 时, F(y) = 1; 当 $1 \le y < 2$ 时,

$$F(y) = P(Y \le y) = P(Y = 1) + P(1 < Y \le y)$$

$$= P(X \ge 2) + P(1 < X \le y) = \int_{2}^{3} \frac{x^{2}}{9} dx + \int_{1}^{y} \frac{x^{2}}{9} dx = \frac{y^{3} + 18}{27}.$$

所以
$$Y$$
 的分布函数为 $F(y) = \begin{cases} 0, & y < 1 \\ \frac{y^3 + 18}{27}, & 1 \leq y < 2. \\ 1, & y \geqslant 2 \end{cases}$

(2) 由随机变量
$$Y$$
 的定义可知 $P(X \leqslant Y) = P(X < 2) = \int_0^2 \frac{x^2}{9} dx = \frac{8}{27}$

23.(本题满分 11 分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} \mathrm{e}^{-\frac{\theta}{x}}, & x > 0 \\ 0, & \text{其他} \end{cases}$, 其中 θ 为未知参数且大于零,

 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量.
- **解:** (1) 总体均值 $E(X) = \int_0^{+\infty} x \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}} dx = \theta, \ \ \Leftrightarrow E(X) = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i,$ 因此 θ 的矩估 计量为 $\hat{\theta}_1 = \bar{X}$.
 - (2) 设 x_1, x_2, \cdots, x_n 为样本 X_1, X_2, \cdots, X_n 的观测值,则似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \frac{\theta^{2n}}{(x_1 x_2 \cdots x_n)^3} e^{-\theta \sum_{i=1}^{n} \frac{1}{x_i}}, & x_1, x_2, \cdots, x_n > 0\\ 0 & \text{ #$de} \end{cases}.$$

当
$$x_1, x_2, \dots, x_n > 0$$
 时, $\ln L(\theta) = 2n \ln \theta - \theta \sum_{i=1}^n \frac{1}{x_i} - 3 \sum_{i=1}^n \ln x_i$, $\diamondsuit \frac{d [\ln L(\theta)]}{d\theta} = \frac{2n}{\theta} - \sum_{i=1}^n \frac{1}{x_i} = 0$ 得 $\theta = \frac{2n}{\sum_{i=1}^n \frac{1}{x_i}}$, 所以 θ 的最大似然估计量为 $\hat{\theta}_2 = \frac{2n}{\sum_{i=1}^n \frac{1}{X_i}}$.

第 9 章 2014 年考研数学一

- 一、选择题、 $1 \sim 8$ 题、每题 4 分、共 32 分。
- 1. 下列曲线中有渐近线的是

下列曲线中有渐近线的是
A.
$$y = x + \sin x$$
 B. $y = x^2 + \sin x$ C. $y = x + \sin \frac{1}{x}$ D. $y = x^2 + \sin \frac{1}{x}$

- **解:** 可以用斜渐近线的定义直接判断 C 选项满足 $\lim_{x\to\infty}(y-x)=\lim_{x\to\infty}\sin\frac{1}{x}=0$, 从而直线 y = x 是曲线 $y = x + \sin \frac{1}{x}$ 的斜渐近线.
- 2. 设函数 f(x) 具有二阶导数, g(x) = f(0)(1-x) + f(1)x, 则在区间 [0,1] 上

 - A. 当 $f'(x) \ge 0$ 时, $f(x) \ge g(x)$ B. 当 $f'(x) \ge 0$ 时, $f(x) \le g(x)$
 - C. 当 $f''(x) \ge 0$ 时, $f(x) \ge g(x)$ D. 当 $f''(x) \ge 0$ 时, $f(x) \le g(x)$
- **解:** 令 F(x) = f(x) g(x) = f(x) f(0)(1-x) f(1)x, 则 F(0) = F(1) = 0, 且 F''(x) = f''(x). 故当 f''(x) > 0 时, F(x) 为凹函数, 它的最大值在端点 x = 0 或 x = 1 处取 到, 而 F(0) = F(1) = 0, 所以 $F(x) = f(x) - g(x) \le 0$, 选 D.
- 3. 设 f(x,y) 是连续函数,则 $\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx =$)

A.
$$\int_{0}^{1} dx \int_{0}^{x-1} f(x, y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$$

B.
$$\int_0^1 dx \int_0^{1-x} f(x, y) dy + \int_{-1}^0 dx \int_{-\sqrt{1-x^2}}^0 f(x, y) dy$$

C.
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) dr$$

D.
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr$$

解: 画出积分区域, 如果化为极坐标, 则

$$I = \int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr.$$

如果在直角坐标系下交换积分次序,则

$$I = \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x, y) dy.$$

选 D.

A. $2\sin x$

B. $2\cos x$

C. $2\pi \sin x$

D. $2\pi \cos x$

解: 直接计算可得

$$I(a,b) = \int_{-\pi}^{\pi} (x - a\cos x - b\sin x)^{2} dx$$

$$= \int_{-\pi}^{\pi} (x^{2} + a^{2}\cos^{2}x + b^{2}\sin^{2}x - 2ax\cos x - 2bx\sin x + 2ab\sin x\cos x) dx$$

$$= 2\int_{0}^{\pi} (x^{2} + a^{2}\cos^{2}x + b^{2}\sin^{2}x - 2bx\sin x) dx$$

$$= \pi a^{2} + \pi (b - 2)^{2} + \frac{2}{3}\pi^{3} - 4\pi.$$

显然当 a = 0, b = 2 时, I(a, b) 最小, 所以 $a_1 = 0, b_1 = 2$, 选 A.

5. 行列式
$$\begin{vmatrix} 0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \\ c & 0 & 0 & d \end{vmatrix} =$$
 ()

B.
$$-(ad - bc)^2$$

B.
$$-(ad - bc)^2$$
 C. $a^2d^2 - b^2c^2$

D.
$$b^2c^2 - a^2d^2$$

解: 利用行列式的基本性质,分别交换一二列,二三行和二三列可得

$$\begin{vmatrix} 0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \\ c & 0 & 0 & d \end{vmatrix} = - \begin{vmatrix} a & 0 & b & 0 \\ 0 & b & 0 & a \\ c & 0 & d & 0 \\ 0 & d & 0 & c \end{vmatrix} = \begin{pmatrix} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & b & 0 & a \\ 0 & d & 0 & c \end{pmatrix} = - \begin{vmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & b & a \\ 0 & 0 & d & c \end{vmatrix} = -(ad - bc)^2,$$

选 B.

- 6. 设 $\alpha_1, \alpha_2, \alpha_3$ 为三维向量,则对任意常数 k, l,向量组 $\alpha_1 + k\alpha_3, \alpha_2 + k\alpha_3$ 线性无关 是向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的)
 - A. 必要非充分条件

B. 充分非必要条件

C. 充分必要条件

D. 既非充分也非必要条件

解: 如果 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 令 $\lambda_1(\alpha_1 + k\alpha_3) + \lambda_3(\alpha_2 + l\alpha_3) = \mathbf{0}$, 即

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + (k\lambda_1 + l\lambda_2)\alpha_3 = \mathbf{0} \Rightarrow \lambda_1 = \lambda_2 = k\lambda_1 + l\lambda_2 = 0,$$

从而 $\alpha_1 + k\alpha_3, \alpha_2 + k\alpha_3$ 线性无关. 反之, 如果 $\alpha_1 + k\alpha_3, \alpha_2 + k\alpha_3$ 线性无关, 不一定有 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 如取反例 $\alpha_1 = (1,0,0)^T, \alpha_2 = (0,1,0)^T, \alpha_3 = (0,0,0)^T$, 因此选 A.

7. 设随机事件 A 与 B 相互独立, 且 P(B) = 0.5, P(A - B) = 0.3, 则 P(B - A) = 0.3

A. 0.1

B. 0.2

C. 0.3

D. 0.4

解: 由 A, B 相互独立可得

$$P(A - B) = P(A) - P(AB) = P(A) - P(A) P(B)$$

= $P(A) - 0.5P(A) = 0.5P(A) = 0.3$,

所以
$$P(A) = 0.6$$
, $P(B - A) = P(B) - P(AB) = 0.5 - 0.5P(A) = 0.2$, 选 B.

8. 设连续型随机变量 X_1 与 X_2 相互独立且方差均存在, X_1 与 X_2 的概率密度分别为 $f_1(x)$ 与 $f_2(x)$, 随机变量 Y_1 的概率密度为 $f_{Y_1}(y) = \frac{1}{2}(f_1(y) + f_2(y))$, 随机变量

$$Y_2 = \frac{1}{2}(X_1 + X_2)$$
,则
$$A. EY_1 > EY_2, DY_1 > DY_2$$

$$C. EY_1 = EY_2, DY_1 < DY_2$$

$$D. EY_1 = EY_2, DY_1 > DY_2$$

解: 利用期望与方差公式计算得

$$\begin{split} EY_1 &= \frac{1}{2} \int_{-\infty}^{+\infty} y \left[f_1 \left(y \right) + f_2 \left(y \right) \right] \mathrm{d}y = \frac{1}{2} \left(EX_1 + EX_2 \right) = EY_2, \\ E\left(Y_1^2 \right) &= \frac{1}{2} \int_{-\infty}^{+\infty} y^2 \left[f_1 \left(y \right) + f_2 \left(y \right) \right] \mathrm{d}y = \frac{1}{2} E\left(X_1^2 \right) + \frac{1}{2} E\left(X_2^2 \right), \\ DY_1 &= E\left(Y_1^2 \right) - \left(EY_1 \right)^2 \\ &= \frac{1}{2} E\left(X_1^2 \right) + \frac{1}{2} E\left(X_2^2 \right) - \frac{1}{4} \left(EX_1 \right)^2 - \frac{1}{4} \left(EX_2 \right)^2 - \frac{1}{2} EX_1 EX_2 \\ &= \frac{1}{4} DX_1 + \frac{1}{4} DX_2 + \frac{1}{4} E\left(X_1 - X_2 \right)^2 > \frac{1}{4} DX_1 + \frac{1}{4} DX_2 = DY_2, \end{split}$$

选 D.

- 二、填空题,9~14题,每题4分,共24分.
- 9. 曲面 $z = x^2(1 \sin y) + y^2(1 \sin x)$ 在点 (1, 0, 1) 处的切平面方程为_____.
- **解:** 曲面在点 (1,0,1) 处的法向量为 $(z'_x,z'_y,-1)\big|_{(1,0,1)}=(2,-1,-1)$,所以切平面方程为 2(x-1)+(-1)(y-0)+(-1)(z-1)=0,即 2x-y-z-1=0.
- 10.设 f(x) 是周期为 4 的可导奇函数, 且 $f'(x) = 2(x-1), x \in [0,2]$, 则 $f(7) = _____.$
- 解: 当 $x \in [0,2]$ 时, $f(x) = \int 2(x-1) dx = x^2 2x + C$, 由 f(0) = 0 得 C = 0, 即 $f(x) = x^2 2x$. 又 f(x) 是周期为 4 的奇函数, 故 f(7) = f(-1) = -f(1) = 1.
- 11.微分方程 $xy' + y(\ln x \ln y) = 0$ 满足条件 $y(1) = e^3$ 的解为_____
- **解:** 原微分方程即 $y' = \frac{y}{x} \ln \frac{y}{x}$, 这是一个齐次方程,令 $u = \frac{y}{x}$, 则 $y' = x \frac{\mathrm{d}u}{\mathrm{d}x} + u$,原方程化为 $x \frac{\mathrm{d}u}{\mathrm{d}x} = u (\ln u 1)$.解此变量分离的方程得 $u = \mathrm{e}^{Cx+1}$,从而原方程通解为 $y = x \mathrm{e}^{Cx+1}$.代入初值条件 $y(1) = \mathrm{e}^3$ 可得 C = 2,故所求特解为 $y = x \mathrm{e}^{2x+1}$.

- 12.设 L 是柱面 $x^2 + y^2 = 1$ 与平面 y + z = 0 的交线, 从 z 轴正向往 z 轴负向看去为 逆时针方向, 则曲线积分 $\oint_L z dx + y dz = _____.$
- **解:** 曲线 L 的参数方程为 $x = \cos \theta$, $y = \sin \theta$, $z = -\sin \theta$, θ 从 0 到 2π , 则 $\oint_L z dx + y dz = \int_0^{2\pi} \left(\sin^2 \theta \sin \theta \cos \theta\right) d\theta = \pi$.
- 13.设二次型 $f(x_1, x_2, x_3) = x_1^2 x_2^2 + 2ax_1x_3 + 4x_2x_3$ 的负惯性指数为 1, 则 a 的取值范围是 .
- 解:由配方法得

$$f(x_1, x_2, x_3) = x_1^2 + 2ax_1x_3 + a^2x_3^2 - (x_2^2 - 4x_2x_3 + 4x_3^2) + 4x_3^2 - a^2x_3^2$$
$$= (x_1 + ax_3)^2 - (x_2 - 2x_3)^2 + (4 - a^2)x_3^2,$$

因为负惯性指数为 1, 所以 $4-a^2 \ge 0$, 解得 $-2 \le a \le 2$.

14.设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, & \theta < x < 2\theta \\ 0, & \text{ 其他} \end{cases}$$

其中 θ 是未知参数, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, 若 $c\sum_{i=1}^n X_i^2$ 为 θ^2 的无偏估计, 则 c=

ᢁ 解: 由无偏估计的定义得

$$E\left(c\sum_{i=1}^{n} X_{i}^{2}\right) = c\sum_{i=1}^{n} E\left(X_{i}^{2}\right) = cnE\left(X^{2}\right)$$
$$= cn\int_{\theta}^{2\theta} \frac{2x^{3}}{3\theta^{2}} dx = \frac{2cn}{3\theta^{2}} \cdot \frac{1}{4}x^{4} \Big|_{\theta}^{2\theta} = \frac{5cn}{2}\theta^{2} = \theta^{2},$$

因此 $c = \frac{2}{5n}$.

- 三、解答题, 15~23题, 共94分.
- 15.(本题满分 10 分)

求极限
$$\lim_{x\to+\infty} \frac{\int_1^x \left[t^2\left(e^{\frac{1}{t}}-1\right)-t\right] dt}{x^2 \ln\left(1+\frac{1}{x}\right)}.$$

解: 当 t > 0 时, $t^2 \left(e^{\frac{1}{t}} - 1 \right) - t > t^2 \left(\frac{1}{t} + \frac{1}{2t^2} \right) - t = \frac{1}{2}$, 因此极限的分子是趋于正无穷的,利用等价无穷小与洛必达法则可得

$$\lim_{x \to +\infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln \left(1 + \frac{1}{x} \right)} = \lim_{x \to +\infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \cdot \frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x}$$

$$= \lim_{x \to +\infty} \left[x^2 \left(e^{\frac{1}{x}} - 1 \right) - x \right]$$

$$= \lim_{x \to +\infty} \frac{e^{\frac{1}{x}} - 1 - \frac{1}{x}}{\frac{1}{x^2}}$$

$$= \lim_{x \to +\infty} \frac{1}{2x^2} / \frac{1}{x^2} = \frac{1}{2}.$$

 $\stackrel{?}{\mathbf{2}}$ 注: 事实上, 洛必达法则适用于 $\stackrel{?}{\underline{\sim}}$ 型的极限, 也就是只需要分母趋于无穷, 不需要验证分子是否趋于无穷, 就可以使用洛必达法则了.

16.(本题满分 10 分)

设函数 y = f(x) 由方程 $y^3 + 2y^2 + x^2y + 6 = 0$ 确定, 求 f(x) 的极值.

解: 方程两边关于 x 求导得 $3y^2y' + y^2 + 2xyy' + 2xy + x^2y' = 0$, 令 y' = 0 得 y = -2x 或 y = 0 (舍去). 将 y = -2x 代入原方程得 $-6x^3 + 6 = 0$, 所以 x = 1, f(1) = -2. 在 $3y^2y' + y^2 + 2xyy' + 2xy + x^2y' = 0$ 两边继续对 x 求导得

$$(3y^2 + 2xy + x^2)y'' + 2(3y + x)(y')^2 + 4(y + x)y' + 2y = 0,$$

求得 $f''(1) = \frac{4}{9} > 0$, 因此 x = 1 是 f(x) 的极小值点, 且极小值 f(1) = -2.

17.(本题满分 10 分)

设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y) e^{2x}$, 若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式.

解: 利用多元复合函数偏导公式得

$$\frac{\partial z}{\partial x} = f'\left(e^x \cos y\right) e^x \cos y, \frac{\partial^2 z}{\partial x^2} = f''\left(e^x \cos y\right) e^{2x} \cos^2 y + f'\left(e^x \cos y\right) e^x \cos y,$$
$$\frac{\partial z}{\partial y} = -f'\left(e^x \cos y\right) e^x \sin y, \frac{\partial^2 z}{\partial y^2} = f''\left(e^x \cos y\right) e^{2x} \sin^2 y - f'\left(e^x \cos y\right) e^x \cos y.$$

所以等式
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y) e^{2x}$$
 化为

$$f''(e^x \cos y) e^{2x} = [4f(e^x \cos y) + e^x \cos y] e^{2x},$$

因此函数 f(u) 满足微分方程 f''(u) = 4f(u) + u,此方程的通解为 $f(u) = C_1 e^{2u} + C_2 e^{-2u} - \frac{u}{4}$. 由 f(0) = f'(0) = 0 得 $C_1 + C_2 = 0$, $2C_1 - 2C_2 - \frac{1}{4} = 0$,解得 $C_1 = \frac{1}{16}$, $C_2 = -\frac{1}{16}$,故 $f(u) = \frac{1}{16} \left(e^{2u} - e^{-2u} - 4u \right)$.

18.(本题满分 10 分)

设 Σ 为曲面 $z = x^2 + y^2$ ($z \le 1$) 的上侧, 计算曲面积分

$$I = \iint_{\Sigma} (x-1)^3 \, dy dz + (y-1)^3 \, dz dx + (z-1) \, dx dy.$$

解: 曲面 Σ 在 xOy 面的投影区域为 $D=\{(x,y)|x^2+y^2\leqslant 1\}$, 由 $z=x^2+y^2$ 得 $\frac{\partial z}{\partial x}=2x$, $\frac{\partial z}{\partial y}=2y$, 利用投影法和二重积分对称性得

$$I = \iint_{\Sigma} (x-1)^3 \, dy dz + (y-1)^3 \, dz dx + (z-1) \, dx dy.$$

$$= \iint_{D} \left((x^2 + y^2) - 1 - (x-1)^3 \, \frac{\partial z}{\partial x} - (y-1)^3 \, \frac{\partial z}{\partial y} \right) dx dy$$

$$= \iint_{D} \left(-1 + 2x - 5x^2 + 6x^3 - 2x^4 + 2y - 5y^2 + 6y^3 - 2y^4 \right) dx dy$$

$$= -\iint_{D} \left(1 + 5x^2 + 5y^2 + 2x^4 + 2y^4 \right) dx dy$$

$$= -4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \left(1 + 5r^2 + 2r^4 \left(\cos^4 \theta + \sin^4 \theta \right) \right) r dr$$

$$= -4\pi$$

- $x^2 + y^2 = 1$ 的方法用高斯公式来做,但这里用投影法更直接.
- 19.(本题满分 10 分)

设数列 $\{a_n\}$ 、 $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n - a_n = \cos b_n$,且级数 $\sum_{n=1}^{\infty} b_n$ 收敛.

- $(1) 证明: \lim_{n\to\infty} a_n = 0;$
- (2) 证明: 级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.
- 解: (1) 因为级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 所以 $\lim_{n\to\infty} b_n = 0$. 由 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$ 可得 $\cos a_n \cos b_n = a_n > 0$, 因此 $0 < a_n < b_n$, 由比较判别法知级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 所以 $\lim_{n\to\infty} a_n = 0$.
 - (2) 当 $n \to \infty$ 时, $a_n \sim a_n + 1 \cos a_n = 1 \cos b_n \sim \frac{b_n^2}{2}$, 因此 $\frac{a_n}{b_n} \sim b_n$, 由比较判别法知级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

20.(本题满分 11 分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$
, \mathbf{E} 为三阶单位矩阵.

- (1) 求方程 Ax = 0 的一个基础解系;
- (2) 求满足 AB = E 的所有矩阵 B.
- 解: (1) 对矩阵 A 作初等行变换得 $A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -3 \end{pmatrix}$,则方程组 $Ax = \mathbf{0}$ 的一个基础解系为 $\alpha = (-1, 2, 3, 1)^{\mathrm{T}}$.
 - (2) 对矩阵 (A, E) 作初等行变换得

$$(A, E) = \begin{pmatrix} 1 & -2 & 3 & -4 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & -3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 6 & -1 \\ 0 & 1 & 0 & -2 & -1 & -3 & 1 \\ 0 & 0 & 1 & -3 & -1 & -4 & 1 \end{pmatrix}.$$

记 $E = (e_1, e_2, e_3)$,则 $Ax = e_1$ 的通解为 $x = (2, -1, -1, 0)^T + k_1\alpha, k_1 \in \mathbb{R}$; $Ax = e_2$ 的通解为 $x = (6, -3, -4, 0)^T + k_2\alpha_2, k_2 \in \mathbb{R}$; $Ax = e_3$ 的通解为 $x = (-1, 1, 1, 0)^T + k_3\alpha, k_3 \in \mathbb{R}$. 因此所求的矩阵为

$$\boldsymbol{B} = \begin{pmatrix} 2 & 6 & -1 \\ -1 & -3 & 1 \\ -1 & -4 & 1 \\ 0 & 0 & 0 \end{pmatrix} + (k_1 \boldsymbol{\alpha}, k_2 \boldsymbol{\alpha}, k_3 \boldsymbol{\alpha}) = \begin{pmatrix} 2 - k_1 & 6 - k_2 & -1 - k_3 \\ -1 + 2k_1 & -3 + 2k_2 & 1 + 2k_3 \\ -1 + 3k_1 & -4 + 3k_2 & 1 + 3k_3 \\ k_1 & k_2 & k_3 \end{pmatrix},$$

其中 $k_1, k_2, k_3 \in \mathbb{R}$.

21.(本题满分 11 分)

证明
$$n$$
 阶矩阵 $\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$ 相似.

☞ 证明: 先证明一个基本结论:

引理

秩为 1 的矩阵 A 可对角化的充要条件是 $tr(A) \neq 0$. 且当 $tr(A) \neq 0$ 时, A 的相似标准形为 $diag\{tr(A), 0, \dots, 0\}$.

