Biostatistics

Applications in Genetics, Genomics, and other 'omics data

Syllabus

1. General review

- a. What is Biostatistics?
- b. Population/Sample/Sample size
- c. Type of Data quantitative and qualitative variables
- d. Common probability distributions
- e. Work example Malaria in Tanzania

2. Applications in Medicine

- a. Construction and analysis of diagnostic tools Binomial distribution, sensitivity, specificity, ROC curve, Rogal-Gladen estimator
- b. Estimation of treatment effects generalized linear models
- c. Survival analysis Kaplan-Meier curve, log-rank test, Cox's proportional hazards model

3. Applications in Genetics, Genomics, and other 'omics data

- a. Genetic association studies Hardy-Weinberg test, homozygosity, minor allele frequencies, additive model, multiple testing correction
- b. Methylation association studies M versus beta values, estimation of biological age
- c. Gene expression studies based on RNA-seq experiments Tests based on Poisson and Negative-Binomial

4. Other Topics

- a. Estimation of Species diversity Diversity indexes, Poisson mixture models
- b. Serological analysis Gaussian (skew-normal) mixture models
- c. Advanced sample size and power calculations

Species Biodiversity

Microbial diversity

B/T-cell diversity

Species richness

The number of different species present in a given population

Species diversity

The number of different species and their abundance present in a given population

Main research question

How many species existing based on the information from a sample?

Formulation of the problem

Data

Species	Abundance
Species_1	n ₁
Species_2	n ₂
Species_3	n ₃
Species_k	n _k

$$n =$$
sample size

$$n = \sum_{i=1}^{k} n_i$$

n is the hypothetical maximum species richness due to sampling

 n_i = frequency of individuals (abundance) from species i

k = number of different species represented in the sample

K = unknown number of different species in the population

$$\hat{K} = ?$$

Formulation of the problem

Summarising the Data

Abundance	Number of Species
1	m_1
2	m ₂
3	m ₃
<u> </u>	m _l

$$n =$$
sample size

$$n = \sum_{i=1}^{k} i \times m_i$$

 m_i = frequency of species with abundance i

k = number of different species represented in the sample

Species-abundance distribution

Example

TABLE 1
Distribution of lepidoptera caught in a light trap at rothamsted in 1934

Individuals	Number of	Expected			
per Species (r)	species (n _r)	Logarithmic	Grouped lognormal	Poisson lognorma	
1	34	39.0	32.7	31.2	
2	19	19.3	20+5	20.8	
3	15	12.7	14.6	15.0	
4	10	9.4	11.2	11.5	
5	10	7.4	8.9	9.1	
6-7	9	11.3	13.4	13,7	
8-10	17	12.0	13.7	13.9	
11-14	9	11.0	12.0	12.1	
15-20	14	11.2	11.3	11.3	
21-28	10	9.8	9.1	9.0	
29-39	6	8.7	7.4	7.3	
40-55	7	7.8	6.1	6.0	
56-77	3	6.2	4.6	4.5	
78-108	5	4.6	3.4	3.4	
109-151	5 4	2.8	2.4	2.4	
152-	4	2.9	4.5	4.7	
Total	176	176.1	175.8	175.9	
x ²		9.2	6.9	7.4	
Degrees of freedom		14	13	13	

Simpson's Diversity index

$$D_s = 1 - \frac{\sum_{i=1}^k n_i(n_i - 1)}{n(n-1)} = 1 - \frac{\sum_{i=1}^l m_i i(i-1)}{n(n-1)}$$

The probability that two individuals taken at random from the sample (with replacement) are from the same species

 $D_s = 0 \Rightarrow$ Individuals are from the same species $(k = 1, n_1 = n)$

 $\overline{D_s = 1} \Rightarrow$ Every individual is from a different species $(n_i = 1, \forall_i)$

Shannon's Diversity index

$$H = -\sum_{i=1}^{k} p_i \log p_i \qquad \text{where } p_i = n_i/n$$

It quantifies the uncertainty associated with the species prediction when one takes an individual from the sample randomly

