Algorítmica y Programación

Enero - Mayo 2020

Numpy

Introducción

Numpy

- Numerical Python
- Computo científico y análisis de datos
- Características relevantes
 - Ndarray (built-in data type)
 - Arreglo/vector multi-dimensional
 - Operaciones matemáticas avanzadas
 - P.ej., algebra lineal, transformada de fourier

Nuevo código en editor

```
8 import numpy as np
10 # Creando arreglo introduciendo datos directamente
11 \operatorname{arreglo1} = \operatorname{np.array}([6, 7, 8, 9, 10])
12
13 # Creando arreglo a partir de una lista
14 \text{ lista1} = [1, 2, 3, 4, 5]
15 arreglo2 = np.array(lista1)
16
17 # Creando arreglo con numeros aleatorios
18 arreglo3 = np.array(np.random.rand(1,5))
19
20 # Creando arreglo con numeros aleatorios y tres dimensiones
21 arreglo4 = np.array(np.random.rand(3,5))
22
23
24
```

Ejecutar código

Terminal de IPython


```
In [17]:
In [18]: arreglo1.dtype
Out[18]: dtype('int32')
In [19]: arreglo2.dtype
Out[19]: dtype('int32')
In [20]: arreglo3.dtype
Out[20]: dtype('float64')
In [21]: arreglo4.dtype
Out[21]: dtype('float64')
```


Editor

```
7
8 import numpy as np
9
10 # Creando arreglo con ceros
11 arreglo5 = np.array(np.zeros(5))
12
13 # Creando arreglo con valores en un rango
14 arreglo6 = np.array(np.arange(0,10,2))
15
16
17
```

Terminal de **IPython**

```
In [27]: arreglo5
Out[27]: array([0., 0., 0., 0., 0.])
In [28]: arreglo6
Out[28]: array([0, 2, 4, 6, 8])
In [29]: |
```


Broadcasting

Diferentes resultados con listas

```
In [55]: lista1
Out[55]: [1, 2, 3, 4, 5]
In [56]: lista1 * 2
Out[56]: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
```



```
In [45]: arreglo4
Out[45]:
array([[0.70225365, 0.89518874, 0.75407839, 0.81743783, 0.15803613],
        [0.38783419, 0.5383055 , 0.99547266, 0.66423277, 0.8497358 ],
        [0.12045907, 0.44381888, 0.31651033, 0.61306665, 0.93390252]])

In [46]: arreglo4 * 5.25
Out[46]:
array([[3.68683164, 4.69974089, 3.95891157, 4.29154862, 0.82968966],
        [2.0361295 , 2.82610388, 5.22623147, 3.48722202, 4.46111296],
        [0.6324101 , 2.33004913, 1.66167924, 3.21859991, 4.90298822]])

In [47]: arreglo4 * arreglo1
Out[47]:
array([[4.21352188, 6.26632119, 6.03262716, 7.35694048, 1.58036125],
        [2.32700514, 3.7681385 , 7.96378129, 5.9780949 , 8.49735802],
        [0.7227544 , 3.10673217, 2.53208265, 5.51759985, 9.33902518]])
```


Multiplicación de matrices (arreglos bidimensionales)

```
In [66]: arreglo4.dot(arreglo7)
Traceback (most recent call last):
  File "<ipython-input-66-682f43723dbf>", line 1, in <module>
    arreglo4.dot(arreglo7)
ValueError: shapes (3,5) and (2,4) not aligned: 5 (dim 1) != 2 (dim 0)
In [67]:
In [67]: arreglo8 = np.array(np.random.rand(5,2))
In [68]: arreglo8
Out[68]:
array([[0.73212953, 0.88825618],
       [0.14838998, 0.74925624],
       [0.45093798, 0.79275557],
       [0.41390713, 0.70645349],
       [0.66979552, 0.25045549]])
In [69]: arreglo4.dot(arreglo8)
Out[69]:
array([[1.4312155 , 2.50936956],
       [1.65680035, 2.21906192],
       [1.17605282, 1.35745199]])
In [70]:
```



```
8 import numpy as np
9
10 # Creando arreglo 2D con zeros
11 arreglo2D_1 = np.zeros((3,3))
12 arreglo2D_2 = np.array(np.zeros((3,3)))
13
14
15 # Creando arreglo 2D con valores aleatorios
16 arreglo2D_3 = np.array(np.random.rand(3,5))
17 arreglo2D_4 = np.random.rand(3,5)
18
19
20
21
```

```
In [81]: arreglo2D_1
Out[81]:
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
In [82]: arreglo2D 2
Out[82]:
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
In [83]: arreglo2D 3
Out[83]:
array([[0.86002484, 0.72267042, 0.68832863, 0.74688985, 0.00540337],
       [0.57634786, 0.67612725, 0.97589886, 0.02346288, 0.12413947],
       [0.41026754, 0.34467031, 0.35732899, 0.34797135, 0.53211073]])
In [84]: arreglo2D 4
Out[84]:
array([[0.4812903 , 0.55013223, 0.10819807, 0.31470377, 0.44045086],
       [0.64031164, 0.22416327, 0.12135196, 0.37688389, 0.66804157],
       [0.64779095, 0.38711557, 0.99141894, 0.22336247, 0.09163455]])
```


