

Fluid Transport

Enrichment Course in Biology

Dr Denny CW Ma

Water Content of the Body

Percent of Water in the Human Body

Water Content of the Body

Water Content of the Body

Fluid Transport

Plasma Membrane

Plasma Membrane

- Separates intracellular fluids (ICF) from extracellular fluids (ECF)
- Selectively permeable → regulates the traffic of molecules into & out of the cell
- Glycocalyx:
 - Coating on external surface
 - Specific biological markers (carbohydrate moieties of membrane glycolipids & glycoproteins)
 - For cell-cell recognition, communication & intercellular adhesion

Fluid Mosaic Model

Lipid bilayer contains phospholipids, glycolipids & cholesterol

Phospholipid Molecules

- **Head** (phosphate portion) relatively soluble in water (polar, hydrophilic)
- Tails (lipid) relatively insoluble (non-polar, hydrophobic)

Membrane Proteins

Classes of Membrane Proteins

- Integral proteins -- embedded in the membrane
- Peripheral proteins -- loosely bound to the inner or outer surface
- Anchored proteins

Membrane Permeability

Membrane Permeability

High: Lipid-soluble (non-polar) molecules

Medium: Polar, small, uncharged molecules

Low: Polar, large molecules & lons (charged)

gases	O _z CO _z NO	
polar molecules, small & uncharged	ethan ol	
water	H₂O	
polar molecules, large & uncharged	glucose	
ions	Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Cl ⁻ , HCO, , HPO ₄ ²	
polar molecules, charged	amino acids, nucleotides, sugar phosphates	

Membrane Permeability

High: Lipid-soluble (non-polar) molecules

Medium: Polar, small, uncharged molecules

Low: Polar, large molecules & lons (charged)

Passive Transport: Diffusion

Simple diffusion –

Lipid-soluble & nonpolar substances

(e.g. gas molecules)

diffuse directly through the lipid bilayer

Simple diffusion of fat-soluble molecules directly through the phospholipid bilayer

Passive Transport: Diffusion

Facilitated diffusion –

<u>Lipid-insoluble</u> & <u>small</u> substances

(e.g. metal ions)

diffuse through channel proteins

Channel-mediated facilitated diffusion through a channel protein; mostly ions selected on basis of size and charge

Passive Transport: Diffusion

Facilitated diffusion –

Large, polar molecules (e.g. simple sugars)

combine with protein carriers

Carrier-mediated facilitated diffusion

via protein carrier specific for one chemical; binding of substrate causes transport protein to change shape

Passive Transport: Osmosis

Osmolarity – total concentration of solute particles in a solution

- Osmosis occurs when the <u>concentration</u> of a solvent is <u>different on opposite sides</u> of a membrane
- Osmosis in cells:
 - Diffusion of water across a <u>semi-permeable</u> membrane

Passive Transport: Osmosis

Passive Transport: Filtration

- Passage of water & solutes through a membrane by hydrostatic pressure
- Pressure gradient pushes solute-containing fluid from a <u>higher-pressure</u> area to a <u>lower-pressure</u> area

Active Transport

- Uses ATP to move solutes across a membrane
- Requires carrier proteins (e.g. sodium-potassium pump)

Types of Membrane Transport System

- Uniport system 1 substance is moved across a membrane
- Symport system 2 substances are moved across a membrane in the same direction
- Antiport system 2 substances are moved across a membrane in opposite directions

Active Transport (primary)

 Primary active transport – hydrolysis of ATP phosphorylates the transport protein causing conformational change

Carrier proteins allows transport of molecules against concentration gradient.

Active Transport (secondary)

 Secondary active transport – use of an exchange pump (such as the Na⁺-K⁺ pump) indirectly to drive the transport of other solutes

Vesicular Transport

 Transport of large particles & macromolecules across plasma membranes

- Exocytosis moves substance from the cell interior to the extracellular space
- Endocytosis enables large particles and macromolecules to enter the cell
- Receptor-mediated transport uses <u>clathrin-</u> <u>coated pits</u> as the major mechanism for specific uptake of macromolecules

Vesicular Transport

Exocytosis

Plasma Fluid containing dissolved solutes

Membranous vesicle

(b) Bulk-phase endocytosis (pinocytosis)

Non-Specific

Endocytosis

Molecular-Specific

Vesicular Transport

Exocytosis

How are the transport mechanisms involved in the functioning of our body systems?

Ext

Endocytosis

Molecular-Specific

Specific

Transport: Cardiovascular System

Transport: Cardiovascular System

Pressure dynamics across capillary beds

Key to pressure values:

```
HP_c at arterial end = 35 mm Hg HP_{if} = 0 mm Hg OP_{if} = 1 mm Hg HP_c at venous end = 17 mm Hg OP_c = 26 mm Hg
```

- At the arterial end of a bed, hydrostatic forces dominate (fluids <u>flow out</u>)
- At the venous end of a bed, osmotic forces dominate (fluids flow in)
- Fluids enter tissue beds > Fluid return to blood
- Excess fluid returns to blood via lymphatic system

Transport: Digestive System

Across Intestinal Wall

Transport: Renal System

Across Wall of the Renal Tubule

Transport: Respiratory System

Across Alveolar Wall

HKU LKS Faculty of Medicine The University of Hong Kong 香港大學李嘉誠醫學院