

ZOOLOGICA

SCIENTIFIC CONTRIBUTIONS OF THE
NEW YORK ZOOLOGICAL SOCIETY

VOLUME VIII

NOVEMBER 1926-1931 JULY

NUMBERS 1-11 INCLUSIVE

PUBLISHED BY THE SOCIETY
THE ZOOLOGICAL PARK, NEW YORK

1931

New York Zoological Society

General Office: 101 Park Avenue, New York City

Officers

President, MADISON GRANT;
Honorary President, HENRY FAIRFIELD OSBORN;
Vice-Presidents, FRANK K. STURGIS; AND KERMIT ROOSEVELT;
Chairman, Executive Committee, MADISON GRANT;
Treasurer, CORNELIUS R. AGNEW;
Secretary, WILLIAM WHITE NILES

Board of Trustees

Class of 1932

HENRY FAIRFIELD OSBORN, ROBERT S. BREWSTER,
EDWARD S. HARKNESS, EDWIN THORNE, IRVING K. TAYLOR, HARRY
PAYNE BINGHAM, LANDON K. THORNE, J. WATSON
WEBB, OLIVER D. FILLEY, DE FOREST
GRANT, H. DE B. PARSONS,
GEORGE F. BAKER

Class of 1933

MADISON GRANT, WM. WHITE NILES, FRANK K. STURGIS, LEWIS R. MORRIS,
ARCHER M. HUNTINGTON, GEORGE D. PRATT, CORNELIUS R. AGNEW,
HARRISON WILLIAMS, MARSHALL FIELD, OGDEN L. MILLS,
VINCENT ASTOR, C. SUYDAM CUTTING

Class of 1934

GEORGE BIRD GRINNELL, FREDERIC C. WALCOTT, GEORGE C. CLARK,
W. REDMOND CROSS, HENRY FAIRFIELD OSBORN, JR., GEORGE
GORDON BATTLE, BAYARD DOMINICK, ANSON W. HARD,
ROBERT GORDON MCKAY, KERMIT ROOSEVELT,
GRAFTON H. PYNE, JOHN M. SCHIFF

Scientific Staff

W. REID BLAIR, *Director of the Zoological Park*;
WILLIAM T. HORNADAY, *Director Emeritus*;
CHARLES H. TOWNSEND, *Director of the Aquarium*;
C. M. BREDER, JR., *Research Associate, Aquarium*;
RAYMOND L. DITMARS, *Curator of Mammals and Reptiles*;
WILLIAM BEEBE, *Honorary Curator of Birds and Director of Department of Tropical Research*;
LEE S. CRANDALL, *Curator of Birds*;
H. C. RAVEN, *Prospector*;
CHARLES V. NOBACK, *Veterinarian*;
CLAUDE W. LEISTER, *Asst. to the Director and Curator, Educational Activities*;
ELWIN R. SANBORN, *Editor*

Editorial Committee

MADISON GRANT, *Chairman*;

W. REID BLAIR
WILLIAM BEEBE

CHARLES H. TOWNSEND
GEORGE BIRD GRINNELL

ELWIN R. SANBORN, *Secretary*

TITLES OF PAPERS

	PAGE
1—The Arcturus Oceanographic Expedition.....	<i>Beebe</i> 1
2—The Arcturus Operation and Equipment.....	<i>Tee-Van</i> 47
3—Brotulid Fishes.....	<i>Trotter</i> 107
4—The Littoral Crustacean Fauna of the Galapagos Islands. Part I: Brachyura.....	<i>Boone</i> 127
5—The Embryology of the American Eel (<i>Anguilla Rostrata</i> Lesueur)	<i>Fish</i> 289
6—Studies of the Body-forms of Fishes.....	<i>Gregory</i> 325
7—An Annotated List of the Synentognathi.....	<i>Nichols and Breder</i> 423
8—Polychaetous Annelids.....	<i>Treadwell</i> 449
9—Sea Stars.....	<i>Fisher</i> 487
10—Scyphomedusae.....	<i>Bigelow</i> 495
11—Siphonophorae.....	<i>Bigelow</i> 525

LIST OF ILLUSTRATIONS

THE ARCTURUS OCEANOGRAPHIC EXPEDITION

Figure 1 and Plates A, B, C

	PAGE
Fig. 1. S. Y. <i>Arcturus</i>	2
Plate A. Atlantic Ocean Stations, Arcturus Oceanographic Expedition.....	4
Plate B. Pacific Ocean Stations, Arcturus Oceanographic Expedition.....	8
Plate C. Galapagos Islands Stations, Arcturus Oceanographic Expedition.....	12

