COLLEGE OF ENGINEERING

Purpose of Techno-Economic Model

- To assess the state of PEM electrolysis as a H₂ production method
- To find bottlenecks to hydrogen costs where research should be concentrated
- To provide performance targets to meet the 2025 and 2030 DOE renewable hydrogen costs of \$2/kg H₂ and \$1/kg H₂

Hydrogen Applications

Water splitting: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Hydrogen forming: $4H^+ + 4e^- \rightarrow 2H_2$

The electrolyzer splits water to produce hydrogen, which can be used in transportation, heating, portable energy, and many other applications.

Challenges

PEM electrolysis is a promising zero-carbon H₂ production method, but there are many challenges:

- 1. The OER is sluggish and requires a highperformance catalyst for low feedstock costs
- 2. Most catalysts do not function or degrade rapidly in the acidic electrolyte
- 3. Current OER catalysts contain precious metal elements (Iridium, Ruthenium), which are expensive and low in supply

High-performance, economic, corrosion-resistant catalysts are required.

Questions: What catalysts for PEM electrolyzers are most economically and environmentally feasible for commercial use?

Methods: Modeling & review of hydrogen production costs with an emphasis on catalyst-related parameters

Chemical, Biological, and Environmental Engineering

A Techno-Economic Comparison of OER Catalysts for PEM Electrolysis

William Guo¹, Zhenxing Feng^{2*}

- . Lincoln High School, Portland, OR, williamguo6@gmail.com
- 2. School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR zhenxing.feng@oregonstate.edu

Techno Economic Model

Parameter	Value Used	
Operating Capacity	97%	
Nafion Membrane Cost (\$/m²)	0.05	
Balance of Plant (% of Capital+BoP Cost)	60%	
CCM Cost (% of Capital Cost)	40%	
Maintenance Cost (% of Capital Cost)	2.5%	
BoP Electrical Usage (kWh/kg)	5	
Input Water Cost (\$/kL)	1.44	
Production Rate (kg H ₂ /day)	1500	
Installation Factor	15%	
Cell Active Area (cm²)	450	
Cathode Catalyst	Pt	
Electricity Price (\$/kWh)	0.03	0.073

- Conducted review of state-ofthe-art electrolyzers using articles from 2019 to 2021
- Balance-of-plant and catalyst coated membrane costs assumed to be a function of catalyst cost
- Balance-of-plant assumed to consume constant amount of energy per kilogram of hydrogen
- Scenarios for grid (\$0.07/kWh) & renewable (\$0.03/kWh) energy sources were analyzed; grid energy was used unless otherwise specified

H₂ Cost/kg With SrIrO₃

 Lower Ir content → more environmentally sustainable

@ 1A/cm²)

Highest performing catalyst

(~350-370mV overpotential

- Powder loading assumed to be same as IrO₂ (18g/m²)
- Powder Loading Low Loading Greatly reduce capital costs (estimate) with low loading; estimated ~100nm thin films from prior research at OSU Greatly reduce capital costs with low loading; estimated research at OSU

H₂ Cost/kg With RuO₂

H₂ Cost/kg With IrO₂

\$6.00

\$4.00

\$2.00

\$0.00

\$6.11

3.63

Powder Loading

■ Electricity ■ Water ■ Maintenance ■ Capital

\$4.00

0.35

3.63

Low Loading

- Poor catalyst performance (~400-770mV overpotential
 a 1A/cm²)
- Consistently high loading
 ~25g/m² yields high capital
 costs, also environmentally
 unsustainable
- Greatest overpotential increases at high current densities → incompatible with energy surge from renewable sources
- Low overpotential (~330-570mV @ 1A/cm²) → low energy cost
- Higher median cost than RuO₂, but better average & best case scenario
- High catalyst cost (~\$200/g) and loading (~18g/m²); capital cost can be reduced by use of low loading thin films (~40nm used here)

Potential Cost Reductions (\$/kg)

- Achieving both DOE goals is most feasible with SrIrO₃ catalyst
- As loading & non-CCM capital and energy costs decrease, electricity cost plays a
 greater role in total production cost → decrease electricity cost & increase efficiency

Conclusion

- PEM electrolysis with the $SrIrO_3$ catalyst can supersede current commercial electrolyzers for cheaper & more sustainable H_2 production
- The main improvement needed for the SrIrO₂ catalyst is its loading density
- Past \$2/kg, electricity cost will be by far the largest cost factor, and must be decreased to allow PEM electrolysis meet the DOE goal of \$1/kg H₂ within a decade

Acknowledgements *Supervised by Dr. Zhenxing Feng.

Supported by the OSU Feng Research Group.