3.2.2 Mining Association Rules

Step 1: Find all frequent itemsets I

➤ According to *support threshold s* (We will explain this later)

□Step 2: Rule generation

- For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Single pass to compute rule confidence. confidence(A,B→C,D) = support(A,B,C,D)
 / support(A,B)
 - Observation for further pruning (剪枝): If A,B,C→D is below confidence, so is A,B→C,D
- >Output the rules above the confidence threshold

■Step 3: Find interesting association rules (optional)

➤ According to *interest*

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

$$Interest(I \rightarrow j) = conf(I \rightarrow j) - Pr[j]$$

3.2.2 Example

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, c, b, n\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

New example. Note: m for milk, c for coke, p for pepsi, b for beer, j fo r juice

- **Support threshold** s = 3, confidence c = 0.75
- **□1) Frequent itemsets:**
 - \rightarrow {b,c} {c,m} {c,j} {m,c,b}
- **□2)** Generate rules:

b→**m**:
$$c=4/6$$
 b→**c**: $c=5/6$ **b,c**→**m**: $c=3/5$ **b**→**m**→**b**: $c=4/5$ **c**→**b**: $c=5/6$ **b,m**→**c**: $c=3/4$ **b**→**c**,**m**: $c=3/6$ **c**→**c**: $c=3/4$ **d c**→**j**: $c=3/6$ **j** →**c**: $c=3/4$

 $conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$

3.2.3 Compacting the Output

- □To reduce the number of rules, we can further postprocess them and only output in step 1 (Find all frequent itemsets *I*):
 - ➤ Maximal frequent itemsets(极大频繁项集): frequent, and no immediate superset(超集) is frequent
 - Gives more pruning

or

- >Closed frequent itemsets(闭合频繁项集): frequent, and no immediate superset has the same count (> 0),
 - Stores not only frequent information, but exact counts

Note: **Superset(超集)** 若一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集。S1是S2的超集,则S2是S1的真子集,反之亦然。

3.2.3 Example: Maximal/Closed

Support threshold s=3

Support		frequent	Maximal	Closed
A	4	Yes	No	Prequent, but superset AB also frequent.
В	5	Yes	No	Yes Frequent, and its only superset
C	3	Yes	No	ABC, not freq.
AB	4	Yes	Yes	Yes Freq, but superset AB has same count.
AC	2	No	No	No
BC	3	Yes	Yes	Yes that smaller count.
ABC	2	No	No⁺	Not freq.
		Total:5	Total:2	Total:3

Section 3.3: Finding Frequent Itemsets

Content

- Generating itemsets
- 2 Itemsets Computation Model
- Finding Frequent Pairs
- 4 Counting Candidate Pairs

3.3.1 Generating Itemsets

■Back to finding frequent itemsets

- □Typically, data is kept in flat files rather than in a database system:
 - ➤ Stored on disk
 - ➤ Stored basket-by-basket
 - ➤ Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Items are positive integers, and boundaries between baskets are -1.

3.3.2 Itemsets Computation Model

- □ For many frequent-itemset algorithms, main-memory is the critical resource
 - ➤ As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - ➤The number of different things we can count is limited by main memory
 - ➤ Swapping counts in/out is a disaster

3.3.2 Itemsets Computation Model

■The true cost of mining disk-resident data is usually the number of disk I/Os

□In practice, association-rule algorithms read the data in passes – all baskets read in turn

■We measure the cost by the **number of passes (扫描次数)** an algorithm makes over the data

3.3.3 Finding Frequent Pairs

- □The hardest problem often turns out to be finding the frequent pairs (频繁项对) of items $\{i_1, i_2\}$
 - >Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- □Let's first concentrate on pairs, then extend to larger sets
- **□The approach:**
 - > We always need to generate all the itemsets
 - ➤ But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

3.3.3 Finding Frequent Pairs

- ■Naïve approach to finding frequent pairs
- □Read file once, counting in main memory the occurrences of each pair:
 - From each basket of *n* items, generate its *n(n-1)/2* pairs by two nested loops
- □ However, fails if (#items)² exceeds main memory
 - ➤ Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^{5}(10^{5}-1)/2 = 5*10^{9}$
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory needed

Two approaches for counting candidate pairs in memory:

- □ Approach 1: Count all pairs using a matrix
- □Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items $\{i, j\}$ is c."
 - ➤ If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - > Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- □Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

Approach 1: Triangular Matrix (三角矩阵方法)

Approach 2: Triples (三元组方法)

□Approach 1: Triangular Matrix (三角矩阵方法)

