

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently Amended) A fluidising admixture for use with sprayable cementitious compositions, the admixture consisting of:

- (1) 2-phosphonobutane-1,2,4-tricarboxylic acid;
- (2) optionally, citric acid; and
- (3) at least one polymer derived from ethylenically-unsaturated mono- or dicarboxylic acids, and characterised in that the polymer consists of:
 - a) 51-95 mole % of moieties of formula 1a and/or 1b and/or 1c

wherein R¹ = hydrogen or a C₁₋₂₀ aliphatic hydrocarbon residue;
X = O_a M, -O-(C_mH_{2m}O)_n-R², -NH-(C_mH_{2m}O)_n-R²,
M = hydrogen, a mono- or divalent metal cation, an ammonium ion or an organic amine residue;
a=0.5 or 1;
R² = hydrogen, C₁₋₂₀ aliphatic hydrocarbon, C₅₋₈ cycloaliphatic hydrocarbon or optionally substituted C₆₋₁₄ aryl residue;
Y= O, NR²;
m= 2-4; and
n= 0-200;

b) 1-48.9 mole% of moieties of the general formula II

wherein R^3 = hydrogen or C_{1-5} aliphatic hydrocarbon;

$p = 0-3$; and

R^2 has the meaning given previously;

c) 0.1-5 mole % of moieties of Formulae IIIa or IIIb

wherein $\text{S} = \text{H}, -\text{COO}_a\text{M}, -\text{COOR}^5$

= $-\text{COOR}^5$ when S is $-\text{COOR}^5$ or COO_aM

$\text{U}^1 = -\text{CO-NH-}, -\text{O-}, -\text{CH}_2\text{O-}$

$\text{U}^2 = -\text{NH-CO-}, -\text{O-}, -\text{OCH}_2\text{-}$

$\text{V} = -\text{O-CO-C}_6\text{H}_4\text{-CO-O-}$ or $-\text{W-}$

$\text{R}^4 = \text{H}, \text{CH}_3$

R^5 = a C₃₋₂₀ aliphatic hydrocarbon residue, a C_{5-C₈} cycloaliphatic hydrocarbon residue or a C₆₋₁₄ aryl residue;

wherein

$r = 2-100$

$s = 1, 2$

z = 0-4

x = 1-150

$y = 0.15$; and

d) 0-47.9 mole % of moieties of the general formula IVa and / or IV b:

IVa

IVb

wherein a, M, X and Y have the significances hereinabove defined meanings defined above.

2. (Currently Amended) A fluidising admixture according to claim 1, in which:

a) the moiety is according to formula Ia;

R^1 , R^2 are independently H or CH_3 ;

$$X = O_a M, -O-(C_m H_{2m}O)_n-R^2$$

$M = H$ or a mono- or divalent metal cation:

$$a = 1.$$

$$Y = O(NR^2)$$

$m = 2, 3$, and

n= 20-150;

b) R², R³ are independently H or CH₃; and
p = 0-1; and

c) the moiety is according to formula IIIa;

R⁴, R⁵ are independently H, CH₃;

wherein

x = 20-50;

y = 1-10; and

z = 0-2.

3. (Currently Amended) A fluidising admixture according to claim 2, in which:

a) the moiety is according to formula Ia;

R¹ = H;

R² = CH₃;

X = O_a M;

M = a mono-or divalent metal cation;

Y = O, NR²;

m = 2; and

n = 25-50;

b) R², R³ = H; and

p = 0; and

c) the moiety is according to formula IIIa;

S = H, -COO_aM;

T = U¹-(CH-CH₂-O)_x- (CH₂-CH₂O)_yR⁶
 |
 CH³

-CO-O-(CH₂)_z-W-R⁷

R⁴, R⁵ = H;

R⁶ = R², -CH₂-CH-U²-C=CH
 | |
 R⁴ R⁴ S

R⁷ = R², -[(CH₂)₃-NH]_s-CO-C=CH
 |
 R⁴ S

-(CH₂)_z-O-CO-C=CH
 |
 R⁴ S

wherein

U¹ = -CO-NH-;

U² = -NH-CO-, -O-, -OCH₂-

x = 20-50;

y = 5-10; and

z = 1-2.

4. (Currently Amended) A method of imparting flow to a cementitious composition, comprising the addition thereto of [[an]] the admixture according to any one of claims of claim 1[-3]].
5. (Currently Amended) A method of spraying a cementitious composition comprising [[by]] preparing a cementitious mix and conveying the mix to a spray nozzle, there being added to the mix at preparation [[an]] the admixture according to of claim 1.
6. (New) The admixture of claim 1 wherein the polymer has a weight-average molecular weight of from about 5,000 to about 50,000.

7. (New) The admixture of claim 1 wherein the polymer has a weight-average molecular weight of from about 10,000 to about 40,000.

8. (New) The admixture of claim 1 wherein the proportions of the solids of the three components are:
 Component 1 - about 1% to about 40%;
 Component 2 - 0 to about 40%; and
 Component 3 - about 5% to about 60%.

9. (New) The method of claim 4 wherein the admixture is added at a rate of from about 0.2% to about 2% by weight solids of cement.

10. (New) A fluidising admixture for use with sprayable cementitious compositions, the admixture comprising:
 (1) 2-phosphonobutane-1,2,4-tricarboxylic acid;
 (2) optionally, citric acid monohydrate; and
 (3) at least one polymer derived from ethylenically-unsaturated mono- or dicarboxylic acids, and characterised in that the polymer comprises:
 a) 51-95 mole % of moieties of formula 1a and/or 1b and/or 1c

wherein R¹ = hydrogen or a C₁₋₂₀ aliphatic hydrocarbon residue;
 X = O_a M, -O-(C_mH_{2m}O)_n-R², -NH-(C_mH_{2m}O)_n-R²,
 M = hydrogen, a mono- or divalent metal cation, an ammonium ion or an organic amine residue;

a=0.5 or 1;

R² = hydrogen, C₁₋₂₀ aliphatic hydrocarbon, C₅₋₈ cycloaliphatic hydrocarbon or optionally substituted C₆₋₁₄ aryl residue;

Y= O, NR²;

m= 2-4; and

n= 0-200;

b) 1-48.9 mole% of moieties of the general formula II

wherein R³ = hydrogen or C₁₋₅ aliphatic hydrocarbon;

p = 0-3; and

R² has the meaning given previously;

c) 0.1-5 mole % of moieties of Formulae IIIa or IIIb

wherein S = H, -COO_aM, - COOR⁵

T = U¹- $\underset{\text{CH}^3}{(\text{CH}-\text{CH}_2-\text{O})_x}$ - $(\text{CH}_2-\text{CH}_2\text{O})_y\text{R}^6$

-W-R⁷

-CO-[NH-(CH₂)₃]_s-W-R⁷

-CO-O-(CH₂)_z-W-R⁷

-(CH₂)_z-V-(CH₂)_z-CH=CH-R²

= - COOR⁵ when S is - COOR⁵ or COO_a M

U¹ = -CO-NH-, -O-, -CH₂O-

U² = - NH-CO-, -O-, -OCH₂-

V = -O-CO-C₆H₄-CO-O- or -W-

$$R^4 = H, CH_3$$

R⁵ = a C₃₋₂₀ aliphatic hydrocarbon residue, a C_{5-C₈}

cycloaliphatic hydrocarbon residue or a C₆-14 aryl residue;

$$R^6 = R^2, -CH_2-CH(U^2-C=CH)-$$

R^4 R^4 S

$$R^7 = R^2, -[(CH_2)_3-NH]_s-CO-\underset{R^4}{\overset{S}{C}}=CH$$

wherein

r = 2-100

$$s = 1, 2$$

z = 0-4

x = 1-150

y = 0-15; and

d) 0-47.9 mole % of moieties of the general formula IVa and / or IV b:

IVa

IVb

wherein a, M, X and Y have the meanings defined above.

11. (New) A fluidising admixture according to claim 10, in which:

a) the moiety is according to formula Ia;

R^1, R^2 are independently H or CH_3 ;

$X = O_a M, -O-(C_m H_{2m}O)_n-R^2$

$M = H$ or a mono-or divalent metal cation;

$a = 1$;

$Y = O, NR^2$;

$m = 2-3$; and

$n = 20-150$;

b) R^2, R^3 are independently H or CH_3 ; and

$p = 0-1$; and

c) the moiety is according to formula IIIa;

$S = H, -COO_aM, -COOR^5$

$T = U^1-(CH-CH_2-O)_x-(CH_2-CH_2O)_yR^6$
 $\quad \quad \quad |$
 $\quad \quad \quad CH^3$

$-CO-[NH-(CH_2)_3]_s-W-R^7$

$-CO-O-(CH_2)_z-W-R^7$

R^4, R^5 are independently H, CH_3 ;

$R^6 = R^2, -CH_2-CH-U^2-C=S$
 $\quad \quad \quad | \quad |$
 $\quad \quad \quad R^4 \quad R^4 S$

$R^7 = R^2, -[(CH_2)_3-NH]_s-CO-C=CH$
 $\quad \quad \quad | \quad |$
 $\quad \quad \quad R^4 \quad S$

$-(CH_2)_z-O-CO-C=CH$
 $\quad \quad \quad | \quad |$
 $\quad \quad \quad R^4 \quad S$

wherein

$U^1 = -CO-NH-, -O-, -CH_2O-$

$U^2 = -NH-CO-, -O-, -OCH_2-$

$x = 20-50$;

$y = 1-10$; and

$z = 0-2$.

12. (New) A fluidising admixture according to claim 11, in which:

a) the moiety is according to formula Ia;

M = a mono-or divalent metal cation;

m = 2; and

n = 25-50;

b) $R^2, R^3 = H$; and

p = 0; and

c) the moiety is according to formula IIIa;

wherein

x = 20-50;

y = 5-10; and

z = 1-2.

13. (New) A method of imparting flow to a cementitious composition, comprising the addition thereto of the admixture of claim 10.

14. (New) A method of spraying a cementitious composition comprising preparing a cementitious mix and conveying the mix to a spray nozzle, there being added to the mix at preparation the admixture of claim 10.
15. (New) The admixture of claim 10 wherein the polymer has a weight-average molecular weight of from about 5,000 to about 50,000.
16. (New) The admixture of claim 10 wherein the polymer has a weight-average molecular weight of from about 10,000 to about 40,000.
17. (New) The admixture of claim 10 wherein the proportions of the solids of the three components are:
Component 1 - about 1% to about 40%;
Component 2 - 0 to about 40%; and
Component 3 - about 5% to about 60%.
18. (New) The method of claim 13 wherein the admixture is added at a rate of from about 0.2% to about 2% by weight solids of cement.