THE ARCTURUS OPERATION AND EQUIPMENT

Figures 2 to 28 inclusive

Fig. 2. The S. Y. <i>Arcturus</i>	48
Fig. 3. Sketch showing arrangement of forward half of main deck.....	50
Fig. 4. Lower laboratory. View toward after end.....	52
Fig. 5. Forward hold showing where nets, specimens and extra supplies were stored.....	54
Fig. 6. Boom walk and net towing in calm waters.....	56
Fig. 7. Bow-platform.....	58
Fig. 8. Sounding machine.....	60
Fig. 9. Large mud-snapper used in expedition.....	62
Fig. 10. Releasing mechanism at top of sounding tube.....	62
Fig. 11. Sounding weight in place on sounding tube and ready for use.....	62
Fig. 12. Sounding weight and tube ready to go down.....	63
Fig. 13. Trawling and dredging machinery.....	64
Fig. 14. Diagram showing the machinery used for operating the trawling apparatus.....	66
Fig. 15. Main drum holding the half-inch wire cable.....	67
Fig. 16. Meter wheel.....	69
Fig. 17. Diagram of some of the devices used during expedition.....	70
Fig. 18. A Blake beam trawl.....	72
Fig. 19. Peterson trawl showing arrangement of the otter-boards and bridle.	73
Fig. 20. A Michael Sars meter net as used on board the S. Y. <i>Arcturus</i>	75
Fig. 21. Closing net of the Tanner type about to descend.....	77
Fig. 22. Nansen closing net used on the <i>Arcturus</i>	79
Fig. 23. Devices used to attach nets at various points along cable.....	80
Fig. 24. Diagram of thermometer water bottle ready for descent.....	82
Fig. 25. Diagram of thermometer water bottle ready for ascent.....	83
Fig. 26. Water bottle coming to surface.....	85
Fig. 27. Photographic laboratory showing the suspended platform.....	90
Fig. 28. Diving helmet being placed on head of diver.....	95

BROTULID FISHES

Figures 29 to 33 inclusive and Plate C

	PAGE
Plate C. Galapagos Islands Stations. Arcturus Oceanographic Expedition	108
Fig. 29. <i>Lamprogrammus illustris</i> Garman	112
Fig. 30. <i>Mixonus caudalis</i> Garman	113
Fig. 31. <i>Dicrolene gregori</i> , sp. nov.	116
Fig. 32. <i>Cherublemma telepris</i> , gen. et sp. nov. (from drawing)	120
Fig. 33. <i>Cherublemma telepris</i> , gen. et sp. nov. (from photograph)	120

GALAPAGOS BRACHYURA

Figures 34 to 102C inclusive

Plate C. Galapagos Islands Stations. Arcturus Oceanographic Expedition	130
Fig. 34. <i>Stenorynchus debilis</i> x 1½	131
Fig. 35. <i>Podochela margaritaria</i> , male x 2 (After Rathbun)	133
Fig. 36. <i>Dasygyius gibbosus</i> , male x about 2 (After Bell)	134
Fig. 37. <i>Dasygyius depressus</i> , female x about 2 (After Bell)	136
Fig. 38. <i>Acanthomyx petiverii</i> x 3½	138
Fig. 39. <i>Taleipus marginatus</i> , slightly reduced (After Bell)	141
Fig. 40. <i>Pelia pulchella</i> , male x about 4 (After Bell)	142
Fig. 41. <i>Pisooides edwardsii</i> , x about 2 (After Bell)	144
Fig. 42. <i>Herbstia edwardsii</i> , x 3	145
Fig. 43. <i>Herbstia pyriformis</i> , x about 2 (After Bell)	147
Fig. 44. <i>Lissa aurivilliusi</i> , x 3½ (After Rathbun)	149
Fig. 45. <i>Thoe erosa</i> , x about 2 (After Bell)	150
Fig. 46. <i>Pitho quinquedentata</i> , male x about 3 (After Bell)	151
Fig. 47. <i>Pitho sexdentata</i> , female x about 3 (After Bell)	153
Fig. 48. <i>Mithrax spinipes</i> , x 2 (After Bell)	154
Fig. 49. <i>Mithrax belli</i> , x 2	156
Fig. 50. <i>Mithrax nodosus</i> , young, x 4	159
Fig. 51. <i>Mithrax denticulatus</i> , x 2 (After Bell)	161
Fig. 52. <i>Teleophrys diana</i> , x 2	163
Fig. 53. <i>Teleophrys tumidus</i> , x 1½ (After Rathbun)	167
Fig. 54. <i>Stenocinops ovata</i> , x 2 (After Bell)	168
Fig. 55. <i>Microphrys aculeatus</i> , x about 2 (After Bell)	170
Fig. 56. <i>Microphrys triangulatus</i> , x 3 (After Rathbun)	172
Fig. 57. <i>Parthenope (Platylambrus) exilipes</i> , natural size	173
Fig. 58. <i>Parthenope (Pseudolambrus) excavata</i> , x 3	174
Fig. 59. <i>Portunus (Achelous) spinimanus</i> , natural size	177
Fig. 60. <i>Portunus (Achelous) stanfordi</i> , x 1¼ (After Rathbun)	179
Fig. 61. <i>Portunus (Achelous) angustus</i> , x 1½ (After Rathbun)	181
Fig. 62. <i>Cronius ruber</i> , young x 5	183
Fig. 63. <i>Liomera cocosana</i> , male x 3	185
Fig. 64. <i>Leptodius snodgrassi</i> , x about 3 (After Rathbun)	187

