Unit II Introduction to Finite Automata

Prepared By:

Ghanashyam BK

Introduction to Finite Automata

- A finite automaton is a mathematical (model) abstract machine that has a set of "states" and its "control" moves from state to state in response to external "inputs".
- The control may be either "deterministic" meaning that the automation can't be in more than one state at any one time
- or "non deterministic", meaning that it may be in several states at once.
- This distinguishes the class of automata as DFA or NFA.

Applications

- The finite state machines are used in applications in computer science and data networking.
- For example, finite-state machines are basis for programs for spell checking, indexing, grammar checking, etc
- network protocols that specify how computers communicate.

Introduction of Finite State Machine

- a machine that can, at any point in time, be in a specific state from a finite set of possible states
- It can move (transition) to another state by accepting an input.
- The simplest machine is the finite state automaton

Fig: state diagram for TV on/off state

- A deterministic finite automaton is defined by a quintuple (5-tuple) as $(Q, \Sigma, \delta, q0, F)$.
 - Where,
 - Q = Finite set of states,
 - Σ = Finite set of input symbols,
 - $\delta = A$ transition function that maps $Q \times \Sigma \rightarrow Q$
 - $q_0 = A$ start state; $q_0 \in Q$
 - F = Set of final states; $F \subseteq Q$.
- A transistion function δ that takes as arguments a state and an input symbol and returns a state.

• For example:

• If 'S' is a state and 'a' is an input symbol then $\delta(S,a)$ is that state F such that there are arcs labled 'a' from S to F.

How a DFA process strings?

- The first thing we need to understand about a DFA is how DFA decides whether or not to "accept" a sequence of input symbols.
- The "language" of the DFA is the set of all symbols that the DFA accepts.
- Suppose $a_1, a_2, \ldots a_n$ is a sequence of input symbols.
- We start out with the DFA in its start state, q_0 .
- We consult the transition function δ also for this purpose.

How a DFA process strings? (Contd...)

- Say δ (q₀, a₁) = q₁ to find the state that the DFA enters after processing the first input symbol a₁.
- We then process the next input symbol a_2 , by evaluating δ (q_1, a_2) ; suppose this state be q_2 .
- We continue in this manner, finding states q_3, q_4, \ldots, q_n . such that $\delta (q_{i-1}, a_i) = q_i$ for each i.
- if q_n is a member of F, then input a_1, a_2, \ldots, a_n is accepted & if not then it is rejected.

- There are two preferred notations for describing this class of automata
 - Transition Diagram
 - Which is a graph
 - Transition Table
 - which is a tabular listing of the δ function, which by implication tells us the set of states and the input alphabet.

Transition Diagram

- A transition diagram of a DFA is a graphical representation where; (or is a graph)
- For each state in Q, there is a node represented by circle,
- For each state q in Q and each input a in Σ , if δ (q, a) = p then there is an arc from node q to p labeled a in the transition diagram.
- If more than one input symbol cause the transition from state q to p then arc from q to p is labeled by a list of those symbols.
- The start state is labeled by an arrow written with "start" on the node.
- The final or accepting state is marked by double circle.

Transition Diagram Example

Fig: The transaction diagram for the DFA accepting all strings with a substring 01

Transition Table

- Transition table is a conventional, tabular representation of the transition function δ that takes the arguments from $Q \times \Sigma$ & returns a value which is one of the states of the automation.
- The row of the table corresponds to the states while column corresponds to the input symbol.
- The starting state in the table is represented by \rightarrow followed by the state i.e. \rightarrow q, for q being start state, whereas final state as *q, for q being final state.

