Newton's Method

Leanne Dong 01/07/2020

library(animation)
f = newton.method()

Root–finding by Newton–Raphson Method: $x^2 - 4 = 0$

xRoot–finding by Newton–Raphson Method: $x^2 - 4 = 0$

xRoot–finding by Newton–Raphson Method: $x^2 - 4 = 0$

f\$root

[1] 2.000009

Root-finding by Newton-Raphson Method: $v^2 - 1024 = 0$

Root-finding by Newton-Raphson Method: $v^2 - 1024 = 0$

Root-finding by Newton-Raphson Method: $v^2 - 1024 = 0$

Root–finding by Newton–Raphson Method: $v^2 - 1024 = 0$

f1\$root

[1] 32.00001

```
## take a long long journey
f2=newton.method(function(x) 5 * x^3 - 7 * x^2 - 40 * x + 100, 7.15, c(-6.2,7.1))
```


x
Root–finding by Newton–Raphson Method: $5x^3 - 7x^2 - 40x + 100 = 0$

x
Root–finding by Newton–Raphson Method: $5x^3 - 7x^2 - 40x + 100 = 0$

x
Root–finding by Newton–Raphson Method: $5x^3 - 7x^2 - 40x + 100 = 0$

x
Root–finding by Newton–Raphson Method: $5x^3 - 7x^2 - 40x + 100 = 0$


```
f2$root
```

```
## [1] -3.15172
## another function
ani.options(interval = 0.5)
```

xx = newton.method(function(x) exp(-x) * x, rg = c(0, 10), init = 2)

Root-finding by Newton-Raphson Method: exp(-x)x = 0

Root-finding by Newton-Raphson Method: exp(-x)x = 0

Root-finding by Newton-Raphson Method: exp(-x)x = 0

Root-finding by Newton-Raphson Method: exp(-x)x = 0

Root-finding by Newton-Raphson Method: exp(-x)x = 0

Root-finding by Newton-Raphson Method: exp(-x)x = 0

does not converge!
xx = newton.method(function(x) atan(x), rg = c(-5, 5), init = 1.5)

Root–finding by Newton–Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

Root–finding by Newton–Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

Root–finding by Newton–Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

Root–finding by Newton–Raphson Method: atan(x) = 0

Root–finding by Newton–Raphson Method: atan(x) = 0

Root-finding by Newton-Raphson Method: atan(x) = 0

xx\$root # Inf

[1] Inf