

SUBJECT INDEX

A

- Abscisic acid
nematode damage, 183
- Acinetobacter lwoffii*
greening component, 119
- Acyltransferase, 251
- Aflatoxin
see *Aspergillus*
- ARFC wheat model, 369-72
- African cassava mosaic virus
host resistance, 41
- African maize streak virus
host resistance, 41
- Aggressiveness
citrus canker, 409-12, 416
- definition, 174
- see also Virulence
- Agricultural experiment stations, 3, 9-10
- Agricultural extension, 6-7
- Agrobacterium tumefaciens*
host specificity, 271
- virulence, 268-70
- Aldicarb, 170, 482
- Alleles
forest tree breeding
loss, 333, 335-36
- virulence, 331
- Alternaria*, 403
- American Phytopathological Society, 11-12, 32, 425
- American Type Culture Collection, 416
- Amidinotransferase, 264
- Amino acid concentrations
citrus greening, 111-12
- L-Amino acids
coronafacic acid, 252
- D-form, 251
- 1-Aminocyclopropane-1-carboxylic acid, 253
- 2-Amino pyrimidines, 432-33
- Ammonia soil amendment, 481
- Amylase activity, 112
- Animal and Plant Health Inspection Service, 220, 236-37, 242
- Annual Review of Phytopathology
quarantine coverage, 234
- Anthrobryts*
nematode biocontrol, 151
- Antibiotics
citrus greening, 117-18, 121-22

- Tilletia*, 141
see also *Pseudomonas syringae* toxin genetics
- Anticoma*, 18
- Antiresistance measures
see Fungicide resistance
- Aphelenchus avenae*, 158
- Aphidencyrtus cassatus*
greening biocontrol, 123
- Apical dominance
fungal foraging systems, 310
- Apple disease expert systems
Apple Pest and Disease Diagnoses, 356
- Apple scab, 343, 347, 355
- POMME, 353, 355
- see also Penn State Apple Orchard Consultant
- Arabinose, 292
- Arbutin, 269-70
- Arginine
phaseolotoxin induced chlorosis, 255
- Armillaria*
biocontrol, 310
- genetic territories, 309
- Artificial Intelligence
see Expert systems in plant pathology
- Aschochyta lenti*
distribution, 44
- Asiatic citrus canker
see Citrus canker in Florida
- L-aspartate, 254
- Aspergillus*
flavus
peanut, 280
- peanut resistance, 283, 292
- nidulans*
DNA, 447, 449
- trpC* gene, 449
- parasiticus*
peanut, 280, 292
- ATPase, 252
- Australia
N. A. Cobb, 17-18
- Auxin
effect coronatine, 253
- Auxotrophy, 256
- Avirulence, 80, 142
- genes
hypersensitive reaction, 202
- M. grisea*, 446, 459-60, 463
- nematode, 175-78, 186

B

- Bacillus*
antibiotics, 249
- Backcrossing
M. grisea, 446, 459
see also Genetic diversity for resistance in forest trees
- Bacterial antagonists
see Nematode natural enemies
- Bacterial phytotoxins
see *Pseudomonas syringae* toxin genetics
- Bacterial spot of citrus
see Citrus canker in Florida
- Bacterial wilt caused by *Pseudomonas solanacearum*, 65-87
- conclusion, 80-81
- control strategies, 76-80
- avoidance, 79
- biocontrol, 79-80
- cropping systems, 78
- host-plant resistance, 77-78
- integrated control, 79
- soil amendment, 78
- dispersal and inoculum, 69-72
- epiphytic survival, 71
- planting material movement, 69-71
- weed hosts and sheltered sites, 71-72
- environmental interactions, 72-76
- nematode populations, 76
- soil moisture, 74-75
- soil type, 75-76
- temperature and light, 72-74
- host range, 68-69
- introduction, 65-66
- properties, relationships, distribution, 66-68
- phylogeny, 66-67
- secondary metabolites, 67
- subspecific classification, 67-68
- Bacterial wilt of cassava, 69
- Bacterial wilt of Townsville Stylo, 70
- Bacteriosis
see Citrus canker in Florida
- Baker, Kenneth F., 31
- Barley smut
genetics, 138-139

- Barley stripe mosaic virus, 213
 Barley yellow dwarf virus, 41
Basidiomycetes
 see Delignification by wood-decay fungi; Mycelial individualism
Bean common mosaic virus
bc-3 gene, 41
Bean wildfire, 263
Benomyl resistance
M. grisea, 448
 smut, 144
Benzimidazole resistance, 425–27, 429, 434
Biodegradation
 see Delignification by wood-decay fungi
Biological control
Armillaria, 310
 bacterial wilt, 79–80
 citrus greening, 123
 models, 377
 see also Nematode management; Nematode natural enemies
Biological line
 pest risk and exclusion, 226–27
Biotechnology
 delignification 392–93
Biotype
 definition, 174
Blast
 see *Magnaporthe grisea*
 molecular genetics
Blitecast forecaster
 potato late blight, 343
Blister rust, 327
Blodt disease, 66–67
Blotchy-mottle
 see Citrus greening
Botrytis
 benzimidazole resistance, 425–27, 429
cinernea
 fungicide resistance, 426, 428
 dicarboximide resistance, 427–29
Boyce Thomson Institute, 7
Breeding for resistance
 bacterial wilt, 76
 citrus greening, 122
 forest trees
 see Genetic diversity for resistance in forest trees
 nematodes, 76
 see also Nematodes, plant resistance and tolerance
peanut
 see Resistance breeding in peanut
- see also Wild germplasm and plant diseases
Bremia lactucae
 phenylamide resistance, 432
Brown rots
 wood decay, 381
Bruhl, G.W.
 see Plant pathology, changing profession
Bunts
 see Small-grain smut genetics
Burning
 citrus canker control, 400
- C**
- C language, 348, 357–58
Caenomera radicicola, 23
Caenorhabditis, 100
Calcium
 messenger systems, 319
Pseudomonas Solanacearum, 75
Caldwell, Ralph, 4
CALEX/Peaches expert system, 356–57
California Department of Agriculture, 242
Caloglyphus, 157
Cankers A,B,C,D,E
 see Citrus canker in Florida
Canopy growth models, 375
Carbendazim
 with diethofencarb, 427, 429
Carbofuran, 482
Carbon
 toxin biosynthesis, 268
Carboxin
 smut resistance, 144–45
Carboxylic acid, 252
Caloglyphus sp., 157
Carrot
 nematode management, 471
Cassava
 bacterial wilt, 69, 72
Catenaria
 nematode biocontrol, 151, 161
Cauliflower mosaic virus, 213
Cell wall degradation
 see Delignification by wood-decay fungi
Cellulase, 179
 see also Delignification by wood-decay fungi
Centro Internacional de Agricultura Tropical, 45, 53
Centro Internacional de Mejoramiento de Maiz y Trigo, 50
Cercospora arachidicola
 peanut resistance, 284–88, 295–96
- ethylene, 291
Cercosporidium personatum
 peanut resistance, 284–86, 287, 295–96
Cereal crop growth models, 361–89
ARFC WHEAT, 369–71
 description, 369–70
 links, 370–71
CERES, 371–72
 description, 371–72
 links, 372
environment and pests, 375–76
 introduction, 361–62
 models, 362–69
 concepts, 362–64
 individual crop models, 369
 linkage, 368–69
 parameters, 368
 winter wheat, 364–68
ModWHT, 373–74
 description, 373–75
 links, 374–75
 research and programming, 376–78
WINTER WHEAT, 372–73
 description, 372–73
 links, 373
- Cereals**
 see Small-grain smut genetics
CERES models, 371–73, 376
Chaos theory
 fungal life histories, 319
Cheiloneurus cyanonotus
 greening biocontrol, 123
Chemotherapy, 32
 citrus greening, 121–22
Chitin
 nematode control, 481
Chloramphenicol acetyltransferase ORF, 209
Chlorimuron ethyl
M. grisea, 448
Chloropicrin, 79
Chloroplast
 tobacco mosaic virus, 196
 chlorotic symptoms 194–202
 coat proteins, 196, 198, 200–1
 electron micrographs, 199–200
Chlorotic symptoms
 see Virus-host interactions, tobamoviruses
Chlorsulfuron, 377
Citrus canker in Florida, 399–420
 bacterial spot and canker diseases, 406–17
 DNA analysis, 412–14
 epidemiology, 408–10