Transition Table Example

	0	1
$\rightarrow q_0$	q_2	q_0
$*q_1$	q_1	q_1
q_2	q_2	q_1

Fig: The transaction table for the DFA accepting all strings with a substring 01

Fig: The state diagram & transaction table for the DFA accepting all strings with even number of 0's & even number of 1's

Extended Transition Function of DFA

- The extended transition function of DFA, denoted by $\hat{\delta}_{\perp}$ is a transition function that takes two arguments as input, one is the state q of Q and another is a string $w \in \Sigma^*$, and generates a state $p \in Q$.
- This state p is that the automaton reaches when starting in state q & processing the sequence of inputs w.
- i.e. $\hat{\delta}_{\parallel}(\mathbf{q}, \mathbf{w}) = \mathbf{p}$

Extended Transition Function of DFA

- Let us define by induction on length of input string as follows:
- **Basis step:** $\hat{\delta}_{\parallel}(q,\varepsilon) = q$. i.e. from state q, reading no input symbol stays at the same state.
- **Induction:** Let w be a string from Σ^* such that w = xa, where x is substring of w without last symbol and a is the last symbol of w, then $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$.
- Thus, to compute $\hat{\delta}(q, w)$, we first compute $\hat{\delta}(q, x)$, the state the automaton is in after processing all but last symbol of w. let this state is p, i.e. $\hat{\delta}(q, x) = p$.
- Then, $\hat{\delta}_{\parallel}(q, w)$ is what we get by making a transition from state p on input a, the last symbol of w. i.e. $\hat{\delta}_{\parallel}(q, w) = \delta(p, a)$

Extended Transition Function of DFA

- Compute $\hat{\boldsymbol{\delta}}_{\parallel}(q_{0}, w)$ for each prefix w of 110101, starting at $\boldsymbol{\epsilon}$ and going in increasing size.
 - $\bullet \ \hat{\delta}(q_0, \epsilon) = q_0.$
 - $\hat{\delta}(q_0, 1) = \delta(\hat{\delta}(q_0, \epsilon), 1) = \delta(q_0, 1) = q_1.$
 - $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0.$
 - $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2.$
 - $\hat{\delta}(q_0, 1101) = \delta(\hat{\delta}(q_0, 110), 1) = \delta(q_2, 1) = q_3.$
 - $\hat{\delta}(q_0, 11010) = \delta(\hat{\delta}(q_0, 1101), 0) = \delta(q_3, 0) = q_1.$
 - $\hat{\delta}(q_0, 110101) = \delta(\hat{\delta}(q_0, 11010), 1) = \delta(q_1, 1) = q_0.$

Since, q0 is final state in example 2 so it is accepted

Extended Transition Function of DFA (Assignment- 2)

- Compute $\hat{\delta}$ (q0,1001)
- Compute $\hat{\delta}_{\parallel}$ (q0, 100)

Language of DFA

- The language of DFA $M = (Q, \Sigma, \delta, q0, F)$ denoted by L(M) is a set of strings over Σ^* that are accepted by M.
- i.e; $L(M) = \{ w / \hat{\delta}_{+}(q0, w) = p \in F \}$
- i.e. the language of a DFA is the set of all strings w that take DFA starting from start state to one of the accepting states.
- The language of DFA is called regular language.

• Construct a DFA, that accepts all the strings over $\Sigma = \{a, b\}$ that do not end with ba.

• DFA accepting all string over $\Sigma = \{0, 1\}$ ending with 3 consecutive 0"s.

• DFA over {a, b} accepting {baa, ab, abb}

• DFA accepting zero or more consecutive 1's. i.e. L $(M) = \{1n \mid n = 0, 1, 2, \dots\}$

• DFA over {0, 1} accepting {1, 01}

• DFA over {a, b} that accepts the strings ending with abb.

Assignment-3

- Give the DFA for the language of string over {0.1} in which each string end with 11
- Give the DFA accepting the string over {a,b} such that each string does not end with ab.
- Give the DFA for the language of string over {a,b} such that each string contain aba as substring
- Give the DFA for the langague of string over {0,1} such that each string start with 01
- Give the DFA for the langague of string over {0,1} such that set of all string ending in 00.
- Give the DFA for the langague of string over {0,1} such that set of strings with 011 as a substring.

- NFA can also be interpreted by a quintuple; $(Q, \Sigma, \delta, q_0, F)$
 - Where,

Q = A finite set of states

 Σ = A finite set of input symbols, (alphabets)

 $\delta =$ A transition function that maps state symbol pair to sets of states i.e. δ is Q × Σ =2 Q

A state $q_0 \in Q$, that is distinguished as a start (initial) state.

A set of final states F distinguished as accepting (final) state. $F \subseteq Q$.

