Trace Metal Parameter Data

Table 2. Conditional stability constants for metals in seawater (Millero, 2001b)

Metal	[M]	[L]	log K _c
Cu(II)	1–10 nM	2-60 nM	8.5
Zn(II)	0.1–2 nM	1.2 nM	12
Cd(II)	2-800 pM	100 pM	12
Pb(II)	17-49 pM	200-500 pM	11
Ni(II)	1.7-4.3 nM	2–4 nM	17–19
Co(II)	10-103 pM	9–83 pM	11–16
Fe(III)	0.2-8 nM	0.4-13 nM	19–23

Table 2 Compilation of selected conditional stability constants and ligand concentrations of natural organic ligands for cobalt, nickel, copper, and zinc

	Values measured				
Location Cobalt	Metal con- centration pM	Ligand concentration pM	log K' _(Metal) -L	Method, competing ligand ^{a,b}	Reference
Antarctic polar front	10–120	15-50	_	CSV, nioxime	(Ellwood et al. 2005)
Costa Rica upwelling dome	57–12° 45–93 ^d	50	≥16.8	CSV, DMG	(Saito et al. 2005)
East equatorial Pacific	27-315°	_	-	CSV, DMG	(Saito et al. 2004)
Atlantic Ocean, Sargasso Sea	17-73 ^d 20 ± 10 ^{c,f} 19-133 ^c	-	-	CSV, DMG	(Saito & Moffett 2002)
Sargasso Sea	19–73 ^d	9–83	16.3 ± 0.9	CSV, DMG	(Saito & Moffett 2001b)
Northeast Atlantic Ocean	25–103°	22–60	15.6–16.1	CSV, nioxime	(Ellwood & van den Berg 2001)
Nickel	nM	nM			
Costa Rica upwelling dome	3.0 ± 0.3^{f}	_	_	CSV, DMG	(Saito et al. 2005)
Coastal Britain	-	2–4	17.3–18.7	CSV, DMG	(van den Berg & Nimmo 1987)
Copper	nM	nM			
Subarctic northwest Pacific	3–4	3.7-5 (1500-2500 m)	12.7–14.1	CSV, salicylaldoxime, and benzoylacetone	(Moffett & Dupont 2007)
Estuarine waters	9–23g	$L_1 = 10-33$ $L_2 = 14-300$	$L_1 = 14.8 - 15.8$ $L_2 = 13-13.5$	CSV, salicylaldoxime	(Laglera & van den Berg 2003)
North Pacific	0.58-1.88 ^d	$L_1 = 1.5-3$ $L_2 = 5-10$	$L_1 = 11.6$ $L_2 = 8.6$	DPASV	(Coale & Bruland 1990)
Zinc	nM	nM			
Northeastern Atlantic Ocean	0.3-2.0	0.4–2.5	10.0–10.5	CSV, PDC	(Ellwood & van den Berg 2000)
Central North Pacific	0.1-3.0 ^d	1.2	11.0	DPASV	(Bruland 1989)

Distributive Characteristics of Dissolved Trace Metals

- Oxyanions and big, standalone ions with one valence electron (like Cs+ and Rb+) tend to exist in small oceanic concentrations.
- Metals with greatest variation in oceanic concentration seem to be greatly related to biological processes (iron, zinc, cadmium ex.)

Types of Trace Metal Distributions:

- 1) Conservative Distributions: Trace metal retains relative concentration for long periods of time.
- 2) Nutrient-dependent distributions: metals that are involved in nutrient cycles and whose concentrations also depend on concentrations of other nutrients; includes zinc, cadmium, and (surprisingly) silver (and co.).
- 3) Scavenged-type distribution: scavenged very often; high concentrations near source (e.g. aluminum).

Some like iron and copper have hybrid distributions (where iron follows a nutrient-dependent and scavenged-type distribution).

Mixed distributions (where different forms of the metal undergo different distributions) also exist with elements like germanium.

--- the above is from Bruland 2003