- etiology, 406-7
 isozyme analysis, 410
 perspectives, 415-17
 population dynamics, 407-8
 serological studies, 410-12
 xanthomonad classification,
 414-15
- introduction, 400-6
 bacterial spot, 403-4
 diseases, 401-3
 eradication history, 401
 regulation research, 405-6
 research in USA, 404-5
- Citrus greening disease, 109-36
 causal agent, 117-19
 concluding remarks, 124-25
 control, 120-24
 detection, 119-20
 economic importance, 110-
 11
 greening pathogen control,
 120-22
 breeding for resistance, 122
 chemotherapy
 thermootherapy, 120-21
 history and distribution, 109-
 10
 introduction, 109
 symptomology, 111-12
 transmission, 114-17
 types and strains, 112-13
 varietal susceptibility and host
 range, 113-14
 vector control, 122-23
 biocontrol, 123
 insecticides, 122
 other measures, 123-24
- Citrus nematodes
 see *Tylenchulus*
- Cladograms, 95-96
- Cladosporium fulvum*, 178
- Clavibacter*
 component greening, 118
- Clones
 forest tree resistance, 333
 genes involved in *Pseudomonas*
 toxins, 256-59
 see also cDNA
- Coat proteins
 see Tobacco mosaic virus;
 Resistance
- Cobb, Alice Proctor, 16
- Cobb, Nathan Augustus
 early life, 16
 early professional career, 17-
 20
 higher education, 16-17
 introduction, 15
 other, 24-25
 USDA, 20-24
- Cocoa swollen shoot virus, 41
- Code of Nomenclature of Bacteria, 67
- Collaboration in research
 viral infections, 213
- Colletotrichum*, 477
- gloesporioides*, 46
 augments citrus greening,
 112
 infection responses, 45-
 46
 resistance, 40, 53
- lindemuthianum*, 178
- Comestrol, 181
- Competition
 see Mycelial individualism
- Computers
 C language, 348, 357-58
 expert systems
 see Expert systems in plant
 pathology
- FORTRAN, 356
- information retrieval systems
 quarantine, 239
- interfaces, 346-47, 356
- LISP, 347-48
- Macintosh, 354, 356,
 358
- models
 see Cereal crop growth
 models
- MS-DOS, 354-58
- nematode crop loss assess-
 ment, 475
- nematode sampling, 472
- PASCAL, 354, 355
- PROLOG, 347-48, 355
- role teaching, 5
- Savori shell, 356
- Connecticut Agricultural Experi-
 ment Station
 see Dimond, Albert Eugene
- Conservation
 see Genetic diversity for re-
 sistance in forest trees
- Consultive Group on In-
 ternational Agricultural Re-
 search, 44
- Containment
 see Citrus canker in Florida;
 Exclusion and disease
 control
- Cook, R. James, 29
- Copolymerization, 178
- Copper, 161
 citrus canker, 405-6
- Coronamic acid, 252-53
- Coronatine
 see *Pseudomonas syringae*
 toxin genetics
- Corn blight, 35
- Coronafacic acid, 252-53, 258,
 263
- H-coronafacyl-L-isoleucine,
 252-53
- Coronafacylvaline, 253
- Cuscuta*
 citrus greening vector, 117
- Cotton research
 N. A. Cobb, 20-21
- COUNSELLOR expert system,
 355-56
- Cricinomella xenoplax*
 fungal antagonists, 160
- Crinipellis perniciosa*, 316
- Cronartium*
 forest tree resistance, 330
 tissue hypersensitivity,
 328
- Crop loss assessment
 see Nematode management
- Crop-weed complexes
 wild germplasm, 41
- Crops
 growth models
 see Cereal crop growth
 models
- host resistance
 see Host resistance
- protection
 see Fungicide resistance
- rotation
 models, 377
 nematode control, 477-
 80
- uniformity, 35
- wild relatives
 see Wild germplasm and
 plant diseases
- Cross-resistance
 see Fungicide resistance
- Croton hirtus*
 bacterial wilt, 72
- Cultivars
 resistant, 464
 apple scab expert systems,
 351
 see also Genetic diversity
 for resistance in forest
 trees;
- Nematodes, plant resistance and
 tolerance; Resistance breed-
 ing in peanut
 susceptible
 fungicide use, 423
- CUPID canopy model, 375
- Cutinase
 role pathogenicity, 454-4
 CUT1, 455
- Cylindrocladium* black rot
 peanut 280, 282, 295
- Cylindrocladium crotalariae*
 peanut, 282, 292
- Cyst nematodes
 see *Globodera; Heterodera*
- Cysteine residues, 268
- Cytokinins
 nematode resistance, 180
 trans-zeatin, 67

D

- Dactyloctena oviparasitica*
nematode biocontrol, 153–54
- Dagger nematodes
see *Radopholus*
- Damage functions
nematode management, 474–75
- Databases
see Expert systems in plant pathology
- Delignification by wood-decay fungi, 381–398
concluding remarks, 392–93
factors, 384–88
anatomical, 384–85
chemical and ecophysiological, 385–87
variation in fungi, 387–88
- introduction, 381–83
- lignolytic systems, 390–92
- patterns, 383–84
- physical aspects, 398–90
- Development
see Growth
- Developmental variation
see Mycelial individualism
- 2,4-Diaminobutyric acid, 249–51
- Diaphorina citri*
citrus greening vector, 115–17
control, 122–24
- Dibromochloropropane, 482
- Dicarboximide resistance, 427–29, 434
- Dichomitus squalens*
lignin peroxidase activity, 388
- Dickson, J. G., 3
- Dieback
see Citrus greening
- Diethofencarb
with carbendazim, 427, 429
- Digamasellus quadrisetus*
Berlese, 157
- Dimethylimidole, 432
- Dimethoate
citrus greening, 122
- 5,7-dimethoxyisoflavone, 292
- Dimond, Albert Eugene, 29–33
- Dimond, Louise W., 33
- Dimond, Naomi Sorkin, 31
- Diplodia natalensis*
augments citrus greening, 112
- Disease cycle
M. grisea, 453
- Disease triangle
role in quarantine, 224–26
- Dissertations
quarantine coverage, 235
- Distance metrics
nematode systematics, 93
- Dithiocarbamates, 425

Ditylenchus

- dipsaci*
host range differences, 174
host resistance, 179
see also Nematodes, plant resistance and tolerance

