Throughout, $A = \mathbf{Z}[q^{\pm \frac{1}{2}}]$ and $Q = \mathbf{Q}(q^{\frac{1}{2}})$.

Fix an integer $n \ge 1$. Let H_n be the Iwahori–Hecke algebra of S_n over A. Let $\{T_w\}_{w \in S_n}$ be the standard basis of H_n , normalized so that

$$T_w T_s = \begin{cases} T_{ws} & ws > s \\ q T_{ws} + (q-1)T_w & ws < s \end{cases}$$

for any simple reflection s, where < is the Bruhat order on S_n . Here, a simple reflection is an element of the form $s_i = (i \ i + 1)$ in cycle notation for some $1 \le i \le n - 1$. Let c_w be the canonical or Kazhdan–Lusztig (KL) basis of H_n , so that

$$q^{\frac{|w|}{2}}c_w = \sum_{y < w} P_{y,w}(q)T_y,$$

where |w| is the Bruhat length of w and $P_{y,w}(q) \in 1 + q \mathbb{Z}_{\geq 0}[q]$ is the KL polynomial of (y, w).

For any integer partition $\lambda \vdash n$, let $\chi^{\lambda}: S_n \to \mathbf{Q}$ be the corresponding irreducible character, with the convention that $\chi^{(n)}$ is the trivial character and $\chi^{(1,\dots,1)}$ the sign character. Let $\chi_q^{\lambda}: Q \otimes_A H_n \to Q$ be the Q-linear trace that arises from χ^{λ} via Tits deformation. It turns out, e.g., by Starkey's rule, that χ^{λ} takes values in \mathbf{Z} , and that $\chi_q^{\lambda}|_{H_n}$ takes values in A. Henceforth, we abbreviate $\chi_q^{\lambda}|_{H_n}$ to χ_q^{λ} . We also set

$$\chi^{\text{triv}} = \chi^{(n)}$$
 and $\chi^{\text{sgn}} = \chi^{(1,\dots,1)}$

for convenience.

For any partition $\mu = (\mu_1, \dots, \mu_m) \vdash n$, let $S_\mu = S_{\mu_1} \times \dots \times S_{\mu_\ell} \subseteq S_n$ be the parabolic or Young subgroup defined by μ . The Kostka numbers $K_{\lambda,\mu} \in \mathbf{Z}$ are uniquely determined by setting

$$\operatorname{Ind}_{S_{\mu}}^{S_n}(\chi^{\operatorname{triv}}\otimes\cdots\otimes\chi^{\operatorname{triv}})=\sum_{\lambda\vdash n}K_{\lambda,\mu}\chi^{\lambda}.$$

With respect to the dominance order on partitions, the matrix $(K_{\lambda,\mu})_{\lambda,\mu}$ is unipotent upper-triangular, so its inverse is also defined over **Z**. We can thus define a collection of A-linear traces $m_q^{\mu}: H_n \to A$ by setting

$$\chi_q^{\lambda} = \sum_{\mu \vdash n} K_{\lambda,\mu} m_q^{\mu}.$$

In this formula, note that the subscripts on the Kostka numbers remain the same, but the roles of λ and μ are swapped from their roles in the previous formula.

Example 5.1. Take n=4. With λ along rows and μ along columns, the Kostka matrix and its inverse are

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ & & 1 & 1 & 2 \\ & & & 1 & 3 \\ & & & & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ & 1 & -1 & -1 & 2 \\ & & & 1 & -1 & 1 \\ & & & & 1 & -3 \\ & & & & & 1 \end{pmatrix},$$

respectively.

The letter m in the notation m_q^μ is meant to suggest "monomial". For, under the Frobenius character map from the vector space of Q-linear traces on $Q \otimes_A H_n$ into the ring of symmetric functions over Q, the element m_q^μ is sent to the monomial symmetric function for μ , just as the element χ_q^λ is sent to the Schur function for λ .

Conjecture 5.2 (Haiman 1993). For all $w \in S_n$ and $\mu \vdash n$, the trace $m_q^{\mu}(c_w) \in A$ has only nonnegative coefficients as a Laurent polynomial in $q^{\frac{1}{2}}$.

