Epilogue

Like the solution of systems of linear equations, the evaluation of derivatives for composite functions is a classical computational problem whose basic solution has been known for hundreds of years. Yet with every new class of mathematical models and perpetual changes in the characteristics of modern computing platforms, the old problem reappears in a new light, calling at least for adjustments if not innovations in the established solution methodology. In this book we have tried to provide a repository of concepts and algorithmic ideas that can be used to discuss and resolve the differentiation aspects of any nonlinear computational task. Many basic questions remain unresolved, many promising ideas untested, and many almost certain improvements unimplemented.

From a mathematical point of view the most important challenge seems to firmly connect AD with the theory of semi-algebraic and subanalytic functions. That would then allow in principle the rigorous foundation of generalized differentiation concepts and the provision of corresponding derivative objects. The practicality of that approach is not entirely clear since, for example, the composition of the sine function with the reciprocal must be excluded. Another very interesting question is whether direct and adjoint derivatives of iterates converge when these are not generated by an ultimately smooth and contractive fixed point iteration. This question concerns, for example, conjugate gradients and other Krylov subspace methods. It appears currently that in these important cases the piggyback approach discussed in sections 15.3–15.5 may not work at all. Then a separate iterative solver for the direct or adjoint sensitivity equation must be set up by the user or possibly a rather sophisticated AD tool.

So far, the application of AD in the context of PDE-constrained optimization problems is restricted to the discretize-then-optimize, or better discretize-then-differentiate, approach. Currently, the relation to the alternative differentiate-then-discretize, also known as discretize-then-optimize, forms an active research area. Of critical importance here is that gradients and Jacobians of continuous (differential) equations are defined in terms of appropriate inner- or other duality products. In contrast the algebraic differentiation of discretized equations always yields gradient representations with respect to the Euclidean inner product on the "design space" of independent variables. It may therefore need to be transformed to a more appropriate ellipsoidal norm by what is often called a smoothing step. These connections warrant further investigation and may lead to more flexible and convenient AD software in the future.

398 Epilogue

Another area of current interest is the quantification of sensitivities and moments in the presence of stochastic uncertainty, which typically involves the evaluation of second and higher order derivatives. These are also of great importance in numerical bifurcation and experimental design, where third or even fourth derivatives become indispensable. Moreover, as recently shown by Kubota [BB+08], the evaluation of (sparse) permanents and some combinatorial graph problems can be recast as the task of evaluating mixed derivatives of high order. This observation provides another confirmation that some aspects of (algorithmic) differentiation are NP hard.

From a computer science point of view, the most pressing problem appears to be the identification, storage, and retrieval of those intermediate values or elemental partials that truly need to be passed from the recording sweep of a subroutine call to the corresponding returning sweep, which may take place much later. As the gap between processor speed and memory bandwidth continues to grow, all implementations of the basic reverse mode tend to become memory bound, whether they be based on source transformation or operator overloading. Therefore, to avoid disk storage of temporary data altogether, one may attempt to employ checkpointing and partial recomputation strategies of the kind developed in Chapter 12. Due to the associativity of the chain rule derivative computations typically allow for more concurrency than the underlying simulations. The promise and urgency to exploit this added parallelism grow as multicore processing become more and more prevalent. Therefore, appropriate strategies for the algorithmic differentiation of such codes turns into a significant aspect for the future acceptance of AD.

AD tool development has so far been carried out by small research groups with varying composition and fluent objectives. While a lot has been achieved in this way, it seems doubtful that sufficient progress toward a comprehensive AD system for all of Fortran 95 or C++ can be made in this "academic" fashion. Hence, wider collaboration to develop and maintain a compiler with "-ad" option as in the NAG Fortran compiler is a natural approach. Synergies of the required execution reversal technology can be expected with respect to parallelization and debugging. Operator overloading will continue to provide an extremely flexible and moderately efficient implementation of AD, and its efficiency may benefit from improved compiler optimization on user-defined types, possibly aided by the exploitation of expression templates on the statement level.

Concerning the general problem of evaluating derivatives, quite a few scientists and engineers have recently been convinced that it is simply an impossible task on their increasingly complex multilayered computer models. Consequently, some of them abandoned calculus-based simulation and optimization methods altogether in favor of "evolutionary computing approaches" that are based exclusively on function values and that often draw on rather colorful analogies with "real-life" processes. In contrast, we firmly believe that the techniques sketched in this book greatly enlarge the range of problems to which dreary old calculus methods can still be applied efficiently and even conveniently. In fact, they will be indispensable to the desired transition from system simulation to system optimization in scientific computing.

List of Figures

1.1	Computational Graph of Table 1.2 6
2.1 2.2	Lighthouse Geometry
2.3	Development of $f(x)$
3.1	Basic Calculations of Tangents and Gradients
3.2	Mapping of Tangent \dot{x} into Tangent \dot{y} by Function \dot{F}
3.3	Mapping of Normal \bar{y} into Normal \bar{x} by Function \bar{F}
3.4	Temporal and Spatial Complexities on Pyramid 54
4.1	Runtime Comparison of the Divided Difference Method and AD
4.0	on Reactor Model ATHLET [Ges95]
4.2	Elapsed-time Ratio for Scalar Adjoints on Speelpenning 87
5.1	Adjoint of Adjoint and Tangent of Adjoint 91
5.2	Hessian-vector and Hessian-matrix Products
6.1	From Function Sources to Derived Object Files 108
6.2	Linking and Executing Derived Object Files 109
6.3	Structure of the Trace
6.4	General Architecture of a Source Preprocessor
6.5	A Control Flow Graph Enhanced with Potential Communica-
	tion Edges
6.6	A Control Flow Graph with a Parallelizable Loop 130
6.7	Deadlock, Reordered send/recv, Buffered Sends
6.8	Nonblocking Send isend Followed by wait to Break Deadlock 133
6.9	Adjoining of Collective Reduction and Broadcast
6.10	Original Code with waitall (left), Manually Augmented with
0.11	awaitall (center), and Corresponding Return Sweep (right) 136
6.11	Handling of the barrier Routine
6.12	Introduction of a Race Condition by Adjoining
7.1	Saxpys Performed during Execution [BK ⁺ 97] 152
8.1	Row Compression/Reconstruction

400 List of Figures

8.3 Two-Stage Seeding			
8.4 Coleman–Verma Partition of Rectangular A . 174 9.1 Naumann's First Example	8.2	- • •	166
9.1 Naumann's First Example	8.3		169
9.2 Graph for Equation (9.2)	8.4	Coleman–Verma Partition of Rectangular A	174
9.3 Eliminations on Computational Subgraph 199 9.4 Naumann's Lion Example 201 9.5 Original Graph of Separated Energy 202 9.6 Alternate Graph of Separated Energy 202 9.7 Reid's Example of Potential Accumulation Instability 203 9.8 Line-Graph for Naumann's First Example 204 9.9 Result of Eliminating the Faces $(-1,1,6)$ and $(0,1,6)$ 206 10.1 Three Elimination Sequences on the Lighthouse Problem 212 10.2 Diamond Example 213 10.3 Graph for Table 10.1 213 10.4 Example where Only Relatively Greedy Markowitz is Optimal 214 10.5 Graph of Evolution with Harmonic Boundary Conditions 216 10.6 Local Evaluation Procedure G in Context of Large Function F 221 10.7 Scalar Assignment Tree 223 10.8 Runtime Reduction by Preaccumulation from $[BK^+97]$ 224 10.9 Modified Computational Graph \tilde{G} 228 10.10 Local Elimination, Normalization, and Rerouting of Edge (j,i) 231 10.11 Scarcity-Preserving Elimination of (j,i_2) and (k_2,j) 233 10.12 Postrouting of $(-2,2)$ via $(-2,1)$ to be Followed by Absorption of $(1,2)$ 234 10.14 Normalization of Edges $(-2,1)$ and $(2,4)$ 234 10.15 Update Dependences on the Upwinding Example 235 10.16 Number of Edges during Graph Simplification 236 10.17 Symmetric Graph Corresponding to Table 10.4 237 12.1 Simple Call Tree 269 12.2 Joint Reversal of F_i and T_i 260 12.3 Split Reversal of F_i and T_i 270 12.4 T_1, F_2 Split; T_2, F_1 Joint 270 12.5 Example with Strong Link 272 12.6 Active Boughs on Euclidean Distance Problem (Fig. 12.5) 273 12.7 Partially Completed Tree Reversal with Weak and Strong Links 273 12.8 Flat Call Tree 277 12.9 Vertical Call Tree 277 12.9 Vertical Call Tree 277 12.9 Vertical Call Tree 67 Evolutionary System 278 12.11 Fully Joint Reversal of Call Tree of Fig. 12.10	9.1		186
9.4 Naumann's Lion Example	9.2	Graph for Equation $(9.2) \dots \dots \dots \dots \dots$	194
9.5 Original Graph of Separated Energy	9.3	Eliminations on Computational Subgraph	199
9.6 Alternate Graph of Separated Energy	9.4		201
9.7 Reid's Example of Potential Accumulation Instability	9.5	Original Graph of Separated Energy	202
9.8Line-Graph for Naumann's First Example2049.9Result of Eliminating the Faces $(-1,1,6)$ and $(0,1,6)$ 20610.1Three Elimination Sequences on the Lighthouse Problem21210.2Diamond Example21310.3Graph for Table 10.121310.4Example where Only Relatively Greedy Markowitz is Optimal21410.5Graph of Evolution with Harmonic Boundary Conditions21610.6Local Evaluation Procedure G in Context of Large Function F 22110.7Scalar Assignment Tree22310.8Runtime Reduction by Preaccumulation from $[BK^+97]$ 22410.9Modified Computational Graph $\hat{\mathcal{G}}$ 22810.10Local Elimination, Normalization, and Rerouting of Edge (j,i) 23110.11Scarcity-Preserving Elimination of (j,i_2) and (k_2,j) 23310.12Postrouting of $(-2,2)$ via $(-2,1)$ to be Followed by Absorption of $(2,1)$ 23410.13Prerouting of $(2,3)$ via $(1,4)$ to be Followed by Absorption of $(2,1)$ 23410.14Normalization of Edges $(-2,1)$ and $(2,4)$ 23410.15Update Dependences on the Upwinding Example23510.16Number of Edges during Graph Simplification23610.17Symmetric Graph Corresponding to Table 10.423712.1Simple Call Tree26912.2Joint Reversal of F_i and T_i 27012.4 T_1, F_2 Split; T_2, F_1 Joint27012.5Example with Strong Link27212.6Active	9.6	Alternate Graph of Separated Energy	202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.7	Reid's Example of Potential Accumulation Instability	203
10.1 Three Elimination Sequences on the Lighthouse Problem	9.8	Line-Graph for Naumann's First Example	204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.9		206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.1	Three Elimination Sequences on the Lighthouse Problem	212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.2	Diamond Example	213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.3	Graph for Table 10.1	213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.4		214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.5	- • • • • • • • • • • • • • • • • • • •	216
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.6	ž v	221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.7		223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Postrouting of $(-2,2)$ via $(-2,1)$ to be Followed by Absorption	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.19		∠55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.13		234
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.14	Normalization of Edges $(-2,1)$ and $(2,4)$	234
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			235
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			236
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~ ~ ~ ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.1	Simple Call Tree	269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.2	Joint Reversal of F_i and T_i	269
12.5Example with Strong Link27212.6Active Boughs on Euclidean Distance Problem (Fig. 12.5)27312.7Partially Completed Tree Reversal with Weak and Strong Links27312.8Flat Call Tree27712.9Vertical Call Tree27712.10Bracketed Tree of Evolutionary System27812.11Fully Joint Reversal of Call Tree of Fig. 12.10279	12.3	Split Reversal of F_i and T_i	270
12.5Example with Strong Link27212.6Active Boughs on Euclidean Distance Problem (Fig. 12.5)27312.7Partially Completed Tree Reversal with Weak and Strong Links27312.8Flat Call Tree27712.9Vertical Call Tree27712.10Bracketed Tree of Evolutionary System27812.11Fully Joint Reversal of Call Tree of Fig. 12.10279	12.4	T_1 , F_2 Split; T_2 , F_1 Joint	270
12.6Active Boughs on Euclidean Distance Problem (Fig. 12.5).27312.7Partially Completed Tree Reversal with Weak and Strong Links27312.8Flat Call Tree27712.9Vertical Call Tree27712.10Bracketed Tree of Evolutionary System27812.11Fully Joint Reversal of Call Tree of Fig. 12.10279	12.5		
12.7Partially Completed Tree Reversal with Weak and Strong Links27312.8Flat Call Tree12.9Vertical Call Tree12.10Bracketed Tree of Evolutionary System12.11Fully Joint Reversal of Call Tree of Fig. 12.10	12.6	-	273
12.8 Flat Call Tree 277 12.9 Vertical Call Tree 277 12.10 Bracketed Tree of Evolutionary System 278 12.11 Fully Joint Reversal of Call Tree of Fig. 12.10 279			
12.9Vertical Call Tree <t< td=""><td></td><td></td><td>277</td></t<>			277
12.10 Bracketed Tree of Evolutionary System			277
12.11 Fully Joint Reversal of Call Tree of Fig. 12.10 279			
		v v	

