# Statistics - Exam preparation

xnacly - July 25, 2023- source

### Contents

| L | Intr               | roduction                    |
|---|--------------------|------------------------------|
| 2 | Abs                | stract                       |
| ; | Syn                | abols and special characters |
| Į | Con                | nbinatorics                  |
|   | 4.1                | Binomial Coefficient         |
|   |                    | 4.1.1 Example:               |
|   | 4.2                | Factorial                    |
|   | 4.3                | Pascal's triangle            |
|   |                    | Binomial Theorem             |
| 5 | Probability theory |                              |
|   | 5.1                |                              |
|   | 5.2                | Random variable              |
|   |                    | Expected value               |
|   |                    | 5.3.1 Example:               |
|   | 5.4                | Variance                     |
|   | 5.5                | Standard deviation           |
|   |                    | 5.5.1 Standardized Variable  |
| ; | Bin                | omial distribution           |
| , | יוווע              | 6.0.1 Example                |

# 1 Introduction

Statistics is a fairly big field. Therefore this paper will only include the absolutely necessary topics for passing the university class.

# 2 Abstract

This paper starts of with symbols used in the field of statistics, their meaning and in what context they are commonly used. Following Combinatorics is thematized.

# 3 Symbols and special characters

- n! Faculty / Fakultät
- $\binom{n}{k}$  Binomial Coefficient / Binomialkoeffizient

- $\bullet$   $\Omega$  Event set / Ergebnismenge
- $\bullet$   $\omega$  Result / Ergebnis
- $A \subseteq \Omega$  Event / Ereignis
- $\{\omega\}$  Elementary event / Elementarereignis
- P Probability measure / Wahrscheinlichkeitsmaß
- $\mathbb{P}(A)$  Event propability / Wahrscheinlichkeit eines Ereignisses
- $\mathbb{E}(X), \mu_x, \mu$  Expected value / Erwartungswert
- $\bullet$   $\sigma$  Standard deviation / Standardabweichung
- $Var(X), \sigma_x^2$  Variance / Varianz
- $\bullet \ \operatorname{Cov}(X,Y), \sigma_{XY}$ Kovarianz von X und Y
- $\mathcal{N}(\mu, \sigma^2)$  Normal distribution / Normalverteilung
- $\varphi$  Bell curve / Glockenkurve
- $\bullet$   $\Phi$  Error function / Fehlerintegral
- ullet X Random variable / Zufallsvariable
- Z Standard score / standard-normalverteilte
   Zufallsvariable <sup>1</sup>
- Bin(n, p) Binomial distribution / Binomial alverteilung
- Pois $(\lambda)$  Poisson distribution / Poission-Verteilung
- $\text{Exp}(\lambda)$  Exponential distribution / Exponentialverteilung

### 4 Combinatorics

This chapter will introduce the Binomial Coefficient, Factorials, Pascal's triangle and the binomial theorem.

<sup>&</sup>lt;sup>1</sup>read more: wikipedia

#### 4.1 Binomial Coefficient

n choose k; used to calculate the Amount of Sets in  $\{1,...,n\}$  with exactly k Elements. n needs to be positive and k and n have to meet the following criteria:  $n \in \mathbb{N}, 0 \le k \le n$ .

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \tag{1}$$

Choosing k different Numbers from  $\{1, ..., n\}$ , there are n possibilities for the first number, n-1 possibilities for the second, and so forth.

#### **4.1.1** Example:

If we were to calculate how many possibilities there are to choose 3 out of 6 dishes, we can simply use the above formular:

$$\binom{6}{3} = \frac{6!}{3! \cdot (6-3)!} = \frac{720}{3! \cdot 3!} = \frac{720}{36} = \underline{20}$$

$$20$$

$$15$$

$$15$$

$$15$$

$$6$$

$$1$$

$$1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$5$$

$$6$$

### 4.2 Factorial

This can be described with n!. The factorial is defined as the product of decrementing n by an increasing subtrahend:

$$n! := n \cdot (n-1) \cdot (n-2)...$$
 (2)

If n = k, there are n! possibilities to choose k Elements from n. 0! = 1.

