

	$\sigma_{0}^{#1}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}\dagger$	0	0
$\sigma_0^{\sharp 1}$ †	0	$\frac{1}{k^2 r_2}$

	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}\alpha\beta}^{\#2}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{1}{k^2(2r_3+r_5)}$	0	0	0
$\sigma_{1}^{\#2}\dagger^{\alpha\beta}$	0	0	0	0
$\sigma_1^{\sharp 1} \dagger^{lpha}$	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0
$\sigma_{1}^{#2} \dagger^{\alpha}$	0	0	0	0

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2^+}^{\sharp 1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0
$\omega^{\#1} + \alpha \beta \chi$	0	0

 $\sigma_{2}^{\#1}{}_{\alpha\beta}$ $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

0

0

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1}^{#2}$ α
$\omega_{1}^{\sharp 1}$ † lphaeta	$k^2 (2 r_3 + r_5)$	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	0

Source constraints		
SO(3) irreps #		
$\sigma_{0^{+}}^{\#1} == 0$	1	
$\sigma_1^{\#2\alpha} == 0$	3	
$\sigma_{1+}^{\#2\alpha\beta} == 0$	3	
$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	5	
Total #:	12	

Quadratic pole		
Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)} > 0$	
Polarisations:	2	

(No massive particles)

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$