List of Figures 401

12.13	Relative Cost r for Chain Length l and Checkpoint Number c .	283
12.14	Absolute Cost t for Chain Length l and Checkpoint Number c .	284
12.15	The Optimal Domain of \hat{l} for $l > 2$	287
12.16	Optimal Schedule for $c=2$ and $l=6$ Yielding $t=8$ and $q=3$.	289
12.17	Optimal Sequential Schedule for $c=3$ and $l=16$	289
12.18	l_u^* and l_b^* for $u = 2, 3, 4, 5 \dots$	291
12.19	Comparison of Runtimes for $l = 100, 500, 1000, 5000$	294
12.20	Optimal Parallel Schedule for $c=4,p=3,$ and $l=17$	297
13.1	Runtime Ratio for Taylor Coefficients	308
13.2	Family of Univariate Taylor Expansions along Rays from Origin	313
13.3	Computational Graph of Taylor Recurrence and Preaccumulate	319
13.4	Commuting Extension and Differentiation Operators \mathcal{E}_d and \mathcal{D}	321
14.1	Lighthouse Geometry with Cubic Quay Wall	338
14.1 14.2	Lighthouse Geometry with Cubic Quay Wall Light Point Jump at Critical Time from Lower to Upper Branch	
		338
14.2	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f= x_1^2-\sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon=0.05$	338 344
14.2 14.3	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f= x_1^2-\sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon=0.05$ (dash-dot), $\varepsilon=0.02$ (dot), and $\varepsilon=0.003$ (solid)	338 344 368
14.2 14.3	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f= x_1^2-\sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon=0.05$	338 344 368
14.2 14.3 15.1	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f = x_1^2 - \sin(x_2) \dots \dots \dots$ Newton Approximants and Number of Newton Steps for $\varepsilon = 0.05$ (dash-dot), $\varepsilon = 0.02$ (dot), and $\varepsilon = 0.003$ (solid) Derivative Iterates \dot{z}_k for $k = 4$, 6, 8, and 16 Normal and Corrected Values of Drag Coefficient	338 344 368 369 375
14.2 14.3 15.1 15.2	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f = x_1^2 - \sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon = 0.05$ (dash-dot), $\varepsilon = 0.02$ (dot), and $\varepsilon = 0.003$ (solid) Derivative Iterates \dot{z}_k for $k = 4$, 6, 8, and 16 Normal and Corrected Values of Drag Coefficient Convergence Behavior of Function and Derivative on NS Code .	338 344 368 369 375 378
14.2 14.3 15.1 15.2 15.3	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f = x_1^2 - \sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon = 0.05$ (dash-dot), $\varepsilon = 0.02$ (dot), and $\varepsilon = 0.003$ (solid) Derivative Iterates \dot{z}_k for $k = 4$, 6, 8, and 16 Normal and Corrected Values of Drag Coefficient Convergence Behavior of Function and Derivative on NS Code . Results of Simplified Derivative Recurrence on Hilbert Example	338 344 368 369 375 378 385
14.2 14.3 15.1 15.2 15.3 15.4	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f = x_1^2 - \sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon = 0.05$ (dash-dot), $\varepsilon = 0.02$ (dot), and $\varepsilon = 0.003$ (solid) Derivative Iterates \dot{z}_k for $k = 4$, 6, 8, and 16 Normal and Corrected Values of Drag Coefficient Convergence Behavior of Function and Derivative on NS Code . Results of Simplified Derivative Recurrence on Hilbert Example Results of Full Derivative Recurrence on Hilbert Example	338 344 368 369 375 378 385 386
14.2 14.3 15.1 15.2 15.3 15.4 15.5	Light Point Jump at Critical Time from Lower to Upper Branch Nonsmooth Example $f = x_1^2 - \sin(x_2) $ Newton Approximants and Number of Newton Steps for $\varepsilon = 0.05$ (dash-dot), $\varepsilon = 0.02$ (dot), and $\varepsilon = 0.003$ (solid) Derivative Iterates \dot{z}_k for $k = 4$, 6, 8, and 16 Normal and Corrected Values of Drag Coefficient Convergence Behavior of Function and Derivative on NS Code . Results of Simplified Derivative Recurrence on Hilbert Example	338 344 368 369 375 378 385 386

List of Tables

1.1 1.2 1.3 1.4	How we Do Not compute derivatives	2 5 7 9
2.1 2.2 2.3	Lighthouse Procedure	18 19 22
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	Tangent Procedure Tangent Recursion for General Evaluation Procedure Tangent Operations General Tangent Procedure Incremental Adjoint Recursion, No Overwrites! Nonincremental Adjoint Recursion, No Overwrites! Adjoint Procedure for Lighthouse Example, No Overwrites! Incremental Reverse Mode on Speelpenning Nonincremental Return Sweep on Speelpenning Example Pyramid Example Procedure Pyramid Dependence Vector Forward on Pyramid Reverse on Pyramid	32 34 35 35 41 41 42 46 47 53 53 53
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Allocation for Lighthouse	62 62 65 66 67 67 68 68 70 72 75
4.12	Interval Complexity	80

404 List of Tables

4.13	Elemental Tangent Complexity	81
4.14	Original and Tangent Operations with Associated Work	81
4.15	Tangent Vector Complexity	82
4.16	Original and Adjoint Operations with Associated Work	84
4.17	Gradient Complexity	85
4.18	Complexity of Gradient Vector	85
5.1	Adjoining an Iterative Assignment	94
5.2	Adjoining an Explicit Evolution	95
5.3	Adjoining an Incremental Assignment	95
5.4	Adjoint Pair of Linear Incremental Procedures	97
5.5	Polynomial Interpolation	98
5.6	Second-Order Adjoint Procedure	100
5.7	Original, Tangent, Adjoint, & Second-Order Adjoint Operations	
5.8	Slopes Obtained from Runtime Results	104
0.0	The part of the state of the st	101
6.1	Rules for Adjoining a Restricted Set of MPI send/recv Patterns	134
7.1	Sparse Forward Jacobian Procedure	151
7.2	Sparse Reverse Jacobian Procedure	
7.3	Additions to Table 7.1 for Evaluating Hessians Forward	
7.4	Additions to Table 7.1 for Evaluating Hessians, No Overwrite! .	
1.4	Additions to Table 1.1 for Evaluating Hessians, No Overwrite: .	101
8.1	Computation of Coleman–Verma Partition for Given p	176
8.2	Computing the Reduced Width $\tilde{n}(H) = \max p$ of $H = H^{\top}$	
8.3	Cost Ratio for Tensors and Hessians	
8.4	Jacobian with $\bar{n} \leq \hat{n} \leq \chi(\mathcal{G}_c) \leq n$ and $\bar{m} \leq \hat{m} \leq \chi(\mathcal{G}_r) \leq m$.	
9.1	Jacobian Accumulation by Forward Mode: $10 mults, 2 adds$	
9.2	Accumulation by Cross-Country Elimination: $8 mults, 2 adds$.	
9.3	General Jacobian Accumulation Procedure	
9.4	Linearized Evaluation Procedure	195
10.1		010
10.1	Another Example	
10.2	Multiplication Count for Accumulation on Planar Evolution	
10.3	Modifications of a Particular Edge $(j,i) \in \mathcal{E}$	
10.4	Nonincremental Reverse for (10.6)	237
11.1	Evaluation Procedure for Rank-One Example	246
12.1	Forward and Return Motions with Total Taping	262
12.1	Return Motion with Total Recalculation	263 263
		263
12.3	Procedure for f and \bar{f}	266
12.4		266
12.5	8	
12.6		267
12.7	Inheritance Rules for Motions with $\bigcirc \equiv \bigcirc + \bigcirc \dots$	271

