

Product Catalog

Packaged Rooftop Air Conditioners Precedent™ Heat Pump

Standard Efficiency 12.5 to 25 Tons — 60 Hz

Introduction

Packaged Heat Pumps

Trane's customers demand products that provide exceptional reliability, meet stringent performance requirements, and are competitively priced. Trane delivers with Precedent™.

Precedent[™] features cutting edge technologies: reliable compressors, Trane engineered Symbio controls, computer-aided run testing, and Integrated Comfort[™] Systems. So, whether you're the contractor, the engineer, or the owner you can be certain Precedent[™] products are built to meet your needs.

The Precedent product is designed for comfort cooling, mixed air applications. If the product is being considered for other types of applications, such as process cooling, dedicated outdoor air, indoor agriculture, etc. Consult with your local Trane Sales Representative. Applying the units in an unintended application could result in inadequate performance and/or premature component failures.

Through the years, Trane has designed and developed the most complete line of Packaged Rooftop products available in the market today. Trane was the first to introduce the Micro—microelectronic unit controls—and has continued to improve and revolutionize this design concept.

Symbio control platform offers the same great features and functionality as the original Micro, with additional benefits for greater application flexibility.

With its sleek, compact cabinet, Precedent™ continues to provide the highest standards in quality and reliability, comfort, ease of service, and the performance of Trane light commercial products.

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Revision History

- Corrected low ambient kit installation information.
- · Corrected units of measure in Heating Capacity chapter tables.

©2023 Trane PKGP-PRC019D-EN

Table of Contents

Features and Benefits	5
Features	5
Control Options	
Accessories	
Key Benefits	9
Model Number Description	7
General Data1	9
Gross Cooling Capacities	4
Heating Capacities	8
Reheat Temperature Rise	1
Evaporator Fan Performance - Heat Pump	2
12.5 to 25 Ton Units — Downflow	2
12.5 to 25 Ton Units — Horizontal	5
Evaporator Fan Performance - Dual Fuel	9
12.5 to 25 Ton Units — Downflow	9
12.5 to 25 Ton Units — Horizontal	1
Fan Performance5	4
Heating Performance5	6
Controls	8
Enhanced BAS Integration and Connectivity	8
Secure Remote Connectivity with Trane Connect	8
Serviceability	
Flexibility 6	
Economizer Controls	
Zone Sensors	
Air-Fi Wireless Communicating Zone Sensors	
Thermostats 6	
Humidity Control (HGRH)	
Electrical Data	5
Dimensional Data	9
Weights 7	3

Features and Benefits

Features

Note: Equipment feature availability is dependent on unit configuration. For more information, see Packaged Rooftop Air Conditioners Precedent™ Quick Reference Support Guide (PREC-PRC001*-EN), the ordering system, or contact product support.

Table 1. Features – standard and optional

		Options		
	Standard Features	Factory Installed	Factory or Field Installed	Field Installed
3-year Limited Parts Warranty	X			
5-year Limited Compressor Warranty	X			
10-year Limited Heat Exchanger Warranty		Х		
15-year Limited Warranty Stainless Steel Heat Exchanger		Х		
2 inch Filter	Х			
2 inch MERV 8 Filters		Х		
2 inch MERV 13 Filters		Х		
Access Doors		Х		
Access Door (Control Box)	Х			
Access Panels	Х			
Anti-Short Cycle Timer (Standard with Symbio)	Х			
Barometric Relief			Х	
CO ₂ Sensor				Х
Clogged Filter Switch			Х	
Coil guards	X			
CompleteCoat™ Condenser Coil		Х		
Condensate Overflow Switch			Х	
Convertible Airflow	Х			
Colored and Numbered Wiring	Х			
Crankcase Heaters	Х			
Direct Drive Plenum Fan	Х			
Discharge Air Temperature Sensing Kit — MZVAV, SZVAV, Economizer, HGRH, Mod Gas	Х			
Discharge Air Temperature Sensing Kit — Standard (Multispeed)	Х			
Economizer: Low Leak — Downflow			Х	
Economizer: Low Leak — Horizontal				Х
Economizer: Standard — Downflow			Х	
Economizer: Standard — Horizontal				Х
Electric Heater			Х	
Expansion Modules			Х	
Fault Detection and Diagnostics (FDD)	Х			
Filter Removal Tool	Х			
Foil-Faced and Edge Protected Insulation	Х			
Frostat™	Х			
High Pressure Control	Х			
High Altitude Kit				Х
High Static/Oversized Motor		Х		
High Temperature Sensor				Х
IAQ Dual Sloped Composite Drain Pan	Х			
Liquid Line Refrigerant Drier	Х			

Features and Benefits

Table 1. Features – standard and optional (continued)

			Options	
	Standard		Factory or Field	Field
	Features	Factory Installed	Installed	Installed
Low Ambient Cooling to 0°F				Х
Low Ambient Cooling to 40°F	X			
Low Pressure Control	X			
LP Conversion Kit				Х
Manual Outside Air Damper			X	
Modulating Gas Heat (10:1)		X		
Modulating Hot Gas Reheat (HGRH)		Х		
Motorized Outside Air Damper			Х	
Multispeed Direct Drive Motors	Х			
Operating Charge of R-410A	Х			
Phase Balance/Loss/Reversal Protection	Х			
Phase Monitor	Х			
Powered Exhaust				Х
Powered or Unpowered Convenience Outlet		Х		
Reference or Comparative Enthalpy			Х	
Roof Curb				Х
Single Point Power	Х			
Single Side Service	Х			
Smoke Detector - Return		Х		
Smoke Detector - Supply		Х		
Stainless Steel Drain Pan		Х		
Standardized Components	Х			
Symbio Controls	Х			
Thermal Expansion Valve	Х			
Through-the-Base Electrical Access		Х		
Through-the-Base Electrical with Circuit Breaker		Х		
Through-the-Base Electrical with Disconnect Switch		Х		
Through-the-Base Gas Piping		Х		
Tubular Gas Heat Exchanger		Х		
Variable Air Flow (SZVAV)/Variable Air Flow (MZVAV)		Х		
Ventilation Override		1		х

Control Options

Note: Control option availability is dependent on unit configuration. For more information, see Packaged Rooftop Air Conditioners Precedent™ Quick Reference Support Guide (PREC-PRC001*-EN), the ordering system, or contact product support.

Table 2. Control options — standard and optional

			Options	
	Standard Features	Factory Installed	Factory or Field Installed	Field Installed
Dual Thermistor Remote Zone Sensor				Х
Symbio Service and Installation App	Х			
Symbio 700 Advanced Module			Х	
Humidity Sensor/Humidistat				Х

Table 2. Control options — standard and optional (continued)

		Options		
	Standard Features	Factory Installed	Factory or Field Installed	Field Installed
Thermostat				Х
Wireless Zone Sensor				Х
Zone Sensor				Х
LonTalk® Communication Interface (LCI)			X	
Trane® Air-Fi® Wireless Communication Interface (WCI)			Х	

Note: For more information, reference the Controls chapter.

Accessories

Note: Accessory availability is dependent on unit configuration. Some accessories may require additional accessories/options for full functionality. For more information, see Packaged Rooftop Air Conditioners Precedent™ Quick Reference Support Guide (PREC-PRC001*-EN), the ordering system, or contact product support.

Table 3. Packaged heat pump

FIA KIT	DESCRIPTION
FIAEHWD318*	18kW, 208-230V Electric Heater
FIAEHWD336*	36kW, 208-230V Electric Heater
FIAEHWD354*	54kW, 208-230V Electric Heater
FIAEHWD372*	72kW, 208-230V Electric Heater
FIAEHWD418*	18kW, 460V Electric Heater
FIAEHWD436*	36kW, 460V Electric Heater
FIAEHWD454*	54kW, 460V Electric Heater
FIAEHWD472*	72kW, 460V Electric Heater
FIAEHWDW18*	18kW, 575V Electric Heater
FIAEHWDW36*	36kW, 575V Electric Heater
FIAEHWDW54*	54kW, 575V Electric Heater
FIAEHWDW72*	72kW, 575V Electric Heater
FIABARM003*	Barometric Relief
FIAC02K001*	CO ₂ (DCV) Wall Mounted Sensor
FIAC02K002*	CO ₂ (DCV) Duct Mounted Sensor
FIACURB404*	14-inch Full Perimeter Knockdown Curb
FIACLFS003*	Clogged Filter Switch
FIACLFS004*	Clogged Filter Switch (MERV13)
FIADFDB001*	Differential Dry Bulb Economizer Control
FIADMPR003*	Manual Damper
FIADMPR103*	Motorized Damper
FIAECON003*	Dry Bulb Downflow Economizer
FIAECON303*	Dry Bulb Horizonal Economizer
FIAECON103*	Dry Bulb Downflow Low Leak
FIAECON203*	Dry Bulb Horizontal Low Leak
FIAENTH001*	Reference Enthalpy Economizer Control
FIAENTH002*	Comparative Enthalpy Economizer Control
FIAHALT003*	High Altitude Gas Adjustment Kit
FIAHTST001*	High Temperature (Fire) Duct Mounted Stat

Table 3. Packaged heat pump (continued)

FIA KIT	DESCRIPTION
FIAHZDC001*	Horizontal Conversion Panel
FIALOAM001*	Low Ambient
FIALTCI001*	LonTalk Communication Interface
FIALPKT003*	LP Gas Conversion Kit
FIAOPTN001*	Indoor Options Module
FIAOPTN002*	Fresh Air Options Module
FIAOVFL001*	Condensate Overflow Switch
FIAPWRX303*	Power Exhaust 230V
FIAPWRX403*	Power Exhaust 460V
FIAPWRXW03*	Power Exhaust 575V
FIAS7ADV01*	Symbio 700 Advanced Controls and BACnet BAS Upgrade Kit
FIASCCM001*	Symbio Customer Connection Module
FIAXMOD030*	Symbio 700 XM30 Expansion Module
FIAXMOD032*	Symbio 700 XM32 Expansion Module

Table 4. Dual fuel heat pump

FIA KIT	DESCRIPTION
FIABARM003*	Barometric Relief
FIAC02K001*	CO ₂ (DCV) Wall Mounted Sensor
FIAC02K002*	CO ₂ (DCV) Duct Mounted Sensor
FIACURB404*	14-inch Full Perimeter Knockdown Curb
FIACLFS003*	Clogged Filter Switch
FIACLFS004*	Clogged Filter Switch (MERV13)
FIADFDB001*	Differential Dry Bulb Economizer Control
FIADMPR003*	Manual Damper
FIADMPR103*	Motorized Damper
FIAECON003*	Dry Bulb Downflow Economizer
FIAECON303*	Dry Bulb Horizonal Economizer
FIAECON103*	Dry Bulb Downflow Low Leak
FIAECON203*	Dry Bulb Horizontal Low Leak
FIAENTH001*	Reference Enthalpy Economizer Control
FIAENTH002*	Comparative Enthalpy Economizer Control
FIAHTST001*	High Temperature (Fire) Duct Mounted Stat
FIAHZDC001*	Horizontal Conversion Panel
FIALOAM001*	Low Ambient
FIALTCI001*	LonTalk Communication Interface
FIAOPTN001*	Indoor Options Module
FIAOPTN002*	Fresh Air Options Module
FIAOVFL001*	Condensate Overflow Switch
FIAHALT003*	High Altitude Gas Adjustment Kit - 2-Stage gas
FIALPKT003*	LP Gas Conversion Kit- 2-Stage gas
FIALPKTM08*	LP Gas Conversion Kit - Modulating gas
FIALPKTM09*	LP Gas Conversion Kit - Modulating gas
FIALPKTM10*	LP Gas Conversion Kit - Modulating gas
FIAPWRX303*	Power Exhaust 230V
FIAPWRX403*	Power Exhaust 460V

Table 4. Dual fuel heat pump (continued)

FIA KIT	DESCRIPTION
FIAPWRXW03*	Power Exhaust 575V
FIAS7ADV01*	Symbio 700 Advanced Controls and BACnet BAS Upgrade Kit
FIASCCM001*	Symbio Customer Connection Module
FIAXMOD030*	Symbio 700 XM30 Expansion Module
FIAXMOD032*	Symbio 700 XM32 Expansion Module

Key Benefits

Airflow Distribution

Airflow is outstanding. Precedent™ can replace an older machine with old ductwork and, in many cases, improve the comfort through better air distribution.

Cabinet Integrity

For added water integrity, Precedent[™] has a raised 1 inch lip around the supply and return of the downflow units to prevent water from blowing into the ductwork.

Coil Guards

Coil guards protect condenser coil during shipping as well as hail, vandals, wind, etc. Toolless design lends itself to ease of maintenance in cleaning coils.

Features and Benefits

CO₂ Sensor — Demand Control Ventilation (DCV)

Demand-controlled ventilation (DCV) is a control strategy that responds to the actual demand (need) for ventilation by regulating the rate at which the HVAC system brings outdoor air into the building. A CO_2 sensor measures the concentration (parts per million, ppm) of CO_2 (carbon dioxide) in the air. As the CO_2 concentration changes, the outside air damper modulates to meet the current ventilation needs of the zone. The CO_2 sensor kit is available as a field installed accessory and wires directly to the Symbio 700 controller.

CompleteCoat™ Condenser Coil

This optional coated coil provides excellent corrosion resistance as well as uniformity of coverage and coating thickness.

Controls — Symbio™

Enhanced BAS Integration and Connectivity

- · Open standard communications
 - BACnet®over Zigbee (Air-Fi Wireless)
 - BACnet MS/TP
 - BACnet IP
 - Modbus™ RTU
 - Modbus TCP/IP
 - LonTalk®
- Securely access, troubleshoot, and monitor equipment from anywhere via Trane Connect™

Serviceability

- Wireless mobile app interface (iPhone and Android) to simplify startup/service
- On-board user interface
- · Data Trending
- · Real-time, clear language diagnostics
- Historical alarm logs
- · Backup and Restore functionality to reduce commissioning and service time

Flexibility

- · Future-ready upgradable software, supporting changing codes and new sequences of operation
- · Standard, consistent pre-engineered applications that meet industry standards
- · Built-in Schedules (requires Tracer® TU)

- Expandable inputs and outputs (requires Tracer TU)
- Ability to add custom programmed sequences (requires Tracer TU)

Accessibility

Control box consists of a multilevel design with Symbio Controls located on hinged panels which provide protection from high voltage components for ease of servicing.

Convenience Outlet

This option is GFCI, 120V/15A, 2 plug, convenience outlet powered or GFCI, 120V/20A, 2 plug convenience outlet unpowered. This option can be ordered when through the base electrical with either the disconnect switch or circuit breaker option is ordered.

Convertible Units

Units ship in a downflow configuration and can be easily converted to horizontal by simply removing two panels. Optional field accessory kits required for 12.5 to 25 ton units.

Direct Drive Plenum Fans

All 12.5 to 25 tons units are equipped with a direct drive plenum fan design with the following features.

- Backward-curved fan wheel
- External rotor direct drive variable speed indoor motor
- · Variable speed adjustment available in Symbio controller
- Designed to slide out for ease of maintenance

Features and Benefits

Drain Pan

Every Precedent™ unit has an easy-to-clean, composite removable dual-sloped drain pan (IAQ).

Dual Fuel Operation

For dual fuel models, heat pump with gas auxiliary heat (digit 1 = D). If the call for heat is not satisfied, the final heat pump stage is activated. If ambient temperature is below the adjustable lockout set point, the controller will activate auxiliary gas heat 1st stage, and heat pump operation will be terminated. A continued call for heat will cause the controller to activate auxiliary gas heat 2nd stage. The indoor fan will continue to run and will increase to 100% during transition from heat pump to gas heat.

If continuous fan operation is available and selected from the thermostat, the controller automatically adjusts fan speed for heat pump and gas heat operation. During defrost mode, the controller will activate auxiliary gas heat to maintain comfort.

Fault Detection and Diagnostics (FDD)

This offering meets the mandatory requirement of CA Title 24 of fully configurable diagnostics allowing fault history and reading fault codes at the unit via Symbio™ 700 board or app. This feature provides detection of the following faults: Air temperature sensor failure/fault and notification of acceptable economizer mode. The FDD system shall be certified by the Energy Commission as meeting the requirements.

Flexibility

Precedent™ offers ultimate flexibility. Units are built to order in our standard ship cycle time.

High Altitude Kit

While recommended for units applied above 2,000 feet, domestic contractors should consult with local authority on best practice. High altitude kits contain gas orifices that derate the gas input rate (Btuh/r) by 10%.

High Efficiency Filtration

Precedent™ units offer a variety of high efficiency filtration options. MERV 8 and MERV 13 filters provide additional filtration beyond the capabilities of typical 2 inches throwaway filters.

High Static Motor

Available on 25 ton models, this high static motor option extends beyond the capability of the standard motor

Hinged Access Doors

These doors permit easy access to the filter, fan and compressor/control sections. They reduce the potential roof damage from screws or sharp access panel corners.

Humidity Sensor/Humidistat

The humidity sensor/humidistat, when used in conjunction with our dehumidification (hot gas reheat) units will provide outstanding humidity control and comfort. Humidity sensors can be wall or duct mounted. The humidity deadband can be set between 40% and 60% relative humidity.

Low Ambient Cooling

All Precedent™ units have cooling capabilities down to 40°F. Field installed accessory extends operation down to 0°F.

Low Leak Economizer

This accessory meets low leak requirements for ASHRAE 90.1, IECC, and CA Title 24 standards (4 cfm/ $ft^2@1"$ wg exterior air/return air). This option allows 100% outdoor air supply from 0 to 100% modulating dampers and is standard with barometric relief. It can be paired with powered exhaust for additional building pressure relief. This option can be paired with or without fault detection and diagnostics (FDD) to meet current mandatory CA Title 24 requirements.

The economizers come with four control options, dry bulb, reference enthalpy, comparative enthalpy, or differential dry bulb.

Features and Benefits

Note: Downflow low leak economizer is available as a factory installed option. Horizontal low leak economizer is only available as a field installed option.

LP Conversion Kit

Provided for field conversion of gas/electric units from natural gas to propane.

Modulating Gas Heat (10:1)

Modulating natural gas heat option, with a high modulation range of 10:1, automatically modulates the gas value and combustion blower motor providing improved comfort with stable temperature control.

- · Less on/off cycling
- · Continuous heating output
- · Wide operation range (low and high heat)
- Coupled with variable speed fan control enables independent control of supply airflow and discharge air temperature
- With Zoned Rooftop Systems, modulating gas heat enables effective supply air tempering as well as warm-up sequences

Modulating Hot Gas Reheat (HGRH)

All 12.5 to 25 tons units can be ordered with a factory installed modulating hot gas reheat (HGRH) humidity control system designed to provide year around comfort by improving indoor air quality while controlling humidity levels.

- · Modulating gas reheat, no more on/off
- Maintains stable neutral leaving air temperature, resulting in less cycling
- Includes both relative humidity and dew point control
- · Available on downflow or horizontal

Multi-Speed Indoor Fan System

This system incorporates a multi-speed fan control to change the speed of the fan to 66% of full airflow based off of compressor stages.

Multiple-Zone VAV Control

A multiple-zone VAV (MZVAV) system consists of a packaged rooftop unit that serves several individually controlled zones. Each zone is equipped with a VAV terminal unit that varies the quantity of air delivered to maintain the desired temperature in that zone. The rooftop unit controller varies the speed of the indoor fan to maintain the static pressure in the supply ductwork at a setpoint, ensuring that all zones receive the necessary quantity of air. In addition, cooling capacity is cycled to maintain the supply air temperature at the desired setpoint.

For decades, Trane has been an industry leader in rooftop VAV systems. Now, multiple-zone VAV control is available in the light commercial rooftop platform (12.5 to 25 tons).

Other Benefits

- · Cabinet design ensures water integrity
- · Ease of Service, Installation and Maintenance
- · Mixed model build enables "fastest in the industry" ship cycle times
- Outstanding Airflow Distribution
- · Symbio Controls

Rigorous Testing

All Precedent™ designs were rigorously tested at the factory to ensure premier quality.

Rain testing is completed to ensure water integrity.

Transportation vibration and forklifting tests are performed to ensure that the unit arrives at the job site in top condition.

Rigging lift and drop tests are completed to assure that the lifting lugs and rails hold up under stress.

During production we perform 100% coil leak test at the factory. The assembled unit is leak tested to 465 psig. All parts are inspected at the point of final assembly. Sub standard parts are identified and rejected immediately. Every unit receives a 100% unit run test before leaving the production line to make sure it meets rigorous requirements.

Single Zone VAV (SZVAV)

SZVAV is fully integrated into the control system. It provides the simplest and fastest commissioning in the industry through proven factory-installed, wired, and tested system controllers. All control modules, logic boards and sensors are factory installed and tested to ensure the highest quality and most reliable system available. This means no special programming of algorithms, or hunting at the jobsite for field installed sensors, boards, etc. SZVAV is a quick and simple solution for many applications and is available from your most trusted rooftop VAV system solution provider -Trane.

Building system modeling in energy simulation software such as TRACE is recommended to evaluate performance improvements for your application.

Supply/Return Air Smoke Detector

With this option installed, if smoke is detected, all unit operation will be shut down. Reset will be manual at the unit. In order for the supply air smoke detector or return air smoke detector to properly sense smoke in the supply air stream or the return air stream, the air velocity entering the smoke detector unit must be between 500 to 4000 feet per minute. Equipment covered in this manual will develop an airflow velocity that falls within these limits over the entire airflow range specified in the evaporator fan performance table.

Through-the-Base Electrical Access

An electrical service entrance shall be provided allowing electrical access for both control and main power connections inside the curb and through-the-base of the unit. Option will allow for field installation of liquid-tight conduit and an external field installed disconnect switch.

Features and Benefits

Through-the-Base Gas Piping

Factory provided through-the-base openings simplify piping. Because these utility openings frequently minimize the number of roof penetrations, the integrity of roofing materials is enhanced.

This option shall have all piping necessary including, black steel, manual gas shut-off valve, elbows, and union. This assembly will require minor field labor to install.

Ventilation Override

Ventilation override allows the unit to be set to transition to up to three different pre-programmed sequences for smoke purge, pressurization, and exhaust. The transition occurs when a binary input on the Customer Connection Module is closed (shorted). This would typically be a hard wired relay output from a smoke detector or fire control panel. The Customer Connection module that allows ventilation override is available as a field installed accessory (FIASCCM001). For more information on functionality, refer to Symbio™ 700 Controller with Precedent™ Packaged Rooftop Air-Conditioners Application Guide (ACC-APG002*-EN).

Model Number Description

Digit 1 — Unit Function

W = Packaged Heat Pump

D = Dual Fuel Heat Pump

Digit 2 — Cooling Efficiency

S = Standard Efficiency

Digit 3 - Refrigerant

J = R-410A

Digit 4,5,6 — Nominal Gross Cooling Capacity (MBh)

150 = 12.5 Ton

180 = 15 Ton

240 = 20 Ton

300 = 25 Ton

Digit 7 - Design Sequence

Digit 8 - Voltage Selection

3 = 208-230/60/3

4 = 460/60/3

W = 575/60/3

Digit 9 — Unit Controls

S = Symbio[™] 700

Digit 10 — Heat Type

0 = Base Model (None or Electric)

A = Stainless Steel Gas Heat

B = Modulating Gas Heat

Digit 11 — Heating Capacity

0 = No Heat

G = 18 kW Electric Heat

K = 27 kW Electric Heat

N = 36 kW Electric Heat

P = 54 kW Electric Heat

R = 72 kW Electric Heat

L = Low Gas Heat

M = Medium Gas Heat

H = High Gas Heat

Digit 12, 13 — Service Sequence

** = Factory Assigned

Digit 14 - Fresh Air Selection

0 = No Fresh Air

A = Manual Outside Air Damper 0–50%

B = Motorized Outside Air Damper 0–50%

C = Economizer, Dry Bulb 0–100% without Barometric Relief

D = Economizer, Dry Bulb 0–100% with Barometric Relief

E = Economizer, Reference Enthalpy 0–100% without Barometric Relief

F = Economizer, Reference Enthalpy 0–100% with Barometric Relief

G = Economizer, Comparative Enthalpy

0-100% without Barometric Relief

H = Economizer, Comparative Enthalpy 0–100% with Barometric Relief

K = Downflow Low Leak Economizer, Dry Bulb

with Barometric Relief **M** = Downflow Low Leak Economizer, Reference

Enthalpy with Barometric Relief

P = Downflow Low Leak Economizer, Comparative Enthalpy with Barometric Relief

R= Downflow Low Leak Economizer, Differential Dry Bulb with Barometric Relief

Digit 15 — Supply Fan/Motor

0 = Multi-Speed Motor

1 = Optional Oversized/High Static Motor

2 = Single Zone Variable Air Volume with Standard Motor

3 = Single Zone Variable Air Volume with Oversized/High Static Motor

4 = Multiple Zone Variable Air Volume with Standard Motor

5 = Multiple Zone Variable Air Volume with Oversized/High Static Motor

Digit 16 — Hinged Access/Filters

0 = Standard Panels/Standard Filters

A = Hinged Access Panels/Standard Filters

B = Standard Panels/2 inch MERV 8 Filters
C = Hinged Access Panels/2 inch MERV 8 Filters

C - Hinged Access Fariers/2 Hich MERV 6 Fill

D = Standard Panels/2 inch MERV 13 Filters

E = Hinged Access Panels/2 inch MERV 13 Filters

Digit 17 — Coil Protection

0 = Standard Coil

1 = Condenser with CompleteCoat

Digit 18 — Through-the-Base Provisions

0 = No Through-the-Base Provisions

A = Through-the-Base Electric

B = Through-the-Base Gas Piping

C = Through-the-Base Electric and Gas Piping

Digit 19 — Disconnect/Circuit Breaker (three-phase only)

0 = No Disconnect/No Circuit Breaker

1 = Unit Mounted/Non-Fused Disconnect

2 = Unit Mounted Circuit Breaker

Digit 20— Convenience Outlet

0 = No Convenience Outlet

A = Unpowered 20A Convenience Outlet

B = Powered 15A Convenience Outlet (three-phase only)

Digit 21— Communications Options

0 = No Communications Interface

1 = Advanced Controller with BACnet® Communications Interface

2 = Advanced Controller with LonTalk® Communications Interface

3 = Advanced Controller with Air-Fi® Communications Interface

Digit 22— Refrigeration System Option

0 = Standard Refrigeration System

A = Dehumidification Option

Digit 23— Controls Expansion Module

0 = None

1 = XM-30 Expansion Module

2 = XM-32 Expansion Module

3 = XM-30 and XM-32 Expansion Module

4 = XM–30 Expansion Module (Qty 2)

5 = XM-32 Expansion Module (Qty 2)

Digit 24— Smoke Detector

0 = No Smoke Detector

A = Return Air Smoke Detector

B = Supply Air Smoke Detector

C = Supply and Return Air Smoke Detectors

Model Number Description

Digit 25— System Monitoring Controls

- 0 = No Monitoring Control
- 1 = Clogged Filter Switch
- 2 = Condensate Overflow Switch
- 3 = Discharge Air Sensing Tube
- 4 = Clogged Filter Switch and Condensate Overflow Switch
- **5** = Clogged Filter Switch and Discharge Air Sensing Tube
- **6** = Condensate Overflow Switch and Discharge Air Sensing Tube
- **7** = Clogged Filter Switch, Condensate Overflow Switch and Discharge Air Sensing Tube

Digit 26-Not Used

Digit 27— Hardware Enhancements

- 0 = No Enhancements
- 1 = Stainless Steel Drain Pan

Digit 28— Short Circuit Current Rating

- 0 = Standard (5k) SCCR Marking
- A = Tier 2 (65K) SCCR Marking

Digit 29— Low Ambient

- **0** = None
- A = Low Ambient Cooling to 0°F

General Data

Table 5. General data — 12.5 to 25 tons — standard efficiency (WSJ*)

	12.5 Tons	15 Tons	20 Tons	25 Tons
	WSJ150	WSJ180	WSJ240	WSJ300
Cooling Performance				
Gross Cooling Capacity	154000	182000	246000	272000
EER	10.6	10.6	9.5	9.5
Nominal cfm/AHRI Rated cfm	5000	6000	8000	10000
AHRI Net Cooling Capacity	150000	178000	240000	262000
IEER (2-Speed)	13.5	13.5	12.5	12.5
IEER (SZVAV/MZVAV)	14.0 / 14.0	14.0 / 14.0	13.0 / 13.0	13.0 / 13.0
,				
System Power (kW)	14.15	16.80	25.26	27.58
Heating Performance	T	T	T	
High Temp Btuh Rating	135000	162000	224000	242000
System Power (kW) / COP	11.99 / 3.30	14.39 / 3.30	20.51 / 3.20	22.16 / 3.20
Low Temp Btuh Rating	62500	76000	119000	136000
System Power (kW) / COP	8.93 / 2.05	10.86 / 2.05	17.01 / 2.05	19.44 / 2.05
Compressor				
Number/Type	2/Manifold Scroll	2/Manifold Scroll	2/Manifold Scroll	2/Manifold Scroll
Percent Capacity (Stage 1 - Stage 4)	33/67/100/NA	33/67/100/NA	24/36/64/100	25/37/63/100
Sound	1			
Outdoor Sound Rating (dBA)	87	87	93	93
Outdoor Coil				
Туре	RTPF Lanced	RTPF Lanced	RTPF Lanced	RTPF Lanced
Configuration	Full Face	Full Face	Full Face	Full Face
Tube Size (in.)	0.313	0.313	0.313	0.313
Face Area (sq. ft.)	34.71	34.71	40.05	40.05
Rows/FPI (Fins per inch)	3/16	3/16	3/16	3/16
Refrigerant Control	TXV	TXV	TXV	TXV
Indoor Coil				
Туре	RTPF Lanced	RTPF Lanced	RTPF Lanced	RTPF Lanced
Configuration	Full Face	Full Face	Full Face	Full Face
Tube Size (in.)	0.313	0.313	0.313	0.313
Face Area (sq. ft.)	25.83	25.83	30.09	30.09
Rows/FPI (Fins per inch)	4/16	4/16	4/16	4/16
Refrigerant Control	TXV	TXV	TXV	TXV
STD. Drain Connection No./Size (in.)	1/1.00 PVC Socket	1/1.00 PVC Socket	1/1.00 PVC Socket	1/1.00 PVC Socket
Stainless Drain Connection No./Size (in.)	1/1.00 NPT	1/1.00 NPT	1/1.00 NPT	1/1.00 NPT
Reheat Coil				
Туре	RTPF Lanced	RTPF Lanced	RTPF Lanced	RTPF Lanced
Configuration	Full Face	Full Face	Full Face	Full Face
Tube Size (in.)	0.313	0.313	0.313	0.313
Face Area (sq. ft.)	25.83	25.83	25.83	25.83

Table 5. General data — 12.5 to 25 tons — standard efficiency (WSJ*) (continued)

	12.5 Tons	12.5 Tons 15 Tons	20 Tons	25 Tons
	WSJ150	WSJ180	WSJ240	WSJ300
Rows/FPI (Fins per inch)	1/16	1/16	1/16	1/16
Outdoor Fan				
Туре	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter (in.)	2/26x3	2/26x3	2/28x4	2/28x4
Orive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM	10480	10480	15810	15810
Motor HP	2/0.50	2/0.50	2/1.0	2/1.0
Motor RPM	1125	1125	1125	1125
Indoor Fan				
Туре	BC Plenum	BC Plenum	BC Plenum	BC Plenum
No. Used/Diameter (in.)/Width (in.)	2/23x6	2/23x6	2/23x6	2/23x6
Drive Type/No. Speeds/RPM	Direct / Variable	Direct / Variable	Direct / Variable	Direct / Variable
Motor HP (Standard/Oversized)	2.9 / –	2.9 / –	2.9 / –	2.9 / 4.2
Max Motor RPM	1850	1850	1850	1850 / 1940
Filters ^(a)				
Type Furnished	Throwaway	Throwaway	Throwaway	Throwaway
Number Size Recommended	(8) 20 x 24 x 2	(8) 20 x 24 x 2	(4) 20 x 24 x 2 (4) 20 x 30 x 2	(4) 20 x 24 x 2 (4) 20 x 30 x 2
Refrigerant Charge				
lbs of R-410A	30.0	33.0	39.0	38.0
bs of R-410A, Hot Gas Reheat	36.0	35.0	42.0	38.0
Cabinet				
Cabinet Size	D0	D0	D1	D1

⁽a) Outdoor sound rating shown is tested in accordance with AHRI 370-2015. For additional information reference the outdoor sound power level data in the performance section.

