Triangulation of the boundary of a 2-chain *

Alberto Paoluzzi

December 24, 2015

Abstract

In this module we perform the whole set of manipulations necessary to triangulate the boundary polygon of a 2-chain using a standard triangulation algorithm [] implemented by the poly2tri python package, largely diffuse in games applications. Notice that the input data may be of very general kind, corresponding to polygons that are non-connected, non-manifold w/o nested polygons of general kind. Conversely, the used library allows only for quite special polygons, with a simple exterior boundary and multiple (non-touching) internal holes, and without repeated vertices. The used package is based on the paper "Sweep-line algorithm for constrained Delaunay triangulation" by V. Domiter and B. Zalik [D08].

Contents

1	Fro	m a finite set of 2D segments to a regular 2-complex	2			
	1.1	Definitions and methodology	4			
		1.1.1 Input preprocessing				
		1.1.2 Algorithm: LAR generation				
	1.2	Construction of LAR of 2-faces	7			
	1.3	Solid display of a 2-complex	7			
2	Implementation					
	2.1	Containments between non intersecting cycles	8			
	2.2	Reduction of multiple cycles to a single polyline				
	2.3	Monocyclic polygons using bridge-edges				
	2.4	Visualization of a 2D complex and 2-chain				
		Point in polygon classification				
3	Exp	porting the library	25			

^{*}This document is part of the *Linear Algebraic Representation with CoChains* (LAR-CC) framework [CL13]. December 24, 2015

4 Testing		ting	25
	4.1	Drawing multiply-connected boundary polylines	26
	4.2	Boundary polylines	28
	4.3	Testing with random polygons	30

1 From a finite set of 2D segments to a regular 2-complex

Let suppose that a 2-complex in the plane is given as a LAR triple (V,FV,EV), and that a 2-chain chain $\in \mathbb{Z}_2^n$ is also given, with $\mathbb{Z}_2 = \{0,1\}$ and n = |V|. The aim of this module is to develop a methodology and an implementation to compute a triangulation of any 2-chain extracted from a 2-complex.

This first section will concentrate on (1) how to generate a regular 2-complex starting from a finite set of 2D segments, i.e. how to generate a LAR triple (V,FV,EV), and (2) how to triangulate any 2-chain, and in particular a single 2-cell in 2D, using a standard CDT (Constrained Delaunay Triangulation) algorithm that does not allow for polygons with repeated vertices.

The first point is not trivial, since a general 2-chain may contain 2-cells that are not contractible to a point (since they may contain any finite number of internal holes), and furthermore may be non-manifold, i.e. with boundary vertices incident on more than 2 boundary edges. In addition, in the general case, holes of 2-cells may contain other 2-cells, possibly with holes, and so on.

In particular, the presence of non-manifold vertices is the common case in random generation of complexes of polygons in the plane, and/or for the typical 2-chain extracted from a general 2-complex. In order of preparing the input for the triangulation algorithm, the boundary 0-chain extracted from the general 2-chain must undergo to a circular ordering, producing—in the non-manifold case—any finite number of vertex repetitions. Repeated vertices will be disambiguated by applying small local perturbations towards the interior of the cycle. Anyway, boundary cycles will be perturbed only for drawing solidly the 2-chain as a single polygon with holes, whereas the exact LAR of the 2-complex will not be modified.

1.1 Definitions and methodology

First we provide some definitions useful in what follows, then we formalize the implemented methods.

Definition 1. (Regular complex) A d-complex is regular when any k-cell $(0 \le k \le d)$ is contained in a d-cell.

Definition 2. (Circular ordering) A 0-chain is circularly ordered when every consecutive pair of its 0-cells (module the length of the chain) maps to a 1-cell of the boundary 1-chain of a 2-chain.

1.1.1 Input preprocessing

The input is given by m line segments in the plane, with $p \leq 2m$ extreme points.

First we compute all the k intersection points internal to the lines, using adequate data structures and algorithms to accelerate the search. This problem is developed within the inters module, and implemented in the larlib sub-package named inters.py.

The arrangement of lines is correspondingly updated—by splitting the input lines on their *internal* intersection points—so that the splitted line segments may possibly intersect only on extreme points.

Let consider the undirected graph G = (N, A), where the set of nodes N is given by the extreme points of splitted segments, and compute the set $\mathcal{G} = \{G_i\}_{i \in I}$ of maximal biconnected components of G. Suppose \mathcal{G} nonempty.

Definition 3. (Vertices) The union of node sets of biconnected components provides the vertex set $V = \bigcup_{i \in I} N_i$. This one supplies the geometric embedding of the 0-cells of the 2-complex.

Definition 4. (Edges) The disjoint union of arcs of biconnected components provides the edge set $EV = \bigcup_{i \in I} A_i$. It supplies an indexed array of pairs of node indices, i.e. a LAR representation of the 1-cells of the 2-complex.

Definition 5. (Cycles) The boundaries of 2-chains, corresponding one-to-one to the biconnected components $G_i \in \mathcal{G}$ considered as a plane partition, are closed 1-chains called cicles $\mathcal{C} = \{\partial G_i\}_{i \in I}$.

A cycle may be represented either as an unordered set of 1-cells (1-chain) or as an ordered set of 0-cells (0-chain), that we call 1-cycle and 0-cycle, respectively.

Definition 6. (Manifold and non-manifold cycles) A boundary 1-chain with a number n of both 1-cells and 0-cells may be represented as a permutation of vertex indices. We call it a manifold cycle. Conversely, if the number of its vertices is smaller than the number of its edges, then the cycle is a non-manifold.

A cycle may be decomposed into one or more loops of edges. In a cycle all loops are piecewise-linear curves; they share one or more common vertices in the case of non-manifold cycles. The set of loops, denoted in the following as \mathcal{L} , has cardinality $\ell = |\mathcal{L}|$ greater or equal to the cardinality $n = |\mathcal{G}|$, where the non-manifold vertices have even incidence number greater than 2. The cycles in \mathcal{C} are boundaries of connected regions of the plane. The loops in \mathcal{L} are boundaries of regions contractible to a point.

1.1.2 Algorithm: LAR generation

Every cycle in \mathcal{C} subdivides the plane in 3 regions, of internal, external, and boundary points, respectively. The set union of \mathcal{C} elements provides a *cover* of the plane. Let us consider the collection $\mathring{\mathcal{C}}$ of the open sets of points internal to the cycles.

Definition 7. (Faces) A partition of the plane is given by the collection of closures of the set differences (regularized differences) between every element of $\mathring{\mathcal{C}}$ and all the others. We call this set F, and its elements either faces or 2-cells of the 2-complex.

The triple (V,E,F), as defined before, is a cellular 2-complex defined by the d-cells $(0 \le d \le 2)$ in V,E,F, that provide the 0-, 1-, and 2-cells, respectively.

Statement 1. (LAR) Every cell of a 2-complex as a collection of point-sets is completely is represented discretely, in the sense that can be completely reconstructed, starting from the V subset of its boundary.

