

ASSESSMENT OF SHAPE MEMORY ALLOYS - FROM ATOMS TO ACTUATORS VIA IN SITU NEUTRON DIFFRACTION

Othmane Benafan

Structures and Materials Division
NASA Glenn Research Center
Cleveland, OH 44135

The ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 8-10, 2014 – Newport, Rhode Island

It Takes a **Tennis** ...

S.A. Padula II, R.D. Noebe, A. Garg, D.J. Gaydosh, G.S. Bigelow and T.J. Halsmer

Structures and Materials Division
NASA Glenn Research Center

R. Vaidyanathan and D. E. Nicholson

Advanced Materials Processing and Analysis Center
Materials Science and Engineering Department
University of Central Florida

B. Clausen and D. Brown

Los Alamos Neutron Science Center Los Alamos National Laboratory

K. An and H.D. Skorpenske

Spallation Neutron Source
Oak Ridge National Laboratory

Acknowledgment

- NASA Fundamental Aeronautics Program, Fixed-Wing and Aeronautical Sciences Projects
 - Basic Energy Sciences (DOE)

Motivation and Objectives

- We examine microstructures of:
 - Conventional structural materials by quenching in the high temperature structure and examining at room temperature.
 - This cannot be done for SMA's because of the diffusionless phase transformation (austenite/martensite) cannot be suppressed by quenching

Length Scale in Engineering Materials Where Does Neutron Diffraction Fit?

Applications of Neutron Diffraction

Neutrons at the Experimental Area

Now we have neutrons, what next?

 $|Q| = |\vec{k}_0 - \vec{k}| = \frac{4\pi \sin \theta}{\lambda}$

$$\Delta E = E_0 - E = \hbar \omega = \hbar^2 \frac{\left(k_0^2 - k^2\right)}{2m}$$

- Neutron beam with a known wavevector (k_0) and energy (E_0)
- Detect number of scattered neutrons with a wavevector
 (k) as a function of the scattering function S(Q,ω)

Nomenclature

k: wavevector

E: energy

Q: scattering vector

h: reduced Planck constant

m: mass (1.67 x 10⁻²⁴g)

λ: wavelength

 2θ : scattering angle

Neutron Diffraction Data

Neutron/Synchrotron Sources in the USA

Neutron and Synchrotron Sources Around the World

Oak Ridge National Laboratories-SNS

Spallation Neutron Source at Oak Ridge National Laboratory

The world's most intense pulsed, accelerator-based neutron source

Los Alamos National Laboratory-LANSCE

Isothermal Deformation - Loading Actuators

Binary 55NiTi

Isothermal Deformation - Loading Actuators

Isothermal Deformation - Loading Actuators

Austenite

- Deformation mechanisms revealed- complexity and multiplicity of mechanisms can't be resolved another way
- e.g., reorientation planes/limits, stress- induced-martensite region, martensite desist...

Isothermal Deformation – Where to Load Actuators? Does it Matter?

- No major differences in transformation strains
- Large strain evolution (ratcheting) difference

SMA Properties – Can they be Optimized for Actuators?

1. Material and Geometry[‡]

- Binary 55NiTi $\rightarrow \phi = 5.08$ mm (0.2in)
- Stress free transformation temperatures
 - $A_{s} = 92 \, {}^{\circ}C$
 - $A_f = 105 \, {}^{\circ}C$
 - $M_s = 71 \, {}^{\circ}C$
 - $M_f = 55 \, ^{\circ}C$
- Effective coefficient of thermal expansion
 - $\alpha_A^* = 13.0 \times 10^{-6} / {}^{\circ}C$
 - $\alpha_M^* = 6.4 \times 10^{-6} / {}^{\circ}C$
- Effective elastic moduli
 - $E_A^* = 74 \ GPa$
 - $E_M^* = 50 \ GPa$
- Effective Poisson's ratios
 - $v_A^* = 0.33$
 - $v_M^* = 0.387$

