

第七章 低噪声放大器

- > 概述
- > LNA的功能和指标
- ▶ LNA的设计考虑
- ➤ LNA噪声系数
- **► LNA结构**
- ➤ CMOS最小噪声系数
- > 噪声优化方法

概述

- » 接收机第一级放大器
- » 应有很低的噪声
- 》 提供足够增益,抑制后续电路噪声
- 》 应有良好线性度
- » LNA的设计不只是对某一个指标的优化,而是要在多个指标中进行折中,包括增益、噪声系数、输入匹配、线性度和功耗等。

50 Ω系统中信号幅度与功率的对应关系

电压幅度	功率(mW)	功率(dBm)
1 V	10	10
0.316 V	1	0
0.1 V	0.1	-10
10 μV	10-9	-90
1 μV	10-11	-110

LNA的功能和指标

➤LNA的功能

- 放大输入端的微弱信号,是接收机中的第一级有源电路,位于接收机的前端,其噪声、非线性、匹配等性能对整个接收机至关重要。
- LNA的输入和输出端的滤波器作用:用来抑制带外干扰,在超外差接收机中它们应具有抑制镜像的功能。

LNA的功能和指标

▶ LNA的主要指标

1) 噪声系数(F)

取决于系统要求,可以从1dB以下到几个dB,噪声系数与放大器的工作频率、静态工作点及工艺有关,是低噪声放大器最为关键的指标。

2) 增益(S21)

较大的增益有助于減小低噪声放大器后级电路噪声对接收机的影响,但增益过大将会引起线性度的恶化。因此,低噪声放大器的增益应适中,一般在25dB以下。

- 3) 输入输出匹配(S11, S22) 输入输出匹配决定输入输出端的射频滤波器的频响
- 4) 反向隔离(S12) 反映输出端与输入端的隔离度,隔离度越大越好。
- 5) 线性度(IP3, P1dB)

线性度包括输入/输出三阶截点(IIP3/OIP3)和输入/输出1dB压缩点(IP1dB/OP1dB)等指标。

> 噪声系数与输入灵敏度

由于LNA是接收机第一级有源电路,其噪声系数将直接相加在系统的噪声系数上。

总噪声系数为 $NF_{tot}=NF_1+NF_2=4dB$

若在200kHz的带宽(B)下系统所需的信噪比(SNR)为8dB,则输入灵敏度为

$$P_{in}(dBm) = -174 dBm/Hz + F + 10 lg B + SNR$$

= -174 + 4 + 10 lg(200×10³) + 8
 $\approx -109 dBm$

» 假设LNA采用共发射极结构

等效输入噪声电压的均方值可以表示为

$$\overline{v_n^2} = 4kT(r_b + \frac{1}{2g_m})\Delta f = 4kT(r_b + \frac{V_T}{2I_C})\Delta f$$

若忽略放大器的等效输入噪声电流,则噪声系数表示为

$$F = 1 + \frac{\overline{(v_n + i_n R_S)^2}}{4kTR_S} \approx 1 + \frac{\overline{v_n^2}}{4kTR_S} = 1 + \frac{R_{eq}}{R_S}$$
 其中 $R_{eq} = r_b + \frac{V_T}{2I_C}$

对于50 Ω 系统,为了保证NF不大于2dB, Req应不大于29 Ω 。为此,Q₁尺寸应足够 大并偏置在较大的电流下。实际中Req的值应小于 29Ω 。

> 线性度与动态范围

若LNA的输入三阶节点IIP3 = -10dBm,噪声系数F = 2dB,SNRmin = 12dB,计算无杂散动态范围SFDR。

解:

$$SFDR = \frac{2}{3}(IIP_3 - N_{floor}) - SNR_{\min}$$

其中

$$N_{\text{floor}} = -174 \text{ dBm} + F + 10 \log B$$

= -174 + 2 + 10 lg(2×10⁵)
 $\approx -119 \text{ dBm}$

得

$$SFDR = \frac{2}{3}(IIP_3 - N_{floor}) - SNR_{min}$$
$$= \frac{2}{3}(-10 + 119) - 12$$
$$\approx 61 \, dB$$

▶增益

- » 超外差结构中的LNA增益选取与三个参数有关: 镜像抑制滤波器的损耗、混频器的噪声系数和*IIP*3。
- » 需要在噪声系数和线性度之间进行折中。

► LNA接口

- »若将LNA当成电压放大器,则希望LNA的输入阻抗为无穷大,以便在 LNA输入端获得最大电压。
- »若从最小噪声角度来看,则需要在LNA输入端进行阻抗变换,以便获得最小噪声系数。
- » 若从最大功率传输角度看,则需要在天线与LNA之间进行共轭匹配,以便从天线获得最大信号功率。最大功率传输是当今系统中采用的主要方法,LNA的输入阻抗被设计为50Ω。

» 输入匹配的质量用回波损耗表示,定义为 $20lg|\Gamma|$, 其中 Γ 是相对于源阻抗 R_s 的反射系数:

若在50 Ω 系统中,要求回波损耗 < -20dB,则 ΔR < 11 Ω 。

» 在超外差结构中, LNA输出阻抗必须等于50 Ω以驱动其后的镜像抑制滤波器, 使它具有最小损耗和纹波。

> 反向隔离

- » LNA的反向隔离决定了本振信号由混频器泄漏到天线的大小。
- » 在超外差接收机中,若第一中频采用高中频,则镜像抑制滤波器和前端双工器可以有效的抑制本振泄漏。
- » 在零中频接收机结构中,泄漏的抑制主要由LNA的反向隔离特性决定。

> 稳定性

若LNA满足条件

其中
$$K = \frac{1+|\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{21}||S_{12}|}$$

$$\Delta = S_{11}S_{22} - S_{12}S_{21}$$

$$V_{in}$$

K > 1

则放大器为无条件稳定。

- » 放大器的稳定性随着 S_{12} 的下降即反向隔离度的提高而提高。
- »一种方法是通过抵消输入输出电容通路(称为中和)来提高放大器的反向隔离度。
- »另一种方法是采用共射共基结构(称为cascode结构),以抑制 $V_{in} \sim$ 密勒电容引起的反馈,提高隔离度。

