(!) Anyone can publish on Medium per our Policies, but we don't fact-check every story. For more info about the coronavirus, see cdc.gov.

Covid-19 infection in Italy. Mathematical models and predictions

A comparison of logistic and exponential models applied to Covid-19 virus infection in Italy.

Photo by Viktor Forgacs on Unsplash

The world is fighting against a new enemy in these days, which is the Covid-19 virus.

The virus has spread quickly in the world since its first appearance in China. Unfortunately, **Italy** is recording the **highest number** of Covid-19 infected people **in Europe**. We've been the **first nation** facing this new enemy in the Western World and we are all fighting every day against all the **economical and social** implications of this virus.

In this article, I'll show you a simple **mathematical** analysis of the infection growth in Python and **two models** to better understand the evolution of the infection.

. . .

Data collection

Every day, the Italian Civil Protection Department refreshes the cumulative data of infected people. This data is **publicly available** as open data on GitHub here: https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv

My goal is to create **models** of the time series of the **total number of infected people to date** (i.e. the actually infected people plus the people who have had been infected). These models have **parameters**, which will be estimated by **curve fitting**.

Let's do it in Python.

First, let's import some libraries.

```
import pandas as pd
import numpy as np
from datetime import datetime,timedelta
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
%matplotlib inline
```

Now, let's take a look at the raw data.

```
url = "https://raw.githubusercontent.com/pcm-dpc/COVID-
19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-
nazionale.csv"

df = pd.read csv(url)
```

	data	stato	ospedalizzati	isolamento_domiciliare	attualmente_positivi	dimessi_guariti	deceduti	totale_casi	nuovi_attualmente_positivi
0	2020-02-24 18:00:00	ITA	127	94	221	1	7	229	221
1	2020-02-25 18:00:00	ITA	149	162	311	1	10	322	90
2	2020-02-26 18:00:00	ITA	164	221	385	3	12	400	74
3	2020-02-27 18:00:00	ITA	304	284	588	45	17	650	203
4	2020-02-28 18:00:00	ITA	409	412	821	46	21	888	233
5	2020-02-29 18:00:00	ITA	506	543	1049	50	29	1128	228
6	2020-03-01 18:00:00	ITA	779	798	1577	83	34	1694	528
7	2020-03-02 18:00:00	ITA	908	927	1835	149	52	2036	258
8	2020-03-03 18:00:00	ITA	1263	1000	2263	160	79	2502	428
9	2020-03-04 18:00:00	ITA	1641	1065	2706	276	107	3089	443
10	2020-03-05 18:00:00	ITA	2141	1155	3296	414	148	3858	590
11	2020-03-06 18:00:00	ITA	2856	1060	3916	523	197	4636	620
12	2020-03-07 18:00:00	ITA	3218	1843	5061	589	233	5883	1145

The column we need is 'totale_casi' which contains the cumulative number of infected people to date.

This is the raw data everything starts from. Now, let's **prepare** it for our analysis.

Data preparation

First, we need to change dates into numbers. We'll take the days since January 1st.

```
df = df.loc[:,['data','totale_casi']]

FMT = '%Y-%m-%d %H:%M:%S'

date = df['data']

df['data'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-01-01 00:00:00", FMT)).days )
```

data totale_casi

0 54 229

1	55	322
2	56	400
3	57	650
4	58	888
5	59	1128
6	60	1694
7	61	2036
8	62	2502
9	63	3089
10	64	3858
11	65	4636
12	66	5883

We can now analyze the two models I'll take into the exam, which are the **logistic function** and the **exponential function**.

Each model has **three parameters**, that will be estimated by a **curve fitting** calculation on the historical data.

The logistic model

The logistic model has been widely used to describe the **growth of a population**. An infection can be described as the growth of the population of a pathogen agent, so a logistic model seems **reasonable**.

This formula is **very known** among data scientists because it's used in the logistic regression classifier and as an activation function of neural networks.

The most generic expression of a logistic function is:

$$f(x,a,b,c) = \frac{c}{1+e^{-(x-b)/a}}$$

In this formula, we have the variable x that is the time and three parameters: a,b,c.

- *a* refers to the infection speed
- ullet b is the day with the maximum infections occurred
- *c* is the total number of recorded infected people at the infection's end

At high time values, the number of infected people **gets closer and closer** to *c* and that's the point at which we can say that the infection **has ended**. This function has also an **inflection point** at *b*, that is the point at which the first derivative **starts to decrease** (i.e. the peak after which the infection starts to become less aggressive and decreases).

Let's define it in python.

```
def logistic_model(x,a,b,c):
    return c/(1+np.exp(-(x-b)/a))
```

We can use the *curve_fit* function of *scipy* library to estimate the parameter values and errors starting from the original data.

```
x = list(df.iloc[:,0])
y = list(df.iloc[:,1])

fit = curve_fit(logistic_model,x,y,p0=[2,100,20000])
```

Here are the values:

- a: 3.54
- b: 68.00
- c: 15968.38

The function returns the **covariance matrix** too, whose diagonal values are the variances of the parameters. Taking their square root we can calculate the standard errors.

```
errors = [np.sqrt(fit[1][i][i]) for i in [0,1,2]]
```

• Standard error of a: 0.24

• Standard error of *b*: 1.53

• Standard error of *c*: 4174.69

These numbers give us many useful insights.

