Geneva Graduate Institute (IHEID) Econometrics I (EI035), Fall 2024 Marko Mlikota

Final Exam

Tuesday, 10 December

- You have 1h 30min.
- There are 42 points in total.
- Prepare concise answers.
- Write your answers on separate sheets, not on the exam copy.
- State clearly any additional assumptions, if needed.
- For full credit, you need to explain your answers.

Problem 1 (42 points)

Suppose you observe a sample of n unemployed inviduals. Let y_i denote the time (in weeks) that individual i spent in unemployment, and let $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$ be the average unemployment span in your sample. You can assume that your observations are independent.

One can model y_i using an expontential distribution:

$$p(y_i|\lambda) = \lambda exp\{-\lambda y_i\}$$
 , $\lambda > 0$.

The parameter λ is the job-finding rate. It tells you how many (acceptable) job offers per week an individual gets. For example, $\lambda = 3$ would tell you that (on average) an individual receives three offers every week, while $\lambda = 1/2$ would tell you that (on average), an individual receives an offer every two weeks. For now, we assume that this λ is the same for all individuals in the sample.

(a) (4 points) The mean and variance of y_i are given by

$$\mathbb{E}[y_i] = \frac{1}{\lambda}$$
 and $\mathbb{V}[y_i] = \frac{1}{\lambda^2}$.

Interpret these expressions, relying on the two examples $\lambda = 3$ and $\lambda = 1/2$.

(b) (3 points) Derive the log-likelihood $\ell(\lambda|Y)$ and find the Maximum Likelihood (ML) estimator

$$\hat{\lambda} \equiv \arg \max_{\lambda} \ell(\lambda|Y) \ .$$

- (c) (3 points) What is the probability limit of the average unemployment span in your sample, \bar{y} ? Based on that result, is $\hat{\lambda}$ consistent?
- (d) (4 points) What is the approximate distribution of \bar{y} for large n? Based on that result, what is the approximate distribution of $\hat{\lambda}$ for large n?
- (e) (3 points) Describe another, numerical approach to approximate the distribution of $\hat{\lambda}$.

Problem 1 Continued

Now let's make the job-finding rate heterogeneous. Specifically, suppose x_i denotes the number of applications per week that individual i sent out, and let

$$\lambda_i = \exp\left\{\alpha + \beta x_i\right\} .$$

Note that this implies that

$$\mathbb{E}[y_i|x_i] = \frac{1}{\lambda_i} = \exp\{-(\alpha + \beta x_i)\} \quad \text{and} \quad \mathbb{V}[y_i|x_i] = \frac{1}{\lambda_i^2} = \exp\{-2(\alpha + \beta x_i)\} . \tag{1}$$

For simplicity, let's suppose you know α (so it's just a constant) and you only need to estimate β . The ML estimator can be defined as

$$\hat{\beta} = \arg\min_{\beta} Q_n(\beta) , \quad Q_n(\beta) = \frac{1}{n} \sum_{i=1}^n -(\alpha + \beta x_i) + y_i \exp\{\alpha + \beta x_i\} .$$

- (f) (5 points) How do you interpret the parameters α and β ?
- (g) (4 points) How can you find $\hat{\beta}$? Derive the first-order condition associated with the above optimization problem.
- (h) (6 points) Is $\hat{\beta}$ a consistent estimator for β_0 , the true value for β ? Hint: Note that $\mathbb{E}[y_i|x_i] = \exp\{-(\alpha + \beta_0 x_i)\}$, and remember the Law of Iterated Expectations (LIE). Also, note that $x_i \geq 0$ and a function like $\mathbb{E}[x_i \exp\{x_i\beta\}]$ is strictly increasing in β .
- (i) (6 points) Show that the asymptotic distribution of $\hat{\beta}$ is given by

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\to} N\left(0, \mathbb{E}[x_i^2]^{-1}\right)$$
.

Hint: To simplify notation, write λ_{i0} for $exp\{\alpha + \beta_0 x_i\}$. Also, your formula for the asymptotic variance simplifies thanks to the LIE and the results in Eq. (1).

(j) (4 points) Construct a hypothesis test with size $\alpha = 0.05$ for testing

$$\mathcal{H}_0: \mathbb{E}[y_i|x_i=10] = \frac{1}{2}\mathbb{E}[y_i|x_i=5] \quad \text{vs.} \quad \mathcal{H}_0: \mathbb{E}[y_i|x_i=10] \neq \frac{1}{2}\mathbb{E}[y_i|x_i=5] ,$$

i.e. testing whether an individual submitting 10 applications per week spends (in expectation) exactly half as long in unemployment than a person sending out only 5 applications per week. More concretely, definining the test as $\varphi = \mathbf{1}\{T(X) < c_{\alpha}\}$, define the test-statistic T(X) and find the critical value c_{α} .

¹Strictly speaking, this holds provided that $\mathbb{E}[x_i] > 0$.