> 噪声参数

$$\begin{split} i_n &= i_u + i_c, \quad i_c = Y_c v_n \\ F &= \frac{\overline{i_{n,S}^2} + \overline{[i_n + v_n Y_S]^2}}{\overline{i_{n,S}^2}} \\ F &= \frac{\overline{i_{n,S}^2} + \overline{[i_u + v_n (Y_S + Y_c)]^2}}{\overline{i_{n,S}^2}} \\ &= 1 + \frac{\overline{i_u^2} + |Y_S + Y_c|^2 \overline{v_n^2}}{\overline{i_{n,S}^2}} \end{split}$$

定义

$$Y_S = G_S + jB_S$$
, $Y_c = G_c + jB_c$, $R_n = \frac{\overline{v_n^2}}{4kT\Delta f}$, $G_u = \frac{\overline{i_u^2}}{4kT\Delta f}$, $G_S = \frac{\overline{i_{n,S}^2}}{4kT\Delta f}$

则

$$F = 1 + \frac{G_u + |Y_S + Y_c|^2 R_n}{G_S} = 1 + \frac{G_u}{G_S} + \frac{(G_S + G_C)^2 + (B_S + B_C)^2}{G_S} R_n$$

当
$$B_S = -B_C$$
时,对给定 G_S , F 最小,且 $F = 1 + \frac{G_u}{G_S} + \frac{R_n}{G_S}(G_S + G_C)^2$,为使 F 最小,令 $\frac{\mathrm{d}F}{\mathrm{d}G_S}\Big|_{B_S = -B_C} = 0$,并求解 G_S ,得 $G_S = G_{opt} = \sqrt{G_C^2 + \frac{G_u}{R_n}}$,因此
$$Y_{opt} = G_{opt} + jB_{opt} = \sqrt{G_C^2 + \frac{G_u}{R_n}} - jB_C$$
, $F_{min} = 1 + \frac{G_u}{G_{opt}} + \frac{R_n}{G_{opt}}(G_{opt} + G_C)^2$ 由 $G_u = R_n(G_{opt}^2 - G_C^2)$,得 $F_{min} = 1 + 2R_n(G_{opt} + G_C)$,代入 F 的表达式,得
$$F = F_{min} + \frac{R_n}{G_S}[(G_S - G_{opt})^2 + (B_S - B_{opt})^2]$$

$$F = F_{min} + \frac{|Y_S - Y_{opt}|^2 R_n}{G_S}$$

当晶体管、偏置及工作频率确定后,噪声参数 F_{\min} 、 Y_{opt} 和 R_{n} 也就可以确定。

二端口网络噪声参数

R _n	$\overline{v_n^2}/(4kT\Delta f)$	网络等效输入电阻
Yopt	$\sqrt{G_C^2 + G_u / R_n} - jB_C$	最佳信号源导纳
F_{\min}	$1 + 2R_n(G_{opt} + G_C)$	最小噪声系数,其中 $G_{opt} = \sqrt{G_C^2 + G_u/R_n}$

- » 不同信号源导纳下的放大器噪声系数可以计算得到。
- » 通过输入匹配网络的设计,可以改变源导纳达到给定的噪声指标。
- »改变 $Y_{\rm S}$ 或 $Z_{\rm S}$ 会同时影响放大器的其它性能,如增益和稳定性等。

归一化后, F的计算公式表示为

$$F = F_{\min} + \frac{\left| y_S - y_{opt} \right|^2 r_n}{g_S}$$
其中 $r_n = R_n / Z_o$ $y_S = \frac{Y_S}{Y_o} = \frac{G_S + jB_S}{Y_o} = g_S + jb_S$ $y_{opt} = \frac{Y_{opt}}{Y_o} = \frac{G_{opt} + jB_{opt}}{Y_o} = g_{opt} + jb_{opt}$ Z. Q. LI

> 等噪声系数圆

$$y_{S} = \frac{1 - \Gamma_{S}}{1 + \Gamma_{S}} \qquad y_{opt} = \frac{1 - \Gamma_{opt}}{1 + \Gamma_{opt}} \qquad F = F_{min} + \frac{4r_{n} \left| \Gamma_{S} - \Gamma_{opt} \right|}{(1 - \left| \Gamma_{S} \right|^{2}) \left| 1 + \Gamma_{opt} \right|^{2}}$$

 F_{\min} 是器件工作电流和频率的函数,不同的 F_{\min} 对应不同的 Γ_{opt} 。

将
$$\Gamma_{\rm S}$$
整理出来,有
$$\frac{\left|\Gamma_{\rm S} - \Gamma_{\rm opt}\right|^2}{1 - \left|\Gamma_{\rm S}\right|^2} = \frac{F - F_{\rm min}}{4r_n} \left|1 + \Gamma_{\rm opt}\right|^2$$

对于某一给定的噪声系数 F_i ,等式右边为一常量,定义它为 N_i ,即

$$N_i = \frac{F_i - F_{\min}}{4r_n} \left| 1 + \Gamma_{opt} \right|^2$$

可以证明,产生给定 F_i 的 Γ_S 位于一个圆周上,该圆的圆心和半径分别为

$$C_{F_i} = \frac{\Gamma_{opt}}{1 + N_i}$$
1 \[\sqrt{N^2 \cdot N \text{ (1)}}

$$r_{F_i} = \frac{1}{1 + N_i} \sqrt{N_i^2 + N_i (1 - \left| \Gamma_{opt} \right|^2)}$$

一般来说,最小噪声系数和最 大增益所需要的 Γ_s 是不同的, 右图给出了一个管子Γ_s平面 上的噪声系数和 G_s 圆。

最大增益 $G_S = 3dB$,

 $\Gamma_s = 0.7 \angle 110^\circ$,对应的

 $F_i \approx 4dB$;

最小噪声系数 $F_{min} \approx 0.8 dB$,

 $\Gamma_S = 0.6 \angle 40^\circ$,对应的 $G_S \approx -1dB$

这张图更清楚地说明了放 大器设计中噪声、增益与 匹配之间的折衷关系。

这是一个基于 G_A 的设计,对于当 Γ_S 从 $\Gamma_{S,m}$ 向 Γ_{opt} 变化时,噪声系数和功率增益减小,输入驻波比增大。

➤ 场效应管低噪声放大器(MOSFET LNA)

