NLP ANALYTICAL METHODS

PR. RAFIC YOUNES

Plan

- Introduction
- Fonction à une seule variable
- Fonction multi-variables
- PNL avec Contraintes Égalités
- Récapitulatif

Introduction

• Problème :

$$min f(x)$$

$$s.c. x \in X$$

$$h_i(x) = 0 où i=1,...,m$$

$$g_j(x) \le 0 où i=1,...,q$$

- $f:IR^n \rightarrow IR$, $h:IR^n \rightarrow IR^m$, $g:IR \rightarrow IR^q$ continues
- X ensemble fermé
- Intérieur des contraintes d'inégalité :

$$S = \{x \in X \text{ t.q. } g(x) < 0\}$$

Introduction

1er Problème

Fonction objectif seule:

min f(x)

 $f: IR^n \rightarrow IR$

Plan

- Introduction
- Fonction à une seule variable
- Fonction multi-variables
- PNL avec Contraintes Égalités
- Récapitulatif

min f(x), $x \in IR$ Définitions :

- x^* est un **maximum local** de f s'il existe a > 0 tel que $f(x^*) \ge f(x)$ pour tout $x \in]x^*-a,x^*+a[$
- x^* est un **minimum local** de f s'il existe a > 0 tel que $f(x^*) \le f(x)$ pour tout $x \in]x^*-a,x^*+a[$
- L'intervalle]x*-a,x*+a[est appelé un voisinage de x*


```
x^* est un maximum local strict de f s'il existe a > 0 tel que : f(x^*) > f(x) pour tout x \in ]x^*-a,x^*+a[
```

 x^* est un **minimum local strict** de f s'il existe a > 0 tel que : $f(x^*) < f(x)$ pour tout $x \in]x^*-a,x^*+a[$

x* est un **maximum global** de f(x) si : $f(x^*) \ge f(x)$ pour tout $x \in IR$

x* est un minimum global de f(x) si : $f(x^*) \le f(x) \text{ pour tout } x \in IR$ extremum : un minimum ou un maximum.

 Un point x où la tangente est horizontale, c'est-à-dire tel que f'(x)=0, est appelé un point critique ou point stationnaire.

Théorème de Fermat :

 Si une fonction continue f possède un extre mum local en x*, et si f'(x*) existe, alors : f '(x*) = 0.

La condition f'(x*) = 0 est une **condition nécessaire d'optimalité** pour une fonction différentiable.

Attention:

ce n'est pas une condition suffisante.

Rappel:

Si $P \Rightarrow Q$, alors P est suffisante et Q est nécessaire.

$$x^*$$
 optimal \Rightarrow $f'(x^*) = 0$

mais pas un maximum, ni un minimum...

Test de premier ordre :

- Soit une fonction différentiable f, et x* un point critique. S'il existe a > 0 tel que
 - $f'(x) > 0 si x^*-a < x < x^*$
 - $f'(x) < 0 si x^* < x < x^*+a$
- Alors x* est un maximum local de f.
- Soit une fonction différentiable f, et x* un point critique.
 S'il existe a > 0 tel que
 - $f'(x) < 0 si x^*-a < x < x^*$
 - $f'(x) > 0 si x^* < x < x^* + a$
- Alors x* est un minimum local de f.

• Soit
$$f(x) = x^3 + 6x^2 + 9x + 8$$

•
$$f'(x) = 3 x^2 + 12 x + 9 = 3(x+3)(x+1)$$

- Points critiques : $x_1 = -3$ et $x_2 = -1$
- Signes de f '(x):

- x₁ maximum local
- x₂ minimum local

2/13/202

Test de premier ordre :

 Condition suffisante d'optimalité d'un point critique.

 Inconvénient : il faut de l'information sur f(x) à d'autres points que le point critique.

Test de second ordre:

- Si la fonction f possède une dérivée seconde continue dans un voisinage d'un point critique x, alors :
 - f''(x*) < 0 est une condition suffisante pour que x* soit un maximum local, et
 - $f''(x^*) > 0$ est une condition suffisante pour que x^* soit un minimum local.

