Project 3

Diego Correa

9/8/2020

Overview

Loading data

```
library(tidyverse, quietly = TRUE)
## -- Attaching packages -----
## v ggplot2 3.3.2 v purrr
                                0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1
                     v forcats 0.5.0
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
#Presidential National Toplines
url1 <- 'https://projects.fivethirtyeight.com/2020-general-data/presidential_national_toplines_2020.csv
#Presidential State Toplines
url2 <- 'https://projects.fivethirtyeight.com/2020-general-data/presidential_state_toplines_2020.csv'</pre>
#Presidential EV Probabilities
url3 <- 'https://projects.fivethirtyeight.com/2020-general-data/presidential_ev_probabilities_2020.csv'
#Presidential Scenario Analysis
url4 <- 'https://projects.fivethirtyeight.com/2020-general-data/presidential_scenario_analysis_2020.csv
url5 <- 'https://projects.fivethirtyeight.com/2020-general-data/economic_index.csv'</pre>
#Saving data into variables
dfPNT <- read.csv(file = url1)</pre>
dfPST <- read.csv(file = url2)</pre>
dfPEP <- read.csv(file = url3)</pre>
dfPSA <- read.csv(file = url4)
dfEI <- read.csv(file = url5)</pre>
```

Observing & Cleaning

```
str(dfEI)
                   735 obs. of 15 variables:
## 'data.frame':
                           2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 ...
##
   $ cycle
                    : int
                           "President" "President" "President" "President" ...
## $ branch
                    : chr "polls-plus" "polls-plus" "polls-plus" "polls-plus" ...
## $ model
                    : chr
                            "9/13/2020" "9/13/2020" "9/13/2020" "9/13/2020" ...
## $ modeldate
## $ candidate_inc : chr "Trump" "Trump" "Trump" "Trump" ...
## $ candidate_chal : chr "Biden" "Biden" "Biden" "Biden" ...
## $ candidate_3rd
                    : logi NA NA NA NA NA NA ...
##
   $ current_zscore : num 0.761 -1.979 -2.057 -3.26 0.646 ...
## $ projected_zscore: num 0.664 -1.364 -1.602 -2.665 0.718 ...
## $ projected hi
                    : num 1.336 -0.692 -0.93 -1.992 1.39 ...
## $ projected_lo
                    : num -0.00856 -2.0362 -2.27472 -3.33678 0.04533 ...
                    : chr "stock market" "spending" "manufacturing" "jobs" ...
## $ category
                   : chr "S&P 500" "Personal consumption expenditures" "Industrial production" "Non
## $ indicator
## $ timestamp
                   : chr "10:33:03 13 Sep 2020" "10:33:03 13 Sep 2020" "10:33:03 13 Sep 2020" "10:3
   $ simulations : int 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 ...
```

```
# str(dfPNT)
# str(dfPST)
# str(dfPEP)
# str(dfPSA)
```

When we look at the dataframes, we see the the modeldate and the timestamp fields are stored as character types. Additionally, the timestamp field contains multplie whitespaces. Before dumping the data into the MySQL database, we need to clean up the fields.