The point now is how to construct the array FV starting from the arrays V, EV, and from the set C returned by the function farFromLines() implemented in the larlib module inters.py.

Figure 1: LAR cellular 2-complex generated by an arrangement of line segments: (a) drawing of numbered cells; (b) 2-complex with different colors; (c) exploded view of 2-cells. Notice that every cell is connected, but not necessarily path-connected.

Computing a LAR 2-complex from an arrangement of line segments The computational process discussed in Section 1.1.2 is implemented by the script below. First, the planar graph of edges is built by the lines2lar function, then the set of graph cycles corresponding to the partition of 2D plane induced by the graph is returned by the facesFromComps function. These are sorted in increasing order of the surrounded area, so getting at the end of the sorted list two copies of the exterior boundary cycle. The very last cycle is removed, so that every internal edge is used twice in some cycle, whereas the boundary edges are used only once. Finally the various cycles are checked pairwise for mutual containment, producing the latticeArray of their partial order. Finally, the reduced set of cells as lists of bounding cycles of vertices is produced by the cellsFromCycles function, finally removed by multiple vertices to produce the FV LAR representation.

LAR of a 2-complex of general type The LAR of the complex in Figure 1, and constructed starting from a set of line segmants in the plane, is given here. Notice that cells may have non connected boundaries (may contain holes) and/or non-manifold points.

```
"test/py/triangulation/test08.py" 5a \equiv
```

```
""" Test example of LAR of a 2-complex with non-contractible and non-manifold cells"""
from larlib import *
V = [[0.0989, 0.492], [0.5, 0.492], [0.708, 0.6068], [0.2966, 0.6068], [1.0, 0.0],
[0.0,0.0], [1.0,1.0], [0.0,1.0], [0.5,0.2614], [0.0989,0.2614], [0.8034,
0.1273, [0.8034, 0.0386], [0.0989, 0.9068], [0.892, 0.9068], [0.708, 0.7886],
[0.9375, 0.1273], [0.0989, 0.1273], [0.8034, 0.492], [0.7693, 0.4009], [0.892,
0.492],[0.183,0.3097],[0.3193,0.4182],[0.6761,0.1773],[0.2966,0.7886]]
FV = [[0,4,5,6,7,9,10,11,12,13,15,16,17,19],[10,11,15],[0,20,21],[8,18,
22], [0,1,8,9,20,21], [1,8,9,10,16,17,18,22], [0,1,2,3,12,13,14,17,19,23],
[2,3,14,23]]
EV = [(18,22),(10,11),(10,17),(0,20),(1,17),(8,9),(0,21),(12,13),(14,23),
(17,19), (4,5), (3,23), (0,12), (9,16), (2,3), (13,19), (6,7), (2,14), (0,1),
(10,15),(4,6),(8,22),(5,7),(20,21),(1,8),(8,18),(10,16),(0,9),(11,15)]
VV = AA(LIST)(range(len(V)))
submodel = STRUCT(MKPOLS((V,EV)))
VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FV],submodel,0.3))
```

Generation of LAR of a 2-complex from line segments The LAR model (V, FV, EV) displayed in Figure fig:linesToLAR and listed in the Script above, i.e. in the test08.py file, can be generated as below.

```
"test/py/triangulation/test09.py" 5b \( \equiv \)

""" Test example of LAR of a 2-complex with non-contractible and non-manifold cells""
from larlib import *

filename = "test/svg/inters/test0.svg"
lines = svg2lines(filename)
V,FV,EV = larFromLines(lines)
VV = AA(LIST)(range(len(V)))
submodel = STRUCT(MKPOLS((V,EV)))
VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FV],submodel,0.3))
```

Solid PyPLaSM visualization of a 2-complex A PyPLaSM visualization of a 2-complex of very general kind may be obtained with the MKFACES function, implemented by the SOLIDIFY of geometric values of *HPC* type, starting from the LAR model of the 2-complex to be displayed. Of course, a boundaryOperator is built using the LAR representation of 2-cells and 1-cells, i.e. FV and EV, respectively.

```
\langle Solid PyPLaSM visualization of a 2-complex 6a\rangle \equiv
     """ Solid PyPLaSM visualization of a 2-complex with non-contractible
           and non-manifold cells"""
     def MKFACES(model):
         V, FV, EV = model
         bmatrix = boundary(FV,EV)
         boundaryOperator = chain2BoundaryChain(bmatrix)
         chain = [0]*len(FV)
         boundingEdges = []
         for k,face in enumerate(FV):
           unitChain = copy.copy(chain)
           unitChain[k] = 1
           boundingEdges += [boundaryOperator(unitChain)]
         faces = [SOLIDIFY(STRUCT([POLYLINE([V[v] for v in EV[e]]) for e in edges]))
             for edges in boundingEdges]
         return faces
```

Color visualization A color visualization of the 2-cells of the previous cellular complex is produced by the test09.py file.

Macro referenced in 25.

```
""" Test example of LAR of a 2-complex with non-contractible and non-manifold cells"""
from larlib import *
sys.path.insert(0, 'test/py/triangulation/')
from test09 import *

model = V,FV,EV
faces = MKFACES(model)
colors = [CYAN,MAGENTA,WHITE,RED,YELLOW,GRAY,GREEN,ORANGE,BLACK,BLUE,PURPLE,BROWN]
components = [COLOR(colors[k%12])(face) for k,face in enumerate(faces)]
VIEW(STRUCT(components))
```

1.2 Construction of LAR of 2-faces

The contruction of faces in FV begins by computing the containment relation between all pairs of cycles in C.

Since they are boundary 1-chains of 2-chains corresponding to maximal biconnected components of (V, EV) graph, the cycles in C cannot have intersection, except possibly on common vertices, corresponding to separation nodes of the graph. In order to test if c_h is either internal or external to c_k , for $c_h, c_k \in C$, it is sufficient to test the containment in c_k of a single point internal to c_h .

We construct the binary matrix of the containment relation, which is anti-symmetric, reflexive and transitive. Therefore the containment relation is a partial order, that can be represented as the DAG (Directed Acyclic Graph) of its transitive reduction, often called *Hasse diagram*.

The Hasse diagram of this relation is either a single tree or a forest, i.e. a set of trees without common nodes, depending on the connection of the domain. By numerating the nodes with their level number, defined as the integer distance of the node from the tree roots, and by deleting the arcs with starting node odd, we get a forest of trees with two levels, whose root(s) correspond to the exterior cycle(s) and whose leaves correspond to the internal holes of the faces.

Every such small tree ("sapling") of cycles, possibly reduced to the only root, in case of a face without holes, will correspond to a 2-cell of the 2-complex.

1.3 Solid display of a 2-complex

Let we start with a triple LAR model (V, FV, EV).

