Statistical tests

Parametric tests

Tests for means

1-sample					
Name	Sample	Hypothesis	Statistics	Notes	
z-test (σ is known)	$X^n = (X_1, \dots, X_n),$ $X \sim N(\mu, \sigma^2)$	$H_0: \hat{\mu} = \mu_0$ $H_1: \hat{\mu} \neq \mu_0.$	$Z(X_n) = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$	 Requires data normality Code: Appendix A 	
t-test (σ is known)	$X^n = (X_1, \dots, X_n),$ $X \sim N(\mu, \sigma^2)$	$H_0: \ \hat{\mu} = \mu_0$ $H_1: \ \hat{\mu} \neq \mu_0.$	$T(X_n) = \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim St(n-1)$	Requires data normalityscipy.stats.ttest_1samp	
		2-8	samples (independent)		
z-test (σ is known)	$X_1^n = (X_{11}, \dots, X_{1n}),$ $X_2^n = (X_{21}, \dots, X_{2n}),$ $X_1^n \sim N(\mu_1, \sigma_1^2),$ $X_2^n \sim N(\mu_2, \sigma_2^2)$	$H_0: \ \mu_1 = \mu_2$ $H_1: \ \mu_1 <=> \mu_2.$	$Z(X_1^{n_1}, X_2^{n_2}) = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	• Requires data normality • statsmodels.stats.weightstats. CompareMeans.ztest_ind	
t-test (σ is known)	$X_1^n = (X_{11}, \dots, X_{1n}),$ $X_2^n = (X_{21}, \dots, X_{2n}),$ $X_1^n \sim N(\mu_1, \sigma_1^2),$ $X_2^n \sim N(\mu_2, \sigma_2^2)$	1 20 6 62	$T(X_1^{n_1}, X_2^{n_2}) = \frac{\overline{X_1 - X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2^2}}} \approx \sim St(\nu),$ $\nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2^2}\right)^2}{\frac{S_1^4}{n_1^2(n_1 - 1)} + \frac{S_2^4}{n_2^2(n_2 - 1)}}$	 Requires data normality Behrens—Fisher problem: no exact solution Well approximated by Student dist. scipy.stats.ttest_ind 	
2-samples (related)					
t-test	$\begin{vmatrix} X_1^n = (X_{11}, \dots, X_{1n}), \\ X_2^n = (X_{21}, \dots, X_{2n}), \\ X_1^n \sim N(\mu_1, \sigma_1^2) \\ X_2^n \sim N(\mu_2, \sigma_2^2) \end{vmatrix}$		$T(X_n) = \frac{\overline{X_1 - X_2}}{S/\sqrt{n}} \sim St(n-1),$ $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2,$ $D_i = (x_{1i} - x_{2i})$	Requires data normalityscipy.stats.ttest_rel	

1-sample							
Name	Sample	Hypothesis	Statistics	Notes			
Binomial test	$X^n = (X_1, \dots, X_n),$ $X \sim Ber(p)$	$H_0: p = p_0$ $H_1: p <=> p_0.$	$Z(X_n) = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$ $\hat{p} = \overline{X}_n$	• scipy.stats.binom_test			
	2-samples (independent)						
z-test	$X_1^n = (X_{11}, \dots, X_{1n}),$ $X_2^n = (X_{21}, \dots, X_{2n}),$ $X_1^n \sim Ber(p_1)$ $X_2^n \sim Ber(p_2)$	$H_0: p_1 = p_2$	$Z(X_1, X_2) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{P(1-P)(\frac{1}{n_1} + \frac{1}{n_2})}} \sim N(0, 1)$ $P = \frac{\hat{p}_1 n_1 + \hat{p}_2 n_2}{n_1 + n_2}$	Code: Appendix B			
			2-samples (related)				
	$X_1^n = (X_{11}, \dots, X_{1n}),$		$egin{array}{cccccccccccccccccccccccccccccccccccc$				
	$X_{2}^{n} = (X_{21}, \dots, X_{2n}),$ $X_{1}^{n} \sim Ber(p_{1}),$ $X_{2}^{n} \sim Ber(p_{2})$	$H_0: p_1 = p_2$	$ \hat{p}_1 = \frac{e+f}{n} \\ \hat{p}_2 = \frac{e+g}{n} $	• Code: Appendix C			
			$Z(X_1, X_2) = \frac{f-g}{\sqrt{f+g-\frac{(f-g)^2}{n}}} \sim St(n-1)$				

