Trabalho – Macromodelo de Amplificador de Tensão

Willian Souza Vieira

Resumo – Neste trabalho vamos utilizar um macromodelo de um amplificador operacional, ou seja, vamos abstrair alguns dispositivos eletrônicos como diodos e transistores para mostrar que o amplificador combinado com resistores pode executar algumas funções muito uteis, como multiplicar por um fator constante, somar, subtrair e mudar de sinal. Na primeira parte vamos calcular o ganho total atribuindo resistências na entrada e na saída do amplificador. Na parte dois vamos jogar uma onda senoidal, afim de encontrar a tensão amplificada na saída, como também encontrar para que valor o amplificador satura.

I. INTRODUCAO

Um amplificador operacional é um circuito integrado amplificador, com um ganho elevado, seu diferencial é que ele tem duas entradas, uma inversora negativa e outra não inversora positiva, a tensão de sua única saída é o resultado da diferença entre as entradas inversora e não inversora multiplicado pelo ganho. Os amplificadores operacionais tiveram suas origens em computadores analógicos, este circuito integrado amplificador recebeu o nome de" operacional" porque foi projetado inicialmente para realizar operações matemáticas utilizando a tensão como uma analogia de quantidade.

II. MACROMODELO AMPLIFICADOR

Considere a utilização de um sensor que possa ser modelado como uma fonte

de tensão e uma resistência em série. Imagine que, para um determinado

valor do mensurando, a tensão de saída do sensor seja 1 mV e a resistência seja 10Ω .

É seu interesse que essa tensão de 1 mV seja amplificada para um valor de

1V (para que seja mais fácil medí-la com um ADC posteriormente). Para

tal, você usará o macromodelo de um amplificador de tensão. Esse, por sua

vez, estará conectado a uma resistência de carga de $10k\ \Omega.$

Utilize o macromodelo de um amplificador de tensão que contenha:

A. A fonte de tensão controlada por tensão com ganho Av0

Para encontrarmos o ganho Av0 temos que calcular a razão entre a tensão de entrada e a tensão desejada. Nesse experimento usamos uma tensão de 1mv e desejamos obter na saída do amplificador uma tensão de 1v, ou seja, fazemos

$$Av0 = \frac{tensao\ desejada}{tensao\ inicial} = 1000$$

B. Ganho Total

Agora arbitraremos resistores na entrada e na saída do sistema a fim de observar os efeitos e o ganho obtido.

O ganho, ou seja, quantas vezes o sinal foi aumentado

E calculado aplicando a razão entre a tensão na carga (tensão depois do amplificador) pela tensão no sensor (tensão antes do amplificador.

$$GT = \frac{Tensao\ na\ carga}{tensao\ no\ sensor}$$

Vamos calcular e vamos simular. Abaixo a tabela (Tabela 01) com os resultados.

Rentrada	Rsaida	Gtcalculado	Gtsimulado
10	100k	50v	45v
10	10	´499.5	499.501
10k	10	989.01	998.003v
100k	10	99.9	998.901v
	Resultados	Do experimento	dois
100k	10	9.99	9.99
100k	10	9.99	9.99

Tabela 01

O ganho simulado foi obtido usando o software LTspice XVIITM, abaixo uma imagem do circuito montado (imagem 01).

Imagem 01

III. SIMULACAO TRANSIENTE

Nesse experimento vamos manter as mesmas configurações utilizadas na Imagem 01, mas da fonte sairá uma tensão senoidal de amplitude igual a 0,1V e frequência igual 1kHz faremos duas simulações.

A. Fonte de tensão controlada por tensão

Mantendo as resistências e o ganho(Av0) obtemos uma onda senoidal com amplitude de 100v como vemos na imagem abaixo (Imagem 02).

Imagem 02

B. Arbitrary behavioral voltage source

Nesse caso limitaremos a tensão em -5v até +5v. Com essa limitação teremos um gráfico diferente do anterior, já que veremos a onda saturada, ou seja, com sua amplitude cortada quando atingir um ponto acima de 5 volts.

Imagem 03

Surge um questionamento, qual o máximo podemos colocar de amplitude inicial da tensão para que ela seja amplificada sem que seja saturada? Dividindo a tensão máxima pelo ganho (Av0) obtemos 0.005v, ou seja, aplicando essa amplitude na tensão inicial teremos a onda amplificada sem que sua amplitude seja cortada, sem que sature, como vemos na imagem abaixo (Imagem 04).

Imagem 04

Se colocarmos a amplitude com o valor 0.006 a tensão amplificada atingira o valor de 10v.

IV. CONCLUSÃO

O experimento mostrou como similar um amplificador utilizando uma fonte de tensão controlada por tensão. Com resistores diferentes na entrada e saída calculamos o ganho total da tenso e notamos que quanto maior a resistência na entrada maior será o ganho total. Também criamos uma onda senoidal de 0.1v que com um ganho(Av0) de 1000 elevou nossa tensão para 10 volts. Após isso

colocamos uma tensão máxima de 5v e descobrimos qual o valor máximo poderíamos colocar de amplitude na entrada para que a a=onda amplificada não saturasse. Esse experimento simples nos introduzido quanto ao uso e manipulação de amplificadores controlados por tensão e nos deu uma ideia superficial de seu funcionamento.