As the same process needs to be done to each data frame, a function was created to address preform the necessary cleansing mentioned above. We do this with the help of the lubridate package.

```
library(lubridate, quietly = TRUE)

## ## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':

## date, intersect, setdiff, union

datetime.this <- function(df){
    df$modeldate <- mdy(df$modeldate)

    df$timestamp <- str_replace_all(df$timestamp, ' {2}', ' ')

    x <- data.frame(str_split(df$timestamp, ':| ', n = 4, simplify = TRUE))

    x <- x %>%
    mutate(date = dmy(X4))

    x <- x %>%
```

```
mutate(timestamp = as_datetime(paste(date, as.integer(X1), as.integer(X2), as.integer(X3),
                                      sep = ' ')))
 df$timestamp <- x$timestamp</pre>
 return(df)
7
dfEI <- datetime.this(dfEI)</pre>
dfPST <- datetime.this(dfPST)</pre>
dfPNT <- datetime.this(dfPNT)</pre>
dfPEP <- datetime.this(dfPEP)</pre>
dfPSA <- datetime.this(dfPSA)
str(dfEI)
## 'data.frame': 735 obs. of 15 variables:
                 ## $ cvcle
                   : chr "President" "President" "President" "President" ...
## $ branch
## $ model
                   : chr "polls-plus" "polls-plus" "polls-plus" "polls-plus" ...
## $ modeldate
                   : Date, format: "2020-09-13" "2020-09-13" ...
## $ candidate_inc : chr "Trump" "Trump" "Trump" "Trump" ...
## $ candidate_chal : chr "Biden" "Biden" "Biden" "Biden" ...
## $ candidate_3rd : logi NA NA NA NA NA NA ...
## $ current_zscore : num 0.761 -1.979 -2.057 -3.26 0.646 ...
## $ projected_zscore: num 0.664 -1.364 -1.602 -2.665 0.718 ...
## $ projected hi : num 1.336 -0.692 -0.93 -1.992 1.39 ...
## $ projected_lo : num -0.00856 -2.0362 -2.27472 -3.33678 0.04533 ...
                  : chr "stock market" "spending" "manufacturing" "jobs" ...
## $ category
## $ indicator
## $ timestamp
                   : chr "S&P 500" "Personal consumption expenditures" "Industrial production" "Non
                   : POSIXct, format: "2020-09-13 10:33:03" "2020-09-13 10:33:03" ...
## $ simulations
                   : int 40000 40000 40000 40000 40000 40000 40000 40000 40000 ...
```

Connecting and storing to db

```
## <MySQLConnection:0,0>
## User: root
## Host: 35.225.135.85
## Dbname: DATA607
## Connection type: 35.225.135.85 via TCP/IP
##
## Results:
```

```
dbWriteTable(con, 'Presidential_National_Toplines', dfPNT, row.names = FALSE, overwrite = TRUE)

## [1] TRUE

dbWriteTable(con, 'Presidential_State_Toplines', dfPST, row.names = FALSE, overwrite = TRUE)

## [1] TRUE

dbWriteTable(con, 'Presidential_EV_Probabilities', dfPEP, row.names = FALSE, overwrite = TRUE)

## [1] TRUE

dbWriteTable(con, 'Presidential_Scenario_Analysis', dfPSA, row.names = FALSE, overwrite = TRUE)

## [1] TRUE

dbWriteTable(con, 'Economic_Index', dfEI, row.names = FALSE, overwrite = TRUE)

## [1] TRUE

dbListTables(con)

## [1] "Economic_Index" "Presidential_EV_Probabilities"

## [3] "Presidential_National_Toplines" "Presidential_Scenario_Analysis"

## [5] "Presidential_State_Toplines"
```

Economic Index

The Economic Index table contains economic indicators that serve as inputs to the forecast. For more information on these indicators, see this post. The economic indexes were collected from the Federal Reserve Bank Of St. Louis and the stock prices data from Yahoo Finance. This sheet contains the following additional columns:

Presidential EV Probabilities table

The Presidential EV Porbabilities table contains the forecasted chances of every possible Electoral College outcome. This table contains only one most recent day's electoral college simulations.

```
str(dfPEP)
```

```
'data.frame':
                   539 obs. of 13 variables:
##
                          2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 ...
##
   $ cvcle
   $ branch
                          "President" "President" "President" "President" ...
##
                    : chr
##
   $ model
                    : chr
                           "polls-plus" "polls-plus" "polls-plus" ...
   $ modeldate
                    : Date, format: "2020-09-13" "2020-09-13" ...
##
   $ candidate_inc : chr
                          "Trump" "Trump" "Trump" ...
##
                          "Biden" "Biden" "Biden" ...
   $ candidate_chal: chr
##
##
   $ candidate_3rd : logi NA NA NA NA NA NA ...
##
   $ evprob_inc
                    : num   0.00175   0.00178   0.00287   0.0017   0.00103   ...
##
   $ evprob_chal
                    : num
                          0.0 2.5e-05 0.0 2.5e-05 2.5e-05 0.0 2.5e-05 0.0 0.0 2.5e-05 ...
   $ evprob_3rd
                           NA NA NA NA NA ...
##
                    : logi
##
   $ total_ev
                    : int 99 98 97 96 95 94 93 92 91 90 ...
                    : POSIXct, format: "2020-09-13 10:33:03" "2020-09-13 10:33:03" ...
##
   $ timestamp
                          40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 ...
##
   $ simulations
                    : int
```

