§ 13. Акустика

В задачах данного раздела используются данные таб $_{\rm BBL-11}$ и 12 приложения.

13.1. Найти длину волны λ основного тона ля състота $\nu = 435 \, \Gamma$ ц). Скорость распространения звука в воздухе $c = 340 \, \mathrm{M/c}$.

Решение:

Длина волны основного тона ля $\lambda = cT$ — (1), где T — период колебаний воздуха. Поскольку частота колебаний $\nu = \frac{1}{T}$ — (2), то, подставляя (2) в (1), получаем $\lambda = \frac{c}{V} = 0.78$ м.

13.2. Человеческое ухо может воспринимать звуки частотой приблизительно от $v_1 = 20 \, \Gamma$ ц до $v_2 = 20000 \, \Gamma$ ц. Между какими длинами воли лежит интервал слышимости звуковых колобаний? Скорость распространения звука в воздухе $c = 340 \, \mathrm{M}/\mathrm{c}$.

Решение:

Длина волны звуковых колебаний (см. задачу 13.1) $\lambda = \frac{c}{v}$. Интервал слышимости звуковых колебаний лежит между длинами волн $\lambda_1 = \frac{c}{v_1} = 17$ м и $\lambda_2 = \frac{c}{v_2} = 0.017$ м = 17 \times г.

13.3. Найти скорость с распространения звука в сталь.

Решение:

310

Скорость распространения акустических колебаний в некоторой среде определяется формулой $c = \sqrt{\frac{E}{\rho}}$, г.л. E = - **Годуль** Юнга среды, ρ — плотность среды. Для стали $\rho = 7.7 \cdot 10^3 \, \text{кг/м}^3$, тогда скорость звука в стали $c_c = 5296 \, \text{м/c}$.

13.4. Найти скорость c распространения звука в меди.

Решение:

Скорость распространения акустических колебаний в некоторой среде определяется формулой $c=\sqrt{\frac{E}{\rho}}$, где E — модуль Юнга среды, ρ — плотность среды. Для меди E=118 ГПа и $\rho=8.6\cdot10^3$ кг/м³, тогда скорость звука в меди c=3704 м/с.

13.5. Скорость распространения звука в керосине c = 1330 м/с. Найти сжимаемость β керосина.

Решение:

Модуль Юнга E связан со сжимаемостью β соотношени-

$$\beta = \frac{1}{E}$$
, где $E = \rho c^2$. Отсюда $\beta = \frac{1}{\rho c^2} = 7.1 \cdot 10^{-10} \text{ Па}^{-1}$.

13.6. При помощи эхолота измерялась глубина моря. Какова была глубина моря, если промежуток времени между возни-кновением звука и его приемом оказался равным t=2.5 с? Сжимаемость воды $\beta=4.6\cdot10^{-10}\,\mathrm{Ha}^{-1}$, плотность морской воды $\beta=1.03\cdot10^3\,\mathrm{kr/m}^3$.

Скорость распространения акустических колебаний в некоторой среде определяется формулой $c \sim \sqrt{\frac{E}{\rho^2}}$ — (1). Модуть Юнга связан со сжимаемостью соотнольствем $E = \frac{1}{\beta}$ — (2). Подетавляя (2) в (1), получаем $c_c = \sqrt{\frac{1}{\rho\beta}}$, тогда глубина моря $h = \frac{c_c l}{2} = \frac{1}{2} \sqrt{\frac{1}{\rho\beta}} = 1815$ м.

13.7. Найти скорость c распространения звука в ворнуте при температурах ℓ , равных: -20, 0 и 20° C.

Решение:

Скорость распространения акустических колебаний в газах $c=\sqrt{\frac{\gamma RT}{\mu}}$, где μ — молярная масса газа, T — "беолютная температура газа, $R=8,31\,\text{Дж/(моль K)}$ — универсальная газовая постоянная, γ — показатель адиобаты газа. Воздух в первом приближении можно считать двухатомным газом, поэтому $\mu=0,029\,\text{кг/M}^3$, $\gamma=\frac{i+2}{i}$, где — число степеней свободы, причем для двухатомных газов i=5, тогда $\gamma=1,4$. Подставляя числовые данные, се тавим таблицу:

<i>T</i> , K	253	273	293
C. M.C	321	333	34.