- 1) 输入端并联电阻的共源放大器 在共源放大器输入端并联一个电阻 $R_{
 m P}(50\Omega)$ 到地,以实现宽带 50Ω 输入电阻。
 - » 输入端的并联电阻将产生热噪声。
 - » 并联电阻对输入信号进行了衰减,栅极上的信号电压为信号源电压的一半。
 - 》这两种效应叠加在一起将产生很高的噪声系数,若仅考虑两个电阻的热噪声和晶体管漏极电流噪声,且 $\mathbf{R}_{\mathbf{S}}$ = $\mathbf{R}_{\mathbf{P}}$ = \mathbf{R} ,放大器在低频时的噪声系数满足关系式

$$F = 2 + \frac{4\gamma}{\alpha g_m R}$$

- 2) 电压并联负反馈共源放大器
 - » 该放大器与输入端并联电阻的共源放大器一 样,可以提供宽带实数输入阻抗。
 - » 由于它在放大器之前没有含噪声的衰减器使 信号减小,所以它的噪声系数比输入端并联电 阻情况要小得多。

18

» 由于反馈网络有热噪声,并且不可能在所有频率下让MOS管栅极看到最佳阻抗 $\mathbf{Z}_{\mathrm{out}}$ 。因此整个放大器的噪声系数比 F_{min} 大,典型值是几个分贝。这一放大器具有 宽带特性,可以用来实现宽带LNA,尽管其噪声系数不是最小值。

假设 C_{gs} 的电抗为无穷大,可得

$$R_{in} = \frac{(1 + g_m R_1)(R_L + R_f)}{1 + g_m R_1 + g_m R_L} \qquad R_{out} = \frac{(1 + g_m R_1)(R_S + R_f)}{1 + g_m R_1 + g_m R_S}$$

如果 $\mathbf{R}_{\mathbf{S}}=\mathbf{R}_{\mathbf{L}}=\mathbf{R}_{\mathbf{o}}$,为了获得输入输出同时匹配,令 $\mathbf{R}_{\mathbf{in}}=\mathbf{R}_{\mathbf{out}}=\mathbf{R}_{\mathbf{o}}$,得

$$(1 + g_m R_1) R_f = g_m R_0^2$$

3) 共栅放大器

» 共栅放大器是实现电阻性输入阻抗的 另一种结构。由于共栅放大器的输入阻 抗为

$$Z_{in} = 1/(g_m + j\omega C_{gs})$$

当 $\omega C_{gs} \ll g_m$ 即 $\omega \ll g_m / C_{gs} = \omega_T$ 时 $Z_{in} = 1/g_m$

$$input$$
 $output$ $output$ 时 Z_{in}

选择合适的器件尺寸和偏置电流就可以提供50Ω电阻,完成输入阻抗匹配。 » 在低频情况下,噪声系数可以表示为

$$F = 1 + \frac{\overline{i_{nd}^{2}} \left(\frac{1}{1 + g_{m}R_{s}}\right)^{2}}{\overline{e_{ns}^{2}} \left(\frac{g_{m}}{1 + g_{m}R_{s}}\right)^{2}} = 1 + \frac{\gamma g_{d0}}{R_{s}g_{m}^{2}}$$

如果此时输入匹配,即 $R_s = 1/g_m$ 则有

$$F = 1 + \frac{\gamma g_{d0}}{g_m} = 1 + \frac{\gamma}{\alpha} = \begin{cases} \frac{5}{3} = 2.2 \text{ dB (长沟道)} \\ \ge 3 = 4.8 \text{ dB (短沟道)} \end{cases}$$

» 在高频和考虑栅噪声时,噪声系数将明显变大,并满足不等式

$$F \ge 1 + \frac{\gamma}{\alpha}$$

- 4) 具有源极电感负反馈的共源放大器
 - (1) 输入阻抗匹配

分析和实践显示,右图所示的放大器结构能够提供 与信号源匹配的输入电阻,但完全的匹配只在一个 频率点获得,因此它仅适于窄带工作。与反馈等匹 配方式相比,它在噪声和功耗上的优点非常明显。

忽略 C_{gd} ,源极反馈电感 L_s 使输入阻抗变为

$$Z_{in}' = \frac{1}{sC_{gs}} + \left(1 + g_m \frac{1}{sC_{gs}}\right) sL_s = \frac{1}{sC_{gs}} + sL_s + \frac{g_m}{C_{gs}} L_s$$

如果 C_{gs} 和 L_{s} 谐振在工作频率 ω_{0} ,则

$$Z_{in}' = \frac{g_m}{C_{gs}} L_s \approx \omega_T L_s$$

因此只要使 $\omega_0 = 1/\sqrt{L_s C_{gs}}$ 和 $R_s = \omega_T L_s$ 成立,即可形成匹配,但这样固定了管子 的尺寸,限制了对其它性能的控制。栅极电感 L_g 保证了 C_{gs} 可以不受阻抗匹配 的限制而用于优化噪声系数,此时输入阻抗为

$$Z_{in}(s) = s(L_g + L_s) + \frac{1}{sC_{gs}} + \omega_T L_s$$
 $-L_g$ 使输入回路谐振 $-L_g$ 在工作频率。

(2) 匹配条件下的噪声系数

上图所示共源放大器的主要噪声源分别为

- » MOS 管沟道热噪声 $\overline{i_d} = 4kT\gamma g_{d0} \cdot \Delta f$
- » 电感 L_g 的串联寄生电阻 R_l 的热噪声 $\overline{v_{rl}^2} = 4kTR_l \cdot \Delta f$
- » MOS 管栅极多晶硅电阻 R_g 的热噪声 $\overline{v_{rg}^2} = 4kTR_g \cdot \Delta f$

