SECOND SEMESTER 2019-20 COURSE HANDOUT

Date: 06.01.2020

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : BITS F463

Course Title : Cryptography

Instructor-in-Charge : Abhishek Mishra

Instructor(s) : Tutorial/Practical Instructors:

1. Course Description: The course presents an introduction to Cryptography.

2. Scope and Objective of the Course: To learn about complexity theoretic and number theoretic background required for modern cryptography. To learn about basic tools and applications used in modern cryptography. To learn about some cryptographic protocols.

3. Text Books:

[T1] B.A. Forouzan, D. Mukhopadhyay, Cryptography and Network Security, $3^{\rm rd}$ Edition, 2015, McGraw-Hill Education.

4. Reference Books:

[R1] S.Goldwasser, M. Bellare, Lecture Notes on Cryptography, 2008. Available online at: https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
[R2] O. Goldreich, Foundations of Cryptography Volume 1: Basic Tools, Cambridge University Press, 2004. Available online at:

http://www.wisdom.weizmann.ac.il/~oded/foc-drafts.html

[R3] O. Goldreich, Foundations of Cryptography Volume 2: Basic Applications, Cambridge University Press, 2004. Available online at:

http://www.wisdom.weizmann.ac.il/~oded/foc-drafts.html

[R4] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996. Available online at:

http://cacr.uwaterloo.ca/hac/

[R5] W. Stallings, Cryptography and Network Security: Principles and Practice, 7^{th} Edition, 2017, Pearson.

- [R6] W. Trappe, L.C. Washington, Introduction to Cryptography with Coding Theory, 2^{nd} Edition, 2007, Pearson.
- [R7] D.R. Stinson, Cryptography: Theory and Practice, $3^{\rm rd}$ Edition, 2005, CRC.
- [R8] H. Delfs, H. Knebel, Introduction to Cryptography: Principles and Applications, 2^{nd} Edition, 2007, Springer.
- [R9] S. Arora, B. Barak, Computational Complexity: A Modern Approach, 2009, Cambridge University Press. Available online at:

http://theory.cs.princeton.edu/complexity/book.pdf

5. Course Plan:

Lecture	Topics						
1	Impagliazzo's Five Worlds.						
2	Divisibility.						
3	Euclid's Extended GCD Algorithm.						
4	Congruences, Fermat's Theorem, Euler's Theorem.						
5	Modular Exponentiation Algorithm.						
6	Groups, Subgroups, Primitive Roots.						
7	Shift Cipher, Substitution Cipher, Affine Cipher.						
8	Vigenere Cipher, Permutation Cipher, Cryptanalysis of Classical Ciphers.						
9	Strong One-Way Functions, Weak One-Way Functions, Non- Uniformly Strong One-Way Function.						
10	One-Way Functions as Collections. Examples of One-Way Functions. Examples of One-Way Collections.						
11	RSA Collection. Polynomial-Time Reductions. Chinese Remainder Theorem. Quadratic Residues.						
12	Rabin Function. Discrete Logarithm Problem. Trapdoor One-Way Permutations. RSA Trapdoor.						

