אינפי 2מ' | תרגול 11 - עם ניקה

שם: איל שטיין

June 14, 2023

נושא השיעור: המשך טורי חזקות (התכנסות לפונקציה גבולית), פונקציות בשני משתנים

נושא ראשון: המשך טורי חזקות

:1 תרגיל

 $\sum_{n=0}^{\infty} \left(1+2n\right) \cdot x^n$:השבו את הסכום את חשבו פתרון:

- $\sum_{n=0}^{\infty} x^n = rac{1}{1-x}$ או הטור א $x \in (-1,1)$ שאם
 - נפריד את הטור שלנו לשני טורים:

$$\sum_{n=0}^{\infty} (1+2n) \cdot x^n = \sum_{n=0}^{\infty} x^n + 2 \cdot \sum_{n=0}^{\infty} n \cdot x^n$$

- נבחן את הטור הימני:

$$\sum_{n=0}^{\infty} n \cdot x^n$$

- * מכיוון שהוא טור חזקות אז הוא מתכנס במ"ש בתוך תחום ההתכנסות של הטור.
 - : מתקיים אבור $n \cdot x^n = 0$ מתקיים א ולכן מתקיים *

$$\sum_{n=0}^{\infty} n \cdot x^n = 0 + \sum_{n=1}^{\infty} n \cdot x^n = \sum_{n=1}^{\infty} n \cdot x^n$$

x נוציא x החוצה מהסכום בשביל לקבל:

$$= x \cdot \sum_{n=1}^{\infty} n \cdot x^{n-1}$$

ומכיוון שהטור מתכנס במ"ש, ניתן להשתמש במשפט גזירה איבר איבר ולקבל:

$$= x \cdot \sum_{n=1}^{\infty} (x^n)'$$

$$= x \cdot \left(\sum_{n=0}^{\infty} x^{n'}\right)$$

$$= x \cdot \left(\frac{1}{1-x}\right)'$$

$$= \frac{x}{(1-x)^2}$$

: כלומר עבור $x \in (-1,1)$ מתקיים •

$$\sum_{n=0}^{\infty} (1+2n) x^n = \frac{1}{1-x} + 2 \cdot \frac{x}{(1-x)^2}$$

:2 תרגיל

 $\sum_{n=0}^{\infty} \frac{1}{2} \left(n+1
ight) \left(n+2
ight) x^n$: השבו את הטור הבא

• ניתן לכתוב את הביטוי בצורה:

$$=\frac{1}{2}\sum_{n=0}^{\infty}\left(x^{n+2}\right)^{"}$$

- מותר לשנות סדר סכימה ואינטגרציה כי בטורי חזקות יש לנו התכנסות במ"ש ובהחלט (ואלה התנאים לשינוי סדר גזירה ואינטגרציה):

$$=\frac{1}{2}\left(\sum_{n=0}^{\infty}x^{n+2}\right)^{"}$$

: מהסכום מחוצה x^2 - נוציא

$$= \frac{1}{2} \left(x^2 \cdot \sum_{n=0}^{\infty} x^n \right)^n$$
$$= \frac{1}{2} \left(x^2 \frac{1}{1-x} \right)^n$$
$$= \frac{1}{2} \cdot \frac{1}{\left(1-x\right)^3}$$

:3 תרגיל

 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$: חשבו את הטור הבא חשבו את פתרון:

- מכיוון שהביטוי במונה והביטוי בחזקה הוא אותו ביטוי, אם נגזור אז נוכל לבטל אותו.
 - $.f\left(x
 ight) =\sum_{n=0}^{\infty}rac{(-1)^{n}}{2n+1}x^{2n+1}$ נסמן •
 - : עבור ערכי |x| < 1 מתקיים ההתכנסות, כלומר |x| < 1