☞ 证明: 由于 r(A) = 1, 所以方程组 Ax = 0 有且只有 n-1 个线性无关的解, 因此 0 至少是 A 的 n-1 重特征值, 且它只有 n-1 个线性无关的特征向量. 特征值的和等于矩阵的迹, 因此 A 的最后一个特征值就是 tr(A). 当 $tr(A) \neq 0$ 时, 此非零特征值有一

个线性无关特征向量, 此时 A 可对角化, 且其相似标准形为 diag{tr(A), 0, ···, 0}. 若 tr(A) = 0, 则 0 是 A 的 n 重特征值, 但只有 n-1 个线性无关特征向量, 此时不可对角化, 证毕.

由 r(A) = r(B) = 1, tr(A) = tr(B) = n 可知 A = B 都相似于对角阵 $diag\{n, 0, \dots, 0\}$, 故 A = B 相似.

22.(本题满分 11 分)

设随机变量 X 的概率分布为 $P(X = 1) = P(X = 2) = \frac{1}{2}$, 在给定 X = i 的条件下,随机变量 Y 服从均匀分布 U(0,i)(i = 1,2).

- (1) 求 Y 的分布函数 $F_Y(y)$;
- (2) 求 EY.
- 解: (1) 由分布函数定义得

$$F_{Y}(y) = P(Y \leq y)$$

$$= P(X = 1) P(Y \leq y | X = 1) + P(X = 2) P(Y \leq y | X = 2)$$

$$= \frac{1}{2} P(Y \leq y | X = 1) + \frac{1}{2} P(Y \leq y | X = 2)$$

$$= \begin{cases} 0, & y < 0 \\ \frac{1}{2} y + \frac{1}{2} \times \frac{1}{2} y, & 0 \leq y < 1 \\ \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} y, & 1 \leq y < 2 \end{cases} = \begin{cases} 0 & y < 0 \\ \frac{3y}{4}, & 0 \leq y < 1 \\ \frac{1}{2} + \frac{y}{4}, & 1 \leq y < 2 \\ \frac{1}{2} + \frac{y}{4}, & 1 \leq y < 2 \end{cases}$$

$$= \begin{cases} 1, & y \geq 2 \\ \frac{1}{2} + \frac{y}{4}, & 1 \leq y < 2 \\ 1, & y \geq 2 \end{cases}$$

(2)
$$Y$$
 的概率密度为 $f_Y(y) =$
$$\begin{cases} \frac{3}{4}, & 0 < y < 1 \\ \frac{1}{4}, & 1 \leqslant y < 2,$$
 因此
$$0, & 其他 \end{cases}$$

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) \, dy = \int_0^1 \frac{3}{4} y \, dy + \int_1^2 \frac{1}{4} y \, dy = \frac{3}{4}.$$

23.(本题满分 11 分)

设总体 X 的分布函数为

$$F(x;\theta) = \begin{cases} 1 - e^{-\frac{x^2}{\theta}}, & x \geqslant 0 \\ 0, & x < 0 \end{cases},$$

其中 θ 是未知参数且大于零, X_1,X_2,\cdots,X_n 为来自总体X的简单随机样本.

- (1) 求 E(X) 与 $E(X^2)$;
- (2) 求 θ 的最大似然估计量 $\hat{\theta}_n$;
- (3) 是否存在实数 a, 使得对任意的 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} P\left\{ \left| \hat{\theta}_n a \right| \ge \varepsilon \right\} = 0$?
- **解:** (1) 总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{2x}{\theta} e^{-\frac{x^2}{\theta}}, & x > 0 \\ 0, & x \leq 0 \end{cases}$

$$E(X) = \int_0^{+\infty} x \cdot \frac{2x}{\theta} e^{-\frac{x^2}{\theta}} dx = -\int_0^{+\infty} x d\left(e^{-\frac{x^2}{\theta}}\right) = \int_0^{+\infty} e^{-\frac{x^2}{\theta}} dx$$
$$= \frac{\sqrt{\pi\theta}}{2} \cdot \frac{1}{\sqrt{\pi\theta}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{\theta}} dx = \frac{\sqrt{\pi\theta}}{2},$$
$$E(X^2) = \int_0^{+\infty} x^2 \cdot \frac{2x}{\theta} e^{-\frac{x^2}{\theta}} dx = \theta \int_0^{+\infty} u e^{-u} du = \theta.$$

(2) 设 x_1, x_2, \dots, x_n 为样本 X_1, X_2, \dots, X_n 的观测值, 则似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \begin{cases} \frac{2^n x_1 x_2 \cdots x_n}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_i^2}, & x_1, x_2, \cdots, x_n > 0\\ 0, & \text{\sharp} \text{.} \end{cases}$$

$$\ln L(\theta) = n \ln 2 + \sum_{i=1}^{n} \ln x_i - n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i^2,$$

令
$$\frac{\mathrm{d}\left[\ln L\left(\theta\right)\right]}{\mathrm{d}\theta} = -\frac{\theta}{n} + \frac{1}{\theta^2} \sum_{i=1}^n x_i^2 = 0$$
 得 $\theta = \frac{1}{n} \sum_{i=1}^n x_i^2$, 故 θ 的最大似然估计量为 $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i^2$.

(3) 存在 $a=\theta$ 满足条件. 因为 $\{X_n^2\}$ 是独立同分布的随机变量序列, 且 $E(X_1^2)=\theta<+\infty$, 所以根据辛钦大数定律知, 当 $n\to\infty$ 时, $\hat{\theta}_N=\frac{1}{n}\sum_{i=1}^n X_i^2$ 依概率收敛于 $E(X_1^2)=\theta$. 因此对任意 $\varepsilon>0$, 有 $\lim_{n\to\infty} P\left\{\left|\hat{\theta}_n-\theta\right|\geqslant\varepsilon\right\}=0$.

第 10 章 2015 年考研数学一

- 一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.
- 1. 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续, 其二 阶导函数 f''(x) 的图像如图所示,则曲线 y = f(x) 的拐点个数为 ()

A. 0

B. 1

C. 2

D. 3

解: 拐点是连续曲线凹凸性发生变化的点, 这里就是二阶导数符号发生变化的点. 从图中可知 f''(x) 的符号发生变化的点是原点和 y = f''(x) 在 x > 0 时与 x 轴的交点, x < 0 时的交点不是拐点, 因此有两个拐点, 选 C.

第1题图

2. 设 $y = \frac{1}{2}e^{2x} + \left(x - \frac{1}{3}\right)e^{x}$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^{x}$ 的一个特解, 则

A. a = -3, b = 2, c = -1

B. a = 3, b = 2, c = -1

C. a = -3, b = 2, c = 1

D. a = 3, b = 2, c = 1

- **解:** 原微分方程的非齐次项为 ce^x ,它的一个特解为 $y = \frac{1}{2}e^{2x} + \left(x \frac{1}{3}\right)e^x$,因此可以判断 方程 y'' + ay' + by = 0 的两个特征根分别为 $\lambda_1 = 1, \lambda_2 = 2$,于是 a = -3, b = 2. 于是将 特解 $y = xe^x$ 代入方程中可得 $(xe^x)'' 3(xe^x) + 2xe^x = -e^x = ce^x$,所以 c = -1,选 A.
- 3. 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} na_n(x-1)^n$ 的 () A. 收敛点, 收敛点 B. 收敛点, 发散点 C. 发散点, 收敛点 D. 发散点, 发散点
- 解: 级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛即幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 x=1 处条件收敛,因此 x=1 是幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 收敛区间的端点,即收敛半径为 1. 而幂级数逐项求导后的级数收敛半径不变,故 幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^n$ 的收敛半径也是 1, 从而 $x=\sqrt{3}$ 为收敛点,x=3 为发散点,选 B.
- 4. 设 D 是第一象限中由曲线 2xy = 1, 4xy = 1 与直线 $y = x, y = \sqrt{3}x$ 围成的平面 区域, 函数 f(x, y) 在 D 上连续, 则 $\iint f(x, y) dx dy =$

A.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{2\sin 2\theta}}^{\frac{1}{\sin 2\theta}} f(r\cos\theta, r\sin\theta) r dr$$
B.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} f(r\cos\theta, r\sin\theta) r dr$$
C.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{2\sin 2\theta}}^{\frac{1}{\sin 2\theta}} f(r\cos\theta, r\sin\theta) dr$$
D.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sin 2\theta}} f(r\cos\theta, r\sin\theta) dr$$

- **解:** 首先把四条曲线化为极坐标方程, 代入 $x=r\cos\theta$, $y=r\sin\theta$ 得四条曲线分别为 $r=\frac{1}{\sqrt{\sin 2\theta}}$, $r=\frac{1}{\sqrt{2\sin 2\theta}}$, $\theta=\frac{\pi}{4}$ 和 $\theta=\frac{\pi}{3}$, 正确答案选 B.
- 5. 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ d \\ d^2 \end{pmatrix}$, 若集合 $\Omega = \{1, 2\}$, 则线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有 无穷多解的充分必要条件为

A. $a \notin \Omega$, $d \notin \Omega$ B. $a \notin \Omega$, $d \in \Omega$ C. $a \in \Omega$, $d \notin \Omega$ D. $a \in \Omega$, $d \in \Omega$

解: 方程组 Ax = b 有无穷多解 $\Leftrightarrow r(A) = r(A, b) < 3$, 利用初等行变换得

$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & a & d \\ 1 & 4 & a^2 & d^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & a - 1 & d - 1 \\ 0 & 0 & (a - 1)(a - 2) & (d - 1)(d - 2) \end{pmatrix},$$

所以 a = 1 或 2, d = 1 或 2, 选 D.

6. 设二次型 $f(x_1, x_2, x_3)$ 在正交变换 x = Py 下的标准形为 $2y_1^2 + y_2^2 - y_3^2$, 其中 $P = (e_1, e_2, e_3)$. 若 $Q = (e_1, -e_3, e_2)$, 则 $f(x_1, x_2, x_3)$ 在正交变换 x = Qy 下的标准形为

A. $2y_1^2 - y_2^2 + y_3^2$ B. $2y_1^2 + y_2^2 - y_3^2$ C. $2y_1^2 - y_2^2 - y_3^2$ D. $2y_1^2 + y_2^2 + y_3^2$

解: 设二次型 $f(x_1, x_2, x_3)$ 的矩阵为 A, 由题意知 $P^TAP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. 由初等变换与初

等矩阵的关系知 $Q = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = PC$, 于是

$$\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q} = \mathbf{C}^{\mathrm{T}} (\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P}) \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

因此 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $2y_1^2 - y_2^2 + y_3^2$, 选 A.

7. 设 A, B 为任意两个随机事件,则 ()

A.
$$P(AB) \leqslant P(A)P(B)$$

B. $P(AB) \geqslant P(A)P(B)$
C. $P(AB) \leqslant \frac{P(A) + P(B)}{2}$
D. $P(AB) \geqslant \frac{P(A) + P(B)}{2}$

解: 注意到 $P(AB) \leqslant P(A), P(AB) \leqslant P(B),$ 因此 $P(AB) \leqslant \frac{P(A) + P(B)}{2},$ 选 C.

8. 设随机变量 X, Y 不相关, 且 EX = 2, EY = 1, DX = 3, 则 E[X(X + Y - 2)] = ()

A.
$$-3$$

C.
$$-5$$

解:由条件可得

$$E[X(X + Y - 2)] = E(X^{2} + XY - 2X) = E(X^{2}) + E(XY) - 2E(X)$$
$$= D(X) + (EX)^{2} + E(X)E(Y) - 2E(X) = 5,$$

选 D.

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9.
$$\lim_{x \to 0} \frac{\ln(\cos x)}{x^2} =$$
_____.

解: 利用洛必达法则得 $\lim_{x\to 0} \frac{\ln(\cos x)}{x^2} = \lim_{x\to 0} \frac{-\sin x}{2x\cos x} = -\frac{1}{2}$.

$$10.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) \mathrm{d}x = \underline{\qquad}.$$

解: 由定积分的对称性得 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) \mathrm{d}x = 2 \int_{0}^{\frac{\pi}{2}} x \mathrm{d}x = \frac{\pi^{2}}{4}.$

11.若函数 z = z(x, y) 由方程 $e^z + xyz + x + \cos x = 2$ 确定, 则 $dz|_{(0,1)} =$ _____.

解: 方程两边求全微分得 $e^z dz + yz dx + xz dy + xy dz + dx - \sin x dx = 0$, 令 x = 0, y = 1, z = 0 得 dz + dx = 0, 即 $dz \Big|_{(0,1)} = -dx$.

12.设 Ω 是由平面 x + y + z = 1 与三个坐标面所围成的空间区域,则

$$\iiint\limits_{\Omega} (x + 2y + 3z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \underline{\qquad}.$$

解: 记 D_z 为用平面 z=z 截区域 Ω 所得的截面, 利用轮换对称性与切片法得

$$\iiint_{\Omega} (x + 2y + 3z) dx dy dz = 6 \iiint_{\Omega} z dx dy dz = 6 \int_{0}^{1} z dz \iint_{D_{z}} dx dy$$
$$= 6 \int_{0}^{1} z \cdot \frac{1}{2} (1 - z)^{2} dz = \frac{1}{4}.$$

 $\begin{vmatrix} 2 & 0 & \cdots & 0 & 2 \\ -1 & 2 & \cdots & 0 & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 2 & 2 \\ 0 & 0 & \cdots & -1 & 2 \end{vmatrix} = \underline{\qquad}.$

博客: yuxtech.github.io

解: 将此行列式记为 D_n , 把 D_n 按照第 n 行进行展开得

$$D_n = (-1)^{2n-1} \cdot (-1) D_{n-1} + 2^n$$

= $D_{n-1} + 2^n = \dots = D_1 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 2$.

14.设二维随机变量 (X,Y) 服从正态分布 N(1,0;1,1;0),则 P(XY-Y<0)=______

解: 由 $(X,Y) \sim N(1,0;1,1;0)$ 知 $X \sim N(1,1), Y \sim N(0,1),$ 且 X,Y 相互独立,所以

$$P(XY - Y < 0) = P((X - 1)Y < 0) = P(X - 1 > 0, Y < 0) + P(X - 1 < 0, Y > 0)$$

= $P(X > 1)P(Y < 0) + P(X < 1)P(Y > 0) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}.$

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

设函数 $f(x) = x + a \ln(1+x) + bx \sin x$, $g(x) = kx^3$, 若 f(x) 与 g(x) 在 $x \to 0$ 时 是等价无穷小, 求 a, b, k 的值.

解: 当 $x \to 0$ 时, $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$, $\sin x = x - \frac{x^3}{6} + o(x^3)$, 所以

$$f(x) = x + a \ln(1+x) + bx \sin x = x + a \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) + bx^2 + o(x^3)$$
$$= (1+a)x + \left(b - \frac{a}{2}\right)x^2 + \frac{a}{3}x^3 + o(x^3).$$

因为 f(x) 与 $g(x) = kx^3$ 当 $x \to 0$ 时为等价无穷小, 所以 $1 + a = 0, b - \frac{a}{2} = 0, k = \frac{a}{3}$, 解 得 $a = -1, b = -\frac{1}{2}, c = -\frac{1}{3}$.

全 注: 这题不建议大家用洛必达法则,因为洛必达法则说的是求导前的极限可以继承求导以后的极限的性质,反过来是不对的. 也就是说由 $\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$ 是无法直接得到 $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = 1$ 的,需要一些细节性的推导,所以用泰勒公式一劳永逸.

16.(本题满分 10 分)

设函数 f(x) 在定义域 I 上的导数大于零, 若对任意的 $x_0 \in I$, 曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成区域的面积恒为 4, 且 f(0) = 2, 求 f(x) 的表达式.

解: 曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程为 $y = f'(x_0)(x - x_0) + f(x_0)$,此切线与 x 轴交点为 $\left(x_0 - \frac{f(x_0)}{f'(x_0)}, 0\right)$. 根据题设条件可知 $\frac{1}{2} \frac{|f(x_0)|}{f'(x_0)} \cdot |f(x_0)| = 4$,即 y = f(x) 满足方程 $y' = \frac{1}{8}y^2$,解得 $y = -\frac{8}{8C + x}$. 因为 f(0) = 2,所以 $C = -\frac{1}{2}$,故 $f(x) = \frac{8}{4 - x}$.

17.(本题满分 10 分)

已知函数 f(x, y) = x + y + xy, 曲线 $C: x^2 + y^2 + xy = 3$, 求 f(x, y) 在曲线 C 上的最大方向导数.

解: 二元函数在每一点沿着梯度方向的方向导数最大, 且最大方向导数等于该点梯度的模. 注意到 **grad** $f(x,y)=(1+y,1+x), |\mathbf{grad}| f(x,y)|=\sqrt{(1+x)^2+(1+y)^2},$ 因此问题转化为求 $\sqrt{(1+x)^2+(1+y)^2}$ 在条件 $x^2+y^2+xy=3$ 下的最大值.

$$\Rightarrow F(x, y, \lambda) = (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+y)^2 + \lambda(x^2 + y^2 + xy - 3), \ \pm (1+x)^2 + (1+$$

$$\begin{cases} F'_x = 2(1+x) + \lambda (2x+y) = 0 \\ F'_y = 2(1+y) + \lambda (2y+x) = 0 \\ F'_\lambda = x^2 + y^2 + xy - 3 = 0 \end{cases}$$

解得
$$\begin{cases} x=1 \\ y=1 \end{cases}$$
, $\begin{cases} x=-1 \\ y=1 \end{cases}$, $\begin{cases} x=2 \\ y=-1 \end{cases}$, $\begin{cases} x=-1 \\ y=2 \end{cases}$. 而 $|\operatorname{grad} f(1,1)| = 2\sqrt{2}$, $|\operatorname{grad} f(-1,1)| = 0$, $|\operatorname{grad} f(2,-1)| = |\operatorname{grad} f(-1,2)| = 3$, 所以 $f(x,y)$ 在曲线 C 上的最大方向导数为 3 .

18.(本题满分 10 分)

(1) 设函数 u(x), v(x) 可导, 利用导数定义证明

$$[u(x) v(x)]' = u'(x) v(x) + u(x) v'(x);$$

- (2) 设 $u_1(x), u_2(x), \dots, u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \dots u_n(x)$, 写出 f(x) 的求导公式.
- **证明:** (1) 因为函数 u(x), v(x) 可导, 记 f(x) = u(x)v(x), 则在任意点 x_0 处有

$$f'(x_0) = \lim_{x \to x_0} \frac{u(x) v(x) - u(x_0) v(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{u(x) v(x) - u(x) v(x_0) + u(x) v(x_0) - u(x_0) v(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{u(x) v(x) - u(x) v(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{u(x) v(x_0) - u(x_0) v(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{v(x) - v(x_0)}{x - x_0} u(x) + v(x_0) \lim_{x \to x_0} \frac{u(x) - u(x_0)}{x - x_0}$$

$$= u(x_0) v'(x_0) + v(x_0) u'(x_0).$$

由 x_0 的任意性知 [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x).

$$(2) f'(x) = u'_1(x) u_2(x) \cdots u_n(x) + u_1(x) u'_2(x) \cdots u_n(x) + \cdots + u_1(x) u_2(x) \cdots u'_n(x).$$

19.(本题满分 10 分)

博客: yuxtech.github.io

已知曲线 L 的方程为 $\begin{cases} z = \sqrt{2-x^2-y^2} \\ z = x \end{cases}$, 起点为 $A\left(0,\sqrt{2},0\right)$, 终点为 $B\left(0,-\sqrt{2},0\right)$, 计算曲线积分 $I = \int_L \left(y+z\right) \mathrm{d}x + \left(z^2-x^2+y\right) \mathrm{d}y + \left(x^2+y^2\right) \mathrm{d}z$.

解: 由曲线 *L* 的方程消去 *z* 得 $x^2 + \frac{y^2}{2} = 1$, 因此 *L* 的参数方程可取为 $x = \cos \theta$, $y = \sqrt{2} \sin \theta$, $z = \cos \theta$. 其中 y 从 $\sqrt{2}$ 变到 $-\sqrt{2}$, 因此 θ 从 $\frac{\pi}{2}$ 变到 $-\frac{\pi}{2}$, 于是

$$I = \int_{L} (y+z) dx + (z^{2} - x^{2} + y) dy + (x^{2} + y^{2}) dz$$

$$= \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \left[-\left(\sqrt{2}\sin\theta + \cos\theta\right)\sin\theta + 2\sin\theta\cos\theta + (1+\sin^{2}\theta)\sin\theta \right] d\theta$$

$$= \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \left(\sqrt{2}\sin^{2}\theta + \sin\theta\cos\theta + \sin\theta + \sin^{3}\theta\right) d\theta$$

$$= 2\sqrt{2} \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta d\theta = \frac{\sqrt{2}}{2}\pi.$$

20.(本题满分 11 分)

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为向量空间 \mathbb{R}^3 的一组基, $\boldsymbol{\beta}_1 = 2\alpha_1 + 2k\alpha_3, \boldsymbol{\beta}_2 = 2\alpha_2, \alpha_3 = \alpha_1 + 1(k+1)\alpha_3$.

- (1) 证明向量组 β_1 , β_2 , β_3 为向量空间 \mathbb{R}^3 的一组基;
- (2) 当 k 为何值时, 存在非零向量 ξ 在基 α_1 , α_2 , α_3 与基 β_1 , β_2 , β_3 下的坐标相同, 并 求所有的 ξ .
- 解: (1) 首先注意到 $(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = (2\boldsymbol{\alpha}_1 + 2k\boldsymbol{\alpha}_3, 2\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + (k+1)\boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)\boldsymbol{P}$, 其中矩阵 $\boldsymbol{P} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{pmatrix}$, 且 $|\boldsymbol{P}| = 4 \neq 0$, 所以向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 为 \mathbb{R}^3 的一组基.
 - (2) 设非零向量 ξ 在两组基下的坐标都是 x, 则

$$\boldsymbol{\xi} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \boldsymbol{x} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) \boldsymbol{x} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \boldsymbol{P} \boldsymbol{x},$$

由于矩阵 $(\alpha_1, \alpha_2, \alpha_3)$ 可逆, 所以 x = Px, 即 (P - E)x = 0. 对 P - E 作初等行变换得

$$P - E = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2k & 0 & k \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -k \end{pmatrix},$$

所以当且仅当 k=0 时,方程组 (P-E)x=0 有非零解,且所有非零解为 $x=c\begin{pmatrix}1\\0\\-1\end{pmatrix}$, $c\neq$

0. 那么在两个基下坐标相同的所有非零向量 $\xi = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} c \\ 0 \\ -c \end{pmatrix} = c(\alpha_1 - \alpha_3), c$ 为任意非零常数.