Diversity

- see Genetic diversity

DMI resistance, 433–38

DNA

- fingerprints
M. grisea, 451, 461
- homology
greening isolates, 118
- P. solanacearum*, 66
- P. s. syringae*, 261
- interaction RNA polymerase, 268
- M. grisea*, 448–49
- chromosome walking, 452–53
- probes, 248
- citrus canker, 410–13
- diagnosis greening, 120
- nematode identification, 484
- P. phaseolicola*, 264
- P. solanacearum*, 67
- relatedness
P. syringae pathovars, 248

cDNA

- M. grisea*, 447–49

mtDNA

- nematode systematics, 92–93, 102

rDNA

- nematode phylogeny, 102–3

DNA/DNA

- homology
P. solanacearum, 66
- Xanthomonas*, 423–15, 417

hybridization

- Pseudomonas solanacearum*, 66

Dorylaimus, 19

Downey mildew

- control, 429

quarantine, 226

Draconema, 21

Duggar, B.M., 29–31

Dutch elm disease

- see Dimond, Albert Eugene

E

Earthworms

- nematode biocontrol, 161

Echinodontium tinctorium, 313

Echinulation

- smuts, 141–42

Ecosystems

- modeling, 378

see also Delignification by wood-decay fungi; Mycelial individualism

Electrophoresis

Heterodera phylogenetics,

98–99

karyotyping *M. grisea*, 451–52

potato cyst nematode, 100

Pseudomonas solanacearum,

67

smut genetics, 145–6

Elsinoe phaseoli, 41

Embargo

definition, 233

Employment

regulatory control, 234

see also Plant pathology, changing profession

Endoparasitic fungi

nematode biocontrols, 159–60

Endoplasmic reticulum

effect nematode attack, 180

Entry status

see Exclusion and disease control

Environment

effect

bacterial wilt, 69

peanut resistance, 288

regulatory actions, 224–25

smut virulence, 142

tobacco mosaic virus necrosis, 211–12

toxin synthesis, 267–71

see also Nematodes, plant resistance and tolerance

interactions

disease triangle, 224–26

see also Bacterial wilt caused by *Pseudomonas solanacearum*

models

see Cereal crop growth models

pollutants

delignification, 393

weather-based disease

forecasters, 343, 357–58

see also Stress

Epidemiology

genetic base

see Wild germplasm and plant diseases

see also Bacterial wilt caused by *Pseudomonas solanacearum*:

Citrus canker in Florida

Eradication

citrus canker, 400, 405–6,

415

- Escherichia coli*, 253, 257
 tabtoxin, 259
- Esophageal gland cells
 see gland cells
- Ethirimol, 432-33, 436
 with DMI, 433
- Ethylene, 253, 292
- Ethylene dibromide, 482
 migration *Radopholus citrophilus*, 477
- Ethylmethane sulfonate
 mutagenesis, 264-5
- European and Mediterranean
 Plant Protection Organization, 223, 239
- Evolutionary fitness
 see Fitness; Mycelial individualism
- Inclusion
 nematodes, 477
 see also Citrus canker in Florida; Quarantine
- Exclusion and disease control, 219-246
 concepts, 221-231
 biological basis, 224-28
 control strategy, 222
 disease triangle, 225-26
 economical, social, political bases, 228-31
 geographic basis, 223-24
 legal basis, 222-23
 pest risk interaction, 226-28
 regulatory principles, 221-22
 definitions, 220-21
 entry status, 221
 pest risk, 221
 quarantine significance, 220
 risk/benefit consideration, 221
 safeguards, 221
 educating the public, 242-43
 introduction, 219-20
 quarantine negative image, 230-37
 Federal Plant Pest Act, 236-37
 IPM programs, 235
 Plant Quarantine Act, 235-36
 public attitude, 232
 review articles and dissertations
 textbooks, 234
 university courses, 234
 words "quarantine" and "embargo", 233
- Research, 237-42
 computer-assisted information retrieval, 239
- eradicants, 240
 molecular probes, 240-42
 pest risk assessment, 237-39
 zero tolerance and threshold requirement, 239-40
- Summary, 243-44
- Expert systems in plant pathology, 343-60
 beginnings, 343-44
 components, 344-47
 decision making process, 346
 knowledge base, 344-46
 making easy to use, 346-47
 developing, 348-52
 evaluation and adoption, 351-52
 hardware and software, 347-48
 knowledge acquisition, 349-51
 selecting the problem, 348-49
 future, 358-59
- plant pathology, 353-58
 Apple Pest and Disease Diagnosis, 356
 CALEX/Peaches, 356-57
 comparison of systems, 354
 COUNSELLOR, 355-56
 GrapES, 355
 Muskmelon Disorder Management System, 357
 Penn State Apple Orchard Consultant, 357-58
 PLANT/ids, 353
 POMME, 353-55
 White Pine Blister Rust, 355
- Extracellular polysaccharide *X. c. campestris*, 257
- F
- Fallow
 nematode control, 478-79
- FAO Plant Protection Bulletin, 224
- Federal Plant Pest Act, 223, 236-37
- Fertility
 see Reproduction
- Fibonacci series
 wheat tiller growth, 364
- Field plot studies
 nematology, 149
- Financing research
 exclusion and control, 230-31, 238-39
 nematology, 149-50, 163
- peanut, 280
 see also Plant pathology, changing profession
- Fischer, George, 3
- Fitness
 definition, 174
 forest tree resistance, 329
 fungal establishment, 316
 fungicide resistance, 426, 428, 433
- peanut resistance, 288
 smut resistance, 144
- Flax rust
 host resistance, 40
- Flooding
 nematode control, 480
- Floral infection
 small-grain smuts, 138
- Florida
 see Citrus canker in Florida
- Foliage diseases
 oomycete fungicide resistance, 431-32
- peanut resistance, 283-89
 see also Leaves
- Food and Agriculture Organization
 see FAO Plant Protection Bulletin; United Nations Food and Agriculture Organization
- Foraging strategies
 mycelial, 309-10
- Forecasting
 nematode crop loss, 474, 476
 see also Expert systems in plant pathology
- Forest ecosystems
 see Delignification by wood-decay fungi
- Forestry
 see Genetic diversity for resistance in forest trees
- FORTRAN, 356
- Frost damage
 herbicides predispose, 377
- Fungal
 antagonists
 citrus greening, 123
 nematode, 480
 see also Nematode natural enemies
 biotechnology, 392-3
 degradation
 see Delignification by wood-decay fungi
- growth, 456
- individualism
 see Mycelial individualism
- pathogens
 see *Magnaporthe grisea*
 molecular genetics

- population dynamics
see Mycelial individualism
- Fungicide
expert systems, 345, 355, 358
research
A.E. Dimond, 30
resistance
smuts, 144-45
- Fungicide resistance, 421-42
2-amino pyrimidines, 432-33
benzimidazoles, 425-27
Botrytis in Swiss vineyards, 425-27
conclusions, 438-39
counter-measure impact, 425
dicarboximides, 427-29
Botrytis in the Champagne Region, 427-29
DMI fungicides, 433-37
barley powdery mildew in Europe, 434-36
mixtures and alternations, 436-37
wheat powdery mildew in Northern Europe, 434
introduction, 421-24
use and resistance, 423-24
- The Fungicide Resistance Action Committee, 424-25
mixtures and alternations, 437-38
outlook, 439
phenylamides, 429-32
against foliar pathogens, 432
P. infestans, 430-31
P. viticola in France, 431-32
- Fusarium*
augments citrus greening, 112
- Fusarium* wilt
nematode effects, 183
tomato, 80
see also Dimond, Albert Eugene
- Fusiform rust, 327
- G**
- β -galactosidase, 261, 269, 270
- Galls
nematode induced, 183
- Ganoderma*, 387
tsugae
delignification, 384-85
zumatum
delignification, 390
- Gene-for-gene interactions
plants and nematodes, 186
see also Virus-host interactions, tobamoviruses
- General Agreement on Trade and Tariffs, 228
- Genetic diversity
fungal, 458
delignification, 387-88
resistance to nematodes, 479
see also Mycelial individualism; Resistance breeding in peanut;
- Wild germplasm and plant disease
- Genetic diversity for resistance in forest trees, 325-42
breeding, 331-34
conservation, 334-37
distribution, 327-31
introduction, 325-27
- Genetic linkage, 452
Ustilago hordei, 138
- Genetic manipulation
see cDNA; Clones; Mutants
- Genetics
see *Magnaporthe grisea*
molecular genetics;
Pseudomonas
syringae toxin genetics,
Small-grain smut genetics
- Genets
see Mycelial individualism
- Genomic interactions
see Mycelial individualism
- Genotype
nematode
definition, 175
- Genetic acid concentration
citrus greening, 120
- Gentisoyl- β -D-glucose
citrus greening, 112, 118-19
- Germination temperature
Tilletia, 142
- Germlasm
bacterial wilt
host resistance, 77, 80
forest tree resistance, 332, 334, 336
resistance to nematodes, 484
see also Wild germplasm
- Global warming
bacterial wilt distribution, 81
- Globodera*
pallida
aldicarb, 170
host resistance, 175-76, 183
identification, 484
systematics, 95, 97-98, 100-1
virulence, 173
- rostochiensis*
identification, 484
RoI, 173, 175, 183
sampling, 472
- systematics, 95, 97-101
host resistance
see Nematodes, plant resistance and tolerance
- systematics
see Nematode molecular systematics
- β -glucosidase, 269
 β -glucosides, 270
- Glutamine synthetase, 266
- Glycoproteins
role plant-nematode interactions, 179
- β -glycosidase
potato cyst nematodes, 181
- Gossypol, 181
- graft
incompatibility
virus-induced necrotic reaction, 194
- transmissibility
citrus greening, 114-15
tomato spotted wilt virus, 287
- Grant system
see Financing research
- GrapES expert system, 355
- Grassy stunt virus, 49
- Grassy stunt virus of rice, 41
- Greening disease
see Citrus greening disease
- Growth
crop
see Cereal crop growth models
degree days, 364, 368
fungal, 456
see also Mycelial individualism
- reduction
role nematodes, 182-83
- H**
- Hawaiian Sugar Planters Association Experiment Station, 19
- Heat
citrus greening vectors, 115-16
- Hemicellulases, 391
- Heterobasidion annosum*
decay mechanisms, 385
life cycle, 319
- Heterodera*
avenae, 157
early planting for control, 480
fumigation, 472
fungal antagonists, 152-53, 159-60

