

Description of launch vehicle design test case

Specifications

- We aim at designing a two stage to orbit launch vehicle to inject a 5 tons payload into 700 x 700 km equatorial orbit.
- The launch site is the european space port (Kourou)

Configuration of launch vehicle

- Two-stage-to-orbit launch vehicle
- Propellant : LOx / LH2

- First stage with 8 engines
- Second stage with 1 engine

Flight phases

Launch vehicle design

 All the different disciplines have been modeled and coupled into openMDAO (NASA) using simplified models

- Trajectory
- Propulsion
- Structure
- Aerodynamics

Interactions between the disciplines

Мр	Propellant mass	θ	Pitch angle
Ae	Nozzle area	C_D	Drag coefficient
At	Throat area	C_L	Lift coefficient
of1	Oxydizer to fuel ratio	α	Angle of attack
ϵ	Nozzle expansion ratio	r	Altitude
D	Stage diameter	V	Velocity
Pc	Combustion pressure	γ	Flight path angle
T	Thrust	n_{\times}	Axial load factor
lsp	Specific impulse	q	Dynamic pressure

Optimization problem: MDO problem

with:

- · GLOW: Gross-Lift-Off Weight
- $\mathbf{z} \in \mathbb{R}^{10}$, in practice the input variables are normalized into $[0., 1.]^{10}$
- Mprop1: Prop_mass_stage_1
- M_{prop2}: Prop_mass_stage_2
- $oldsymbol{ heta}_i$: thetacmd_i, pitch angle begining of bilinear phase
- $oldsymbol{ heta}_f$: thetacmd_f, pitch angle end of bilinear phase
- ξ: ksi, shape parameter of bilinear phase
- Δ_t : Pitch_over_duration
- Δ_{θ} : Delta_theta_pitch_over
- *tvertical*: Delta_vertical_phase
- θ_{cmd} : command_stage_1_exo (vector of dimension 2)

The constraints are defined in the specification.py file:

- ullet $lpha_{\it ascent}$: angle of attack during the ascent phase that must be below 15 degrees
- NX_{ascent}: axial load factor during the ascent phase that must be below 4.5g
- Pdynascent: dynamic pressure during the ascent phase that must be below 40kPa
- Heat Flux_{ascent}: heat flux during the ascent phase that must be below 100 W/m²
- Apogee: Apogee altitude of the coast phase transition orbit must be equal to 700km
- Perigee_{Coast Phase}: Perigee altitude of the coast phase transition orbit must be above 140km
- M_{Circularization}: remaining propellant mass before the circularization burn must be sufficient to circularize the final orbit 700 x 700km

min GLOW(\mathbf{z}) w.r.t $\mathbf{z} = [\mathbf{M}_{prop1}, \mathbf{M}_{prop2}, \theta_i, \theta_f, \xi, \Delta_t, \Delta_\theta, t_{vertical}, \theta_{cmd}]$ s.t. $\alpha_{ascent}(\mathbf{z}) \leq 15$ $NX_{ascent}(\mathbf{z}) \leq 4.5$ $Pdyn_{ascent}(\mathbf{z}) \leq 40$. $HeatFlux_{ascent}(\mathbf{z}) \leq 100$. Apogee(\mathbf{z}) = 700. Perigee $_{CoastPhase}(\mathbf{z}) \geq 140$. $M_{Circularization}(\mathbf{z}) \geq 0$. $\mathbf{z}_{min} \leq \mathbf{z} \leq \mathbf{z}_{max}$

→ Numerous optima : use of CMA – ES (see course 1) on top of MDA

