

Part 10
Internetworking and
Network Layer Concepts

Internetworking Terms (1)

- internet : collection of networks interconnected by router and/or bridges
- The Internet note upper case I
 - The global collection of thousands of individual machines and networks
- Intranet
 - Corporate internet operating within the organization
 - Uses Internet (TCP/IP and http) technology to deliver documents and resources

Internetworking Terms(2)

- End System (ES)
 - Device attached to one of the networks of an internet
 - Supports end-user applications or services
 - ES sometimes called DTE
- Intermediate System (IS)
 - Device used to connect two networks
 - Permits communication between end systems attached to different networks
 - Examples: Routers and Bridges

Internetworking Terms (3)

Bridge

- IS used to connect two LANs using similar LAN protocols
- Address filter passing on packets to the required network only
- OSI layer 2 (Data Link)

Router

- Connects two (possibly dissimilar) networks
- Uses internet protocol present in each router and end system
- OSI Layer 3 (Network)

Network layer services

- The goals of the network layer services are:
 - Provide services to the transport layer that are independent of the subnet technology in use
 - Shield the transport layer from the vagaries of the underlying network
 - Provide uniform addresses to the transport layer
- To meet these goals, the primary function of the network layer is routing

Network service Approaches

- Connection oriented
- Connectionless

Connection Oriented

- A connection is established between ES's that is used for duration of call
 - Call setup
 - Data transfer
 - Call termination
- E.g: Virtual circuits at this layer
- IS's connect two or more networks
 - IS appear as ES to each network
 - Logical connection set up between ESs
 - Concatenation of logical connections across networks
 - Individual network virtual circuits joined by IS

Connectionless service

- Each packet sent independently
- Routing decisions made at every IS
- Corresponds to datagram service in packet switched network
- Network layer protocol common to all ES's and routers
 - Known generically as the internet protocol
- Internet Protocol
 - One such internet protocol developed for ARPANET

Connectionless service

- Advantages
 - Flexibility
 - Robust
 - No unnecessary overhead
- Unreliable
 - Not guaranteed delivery
 - Not guaranteed order of delivery
 - Packets can take different routes
 - Reliability is responsibility of next layer up (e.g. TCP)

Routing

- Determine path or route that packets will follow
- Use routing protocol based on a routing algorithm
- "Good" path should be least cost path
- Cost
 - Average queuing delay
 - Propagation delay
 - Bandwidth, mean queue length, etc.
- End systems and routers maintain routing tables
- Dynamic or static Part 10 - Internetworking and Network Layer Concepts

tracert: Program to display the path a packet traverse

```
_ | 🗆 | ×
 MS-DOS Prompt
       26 ms
                                   und.int.uni.net.za [155.232.50.250]
                 26 ms
                           25 ms
                           27 ms
                                   196.25.134.65
       48 ms
                 25 ms
                          25 ms ctb-int-fe-0-0-0.saix.net [196.43.9.4]
       26 ms
                 30 ms
                608 ms
                          628 ms
                                   london-core-s-8-1-0.saix.net [196.25.0.82]
      603 ms
                         500 ms ny-core-s-8-1-1.saix.net [196.25.0.14]
      511 ms
                503 ms
                                   bar7-serial5-1-0-0.NewYork.cw.net [166.63.157.15
      499 ms
                486 ms
                          493 ms
3]0
      459 ms
                                   agr2-loopback.NewYork.cw.net [206.24.194.102]
                465 ms
                          486 ms
 11
      518 ms
               535 ms
                          534 ms
                                   dcr1-so-7-1-0.NewYork.cw.net [206.24.207.69]
 12
                                   agr3-so-4-0-0.NewYork.cw.net [206.24.207.74]
               522 ms
                         526 ms
      541 ms
 13
                                   acr1-loopback.Washington.cw.net [206.24.226.61]
      609 ms
                591 ms
                          601 ms
 14
      495 ms
                498 ms
                          474 ms
                                   pos4-0.per1.iad1.us.mfnx.net [216.200.254.145]
                                  pos10-0.mpr1.iad1.us.mfnx.net [209.249.203.34]
                         506 ms
      469 ms
               471 ms
                                   so-6-1-0.mpr4.sjc2.us.mfnx.net [216.200.127.26]
 16
      589 ms
                567 ms
                          558 ms
 17
      558 ms
                566 ms
                          584 ms
                                   so-1-0-0.cr2.sjc3.us.mfnx.net [208.184.233.50]
                                  pos1-0.er2a.sjc3.us.mfnx.net [208.185.175.198]
sjni1-gige-1-1.google.com [64.124.78.29]
sjbi1-1-1.net.google.com [216.239.47.162]
 18
      568 ms
                566 ms
                          553 ms
 19
      530 ms
                524 ms
                          570 ms
 20
      558 ms
                          563 ms
                604 ms
                                   www.google.com [216.239.35.101]
      585 ms
                591 ms
                          593 ms
Trace complete.
```

