Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

Звіт до лабораторної роботи №3 на тему: "Попит та пропозиція. Ринкова рівновага. Стабільність рівноваги. Вплив дотації"

> Виконав студент групи ОМ-3 Скибицький Нікіта

Зміст

1	Теоретичні відомості									
	1.1	Аналітична апроксимація	2							
	1.2	Стабільність рівноваги	2							
	1.3	Вплив державного регулювання	3							
2	Чис	исельне моделювання								
	2.1	Код	3							
	2.2	Аналітичні апроксимації	3							
	2.3	Графіки	4							
	2.4	Стабільність рівноваги	5							
		Вплив дотації								

1 Теоретичні відомості

1.1 Аналітична апроксимація

За заданою таблицею значень попиту d_i і пропозиції s_i в залежності від ціни $p_i, i = \overline{1,n}$ знаходиться аналітичний вигляд функцій $Q_d(P)$ та $Q_s(P)$.

Наприклад, можна обмежитися певною сім'єю параметризованих функцій, наприклад

$$Q_d(P) = a_d \cdot P + b_p,$$

тобто лінійних функцій, або

$$Q_s(P) = a_s \cdot \exp\{b_s \cdot P\},\,$$

тобто експонент. Серед найрозповсюдженіших моделей залежностей можна також виділити логарифмічну, тобто

$$y = a + b \cdot \ln(x)$$

і поліноміальну, тобто

$$y = a_0 + a_1 x + \ldots + a_n x^n.$$

Таке обмеження дозволяє поставити скінченно-вимірну оптимізаційну задачу

$$\mathcal{J}(Q_d) = \sum_{i=1}^n \left(Q_d(p_i) - d_i \right)^2 \to \min,$$

розв'язок знаходиться за допомогою ітераційних чисельних або навіть аналітичних методів (у випадку найпростіших моделей).

Рекомендується не одразу обмежуватися лише одним класом залежностей, а спробувати усі найпоширеніші, знайти оптимальну функцію з кожного класу, обчислити для них середньоквадратичні відхилення і обирати той клас, на якому досягається мінімум середньоквадратичного відхилення.

1.2 Стабільність рівноваги

За знайденими аналітичними виглядами функці $Q_d(P)$ та $Q_s(P)$ будються графіки, спочатку у вісях (P,Q) (для математиків), а згодом і у (Q,P) (для економістів), знаходиться точка ринкової рівноваги (P^*,Q^*) у якій

$$Q_s(P^*) = Q_d(P^*) = Q^*.$$

Ринок рідко перебуває саме у стані рівноваги, здебільшого відбувається покрокове ітеративне уточнення ціни P (і, як наслідок, обсягу Q), причому в залежності від поведінки функцій $Q_s(\cdot)$ та $Q_d(\cdot)$ в околі точки (P^*, Q^*) залижть чи ринок прямує до стану рівноваги, чи він осцилює довкола, чи навіть віддаляється.

Поведінка ринку залежить від стабільності точки рівноваги, яка може бути виражена у числах наступним чином:

- Якщо $\left| \frac{\mathrm{d}Q_d}{\mathrm{d}P} \right|_{P=P^\star} > \left. \frac{\mathrm{d}Q_s}{\mathrm{d}P} \right|_{P=P^\star}$, то рівновага стійка.
- Якщо $\left| \frac{\mathrm{d}Q_d}{\mathrm{d}P} \right|_{P=P^\star} = \left. \frac{\mathrm{d}Q_s}{\mathrm{d}P} \right|_{P=P^\star}$, то відбуваються коливання довкола рівноваги.
- Якщо $\left| \frac{\mathrm{d}Q_d}{\mathrm{d}P} \right| \bigg|_{P=P^\star} < \left. \frac{\mathrm{d}Q_s}{\mathrm{d}P} \right|_{P=P^\star}$, то рівновага не стійка.

1.3 Вплив державного регулювання

Існує щонайменше чотири види державного регулювання, це податок tax, дотація dot, субсидія sub і квота виробництва Q_{lim} . Вони впливають на функції попиту і пропозиції наступним чином:

- Якщо $Q_s(P) = f(P)$ і ставка податку дорівнює tax, то $Q_s^{\text{tax}} = f(P \text{tax})$.
- Якщо $Q_s(P) = f(P)$ і розмір дотації дорівнює dot, то $Q_s^{\text{dot}} = f(P + \text{dot})$.
- Якщо $Q_d(P) = f(P)$ і розмір субсидії дорівнює sub, то $Q_d^{\text{sub}} = f(P \text{sub})$.
- Якщо квота виробництва дорівнює Q_{\lim} , то $Q_s(P)=Q_{\lim}$, не залежить від ціни.

2 Чисельне моделювання

Було використано мову програмування Python і модуль scipy.

2.1 Кол

2.2 Аналітичні апроксимації

Було розглянуто лінійні, експоненціальні, та логарифмічні залежності, найкращі представники цих класів залежностей наступні та відповідні значення функціоналу якості:

попит чи пропозиція	клас залежності	найкраща функція	$\mathcal{J}(\cdot)$
попит	лінійна	$Q_d(P) = -23.59 \cdot P + 136.93$	576
пропозиція	лінійна	$Q_s(P) = 21.17 \cdot P + -0.22$	186
попит	експоненційна	$Q_d(P) = 204.17 \cdot \exp\{-0.43 \cdot P\}$	78
пропозиція	експоненційна	$Q_s(P) = 25.00 \cdot \exp\{0.29 \cdot P\}$	496
попит	логарифмічна	$Q_d(P) = 134.41 + \ln(-69.36 \cdot P)$	83
пропозиція	логарифмічна	$Q_s(P) = 4.31 + \ln(60.14 \cdot P)$	282

У зв'язку з цими значеннями було обрано лінійну залежність для пропозиції, а саме

$$Q_s(P) = 21.17 \cdot P + -0.22$$
.

і експоненціальну залежність для попиту, а саме

$$Q_d(P) = 204.17 \cdot \exp\{-0.43 \cdot P\}.$$

2.3 Графіки

Як бачимо, отримані результати відповідають теоретичним очікуванням.

2.4 Стабільність рівноваги

З вибраними аналітичними апроксимаційними функціями маємо

$$\begin{split} \left| \frac{\mathrm{d}Q_d}{\mathrm{d}P} \right|_{P = P^\star} &= |-87.7931 \cdot \exp\left\{ -0.43 \cdot P \right\}||_{P = P^\star} = \\ &= (87.7931 \cdot \exp\left\{ -0.43 \cdot P \right\})|_{P = P^\star} = \\ &= 87.7931 \cdot \exp\left\{ -0.43 \cdot 2.86 \right\} \approx 25.6664. \end{split}$$

А також

$$\frac{\mathrm{d}Q_s}{\mathrm{d}P}\Big|_{P=P^*} = 21.17|_{P=P^*} = 21.17.$$

Таким чином

$$\left| \frac{\mathrm{d}Q_d}{\mathrm{d}P} \right| \bigg|_{P=P^*} \approx 25.6664 > 21.17 = \left. \frac{\mathrm{d}Q_s}{\mathrm{d}P} \right|_{P=P^*},$$

тому рівновага стійка.

2.5 Вплив дотації

При введенні дотації (тут dot = 0.5) крива пропозиції зсувається вниз, що дозволяє зменшити рівноважну ціну і збільшити обсяг виробництва.

Як	бачимо,	отримані	результати	відповідають	теоретичним	очікуванням.	