Table 6. General data — 12.5 to 25 tons — standard efficiency (DSJ*)

	12.5 Tons	12.5 Tons 15 Tons 20 Tons				
	DSJ150	DSJ180	DSJ240	DSJ300		
Cooling Performance	·					
Gross Cooling Capacity	154000	182000	246000	272000		
EER	10.4	10.4	9.3	9.3		
Nominal cfm/AHRI Rated cfm	5000	6000	8000	10000		
AHRI Net Cooling Capacity	150000	178000	240000	260000		
EER (2-Speed)	13.3	13.3	12.3	12.3		
EER (SZVAV/MZVAV)	13.8 / 13.8	13.8 / 13.8	12.8 / 12.8	12.8 / 12.8		
System Power (kW)	14.15	16.80	25.26	27.58		
Heating Performance						
High Temp Btuh Rating	136000	164000	224000	250000		
System Power (kW) / COP	11.99 / 3.30	14.39 / 3.30	20.51 / 3.20	22.16 / 3.20		
ow Temp Btuh Rating	63500	76000	119000	137000		

Table 6. General data — 12.5 to 25 tons — standard efficiency (DSJ*) (continued)

	12.5 Tons	15 Tons	20 Tons	25 Tons
	DSJ150	DSJ180	DSJ240	DSJ300
System Power (kW) / COP	8.93 / 2.05	10.86 / 2.05	17.01 / 2.05	19.44 / 2.05
Compressor				
Number/Type	2/Manifold Scroll	2/Manifold Scroll	2/Manifold Scroll	2/Manifold Scroll
Percent Capacity (Stage 1 - Stage 4)	33/67/100/NA	33/67/100/NA	24/36/64/100	25/37/63/100
Sound				
Outdoor Sound Rating (dBA)	87	87	93	93
Outdoor Coil				
Туре	RTPF Lanced	RTPF Lanced	RTPF Lanced	RTPF Lanced
Configuration	Full Face	Full Face	Full Face	Full Face
Tube Size (in.)	0.313	0.313	0.313	0.313
Face Area (sq. ft.)	34.71	34.71	40.05	40.05
Rows/FPI (Fins per inch)	3/16	3/16	3/16	3/16
Refrigerant Control	TXV	TXV	TXV	TXV
Indoor Coil	_			
Туре	RTPF Lanced	RTPF Lanced	RTPF Lanced	RTPF Lanced
Configuration	Full Face	Full Face	Full Face	Full Face
Tube Size (in.)	0.313	0.313	0.313	0.313
Face Area (sq. ft.)	25.83	25.83	30.09	30.09
Rows/FPI (Fins per inch)	4/16	4/16	4/16	4/16
Refrigerant Control	TXV	TXV	TXV	TXV
STD. Drain Connection No./Size (in.)	1/1.00 PVC Socket	1/1.00 PVC Socket	1/1.00 PVC Socket	1/1.00 PVC Socket
Stainless Drain Connection No./Size (in.)	1/1.00 NPT	1/1.00 NPT	1/1.00 NPT	1/1.00 NPT
Reheat Coil				
Туре	RTPF Lanced	RTPF Lanced	RTPF Lanced	RTPF Lanced
Configuration	Full Face	Full Face	Full Face	Full Face
Tube Size (in.)	0.313	0.313	0.313	0.313
Face Area (sq. ft.)	25.83	25.83	25.83	25.83
Rows/FPI (Fins per inch)	1/16	1/16	1/16	1/16
Outdoor Fan				
Туре	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter (in.)	2/26x3	2/26x3	2/28x4	2/28x4
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM	10480	10480	15810	15810
Motor HP	2/0.50	2/0.50	2/1.0	2/1.0
Motor RPM	1125	1125	1125	1125

Table 6. General data — 12.5 to 25 tons — standard efficiency (DSJ*) (continued)

	12.5 Tons	15 Tons	20 Tons	25 Tons
	DSJ150	DSJ180	DSJ240	DSJ300
Indoor Fan				
Туре	BC Plenum	BC Plenum	BC Plenum	BC Plenum
No. Used/Diameter (in.)/Width (in.)	2/23x6	2/23x6	2/23x6	2/23x6
Drive Type/No. Speeds/RPM	Direct / Variable	Direct / Variable	Direct / Variable	Direct / Variable
Motor HP (Standard/Oversized)	2.9 / —	2.9 / –	2.9 / 4.2	2.9 / 4.2
Max Motor RPM	1850	1850	1850 / 1940	1850 / 1940
Filters ^(a)				
Type Furnished	Throwaway	Throwaway	Throwaway	Throwaway
Number Size Recommended	(8) 20 x 24 x 2	(8) 20 x 24 x 2	(4) 20 x 24 x 2 (4) 20 x 30 x 2	(4) 20 x 24 x 2 (4) 20 x 30 x 2
Refrigerant Charge				
lbs of R-410A	30.0	33.0	39.0	38.0
lbs of R-410A, Hot Gas Reheat	36.0	35.0	42.0	38.0
Heating Performance (Gas/Electric Only)				
Heating Input: Staged				
Low Heat Input (Btu) (High/Low Stage)	150,000/105,000	250,000/175,000	250,000/175,000	250,000/175,000
Mid Heat Input (Btu) (High/Low Stage)	200,000/140,000	320,000/224,000	320,000/224,000	320,000/224,000
High Heat Input (Btu) (High/Low Stage)	250,000/175,000	400,000/280,000	400,000/280,000	400,000/280,000
Heating Output: Staged				
Low Heat Input (Btu) (High/Low Stage)	121,500/85,000	202,500/141,750	202,500/141,750	202,500/141,750
Mid Heat Input (Btu) (High/Low Stage)	162,000/113,400	259,200/181,440	259,200/181,440	259,200/181,440
High Heat Input (Btu) (High/Low Stage)	202,500/141,750	324,000/226,800	324,000/226,800	324,000/226,800
Heating Input: Modulating				
Low Heat Input (Btu) (Maximum/Minimum)	N/A	250,000/25,000	250,000/25,000	250,000/25,000
High Heat Input (Btu) (Maximum/Minimum)	250,000/25,000	400,000/40,000	400,000/40,000	400,000/40,000
Heating Output: Modulating				
Low Heat Output (Btu) (Maximum/Minimum)	N/A	202,500/20,250	202,500/20,250	202,500/20,250
High Heat Output (Btu) (Maximum/Minimum)	202,500/20,250	324,000/32,400	324,000/32,400	324,000/32,400
Steady State Efficiency %				
Low Heat Input	81	81	81	81
Mid Heat Input	81	81	81	81
High Heat Input	81	81	81	81
No. Burners: Staged				
Low Heat Output	5	5	5	5
Mid Heat Output	5	7	7	7
High Heat Output	7	8	8	8

Table 6. General data — 12.5 to 25 tons — standard efficiency (DSJ*) (continued)

	12.5 Tons	15 Tons	20 Tons	25 Tons
	DSJ150	DSJ180	DSJ240	DSJ300
No. Burners: Modulating				
Low Heat Output	N/A	6	6	6
High Heat Output	6	8	8	8
No. Stages				
Low Heat Input	2	2	2	2
Mid Heat Input	2	2	2	2
High Heat Input	2	2	2	2
Gas Supply Line Pressure (InWC)				
Natural (minimum/maximum) Low Heat	4.5/14.0	4.5/14.0	4.5/14.0	4.5/14.0
Natural (minimum/maximum) Mid Heat	4.5/14.0	4.5/14.0	4.5/14.0	4.5/14.0
Natural (minimum/maximum) High Heat	4.5/14.0	6.0/14.0	6.0/14.0	6.0/14.0
LP (minimum/maximum)	11.5/14.0	11.5/14.0	11.5/14.0	11.5/14.0
Gas Connection Pipe Size (in.)				
Low Heat	3/4	3/4	3/4	3/4
Mid Heat	3/4	3/4	3/4	3/4
High Heat	3/4	3/4	3/4	3/4
Cabinet				
Cabinet Size	D0	D0	D1	D1

⁽a) Outdoor sound rating shown is tested in accordance with AHRI 370-2015. For additional information reference the outdoor sound power level data in the performance section.

Gross Cooling Capacities

Table 7. Gross cooling capacities — 12.5 tons

		I	Enterin	g Wet I	Bulb Te	mp (°F)	ı	Enterin	g Wet I	Bulb Te	mp (°F)	ı	Enterin	g Wet I	Bulb Te	mp (°F)
CFM	Ent DB (°F)	6	1	6	7	7	3	6	1	6	7	7	3	6	1	6	7	7	3
		MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC
			Ambie	ent Tem	peratur	e 85°F			Ambie	ent Tem	peratur	e 95°F			Ambie	nt Temp	erature	105°F	
	75	138.5	109.3	154.1	85.8	169.9	61.2	130.4	105.0	145.1	81.4	159.7	56.9	121.8	100.4	135.8	77.0	149.2	52.5
3750	80	139.0	127.7	154.9	105.5	171.1	81.1	131.0	123.2	145.9	101.1	161.2	76.8	122.7	118.5	136.7	96.7	151.0	72.4
3730	85	142.3	142.3	155.3	125.0	171.9	100.8	135.5	135.5	146.5	120.7	162.1	96.5	128.4	128.4	137.2	116.2	152.0	92.2
	90	150.3	150.3	155.8	143.3	172.4	120.4	143.3	143.3	147.2	138.8	162.7	116.2	136.0	136.0	138.2	134.2	152.6	111.8
	75	143.5	120.7	159.2	92.5	174.3	63.1	134.9	116.2	149.6	88.0	163.7	58.8	125.8	109.9	139.9	83.5	152.7	54.3
4500	80	145.0	142.5	160.0	115.9	176.1	86.8	136.8	136.8	150.5	111.4	165.7	82.5	128.9	128.9	140.8	106.9	155.0	78.1
1000	85	152.3	152.3	160.6	139.2	177.0	110.3	144.8	144.8	151.2	133.1	166.7	106.0	137.0	137.0	141.6	128.4	156.0	101.6
	90	160.9	160.9	162.3	160.8	177.5	133.7	153.2	153.2	153.6	153.6	167.3	129.4	145.2	145.2	145.4	145.4	156.7	125.0
	75	146.1	128.0	161.7	96.7	176.6	64.3	137.3	121.6	151.9	92.3	165.6	59.6	128.3	116.6	141.9	87.7	153.6	55.0
5000	80	148.9	148.9	162.6	122.6	178.7	90.5	141.2	141.2	152.9	118.1	168.0	86.1	133.3	133.3	142.9	113.6	157.0	81.7
0000	85	157.8	157.8	163.5	146.6	179.6	116.5	149.9	149.9	154.0	141.8	169.0	112.1	141.7	141.7	144.3	137.0	158.1	107.7
	90	166.8	166.8	167.0	167.0	180.2	142.3	158.7	158.7	158.9	158.9	169.7	138.0	150.2	150.2	150.4	150.4	158.9	133.5
	75	148.5	133.1	163.8	100.9	178.4	65.5	139.6	128.2	153.8	96.4	167.3	61.1	130.4	123.2	143.6	91.8	155.8	56.6
5500	80	153.3	153.3	164.7	129.2	180.8	94.1	145.4	145.4	154.8	124.7	169.8	89.7	137.1	137.1	144.6	120.1	158.7	85.3
	85	162.6	162.6	166.1	155.2	181.7	122.5	154.4	154.4	156.6	150.4	170.9	118.1	145.8	145.8	146.8	145.5	159.8	113.6
	90	171.8	171.8	172.1	172.1	182.5	150.7	163.3	163.3	163.6	163.6	171.8	146.4	154.4	154.4	154.7	154.7	160.8	139.2
	75	150.7	139.7	165.6	104.9	180.0	66.6	141.6	134.8	155.4	100.4	168.6	62.1	132.4	129.6	145.0	95.8	156.8	57.6
6000	80	157.3	157.3	166.6	135.6	182.6	97.6	149.0	149.0	156.5	131.1	171.4	93.2	140.4	140.4	146.2	123.5	160.1	88.7
	85	166.8	166.8	168.7	163.6	183.6	128.4	158.2	158.2	159.0	158.8	172.6	124.0	149.3	149.3	149.4	149.4	161.3	119.5
	90	176.3	176.3	<u> </u>	176.5	184.5	159.1	167.4	167.4	167.6	167.6	173.7	151.8	158.2	158.2	158.4	158.4	162.6	146.9
				nt Tem						nt Tem									
	75	112.8	95.7	126.1	72.4	138.3	48.0	103.0	89.1	115.6	67.5	126.5	43.2						
3750	80	114.0	113.6	127.0	92.1	140.4	67.9	105.3	105.3	116.5	87.2	128.9	63.2						
	85	120.8	120.8	127.4	110.2	141.4	87.7	112.5	112.5	117.1	105.0	129.9	83.0						
	90	128.2	128.2	128.9	128.9	142.0	107.4	119.7	119.7	119.9	119.9	130.6	102.6						
	75	116.6	104.7	129.6	78.8	141.3	49.8	106.7	99.3	118.6	74.0	129.1	45.0						
4500	80	120.8	120.8	130.6	102.3	143.9	73.5	112.0	112.0	119.6	97.4	131.9	68.8						
	85	128.7	128.7	131.7	123.4	145.0	97.1	119.7	119.7	121.1	118.1	133.0	92.3						
	90	136.6	136.6	136.8	136.8	145.7	120.5	127.3	127.3	127.5	127.5	133.8	113.2						
	75	118.8	111.4	131.4	83.0	142.8	50.9	108.7	105.8	120.1	78.1	130.1	46.0						
5000	80	124.8	124.8	132.4	108.9	145.6	77.1	115.6	115.6	121.2	101.0	133.4	72.4						
	85	133.0	133.0	134.2	131.9	146.8	103.1	123.5	123.5	123.7	123.7	134.6	98.3						
	90		141.1		141.4				131.3			135.7							
	75		117.9	132.8	87.1	143.8	51.9	110.7	110.7	121.3	82.1	130.8	47.1						
5500	80		128.3	134.0	112.4	147.0	80.7	118.7	118.7	122.8	106.8	134.5	75.9						
	85		136.7		136.8		109.1		126.8	126.9	126.9	135.9							
	90		145.0		145.2	149.5	134.1	134.7	134.7	134.9	134.9	137.4							
	75 80		122.8 131.2	134.0	91.0	144.5	52.9 84.1	113.0	113.0	122.3	86.1	131.4	48.1 70.3						
6000	80 85		131.2		118.1 140.0	148.2 149.5			121.3	124.2 129.7		135.5							
	85 90								129.6 137.7			136.9 139.0							
Notes:	90	140.4	148.4	140.0	148.6	151.2	141./	137.7	131.1	137.9	137.9	139.0	130.2						

Notes

^{1.} All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

^{2.} MBh = Total gross capacity

^{3.} SHC = Sensible heat capacity

Table 8. Gross cooling capacities — 15 tons

			Enterin	g Wet I	Bulb Te	mp (°F)		Enterin	g Wet I	Bulb Te	mp (°F)		Enterin	g Wet I	Bulb Te	mp (°F)
CFM	Ent DB (°F)	6	1	6	7	7	3	6	1	6	57	7	3	6	1	6	7	7	3
	(- ,	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC
			Ambie	ent Tem	peratur	e 85°F			Ambi	ent Tem	peratur	e 95°F			Ambie	nt Temp	perature	105°F	
	75	165.1	129.5	183.4	101.0	202.7	71.5	155.7	124.2	173.1	95.8	191.4	66.3	145.8	118.8	162.4	90.4	179.6	61.0
4500	80	165.8	152.9	184.0	124.5	203.1	95.1	156.5	146.8	173.8	119.3	191.9	90.0	146.9	141.3	163.0	113.9	180.2	84.7
4300	85	169.8	169.8	184.4	147.9	203.6	118.7	161.9	161.9	174.3	142.7	192.5	113.6	153.5	153.5	163.6	137.4	180.9	108.3
	90	179.1	179.1	185.3	171.4	204.1	142.1	171.0	171.0	175.3	166.2	193.0	137.1	162.4	162.4	165.0	159.8	181.4	131.8
	75	170.9	142.9	189.1	108.9	208.1	73.7	161.0	137.5	178.3	103.6	196.2	68.5	150.7	132.0	167.1	98.1	183.8	63.2
5400	80	172.9	169.9	189.8	136.8	208.8	101.8	163.5	163.5	179.0	131.5	197.0	96.6	154.0	154.0	167.8	126.0	184.8	91.3
0100	85	181.4	181.4	190.5	164.6	209.3	129.8	172.7	172.7	180.0	159.4	197.7	124.6	163.6	163.6	168.9	154.0	185.5	119.3
	90	191.4	191.4	192.9	191.5	209.8	157.7	182.5	182.5	183.0	183.0	198.3	152.5	173.1	173.1	173.3	173.3	186.2	147.3
	75	174.0	151.5	192.1	113.9	210.9	75.1	163.9	146.1	181.0	108.5	198.6	69.9	153.4	140.6	169.5	103.0	186.0	64.5
6000	80	177.4	177.4	192.7	144.6	211.6	106.1	168.5	168.5	181.7	139.3	199.6	100.9	159.2	159.2	170.3	133.8	187.1	95.6
0000	85	187.7	187.7	194.0	175.5	212.2	137.0	178.6	178.6	183.2	168.9	200.3	131.8	169.1	169.1	172.1	163.2	187.9	126.5
	90	198.1	198.1	198.2	198.2	212.9	167.8	188.7	188.7	189.0	189.0	201.1	162.6	178.8	178.8	179.1	179.1	188.8	157.3
	75	176.8	160.0	194.5	118.7	213.1	76.4	166.5	154.6	183.2	113.3	200.6	71.2	156.0	147.2	171.5	107.8	187.8	65.8
6600	80	182.5	182.5	195.2	152.3	214.0	110.3	173.3	173.3	184.0	147.0	201.8	105.1	163.7	163.7	172.4	141.5	189.1	99.7
	85	193.2	193.2	197.1	184.6	214.6	144.0	183.7	183.7	186.2	179.1	202.5	138.8	173.8	173.8	175.0	173.4	189.8	133.4
	90	203.8	203.8	204.1	204.1	215.5	177.7	194.1	194.1	194.3	194.3	203.5	172.5	183.8	183.8	184.1	184.1	191.0	167.2
	75	179.3	166.6	196.6	123.4	215.0	77.7	169.0	160.9	185.1	118.0	202.4	72.5	158.4	155.0	173.2	112.5	189.3	67.1
7200	80	187.0	187.0	197.4	159.8	216.0	114.4	177.5	177.5	186.1	154.5	203.6	109.1	167.5	167.5	174.3	149.0	190.7	103.7
	85	197.9	197.9	200.0	194.7	216.7	150.8	188.1	188.1	189.2	189.1	204.3	145.6	177.8	177.8	178.1	178.1	191.4	140.3
	90	208.9	208.9	209.1	209.1	217.8	187.4	198.8	198.8	199.0	199.0	205.7	182.3	188.1	188.1	188.3	188.3	193.1	174.8
				nt Tem						_	perature								
	75	135.4	113.1	151.1	84.9	167.1	55.6	124.3	107.2	139.0	79.0	153.6	49.8						
4500	80	136.9	135.5	151.8	108.4	167.9	79.3	126.5	126.5	139.7	102.5	154.6	73.5						
	85	144.5	144.5	152.4	131.8	168.6	102.9	134.9	134.9	140.5	126.0	155.4	97.1						
	90	153.2	153.2	154.3	154.2	169.2	126.4	143.2	143.2	143.5	143.5	156.0	120.6						
	75	139.9	126.3	155.3	92.5	170.8	57.7	128.5	118.8	142.6	86.6	156.8	51.9						
5400	80	144.7	144.7	156.0	120.4	172.0	85.8	134.5	134.5	143.4	114.5	158.2	80.0						
	85	153.9	153.9	157.4	146.9	172.7	113.8	143.3	143.3	145.2	140.8	158.9	108.0						
	90	163.0	163.0	163.3	163.3	173.5	141.8	152.1	152.1	152.4	152.4	159.8	136.0						
	75	142.5	133.2	157.4	97.4	172.7	59.0	131.0	126.8	144.5	91.4	158.5	53.2						
6000	80	149.4	149.4	158.3	128.2	174.0	90.1	138.8	138.8	145.5	122.3	159.9	84.2						
	85	158.9	158.9	160.4		174.8	120.9	147.9	147.9		148.2	160.7	115.1						
	90		168.3		168.6				156.8		157.1		146.1						
	75	145.0	141.1		102.1	174.3	60.3	133.4	133.4	146.0	96.1	159.8	54.4						
6600	80 85		153.5 163.2		135.8 163.5	175.7 176.5	94.2		142.4		129.9	161.4	88.3 122.1						
	85 90								151.7		151.9 161.1		153.4						
			172.8		173.1	177.9		160.9	160.9										
	75 80	147.3 157.0	157.0	160.7	106.8 143.3	175.6 177.2	61.5 98.2	136.0	145.6	147.3	100.8 134.8	161.0 162.6	55.7 92.3						
7200	85	166.9	166.9		167.1	177.2			155.0		155.2		128.9						
	90	176.7			176.9				164.3		164.5		162.5						
	30	170.7	170.7	170.9	170.9	179.9	100.9	104.3	104.3	104.5	104.5	100.9	102.3						

- 1. All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

 2. MBh = Total gross capacity

 3. SHC = Sensible heat capacity

Gross Cooling Capacities

Table 9. Gross cooling capacities — 20 tons

			Enterin	ıg Wet I	Bulb Te	mp (°F)		Enterin	g Wet l	Bulb Te	mp (°F)		Enterin	g Wet I	Bulb Te	mp (°F))
CFM	Ent DB (°F)	6	1	6	57	7	3	6	1	6	7	7	3	6	1	6	7	7	3
	,	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC
			Ambie	ent Tem	peratur	e 85°F			Ambi	ent Tem	peratur	e 95°F			Ambie	nt Temp	erature	105°F	
	75	222.9	176.2	248.0	138.3	274.7	98.9	209.8	169.3	233.8	131.5	259.0	92.3	195.7	162.0	218.6	124.4	242.3	85.4
6000	80	224.4	207.8	248.9	169.8	275.3	130.6	211.6	199.6	234.8	163.0	259.9	124.1	198.0	192.1	219.7	155.9	243.5	117.2
0000	85	230.4	230.4	249.6	201.1	276.1	162.2	219.6	219.6	235.7	194.4	260.9	155.7	207.8	207.8	220.8	187.4	244.6	148.8
	90	243.2	243.2	251.3	232.8	276.8	193.7	232.1	232.1	237.7	226.2	261.7	187.2	220.2	220.2	223.3	217.5	245.5	180.3
	75	231.0	194.2	255.9	148.8	282.1	102.0	217.3	187.2	241.0	141.9	265.7	95.3	202.6	179.9	225.1	134.8	248.1	88.3
7200	80	234.4	230.4	256.9	186.2	283.2	139.6	221.5	221.5	242.1	179.3	267.0	133.0	208.2	208.2	226.2	172.2	249.9	126.1
	85	246.1	246.1	258.4	223.7	284.1	177.1	234.3	234.3	243.9	217.0	268.2	170.6	221.5	221.5	228.4	209.9	251.1	163.7
	90	259.9	259.9	262.2	259.7	284.9	214.5	247.8	247.8	248.7	248.7	269.2	208.0	234.8	234.8	235.1	235.1	252.3	201.2
	75	235.4	205.8	260.0	155.5	285.9	103.8	221.4	198.8	244.7	148.6	269.0	97.1	206.5	189.1	228.4	141.4	251.1	90.1
8000	80	240.7	240.7	261.0	196.7	287.2	145.4	228.4	228.4	245.9	189.9	270.7	138.7	215.3	215.3	229.8	182.7	253.2	131.8
	85	254.8	254.8	263.3	238.3	288.2	186.8	242.4	242.4	248.5	229.4	271.8	180.1	229.0	229.0	232.9	221.8	254.4	173.2
	90	269.1	269.1	269.5	269.5	289.3	228.1	256.4	256.4	256.8	256.8	273.2	221.5	242.7	242.7	243.0	243.0	256.1	214.7
	75	239.3	217.2	263.4	162.0	289.0	105.6	225.1	207.7	247.8	155.0	271.8	98.9	210.2	199.8	231.2	147.8	253.6	91.9
8800	80	247.5 262.2	247.5 262.2	264.6 267.7	207.0 250.2	290.6	151.0	234.9	234.9 249.3	249.2	200.2 243.1	273.7	144.3	221.3	221.3 235.4	232.8	193.0 235.5	255.9	137.4 182.6
	85 90		277.0		277.4	291.6	196.1	263.7	263.7	252.9		274.9 276.8	189.5 234.8	235.4 249.5		249.8	249.8	257.2	228.0
	75	277.0 242.9	225.7	277.4	168.3	293.2 291.6	241.4 107.3	203.7	218.1	264.1 250.4	264.1 161.3	274.2	100.6	213.6	249.5	233.5	154.0	259.4 255.7	93.5
	80	253.6	253.6	267.8	217.1	293.4	156.5	240.5	240.5	252.2	210.3	276.3	149.8	226.6	226.6	235.6	203.1	258.2	142.8
9600	85	268.7	268.7	272.0	263.7	294.5	205.3	255.4	255.4	257.0	256.4	277.5	198.7	241.0	241.0	241.5	241.5	259.6	191.7
	90	283.9	283.9	284.3	284.3	296.6	254.4	270.2	270.2	270.5	270.5	280.0	247.9	255.4	255.4	255.7	255.7	262.4	241.1
	30	200.0		nt Tem		<u> </u>	204.4	210.2		nt Tem			247.5	200.4	200.4	200.1	200.7	202.4	2-11.1
	75	180.7	154.3	202.3	117.0	224.3	78.2	164.5	146.3	184.8	109.1	204.9	70.5						
	80	183.7	183.7	203.5	148.5	226.0	110.0	169.5	169.5	186.0	140.7	207.1	102.5						
6000	85	195.1	195.1	204.8	180.1	227.2	141.7	181.3	181.3	187.6	172.4	208.4	134.1						
	90	207.2	207.2	208.3	208.3	228.2	173.2	193.1	193.1	193.5	193.5	209.5	165.7						
	75	187.0	170.0	208.1	127.2	229.5	81.0	170.5	161.3	189.9	119.3	209.3	73.3						
7000	80	194.8	194.8	209.4	164.7	231.7	118.9	180.2	180.2	191.3	156.9	212.0	111.3						
7200	85	207.8	207.8	212.0	200.1	233.0	156.5	192.8	192.8	194.7	191.7	213.4	148.9						
	90	220.7	220.7	221.0	221.0	234.4	194.0	205.3	205.3	205.6	205.6	215.1	186.5						
	75	190.8	180.8	211.1	133.8	232.1	82.8	174.2	172.0	192.4	125.9	211.6	75.1						
8000	80	201.3	201.3	212.6	175.2	234.6	124.6	186.0	186.0	194.3	167.3	214.5	116.9						
0000	85	214.6	214.6	216.5	213.9	235.9	166.0	199.0	199.0	199.3	199.3	216.0	158.4						
	90	227.9	227.9	228.3	228.3	237.9	207.6	211.8	211.8	212.1	212.1	218.2	196.8						
	75	194.4	191.4	213.5	140.2	234.3	84.5	177.8	177.8	194.5	132.2	213.4	76.8						
8800	80	206.8	206.8	215.5	185.5	237.0	130.1	191.0	191.0	196.8	174.0	216.6	122.4						
3333	85	220.5	220.5	220.9	220.9	238.4	175.3	204.3	204.3	204.5	204.5	218.2	167.7						
	90	234.2	234.2		234.4	240.9	217.6	217.4	217.4	217.6	217.6	221.3	209.2						
	75	197.8	197.8		146.4	236.1	86.2	181.6	181.6	196.3	138.4	214.9	78.4						
9600	80		211.5		192.1		135.5		195.3		183.3	218.3							
	85	225.6			225.8		184.5	208.8	208.8	209.0		220.2							
Notes	90	239.5	239.5	239.8	239.8	243.9	229.8	222.1	222.1	222.4	222.4	224.2	221.3						