Transformation Temperatures: DSC vs. Strain-Temperature vs. Neutrons

- Transformation temperatures during the reverse transformation measured from strain-temperature and DSC data were found to differ from the actual onset of transformation as revealed from neutron spectra.
- The austenite phase starting to form at \sim 75 °C,

Dynamic Young's Modulus for Ni_{49.9}Ti_{50.1}

- Dynamic Young's modulus data obtained from the impulse excitation of vibration tests.
- The average dynamic modulus of martensite at room temperature was about 70 GPa, but decreased with increasing temperature with an average minimum value of 60 GPa at ~80 °C.

0.2% Offset "Yield" Stress Behavior of Ni_{49.9}Ti_{50.1}

- The onset of inelastic deformation (generally referred to as 'yield') in the martensite phase is dominated by reorientation and detwinning mechanisms.
- Decrease with increasing temperature, reaching an averaged minimum value of 140 MPa between 65 and 80 °C.
- The onset stress then sharply increased in the two-phase region and reached near saturation (with a still slightly positive slope) at 350 MPa near 130 °C.
- Inelastic deformation over this temperature range (~90 130 °C), which includes the B19'→ B2 phase transition, is attributed to the nearly concurrent operation of stress-induced martensite and plastic deformation.

Transformation Temperatures: DSC vs. Strain-Temperature vs. Neutrons

- Transformation temperatures during the reverse transformation measured from strain-temperature and DSC data were found to differ from the actual onset of transformation as revealed from neutron spectra.
- The austenite phase starting to form at \sim 75 °C,

Thermomechanical Cycling of Actuators

Electron diffraction

SMA Properties – Can they be Optimized for Actuators?

1. Material and Geometry[‡]

- Binary 55NiTi $\rightarrow \phi = 5.08$ mm (0.2in)
- Stress free transformation temperatures
 - $A_s = 92 \, ^{\circ}C$
 - $A_f = 105 \, {}^{\circ}C$
 - $M_s = 71 \, {}^{\circ}C$
 - $M_f = 55 \, ^{\circ}C$
- Effective coefficient of thermal expansion
 - $\alpha_A^* = 13.0 \times 10^{-6} / {}^{\circ}C$
 - $\alpha_M^* = 6.4 \times 10^{-6} / {}^{\circ}C$
- Effective elastic moduli
 - $E_A^* = 74 \ GPa$
 - $E_M^* = 50 \ GPa$
- Effective Poisson's ratios
 - $v_A^* = 0.33$
 - $v_M^* = 0.387$

Coefficient of Thermal Expansion: Large Anisotropy

Atomic scale measurements of thermal strains

Outcome

- First report on NiTi CTE tensor (monoclinic martensite) including negative expansion in certain crystal orientations
- Parametric input for most SMA models

			Heating (10 ⁻⁶ /°C)	Cooling (10 ⁻⁶ /°C)			
<i>B19'</i> NiTi	Thermal expansion tensor components	α_{11}	-47.2	-30.8			
		α_{22}	43.8	32.1			
		α_{33}	22.7	27.3			
		α_{31}	29.0	32.4			
	CTE*		6.4	9.5			
	CTE [†]		8.1	10.9			
	CTE (extensometry)		10.3	9.0			
<i>B2</i> NiTi	CTE*		13.0	13.1			
	CTE (extensometry)		12.4	12.3			
*isotropic average †self-consistent model							

Coefficient of Thermal Expansion: Large Anisotropy

• Similar observation in HTSMAs (e.g., NiTiPt – B19)

O. Benafan et al., unpublished work

SMA Properties – Can they be Optimized for Actuators?

