Domain 4: Monitor Model

4.1 Monitor Model Performance and Data Quality

4.1.1 Monitoring Machine Learning Solutions

Importance of Monitoring in ML

a) Machine Learning Lens: AWS Well-Architected Framework: Best practices and design principles

Best practice: When

	Resource pooling	Sharing compute, storage, and
		networking resources
Optimize resources	Caching	
	Data management	data compression, partitioning, and
		lifecycle management
Scale ML workloads	AWS Auto Scaling	SageMaker built-in scaling. AWS Auto-
based on demand		Scaling
baseu on demand	Lambda	
Reduce Cost	Monitor usage and costs	resource tagging
neduce Cost	monitor ROI	
	Establish Feedback Loops	
Enable continuous	Monitor Performance	SageMaker Model Monitor (Drift)
improvement		CloudWatch alerts (deviations)
-		
	Automate Retraining	

Detecting Drift in Monitoring

a) Drift Types

Drift Type	Description	Causes	Implications
Data Quality Drift	Production data distribution differs from training data distribution	 Real-world data not as curated as training data Changes in data collection processes Shifts in real-world conditions 	 Model accuracy decreases Predictions become less reliable
Model Quality Drift	Model predictions differ from actual ground truth labels	 Changes in the underlying relationship between features and target Model decay over time Concept drift 	 Decreased model performance Inaccurate predictions
Bias Drift	Increase in bias affecting model predictions over time	 Training data too small or not representative Incorporation of societal assumptions in training data Exclusion of important data points Changes in real-world data distribution 	 Model overgeneralization Unfair or discriminatory predictions Ethical concerns New groups in production
Feature Attribution Drift	Changes in the contribution of individual features to model predictions	 Shifts in feature importance over time Changes in the underlying problem domain Introduction of new, more predictive features 	 Model may rely on less relevant features Decreased interpretability Potentially reduced performance

Note: Bias inverse of variance, which is the level of small fluctuations or noise common in complex data sets. Bias tends to cause model predictions to overgeneralize, and variance tends to cause models to undergeneralize. Increasing variance is one method for reducing the impact of bias.

b) Monitoring Drift

Monitoring Type	What It Monitors	How It Monitors
Data Quality Monitoring	 Missing values Outliers Data types Statistical metrics (mean, std dev, etc.) Data distribution 	 Implement data validation checks Calculate statistical metrics Compare metrics with baseline values Use data drift detection techniques (e.g., Kolmogorov-Smirnov tests, Maximum Mean Discrepancy)
Model Quality Monitoring	 Evaluation metrics (accuracy, precision, recall, F1, AUC, etc.) Prediction confidence Performance across different subpopulations 	 Calculate evaluation metrics on held-out test set or production data sample Implement confidence thresholding or uncertainty estimation Flag low-confidence predictions Monitor performance on different data subsets
Model Bias Drift Monitoring	 Bias metrics (disparate impact, fairness, etc.) Performance across sensitive groups 	 Calculate bias metrics for different sensitive groups Compare bias metrics with baseline values or thresholds Implement bias mitigation techniques (e.g., adversarial debiasing, calibrated equalized odds)
Feature Attribution Drift Monitoring	 Feature importance scores Statistical metrics of feature attributions 	 Use interpretability techniques (e.g., SHAP) to calculate feature attributions Calculate statistical metrics on feature attributions Compare metrics with baseline values Identify features with significantly changed attributions

SageMaker Model Monitor

Integration

SageMaker - Monitoring for Data Quality Drift

STEPS

- 1. Initiate data capture on the endpoint
- 2. Create a baseline

start a baseline processing job with the suggest_baseline method of the ModelQualityMonitor object using the SageMaker Python SDK.

- 3. Schedule data quality monitoring jobs
- 4. Integrate data quality monitoring with Cloudwatch
- 5. Interpret results and analyze findings

The report is generated as the **constraint_violations.json** file. The SageMaker Model Monitor prebuilt container provides the following violation checks.

