

GLAST Large Area TelescopeCalorimeter Subsystem 6.0 Mechanical Subsystem

Paul V. Dizon Naval Research Lab, Washington DC Calorimeter Lead Mechanical Systems Engineer

paul.dizon@nrl.navy.mil (202)-404-7193

CDR Outline

- □ CAL Mechanical Subsystem
 - Subsystem Overview

Paul Dizon

- Mechanical Design and Analysis Oscar Ferreira
- Thermal Design and Analysis Pierre Prat
- Manufacturing of Flight Modules Paul Dizon
- Summary Paul Dizon

CAL Design Overview

Key Parameters					
Dimensions Max Length & Width Min Length & Width		2			
Height		221.8 mm			
Mass Structure Electronics CDE Total		9.6 kg 1.7 kg 75.7 kg 87.0 kg			
First Mode Frequency		>150 Hz			
Max Deflection	Static Load Random Vibration	0.3 mm 0.3 mm RMS			

CAL Design Overview

- Pre-Electronics Module Assembly
 - PEM Mechanical Structure
 - Carbon Fiber Structure
 - Aluminum Base Plate and Top Frame
 - Crystal Detector Elements (CDE) 96 Units
 - Close-Out Plates
- □ CAL Module Assembly
 - PEM Assembly
 - AFEE Cards
 - Side Panels
 - TEM Stand-Off
 - TEM Harness and Associated Brackets

CAL Design Overview

Engineering Challenges

- Maximize Packaging Volume for AFEE While Minimizing Effective Detector Gaps Between Adjacent CAL Modules
- Ensure Structural Stiffness of the CAL Modules without Relying on the Mechanical Properties of the Csl Crystal Logs
- Secure CsI Crystal Logs for Launch Loads without Constraining them During Thermal Expansion

Derived Requirements

Document Title	Document Number	Status
Mechanical Systems Interface Definition Drawing, CAL - LAT Inter	fat A T-DS-00233	Released
LAT Contamination Control Plan	LAT-MD-00404-02	Released
Interface Control Document between the Calorimeter Subsystem LAT Instrument	and LAT-SS-00238-04	Released
CAL Mechanical Structures Specification	LAT-SS-00241-03	Released
LAT Environmental Specification	LAT-SS-00778-01-D8	In signoff

Compliance Matrix

Parameter	Parameter Requirement Compliance C		
Physical Interfaces & Clearance - Dimensions & Tolerances - Surface Condition of Tabs - Static Stay-Clear Dimensions - Dynamic Stay-Clear Dimensions - Lateral - Vertical Base Plate Requirements - Stiffness - CTE	per IDD - LAT-DS-00233 per LAT-SS-00238 0.50 mm MAX 0.50 mm MAX per LAT-SS-00238 Equivalent to 8 mm Al Plate CTE = 21-25E-6 m/m/deq C	YES YES YES YES YES	Measured on EM Measured on EM Measured on EM Verified on VM2 (<0.3 mm) Verified on VM2 (<0.3 mm) Equivalent to 8 mm Thickness (Plus Margin) Aluminum Plate
Mass Properties - Mass - Center of Gravity Structural Load Environment	per LAT-SS-00238 90 kg Max Lateral Offset +/-10 mm Max Z CG Position = 116 mm per LAT-SS-00238/LAT-SS-00778	YES YES YES	Measured on EM (approx 86 kg) Analysis Shows within +/- 1 mm Analysis Shows Zcg =87.5 mm from CAL-Grid Interface Verified on VM2. To be Re-verified on EM (Analysis Shows
- Static-Equivalent Accelerations	Lateral = $+/-6.0$ g Axial = $+6.8/-1.8$ g		Positive Margins) Verified on VM2. To be Re-verified on EM (Analysis Shows Positive Margins)
- Random Vibration		YES	Verified on VM2. To be Re-verified on EM (Analysis Shows Positive Margins)
- Interface Limit Loads	4373 N max across tab	YES	To be Verified on EM (Analysis Shows Positive Margin)
- Interface Distortion Limit Loads	0.25 mm max distortion	YES	Analysis Shows Positive Margin
- TEM Interface Loads	Tension = 3750 N Compression = 2625 N Shear = 1288 N Bending Moment = 19.3 Nm	YES	To be Verified on EM (Analysis Shows Positive Margin)

