Введение в механику сплошных сред

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики

25 февраля 2020 г.

Аннотация

Предмет механики сплошных сред. Основные гипотезы механики сплошных сред. Понятие материальной точки. Лагранжево и эйлерово описание сплошной среды. Траектория, скорость, ускорение. Стационарное нестационарное течение. Линии тока поля скорости.

Предмет механики сплошных сред

Механика сплошных сред изучает движение газообразных, жидких и твёрдых деформируемых тел.

Л.И. Седов. Механика сплошной среды. Том 1. М.:Наука, 1970.

Разделы механики сплошных сред

Механика жидкости (гидродинамика, гидростатика)

Аэрогазодинамика

Механика деформируемого твердого тела (теория упругости, пластичности, разрушения)

Механика плазмы

Биомеханика

Механика многофазных сред

Методы механики сплошной среды

Дифференциальное исчисление

Уравнения Эйлера:

$$\begin{array}{rcl} \mathrm{div} \vec{v} & = & 0, \\ \frac{d\vec{v}}{dt} & = & -\frac{\nabla p}{\rho}. \end{array}$$

Интегральное исчисление

Закон сохранения массы сплошной среды:

$$\frac{\partial}{\partial t} \int_{\omega_t} \rho d\omega = 0.$$

Тензорный анализ

Связь между тензором напряжения и тензором скоростей деформации для вязкой несжимаемой жидкости:

$$\sigma = -pI + 2\mu\varepsilon.$$

Основные гипотезы: евклидово пространство, время

Евклидово пространство

Существует декартова система координат (Охуг)

Расстояние между точками A и B задаётся с мощью евклидовой метрики

$$r_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2 + (z_A - z_B)^2}$$

Абсолютное время

Время течёт одинаково во всех системах координат

Нигматулин Р.И. Механика сплошной среды. Кинематика. Динамика. Термодинамика. Статистическая динамика. М.:ГЭОТАР-Медиа, 2014.

Основные гипотезы: масса

Абсолютная масса

У всех тел существует масса

Масса неотрицательна

$$m \ge 0$$

Масса аддитивна

$$m_{A+B} = m_A + m_B$$

Масса инварианта во всех системах координат, т.е. является скаляром

Нигматулин Р.И. Механика сплошной среды. Кинематика. Динамика. Термодинамика. Статистическая динамика. М.:ГЭОТАР-Медиа, 2014.

Основные гипотезы: принцип равноправия инерциальных систем координат

Постулат Галлилея

Формилировки всех физических законов не зависят от выбора инерциальной системы координат.

Основные гипотезы: принцип сплошности

Определение

Сплошная среда — модель вещества, в которой распределение масса, сил, импульса, энергии и параметров, характеризующих состояние и движение этого вещества, определяется кусочнонепрерывными и дифференцируемыми функциями, заданными во всех точках рассматриваемого объема и во все моменты исследуемого времени.

Критерий сплошности Безразмерное число Кнудсена

$$\mathrm{Kn} = \frac{\lambda}{d} \ll 1,$$

где λ – длина свободного пробега (в случае газа), расстояние между атомами, молекулами (жидкость, твердое вещество); d – характерный размер исследуемого явления.

Основные гипотезы: индивидуализация

Приближение или гипотеза индивидуализации Положение каждой точки, составляющей среду (континуум), можно находить в любой момент времени:

$$\vec{r} = \vec{r}(t)$$
,

$$\vec{r}_{t=0} = \vec{r}_0.$$

Основные гипотезы: средние величины

Определение средней (макроскопической) плотности вещества, распределенного дискретно в пространстве

Определение плотности и условие устойчивости

$$\tilde{
ho} = rac{\delta m}{\delta V}, \quad l_{micro} \ll \delta r \ll L.$$

Материальная точка и поля в механике сплошных сред

Определение

Материальной точкой или жидкой частицей называется частица среды (вещества) как центра макроскопического объёма δV с характерным размером порядка δr , обладающий массой, импульсом, внутренней энергией и др., определяемыми в соответствии с условиями осреднения.