- Soit $f(x) = x^3 + 6x^2 + 9x + 8$
- $f'(x) = 3 x^2 + 12 x + 9 = 3(x+3)(x+1)$
- Points critiques : $x_1 = -3$ et $x_2 = -1$

$$f''(x) = 6 x + 12$$

- $f''(-3) = -6 < 0 \Rightarrow x_1 \text{ maximum local}$
- $f''(-1) = 6 > 0 \Rightarrow x_2 \text{ minimum local}$

Plan

- Introduction
- Fonction à une seule variable
- Fonction multi-variables
- PNL avec Contraintes Égalités
- Récapitulatif

Rappels:

- Soit f:IRⁿ→ IR deux fois continûment différentiable sur une sphère ouverte S centrée en x.
- Pour tout d tel que x+d∈S, il existe 0≤ε≤1 tel que :
- $f(x+d)=f(x) + d^{T}\nabla f(x) + \frac{1}{2} d^{T}\nabla^{2}f(x+\epsilon d) d.$
- Pour tout d tel que $x+d \in S$, $f(x+d) = f(x) + d^{T}\nabla f(x) + \frac{1}{2} d^{T} \nabla^{2}f(x) d + o(||d||^{2})$

Conditions nécessaires d'optimalité

 Soit x* un minimum local de f: IRⁿ→ IR. Si f est continûment différentiable sur un ouvert S contenant x*, alors

$$\nabla f(x^*) = 0.$$

• Si, de plus, f est deux fois continûment différentiable sur S, alors

 $\nabla^2 f(x^*)$ est semi définie positive $d^T \nabla^2 f(x^*)$ $d \ge 0$ pour tout $d \in \mathbb{R}^n$

Preuve:

- Soit une direction arbitraire d ∈ IRⁿ.
- Considérons la fonction $g(\alpha) = f(x^* + \alpha d)$

$$rac{oldsymbol{dg}}{oldsymbol{dlpha}}(0) = oldsymbol{d^T
abla f(x^*)}$$

$$\frac{dg}{d\alpha}(0) = \lim_{\alpha \downarrow 0} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha} \ge 0$$

et donc
$$d^T \nabla f(x^*) \geq 0$$

- Même raisonnement avec –d
- Considérons la fonction $g(\alpha) = f(x^* \alpha d)$

$$rac{doldsymbol{g}}{dlpha}(0) = -d^{oldsymbol{T}}
abla f(x^{oldsymbol{*}})$$

$$\frac{dg}{d\alpha}(0) = \lim_{\alpha \downarrow 0} \frac{f(x^* - \alpha d) - f(x^*)}{\alpha} \ge 0$$

et donc
$$-d^T \nabla f(x^*) \geq 0$$
 ou $d^T \nabla f(x^*) \leq 0$

• Comme $d^T \nabla f(x^*) = 0$ pour tout d, on a bien $\nabla f(x^*) = 0$

 Si f est deux fois continûment différentiable, on choisit une direction d arbitraire. Pour tout $\alpha \in IR$, le développement en série de Taylor donne:

$$f(x^* + \alpha d) - f(x^*) = \alpha \nabla f(x^*)^T d$$

$$+ \frac{\alpha^2}{2} d^T \nabla^2 f(x^*) d$$

$$+ o(\alpha^2)$$

• Comme $\nabla f(x^*) = 0$, on obtient pour α suffis amment petit

$$0 \leq \frac{f(x^* + \alpha d) - f(x^*)}{\alpha^2}$$

$$= \frac{1}{2}d^T\nabla^2 f(x^*)d + \frac{o(\alpha^2)}{\alpha^2}$$

• Si $\alpha \rightarrow 0$, on obtient

$$d^T \nabla^2 f(x^*) d \ge 0$$
 cqfd

Conditions suffisantes d'optimalité

 Soit f: IRⁿ→ IR une fonction deux fois continûmen t différentiable sur un ouvert S. Si x* ∈ S satisfait I es conditions

$$\nabla f(x^*) = 0$$

et

 $\nabla^2 f(x^*)$ est définie positive

 $d^{\mathsf{T}} \nabla^2 f(x^*) d > 0$ pour tout $d \in \mathbb{R}^{n_r} d \neq 0$