Compliance Matrix - Continued

Parameter	Parameter Requirement		Comments
Thermal Environment - CAL-Grid Conductance - CAL-TEM/PS Contact Conductance - Operating Temperature - Survival Temperature	per LAT-SS-00238/LAT-SS-00778 >0.03 W/cm² deg C 0.1 W/dec C +25/-15 deg C +50/-30 deg C	YES YES YES YES	Analysis uses 0.25 W/cm2 deg C. Analysis to be updated following TVAC Testing Analysis used 0.1 W/deg C. Analysis to be updated following TVAC Testing Analysis shows CAL Meets Temperature Requirements Analysis shows CAL Meets Temperature Requirements
First Natural Frequency	per LAT-SS-00238 > 50 Hz	YES	Verified on VM2 and by Analysis (>150 Hz). To be Reverified on EM
Venting	per LAT-SS-00238/LAT-SS-00778	YES	Analysis Shows Positive Margin
Preserve Safety of CDEs	No Light Yield Change	YES	Verified on VM2
Contamination/Particulates	per LAT-SS-00238	YES	All Particulates Generated from Fracture-Sensitive Materials will be Contained within the Stay-Clear Volume of the CAL
	per LAT-MD-00404	YES	All materials approved for flight Structural cleanliness addressed during assembly Bake out of all composite and polymer materials

Changes Since PDR

- AFEE Card Packaging Volume Resizing
 - AFEE Card Redesign Resulted in Required Increase in Packaging Volume. Increased Packaging Volume by:
 - Shortening Length of CDE
 - Decreasing the Distance Between Opposing Close-Out Plates by Modifying Base Plate and Top Frame Interface Dimensions
- Close-Out Plate Redesign
 - Incorporated Stiffeners to Minimize Deflection
 - Openings for Electrical Interconnects between CDE PDA and AFEE Redesigned due to Removal Flex Cable from Design:
 - Geometry of Openings for Electrical Interconnects Modified to Accommodate New Design
 - Position of Openings for Electrical Interconnects
 Changed to Reflect New Position of AFEE Components

Changes Since PDR - Continued

- Base Plate Modifications Requested by SLAC
 - Modifications were Required to Reduce Stiffness in order to Decrease Bolt Loads at the Tab-LAT Grid Interface
 - Increase Tab Length
 - Decrease Tab Thickness
 - Maximize Friction Characteristics of the Bolted Joint
 - Reduce Outer Radius of Tab Corners
 - Remove Chamfer of Upper and Lower Surface of Tab
 - Remove Surface Treatment on Upper and Lower Surface of Tab
- Additional Base Plate Modifications
 - TEM Interface
 - Flex-Mount changed to Hard-Mount Interface
 - TEM Cable Bracket Interface

Changes Since PDR - Continued

- Improvement of Cure Process for Composite Structure
 - Improved Curing Process Has Better Pressure Control
 - Vacuum Bagging
 - Autoclave
 - Tooling Redesigned to Accommodate New Curing Process
- CDE Interface
 - Bumper Frame Redesign
 - Added End Caps to Eliminate PDA Clearance Issues with the Original Bumper Design
- Assembly Tooling and Procedures
 - Minor Changes due to Change from Flex Cable to Twisted Wire Pairs for PDA Electrical Interconnects

Status of PDR RFAs

□ No RFAs Assigned at the PDR

Schedule

□ Top Level Milestones

Completed EM PEM Assembly 10 Feb 2003

Complete EM CAL Module Assembly 31 Mar 2003

Start EM Structural Environmental Testing
 Apr 2003

- Production of SM CAL Test Structure 09 Apr 2003

- Start EM Thermal Vacuum Testing 06 May 2003

Production of SFM CAL Test Structure 30 June 2003

Delivery of Flight PEM Structures 24 Jul 2003 thru
 Mar 2004

CAL Subsystem Mass

Mechanical Structure Mass for Each CAL Module

1	Part or Dwg No. AT-DS-01115-01	Component Name/Desc. CSI Crystal PIN Photodiode Twisted Wire Pair Optical Bond Material Optical Reflective Wrap	Quantity 96 192 192	Mass (Kg) 0.773	Mass Estimation Method (PARA, CALC, or MEAS)	Total (Kg)	Development Class (1, 2, or 3)	Calculated Contingency Recommendation (ANSI/AIAA-G-020-	X-Axis Center of Mass	Y-Axis Center of Mass	Z-Axis Center of
1		Csl Crystal PIN Photodiode Twisted Wire Pair Optical Bond Material	96 192	0.773		Total (Kg)	2 05 21				
2 3 4 4 4 5 5 6 7 7 7 8 9 10 10 11 11 12 12 14 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	AT-DS-01115-01	PIN Photodiode Twisted Wire Pair Optical Bond Material	192				2, UF 3)	1992)	(mm)	(mm)	Mass (mm)
3 4 4 5 6 7 7 7 8 9 10 10 11 11 12 13 14 15		Twisted Wire Pair Optical Bond Material			MEAS	74.241	3	2%		-	-146.37
4 4 5 6 7 7 8 8 9 10 L/11 L/12 L/13 L/14 15 L/15 L/16 15 L/16 L/16 15 L/16 15 L/16 15 L/16 L/16 15 L/16 L/16 L/16 L/16 L/16 L/16 L/16 L/16		Optical Bond Material	192	0.0016	MEAS	0.307	3	2%	-	-	-146.37
4 5 6 7 7 7 8 8 9 10 L/11 L/12 L/13 L/14 15 L/15 L/15 L/15 L/15 L/15 L/15 L/15 L				0.0001	CALC	0.019		20%	-	-	-146.37
5 6 7 7 8 9 10 L/ 11 L/ 12 L/ 13 L/ 14		Ontical Reflective Wran	192	0.0002	MEAS	0.038		2%	-	-	-146.37
6 7 7 8 9 10 L/11 L/12 L/13 L/14 15 L/15 L/16			96	0.0033	MEAS	0.317	3	2%	-	-	-146.37
7 7 8 9 10 L/1 11 L/1 12 L/1 13 L/1 14 15 L/1		End Cap	192	0.0006	MEAS	0.115	2	20%	-	-	-146.37
7 8 9 10 L/ 10 L/ 11 L/ 12 L/ 13 L/ 14								-			
8 9 10 L/1 11 L/1 12 L/1 13 L/1 14 15 L/1		Printed Circuit Board (AFEE)	4	0.360	CALC	1.440		20%	-	-	-134.16
9 10 L/ 10 L/ 11 L/ 12 L/ 13 L/ 14		AFEE-TEM Cable	4	0.050	CALC	0.200		25%	-	-	-256.20
10 L/ 10 L/ 11 L/ 12 L/ 13 L/ 14 L/ 15 L/		AFEE-TEM Cable Bracket	4	0.005	PARA	0.020	1	25%	-	-	-256.20
10 L/ 11 L/ 12 L/ 13 L/ 14 L/ 15 L/								-			
11 L/ 12 L/ 13 L/ 14 L/ 15 L/		Composite Structure	1	2.651	MEAS	2.651		20%	-	-	-147.20
12 L/ 13 L/ 14 L/ 15 L/		EMI Shield	1	0.029	MEAS	0.029		2%	-	-	-45.40
13 L/ 14 15 L/		Insert, Side	40	0.001	MEAS	0.057	3	2%	-	-	-147.20
14 15 L/		Insert, Top Composite	16	0.001	MEAS	0.023		2%	-	-	-147.20
15 L/	AT-DS-00929-01	Insert, Bottom Composite	25	0.005	MEAS	0.114	3	2%	-	-	-147.20
								-			
	AT-DS-00917-01	Top Frame	1	0.625	MEAS	0.625	3	2%	-	-	-36.45
		Base Plate	1	3.190	PARA	3.190	3	2%		-	-238.17
		Close-Out Plate X Assembly	2	0.330	MEAS	0.660	3	2%	-	-	-133.23
	AT-DS-00921-01	Close-Out Plate Y Assembly	2	0.330	MEAS	0.660		2%		-	-133.23
19 L/	AT-DS-00923-01	Side Panel X	2	0.146	MEAS	0.292	3	2%	-	-	-132.78
	AT-DS-00924-01	Side Panel Y	2	0.146	MEAS	0.292	3	2%	-	-	-132.78
21								-			
22 L/	AT-DS-00922-01	Nut	40	0.0016	MEAS	0.064	3	2%	-	-	-147.20
23								-	-	-	
		Bumper (Elastomer)	192	0.0004	MEAS	0.077	2	20%	-	-	-146.37
		Bumper Frame (Delrin)	192	0.0004	MEAS	0.077	2	20%	1	-	-146.37
26 L/	AT-DS-00926-01	Spacer (Omit from Current Design)			PARA			-			
27		Elastomeric Cords	384	0.0002	MEAS	0.077	2	20%		-	-146.37
28											
29		Fasteners	1	0.300	MEAS	0.300	3	2%	-	-	-146.37
30								-			
31		Miscellaneous	1	0.100	PARA	0.100	1	25%	-	-	-146.37
32								-			
			Total 1	Т	Total Mass otal PARA Mass otal CALC Mass otal MEAS Mass	85.985 3.310 1.659 81.016 85.985	3.8% 1.9% <u>94.2%</u>	3% Total Mass Contingency	0.00 Cen	0.00 hter of Mass(x	-148.75 x,y,z)
			Total for		Total Mass otal PARA Mass otal CALC Mass	1375.759 52.960 26.547	3.8%	3% Total Mass Contingency		0.00 Iter of Mass(x For this Modul	

