Testes de hipóteses

- Hipótese nula e alternativa;
- Hipóteses simples e compostas;
- Região crítica e estatística teste;
- Função poder;
- Tipos de erro (I e II);
- P-valor;

No teste de hipóteses estatísticas, identificamos partições do espaço de parâmetros que codificam as hipóteses de interesse.

Definição 40 (Hipótese nula e hipótese alternativa)

Considere o espaço de parâmetros Ω e defina $\Omega_0, \Omega_1 \subset \Omega$ de modo que $\Omega_0 \cup \Omega_1 = \Omega$ e $\Omega_0 \cap \Omega_1 = \emptyset$. Definimos

$$H_0 := \theta \in \Omega_0$$
,

$$H_1 := \theta \in \Omega_1$$
.

Dizemos que H_0 é a **hipótese nula** e H_1 é a **hipótese alternativa**. Se $\theta \in \Omega_1$, dizemos que rejeitamos a hipótese nula. Por outro lado, se $\theta \in \Omega_0$ dizemos que não rejeitamos ou falhamos em rejeitar H_0 .

Suponha que Palmirinha recebeu uma carta da Associação Nacional da Pamonha Gourmet (ANPG), dizendo que a pamonha deve ter, no mínimo, 7 mg/L de concentração de amido. Supondo que a concentração de amido tenha distribuição Normal com parâmetros μ (desconhecido) e σ^2 (conhecido), Palmirinha rabisca num papel:

$$H_0 := \mu \in [7, \infty),$$

$$H_1 := \mu \in (0,7).$$

Dependendo do tipo de partição do espaço de parâmetros, as hipóteses recebem classificações diferentes.

Definição 41 (Hipótese simples e hipótese compostas)

Dizemos que uma hipótese H_i , é **simples**, se $\Omega_i = \{\theta_i\}$, isto é, se a partição correspondente é um ponto. Uma hipótese é dita **composta** se não é simples.

Exemplo 17 (Hipótese simples sobre a média)

Suponha que estamos estudando o efeito de uma droga na redução da pressão arterial. Modelamos esta redução como uma variável aleatória X com esperança $E[X] =: \theta$. É costumaz testar a hipótese $H_0: \theta = 0$, que chamamos, especificamente nesse caso, de "hipótese de efeito nulo".

Em analogia com os intervalos de confiança, também podemos entender as hipóteses como sendo unilaterais ou bilaterais.

Definição 42 (Hipótese unilateral e hipótese bilateral)

Uma hipótese da forma $H_0: \theta \leq \theta_0$ ou $H_0: \theta \geq \theta_0$ é dita unilateral ("one-sided"), enquanto hipóteses da forma $H_0: \theta \neq \theta_0$ são ditas bilaterais ("two-sided").

Observação 20 (Hipóteses bilaterais como consequência de H_0 simples)

Se H_0 é simples, a hipótese alternativa H_1 será, em geral, bilateral.

Exemplo 18 (Teste para a média de uma Normal com variância conhecida)

Suponha que $X = \{X_1, X_2, ..., X_n\}$ é uma amostra aleatória de uma Normal com média μ e variância σ^2 conhecida. Queremos testar a hipótese

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0.$$

Intuitivamente, queremos rejeitar H_0 se \bar{X}_n está longe de μ_0 . Para isso definimos

$$S_0:=\left\{\mathbf{x}:-\mathbf{c}\leq \bar{X}_n-\mu_0\leq \mathbf{c}\right\},\,$$

de modo que $S_1 = S_0^C$. Então, seguimos o procedimento:

$$X \in S_1 \implies rejeitar H_0$$
,

$$X \in S_0 \implies n\~ao rejeitar H_0.$$

Uma maneira mais simples de expressar o procedimento acima é definir $T:=|\bar{X}_n-\mu_0|$ e rejeitar H_0 se $T\geq c$.

Definição 43 (Região crítica)

O conjunto

$$S_1:=\left\{\boldsymbol{x}:\left|\bar{X}_n-\mu_0\right|\geq c\right\},\,$$

é chamado de região crítica do teste.

Analogamente, considere a estatística T = r(X) e tome $R \subseteq \mathbb{R}$. Então podemos definir

Definição 44 (Região de rejeição)

Se $R \subseteq \mathbb{R}$ é tal que dizemos que "rejeitamos H_0 se $T \in R$ ", então R é chamada uma **região de rejeição** para a estatística T e o teste associado.