加上信号源内阻的热噪声 $\overline{v_s} = 4kTR_s \cdot \Delta f$,上图可改成

根据噪声系数的定义

这可以通过输出噪声电流来计算,也可以将所有噪声源等效为输入噪声电压, 在输入端计算,我们这里使用第一种方法。

假设 $R_l + R_g \ll R_S$,那么输入端的一个电压 源所产生的输出电流可以通过右图等效电 路计算:

$$i_o = g_m v_{gs} = g_m \frac{1/(j \omega C_{gs})}{Z_{in} + R_S} v_{in}$$

该电路的等效跨导为

$$G_{m}(j\omega) = \frac{i_{o}}{v_{in}} = \frac{1/(j\omega C_{gs})}{Z_{in} + R_{S}} g_{m} = \frac{g_{m}}{j\omega C_{gs} \left[j\omega (L_{g} + L_{s}) + \frac{1}{j\omega C_{gs}} + \omega_{T} L_{s} + R_{S} \right]}$$

24

LNA结构

当输入回路谐振在工作频率时 $Z_{in} \approx \Omega_T L_s$,故

$$G_m(j\omega_0) \approx \frac{g_m}{j\omega_0 C_{gs}(\omega_T L_s + R_S)} \approx \frac{\omega_T}{j\omega_0(\omega_T L_s + R_S)}$$

由于 $\frac{1}{\omega_0 C_{gs}(\omega_T L_s + R_s)}$ 为输入谐振回路的等效 Q 值,将其定义为 Q_{in} 。

利用 G_m 和三个输入噪声电压的不相关性,它们所产生的总的输出噪声电流为

$$i_{o,1}^2 = (\overline{v_s^2} + \overline{v_{rl}^2} + \overline{v_{rg}^2})|G_m|^2 = \frac{\omega_T^2 \cdot 4kT(R_S + R_g + R_l)\Delta f}{\omega_0^2(\omega_T L_s + R_S)^2}$$

其中由源电阻 R_s 所引起的部分为

$$\overline{i_{o,s}^2} = \frac{\omega_T^2 \cdot 4kTR_S \Delta f}{\omega_0^2 (\omega_T L_s + R_S)^2}$$

另一部分输出噪声电流由 MOS 管的沟道热噪声所引起,同样假设 $R_l + R_g \ll R_S$,根据右图的等效电路,有

在谐振频率 ω 处

$$i_{o,d} \approx \frac{R_S}{R_S + \omega_T L_s} i_d$$

$$\overline{i_{o,d}^2} = \frac{R_S^2}{(R_S + \omega_T L_s)^2} \overline{i_d^2} = \frac{R_S^2 \cdot 4kT\gamma g_{d0} \Delta f}{(R_S + \omega_T L_s)^2}$$

于是

$$F = \frac{\overline{i_{o,1}^2 + i_{o,d}^2}}{\overline{i_{o,s}^2}} = \frac{\frac{\omega_T^2 \cdot 4kT(R_S + R_g + R_l)\Delta f}{\omega_0^2(\omega_T L_s + R_S)^2} + \frac{R_S^2 \cdot 4kT\gamma g_{d0}\Delta f}{(R_S + \omega_T L_s)^2}}{\frac{\omega_T^2 \cdot 4kTR_S\Delta f}{\omega_0^2(\omega_T L_s + R_S)^2}} = 1 + \frac{R_g}{R_S} + \frac{R_l}{R_S} + \gamma g_{d0}R_S \left(\frac{\omega_0}{\omega_T}\right)^2$$

该表达式显示,在给定信号源内阻的条件下,必须尽量减小输入端的寄生电阻以及沟道噪声。

输入寄生电阻中, R_l 取决于电感 L_g 的品质因数,而 R_g 则可通过多指结构的版图进行优化。 R_{sq} 为多晶硅栅极的方块电阻,考虑分布效应并忽略接触孔电阻,叉指数为n时单端连接的多指结构的等效栅电阻为

$$R_g = \frac{1}{3n^2} \frac{R_{sq}W}{L}$$

双端连接的多指结构的等效栅电阻为

$$R_g = \frac{1}{12n^2} \frac{R_{sq}W}{L}$$

电阻的计算并没有考虑各栅极之间的连线电阻。

对噪声系数影响最大的噪声源为管子的沟道热噪声,若 R_1 和 R_g 的影响可以忽略,则噪声系数可以近似表示为

 $F \approx 1 + \gamma g_{d0} R_s \left(\frac{\omega_o}{\omega_T}\right)^2$ (没有考虑栅极感应噪声电流!)

5) 镜像抑制LNA

$$Z_f = \frac{L_f(C_1 + C_2)s^2 + 1}{C_1C_2L_fs^3 + C_1s}$$

- 7) 共源共栅放大器性能改善
 - 共源共栅极间匹配设计思想是利用电感 L_a 在M1和M2之间形成共轭匹配,但 L_a 引入了一个负的输入阻抗(C_{gd} 的作用),为保持阻抗匹配,需要同时增大 L_s 和 L_g ,结果是噪声系数、隔离度等参数的恶化
 - 双重栅极 MOS 管的共源共栅放大器 与极间匹配的努力相反,将 M1 和 M2 之 间的寄生阻抗减至最小获得了满意的结果

▶ 双极型管低噪声放大器

1) 电路模型和等效输入噪声源

$$\overline{v_b^2} = 4kTr_b \cdot \Delta f$$

$$\overline{i_C^2} = 2qI_C \cdot \Delta f$$

$$\overline{i_B^2} = 2qI_B \cdot \Delta f$$

$$\overline{v_n^2} \approx \overline{v_b^2} + \frac{\overline{i_C^2}}{g_m^2} + \overline{i_B^2}r_b \approx \overline{v_b^2} + \frac{\overline{i_C^2}}{g_m^2}$$

$$\overline{i_n^2} = \overline{i_B^2} + \frac{\overline{i_C^2}}{|\beta(j\omega)|^2}$$

$$\beta(j\omega) = \frac{\beta_0}{1 + j\beta_0(\omega/\omega_T)}$$

当信号源内阻为 R_s 时,电路的噪声系数

$$F = 1 + \frac{(v_n + i_n R_S)^2}{4kTR_S \cdot \Delta f}$$

为了计算方便, v_n 和 i_n 之间的相关性通常被忽略,即

$$\begin{aligned} \overline{(v_n + i_n R_S)^2} &= \overline{v_n^2} + \overline{i_n^2} R_S^2 \\ &= \overline{v_b^2} + \frac{1}{g_m^2} \overline{i_C^2} + \overline{i_B^2} R_S^2 + \frac{R_S^2}{|\beta(j\omega)|^2} \overline{i_C^2} \\ &= \left[4kTr_b + 4kT \frac{1}{2g_m} + 2qI_C R_S^2 \left(\frac{1}{\beta_0} + \frac{1}{|\beta(j\omega)|^2} \right) \right] \Delta f \end{aligned}$$