Maximal entropy
$$n_i = 1, \forall_i \Rightarrow H_{\text{max}} = \log n$$

Exercise: Data_lecture_13_TCR_diversity.csv

Calculate the Simpson's and Shannon's diversity indexes for the species abundance distribution of DP CD3low

	Thymus		Lymph	nodes	
i	DP CD3low	SP CD4 ⁺	SP CD8 ⁺	LN CD4 ⁺	LN CD8 ⁺
1	79	33	16	34	17
2	17	6	3	8	8
3	6	2	3	2	1
4	5	2	5	1	2
5	1	0	3	0	1
6	1	0	1	0	0
7	1	0	1	0	0
8		0	1	1	0
10		1	0	1	0
11		0	1	0	0
16		1		0	0
20		0		1	0
21		0			1
28		1			0
52					1

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
••••	
_	mĮ
>	0

Augmented Species-abundance distribution

If this is a contingency table, what is a possible sampling model?

Abundance	Number of Species
0	D-k
1	m ₁
2	m ₂
3	m ₃
	m _l
>	0

Multinomial distribution

$$f(\{m_i\} | D, \{\theta_i\}) = \frac{D!}{(D-k)!m_1!\cdots m_l!} \theta_0^{D-M} \prod_{i=1}^k \theta_i^{m_i}$$

 θ_i = probability of sampling i individuals from a given species

Unknown parameters $D, \theta_i, i = 0, 1, \dots, l$

Is it possible to estimate this model?

Augmented Species-Abundance distribution

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
I	m _l
>	0

Modelling θ_i

$$\theta_i = P[X = i \,|\, \lambda]$$

$$X \mid \lambda \rightsquigarrow \mathsf{Poisson}(\lambda)$$

$$\theta_i = \frac{e^{-\lambda}\lambda^i}{i!}$$

$$f(\{m_i\} | D, \{\theta_i\}) = \frac{D!}{(D-k)!m_1!\cdots m_l!} e^{-\lambda(D-M)} \prod_{i=1}^k \frac{e^{-\lambda m_i \lambda^{im_i}}}{i!}$$

How can we estimate this model?

Augmented Species-Abundance distribution

D is an integer parameter while λ is a positive continuous parameter

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
_	m _l

First solution (truncated Poisson)

$$k \mid D, \theta_0 \rightsquigarrow \text{Binomial}(D, 1 - \theta_0)$$

$$f(\lbrace m_i \rbrace | k, \lbrace \theta_i \rbrace) = \frac{k!}{m_1! \cdots m_l!} \prod_{i=1}^k \left(\frac{\theta_i}{1 - \theta_0} \right)^{m_i}$$

- 1. Estimate a Poisson truncated at zero using raw data only
- 2. Estimate D from the binomial using $\hat{D} = \frac{k}{1 \hat{\theta}_0}$

$$\hat{\theta}_0 = e^{-\hat{\lambda}}$$

Exercise: Data_lecture_13_TCR_diversity.csv

Estimate the species richness D for the DP CD3low cells using the first solution. Use vglm from package VGAM to estimate the truncated Poisson model.

	Thymus		Lymph	nodes	
i	DP CD3low	SP CD4 ⁺	SP CD8 ⁺	LN CD4 ⁺	LN CD8 ⁺
1	79	33	16	34	17
2	17	6	3	8	8
3	6	2	3	2	1
4	5	2	5	1	2
5	1	0	3	0	1
6	1	0	1	0	0
7	1	0	1	0	0
8		0	1	1	0
10		1	0	1	0
11		0	1	0	0
16		1		0	0
20		0		1	0
21		0			1
28		1			0
52					1

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
Ī	m _l

Augmented Species-Abundance distribution

Second solution (profile likelihood)

$$f(\{m_i\} | D, \{\theta_i\}) = \frac{D!}{(D-k)!m_1!\cdots m_l!} \theta_0^{D-M} \prod_{i=1}^k \theta_i^{m_i}$$