Tests for variance

2-samples (independent)					
F-test	$\begin{vmatrix} X_1^n = (X_{11}, \dots, X_{1n}), \\ X_2^n = (X_{21}, \dots, X_{2n}), \\ X_1^n \sim N(\mu_1, \sigma_1) \\ X_2^n \sim N(\mu_2, \sigma_2) \end{vmatrix}$		$F(X_1, X_2) = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 2)$	Requires data normality Extremely sensitive to not normal data Code: Appendix D	
		k-s	amples (independent)		
Bartlett's test	$X_1^n = (X_{11}, \dots, X_{1n}),$ $X_2^n = (X_{21}, \dots, X_{2n}),$ $X_1^n \sim N(\mu_1, \sigma_1)$ $X_2^n \sim N(\mu_2, \sigma_2)$		$T = \frac{(N-k)ln(s_p^2) - \sum_{i=1}^k (N_i - 1)ln(s_i^2)}{1 + (1/(3(k-1)))((\sum_{i=1}^k 1/(N_i - 1)) - 1/(N - k))}$ $T \sim \chi^2(k-1)$ $s_p^2 = \sum_i^k (N_i - 1)s_i^2/(N - k)$	 Require data normality Less sensitive than the Fisher test to not normal data scipy.stats.bartlett 	
Levene's test	$X_1^n = (X_{11}, \dots, X_{1n}),$ $X_2^n = (X_{21}, \dots, X_{2n}),$ $X_1^n \sim N(\mu_1, \sigma_1)$ $X_2^n \sim N(\mu_2, \sigma_2)$	$H_0: \ \sigma_1 = \dots = \sigma_k$ $H_1: \ \sigma_i \neq \sigma_j$	$W = \frac{N-k}{k-1} \frac{\sum\limits_{i=1}^k N_i (Z_{i.} - Z_{})^2}{\sum\limits_{i=1}^k \sum\limits_{j=1}^{N_i} (Z_{ij} - Z_{i.})^2}$ $W \sim F(k-1, N-k)$ Given a variable Y with sample of size N divided into k subgroups, where N_i is the sample size of the i-th subgroup $Z_{ij} = Y_i - \overline{Y}_{ij} $	 Require data normality Less sensitive than the Bartlett test to not normal data scipy.stats.levene 	

w

Tests normality

2-samples (independent)				
Shapiro-Wilk test	$X_1^n = (X_{11}, \dots, X_{1n})$	$H_0 \colon \ X \sim N(\mu, \sigma^2)$ $H_1 \colon \text{ not true}$	$W(X^n) = \frac{\sum\limits_{i=1}^n a_i X_i)^2}{\sum\limits_{i=1}^n (X_i - \overline{X})^2}$ a_i - ordinal statistics of normal distribution	• Very sensitive • (scipy.stats.shapiro)
D'Agostino's K-squared test		n_1 : not true	A lot of formulas here	• scipy.stats.normaltest
1	$X_1^n = (X_{11}, \dots, X_{1n})$			Worse than Shapiro-Wilk test scipy.stats.anderson
Pearson's χ^2 test	$X^n = (X_1, \dots, X_n)$	$H_0 \colon X \sim N(\mu, \sigma^2)$ $H_1 \colon \text{ not true}$	$\chi^2(X^n) = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$ $\mu, \sigma \text{ known} \sim \chi^2(k-1)$ $\mu, \sigma \text{ unknown} \sim \chi^2(k-3)$	ullet s cipy.stats.chisquare

