Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Error Analysis

Carrying out error analysis

Look at dev examples to evaluate ideas

> 10% occuraç

Should you try to make your cat classifier do better on dogs?

Error analysis:

- 5 Get ~100 mislabeled dev set examples.
- · Count up how many are dogs.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats <-
- Fix great cats (lions, panthers, etc..) being misrecognized <

• Improve performance on blurry images —

Image	Dog	Great Cats	Plury	Instagram	Comments
1	/			✓	Pitbull
2			/	V	
3		\checkmark	V		Rainy day at 200
:	:	· · · /	;	K	
% of total	8 %	(430/2)	6/º/0	12%	
		~	←	_	

Error Analysis

Cleaning up Incorrectly labeled data

Incorrectly labeled examples

DL algorithms are quite robust to random errors in the training set.

Systematic errors

Andrew Ng

Error analysis

•	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments				
\uparrow	•••									
	98				\checkmark	Labeler missed cat in background	\leftarrow			
	99		✓							
\bigcup	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow			
	% of total	8%	43%	$\underline{61\%}$	6%	V				
Overall dev set error 2%										
Errors due incorrect labels 0.6°/. 6.6°/.										
Errors due to other causes 9.4% 1.4%										
				1		2.10/0	1.9./6			

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong. (2)
- Train and dev/test data may now come from slightly different distributions.

Error Analysis

Build your first system quickly, then iterate

Speech recognition example

- → Noisy background
 - Café noise
 - → Car noise
- Accent Guideline:

Young Build your first Stutter system quickly, then iterate

- → Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Mismatched training and dev/test data

Training and testing on different distributions

Cat app example

Data from webpages

Data from mobile app

(mr. 792,000

Andrew Ng

Speech recognition example

Training

Purchased data ×y

Smart speaker control

Voice keyboard

... 500,000 utbrances

Dev/test

Speech activated rearview mirror

deeplearning.ai

Mismatched training and dev/test data

Bias and Variance with mismatched data distributions

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error

Dev error

10%

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

More general formulation

Reasures milror

Mismatched training and dev/test data

Addressing data mismatch

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

 Make training data more similar; or collect more data similar to dev/test sets

Artificial data synthesis

Car noise

"The quick brown fox jumps over the lazy dog."

Synthesized in-car audio

Artificial data synthesis

Car recognition:

Learning from multiple tasks

Transfer learning

When transfer learning makes sense

Transh from A -> B

• Task A and B have the same input x.

• You have a lot more data for $\underbrace{Task A}_{\uparrow}$ than $\underbrace{Task B}_{\checkmark}$.

• Low level features from A could be helpful for learning B.

Learning from multiple tasks

Multi-task learning

Simplified autonomous driving example

Neural network architecture

Andrew Ng

When multi-task learning makes sense

• Training on a set of tasks that could benefit from having shared lower-level features.

• Usually: Amount of data you have for each task is quite

similar. A 1,000
A, 1,000
A, 1,000
A, 1,000
A, 1,000
A, 1,000

• Can train a big enough neural network to do well on all the tasks.

End-to-end deep learning

What is end-to-end deep learning

What is end-to-end learning?

Speech recognition example

Face recognition

[Image courtesy of Baidu]

Andrew Ng

More examples

Machine translation

Estimating child's age:

End-to-end deep learning

Whether to use end-to-end learning

Pros and cons of end-to-end deep learning

Pros:

Cons:

- Let the data speak
- Less hand-designing of components needed

- May need large amount of data
- Excludes potentially useful hand-designed components

Applying end-to-end deep learning

Key question: Do you have sufficient data to learn a function of the complexity needed to map x to y?