First we compute the signed boundary operator. Then for each cycle c in C we have a list of signed boundary edges. The loops of each cycle are extracted and classified as external or internal loops, and returned as circularly ordered sequences of vertex indices.

Then the kind as manifold or non-manifold of c is computed, by comparing the number of edges with the number of vertices.

The non-manifold vertices are possibly signed, and the transformation from a list of vertex indices to a list of vertices (i.e. list of lists of real coordinates) is applied.

Finally, every non-manifold vertex is moved in general position by applying to it a small translation perturbation towards the *interior* of the cycle. The translation vector is computed by vector summation of the two adjacent tangent vectors incident to the vertex. Each incident vector is computed by properly orienting the vector difference between two consecutive vertices.

For each set of disentangled loops, given as arrays of points without repetition, the appropriate functions of the python package *Poly2tri*, named p2t, are called, returning a list of triples of 2D points corresponding to the generated triangulation of the face, possibly holding holes corresponding to the interior loops, if any.

2 Implementation

2.1 Containments between non intersecting cycles

In this section we compute the containment relation between non-intersecting cycles generated on 2-faces by the incident faces. This step is preparatory to the representation of fragmented 2-faces — embedded in 2D — as LAR data structures, to be subsequently restored in the ambient 3D and sticked together to generate the the 2-skeleton of the Boolean complex.

For this purpose, the set of non-intersecting cycles, as lists of edges, are returned in the EVs array by the biconnectedComponent function. The pair V, EVs is therefore passed as input to the computeCycleLattice function, that returns a dense matrix with elements in $\{-1,0,1\}$, where the element i,j either contains 0 if anyone (and hence all) of vertices of cycle j-th is external to cycle i-th, or contains 1 if anyone (and hence all) of vertices of cycle j-th is internal to cycle i-th, or finally contains -1 if anyone (and hence all) of vertices of cycle j-th is on boundary of cycle i-th. The last condition may hold only for diagonal elements i,j where i=j.

The returned latticeArray matrix of dimension $n \times n$, where n is the number of non-intersecting cycles on a fragmented 2D face, is the used by the cellsFromCycles function, that return a list of lists of cycles, each one defining the boundary of a single connected but possibly non-path-connected 2-cell in the LAR representation of the fragmented 2-complex.

Classification of non intersecting cycles The function computeCycleLattice takes as input the pair V, EVs, where V is the list of vertices and EVs is the list of cycles of a fragmented 2-cell in 2D. Each EVs element is given as a list of edges, given os pairs of integer vertex indices. The returned latticeArray matrix — characterizing the incidences between cycles — has dimension $n \times n$.

Remark on interior point vs cycle's vertex classification When reconstructing the containment lattice of component cycles of a boundary chain the strategy of testing a single vertex of cycle for containment does not work, since the tested vertex might stay in non-manifold position, so that—even if internal points stay either internal or external to the target cycle, the result of the containment test would be of type .on., corresponding of test point on the boundary of the target cycle, so producing a wrong containment lattice.

So, in computing the (k, h) term of the containment matrix, stored witin the latticeArray below, we cannot in general use the simpler testing point = V[i], but another point guaranteed to belong to a close neighborhood of it, in the interior of EVs[h].

For this reason the internalTo function is introduced, that returns a point that is internal to the ev cycle, and in particular internal to the plane sector interior to the angle formed by the first vertex, named v, of ve (edges incident on vertices) array, that is incident only to two edges (and hence is not in non-manifold position). The function will work with both acute and ottuse interior angles incident on v.

```
\langle Classification of non intersecting cycles 9\rangle \equiv
     """ Classification of non intersecting cycles """
     def internalTo(V,ev):
         classify = pointInPolygonClassification((V,ev))
         ve = invertRelation(ev)
         for v,edgeIndices in enumerate(ve):
             if len(edgeIndices) == 2: break
         v1,v2 = set(CAT([list(ev[e]) for e in edgeIndices])).symmetric_difference([v])
         vect1 = VECTDIFF([V[v1],V[v]])
         vect2 = VECTDIFF([V[v2],V[v]])
         point = VECTSUM([ V[v], SCALARVECTPROD([ 0.05, VECTSUM([vect1,vect2]) ])])
         if classify(point) == "p_out":
             point = VECTSUM([ V[v], SCALARVECTPROD([ -0.05, VECTSUM([vect1,vect2]) ])])
         return point
     def computeCycleLattice(V,EVs):
         n = len(EVs)
         latticeArray = []
         interiorPoints = [internalTo(V,ev) for k,ev in enumerate(EVs)]
         for k,ev in enumerate(EVs):
             row = []
             classify = pointInPolygonClassification((V,ev))
             for h in range(0,k):
                 i = EVs[h][0][0]
                 #point = V[i]
                 point = interiorPoints[h]
                 test = classify(point)
                  if test=="p_in": row += [1]
                  elif test=="p_out": row += [0]
                  elif test=="p_on": row += [-1]
```

```
else: print "error: in cycle classification"
row += [-1]
for h in range(k,n-1):
    row += [0]
    latticeArray += [row]
return latticeArray
```

Extraction of path-connected boundaries The function cellsFromCycles, given by the script below, takes as input the cycle-incidence matrix latticeArray, and return the list out of lists of cycles, providing the boundaries of a decomposition into connected (but possibly non path-connected) 2-cells of the fragmented 2-face whose non-intersecting cycles were computed as output of the biconnectedComponent function.

First the **sons** of each cycle are computed, i.e. the indices of cycles containd in it, as well as the **level** of every cycle, i.e. their position within the lattice of the containment relation (that is a partial order). The level of a cycle is computed as the sum of elements in its matrix column. The roots of the lattice, i.e. the more external cycles have level -1; the following levels have values 0, 1, 2, ..., respectively.

Then the cycles are ordered in the encreasing value of their level (or rank), and finally the significant subsets of disjoint cycles are extracted within the out list, starticg from the root cycle(s). The important properties exploited for the extraction are the following:
(a) the first element of each sublist is the external boundary cycle, whereas the following cycles, if any, are its internal boundaries; (b) the rank difference between each external and internal boundary must be less or equal to one. It will be 0 only whe the sublist contains only one element (the external boundary) wich is being compared with itself.