For $k \geq 2$ and $v = [v_1v_2 \cdots v_k] \in S_k$, we say that $w = [w_1w_2 \cdots w_n] \in S_n$ is $v_1v_2 \cdots v_k$ -containing iff there exist indices $1 \leq p_1 < \cdots < p_k \leq n$ such that for all i < j with $v_i < v_j$, we have $w_{p_i} < w_{p_j}$. Informally: w is $v_1v_2 \cdots v_k$ -containing iff (w_1, \ldots, w_n) contains a subsequence of size k whose elements have the same relative order as (v_1, \ldots, v_k) .

Otherwise, we say that w is $v_1v_2\cdots v_k$ -avoiding. We write $S_n^{v_1v_2\cdots v_k}\subseteq S_n$ for the subset of $v_1v_2\cdots v_k$ -avoiding elements. It turns out that

$$w \in S_n^{312} \implies w \in S_n^{3412} \cap S_n^{4231} \iff P_{1,w}(q) = 1.$$

Above, the ←⇒ statement is a 1990 result of Lakshmibai–Sandhya.

Example 5.3. Take n = 4. Write the elements of S_4 using *right-to-left* composition of permutations, and abbreviate s, t, u for s_1, s_2, s_3 , respectively. In order of increasing length, the elements of S_4 are:

Blue means 321-avoiding, red means 312-avoiding, and green means $P_{1,w}(q) \neq 1$.

Conjecture 5.4 (Haiman 1993). For all $w \in S_n$, there exists a subset $X \subseteq S_n^{312}$, not necessarily unique, such that

$$\chi_q^{\lambda}(c_w) = \sum_{x \in X} \chi_q^{\lambda}(c_x)$$

for all $\lambda \vdash n$. As a consequence, $P_{1,w}(q) = \sum_{x \in X} q^{\frac{|w|-|x|}{2}}$.

Remark 5.5. More generally, it is true that for any coefficients $a_x \in Q$, we have

$$\chi_q^{\lambda}(c_w) = \sum_{x \in S_n} a_x \chi_q^{\lambda}(c_x) \text{ for all } \lambda \implies P_{1,w}(q) = \sum_{x \in S_n} q^{\frac{|w| - |x|}{2}} a_x P_{1,x}(q)$$

To see this, recall that the usual symmetrizing trace on H_n sends $c_x \mapsto q^{-\frac{|w|}{2}} P_{1,x}(q)$ for all x, and this trace is a Q-linear combination of the χ_q^{λ} .

Theorem 5.6 (Abreu–Nigro 2022). *Conjecture 5.4 fails for* n = 8 *and* w = [62754381]. *In this case,* $P_{1,w}(q) = 1 + q$.

5.1.

For any A-algebra H, we write [H] to denote the Q-vector space of Q-linear traces on $Q \otimes_A H$. Thus there is a universal trace $H \to [H]$ through which every other trace factors, and the sets $\{\chi_q^{\lambda}\}_{\lambda}$, $\{m_q^{\mu}\}_{\mu}$ form two bases of [H], with transition matrix $(K_{\lambda,\mu})_{\lambda,\mu}$.

There is a diagrammatic presentation of H_n in which the elements of H_n are depicted by planar graphs called MOY graphs. Using it, we will introduce a new basis for [H] that we call the *circlet basis*. Its elements are again indexed by partitions $\mu \vdash n$, and will be denoted o_q^{μ} .

Conjecture 5.7. We have $o_q^{\mu} = m_q^{\mu}$ for all $\mu \vdash n$.

Following Billey-Warrington, we say that $w \in S_n$ is 321-hexagon-avoiding iff it belongs to

$$S_n^{321\text{hex}} := S_n^{321} \cap S_n^{46718235} \cap S_n^{46781235} \cap S_n^{56718234} \cap S_n^{56781234}$$

In a 2001 paper, Billey-Warrington prove that the following conditions are equivalent:

- $(1) \ w \in S_n^{321\text{hex}}$
- (2) $c_w = c_{s_{i_1}} \cdots c_{s_{i_\ell}}$ whenever $(s_{i_1}, \cdots, s_{i_\ell})$ is a reduced expression for w.
- (3) The Bott–Samelson resolution of the Schubert variety attached to w is a small morphism of varieties.