• Unlike DFA, a transition function in NFA takes the NFA from one state to several states just with a single input.

Fig: NFA accepting all strings that end in 01

• For input sequence w = 00101, the NFA can be in the states during the processing of the input are as:

$$Q = \{q_0, q_1, q_2\}$$
$$\sum = \{0, 1\}$$
$$q_0 = \{q_0\}$$
$$F = \{q_2\}$$

Transition table:

δ:	0	1
$\rightarrow q_0$	$\{q_{0,}q_{1}\}$	{q ₀ }
\mathbf{q}_1	{φ}	{q ₂ }
* q 2	$\{\phi\}$	{φ}

• NFA over {0, 1} accepting strings {0, 01, 11}

Transition table:

δ:	0	1
\rightarrow q ₀	$\{q_{0,}q_{2}\}$	$\{q_1\}$
q_1	{φ}	$\{q_2\}$
*q2	{φ}	{ φ }

Computation tree for 01;

Final, so 01 is accepted

Computation tree for 0110

dies, so 0110 is not accepted

The Extended transition function of NFA

Definition by Induction:

- Basis Step:
 - $\hat{\delta}(q, \epsilon) = \{q\}$ i.e. reading no input symbol remains into the same state.
- Induction:
 - Let w be a string from Σ * such that w = xa, where x is a substring of without last symbol a.
 - Also let, $\hat{\delta}(q, x) = \{p_1, p_2, p_3, ...p_k\}$
 - and $\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, \dots, r_m\}$
 - Then, $\hat{\delta}(q, w) = \{r_1, r_2, r_3, ...r_m\}$
- Thus, to compute $\hat{\delta}(q, w)$ we first compute $\hat{\delta}(q, x)$ & then following any transition from each of these states with input a.

The Extended transition function of NFA

• Use of $\hat{\delta}$ for the processing of input 00101 by NFA

- 1. $\hat{\delta}(q_0, \epsilon) = \{q_0\}.$
- 2. $\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}.$
- 3. $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}.$
- 4. $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}.$
- 5. $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}.$
- 6. $\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}.$

Assignment-4

- compute for $\hat{\delta}(q_0, 01101)$
- Compute for $\hat{\delta}$ (q₀, 1101011)
- Compute for $\hat{\delta}$ (q₀, 1010101)

Language of NFA

- The language of NFA, $M = (Q, \Sigma, \delta, q0, F)$, denoted by L (M) is;
 - $L(M) = \{w/\hat{\delta}(q, w) \cap F \neq \phi\}$
 - i.e. L(M) is the set of strings w in $\sum *$ such that $\hat{\delta}$ (q0,w) contains at least one state accepting state.

• Construct a NFA over {a, b} that accepts strings having aa as substring.

• NFA for strings over {0, 1} that contain substring 0110 or 1001

• NFA over {a, b} that have "a" as one of the last 3 characters.

• NFA over {a, b} that accepts strings starting with a and ending with b.

• Design a NFA for the language over {0, 1} that have at least two consecutive 0"s or 1"s

• Design a NFA for the language over {0, 1} that have at least two consecutive 0"s or 1"s

Assignment-5

- Give a NFA to accept the language of string over {a.b} in which each string contain abb as substring.
- Give a NFA which accepts binary strings which have at least one pair of "00" or one pair of "11"

Equivalence of DFA and NFA

- every language that can be described by some NFA can also be described by some DFA
- The proof that DFA's can do whatever NFA's can do involves an important construction called **subset construction** because it involves constructing all subsets of the set of states of the NFA.
- If NFA has n-states, the DFA can have 2n states (at most), although it usually has many less.

Subset Construction Algorithm

- To convert a NFA, $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ into an equivalent DFA $D = (Q_D, \Sigma, \delta_D, q_0, F_D)$, we have following steps.
- The start state of D is the set of start states of N i.e. if q_0 is start state of N then D has start state as $\{q_0\}$.
- Q_D is set of subsets of Q_N i.e. $Q_D = 2^{QN}$. So, Q_D is power set of Q_N . So if Q_N has n states then Q_D will have 2_n states. However, all of these states may not be accessible from start state of Q_D so they can be eliminated. So Q_D will have less than 2_n states.

