AutoML: Neural Architecture Search (NAS)

Practical Recommendations for NAS and HPO

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field
 - Blackbox is quite mature, but slow
 - Multi-fidelity NAS is also quite mature and faster

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field
 - Blackbox is quite mature, but slow
 - Multi-fidelity NAS is also quite mature and faster
 - Meta-learning + multi-fidelity NAS is fast, but is still a very young field

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field
 - Blackbox is quite mature, but slow
 - Multi-fidelity NAS is also quite mature and faster
 - Meta-learning + multi-fidelity NAS is fast, but is still a very young field
 - Gradient-based NAS is fast, but can have failure modes with terrible performance
 - Gradient-based NAS hasn't reached the hands-off AutoML stage yet

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field
 - Blackbox is quite mature, but slow
 - Multi-fidelity NAS is also quite mature and faster
 - Meta-learning + multi-fidelity NAS is fast, but is still a very young field
 - Gradient-based NAS is fast, but can have failure modes with terrible performance
 - Gradient-based NAS hasn't reached the hands-off AutoML stage yet
- NAS is mainly used to create new architectures that many others can reuse

- Hyperparameter optimization is a mature field
 - Blackbox HPO has been researched for decades; there are many software packages
 - Multi-fidelity HPO has also become quite mature
- Neural architecture search is still a very young field
 - Blackbox is quite mature, but slow
 - Multi-fidelity NAS is also quite mature and faster
 - Meta-learning + multi-fidelity NAS is fast, but is still a very young field
 - Gradient-based NAS is fast, but can have failure modes with terrible performance
 - Gradient-based NAS hasn't reached the hands-off AutoML stage yet
- NAS is mainly used to create new architectures that many others can reuse
- Given a new dataset, HPO is crucial for good performance; NAS may not be necessary
 - The biggest gains typically come from tuning key hyperparameters (learning rate, etc)
 - Reusing a previous achitecture often yields competitive results

- Recommendations for a new dataset
 - → Always run HPO
 - \rightarrow Try NAS if you can

- Recommendations for a new dataset
 - → Always run HPO
 - \rightarrow Try NAS if you can
- How to combine NAS & HPO
 - If the compute budget suffices, optimize them jointly, e.g., using BOHB
 - + Auto-PyTorch Tabular [Zimmer, Lindauer & Hutter, 2020]
 - + Auto-RL [Runge et al. 2019]

- Recommendations for a new dataset
 - \rightarrow Always run HPO
 - \rightarrow Try NAS if you can
- How to combine NAS & HPO
 - If the compute budget suffices, optimize them jointly, e.g., using BOHB
 - + Auto-PyTorch Tabular [Zimmer, Lindauer & Hutter, 2020]
 - + Auto-RL [Runge et al. 2019]
 - Else
 - + If you have decent hyperparameters: run NAS, followed by HPO for fine-tuning [Saikat et al. 2019]

- Recommendations for a new dataset
 - \rightarrow Always run HPO
 - \rightarrow Try NAS if you can
- How to combine NAS & HPO
 - If the compute budget suffices, optimize them jointly, e.g., using BOHB
 - + Auto-PyTorch Tabular [Zimmer, Lindauer & Hutter, 2020]
 - + Auto-RL [Runge et al. 2019]
 - Else
 - + If you have decent hyperparameters: run NAS, followed by HPO for fine-tuning [Saikat et al. 2019]
 - + If you don't have decent hyperparameters: first run HPO to get competitive

 Joint Architecture Search and Hyperparameter Optimization

	Name	Range	log	type	cond.
	network type	[ResNet, MLPNet]	-	cat	-
	num layers (MLP)	[1, 6]	-	int	V
	max units (MLP)	[64, 1024]	V	int	V
	max dropout (MLP)	[0, 1]	-	float	>>>>>>>
Archi-	num groups (Res)	[1, 5]	-	int	V
tecture	blocks per group (Res)	[1, 3]	-	int	V
iccime	max units (Res)	[32, 512]	V	int	V
	use dropout (Res)	[F, T]	-	bool	V
	use shake drop	[F, T]	-	bool	V
	use shake shake	[F, T]	-	bool	V
	max dropout (Res)	[0, 1]	-	float	V
	max shake drop (Res)	[0, 1]	-	float	√
	batch size	[16, 512]	✓	int	-
	optimizer	[SGD, Adam]	-	cat	-
	learning rate (SGD)	[1e-4, 1e-1]	✓	float	~
	L2 reg. (SGD)	[1e-5, 1e-1]	-	float	V
Hyper-	momentum	[0.1, 0.999]	-	float	V
para-	learning rate (Adam)	[1e-4, 1e-1]	~	float	V
meters	L2 reg. (Adam)	[1e-5, 1e-1]	-	float	V
	training technique	[standard, mixup]	-	cat	-
	mixup alpha	[0, 1]	-	float	V
	preprocessor	[none, trunc. SVD]		cat	-
	SVD target dim	[10, 256]	-	int	1

