Übungsblatt 2

Datenanalyse und -visualisierung mit R Hochschule Bonn-Rhein-Sieg

Pekka Sagner M.Sc.

22. April 2022

Einführung in das Tidyverse

Aufgabe 1: »Ordnung muss sein«

a) *** Neben Vektoren kennt R weitere (interne) Datenformate. Wir kommen im Laufe der Vorlesung auf die meisten zu sprechen. In der Regel arbeiten wir jedoch mit Datensätzen. In der modernen Coding-Philosophie, dem **Tidyverse**, sollten Daten einer bestimmten Struktur folgen - sie sollen **tidy** (ordentlich/sauber) sein. Wann ist ein Datensatz **tidy**? Lesen Sie zur Beantwortung der Frage R4DS, Kapitel 12.1-12.2 (Wickham/Grolemund, 2021) oder werfen Sie einen Blick in die Vorlesungsunterlagen.

Ein Datensatz ist **tidy**, wenn:

- 1)
- 2)
- 3)
- b) Wir werden ab jetzt im Kurs **immer** mit dem **Tidyverse** arbeiten, der Sammlung von Paketen, die die Arbeit mit **tidy**-Daten besonders einfach macht und speziell darauf zugeschnitten ist. Installieren Sie das Paket **tidyverse** mit dem Befehl install.packages("tidyverse").
- c) Um die Inhalte eines Pakets, wie zum Beispiel Funktionen und Datensätze, für die Analyse zu nutzen, laden Sie dieses mit dem Befehl library(). Laden Sie das Paket tidverse.
- d) *** Das Paket **tidyverse** enthält Übungsdatensätze, auf die wir zugreifen können, nachdem wir das Paket geladen haben. Mit den Befehlen **table1**, **table2** und **table3** können Sie diese in der Konsole betrachten. Weisen Sie den drei Datensätzen Namen zu, z.B. **datensatz_1**, **datensatz_2**, **datensatz_3**. Betrachten Sie die Datensätze im **Viewer**.
- e) Beschreiben Sie den Aufbau der drei Datensätze in Worten.

Die Datensätze finden Sie hier auch noch einmal abgedruckt:

Datensatz 1:

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360

country	year	cases	population
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Datensatz 2:

country	year	type	count
A forbanistan	1999	00000	745
Afghanistan		cases	
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

Datensatz 3:

country	year	rate
Afghanistan	1999	745/19987071
Afghanistan	2000	2666/20595360
Brazil	1999	37737/172006362
Brazil	2000	80488/174504898
China	1999	212258/1272915272
China	2000	213766/1280428583

f) Welche der drei Datensätze sind nicht tidy? Warum nicht?

Aufgabe 2: Die Pipe - %>% und |>

Pipes sind ein mächtiges Instrument, um eine Reihe von Operationen durchzuführen. Sie sind mit der Grund, warum R und das Tidyverse sich einer so großen Beliebtheit erfreuen. Das Ziel und der Grund für die Implementierung der Pipe ist es, Code besser schreib- und lesbar zu machen. Wir lesen %>% und |> als »und dann«. Aus der klassischen Funktionsschreibweise f(x), wird dadurch zum Beispiel x %>% f(). (Leseempfehlung: R4DS, Kapitel 19 (Wickham/Grolemund, 2021))

Stellen Sie sich vor, ein Bekannter beschreibt Ihnen seinen Tagesablauf wie folgt: »Ich bin heute um 6:00 Uhr aufgestanden. Dann habe ich mir eine Hose und einen Pullover angezogen. Dann habe ich einen starken Kaffee getrunken. Danach bin ich nicht mit dem Auto, sondern mit dem Fahrrad zur Hochschule gefahren. Dann habe ich mit herausragender Laune gelernt.«

- a) ***Schreiben Sie den beschriebenen Ablauf in einer klassischen funktionalen Form f(g(h(...(x)))) auf.
- b) ***Schreiben Sie die vorherige Szene um, nutzen Sie dafür die Pipe (%>% oder |>).

Aufgabe 3: Olympische Spiele

Wir sind bereit, mit unserem ersten »echten« Datensatz zu arbeiten. Der Datensatz enthält Informationen zu den modernen Olympischen Spielen, beginnend mit Athen (1896) bis Rio de Janeiro (2016) (Quelle: tidytuesday).

Zum Datensatz liegen uns folgende Variablenbeschreibungen vor:

variable	class	description
id	double	Athlete ID
name	character	Athlete Name
sex	character	Athlete Sex
age	double	Athlete Age
height	double	Athlete Height in cm
weight	double	Athlete weight in kg
team	character	Country/Team competing for
noc	character	noc region
games	character	Olympic games name
year	double	Year of olympics
season	character	Season either winter or summer
city	character	City of Olympic host
sport	character	Sport
event	character	Specific event
medal	character	Medal (Gold, Silver, Bronze or NA)

- a) Laden Sie den Datensatz **olympics.csv** von der Kurswebseite herunter. Speichern Sie diesen in einem Unterordner (z. B. *data*) des R-Projektordners.
- b) Laden Sie den Datensatz in Ihr R-Environment ein. Nutzen Sie hierfür die Funktion read_csv(). Betrachten Sie den Datensatz im Viewer.
- c) Wie viele Beobachtungen enthält der Datensatz? Was steckt in diesem Fall hinter einer Beobachtung?
- d) Wie viele Beobachtungen liegen für die Olympischen Sommerspiele 2016 vor?
- e) Erstellen Sie einen neuen Datensatz, der nur Beobachtungen zu den Olympischen Sommerspielen 2016 und nur die Variablen id, name, sex, age, height, weight, team, sport, event und medal enthält.
- f) Wir sind im Folgenden an Informationen zur Größe der AthletInnen interessiert.
 - i) Wie groß war der/die größte bzw. der/die kleinste AthletIn?
 - ii) Wie viel größer ist der/die größte AthletIn als der/die kleinste AthletIn?
 - iii) An welchem Wettkampf hat der/die größte bzw. kleinste AthletIn teilgenommen?
 - iv) Wie groß waren die AthletInnen bei den Olympischen Sommerspielen 2016 im Durchschnitt?
 - v) Wie groß sind die AthletInnen der verschiedenen Sportarten im Durchschnitt? In welcher Sportart sind die AthletInnen durchschnittlich am kleinsten, in welcher am größten?
 - vi) Wie groß sind die Athletinnen im Durchschnitt, wie groß sind die Athleten?
 - vii) Wie groß sind die Athletinnen je Sportart im Durchschnitt und wie groß die Athleten?
 - viii) Wie viele Athleten sind größer als 1,80 m? Wie viele Athletinnen sind größer als 1,60 m? Bestimmen Sie jeweils den Anteil in der Gruppe.
- g) Wie groß ist der durchschnittliche Body-Mass-Index (BMI) von weiblichen Volleyballspielerinnen im Alter zwischen 20 und 30 Jahren?