Subset Construction Algorithm (Contd...)

- F_D is set of subsets S of Q_N such that S \cap $F_N \neq \phi$ i.e. F_D is all sets of N's states that include at least one final state of N.
- For each set $S \subseteq Q_N$ & each input $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \text{ in } S} \delta_N(p, a)$$

• i.e. to compute δ_D (S, a) we look all the states p in S, see what states N goes to from p on input a, and take the union of all those states.

Subset Construction Algorithm (Contd...)

Table: Complete Subset construction of above NFA

Reduction of NFA to DFA

• The same table(Previous slide) can be represented with renaming the state on table entry as

δ:	О	1	
A	A	A	
→ B	E	В	
C	A	D	
*D	A	A	
E	E	F	
*F	E	В	
*G	A	D	
*H	Е	F	

Reduction of NFA to DFA

• The equivalent DFA is

Assignment-6

Convert the NFA to DFA

Convert the NFA to DFA

Assignment-6

• Convert the NFA to DFA

For any NFA, $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ accepting language $L \subseteq \Sigma^*$ there is a DFA $D = (Q_D, \Sigma, \delta_D, q_0', F_D)$ that also accepts L i.e. L (N) = L(D).

Proof:

• The fact that D accepts the same language as N is as; for any string $w \in \Sigma^*$;

$$\hat{\delta}_{N}(q0, w) = \hat{\delta}_{D}(q0, w)$$

• Thus, we prove this fact by induction on length of w.

Basis Step:

• Let $|\mathbf{w}| = 0$, then $\mathbf{w} = \varepsilon$, $\tilde{\delta}_{N}(\mathbf{q}0, \varepsilon) = \{\mathbf{q}0\} = \mathbf{q}0 = \hat{\delta}_{D}(\mathbf{q}0, \varepsilon)$

• Induction step:

- Let |w| = n + 1 is a string such that w = xa & |x| = n, |a| = 1; a being last symbol.
- Let the inductive hypothesis is that x satisfies.
- Thus,
 - $\hat{\delta}_{D}(q0, x) = \hat{\delta}_{N}(q0, x)$, let these states be $\{p_1, p_2, p_3, \dots p_k\}$

```
Also
```

```
\begin{split} \hat{\delta}_{D} \left( q0', w \right) &= \hat{\delta}_{D} \left( q0', xa \right) \\ &= \delta_{D} \left( \hat{\delta}_{D} \left( q0', x \right), a \right) \\ &= \delta_{D} \left( \hat{\delta}_{N} \left( q0, x \right), a \right) \\ &= \delta_{D} \left( \delta_{N} \left( q0, x \right), a \right) \quad [\text{Since, by the inductive step as it is true for } x] \\ &= \delta_{D} \left( \{ p1, p2, p3, \dots pk \}, a \right) \left[ \text{Since, from inductive step} \right] \end{split}
```

- Now, from subset construction, we can write,
 - $\delta_{\rm D} (\{p_1, p_2, p_3, \dots p_k\}, a) = U\delta_{\rm N}(p_i, a)$
- so, we have
 - $\hat{\delta}_{D}(q_0, w) = U\delta_{N}(p_i, a)....(2)$
- Now we conclude from 1 and 2 that $\hat{\delta}_{N}(q0, w) = \hat{\delta}_{D}(q0', w)$
- Hence, if this relation is true for |x| = n, then it is also true for |w| = n + 1.
 - ∴DFA D & NFA N accepts the same language.
 - i.e. L(D) = L(N) Proved.

A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof:

- "if" part (A language is accepted by some DFA if L is accepted by some NFA):
 - It is the subset construction and is proved in previous theorem.
- Only if part (a language is accepted by some NFA if L is accepted by some DFA):
 - Here we have to convert the DFA into an identical NFA.
 - To show if L is accepted by D then it is also accepted by N
 - it is sufficient to show, for any string $w \in \Sigma^*$,

$$\hat{\delta}_{\mathrm{D}}(\mathbf{q}_{0},\mathbf{w}) = \hat{\delta}_{\mathrm{N}}(\mathbf{q}_{0},\mathbf{w})$$

• We can proof this fact using induction on length of the string

• Basis step:

- Let |w| = 0 i.e. $w = \varepsilon$
- $\hat{\delta}_{D}(q_0, w) = \hat{\delta}_{D}(q_0, \varepsilon) = q_0$
- $\hat{\delta}_{N}(q_0, w) = \hat{\delta}_{N}(q_0, \varepsilon) = \{q_0\}$
- $\hat{\delta}_{D}(q_0, w) = \hat{\delta}_{N}(q_0, w)$ for |w| = 0 is true.

