COMP4901K/Math4824B Machine Learning for Natural Language Processing

Lecture 13: Neural Language Models

Instructor: Yangqiu Song

Recap: what is a statistical LM?

- A model specifying probability distribution over <u>word</u> <u>sequences</u>
 - p("Today is Wednesday") ≈ 0.001
 - p("Today Wednesday is") \approx 0.00000000001
 - p("The eigenvalue is positive") ≈ 0.00001
- It can be regarded as a probabilistic mechanism for "generating" text, thus also called a "generative" model

Probabilistic Language Models

Probability of a sequence of words:

$$P(w_1 \dots w_N)$$

Chain rule of probability:

$$P(w_1 w_2 \dots wN) = P(w_1)p(w_2|w_1)P(w_3|w_1, w_2) \dots P(w_N|w_1, w_2, \dots, w_{N-1})$$

• (n-1)th order Markov assumption

$$P(w_i|w_1, w_2, ..., w_{i-1}) = P(w_i|w_{i-1}, ..., w_{i-n+1})$$

Learning probabilistic language models

• Learn joint likelihood of training sentences under (n-1)th order Markov assumption using **n-grams**

$$P(w_1 w_2 \dots wN) = \prod_{i=1}^{N} P(w_i | w_{i-1}, \dots, w_{i-n+1}) = \prod_{i=1}^{N} P(x_i | \boldsymbol{h}_i)$$

where $w_i = x_i$ (word token w_i , word type x_i in vocabulary)

$$\boldsymbol{h}_i = w_{i-1}, \dots, w_{i-n+1}$$
 is word history

- Maximize the log-likelihood: $\prod_{i=1}^{N} P(x_i | h_i)$
 - Now, given the above reformulation, we will change the notations again (to derive neural language models)!

Featurized Language Models: Re-parameteriazation

- Maximize the log-likelihood: $\prod_{i=1}^{N} P(x_i | h_i)$
- Assuming a parametric model w (note here w is the parameter vector similar use as perceptron)

$$\prod_{i=1}^{N} P(x_i | \boldsymbol{h}_i) \equiv \prod_{i=1}^{N} P_{\boldsymbol{w}}(x_i | \boldsymbol{h}_i)$$

- Consider $m{h}_i$ as features instead of just a sequences of historical words
 - Modeling with log-linear models
 - Moving from generative models to discriminative models

Log-linear Models

$$P(x_i|\boldsymbol{h}_i,\boldsymbol{w}_i) = \frac{\exp \boldsymbol{w}_i^T \phi(x_i,\boldsymbol{h}_i)}{\sum_{x_i} \exp \boldsymbol{w}_i^T \phi(x_i,\boldsymbol{h}_i)}$$

- Linear score ${\boldsymbol{w}_i}^T \phi(x_i, {\boldsymbol{h}_i})$
- Nonnegative exponential: $\exp w_i^T \phi(x_i, h_i)$
- Normalizer $\sum_{x_i} \exp \mathbf{w}_i^T \phi(x_i, \mathbf{h}_i) \equiv Z_{\mathbf{w}}(\mathbf{h}_i)$
- Log-linear comes from the fact that

$$\log P(x_i|\boldsymbol{h}_i,\boldsymbol{w}_i) = \boldsymbol{w}_i^T \phi(x_i,\boldsymbol{h}_i) - \log Z_{\boldsymbol{w}}(\boldsymbol{h}_i)$$

 $\log Z_{\boldsymbol{w}}(\boldsymbol{h}_i)$ is a constant in x_i

 This is an instance of the family of generalized linear models

Special Case: Logistic Regression

Consider the case where

$$\chi \in \{+1,-1\}$$

$$P(x = 1|\boldsymbol{h}, \boldsymbol{w})$$

$$= \frac{\exp \boldsymbol{w}^T \phi(1, \boldsymbol{h})}{\exp \boldsymbol{w}^T \phi(1, \boldsymbol{h}) + \exp \boldsymbol{w}^T \phi(-1, \boldsymbol{h})}$$

