

Departamento de Matemática Formulário de Probabilidade e Estatística

Estatística descritiva para dados não agrupados					
$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{n-1}$	$s = \sqrt{s^2}$			
$c_v = \frac{s}{\overline{x}} \times 100\%$	$m_k = \frac{\sum_{i=1}^n (x_i - \overline{x})^k}{n-1}$	$c_a = \frac{m_3}{s^3}$			
$c_c = \frac{m_4}{s^4}$	$IQ = Q_{\frac{3}{4}} - Q_{\frac{1}{4}}$	$k = \frac{IQ}{2\left(Q_{\frac{9}{10}} - Q_{\frac{1}{10}}\right)}$			
$G = \frac{\overline{x} - Mo}{s}$	$G_1 = \frac{3(\overline{x} - Me)}{s}$	$G_2 = \frac{Q_{\frac{3}{4}} + Q_{\frac{1}{4}} - 2Me}{IQ}$			

$$Q_p = (1 - k) x_{(i)} + k x_{(i+1)}$$
, onde

$$i = |np + 1 - p|,$$
 $k = np + 1 - p - i,$ 0

 $x_{(i)}$ é o i-ésimo valor observado na amostra ordenada e |y| é a parte inteira de y

Outliers moderados:

$$Q_{\frac{1}{4}} - 3IQ \leqslant x_i < Q_{\frac{1}{4}} - 1, 5IQ$$
 ou $Q_{\frac{3}{4}} + 1, 5IQ < x_i \leqslant Q_{\frac{3}{4}} + 3IQ$

Outliers severos ou extremos:

$$x_i < Q_{\frac{1}{4}} - 3IQ$$
 ou $x_i > Q_{\frac{3}{4}} + 3IQ$

Estatística descritiva para dados agrupados

$$\overline{x} = \frac{\sum_{i=1}^{k} F_i x_i}{n} \qquad \qquad \left| \begin{array}{c} s^2 = \frac{\sum_{i=1}^{k} F_i (x_i - \overline{x})^2}{n-1} = \frac{\sum_{i=1}^{k} F_i x_i^2 - n \overline{x}^2}{n-1} \end{array} \right|$$

Determinação do número de classes:

Fórmula de Sturges:
$$k=1+[3,322\times\log_{10}n],$$
 É o menor número natural onde $[y]$ é a parte inteira de y k tal que $2^k\geqslant n$

Técnicas de contagem

$P_n = n!$	$P'_n = n^n$			
${}^{n}A_{p} = \frac{n!}{(n-p)!}$	${}^{n}A'_{p} = n^{p}$			
${}^{n}C_{p} = \frac{n!}{p!(n-p)!}$	${}^{n}C'_{p} = \frac{(n+p-1)!}{p!(n-1)!}$			
$P(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$				

Teorema de Bayes

$$\begin{vmatrix} A_1 \cup A_2 \cup \dots \cup A_n = S \\ A_i \cap A_j = \emptyset, & i \neq j \\ P[A_i] > 0, & i = 1, \dots, n \end{vmatrix} \Rightarrow P[A_j|B] = \frac{P[A_j] \times P[B|A_j]}{P[B]}, \quad j = 1, \dots, n$$

Formulário e quadros resumo C. Fernandes & P. Ramos

1/8

Instituto Superior de Engenharia de Lisboa

Departamento de Matemática Formulário de Probabilidade e Estatística $^{2/8}$

Variável aleatória unidimensional					
Discreta	Contínua				
$F(x) = P[X \le x] = \sum_{x_j \le x} f(x_j)$	$F(x) = P[X \leqslant x] = \int_{-\infty}^{x} f(s) ds$				
$E(X) = \mu = \sum_{i=1}^{n} x_i f(x_i)$	$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$				
$E\left(X^{k}\right) = \sum_{i=1}^{n} x_{i}^{k} f\left(x_{i}\right)$	$E(X^{k}) = \int_{-\infty}^{+\infty} x^{k} f(x) dx$				
$E[(X - \mu)^k] = \sum_{i=1}^n (x_i - \mu)^k f(x_i)$	$E\left[\left(X-\mu\right)^{k}\right] = \int_{-\infty}^{+\infty} \left(x-\mu\right)^{k} f\left(x\right) dx$				
$Var(X) = \sigma^2 = \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i)$	$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$				
Para ambos os casos					
$E\left(aX\pm b\right)=aE\left(X\right)\pm b$	$Var\left(aX \pm b\right) = a^{2}Var\left(X\right)$				
$E(X \pm Y) = E(X) \pm E(Y)$					
$Var(X \pm Y) = Var(X) + Var(Y)$ se X e Y são independentes					
$Var(X) = E(X^{2}) - [E(X)]^{2} = E(X^{2}) - \mu^{2}$					
$\sigma = \sqrt{Var\left(X\right)}$	$C_v = \frac{\sigma}{\mu} \times 100\%$				