13.8. Во сколько раз скорость c_1 распространения звука в 603° духе летом ($t = 27^{\circ}$ С) больше скорости c_2 распространени. ЭУ ка зимой ($t = -33^{\circ}$ С)?

см. задачу 13.7)
$$c = \sqrt{\frac{\gamma RT}{\mu}}$$
, откуда следует $\frac{c_1}{c_2} = \sqrt{\frac{T_1}{T_2}}$.

Подставляя числовые данные, получим $\frac{c_1}{c_2} = 1.12$.

13.9. Зная, что средняя квадратичная скорость молокуй двухатомного газа в условиях опыта $v = 461 \,\mathrm{m/c}$, найти скорость с распространения звука в газе.

Решение:

Скорость распространения звука в газе (см. задачу 13.7)

$$c = \sqrt{\frac{\gamma RT}{\mu}}$$
 — (1), а средняя квадратичная скорость молекул

аза
$$\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$$
 — (2). Разделив (1) на (2), получаем

$$\frac{c}{\sqrt{v^2}} = \sqrt{\frac{\gamma}{3}}$$
, откуда скорость распространения звука в газе

$$\sqrt[2]{v^2}\sqrt{\frac{\gamma}{3}}$$
 — (3). По условию газ двухатомный, следова-

тельно (см. задачу 13.7), показатель адиабаты $\gamma = 1,4$ и, подставляя его в формулу (3), получаем c = 315 м/с.

13.10. Найти скорость e распространения звука в двух**атомном газе, если известно, что при давлении** $p = 1,01 \cdot 10^5 \, \text{Па}$ плотность газа $\rho = 1,29 \, \text{кг/м}^3$.

Решение:

Скорость распространения звука в газе (см. задачу 13.7)

$$c = \sqrt{\frac{\gamma RT}{\mu}}$$
 — (1). Из уравнения Менделеева — Клапейрона

$$pV = \frac{m}{\mu}RT$$
 давление $p = \frac{mRT}{\mu V} = \frac{\rho RT}{\mu}$ или $\frac{p}{\rho} = \frac{RT}{\mu}$ — (2).

Подставляя (2) в (1), получаем $c = \sqrt{\frac{\gamma p}{\rho}}$ — (3). По условию газ двухатомный, следовательно (см. задачу 13.7), ноказатель адиабаты $\gamma = 1.4$ и, подставляя его в формулу (3), получаем $c = 331\,\mathrm{m/c}$.

13.11. Зная, что средняя молярная кинетическая энергня поступательного движения молекул азота $W_{\rm K}\mu = 3.4~{\rm K} \pm {\rm M} \pm {\rm M}$

Решение:

Скорость распространения звука в газе (см. задачу 13.7) $c = \sqrt{\frac{\gamma RT}{\mu}}$ — (1), а средняя молярная кинетическая эпергия

поступательного движения молекул $W_{\hat{\kappa}\mu} = \frac{3}{2}RT$ — (2). Из

уравнения (2) абсолютная температура $T = \frac{2W_{\kappa\mu}}{3R}$ — (3).

Подставляя (3) в (1), получаем $c = \sqrt{\frac{2\gamma RW_{\kappa\mu}}{3R\mu}} = \sqrt{\frac{2\gamma W_{\kappa\mu}}{3\mu}}$ —

(4). Поскольку азот — газ двухатомный, следовательно (см. задачу 13.7), показатель адиабаты $\gamma=1.4$ и, подставляя его в формулу (4), получаем c=337 м/с.

13.12. Для определения температуры верхних слоев атмосферы нельзя пользоваться термометром, т. к. вследствие малой плотности газа термометр не придет в тельновое равновесие с окружающей средой. Для этой цели пускают ракету с гранатами, взрываемыми при достижении определенной овысоты. Найти температуру t на высоте $h=20\,\mathrm{km}$ от 314

перхности Земли, если известно, что звук от взрыва, **призведенного на** высоте $h_{\rm i} = 21\,{\rm km},$ пришел позже $_{-6,75\,\text{C}}$ звука от взрыва, произведенного на высоте $h_2=19\,\,\text{км}.$

Решение:

скорость распространения звука в газе (см. задачу 13.7) $\frac{\sqrt{RT}}{t}$ — (1). По условию звук проходит расстояние μ μ μ μ μ μ μ за время Δt , поэтому, с другой стороны,