于是

$$F = 1 + \frac{r_b}{R_S} + \frac{1}{2g_m R_S} + \frac{g_m R_S}{2} \left[\frac{1}{\beta_0} + \frac{1}{|\beta(j\omega)|^2} \right]$$

 300Ω

LNA结构

2) 设计举例

采用两级共发放大器级联结构,输入输出均匹配到50Ω。

若第一级放大器有足够的增益,则噪声系数主要由

第一级放大器决定,主要参数为

$$r_b = 11\Omega$$
 $g_m \approx 0.1 \, S$ $f_T = 5 \, GHz$ $\beta_0 = 80$ $|\beta(j\omega)| = 5.5$ 此,第一级放大器的噪声系数为

因此, 第一级放大器的噪声系数为

$$F = 1 + \frac{r_b}{R_S} + \frac{1}{2g_m R_S} + \frac{g_m R_S}{2} \left(\frac{1}{\beta_0} + \frac{1}{|\beta(j\omega)|^2} \right)^{\frac{1}{2}}$$

$$= 1 + \frac{11}{50} + \frac{5}{50} + \frac{5}{160} + \frac{5}{60} \approx 1.6 \ dB$$

330Ω 675Ω 5.5MA

仿真结果显示,第二级电路使噪声系数F上升为 $1.95\,dB$,即增加了 $0.35\,dB$ 。 第一级的输入匹配通过发射极电感负反馈获得、输入阻抗为

$$Z_{in} = r_b + \frac{g_m L_E}{C_{\pi}} + j\omega L_E + \frac{1}{j\omega C_{\pi}}$$

▶高频激励下的栅极阻抗

栅极所加激励信号频率 $\omega_0 \ll \omega_T$ 时,栅极的输入阻抗呈纯容性,即栅极的信号电流超前电压 90° 。当信号频率趋近于 ω_T ,沟道中载流子的响应速度开始跟不上信号的变化速度,信号电流与纯容性阻抗的情况相比出现滞后,在电路参数上表现为输入阻抗中出现实部,这可以用一个电导 g_g 来表示:

$$g_g = \frac{\omega^2 C_{gs}^2}{5g_{d0}}$$

这种现象是由器件的分布特性所引起的,对应的电路模型称为准静态模型,一个与此相关的现象是栅极噪声电流。

▶栅极感应噪声电流(Drain induced gate noise)

沟道载流子的不规则运动也会在栅极引起感应噪声电流 $\overline{i_g}$ (注意这不是栅极漏电流的散弹噪声):

$$\overline{i_g^2} = 4kT\delta g_g \cdot \Delta f$$

其中的δ称为栅噪声系数,长沟道器件在饱和状态下δ ≈ 4/3。

 $\overline{i_g^2}$ 与 g_g 的并联可以等效成一个噪声电压源 $\overline{v_g^2}$ 与一个电阻 r_g 的串联:

$$\overline{v_g^2} = 4kT\delta r_g \cdot \Delta f$$

$$r_g = \frac{1}{5g_{d0}}$$

电导 g_g 或电阻 r_g 并不是物理电阻,所以它们本身不产生噪声。

▶栅噪声与沟道噪声的关系

栅噪声电流和沟道噪声电流都是沟道载流子的不规则运动引起的,因此它们具有相关性,长沟道条件下的相关系数为

$$c = \frac{\overline{i_g \cdot i_d^*}}{\sqrt{\overline{i_g^2} \cdot \overline{i_d^2}}} \approx j0.395$$

故 i_g 可表示为与沟道热噪声相关和不相关的部分 i_{gc} 和 i_{gu} :

$$|c|^2 = \frac{i_{gc} + i_{gu}}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\left[\overline{i_{gc} \cdot i_d^*} + \overline{i_{gu} \cdot i_d^*}\right]^2}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\overline{i_{gc} \cdot i_d^{*2}}}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\overline{i_{gc}^2} \cdot \overline{i_d^2}}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\overline{i_{gc}^2} \cdot \overline{i_d^2}}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\overline{i_{gc}^2}}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\overline{i_{gc}^2}}{\overline{i_g^2} \cdot \overline{i_d^2}} = \frac{\overline{i_{gc}^2}}{\overline{i_g^2} \cdot \overline{i_d^2}}$$

所以有

$$\overline{i_{gc}^2} = \overline{i_g^2}|c|^2$$

$$\overline{i_g^2} = \overline{(i_{gc} + i_{gu})^2} = 4kT\delta g_g|c|^2\Delta f + 4kT\delta g_g(1 - |c|^2)\Delta f$$

▶短沟道MOS管的噪声模型

$$\overline{v_n^2} = \frac{\overline{i_d^2}}{g_m^2} + \overline{v_g^2} \approx \frac{\overline{i_d^2}}{g_m^2} \qquad \overline{i_n^2} = \left(\frac{j\omega C_{gs}}{g_m} i_d + i_{gc}\right)^2 + 4kT\delta g_g (1 - |c|^2)\Delta f$$

MOS管非准静态(NQS)模型和栅极感应噪声

▶含有栅噪声的LNA噪声系数

引入了栅极噪声电流后,对前面的分析需要进行修正。当栅宽减小时,虽然 i_a 的影响在减小,但由于 C_{gs} 的阻抗增加了,栅极感应噪声电流的影响会增大,因此噪声系数不会趋向于1。

由于 i_g 与 i_d 之间的部分相关性,栅极噪声电流 i_{gu} 和 i_{gc} 所引起的输出噪声电流需要分别考虑,可以证明总的噪声系数为

$$F = 1 + \frac{\gamma}{\alpha} \frac{\chi}{Q_L} \frac{\omega_o}{\omega_T}$$

MOS管非准静态(NQS)模型和栅极感应噪声

其中

$$\alpha$$
: 定义为 $g_{\mathbf{m}}$ 和 $g_{\mathbf{d0}}$ 的比值, α <1,即 $\alpha = \frac{g_{m}}{g_{d0}}$

