```
In [20]: | from __future__ import print_function
          _Author__ = 'dp1618'
         import pylab as pl
         import numpy as np
         import pandas as pd
         import statsmodels.formula.api as sm
         import statsmodels.api as sml
         import csv
         from scipy import stats
         %pylab inline
         Populating the interactive namespace from numpy and matplotlib
 In [2]: #Import Files
         dfpop = pd.read csv('Population by FIPS County.csv')
         dfpop['FIPS'] = dfpop['County FIPS']
         dfpop.columns
         #print (dfpop)
 Out[2]: Index([u'Area Name-Legal/Statistical Area Description', u'Qualifying Name',
                u'Area (Land)', u'Area (Water)', u'Summary Level',
                u'Geographic Component', u'Region', u'Division', u'County FIPS',
                u'State (FIPS)', u'County', u'Total Population', u'Area Total',
                u'Area Total: Area (Land)', u'Area Total: Area (Water)', u'FIPS'],
               dtype='object')
 In [3]: dfemit = pd.read csv('CountiesBySector.csv', skiprows = 14, header = True)
         dfemit.columns
         #print (dfemit)
 Out[3]: Index([u'State', u' County', u'FIPS', u' Total', u'Unnamed: 4', u'Commercial',
                u'Industrial', u'Residential', u'Electricity Prod', u'Onroad',
                u'Cement', u'Aircraft', u'Airborne', u'Nonroad'],
               dtype='object')
 In [4]: dfMSA = pd.read csv('CountiesMSACodes.csv', skiprows = 2)
         dfMSA.columns
         #print (dfMSA)
 Out[4]: Index([u'CBSA Code', u'Metro Division Code', u'CSA Code', u'CBSA Title',
                u'Level of CBSA', u'Status, 1=metro 2=micro',
                u'Metropolitan Division Title', u'CSA Title', u'Component Name',
                u'State', u'FIPS'],
               dtype='object')
 In [5]: #Join the counties by sector and the counties with MSA Codes.
         #Join over FIPS Column
         merge1 = dfemit.merge(dfMSA, on='FIPS')
         #merge1
 In [6]: #Merge population per CBSA Code
         EmitandPop = pd.merge(merge1, dfpop, on = 'FIPS')
         #EmitandPop = dfpop.merge(merge1, on = 'CBSA Code')
         #print(EmitandPop)
         EmitandPop[' Total'] = 1000000*EmitandPop[' Total']
 In [7]: EmitandPop = EmitandPop.drop(EmitandPop[EmitandPop['Status, 1=metro 2=micro'] == 2].index)
```

```
In [32]: #Plot - Total CO2 Emissions and Population
    pl.figure(figsize = (10,10))
    pl.plot(np.log10(EmitandPop['Total Population']), np.log10(EmitandPop['Total']), 'k.')
    pl.xlabel('Total Population April 1, 2010 (log)', fontsize = 20)
    pl.ylabel('Total CO2 Emissions in Tonnes of Carbon (log)', fontsize = 20)
    pl.title ('Population and Total Emissions by County', fontsize = 30)

#Correlation Analysis:
    cor = stats.pearsonr(EmitandPop['Total Population'], EmitandPop['Total'])
    print (cor)

#Strong positive correlation. Pearsons Value of .755, where zero indicates no correlation and
#1 and -1 indicate strong correlation
```

(0.75541073023113547, 5.7151620561426247e-202)

(-0.081107116374212807, 0.0073819052325340339)


```
In [10]: pl.figure(figsize = (15,15))
    pl.loglog(EmitandPop['Area Total'], EmitandPop[' Total'], 'k.')
    pl.xlabel('Total Area (log)', fontsize = 20)
    pl.ylabel('Total CO2 Emissions in Tonnes of Carbon (log)', fontsize = 20)
    pl.title ('Area and Total Emissions by County', fontsize = 30)
```

Out[10]: <matplotlib.text.Text at 0x10b22f650>

(-0.081107116374212807, 0.0073819052325340339)

In [12]: EmitandPop.columns

Out[13]:

	State_x	County	FIPS	Total	CBSA Code	CBSA Title	Total Population	Area Total	CO2perCapita_Tonnes	PopD
1461	TX	Coryell	48099	71437.166	28660	Killeen- Temple-Fort Hood, TX	75388	1056.756000	0.947593	71.33
1650	VA	Poquoson	51735	11658.060	47260	Virginia Beach- Norfolk- Newport News, VA- NC	12150	78.425670	0.959511	154.9
300	GA	Paulding	13223	154374.859	12060	Atlanta- Sandy Springs- Marietta, GA	142324	314.341700	1.084672	452.7
1014	NY	Kings	36047	2762535.626	35620	New York- Northern New Jersey- Long Island, NY-N	2504700	96.917300	1.102941	25843
1645	VA	Manassas Park	51685	16285.060	47900	Washington- Arlington- Alexandria, DC-VA-MD- WV	14273	2.534767	1.140970	5630.

Out[14]:

		Total	Total Population	Area Total
CBSA Title	CBSA Code			
Abilene, TX	10180	649929.762	165252	2757.7055
Akron, OH	10420	2048256.942	703200	924.1192
Albany, GA	10500	977521.540	157308	1957.9622
Albany-Schenectady-Troy, NY	10580	2816506.060	870716	2878.2170
Albuquerque, NM	10740	2265460.755	887077	9297.1590

```
In [37]: #plot grouped by CBSA
pl.figure(figsize = (15,15))
pl.plot(log10(EmitandPopbyCBSA['Total Population']), log10(EmitandPopbyCBSA[' Total']), 'k.')
pl.xlabel('Total Population of the CBSA April 1, 2010 (log)', fontsize = 20)
pl.ylabel('Total CO2 Emissions in Tonnes of Carbon (log)', fontsize = 20)
pl.title('Population and Total CO2 Emissions by CBSA', fontsize = 30)
#Correlation Analysis:
cor = stats.pearsonr(EmitandPopbyCBSA['Total Population'], EmitandPopbyCBSA[' Total'])
print (cor)
```

(0.85144115032796652, 6.1150188819454323e-103)

(-0.10455157895091345, 0.046833759702735837)

(-0.10455157895091345, 0.046833759702735837)

In [17]: Sorted2 = EmitandPopbyCBSA.sort(columns = 'CO2perCapita_Tonnes')
 Sorted2.head()

Out[17]:

		Total	Total Population	Area Total	CO2perCapita_Tonnes
CBSA Title	CBSA Code				
Jacksonville, NC	27340	248844.833	177772	905.9130	1.399798
Brownsville-Harlingen, TX	15180	589178.470	406220	1276.4580	1.450393
Bremerton-Silverdale, WA	14740	385786.439	251133	565.9188	1.536184
Laredo, TX	29700	407319.151	250304	3375.5900	1.627298
Greenville, NC	24780	312057.515	189510	921.2242	1.646655

In []: