

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER POR PATENTS PO Box 1450 Alcassackin, Virginia 22313-1450 www.opub.com

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
10/577,641	02/21/2007	Sheng Liu	920093.402USPC	9786	
SEED INTELI	7590 08/31/200 .ECTUAL. PROPERTY	9 Y LAW GROUP PLLC	EXAM	INER	
701 FIFTH AVE SUITE 5400 SEATTLE, WA 98104			MAGLO, EM	MAGLO, EMMANUEL K	
			ART UNIT	PAPER NUMBER	
,		2416			
			MAIL DATE	DEL HERMANDE	
			08/31/2009	DELIVERY MODE PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary

Application No.	Applicant(s)	
10/577,641	LIU ET AL.	
Examiner	Art Unit	
EMMANUEL MAGLO	2416	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS.

- WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
- earned patent term adjustment. See 37 CFR 1.704(b).

Status			
1)🛛	Responsive to communication(s) fi	led on <u>15 May 2009</u> .	
2a) <u></u>	This action is FINAL.	2b)⊠ This action is non-final.	
3)	Since this application is in condition for allowance except for formal matters, prosecution as to the merit		
	closed in accordance with the prac-	tice under Ex parte Quavle, 1935 C.D. 11, 453 O.G. 213.	

Disposition of Claims

4) Claim(s) 1-26 is/are pending in the application.					
4a) Of the above claim(s) is/are withdrawn from consideration.					
5) Claim(s) is/are allowed.					
6) Claim(s) 1-26 is/are rejected.					
7) Claim(s) is/are objected to.					
8) Claim(s) are subject to restriction and/or election requirement.					
plication Papers					

9) The specification is objected to by the Examiner.

a) All b) Some * c) None of:

App

10)☐ The drawing	(s) filed on	is/are: a)	accepted a	or b)□ objec	ted to by th	e Examiner	:
Applicant ma	y not request that	t any objection	to the drawin	g(s) be held in	abeyance.	See 37 CFR	1.85(a)
Dealers		Charles and the second second	and the second	and the street of the street	to a contract to	and a second second	0 07

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

1.	Certified copies of the priority documents have been received.
2.	Certified copies of the priority documents have been received in Application No
3.	Copies of the certified copies of the priority documents have been received in this National Stage
	application from the International Bureau (PCT Rule 17.2(a))

* See the attached detailed Office action for a list of the certified copies not received.

Atta	ıch	me	nt	(\$

Attachment(s)	
Notice of References Cited (PTO-892)	4) Interview Summary (PTO-413)
Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date
3) T Information Disclosure Statement(s) (PTO/SE/08)	 Notice of Informal Patent Application
Paper No(s)/Mail Date	6) Other:

DETAILED ACTION

Response to Amendment

This office action is responsive to the amendment filed on 05/15/2009.

Claims 1, 2, 5-8, 10-13, and 16-23 have been amended.

Claims 1-26 are pending in the Application.

Claim Rejections - 35 USC § 102

 The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- Claims 1-26 are rejected under 35 U.S.C. 102(b) as being anticipated by Hamiti et al (US 6751209 B1).

Regarding claims 1, 12 and 13, Hamiti discloses a method and a system to process the method of radio transmission of real-time IP packets using header compression, comprising:

header-compressing a number of RTP packets, (fig. 1: for each RTP packet 11 shown header compression is carried out), to obtain header-compressed RTP packets having a plurality of different header compression lengths, (packet 16 with a plurality of different header compression lengths), wherein a single compressed header corresponds to a single RTP payload in each of the header-compressed RTP packets, (shown in the figure, element 16 each of the

Art Unit: 2416

containing separate header corresponds to an RTP payload: this corresponds to different compression values, col. 8 lines 41-42),

pre-configuring header compression lengths and length types required by the system,

(fig. 5, note the compressed RTP header: col. 7 lines 1-6: field 51 indicates the type T;

correspondingly field 53 indicates the length), and

PDU-size adapting the plurality of different header compression lengths of the header-compressed RTP packets, so as to comply with said lengths and length types required by the system, (col. 7 lines 1-6 indicates the lengths and length types for, if T=0, the last octet 56 is not included and the last six bits 53 of the first octet are set to zero, used for some other purpose, e.g. for CRC check, or used for an abbreviated time-stamp. If T=1 the compressed header shall include the length octet and the bits 53 and the last octet 56 are used to indicate the length of the RTP payload. Furthermore, fig. 5 field 56 represents the data block containing the compressed header: this corresponds a Packet Data Unit (PDU) contains an integral number of octets, a header part and a data part, col. 9 lines 50-54).