- 1. All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

 2. MBh = Total gross capacity

 3. SHC = Sensible heat capacity

Table 10. Gross cooling capacities — 25 tons

			Enterin	ıg Wet I	Bulb Te	mp (°F)		Enterin	g Wet I	Bulb Te	mp (°F)		Enterin	g Wet E	Bulb Te	mp (°F)
CFM	Ent DB (°F)	6	1	6	57	7	3	6	1	6	7	7	'3	6	1	6	7	7	3
	(- ,	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC	MBh	SHC
			Ambie	ent Tem	peratur	e 85°F			Ambi	ent Tem	peratur	e 95°F			Ambie	nt Temp	perature	105°F	
	75	247.4	201.9	273.9	155.7	301.5	107.9	233.5	194.4	258.6	148.2	284.3	100.4	218.8	186.5	242.5	140.4	266.0	92.7
7500	80	250.4	238.1	275.3	193.8	303.1	146.3	237.0	230.3	260.1	186.3	286.4	138.9	222.9	222.1	244.0	178.5	268.8	131.3
7300	85	260.5	260.5	276.6	231.8	304.4	184.4	248.4	248.4	261.7	224.4	288.0	177.1	235.4	235.4	245.9	216.7	270.5	169.5
	90	274.9	274.9	280.0	267.7	305.4	222.4	262.5	262.5	265.6	260.0	289.1	215.2	249.2	249.2	250.6	250.6	271.7	207.6
	75	255.6	222.5	281.6	167.6	308.2	111.2	241.2	214.9	265.7	160.0	290.4	103.8	225.8	207.0	248.8	152.1	271.5	96.0
9000	80	261.5	261.5	283.1	212.5	310.7	156.6	248.1	248.1	267.3	204.9	293.4	149.1	234.5	234.5	250.5	197.0	275.0	141.4
	85	276.3	276.3	285.7	257.7	312.3	201.6	263.1	263.1	270.3	250.3	295.1	194.2	249.1	249.1	253.9	238.4	276.9	186.5
	90	291.7	291.7	292.4	292.4	313.6	246.4	278.2	278.2	278.3	278.3	296.7	239.1	263.7	263.7	264.1	264.1	278.7	231.5
	75	260.2	235.7	285.7	175.2	311.9	113.4	245.5	228.1	269.3	167.5	293.6	105.8	230.0	215.4	252.0	159.6	274.4	98.0
10000	80	268.7	268.7	287.2	224.4	314.7	163.1	255.6	255.6	271.1	216.8	297.0	155.6	241.4	241.4	254.0	209.0	278.2	147.9
	85	284.8	284.8	290.9	270.6	316.3	212.5	271.1	271.1	275.3	262.5	298.8	205.1	256.4	256.4	258.9	253.9	280.1	197.3
	90	300.8	300.8	301.2	301.2	318.1	261.9	286.7	286.7	287.0	287.0	300.9	254.5	271.5	271.5	271.8	271.8	282.6	246.9
	75	264.3	248.5	289.0	182.4	314.9	115.4	249.5	235.9	272.4	174.8	296.3	107.8	233.9	227.1	254.8	166.7	276.7	99.9
11000	80	275.8	275.8	290.8	236.0	318.1	169.4	262.0	262.0	274.5	228.4	300.0	161.9	247.2	247.2	257.2	220.5	280.9	154.1
	85	292.2	292.2	295.8	285.7	319.7	223.0	277.9	277.9	280.1	277.5	301.8	215.6	262.7	262.7	263.6	263.6	282.9	207.8
	90	308.6	308.6	308.9	308.9	322.1	276.9	293.9	293.9	294.2	294.2	304.6	269.5	278.2	278.2	278.4	278.4	286.1	261.9
	75	268.2	255.8	291.9	189.5	317.4	117.3	253.2	247.3	275.0	181.7	298.6	109.7	237.4	237.4	257.1	173.7	278.6	101.8
12000	80	281.8	281.8	294.1	247.3	320.9	175.5 233.2	267.5	267.5	277.5	239.7	302.5	167.9	252.3	252.3	260.0	231.7	283.2	160.1
	85 90	298.5	298.5 315.3	300.4	300.4 315.7	322.6 325.7	291.4	283.8	283.8	284.6	284.6 300.4	304.4	225.8 284.1	268.1	268.1 283.9	268.2 284.1	268.2 284.1	285.2 289.3	218.0 269.9
	90	315.3		315.7 ent Temp			231.4	300.1		300.4 nt Tem			204.1	283.9	203.9	204.1	204.1	209.3	209.9
	75	203.0	178.3	225.2	132.2	246.7	84.6	186.2	169.5	206.7	123.5	225.9	76.1						
	80	208.2	208.2	226.8	170.3	250.0	123.3	193.3	193.3	208.4	161.7	229.8	114.8						
7500	85	221.4	221.4	229.0	208.7	251.9	161.5	206.2	206.2	211.0	196.2	231.7	153.1						
	90	234.8	234.8	235.0	235.0	253.3	199.7	219.1	219.1	219.4	219.4	233.3	191.2						
	75	209.6	194.3	230.8	143.8	251.5	87.8	192.5	184.5	211.5	135.1	229.9	79.2						
	80	219.8	219.8	232.7	188.8	255.5	133.4	203.9	203.9	213.7	180.2	234.5	124.8						
9000	85	234.0	234.0	236.8	229.5	257.5	178.4	217.5	217.5	218.6	218.6	236.6	169.9						
	90	248.1	248.1	248.4	248.4	259.7	223.6	231.1	231.1	231.3	231.3	239.1	215.1						
	75	213.7	206.2	233.7	151.2	253.9	89.8	196.3	196.2	214.0	142.4	231.8	81.1						
10000	80	226.1	226.1	236.0	200.7	258.4	139.8	209.5	209.5	216.5	186.5	237.0	131.2						
10000	85	240.7	240.7	241.7	241.7	260.4	189.2	223.5	223.5	223.6	223.6	239.1	180.7						
	90	255.2	255.2	255.5	255.5	263.3	239.0	237.4	237.4	237.6	237.6	242.5	224.2						
	75	217.4	217.4	236.1	158.4	255.8	91.7	200.0	200.0	216.0	149.5	233.2	82.9						
11000	80	231.4	231.4	238.9	212.3	260.7	146.0	214.3	214.3	219.3	196.7	239.0	137.3						
11000	85	246.4	246.4	246.5	246.5	262.8	199.7	228.6	228.6	228.8	228.8	241.3	191.1						
	90	261.3	261.3	261.5	261.5	266.6	247.5	242.7	242.7	243.0	243.0	245.7	237.6						
	75	220.9	220.9	238.1	165.3	257.3	93.5	203.7	203.7	217.7	156.3	234.3	84.7						
12000	80	236.1	236.1		216.8		152.0		218.4		206.4		143.3						
	85	251.3	251.3		251.5		209.9	232.9	232.9	233.1	233.1		201.3						
Notoo	90	266.4	266.4	266.7	266.7	269.8	260.6	247.3	247.3	247.5	247.5	248.8	248.8						

- 1. All capacities shown are gross and have not considered indoor fan heat. To obtain NET cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

 2. MBh = Total gross capacity

 3. SHC = Sensible heat capacity

Heating Capacities

Table 11. Heating capacities — 12.5 tons

Outdoor Temp (°F)		egrated Heatin at Indicated Dry		,	Total Power (kW) at Indicated Dry Bulb Temp (°F)					
	60	70	75	80	60	70	75	80		
-8	45.7	43.4	42.3	41.1	9.0	9.9	10.3	10.8		
-3	52.6	50.3	49.1	47.9	9.1	10.0	10.5	10.9		
2	59.8	57.3	56.1	54.8	9.2	10.1	10.6	11.1		
7	67.3	64.6	63.3	61.9	9.4	10.3	10.8	11.3		
12	75.3	72.5	71.1	69.7	9.5	10.4	10.9	11.4		
17	83.7	80.6	79.1	77.7	9.7	10.6	11.1	11.6		
22	92.6	89.3	87.7	86.1	9.8	10.8	11.3	11.8		
27	101.9	98.3	96.5	94.8	10.0	10.9	11.5	12.0		
32	111.5	107.6	105.7	103.8	10.2	11.1	11.6	12.2		
37	121.1	116.8	114.7	112.7	10.4	11.3	11.8	12.4		
42	130.9	126.2	124.0	121.8	10.6	11.5	12.0	12.6		
47	141.0	136.0	133.5	131.2	10.8	11.7	12.3	12.8		
52	151.6	146.1	143.5	140.9	11.0	12.0	12.5	13.0		
57	162.5	156.5	153.7	150.9	11.2	12.2	12.7	13.3		
62	173.2	166.8	163.8	160.8	11.5	12.4	13.0	13.5		
67	185.1	178.1	174.8	171.5	11.7	12.7	13.2	13.8		
72	196.6	188.7	185.0	181.3	12.0	12.9	13.5	14.0		

Notes:

- 1. For other airflow conditions, see heating capacity correction factor Net Heating Capacity and Power Input include indoor fan heat at nominal CFM and 0.35 inch ESP. To obtain net heating at other conditions, subtract fan heat at this condition and add fan heat at new condition.
- 2. Heating capacities and powers are integrated to include the effects of defrost in the frost region.
- 3. All heating capacities and power (kW) are at 70% OD relative humidity.

Table 12. Heating capacities — 15 tons

Outdoor Temp (°F)		tegrated Heatin at Indicated Dry	• • • •	•	Total Power in Kilowatts at Indicated Dry Bulb Temp (°F)				
	60	70	75	80	60	70	75	80	
-8	55.5	54.0	53.2	52.3	11.0	12.1	12.6	13.3	
-3	63.6	61.8	60.9	59.9	11.1	12.2	12.8	13.4	
2	72.0	70.0	68.9	67.9	11.3	12.4	13.0	13.6	
7	80.8	78.6	77.4	76.2	11.5	12.6	13.2	13.9	
12	90.2	87.7	86.4	85.1	11.7	12.8	13.4	14.1	
17	99.9	97.1	95.7	94.2	11.9	13.0	13.6	14.3	
22	110.3	107.2	105.6	104.0	12.1	13.2	13.8	14.5	
27	121.0	117.6	115.8	114.0	12.3	13.5	14.1	14.7	
32	132.2	128.4	126.5	124.5	12.5	13.7	14.3	14.9	
37	143.3	139.0	136.9	134.8	12.7	13.9	14.5	15.2	
42	154.7	150.0	147.6	145.3	13.0	14.1	14.8	15.4	
47	166.2	161.1	158.6	156.0	13.2	14.4	15.0	15.7	
52	178.2	172.6	169.8	167.1	13.4	14.6	15.3	15.9	
57	190.5	184.3	181.3	178.3	13.7	14.9	15.5	16.2	

Table 12. Heating capacities — 15 tons (continued)

Outdoor Temp (°F)		egrated Heatin t Indicated Dry	• • • •	•	Total Power in Kilowatts at Indicated Dry Bulb Temp (°F)					
	60	70	75	80	60	70	75	80		
62	202.0	195.3	192.0	188.6	14.0	15.1	15.8	16.4		
67	213.9	206.6	202.9	199.2	14.3	15.4	16.1	16.7		
72	226.9	218.7	214.7	210.8	14.6	15.8	16.4	17.1		

Notes:

- 1. For other airflow conditions, see heating capacity correction factor Net Heating Capacity and Power Input include indoor fan heat at nominal CFM and 0.35 inch ESP. To obtain net heating at other conditions, subtract fan heat at this condition and add fan heat at new condition.
- 2. Heating capacities and powers are integrated to include the effects of defrost in the frost region.
- 3. All heating capacities and power (kW) are at 70% OD relative humidity.

Table 13. Heating capacities — 20 tons

Outdoor Temp (°F)		tegrated Heatin	• • • •	•	Total Power in Kilowatts at Indicated Dry Bulb Temp (°F)				
	60	70	75	80	60	70	75	80	
-8	79.9	76.5	74.7	72.8	16.2	17.7	18.5	19.4	
-3	91.0	87.4	85.6	83.7	16.4	17.9	18.8	19.7	
2	102.4	98.7	96.8	94.8	16.7	18.2	19.0	19.9	
7	114.3	110.4	108.4	106.2	16.9	18.4	19.3	20.2	
12	127.1	123.0	120.8	118.5	17.1	18.7	19.5	20.5	
17	140.1	135.8	133.5	131.2	17.3	18.9	19.8	20.7	
22	154.1	149.5	147.1	144.6	17.6	19.2	20.1	21.0	
27	168.6	163.6	161.0	158.4	17.8	19.4	20.3	21.3	
32	183.7	178.3	175.5	172.8	18.1	19.7	20.6	21.5	
37	198.5	192.7	189.8	186.8	18.3	20.0	20.9	21.8	
42	213.9	207.6	204.4	201.2	18.6	20.2	21.1	22.1	
47	229.5	222.8	219.4	216.0	18.8	20.5	21.4	22.4	
52	245.7	238.5	234.8	231.1	19.1	20.8	21.7	22.7	
57	262.5	254.6	250.6	246.7	19.4	21.1	22.0	23.0	
62	278.8	270.3	266.0	261.7	19.6	21.3	22.3	23.3	
67	295.1	285.8	281.1	276.4	19.9	21.6	22.6	23.6	
72 Notes:	312.8	302.3	297.1	291.9	20.2	22.0	22.9	23.9	

Notes:

- 1. For other airflow conditions, see heating capacity correction factor Net Heating Capacity and Power Input include indoor fan heat at nominal CFM and 0.35 inch ESP. To obtain net heating at other conditions, subtract fan heat at this condition and add fan heat at new condition.
- 2. Heating capacities and powers are integrated to include the effects of defrost in the frost region.
- 3. All heating capacities and power (kW) are at 70% OD relative humidity.

Table 14. Heating capacities — 25 tons

Outdoor Temp (°F)		egrated Heatin			Total Power in Kilowatts at Indicated Dry Bulb Temp (°F)					
	60	70	75	80	60	70	75	80		
-8	90.3	88.2	87.4	86.7	17.6	19.2	20.1	21.0		
-3	101.7	99.4	98.4	97.7	17.8	19.5	20.4	21.3		
2	113.6	111.2	110.1	109.1	18.1	19.7	20.6	21.6		
7	126.1	123.4	122.2	121.0	18.3	20.0	20.9	21.8		
12	139.1	136.2	134.8	133.6	18.6	20.2	21.2	22.1		
17	152.6	149.3	147.8	146.5	18.8	20.5	21.4	22.4		

Heating Capacities

Table 14. Heating capacities — 25 tons (continued)

Outdoor Temp (°F)		egrated Heatin	• • • •	•	Total Power in Kilowatts at Indicated Dry Bulb Temp (°F)						
	60	70	75	80	60	70	75	80			
22	167.0	163.5	161.8	160.1	19.1	20.8	21.7	22.7			
27	182.0	177.9	176.2	174.3	19.3	21.0	22.0	23.0			
32	197.9	193.6	191.2	189.3	19.6	21.3	22.3	23.3			
37	213.6	208.8	206.4	204.2	19.8	21.6	22.5	23.5			
42	230.0	224.7	222.1	219.5	20.1	21.9	22.8	23.8			
47	246.6	240.8	237.9	235.0	20.4	22.1	23.1	24.1			
52	263.9	257.5	254.3	251.2	20.6	22.4	23.4	24.4			
57	282.2	275.2	271.6	268.1	20.9	22.7	23.7	24.7			
62	300.4	292.6	288.7	284.8	21.2	23.0	24.0	25.1			
67	318.4	309.8	305.4	301.0	21.5	23.3	24.3	25.4			
72	338.1	328.1	323.2	318.2	21.9	23.7	24.7	25.7			

Notes:

- 1. For other airflow conditions, see heating capacity correction factor Net Heating Capacity and Power Input include indoor fan heat at nominal CFM and 0.35 inch ESP. To obtain net heating at other conditions, subtract fan heat at this condition and add fan heat at new condition.
- 2. Heating capacities and powers are integrated to include the effects of defrost in the frost region.
- 3. All heating capacities and power (kW) are at 70% OD relative humidity.

Reheat Temperature Rise

Table 15. Reheat temperature rise — 12.5 tons

			Entering Wet Bulb (°F)													
Airflow	Ent DB		5	1			5	5			5	9				
(cfm)	(°F)		Evap (°F)		leheat (°F)		Evap (°F)	_	leheat (°F)		Evap (°F)		leheat (°F)			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
						Ambier	nt DB 60°F									
	60	30.1(a)	27.9(a)	35.0	59.2	34.3	32.5(a)	39.4	63.6	38.6	37.9	44.0	67.5			
2500	65	30.0(a)	27.8(a)	35.0	59.1	34.1	32.3(a)	39.4	63.6	38.5	37.7	44.0	67.4			
2500	70	30.0 ^(a)	27.8 ^(a)	35.1	59.0	34.0	32.2 ^(a)	39.4	63.5	38.3	37.6	44.0	67.4			
	75	32.0 ^(a)	29.1 ^(a)	37.4	60.6	34.0	32.1 ^(a)	39.2	63.4	38.2	37.4	43.9	67.3			
	60	33.3	31.1 ^(a)	37.5	58.4	37.5	35.7	42.0	62.9	41.9	41.0	46.6	67.0			
3000	65	33.2	31.0 ^(a)	37.5	58.4	37.4	35.6	42.0	62.9	41.8	40.8	46.6	66.9			
3000	70	33.5	31.0 ^(a)	38.2	58.5	37.3	35.5	42.0	62.9	41.6	40.7	46.6	66.9			
	75	36.5	33.7	41.6	61.5	37.2	35.4	42.2	62.9	41.5	40.6	46.6	66.9			
	60	35.7	33.6	39.4	57.8	40.0	38.2	43.9	62.4	44.3	43.3	48.4	66.4			
3500	65	35.6	33.5	39.6	57.8	39.9	38.1	43.9	62.4	44.2	43.2	48.4	66.4			
3500	70	37.0	34.0	41.4	58.7	39.8	38.0	43.9	62.4	44.1	43.1	48.5	66.4			
	75	40.2	37.5	44.9	62.3	40.3	37.8	44.9	62.4	44.0	43.0	48.5	66.4			
	60	37.6	35.6	40.9	57.4	41.8	40.1	45.3	61.9	46.2	45.1	49.7	65.9			
4000	65	37.5	35.5	41.1	57.5	41.7	40.0	45.3	61.9	46.1	45.0	49.8	66.0			
4000	70	39.9	37.0	44.0	59.4	41.6	39.9	45.6	62.0	46.0	44.9	49.9	66.0			
	75	43.2	40.6	47.6	63.1	43.3	40.7	47.7	63.1	45.9	44.8	50.1	66.0			
	60	39.1	37.2	42.1	57.0	43.3	41.7	46.4	61.5	47.7	46.5	50.8	65.5			
4500	65	38.9	37.1	42.3	57.2	43.2	41.6	46.5	61.5	47.6	46.4	50.9	65.6			
+300	70	42.4	39.5	46.1	60.0	43.1	41.5	46.8	61.7	47.5	46.3	51.0	65.6			
	75	45.8	43.3	49.8	63.7	45.9	43.4	49.9	63.7	47.4	46.3	51.3	65.8			
	60	40.3	38.5	43.0	56.6	44.5	43.0	47.3	61.1	48.9	47.8	51.6	65.3			
5000	65	40.9	38.3	44.1	56.9	44.5	42.9	47.4	61.2	48.8	47.6	51.8	65.3			
3000	70	44.4	41.6	48.0	60.5	44.3	42.7	47.8	61.4	48.7	47.5	51.9	65.3			
	75	48.0	45.6	51.7	64.3	48.1	45.7	51.9	64.3	48.5	47.5	52.3	65.6			
	60	41.3	39.6	44.0	56.4	45.5	44.0	48.0	60.8	49.9	48.7	52.3	64.9			
5500	65	42.5	39.4	45.6	56.7	45.5	44.0	48.2	60.9	49.8	48.6	52.5	65.0			
5500	70	46.2	43.5	49.5	61.0	46.3	43.8	49.6	61.2	49.7	48.5	52.6	65.1			
	75	49.8	47.6	53.4	64.9	49.9	47.7	53.5	64.9	49.5	48.4	53.0	65.4			
	60	42.1	40.6	44.7	56.1	46.4	44.9	48.7	60.5	50.7	49.6	52.9	64.6			
6000	65	44.0	41.3	46.9	57.5	46.3	44.9	49.1	60.6	50.6	49.5	53.1	64.7			
0000	70	47.8	45.2	50.9	61.5	47.8	44.6	51.0	61.0	50.5	49.4	53.5	64.8			
	75	51.5	49.4	54.8	65.4	51.6	49.5	54.9	65.4	51.6	49.2	55.0	65.2			
						Ambier	nt DB 65°F									
	60	30.6 ^(a)	28.1 ^(a)	35.7	60.4	34.8	32.5 ^(a)	40.2	65.1	39.1	37.4	45.0	69.7			
2500	65	30.5 ^(a)	27.8 ^(a)	35.7	60.3	34.7	32.3 ^(a)	40.1	65.1	39.0	37.3	44.8	69.5			
2000	70	30.5 ^(a)	28.0 ^(a)	35.9	60.3	34.6	32.2 ^(a)	40.1	65.0	38.9	37.2	44.8	69.5			
	75	32.7 ^(a)	29.3(a)	38.4	62.0	34.5	32.1 ^(a)	40.1	64.9	38.8	37.0	44.8	69.5			

PKGP-PRC019D-EN 3³

Reheat Temperature Rise

Table 15. Reheat temperature rise — 12.5 tons (continued)

		Entering Wet Bulb (°F)												
Airflow	Ent DB		5	1			5	5			5	9		
(cfm)	(°F)		Evap (°F)	Lvg Reheat DB (°F)			Evap (°F)		leheat (°F)	Lvg Evap DB (°F)			Reheat (°F)	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	60	33.8	31.3 ^(a)	38.1	59.5	38.0	35.7	42.6	64.3	42.4	40.6	47.2	68.8	
0000	65	33.7	31.2 ^(a)	38.1	59.4	37.9	35.6	42.6	64.3	42.2	40.5	47.2	68.7	
3000	70	34.2	31.1 ^(a)	39.1	59.5	37.8	35.5	42.7	64.3	42.1	40.3	47.3	68.8	
	75	37.3	33.8	42.5	62.8	37.7	35.4	42.8	64.2	42.0	40.2	47.3	68.7	
	60	36.1	33.8	40.0	58.8	40.4	38.2	44.4	63.5	44.8	43.0	49.0	68.0	
3500	65	36.0	33.7	40.2	58.8	40.3	38.1	44.5	63.6	44.6	42.9	49.0	68.1	
3500	70	37.7	34.2	42.2	59.8	40.2	38.0	44.5	63.6	44.5	42.7	49.1	68.1	
	75	40.9	37.5	45.8	63.5	41.0	37.9	45.8	63.8	44.5	42.7	49.1	68.1	
	60	38.0	35.7	41.4	58.2	42.2	40.2	45.8	62.9	46.6	44.8	50.4	67.4	
4000	65	37.8	35.7	41.6	58.4	42.1	40.1	45.9	63.0	46.5	44.7	50.4	67.5	
4000	70	40.6	37.1	44.8	60.4	42.0	40.0	46.1	63.0	46.4	44.6	50.4	67.5	
	75	43.9	40.6	48.4	64.2	44.0	40.7	48.5	64.2	46.3	44.5	50.7	67.5	
	60	39.4	37.3	42.5	57.8	43.7	41.7	46.9	62.4	48.1	46.4	51.2	66.9	
4500	65	39.2	37.2	42.8	58.0	43.6	41.6	46.9	62.5	47.9	46.2	51.4	66.9	
4500	70	43.0	39.6	46.9	60.9	43.4	41.5	47.3	62.7	47.8	46.1	51.5	67.0	
	75	46.4	43.2	50.6	64.8	46.5	43.3	50.7	64.8	47.7	46.1	51.8	67.2	
	60	40.6	38.7	43.4	57.3	44.9	43.0	47.7	62.0	49.2	47.6	52.0	66.4	
5000	65	41.4	38.5	44.8	57.6	44.8	42.9	47.8	62.0	49.1	47.5	52.2	66.5	
5000	70	45.0	41.8	48.7	61.4	44.6	42.8	48.2	62.3	49.0	47.4	52.3	66.6	
	75	48.6	45.4	52.5	65.4	48.7	45.5	52.6	65.4	48.9	47.3	52.7	66.8	
	60	41.6	39.8	44.4	57.0	45.8	44.1	48.4	61.6	50.2	48.6	52.7	65.9	
5500	65	43.1	39.5	46.2	57.4	45.7	44.0	48.8	61.7	50.1	48.5	52.9	66.1	
5500	70	46.8	43.6	50.2	61.9	46.8	43.8	50.3	62.0	50.0	48.4	53.3	66.2	
	75	50.4	47.4	54.1	65.9	50.5	47.5	54.2	65.9	50.6	48.3	54.3	66.5	
	60	42.4	40.7	45.0	56.7	46.6	45.0	49.0	61.2	51.0	49.5	53.2	65.5	
0000	65	44.5	41.5	47.5	58.2	46.6	44.9	49.4	61.3	50.9	49.4	53.5	65.7	
6000	70	48.3	45.2	51.5	62.3	48.4	44.7	51.6	61.8	50.8	49.3	53.9	65.8	
	75	52.0	49.1	55.5	66.3	52.1	49.2	55.6	66.3	52.2	49.1	55.7	66.2	
						Ambier	nt DB 70°F							
	60	31.2(a)	28.3(a)	36.4	61.6	35.4	32.6(a)	40.9	66.5	39.7	37.3	45.6	71.3	
2500	65	31.1(a)	28.1 ^(a)	36.4	61.5	35.2	32.4(a)	40.9	66.5	39.6	37.2	45.6	71.3	
2500	70	31.1(a)	28.1 ^(a)	36.6	61.5	35.1	32.3(a)	40.9	66.5	39.5	37.1	45.6	71.3	
	75	33.5	29.5(a)	39.4	63.3	35.1	32.3(a)	40.9	66.3	39.4	37.0	45.6	71.3	
	60	34.2	31.4 ^(a)	38.8	60.5	38.5	35.9	43.3	65.4	42.9	40.5	47.9	70.4	
2000	65	34.2	31.3 ^(a)	38.8	60.4	38.4	35.7	43.3	65.4	42.7	40.4	47.9	70.3	
3000	70	34.9	31.3 ^(a)	40.0	60.5	38.3	35.6	43.3	65.4	42.6	40.3	48.0	70.3	
	75	38.0	34.0	43.4	64.0	38.2	35.6	43.5	65.5	42.5	40.2	48.0	70.3	
	60	36.5	33.9	40.5	59.7	40.8	38.3	45.0	64.6	45.2	42.9	49.5	69.5	
2500	65	36.5	33.8	40.7	59.6	40.7	38.2	45.0	64.6	45.1	42.8	49.6	69.4	
3500	70	38.3	34.4	43.0	60.8	40.6	38.1	45.2	64.6	45.0	42.7	49.7	69.4	
	75	41.6	37.7	46.6	64.6	41.7	38.0	46.7	64.7	44.9	42.6	49.7	69.4	

Table 15. Reheat temperature rise — 12.5 tons (continued)

			Entering Wet Bulb (°F)												
Airflow	Ent DB		5	1			5	55			5	9			
(cfm)	(°F)		Evap (°F)	Lvg Reheat DB (°F)			Lvg Evap DB (°F)		Lvg Reheat DB (°F)		Lvg Evap DB (°F)		Reheat (°F)		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
	60	38.3	35.9	41.9	59.0	42.6	40.3	46.3	63.9	47.0	44.8	50.8	68.6		
4000	65	38.2	35.8	42.2	59.2	42.5	40.2	46.4	63.9	46.9	44.7	50.9	68.6		
4000	70	41.2	37.4	45.5	61.3	42.4	40.1	46.6	63.9	46.8	44.6	51.0	68.7		
	75	44.6	40.7	49.2	65.2	44.7	40.8	49.3	65.3	46.7	44.5	51.2	68.7		
	60	39.8	37.5	42.9	58.5	44.0	41.8	47.3	63.2	48.4	46.4	51.7	67.9		
4500	65	40.0	37.4	43.7	58.7	43.9	41.7	47.4	63.3	48.3	46.2	51.9	68.0		
4300	70	43.6	39.8	47.6	61.8	43.8	41.6	47.8	63.5	48.2	46.1	52.0	68.1		
	75	47.1	43.3	51.4	65.8	47.2	43.4	51.5	65.8	48.1	46.1	52.3	68.3		
	60	40.9	38.8	44.0	58.0	45.2	43.1	48.1	62.7	49.5	47.6	52.5	67.3		
5000	65	41.9	38.6	45.4	58.3	45.1	43.0	48.5	62.8	49.4	47.5	52.7	67.4		
3000	70	45.6	41.9	49.4	62.3	45.6	42.9	49.4	63.1	49.3	47.4	52.8	67.5		
	75	49.2	45.5	53.2	66.3	49.3	45.6	53.3	66.3	49.2	47.3	53.2	67.8		
	60	41.9	39.9	44.8	57.6	46.1	44.2	48.8	62.2	50.5	48.7	53.1	66.8		
5500	65	43.6	39.6	46.8	58.0	46.0	44.1	49.2	62.3	50.3	48.5	53.3	66.9		
5500	70	47.3	43.8	50.9	62.7	47.4	43.9	50.9	62.7	50.3	48.4	53.7	67.0		
	75	51.0	47.4	54.8	66.7	51.1	47.5	55.0	66.8	51.2	48.3	55.0	67.4		
	60	42.6	40.8	45.4	57.2	46.9	45.1	49.4	61.8	51.3	49.6	53.6	66.3		
6000	65	45.0	41.7	48.1	58.8	46.8	45.0	49.8	61.9	51.1	49.4	53.8	66.5		
6000	70	48.8	45.4	52.1	63.0	48.9	44.8	52.2	62.4	51.0	49.3	54.3	66.6		
	75	52.6	49.1	56.2	67.2	52.7	49.2	56.3	67.2	52.8	49.1	56.4	67.1		

Note: MIN, MAX: The leaving evaporator temperature is affected by the modulating valve position. The MIN and MAX numbers represent modulating valve position impact on both the leaving evaporator temperature and the leaving reheat coil temperature. MAX represents wide open, MIN represents closed to minimum position.

