Numerical Computation of Fourier Transform

Xuan Liu

This article is on numerical computation of (continuous) Fourier transform of a function on [-L/2, L/2] using the fast Fourier transform (FFT) in NumPy. Let $a = \{a_n : n = 0..., N-1\}$ be an array. The FFT of a implemented in NumPy is the array defined by

$$F[a](k) = \sum_{n=0}^{N-1} a_n e^{-i2\pi kn/N}, \quad k = 0, \dots N-1.$$

This is an effective numerical scheme of the (scaled) Fourier transform of a function on [0,1]. More precisely, let a be a function on [0,1] and $a_n = a(n/N)$. Then

$$\hat{a}(k) \approx N^{-1} F[a](k), \quad k = 0, \dots, N - 1,$$
(0.1)

which follows easily from

$$\hat{a}(k) = \int_0^1 a(x)e^{-i2\pi kx}dx \approx N^{-1} \sum_{n=0}^{N-1} a_n e^{-i2\pi kn/N}.$$

Now consider a function f defined on [-L/2, L/2]. Let δ_L be the dilation operator $\delta_L f(x) = f(Lx)$, and $\tau_{1/2}$ be the translation operator $\tau_{1/2} f(x) = f(x-1/2)$. Then,

$$(e^{i2\pi \lfloor N/2 \rfloor x} \tau_{1/2} \delta_L f)^{\wedge}(k) = (\tau_{1/2} \delta_L f)^{\wedge}(k - \lfloor N/2 \rfloor)$$

$$= (-1)^{k - \lfloor N/2 \rfloor} L^{-1} \hat{f}[L^{-1}(k - \lfloor N/2 \rfloor)]. \tag{0.2}$$

Note that $e^{i2\pi \lfloor N/2 \rfloor x}(\tau_{1/2}\delta_L f)(x)$ is defined on [0, 1], and its Fourier transform can be computed using FFT. Therefore, by (0.1) and (0.2),

$$\hat{f}(\xi_k) \approx (-1)^{L\xi_k} L N^{-1} F[e^{i2\pi \lfloor N/2 \rfloor x} \tau_{1/2} \delta_L f](k), \quad k = 0, \dots N - 1,$$
 (0.3)

where $\xi_k = L^{-1}(k - \lfloor N/2 \rfloor)$. This gives an approximation of \hat{f} on [-L'/2, L'/2], where L' = N/L and N is the number of sampling points in both the space and the frequency domains.

A few remarks are in demand. Firstly, the sampling distance in (0.3) in the frequency domain is $\Delta \xi = 1/L$. Therefore, to obtain a finer grid in the frequency domain, a larger integration domain [-L/2, L/2] in the space domain is needed. Secondly, the sampling distance for integration in the space domain is 1/L'. Therefore, to obtain a higher integration precision, a wider output range [-L'/2, L'/2] in the frequency domain is needed. Lastly, it is more natural in practice to specify L and L', and sample N = LL' points from f.