heemod TB population Markov model

N Green

17/01/2020

```
# see: https://cran.r-project.org/web/packages/heemod/vignettes/d non homogeneous.html
# NOTE:
# transitions happen at the beginning of each year (equivalent to transition happening at
# the end + ignoring the first year) with method = "beginning".
# Since with this method the first year is actually the second,
# costs should be discounted from the start with the argument first = TRUE in discount().
library(heemod)
library(purrr)
library(dplyr)
# age-dependent probability of death, TB and QoL weighting
pdeath_QoL <-
 read.csv(here::here("raw data", "pdeath_QoL.csv"))
# probabilistic realisations of starting state probabilities
# generated from decision tree
load(file = here::here("data", "init_states.RData"))
head(init_states)
    noLTBI completeTx incompleteTx
                                         noTx activeTB dead
## 1 0.643 0.04429927 0.068075534 0.2446252
## 2 0.683 0.02576789 0.019090692 0.2721414
## 3 0.672 0.04943117 0.030844729 0.2477241
                                                          0
## 4 0.742 0.05223975 0.001835084 0.2039252
## 5 0.726 0.02743526 0.010678055 0.2358867
                                                          0
## 6 0.650 0.05570397 0.024181029 0.2701150
# define the model heemod parameters
param <- define_parameters(</pre>
  age_init = 34,
                                   # starting age
  age = age_init + markov_cycle, # increment age annually
  # transition probabilities
  pReact_comp = 0.0006779,
                                  # TB after completed LTBI treatment
                                # TB after LTBI treatment dropout
  pReact_incomp = 0.0015301,
  pReact = 0.0019369,
                                  # TB after no treatment
 TB_{cost} = 4925.76,
                                  # cost of TB treatment (£)
  d = 0.035,
                                   # annual discount factor
  # match prob death to age
```

```
pdeath = look_up(data = pdeath_QoL,
                   value = "pDeath",
                   age = age),
  pdeathTB = look_up(data = pdeath_QoL,
                     value = "pDeath_TB",
                     age = age),
  # match QoL weight to age
  QoL = look_up(data = pdeath_QoL,
                value = "QOL_weight",
                age = age)
## Warning: markov_cycle was deprecated in heemod 0.16.0.
## i Please use model_time instead.
## i The deprecated feature was likely used in the base package.
## Please report the issue to the authors.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# create transition matrix
mat_trans <- define_transition(</pre>
 state_names = c(
   "noLTBI",
   "completeTx",
   "incompleteTx",
   "noTx",
    "activeTB",
   "dead"
 ),
  # from-to probability matrix
  # C represent complements
 C, 0, 0, 0, 0,
                             pdeath,
 0, C, 0, 0, pReact_comp,
                             pdeath,
 0, 0, C, 0, pReact_incomp, pdeath,
 0, 0, 0, C, pReact,
                         pdeath,
 C, 0, 0, 0, 0,
                             pdeathTB,
 0, 0, 0, 0, 0,
# define starting state populations
init_states <- select(.data = init_states,</pre>
                      noLTBI,
                      completeTx,
                      incompleteTx,
                      noTx)
init_states <- data.frame(init_states,</pre>
                          activeTB = 0,
                          dead = 0)
# define cost and utility values associated with each state
```

```
noLTBI <- define_state(</pre>
 cost = 0,
 utility = discount(QoL, d, first = TRUE)
completeTx <- define_state(</pre>
 cost = 0,
 utility = discount(QoL, d, first = TRUE)
incompleteTx <- define_state(</pre>
 cost = 0,
  utility = discount(QoL, d, first = TRUE)
noTx <- define_state(</pre>
 cost = 0,
 utility = discount(QoL, d, first = TRUE)
activeTB <- define state(</pre>
 cost = discount(TB_cost, d, first = TRUE),
 utility = discount(QoL - 0.15, d, first = TRUE)
)
dead <- define_state(</pre>
 cost = 0,
 utility = 0
# combine all of the model elements to form
# a 'stratgey' consisting of a transition
# matrix and states states with properties attached
strat <- define_strategy(</pre>
 transition = mat_trans,
 noLTBI = noLTBI,
 completeTx = completeTx,
 incompleteTx = incompleteTx,
 noTx = noTx,
  activeTB = activeTB,
  dead = dead
)
save(strat, params, cost, utility,
    file = "data/ltbi_heemod.RData")
# run a single simulation
res mod <-
  run_model(
    init = 1000 * init_states[1, ], # initial population sizes
   method = "end",
   strat,
    parameters = param,
  cycles = 66,
                                      # number of time steps
```

```
cost = cost,
effect = utility
)
```

No named model -> generating names.

