Problem 1 (25 points)

Consider a silicon semiconductor doped with $N_A = 2x10^{14}$ cm⁻³. Assume $E_g = 1.12eV$, $n_i = 1.5x10^{10}$ cm⁻³, kT = 0.026eV at T=300K.

$$\mu_{n} = 1350 \left(\frac{T}{300}\right)^{-\frac{3}{2}} cm^{2}/V.s, \ \mu_{p} = 480 \left(\frac{T}{300}\right)^{-\frac{3}{2}} cm^{2}/V.s$$

- a) (10 points) Determine the conductivity at T = 300K.
- b) (10 points) Determine the conductivity at T = 500K.
- c) (5 points) Determine the conductivity at T = 0K.

Problem 2 (25 points)

Assume the density of states in the conduction band for a given semiconductor is equal to $g_c(E) = K$, where $K = 10^{19}$ cm⁻³. T=300K, kT = 0.026eV.

- a) (5 points) Write the procedure for finding the density of electrons in the conduction band assuming the Boltzmann approximation.
- b) (10 points) Determine n_0 as a function of E_C , E_F , and T.
- c) (10 points) Assume E_F is 5kT below E_C , determine a value of n_0 .

Problem 3 (25 points)

The electron concentration in silicon is $n_0 = 10^7 \text{ cm}^{-3}$. $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, T = 300 K, kT = 0.026 eV.

- a) (5 points) Is the material n-type or p-type? Why?
- b) (5 points) Determine p₀
- c) (5 points) Determine $E_F E_{Fi}$
- d) (10 points) If $N_D = 10^{14}$ cm⁻³, determine N_A

Problem 4 (25 points)

Consider an intrinsic silicon semiconductor with a cross section area of $1\mu m \ x \ 1\mu m$ and a length of $10\mu m$. A voltage of 5V is applied across the sample.

Assume $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, T = 300K, kT = 0.026eV, $\mu_n = 1350 \text{ cm}^2/\text{V.s}$, $\mu_p = 480 \text{ cm}^2/\text{V.s}$

- a) (10 points) Determine the current.
- b) (5 points) Determine the average electron and hole velocities.
- c) (10 points) Determine the current if the semiconductor is doped with N_D =5x $10^{16} \ cm^{-3}$