• Induction:

- Let |w| = n + 1 & w = xa. Where |x| = n & |a| = 1; a being the last symbol.
- Let the inductive hypothesis is that it is true for x.
- : if $\hat{\delta}_{D}(q_0, x) = p$, then $\hat{\delta}_{N}(q_0, x) = \{p\}$
- i.e. $\hat{\delta}_{D}(q_{0}, x) = \hat{\delta}_{N}(q_{0}, x)$

```
Now,
           \hat{\delta}_{D}(q0, w) = \hat{\delta}_{D}(q0, xa)
                                 =\delta_{\rm D}\left(\hat{\delta}_{\rm D}\left(q0,x\right),a\right)
                                  =\delta_{\rm D} (p, a) [ from inductive step \delta_{\rm D} (q0, x,=p]
                                  = r, say
Now,
           \hat{\delta}_{N}(q0, w) = \hat{\delta}_{N}(q0, xa)
                                 =\delta_{N}(\hat{\delta}_{N}(q0, x), a) [from inductive steps]
                                  =\delta_{N}(\{p\},a)
                                  =r [from the rule that define \delta_N)
Hence proved. i.e. \hat{\delta}_D (q0, w)= \hat{\delta}_N (q0, w)
```

Finite Automaton with Epsilon Transition (ε - NFA)

- A NFA with ε -transition is defined by five tuples (Q, Σ , δ , q₀, F), where;
 - Q = set of finite states
 - Σ = set of finite input symbols
 - q_0 = Initial state, $q_0 \in Q$
 - F = set of final states; $F \subseteq Q$
 - $\delta = a$ transition function that maps; $Q \times \Sigma \cup \{\epsilon\} \rightarrow 2^{Q}$

Finite Automaton with Epsilon Transition (ε - NFA)

• Examples:

• This accepted the language {a,aa,ab,abb,b,bbb,....}

Finite Automaton with Epsilon Transition (ϵ - NFA)

Examples

Exercise

- Design ε -NFA for the following languages
 - The set of strings consisting of zero or more a's followed by zero or more b's , followed by zero or more c's.
 - The set of strings that consists of either 01 repeated one or more times or 010 repeated one or more times.

Epsilon Closure of a State

- ϵ -closure of a state 'q' can be obtained by following all transitions out of q that are labeled ϵ .
- Formally, we can define ε -closure of the state q as;
- **Basis**: state q is in ε-closure (q).
- Induction: If state q is reached with ε -transition from state p then, p is in ε -closure (q). And if there is an arc from p to r labeled ε , then r is in ε -closure (q) and so on.
- If δ is the transition function of ϵ -NFA involved , and p is in ϵ -closure (q), then ϵ -closure (q) also contains all the states in $\delta(p,\epsilon)$.

Epsilon Closure of a State

• Example:

Fig: Some states and transitions

• ε -closure(1) = {1,2,3,4,6}

Extended Transition Function of ε-NFA

BASIS STEP

• $\hat{\delta}$ (q, ε) = ε -closure (q)

INDUCTION STEP

- Let w = xa be a string, where x is substring of w without last symbol a and $a \in \Sigma$ but $a \neq \varepsilon$.
- Let $\hat{\delta}$ $(q, x) = \{p_1, p_2, \dots p_k\}$ i.e. pi's are the states that can be reached from q following path labeled x which can end with many ε & can have many ε .
- Also Let, $\bigcup_{i=1}^k \delta(p_i, a)$ be the set $\{r_1, r_2, r_3, \dots, r_m\}$
- Then, $\hat{\delta}(q, w) = \varepsilon$ -closure($\{r_1, r_2, r_3, \dots, r_m\}$)