 $Q_{\rm L}$: 定义为 $L_{\rm g}$ 、 $L_{\rm s}$ 、 $C_{\rm gs}$ 和 $R_{\rm s}$ 所组成的串联谐振电路的Q值,即

$$Q_{L} = \frac{\omega_{o}(L_{g} + L_{s})}{R_{S}} = \frac{1}{\omega_{o}C_{gs}R_{S}}$$

$$\chi: 定义为$$

$$\chi = 1 + 2|c|Q_{L}\sqrt{\frac{\delta\alpha^{2}}{5\nu}} + \frac{\delta\alpha^{2}}{5\nu}(1 + Q_{L}^{2})$$

由于 χ 中包含了常数项和分别正比于 Q_L 和 Q_L^2 的项,因此F的表达式中就包含了常数项以及分别正比于和反比于 Q_L 的项,从而必定存在一个 Q_L (或某一个管子尺寸)使F达到最小值。

 $\delta \gamma$:由于 i_d 与 i_g 产生的源头相同,Thomas Lee在他的论述中假设了工艺的变化对它们具有相同的影响,也就是

$$\frac{\delta}{\gamma} = \frac{\delta}{\gamma} \bigg|_{long\ channel} = 2$$
Z. Q. LI

CMOS最小噪声系数

二端口网络的噪声参数

$$R_{n} = \frac{\overline{v_{n}^{2}}}{4kT\Delta f} = \frac{\overline{i_{d}^{2}}}{g_{m}^{2}} \frac{1}{4kT\Delta f} = \frac{4kT\gamma g_{d0}\Delta f}{g_{m}^{2}4kT\Delta f} = \frac{\gamma g_{d0}}{g_{m}^{2}} = \frac{\gamma}{\alpha} \frac{1}{g_{m}}$$

$$G_{u} = \frac{4kT\delta g_{g}(1 - |c|^{2})\Delta f}{4kT\Delta f} = \delta g_{g}(1 - |c|^{2}) = \frac{\delta\omega^{2}C_{gs}^{2}}{5g_{d0}}(1 - |c|^{2})$$

$$Y_{c} = \frac{i_{gc} + (j\omega C_{gs}/g_{m}) \cdot i_{d}}{v_{n}} = \frac{i_{gc} + (j\omega C_{gs}/g_{m}) \cdot i_{d}}{i_{d}/g_{m}} = g_{m}\frac{i_{gc}}{i_{d}} + j\omega C_{gs}$$

而

$$\frac{i_{gc}}{i_d} = \frac{i_{gc}i_d^*}{i_di_d^*} = \frac{\overline{i_{gc}i_d^*}}{\overline{i_d}i_d^*} = \frac{\overline{i_{gc}i_d^*}}{\overline{i_d^2}} = \frac{\overline{i_{g}i_d^*}}{\overline{i_d^2}} = \frac{\overline{i_{g}i_d^*}}{\overline{i_d^2}} = \frac{\overline{i_{g}i_d^*}}{\sqrt{\overline{i_d^2}}\sqrt{\overline{i_d^2}}}\sqrt{\frac{\overline{i_g^2}}{\overline{i_g^2}}} = \frac{\overline{i_{g}i_d^*}}{\sqrt{\overline{i_g^2}}\sqrt{\overline{i_g^2}}}\sqrt{\frac{\overline{i_g^2}}{\overline{i_g^2}}} = c\sqrt{\frac{\overline{i_g^2}}{\overline{i_d^2}}}$$

CMOS最小噪声系数

$$\sqrt{\frac{\overline{i_g^2}}{\overline{i_d^2}}} = \sqrt{\frac{4kT\delta g_g \Delta f}{4kT\gamma g_{d0} \Delta f}} = \sqrt{\frac{\delta g_g}{\gamma g_{d0}}} = \sqrt{\frac{\delta(\omega^2 C_{gs}^2)/(5g_{d0})}{\gamma g_{d0}}} = \frac{\omega C_{gs}}{g_{d0}} \sqrt{\frac{\delta}{5\gamma}}$$

所以有

$$Y_{c} = G_{c} + jB_{c} = g_{m} \frac{i_{gc}}{i_{d}} + j\omega C_{gs} = \frac{g_{m}c}{g_{d0}} \sqrt{\frac{\delta}{5\gamma}} \omega C_{gs} + j\omega C_{gs}$$

$$\approx j\omega C_{gs} \left(1 + \alpha |c| \sqrt{\frac{\delta}{5\gamma}} \right)$$

最后得

$$G_c = 0$$

$$B_{c} = \omega C_{gs} \left(1 + \alpha \left| c \right| \sqrt{\frac{\delta}{5\gamma}} \right)$$

CMOS最小噪声系数

由此可以求出获得最小噪声系数所需的最佳信号源导纳为

$$G_{opt} = \sqrt{G_c^2 + \frac{G_u}{R_n}} = \alpha \omega C_{gs} \sqrt{\frac{\delta}{5\gamma} (1 - |c|^2)}$$

$$B_{opt} = -B_c = -\omega C_{gs} \left(1 + \alpha \left| c \right| \sqrt{\frac{\delta}{5\gamma}} \right)$$

最小噪声系数为

$$F_{\min} = 1 + 2R_n (G_{opt} + G_c) \approx 1 + \frac{2}{\sqrt{5}} \frac{\omega}{\omega_T} \sqrt{\gamma \delta (1 - |c|^2)}$$

- > 传统结构的噪声优化
 - 1) 优化方法及局限性

两种优化方法:

» 噪声和功率同时匹配 (Simultaneous Noise Input Matching)

问题: 功耗确定, 且很大

»限定功耗的优化噪声

(Power Constraint Noise Optimization)