List of Tables 405

12.8	Memory Requirements for $l = 100, 500, 1000, 5000 \dots$	293
13.1	Taylor Coefficient Propagation through Arithmetic Operations .	305
13.2	Taylor Coefficient Propagation through Univariate Elementals .	308
13.3	Relations between Tensor and Univariate Taylor Coefficients	314
13.4	Number and Size of Conversion Coefficients	315
13.5	Taylor Exponential with Componentwise Adjoint	317
13.6	Nonincremental Reverse Sweep on Simplified $(\gamma = 2, w = 1)$	
	Lighthouse with $d=2, \bar{r}_2=1/\sqrt{2}$, and $\bar{r}_1=\bar{r}_0=0$	
13.7	Coefficient Doubling by Newton's Method	330
14.1	Cubic Lighthouse by Cardan	339
14.2	Pivoting Branch on 2×2 System	341
14.3	A Lipschitz Continuous Example	344
14.4	Laurent Model with Fractional Leading Term	
14.5	Special Values of Laurent Model	
14.6	Evaluation of $v = u + w$ in Laurent Arithmetic	354
14.7	Elementaries $v = \psi(u)$ at Laurent Numbers (Defaults: $e_v = e_u$	
	and $d_v = d_u$; Convention: $d_v \leq \bar{d}$ means $d_v = \min\{\bar{d}, \hat{d}\})$	355
14.8	Step Functions on Laurent Number	
14.9	Laurent Evaluation of $y = \sqrt{x^2 + z^2}$ for $(x, z) = t(\cos(t), \sin(t))$	357
14.10	Laurent Evaluation along $x(t) = t - t^2$ with $\hat{d} = 3 \dots \dots$	
14.11	Laurent Evaluation of $y = x^2/(1 - \cos(x))$ along $x(t) = t$	358
15.1	Direct Fixed Point Iteration	384
15.2	Adjoint Fixed Point Iteration	
15.3	Second-Order Adjoint Fixed Point Iteration	391

Assumptions and Definitions

Assumption	(ED)	: Elemental Differentiability	23
Assumption	(TA)	: Temporal Additivity of Task	74
Assumption	(EB)	: Elemental Task Boundedness	78
Assumption	(PC)	: Path Connectedness	149
Definition	(MW)	: Matrix Width, Maximal Domain, Range Size	149
Definition	(BP)	: Biclique Property	206
Definition	(LP)	: Local Procedure and Jacobian	222
Definition	(SC)	: Jacobian Dimension and Scarcity	227
Definition	(SG)	: Symmetric Computational Graph	238
Definition	(PS)	: Partial Separability	252
Definition	(RS)	: Reversal Schedules	280
Definition	(TC)	: Taylor Coefficient Functions	304
Definition	(AI)	: Approximants of Intermediates	304
Definition	(PD)	: Piecewise Differentiability	342
Assumption	(IC)	: Isolated Criticalities	348
Definition	(SD)	: Stable Domain	348
Definition	(LN)	: Laurent Number	351
Definition	(RA)	: Regular Arc and Determinacy Degree	360
Definition	(FS)	: Finite Slopes	361
Assumption	(JR)	: Jacobian Regularity	371
Assumption	(GC)	: Global Contractivity	378

Propositions, Corollaries, and Lemmas

Proposition	2.1	Chain Rule	23
Corollary	2.1	Composite Differentiation	25
Proposition	4.1	General Consistency of Tangents	64
Proposition	4.2	General Consistency of Adjoints	69
Proposition	4.3	Boundedness of Additive Tasks	78
Proposition	5.1	Reflexive Pairs of Nonincremental Procedures	97
Lemma	7.1	FISCHER AND FLANDERS	148
Proposition	7.1	Sparsity of Lagrangian Hessians	157
Proposition	8.1	Newsam-Ramsdell Principle	163
Proposition	9.1	FINITE TERMINATION OF JACOBIAN ACCUMULATION	192
Proposition	9.2	EXPLICIT JACOBIAN ACCUMULATION	196
Corollary	9.1	Edge-Elimination Rules	198
Proposition	9.3	FINITE TERMINATION OF EDGE-ELIMINATION	199
Corollary	9.2	VERTEX-ELIMINATION RULE	200
Proposition	10.1	Complexity Bracket on One-Dimensional Evolution	217
Proposition	10.2	IMPLICATION OF THE RANK THEOREM	229
Proposition	10.3	SCARCITY-PRESERVING MODIFICATIONS	232
Lemma	10.1	Graph Symmetry Implies Matrix Symmetry	238
Lemma	11.1	Hessian Sparsity Implies Partial Separability	249
Proposition	11.1	Decomposition into Dense Subfunctions	250
Lemma	12.1	ACTIVE BOUGH STRUCTURE	272
Proposition	12.1	Tree Reversal Schedule	274
Corollary	12.1	Temporal Complexity of Reversal	275
Corollary	12.2	SPATIAL COMPLEXITY OF GENERAL REVERSAL	276
Lemma	12.2	CHECKPOINT PERSISTENCE	282
Proposition	12.2	Decomposition of Sequential Reversals	283
Proposition	12.3	BINOMIAL REVERSAL SCHEDULES	285
Proposition	12.4	OPTIMAL OFFLINE CHAIN REVERSAL SCHEDULE	287
Proposition	12.5	COMPARISON OF UNIFORM AND BINOMIAL CHECKPOINTING	292
Proposition	13.1	Taylor Polynomials of ODE Solutions	307
Proposition	13.2	Taylor-to-Tensor Conversion	315
Lamma	13.1	IACORIAN OF TAVIOR EVRONENTIAL	318

_			
Proposition	13.3	Jacobians of Taylor Functions	320
Corollary	13.1	DERIVATIVE OF TAYLOR CALCULUS	321
Corollary	13.2	LINEARITY IN HIGHER COEFFICIENTS	329
Proposition	14.1	Fischer's Result [Fis91]	343
Proposition	14.2	FULL MEASURE OF STABLE DOMAIN	348
Corollary	14.1	NONCRITICALITY IMPLIES STABILITY	350
Proposition	14.3	Consistent Propagation of Laurent Model	357
Lemma	14.1	LIMITS OF LEADING EXPONENT AND SIGNIFICANT DEGREE	359
Proposition	14.4	REGULAR ARCS AND ESSENTIAL SELECTIONS	360
Proposition	14.5	FINITE SLOPES YIELD GENERALIZED JACOBIANS	362
Lemma	15.1	FORWARD AND REVERSE CONSISTENCY CHECK	373
Corollary	15.1	CORRECTED FUNCTION ESTIMATE	374
Proposition	15.1	Convergence Factor of Derivatives	381
Lemma	15.2	SECOND-ORDER ADJOINT CONSISTENCY CHECK	391

- [AB74] R.S. Anderssen and P. Bloomfield, Numerical differentiation proceedings for non-exact data, Numer. Math. 22 (1974), 157–182.
- [AB04] N. Arora and L.T. Biegler, A trust region SQP algorithm for equality constrained parameter estimation with simple parameter bounds, Comput. Optim. Appl. 28, (2004), 51–86.
- [Alk98] B. Alkire, Parallel computation of Hessian matrices under Microsoft Windows NT, SIAM News 31, December 1998, 8–9.
- [AC92] J.S. Arora and J.B. Cardosot, Variational principle for shape design sensitivity analysis, AIAA 30 (1992), 538–547.
- [AC+92] B.M. Averick, R.G. Carter, J.J. Moré, and G.-L. Xue, The MINPACK-2 Test Problem Collection, Preprint MCS-P153-0692, ANL/MCS-TM-150, Rev. 1, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1992.
- [ACP01] P. Aubert, N. Di Césaré, and O. Pironneau, Automatic differentiation in C++ using expression templates and application to a flow control system, Comput. Vis. Sci. 3 (2001) 197–208.
- [AH83] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.
- [AHU74] A.V. Aho, J. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
- [Bau74] F.L. Bauer, Computational graphs and rounding error, SIAM J. Numer. Anal. 11 (1974), 87–96.
- [BBC94] M.C. Bartholemew-Biggs, L. Bartholemew-Biggs, and B. Christianson, Optimization and automatic differentiation in Ada: Some practical experience, Optim. Methods Softw. 4 (1994), 47–73.
- [BB+95] A.W. Bojanczyk, R.P. Brent, and F.R. de Hoog, Stability analysis of a general Toeplitz system solver, Numer. Algorithms 10 (1995), 225–244.

[BB+96] M. Berz, C.H. Bischof, G. Corliss, and A. Griewank (eds.), Computational Differentiation—Techniques, Applications, and Tools, SIAM, Philadelphia, 1996.

- [BB+97] C.H. Bischof, A. Bouaricha, P.M. Khademi, and J.J. Moré, Computing gradients in large-scale optimization using automatic differentiation, INFORMS J. Comput. 9 (1997), 185–194.
- [BB+99] I. Bauer, H.G. Bock, S. Körkel, and J.P. Schlöder, Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes, in Proc. of Scientific Computing in Chemical Engineering II, Hamburg, Springer, Berlin, 1999, pp. 338–345.
- [BB+08] C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke, (eds.), Advances in Automatic Differentiation, Lect. Notes Comput. Sci. Eng. 64, Springer, Berlin, 2008.
- [BCG93] C.H. Bischof, G. Corliss, and A. Griewank, Structured secondand higher-order derivatives through univariate Taylor series, Optim. Methods Softw. 2 (1993), 211–232.
- [BCL01] A. Ben-Haj-Yedder, E. Cances, and C. Le Bris, Optimal laser control of chemical reactions using automatic differentiation, in [CF⁺01], pp. 205–211.
- [BC+92] C.H. Bischof, G.F. Corliss, L. Green, A. Griewank, K. Haigler, and P. Newman, Automatic differentiation of advanced CFD codes for multidisciplinary design, J. Comput. Syst. in Engrg. 3 (1992), 625– 638.
- [BC⁺96] C.H. Bischof, A. Carle, P.M. Khademi, and A. Mauer, *The ADIFOR* 2.0 system for the automatic differentiation of Fortran 77 programs, IEEE Comput. Sci. Engrg. 3 (1996).
- [BC+06] M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris (eds.), Automatic Differentiation: Applications, Theory, and Implementations, Lect. Notes Comput. Sci. Eng. 50, Springer, New York, 2006.
- [BCP96] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics Appl. Math. 14, SIAM, Philadelphia, 1996.
- [BD95] C.H. Bischof and F. Dilley, A compilation of automatic differentiation tools, SIGNUM Newsletter **30** (1995), no. 3, 2–20.
- [BD+02] L.S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R.C. Whaley, An updated set of basic linear algebra subprograms (BLAS), ACM Trans. Math. Softw. 28 (2002), no. 2, 135–151.

[BDL08] J. Bolte, A. Daniilidis, and A.S. Lewis, *Tame mappings are semismooth*, to appear in Math. Program. (2008).

