Университет ИТМО

Вычислительная математика Лабораторная работа №3 «Численное интегрирование»

Работу выполнил: Бавыкин Роман Группа: Р3210 Вариант 2

Цель работы:

найти приближенное значение определённого интеграла с требуемой точностью различными численными методами.

Порядок выполнения работы:

Исходные данные:

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- 2. Пределы интегрирования задаются пользователем.
- 3. Точность вычисления задается пользователем.
- 4. Начальное значение числа разбиения интервала интегрирования: n=4.
- 5. Ввод исходных данных осуществляется с клавиатуры.

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя, исходя из варианта:
 - Метод прямоугольников (3 модификации: левые, правые, средние)
 - Метод трапеций
 - Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной(ого) функции/класса.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1 (столбец 3), точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при .
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при .
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений.
- 6. В отчете отразить последовательные вычисления.

```
Рабочие формулы методов:
```

Метод прямоугольников :

левые
$$-\int_{a}^{b} f(x) dx = h \sum_{i=1}^{n} y_{i-1}$$

правые $-\int_{a}^{b} f(x) dx = h \sum_{i=1}^{n} y_{i}$

средние $-\int_{a}^{b} f(x) dx = h \sum_{i=1}^{n} f(x_{i}-1/2)$

Метод трапеций:
$$\int_{a}^{b} f(x) dx = \frac{h}{2} \cdot \left(y_{0} + y_{n} + 2 \sum_{i=1}^{n-1} y_{i} \right)$$

Метод Симпсона:

$$\int_{a}^{f} (x) = \frac{h}{3} [(y_0 + 4(y_1 = y_3 + ... + y_{n-1}) + 2(y_2 + y_4 + ... + y_n))]$$

Листинг программы:

```
1 @Setter
 2 public class TrapezoidMethod implements IntegrationMethod {
       private IntegrationInputData inputData;
 3
 4
       private Function function;
 5
 6
       @Override
 7
       public IntegrationResults calculate() {
 8
           int n = 4;
9
           double i0;
           double i1 = integrate(n);
10
11
           do {
               n *= 2;
12
13
               i0 = i1;
14
               i1 = integrate(n);
           } while (Math.abs((i1 - i0) / 3) > inputData.getEps());
15
           return IntegrationResults.builder().value(i1).n(n).error(Math.abs((i1 - i0) / 3
16
17
       }
18
       private double integrate(int n) {
19
20
           double result = (function.getValue(inputData.getA()) + function.getValue(inputData.getA())
           double h = (inputData.getB() - inputData.getA()) / n;
21
22
           for (int i = 1; i < n; i++) {
               result += function.getValue(inputData.getA() + i * h);
23
24
           result *= h;
25
26
           return result;
27
       }
28 }
```

```
1 @Setter
 2 public class SimpsonsMethod implements IntegrationMethod {
       private IntegrationInputData inputData;
 4
       private Function function;
 5
 6
       @Override
 7
       public IntegrationResults calculate() {
 8
           int n = 4;
           double i0;
 9
10
           double i1 = integrate(n);
           do {
11
12
               n *= 2;
13
               i0 = i1;
               i1 = integrate(n);
14
15
           } while (Math.abs((i1 - i0) / 15) > inputData.getEps());
           return IntegrationResults.builder().value(i1).n(n).error(Math.abs((i1 - i0) / 19
16
17
       }
18
19
       private double integrate(int n) {
           double result = (function.getValue(inputData.getA()) + function.getValue(inputData.getA())
20
21
           double h = (inputData.getB() - inputData.getA()) / n;
           for (int i = 1; i < n; i++) {</pre>
22
23
               if (i % 2 == 0) {
                   result += 2 * function.getValue(inputData.getA() + i * h);
24
25
                    result += 4 * function.getValue(inputData.getA() + i * h);
26
27
               }
28
           result *= h / 3;
29
30
           return result;
31
       }
32 }
```

Результаты выполнения программы:

Выберите функцию:	T = 0.0047700404477000F
	I = 0.38177631044759935 n = 8.0 error = 3.0453928857069693E-6
○ 3*x^2-x	ОК Сохранить в файл
○ 5*x ³ -3*x ² +0.5*x-1	
Выберите метод:	
Метод Симпсона	
○ Метод трапеций	
ОК Выход	

Вычисление заданного интеграла:

$$\int_{-3}^{-1} (-3x^3 - 5x^2 + 4x - 2) dx = -\frac{10}{3}$$

Формула Ньютона-Котеса:

	r <i>y</i> · · · · · · · · · · · · · · · · · · ·		
i	C_n^i	$f(x_i)$	Σ
0	0.097619	22.000000	2.147618
1	0.514286	8.666667	6.604763
2	0.064286	-0.444444	6.576192
3	0.647619	-6	2.690478
4	0.064286	-8.666667	2.133332
5	0.514286	-9.111111	-2.552384
6	0.097619	-8	-3.333336

$$\delta = \frac{|-3.333333+3.333336|}{|-3.3333333|} = 9 \cdot 10^{-7}$$

Формула средних прямоугольников:

	ула средини примоутольнию	_,	
i	$X_{i-\frac{1}{2}}$	$f\left(x_{i-\frac{1}{2}}\right)$	Σ
1	-2.833333	14.763889	4.921296
2	-2.5	3.625	6.129629
3	-2.166666	-3.625	4.921296
4	-1.833333	-7.652778	2.370370
5	-1.5	-9.125	-0.671296
6	-1.166666	-8.708333	-3.574074

$$\delta = \frac{|-3.333333 + 3.574074|}{|-3.3333333|} = 0.072222$$

Формула трапеций:

	,	
i	\boldsymbol{x}_i	$f\left(x_i ight)$
0	-3	22
1	-2.666667	8.666667
2	-2.333333	-0.44444
3	-2	-6
4	-1.666667	-8.666667
5	-1.333333	-9.111111
6	-1	-8

I = -2.851852

$$\delta = \frac{|-3.333333 + 2.851852|}{|-3.333333|} = 0.144444$$

Формула Симпсона:

i	\boldsymbol{x}_{i}	$f\left(x_{i}\right)$
0	-3	22
1	-2.666667	8.66667
2	-2.333333	-0.44444
3	-2	-6
4	-1.666667	-8.666667
5	-1.333333	-9.111111
6	-1	-8

Выводы: во время выполнения лабораторной работы ознакомился с численными методами интегирования. С помощью формул Ньютона-Котеса, средних прямоугольников, трапеций и Симпсона нашел данный интеграл. Реализовал программно метод трапеций и метод Симпсона.