We will show:

Theorem 5.8. If Conjecture 5.7 holds, then Conjecture 5.2 holds under the added hypothesis that $w \in S_n^{321\text{hex}}$.

Let $TL_{n,\delta}$ be the Temperley–Lieb algebra on n strands over $\mathbb{Z}[\delta]$. We turn A into a $\mathbb{Z}[\delta]$ -algebra via the assignment $\delta \mapsto q^{\frac{1}{2}} + q^{-\frac{1}{2}}$, and we set $TL_n = A \otimes_{\mathbb{Z}[\delta]} TL_{n,\delta}$. Then, by 1985 work of Jones, there is a quotient morphism of A-algebras

$$\Theta: H_n \to TL_n$$
.

By a 1997 result of Fan-Green, the kernel of θ is precisely the A-linear span of the elements c_w such that w is 321-containing.

Let $b_w = \Theta(c_w)$ for all w. Then b_w is nonzero if and only if $w \in S_n^{321}$, and furthermore, $\{b_w\}_{w \in S_n^{321}}$ forms a basis for TL_n . In fact, this set also forms a $\mathbb{Z}[\delta]$ -basis for $TL_{n,\delta}$, as it coincides with the diagram basis of $TL_{n,\delta}$ studied by Jones and Kauffman.

The morphism Θ induces a quotient morphism of A-modules

$$\Theta: [H_n] \to [TL_n].$$

Let $\bar{\chi}_q^{\lambda} = \Theta(\chi_q^{\lambda}) \neq 0$, and let \bar{m}_q^{μ} , \bar{o}_q^{μ} be defined similarly. Moreover, write $\lambda \Vdash n$ iff every part of λ has size ≤ 2 . In Jones's 1987 Annals paper, he asserts without proof that $\bar{\chi}_q^{\lambda} \neq 0$ if and only if $\lambda \Vdash n$. In particular, the set $\{\bar{\chi}_q^{\lambda}\}_{\lambda \Vdash n}$ forms a basis for $[TL_n]$. A more detailed exposition of this folklore result can be found in the 2008 senior thesis of Anne Moore at Macalester College.

Due to the unitriangularity of the Kostka matrix $(K_{\lambda,\mu})_{\lambda,\mu}$, it follows that $\{\bar{m}_q^{\mu}\}_{\mu \Vdash n}$ also forms a basis for $[TL_n]$. We will show:

Theorem 5.9. We have $\bar{o}_q^{\mu} = \bar{m}_q^{\mu}$ for all $\mu \vdash n$.

For any $J \subseteq \{1, 2, ..., n-1\}$, written in increasing order as $i_1 < \cdots < i_{|J|}$, let $v_J \in S_n$ be defined by $v_J = s_{i_1} \cdots s_{i_{|J|}}$. One can check that

$$\{v_J\}_J = S_n^{312} \cap S_n^{321}.$$

The following result shows that a version of Conjecture 5.4 holds at the level of the Temperley–Lieb quotient.

Theorem 5.10. For all $w \in S_n^{321}$, there exists some $J \subseteq \{1, 2, ..., n-1\}$ such that

$$\bar{o}_q^{\mu}(w) = \bar{o}_q^{\mu}(v_J)$$

for all $\mu \vdash n$. In particular, the same conclusion holds with $\{\bar{\chi}_q^{\lambda}\}_{\lambda}$ in place of $\{\bar{o}_q^{\mu}\}_{\mu}$.

We now review the calculus of MOY graphs, define the circlet basis $\{o_q^{\mu}\}_{\mu}$, and prove Theorem 5.8.

MOY stands for Murakami-Ohtsuki-Yamada. In 1998, they showed how to compute the HOMFLYPT polynomial of a link L by first converting a planar diagram for L into an A-linear combination of colored, directed planar graphs, via local relations, then simplifying those graphs via further local relations. A byproduct of their work is a diagrammatic presentation of H_n where the elements c_s for simple reflections s, rather than the elements T_s , are represented by pure diagrams.