Non-parametric tests

1-sample					
Name	Sample	Hypothesis	Statistics	Notes	
Sign-test	$X^n = (X_1, \dots, X_n)$ $X_i \neq m_0$	$H_0 \colon med(X) = m_0$ $H_1 \colon med(X) < \neq > m_0$	$T(X_n) = \sum_{i=1}^{n} [x_i > m_0]$ $T(X_n) \sim Bin(n, 0.5)$	Works for censored samplesscipy.stats.sign_test	
Wilcoxon test	$X^n = (X_1, \dots, X_n)$ $X_i \neq m_0$	$H_0 \colon med(X) = m_0$ $H_1 \colon med(X) < \neq > m_0$	$W(X^n) = \sum_{i=1}^{n} rank(x_i - m_0) \cdot sign(X_i - m_0)$ $W(X^n) \sim N(0, \frac{n(n+1)(2n+1)}{6}), (n \ge 20)$	• scipy.stats.wilcoxon	
Permutation test	$X^n = (X_1, \dots, X_n)$ $X_i \neq m_0$	$H_0 \colon E(X) = m_0$ $H_1 \colon E(X) < \neq > m_0$	$T(X^n) = \sum_{i=0}^{n} (X_i - m_0)$	use more information than previous Code: Appendix E	
		2-sar	nple (independent)		
Mann-Whitney test	$X_1^n = (X_{11}, \dots, X_{1n}), X_2^n = (X_{21}, \dots, X_{2n}) X_{1i} \neq X_{2i}$	$H_0: F_{X_1}(x) = F_{X_2}(x)$ $H_1: F_{X_1}(x) = F_{X_2}(x + \Delta)$	$X_{(1)} < \cdots < X_{(n_1+n_2)}$ $R = \sum_{i=1}^{n_1} \operatorname{rank}(X_{1i})$	• scipy.stats.mannwhitneyu	
Permutation test	$X_1^n = (X_{11}, \dots, X_{1n}), X_2^n = (X_{21}, \dots, X_{2n}) X_{1i} \neq X_{2i}$	$H_0: E(X_1 - X_2) = 0$ $H_1: E(X_1 - X_2) < \neq > 0$	$T(X^n) = \sum_{i=1}^{n} (X_{1i} - X_{2i})$	use more information than previous Code: Appendix F	
2-sample (related)					
Sign test	$X_1^n = (X_{11}, \dots, X_{1n}), X_2^n = (X_{21}, \dots, X_{2n}) X_{1i} \neq X_{2i}$	$H_0: p(X_1 > X_2) = 1/2$ $H_1: p(X_1 > X_2) < \neq > 1/2$	$T(X_1^n, X_2^n) = \sum_{i=1}^{n} (X_{1i} > X_{2i})$ $T(X_1^n, X_2^n) \sim Bin(n, 1/2)$	• scipy.stats.wilcoxon	
Wilcoxon test	$X_1^n = (X_{11}, \dots, X_{1n}), X_2^n = (X_{21}, \dots, X_{2n}) X_{1i} \neq X_{2i}$	$H_0: med(X_1 - X_2) = 0$ $H_1: med(X_1 - X_2) < \neq > 0$	$W(X^n) = \sum_{i=1}^{n} rank(X_{1i} - X_{2i}) \cdot sign(X_{1i} - X_{2i})$	• scipy.stats.wilcoxon	
Permutation test	$X_1^n = (X_{11}, \dots, X_{1n}),$ $X_2^n = (X_{21}, \dots, X_{2n})$ $X_{1i} \neq X_{2i}$	$H_0: F_{X_1}(x) = F_{X_2}(x)$ $H_1: F_{X_1}(x) = F_{X_2}(x + \Delta)$	$T(X_1^n, X_2^n) = \frac{1}{n_1} \sum_{i=1}^{n_1} X_{1i} - \frac{1}{n_2} \sum_{i=1}^{n_2} X_{2i}$	Code: Appendix G	