	PAGE
Fig. 65. <i>Leptodius cooksoni</i> , x 2.....	189
Fig. 66. <i>Xanthodius lobatus</i> , x 4½.....	192
Fig. 67A. <i>Xanthodius occidentalis</i> , female, dorsal view x 2.8.....	196
Fig. 67B. <i>Xanthodius occidentalis</i> , female, ventral view.....	196
Fig. 68. <i>Cycloanthops vittatus</i> , x 5.....	198
Fig. 69. <i>Medaeus lobipes</i> , x 1½ (After Rathbun).....	200
Fig. 70. <i>Medaeus rugosus</i> , female, type x 4.....	202
Fig. 71. <i>Actaea dovi</i> , x 3.....	204
Fig. 72. <i>Actaea angusta</i> , x about 4 (After Rathbun).....	206
Fig. 73. <i>Platypodia gemmata</i> , x 6 (After Rathbun).....	207
Fig. 74A. <i>Xanthias insculpta</i> , x 3.2.....	208
Fig. 74B. <i>Xanthias insculpta</i> , megalops, x 20.....	208
Fig. 75. <i>Xanthias politus</i> , x about 4 (After Faxon).....	211
Fig. 76. <i>Eurypanopeus transversus</i> , x 3.....	212
Fig. 77. <i>Eurytium affine</i> , x 2.5.....	214
Fig. 78. <i>Pilumnoides pusillus</i> , x 9.5.....	216
Fig. 79. <i>Pilumnus spinulifer</i> , x 9.5.....	218
Fig. 80. <i>Pilumnus beebei</i> , x 6.....	220
Fig. 81. <i>Pilumnus pygmaeus</i> , x 6.....	222
Fig. 82. <i>Ozius verreauxii</i> . Reduced to half of natural size.....	224
Fig. 83. <i>Ozius agassizii</i> , x 1.5.....	226
Fig. 84. <i>Ozius perlatus</i> , x 1.9.....	229
Fig. 85A. <i>Eriphia squamata</i> , x 1.7.....	232
Fig. 85B. Ventral view of same specimen shown in Fig. 85A.....	232
Fig. 86. <i>Eriphia gonagra</i> , x 1.5.....	235
Fig. 87A. <i>Eriphides hispida</i> , adult. Reduced to ¾ of natural size.....	237
Fig. 87B. <i>Eriphides hispida</i> , young, enlarged 7½.....	237
Fig. 88. <i>Trapezia cymodoce ferruginea</i> , x 3.....	241
Fig. 89. <i>Ectaethesius bifrons</i> , x about 4 (After Rathbun).....	243
Fig. 90. <i>Grapsus grapsus</i> . Reduced to ½ natural size.....	245
Fig. 91. <i>Geograpsus lividus</i> , x 1.2.....	252
Fig. 92. <i>Pachygrapsus transversus</i> , x 3.7.....	254
Fig. 93. <i>Pachygrapsus crassipes</i> . Reduced to 0.6 of natural size.....	258
Fig. 94. <i>Planes minutus</i> , x 3.....	260
Fig. 95. <i>Plagusia immaculata</i> , female, natural size, upper figure.....	265
Fig. 95. <i>Plagusia immaculata</i> , male, natural size, lower figure.....	265
Fig. 96A. <i>Ocypode gaudichaudii</i> , adult. Reduced to 6/7 of natural size.....	268
Fig. 96B. <i>Ocypode gaudichaudii</i> , megalops, enlarged x 7.....	268
Fig. 97. <i>Uca galapagensis</i> , upper figure, male, x 1.8.....	272
Fig. 97. <i>Uca galapagensis</i> , lower figure, female, x 1.8.....	272
Fig. 98. <i>Uca helleri</i> , male, x 2.9.....	279
Fig. 99. <i>Calappa convexa</i> , natural size.....	281
Fig. 100. <i>Leucosilia jurinei</i> , x about 2 (After Bell).....	283
Fig. 101. <i>Persephona edwardsii</i> , about natural size (After Bell).....	284
Fig. 102A. <i>Dromidia larraburei</i> Rathbun, adult x 2.....	286
Fig. 102B. <i>Dromidia larraburei</i> Rathbun, megalops, dorsal view x 4, cheliped.....	286
Fig. 102C. <i>Dromidia larraburei</i> Rathbun, megalops, ventral view.....	286
Fig. 102D. <i>Dromidia larraburei</i> Rathbun, cheliped of megalops	286

THE EMBRYOLOGY OF THE AMERICAN EEL (*ANGUILLA
ROSTRATA* LESUEUR)