Extended Transition Function of ε-NFA

compute for string ba

- $\hat{\delta}$ (p, ε) = ε -closure(p) = {p,q,r,u}
- Compute for b
 - i.e. $\delta(p,b)U \delta(q,b)U \delta(r,b)U \delta(u,b) = \{s,v\}$
 - ϵ -colsure(s)U ϵ -closure(v)={s,t,v}
- Computer for next input 'a'
 - $\delta(s,a)U \delta(t,a)U \delta(v,a) = \{y,w\}$
 - ε -closure(y)U ε -closure(w)={y,w}
- The final result set contains the one of the final state so the string is accepted.

- **Step 1** Find out all the ε-transitions from each state from Q. That will be called as ε-closure(qi) where, qi ∈ Q.
- Step 2 Then, δ 1 transitions can be obtained. The δ 1 transitions means an ϵ -closure on δ moves.
- **Step 3** Step 2 is repeated for each input symbol and for each state of given NFA.
- Step 4 By using the resultant status, the transition table for equivalent NFA without ε can be built.
- NFA with ε to without ε is as follows
 - $\delta 1(q,a) = \epsilon$ -closure $(\delta(\delta^{(q,\epsilon)},a))$ where, $\delta^{(q,\epsilon)} = \epsilon$ -closure(q)

• Convert the given NFA with epsilon to NFA without epsilon.

- We will first obtain \(\mathcal{E}\)-closure of each state
 - ε -closure(q0) = {q0,q1,q2}
 - ϵ -closure(q1) = {q1,q2}
 - ε -closure(q2) = {q2}

- Now we will obtain $\delta 1$ transitions for each state on each input symbol
 - $\delta 1(q0, 0) = \epsilon$ -closure($\delta(\delta^{(q0, \epsilon), 0)}$) • = ε -closure($\delta(\varepsilon$ -closure(q0),0)) • = ε -closure($\delta(q0,q1,q2), 0$)) = ε -closure($\delta(q0, 0) \cup \delta(q1, 0) \cup \delta(q2, 0)$) = ε -closure(q0 U Φ U Φ) $= \varepsilon\text{-closure}(q0) = \{q0, q1, q2\}$ • $\delta'(q0, 1) = \epsilon$ -closure($\delta(\delta^{(q0, \epsilon), 1)}$) • = ε -closure($\delta(q0,q1,q2), 1$)) = ϵ -closure($\delta(q0, 1) \cup \delta(q1, 1) \cup \delta(q2, 1)$) = ε -closure(Φ Uq1 U Φ) = ε -closure(q1) • = $\{q1, q2\}$

```
• \delta 1(q0, 2) = \epsilon-closure(\delta(\delta^{(q0, \epsilon), 2)})
                        • = \varepsilon-closure(\delta(q0,q1,q2), 2))
                        • = \varepsilon-closure(\delta(q0, 2) \cup \delta(q1, 2) \cup \delta(q2, 2))
                        • = \varepsilon-closure(\Phi U \Phi U q2)
                        • = \varepsilon-closure(q2)
                        • = \{q2\}
• \delta 1(q1, 0) = \epsilon-closure(\delta(\delta^{(q1, \epsilon), 0)})
                        • = \varepsilon-closure(\delta(q1,q2), 0))
                            = \varepsilon-closure(\delta(q1, 0) \cup \delta(q2, 0))
                            = \varepsilon-closure(\Phi \cup \Phi)
                        • = \varepsilon-closure(\Phi)
```