Run multiple simulations

Using the sample of starting state probabilities

```
res_mod <- list()
for (i in 1:nrow(init_states)) {
  res_mod[[i]] <-
   suppressMessages(
      run_model(
        # init = c(674.0588764, # hard-code values
                  168.0253748,
        #
                  42.42724895,
        #
                   115.4884998,
        #
                   0,
                   0),
       init = 1000 * init_states[i, ], # population sizes
       method = "end",
       strat,
       parameters = param,
       cycles = 66,
       cost = cost,
       effect = utility
      ))
```

Results

res_mod[[1]]

```
## 1 strategy run for 66 cycles.
##
## Initial state counts:
##
## noLTBI = 643
## completeTx = 44.2992721299233
## incompleteTx = 68.0755335064717
## noTx = 244.625194363605
## activeTB = 0
## dead = 0
##
## Counting method: 'end'.
##
## Values:
##
##
        cost utility
## I 64939.64 18735.25
```

```
\# extract the cost and utility values
c1 <- map_df(res_mod, "run_model")$cost</pre>
h1 <- map_df(res_mod, "run_model")$utility</pre>
get_counts(res_mod[[1]])
## # A tibble: 396 x 4
##
      .strategy_names model_time state_names count
##
                         <int> <chr>
                                             <dbl>
## 1 I
                               1 noLTBI
                                              642.
## 2 I
                               2 noLTBI
                                              643.
## 3 I
                               3 noLTBI
                                              643.
## 4 I
                               4 noLTBI
                                              642.
## 5 I
                               5 noLTBI
                                              642.
## 6 I
                               6 noLTBI
                                              642.
## 7 I
                               7 noLTBI
                                              642.
                               8 noLTBI
## 8 I
                                              642.
## 9 I
                               9 noLTBI
                                              641.
## 10 I
                              10 noLTBI
                                              641.
## # i 386 more rows
get_values(res_mod[[1]])
```

##		model time	.strategy_names	value names	value
##	1	_ 1	I		2893.6217181
##	2	2	I	cost	2788.4685562
##	3	3	I	cost	2686.9630890
##	4	4	I	cost	2589.0048654
##	5	5	I	cost	2494.3029316
##	6	6	I	cost	2402.9158522
##	7	7	I	cost	2314.6079384
##	8	8	I	cost	2229.3845530
##	9	9	I	cost	2147.0354045
##	10	10	I	cost	2067.5602321
##	11	11	I	cost	1990.6994981
##	12	12	I	cost	1916.4105829
##	13	13	I	cost	1844.6932493
##	14	14	I	cost	1775.3801128
##	15	15	I		1708.4451018
##	16	16	I	cost	1643.6450770
##	17	17	I	cost	
##	18	18	I		1520.2998884
##	19	19	I	cost	1461.6662675
##	20	20	I	cost	
##	21	21	I		1349.8350639
##	22	22	I		1296.4699955
##	23	23	I	cost	
##	24	24	I		1194.4873875
##	25	25	I	cost	1145.7691008
##	26	26	I	cost	
##	27	27	I		1052.2756949
##	28	28	I	cost	1007.5182217
##	29	29	I	cost	964.0011471
##	30	30	I	cost	921.6721968

