[문제 1]

할인점 데이터베이스에 아래와 같은 릴레이션이 저장되어 있다고 가정하자. 기본 키는 ITEM#이다. 단일 단계 인덱스를 생성하려 한다.

ITEM#	ITEMNAME	PRICE	LOCATION
C1	치약	2000	1층
C2	칫솔	1000	1층
C3	간장	3000	지하
C4	내의	5000	2층
C5	양말	2500	2층
C6	형관등	4000	1층
C7	콜라	400	지하
C8	쌀	45000	지하
C9	화장실	8000	1층
C10	우산	6000	2층

(1) 이 릴레이션에 대해서 인덱스 엔트리가 포함된 기본 인덱스를 그려라.(블록킹 인수 = 3)

C1		C1	치약	2000	1층
C4		C2	칫솔	1000	1층
C7		C3	간장	3000	지하
C10		C4	내의	5000	2층
		C5	양말	2500	2층
		C6	형광등	4000	1층
		C7	콜라	400	지하
	\	C8	쌀	45000	지하
		C9	화장실	8000	1층
		C10	우산	6000	2층

(2) 밀집 인덱스에 대해서 (1)을 반복하라

C1	 C1	치약	2000	1층
C2	 C2	칫솔	1000	1층
C3	 C3	간장	3000	지하
C4	 C4	내의	5000	2층
C5	 C5	양말	2500	2층
C6	 C6	형광등	4000	1층
C7	 C7	콜라	400	지하
C8	 C8	쌀	45000	지하
C9	 C9	화장실	8000	1층
C10	 C10	우산	6000	2층
			_	_

(3) LOCATION에 대한 보조 인덱스를 그려라.

지하 지하 지하 1층	 C3
지하	C3 C7 C8
지하	 C8
1층	 C1 C2
1층	 C2
1층	C6 C9 C4 C5
1층	 C9
2층	 C4
1층 1층 1층 2층 2층 2층	 C5
2층	 C10

[문제 2]

블록 크기가 1024바이트인 디스크 장치를 고려해보자. 블록 포인터와 레코드 포인터는 각각 4, 8 바이트이다. 파일에는 30,000개의 고정 길이 사원 레코드가 들어 있다. 사원 레코드에는 이름(15 바이트), 주민등록번호(13바이트), 부서번호(8바이트), 주소(37바이트), 전화번호(11바이트), 성별(1바이트), 직급(10바이트), 급여(4바이트) 필드가 있다.

- (1) 레코드 길이가 몇 바이트인가?
 - 레코드 길이 = 15+13+8+37+11+1+10+4 = 99 bytes
- (2) 블로킹 인수가 얼마인가?
 - 블로킹 인수 = 1024/99 = 10
- (3) 파일이 필요로 하는 최소 블록 수는 얼마인가?
 - 최소 블록 수 = 30,000/10 = 3000개
- (4) 파일이 주민등록번호 순으로 정렬, 주민등록번호에 대해 희소 기본 인덱스를 생성하려 함
 - A. 인덱스 블로킹 인수가 얼마인가?
 - 인덱스 엔트리 크기 = 13+4 = 17 bytes
 - 인덱스 블로킹 인수 = 1024/17 = 60
 - B. 1단계 인덱스 엔트리 수와 1단계 인덱스 블록 수를 계산하라
 - 1단계 인덱스 엔트리 수 = 3000개
 - 1단계 인덱스 블록 수 = 3000/60 = 50개
 - C. 다단계 인덱스를 구축할 때, 단계 별 블록 수는 얼마인가?
 - 1단계 블록 수 = 50
 - 2단계 블록 수 = 50/60 = 1
 - D. 인덱스를 사용하여 한 레코드를 검색할 때 몇 번의 블록 접근이 필요한가?
 - 블록 접근 수 = 1+1 = 2