🔏 AnalogX HyperTrace (www.analogx.com) 🥛

_ 🗆 ×

-Status -

Traceroute completed 15 hops / 45ms TTL...

Abort

Нор	IP Address	Response	Machine Name	Loss	
1	146.230.240.1	1ms	None		
2	146.230.128.57	3ms	Sunbird.und.ac.za		
3		Timeout	n/a		
4	155.232.50.250	24ms	und.int.uni.net.za		
5	196.25.134.65	26ms	None		
6	196.43.9.4	33ms	ctb-int-fe-0-0-0.saix.net		
7	196.25.0.82	464ms	london-core-s-8-1-0.saix.net		
8	196.25.0.14	479ms	ny-core-s-8-1-1.saix.net		
9	64.86.90.133	482ms	if-1-1-0.bb5.NewYork.Teleglobe.net		
10	207.45.221.66	492ms	if-3-0.core2.NewYork.teleglobe.net		
11	207.45.223.2	491ms	if-9-0.core1.Ashburn.Teleglobe.net		
12	216.239.48.142	499ms	core1-1-4.iad.net.google.com		
13	216.239.47.126	490ms	abni1-1-1.net.google.com		
14	216.239.47.102	707ms	abbi1-1-1.net.google.com		
15	216.239.51.100	625ms	www.google.com		

About www.google.de

Routing Algorithms

- Two general algorithms
 - Distance-vector
 - Link-state
- Goal of both is
 - to route a packet from one point of a network to another point through intermediate routers without "looping"
- Primary difference between the two algorithm → manner in which they collect and propagate routing information

Routing Algorithms: Distance vector routing

- Maintain table giving best known distance to each destination and line to use.
- Best known distance can be:
 - Hops
 - Delay in ms
 - Total packets queue along path
- Regularly update tables to reflect cost changes
- Problems:
 - Converges to correct answer slowly
 - Reacts fast to good news but slow to bad news count-to-infinity problem
- Example of algorithm: Bellman-Ford Algorithm
 Part 10 - Internetworking and Network Layer Concepts

Distance vector routing Routing Information Protocol (1)

- Used in many routing protocols in practice
 - TCP/IP suites (most of them)
 - Novell IPX
 - Used in the earliest Internet routing protocols
- hop count as cost metric
 - 1 hop per link, Max cost of path limited to
 15
 - Thus can only be used within systems that are 15 hops away

Part 10 - Internetworking and Network Layer Concepts .

15

Distance vector routing Routing Information Protocol (2)

- Routing tables update messages are broadcast every 30 seconds using RIP messages.
- Routers update routing tables accordingly
- The routed process in UNIX is RIP
 - Try netstat -rn at a host in UNIX
 - Try netstat in Windows
- Enhanced versions take several cost metrics into account (delay,bandwidth, load,reliability, etc.)
 - EIGRP from CISCO.
- 15 hop limit makes RIP unsuitable for large networks Part 10 Internetworking and Network Layer Concepts

Routing Algorithm: Link State Routing

 Global routing algorithm – aware of cost of each link in network

Each router does the following:

- Discover neighbours and learn their IP addresses
- Measure delay or cost to each neighbour
- Construct packet with all info learnt
- Send packet to all routers
- Compute shortest path to every other router
 - Use Dijkstra's Algorithm (RFC 1583)

Link State Routing Open Shortest Path First (1)

- Problem with RIP line bandwidth not taken into account when choosing routes
 - A 28kbps line Vs 10Mbps line quite different
- OSPF is a link state routing algorithm
 - Uses flooding to spread state info
- Advantages of OSPF
 - Does not have the count-to-infinity problem
 - Cost metric not limited to 16
 - Metric can be as large as 65535
 - Can use a variety of metrics
 - Causes less network traffic, updates every 30 minutes