 $\frac{h_2 - h_1}{h_1}$ — (2). Приравнивая правые части уравнений (1) и (2) и возводя обе части равенства в квадрат, получаем

 $\frac{\partial RT}{\partial \mu} = \frac{(h_2 - h_1)^2}{(\Delta t)^2}$, откуда абсолютная температура воздуха

высоте h равна $T = \frac{\mu}{\gamma R} \frac{(h_1 - h_2)^2}{(\Delta t)^2}$ — (3). Воздух в первом приближении можно считать азотом, для которого $\mu = 0.028 \, \mathrm{kr/m}^3$ и $\gamma = 1.4$. Подставляя значения в формулу (3), получаем T = 216 K или $t = T - 273 = -57^{\circ} \text{ C}$.

13.13. Найти показатель преломления *п* звуковых волн фа границе воздух — стекло. Молуль Юнга для стекла $\mathcal{E} = 6.9 \cdot 10^{10} \,\text{Па}$, плотность стекла $\rho = 2.6 \cdot 10^3 \,\text{кг/м}^3$, температура воздуха t = 20° C.

Решение:

Скорость распространения акустических колебаний в твердой и жидкой средах (см. задачи 13.3 и 13.4) $c = \sqrt{\frac{E}{c}}$ —

(1), **a B** rasax (cm. задачу 13.7)
$$c = \sqrt{\frac{\gamma RT}{\mu}}$$
 — (2). По оп-

ределению показателя преломления $n = \frac{c_1}{c_2}$ — (3), где c_1 и

 c_2 — скорости звука в воздухе и в стекле, которые могут быть найдены соответственно из формул (2) и (1). Подставляя (2) и (1) в (3) и учитывая, что абсолютная температура T = t + 273, получаем $n = \sqrt{\frac{\gamma RT\rho}{\mu E}} = \sqrt{\frac{\gamma RT\rho}{\mu E}}$

$$=\sqrt{\frac{\gamma R \rho (t+273)}{\mu E}}$$
 — (4). Воздух в первом приближении можно считать двухатомным газом, для которого

можно считать двухатомным газом, для которого $\mu=0.029~{\rm kr/m}^3$ и $\gamma=1.4$. Подставляя значения в формулу (4), получаем n=0.067 .

13.14. Найти предельный угол α полного внутреннего отражения звуковых воли на границе воздух — стекло. Воспользоваться необходимыми данными из предыдущей задачи.

Решение:

Согласно закону преломления волн показатель предомления $n=\frac{\sin\alpha}{\sin\beta}$ — (1), где α — угол падения, β — угол преломления. При определенном значении угла падения α_0 преломленная волна скользит вдоль границы двух средветом случае $\beta=\frac{\pi}{2}$ и $\sin\beta=1$ (2). Это явление называется полным внутренним отражением, а угол α_0 — предельным углом. Из (1), с учетом (2), получаем $n=\sin\alpha_0$ — (3) и, с другой стороны (см. задачу 13.13), показатель преломления $n=\sqrt{\frac{\gamma R \rho (t+273)}{\mu E}}$ — (4). Приравнивая правые части уравнений (3) и (4), получаем заба

 $ma_0 = \sqrt{\frac{\gamma R \rho (t+273)}{\mu E}}$, откуда предельный угол полно внутреннего отражения звуковых волн $a_0 = \arcsin \left(\sqrt{\frac{\gamma R \rho (t+273)}{\mu E}} \right)$. Считая воздух в первом приближении двухатомным газом, для которото $\mu = 0.029 \, \mathrm{kr/m}^3$ и $\gamma = 1.4$, получаем $\alpha = 3.84^\circ$.

13.15. Два звука отличаются по уровіно громкости на $AL_1 = 1 \phi$ он, Найти отношение $\frac{I_2}{I_1}$ интенсивностей этих звуков.