- [Bel07] B.M. Bell, A Package for C++ Algorithmic Differentiation, http://www.coin-or.org/CppAD/, 2007.
- [Ben73] Ch. Bennett, Logical reversibility of computation, IBM J. Research and Development 17 (1973), 525–532.
- [Ber90a] M. Berz, Arbitrary order description of arbitrary particle optical systems, Nuclear Instruments and Methods **A298** (1990), 26–40.
- [Ber90b] M. Berz, The DA Precompiler DAFOR, Tech. Report, Lawrence Berkeley National Laboratory, Berkeley, CA, 1990.
- [Ber91b] M. Berz, Forward algorithms for high orders and many variables with application to beam physics, in [GC91], pp. 147–156.
- [Ber95] M. Berz, COSY INFINITY Version 7 Reference Manual, Tech. Report MSUCL-977, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 1995.
- [Ber96] M. Berz, Calculus and numerics on Levi-Civita fields, in [BB+96], pp. 19–35.
- [Ber98] M. Berggren, Numerical solution of a flow control problem: Vorticity reduction by dynamic boundary action, SIAM J. Sci. Comput. 19 (1998), 829–860.
- [Bes98] A. Best, Vergleich von Minimierungsverfahren in der Umformsimulation unter Verwendung des Automatischen Differenzierens, diploma thesis, Technische Universität Dresden, Germany, 1998.
- [Bey84] W.J. Beyn, Defining equations for singular solutions and numerical applications, in Numerical Methods for Bifurcation Problems, T. Küpper, H.D. Mittelman, and H. Weber, eds., Internat. Ser. Numer. Math., Birkhäuser, Boston, 1984, pp. 42–56.
- [BGL96] M. Berggren, R. Glowinski, and J.L. Lions, A computational approach to controllability issues for flow-related models. I: Pointwise control of the viscous Burgers equation, Int. J. Comput. Fluid Dyn. 7 (1996), 237–252.
- [BGP06] R.A. Bartlett, D.M. Gay, and E.T. Phipps: Automatic differentiation of C++ codes for large-scale scientific computing, in Proceedings of ICCS 2006, V. Alexandrov et al., eds., Lecture Notes in Comput. Sci. 3994, Springer, Berlin, 2006, pp. 525–532.
- [BH96] C.H. Bischof and M.R. Haghighat, *Hierarchical approaches to automatic differentiation*, in [BB⁺96], pp. 83–94.

[BIP88] J. Burns, K. Ito, and G. Prost, On nonconvergence of adjoint semigroups for control systems with delays, SIAM J. Control Optim. 26 (1988), 1442–1454.

- [BJ⁺96] C.H. Bischof, W.T. Jones, J. Samareh-Abolhassani, and A. Mauer, Experiences with the application of the ADIC automatic differentiation tool to the CSCMDO 3-D volume grid generation code, AIAA Paper 96-0716, Jan. 1996.
- [BK+59] L.M. Beda, L.N. Korolev, N.V. Sukkikh, and T.S. Frolova, Programs for Automatic Differentiation for the Machine BESM, Tech. Report, Institute for Precise Mechanics and Computation Techniques, Academy of Science, Moscow, 1959.
- [BK78] R.P. Brent and H.T. Kung, Fast algorithms for manipulating formal power series, Assoc. Comput. Mach. 25 (1978), 581–595.
- [BK⁺97] C.H. Bischof, P.M. Khademi, A. Bouaricha, and A. Carle, Efficient computation of gradients and Jacobians by dynamic exploitation of sparsity in automatic differentiation, Optim. Methods Softw. 7 (1997), 1–39.
- [BL⁺01] H.M. Bücker and B. Lang and D. an Mey and C.H. Bischof, *Bringing together automatic differentiation and OpenMP*, in ICS '01: Proceedings of the 15th international conference on Supercomputing, ACM, New York, 2001, 246–251.
- [BP97] Å. Björck and V. Pereyra, Solution of Vandermonde systems of equations, Math. Comp. 24 (1997), 893–903.
- [BPS06] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer, New York, 2006.
- [BR01] R. Becker and R. Rannacher, An optimal control approach to a-posteriori error estimation in finite element methods, Acta Numerica 10 (2001), pp. 1–102.
- [BRM97] C.H. Bischof, L. Roh, and A. Mauer, ADIC: An Extensible Automatic Differentiation Tool for ANSI-C, Tech. Report ANL/MCS-P626-1196, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1997.
- [Bro98] S.A. Brown, Models for Automatic Differentiation: A Conceptual Framework for Exploiting Program Transformation, Ph.D. thesis, University of Hertfordshire, Hertfordshire, UK, 1998.
- [BRW04] H.M. Bücker, A. Rasch, and A. Wolf, A class of OpenMP applications involving nested parallelism, in SAC '04: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004, pp. 220–224.

[BS83] W. Baur and V. Strassen, *The complexity of partial derivatives*, Theoret. Comput. Sci. **22** (1983), 317–330.

- [BS92] D. Bestle and J. Seybold, Sensitivity analysis of constraint multibody systems, Arch. Appl. Mech. **62** (1992), 181–190.
- [BS96] C. Bendsten and O. Stauning, FADBAD, a Flexible C++ Package for Automatic Differentiation Using the Forward and Backward Methods, Tech. Report IMM-REP-1996-17, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1996.
- [Cac81a] D.G. Cacuci, Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach, Math. Phys. 22 (1981), 2794–2802.
- [Cac81b] D.G. Cacuci, Sensitivity theory for nonlinear systems. II. Extensions of additional classes of responses, Math. Phys. 22 (1981), 2803–2812.
- [Cam89] S.L. Campbell, A computational method for general higher index nonlinear singular systems of differential equations, IMACS Trans. Sci. Comp. 1.2 (1989), 555–560.
- [CC86] T.F. Coleman and J.-Y. Cai, The cyclic coloring problem and estimation of sparse Hessian matrices, SIAM J. Algebraic Discrete Methods 7 (1986), 221–235.
- [CC94] Y.F. Chang and G.F. Corliss, ATOMFT: Solving ODEs and DAEs using Taylor series, Comput. Math. Appl. 28 (1994), 209–233.
- [CDB96] B. Christianson, L.C.W. Dixon, and S. Brown, Sharing storage using dirty vectors, in [BB+96], pp. 107–115.
- [CD⁺06] W. Castings, D. Dartus, M. Honnorat, F.-X. Le Dimet, Y. Loukili, and J. Monnier, Automatic differentiation: A tool for variational data assimilation and adjoint sensitivity analysis for flood modeling, in [BC⁺06], pp. 250–262.
- [Cés99] N. Di Césaré, Outils pour l'optimisation de forme et le contrôle optimal, application à la méchanique des fluides, Ph.D. thesis, de l'Université Paris 6, France, 2000.
- [CF96] A. Carle and M. Fagan, Improving derivative performance for CFD by using simplified recurrences, in [BB⁺96], pp. 343–351.
- [CF⁺01] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann (eds.), Automatic Differentiation: From Simulation to Optimization, Computer and Information Science, Springer, New York, 2001.
- [CG97] W.G. Choe and J. Guckenheimer, Computing periodic orbits with high accuracy, Comput. Methods Appl. Mech. Engrg., 170 (1999), 331–341.

[CGT92] A.R. Conn, N.I.M. Gould, and P.L. Toint, LANCELOT, a Fortran package for large-scale nonlinear optimization (release A), Comput. Math. 17, Springer, Berlin, 1992.

- [Cha90] R.W. Chaney, Piecewise C^k -functions in nonsmooth analysis, Nonlinear Anal. **15** (1990), 649–660.
- [Che06] B. Cheng, A duality between forward and adjoint MPI communication routines, in Computational Methods in Science and Technology, Polish Academy of Sciences, 2006, pp. 23–24.
- [Chr92] B. Christianson, Reverse accumulation and accurate rounding error estimates for Taylor series coefficients, Optim. Methods Softw. 1 (1992), 81–94.
- [Chr94] B. Christianson, Reverse accumulation and attractive fixed points, Optim. Methods Softw. 3 (1994), 311–326.
- [Chr01] B. Christianson, A self-stabilizing Pantoja-like indirect algorithm for optimal control, Optim. Methods Softw. 16 (2001), 131–149.
- [Cla83] F.H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadelphia, 1990.
- [CM83] T.F. Coleman and J.J. Moré, Estimation of sparse Jacobian matrices and graph coloring problems, SIAM J. Numer. Anal. 20 (1983), 187– 209.
- [CMM97] J. Czyzyk, M.P. Mesner, and J.J. Moré, The Network-Enabled Optimization Server, Preprint ANL/MCS-P615-1096, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1997.
- [Coe01] G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer, New York, 2001.
- [Con78] J.H. Conway, Elementary Numerical Analysis, North-Holland, Amsterdam, 1978.
- [Cos00] M. Coste, An Introduction to O-minimal Geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Mathematica, Instituti Editoriale e Poligrafici Internazionali, Pisa, 2000.
- [Cou81] P. Cousot, Semantic foundations of program analysis, in Program Flow Analysis: Theory and Applications, S.S. Muchnick and N.D. Jones, eds., Prentice-Hall, Englewood Cliffs, NJ, 1981, pp. 303–342.
- [CPR74] A.R. Curtis, M.J.D. Powell, and J.K. Reid, On the estimation of sparse Jacobian matrices, J. Inst. Math. Appl. 13 (1974), 117–119.

[CS+01] D. Casanova, R.S. Sharp, M. Final, B. Christianson, and P. Symonds, Application of automatic differentiation to race car performance optimisation, in [CF+01], pp. 113-120.

- [CV96] T.F. Coleman and A. Verma, Structure and efficient Jacobian calculation, in [BB⁺96], pp. 149–159.
- [CW+80] D.G. Cacuci, C.F. Weber, E.M. Oblow, and J.H. Marable, Sensitivity theory for general systems of nonlinear equations, Nuclear Sci. Engrg. 88 (1980), 88–110.
- [dB56] F. de Bruno, Note sur une nouvelle formule de calcule differentiel, Quart. J. Math. 1 (1856), 359–360.
- [DB89] J.C. Dunn and D.P. Bertsekas, Efficient dynamic programming implementations of Newton's method for unconstrained optimal control problems, J. Optim. Theory Appl. 63 (1989), 23–38.
- [DD+90] J.J. Dongarra, J.J. Du Croz, I.S. Duff, and S.J. Hammarling, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Software 16 (1990), 1–17.
- [DER89] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Monogr. Numer. Anal., Oxford University Press, New York, 1989.
- [Deu94] A. Deutsch, Interprocedural may-alias analysis for pointers: Beyond k-limiting, ACM SIGPLAN Notices, 29 (1994), no. 6, 230–241.
- [Dix91] L.C.W. Dixon, Use of automatic differentiation for calculating Hessians and Newton steps, in [GC91], pp. 114–125.
- [DLS95] M. Dobmann, M. Liepelt, and K. Schittkowski, Algorithm 746 POCOMP: A Fortran code for automatic differentiation, ACM Trans. Math. Software 21 (1995), 233–266.
- [DM48] P.S. Dwyer and M.S. Macphail, Symbolic Matrix Derivatives, Ann. Math. Statist. 19 (1948), 517–534.
- [DPS89] P.H. Davis, J.D. Pryce, and B.R. Stephens, Recent Developments in Automatic Differentiation, Appl. Comput. Math. Group Report ACM-89-1, The Royal Military College of Science, Cranfield, UK, January 1989.
- [DR69] S.W. Director and R.A. Rohrer, Automated network design—the frequency-domain case, IEEE Trans. Circuit Theory CT-16 (1969), 330–337, reprinted by permission.
- [DS96] J.E. Dennis, Jr., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics Appl. Math. 16, SIAM, Philadelphia, 1996.

[Dwy67] P.S. Dwyer, Some applications of matrix derivatives in multivariate analysis, J. Amer. Statist. Assoc. **62** (1967), 607–625.