Distribuição Uniforme Discreta	Distribuição Bernoulli	
$X \sim UniformeDiscreta\{i, \dots, j\}$	$X \sim Bernoulli\left(p\right)$	
$f(x) = \begin{cases} \frac{1}{j-i+1} & \text{, se } x = i, i+1, \dots, j \\ 0 & \text{, se } x \neq i, i+1, \dots, j \end{cases}$	$f(x) = \begin{cases} p^{x} (1-p)^{1-x} &, \text{ se } x = 0; 1\\ 0 &, \text{ se } x \neq 0; 1 \end{cases}$	
$E[X] = \frac{i+j}{2}$ $Var[X] = \frac{(j-i+1)^2-1}{12}$	E[X] = p $Var[X] = p(1-p)$	
Distribuição Binomial	Distribuição Multinomial	
$X \sim Binomial\left(n;p\right)$	$(X_1,\ldots,X_k) \sim Multinomial(n;p_1;\ldots;p_k)$	
$f(x) = \begin{cases} {}^{n}C_{x}p^{x} (1-p)^{n-x} & \text{, se } x = 0, \dots, n \\ 0 & \text{, se } x \neq 0, \dots, n \end{cases}$	$P[X_1 = x_1, \dots, X_k = x_k] = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k},$	
$ \begin{pmatrix} 0 & , \text{se } x \neq 0, \dots, n \end{pmatrix} $	$x_i = 0, \dots, n, \qquad i = 1, \dots, k$	
E[X] = np $Var[X] = np(1-p)$	$E[X_i] = np_i$ $Var[X_i] = np_i (1 - p_i), i = 1,, k$	
Distribuição de Poisson	Distribuição Binomial Negativa	
$X \sim Poisson(\lambda), \lambda > 0$	$X \sim BinomialNegativa\left(r;p\right)$	
$f(x) = \begin{cases} \frac{\lambda^x \exp\{-\lambda\}}{x!} & \text{se } x = 0, 1, \dots \\ 0 & \text{se } x \neq 0, 1, \dots \end{cases}$	$f(x) = \begin{cases} x^{-1}C_{r-1} p^{r} (1-p)^{x-r} & \text{se } x = r, r+1, \dots \\ 0 & \text{se } x \neq r, r+1, \dots \end{cases}$	
$\int_{0}^{\infty} (x)^{2} dx = 0, 1, \dots$	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	
$E[X] = \lambda$ $Var[X] = \lambda$	$E[X] = \frac{r}{p}$ $Var[X] = \frac{r(1-p)}{p^2}$	