- taxonomic relationships, 97, 99
- elachista* bacterial antagonists, 154-55
- glycines* host resistance, 176 role race virulence, 174 taxonomic relationships, 95, 98-100
- goettingiana* management, 476 phylogenetics, 97
- host resistance see Nematodes, plant resistance and tolerance
- lespedezae* phylogenetics, 99
- radicicola*, 22-23
- rostochiensis*, 100
- schachtii* early planting for control, 480 fungal antagonists, 154 taxonomic relationships, 95-99
- systematics see Nematode molecular systematics
- trifolii* phylogenetics, 99
- Hirsutella rhossiliensis* nematode biocontrol, 154, 160
- Homology see DNA: rRNA
- Hormone inhibitors nematode, 481
- Host-pathogen interactions forest tree resistance breeding, 329 quarantine, 224-26, 227 see also Cereal crop growth models; Mycelial individualism; Nematodes, plant resistance and tolerance; *Pseudomonas syringae*
- toxin genetics
- Host range see Bacterial wilt caused by *Pseudomonas solanacearum*
- Host resistance bacterial wilt, 73 environmental factors, 172 infection frequency, 291 nematodes, 478-79 see also Nematodes, plant resistance and tolerance rate-reducing, 291
- slow mildewing, 39 tobacco mosaic virus, 196 virus coat-protein mediated, 292
- see also Genetic diversity for resistance in forest trees; Resistance breeding in peanut; Wild germplasm and plant diseases
- Host specificity see *Magnaporthe grisea* molecular genetics
- Hyaluronidase, 121
- Hygromycin B, 448
- Hydrogen peroxide, 180
- Hymenochaete corrugata*, 309
- Hypersensitive response breeding for, 294 *Cronartium*, 329 nematode, 180-81, 293 *P. s. syringae* induced, 252 tobamoviruses see Virus-host interactions, tobamoviruses
- Hyphal anastomosis, 305-6, 308
- Hypoaspis nr. aculeifer* (Canebrini), 157
- Hypoxyylon* *fragiforme*, 313 *fuscum*, 313
- I
- ICI Agrochemicals, 355
- Incompatibility see Mycelial individualism
- India see Resistance breeding in peanut
- Indian dieback see Citrus greening disease
- Individualism see Mycelial individualism
- Indoleacetic acid oxidase activity, 181
- Infection responses *Colletotrichum gloeosporioides*, 45-46 *Puccinia coronata*, 46
- Inoculum bacterial wilt, 69-71 density peanut resistance, 288 fungal see Mycelial individualism nematode biocontrol, 161-62 see also Nematodes, plant resistance and tolerance
- small-grain smuts, 138
- wild populations, 47
- Inonotus dryophilus* delignification, 385, 390
- Insect-disease interactions forest tree resistance, 331
- Insect vectors exclusion, 224
- see also Citrus greening disease
- Insecticide Resistance Action Committee, 425
- Insecticides citrus greening, 122-23
- Integrated crop protection see Fungicide resistance
- Integrated pest management programs
- bacterial wilt, 79 exclusion and control, 235 expert systems see Expert systems in plant pathology
- see also Fungicide resistance; Nematode management
- Intercrossing see Genetic diversity for resistance in forest trees
- International Agricultural Research Centers, 43-45
- International Benchmark Sites for Agrotechnology Transfer, 361, 376
- International Board for Plant Genetic Resources, 49
- International Crops Research Institute see Resistance breeding in peanut
- International Mycological Institute, 48
- International Plant Protection Convention, 220, 223-24
- International Society for Plant Pathology, 417, 425
- Interspecies antagonism see Mycelial individualism
- Invertebrate antagonists see Nematode natural enemies
- Ion transport effects syringomycin, 252, 267-68
- IPM see Integrated pest management
- Iron role syringomycin production, 268
- Isoenzyme data nematode systematics, 92-94
- Lisoleucine, 252

J

Jenkins, E.H., 29
 Johnson, S.W., 32

K

Karyotypes
M. grisea, 451–52
 smut genetics, 146
 Knowledge bases
 see Expert systems in plant pathology
 Krebs cycle, 319

L

Laboratory equipment, 7–8
 β -lactam, 254, 258–59
 β -lactamase, 259
 Lactose, 402
Lampito mauritii, 157
 Large proteins
 syringomycin, 268
 biosynthesis, 259–61
 STP1, 259–61
 STP2, 259–61
syr genes, 260–61

Late blight, 50
 fungicide resistance, 430
 potato, 424
 Latent infections
 see Bacterial wilt caused by *Pseudomonas solanacearum*

Leaf mottle
 see Citrus greening disease
 Leaf spot
P. solanacearum, 71
 see also *Cercospora arachidicola*; *Cercosporidium personatum*

Leaves
 chlorotic symptoms, 255
 see Virus-host interactions, tobamoviruses
 growth
 see Cereal crop growth models
 necrotic symptoms
 see Virus-host interactions, tobamoviruses
 nematode effects, 168–9, 182–83
 see also Foliar diseases
 Lectins, 179
 role plant-nematode reactions, 481
Lentinula edodes
 delignification, 389

Life cycles

cereals
 see Cereal crop growth models
 fungal
 see Mycelial individualism

nematode, 469–70, 481, 484
 Lignin degradation
 see Delignification by wood-decay fungi

Lignin peroxidase, 388, 390–91
 Light
 factor growth models, 374

Likubin
 see Citrus greening disease
LISP, 347–48

Loblolly pine
 resistance, 328
 fusiform rust, 327

Lodgepole pine
 resistance, 328

Long-range dispersal

Pseudomonas solanacearum, 69–70

Lysine, 254

M

McKinney, H.H., 3

Magnaporthe grisea
 appressoria, 454, 458
 cloned genes

CUT1, 447, 449
 ILV1, 447–48
 RSY1, 447, 454

conidia, 446, 461

mutants

ALB1, 445
 BUF1, 444
 drug-resistant, 446
 melanin-deficient, 446
 SMO1, 445
 transformation
 ALB1, 454
 BUF1, 454
 GUY1, 452