Link State Routing Open Shortest Path First (2)

- Features of OSPF
 - Security
 - Multiple same-cost paths
 - Support for unicast and multicast
 - Different cost metrics for different TOS traffic
 - Support for hierarchy within a domain
- Now used widely including on the Internet

Distance-Vector/ Link-State Algorithm: Difference

- distance vector
 - each node talks only to its directly connected neighbors
 - neighbor tells them everything it has learned (i.e., distance to all nodes)
- link state
 - each node talks to all other nodes
 - each node tells only what it knows for sure (i.e., only the state of its directly connected links)

Internetworking Protocols

Internet Protocol (IP)

- Functions of IP include:
 - Routing
 - Fragmentation and reassembly
 - Error control and flow control
 - Support transparent internetworking

Routing

- End systems and routers maintain routing tables
 - Indicate next router to which datagram should be sent
 - Static
 - May contain alternative routes
 - Dynamic
 - Flexible response to congestion and errors
- Source routing
 - Source specifies route as sequential list of routers to be followed
 - Security
 - Priority
- Route recording

Fragmentation and Re-assembly (1)

- Different packet sizes
 - Dictated by maximum transmission unit (MTU) of local LAN's
 - Various along route: eg. 1500, 8174,etc.
 - Limited buffers etc.

Fragmentation and Re-assembly (2)

- When to re-assemble
 - At destination
 - Results in packets getting smaller as data traverses internet

Fragmentation and Re-assembly (3)

- When to re-assemble
 - Intermediate re-assembly
 - Need large buffers at routers
 - Buffers may fill with fragments
 - All fragments must go through same router
 - Inhibits dynamic routing

Part 10 - Internetworking and Network Layer Concepts

26

IP Fragmentation (1)

- IP re-assembles at destination only
- Uses fields in header
 - Data Unit Identifier (ID)
 - Identifies end system originated datagram
 - Source and destination address
 - Protocol layer generating data (e.g. TCP)
 - Identification supplied by that layer
 - Data length
 - Length of user data in octets

IP Fragmentation (2)

- Offset
 - Position of fragment of user data in original datagram
 - In multiples of 64 bits (8 octets)
- More flag
 - Indicates that this is not the last fragment
- D Flag: Do not fragment packet under any circumstances

Fragmentation Example

- Need to send 300 bytes of data
 - D Flag not set
 - Maximum packet size is 128 bytes
 - Assume IP header in each IP datagram 20 bytes
- Fragmentation
 - All packet fragments except the last must have a length divisible by 8
 - Result of fragmentation

<u>Fragment</u>	<u>Length</u>	(total)	<u>offset</u>	MF ID
1	124	0	1	2354
2	124	13	1	2354
3	112	26	0	2354

Dealing with Failure

- Re-assembly may fail if some fragments get lost
- Need to detect failure
- Re-assembly time out
 - Assigned to first fragment to arrive
 - If timeout expires before all fragments arrive, discard partial data
- Use packet lifetime (time to live in IP)
 - If time to live runs out, kill partial data

Error Control

- Not guaranteed delivery
- Router should attempt to inform source if packet discarded
 - For time to live expiring
 - Congestion
 - FCS error notification may not possible
- Source may modify transmission strategy
- May inform high layer protocol
- Datagram identification needed
- (See ICMP later)

Flow Control

- Allows routers and/or stations to limit rate of incoming data
- Limited in connectionless systems
- Send flow control packets
 - Requesting reduced flow
- ICMP can be used

IP Protocol

Version

Header Fields (1)

- Currently 4
- IP v6 see later
- Internet header length
 - In 32 bit words
 - Including options
 - Minimum is 20 octets
- Type of service
 - Specify treatment of data unit during transmission through networks
- Total length
 - Of datagram, in octets=header length + user data

- cePrecedence
 - 8 levels
- Delay
 - Normal or low
- Throughput
 - Normal or high
- Reliability
 - Normal or high
- unused fields

Header field: Type of Service

- Sequence number
- Used with addresses and user protocol to identify datagram uniquely
- Needed for re-assembly and error reporting
- Flags
 - More bit (M)
 - Don't fragment (D)
- Fragmentation offset