Formulário e quadros resumo C. Fernandes & P. Ramos

Departamento de Matemática Formulário de Probabilidade e Estatística 3/8

Distribuição Geométrica	Distribuição Hipergeométrica		
$X \sim Geométrica\left(p\right)$	$X \sim Hipergeom\'etrica\left(N;n;K\right)$		
$f(x) = \begin{cases} p(1-p)^{x-1} & \text{se } x = 1, 2, \dots \\ 0 & \text{se } x \neq 1, 2, \dots \end{cases}$	$f\left(x\right) = \left\{ \begin{array}{l} \frac{{}^{K}\!C_{x} \times {}^{N-K}\!C_{n-x}}{{}^{N}\!C_{n}} & \text{, se } x = \max\left\{0, n-N+K\right\}, \\ & \dots, \min\left\{K, n\right\} \\ \\ 0 & \text{, outros valores de } x \end{array} \right.$		
$F\left(x\right) = 1 - \left(1 - p\right)^{x}$			
$E[X] = \frac{1}{p} \qquad Var[X] = \frac{1-p}{p^2}$	$E[X] = np \qquad Var[X] = np(1-p)\frac{N-n}{N-1}, \text{ com } p = \frac{K}{N}$		
Distribuição Uniforme	Distribuição Exponencial		
$X \sim Uniforme\left(a;b\right)$	$X \sim Exponencial(\lambda)$		
$f(x) = \begin{cases} \frac{1}{b-a} & \text{se } a \leq x \leq b\\ 0 & \text{sfor a do intervalo} \end{cases}$	$f(x) = \begin{cases} \lambda \exp\{-\lambda x\} & \text{se } x > 0 \\ 0 & \text{se } x \le 0 \end{cases}$		
$F(x) = \begin{cases} 0 & \text{, se } x < a \\ \frac{x-a}{b-a} & \text{, se } a \le x \le b \\ 1 & \text{, se } x > b \end{cases}$	$F(x) = 1 - \exp\{-\lambda x\}, x > 0$		
$E[X] = \frac{a+b}{2} \qquad Var[X] = \frac{(b-a)^2}{12}$	$E[X] = \frac{1}{\lambda}$ $Var[X] = \frac{1}{\lambda^2}$		
Distribuição Normal	Distribuição Normal Reduzida		
$X \sim Normal(\mu; \sigma)$	$X \sim Normal(\mu; \sigma) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim Normal(0; 1)$		
$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\},$	$\varphi(z) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}z^2\right\},$		
$-\infty < x < +\infty, -\infty < \mu < +\infty, \sigma > 0$	$-\infty < z < +\infty$		
$E[X] = \mu$ $Var[X] = \sigma^2$	E[Z] = 0 $Var[Z] = 1$		

Aditividade da distribuição normal

$$\left. \begin{array}{l} X_i \left(i=1, \ldots, n \right) \text{v. a. independentes} \\ X_i \sim Normal \left(\mu_i; \sigma_i \right) \end{array} \right\} \Rightarrow S_n = \sum_{i=1}^n a_i X_i \sim Normal \left(\sum_{i=1}^n a_i \mu_i; \sqrt{\sum_{i=1}^n a_i^2 \sigma_i^2} \right) \\ X_i \left(i=1, \ldots, n \right) \text{v. a. independentes} \\ X_i \sim Normal \left(\mu; \sigma \right) \end{array} \right\} \Rightarrow \begin{array}{l} S_n = \sum_{i=1}^n X_i \sim Normal \left(n \mu; \sqrt{n \sigma^2} \right) \\ \overline{X} = \frac{\sum_{i=1}^n X_i}{n} \sim Normal \left(\mu; \frac{\sigma}{\sqrt{n}} \right) \end{array}$$

Teorema Limite Central

$$\begin{aligned} X_i \left(i = 1, \dots, n \right) & \text{ v. a. i. i. d.} \\ n > 30 \\ E \left[X_i \right] = \mu & Var \left[X_i \right] = \sigma^2 \end{aligned} \right\} \Rightarrow \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} \overset{\sim}{\sim} Normal \left(0; 1 \right) \\ \frac{X - \mu}{\sigma} \overset{\sim}{\sim} Normal \left(0; 1 \right) \end{aligned}$$

Formulário e quadros resumo C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Departamento de Matemática Formulário de Probabilidade e Estatística 4/8