Решение:

ровень громкости в фонах L_I связан с интенсивностью вука соотношением $L_I=10lg\frac{I}{I_0}$ — (1), где I_0 — пороготышимости звука. Условно принимается, что $I_0=10^{-12}\,\mathrm{Br/m^2}$. Для первого и второго звука из (1) соответственно имеем $L_{I1}=10lg\frac{I_1}{I_0}$ и $L_{I2}=10lg\frac{I_2}{I_0}$, тогда $\Delta L_I=L_{I2}-L_{I1}=10\left(lg\frac{I_2}{I_0}-lg\frac{I_1}{I_0}\right)=10lg\frac{I_2}{I_1}$ или $lg\frac{I_2}{I_1}=\frac{\Delta L_I}{10}.$ Отсюда $\frac{I_2}{I_1}=10^{\left(\frac{\Delta I_1}{10}\right)}=1,26$.

13.16. Два звука отличаются по уровню звукового давления на $\Delta L_p = 1$ Дб. Найти отношение $\frac{p_2}{p_1}$ амплитуд их звукового давинения

Уровень звукового давления в децибелах связан с между тудой звукового давления соотношением $L_p=20\,l_{\rm E}$ (1), где p_0 — амплитуда звукового давления при нужеом уровне громкости. Условно принимается, что $f=2\times 10^{-5}\,{\rm Ha}$. Для первого и второго звука из (1) соответственно $L_{p1}=20\cdot lg\,\frac{p_1}{p_0}$ и $L_{p2}=20\cdot lg\,\frac{p_2}{p_0}$, гогда $\Delta L_p=L_{p2}-L_{p1}=20\left(lg\,\frac{p_2}{p_1}-lg\,\frac{p_1}{p_0}\right);$ $\Delta L_p=20lg\,\frac{p_2}{p_1}$ или $\log\frac{p_2}{p_1}=\frac{\Delta L_p}{20}$. Отсюда $\log\frac{p_2}{p_1}=10^{\left(\frac{\Delta L_p}{20}\right)}=1,12$.

13.17. Шум на улице с уровнем громкости L_{I1} = 70 фон слышен в комнате так, как шум с уровнем громкости L_{I2} = 40 фон. Найти отношение $\frac{I_1}{I_2}$ интенсивностей звуков на улице и в комнате.

Решение:

Отношение интенсивностей звуков на улице и в компате (см. задачу 13.15) будет определяться как $\frac{I_2}{I_1} = 10^{\left(\frac{L_{I1}-L_{I2}}{10}\right)} = 1000$.

13.18. Интенсивность звука увеличилась в 1000 раз. На сволько увеличилась амплитуда звукового давления? **318**

ровень звукового давлення (см. задачи 13.15 и 13.16) уреличился на $\Delta L_p = \Delta L_I = 10 \lg \frac{I_2}{I_1} = 30$ Дб. С другой сто-

роны, $\Delta L_p = 20 \cdot lg \frac{p_2}{p_1}$, откуда отношение амплитуд звуко-

вого давления
$$\frac{p_2}{p_1} = 10^{\left(\frac{\Delta L_p}{20}\right)} = 31.6$$
 .

13.19. Интенсивность звука $I = 10 \text{ мВт/м}^2$. Найти уровень громкости L_I и амплитуду p звукового давления.

Решение:

Уровень громкости в фонах L_i (см. задачу 13.15) связан с интенсивностью звука соотношением $L_l = 10 \lg \frac{I}{I}$, где

$$L_{I} = 10^{-12} \,\mathrm{Bt/m}^2$$
, тогда $L_{I} = 100 \,\mathrm{фон}$. Поскольку

$$L_{p} = L_{p} = 20 \cdot lg \frac{p}{p_{0}}$$
, то $lg \frac{p}{p_{0}} = \frac{L_{I}}{20}$, значит, $\frac{p}{p_{0}} = 10^{\left(\frac{L_{I}}{20}\right)}$, от-

сюда амплитуда звукового давления $p=p_{0}10^{\left(rac{If}{20}
ight)}$, где $p_0 = 2 \cdot 10^{-5} \, \text{Па, тогда} \ \ p = 2 \, \text{Па.}$

13.20. На сколько увеличился уровень громкости L_i звука. **если интенсивность** звука возросла: а) в 3000 раз; б) в 30000 раз?

Решение:

уровень громкости (см. задачу 13.15) увеличивается на

$$\Delta L_I = 10 \cdot lg \frac{I_2}{I_1}$$
. a) Если $\frac{I_2}{I_1} = 3000$, то $\Delta L_I = 34.77$ фон.

б) Если
$$\frac{I_2}{I_1} = 30000$$
, то $\Delta L_1 = 44,77$ фон.