- data_type_check
- completeness_check
- baseline_drift_check
- missing_column_check
- extra_column_check
- categorical_values_check

SageMaker - Monitoring for Model Quality Drift using Model Monitor

To monitor model quality, SageMaker Model Monitor requires the following inputs:

- 1. Baseline data
- 2. Inference input and predictions made by the deployed model
- 3. Amazon SageMaker Ground Truth associated with the inputs to the model

SageMaker - Monitoring for Bias using Clarify

Statistical bias drift occurs when the data used for training differs from the data encountered during prediction, leading to potentially biased outcomes. This is prominent when training data changes over time. In this lesson, you will learn about AWS services that help you monitor for statistical bias drift.

Post-training bias metrics in SageMaker Clarify help us answer two key questions:

- Are all facet values represented at a similar rate in positive (favorable) model predictions?
- Does the model have similar predictive performance for all facet values?

SageMaker Model Monitor automatically does the following:

- Merges the prediction data with SageMaker Ground Truth labels
- Computes baseline statistics and constraints
- Inspects the merged data and generates bias metrics and violations
- Emits CloudWatch metrics to set up alerts and triggers
- Reports and alerts on bias drift detection
- Provides reports for visual analysis

How it works: It quantifies the contribution of each input feature (for example, audio characteristics) to the model's predictions, helping to explain how the model arrives at its decisions.

Options for using SageMaker Clarify

When to use which

Method	Description	When to Use
SageMaker Clarify Directly	Configure and run Clarify processing job using SageMaker Python SDK API	 For one-time or ad-hoc bias analysis When you need full control over the analysis configuration For integrating bias analysis into custom workflows
SageMaker Model Monitor + Clarify	Integrate Clarify with Model Monitor for continuous bias monitoring	 When you want to automate bias detection in production If you need to set up alerts for bias drift
SageMaker Data Wrangler	Utilize Clarify within Data Wrangler <mark>during data</mark> preparation	 During the data preparation phase When you want to identify potential bias early in the ML pipeline If you're already using Data Wrangler for data preprocessing

SageMaker - Monitoring for Feature Attribution Drift (Model Monitor + Clarify)

Feature attribution refers to understanding and quantifying the contribution or influence of each feature on the model's predictions or outputs. It helps to identify the most relevant features and their relative importance in the decision-making process of the model.

Uses SHAP

SageMaker Clarify provides feature attributions based on the concept of Shapley value. This is a game-theoretic approach that assigns an importance value (SHAP value) to each feature for a particular prediction.

Here's how it works:

- 1. **SageMaker Clarify:** This is the core component that performs the actual bias detection and generate quality metrics and violations
- **2. SageMaker Model Monitor:** This is the framework that can use Clarify's capabilities to perform continuous monitoring of deployed models.

Features

1. Alerts:

How it helps: The dashboard provides a record of all activated alerts, allowing the data scientist to review and analyze past issues.

Alert criteria depend upon two parameters:

- Datapoints to alert: Within the evaluation period, how many runtime failures raise an alert?
- **Evaluation period:** The # of most recent monitoring executions to consider when evaluating alert status.

2. Risk rating

A user-specified parameter from the model card with a low, medium, or high value.

3. Endpoint performance

You can select the endpoint column to view performance metrics, such as:

- CpuUtilization: The sum of each individual CPU core's utilization from 0%-100%.
- MemoryUtilization: The % of memory used by the containers on an instance, 0%-100%.
- **DiskUtilization**: The % of disk space used by the containers on an instance, 0%-100%.

4. Most recent batch transform job

This information helps you determine if a model is actively used for batch inference.

5. Model lineage graphs

When training a model, SageMaker creates a **model lineage graph**, a visualization of the entire ML workflow from data preparation to deployment.

6. Links to model details

The dashboard links to a model details page where you can explore an individual model.

