IP

Lecture 11: Operating Systems and Networks Behzad Bordbar

recap

□ processes communicating same machine: shared object and pipe
☐ Need network to communicate across machines
☐Different type of network
☐ Modes of transmission (circuit switching and packet switching)
□ protocols: (<u>well-known</u> set of <u>rules and formats</u> to be used for communication between processes to perform a <u>given task</u>)
☐OSI view [most layers interacting with layer below or above]

Contents

- □ Datagram
- ☐ Routing protocol RIP1
- □other IP protocols
- □ping traceroute....

IP

☐ TP: transmission mechanism used by TCP and UDP
uses other protocols ARP, RARP, ICMP
Best effort delivery (post office in Romeo): Unreliable and connectionless protocol
☐ No error checking or tracking
☐ Datagrams can be lost for various reasons
noise converting a 0 to 1
Congested router might drop packages
loop because of bad networking and datagram times out
□ broken link
☐ IP must be paired with another protocol to become reliable

Datagram

□packets in IP: two parts Header and data
Header (20-60 bytes)
□version (4bits) IPv4
☐HLEN: Header Length (4bits) (015 multiple of 4)
service type (8bits)(priority, throughput, delay
□Total length (16bits) 65535 bytes
_
☐Time to live (8bits) how many hops can go
□protocol (8bits)

Datagram

☐ Header checksum (16 bits) ☐ Source IP address □ Destination IP address Body How can I see the packets? At home... not here!!!! tcpdump or wireshark (windump on windows) observe mac addresses ...

Routing

Necessary in non-broadcast networks (cf Internet)
Next we look at a simple routing algorithm which IP is base on called Distance-vector algorithm
ach nodestores table of state
cost info of links,
☐ cost infinity for faulty links
determines route taken by packet (the next hop)
periodically updates the table and sends to neighbours
☐ Theoretical foundation [Bellman-Ford]
Internet similar except
use default routes, plus multicast and authentication
□better convergence

Routing example

Routing tables

Routings from A		
То	Link	Cost
Α	local	0
В	1	1
C	1	2
D	3	1
<u>E</u>	1	2

Routings from B			
То	Link	Cost	
Α	1	1	
В	local	0	
C	2	1	
D	1	2	
<u> </u>	4	1	

Routings from C			
То	Link	Cost	
Α	2	2	
В	2	1	
С	local	0	
D	5	2	
Ε	5	1	

Routings from D			
То	Link	Cost	
Α	3	1	
В	3	2	
С	6	2	
D	local	0	
<u>E</u>	6	1	

Routings from E		
То	Link	Cost
A	4	2
В	4	1
С	5	1
D	6	1
E	local	0

RIP routing algorithm

Update: Each 30 seconds or when local table changes, send update on each non-faulty outgoing link.

Propagation: When router X finds that router Y has a shorter and faster path to router Z, then it will update its local table to indicate this fact. Any faster path is quickly propagated to neighbouring rotes through the **Update** process.

Shown to converge by mathematicians (Bertsekas). See next slide for details.

RIP routing algorithm

```
Variables: TI local table, Tr table received.
Send: Each t seconds or when TI changes, send TI on each non-faulty
outgoing link.
Receive: Whenever a routing table Tr is received on link n:
    for all rows Rr in Tr {
         if (Rr.link != n) {
              Rr.cost = Rr.cost + 1;
              Rr.link = n;
              if (Rr.destination is not in TI) add Rr to TI;
              // add new destination to TI
              else for all rows RI in TI {
                   if (Rr.destination = Rl.destination and
                             (Rr.cost < Rl.cost \text{ or } Rl.link = n)) Rl = Rr;
                   // Rr.cost < Rl.cost : remote node has better route
                   // RI.link = n : remote node is more authoritative
```

Lecture 03

35

Sample routes

- •Send from C to A:
 - to link 2, arrive at B
 - to link 1, arrive at A
- •Send from C to A if B table
- modified to:
 - to link 5, arrive at E
 - to link 4, arrive at B
 - to link 1, arrive at A
- NB extra hop.

Rot	utings fro	m C	
То	Link	Cost	
В	2	1	
С	local	0	
Ε	5	1	
defa	ult 5	-	

other protocols that IP uses

☐ Address Resolution Protocol (ARP) associates an IP address with the physical address ☐ what is the ip address of www.cs.bham.ac.uk ☐ host makes an arp packet broadcast to everybody... all ignore except the host that ip belongs to \$arp www... you can use tcpdump to see the arp packets ☐ Reverse Address Resolution protocol (RARP) the other way

other protocols that IP uses

☐ Internet Control Message Protocol (ICMP) mechanism to send (by host and routers) send notification about the datagram back to sender. ... similar to postcard by julliet.

Exercise:

- ☐ learn about IP addresses and Mask
- ping
- ☐ traceroute