ML and MLOPs

黄世豪

Contents

- 1. 講解 ML workflow
- 2. 論文 (Data Driven Chiller Plant Energy Optimization with Domain Knowledge) 重點整理
- 3. 說明 MLOps
- 4. Brief MLOps Demo
- 5. Summary

講解 ML Workflow

Machine Learning Workflow

Demo -> The Importance of EDA, Different ML Models

Total 8668 teams

Data

One row, one data.

ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1
1	60	RL	65	8450	Pave	NA	Reg	Lvl	AllPub	Inside	GtI	CollgCr	Norm
2	20	RL	80	9600	Pave	NA	Reg	Lvl	AllPub	FR2	GtI	Veenker	Feedr
3	60	RL	68	11250	Pave	NA	IR1	Lvl	AllPub	Inside	GtI	CollgCr	Norm
4	70	RL	60	9550	Pave	NA	IR1	Lvl	AllPub	Corner	GtI	Crawfor	Norm
5	60	RL	84	14260	Pave	NA	IR1	Lvl	AllPub	FR2	GtI	NoRidge	Norm

Total 1460 rows

Id1 data's label

EnclosedPorch	3SsnPorch	ScreenPorch	PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
0	0	0	0	NA	NA	NA	0	2	2008	WD	Normal	208500
0	0	0	0	NA	NA	NA	0	5	2007	WD	Normal	181500
0	0	0	0	NA	NA	NA	0	9	2008	WD	Normal	223500
272	0	0	0	NA	NA	NA	0	2	2006	WD	Abnorml	140000
0	0	0	0	NA	NA	NA	0	12	2008	WD	Normal	250000

Evaluation

house_linear_noEDA

ld	SalePrice
1461	27722.298597542300
1462	8516.89604525684
1463	188412.59316105300
1464	68885.33072748160
1465	1039168.37910609
1466	241324.4159601520
1467	984029.3493541860
1468	623388.3976040320
1469	23295.94945903130
1470	336489.658600901
1471	379733.3930456250
1472	151970.75618570700
1473	364435.52467853800
1474	31698.520327679200
1475	133746.86146303700

對值取log後做 RMSE

$$ext{RMSD} = \sqrt{rac{\sum_{t=1}^T (\hat{y}_t - y_t)^2}{T}}.$$

sample_submission

ld	SalePrice
1461	169277.0524984
1462	187758.393988768
1463	183583.683569555
1464	179317.47751083
1465	150730.079976501
1466	177150.989247307
1467	172070.659229164
1468	175110.956519547
1469	162011.698831665
1470	160726.247831419
1471	157933.279456005
1472	145291.245020389
1473	159672.017631819
1474	164167.518301885
1475	150891.638244053

No EDA-> Replace missing value with NONE

1 def na_check(df_data):

```
data_na = (df_data.isnull().sum() / len(df_data)) * 100
           data na = data na.drop(data na[data na == 0].index).sort values(ascending = False)
           missing_data = pd.DataFrame({'Missing Ratio' :data_na})
 5 display(missing data.head(10))
 6 na check(df)
                                     Missing Ratio
                                                     99.657417
      PoolQC
 MiscFeature
                                                     96.402878
         Allev
                                                     93.216855
        Fence
                                                     80.438506
                                                                                                                                                                                                                                                             2 none_cols = ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'Fi
 FireplaceQu
                                                     48.646797
                                                                                                                                                                                                                                                                                                      'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure',
                                                                                                                                                                                                                                                                                                        'BsmtFinType1', 'BsmtFinType2', 'MasVnrType', 'Functional', 'MSSubClass', 'GarageYrBlt', 'GarageArea'
LotFrontage
                                                     16.649538
                                                                                                                                                                                                                                                                                                        'BsmtFullBath', 'BsmtHalfBath', 'MasVnrArea', 'MSZoning', 'Electrical', 'KitchenQual', 'Exterior1st',
GarageFinish
                                                       5.447071
                                                                                                                                                                                                                                                             6 for col in none cols:
                                                                                                                                                                                                                                                                              df[col] = df[col].fillna("None")
                                                       5.447071
 GarageYrBlt
                                                                                                                                                                                                                                                             9 # Utilities 參考資訊很少, 所以直接捨棄
 GarageQual
                                                        5.447071
                                                                                                                                                                                                                                                           10 df = df.drop(['Utilities'], axis=1)
                                                                                                                                                                                                                                                           11
GarageCond
                                                       5.447071
                                                                                                                                                                                                                                                           12
                                                                                                                                                                                                                                            [30] 1 na check(df)
```

