Fonction logarithme népérien : correction de l'activité

Rappeler les relations fonctionnelles de la fonction exponentielle.
 On sait que :

$$e^{x+y} = e^x \times e^y$$
$$e^{x-y} = \frac{e^x}{e^y}$$
$$e^0 = 1$$
$$e^{nx} = (e^x)^n$$

2. Rappeler le tableau de variations de la fonction exponentielle.

x	$-\infty$	0	+∞
$(e^x)'=e^x$		+	
e^x	0	1	+∞

3. Démontrer que l'équation $e^x = 2$ a une unique solution dans \mathbb{R} . On note ln(2) cette solution.

On sait que la fonction $f(x) = e^x - 2$ est continue : f(0) = 1 - 2 = -1 et $f(1) = e^1 - 2 > 2^1 - 2 > 0$.

On peut donc appliquer le théorème des valeurs intermédiaires : il existe $\alpha \in]0;1[$ tel que $f(\alpha)=0 \Leftrightarrow f(\alpha)=2.$

Comme la fonction f est strictement croissante, on en déduit l'unicité de α .

4. D'une manière plus générale, pour quelles valeurs de b l'équation $e^x = b$ a-t-elle une unique solution?

On note ln(b) cette solution.

Comme la fonction exponentielle est strictement positive, l'équation précédente ne peut pas avoir de solutions pour $x \le 0$.

Supposons b > 0, on pose h la fonction :

$$h(x) = e^x - b$$

Comme la fonction $x \to e^x$ tend vers 0 en $-\infty$, il existe un $x_1 \in \mathbb{R}$ tel que $-x_1$ suffisamment grand qui vérifie :

$$e^{x_1} < b \Leftrightarrow h(x_1) < 0$$

Comme la fonction $x \to e^x$ tend vers $+\infty$ en $+\infty$, il existe un $x_2 > x_1$ (par croissance de $x \to e^x$) tel que x_1 suffisamment grand qui vérifie :

$$e^{x_2} > b \Leftrightarrow h(x_2) > 0$$

TG TG

Comme la fonction h est continue, on peut appliquer le théorème des valeurs intermédiaires : il existe $x_0 \in]x_1; x_2[$.

Comme la fonction h est strictement croissante, on en déduit l'unicité de x_0 .

Finalement, on vient de montrer que l'équation $e^x = b$, b > 0, a une unique solution appelée $\ln(b)$; si $b \ge 0$, il n'y a aucune solution.

5. Déterminer $\ln(1)$, $\ln(e)$, $\ln(e^2)$ et $\ln(\frac{1}{e})$.

Le nombre ln(1) est la valeur de x pour laquelle $e^x = 1$, on sait que cette valeur est x = 0: ln(1) = 0.

Le nombre ln(e) est la valeur de x pour laquelle $e^x = e = e^1$, on sait que cette valeur est x = 1: ln(e) = 1.

Le nombre $\ln(e^2)$ est la valeur de x pour laquelle $e^x = e^2$, on sait que cette valeur est x = 2: $\ln(e^2) = 2$.

Le nombre $\ln\left(\frac{1}{e}\right)$ est la valeur de x pour laquelle $e^x = \frac{1}{e} = e^{-1}$, on sait que cette valeur est x = 0: $\ln\left(\frac{1}{e}\right) = -1$.

6. Déterminer une relation entre $ln(x \times y)$ d'un côté et ln(x) et ln(y) d'un autre côté; préciser les valeurs de x et de y.

On sait que pour x > 0 et y > 0:

$$\begin{split} e^{\ln(x)} &= x \\ e^{\ln(y)} &= y \\ &\qquad e^{\ln(x)} \times e^{\ln(y)} = x \times y \Leftrightarrow e^{\ln(x) + \ln(y)} = xy = e^{\ln(xy)} \end{split}$$

Par conséquent, on en déduit que : $\ln(xy) = \ln(x) + \ln(y)$ pour x, y > 0. En suivant un raisonnement équivalent, on peut montrer que pour x, y > 0: $\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$.

7. Donner une nouvelle expression de $ln(x^n)$; préciser les valeurs de x et de n.

On va montrer, par récurrence sur $n\mathbb{N}$ que, pour x > 0:

$$\ln\left(x^n\right) = n\ln(x)$$

Initialisation : On commence par le montrer pour n = 0 : $x^0 = 1$, $\ln(x^0) = \ln(1) = 0$ et $0 \times \ln(x) = 0$; l'initialisation est établie.

Hérédité : Supposons que la propriété est vraie pour un entier $n \ge 0$: $\ln(x^n) = n \ln(x)$.

