Drone Image Segmentation

Andres Aguilar

Problem Statement

- 'Last Mile Delivery' is costly portion of package delivery
- Start-up focused on deliveries using drones
- Create model that can identify safe landing/delivery zones for drone
- Focus on these targets:
 - Paved-Area
 - Grass
 - Dirt
 - Gravel

Semantic Segmentation

Pixel Classification

 Each pixel has class value in mask

Model Features:

- Fully Convolutional
- Decoder and Encoder
- Skip Layers

Modeling Metrics

- Accuracy can be affected by class imbalance
- Intercept over Union (IoU) allows for a per class metric
- Dice Coefficient used for loss function of one model

$$IoU = TP / (TP + FP + FN)$$

$$Dice = (2*TP) / (2*TP + FP + FN)$$

Dice Coef Loss Model

Categorical Loss Model

Mask Predictions

Target Class IoU

- Dice Loss Model performs better
- Potential Errors:
 - Much lower than MeanIoU
 - Dice and IoU perform differently for averaging

Conclusions and Recommendations

- Model should be improved before implementation
- Suggestions for improvement:
 - Custom model architecture
 - Higher resolution input
 - Further augmentation