Условия на поля, определяющие параметры тел

Устойчивость (независимость от δr)

Регулярность (непрерывность, дифференцируемость за исключением отдельных поверхностей, линий и точек)

Представительность (параметры тела являются интегралом от соответствующих параметров его составляющих жидких частиц)

Лагранжево описание сплошной среды

Перемещение и деформация сплошной среды при временах 0, t' и t, где $\vec{r}_0 = (\xi_1, \xi_2, \xi_3),$ $\vec{r} = (x_1, x_2, x_3)$

Закон движения или траектории материальных точек тела:

$$x_1 = x_1(t, \xi_1, \xi_2, \xi_3),$$

 $x_2 = x_2(t, \xi_1, \xi_2, \xi_3),$
 $x_3 = x_3(t, \xi_1, \xi_2, \xi_3)$

или

$$\vec{r}=\vec{r}(t,\vec{r}_0).$$

Определение

Координаты материальных точек тела (ξ_1, ξ_2, ξ_3) называются лагранжевыми координатами а такой подход лагранжевым.

Принцип сплошности

Критерий

Принцип сплошности реализуется, если

$$\Delta^{(x,\xi)} = \left| \begin{array}{ccc} \frac{\partial x_1}{\partial \xi_1} & \frac{\partial x_1}{\partial \xi_2} & \frac{\partial x_1}{\partial \xi_3} \\ \frac{\partial x_1}{\partial \xi_2} & \frac{\partial x_2}{\partial \xi_2} & \frac{\partial x_2}{\partial \xi_3} \\ \frac{\partial x_1}{\partial \xi_3} & \frac{\partial x_3}{\partial \xi_2} & \frac{\partial x_3}{\partial \xi_3} \end{array} \right| \neq 0.$$

Принцип сплошности нарушается на ударных волнах, в зонах разрушения, разбрызгивания, при коагуляции капель, столкновении тел, на поверхностных, линейных и точечных источниках и стоках.

Скорость материальных точек

Скорость точки вдоль траектории лвижения

$$egin{array}{lcl} v_1 &=& v_1(t,\xi_1,\xi_2,\xi_3), \\ v_2 &=& v_2(t,\xi_1,\xi_2,\xi_3), \\ v_3 &=& v_3(t,\xi_1,\xi_2,\xi_3) \\ &&& \text{или} \end{array}$$

$$\vec{v} = \vec{v}(t, \vec{r}_0).$$

Определение

$$\vec{v}(t, \vec{r}_0) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t, \vec{r}_0) - \vec{r}(t, \vec{r}_0)}{\Delta t} = \left. \frac{\partial \vec{r}}{\partial t} \right|_{\vec{r} = \vec{r}_0}.$$

Ускорение материальных точек

Ускорение материальной точки

Определение

$$\vec{a}(t, \vec{r}_0) = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t, \vec{r}_0) - \vec{v}(t, \vec{r}_0)}{\Delta t} = \left. \frac{\partial \vec{v}}{\partial t} \right|_{\vec{r} = \vec{r}_0} = \left. \frac{\partial^2 \vec{r}}{\partial t^2} \right|_{\vec{r} = \vec{r}_0}$$

Эйлерово описание сплошной среды

Перемещение и деформация сплошной среды при временах 0, t' и t, где $\vec{r}_0 = (\xi_1, \xi_2, \xi_3)$, $\vec{r} = (x_1, x_2, x_3)$

Наблюдатель находится в точке (x_1, x_2, x_3) и следит за изменением параметров среды со временем.

Определение

Координаты материальных точек тела (x_1, x_2, x_3) называются эйлеровыми координатами а такой подход эйлеров.

Переход от лагранжевого представления к эйлерову

Пусть задан параметр среды f в лагранжевых координатах

$$f = f(t, \xi_1, \xi_2, \xi_3).$$

Если задан закон движения среды $\vec{r} = \vec{r}(t, \xi_1, \xi_2, \xi_3)$ и $\Delta^{(x,\xi)} \neq 0$, тогда существует обратное преобразование:

$$\xi_1 = \xi_1(t, x_1, x_2, x_3),
\xi_2 = \xi_2(t, x_1, x_2, x_3),
\xi_3 = \xi_3(t, x_1, x_2, x_3)$$