Regarding claim 2, Hamiti discloses marking a compressed header and an RTP payload, (The format of the compressed header follows the one presented in connection with fig. 5; thus as indicated, col. 7 lines 8-9: field 52 indicates the marker bit of the RTP header) and separating the compressed header from the RTP packet based on said marking before PDU-size adapting the header-compressed RTP packet, and then PDU-size adapting the separated compressed header, (as illustrated in fig. 3, considering the RTP, col. 5 lines 20-22, field 314 includes a marker bit that is optionally used to mark important events in the packet stream, for instance, the

Art Unit: 2416

beginning of a speech burst, or a last packet in a video frame. If the marker bit 314 is used it needs to be transmitted in the compressed header).

Regarding claim 3, Hamiti discloses after separating the compressed header from the RTP payload based on said marking, further dividing the RTP payload into blocks of different error sensitivities based on the RTP payload format information, then PDU-size adapting the separated compressed header, (col. 5 lines 20-22, field 314 includes a marker bit that is optionally used to mark important events in the packet stream, for instance, the beginning of a speech burst, or a last packet in a video frame).

Regarding claims 4 and 15, Hamiti discloses after dividing the RTP payload into blocks of different error sensitivities, combining the compressed header with at least one data blocks of the RTP payload, then PDU-size adapting the data blocks containing said compressed header, (col. 8 lines63-67 and col. 9 lines 1-14: a delay packet for a particular compression sequence (thus having a particular error sensitivity), may be combined with the payload for, a packet belonging to a compression sequence preceding the precedent compression sequence would not be regenerated correctly anymore and therefore such packets are preferentially managed already in the compressor. The flow chart of FIG. 7 presents an example of such a filtering algorithm that can be added to the invented method in the compressor side for managing situations with much delayed packets)

Regarding claims 5 and 17, Hamiti discloses applying a UEP mechanism to the separated compressed header and the RTP payload, or the separated compressed header and the data blocks of the RTP payload, or the data blocks containing the compressed header and the remaining RTP payload data blocks, (col. 5 lines 37-43: indicates unequal error protection

Art Unit: 2416

mechanism that applies to RTP packet: this field does not have to be transmitted over the transmission link that has a strong error protection mechanism or means to detect transmission errors (e.g. lower protocol layer checksums). Transmission of such information can be done using acknowledged mode or strong error protection).

Regarding claim 6. Hamiti discloses mapping the separated compressed header and the RTP payload, or the separated compressed header and the data blocks of the RTP payload, or the data blocks containing the compressed header and the remaining RTP payload data blocks to different RLC entities for transmission, (fig. 1 divided into an appropriate number of RLC blocks each containing a separate header)

Regarding claims 7 and 18, Hamiti discloses transmitting the compressed header and the RTP payload, or the separated compressed header and the data blocks of the RTP payload, or the data blocks containing the compressed header and the remaining RTP payload data blocks on the same transmission time interval, and configuring corresponding transport channels thereof as "coordinated dedicated transport channels, (In accordance with its program, the microprocessor uses the RF block 103 for transmitting and receiving messages on the radio path, (a dedicated channel))

Regarding claim 8, Hamiti discloses receiving and extracting, at a receiving end, the compressed header and the RTP payload, or the separated compressed header and the data blocks of the RTP payload, or the data blocks containing the compressed header and the remaining RTP payload data blocks, from RLC entity SDU corresponding to the compressed header and the RTP payload, or the separated compressed header and the data blocks of the RTP payload, or the data blocks containing the compressed header and the remaining RTP

Art Unit: 2416

payload data blocks, respectively, (fig. 9: the compressed packet is received at the decompressor (step 92), when changes are detected, a new SNDCP functionality will extract from the new header only the changed no-change fields (step 96), update them to the stored state of compression (step 97), transmit said values to the SGSN (step 98) and update the values to the state of compression stored in the SGSN as well (step 98).