- > n = total number items
- \triangleright Count pair of items $\{i, j\}$ only if i < j
- ➤ Keep pair counts in lexicographic order, $\{1,2\}$, $\{1,3\}$,..., $\{1,n\}$, $\{2,3\}$, $\{2,4\}$,..., $\{2,n\}$, $\{3,4\}$,....Then, pair $\{i,j\}$ is at position (i-1)(n-i/2)+j-1
- ➤ Triangular matrix requires 4 bytes per pair
- ► Total number of pairs n(n-1)/2; total bytes = $2n^2$
- □Approach 2: Triples(三元组方法) uses 12 bytes per occurring pair (but only for pairs with count > 0)
 - ➤ Beats Approach 1 if less than **1/3** of possible pairs actually occur

□Approach 1: Triangular Matrix (三角矩阵方法)

- > n = total number items
- ➤ Count pair of items {i, i} only if i < i
- ► Keep pair {2,4},...,{2,*n*
- **≻**Triangular
- ➤ Total numb
- Approach pair (but or
 - ▶ Beats Appr

Problem is if we have too many items so the pairs do not fit into memory.

Can we do better?

 $\{1,3\},...,\{1,n\},\{2,3\},$ $\{1,0\},(n-i/2)+j-1$

es per occurring

actually occur

Section 3.4: A-Priori Algorithm

Content

- 1 Key idea of A-Priori
- 2 A-Priori Algorithm
- Frequent K Tuples
- Weaknesses of A-Priori

3.4.1 Key idea of A-Priori

- □A **two-pass** approach called *A-Priori* (先验算法) limits the need for main memory
- □Key idea: *monotonicity* (单调性)
 - ➤ If a set of items *I* appears at least *s* times, so does every **subset** *J* of *I*

■Contrapositive for pairs:

If item i does not appear in s baskets, then no pair including i can appear in s baskets

□So, how does A-Priori find freq. pairs?

3.4.2 A-Priori Algorithm

- □Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - > Requires only memory proportional to #items
 - \triangleright Items that appear $\ge s$ times are the frequent items
- □ Pass 2: Read baskets again and count in main memory <u>only</u> those pairs where both elements are frequent (from Pass 1)
 - ➤ Requires memory proportional to square of **frequent** items only (for counts)
 - ➤ Plus a list of the frequent items (so you know what must be counted)

3.4.2 A-Priori Algorithm

■ Main-memory picture of A-Priori:

Note: Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.

3.4.2 A-Priori Algorithm

- □Using triangular matrix (三角矩阵方法) or triples(三元组方法) in Pass 2?
- □You can use the triangular matrix method with n = number of frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers (频繁项表格)

3.4.3 Frequent K Tuples

- □ For each k, we construct two sets of k-tuples (sets of size k):
 - $\succ C_k = candidate \ k tuples = those that might be frequent sets (support <math>\ge s$) based on information from the pass for k-1
 - $ightharpoonup L_k$ = the set of truly frequent k-tuples

3.4.3 Frequent K Tuples

■Example: Hypothetical steps of the A-Priori algorithm

- $\succ C_1 = \{\{b\}, \{c\}, \{j\}, \{m\}, \{n\}, \{p\}\}\}$
- ➤ Count the support of itemsets in C₁
- \triangleright Prune non-frequent: $L_1 = \{ b, c, j, m \}$
- ightharpoonup Generate $C_2 = \{\{b,c\}, \{b,j\}, \{b,m\}, \{c,j\}, \{c,m\}, \{j,m\}\}\}$
- ➤ Count the support of itemsets in C₂
- > Prune non-frequent: $L_2 = \{\{b,c\}, \{b,m\}, \{c,m\}, \{c,j\}\}\}$
- $ightharpoonup Generate C_3 = \{\{b,c,j\}, \{b,c,m\}, \{b,m,j\}, \{c,m,j\}\}$
- ➤ Count the support of itemsets in C₃
- \triangleright Prune non-frequent: $L_3 = \{\{b,c,m\}\}\}$

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1 .

But that one can be more careful with candidate generation. For example, in C_3 we know $\{b,m,j\}$ cannot be frequent since $\{m,j\}$ is not frequent. Also $\{b,j\}$ is not frequent.

3.4.3 Frequent K Tuples

□Example: Using A-Priori algorithm to find frequent itemsets where support s=2.

Ans:

- $ightharpoonup C_1 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}, \qquad L_1 = \{\{1\}, \{2\}, \{3\}, \{5\}\}\}$ $ightharpoonup C_2 = \{\{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,5\}, \{3,5\}\}, \qquad L_2 = \{\{1,3\}, \{2,3\}, \{2,5\}, \{3,5\}\}\}$
- $>C_3=\{\{2,3,5\}\}, L_3=\{\{2,3,5\}\}$
- > Therefore, frequent itemsets: {{1},{2},{3},{5},{1,3},{2,3},{2,5},{3,5},{2,3,5}}

3.4.4 Weaknesses of A-Priori

- \square One pass for each k (itemset size)
- \square Needs room in main memory to count each candidate k-tuple
- □ For typical market-basket data and reasonable support (e.g., 1%), k = 2 requires the most memory

■What if A-Priori runs out of memory for k = 2?