

3° ANNEE TRONC COMMUN de MATHEMATIQUES MATHEMATIQUES GENERALES ANALYSE TD

TD1 Des trucs de base, dérivation

Exercice 1: inéquations

Résoudre les inéquations suivantes :

1)
$$|2x + 1| < 1$$

2)
$$|x - 1| < |x + 1|$$

Exercice 2: fonctions usuelles

- 1) Déterminer une expression explicite de la fonction affine f dans chacun des cas suivants :
- (a) la courbe de f coupe l'axe des abscisses en 3 et f a pour pente 2
- (b) la courbe de f passe par le point de coordonnées (2,3) et f'(-2) = 4
- (c) la courbe de f passe par les points de coordonnées (-1,2) et (2,1)
- 2) Tracer la courbe de la fonction $f: x \mapsto 2|x-1| |x+1|$

Exercice 3 : domaine de définition, parité

Pour chacune des fonction suivantes, déterminer son domaine de définition et dire si la fonction est paire ou impaire:

1) f:
$$x \mapsto \frac{1}{2}(e^x + e^{-x})$$

2) f:
$$x \mapsto \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$$

3) f: $x \mapsto \ln\left(\frac{1 + x}{1 - x}\right)$

3) f:
$$x \mapsto ln\left(\frac{1+x}{1-x}\right)$$

4) f:
$$x \mapsto x^3 + x + 1$$

5) f: $x \mapsto x^2 - x - 1$

5) f:
$$x \mapsto x^2 - x - 1$$

Exercice 4: dérivation

Calculer la dérivée de la fonction f (après avoir, si nécessaire, précisé son domaine de définition) :

(a)
$$f: x \mapsto \sqrt{1 + \cos^2 x}$$

(b)
$$f: x \mapsto \frac{e^{1/x} + 1}{e^{1/x} - 1}$$

(c)
$$f: x \mapsto cos(3x+1)$$

(d)
$$f: x \mapsto cos(x^2)$$

(e)
$$f: x \mapsto (x^2 + 1)e^{2x}$$

(f)
$$f: x \mapsto (x^2 - 2x + 3)^5$$

(g)
$$f: x \mapsto sin^3(4x)$$

(h)
$$f: x \mapsto \frac{1+\sqrt{x}}{1-\sqrt{x}}$$

(i)
$$f: x \mapsto \sqrt{\ln x}$$

(j)
$$f: x \mapsto exp(-x^2 + 2x - 1)$$

(i)
$$f: x \mapsto \sqrt{\ln x}$$

(j) $f: x \mapsto exp(-x^2 + 2x - 1)$
(k) $f: x \mapsto \frac{1}{x^3 - 2x - 3}$

Exercice 5: dérivation

Soient f une fonction définie et dérivable sur $\mathbb R$ et g, h et k les fonctions définies sur $\mathbb R$ par :

$$g(x) = \sin^3(f(x))$$

$$h(x) = \sin(f^3(x))$$

$$k(x) = \sin(f(x^3))$$

Sans aucune difficulté, les fonctions g, h et k sont dérivables sur \mathbb{R} .

Déterminer, en fonction de f et de f', l'expression de la dérivée de chacune de ces trois fonctions.

Intégrales et primitives

Exercice 1

1) Déterminer les uniques réels a et b tels que $\frac{x}{(x-1)(x-2)} = \frac{a}{x-1} + \frac{b}{x-2}$ En déduire les primitives de la fonction $x \mapsto \frac{x}{(x-1)(x-2)}$ sur l'intervalle]1,2[

2) Décomposer en éléments simples la fraction rationnelle $\frac{1}{x(1+x^2)^2}$ et calculer ses primitives sur $]0,+\infty[$ 3) Décomposer en éléments simples la fraction rationnelle $\frac{(x^2-1)(x^2+3)}{2x^2+2x}$ et calculer ses primitives sur \mathbb{R}^*

2

Exercice 2

Calculer les primitives suivantes :

- 1) $\int xe^x dx$
- 2) $\int lnxdx$
- 3) $\int x^2 \ln x dx$
- 4) $\int ln^2xdx$
- 5) $\int cosxe^x dx$

Exercice 3

Calculer les intégrales suivantes :

$$1) \int_{0}^{\frac{\pi}{2}} x \sin x dx \quad (IPP)$$

2)
$$\int_{0}^{1} \frac{e^{x}}{\sqrt{e^{x}+1}} dx$$
 (changement de variable)

3)
$$\int_{0}^{1} \frac{1}{(1+x^2)^2} dx$$
 (changement de variable $x = tant$)

4)
$$\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) arctanx dx$$
 (changement de variable $u = \frac{1}{x}$)

Exercice 4
Calculer
$$\int_{0}^{1} \frac{arctanx}{(1+x)^2} dx$$
 par IPP

Exercice 5

Calculer
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \cos x} dx$$
 (changement de variable $t = \tan\left(\frac{x}{2}\right)$)

TD3 Intégrales généralisées

Exercice 1

Montrer que $\int_{0}^{+\infty} \frac{1}{(1+e^x)(1+e^{-x})} dx$ est convergente et calculer cette intégrale.

