Exercise 9. (Q2.4): An unbounded sequence (a_n) and a convergent sequence (b_n) with (a_n-b_n) bounded. This is not possible. Let $\lim b_n=L$, then given an $\epsilon\in\mathbb{R}>0$, there exists an $N\in\mathbb{N}$, such that whenever n>N,

$$\begin{aligned} |b_n - L| < \epsilon \\ -\epsilon + L < b_n < \epsilon + L \\ -L - \epsilon < -b_n < -L + \epsilon \end{aligned}$$

$$a_n - L - \epsilon < a_n - b_n < a_n - L + \epsilon,$$

which shows that since (a_n) isn't bounded, neither can $(a_n - b_n)$ be bounded.