xmm: eXtended Matrix Multiplication

1. Formulation

xmm generalizes the matrix multiplication operation to a customizable form:

$$\begin{split} Z &= \Omega_{\{\sigma,\mu\}} \Big(A_1,...,A_{N_a},B_1,...,B_{N_b}\Big) \\ Z(i,j) &\stackrel{\text{def}}{=} \sigma \Big\{ \mu \Big(A_1(i,k),...,A_{N_a}(i,k),B_1(k,j),B_{N_b}(k,j)\Big) \Big\} \end{split}$$

where operation Ω is parameterized by two functions, μ the **combinator**, and σ the **reductor**.

2. Relations to Neural Networks

2.1. Linear Layer (Matrix Multiplication)

matmul is a special case of xmm where

- $\sigma = \sum$,
- $\mu(x,y) = xy$,
- $N_a = N_b = 1$.

2.2. Kolmogrov Arnold Layer

KAN-like operations is a special case of xmm where

- $\sigma = \sum$,
- + $\mu(r, c_1, ..., c_n)$ is a customizable term.
 - ► Take polynomial KAN with gridsize = 4 as an example.

$$\mu(r,c_1,...,c_n) = c_1 + c_2 r + c_3 r^2 + c_4 r^3$$

• $N_a=1,\ N_b={
m gridsize}.$

3. What Should xmm be Able To Do

xmm should be able to:

- Provide interface to customize μ . This *could* be done by:
 - parse an expression into μ .
 - ▶ other possible ways...

- Further, provide interface to customize σ by parsing a binary function $\mathbb{R}^2 \to \mathbb{R}$ into σ , resembling passing a functor to the std::reduce function in C++ STL.
- Just-in-time compile the operator for runtime efficiency.
- Support pytorch autograd and computations on CUDA, to provide gradient to all input tensors.
- Provide optimized CUDA operator implementations.

3.1. Side Notes

- I guess customizing μ is of higher priority than σ since I have not yet encountered scenario where σ should be customized to be other than \sum .
- *B* (column operands) should be transposed to comply with the PyTorch conventions, i.e. the input shapes are (M, K) for row operands and (N, K) for column operands.

4. Interface

4.1. Class SumOperator

• An operator with summation as its **reductor**, i.e. $\sigma = \sum$.

```
4.1.1. SumOperator.__init__(self, nr: int, nc: int, expr: str)
```

- Create **and parse** the operator, including:
 - ▶ Parse expr;
 - Compute (symbolic) derivatives;
 - Create kernels sources (codegen, forward and backward);
 - ► Save kernel identifier.

4.1.2. SumOperator.compile(self, build_dir: Optional[str] = None, identifier: Optional[str] = None):

- Compile the operator with torch.utils.cpp extensions.
- Use an identifier (a str which has pattern ^[A-Za-z0-9_]+\$) to identify different operators. First If identifier is not specified, a unid is generated for each new compilations.

• Simply use the default parameters to recompile before every run.

4.1.3. SumOperator.forward(self, *args)

- Execute the operation defined by the operator.
- *args should be row operands followed by column operands, in correct order.

4.1.4. SumOperator.backward(self, grad_out: torch.Tensor, *args)

- Compute derivatives w.r.t. all row operands and column operands.
- grad out should be of shape (M, N).
- *args should be row operands followed by column operands, in correct order.

4.1.5. Operator syntax

Take nr = 1, nc = 3 as an example.

- All identifier you can use is r1 for the row operand, and c1, c2, c3 for the three column operands respectively, where r1 = R1[i, k], c1 = C1[j, k].
- Allow a fixed set of simple function, like exp, sin, tanh, atan2, etc.
- Constants should only contain its value, **not** followed by f or any other suffixes.

A legal expression is like:

```
"c1 * (c2 * c2 * (r1 + c3) * (r1 + c3) - 1.0) * exp(-0.5 * (r1 * r1 * c2 * c2))"
```

5. Modules

5.1. Module xmm.preprocess

```
5.1.1. preprocess.expr2ast(expr: str)
```

5.1.2. preprocess.ast2sympy(ast_tree)

5.1.3. preprocess.sympy2ast(sympy_expr)

5.1.4. preprocess.ast2CUDAexpr(ast_rootnode)

5.2. Module xmm. codegen

Generates the CUDA kernels to be compiled.

5.2.1. codegen.generate_operator_source(nrow: int, ncol: int, expression) -> Tuple[str, str]

• Returns both C++ wrapper and CUDA source code.

6. Example

We take the following polynomial expression as an example.

```
z(i,j) = \sum_k c_1(k,j) \cdot x(i,k) + c_2(k,j) \cdot x^2(i,k) + c_3(k,j) \cdot x^3(i,k) + b(k,j)
where \sigma_{k}\{\cdot\} = \sum_{i}.
from xmm.SumOperator import SumOperator
import torch
import torch.nn as nn
expression = "c1 * r1 + c2 * r1 * r1 + c3 * r1 * r1 * r1 + c4"
op = SumOperator(1, 3, expression)
op.compile(identifier="poly op") # for identifying build files
class XmmFn(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, scale, bias, weight):
        ctx.save for backward(x, scale, bias, weight)
        return op.forward(x, scale, bias, weight)
    @staticmethod
    def backward(ctx, grad output):
        x, scale, bias, weight = ctx.saved tensors
        grad_x, grad_scale, grad_bias, grad_weight = op.backward(grad_output, x,
scale, bias, weight)
         return grad x, grad scale, grad bias, grad weight
class XmmLayer(nn.Module):
    def init (self, in features, out features):
        super(). init ()
        self.in features = in features
        self.out features = out features
        self.scale = nn.Parameter(torch.ones(out features, in features))
```

```
self.bias = nn.Parameter(torch.zeros(out_features, in_features))
self.weight = nn.Parameter(torch.empty(out_features, in_features))
nn.init.kaiming_uniform_(self.weight, a=(5 ** .5))
self.bn = nn.BatchNormld(out_features)

def forward(self, x):
    x = XmmFn.apply(x, self.scale, self.bias, self.weight)
    return self.bn(x)
```