B7 Simple Features

Jan-Philipp Kolb

23 Oktober 2018

Themen dieses Abschnitts

- Der Import von Geodaten mit dem Paket simple features (sf).
- Die Verarbeitung der OSM-Daten mit dem Paket sf.
- Die Daten visualisieren mit sf

Das Paket sf

Simple Features for R

library(sf)

Linking to GEOS 3.6.1, GDAL 2.2.3, proj.4 4.9.3

• Ein Demo ist im Paket sf integriert

demo(sf::affine)

Shapefiles mit sf importieren

Driver: ESRI Shapefile

st_layers("../data/london_sport.shp")

XY

NA

```
## Available layers:
## layer_name geometry_type features fields
## 1 london_sport Polygon 33 4

london <- st_read("../data/london_sport.shp")

## Reading layer `london_sport' from data source `D:\github\ge
## Simple feature collection with 33 features and 4 fields
## geometry type: POLYGON</pre>
```

epsg (SRID):

dimension:

bbox:

proj4string: +proj=tmerc +lat 0=49 +lon 0=-2 +k=0.99960

xmin: 503571.2 ymin: 155850.8 xmax: 561941

Das Shapefile plotten

plot(london\$geometry)

Graphiken mit sf

plot(london)

Die Hilfe für die Funktion plot im sf Paket

?plot

tigris exported operators

(in package <u>tigris</u> in library D:/Eigene Dateien/Dokumente/R/win-library/3.5)

Generic X-Y Plotting

(in package graphics in library C:/Program Files/R/R-3.5.0/library)

Plot a Satellite object

(in package satellite in library D:/Eigene Dateien/Dokumente/R/win-library/3.5)

Plot a Raster* object

(in package raster in library D:/Eigene Dateien/Dokumente/R/win-library/3.5)

acs Methods for Function 'plot'

(in package acs in library D:/Eigene Dateien/Dokumente/R/win-library/3.5)

Plot sf object

(in package sf in library D:/Eigene Dateien/Dokumente/R/win-library/3.5)

Der london shapefile als Beispiel

head(london)

```
## Simple feature collection with 6 features and 4 fields
## geometry type:
                  POLYGON
## dimension:
                  XΥ
                  xmin: 503571.2 ymin: 156480.8 xmax: 561941
## bbox:
## epsg (SRID):
                  NA
## proj4string:
                  +proj=tmerc + lat 0=49 + lon 0=-2 + k=0.99960
    ons_label
##
                              name Partic Per Pop 2001
         OOAF
                                                295535
## 1
                           Bromley
                                         21.7
                                                172330
## 2
         00BD Richmond upon Thames
                                         26.6
## 3
         OOAS
                                         21.5
                                                243006
                        Hillingdon
## 4
         OOAR.
                          Havering
                                         17.9 224262
                                                147271
## 5
         00AX Kingston upon Thames 24.4
                                                179767
## 6
         00BF
                            Sutton
                                         19.3
##
                          geometry
      OT VCONT ((E/1177
```

B7 Simple Features

Die Farben verändern

plot(london, col=1:20)

Nur eine Karte

Beispiel Bevölkerung in London's Stadtteilen

Das Paket colorRampsverwenden

Cheatsheet zum Thema Farbpaletten

```
library("colorRamps")
plot(london2, col=blue2yellow(10))
```


Beispieldaten bekommen

```
library(osmdata)
## Data (c) OpenStreetMap contributors, ODbL 1.0. http://www.c
bb poly <- getbb(place name = "Amsterdam",
                 format out = "polygon")
ls <- st multilinestring(bb poly)</pre>
pol <- sf::st_polygon(bb poly)</pre>
class(pol)
## [1] "XY" "POLYGON" "sfg"
bb poly ma<-getbb(place name="Mannheim",format out="polygon")
```

Das Ergebnis plotten

plot(bb_poly_ma,type="1")

Eine .osm Datei importieren

- In einer .osm Datei sind verschiedene Layer vorhanden.
- Mit st_layers kann man sich anzeigen lassen, welche das sind.

st_layers("../data/ams_centraal.osm")

```
## Available layers:
##
           layer_name
                            geometry_type features fields
                                     Point
                                                 NΑ
                                                         10
## 1
               points
## 2
                lines
                               Line String
                                                 NA
  3 multilinestrings Multi Line String
                                                 NA
        multipolygons
                             Multi Polygon
                                                 NA
                                                         25
## 4
## 5
      other_relations Geometry Collection
                                                 NA
```

Driver: OSM

Daten vom Amsterdam Beispiel

 Mit der Funktion st read kann der gewünschte Layer importiert werden.

```
datm <- st read("../data/ams centraal.osm", "multipolygons")</pre>
```

```
## Reading layer `multipolygons' from data source `D:\github\g
## Simple feature collection with 2796 features and 25 fields
## geometry type: MULTIPOLYGON
## dimension:
                XY
                   xmin: 4.874776 ymin: 52.36088 xmax: 4.92975
## bbox:
## epsg (SRID):
                  4326
                  +proj=longlat +datum=WGS84 +no defs
## proj4string:
```

15 / 27

Die Funktion st_geometry

Get, set, or replace geometry from an sf object

?st_geometry

```
geom_datm <- st_geometry(datm)
plot(geom_datm)</pre>
```


Die Häuser auswählen

```
library(dplyr)
buis <- datm %>% select(building)
plot(buis)
```


Welche Häusertypen gibt es?

```
buis2 <- datm %>% as.data.frame %>% select(building)
```

```
datbuis <- datm[, "building", drop = TRUE]
plot(datbuis)</pre>
```


plot(st_geometry(houses))

Alle Häuser herausnehmen

• Im ersten Teil des Objekts sind allgemeine Informationen zum Geometrietyp, zur Bounding Box und zum EPSG Code enthalten.

Simple feature collection with 2131 features and 25 fields

geometry type: MULTIPOLYGON

dimension: XY

bbox: xmin: 4.887275 ymin: 52.37334 xmax: 4.91342 yr

epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

Zweiter Teil des Objekts houses

- Im zweiten Teil sind dann spezifische Informationen zu den einzelnen Features aufgelistet.
- Es handelt sich beispielsweise um die OSM id und in der letzten Spalte die Geometrie, die wir später zum visualisieren brauchen.

craft	building	type	name	osm_way_id	osm_id	
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580102	5
<na></na>	yes	multipolygon	<na></na>	<na></na>	3580414	6
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580416	7
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580417	8
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580420	9
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580421	10
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580422	11
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580423	12
<na></na>	apartments	multipolygon	<na></na>	<na></na>	3580427	13
<na></na>	house	multipolygon	<na></na>	<na></na>	3580428	14

Das Objekt houses transformieren

[1] "sfc MULTIPOLYGON" "sfc"

```
class(houses)

## [1] "sf"     "data.frame"

class(st_geometry(houses))
```

Das Ergebnis visualisieren

```
library(tmap)
(map1 <- qtm(st_geometry(houses)))</pre>
```


Wohnstraßen hinzufügen

datl <- st_read("../data/ams_centraal.osm","lines")</pre>

```
## Simple feature collection with 2372 features and 9 fields
## geometry type: LINESTRING
## dimension: XY
## bbox: xmin: 4.826049 ymin: 52.33891 xmax: 4.95717
```

Reading layer `lines' from data source `D:\github\geocourse

epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

roads <- datl[datl\$highway %in% c("residential"),]</pre>

Der Straßen-Typ residential

(map2 <- map1+qtm(st_geometry(roads),lines.col="purple"))</pre>

Weitere Straßen hinzufügen

Eine Demonstartion von sf

demo(nc, ask = FALSE, echo = FALSE)

Beispieldatensatz nc

```
## Reading layer `nc.gpkg' from data source `D:\Eigene Dateier
## Simple feature collection with 100 features and 14 fields
## Attribute-geometry relationship: 0 constant, 8 aggregate, 6
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.49
## epsg (SRID): 4267
## proj4string: +proj=longlat +datum=NAD27 +no defs
```

Die Vignetten für das Paket sf

```
https://r-spatial.github.io/sf/reference/st\_as\_sf.html \\ https://r-spatial.github.io/sf/reference/st\_read.html \\ https://r-spatial.github.io/sf/articles/sf1.html
```