Variável aleatória bidimensional				
Discreta	Contínua			
$F(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f(x_i, y_j) = P[X \leqslant x \land Y \leqslant y]$	$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) dv du, \forall (x,y) \in \mathbb{R}^{2}$			
$f_X(x_i) = \sum_j f(x_i, y_j)$ $f_Y(y_j) = \sum_i f(x_i, y_j)$	$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$			
$E[XY] = \sum_{i} \sum_{j} x_{i} y_{j} f(x_{i}, y_{j})$	$E[XY] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f(x, y) dx dy$			
$f_{X Y=y_j}\left(x_i y_j\right) = \frac{f(x_i,y_j)}{f_Y(y_j)}$ com j fixo e $f_Y\left(y_j\right) > 0$	$f_{X Y=y}(x y) = \frac{f(x,y)}{f_Y(y)} \text{ com } f_Y(y) > 0$			
$f_{Y X=x_i}\left(y_j x_i\right) = \frac{f(x_i,y_j)}{f_X(x_i)}$ com i fixo e $f_X\left(x_i\right) > 0$	$f_{Y X=x}(y x) = \frac{f(x,y)}{f_X(x)} \text{ com } f_X(x) > 0$			
$F_{X Y=y_j}\left(x_i y_j\right) = \sum_{x_i \leqslant x} f_{X Y=y_j}\left(x_i y_j\right)$	$F_{X Y=y}(x y) = \int_{-\infty}^{x} \frac{f(t,y)}{f_Y(y)} dt$			
$F_{Y X=x_i}\left(y_j x_i\right) = \sum_{y_j \leqslant y} f_{Y X=x_i}\left(y_j x_i\right)$	$F_{Y X=x}(y x) = \int_{-\infty}^{y} \frac{f(x,v)}{f_X(x)} dv$			
Para ambos os casos				

$Cov[X, Y] = E[XY] - E[X] \times E[Y]$	$ \rho_{X,Y} = \rho = \frac{Cov[X,Y]}{\sigma_X \sigma_Y} $
G 1.*	~ 11

Correlação e regressão linear				
$s_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = (n-1) s_x^2$	$s_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = (n-1) s_y^2$			
$s_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y}$	$cov\left[x,y\right] = \frac{s_{xy}}{n-1}$			
$r = rac{cov[x,y]}{s_x s_y} = rac{s_{xy}}{\sqrt{s_{xx} s_{yy}}}$	$Y = Y \mid x = \beta_0 + \beta_1 x + E \qquad \qquad \widehat{y} = a + bx$			
$b = rac{s_{xy}}{s_{xx}} = rac{cov[x,y]}{s_x^2}$ $a = \overline{y} - b\overline{x}$	$e_i = y_i - \hat{y}_i$ $\frac{e_i - \overline{e}}{s_e}$			
$SQR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 = \frac{s_{xy}^2}{s_{xx}}$	$SQE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = s_{yy} - bs_{xy} = s_{yy} - \frac{s_{xy}^2}{s_{xx}}$			
$SQT = \sum_{i=1}^{n} (y_i - \overline{y})^2 = s_{yy} = SQR + SQE$	$r^2 = \frac{SQR}{SQT} = 1 - \frac{SQE}{SQT} = \frac{s_{xy}^2}{s_{xx}s_{yy}}$			

Função	Expressão	Transformação	Ajustar a recta a	
Exponencial	$\hat{y} = ab^x$	$ \ln \hat{y} = \ln a + x \ln b $	$(x_i, \ln y_i)$	
Exponencial	$\hat{y} = a \exp\{bx\}$	$\ln \hat{y} = \ln a + bx$	$(x_i, \ln y_i)$	
Potência	$\hat{y} = ax^b$	$\ln \hat{y} = \ln a + b \ln x$	$(\ln x_i, \ln y_i)$	
Hipérbole	$\hat{y} = \frac{1}{a+bx}$	$\frac{1}{\hat{y}} = a + bx$	$\left(x_i, \frac{1}{y_i}\right)$	
Hipérbole	$\hat{y} = \frac{x}{a+bx}$	$\frac{1}{\hat{y}} = b + a\frac{1}{x}$	$\left(\frac{1}{x_i}, \frac{1}{y_i}\right)$	
Inversa	$\hat{y} = a + \frac{b}{x}$	$\hat{y} = a + b\frac{1}{x}$	$\left(\frac{1}{x_i}, y_i\right)$	
Logarítmica	$\hat{y} = a + b \ln x$	$\hat{y} = a + b \ln x$	$(\ln x_i, y_i)$	
Curva S	$\widehat{y} = \exp\left\{a + \frac{b}{x}\right\}$	$\ln \hat{y} = a + b \frac{1}{x}$	$\left(\frac{1}{x_i}, \ln y_i\right)$	
Crescimento	$\hat{y} = \exp\left\{a + bx\right\}$	$\ln \hat{y} = a + bx$	$(x_i, \ln y_i)$	