Figures 103 to 116 inclusive

	PAGE
Fig. 103. Egg of American eel, July 16, 1925, probably very soon after fertilization.....	290
Fig. 104. Egg of American eel about 88 hours after stage shown in Figure 103.....	291
Fig. 105. Prelarva of American eel soon after hatching, 9 mm. long. (8 A.M., July 23rd).....	293
Fig. 106. Head of prelarva shown in Figure 105.....	293
Fig. 107. Head of same prelarva shown in Figure 106 one day later, demonstrating the extremely rapid development of prelarval teeth.....	293
Fig. 108. Egg of Species No. 7 of Raffaele. Drawn from Raffaele.....	296
Fig. 109. Egg of Species No. 6 of Raffaele. Drawn from Raffaele.....	296
Fig. 110. Egg of conger eel when first observed, showing characteristic shape of yolk.....	299
Fig. 111. Prelarva of conger eel soon after hatching.....	301
Fig. 112. Prelarva of conger eel two days later than stage shown in Figure 111.....	301
Fig. 113. Head of conger eel prelarva about 3½ days old.....	301
Fig. 114. Egg of Muraena No. 7 of Boeke, showing the type of muraenoid egg which has a delicate inner membrane attached by filaments to the outer capsule. Drawn from Boeke.....	302
Fig. 115. European eel (<i>Anguilla vulgaris</i>) and American eel (<i>Anguilla rostrata</i>). Breeding areas and distribution of larvae shown by curves.....	305
Fig. 116. Smallest known prelarva of European eel, 6 mm. in length. Drawn from Schmidt.....	306

STUDIES ON THE BODY-FORMS OF FISHES

Figures 117 to 155 inclusive

Fig. 117. The body-forms and fins of typical fishes, in their relations to quadrilateral figures. A, Shark (<i>Catulus uter</i>); B, Herring (<i>Clupea harengus</i>); C, Serranid (<i>Paralabrax maculatofasciatus</i>). Outlines after Jordan and Evermann.....	335
Fig. 118. The body-forms and fins of specialized fishes. A, deepsea fish, <i>Aldrovandia macrochir</i> ; B, Dolphin (<i>Coryphaena hippurus</i>); C, Surgeon fish (<i>Xesurus punctatus</i>); D, Geometric relations of the opisthion (o) and pygidion (p) of the anterior and posterior dorsal verticals (ad, pd.). Outlines after Jordan and Evermann.....	338
Fig. 119. Varying relations of the opisthion to the uranion. A, Opisthion posturanic (<i>Felichthys marinus</i>); B, Opisthion posturanic approaching infinity (<i>Schilboedea insignis</i>); C, Opisthion preuranic (<i>Germo alalunga</i>). Outlines after Jordan and Evermann.....	339
Fig. 120. The bounding quadrilateral figures in the ventral, dorsal and front views. A, Shark (<i>Squalus acanthias</i>), ventral view; B, (<i>Rhinobatos lentiginosus</i>), dorsal view; C, Trunk-fish (<i>Lactophrys bicauda</i>)	339

	PAGE
lis), ventral view; D, Bat-fish (<i>Ogcocephalus vespertilio</i>), front view. Outlines after Jordan and Evermann.....	341
Fig. 121. Fishes with convex dorso-anterior slope and high entering angles. A, Myctophid (<i>Myctophum opalinum</i>); B, Mullet (<i>Upeneus maculatus</i>); C, Blenny (<i>Alticus atlanticus</i>). Outlines after Jordan and Evermann.....	341
Fig. 122. Fishes with flat dorso-anterior slope and low entering angles. A, Pike (<i>Lucius masquinony</i>); B, Killifish (<i>Fundulus diaphanus</i>); C, Snook (<i>Oxylabrax undecimalis</i>). Outlines after Jordan and Evermann.....	343
Fig. 123. Cutaway condition of postero-ventral contour. A (<i>Hiodon tergisus</i>); B (<i>Pseudopriacanthus altus</i>). Outlines after Jordan and Evermann.....	344
Fig. 124. The four types of body-form based on the ratio of depth to body length (prosthiion to pygidion). A, Hyperdolichosomatic (<i>Labichthys elongatus</i>); B, Dolichosomatic (<i>Scaphirhynchus paltrorhynchus</i>); C, Mesosomatic (<i>Xenocys jessiae</i>); D, Hypsisomatic (<i>Zandrus cornutus</i>). Outlines after Jordan and Evermann.....	346
Fig. 125. Varying antero-posterior relations of apex to gasterion. A, Gasterion postapical (<i>Neomaenoides apodus</i>); B, Gasterion subapical (<i>Clupea harengus</i>); C, Gasterion preapical (<i>Atherinopsis californiensis</i>). Outlines after Jordan and Evermann.....	348
Fig. 126. Varying depth of back. A, Hyperdolichonotic (<i>Nemichthys stomias</i>); D, Hypsinotic (<i>Calamus proridens</i>). Outlines after Jordan and Evermann.....	350
Fig. 127. Bathygastric forms. A, <i>Harriotta raleighana</i> ; B, <i>Pempheris poeyi</i> ; C, <i>Argyropelecus olfersi</i> . Outlines after Jordan and Evermann.....	351
Fig. 128. Macropygidal (A) and leptopygidal (B) forms. A, <i>Fundulus heteroclitus</i> ; B, <i>Podothecus veteranus</i> . Outlines after Jordan and Evermann.....	352
Fig. 129. Macrocercal (A, B, C), and microcercal (D) forms. A, <i>Chanos chanos</i> ; B, <i>Cypselurus californicus</i> ; C, <i>Anableps dovi</i> ; D, <i>Lepidopus caudatus</i> . Outlines after Jordan and Evermann.....	353
Fig. 130. Hypocercal and heterocercal (epicercal) tails. A, Hypocercal (<i>Pterolepis nitidus</i> , Upper Silurian, Norway). After Kiaer; B-I, Heterocercal; B, typical (<i>Hypoprion brevirostris</i>); C, horizontal (<i>Scylliorhinus profundorum</i>); D, Asymmetrical (<i>Squalus acanthias</i>); E, elongate (<i>Notorhynchus maculatus</i>). Outlines after Jordan and Evermann.....	354
Fig. 131. Heterocercal types continued. F, Perelongate (<i>Alopias vulpes</i>); G, robust (<i>Gyroleurodon francisci</i>); H, bifurcate (<i>Lamna cornubica</i>); I, subcrescentic (<i>Isurus dekayi</i>). Outlines after Jordan and Evermann.....	355
Fig. 132. Modified heterocercal types. A, Scalene (<i>Pristis pectinatus</i>); B, bipinnate (<i>Raja occellata</i>); C, truncate (<i>Tetranarce occidentalis</i>); D, filiform (<i>Dasyatis sabina</i>). Outlines after Jordan and Evermann.....	356