21.(本题满分 11 分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix}$$
 相似于矩阵 $\mathbf{B} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}$.

- (1) 求 a, b 的值;
- (2) 求可逆矩阵 P, 使 $P^{-1}AP$ 为对角矩阵.

解: (1) 由于矩阵
$$\boldsymbol{A}$$
 与矩阵 \boldsymbol{B} 相似,所以
$$\begin{cases} \operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{B}) \\ |\boldsymbol{A}| = |\boldsymbol{B}| \end{cases} \Rightarrow \begin{cases} 3 + a = 2 + b \\ 2a - 3 = b \end{cases}$$
,解得
$$\begin{cases} a = 4 \\ b = 5 \end{cases}$$

(2) 由 (1) 知
$$A = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 5 & 0 \\ 0 & 3 & 1 \end{pmatrix}$, 由 $A 与 B$ 相似知 $|\lambda E - A| =$

 $|\lambda E - B| = (\lambda - 1)^2 (\lambda - 5)$, 故 A 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 5$.

当 $\lambda_1 = \lambda_2 = 1$ 时,解方程组 (E - A)x = 0,得线性无关特征向量 $\xi_1 = (2, 1, 0)^{\mathrm{T}}, \xi_2 = (-3, 0, 1)^{\mathrm{T}}$.

当 $\lambda_3 = 5$ 时,解方程组 (5E - A)x = 0,得特征向量 $\xi_3 = (-1, -1, 1)^{\mathrm{T}}$.

取
$$P = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} 2 & -3 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, 则 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ 为对角阵.

22.(本题满分 11 分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ 0, & x \leqslant 0 \end{cases},$$

对 X 进行独立重复的观测, 直到第 2 个大于 3 的观测值出现时停止, 记 Y 为观测次数.

- (1) 求 Y 的概率分布;
- (2) 求 EY.
- **解:** (1) 每次观测中, 观测值大于 3 的概率为 $p = P(X > 3) = \int_3^{+\infty} 2^{-x} \ln 2 \, \mathrm{d}x = \frac{1}{8}$, 则 Y 的概率分布为 $P(Y = k) = C_{k-1}^1 \frac{1}{8} \left(1 \frac{1}{8}\right)^{k-2} \frac{1}{8} = (k-1) \left(\frac{7}{8}\right)^{k-2} \left(\frac{1}{8}\right)^2$, $k = 2, 3, \cdots$.

(2)
$$Y$$
 的数学期望为 $E(Y) = \sum_{k=2}^{\infty} k(k-1) \left(\frac{7}{8}\right)^{k-2} \left(\frac{1}{8}\right)^2 = 16$, 其中我们用到幂级数

$$\sum_{k=2}^{\infty} k (k-1) x^{k-2} = \left(\sum_{k=0}^{\infty} x^k\right)^n = \frac{2}{(1-x)^3}, -1 < x < 1.$$

23.(本题满分 11 分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \leqslant x \leqslant 1\\ 0, & \text{其他} \end{cases},$$

其中 θ 为未知参数. X_1, X_2, \cdots, X_n 为来自该总体的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量.
- **解:** (1) 由于总体 $X \sim U[\theta, 1]$, 故总体均值 $E(X) = \frac{\theta + 1}{2}$, 令 $E(X) = \bar{X}$ 得 $\theta = 2\bar{X} 1$, 即 θ 的矩估计量为 $\hat{\theta}_1 = 2\bar{X} 1$.
 - (2) 设 x_1, x_2, \cdots, x_n 为样本 X_1, X_2, \cdots, X_n 的观测值,则似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \frac{1}{(1-\theta)^n}, & \theta \leqslant x_i \leqslant 1 \ (i = 1, 2, \dots, n) \\ 0, & \text{#th} \end{cases}$$
$$= \begin{cases} \frac{1}{(1-\theta)^n}, & \theta \leqslant \min\{x_1, x_2, \dots, x_n\} \leqslant 1 \\ 0, & \text{#th} \end{cases}.$$

当 $\theta \leq \min\{x_1, x_2, \dots, x_n\}$ 时, 显然 $L(\theta)$ 关于 θ 单调递增, 则当 $\theta = \min\{x_1, x_2, \dots, x_n\}$ 时 $L(\theta)$ 最大, 即 θ 的最大似然估计量为 $\hat{\theta}_2 = \min\{X_1, X_2, \dots, X_n\}$.

第 11 章 2016 年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

- 1. 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则 A. a < 1 且 b > 1 C. a < 1 且 a + b > 1) C. $a < 1 \perp a + b > 1$
- **解:** 首先有 $\int_0^{+\infty} \frac{1}{x^a (1+x)^b} dx = \int_0^1 \frac{1}{x^a (1+x)^b} dx + \int_1^{+\infty} \frac{1}{x^a (1+x)^b} dx = I_1 + I_2.$ 其 中当 $x \to 0$ 时, $\frac{1}{x^a (1+x)^b} \sim \frac{1}{x^a}$, 因此 a < 1 时 I_1 收敛. 当 $x \to +\infty$ 时, $\frac{1}{x^a (1+x)^b} \sim$ $\frac{1}{a+b}$, 因此当 a+b>1 时 I_2 收敛, 选 C.
- 2. 已知函数 $f(x) = \begin{cases} 2(x-1), & x < 1 \\ \ln x, & x \ge 1 \end{cases}$, 则 f(x) 的一个原函数是

 A. $F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x 1), & x \ge 1 \end{cases}$ B. $F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x + 1) 1, & x \ge 1 \end{cases}$ C. $F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x + 1) + 1, & x \ge 1 \end{cases}$ D. $F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x 1) + 1, & x \ge 1 \end{cases}$
- **解:** 从四个选项中选一个函数 F(x) 满足 F'(x) = f(x) 对任意 x 成立即可, 其中 B 和 C 当 x > 1 时 $F'(x) \neq f(x)$, 而 A 不满足 F(x) 在 x = 1 处连续, D 满足这个条件, 选 D.
- 3. 若 $y_1 = (1+x^2)^2 \sqrt{1+x^2}$, $y_2 = (1+x^2)^2 + \sqrt{1+x^2}$ 是微分方程 $y' + p(x)y = (1+x^2)^2 + \sqrt{1+x^2}$ q(x)的两个解,则 q(x) =B. $-3x(1+x^2)$ C. $\frac{x}{(1+x)^2}$ D. $-\frac{x}{(1+x)^2}$
- 解:由于 $y_1 = (1+x^2)^2 \sqrt{1+x^2}$, $y_2 = (1+x^2)^2 + \sqrt{1+x^2}$ 是原方程的解,所以 $y_2 y_1 = 2\sqrt{1+x^2}$ 是齐次方程 y' + p(x)y = 0 的解,代入可得 $\frac{x}{\sqrt{1+x^2}} + \sqrt{1+x^2}p(x) = 0$, 因此 $p(x) = -\frac{x}{1+x^2}$. 又 $\frac{y_1+y_2}{2} = 2(1+x^2)^2$ 是方程 y'+p(x)y = q(x) 的解,代入方程 即可得到 $q(x) = 3x(1+x^2)$, 选 A.
- 4. 己知函数 $f(x) = \begin{cases} x, & x \leq 0 \\ \frac{1}{-}, & \frac{1}{-} < x \leq \frac{1}{-} \end{cases}, n = 1, 2, \dots, 则$ ()

A. x = 0 是 f(x) 的第一类间断点

B. x = 0 是 f(x) 的第二类间断点

C. f(x) 在 x = 0 处连续但不可导

D. f(x) 在 x = 0 处可导

- **解:** 显然 $f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) f(0)}{x} = \lim_{x \to 0^{-}} \frac{x}{x} = 1$. 当 $\frac{1}{n+1} < x \leqslant \frac{1}{n}$ 时, 故 $1 \leqslant \frac{f(x)}{x} < \frac{n+1}{n}$, 且 $x \to 0^{+}$ 时 $n \to \infty$. 由夹逼准则得到 $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x)}{x} = 1 = f'_{1}(0)$, 因此 f'(0) = 1, 选 D.
- 5. 设 A, B 是可逆矩阵, 且 A 与 B 相似, 则下列结论错误的是 ()

 $A. A^{T} 与 A^{T}$ 相似

B. A⁻¹ 与 B⁻¹ 相似

 $C. A + A^T 与 B + B^T$ 相似

D.
$$A + A^{-1} = B + B^{-1}$$
 相似

解: 由 A 与 B 相似知存在可逆矩阵 P 使得 $B = P^{-1}AP$, 因此

$$\mathbf{B}^{\mathrm{T}} = (\mathbf{P}^{-1} \mathbf{A} \mathbf{P})^{\mathrm{T}} = \mathbf{P}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} (\mathbf{P}^{\mathrm{T}})^{-1}, \mathbf{B}^{-1} = (\mathbf{P}^{-1} \mathbf{A} \mathbf{P})^{-1} = \mathbf{P}^{-1} \mathbf{A}^{-1} \mathbf{P},$$

$$B + B^{-1} = P^{-1}AP + P^{-1}A^{-1}P = P^{-1}(A + A^{-1})P,$$

因此 A, B, D 都是对的, C 选项是不对的, 如可取 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & -3 \end{pmatrix}$, 则 \mathbf{A} 与

$$\mathbf{B}$$
 相似, 但 $\mathbf{A} + \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 2 & 0 \\ 0 & -8 \end{pmatrix}$ 与 $\mathbf{B} + \mathbf{B}^{\mathrm{T}} = \begin{pmatrix} 0 & 0 \\ 0 & -6 \end{pmatrix}$ 不相似.

- 6. 设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$,则 $f(x_1, x_2, x_3) = 2$ 在空间直角坐标系下表示的二次曲面为
 - A. 单叶双曲面
- B. 双叶双曲面
- C. 椭球面
- D. 柱面

解: 配方可得

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 + 2x_3)^2 - 3x_2^2 - 3x_3^2 - 4x_2x_3$$
$$= (x_1 + 2x_2 + 2x_3)^2 - 3\left(x_2 + \frac{2}{3}x_3\right)^2 - \frac{5}{3}x_3^2,$$

因此 $f(x_1, x_2, x_3)$ 的正惯性指数为 1, 负惯性指数为 2, 方程 $f(x_1, x_2, x_3) = 2$ 表示的二次曲面为双叶双曲面.

7. 设随机变量 $X \sim N(\mu, \sigma^2)$ $(\sigma > 0)$, 记 $p = P(X \leq \mu + \sigma^2)$, 则 ()

A. p 随着 μ 的增加而增加

B. p 随着 σ 的增加而增加

C. p 随着 μ 的增加而减少

D. p 随着 σ 的增加而减少

- **解:** 注意到 $P\left(X \leqslant \mu + \sigma^2\right) = P\left(\frac{X \mu}{\sigma} \leqslant \sigma\right) = \Phi\left(\sigma\right)$, 因此 p 随着 σ 的增加而增加, 选B.
- 8. 随机试验 E 有三种两两不相容的结果 A_1, A_2, A_3 , 且三种结果发生的概率均为 $\frac{1}{3}$, 将试验 E 独立重复做两次, X 表示两次试验中结果 A_1 发生的次数, Y 表示两次试验中结果 A_2 发生的次数, 则 X 与 Y 的相关系数为

A.
$$-\frac{1}{2}$$
 B. $-\frac{1}{3}$

B.
$$-\frac{1}{3}$$

C.
$$\frac{1}{3}$$

D.
$$\frac{1}{2}$$

- **解:** 注意到 $X \sim B\left(2,\frac{1}{3}\right), Y \sim B\left(2,\frac{1}{3}\right),$ 因此 $E(X) = E(Y) = \frac{2}{3}, D(X) = D(Y) = \frac{4}{9},$ 且 $E(XY) = P(X = 1, Y = 1) = \frac{2}{9}$ (求 E(XY) 只需要求 $X \neq 0, Y \neq 0$ 的部分, 否则 XY = 0). 因此, 相关系数 $\rho_{XY} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = -\frac{1}{2}$.
- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9.
$$\lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{1 - \cos x^2} = \underline{\qquad}.$$

$$\lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{1 - \cos x^2} = \lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{\frac{1}{2}x^4} = \lim_{x \to 0} \frac{x \ln(1 + x \sin x)}{2x^3} = \frac{1}{2}.$$

- 10.向量场 $\mathbf{A}(x, y, z) = (x + y + z)\mathbf{i} + xy\mathbf{j} + z\mathbf{k}$ 的旋度 rot $\mathbf{A} =$
- 解: 利用旋度公式直接计算得

$$\operatorname{rot} \mathbf{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + y + z & xy & z \end{vmatrix} = \mathbf{j} + (y - 1)\mathbf{k}.$$

- 11.设函数 f(u,v) 可微, z=z(x,y) 由方程 $(x+1)z-y^2=x^2f(x-z,y)$ 确定, 则
- 解:原方程两边分别对 x, y 求偏导数得

$$\begin{cases} z + (x+1)z'_x = 2xf(x-z,y) + x^2(1-z'_x)f'_1(x-z,y) \\ (x+1)z'_y - 2y = x^2(-z'_yf'_1(x-z,y) + f'_2(x-z,y)) \end{cases}$$

代入 x = 0, y = 1, z = 1 可得 $z_x'(0, 1) = -1, z_y'(0, 1) = 2$, 因此 $dz|_{(0,1)} = -dx + 2dy$.

- 12.设函数 $f(x) = \arctan x \frac{x}{1 + ax^2}$, 且 f'''(0) = 1, 则 $a = \underline{\hspace{1cm}}$.
- **解:** 把 f(x) 在 x = 0 处作麦克劳林展开得

$$f(x) = x - \frac{1}{3}x^3 + o(x^3) - x(1 - ax^2 + o(x^2)) = \left(a - \frac{1}{3}\right)x^3 + o(x^3),$$

因此
$$a - \frac{1}{3} = \frac{f'''(0)}{3!} = \frac{1}{6}, a = \frac{1}{2}.$$

13.行列式
$$\begin{pmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{pmatrix} = \underline{\qquad}.$$

解: 直接按照第一列展开得

$$\begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 3 & 2 & \lambda + 1 \end{vmatrix} - 4 \begin{vmatrix} -1 & 0 & 0 \\ \lambda & -1 & 0 \\ 0 & \lambda & -1 \end{vmatrix}$$
$$= \lambda \left(\lambda \begin{vmatrix} \lambda & -1 \\ 2 & \lambda + 1 \end{vmatrix} + 3 \begin{vmatrix} -1 & 0 \\ \lambda & -1 \end{vmatrix} \right) + 4$$
$$= \lambda^4 + \lambda^3 + 2\lambda^2 + 3\lambda + 4.$$

- 14.设 X_1, X_2, \dots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 样本均值 $\bar{x} = 9.5$, 参数 μ 的置信度为 0.95 的双侧置信区间的置信上限为 10.8, 则 μ 的置信度为 0.95 的双侧置信区间为_____.
- **解:** 注意到 μ 的双侧置信区间的上限与下限关于样本均值 \bar{x} 对称, 因此置信下限为 9.5 × 2 10.8 = 8.2, 从而置信区间为 (8.2, 10.8).
- 三、解答题, $15 \sim 23$ 题, 共 94 分.
- 15.(本题满分 10 分)

已知平面区域
$$D = \left\{ (r, \theta) \middle| 2 \leqslant r \leqslant 2 \left(1 + \cos \theta \right), -\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2} \right\}$$
, 计算二重积分 $\iint\limits_{D} x \mathrm{d}x \mathrm{d}y$.

解: 化成极坐标计算可得

$$\iint_{D} x dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{2}^{2(1+\cos\theta)} r \cos\theta \cdot r dr$$

$$= 16 \int_{0}^{\frac{\pi}{2}} \left(\cos^{2}\theta + \cos^{3}\theta + \frac{1}{3}\cos^{4}\theta\right) d\theta$$

$$= 16 \left(\frac{\pi}{4} + \frac{2}{3} + \frac{1}{3} \cdot \frac{3\pi}{16}\right) = \frac{32}{3} + 5\pi.$$

16.(本题满分 10 分)

设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1.

(1) 证明: 反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;

(2) 若
$$y(0) = 1$$
, $y'(0) = 1$, 求 $\int_0^{+\infty} y(x) dx$ 的值.

解: (1) 利用定积分的定义可得微分方程 y'' + 2y' + k = 0 的特征方程为 $\lambda^2 + 2\lambda + k = 0$, 解得 $\lambda_{1,2} = -1 \pm \sqrt{1-k}$, 于是方程的通解为 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$. 因为 0 < k < 1, 所以 $\lambda_{1,2} < 0$, 于是反常积分 $\int_0^{+\infty} y(x) \, \mathrm{d}x = \int_0^{+\infty} \left(C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \right) \mathrm{d}x$ 收敛.

(2) 由 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$ 可知 $\lim_{x \to +\infty} y(x) = \lim_{x \to +\infty} y'(x) = 0$. 又 y(0) = y'(0) = 1, 所以

$$\int_{0}^{+\infty} y(x) dx = \int_{0}^{+\infty} \left(-\frac{1}{k} \left(y''(x) + 2y'(x) \right) \right) dx$$
$$= -\frac{1}{k} \left(y'(x) + 2y(x) \right) \Big|_{0}^{+\infty} = \frac{3}{k}.$$

17.(本题满分 10 分)

设函数 f(x, y) 满足 $\frac{\partial f(x, y)}{\partial x} = (2x + 1) e^{2x - y}$, 且 f(0, y) = y + 1. L_t 是从点 (0, 0) 到点 (1, t) 的光滑曲线, 计算曲线积分 $I(t) = \int_{L_t} \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial y} dy$, 并求 I(t) 的最小值.

解: 由 $\frac{\partial f(x,y)}{\partial x}$ = $(2x+1)e^{2x-y}$ 可知 $f(x,y) = xe^{2x-y} + C(y)$, 又 f(0,y) = y+1, 所以 C(y) = y+1, $f(x,y) = xe^{2x-y} + y+1$. 从而

$$I(t) = \int_{L_t} \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial y} dy$$
$$= \int_{L_t} df(x, y) = f(1, t) - f(0, 0) = e^{2-t} + t.$$

令 $I'(t) = -e^{2-t} + 1 = 0$ 得 t = 2. 且 t < 2 时 I'(t) < 0, t > 2 时 I'(t) > 0, 因此 I(t) 的最小值为 $I_{\min}(t) = I(2) = 3$.

18.(本题满分 10 分)

设有界区域 Ω 由平面 2x + y + 2z = 2 与三个坐标平面围成, Σ 为 Ω 整个表面的外侧, 计算曲面积分 $\iint\limits_{\Sigma} (x^2 + 1) \, \mathrm{d}y \mathrm{d}z - 2y \mathrm{d}z \mathrm{d}x + 3z \mathrm{d}x \mathrm{d}y.$

解: 利用高斯公式得

$$I = \iint_{\Sigma} (x^2 + 1) \, dy dz - 2y dz dx + 3z dx dy = \iiint_{\Omega} (2x + 1) \, dV$$

$$= 2 \int_{0}^{1} dx \int_{0}^{2(1-x)} dy \int_{0}^{1-x-\frac{y}{2}} x dz + V(\Omega)$$

$$= 2 \int_{0}^{1} dx \int_{0}^{2(1-x)} x \left(1 - x - \frac{y}{2}\right) dy + \frac{1}{3} \times \frac{1}{2} \times 2 \times 1 \times 1$$

$$= 2 \times \frac{1}{12} + \frac{1}{3} = \frac{1}{2}.$$

19.(本题满分 10 分)

已知函数 f(x) 可导, 且 $f(0) = 1, 0 < f'(x) < \frac{1}{2}$. 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)$ $(n = 1, 2, \dots)$, 证明:

(1) 级数
$$\sum_{n=1}^{\infty} (x_{n+1} - x_n)$$
 绝对收敛;

(2) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

解: (1) 由条件可得

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| = |f'(\xi_n)(x_n - x_{n-1})|$$

$$< \frac{1}{2} |x_n - x_{n-1}| < \dots < \frac{1}{2^{n-1}} |x_2 - x_1|,$$

由于级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} |x_2 - x_1|$ 收敛, 所以级数 $\sum_{n=1}^{\infty} (x_{n+1} - x_n)$ 绝对收敛.

(2) 级数 $\sum_{n=1}^{\infty} (x_{n+1} - x_n)$ 的前 n 项和为 $S_n = \sum_{k=1}^{n} (x_{n+1} - x_n) = x_{n+1} - x_1$, 由 (1) 知 $\lim_{n \to \infty} S_n$ 存在, 因此 $\lim_{n\to\infty} x_n$ 存在. 设 $\lim_{n\to\infty} x_n = c$, 在等式 $x_{n+1} = f(x_n)$ 两边取极限得 c = f(c), 即 c 是函数 g(x) = f(x) - x 的零点. 由于 $g'(x) = f'(x) - 1 \in \left(-1, -\frac{1}{2}\right)$, 所以 g(x) 严格单 调递减. 再结合 g(0)=1 可得 $1-x < g(x) < 1-\frac{1}{2}x, x > 0$. 由于 g(1)>0, g(2)<0, 所以 g(x) 在 (1,2) 内存在唯一零点, 所以 $\lim_{n\to\infty}x_n=c\in(1,2)\subset(0,2)$.

20.(本题满分 11 分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 2 \\ 1 & a \\ -a-1 & -2 \end{pmatrix}$. 当 a 为何值时, 方程 $\mathbf{A}\mathbf{X} = \mathbf{B}$

$$(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 2 & a & 1 & 1 & a \\ -1 & 1 & a & -a-1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & a+2 & 3 & -3 & a-4 \\ 0 & 0 & a-1 & 1-a & 0 \end{pmatrix}.$$

$$\stackrel{\cong}{=} a \neq 1 \stackrel{\cong}{=} a \neq -2 \stackrel{\cong}{=} , (A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & a+3 & 3 & -3 & a-4 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & \frac{3a}{a+2} \\ 0 & 1 & 0 & 0 & \frac{a-4}{a+2} \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix},$$

此时方程
$$\mathbf{A}\mathbf{X} = \mathbf{B}$$
 有唯一解, 且 $\mathbf{X} = \begin{pmatrix} 1 & \frac{3a}{a+2} \\ 0 & \frac{a-4}{a+2} \\ -1 & 0 \end{pmatrix}$.

