系统、地图的几何描述以及机器人状态描述各不相同。目前的整合方案是图形推理库(graphical inference libraries) : g2o, GTSAM, Ceres,这些库常用来做后端。但这同一个完整但SLAM方案还是有gap的。 1.2 目标 MOLA是RSS2019的文章,提出了一个开源的异质数据融合的模块化SLAM系统。这里将前端、后端、回环 闭合及其对应的状态都做了封装。这样可以最小化模块之间的依赖,并进行针对性的实现替换。 Inputs SLAM back-end Map storage Front-ends Lidar Global or World model front-end Relative Sensor SLAM back-end #1 Stereo Entities front-end Libraries Graph IMU Relations optimizer front-end Sensor #N MOLA System Loader mola-cli (\ldots) User applications

异质sensor的整合到一个SLAM方案中绝非易事,理论层面上的障碍包括不同SLAM系统对于机器人传感器

Other MOLA tools

(a)

上述实现是单进程,每个模块都至少在一个线程中运行,利用shared_ptr<>实现。为方便模块封装,所有模

块都来自于一个基类:有标准的生命周期,可以同步的或者按照相应输入事件动态的开启或者悬挂。

Outputs 0

Мар

visualizer

ROS

publisher

• <u>1. MOLA简介</u>

• <u>1.1 背景</u>

• 1.2 目标

• 1.3 内容

• 2.1 前端

• 2.2 后端

3. DEMO

<u>4. 改进点</u>

论文及代码

Demo流程图

1.1 背景

• 2.2.1 相对位姿描述的后端

2.3 世界模型 (地图)

• 2.3.2 关键帧

• 3.2. 3D Lidar SLAM

• 3.2.1 背景

1. MOLA简介

• 3.2.2 多层ICP前端

• 2.3.1 构成

3.1 环境及内容

2. MOLA架构

2. MOLA架构

Discretization

model

- SE(3) (R_{3x3} , t_{3x1}), v_{3x1} SE3Vel SE(3) (R $_{3x3}$, t_{3x1}), v_{3x1} , ω_{3x1} Factor graph for: SE3, absolute SLAM Factor graph for: SE3Ve1, absolute SLAM
- 输入方面,即支持在线数据也支持离线序列。 法在传统的基于关键帧方法和连续时间SLAM方法找了一个折中点。 2.1 前端 利用统一API接口实现前端统一: 1. 添加关键帧(该时间戳下已被创建则调用已有) 2. 添加限定因子(factor in graph)在该层面上因子已进行抽象化(SE2 或SE3) 3. 订阅当前pose 4. 广播内部变量调整信息

SLAM后端负责把前端输出转化为图模型。后端有两种:全局地图和一系列局部地图(子图)。基于子图的

SLAM实现可以将不用子图暂时序列化存储,减少内存占用并加速定位。两套系统分别对应绝对位姿SLAM

两个子图有各自的先验因子,还有一个描述两个子图相对位姿的参数。该相对位姿的限定条件是两个子图的

关键帧的原始信息被地图保存下来,如有语义地图构建需要可以二次开发。对于在规定时间内没有被前端或

后端访问的keyframe会将其快速二值序列化保存到硬盘中,用的时候(回环闭合)在快速载入。这只在

目前,该系统前端利用multi-layer ICP实现跟踪,后端用子图优化和全局优化两种方法实现了3D Lidar

LiDAR数据直接用ICP求解会很慢并且不准确,因为lidar采集特性使得近处点多远处点少。如果近处点过多

本文提出多层ICP策略,将数据划分为edge、plane, raw decimated。然后分层进行匹配。

1. 开源部分只给出3D Lidar SLAM,大量的视觉SLAM相关模块并没有开发

https://ingmec.ual.es/~jlblanco/papers/blanco2019mola_rss2019.pdf

2. 动力学模型过于简单。文章中运动模型用了匀速模型,一般的视觉SLAM服务都不满足该条件

和相对位姿SLAM。这两种表达方式对于前端来说没有任何影响。

每个子图中的关键帧观测的特征,与这些相对位姿变量有关。

因此,划分子图的规则就是子图之间跨边界的共视区域最小化。

Entity包含:不同的相对绝对位姿,动力学信息以及关键帧信息。

2.2.1 相对位姿描述的后端

2.3 世界模型 (地图)

Relation 描述了两个关键帧之间的相对姿态限定。

相对位姿描述SLAM后端时包含变量:

2.3.1 构成 world model也就是地图,由两种目标构成:实体Entity和关系Relation。

2.3.2 关键帧

map是独立module时才可以实现。

3.1 环境及内容

3. DEMO

命令行 & 库 + config文件

3.2.1 背景

SLAM部分,其余视觉跟踪尚未实现。

支持范围

共视特征。

2.2 后端

运行环境 必须: GTSAM, MRPT和C++17. 可选: ROS 调用方式

3.2. 3D Lidar SLAM

会占据cost function主导地位、使得远处点无法正确匹配。

1. 将原始lidar数据划分到1*1*1meter粒度的voxels中

2. 每个voxel只留一个点,点的类型由分类器给出。分类原理就是voxel中求相关矩阵的最大最小特征值分 布。(一个绝对大是edge,两个绝对大是plane)。 3. 为了高效匹配,将所有voxel都存储到full-decimated layer。 4. 匹配跟踪

4. 改进点

论文及代码

https://github.com/MOLAorg/mola

https://docs.mola-slam.org/latest/

论文链接:

代码网址:

使用文档:

3.2.2 多层ICP前端

parse arguments

setup modules with different threads

Start

mola_install_signal_handler

list tasks

mola_cli_launch_slam

load config

setup

spin

module excuation

- Demo流程图
- load YAML

11. 关于视觉部分可配置: feature, pose格式, 动力学信息(线速度, 角速度及biases) 13. system loader负责载入config,调起相应模块并建立模块间的桥接,并允许其间的信息流动。

Physical reality

Map coordinate

system model

Continuous time

Infinite potential variables

于此同时,针对目前SLAM的离散处理,还提出了一套连续时间处理方案(这部分代码仍未实现)。本文方

Continuous time Discrete time Relative SLAM Absolute SLAM problem problem (Submapping) State vector MOLA type Not supported. **SE(2)** (R_{2x2}, t_{2x1}) SE2 SE2Vel **SE(2)** (\mathbf{R}_{2x2} , \mathbf{t}_{2x1}), \mathbf{v}_{2x1} SE2VelRot **SE(2)** (\mathbf{R}_{2x2} , \mathbf{t}_{2x1}), \mathbf{v}_{2x1} , ω

doXXX() return T