Noyaux et images itérés d'un endomorphisme

Soit E un \mathbb{K} - espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Soit u un endomorphisme de E.

Pour tout $p \in \mathbb{N}^*$, u^p désigne l'endomorphisme $u \circ u \circ \cdots \circ u$ (p termes) et u^0 désigne l'endomorphisme identité noté Id.

Pour tout $\ p \in \mathbb{N}$, nous notons , $\ N_{\scriptscriptstyle p} = \ker u^{\scriptscriptstyle p} \ \ \mathrm{et} \ \ I_{\scriptscriptstyle p} = \operatorname{Im} u^{\scriptscriptstyle p}$

- 1.a Déterminer $N_{\scriptscriptstyle p}$ et $I_{\scriptscriptstyle p}$ lorsque u est un endomorphisme injectif. On revient au cas général.
- 1.b Pourquoi N_p et I_p sont-ils des sous-espaces vectoriels de E?
- 1.c Montrer que, pour tout $p \in \mathbb{N}$: $N_p \subset N_{p+1}$ et $I_{p+1} \subset I_p$.
- 2. On pose $n_p = \dim N_p$ et $i_p = \dim I_p$.
- 2.a Calculer $n_p + i_p$.
- 2.b Etablir qu'il existe un plus petit entier naturel r tel que $n_r = n_{r+1}$.
- 2.c Justifier $r \le n$.
- 3. On reprend l'entier r introduit ci-dessus.
- 3.a Montrer que $N_r = N_{r+1}$ et $I_r = I_{r+1}$.
- 3.b Plus généralement, observer que pour tout $p \in \mathbb{N} : N_{r+p} = N_r$ et $I_{r+p} = I_r$.
- 3.c Montrer enfin que $E = N_r \oplus I_r$.
- 4. Pour tout $p\in\mathbb{N}$, on pose $\delta_p=i_p-i_{p+1}$. On désire montrer que la suite (δ_p) est décroissante.
- 4.a Justifier l'existence d'un sous-espace vectoriel D_p tel que $I_p = I_{p+1} \oplus D_p$ et déterminer $\dim D_p$.
- 4.b Etablir $I_{p+1} = I_{p+2} + u(D_p)$.
- 4.c En déduire $\delta_{n+1} \leq \delta_n$.