

Special Lecture

The ML Pipeline/Concept Map

DATA

- Structured (NUM, CAT, ATTR)
- Digital Logs (Tweets, SMS)
- RawData/ Sensors (IMG/Speech)
- Others
 User Behavior, etc.

FEATURES

- Intuitive User defined
- Raw data itself
- Statistics (Histograms, PCA)
- Signal
 Processing
 (Fourier
 Xform)

FEATURE XFORMATIONS

- •Feature Selection
- •Feature Extraction
- •Dimensionality Reduction Eg. PCA

ML PROBLEM

- 1. Classification
 - a. Binary
 - b. Multiclass
- 2. Regression
- 3. Clustering
- 4. Prediction (time series)

ALGORITHMS

- 1. KNN
- Naïve Bayes
- 3. Perceptron
- 4. Linear
- 5. Decision Tree

PERFORM. METRICS

- Accuracy
- Confusion Matrix
- Precision
- Recall
- AP
- True
 Positive,
 etc.

Different types of data representation

Raw data

3072 X 1 Vector

Feature Vector
32 X 32 X 3 = 3072 Dimension
Per Image (d=3072)

CONCERNS:

- Too big?
- May be redundancy?

Hand Crafting Features

9 X I FEATURE VECTOR PER IMAGE MIN RED

MAX RED

MEAN RED

MIN GREEN

MAX GREEN

MEAN GREEN

MIN BLUE

MAX BLUE

MEAN BLUE

Concerns:

- Too naïve to capture the visual content?
- Too small to represent information?

Deep Learning Features

Deep Learning = End to End Learning (Raw data to labels)

Deep Learning = Feature Learning!!

R a W I m a

Initial Stages of the Deep Neural Networks
Many linear and nonlinear operations

An intermediate representation from a popular "DeepNet", which was designed and trained for solving a "general" 1000 class classification.

Final Stages Classifier

Classifier

1000 Labels For a 1000 class classification

Training and Testing

— Creating and Evaluating Models ——

The ML Pipeline/Concept Map

DATA

- Structured (NUM, CAT, ATTR)
- Digital Logs (Tweets, SMS)
- RawData/ Sensors (IMG/Speech)
- Others
 User Behavior, etc.

FEATURES

- Intuitive User defined
- Raw data itself
- Statistics (Histograms, PCA)
- Signal Processing (Fourier Xform)

FEATURE XFORMATIONS

- •Feature Selection
- •Feature Extraction
- •Dimensionality Reduction Eg. PCA

ML PROBLEM

- 1. Classification
 - a. Binary
 - b. Multiclass
- 2. Regression
- 3. Clustering
- 4. Prediction (time series)

ALGORITHMS

- 1. KNN
- Naïve Bayes
- 3. Perceptron
- 4. Linear
- 5. Decision Tree

PERFORM. METRICS

- Accuracy
- Confusion Matrix
- Precision
- Recall
- AP
- True Positive, etc.

Training and testing

Data acquisition

Practical Usage

Training Set (Observed)

Testing Set (Unobserved)

Training and testing

- Training is the process of making the system able to learn
- Assumptions:
 - Training set and testing set come from the same distribution
 - Need to make some assumptions or bias

Performance Evaluation Metrics

Accuracy, Precision, Recall

The ML Pipeline/Concept Map

DATA

- Structured (NUM, CAT, ATTR)
- Digital Logs (Tweets, SMS)
- RawData/ Sensors (IMG/Speech)
- Others
 User Behavior, etc.

FEATURES

- Intuitive User defined
- Raw data itself
- Statistics (Histograms, PCA)
- Signal Processing (Fourier Xform)

FEATURE XFORMATIONS

- •Feature Selection
- •Feature Extraction
- •Dimensionality Reduction Eg. PCA

ML PROBLEM

- 1. Classification
- a. Binary
- b. Multiclass
- 2. Regression
- 3. Clustering
- 4. Prediction (time series)

ALGORITHMS

- 1. KNN
- Naïve Bayes
- 3. Perceptron
- 4. Linear
- 5. Decision Tree

PERFORM. METRICS

- Accuracy
- Confusion Matrix
- Precision
- Recall
- AP
- True
 Positive,
 etc.