Presidential Scenario Analysis

probScenario + scale_x_date(date_labels = '%m-%Y')

The Presidential Scenario Analysis contains the forecasted chances of various possible election outcome scenarios.

```
str(dfPSA)
## 'data.frame': 1365 obs. of 12 variables:
                      ## $ cycle
## $ branch
                             "President" "President" "President" "President" ...
                       : chr
                      : chr "polls-plus" "polls-plus" "polls-plus" "polls-plus" ...
## $ model
## $ modeldate
                      : Date, format: "2020-09-13" "2020-09-13" ...
                      : chr "Trump" "Trump" "Trump" "Trump" ...
## $ candidate_inc
## $ candidate_chal
                      : chr "Biden" "Biden" "Biden" ...
## $ candidate_3rd
                      : logi NA NA NA NA NA ...
## $ scenario_id
                       : int 9 8 6 5 4 3 2 1 14 13 ...
                       ## $ probability
## $ scenario_description: chr "Biden majority (at least 50 percent of the vote)" "Trump majority (at
                       : POSIXct, format: "2020-09-13 10:33:03" "2020-09-13 10:33:03" ...
## $ timestamp
                       : int 40000 40000 40000 40000 40000 40000 40000 40000 40000 40000 ...
## $ simulations
res <- dbGetQuery(con, 'select modeldate, scenario_description, probability from
               Presidential_Scenario_Analysis;')
res$modeldate <- ymd(res$modeldate)</pre>
probScenario <- ggplot(data = res) +</pre>
 geom_line(mapping = aes(modeldate, y = probability, color = scenario_description)) +
 theme(axis.text.x = element_text(angle = 70, hjust = 1))
```


#not very pretty to look at

Presidential National Toplines

contains the final national topline on each day. Chances to win electoral votes (Biden in blue, Trump in red)

State Toplines

##		state	AVG_Turnout
##	1	California	14250000.0
##	2	Florida	10137500.0
##	3	Texas	9473148.5
##	4	New York	7698649.9
##	5	Pennsylvania	6268720.1
##	6	Ohio	5665407.5
##	7	Illinois	5630481.5
##	8	Michigan	5033399.1
##	9	North Carolina	4997414.0
##	10	Georgia	4309311.9
##	11	Virginia	4217843.5
##	12	New Jersey	3914075.2
##	13	Washington	3569748.0
##	14	Massachusetts	3339868.9
##	15	Minnesota	3057890.0
##	16	Wisconsin	3044985.1
##	17	Colorado	2922639.5

##	18	Missouri	2839082.6
##	19	Indiana	2821712.2
##	20	Arizona	2811835.5
##	21	Maryland	2811448.6
##	22	Tennessee	2599010.1
##	23	South Carolina	2212056.4
##	24	Alabama	2141237.5
##	25	Oregon	2107866.0
##	26	Louisiana	2012434.9
##	27	Kentucky	1937932.2
##	28	Connecticut	1637886.5
##	29	Iowa	1565090.0
##	30	Oklahoma	1458930.5
##	31	Utah	1225680.0
##	32	Nevada	1221675.4
##	33	Mississippi	1216265.4
##	34	Kansas	1206029.1
##	35	Arkansas	1152891.9
##	36	Nebraska	869104.5
##	37	New Mexico	814759.9
##	38	New Hampshire	765577.6
##	39	Maine	757608.5
##	40	Idaho	736384.0
##	41	West Virginia	686594.2
##	42	Montana	519365.5
##	43	Rhode Island	473773.2
##	44	Delaware	458656.2
##	45	Hawaii	431654.2
##	46	ME-1	395316.1
##	47	South Dakota	390269.0
##	48	ME-2	357086.2
##	49	North Dakota	344012.9
##	50	District of Columbia	328520.1
##	51	Vermont	321932.4
##	52	Alaska	316091.9
	53	NE-2	300398.9
##	54	NE-1	288211.0
##	55	NE-3	278142.4
##	56	Wyoming	257585.0