Mechanical Design Status

Mec	hani	ical	Design
1-100		CGI	203.9

- Base Plate	100	%Complete
--------------	-----	------------------

- Top Frame	100	%Complete
-------------	-----	------------------

- EMI Shield 100 %Complete
- Composite Structure 100 %Complete
- Composite Structure Flt Tooling 75 % Complete
- Bumper Frame/End-Cap Design 100 %Complete
- Close-Out Plate Assembly
- Side Panels

□ Drawings 90 % Complete

□ Specifications/Procedures 75 % Complete

%Complete

95 % Complete

100

CAL Module Fabrication Drawings

DRAWING	DRAWING NUMBER
CALORIMETER ASSEMBLIES EM Pre-Electronics Module (PEM) Assembly PEM Mechanical Structure Shipping Configuration PEM Mechanical Structure	LAT-DS-00916-02 LAT-DS-01224-01 LAT-DS-01228-01 LAT-DS-01231-01
MECHANICAL STRUCTURE PIECE PARTS Top Frame Composite Structure Base Plate Close Out Plate X Close Out Plate Y Nut Side Panel X Side Panel Y Bumper Frame Insert, Side Insert, Top Composite Insert, Bottom Composite EMI Shield	LAT-DS-00917-01 LAT-DS-00918-02 LAT-DS-00919-04 LAT-DS-00920-03 LAT-DS-00921-03 LAT-DS-00922-01 LAT-DS-00923-02 LAT-DS-00924-02 LAT-DS-00925-02 LAT-DS-00927-01 LAT-DS-00928-01 LAT-DS-00929-01 LAT-DS-01234-01

