

Assignment 2

In this assignment, we will perform several tasks relevant to video and audio media including Motion-Based hidden letter detection, audio extraction, and interlaced video simulation. You will work on the following file:

- video_with_letters.mp4 a video that hides one letter per frame
- video_with_audio.mp4 a short video that includes audio
- Both are found in this link https://drive.google.com/drive/folders/1I75xQcfYaZLRBCme-GIA_o11Capn9tJx?usp= sharing

PHASE 1: Hidden Letter Detection (Motion-Based)

Goal: Extract the message hidden in the video using motion detection.

You will:

- Read frames from video_with_letters.mp4
- Convert frames to grayscale
- Use frame differencing + contrast enhancement
- Apply motion filtering: skip frames with motion ratio > 5% as it would be too noisy
- Save binary difference masks to a folder motion_frames

Deliverables:

- The extracted message
- Code used to process and save the motion masks
- Screenshots of motion frames that clearly reveal the letters or the folder itself with the frames

PHASE 2: Audio Extraction

Goal: Extract the audio from video_with_audio.mp4 and save it as a .wav.2.2 Denoise Effect on Audio Write a Python script to apply a noise reduction effect on the extracted audio file.

Requirements:

- Read the audio file
- Apply a noise reduction filter to the audio file.
- Save the modified audio file

PHASE 3: Simulating Interlaced Video Scanning

Goal: Simulate the process of alternating scanlines in CRT monitors.

You will:

- Load video_with_audio.mp4
- 2. Create:
 - a. video_odd_interlaced.mp4: darken even rows (odd field)
 - b. video_even_interlaced.mp4: darken **odd rows** (even field)
 - c. Zoom effect: downscale by 25%, apply interlacing, upscale again
- 3. Extract the first frame from each video
- 4. Combine both into a side-by-side comparison
- 5. Display the combined image in Colab and save it as interlaced_frame_comparison.png

Deliverables:

- The two interlaced .mp4 videos
- A combined PNG image comparing the first frame from each version
- Code that displays this image inline using Matplotlib

What you need to submit:

- A working .ipynb notebook with:
 - All 3 phases implemented
 - Outputs shown inline (frames, audio, and interlaced comparison)
- A short PDF report that includes:
 - Extracted hidden message
 - Key screenshots (motion detection + interlacing)

- o Denoised audio
- Brief summary of what each phase does

Submit a google drive link to this form and it must be via this form only: https://docs.google.com/forms/d/e/1FAIpQLSdoV996rZ5r29QGLNi4RAdaNC7MYMoit6uMyHgXqRcBLgOSTA/viewform?usp=dialog

Bonus

• Create an animated alternating scanline flicker effect using odd/even frames

This is a team Assignment.

Same teams of two that submitted assignment 1 should submit assignment 2 together too.

<u>Each team must submit one shared submission only.</u>
<u>If you have any comments, please communicate early.</u>

Submission:

- 1. Deliverables:
 - Google Colab link
 - o .py code file
 - Use matplotlib to show frames and images inside your notebook.
 - 2-3 page report (pdf) including your team info, discussion of the methods and results you used, and instructions of we can run your code
 - Output media saved
 - 1 minute video, every team member records himself/herself while discussing part of the implementation in 30 seconds.

All deliverables must be uploaded to a **Google Drive folder**. Please ensure the sharing settings are set to "**Anyone with the link can view**." Include the Google Drive link in your submission.

2. Submission form:

https://docs.google.com/forms/d/e/1FAlpQLSeTeaQtWALSxK-neFUFCPgNqJv4dxhXvs-HdYLehiQPYbuv-w/viewform?usp=sharing

Deadline

The deadline is Sunday 4th May, 2025.

Good luck!