Formulário e quadros resumo C. Fernandes & P. Ramos

Departamento de Matemática Formulário de Probabilidade e Estatística 5/8

Intervalos de confiança para um parâmetro e dois parâmetros (amostras independentes)					
Parâmetros a estimar	σ^2 conhecido?	Tipo de população	Dimensão da amostra	Variável fulcral e correspondente distribuição amostral	
	a:	Normal	Qualquer	$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N\left(0; 1\right)$	
	Sim	Outra	n > 30	$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \dot{\sim} N(0; 1)$	
μ	Não	Qualquer	n > 30	$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \stackrel{\sim}{\sim} N(0; 1)$	
	IVao	Normal	Qualquer	$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$	
p		Bernoulli	n > 30	$\frac{\hat{P}-p}{\sqrt{\frac{\hat{P}\left(1-\hat{P}\right)}{n}}} \sim N\left(0;1\right)$	
σ^2		Normal	Qualquer	$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$	
	$\sigma_1^2 \in \sigma_2^2$	Normais	Quaisquer	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0; 1)$	
$\mu_1-\mu_2$	conhecidas	Outras	$n_1 > 30$ e $n_2 > 30$	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2}}} \dot{\sim} N(0; 1)$	
	$\sigma_1^2 \in \sigma_2^2$ desconhecidas	Quaisquer	$n_2 > 30$ $n_1 > 30$ e $n_2 > 30$	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1^2} + \frac{S_2^2}{n_2^2}}} \dot{\sim} N(0; 1)$	
	$\sigma_1^2 \in \sigma_2^2$ desconhecidas $(\sigma_1^2 = \sigma_2^2)$	Normais	Quaisquer	$\frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim t_{n_1 + n_2 - 2}$	
	$\sigma_1^2 \in \sigma_2^2$		Quaisquer	$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_r$	
	desconhecidas	Normais		sendo r o número natural mais próximo de $ \left(\frac{s_1^2}{2} + \frac{s_2^2}{2}\right)^2 $	
	$\left(\sigma_1^2 \neq \sigma_2^2\right)$			$r^* = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2}$	
$p_1 - p_2$		Bernoulli	$n_1 > 30$ e $n_2 > 30$	$\frac{(\hat{p}_{1} - \hat{p}_{2}) - (p_{1} - p_{2})}{\sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}}} \sim N(0; 1)$	
$\frac{\sigma_2^2}{\sigma_1^2}$		Normais	Quaisquer	$\frac{S_1^2}{S_2^2} \times \frac{\sigma_2^2}{\sigma_1^2} \sim F(n_1 - 1; n_2 - 1)$	

Formulário e quadros resumo C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Departamento de Matemática

Formulário de Probabilidade e Estatística

6/8

Testes de hipóteses para um parâmetro e dois parâmetros (amostras independentes)					
Parâmetros	σ^2 conhecido?	Tipo de	Dimensão	Estatística de teste e	
a estimar	o connectdo:	população	da amostra	correspondente distribuição amostral	
	Sim	Normal	Qualquer	$Z_0 = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0; 1)$	
,,	Omi	Outra	n > 30	$Z_{0} = \frac{\overline{X} - \mu_{0}}{\frac{\sigma}{\sqrt{n}}} \dot{\sim} N\left(0; 1\right)$	
μ	Não	Qualquer	n > 30	$Z_0 = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \dot{\sim} N(0; 1)$	
	IVao	Normal	Qualquer	$T_0 = \frac{\overline{X} - \mu_0}{\frac{\overline{X}}{\sqrt{n}}} \sim t_{n-1}$	
p		Bernoulli	n > 30	$Z_{0} = \frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}} \dot{\sim} N\left(0;1\right)$	
σ^2		Normal	Qualquer	$Q_0 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$	
$\mu_1 - \mu_2$	$\sigma_1^2 \in \sigma_2^2$	Normais	Quaisquer	$Z_{0} = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}^{2}}}} \sim N(0; 1)$	
	conhecidas	Outras	$n_1 > 30$ e $n_2 > 30$	$Z_{0} = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}^{2}}}} \stackrel{\sim}{\sim} N(0; 1)$	
	$\sigma_1^2 \in \sigma_2^2$ desconhecidas	Quaisquer	$n_1 > 30$ e $n_2 > 30$	$Z_{0} = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \dot{\sim} N(0; 1)$	
	$ \sigma_1^2 e \sigma_2^2 desconhecidas (\sigma_1^2 = \sigma_2^2) $	Normais	Quaisquer	$T_0 = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim t_{n_1 + n_2 - 2}$	
	$\sigma_1^2 \in \sigma_2^2$		Quaisquer	$T_0 = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_r$	
	desconhecidas	Normais		sendo r o número natural mais próximo de	
	$\left(\sigma_1^2 \neq \sigma_2^2\right)$			$r^* = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{S_2^2}{n_2}\right)^2}$	
$p_1 - p_2$		Bernoulli	$n_1 > 30$ e $n_2 > 30$	$Z_0 = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} \dot{\sim} N\left(0; 1\right)$	
$\frac{\sigma_2^2}{\sigma_1^2}$		Normais	Quaisquer	$F_0 = \frac{S_1^2}{S_2^2} \times \left(\frac{\sigma_2^2}{\sigma_1^2}\right)_0 \sim F(n_1 - 1; n_2 - 1)$	