##	31	31	I	cost	880.5389973
##	32	32	I	cost	840.5856673
##	33	33	I	cost	801.9526687
##	34	34	I	cost	764.1848705
##	35	35	I	cost	727.2389153
##	36	36	I	cost	691.0301963
##	37	37	I	cost	655.6061620
##	38	38	I	cost	620.9247593
##	39	39	I	cost	586.5875311
##	40	40	I	cost	552.9029239
##	41	41	I	cost	519.7202225
##	42	42	I	cost	487.3073234
##	43	43	I	cost	455.5072152
##	44	44	I	cost	424.3748705
##	45	45	I	cost	393.7646992
##	46	46	I	cost	363.6181185
##	47	47	I	cost	333.6484722
##	48	48	I	cost	304.3522703
##	49	49	I	cost	275.4194877
##	50	50	I	cost	247.2334057
##	51	51	I	cost	219.8060264
##	52	52	I	cost	193.2614457
##	53	53	I	cost	168.0387193
##	54	54	I	cost	144.1360339
##	55	55	I	cost	121.8242521
##	56	56	I	cost	101.2858046
##	57	57	I	cost	82.6780498
##	58	58	I	cost	66.3118896
##	59	59	I	cost	51.9160178
##	60	60	I	cost	39.5652209
##	61	61	I	cost	29.5376199
##	62	62	I	cost	21.4867125
##	63	63	I	cost	15.2944047
##	64	64	I	cost	10.5076250
##	65	65	I	cost	6.9552518
##	66	66	I	cost	4.4602567
##	67	1	I	utility	878.4298395
##	68	2	I	utility	847.9796437
##	69	3	I	utility	818.5383220
##	70	4	I	utility	790.0196004
##	71	5	I	utility	762.4472174
##	72	6	I	utility	735.7517380
##	73	7	I	utility	709.9398032
##	74	8	I	utility	684.9494409
##	75	9	I	utility	660.7851933
##	76	10	I	utility	637.3687936
##	77	11	I	utility	574.1453476
##	78	12	I	utility	553.6448161
##	79	13	I	utility	533.7923691
##	80	14	I	utility	514.5837727
##	81	15	I	utility	495.9494006
##	82	16	I	utility	477.8753901
##	83	17	I	utility	460.3707879
##	84	18	I	utility	443.4060424

```
## 85
                19
                                  Ι
                                        utility 426.9378036
## 86
                20
                                  Ι
                                        utility
                                                 410.9459951
## 87
                                        utility
                21
                                  Ι
                                                 372.1436459
## 88
                22
                                  Ι
                                        utility
                                                  357.9371158
## 89
                23
                                  Ι
                                        utility
                                                  344.0983823
## 90
                                  Ι
                                        utility
                                                  330.6551502
                24
## 91
                                  Ι
                                        utility
                                                 317.5519374
                25
## 92
                26
                                  Ι
                                        utility
                                                  304.7640740
## 93
                27
                                  Ι
                                        utility
                                                  292.3250666
## 94
                28
                                  Ι
                                        utility
                                                  280.2013944
## 95
                29
                                  Ι
                                        utility
                                                  268.3796387
## 96
                30
                                  Ι
                                                  256.8637124
                                        utility
## 97
                31
                                  Ι
                                        utility
                                                  239.4907084
## 98
                                  Ι
                32
                                        utility
                                                  228.8785935
## 99
                33
                                  Ι
                                                  218.4770364
                                        utility
## 100
                34
                                  Ι
                                        utility
                                                  208.2747816
## 101
                35
                                  Ι
                                        utility
                                                 198.2486822
## 102
                36
                                  Ι
                                        utility
                                                  188.4132946
## 103
               37
                                  Ι
                                        utility
                                                  178.7575629
## 104
                38
                                  Ι
                                        utility
                                                  169.1677942
## 105
                39
                                  Ι
                                        utility
                                                 159.7332680
## 106
                40
                                  Ι
                                        utility 150.4112925
## 107
                                        utility
                                                  132.2225432
                41
                                  Ι
## 108
                42
                                  Ι
                                                 123.8134117
                                        utility
## 109
                43
                                  Ι
                                        utility
                                                  115.5567282
## 110
                44
                                  Ι
                                        utility
                                                 107.4136681
## 111
                45
                                  Ι
                                        utility
                                                   99.3688475
                                  Ι
## 112
                46
                                        utility
                                                   91.3444637
## 113
                47
                                  Ι
                                        utility
                                                   83.4764501
## 114
                48
                                  Ι
                                        utility
                                                   75.6805993
## 115
                49
                                  Ι
                                        utility
                                                   68.0624950
## 116
                50
                                  Ι
                                        utility
                                                   60.6263134
## 117
                51
                                  Ι
                                        utility
                                                   53.4071482
               52
                                  Ι
                                                   46.5273300
## 118
                                        utility
## 119
                53
                                  Ι
                                        utility
                                                   39.9880969
## 120
               54
                                  Ι
                                        utility
                                                   33.8662986
## 121
               55
                                  Ι
                                        utility
                                                   28.2148059
## 122
                                  Ι
                                        utility
                                                   23.0799343
               56
## 123
               57
                                  Ι
                                        utility
                                                   18.5512301
## 124
                                  Ι
               58
                                        utility
                                                   14.5562346
## 125
                                  Ι
                                        utility
               59
                                                   11.1189004
## 126
                60
                                  Ι
                                        utility
                                                    8.3205496
                                  Ι
## 127
                61
                                        utility
                                                    6.0674994
## 128
                62
                                  Ι
                                        utility
                                                    4.3297883
## 129
                                  Ι
                63
                                        utility
                                                    2.9825219
## 130
                64
                                  Ι
                                        utility
                                                    1.9796768
                                  Ι
## 131
                65
                                        utility
                                                    1.2731980
## 132
                66
                                  Ι
                                        utility
                                                    0.7895506
```

summary(res_mod[[4]])

```
## 1 strategy run for 66 cycles.
##
## Initial state counts:
##
```

```
## noLTBI = 742
## completeTx = 52.2397525531171
## incompleteTx = 1.83508364108649
## noTx = 203.925163805796
## activeTB = 0
## dead = 0
##
## Counting method: 'end'.
##
## Values:
##
## cost utility
## I 46249.04 18737.91
## plots
hist(c1, breaks = 30, xlab = "cost")
```

Histogram of c1

hist(h1, breaks = 30, xlab = "health")

Histogram of h1


```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
plot(res_mod[[4]]) +
    scale_x_continuous(sec.axis = sec_axis(~ . + 35, name = "Age (years)")) +
    theme_bw()
## Scale for x is already present.
```


Loading required namespace: diagram