Model Monitor vs SageMaker Dashboard vs Clarify: When to use which one

Tool	Description	Why to use	When to Use
Model Monitor	Continuous monitoring of ML models in production	 data and model quality issues model drift 	 To set up automated alerts for performance degradation When you need to monitor resource utilization Monitor real-time endpoints, batch transform, On-demand monitoring job
SageMaker Dashboard	Centralized view of SageMaker resources and jobs	•	 For a high-level overview of all SageMaker activities To track training jobs, endpoints, and notebook instances
SageMaker Clarify	Bias detection and model explainability tool	 Detecting Bias Triggers statistics and Violations report 	 To detect bias in training data and model predictions When you need to explain model decisions For regulatory compliance requiring model transparency To improve model fairness and accountability

4.1.2 Remediating Problems Identified by Monitoring

Automated remediations and notifications

- Stakeholder notifications: When monitoring metrics indicate changes that impact business KPIs or the underlying problem
- **Data Scientist notification:** You can use automated notifications to **data scientists** when your monitoring detects data drift or when expected data is missing.
- Model retraining: Configure your model training pipeline to automatically retrain models when monitoring detects drift, bias, or performance degradation.
- **Autoscaling:** You use resource utilization metrics gathered by infrastructure monitoring to initiate autoscaling actions.

Model retraining strategies

Strategy	When to Use	Advantages	Considerations
Event-driven	 When drift is detected above a certain threshold In response to significant changes in data or performance 	Timely response to changesEfficient use of resources	 May be frequent if thresholds are too sensitive Retraining can be expensive and time-consuming
On-demand	 When market conditions change significantly In response to new competitors or strategies 	 Allows for human judgment in decision- making Can incorporate business context 	 Requires constant monitoring by data scientists or stakeholders May lead to delayed responses
Scheduled	 When there are known seasonal patterns For maintaining model accuracy over time 	 Predictable maintenance schedule Can anticipate and prepare for retraining periods 	 May retrain unnecessarily if no significant changes occur Might miss sudden, unexpected changes

4.2 Monitor and Optimize Infrastructure and Costs

4.2.1 Monitor Infrastructure

Monitor Performance Metrics - CloudWatch vs Model Monitor

Feature	SageMaker Model Monitor	CloudWatch Logs
Purpose	Continuous monitoring of ML models in production	Monitoring, storing, and accessing log files
Key Capabilities	 (all 4 ML monitoring types) Data quality monitoring Model quality monitoring Bias drift monitoring Feature attribution drift monitoring 	 Log collection from various sources Log storage in S3 Pattern recognition Log anomaly detection
Monitoring Types	 Real-time endpoint monitoring Batch transform job monitoring On-schedule monitoring for async batch jobs 	EC2 instancesCloudTrailAmazon Route 53Other sources
Alert System	Set alerts for deviations in model quality	Notifications based on preset thresholds
Customization	 Pre-built monitoring capabilities (no coding) Custom analysis options	Customizable log patterns and anomaly detection

Monitoring vs. Observability

	Monitoring	Observability
Definition	Continuous collection and analysis of metrics	Deep insights into internal state and behavior of ML systems
Focus	Detecting anomalies and deviations	Understanding complex interactions and dependencies
Key Activities	Collecting metricsLoggingAlerting	Analyzing system behaviorIdentifying root causesReasoning about system health
Techniques	 • Metric collection Threshold-based alerting Basic log analysis	Distributed tracingStructured loggingAdvanced data visualization
Outcome	Detect issues and invoke alerts or automated actions	Provide deeper insights for troubleshooting and optimization
Scope	Primarily focused on predefined metrics and thresholds	Enables asking and answering questions about system behavior

Monitoring Tools (for Performance and Latency)

Feature	AWS X-Ray	CloudWatch Lambda Insights	CloudWatch Logs Insights	QuickSight
Purpose	Trace information about responses and calls in applications	In-depth performance monitoring for <mark>Lambda</mark> fns only	Interactive log analytics service	BI and data visualization service
Key Features	 Works across AWS and third-party services Generates detailed service graphs Identifies performance bottlenecks 	 Monitors metrics (memory, duration, invocation count) Provides detailed logs and traces Helps identify bottlenecks in Lambda functions 	 Interactive querying and analysis of log data Correlates log data from different sources Visualizes time series data Supports aggregations, filters, and regex 	 Interactive dashboards ML-powered insights Supports various data sources
Compatible Services	EC2, ECS, Lambda, Elastic Beanstalk	Lambda	Any service that generates logs in CloudWatch	Various AWS services and external data sources
ML Use Cases	 Analyze bottlenecks in ML systems Trace requests in ML applications (e.g., chatbot inference) 	 Monitor and optimize ML models deployed as Lambda functions Identify root causes of Lambda function issues 	 Analyze logs from ML workloads Identify patterns and anomalies in ML system behavior 	 Create dashboards for ML experiment results Analyze and present insights from ML predictions
Visualization	Service maps, Trace views	Performance dashboards, Trace details	Time series graphs, Log event views	Interactive dashboards, Charts, Graphs
Primary Benefit	End-to-end request tracing and bottleneck identification	Detailed Lambda function performance insights	Flexible, interactive log analysis and visualization	Comprehensive data visualization and business intelligence

