Des racines imbriquées faisant intervenir des nombres premiers

Le Fay Yvann, Régus François

Mai 2018

Préface

L'objectif de ce papier est d'étudier certaines expressions de racines imbriquées faisant intervenir des nombres premiers.

1 Définition

Soit $\mathcal{P}(n)$, le n-ème nombre premier, on note ici χ_F , la fonction indicatrice de F. On étudie la fonction suivante définie par

$$\forall n, b \in \mathbb{N}^*, b \ge n, \Psi(n, b) = \mathcal{P}(n) \sqrt{1 + \Psi((n+1) \mathbb{1}_{[0;b-1]}(n), b)}$$

$$= \sqrt{\mathcal{P}(n)^2 (1 + \Psi((n+1) \mathbb{1}_{[0;b-1]}(n), b))}$$

$$\Psi(0, b) = 0$$

$$= \Psi(n, 0)$$

2 Résultats

Proposition 1. Des conditions simples sur μ et γ , deux suites dans les réels, permettent d'écrire

$$\mathcal{P}(n) \prod_{j=1}^{b-n} (\mu_j \mathcal{P}(n+j))^{2^{-j}} \le \Psi(n,b) \le \mathcal{P}(n) \prod_{j=1}^{b-n} (\gamma_j \mathcal{P}(n+j))^{2^{-j}}.$$

Preuve. Pour le terme à gauche,

$$\mu_{n+1}\Psi(n+1,b) \leq 1 + \Psi(n+1,b)$$

$$\Leftrightarrow \mathcal{P}(n)\sqrt{\mu_{n+1}\mathcal{P}(n+1)\sqrt{\dots\sqrt{\mu_b\mathcal{P}(b)}}} \leq \dots \leq \mathcal{P}(n)\sqrt{\mu_{n+1}\mathcal{P}(n+1)\sqrt{\mu_{n+2}\Psi(n+2,b)}} \leq \mathcal{P}(n)\sqrt{\mu_{n+1}\Psi(n+1,b)} \leq \Psi(n,b).$$

Pour celui à droite,

$$1 + \Psi(n+1,b) \le \gamma_{n+1}\Psi(n+1,b)$$

$$\Leftrightarrow \Psi(n,b) \le \mathcal{P}(n)\sqrt{\gamma_n\Psi(n,b)} \le \mathcal{P}(n)\sqrt{\gamma_{n+1}\mathcal{P}(n+1)\sqrt{\gamma_{n+2}\Psi(n+2,b)}} \le \dots \le \mathcal{P}(n)\sqrt{\gamma_{n+1}\mathcal{P}(n+1)\sqrt{\dots\sqrt{\gamma_b\mathcal{P}(b)}}}.$$

Remarque. On a ainsi l'égalité seulement quand $\mu_n = \gamma_n = 1 + \frac{1}{\Psi(n,b)}$.

Remarque. On peut choisir $\mu_n = 1$ et $\gamma_n = \frac{3}{2}$.

Proposition 2.

$$\forall k \in \mathbb{N}, \Psi(n, b) \leq \widetilde{\Psi}(n, b, k) = \frac{\Psi((n + k + 1)\chi_{[0;b]}(n + k + 1), b)}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{\chi_{[0;b]}(n + j - 1)}{2^{j}} (\mathcal{P}(n + j - 1)^{2} + 1) \leq \widetilde{\Psi}(n, b, k + 1).$$

Preuve. Par l'inégalité arithmético-géométrique appliquée deux fois successivement à (1)

$$\begin{split} \Psi(n,b) &\leq \frac{\mathcal{P}(n)^2 + 1 + \Psi((n+1)\chi_{\llbracket 0;b-1 \rrbracket}(n)), b)}{2} = \widetilde{\Psi}(n,b,0) \\ \widetilde{\Psi}(n,b,0) &\leq \frac{1}{2}(\mathcal{P}(n)^2 + 1 + \frac{1}{2}(\mathcal{P}(n+1)^2 + 1 + \Psi((n+2)\chi_{\llbracket 0;b-2 \rrbracket}(n),b))) \\ &= \widetilde{\Psi}(n,b,1) \end{split}$$

En l'appliquant ainsi k + 1 fois,

$$\begin{split} \forall k \in \mathbb{N}, \Psi(n,b) & \leq \widetilde{\Psi}(n,b,k) = \frac{\Psi((n+k+1)\chi_{[\![0;b]\!]}(n+k+1),b)}{2^{k+1}} \\ & + \sum_{j=1}^{k+1} \frac{\chi_{[\![0;b]\!]}(n+j-1)}{2^j} (\mathcal{P}(n+j-1)^2 + 1) \leq \widetilde{\Psi}(n,b,k+1). \end{split}$$

