Лист 1

Задача 1

(1) Доказать, что
$$[A,B] = -[B,A] \ \forall A,B \in L;$$
 $[A,B] = AB - BA.$ $[B,A] = BA - AB.$ $[B,A] = BA - BA = [A,B].$ (2) Доказать, что $[A,[B,C]] = [[A,B],C] + [B,[A,C]].$ $[A,[B,C]] = [A,BC-CB] = ABC - ACB - BCA + CBA.$ $[[A,B],C] + [B,[A,C]] = [ABC - BAC - CAB + CBA) + (BAC - BCA - ACB + CAB) = ABC + CBA - BCA - ACB = [A,[B,C]].$

Задача 2

Множество кососиметрических матриц непусто и входит в M_n . Тогда докажем, что множество кососиметрических матриц удовлетворяет трем условиям:

- (1) $A + B \in L \ \forall A, B \in L$.
- (2) $\lambda A \in L \ \forall A \in L$ и $\lambda \in \mathbb{R}$.
- $(3) [A, B] \in L \ \forall A, B \in L.$

Доказательства:

(1)

Пусть A + B = C.

 $\lambda \cdot a_{ij} = \lambda \cdot -a_{ji}$

В кососиметрических матрицах $a_{ij} = -a_{ji}$, тогда и $b_{ij} = -b_{ji}$. Тогда:

$$c_{ij} = a_{ij} + b_{ij} = -a_{ji} - b_{ji}.$$

 $c_{ji} = a_{ji} + b_{ji} = -c_{ij}.$
(2)
 $a_{ij} = -a_{ji}.$

Т.е. $\lambda \cdot a_{ij} = -\lambda \cdot a_{ji}$, а значит матрица домноженая на λ тоже кососиметричная и тоже принадлежит L.

(3)
$$[A,B] = AB - BA. (AB)^T = B^T \cdot A^T \text{ По определению } A^T = -A, B^T = -B.$$
 Тогда $BA = (-B)^T \cdot (-A)^T = ((-A) \cdot (-B))^T = (AB)^T$ Значит $[A,B] = AB - (AB)^T = E.$ Пусть $AB = C$ и $(AB)^T = D.$ Тогда $c_{ij} = d_{ji}.$ $e_{ij} = c_{ij} - d_{ij} = c_{ij} - c_{ji}.$ $e_{ij} = c_{ji} - d_{ji} = c_{ji} - c_{ij} = -e_{ji}.$

Задача 5

Докажем три свойства:

- (1) $A + B \in I \ \forall A, B \in I$.
- (2) $\lambda A \in I \ \forall A \in I \ \text{if} \ \lambda \in \mathbb{R}$.
- (3) $[A, B] \in I \ \forall A \in I, B \in L.$
- (1)

Если A,B принадлежат центру L, то и A+B также принадлежат центру, а значит принадлежат и идеалу, поскольку $\forall X \in L \Rightarrow AX = 0, BX = 0 \Rightarrow (A+B)X = 0.$

(2)

Если A принадлежат центру L, то и λA также принадлежит центру, а значит принадлежит и идеалу, поскольку $\forall X \in L \Rightarrow AX = 0 \Rightarrow \lambda AX = 0$.

(3)

Т.к. центр L составляют матрицы, произведение которых с любой другой матрицей из L равно нулю, то AB=0, а значит принадлежит идеалу, т.к. $0\in I$.

Задача 5

Докажем три свойства:

- (1) $A + B \in I \ \forall A, B \in I$.
- (2) $\lambda A \in I \ \forall A \in I \ и \ \lambda \in \mathbb{R}.$
- $(3) [A, B] \in I \ \forall A \in L, B \in I.$

(1)

Согласно определению коммутанта A представима в виде суммы конечного числа коммутаторов матриц из L, назовем эту сумму S_1 . Точно так же B представима в виде суммы конечного числа коммутаторов матриц из L, назовем эту сумму S_2 . Тогда $A+B=S_1+S_2$ и, так как сумма двух конечнох чисел также конечна и все коммутаторы в S1 и S2 – это коммутаторы матриц из L, то и A+B также будет являть собой сумму конечного числа коммутаторов матриц из L, а значит входить в комутант данного $L \Rightarrow$ входить и в идеал.

(2)

Сумма, умноженная на некоторое $\lambda \in \mathbb{R}$ конечна, а также может быть представленна в виде суммы членов, составляющих первоначальную сумму. Достаточно просто взять каждый член λ раз. Значит новая сумма представима в виде конечного числа коммутаторов матриц из L, а значит входит в комутант данного L \Rightarrow входит и в идеал.

(3)

$$[S_1, S_2] = S_1 \cdot S_2 - S_2 \cdot S_1.$$