Magnaporthe grisea molecular genetics, 443–67

classical genetics, 445–53
 cloned genes, 447
 electrophoretic karyotyping, 451–52

fertile laboratory strains, 445–46

gene disruption, 448–49

genetic mapping, 452–53

middle repetitive DNA sequences, 449–51

mutant isolation, 446

transformation, 447–48

vegetative diploid phase, 446–47

field into laboratory, 444–45

future efforts, 463–64

host specificity, genetics and cytology

genes for pathogenicity and

virulence, 458–61

histological complexity, 458

host specificity, new insights on variation, 461–62

introduction, 443–44

molecular pathogenesis mechanisms, 453–57

disease cycle, 453

penetration, 453–55

proliferation, 455–57

Magnaporthe grisea repeat (MGR), 447, 449–50, 452, 459, 461

SMO1, 455

Magnesium peroxidases, 390–91

Maize

quarantine, 226

Maltose, 402

Manganese, 390–91

Manure

nematode biocontrol, 161

Marlatt, C.L., 21

Mating-type loci

M. grisea, 445

Tilletia, 141

Ustilago, 139–40, 145

Melampsora, 329

Meloidogyne arenaria

bacterial antagonists, 155–

56

peanut, 280

phylogeny, 92–94

soil sampling, 471

graminicola

flooding for control, 480

hapla

peanut, 280

root damage indices, 471

systematics, 92–93

host resistance

see Nematodes, plant resistance and tolerance

incognita

bacterial antagonists, 162

cytokinin treatment, 180

density sampling, 475

host resistance, 41, 176,

179, 181

nutrient effects, 183

systematics, 92, 94

javanica

bacterial antagonists, 162

biocontrol, 153–54

systematics, 92–94

- see also root-knot nematodes
sampling, 471, 473, 484
soil fumigation, 470
soil temperatures, 480
systematics
see Nematode molecular systematics
- Membrane degradation
citrus canker, 406
syringomycin, 252
see also Delignification by wood-decay fungi
- Mesodiplogaster iheringi*, 157
- Metal-protein complexes, 252
- Metaxalyl, 430
- Methyl bromide, 470
- Mi* gene, 177-78
- Mexican lime cancerosis
see Citrus canker in Florida
- Mineral ash, 78
- Mitochondrial nucleic acid
hybridization
nematode detection, 484
- Models
nematode crop loss, 474
see also Cereal crop growth models
- ModWHT winter wheat model, 373-76
- Molecular genetics
see *Magnaporthe grisea* molecular genetics, *Pseudomonas syringae* toxin genetics; Small-grain smut genetics
- Monoclonal antibodies
citrus canker, 411
citrus greening, 113, 120
nematode
gland cell products, 196
identification, 484
- Monocrotaphos
citrus greening disease, 122
- Monoterpenes, 328
- Morpholine resistance, 435, 435
- Morphology
see Cereal crop growth models
- Mosaic symptoms
see Virus-host interactions, tobamoviruses
- Muskmelon Disorder Management System, 357
- Muskmelon powdery mildew, 345-46
- Mutants
fungal versatility, 319
M. grisea, 447-49
nontoxicogenic
see *Pseudomonas syringae* toxin genetics
- smuts, 139
- tobamovirus, 197, 202
see also Genetic diversity for resistance in forest trees; *Magnaporthe grisea* molecular genetics
- Mycelial individualism, 305-23
conclusions, 320
control of variation, 318-20
inoculum potential, 307-13
arrival, spores or mycelium, 308-10
establishment, 310-13
introduction, 305-7
life history strategies, 313-20
genetic variation, 315-17
genomic symbiosis, 317-18
R-, C- and S-selection, 314-15
selection, routine and episodic, 315
- Mycoplasma-like organisms
citrus greening, 117
- N
- Nacobbus*, 169
- National Institutes of Health, 7, 9
- National Science Foundation, 7, 9-10, 31-32
- Necrosis
nematode, 180
see also Citrus canker in Florida; Virus-host interactions, tobamoviruses
- Nematicides, 475-76, 482-83
aldicarb, 170, 482
alternatives, 478
see also Nematode natural enemies
- carbofuran, 482
- carrot, 471
- field plot studies, 149
- groundwater contamination, 482
- systematic, 482
- Nematode
control
see Nematode natural enemies
- gland cells, 168, 179, 186
- races
see Nematodes, plant resistance and tolerance
- reproduction
see Nematodes, plant resistance and tolerance
- resistance to, 478-9
- saliva, 168, 179
- soil solarization, 482
- suppressive soils
nematode, 293, 481
see also Nematode natural enemies
- systematics
see Cobb, Nathan Augustus; Nematode molecular systematics
- Nematode management, 469-90
improving identification and management, 483-84
introduction, 469-70
programs, 470-83
direct management tactics, 480-83
exclusion, 477
management tactics, 476-83
predicting population change and crop loss, 474-76
sampling, 470-73
suboptimal hosts or environments, 477-80
- Nematode natural enemies, 149-166
conclusions, 163
exotic antagonist into soil, 161-62
bacterial, 162
fungal, 161-62
introduction, 149-50
manipulating nematode enemies, 158-62
bacterial antagonists, 160
endoparasitic fungi, 159-60
invertebrate antagonists, 160-61
nematode-trapping fungi, 159
opportunististic fungal parasites, 160
soil antagonists, 158-61
suppressive soils, 150-58
bacterial biocontrol, 154-56
fungal biocontrol, 152-54
invertebrate biocontrol, 156-5
invertebrate dispersal, 157
invertebrate reproduction, 157-58
invertebrate voracity, specificity, survival, 156-57
- Nematode systematics and molecular data, 89-107
concluding remarks, 103
- Heteroderinae*, 95-97, 95-101
generic relationships, 95-97
Globodera biochemical taxonomy, 100-1

- Heterodera** biochemical taxonomy, 98–100
 sibling species, races and pathotypes, 98
 species relationships, 97–98
 introduction, 89–90
Meloidogyne, 91–94
 Molecular data in nematode phylogeny, 101–3
 Nematodes, plant resistance and tolerance, 167–92
 damage mechanisms, 182–84
 damage components, 182–84
 impaired root function, 183–84
 parasitic, 183
 introduction, 167–68
 nematode biology, 168–69
 resistance, tolerance genetics, 175–76
 resistance and virulence, 176–77
 resistance mechanisms, 177–79
 resistant response, 180–81
 summary, 185–86
 terminology, 169–75
 biotype, pathotype, race, 174–75
 pathogenicity, virulence, 171
 resistance, tolerance, 169–71
 resistance, susceptibility, aggressiveness, 171–74
 tolerance, 181–82
 tolerance, occurrence and use, 184–85
 tolerance, tscreening, 185
 yield loss and tolerance, modeling, 182
 yield reduction and tolerance mechanisms, 184
- Nematologists, 3
 see also Cobb, Nathan Augustus
- Nemathopthora gynophila** Kerr and Crump
 nematode biocontrol, 159–60
- Neurospora crassa**
- New South Wales Department of Agriculture, 17
- Nitrogen
 nematode effects, 183
 role
 delignification, 386
 fungicide resistance, 423, 429
- toxin biosynthesis, 268
 uptake modeling, 374–75, 377
- Nonhost interactions
 viral, 194
- North American Plant Protection Organization, 223
- Nursery canker
 see Citrus canker in Florida
- Nutrients
 effect toxin synthesis, 267–68
 imbalance
 expert systems, 356
- O**
- Obituaries
 see Dimond, Albert Eugene
- Octanoyl coenzyme A, 251
- Oticidin, 254–55, 258
- Octopamine
- Oilseed crops
 see Resistance breeding in peanut
- Organic Act, 223
- Ornithine carbamoyltransferase, 255
- Outcrossing
 see Mycelial individualism
- Oxalic Acid, 292–93
- Oxyuris*, 18, 19
- P**
- Paecilomyces*
 nematode biocontrol, 151 p.
- Palo blanco*, 384
- Palo podrido*, 384–86
- Pantothenic acid
Ustilago hordei, 140
- PASCAL, 348, 353
- Pasturia*
 nematode biocontrol, 152, 154, 162
penetrans
 nematode biocontrol, 154–56, 160–61
- Pathogenesis-related proteins
 nematode effects, 183–84
- Pathogenicity
 definition, 171
 see also *Magnaporthe grisea*
 molecular genetics;
- Pseudomonas syringae* toxin genetics
- Pathotypes
 definition, 174
 nematode
 see Nematoles, plant resistance and tolerance
- Peach disease expert systems, 356–57
- Peanut
 bacterial wilt, 69, 71, 75–76
- see also Resistance breeding in peanut
- Peanut clump virus, 288
- Peanut Collaborative Research Support Program, 280
- Peanut leaf spot
 fungicide resistance, 425
- Peanut mottle virus, 280, 287
- Pectin methylesterase, 179
- Penicillin G
 treatment citrus greening, 117–18
- Penicillin-carbendazin dip
 citrus greening, 121
- Penn State Apple Orchard Consultant, 348–50, 355, 357–58
- Apple Scab Module, 350–51
- Peptide antibiotics, 251
- Peroxidase activity
 citrus greening, 112, 122
- Pesticides
 role quarantine, 240
- Phanerochaete chrysosporium*
 delignification, 387–88, 390–91
 soil detoxification, 392
- Phaseolotoxin
 see *Pseudomonas syringae*
 toxin genetics
- Phellinus*
kawakamii
 delignification, 385
nigrolimitatus
 delignification, 385
pini
 delignification, 383–84, 391
weiri, 309
- Phenolic compounds
 nematode control, 181, 481
- Phenylalanine, 204
- Phenylamide resistance, 429–32, 434
- Phomopsis*
 outcrossing, 312
- 4'-phosphopantetheine, 251
- Photosynthates, 368
 role on growth models, 374
- Photosynthesis
 nematode effects, 183
- Photosystem II
 tobacco mosaic virus coat protein, 196
- Phyllochron value
 cereal growth, 365–66, 368, 374
- Phylogenetics
 see Bacterial wilt caused by *Pseudomonas solanacearum*;