И

$$f(t,\xi_1,\xi_2,\xi_3) = f(t,\xi_1(t,x_1,x_2,x_3),\xi_2(t,x_1,x_2,x_3),\xi_3(t,x_1,x_2,x_3)) =$$
$$= \tilde{f}(t,x_1,x_2,x_3).$$

Переход от эйлерова представления к лагранжеву

Пусть задан параметр среды f в эйлеровых координатах

$$f = f(t, x_1, x_2, x_3).$$

Если задан закон движения среды $\vec{r} = \vec{r}(t, \xi_1, \xi_2, \xi_3)$, тогда

$$f(t, x_1, x_2, x_3) = f(t, x_1(t, \xi_1, \xi_2, \xi_3), x_2(t, \xi_1, \xi_2, \xi_3), x_3(t, \xi_1, \xi_2, \xi_3)) =$$
$$= \bar{f}(t, \xi_1, \xi_2, \xi_3).$$

Стационарные движения и линии тока

Определение

Если при эйлеровом описании движение сплошной среды и её параметры не зависят от времени, а зависят только от от пространственных координат (x_1, x_2, x_3) , то такие движения называются установившимися или стационарными.

Определение

Линиями тока, или векторными линиями поля скорости \vec{v} , называются линии, касательные в каждой точке которых совпадают по направлению со скоростью \vec{v} в этой точке в данный момент времени.

Математическое описание линий тока

Уравнения линий тока

$$d\vec{r} = \vec{v}(x_1, x_2, x_3)d\lambda, \quad (t = const),$$

где λ — переменная, идентифицирующая точки вдоль линии тока. Это уравнение сводится к

$$d\lambda = \frac{dx_1}{v_1(t, x_1, x_2, x_3)} = \frac{dx_2}{v_2(t, x_1, x_2, x_3)} = \frac{dx_3}{v_3(t, x_1, x_2, x_3)},$$

где t является параметром и каждая линия тока относится к фиксированному моменту времени.

Пример обтекания цилиндра

Картины обтекания цилиндра набегающим потоком при различных числах Рейнольдса

http://www.heuristic.su/effects/catalog/est/byId/description/1201/index.html

Частная и субстанциональная (полная) производная

Рассмотрим параметр среды, заданный в эйлеровых координатах $\varphi(t,x_1,x_2,x_3)$ и закон движения сплошной среды $\vec{r}=\vec{r}(t,\xi_1,\xi_2,\xi_3).$

Частная производная в заданной точке пространства $\frac{\partial \varphi}{\partial t}(t,x_1,x_2,x_3)$ определяет изменение параметров в фиксированной точке пространства.

Частная и субстанциональная (полная) производная

Полная производная

$$\begin{split} \frac{d}{dt}\varphi(t,x_1(t,\xi_1,\xi_2,\xi_3),x_2(t,\xi_1,\xi_2,\xi_3),x_2(t,\xi_1,\xi_2,\xi_3)) &= \\ &= \frac{\partial \varphi}{\partial t} + \frac{\partial \varphi}{\partial x_1}\frac{\partial x_1}{\partial t} + \frac{\partial \varphi}{\partial x_2}\frac{\partial x_2}{\partial t} + \frac{\partial \varphi}{\partial x_3}\frac{\partial x_3}{\partial t} = \\ &= \frac{\partial \varphi}{\partial t} + \vec{v} \cdot \nabla \varphi = \left(\frac{\partial}{\partial t} + (\vec{v} \cdot \nabla)\right)\varphi \end{split}$$

определяет изменение параметра φ в жидкой частице в фиксированной точке пространства, где $\vec{v}(t,x_1,x_2,x_3)$ – вектор скорости.

Определение

Оператор $\frac{d}{dt} = \frac{\partial}{\partial t} + (\vec{v} \cdot \nabla)$ называется оператором полной (субстанциональной) производной.

Литература

- Л.И. Седов. Механика сплошной среды. Том 1. М.:Наука, 1970.
- *Нигматулин Р.И.* Механика сплошной среды. Кинематика. Динамика. Термодинамика. Статистическая динамика. М.:ГЭОТАР-Медиа, 2014.
- Эглит М.Э. Лекции по основам механики сплошных сред. Изд. 2-е, испр. М.: Книжный дом «Либроком», 2010.