

Evaluación de Bachillerato para el Acceso a la Universidad

Castilla y León

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

EXAMEN

Nº páginas: 2 (tabla adicional)

OPTATIVIDAD: CADA ESTUDIANTE DEBERÁ ESCOGER **TRES** PROBLEMAS Y **UNA** CUESTIÓN Y DESARROLLARLOS COMPLETOS.

CRITERIOS GENERALES DE EVALUACIÓN

Cada problema se puntuará sobre un máximo de 3 puntos. Cada cuestión se puntuará sobre un máximo de 1 punto. Salvo que se especifique lo contrario, los apartados que figuran en los distintos problemas son equipuntuables. La calificación final se obtiene sumando las puntuaciones de los tres problemas y la cuestión realizados. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos efectuados.

PROBLEMAS (A ELEGIR TRES)

P1. (Números y álgebra)

En una panadería hornean todos los días tartas y bizcochos que venden a 10 € y 6 €, respectivamente. Para fabricar una tarta se necesitan 400 gramos de harina y 200 de azúcar, mientras que para un bizcocho se utilizan 300 gramos de harina y 100 de azúcar. Los dueños de la panadería saben que diariamente tienen que hornear, al menos, 6 bizcochos. Para la producción de hoy de tartas y bizcochos se dispone de 6 kg de harina y 2.4 kg de azúcar. Utilizando técnicas de programación lineal, determinar la cantidad de cada uno de los productos que hay que hornear hoy para obtener los máximos ingresos.

P2. (Números y álgebra)

Se considera el sistema de ecuaciones lineales, en función del parámetro a:

$$\begin{cases} x - 2y + z = 1\\ x + y - az = 1\\ x + 2y - 2z = -2 \end{cases}$$

- a) Clasificar el sistema según sus soluciones para los diferentes valores de a.
- b) Resolver el sistema para a = 1.

P3. (Análisis)

Se considera la función:

$$f(x) = \begin{cases} 4 - x^2 & \text{si } x \le 1\\ \frac{b}{x} & \text{si } x > 1 \end{cases}$$

- a) Determinar el valor de b para que f(x) sea continua.
- b) Calcular el área delimitada por f(x) y el eje OX en el intervalo (0, 1).

P4. (Análisis)

Los estatutos de una asociación ecologista establecen que la asociación debe disolverse cuando supere los 100 socios. Se sabe, además, que el número de sus socios varía con los años transcurridos desde su fundación, "x", de acuerdo con la función $N(x) = x^3 - 9x^2 + 24x + 64$.

- a) ¿Cuántos han sido los socios fundadores? Transcurridos 7 años, ¿cuántos socios habrá? ¿Se disolverá la sociedad en ese momento? (hasta 1 punto).
- b) Estudiar el comportamiento (crecimiento, decrecimiento) del número de socios en el intervalo [0, 7] ¿cuál será el número mínimo de socios y cuándo se alcanzará? (hasta 2 puntos).

P5. (Estadística y probabilidad)

En un gimnasio, el 52 % de los socios son hombres y el resto son mujeres. Entre los socios, el 35 % de los hombres practica "spinning" así como el 60 % de las mujeres. Si elegimos un socio al azar,

- a) Calcular la probabilidad de que practique "spinning".
- b) Si el socio elegido no practica "spinning", obtener la probabilidad de que sea una mujer.

P6. (Estadística y probabilidad)

El peso de la población adulta con sobrepeso sigue una distribución normal de media 120 kg y desviación típica de 20 kg. Además, a los individuos con un peso superior a 150 kg se les considera "individuos con riesgo de desarrollar la enfermedad coronaria A".

- a) ¿Qué porcentaje de la población de adultos con sobrepeso son "individuos con riesgo de desarrollar la enfermedad coronaria A"?
- b) Si se elige aleatoriamente una muestra de 20 adultos con sobrepeso, calcular la probabilidad de que la media del peso de la muestra esté entre 110 kg y 125 kg.

CUESTIONES (A ELEGIR UNA)

C1. (Números y álgebra)

Un hijo tiene 22 años menos que su padre y la suma de sus edades es 46 años ¿qué edad tiene el hijo?

C2. (Análisis)

Dada la función $f(x) = ax - 33 + \frac{5}{x}$, determinar a para que verifique f'(1) = 2.

C3. (Estadística y probabilidad)

La nota media de los alumnos de segundo de bachillerato de cierto instituto sigue una distribución normal de media 6.8 y desviación típica 1.1. Calcular la probabilidad de que un alumno haya obtenido más de un 9.

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9014
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9318
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999