- [EB99] P. Eberhard and C.H. Bischof, Automatic differentiation of numerical integration algorithms, J. Math. Comp. 68 (1999), 717–731.
- [Fat74] R.J. Fateman, Polynomial multiplication, powers and asymptotic analysis: Some comments, SIAM J. Comput. 3 (1974), 196–213.
- [Fau92] C. Faure, Quelques aspects de la simplification en calcul formel, Ph.D. thesis, Université de Nice, Sophia Antipolis, France, 1992.
- [FB96] W.F. Feehery and P.I. Barton, A differentiation-based approach to dynamic simulation and optimization with high-index differential-algebraic equations, in [BB+96], pp. 239–252.
- [FDF00] C. Faure, P. Dutto and S. Fidanova, Odyssée and parallelism: Extension and validation, in Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, Jyväskylä, Finland, July 26–30, 1999, World Scientific, pp. 478–485.
- [FF99] H. Fischer and H. Flanders, A minimal code list, Theoret. Comput. Sci. 215 (1999), 345–348.
- [Fis91] H. Fischer, Special problems in automatic differentiation, in [GC91], pp. 43–50.
- [FN01] C. Faure and U. Naumann, *Minimizing the Tape Size*, in [CF⁺01], pp. 279–284.
- [Fos95] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.
- [Fra78] L.E. Fraenkel, Formulae for high derivatives of composite functions,
 J. Math. Proc. Camb. Philos. Soc. 83 (1978), 159–165.
- [Gar91] O. García, A system for the differentiation of Fortran code and an application to parameter estimation in forest growth models, in [GC91], pp. 273–286.
- [Gay96] D.M. Gay, More AD of nonlinear AMPL models: Computing Hessian information and exploiting partial separability, in [BB⁺96], pp. 173–184.
- [GB+93] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Derivative convergence of iterative equation solvers, Optim. Methods Softw. 2 (1993), 321–355.

[GC91] A. Griewank and G.F. Corliss (eds.), Automatic Differentiation of Algorithms: Theory, Implementation, and Application, SIAM, Philadelphia, 1991.

- [GC+97] A. Griewank, G.F. Corliss, P. Henneberger, G. Kirlinger, F.A. Potra, and H.J. Stetter, High-order stiff ODE solvers via automatic differentiation and rational prediction, in Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci. 1196, Springer, Berlin, 1997, pp. 114–125.
- [Gil07] M.B. Giles, Monte Carlo Evaluation of Sensitivities in Computational Finance. Report NA-07/12, Oxford University Computing Laboratory, 2007.
- [Gei95] U. Geitner, Automatische Berechnung von dünnbesetzten Jacobimatrizen nach dem Ansatz von Newsam-Ramsdell, diploma thesis, Technische Universität Dresden, Germany, 1995.
- [Ges95] Gesellschaft für Anlagen- und Reaktorsicherheit mbH, Garching, ATHLET Programmers Manual, ATHLET Users Manual, 1995.
- [GF02] A. Griewank and C. Faure, Reduced functions, gradients and Hessians from fixed point iterations for state equations, Numer. Algorithms 30 (2002), 113–139.
- [GGJ90] J. Guddat, F. Guerra, and H.Th. Jongen, Parametric Optimization: Singularities, Pathfollowing and Jumps, Teubner, Stuttgart, John Wiley, Chichester, 1990.
- [Gil92] J.Ch. Gilbert, Automatic differentiation and iterative processes, Optim. Methods Softw. 1 (1992), 13–21.
- [GJ79] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-completeness, W.H. Freeman and Company, 1979.
- [GJU96] A. Griewank, D. Juedes, and J. Utke, ADOL—C, a Package for the Automatic Differentiation of Algorithms Written in C/C++, ACM Trans. Math. Software 22 (1996), 131–167; http://www.math.tu-dresden.de/~adol-c/.
- [GK98] R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Trans. Math. Software 24 (1998), 437–474.
- [GK+06] R. Giering and T. Kaminski, R. Todling, R. Errico, R. Gelaro, and N. Winslow, Tangent linear and adjoint versions of NASA/GMAO's Fortran 90 global weather forecast model, in [BC+06], pp. 275–284.
- [GK05] A. Griewank and D. Kressner, Time-lag in Derivative Convergence for Fixed Point Iterations, Revue ARIMA, Numéro Special CARI'04, pp. 87–102, 2005.

[GLC85] S. Gomez, A.V. Levy, and A. Calderon, A global zero residual least squares method, in Numerical Analysis, Proceedings, Guanajuato, Mexico, 1984, Lecture Notes in Math. 1230, J.P. Hennart, ed., Springer, New York, 1985, pp. 1–10.

- [GM96] J. Guckenheimer and M. Myers, Computing Hopf bifurcations II: Three examples from neurophysiology, SIAM J. Sci. Comput. 17 (1996), 1275–1301.
- [GM97] P. Guillaume and M. Masmoudi, Solution to the time-harmonic Maxwell's equations in a waveguide: Use of higher-order derivatives for solving the discrete problem, SIAM J. Numer. Anal. **34** (1997), 1306–1330.
- [GMP05] A.H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev. 47 (2005), no. 4, 629–705.
- [GMS97] J. Guckenheimer, M. Myers, and B. Sturmfels, Computing Hopf bifurcations I, SIAM J. Numer. Anal. 34 (1997), 1–21.
- [GN93] J.Ch. Gilbert and J. Nocedal, Automatic differentiation and the step computation in the limited memory BFGS method, Appl. Math. Lett. 6 (1993), 47–50.
- [GOT03] N. Gould, D. Orban and Ph.L. Toint, CUTEr, a constrained and unconstrained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), 373–394.
- [GP01] M.B. Giles and N.A. Pierce, An introduction to the adjoint approach to design, Flow, Turbulence and Combustion 65 (2001), 393–415.
- [GP+96] J. Grimm, L. Potter, and N. Rostaing-Schmidt, Optimal time and minimum space-time product for reversing a certain class of programs, in [BB+96], pp. 95–106.
- [GP+06] A.H. Gebremedhin, A. Pothen, A. Tarafdar, and A. Walther, Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation, to appear in INFORMS J. Comput. (2006).
- [GR87] A. Griewank and P. Rabier, Critical points of mixed fluids and their numerical treatment, in Bifurcation: Analysis, Algorithms, Applications, T. Küpper, R. Reydel, and H. Troger, eds., Birkhäuser, Boston, 1987, pp. 90–97.
- [GR89] A. Griewank and G.W. Reddien, Computation of cusp singularities for operator equations and their discretizations, J. Comput. Appl. Math. 26 (1989), 133–153.

[GR91] A. Griewank and S. Reese, On the calculation of Jacobian matrices by the Markowitz rule, in [GC91], pp. 126–135.

- [Gri80] A. Griewank, Starlike domains of convergence for Newton's method at singularities, Numer. Math. 35 (1980), 95–111.
- [Gri89] A. Griewank, On automatic differentiation, in Mathematical Programming: Recent Developments and Applications, M. Iri and K. Tanabe, eds., Kluwer, Dordrecht, The Netherlands, 1989, pp. 83–108.
- [Gri90] A. Griewank, Direct calculation of Newton steps without accumulating Jacobians, in Large-Scale Numerical Optimization, T.F. Coleman and Y. Li, eds., SIAM, Philadelphia, 1990, pp. 115–137.
- [Gri91] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optim. Methods Softw. 1 (1992), 35–54.
- [Gri93] A. Griewank, Some bounds on the complexity of gradients, Jacobians, and Hessians, in Complexity in Nonlinear Optimization, P.M. Pardalos, ed., World Scientific, River Edge, NJ, 1993, pp. 128–161.
- [Gri94] A. Griewank, Tutorial on Computational Differentiation and Optimization, University of Michigan, Ann Arbor, MI, 1994.
- [Gri95] A. Griewank, ODE solving via automatic differentiation and rational prediction, in Numerical Analysis 1995, Pitman Res. Notes Math. Ser. 344, D.F. Griffiths and G.A. Watson, eds., Addison-Wesley Longman, Reading, MA, 1995.
- [Gri03] A. Griewank, A mathematical view of automatic differentiation, Acta Numerica 12 (2003), 321–398.
- [Gru97] D. Gruntz, Automatic differentiation and bisection, MapleTech 4 (1997), 22–27.
- [GS02] M.B. Giles and E. Süli, Adjoint methods for PDEs: A-posteriori error analysis and postprocessing by duality, Acta Numerica 11 (2002), 145–236,
- [GT+07] A.H. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen, New acyclic and star coloring algorithms with application to computing Hessians, SIAM J. Sci. Comput. 29 (2007), 1042–1072.
- [GT82] A. Griewank and Ph.L. Toint, On the unconstrained optimization of partially separable objective functions, in Nonlinear Optimization 1981, M.J.D. Powell, ed., Academic Press, London, 1982, pp. 301– 312.

[GUW00] A. Griewank, J. Utke, and A. Walther, Evaluating higher derivative tensors by forward propagation of univariate Taylor series, Math. Comp. 69 (2000), 1117–1130.

- [GW00] A. Griewank and A. Walther, Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw. 26 (2000), 19–45.
- [GW04] A. Griewank and A. Walther, On the efficient generation of Taylor expansions for DAE solutions by automatic differentiation, Proceedings of PARA'04, in J. Dongarra et al., eds., Lecture Notes in Comput. Sci. 3732, Springer, New York, 2006, 1089–1098.
- [GV96] G.H. Golub and C.F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore, 1996.
- [Han79] E.R. Hansen, Global optimization using interval analysis—the onedimensional case, J. Optim. Theory Appl. 29 (1979), 331–334.
- [HB98] P.D. Hovland and C.H. Bischof, Automatic differentiation of message-passing parallel programs, in Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, IEEE Computer Society Press, 1998, pp. 98–104.
- [HBG71] G.D. Hachtel, R.K. Bryton, and F.G. Gustavson, *The sparse tableau* approach to network analysis and design, IEEE Trans. Circuit Theory CT-18 (1971), 111–113.
- [Her93] K. Herley, Presentation at: Theory Institute on Combinatorial Challenges in Computational Differentiation, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1993.
- [HKP84] H.J. Hoover, M.M. Klawe, and N.J. Pippenger, Bounding fan-out in logical networks, Assoc. Comput. Mach. 31 (1984), 13–18.
- [HNP05] L. Hascoët, U. Naumann, and V. Pascual, "To be recorded" analysis in reverse-mode automatic differentiation, Future Generation Comp. Sys. 21 (2005), 1401–1417.
- [HNW96] E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, second revised ed., Computational Mechanics 14, Springer, Berlin, 1996.
- [Hor92] J.E. Horwedel, Reverse Automatic Differentiation of Modular Fortran Programs, Tech. Report ORNL/TM-12050, Oak Ridge National Laboratory, Oak Ridge, TN, 1992.
- [Hos97] A.K.M. Hossain, On the Computation of Sparse Jacobian Matrices and Newton Steps, Ph.D. thesis, Department of Informatics, University of Bergen, Norway, 1997.