Démontrons cette propriété pour n+1:

$$\ln(x^{n+1}) = \ln(x^n \times x) = \ln(x^n) + \ln(x)$$

$$= n \ln(x) + \ln(x) \text{ en utilisant l'hypothèse de récurrence}$$

$$= (n+1) \ln(x)$$

La propriété est établie au rang n+1 : on vient de montrer l'hérédité. Finalement, pour $n \in \mathbb{N}$ et x>0 :

$$\ln\left(x^n\right) = n\ln(x)$$

TG TG

8. Donner une nouvelle expression de $\ln(\frac{1}{x})$; préciser les valeurs de x. Pour x > 0, on a $\frac{1}{x} > 0$, donc on peut calculer son logarithme :

$$\ln\left(\frac{1}{x}\right) + \ln(x) = \ln\left(\frac{1}{x} \times x\right) = \ln(1) = 0 \Leftrightarrow \ln\left(\frac{1}{x}\right) = -\ln(x)$$

9. Que vaut $e^{\ln(x)}$? En déduire la dérivée de $\ln(x)$ et préciser pour quelles valeurs de x on peut la calculer.

Par définition de ln(x), on sait que $e^{ln(x)} = x$, les fonctions impliquées sont toutes dérivables et en utilisant la formule de dérivation d'un produit :

$$e^{\ln(x)} = x \Leftrightarrow \left(e^{\ln(x)}\right)' = x' \Leftrightarrow (\ln(x))' \times e^{\ln(x)} = 1 \Leftrightarrow (\ln(x))' \times x = 1 \Leftrightarrow (\ln(x))' = \frac{1}{x}$$

La dérivée de la fonction ln(x) est $\frac{1}{x}$.

- **10.** Quelle est la monotonie de la fonction $\ln(x)$? Comme la dérivée de la fonction $\ln(x)$ est $\frac{1}{x}$ et que cette fonction est strictement positive sur $]0;+\infty[$, alors la fonction $\ln(x)$ est strictement croissante.
- 11. Que déduire de x et y quand $\ln(x) = \ln(y)$? Préciser les valeurs de x et y. Pour x, y > 0, le fait que $\ln(x) = \ln(y)$ et que $\ln(x)$ soit strictement croissante implique que x = y.
- 12. Que vaut $\ln(e^x)$? Préciser pour quelles valeurs de x on peut faire ce calcul

Comme e^x est strictement positive pour toute valeur réelle de x, on peut effectuer ce calcul pour tout valeur réelle. De plus :

$$e^{\ln(e^x)} = e^x$$

Comme la fonction e^x est strictement croissante, cela implique que : $x = \ln(e^x)$

13. Pour a > 0, déterminer l'expression de y en fonction de x quand :

$$e^y = a^x$$

On va appliquer la fonction logarithme de chaque côté de l'égalité :

$$\ln\left(e^{y}\right) = \ln\left(a^{x}\right)$$

$$\Leftrightarrow y = x \ln(a)$$

Par conséquent :

$$a^x = e^{x \ln(a)}$$

TG TG

- **14.** Quelle est la limite de 10^n quand n est un entier qui tend vers $+\infty$? La limite est $+\infty$.
- **15.** Quelle est la limite de 10^{-n} quand n est un entier qui tend vers $+\infty$? La limite est 0.
- **16.** En utilisant les propriétés des limites de l'exponentielles, en déduire les limites suivantes :

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n}$$
$$\lim_{x \to 0^+} x^n \ln(x)$$

avec n un nombre entier.

Pour la première limite, on va prendre $x = 10^k$ avec k entier naturel qui tend vers $+\infty$ et on en conjecturera la limite attendue.

$$\frac{\ln(x)}{x^n} = \frac{\ln(10^k)}{(10^k)^n} = \frac{k}{(e^k)^{n\ln(10)}}$$

D'après les propriétés sur les limites des fonctions exponentielles, cette expression tend vers 0 en $+\infty$.

On peut en conjecturer que la limite de $\frac{\ln(x)}{x^n}$ est 0 en $+\infty$.

Pour la seconde limite, on va prendre $x = 10^{-k}$ avec k entier naturel qui tend vers $+\infty$ et on en conjecturera la limite attendue.

$$x^{n}\ln(x) = (10^{-k})^{n}\ln(10^{-k}) = \frac{k}{(e^{n\ln(10)})^{k}}$$

D'après les propriétés sur les limites des fonctions exponentielles, cette expression tend vers 0 en 0.

On peut en conjecturer que la limite de $x^n \ln(x)$ est 0 en 0.