2.12 Solution:

(e) converse example:

when
$$S = J-1, 1J, T=JUJ,$$

then $J \times I \text{ dis}(X, S) \leq \text{dis}t(X, T)J$
 $= J \times ERI \times \leq -\frac{1}{2} \text{ or } \times > \frac{1}{2}J$
Clearly, this is not a convex set.

If
$$x+S_2 \subseteq S_1$$
 if $x+y \in S_1$ for all $y \in S_2$.

Then $f(x) \times f(x) = 0$ for $f(x) \times f(x) = 0$ (Single $f(x) = 0$)

Then $f(x) \times f(x) = 0$ for all $f(x) = 0$ for all $f(x) = 0$.

If $f(x) = 0$ for all $f(x) = 0$ for all

3,20(c) Solution:
$$f(x) = tr(A_0 + x_1 A_1 + \cdots + x_n A_n)^{-1}$$

from 3,18, we know that $f(x) = tr(x^{-1})$ 7s commex on dow $f = S_{++}^{1}$
then $x \to A_0 + x_1 A_1 + \cdots + x_n A_n \in S_{++}^{m}$
 $f(x)$ is a Gowex function.

3.21 (a) Solution: First, f(x) = max_{i=1},...k || A⁽ⁱ⁾x-b⁽ⁱ⁾||, where A⁽ⁱ⁾ER^{mxn}

be R^m. ||·|| is a norm on Rⁿⁿ.

fis a pointwise maximum of & finetions ||A⁽ⁱ⁾x-b⁽ⁱ⁾||,

Each of these function is conex, because it's the composition of an affine transformation and a norm.

Then this function is convex.