Prof. Dr. Jingzhi Li

Department of Mathematics, Southern University of Science and Technology

2025 Spring

- 1 Modeling Change
- 2 Linear Dynamical Systems: $a_{n+1} = ra_n$
- **3** Affine dynamical Systems: $a_{n+1} = ra_n + b$
- 4 Equilibrium Points

- 1 Modeling Change A few examples
- 2 Linear Dynamical Systems: $a_{n+1} = ra_n$
- **3** Affine dynamical Systems: $a_{n+1} = ra_n + b$
- 4 Equilibrium Points

Modeling change

Basic paradigm:

- Future value = present value + change
- Change = future value present value

Discrete time \rightarrow difference equation

- change takes place in discrete time intervals (e.g., the depositing of interest in an account)
- in this lecture

Continuous time \rightarrow differential equation

- change takes place continuously (e.g., the position of a moving car)
- in a later lecture in this course

Department of Mathematics. Southern University of Science and Technology

Modeling change with difference equations

For a sequence of numbers a_1, a_2, \ldots, a_n , their differences are:

•
$$\Delta a_0 = a_1 - a_0$$

•
$$\Delta a_1 = a_2 - a_1$$

•
$$\Delta a_2 = a_3 - a_2$$

• .

•
$$\Delta a_n = a_{n+1} - a_n$$

- Modeling Change A few examples

Department of Mathematics. Southern University of Science and Technology

Modeling Change

A savings deposit

- A savings deposit initially worth 1000 eur
- Interest rate of 1% per month
- Calculate the value growth of the certificate

Denote by a_n the value of the deposit n months after the first deposit:

• $a_0 = 1000$

The value at time n+1 as a function of the value at time n:

- $\Delta a_n = a_{n+1} a_n = 0.01a_n$
- $a_{n+1} = 1.01a_n$, for all $n \ge 0$

Solution: $a_n = a_0 1.01^n$

Note

- We have an infinite set of algebraic equations
- This is called a (discrete) dynamical system
- The change may depend on several previous terms and/or external terms

How about if you withdraw 50 eur each month?

•
$$a_{n+1} - a_n = 0.01a_n - 50$$

Example: mortgage

Mortgaging a home

- Get a mortgage of 80,000 eur with an interest rate of 1% per month
- Monthly payment: 880.87 eur
- Question 1: after n payments, how much is there still to pay?
- Question 2: how long does it take to pay the whole mortgage?
 - Denote by b_n the value of the loan after n payments:
 - $b_0 = 80,000$
 - $b_{n+1} b_n = 0.01b_n 880.87$; in other words, $b_{n+1} = 1.01b_n 880.87$
 - What is the smallest n such that $b_n \leq 0$?

Example: growth of a yeast culture

We are given data on the growth of a yeast culture

- Measurements on the size of the culture at various time points
- Problem: propose a model for the growth
 - Idea: look at the change with respect to the population size
 - Observe that the change can be approximated as a straight line
 - Measure the slope of the line: 0.5
- Proposed model: $\Delta p_n = p_{n+1} p_n = 0.5 p_n$
 - Solution: $p_{n+1} = 1.5p_n$
 - Good model for the little data we have
 - The model predicts infinite growth; unlikely to hold against more data

Time	Observed	
in	yeast	Change in
hours	biomass	biomass
n	p_n	$p_{n+1} - p_n$
0	9.6	8.7
1	18.3	10.7
2	29.0	18.2
3	47.2	23.9
4	71.1	48.0
5	119.1	55.5
6	174.6	82.7
7	257.3	

Get more data on the yeast culture; plot the change per hour against the population size at the time Note

- The culture levels out at about 665 units
- Growth rate slows down to almost 0 as the population approaches the max value
- Old model: $p_{n+1} p_n = kp_n$
- **New model:** replace the constant k with a simple function that approaches 0 as p_n approaches the max value
- New model: $p_{n+1} p_n = r(665 p_n)p_n$ Yeast

Change

Time

New model:

•
$$p_{n+1} - p_n = r(665 - p_n)p_n$$

How do we test if the model makes sense?

- Compare the differences $p_{n+1} p_n$ and $(665 p_n)p_n$
- Check if there is a reasonable proportionality
- Answer: YES!
- r = 0.00082

Final model:

• $p_{n+1} = p_n + 0.00082(665 - p_n)p_n$

8.7	6291.84
10.7	11,834.61
18.2	18,444.00
23.9	29,160.16
48.0	42,226.29
55.5	65,016.69
82.7	85,623.84
93.4	104,901.21
90.3	110,225.01
72.3	98,784.00
46.4	77,867.61
35.1	58,936.41
34.6	41,754.96
11.4	22,406.64
10.3	15,507.36
4.8	9050.29
3.7	5968.69
2.2	3561.84

 $p_{n+1} - p_n$ $p_n (665 - p_n)$

Final model:

• $p_{n+1} = p_n + 0.00082(665 - p_n)p_n$

Test the model

- Result: very good fit
- Comment: discuss later how to measure the "goodness" of a fit; for now only through visual inspection

Time in hours	Observation	Prediction
- 0	9.6	9.6
1	18.3	14.8
2	29.0	22.6
3	47.2	34.5
4	71.1	52.4
5	119.1	78.7
6	174.6	116.6
7	257.3	169.0
8	350.7	237.8
9	441.0	321.1
10	513.3	411.6
11	559.7	497.1
12	594.8	565.6
13	629.4	611.7
14	640.8	638.4
15	651.1	652.3
16	655.9	659.1
17	659.6	662.3
18	661.8	663.8

- 2 Linear Dynamical Systems: $a_{n+1} = ra_n$

Department of Mathematics, Southern University of Science and Technology

Solutions to linear dynamical systems

Linear dynamical systems: $a_{n+1} = ra_n$, for some constant r

- By induction: the solution is $a_n = r^n a_0$
- $r = \frac{a_1}{a_0}$

Linear dynamical systems: $a_n = r^n a_0$, r = 0, 1, -1

Lecture 2

图 3: r=-1

图 5: r=-1.25

Linear dynamical systems: $a_n = r^n a_0$, -1 < r < 1

图 6: r=0.8

图 7: r=-0.8

19 / 32

- 1 Modeling Change
- 2 Linear Dynamical Systems: $a_{n+1} = ra_n$
- **3** Affine dynamical Systems: $a_{n+1} = ra_n + b$
- 4 Equilibrium Points

Example: prescription for digoxin (treatment of some heart conditions)

Problem: Prescribe an amount that keeps the concentration of digoxin in the bloodstream above an effective level, without exceeding a safe level (variation here among patients)

Several questions to settle:

- what is the decay of a single dose
- at what intervals to give the consecutive doses (not considered in this example)
- what doses to give

First question: what is the decay of a single dose?

 Give a single dose and measure the amount of digoxin remaining in the bloodstream after n days

n	a _n	Δa_n
0	0.500	
1	0.345	-0.155
2	0.238	-0.107
3	0.164	-0.074
4	0.113	-0.051
5	0.078	-0.035
6	0.054	-0.024
7	0.037	-0.017
8	0.026	-0.011

Plot Δa_n against a_n Conclusion:

•
$$a_{n+1} - a_n = -0.5a_n$$

•
$$a_{n+1} = 0.5a_n$$

Second part: additional doses

- We add daily a dosage of 0.1
- Model: $a_{n+1} = 0.5a_n + 0.1$

Initial value a_0 : might be different than the subsequent doses

- $a_0 = 0.1$ (series A)
- $a_0 = 0.2$ (series B)
- a₀ = 0.3 (series C)

Analytic solutions of affine dynamical systems

Affine dynamical systems:

• $a_{n+1} = ra_n + b$, for some constants r, b with $r \neq 1$

Analytic solution:

$$a_n = r^n c + \frac{b}{1-r}$$
, where $c = \frac{a_0 - b}{1-r}$

- $a_n = ra_{n-1} + b$
- $a_{n+1} a_n = r(a_n a_{n-1})$
- Let $x_n = a_{n+1} a_n$, $x_0 = a_1 a_0 = ra_0 + b a_0$
- Then $x_n = rx_{n-1}$, i.e., $x_n = r^n x_0$
- So $a_{k+1} a_k = r^k x_0$. Sum this relation from k = 0 to n 1:
- $a_n a_0 = x_0(1-r^n)/(1-r) = -r^n x_0/(1-r) + x_0/(1-r)$
 - Replace $x_0/(1-r) = -a_0 + b/(1-r)$
- $a_n a_0 = r^n c a_0 + b/(1-r)$, where $c = a_0 b/(1-r)$
- $a_n = r^n c + b/(1-r)$

- 1 Modeling Change
- 2 Linear Dynamical Systems: $a_{n+1} = ra_n$
- **3** Affine dynamical Systems: $a_{n+1} = ra_n + b$
- 4 Equilibrium Points

Equilibrium

Consider a dynamical system: $a_{n+1} = f(a_n)$

- A number a is called an equilibrium point (or a fixed point) of the dynamical system if a = f(a)
- In other words, if we start with initial value $a_0 = a$, then $a_n = a$, for all n > 0
- Important to identify the equilibrium points of a dynamical system (and their properties) to know about its asymptotic behavior

Example. Linear dynamical systems: $a_{n+1} = ra_n$, $r \neq 0$

- Look for equilibrium points: solve the equation x = rx, i.e., (1 - r)x = 0
- If $r \neq 1$, then 0 is the only equilibrium point
- If r = 1, then all numbers are equilibrium points

Types of equilibrium

Types of equilibrium points (informal definitions)

- Stable: starting from a nearby initial point will give an orbit that remains nearby the original orbit
 - Asymptotically stable (attractor): starting from a nearby initial point will give an orbit that converges towards the original orbit
 - Example: a pendulum in the lowest position
- Unstable: starting from a nearby initial point may give an orbit that goes away from the original orbit
 - Example: a pendulum in the highest position

Stable-unstable equilibrium Source for picture: Wikipedia

Lecture 2

Types of equilibrium points

Affine dynamical systems: $a_{n+1} = ra_n + b$, $r \neq 0$

- Look for equilibrium points: solve the equation x = rx + b, i.e., (1-r)x = b
 - If $r \neq 1$, then $\frac{b}{1-r}$ is the only equilibrium point
 - If r = 1 and b = 0, then all numbers are equilibrium points
 - If r=1 and $b\neq 0$, then the dynamical system has no equilibrium point
- Assume $r \neq 1$. What kind of equilibrium point is $\frac{b}{1-r}$? (asymptotically stable, unstable?)
- Recall that $a_n = r^n c + \frac{b}{1-r}$, where $c = a_0 \frac{b}{1-r}$
 - |r| < 1: $\frac{b}{1-r}$ is asymptotically stable
 - |r| > 1: $\frac{b}{1-r}$ is unstable
 - r = -1: $\frac{b}{2}$ is stable
 - Two constant subsequences (the odd and the even terms) on either side of the equilibrium
 - Depending on the value of a_0 , the two subsequences can be close to $\frac{b}{2}$ イロメ イ御 とくきとくきとしき

Nonlinear systems

- $a_{n+1} = f(a_n)$, where f is a non-linear function.
- **Example**: $a_{n+1} = r(1 a_n)a_n$, that came up earlier in this lecture
 - The system can have very different behavior depending on r
 - Also called the "logistic map"
 - Typical example for how chaotic behavior can rise from very simple (non-linear) dynamics

Bifurcation diagram for $a_{n+1} = r(1 - a_n)a_n$

- For each r, the diagram shows the period p of the dynamical system and the attractors of its p convergent subsequences a_{np+i} with $i=0,1,\ldots,p-1$
- Period doubles as r increases
- Eventually it leads to chaos

- Understand the concept of modeling the change in a discrete dynamical system
- Able to write a linear and an affine model with difference equations for a simple real-life phenomenon
- Understand the diverse behavior that a linear dynamical system model can have
- Understand the notion of equilibrium point
- Understand the different types of stability of equilibrium points