$$f'(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

:נוציא החוצה את חזקת n ונקבל \star

$$=\sum_{n=0}^{\infty} \left(-x^2\right)^n$$

: ולכן מתקיים

$$\sum_{n=0}^{\infty} (-x^2)^n = \frac{1}{1 - (-x^2)}$$
$$= \frac{1}{1 + x^2}$$

- $f\left(x
 ight)$ את מצאנו את לבצע אינטגרל לבצע הנגזרת, נרצה הנגזרת, באחר שמצאנו את
 - $f\left(0\right)=\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{2n+1}\cdot0=0$ מתקיים x=0עבור –
 - : מתקיים x=0 מתאפסת ל $f\left(x\right)$ מתקיים אוז מכיוון שהפונקציה ל

$$f(x) = f(x) - f(0)$$

 $\pm x$ ועד 0-נשתמש במשפט היסודי עם גבולות האינטגרל מ

$$f(x) = f(x) - f(0) = \int_{0}^{x} f'(t) dt = \int_{0}^{x} \frac{dt}{1 + t^{2}}$$
$$= \arctan(x)$$

:4 תרגיל

 $f\left(x
ight)=\sum_{n=1}^{\infty}\left(rac{(-1)^n}{2n(2n+1)}\cdot x^{2n+1}
ight)$: עבור הטור $f'\left(rac{1}{2}
ight)$ אתרון:

- (בדקו לבד כי) רדיוס ההתכנסות הוא 1, לפי מבחן המנה.
- . מוגדר היטב $f'\left(\frac{1}{2}\right)$ כלומר, כלומר בתחום ממצא מתקיים כי $x=\frac{1}{2}$ מוגדר היטב. ואז
 - ראשית נגזור את הטור פעמיים כדי להעלים את הביטויים במכנה:
 - : גזירה פעם ראשונה

$$f'(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n} x^{2n}$$

: גזירה פעם שנייה

$$f''(x) = \sum_{n=1}^{\infty} (-1)^n x^{2n-1}$$
$$= \sum_{n=0}^{\infty} (-1)^{n+1} x^{2n+1} = \frac{-x}{1+x^2}$$

- נשים לב שמתקיים:

$$f'(0) = 0$$

* ולכן ניתן לכתוב:

$$f'(x) = f'(x) - f'(0)$$

: ואז אפשר להשתמש במשפט היסודי כדי לקבל

$$f'(x) = f'(x) - f'(0) = \int_0^x f'(t) dt$$
$$= \int_0^x \left(-\frac{t}{1+t^2} \right) dt$$
$$= -\int_0^x \frac{t}{1+t^2} dt$$
$$= -\frac{1}{2} ln \left(1 + x^2 \right)$$

• כלומר קיבלנו ש:

$$f'\left(\frac{1}{2}\right) =$$

:5 תרגיל

פתחו לטור חזקות את הביטוי $\ln\left(1+x\right)$ וקבעו מה תחום ההתכנסות שלו:

• נתחיל מכך שאנחנו יודעים ש:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

- המטרה שלנו תהיה להגיע לאחת מהצורות האלה.
- : ולכן ניתן לכתוב הקדומה של הפונקציה ו $\ln\left(1+x\right)$ היא הפונקציה •

$$\ln(1+x) = \int_{0}^{x} \left(\frac{1}{1+t}\right) dt$$
$$= \int_{0}^{x} \left(\sum_{n=0}^{\infty} (-1)^{n} t^{n}\right) dt$$

- מכיוון שהזהו טור חזקות, נחליף את סדר הסכימה והאינטגרציה:

$$\int_{0}^{x} \left(\sum_{n=0}^{\infty} (-1)^{n} t^{n} \right) d = \sum_{n=0}^{\infty} \left(\int_{0}^{x} (-1)^{n} t^{n} dt \right)$$
$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n+1}}{n+1}$$

: בתוך בתוך x^n בתור מהצורה לקבל כדי מיסום שיתחילו מ-1 כדי לקבל ביטוי האינדקסים שיתחילו מ-1 בתוך הסכום

$$=\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{n} \cdot x^{n}$$

[-1,1] ושתחום ההתכנסות הוא R=1 ושתחום ההתכנסות *

:6 תרגיל

 $x_0=1$ סביב $f\left(x
ight)=rac{2x+3}{x+1}$ סביב את חזקות את סביב לטור פתרון:

- $\left(x-1
 ight)^{n}$ מכיוון שמפתחים סביב $x_{0}=1$, אנחנו נצטרך לקבל מכיוון שמפתחים סביב
 - $: \frac{2x+3}{x+1}$ נבחן את הביטוי •

$$\frac{2x+3}{x+1} = \frac{2x+3}{2+x-1}$$

:כדי לקבל כדי $\frac{1}{2}(2x+3)$ כדי לקבל –

$$= \frac{1}{2} (2x+3) \cdot \frac{1}{1 + \left(\frac{x-1}{2}\right)}$$

 $rac{1}{1+\left(rac{x-1}{2}
ight)}$ לטור: *

$$= \frac{2x+3}{2} \cdot \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{2}\right)^n$$

(x-1) נרצה להוציא (x-1) החוצה ולכן נכתוב *

$$= \frac{2(x-1)+5}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} (x-1^n)$$

:7 תרגיל

 $f\left(x\right)=\sum_{n=1}^{\infty}n^{2}x^{n+1}$: מצאו פונקציה מקיימת $f\left(x\right)$ המקיימת

- $\sum_{n=0}^{\infty} x^n = rac{1}{1-x}$ עתחיל מכך ש
 - נגזור את הביטוי ונקבל:

$$\sum_{n=0}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

. כדי לקבל כדי xכנול את כל שני צדדי המשוואה בx

$$\sum_{n=0}^{\infty} nx^n = \frac{x}{\left(1-x\right)^2}$$

- נגזור שוב ונקבל:

$$\sum_{n=0}^{\infty} n^2 x^{n-1} = \frac{1+x}{(1-x)^3}$$

: נכפול את שני צדדי המשוואה ב x^2 כדי לקבל \star

$$\sum_{n=0}^{\infty} n^2 x^{n+1} = \frac{(1+x) x^2}{(1-x)^3}$$

:8 תרגיל

:מצאו את הסכום הבא

$$\frac{1}{1 \cdot 2 \cdot 2^2} - \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1}{3 \cdot 4 \cdot 2^4} - \frac{1}{4 \cdot 5 \cdot 2^5} + \dots$$

פתרון:

• ראשית ננסח איבר כללי לביטוי:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot (n+1) \cdot 2^{n+1}}$$

- נסיט את האינדקסים כדי שיתחילו מאפס:

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1) \cdot (n+2) \cdot 2^{n+2}}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1) \cdot (n+2)} \frac{1}{2^{n+2}}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1) \cdot (n+2)} \cdot \left(\frac{1}{2}\right)^{n+2}$$

• נתבונן בטור החזקות הבא:

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(n+2)} x^{n+2}$$

הרצויה: התשובה התשובה לליח למצוא את נוכל לחשב את נוכל לחשב אז נוכל $f\left(x\right)$ אז את למצוא אם ב

. עייך של האם ההתכנסות שייך $x=\frac{1}{2}$ האם נבדוק •

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
$$= \lim_{n \to \infty} \left| \frac{(n+1)(n+3)}{(n+1)(n+2)} \right| = 1$$

. ממצא בתחום ההתכנסות נמצא ב $\frac{1}{2}$ כי מתקיים (-1,1), מתקיים ההתכנסות שתחום ההתכנסות –

• בתרגיל הקודם ראינו ש:

$$ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \cdot x^{n+1}$$

- נשים לב שהביטוי אצלנו מזכיר אינטגרל של הביטוי מהתרגיל הקודם.