$$= \frac{1}{1 + \exp[\boldsymbol{w}^T \phi(-1, \boldsymbol{h}) - \exp \boldsymbol{w}^T \phi(1, \boldsymbol{h}))}$$

$$= \sigma(\boldsymbol{w}^T \phi(-1, \boldsymbol{h}) - \exp \boldsymbol{w}^T \phi(1, \boldsymbol{h}))$$

$$= \sigma(x \boldsymbol{w}^T f(\boldsymbol{h}))$$

$$- \text{ where } \sigma(t) = \frac{1}{1 + \exp(-t)}$$

log-linear models are often called multinomial logistic regression (softmax function)

Special Case: N-gram Language Model

$$P(x_i|\boldsymbol{h}_i,\boldsymbol{w}_i) = \frac{\exp \boldsymbol{w}_i^T \phi(x_i,\boldsymbol{h}_i)}{\sum_{x_i} \exp \boldsymbol{w}_i^T \phi(x_i,\boldsymbol{h}_i)}$$

- Consider an n-gram language model
 - $-\boldsymbol{h}_i = w_{i-1}, \dots, w_{i-n+1}$ as n-1 historical words
 - $-\phi(x_i, \boldsymbol{h}_i) = \log c(x_i, \boldsymbol{h}_i)$
 - $-\mathbf{w}_i = \mathbf{1}$ (all one vector for all x_i)
 - $-\sum_{x_i} \exp \mathbf{w}_i^T \phi(x_i, \mathbf{h}_i) = \sum_{x_i} \exp \log c(x_i, \mathbf{h}_i) = \sum_{x_i} c(x_i, \mathbf{h}_i) = c(\mathbf{h}_i)$
- What features are there used in $\phi(x, h)$ more than traditional n-gram language models?

What features in $\phi(x, h)$

Saturday
Sunday
Monday
I visited Central last _____ month
...
pizza

- Traditional n-gram features: last ^ Saturday
- "Gappy" n-gram features: Central ^ Saturday
- Spelling features: first character is capitalized
- Class features: whether it is a member of class 132
- Gazetteer features: whether it is listed as a geographic place name, date/time, person name, organization name, etc.

What features in $\phi(x, h)$

- You can define any features you want!
 - Too many features, and your model will overt
 - "Feature selection" methods, e.g., ignoring features with very low counts, can help
 - Too few (good) features, and your model will not learn

Softmax Function

$$\langle x_1, x_2, \dots, x_k \rangle \mapsto \left\langle \frac{e^{x_1}}{\sum_{j=1}^k e^{x_j}}, \frac{e^{x_2}}{\sum_{j=1}^k e^{x_j}}, \dots, \frac{e^{x_k}}{\sum_{j=1}^k e^{x_j}} \right\rangle$$

• $x_i = \mathbf{w}_i^T \phi(x_i, \mathbf{h})$

```
>>> x = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]
>>> softmax = lambda x:np.exp(x)/np.sum(np.exp(x))
>>> softmax(x) array([0.02364054, 0.06426166, 0.1746813 , 0.474833 , 0.02364054, 0.06426166, 0.1746813 ])
```

Parameter Estimation

- Gradient descent!
 - no closed form as traditional n-gram language models
- Further Reading
 - Berger et al. (1996). A Maximum Entropy Approach to Natural Language Processing.
 - Collins (2011). Course notes for COMS w4705: Log-linear models, MEMMs, and CRFs, 2011.
 - http://www.cs.columbia.edu/~mcollins/crf.pdf
 - Smith (2004). Log-linear models, 2004.
 - https://homes.cs.washington.edu/~nasmith/papers/smith.tut04.pdf

Extension: Neural Language Models

- Feedforward Neural Network Language Model Bengio et al. (2003)
 - A generalization of featurized language model
 - Word embeddings can be learnt!

