

Experimental physik IV (WS 2023/2024)

Übung 10

Tutorium: 2 Abgabe: 26.06.2024

Aufgabe 1: Gepulster Rubinlaser

Im Rubin Festkörper führt optisches Pumpen mit einer Wellenlänge von 550 nm auf einen angeregten Zustand E_3 von Cr^{3+} -Ionen, die im $\operatorname{Al}_2\operatorname{O}_3$ -Gitter des Rubin-Kristalls einige der Al-Atome ersetzten. Dieser Zustand hat eine Lebensdauer von 10^{-3} s. Es folgen von hier strahlungslose Übergänge in das metastabile Niveau E_2 mit einer Lebensdauer von $3\cdot 10^{-3}$ s. Der Laserübergang zwischen den Niveaus E_2 und E_1 besitzt eine Wellenlänge von 694.3 nm. Bestimmen Sie:

- (a) Die Pulsdauer des Lasers beträgt 12 ps und die Energie pro Puls ist 0.15 J.
- i. Welche räumliche Länge hat der Puls?

$$s = ct \approx 3.60 \, \mathrm{mm}$$

ii. Was ist die erreichte Leistung?

$$P = \frac{\mathrm{d}E}{\mathrm{d}t} = \frac{E}{t} \approx 12.5 \,\mathrm{GW}$$

iii. Wieviele Photonen werden pro Puls emittiert?

$$N = \frac{E_{\text{Puls}}}{E_{\text{ph}}} = \frac{E_{\text{Puls}}\lambda}{hc} \approx 5.24 \cdot 10^{17}$$

(b) Vergleichen Sie die natürliche Linienbreite des Laser-Übergangs mit der Dopplerverbreiterung von $\Gamma_D = 1.3 \,\mathrm{pHz}$, für eine Betriebstemperatur von 300 K, mit der Breite aufgrund der kurzen induzierten Emissiondauer.

$$E = \frac{hc}{\lambda} \implies \Delta E = \frac{hc}{\lambda^2} \Delta \lambda$$
$$\frac{\hbar}{2} = \Delta E \Delta t = \frac{hc}{\lambda^2} \Delta \lambda_n \Delta t$$
$$\Delta \lambda_n = \frac{\lambda^2}{4\pi c \Delta t} \approx 10.6 \,\mathrm{pm}$$

$$\Delta \lambda_{\text{Doppler}} = \frac{\lambda}{c} \sqrt{\frac{8k_B T \ln 2}{m}} , m(C_3^{3+}) = \frac{52 \cdot 10^{-3}}{N_A} \text{kg}$$

 $\approx 1.19 \text{ pm}$

Damit ist die Linienverbreiterung durch die Kürze des Laserpuls etwa um eine Größenordnung größer, als die Dopplerverbreiterung.

(c)