:בצע "אינטגרציה איבר איבר" ונקבל

$$\int_{0}^{x} \ln(1+t) dt = \int_{0}^{x} \sum_{n=0}^{\infty} \left(\frac{(-1)^{n}}{n+1} \cdot t^{n+1}\right) dt$$

$$= \sum_{n=0}^{\infty} \int_{0}^{x} \left(\frac{(-1)^{n}}{n+1} \cdot t^{n+1}\right) dt$$

$$= \sum_{n=0}^{\infty} \left(\frac{(-1)^{n}}{n+1} \cdot \int_{0}^{x} t^{n+1} dt\right)$$

$$= \sum_{n=0}^{\infty} \left(\frac{(-1)^{n}}{n+1} \cdot \frac{x^{n+2}}{n+2}\right)$$

- כלומר קיבלנו ש:

$$\int_{0}^{x} \ln(1+t) dt = \sum_{n=0}^{\infty} \left(\frac{(-1)^{n}}{n+1} \cdot \frac{x^{n+2}}{n+2} \right)$$

ln של אינטגרציה האינטגרל מנת למצוא את בחלקים על tn

$$u = ln (1+t), \ u' = \frac{1}{1+t}$$

$$v = t + 1 \ v' = 1$$

$$f(x) = \int_{0}^{x} \ln(1+t) dt = (1+t) \cdot \ln(1+t) \Big|_{0}^{x} - \int_{0}^{x} \frac{1+t}{1+t} dt$$
$$= (1+x) \cdot \ln(1+x) - x$$

$$f(x) = (1+x) \cdot ln(1+x) - x$$
 כלומר –

: ובפרט מתקיים

$$f\left(\frac{1}{2}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(n+2)2^{n+2}} = \frac{3}{2} ln\left(\frac{3}{2}\right) - \frac{1}{2}$$

:9 תרגיל

חשבו את האינטגרל:

$$\int_{0}^{1} x^{-x} dx$$

פתרון:

 $e^{g(x)}$ ראשית נרצה להגיע לביטוי מהצורה •

$$x^{-x} = e^{\ln(x^{-x})} = e^{-x \cdot \ln(x)}$$

: מתקיים שלכל $t \in \mathbb{R}$ מתקיים

$$e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}$$

- ולכן ניתן לכתוב:

$$\int_{0}^{1} x^{-x} dx = \int_{0}^{1} e^{-x \cdot \ln(x)} dx$$

$$= \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-x \cdot \ln(x))^{n}}{n!} dx$$

$$= \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \cdot \ln^{n}(x) dx$$

א הטור פונקציות ולא טור חזקות, ולכן לפני שנוכל להחליף סדר סכימה ואינטגרציה, נצטרך לבדוק התכנסות במ"ש של הטור * $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n \cdot ln^n\left(x\right)$

 $f\left(x
ight)=\sum f_{n}\left(x
ight)$ נגדיר את הפונקציה הגבולית י

$$f(x) = \begin{cases} 0 & , x = 0\\ \frac{(-1)^n}{n!} x^n \cdot ln^n(x) & , x \neq 0 \end{cases}$$

 \cdot נבחן את הגבול ליד \cdot

$$\lim_{x \to 0^{+}} x \cdot \ln(x) = \lim_{x \to 0^{+}} \frac{\ln(x)}{\frac{1}{x}}$$

: לפי לופיטל " $\frac{0}{0}$ " מתקיים

$$=\lim_{n\to\infty}\frac{\frac{1}{x}}{-\frac{1}{x^2}}=0$$

- $\left[0,1\right]$ רציפה בקטע $x\cdot ln\left(x
 ight)$ יולכן י
- ולכן איז חסומה על ידי חסומה היאה, נסמן היאה, נסמן הסגור בקטע הסגור ידי ולכן היא חסומה בקטע הסגור ידי ו

$$|x \cdot ln(x)| < M$$

$$|x^n \cdot ln^n(x)| < M^n$$

: כעת מתקיים

$$\left| \frac{\left(-1\right)^n}{n!} x^n \cdot ln^n \left(x\right) \right| < \frac{M^n}{n!}$$

- מתכנס לפי מבחן המנה $\frac{M^n}{n!}$ הטור \star
- $\left[0,1
 ight]$ מתכנס במ"ש ובהחלט בתחום במ"ט יולכן י
- : מכיוון שהאינטגרל מתכנס במ"ש ב[0,1], ניתן לבצע החלפה של סדר הסכימה והאינטגרציה •

$$\int_{0}^{1} \left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \cdot \ln^{n} (x) \right) dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \left(\int_{0}^{1} x^{n} \cdot \ln^{n} (x) dx \right)$$

