

1. Wizja i Zakres Projektu

Opis:

Naszym celem jest stworzenie aplikacji mobilnej wykorzystującej sztuczną inteligencję, która umożliwi użytkownikom uzyskanie szczegółowych informacji o meczu Ekstraklasy w czasie rzeczywistym, po skierowaniu aparatu na boisko. Projekt nawiązuje do rozwiązania zastosowanego podczas Mundialu w Katarze i ma na celu zaadaptowanie tej technologii na potrzeby polskiej Ekstraklasy. Głównym problemem, który chcemy rozwiązać, jest ograniczony dostęp do szczegółowych danych meczowych w czasie rzeczywistym, które mogą być prezentowane w intuicyjny sposób bez potrzeby przeszukiwania aplikacji sportowych lub stron internetowych.

Cele projektu:

- Umożliwienie fanom piłki nożnej śledzenia kluczowych statystyk i danych meczowych na żywo.
- Zwiększenie zaangażowania i satysfakcji kibiców poprzez dostarczenie interaktywnych doświadczeń.
- Stworzenie rozwiązania łatwego w użyciu, które nie wymaga specjalistycznego sprzętu wystarczy smartfon z aparatem.

Docelowi odbiorcy:

- Kibice polskiej Ekstraklasy, którzy chcą być na bieżąco z wydarzeniami na boisku.
- Kluby Ekstraklasy, które mogą wykorzystać aplikację do zwiększenia zaangażowania swoich fanów i wzbogacenia doświadczeń podczas oglądania meczów na żywo.
- Ułatwienie klubom analizy pomeczowej i zwiększenie poziomu gry.

Zakres projektu:

Funkcjonalności:

- Rozpoznawanie boiska i graczy w czasie rzeczywistym przy pomocy kamery w smartfonie.
- Wyświetlanie danych meczowych, takich jak: aktualny wynik, statystyki graczy, posiadanie piłki, liczba strzałów itp.
- Integracja z bazą danych Ekstraklasy, aby zapewnić aktualne informacje o drużynach i zawodnikach.
- Analiza i wyświetlania danych meczowych oraz szczegółowa analiza taktyczna po meczu.

Technologia:

- Wykorzystanie algorytmów rozpoznawania obrazu oraz sztucznej inteligencji do identyfikacji graczy i wydarzeń na boisku.
- Wsparcie dla iOS i Androida.
- Synchronizacja z bazą danych Ekstraklasy, przetwarzanie niektórych operacji w chmurze i zarządzanie użytkownikami.
- Wyświetlanie statystyk i danych bezpośrednio na obrazie z kamery użytkownika, dzięki technologii AR.

Wyłączenia (non-goals):

- Aplikacja nie będzie oferować streamingu wideo jej celem jest przetwarzanie danych w czasie rzeczywistym na podstawie obrazu z kamery, a nie bezpośrednie transmitowanie meczu.
- Projekt nie obejmuje wsparcia dla innych lig niż polska Ekstraklasa.

Dlaczego ten projekt jest ważny?

Aplikacja odpowiada na potrzebę nowoczesnego, interaktywnego sposobu śledzenia meczów piłkarskich, co może zwiększyć zaangażowanie kibiców. Dzięki wykorzystaniu AI użytkownicy mogą uzyskać informacje w intuicyjny sposób, bez konieczności przerywania oglądania meczu. Projekt stanowi również przykład nowatorskiego zastosowania AI w sporcie, co może zainspirować do dalszego rozwoju podobnych technologii w innych dziedzinach.

2. Persony użytkowników i przypadki użycia (User Personas and Use Cases)

Opis:

Stworzenie profili kluczowych grup użytkowników oraz opisanie, jak będą wchodzić w interakcje z aplikacją. Identyfikacja ich potrzeb, zachowań i celów. Wyjaśnienie, dlaczego będą chcieli, potrzebowali lub musieli korzystać z produktu. Określenie wartości, jakie aplikacja im przyniesie, oraz kluczowych przypadków użycia.

Persony użytkowników:

• Kamil, 28 lat, zagorzały kibic Ekstraklasy

Opis: Kamil ogląda mecze Ekstraklasy zarówno na stadionie, jak i w telewizji.
Regularnie śledzi wyniki i statystyki drużyn, ale odczuwa frustrację z powodu ograniczonego dostępu do danych w czasie rzeczywistym podczas meczu.

Potrzeby:

- Natychmiastowy dostęp do kluczowych statystyk meczowych.
- Możliwość sprawdzenia danych o zawodnikach bez konieczności korzystania z przeglądarki czy innej aplikacji.
- Cel: Lepsze przeżywanie meczu poprzez szybki dostęp do szczegółowych informacji o grze.

Anna, 35 lat, analityczka sportowa w klubie Ekstraklasy

• **Opis:** Anna pracuje jako analityczka w jednym z klubów Ekstraklasy. Jej zadaniem jest analiza gry zawodników, identyfikacja błędów taktycznych i dostarczanie raportów trenerom po meczach.

Potrzeby:

- Narzędzie do szybkiej analizy taktycznej podczas meczu.
- Dostęp do danych o posiadaniu piłki, liczbie strzałów czy statystyk indywidualnych w czasie rzeczywistym.
- **Cel:** Usprawnienie analizy gry i dostarczenie precyzyjnych danych trenerom bezpośrednio po meczu.

Przypadki użycia:

• Kamil śledzi mecz na stadionie

Kroki:

- Otwiera aplikację i kieruje kamerę smartfona na boisko.
- Na ekranie pojawiają się dane na temat aktualnego wyniku, posiadania piłki i statystyk zawodników.
- Sprawdza szczegółowe informacje o ulubionym graczu, np. liczbę podań czy strzałów.
- **Wynik:** Kamil na bieżąco śledzi dane, co pozwala mu lepiej przeżywać emocje związane z meczem.

• Anna analizuje mecz w czasie rzeczywistym

Kroki:

- Używa aplikacji w loży analitycznej, kierując kamerę na boisko.
- Sprawdza szczegółowe dane o taktyce drużyn i wynikach zawodników.
- Korzysta z funkcji zapisywania statystyk, aby później przesłać je trenerowi.

• **Wynik:** Anna dostarcza trenerowi dane w czasie rzeczywistym, co pozwala na lepsze decyzje taktyczne w przerwie meczu.

Generated with erd.dbdesigner.net

Baza danych

Poniższa baza danych zawiera statystyki graczy, meczy oraz drużyn oraz dane użytkowników aplikacji.

Harmonogram projektu

1. Faza analizy i planowania (4 tygodnie)

• Tydzień 1:

- Zdefiniowanie wymagań biznesowych i funkcjonalnych.
- Spotkanie z kluczowymi interesariuszami (kibice, kluby Ekstraklasy, analitycy).
- Określenie szczegółów technologicznych i budżetu.

• Tydzień 2:

- Opracowanie dokumentacji projektowej (wizja, zakres, persony).
- Analiza wymagań i przygotowanie backlogu.

• Tydzień 3-4:

- Tworzenie planu pracy i roadmapy projektu.
- Wybór technologii i dostawców chmurowych.

2. Projektowanie architektury systemu (4 tygodnie)

• Tydzień 5:

 Projektowanie architektury bazy danych (statystyki graczy, meczy, drużyn, dane użytkowników).

Tydzień 6-7:

- Opracowanie algorytmów do rozpoznawania obrazu i identyfikacji graczy.
- Projektowanie systemu AR do wyświetlania danych w czasie rzeczywistym.

Tydzień 8:

• Przygotowanie interfejsów API do integracji z bazą danych Ekstraklasy.

3. Rozwój kluczowych funkcjonalności (12 tygodni)

• Tydzień 9-10:

• Implementacja modułu rozpoznawania obrazu (AI).

• Tydzień 11-12:

Rozwój systemu AR i nakładania danych na obraz z kamery.

• Tydzień 13-15:

- Synchronizacja z bazą danych Ekstraklasy.
- Implementacja przetwarzania danych w chmurze.

• Tydzień 16-18:

• Tworzenie interfejsu użytkownika (UI) dla iOS i Androida.

4. Testowanie i optymalizacja (8 tygodni)

• Tydzień 19-20:

• Testy jednostkowe i integracyjne (rozpoznawanie obrazu, baza danych).

• Tydzień 21-22:

• Testy funkcjonalne systemu AR.

• Tydzień 23-24:

- Testy beta z wybranymi kibicami i analitykami sportowymi.
- Analiza opinii i optymalizacja systemu.

5. Wdrożenie i utrzymanie (4 tygodnie)

• Tydzień 25:

• Wdrożenie aplikacji na platformy iOS i Android.

• Tydzień 26-28:

- Monitorowanie i rozwiązywanie problemów zgłaszanych przez użytkowników.
- Przygotowanie dokumentacji użytkownika.

Kluczowe kamienie milowe

- **Tydzień 1**: Zatwierdzenie wymagań i wizji projektu.
- Tydzień 4: Finalizacja roadmapy.
- **Tydzień 8**: Zakończenie projektowania architektury systemu.
- Tydzień 18: Gotowa wersja funkcjonalna aplikacji.
- Tydzień 24: Zakończenie testów beta.
- Tydzień 28: Oficjalne wydanie aplikacji.

Podsumowanie

Harmonogram zakłada realizację projektu w ciągu 7 miesięcy. Uwzględnia on kluczowe etapy od analizy i projektowania, poprzez rozwój, aż po wdrożenie i utrzymanie. Roadmapa pozwala na monitorowanie postępów oraz identyfikację ryzyk w kluczowych momentach realizacji projektu.

5. Plan ochrony prywatności i bezpieczeństwa danych

Opis:

Zidentyfikowanie zagrożeń związanych z prywatnością i bezpieczeństwem danych, zapewnienie zgodności z regulacjami (np. RODO) oraz ochrona danych użytkowników. Plan obejmuje testy bezpieczeństwa (np. penetracyjne) oraz wykorzystanie technologii zwiększających ochronę danych (np. szyfrowanie, firewalle).

Kryteria akceptacji:

- Lista co najmniej trzech zagrożeń bezpieczeństwa.
- Strategie minimalizacji ryzyka.
- Zgodność z przepisami dotyczącymi ochrony danych.

Zagrożenia i strategie:

- Nieautoryzowany dostęp: Szyfrowanie danych, uwierzytelnianie dwuskładnikowe (2FA), ograniczony dostęp.
- Utrata danych: Kopie zapasowe, firewalle, monitorowanie aktywności.
- Naruszenie RODO: Analiza zgodności, polityka prywatności, szkolenia.

Testy bezpieczeństwa:

- Testy penetracyjne.
- Sprawdzanie odporności na ataki DDoS.
- Weryfikacja uwierzytelniania.

Narzędzia i technologie:

- Szyfrowanie (AES-256, TLS).
- Firewall aplikacyjny (WAF), systemy IDS/IPS.
- OAuth 2.0 do zarządzania dostępem.

6. Plan testowania

1. Wprowadzenie

Plan testów obejmuje strategie testowania aplikacji mobilnej do analizy meczów Ekstraklasy, wykorzystującej sztuczną inteligencję do rozpoznawania boiska i graczy w czasie rzeczywistym.

Cele testów:

- Zapewnienie wysokiej jakości działania aplikacji.
- Wykrycie i eliminacja błędów na wczesnym etapie.
- Ocena wydajności i bezpieczeństwa systemu.
- Weryfikacja poprawności integracji z bazą danych Ekstraklasy.

2. Zakres testów

- Testy obejmą następujące obszary:
- Testy funkcjonalne sprawdzenie zgodności działania aplikacji z wymaganiami.
- Testy wydajnościowe analiza szybkości i responsywności systemu.
- Testy bezpieczeństwa ocena podatności na zagrożenia i zgodności z regulacjami (RODO).

- Testy użyteczności ocena intuicyjności interfejsu.
- Testy kompatybilności sprawdzenie działania na różnych urządzeniach i systemach operacyjnych.
- 3. Strategie testowania

3.1 Testy jednostkowe

Zakres:

- Algorytmy rozpoznawania obrazu.
- Moduły wyświetlania danych w AR.
- Logika przetwarzania danych statystycznych.

Narzędzia: Jest, Mocha, Chai (dla backendu i AI), XCTest (iOS), Espresso (Android).

3.2 Testy integracyjne

Zakres:

- Połączenie aplikacji z bazą danych Ekstraklasy.
- Synchronizacja danych w czasie rzeczywistym.
- Przetwarzanie danych w chmurze.

Narzędzia: Postman (API), Selenium (UI), Appium (testy mobilne).

3.3 Testy funkcjonalne

Scenariusze:

- Rozpoznawanie boiska i zawodników poprzez kamerę smartfona.
- Wyświetlanie statystyk meczowych na żywo.
- Pobieranie danych o drużynach z bazy Ekstraklasy.
- Interakcja użytkownika z interfejsem aplikacji.

Oczekiwane wyniki: Poprawne wyświetlanie i aktualizacja danych.

3.4 Testy wydajnościowe

Zakres:

- Czas odpowiedzi aplikacji przy dużym obciążeniu.
- Wydajność algorytmów AI w czasie rzeczywistym.

Narzędzia: JMeter, Firebase Test Lab.

3.5 Testy bezpieczeństwa

Obszary:

• Szyfrowanie danych użytkownika.

- Ochrona przed atakami DDoS.
- Weryfikacja dostępu do bazy danych.

Narzędzia: OWASP ZAP, Burp Suite.

3.6 Testy użyteczności

Metody:

- Testy A/B z udziałem kibiców i analityków sportowych.
- Analiza ścieżek użytkownika.

Narzędzia: Hotjar, UXCam.

4. Kryteria akceptacji

Aplikacja zostanie uznana za gotową do wdrożenia, jeśli spełni następujące warunki:

- Wszystkie testy funkcjonalne zakończone sukcesem.
- Wydajność aplikacji w granicach akceptowalnych norm.
- Brak krytycznych luk bezpieczeństwa.
- Pozytywna ocena testów beta.

5. Kryteria akceptacji

Plan testów zapewnia kompleksowe sprawdzenie aplikacji, gwarantując jej stabilność, wydajność i bezpieczeństwo. Dzięki testom beta uzyskamy cenne opinie użytkowników, co pozwoli na ostatnie optymalizacje przed wdrożeniem.