Fig. 133. Modified heterocercal types (continued). A, Acute (<i>Dipterus valenciennesii</i>); B, acute (<i>Osteolepis macrolepidotus</i>); C, diphycercal (<i>Glyptopomus kinnairdii</i>); D, tristichopterous concave (<i>Tristichopterus alatus</i>); E, tristichopterous convex (<i>Undina gulo</i>). All from Goodrich after Traquair.....	357
Fig. 134. Homocercal types. A, Lunate (<i>Oncorhynchus nerka</i>); B, bifurcate (<i>Chanos chanos</i>); C, crescentic (<i>Germo alalunga</i>). Outlines after Jordan and Evermann.....	358
Fig. 135. Homocercal types (continued). A, Truncate (<i>Fundulus zebra</i>); B, truncate emarginate (<i>Aphredoderus sayanus</i>); C, convex (<i>Paecilia presidionis</i>); D, spatulate convex (<i>Schilbeoides exilis</i>); E, Spatulate pointed (<i>Chologaster cornutus</i>); F, gephyrocercal incipient (<i>Cryptacanthodes maculatus</i>). Outlines after Jordan and Evermann.....	359
Fig. 136. Gephyrocercal types. A, Typical (<i>Anguilla chryspha</i>); B, pointed or diphycercoid (<i>Neobythites marginatus</i>); C, pseudomocercal incipient (<i>Barathrodemus manatinus</i>); D, pseudomocercal spatulate (<i>Physiculus fulvus</i>); E, pseudomocercal lunate (<i>Porogadus saida</i>); F, gephyrocercal hypural (<i>Coelorhynchus carinatus</i>); G, gephyrocercal filiform (<i>Veneficia procera</i>). Outlines after Jordan and Evermann.....	359
Fig. 137. Varying anteroposterior positions of first dorsal fin. A, Middle of base of first dorsal in first quarter of horizontal (<i>Chimaera affinis</i>); B, in second quarter (<i>Lamna cornubica</i>); C, in third quarter (<i>Catulus uter</i>); D, in fourth quarter (<i>Raja ocellata</i>). Outlines after Jordan and Evermann.....	360
Fig. 138. Extent of first dorsal fin base to body length (prosthiion to pygidion). A, First dorsal brevibasic (<i>Kirtlandia vagrans</i>); B, medibasic (<i>Verilus sordidus</i>); C, longibasic (<i>Sebastodes hopkinsi</i>); D, perlongibasic (<i>Escolar violaceus</i>). Outlines after Jordan and Evermann.....	363
Fig. 139. Height of first dorsal fin to body depth (ad plus av). A, first dorsal breviradial (<i>Promicrops guttatus</i>); B, mediradial (<i>Alphestes afer</i>); C, longiradial (<i>Emblemaria atlantica</i>). Outlines after Jordan and Evermann.....	363
Fig. 140. Extent of second dorsal fin base to body length. A, Second dorsal perbrevibasic (<i>Galeorhinus zygopterus</i>); B, brevibasic (<i>Atherinopsis californiensis</i>); C, medibasic (<i>Micropterus dolomieu</i>); D, longibasic (<i>Seriola dorsalis</i>). Outlines after Jordan and Evermann.....	364
Fig. 141. Varying anteroposterior relations of dorsal and anal fins. A, Anal postdorsalic (<i>Pempheris mulleri</i>); B, sudborsalic (<i>Lepomis auritus</i>); C, predorsalic (<i>Anableps dovi</i>). Outlines after Jordan and Evermann.....	365
Fig. 142. Sagittate arrangement of large dorsal and anal fins associated with macropygidal macrocercal convex homocercal tails and (usually) with low foreheads. Quick darting forms. A, <i>Dallia pectoralis</i> ; B, <i>Fundulus heteroclitus</i> ; C, <i>Etheostoma cinereum</i> ; D, <i>Dormitator maculatus</i> . Outlines after Jordan and Evermann.....	367