[Hov97] P. Hovland, Automatic Differentiation of Parallel Programs, Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana, 1997.

- [HP04] L. Hascoët, and V. Pascual, TAPENADE 2.1 User's Guide, Technical report, INRIA 300, INRIA, 2004.
- [HR99] R. Henrion and W. Römisch, Metric regularity and quantitative stability in stochastic programs with probabilistic constraints, Math. Program. 84 (1999), 55–88.
- [HS02] S. Hossain and T. Steihaug, Sparsity issues in the computation of Jacobian matrices, in Proceedings of the International Symposium on Symbolic and Algebraic Computing, T. Mora, ed., ACM, New York, 2002, pp. 123–130.
- [HW96] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, second revised ed., Computational Mechanics 14, Springer, Berlin, 1996.
- [HW06] V. Heuveline and A. Walther, Online checkpointing for parallel adjoint computation in PDEs: Application to goal oriented adaptivity and flow control, in Proceedings of Euro-Par 2006, W. Nagel et al., eds., Lecture Notes in Comput. Sci. 4128, Springer, Berlin, 2006, pp. 689–699.
- [Iri91] M. Iri, History of automatic differentiation and rounding error estimation, in [GC91], pp. 1–16.
- [ITH88] M. Iri, T. Tsuchiya, and M. Hoshi, Automatic computation of partial derivatives and rounding error estimates with applications to largescale systems of nonlinear equations, Comput. Appl. Math. 24 (1988), 365–392.
- [JM88] R.H.F. Jackson and G.P. McCormic, Second order sensitivity analysis in factorable programming: Theory and applications, Math. Programming 41 (1988), 1–28.
- [JMF06] K-W. Joe, D.L. McShan, and B.A. Fraass, Implementation of automatic differentiation tools for multicriteria IMRT optimization, in [BC+06], pp. 225–234.
- [KB03] M. Knauer and C. Büskens, Real-time trajectory planning of the industrial robot IRB 6400, PAMM 3 (2003), 515–516.
- [Ked80] G. Kedem, Automatic differentiation of computer programs, ACM Trans. Math. Software 6 (1980), 150–165.
- [Keh96] K. Kehler, Partielle Separabilität und ihre Anwendung bei Berechnung dünnbesetzter Jacobimatrizen, diploma thesis, Technische Universität Dresden, Germany, 1996.

[KHL06] J.G. Kim, E.C. Hunke, and W.H. Lipscomb, A sensitivity-enhanced simulation approach for community climate system model, in Proceedings of ICCS 2006, V. Alexandrov et al., eds., Lecture Notes in Comput. Sci. 3994, Springer, Berlin, 2006, pp. 533-540.

- [Kiw86] K.C. Kiwiel, A method for solving certain quadratic programming problems arising in nonsmooth optimization, IMA J. Numer. Anal. 6 (1986), 137–152.
- [KK+86] H. Kagiwada, R. Kalaba, N. Rasakhoo, and K. Spingarn, Numerical Derivatives and Nonlinear Analysis, Math. Concepts Methods Sci. Engrg.31, Plenum Press, New York, London, 1986.
- [KL91] D. Kalman and R. Lindell, Automatic differentiation in astrodynamical modeling, in [GC91], pp. 228–243.
- [KM81] U.W. Kulisch and W.L. Miranker, Computer Arithmetic in Theory and Practice, Academic Press, New York, 1981.
- [KN⁺84] K.V. Kim, Yu.E. Nesterov, V.A. Skokov, and B.V. Cherkasski, Effektivnyi algoritm vychisleniya proizvodnykh i èkstremal'nye zadachi, Èkonomika i Matematicheskie Metody 20 (1984), 309–318.
- [Knu73] D.E. Knuth, *The Art of Computer Programming* 1, Fundamental Algorithms, third ed., Addison-Wesley, Reading, MA, 1997.
- [Knu98] D.E. Knuth, *The Art of Computer Programming* 3, Sorting and Searching, second ed., Addison-Wesley, Reading, MA, 1998.
- [Koz98] K. Kozlowski, Modeling and Identification in Robotics, in Advances in Industrial Control, Springer, London, 1998.
- [KRS94] J. Knoop, O. Rüthing, and B. Steffen, Optimal code motion: Theory and practice, ACM Trans. Program. Languages Syst. 16 (1994), 1117–1155.
- [KS90] E. Kaltofen and M.F. Singer, Size Efficient Parallel Algebraic Circuits for Partial Derivatives, Tech. Report 90-32, Rensselaer Polytechnic Institute, Troy, NY, 1990.
- [KT51] H.W. Kuhn and A.W. Tucker, Nonlinear programming, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, J. Newman, ed., University of California Press, Berkeley, 1951, pp. 481–492.
- [Kub98] K. Kubota, A Fortran 77 preprocessor for reverse mode automatic differentiation with recursive checkpointing, Optim. Methods Softw. 10 (1998), 319–335.
- [Kub96] K. Kubota, PADRE2—Fortran precompiler for automatic differentiation and estimates of rounding error, in [BB+96], pp. 367–374.

[KW06] A. Kowarz and A. Walther, Optimal checkpointing for time-stepping procedures, in Proceedings of ICCS 2006, V. Alexandrov et al., eds., Lecture Notes in Comput. Sci. 3994, Springer, Berlin, 2006, pp. 541– 549.

- [KW00] W. Klein and A. Walther, Application of techniques of computational differentiation to a cooling system, Optim. Methods Softw. 13 (2000), 65–78.
- [Lin76] S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT **16** (1976), 146–160.
- [LU08] A. Lyons and J. Utke, On the practical exploitation of scarsity, in C. Bischof et al., eds., Advances in Automatic Differentiation, to appear in Lecture Notes in Comput. Sci. Eng., Springer (2008).
- [Lun84] V.Yu. Lunin, Ispol'zovanie algoritma bystrogo differentsirovaniya v zadache utochneniya znachenij faz strukturnykh faktorov, Tech. Report UDK 548.73, Naychnyj Tsenter Biolongicheskikh Nauk, AN SSSR, Pushchino, 1984.
- [Mar57] H.M. Markowitz, The elimination form of the inverse and its application, Management Sci. 3 (1957), 257–269.
- [Mar96] K. Marti, Differentiation formulas for probability functions: The transformation method, Math. Programming 75 (1996), 201–220.
- [Mat86] Yu.V. Matiyasevich, Real numbers and computers, Cybernet. Comput. Mach. 2 (1986), 104–133.
- [MG+99] J. Marotzke, R. Giering, K.Q. Zhang, D. Stammer, C. Hill, and T. Lee, Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity, J. Geophys. Res. 104 (1999), no. C12, p. 29.
- [Mic82] M. Michelson, *The isothermal flash problem, part I. Stability*, Fluid Phase Equilibria **9** (1982), 1–19.
- [Mic91] L. Michelotti, MXYZPTLK: A C++ hacker's implementation of automatic differentiation, in [GC91], pp. 218–227.
- [Min06] A. Miné, Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics, in LCTES '06: Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language, Compilers, and Tool Support for Embedded Systems, ACM, New York, 2006, pp. 54–63.
- [MIT] MITgcm, The MIT General Circulation Model, http://mitgcm.org.

[MN93] Mi.B. Monagan and W.M. Neuenschwander, GRADIENT: Algorithmic differentiation in Maple, in Proceedings of ISSAC '93, ACM Press, New York, 1993, pp. 68–76.

- [Mog00] T.A. Mogensen, Glossary for Partial Evaluation and Related Topics, Higher-Order Symbolic Comput. 13 (2000), no. 4.
- [Moo66] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
- [Moo79] R.E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
- [Moo88] R.E. Moore, Reliability in Computing: The Role of Interval Methods in Scientific Computations, Academic Press, New York, 1988.
- [Mor85] J. Morgenstern, How to compute fast a function and all its derivatives, a variation on the theorem of Baur-Strassen, SIGACT News 16 (1985), 60–62.
- [Mor06] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic Theory, Grundlehren Math. Wiss. 330, Springer, Berlin, 2006.
- [MPI] MPI, The Message Passing Interface Standard, http://www.mcs.anl.gov/mpi.
- [MR96] M. Monagan and R.R. Rodoni, Automatic differentiation: An implementation of the forward and reverse mode in Maple, in [BB⁺96], pp. 353–362.
- [MRK93] G.L. Miller, V. Ramachandran, and E. Kaltofen, *Efficient parallel evaluation of straight-line code and arithmetic circuits*, Computing 17 (1993), 687–695.
- [MS93] S.E. Mattsson and G. Söderlind, *Index reduction in differential-algebraic equations using dummy derivatives*, SIAM J. Sci. Comput. **14** (1993), 677–692.
- [Mun90] F.S. Munger, Applications of Definor Algebra to Ordinary Differential Equations, Aftermath, Golden, CO, 1990.
- [Mur93] J.D. Murray, *Mathematical Biology*, second ed., Biomathematics, Springer, Berlin, 1993.
- [Nau99] U. Naumann, Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to Computational Graphs, Ph.D. thesis, Technische Universität Dresden, Germany, 1999.

[Nau04] U. Naumann, Optimal accumulation of Jacobian matrices by elimination methods on the dual computational graph, Math. Program. 99 (2004), 399–421.

- [Nau06] U. Naumann, Optimal Jacobian accumulation is NP-complete, Math. Program. 112 (2008), 427–441.
- [NAW98] J.C. Newman, K.W. Anderson, and D.L. Whitfield, Multidisciplinary Sensibility Derivatives Using Complex Variables, Tech. Report MSSU-COE-ERC-98-08, Mississippi State University, Mississippi State, MS, 1998.
- [Ned99] N.S. Nedialkov, Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation, Ph.D. thesis, University of Toronto, Toronto, ON, 1999.
- [Nei92] R.D. Neidinger, An efficient method for the numerical evaluation of partial derivatives of arbitrary order, ACM Trans. Math. Softw. 18 (1992), 159–173.
- [NH+92] P.A. Newman, G.J.W. Hou, H.E. Jones, A.C. Taylor, and V.M. Korivi, Observations on Computational Methodologies for Use in Large-Scale, Gradient-Based, Multidisciplinary Design Incorporating Advanced CFD Codes, Techn. Mem. 104206, NASA Langley Research Center, 1992, AVSCOM Technical Report 92-B-007.
- [NP05] N.S. Nedialkov and J.D. Pryce, Solving differential-algebraic equations by Taylor series. I: Computing Taylor coefficients, BIT 45 (2005), 561–591.
- [NR83] G.N. Newsam and J.D. Ramsdell, Estimation of sparse Jacobian matrices, SIAM J. Algebraic Discrete Methods 4 (1983), 404–418.
- [NS96] S.G. Nash and A. Sofer, Linear and nonlinear programming, McGraw-Hill Series in Industrial Engineering and Management Science, McGraw-Hill, New York, 1996.
- [NU+04] U. Naumann, J. Utke, A. Lyons, and M. Fagan, Control Flow Reversal for Adjoint Code Generation, in Proceedings of SCAM 2004 IEEE Computer Society, 2004, pp. 55–64.
- [Oba93] N. Obayashi, A numerical method for calculating the higher order derivatives used multi-based number, Bull. Coll. Lib. Arts 29 (1993), 119–133.
- [Obl83] E.M. Oblow, An Automated Procedure for Sensitivity Analysis Using Computer Calculus, Tech. Report ORNL/TM-8776, Oak Ridge National Laboratory, Oak Ridge, TN, 1983.