当
$$a = 1$$
 时, $(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 3 & 3 & -3 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, 此时方程 $AX = \begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{pmatrix} 0 & 0 \\ k_1 & k_2 \\ -k_1 & -k_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ k_1 - 1 & k_2 - 1 \\ -k_1 & -k_2 \end{pmatrix}$, 其中 k_1, k_2 为任

B 有无穷多解,且
$$X = \begin{pmatrix} 1 & 1 \\ -1 & -1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ k_1 & k_2 \\ -k_1 & -k_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ k_1 - 1 & k_2 - 1 \\ -k_1 & -k_2 \end{pmatrix}$$
,其中 k_1, k_2 为任

意常数.

当
$$a = -2$$
 时, 由于 $(A, B) = \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 0 & 3 & -3 & -6 \\ 0 & 0 & -3 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 2 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$, 此时方程 $AX = B$ 无解.

21.(本题满分 11 分)

已知矩阵
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- (1) 求 A⁹⁹;
- (2) 设 3 阶矩阵 $B = (\alpha_1, \alpha_2, \alpha_3)$ 满足 $B^2 = BA$, 记 $B^{100} = (\beta_1, \beta_2, \beta_3)$, 将 $\beta_1, \beta_2, \beta_3$ 分别表示为 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合.

解: (1) 首先由
$$|\lambda E - A| = \begin{vmatrix} \lambda & 1 & -1 \\ -2 & \lambda + 3 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda(\lambda + 1)(\lambda + 2)$$
 知 A 的特征值为 $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = 0$.

当 $\lambda_1 = -1$ 时,解方程组 (-E - A)x = 0,得特征向量 $\xi_1 = (1, 1, 0)^{\mathrm{T}}$.

当 $\lambda_2 = -2$ 时,解方程组 (-2E - A)x = 0,得特征向量 $\xi_2 = (1,2,0)^{\mathrm{T}}$.

当 $\lambda_3 = 0$ 时,解方程组 Ax = 0,得特征向量 $\xi_3 = (3,2,2)^{\mathrm{T}}$.

$$A^{99} = (PAP^{-1})^{99} = PA^{99}P^{-1}$$

$$= \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & (-2)^{99} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 1 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{99} - 2 & 1 - 2^{99} & 2 - 2^{98} \\ 2^{100} - 2 & 1 - 2^{100} & 2 - 2^{99} \\ 0 & 0 & 0 \end{pmatrix}.$$

(2)
$$\[\exists B^2 = BA \] \[B^{100} = BA^{99} = (\beta_1, \beta_2, \beta_3), \] \[\beta_1 = (2^{99} - 2)\alpha_1 + (2^{100} - 2)\alpha_2, \beta_2 = (1 - 2^{99})\alpha_1 + (1 - 2^{100})\alpha_2, \beta_3 = (2 - 2^{98})\alpha_1 + (2 - 2^{99})\alpha_2. \]$$

22.(本题满分11分)

设二维随机变量 (X,Y) 在区域 $D=\{(x,y)|0< x<1, x^2< y<\sqrt{x}\}$ 上服从均匀分布, 令 $U=\begin{cases} 1, & X\leqslant Y\\ 0, & X>Y \end{cases}$

- (1) 写出 (X,Y) 的概率密度;
- (2) 问 U 与 X 是否相互独立? 并说明理由;
- (3) 求 Z = U + X 的分布函数 F(z).

解: (1) (*X,Y*) 的概率密度为
$$f(x,y) = \begin{cases} \frac{1}{S_D}, & (x,y) \in D \\ 0, & 其他 \end{cases} = \begin{cases} 3, & (x,y) \in D \\ 0, & 其他 \end{cases}$$
.

(2) 对 0 < t < 1,有

$$P(U \le 0, X \le t) = P(X > Y, X \le t) = \int_0^t dx \int_{x^2}^x 3 dy = \frac{3}{2}t - t^3,$$

$$P(U \le 0) = P(X > Y) = \frac{1}{2}, P(X \le t) = \int_0^t dx \int_{x^2}^{\sqrt{x}} 3 dy = 2t^{\frac{3}{2}} - t^3.$$

由于 $P(U \le 0, X \le t) \ne P(U \le 0) P(X \le t)$, 所以 U = X 不独立.

(3)

$$F(z) = P(U + X \le z) = P(U + X \le z, U = 0) + P(U + X \le z, U = 1)$$

$$= P(X \le z, X > Y) + P(1 + X \le z, X \le Y)$$

$$= \begin{cases} 0, & z < 0 \\ \frac{3}{2}z^2 - z^3, & 0 \le z < 1 + \begin{cases} 0, & z < 1 \\ 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2, & 1 \le z < 2 \\ \frac{1}{2}, & z \ge 1 \end{cases}$$

$$= \begin{cases} 0, & z < 0 \\ \frac{3}{2}z^2 - z^3, & 0 \le z < 1 \\ \frac{1}{2} + 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2, & 1 \le z < 2 \\ 1, & z \ge 2 \end{cases}$$

23.(本题满分 11 分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta \\ 0, & 其他 \end{cases}$, 其中 $\theta \in (0, +\infty)$ 为未知参

数. X_1, X_2, X_3 为来自总体 X 的简单随机样本, 令 $T = \max\{X_1, X_2, X_3\}$

- (1) 求 T 的概率密度;
- (2) 确定 a, 使得 aT 为 θ 的无偏估计.
- \bowtie **解:** (1) T 的分布函数为

$$F(t) = P(T \le t) = P(\max\{X_1, X_2, X_3\} \le t) = P(X_1 \le t, X_2 \le t, X_3 \le t)$$

$$= \begin{cases} 0, & t \leq 0 \\ \left(\int_0^t \frac{3x^2}{\theta^3} d\theta\right)^3, & 0 < t < \theta \end{cases} = \begin{cases} 0, & t \leq 0 \\ \frac{t^9}{\theta^9}, & 0 < t < \theta \end{cases}.$$

$$1, & t \geq \theta$$

因此 T 的概率密度为 f(t) = F'(t) = $\begin{cases} \frac{9t^2}{\theta^9}, & 0 < t < \theta \\ 0, & \text{其他} \end{cases}.$

(2) 由无偏估计的定义, 令
$$E(aT) = \int_0^\theta at \frac{9t^2}{\theta^9} d\theta = \frac{9}{10} a\theta = \theta$$
, 解得 $a = \frac{10}{9}$.

第 12 章 2017 年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 若函数
$$f(x) = \begin{cases} \frac{1 - \cos\sqrt{x}}{ax}, & x > 0 \\ b, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,则

A. $ab = \frac{1}{2}$ B. $ab = -\frac{1}{2}$ C. $ab = 0$ D. $ab = 2$

解: 由 f(x) 在 x = 0 处连续得 $\lim_{x \to 0^+} f(x) = f(0)$, 即

$$\lim_{x \to 0^{+}} \frac{1 - \cos\sqrt{x}}{ax} = \frac{1}{2a} = b \Rightarrow ab = \frac{1}{2},$$

选 A.

2. 设函数
$$f(x)$$
 可导,且 $f(x) \cdot f'(x) > 0$,则
A. $f(1) > f(-1)$
B. $f(1) < f(-1)$
C. $|f(1)| > |f(-1)|$
D. $|f(1)| < |f(-1)|$

- **解:** 由 f(x) f'(x) > 0 可知 $[f^2(x)]' = 2f(x) f'(x) > 0$, 因此 $f^2(x)$ 单调递增, 有 $f^2(1) > 0$ $f^{2}(-1)$, $\mathbb{P}|f(1)| > |f(-1)|$, \mathbb{E} C.
- 3. 函数 $f(x, y, z) = x^2y + z^2$ 在点 (1, 2, 0) 处沿向量 $\mathbf{n} = (1, 2, 2)$ 的方向导数为 (C. 4
- **解:** 直接计算得 $f'_x = 2xy$, $f'_y = 2x^2$, $f'_z = 2z$, 于是 $f'_x(1,2,0) = 4$, $f'_y(1,2,0) = 1$, $f'_z(1,2,0) = 1$ 0. 向量 $\mathbf{n} = (1, 2, 2)$ 的方向余弦为 $\cos \alpha = \frac{1}{3}, \cos \beta = \frac{2}{3}, \cos \gamma = \frac{2}{3}$, 所以

$$\frac{\partial f}{\partial \mathbf{n}}(1,2,0) = 4\cos\alpha + \cos\beta + 0\cos\gamma = 4\times\frac{1}{3} + 1\times\frac{2}{3} = 2,$$

选 D.

4. 甲、乙两人赛跑, 计时开始时, 甲在乙前方 10 (单位: m) 处, 图中实线表示甲的速度 曲线 $v = v_1(t)$ (单位: m/s), 虚线表示乙的速度曲线 $v = v_2(t)$, 三块阴影部分面积 是数值依次为 10,20,3. 计时开始后乙追上甲的时刻记为 t_0 (单位: s),则

A.
$$t_0 = 10$$

B.
$$15 < t_0 < 20$$
 C. $t_0 = 25$

C.
$$t_0 = 2$$

D.
$$t_0 > 25$$

解: 从 0 到 t_0 时刻, 甲和乙的位移分别为 $\int_0^{t_0} v_1(t) dt$ 与 $\int_0^{t_0} v_2(t) dt$. 要使乙追上甲, 则有 $\int_0^{t_0} (v_2(t) - v_1(t)) dt = 10, 由定积分的几何意义知 \int_0^{25} (v_2(t) - v_1(t)) dt = 20 - 10 = 10,$

)

5. 设 α 为n 维单位列向量, E 为n 阶单位矩阵, 则

A. $\mathbf{E} - \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}}$ 不可逆

B. $E + \alpha \alpha^{\mathrm{T}}$ 不可逆

 $C. E + 2\alpha\alpha^{T}$ 不可逆

D. $E - 2\alpha\alpha^{\mathrm{T}}$ 不可逆

解: 矩阵 $\alpha \alpha^{\mathrm{T}}$ 的秩为 1, 它有 n-1 个特征值为 0, 第 n 个特征值为 $\lambda = \operatorname{tr}(\alpha \alpha^{\mathrm{T}}) = \|\alpha\|^2 = 1$, 因此 $E - \alpha \alpha^{\mathrm{T}}$ 有一个特征值为 0, 不可逆, 其他矩阵都可逆, 选 A.

6. 已知矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, 则$$

A. A 与 C 相似, B 与 C 相似

B. A 与 C 相似, B 与 C 不相似

C. A 与 C 不相似, B 与 C 相似

D. A 与 C 不相似, B 与 C 不相似

- **解:** 注意到 A, B 的特征值都是 2, 2, 1, 要判断 A, B 是否可对角化, 充要条件是矩阵的每一个特征值对应的线性无关特征向量的个数等于其特征值的重数, 因此只需要看特征值 $\lambda = 2$ 的情形即可. 对矩阵 A 有 r(2E-A) = 1, 因此 A 的二重特征值 2 有两个线性无关特征向量, 可对角化, 即 A 与 C 相似. 对矩阵 B, 有 r(2E-B) = 2, 它是不可对角化的, B 与 C 不相似, 选 B.
- 7. 设 A, B 是两个随机事件, 若 $0 < P(A) < 1, 0 < P(B) < 1, 则 <math>P(A|B) > P(A|\bar{B})$ 的 充分必要条件是

A. $P(B|A) > P(B|\overline{A})$

B. $P(B|A) < P(B|\overline{A})$

C. $P(\overline{B}|A) > P(B|\overline{A})$

D. $P(\overline{B}|A) < P(B|\overline{A})$

解: 由条件概率的定义可知 $P(A|B) > P(A|\bar{B})$ 即为 $\frac{P(AB)}{P(B)} > \frac{P(A\bar{B})}{P(\bar{B})}$, 即 $P(AB)P(\bar{B}) > P(A\bar{B})P(B)$. 于是

$$P(A\overline{B})P(B) < P(AB)(1 - P(B)) = P(AB) - P(AB)P(B),$$

移项即等价于 $P(AB) > P(A\overline{B})P(B) + P(AB)P(B) = P(A)P(B)$. 根据公式的对称性可知 A 选项也等价于 P(AB) > P(A)P(B), 选 A.

- 8. 设 $X_1, X_2, \cdots, X_n (n \ge 2)$ 为来自正态总体 $N(\mu, 1)$ 的简单随机样本, 记 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$,则下列结论中不正确的是
 - A. $\sum_{i=1}^{n} (X_i \mu)^2$ 服从 χ^2 分布
 - B. $2(X_n X_1)^2$ 服从 χ^2 分布
 - C. $\sum_{i=1}^{n} (X_i \bar{X})^2$ 服从 χ^2 分布
- D. $n(\bar{X} \mu)^2$ 服从 χ^2 分布
- **解:** 对选项 B 有 $X_n X_1 \sim N(0,2)$, $\frac{X_n X_1}{\sqrt{2}} \sim N(0,1)$, $\frac{(X_n X_1)^2}{2} \sim \chi^2(1)$, B 不正确, 选项 A, C, D 都是基本结论, 都正确, 选 B.
- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 已知函数 $f(x) = \frac{1}{1+x^2}$,则 $f^{(3)}(0) = _____.$
- **解:** 由 f(x) 的麦克劳林级数公式 $f(x) = \frac{1}{1+x^2} = 1-x^2+x^4+\cdots+(-1)^n x^{2n}+\cdots(-1 < x < 1)$ 可知 $f^{(3)}(0) = 0$.
- 10.微分方程 y'' + 2y' + 3y = 0 的通解为 $y = ____.$
- **解:** 此二阶常系数齐次线性微分方程, 特征方程为 $\lambda^2 + 2\lambda + 3 = 0$, 特征根 $\lambda = -1 \pm \sqrt{2}$ i, 因此方程的通解为 $y = e^{-x} (C_1 \cos \sqrt{2}x + C_2 \sin \sqrt{2}x)$, 其中 C_1, C_2 为任意常数.
- 11.若曲线积分 $\int_L \frac{x dx ay dy}{x^2 + y^2 1}$ 在区域 $D = \{(x, y) | x^2 + y^2 < 1\}$ 内与路径无关,则 a =______.
- 解: 令 $P(x,y) = \frac{x}{x^2 + y^2 1}$, $Q(x,y) = \frac{-ay}{x^2 + y^2 1}$, 则显然 P,Q 都在区域 D 内有连续的偏导数. 由于积分与路径无关, 所以 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, 解得 a = -1.
- 12.幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} n x^{n-1}$ 在区间 (-1,1) 内的和函数 S(x) =_____.
- 解:利用幂级数在收敛区间内的逐项积分和逐项求导得

$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} n x^{n-1} = -\left(\sum_{n=1}^{\infty} (-x)^n\right)' = -\left(\frac{-x}{1+x}\right)' = \left(\frac{x}{1+x}\right)' = \frac{1}{(1+x)^2}.$$

- 13.设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, α_1 , α_2 , α_3 为线性无关的 3 维列向量组,则向量组 $A\alpha_1$, $A\alpha_2$, $A\alpha_3$ 的秩为 ______.
- **解:** 依题意知 $(\alpha_1, \alpha_2, \alpha_3)$ 为可逆矩阵, 所以

$$r(A\alpha_1, A\alpha_2, A\alpha_3) = r(A(\alpha_1, \alpha_2, \alpha_3)) = r(A) = 2.$$

14.设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准 正态分布函数, 则 E(X) = .

解: X 的概率密度为 $f(x) = F'(x) = 0.5\varphi(x) + 0.25\varphi\left(\frac{x-4}{2}\right)$, 则

$$E(X) = 0.5 \int_{-\infty}^{+\infty} x f(x) dx = 0.5 \int_{-\infty}^{+\infty} x \varphi(x) dx + 0.25 \int_{-\infty}^{+\infty} x \varphi\left(\frac{x-4}{2}\right) dx$$
$$= 0.25 \int_{-\infty}^{+\infty} x \varphi\left(\frac{x-4}{2}\right) dx = 0.25 \int_{-\infty}^{+\infty} (2t+4)\varphi(t) dt$$
$$= 2 \int_{-\infty}^{+\infty} \varphi(t) dt = 2.$$

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

设函数 f(u,v) 具有二阶连续偏导数, $y = f(e^x, \cos x)$, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0}$, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\Big|_{x=0}$.

解: 由复合函数的偏导数法则可得 $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x f_1' + f_2'(-\sin x)$, 故 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0} = f_1'(0,0)$. 进而

$$\begin{split} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} &= \mathrm{e}^x f_1' + \mathrm{e}^x \frac{\partial f_1'}{\partial x} - \cos x \cdot f_2' - \sin x \frac{\partial f_2'}{\partial x} \\ &= \mathrm{e}^x f_1' + \mathrm{e}^x \left(\mathrm{e}^x f_{11}'' - \sin x \cdot f_{12}'' \right) - \cos x \cdot f_2' - \sin x \left(\mathrm{e}^x f_{21}'' - \sin x \cdot f_{22}'' \right) \\ &= \mathrm{e}^x f_1' - f_2' \cos x + \mathrm{e}^{2x} f_{11}'' - 2\mathrm{e}^x f_{21}'' \sin x - f_{22}'' \sin^2 x, \end{split}$$

所以
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\Big|_{x=0} = f_1'(1,1) - f_2'(1,1) + f_{11}''(1,1).$$

16.(本题满分 10 分)

$$\vec{\mathcal{R}} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n} \right).$$

解: 利用定积分的定义可得

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln\left(1 + \frac{k}{n}\right) = \int_{0}^{1} x \ln(1 + x) \, \mathrm{d}x = \frac{1}{2} \int_{0}^{1} \ln(1 + x) \, \mathrm{d}(x^{2})$$

$$= \frac{\ln 2}{2} - \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1 + x} \, \mathrm{d}x = \frac{\ln 2}{2} - \frac{1}{2} \int_{0}^{1} \left(x - 1 + \frac{1}{1 + x}\right) \, \mathrm{d}x$$

$$= \frac{1}{4}.$$

17.(本题满分 10 分)

已知函数 y(x) 由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 确定, 求 y(x) 的极值.

解: 将方程中的 y 视为 x 的函数, 两边求导得 $3x^2 + 3y^2y' - 3 + 3y' = 0$. 令 y' = 0 得 $x = \pm 1$, 且 x = 1 时 y = 1, x = -1 时 y = 0. 等式两边再对 x 求导得

$$2x + 2yy'^2 + y^2y'' + y'' = 0,$$

从而 $y'' = -\frac{2(x + yy'^2)}{1 + y^2}$. 于是在点 (1, 1) 处有 y'' = -1 < 0, 从而 y(1) = 1 是极大值; 而在点 (-1, 0) 处有 y'' = 2 > 0, 从而 y(-1) = 0 是极小值.

18.(本题满分 10 分)

设函数 f(x) 在区间 [0,1] 上具有二阶导数,且 f(1) > 0, $\lim_{x\to 0^+} \frac{f(x)}{x} < 0$,证明:

- (1) 方程 f(x) = 0 在区间 (0, 1) 内至少存在一个实根;
- (2) 方程 $f(x)f''(x) + (f'(x))^2 = 0$ 在区间 (0,1) 内至少存在两个实根.
- 解: (1) 因为极限 $\lim_{x\to 0^+} \frac{f(x)}{x} < 0$, 所以 $f(0) = \lim_{x\to 0^+} f(x) = 0$. 且由极限的保号性知存在 $\eta \in (0,1)$ 使得 $\frac{f(\eta)}{\eta} < 0$, 即 $f(\eta) < 0$. 又 f(1) > 0, 所以由零点定理知存在 $\xi \in (\eta,1) \subset (0,1)$ 使得 $f(\xi) = 0$, 即 f(x) = 0 在区间 (0,1) 内有根.
 - (2) 由于 $f(0) = f(\xi) = 0$, 所以根据罗尔定理知存在 $\xi \in (0, \xi)$ 使得 $f'(\xi) = 0$. 令 F(x) = f(x)f'(x), 则 $F'(x) = f(x)f''(x) + (f'(x))^2$. 那么有 $F(0) = F(\xi) = F(\xi) = 0$, 因此再由罗尔定理知存在 $\xi_1 \in (0, \xi), \xi_2 \in (\xi, \xi)$ 使得 $F'(\xi_1) = F'(\xi_2) = 0$, 即方程 $f(x)f''(x) + (f'(x))^2 = 0$ 在区间 (0, 1) 内至少存在两个实根.

19.(本题满分 10 分)

设薄片型物体 S 是圆锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 割下的有限部分, 其上任一点的密度为 $u(x, y, z) = 9\sqrt{x^2 + y^2 + z^2}$, 记圆锥面与柱面的交线为 C.

- (1) 求 C 在 xOy 平面上的投影曲线的方程;
- (2) 求 S 的质量 M.
- 解: (1) 联立 $z = \sqrt{x^2 + y^2}$ 与 $z^2 = 2x$ 并消去 z 得 $x^2 + y^2 = 2x$, 因此曲线 C 在 xOy 平面上的投影曲线的方程为 $\begin{cases} x^2 + y^2 = 2x \\ z = 0 \end{cases}$
 - (2) 曲线 C 在 xOy 平面的投影曲线围成的平面区域为 $D = \{(x,y)|x^2 + y^2 \leq 2x\}$, 则薄片的质量为

$$M = \iint_{S} u(x, y, z) dS = \iint_{D} u\left(x, y, \sqrt{x^{2} + y^{2}}\right) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dxdy$$
$$= \sqrt{2} \iint_{D} u\left(x, y, \sqrt{x^{2} + y^{2}}\right) dxdy = 18 \iint_{D} \sqrt{x^{2} + y^{2}} dxdy$$
$$= 18 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r^{2} dr = 96 \int_{0}^{\frac{\pi}{2}} \cos^{3}\theta d\theta = 64.$$

20.(本题满分 11 分)

设三阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 有三个不同的特征值, 且 $\alpha_3 = \alpha_1 + 2\alpha_2$.