Feedforward Neural Network Language Model Bengio et al. (2003)

Results

	n	С	h	m	direct	mix	train.	valid.	test.
MLP1	5		50	60	yes	no	182	284	268
MLP2	5		50	60	yes	yes		275	257
MLP3	5		0	60	yes	no	201	327	310
MLP4	5		0	60	yes	yes		286	272
MLP5	5		50	30	yes	no	209	296	279
MLP6	5		50	30	yes	yes		273	259
MLP7	3		50	30	yes	no	210	309	293
MLP8	3		50	30	yes	yes		284	270
MLP9	5		100	30	no	no	175	280	276
MLP10	5		100	30	no	yes		265	252
Del. Int.	3						31	352	336
Kneser-Ney back-off	3							334	323
Kneser-Ney back-off	4							332	321
Kneser-Ney back-off	5							332	321
class-based back-off	3	150						348	334
class-based back-off	3	200						354	340
class-based back-off	3	500						326	312
class-based back-off	3	1000						335	319
class-based back-off	3	2000						343	326
class-based back-off	4	500						327	312
class-based back-off	5	500						327	312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test perplexity that is 33% above that of the neural network with the lowest validation perplexity. The difference is 24% in the case of the best n-gram (a class-based model with 500 word classes). n: order of the model. c: number of word classes in class-based n-grams. h: number of hidden units. m: number of word features for MLPs, number of classes for class-based n-grams. direct: whether there are direct connections from word features to outputs. mix: whether the output probabilities of the neural network are mixed with the output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity on the training, validation and test sets.

Important Idea: Words as Vectors

- The idea of "embedding" words much older than neural language models.
- Deerwester et al. (1990) explored dimensionality reduction techniques for information retrieval-style querying of text collections
- We will come back to this topic

Parameter Estimation

Good news:

- The whole computation is differentiable with respect to parameters, so gradient-based methods are available
- Lots more details in Bengio et al. (2003)
- Bad news for neural language models (in 2003):
 - Calculating log-likelihood and its gradient is very expensive (5 epochs took 3 weeks on 40 CPUs, in Bengio et al. (2003))

Observations about Neural Language Models (So Far)

- There's no knowledge built in that the most recent word should generally be more informative than earlier ones
 - This has to be learned
- In addition to choosing (n-1)gram historical words, also have to choose dimensionalities like d and H
- Parameters of these models are hard to interpret
 - Individual word embeddings can be clustered and dimensions can be analyzed (e.g., Tsvetkov et al. (2015))
- Still, impressive perplexity gains got people's interest

- General ideas
 - Can we use more historical words?
 - Can parameters be shared?

- Multi-layer feed-forward NN: DAG
 - Just computes a fixed sequence of

- Recurrent Neural Network: Digraph
 - Has cycles.
 - Cycle can act as a memory;
 - The hidden state of a recurrent net can carry along information about a "potentially" unbounded number of previous inputs.
 - They can model sequential data in a much more natural way.

Equivalence between RNN and Feed-forward NN

- Assume that there is a time delay of 1 in using each connection.
- The recurrent net is just a layered net that keeps reusing the same weights.

- Training a general RNN's can be hard
 - Here we will focus on a special family of RNN's

- Prediction on chain-like input:
 - Language model

```
X,h= This is a sample sentence . 
 Y= is a sample sentence . <EOS>
```

POS tagging words of a sentence

```
X= This is a sample sentence . Y= DT VBZ DT NN NN .
```

Sentiment classification

```
X= This is a sample sentence .
```

Y = Positive/Negative

A chain RNN:

- Has a chain-like structure
- Each input is replaced with its vector representation x_t
- Hidden (memory) unit h_t contain information about previous inputs and previous hidden units h_{t-1} , h_{t-2} , etc
 - Computed from the past memory and current word. It summarizes the sentence up to that time.

