

AIR QUALITY INDEX (AQI) PREDICTION

Using Machine Learning on Indian Environmental Data

Presented by Mohd Saif Mohd Fahim Pawan Kumar

www.aqifinder.com

Introduction

Air Quality Index (AQI)

A standardized metric to report daily air quality status.

Importance

Vital for public health, environmental policies, and awareness.

Project Objective

Predict AQI using pollution data from Indian cities.

Goal

Enhance accuracy and reliability of AQI forecasting.

Dataset Overview

Data Source & Location

- Source: Kaggle, <u>Air Quality Data in India</u>
- Combined 5 CSV datasets containing:
- City-wise air quality measurements
- Pollutants: PM2.5, PM10, NO, NO2, NOx, CO, SO2, O3
 Benzene, Toluene, Xylene
- Target: AQI (Air Quality Index)

Includes extensive spatial coverage from urban to rural areas.

Methodology

Data CleaningHandled missing values and removed outliers carefully.

2 — Feature Engineering

Created new features to improve model inputs.

3 — Model Selection

Tested XGBoost, Random Forest, and LSTM algorithms.

4 — Training & Validation

Used an 80/20 split for training and validation datasets.

5 — Evaluation Metric

Root Mean Squared Error (RMSE) for accurate comparison.

6 — Experiment Tracking

Utilized MLflow for model management and tracking.

Model Training and Evaluation

XGBoost

Lowest RMSE of 25.7, best predictive accuracy.

LSTM

RMSE of 31.5; needs more data for improvement.

Random Forest

RMSE of 28.1, strong baseline performance.

Feature Importance

PM2.5 and PM10 are the most impactful variables.

RESULTS AND VISUALIZATION

Actual vs Predicted AQI plotted for multiple cities.

Time series charts display trends over time clearly.

Model	RMSE
XGBoost	25.7
Random Forest	28.1
LSTM	31.5

Statistical testing confirms significance of results.

Challenges and Solutions

Data Quality

Missing data and sensor noise addressed by imputation and outlier removal.

Model Complexity

Mitigated overfitting using regularization and reduced dimensions.

Interpretability

Analyzed feature importance and SHAP values for transparency.

Conclusion and Future Work

Summary

Accurate AQI predictions are achievable with ML methods.

Deployment

Plan to build a web application for public access.

Limitations

Data gaps and limited spatial coverage remain challenges.

Future Work

Integrate weather data and satellite imagery for enhancement.

Potential Impact

Enable real-time forecasting and public alert systems.

Output/Result & References.

top 20 Polluted city