

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CAMPUS JUAZEIRO ENGENHARIA ELÉTRICA

PROJETO EXPERIMENTAL MICROCONTROLADORES

Daniel Moreira Lopes Lucas Maurício Menezes de Carvalho Yasmin Suelen Mangabeira Santos

Juazeiro - BA

Outubro - 2021

Esquema Elétrico

Figura 1 – Esquema elétrico

Introdução

O processo de fundição é hoje um dos processos mais utilizados na indústria, principalmente por ser um processo de fabricação com grande variabilidade, ou seja, é um processo que possibilita a fabricação de uma gama muito variada de peças, com geometrias complexas e dimensões extremamente variáveis, partindo de peças pequenas até a fabricação de peças extremamente grandes como partes de motores de navios, por exemplo. Nesta perspectiva, se desenvolveu o presente trabalho, que teve como principal objetivo a realização do projeto de um forno à resistência elétrica para fundição de estanho.

Inicialmente na elaboração de um forno, já sabendo que o forno será à resistência elétrica e para fundir estanho, foi definida qual a temperatura máxima admitida no interior do forno, como o ponto de fusão do estanho é de 231,9 °C e o de ebulição é de 2.602 °C, a temperatura máxima definida no interior foi de 240° C, considerando possíveis imprecisões na leitura do sensor.

Funcionamento

O sistema foi automatizado utilizando o Microcontrolador PIC16F877A, a partir da leitura de um sensor de temperatura (LM35) e de um relé foi possível ajustar a potência dissipada em uma resistência de 350W, controlando, assim, a temperatura interna do forno. Além disso, foi utilizado um exaustor, que será ativado caso a temperatura ultrapasse os 240° C definidos. Na parte externa, um interruptor foi colocado no pino "MCLR" para ligar e desligar o PIC, também foi colocado um botão que abre a tampa do forno.

Utilizando PWM, foi possível controlar a frequência do fechamento do relé e consequentemente a potência dissipada na resistência, que foi definida de acordo com temperatura interna do forno, como na tabela a seguir;

TEMPERATURA [° C]	Ton	M
0 a 129	90%	450
130 a 189	80%	400
190 a 239	70%	350
240	30%	150
> 240	0%	0

Figura 2 – Temperatura, T_{on} e M

Ou seja, quanto maior a temperatura interna, menor a potência na resistência.

Requisitos do projeto

Interrupção

Quando o pino RB0 é setado, é habilitada a interrupção, que faz a porta do forno (LED) abrir.

```
void __interrupt() Interrupt() {
    if(INTF == 1) {
        INTF = 0;
        while(PORTBbits.RB0) {
            PORTDbits.RD2 = 1;
            __delay_ms(20);
        }
        return;
    }
}
```

Figura 3 – Função de interrupção

Conversão AD

Os dados lidos no pino RA0 passam pelo processo de conversão AD (Função "ReadADC"), depois são convertidos em graus Celsius e são exibidos no display (LM016L).

```
GO_DONE = 1;
while(GO_DONE);
return ((ADRESH<<8) | ADRESL);
}</pre>
```

Figura 4 – Função de conversão AD

PWM

O PWM foi configurado com $N=124,\,P=16$ e $f_{osc}=8.10^6,\,$ obtendo:

$$T_{pwm} = \frac{(N+1) \times 4 \times P}{f_{osc}} = 1000 \mu s \tag{1}$$

que resultou em;

$$M[] = \{0, 50, 100, 150, 200, 250, 300, 350, 400, 450\}$$
 (2)

Esses valores foram utilizados na função "ChangeDC" para alterar o ciclo de trabalho, alterando, assim, a frequência do fechamento do relé.

```
void ChangeDC() {

temp = M[nivel];
    CCPlCONbits.CCPlY = temp;
    temp = temp >> 1;
    CCPlCONbits.CCPlY = temp;
    temp = temp >> 1;
    CCPRIL = temp;
}
```

Figura 5 – Função que altera Duty Cycle

Temporizadores

Não foram utilizados.

Resultados

Os resultados foram bastante satisfatórios, o sistema funcionou em todas as faixas de temperatura com uma boa interação entre o firmware e o hardware. Entretanto, alguns pontos poderiam ser melhorados em um projeto futuro, como por exemplo, a adição de uma interface com o usuário que permita a escolha da temperatura máxima do forno.

Figura 6 – Sistema funcionando

REFERÊNCIAS

MPASM User's Guide, Microchip Technology., 2005. PIC16FF877A Data Sheet, Microchip Technology Inc., 2003.

LM35 Precision Centigrade Temperature Sensors, Texas Instruments., 2016.