13.21. Найти расстояние / между сосединии зубщами звуковей бороздки на граммофонной пластинке для тона дя (и.а гота $\nu = 435 \, \text{Гц}$): а) в начале записи на расстоянии $r = 12 \, \text{ст}$ от центра; б) в конце записи на расстоянии $r = 4 \, \text{см}$ от центра. Частота вращения пластинки $n = 78 \, \text{мин}^{-1}$.

Решение:

Имеем $l=\frac{\omega r}{\nu}$, где $\omega=2\pi\,n$ — угловая скорость врансения пластинки, отеюда $l=\frac{2\pi\,n\,r}{\nu}$. Подставляя чил ювые данные, получим: а) $l=2.25\,\mathrm{mm}$; б) $l=0.75\,\mathrm{mm}$.

13.22. Найти расстояние / между соседними зубъеми вуковой бороздки на граммофонной пластинке для: а) v = 100 Гц; б) v = 2000 Гц. Среднее расстояние от центра пласстики r = 10 см. Частота вращения пластинки n = 78 мин⁻¹.

Решение:

Расстояние между соседними зубцами звуковой бороздки на граммофонной пластинке найдем по формуле $l=\frac{\omega r}{\nu}$, где $\omega=2\pi\,n$ — угловая скорость вращения пластинки, отсюда $l=\frac{2\pi\,n\,r}{\nu}$. а) Если $\nu_1=100\,\Gamma$ ц, то $l_1=8.15\,\mathrm{MM}$. 6) Если $\nu_1=2000\,\Gamma$ ц, то $l_1=0.41\,\mathrm{MM}$.

13.23. При образовании стоячей волны в трубке Кул, та В воздушном столбе наблюдалось n=6 пучностей. Какона была длина I_2 воздушного столба, если стальной стержень заку эльсен: а) посередние; б) в конце? Длина стержия $I_1=1$ м. Скорость распространения звука в стали $c_1=5250$ м/с, в воздухе $c_2=3.13$ м/с. 320

при возбуждении колебаний в стальном стержне установится стоячая волна с узлами в точках зажима и пучностями на свободных концах. В стоячей волне воздушного столба расстояние между соседними пучностями равно половине длины возбужденной звуковой волны.

Имеем $\frac{\hat{A}_1}{\hat{A}_2} = \frac{c_1}{c_2}$ — (1). Длина l_2 воздушного столба на ос-

новании сказанного найдется из условия
$$\frac{n\lambda_{21}}{2} = l_2$$
 — (2).

Из (1) и (2) имеем
$$l_2 = \frac{n\lambda_1c_2}{2c_1}$$
. Тогда: а) $\lambda = 2l_1$, $l_2 = 0.392$ м;

6)
$$\lambda = 4l_1$$
, $l_2 = 0.784$ m.

13.24. Какова длина I_1 стеклянного стержня в трубке Кундта, если при закреплении его посередине в воздушиюм столбе наn=5 пучностей? Длина воздушного столба блюдалось $\mathbb{Z} = 0.25 \,\mathrm{M}$. Модуль Юнга для стекла $E = 6.9 \cdot 10^{10} \,\mathrm{Пa}$; плотность втекла $\rho = 2.5 \cdot 10^3 \, \text{кг/м}^3$. Скорость распространения звука в воз $ext{w} = c = 340 \text{ m/c}$.

Решение:

Имеем
$$l_2 = \frac{n\lambda_1 c_2}{2c_1}$$
 — (1) (см. задачу 13.23). По условию

$$\lambda_1 = 2l_1$$
 — (2). Скорость распространения акустических

колебаний в стекле
$$c_1 = \sqrt{\frac{E}{\rho}}$$
 — (3). Подставляя (2) и (3) в

(1), получаем
$$l_2 = \frac{2n_2lc_2}{2\cdot\sqrt{\frac{E}{c}}}$$
, откуда длина стеклянного

стержня
$$I_1 = \frac{I_2}{nc_2} \sqrt{\frac{R}{\rho}} = 0,772 \text{ м.}$$

13.25. Для каких наибольших частот применим метод Кулата определения скорости звука, если считать, что наименьти различимое расстояние между пучностями $l \approx 4$ мм? Състость распространения звука в воздухе c = 340 м/с.

