

Seat Number	

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

Computer Engineering Department

Final Examination, First Semester 2017

November 30, 2017

13:00-16:00

CPE 100 Computer Programming for Engineers.

Environmental Engineering Students(Inter.)

Km 20/12/2017.

Instructions

- 1. This is a closed book exam.
- 2. There are totally 2 parts in 9 pages with totally 50 points.
- 3. The answers must be written in the space and blank space provided.
- 4. Any electronic device is <u>not</u> allowed.
- 5. Please read every question carefully before answer it.
- 6. Please write your name and your student number on every page.

Asst. Prof. Sanan Srakaew

This examination has been approved by the Department of computer engineering.

Assoc. Prof. Dr. Natasha Dejdumrong

Program Chairperson

Name	Student ID.	 Seat Number	

. Name	Student ID Seat Number
<u>Part</u>	1 Please fill in the blank in each question below. (25 points)
	(1.1-1.9 1 point each)
1.1)	The smallest data item a computer can process is called a(n)
1.2)	A program module in C is called
1.3)	A variable that is known only within the function in which it's defined is called
1.4)	Lists and tables of values are stored in variables.
1.4/	LISTS AND TABLES OF VALUES ARE STORED IN
1.5)	In order to use their own functions, the programmer must, and the
	functions.
1.6)	The function reads data from a file in a manner similar to how scanf
	reads from <i>stdin</i> .
1.7)	A(n) is a group of related records.
1.8)	are one-dimensional arrays of characters.
1.9)	is a special function designed specifically to read in a string(including space)
	from the keyboard.
True	e or False (1.10-1.14 1 point each)
1.10)	An array can store many different types of values.
1.11)	All arguments to function calls in C are passed by value.
1.12)	The default case is required in the switch selection statement.
1.13)	The expression $(x > y \&\& a < b)$ is true if either $x > y$ is true or $a < b$ is true.
1.14)	is a special function designed specifically to read in a string(including space)
	from the keyboard.

Name	Studen	t ID Seat Number
Short	answers	(1.15-1.18 1 point each
Show	the value(s) of x after each of the following sta	tements
1.15)	x = floor(7.5);	·
1.16)	x = ceil(-6.4);	
1.17)	x = 2 + (rand() % 9);	
1.18)	Consider part of the program	
	int table[3][3] = { { 1, 8, -2 }, { 2, 4, 6 }, { 5,	7, -1 } };
	for(i=0;i<3;i++)	
	for(j=0;j<3;j++)	
	printf("%d\t",table[j][i]); /* and j are pre	viously declared */
	Write the output of the program:	
1.19)	Consider the following function	(2 points)
	long foo(long n)	
	£	
	if (n == 0 n == 1) {	
	return n;	
	}	
	else {	
	return foo(n - 1) + foo(n - 2)	,
	} /* end else */	
	}	
	Write the output of this execution:	
	printf("%d\n", foo(5));	

iame			Student ID	Seat Numbe
.20)	Consider the 1	following program		(5 points
	#include <std< td=""><td>lio.h></td><td></td><td></td></std<>	lio.h>		
	void a (void)	; /* function prototy	ype */	
	void b (void)); /* function protot	ype */	
	int $x = 1$;			
	int main ()			
	{	,		
	int x =	= 5;		
	printf("x at point 1: %d\n", :	×);	
	{			
		int $x = 7$;		
		printf("x at point 2:	%d\n", x);	
	}			,
	a ();			
	b();			
	printf("x at point 5: %d\n",	×);	
	}			
	void a (void))		
	{			
	printf(("x at point 3: %d\n",	x);	
	} .			
	void b (void)		
	{			
		int $x = 50$; /* static in		
		("x at point 4: %d\n",	x);	
	}			
Wri	ite the output	of the program execu	ution:	

Name	Student ID	Seat Number
Part 2 Please write the answer in	the space provided (25 p	points)

2.1) Write a set of statements to determine the sum the odd integers between 1 and 99 (e.g. 1 + 3 + ... + 99) using a *for* statement. Assume the integer variables sum and count have been defined.

(4 points)

2.2) Write a set of statements to print the integers from 1 to 20 using a *while* loop and the counter variable x. Assume that the variable x has been defined, but not initialized. Print only five integers per line. [Hint: Use the calculation x % 5. When the value of this is 0, print a newline character, otherwise print a tab character.] (6 points)

Name	Seat Number	•••••••
2.3)		
Write a fu	function min that takes three integers and returns the smallest value.	
#1	#include <stdio.h></stdio.h>	
in	int min(int num1, int num2, int num3); /* declare it */	
in	int main () {	
	int a = 10;	
	int $b = 20$;	
	int c = 30;	
	printf("The smallest value is : %d\n", min(a, b, c)); /* use it */	
	return 0;	

(5 points)

}

Name S	student ID	Seat Number
--------	------------	-------------

2.4)

Write a program to read in the student IDs, student names, scores(homework, midterm and final scores), and print out the student IDs, student names, and total score. The sample of input file ("input.txt") and output file ("output.txt") are given below: (Note the number of students is not specified so the program must read data in until the end of the file).

Input sample

60107501	Sophia	16.5	38	29.5
60107502	Emma	17.5	31.5	32
60107504	Olivia	11	29.5	38
60107505	Isabella	20	36	27
60107507	Ava	16.5	35.5	34.5

Output sample

60107501	Sophia	84	
60107502	Emma	81	
60107504	Olivia	78.5	
60107505	Isabella	83	
60107507	Ava	86.5	

(10 points)

Name	Student ID	Seat Number .	
2.4) (Continued)			

Reference

#include <directive>

directive: stdio.h conio.h math.h string.h

Type of data

char int long int float double

Arithmetic Operator

+ - * / %

++

Math Functions

sin(x) cos(x) tan(x) asin(x) acos(x) atan(x) sqrt() pow(x,y) log(x) exp(x) log10(x) abs(x)

Input Functions

int scanf("control string", address of arguments list);
char *gets(char *str);
int getch(void);

int getche(void);

Output Functions

printf("control string " , arguments list) ;

Control string: %[[-]width][.decimal] code

%f %lf %e %d %ld %s %c %p

Relational Operators

== != > < >= <=

Logical Operators

! || &&

Conditions Statement

if (condition) {statement list1; } else {statement list2; }

Repetitive Loop

for (initialization ; continue condition ; increment) { statement list; }
do { statement list; } while (continue condition);
do { statement list; } while (continue condition);

Referencing & Dereferencing Operator

& (Address-of)

* (Value at-address)