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

	One-Time Pad. Pseudo-Random Bit Generators.				
13	Polynomial-Time Indistinguishability. Pseudo-Random				
	Distribution, Pseudo-Random Generator, Blum-Blum-Shub				
	Pseudo-Random Generator.				
14	Data Encryption Standard.				
15	Properties of DES. Key Recovery Attacks on Block				
	Ciphers, Double-DES. Triple-DES, DESX.				
16	Rings and Fields. Examples of Rings and Fields. Polynomial				
	Rings over Fields. Galois Fields.				
17	Advanced Encryption Standard.				
18	Function Family, Random Functions and Permutations.				
	Pseudo-Random Functions and Permutations. Pseudo-Random				
19	Permutations under Chosen Plaintext Attack (CPA). Pseudo-				
	Random Permutations under Chosen Ciphertext Attack (CCA).				
	Security Against Key Recovery. The Birthday Attack.				
	Symmetric Encryption Schemes. Modes of Operations:				
	Electronic Code Book (ECB) Mode, Cipher Block Chaining with				
20	Random Initial Vector (CBC\$) Mode, Cipher Block Chaining				
	with Counter Mode (CBCC), Counter Mode with a Random				
	Starting Point (CTR\$), Counter Mode with a Counter				
	Starting Point (CTRC).				
21	Indistinguishability under CPA. Attack on ECB. Attack on				
21	any Deterministic, Stateless Scheme. Attack on CBCC.				
2.2	Indistinguishability under CCA. CCA on CTR\$ Scheme. CCA on				
22	CBC\$ Scheme.				
23	Public Key Encryption Schemes. Polynomial-Time				
	Indistinguishability. Semantic Security. Legendre and				
	Jacobi Symbols.				
24	RSA Public Key Cryptosystem, Mental Poker, Extracting				
	Partial Information from the RSA Function, Low Exponent				
	Attack on RSA. Rabin's Public Key Cryptosystem.				
25	Hard-Core Predicates, Goldreich-Levin Construction of a				
	Hard-Core Predicate. Bit Security of RSA. One-Way				

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

	Predicates, Collection of One-Way Predicates.						
	A Set of Trapdoor Predicates based on the RSA Assumption.						
26	Encrypting Single Bits using Trapdoor Predicates.						
26	Encrypting Single Bits using Hard-Core Predicates.						
	Efficient Probabilistic Encryption.						
27	Secure Hash Algorithm (SHA).						
	Collision Resistant Hash Functions. Collision Finding						
28	Attacks: Exhaustive Search Collision Finding Attack,						
20	Random-Input Collision Finding Attack, Birthday Attack.						
	Collision-Resistance under Hidden-Key Attack						
29	Message Authentication Scheme. Message Authentication Code						
	(MAC). Forgery. MAC Security.						
30	Examples of Forgeable MACs.						
31	PRF MACs, CBC MACs.						
	Diffe-Hellman (DH) Secret Key Exchange Protocol, DH						
	Problem, DH Assumption. Digital Signatures, Digital						
32	Signatures using the Trapdoor Function Model, DH Digital						
	Signature Scheme. Attacks against Digital Signatures. Types						
	of Forgery. Security Definition of Digital Signatures.						
33	RSA Digital Signature Scheme. El Gamal's Digital Signature						
	Scheme. Rabin's Digital Signature Scheme.						
	Interactive Proofs. Interactive Proof for Graph Non-						
34	Isomorphism. Interactive Proof for Quadratic Non-						
	Residuosity.						
35	Zero Knowledge Proofs. Zero Knowledge Proof for Graph						
	Isomorphism.						
36	Quantum Computation.						
37	EPR Paradox, Quantum Protocol for the Parity Game.						
38	Secret Sharing.						
39	Elliptic Curves.						
40	Elliptic Curve Cryptography.						
	· · · · · · · · · · · · · · · · · · ·						

6. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Nature of component
		(%)		(Close Book/ Open Book)
Mid-Semester Test	90 Min.	35	3rd March, 14:00	Open Book
			- 15:30	
Comprehensive	3 h	45	5th May, 8:00 -	Open Book
Examination			11:00	
Quiz 1	40 Min.	10	In February	Open Book
Quiz 2	40 Min.	10	In April	Open Book

- **7. Chamber Consultation Hour**: 15:00 16:00, Friday (6121S).
- 8. Notices: All notices will be posted on Nalanda.
- 9. Make-up Policy: Make-up exam may be arranged only in genuine cases with prior permission.
- 10. Note (if any):
- 11. Open Book Policy: Only hard copies are allowed (lecture notes, text book, or reference books).

Abhishek Mishra
Instructor-in-charge
Course No. BITS F463