

EEG ARTIFACT ATTENUATION WITH ARTIFACT SUBSPACE RECONSTRUCTION FOR ANDROID

Sarah Blum, Stefan Debener

Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Germany Cluster of Excellence Hearing4All, University of Oldenburg, Germany

INTRODUCTION

- We implemented a procedure for online EEG artifact attenuation running on Android smartphones
- Our method is based on Artifact Subspace Reconstruction (ASR) [1], an adaptive procedure which computes a principal component analysis on covariance matrices of the channel data to detect artifacts in the component subspace
- We integrated JavaASR into our BCI application SCALA [2], which receives data via the LabstreamingLayer (LSL) [3], classifies the data online and provides a feedback to the user

METHODS

- We use EEG data from 11 subjects, seated and walking outdoors for validation. Data were recorded with mobile EEG hardware on a smartphone
- The JavaASR algorithm is implemented in a Java library and was used on a PC for the analyses. It receives raw EEG data and returns cleaned data with a short processing delay of 50 samples
- We validate the sensitivity and specificity of JavaASR by looking at blink artifact correction and the amplitude of N100 signals before and after cleaning

FRAMEWORK

Figure 1: Three screens of the signal processing application SCALA [2]. SCALA is an Android application which accepts time series data of any type via LSL, preprocesses the data and classifies them.

Figure 2: SCALA architecture and functional connections illustrated as a fundamental modelling concepts diagram [4]. Connections with overlaying bullet points indicate bidirectional communication channels.

PROCEDURE

Figure 3: JavaASR calibration and processing classes. Dataflow from top to bottom through the ASR classes.

N100 POTENTIAL JAVA ASR RAW

VALIDATION

Figure 4: Single subject EEG data from seated and walking subjects. Upper Figure: N100 potential. Lower Figure: Blink artifact

CONCLUSION

REFERENCES

[1] T. R. Mullen et al., "Real-time neuroimaging and cognitive monitoring using wearable dry EEG", in IEEE Transactions on Biomedical Engineering, vol. 62, no. 11, pp. 2553-

2567, Nov. 2015

[2] S. Blum, S. Debener, R. Emkes, N. Volkening, S. Fudickar, and M. G. Bleichner, "EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone," BioMed Research International, vol. 2017, Article ID 3072870, 12 pages, 2017.

[3] Swartz Center for Computational Neuroscience and C. Kothe, Lab Streaming Layer (LSL), https://github.com/sccn/labstreaminglayer.

- JavaASR can be used in mobile BCI systems to attenuate artifacts during an experiment
- JavaASR is robust towards movement-related artifacts and therefore suitable for mobile recording settings
- JavaASR is an efficient and objective method for the online correction of multi-channel EEG data acquired during mobile conditions on smartphones

