RELATÓRIO DIFERENÇAS FINITAS

VITÓRIA, 2019

Alunos

João Victor Marçal Bragança Pedro Vinicius dos Santos Custodio

Professora

Andrea Valli

Sumário

1	INTRODUÇÃO	3
2	VALIDAÇÃO DO MÉTODO	4
2.1	Função de validação	4
2.2	Encontrando a Solução	5
3	CAPACITOR DE PLACAS PARALELAS	7
4	CONCLUSÃO	11

1 Introdução

Neste trabalho iremos apresentar a resolução da Equação de Poisson pelo método de diferenças finitas centrais, usando o método SOR para resolver o sistema obtido.

2 Validação do Método

2.1 Função de validação

Para validar o método, foi utilizada uma função e uma condição de contorno com resposta já conhecida, assim foi possível validar o algoritomo e medir o erro entre a resposta conhecida e a calculada.

Função de validação:

$$f(x,y) = \frac{1}{5}[x(x-10)+y(y-5)]$$

Figura 1 – Função f(x,y) com h = 0.125

Condições de contorno:

$$V=0$$
na fronteira.
$$V=0.625x(10\mbox{-}x)~para~y=2.5,\,0\leq x\leq 10$$

O problema acima tem solução conhecida igual a:

$$V(x,y) = \frac{1}{10}x(10-x)y(5-y)$$

Figura 2 – Função V(x,y) com h = 0.125

Para a validação do código, foi calculado o erro máximo entre a solução conhecida e a solução encontrada. A seguinte fórmula foi usada para o cálculo do erro:

erro =
$$\max |V_p^{exato}-V_p|$$
, p = 1,2, ... , n_x*n_y

2.2 Encontrando a Solução

O Método de Sobre-Relaxação Sucessiva (Successive Over-Relaxation - SOR) é um melhoramento do método de Gauss-Seidel para a solução de sistemas de equações lineares. A relação de recorrência do método é:

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right]$$

Onde o termo ω pode acelerar a convergência para a solução do sistema.

Foi então implementado um código no Octave a fim de resolver este problema.

Utilizando o método de Gauss-Seidel, SOR com $\omega=1$, para encontrar a solução com tolerância de 10^{-6} . Em todos os casos $h_x=h_y$.

Tabela 1 – Soluções por Gauss-Seidel

Passo da malha	Iterações	Tempo decorrido (s)	Erro
h = 0.500	640	0.0969	$9.369 \cdot 10^{-6}$
h = 0.250	931	5.4899	$9.494 \cdot 10^{-6}$
h = 0.125	3725	490.569	$9.598 \cdot 10^{-6}$

Vemos que quanto menor o h, mais fidedigno é o gráfico, pois temos mais pontos, porém isso acarreta em uma maior exigência computacional, porque temos mais pontos e

o método precisa de um maior número de iterações para alcançar a solução com a precisão desejada.

Para uma convergência mais rápida, o parâmetro ω pode ser ajustado.

Em geral, a escolha do ω para o método SOR é feita empiricamente, mas em malhas retangulares pode ser encontrada a partir da seguinte fórmula:

$$\omega = \frac{8 - \sqrt{64 - 16t^2}}{t^2}$$

onde

$$t = \cos(\frac{\pi}{n_x}) + \cos(\frac{\pi}{n_y})$$

e n_x e n_y são os números de pontos nas direções x e y.

Os testes acima foram refeitos utilizando os valores ótimos de ω em cada situação.

Tabela 2 – Soluções por SOR

Passo da malha	Iterações	Tempo decorrido (s)	ω
h = 0.500	41	0.0331311	1.6315
h = 0.250	81	0.526252	1.7880
h = 0.125	162	26.3311	1.8856

É evidente o efeito da escolha do valor de ω sobre o tempo de convergência. Com h=1.25, o número de iterações cai de 3725 para 162, uma melhora de 2200%.

Para h=0.125, temos como resposta o seguinte gráfico:

Figura 3 – Função V(x,y) calculada com h = 0.125

É possível observar que a figura 3 é idêntica à figura 2.

3 Capacitor de placas paralelas

Agora que sabemos que o nosso código está validado, utilizamos em um problema com solução até então desconhecida. O problema está a seguir.

Para um capacitor de placas paralelas, no domínio $\Omega=[0,10]\times[0,5],$ livre de cargas $(\rho=0)$ e com as condições de contorno:

$$V=0$$
na fronteira.
$$V=+5~{\rm para}~y=3,\, 3\leq x\leq 7$$

$$V=-5~{\rm para}~y=2,\, 3\leq x\leq 7$$

Foi escolhido para resolver o problema h=0.125.

Figura 4 – Visão da tensão no capacitor em uma perspectiva 1

Figura 5 – Visão da tensão no capacitor em uma perspectiva 2

Figura 6 – Visão da tensão no capacitor em uma perspectiva $3\,$

Como se pode observar, as condições de contorno estão atendidas e a tensão no capacitor está variando entre -5V e 5V, o que era de se esperar.

Figura 7 – Linhas equipotenciais e gradiente

Figura 8 – Potencial variando com a cor

Pela imagem, percebemos que existem regiões elípticas que possuem o mesmo potencial, o que pode-se notar ao fazer cortes horizontais em diferentes alturas no gráfico de tensão do capacitor, e o gradiente mostrando a forma de como a tensão vai aumentando de acordo com a região. As setas sempre vão se aproximando de y=3 porque o contorno informa que essa região possui tensão de +5V com x variando de y=3 porque o contorno informa que essa região possui tensão de -5V com y variando de y=3 porque o contorno informa que essa região possui tensão de y=3 porque o contorno informa que essa região possui tensão de y=3 porque o contorno informa que essa região possui tensão de y=3 porque o contorno informa que essa região possui tensão de y=30 porque o contorno informa

Figura 9 – Intensidade do campo elétrico no capacitor

As linhas de campo elétrico divergem do pólo positivo e convergem para o pólo negativo.

Podemos notar que as regiões mais próximas as placas possuem maior variação de campo e no centro a variação é bem mais constante, sendo quase linear.

É possível observar que as linhas de campo elétrico são de fato perpendiculares às linhas equipotenciais e que são mais uniformes em sentido e módulo entre as placas do capacitor.

4 Conclusão

Com o relatório foi possível observar como a utilização de métodos para encontrar a solução de sistemas, Gauss-Seidel ou SOR, podem ser úteis quando implementados computacionalmente, ajudando assim a encontrar a solução de problemas complexos rapidamente.

A partir de uma resposta já conhecida, conseguimos validar nosso código e depois disso, resolvemos um problema bem complexo da área do eletromagnetismo sem muito esforço. Mostrando assim que diversas áreas podem se comunicar para auxíliar a resolver desafios diferentes, porém com resolução semelhante.