SageMaker w/ EventBridge

Actions that can be automatically invoked using EventBridge:

- a) Invoking an AWS Lambda function
- b) Invoking Amazon EC2 run command (not create or deploy)
- c) Relaying event to Kinesis Data Streams
- d) Activating an AWS Step Functions state machine.
- e) Notifying SNS topic or an AWS Server Migration Service (AWS SMS) queue.

4.2.2 Optmize Infrastructure

Inference Recommender types

a) Inference Recommendation Types

Default	Advanced
Endpoint Recommender	Endpoint Recommender + Inference Recommender
45 mins	2 hours
<pre># Inference Recommender job_type = 'Default'</pre>	

b) Endpoint Recommender vs Inference Recommender

	Endpoint Recommender	Inference Recommender
Output	list (or ranking) of prospective	Same
	instances	
	run a set of load tests.	based on a custom load test.
What you	-N/A -	your desired ML instances or a
need to do		serverless endpoint, provide a
		custom traffic pattern, and
		provide requirements for
		latency and throughput

c) How to start

d) Sample Recommender output

4.2.3 Optmize Costs

Inference Recommender types

Option	Description	Best For	Cost Savings	Example Use Case
Spot Instances	Spare EC2 capacity at lower prices; can be interrupted	Interruptible workloads	Up to 90% vs On- Demand	Data preprocessing or batch processing
On-Demand Instances	Pay-per-use with no long-term commitment	Short-term, unpredictable workloads	None (baseline)	Real-time inference services
Reserved Instances	Discounted rates for 1 or 3- year commitments	Steady-state, predictable workloads	Up to 72% vs On- Demand	Long-running ML training jobs
Capacity Blocks	Reserved capacity for AWS Outposts or Wavelength Zones	Ensuring capacity during peak demand	Varies	ML workloads in <mark>on- premises environments</mark>
Savings Plans for SageMaker	Commit to a specific compute usage for 1 or 3 years	Flexible, recurring SageMaker usage	Up to 64% vs On- Demand	Regular model training and deployment

4.3 Secure AWS ML Resources

4.3.1 Securing ML Resources

Access Control using IAM

a) Roles vs Policies

Category	Туре	Description	Key Responsibilities/Features
	Data Scientist/ ML Engineer	Provides access for experimentation	Access to S3, Athena , SageMaker Studio
User Roles	Data Engineer	Provides access for data management	Access to S3, Athena, AWS Glue, EMR
	MLOps Engineer	Provides access for ML operations	Access to SageMaker, CodePipeline, CodeBuild, CloudFormation, ECR, Lambda, Step Functions
	SageMaker Execution	Allows SageMaker to perform tasks on behalf of users	General SageMaker operations
Service	Processing Job	Specific to SageMaker processing jobs	Data processing tasks
Roles	Training Job	Specific to SageMaker training jobs	Model training tasks
	Model	Specific to SageMaker model deployment	Model deployment and hosting
IAM Policies	Identity-based	Attached to IAM users, groups, or roles	Define actions allowed <mark>on specific resources</mark>
	Resource-based	Attached to resources (e.g., S3 buckets)	Control who can access specific resources