	PAGE
Fig. 143. Varying lengths of anal fin base to body length (Pp). A, Anal brevibasic (<i>Albula vulpes</i>); B, medibasic (<i>Epinephelus drummond-hayi</i>); C, longibasic (<i>Xyrichtys psittacus</i>); D, perlongibasic (<i>Serrivomer beanii</i>). Outlines after Jordan and Evermann.	369
Fig. 144. Varying lengths of anal fin to body depth (ad plus av). A, Anal breviradial (<i>Orthopristis reddingi</i>); B, mediradial (<i>Epinephelus striatus</i>); C, longiradial (<i>Hadropterus evides</i>); D, perlongiradial (<i>Castomosus latipinnis</i>). Outlines after Jordan and Evermann..	370
Fig. 145. Varying lengths of ventrals. A, Ventrals breviradial (<i>Notacanthus analis</i>); B, mediradial (<i>Verilus sordidus</i>); C, longiradial (<i>Exonautes rondeletti</i>). Outlines after Jordan and Evermann.....	372
Fig. 146. Varying relations of the pectoral fins to the horizontal. A, Pectorals inferior (<i>Pseudotriakis microdon</i>); B, median (<i>Schibeodes insignis</i>); C, superior (<i>Chaenomugil proboscideus</i>). Outlines after Jordan and Evermann.....	373
Fig. 147. Varying length of pectorals to body length (Pp). A, Pectorals breviradial (<i>Notropis azeucus</i>); B, mediradial (<i>Hypoplectrus unicolor nigricans</i>); C, longiradial (<i>Germo alalunga</i>); D, perlongiradial (<i>Exonautes rondeletti</i>). Outlines after Jordan and Evermann.....	374
Fig. 148. Varying proportions of head length to body length. A, Microcephalic (<i>Cyclopterus elongatus</i>); B, nomocephalic (<i>Semotilus atromaculatus</i>); C, macrocephalic (<i>Hoplopagrus guntheri</i>). Outlines after Jordan and Evermann.....	376
Fig. 149. Varying head depth to head length. A, Platyncephalic (<i>Hypohomus spilotus</i>); B, mesocephalic (<i>Paralabrax humeralis</i>); C, hypsicephalic (<i>Xyrichtys psittacus</i>). Outlines after Jordan and Evermann.....	377
Fig. 150. Varying "maxillary length" to head length. A, micrognathic (<i>Coregonus williamsoni</i>); B, mesognathic (<i>Mycteroperca boulen-geri</i>); C, macrogognathic (<i>Lampanyctus crocodilus</i>). Outlines after Jordan and Evermann.....	378
Fig. 151. Varying combinations of different snout lengths and upper jaw length. Long, intermediate or short snouts may be combined with long, intermediate or short jaws, the nine possible combinations all being realized in different fishes. A, Snout long, jaw long (<i>Tylosurus acus</i>); B, snout long, jaw short (<i>Aulorhynchus flavidus</i>); C, Snout short, jaw long (<i>Lampanyctus crocodilus</i>); D, snout short, jaw short (<i>Copelandellus quiescens</i>). Outlines after Jordan and Evermann.....	379
Fig. 152. Varying lengths of branchial chamber to head depth. A, mesocameral (<i>Micropterus dolomieu</i>); B, macrocameral (<i>Basanichthys scuticaris</i>); C, microcameral (<i>Calamus proridens</i>). Outlines after Jordan and Evermann.....	380
Fig. 153. Adaptive radiation of body form in ostracoderms.....	387
Fig. 154. Adaptive radiation of the depressed elasmobranchs.....	387
Fig. 155. Adaptive radiation of body form in fusiform elasmobranch.....	390

AN ANNOTATED LIST OF THE SYNENTOGNATHI

	PAGE
Fig. 156. Young <i>Hemiramphus</i> from the Pacific.....	425
Fig. 157. <i>Fodiatur acutus</i> (Cuvier and Valenciennes).....	426
Fig. 158. Two stages of <i>Evolantia microptera</i> (Cuvier and Valenciennes) juv.	427
Fig. 159. Two stages of <i>Evolantia microptera</i> (Cuvier and Valenciennes) juv.	427
Fig. 160. <i>Halocypselus obtusirostris</i> (upper) <i>H. evolans</i> (lower).....	428
Fig. 161. <i>Halocypselus obtusirostris</i> (upper) <i>H. evolans</i> (lower).....	429
Fig. 162. <i>Halocypselus obtusirostris</i>	430
Fig. 163. <i>Halocypselus evolans</i>	430
Fig. 164. <i>Exonautes rondeletii</i>	430
Fig. 165. <i>Exonautes marginatus</i>	431
Fig. 166. <i>Cypselurus bicolor</i> (Cuvier and Valenciennes).....	432
Fig. 167. <i>Cypselurus monroei</i>	433
Fig. 168. Synentognath ventrals (right side viewed from below). 1. <i>Strongylura ardeola</i> ; 2. <i>Hemiramphus brasiliensis</i> ; 3. <i>Euleptorhamphus longirostris</i> ; 4. <i>Evolantia microptera</i> ; 5. <i>Halocypselus evolans</i> ; 6. <i>Cypselurus callopterus</i>	434
Fig. 169. <i>Ablennes hians</i> . First gill of a 52 mm. example (standard length) showing vestigial gill rakers still present.....	435
Fig. 170. Diagram of half-beak condition in phylogeny and ontogeny.....	437
Fig. 171. Tentative lines of Synentognath evolution.....	441
Fig. 172. Two-winged flying-fish (<i>Halocypselus evolans</i>). Drawing in colors. H. Tee-Van.....	445
Fig. 173. <i>Halocypselus obtusirostris</i> . Drawing in colors. Isabel Cooper.....	446
Fig. 174. <i>Exonautes marginatus</i> (Field No. 5148). Drawing in colors. Isabel Cooper.....	446
Fig. 175. Four-winged flying-fish (<i>Cypselaurus furcatus</i>). Drawing in colors. H. Tee-Van.....	447
Fig. 176. Young <i>Cypselurus furcatus</i> . Drawing in colors. H. Tee-Van.....	448

