- 1. Let A be a predicate symbol with arity 3, and let B be a binary predicate symbol. Determine whether or not each predicate form is logically valid. Give either a proof or a counter example as appropriate.
 - (a) $(\forall x \forall y \forall z Axyz \rightarrow \forall y \exists x \exists z Axyz)$
 - (b) $(\forall x \exists y Bxy \rightarrow \forall y Byy)$
- **2.** Show that, for any predicate form A:
 - (a) $\mathcal{A} \Rightarrow \exists x \, \mathcal{A}$, and
 - (b) $\exists x Ax \Rightarrow Ax$.
- **3.** Consider the following predicate forms:

$$\exists z \, \forall x \, (Axy \to Bz) \vee \exists z \, Axz \tag{1}$$

$$(\exists x \, \forall y \, Axy \to Ayy) \to \forall y \, (Afxyz \vee Bz) \tag{2}$$

- (a) Perform the substitution fzy for x (i.e. substitute fzy for x) in each of these predicate forms.
- (b) Complete the following table indicating which substitutions are free and which are not free in each of these two predicate forms.

	(1)	(2)
z for x	×	
x for y		
y for z		
z for y		
fxz for x		
fygz for x		

- **4.** Suppose that \mathcal{A} and \mathcal{B} are wffs of $K_{\mathcal{L}}$.
 - (a) Write a derivation to show that $\{(\mathcal{B} \to \mathcal{A})\} \vdash_{K_{\mathcal{L}}} \forall x((\neg \mathcal{A} \to \mathcal{B}) \to \mathcal{A})$. [You will probably use a tautology instance.]
 - (b) Can we deduce that $((\mathcal{B} \to \mathcal{A}) \to \forall x((\neg \mathcal{A} \to \mathcal{B}) \to \mathcal{A}))$. Give a reason for your answer.

MATHS 315 Assignment 3 Page 1 of 1