Finally the sublists are pruned, by eliminating those whose first element has benn previously used within some of the previous ones (of course: was already used as an internal cycle).

```
\( \text{Extraction of path-connected boundaries 10} \) \equiv (
\( \text{""" Extraction of path-connected boundaries """ } \)
\( \text{def cellsFromCycles (latticeArray):} \)
\( \text{print "\nlatticeArray = \n", latticeArray, "\n" } \)
\( \text{n = len(latticeArray)} \)
\( \text{sons = [[h]+[k for k in range(n) if row[k]==1] for h, row in enumerate(latticeArray)]} \)
\( \text{level = [sum(col) for col in TRANS(latticeArray)]} \)
\( \text{def rank(sons): return [level[x] for x in sons]} \)
\( \text{preCells = sorted(sons, key=rank)} \)
\( \text{def levelDifference(son, father): return level[son]-level[father]} \)
\( \text{root = preCells[0][0]} \)
\( \text{[0]} \)
\( \te
```

```
out = [[son for son in preCells[0] if (levelDifference(son,root)<=1) ]]
for k in range(1,n):
    father = preCells[k][0]
    inout = [son for son in preCells[k] if levelDifference(son,father)<=1 ]
    if not (inout[0] in CAT(out)):
        out += [inout]
    return out</pre>
```

Testing containments between non intersecting cycles The test code for verifying the approch to computation of the containment lattice between non intersecting cycles is given below. Three test files, named respectively lattice, lattice1 and lattice2, with the different situations shown in Figure ??, may be imported from the directory test/svg/inters/. Other tests may be easily generated by inserting in this directory some .svg files generated with a drawing program.

```
"test/py/inters/test15.py" 11 \equiv
     """ Testing containments between non intersecting cycles """
     from larlib import *
     filename = "test/svg/inters/facade.svg"
     lines = svg2lines(filename)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     V,EV = lines2lar(lines)
     V,EVs = biconnectedComponent((V,EV))
     # candidate face
     FVs = AA(COMP([list,set,CAT]))(EVs)
     latticeArray = computeCycleLattice(V,EVs)
     for k in range(len(latticeArray)):
        print k,latticeArray[k]
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FVs],submodel,0.15))
```

2.2 Reduction of multiple cycles to a single polyline

The reduction of a lattice of non-intersecting 1-cycles on the boundary of a 2-cell into a single polyline is performed using a scan-line algorithm.

Figure 2: Some examples of nested non intersecting cycles. The corresponding solutions are given in the text.

In order to filter the complications induced by edges aligned with the reference axes, first we perform a transformation of vertices from Cartesian to polar coordinates (see Figure 3).

Then a specialized scan-line algorithm is executed, producing a set of *bridge-edges* [YT85] that, added in double instance to the set EV of the LAR of the 2-cell, allow for a triangulation of its interior using the algorithm provided by the poly2tria module.

Figure 3: A set of non-intersecting boundary cycles in Cartesian and polar coordinates, using (improperly) an Euclidean metric in the transformed space.

Transforming to polar coordinates The transformation from Cartesian to polar coordinates of the vertices of a two-dimensional LAR model is given in the following script. An image of such transformation is shown in Figure 3. It is only used here to put the vertex coordinates in general position, so simplifying the scan-line algorithm.

```
\langle Transforming to polar coordinates 12a \rangle \equiv """ Transforming to polar coordinates """ def cartesian2polar(V):
```

```
Z = [[sqrt(x*x + y*y), math.atan2(y,x)] for x,y in V]
         VIEW(STRUCT(MKPOLS((Z,EV))))
         return Z
     \Diamond
Macro referenced in 25.
Scan line algorithm
\langle Scan line algorithm 12b\rangle \equiv
     """ Scan line algorithm """
     def scan(V,FVs, group,cycleGroup,cycleVerts):
         bridgeEdges = []
         scannedCycles = []
         for k,(point,cycle,v) in enumerate(cycleGroup[:-2]):
             nextCycle = cycleGroup[k+1][1]
             n = len(FVs[group][cycle])
             if nextCycle != cycle:
                  if not ((nextCycle in scannedCycles) and (cycle in scannedCycles)):
                      scannedCycles += [nextCycle]
                      m = len(FVs[group][nextCycle])
                      v1, v2 = v, cycleGroup[k+1][2]
                      minDist = VECTNORM(VECTDIFF([V[v1],V[v2]]))
                      for i in FVs[group][cycle]:
                           for j in FVs[group][nextCycle]:
                               dist = VECTNORM(VECTDIFF([V[i],V[j]]))
                               if dist < minDist:</pre>
                                   minDist = dist
                                   v1, v2 = i, j
                      bridgeEdges += [(v1,v2)]
         return bridgeEdges[:-1]
Macro referenced in 25.
Scan line algorithm input/output The two-dimensional LAR model ≡ V,EV was
previously created by a lines2lar(lines) expression.
\langle Scan line algorithm input/output 13\rangle \equiv
     """ Scan line algorithm input/output """
     def connectTheDots(model):
         V,EV = model
         V,EVs = biconnectedComponent((V,EV))
         FV = AA(COMP([sorted,set,CAT]))(EVs)
         latticeArray = computeCycleLattice(V,EVs)
```

cells = cellsFromCycles(latticeArray)

Orientation of component cycles of unconnected boundaries This step of the algorithm needs some preliminary computation, starting from the list EV of edges by vertices. Just notice that, at this point of the implementation (as the edges of a set of non intersecting cycles) they all are boundary edges, and hence the edgeBoundary variable can be filled with consecutive integers. The edgeCycles returned by boundaryCycles are very well characterized, according to how discussed in the description of the Edge cycles associated to a closed chain of edges paragraph. The corresponding vertexCycles are first oriented accordingly to boundaryCycles, then rotated (as equivalent permutations) in order to put their element of minimum index in first position (accordingly to the numeration of cycles used in the variable FVs). Then, the CVs will be set to contain the circularly ordered vertices of the various boundary cycles of each LAR 2-cell, in a manner analogous to FVs, where the vertices are not circularly ordered. Finally, the first (i.e. the external) cycle of each cell is counterclockwise oriented, whereas the other cycles (i.e. the internal ones), are oriented clockwise.

```
⟨ Orientation of component cycles of unconnected boundaries 14⟩ ≡
    """ Orientation of component cycles of unconnected boundaries """

def rotatePermutation(inputPermutation, transpositionNumber):
    n = transpositionNumber
    perm = inputPermutation
    permutation = range(n,len(perm))+range(n)
    return [perm[k] for k in permutation]

def canonicalRotation(permutation):
    n = permutation.index(min(permutation))
    return rotatePermutation(permutation,n)

def setCounterClockwise(h,k,cycle,areas,CVs):
    if areas[cycle] < 0.0:
        chain = copy.copy(CVs[h][k])
</pre>
```

```
CVs[h][k] = canonicalRotation(REVERSE(chain))
     def setClockwise(h,k,cycle,areas,CVs):
         if areas[cycle] > 0.0:
             chain = copy.copy(CVs[h][k])
             CVs[h][k] = canonicalRotation(REVERSE(chain))
     def orientBoundaryCycles(model,cells):
         V, EV = model
         edgeBoundary = range(len(EV))
         edgeCycles,_ = boundaryCycles(edgeBoundary,EV)
         vertexCycles = [[ EV[e][1] if e>0 else EV[-e][0] for e in cycle ] for cycle in edgeCycles]
         rotations = [cycle.index(min(cycle)) for cycle in vertexCycles]
         theCycles = sorted([rotatePermutation(perm,n) for perm,n in zip(vertexCycles,rotations)])
         CVs = [[theCycles[cycle] for cycle in cell] for cell in cells]
         areas = signedSurfIntegration((V,theCycles,EV),signed=True)
         for h,cell in enumerate(cells):
             for k,cycle in enumerate(cell):
                 if k == 0: setCounterClockwise(h,k,cycle,areas,CVs)
                 else: setClockwise(h,k,cycle,areas,CVs)
         return CVs
Macro referenced in 25.
```