- (1) 证明: r(A) = 2;
- (2) 若 $\boldsymbol{\beta} = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$, 求方程 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{\beta}$ 的通解.
- **解:** (1) 由于矩阵 A 有三个不同的特征值 $\lambda_1, \lambda_2, \lambda_3$, 因此 A 与对角阵 diag{ $\lambda_1, \lambda_2, \lambda_3$ } 相似, 且对角阵上至多只有一个零元, 所以 $r(A) \ge 2$. 又 $\alpha_3 = \alpha_1 + 2\alpha_2$ 说明 A 的列向量组线性 相关, 故 $r(A) \leq 2$, 因此 r(A) = 2.
 - (2) 因为 r(A) = 2, 所以 Ax = 0 的基础解系中只有一个线性无关的解向量. 由 $\alpha_3 = \alpha_1 + \alpha_2 = \alpha_3 = \alpha_1 + \alpha_2 = \alpha_2 = \alpha_3 = \alpha_1 + \alpha_2 = \alpha_2$ $2\alpha_2$ 可知 $A\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix} = \mathbf{0}$,即方程组 $A\mathbf{x} = \mathbf{0}$ 的一个解就是 $\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$. 而 $\boldsymbol{\beta} = \alpha_1 + \alpha_2 + \alpha_3$,则方程 组 $A\mathbf{x} = \boldsymbol{\beta}$ 的一个特解为 $\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$,进而方程组 $A\mathbf{x} = \boldsymbol{\beta}$ 的通解为 $\mathbf{x} = k\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix} + \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$, $k \in \mathbb{R}$.

组
$$\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$$
 的一个特解为 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 进而方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的通解为 $\mathbf{x} = k \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $k \in \mathbb{R}$.

21.(本题满分 11 分)

设实二次型 $f(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + ax_3^2 + 2x_1x_2 - 8x_1x_3 + 2x_2x_3$ 在正交变换 x = Qy 下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$, 求 a 的值及一个正交矩阵 Q.

解: 首先二次型的矩阵 $A = \begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & a \end{pmatrix}$. 由于二次型在正交变换下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$, 故 A 一定有零特征值,所以 |A| = 0,解得 a = 2.

由
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & 4 \\ -1 & \lambda + 1 & -1 \\ 4 & -1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda + 3)(\lambda - 6)$$
 可知 A 的三个特征值为 $\lambda_1 = -3, \lambda_2 = 6, \lambda_3 = 0.$

解方程组
$$(-3E - A)x = \mathbf{0}$$
 得特征值 $\lambda_1 = -3$ 的一个单位特征向量 $\xi_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

解方程组
$$(6E-A)x=0$$
 得特征值 $\lambda_2=6$ 的一个单位特征向量 $\xi_2=\frac{1}{\sqrt{2}}\begin{pmatrix} -1\\0\\1 \end{pmatrix}$.

解方程组
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 得特征值 $\lambda_3 = 0$ 的一个单位特征向量 $\boldsymbol{\xi}_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

因此
$$\mathbf{Q} = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \end{pmatrix}$$
 即为所求正交矩阵.

22.(本题满分 11 分)

设随机变量 X, Y 相互独立,且 X 的概率分布为 $P(X = 0) = P(X = 2) = \frac{1}{2}, Y$ 的概率密度为 $f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

- (1) 求概率 $P(Y \leq EY)$;
- (2) 求 Z = X + Y 的概率密度.

解: (1) 首先有
$$EY = \int_{-\infty}^{+\infty} y f(y) dy = \int_{0}^{1} y \cdot 2y dy = \frac{2}{3}$$
, 于是
$$P(Y \leqslant EY) = P\left(Y \leqslant \frac{2}{3}\right) = \int_{0}^{\frac{2}{3}} 2y dy = \frac{4}{9}.$$

(2) Z 的分布函数为

$$F_{Z}(z) = P(Z \le z) = P(X + Y \le z)$$

$$= P(Y + X \le z | X = 0)P(X = 0) + P(Y + X \le z | X = 2)P(X = 2)$$

$$= \frac{1}{2}P(Y \le z | X = 0) + \frac{1}{2}P(Y + 2 \le z)$$

$$= \frac{1}{2}P(Y \le z) + \frac{1}{2}P(Y \le z - 2) = \frac{1}{2}F_{Y}(z) + \frac{1}{2}F_{Y}(z - 2).$$

$$= \frac{1}{2}P(Y \le z) + \frac{1}{2}P(Y \le z - 2) = \frac{1}{2}F_Y(z) + \frac{1}{2}F_Y(z - 2).$$
因此 Z 的概率密度为 $f_Z(z) = \frac{1}{2}f_Y(z) + \frac{1}{2}f_Y(z - 2) = \begin{cases} z, & 0 < z < 1 \\ z - 2, & 2 < z < 3. \\ 0, & 其他 \end{cases}$

23.(本题满分 11 分)

某工程师为了解一台天平的精度,用该天平对一物体的质量做了 n 次测量,该物体的质量 μ 是已知的.设 n 次测量的结果 X_1, X_2, \cdots, X_n 相互独立,且均服从正态分布 $N(\mu, \sigma^2)$.该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu| (i = 1, 2, \cdots, n)$,利用 Z_1, Z_2, \cdots, Z_n 估计参数 σ .

- (1) 求 Z_1 的概率密度;
- (2) 利用一阶矩求 σ 的矩估计量;
- (3) 求参数 σ 的最大似然估计量.

解: (1) 由 $X_i \sim N(\mu, \sigma^2)$ 可知 $\frac{X_i - \mu}{\sigma} \sim N(0, 1)$. $Z_i = |X_i - \mu|$ $(i = 1, 2, \dots, n)$ 独立同分布,设 Z_1 的分布函数为 F(z),则

$$F(z) = P(Z_i \leqslant z) = P(|X_i - \mu| \leqslant z) = P\left(-\frac{z}{\sigma} \leqslant \frac{X_i - \mu}{\sigma} \leqslant \frac{z}{\sigma}\right)$$
$$= \Phi\left(\frac{z}{\sigma}\right) - \Phi\left(-\frac{z}{\sigma}\right) = 2\Phi\left(\frac{z}{\sigma}\right) - 1.$$

则 Z_1 的概率密度为

$$f(z) = F'(z) = \begin{cases} \frac{2}{\sigma} \varphi\left(\frac{2}{\sigma}\right), & z \ge 0 \\ 0, & z < 0 \end{cases} = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}, & z \ge 0 \\ 0, & z < 0 \end{cases}.$$

其中 $\phi(x)$ 为标准正态分布函数, $\varphi(x)$ 为标准正态概率密度.

(2) 设 \bar{Z} 为样本均值,令

$$\overline{Z} = E(Z_1) = \int_0^{+\infty} \sqrt{\pi} \sigma z e^{-\frac{z^2}{2\sigma^2}} dz = \sqrt{\frac{2}{\pi}} \sigma,$$

由此可知 σ 的矩估计量 $\hat{\sigma}_1 = \sqrt{\frac{\pi}{2}} \bar{Z}$.

(3) 设 Z_1, Z_2, \cdots, Z_n 对应的样本值为 z_1, z_2, \cdots, z_n , 则似然函数为

$$L(\sigma) = \prod_{i=1}^{n} f(z_i) = \begin{cases} \left(\frac{2}{\pi}\right)^{\frac{n}{2}} \frac{1}{\sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} z_i^2}, & z_1, z_2, \dots, z_n > 0\\ 0, & \text{ #$de} \end{cases}.$$

当 $z_1, z_2, \dots, z_n > 0$ 时, 取对数得 $\ln L(\sigma) = \frac{n}{2} \ln \frac{2}{\pi} - n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n z_i^2$, 令

$$\frac{\mathrm{d}\ln L(\sigma)}{\mathrm{d}\sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n z_i^2 = 0,$$

解得 $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} z_i^2}$, 故 σ 的最大似然估计量为 $\hat{\sigma}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^{n} Z_i^2}$.

第 13 章 2018 年考研数学一

- 一、选择题、 $1 \sim 8$ 题、每题 4 分、共 32 分。
- 1. 下列函数中, 在x = 0处不可导的是

A.
$$f(x) = |x| \sin |x|$$

B.
$$f(x) = |x| \sin \sqrt{|x|}$$

$$C. f(x) = \cos|x|$$

D.
$$f(x) = \cos \sqrt{|x|}$$

- **解:** A,B,C可直接验证可导,D根据导数的定义可得 $f'_{+}(0) = -\frac{1}{2}$, $f'_{-}(0) = \frac{1}{2}$, 选 D.
- 2. 过点 (1,0,0) 与 (0,1,0) 且与曲面 $z=x^2+y^2$ 相切的平面方程为 ()

A.
$$z = 0 - x + v - z = 1$$

B.
$$z = 0 = 2x + 2y - z = 0$$

C.
$$y = x - 5x + y - z = 1$$

D.
$$y = x - 52x + 2y - z = 2$$

- **解:** 过点 (1,0,0) 与 (0,1,0) 且与已知曲面相切的平面只有两个, 显然 z=0 与曲面 $z=x^2+y^2$ 相切, 故排除 C, D. 曲面 $z=x^2+y^2$ 的法向量为 (2x,2y,-1), 对于 A 选项, x+y-z=1 的法向量为 (1,1,-1), 可得 $x=\frac{1}{2}$, $y=\frac{1}{2}$. 代入 $z=x^2+y^2$ 和 x+y-z=1 中 z 不相等, 排除 A, 故选 B.
- 3. $\sum_{n=0}^{\infty} (-1)^n \frac{2n+3}{(2n+1)!} =$ A. $\sin 1 + \cos 1$ B. $2\sin 1 + \cos 1$ C. $2\sin 1 + 2\cos 1$ D. $3\sin 1 + 2\cos 1$
- **解:** 利用 $\sin x$ 与 $\cos x$ 的麦克劳林级数可得

$$\sum_{n=0}^{\infty} (-1)^n \frac{2n+3}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)+2}{(2n+1)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} + \sum_{n=0}^{\infty} (-1)^n \frac{2}{(2n+1)!}$$
$$= 2\sin 1 + \cos 1.$$

因此选 B.

- 4. 设 $M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{e^x} dx, K = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1+\sqrt{\cos x}\right) dx, 则$ () A. M > N > K B. M > K > N C. K > M > N D. N > M > K
- **解:** 利用对称性可以计算 $M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \frac{2x}{1+x^2}\right) dx = \pi$, 另外比较被积函数与 1 的大小关系易见 $K > \pi = M > N$.

5. 下列矩阵中, 与矩阵
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 相似的为 () A. $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- **解:** 易知题中矩阵均有 3 重特征值 1. 若矩阵相似,则不同特征值对应矩阵 $\lambda E A$ 的秩相等,即 E A 的秩相等,选 A.
- 6. 设 A, B 为 n 阶矩阵, 记 r(X) 为矩阵 X 的秩, (X Y) 表示分块矩阵, 则 ()

A. r(A AB) = r(A)

B. r(A BA) = r(A)

 $C. r(\mathbf{A} \ \mathbf{B}) = \max\{r(\mathbf{A}), r(\mathbf{B})\}\$

$$D. r(\mathbf{A} \mathbf{B}) = r(\mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}})$$

- 解: 对于 A, 有 $(A \ AB) = A (E \ B)$, 且 $(E \ B)$ 为行满秩的矩阵, 则 $r(A \ AB) = r(A)$, 即选 A. B 错误, 反例取 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. C 错误, $r(A \ B) \ge \max\{r(A), r(B)\}$, 反例取 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. D 错误, 反例取 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- **解:** 由 f(1+x) = f(1-x) 知 f(x) 关于 x = 1 对称,则

$$\int_0^1 f(x) dx = \int_1^2 f(x) dx = \frac{1}{2} \int_0^2 f(x) dx = 0.3,$$

于是 $P\{X<0\} = \int_{-\infty}^{0} f(x) dx = \int_{-\infty}^{1} f(x) dx - \int_{0}^{1} f(x) dx = 0.5 - 0.3 = 0.2,$ 选 A.

- 8. 给定总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, 给定样本 X_1, X_2, \dots, X_n , 对总体均值 μ 进行检验, 令 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, 则 ()
 - A. 若显著性水平 $\alpha = 0.05$ 时拒绝 H_0 , 则 $\alpha = 0.01$ 时必拒绝 H_0
 - B. 若显著性水平 $\alpha=0.05$ 时接受 H_0 , 则 $\alpha=0.01$ 时必拒绝 H_0
 - C. 若显著性水平 $\alpha=0.05$ 时拒绝 H_0 , 则 $\alpha=0.01$ 时必接受 H_0
 - D. 若显著性水平 $\alpha=0.05$ 时接受 H_0 , 则 $\alpha=0.01$ 时必接受 H_0
- **解:** 显著性水平为 α 的假设检验的接受域就是置信水平为 $1-\alpha$ 的置信区间, 当 α 变小时, 置信水平变大, 置信区间变大, 也就是接受域变大, 因此选 D.

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9.
$$\lim_{x \to 0} \left(\frac{1 - \tan x}{1 + \tan x} \right)^{\frac{1}{\sin(kx)}} = e$$
, $\mathbb{M} k = \underline{\qquad}$.

解: 原极限为 1^{∞} 型, 故恒等变形为

$$\lim_{x \to 0} \left(1 + \frac{-2\tan x}{1 + \tan x} \right)^{\frac{1 + \tan x}{-2\tan x} \frac{-2\tan x}{(1 + \tan x)\sin(kx)}} = \exp\left(\lim_{x \to 0} \frac{-2\tan x}{(1 + \tan x)\sin(kx)} \right) = e^{-\frac{2}{k}}.$$

$$\text{MU} - \frac{2}{k} = 1, k = -2.$$

- 10.设函数 f(x) 具有二阶连续导数, 若曲线 y = f(x) 过点 (0,0), 且与曲线 $y = 2^x$ 在点 (1,2) 处相切, 则 $\int_0^1 x f''(x) dx = _____.$
- **解:** 由题意知 f(0) = 0, f(1) = 2, $f'(1) = 2^x \ln 2|_{x=1} = 2 \ln 2$. 由分部积分公式, 原积分等于 $xf'(x)|_0^1 \int_0^1 f'(x) dx = 2 \ln 2 2$.
- 11.设 F(x, y, z) = xyi yzj + xzk, 则 rot F(1, 1, 0) =_____
- 解: 由旋度定义 $\operatorname{rot} \boldsymbol{F} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & -yz & xz \end{vmatrix} = y\boldsymbol{i} z\boldsymbol{j} x\boldsymbol{k}$, 可知 $\operatorname{rot} \boldsymbol{F} (1, 1, 0) = \boldsymbol{i} \boldsymbol{k}$.
- 12.设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线, 则 $\oint_L xy ds =$ ______.
- 解:由对称性得

$$\oint_{L} xy ds = \frac{1}{3} \oint_{L} (xy + yz + xz) ds$$

$$= \frac{1}{6} \oint_{L} \left[(x + y + z)^{2} - (x^{2} + y^{2} + z^{2}) \right] ds$$

$$= \frac{1}{6} \oint_{L} (-1) ds = -\frac{\pi}{3}.$$

- 13.设二阶矩阵 A 有两个不同的特征值, α_1 , α_2 是 A 的线性无关的特征向量, $A^2(\alpha_1 + \alpha_2) = \alpha_1 + \alpha_2$, 则 $|A| = _____$.
- **解:** 由 α_1, α_2 是 A 的线性无关的特征向量,则 α_1, α_2 是 A^2 的线性无关的特征向量.又 $A^2(\alpha_1 + \alpha_2) = \alpha_1 + \alpha_2, \alpha_1 + \alpha_2$ 也是 A^2 的特征向量,则 $\alpha_1, \alpha_2, \alpha_1 + \alpha_2$ 都是 A^2 的同一个特征值所对应的特征向量,因此 A^2 有二重特征值 1.又 A 有两个不同的特征值,则其特征值为 -1, 1, 故 |A| = -1.
- 14.设随机事件 A 与 B 相互独立, A 与 C 相互独立, $BC = \emptyset$. 若

$$P(A) = P(B) = \frac{1}{2}, P(AC|AB \cup C) = \frac{1}{4},$$

则 P(C) =______.

解: 因为 $BC = \emptyset$, P(BC) = 0, 故 P(ABC) = 0.

$$P(AC|AB \cup C) = \frac{P[(ABC) \cup (AC)]}{P(AB \cup C)}$$

$$= \frac{P(AC)}{P(AB) + P(C) - P(ABC)}$$

$$= \frac{P(A)P(C)}{P(A)P(B) + P(C)} = \frac{1}{4}$$

解得 $P(C) = \frac{1}{4}$.

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

求不定积分 $\int e^{2x} \arctan \sqrt{e^x - 1} dx$.

解:利用分部积分法

$$\int e^{2x} \arctan \sqrt{e^x - 1} dx = \frac{1}{2} \int \arctan \sqrt{e^x - 1} d \left(e^{2x} \right)$$

$$= \frac{1}{2} e^{2x} \arctan \sqrt{e^x - 1} - \frac{1}{2} \int \frac{e^{2x}}{1 + e^x - 1} \frac{e^x}{2\sqrt{e^x - 1}} dx$$

$$= \frac{1}{2} e^{2x} \arctan \sqrt{e^x - 1} - \frac{1}{4} \int \frac{e^{2x}}{\sqrt{e^x - 1}} dx$$

$$= \frac{1}{2} e^{2x} \arctan \sqrt{e^x - 1} - \frac{1}{4} \int \frac{e^x}{\sqrt{e^x - 1}} d \left(e^x \right)$$

其中

$$\int \frac{e^x}{\sqrt{e^x - 1}} d(e^x) = \int \frac{t}{\sqrt{t - 1}} dt = \int \frac{t - 1 + 1}{\sqrt{t - 1}} dt$$
$$= \int \sqrt{t - 1} dt + \int \frac{dt}{\sqrt{t - 1}}$$
$$= \frac{2}{3} (t - 1)^{\frac{3}{2}} + 2\sqrt{t - 1} + C$$
$$= \frac{2}{3} (e^x - 1)^{\frac{3}{2}} + 2\sqrt{e^x - 1} + C$$

故
$$\int e^{2x} \arctan \sqrt{e^x - 1} dx = \frac{1}{2} e^{2x} \arctan \sqrt{e^x - 1} - \frac{1}{6} (e^x - 1)^{\frac{3}{2}} - \frac{1}{2} \sqrt{e^x - 1} + C_1.$$

16.(本题满分 10 分)

"将长为 2 m 的铁丝分成三段, 依次围成圆、正方形与正三角形, 三个图形的面积之和是否存在最小值? 若存在, 求出最小值.

[&]quot;此题来自裴礼文数学分析中的典型例题与方法 697 页.

◎ **解:** 设分成的三段依次为 x, y, z, y, z, y, z = 2, 依次围成的圆的半径、正方形的边长与 正三角形边长分别为 $\frac{x}{2\pi}$, $\frac{y}{4}$, $\frac{z}{3}$, 因此三个面积的和为

$$S = \pi \left(\frac{x}{2\pi}\right)^2 + \left(\frac{y}{4}\right)^2 + \frac{\sqrt{3}}{4}\left(\frac{z}{3}\right)^2 = \frac{x^2}{4\pi} + \frac{1}{16}y^2 + \frac{\sqrt{3}}{36}z^2.$$

方法一 令
$$f(x,y,z,\lambda) = \frac{x^2}{4\pi} + \frac{1}{16}y^2 + \frac{\sqrt{3}}{36}z^2 + \lambda (x+y+z-2)$$
,首先求驻点. 由方程
$$\begin{cases} f'_x = \frac{x}{2\pi} + \lambda = 0 \\ f'_y = \frac{y}{8} + \lambda = 0 \\ f'_z = \frac{\sqrt{3}}{18}z + \lambda = 0 \end{cases}$$
 可得
$$\begin{cases} x = \frac{2\pi}{\pi + 4 + 3\sqrt{3}} \\ y = \frac{8}{\pi + 4 + 3\sqrt{3}}, \text{并且黑塞矩阵 } Hf = \text{diag} \left\{ \frac{1}{2\pi}, \frac{1}{8}, \frac{\sqrt{3}}{18} \right\} \text{ 正} \\ z = \frac{6\sqrt{3}}{\pi + 4 + 3\sqrt{3}} \end{cases}$$
 定,这就是面积和的最小值点,此时最小面积为 $S_{\min} = \frac{1}{\pi + 4 + 3\sqrt{3}} \text{m}^2$.

17.(本题满分 10 分)

设 Σ 是曲面 $x = \sqrt{1 - 3y^2 - 3z^2}$ 的前侧, 计算曲面积分

$$I = \iint_{\Sigma} x dy dz + (y^3 + 2) dz dx + z^3 dx dy.$$

解: 取曲面 $\Sigma_1: x=0, 3y^2+3z^2\leqslant 1$, 法向量方向指向 x 轴负向. 记 Ω 为 Σ 和 Σ_1 所围成 的区域,则

$$\iint_{\Sigma} x dy dz + (y^3 + 2) dz dx + z^3 dx dy$$

$$= \iint_{\Sigma + \Sigma_1} x dy dz + (y^3 + 2) dz dx + z^3 dx dy - \iint_{\Sigma_1} x dy dz + (y^3 + 2) dz dx + z^3 dx dy.$$

由高斯公式得

$$\iint_{\Sigma + \Sigma_{1}} x \, dy \, dz + (y^{3} + 2) \, dz \, dx + z^{3} \, dx \, dy$$

$$= \iiint_{\Omega} (1 + 3y^{2} + 3z^{2}) \, dV = \iiint_{\Omega} dV + 3 \iint_{3y^{2} + 3z^{2} \le 1} (y^{2} + z^{2}) \sqrt{1 - 3y^{2} - 3z^{2}} \, dy \, dz$$

$$= \frac{1}{2} \cdot \frac{4\pi}{3} \cdot \frac{\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{3} + 3 \int_{0}^{2\pi} d\theta \int_{0}^{\frac{1}{\sqrt{3}}} r^{2} \sqrt{1 - 3r^{2}} r dr = \frac{14\pi}{45}$$

而
$$\iint_{\Sigma_1} x dy dz + (y^3 + 2) dz dx + z^3 dx dy = 0, 所以$$

$$\iint\limits_{\Sigma} x \mathrm{d}y \mathrm{d}z + (y^3 + 2) \, \mathrm{d}z \mathrm{d}x + z^3 \mathrm{d}x \mathrm{d}y = \frac{14\pi}{45}.$$

18.(本题满分 10 分)

『已知微分方程 y' + y = f(x), 其中 f(x) 是 \mathbb{R} 上的连续函数.