= Ф

```
• \delta 1(q1,1) = \epsilon-closure(\delta(\delta^{(q1,\epsilon),1)})
             _{o} = ε-closure(\delta(q1, 1) U \delta(q2, 1))
             _{0} = ε-closure(q1 U \Phi)
              o = \varepsilon-closure(q1)
             o = \{q1,q2\}
• \delta 1(q1, 2) = \epsilon-closure(\delta(\delta^{(q1, \epsilon), 2)})
              o = ε-closure(δ(q1,q2), 2))
             o = ε-closure(\delta(q1, 2) \cup \delta(q2, 2))
             _{o} = ε-closure(\Phi U q2)
             _{o} = \epsilon-closure(q2)
             o = \{q2\}
```

```
• \delta 1(q2, 0) = \epsilon-closure(\delta(\delta^{(q2, \epsilon), 0)})
                        • = \varepsilon-closure(\delta(q2), 0))
                        • = \varepsilon-closure(\delta(q2, 0))
                           = \varepsilon-closure(\Phi)
                         = Φ
• \delta 1(q2, 1) = \epsilon-closure(\delta(\delta^{(q2, \epsilon), 1)})
                        • = \varepsilon-closure(\delta(q2), 1)
                            = \varepsilon-closure(\delta(q2, 1))
                            = \varepsilon-closure(\Phi)
                         = Φ
• \delta 1(q2, 2) = \epsilon-closure(\delta(\delta^{(q2, \epsilon),)})
                        • = \varepsilon-closure(\delta(q2), 2))
                        • = \varepsilon-closure(\delta(q2, 2))
                         • = \varepsilon-closure(q2)
                        • = \{q2\}
```

- summarize all the computed δ 1 transitions as given below -
 - $\delta 1(q0,0) = \{q0,q1,q2\}$
 - $\delta 1(q0,1) = \{q1,q2\}$
 - $\delta 1(q0,2) = \{q2\}$
 - $\delta 1(q1,0) = \{ \Phi \}$
 - $\delta 1(q1,1) = \{q1,q2\}$
 - $\delta 1(q1,2) = \{q2\}$
 - $\delta 1(q2,0) = \{ \Phi \}$
 - $\delta 1(q2,1) = \{ \Phi \}$
 - $\delta 1(q2,2) = \{q2\}$

• The **transition table** is given below —

States/Inputs	0	1	2
q0	{q0,q1,q2}	{q1,q2}	{q2}
q1	Ф	{q1,q2}	{q2}
q2	Ф	Ф	{q2}

• The NFA without epsilon is given below — Here, q0, q1, q2 are final states because \(\mathcal{\epsilon}\)-closure(q0), \(\mathcal{\epsilon}\)-closure(q1) and \(\mathcal{\epsilon}\)-closure(q2) contain a final state q2.

Equivalence of NFA and ϵ –NFA

• every language that can be described by some NFA can also be described by some ε-NFA.

Equivalence of DFA and ε – NFA

• every language that can be described by some DFA can also be described by some $\epsilon\text{-NFA}$.

Finite State Machines with output

- Finite automata may have outputs corresponding to each transition.
- There are two types of finite state machines that generate output —
 - Moore machine
 - Mealy Machines

Moore Machine

- Moore machine is an FSM whose outputs depend on only the present state.
- A Moore machine can be described by a 6 tuple (Q, Σ , O, δ , X, q₀) where
 - **Q** is a finite set of states.
 - \sum is a finite set of symbols called the input alphabet.
 - O is a finite set of symbols called the output alphabet.
 - δ is the input transition function where $\delta: Q \times \Sigma \to Q$
 - X is the output transition function where X: $Q \rightarrow O$
 - $\mathbf{q_0}$ is the initial state from where any input is processed ($\mathbf{q_0} \in \mathbb{Q}$).

Moore Machine

Present	Next State		Output
State	Input =0	Input = 1	
→a	b	С	x2
b	b	d	x1
С	d	С	x2
d	d	d	x 3

Mealy Machine

- A Mealy Machine is an FSM whose output depends on the present state as well as the present input.
- It can be described by a 6 tuple $(Q, \Sigma, O, \delta, X, q_0)$ where
 - **Q** is a finite set of states.
 - \sum is a finite set of symbols called the input alphabet.
 - O is a finite set of symbols called the output alphabet.
 - δ is the input transition function where $\delta: Q \times \Sigma \to Q$
 - **X** is the output transition function where X: $Q \times \sum \rightarrow O$
 - $\mathbf{q_0}$ is the initial state from where any input is processed ($\mathbf{q_0} \in \mathbb{Q}$).

Mealy Machine

	Next State			
Present State	Input = a		Input = b	
	State	Output	State	Output
→ q0	q0	0	q1	1
q1	q1	1	q0	0