AKAD
Bachelor of Science (Wirtschaftsinformatik)
Modulzusammenfassung

BWL06

Formelsammlung

Daniel Falkner Rotbach 529 94078 Freyung daniel.falkner@akad.de 28. September 2013

Inhaltsverzeichnis

1	Inve	Investitionsrechnung bei sicheren Erwartungen - statische Verfahren					
	1.1	Kostenvergleichsrechnung				1	
			es Kapital			1	
			rische Zinsen			1	
			orische Abschreibungen			1	
						1	
			stückkosten			1	
	1.2				1		
						1	
	1.3					1	
		_	tät			2	
	1.4					2	
		1.4.1 Amortisat	$\overline{\text{tionsdauer}}$			2	
			tionsdauer Durchschnittsme			2	
		1.4.3 Amortisat	tionsdauer Kummulationsm	$ethode \dots$		2	
2	Inve	Investitionsrechnung bei sicheren Erwartungen - dynamische Verfah-					
	ren					3	
2.1			n einen plausiblen Zinssatz			3	
		~ ~	r Kapitalkostensatz WACC			3	
		_	talkosten			S	
	2.2	Abzinsungsfaktor				S	
	2.3	·				ુ	
	2.4	-	ode			ુ	
			ng von Kapitalwerten			3	
	2.5					4	
			$\operatorname{enfaktor}$			4	
		2.5.2 Annuität	$Gesamt formel \dots \dots$			4	

1 Investitionsrechnung bei sicheren Erwartungen - statische Verfahren

1.1 Kostenvergleichsrechnung

Wähle diejenige Investition mit den geringsten durchschnittlichen Gesamtkosten.

1.1.1 gebundenes Kapital

$$\oslash$$
 gebundenes Kapital = $\frac{Anschaffungswert + Restwert}{2}$

1.1.2 kalkulatorische Zinsen

⊘ kalkulatorische Zinsen = Kalkulationszinssatz * ⊘ gebundenes Kapital

1.1.3 Kalkulatorische Abschreibungen

$$\mbox{Kalkulatorische Abschreibungen} = \frac{Anschaffungswert - Restwert}{Nutzungsdauer}$$

1.1.4 Kosten

$$K = K_f + K_v$$

1.1.5 variable Stückkosten

$$k_v = \frac{K - K_f}{x}$$

1.2 Gewinnvergleichsrechnung

Wähle diejenige Alternative mit dem höchsten (durchschnittlichen Gewinn).

1.2.1 Gewinn

 $Gewinn = Erl\ddot{o}s - Kosten$

1.3 Rentabilitätsvergleichsrechnung

Realisiere jede Investition, die eine geforderte Mindestrentabilität erwirtschaftet.

1.3.1 Rentabilität

$$\mbox{Rentabilit"at} = \frac{ \oslash Gewinn + \oslash kalkulatorische Zinsen }{ \oslash gebundenes Kaputal} * 100\%$$

1.4 Amortisationsrechnung

Realisiere Investitionen, soweit ihre Amortisationsdauer geringer ist als eine maximal zulässige (subjektiv vorgegebene) Dauer ¹

1.4.1 Amortisationsdauer

$$\label{eq:amortisations} \mbox{Amortisations dauer} = \frac{Urpr\ddot{u}nglich\ eingesetztes\ Kapital}{j\ddot{a}hrliche\ Kapitalwiedergewinnung\ aus\ Zahlungsbersch\"{u}ssen}$$

1.4.2 Amortisationsdauer Durchschnittsmethode

$$\label{eq:amortisations} \mathbf{Amortisations dauer} = \frac{Urpr\ddot{u}nglicheingesetztesKapital}{\oslash Gewinn + \oslash kalkulatorischeEK - Zinsen + \oslash Abschreibungen}$$

1.4.3 Amortisationsdauer Kummulationsmethode

Amortisationsdauer = Anzahl der Jahre vor der vollständigen Amortisation +

<u>zur Amortisation fehlender Betragam Ende der letzten Periodeohne vollständige Amortisation</u>

<u>Nettozahlung im Jahr der Amortisation</u>

Formal
$$n^* = (n^+ - 1) + \frac{A_0 + \sum_{t=1}^{n^+ - 1} E - A}{(E - A)_{n^+}}$$

¹ Diese Dauer wird in Abhängigkeit von der betrachteten Investition (Risiko) und der Liquiditätslage des Unternehmens festgelegt

2 Investitionsrechnung bei sicheren Erwartungen - dynamische Verfahren

2.1 Anforderungen an einen plausiblen Zinssatz

2.1.1 gewogener Kapitalkostensatz WACC

gewogener Kapitalkostensatz WACC
$$^2 = \frac{EK*i_{EK} + FK*i_{FK}}{EK + FK}$$

 $mit\ EK = Eigenkapital,\ FK = Fremdkapital,$

 $i_{EK} = Zinssatz$ für das EK (=Mindestrenditeforderung des Eigenkapitalgebers)

 $i_{FK} = Zinssatz f \ddot{u}r das FK (=Kosten des Fremdkapitals)$

2.1.2 Eigenkapitalkosten

Eigenkapitalkosten = risikoloser Zins + Risikoprämie

2.2 Abzinsungsfaktor

$$(1+i)^{-n}$$

2.3 dynamische Amortisationsrechnung

Amortisationsdauer = Anzahl der Jahre vor der vollständigen Amortisation 3 + $\frac{Summe\ der\ auf\ den\ Zeitpunkt\ t_0\ diskontierten\ Zahlungen\ bis\ zur\ lezten\ Periode\ ohne\ vollstndige\ Amortisation}{auf\ t_0\ diskontierte\ Nettozahlung\ im\ Jahr\ der\ Amortisation}$

2.4 Kapitalwertmethode

2.4.1 Ermittlung von Kapitalwerten

$$C_0 = \sum_{t=1}^n (E_t - A_t) * (1+i)^{-1} \text{ bzw.}$$

$$C_0 = -A_0 + \sum_{t=1}^n (E_t - A_t) * (1+i)^{-1}$$

$$C_0 = \sum_{t=1}^{n} \frac{Z_t}{(1+i)^t}$$

² WACC = weighted average cost of capital

 $^{^3}$ aus auf den Zeitpunkt t_0 diskontierten Zahlungen

$$C_0 = Z_0 + \sum_{t=1}^{n} \frac{Z_t}{(1+i)^t}$$

 $\mathcal{C}>0$ Ertrag der Investition übersteigt den Kalkulationszinssatz = Vermögenszuwachs bezogen auf t_0

 $\mathcal{C}<0$ Ertrag der Investition liegt unter dem Kalkulationszinssatz = Vermögensabnahme bezogen auf t_0

2.5 Annuitätenmethode

2.5.1 Annuitätenfaktor

$$\frac{i*(1+1)^n}{(1+i)^n-1}$$

2.5.2 Annuität Gesamtformel

$$g = C_0 * \frac{i * (1+1)^n}{(1+i)^n - 1}$$