Table 16. Reheat temperature rise — 15 tons

	Ent DB (°F)		Entering Wet Bulb (°F)												
Airflow			5	1			5	5		59					
(cfm)		Lvg Evap DB (°F)		Lvg Reheat DB (°F)		Lvg Evap DB (°F)		Lvg Reheat DB (°F)		Lvg Evap DB (°F)		Lvg Reheat DB (°F)			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
						Ambien	nt DB 60°F								
	60	30.9 ^(a)	29.6 ^(a)	36.7	61.9	35.1	34.8	41.2	65.6	39.4	40.1	46.1	69.5		
3000	65	30.9(a)	29.5(a)	36.7	61.8	34.9	34.7	41.1	65.6	39.3	40.0	45.9	69.4		
3000	70	30.7(a)	29.4(a)	36.5	61.7	34.9	34.6	41.1	65.6	39.2	39.9	45.9	69.4		
	75	33.1	32.0(a)	39.5	63.9	34.9	34.6	41.0	65.6	39.2	39.8	45.9	69.3		
	60	34.1	32.5(a)	39.0	60.9	38.2	37.6	43.5	64.8	42.6	42.8	48.3	68.6		
3600	65	34.0	32.4(a)	39.0	60.9	38.2	37.6	43.5	64.8	42.5	42.8	48.2	68.6		
3600	70	34.5	32.2(a)	40.0	60.7	38.1	37.5	43.4	64.7	42.4	42.7	48.2	68.6		
	75	37.6	36.5	43.5	64.4	38.0	37.3	43.5	64.7	42.3	42.6	48.2	68.6		
	60	36.4	34.8	40.8	60.1	40.7	39.8	45.3	64.1	45.0	44.9	50.0	68.1		
4200	65	36.3	34.7	40.8	60.1	40.6	39.7	45.3	64.2	44.9	44.8	49.9	68.0		
4200	70	38.0	35.9	43.0	61.5	40.5	39.7	45.3	64.2	44.8	44.8	49.8	68.0		
	75	41.3	40.2	46.7	65.0	41.3	40.3	46.7	65.0	44.7	44.7	49.7	68.0		

⁽a) The unit might be tripped by Frostat at these conditions due to low leaving evaporator air temperature.

Reheat Temperature Rise

Table 16. Reheat temperature rise — 15 tons (continued)

						E	Entering W	et Bulb (°F	:)				
4. 6			5	1			5	5			5	9	
Airflow (cfm)	Ent DB (°F)		Evap (°F)		eheat (°F)		Evap (°F)		eheat (°F)	Lvg Evap DB (°F)			leheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	60	38.2	36.6	42.1	59.5	42.4	41.5	46.5	63.6	46.9	46.5	51.2	67.4
4000	65	38.1	36.5	42.1	59.5	42.4	41.4	46.6	63.5	46.9	46.5	51.3	67.4
4800	70	40.9	38.8	45.5	62.0	42.3	41.3	46.6	63.6	46.8	46.4	51.3	67.5
	75	44.4	43.3	49.3	65.6	44.5	43.4	49.4	65.6	46.7	46.3	51.3	67.5
	60	39.6	38.1	43.1	58.9	43.9	42.9	47.6	63.0	48.4	47.8	52.1	66.9
5400	65	39.7	37.9	43.7	59.0	43.9	42.8	47.6	63.1	48.3	47.8	52.2	67.0
5400	70	43.3	41.3	47.6	62.4	43.6	42.7	47.7	63.2	48.2	47.7	52.3	67.0
	75	47.1	45.8	51.7	66.1	46.7	45.9	51.3	66.1	48.1	47.6	52.4	67.1
	60	40.8	39.3	44.0	58.5	45.1	44.0	48.4	62.6	49.5	48.9	52.9	66.5
6000	65	41.7	39.0	45.4	58.6	45.0	43.9	48.5	62.7	49.4	48.8	53.0	66.5
0000	70	45.6	43.5	49.5	62.8	45.6	43.7	49.6	62.8	49.4	48.8	53.1	66.6
	75	49.2	48.0	53.5	66.6	49.3	48.1	53.6	66.6	49.2	48.6	53.2	66.7
	60	41.8	40.3	44.7	58.1	46.0	44.9	49.0	62.2	50.4	49.7	53.5	66.1
6600	65	43.4	40.9	46.9	59.2	45.9	44.9	49.1	62.3	50.4	49.7	53.6	66.1
0000	70	47.3	45.3	51.1	63.2	47.4	44.6	51.1	62.5	50.3	49.7	53.8	66.3
	75	51.1	49.9	55.1	67.0	51.1	50.0	55.2	67.0	51.2	49.4	55.2	66.4
	60	42.6	41.1	45.3	57.7	46.9	45.7	49.7	61.9	51.2	50.5	54.0	65.7
7200	65	44.8	42.4	48.1	59.5	46.8	45.7	49.8	62.0	51.2	50.5	54.2	65.8
7200	70	48.8	46.9	52.4	63.5	48.9	47.0	52.4	63.5	51.1	50.4	54.3	65.9
	75	52.7	51.5	56.5	67.4	52.7	51.6	56.5	67.4	52.8	51.7	56.6	67.5
						Ambier	t DB 65°F						
	60	31.4 ^(a)	29.2 ^(a)	37.3	63.3	35.6	34.2	41.9	67.5	39.9	39.6	46.6	71.5
3000	65	31.3(a)	29.1 ^(a)	37.2	63.3	35.5	34.1	41.8	67.5	39.8	39.5	46.6	71.4
3000	70	31.3 ^(a)	29.1 ^(a)	37.2	63.2	35.4	34.0	41.8	67.5	39.8	39.4	46.6	71.3
	75	33.8	31.1 ^(a)	40.4	65.4	35.4	33.9	41.8	67.4	39.7	39.3	46.6	71.3
	60	34.5	32.2 ^(a)	39.6	62.1	38.7	37.1	44.1	66.5	43.1	42.4	48.8	70.4
3600	65	34.4	32.1(a)	39.4	62.1	38.7	37.0	44.1	66.5	42.9	42.3	48.8	70.4
0000	70	35.1	32.0 ^(a)	40.7	62.1	38.5	36.9	44.1	66.5	42.9	42.2	48.9	70.4
	75	38.3	35.6	44.3	65.8	38.4	36.8	44.1	66.5	42.9	42.1	48.9	70.4
	60	36.8	34.6	41.2	61.2	41.1	39.3	45.8	65.6	45.4	44.5	50.6	69.7
4200	65	36.7	34.5	41.3	61.2	40.9	39.3	45.8	65.6	45.3	44.4	50.5	69.6
4200	70	38.7	35.4	43.8	62.5	40.9	39.2	45.8	65.7	45.2	44.3	50.4	69.6
	75	42.0	39.3	47.5	66.3	42.1	38.9	47.5	65.7	45.1	44.3	50.3	69.7
	60	38.6	36.4	42.6	60.4	42.8	41.1	47.0	64.9	47.3	46.1	51.7	68.9
4800	65	38.4	36.3	42.6	60.4	42.8	41.0	47.1	64.9	47.2	46.0	51.7	68.9
1000	70	41.5	38.3	46.3	62.9	42.6	40.9	47.1	65.0	47.2	46.0	51.8	69.0
	75	45.0	42.4	50.1	66.7	44.9	42.5	50.0	66.7	47.1	45.9	51.8	69.0
	60	39.9	37.9	43.5	59.8	44.2	42.5	48.0	64.2	48.7	47.4	52.6	68.3
5400	65	40.2	37.8	44.3	59.8	44.1	42.5	48.0	64.3	48.6	47.4	52.7	68.3
0-100	70	43.9	40.8	48.4	63.3	43.9	42.3	48.1	64.4	48.6	47.3	52.7	68.4
	75	47.2	45.0	52.0	67.1	47.8	45.1	52.5	67.1	48.4	47.2	52.8	68.5

Table 16. Reheat temperature rise — 15 tons (continued)

		Entering Wet Bulb (°F)												
4. 6	DD		5	1			5	55			5	9		
Airflow (cfm)	Ent DB (°F)		Evap (°F)		eheat (°F)		Evap (°F)		eheat (°F)	Lvg Evap DB (°F)			leheat (°F)	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	60	41.1	39.2	44.4	59.2	45.4	43.7	48.8	63.6	49.8	48.5	53.3	67.7	
0000	65	42.2	38.9	46.0	59.4	45.3	43.6	48.9	63.7	49.7	48.4	53.4	67.8	
6000	70	46.1	42.9	50.2	63.6	46.2	43.4	50.3	63.9	49.7	48.4	53.5	67.9	
	75	49.8	47.2	54.2	67.5	49.9	47.3	54.3	67.5	49.4	48.2	53.6	68.0	
	60	42.0	40.2	45.1	58.7	46.3	44.7	49.4	63.1	50.7	49.4	53.9	67.3	
0000	65	43.9	40.7	47.4	59.8	46.2	44.6	49.5	63.3	50.7	49.4	54.0	67.3	
6600	70	47.8	44.7	51.7	63.9	47.9	44.4	51.7	63.4	50.6	49.3	54.1	67.5	
	75	51.6	49.1	55.8	67.9	51.7	49.2	55.8	67.9	51.8	49.1	55.9	67.6	
	60	42.8	41.1	45.4	58.3	47.2	45.5	50.0	62.7	51.5	50.2	54.4	66.8	
7200	65	45.2	42.2	48.6	60.1	47.1	45.5	50.1	62.8	51.4	50.1	54.5	66.9	
7200	70	49.3	46.3	52.9	64.2	49.4	46.4	53.0	64.2	51.3	50.1	54.6	67.1	
	75	53.2	50.8	57.1	68.3	53.3	50.9	57.2	68.3	53.3	51.0	57.2	68.3	
						Ambier	t DB 70°F							
	60	31.9(a)	29.1 ^(a)	38.0	64.5	36.1	33.8	42.6	69.1	40.5	39.0	47.5	73.3	
3000	65	31.8 ^(a)	29.0 ^(a)	37.9	64.4	36.0	33.7	42.5	69.1	40.4	38.9	47.3	73.3	
3000	70	31.7 ^(a)	29.0 ^(a)	37.8	64.4	35.9	33.6	42.5	69.1	40.3	38.9	47.3	73.3	
	75	34.4	30.8 ^(a)	41.2	66.6	35.9	33.5	42.5	69.0	40.2	38.8	47.3	73.3	
	60	34.9	32.1(a)	40.1	63.1	39.1	36.8	44.8	67.8	43.5	41.8	49.6	72.2	
3600	65	34.9	32.0(a)	40.0	63.1	39.0	36.7	44.7	67.8	43.4	41.8	49.4	72.2	
3000	70	35.8	31.9 ^(a)	41.6	63.1	39.0	36.6	44.6	67.8	43.3	41.7	49.4	72.2	
	75	39.0	35.2	45.2	66.9	39.1	36.5	45.3	67.8	43.3	41.6	49.5	72.2	
	60	37.2	34.5	41.7	62.0	41.4	39.1	46.3	66.8	45.8	44.0	51.1	71.2	
4200	65	37.1	34.4	41.8	62.0	41.3	39.0	46.3	66.8	45.7	43.9	51.0	71.2	
4200	70	39.2	35.3	44.5	63.4	41.3	38.9	46.4	66.8	45.7	43.8	51.1	71.2	
	75	42.5	38.9	48.2	67.3	42.6	38.7	48.3	66.9	45.5	43.8	50.8	71.3	
	60	38.9	36.4	43.0	61.2	43.2	40.9	47.5	65.9	47.6	45.7	52.3	70.4	
4800	65	38.7	36.3	43.0	61.2	43.1	40.8	47.6	65.9	47.6	45.6	52.2	70.4	
4000	70	42.0	38.2	46.9	63.7	43.0	40.7	47.6	66.0	47.5	45.6	52.3	70.4	
	75	45.8	41.9	51.0	67.7	45.5	42.0	50.8	67.7	47.4	45.5	52.3	70.4	
	60	40.2	37.9	43.8	60.4	44.6	42.4	48.4	65.1	49.0	47.1	53.0	69.5	
5400	65	40.8	37.7	45.1	60.5	44.4	42.3	48.5	65.2	48.9	47.0	53.1	69.6	
3400	70	44.5	40.6	49.0	64.0	44.3	42.2	48.5	65.3	48.9	47.0	53.2	69.7	
	75	48.3	44.5	53.2	68.1	47.9	44.6	52.8	68.1	48.7	46.8	53.3	69.8	
	60	41.4	39.2	44.8	59.8	45.7	43.6	49.2	64.5	50.1	48.2	53.7	68.9	
6000	65	42.7	38.9	46.7	60.0	45.6	43.5	49.3	64.5	50.0	48.1	53.8	69.0	
0000	70	46.6	42.7	50.9	64.3	46.7	43.3	50.9	64.7	50.0	48.1	53.9	69.0	
	75	50.4	46.7	54.9	68.4	50.4	46.8	55.0	68.4	50.5	47.9	55.1	69.2	
	60	42.3	40.2	45.4	59.3	46.5	44.6	49.7	63.9	51.0	49.1	54.2	68.3	
6600	65	44.3	40.7	48.0	60.4	46.4	44.5	49.8	64.0	50.9	49.1	54.4	68.4	
6600	70	48.3	44.5	52.3	64.6	48.4	44.3	52.4	64.2	50.8	49.0	54.5	68.5	
	75	52.2	48.6	56.4	68.7	52.2	48.7	56.5	68.7	52.3	48.8	56.6	68.7	

Reheat Temperature Rise

Table 16. Reheat temperature rise — 15 tons (continued)

			Entering Wet Bulb (°F)											
Airflow	Ent DB		5	1			5	5			5	9		
	(°F)	Lvg Evap DB (°F)		_	eheat (°F)	_	Evap (°F)	Lvg Reheat DB (°F)		Lvg Evap DB (°F)		Lvg Reheat DB (°F)		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	60	43.0	41.1	45.7	58.8	47.4	45.5	50.3	63.4	51.7	50.0	54.7	67.8	
7200	65	45.8	42.2	49.2	60.6	47.3	45.4	50.5	63.5	51.7	49.9	54.8	67.9	
7200	70	49.8	46.1	53.5	64.9	49.9	46.2	53.6	64.9	51.6	49.9	55.0	68.0	
	75	53.7 50.2 57.8		69.0	53.8	50.3	57.8	69.0	53.9	49.6	57.9	68.3		

Note: MIN, MAX: The leaving evaporator temperature is affected by the modulating valve position. The MIN and MAX numbers represent modulating valve position impact on both the leaving evaporator temperature and the leaving reheat coil temperature. MAX represents wide open, MIN represents closed to minimum position.

Table 17. Reheat temperature rise — 20 tons

			Entering Wet Bulb (°F)												
Airflow	Ent DB		5	1			5	5			5	9			
(cfm)	(°F)		Evap (°F)	Lvg Reheat DB (°F)			Evap (°F)	Lvg Reheat DB (°F)		Lvg Evap DB (°F)		Lvg Reheat DB (°F)			
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
						Ambier	nt DB 60°F								
	60	30.2(a)	29.2(a)	33.3	54.3	34.3	34.0	37.7	58.1	38.6	39.0	42.3	61.8		
4000	65	29.9(a)	29.1(a)	33.2	54.3	34.3	33.9	37.6	58.0	38.6	38.9	42.1	61.7		
4000	70	29.8(a)	29.1(a)	33.2	54.5	34.2	33.8	37.5	58.1	38.5	38.9	42.1	61.8		
	75	32.2(a)	31.3(a)	35.8	56.2	34.1	33.8	37.4	58.2	38.4	38.8	42.0	61.8		
	60	33.4	32.2 ^(a)	36.0	54.5	37.6	37.0	40.4	58.3	42.0	42.0	45.1	62.1		
4000	65	33.3	32.1 ^(a)	35.9	54.6	37.6	37.0	40.4	58.4	41.9	41.9	45.0	62.1		
4800	70	33.3	32.2 ^(a)	36.4	54.8	37.5	36.9	40.7	58.5	41.8	41.8	45.0	62.1		
	75	36.8	35.8	40.1	57.7	37.5	36.8	40.9	58.5	41.7	41.8	44.9	62.2		
	60	35.8	34.6	38.1	54.5	40.1	39.3	42.6	58.4	44.4	44.2	47.1	62.1		
=000	65	35.7	34.5	38.4	54.7	40.0	39.3	42.7	58.6	44.3	44.1	47.1	62.2		
5600	70	37.3	35.5	40.1	55.7	39.9	39.2	42.4	58.7	44.3	44.1	47.3	62.4		
	75	40.5	39.4	43.6	59.0	39.6	39.2	42.4	58.8	44.2	44.0	47.4	62.5		
	60	37.7	36.5	39.7	54.6	42.0	41.1	44.1	58.5	46.3	45.9	48.5	62.2		
0.400	65	37.6	36.3	40.1	54.7	41.9	41.1	44.1	58.6	46.2	45.9	48.7	62.3		
6400	70	40.2	38.5	42.8	56.7	41.8	41.0	44.5	58.8	46.2	45.8	48.9	62.5		
	75	43.6	42.5	46.5	60.1	43.6	42.6	46.5	60.1	46.0	45.7	49.1	62.6		
	60	39.2	38.0	41.0	54.5	43.4	42.5	45.4	58.5	47.7	47.3	49.7	62.2		
7000	65	39.0	37.9	40.9	54.7	43.4	42.5	45.7	58.7	47.7	47.3	49.9	62.4		
7200	70	42.6	40.9	45.1	57.6	43.2	42.4	45.3	58.8	47.6	47.2	50.2	62.5		
	75	46.1	45.1	48.8	61.1	46.2	45.2	48.9	61.1	47.6	47.2	50.4	62.7		
	60	40.4	39.2	42.3	54.5	44.6	43.7	46.5	58.5	48.9	48.4	50.7	62.1		
0000	65	40.4	39.2	42.6	54.8	44.6	43.7	46.7	58.7	48.9	48.4	51.0	62.4		
8000	70	44.7	43.0	47.1	58.4	44.6	43.8	47.0	59.0	48.8	48.4	51.2	62.6		
	75	48.3	47.3	50.9	61.9	48.4	47.4	50.9	62.0	48.9	48.4	51.5	62.8		
	60	41.4	40.2	43.2	54.4	45.6	44.7	47.3	58.4	49.9	49.4	51.5	62.1		
0000	65	42.8	40.3	44.8	54.8	45.6	44.7	47.6	58.7	49.9	49.3	51.8	62.3		
8800	70	46.5	44.9	48.7	59.1	45.7	44.8	47.9	59.0	49.8	49.3	52.1	62.6		
	75	50.2	49.2	52.6	62.7	50.2	49.3	52.7	62.7	50.0	49.5	52.4	62.9		

⁽a) The unit might be tripped by Frostat at these conditions due to low leaving evaporator air temperature.

Table 17. Reheat temperature rise — 20 tons (continued)

							Intering W	et Bulb (°F	·)				
Ainflow	Ent DB		5	1			5	5			5	i9	
Airflow (cfm)	Ent DB (°F)		Evap (°F)		leheat (°F)		Evap (°F)		leheat (°F)		Evap (°F)		Reheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	60	42.2	41.1	44.0	54.4	46.5	45.5	48.0	58.4	50.7	50.1	52.1	62.0
9600	65	44.2	41.2	46.2	54.8	46.4	45.5	48.4	58.6	50.7	50.1	52.5	62.3
9000	70	48.0	46.5	50.1	59.7	48.1	45.7	50.2	59.0	50.6	50.1	52.8	62.6
	75	51.8	50.9	54.1	63.4	51.9	50.9	54.2	63.4	50.9	50.4	53.2	63.0
						Ambier	t DB 65°F						
	60	30.7 ^(a)	29.2 ^(a)	34.0	55.8	34.9	33.8	38.3	59.7	39.2	38.9	42.9	63.6
4000	65	30.6(a)	29.1 ^(a)	33.8	55.9	34.8	33.7	38.2	59.8	39.1	38.8	42.8	63.5
4000	70	30.6(a)	29.1 ^(a)	33.9	55.9	34.7	33.6	38.2	59.9	39.0	38.7	42.8	63.6
	75	32.9(a)	31.1 ^(a)	36.7	57.7	34.6	33.6	38.1	59.9	38.9	38.6	43.0	63.6
	60	33.8	32.2 ^(a)	36.6	55.7	38.1	36.8	41.0	59.8	42.4	41.8	45.5	63.8
4800	65	33.8	32.1 ^(a)	36.5	55.8	38.0	36.8	41.0	60.0	42.3	41.7	45.6	63.7
4000	70	33.7	32.2 ^(a)	36.9	56.0	37.9	36.7	41.3	60.0	42.3	41.7	45.7	63.8
	75	37.5	35.5	41.0	59.1	37.8	36.6	40.9	60.1	42.2	41.6	45.9	63.9
	60	36.2	34.6	38.8	55.6	40.5	39.2	43.1	59.8	44.8	44.0	47.5	63.8
5600	65	36.1	34.5	38.5	55.7	40.4	39.1	43.2	59.9	44.7	44.0	47.6	63.8
3000	70	37.9	35.5	40.9	56.8	40.3	39.0	43.0	60.1	44.7	43.9	47.8	63.9
	75	41.2	39.1	44.4	60.3	41.3	39.0	44.5	60.2	44.6	43.8	48.0	64.0
	60	38.0	36.5	40.4	55.5	42.3	41.0	44.6	59.7	46.6	45.7	49.0	63.6
6400	65	37.9	36.3	40.1	55.6	42.2	40.9	44.8	59.9	46.6	45.7	49.2	63.7
0400	70	40.8	38.4	43.6	57.8	42.1	40.8	44.5	60.0	46.5	45.6	49.4	63.9
	75	44.2	42.2	47.2	61.3	44.3	42.3	47.3	61.4	46.4	45.6	49.6	64.0
	60	39.5	38.0	41.7	55.4	43.8	42.4	45.9	59.6	48.1	47.1	50.1	63.5
7200	65	39.5	37.9	41.9	55.5	43.7	42.4	46.1	59.8	48.0	47.1	50.4	63.7
7200	70	43.2	40.8	45.8	58.6	43.7	42.3	46.4	59.9	48.0	47.0	50.6	63.8
	75	46.7	44.7	49.5	62.2	46.8	44.8	49.6	62.3	47.9	47.0	50.8	64.0
	60	40.7	39.2	42.7	55.2	44.9	43.6	46.9	59.4	49.2	48.2	51.1	63.4
8000	65	40.7	39.3	43.0	55.6	44.9	43.6	47.1	59.7	49.2	48.2	51.3	63.6
0000	70	45.2	42.9	47.7	59.3	44.9	43.4	47.4	59.4	49.1	48.2	51.6	63.8
	75	48.9	46.9	51.5	63.0	48.9	47.0	51.6	63.0	49.2	48.2	51.9	64.0
	60	41.6	40.3	43.1	55.1	45.9	44.6	47.7	59.3	50.2	49.2	51.8	63.2
8800	65	43.2	40.3	45.4	55.5	45.8	44.6	48.0	59.6	50.1	49.2	52.1	63.5
0000	70	47.0	44.7	49.3	59.9	47.0	44.7	49.4	59.9	50.1	49.1	52.4	63.7
	75	50.7	48.8	53.2	63.7	50.8	48.9	53.3	63.7	50.3	49.3	52.8	64.1
	60	42.4	41.1	44.3	55.0	46.7	45.5	48.4	59.2	51.0	50.0	52.5	63.1
9600	65	44.7	41.2	46.7	55.5	46.6	45.4	48.7	59.5	50.9	50.0	52.8	63.4
3000	70	48.5	46.3	50.7	60.5	48.6	45.7	50.8	59.9	50.9	49.9	53.1	63.7
	75	52.3	50.5	54.7	64.3	52.4	50.6	54.8	64.4	52.5	50.2	54.9	64.1
						Ambier	t DB 70°F						
	60	31.2 ^(a)	29.2 ^(a)	34.7	57.1	35.4	33.7	38.9	61.3	39.7	38.7	43.7	65.4
4000	65	31.1(a)	29.1 ^(a)	34.5	57.1	35.3	33.6	38.9	61.4	39.6	38.6	43.6	65.3
1000	70	31.2(a)	29.1(a)	34.9	57.2	35.2	33.5	38.9	61.2	39.6	38.6	43.6	65.4
	75	33.7	31.1 ^(a)	37.6	59.1	35.2	33.5	38.8	61.5	39.5	38.5	43.5	65.4

Reheat Temperature Rise

Table 17. Reheat temperature rise — 20 tons (continued)

						i	Entering W	et Bulb (°F	·)				
A inflant	Fret DD		5	1			5	5			5	59	
Airflow (cfm)	Ent DB (°F)		Evap (°F)		Reheat (°F)		Evap (°F)	Lvg R DB	eheat (°F)		Evap (°F)		leheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	60	34.3	32.2 ^(a)	37.2	56.8	38.6	36.8	41.6	61.2	42.9	41.6	46.3	65.4
4800	65	34.2	32.1 ^(a)	37.1	56.9	38.5	36.7	41.6	61.3	42.8	41.6	46.2	65.3
4000	70	35.0	32.2(a)	38.4	57.0	38.4	36.7	41.5	61.4	42.7	41.5	46.4	65.4
	75	38.2	35.5	41.8	60.4	38.2	36.6	41.5	61.4	42.7	41.4	46.5	65.5
	60	36.6	34.6	39.3	56.5	40.9	39.1	43.6	60.9	45.2	43.8	48.0	65.1
5000	65	36.5	34.6	39.4	56.6	40.8	39.1	43.8	61.1	45.2	43.8	48.2	65.2
5600	70	38.5	35.6	41.6	57.8	40.7	39.0	43.9	61.2	45.1	43.7	48.4	65.4
	75	41.8	39.1	45.2	61.5	41.9	39.0	45.3	61.4	45.0	43.7	48.5	65.5
	60	38.4	36.5	40.8	56.3	42.7	41.0	45.1	60.7	47.0	45.6	49.5	64.9
0400	65	38.4	36.4	41.1	56.5	42.6	40.9	45.3	60.9	46.9	45.5	49.7	65.1
6400	70	41.4	38.5	44.3	58.7	42.5	40.8	45.5	61.0	46.9	45.5	49.9	65.2
	75	44.8	42.1	48.0	62.4	44.9	42.2	48.1	62.5	46.8	45.4	50.0	65.4
	60	39.8	38.1	42.1	56.1	44.1	42.5	46.3	60.5	48.4	47.0	50.6	64.7
7000	65	39.8	38.0	42.3	56.4	44.0	42.4	46.5	60.7	48.3	47.0	50.8	64.8
7200	70	43.7	40.9	46.5	59.4	44.0	42.3	46.8	60.9	48.3	46.9	51.1	65.1
	75	47.3	44.6	50.3	63.3	47.4	44.7	50.4	63.3	48.3	46.9	51.4	65.2
	60	41.0	39.3	42.7	55.9	45.2	43.7	47.2	60.2	49.5	48.1	51.5	64.4
0000	65	42.1	39.3	44.4	56.2	45.2	43.6	47.5	60.5	49.5	48.1	51.7	64.6
8000	70	45.8	43.0	48.3	60.1	45.2	43.7	47.8	60.8	49.4	48.1	52.0	64.9
	75	49.4	46.8	52.2	64.0	49.5	46.9	52.3	64.0	49.5	48.1	52.4	65.1
	60	41.9	40.3	43.9	55.7	46.2	44.7	48.0	60.0	50.5	49.1	52.2	64.2
0000	65	43.7	40.4	45.9	56.2	46.1	44.6	48.3	60.3	50.4	49.1	52.5	64.5
8800	70	47.5	44.8	49.9	60.7	47.6	44.8	50.0	60.7	50.3	49.0	52.8	64.7
	75	51.3	48.7	53.9	64.6	51.3	48.8	54.0	64.7	50.6	49.2	53.2	65.1
	60	42.7	41.2	44.6	55.6	47.0	45.5	48.7	59.8	51.2	49.9	52.8	64.0
0000	65	45.1	42.5	47.2	57.1	46.9	45.5	49.0	60.1	51.2	49.9	53.1	64.3
9600	70	49.0	46.4	51.3	61.2	49.1	45.7	51.3	60.6	51.1	49.9	53.5	64.6
	75	52.8	50.3	55.4	65.2	52.9	50.4	55.4	65.2	53.0	50.1	55.5	65.0
Moto: N	AINI MANVIT	ho looving o	vanaratar tar	anaratura ia	affected by th	o modulatio	v volvo popitio	n The MINI	and MAV nur	nhoro ropros	ant madulati	na valva nasi	tion impost

Note: MIN, MAX: The leaving evaporator temperature is affected by the modulating valve position. The MIN and MAX numbers represent modulating valve position impact on both the leaving evaporator temperature and the leaving reheat coil temperature. MAX represents wide open, MIN represents closed to minimum position.