- nematode systematics and molecular data
- Phytoalexins**
resistance, 178
peanut, 181, 293-94
- Phytophthora infestans**
phenylamide resistance, 429-31
- Phytotoxins, 456-57**
see also *Pseudomonas syringae* toxin genetics
- PLANT/ds expert system, 353**
- Plant microbe interactions**
see *Pseudomonas syringae* toxin genetics
- Plant pathology, changing profession, 1-12**
employment, 5-6
extension, 6-7
financing
conventional breeding, 11
research, 7-10
societies, 11-12
introduction, 1-2
research, 2-3
specialization, 3-4
teaching, 4-5
- Plant Protection**
see Exclusion and disease control
- Plant Quarantine Act, 21, 222, 235-36**
- Planting material**
bacterial wilt, 69-70
- Plasmids**
coronatine biosynthesis, 262-63
P. syringae toxins, 262-63
Tilletia, 146
- Plasmopara viticola**
resistance
fungicide, 430-32
host, 40
- Plum pox virus**
spread, 224
- Political factors**
quarantine, 229
- Polygenic modification**
smuts, 142-43
- Polyketide biosynthesis genes, 258**
- Polymyxins, 251**
- Polyphenol**
seed coat, 292
- POMME expert system, 353-55**
- Ponderosa pine**
resistance, 328
- Population dynamics**
citrus canker, 407-8
forest tree resistance, 330, 332, 334
- fungal**
see Mycelial individualism
- nematode**
see Nematode management; Nematode natural enemies
- Porphyrins**
mimic lignin peroxidase, 391
- Portulaca oleracea**
bacterial wilt, 72
- Potassium**
ion transport, 252
- Potato**
seed
fungicides, 430
tubers
bacterial wilt, 71
- Potato cyst nematode**
see *Globodera*
- Potato late blight**
expert systems, 343
- Pound, Glenn, 3**
- Powdery mildew**
barley
fungicide resistance, 432-36
- cereal**
fungicide resistance, 437
- cucumber**
fungicide resistance, 432-33
- grape**
fungicide resistance, 435
- wheat**
fungicide resistance, 433-34
- muskmelon, 345-46**
- Pratylenchus scribneri, 181**
- Prionchulus punctatus, 156**
- Proline**
Ustilago, 140-41
- L-proline, 112
- PROLOG, 347-48, 355**
- Proteins**
see Large proteins; Metal-protein complexes
- Pseudocercospora herpotrichoides, 8**
- Pseudomonas**
aeruginosa
OCTase, 259
phosphateg-regulated enzymes, 266
- citri*, 402
- pickettii*, 66
- solanacearum*, 41
aerial transmission, 71
avirulent strains, 80
biocontrol, 79-80
calcium, 75-76
DNA homology, 66
leaf spot infection, 71
- Meloidogyne, 76**
- peanut resistance, 282, 296
- potato, 70, 79**
potato resistance, 73-74, 77
races, 67-68
rRNA homology, 66-67
streptomycin-resistant, 76
- temperature in virulence, 73**
- tobacco resistance, 77
- tomato resistance, 77-78**
var. *asiaticum*, 68
- weed hosts, 71-72
- solanacearum* bv. 1, 67-68, 70
- solanacearum* bv. 2, 67-68, 71-74, 76, 79
- solanacearum* bv. 3, 67-68, 72-74
- solanacearum* bv. 4, 67, 73
- solanacearum* var. *asiaticum*, 68
- see also Bacterial wilt caused by *Pseudomonas solanacearum*
- syringae*
DNA relatedness pathovars, 248
host specificity, 271
tabtoxin, 266
- syringae* pv. *atropurpurea*
coronatine, 252, 262
- syringae* pv. *maculicola*
cor gene cluster, 263
- syringae* pv. *phaseolicola*
OCTase, 259, 264
pathogenic genes, 271
- phaseolotoxin, 254-55, 257, 266
- phaseolotoxin gene cluster, 264-65
- plasmids, 262-63
- syringae* pv. *syringae*, 404
amino acid auxotrophies, 256
- β -glucosides, 270
- hypersensitive reaction, 252
- mutants, 251-52, 256-58, 260
- pathogenic genes, 271
- sy* genes, 260-61, 265
- syringomycin, 249-52, 259, 265, 269
- toxins, 248
- syringae* pv. *tomato*, 258
- cor* genes, 262-3, 265-66, 270
- coronatine, 265-66, 270
- syzygii*, 66
- tagetis*
- tagetitoxin, 255