- (1) 当 f(x) = x 时, 求微分方程的通解.
- (2) 若 f(x) 是周期为 T 的函数, 证明: 方程存在唯一的以 T 为周期的解.

◎ 解:

- (1) 方程两边乘以 e^x 得 $(e^x y)' = e^x (y' + y) = xe^x$, 于是 $e^x y = (x 1)e^x + C$, 因此通解为 $y = Ce^{-x} + x 1$.
- (2) 等式两边乘以 e^x 可得 $(e^x y)' = e^x f(x)$, 通解可表示为 $y(x) = e^{-x} \left(\int_0^x f(t) e^t dt + C \right)$. 现在 f(x+T) = f(x), 则

$$y(x+T) = e^{-x-T} \left(\int_0^{x+T} f(t) e^t dt + C \right)$$

$$= e^{-x-T} \left(\int_0^T f(t) e^t dt + \int_T^{T+x} f(t) e^t dt + C \right)$$

$$= e^{-x-T} \left(\int_0^T f(t) e^t dt + \int_0^x f(u+T) e^{u+T} du + C \right)$$

$$= e^{-x-T} \left(\int_0^T f(t) e^t dt + \int_0^x f(u) e^{u+T} du + C \right)$$

$$= e^{-x} \left(\left(\int_0^T f(t) e^t dt + C \right) e^{-T} + \int_0^x f(u) e^u du \right)$$

要使得这个解是周期函数,则 y(x+T)=y(x),即满足 $\left(\int_0^T f(t) e^t dt + C\right) e^{-T} = C$,由此解得 $C = \frac{\int_0^T f(t) e^t dt}{e^T - 1}$,因此 $y = e^{-x} \left(\int_0^x f(t) e^t dt + \frac{\int_0^T f(t) e^t dt}{e^T - 1}\right)$ 就是唯一的周期函数解.

19.(本题满分 10 分)

此题来自蒲和平大学生数学竞赛教程 240 页.

设数列 $\{x_n\}$ 满足 $x_1 > 0$, $x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$. 证明 $\{x_n\}$ 收敛并求 $\lim_{n \to \infty} x_n$.

解: 首先由 $x_1 > 0$, $x_n e^{x_{n+1}} = e^{x_n} - 1$ ($n = 1, 2, \cdots$) 归纳可知所有 $x_n > 0$. 考虑函数 $f(x) = e^x$, 由拉格朗日中值定理有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x_n} = \frac{f(x_n) - f(0)}{x_n - 0} = e^{\xi_n} < e^{x_n}, \ \xi_n \in (0, x_n).$$

这就说明 $x_n > x_{n+1} > 0$, 因此 $\{x_n\}$ 单调递减有下界, 故收敛. 设 $\lim_{n \to \infty} x_n = x \ge 0$, 在等式 $x_n e^{x_{n+1}} = e^{x_n} - 1$ 两边取极限得 $x e^x = e^x - 1$. 如果 x > 0, 则 $e^x = \frac{e^x - 1}{x} < e^x$,矛盾, 因此 $\lim_{n \to \infty} x_n = x = 0$.

20.(本题满分 11 分)

设实二次型 $f(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2 + (x_2 + x_3)^2 + (x_1 + ax_3)^2$, 其中 a 是 参数.

- (1) \bar{x} $f(x_1, x_2, x_3) = 0$ 的解;
- (2) 求 $f(x_1, x_2, x_3)$ 的规范形.
- 解: (1) 由 $f(x_1, x_2, x_3) = 0$ 可得方程组 $\begin{cases} x_1 x_2 + x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$. 对其系数矩阵进行初等行变 $x_1 + ax_3 = 0$

 $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a-2 \end{pmatrix}.$

如果 a = 2, 则方程组的通解为 $(x_1, x_2, x_3)^{\mathrm{T}} = c(-2, -1, 1)^{\mathrm{T}}$. 如果 $a \neq 2$, 则方程组只有零解 $(x_1, x_2, x_3)^{\mathrm{T}} = (0, 0, 0)^{\mathrm{T}}$.

(2) 如果 $a \neq 2$, 令

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Qx.$$

其中 Q 是可逆矩阵, 所以此时的规范形为 $f(y_1, y_2, y_3) = y_1^2 + y_2^2 + y_3^2$. 如果 a = 2, 配方得

$$f(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2 + (x_2 + x_3)^2 + (x_1 + 2x_3)^2$$
$$= 2x_1^2 + 2x_2^2 + 6x_3^2 - 2x_1x_2 + 6x_1x_3$$
$$= 2\left(x_1 - \frac{1}{2}x_2 + \frac{3}{2}x_3\right)^2 + \frac{3}{2}(x_2 + x_3)^2.$$

此时的规范形为 $f(y_1, y_2, y_3) = y_1^2 + y_2^2$.

21.(本题满分11分)

已知
$$a$$
 是常数, 且矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{pmatrix}$ 可经初等列变换化为矩阵 $\mathbf{B} = \begin{pmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$.

- (1)求a;
- (2) 求满足 AP = B 的可逆矩阵 P.
- **解:** (1) 由于矩阵 A 可经过初等列变换化为矩阵 B, 因此 A 和 B 的列向量组等价. 则对增广矩阵做初等行变换得

$$(A, B) = \begin{pmatrix} 1 & 2 & a & 1 & a & 2 \\ 1 & 3 & 0 & 0 & 1 & 1 \\ 2 & 7 & -a & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & a & 1 & a & 2 \\ 0 & 1 & -a & -1 & 1 - a & -1 \\ 0 & 0 & 0 & 0 & a - 2 & 0 \end{pmatrix}.$$

因此 a=2.

(2) 问题等价于解矩阵方程 AX = B, 也就是解三个非齐次线性方程组. 由 (1) 可得

$$(A, B) \to \begin{pmatrix} 1 & 0 & 6 & 3 & 4 & 4 \\ 0 & 1 & -2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
解得 $\mathbf{P} = \begin{pmatrix} -6k_1 + 3 & -6k_2 + 4 & -6k_3 + 4 \\ 2k_1 - 1 & 2k_2 - 1 & 2k_3 - 1 \\ k_1 & k_2 & k_3 \end{pmatrix}$, k_1, k_2, k_3 为任意常数. 注意到 \mathbf{P} 是可逆矩阵 因此 $|\mathbf{P}| \neq 0$ 这要求 $k_2 \neq k_3$

22.(本题满分 11 分)

已知随机变量 X 与 Y 相互独立, X 的概率分布为 $P\{X=1\}=P\{X=-1\}=\frac{1}{2}, Y$ 服从参数为 λ 的泊松分布, 令 Z=XY.

- (1) 求 Cov(X, Z);
- (2) 求 Z 的概率分布.
- **解:** (1) 直接计算可知 E(X) = 0, $E(X^2) = 1$, 而 $Y \sim P(\lambda)$, $E(Y) = \lambda$, 因此

$$Cov(X, Z) = Cov(X, XY) = E(X^{2}Y) - E(X)E(XY)$$

= $E(X^{2})E(Y) - (EX)^{2}E(Y) = \lambda$.

(2) 首先有

$$P(Z = k) = P(X = 1)P(Z = k|X = 1) + P(X = -1)P(Z = k|X = -1)$$
$$= P(X = 1)P(Y = k) + P(X = -1)P(Y = -k)$$

$$= \frac{1}{2}P(Y = k) + \frac{1}{2}P(Y = -k).$$

当
$$k = 1, 2, 3, \dots$$
 时, $P\{Z = k\} = \frac{1}{2}P\{Y = k\} = \frac{\lambda^k e^{-\lambda}}{2k!};$
当 $k = 0$ 时, $P(Z = 0) = P(Y = 0) = e^{-\lambda};$
当 $k = -1, -2, -3, \dots$ 时, $P\{Z = k\} = \frac{1}{2}P\{Y = -k\} = \frac{\lambda^{-k} e^{-\lambda}}{2(-k)!}.$

因此综上所述可得

$$P(Z = k) = \begin{cases} \frac{\lambda^{|k|} e^{-\lambda}}{2|k|!}, & k = \pm 1, \pm 2, \dots \\ e^{-\lambda}, & k = 0 \end{cases}.$$

23.(本题满分 11 分)

设总体 X 的概率密度为

$$f(x;\sigma) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}, -\infty < x < +\infty,$$

其中 $\sigma \in (0, +\infty)$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, 记 σ 的最大似然估计量为 $\hat{\sigma}$.

- (1)求 $\hat{\sigma}$;
- (2) 求 $E(\hat{\sigma})$, $D(\hat{\sigma})$.
- **解:** (1) 设 X_1, X_2, \dots, X_n 对应的样本值为 x_1, x_2, \dots, x_n ,则似然函数为

$$L(\sigma) = \prod_{i=1}^{n} f(x_i; \sigma) = 2^{-n} \sigma^{-n} e^{-\frac{\sum_{i=1}^{n} |x_i|}{\sigma}},$$

取对数得 $\ln L(\sigma) = -n \ln 2 - n \ln \sigma - \frac{1}{\sigma} \sum_{i=1}^{n} |x_i|$. 令 $\frac{\dim L}{\mathrm{d}\sigma} = \frac{-n}{\sigma} + \frac{1}{\sigma^2} \sum_{i=1}^{n} |x_i| = 0$, 解得 $\sigma = \frac{1}{n} \sum_{i=1}^{n} |x_i|$, 因此 σ 的最大似然估计量为 $\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} |X_i|$.

(2) 因为
$$E(|X|) = \int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{+\infty} \frac{|x|}{2\sigma} e^{-\frac{|x|}{\sigma}} dx = \sigma$$
, 所以

$$E(\hat{\sigma}) = \frac{1}{n} \sum_{i=1}^{n} E|X_{i}| = E(|X|) = \sigma,$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{-\infty}^{+\infty} \frac{x^{2}}{2\sigma} e^{-\frac{|X|}{\sigma}} dx = 2\sigma^{2},$$

$$D(\hat{\sigma}) = \frac{D(|X|)}{n} = \frac{1}{n} \left(E(X^{2}) - (E|X|)^{2} \right) = \frac{\sigma^{2}}{n}.$$

第 14 章 2019 年考研数学-

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. 当 $x \to 0$ 时, $x - \tan x$ 与 x^k 是同阶无穷小, 则 k =

解: 当 $x \to 0$ 时, $x - \tan x \sim -\frac{1}{2}x^3$, 因此选 C.

2. 设函数 $f(x) = \begin{cases} x|x|, & x \leq 0 \\ x \ln x, & x > 0 \end{cases}$, 则 x = 0 是 f(x) 的)

A. 可导点, 极值点

B. 不可导点. 极值点

C. 可导点, 非极值点

D. 不可导点, 非极值点

解: $\lim_{x\to 0^-} x |x| = \lim_{x\to 0^+} x \ln x = f(0) = 0$, 因此 f(x) 在 x = 0 处连续. 且当 $x \in \mathring{U}(0)$ 时, f(x) < 0 = f(0), 因此 x = 0 是 f(x) 的极大值点. 而极限 $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \ln x$ 不存在, 因此不可导, 选 B.

3. 设 u_n 是单调增加的有界数列,则下列级数中收敛的是 (A. $\sum_{n=1}^{\infty} \frac{u_n}{n}$ B. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{u_n}$ C. $\sum_{n=1}^{\infty} \left(1 - \frac{u_n}{u_{n+1}}\right)$ D. $\sum_{n=1}^{\infty} (u_{n+1}^2 - u_n^2)$

解: 正确答案选 D. 因为 u_n 单调递增有界, 故极限 $\lim_{n\to\infty}u_n=a$ 存在, D 选项级数的部分和 数列收敛, 因此级数收敛. A 中只要 $a \neq 0$ 就发散, B 则一定发散. C 中可取反例 $u_n = -\frac{1}{n}$, 则 $1 - \frac{u_n}{u_{n+1}} = \frac{1}{n+1}$, 调和级数发散.

4. 设函数 $Q(x,y) = \frac{x}{y^2}$, 如果对上半平面 (y > 0) 内的任意有向光滑闭曲线 C 都有

 $\oint_C P(x,y) dx + Q(x,y) dy = 0, 那么函数 P(x,y) 可取为$

- A. $y \frac{x^2}{y}$ B. $\frac{1}{y} \frac{x^2}{y^2}$ C. $\frac{1}{x} \frac{1}{y}$ D. $x \frac{1}{y}$

解: 由题意, 应当选择函数 P(x,y) 使得在整个上半平面上均有 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{1}{v^2}$ 成立, 选 D. (注意 C 选项在 y 轴上偏导数不存在)

5. 设 A 是 3 阶实对称矩阵, E 是 3 阶单位矩阵, 若 $A^2 + A = 2E$, 且 |A| = 4, 则二次 型 $x^{T}Ax$ 的规范形为

- A. $y_1^2 + y_2^2 + y_3^2$ B. $y_1^2 + y_2^2 y_3^2$ C. $y_1^2 y_2^2 y_3^2$ D. $-y_1^2 y_2^2 y_3^2$

- **解:** 由 $A^2 + A = 2E$ 可知矩阵 A 的特征值 λ 满足 $\lambda^2 + \lambda = 2$, 因此 $\lambda = 1$ 或 -2. 再由 |A| = 4 可知 A 的特征值为 -2, -2, 1. 因此二次型 $x^T A x$ 的正惯性指数为 1, 负惯性指数为 2, 选 C.
- 6. 如图所示,有3张平面两两相交,交线相互平行,它们的方程

$$a_{i1}x + a_{i1}y + a_{i3}z = d_i (i = 1, 2, 3)$$

组成的线性方程组的系数矩阵和增广矩阵分别

为
$$A, \overline{A}, 则$$
 ()

A.
$$r(A) = 2, r(\bar{A}) = 3$$

B.
$$r(A) = 2, r(\bar{A}) = 2$$

C.
$$r(A) = 1, r(\bar{A}) = 2$$

D.
$$r(A) = 1, r(\bar{A}) = 1$$

- **解:** 令 $x = (x, y, z)^{\mathrm{T}}$, $b = (d_1, d_2, d_3)^{\mathrm{T}}$, 由于三个平面无交点, 因此方程组 Ax = b 无解. 即 $r(A) < r(\bar{A}) \leq 3$. 再根据任意两个平面都不重合或平行, 可知 A 的任意两行线性无关, 因此 $r(A) \geq 2$. 因此只能是 r(A) = 2, $r(\bar{A}) = 3$, 选 A.
- 7. 设 A, B 为随机事件,则 P(A) = P(B) 的充分必要条件是 ()

$$A. P(A \cup B) = P(A) + P(B)$$

B.
$$P(AB) = P(A)P(B)$$

C.
$$P(A\overline{B}) = P(B\overline{A})$$

D.
$$P(AB) = P(\overline{AB})$$

- **解:** 显然 P(A) = P(B) 等价于 P(A) P(AB) = P(B) P(AB), 即 $P(A\overline{B}) = P(B\overline{A})$, 选 C. 对于选项 A 和 D, 取 $A = B = \Omega$ 可排除; 对于选项 B, 取 $B = \overline{A}$ 即可排除.
- 8. 设随机变量 X 与 Y 相互独立, 且都服从正态分布 $N(\mu, \sigma^2)$, 则 $P\{|X-Y|<1\}$ ()

A. 与
$$\mu$$
 无关, 而与 σ^2 有关

B. 与
$$\mu$$
 有关, 而与 σ^2 无关

C. 与
$$\mu$$
, σ^2 都有关

D. 与
$$\mu$$
, σ^2 都无关

■ 解: 由条件可知 $X - Y \sim N(0, 2\sigma^2)$, 因此

$$P\{|X - Y| < 1\} = P\left\{ \left| \frac{X - Y}{\sqrt{2}\sigma} \right| < \frac{1}{\sqrt{2}\sigma} \right\}$$
$$= \Phi\left(\frac{1}{\sqrt{2}\sigma}\right) - \Phi\left(-\frac{1}{\sqrt{2}\sigma}\right) = 2\Phi\left(\frac{1}{\sqrt{2}\sigma}\right) - 1,$$

此概率与 μ 无关, 而与 σ^2 有关, 选 A.

- 二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.
- 9. 设函数 f(u) 可导, $z = f(\sin y \sin x) + xy$, 则 $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$
- 解: 首先 $\frac{\partial z}{\partial x} = -\cos x f' (\sin y \sin x) + y, \frac{\partial z}{\partial y} = \cos y f' (\sin y \sin x) + x,$ 因此 $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} = \frac{y}{\cos x} + \frac{x}{\cos y}.$

10.微分方程 $2yy' - y^2 - 2 = 0$ 满足条件 y(0) = 1 的特解 $y = _____.$

- **解:** 方程变量分离可得 $\frac{2y}{y^2+2}$ dy = dx, 两边积分得 $y^2+2=Ce^x$. 由 y(0)=1 可知 C=3, 方程的解为 $y=\sqrt{3e^x-2}$. (注意初值条件, 要舍去负的解)
- 11.幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n$ 在 $(0, +\infty)$ 内的和函数 S(x) =______.
- 12.设 Σ 为曲面 $x^2 + y^2 + 4z^2 = 4(z \ge 0)$ 的上侧,则 $\iint_{\Sigma} \sqrt{4 x^2 4z^2} dx dy = _____.$
- **解:** Σ 在 xOy 面的投影区域为 $D = \{(x, y) | x^2 + y^2 \le 4\}$, 因此

$$\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} \, dx \, dy = \iint_{D} \sqrt{4 - x^2 - (4 - x^2 - y^2)} \, dx \, dy$$
$$= \iint_{D} |y| \, dx \, dy = 4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2} r^2 \sin\theta \, dr = \frac{32}{3}.$$

- 13.设 $A = (\alpha_1, \alpha_2, \alpha_3)$ 为 3 阶矩阵, 若 α_1, α_2 线性无关, 且 $\alpha_3 = -\alpha_1 + 2\alpha_2$, 则线性方程组 Ax = 0 的通解为
- 解:由条件可知 A 有且只有两个线性无关的列向量,因此 r(A) = 2.因为 $\alpha_3 = -\alpha_1 + 2\alpha_2$, 所以 $A\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \alpha_1 2\alpha_2 + \alpha_3 = \mathbf{0}$,因此 $Ax = \mathbf{0}$ 的通解为 $x = k(1, -2, 1)^T$, $k \in \mathbb{R}$.
- 14.设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2 \\ 0, & \text{其他} \end{cases}$, F(x) 为 X 的分布函数, E(X) 为 X 的数学期望, 则 $P(F(X) > E(X) 1) = _____.$
- **解:** 首先 $E(X) = \int_0^2 x \frac{x}{2} dx = \frac{4}{3}$. 再令 Y = F(X), 则当 $y \le 0$ 时, $P(Y \le y) = 0$; 当 $y \ge 1$ 时, $P(Y \le y) = 1$ (注意分布函数 F(X) 的取值范围). 当 0 < y < 1 时,

$$P(Y \leqslant y) = P(F(X) \leqslant y) = P(X \leqslant F^{-1}(y)) = F(F^{-1}(y)) = y.$$

因此
$$Y = F(X) \sim U(0,1), P(F(X) > E(X) - 1) = P(Y > \frac{1}{3}) = \frac{2}{3}.$$

三、解答题, $15 \sim 23$ 题, 共 94 分.

15.(本题满分 10 分)

设函数 y(x) 是微分方程 $y' + xy = e^{-\frac{x^2}{2}}$ 满足条件 y(0) = 0 的特解.

- (1) 求 y(x);
- (2) 求曲线 y = y(x) 的凹凸区间及拐点.
- **解:** (1) 由条件可得 $\left(ye^{\frac{1}{2}x^2}\right)' = e^{\frac{1}{2}x^2} \left(y' + xy\right) = 1$, 于是 $ye^{\frac{1}{2}x^2} = x + C$. 由 y(0) = 0 可知 C = 0, $y = xe^{-\frac{1}{2}x^2}$.
 - (2) 计算可得 $y' = e^{-\frac{1}{2}x^2}(1-x^2)$, $y'' = e^{-\frac{1}{2}x^2}(x^3-3x)$, 令 y'' = 0 得 $x = 0, \pm\sqrt{3}$. 再根据 二阶导数的符号可得凹区间为 $(-\sqrt{3},0)$ 和 $(\sqrt{3},+\infty)$, 凸区间为 $(-\infty,-\sqrt{3})$ 和 $(0,\sqrt{3})$. 拐点为 (0,0), $\left(-\sqrt{3},-\sqrt{3}e^{-\frac{3}{2}}\right)$, $\left(\sqrt{3},\sqrt{3}e^{-\frac{3}{2}}\right)$

16.(本题满分 10 分)

设 a,b 为实数, 函数 $z = 2 + ax^2 + by^2$ 在点 (3,4) 处的方向导数中, 沿方向 l = -3i - 4j 的方向导数最大, 最大值为 10.

- (1)求a,b;
- (2) 求曲面 $z = 2 + ax^2 + by^2 (z \ge 0)$ 的面积.
- **解:** (1) 多元函数在一点处方向导数的最大值是沿着梯度方向的方向导数, 且最大值等于梯度的模. 由条件可得 **grad** z=(2ax,2by), 于是 **grad** $z\big|_{(3,4)}=(6a,8b)$, 因此 $\frac{6a}{-3}=\frac{8b}{-4}$ 且 a,b<0, 解得 a=b. 再由 $10=\sqrt{(6a)^2+(8b)^2}$ 可得 a=b=-1.
 - (2) 曲面 $z = 2 x^2 y^2$ 在 xOy 面的投影区域 $D = \{(x, y) | x^2 + y^2 \le 2\}$, 则曲面的面积为

$$S = \iint_{D} \sqrt{1 + (-2x)^2 + (-2y)^2} \, dx \, dy = \iint_{D} \sqrt{1 + 4x^2 + 4y^2} \, dx \, dy$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} \sqrt{1 + 4r^2} r \, dr = \frac{13}{3}\pi.$$

17.(本题满分 10 分)

『求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

解: 利用直角坐标系下的面积公式可得所求面积为

$$S = \int_0^{+\infty} e^{-x} |\sin x| \, dx = \sum_{n=0}^{\infty} \int_{n\pi}^{(n+1)\pi} e^{-x} |\sin x| \, dx$$
$$= \sum_{n=0}^{\infty} \int_0^{\pi} e^{-(n\pi+t)} |\sin (n\pi+t)| \, dt$$

[『]此题源自2012年第四届全国大学生数学竞赛非数类考题.

$$= \int_0^{\pi} e^{-t} \sin t \, dt \sum_{n=0}^{\infty} e^{-n\pi}$$
$$= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{e^{\pi} + 1}{2(e^{\pi} - 1)}.$$

其中利用两次分部积分可得 $\int_0^{\pi} e^{-t} \sin t dt = \frac{1 + e^{-\pi}}{2}$.