Remarque.

$$= \frac{\Psi((n+k+1)\chi_{[0;b]}(n+k+1),b)}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} (\mathcal{P}(n+j-1)^2 + 1), \quad \text{si } n+k \le b$$

$$= \sum_{j=1}^{k+1} \frac{1}{2^j} (\mathcal{P}(n+j-1)^2 + 1) = \widetilde{\Psi}(n,k), \quad \text{si } n+k \ge b$$

Proposition 3.

$$\widetilde{\Psi}(n,k) = 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} (\mathcal{P}(n+j-1)^2)$$

$$\geq 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} ((n+j-1)(\ln(n+j-1) + \ln\ln(n+j-1) - 1))^2, \qquad n \geq 2$$

$$\widetilde{\Psi}(n,k) \leq 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} ((n+j-1)(\ln(n+j-1) + \ln\ln(n+j-1)))^2, \qquad n \geq 6$$

Preuve. Voir [1].

Proposition 4. Pour $n \geq 6$, on connaît une majoration assez fine de $\widetilde{\Psi}(n,k)$, qui est un polynome de n, on la note $\Psi^*(n,k,n)$. Preuve. Majorons $\ln x$ pour obtenir une majoration de la majoration en proposition 3,

$$\forall a \in \mathbb{R}_*^+, \ln x \le \frac{1}{a}(x-a) + \ln a.$$

Remplaçons les termes de la somme,

$$((n+j-1)(\ln(n+j-1)+\ln\ln(n+j-1)))^2 \le \left[\left(2\ln a + \frac{\ln a}{a} - 2 - \frac{1}{a}\right)(n+j-1) + (n+j-1)^2\left(\frac{1}{a^2} + \frac{1}{a}\right)\right]^2.$$

Il ne nous reste plus qu'à simplifier la somme suivante

$$\widetilde{\Psi}(n,k) \le 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} (J(n+j-1) + (n+j-1)^2 L)^2, \qquad L = \frac{1}{a^2} + \frac{1}{a}, J = 2\ln a + \frac{\ln a}{a} - 2 - \frac{1}{a}$$

$$= 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} (J^2(n+j-1)^2 + JL(n+j-1)^3 + L^2(n+j-1)^4)$$

Pour cela, on introduit la fonction transcendante de Lerch, définie par $\Phi(z, s, \alpha) = \sum_{j=0}^{+\infty} \frac{z^j}{(j+\alpha)^s}$, et on écrit les trois termes de notre carré apparaissant dans la somme grâce à celle-ci

$$\begin{split} \sum_{j=1}^{k+1} \frac{1}{2^j} (n+j-1)^p &= \frac{1}{2} \left(\sum_{j=0}^{+\infty} \frac{1}{2^j} (n+j)^p - \sum_{j=k+1}^{+\infty} \frac{1}{2^j} (n+j)^p \right) \\ &= \frac{1}{2} \left(\sum_{j=0}^{+\infty} \frac{1}{2^j} (n+j)^p - \frac{1}{2^{k+1}} \sum_{j=0}^{+\infty} \frac{1}{2^j} (n+k+1+j)^p \right) \\ &= \frac{1}{2} \left(\Phi[\frac{1}{2}, -p, n] - \frac{1}{2^{k+1}} \Phi[\frac{1}{2}, -p, n+k+1] \right). \end{split}$$

Le a fournissant la majoration la plus fine est n. Les égalités suivantes permettent de conclure, (on écrira pas $\Psi^*(n,k)$, l'expression complète est bien trop indigeste),

$$\begin{split} &\Phi[\frac{1}{2},-2,n]=2n^2+4n+6\\ &\Phi[\frac{1}{2},-3,n]=2n^3+6n^2+18n+26\\ &\Phi[\frac{1}{2},-4,n]=2n^4+8n^3+36n^2+104n+150. \end{split}$$

Proposition 5. $\Psi(n,b)$ converge quand $b \to +\infty$.

Preuve. Chacune des propositions précédentes peut-être utilisée pour démontrer ce résultat, en associant des équivalences $\mathcal{P}(n)$, pour exemple, $\mathcal{P}(n) \sim n \ln n$, et en utilisant le critère de d'Alembert (on trouvera un rapport de $\frac{1}{2} \leq 1$).