- Joint Architecture Search and Hyperparameter Optimization
 - Purely using HPO techniques: very similar methods as in Auto-sklearn 2.0

	Name	Range	log	type	cond.
	network type	[ResNet, MLPNet]	-	cat	-
	num layers (MLP)	[1, 6]	-	int	✓
	max units (MLP)	[64, 1024]	V	int	V
	max dropout (MLP)	[0, 1]	-	float	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Archi-	num groups (Res)	[1, 5]	-	int	V
tecture	blocks per group (Res)	[1, 3]	-	int	V
teettiie	max units (Res)	[32, 512]	V	int	~
	use dropout (Res)	[F, T]	-	bool	~
	use shake drop	[F, T]	-	bool	V
	use shake shake	[F, T]	-	bool	V
	max dropout (Res)	[0, 1]	-	float	V
	max shake drop (Res)	[0, 1]	-	float	√
	batch size	[16, 512]	✓	int	-
	optimizer	[SGD, Adam]	-	cat	-
	learning rate (SGD)	[1e-4, 1e-1]	V	float	V
	L2 reg. (SGD)	[1e-5, 1e-1]	-	float	V
Hyper-	momentum	[0.1, 0.999]	-	float	V
para-	learning rate (Adam)	[1e-4, 1e-1]	~	float	V
meters	L2 reg. (Adam)	[1e-5, 1e-1]	-	float	V
	training technique	[standard, mixup]	-	cat	-
	mixup alpha	[0, 1]	-	float	V
	preprocessor	[none, trunc. SVD]	-	cat	-
	SVD target dim	[10, 256]	-	int	1

- Joint Architecture Search and Hyperparameter Optimization
 - Purely using HPO techniques: very similar methods as in Auto-sklearn 2.0
 - Multi-fidelity optimization with BOHB
 - Meta-learning with task-independent recommendations

	Name	Range	log	type	cond.
	network type	[ResNet, MLPNet]	-	cat	-
	num layers (MLP)	[1, 6]	-	int	V
	max units (MLP)	[64, 1024]	✓	int	V
	max dropout (MLP)	[0, 1]	-	float	V
Archi-	num groups (Res)	[1, 5]	-	int	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
tecture	blocks per group (Res)	[1, 3]	-	int	V
tectine	max units (Res)	[32, 512]	V	int	V
	use dropout (Res)	[F, T]	-	bool	V
	use shake drop	[F, T]	-	bool	V
	use shake shake	[F, T]	-	bool	V
	max dropout (Res)	[0, 1]	-	float	V
	max shake drop (Res)	[0, 1]	-	float	
	batch size	[16, 512]	✓	int	-
	optimizer	[SGD, Adam]	-	cat	-
	learning rate (SGD)	[1e-4, 1e-1]	✓	float	V
	L2 reg. (SGD)	[1e-5, 1e-1]	-	float	✓
Hyper-	momentum	[0.1, 0.999]	-	float	V
para-	learning rate (Adam)	[1e-4, 1e-1]	✓	float	V
meters	L2 reg. (Adam)	[1e-5, 1e-1]	-	float	V
	training technique	[standard, mixup]	-	cat	-
	mixup alpha	[0, 1]	-	float	✓
	preprocessor	[none, trunc. SVD]	-	cat	-
	SVD target dim	[10, 256]	-	int	1

- Joint Architecture Search and Hyperparameter Optimization
 - Purely using HPO techniques: very similar methods as in Auto-sklearn 2.0
 - Multi-fidelity optimization with BOHB
 - Meta-learning with task-independent recommendations
 - Ensembling of neural nets and traditional ML

	Name	Range	log	type	cond.
	network type	[ResNet, MLPNet]	-	cat	-
	num layers (MLP)	[1, 6]	-	int	V
	max units (MLP)	[64, 1024]	✓	int	V
	max dropout (MLP)	[0, 1]	-	float	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Archi-	num groups (Res)	[1, 5]	-	int	V
tecture	blocks per group (Res)	[1, 3]	-	int	V
lecture	max units (Res)	[32, 512]	V	int	V
	use dropout (Res)	[F, T]	-	bool	V
	use shake drop	[F, T]	-	bool	V
	use shake shake	[F, T]	-	bool	V
	max dropout (Res)	[0, 1]	-	float	V
	max shake drop (Res)	[0, 1]	-	float	~
	batch size	[16, 512]	✓	int	-
	optimizer	[SGD, Adam]	-	cat	-
	learning rate (SGD)	[1e-4, 1e-1]	V	float	V
	L2 reg. (SGD)	[1e-5, 1e-1]	-	float	V
Hyper- para- meters	momentum	[0.1, 0.999]	-	float	V
	learning rate (Adam)	[1e-4, 1e-1]	✓	float	V
	L2 reg. (Adam)	[1e-5, 1e-1]	-	float	V
	training technique	[standard, mixup]	-	cat	-
	mixup alpha	[0, 1]	-	float	✓
	preprocessor	[none, trunc. SVD]	-	cat	-
	SVD target dim	[10, 256]		int	/

