Supplementary results on the power of adaptive tests for the manuscript entitled:

An Efficient Method of Computing Adaptive Tests of Significance and Confidence Intervals

by Thomas W. O'Gorman

The empirical power of the t test, the adaptive test with recomputed weights (COMP), and the permuted weights (PERM) adaptive test for 8 error distributions when the predictor variables were generated from a correlated normal distribution and an uncorrelated lognormal distribution. One thousand data sets were used with each data set having n=50 observations.

	Norm	Normal Predictor Variables			Logormal Predictor Variables		
		$\rho = 0.8$			$\rho = 0.0$		
Error distribution	t	COMP	PERM	t	COMP	PERM	
Normal	60	50	50	87	96	96	
	$60 \\ 64$	59 70	59 70	87	86 90	86 90	
t_4 Bimodel Symmetric	60	63	63	87	90 88	88	
Skewed Low Kurt.	61	69	69	87	91	91	
Skewed High Kurt.	63	69	69	87	90	90	
Hi Skewed Low Kurt.	63	80	80	87	95	95	
Hi Skewed High Kurt.	64	76	76	87	93	93	
Bimodal Skewed	61	73	74	87	92	92	