Regarding claim 9, Hamiti discloses combining the extracted compressed header and the RTP payload, or the separated compressed header and the data blocks of the RTP payload, or the data blocks containing the compressed header and the remaining RTP payload data blocks, into a complete RTP packet, (step 96 fig. 9, doing the extraction. Note fig. 1 that number of RLC blocks each containing a separate header)

Regarding claim 10, Hamiti discloses the lengths and length types required by the system depend on a tradeoff between transmission efficiency and TFCI decoding reliability, (fig. 5. note the TFCI is transferred across the air interface and allows the receiving layers to identify the current valid Transport Format Combination, thus as shown in fig. 3, col. 5 lines 12-16, field 315 indicates the payload type and is constant for one type of data. Generally, the contributing source and synchronization source are constant throughout the transmission over the air interface, and therefore the field 318 will remain constant)

Regarding claims 11 and 19, Hamiti discloses the RLC entity is a TM mode RLC entity, (fig. 5).

Regarding claim 14, Hamiti discloses after separating the compressed header from the RTP payload, PDU-size adapting the compressed header, such that the plurality of different header compression lengths obtained when header-compressing the RTP packet are adapted to

Art Unit: 2416

lengths and length types required by the system, and then making the PDU-size-adapted compressed header and the RTP payload to respectively form PDCP layer PDUs before mapping them into different RLC entities, (fig. 5 field 56 represents the data block containing the compressed header: this corresponds a Packet Data Unit (PDU) contains an integral number of octets, a header part and a data part, col. 9 lines 50-54).

Regarding claim 16, Hamiti discloses combining the separated compressed header with at least one data blocks of the RTP payload, and PDU-size adapting the data blocks containing said compressed header, (fig. 5 field 56 represents the data block containing the compressed header: this corresponds a Packet Data Unit (PDU) contains an integral number of octets, a header part and a data part, col. 9 lines 50-54).

Regarding claim 20, Hamiti discloses a method of receiving real-time IP packets using header compression, wherein a compressed header of the header-compressed packet, (shown in the figure, element 16 each of the containing separate header corresponds to an RTP payload: this corresponds to different compression values, col. 8 lines 41-42),

is separated from an RTP payload thereof at the transmitting end to form different
PDCP layer PDUs that are transmitted on different RLC entities, and wherein a single
compressed header corresponds to a single RTP payload in each of the header-compressed RTP
packets, said method comprising:

receiving and extracting the compressed header and the RTP payload from SDUs of the RLC entities, (fig. 9: the compressed packet is received at the decompressor (step 92), when changes are detected, a new SNDCP functionality will extract from the new header only the changed no-change fields (step 96), update them to the stored state of compression (step 97).

Art Unit: 2416

transmit said values to the SGSN (step 98) and update the values to the state of compression stored in the SGSN as well (step 98), and

combining the extracted compressed header with the RTP payload, (col. 8 lines63-67 and col. 9 lines 1-14: a delay packet for a particular compression sequence (thus having a particular error sensitivity), may be combined with the payload for, a packet belonging to a compression sequence preceding the precedent compression sequence would not be regenerated correctly anymore and therefore such packets are preferentially managed already in the compressor. The flow chart of FIG. 7 presents an example of such a filtering algorithm that can be added to the invented method in the compressor side for managing situations with much delayed packets)

Regarding claim 21, Hamiti discloses a system of transmitting a real-time IP packet using header compression, comprising:

a header compression unit to header-compress RTP packets and mark a compressed header and an RTP payload, (The format of the compressed header follows the one presented in connection with fig. 5; thus as indicated, col. 7 lines 8-9: field 52 indicates the marker bit of the RTP header), wherein a single compressed header corresponds to a single RTP payload in each of the header-compressed RTP packets, (shown in the figure, element 16 each of the containing separate header corresponds to an RTP payload: this corresponds to different compression values, col. 8 lines 41-42),

a radio link adaptation unit to separate the compressed header from the RTP payload based on said marking, to respectively form PDCP layer PDUs before mapping the respective PDCP layer PDUs to different RLC entities, and a transmitter to transmit the separated compressed header and RTP payload, (fig. 3, considering the RTP, col. 5 lines 20-22, field 314

Art Unit: 2416

includes a marker bit that is optionally used to mark important events in the packet stream, for instance, the beginning of a speech burst, or a last packet in a video frame. If the marker bit 314 is used it needs to be transmitted in the compressed header; furthermore, col. 4 lines 58-64, the access network SNDC function provides to the network layer a service for transferring a minimum amount of data between the SGSN and MS, (transmitters) through different compression techniques.