Formulário e quadros resumo C. Fernandes & P. Ramos

Departamento de Matemática Formulário de Probabilidade e Estatística

7/8

Testes de hipóteses para dois parâmetros (amostras emparelhadas)							
Parâmetros a estimar	σ^2 conhecido?	Tipo de população das diferenças	Dimensão da amostra	Estatística de teste e correspondente distribuição amostral			
μ_D	Sim	Normal	Qualquer	$Z_0 = \frac{\overline{D} - (\mu_D)_0}{\frac{\sigma_D}{\sqrt{n}}} \sim N(0; 1)$			
	Silli	Outra	n > 30	$Z_0 = \frac{\overline{D} - (\mu_D)_0}{\frac{\sigma_D}{\sqrt{n}}} \sim N(0; 1)$			
	Não	Qualquer	n > 30	$Z_0 = \frac{\overline{D} - (\mu_D)_0}{\frac{S_D}{\sqrt{n}}} \dot{\sim} N(0; 1)$			
	Ivao	Normal	Qualquer	$T_0 = \frac{\overline{D} - (\mu_D)_0}{\frac{S_D}{\sqrt{n}}} \sim t_{n-1}$			

Testes de aderência ou de qualidade de ajuste

Teste de ajustamento de Kolmogorov-Smirnov com correcção de Lilliefors:

A hipótese nula é rejeitada quando $D_{\mathrm{observado}} \geq D_{\mathrm{crítico};\alpha}$

Teste de ajustamento de Shapiro-Wilk:

A hipótese nula é rejeitada quando $W_{\text{observado}} \leq W_{\text{crítico};\alpha}$

Testes de homocedasticidade

Teste de Levene:

A hipótese nula é rejeitada quando $F_{\text{observado}} \ge F(k-1; n-k; 1-\alpha)$

sendo k o número de amostras e $n=n_1+n_2+\cdots+n_k$

Teste de Bartlett:

A hipótese nula é rejeitada quando $Q_{\text{observado}} \geqslant \chi^2_{k-1;1-\alpha}$

sendo k o número de amostras

p-values					
Teste bilateral	Teste unilateral à direita	Teste unilateral à esquerda			
$2\times P\left[Z\geqslant V.E.T. \right]$	$P[Z \geqslant V.E.T.]$	$P[Z \leqslant V.E.T.]$			
$2 \times P\left[T \geqslant V.E.T. \right]$	$P[T \geqslant V.E.T.]$	$P\left[T\leqslant V.E.T.\right]$			
$2 \times \min \left\{ P\left[\chi^2 \leqslant V.E.T.\right]; P\left[\chi^2 \geqslant V.E.T.\right] \right\}$	$P\left[\chi^2 \geqslant V.E.T.\right]$	$P\left[\chi^2 \leqslant V.E.T.\right]$			
$2 \times \min \left\{ P \left[F \leqslant V.E.T. \right]; P \left[F \geqslant V.E.T. \right] \right\}$	$P\left[F\geqslant V.E.T.\right]$	$P\left[F\leqslant V.E.T.\right]$			

V.E.T. - valor da estatística de teste.