Решение:

Имеем
$$I = \frac{\lambda}{2} = \frac{c}{2\nu}$$
 (см. задачу 13.23), отсюда макенул. "ная частота $\nu = \frac{c}{2l} \approx 43 \, \mathrm{к}\Gamma \mathrm{H}$.

13.26. Два поезда идут навстречу друг другу со скер се ими $u_1 = 72$ км/ч и $u_2 = 54$ км/ч. Первый поезд дает свисток с частотой v = 600 Гц. Найти частоту v' колебаний звука, который слышит пассажир второго поезда: а) перед встречей ноездов; б) после встречи поездов. Скорость распространения звуки в воздухе c = 340 м/с.

Решение:

По принципу Доплера частота звука, воспринимаемая наблюдателем, определяется формулой $v' = \frac{c + u_2}{c - u_1}v'$ — (1),

где v — частота звука, посылаемая источником звука, u_1 — скорость движения источника звука, u_2 — скорость движения наблюдателя, c — скорость распространения звука. Скорость $u_2>0$, если наблюдатель движется по направлению к источнику звука; скорость $u_1>0$, если источник движется к наблюдателю. а) Перед встречей поездов $v_1=\frac{c+u_2}{c-u_1}v=666\,\Gamma$ ц. б) После встречи поездов

$$v_2' = \frac{c - u_2}{c + u_1} v = 542 \,\Gamma \text{u}.$$

3.27. Когда поезд проходит мимо неподвижного наблюдачастота тона гудка паровоза меняется скачком. Какой процент от истинной частоты тона составляет скачок частоты, ан поезд движется со скоростью c = 60 км/ч?

Решение:

По принципу Доплера частота звука, воспринимаемая наблюдателем, определяется формулой $v' = \frac{c+u_2}{c-u_1}v$ — (1).

Поскольку наблюдатель покоится, то $u_2 = 0$, тогда (см. задачу 13.26) при движении поезда к наблюдателю и от него соответственно имеем из формулы (1) частоты звука

$$\frac{c}{c-u}v$$
 — (2) и $v_2' = \frac{c}{c+u}v$ — (3). Величина скачка

мастоты $\Delta \nu = \nu_1' - \nu_2'$ — (4). Подставляя (2) и (3) в (4),

получаем
$$\Delta v = c v \left[\frac{1}{c - u} - \frac{1}{c + u} \right] = 9.8\%$$
.

13.28. Наблюдатель на берегу моря слышит звук пароходного судка. Когда наблюдатель и пароход находятся в покое, частота воспринимаемого наблюдателем звука $\nu = 420\,\Gamma$ п. При движении парохода воспринимаемая частота $v_1 = 430\,\Gamma$ п, если пароход приближается к наблюдателю, и $\nu_2 = 415\,\Gamma$ п, если пароход граняется от него. Найти скорость ν парохода в первом и втором случаях, если скорость распространения звука в воздухе $\nu = 338\,\text{м/c}$.

Решение:

По принципу Доплера частота звука, воспринимаемая наблюдателем, определяется формулой $v' = \frac{c + u_2}{c - u_1}v$ — (1).

Поскольку наблюдатель покоится, то $v_2 = 0$. Если пароход приближается к наблюдателю (см. задачу 13.26), то из 323

формулы (1) имеем $v'_1 = \frac{c}{c-u}v$, откуда скорость парохо-

да
$$u = c \left[1 - \frac{v_1'}{v} \right] = 8,05$$
 м/с. Аналогично при удалении

парохода от наблюдателя $v_2' = \frac{c}{c+u}v$, следовательно,

$$u = c \left[\frac{v_2'}{v} + 1 \right] = 4.07 \text{ m/c}.$$

13.29. Ружейная пуля летит со скоростью $u=200\,\mathrm{M}$ с. Во сколько раз изменится частота тона свиста пули для неподвижного наблюдателя, мимо которого пролетает пуля? Скорость распространения звука в воздухе $c=333\,\mathrm{M/c}$.

Решение:

Частоты звука при движении пули к неподвижному наблюдателю и от него (см. задачу 13.27) соответственно равны $v_1' = \frac{c}{c-u} v$ и $v_2' = \frac{c}{c+u} v$, тогда $\frac{v_1'}{v_2'} = \frac{c+u}{c-u} = 4$.