From nested boundary cycles to triangulation

```
\langle From nested boundary cycles to triangulation 15\rangle \equiv
     """ From nested boundary cycles to triangulation """
     def larTriangulation( (V,EV) ):
         model = V, EV
         cells,bridgeEdges = connectTheDots(model)
         CVs = orientBoundaryCycles(model,cells)
         polygons = [[[V[u] for u in cycle] for cycle in cell] for cell in CVs]
         triangleSet = []
         for polygon in polygons:
             triangledPolygon = []
              externalCycle = polygon[0]
             polyline = []
             for p in externalCycle:
                  polyline.append(Point(p[0],p[1]))
              cdt = CDT(polyline)
              internalCycles = polygon[1:]
```

```
for cycle in internalCycles:
    hole = []
    for p in cycle:
        hole.append(Point(p[0],p[1]))
    cdt.add_hole(hole)

triangles = cdt.triangulate()
    trias = [ [[t.a.x,t.a.y,0],[t.c.x,t.c.y,0],[t.b.x,t.b.y,0]] for t in triangles ]
    triangleSet += [AA(REVERSE)(trias)]
return triangleSet
```

2.3 Monocyclic polygons using bridge-edges

This subsection, even if correct, is not currently used, since the used triangulation algorithm, from the poly2tri package, cannot handle repeated vertices.

Generation of 1-boundaries as vertex permutation In algebraic topology a k-cycle is a k-chain whose boundary is empty. Also, an unconnected k-cycle is the direct sum of two or more k-cycles. A good formal representation of every simplicial k-cycle, where each component k-simplex has k+1 (k-1)-adjacent k-simplices is a (k+1)-array, indexed by k-simplices, i.e. the Winged Representation [PBCF93].

In the case of oriented 1-cycles, a good representation is given by considering the (ordering of) 0-faces (vertices) as a permutation of n integers, i.e. as a bijective function $\pi:[0,n]\to[0,n]$ that can be represented as an array verts of integers indexed on integers, and the 1-faces (edges) as a dictionary (mapping) nextVert $verts \to verts$.

In order to join two component cycles using one of bridgeEdges, say (u, v), computed by the function connectTheDots previously given, we must save $\pi(u)$ and $\pi(v)$, say, within x and y, respectively

Wire-frame LAR to boundary polygons The 2-dimensional LAR model (W,EW) returned by the function boundaryCycles2vertexPermutation is pretty special, since it is at the same time both a standard LAR model, i.e. a pair (vertices, edges_by_vertices), and a permutation of vertex indices providing implicitly the ordered cycles on the boundary of a 2-complex. In other words, EW is both a (possibly unconnected) 1-cycle and an 1-boundary.

In the following script we extract the list of connected boundaries (including bridge-edges) from the EW permutation of the first m integers.

```
\langle Wire-frame LAR to boundary polygons 17a\rangle \equiv
     """ lar2boundaryPolygons """
     def lar2boundaryPolygons(model):
         W,EW = boundaryCycles2vertexPermutation( model )
         EW = AA(list)(EW)
         polygons = []
         for k, edge in enumerate(EW):
              polygon = []
              if edge[0]>=0:
                  first = edge[0]
                  done = False
              while (not done) and edge[0] >= 0:
                  polygon += [edge[0]]
                  edge[0] = -edge[0]
                  edge = EW[edge[1]]
                  if len(polygon)>1 and polygon[-1] == first:
                      EW[first][0] = -float(first)
                      break
              if polygon != []:
                  if polygon[0] == polygon[-1]: polygon=polygon[:-1]
                  polygons += [polygon]
         return W, polygons
```

Macro referenced in 25.

Figure 4: (a) Closed 1-chain c, i.e. such that $\partial c = 0$; c is both cycle and boundary at the same time; (b) 2-chain h such that $\partial h = c$; (c) 1-skeleton of a triangulation of h.

Edge cycles associated to a closed chain of edges The output cycles are returned as lists of oriented edges, given in consecutive sequence in each list. Each cycle is given in the opposite ordering of its first edge. The first edge of each cycle is the one of minimum index in the cycle. The list of output cycles is returned ordered for increasing (or better, in decreasing order, since negative) order of its first element. The first output cycle starts from index 0, that cannot oriented directly, since -0 is not allowed for integer indices. It must be considered as negative, i.e. as oriented as the opposite of its canonical orientation.

```
\langle Edge cycles associated to a closed chain of edges 17b\rangle \equiv
     """ Edge cycles associated to a closed chain of edges """
     from collections import defaultdict
     def detachManifolds(polygonVerts):
         vertCycles = []
         for vertexList in polygonVerts:
              vertCount,counts = defaultdict(list),list
              for v in vertexList:
                  vertCount[v] += [1]
              counts = [sum(vertCount[v]) for v in vertexList]
              vertCycles += [counts]
         return vertCycles
     def splitManifolds(cycles, vertices, manifolds):
         out = []
         for cycle,verts,manifold in zip(cycles,vertices,manifolds):
              if sum(manifold) == len(manifold):
                  out += [cycle]
              else:
```

```
transpositionNumbers = [n for n,k in enumerate(manifold) if k>1]
            n = transpositionNumbers[0]
            cycle = rotatePermutation(cycle,n)
            verts = rotatePermutation(verts,n)
            manifold = rotatePermutation(manifold,n)
            starts = AA(C(sum)(-n))(transpositionNumbers)+[len(manifold)]
            pairs = [(start,starts[k+1]) for k,start in enumerate(starts[:-1])]
            splitCycles = [[cycle[k] for k in range(*interval)] for interval in pairs]
            splitVerts = [[verts[k] for k in range(*interval)] for interval in pairs]
            out += splitCycles
   return out
def boundaryCycles(edgeBoundary,EV):
    cycles,cycle = [],[]
   vertices = []
   def singleBoundaryCycle(edgeBoundary):
        verts2edges = defaultdict(list)
        for e in edgeBoundary:
            verts2edges[EV[e][0]] += [e]
            verts2edges[EV[e][1]] += [e]
        cycle,verts = [],[]
        if edgeBoundary == []: return cycle, verts
        e = edgeBoundary[0]
        v,w = EV[e]
        verts = [v,w]
        while edgeBoundary != []:
            cycle += [e]
            edgeBoundary.remove(e)
            v,w = EV[e]
            verts2edges[v].remove(e)
            verts2edges[w].remove(e)
            w = list(set(EV[e]).difference([verts[-1]]))[0]
            if verts2edges[w] == []: break
            e = verts2edges[w][0]
            verts += [w]
        verts = verts[1:]
        return cycle, verts
   while edgeBoundary != []:
        edgeBoundary = list(set(edgeBoundary).difference(cycle))
        cycle,verts = singleBoundaryCycle(edgeBoundary)
        if cycle!= []:
            cycle = [e if verts[k] == EV[e][0] else -e for k,e in enumerate(cycle)]
            cycles += [cycle]
```

```
vertices += [verts]
manifolds = detachManifolds(vertices)
cycles = splitManifolds(cycles,vertices,manifolds)
return cycles,vertices
```

