

ABES Engineering College, Ghaziabad Department of Applied Sciences & Humanities

Session: 2023-24 Semester: I Section: Common to All

Course Code: BAS-103 Course Name: Engineering Mathematics-I

Assignment 1

Date of Assignment:

Date of submission:

S.No.	KL	СО	PI	Question	Marks
1		CO1	1.3.1	Employing elementary row transformations,	
			2.1.3	[0 1 2]	
	K3		2.4.1	find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$.	5
			2.4.4	[3 1 1]	
2.		CO1	1.3.1	Reduce the matrix A to its normal form and	
	K3		2.1.3	hence find its rank where,	
			2.4.1	$\begin{bmatrix} 2 & 1 & -3 & -6 \end{bmatrix}$	5
			2.4.4	$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$	
			4.3.3		
3.		CO1	1.3.1	Find the eigen values and eigen vectors of the	
			2.1.3	following matrices: $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	
	K3		2.4.1	following matrices: $A = \begin{bmatrix} -2 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$	5
			5.2.2		
4.		CO1	10.1.1	Find the value of λ for which the system has	
			10.1.3	non-zero solution:	
	K3		4.3.4	$x + 2y + 3z = \lambda x, 3x + y + 2z$	5
				$= \lambda y, 2x + 3y + z = \lambda z$	

		CO1	1 2 1	France the Henritian restrict	
5.	K3	COI	1.3.1	Express the Hermitian matrix	
			2.1.3	$\begin{bmatrix} 1 & -i & 1+i \\ i & 0 & 2-3i \end{bmatrix}$ as PuiO where	
			2.4.1	$A = \begin{bmatrix} 1 & -i & 1+i \\ i & 0 & 2-3i \\ 1-i & 2+3i & 2 \end{bmatrix}$ as P+iQ where	5
			2.4.4	P is a real symmetric and Q is a real skew	
				symmetric matrix.	
	КЗ	CO1	1.3.1	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Hence compute	
			2.1.3		5
6			2.4.1		
			2.4.4		
			4.3.3	A^{-1} . Also evaluate $A^{6} - 6A^{5} + 9A^{4} - 2A^{3} - 12A^{2} + 23A - 9I$	
			4.3.4	·	
		CO1	1.3.1	[1 1 1]	
7.			2.1.3	Show that $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$ is a unitary	5
	K3		2.4.1		
			2.4.4	matrix, where ω is complex cube root of unity.	
		CO1	10.1.1	Investigate, for what values of λ and μ do	
			10.1.3	the systems of equations $x + y + z = 6, x + 2y + 3z = 10, x + 2y + 3z = 4$	5
8.	K3		4.3.4	$x + y + z = 6, x + 2y + 3z = 10, x + 2y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions?	
	K3	CO1	1.2.1	Find the eigen values & eigen vectors for the	
9.			1.3.1	matrix: $ \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} $	5
			2.4.1		
10.	K2	CO1	4.3.3	For what values of a the following vectors	
			4.3.4	(0,1,a),(1,a,1)&(a,1,0) are linearly	5
				dependent.	

Answers:
1.
$$A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$$

2. 3

3.
$$\lambda = 2, 2, 8$$
; $X_1 = k_2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + k_3 \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$, $X_2 = k_1 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$

4. 6

6.
$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

$$A^{6} - 6A^{5} + 9A^{4} - 2A^{3} - 12A^{2} + 23A - 9I = 5A - I = \begin{bmatrix} 9 & -5 & 5 \\ -5 & 9 & -5 \\ 5 & -5 & 9 \end{bmatrix}$$

8. (i)
$$\lambda = 3$$
, $\mu \neq 10$ (ii) $\lambda \neq 3$, μ may have any value (iii) $\lambda = 3$, $\mu = 10$

9.
$$\lambda = 1,2,2 \& k_1 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, k_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

10.
$$a=0, \sqrt{2}, -\sqrt{2}$$