Accediendo al contenido

Columna

Accediendo al contenido

Accediendo al contenido

```
In [87]: arreglo2D_4[1,2]
Out[87]: 0.12135195853418468

In [88]: arreglo2D_4[1,:]
Out[88]: array([0.64031164, 0.22416327, 0.12135196, 0.37688389, 0.66804157])

In [89]: arreglo2D_4[:,2]
Out[89]: array([0.10819807, 0.12135196, 0.99141894])

In [90]:
```


Accediendo al contenido

Filtrando contenido

```
In [156]: arreglo2D_5[arreglo2D_5 > 2]
Out[156]: array([3., 4., 5., 6., 7., 8., 9.])
In [157]: arreglo2D_5[arreglo2D_5 % 2 == 0]
Out[157]: array([2., 4., 6., 8.])
In [158]: arreglo2D_5[arreglo2D_5 % 2 != 0]
Out[158]: array([1., 3., 5., 7., 9.])
In [159]:
```

Conservando impares

Procesamiento básico de datos con arreglos

```
8 import numpy as np
9
10 arreglo1 = np.random.randn(1,5)
11
12 arreglo2 = np.random.rand(1,5)
13
14 arreglo3 = np.random.randn(3,5)
15
16 arreglo4 = np.random.rand(3,5)
17
18
```

```
In [9]: arreglo1.mean()
Out[9]: -0.09578874096773601
In [10]: arreglo2.mean()
Out[10]: 0.5487579838737476
In [11]: arreglo3.mean()
Out[11]: -0.35181296464060857
In [12]: arreglo4.mean()
Out[12]: 0.3825316629779574
In [13]: arreglo1
Out[13]: array([[-0.05866434, -1.2970198 , 1.13533382, -0.29999122, 0.04139784]])
In [14]: arreglo2
Out[14]: array([[0.05107957, 0.74463768, 0.4986265, 0.6223728, 0.82707337]])
In [15]: arreglo3
Out[15]:
array([[-0.84212715, 0.38829324, -0.68547111, 0.62645273, -0.96299672],
       [ 0.89442269, -1.07228604, 0.5167779 , -0.15226598, 0.12015435],
       [-0.39385749, -0.09238875, -0.7732848 , -1.35540106, -1.49321627]])
In [16]: arreglo4
Out[16]:
array([[0.87955394, 0.07443135, 0.16218781, 0.25921036, 0.27557284],
       [0.32887577, 0.36378571, 0.28820946, 0.99823064, 0.33746803],
       [0.13936676, 0.1796533 , 0.28543321, 0.268742 , 0.89725378]])
```


Procesamiento básico de datos con arreglos

Method	Description
sum	Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
mean	Arithmetic mean; zero-length arrays have NaN mean
std, var	Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default denominator n)
min, max	Minimum and maximum
argmin, argmax	Indices of minimum and maximum elements, respectively
cumsum	Cumulative sum of elements starting from 0
cumprod	Cumulative product of elements starting from 1

Procesamiento básico de datos con arreglos

```
8 import random
 9 import numpy as np
10 import matplotlib.pyplot as plt
11
12 posicion = 0
13 listaTmp = [posicion]
14 \text{ pasos} = 1000
15
16 for i in range(pasos):
       paso = 1 if random.randint(0, 1) else -1
17
       posicion += paso
18
       listaTmp.append(posicion)
19
20
21 caminata = np.array(listaTmp)
22 plt.plot(caminata[:100])
23
24
```


Guardar y leer datos de archivos – Ejemplos básicos

```
8 import random
 9 import numpy as np
10 import matplotlib.pyplot as plt
11
12 posicion = 0
13 listaTmp = [posicion]
14 \text{ pasos} = 1000
15
16 for i in range(pasos):
       paso = 1 if random.randint(0, 1) else -1
17
       posicion += paso
18
       listaTmp.append(posicion)
19
20
21 caminata = np.array(listaTmp)
22 plt.plot(caminata[:100])
23
24 np.savetxt("Resultados.txt", caminata, delimiter=',')
25
26 nuevoArray = np.loadtxt("Resultados.txt", delimiter=',')
27
```

In [42]: runfile('C:/Users/irazoz/Documents/ITAM/Cursos
ITAM/Cursos/2020/AyP-2020-Enero-Mayo/Ejemplos')

In [44]:

