

Faculty of Science and Technology (FST)

# Implementation Progress Report (TriDCCS-SVM: A Hybrid Model for Satellite Image Classification)

**Presented by:**YOUSEF H S ALSAFADI

Supervised by:

Professor, Rosalina Abdul Salam

### **Introduction & Background**

This work presents the implementation of TriDCCS-SVM, a hybrid model designed to enhance the classification accuracy of high-resolution satellite images. The model combines three deep convolutional neural networks (ResNet50, DenseNet169, and EfficientNetB0) for feature extraction and integrates a Support Vector Machine (SVM) for classification.

#### The implementation focuses on:

- 1. Data preprocessing: Cleaning datasets, resizing images, and handling invalid entries.
- 2. Feature Extraction: Extracting deep features using three pretrained CNN architectures.
- 3. Feature Fusion: Combining features from all three networks into a high-dimensional vector.
- 4. Classification: Training SVM on the fused features to perform the final classification.
- 5. Evaluation: Achieving high accuracy and outperforming previous studies.

**Key results:** Achieved high classification accuracy on benchmark datasets:

- UC Merced: Achieved 97.86% accuracy. - SIRI-WHU: Achieved 96.25% accuracy.





Figure 1: Framework Flow



Figure 2: Architecture of TriDCCS-SVM



### **Structure**

```
implementation-code-tridccs-svm/
 -- datasets/
                               # Input datasets (SIRI-WHU, UC Merced)
     -- siri whu/
         |-- agriculture/
         -- commercial/
    +-- uc merced/
          |-- airplane/
          -- buildings/
 -- notebooks/ # Jupyter notebook with implementation
    +-- tridccs_svm_yousef.ipynb
    -- code-pdf /
      +-- tridccs-svm-yousef-alsafadi.pdf
    -- code-html /
      +-- tridccs-svm-yousef-alsafadi.html
 -- outputs/
     -- models/ # Trained SVM models
-- processed/ # Extracted and fused features
-- results/ # Evaluation metrics and CSV reports
     -- visualizations
   -- Implementation Progress Report/
    +-- Presentation.pptx
 -- requirements.txt  # Python dependencies
--- README.md  # Project documentation
+-- README.md
                               # Project documentation
```



# Requirements

This implementation was developed and tested with:

- Python 3.12.7
- TensorFlow 2.19.0
- Keras
- scikit-learn
- OpenCV
- NumPy, Pandas
- Matplotlib, Seaborn
- tqdm
- joblib



### **System Requirements**

This implementation can run on a standard desktop or laptop. For better performance during feature extraction and model training, the following specifications are recommended:

- Processor (CPU): Quad-core Intel i5 / AMD Ryzen 5 or higher
- RAM: Minimum 8 GB (Recommended: 16 GB or more)
- GPU (Optional): NVIDIA GPU with CUDA support (Recommended: 4 GB VRAM or higher, e.g., GTX 1650,
   RTX series)
- Disk Space: Minimum 5 GB free for datasets and outputs
- Operating System: Windows 10/11, Ubuntu 20.04+, or macOS 11+
- > Note: GPU acceleration is optional but strongly recommended for faster CNN feature extraction. Without GPU, the process may take longer.



### **Datasets Overview**

The approach was tested on two benchmark datasets:

#### 1. SIRI-WHU Dataset

- Includes 2,400 images
- 12 land-cover classes (200 images per class)
- Each image size: 200×200 pixels.
- Example classes: agriculture, commercial, harbor, meadow, residential, water.

#### 2. UC Merced Land Use Dataset

- Includes 2,100 images
- 21 land-use classes (100 images per class)
- Each image size: 256×256 pixels.
- Example classes: airplane, beach, forest, parking lot, golfcourse, freeway.
- > Both datasets are split into 80% training and 20% testing, maintaining class balance.

# **SIRI-WHU Dataset – Sample Images**

#### SIRI-WHU - Sample Images



Figure 3: Sample images from the SIRI-WHU Dataset

### **SIRI-WHU Dataset- Pie Chart & Bar Chart**



Figure 4: Class distribution of the SIRI-WHU dataset visualized using pie and bar charts

### **UC Merced Land Use Dataset - Sample Images**

#### **UC Merced - Sample Images**



Figure 5: Sample images from the UC Merced Land Use Dataset

### **UC Merced Land Use Dataset - Pie Chart & Bar Chart**



Figure 6: Class distribution of UC Merced Land Use Dataset visualized using pie and bar charts

### **Importing Required Libraries**

V After Installing Python Packages, all necessary Python libraries are imported to support data handling, image processing, deep learning, machine learning, and visualization tasks.

#### **Key Libraries Imported:**

- Standard Libraries: os, sys, platform, subprocess, cpuinfo.
- Data Processing: numpy, pandas, joblib, psutil.
- Image Processing: cv2, PIL.
- Deep Learning: tensorflow, keras.
- Machine Learning: scikit-learn, xgboost.
- Visualization: matplotlib, seaborn.
- Utilities: tqdm, IPython.display.
- > These libraries provide all the tools required for the implementation workflow.



### **Displaying System Specifications**

#### **System Specifications**

-----

[CPU Information]

Processor Name : 12th Gen Intel(R) Core(TM) i7-1280P

Physical Cores : 14 Logical Cores : 20

Max Frequency (MHz): 2000.00 Current Frequency: 2000.00

[Memory (RAM)]

Total RAM (GB) : 15.71 Available RAM (GB) : 5.67 RAM Usage (%) : 63.9%

[Operating System]

System: Windows 11
Machine Architecture: AMD64

[GPU Information]

No NVIDIA GPU detected or 'nvidia-smi' not available.



> This output confirms that the system has adequate CPU and RAM resources for running the implementation.

### **Directory Setup**

```
# 1.6 - Define and Create Core Project Directories
   # Set up the folder structure for datasets, outputs, models, etc.
   # Root directory
   PROJECT_ROOT = Path("C:/Users/User/Desktop/implementation/implementation-code-tridccs-svm")
   # Define main subdirectories
   DATASETS DIR = PROJECT ROOT / "datasets"
   OUTPUTS DIR = PROJECT ROOT / "outputs"
   MODELS DIR = OUTPUTS DIR / "models"
   RESULTS DIR = OUTPUTS DIR / "results"
   VISUALS DIR = OUTPUTS DIR / "visualizations"
   PROCESSED DIR = OUTPUTS DIR / "processed" # For preprocessed features
   # Create directories if missing
   for path in [DATASETS DIR, OUTPUTS DIR, MODELS DIR, RESULTS DIR, VISUALS DIR, PROCESSED DIR]:
       path.mkdir(parents=True, exist ok=True)
   print("Project folders created and ready.")
Project folders created and ready.
```



### **Dataset Loading**

```
# 2.1 - Load and resize images from dataset folders (one folder per class)
def load_dataset_images(dataset_path, target_size=(224, 224)):
    images = []
    labels = []
    class_names = sorted([d for d in os.listdir(dataset_path) if (dataset_path / d).is_dir()])
    label_map = {cls: idx for idx, cls in enumerate(class_names)}
    for cls in class names:
        class dir = dataset path / cls
        for img_name in os.listdir(class_dir):
            img_path = class_dir / img_name
            try:
                img = load_img(img_path, target_size=target_size)
                img_array = img_to_array(img)
                images.append(img_array)
                labels.append(label_map[cls])
            except Exception as e:
                print(f"Warning: Failed to load {img_path} ({e})")
    return np.array(images), np.array(labels), class_names
# Load SIRI-WHU dataset
SIRI_DIR = DATASETS_DIR / "siri_whu"
X siri, y siri, class names siri = load dataset images(SIRI DIR, target size=(224, 224))
# Load UC Merced dataset
UC_DIR = DATASETS_DIR / "uc_merced"
X_uc, y_uc, class_names_uc = load_dataset_images(UC_DIR, target_size=(224, 224))
print("Datasets loaded successfully:")
```

#### Output:

Datasets loaded successfully:

SIRI-WHU dataset loaded: 2400 images, 12 classes UC Merced dataset loaded: 2100 images, 21 classes



### **Checking for Corrupt and Blank Images**

- V Before training, datasets were validated for corrupt or blank images to ensure data quality.
- v A custom function was implemented using OpenCV to scan each image:
  - Detects unreadable (corrupt) images.
  - Flags near-black images with negligible pixel intensity.
- v Findings:
  - SIRI-WHU Dataset: No corrupt or blank images detected.
  - UC Merced Dataset: No corrupt or blank images detected.
  - Both datasets are clean and ready for training without data loss.



### **Splitting Datasets into Train/Test Sets**

- V Datasets were split into 80% training and 20% testing, maintaining class balance (stratified split).
- v Random seeds ensured reproducibility:
  - SIRI-WHU → random\_state=20
  - UC Merced → random\_state=42
- v Results: SIRI-WHU Split:
  - Training: 1,920 images (12 classes).
  - Testing: 480 images (12 classes).
- v Results: UC Merced Split:
  - Training: 1,680 images (21 classes).
  - Testing: 420 images (21 classes).
  - Class Distribution Example (SIRI-WHU Train):

agriculture: 160 samples commercial: 160 samples

...

water : 160 samples



### **Loading Pretrained CNN Models**

- v Three pretrained CNN architectures were loaded for feature extraction:
  - ResNet50: 2048-dimensional features.
  - DenseNet169: 1664-dimensional features.
  - EfficientNetB0: 1280-dimensional features.
- V All models were loaded without their top layers and configured with Global Average Pooling to produce compact feature vectors.
  - > Output Shapes (after pooling):

```
ResNet50 \rightarrow (None, 2048)
DenseNet169 \rightarrow (None, 1664)
EfficientNetB0 \rightarrow (None, 1280)
```

✓ This dimensionality was later fused for classification



### **CNN Feature Summary and Fusion**

#### v Feature Dimensions Table:

| Model          | Output Dimension | Cumulative Dimension |
|----------------|------------------|----------------------|
| ResNet50       | 2048             | 2048                 |
| DenseNet169    | 1664             | 3712                 |
| EfficientNetB0 | 1280             | 4992                 |

Features from all three networks are concatenated to form a single representation of size 4992.



#### Tri-Network Feature Fusion Architecture



Figure 7: A fusion diagram illustrates how features from ResNet, DenseNet, and EfficientNet are combined into a unified vector.



### **Preprocessing & Feature Extraction Overview**

- v Preprocessing Notes:
  - ResNet50: Converts RGB to BGR and subtracts mean pixel values.
  - DenseNet169: Normalizes pixel values to [0, 1] range.
  - EfficientNetB0: Scales pixel values to [-1, 1] range.
  - > These steps are applied automatically during feature extraction inside extract\_features().
- V Key Point: The preprocessing ensures each CNN receives data in the optimal format for extracting meaningful deep features.



### Feature Extraction and Scaling for SIRI-WHU & UC Merced

Features were extracted from each pretrained CNN (ResNet50, DenseNet169, EfficientNetB0):

#### V SIRI-WHU:

Training Set: 1,920 samples

Testing Set: 480 samples

#### v UC Merced:

Training Set: 1,680 samples

Testing Set: 420 samples

#### v Feature Dimensions:

- ResNet50 → 2048
- DenseNet169  $\rightarrow$  1664
- EfficientNetB0 → 1280
- □ Scaling Applied: StandardScaler (ensures zero-mean and unit-variance features) used to normalize features for improved SVM classification performance.
  - > Result: All CNN outputs were successfully extracted and scaled for both datasets.



### **Correlation Between CNN Feature Sets**

- ☐ Purpose of Analysis: Evaluate the degree of similarity between feature representations extracted from different CNNs.
- □ Lower correlation  $\rightarrow$  more complementary features  $\rightarrow$  better fusion results.
- V Correlation Results (SIRI-WHU):
  - ResNet50 vs DenseNet169: 0.0132
  - ResNet50 vs EfficientNetB0: 0.0291
  - DenseNet169 vs EfficientNetB0: 0.0122
- v Correlation Results (UC Merced):
  - ResNet50 vs DenseNet169: 0.0237
  - ResNet50 vs EfficientNetB0: 0.0392
  - DenseNet169 vs EfficientNetB0: 0.0215
  - ✓ Key Insight: low correlation values confirm that each CNN learns unique and complementary features.





- Heatmaps provide a visual summary of feature activations across all samples and dimensions.
- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- > Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/





- Individual CNN heatmaps show distinct feature activations.
- Fused feature heatmaps combine these activations into a comprehensive representation.
- Outputs: Heatmaps saved under : outputs/visualizations/



# **Fused Feature Distribution – Boxplots**



- Visualize how fused features are distributed across selected dimensions to check for outliers and variability.
- ❖ Boxplots show variations in feature values and help identify dimensions with potential outliers.
- Boxplot saved under: outputs/visualizations/



# **Fused Feature Distribution – Boxplots**



- Visualize how fused features are distributed across selected dimensions to check for outliers and variability.
- **Solution** Boxplots show variations in feature values and help identify dimensions with potential outliers.
- Boxplot saved under: outputs/visualizations/



### **Fused Feature Distribution – Histograms**



- Provide frequency distribution of selected feature dimensions to understand data spread and density.
- Histograms display normalized feature values and highlight dominant value ranges.
- Boxplot saved under: outputs/visualizations/



### **Fused Feature Distribution – Histograms**



- Provide frequency distribution of selected feature dimensions to understand data spread and density.
- Histograms display normalized feature values and highlight dominant value ranges.
- Boxplot saved under: outputs/visualizations/



### **Saving Extracted Features for Reuse**

- Store extracted features from CNNs and their corresponding labels to avoid recomputation.
- Saved ResNet50, DenseNet169, and EfficientNetB0 features for both training and testing sets.
- Saved separately for SIRI-WHU and UC Merced datasets.
- Format: .pkl files using joblib.

#### Example Saved Files:

```
resnet_train.pkl → shape: (1920, 2048)
densenet_test.pkl → shape: (480, 1664)
efficientnet_train.pkl → shape: (1920, 1280)
```



### **Training and Evaluating SVM Classifier on SIRI-WHU Dataset**

- Training Support Vector Machine (SVM) on fused CNN features to classify SIRI-WHU dataset.
- ✓ Training Details:
  - Kernel: RBF
  - 2. Hyperparameters: C=10, gamma="scale"
- ✓ Performance:
  - 1. Overall Accuracy: 96.25%
  - 2. Weighted F1-Score: 96.25%
- ✓ Outputs:
  - Trained SVM Model
  - 2. Predictions on Test Set
  - 3. Evaluation Metrics



#### **SIRI-WHU – Confusion Matrix**

Visual heatmap of predicted vs actual classes.





Figure: SIRI-WHU Confusion Matrix (12 Classes)

### **Training and Evaluating SVM Classifier on UC Merced Dataset**

- ☐ Train Support Vector Machine (SVM) on fused CNN features for UC Merced dataset.
- ✓ Training Details:
  - 1. Kernel: RBF
  - 2. Hyperparameters: C=10, gamma="scale"
- Performance:
  - 1. Overall Accuracy: 97.86%
  - 2. Weighted F1-Score: 97.85%
- ✓ Outputs:
  - Trained SVM Model
  - 2. Predictions on Test Set
  - Evaluation Metrics



#### **UC Merced - Confusion Matrix**

Visual heatmap of predicted vs actual classes.





Figure: UC Merced Confusion Matrix (21 Classes)

### **Saving Trained Models for Future Use**

- Saved Models:
  - 1. SVM Model (SIRI-WHU) → svm\_model\_siri\_whu.pkl
  - 2. SVM Model (UC Merced) → svm\_model\_uc\_merced.pkl
- ✓ Purpose of Saving:
  - 1. Allow reuse without retraining
  - 2. Support deployment or additional analysis
  - > All models saved under: outputs/models/svm/



## Final Test Accuracy: SIRI-WHU vs UC Merced





Figure: Test Accuracy: SIRI-WHU vs UC Merced

#### **Detailed Per-Class Evaluation: SIRI-WHU**

- ✓ Metrics Computed for Each Class: Accuracy, Precision, Recall, F1-Score
- ✓ Key Insights:
  - 1. Most classes achieved ≥ 95% accuracy.
  - 2. Minor variations in Pond and River classes due to intra-class variability.

|    | Class       | Accuracy | Precision | Recall | F1-Score |
|----|-------------|----------|-----------|--------|----------|
| 0  | agriculture | 0.975    | 0.9750    | 0.975  | 0.9750   |
| 1  | commercial  | 0.975    | 1.0000    | 0.975  | 0.9873   |
| 2  | harbor      | 1.000    | 0.9302    | 1.000  | 0.9639   |
| 3  | idle_land   | 0.975    | 0.9750    | 0.975  | 0.9750   |
| 4  | industrial  | 0.975    | 1.0000    | 0.975  | 0.9873   |
| 5  | meadow      | 0.925    | 1.0000    | 0.925  | 0.9610   |
| 6  | overpass    | 1.000    | 1.0000    | 1.000  | 1.0000   |
| 7  | park        | 0.975    | 0.8864    | 0.975  | 0.9286   |
| 8  | pond        | 0.850    | 0.8718    | 0.850  | 0.8608   |
| 9  | residential | 1.000    | 0.9756    | 1.000  | 0.9877   |
| 10 | river       | 0.900    | 0.9474    | 0.900  | 0.9231   |
| 11 | water       | 1.000    | 1.0000    | 1.000  | 1.0000   |



Table: Detailed Per-Class Evaluation

#### **Detailed Per-Class Evaluation: SIRI-WHU**





Figure : SIRI-WHU - Per-Class Metrics

### **Detailed Per-Class Evaluation: UC Merced**

- ✓ Metrics Computed for Each Class: Accuracy, Precision, Recall, F1-Score
- ✓ Slight drops in freeway, tenniscourt, and mobilehomepark.

| Class | Accuracy          | Precision | Recall | F1-Score |        |
|-------|-------------------|-----------|--------|----------|--------|
| 0     | agricultural      | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 1     | airplane          | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 2     | baseballdiamond   | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 3     | beach             | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 4     | buildings         | 1.00      | 0.9524 | 1.00     | 0.9756 |
| 5     | chaparral         | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 6     | denseresidential  | 1.00      | 0.9091 | 1.00     | 0.9524 |
| 7     | forest            | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 8     | freeway           | 0.90      | 1.0000 | 0.90     | 0.9474 |
| 9     | golfcourse        | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 10    | harbor            | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 11    | intersection      | 1.00      | 0.9524 | 1.00     | 0.9756 |
| 12    | mediumresidential | 0.95      | 0.9500 | 0.95     | 0.9500 |
| 13    | mobilehomepark    | 0.90      | 1.0000 | 0.90     | 0.9474 |
| 14    | overpass          | 0.95      | 0.9048 | 0.95     | 0.9268 |
| 15    | parkinglot        | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 16    | river             | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 17    | runway            | 1.00      | 1.0000 | 1.00     | 1.0000 |
| 18    | sparseresidential | 0.95      | 1.0000 | 0.95     | 0.9744 |
| 19    | storagetanks      | 1.00      | 0.9524 | 1.00     | 0.9756 |
| 20    | tenniscourt       | 0.90      | 0.9474 | 0.90     | 0.9231 |



Table: Detailed Per-Class Evaluation

### **Detailed Per-Class Evaluation: UC Merced**





Figure : UC Merced – Per-Class Metrics

# Comparison of TriDCCS-SVM with Previous Studies



# TriDCCS-SVM vs. VGG16-SVM (Tun et al., 2021)



Evaluate on UC Merced & RSSCN7 datasets

Figure : VGG-SVM classifier algorithm - Combining VGG16 with SVM

## **Paper Title:** Remote Sensing Data Classification Using a Hybrid Pre-Trained VGG16 CNN-SVM Classifier

(ElConRus 2021 | Nyan Linn Tun et al.)

- Methodology:
  - Pre-trained VGG16 for feature extraction.
  - 2. SVM classifier for final prediction (Linear Kernel).
- Hardware Specs:
  - Ryzen 5, GPU GTX 10703, 32GB RAM.
- Datasets Used:
  - UC Merced Land Dataset
  - 2. RSSCN7 Dataset
- Reported Accuracy:
  - 1. UC Merced  $\rightarrow$  87.71%
  - 2. RSSCN7  $\rightarrow$  95.24%
- > TriDCCS-SVM:
  - ✓ Used 3 modern CNNs for richer and complementary features.
  - ✓ Feature Fusion → Captured diverse hierarchical representations.
  - Advanced SVM Kernel: Used RBF Kernel for better handling of non-linear separations.
  - ✓ Achieved Accuracy: UC Merced  $\rightarrow$  97.86% (+10.15% improvement)  $\rightarrow$  SIRI-WHU  $\rightarrow$  96.25%



# Comparison of Classification Accuracy: TriDCCS-SVM vs. VGG16-SVM (Tun et al., 2021)



| Dataset   | VGG16-SVM<br>(Tun et al., 2021) | TriDCCS-SVM   |
|-----------|---------------------------------|---------------|
| UC Merced | 87.71%                          | 97.86% (+10%) |
| RSSCN7    | 95.24%                          | -             |
| SIRI-WHU  | -                               | 96.25%        |

Table : Comparison of Classification Accuracy Between VGG16-SVM Models and TriDCCS-SVM



Figure : Comparison of Classification Accuracy: TriDCCS-SVM vs. VGG16-SVM

## TriDCCS-SVM vs. Single CNN (Ramasamy et al., 2023)



Figure: Single CNN Models Workflow

**Paper Title:** Investment of Classic Deep CNNs and SVM for Classifying Remote Sensing Images (Advances in Electrical and Computer Engineering)

- Methodology:
  - 1. Transfer Learning approach using three pre-trained models (VGG16, ResNet50, DenseNet121).
  - 2. Fully Connected Layer for classification.
  - 3. Data Augmentation techniques applied.
  - 4. Hyperparameter tuning with Random Search.
- Datasets Used:
  - 1. UC Merced Land Dataset
  - 2. RSS-CN7 Dataset
- Reported Accuracy:

| Model       | UC Merced | RSS-CN7 |
|-------------|-----------|---------|
| ResNet50    | 91.72%    | 88.06%  |
| DenseNet121 | 93.19%    | 89.82%  |
| VGG16       | 95.88%    | 91.26%  |

#### > TriDCCS-SVM:

- ✓ Used three modern CNNs and performed feature fusion.
- ✓ Applied advanced SVM (RBF kernel).
- ✓ Achieved Accuracy:
  - UC Merced  $\rightarrow$  97.86% (+1.98%, +4.67%, +6.14% over VGG16, DenseNet121, ResNet50).
  - SIRI-WHU  $\rightarrow$  96.25% (+2.05%, +3.65%, +0.45% over DenseNet121, VGG16, ResNet50).



# Comparison of Classification Accuracy: TriDCCS-SVM vs. Single CNN (Ramasamy et al., 2023)



| Model       | UC_Merced (%) | RSS-CN7 (%) | SIRI-WHU (%) |
|-------------|---------------|-------------|--------------|
| ResNet50    | 91.72         | 88.06       | -            |
| DenseNet121 | 93.19         | 89.82       | -            |
| VGG16       | 95.88         | 91.26       | -            |
| TriDCCS-SVM | 97.86         | -           | 96.25        |

Table : Comparison of Classification Accuracy Between CNN Models and TriDCCS-SVM



Figure : Comparison of Classification Accuracy: TriDCCS-SVM vs.

Single CNN (Ramasamy et al., 2023)

# TriDCCS-SVM vs. Single CNN-SVM (AlAfandy et al., 2020)



Figure: Single CNN-SVM model Workflow

Paper Title: Investment of Classic Deep CNNs and SVM for Classifying Remote Sensing Images (Advances in Science, Technology and Engineering Systems Journal)

- Methodology:
  - Pre-trained CNN for feature extraction
  - 2. SVM classifier for final prediction.
- Hardware Specs:
  - Google Colab: 2-core Xeon CPU, Tesla K80 GPU (12GB), 13GB RAM.
- Datasets Used:
  - UC Merced Land Dataset
  - SIRI-WHU Dataset.
- Reported Accuracy:

| Model        | UC Merced | SIRI-WHU |
|--------------|-----------|----------|
| DenseNet-SVM | 90.20%    | 94.20%   |
| VGG16-SVM    | 88.10%    | 92.60%   |
| ResNet50-SVM | 90.40%    | 95.80%   |

- > TriDCCS-SVM:
  - ✓ Used three modern CNNs and performed feature fusion.
  - ✓ Applied advanced SVM (RBF kernel).
  - ✓ Achieved Accuracy:
    - UC Merced  $\rightarrow$  97.86% (+7.66%, +9.76%, +7.46% over DenseNet-SVM, VGG16-SVM, ResNet50-SVM).
    - SIRI-WHU  $\rightarrow$  96.25% (+2.05%, +3.65%, +0.45% over DenseNet-SVM, VGG16-SVM, ResNet50-SVM).



# Comparison of Classification Accuracy: TriDCCS-SVM vs. Single CNN-SVM



| Dataset   | DenseNet-<br>SVM | VGG16-<br>SVM | ResNet50-<br>SVM | TriDCCS-<br>SVM     |
|-----------|------------------|---------------|------------------|---------------------|
| UC Merced | 90.20%           | 88.10%        | 90.40%           | <mark>97.86%</mark> |
| SIRI-WHU  | 94.20%           | 92.60%        | 95.80%           | <mark>96.25%</mark> |

Table : Comparison of Classification Accuracy Between Single CNN-SVM Models and TriDCCS-SVM

Figure: Comparison of Classification Accuracy



# TriDCCS-SVM vs. AlexNet CNN (Shafaey et al., 2019)



Figure : AlexNet-CNN classifier model Combining CNN with SVM

#### **Paper Title:** Deep Learning for Satellite Image Classification

(AISI 2018 | Mayar A. Shafaey et al.)

- Methodology:
  - Pre-trained AlexNet CNN for feature extraction.
  - 2. Multiclass SVM classifier for final prediction.
- Hardware Specs:
  - Machine 1: Intel i7-2670QM @ 2.20GHz, 8GB RAM.
  - Machine 2: Intel i7-7700HQ @ 2.20GHz, GPU GTX 1050, 16GB RAM.
- Datasets Used: UC Merced Land Dataset
- Reported Accuracy: AlexNet CNN: 94%

#### > TriDCCS-SVM:

- ✓ Used three modern CNNs for richer and complementary features.
- ✓ Feature Fusion 
  → Captured diverse hierarchical representations.
- ✓ Advanced SVM Kernel: Used RBF Kernel for better handling of non-linear separations.
- ✓ Achieved Accuracy: UC Merced  $\rightarrow$  97.86% (+3.86% improvement), SIRI-WHU  $\rightarrow$ 96.25%



# Comparison of Classification Accuracy: TriDCCS-SVM vs. AlexNet-CNN (Shafaey et al., 2019)



| Dataset   | AlexNet-CNN) | TriDCCS-SVM     |
|-----------|--------------|-----------------|
| UC Merced | 94.0%        | 97.86% (+3.86%) |

Table: Classification Accuracy on UC Merced Dataset





# TriDCCS-SVM vs. Lightweight CNN (Dwivedi et al., 2022)



Figure : Lightweight CNN classifier workflow

Paper Title: Lightweight Convolutional Neural Network for Land Use Image Classification (JAGST 2022 | Dwijendra N. Dwivedi & Ganesh Patil)

- Methodology:
  - Developed a lightweight CNN for land use classification.
  - Used dropout, improved normalization, and optimized convolution/maxpooling layers.
- Hardware Specs:
  - Intel Core i7 CPU, GPU unspecified, RAM: 16GB.
- Datasets Used: UC Merced Land Dataset
- Reported Accuracy: UC Merced: 88.29%
- > TriDCCS-SVM:
  - ✓ Used three modern CNNs for richer and complementary features.
  - ✓ Feature Fusion → Captured diverse hierarchical representations.
  - ✓ Advanced SVM Kernel: Used RBF Kernel for better handling of non-linear separations.
  - ✓ Achieved Accuracy: UC Merced: 97.86% (+9.57% improvement).



# Comparison of Classification Accuracy: TriDCCS-SVM vs. Lightweight CNN (Dwivedi et al., 2022)



| Dataset   | Lightweight CNN | TriDCCS-SVM     |
|-----------|-----------------|-----------------|
| UC Merced | 88.29%          | 97.86% (+9.57%) |

Table: Classification Accuracy Comparison

Figure : Comparison of Classification Accuracy



#### TriDCCS-SVM vs. CNN-FE, TL, Fine-Tuning (Alem et al., 2022)



Build CNN-FE (Scratch) / Apply Transfer Learning



Fine-Tune EfficientNetB7



**Evaluate with UC Merced Dataset** 



Compare Models using Accuracy, Precision, Recall, F1-Score

Figure: Deep Learning Model workflow

**Paper Title:** Deep Learning Models Performance Evaluations for Remote Sensed Image Classification

(IEEE Access 2022 | Abebaw Alem & Shailender Kumar)

- Methodology:
  - 1. Developed three deep learning models for classification:
    - CNN-FE: Built from scratch.
    - TL: Transfer Learning using EfficientNetB7.
    - Fine-Tuning: Pre-trained EfficientNetB7 with all layers trainable.
  - 2. Evaluated models using Accuracy, Precision, Recall, F1-Score, and Confusion Matrix.
- Hardware Specs:
  - o Intel Core i3-4000M @ 2.40 GHz, 4GB RAM (Google Colab Tesla K80 GPU).
- Datasets Used: UC Merced Land Dataset
- Reported Accuracy:
  - CNN-FE: 84.76%
  - Transfer Learning (TL): 87.90%
  - Fine-Tuning: 88.00%
- > TriDCCS-SVM:
  - ✓ Used three modern CNNs for richer and complementary features.
  - ✓ Feature Fusion → Captured diverse hierarchical representations.
  - ✓ Advanced SVM Kernel: Used RBF Kernel for better handling of non-linear separations.
  - ✓ Achieved Accuracy: UC Merced  $\rightarrow$  97.86% (+9.86% improvement).



# Comparison of Classification Accuracy: TriDCCS-SVM vs. CNN-FE, TL, Fine-Tuning (Alem et al., 2022)



| Dataset   | CNN-FE | Transfer<br>Learning<br>(TL) | Fine-Tuning | TriDCCS-<br>SVM    |
|-----------|--------|------------------------------|-------------|--------------------|
| UC Merced | 84.76% | 87.90%                       | 88.00%      | 97.86%<br>(+9.86%) |

Table: Comparison of CNN-FE, TL, Fine-Tuning, and TriDCCS-SVM on UC Merced Dataset.

Figure : Comparison of Classification



#### TriDCCS-SVM vs. AlexNet, VGG16, VGG19 (Thirumaladevi et al., 2023)

**Dataset Preparation** 



Single Pre-trained CNN (AlexNet OR VGG16 OR VGG19) - Frozen



1) Feature Extraction (Freeze CNN, Extract FC7 Features 
→ Pass to SVM Classifier)



2) Transfer Learning (Replace Fully Connected Layers, Fine-Tune Higher Layers)



Evaluation

Figure: Deep Learning Model workflow

**Paper Title:** Remote sensing image scene classification by transfer learning to augment the accuracy (Measurement: Sensors, 2023 | S. Thirumaladevi et al.)

- Methodology:
  - 1. Extracted features independently from the fc7 layer of AlexNet, VGG16, and VGG19, and classified them separately using SVM.
  - 2. Developed Transfer Learning models by replacing fully connected layers for classification.
- Hardware Specs:
  - Workstation with GPU (Details not specified).
- Datasets Used:
  - UC Merced Land Dataset.
  - SIRI-WHU Dataset.
- Reported Accuracy

| Dataset   | Network | Single pre-trained<br>CNN + SVM (%) | Transfer Learning<br>(%) | TriDCCS-SVM     |
|-----------|---------|-------------------------------------|--------------------------|-----------------|
| UC Merced | AlexNet | 79.76                               | 93.57                    |                 |
|           | VGG19   | 81.19                               | 94.08                    |                 |
|           | VGG16   | 83.81                               | 95.00%                   | 97.86% (+2.86%) |
| SIRI-WHU  | AlexNet | 86.52                               | 91.34                    |                 |
|           | VGG19   | 87.60                               | 92.78                    |                 |
|           | VGG16   | 88.04                               | 93.40%                   | 96.20% (+2.80%) |



# Comparison of Classification Accuracy: TriDCCS-SVM vs. VGG16, VGG19 (Thirumaladevi et al., 2023)







## UNIVERSITI SAINS ISLAM MALAYSIA

جَامِعَة العُلوم الإسلامِية المَالِيزِية ISLAMIC SCIENCE UNIVERSITY OF MALAYSIA

Faculty of Science and Technology (FST)