Programa de Pós-Graduação em Estatística Exame de Admissão ao Mestrado 25-01-2023

Orientações:

- 1. O exame é individual e intransferível, o candidato deve realizar a prova individualmente. Consultas a livros e materiais didáticos são permitidas.
- 2. Resolver o exame em folhas de fundo branco, colocar nome e assinar em todas as folhas. Digitalizar e enviar o arquivo pdf pelo formulário que será disponibilizado.
- 3. Todas as questões têm o mesmo valor.
- **1.** Seja $(\Omega, \mathcal{F}, \mathbb{P})$ um espaço de probabilidade. Sejam $A, B, D \in \mathcal{F}$ eventos tais que $\mathbb{P}(A|D) \geq \mathbb{P}(A)$ e $\mathbb{P}(B|D) \geq \mathbb{P}(B)$. Mostre que
- (a) $\mathbb{P}(D|A) \geq \mathbb{P}(D)$
- (b) se $A \cap B = \emptyset$, então $\mathbb{P}(A^c \cap B^c | D) \leq \mathbb{P}(A^c \cap B^c)$.
- **2.** Sejam X_1, X_2, X_3 variáveis aleatórias independentes e identicamente distribuídas segundo o modelo geométrico de parâmetro $p, p \in (0,1)$ (isto é, a função de probabilidade de X_1 é $\mathbb{P}(X_1 = j) = (1-p)^{j-1}p$, para $j = 1,2,3,\ldots$). Sejam $Y_1 = \min\{X_1,X_3\}$ e $Y_2 = \min\{X_2,X_3\}$.
- (a) Calcule $\mathbb{P}(Y_1 > t, Y_2 > t), t = 1, 2, 3, \dots$
- (b) Determine a função de probabilidade de Y_2 . Y_1 e Y_2 são independentes?
- **3.** Um ponto (X,Y) é escolhido uniformemente no quadrado $[0,1] \times [0,1]$. Seja A a área do retângulo de vértices (0,0), (X,0), (X,Y) e (0,Y).
- (a) Determine a probabilidade de A ser menor que 1/2.
- (b) Calcule a esperança e a variância de ${\cal A}.$
- **4.** Seja X uma variável aleatória contínua com função densidade de probabilidade f dada por

$$f(x) \ = \ c \ \mathbb{I}_{(0,1)}(x) \ + \ \frac{c}{x^4} \ \mathbb{I}_{[1,\infty)}(x) \ ,$$

onde $\mathbb{I}_A(x)$ é a função indicadora que vale 1, se $x \in A$, e 0 caso contrário.

- (a) Determine o valor de c.
- (b) Determine o valor de m tal que $\mathbb{P}(X \leq m) = \frac{1}{2}$.