Er.als.: |x-xx = |0x1 1-y-y* [=10x1

$$\mathcal{E}_{A}$$
. rel : $|S_{x}| = \frac{|\Delta x|}{|x|}$
 $|S_{y}| = \frac{|\Delta y|}{|y|}$

Ex. norme (p-norme)

· Enclidiona: 11x112 = 12,2+...+ X2

· Gebizer/supremum:

11×110= max {[×1],..., +m|}

· Toxi/Manhattau:

11 Ell, = 1 Ent... + 1 Em

||Allp=mox ||A·X||p -> norma X=R ||Allp -> motriceala

2 def. ale ur. rond. pt. f=(f1,..., fn)

condp
$$f(x) = \| \Gamma(x) \|_{F}$$

Ex., &: R-) R, x = R*, f(x) +0 =) cond f(x) = \frac{1\pi(x)}{1\pi(x)}

• A·y = ls (row).) $y = A^{-1} ls$ $A \in \mathcal{U}_{m,m}(R), det A \neq 0$

.. - 8 (la) - A-1 l-

A
$$\in$$
 Map $(|k|)$, $det A \neq 0$)

 $y = f(k) = A^{-1} k$
 $cond_p f(k) = \frac{||k||_p \cdot ||A^{-1}||_p}{||A^{-1}||_p}$
 $cond_p A := max cond pf(k) = ||A||_p \cdot ||A^{-1}||_p$
 $k \neq 0$
 $cond(A, p)$

A Vandermonde matrix has the form:

Temā: ec. alg: p(x) = 0, and $p(x) = x + a_1 x^{m_1} + ... + a_m x + a_m$ are a rad. nemula si simpla g(a) $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0, p(x^{(a)}) + 0)$ $(x^{(a)} + 0, p(x^{(a)}) = 0, p(x^{(a)}) + 0, p(x^{(a)}) + 0, p(x^{(a)}) = 0, p(x^{(a)}) =$