

손에 잡히는 딥러닝

Score Function

모두의연구소

박은수 Research Director

진행할 내용들

- 기본 개념 및 기초 내용 (Deep NN)
- Convolutional NN
- Recurrent NN

돌아보기

모두의연구소

• 고양이 분류 룰을 만들기 어려움 ..

우리는 Data Driven 방법을 취할 겁니다 Example training set

- 분류기의 구성
 - Score function
 - Loss function
 - Optimization

들어가기 전에

다차원 배열의 계산

• 다차원 배

Matrix 연산 리뷰: Matrix-vector

Example

Details:

To get $\underline{y_i}$, multiply \underline{A} 's i^{th} row with elements of vector x, and add them up.

Matrix 연산 리뷰: Matrix-vector

Matrix 연산 리뷰: Matrix-matrix

Example

Details:

The $\underline{i^{th}}$ column of the $\underline{\text{matrix }}C$ is obtained by multiplying A with the i^{th} column of B. (for i = 1,2,...,0)

Matrix 연산 리뷰: Matrix-matrix

선형대수 리뷰

http://cs229.stanford.edu/section/cs229-linalg.pdf

좀 더 깊은 리뷰를 보시려 면 참고하세요

2.1 Vector-Vector Products

Given two vectors $x, y \in \mathbb{R}^n$, the quantity $x^T y$, sometimes called the **inner product** or **dot product** of the vectors, is a real number given by

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

Observe that inner products are really just special case of matrix multiplication. Note that it is always the case that $x^Ty=y^Tx$.

Given vectors $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$ (not necessarily of the same size), $xy^T \in \mathbb{R}^{m \times n}$ is called the *outer product* of the vectors. It is a matrix whose entries are given by $(xy^T)_{ij} = x_iy_j$, i.e.,

$$xy^T \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_my_n \end{bmatrix}.$$

As an example of how the outer product can be useful, let $1 \in \mathbb{R}^n$ denote an n-dimensional vector whose entries are all equal to 1. Furthermore, consider the matrix $A \in \mathbb{R}^{m \times n}$ whose columns are all equal to some vector $x \in \mathbb{R}^m$. Using outer products, we can represent A compactly as.

$$A = \begin{bmatrix} \mid & \mid & & \mid \\ \mid & x & \cdots & x \\ \mid & \mid & & \mid \end{bmatrix} = \begin{bmatrix} x_1 & x_1 & \cdots & x_1 \\ x_2 & x_2 & \cdots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_m & x_m & \cdots & x_m \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} = x1^T.$$

2.2 Matrix-Vector Products

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, their product is a vector $y = Ax \in \mathbb{R}^m$. There are a couple ways of looking at matrix-vector multiplication, and we will look at each of them in turn.

If we write A by rows, then we can express Ax as,

$$y = Ax = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & \vdots & \vdots \\ - & a_n^T & - \end{bmatrix} x = \begin{bmatrix} a_1^Tx \\ a_2^Tx \\ \vdots \\ a_n^Tx \end{bmatrix}$$

강아지와 고양이 분류하기

픽셀값들을 조합하여 단순히 각 레이블에 대한 점수를 부여하면 어떻까요? Score function?

Score function

높은것으로 로 분류

Score function: Simple Linear Classifier
 f(x, W)= Wx 3,072x1

$$2x1 f(x, W) = Wx 3,072x1$$

$$2x1 f(x, W) = Wx 3,072x1$$

• Score function: Simple Linear Classifier 3,072x1

2x1 f(x, W) = Wx + b 2x1

X

이제 해야 할 것은

Score

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

1. 계산된 Score가 얼마나 안좋은지 측 정할 수 있는 함수를 만들어야 합니다

Loss function

2. Loss function을 최소화 할수 있는 방법을 만들어야 합니다

(Optimization)

Coming up:

Loss function

f(x, W) = Wx

Optimization

- Loss Function : 현재 내가 구성한 W가 좋은지 안좋은지 측정할 수 있게 해줍니다
- Optimization : random W로 시작해서 Loss를 최소로 갖게 W 를 변경해 줍니다

박은수 Research Director

E-mail: es.park@modulabs.co.kr