[OMP] OpenMP, The OpenMP Specification for Parallel Programming, http://www.openmp.org.

- [OR70] J.M. Ortega and W.C. Rheinboldt, *Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York, 1970.
- [OVB71] G.M. Ostrovskii, Yu.M. Volin, and W.W. Borisov, Über die Berechnung von Ableitungen, Wiss. Z. Tech. Hochschule für Chemie 13 (1971), 382–384.
- [OW97] M. Overton and H. Wolkowicz (eds.), Semidefinite Programming, North-Holland, Amsterdam, 1997.
- [Pfe80] F.W. Pfeiffer, Some Advances Related to Nonlinear Programming, Tech. Report 28, SIGMAP Bulletin, ACM, New York, 1980.
- [Pon82] J.W. Ponton, The numerical evaluation of analytical derivatives, Comput. Chem. Eng. 6 (1982), 331–333.
- [PR97] J.D. Pryce and J.K. Reid, AD01: A Fortran 90 code for automatic differentiation, Tech. Report RAL-TR-97, Rutherford-Appleton Laboratories, Chilton, UK, 1997.
- [Pry01] J. Pryce, A simple structural analysis method for DAEs, BIT 41 (2001), 364–394.
- [PT79] M.J.D. Powell and Ph.L. Toint, On the estimation of sparse Hessian matrices, SIAM J. Numer. Anal. 16 (1979), 1060–1074.
- [Ral81] L.B. Rall, Automatic Differentiation: Techniques and Applications, Lecture Notes in Comput. Sci. 120, Springer, Berlin, 1981.
- [Ral84] L.B. Rall, Differentiation in Pascal-SC: Type GRADIENT, ACM Trans. Math. Softw. 10 (1984), 161–184.
- [RBB07] A. Rasch, H. M. Bücker, and C. H. Bischof, Automatic computation of sensitivities for a parallel aerodynamic simulation, in Proceedings of the International Conference on Parallel Computing (ParCo2007), Jülich, Germany, 2007.
- [RDG93] N. Rostaing, S. Dalmas, and A. Galligo, Automatic differentiation in Odyssée, Tellus 45A (1993), 558–568.
- [RH92] L.C. Rich and D.R. Hill, Automatic differentiation in MATLAB, Appl. Numer. Math. 9 (1992), 33–43.
- [Rho97] A. Rhodin, IMAS integrated modeling and analysis system for the solution of optimal control problems, Comput. Phys. Comm. 107 (1997), 21–38.

[RO91] L. Reichel and G. Opfer, *Chebyshev-Vandermonde systems*, Math. Comp. **57** (1991), 703–721.

- [RR99] K.J. Reinschke and K. Röbenack, Analyse von Deskriptorsystemen mit Hilfe von Berechnungsgraphen, Z. Angew. Math. Mech. 79 (1999), 13–16.
- [R-S93] N. Rostaing-Schmidt, Différentiation automatique: Application à un problème d'optimisation en météorologie, Ph.D. thesis, Université de Nice, Sophia Antipolis, France, 1993.
- [PS07] PolySpace, http://www.mathworks.com/products/polyspace/.
- [RT78] D.J. Rose and R.E. Tarjan, Algorithmic aspects of vertex elimination on directed graphs, SIAM J. Appl. Math. 34 (1978), 176–197.
- [Saa03] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, Philadelphia, 2003.
- [Sch65] H. Schorr, Analytic differentiation using a syntax-directed compiler, Comput. J. 7 (1965), 290–298.
- [Sch94] S. Scholtes, Introduction to Piecewise Differentiable Equations, Preprint 53/1994, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, 1994.
- [SH98] T. Steihaug and S. Hossain, Computing a sparse Jacobian matrix by rows and columns, Optim. Methods Softw. 10 (1998), 33–48.
- [SH03] R. Serban and A.C. Hindmarsh, CVODES: An ODE Solver with Sensitivity Analysis Capabilities, Tech. Report UCRL-JP-20039, Lawrence Livermore National Laboratory, Livermore, CA, 2003.
- [SH05] M. Hinze and J. Sternberg, A-Revolve: An adaptive memory and runtime-reduced procedure for calculating adjoints; with an application to the instationary Navier-Stokes system, Optim. Methods Softw. 20 (2005), 645–663.
- [Shi93] D. Shiriaev, Fast Automatic Differentiation for Vector Processors and Reduction of the Spatial Complexity in a Source Translation Environment, Ph.D. thesis, Institut für Angewandte Mathematik, Universität Karlsruhe, Germany, 1993.
- [SKH06] M.M. Strout, B. Kreaseck, and P.D. Hovland, Data-flow analysis for MPI programs, in Proceedings of ICPP '06, IEEE Computer Society, 2006, 175–184.
- [SMB97] T. Scott, M.B. Monagan, and J. Borwein (eds.), MapleTech: Functionality, Applications, Education, Vol. 4, Birkhäuser, Boston, 1997.

[SO98] M. Snir and S. Otto, MPI-The Complete Reference: The MPI Core, MIT Press, Cambridge, MA, 1998.

- [Spe80] B. Speelpenning, Compiling Fast Partial Derivatives of Functions Given by Algorithms, Ph.D. thesis, University of Illinois at Urbana, Champaign, 1980.
- [SS77] R.W.H. Sargent and G.R. Sullivan, *The development of an efficient optimal control package*, in Proceedings of the 8th IFIP Conference on Optimization Technology 2, 1977.
- [SS⁺91] R. Seydel, F.W. Schneider, T. Kupper, and H. Troger (eds.), *Bifurcation and Chaos: Analysis, Algorithms, Applications*, Proceedings of the Conference at Würzburg, Birkhäuser, Basel, 1991.
- [Sta85] IEEE Standard for Binary Floating-Point Arithmetic, ANS, New York, 1985.
- [Sta97] O. Stauning, Automatic Validation of Numerical Solutions, Ph.D. thesis, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, October 1997, Technical Report IMM-PHD-1997-36.
- [Ste96] B. Steensgaard, *Points-to analysis in almost linear time*, in Symposium on Principles of Programming Languages, ACM Press, New York, 1996, pp. 32–41.
- [Str86] B. Stroustrup, *The C++ Programming Language*, Addison—Wesley, Reading, MA, 1986.
- [Stu80] F. Stummel, Rounding error analysis of elementary numerical algorithm, in Fundamentals of Numerical Computation, Comput. Suppl. 2, Springer, Vienna, 1980, pp. 169–195.
- [SW85] D.F. Stubbs and N.W. Webre, Data Structures with Abstract Data Types and Pascal, Texts Monogr. Comput. Sci. Suppl. 2, Brooks/Cole, Pacific Grove, CA, 1985.
- [Sym07] W.W. Symes, Reverse time migration with optimal checkpointing, Geophys. 72 (2007), SM213–SM221.
- [SZ92] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim. 2 (1992), 121–152.
- [Tad99] M. Tadjouddine, La différentiation automatique, Ph.D. thesis, Université de Nice, Sophia Antipolis, France, 1999.
- [Tal08] O. Talagrand, Data Assimilation in Meteorology And Oceanography, Academic Press Publ., 2008.

[Tar83] R.E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf. Ser. in Appl. Math. 44, SIAM, Philadelphia, 1983.

- [Tha91] W.C. Thacker, Automatic differentiation from an oceanographer's perspective, in [GC91], pp. 191–201.
- [Tip95] F. Tip, A survey of program slicing techniques, J. Progr. Lang. 3 (1995), 121–189.
- [TKS92] S. Ta'asan, G. Kuruvila, and M.D. Salas, Aerodynamic design and optimization in One Shot, in Proceedings of the 30th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 92-0025, 1992.
- [TR+02] E. Tijskens, D. Roose, H. Ramon, and J. De Baerdemaeker, Automatic differentiation for solving nonlinear partial differential equations: An efficient operator overloading approach, Numer. Algorithms 30 (2002), 259–301.
- [UH+08] J. Utke, L. Hascoët, C. Hill, P. Hovland, and U. Naumann, Toward Adjoinable MPI, Preprint ANL/MCS-P1472-1207, 2007, Argonne National Laboratory, Argonne, IL, 2008.
- [Utk96a] J. Utke, Efficient Newton steps without Jacobians, in [BB⁺96], pp. 253–264.
- [Utk96b] J. Utke, Exploiting Macro- and Micro-structures for the Efficient Calculation of Newton Steps, Ph.D. thesis, Technische Universität Dresden, Germany, 1996.
- [vdS93] J.L.A. van de Snepscheut, What Computing Is All About, Texts Monogr. Comput. Sci. Suppl. 2, Springer, Berlin, 1993.
- [VD00] D.A. Venditti and D.L. Darmofal, Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-onedimensional flow, J. Comput. Phys. 164 (2000), 204–227.
- [Vel95] T.L. Veldhuizen, Expression templates, C++ Report 7 (1995), no. 5, pp. 26–31.
- [Ver99] A. Verma, Structured Automatic Differentiation, Ph.D. thesis, Cornell University, Ithaca, NY, 1999.
- [VO85] Yu.M. Volin and G.M. Ostrovskii, Automatic computation of derivatives with the use of the multilevel differentiating technique—I: Algorithmic basis, Comput. Math. Appl. 11 (1985), 1099–1114.
- [Wal99] A. Walther, Program Reversal Schedules for Single- and Multi-Processor Machines, Ph.D. thesis, Technische Universität Dresden, Germany, 1999.

[Wan69] G. Wanner, Integration gewöhnlicher Differentialgleichnugen, Lie Reihen, Runge-Kutta-Methoden XI, B.I-Hochschulskripten, no. 831/831a, Bibliogr. Inst., Mannheim-Zürich, Germany, 1969.

