Khôlles: Fonctions à Valeurs Vectorielles

- 06 - 10 Novembre 2023 -

Sommaire

1	Que	estions de Cours - Tout groupe	1
	1.1	Définition et caractérisation séquentielle de la continuité et des limites. (démo non refaite en spé)	1
	1.2	Une fonction Lipschitzienne est continue. La réciproque est fausse. (démo)	2
	1.3	Équivalence entre la dérivabilité et l'existence d'un DL à l'ordre 1. C'est faux pour les ordres supérieurs.(démo)	3
	1.4	Exemple de fonction dérivable qui n'est pas de classe C1 . (démo)	3
	1.5	Somme de Riemann et théorème associé. (proposer un exemple)	4
	1.6	Révisions de sup : Th de Rolle (démo), égalité et inégalité des accroissements finis (démo)	4
	1.7	Formules de Taylor (Young + reste intégral) (démo de la formule avec reste intégral)	6
2	Que	estions de Cours - Groupes B et C	7
	2.1	Définition d'un point adhérent à une partie. Caractérisation séquentielle. (démo)	7
	2.2	Dérivée de $L(f)$ où L est une application linéaire continue (démo)	7
	2.3	Dérivée de $B(f,g)$ où B est une application bilinéaire continue. (démo)	8
	2.4	Continuité de la fonction "distance à une partie A". (démo)	9
	2.5	Inégalité entre moyenne géométrique et arithmétique pour des réels positifs. (démo)	9
3	Que	estions de Cours - Groupe C	10
	3.1	Démonstration du théorème de convergence des sommes de Riemann. (démo)	10
		Majoration de l'erreur des sommes de Riemann en $O\left(\frac{1}{n}\right)$. (avec la bonne hypothèse, démo non faite)	
		Majoration de l'erreur de la méthode des trapèzes en $O\left(\frac{1}{n^2}\right)$. (avec la bonne hypothèse, démo non faite)	
	3.4	Démonstration du théorème fondamental du calcul intégral. (démo du cours de sup)	13
	3.5	Adhérence de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$	
	3.6	Inégalité de Jensen pour les fonctions convexes. (démo de sup)	
	3.7	Caractérisation des fonctions convexes par l'inégalité des pentes. (démo de sup)	15
4	Exe	rcices de Référence, Tout groupe	16
	4.1	Exercice 1	16
	4.2	Exercice 2	16
	4.3	Exercice 3	16
	4.4	Exercice 4	17
	4.5	Exercice 5	17
	4.6	Exercice 6	17
	4.7	Exercice 7	18
	4.8	Exercice 8	18
	4.0	Everaine 0	10

1 Questions de Cours - Tout groupe

1.1 Définition et caractérisation séquentielle de la continuité et des limites. (démo non refaite en spé)

Définition: Limite d'une application

Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$, deux \mathbb{K} -EVN. Soit $A \subset E$, soit $f : A \to F$ une application.

Soit $\alpha\in\overline{A}$ et $l\in F.$ On dit que $\lim_{\begin{subarray}{c} x\to\alpha\\x\in A\end{subarray}}f(x)=l$ si :

$$\forall \varepsilon > 0, \exists \eta > 0, \ \forall x \in A, \ \|x - \alpha\|_{E} \leqslant \eta \Rightarrow \|f(x) - l\|_{E} \leqslant \varepsilon$$

Proposition Caractérisation Séquentielle

$$\left[\lim_{\substack{\mathbf{x}\to\mathbf{a}\\\mathbf{x}\in A}}\mathbf{f}(\mathbf{x})=\mathbf{l}\right]\iff \left[\forall (\mathbf{x}_n)_n\in A^{\mathbb{N}},\ \mathbf{x}_n\to\mathbf{a}\Rightarrow\ \mathbf{f}(\mathbf{x}_n)\to\mathbf{l}\right]$$

Preuve:

 $\text{Si} \lim_{\substack{x \to \alpha \\ x \subset A}} f(x) = l \text{, alors soit } (x_n) \in A^{\mathbb{N}} \text{, telle que } x_n \to a. \text{ Alors } \forall \epsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \|x_n - a\| \leqslant \epsilon.$

Soit donc $\epsilon>0$, montrons qu'il existe $n_0\in\mathbb{N},\ \forall n\geqslant n_0,\ \|f(x_n)-l\|_F\leqslant\epsilon$:

Par hypothèse, il existe η tel que $\forall x \in A$, $\|x - a\|_E \leqslant \eta \Rightarrow \|f(x) - l\|_F \leqslant \varepsilon$. Il suffit alors de prendre n_0 tel que $\forall n \geqslant n_0$, $\|x_n - a\|_E \leqslant \eta$, ce qui existe car $x_n \to a$.

Réciproquement, si $\lim_{x \to a} f(x) \neq l$, alors $\exists \varepsilon > 0$, $\forall \eta > 0$, $\exists x \in A$, $\|x - a\|_E \leqslant \eta$ et $\|f(x) - l\|_F \geqslant \varepsilon$.

En posant $\eta_n = \frac{1}{n+1}$, nous exhibons une suite $(x_n) \in A^{\mathbb{N}}$, telle que $x_n \to a$ et avec $\forall n \in \mathbb{N}$, $\|f(x_n) - l\|_F \geqslant \epsilon$, donc $\exists (x_n) \in A^{\mathbb{N}}$, $x_n \to a$ et $f(x_n) \not\to l$.