Proposition 6. Pour tout $(n,b) \in \mathbb{N}^2_* \setminus \{(1,1),(1,2),(2,2)\}, \ \Psi(n,b)$ est un nombre irrationnel.

Preuve. Montrons tout d'abord l'irrationnalité de $\sqrt{1+p}$ où $p \in \mathbb{P}$. Déterminons p tel que $\sqrt{1+p}$ est rationnel,

$$\begin{aligned} p &\in \mathbb{P}, \sqrt{1+p} \in \mathbb{Q} \\ \Leftrightarrow p &\in \mathbb{P}, 1+p = \frac{q^2}{k^2}, q \land k = 1 \\ \Leftrightarrow p &\in \mathbb{P}, p = (q-1)(q+1), \quad \text{car } 1+p \in \mathbb{N} \\ \Leftrightarrow p &= 3. \end{aligned}$$

Excluons donc le cas particulier de p=3 et travaillons par récurrence. Premièrement l'initialisation en partant du b-ème terme

$$\sqrt{1 + \mathcal{P}(b)} \notin \mathbb{Q}$$

$$\Rightarrow \mathcal{P}(b-1)\sqrt{1 + \mathcal{P}(b)} = \Psi(b-1,b) \notin \mathbb{Q}.$$

Enfin, l'hérédité

$$\begin{split} &\Psi(n,b) \notin \mathbb{Q} \\ \Rightarrow &\sqrt{1 + \Psi(n,b)} \notin \mathbb{Q} \\ \Leftrightarrow &\mathcal{P}(n-1)\sqrt{1 + \Psi(n,b)} = \Psi(n-1,b) \notin \mathbb{Q}. \end{split}$$

Finalement, à part pour $\Psi(1,1)=2, \Psi(1,2)=4$ et $\Psi(2,2)=3, \Psi(n,b)\notin\mathbb{Q}$.

Proposition 7. Pour tout k entier naturel,

$$\mathcal{P}(n+k) \sim \prod_{j=1}^{+\infty} \mathcal{P}(n+j)^{2^{-j}}$$

En particulier pour k = 0 et k = 1.

Preuve. En sachant que $P(n+k) \sim P(n)$,

$$\lim_{n \to +\infty} \frac{\mathcal{P}(n+k)}{\prod_{j=1}^{+\infty} \mathcal{P}(n+j)^{2^{-j}}} = \lim_{n \to +\infty} \frac{\mathcal{P}(n+k)}{\prod_{j=1}^{+\infty} \mathcal{P}(n+1)^{2^{-j}}}$$
$$= \lim_{n \to +\infty} \lim_{m \to +\infty} \mathcal{P}(k+n)\mathcal{P}(n+1)^{-1+2^{-m}}$$
$$= 1$$

Proposition 8.

$$\mathcal{P}(n)^2 < \Psi(n, +\infty)$$

Preuve. Par la proposition 1. en posant $\mu_j = 1$,

$$\mathcal{P}(n)^2 = \mathcal{P}(n) \prod_{j=1}^{+\infty} \mathcal{P}(n)^{2^{-j}} < \mathcal{P}(n) \prod_{j=1}^{+\infty} \mathcal{P}(n+j)^{2^{-j}} < \Psi(n,+\infty)$$

Proposition 9.

$$\Psi(n, +\infty) \sim \mathcal{P}(n)^2$$

Preuve. Par la proposition 1., en posant l'égalité du côté gauche pour $\mu_j=1+\frac{1}{\Psi(j,+\infty)}$

$$\frac{\mathcal{P}(n) \prod_{j=1}^{+\infty} \mathcal{P}(n+j)^{2^{-j}}}{\Psi(n,+\infty)} = \frac{\mathcal{P}(n) \prod_{j=1}^{+\infty} \mathcal{P}(n+j)^{2^{-j}}}{\mathcal{P}(n) \prod_{j=1}^{+\infty} ((1 + \frac{1}{\Psi(j,+\infty)}) \mathcal{P}(n+j))^{2^{-j}}}.$$

Par la proposition 7, pour le nominateur, et par passage à la limite, $\lim_{n\to+\infty}\mu_n=1$,

$$\lim_{n \to +\infty} \frac{\mathcal{P}(n)^2}{\Psi(n, +\infty)} = 1.$$

References

[1] PIERRE DUSART. THE k-th PRIME IS GREATER THAN $k(\ln k + \ln \ln k)$ FOR $k \ge 2$. MATHEMATICS OF COMPUTATION, 1999.