Backpropagation

意義:一個更快速的方法來解決「很多 Weight」時,要計算 Gradient

原本的 Gradient = Loss Function 對所有 Weight 的偏微分 => 所有 Training Data 的 Cross Entropy 對所有 Weight 的偏微分的總和 => Forward Pass * Backward Pass

Gradient Descent

Network parameters $\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$

Starting **Parameters**

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

$$\nabla L(\theta)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$

$$\begin{array}{c|c}
\hline
CL(\theta) \\
\hline
\partial L(\theta)/\partial w_1 \\
\hline
\partial L(\theta)/\partial w_2 \\
\hline
\vdots \\
\hline
\partial L(\theta)/\partial k
\end{array}$$
Compute $\nabla L(\theta^0)$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$Hillions of parameters$$

Millions of parameters

To compute the gradients efficiently, we use **backpropagation**.

Chain Rule

Case 1

$$y = g(x) z = h(y)$$

$$\Delta x \to \Delta y \to \Delta z \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta s = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Backpropagation

$$L(\theta) = \sum_{n=1}^{N} C^{n}(\theta)$$

Backpropagation

 $\frac{\partial C}{\partial w} = ? \qquad \frac{\partial z}{\partial w} \frac{\partial C}{\partial z}$

(Chain rule)

Compute $\partial z/\partial w$ for all parameters

Backward pass:

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

Compute $\partial C/\partial z$ for all activation function inputs z

Done!

Compute $\partial C/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Compute $\partial C/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Compute $\partial C/\partial z$ for all activation function inputs z Compute $\partial C/\partial z$ from the output layer

Compute $\partial C/\partial z$ for all activation function inputs z Compute $\partial C/\partial z$ from the output layer

Backpropagation – Summary

Forward Pass

Backward Pass

for all w