POLYCHAETOUS ANNELIDS

Figures 177 to 179 inclusive

Fig. 177. 1, <i>Harmothoe sylliformia</i> , anterior end x 25.5; 2, parapodium x 45; 3, neuropodial seta x 185; 4, notopodial seta x 215; 5, <i>Harmothoe lanceolata</i> , anterior end x 30; 6, parapodium x 85; 7, detail of cilia on cirrus x 85; 8, neuropodial sets x 250; 9, notopodial seta x 250; 9a, detail of elytron x 27.5; 10, <i>Lepidasthenia picta</i> , anterior end x 10; 11, posterior parapodium x 15; 12, sets x 185; 13, sets from first parapodium x 250; 14, <i>Lepidasthenia rufa</i> , anterior end x 25; 15, parapodium x 45; 16, dorsal seta of neuropodium x 250; 17, ventral seta of neuropodium x 250; 18, <i>Lepidasthenia variegata</i> , anterior end x 12.5; 19, first parapodium x 27.5....	451
Fig. 178. 20, <i>Lepidasthenia variegata</i> , 18th parapodium x 27.5; 21, seta of 18th parapodium x 185; 22, <i>Lepidasthenia longicirrata</i> , anterior end x 10; 23, parapodium x 20; 24, notopodial seta x 250; 25, 2nd form of notopodial sets x 250; 26, detail of dorsalmost	

notopodial seta x 250; 27, <i>Vanadas collata</i> , anterior end x 5; 28, 49th parapodium x 18; 29, <i>Tomoptera opaca</i> , anterior end x 5; 30, <i>Tomoptera tentaculata</i> , anterior end x 27.5; 31, parapodium x 27.5; 32, <i>Leodice arcturi</i> , anterior end x 5; 33, 25th parapodium x 27.5; 34, posterior parapodium x 27.5; 35, dorsal acicula from posterior parapodium x 250; 36, ventral acicula from posterior parapodium x 250; 37, seta from 25th parapodium x 250; 38, sets from posterior parapodium x 250; 39, mandible x 30.....	459
Fig. 179. 40, <i>Uncinereis lutea</i> , anterior end x 16; 41, 10th parapodium x 45; 42, 1st parapodium x 45; 43, parapodium from middle of body x 45; 44, seta from parapodium of Fig. 43 x 250; 45, 2nd form of setae from parapodium of Fig. 43 x 250; 46, compound seta x 250; 47, epitokous male x 15; 48, 7th parapodium of male x 27.5; 49, 17th parapodium of male x 27.5; 50, <i>Neanthes obscura</i> , anterior end x 5; 51, parapodium x 45; 52, ventral seta x 250; 53, dorsal seta x 250; 54, <i>Spiro hirsuta</i> , anterior end x 20; 55, parapodium x 45; 56, anterior seta x 250; 57, posterior seta x 250; 58, spionoid larva x 15; 59, detail of seta x 45; 60, end of seta x 185; 61, palea x 250; 62, <i>Semiodera glabra</i> , anterior end x 10; 63, ventral view of anterior end x 10; 64, notopodial hook x 68; 65, detail of seta x 68; 66, <i>Nuchubranchia palmata</i> , anterior end x 10; 67, gills x 45; 68, seta x 100; 69, <i>Phyllocoel varia</i> , anterior end x 15; 70, seta x 250.....	468

SCYPHOMEDUSAE

Figures 180 to 184 inclusive

Fig. 180. <i>Atorella arcturi</i> , sp. nov.; side view of type specimen, 15 mm. in diameter.....	502
Fig. 181. <i>Atorella arcturi</i> ; suboral view of part of marginal zone, showing two gonads, tentacles and rhopalium.....	503
Fig. 182. <i>Linuche unguiculata</i> ; portion of subumbrella, to show relative positions of gonads and of subumbrial sacs in a specimen about 8 mm. in diameter, from Arcturus Sta. 96.....	512
Fig. 183. <i>Linuche unguiculata</i> ; portion of subumbrella of Atlantic Specimen 11 mm. high, to show gonads and subumbrial sacs (M. C. Z., No. 3076).....	513
Fig. 184. <i>Linuche unguiculata</i> ; portion of subumbrella of Florida specimen about 12 mm. in diameter, with very large gonads.....	515

SIPHONOPHORAE

Figures 185 to 220 inclusive

Fig. 185. <i>Praya reticulata</i> ; bract. x 3; from offing of Monterey Bay, California.	532
Fig. 186. <i>Praya reticulata</i> ; female gonophore, x 4.7; from offing of Monterey Bay, California.....	534