18.(本题满分 10 分)

读
$$a_n = \int_0^1 x^n \sqrt{1 - x^2} dx (n = 0, 1, 2, \cdots).$$

(1) 证明: 数列
$$\{a_n\}$$
 单调减少, 且 $a_n = \frac{n-1}{n+2} a_{n-2} (n=2,3,\cdots)$;

$$(2) \, \vec{\!x} \, \lim_{n \to \infty} \frac{a_n}{a_{n-1}}.$$

解: (1) 当 0 < x < 1 时, $x^n \sqrt{1-x^2} > x^{n+1} \sqrt{1-x^2}$, 因此由 $\{a_n\}$ 的定义可知 $a_n > a_{n+1}$, 即数列 $\{a_n\}$ 单调减少. 利用分部积分可得

$$a_{n} = \int_{0}^{1} x^{n} \sqrt{1 - x^{2}} dx = \frac{1}{n+1} \int_{0}^{1} \sqrt{1 - x^{2}} d \left(x^{n+1} \right)$$

$$= \frac{1}{n+1} x^{n+1} \sqrt{1 - x^{2}} \Big|_{0}^{1} + \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 - x^{2}}} dx$$

$$= \frac{1}{n+1} \int_{0}^{1} \frac{x^{n} \left(x^{2} - 1 \right) + x^{n}}{\sqrt{1 - x^{2}}} dx = -\frac{1}{n+1} a_{n} + \frac{1}{n+1} \int_{0}^{1} \frac{x^{n}}{\sqrt{1 - x^{2}}} dx$$

$$= -\frac{1}{n+1} a_{n} - \frac{1}{n+1} \int_{0}^{1} x^{n-1} d \left(\sqrt{1 - x^{2}} \right)$$

$$= -\frac{1}{n+1} a_{n} - x^{n-1} \sqrt{1 - x^{2}} \Big|_{0}^{1} + \frac{n-1}{n+1} \int_{0}^{1} x^{n-2} \sqrt{1 - x^{2}} dx$$

$$= -\frac{1}{n+1} a_{n} + \frac{n-1}{n+1} a_{n-2},$$

因此
$$\frac{n+2}{n+1}a_n = \frac{n-1}{n+1}a_{n-2}$$
, 即 $a_n = \frac{n-1}{n+2}a_{n-2}$ $(n=2,3,\cdots)$.
(2) 由于 $\frac{n-1}{n+2} = \frac{a_n}{a_{n-2}} < \frac{a_n}{a_{n-1}} < \frac{a_n}{a_n} = 1$, 由夹逼准则知 $\lim_{n\to\infty} \frac{a_n}{a_{n-1}} = 1$.

19.(本题满分 10 分)

设 Ω 是锥面 $x^2 + (y - z)^2 = (1 - z)^2 (0 \le z \le 1)$ 与平面 z = 0 围成的锥体, 求 Ω 的形心坐标.

解: 这题并不是一般的圆锥面,为此我们给出锥面的一般定义: 过定点 V 的动直线 L 沿着一条确定的曲线 Γ 移动所形成的曲面 S 叫做锥面. 直线 L 称为 S 的母线, 曲线 Γ 称为 S 的准线, 而定点 V 则是 S 的顶点. 在本题中, 锥面与 xOy 面的交线 $x^2 + y^2 = 1, z = 0$ 就是母线, 顶点则是 (0,1,1), 如图. 此锥面在 xOy 面的投影区域就是 $D = \{(x,y)|x^2 + y^2 \le 1\}$, 因此这题我们采用切片法 (先二后一) 计算.

[☞]此题源自1993年北京师范大学数学分析考研题

第19题图

设形心坐标为 $(\bar{x}, \bar{y}, \bar{z})$, 由于 Ω 是关于 vOz 面对称的, 由对称性可知 $\bar{x} = 0$. 对固定的 z, 记 $D_z = \{(x, y)|x^2 + (y - z)^2 \le (1 - z)^2\}$, 利用切片法可得

$$\iiint_{\Omega} \mathrm{d}V = \int_0^1 \mathrm{d}z \iint_{D_z} \mathrm{d}x \mathrm{d}y = \pi \int_0^1 (1-z)^2 \mathrm{d}z = \frac{\pi}{3},$$

$$\iiint_{\Omega} z \mathrm{d}V = \int_0^1 \mathrm{d}z \iint_{D_z} z \mathrm{d}x \mathrm{d}y = \pi \int_0^1 z (1-z)^2 \mathrm{d}z = \frac{\pi}{12},$$

$$\iiint_{\Omega} y \mathrm{d}V = \int_0^1 \mathrm{d}z \iint_{D_z} y \mathrm{d}x \mathrm{d}y = \pi \int_0^1 z (1-z)^2 \mathrm{d}z = \frac{\pi}{12}.$$

其中积分 $\iint_{D_z} y dx dy$ 中, 令 y - z = u, dy = du, 则

$$\iint\limits_{D_z} y \mathrm{d}x \mathrm{d}y = \iint\limits_{x^2 + u^2 \le (1 - z)^2} (u + z) \, \mathrm{d}x \mathrm{d}u = \pi z (1 - z)^2.$$

因此利用形心坐标公式得 $\bar{y} = \bar{z} = \frac{\pi/12}{\pi/3} = \frac{1}{4}$, 形心坐标为 $\left(0, \frac{1}{4}, \frac{1}{4}\right)$.

20.(本题满分 11 分)

设向量组 $\alpha_1 = (1,2,1)^T, \alpha_2 = (1,3,2)^T, \alpha_3 = (1,a,3)^T$ 为 \mathbb{R}^3 的一组基, $\beta =$ $(1,1,1)^{T}$ 在这组基下的坐标为 $(b,c,1)^{T}$.

- (1) 求 a, b, c;
- (2) 证明: $\alpha_2, \alpha_3, \beta$ 为 \mathbb{R}^3 的一组基, 并求 $\alpha_2, \alpha_3, \beta$ 到 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵.

解: (1) 由题意可知 $b\alpha_1 + c\alpha_2 + \alpha_3 = \beta$, 即

$$\begin{cases} b+c+1 = 1 \\ 2b+3c+a = 1 \\ b+2c+3 = 1 \end{cases}$$

解得 a = 3, b = 2, c = -2.

$$(2) 由于 |\alpha_2, \alpha_3, \beta| = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 3 & 1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & -1 \end{vmatrix} = 2 \neq 0, 因此 r(\alpha_2, \alpha_2, \beta) = 3, 这说明$$

 $\alpha_2, \alpha_3, \beta$ 是 \mathbb{R}^3 的一组基. 再由

$$(\alpha_2, \alpha_3, \beta) = (\alpha_2, \alpha_3, 2\alpha_1 - 2\alpha_2 + \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

可得
$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}) \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}^{-1} = (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}) \begin{pmatrix} 1 & 1 & 0 \\ -1/2 & 0 & 1 \\ 1/2 & 0 & 0 \end{pmatrix},$$
 所以 $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}$ 到 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 的过渡矩阵为 $\begin{pmatrix} 1 & 1 & 0 \\ -1/2 & 0 & 1 \\ 1/2 & 0 & 0 \end{pmatrix}$.

21.(本题满分 11 分)

已知矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
 与 $\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

- (1) 求x, y;
- (2) 求可逆矩阵 P 使得 $P^{-1}AP = B$.
- 解: (1) 由相似矩阵的性质可得

$$\begin{cases} |A| = |B| \\ \operatorname{tr}(A) = \operatorname{tr}(B) \end{cases} \Rightarrow \begin{cases} 4x - 8 = -2y \\ -2 + x - 2 = 2 - 1 + y \end{cases},$$

解得 x = 3, y = -2.

(2) **B** 是上三角矩阵, 因此 **A**, **B** 的特征值均为 2, -1, -2.

对矩阵 \boldsymbol{B} , 当 $\lambda_1 = 2$ 时, 由方程 $(2\boldsymbol{E} - \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 可得 λ_1 的一个特征向量 $\xi_1 = (1,0,0)^{\mathrm{T}}$; 当 $\lambda_2 = -1$ 时, 由方程 $(-\boldsymbol{E} - \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 可得 λ_2 的一个特征向量 $\xi_1 = (-1,3,0)^{\mathrm{T}}$; 当 $\lambda_3 = -2$ 时, 由方程 $(-2\boldsymbol{E} - \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 可得 λ_3 的一个特征向量 $\xi_1 = (0,0,1)^{\mathrm{T}}$.

取
$$\mathbf{P}_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则 $\mathbf{P}_1^{-1} \mathbf{B} \mathbf{P}_1 = \text{diag}\{2, -1, -2\}.$

同理对矩阵 A,也可求出一组线性无关特征向量,取 $P_2 = \begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix}$,则 $P_2^{-1}AP_2 =$ diag $\{2,-1,-2\}$. 故

$$P_1^{-1}BP_1 = P_2^{-1}AP_2 \Rightarrow (P_2P_1^{-1})^{-1}A(P_2P_1^{-1}) = B,$$

因此当取

$$P = P_2 P_1^{-1} = \begin{pmatrix} -1 & -2 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

时,则有 $P^{-1}AP = B$.

22.(本题满分 11 分)

设随机变量 X 与 Y 相互独立, X 服从参数为 1 的指数分布, Y 的概率分布为 P(Y = -1) = p, P(Y = 1) = 1 - p(0 . 令 <math>Z = XY.

- (1) 求 Z 的概率密度;
- (2) p 为何值时, X 与 Z 不相关;
- (3) X 与 Z 是否相互独立?
- 解: (1) X 的分布函数为 $F_X(x) = \begin{cases} 1 e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$. 由 X, Y 的独立性可得 Z 的分布函数

$$F_{Z}(z) = P(Z \le z) = P(XY \le z)$$

$$= P(XY \le z \mid Y = -1) P(Y = -1) + P(XY \le z \mid Y = 1) P(Y = 1)$$

$$= pP(-X \le z \mid Y = -1) + (1 - p) P(X \le z \mid Y = 1)$$

$$= pP(X \ge -z) + (1 - p)P(X \le z)$$

$$= p(1 - F_{X}(-z)) + (1 - p)F_{X}(z) = \begin{cases} pe^{z}, & z \le 0\\ 1 + (1 - p)e^{-z}, & z > 0 \end{cases}$$

因此 Z 的概率密度为 $f_Z(z) = F_Z'(z) = \begin{cases} pe^z, & z \leq 0\\ (1-p)e^{-z}, & z > 0 \end{cases}$

(2) 由条件可得

$$Cov(X, Z) = E(XZ) - EX \cdot EZ = EX^2 \cdot EY - (EX)^2 \cdot EY = DX \cdot EY = 1 - 2p,$$

因此当 $p=\frac{1}{2}$ 时, $\mathrm{Cov}(X,Z)=0$, 即 $\rho_{XZ}=0$. 因此 $p=\frac{1}{2}$ 时, X 与 Z 不相关.

(3) 由 (2) 可知当 $p \neq \frac{1}{2}$ 时, X 和 Z 是相关的, 从而不独立. 而当 $p = \frac{1}{2}$ 时, 只需要注意到事件 $\left\{X \leqslant \frac{1}{2}\right\} \subset \left\{Z \leqslant \frac{1}{2}\right\}$, 所以

$$P\left(X\leqslant\frac{1}{2},Z\leqslant\frac{1}{2}\right)=P\left(X\leqslant\frac{1}{2}\right)\neq P\left(X\leqslant\frac{1}{2}\right)P\left(Z\leqslant\frac{1}{2}\right),$$

因此对任意 $p \in (0,1), X, Z$ 不独立.

23.(本题满分 11 分)

设总体 X 的概率密度为

$$f(x,\sigma^2) = \begin{cases} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, & x \geqslant \mu\\ 0, & x < \mu \end{cases}$$

 μ 是已知参数, $\sigma > 0$ 是未知参数, A 是常数. X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本.

- (1)求A;
- (2) 求 σ^2 的最大似然估计量.
- **解:** (1) 由概率密度的归一性可知 $\int_{-\infty}^{+\infty} f(x) dx = 1$, 即

$$\int_{\mu}^{+\infty} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{A}{\sigma} \int_{0}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} dt$$
$$= \frac{\sqrt{2\pi}A}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} dt = A\sqrt{\frac{\pi}{2}} = 1,$$

得 $A = \sqrt{\frac{2}{\pi}}$

(2) 设样本 X_1, X_2, \cdots, X_n 对应的观测值为 x_1, x_2, \cdots, x_n , 则似然函数

$$L(\sigma^2) = \prod_{i=1}^n f(x_i; \sigma^2) = \begin{cases} \prod_{i=1}^n \sqrt{\frac{2}{\pi}} \frac{1}{\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}, & x_1, x_2 \dots, x_n \geqslant \mu \\ 0, & \text{ #$dt} \end{cases}.$$

当 $x_1, x_2, \dots, x_n \ge \mu$ 时,取对数 $\ln L(\sigma^2) = \sum_{i=1}^n \left[\ln \sqrt{\frac{2}{\pi}} - \frac{1}{2} \ln \sigma^2 - \frac{(x_i - \mu)^2}{2\sigma^2} \right],$ 令

$$\frac{\mathrm{d}\ln L\left(\sigma^{2}\right)}{\mathrm{d}\sigma^{2}} = \sum_{i=1}^{n} \left[-\frac{1}{2\sigma^{2}} + \frac{(x_{i} - \mu)^{2}}{2\sigma^{4}} \right] = -\frac{n}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{2\sigma^{4}} = 0,$$

解得 $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$, 因此 σ^2 的最大似然估计量为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

第 15 章 2020 年考研数学一

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. $x \to 0^+$ 时,下列无穷小量中最高阶是
A. $\int_0^x \left(e^{t^2} - 1\right) dt$ B. $\int_0^x \ln\left(1 + \sqrt{t^3}\right) dt$ C. $\int_0^{\sin x} \sin t^2 dt$ D. $\int_0^{1-\cos x} \sqrt{\sin^3 t} dt$

解: 首先我们有基本结论: 如果 f(x), g(x) 均为连续函数, 且 $\lim_{t\to a} \frac{f(t)}{g(t)} = 1$, 那么

$$\lim_{x \to a} \frac{\int_a^x f(t) dt}{\int_a^x g(t) dt} = \lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

于是当 $x \to 0^+$ 时, 我们有

$$\int_0^x (e^{t^2} - 1) dt \sim \int_0^x t^2 dt = \frac{1}{3}x^3,$$

$$\int_0^x \ln\left(1 + \sqrt{t^3}\right) dt \sim \int_0^x \sqrt{t^3} dt = \frac{2}{5}x^{\frac{5}{2}},$$

$$\int_0^{\sin x} \sin t^2 dt \sim \int_0^{\sin x} t^2 dt = \frac{1}{3}\sin^3 x \sim \frac{1}{3}x^3,$$

$$\int_0^{1 - \cos x} \sqrt{\sin^3 t} dt \sim \int_0^{1 - \cos x} t^{\frac{3}{2}} dt = \frac{2}{5}(1 - \cos x)^{\frac{5}{2}} \sim \frac{2}{5} \cdot \left(\frac{1}{2}\right)^{\frac{5}{2}}x^5,$$

正确答案选 D.

2. 设函数 f(x) 在区间 (-1,1) 内有定义, 且 $\lim_{x\to 0} f(x) = 0$, 则 ()

A.
$$\stackrel{\perp}{=}$$
 $\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$ 时, $f(x)$ 在 $x = 0$ 处可导

B.
$$\stackrel{\triangle}{=} \lim_{x \to 0} \frac{f(x)}{x^2} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导

C. 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$

D. 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$

解: 选项 A 和 B 不涉及到 f(0) 是否有定义, 无法保证 f(x) 是否在 x = 0 处的连续性, 所以可导性更加得不到. 对于选项 C 和 D, 如果 f(x) 在 x = 0 处可导, 那么由 $\lim_{x \to 0} f(x) = 0$ 可

知
$$f(0) = 0$$
, 且 $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} = A$ 存在, 那么

$$\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = \lim_{x \to 0} \frac{f(x)}{x} \frac{x}{\sqrt{|x|}} = A \cdot 0 = 0,$$

正确答案选 C, 而 D 显然可取反例 f(x) = x.

3. 设函数 f(x,y) 在点 (0,0) 处可微, f(0,0) = 0, $\mathbf{n} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right)\Big|_{(0,0)}$, 非零向量 $\boldsymbol{\alpha}$ 与n垂直,则

A.
$$\lim_{(x,y)\to(0,0)} \frac{|\mathbf{n}\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
 存在

C.
$$\lim_{(x,y)\to(0,0)} \frac{\left|\boldsymbol{\alpha}\cdot(x,y,f(x,y))\right|}{\sqrt{x^2+y^2}}$$
 存在

D.
$$\lim_{(x,y)\to(0,0)} \frac{\left|\boldsymbol{\alpha}\times\left(x,y,f(x,y)\right)\right|}{\sqrt{x^2+y^2}}$$
 存在

解: 由于函数 f(x, y) 在 (x, y) = (0, 0) 处可微, 且 f(0, 0) = 0 那么有

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-\frac{\partial f}{\partial x}'(0,0)x-\frac{\partial f}{\partial y}'(0,0)y}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{-\boldsymbol{n}\cdot\left(x,y,f(x,y)\right)}{\sqrt{x^2+y^2}}=0,$$

因此
$$\lim_{(x,y)\to(0,0)} \frac{\left|\mathbf{n}\cdot\left(x,y,f(x,y)\right)\right|}{\sqrt{x^2+y^2}} = 0$$
, 选 A.

4. 设 R 为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径, r 是实数, 则)

A.
$$\sum_{n=1}^{\infty} a_{2n} r^{2n}$$
 发散时, $|r| \ge R$ B. $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛时, $|r| < R$ C. $|r| \ge R$ 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散 D. $|r| \le R$ 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛

B.
$$\sum_{n=1}^{\infty} a_{2n} r^{2n}$$
 收敛时, $|r| < R$

C.
$$|r| \geqslant R$$
 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散

D.
$$|r| \leqslant R$$
 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛

解: 注意到当 |r| < R 时, $\sum_{n=0}^{\infty} a_n r^n$ 绝对收敛, 那么此时有

$$\sum_{n=1}^{\infty} |a_{2n}r^{2n}| \leqslant \sum_{n=1}^{\infty} |a_nr^n| < +\infty,$$

由比较判别法知 $\sum_{n=1}^{\infty} |a_{2n}r^{2n}|$ 收敛. 也就是 $\sum_{n=1}^{\infty} a_{2n}r^{2n}$ 是绝对收敛的, $\sum_{n=1}^{\infty} a_{2n}r^{2n}$ 自然也是收敛的, 那么选项 A 的逆否命题正确, 因此正确答案选 A. 对于选项 B 和 C, 如果取 a_{2n-1} = $1, a_{2n} \equiv 0,$ 则 $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 对任意 r 均收敛. 对于选项 D, 如取 $a_n \equiv 1,$ 那么 R = 1, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 在 r = R = 1 处发散.

5. 若矩阵 A 经初等列变换化成 B. 则

)

A. 存在矩阵 P, 使得 PA = B

B. 存在矩阵 P, 使得 BP = A

C. 存在矩阵 P, 使得 PB = A

D. 方程组 Ax = 0 与 Bx = 0 同解

解: 矩阵 A 经初等列变换化成 B 说明存在可逆矩阵 Q 使得 B = AQ, 即 $A = BQ^{-1} = AQ$ BP, 选B, 其他选项易知都不对.

6. 已知直线
$$L_1: \frac{x-a_2}{a_1} = \frac{y-b_2}{b_1} = \frac{z-c_2}{c_1}$$
 与直线 $L_2: \frac{x-a_3}{a_2} = \frac{y-b_3}{b_2} = \frac{z-c_3}{c_2}$ 相交于一点,记向量 $\alpha_i = \begin{pmatrix} a_i \\ b_i \\ c_i \end{pmatrix}$, $i = 1, 2, 3$,则

 $A. \alpha_1$ 可由 α_2, α_3 线性表示

 $B. \alpha_2$ 可由 α_1, α_3 线性表示

 $C. \alpha_3$ 可由 α_1, α_2 线性表示

 $D. \alpha_1, \alpha_2, \alpha_3$ 线性无关

解: L_1 和 L_2 的方向向量分别为 α_1,α_2 , 这两条直线交于一点, 说明 α_1,α_2 线性无关. 点 $P_1(a_2,b_2,c_2) \in L_1, P_2(a_3,b_3,c_3) \in L_2$,由于 L_1,L_2 共面,所以

$$\begin{vmatrix} \alpha_1, \alpha_2, \overrightarrow{P_1P_2} \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 - a_2 \\ b_1 & b_2 & b_3 - b_2 \\ c_1 & c_2 & c_3 - c_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = |\alpha_1, \alpha_2, \alpha_3| = 0$$

即 $\alpha_1,\alpha_2,\alpha_3$ 线性相关, 而 α_1,α_2 线性无关, 因此 α_3 可由 α_1,α_2 线性表示, 选 C. 而 α_3 可能 是零向量, 因此 A 和 B 均不对.

7. 设 A, B, C 为三个随机事件, 且

$$P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0, P(AC) = P(BC) = \frac{1}{12},$$
 则 A, B, C 中恰有一个事件发生的概率为 A. $\frac{3}{4}$ B. $\frac{2}{3}$ C. $\frac{1}{2}$ D. $\frac{5}{12}$

解: 首先所求的概率为 $P(A\overline{B}\overline{C}) + P(\overline{A}B\overline{C}) + P(\overline{A}\overline{B}C)$, 其中

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) - P(ABC) = \frac{7}{12}.$$

$$P(A\overline{B}\overline{C}) = P(\overline{B}\overline{C}) - P(\overline{A}\overline{B}\overline{C}) = P(\overline{B} \cup C) - P(\overline{A} \cup B \cup C)$$

$$= 1 - P(B \cup C) - [1 - P(A \cup B \cup C)] = P(A \cup B \cup C) - P(B \cup C)$$

$$= \frac{7}{12} - P(B) - P(C) + P(BC) = \frac{1}{6},$$

$$P(\overline{A}B\overline{C}) = \frac{7}{12} - P(A) - P(C) + P(AC) = \frac{1}{6},$$

$$P(\overline{A}BC) = \frac{7}{12} - P(A) - P(B) + P(AB) = \frac{1}{12},$$

因此 A, B, C 中恰有一个事件发生的概率为 $\frac{1}{6} + \frac{1}{6} + \frac{1}{12} = \frac{5}{12}$, 选 D.