The **expected number of infected people** at infection end is 15968+/-4174.

The **infection peak** is expected around 9 March 2020.

The **expected infection end** can be calculated as that particular day at which the cumulative infected people count **is equal** to the *c* parameter rounded to the nearest integer.

We can use the *fsolve* function of *scipy* to numerically find the root of the equation that defines the infection end day.

```
sol = int(fsolve(lambda x : logistic_model(x,a,b,c) - int(c),b))
```

It's on 15 April 2020.

Exponential model

While the logistic model describes ain infection growth that is **going to stop** in the future, The exponential model describes an **unstoppable** infection growth. For example, if a patient infects 2 patients per day, after 1 day we'll have 2 infections, 4 after 2 days, 8 after 3 and so on.

The most generic exponential function is:

$$f(x, a, b, c) = a \cdot e^{b(x-c)}$$

The variable *x* is the time and we still have the parameters *a*, *b*, *c*. The meaning, however, is different from the logistic function parameters'.

Let's define the function in Python and let's perform the same curve fitting procedure used for logistic growth.

```
def exponential_model(x,a,b,c):
    return a*np.exp(b*(x-c))

exp_fit = curve_fit(exponential_model,x,y,p0=[1,1,1])
```

Parameters and their standard errors are:

```
• a: 0.0019 +/- 64.6796
```

- b: 0.2278 +/- 0.0073
- *c*: 0.50 +/- 144254.77

Plots

We have now all the necessary data to visualize our results.

```
pred_x = list(range(max(x),sol))
plt.rcParams['figure.figsize'] = [7, 7]

plt.rc('font', size=14)

# Real data
plt.scatter(x,y,label="Real data",color="red")

# Predicted logistic curve
plt.plot(x+pred_x, [logistic_model(i,fit[0][0],fit[0][1],fit[0][2]))
for i in x+pred_x], label="Logistic model")

# Predicted exponential curve
plt.plot(x+pred_x, [exponential_model(i,exp_fit[0][0],exp_fit[0][1],exp_fit[0][2])) for i in x+pred_x], label="Exponential model")

plt.legend()
plt.xlabel("Days since 1 January 2020")
```

```
plt.ylabel("Total number of infected people")
plt.ylim((min(y)*0.9,c*1.1))
plt.show()
```


Both theoretical curves seem to approximate the experimental trend quite well. Which one does it better? Let's take a look at the **residuals**.

Analysis of residuals

Residuals are the **differences** between each experimental point and the corresponding theoretical point. We can analyze the residuals of both models in order to verify the **best fitting curve**. In a first approximation, the lower **Mean Squared Error** between theoretical and experimental data, the **better** the fit.

```
y_pred_logistic = [logistic_model(i,fit[0][0],fit[0][1],fit[0][2])
for i in x]

y_pred_exp = [exponential_model(i,exp_fit[0][0], exp_fit[0][1],
exp_fit[0][2]) for i in x]
```

```
mean_squared_error(y,y_pred_logistic)
mean squared error(y,y pred exp)
```

Logistic model MSE: 8254.07

Exponential model MSE: 16219.82

Which is the right model?

Residuals analysis seems to point toward the **logistic model**. It's very likely because the **infection should end** someday in the future; even if everybody will be infected, they'll develop the proper **immunity defense** to avoid a second infection. That's right as long as the virus **doesn't mutate** too much (as, for example, influenza virus).

But there's something that **still worries me**. I've been fitting the logistic curve every day since the beginning of the infection and every day I **got different parameter values**. The number of infected people at the end **increases**, the maximum infection day is often the current day or the next day (which is compatible with the standard error of 1 day on this parameter). That's why I think that, although the logistic model seems to be the most reasonable one, the shape of the curve **will probably change** due to exogenous effects like new infection **hotspots**, government **actions to bind** the infection and so on.

That's why I think that the predictions of this model will start to become useful only within a few weeks, reasonably after the infection peak.

. . .

Note from the editors: towardsdatascience.com is a Medium publication primarily based on the study of data science and machine learning. We aren't health professionals or epidemiologists. To learn more about the coronavirus pandemic, you can click here.

Stay up to date on coronavirus (Covid-19)

Follow the Medium Coronavirus Blog or sign up for the newsletter to read expert-backed coronavirus stories from Medium and across the web, such as:

- Coronavirus does not spare the young.
- What a nuclear submarine captain knows about self-isolating.
- The truth about vitamin D, zinc, and other coronavirus rumors.
- 'I'd rather be here' an expat perspective from South Korea.

Data Science Immunology Epidemiology Coronavirus

About Help Legal