Formulário e quadros resumo C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Departamento de Matemática Formulário de Probabilidade e Estatística

8/8

Inferência para o coeficiente de correlação, parâmetros da recta de regressão e previsão					
Parâmetros	Variável fulcral e	Estatística de teste e			
a estimar	correspondente distribuição amostral	correspondente distribuição amostral			
ρ	$\begin{split} \frac{Z_R - Z_\rho}{\frac{1}{\sqrt{n-3}}} &\sim N\left(0;1\right) \\ \text{sendo a transformada de Fisher} \\ z_r &= \frac{1}{2} \ln \left(\frac{1+r}{1-r}\right) \\ &\qquad \qquad e \\ r &= \frac{\exp\{2z\} - 1}{\exp\{2z\} + 1} \end{split}$	$T_0 = R\sqrt{\frac{n-2}{1-R^2}} \sim t_{n-2}$ $(\rho \text{ próximo de zero e } n \geqslant 3)$ $Z_0 = \frac{Z_R - (Z_\rho)_0}{\sqrt{n-3}} \stackrel{\cdot}{\sim} N(0;1)$ $(\rho \text{ qualquer e } n \geqslant 3)$			
β_0	$\frac{A-\beta_0}{S_{y\cdot x}\sqrt{\frac{1}{n}+\frac{\overline{X}^2}{S_{xx}}}} \sim t_{n-2}$	$T_0 = \frac{A - (\beta_0)_0}{S_{y \cdot x} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{S_{xx}}}} \sim t_{n-2}$			
eta_1	$rac{B-eta_1}{rac{Sy\cdot x}{\sqrt{Sxx}}}\sim t_{n-2}$	$T_0 = \frac{B - (\beta_1)_0}{\frac{Sy \cdot x}{\sqrt{S_{XX}}}} \sim t_{n-2}$			
Y_0	$\frac{\hat{Y}_0 - Y_0}{S_{y \cdot x} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{X})^2}{S_{xx}}}} \sim t_{n-2}$	$T_0 = \frac{\hat{Y}_0 - (Y_0)_0}{S_{y \cdot x} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{X})^2}{S_{xx}}}} \sim t_{n-2}$			
μ_{Y_0}	$\frac{\hat{\mu}_{Y_0} - \mu_{Y_0}}{S_{y \cdot x} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{X})^2}{S_{xx}}}} \sim t_{n-2}$	$T_0 = \frac{\hat{\mu}_{Y_0} - (\mu_{Y_0})_0}{S_{y \cdot x} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{X})^2}{S_{xx}}}} \sim t_{n-2}$			

$$s_{y \cdot x} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{sQE}{n-2}} = \sqrt{\frac{syy - bs_{xy}}{n-2}} \quad s_A = s_{y \cdot x} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{s_{xx}}} \quad s_B = \frac{s_{y \cdot x}}{\sqrt{s_{xx}}}$$

Curvas de calibração em análise instrumental				
Parâmetro a estimar	Variável fulcral e correspondente distribuição amostral			
X_0	$\frac{\hat{X}_0 - X_0}{\frac{S_{y \cdot x}}{B} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \overline{Y})^2}{B^2 S_{xx}}}} \sim t_{n-2}, \text{ com } y_0 = \frac{\sum_{i=1}^m y_i}{m}$			

Análise de variância - ANOVA

A hipótese nula é rejeitada quando $F_{\rm observado} \geqslant F\left(k-1;n-k;1-\alpha\right)$

sendo k o número de amostras e $n=n_1+n_2+\cdots+n_k$

Tabela ANOVA						
Fonte de	Somas de	Graus de	Média de	Estatística		
variação	quadrados	liberdade	quadrados	de teste F		
Regressão	SQR	1	$MQR = \frac{SQR}{1}$	$F_0 = \frac{MQR}{MQE} \sim F(1; n-2)$		
Erros	SQE	n-2	$MQE = \frac{SQE}{n-2}$			
Total	SQT	n-1				

A hipótese nula $\beta_1 = 0$ é rejeitada quando $F_{\text{observado}} \ge F(1; n-2; 1-\alpha)$.

Formulário e quadros resumo

C. Fernandes & P. Ramos