- [War75] D.D. Warner, A Partial Derivative Generator, Computing Science Technical Report, Bell Laboratories, 1975.
- [Wen64] R.E. Wengert, A simple automatic derivative evaluation program, Comm. ACM 7 (1964), 463–464.
- [Wer82] P.J. Werbos, Application of advances in nonlinear sensitivity analysis, in System Modeling and Optimization: Proceedings of the 19th IFIP Conference New York, R.F. Drenick and F. Kozin, eds., Lecture Notes in Control Inform. Sci. 38, Springer, New York, 1982, pp. 762–770.
- [Wer88] P.J. Werbos, Generalization of backpropagation with application to a recurrent gas market model, Neural Networks 1 (1988), 339–356.
- [WG04] A. Walther and A. Griewank, Advantages of binomial checkpointing for memory-reduced adjoint calculations, in Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2003, M. Feistauer et al., eds., Springer, Berlin, 2004, pp. 834–843.
- [WG99] A. Walther and A. Griewank, Applying the checkpointing routine treeverse to discretizations of Burgers' equation, in High Performance Scientific and Engineering Computing, H.-J. Bungartz, F. Durst, and C. Zenger, eds., Lect. Notes Comput. Sci. Eng. 8, Springer, Berlin, 1999, pp. 13–24.
- [Wil65] G.J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.
- [WN+95] Z. Wang, I.M. Navon, X. Zou, and F.X. Le Dimet, A truncated Newton optimization algorithm in meteorology applications with analytic Hessian/vector products, Comput. Optim. Appl. 4 (1995), 241–262.
- [Wol82] P. Wolfe, Checking the calculation of gradients, ACM Trans. Math. Softw. 8 (1982), 337–343.
- [WO⁺87] B.A. Worley, E.M. Oblow, R.E. Pin, J.E. Maerker, J.E. Horwedel, R.Q. Wright, and J.L. Lucius, *Deterministic methods for sensitivity* and uncertainty analysis in large-scale computer models, in Proceedings of the Conference on Geostatistical, Sensitivity, and Uncertainty Methods for Ground-Water Flow and Radionuclide Transport Modelling, B.E. Buxton, ed., Battelle Press, 1987, pp. 135–154.
- [Wri08] P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin, Heidelberg, 2008.
- [Yos87] T. Yoshida, Derivatives of probability functions and some applications, Ann. Oper. Res. 11 (1987), 1112–1120.

accumulation, 185 additive tasks, 73 addressing scheme &, 61	single, 61, 264 average domain size, 149
ADIFOR, 34, 83, 120, 152, 185, 220,	biclique property, 205
224, 256	bough, 271
adjoint	
as Lagrange multiplier, 43	call tree, 265
complexity, 102	chain rule, 23
consistency, 67	chance constraint, 337
fixed point iteration, 387	cheap gradient principle, 88
gradient complexity, 84	checkpointing, 261, 278
higher-order, 322	r-level, 279
implicit, 372	binomial, 290
incremental, 40	multilevel, 279
mode, 7	offline, 262, 286
nonincremental, 41, 85	online, 262, 294
of adjoint, 91, 95	uniform, 279, 290
of tangent, 91, 98	chromatic number, 164
operation, 65	code preparation, 139
pairs, 66	Coleman-Verma partition, 174
procedure, 42	coloring, 164
second-order, 100	compatibility requirements, 74
sensitivity equation, 372	complexity, 73–75, 77, 78
Taylor exponential, 317	bounds, 61
variable, 8	composition, 306
adjugate, 44	compressed tensor, 178
ADOL-C, 47, 49, 110, 270, 308, 317	compression
advancing, 271	column, 163
algorithmic differentiation (AD), 1	combined, 173
alias-safe, 63	Curtis-Powell-Reid (CPR), 171
aliasing, 67	Newsam–Ramsdell (NR), 171
allocation, 61	row, 163
approximants of intermediates, 304	simultaneous, 178
assignment	two-sided, 176
incremental, 40, 95	computational graph
iterative, 93	symmetric, 238
operator, 112	consistency

adjoint, 69	front-, 198
derivative, 63	Gaussian, 192
pattern, 170	rule, 198
consistent	sequence, 215
primaly, 37	vertex-, 186, 200
convergence rate, 378	evaluation
copy-on-write, 65	graph, 16
cotangent, 38	procedure, 15
cross-country, 190	three-part, 18
Curtis-Powell-Reid (CPR)	trace, 4
seeding, 164	evolution, 94, 215, 278
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	extended
deactivation, 383	Jacobian, 22
deinitializing, 112	system, 21
derivative	external memory, 262
Cartesian, 31	· ·
consistency, 63	feasible partition, 175
directional, 36, 161	finite
discontinuous, 335	selection, 342
recurrence, 381	slopes, 361
second, 176	termination, 199
difference quotient, 161	fixed point, 389
differentiable piecewise, 205, 342	forward, 31, 188
differential	compatibility, 62
algebraic equation, 330	incremental, 200
ordinary equation, 327	mode, 6, 7
differentiation	motion, 41
backward, 38	nonincremental, 200
computational, 1	propagation, 151
generalized, 345	sweep, 41
reverse, 38	function
divided difference, see difference quo-	addressing, 93
tient	allocation, 61
dynamic programming, 282	composite, 15, 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	elemental, 18, 20
edge-elimination rule, 196	Heaviside, 347
elemental	intermediate, 20
differentiability, 23	kink, 346
function, 20	pole, 348
partials, 21	reciprocal, 22
task boundedness, 78	rewriting, 257
elimination	root, 346
back-, 197	semi-algebraic, 28
cross-country, 194	step, 347 subanalytic, 29
edge-, 187	funnel, 223
face-, 204	ruimei, 223

Gaussian elimination, 192	local, 222
generic rank, 222	regularity, 371
global contractivity, 378	transpose, 56
gradient, see adjoint	vector, 33
complexity, 83	vector, 3 5
higher-order, 317	Karush-Kuhn-Tucker, 43, 372
principle, 88	kink function, 346
propagation, 37	min random, o ro
reduced, 44	Laurent
graph	model, 357
bipartite, 195	number, 351
quotient, 219	Levi-Civita number, 340
quotient, 219	lifespan, 66
Hessian, 145	lighthouse example, 337
cost ratio, 180	limited-memory
graph, 236	Broyden-Fletcher-Goldfarb-Shanno
Lagrangian, 157	(BFGS), 105
reduced width, 180	link
reduced widon, 100	strong, 270
IEEE arithmetic, 347	weak, 270
implementation	local
forward, 111	Jacobians, 222
reverse, 115	procedures, 222
implicit	locations, 61
adjoint, 372	LU factorization, 90
tangent, 372	ne racionzation, 50
incremental	Markowitz heuristic, 214
forward, 200	matrix
recursion, 40	chaining, 186, 219
reverse, 200	compression, 158, 163
independent variable, see variable	reconstruction, 178
index	seed, 161
domain, 147	sparse, 145
range, 148	Vandermonde, 168
initialization function, 21	width, 149
instantiation, 15	memory
interaction binary, 166	issue, 61
interface contraction, 220	location, 61
intermediate, see variable	randomly accessed (RAM), 63
isolated criticalities, 348	sequentially accessed (SAM), 48
isolated criticalities, 940	mode
Jacobian, 145, 188, 247	forward, 6, 7
extended, 190	joint, 270
generalized, 361	reverse, 7, 116, 118
global, 222	selection, 256
higher-order, 317	split, 270
111611 01401, 011	Spiro, 210

vector, 36, 48	piggyback approach, 376, 393
motion, 268	polynomial core, 22
advancing, 268	preaccumulation, 185, 220
cross-country, 268	preconditioning, 55, 389
recording, 268	preelimination, 213
returning, 268	preferred direction, 335
reversing, 269	prevalue, 64, 70
multistep contractivity, 384, 387	primaly constant, 49
	problem preparation, 255
Newsam–Ramsdell (NR)	program
principle, 163	branch, 347
seeding, 168	overloading, 108
Newton	variable, 4
method, 367	
scenario, 375	quotient
step, 241, 376	convergence factor, 379
nonincremental	graph, 275
adjoint, 85	
evaluation, 41	range size, 150
form, 97	rank-one example, 245
forward, 200	recalculation, 262
recursion, 40	reciprocal, 22
reverse, 200	recomputation, 71
nonlinear	recording, 271, 274
height, 255	sweep, 42
width, 255	recursion
normals, 38	incremental, 40
	nonincremental, 40
Odyssée, 120, 264	reduced width, 180
overloading	reflexive, 97
operator, 110	regular
overwrite, 4, 62, 66	arc , 360
	determinacy, 360
pairs	related task, 74
compatible, 267	return
parallel	motion, 262
chain, 295	sweep, $41, 262$
partial separability, 252	returning, 271, 274
partials	reversal, 262, 272
elemental, 33	chain, 279
mixed, 301	joint, $266, 270$
partition Coleman-Verma, 174	schedule, $261, 262, 264-272, 274-$
path connectedness, 148	282, 284 – 289, 295 – 297
pathlength, 195, 219	chain, 287
pathvalue, 195, 219	offline, 280, 282, 286, 287
piecewise differentiability, 342	parallel, 295

ashadulas 200	state
schedules, 280	state
split, 266, 270 uninterrupted, 296	transformation, 18
2 /	step function, 347
reverse, 31, 188	stochastic optimization, 337
compatibility, 62	storage location, see allocation
differentiation, 38	strip-mine, 146
implementation, 115	subadditive tasks, 73
incremental, 200	sweep, see also motion
mode, 7, 9	return, 118
motion, 41	symmetric
nonincremental, 200	computational graph, 238
propagation, 153	
sparse, 155	TAF, 96, 264, 270, 276
statement-level, 222	TAMC, 270
sweep, 41	tangent
root function, 346	complexity, 80
runtime functional, 75	evaluation procedure, 33
	function, 34
scarcity, 225	implicit, 372
schedule	mapping, 96
optimal, 286	of adjoint, 98
offline, 286	operation, 34
reversal, 274, 287, 295	procedure, 33, 35
second derivatives, 154, 155	propagation, 32
seed	recursion, 33
directions, 31	tape, 64, 262
matrix, 161	Tapenade, 34, 96, 276
seeding	task
Curtis-Powell-Reid (CPR), 164	additive, 73
separability	boundedness, 78
argument, 150, 253	computational, 73
partial, 155, 248	homogeneous, 74
value, 252	Taylor
simplified recurrence, 383	arithmetic, 309
source transformation, 120	complex approximation of, 310
sparsity, 161	calculus, 319
compression, 161	coefficient, 302, 313
dynamic, 146	coefficient functions, 304
internal, 155	polynomial propagation, 303
pattern, 165	temporal complexity, 73, 264
	tensor
pseudostatic, 146	
static, 146	coefficient, 302, 313
splitting	evaluation, 311
column, 253	time evolution, 264
row, 252	total recalculation, 276
stable domain, 348	trace, 115

```
transformation
    state, 18
tree reversal, 274
triangular nonlinear system, 22
trumpet, 225
two-phase approach, 393
two-way compatibility, 62, 97
value
    active, 110
    passive, 110
    taping, 67
Vandermonde matrix, 168
variable
    active, 109
    dependent, 6
    independent, 6, 113
    intermediate, 20
    mathematical, 5, 61
    passive, 109
    program, 61
    to-be-recorded, 109
vector
    argument, 19, 61
    derivative
      higher-order, 300
    valued function, 26
weak depth, 275
```

weight functional, 31