- tagetis* pv. *coronafaciens*, 253, 263
tagetis pv. *garcae*, 253
tagetis pv. *tabaci*, 253, 259
 tabtoxin, 266–63
- Pseudomonas syringae* toxin genetics, 247–78
 cloning toxin genes, 256–59
 biosynthesis clusters, 258–59
 mutations, 256–58
 environmental control gene expression, 267–71
 nutritional factors, 267–68
 plant signal activation, 268–71
 genetics toxin production, 259–65
 large protein complexes, 259–61
 phaselotoxin cluster, 264–65
 tabtoxin cluster, 263–64
 introduction, 247–48
 perspectives, 271–72
 toxicogenicity and virulence, 265–67
 toxin structure suggests biosynthesis, 248–55
 coronatine, 252–53
 phaselotoxin, 254–55
 syringomycins, 249–52
 tabtoxin, 253–54
 tagetoxin, 255
- Pseudoperonospora cubensis*
 phenylamide resistance, 429
- Pyura vectors
 see *Citrus* greening disease
- Pterostylleucus cecidogenus*, 41
- Public relations
 quarantine, 232
- Public service, 9
- Publications and tenure, 6
- Puccinia*
coronata
 infection responses, 46
 resistance, 47
 resistance mapping, 39
graminis
 life cycle, 319
graminis tritici
 host resistance, 50
hordei
 interspecies competition, 310
horiana Henn.
 quarantine, 243
recondita
 resistance mapping, Israel, 39
- N-pyrrolidinomethyl tetracycline, 122, 125
- Pythium myriotylum*
 peanut resistance, 282, 292
 pod rot, 294–95
- Q**
- Quarantine, 21
 bacterial wilt, 69
 citrus canker, 401, 404–6, 415
 definition, 233
 wild germplasm, 48–49, 55
 see also Exclusion and disease control
- R**
- Races
 definition, 174–75
- Radopholus citrophilus*
 exclusion, 477
 fallow, 479
 host resistance
 see Nematodes, plant resistance and tolerance
similis, 18–19
- Rainfall
 expert systems, 357
- Red rots, 381
- Regulatory control
 citrus canker, 400–1
 see also Exclusion and disease control; Quarantine
- Reproduction
 fungal
 see Mycelial individualism
- M. grisea*, 445–46, 459
 nematode, 172–73
- Resistance
 see Fungicide resistance; Host resistance
- Resistance breeding in peanut, 279–303
 expectations, 297
 host variability, 281–88
 foliar diseases, 283–88
 soil-borne pathogens, 282–83
 introduction, 279–280
 breeding for resistance, 280
 peanut diseases, 280
 pathogen variability, 288–90
 foliar diseases, 288–89
 soil-borne pathogens, 289–90
 progress, 296–97
 resistance, 290–94
 foliar diseases, 290–92
 soil-borne pathogens, 292–94
- strategy, 294–96
- Respiration
 role phytoalexins, 293
- Restriction fragment length polymorphism (RFLP)
M. grisea mapping, 453, 460
Xanthomonas, 423, 415–16
- Review papers
 quarantine coverage, 234–5
- Rhizobium*
 host specificity, 271
- Rhizoctonia* foliar blight, 53
- Rhizoctonia solani*, 377
 peanut resistance, 292
- RHLZOS model, 372
- Rhizosphere
 see Nematode natural enemies
- Ribulose 1,5-bisphosphate carboxylase, 255
- Rice blast fungus
 see *Magnaporthe grisea*
 molecular genetics
- Rice cyst nematode
 see *Heterodera elachista*
- Risk analysis
 see Exclusion and disease control
- RNA
 double-stranded, 464
 polymerase
 interaction DNA, 268
 tobacco mosaic virus, 210
 genome, 195
 hypersensitive reaction, 205
- mRNA
 tobacco mosaic virus genome, 195
- rRNA
 effect tagetoxin, leaves, 255
 homology *P. solanacearum*, 66–67
 nematode phylogeny, 101
- RNA/DNA hybridization
Pseudomonas solanacearum, 66
- Root-knot nematodes
 bacterial antagonists, 152, 154, 162
- host resistance
 peanut, 293
 see also Nematodes, plant resistance and tolerance
- soil organic amendments, 158
- see also *Meloidogyne*; Nematode molecular systematics
- Root-tip galls
 nematode induced, 169
- Roots
 growth
 see Cereal crop growth models

- nematode effects, 168, 183–84
pruning, 477
- Rosette virus**
peanut resistance, 280, 286–86, 294, 296
- Rust**
peanut resistance, 283–84, 288, 291, 294
quarantine, 225
resistance models, 377
soybean resistance, 52
see also Blister rust, Flax rust, Fusiform rust
- S**
- Saccharomyces cerevisiae*, 447
- Sampling**
see Nematode management
- Saturation deficit index**, 116, 124
- Scientific illustration**
see Cobb, Nathan Augustus
- Sclerotinia*
minor
peanut resistance, 283, 292–93, 296
- Sclerotium*
rolfsii
peanut resistance, 282, 292, 295
- Seed**
forest tree resistance, 337
fungicide treatment, 436
- Seinura tenuicaudata* (De Man)
reproduction, 158
storage germplasm, 44
- Seedborne pathogens**
germplasm movement, 48
small-grain smuts, 138
- Selection**
see Mycelial individualism
- Septoria*
nodorum, 316
yield losses, 378
- Serine*, 204, 254
- S-H mixture**, 78
- Sharville*, Eric, 30
- Shurteff*, M.C., 12
- Signals**, 248
toxin production, 268–71
- Single-gene resistance**
to nematodes, 479
see also Genetic diversity for resistance in forest trees
- Slow mildewing**, 39
- Small grain smut genetics**, 137–47
- biochemical techniques**, 145–46
- electrophoresis**, 145–46
- karyotypes, 146
plasmids, 146
transformation, 146
- fungicide resistance**, 144–45
- general, 138–42
echinulation, 141–42
germination temperature, 142
mating-type loci, 139–41
mutation and linkage, 139
introduction, 137–38
summary, 146–47
- virulence**, 142–44
fitness, 144
polygenic modification, 142–43
reverse dominance, 143
selection, 143–44
- Smith, Erwin F.**, 20
- Smut fungi**
see Small-grain smut genetics
- Soil**
amendments to control nematodes, 481
antagonists
see Nematode natural enemies
conditions
see Bacterial wilt caused by *Pseudomonas solanacearum*
fumigants
citrus canker, 405
modeling, 372–74
- Soil sampling**
see Nematode management
- Soil-Borne pathogens**
bacterial wilt
see Bacterial wilt caused by *Pseudomonas solanacearum*
peanut resistance, 289, 292–94, 295
- Somatic incompatibility**
see Mycelial individualism
- Southern Regional Plant Introduction Center**, 281
- Southern stem rot**
peanut resistance, 282, 294
- Soybean cyst nematodes**
bacterial antagonists, 152
host resistance, 177
see also *H. glycines*
- Soybean disease expert systems**
PLANT/ds, 353
- Soybean mosaic virus**
spread, 44
- Soybean rust**, 40
- Spergon**, 30
- Spores**
mycelial individualism, 308–10
- Sporidia**
small-grain smuts, p 138
- Standards for NAMing Pathogens**, 415
- Stem and bulb nematodes**
see *Ditylenchus*
- Stimulon**, 268
- Stomata**
syringomycin, 252
- Storage temperature potato tubers**
P. solanacearum, 70
- Streptomyces*
granicin synthetase gene cluster, 261
M. griseus, 255, 257
polyketide synthase genes, 263
violaceoruber, 261
- Stress**
cereal growth models, 367, 370, 377
forest tree resistance, 329
fungal establishment, 312, 314
- Strip cankers**
mycelial individualism, 312
- Stromata**
fungal competition, 313
- Sugar beet cyst nematode**
see *Heterodera*
- Sugars**
toxin production, 269–70
- Sulfonylurea resistance**
M. grisea, 448
- Sumatra disease of clove**, 66
- Superoxide dismutase**, 180
- Suppressive soils**
see Nematode natural enemies
- Susceptibility**
definition, 171
- Syr genes**, 260–61, 265, 269
- Sweet potato**
bacterial wilt, 69
- Syringol/guaiaicyl ration**, 386–87
- Syringomycin synthetases**, 261
- Syringomycins**
see *Pseudomonas syringae*
toxin genetics
- Syringostatin**, 249–51
- Syringotoxin**, 249–51, 260
- Systematics**
genomic analysis, 37
nematode
see Cobb, Nathan Augustus; Nematode molecular systematics
- P. solanacearum*
see Bacterial wilt caused by *Pseudomonas solanacearum*
- wild species, 37
- Xanthomonas*, 412–15