Independence tests

- scipy.stats.chi2_contingency
- scipy.stats.fisher_exact

Appendix A

1-sample z-test for means

```
import numpy as np
   def z_stat(sample1, sample2, std):
      mu_0 = np.mean(sample1)
      mu_exp = np.mean(sample2)
      N = len(mu_0)
      return (mu_exp - mu_0)/(std / np.sqrt(N))
10
   def proportions_diff_z_test(z_stat, alternative = 'two-sided'):
11
       if alternative not in ('two-sided', 'less', 'greater'):
13
          14
15
16
       if alternative == 'two-sided':
17
          return 2 * (1 - stats.norm.cdf(np.abs(z_stat)))
       if alternative == 'less':
          return stats.norm.cdf(z_stat)
21
       if alternative == 'greater':
23
          return 1 - stats.norm.cdf(z_stat)
```

Appendix B

2-sample z-test for proportions (independent)

```
def proportions_diff_z_stat_ind(sample1, sample2):
        n1 = len(sample1)
        n2 = len(sample2)
        \begin{array}{lll} p1 = & float(sum(sample1)) \ / \ n1 \\ p2 = & float(sum(sample2)) \ / \ n2 \\ P = & float(p1*n1 \ + \ p2*n2) \ / \ (n1 \ + \ n2) \end{array}
        return (p1 - p2) / np.sqrt(P * (1 - P) * (1. / n1 + 1. / n2))
    def proportions_diff_z_test(z_stat, alternative = 'two-sided'):
11
        if alternative not in ('two-sided', 'less', 'greater'):
12
            13
14
15
        if alternative == 'two-sided':
16
             return 2 * (1 - stats.norm.cdf(np.abs(z_stat)))
        if alternative == 'less':
19
             return stats.norm.cdf(z_stat)
20
21
        if alternative == 'greater':
             return 1 - stats.norm.cdf(z_stat)
```

Appendix C

2-sample z-test for proportions (related)

```
def proportions_diff_z_stat_rel(sample1, sample2):
    sample = list(zip(sample1, sample2))
    n = len(sample)

f = sum([1 if (x[0] == 1 and x[1] == 0) else 0 for x in sample])
    g = sum([1 if (x[0] == 0 and x[1] == 1) else 0 for x in sample])

return float(f - g) / np.sqrt(f + g - float((f - g)**2) / n )
```

Appendix D

F-test for variances

```
def f_test(sample1, sample2):
    F = np.std(sample1) / np.std(sample2)

df1 = len(sample1) - 1
    df2 = len(sample2) - 1

return scipy.stats.f.cdf(F, df1, df2)
```

Appendix E

1-sample Permutation test

```
def permutation_t_stat_1sample(sample, mean):
    t_stat = sum(sample - mean)
    return t_stat
def permutation_zero_distr_1sample(sample, mean, max_permutations = None):
    centered_sample = sample - mean
    if max_permutations:
        signs_array = set([tuple(x) for x in 2 * np.random.randint(2, size = (max_permutations,
                                                                                   len(sample))) - 1 ])
        signs_array = itertools.product([-1, 1], repeat = len(sample))
    distr = [sum(centered_sample * np.array(signs)) for signs in signs_array]
    return distr
def permutation_test(sample, mean, max_permutations = None, alternative = 'two-sided'):
    if alternative not in ('two-sided', 'less', 'greater'):
         \begin{tabular}{ll} \textbf{raise ValueError("alternative not recognized \verb|\|n"|)} \\ \end{tabular} 
                          "should be 'two-sided', 'less' or 'greater'")
    t_stat = permutation_t_stat_1sample(sample, mean)
    zero_distr = permutation_zero_distr_1sample(sample, mean, max_permutations)
    if alternative == 'two-sided':
        return sum([1. if abs(x) >= abs(t_stat) else 0. for x in zero_distr]) / len(zero_distr)
    if alternative == 'less':
        return sum([1. if x <= t_stat else 0. for x in zero_distr]) / len(zero_distr)
    if alternative == 'greater':
        return sum([1. if x >= t_stat else 0. for x in zero_distr]) / len(zero_distr)
```

10

11

12

13

15 16

17

18

19

20 21 22

23

24 25

26

27 28

30 31

32

Appendix F

2-sample Permutation test (independent)

```
def permutation_t_stat_ind(sample1, sample2):
        return np.mean(sample1) - np.mean(sample2)
   def get_random_combinations(n1, n2, max_combinations):
        index = list(range(n1 + n2))
        indices = set([tuple(index)])
        for i in range(max_combinations - 1):
            np.random.shuffle(index)
            indices.add(tuple(index))
        return [(index[:n1], index[n1:]) for index in indices]
10
11
   def permutation_zero_dist_ind(sample1, sample2, max_combinations = None):
        joined_sample = np.hstack((sample1, sample2))
13
        n1 = len(sample1)
14
15
        n = len(joined_sample)
        if max combinations:
            indices = get_random_combinations(n1, len(sample2), max_combinations)
18
        else:
19
            indices = [(list(index), filter(lambda i: i not in index, range(n))) \
20
                         for index in itertools.combinations(range(n), n1)]
21
22
        distr = [joined\_sample[list(i[0])].mean() - joined\_sample[list(i[1])].mean() \setminus
23
                 for i in indices]
24
        return distr
25
26
27
   def permutation_test(sample, mean, max_permutations = None, alternative = 'two-sided'):
        if alternative not in ('two-sided', 'less', 'greater'):
28
29
            raise ValueError("alternative not recognized\n"
                              "should be 'two-sided', 'less' or 'greater'")
30
31
        t_stat = permutation_t_stat_ind(sample, mean)
32
33
        zero_distr = permutation_zero_dist_ind(sample, mean, max_permutations)
34
35
        if alternative == 'two-sided':
            return sum([1. if abs(x) >= abs(t_stat) else 0. for x in zero_distr]) / len(zero_distr)
37
38
        if alternative == 'less':
    return sum([1. if x <= t_stat else 0. for x in zero_distr]) / len(zero_distr)</pre>
39
40
        if alternative == 'greater':
42
            return sum([1. if x >= t_stat else 0. for x in zero_distr]) / len(zero_distr)
```

Appendix G

2-sample Permutation test (related)

```
def permutation_t_stat_1sample(sample, mean):
    t_stat = sum(sample - mean)
    return t_stat
def permutation_zero_distr_1sample(sample, mean, max_permutations = None):
    centered_sample = sample - mean
    if max_permutations:
        signs_array = set([tuple(x) for x in 2 * np.random.randint(2, size = (max_permutations,
                                                                                   len(sample))) - 1 ])
        signs_array = itertools.product([-1, 1], repeat = len(sample))
    distr = [sum(centered_sample * np.array(signs)) for signs in signs_array]
    return distr
def permutation_test(sample, mean, max_permutations = None, alternative = 'two-sided'):
    if alternative not in ('two-sided', 'less', 'greater'):
         \begin{tabular}{ll} \textbf{raise ValueError("alternative not recognized \verb|\|n"|)} \\ \end{tabular} 
                          "should be 'two-sided', 'less' or 'greater'")
    t_stat = permutation_t_stat_1sample(sample, mean)
    zero_distr = permutation_zero_distr_1sample(sample, mean, max_permutations)
    if alternative == 'two-sided':
        return sum([1. if abs(x) >= abs(t_stat) else 0. for x in zero_distr]) / len(zero_distr)
    if alternative == 'less':
        return sum([1. if x <= t_stat else 0. for x in zero_distr]) / len(zero_distr)
    if alternative == 'greater':
        return sum([1. if x >= t_stat else 0. for x in zero_distr]) / len(zero_distr)
```

10

11

12

13

15 16

17

18

19

20 21 22

23

24 25

26

27 28

30 31

32