Alors x* est un minimum local strict de f

Plan

- Introduction
- Fonction à une seule variable
- Fonction multi-variables
- PNL avec Contraintes Égalités
- Récapitulatif

PNL avec Contraintes Egalités

• Problème :

$$min f(x)$$

$$s.c. x \in X$$

$$h_i(x) = 0 où i=1,...,m$$

$$g_j(x) \le 0 où i=1,...,q$$

- f: $IR^n \rightarrow IR$, h: $IR^n \rightarrow IR^m$, g: $IR \rightarrow IR^q$ continues
- X ensemble fermé
- Intérieur des contraintes d'inégalité :

$$S = \{x \in X \text{ t.q. } g(x) < 0\}$$

PNL avec Contraintes Egalités

• Problème :

$$h_i(x) = 0 \text{ où } i=1,...,m$$

• $f:IR^n \rightarrow IR$, $h:IR^n \rightarrow IR^m$,

Introduction

Idée : transformer le problème avec contraintes en un problème sans contrainte.

- Plusieurs approches :
 - Par Élimination.
 - Fonction de Pénalité.
 - Théorie des multiplicateurs de Lagrange.
 - Lagrangien Pénalisé.
 - **—**

- Méthode d'Élimination
- Fonction de Pénalité
- Théorie de Lagrange
- Lagrangien Pénalisé

2 2 2 5 x 2 = 12 2 + 1 = Q

- Les contenants (canettes) ont une forme cylindrique de hauteur h et de rayon r.
- Afin de réduire, on veut minimiser la surface d'aluminium nécessaire à la construction des contenants.
- Cependant, ils doivent s'assurer qu'un contenant ait un volume de 128π cm³.
- Trouver les dimensions qui réalise nt l'objectif et satisfait la contrainte ?

- Objectif: Min $S(r,h) = 2 \pi r^2 + 2 \pi r h$
- Contrainte : volume = $\pi r^2 h = 128 \pi$

$$h = \frac{128 \, \text{M}}{\text{M} \, r^2} \quad \Rightarrow \quad h = \frac{128}{r^2}$$

• Substituer ces expressions dans l'objectif:

$$S(r,h) = 2 \pi r^2 + 2 \pi r h$$

$$S(r) = 2 \pi r^2 + 2 \pi r \left(\frac{128}{r^2}\right)$$

$$S(r) = 2 \pi r^2 + \frac{256 \pi}{r}$$

Un point optimale est obtenu lorsque :

$$S'(r) = 0$$

$$S'(r) = \left(2 \operatorname{sr}^2 + \frac{256 \operatorname{sr}}{r}\right)' \Rightarrow S'(r) = 4 \operatorname{sr} r - \frac{256 \operatorname{sr}}{r^2} \Rightarrow r = 4$$

Il faut s'assurer qu'on retrouve bien un minimum

en ce point :
$$S''(r) = \left(4 \, \pi r - \frac{256 \, \pi}{r^2}\right)' \Rightarrow S''(r) = 4 \, \pi + \frac{512 \, \pi}{r^3}$$

 Pour r > 0, la dérivée seconde est toujours positive. La surface est minimisée lorsque :

$$r = 4$$
 et $h = 8$.

- On prouve uniquement le cas linéaire :
- (P1) min f(x) s.c. Ax=b
- A ∈ IR^{mxn} de rang plein, b ∈ IR^m
- On suppose sans perte de généralité que les m premières colonnes de A sont linéairement indépendants.