From Struct object to LAR boundary model

```
\langle From Struct object to LAR boundary model 20a\rangle \equiv
     """ From Struct object to LAR boundary model """
     def structFilter(obj):
         if isinstance(obj,list):
             if (len(obj) > 1):
                 return [structFilter(obj[0])] + structFilter(obj[1:])
             return [structFilter(obj[0])]
         if isinstance(obj,Struct):
             if obj.category in ["external_wall", "internal_wall", "corridor_wall"]:
             return Struct(structFilter(obj.body),obj.name,obj.category)
         return obj
     def structBoundaryModel(struct):
         filteredStruct = structFilter(struct)
         #import pdb; pdb.set_trace()
         V,FV,EV = struct2lar(filteredStruct)
         edgeBoundary = boundaryCells(FV,EV)
         cycles,_ = boundaryCycles(edgeBoundary,EV)
         edges = [signedEdge for cycle in cycles for signedEdge in cycle]
         orientedBoundary = [ AA(SIGN)(edges), AA(ABS)(edges)]
         cells = [EV[e] if sign==1 else REVERSE(EV[e]) for (sign,e) in zip(*orientedBoundary)]
         if cells[0][0] == cells[1][0]: # bug badly patched! ... TODO better
             temp0 = cells[0][0]
             temp1 = cells[0][1]
             cells[0] = [temp1, temp0]
         return V,cells
```

Macro referenced in 25.

From structures to boundary polylines Notice that the if predicate len(V) < len(boundaryEdges) is used to discriminate between manifold (False) and non-manifold (True) boundary cases.

 \langle From structures to boundary polylines 20b $\rangle \equiv$

```
""" From structures to boundary polylines """

def boundaryPolylines(struct):
    V,boundaryEdges = structBoundaryModel(struct)
    if len(V) < len(boundaryEdges):
        EV = AA(sorted)(boundaryEdges)
        boundaryEdges = range(len(boundaryEdges))
        cycles,vertices = boundaryCycles(boundaryEdges,EV)
        polylines = [[V[v] for v in verts]+[V[verts[0]]] for verts in REVERSE(vertices)]
    else:
        polylines = boundaryModel2polylines((V,boundaryEdges))
    return polylines</pre>
```

From LAR oriented boundary model to polylines

```
\langle From LAR boundary model to polylines 21 \rangle \equiv
     """ From LAR oriented boundary model to polylines """
     def boundaryModel2polylines(model):
         if len(model)==2: V,EV = model
         elif len(model)==3: V,FV,EV = model
         polylines = []
         succDict = dict(EV)
         visited = [False for k in range(len(V))]
         nonVisited = [k for k in succDict.keys() if not visited[k]]
         while nonVisited != []:
             first = nonVisited[0]; v = first; polyline = []
             while visited[v] == False:
                 visited[v] = True;
                 polyline += V[v],
                 v = succDict[v]
             polyline += [V[first]]
             polylines += [polyline]
             nonVisited = [k for k in succDict.keys() if not visited[k]]
         return polylines
     def boundaryModel2polylines(model):
         if len(model)==2: V,EV = model
         elif len(model)==3: V,FV,EV = model
         polylines = []
         succDict = dict(EV)
         visited = [False for k in range(len(V))]
         nonVisited = [k for k in succDict.keys() if not visited[k]]
         while nonVisited != []:
             first = nonVisited[0]; v = first; polyline = []
             while visited[v] == False:
```

```
visited[v] = True;
    polyline += V[v],
    v = succDict[v]
    polyline += [V[first]]
    polylines += [polyline]
    nonVisited = [k for k in succDict.keys() if not visited[k]]
    return polylines
```

2.4 Visualization of a 2D complex and 2-chain

Macro referenced in 25.

```
\langle Visualization of a 2D complex and 2-chain 22a\rangle \equiv
     """ Visualization of a 2D complex and 2-chain """
     def larComplexChain(model):
         V, FV, EV = model
         VV = AA(LIST)(range(len(V)))
         csrBoundaryMat = boundary1(FV,EV,VV)
         def larComplexChainO(chain):
             boundaryChain = chain2BoundaryChain(csrBoundaryMat)(chain)
             outModel = V,[EV[e] for e in boundaryChain]
             triangleSet = larTriangulation(outModel)
             return boundaryChain,triangleSet
         return larComplexChain0
     def viewLarComplexChain(model):
         V,FV,EV = model
         operator = larComplexChain(model)
         def viewLarComplexChain0(chain):
             boundaryChain,triangleSet = operator(chain)
             hpcChain = AA(JOIN)(AA(AA(MK))(CAT(triangleSet)))
             hpcChainBoundary = AA(COLOR(RED))(MKPOLS((V, [EV[e] for e in boundaryChain])))
             VIEW(STRUCT( hpcChain + hpcChainBoundary ))
             VIEW(EXPLODE(1.2,1.2,1.2)( hpcChain + hpcChainBoundary ))
         return viewLarComplexChain0
Macro referenced in 25.
```

2.5 Point in polygon classification

```
⟨ Point in polygon testing 22b⟩ ≡
    """ Point-in-polygon classification algorithm """
    ⟨Half-line crossing test 23a⟩
    ⟨Tile codes computation 22c⟩
    ⟨Point-in-polygon classification algorithm 23b⟩
    ⋄
```

Tile codes computation

```
⟨Tile codes computation 22c⟩ ≡
""" Tile codes computation """
def setTile(box):
    tiles = [[9,1,5],[8,0,4],[10,2,6]]
    b1,b2,b3,b4 = box
def tileCode(point):
    x,y = point
    code = 0
    if y>b1: code=code|1
    if y<b2: code=code|2
    if x>b3: code=code|4
    if x<b4: code=code|8
    return code
    return tileCode</pre>
```

Macro referenced in 22b.

Half-line crossing test

```
⟨ Half-line crossing test 23a⟩ ≡
    """ Half-line crossing test """
    def crossingTest(new,old,count,status):
        if status == 0:
            status = new
            count += 0.5
        else:
            if status == old: count += 0.5
            else: count -= 0.5
            status = 0
```

Macro referenced in 22b.