Dividindo o espaço amostral e o espaço de parâmetros

Começamos com uma observação:

Observação 21 (Correspondência entre região crítica e região de rejeição)

Podemos relacionar os conceitos de região crítica e região de rejeição notando queremos

$$S_1:=\{x:r(x)\in R\}.$$

Ideia 4 (Dividindo o espaço amostral e o espaço de parâmetros)

Suponha que temos um modelo estatístico dado pela distribuição $f(x \mid \theta)$, com $x \in \mathcal{X}$ e $\theta \in \Omega$. Desta forma, uma amostra aleatória $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ mora em \mathcal{X}^n . Para formular uma hipótese estatística, estabelecemos uma partição do espaço de parâmetros Ω em Ω_0 e Ω_1 disjuntos. Isto, por sua vez, induz uma partição $S_0, S_1 \in \mathcal{X}^n$. Estes objetos, embora, relacionados, **não são a mesma coisa**. Por exemplo, nós observamos se $\mathbf{X} \in S_0$ ou $\mathbf{X} \in S_1$, mas raramente "observamos" se $\theta \in \Omega_0$ ou $\theta \in \Omega_1$.

Nossa capacidade de rejeitar H_0 depende do valor de $\theta \in \Omega$. Esta dependência é capturada pela função poder.

Definição 45 (Função poder)

Seja δ um procedimento de aceitação/rejeição como visto anteriormente. A **função poder** é definida como

$$\pi(\theta \mid \delta) := \Pr(\mathbf{X} \in S_1 \mid \theta) = \Pr(\mathbf{T} \in R \mid \theta), \theta \in \Omega.$$
 (28)

Idealmente, queremos $\pi(\theta \mid \delta) = 1$ para $\theta \in \Omega_1$ (por quê?).

Considere a situação em que X_1, X_2, \ldots, X_n vêm de uma Normal com média μ , desconhecida, e variância σ^2 , conhecida.

Exemplo 19 (Função poder no teste para média da Normal (σ^2 conhecida))

Lembrando que $T = |\bar{X}_n - \mu_0|$, e tomando δ como o procedimento descrito acima, escrevemos

$$\pi(\mu \mid \delta) = \Pr(T \in R \mid \mu),$$

$$= \Pr(\bar{X}_n \ge \mu_0 + c \mid \mu) + \Pr(\bar{X}_n \le \mu_0 - c \mid \mu),$$

$$= \left\{1 - \Phi\left(\sqrt{n}\frac{\mu_0 + c - \mu}{\sigma}\right)\right\} + \Phi\left(\sqrt{n}\frac{\mu_0 - c - \mu}{\sigma}\right).$$

Quando testamos uma hipótese, nunca estamos livres de cometer um erro. É conveniente classificar os possíveis erros em duas categorias.

Definição 46 (Tipos de erros)

Nome	Erro cometido		
Erro tipo I	Rejeitar H ₀ quando ela é verdadeira .		
Erro tipo II	Falhar em rejeitar H ₀ quando ela é falsa .		

Isto nos leva a concluir que

Situação	Quantidade	Interpretação
$ heta \in \Omega_{0}$	$\pi(\theta \mid \delta)$	Pr(Erro tipo I)
$\theta\in\Omega_{1}$	$1 - \pi(\theta \mid \delta)$	Pr(Erro tipo II)

Idealmente, gostaríamos de um teste δ para o qual as probabilidades de erro fossem as menores possíveis. Infelizmente, em geral, diminuir o erro tipo I implica aumentar o erro tipo II.

Em geral, precisamos encontrar um equilíbrio entre os tipos de erros.

Ideia 5 (Encontrando um balanço entre erro tipo I e tipo II)

Tome $0 < \alpha_0 < 1$. Nós construímos o procedimento δ^* de modo que

$$\pi(\theta \mid \delta^*) \le \alpha_0, \ \forall \ \theta \in \Omega. \tag{29}$$

Então, entre todos os testes que satisfazem (29), buscamos o teste que tenha $\pi(\theta \mid \delta^*)$ máxima em $\theta \in \Omega_1$.

Definição 47 (Tamanho/nível de um teste)

Dizemos que um teste, δ , tem **tamanho** ou **nível de significância** $\alpha(\delta)$, com

$$\alpha(\delta) := \sup_{\theta \in \Omega_{\mathbf{0}}} \pi(\theta \mid \delta).$$

Um teste que atende à condição anterior (29) tem que tamanho?