Proposition

 $\text{Soient } (E,\|\cdot\|_E) \text{ et } (F_1,\|\cdot\|_{F_1}), \ldots, (F_p,\|\cdot\|_{F_p}), \text{ des } \mathbb{K}\text{-EVN. Soit } A \subset E \text{ et } \alpha \in \overline{A}.$

 $\text{Soit } f \colon \begin{cases} A \to F_1 \times \cdot \times F_p = G \\ x \mapsto (f_1(x), \dots, f_p(x)) \end{cases} \quad \text{on munit } G \text{ de la norme Produit } (i.e \ \|(x_1, \dots, x_n)\|_G = \max_{i \in \llbracket 1; p \rrbracket} \lVert x_i \rVert_{F_i}.$

 $Soit\ l = (l_1, \ldots, l_p) \in G.\ Alors \lim_{\substack{x \to a \\ x \in A}} f(x) = l \iff \forall i \in [\![1;p]\!],\ \lim_{\substack{x \to a \\ x \in A}} f_i(x) = l_i$

Définition: Continuité

Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$, deux \mathbb{K} -EVN. Soit $A \subset E$, soit $f : A \to F$ une application.

- 1. Soit $a \in A$. On dit que f est continue en a si $\lim_{x \to a} f(x) = f(a)$
- 2. On dit que f est continue sur A si $\forall a \in A$, f est continue en a

 \mathbf{MPI}^{\star} 1

Proposition Caractérisation Séquentielle

[f est continue en a]
$$\iff$$
 $[\forall (x_n)_n \in A^{\mathbb{N}}, x_n \to a \Rightarrow f(x_n) \to f(a)]$

Preuve:

 $\text{Soit } (x_n)_n \in A^{\mathbb{N}} \text{ telle que } x_n \to a. \text{ Alors, nous avons } \forall \epsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \|x_n - a\| \leqslant \epsilon.$

Dès lors, la continuité de f s'écrit $\forall \varepsilon > 0$, $\exists \eta > 0$, $\forall y \in A$, $\|y - a\| \le \eta \Rightarrow \|f(y) - f(a)\| \le \varepsilon$. Donc:

Soit $\varepsilon > 0$, montrons qu'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0$, $\|f(x_n) - f(a)\| \le \varepsilon$.

Par continuité de f, il existe un η tel que $\|x_n - a\| \le \eta \Rightarrow \|f(x_n) - f(a)\| \le \epsilon$. Or, pour un η donné, il existe $n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \|x_n - a\| \leqslant \eta$, et ceci implique bien $\|f(x_n) - f(a)\| \leqslant \epsilon$.

Ainsi, $\forall (x_n) \in A^{\mathbb{N}}$, $x_n \to a \Rightarrow f(x_n) \to f(a)$.

Réciproquement, si $\forall (x_n) \in A^{\mathbb{N}}$, $x_n \to a \Rightarrow f(x_n) \to f(a)$, montrons que $\forall \epsilon > 0$, $\exists \eta > 0$, $\forall x \in A$, $\|x - a\| \leqslant \eta \Rightarrow \|f(x) - f(a)\| \leqslant \epsilon$

S'il existe un $\varepsilon > 0$, $\forall \eta > 0$, $\exists x \in A$, $\|x - \alpha\| \le \eta$ et $\|f(x) - f(\alpha)\| > \varepsilon$. Alors, posons $\eta_n = \frac{1}{n+1}$.

Ceci induit l'existence d'une suite (x_n) reliée aux η_n telle que $\forall n \in \mathbb{N}$, $\|x_n - a\| \le \eta_n$ et $\|f(x_n) - f(a)\| > \epsilon$.

Or, cette suite (x_n) converge vers a par construction : $\forall n \in \mathbb{N}, \ \|x_n - a\| \leqslant \frac{1}{n+1} \Rightarrow x_n \to a$.

Or, par hypothèse, ceci implique que $\|f(x_n) - f(a)\| \xrightarrow[n \to +\infty]{} 0$, et ceci est absurde car cette quantité est toujours supérieure à ϵ . D'où la réciproque.

1.2 Une fonction Lipschitzienne est continue. La réciproque est fausse. (démo)

Proposition

Soient $(E, \|\cdot\|_F)$, $(F, \|\cdot\|_F)$, deux \mathbb{R} -EVN. Soit $f: E \to F$, une application Lipschitzienne.

Alors f est Uniformément Continue, et f est alors Continue

Preuve :

f est Lipschitzienne, il existe alors $K \in \mathbb{R}_+$ tel que f soit K-Lipschitzienne : $\forall x,y \in E$, $\|f(x) - f(y)\|_F \le K \times \|x - y\|_F$.

Montrons que f est Uniformément Continue : $\forall \varepsilon > 0$, $\exists \eta > 0$, $\forall (x,y) \in E$, $\|x-y\|_F \le \eta \Rightarrow \|f(x)-f(y)\|_F \le \varepsilon$.

 $\text{Il suffit de prendre } \eta = \frac{\epsilon}{K} > 0 \text{, car } \|x - y\|_E \leqslant \eta \Rightarrow \ \|f(x) - f(y)\|_F \leqslant K \|x - y\|_E \leqslant K \times \eta = \epsilon.$

f est alors Uniformément Continue, et l'uniforme continuité implique la continuité : Soit $x \in E$:

Soit $\varepsilon > 0$, posons η comme celui de l'uniforme continuité. Alors, $\forall y \in E$, $\|x - y\|_E \le \eta \Rightarrow \|f(x) - f(y)\| \le \varepsilon$ par uniforme-continuité de f.

f est alors continue en x pour tout $x \in E$. D'où :

f Lipschitzienne \Rightarrow f Uniformément Continue \Rightarrow f Continue

La réciproque est cependant fausse, la racine carrée n'est Lipschitzienne sur aucun intervalle de la forme]0, a].

Équivalence entre la dérivabilité et l'existence d'un DL à l'ordre 1. C'est faux pour les ordres supérieurs.(démo)

Proposition

Soit $I \subset \mathbb{R}$ un intervalle. Soit $(E, \|\cdot\|_E)$, un \mathbb{R} -EVN de dimension Finie. Soit $a \in I$.