1. Material and Geometry[‡]

- Binary 55NiTi $\rightarrow \phi = 5.08$ mm (0.2in)
- Stress free transformation temperatures
 - $A_s = 92 \, ^{\circ}C$
 - $A_f = 105 \, {}^{\circ}C$
 - $M_s = 71 \, {}^{\circ}C$
 - $M_f = 55 \, {}^{\circ}C$
- Effective coefficient of thermal expansion
 - $\alpha_A^* = 13.0 \times 10^{-6} / {}^{\circ}C$
 - $\alpha_M^* = 6.4 \times 10^{-6} / {}^{\circ}C$
- Effective elastic moduli
 - $E_A^* = 74 \ GPa$
 - $E_M^* = 50 \ GPa$
- Effective Poisson's ratios
 - $v_A^* = 0.33$
 - $v_M^* = 0.387$

Elastic Moduli: Hard and Soft Orientations

• Strain anisotropy and texture measurements

Outcome

- First validation of *ab initio* calculation
- Entire compliance matrix, not just a Young's modulus
- Revealed mechanisms responsible for deflated modulus values obtained from conventional macroscopic tests

hkl	Single crystal	Model	Neutron diffraction		
	$E_{\it hkl}^{\it crystal}$	$E_{\it hkl}^{\it model}$	$E_{\it hkl}^{\it neutron}$	# of points	R
100	128.2	129.8	132.2	6	0.997
012	136.0	146.7	145.4	6	0.978
102	157.3	152.8	167.1	6	0.999
-120	33.8	106.0	101.4	6	0.997
121	84.2	116.3	104.6	6	0.996
-112	177.6	147.6	165.1	6	0.999
-122	120.2	143.7	110.5	5	0.991
-111	85.9	130.2	104.7	5	0.999
011	175.9	155.7	117.1	6	0.995
-121	53.4	122.0	93.3	5	1.000
-110	41.0	105.1	78.2	6	0.997

[1] S. Qiu et al., Acta Mat., 2010 www.nasa.gov

Elastic Moduli: Hard and Soft Orientations

NiTiPt

Elastic Moduli: Hard and Soft Orientations

NiTiPt

 $E_{011} = 257.8 \text{ GPa}$ $E_{002} = 138.7 \text{ GPa}$ $E_{111} = 99.2 \text{ GPa}$ $E_{120} = 55.1$ GPa E_{102} =138.3 GPa $E_{121} = 75.3$ GPa $E_{030} = 173.0 \text{ GPa}$ E_{013} =132.3 GPa E_{122} =88.3 GPa E_{032} =218.6 GPa

R = 0.985R = 0.994R = 0.997R = 0.988R = 0.993R = 0.995R = 0.998R = 0.988R = 0.996R = 0.886

Optimization of Two-Way Shape Memory Effect

 Uniaxial deformation at room temperature followed by free recovery

Outcome

- Established a quick and efficient method for creating a strong and stable TWSME
- Texture maps were used to determine deformation modes – correlated with TWSME stability and magnitude (not possible another way)

Shape Setting of SMA Actuators

• In situ neutron diffraction during shape setting of bulk polycrystalline NiTi

• Neutrons revealed mechanisms responsible for the stress generation and relaxation during shape setting.

www.nasa.gov

Torsional Characteristics of 55NiTi

Torsional Characteristics of 55NiTi

Extension of Neutrons to Novel High Temperature SMAs

Microstructural evolution during isothermal and isobaric deformation of NiTiHf

- Texture measurements were correlated to the lack of evolution in this alloy
- Confirmed relationship of microstructure and load-biased tests: From Neutron spectra
- Neutrons showed why training of Hf alloy is not necessary

Extension of Neutrons to Novel High Temperature SMAs

• The role of retained martensite during thermal-mechanical cycling in NiTiPd high temperature shape memory alloy was revealed

- Direct correlations were made between macroscopic changes in actuator performance parameters, and atomic-scale evolution from neutron spectra
- The rate of evolution of texture and volume fraction of the retained martensite plays a key role in the stability of the actuator

www.nasa.gov 34

(c)

NiTiPd

NASA

Neutrons can be used to study most

actuator forms

Thank You