Observação 22 (Tamanho de um teste com H_0 simples)

Se H_0 é simples, então $\alpha(\delta) = \pi(\theta_0 \mid \delta)$.

Exemplo 20 (Teste para o parâmetro de uma uniforme)

Suponha que $X_1, X_2, ..., X_n$ tem distribuição Uniforme em $[0, \theta]$, com θ desconhecido, e que aventamos as seguintes hipóteses:

$$H_0: 3 \le \theta \le 4$$
,

$$H_1: \theta < 3$$
 ou $\theta > 4$

Lembre que $\hat{\theta}_{EMV} = \max\{X_1, X_2, \dots, X_n\}$ e suponha que temos um teste δ da forma

Condição	Ação
$\hat{\theta}_{EMV} \notin (2.9, 4)$	Rejeitar H ₀
$\hat{ heta}_{ extit{EMV}} \in (2.9,4)$	Falhar em rejeitar H ₀ .

- Qual a região de rejeição para δ ?
- Como escrever $\pi(\theta \mid \delta)$?
- Qual o tamanho de δ ?

Em geral, sempre conseguimos construir um teste que tenha o tamanho desejado.

Observação 23 (Construindo um teste de tamanho α_0)

Se T = r(X) é uma estatística, podemos quase sempre encontrar c tal que valha

$$\sup_{\theta \in \Omega_{\mathbf{0}}} \Pr\left(T \ge c \mid \theta\right) \le \alpha_{\mathbf{0}},\tag{30}$$

ou seja, encontrar c tal que δ tenha tamanho (ou nível de significância) α_0 .

Começamos com uma observação:

Observação 24 (Testes são decisões binárias)

Um teste de hipótese reduz a informação contida nos dados a uma decisão binária: rejeitar ou não H_0 . Se observamos $T=c+10^{-10}$ ou $T=c+10^{10}$, tomamos a mesma decisão de rejeitar H_0 ao nível α_0 .

Ao invés disso, podemos reportar o maior nível de significância que ainda levaria à rejeição de H_0 .

Definição 48 (O p-valor)

Para cada t, seja δ_t o teste que rejeita H_0 se $T \ge t$. Então, quando T = t, o **p-valor** vale

$$p(t) := \sup_{\theta \in \Omega_{\mathbf{0}}} \pi(\theta \mid \delta_t) = \sup_{\theta \in \Omega_{\mathbf{0}}} \Pr(T \ge t \mid \theta), \tag{31}$$

ou seja, o p-valor é o tamanho do teste δ_t .

Exemplo: tá me enganando, parceiro?

Vamos voltar a uma pergunta não respondida lá no início do curso. Suponha que você encontre um "artista" de rua, que joga uma moeda e pede para as pessoas apostarem se vai dar cara ou coroa. Conhencendo estatística e probabilidade, você decide (i) observar o jogo à distância para coletar alguns dados (ii) fazer algumas contas para ver se vale a pena apostar.

Pergunta 4 (Esta moeda é justa? cont. I)

Suponha que uma moeda tenha sido lançada dez vezes, obtendo o seguinte resultado:

KKKCKCCCKC

- a) Esta moeda é justa?
- b) Quanto eu espero ganhar se apostar R\$ 100,00 que é justa?

Hoje vamos dar uma resposta parcial à pergunta a).

O que aprendemos?

- P Hipóteses nula e alternativa, simples e composta;
- Região crítica e região de rejeição;
- Função poder; "O poder de um teste é a probabilidade de rejeitarmos H_0 caso ela seja falsa"
- Frro tipo I e tipo II;
 - \diamond Tipo I: Rejeitar erroneamente H_0 ;
 - \diamond Tipo II: Falhar em rejeitar H_0 quando ela é falsa.
- P-valor;

"O p-valor pode ser interpretado como a probabilidade, sob H_0 , de observarmos uma estatística tão ou mais extrema do que aquela observada"

Leitura recomendada

- De Groot seção 9.1;
- * De Groot seções 9.2 e 9.3.
- Próxima aula: De Groot, seção 9.1 (razão de verossimilhanças);
- Exercícios recomendados
 - De Groot.

Seção 9.1: 3, 8 e 13.

* Seção 9.1: 19 e 21.