Table 18. Reheat temperature rise — 25 tons

						E	Intering W	et Bulb (°F	·)				
Airflow	Ent DB		5	1			5	5			5	9	
(cfm)	(°F)	-	Evap (°F)	Lvg R DB	eheat (°F)	Lvg l DB	Evap (°F)	_	leheat (°F)	_	Evap (°F)	_	leheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
						Ambien	t DB 60°F						
	60	31.8(a)	30.9(a)	33.8	53.1	36.3	35.2	38.2	56.9	40.8	39.8	43.0	60.6
5000	65	31.7 ^(a)	30.8(a)	33.9	53.2	36.2	35.1	38.3	57.0	40.8	39.7	42.9	60.5
3000	70	31.5(a)	30.6(a)	33.7	53.0	36.1	35.0	38.4	56.9	40.7	39.6	43.0	60.5
	75	34.6	33.1	37.1	55.5	36.0	34.9	38.5	57.1	40.6	39.5	43.1	60.4

⁽a) The unit might be tripped by Frostat at these conditions due to low leaving evaporator air temperature.

Table 18. Reheat temperature rise — 25 tons (continued)

						E	Entering W	et Bulb (°F)				
Airflow	Ent DB		5	1			5	55			5	9	
(cfm)	(°F)		Evap (°F)	Lvg R DB	eheat (°F)		Evap (°F)	_	Reheat (°F)		Evap (°F)	_	Reheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	60	35.0	33.9	36.7	53.3	39.4	38.3	41.1	57.3	44.0	42.8	45.5	61.1
0000	65	34.9	33.8	36.8	53.5	39.4	38.2	41.2	57.4	43.9	42.7	45.7	61.0
6000	70	36.0	33.8	38.1	53.7	39.3	38.1	41.4	57.5	43.9	42.6	45.9	61.0
	75	39.5	37.6	41.7	57.3	39.4	38.2	41.6	57.7	43.8	42.6	46.0	61.3
	60	37.3	36.2	38.9	53.5	41.8	40.6	43.1	57.5	46.3	45.1	47.5	61.3
7000	65	37.2	36.1	39.0	53.7	41.7	40.5	43.4	57.7	46.2	45.0	47.7	61.3
7000	70	39.7	37.8	41.6	55.5	41.6	40.4	43.5	57.8	46.2	44.9	48.0	61.5
	75	43.4	41.3	45.4	58.7	43.5	40.5	45.5	58.1	46.1	44.9	48.1	61.7
	60	39.1	38.0	40.5	53.7	43.5	42.3	44.7	57.6	48.0	46.8	49.0	61.5
0000	65	39.2	37.8	40.8	53.5	43.4	42.3	45.0	57.8	48.0	46.8	49.3	61.5
8000	70	42.7	40.7	44.4	56.6	43.6	42.2	45.4	58.0	47.9	46.7	49.6	61.7
	75	46.5	38.4	48.4	53.9	46.6	44.3	48.4	60.0	47.9	46.7	49.8	61.9
	60	40.5	39.4	41.8	53.7	44.9	43.7	46.0	57.7	49.3	48.2	50.2	61.5
0000	65	40.7	39.6	42.2	54.1	44.8	43.7	46.3	57.9	49.3	48.1	50.5	61.5
9000	70	45.2	43.1	46.8	57.6	45.1	43.9	46.7	58.3	49.3	48.1	50.8	61.9
	75	49.1	41.3	50.8	52.7	49.2	46.8	50.9	61.0	49.6	48.1	51.3	62.1
	60	41.6	40.5	42.8	53.8	46.0	44.9	47.0	57.7	50.4	49.3	51.1	61.5
10000	65	43.3	40.8	44.6	54.3	45.9	44.8	47.3	58.0	50.4	49.2	51.5	61.7
10000	70	47.3	45.1	48.8	58.4	46.4	45.1	47.8	58.5	50.3	49.2	51.8	62.0
	75	51.3	42.8	52.9	53.5	51.4	49.0	53.0	62.0	50.8	49.6	52.4	62.5
	60	42.5	41.5	43.7	53.8	46.9	45.8	47.8	57.7	51.3	50.2	51.9	61.5
11000	65	44.9	41.8	46.2	54.4	46.9	45.8	48.2	58.1	51.3	50.1	52.3	61.8
11000	70	49.1	46.8	50.4	59.2	49.1	46.2	50.5	58.6	51.3	50.0	52.7	61.5
	75	53.2	50.8	54.6	62.8	53.3	50.8	54.7	62.8	53.3	50.6	54.8	62.6
	60	43.3	42.4	44.5	53.8	47.6	46.6	48.5	57.7	52.0	51.0	52.5	61.5
12000	65	46.4	44.5	47.6	56.0	47.7	46.6	48.9	58.1	52.0	50.9	53.0	61.8
12000	70	50.6	48.4	51.9	59.8	50.7	47.1	51.9	58.7	51.9	51.0	52.8	62.2
	75	54.8	45.4	56.2	54.4	54.9	45.4	56.2	58.2	54.9	51.5	56.3	62.8
						Ambien	t DB 65°F						
	60	32.0(a)	31.0 ^(a)	34.1	54.3	36.5	35.4	38.5	58.3	41.1	39.9	43.3	62.3
5000	65	31.9(a)	30.9(a)	34.2	54.4	36.4	35.3	38.7	58.4	41.1	39.8	43.2	62.3
5000	70	32.1(a)	31.0 ^(a)	34.4	54.6	36.3	35.2	38.8	58.5	41.0	39.7	43.3	62.2
	75	35.0	33.4	37.6	56.9	36.3	35.1	38.8	58.6	40.9	39.6	43.5	62.2
	60	35.2	34.0	37.0	54.4	39.7	38.4	41.4	58.6	44.2	42.9	45.8	62.5
6000	65	35.1	33.9	37.1	54.5	39.6	38.3	41.5	58.7	44.2	42.8	46.0	62.6
6000	70	36.4	33.9	38.5	54.8	39.5	38.2	41.7	58.8	44.1	42.7	46.2	62.7
	75	39.9	37.8	42.2	58.6	39.6	38.3	41.9	59.1	44.0	42.6	46.3	62.5
	60	37.5	36.3	39.1	54.4	42.0	40.7	43.4	58.6	46.5	45.1	47.8	62.6
7000	65	37.4	36.2	39.2	54.6	41.9	40.6	43.6	58.8	46.4	45.1	48.0	62.8
7000	70	40.1	38.0	42.0	56.6	41.8	40.5	43.8	59.0	46.4	45.0	48.2	62.9
	75	43.7	41.4	45.8	60.0	43.8	40.6	45.9	59.3	46.3	44.9	48.4	63.1

Reheat Temperature Rise

Table 18. Reheat temperature rise — 25 tons (continued)

						E	Intering W	et Bulb (°F	·)				
Airflow	Ent DB		5	1			5	5			5	9	
(cfm)	(°F)		Evap (°F)	_	leheat (°F)	Lvg I DB	Evap (°F)	_	leheat (°F)		Evap (°F)	_	Reheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	60	39.3	38.1	40.7	54.4	43.7	42.4	45.0	58.6	48.2	46.9	49.2	62.6
0000	65	39.4	38.2	41.1	54.8	43.6	42.4	45.2	58.8	48.2	46.8	49.5	62.8
8000	70	43.0	40.8	44.8	57.6	43.8	42.3	45.6	59.1	48.1	46.7	49.8	63.0
	75	46.9	44.4	48.8	61.2	47.0	44.5	48.9	61.2	48.1	46.7	50.0	63.2
	60	40.6	39.5	42.0	54.4	45.0	43.8	46.2	58.6	49.5	48.2	50.4	62.7
0000	65	40.9	39.7	42.4	54.9	45.0	43.8	46.5	58.8	49.5	48.2	50.7	62.8
9000	70	45.5	43.2	47.1	58.6	45.3	44.0	46.9	59.3	49.4	48.1	51.0	63.1
	75	49.5	46.9	51.2	62.2	49.6	47.0	51.3	62.2	49.8	48.2	51.5	63.3
	60	41.7	40.6	43.0	54.4	46.1	44.9	47.1	58.5	50.6	49.3	51.4	62.5
40000	65	43.5	40.9	44.9	54.9	46.1	44.9	47.5	58.8	50.5	49.3	51.7	62.8
10000	70	47.6	45.2	49.1	59.4	46.5	45.2	48.0	59.3	50.5	49.2	52.0	63.1
	75	51.7	49.0	53.3	63.1	51.8	49.1	53.4	63.1	51.0	49.6	52.6	63.5
	60	42.6	41.6	43.9	54.4	47.0	45.9	48.0	58.4	51.4	50.2	52.0	62.4
	65	45.2	41.9	46.5	55.0	47.0	45.8	48.3	58.8	51.4	50.2	52.5	62.7
11000	70	49.3	47.0	50.8	60.1	49.4	46.2	50.8	59.4	51.4	50.2	52.9	63.1
	75	53.5	50.8	55.0	63.8	53.6	50.9	55.1	63.8	53.7	50.6	55.2	63.6
	60	43.7	42.4	44.9	54.4	47.8	46.7	48.6	58.4	52.2	51.0	52.6	62.3
	65	46.6	44.6	47.9	56.7	47.8	46.7	49.1	58.8	52.1	50.9	53.1	62.7
12000	70	50.9	48.5	52.2	60.7	50.9	47.1	52.3	59.5	52.2	51.0	53.6	63.1
	75	55.1	52.4	56.5	64.5	55.2	52.5	56.6	64.5	55.3	51.5	56.7	63.7
						Ambien	t DB 70°F						
	60	32.3 ^(a)	31.2 ^(a)	34.4	55.3	36.8	35.6	38.9	59.6	41.4	40.0	43.7	63.9
=000	65	32.1 ^(a)	31.1 ^(a)	34.5	55.4	36.7	35.4	39.0	59.7	41.4	40.0	43.6	63.9
5000	70	32.3 ^(a)	31.2 ^(a)	34.7	55.6	36.6	35.3	39.1	59.8	41.3	39.9	43.7	64.0
	75	35.5	33.6	38.0	58.2	36.5	35.3	38.8	59.9	41.2	39.8	43.8	64.0
	60	35.4	34.2	37.2	55.3	39.9	38.6	41.6	59.7	44.5	43.0	46.1	63.8
	65	35.3	34.1	37.4	55.4	39.8	38.5	41.8	59.8	44.4	43.0	46.3	64.0
6000	70	36.8	34.1	38.9	55.7	39.7	38.4	42.0	59.9	44.4	42.9	46.5	64.1
	75	40.3	38.1	42.7	59.8	39.9	38.5	42.2	60.2	44.3	42.8	46.6	64.3
	60	37.7	36.5	39.3	55.2	42.2	40.8	43.7	59.6	46.7	45.2	48.1	63.8
	65	37.8	36.3	39.7	55.4	42.1	40.7	43.9	59.8	46.7	45.2	48.3	64.0
7000	70	40.4	38.2	42.4	57.5	42.0	40.6	44.0	60.0	46.6	45.1	48.5	64.1
	75	44.1	41.6	46.3	61.1	44.2	40.7	46.3	60.3	46.5	45.0	48.7	64.3
	60	39.4	38.2	40.9	55.1	43.9	42.6	45.2	59.5	48.4	47.0	49.5	63.6
	65	39.6	38.3	41.3	55.5	43.8	42.5	45.5	59.7	48.3	46.9	49.8	63.9
8000	70	43.4	41.0	45.2	58.5	44.0	42.4	45.8	59.9	48.3	46.8	50.1	64.1
	75	47.3	44.6	49.2	62.2	47.4	44.7	49.3	62.3	48.5	46.8	50.5	64.3
	60	40.8	39.6	42.2	55.1	45.2	43.9	46.4	59.3	49.7	48.3	50.6	63.5
	65	41.0	39.8	42.6	55.5	45.1	43.8	46.7	59.6	49.7	48.2	50.9	63.7
9000	70	45.8	43.4	47.5	59.4	45.5	44.1	47.1	60.1	49.6	48.2	51.2	64.0
	75	49.9	47.0	51.7	63.2	49.9	47.1	51.7	63.2	50.0	48.2	51.8	64.3

Table 18. Reheat temperature rise — 25 tons (continued)

						F	Entering W	et Bulb (°F	·)				
Airflow	Ent DB		5	51			5	55			5	9	
(cfm)	(°F)	•	Evap (°F)	•	eheat (°F)		Evap (°F)		leheat (°F)	_	Evap (°F)	_	Reheat (°F)
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	60	41.9	40.7	43.2	55.0	46.3	45.0	47.3	59.2	50.7	49.4	51.5	63.3
10000	65	43.8	41.0	45.2	55.5	46.2	45.0	47.7	59.5	50.7	49.3	51.9	63.6
10000	70	47.9	45.4	49.4	60.1	48.0	45.3	49.5	60.1	50.6	49.3	52.2	63.9
	75	52.0	49.1	53.7	64.0	52.1	49.2	53.8	64.0	51.2	49.7	52.8	64.5
	60	42.8	41.7	44.1	54.9	47.2	46.0	48.1	59.0	51.6	50.3	52.2	63.1
11000	65	45.5	43.3	46.8	56.7	47.1	45.9	48.5	59.4	51.5	50.2	52.6	63.5
11000	70	49.6	47.1	51.1	60.8	49.7	46.3	51.1	60.1	51.6	50.2	53.0	63.9
	75	53.9	50.9	55.4	64.7	53.9	51.0	55.5	64.7	54.0	50.7	55.6	64.5
	60	43.8	42.5	45.0	54.8	47.9	46.7	48.8	58.9	52.3	51.1	52.8	63.0
12000	65	46.9	44.7	48.1	57.3	47.9	46.8	49.2	59.4	52.3	51.0	53.3	63.4
12000	70	51.1	48.6	52.5	61.4	51.2	48.7	52.6	61.4	52.2	51.1	53.2	63.8
	75	55.4	52.5	56.9	65.4	55.5	52.6	57.0	65.4	55.6	51.6	57.1	64.5

Note: MIN, MAX: The leaving evaporator temperature is affected by the modulating valve position. The MIN and MAX numbers represent modulating valve position impact on both the leaving evaporator temperature and the leaving reheat coil temperature. MAX represents wide open, MIN represents closed to minimum position.

⁽a) The unit might be tripped by Frostat at these conditions due to low leaving evaporator air temperature.

Evaporator Fan Performance - Heat Pump

Fan Curve Limits:

- WSJ150–300 Std Motor, Max 5.8 hp or 1850 rpm
- WSJ300 High static, Max 8.4 hp or 1940 rpm
- Maximum CFM 480 cfm/ton
- Maximum ESP = 2.0 in-H₂O @ 400 cfm/ton

The fan curve graphs include standard filter and a wet indoor coil. Available external static pressure is reduced with options based on the accessory table component pressure drop. To determine available static pressure at rpm/cfm with other options/accessories, select intersection point of the RPM vs CFM and then reduce available static pressure shown in graph by the sum of additional option static pressure drop listed in the fan performance accessory table section. For more detailed and precise RPM, BHP, and CFM operating points, see evaporator tables below.

12.5 to 25 Ton Units — Downflow

Figure 1. Fan curves — 12.5 to 25 tons, WSJ* downflow

Table 19. Evaporator fan performance — 12.5 ton, model WSJ, downflow

Available External Static Pressure (Inc													Water	Gauge	∍)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	70"	0.8	30"	0.9	0"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3750	541	0.19	604	0.28	661	0.37	713	0.47	761	0.58	807	0.69	850	0.80	891	0.91	930	1.03	968	1.16
4000	568	0.21	629	0.31	684	0.41	734	0.51	781	0.62	825	0.74	868	0.85	908	0.97	947	1.10	983	1.22
4500	625	0.28	679	0.38	731	0.49	779	0.61	823	0.73	866	0.85	905	0.97	944	1.10	982	1.23	1018	1.37
5000	683	0.35	732	0.47	780	0.58	826	0.71	868	0.84	908	0.97	947	1.11	983	1.24	1018	1.38	1053	1.53
5500	742	0.45	786	0.57	831	0.69	874	0.83	915	0.97	953	1.11	989	1.26	1025	1.40	1059	1.55	1092	1.70
6000	801	0.55	842	0.68	883	0.82	924	0.96	962	1.11	999	1.26	1035	1.42	1068	1.58	1102	1.74	1133	1.90
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	70"	1.8	30"	1.9	0"	2.0	00"
CFM	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
3750	1005	1.29	1040	1.43	1074	1.57	1106	1.71	1137	1.86	1168	2	1198	2.15	1228	2.31	1257	2.46	1285	2.62
4000	1019	1.36	1054	1.5	1088	1.64	1120	1.79	1152	1.94	1182	2.09	1211	2.24	1240	2.4	1269	2.56	1297	2.72
4500	1052	1.51	1085	1.65	1117	1.79	1149	1.95	1180	2.1	1211	2.26	1240	2.43	1268	2.59	1296	2.76	1323	2.93
5000	1087	1.67	1120	1.82	1151	1.98	1182	2.13	1211	2.29	1240	2.45	1269	2.62	1297	2.79	1325	2.97	1352	3.15
5500	1123	1.86	1155	2.02	1186	2.18	1216	2.34	1246	2.51	1274	2.68	1302	2.85	1328	3.02	1354	3.2	1381	3.38
6000	1164	2.06	1194	2.23	1223	2.4	1252	2.57	1281	2.74	1309	2.92	1336	3.1	1363	3.28	1389	3.47	1414	3.66

Notes:

- Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 20. Evaporator fan performance — 15 ton, model WSJ, downflow

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of '	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	3.0	80"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	625	0.28	679	0.38	731	0.49	779	0.61	823	0.73	866	0.85	905	0.97	944	1.10	982	1.23	1018	1.37
4800	660	0.32	711	0.43	760	0.54	807	0.67	850	0.79	891	0.92	930	1.05	967	1.18	1003	1.32	1039	1.46
5400	730	0.43	775	0.54	821	0.67	864	0.80	905	0.94	944	1.08	981	1.22	1017	1.37	1051	1.52	1084	1.67
6000						0.82	924	0.96	962	1.11	999	1.26	1035	1.42	1068	1.58	1102	1.74	1133	1.90
6600	873	0.71	911	0.85	948	1.00	985	1.15	1022	1.31	1057	1.47	1091	1.63	1123	1.81	1155	1.98	1185	2.16
7200	945	0.89	981	1.04	1014	1.20	1049	1.36	1083	1.53	1116	1.70	1148	1.88	1180	2.06	1210	2.25	1239	2.43
					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge	9)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	'0"	1.8	80"	1.9	0"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	1052	1.51	1085	1.65	1117	1.79	1149	1.95	1180	2.1	1211	2.26	1240	2.43	1268	2.59	1296	2.76	1323	2.93
4800	1073	1.61	1106	1.75	1137	1.90	1168	2.05	1198	2.21	1228	2.37	1257	2.54	1286	2.71	1313	2.88	1340	3.06
5400	1115	1.82	1148	1.98	1179	2.14	1209	2.3	1239	2.46	1267	2.63	1295	2.80	1322	2.97	1348	3.15	1375	3.33
6000	1164	2.06	1194	2.23	1223	2.40	1252	2.57	1281	2.74	1309	2.92	1336	3.10	1363	3.28	1389	3.47	1414	3.66
6600	1215	2.33	1244	2.51	1272	2.69	1300	2.87	1326	3.05	1352	3.24	1379	3.43	1405	3.62	1431	3.82	1456	4.02
7200	1268	2.63	1295	2.82	1323	3.01	1350	3.2	1376	3.4	1401	3.6	1426	3.79	1450	4.00	1474	4.2	1498	4.41

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Evaporator Fan Performance - Heat Pump

Table 21. Evaporator fan performance — 20 ton, model WSJ, downflow

					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of '	Water	Gauge)					
	0.1	0"	0.2	:0"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	0.8	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	785	0.51	827	0.64	868	0.77	907	0.91	945	1.05	981	1.20	1016	1.35	1049	1.50	1081	1.65	1112	1.80
6400	831	0.61	872	0.74	911	0.88	948	1.02	984	1.17	1019	1.33	1053	1.48	1085	1.64	1116	1.80	1146	1.96
7200	925	0.83	962	0.97	997	1.13	1031	1.28	1064	1.45	1096	1.61	1128	1.79	1158	1.96	1188	2.14	1217	2.32
8000	1020	1.09	1054	1.26	1086	1.42	1117	1.60	1148	1.77	1177	1.95	1206	2.14	1235	2.33	1263	2.52	1290	2.72
8800	1115	1.42	1146	1.60	1176	1.78	1205	1.96	1233	2.15	1261	2.35	1288	2.55	1314	2.75	1341	2.96	1367	3.17
9600	1211	1.81	1240	2.00	1268	2.20	1295	2.39	1321	2.60	1347	2.81	1372	3.02	1397	3.24	1421	3.46	1445	3.68
					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of '	Water	Gauge)					
	1.1	0"	1.2	:0"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	'0 "	1.8	30"	1.9	90"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	1141	1.95	1170	2.1	1198	2.25	1227	2.41	1255	2.57	1282	2.74	1308	2.9	1333	3.07	1358	3.24	1383	3.41
6400	1175	2.12	1203	2.28	1231	2.44	1257	2.6	1284	2.77	1311	2.94	1337	3.11	1362	3.29	1387	3.46	1411	3.64
7200	1245	2.49	1272	2.67	1299	2.85	1324	3.03	1349	3.21	1374	3.39	1397	3.57	1421	3.76	1445	3.95	1469	4.14
8000	1317	2.91	1343	3.11	1369	3.31	1394	3.5	1418	3.7	1442	3.9	1465	4.1	1487	4.31	1510	4.5	1532	4.7
8800	1392	3.38	1417	3.59	1442	3.81	1466	4.02	1489	4.24	1512	4.46	1534	4.68	1557	4.89	1578	5.11	1599	5.33
9600	1469	3.9	1493	4.13	1517	4.37	1539	4.6	1562	4.83	1584	5.07	1606	5.31	1627	5.54	1648	5.78	-	-

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 22. Evaporator fan performance — 25 ton, model WSJ, downflow

					Α	vailab	le Exte	rnal St	atic Pr	essure	(Inch	es of V	Vater G	auge)						
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	io"	0.6	0"	0.7	'0"	3.0	30"	0.9	90"	1.0	0"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
									3-hp	Stand	lard M	otor								
7500	961	0.92	996	1.07	1030	1.23	1063	1.40	1095	1.56	1126	1.74	1157	1.91	1187	2.09	1216	2.28	1244	2.46
8000	1020	1.09	1054	1.26	1086	1.42	1117	1.60	1148	1.77	1177	1.95	1206	2.14	1235	2.33	1263	2.52	1290	2.72
9000	1139	1.51	1170	1.69	1199	1.88	1227	2.06	1255	2.26	1282	2.46	1309	2.66	1335	2.87	1360	3.07	1386	3.29
10000															3.96					
11000															4.75					
12000	00 1500 3.39 1524 3.63 1547 3.87 1570 4.12 1592 4.37 1613 4.61 1634 4.86 1655 5.12 1676 5.39 1696 9														5.65					
					Α	vailab	le Exte	rnal St	atic Pr	essure	(Inch	es of V	Vater G	iauge)						
	1.1	0"	12	0"	Available External Static Pressure (Inches of Water Gauge)															
	1.10" 1.20" 1.30" 1.40" 1.50" 1.60" 1.70" 1.80" 1.90" 2.00"													0"						
CFM	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM		RPM	BHP			RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
CFM	RPM								RPM	ВНР		ВНР								
7500	RPM 1272								RPM	ВНР	RPM	ВНР								
		ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM 3-hp	BHP Stand	RPM dard M	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
7500	1272	BHP 2.65	RPM 1299	2.83	RPM 1325	BHP 3.02	RPM 1350	BHP 3.2	RPM 3-h 1375	BHP Stand	RPM dard M	BHP otor 3.58	RPM 1422	BHP 3.77	RPM 1446	BHP 3.96	RPM 1468	BHP 4.15	RPM 1491	BHP 4.34
7500 8000	1272 1317	2.65 2.91	1299 1343	2.83 3.11	1325 1369	3.02 3.31	1350 1394	3.2 3.5	3-hp 1375 1418	3.39 3.7	RPM dard M 1399 1442	BHP otor 3.58 3.9	1422 1465	3.77 4.1	1446 1487	3.96 4.31	1468 1510	4.15 4.5	1491 1532	4.34 4.7
7500 8000 9000	1272 1317 1411	2.65 2.91 3.5	1299 1343 1436	2.83 3.11 3.72	1325 1369 1460	3.02 3.31 3.94	1350 1394 1484	3.2 3.5 4.16	3-hp 1375 1418 1507	3.39 3.7 4.38	RPM 1399 1442 1530	3.58 3.9 4.61	1422 1465 1552	3.77 4.1 4.83	1446 1487	3.96 4.31	1468 1510	4.15 4.5	1491 1532	4.34 4.7
7500 8000 9000 10000	1272 1317 1411 1509	2.65 2.91 3.5 4.19	1299 1343 1436 1532	2.83 3.11 3.72 4.43	1325 1369 1460 1555	3.02 3.31 3.94 4.67	1350 1394 1484 1577	3.2 3.5 4.16 4.91	3-hp 1375 1418 1507 1599	3.39 3.7 4.38 5.15	RPM 1399 1442 1530 1621	3.58 3.9 4.61	1422 1465 1552 1643	3.77 4.1 4.83	1446 1487 1574	3.96 4.31	1468 1510 1596	4.15 4.5 5.27	1491 1532 1617	4.34 4.7 5.5

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 23.	Evaporator fan	performance — 25 ton	downflow	, model WSJ,	high static drive
-----------	----------------	----------------------	----------	--------------	-------------------

					Α	vailab	le Exte	rnal St	atic Pi	essure	(Inch	es of V	Vater G	auge)						
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	70"	0.8	30"	0.9	0"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized M	otor								
7500	983	0.94	1019	1.10	1053	1.26	1086	1.42	1117	1.59	1148	1.76	1179	1.94	1209	2.11	1238	2.29	1266	2.47
8000	1044	1.12	1078	1.28	1110	1.45	1142	1.63	1171	1.80	1200	1.98	1230	2.17	1259	2.36	1287	2.55	1314	2.74
9000	1166	1.55	1197	1.73	1226	1.92	1255	2.11	1283	2.30	1309	2.50	1335	2.70	1361	2.91	1387	3.12	1413	3.33
10000	1289	2.08	1317	2.28	1344	2.48	1370	2.69	1396	2.91	1421	3.12	1445	3.34	1468	3.56	1491	3.79	1515	4.02
11000	1412	2.72	1438	2.94	1463	3.16	1487	3.39	1511	3.62	1534	3.86	1557	4.09	1579	4.33	1601	4.58	1622	4.82
12000	1535	3.48	1560	3.72	1583	3.97	1605	4.21	1628	4.46	1650	4.72	1671	4.97	1692	5.23	1712	5.49	1732	5.75
					Α	vailab	le Exte	rnal St	atic Pi	essure	(Inch	es of V	Vater G	auge)						
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	70"	1.8	30"	1.9	0"	2.0	0"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized M	otor								
7500	1294	2.66	1321	2.84	1346	3.03	1371	3.21	1396	3.4	1419	3.6	1442	3.79	1466	3.98	1489	4.18	1511	4.37
8000	1341	2.93	1367	3.12	1392	3.32	1417	3.52	1441	3.72	1464	3.92	1487	4.12	1509	4.32	1531	4.53	1553	4.74
9000	1438	3.54	1463	3.76	1487	3.97	1510	4.19	1534	4.41	1556	4.62	1579	4.85	1600	5.07	1622	5.29	1642	5.52
10000	1539	4.25	1562	4.49	1585	4.72	1607	4.96	1629	5.2	1651	5.43	1672	5.68	1693	5.92	1714	6.16	1734	6.4
11000	1643	5.07	1665	5.32	1686	5.58	1707	5.84	1728	6.1	1749	6.36	1769	6.61	1789	6.88	1809	7.14	1829	7.4
12000	1752	6.02	1771	6.28	1790	6.55	1810	6.83	1830	7.11	1850	7.39	1869	7.67	1888	7.96	1907	8.24	-	-

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

12.5 to 25 Ton Units — Horizontal

Figure 2. Fan curves — 12.5 to 25 tons, WSJ* horizontal

Evaporator Fan Performance - Heat Pump

Table 24. Evaporator fan performance — 12.5 ton, model WSJ, horizontal

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of '	Water	Gauge	9)					
	0.1	0"	0.2	:0"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	3.0	80"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3750	562	0.22	618	0.30	672	0.39	723	0.49	771	0.59	815	0.70	858	0.81	898	0.93	936	1.04	972	1.16
4000	592	0.25	646	0.34	696	0.44	745	0.54	792	0.65	835	0.76	877	0.87	916	0.99	954	1.11	990	1.24
4500	653	0.33	701	0.43	748	0.54	792	0.64	835	0.76	877	0.88	917	1.00	955	1.13	991	1.26	1027	1.39
5000	716	0.43	759	0.54	802	0.65	843	0.77	882	0.89	922	1.02	959	1.15	996	1.29	1031	1.43	1065	1.57
5500	779	0.55	819	0.67	858	0.79	896	0.92	933	1.04	969	1.17	1005	1.32	1039	1.46	1073	1.61	1106	1.76
6000	842	0.69	879	0.82	915	0.95	951	1.08	985	1.22	1020	1.36	1052	1.50	1085	1.66	1117	1.82	1149	1.98
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge	9)					
	1.1	0"	1.2	:0"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	'0"	1.8	80"	1.9	90"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3750	1007	1.29	1042	1.42	1075	1.55	1107	1.69	1138	1.83	1168	1.97	1197	2.11	1225	2.26	1253	2.41	1280	2.56
4000	1024	1.36	1057	1.49	1090	1.63	1122	1.77	1153	1.91	1183	2.06	1212	2.21	1240	2.36	1268	2.51	1294	2.66
4500	1060	1.53	1093	1.67	1124	1.81	1155	1.95	1184	2.1	1213	2.25	1242	2.41	1270	2.56	1298	2.73	1324	2.89
5000	1098	1.71	1130	1.86	1161	2.01	1191	2.16	1220	2.32	1248	2.47	1275	2.63	1302	2.79	1328	2.96	1355	3.13
5500	1138	1.91	1169	2.07	1199	2.23	1228	2.39	1256	2.55	1284	2.72	1311	2.89	1338	3.06	1364	3.23	1389	3.4
6000	1180	2.14	1210	2.3	1239	2.47	1267	2.64	1295	2.81	1322	2.99	1348	3.16	1375	3.34	1400	3.52	1425	3.7

