Linear Models

Exercise 1: Properties of the Sigmoid Function

This exercise regards some mathematical properties of the sigmoid function σ , which make it very suitable for machine learning.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

(a) Show that $\sigma(-x) = 1 - \sigma(x)$.

Answer

Starting from right side is much easier. Add and multiply by 1 in form of e^x/e^x .

$$1 - \sigma(x) = 1 - \frac{1}{1 + e^{-x}} = \frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}} \cdot \frac{e^{x}}{e^{x}} = \frac{1}{1 + e^{x}} = \sigma(-x)$$

(b) Show that the derivative of the sigmoid function is $\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$.

Answer

This is best done by chain rule to the .
$$^{-1}$$
 notation and using the result from a)
$$\frac{\partial \sigma(x)}{\partial x} = \frac{\partial}{\partial x}[(1+e^{-x})^{-1}] = (-1)\cdot(1+e^{-x})^{-2}\cdot e^{-x}\cdot(-1) = \frac{e^{-x}}{1+e^{-x}}\cdot\frac{1}{1+e^{-x}} = \frac{e^x}{e^x}\cdot\frac{e^{-x}}{1+e^{-x}}\cdot\frac{1}{1+e^{-x}} = \sigma(-x)\sigma(x) = (1-\sigma(x))\sigma(x)$$

Exercise 2: Logistic Regression

For the task of binary sentiment classification on movie review texts, we represent each input text by the 6 features $x_1...x_6$ shown for three training examples together with the ground-truth class label (0 =negative, 1 =positive) in the following table.

Feat.	Definition	Example 1	Example 2	Example 3
$\overline{x_1}$	Count of positive lexicon terms	3	1	5
x_2	Count of negative lexicon terms	2	4	2
x_3	1 if "no" in doc, 0 otherwise	1	0	1
x_4	Count of 1st and 2nd pronouns	3	4	4
x_5	1 if "!" in doc, 0 otherwise	1	1	0
x_6	Word count	$\ln(66) = 4.19$	$\ln(72) = 4.77$	$\ln(45) = 3.81$
\overline{c}	Sentiment class	1	0	1

A logistic regression model is given as $y(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$ with

$$\mathbf{w} = [0.21, 1.58, -1.36, -1.17, -0.17, 2.0, 0.14]$$

(a) Calculate the class probabilites $P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w})$ and $P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w})$ for each example and the given weights.

Answer

Example 1:

$$P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$= \sigma([0.21, 1.58, -1.36, -1.17, -0.17, 2.0, 0.14] \cdot [1, 3, 2, 1, 3, 1, 4.19]^T)$$

$$= \sigma(3.1352)$$

$$= 0.9583$$

$$P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$= 1 - 0.9583$$

$$= 0.0417$$

Example 2:

$$P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$= \sigma([0.21, 1.58, -1.36, -1.17, -0.17, 2.0, 0.14] \cdot [1, 1, 4, 0, 4, 1, 4.77]^T)$$

$$= \sigma(-3.0222)$$

$$= 0.0464$$

$$P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$= 1 - 0.0464$$

$$= 0.9436$$

Example 3:

$$P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$= \sigma([0.21, 1.58, -1.36, -1.17, -0.17, 2.0, 0.14] \cdot [1, 5, 2, 1, 4, 0, 3.81]^T)$$

$$= \sigma(4.0734)$$

$$= 0.9833$$

$$P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$= 1 - 0.88$$

$$= 0.0167$$

(b) Compute $\Delta \mathbf{w}$ for one iteration of the BGD algorithm with a learning rate of $\eta = 0.1$.

Answer

Remarks: $y(\mathbf{x})$ were already calculated in (a); the values for $\Delta \mathbf{w}$ are written individually here, but would be summed directly in the BGD algorithm.

