11/20/22, 10:47 AM Quiz: Quiz 6

Quiz 6

Started: Nov 18 at 1:53pm

Quiz Instructions

Question 1	1 pts
Question 1	1 pts

We are testing a set of toy cars from a new manufacturer. Each toy car has the same probability p to be incorrectly assembled. If we tested 5 toy cars, and we found 3 of those toy cars are incorrectly assembled. What is the most probable value for p based on the maximum likelihood estimation? Round it to two decimals.

0.6

Question 2 1 pts

Follow the previous question. If we know the density function of the prior distribution of p is:

$$P(p) = 2p$$

What is the most probable value for p based on the maximum a posteriori estimation? Round it to two decimals.

0.67

Question 3 1 pts

Follow the previous questions. Which of the following statement is INCORRECT?

- (A) As we examine more and more toys, the choice of prior becomes less impactful.
- (B) We usually assume a uniform prior distribution if no further information is given for

11/20/22, 10:47 AM Quiz: Quiz 6

(C) A proper choice of prior distribution can significantly reduce the number of experimentsneeded for the convergence to optimal p.(D) When the prior is a normal distribution, Maximum A Posteriori estimator is the same asMaximum Likehood estimatior
○ A
○ C
O D

Question 4	1 pts
Consider building a Naive Bayes classifier for a 3-class multi-class classifier problem with 20 binary features. What is the minimal number of parameters we need this Naive Bayes classifier?	
62	

Question 5	1 pts
Consider building a Naive Bayes classifier based on the training data below.	

11/20/22, 10:47 AM Quiz: Quiz 6

Patient	Age(A)	Weight (W)	Workout Regularly (E)	Diabetes (D)
1	Young	Light	No	Yes
2	Young	Heavy	No	Yes
3	Young	Heavy	No	No
4	Young	Heavy	No	No
5	Young	Light	Yes	No
6	Young	Light	Yes	No
7	Young	Light	Yes	No
8	Young	Light	Yes	No
9	Old	Heavy	No	Yes
10	Old	Heavy	Yes	Yes
11	Old	Light	No	No
12	Old	Light	Yes	No

What is the prior probability P (D = Yes) for the Naive Bayes classifier trained on the above data based on the maximum likelihood estimation?

Round it to two decimals.

0.33	
------	--

Question 6 1 pts

Follow the previous question. What is the probability P (W = Heavy|D = No) for the Naive Bayes classifier trained on the above data based on the maximum likelihood estimation?

Round it to two decimals.

0.25

Quiz saved at 10:47am

Submit Quiz