Point in polygon testing

```
⟨ Point-in-polygon classification algorithm 23b⟩ ≡
    """ Point in polygon classification """
    def pointInPolygonClassification(pol):
        V,EV = pol
        # edge orientation
        FV = [sorted(set(CAT(EV)))]
```

```
orientedCycles = boundaryPolylines(Struct([(V,FV,EV)]))
EV = []
for cycle in orientedCycles:
    EV += zip(cycle[:-1],cycle[1:])
def pointInPolygonClassificationO(p):
    x,y = p
    xmin, xmax, ymin, ymax = x, x, y, y
    tilecode = setTile([ymax,ymin,xmax,xmin])
    count, status = 0,0
    for k, edge in enumerate (EV):
        p1,p2 = edge[0],edge[1]
        (x1,y1),(x2,y2) = p1,p2
        c1,c2 = tilecode(p1),tilecode(p2)
        c_{edge}, c_{un}, c_{int} = c1^{c2}, c1|c2, c1&c2
        if c_edge == 0 and c_un == 0: return "p_on"
        elif c_edge == 12 and c_un == c_edge: return "p_on"
        elif c_edge == 3:
            if c_int == 0: return "p_on"
            elif c_int == 4: count += 1
        elif c_edge == 15:
            x_{int} = ((y-y2)*(x1-x2)/(y1-y2))+x2
            if x_{int} > x: count += 1
            elif x_int == x: return "p_on"
        elif c_edge == 13 and ((c1==4) \text{ or } (c2==4)):
                crossingTest(1,2,status,count)
        elif c_edge == 14 and (c1==4) or (c2==4):
                crossingTest(2,1,status,count)
        elif c_edge == 7: count += 1
        elif c_edge == 11: count = count
        elif c_edge == 1:
            if c_int == 0: return "p_on"
            elif c_int == 4: crossingTest(1,2,status,count)
        elif c_edge == 2:
            if c_int == 0: return "p_on"
            elif c_int == 4: crossingTest(2,1,status,count)
        elif c_edge == 4 and c_un == c_edge: return "p_on"
        elif c_edge == 8 and c_un == c_edge: return "p_on"
        elif c_edge == 5:
            if (c1==0) or (c2==0): return "p_on"
            else: crossingTest(1,2,status,count)
        elif c_edge == 6:
            if (c1==0) or (c2==0): return "p_on"
            else: crossingTest(2,1,status,count)
```

3 Exporting the library

```
"larlib/larlib/triangulation.py" 25 \equiv
     """ Module for pipelined intersection of geometric objects """
     from larlib import *
      (Edge cycles associated to a closed chain of edges 17b)
      (Point in polygon testing 22b)
       Classification of non intersecting cycles 9
       Extraction of path-connected boundaries 10
      Transforming to polar coordinates 12a
      (Scan line algorithm 12b)
      (Scan line algorithm input/output 13)
       Orientation of component cycles of unconnected boundaries 14)
       From nested boundary cycles to triangulation 15
       Generation of 1-boundaries as vertex permutation 16
      Wire-frame LAR to boundary polygons 17a
       From Struct object to LAR boundary model 20a
       From structures to boundary polylines 20b >
       From LAR boundary model to polylines 21 \
       Computing a LAR 2-complex from an arrangement of line segments 4
      (Visualization of a 2D complex and 2-chain 22a)
      (Solid PyPLaSM visualization of a 2-complex 6a)
```

4 Testing

This section in subdivided in two subsections, testing respectively (a) the construction and visualization of the containment lattice of non-intersecting polygonal cycles, and (b) the triangulation of the boundary polygon of random polygonal domains, including non connected parts, nested cycles and non-manifold cycles, both internal and external to the given 2D domain.

4.1 Drawing multiply-connected boundary polylines

A multiply-connected boundary polyline gives the boundary edges of a 2-cell. In LAR, 2-cells must be connected, but not necessarily simply-connected (or path-connected, or homotopic to a point). The "solid" drawing of such a generally non-convex 2-cells is not easy. In particular, they must be decomposed into a coherently-oriented simplicial 2-complex, i.e. into a set of equioriented triangles. The library function used at this purpose (), contained in the poly2tria module, only accepts a single boundary polyline. Hence the purpose of this section is to transform a list of cycles, corresponding orderly to the exterior and the interior boundaries of a 2-cell, into a single polyline, using the so-called bridge-edges [YT85] mechanism. The transformation from a set of non-intersecting boundary cycles to a single connected polyline is given in Section 2.2.

Generating the LAR of a set of non-intersecting cycle We use the test/svg/lattice.svg file to test the exporting of different boundary chains. The example test15.py aims to prepare the computational environment for writing down the LAR of the 2-complex generated by any set of non-intersecting 1-cles in 2D.

Let us remember that any d-cell in the domain of the LAR scheme must be connected, but not necessarily contractible to a point, i.e. may contain internal holes. The goal af this test and of the previous one, is hence to generalize the creation of 2-complexes (sets of polygons) starting from several non-intersecting boundary cycles, instead than starting from just one closed polyline.

The motivation arises from situations created by the Boolean algorithm, as well as from the imput of a 2-complex from general wire-frame drawings.

```
"test/py/triangulation/test01.py" 26a =
    """ Testing containments between non intersecting cycles """
    from larlib import *

    filename = "test/svg/inters/facade.svg"
    lines = svg2lines(filename)
    VIEW(STRUCT(AA(POLYLINE)(lines)))

    V,EV = lines2lar(lines)
    V,EVs = biconnectedComponent((V,EV))
    # candidate face
    FVs = AA(COMP([list,set,CAT]))(EVs)

latticeArray = computeCycleLattice(V,EVs)

for k in range(len(latticeArray)):
    print k,latticeArray[k]
```

```
VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV,FVs],submodel,0.15))
"test/py/triangulation/test02.py" 26b \equiv
     """ Generating the LAR of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/triangulation/')
     from test01 import *
     cells = cellsFromCycles(latticeArray)
     CV = AA(COMP([list,set,CAT]))(EVs)
     EVdict = dict(zip(EV,range(len(EV))))
     FE = [[EVdict[edge] for edge in cycle] for cycle in EVs]
     edges = [CAT([FE[cycle] for cycle in cell]) for cell in cells]
     FVs = [[CV[cycle] for cycle in cell] for cell in cells]
     FV = AA(CAT)(FVs)
     n = len(cells)
     chains = allBinarySubsetsOfLenght(n)
     cycles = STRUCT(MKPOLS((V,EV)))
     csrBoundaryMat = boundary(FV,EV)
     for chain in chains:
         chainBoundary = COLOR(RED)(STRUCT(MKPOLS((V, [EV[e]
                              for e in chain2BoundaryChain(csrBoundaryMat)(chain)])))
         VIEW(STRUCT([cycles, chainBoundary]))
     \Diamond
```