Accuracy

- Simple, Intuitive performance measure
 - The ratio of correctly predicted observations to the total number of observations
 - O Number of Correctly Classified Test Samples
 Total Number of Test Samples

$$\circ$$
 Accuracy = $\frac{160}{200}$ = 0.8 (80%)

Does not consider class labels

Confusion Matrix

A Specific Case (Binary)

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

$$Misclassification = \frac{(10+5)}{165} = 0.09$$

$$TruePositiveRate(TP) = \frac{(100)}{105} = 0.95$$

$$FalsePositiveRate(FP) = \frac{(10)}{60} = 0.17$$

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

A Specific Case (Binary)...

$TrueNegativeRate(TN) = \frac{(50)}{60} = 0.833$	n=165	Predicted: NO	Predicted: YES	
60	Actual: NO	TN = 50	FP = 1 0	60
$FalseNegativeRate(FN) = \frac{(5)}{105} = 0.048$	Actual: YES	FN = 5	TP = 100	105
100		55	110	

A Specific Case (Binary)

- When you do cancer screening what do you care?
 - High TP
- When you classify between "apple" and "orange"
 - High Accuracy or High TP or High TN
- Automatic Firing on detecting a violation.
 - Very low FP

Clustering

— Unsupervised Machine Learning ——

The ML Pipeline/Concept Map

DATA

- Structured (NUM, CAT, ATTR)
- Digital Logs (Tweets, SMS)
- RawData/ Sensors (IMG/Speech)
- Others
 User Behavior, etc.

FEATURES

- Intuitive User defined
- Raw data itself
- Statistics (Histograms, PCA)
- Signal Processing (Fourier Xform)

FEATURE XFORMATIONS

- •Feature Selection
- •Feature Extraction
- •Dimensionality Reduction Eg. PCA

ML PROBLEM

- 1. Classification
 - a. Binary
 - b. Multiclass
- 2. Regression
- 3. Clustering
- 4. Prediction (time series)

ALGORITHMS

- 1. KNN
- Naïve Bayes
- 3. Perceptron
- 4. Linear
- 5. Decision Tree

PERFORM. METRICS

- Accuracy
- Confusion Matrix
- Precision
- Recall
- AP
- True
 Positive,
 etc.

K-Means

- You are given N points
- How do we find k clusters?
 - What if we know the cluster centers?
- How do we find the cluster centers?
 - What if we know the k clusters?

K-Means

- 1. Input: k (number of clusters)
- 2. Randomly select k centers
 - 3. Distribute Points
 - 4. Update Centers
 - 5. Repeat 3,4 till convergence
- 6. Output: Cluster centers

K-Means

Hierarchical Clustering

- Data in the world is not flat
 - Animals, Trees, Birds, Fish, Rocks
 - Types of Animals, Species, Subspecies, Types of rocks,...
- Can we recover the hierarchical structure from clustering
 - Agglomerative vs. Divisive
 - Bottom-up vs. Top-down

User's Dilemma!

- Which similarity measure and which features to use?
- How many clusters?
- Which is the "best" clustering method?
- Are the individual clusters and the partition valid?
- How to choose algorithmic parameters?

Data Clustering: Jain and Dubes.

Sequence Prediction/ Time Series

The ML Pipeline/Concept Map

DATA

- Structured (NUM, CAT, ATTR)
- Digital Logs (Tweets, SMS)
- RawData/ Sensors (IMG/Speech)
- Others
 User Behavior, etc.

