ALGORITMICKÉ RIEŠENIA ŤAŽKÝCH PROBLÉMOV Domáca úloha 4

Autor: Marián Kravec

Úloha 1 - Career advancement

a)

Taktika ktorú použijeme bude nasledovná, ak $a_k \geq 2^k$ tak do množiny S dáme 2^{k-1} zamestnancov, ďalších 2^{k-1} do tejto množiny nedáme, a zvyšných náhodne buď do množiny dáme alebo nie. Takto vo výsledku dobe platiť $|S| \geq 2^{k-1}$ a mimo množiny ostane $a_k - |S| \geq 2^{k-1}$. $(2^{k-1} + 2^{k-1} = 2^k)$

Teraz induktívne ukážeme, že pre hocijaké k táto taktika je vyhrávajúca:

Báza indukcie: ak k=1 tak $a_1 \geq 2^1=2$, čiže pre naše S platí $|S| \geq 2^0=1$ a mimo S ostalo $a_k-|S| \geq 2^0=1$, čiže bez ohľadu na to či povýšenie dostane množina S alebo ostatný, aspoň jeden zamestnanec bude povýšený do predstavenstva firmy, čím vyhrávame hru.

Indukčný predpoklad: hru vyhráme pre každé n < k

Indukčný krok: chceme ukázať, že to platí aj pre k. Vieme, že platí $a_k \geq 2^k$ a podľa našej taktiky bude pre našu S platiť $|S| \geq 2^{k-1}$, a pre zvyšok platí $a_k - |S| \geq 2^{k-1}$, čiže bez ohľadu, či bude povýšená množina S alebo zvyšok povýšených bude aspoň 2^{k-1} zamestnancov do kariérnej tried k-1, čiže bude platiť $a_{k-1} \geq 2^{k-1}$ o čom ale podľa indukčného predpokladu vieme, že v takto stavu hru vyhráme, čiže hru vyhráme aj pre k. \square

Ukázali sme, že táto taktika je víťazná pre všetky hodnoty k.

b)

Keďže pravdepodobnosti, že predstavenstvo firmy vyberie množinu S alebo ostatných je rovnaká, je irelevantné to či daný zamestnanec patrí do množiny S alebo nie, vždy bude pravdepodobnosť povýšenia $\frac{1}{2}$ a pravdepodobnosť výpovede $\frac{1}{2}$.

Na to aby zamestnanec v triede k sa v takomto systéme dostal do predstavenstva muselo by nastať k-krát, že bude povýšený (hocijaká iná postupnosť rozhodnutí by obsahovala aspoň jednu výpoveď čo by znamenalo koniec).

Keďže pravdepodobnosť povýšenia je $\frac{1}{2}$ a jednotlivé rozhodnutia predstavenstva sú náhodné a nezávislé tak pravdepodobnosť, že povýšenie nastane k-krát je $\left(\frac{1}{2}\right)^k$. Čiže pravdepodobnosť, že zamestnanec v triede k sa dostane do predstavenstva je $P(LEVEL=k)=\left(\frac{1}{2}\right)^k=\frac{1}{2^k}$.

\mathbf{c}

Vytvorme si náhodnú premennú X ktorá hovorí koľko zamestnancov sa dostane do predstavenstva.

Teraz vytvorme náhodné premenné Y_k ktoré hovoria koľko zamestnancov k-tej triedy sa dostalo do predstavenstva. Keďže X je počet cez všetky triedy a Y_k pre jednotlivé triedy, vieme vzťah týchto premenných zapísať ako $X = \sum_{k=1}^{\inf} Y_k$.

Teraz si vytvorme náhodné premenné Z_{ki} ktoré hovoria či i-ty zamestnanec k-tej triedy bol povýšený do predstavenstva, čiže ide o binárnu premennú kde vieme, že hodnotu 1 (povýšený do

predstavenstva) nadobudne s pravdepodobnosťou $P(LEVEL=k)=\left(\frac{1}{2}\right)^k$ (keďže je v triede k). Keďže Y_k hovorí o počte zamestnancov v triede k ktorý boli povýšený a Z_{ki} o jednotlivých zamestnancoch v k-tej triede, vieme vzťah týchto premenných zapísať ako $Y_k=\sum_{i=1}^{a_k}Z_{ki}$.

Keďže Z_{ki} je binárna premenná so známou pravdepodobnosťou vieme vypočítať jej strednú hodnotu:

$$E(Z_{ki}) = 1 * P(LEVEL = k) + 0 * (1 - P(LEVEL = k)) = P(LEVEL = k) = \frac{1}{2^k}.$$

Teraz môžeme využiť linearitu strednej hodnoty a fakt, že stredná hodnota Z_{ki} nezávisí od i a vypočítať strednú hodnotu Y_k :

vypočítať strednú hodnotu
$$Y_k$$
:
$$E(Y_k)=E(\sum_{i=1}^{a_k}Z_{ki})=\sum_{i=1}^{a_k}E(Z_{ki})=\sum_{i=1}^{a_k}\frac{1}{2^k}=\frac{a_k}{2^k}$$

Podobne môžeme teraz využiť využiť linearitu strednej hodnoty aby sme vypočítali strednú hodnotu náhodnej premennej X:

notu náhodnej premennej
$$X$$
:
$$E(X) = E(\sum_{k=1}^{\inf} Y_k) = \sum_{k=1}^{\inf} E(Y_k) = \sum_{k=1}^{\inf} \frac{a_k}{2^k}$$

Čiže stredná (očakávaná) hodnota počtu zamestnancov povýšených do predstavenstva je: $E(X) = \sum_{k=1}^{\inf} \frac{a_k}{2^k} \ \Box$