LAR of the 2-complex generated by non-intersecting cycles Therefore, the LAR of the 2-complex generated from the input get from test15.py is (V,FV,EV) with the components given by the the following:

```
 V = [[0.7808, 0.6751], [0.6044, 0.6751], [0.319, 0.5804], [0.319, 0.3994], [0.8936, 0.0], \\ [0.0,0.0], [0.6044, 0.8123], [0.7808, 0.8123], [0.3495, 0.6751], [0.3495, 0.8123], \\ [0.1218, 0.3036], [0.2983, 0.3036], [0.0886, 0.3994], [0.0886, 0.5804], [0.2581, 0.4505], \\ [0.1495, 0.4505], [0.7717, 0.4213], [0.5952, 0.4213], [0.7717, 0.5585], [0.0,1.0], \\ [0.3403, 0.1664], [0.3403, 0.3036], [0.5952, 0.5585], [0.5168, 0.1664], [0.5168, 0.3036], \\ [0.5259, 0.8123], [0.1495, 0.5293], [0.5259, 0.6751], [0.8936, 1.0], [0.2983, 0.1664], \\ [0.1218, 0.1664], [0.2581, 0.5293], [0.4965, 0.7815], [0.4965, 0.7059], [0.2983, 0.5585], \\ [0.3789, 0.7059]]
```

```
FV = [[0,1,2,3,4,5,6,7,8,9,10,11,12,13,16,17,18,19,20,21,22,23,24,25,27,28,29,30],[32,33,37,39],[34,35,36,38,26,15,14,31]]
```

Of course, this LAR representation gives full control of the complex topology, including k-(co)chains and (co)boundary operators. For example, in Figure 5 we show a solid image of the three 2-cells in FV, and, drawn in red the boundary 1-cells in the complex, corresponding to the 2-chains of coordinates [1,0,0], [0,1,0], [0,0,1], and [1,1,0], respectively.

Figure 5: Some examples of boundaries (in red) of 2-chains from nested non intersecting cycles.

4.2 Boundary polylines

Generating the LAR of a set of non-intersecting cycles The example provided by test/py/inters/test17.py is completed here by showing the solid drawing of the generated LAR data structure, and superimposing to it the boundary 1-chains generated by several 2-chains.

```
"test/py/triangulation/test03.py" 28a =
    """ Generating the LAR of a set of non-intersecting cycles """
    from larlib import *
    sys.path.insert(0, 'test/py/triangulation/')
    from test02 import *
    lar = (V,FV,EV)
    bcycles,_ = boundaryCycles(range(len(EV)),EV)
```

```
polylines = [[V[EV[e][1]] if e>0 else V[EV[-e][0]] for e in cycle ] for cycle in bcycles]
     polygons = [polyline + [polyline[0]] for polyline in polylines]
     complex = SOLIDIFY(STRUCT(AA(POLYLINE)(polygons)))
     csrBoundaryMat = boundary(FV,EV)
     for chain in chains:
         chainBoundary = COLOR(RED)(STRUCT(MKPOLS((V, [EV[e]
                             for e in chain2BoundaryChain(csrBoundaryMat)(chain)])))
         VIEW(STRUCT([complex, chainBoundary]))
"test/py/triangulation/test04.py" 28b \equiv
     """ Orienting a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/triangulation/')
     from test03 import *
     cells,bridgeEdges = connectTheDots((V,EV))
     CVs = orientBoundaryCycles((V,EV),cells)
"test/py/triangulation/test05.py" 29a \equiv
     """ Generating the LAR of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/triangulation/')
     from test03 import *
     W,EW = boundaryCycles2vertexPermutation( (V,EV) )
     VIEW(EXPLODE(1.2,1.2,1.2)(MKPOLS((W,EW))))
"test/py/triangulation/test06.py" 29b \equiv
     """ Generating the Triangulation of a set of non-intersecting cycles """
     from larlib import *
     sys.path.insert(0, 'test/py/triangulation/')
     from test03 import *
     triangleSet = larTriangulation( (V,EV) )
     VIEW(STRUCT(AA(JOIN)(AA(AA(MK))(CAT(triangleSet)))))
     VIEW(SKEL_1(STRUCT(AA(JOIN)(AA(AA(MK))(CAT(triangleSet))))))
     model = V, EV
```

```
W,FW = lar2boundaryPolygons(model)
polygons = [[W[u] for u in poly] for poly in FW]
VIEW(STRUCT(AA(POLYLINE)(polygons)))

triangleSet,triangledFace = [],[]
for polygon in polygons:
    triangledPolygon = []
    polyline = []
    for p in polygon:
        polyline.append(Point(p[0],p[1]))
    cdt = CDT(polyline)

    triangles = cdt.triangulate()
    trias = [ [[t.a.x,t.a.y,0],[t.c.x,t.c.y,0],[t.b.x,t.b.y,0]] for t in triangles ]
    triangleSet += [AA(REVERSE)(trias)]
"""
```

4.3 Testing with random polygons

In order to test the algorithms implemented in this library, we make use of random triangulations of $C_2 = \{x \in \mathbb{R}^2 : ||x|| \le 1\}$.

Figure 6: example caption

```
"test/py/triangulation/test07.py" 30a \equiv from larlib import * \langle random 1-boundary generation 30b \rangle
```

random 1-boundary generation

```
\langle \text{ random 1-boundary generation 30b} \rangle \equiv
     """ random 1-boundary generation """
     from larlib import *
     import sys
     sys.path.insert(0, '/Users/paoluzzi/Documents/dev/lar-cc/test/py/larcc/')
     from test16 import *
     EV = AA(list)(cells)
     V,EVs = biconnectedComponent((V,EV))
     FV = AA(COMP([sorted,list,set,CAT]))(EVs)
     FV = sorted( FV,key=len,reverse=True )
     EVs = sorted( EVs,key=len,reverse=True )
     W = [eval(vcode(v)) for v in V]
     latticeArray = computeCycleLattice(W,EVs)
     viewLarComplexChain((V,FV,EV))
     bcycles,bverts = boundaryCycles(range(len(EW)),EW)
     VIEW(STRUCT(AA(POLYLINE)([[V[v] for v in verts] for verts in bverts])))
     colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GRAY, GREEN, ORANGE, BLACK, BLUE,
              PURPLE, BROWN]
     components = [COLOR(colors[k%12])(STRUCT(MKPOLS((V,ev)))) for k,ev in enumerate(EVs)]
     VIEW(STRUCT(components))
```

Macro referenced in 30a.

References

- [CL13] CVD-Lab, *Linear algebraic representation*, Tech. Report 13-00, Roma Tre University, October 2013.
- [D08] V. Domiter and B. alik, Sweepline algorithm for constrained delaunay triangulation, International Journal of Geographical Information Science 22 (2008), no. 4, 449–462.
- [PBCF93] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci, *Dimension-independent modeling with simplicial complexes*, ACM Trans. Graph. **12** (1993), no. 1, 56–102.

[YT85] F. Yamaguchi and T. Tokieda, Bridge edge and triangulation approach in solid modeling, Frontiers in Computer Graphics (Berlin) (T.L. Kunii, ed.), Springer Verlag, 1985.