Exercice 2

Etudier la convergence de $\int lnxdx\,$ et, si elle converge, la calculer.

Exercice 3

- 1) Montrer que $\int_{-t}^{+\infty} \frac{\sin t}{t} dt$ est convergente (à l'aide d'une IPP) et en déduire la convergence de $\int_{-t}^{+\infty} \frac{\sin t}{t} dt$
- 2) Montrer que : $\forall t \in \mathbb{R}, |sint| \ge \frac{1 cos(2t)}{2}$ et en déduire que $\frac{sint}{t}$ n'est pas intégrable sur $[0, +\infty[$ (autrement dit que $\int_{0}^{+\infty} \left| \frac{\sin t}{t} \right| dt$ n'est pas convergente)

Exercice 4

- Soit la fonction $f: t \mapsto e^{-t^2}$ 1) Montrer que f est intégrable sur $[0, +\infty[$ 2) Exprimer $\int_{-\infty}^{+\infty} e^{-t^2} dt$ en fonction de $\int_{0}^{+\infty} e^{-t^2} dt$
- 3) Montrer par une IPP que : $\forall x > 0$, $\int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{e^{-x^2}}{2x} \int_{-\infty}^{+\infty} \frac{e^{-t^2}}{2t^2} dt$
- 4) En déduire que $\int_{x}^{+\infty} e^{-t^2} dt \underset{x \to +\infty}{\sim} \frac{e^{-x^2}}{2x}$

Exercice 5

Soit p>0

- 1) Convergence et calcul de $\int_{0}^{+\infty} te^{-pt} dt$
- 2) Convergence et calcul de $\int_{-\infty}^{0} \sin(t)e^{-pt}dt$ et $\int_{0}^{+\infty} \cos(t)e^{-pt}dt$

TD4 **Equations différentielles**

Exercice 1 : équations différentielles linéaires du 1° ordre

Résoudre les équations différentielles suivantes :

$$1) y' + y = \frac{1}{1 + e^x} \operatorname{sur} \mathbb{R}$$

2)
$$(1+x)y' + y = 1 + ln(1+x) sur]-1, +\infty[$$

3)
$$y' - \frac{y}{x} = x^2 \text{ sur }]0, +\infty[$$

4)
$$y' - 2xy = -(2x - 1)e^x \text{ sur } \mathbb{R}$$

5)
$$y' - \frac{2}{t}y = t^2 \text{ sur }]0, +\infty[$$

Exercice 2 : équations différentielles linéaires du 2° ordre à coefficients constants

Résoudre les équations différentielles suivantes :

1)
$$y'' - 4y' + 3y = (2x + 1)e^{-x}$$

2)
$$y'' - 4y' + 3y = (2x + 1)e^x$$

3)
$$y'' - 2y' + y = (x^2 + 1)e^x + e^{3x}$$

4)
$$y'' - 4y' + 3y = x^2e^x + xe^{2x}cosx$$

La vitesse de dissolution d'un composé chimique dans l'eau est proportionnelle à la quantité restante. On place 20g de ce composé dans l'eau et on observe que 5 minutes plus tard il reste 10g. Dans combien de temps restera-t-il seulement 1g?

Exercice 4

Résoudre les équations différentielles suivantes en effectuant un changement de variable :

1)
$$y'' - y' - e^{2x}y = e^{3x}$$
 en posant $t = e^{x}$

2)
$$(1-x^2)y'' - xy' + y = 0$$
 sur $]-1,1[$

Exercices supplémentaires

Exercice 5: raccordement de solutions

Déterminer les solutions sur $\mathbb R$ des équations différentielles suivantes :

1)
$$ty' - 2y = t^3$$

2) $t^2y' - y = 0$

2)
$$t^2y' - y = 0$$

3)
$$(1-t)y' - y = t$$

Exercice 6

En formant une équation différentielle vérifiée par f, calculer la valeur de $f(x) = \int_{-\infty}^{+\infty} \frac{e^{-t}}{\sqrt{t}} e^{-i2\pi xt} dt$

Indication

$$\int_{0}^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$

Prouver que toute solution de l'équation différentielle $y' + e^{x^2}y = 0$ tend vers 0 en $+\infty$

Exercice 8

Déterminer les fonctions $f : \mathbb{R} \to \mathbb{R}$ dérivables et vérifiant : $\forall (s,t) \in \mathbb{R}^2$, f(s+t) = f(s)f(t)

4