问题: NF≠NFmin

2) 传统结构的噪声分析

»最佳源阻抗

$$Z_{opt} = \frac{\sqrt{\frac{\alpha^2 \delta}{5\gamma} \left(1 - |c|^2\right) + j \left(1 + a |c| \sqrt{\frac{\delta}{5\gamma}}\right)}}{\omega C_{gs} \left\{\frac{\alpha^2 \delta}{5\gamma} \left(1 - |c|^2\right) + \left(1 + a |c| \sqrt{\frac{\delta}{5\gamma}}\right)^2\right\}} \qquad \sum_{v_{ns}} Z_{in} \qquad \sum_{i=1}^{600} Z_{in} \qquad \sum_{i=1}^{6000} Z_{$$

»输入阻抗

$$Z_{in} = s(L_S + L_g) + \frac{1}{sC_{gs}} + \frac{g_m L_s}{C_{gs}}$$

»最小噪声系数

$$F_{\min} = 1 + \frac{2\omega}{\sqrt{5}\omega_T} \sqrt{\delta \gamma \left(1 - |c|^2\right)}$$

3) 传统结构的优化思路

$$Z_{opt} = Z_{in}^{*}$$

$$= \left[\begin{array}{c} \operatorname{Re} \left[Z_{opt} \right] = f \left(C_{gs} \right) = 50 \\ \operatorname{Im} \left[Z_{opt} \right] = f \left(C_{gs}, L_{s}, L_{g} \right) = 0 \\ \operatorname{Re} \left[Z_{in} \right] = f \left(C_{gs}, L_{s}, I_{D} \right) = 50 \\ \operatorname{Im} \left[Z_{in} \right] = f \left(C_{gs}, L_{s}, L_{g} \right) = 0 \end{array} \right]$$

结论:

 $^{"}$ $^{"}$

》如果限定功耗,功率匹配和噪声匹配就不可能同时满足,只能在限定的功耗下优化噪声,使其最小,但永远不可能等于最小噪声系数 $NF_{min.}$

> 改进结构的噪声优化

限定功耗的噪声和功率同时匹配(Power Constraint Simultaneous Noise Input Matching, PCSNIM)

- » 栅极和源极之间并接电容 C_{ex} 。
- »在不恶化NF_{min}的前提下,增加了可调参数,实现限定功耗下的功率和噪声同时匹配。

1) PCSNIM结构噪声分析

$$Z_{opt} = \frac{\sqrt{\frac{\alpha^{2} \delta}{5 \gamma} \left(1 - |c|^{2}\right) + j \left(\frac{C_{t}}{C_{gs}} + a |c| \sqrt{\frac{\delta}{5 \gamma}}\right)}}{\omega C_{gs} \left\{\frac{\alpha^{2} \delta}{5 \gamma} \left(1 - |c|^{2}\right) + \left(\frac{C_{t}}{C_{gs}} + a |c| \sqrt{\frac{\delta}{5 \gamma}}\right)^{2}\right\}}{-s \left(L_{s} + L_{g}\right)}$$

$$F_{min} = 1 + \frac{2\omega}{\sqrt{5\omega_{T}}} \sqrt{\delta \gamma \left(1 - |c|^{2}\right)}$$

$$Z_{in} = s(L_{s} + L_{g}) + \frac{1}{sC_{t}} + \frac{g_{m}L_{s}}{C_{t}}$$

$$C_{t} = C_{gs} + C_{ex}$$

PCSNIM结构优化思路

$$Z_{opt} = Z_{in}^*$$

$$Z_{opt} = Z_{in}^{*}$$

$$= \left[\begin{array}{c} \operatorname{Re} \left[Z_{opt} \right] = f \left(C_{gs}, C_{ex} \right) = 50 \\ \operatorname{Im} \left[Z_{opt} \right] = f \left(C_{gs}, C_{ex}, L_{s}, L_{g} \right) = 0 \\ \operatorname{Re} \left[Z_{in} \right] = f \left(C_{gs}, C_{ex}, L_{s}, L_{g} \right) = 50 \\ \operatorname{Im} \left[Z_{in} \right] = f \left(C_{gs}, C_{ex}, L_{s}, L_{g} \right) = 0 \end{array} \right]$$

结论:

- 》4个方程、5个未知数。
- »限定任何一个参数,再优化其他参数。
- »通常选择限定功耗In。

3) PCSNIM结构特点

- »限定功耗时, Cgs比传统结构小。
- »通过加入电容 C_{ex} 后, C_{t} 通常大于传统结构中的 C_{gs} 。
- 》由右式看出PCSNIM结构的源极负反馈电感 L_s 得到了减小,故可以得到更好的噪声系数。

$$L_{s} pprox \frac{\sqrt{\frac{\delta}{5\gamma(1-|c|^{2})}}}{\omega\omega_{T}C_{t}}$$

$$PCSNIM 结构$$

$$L_{s} \approx \frac{\alpha \sqrt{\frac{\delta}{5\gamma \left(1 - |c|^{2}\right)}}}{\omega \omega_{T} C_{gs}}$$

$$SNIM \nleq_{H}^{\pm} \not\sim \downarrow$$

4) PCSNIM结构优化方法

- » 选择合适的 V_{GS} 使 NF_{min} 最小。
- » 根据功耗的要求,选择晶体管尺寸W(取最小栅长)。
- » 选择 C_{ex} ,使满足 $Re[Z_{opt}] = R_s = 50$
- » 选择 L_s , 使满足 $Re[Z_{in}] = R_s = 50$
- » 选择 L_g , 使满足 $Im[Z_{in}]=0$

➤ 采用噪声抵消技术的LNA设计

- 1) 噪声抵消原理 [Federico Bruccoleri, JSSC]
 - » 噪声抵消原理是通过电路的方法,减小或抵消电路中的主要噪声源 在输出端产生的噪声,从而减小电路的总噪声系数。
 - » CMOS LNA的主要噪声源来自放大MOS管的沟道热噪声,因此电路设计思路是通过增加额外的通路,使沟道热噪声经过不同的通路到达输出后能够相互抵消。

输入阻抗为

$$Z_{\rm in} = 1/g_{\rm mi}$$

噪声增益为

$$A_{\text{vl, n}} = \frac{V_{\text{Y, n}}}{V_{\text{X, n}}} = 1 + \frac{R}{R_{\text{S}}}$$