A popular way of formalizing it:

$$h_t = f(W_h h_{t-1} + W_i x_t)$$

- Where f is a nonlinear, differentiable (why?) function.
- Outputs?
 - Many options; depending on problem and computational resource

- Prediction for x_t , with h_t
- Prediction for x_t , with h_t , ..., $h_{t-\tau}$
- Prediction for the whole chain

$$y_{t} = \operatorname{softmax}(W_{o}h_{t})$$

$$y_{t} = \operatorname{softmax}\left(\sum_{i=0}^{\tau} \alpha^{i}W_{o}^{t-i}h_{t-i}\right)$$

$$y_{T} = \operatorname{softmax}(W_{o}h_{T})$$

Training RNNs

- How to train such model?
 - Generalize the same ideas from back-propagation
- Total output error: $E(\vec{y}, \vec{t}) = \sum_{t=1}^{T} E_t(y_t, t_t)$

Parameters? W_o, W_i, W_h + vectors for input

t
$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}$$
$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial W}$$

Reminder: $y_t = \text{softmax}(W_o h_t)$ $h_t = f(W_h h_{t-1} + W_i x_t)$

This sometimes is called "Backpropagation
Through Time", since the gradients are propagated back through time.

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial W}$$

$$\frac{\partial h_t}{\partial h_{t-1}} = W_h \operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]$$

$$\frac{\partial h_t}{\partial h_{t-k}} = \prod_{i=t-k+1}^t \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=t-k+1}^t W_h \operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]$$

$$diag[a_{1}, ..., a_{n}] = \begin{bmatrix} a_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{n} \end{bmatrix}$$

Vanishing/exploding gradients

$$\frac{\partial h_t}{\partial h_{t-k}} = \prod_{j=t-k+1}^t W_h \operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]$$

$$||\frac{\partial h_t}{\partial h_k}|| \le \prod_{j=t-k+1}^t ||W_h|| ||\operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]|| \le \prod_{j=t-k+1}^t \alpha \beta = (\alpha \beta)^k$$

Gradient can become very **small or very large quickly**, and the locality assumption of gradient descent breaks down (Vanishing gradient) [Bengio et al 1994]

- Vanishing gradients are quite prevalent and a serious issue.
- A real example
 - Training a feed-forward network
 - y-axis: sum of the gradient norms
 - Earlier layers have exponentially smaller sum of gradient norms
 - This will make training earlier layers much slower.

Vanishing/exploding gradients

- In an RNN trained on long sequences (e.g. 100 time steps) the gradients can easily explode or vanish.
 - So RNNs have difficulty dealing with long-range dependencies.
- Many methods proposed for reduce the effect of vanishing gradients; although it is still a problem
 - Introduce shorter path between long connections
 - Abandon stochastic gradient descent in favor of a much more sophisticated Hessian-Free (HF) optimization
 - Add fancier modules that are robust to handling long memory; e.g. Long Short Term Memory (LSTM)
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 - A very good explanatiom of LSTM
- One trick to handle the exploding-gradient
 - Clip gradients with bigger sizes:

Define $g = \frac{\partial E}{\partial W}$ If $\|g\| \ge threshold$ then $g \leftarrow \frac{threshold}{\|g\|} g$

Perplexity Results

 KN5 = Count-based language model with Kneser-Ney smoothing & 5-grams

Table 2. Comparison of different neural network architectures on Penn Corpus (1M words) and Switchboard (4M words).

	Pen	n Corpus	Switchboard		
Model	NN	NN+KN	NN	NN+KN	
KN5 (baseline)	-	141	-	92.9	
feedforward NN	141	118	85.1	77.5	
RNN trained by BP	137	113	81.3	75.4	
RNN trained by BPTT	123	106	77.5	72.5	

 Table from paper Extensions of recurrent neural network language model by Mikolov et al 2011

Bi-directional RNN

- One of the issues with RNN:
- Hidden variables capture only one side context
- A bi-directional structure

$$h_{t} = f(W_{h}h_{t-1} + W_{i}x_{t})$$

$$\tilde{h}_{t} = f(\tilde{W}_{h}\tilde{h}_{t+1} + \tilde{W}_{i}x_{t})$$

$$y_{t} = \operatorname{softmax}(W_{o}h_{t} + \tilde{W}_{o}\tilde{h}_{t})$$

Stack of bi-directional networks

 Use the same idea and make your model further complicated:

