

OPTIMIZING LOGISTICS DISTRIBUTION ROUTES: A GRAPH THEORY APPROACH

Date: 20 - 22 Juni 2023

Instructor at Algoritma Data Science School

Project : Kost Scraping, Greedy-Best Snake Game Automation, Automatic Reporting, etc

Sunan Kalijaga State Islamic University Informatics Engineering

Irfan

Teaching Assistant

Handoyo

<u>finesaaa</u>

Fiqey Indriati Eka Sari

handoyo18

<u>Handoyo Sjarif</u>

Deep Learning

Computer Vision

Introduction

What is Logistics Distribution Routes?

Logistics Distribution Routes

Logistics Distribution refers to the process of delivering goods from one place to another. Such us warehouse to customers store.

Routing in Logistics Distribution is the process of mapping specific routes that drivers will take to make deliveries to customers

Why transportation routing is crucial

Cost Efficiency

Effective routing helps optimize the use of resources

Time Optimization

Effective routing ensures timely delivery of goods

Customer Satisfaction

Timely and reliable delivery essential for customer satisfaction

How to Analyze Logistics Distribution Routes?

Analyze route

We want to analyze the connection between store and warehouse.

Then **how to analyze** this **connection** (warehouse and store)?

Analyze route

Α	В	C	D	Е	F	G
start	end	d st	lge/100km	add_cost	start_time	end_time
E	C	20.0	10.2	0	2023-02-08 15:02:00	2023-02-08 15:33:00
A	E	20	9.6	37	2023-02-08 14:02:00	2023-02-08 14:32:00
F	G	12.0	11.8	8	2023-02-07 15:30:00	2023-02-07 15:54:00
Α	F	30	13.3	34.5	2023-02-07 14:13:00	2023-02-07 15:01:00
В	D	6 0	14.5	0	2023-02-06 15:30:00	2023-02-06 15:43:00
A	В	20	11.8	37	2023-02-06 14:19:00	2023-02-06 14:57:00
F	D	10.0	9.4	8	2023-02-01 15:35:00	2023-02-01 16:02:00
Α	F	30	13.7	34.5	2023-02-01 14:15:00	2023-02-01 15:05:00
С	В	17.0	18.9	10.5	2023-01-31 15:10:00	2023-01-31 15:56:00
A	С	3 7.0	7.7	16	2023-01-31 14:01:00	2023-01-31 14:37:00
G	E	18.0	11.9	0	2023-01-30 16:05:00	2023-01-30 16:30:00
A	G	27.0	21.9	0	2023-01-30 14:10:00	2023-01-30 15:35:00
В	G	8 5	14.4	0	2023-01-25 15:20:00	2023-01-25 15:39:00
Α	В	20	12.1	37	2023-01-25 14:09:00	2023-01-25 14:49:00
D	C	15.0	12.1	0	2023-01-24 15:13:00	2023-01-24 15:44:00

It is difficult to analyze the connection between objects in tabular data.

How to overcome this problem?

Answer: Graph!

What is Graph?

A **graph** is a structure that contains **nodes** and each of the related pairs of nodes is called an **edges**.

Graph theory is branch of mathematics that studies about graph, graph theory explore and analyze different aspects of these networks, it provides methods and algorithms to study properties like how nodes are connected, shortest path and other characteristics.

When to Use Graph?

- When our data involves relationships or connections between nodes e.g. friendship in a social network, connection between web pages, or logistics distribution routes
- When we need to analyze connectivity patterns or find paths between nodes, representing the data as a graph is helpful e.g. in logistics, where we want to find the optimum route between locations, a graph representation enables efficient pathfinding and optimization algorithms.

Objective of Graph?

- Analyze connectivity pattern
- Find path between nodes (optimum path)

Example of Implementation

Protein Analysis

Distribution Routes

Mindmap

Objective of Our DSS

- Work with Python and pandas for data cleansing and manipulation processes
- 2. Understand graph structure and interpretation
- 3. Learn and **implement** how **graph** works in python
- 4. **Apply graph** theory to case studies of **optimizing logistics distribution routes**

Introduction for Programming in Python

Tools Introduction

Studio

Package / Library

Package / Library

Virtual Environment 1

Virtual Environment 2

Virtual Environment 3

Why do we need Python environments?

You might ask: shouldn't I just install the latest Python version?

Isolate package versions to avoid breaking changes

Sharing virtual environment to enable project collaboration

Publishing or deploying an application requires setting up an environment

How to Create Virtual Environment

- 1. Open Anaconda Prompt
- Create new virtual environment with:conda create --name dss_june python=3.10
- Activate the new virtual environment: conda activate dss_june
- 4. Change your terminal directory to the path where the *requirements.txt* is located. Use cd <PATH>
- Install packages using:pip install -r requirements.txt
- Install kernel to connect the virtual environment to the Jupyter Notebook.
 pip install ipykernel
 python -m ipykernel install --user --name=dss_june