Segurança em Computação Trabalho Individual II

Gustavo Figueira Olegário
10 de abril de 2019

1 Números aleatórios

Para este trabalho, foram implementados os seguintes algoritmos de geração de números aleatórios: o ISAAC (cipher) e o Multiply-with-carry. Todo o trabalho foi implementado utilizando a linguagem Python. Optouse essa linguagem, por ela, nativamente, não ter limite de número de dígitos para uma operação. Uma vez que esse trabalha solicitava números que utilizassem 2048 e 4096 bits, essa foi a *feature* decisiva para a escolha da linguagem.

Na tabela seguinte é feita uma comparação entre os dois algoritmos, mostrando quanto tempo foi necessário para gerar um número que utiliza uma quantidade X de bits para a sua respectiva representação binária. O tempo apresentado é utilizando como base o comando time do Linux na categoria user.

Número de bits do	ISAAC	Multiply-with-
dígito testado	ISAAC	carry
40	0.04s	0.04s
56	0.04s	0.04s
80	0.05s	0.06s
128	0.06s	0.05s
168	0.06s	0.04s
224	0.05s	0.07s
256	0.04s	0.04s
512	0.05s	0.05s
1024	0.06s	0.06s
2048	0.05s	0.0.7s
4096	0.06s	0.12s

Pela tabela, é possível perceber, que ambos os algoritmos, possuem praticamente o mesmo desempenho para gerar os números com a mesma quantidade de bits. Entretanto, quando compara-se a implementação entre ambos, é muito mais simples implementar o Multiply-with-carry do que o ISAAC.

Já no que se refere a complexidade, o ISAAC é um algoritmo que se baseia em uma seed previamente configurada , no caso a mensagem a ser cifrada, para gerar o número aleatório. Nesse caso, o algoritmo tentende a ter um comportamento próximo ao linear, em que quanto maior a mensagem, maior o tempo para executar o algoritmo, tendo assim um comportamento linear O(n). Já no algoritmo de Multiply-with-carry, não depende de uma entrada previamente configurada. Todos os parâmetros necessários são configurados pelo próprio algoritmo. Ele tem uma complexidade de O(n+k) onde n é a variável CMWC_CYCLE, que é indicada pelo algoritmo para ser usada com o valor de 4096, enquanto que k é número de vezes necessário para gerar o número com valor maior da variável CMWC_C_MAX

2 Números primos

Para verificar se um número é primo ou não, além de implementar o algoritmo de Miller Rabin, que foi solicitado, implementou-se o algoritmo de Teste de Primalidade de Fermat. Assim como o primeiro procedimento, ele é um teste estatístico. Caso o programa retorne falso, com certeza o número informado não é primo. Entretanto, caso retorne verdadeiro, há uma grande chance de ele ser primo, mas não garante que seja. Escolheu-se esse algoritmo, visto que era mais trivial de ser implementado do que os demais.

Para a comparação feita abaixo, utilizou-se o algoritmo do Multiply With Carry, para ficar gerando números aleatórios até que um desses fosse primo, e então, o algoritmo de verificação fizesse seu teste. Ou seja, o tempo abaixo exibido considera o tempo para gerar n números, em que pelo menos um deles seja primo.

Número de bits do dígito testado	Miller Rabin	Fermat
40	0.06s	89.82s
56	2.11s	107.14s
80	2.89s	240.60s
128	3.57s	158.84s
168	3.91s	572.13s
224	4.75s	111.54s
256	5.52s	79.18s
512	8.56s	82.69s
1024	0.72s	152.99s
2048	0.61s	797.89s
4096	0.15s	294.01s

O fato de gerar números primos aleatórios se dá por duas razões: a primeira dela são as operações realizadas. Os operadores de exponenciação e módulo, são muito caros computacionalmente, uma vez que envolvem ponto flutuante, o que torna a computação muito cara, em termos de processamento. Já a outra razão é o fato de ficar gerando número aleatórios indefinidamente até que um deles seja primo. Esse processo, por ser pseudo aleatório, faz com que o processo se torne mais lento.

Já no que se refere a complexidade dos algoritmos, o algoritmo de Fermat tende a ter uma complexidade O(n), onde n representa os n números escolhidos aleatoriamente no intervalo de 2 até k - 2, onde k é o número primo que está sendo avaliado. Já o algoritmo de Miller-Rabin, tende a ter um comportamento O(n+k), onde k é o número usado para testar a primalidade de n.

3 Código implementado

Todo o código utilizado neste trabalho está disponível no seguinte repositório do GitHub: https://github.com/olegario96/ine5429/tree/master/t2

4 Referências dos algoritmos

Algoritmo ISAAC Cipher: https://rosettacode.org/wiki/The_ISAAC_Cipher

Algoritmo Multiply-with-carry: https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator

Algoritmo Miller Rabin: https://www.youtube.com/watch?v=qdylJqXCDGs

Algoritmo de Teste de Primalidade de Fermat: https://en.wikipedia.org/wiki/Fermat_primality_test