Project: Capacitated Vehicle Routing Problem with Time Windows

Irena Oršolić

Academic year 2019/2020

Masters program

Information and communication technologies

Outline

- Problem description
- Problem instances
- Problem formulation
- Your project task

Problem description

- Vehicle Routing Problem, VRP
- Objective: find a set of routes for a fleet of vehicles supplying customers from a depot
- Specific constraints define the problem "flavor":
 - Vehicle capacity, CVRP
 - Time intervals in which customers must be supplied, VRPTW
 - → CVRPTW

Problem description

http://neo.lcc.uma.es/vrp/vehicle-routing-problem

Problem instances

- 6 instances are given:
 - i1: 100 customers, 25 vehicles
 - i2: 200 customers, 50 vehicles
 - i3: 400 customers, 100 vehicles
 - i4: 600 customers, 150 vehicles
 - i5: 800 customers, 200 vehicles
 - i6: 1000 customers, 250 vehicles

Problem instances

VEHICLE							
NUMBER	CAPACITY						
25	200						
CUSTOMER							
CUST NO.	XCOORD.	YCOORD.	DEMAND	READY TIME	DUE DATE	SERVICE TI	ME
0	35	35	0	0	230	0	
1	41	49	10	0	204	10	
2	35	17	7	0	202	10	
3	55	45	13	0	197	10	
4	55	20	19	139	169	10	
5	15	30	26	0	199	10	
6	25	30	3	89	119	10	
7	20	50	5	0	198	10	
8	10	43	9	85	115	10	
9	55	60	16	87	117	10	
10	30	60	16	114	144	10	

Problem formulation

Constraints:

- Each customer is served by exactly one vehicle/route, with the resource amounts that equal their demands.
- The demand on each route must not exceed the capacity of the vehicle.
- The vehicle servicing a certain customer must arrive at the customer location within the interval given for that customer. The duration of the service can exceed the interval.
- Each vehicle starts and finishes its route in node 0 (depot), within the time interval given for customer 0.

Problem formulation

Problem formulation

Objectives:

- minimize the number of vehicles by which all the customers can be serviced – primary!
- 2. minimize the sum of distances on all routes $d(c_0,c_1) = \sqrt{(41-35)^2 + (49-35)^2}$
- Distance is considered in solution comparison only in solutions using the same number of vehicles.

Project task

- Design and implement a heuristic algorithm to solve the given problem.
- Execute your algorithm for given instances.
- Save 3 solutions for each instance:
 - solution obtained after 1 minute of alg. execution,
 - 5 minutes of algorithm execution, and
 - without time constraints.
- Save the value of both objective functions, and the number of iterations in which you evaluated the objective function until obtaining saved solutions.

Project task

- Create a report that describes your implemented heuristic algorithm.
- Submit by January 14, 2020 at 12:00 noon:
 - The report,
 - Source code,
 - Solutions.

```
1: 0(0) ->53(85) ->58(180) ->2(200) ->0(228)
2: 0(0) ->27(27) ->28(44) ->12(81) ->80(168) ->77(185) ->50(203) ->0(230)
...
19: 0(0) ->44(59) ->38(80) ->0(133)
20: 0(0) ->39(34) ->23(58) ->67(80) ->0(134)
21: 0(0) ->65(50) ->0(110)
1836,87
```

2.1