Expert Q&A

chegg.com/homework-help/questions-and-answers/1-periodic-function-provide-example-neat-sketch-determine-period-function-y-2023-sin-2022--q114294502

Question

(0)

- 1. What is a periodic Function? Provide an example with neat sketch. Determine the period of the function $y = 2023sin^{2022}11x + 12$
- Define Odd and Even Function with figures. Provide example.
- From the definition of Fourier Series $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n cos(\frac{n\pi x}{L}) + b_n sin(\frac{n\pi x}{L}))$, which is period over the interval [-L, +L], derive the formula for the coefficients a_0, a_n, b_n .
- 4. Using Euler's Identities, prove that the Fourier series can be expressed as $f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{in\pi x}{L}}$
- 5. Define Orthogonal Functions. Using $\int_{-\pi}^{+\pi} \sin nx \ dx = 0$, and $\int_{-\pi}^{+\pi} \cos nx \ dx = 0$, where $m, n \in \mathbb{Z}$, prove the following identities
 - a. $\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \begin{cases} 2\pi & \text{if } n = m = 0 \\ \pi & \text{if } n = m \neq 0 \\ 0 & \text{if } n \neq m \end{cases}$ b. $\int_{0}^{\pi} \cos nx \cos mx \, dx = \begin{cases} \frac{\pi}{n} & \text{if } n = m = 0 \\ \frac{\pi}{n} & \text{if } n = m = 0 \end{cases}$ c. $\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = \begin{cases} \frac{\pi}{n} & \text{if } n = m \neq 0 \\ 0 & \text{if } n \neq m \end{cases}$ d. $\int_{0}^{\pi} \sin nx \sin mx \, dx = \begin{cases} \frac{\pi}{n} & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$

 - e. $\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = 0$
- 6. Draw sketches and determine the Fourier Series for the following functions.
 - a. $s(x) = \frac{x}{\pi}$, for $-\pi < x < +\pi$
 - b. $s(x) = 3|\sin x| \text{ for } 0 \le x < 2\pi$
 - c. $s(x) = \begin{cases} 2\sin x & \text{for } 0 \le x < \pi \\ 0 & \text{for } \pi \le x < 2\pi \end{cases}$ d. $s(x) = \begin{cases} 1 & \text{for } 0 \le x < \pi \\ 0 & \text{for } \pi \le x < \pi \end{cases}$ e. $s(x) = A \frac{Ax}{P} \text{ for } 0 \le x < P$

Expert Answer

This solution was written by a subject matter expert. It's designed to help students like you learn core concepts.

Step-by-step

- ••• 1st step
- \equiv All steps
- ✓ Answer only

Step 1/3 ∨

Multiple Question asked, from guidelines done first question for you.

To explain:

What is a periodic function, provide an example with a neat sketch and period of the function $y = 2,023 \sin^{2,022} 11x + 12$.

Explanation:

A period is the amount of time between two waves, whereas a periodic function is one whose values recur at regular intervals or periods.

Explanation:

The period of function $\sin^n(x)$ is the rtaio of period of $\sin^n(x)$ when n is even.

Step 2/3 ∨

Calculation:

The period of sin $x = 2\pi$ and the sketch of the period of sin x shown below:

The curve repeats its structure again after 2π , therefore the period of $\sin x = 2\pi$.

Explanation:

The period of y = asin (bx + c) + d is $\frac{2\pi}{a}$.

Step 3/3 ∨

The value of n = 2,022 for the function $y = 2,023\sin^{2,022} 11x + 12$ is even.

The period of $\sin^{2,022} 11x + 12$ is $\frac{2\pi}{11}$.

Therefore the period of the function $y = 2,023\sin^{2,022} 11x + 12$ is,

$$P = \frac{\frac{2\pi}{11}}{2}$$

$$= \frac{\pi}{11}$$

Final answer \vee

The period of the function $y = 2,023\sin^{2,022} 11x + 12$ is $\frac{\pi}{11}$.

Was this answer helpful?

Post a question

Answers from our experts for your tough homework questions

Post a question

Answers from our experts for your tough homework questions