T

- Tabtoxin
 see Pseudomonas syringae
 toxin genetics
- Tabtoxinine- β -lactam, 254, 259, 263, 266
- Tagetitoxin
 see Pseudomonas syringae
 toxin genetics
- Tannin, 292
- Taylor's Power Law, 472-73, 475
- Taxonomy
 see Bacterial wilt caused by *Pseudomonas syringae*; Nematode
- systematics and molecular data;
 Systematics
- Teaching
 see Plant pathology, changing profession
- Temperature
 high
 citrus greening vectors, 115-16
 resistance gene breakdown, 178
- host-pathogen interactions
 bacterial wilt, 72-74
- role
 bacterial wilt, 79, 81
 cereal growth, 364, 368, 372
 citrus greening, 112
 delignification, 386
 nematode biocontrol, 160
 peanut resistance, 289
 storage potato tubers
 P. solanacearum, 70
- Tenuicanic acid, 457
- Tenure, 6
- Tetracycline hydrochloride
 citrus greening, 121-22
- Thermal time
 cereal growth models, 370, 372
- Therapytherapy
 citrus greening, 120-21
- L-threonine, 254
- Threshold requirements
 quarantine, 240
- Tiller growth
 see Cereal crop growth models
- Tilletia*
 controversa
 germination temperature, 142
 karyotypes, 146
 mating-type locus, 141
 indica, 138
- inheritance of isozymes, 145-46
- mating-type locus, 141
- plasmids, 146
- tritici*
 germination temperature, 142
- see also* Small-grain smut genetics
- Tobacco
 N gene, 202-3, 208-9, 213
 N' gene, 203-8, 212-13
 nn, n'n' genotype, 209-12
 tobamovirus-induced necrosis, 202-211
- transgenic
 tobacco mosaic virus coat protein, 196
- Tobacco mosaic virus
 chloroplast degradation, 201-2
 chlorotic symptoms, 195-202
- coat protein, 195-96
 hot regions, 207
 monomers, 207
 nn, n'n' genotype, 209, 212
 ORF, 203-5, 209
 wild-type, 198, 205
- coat protein mutants, 198, 201, 209-10
 cp 10, 209-10
 cp 27, 209-10
- genome, 195
- genomic RNA, 196
- Holmes' masked strain, 197
- hypersensitive reaction
 see Virus-host interactions, tobamoviruses
- necrotic symptoms, 202-211
- proteins, 195
- U1 strain, 196, 205
- U5 strain, 196
- wild-type, 211-21
- see also* Virus-host interactions, tobamoviruses
- Tolerance, 239-40
 to nematodes, 479
 see also Nematodes, plant resistance and tolerance
- Tomato
 tobamovirus hypersensitive reaction, 211-13
- Tomato spotted wilt
 peanut resistance, 280, 287
- Toxins
 nematode resistance, 177
- Toxoptera citricidus*, 125
- Trametes versicolor*
 wood decay, 390
- Trans-zeatin, 67
- Triadimenol resistance
 barley powdery mildew, 434-35
- Trichaptum biforme*
 delignification, 385
- Trioza erytreae*
 citrus greening vector, 115-17
 control, 123-24
- Tristeza virus, 117
- Tylenchus*, 18
 grandulosus, 18
 granular nematicides, 483
 host resistance
 see Nematodes, plant resistance and tolerance
- semipenetrans*
 exclusion, 477
 hypersensitive response, 180
 sampling, 473
- similis*, 18-19
- Tyrophagus similis*
 nematode biocontrol, 157
- U
- Uncinula necator*
 resistance, 40
- United Nations Food and Agriculture Organization, 223, 239
- United States Agency for International Development, 280
- United States Department of Agriculture
 Agricultural Research Service, 10, 404
- Animal and Health Plant Inspection Service, 400-1
- Plant Protection and Quarantine, 233, 242
- Southern Regional Plant Introduction Station, 281
- Tropical Agriculture Grant Program, 404
- see also* Cobb, Nathan Augustus
- University of Florida
 Institute of Food and Agricultural Services, 404-5
- University of Jena, 17
- University of Nebraska, 30
- University of Pennsylvania, 30
- University of Wisconsin, 3-4, 29
- Urea, 78
- Ustilago*
 hordei, 138-39, 141
 chemotaxonomy, 145
 echinulation, 141-42
 fungicide resistance, 144-45
- karyotypes, 146
 matting-type loci, 140

- m**
 mutants, 139
 virulence, 142-43
- k**
kollerii
 echinulation, 142
- n**
nigra
 chemotaxonomy, 145
 echinulation, 141
- nuda*
 mating-type loci, 139, 141
- tritici*
 karyotypes, 146
 see also Small-grain smut genetics
- V**
- Vectors**
 insect
 see Citrus greening
 quarantine, 224
- Vein phloem degeneration**
 see Citrus greening
- Venturia inaequalis**
 benzimidazole resistance, 425
- Verticillium chlamydosporium**
 nematode biocontrol, 160
- Vesicular-arbuscular mycorrhizae**
 bacterial wilt, 80
- Vinclozolin/thiram, 429**
- Viral**
 elicitors, 203
 tobamovirus HR, 204-8, 211-12
 genomic sequences, 193-94
 replication
 tobamoviruses, 195-96
- Virulence**
 definition, 171
 see also Genetic diversity for resistance in forest trees; Nematodes, plant resistance and tolerance; *Pseudomonas syringae* toxin genetics; Small-grain smut genetics
- Virus-host interactions, tobamoviruses, 193-217**
 chlorotic symptom induction, 195-202
 mature leaves, 197-202
 systemic infections, 195-97
 conclusions, 212-23
 introduction, 193-95
 necrotic symptom induction, 202-11
 hypersensitive reactions, 202-3
- Nicotiana** plants with the nn, n'n' genotype, 209-11
- Nicotiana sylvestris* N^t gene, 208-9
- Nicotiana sylvestris* N^t gene, 203-8
- Tm-2 tomato gene, 211**
systemic necrosis, 212
- Viticulture**
 see Fungicide resistance
- W**
- Waksman, S.A., 30**
- Walker, J.C., 3**
- Washington State University, 5, 7, 9**
- Washington State Wheat Commission, 10**
- Wasps**
 greening biocontrol, 123
- Water relations, 183**
- Weather**
 disease forecasters, 343, 357-58
 growth models, 377
 spread citrus canker, 409
- Weed hosts**
P. solanacearum, 71-72
- Weed-crop coupling points**
 see Cereal crop growth models
- Wheat**
 host resistance
 see Wild germplasm and plant diseases
 research
 N. A. Cobb, 18
 winter wheat models
ModWHT, 373-76
WINTER WHEAT, 372-75
 see also Cereal crop growth models
- Wheat leaf rust, 40**
- White pine blister rust, 327**
 expert systems, 355
- White rot fungi**
 see Delignification by wood-decay fungi
- Wild germplasm, 326**
 quarantine, 221, 224, 226
- Wild germplasm and plant diseases, 35-63**
 collection, 42-49
 collection and maintenance, 42-45
 ex-situ evaluation, 45-46
 in-situ evaluation, 46-48
 movement and quarantine, 48-49
 diseases of wild germplasm, 38-42
- efficiency, 53-56**
 introduction, 35-36
 genetic base, need to broaden, 35-36
- uniformity of crops increasing, 35**
wild germplasm potential, 36
 resistance use, 49-53
 resistance value, 56-57
 wild germplasm, 36-38
- Wildfire disease, 272**
- WINTER WHEAT model, 372-75**
- Wood and bark fungi**
 see Mycelial individualism
- Wood-decay fungi**
 see Delignification by wood-decay fungi
- Workshop on Modeling Pest-Crop Interactions, 375**
- X**
- Xanthomonas, 417**
campestris pv. *campestris*
 negative regulatory genes, 257
- campestris* pv. *citri*
 DNA analysis, 412-13
 taxonomy, 414-15
 see also Citrus canker in Florida
- campestris* pv. *manihotis*, p. 411
- citri* f. sp. *aurantifolia*, 403
- citri* pv. *aurantifolia*, 415
- citri* pv. *bilvae*, 416
- citri* pv. *citrullino*, 415, 417
- Xiphinema index, 179*
- Xylan, 389**
- Xylanases, 389**
- Xylobolus frustulatum**
 delignification, 385
- Y**
- Yellow branch**
 see Citrus greening disease
- Yellow shoot**
 see Citrus greening disease
- Yellow traps**
 psylla populations, 116, 123-24
- Yield**
 see Cereal crop growth models; Fungicide resistance; Nematodes, plant resistance and tolerance; Resistance breeding in peanut
- Z**
- Zinc-like deficiencies**
 citrus greening, 111, 113