Data Clustering

- □ Clustering is an unsupervised learning task in ML
 - Provides an intuition about the structure of the data
 - \square Problem: Given a set of data points and a similarity measure, partition the dataset into k disjoint subsets (clusters)
 - Data points in the same cluster are similar to each other

1

K-means Clustering

- □ K-means Clustering
 - □ Simple iterative approach
 - □ The number of clusters, K, must be specified
 - □ Each cluster has a centroid (center point)
 - Each data point is assigned to the cluster with the closest centroid
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Clustering

- □ K-means Clustering
 - □ Initially, the centroids are chosen randomly
 - ☐ Typically, the centroid is the mean of the data points in the cluster and Euclidean distance is used as "closeness measure"

3

K-means Clustering: An Example Solution Solution

c

K-means Clustering: Weaknesses and Solutions

13

- □ The number of clusters needs to be known beforehand
 - □ Elbow method
- □ Sensitive to initial cluster centers
 - Compute K-means several times with different random initializations (cluster centers) and select the best result corresponding to the one with the lowest within-cluster variation.

13