- 1. Fix \hat{D} =k
- 2. Estimate the parameter of the Poisson distribution via maximum likelihood and calculate the respective maximized log-likelihood. (What is the MLE of λ ?
- 3. Do $\hat{D}+1$ in one unit and repeat previous step
- 4. Keep incrementing if the maximised log-likelihood is increasing
- 5. The estimate of D is the value immediately before when the maximized log-likelihood starts decreasing

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
Ī	m _l

Augmented Species-Abundance distribution

Second solution (profile likelihood)

$$f(\{m_i\} | D, \{\theta_i\}) = \frac{D!}{(D-k)!m_1!\cdots m_l!} \theta_0^{D-M} \prod_{i=1}^k \theta_i^{m_i}$$

- 1. Fix \hat{D} =k
- 2. Estimate the parameter of the Poisson distribution via maximum likelihood and calculate the respective maximized log-likelihood. (What is the MLE of λ ?
- 3. Do $\hat{D}+1$ in one unit and repeat previous step
- 4. Keep incrementing if the maximised log-likelihood is increasing
- 5. The estimate of D is the value immediately before when the maximized log-likelihood starts decreasing

Exercise: Data_lecture_13_TCR_diversity.csv

Estimate the species richness D for the DP CD3low cells using the second solution.

	Thymus		Lymph	nodes	
i	DP CD3low	SP CD4 ⁺	SP CD8 ⁺	LN CD4 ⁺	LN CD8 ⁺
1	79	33	16	34	17
2	17	6	3	8	8
3	6	2	3	2	1
4	5	2	5	1	2
5	1	0	3	0	1
6	1	0	1	0	0
7	1	0	1	0	0
8		0	1	1	0
10		1	0	1	0
11		0	1	0	0
16		1		0	0
20		0		1	0
21		0			1
28		1			0
52					1

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
l	m _l

Calculation of a 95% confidence interval using the profile likelihood

Use the critical value of the Wilks's ratio test

$$H_0: D = D_0 \text{ versus } H_1: D \neq D_0$$

$$\Lambda = -2(\log L_{D_0} - \log L_{\hat{D}}) | H_0 \rightsquigarrow \chi_{(1)}^2$$

critical value =
$$q_{95\%,\chi^2_{(1)}}$$

accept
$$H_0$$
 if $\Lambda < q_{95\%,\chi^2_{(1)}}$

Abundance	Number of Species
0	D-k
1	m ₁
2	m ₂
3	m ₃
••••	
	m _l

Augmented Species-Abundance distribution

Calculation of a 95% confidence interval using the profile likelihood

Use the critical value of the Wilks's ratio test

$$q_{95\%,\chi_{(1)}^2} = -2(\log L_{D_0} - \log L_{\hat{D}})$$

$$(\hat{D}_{lower}; \hat{D}_{upper})$$

 \hat{D}_{lower} and \hat{D}_{upper} are the solutions of the above question

Abundance	Number of Species
1	m_1
2	m ₂
3	m ₃
I	m _l
>	0

Pearson's goodness of fit test to check whether the model fits the data well

Use only the observed data

$$f(\{m_i\} | k, \{\theta_i\}) = \frac{k!}{m_1! \cdots m_l!} \prod_{i=1}^k \left(\frac{\theta_i}{1 - \theta_0}\right)^{m_i}$$

$$\hat{\theta}_i = \frac{e^{-\hat{\lambda}} \hat{\lambda}^i}{i!}$$

Augmented Species-Abundance distribution

Exercise: Data_lecture_13_TCR_diversity.csv

Calculate the confidence interval for the species richness D for the DP CD3low cells using the profile likelihood plot. Check whether the Poisson model fits the data well using the Pearson's goodness of fit test.