ID	Purpose	Key Permissions	Resource Scope	Notes
1	Least privilege access for ML workflow	 SageMaker: CreateTrainingJob, CreateModel S3: GetObject, PutObject ECR: BatchGetImage CloudWatch: PutMetricData "Effect": "Allow", "Action": ["sagemaker:CreateTrainingJob", "sagemaker:DescribeTrainingJob", "sagemaker:StopTrainingJob"], "Resource": "*"] 	Specific ARNs for each service	Adheres to principle of least privilege
2	Read metadata of ML resources	 machinelearning:Get* machinelearning:Describe* "Version": "2012-10-1/", "statement": {{ "Effect": "Allow", "arction": [Specific MLModel ARNs for Get* (all) for Describe*	Allows reading metadata but not modifying resources
3	Create ML resources	 machinelearning:CreateDataSourceFrom* machinelearning:CreateMLModel machinelearning:CreateBatchPrediction machinelearning:CreateEvaluation 	* (all)	Cannot be restricted to specific resources
4		 machinelearning:CreateRealtimeEndpoint machinelearning:DeleteRealtimeEndpoint machinelearning:Predict 	Specific	Allows management of endpoints for a specific model

Detailed examples

1. identity-based policy used in a machine learning use case

```
"Version": "2012-10-17",
                                         "Effect": "Allow",
"Action": [
"Statement": [
                                         "cloudwatch:PutMetricData"
"Effect": "Allow",
                                         "Resource": "*",
"Action": [
                                         "Condition": {
"s3:GetObject",
                                         "StringEquals": {
"s3:PutObject"
                                         "cloudwatch:namespace": "SageMaker"
"Resource": [
"arn:aws:s3:::ml-data-bucket/*"
                                         "Effect": "Allow",
                                         "Action": [
"Effect": "Allow",
                                         "logs:CreateLogGroup",
"Action": [
                                         "logs:CreateLogStream",
"sagemaker:CreateTrainingJob",
                                         "logs:PutLogEvents"
                                        ],
"Resource": [
'sagemaker:DescribeTrainingJob",
'sagemaker:StopTrainingJob"
                                         "arn:aws:logs:*:*:log-group:/aws/sagemaker/*"
```

2. Allow users to read machine learning resources metadata

```
"Version": "Z012-10-17",
"Statement": {{
    "Effect": "Allow",
    "Action": [
        "machinelearning:Get""
],

"Resource": [
    "arn:aws:machinelearning:us-east-1:5555555555:mlmodel/-ML-5555"
    "arn:aws:machinelearning:us-east-1:6666666666:mlmodel/-ML-6666"
    "arn:aws:machinelearning:us-east-1:777777777777777mlmodel/-ML-7777"
    "arn:aws:machinelearning:us-east-1:88888888888mlmodel/-ML-8888"
    "arn:aws:machinelearning:us-east-1:5555555555555mlmodel/-ML-5555"
]
},
{
    "Effect": "Allow",
    "Action": [
        "machinelearning:Describe"*
],
    "Resource": [
        """
],
    "Resource": [
        """
]
```

3. Allow users to create machine learning resources

```
"Version": "2012-10-1/",

"Statement": [{

    "Effect": "Allow",

    "Action": [

    "machinelearning:CreateDataSourceFrom*",
    "machinelearning:CreateMLModel",
    "machinelearning:CreateBatchPrediction",
    "machinelearning:CreateEvaluation"
    ],

"Resource": [
"""

1
```

4. Allow users to create /delete real-time endpoints and perform real-time predictions on an ML model

```
"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Action": [

"machinelearning:CreateRealtimeEndpoint",

"machinelearning:DeleteRealtimeEndpoint",

"machinelearning:Predict"

],

"Resource": [

"arn:aws:machinelearning:us-east-1:5555555555555mlmodel/-ML-5555']
```

Detailed examples

To ensure access only from VPC, use VPC Endpoints for:

- S3
- CloudWatch Logs
- SageMaker runtime
- SageMaker API

4.3.3 SageMaker Compliance & Governance

AWS Services for Compliance and Governance

Service	Purpose	Key Features	ML-Related Use Case
AWS Artifact	Provide on-demand access to AWS compliance reports and agreements	Self-service portalAccess to compliance documentation	Access HIPAA compliance reports for healthcare ML projects
AWS Config	Monitor & <mark>Evaluate</mark> AWS resource configurations	Continuous monitoringAutomated configuration evaluation	Monitor SageMaker resource configurations for compliance with security policies
Audit Manager	Continuously audit AWS usage for risk and compliance assessment	Streamlined auditing process, against regulations and standards	Assess compliance of ML workflows with industry standards
Security Hub	View of security alerts and posture	Centralized security alerts	Monitor security posture across ML workflows and resources
Amazon Inspector	Automated vulnerability management	Continuous scanning for vulnerabilities	Scan container images in ECR for ML model deployments
AWS Service Catalog	Create and manage catalogs of pre-approved resources	Governance-compliant resource catalogs	Create catalogs of compliant SageMaker resources and ML models

