Thomas Powell

Fachbereich Mathematik Technische Universität Darmstadt Schlossgartenstraße 7 64289 Darmstadt Germany

Date of birth: 11 November, 1986

Nationality: British

Languages: English (native), German (fluent), Welsh (fluent)

email: powell@mathematik.tu-darmstadt.de
webpage: https://t-powell.github.io

Research area

Proof theory • Computability theory • Program semantics

Current position

Oct 16 - Postdoctoral Researcher, Department of Mathematics, Technische Universität Darmstadt

Past positions

Oct 14 - Sep 16 Postdoctoral Researcher, Institute of Computer Science, University of Innsbruck
Oct 13 - Sep 14 CARMIN Postdoctoral Research Fellow, Institute des Hautes Études Scientifiques (combined visit at

Institut Henri Poincaré)

Education

Oct 09 - May 13 PhD in Theoretical Computer Science, Queen Mary University of London

 ${\tt Oct\,o8\,-\,Jun\,o9}\quad \textit{Certificate of Advanced Study in Mathematics (Part\,III), University of Cambridge}$

Oct o5 - Jun o8 BA in Mathematics, University of Cambridge

Papers

PREPRINTS (SUBMITTED)

preprint Thomas Powell. A computational interpretation of Zorn's lemma

preprint Thomas Powell. A unifying framework for continuity and complexity in higher types

preprint Thomas Powell. Sequential algorithms and the computational content of classical proofs

accepted	Ulrich Kohlenbach and Thomas Powell. Rates of convergence for iterative solutions of equations involving set-valued accretive operators to appear in Computers and Mathematics with Applications
accepted	Thomas Powell. A note on the finitization of Abelian and Tauberian theorems to appear in Mathematical Logic Quarterly .
2020	Thomas Powell. Dependent choice as a termination principle Archive for Mathematical Logic , 59(3–4): 503–516.
2020	Thomas Powell. Well quasi-orders and the functional interpretation Chapter in Well Quasi-Orders in Computational Logic, Language and Reasoning, Trends in Logic 53: 221–269, Springer.
2019	Thomas Powell. A proof theoretic study of abstract termination principles Journal of Logic and Computation 29(8): 1345–1366.
2019	Thomas Powell. Computational interpretations of classical reasoning: From the epsilon calculus to stateful programs Chapter in Mathesis Universalis, Computability and Proof, Synthese Library 412: 255–290, Springer.
2019	Thomas Powell. A new metastable convergence criterion and an application in the theory of uniformly convex Banach spaces Journal of Mathematical Analysis and Applications 478(2): 790–805.
2019	Thomas Powell. Parametrised bar recursion: A unifying framework for realizability interpretations of classical dependent choice Journal of Logic and Computation 29(4): 519–554.
2019	Thomas Powell, Peter Schuster and Franziskus Wiesnet. <i>An algorithmic approach to the existence of ideal objects in commutative algebra</i> Proceedings of Workshop on Logic, Language, Information, and Computation (Wollic'19) , LNCS 11541: 533–549.
2018	Thomas Powell. A functional interpretation with state Proceedings of Logic in Computer Science (LICS'18) pp. 839–848, ACM.
2017	Paulo Oliva and Thomas Powell. <i>Bar recursion over finite partial functions</i> Annals of Pure and Applied Logic 168(5): 887–921.
2016	Thomas Powell. Gödel's functional interpretation and the concept of learning Proceedings of Logic in Computer Science (LICS'16) pp. 136–145, ACM.
2015	Georg Moser and Thomas Powell. <i>On the computational content of termination proofs</i> Proceedings of Computability in Europe (CiE'15) , LNCS 9136: 276–285.
2015	Paulo Oliva and Thomas Powell. A game-theoretic computational interpretation of proofs in classical analysis Chapter in Gentzen's Centenary: The Quest for Consistency pp. 501–531, Springer.
2015	Paulo Oliva and Thomas Powell. A constructive interpretation of Ramsey's theorem via the product of selection functions Mathematical Structures in Computer Science 25(8): 1755–1778.
2014	Thomas Powell. The equivalence of bar recursion and open recursion Annals of Pure and Applied Logic 165(11): 1727–1754.

Publications (Peer Reviewed)