Regarding claim 22, Hamiti discloses a system of receiving a real-time IP packet using header compression, (fig. 10 and col. 12 lines 33-55: a mobile terminal of a mobile communication equipment), wherein a compressed header of the header-compressed packet is separated from an RTP payload thereof at the transmitting end to form different PDCP layer PDUs that are transmitted on different RLC entities, wherein a single compressed header corresponds to a single RTP payload in each of the header-compressed RTP packets, (shown in the figure, element 16 each of the containing separate header corresponds to an RTP payload: this corresponds to different compression values, col. 8 lines 41-42), said system comprising:

receiving and extracting unit for to receive and extract the compressed header and the RTP payload from SDUs of the RLC entities, (fig. 9: the compressed packet is received at the decompressor (step 92), when changes are detected, a new SNDCP functionality will extract from the new header only the changed no-change fields (step 96), update them to the stored state of compression (step 97), transmit said values to the SGSN (step 98) and update the values to the state of compression stored in the SGSN as well (step 98), and

Art Unit: 2416

radio link adaptation unit for combining the extracted compressed header with the RTP payload, (col. 12 lines 33-55:the microprocessor uses the RF block 103 for transmitting and receiving messages on the radio path.)

Regarding claim 23, Hamiti discloses an RTCP packet scheduling method, comprising: monitoring whether or not the bandwidth requirement of the RTP packet exceeds a predetermined value, (col. 7 lines 31-65), if the bandwidth requirement of the RTP packet exceeds the predetermined value and there is an RTCP packet to be transmitted, (col. 7 lines 31-65), buffering the RTCP packet, (col. 4 lines 64-66, a number of the header data fields that remain constant during the data transfer being stored in the decompressor), and continuously monitoring the bandwidth requirement of the RTP packet, and transmitting the RTCP packet when the bandwidth requirement is lower than the predetermined value, (col. 9 lines 15-37: no packet transmitted due to delay conditions, the packet is deemed useless).

Regarding claim 24, Hamiti discloses the bandwidth requirement being lower than the predetermined value comprises the case where the compression rate of the RTP packet is so high that the bandwidth requirement is lower than the predetermined value, (col. 7 lines 66-67 and col.8 lines 1-30).

Regarding claim 25, Hamiti discloses the bandwidth requirement being lower than the predetermined value comprises the case where no RTP packet is transmitted, (col. 9 lines 15-37: no packet transmitted due to delay conditions, the packet is deemed useless)

Regarding claim 26, Hamiti discloses an RTCP packet scheduling system, comprising: bandwidth monitoring means for monitoring whether or not the bandwidth requirement of the RTP packet exceeds a predetermined value, (col. 7 lines 31-65), judging means for judging,

Art Unit: 2416

whether the bandwidth requirement of the RTP packet exceeds the predetermined value and there is an RTCP packet to be transmitted, (col. 7 lines 31-65), buffering means for buffering the RTCP packet, in response to the result of the judging means that the bandwidth requirement of the RTP packet exceeds the predetermined value, (col. 4 lines 64-66, a number of the header data fields that remain constant during the data transfer being stored in the decompressor); and transmitting means for transmitting the RTCP packet, in response to the result of the judging means that the bandwidth requirement of the RTP packet does not exceed the predetermined value, (col. 9 lines 15-37: no packet transmitted due to delay conditions, the packet is deemed useless).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to EMMANUEL MAGLO whose telephone number is (571)270-1854. The examiner can normally be reached on Monday - Thursday 7:00 - 4:30 and every other Friday 7:00 - 3:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, William Trost can be reached on (571)272-7872. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2416

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Emmanuel Maglo Patent Examiner August 31, 2009

/William Trost/ Supervisory Patent Examiner, Art Unit 2416