FEATURES

- Intuitive User defined
- Raw data itself
- Statistics (Histograms, PCA)
- Signal Processing (Fourier Xform)

FEATURE XFORMATIONS

- •Feature Selection
- •Feature Extraction
- Dimensionality Reduction Eg. PCA

ML PROBLEM

- 1. Classification
- a. Binary
- b. Multiclass
- 2. Regression
- 3. Clustering
- 4. Prediction (time series)

ALGORITHMS

- 1. KNN
- Naïve Bayes
- 3. Perceptron
- 4. Linear
- 5. Decision Tree

PERFORM. METRICS

- Accuracy
- Confusion Matrix
- Precision
- Recall
- AP
- TruePositive,etc.

Definition of Time series

Any feature that contains data ordered by time, is said to be Time series feature.

Converting time series to supervised form

The key idea is to be able to convert the time series into supervised data.

Day of week	Accidents at time T
1	10
2	11
3	12
4	13
5	14
6	15
7	16

Converting time series to supervised form

Notice how the entire data in yellow is switched one step upwards to create the T+1(red) column

Day of week	Accidents at time T	Accidents at time T+1
1	10	11
2	11	12
3	12	13
4	13	14
5	14	15
6	15	16
7	16	NaN

Number of time steps to choose

The number of time steps can be increased further based on the 'memory' that we intend to preserve.

Day of week	Accidents at time T	Accidents at time T+1 Accidents at time T+2		
1	10	11	12	
2	11	12	13	
3	12	13	14	
4	13	14	15	
5	14	15	16	
6	15	16	NaN	
7	16	NaN	NaN	

Univariate and Multivariate

 The examples above show how a single variable varies with time. It is possible however to have a multiple variables that vary together to be modeled as supervised learning problem.

Day of week	Rainfall at time T	Accidents at time T	Rainfall at time T+1	Accidents at time T+1
1	200	10	201	. 11
2	201	11	202	12
3	202	12	203	13
4	203	13	204	14
5	204	14	205	15
6	205	15	206	16
7	206	16		

Using the series-to-supervised form

 We can further use this new supervised representation of series data, for building models such as Linear regression, Recurrent neural networks (RNN) etc.

Linear Regression

The ML Pipeline/Concept Map

DATA

- Structured (NUM, CAT, ATTR)
- Digital Logs (Tweets, SMS)
- RawData/ Sensors (IMG/Speech)
- Others
 User Behavior, etc.

FEATURES

- Intuitive User defined
- Raw data itself
- Statistics (Histograms, PCA)
- Signal Processing (Fourier Xform)

FEATURE XFORMATIONS

- •Feature Selection
- •Feature Extraction
- Dimensionality Reduction Eg. PCA

ML PROBLEM

- 1. Classification
- a. Binary
- b. Multiclass
- 2. Regression
- 3. Clustering
- 4. Prediction (time series)

ALGORITHMS

- 1. KNN
- Naïve Bayes
- 3. Perceptron
- 4. Linear
- 5. Decision Tree

PERFORM. METRICS

- Accuracy
- Confusion Matrix
- Precision
- Recall
- AP
- TruePositive,etc.

The Machine Learning Framework

Training: given a training set, estimate the prediction function **f** by minimizing the prediction error

Testing: apply **f** to unknown test sample **x** and predicted value(output) is **y**

Find a function to fit the data

- Discover hidden structure in the data, given the samples Why?
- A functional form is usable for interpolation and extrapolation y = f(x)

Find a function to fit the data

- Functional forms:
 Linear, Polynomial,
 Gaussian, etc
- Such problems are called regression in general

$$y = f(x)$$

Linear Model

- Linear when f is a line
- In general, a hyperplane
 - $\circ y = ax + b$
 - $\blacksquare a, b$: parameters of the model
 - $y = w^T x = w.x$ when multivariate
 - $\mathbf{x} = [1 \ x_1 \ x_2 \ ... \ x_d]^T$
 - w:parameters of model

Linear Model

 Line: Only 2 parameters in 2D. d parameters in a d-dimensional space

$$y = f_w(x) = w^T x$$

Thanks!!

Questions?