13.30. Два поезда идут навстречу друг другу с одинаковой скоростью. Какова должна быть их скорость u, чтобы частота свистка одного из них, слышимого на другом, изменялась в 9/8 раза? Скорость распространения звука в воздухе c = 335 м с.

Решение:

По принципу Доплера частота звука, воспринимаемая наблюдателем, определяется формулой $v' = \frac{c + u_2}{c - u_1} v'$ — (1).

По условию
$$u_1 = u_2 = u$$
 — (2) и $\frac{v'}{v} = \frac{c+u}{c-u} = \frac{9}{8}$ отсюда скорость поездов $u = \frac{c}{17} = 19,7$ м/с.

13.31. Летучая мышь летит перпендикулярно к стене со скоростью 6,0 м/с, издавая ультразвук частотой $\nu=45\,\mathrm{k\Gamma}$ ц. Какие две частоты звука ν_1 и ν_2 слышит летучая мышь? Скорость распространения звука в воздухе $c=340\,\mathrm{m/c}$.

Решенне:

По принципу Доплера частота звука, воспринимаемая наблюдателем, определяется формулой $v' = \frac{c + u_2}{c - u_1} v$ — (1).

По условию $u_1 = u_2 = u$ — (2) — скорость летучей мыши. Летучая мышь будет слышать прямой звук и отраженный от стены. Для прямого звука из формулы (1) имеем $v_1 = \frac{c+u}{c+v}v = v = 45 \,\mathrm{k}\Gamma$ ц. Аналогично для отраженного зву-

$$c + u$$
 $\kappa a \ v_2 = \frac{c + u}{c - u} v = 46.6 \text{ k}\Gamma u.$

13.32. Какую длину l должна иметь стальная струна радиусом r = 0.05 см, чтобы при силс натяжения F = 0.49 кH она издавала тон частотой $\nu = 320$ Ги?

Решение:

Частота основного тона струны определяется формулой $v = \frac{1}{2l} \sqrt{\frac{F}{\rho S}}$ — (1), где l — длина струны, F — сила ее

натяжения, $S = \pi r^2$ — (2) — площадь ее поперед 40 сечения. ρ — плотность материала среды. Подстав. 1 (2) в (1), получаем $v = \frac{1}{2l} \sqrt{\frac{F}{\rho \pi r^2}}$, откуда длина слуды $I = \frac{1}{2v} \sqrt{\frac{F}{\rho \pi r^2}} = 0.45 \,\mathrm{M}$.

13.33. С какой силой F надо натянуть стальную стру. Стинной $I=20\,\mathrm{cm}$ и диаметром $d=0.2\,\mathrm{mm}$, чтобы она издаваль сов ля (частота $\nu=435\,\Gamma\mathrm{u}$)?

Решение:

Частота основного тона струны определяется формалой $\nu = \frac{1}{2l} \sqrt{\frac{F}{\alpha S}}$ — (1) (см. задачу 13.32), где $S = \frac{\pi d^2}{4}$ — (2).

Тогда, подставляя (2) в (1), получим $\nu = \frac{1}{2l} \sqrt{\frac{4F}{\rho \pi d^2}}$ — (3).

Возведя обе части уравнения (3) в квадрат, имеем $v^2 = \frac{1}{4l^2} \frac{4F}{\rho\pi d^2} = \frac{F}{\rho\pi d^2 l^2}$, откуда сила натяжения струны $F = \rho\pi v^2 d^2 l^2 = 7.32 \text{ H}$.

13.34. Зная предел прочности для стали, найти наиболь дую частоту ν , на которую можно настроить струну длиной $\ell \in \mathbb{N}$.

Решение:

Частота основного тона струны определяется формулой $v = \frac{1}{2l} \sqrt{\frac{F}{\rho S}}$ — (1). По определению предел прочности

 $p_{\text{мах}} = \frac{F_{\text{мах}}}{S}$, откуда максимальная сила, с которой можно ватянуть струну, равна $F_{\text{max}} = P_{\text{max}}S$ — (2). Подставляя (2) в (1), находим наибольшую частоту, на которую можно настроить струну, $v_{\text{max}} = \frac{1}{2l} \sqrt{\frac{p_{\text{max}}}{\rho}} = 159 \, \text{Гц}$.

