INF-253 Lenguajes de Programación Tarea 5: Prolog

15 de junio de 2023

1. Objetivo

Deberán implementar el siguiente grafo utilizando Prolog, y a partir de este deberán ser capaces de responder una serie de consultas.

Figura 1: Grafo a implementar en Prolog

El grafo debe ser implementado utilizando predicados, por ejemplo el siguiente código indicaría que a es vecino de b y b es vecino de c:

- vecino(a, b).
- vecino (b, c).

Para poder realizar la tarea, se debe utilizar SWI-Prolog, el cual se puede encontrar en: https://www.swi-prolog.org/download/stable.

2. Consultas a implementar

1. Puede llegar?

Debe implementar el predicado puedellegar(X, Y) tal que X e Y y exista un camino desde X hasta Y. (Cuando hay múltiples posibles opciones el orden en que las entrega no importa, lo importante es que las entregue todas)

```
1 ?- puedellegar(a, b)
2 true

3 
4 ?- puedellegar(a, X)
5 X = b
6 X = c
7 X = d
8 X = e

9 
10 ?- puedellegar(X, g)
11 X = f
12 X = h
13 X = i
14 X = j
```

2. Vecinos

Debe implementar el predicado vecinos (X, L) tal que X sea un nodo del grafo y L sea una lista con todos los vecinos del nodo X.

```
1 ?- vecinos(f, [b, e, g])
2 true
3
4 ?- vecinos(f, L)
5 L = [b, e, g]
```

3. Camino valido

Debe implementar el predicado caminovalido(L) tal que L sea una lista de nodos y todo par de nodos adyacentes en la lista sean vecinos, es decir, los nodos en la lista forman un camino en el grafo.

```
1 ?- caminovalido([a])
2 true
3
4 ?- caminovalido([a, b])
5 true
6
7 ?- caminovalido([a, b, c, e, b])
8 true
9
10 ?- caminovalido([f, b, a])
11 false
```

4. Camino más corto

Debe implementar el predicado caminomascorto (X, Y, L) tal que X e Y sean nodos en el grafo y L sea la lista de nodos que forma el camino más corto desde X hasta Y.

```
% ?- caminomascorto(a, d, [a, c, d]) true  
% ?- caminomascorto(h, d, L)  
$ L = [h, g, e, b, c, d]  
% ...
```

3. Sobre la Entrega

- Se deberá entregar un único archivo con todos los predicados implementados en el orden descrito en el enunciado.
- Cuidado con el orden y la indentación de su tarea, llevará descuento de lo más 20 puntos.
- Todas las funciones deben ser comentadas. Se descontara por función sin comentar.
- Se debe trabajar de forma individual obligatoriamente.
- La entrega debe entregarse en .tar.gz y debe llevar el nombre: Tarea5LP_RolAlumno.tar.gz
- El archivo README.txt debe contener nombre y rol del alumno e instrucciones detalladas para la correcta utilización de su programa. De no incluir README se realizara un descuento.
- La entrega será vía aula y el plazo máximo de entrega es hasta el 23 de Junio a alas 23:59.
- Por cada día de atraso se descontaran 20 pts.
- Las copias serán evaluadas con nota 0 y se informarán a las respectivas autoridades.
- Solo se contestaran dudas realizadas en AULA y que se realicen al menos 48 horas antes de la fecha de entrega original.

4. Calificación

4.1. Entrega mínima

La entrega mínima deberá contener la implementación del grafo en forma de predicados y la implementación de puedellegar.

4.2. Entrega

- Entrega minima (30pts)
- vecinos (20pts)
- caminovalido (25pts)
- caminomascorto (25pts)

4.3. Descuentos

- Falta de comentarios (-5 pts c/u Max 20 pts)
- Falta de README (-20 pts)
- \blacksquare Falta de alguna información obligatoria en el README (-5 pts c/u)
- Falta de orden (entre -5 y -20 pts dependiendo de que tan desordenado)
- \blacksquare Día de atraso (-20 pts por día, -10 pts dentro de la primera hora)
- \blacksquare Mal nombre en algún archivo entregado (-5 pts c/u)