Synchronous Sequential Logic: Gray Code Up/Down Counter

Ezra John Guia

March 8th, 2019

The Problem

Create a synchronous sequential logic diagram that implements a Gray Code counter. The circuits will have a *Direction* input and an *Enable* input. The Gray Code will have 3 outputs for each bit which then wraps around once it reaches the end 100 (7 in decimal).

State Diagram

Input, Outputs and Number of Flip-Flops

Inputs

There are 2 inputs:

- 1. Direction: The input which increments/decrements the Gray Code.
- 2. Enable: The input which allows the Direction input to increment/decrement the Gray Code.

Outputs

There will be 3 outputs, one for each bit in the 3-bit Gray Code.

Flip-Flops

There will be $3\ JK\ flip$ -flops for each bit in the 3-bit Gray Code.

Excitation Table

The table is found on the next page.

Pre	esent	State	Inp	ut	Ne	xt St	ate	JK	Flip-F	lop In	put		
A	В	С	D	E	Α	В	С	J_A	K_A	J_B	K_B	J_C	K_C
0	0	0	0	0	0	0	0	0	X	0	X	0	X
0	0	0	0	1	0	0	1	0	X	0	X	1	X
0	0	0	1	0	0	0	0	0	X	0	X	0	X
0	0	0	1	1	1	0	0	1	X	0	X	0	X
0	0	1	0	0	0	0	1	0	X	0	X	X	0
0	0	1	0	1	0	1	1	0	X	1	X	X	0
0	0	1	1	0	0	0	1	0	X	0	X	X	0
0	0	1	1	1	0	0	0	0	X	0	X	X	1
0	1	0	0	0	0	1	0	0	X	X	0	0	X
0	1	0	0	1	1	1	0	1	X	X	0	0	X
0	1	0	1	0	0	1	0	0	X	X	0	0	X
0	1	0	1	1	0	1	1	0	X	X	0	1	X
0	1	1	0	0	0	1	1	0	X	X	0	X	0
0	1	1	0	1	0	1	0	0	X	X	0	X	1
0	1	1	1	0	0	1	1	0	X	X	0	X	0
0	1	1	1	1	0	0	1	0	X	X	1	X	0
1	0	0	0	0	1	0	0	X	0	0	X	0	X
1	0	0	0	1	0	0	0	X	1	0	X	0	X
1	0	0	1	0	1	0	0	X	0	0	X	0	X
1	0	0	1	1	1	0	1	X	0	0	X	1	X
1	0	1	0	0	1	0	1	X	0	0	X	X	0
1	0	1	0	1	1	0	0	X	0	0	X	X	1
1	0	1	1	0	1	0	1	X	0	0	X	X	0
1	0	1	1	1	1	1	1	X	0	1	X	X	0
1	1	0	0	0	1	1	0	X	0	X	0	0	X
1	1	0	0	1	1	1	1	X	0	X	0	1	X
1	1	0	1	0	1	1	0	X	0	X	0	0	X
1	1	0	1	1	0	1	0	X	1	X	0	0	X
1	1	1	0	0	1	1	1	X	0	X	0	X	0
1	1	1	0	1	1	0	1	X	0	X	1	X	0
1	1	1	1	0	1	1	1	X	0	X	0	X	0
1	1	1	1	1	1	1	0	X	0	X	0	X	1

Circuit output functions and flip-flop input functions using the map method

Karnaugh Map for J_A

A = 0

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	0	1	0
01	0	0	0	0
11	0	0	0	0
10	0	1	0	0

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	X	X	X	X
01	X	X	X	X
11	X	X	X	X
10	X	X	X	X

 $J_A = BC'D'E + B'C'DE$

Karnaugh Map for K_A

A = 0

$_{\rm BC}$ $^{\rm D}$	E ₀₀	01	11	10
00	X	\mathbf{x}	X	X
01	X	X	X	X
11	X	X	X	X
10	X	X	X	X

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	1	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	1	0

 $K_A = B'C'D'E + BC'DE$

Karnaugh Map for J_B

$$A = 0$$

$_{\rm BC}$ $^{\rm D}$	E ₀₀	01	11	10
00	0	0	0	0
01	0	1	0	0
11	X	X	X	X
10	X	X	X	X

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	X	X	X
10	X	X	X	X

$$J_B = A'CD'E + ACDE$$

Karnaugh Map for K_B

A = 0

$_{\mathrm{BC}}$ $^{\mathrm{D}}$	E ₀₀	01	11	10
00	X	X	X	X
01	X	X	X	X
11	0	0	1	0
10	0	0	0	0

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	X	X	X	X
01	X	X	X	X
11	0	1	0	0
10	0	0	0	0

 $K_B = A'CDE + ACD'E$

Karnaugh Map for J_C

A = 0

$_{\rm BC}$ $^{\rm D}$	E ₀₀	01	11	10
00	0	1	0	0
01	X	X	X	X
11	X	X	X	X
10	0	0	1	0

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	0	1	0
01	X	X	X	X
11	X	X	X	X
10	0	1	0	0

 $J_C = A'B'D'E + A'BDE + ABD'E + AB'DE$

Karnaugh Map for K_C

A = 0

$\operatorname{BC}^{\operatorname{D}}$	E ₀₀	01	11	10
00	X	X	X	X
01	0	0		0
11	0	1	0	0
10	X	X	X	X

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	X	X	X	X
01	0	1	0	0
11	0	0	1	0
10	X	X	X	X

 $K_C = A'BD'E + A'B'DE + AB'D'E + ABDE$

Logic Diagrams

3 JK Flip-Flops together

T Flip-Flop Bonus

Input, Outputs and Number of Flip-Flops

Inputs

There are 2 inputs:

- 1. Direction: The input which increments/decrements the Gray Code.
- 2. Enable: The input which allows the Direction input to increment/decrement the Gray Code.

Outputs

There will be 3 outputs, one for each bit in the 3-bit Gray Code.

Flip-Flops

There will be 3 T flip-flops for each bit in the 3-bit Gray Code.

Excitation Table

The table is found on the next page.

Pre	esent	State	Inp	out	Ne	xt St	tate	TF	lip-Flo	op Input
A	В	С	D	E	A	В	С	T_A	T_B	T_C
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1	0	0	1
0	0	0	1	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	0	0	0
0	0	1	1	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0	0	0
0	1	0	0	1	1	1	0	1	0	0
0	1	0	1	0	0	1	0	0	0	0
0	1	0	1	1	0	1	1	0	0	1
0	1	1	0	0	0	1	1	0	0	0
0	1	1	0	1	0	1	0	0	0	1
0	1	1	1	0	0	1	1	0	0	0
0	1	1	1	1	0	0	1	0	1	0
1	0	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	0
1	0	0	1	0	1	0	0	0	0	0
1	0	0	1	1	1	0	1	0	0	1
1	0	1	0	0	1	0	1	0	0	0
1	0	1	0	1	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0	0
1	0	1	1	1	1	1	1	0	1	0
1	1	0	0	0	1	1	0	0	0	0
1	1	0	0	1	1	1	1	0	0	1
1	1	0	1	0	1	1	0	0	0	0
1	1	0	1	1	0	1	0	1	0	0
1	1	1	0	0	1	1	1	0	0	0
1	1	1	0	1	1	0	1	0	1	0
1	1	1	1	0	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0	0	1

Circuit output functions and flip-flop input functions using the map method

Karnaugh Map for T_A

A = 0

$_{\rm BC}$ D	E ₀₀	01	11	10
00	0	0	1	0
01	0	0	0	0
11	0	0	0	0
10	0	1	0	0

A = 1

BC	E ₀₀	01	11	10
00	0	1	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	1	0

 $T_A = A'BC'D'E + A'B'C'DE + AB'C'D'E + ABC'DE$

Karnaugh Map for T_B

A = 0

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	0

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	0	0	0
01	0	0	1	0
11	0	1	0	0
10	0	0	0	0

 $T_B = A'B'CD'E + A'BCDE + ABCD'E + AB'CDE$

Karnaugh Map for T_C

A = 0

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	1	0	0
01	0	0	1	0
11	0	1	0	0
10	0	0	1	0

A = 1

$^{\mathrm{D}}$	E ₀₀	01	11	10
00	0	0	1	0
01	0	1	0	0
11	0	0	1	0
10	0	1	0	0

 $T_C = A'B'C'D'E + A'BCD'E + A'B'CDE + A'BC'DE + AB'CD'E + ABC'D'E + ABC'D'E + ABCDE$

Logic Diagrams