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 25. Evaporator fan performance — 15 ton, model WSJ, horizontal

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	70"	0.8	80"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	653	0.33	701	0.43	748	0.54	792	0.64	835	0.76	877	0.88	917	1.00	955	1.13	991	1.26	1027	1.39
4800	690	0.39	736	0.49	780	0.60	822	0.72	863	0.83	903	0.96	942	1.09	979	1.22	1015	1.36	1049	1.50
5400	766	0.53	807	0.64	846	0.76	885	0.88	923	1.01	959	1.14	995	1.28	1030	1.43	1065	1.57	1098	1.72
6000	842	0.69	879	0.82	915	0.95	951	1.08	985	1.22	1020	1.36	1052	1.50	1085	1.66	1117	1.82	1149	1.98
6600	919	0.90	953	1.03	986	1.17	1019	1.32	1051	1.47	1082	1.62	1114	1.77	1144	1.93	1173	2.09	1203	2.26
7200	997	1.13	1028	1.28	1058	1.43	1089	1.59	1118	1.75	1148	1.91	1177	2.08	1205	2.25	1233	2.42	1261	2.59
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge	∍)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	70"	1.8	80"	1.9	90"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	1060	1.53	1093	1.67	1124	1.81	1155	1.95	1184	2.1	1213	2.25	1242	2.41	1270	2.56	1298	2.73	1324	2.89
4800	1083	1.64	1115	1.78	1146	1.93	1176	2.07	1205	2.23	1234	2.38	1261	2.53	1289	2.7	1316	2.86	1342	3.03
5400	1130	1.87	1161	2.03	1191	2.18	1220	2.34	1249	2.5	1277	2.67	1304	2.83	1331	3	1356	3.17	1382	3.34
6000	1180	2.14	1210	2.3	1239	2.47	1267	2.64	1295	2.81	1322	2.99	1348	3.16	1375	3.34	1400	3.52	1425	3.7
6600	1232	2.44	1261	2.61	1289	2.79	1317	2.97	1343	3.15	1370	3.34	1396	3.53	1421	3.71	1445	3.9	1469	4.1
7200	1288	2.77	1315	2.96	1342	3.15	1368	3.34	1394	3.53	1420	3.73	1445	3.92	1469	4.12	1493	4.33	1517	4.53

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 26. Evaporator fan performance — 20 ton, model WSJ, horizontal

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of '	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0 "	0.8	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	810	0.60	847	0.72	883	0.84	920	0.97	956	1.10	989	1.23	1022	1.37	1054	1.52	1085	1.66	1114	1.80
6400	860	0.71	894	0.84	928	0.96	962	1.10	997	1.23	1029	1.37	1061	1.52	1092	1.67	1122	1.82	1150	1.98
7200	958	0.98	990	1.11	1020	1.26	1050	1.40	1081	1.55	1112	1.71	1141	1.86	1169	2.02	1197	2.18	1225	2.35
8000	1058	1.30	1087	1.46	1114	1.61	1142	1.77	1168	1.93	1196	2.10	1224	2.27	1251	2.44	1277	2.62	1303	2.80
8800	1158	1.70	1185	1.87	1210	2.04	1235	2.21	1260	2.38	1284	2.56	1309	2.74	1335	2.93	1359	3.12	1384	3.32
9600	1259	2.17	1283	2.35	1307	2.54	1330	2.72	1353	2.91	1376	3.11	1398	3.30	1420	3.50	1444	3.70	1467	3.91
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	70"	1.8	30"	1.9	90"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	1142	1.94	1170	2.09	1197	2.24	1223	2.39	1250	2.54	1276	2.7	1302	2.86	1327	3.02	1352	3.19	1377	3.36
6400	1178	2.13	1204	2.28	1231	2.43	1256	2.59	1282	2.75	1306	2.91	1331	3.07	1356	3.24	1381	3.41	1404	3.59
7200	1252	2.53	1278	2.7	1303	2.87	1327	3.04	1350	3.21	1374	3.39	1397	3.56	1420	3.74	1442	3.92	1464	4.09
8000	1327	2.97	1352	3.16	1377	3.35	1401	3.55	1424	3.74	1446	3.93	1468	4.12	1490	4.31	1511	4.5	1532	4.69
8800	1407	3.51	1431	3.7	1453	3.9	1476	4.1	1498	4.31	1520	4.52	1542	4.74	1563	4.95	1584	5.15	1604	5.36
9600	1490	4.12	1512	4.33	1533	4.53	1555	4.75	1575	4.96	1596	5.17	1617	5.4	1637	5.63	-	-	-	-

Notes:

- Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 27. Evaporator fan performance — 25 ton, model WSJ, horizontal

					Α	vailab	le Exte	rnal S	tatic Pı	essure	(Inch	es of V	Vater G	auge)						
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	70"	0.0	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
									3-h	Stand	dard M	otor								
7500	996	1.09	1026	1.23	1055	1.38	1084	1.53	1113	1.69	1143	1.85	1172	2.01	1200	2.17	1227	2.34	1253	2.51
8000	1058	1.30	1087	1.46	1114	1.61	1142	1.77	1168	1.93	1196	2.10	1224	2.27	1251	2.44	1277	2.62	1303	2.80
9000	1183	1.81	1209	1.98	1234	2.15	1259	2.33	1283	2.51	1307	2.69	1330	2.87	1356	3.07	1380	3.26	1404	3.46
10000	1309	2.44	1333	2.63	1356	2.82	1378	3.01	1400	3.21	1422	3.41	1443	3.61	1464	3.81	1486	4.02	1509	4.23
11000	1436	3.21	1457	3.41	1478	3.62	1499	3.83	1519	4.05	1539	4.26	1559	4.48	1579	4.70	1598	4.92	1617	5.14
12000	1562	4.12	1582	4.34	1602	4.57	1621	4.80	1640	5.03	1658	5.26	1676	5.5	1695	5.74	-	-	-	-
					Α	vailab	le Exte	rnal St	tatic Pı	essure	(Inch	es of V	Vater G	auge)						
											(
	1.1	0"	1.2	20"		30"		10"		50"		60"		70"	1.8	30"	1.9	90"	2.0	00"
CFM	1.1 RPM	0" BHP	1.2 RPM	0" BHP								60"		70"	1.8 RPM		1.9 RPM		2.0 RPM	
CFM					1.3	30"	1.4	10"	1.8 RPM	50" BHP	1.6	BHP	1.7	70"						
CFM 7500					1.3	30"	1.4	10"	1.8 RPM	50" BHP	1.6 RPM	BHP	1.7	70"						
	RPM	ВНР	RPM	ВНР	1.3 RPM	BHP	1.4 RPM	BHP	1.5 RPM 3-hp	BHP Stand	1.6 RPM dard M	BHP otor	1.7 RPM	O" BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР
7500	RPM 1280	BHP 2.69	RPM 1305	BHP 2.87	1.3 RPM	BHP 3.05	1.4 RPM	BHP 3.23	1.5 RPM 3-hp 1378	BHP Stand	1.6 RPM dard M	BHP otor 3.58	1.7 RPM	70" BHP	RPM 1445	BHP 3.94	RPM 1467	BHP 4.13	RPM 1489	BHP 4.31
7500 8000	1280 1327	2.69 2.97	1305 1352	2.87 3.16	1.3 RPM 1330 1377	3.05 3.35	1.4 RPM 1354 1401	BHP 3.23 3.55	1.5 RPM 3-hp 1378 1424	BHP Stand 3.4 3.74	1.6 RPM dard M 1401 1446	BHP otor 3.58 3.93	1.7 RPM 1423 1468	3.76 4.12	1445 1490	3.94 4.31	1467 1511	4.13 4.5	1489 1532	BHP 4.31 4.69
7500 8000 9000	1280 1327 1428	2.69 2.97 3.65	1305 1352 1451	2.87 3.16 3.85	1.3 RPM 1330 1377 1473	3.05 3.35 4.05	1.4 RPM 1354 1401 1495	3.23 3.55 4.25	1.5 RPM 3-hp 1378 1424 1517	BHP D Stand 3.4 3.74 4.46	1.6 RPM dard M 1401 1446 1539	BHP otor 3.58 3.93 4.68	1.7 RPM 1423 1468 1561	3.76 4.12 4.9	1445 1490 1582	3.94 4.31	1467 1511	4.13 4.5	1489 1532	4.31 4.69 5.54
7500 8000 9000 10000	1280 1327 1428 1531	2.69 2.97 3.65 4.45	1305 1352 1451 1553	2.87 3.16 3.85 4.67	1.3 RPM 1330 1377 1473 1574	3.05 3.35 4.05 4.88	1.4 RPM 1354 1401 1495	3.23 3.55 4.25 5.1	1.5 RPM 3-hp 1378 1424 1517 1616	3.4 3.74 4.46 5.32	1.6 RPM dard M 1401 1446 1539	BHP otor 3.58 3.93 4.68	1.7 RPM 1423 1468 1561 1655	3.76 4.12 4.9	1445 1490 1582	3.94 4.31	1467 1511	4.13 4.5	1489 1532	4.31 4.69 5.54

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Evaporator Fan Performance - Heat Pump

Table 28. Evaporator fan performance - 25 ton, model WSJ, horizontal, high static drive

					Α	vailab	le Exte	rnal St	atic Pr	essure	(Inch	es of V	Vater G	auge)						
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	3.0	30"	0.9	0"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized M	otor								
7500	1023	1.11	1054	1.27	1086	1.42	1119	1.59	1149	1.76	1177	1.92	1205	2.09	1233	2.25	1259	2.42	1286	2.59
8000	1087	1.33	1117	1.49	1145	1.65	1177	1.83	1207	2.02	1234	2.19	1260	2.36	1286	2.54	1312	2.71	1337	2.89
9000	1216	1.85	1242	2.03	1268	2.21	1294	2.40	1323	2.60	1350	2.80	1374	3.00	1398	3.20	1421	3.39	1444	3.59
10000	1346	2.50	1369	2.69	1393	2.89	1416	3.09	1440	3.30	1465	3.53	1490	3.75	1513	3.98	1535	4.19	1556	4.41
11000	1476	3.28	1497	3.48	1519	3.70	1540	3.92	1561	4.15	1583	4.38	1606	4.63	1628	4.88	1650	5.13	1671	5.37
12000	1606	4.22	1626	4.44	1645	4.67	1665	4.91	1685	5.15	1704	5.4	1723	5.65	1745	5.92	1766	6.19	1786	6.47
					Α	vailab	le Exte	rnal St	atic Pr	essure	(Inch	es of V	Vater G	auge)						
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	'0"	1.8	30"	1.9	0"	2.0	0"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized M	otor								
7500	1311	2.76	1336	2.93	1360	3.11	1384	3.3	1408	3.48	1432	3.67	1454	3.86	1477	4.04	1500	4.23	1522	4.42
8000	1362	3.07	1386	3.25	1410	3.44	1432	3.63	1455	3.82	1478	4.01	1501	4.21	1523	4.41	1544	4.61	1565	4.81
9000	1467	3.79	1490	3.99	1512	4.19	1534	4.39	1555	4.59	1576	4.8	1597	5.01	1617	5.22	1637	5.44	1658	5.66
10000	1576	4.63	1597	4.85	1618	5.07	1639	5.29	1659	5.51	1679	5.73	1699	5.95	1718	6.18	1737	6.41	1756	6.65
11000	1690	5.61	1710	5.85	1728	6.09	1747	6.33	1766	6.57	1785	6.81	1804	7.05	1822	7.29	1841	7.54	1859	7.78
12000	1806	6.74	1825	7	1843	7.26	1860	7.52	1877	7.78	1894	8.04	1911	8.31	-	-	-	-	-	-

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Evaporator Fan Performance - Dual Fuel

12.5 to 25 Ton Units — Downflow

Table 29. Evaporator fan performance — 12.5 ton, model DSJ, downflow, high gas heat

					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge	∍)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	0.8	80"	0.9	0"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3750	558	0.21	619	0.30	674	0.39	724	0.49	771	0.60	815	0.71	859	0.82	901	0.94	940	1.06	977	1.18
4000	586	0.24	645	0.33	698	0.44	747	0.54	793	0.65	835	0.76	876	0.88	918	1.00	957	1.13	994	1.25
4500	645	0.31	699	0.42	749	0.53	795	0.64	838	0.76	879	0.88	918	1.01	955	1.13	991	1.27	1028	1.41
5000	704	0.40	755	0.52	801	0.64	845	0.76	885	0.89	924	1.02	962	1.16	997	1.29	1032	1.43	1065	1.57
5500	765	0.51	811	0.63	855	0.77	896	0.90	935	1.04	972	1.18	1008	1.32	1042	1.47	1075	1.62	1107	1.77
6000	827	0.63	869	0.77	910	0.91	950	1.06	986	1.20	1022	1.36	1056	1.51	1089	1.67	1121	1.82	1152	1.99
					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	'0"	1.8	80"	1.9	0"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3750	1013	1.32	1048	1.45	1081	1.59	1113	1.73	1144	1.87	1174	2.02	1203	2.17	1233	2.32	1261	2.47	1289	2.63
4000	1029	1.39	1063	1.52	1097	1.67	1129	1.81	1159	1.96	1189	2.11	1218	2.26	1247	2.42	1274	2.57	1302	2.73
4500	1063	1.55	1097	1.69	1129	1.84	1160	1.99	1191	2.14	1220	2.3	1249	2.46	1277	2.62	1305	2.79	1331	2.96
5000	1098	1.72	1131	1.87	1163	2.03	1194	2.19	1224	2.35	1253	2.51	1281	2.68	1309	2.85	1336	3.02	1363	3.2
5500	1138	1.92	1168	2.08	1198	2.24	1228	2.41	1258	2.58	1287	2.75	1315	2.92	1342	3.1	1369	3.28	1395	3.46
6000	1182	2.15	1211	2.31	1239	2.48	1267	2.65	1294	2.82	1322	3	1349	3.19	1377	3.37	1403	3.56	1429	3.75

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 30. Evaporator fan performance — 15 ton, model DSJ, downflow, high gas heat

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of '	Water	Gauge))					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	70"	0.8	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
4500	645	0.31	699	0.42	749	0.53	795	0.64	838	0.76	879	0.88	918	1.01	955	1.13	991	1.27	1028	1.41
4800	680	0.36	732	0.48	780	0.59	824	0.71	866	0.84	906	0.96	944	1.09	980	1.23	1015	1.36	1049	1.50
5400	753	0.48	800	0.61	844	0.74	886	0.87	925	1.01	962	1.15	998	1.29	1033	1.43	1066	1.58	1099	1.73
6000	827	0.63	869	0.77	910	0.91	950	1.06	986	1.20	1022	1.36	1056	1.51	1089	1.67	1121	1.82	1152	1.99
6600	901	0.81	940	0.96	978	1.11	1015	1.27	1050	1.43	1083	1.59	1116	1.76	1147	1.93	1177	2.10	1207	2.27
7200	977	1.02	1011	1.18	1047	1.35	1082	1.52	1115	1.69	1147	1.87	1178	2.04	1208	2.22	1236	2.41	1265	2.59
					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge	9)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	70"	1.8	30"	1.9	90"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	1063	1.55	1097	1.69	1129	1.84	1160	1.99	1191	2.14	1220	2.3	1249	2.46	1277	2.62	1305	2.79	1331	2.96
4800	1084	1.65	1117	1.8	1149	1.95	1180	2.1	1210	2.26	1240	2.42	1268	2.59	1296	2.75	1323	2.93	1350	3.1
5400	1130	1.88	1160	2.04	1191	2.2	1222	2.36	1251	2.53	1280	2.7	1308	2.87	1336	3.05	1362	3.22	1388	3.4
6000	1182	2.15	1211	2.31	1239	2.48	1267	2.65	1294	2.82	1322	3.00	1349	3.19	1377	3.37	1403	3.56	1429	3.75
6600	1236	2.45	1264	2.62	1292	2.8	1318	2.99	1344	3.17	1370	3.35	1395	3.54	1419	3.73	1445	3.93	1470	4.13
7200	1292	2.78	1319	2.97	1346	3.16	1372	3.35	1397	3.55	1422	3.74	1446	3.94	1470	4.14	1494	4.35	1517	4.55
Notes:																				

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Evaporator Fan Performance - Dual Fuel

Table 31. Evaporator fan performance — 20 ton, model DSJ, downflow, high gas heat

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of '	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	0"	0.7	70"	0.8	80"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	808	0.58	848	0.71	888	0.85	927	0.98	964	1.12	999	1.27	1033	1.42	1066	1.57	1098	1.71	1128	1.87
6400	856	0.68	894	0.82	932	0.97	969	1.11	1004	1.26	1038	1.41	1071	1.57	1103	1.73	1134	1.88	1164	2.04
7200	954	0.94	989	1.09	1022	1.25	1056	1.41	1088	1.57	1119	1.74	1150	1.91	1180	2.08	1209	2.26	1238	2.43
8000	1052	1.25	1084	1.41	1114	1.58	1145	1.76	1175	1.94	1204	2.12	1232	2.31	1260	2.49	1288	2.69	1315	2.88
8800	1151	1.62	1180	1.8	1209	1.99	1236	2.18	1263	2.38	1291	2.58	1318	2.78	1344	2.98	1369	3.18	1394	3.39
9600	1251	2.07	1278	2.26	1304	2.46	1329	2.67	1354	2.88	1380	3.1	1405	3.31	1429	3.53	1453	3.75	1477	3.97
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	70"	1.8	80"	1.9	0"	2.0	00"
CFM	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	1157	2.02	1185	2.17	1213	2.32	1240	2.48	1267	2.64	1294	2.8	1321	2.96	1346	3.13	1371	3.3	1395	3.47
6400	1192	2.2	1220	2.36	1247	2.53	1274	2.69	1299	2.85	1324	3.02	1350	3.19	1376	3.36	1400	3.54	1424	3.71
7200	1265	2.61	1292	2.79	1318	2.97	1343	3.15	1368	3.33	1392	3.51	1416	3.69	1439	3.88	1462	4.06	1484	4.25
8000	1341	3.07	1367	3.27	1392	3.47	1416	3.67	1440	3.87	1464	4.06	1486	4.26	1509	4.47	1531	4.67	1552	4.87
8800	1419	3.6	1444	3.81	1468	4.03	1491	4.24	1514	4.46	1537	4.68	1559	4.9	1581	5.11	1602	5.33	1623	5.55
9600	1500	4.19	1523	4.42	1546	4.65	1569	4.88	1591	5.12	1613	5.35	1634	5.59	-	-	-	-	-	-

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 32. Evaporator fan performance — 25 ton, model DSJ, downflow, high gas heat

0.10" PM BH		20"	0.3															
PM BH	DDM		0.3	30"	0.4	10"	0.5	50"	0.6	0"	0.7	'0"	0.8	80"	0.9	0"	1.0	00"
	KPIVI	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP
							3-hp	Stand	dard M	otor								
91 1.0	1024	1.2	1056	1.37	1089	1.53	1120	1.7	1151	1.87	1180	2.05	1210	2.23	1238	2.41	1266	2.59
52 1.2	1084	1.41	1114	1.58	1145	1.76	1175	1.94	1204	2.12	1232	2.31	1260	2.49	1288	2.69	1315	2.88
76 1.7	3 1205	1.91	1232	2.1	1259	2.3	1286	2.5	1313	2.7	1339	2.9	1365	3.11	1390	3.31	1414	3.52
301 2.3	1327	2.52	1352	2.73	1376	2.94	1400	3.16	1425	3.39	1449	3.61	1473	3.84	1496	4.07	1519	4.29
26 3.0	1450	3.26	1473	3.49	1495	3.72	1518	3.96	1539	4.2	1561	4.44	1584	4.69	1605	4.94	1627	5.19
551 3.9	1573	4.15	1595	4.39	1615	4.63	1636	4.89	1657	5.15	1676	5.41	1696	5.68	-	-	-	-
			Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge)					
1.10"	1.	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	'0"	1.8	80"	1.9	0"	2.0	00"
PM BH	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP
							3-hp	Stand	dard M	otor								
293 2.7	3 1320	2.97	1345	3.15	1371	3.34	1395	3.52	1419	3.71	1442	3.9	1465	4.09	1487	4.28	1509	4.47
3.0	1367	3.27	1392	3.47	1416	3.67	1440	3.87	1464	4.06	1486	4.26	1509	4.47	1531	4.67	1552	4.87
39 3.7	1463	3.96	1487	4.18	1510	4.4	1533	4.62	1556	4.84	1578	5.06	1599	5.29	1620	5.51	1641	5.73
4.5	2 1564	4.75	1586	4.99	1608	5.23	1630	5.47	1651	5.72	-	-	-	-	-	-	-	-
348 5.4	1669	5.69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3 1	1.10" 1.	1.10" 1.27 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	1.25 1084 1.41 1.76 1.73 1205 1.91 1.01 2.32 1327 2.52 1.26 3.04 1450 3.26 1.51 3.9 1573 4.15 1.10" 1.20" 1.10" 1.20" 1.20" 1.30" BHP RPM BHP 1.30" 1367 3.27 1.39 3.74 1463 3.96 1.42 4.52 1564 4.75	1.25 1.25 1084 1.41 1114 1.76 1.73 1205 1.91 1232 1.01 2.32 1327 2.52 1352 1.26 3.04 1450 3.26 1473 1.51 3.9 1573 4.15 1595 AVE 1.10" 1.20" 1.3 1.30 BHP RPM BHP RPM 1.307 1367 3.27 1392 1.39 3.74 1463 3.96 1487 1.42 4.52 1564 4.75 1586	1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.26 1.27 1.232 2.1	1.25 1.25	1.25 1.25 1.26 1.27 1.28 1.25 1.25 1.26 1.27 1.26 1.27	91 1.05 1024 1.2 1056 1.37 1089 1.53 1120 152 1.25 1084 1.41 1114 1.58 1145 1.76 1175 76 1.73 1205 1.91 1232 2.1 1259 2.3 1286 101 2.32 1327 2.52 1352 2.73 1376 2.94 1400 26 3.04 1450 3.26 1473 3.49 1495 3.72 1518 151 3.9 1573 4.15 1595 4.39 1615 4.63 1636 Available External Static Property 1.10" 1.20" 1.30" 1.40" 1.50 PM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM 1.10" 1.20" 1.30" 1.40" 1.50 1.30" 1.40" 1.50 1.40"	91 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 152 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 176 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 170 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 170 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 171 3.9 1573 4.15 1595 4.39 1615 4.63 1636 4.89 172 Available External Static Pressure 173 1.40" 1.50" 174 1.50" 175 1.40" 1.50" 175 1.40" 1.50" 176 1.30" 1.40" 1.50" 177 1.40" 1.50" 178 1.30" 1.40" 1.50" 179 1.40" 1.50" 1.40" 1.50" 1.40" 1.50" 1.40" 1.50" 1.40" 3.49 1495 3.52 1.40 3.71 1.40" 3.49 1495 3.52 1.41 3.07 1367 3.27 1392 3.47 1416 3.67 1440 3.87 1.42 1.52 1564 4.75 1586 4.99 1608 5.23 1630 5.47	91 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 152 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 176 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 101 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 126 3.04 1450 3.26 1473 3.49 1495 3.72 1518 3.96 1539 151 3.9 1573 4.15 1595 4.39 1615 4.63 1636 4.89 1657 Available External Static Pressure (Inch 1.10" 1.20" 1.30" 1.40" 1.50" 1.60 1.40" 1.50" 1.60 1.40" 3.74 1450 3.27 1392 3.47 1416 3.67 1440 3.87 1464 1.307 1367 3.27 1392 3.47 1416 3.67 1440 3.87 1464 1.303 3.74 1463 3.96 1487 4.18 1510 4.4 1533 4.62 1556 1.42 4.52 1564 4.75 1586 4.99 1608 5.23 1630 5.47 1651	1.25	1	1 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 1.87 1180 2.05 1024 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 2.12 1232 2.31 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 2.7 1339 2.9 101 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 126 3.04 1450 3.26 1473 3.49 1495 3.72 1518 3.96 1539 4.2 1561 4.44 151 3.9 1573 4.15 1595 4.39 1615 4.63 1636 4.89 1657 5.15 1676 5.41 1.0" 1.20" 1.30" 1.40" 1.50" 1.60" 1.70" 1.70" 1.80 1.40 1.50" 1.60" 1.70" 1.80 1.40 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	1 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 1.87 1180 2.05 1210 152 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 2.12 1232 2.31 1260 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 2.7 1339 2.9 1365 1.73 1205 1.91 1232 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 1450 3.26 1473 3.49 1495 3.72 1518 3.96 1539 4.2 1561 4.44 1584 1510 1.0 1 1.20" 1.30" 1.40" 1.50" 1.60" 1.70" 1.80 1.40" 1.50" 1.60" 1.70" 1.80 1.40" 1.50" 1.60" 1.70" 1.80 1.40 1.40 1.50" 1.40" 1.50" 1.60" 1.70" 1.80 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	1 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 1.87 1180 2.05 1210 2.23 152 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 2.12 1232 2.31 1260 2.49 1.76 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 2.7 1339 2.9 1365 3.11 1.01 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 3.84 1.26 3.04 1450 3.26 1473 3.49 1495 3.72 1518 3.96 1539 4.2 1561 4.44 1584 4.69 151 3.9 1573 4.15 1595 4.39 1615 4.63 1636 4.89 1657 5.15 1676 5.41 1696 5.68 1.10 1.10 1.20 1.30 1.40 1.40 1.50 1.50 1.60 1.70 1.80 1.80 1.40 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.8	1 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 1.87 1180 2.05 1210 2.23 1238 1252 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 2.12 1232 2.31 1260 2.49 1288 1205 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 2.7 1339 2.9 1365 3.11 1390 12.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 3.84 1496 1450 3.26 1473 3.49 1495 3.72 1518 3.96 1539 4.2 1561 4.44 1584 4.69 1605 14.50 14	1 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 1.87 1180 2.05 1210 2.23 1238 2.41 152 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 2.12 1232 2.31 1260 2.49 1288 2.69 1.76 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 2.7 1339 2.9 1365 3.11 1390 3.31 1205 1.91 1232 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 3.84 1496 4.07 1206 3.04 1450 3.26 1473 3.49 1495 3.72 1518 3.96 1539 4.2 1561 4.44 1584 4.69 1605 4.94 151 3.9 1573 4.15 1595 4.39 1615 4.63 1636 4.89 1657 5.15 1676 5.41 1696 5.68 Available External Static Pressure (Inches of Water Gauge) 1.10" 1.20" 1.30" 1.40" 1.50" 1.60" 1.70" 1.80" 1.90" 1.90" 1.90" 1.90" 1.90" 1.30" 1.40" 1.50" 1.60" 1.70" 1.80" 1.90" 1.90" 1.90	1 1.05 1024 1.2 1056 1.37 1089 1.53 1120 1.7 1151 1.87 1180 2.05 1210 2.23 1238 2.41 1266 125 1.25 1084 1.41 1114 1.58 1145 1.76 1175 1.94 1204 2.12 1232 2.31 1260 2.49 1288 2.69 1315 1.76 1.73 1205 1.91 1232 2.1 1259 2.3 1286 2.5 1313 2.7 1339 2.9 1365 3.11 1390 3.31 1414 1.01 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 3.84 1496 4.07 1519 1.01 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 3.84 1496 4.07 1519 1.01 2.32 1327 2.52 1352 2.73 1376 2.94 1400 3.16 1425 3.39 1449 3.61 1473 3.84 1496 4.07 1519 1.01 2.32 1327 3.26 1473 3.49 1495 3.72 1518 3.96 1539 4.2 1561 4.44 1584 4.69 1605 4.94 1627 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0

Notes

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 33.	Evaporator f	fan performance –	25 ton, model DSJ	, downflow,	high static drive
-----------	--------------	-------------------	-------------------------------------	-------------	-------------------

					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of '	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	0"	0.7	70"	3.0	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized N	lotor								
7500	1005	1.05	1040	1.20	1074	1.37	1106	1.53	1138	1.70	1169	1.88	1199	2.05	1229	2.23	1257	2.41	1284	2.58
8000	1067	1.25	1101	1.41	1132	1.59	1163	1.76	1193	1.94	1223	2.12	1252	2.31	1280	2.50	1308	2.69	1334	2.87
9000	1193	1.72	1223	1.91	1252	2.11	1280	2.30	1307	2.50	1334	2.70	1360	2.90	1386	3.11	1412	3.32	1437	3.53
10000	1319	2.31	1346	2.52	1373	2.74	1398	2.95	1423	3.17	1448	3.39	1472	3.61	1496	3.84	1520	4.06	1543	4.29
11000	1445	3.03	1470	3.26	1495	3.49	1518	3.73	1542	3.97	1565	4.21	1587	4.45	1609	4.69	1631	4.94	1653	5.18
12000	1572	3.89	1595	4.14	1618	4.39	1640	4.65	1662	4.9	1683	5.16	1704	5.42	1725	5.69	1745	5.95	1765	6.22
					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of '	Water	Gauge))					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	0"	1.7	70"	1.8	30"	1.9	90"	2.0	0"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized N	lotor								
7500	1311	2.77	1336	2.95	1361	3.14	1386	3.33	1410	3.52	1435	3.71	1459	3.9	1483	4.10	1506	4.30	1529	4.50
8000	1360	3.06	1385	3.26	1410	3.45	1434	3.65	1457	3.85	1480	4.05	1503	4.25	1526	4.46	1549	4.66	1571	4.87
9000	1462	3.74	1486	3.95	1509	4.17	1532	4.38	1554	4.60	1576	4.82	1598	5.04	1619	5.26	1639	5.48	1660	5.71
10000	1566	4.52	1589	4.76	1611	4.99	1633	5.23	1655	5.47	1676	5.70	1696	5.94	1717	6.18	1736	6.42	1756	6.67
11000	1674	5.43	1695	5.69	1716	5.94	1737	6.20	1758	6.46	1778	6.72	1798	6.98	1817	7.24	1837	7.50	1855	7.76
12000	1785	6.49	1805	6.76	1824	7.03	1843	7.30	1863	7.58	1882	7.86	1902	8.14	1920	8.42	-	-	-	-