A = (B R) avec $B \in IR^{mxm}$ inversible, $R \in IR^{mx(n-m)}$

 $x = (x_R x_R)^T$ avec $x_R \in IR^m x_R \in IR^{mx(n-m)}$

(P2) min
$$f(x_B,x_R)$$
 s.c. $Bx_B+Rx_R=b$

• Pour vérifier les contraintes, il faut que

$$x_B = B^{-1}(b-Rx_R)$$

(P3) min
$$F(x_R) = f(B^{-1}(b-Rx_R), x_R)$$
 s.c. $x_R \in IR^{mx(n-m)}$

• Si (x_B^*, x_R^*) est solution optimale de (P1), x_R^* est solution optimale de (P3), problème sans contrainte.

$$0 = \nabla F(x_R^*) = -R^T B^{-T} \nabla_B f(x^*) + \nabla_R f(x^*)$$

où

- $-\nabla_B f$ est le gradient de f par rapport à x_B
- $-\nabla_R$ f est le gradient de f par rapport à x_R .

•
$$0 = \nabla F(x_R^*) = -R^T B^{-T} \nabla_B f(x^*) + \nabla_R f(x^*)$$

- Posons $\lambda^* = -B^{-T}\nabla_B f(x^*)$
- Donc :

$$B^{T}\lambda^{*} + \nabla_{B}f(x^{*}) = 0$$

$$R^{T}\lambda^{*} + \nabla_{B}f(x^{*}) = 0$$

c'est-à-dire

$$A^T\lambda^* + \nabla f(x^*) = 0$$

- C'est la condition nécessaire du premier ordre pour le cas linéaire.
- La condition du second ordre est admise sans preuve.

PNL avec Contraintes Egalités

- Méthode d'Élimination
- Fonction de Pénalité
- Théorie de Lagrange
- Lagrangien Pénalisé

Par pénalité

Soit le problème P

min
$$f(x)$$

s.c. $h(x) = 0$.

Pour k=1,2,3..., on définit

$$F^k(x) = f(x) + \frac{k}{2} ||h(x)||^2$$

où

- x* est minimum local de P.
- $\alpha \in \mathbb{R}, \alpha > 0$

Par pénalité

• Le terme
$$\frac{k}{2}||h(x)||^2$$
 est le terme de pénalité

• La suite $\nabla F^k(x^k)$ converge donc vers x^*

$$0 = \nabla F^{k}(x^{k})$$

= $\nabla f(x^{k}) + k \nabla h(x^{k})h(x^{k})$

- x^k est à l'intérieur de S pour k suffisamment grand.
- x^k est solution du problème sans contraintes pour k suffisamment grand.

PNL avec Contraintes Egalités

- Méthode d'Élimination
- Fonction de Pénalité
- Théorie de Lagrange
- Lagrangien Pénalisé

Lagrange

- Joseph Louis Lagrange
- Né à Turin en 1736
- Mort à Paris 1813

Définition:

Soit L:IR^{n+m}→IR

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x)$$

Fonction lagrangienne

Condition du premier ordre

$$\nabla_{\mathbf{x}} \mathsf{L}(\mathbf{x}^*, \lambda^*) = 0$$

Contraintes

$$\nabla_{\lambda} L(x^*, \lambda^*) = 0$$

Condition du second ordre

$$y^T \nabla_{xx}^2 L(x^*, \lambda^*) y \ge 0 \quad \forall y \in V(x^*)$$

Fonction lagrangienne

Exemple:

min
$$\frac{1}{2}$$
 ($x_1^2 + x_2^2 + x_3^2$)
s.c. $x_1 + x_2 + x_3 = 3$

$$L(x_1, x_2, x_3, \lambda) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) + \lambda(x_1 + x_2 + x_3 - 3)$$