Amazon SageMaker Governance Tools Summary

Tool	Purpose	Key Features
SageMaker Role Manager	Simplify access control	Define minimum permissions for ML activitiesQuick setup & Streamlined access management
SageMaker Model Cards	Document and share model information	Record intended usesDocument risk ratings
SageMaker Model Dashboard	Provide overview of models	Unified view of all models in accountMonitor model behavior in production
SageMaker Assets	Streamline ML asset management	Publish ML and data assetsShare assets across teams
Model Governance and Explainability	Ensure compliance and transparency	Protect data and workloadsEnsure compliance with standardsEnhance model interpretability

Compliance certifications and regulatory Frameworks

Governance /Framework	Description	AWS Services to Use
ISO 27001	Information Security Management System standard	AWS ConfigAWS Security Hub
SOC 2	Service Organization Control for service organizations	AWS ArtifactAWS ConfigSageMaker Model Cards
PCI-DSS	Payment Card Industry Data Security Standard	AWS ConfigAWS WAFAmazon Inspector
HIPAA	Health Insurance Portability and Accountability Act	AWS ArtifactAWS Security HubAWS Config
FedRAMP	Federal Risk and Authorization Management Program	AWS CloudTrailAWS Config

Note: AWS Config common to all

4.3.3 Security Best Practices for CI/CD Pipelines

CI/CD pipeline stages

Best practice: When

,

CI/CD Stage	Security Tools/Practices		
	• pre-commit hooks (scripts)		
	• IDE plugins to		
Pre-Commit	o analyze code, detect issues		
	o provide recommendations for improvements.		
	o handle linting, formatting, beautifying, and securing code.		
Commit	Static Application Security Testing (SAST),		
Build	Software Composition Analysis (SCA)		
	o identifies the open-source packages used in code		
	o defining vulnerabilities and potential compliance-based issues		
	 scan infrastructure as code (IaC) manifest files 		
Test	Dynamic Application Security Testing (DAST)		
	• Interactive Application Security Testing (IAST)		
	 Combine the advantages of SAST and DAST tools. 		
Deploy	Penetration testing		
Monitor	Red/Blue/Purple teaming		

4.3.4 Implement Security & Compliance w/ Monitoring, Logging and Auditing

CloudTrail for ML Resource Monitoring and Logging

Use Case	Description	Benefits
Compliance Auditing	Generate audit trails using CloudWatch Logs and CloudTrail	Demonstrate compliance with regulationsMeet internal policy requirements
Resource Optimization	Monitor resource utilization metrics	Optimize ML workloadsPrevent resource abuse and DoS attacks
Incident Response	Investigate and respond to security incidents	Identify unauthorized access attemptsDetect and respond to data breaches
Anomaly Detection	Implement ML models to detect unusual patterns	Identify potential security threatsDetect deviations in monitoring data

SageMaker Security Troubleshooting and Debugging Summary

Tool/Feature	Purpose	Key Information Provided	Use Case
CloudTrail Logs	Monitor API calls	Caller identityTimestampsAPI details	Identify unauthorized API calls to SageMaker resources
Data Event Logs	Monitor data plane operations	Input/output data for training and inference	Verify if unauthorized entities accessed model data
IAM Policies	Manage access control	Permissions granted for SageMaker resources and operations	Identify overly permissive policies, ensure least privilege
VPC Flow Logs	Monitor network traffic	Network traffic to/from SageMaker resources	Identify suspicious IP addresses or communication patterns
Encryption Settings	Ensure data protection	Encryption status (at rest and in transit)AWS KMS key configurations	Verify proper data encryption and key management
AWS PrivateLink	Enhance network security	Private connections between VPC and SageMaker	Ensure traffic remains within AWS network