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

12.5 to 25 Ton Units — Horizontal

Table 34. Evaporator fan performance — 12.5 ton, model DSJ, horizontal, high gas heat

					Ava	ailable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	0.8	30"	0.9	90"	1.0	00"
CFM	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP
3750	572	0.23	629	0.32	683	0.41	734	0.51	779	0.61	822	0.71	864	0.82	903	0.94	941	1.05	977	1.17
4000	603	0.27	656	0.36	708	0.46	757	0.56	802	0.67	844	0.77	884	0.89	922	1.00	960	1.13	995	1.25
4500	666	0.36	713	0.45	760	0.56	805	0.67	849	0.79	890	0.91	928	1.03	964	1.15	999	1.28	1034	1.41
5000	730	0.47	772	0.57	815	0.68	857	0.80	897	0.93	937	1.06	974	1.20	1009	1.33	1042	1.46	1075	1.60
5500	795	0.60	833	0.71	872	0.83	911	0.96	949	1.09	985	1.23	1021	1.38	1056	1.52	1089	1.67	1120	1.81
6000	861	0.75	896	0.88	931	1.00	966	1.14	1002	1.28	1037	1.43	1070	1.58	1103	1.73	1136	1.89	1167	2.05
					Ava	ailable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge))					
	1.1	Δ"	4	20"	1.3	30"	1.4	IO"	1 5	50"	16	60"	1.7	'O"	1.8	10"	1.9	no"	2 (00"
i	1.1	U	1.2	.0		~			1.0	,,	-	,0				,,,	1.0	,,	-:-	
CFM	RPM	BHP	RPM	BHP	RPM		RPM		RPM		RPM		RPM		RPM		RPM		RPM	ВНР
CFM 3750																ВНР	_			BHP 2.47
	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	
3750	RPM 1011	BHP 1.3	RPM 1043	BHP 1.42	RPM 1074	BHP 1.54	RPM 1104	BHP 1.67	RPM 1133	BHP 1.8	RPM 1161	BHP 1.93	RPM 1188	BHP 2.06	RPM 1214	BHP 2.19	RPM 1240	BHP 2.33	RPM 1265	2.47
3750 4000	RPM 1011 1029	1.3 1.38	RPM 1043 1062	1.42 1.5	RPM 1074 1093	1.54 1.64	RPM 1104 1123	1.67 1.77	RPM 1133 1152	1.8 1.9	RPM 1161 1179	BHP 1.93 2.03	RPM 1188 1206	2.06 2.17	RPM 1214 1233	2.19 2.31	RPM 1240 1258	2.33 2.45	RPM 1265 1283	2.47
3750 4000 4500	RPM 1011 1029 1067	1.3 1.38 1.55	RPM 1043 1062 1099	1.42 1.5 1.69	RPM 1074 1093 1130	1.54 1.64 1.83	RPM 1104 1123 1160	1.67 1.77 1.97	RPM 1133 1152 1189	1.8 1.9 2.12	RPM 1161 1179 1217	1.93 2.03 2.26	RPM 1188 1206 1244	2.06 2.17 2.41	RPM 1214 1233 1270	2.19 2.31 2.56	RPM 1240 1258 1296	2.33 2.45 2.71	RPM 1265 1283 1321	2.47 2.59 2.86
3750 4000 4500 5000	RPM 1011 1029 1067 1107	1.3 1.38 1.55 1.74	RPM 1043 1062 1099 1138	1.42 1.5 1.69 1.89	RPM 1074 1093 1130 1168	1.54 1.64 1.83 2.04	RPM 1104 1123 1160 1198	1.67 1.77 1.97 2.19	RPM 1133 1152 1189 1227	1.8 1.9 2.12 2.34	RPM 1161 1179 1217 1254	1.93 2.03 2.26 2.5	RPM 1188 1206 1244 1282	2.06 2.17 2.41 2.66	RPM 1214 1233 1270 1308	2.19 2.31 2.56 2.82	RPM 1240 1258 1296 1334	2.33 2.45 2.71 2.98	RPM 1265 1283 1321 1359	2.47 2.59 2.86 3.14

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Evaporator Fan Performance - Dual Fuel

Table 35. Evaporator fan performance — 15 ton, model DSJ, horizontal, high gas heat

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	'0"	3.0	80"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	666	0.36	713	0.45	760	0.56	805	0.67	849	0.79	890	0.91	928	1.03	964	1.15	999	1.28	1034	1.41
4800	705	0.42	749	0.52	793	0.63	836	0.75	878	0.87	918	1.00	955	1.13	991	1.25	1025	1.39	1058	1.52
5400	782	0.57	821	0.68	860	0.80	900	0.93	938	1.06	975	1.20	1012	1.34	1047	1.48	1079	1.62	1111	1.77
6000	861	0.75	896	0.88	931	1.00	966	1.14	1002	1.28	1037	1.43	1070	1.58	1103	1.73	1136	1.89	1167	2.05
6600	940	0.98	972	1.11	1003	1.24	1036	1.39	1068	1.54	1101	1.70	1132	1.86	1163	2.02	1193	2.19	1223	2.36
7200	1020	1.24	1050	1.38	1078	1.53	1108	1.68	1138	1.84	1167	2.01	1197	2.18	1226	2.35	1254	2.53	1282	2.71
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of	Water	Gauge	e)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	'0"	1.8	80"	1.9	0"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4500	1067	1.55	1099	1.69	1130	1.83	1160	1.97	1189	2.12	1217	2.26	1244	2.41	1270	2.56	1296	2.71	1321	2.86
4800	1090	1.66	1122	1.81	1153	1.95	1183	2.1	1212	2.25	1240	2.4	1267	2.56	1293	2.71	1319	2.87	1343	3.03
5400	1141	1.91	1171	2.07	1200	2.22	1229	2.38	1257	2.54	1285	2.7	1312	2.87	1338	3.04	1363	3.21	1388	3.38
6000	1196	2.21	1225	2.37	1252	2.53	1280	2.7	1306	2.87	1333	3.04	1358	3.21	1384	3.39	1409	3.57	1434	3.75
6600	1252	2.54	1281	2.72	1308	2.89	1334	3.06	1359	3.24	1384	3.41	1409	3.6	1433	3.79	1457	3.98	1481	4.17
7200 Notes:	1309	2.9	1337	3.09	1364	3.28	1390	3.47	1415	3.66	1439	3.85	1463	4.04	1486	4.23	1509	4.42	1532	4.63

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 36. Evaporator fan performance — 20 ton, model DSJ, horizontal, high gas heat

					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	′0"	9.0	30"	0.9	0"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	842	0.70	879	0.82	916	0.94	952	1.08	986	1.21	1019	1.35	1052	1.49	1082	1.64	1112	1.78	1140	1.92
6400	894	0.83	928	0.96	963	1.09	997	1.23	1030	1.37	1061	1.51	1093	1.66	1123	1.82	1152	1.97	1179	2.12
7200	997	1.14	1028	1.28	1058	1.43	1089	1.58	1120	1.74	1149	1.90	1178	2.06	1205	2.22	1233	2.39	1260	2.57
8000	1102	1.53	1129	1.69	1157	1.85	1183	2.01	1212	2.18	1240	2.35	1266	2.53	1292	2.71	1318	2.88	1343	3.07
8800	1207	2.00	1232	2.17	1257	2.35	1281	2.52	1306	2.71	1332	2.89	1357	3.08	1382	3.28	1406	3.47	1429	3.66
9600	1312	2.56	1335	2.75	1358	2.94	1381	3.13	1403	3.32	1426	3.52	1450	3.73	1473	3.94	1496	4.14	1518	4.35
					Ava	ilable	Exter	nal Sta	atic Pr	essure	e (Inch	es of \	Water	Gauge))					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	'0 "	1.8	80"	1.9	0"	2.0	00"
CFM	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
6000	1168	2.07	1195	2.21	1222	2.36	1249	2.52	1275	2.68	1301	2.84	1326	3.00	1352	3.17	1376	3.33	1401	3.50
6400	1206	2.27	1232	2.43	1258	2.58	1284	2.74	1308	2.90	1334	3.07	1359	3.24	1383	3.41	1407	3.58	1430	3.76
7200	1286	2.74	1311	2.91	1335	3.08	1359	3.25	1382	3.42	1405	3.60	1428	3.78	1450	3.95	1472	4.13	1495	4.32
8000	1368	3.26	1392	3.45	1415	3.65	1438	3.83	1460	4.02	1482	4.21	1503	4.40	1525	4.60	1546	4.79	1567	4.99
8800	1452	3.86	1474	4.06	1497	4.27	1520	4.48	1541	4.7	1563	4.91	1583	5.12	1604	5.32	1623	5.53	1643	5.74
9600	1540	4.57	1561	4.78	1582	4.99	1603	5.21	1624	5.44	1644	5.67	-	-	-	-	-	-	-	-

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 37.	Evaporator fan i	performance — :	25 ton. model	DSJ. horizontal	. high gas heat
-----------	------------------	-----------------	---------------	-----------------	-----------------

					Ava	ilable	Exter	nal Sta	atic Pr	essure	(Inch	es of \	Water	Gauge)					
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	60"	0.7	70"	9.0	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									3-hp	Stand	dard M	otor								
7500	1036	1.28	1066	1.43	1095	1.58	1124	1.73	1154	1.90	1183	2.06	1211	2.22	1238	2.39	1264	2.57	1291	2.75
8000	1102	1.53	1129	1.69	1157	1.85	1183	2.01	1212	2.18	1240	2.35	1266	2.53	1292	2.71	1318	2.88	1343	3.07
9000	1233	2.13	1257	2.30	1282	2.48	1306	2.67	1330	2.85	1355	3.04	1380	3.24	1404	3.43	1428	3.63	1451	3.83
10000	1365	2.88	1387	3.07	1409	3.27	1431	3.47	1453	3.67	1473	3.87	1497	4.09	1519	4.30	1541	4.52	1563	4.74
11000	1497	3.78	1517	4.00	1537	4.21	1557	4.43	1577	4.65	1597	4.87	1616	5.10	1636	5.33	1657	5.56	-	-
12000	1629	4.87	1648	5.10	1666	5.33	1685	5.57	-	-	-	-	-	-	-	-	-	-	-	-
					Ava	ilable	Exter	nal Sta	tic Pr	essure	(Inch	es of \	Water	Gauge)					
	1.1	0"	1.2	20"	1.3	30"	1.4	10"	1.5	50"	1.6	60"	1.7	70"	1.8	30"	1.9	90"	2.0	0"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									3-hp	Stand	dard M	otor								
7500	1316	2.93	1341	3.11	1365	3.28	1388	3.46	1411	3.64	1433	3.82	1456	4	1478	4.19	1499	4.37	1520	4.56
8000	1368	3.26	1392	3.45	1415	3.65	1438	3.83	1460	4.02	1482	4.21	1503	4.4	1525	4.6	1546	4.79	1567	4.99
9000	1474	4.03	1496	4.23	1518	4.44	1540	4.66	1562	4.87	1583	5.09	1604	5.31	1624	5.52	1643	5.73	-	-
10000	1584	4.95	1605	5.17	1626	5.40	1646	5.62	-	-	-	-	-	-	-	-	-	-	-	-
11000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by accessories and options.
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- 3. To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- Direct drive fan motor heat is negligible.
- Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table 38. Evaporator fan performance — 25 ton, model DSJ, horizontal, high static drive

					Α	vailab	le Exte	rnal St	tatic Pr	essure	(Inch	es of V	Vater G	auge)						
	0.1	0"	0.2	20"	0.3	30"	0.4	10"	0.5	50"	0.6	0"	0.7	'0"	0.8	30"	0.9	90"	1.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
									5-hp	Overs	ized M	otor								
7500	1054	1.29	1085	1.44	1117	1.60	1147	1.76	1175	1.93	1203	2.09	1231	2.26	1258	2.43	1285	2.60	1312	2.78
8000	1121	1.54	1149	1.70	1179	1.87	1208	2.04	1235	2.22	1262	2.39	1288	2.57	1314	2.75	1339	2.93	1365	3.11
9000	1255	2.15	1278	2.32	1306	2.51	1332	2.70	1357	2.90	1382	3.09	1406	3.29	1429	3.49	1452	3.68	1476	3.89
10000	1389	2.91	1410	3.09	1434	3.29	1458	3.50	1482	3.72	1504	3.93	1527	4.15	1548	4.37	1569	4.59	1590	4.81
11000	1524	3.83	1543	4.03	1563	4.23	1585	4.47	1607	4.70	1629	4.94	1649	5.18	1670	5.41	1690	5.65	1709	5.89
12000	1659	4.93	1677	5.15	1694	5.37	1714	5.61	1734	5.86	1754	6.12	1774	6.37	1793	6.63	1812	6.89	1830	7.15
					Α	vailab	le Exte	rnal St	tatic Pr	essure	(Inch	es of V	Vater G	auge)						
	1.1	0"	1.2	:0"	1.3	30"	1.4	10"	1.5	0"	1.6	0"	1.7	0"	1.8	30"	1.9	90"	2.0	00"
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM												RPM	BHP
			171 101	DITE	IZL IAI	DITE	KPIVI	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	KEIVI	БПР
			101 101	DITE	IXFIN	DITE	KPW	ВНР			RPM ized M		RPM	ВНР	RPM	ВНР	RPM	ВНР	KFIVI	ВПР
7500	1338	2.96	1362	3.14	1385	3.32	1407	3.49					RPM 1475	BHP 4.04	RPM 1497	BHP 4.22	RPM 1518	BHP 4.41	1539	4.60
7500 8000	1338 1390	2.96 3.30							5-hp	Overs	ized M	otor					1		1	
			1362	3.14	1385	3.32	1407	3.49	5-hp 1429	Overs 3.67	ized M 1452	otor 3.86	1475	4.04	1497	4.22	1518	4.41	1539	4.60
8000	1390	3.30	1362 1415	3.14	1385 1439	3.32	1407 1461	3.49 3.88	5-hp 1429 1482	3.67 4.07	1452 1503	3.86 4.26	1475 1523	4.04 4.45	1497 1545	4.22 4.64	1518 1566	4.41	1539 1587	4.60 5.03
8000 9000	1390 1498	3.30 4.09	1362 1415 1520	3.14 3.49 4.29	1385 1439 1543	3.32 3.69 4.5	1407 1461 1566	3.49 3.88 4.72	5-hp 1429 1482 1587	3.67 4.07 4.94	1452 1503 1609	3.86 4.26 5.15	1475 1523 1630	4.04 4.45 5.37	1497 1545 1649	4.22 4.64 5.58	1518 1566 1668	4.41 4.83 5.79	1539 1587 1686	4.60 5.03 6.01
8000 9000 10000	1390 1498 1611	3.30 4.09 5.03	1362 1415 1520 1632	3.14 3.49 4.29 5.25	1385 1439 1543 1653	3.32 3.69 4.5 5.48	1407 1461 1566 1673	3.49 3.88 4.72 5.70	5-hp 1429 1482 1587 1693	3.67 4.07 4.94 5.93	1452 1503 1609 1714	3.86 4.26 5.15 6.17	1475 1523 1630 1734	4.04 4.45 5.37 6.41	1497 1545 1649 1754	4.22 4.64 5.58 6.65	1518 1566 1668 1773	4.41 4.83 5.79 6.89	1539 1587 1686 1792	4.60 5.03 6.01 7.13

- 1. Available External Static Pressure is the static pressure difference between the return duct and the supply duct plus the static pressure drop caused by
- 2. Data includes pressure drop due to standard filters, wet coils, and high gas heat. No accessories or options are included in pressure drop data.
- To determine static pressure drop due to other options/accessories, refer to the applicable table in the fan performance section.
- 4. Direct drive fan motor heat is negligible.
- 5. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Fan Performance

Table 39. Outdoor sound power level

Tons	Unit Model				Octave Cent	er Frequency	1			Overall
IOIIS	Number	63	125	250	500	1000	2000	4000	8000	dBA
12.5	W/DSJ150A*	83	87	87	85	82	77	74	69	87
15	W/DSJ180A*	83	87	87	85	82	77	74	69	87
20	W/DSJ240A*	94	90	92	91	88	84	81	75	93
25	W/DSJ300A*	94	90	92	91	88	84	81	75	93

Notes:

- 1. Outdoor sound rating shown is tested in accordance with AHRI 370-2015.
- 2. Indoor sound in accordance with AHRI 260 is available through Trane's selection software.

Table 40. Static pressure drop through accessories (inches water column) - standard efficiency - economizer

									Economi	izer with (OA/RA Da	mpers ^(d)		
Tons	Unit Model Number	cfm ^(a)	Standard Filters(b)	-	2" MERV 13	Reheat Coil	Dowi	nflow	Horiz	ontal	Low Down	Leak nflow	_	Leak ontal
				Filter(c)	Filter(c)		100% OA	100% RA	100% OA	100% RA	100% OA	100% RA	100% OA	100% RA
		3750	0.02	0.04	0.07	0.02	0.10	0.02	0.10	0.02	0.11	0.09	0.05	0.09
12.5	W/DSJ150A	5000	0.03	0.06	0.10	0.04	0.15	0.03	0.15	0.03	0.17	0.13	0.09	0.14
		6000	0.04	0.08	0.13	0.04	0.20	0.04	0.20	0.04	0.23	0.17	0.12	0.18
		4500	0.03	0.05	0.09	0.04	0.13	0.02	0.13	0.02	0.14	0.11	0.07	0.12
15	W/DSJ180A	6000	0.04	0.08	0.13	0.04	0.20	0.04	0.20	0.04	0.23	0.17	0.12	0.18
		7200	0.06	0.10	0.17	0.02	0.27	0.05	0.27	0.05	0.32	0.23	0.16	0.25
		6000	0.04	0.08	0.13	0.04	0.20	0.04	0.20	0.04	0.23	0.17	0.12	0.18
20	W/DSJ240A	8000	0.07	0.12	0.21	0.02	0.32	0.06	0.32	0.06	0.39	0.27	0.19	0.30
		9600	0.09	0.16	0.27	0.05	0.44	0.07	0.44	0.07	0.54	0.37	0.27	0.41
		7500	0.06	0.11	0.19	0.02	0.29	0.05	0.29	0.05	0.34	0.24	0.17	0.27
25	W/DSJ300A	10000	0.09	0.17	0.29	0.06	0.48	0.08	0.48	0.08	0.58	0.40	0.29	0.45
		12000	0.12	0.23	0.39	0.06	0.66	0.11	0.66	0.11	0.82	0.55	0.39	0.62

⁽a) See below for restrictions:

Multi-speed, single zone VAV or multi-zone VAV applications are capable of running below 300 cfm/ton during low speed airflow operation.

Table 41. Static pressure drop through accessories (inches water column) - standard efficiency - auxiliary heater

				Electric	Heater				Gas H	eater ^(b)		
Tons	Unit Model Number	cfm ^(a)		Accesso	ory (kW)			Downflow			Horizontal	
			18	36	54	72	L	М	Н	L	М	н
		3750	0.00	0.01	0.01	N/A	-0.09	-0.08	-0.08	0.03	0.03	0.06
12.5	W/DSJ150A	5000	0.01	0.03	0.03	N/A	-0.06	-0.04	-0.05	0.10	0.10	0.12
		6000	0.01	0.04	0.04	N/A	-0.03	-0.02	-0.02	0.12	0.13	0.16
		4500	0.01	0.02	0.02	N/A	-0.07	-0.05	-0.06	0.08	0.08	0.10
15	W/DSJ180A	6000	0.01	0.04	0.04	N/A	-0.03	-0.02	-0.02	0.12	0.13	0.16
		7200	0.02	0.06	0.06	N/A	-0.01	0.00	0.01	0.11	0.13	0.19
		6000	N/A	0.04	0.04	0.04	-0.03	-0.02	-0.02	0.12	0.13	0.16
20	W/DSJ240A	8000	N/A	0.08	0.08	0.08	0.01	0.01	0.03	0.10	0.13	0.19
		9600	N/A	0.12	0.12	0.12	0.04	0.05	0.07	0.10	0.14	0.21

⁽b) Tested with: 2-in filters 12.5 to 25 tons.

⁽c) Difference in pressure drop should be considered when utilizing optional 2-in pleated filters.

⁽d) OA = Outside Air and RA = Return Air.

Table 41. Static pressure drop through accessories (inches water column) - standard efficiency - auxiliary heater (continued)

				Electric	Heater				Gas H	eater(b)		
Tons	ons Unit Model Number cfm			Accesso	ory (kW)			Downflow			Horizontal	
			18	36	54	72	L	М	Н	L	М	Н
		7500	N/A	0.07	0.07	0.07	0.00	0.00	0.01	0.11	0.13	0.19
25	W/DSJ300A	10000	N/A	0.13	0.13	0.13	0.06	0.07	0.08	0.11	0.15	0.21
		12000	N/A	0.20	0.20	0.20	0.14	0.15	0.14	0.16	0.21	0.31

⁽a) See below for restrictions:

Table 42. Static pressure drop through accessories (inches water column) - standard efficiency - modulating gas heat option

				Gas H	eater ^(a)	
Tons	Unit Model Number	cfm	Dow	nflow	Horiz	ontal
			L	Н	L	Н
		3750	-	0.04	-	0.07
12.5	DSJ150A	5000	-	0.08	-	0.13
		6000	-	0.11	-	0.20
		4500	0.06	0.09	0.11	0.15
15	DSJ180A	6000	0.11	0.19	0.20	0.28
		7200	0.16	0.28	0.29	0.42
		6000	0.11	0.19	0.20	0.28
20	DSJ240A	8000	0.20	0.36	0.36	0.52
		9600	0.30	0.53	0.52	0.75
		7500	0.18	0.31	0.31	0.45
25	DSJ300A	10000	0.33	0.58	0.56	0.82
		12000	0.49	0.87	0.81	1.17

⁽a) Model digit 10 selection B is Mod Gas of which Low Gas Heat is 2x2 for 6T, 4x4 for 7.5 to 12.5T, High Gas Heat is 4x4 for 6T, 6x6 for 7.5 to 12.5T. 12.5T D.0 is High only with 6-Tube. 15 to 25T units are Low with 6-Tube and High with 8-Tube.

Multi-speed, single zone VAV or multi-zone VAV applications are capable of running below 300 cfm/ton during low speed airflow operation.

⁽b) Model digit 11 selection of low gas heat is 5x5, medium gas heat is 7x7, and high gas heat is 8x8 for 12.5 to 25T units.

Heating Performance

Table 43. Gas-fired heating capacities - staged gas - dual fuel standard efficiency

Tons	Unit Model Number	Heating Input BTU (High / Low Stage)	Heating Output BTU (High / Low Stage)	Air Temperature Rise°F
	DSJ150A**(0,A)L	150,000 / 105,000	121,500 / 85,000	10 - 40
12.5	DSJ150A**(0,A)M	200,000 / 140,000	162,000 / 113,400	15 - 45
	DSJ150A**(0,A)H	250,000 / 175,000	202,500 / 141,750	25 - 55
	DSJ180A**(0,A)L	250,000 / 175,000	202,500 / 141,750	15 - 45
15	DSJ180A**(0,A)M	320,000 / 224,000	259,200 / 181,440	20 - 50
	DSJ180A**(0,A)H	400,000 / 280,000	324,000 / 226,800	25 - 55
	DSJ240A**(0,A)L	250,000 / 175,000	202,500 / 141,750	10 - 40
20	DSJ240A**(0,A)M	320,000 / 224,000	259,200 / 181,440	15 - 45
	DSJ240A**(0,A)H	400,000 / 280,000	324,000 / 226,800	20 - 50
	DSJ300A**(0,A)L	250,000 / 175,000	202,500 / 141,750	10 - 40
25	DSJ300A**(0,A)M	320,000 / 224,000	259,200 / 181,440	15 - 45
	DSJ300A**(0,A)H	400,000 / 280,000	324,000 / 226,800	20 - 50

Table 44. Gas-fired heating capacities - modulating gas - dual fuel standard efficiency

Tons	Unit Model Number	Heating Input BTU (High / Low Stage)	Heating Output BTU (High / Low Stage)	Air Temperature Rise°F
12.5	DSJ150A**BH	250,000 / 25,000	202,500 / 20,250	5 - 55
	DSJ180A**BL	250,000 / 25,000	202,500 / 20,250	5 - 45
15	DSJ180A**BH	400,000 / 40,000	324,000 / 32,400	5 - 55
	DSJ240A**BL	250,000 / 25,000	202,500 / 20,250	5 - 40
20	DSJ240A**BH	400,000 / 40,000	324,000 / 32,400	5 - 50
	DSJ300A**BL	250,000 / 25,000	202,500 / 20,250	5 - 40
25	DSJ300A**BH	400,000 / 40,000	324,000 / 32,400	5 - 50

Table 45. Auxiliary electric heat capacity

	Unit Model	Total(a)		No. of	Sta	ge 1	Stage 2	
Tons	Number	kw Input ^(b)	MBh Output	Stages	kw Input	MBh Output	kw Input	MBh Output
		18.00	61.47	1	18.00	61.47	-	-
12.5 to 15	WS*150*3,4,W WS*180*3,4,W	36.00	122.94	2	18.00	61.47	18.00	61.47
	, ,	54.00	184.41	2	36.00	122.94	18.00	61.47
		36.00	122.94	2	18.00	61.47	18.00	61.47
20 to 25	0 to 25 WS*240*3,4,W WS*300*3,4,W	54.00	184.41	2	36.00	122.94	18.00	61.47
		72	245.88	2	36.00	122.94	36.00	122.94

⁽a) Heaters are rated at 240V, 480V, and 600V. For other than rated voltage, CAP = (voltage/rated voltage)2 x rated cap.

 $^{^{\}mbox{\scriptsize (b)}}$ For all input/output categories, does not include fan power or heat.

Table 46. Auxiliary electric heat - air temperature rise

		12.5 Tons 3750 cfm	15 Tons 4500 cfm	20 Tons 6000 cfm	25 Tons 7500 cfm
kW	Stages	Three Phase WS*150*3,4,W	Three Phase WS*180*3,4,W	Three Phase WS*240*3,4,W	Three Phase WS*300*3,4,W
18.00	1	15.17	12.64	-	-
27.00	2	22.76	-	=	-
36.00	2	30.35	25.28	18.96	15.17
54.00	2	45.52	37.93	28.45	22.76
72.00	2	-	-	37.93	30.34

Note: For minimum design airflow, see airflow performance table for each unit. To calculate temp. rise at different airflow, use the following formula:

Temp. rise across electric heater = (kW x 3414)/(1.08 x cfm).

Controls

Enhanced BAS Integration and Connectivity

- Symbio[™] 700 integrates seamlessly with Trane® Tracer® Synchrony and Tracer Ensemble® to deliver optimized building automation and building management features and functions.
- Easily integrate with open standard protocols to connect seamlessly to a BAS (whether that is Trane or non-Trane).
- Digit 21 must equal 1, 2, or 3 for communication support.

BACnet® Communications

Symbio™ 700 includes native BACnet communications which allows the unit to communicate directly with a Tracer or non-Trane Building Automation System via open protocol BACnet MS/TP or IP.

Modbus Communications

Symbio 700 includes native Modbus communications which allows the unit to communicate directly with a Tracer or non-Trane Building Automation System via open protocol Modbus RTU or TCP/IP.

LonTalk® Communications

The optional LonTalk® communications module allows the unit to communicate directly with a Tracer or non-Trane Building Automation System via open protocol LonTalk.

Air-Fi® Wireless Communications

The optional Air-Fi communications module allows the unit to communicate directly with a Tracer Building Automation System via open protocol BACnet over Zigbee wireless.

Secure Remote Connectivity with Trane Connect

The Symbio controller enables secure remote connectivity via Trane Connect to Trane Intelligent Services and remote monitoring. Trane Connect provides anywhere/anytime access to monitor and manage with secure remote access and connectivity options through a multitude of platforms. Peace of mind that the system will be operational and provide comfort to customers.

Serviceability

Symbio™ Service and Installation Mobile App

The Symbio™ Service and Installation mobile app is accessible through mobile devices (phones and tablets) via Bluetooth connectivity or via Trane Connect. The intuitive mobile app feels natural to technicians and operators. They will quickly be able to view equipment status and alarms, perform startup tasks, change configurations, test the equipment's performance in specific modes—and much more. Free for download from App Store (Apple iOS) and Google Play (Android devices).

To download the Symbio™ Service and Installation Mobile App use the links below or scan the code with your mobile phone camera.

Apple download link (https://apps.apple.com/us/app/symbio-service-installation/id1309310176) Google Play (Android) download link (https://play.google.com/store/apps/details?id=com.trane. mobileservicetool)

Figure 3. Scan code

Figure 4. Symbio™ service and installation mobile app

Onboard User Interface

An integrated onboard user interface that makes setup and continued operation easy. It provides real time operational performance, status, data, and alarms. It also allows the user to interact with, service, troubleshoot, and control their equipment without additional service software tools or when a mobile interface is not available.

Figure 5. Onboard user interface

Service Test Mode

Symbio™ 700 requires no special tools to run the unit through its paces. Simply navigate to the 'Service' section of the on-board user interface or the 'Tools' section of the Symbio™ Service and Installation Mobile App and enter the 'Service Test Mode' section. Here the unit can be placed in the desired operating condition for a pre-determined amount of time supporting troubleshooting efforts in the field. The Symbio™ 700 will return to normal control when the user exits test mode or when the pre-determined, user-selected Service Test time has expired.