信号增益为

$$A_{\rm vl, s} = \frac{V_{\rm Y, s}}{V_{\rm X, s}} = 1 - g_{\rm mi}R$$

a)在节点Y和X的噪声电压 b)在节点X和Y的信号电压

- 当输入阻抗匹配时 $Z_{\rm in} = 1/g_{\rm mi} = R_{\rm S}$

$$Z_{\rm in} = 1/g_{\rm mi} = R_{\rm S}$$

$$A_{\text{v1, s}} = \frac{V_{\text{Y, s}}}{V_{\text{X, s}}} = 1 - \frac{R}{R_{\text{S}}}$$

- 节点X和Y的信号反相(当 $g_{mi}R>1$ 时)
- 节点X和Y的噪声同相

对于噪声,X点的噪声电压经反向放大器A放大后,经加法器与Y点噪声电压相加,实现噪声抵消。令加法器输出端噪声电压为0,可求出Av。此时有

$$V_{\text{out, n}} = V_{\text{Y, n}} + V_{\text{X, n}} \cdot (-A_{\text{v}}) = 0$$

$$A_{\rm v} = \frac{V_{\rm Y,n}}{V_{\rm X,n}} = 1 + \frac{R}{R_{\rm S}}$$

对于信号,节点X与Y的电压反相(假定 $g_{mi}R>1$)。同时,X点信号又经反相放大器A放大后,经加法器与Y点信号相加,提高了信号增益。此时有

$$A_{\text{v, s}} = \frac{V_{\text{Y, s}} - A_{\text{v}}V_{\text{X, s}}}{V_{\text{X, s}}} = \frac{V_{\text{Y, s}}}{V_{\text{X, s}}} - A_{\text{v}} = -2\frac{R}{R_{\text{S}}}$$

- M_2 管实现反相放大器的作用
- » M3管实现电压跟随
- »噪声经两条支路后在输出端相互抵消,而信号则得以增强。

54

LNA噪声优化方法 — 噪声抵消技术

2) 电路实现 [Federico Bruccoleri, JSSC]

- M1a和M1b管通过电流复用来构成输入匹配级

$$R_i = \frac{1}{g_{m1a} + g_{m1b}}$$

- M2b用于提高电路的反向隔离性能
- C1是M1b管的源极交流旁路电容
- R2、C2构成高通滤波器。

一 芯片性能指标 [Federico Bruccoleri, JSSC]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{VF,TOT} = V_{OUT}/V_{S} $	13.7dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3dB Bandwidth	2-1600 MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S ₁₂	<-36dB in 10-1800 MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S ₁₁	<-8dB in 10-1800 MHz
IIP2 (Input Ref.) 12dBm (f_1 =300MHz & f_2 =200MHz) ICP1dB (Input Ref.) -9dBm (f_1 =900MHz) NF _{50Ω} <= 2dB in 250-1100 MHz	S ₂₂	<-12dB in 10-1800 MHz
ICP1dB (Input Ref.) -9dBm (f_1 =900MHz) NF $_{50Ω}$ <= 2dB in 250-1100 MHz	IIP3 (Input Ref.)	0dBm (f ₁ =900MHz & f ₂ =905MHz)
	IIP2 (Input Ref.)	12dBm (f ₁ =300MHz & f ₂ =200MHz)
$NF_{50\Omega}$ <= 2.4dB in 150-2000 MHz $I_{DD}@V_{DD}$ 14mA@2.5Volt Area 0.3x0.25 mm ²	ICP1dB (Input Ref.)	-9dBm (f ₁ =900MHz)
<= 2.4dB in 150-2000 MHz I _{DD} @V _{DD} 14mA@2.5Volt Area 0.3x0.25 mm²	NF _{50Ω}	<= 2dB in 250-1100 MHz
Area 0.3x0.25 mm ²		<= 2.4dB in 150-2000 MHz
	I _{DD} @V _{DD}	14mA@2.5Volt
Technology 0.25µm CMOS	Area	0.3x0.25 mm ²
	Technology	0.25µm CMOS

参考文献

- [1] Paul R. Gray and Robert G. Meyer, *Analysis and Design of Analog Integrated Circuits*, 3rd ed. Chapter 11, Wiley, 1993.
- [2] Robert G. Meyer and William D. Mack, "A 1-GHz BiCMOS RF Front-End IC", *IEEE J. Solid-State Circuits*, vol. 29, pp. 350-355, March, 1994.
- [3] Derek K. Shaeffer and Thomas H. Lee, "A 1.5-V 1.5-GHz CMOS Low Noise Amplifier", *IEEE J. Solid-State Circuits*, vol. 32, pp. 745-759, May 1997.
- [4] Yannis E. Papananos, *Radio-Frequency Microelectronic Circuits for Telecommunication Applications*, Kluwer, 1999.
- [5] Guillermo Gonzalez, *Microwave Transistor Amplifiers Analysis and Design*, 1997, Prentice-Hall, Inc.
- [6] David M. Pozar, *Microwave Engineering*.
- [7] X. Li et al, "A Novel Design Approach for GHz CMOS Low Noise Amplifiers," 1999 IEEE Radio and Wireless Conference (RAWCON), pp. 285-288.

参考文献

- [8] Ryuichi Fujimoto *et al*, "A 7-GHz 1.8-dB NF CMOS Low Noise Amplifier," *IEEE J. Solid-State Circuits*, vol. 37, pp. 852-856, July 2002.
- [9] Thomas H. Lee, *The Design of CMOS Radio-Frequency Integrated Circuits*, 2002.6, Publishing House of Electronics Industry.
- [10] Federico Bruccoleri, Eric A. M. Klumperink, and Bram Nauta, "Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling," IEEE Journal of Solid-State Circuits, vol. 39, issue 2, pp. 275 282, Feb. 2004.
- [11] Federico Bruccoleri, Eric A. M. Klumperink, and Bram Nauta, Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation. Springer, 2005. pp. 152.
- [12] Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Su Yang, and Sang-Gug Lee, "CMOS Low-Noise Amplifier Design Optimization Techniques," *IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES*, VOL. 52, NO. 5, MAY 2004, pp. 1433-1442.