Missing Ratio

No EDA Results

Basic EDA

10 df = df.drop(['Utilities'], axis=1)

```
1 # 部分欄位缺值補 'None'
  2 none_cols = ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'Fi
                                           'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure',
                                              'BsmtFinType1', 'BsmtFinType2', 'MasVnrType', 'Functional', 'MSSubClass']
   5 for col in none cols:
                   df[col] = df[col].fillna("None")
   8 # 部分欄位缺值填補 0
  9 zero_cols = ['GarageYrBlt', 'GarageArea', 'GarageCars', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF',
                                             'BsmtFullBath', 'BsmtHalfBath', 'MasVnrArea']
11 for col in zero cols:
                  df[col] = df[col].fillna(0)
12
13
 1 # 部分欄位缺值補眾數
  2 mode cols = ['MSZoning', 'Electrical', 'KitchenQual', 'Exterior1st', 'Exterior2nd', 'SaleType']
  3 for col in mode cols:
                  df[col] = df[col].fillna(df[col].mode()[0])
  6 # 'LotFrontage' 有空缺時,以同一區 (Neighborhood) 的 LotFrontage 中位數填補 (可以視為填補一種群聚編碼 )
  7 df["LotFrontage"] = df.groupby("Neighborhood")["LotFrontage"].transform(lambda x: x.fillna(x.median()))
  9 # Utilities 參考資訊很少,所以直接捨棄
```

Basic EDA

增加特徵值會增加模型預測能力

No EDA Results

Algorithm: Linear Regression

Performance

論文 (Data Driven Chiller Plant Energy Optimization with Domain Knowledge) 重點整理

論文重點

Most of these works, however, do not consider the varying factors, such as ageing equipments and indoor activities.

環境會變,資料不能是固定的,模型也應該要更動才能應付?

In our work, we solve these problems with active data enrichment and select models based on domain knowledge over the equipments.

主動數據充實說明了資料要能隨時補充,而且模型也要能夠接受隨時調整參數

說明 MLOps

What is MLOps?

level 0

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

level 1

level 2

ML CI (continuous integration)/ CD (continuous delivery) automation pipeline

MLU with MLOps

Brief MLOps Demo

https://youtu.be/9BgIDqAzfuA

Wine Data

wine_quality

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
7.4	0.7	0.0	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
7.8	0.88	0.0	2.6	0.098	25.0	67.0	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.998	3.16	0.58	9.8	6
7.4	0.7	0.0	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
7.4	0.66	0.0	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15.0	59.0	0.9964	3.3	0.46	9.4	5
7.3	0.65	0.0	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7
7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7
7.5	0.5	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.8	10.5	5

One row one data, one data 11 features. Total 1600 rows

```
# Fit a model on the train section
regr = RandomForestRegressor(max_depth=2, random_state=seed)
regr.fit(X_train, y_train)
```

Model: Random Forest Regressor, depth: 2

Github Actions: Script

MLOps CI Demo

CI (Continuous integration):

Continuous integration is an idea from dev ops that's all about connecting changes to your code to fast feedback, to testing how that's affected your ultimate project.

```
wine_kaggle / .github / workflows / cml.yaml
   hao134 Update cml.yaml 🗸
At 1 contributor
25 lines (21 sloc)
                 701 Bytes
     name: your-workflow-name
     on: [push]
     jobs:
       run:
         runs-on: [ubuntu-latest]
         container: docker://dvcorg/cml-py3:latest
         steps:
           - uses: actions/checkout@v2
  8
           - name: 'Train my model'
  9
 10
             env:
               repo_token: ${{ secrets.GITHUB_TOKEN }}
             run:
 14
               # Your ML workflow goes here
               pip install -r requirements.txt
 16
               python train.py
```

echo "## MODEL metrics" > report.md

cml-publish feature_importance.png --md >> report.md

cml-publish residuals.png --md >> report.md

cat metrics.txt >> report.md

cml-send-comment report.md

echo "## Data viz" >> report.md

18

19

20

24 25

Results

MODEL metrics

Training variance explained: 33.0% Test variance explained: 32.0%

Data viz

Results

```
✓ change the depth of Random Forest 2 -> 5

¾ main (#2)

♣ hao134 committed 17 minutes ago Verified

Verified

Verified

Verified

Verified

✓ change the depth of Random Forest 2 -> 5

¾ main (#2)

✓ change the depth of Random Forest 2 -> 5

¾ main (#2)

✓ change the depth of Random Forest 2 -> 5
```

Showing 1 changed file with 1 addition and 1 deletion.

Results

MODEL metrics

Training variance explained: 54.3% Test variance explained: 43.8%

Data viz

Summary

- 1. 冰水主機的資料主要是時序型資料,因此,能夠發展的模型估記有: ARIMA, CNN, LSTM, GRU, AutoEncoder....
- 2. EDA和 Data Clean 很重要,通常時序性資料受到外在環境影響很大,哪 些是偶發性哪些具有規律週期性,要透過EDA來了解清楚。
- 3. 為了未來的發展性著想,希望不只能訓出一個機器學習模型,還要能發展 MLOps,至少要有Level 0程度的雛形,最終希望能達到 Level 1 程度。