Time to live

Time to Live

Header Fields (3)

- Protocol
 - Next higher layer to receive data field at destination
 - Can be TCP or UDP normally
- Header checksum
 - Re-verified and recomputed at each router
 - 16 bit ones complement sum of all 16 bit words in header
 - Set to zero during calculation

Source Address

Destination Address

Option + Padding

- Source address (4)
- Destination address
- Options
- Padding
 - To fill to multiple of 32 bits long

Header field: Options

- Source routing
 - Strict source routing: gives a complete path to be followed
 - Loose source routing: gives a list of routers not to be missed
- Route recording
 - Makes each router appends its IP address
- Timestamp
 - Makes each router appends its IP address and timestamp
- Security
 - Specifies how secret the datagram is
- Stream identification
 - Indicates the trype of water in New data grams

Header field: Data Field

- After options and padding field follows user data
- Carries user data from next layer up
- Integer multiple of 8 bits long (octet)
- Max length of datagram (header plus data) 65,536 octets

IP - In Summary form

- Main attributes of IP are:
 - Connectionless protocols
 - Fragments packets if necessary
 - Addressing via 32-bit internet addresses(see next)
 - 8-bit transport protocol addresses
 - Maximum packet size of 65536 bytes
 - Only header checksum, no data checksum
 - Finite packet lifetime
 - 'Best-effort' delivery no guarantees

IPv4 Addresses

- 32 bit global internet address
- Partitioned into four groups of eight bits (called octets)
- Expressed in decimal form
 - Decimal point separates the octets.
 - Example: 204.163.25.37
- Each octet treated as independent unit
- Addresses are organized into one of 5 classes:
 - A,B,C,D or E
 - Classification determined by the value of the first four bits (bits 0 through 3)

IP Addresses - Class A

- Network part and host part
- Class A
 - Start with binary 0
 - Network part is next 7 bits, host part rest
 - 00000000 and 01111111 (127) reserved
 - Range 1.x.x.x to 126.x.x.x
 - Network mask (netmask)255.0.0.0
 - Allows few networks with many hosts
 - All allocated

IP Addresses - Class B

- Start 10
- Second Octet also included in network address
- Range 128.x.x.x to 191.x.x.x
- Network mask 255.255.0.0
- $^{\bullet}$ 2¹⁴ = 16,384 class B addresses
- All allocated

IP Addresses - Class C

- Start 110
- Range 192.x.x.x to 223.x.x.x
- Network mask 255.255.255.0
- Second and third octet also part of network address
- $2^{21} = 2,097,152$ addresses
- Nearly all allocated
 - See IPv6

IP Addresses - Class D & E

Class D

- Start 1110
- Second, third and fourth octet also part of network address (I.e. no host part)
- Range 224.x.x.x to 239.x.x.x
- $2^{28} = 268, 435, 456$ addresses
- Used for multicasting

Class E

- Start 11110
- Second, third and fourth octets also part of the network address
- For future use

IP Addresses – Summary

IP clas s	Format	Purpose	High order bit(s)	Address range	No. bits Networ k/	Max. hosts	netmask
A	N.H.H.H	Few large organizatio	0	1.x.x.x to 126.x.x.x	hgst 7/24	2 ²⁴ -2	255.0.0.0
В	N.N.H.H	ns Medium- size	10	128.x.x.x to	14 / 16	216-2	255.255.0.0
С	N.N.N.H	organizatio relatively small organizatio	110	191.x.x.x 192.x.x.x to 223.x.x.x	21 / 8	28-2	255.255.255
D	N/A	Multicast groups	1110	224.x.x.x to	Not for com.	N/A	
E	N/A	Experiment al	1111	239.x.x.x 240.x.x.x to 255.x.x.x	N/A	N/A	

47

Subnets and subnet masks (1)

- Host portion of address partitioned into subnet number and host number
- Local routers route within subnetted network
- Subnet mask indicates which bits are subnet number and which are host number
- Each LAN assigned subnet number

Subnets - Example

- 192.228.17.x is a class C address
- Subnet mask = 255.255.255.224
- Reserve 3 bits of fourth byte for subnet ID, up to 7 subnets
- 5 bits left for host ID, up to 30 hosts per subnet
- E.g.: 3 subnets: 001 00000 = 192.228.17.32, 010 00000 = 192.228.17.64, 011 00000 = 192.228.17.96

C

Host 5 on Subnet 1 (192.228.17.32)

27 26 25 24 23 22 21 20 128 64 32 16 8 4 2 1	27 26 25 24 23 22 21 20 128 64 32 16 8 4 2 1	27 26 25 24 23 22 21 20 128 64 32 16 8 4 2 1	27 26 25 24 23 22 21 20 128 64 32 16 8 4 2 1				
N	Host number						
192.	228.	17.	37				
110000000	1 1 1 0 0 1 0 0	000010001	00100101				
Subnet mask							
255.	255.	255.	224				
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	11100000				
N	Subn et ID Host ID						
11000000	1 1 1 0 0 1 0 0	0000100001	00100101				
Subnet number Subnet 1 Host 5							
192	228	17	32				

Subnets and Subnet Masks (2)

- Improves address assignment efficiency
 - An entire class C or class B address is not wasted every time we add a new network
- From distance a complex collection of physical networks can be made to look like a single network
 - Amount of information that routers need to store to deliver datagrams to those networks can be reduced

Routers and IP addressing

- IP address depends on network address
- IP address specifies an interface, or network attachment point, not a computer
- What about a router that is connected to two networks?
- Router has multiple IP addresses one for each interface

Subnet mask: 255.255.255.128 Subnet number: 128.96.34.0

128.96.33.1

Using Subnets

Routing table R1						
Subnet Number	Subnet Mask	Next Hop				
128.96.34.0	255.255.255.1 28	Interface 0				
128.96.34.1 28	255.255.255.1 28	Interface 1				
128.96.33.0	255.255.255.0	R2				

Routing table R2						
Subnet Number	Subnet Mask	Next Hop				
128.96.34.1	255.255.255.1	Interface 0				
128.96.33.0	255.255.255.0	Interface 1				
128.96.34.0	255.255.255.1	R1				

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

H14 128.96.33.14

Datagram forwarding algorithm

```
D = destination IP address
For each forwarding table entry {SubnetNumber,
SubnetMask, NextHop}
   D1 = SubnetMask & D
      if D1 = SubnetNumber
       if NextHop is an interface
        deliver datagram directly to destination
      Else
        Deliver datagram to NextHop {a router}
```


ICMP

- Internet Control Message Protocol (RFC) 792)
- Transfer of (control) messages from routers and hosts to hosts
- Feedback about problems
 - e.g. time to live expired
 - Packet congestion at gateway
 - Inoperative nodes and gateways
 - Routing redirect
 - Echo requests to test connectivity- ping
- Encapsulated in IP datagram (data portion)
 - Not reliable Part 10 Internetworking and Network Layer Concepts

ARP and RARP

- ARP returns the Ethernet address of a host given the IP addresses.
 - Try arp -a
- RARP returns the IP addresses of a host given the Ethernet address.
 - Intended for diskless workstations
 - Need a RARP server
- Only meaningful within a given LAN environment.

IP v6 - Version Number

- IP v 1-3 defined and replaced
- IP v4 current version
- IP v5 streams protocol
- IP v6 replacement for IP v4
 - During development it was called IPng
 - Next Generation

Why Change IP?

- Address space exhaustion
 - Two level addressing (network and host) wastes space though convenient
 - Network addresses used even if not connected to Internet
 - Growth of networks and the Internet
 - Extended use of TCP/IP
 - Single address per host
- Requirements for new types of service

IPv6 RFCs

- 1752 Recommendations for the IP Next Generation Protocol
- 2460 Overall specification
- 2373 addressing structure
- others

PIv6 Enhancements (1)

- Expanded address space
 - 16 bytes = 128 bit
- Improved option mechanism
 - Separate optional headers between IPv6 header and transport layer header
 - Most are not examined by intermediate routes
 - Improved speed and simplified router processing
 - Easier to extend options
- Address auto configuration
 - Dynamic assignment of addresses

IPv6 Enhancements (2)

