Particle spectrograph

Wave operator and propagator

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{\alpha}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2 r_1 + r_5)$	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_1^{\#1} \dagger^{lpha}$	0	0	$k^2\left(r_1+r_5\right)$	0
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	0

Source constraints/gauge generators	Multiplicities	1	1	3	3	5	13
Source constraint:	SO(3) irreps	$\sigma_{0}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$\sigma_{1}^{\#2}{}^{\alpha} == 0$	$\sigma_{1+}^{\#2}\alpha\beta := 0$	$\sigma_{2+}^{\#1}\alpha\beta := 0$	Total constraints: 13

			$\sigma_{0^{-}}^{\#1}$	0	0	
$\chi_{oldsymbol{eta}}$		1	$\sigma_{0}^{\#1}$	0	0	
$\omega_{2}^{\#1}_{+lphaeta}\omega_{2}^{\#1}_{-lphaeta}$	0	$k^2 r_1$	•	$\sigma_{0}^{\#1}$ †	$\sigma_{0}^{\#1}$ \dagger	>
$_{2}^{#1}$	0	0		J	#1	"1
3					υ ₀ #1	$\omega_0^{\#1}$
	$^{1}_{1}$ †	$+^{\alpha \beta \chi}$	$\omega_0^{\sharp 1}$	†	0	0
	$\omega_2^{\#1}$	$\omega_{2^{\bar{-}}}^{\#1}$	$\omega_0^{\#1}$	†	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$	
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	0	0	
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	$\frac{1}{k^2 r_1}$	
$\sigma_{1+\alpha\beta}^{*1} = \sigma_{1+\beta}^{*2}$	$_{lpha eta} \sigma_1^{\#}$	$\sigma_{-\alpha}^{+2}$	

_	$\sigma_{1^{+}lphaeta}^{\#1}$	$\sigma_{1^{+}\alpha\beta}^{\#2}$	$\sigma_{1^- lpha}^{\# 1}$	$\sigma_{1}^{\#2}$ α
$\sigma_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_1+r_5)}$	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\sigma_1^{\sharp 1} \dagger^{lpha}$	0	0	$\frac{1}{k^2\left(r_1+r_5\right)}$	0
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	0

Massive and massless spectra

Quadratic pole				
Pole residue:	$-\frac{1}{r_1(r_1+r_5)(2r_1+r_5)}$	> 0		
Polarisations:	2			

(No massive particles)

Unitarity conditions

$$r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$$