13.35. Струна, патянутая с силой $F_1 = 147$ H, дает с камертоном частоту биений $\nu_5 = 8$ Гц. После того как эту струну натянули с силой $F_2 = 156.8$ H, она стала настроена с камертоном в унисон. Найти частоту ν_5 колебаний камертона.

Решение:

Имеем $\frac{v_1}{v_2} = \sqrt{\frac{F_1}{F_2}} = 0.97$; $v_5 = v_2 - v_1 = 8 \, \Gamma$ ц. Решая эти уравнения совместно, получим $v_5 = 252 \, \Gamma$ ц.

13.36. Камертон предыдущей задачи даст с другим камертоном частоту бисний $v_0 = 2$ Гп. Найти частоту колебаний корого камертона.

Решение:

Частота биений $v_6 = v_2 - v_1$ — (1). Из предыдущей задачи **частота одного** камертона $v_2 = 252 \, \Gamma_{\rm H}$, тогда из формулы (1) получим $v_1 = v_2 - v_6 = 250 \, \Gamma_{\rm H}$. Однако следует обратить **внимание**, что камертон из предыдущей задачи может быть **как** вторым, так и первым, т. е. $v_1 = 252 \, \Gamma_{\rm H}$, тогда $v_2 = v_6 + v_1 = 254 \, \Gamma_{\rm H}$.

43.37. Найти частоту v основного тона струны, натянутой с **жилой** F = 6 кH. Длина струны l = 0.8 м, ее масса m = 30 г.

Частота основного тона струны определяется формулой $v=\frac{1}{2l}\sqrt{\frac{F}{\rho S}}$ — (1). Масса струны $m=\rho V$ — (2), где V=lS — (3) — ее объем. Из (2) и (3) имеем $m=\rho lS$, откуда плотность материала струны $\rho=\frac{m}{lS}$ — (4). Подставляя (4) в (1), находим частоту основного тона струны $v=\frac{1}{2l}\sqrt{\frac{Fl}{m}}=250\,\Gamma$ ц.

13.38. Найти частоту ν основного тона: а) открытой трубы; б) закрытой трубы.

Решение:

а) В открытой трубе образуется стоячая звуковая волна с пучностями на обоих концах. На длине трубы l может поместиться n полуволн, где $n=1,\ 2,\ 3$... т. е. $l=\frac{n\lambda}{2}$ и

 $v = \frac{c}{\lambda} = \frac{nc}{2l}$. Частота основного тона $v = \frac{c}{2l}$. б) В закрытой трубе стоячая волна имеет на одном конце узел, а на другом — пучность. В этом случае $l = \frac{n\lambda}{4}$ и $v = \frac{c}{\lambda} = \frac{nc}{4l}$. Частота основного тона $v = \frac{c}{4l}$.

13.39. Закрытая труба издает основной тон до (частота $\nu_1 = 130,5 \, \Gamma$ ц). Трубу открыли. Какую частоту ν_2 имеет основной тон теперь? Какова длина l трубы? Скорость распространения звука в воздухе $\nu = 340 \, \text{м/c}$.

 $\ddot{\mathbf{B}}$ закрытой трубе стоячая волна имеет узел на одном конце \mathbf{u} пучность на другом. В этом случае $l = \frac{n\lambda_1}{4}$ — (1) и

и пучность на другом. В этом случае $t = \frac{c}{4}$ — (1) и $v_1 = \frac{c}{\lambda} = \frac{nc}{4l}$ — (2). При n = 1 из формулы (2) частота

основного тона $v_1 = \frac{c}{4l}$, откуда длина трубы

 $t = \frac{c}{4v_1} = 0,65$ м. Когда трубу открыли, в ней возникла стоячая волна с пучностями на обоих концах. Тогда $t = \frac{n\lambda_2}{2}$ — (3) и $v_2 = \frac{c}{\lambda_2} = \frac{nc}{2l}$ — (4). Приравнивая правые

части уравнений (1) и (3), получаем $\lambda_2 = \frac{\lambda_1}{2}$ — (5). Из (2) и

(4) следует, что $\frac{\nu_1}{\nu_2} = \frac{\lambda_2}{\lambda_1}$, откуда, с учетом (5), частота основного тона открытой трубы $\nu_2 = 2\nu_1 = 261\,\Gamma_{\rm H}$.