: כאשר, $\int_{0}^{1}x^{n}\cdot ln^{n}\left(x\right) dx$ כאשר בחלקים אינטגרציה בחלקים -

$$u = ln^{n}(x), \ u' = \frac{1}{x} \cdot n \cdot ln^{n-1}(x)$$

$$v = \frac{x^{n+1}}{n+1} \ v' = x^n,$$

* ונקבל:

$$\int_{0}^{1} x^{n} \cdot \ln^{n}(x) \, dx = \ln^{n}(x) \cdot \frac{x^{n+1}}{n+1} \Big|_{0}^{1} - \int_{0}^{1} x^{n} \ln^{n-1}(x) \, dx$$

: נבצע שוב אינטגרציה בחלקים

$$u = ln^{n-1}(x), \ u' = (n-1) ln^{n-2}(x) \cdot \frac{1}{x}$$

$$v = \frac{x^{n+1}}{n+1}, \ v' = x^n$$

$$(-1)^{1} \frac{n}{n+1} \int_{0}^{1} x^{n} ln^{n-1}(x) dx = (-1)^{2} \frac{n}{(n+1)^{2}} x^{n+1} ln^{n-1}(x) \Big|_{0}^{1} + \frac{(-1)^{2} n \cdot (n-1)}{(n+1)^{2}} \int_{0}^{1} x^{n} ln^{n-2}(x) dx$$

נקבל: n נקבל שלב נקבל שלב אואף לאפס, אם נמשיך כך באינדוקציה על $u \cdot v$ נקבל מכיוון שבכל שלב נקבל

$$= \frac{(-1)^n n!}{(n+1)^n} \cdot \int_0^1 x^n dx$$
$$= \frac{(-1)^n n!}{(n+1)^{n+1}}$$

• ולכן מתקיים:

$$\int_{0}^{1} x^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{(-1)^{n} n!}{(n+1)^{n+1}}$$
$$= \frac{1}{1^{1}} + \frac{1}{2^{2}} + \frac{1}{3^{3}} + \dots$$

נושא שני - פונקציות בשני משתנים:

הגדרה 1. גבול:

$$p_0 \in \mathbb{R}^n$$
 ויהי $f: \mathbb{R}^n o \mathbb{R}$.

$$|f\left(p
ight)-L| מתקיים $0<\left|\widehat{p-p_0}
ight|<\delta$ המקיים $\delta>0$ כך שלכל $\delta>0$ המקיים $\delta>0$ מתקיים $\delta>0$ מתקיים $\delta>0$ מתקיים $\delta>0$$$

הגדרה 2. רציפות.

$$C\subset\mathbb{R}^2$$
 יהי •

$$f:C o \mathbb{R}^2$$
 תהי $f:C o \mathbb{R}^2$

- $.(x,y)\in C$ יהיullet

דוגמה 3.

• תהי פונקציה:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & , (x,y) \neq 0 \\ 0 & , (x,y) = 0 \end{cases}$$

- $C = \left\{ (x,y) \in \mathbb{R}^2 \mid xy = 0
 ight\}$ עבור –
- (C בירוש הביטוי $f|_C$ הוא שf מצומצמת אך ורק לתחום $f|_C$ רציפה. (פירוש הביטוי $f|_C$ רציפה).
 - . אינה רציפה $f:\mathbb{R}^2 o \mathbb{R}$ אינה רציפה

א. פתרון:

- ניקח נקודה אחרת בקבוצה ונבדוק מה קורה אם מקרבים את שתי הנקודות זו לזו.
 - $f\left(z,w
 ight)=0$ מתקיים $\left(z,w
 ight)\in C$ לכל
 - : מתקיים $(z,w)\in C$ אולכן לכל

$$|f(z,w) - f(x,y)| = 0$$

: מתקיים $\delta>0$ ולכל $\varepsilon>0$ מתקיים –

$$|f(z, w) - f(x, y)| < \varepsilon$$