8. 设 X_1, X_2, \dots, X_{100} 为来自总体 X 的简单随机样本, 其中 P(X = 0) = P(X = 1) = $\frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数, 则利用中心极限定理可得 $P\left(\sum_{i=1}^{100}X_{i}\leqslant55\right)$ 的近 似值为 ()

A.
$$1 - \Phi(1)$$

B.
$$\Phi(1)$$

C.
$$1 - \Phi(0.2)$$
 D. $\Phi(0.2)$

D.
$$\Phi(0.2)$$

解: 注意到 $Y = \sum_{i=1}^{100} \sim B\left(100, \frac{1}{2}\right)$, 那么 EY = 50, DY = 25, 且由中心极限定理知 $\frac{Y - 50}{5}$ 近似服从标准正态分布, 于是

$$P\left(\sum_{i=1}^{100} X_i \le 55\right) = P(Y \le 55) = P\left(\frac{Y - 50}{5} \le 1\right) \approx \Phi(1),$$

选 B.

二、填空题,9~14题,每题4分,共24分.

9.
$$\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{\ln(1 + x)} \right) = \underline{\hspace{1cm}}$$

解:通分以后利用等价无穷小与洛必达法则可得

$$\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{\ln(1 + x)} \right) = \lim_{x \to 0} \frac{\ln(1 + x) - (e^x - 1)}{(e^x - 1)\ln(1 + x)} = \lim_{x \to 0} \frac{\ln(1 + x) - (e^x - 1)}{x^2}$$
$$= \lim_{x \to 0} \frac{\frac{1}{1 + x} - e^x}{2x} = \lim_{x \to 0} \frac{1}{2} \left(-\frac{1}{(1 + x)^2} - e^x \right) = -1.$$

10.设
$$\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln(t + \sqrt{t^2 + 1}) \end{cases}, 则 \frac{d^2 y}{dx^2} \Big|_{t=1} = \underline{\hspace{1cm}}.$$

解: 由参数方程求导公式可得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{\frac{1}{\sqrt{t^2+1}}}{\frac{t}{\sqrt{t^2+1}}} = \frac{1}{t},$$

$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) / \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{t^2} / \frac{t}{\sqrt{t^2+1}} = -\frac{\sqrt{t^2+1}}{t^3}.$$
代入 $t = 1$ 可得 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\Big|_{t=1} = -\sqrt{2}.$

- 11.若函数 f(x) 满足 f''(x) + af'(x) + f(x) = 0 (a > 0), 且 f(0) = m, f'(0) = n, 则 $\int_0^{+\infty} f(x) dx = \underline{\qquad}.$
- **解:** 微分方程 f''(x) + af'(x) + f(x) = 0 的特征方程为 $\lambda^2 + a\lambda + 1 = 0$. 如果 $a \ge 2$, 那么特征根为 $\lambda_{1,2} = \frac{-a \pm \sqrt{a^2 4}}{2} < 0$, 此时方程的通解为

$$f(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \Rightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = 0.$$

如果 0 < a < 2, 那么特征根为 $\lambda_{1,2} = \frac{-a \pm \sqrt{4 - a^2}}{2}$, 特征根的实部分为负, 此时方程的通解为

$$f(x) = e^{-\frac{a}{2}x} \left(C_1 \cos \frac{\sqrt{4-a^2}}{2} x + C_2 \sin \frac{\sqrt{4-a^2}}{2} x \right)$$

$$\Rightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = 0.$$

总之一定有 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = 0$. 那么

$$\int_0^{+\infty} f(x) \, \mathrm{d}x = -\int_0^{+\infty} [f''(x) + af'(x)] \, \mathrm{d}x = - \Big[f'(x) + af(x) \Big] \bigg|_0^{+\infty} = n + am.$$

12.设函数
$$f(x,y) = \int_0^{xy} e^{xt^2} dt$$
, 则 $\frac{\partial^2 f}{\partial x \partial y} \Big|_{(1,1)} = \underline{\qquad}$

解: 令
$$\frac{\partial f}{\partial y} = e^{x(xy)^2} \cdot x = xe^{x^2y^2}$$
, 于是 $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = e^{x^3y^2} + 3x^3y^2e^{x^3y^2}$, 代入 $(x,y) = (1,1)$ 得 $\frac{\partial^2 f}{\partial x \partial y} \Big|_{(1,1)} = 4e$.

13.行列式
$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}.$$

解: 利用行列式的行列变换得

$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 0 & 0 & a & a \end{vmatrix} = \begin{vmatrix} 0 & a & -1 + a^2 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 0 & 0 & a & a \end{vmatrix}$$
$$= - \begin{vmatrix} a & -1 + a^2 & 1 \\ a & 1 & -1 \\ 0 & a & a \end{vmatrix} = - \begin{vmatrix} a & a^2 - 2 & 1 \\ a & 2 & -1 \\ 0 & 0 & a \end{vmatrix} = a^4 - 4a^2.$$

14.设 X 服从区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的均匀分布, $Y = \sin X$, 则 $\operatorname{Cov}(X, Y) = \underline{\hspace{1cm}}$.

解:
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{1}{\pi}, & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \text{ 显然 } E(X) = 0, \text{ 于是} \\ 0, & \text{其他} \end{cases}$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = E(XY) = E(X \sin X)$$
$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \, dx = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \sin x \, dx = \frac{2}{\pi}.$$

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)

求函数 $f(x, y) = x^3 + 8y^3 - xy$ 的极值.

解: 由
$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 - y = 0 \\ \frac{\partial f}{\partial y} = 24y^2 - x = 0 \end{cases}$$
 得 $(x, y) = (0, 0)$ 或 $\left(\frac{1}{6}, \frac{1}{12}\right)$. 进一步有

$$A = \frac{\partial^2 f}{\partial x^2} = 6x, B = \frac{\partial^2 f}{\partial x \partial y} = -1, \frac{\partial^2 f}{\partial y^2} = 48y.$$

于是当 (x,y)=(0,0) 时, A=0,B=-1,C=0, 那么 $AC-B^2=-1<0$, 所以 (0,0) 不是 极值点; 当 $(x,y)=\left(\frac{1}{6},\frac{1}{12}\right)$ 时, A=1,B=-1,C=4, 则 $AC-B^2=3>0$ 且 A>0, 所 以 $\left(\frac{1}{6}, \frac{1}{12}\right)$ 为极小值点, 且极小值 $f\left(\frac{1}{6}, \frac{1}{12}\right) = -\frac{1}{216}$.

16.(本题满分 10 分) 计算曲线积分 $\int_L \frac{4x-y}{4x^2+y^2} dx + \frac{x+y}{4x^2+y^2} dy$, 其中 $L \stackrel{}{=} L x^2 + y^2 = 2$, 方向为逆时

如图, 取闭曲线 $L_1: 4x^2 + v^2 = r^2, r$ 充分小使得 L_1 在 L 所包围的区域内, 方向为逆时针. 设 L 与 L_1 所围成的 区域为 D, L_1 所围成的椭圆区域为 D_r ,则利用格林公式, 可知原曲线积分

$$I = \oint_{L-L_1} P \, \mathrm{d}x + Q \, \mathrm{d}y + \int_{L_1} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

$$= \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathrm{d}x \, \mathrm{d}y + \int_{L_1} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

$$= \frac{1}{r^2} \int_{L_1} (4x - y) \, \mathrm{d}x + (x + y) \, \mathrm{d}y$$

$$= \frac{1}{r^2} \iint_{D_r} [1 - (-1)] \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{r^2} \cdot 2 \cdot \frac{1}{2} r \cdot r = \pi.$$

第16题图

17.(本题满分 10 分)

设数列 $\{a_n\}$ 满足 $a_1=1,(n+1)a_{n+1}=\left(n+\frac{1}{2}\right)a_n$, 证明: 当 |x|<1 时, 幂级数 $\sum a_n x^n$ 收敛, 并求其和函数.

解: 方法一 首先有 $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n\to\infty} \left| \frac{n+1}{n+\frac{1}{2}} \right| = 1$, 因此幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为

1. 即当
$$|x| < 1$$
 时,幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 收敛. 现在令 $S(x) = \sum_{n=1}^{\infty} a_n x^n$, 则当 $|x| < 1$ 时,

$$S'(x) = \sum_{n=1}^{\infty} nax_n x^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = a_1 + \sum_{n=1}^{\infty} \left(n + \frac{1}{2}\right) a_n x^n$$

$$=1+\sum_{n=1}^{\infty}na_nx^n+\frac{1}{2}\sum_{n=1}^{\infty}a_nx^n=1+xS'(x)+\frac{1}{2}S(x).$$

因此 $S'(x) - \frac{1}{2(1-x)}S(x) = \frac{1}{1-x}$,解此一阶线性微分方程得 $S(x) = \frac{C}{\sqrt{1-x^2}} - 2$. 再由 S(0) = C - 2 = 0 得 C = 2,因此和函数 $S(x) = \frac{2}{\sqrt{1-x^2}} - 2$,|x| < 1.

方法二 收敛半径同方法一,直接求和函数.注意到

$$a_n = \frac{n - \frac{1}{2}}{n} a_{n-1} = \frac{2n - 1}{2n} a_n = \dots = \frac{2n - 1}{2n} \frac{2n - 3}{2n - 2} \cdot \frac{3}{4} a_1 = 2 \frac{(2n - 1)!!}{(2n)!!},$$

那么当 |x| < 1 时,

$$\sum_{n=1}^{\infty} a_n x^n = 2 \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n = \sum_{n=1}^{\infty} \frac{4}{\pi} x^n \int_0^{\frac{\pi}{2}} \sin^{2n} t \, dt$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \sum_{n=1}^{\infty} x^n \sin^{2n} t \, dt = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \frac{x \sin^2 t}{1 - x \sin^2 t} \, dt$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \left(\frac{1}{1 - x \sin^2 t} - 1 \right) dt = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \frac{dt}{\cos^2 t + (1 - x) \sin^2 t} - 2$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \frac{d(\tan t)}{1 + (1 - x) \tan^2 t} - 2 = \frac{4}{\pi} \frac{1}{\sqrt{1 - x}} \arctan\left(\sqrt{1 - x} \tan t\right) \Big|_0^{\frac{\pi}{2}} - 2$$

$$= \frac{4}{\pi} \frac{1}{\sqrt{1 - x}} \cdot \frac{\pi}{2} - 2 = \frac{2}{\sqrt{1 - x}} - 2.$$

注:如果熟记麦克劳林级数

$$(1-x)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)\cdots\left(-\frac{1}{2}-n+1\right)}{n!} (-x)^n = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n, -1 < x < 1$$

的话,方法二的计算会更快.

18.(本题满分 10 分)

设 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ (1 $\leq x^2 + y^2 \leq 4$) 的下侧, f(x) 为连续函数, 计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] \, dy \, dz + [yf(xy) + 2y + x] \, dz \, dx + [zf(xy) + z] \, dx \, dy.$$

解: 令 $F(x, y, z) = z - \sqrt{x^2 + y^2}$, 那么

$$F'_x = -\frac{x}{\sqrt{x^2 + y^2}}, F'_y = -\frac{y}{\sqrt{x^2 + y^2}}, F'_z = 1.$$

曲面 Σ 在 xOy 面的投影区域为圆环 $D_{xy} = \{(x,y): 1 \leq x^2 + y^2 \leq 4\}$ 则

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] \, dy \, dz + [yf(xy) + 2y + x] \, dz \, dx + [zf(xy) + z] \, dx \, dy$$

$$= \iint_{\Sigma} \left\{ [xf(xy) + 2x - y] \frac{F_x'}{F_z'} + [yf(xy) + 2y + x] \frac{F_y'}{F_z'} + zf(xy) + z \right\} dx dy$$

$$= \iint_{\Sigma} \left\{ [xf(xy) + 2x - y] \frac{-x}{\sqrt{x^2 + y^2}} + [yf(xy) + 2y + x] \frac{-y}{\sqrt{x^2 + y^2}} + zf(xy) + z \right\} dx dy$$

$$= -\iint_{\Sigma} \sqrt{x^2 + y^2} dx dy = \iint_{D_{xy}} \sqrt{x^2 + y^2} dx dy$$

$$= \int_{0}^{2\pi} d\theta \int_{1}^{2} r^2 dr = \frac{14}{3}\pi.$$

19.(本题满分 10 分)

设函数 f(x) 在区间 [0,2] 上具有连续导数, f(0) = f(2) = 0, $M = \max_{x \in [0,2]} |f(x)|$, 证明:

- (1) 存在 $\xi \in (0,2)$, 使得 $|f'(\xi)| \ge M$;
- (2) 若对任意 $x \in (0,2), |f'(x)| \leq M, 则 M = 0.$
- **证明:** (1) 设 $M = \max_{x \in [0,2]} |f(x)| = |f(x_0)|$, 由拉格朗日中值定理知存在 $\xi_1 \in (0,x_0), \xi_2 \in (x_0,2)$, 使得

$$|f'(\xi_1)| = \left| \frac{f(x_0) - f(0)}{x - x_0} \right| = \frac{M}{x_0}, |f'(\xi_2)| = \left| \frac{f(2) - f(x_0)}{2 - x_0} \right| = \frac{M}{2 - x_0}.$$

注意到

$$|f'(\xi_1)| + |f'(\xi_2)| = \frac{M}{x_0} + \frac{M}{2 - x_0} \geqslant \frac{2M}{\sqrt{x_0(2 - x_0)}} \geqslant M,$$

那么取 $|f'(\xi)| = \max\{|f'(\xi_1)|, |f'(\xi_2)|\}$ 时, 必有 $|f'(\xi)| \ge M$.

(2) 由条件有 $|f'(\xi_1)| = \frac{M}{x_0} \le M$, 因此 $x_0 \ge 1$; $|f'(\xi_2)| = \frac{M}{2-x_0} \le M$, 因此 $x_0 \le 1$. 于是只能 $x_0 = 1$, 即 |f(1)| = M.

$$M = |f(1) - f(0)| = \left| \int_0^1 f'(x) \, \mathrm{d}x \right| \le \int_0^1 |f'(x)| \, \mathrm{d}x \le \int_0^1 M \, \mathrm{d}x = M,$$

等号成立当且切仅当 $|f'(x)| \equiv M, x \in [0, 1]$. 而 f(x) 在 x = 1 处取得极值, 由费马定理可知 f'(1) = 0, 因此 M = 0.

20.(本题满分 11 分)

设二次型
$$f(x_1, x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$$
 经过正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{Q} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $a \ge b$.

- (1) 求 a,b 的值;
- (2) 求正交矩阵 Q.

解: (1) 记 $A = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, $B = \begin{pmatrix} a & 2 \\ 2 & b \end{pmatrix}$, 则 $Q^{T}AQ = B$, Q 为正交矩阵. 因为 A, B 相似, 所以 $\begin{cases} \operatorname{tr}(A) = \operatorname{tr}(B) \\ |A| = |B| \end{cases} \Rightarrow \begin{cases} 1 + 4 = a + b \\ 1 \times 4 = ab \end{cases}$, $a \ge b \Rightarrow a = 4, b = 1$.

(2) 易知 A, B 的特征值均为 $\lambda_1 = 0$, $\lambda_2 = 5$. 当 $\lambda_1 = 0$ 时, 方程组 (0E - A)x = 0 的基础解系为 $\alpha_1 = (2,1)^T$, 方程组 (0E - B)x = 0 的基础解系为 $\beta_1 = (1,-2)^T$; 当 $\lambda_2 = 5$ 时, 方程组 (5E - A)x = 0 的基础解系为 $\alpha_2 = (1,-2)^T$, 方程组 (5E - B)x = 0 的基础解系为 $\beta_2 = (2,1)^T$. 令 $\beta_2 = (2,1)^T$.

$$P_1^{-1}AP_1 = P_2^{-1}BP_2 = \begin{pmatrix} 0 \\ 5 \end{pmatrix}.$$

所以 $\mathbf{B} = \mathbf{P}_2 \mathbf{P}_1^{-1} \mathbf{A} \mathbf{P}_1 \mathbf{P}_2^{-1} = (\mathbf{P}_1 \mathbf{P}_2^{-1})^{-1} \mathbf{A} \mathbf{P}_1 \mathbf{P}_2^{-1},$ 且

$$P_1 P_2^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & 4 \end{pmatrix}$$

是正交矩阵, 因此 $Q = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & 4 \end{pmatrix}$.

21.(本题满分 11 分)

设 A 为二阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量, 且不是 A 的特征向量.

- (1) 证明: **P** 是可逆矩阵;
- (2) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.
- **解:** (1) 由题意 α 是非零向量, $A\alpha \neq k\alpha$, 所以 $A\alpha$, α 线性无关, 即 $P = (A\alpha, \alpha)$ 为可逆矩阵.

(2)
$$AP = A(\alpha, A\alpha) = (A\alpha, A^2\alpha) = (A\alpha, 6\alpha - A\alpha) = (\alpha, A\alpha) \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix} = P \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$$
, 所以 $P^{-1}AP = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$, 即 $A = B = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$ 相似. 不难知 B 有两个不同的特征值

 $\begin{pmatrix} 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \end{pmatrix}$ $\lambda_1 = 2, \lambda_2 = -3$, 因此 A 的特征值也是 2, -3, 所以 A 可以相似对角化.

22.(本题满分 11 分)

设随机变量 X_1, X_2, X_3 相互独立, 其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P(X_3=0)=P(X_3=1)=\frac{1}{2}, Y=X_3X_1+(1-X_3)X_2.$

- (1) 求二维随机变量 (X_1,Y) 的分布函数, 结果用标准正态分布函数 $\Phi(x)$ 表示;
- (2) 证明:随机变量 Y 服从标准正态分布.
- ◎ **解:** (1) (X_1, Y) 的分布函数为

$$F(x, y) = P(X_1 \leqslant x, Y \leqslant y) = P(X_1 \leqslant x, Y \leqslant y)$$

$$= P(X_3 = 0, X_1 \leqslant x, Y \leqslant y) + P(X_3 = 1, X_1 \leqslant x, Y \leqslant y)$$

$$= P(X_3 = 0, X_1 \leqslant x, X_2 \leqslant y) + P(X_3 = 1, X_1 \leqslant x, X_1 \leqslant y)$$

$$= \frac{1}{2} P(X_1 \leqslant x) P(X_2 \leqslant y) + \frac{1}{2} P(X_1 \leqslant \min\{x, y\})$$

$$= \begin{cases} \frac{1}{2} \Phi(x) \Phi(y) + \frac{1}{2} \Phi(x), & x \leqslant y \\ \frac{1}{2} \Phi(x) \Phi(y) + \frac{1}{2} \Phi(y), & x > y \end{cases}$$

(2) Y 的边缘分布函数为 $F_Y(y) = F(+\infty, y) = \frac{1}{2}\Phi(y) + \frac{1}{2}\Phi(y) = \Phi(y)$, 因此 Y 服从标准正态分布.

23.(本题满分 11 分)

设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t > 0 \\ 0, & \text{ 其他.} \end{cases}$$

其中 θ , m 为参数且大于零.

- (1) 求概率 P(T > t) 与 P(T > s + t | T > s), 其中 s > 0, t > 0;
- (2) 任取 n 个这种元件做寿命试验, 测得他们的寿命分别为 t_1, t_2, \dots, t_n , 若 m 已知, 求 θ 的最大似然估计值 $\hat{\theta}$.
- **解:** (1) 当 s > 0, t > 0 时

$$P(T > t) = 1 - F(t) = e^{-\left(\frac{t}{\theta}\right)^m},$$

$$P(T > s + t|T > s) = \frac{P(T > s + t, T > s)}{P(T > s)}$$

$$= \frac{P(T > s + t)}{P(T > s)} = \frac{e^{-\left(\frac{s + t}{\theta}\right)^m}}{e^{-\left(\frac{s}{\theta}\right)^m}} = e^{-\frac{(s + t)^m - s^m}{\theta^m}}.$$

 $=\frac{P(T>s+t)}{P(T>s)}=\frac{\mathrm{e}^{-\left(\frac{s+t}{\theta}\right)^m}}{\mathrm{e}^{-\left(\frac{s}{\theta}\right)^m}}=\mathrm{e}^{-\frac{(s+t)^m-s^m}{\theta^m}}.$ $(2) 总体 T 的概率密度为 <math>f(t)=\begin{cases} \mathrm{e}^{-\left(\frac{t}{\theta}\right)^m}\frac{mt^{m-1}}{\theta^m}, & t>0\\ 0, & \text{其他} \end{cases}, \text{则样本的似然函数为}$

$$L(\theta) = \prod_{i=1}^{n} f(t_i) = \begin{cases} e^{-\frac{1}{\theta^m} \sum_{i=1}^{n} t^m} m^n (t_1 t_2 \cdots t_n)^{m-1} \theta^{-nm}, & t_1, t_2, \cdots, t_n > 0 \\ 0, & \text{ #$dt} \end{cases}.$$

 $\stackrel{\text{def}}{=} t_1, t_2, \cdots, t_n > 0 \text{ iff, } \ln L(\theta) = -\frac{1}{\theta^m} \sum_{i=1}^n t^m + n \ln m + (m-1) \ln(t_1 t_2 \cdots t_n) - n m \ln \theta, \Leftrightarrow$

$$\frac{\mathrm{d}\ln(\theta)}{\mathrm{d}\theta} = \frac{m}{\theta^{m+1}} \sum_{i=1}^{n} t_i^m - \frac{nm}{\theta} = 0 \Rightarrow \theta = \left(\frac{1}{n} \sum_{i=1}^{n} t_i^m\right)^{\frac{1}{m}},$$

即 θ 的最大似然估计值为 $\hat{\theta} = \left(\frac{1}{n}\sum_{i=1}^{n}t_{i}^{m}\right)^{\frac{1}{m}}$.

