

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
4 March 2004 (04.03.2004)

PCT

(10) International Publication Number
WO 2004/018397 A1

(51) International Patent Classification⁷: C07C 17/20,
17/21, 17/23, 19/10, 21/18, B01J 23/86

(74) Agent: HEISER, David, E.; E.I. Du Pont De Nemours and Company, 4417 Lancaster Pike, Wilmington, DE 19805 (US).

(21) International Application Number:

PCT/US2003/026331

(22) International Filing Date: 21 August 2003 (21.08.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/405,222 22 August 2002 (22.08.2002) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NAPPA, Mario, J. [US/US]; 3 Oakridge Court, Newark, DE 19711 (US). RAO, Vellyur, Nott, Mallikarjuna [US/US]; 1 Georgetown Avenue, Wilmington, DE 19809 (US). ROSENFELD, H., David [US/US]; 1927 Susquehannock Drive, Drumore, PA 17518 (US). SUBRAMONEY, Shekhar [IN/US]; 425 Stella Drive, Hockessin, DE 19707 (US). SUBRAMANIAN, Munirpallam, A. [US/US]; 20 Pratt Lane, Kennett Square, PA 19348 (US). SIEVERT, Allen, C. [US/US]; 215 Rhett Lane, Elkton, MD 21921 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/018397 A1

(54) Title: PROCESSES FOR THE PREPARATION OF 2-CHLORO-1,1,1,2,3,3,3-HEPTAFLUOROPROPANE, HEXAFLUOROPROPENE AND 1,1,1,2,3,3,3-HEPTAFLUOROPROPANE

(57) **Abstract.** A process for the preparation of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane is disclosed which involves (a) contacting a mixture comprising hydrogen fluoride, chlorine, and at least one starting material selected from the group consisting of halopropanes of the formula $\text{CX}_3\text{CCl}=\text{CX}_2$ and halopropanes of the formula the $\text{CX}_3\text{CCIYCX}_3$, wherein each X is independently F or Cl, and Y is H, Cl or F (provided that the number of X and Y which are F totals no more than six) with a chlorofluorination catalyst in a reaction zone to produce a product mixture comprising $\text{CF}_3\text{CClFCF}_3$, HCl, HF, and underfluorinated halogenated hydrocarbon intermediates. The process is characterized by said chlorofluorination catalyst comprising at least one chromium-containing component selected from (i) a crystalline alpha-chromium oxide where at least 0.05 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by nickel, trivalent cobalt or both nickel and trivalent cobalt, provided that no more than 2 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by nickel and that the total amount of chromium atoms in the alpha-chromium oxide lattice that are replaced by nickel and trivalent cobalt is no more than 6 atom %, and (ii) a fluorinated crystalline oxide of (i). Also disclosed is a process for the manufacture of a mixture of HFC-227ea and hexafluoropropene by reacting a starting mixture comprising CFC-217ba and hydrogen in the vapor phase at an elevated temperature, optionally in the presence of a hydrogenation catalyst. This process involves preparing the CFC-217ba by the process described above.