## 4.3 Pascal's triangle

The pascal's triangle can be used to visualize the binomial coefficient.<sup>2</sup>

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1} \tag{3}$$

### 4.4 Binomial Theorem

Allows for expressing the exponents of  $(x+y)^n$ ,  $n \in \mathbb{N}$  as a polynomial with the degree of n.

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k \cdot y^{n-k} \tag{4}$$

## 5 Probability theory

This chapter contains information on how to calculate probabilities.

#### 5.1 Event set

The set containing results of the experiment E is notated via the event set  $(\Omega)$ . Sub sets of  $\Omega$  are events  $(\omega)$ . Events with one entry are elementary events  $\{\omega\}$ . If  $\Omega$  is finite:  $\forall \omega \in \Omega, \mathbb{P}(\omega) \geq 0$ . The sum of all propabilities of  $\omega \in \Omega$  is  $1^3$ .

#### 5.2 Random variable

 $X: \Omega \to \mathbb{R}$  we define  $\{X = x\} := \{\omega | X(\omega) = x\}$  and can therefore shorten our definition of the propability that X is x to:  $P(X = x) := P(\{X = x\})$ 

$$x \to \mathbb{P}(X = x) \tag{5}$$

$$x \to \mathbb{P}(X \le x) \tag{6}$$

The first equation defines the density / probability function of X and the second equation the distribution function of X.

### 5.3 Expected value

$$\mathbb{E}(X) = \sum_{k \in \mathbb{R}} k \cdot \mathbb{P}(X = k) \tag{7}$$

 $<sup>^2\</sup>mathrm{read}$ more about  $pascal's\ triangle$ here: wikipedia

 $<sup>^{3}\</sup>Sigma$   $_{=0}\mathbb{P}(\omega)=1$ 

### 5.3.1 Example:

For a dice:

$$\mathbb{P}(X = k) = \frac{1}{6}; k = 1, 2, 3, 4, 5, 6$$

$$\mathbb{E}(X) = \sum_{k \in 1}^{6} k \cdot \mathbb{P}(X = k)$$

$$= \sum_{k=1}^{6} k \cdot \frac{1}{6}$$

$$= \frac{1}{6}(1 + 2 + 3 + 4 + 5 + 6)$$

$$= \left|\frac{21}{6}\right| = \left|\frac{7}{2}\right| = \underline{3}$$

As shown above the expected value is  $\frac{7}{2} \approx 3, 5$ .

#### 5.4 Variance

X: Random variable,  $\mu = \mathbb{E}(X)$ : expected value.

$$Var(X) = \mathbb{E}\left[ (X - \mu)^2 \right] \tag{8}$$

[a] denotes the flooring of a.

#### 5.5 Standard deviation

$$\sigma_X := \mathrm{SD}(X) := +\sqrt{\mathrm{Var}(X)}$$
 (9)

# 5.5.1 Standardized Variable

X is standardized, if  $\mathbb{E}(X)=0, \sigma_X^2=1.$ 

# 6 Binomial distribution

A random variable X is binomial distributed with  $n \in \mathbb{N}$  and  $p \in [0, 1]$  if

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \tag{10}$$

We can now denote:

$$X \sim \text{Bin}(n, p)$$
 (11)

$$\mathbb{E}(X) = np \tag{12}$$

$$Var(X) = np(1-p) \tag{13}$$

### 6.0.1 Example

Calculating how probable it is to throw a penny five times and have them result in four heads.

$$p = 0,5$$

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{P}(X = 4) = \binom{5}{4} 0, 5^4 (1-0,5)^{5-4}$$

$$= 5 \cdot 0,0625 \cdot 0,5$$

$$= \underline{0,15625} \rightarrow 15,625\%$$