Symbio[™] 700 controls with upgradeable software

Trane's equipment and systems feature engineered, tested, and proven applications that meet industry energy standards and provide the flexibility to customize and update over the life of the equipment. Professional operational algorithms are embedded within the Symbio[™] 700 controller at the Trane factory. Symbio[™] 700 standardizes each equipment unit to maintain standards for comfort, efficiency, and air quality, without additional field programming. Symbio[™] 700 provides the flexibility over the life of the equipment to meet changing customer needs and/or industry standards.

Flexibility

Expansion Modules (requires Tracer® TU)

- XM30 Provides 4 universal inputs or analog outputs
- XM32 Provides 4 binary outputs

Field Programming via TGP2 (requires Tracer TU)

- Control ancillary equipment
- · Custom sequences

TGP2 and XM Limitations:

- Programs will only have access to available BACnet® points. (Ensures system reliability.)
- TGP2 programs will not have direct I/O control access for factory components. (Compressors will
 not be able to be directly controlled On/Off without going through factory provided protection
 sequences.)
- Onboard I/O will not be available to custom applied TGP2 programs. If additional I/O is required for a new control loop, a separate expansion module will be required.
- Customer applied I/O will be limited to a maximum combination of 2 XM modules. Only XM30 or XM32 modules will be supported by the Symbio 700 UC.
- · Tracer TU will be required to configure XMs and to create, view, or modify TGP2 programs.

Economizer Controls

There are four options for economizer control, Dry Bulb Temperature, Comparative Enthalpy, Reference Enthalpy and Differential Dry Bulb Temperature.

Dry Bulb Temperature Control

The dry bulb system measures outdoor temperature comparing it to the economizer enable setpoint. If the outdoor temperature is below the economizer enable setpoint, the economizer will operate freely. This system is best suited for arid regions where the humidity levels of outside air would not be detrimental to building comfort and indoor air quality.

Comparative Enthalpy Control

The comparative enthalpy system measures the temperature and humidity of both return air and outside air to determine which source has lower enthalpy. This system allows true comparison of outdoor air and return air enthalpy by measurement of outdoor air and return air temperature and humidity.

Reference Enthalpy Control

The reference enthalpy system compares outdoor air temperature and humidity to the economizer enthalpy enable setpoint. If outdoor air temperature and humidity are below the economizer enthalpy

enable setpoint, the economizer will operate freely. This system provides more sophisticated control where outdoor air humidity levels may not be acceptable for building comfort and indoor air quality.

Differential Dry Bulb Temperature Control

The differential dry bulb system measures the temperature of both return air and outside air to determine when to economize. If outdoor air temperature is below the return air temperature minus a differential, the economizer will operate freely. This system is best suited for arid regions where the humidity levels of outside air would not be detrimental to building comfort and indoor air quality.

Zone Sensors

Zone Temperature Only

Provides temperature input only. Can be used as a secondary remote temperature input for thermostats.

Manual Changeover

BAYSENS106

Heat, Cool or Off System Switch. Fan Auto or Off Switch. Single temperature setpoint thumbwheel.

Manual/Automatic Changeover

Auto, Heat, Cool or Off System Switch. Fan Auto or Off Switch. Dual temperature setpoint sliders

Integrated Comfort™ System

BAYSENS073 / BAYSENS074 / BAYSENS075

Sensor(s) available with optional temperature adjustment and override buttons to provide central control through a Trane Integrated Comfort system.

Wired Display Sensor

BAYSENS135

LCD display that provides heat, cool, auto, or off. Includes two temperature setpoints and a lockable setting with °F or °C indicators.

Touchscreen Digital Display Communicating Sensor

BAYSENS800

Uses BACnet® MS/TP link to communicate zone temperature and setpoints. Auto, Heat, Cool or Off System Switch. Fan Auto or On Switch. 7-day programmable thermostat with night setback.

Note: Not compatible with VAV units. Requires BACnet communications.

Air-Fi Wireless Communicating Zone Sensors

Wireless Zone Temperature Only

Measures temperature and optional humidity (with WCS-SH) for use in public spaces where no local user interface is preferred.

Note: Requires BACnet communications.

Wireless Display Sensor

BAYSENS202

Easy-to-use interface for clear and simple monitoring and control. Can be configured for any Trane system or to meet the customer's preference.

Note: Requires BACnet communications.

Wired CO₂ Sensor

FIACO2K001 wall mount CO₂ Sensor FIACO2K002 duct mount CO₂ Sensor

The maintenance-free carbon dioxide (CO₂) sensor is primarily used for demand control ventilation applications.

Wired Zone Temperature and Humidity Sensor

Relative humidity input is used to control activation

Measures temperature and relative humidity. of dehumidification.

Thermostats

Digital Display Programmable Thermostat (3H/

BAYSTAT150

Three Heat/Two Cool Auto changeover digital display thermostat. 7-day programmable thermostat with night setback.

Note: Not compatible with VAV units.

Digital Display Programmable Thermostat (1H/

BAYSTAT151

One Heat/One Cool Auto changeover digital display thermostat.

Note: Not compatible with VAV units.

Digital Display Thermostat (3H/2C)

BAYSTAT155

Three Heat/Two Cool Auto changeover display thermostat.

Note: Not compatible with VAV units.

Pivot® Web Enabled Smart Thermostat (3H/2C)

Mon, Jun 13 3-24 PM 75 79 System Idle 45 Menu Auto Menu Menu Auto Menu M

BAYSTAT814

Our Pivot Smart Thermostat system is great for commercial buildings. With its intuitive touchscreen and customizable display, it is easy for occupants to use. The Trane Pivot mobile app enables users to control multiple buildings remotely, making changes in seconds to all systems.

Note: Not compatible with VAV units.

Touchscreen Programmable Thermostat with Relative Humidity Sensor (3H/2C)

BAYSTAT152

Three Heat, Two Cool digital display thermostat with built-in humidity control. This thermostat combines both humidity and temperature into one.

Note: Not compatible with VAV units.

Humidity Control (HGRH)

Sequence of Operations

Humidity Control system capable of operating in normal cooling, dual mode to satisfy cooling and humidity requirements, and hot gas reheat mode when only humidity demand is required. Function between requirements and unit transition seamlessly providing an all-around comfort solution.

Note: Supports Humidistat control. When the Humidistat input becomes active, compressors will stage to full capacity and modulate the 3 way valve.

Initiation of Humidity Control

- Conforms to ASHRAE standard (62)
- Dehumidification is initiated when too much moisture is in the space (>60°F Dew point)
 - Two measurement options for this dehumidification status:
 - Humidity control is started when:
 - Dew point is too high (60°F is default),
 - · Relative Humidity is too high (60% is default), DH is started
 - Choice between these values above is user-configurable, and the actual values are adjustable by customer if desired
- · Reheat circuit is initiated when space temperature drops below setpoint during humidity control.

Humidity Control Routine

There are two independent control loops: One to control latent load, the other to control sensible load. Latent load is controlled by compressor staging:

- · Compressors initially move up one stage from the last cooling mode stage.
- Compressors are staged up as needed by the controller to achieve a target leaving ID air dew point based on space conditions.

Sensible load is controlled with the Modulating 3 way valve:

- Modulating valve opens when space temperature is below setpoint.
- The reheat valve adjusts the amount of flow to RH coil to achieve the targeted leaving ID air temperature, based on space conditions.

Purge Cycle

During dehumidification, every 120 minutes (default) a 3 minute cooling "purge cycle" will be executed. This purge cycle is executed for system reliability, specifically it helps manage oil return to compressors.

- Modulating valve moves to a fixed position based on OD air and compressor stage.
- · Compressors move to full load.

Leaving Humidity Control and Returning to Cooling Only

- When space humidity drops to below the threshold humidity value (60°F dew point or 60% relative humidity), system reverts back to cooling mode. Dead band of ~5°F yields approximately 55°F dew point for switch to cooling.
- Unit can stay in humidity control mode indefinitely, with purge cycles happening regularly.
 - Relative humidity setpoint is 65% for unoccupied mode.
 - Dew point for unoccupied mode is the same as occupied (default 60°F DP).

Indoor Fan

Indoor fan minimum percent follows compressor staging. See Symbio[™] 700 Controller with Precedent[™] Packaged Rooftop Air Conditioners Application Guide (ACC-APG002*-EN).

Electrical Data

Table 47. Unit wiring

Tons	Unit Tons Model Number			ndoor Fan tor		High Static an Motor	Standard I	wer Exhaust ndoor Fan tor	Oversized/	wer Exhaust High Static an Motor
			МСА	Max Fuse Size or Max Circuit Breaker	МСА	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker
	W/DSJ150A3	187-253	72	90	-	-	78	100	-	-
12.5	W/DSJ150A4	414-506	37	50	-	-	40	50	-	-
	W/DSJ150AW	517-633	29	40	-	-	32	40	-	-
	W/DSJ180A3	187-253	78	100	-	-	83	110	-	-
15	W/DSJ180A4	414-506	41	50	-	-	45	60	-	-
	W/DSJ180AW	517-633	32	40	-	-	34	45	-	-
	WSJ240A3 DSJ240A3S(0,A)	187-253	108	150	-	-	113	150	-	-
	WSJ240A4 DSJ240A4S(0,A)	414-506	54	70	-	-	57	70	-	-
20	WSJ240AW DSJ240AWS(0,A)	517-633	47	60	-	-	49	70	-	-
	DSJ240A3SB	187-253	108	150	112	150	113	150	118	150
	DSJ240A4SB	414-506	54	70	55	70	57	70	59	70
	DSJ240AWSB	517-633	47	60	48	60	49	70	51	70
	W/DSJ300A3	187-253	119	150	124	150	125	150	129	175
25	W/DSJ300A4	414-506	59	80	61	80	62	80	64	80
	W/DSJ300AW	517-633	46	60	48	60	48	60	50	60

Table 48. Unit wiring with electric heat

T	Unit	Heater Model	Heater kW	Control		andard Indoor Fan Motor ^(a)		Oversized/High Static Indoor Fan Motor		Optional Power Exhaust Standard Indoor Fan Motor		Optional Power Exhaust Oversized/High Static Indoor Fan Motor	
Tons	Model Number	Number	Rating	Stages	MCA	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker	
					208/230	Volts Three I	Phase						
		FIAEHWD318AA	13.5/18.0	1	119/126	125/150	ı	-	125/132	125/150	ı	-	
12.5	WSJ150A3	FIAEHWD336AA	27.0/36.0	2	166/180	175/200	-	-	172/186	175/200	-	-	
		FIAEHWD354AA	40.6/54.0	2	213/202	225/225	1	-	219/208	225/225	1	-	
		FIAEHWD318AA	13.5/18.0	1	124/132	125/150	1	-	130/137	150/150	ı	-	
15	WSJ180A3	FIAEHWD336AA	27.0/36.0	2	171/186	175/200	1	-	177/191	200/200	-	-	
		FIAEHWD354AA	40.6/54.0	2	218/207	225/225	-	-	224/213	225/225	=	-	

Table 48. Unit wiring with electric heat (continued)

	Unit	Heater Model	Heater kW	Control		Indoor Fan otor ^(a)	Static II	zed/High ndoor Fan otor	Ext Standard	al Power naust Indoor Fan otor	Exl Oversi Static Ir	al Power naust zed/High ndoor Fan otor
Tons	Model Number	Number Rating	Rating Stages	MCA	Max Fuse Size or Max Circuit Breaker	МСА	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker	MCA	Max Fuse Size or Max Circuit Breaker	
		FIAEHWD336AA	27.0/36.0	2	201/216	225/225	-	-	207/222	225/225	-	-
20	WSJ240A3	FIAEHWD354AA	40.6/54.0	2	248/238	300/300	-	-	254/243	300/250	-	-
		FIAEHWD372AA	54.0/72.0	2	258/281	300/300	-	-	263/287	300/300	-	-
		FIAEHWD336AA	27.0/36.0	2	213/227	225/250	214/232	225/250	219/233	225/250	223/238	250/250
25	WSJ300A3	FIAEHWD354AA	40.6/54.0	2	260/249	300/300	264/254	300/300	266/255	300/300	270/259	300/300
		FIAEHWD372AA	54.0/72.0	2	269/292	300/300	274/297	300/300	275/298	300/300	279/303	300/350
					460 V	olts Three Ph	ase					
		FIAEHWD418AA	18	1	64	70	-	-	67	70	-	-
12.5	WSJ150A4	FIAEHWD436AA	36	2	91	100	-	-	94	100	-	-
		FIAEHWD454AA	54	2	102	110	-	-	105	110	-	-
		FIAEHWD418AA	18	1	68	70	-	-	72	80	-	-
15	WSJ180A4	FIAEHWD436AA	36	2	96	100	-	-	99	100	-	-
		FIAEHWD454AA	54	2	106	110	-	-	110	125	-	-
		FIAEHWD436AA	36	2	108	110	-	-	111	125	-	-
20	WSJ240A4	FIAEHWD454AA	54	2	119	150	-	-	122	125	-	_
		FIAEHWD472AA	72	2	140	150	-	-	143	150	-	-
		FIAEHWD436AA	36	2	113	125	115	125	116	125	118	125
25	WSJ300A4	FIAEHWD454AA	54	2	124	150	126	150	127	150	129	150
		FIAEHWD472AA	72	2	146	150	147	150	149	150	151	175
					575 V	l olts Three Ph	ase					
		FIAEHWDW18AA	18	1	51	60	-	-	53	60	-	-
12.5	WSJ150AW	FIAEHWDW36AA	36	2	73	80	-	-	75	80	-	-
		FIAEHWDW54AA	54	2	81	90	-	-	84	90	-	-
		FIAEHWDW18AA	18	1	53	60	-	-	56	60	-	-
15	WSJ180AW	FIAEHWDW36AA	36	2	75	80	-	-	77	80	-	-
		FIAEHWDW54AA	54	2	84	90	-	-	86	90	-	-
		FIAEHWDW36AA	36	2	90	100	-	-	93	100	-	-
20	WSJ240AW	FIAEHWDW54AA	54	2	99	125	-	-	101	110	-	-
		FIAEHWDW72AA	72	2	116	125	-	-	119	125	-	-
		FIAEHWDW36AA	36	2	89	100	91	100	92	100	93	100
25	WSJ300AW	FIAEHWDW54AA	54	2	98	125	100	110	100	110	102	110
		FIAEHWDW72AA	72	2	115	125	117	125	118	125	119	125

⁽a) The standard motor is a multispeed, direct drive motor.

Table 49. Electrical characteristics - compressor motor and condenser motor

	Unit				Comp	ressor Motor	s				Condens	er Fan I	Motor	
Tons	Model	No.	Volts	Phase	hp ^(a)	rpm	Am	ps ^(b)	No.	Volts	Phase	hp	An	ıps
	Number		VOILS	Filase	пр	ıpııı	RLA	LRA		VOILS	Filase	пр	FLA	LRA
	W/DSJ150A3	2	208/230	3	7.6/3.5	3500/3500	28.4/14.1	191.0/83.1	2	208/230	3	0.5	2.2	7.3
12.5	W/DSJ150A4	2	460	3	7.6/3.5	3500/3500	14.6/6.5	100/41	2	460	3	0.5	1.3	4.2
	W/DSJ150AW	2	575	3	7.6/3.5	3500/3500	11.9/5.4	78/33	2	575	3	0.5	1.1	3.6
	W/DSJ180A3	2	208/230	3	8.7/4.3	3500/3500	30.9/16.4	240/110	2	208/230	3	0.5	2.2	7.3
15	W/DSJ180A4	2	460	3	8.7/4.3	3500/3500	16.7/8.2	130/52	2	460	3	0.5	1.3	4.2
	W/DSJ180AW	2	575	3	8.7/4.3	3500/3500	12.8/6.6	93.7/38.9	2	575	3	0.5	1.1	3.6
	W/DSJ240A3	2	208/230	3	11.4/6.3	3500/3500	43.1/26.1	270/167	2	208/230	3	1	4.8	19.4
20	W/DSJ240A4	2	460	3	11.4/6.3	3500/3500	21.3/12.2	147/84	2	460	3	1	2.5	10.1
	W/DSJ240AW	2	575	3	11.4/6.3	3500/3500	21.3/9.6	109/60	2	575	3	1	1.9	8.0
	W/DSJ300A3	2	208/230	3	12.8/7.6	3500/3500	49.5/29.6	335.5/223.0	2	208/230	3	1	4.8	19.4
25	W/DSJ300A4	2	460	3	12.8/7.6	3500/3500	23.9/14.4	141/100	2	460	3	1	2.5	10.1
	W/DSJ300AW	2	575	3	12.8/7.6	3500/3500	19.8/10.8	109/70	2	575	3	1	1.9	8.0

Table 50. Electrical characteristics - indoor fan motor

_					h	Amps ^(a)	
Tons	Unit Model Number	No.	Volts	Phase	hp	FLA	LRA
	W/DSJ150A3	2	208/230	3	3	8.8	-
12.5	W/DSJ150A4	2	460	3	3	4.6	-
	W/DSJ150AW	2	575	3	3	3.2	-
	W/DSJ180A3	2	208/230	3	3	8.8	-
15	W/DSJ180A4	2	460	3	3	4.6	-
	W/DSJ180AW	2	575	3	3	3.2	-
	W/DSJ240A3	2	208/230	3	3	8.8	-
20	W/DSJ240A4	2	460	3	3	4.6	-
	W/DSJ240AW	2	575	3	3	3.2	-
	W/DSJ300A3	2	208/230	3	3	8.8	-
25	W/DSJ300A4	2	460	3	3	4.6	-
	W/DSJ300AW	2	575	3	3	3.2	-

⁽a) Amp draw for each motor (compressor and condenser fan motor); multiply value by number of motors to determine total amps.

Table 51. Electrical characteristics - oversized indoor fan motor

T	Hait Madal Novelan	NI-	Volts	Phase	hp -	Amps ^(a)		
Tons	Unit Model Number	No.	VOITS	Phase		FLA	LRA	
	DSJ240A3SB	2	208/230	3	5	11.0	-	
20	DSJ240A4SB	2	460	3	5	5.5	-	
	DSJ240AWSB	2	575	3	5	3.9	-	
	W/DSJ300A3	2	208/230	3	5	11.0	-	
25	W/DSJ300A4	2	460	3	5	5.5	-	
	W/DSJ300AW	2	575	3	5	3.9	-	

⁽a) Amp draw for each motor (compressor and condenser fan motor); multiply value by number of motors to determine total amps.

⁽a) Hp for each compressor.
(b) Amp draw for each motor (compressor and condenser fan motor); multiply value by number of motors to determine total amps.

Electrical Data

Table 52. Electrical characteristics - power exhaust

Tons	Volts	Phase	hp	rpm	FLA	LRA
12.5 to 25	208-230	1	0.87	1075	5.7	13.6
12.5 to 25	460	1	0.87	1075	3.3	7.2
12.5 to 25	575	1	0.80	1075	2.3	5.8

Table 53. Electrical characteristics - inducer motor

Unit Model Number	Stages	hp	rpm	Volts	Phase	FLA	LRA
DSJ150A**(0,A)(L,M,H)	2	1/15	3300/2800	208-230	1	0.36/0.30	0.73
DSJ(180-300)A**(0,A)(L,M)	2	1/15	3300/2800	208-230	1	0.36/0.30	0.73
DSJ(180-300)A**(0,A)H	2	1/6	3300/2300	208-230	1	0.95/0.49	1.53
DSJ(150,180,210,240,300)A**B	Variable	1/15	3300	115	1	3.40	7.30

Dimensional Data

Figure 6. 12.5 to 15 tons standard efficiency

Figure 7. 20 to 25 tons standard efficiency

Dimensional Data

Figure 8. 12.5 to 25 tons standard efficiency – downflow airflow supply/return, through-the-base utilities

Figure 9. 12.5 to 25 tons standard efficiency – horizontal airflow supply/return

Figure 10. 12.5 to 25 tons standard efficiency – power exhaust

Figure 11. 12.5 to 25 tons standard efficiency – unit clearance and roof opening

Dimensional Data

Figure 12. 12.5 to 25 tons standard efficiency – roof curb

Figure 13. 12.5 to 25 ton standard efficiency – swing diameter for hinged door(s) option

Table 54. Model weights, corner weights (lbs) and center of gravity dimensions (in.)

Tama	Linit Model No	Model	Weights ^(a)		Corner V	Veights(b)		Center of Gravity (in.)		
Tons	Unit Model No.	Shipping	Net	Α	В	С	D	Length	Width	
12.5	WSJ150	2225	2005	688	487	344	486	51	36	
15	WSJ180	2246	2026	695	492	348	491	51	36	
20	WSJ240	2403	2183	680	550	426	527	55	38	
25	WSJ300	2405	2185	680	550	427	528	55	38	
12.5	DSJ150	2407	2187	750	532	375	530	51	36	
15	DSJ180	2427	2207	757	536	379	535	51	36	
20	DSJ240	2697	2477	771	624	484	598	55	38	
25	DSJ300	2700	2480	772	625	484	599	55	38	

⁽a) Weights are approximate. Weights do not include additional factory or field installed options/accessories. For option/accessory additional weights to be added to unit weight, reference the following table.

Figure 14. Corner weights

Table 55. Factory installed options (FIOPS)/accessory net weights (lb)

Accessory	W/D*J150-180	W/D*J240-300
Accessory	12.5, 15 Tons	20, 25 Tons
Barometric Relief	40	40
Economizer	91	91
Electric Heaters(a)	75	75
Hinged Doors	20	30
Low Leak Economizer - Downflow	150	150
Low Leak Economizer - Horizontal	180	180
Manual Outside Air Damper	15	15
Motorized Outside Air Damper	82	82
Oversized Motor	_	30
Powered Convenience Outlet	50	50
Powered Exhaust	110	110
Reheat Coil	100	100
Roof Curb	235	235
Smoke Detector, Supply	5	5

⁽b) Corner weights are given for information only.

Weights

Table 55. Factory installed options (FIOPS)/accessory net weights (lb) (continued)

Accessory	W/D*J150-180	W/D*J240-300
	12.5, 15 Tons	20, 25 Tons
Smoke Detector, Return	5	5
Stainless Steel Heat Exchanger(b)	5	5
Through-the-Base Electrical	10	10
Through-the-Base Gas(b)	10	10
Unit Mounted Circuit Breaker	10	10
Unit Mounted Disconnect	10	10

- 1. Weights for options not listed are less than 5 pounds.
- Net weight should be added to unit weight when ordering factory-installed accessories.
 Weights are approximate.
- (a) Only applies to W*J models.
- (b) Only applies to D*J models.

Mechanical Specifications

General

- Packaged rooftop units cooling, heating capacities, and efficiencies are AHRI Certified within scope of AHRI Standard 340-360 for 12.5 to 20 tons. The 25 ton units are tested in accordance with the standard.
- · Convertible airflow.
- Symbio controls operating range between 40°F and 125°F in cooling mode standard from the factory. Field-installed low ambient kit extended operating range down to 0°F.
- Factory assembled, internally wired, fully charged with R-410A, and 100 percent run tested to check
 cooling and heat pump operation, fan and blower rotation, and control sequence before leaving the
 factory.
- · Colored and numbered wiring internal to the unit for simplified identification.
- Units cULus listed and labeled, classified in accordance for Central Cooling Air Conditioners.

Casing

- · Zinc coated, heavy gauge, galvanized steel.
- Weather resistant pre-painted metal with galvanized substrate.
- Meets ASTM B117, 672 hour salt spray test.
- Removable single side maintenance access panels.
- Lifting handles in maintenance access panels (can be removed and reinstalled by removing fasteners while providing a water and air tight seal).
- Exposed vertical panels and top covers in the indoor air section insulated with a cleanable foil-faced, fire-retardant permanent, odorless glass fiber material.
- Base pan shall have no penetrations within the perimeter of the curb other than the raised 1 inch
 high downflow supply/return openings to provide an added water integrity precaution, if the
 condensate drain backs up.
- Base of the unit insulated with 1/8 inch, foil-faced, closed-cell insulation.
- Unit base provisions for forklift and/or crane lifting on three sides of unit.

Coils

Evaporator and Condenser

- Internally finned, 5/16-inch copper tubes mechanically bonded to a configured aluminum plate fin are standard.
- · Coils are leak tested at the factory to ensure integrity.
- Evaporator coil and condenser coil are leak tested to 600 psig.
- Assembled unit is leak tested to 465 psig.
- Condenser coil is patent pending 1+1+1 hybrid coil, designed with slight gaps for cleaning ease.
- · Composite, dual-sloped, removable condensate drain pan is standard.

Coil Guards

Provides condenser coil protection.

Compressors

- All units have direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps.
- Suction gas-cooled motor with voltage utilization range of plus or minus 10 percent of unit nameplate voltage.
- Internal overloads standard with scroll compressors.
- Crankcase heaters are standard on all compressors.
- All units have dual compressors.
- Three stages of cooling available on 12.5 to 17.5 tons units and four stages of cooling available on 20 and 25 tons units.

Mechanical Specifications

Filters

- Standard throwaway filters
- Optional 2 inch MERV 8 and MERV 13 filters

Frostat™

- · Utilized as a safety device.
- · Opens to prevent freezing temperatures on evaporator coil.
- Temperature will need to rise to 50°F before closing.
- Utilized in low airflow or high outside air applications (cooling only).

Gas Heating Section

- The heating section shall have a progressive tubular heat exchanger with corrosion-resistant aluminized steel tubes and burners as standard on all models.
- Stainless steel heat exchanger with 409 stainless steel tubes and 439 stainless steel burners shall be optional.
- Induced draft combustion blower shall be used to pull the combustion products through the firing tubes.
- Heater shall use a direct spark ignition (DSI) system.
- On initial call for heat, the combustion blower shall purge the heat exchanger for 20 seconds before ignition.
- After three unsuccessful ignition attempts, entire heating system shall be locked out until manually reset at the thermostat/zone sensor.
- Units shall be suitable for use with natural gas or propane (field-installed kit).

Tubular Gas Heat Exchanger

- · Compact cabinet features a tubular heat exchanger in low, medium and high heat capacities.
- Corrosion-resistant aluminized steel tubes and burners are standard on all models.
- · Induced draft blower to pull the gas mixture through the burner tubes.
- Direct spark ignition and a flame sensor as a safety device to validate the flame.

Indoor Fan

- Direct drive plenum fan design 12.5 to 25 tons units.
- Plenum fan design backward-curved fan wheel along with an external rotor direct drive variable speed indoor motor.
- Supply fan speed adjustments can be made using the Symbio 700 or Mobile App.
- · Motors are electronically protected.
- Variable speed direct drive motors are high efficiency 12.5 to 25 tons.

Powered or Unpowered Convenience Outlet

- Powered GFCI, 120V/15A, 2 plug, convenience outlet or unpowered GFCI, 120V/20A, 2 plug, convenience outlet.
- When convenience outlet is powered, a service receptacle disconnect will be available.
- Convenience outlet is powered from the line side of the disconnect or circuit breaker, and therefore will not be affected by the position of the disconnect or circuit breaker.
- Available to order when through-the-base electrical with disconnect switch or circuit breaker option is ordered.

Stainless Steel Drain Pan

- · Corrosion and oxidation resistance.
- Constructed of 304 stainless steel.

Stainless Steel Heat Exchanger

- Constructed of 409 stainless steel tubes and 439 stainless steel burners.
- Resistant to corrosion and oxidation and easy to clean.
- · High strength to weight ratio allows for high ventilation rates with gas units.
- · Compliment dehumidification option as a high outside air ventilation unit.
- 15 years stainless steel heat exchanger warranty is standard.

Through-the-Base Electrical with Circuit Breaker

- Thermal magnetic, molded case, HACR circuit breaker with provisions for through-the-base electrical connections.
- Circuit breaker installed within unit in water tight enclosure.
- Wiring provided from the switch to the unit high voltage terminal block.
- Circuit breaker will provide overcurrent protection, sized per NEC and cULus guidelines, and agency recognized by cULus.

Through-the-Base Electrical with Disconnect Switch

- 3-pole, molded case, disconnect switch with provisions for through-the-base electrical connections.
- · Disconnect switch installed within unit in a water tight enclosure.
- Wiring provided from the switch to the unit high voltage terminal block.
- Switch cULus agency recognized.

Note: Disconnect switch sized per NEC and cULus guidelines but will not be used in place of unit overcurrent protection

Economizer (Standard)

- · Available with or without barometric relief.
- Fully modulating 0-100 percent motor and dampers, minimum position setting, preset linkage, wiring harness with plug, spring return actuator and fixed dry bulb control.
- Barometric relief shall provide a pressure operated damper that shall be gravity closing.
- Barometric relief shall prohibit entrance of outside air during the equipment "off" cycle.
- · Optional solid state or differential enthalpy control.
- · Arrives in shipping position and shall be moved to the operating position by the installing contractor.

Manual Outside Air Damper

Rain hood and screen shall provide up to 50 percent outside air.

Motorized Outside Air Damper

- Once set, when indoor fan starts, outdoor air dampers shall open to set position.
- When indoor fan shuts down, damper shall close to the full closed position.

Powered Exhaust

- Available for 12.5 to 25 ton units.
- · Shall provide exhaust of return air, when using an economizer.
- Maintain better building pressurization.

Roof Curb

- · Designed to mate with the unit's downflow supply and return.
- Provide support and a water tight installation when installed properly.

Mechanical Specifications

- Shall allow field-fabricated rectangular supply/return ductwork to be connected directly to the curb.
- Curb shall be shipped knocked down for field assembly.
- Shall include wood nailer strips.

Ventilation Override Operation

- Unit can be set to transition up to 3 different pre-programmed sequences for smoke purge, pressurization, and exhaust.
- Transition occurs when binary input on the Symbio is closed (shorted) (typically hard wired relay output from a smoke detector/ fire control panel.

Note: Requires Symbio™ Customer Connection Module, FIASCCM001*.

The AHRI Certified mark indicates Trane U.S. Inc. participation in the AHRI Certification program. For verification of individual certified products, go to ahridirectory.org.

Trane - by Trane Technologies (NYSE: TT), a global innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.

Trane has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.