	PAGE
Fig. 187. <i>Praya reticulata</i> ; male gonophore, x 4.7; from offing of Monterey Bay, California.....	534
Fig. 188. <i>Praya reticulata</i> ; young tentillum, x 72; from offing of Monterey Bay, California.....	535
Fig. 189. <i>Praya reticulata</i> ; adult tentillum, x 72; from same tentacle that bore the young tentillum illustrated in Figure 188.....	536
Fig. 190. <i>Vogtia serrata</i> ?; nectophore in ventral view, x 3.3; from Arcturus Sta. 61.....	539
Fig. 191. <i>Abylopsis tetragona</i> ; superior nectophore, ventral view, x 10; from Arcturus Sta. 49.....	545
Fig. 192. <i>Abylopsis tetragona</i> ; superior nectophore, dorsal view of specimen illustrated in Figure 191.....	546
Fig. 193. <i>Abylopsis eschscholtzii</i> ; superior nectophore, ventral view, x 15; from Arcturus Sta. 84.....	547
Fig. 194. <i>Abylopsis eschscholtzii</i> ; superior nectophore, x 15; dorsal view of specimen illustrated in Figure 193.....	548
Fig. 195. <i>Galette quadrivalvis</i> ; lateral view of superior nectophore, x 4; from Arcturus Sta. 87.....	551
Fig. 196. <i>Galette quadrivalvis</i> ; basal view of superior nectophore, x 4; from Arcturus Sta. 87.....	552
Fig. 197. Lateral view of base of superior nectophore of specimen showing lateral marginal angles, x 6; from Arcturus Sta. 87.....	552
Fig. 198. <i>Galette quadrivalvis</i> ; basal part of stem of specimen showing two reserve-buds, x 40; from Arcturus Sta. 87.....	553
Fig. 199. <i>Galette quadrivalvis</i> ; male gonophore, x 70.....	554
Fig. 200. <i>Galette quadrivalvis</i> ; female gonophore, x 70.....	555
Fig. 201. <i>Galette quadridentata</i> ; base of stem, found attached to inferior nectophore, with reserve-buds, x 20; from Arcturus Sta. 28.....	556
Fig. 202. <i>Galette quadridentata</i> ; portion of stem, with siphon, gonophore, and basal part of bract, x 43; from a specimen from Naples in the collection of the Museum of Comparative Zoology.....	557
Fig. 203. <i>Galette quadridentata</i> ; another view of bract shown in Figure 202, to show its muscular attachment, x 43.....	558
Fig. 204. <i>Galette australis</i> ; portion of stem, to show bracts, x 27; from a specimen from Albatross Sta. 4661.....	561
Fig. 205. <i>Galette australis</i> ; group of appendages, x 50; from a specimen from Albatross Sta. 4727.....	562
Fig. 206. <i>Galette australis</i> ; base of superior, and apex of inferior nectophore, to show their attachment and the reserve-buds; from a specimen from Albatross Sta. 4704.....	563
Fig. 207. <i>Galette australis</i> ; apex of inferior nectophore, x 15; to show base of stem, and reserve-buds; from Albatross Sta. 2747.....	563
Fig. 208. <i>Chuniphyes multidentata</i> ; ventral view of superior nectophore, x 7; from Albatross Sta. 4759.....	567
Fig. 209. <i>Chuniphyes multidentata</i> ; superior nectophore; apical view (A), and cross sections (B and C) at the levels marked A and B on Figure 208; from Albatross Sta. 4759.....	568

	PAGE
Fig. 210. <i>Archisoma natans</i> ; lateral view of special nectophore, x about 3; from Arcturus Sta. 61	570
Fig. 211. <i>Archisoma natans</i> ; dorsal view of nectophore illustrated in Figure 210, x about 3	571
Fig. 212. <i>Archisoma natans</i> ; schematic cross sections of the nectophore, x 4.7, at the levels indicated on Figure 210	571
Fig. 213. <i>Archisoma natans</i> ; lateral view of bract, x about 2.5, of specimen illustrated in Figure 210	572
Fig. 214. <i>Archisoma natans</i> ; schematic cross section of the bract, x 4.5, at the level marked A on Figure 213	573
Fig. 215. <i>Archisoma natans</i> ; dorsal view of inferior portion of bract, x 4.5, with schematic cross-section at the level marked B on Figure 213	573
Fig. 216. <i>Archisoma natans</i> ; ventral view of mid-sector of bract, x 4.5, illustrated in Figure 213	574
Fig. 217. <i>Athorybia rosacea</i> ; general view of fragmentary specimen, x 7; from Arcturus Sta. 59. This specimen has lost most of the bracteal attachments, palpons and siphons	578
Fig. 218. <i>Athorybia rosacea</i> ; general view of specimen, x 8; from Arcturus Sta. 74	579
Fig. 219. <i>Athorybia rosacea</i> ; tentillum, x 72; from Arcturus Sta. 74	583
Fig. 220. <i>Athorybia rosacea</i> ; tentillum with involucre contracted, x 72; from Arcturus Sta. 74	584