block - group

- Joint Architecture Search and Hyperparameter Optimization
 - Purely using HPO techniques: very similar methods as in Auto-sklearn 2.0
 - Multi-fidelity optimization with BOHB
 - Meta-learning with task-independent recommendations
 - Ensembling of neural nets and traditional ML

	Name	Range	log	type	cond
	network type	[ResNet, MLPNet]	-	cat	-
	num layers (MLP)	[1, 6]	-	int	V
	max units (MLP)	[64, 1024]	✓	int	V
	max dropout (MLP)	[0, 1]	-	float	V
Archi-	num groups (Res)	[1, 5]	-	int	V
tecture	blocks per group (Res)	[1, 3]	-	int	V
tecture	max units (Res)	[32, 512]	V	int	\ \ \ \ \
	use dropout (Res)	[F, T]	-	bool	V
	use shake drop	[F, T]	-	bool	V
	use shake shake	[F, T]	-	bool	V
	max dropout (Res)	[0, 1]	-	float	V
	max shake drop (Res)	[0, 1]	-	float	V
	batch size	[16, 512]	✓	int	-
	optimizer	[SGD, Adam]	-	cat	-
	learning rate (SGD)	[1e-4, 1e-1]	V	float	V
	L2 reg. (SGD)	[1e-5, 1e-1]	-	float	V
Hyper-	momentum	[0.1, 0.999]	-	float	V
para-	learning rate (Adam)	[1e-4, 1e-1]	✓	float	V
meters	L2 reg. (Adam)	[1e-5, 1e-1]	-	float	V
	training technique	[standard, mixup]	-	cat	-
	mixup alpha	[0, 1]	-	float	~
	preprocessor	[none, trunc. SVD]	-	cat	-
	SVD target dim	[10, 256]	-	int	✓

	Auto-PyTorch	AutoGluon	AutoKeras	Auto-Sklearn	hyperopt-sklearn
covertype	96.86 ± 0.41	-	61.61 ± 3.52	-	-
volkert	79.46 ± 0.43	68.34 ± 0.10	44.25 ± 2.38	67.32 ± 0.46	-
higgs	73.01 ± 0.09	72.6 ± 0.00	71.25 ± 0.29	72.03 ± 0.33	
car	99.22 ± 0.02	97.19 ± 0.35	93.39 ± 2.82	98.42 ± 0.62	98.95 ± 0.96
mfeat-factors	99.10 ± 0.18	98.03 ± 0.23	97.73 ± 0.23	98.64 ± 0.39	97.88 ± 38.48
apsfailure	99.32 ± 0.01	99.5 ± 0.03	-	99.43 ± 0.04	-
phoneme	90.59 ± 0.13	89.62 ± 0.06	86.76 ± 0.12	89.26 ± 0.14	89.79 ± 4.54
dibert	99.04 ± 0.15	98.17 ± 0.05	96.51 ± 0.62	98.14 ± 0.47	-

- Problem: disparity estimation
 - Estimate depth from stereo images

- Problem: disparity estimation
 - Estimate depth from stereo images
- Background: U-Net
 - Skip connections from similar spatial resolution to avoid loosing information

- Problem: disparity estimation
 - Estimate depth from stereo images
- Background: U-Net
 - Skip connections from similar spatial resolution to avoid loosing information
- Search space for DARTS
 - 3 cells: keeping spatial resolution, downsampling, and new upsampling cell that supports U-Net like skip connections

- Problem: disparity estimation
 - Estimate depth from stereo images
- Background: U-Net
 - Skip connections from similar spatial resolution to avoid loosing information
- Search space for DARTS
 - 3 cells: keeping spatial resolution, downsampling, and new upsampling cell that supports U-Net like skip connections
- Both NAS and HPO improved the state of the art [Saikat et al. 2019]:
 - ▶ End-point-error (EPE) on Sintel dataset: $2.36 \rightarrow 2.14$ (by DARTS)
 - ► Subsequent HPO: 2.14 → 1.94 (by BOHB)

Questions to Answer for Yourself / Discuss with Friends

- Repetition:
 If you want to use both HPO and NAS for your problem, how could you proceed?
- Discussion:
 Think of a problem of your particular interest. For that problem, which approach would you use to combine HPO and NAS, and why?