- Increased addressing flexibility
 - Anycast delivered to one of a set of nodes
 - Improved scalability of multicast addresses
- Support for resource allocation
 - Replaces type of service
 - Labeling of packets to particular traffic flow
 - Allows special handling; priorities up to 8
 - e.g. real time video, real time audio can be flows
 - Can have priorities within a flow (e.g ICMP datagram)
- Enhanced security mechanisms
 - Authentication 1 and memory ption raneintegral part 61

IPv6 Enhancements (3)

- Fragmentation/Reassembly
 - Only done at source and destination, not at intermediate routers
 - Source must perform path discovery to find smallest MTU of intermediate networks, and then use that MTU, enables faster processing
- Checksum done away with
 - Already done at link and transport layers, considered enough
 - Faster processing
- M and F bits now in Fragment extension header

= next header field

Application data

Variable

Extension Headers

- Hop-by-Hop Options
 - Require processing at each router
- Routing
 - Similar to v4 source routing
- Fragment
- Authentication
- Encapsulating security payload
- Destination options
 - For destination node

IP v6 Header

- Version
 - **-** 6
- Traffic Class
 - Classes or priorities of packet
 - Still under development
 - See RFC 2460
- Flow Label
 - Used by hosts requesting special handling

- Payload length
 - Includes all extension headers plus user data
- Next Header
 - Identifies type of header
 - Extension or next layer up
- Hop limit
 - Similar to time-to-live

IPv6 Addresses

Source Address

Source Address

Destination Address

- Destination Address
 - 128 bits long
 - Expressed in hexadecimal form
 - Written as eight 16-bit integers
 - Uses colons as delimiter (2A01:0000:0000:0000:12FB:071C:04DE:689E)
 - Assigned to interface
 - Single interface may have multiple unicast addresses
 - Three types of address

Types of address

- Unicast
 - Single interface
- Anycast
 - Set of interfaces (typically different nodes)
 - Delivered to any one interface
 - the "nearest"
 - E.g. send HTTP GET to any one of the mirror sites containing a document
- Multicast
 - Set of interfaces
 - Delivered to all interfaces identified

Multicasting

- Addresses that refer to group of hosts on one or more networks
- Uses
 - Multimedia "broadcast" –live lecture to many locations
 - Teleconferencing
 - Database software upgrades to a number of sites
 - Data feeds –stock quotes
 - Distributed computing
 - Real time workgroups
 - Interactive gaming, etc

Multicast approaches

- Multiple unicast
 - Sender sets up a unicast connection to each member of the intended recipients
- Explicit multicast support at the network layer – true multicast
 - This mechanism supported on the internet through address indirection

True Multicast

- Determine least cost path to each network that has host in group
 - Gives spanning tree configuration containing networks with group members
- Transmit single packet along spanning tree
- Routers replicate packets at branch points of spanning tree

Requirements for Multicasting (1)

- Router may have to forward more than one copy of packet
- Convention needed to identify multicast addresses
 - IPv4 Class D start 1110
 - IPv6 8 bit prefix, all 1, 4 bit flags field, 4 bit scope field, 112 bit group identifier
- Nodes must translate between IP multicast addresses and list of networks containing group members
- Router must translate between IP multicast address and network multicast address

Requirements for Multicasting (2)

- Mechanism required for hosts to join and leave multicast group
- Routers must exchange info
 - Which networks include members of given group
 - Sufficient info to work out shortest path to each network
 - Routing algorithm to work out shortest path
 - Multicast routing algorithms (MDVRP, MOSPF)
 - Routers must determine routing paths based on source and destination addresses

- Internet Group Management Protocol
- RFC 1112
- Host and router exchange of multicast group info
- Use broadcast LAN to transfer info among multiple hosts and routers

IGMP Format

IGMP Fields

- Version
 - **-** 1
- Type
 - 1 query sent by router

Version

Type

- O report sent by host
- Checksum
- Group address
 - Zero in request message
 - Valid group address in report message

Checksum

Unused

IGMP Operation

- To join a group, hosts sends report message
 - Group address of group to join
 - In IP datagram to same multicast destination address
 - All hosts in group receive message
 - Routers listen to all multicast addresses to hear all reports
- Routers periodically issue request message
 - Sent to all-hosts multicast address
 - Host that want to stay in groups must read allhosts messages and respond with report for each group it is in

Group Membership in IPv6

- Function of IGMP included in ICMP v6
- New group membership termination message to allow host to leave group