The MOY calculus was rediscovered by Cautis–Kamnitzer–Morrison in a "dual" form, the duality in question being Schur–Weyl duality. Namely, they give a diagrammatic version, called the spider category $Sp(SL_k)$, of the full subcategory of $Rep(U_q(\mathfrak{sl}_k))$ formed by the tensor powers of the fundamental irreducible representations. Objects in the spider category are ordered sequences of signed integers, depicted as columns of colored vertices, and morphisms are A-linear combinations of MOY graphs connecting a source column to a parallel target column in the plane, such that the orientations of the edges are compatible with the signs of any adjacent boundary vertices.

In particular, if we take $k \ge n$, then by quantum Schur-Weyl, the endomorphisms in $Sp(SL_k)$ of the *n*th tensor power of the standard representation form an A-algebra isomorphic to H_n after base change to Q. This observation defines the diagrammatic presentation of H_n . The pure diagrams arising from elements of H_n are known as (n,n)-webs; we will just call them webs.

We use images from Rasmussen's 2021 PCMI exposition. The web for c_{s_i} is

$$\begin{array}{ccc}
1 & & \\
i & -1 \\
i & & \\
i+1 & & \\
i+2 & & \\
n & & \\
\end{array}$$

where the boldface represents a doubled edge. Multiplication in H_n corresponds to horizontal concatenation of webs. The local relations defining H_n are

where $[2] = \delta = q^{\frac{1}{2}} + q^{-\frac{1}{2}}$, and in general:

$$[n] = \begin{cases} \frac{q^{\frac{n}{2}} - q^{-\frac{n}{2}}}{q^{\frac{1}{2}} - q^{-\frac{1}{2}}} & n > 0\\ 0 & n \le 0 \end{cases}$$

These relations imply further local relations

where we set

$$\begin{bmatrix} M \\ N \end{bmatrix} = \frac{[M]!}{[N]![M-N]!},$$
$$[N]! = [N] \cdots [2][1],$$

and it is implicitly understood that at any vertex, the sum of the labels on the inflowing edges is equal to that on the outflowing edges.

The map $H_n \to [H_n]$ corresponds to an operation on webs that we call *annular closure*. Starting from a (pure) diagram in a rectangle in the plane that joins n inputs on the left side to n outputs on the right side, we draw an annulus for which the rectangle is the interval between two cross-sections, then wrap the strands from the output vertices all the way around the annulus, joining them up end-to-end with the corresponding input vertices. We need to check:

Lemma 5.11. If two concentric loops (colored by different numbers) occur in an annular closure, then the outer one can be swapped with the inner, without changing the element of $[H_n]$ being represented.

For any $\mu = (\mu_1, \dots, \mu_m) \vdash n$, let o_q^{μ} be the annular diagram consisting of m concentric loops that encircle the puncture, labeled by μ_1, \dots, μ_m . By Lemma 5.11, this *circlet diagram* represents a well-defined element of $[H_n]$. Next, we must check:

Lemma 5.12. Any annular closure can be simplified to an A-linear combination of the diagrams o_q^{μ} , solely by replacing the left-hand sides of the local relations in (5.1) with the respective right-hand sides. In particular, $\{o_q^{\mu}\}_{\mu}$ is a basis for $[H_n]$.

Proof of Theorem 5.8. Let $w \in S_n^{321\text{hex}}$. By Billey-Warrington, we can write $c_w = c_{s_{i_1}} \cdots c_{s_{i_\ell}}$ for some sequence of indices i_1, \ldots, i_ℓ . Therefore, in the MOY presentation of H_n , the element c_w can be depicted by a pure diagram, *i.e.*, a single web.

By Lemma 5.12, this web can be simplified solely by replacing the left-hand sides of the relations in (5.1) with their right-hand sides. But the latter have q-binomial coefficients, which have only nonnegative coefficients as Laurent polynomials in $q^{\frac{1}{2}}$. \square