CONCLUSIONS AND FUTURE WORK

- 5.1 Summary of technical contributions
- 5.2 Summary of empirical findings
- 5.3 Summary of empirical findings

5.4 Future Work

Moreover, the WebAssembly ecosystem is still in its infancy compared to more mature programming environments. A 2021 study by Hilbig et al. found only 8,000 unique WebAssembly binaries globally[?], a fraction of the 1.5 million and 1.7 million packages available in npm and PyPI, respectively. This limited dataset poses challenges for machine learning-based analysis tools, which require extensive data for effective training. The scarcity of WebAssembly programs also exacerbates the problem of software monoculture, increasing the risk of compromised WebAssembly programs being consumed[?]. This dissertation aims to mitigate these issues by introducing a comprehensive suite of tools designed to enhance WebAssembly security through Software Diversification and to improve testing rigor within the ecosystem.

 $^{^{0}}$ Comp. time 2023/10/02 13:59:53

5 REFERENCES

- [1] A. Haas, A. Rossberg, D. L. Schuff, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, "Bringing the web up to speed with webassembly," *PLDI*, 2017.
- [2] P. Mendki, "Evaluating webassembly enabled serverless approach for edge computing," in 2020 IEEE Cloud Summit, pp. 161–166, 2020.
- [3] M. Jacobsson and J. Wåhslén, "Virtual machine execution for wearables based on webassembly," in *EAI International Conference on Body Area Networks*, pp. 381–389, Springer, Cham, 2018.
- [4] "Webassembly system interface." https://github.com/WebAssembly/WASI, 2021.
- [5] D. Bryant, "Webassembly outside the browser: A new foundation for pervasive computing," in *Proc. of ICWE 2020*, pp. 9–12, 2020.
- [6] B. Spies and M. Mock, "An evaluation of webassembly in non-web environments," in 2021 XLVII Latin American Computing Conference (CLEI), pp. 1–10, 2021.
- [7] E. Wen and G. Weber, "Wasmachine: Bring iot up to speed with a webassembly os," in 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1–4, IEEE, 2020.
- [8] D. Lehmann, J. Kinder, and M. Pradel, "Everything old is new again: Binary security of webassembly," in 29th USENIX Security Symposium (USENIX Security 20), USENIX Association, Aug. 2020.
- [9] M. Kim, H. Jang, and Y. Shin, "Avengers, assemble! survey of webassembly security solutions," in 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), pp. 543–553, 2022.
- [10] J. Cabrera Arteaga, O. Floros, O. Vera Perez, B. Baudry, and M. Monperrus, "Crow: code diversification for webassembly," in *MADWeb*, *NDSS* 2021, 2021.

46 REFERENCES

[11] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer, "Sledge: A serverless-first, light-weight wasm runtime for the edge," in *Proceedings of the 21st International Middleware Conference*, p. 265–279, 2020.

- [12] R. Gurdeep Singh and C. Scholliers, "Warduino: A dynamic webassembly virtual machine for programming microcontrollers," in *Proceedings of the* 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes, MPLR 2019, (New York, NY, USA), pp. 27–36, ACM, 2019.
- [13] S. S. Salim, A. Nisbet, and M. Luján, "Trufflewasm: A webassembly interpreter on graalvm," in *Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments*, VEE '20, (New York, NY, USA), p. 88–100, Association for Computing Machinery, 2020.
- [14] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage, D. Stefan, and F. Brown, "Wave: a verifiably secure webassembly sandboxing runtime," in 2023 IEEE Symposium on Security and Privacy (SP), pp. 2940–2955, 2023.
- [15] Q. Stiévenart and C. De Roover, "Wassail: a webassembly static analysis library," in *Fifth International Workshop on Programming Technology for the Future Web*, 2021.
- [16] I. Bastys, M. Algehed, A. Sjösten, and A. Sabelfeld, "Secwasm: Information flow control for webassembly," in *Static Analysis* (G. Singh and C. Urban, eds.), (Cham), pp. 74–103, Springer Nature Switzerland, 2022.
- [17] T. Brito, P. Lopes, N. Santos, and J. F. Santos, "Wasmati: An efficient static vulnerability scanner for webassembly," *Computers & Security*, vol. 118, p. 102745, 2022.
- [18] F. Breitfelder, T. Roth, L. Baumgärtner, and M. Mezini, "Wasma: A static webassembly analysis framework for everyone," in 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 753–757, 2023.
- [19] F. Marques, J. Fragoso Santos, N. Santos, and P. Adão, "Concolic execution for webassembly (artifact)," Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.
- [20] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. McMullen, S. Savage, and D. Stefan, ", : Sfi safety for native-compiled wasm," Network and Distributed Systems Security (NDSS) Symposium.
- [21] W. Fu, R. Lin, and D. Inge, "Taintassembly: Taint-based information flow control tracking for webassembly," arXiv preprint arXiv:1802.01050, 2018.