Tipo I. Todos los autovalores distintos de cero.

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = C \quad \text{con } C = \frac{-\Delta}{\delta}$$

	Forma canónica			
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Elipsoide	Z X	
C ≠ 0 <=> Δ ≠ 0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Hiperboloide de una hoja	Z X	El centro de simetría es la solución del sistema de ecuaciones lineales
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Hiperboloide de dos hojas	Z X	$\left\{ \frac{\partial f}{\partial x} = 0, \ \frac{\partial f}{\partial y} = 0, \ \frac{\partial f}{\partial z} = 0 \right\}$
C = 0 <=> Δ=0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$	Cono elíptico (o un punto)	X Y	

Tipo II. Dos autovalores no nulos y el otro $\lambda_3 = 0$

$$\lambda_1 x^2 + \lambda_2 y^2 + b_3 z = C \quad \text{con} \quad b_3^2 = \frac{-4\Delta}{\lambda_1 \lambda_2}$$

	Forma canónica			Λ ₁ Λ ₂	
$b_3 \neq 0$ $<=>$ $\Delta \neq 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$	Paraboloide elíptico	X Y	El vértice es la solución de $ abla f imes \overrightarrow{u_3} = \overrightarrow{0}$ $f(x,y,z) = 0$	
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	Paraboloide hiperbólico (o silla de montar)	X Y	$\overrightarrow{u_3}$ autovector del autovalor cero	
b ₃ = 0 <=> Δ=0	$\lambda_1 x^2 + \lambda_2 y^2 = C$	Cilindro elíptico, cilindro hiperbólico o dos planos secantes		$C = -f(\alpha, \beta, \gamma)$ con (α, β, γ) solución de $\left\{ \frac{\partial f}{\partial x} = 0, \ \frac{\partial f}{\partial y} = 0, \ \frac{\partial f}{\partial z} = 0 \right\}$	

Tipo III. Un autovalor no nulo y los otros $\lambda_2 = 0$ y $\lambda_3 = 0$

$$\lambda_1 x^2 + b_2 y + b_3 z = C$$

	Forma canónica		
$b_2^2 + b_3^2 \neq 0$	$\lambda_1 x^2 = By$	Cilindro parabólico	
$b_2 = b_3 = 0$	$\lambda_1 x^2 = C$	Dos planos paralelos distintos o iguales, o el vacío, según el valor de C.	