$$\frac{\partial L}{\partial x_i} = x_i + \lambda \qquad i = 1, 2, 3$$

$$\frac{\partial L}{\partial \lambda} = x_1 + x_2 + x_3 - 3$$

Conditions suffisantes

Conditions suffisantes du second ordre

- Soient f:IRⁿ→IR et h:IRⁿ→IR^m deux foix contin ûment différentiables.
- Soient x*∈IRⁿ et λ*∈IR^m tels que
 - $\nabla_{\mathbf{x}} \mathsf{L}(\mathbf{x}^*, \lambda^*) = 0$
 - $\nabla_{\lambda} L(x^*, \lambda^*) = 0$
 - $-y^{\mathsf{T}}\nabla^{2}_{xx}\mathsf{L}(\mathsf{x}^{*},\lambda^{*})\mathsf{y}>0\ \forall \mathsf{y}\ \mathsf{tel}\ \mathsf{que}\ \nabla\mathsf{h}(\mathsf{x}^{*})^{\mathsf{T}}\mathsf{y}=0$
- Alors x* est une minimum local strict de f s.c. h(x)=0.

PNL avec Contraintes Egalités

- Méthode d'Élimination
- Fonction de Pénalité
- Théorie de Lagrange
- Lagrangien Pénalisé

Lagrangien pénalisé

Soit le problème

min
$$f(x)$$

s.c. $h(x) = 0$, $x \in X$
avec $f:IR^n \rightarrow IR$, $h:IR^n \rightarrow IR^m$ et $X \subseteq IR^n$.

- En général, on aura $X = IR^n$.
- On considérera x* et λ* qui vérifient les c onditions suffisantes d'optimalité du seco nd ordre.

Lagrangien pénalisé

Définition

• Soit $c \ge 0$. La fonction $L_c: IR^n \times IR^m \rightarrow IR$ $L_c(x,\lambda) = f(x) + \lambda^T h(x) + (c/2) ||h(x)||^2$

est appelée le Lagrangien pénalisé de f.

Lagrangien pénalisé

Idée

- Deux mécanismes, basés sur la minimisation sans contraintes de $L_c(.,\lambda)$, donnent des points proches de x^* .
- 1. Rendre λ le plus proche possible de λ^* . Car x* est un minimum local strict de $L_c(.,\lambda^*)$.
- 2. Rendre c très grand.

Le coût des points non admissibles sera alors très é levé, et le minimum de $L_c(.,\lambda)$ sera quasi-admissible. De plus, si x est quasi-admissible, on a $L_c(x,\lambda) \approx f(x)$.

Exemple

min
$$f(x) = \frac{1}{2} (x_1^2 + x_2^2)$$

s.c. $x_1 = 1$

- Solution optimale : $x^*=(1 \ 0)^T$
- Multiplicateur : $\lambda^* = -1$
- En effet

$$\nabla f(x^*) + \lambda^* \nabla h(x^*) = x^*_1 + x^*_2 + \lambda^* = 0$$

On a

$$L_c(x,\lambda) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1-1) + (c/2)(x_1-1)^2$$

Exemple

$$L_c(x,\lambda) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1-1) + (c/2)(x_1-1)^2$$

- $\partial L_c(x,\lambda) / \partial x_1 = x_1 + \lambda + c(x_1-1)$
- $\partial L_c(x,\lambda) / \partial x_2 = x_2$
- $\partial L_c(x,\lambda) / \partial x_1 = 0 \Leftrightarrow x_1 = (c-\lambda)/(c+1)$
- $\partial L_c(x,\lambda) / \partial x_2 = 0 \Leftrightarrow x_2 = 0$
- Si $\lambda = \lambda^* = -1$, on a $x_1 = x^*_1 = 1$ pour tout c > 0
- Si $c \rightarrow \infty$, $x_1 \rightarrow x_1^* = 1$ pour tout λ

RECAPITULATIF

Fonction des pénalités :

$$\Phi(x,k) = f(x) + \frac{k}{2} \cdot \sum_{i=1}^{m} [h_i(x)]^2$$

Lagrangien Augmenté :

$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i \cdot h_i(x)$$

Lagrangien Pénalisé :

$$L_k(x,\lambda) = f(x) + \sum_{i=1}^m \lambda_i \cdot h_i(x) + \frac{k}{2} \cdot \sum_{i=1}^p [h_i(x)]^2$$