	Thymus			Lymph nodes	
i	DP CD3low	SP CD4 ⁺	SP CD8 ⁺	LN CD4 ⁺	LN CD8 ⁺
1	79	33	16	34	17
2	17	6	3	8	8
3	6	2	3	2	1
4	5	2	5	1	2
5	1	0	3	0	1
6	1	0	1	0	0
7	1	0	1	0	0
8		0	1	1	0
10		1	0	1	0
11		0	1	0	0
16		1		0	0
20		0		1	0
21		0			1
28		1			0
52					1

Poisson-Gamma mixture model for estimating diversity richness

Abundance	Number of Species
0	D-k
1	m_1
2	m ₂
3	m ₃
I	m _l

Modelling θ_i

$$\theta_i = P[X = i \mid \lambda]$$

$$X \mid \lambda \rightsquigarrow \mathsf{Poisson}(\lambda)$$

$$X \mid \lambda \rightsquigarrow \mathsf{Poisson}(\lambda)$$
 $\lambda \mid \alpha, \beta \rightsquigarrow \mathsf{Gamma}(\alpha, \beta)$

$$P[X = x] = \int_0^\infty P[X = x \,|\, \lambda] P[\lambda] d\lambda = \int_0^\infty \frac{e^{\lambda} \lambda^x}{x!} \times \frac{\beta^{\alpha} \lambda^{\alpha - 1} e^{\beta \lambda}}{\Gamma(\alpha)} d\lambda$$

$$= \frac{\Gamma(i+\alpha)}{\Gamma(i+1)\Gamma(\alpha)} \left(\frac{\beta}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{i}$$

Augmented Species-Abundance distribution

Negative Binomial

Abundance	Number of Species
0	D-k
1	m ₁
2	m ₂
3	m ₃
••••	
_	m _l

First solution (truncated Negative Binomial)

$$k \mid D, \theta_0 \rightsquigarrow Binomial(D, 1 - \theta_0)$$

$$f(\lbrace m_i \rbrace | k, \lbrace \theta_i \rbrace) = \frac{k!}{m_1! \cdots m_l!} \prod_{i=1}^k \left(\frac{\theta_i}{1 - \theta_0} \right)^{m_i}$$

- 1. Estimate a Poisson truncated at zero using raw data only
- 2. Estimate D from the binomial using $\hat{D} = \frac{k}{1 \hat{\theta}_0}$

Augmented Species-Abundance distribution

$$\hat{\theta}_0 = e^{-\hat{\lambda}}$$

Abundance	Number of Species
0	D-k
1	m ₁
2	m ₂
3	m ₃
I	m _l

Augmented Species-Abundance distribution

Second solution (profile likelihood)

$$f(\{m_i\} | D, \{\theta_i\}) = \frac{D!}{(D-k)!m_1!\cdots m_l!} \theta_0^{D-M} \prod_{i=1}^k \theta_i^{m_i}$$

- 1. Fix \hat{D} =k
- 2. Estimate the parameters of the Negative distribution via maximum likelihood and calculate the respective maximized log-likelihood. (What is the MLE of λ ?
- 3. Do $\hat{D}+1$ in one unit and repeat previous step
- 4. Keep incrementing if the maximised log-likelihood is increasing
- 5. The estimate of D is the value immediately before when the maximized log-likelihood starts decreasing

Exercise: Data_lecture_13_TCR_diversity.csv

Estimate the species richness D for the DP CD3low cells using the Negative Binomial distribution. Estimate via the second solution.

	Thymus			Lymph	nodes
i	DP CD3low	SP CD4 ⁺	SP CD8 ⁺	LN CD4 ⁺	LN CD8 ⁺
1	79	33	16	34	17
2	17	6	3	8	8
3	6	2	3	2	1
4	5	2	5	1	2
5	1	0	3	0	1
6	1	0	1	0	0
7	1	0	1	0	0
8		0	1	1	0
10		1	0	1	0
11		0	1	0	0
16	1			0	0
20	0			1	0
21	0				1
28	1			0	
52					1