Example	$y(\mathbf{x})$	c	$\delta = c - y(\mathbf{x})$	$\mathbf{\Delta w} = \eta \cdot \delta \cdot \mathbf{x}$
1	0.9583	1	0.0417	[0.004, 0.013, 0.008, 0.004, 0.013, 0.004, 0.017]
2	0.0464	0	-0.0464	[-0.005, -0.005, -0.023, -0.0, -0.019, -0.005, -0.022]
3	0.9833	1	0.0167	[0.002, 0.008, 0.003, 0.002, 0.007, 0.0, 0.006]
\sum				[0.001, 0.016, -0.012, 0.006, 0.001, -0.001, 0.001]

(c) Calculate the class probabilites $P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w})$ and $P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w})$ for each example and the updated weights $\mathbf{w} + \Delta \mathbf{w}$. Compare them to your solution in (a); what can you observe?

Answer

$$\mathbf{w} + \Delta \mathbf{w}$$

$$= [0.21, 1.58, -1.36, -1.17, -0.17, 2.0, 0.14] + [0.001, 0.016, -0.012, 0.006, 0.001, -0.001, 0.001] \\ = [0.211, 1.596, -1.372, -1.164, -0.169, 1.999, 0.141]$$

Example 1:

$$P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$= \sigma([0.211, 1.596, -1.372, -1.164, -0.169, 1.999, 0.141] \cdot [1, 3, 2, 1, 3, 1, 4.19]^T)$$

$$= \sigma(3.1724)$$

$$= 0.9598$$

$$P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$= 1 - 0.9583$$

$$= 0.0402$$

Example 2:

$$P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$= \sigma([0.211, 1.596, -1.372, -1.164, -0.169, 1.999, 0.141] \cdot [1, 1, 4, 0, 4, 1, 4.77]^T)$$

$$= \sigma(-3.0574)$$

$$= 0.0449$$

$$P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$= 1 - 0.0464$$

$$= 0.9551$$

Example 3:

$$P(\mathbf{C} = 1 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$= \sigma([0.211, 1.596, -1.372, -1.164, -0.169, 1.999, 0.141] \cdot [1, 5, 2, 1, 4, 0, 3.81]^T)$$

$$= \sigma(4.1442)$$

$$= 0.9844$$

$$P(\mathbf{C} = 0 \mid \mathbf{X} = \mathbf{x}; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$= 1 - 0.88$$

$$= 0.0145$$

Comparison: the gradient descent step adjusted the weights in such the way that each predicted class moves (slightly) closer to the true label.

Exercise 3: Regularization

Suppose we are estimating the regression coefficients in a linear regression model by minimizing the objective function \mathcal{L} .

$$\mathcal{L}(\mathbf{w}) = \mathsf{RSS}_{tr}(\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

The term $\mathsf{RSS}_{tr}(\mathbf{w}) = \sum_{(\mathbf{x}_i, y_i) \in D_{tr}} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$ refers to the residual sum of squares computed on the set D_{tr} that is used for parameter estimation. Assume that we can also compute an RSS_{test} on a separate set D_{test} that we don't use during training.

When we vary the hyperparameter λ , starting from 0 and gradually increase it, what will happen to the following quantities? Explain your answers.

(a) The value of $RSS_{tr}(\mathbf{w})$ will
remain constant.
$\overline{\mathbf{X}}$ steadily increase.
steadily decrease.
increase initially, then eventually start decreasing in an inverted U shape.
decrease initially, then eventually start increasing in a U shape.
Answer The increasing regularization term moves the minimum point of \mathcal{L} to a parameter vector that fits the training data less well as measured by RSS alone. Hence the training residuals will only increase.
(b) The value of $RSS_{test}(\mathbf{w})$ will
remain constant.
steadily increase.
steadily decrease.
increase initially, then eventually start decreasing in an inverted U shape.
\overline{X} decrease initially, then eventually start increasing in a U shape.
Answer

We initially remove the error due to overfitting, which has the potential to improve the fit on unseen data. As $\lambda \to \infty$, the norm of the learned parameters $\|\mathbf{w}\| \to 0$, and the test residuals eventually increase again.