Thomas Powell. Applying Gödel's Dialectica interpretation to obtain a constructive proof of Higman's 2012 Proceedings of Classical Logic and Computation (CL+C'12), EPTCS 97: 49-62. Paulo Oliva and Thomas Powell. On Spector's bar recursion 2012 Mathematical Logic Quarterly 58(4-5): 356-365. Martín Escardó, Paulo Oliva and Thomas Powell. System T and the product of selection functions Proceedings of Computer Science Logic (CSL'11), LIPIcs 12: 233-247. PhD THESIS Thomas Powell. On Bar Recursive Interpretations of Analysis 2013 Queen Mary University of London, xii+174pp. Selected invited talks Logic Colloquium: Special Session on Proof Theory and Proof Complexity, Prague. 16/08/19 Oberwolfach Workshop on Mathematical Logic: Proof Theory, Constructive Mathematics, MFO. 05/11/17 Humboldt-Kolleg: Proof Theory as Mathesis Universalis, Villa Vigoni, Como. 25/07/17 Dagstuhl Seminar 16031: Well Quasi-Orders in Computer Science, Schloss Dagstuhl. 22/01/16 Continuity, Computability, Constructivity (CCC '15), Kochel. 15/09/15 Conference and seminar talks Logik-Arbeitstagung Bern, München und Verona, LMU Munich. 12/12/19 Computer Science Seminar, University of Verona. 20/03/19 Logic in Computer Science (LICS '18), University of Oxford. 12/07/18 Workshop on Proofs and Computation, Hausdorff Research Institute for Mathematics, Bonn. 05/07/18 Workshop on Computational Approaches to the Foundations of Mathematics, LMU Munich. 13/04/18 Minisymposium on Applied Proof Theory and the Computational Content of Mathematics, Joint 14/09/17 ÖMG and DMV Congress, Salzburg. Mathematical Logic Seminar, LMU Munich. 12/07/17 Logic Research Seminar, University of Bern. 27/10/16 Logic, Complexity and Automation, part of CLA 2016, Obergurgl. 05/09/16 Logic in Computer Science (LICS '16), Columbia University. 05/07/16 Classical Logic and Computation (CL&C '16), Porto. 23/06/16 Mathematics for Computation, Niederalteich. 12/05/16 Proof, Computation, Complexity (PCC '16) LMU Munich. 06/05/16 Workshop on Efficient and Natural Proof Systems, University of Bath. 16/12/15 Mathematical Logic Seminar, LMU Munich. 04/11/15 Computability in Europe (CiE '15), Bucharest. 02/07/15 Epsilon 2015, University of Montpellier. 11/06/15 Proof, Complexity and Verification Seminar, Swansea University. 04/12/14 Second Workshop on the Two Faces of Complexity, part of Vienna Summer of Logic. 12/07/14 Séminaire de Mathématiques, Institut des Hautes Études Scientifiques. 14/01/14 PLUME Seminar, ENS Lyon.

Proof, Complexity and Verification Seminar, Swansea University.

Classical Logic and Computation (CL&C '12), University of Warwick.

Semantics Seminar, PPS lab, Université Paris Diderot.

09/01/14

18/12/13

12/11/13

08/07/13

Theoretical Computer Science Seminar, University of Birmingham. 03/07/13

Computer Science Logic (CSL '11), Bergen. 12/09/11

Supervision

2018

2016

2016

2000

Franziskus Wiesnet, PhD thesis, University of Trento (main supervisor: Peter Schuster). ongoing

Mireia González Bedmar. Master's thesis: On a game-theoretic semantics for the Dialectica inter-

pretation of analysis, University of Barcelona (main supervisor: Joost Joosten).

Philipp Wirtenberger. Bachelor project: Analysing the Complexity of Monotone Prolog, University

of Innsbruck (co-supervised with Georg Moser).

Academic service

ORGANISATION

Minisymposium on Applied Proof Theory and the Computational Content of Mathematics (co-2017 organised with Sam Sanders), part of the joint annual conference of the Austrian Mathematical Society (ÖMG) and German Mathematical Society (DMV), Salzburg.

> Workshop on Logic, Complexity and Automation (co-organised with Georg Moser), part of Computational Logic in the Alps, Obergurgl.

REFEREEING

Annals of Pure and Applied Logic • Archive for Mathematical Logic • CSR • FSCD • LICS • Logic Journal of the IGPL • Notre Dame Journal of Formal Logic • RTA • TYPES • Theoretical Computer Science

Academic grants

One of two postdoctoral fellowships of the CARMIN programme. 2013

EPSRC Doctoral Training Grant (full PhD funding for 3.5 years).

Teaching

LECTURER

Higher order computability theory. Master level course, TU Darmstadt. summer 19

Proof interpretations: A modern perspective. Short lecture course, University of Verona. 03/19

Proof mining. Autumn School on Proof and Computation, Fischbachau. 09/18

Introduction to proof theory (co-lectured with Anupam Das). ESSLLI, Sofia University. 08/18

Proof interpretations: A modern perspective (co-lectured with Anupam Das). NASSLLI, Carnegie 06/18

Mellon University.

TEACHING ASSISTANT (TU DARMSTADT)

Responsibilities include: Leading exercises classes and tutorials, designing problem sheets, general organisation (including examinations). Undergraduate level indicated.

Analysis I & II (1st year) Linear Algebra I & II (1st year) Automaten, formale Sprachen und Entscheidbarkeit (1st year)

Undergraduate tutorials (Queen Mary University of London)

Introduction to Algebra (1st year)
Introduction to Probability (1st year)
Geometry I (1st year)
Probability Models (2nd year)
Convergence and Continuity (2nd year)
Number Theory (3rd year)