Alors [f est Dérivable en a] \iff [f admet un DL à l'ordre 1 en a]

i.e: f(a+h) = f(a) + hf'(a) + o(h) (où o(h) signifie $o(||h||_E)$).

Preuve:

Si f est dérivable en
$$a$$
. Alors $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}-f'(a)=0$. Ainsi, $\frac{f(a+h)-f(a)}{h}-f'(a)=o(1)$, donc $f(a+h)=f(a)+hf'(a)+o(h)$.

Réciproquement, $\exists \nu \in F$ tel que $f(a+h)=f(a)+h\nu+o(h)$. Si $h\neq 0$, nous avons :

$$\frac{f(\alpha+h)-f(\alpha)}{h}=\nu+o(1). \ Donc\ f\ est\ dérivable\ en\ \alpha\ et\ f'(\alpha)=\nu$$

Ceci est faux pour les Ordres supérieurs! Nous n'avons plus que le sens f \mathfrak{n} —fois dérivable en $\mathfrak{a} \Rightarrow \mathfrak{f}$ admet un DL à l'ordre n en a.

Par exemple: Prenons
$$f: x \mapsto \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
.

Alors f admet un DL à l'ordre 2 en zéro : $f(h) = 0 + h \times 0 + \frac{h^2}{2} \times 0 + \mathcal{O}(h^3) = \mathcal{O}(h^3)$. Or, f n'est pas deux fois dérivable en 0

1.4 Exemple de fonction dérivable qui n'est pas de classe C1. (démo)

Exemple

La fonction $f: x \mapsto x^2 \sin\left(\frac{1}{x}\right)$ est dérivable sur \mathbb{R}^* .

$$\operatorname{Si} x \neq 0, \, f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \times \frac{-1}{x^2} \cos\left(\frac{1}{x}\right) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right).$$

Nous observons que cette expression ne possède pas de limite en x = 0. Ainsi, cette fonction n'est pas de classe \mathscr{C}^1 .

3 MPI*

1.5 Somme de Riemann et théorème associé. (proposer un exemple)

Définition: Somme de Riemann

Soit $n \in \mathbb{N}^*$, soient $a, b \in \mathbb{R}$ avec a < b. Soit $f : [a, b] \to \mathbb{R}$.

On appelle Somme de Riemann à pas constant la quantité $S_n(f) = \sum_{k=0}^{n-1} \frac{b-a}{n} \times f\left(a+k\frac{b-a}{n}\right)$

Théorème

Soit $f:[a,b] \to \mathbb{R}$, de classe \mathscr{C}^{PM} .

$$\int_{0}^{b} f(t)dt = \lim_{n \to +\infty} S_{n}(f)$$

Exemple

Posons
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k^2}{n^2}}.$$

On note alors $f: t \mapsto \frac{1}{1+t^2}$. Alors $u_n \to \int_0^1 f(t)dt = \arctan(1) = \frac{\pi}{4}$

1.6 Révisions de sup : Th de Rolle (démo), égalité et inégalité des accroissements finis (démo)

Théorème de Rolle

Soit $a < b \in \mathbb{R}$. Soit f, fonction continue sur [a, b], dérivable sur]a, b[telle que f(a) = f(b).

Alors
$$\exists c \in]a, b[, f'(c) = 0$$

Preuve:

f est continue sur $[\mathfrak{a},\mathfrak{b}]$ donc f est bornée et atteint ses bornes.

Soit donc
$$m = \min_{[a,b]} f$$
, et $M = \max_{[a,b]} f$.

Si m = M, f est constante donc tout point $c \in]a,b[$ convient. Supposons dès lors que $m \neq M$. Puisque f(a) = f(b). m et M ne peuvent pas être tout deux atteints aux bornes. Supposons alors (raisonnement analogue dans l'autre cas) que m soit atteint dans]a,b[.

Il existe alors $c \in]a, b[$ tel que f(c) = m. f admet en c un minimum local donc f'(c) = 0

Théorème Égalité des Accroissements finis

C'est Rolle en tournant la tête!

Soit $f:[a,b] \to \mathbb{R}$, continue sur [a,b], dérivable sur]a,b[.

Alors il existe $c \in]\alpha, b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$

Preuve :

Soit g, la fonction affine définie sur $[\mathfrak{a},\mathfrak{b}]$, qui coı̈ncide avec f en \mathfrak{a} et \mathfrak{b} .

$$g: \begin{cases} [a,b] \to \mathbb{R} \\ x \mapsto \frac{f(b) - f(a)}{b - a} (x - a) + f(a) \end{cases}$$

Soit $\phi = f - g$. ϕ est continue sur [a,b], dérivable sur]a,b[et $\phi(a) = \phi(b) = 0$. D'après le théorème de Rolle : $\exists c \in]a,b[,\phi'(c)=0,$ i.e :

$$f'(c) - g'(c) = 0 \Rightarrow f'(c) = g'(c). \ f'(c) = \frac{f(b) - f(a)}{b - a}$$

Théorème Inégalité des Accroissements Finis (V.1)

Soit $f: I \to \mathbb{R}$ dérivable. On suppose qu'il existe \mathfrak{m} et M tels que $\mathfrak{m} \leqslant f' \leqslant M$.

$$\forall (\alpha,b) \in I^2, \ \alpha \leqslant b \Rightarrow \ \mathfrak{m}(b-\alpha) \leqslant f(b) - f(\alpha) \leqslant M(b-\alpha)$$

Preuve :

$$\begin{split} \mathfrak{m} \leqslant f' \leqslant M \Rightarrow \forall \alpha < b \in I^2, \ \mathfrak{m} \int_a^b 1 dt \leqslant \int_a^b f'(t) dt \leqslant M \int_a^b 1 dt \\ \Rightarrow \forall \alpha < b \in I^2, \ \mathfrak{m}(b-\alpha) \leqslant f(b) - f(\alpha) \leqslant M(b-\alpha) \end{split}$$

Théorème Inégalité des Accroissements Finis (V.2)

Soit $f: I \to \mathbb{R}$ dérivable. Soit $k \in \mathbb{R}_+$.

Si $|f'| \le k$. Alors, f est k-lipschitzienne. i.e :

$$\forall (a,b) \in I^2, |f(b) - f(a)| \leq k|b-a|$$

Preuve:

Prendre la preuve précédente avec m = -M.

1.7 Formules de Taylor (Young + reste intégral) (démo de la formule avec reste intégral).

Proposition Formule de Taylor - Reste Intégral

Soit $I \subset \mathbb{R}$, un Intervalle, soit $(E, \|\cdot\|_E)$, un \mathbb{K} —EVN de dimension finie. Soit $n \in \mathbb{N}$.

Soit $f: I \to \mathbb{R}$ de classe \mathscr{C}^{n+1} .

$$\text{Alors, } \forall \alpha, x \in I, \ \ f(x) = \sum_{k=0}^n f^{(k)}(\alpha) \times \frac{(x-\alpha)^k}{k!} + \int_{\alpha}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

Preuve:

 $\text{Par r\'ecurrence}: \text{Si}\, n \in \mathbb{N} \text{, notons } H_n: \text{"Si}\, f \text{ est } C^{n+1} \text{, alors } f(x) = \sum_{k=0}^n f^{(k)}(\alpha) \times \frac{(x-\alpha)^k}{k!} + \int_{\alpha}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt \text{"}.$

- Supposons $f C^1$. Alors, $f(a) + \int_a^b f'(t)dt = f(a) + f(b) f(a)$: H_0 est vraie.
- Soit $n \in \mathbb{N}$. Supposons H_n , Montrons H_{n+1} :

Supposons f C^{n+2} . f est en particulier C^{n+1} . Alors, par HR:

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)(b-a)^{k}}{k!} + \int_{a}^{b} \frac{(b-t)^{n}f^{(n+1)}(t)dt}{n!}$$

Faisons une Intégration Par Parties. Posons $u(t)=f^{(n+1)}(t)\to u'(t)=f^{(n+2)}(t)$. Posons également $v'(t)=\frac{(b-t)^n}{n!}\to v(t)=-\frac{(b-t)^{n+1}}{(n+1)!}$.

u et v sont C^1 car f est C^{n+2} . Alors:

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)(b-a)^{k}}{k!} + \underbrace{\left[-\frac{f^{(n+1)}(t)(b-t)^{n+1}}{(n+1)!} \right]_{a}^{b}}_{=0 \text{ en } b} + \int_{a}^{b} \frac{f^{(n+2)}(t)(b-t)^{n+1}}{(n+1)!} dt$$

$$f(b) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)(b-a)^k}{k!} + \int_a^b \frac{(b-t)^{n+1}f^{(n+2)}(t)}{(n+1)!}dt$$

Proposition Formule de Taylor - Young

1. Si f est de classe
$$\mathscr{C}^n$$
, alors $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + o(|x-a|^n)$

$$2. \ \ \text{Si f est de classe} \ \mathscr{C}^{n+1} \text{, alors } f(x) = \sum_{k=0}^n \frac{(x-\alpha)^k}{k!} f^{(k)}(\alpha) + \mathcal{O}(|x-\alpha|^{n+1})$$

2 Questions de Cours - Groupes B et C

2.1 Définition d'un point adhérent à une partie. Caractérisation séquentielle. (démo)

Définition: Point Adhérent à une partie

Soit $(E, \|\cdot\|)$, \mathbb{K} -EVN. Soit $A \subset E$, soit $a \in E$.

On dit que a est un point adhérent à A si $\forall r > 0$, $B_f(a,r) \cap A \neq \emptyset$

Proposition Caractérisation Séquentielle

Cette définition est équivalente à : $\exists (x_n)_n \in A^{\mathbb{N}}$, $x_n \to a$

Preuve:

Supposons que $\forall r > 0$, $B_f(a, r) \cap A \neq \emptyset$:

Posons
$$r_n = \frac{1}{n+1}$$
. Puisque $B_f(a, r_n) \cap A \neq \emptyset$, alors $\exists x_n \in A, \ \|x_n - a\| \leqslant r_n = \frac{1}{n+1}$.

Nous construisons alors une suite $(x_n)_n \in A^{\mathbb{N}}$ telle que $x_n \to a$.

Réciproquement, si $\forall r > 0$, $\exists n_0 \in \mathbb{N}$, $\forall n \geqslant n_0$, $||x_n - a|| \leqslant r$, alors en particulier, nous avons :

$$\|x_{n_0}-a\|\leqslant r \Rightarrow x_{n_0}\in B_f(a,r)\cap A, \text{d'où } \forall r>0, \ B_f(a,r)\cap A\neq\emptyset$$

2.2 Dérivée de L(f) où L est une application linéaire continue (démo)

Proposition

Soit $I \subset \mathbb{R}$ un intervalle. Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$, deux \mathbb{K} -EVN de dimension finie. Soit $f: I \to F$ une application et $L \in \mathcal{L}(E, F)$ (continue car E est de dimension Finie).

Soit $a \in I$. On suppose que f est dérivable en a. Alors L(f) est dérivable en a et L(f)'(a) = L(f'(a))

Preuve :

 $L \in \mathcal{L}(E,F)$ et E de dimension finie donnent la continuité de L (C.F chapitre Topologie).

Dès lors (Nous montrerons plus tard que), $\exists K \in \mathbb{R}_+, \ \forall x \in E, \ \|L(x)\|_F \leq \|x\|_F \times K$.

Soit $h \in \mathbb{R}$ tel que $a + h \in I$. Alors f(a + h) = f(a) + hf'(a) + o(h).

Alors
$$L(f(a+h)) = L(f(a) + hf'(a) + o(h)) = L(f(a)) + hL(f'(a)) + L(o(h))$$
.

Or, L(o(h)) = o(h) par K— Lipschitzianité de L.

Ainsi, L(f) admet un DL à l'ordre 1 en α , donc est dérivable en α d'après ce qui précède. De plus, $L(f)'(\alpha) = L(f'(\alpha))$.

```
Montrons donc que L(o(h)) = o(h): Soit \phi(h) tel que \phi(h) soit notre o(h). Alors, \exists \epsilon : (\mathbb{R} \to \mathbb{R}) telle que \|\phi(h)\|_F = |h| \times \epsilon(h) avec \lim_{h \to 0} \epsilon(h) = 0. Ainsi, L(\phi(h)) = L(|h| \times \epsilon(h)) \leqslant K \times |h| \times \epsilon(h). Finalement, L(o(h)) = o(h)
```

2.3 Dérivée de B(f, q) où B est une application bilinéaire continue. (démo)

Proposition

Soit $I \subset \mathbb{R}$ un intervalle. Soient $(E, \|\cdot\|_F)$, $(F, \|\cdot\|_F)$ et $(G, \|\cdot\|)_G$, trois \mathbb{K} -EVN avec E et F de dimension finie.

Soit $B: E \times F \to G$ une application Bilinéaire. Soit $a \in I$ et $f: I \to E$, $g: I \to F$, deux applications dérivables en a.

Alors $B(f,g): I \to G$ est dérivable en a et B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),g'(a))

Preuve:

De même que précédemment, montrons que B(f,g) admet un DL à l'ordre 1 :

```
\begin{split} B(f,g)(\alpha+h) &= B(f(\alpha+h),g(\alpha+h)) = B(f(\alpha)+hf'(\alpha)+o(h),g(\alpha)+hg'(\alpha)+o(h)) \\ &= B(f(\alpha),g(\alpha))+B(f(\alpha),hg'(\alpha))+B(f(\alpha),o(h))+B(hf'(\alpha),g(\alpha))+B(hf'(\alpha),hg'(\alpha)) \\ &+B(f'(\alpha),o(h))+B(o(h),g(\alpha))+B(o(h),hg'(\alpha))+B(o(h),o(h)) \\ &= B(f(\alpha),g(\alpha))+h(B(f(\alpha),g'(\alpha))+B(f'(\alpha),g(\alpha)))+h^2B(f'(\alpha),g'(\alpha))+B(o(h),o(h)) \\ &+B(f(\alpha),o(h))+B(o(h),g(\alpha)) \end{split}
```

Montrons que les termes en h^2 et contenant un o(h) sont en o(h), auquel cas nous avons :

$$\begin{split} B(f,g)(\alpha+h) &= B(f(\alpha),g(\alpha)) + h(B(f(\alpha),g'(\alpha)) + B(f'(\alpha),g(\alpha))) + o(h): \\ B(f,g) \text{ admet un DL à l'ordre 1 en } \alpha \text{ et } B(f,g)'(\alpha) &= B(f(\alpha),g'(\alpha)) + B(f'(\alpha),g(\alpha)) \end{split}$$

Nous admettons que B Bilinéaire \Rightarrow B $\mathscr{C}^0 \Rightarrow$ B K-Lipschitzienne.

Alors,
$$\exists K \in \mathbb{R}_+$$
, $\forall (x,y) \in E \times F$, $\|B(x,y)\|_G \leqslant K \times \|x\|_E \times \|y\|_F$.

Dès lors, tout comme précédemment, il suffit d'écrire la définition d'un o(h) pour avoir notre majoration par une constante multipliée par un $\epsilon(h) \to 0$.

2.4 Continuité de la fonction "distance à une partie A". (démo)

Proposition

Soit $(E, \|\cdot\|_E)$, \mathbb{K} -EVN. Soit $A \subset E$, partie non-vide.

On appelle "Distance à la partie A" l'application $d_A: x \mapsto \inf_{\alpha \in A} \|x - \alpha\|_E$.

Cette application est une application Continue.

Preuve:

Montrons que la Distance à une partie respecte une Inégalité triangulaire :

Montrons que $\forall x, y \in E$, $d_A(x) \leq ||x-y||_E + d_A(y)$:

Nous avons $d_A(x) = \inf_{\alpha \in A} \|x - \alpha\|_E = \inf_{\alpha \in A} \|x - y + y - \alpha\|_E \leqslant \inf_{\alpha \in A} \|x - y\|_E + \inf_{\alpha \in A} \|y - \alpha\|_E$ d'après l'Inégalité Triangulaire sur $\|\cdot\|_E$.

Dès lors, l'inf d'une constante est cette constante : $d_A(x) \le ||x-y||_E + d_A(y)$.

Nous pouvons dès lors déduire une 1-Lipschitzianité de d_A :

$$\forall x, y \in E, \ d_A(x) \le ||x-y||_E + d_A(y). \ Donc \ d_A(x) - d_A(y) \le ||x-y||_E + d_A(y) - d_A(y) = ||x-y||_E.$$

Par symétrie des Rôles, (Absolue Homogénéité de la norme), nous avons $|d_A(x) - d_A(y)| \le ||x - y||_E$. D'où la 1-Lipschitzianité de la Distance à une partie, et donc sa continuité.

2.5 Inégalité entre moyenne géométrique et arithmétique pour des réels positifs. (démo)

Proposition

Soit $(x_1,\dots,x_n)\in (\mathbb{R}_+^*)^n.$ Nous avons alors :

$$\sqrt[n]{x_1 \times \dots \times x_n} \leqslant \frac{x_1 + \dots + x_n}{n}$$

Preuve:

Ceci découle de la concavité du log : D'après l'inégalité de Jensen appliqué aux x_i :

Nous avons
$$\ln\left(\sum_{i=1}^n \frac{x_i}{n}\right) \geqslant \sum_{i=1}^n \frac{1}{n} \ln(x_i) = \ln(\sqrt[n]{x_1 \times \dots \times x_n})$$

Or, par croissance du log: $\ln\left(\sum_{i=1}^n \frac{x_i}{n}\right) \geqslant \ln(\sqrt[n]{x_1 \times \dots \times x_n}) \Rightarrow \sum_{i=1}^n \frac{x_i}{n} \geqslant \sqrt[n]{x_1 \times \dots \times x_n}$

Donc, $\frac{x_1 + \dots + x_n}{n} \geqslant \sqrt[n]{x_1 \times \dots \times x_n}$

3 Questions de Cours - Groupe C

3.1 Démonstration du théorème de convergence des sommes de Riemann. (démo)

Définition: Somme de Riemann

Soit $n \in \mathbb{N}^*$, soient $a, b \in \mathbb{R}$ avec a < b. Soit $f : [a, b] \to \mathbb{R}$.

On appelle Somme de Riemann à pas constant la quantité $S_n(f) = \sum_{k=0}^{n-1} \frac{b-a}{n} \times f\left(a+k\frac{b-a}{n}\right)$

Théorème

Soit $f: [a, b] \to \mathbb{R}$, de classe \mathscr{C}^{PM} .

$$\int_{a}^{b} f(t)dt = \lim_{n \to +\infty} S_{n}(f)$$

Preuve:

Théorème de Heine: Toute fonction Continue sur un segment y est Uniformément continue:

$$\forall \varepsilon > 0$$
, $\exists \eta > 0$, $\forall (x, y) \in D_f$, $|x - y| \leq \eta \Rightarrow |f(x) - f(y)| \leq \varepsilon$

Posons la famille $(a_k)_k$, subdivision régulière d'ordre n associée à l'intervalle [a,b] (i.e, $a_0=a, a_{n-1}=b$ et $\forall k \in [n-1;1], \ a_k-a_{k-1}=\frac{1}{n}$).

$$\begin{split} \left| \int_{a}^{b} f(t)dt - S_{n}(f) \right| &= \left| \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(t)dt - \sum_{k=0}^{n-1} \frac{b-a}{n} f\left(a + k \frac{b-a}{n}\right) \right| \\ &= \left| \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(t) - f(a_{k})dt \right| \\ &\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} |f(t) - f(a_{k})| dt \end{split}$$

(On remarque l'intégrale d'un terme constant).

Ainsi, $\forall t \in [a_k, a_{k+1}], \ |t - a_k| \leqslant \frac{b - a}{n}.$ Or, pour n assez grand, $\frac{b - a}{n} \leqslant \eta.$

Alors, $\forall t \in [a_k, a_{k+1}], \ |t-a_k| \leqslant \eta \Rightarrow |f(t)-f(a_k)| \leqslant \epsilon$ d'après le théorème de Heine.

Donc,
$$\left|\int_{a}^{b} f(t)dt - S_{n}(f)\right| \leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} \varepsilon dt = \varepsilon(b-a).$$

Finalement, nous avons bien la définition de la limite. Ce qui permet de Conclure.

3.2 Majoration de l'erreur des sommes de Riemann en $O\left(\frac{1}{n}\right)$. (avec la bonne hypothèse, démo non faite)

Proposition

Soit $f \in \mathcal{C}^1(I,\mathbb{R})$ avec I = [a,b] un intervalle non réduit à un point de \mathbb{R} . On pose (a_k) subdivision régulière de [a,b] d'ordre n.

Alors, en posant
$$R_n = \sum_{k=0}^{n-1} \frac{b-a}{n} f(a_k)$$
, nous avons $R_n - \int_a^b f(t) dt = O\left(\frac{1}{n}\right)$

Preuve:

Remarquons que
$$R_n - \int_a^b f(t)dt = \sum_{k=0}^{n-1} \left[\frac{b-a}{n} f(a_k) - \int_{a_k}^{a_{k+1}} f(t)dt \right].$$

Or, d'après l'inégalité de Taylor-Lagrange appliqué sur chaque $t \in [\alpha_k, \alpha_{k+1}]$: $|f(t) - f(\alpha_k)| \leqslant \max_{c \in [\alpha_k, \alpha_{k+1}]} |f'(c)| (c - \alpha_k).$

Nous assurons de plus par continuité de f' sur I l'existence de $\|f'\|_{\infty}^{I}$ (f' est continue sur un segment donc est bornée et atteint ses bornes).

Ainsi

$$\begin{split} \left| R_n - \int_a^b f(t) dt \right| &\leqslant \sum_{k=0}^{n-1} \int_{a_k}^{a_k+1} |f(a_k) - f(t)| dt \\ &\leqslant \sum_{k=0}^{n-1} \int_{a_k}^{a_k+1} \|f'\|_{\infty}^{[a_k, a_{k+1}]} (a_{k+1} - a_k) dt \\ &\leqslant \|f'\|_{\infty}^{I} \sum_{k=0}^{n-1} \int_{a_k}^{a_k+1} (a_{k+1} - a_k) dt \\ &\leqslant \|f'\|_{\infty}^{I} \sum_{k=0}^{n-1} \frac{(b-a)^2}{n^2} \\ &\leqslant \|f'\|_{\infty}^{I} (b-a)^2 \frac{1}{n} \end{split}$$

Ainsi,
$$R_n - \int_{\alpha}^{b} f(t)dt = \mathcal{O}\left(\frac{1}{n}\right)$$

MPI* 11

3.3 Majoration de l'erreur de la méthode des trapèzes en $\mathcal{O}\left(\frac{1}{n^2}\right)$. (avec la bonne hypothèse, démo non faite)

Proposition

Soit $f \in \mathcal{C}^2(I,\mathbb{R})$ avec $I = [\mathfrak{a},\mathfrak{b}]$ un intervalle non réduit à un point de \mathbb{R} . On pose (\mathfrak{a}_k) subdivision régulière de $[\mathfrak{a},\mathfrak{b}]$ d'ordre \mathfrak{n} .

Alors, en posant
$$T_n = \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(\alpha_k) + f(\alpha_{k+1})}{2}$$
, nous avons $T_n - \int_{\alpha}^{b} f(t) dt = O\left(\frac{1}{n^2}\right)$

 $D\acute{e}montrons\ premi\`{e}rement\ l'\acute{e}galit\acute{e}: \int_{r}^{s}f(t)dt-(s-r)\frac{f(r)+f(s)}{2}=\frac{1}{2}\int_{r}^{s}f''(t)(t-r)(t-s)dt$

Intégrons $\int_{r}^{s} f(t)dt$ par parties : $f \rightarrow f'$ et $1 \rightarrow t - \frac{r+s}{2}$:

$$\begin{split} \int_{r}^{s} f(t)dt &= \left[f(t)\left(t - \frac{r+s}{2}\right)\right]_{r}^{s} - \int_{r}^{s} f'(t)\left(t - \frac{r+s}{2}\right)dt \\ &= \left[(s-r)\frac{f(r) + f(s)}{2}\right] - \frac{1}{2}\int_{r}^{s} f'(t)(2t - r - s)dt \end{split}$$

Avec une autre I.P.P sur $2t-r-s \to (t-r)(t-s)$:

$$\int_{r}^{s} f'(t)(2t-r-s)dt = [f'(t)(t-r)(t-s)]_{r}^{s} - \int_{r}^{s} f''(t)(t-r)(t-s)dt$$

Finalement,
$$\int_{r}^{s} f(t)dt - (s-r)\frac{f(r) + f(s)}{2} = \int_{r}^{s} f''(t)(t-r)(t-s)dt$$

Ainsi, en évaluant la différence $\int_{\alpha}^{b}f(t)dt-T_{n}$:

$$\begin{split} \left| \int_{\alpha}^{b} f(t) dt - T_{n} \right| &\leqslant \sum_{k=0}^{n-1} \left| \int_{\alpha_{k}}^{\alpha_{k+1}} f(t) dt - (b-\alpha) \frac{f(\alpha_{k}) - f(\alpha_{k+1})}{2} \right| \\ &\leqslant \frac{1}{2} \sum_{k=0}^{n-1} \left| \int_{\alpha_{k}}^{\alpha_{k+1}} f''(t) (t-\alpha_{k}) (t-\alpha_{k+1}) dt \right| \\ &\leqslant \frac{1}{2} \sum_{k=0}^{n-1} \|f''\|_{\infty} \int_{\alpha_{k}}^{\alpha_{k+1}} (t-\alpha_{k}) (\alpha_{k+1} - t) dt \\ &\leqslant \frac{\|f''\|_{\infty}}{2} \sum_{k=0}^{n-1} \frac{(\alpha_{k+1} - \alpha_{k})^{3}}{6} \\ &\leqslant \frac{\|f''\|_{\infty}}{12n^{2}} \end{split}$$

$$\operatorname{Car} a_{k+1} - a_k = \frac{b - a}{n}.$$

D'où finalement
$$T_n - \int_{\alpha}^b f(t) dt = O\left(\frac{1}{n^2}\right)$$

3.4 Démonstration du théorème fondamental du calcul intégral. (démo du cours de sup)

Théorème Fondamental du Calcul Intégral

Soit $f: I \to \mathbb{R}$ de classe \mathscr{C}^0 . Soit $a \in I$.

Alors l'application $F: \begin{cases} I \to \mathbb{R} \\ x \mapsto \int^x f(t) dt \end{cases}$ est dérivable de dérivée F'(x) = f(x) en tout $x \in I$.

En particulier, F est de classe \mathscr{C}^{I}

Preuve:

Calculons la différence $\lim_{b\to x} \left| \frac{F(b) - F(x)}{b-x} - f(x) \right|$:

$$\lim_{b \to x} \left| \frac{F(b) - F(x)}{b - x} - f(x) \right| = \lim_{b \to x} \left| \frac{1}{b - x} \left[\int_{a}^{b} f(t) dt - \int_{a}^{x} f(t) dt \right] - f(x) \right|$$

$$= \lim_{b \to x} \left| \frac{1}{b - x} \times \int_{x}^{b} f(t) dt - f(x) \right|$$

$$= \lim_{b \to x} \left| \frac{1}{b - x} \times \int_{x}^{b} (f(t) - f(x)) dt \right|$$

Soit $b \in I$ tel que $b - x = \varepsilon_b$. Par continuité de f en $x : \forall \varepsilon > 0$, $\exists \eta > 0$, $\forall y \in I$, $|y - x| \leqslant \eta \Rightarrow |f(y) - f(x)| \leqslant \varepsilon$.

Dès lors, si $b-x \le \eta$, alors $|f(t)-f(x)| \le \epsilon$ pour tout t. Notre différence est majorée par (Inégalité triangulaire):

$$\leq \frac{1}{\varepsilon_b} \int_{x}^{b} \varepsilon = \varepsilon$$

D'où la dérivabilité de F en x et le fait que F'(x) = f(x).

Adhérence de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$

$$\frac{\text{Proposition}}{\text{GL}_n(\mathbb{R})} = \mathcal{M}_n(\mathbb{R})$$

Preuve:

Il suffit de montrer que toute matrice est limite d'une suite de matrices inversibles. Soit donc $A \in \mathcal{M}_n(\mathbb{R})$.

Il suffit de poser $A_n = A - \frac{1}{n}I_n$. Alors, cette suite est une suite de matrice inversible définie pour n assez grand :

$$\text{Observons pour } n \in \mathbb{N}, \ \det(A_n) = \det\left(A - \frac{1}{n} I_n\right) = (-1)^n \times \chi_A\left(\frac{1}{n}\right).$$

Or, A possède un nombre fini de valeurs propres (nous sommes en dimension finie). Ainsi, la suite (A_n) se trouve dans $GL_n(\mathbb{R})$ pour n assez grand.

De plus, nous remarquons que $A_n \xrightarrow[n \to +\infty]{} A$

D'où la densité des matrices inversibles dans $\mathcal{M}_n(\mathbb{K})$

MPI* 13

3.6 Inégalité de Jensen pour les fonctions convexes. (démo de sup)

Proposition Inégalité de Jensen

Soit
$$f: I \to \mathbb{R}$$
, une fonction Convexe. Soit $(x_1, \ldots, x_n) \in I^n$, et soit $(\lambda_1, \ldots, \lambda_n) \in [0; 1]^n$ tels que $\sum_{i=1}^n \lambda_i = 1$.

Alors,
$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)$$

Preuve:

Ceci se montre par récurrence sur $\mathfrak n$: L'inégalité est évidente (par définition d'une fonction convexe) pour $\mathfrak n=2$.

Supposons que cette inégalité soit vérifiée pour $n \ge 2$. Montrons qu'elle reste valide pour n+1:

Si
$$\lambda_{n+1}=0$$
, ceci est immédiat. Supposons alors $\lambda_{n+1}\neq 0$, et posons $\mu_i=\frac{\lambda_i}{1-\lambda_{n+1}}$ pour tout $i\in [\![1;n]\!]$.

Dès lors, nous avons par convexité de f :

$$f\left((1-\lambda_{n+1})\sum_{i=1}^{n}\mu_{i}x_{i} + \lambda_{n+1}x_{n+1}\right) \leq (1-\lambda_{n+1})f\left(\sum_{i=1}^{n}\mu_{i}x_{i}\right) + \lambda_{n+1}f(x_{n+1})$$

$$(H.R) \leq (1-\lambda_{n+1})\sum_{i=1}^{n}\mu_{i}f(x_{i}) + \lambda_{n+1}f(x_{n+1})$$

$$\leq \sum_{i=1}^{n+1}\lambda_{i}f(x_{i})$$

D'où l'inégalité par récurrence sur $\mathfrak n$.

 \mathbf{MPI}^{\star} 14

3.7 Caractérisation des fonctions convexes par l'inégalité des pentes. (démo de sup)

Proposition

Soit $f: I \to \mathbb{R}$, une fonction. Nous avons alors :

$$\text{f est Convexe} \iff \forall (x,y,z) \in \text{I}^3, \ x \leqslant y \leqslant z \Rightarrow \frac{f(y)-f(x)}{y-x} \leqslant \frac{f(z)-f(x)}{z-x} \leqslant \frac{f(z)-f(y)}{z-y}$$

Preuve:

Supposons f convexe : Alors, $\forall x, y \in I$, $\forall \lambda \in [0, 1]$, $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$.

Supposons x < y < z. Alors, posons $t = \frac{y - x}{z - x} \in [0, 1]$.

Nous avons alors y = x + (y - x) = x + t(z - x) = (1 - t)x + tz.

En appliquant la convexité de f, nous obtenons :

$$f(y) \le (1-t)f(x) + tf(z) = f(x) + t(f(z) - f(x))$$

$$f(y) - f(x) \le t(f(z) - f(x))$$

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x}$$

L'autre inégalité s'obtient en manipulant $f(y) \le (1-t)f(x) + tf(z)$ comme :

$$f(y) \le (1-t)f(x) + tf(z) -f(y) \ge -tf(z) - f(x) + tf(x) f(z) - f(y) \ge f(z) - tf(z) - (f(x) - tf(x)) f(z) - f(y) \ge (1-t)(f(z) - f(x))$$

Ainsi : $\frac{1-t}{t}f(z)-f(x)\leqslant \frac{f(z)-f(y)}{t}\Rightarrow \frac{f(z)-f(x)}{z-x}\leqslant \frac{f(z)-f(y)}{z-y} \text{ .D'où :}$

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

Réciproquement, supposons l'inégalité des pentes vérifiée. Soient $x, z \in \mathbb{R}$ avec x < z et $t \in [0, 1]$.

Posons alors y = tx + (1 - t)z. D'après ce qui précède, nous avons f(tx + (1 - t)z) = f(y).

Donc,
$$\frac{f(tx+(1-t)z)-f(x)}{(t-1)x+(1-t)z} \le \frac{f(z)-f(x)}{z-x} \le \frac{f(z)-f(tx+(1-t)z)}{-tx+tz}$$

En particulier, $\frac{f(tx+(1-t)z)}{(1-t)(z-x)} + \frac{f(tx+(1-t)z)}{t(z-x)} \leqslant \frac{f(z)}{t(z-x)} + \frac{f(x)}{(1-t)(z-x)}.$ Donc en multipliant par (z-x) > 0:

$$f(tx+(1-t)z)\left(\frac{1}{t}+\frac{1}{1-t}\right) \leqslant \frac{f(z)}{t} + \frac{f(x)}{(1-t)}$$

$$f(tx+(1-t)z) \leqslant tf(x) + (1-t)f(z) \quad \text{Car } \frac{1}{t} + \frac{1}{1-t} = \frac{1}{t(1-t)}$$

Ce qui est l'inégalité attendue.

4 Exercices de Référence, Tout groupe

4.1 Exercice 1

Question 1. Le théorème de Rolle stipule : Soient $a < b \in \mathbb{R}$. Soit $f \in \mathscr{C}^0([a,b],\mathbb{R})$, dérivable sur]a,b[telle que f(a) = f(b). Alors $\exists c \in]a,b[$, f'(c) = 0

Question 2. Si α est une racine de P d'ordre k, alors cette racine sera d'ordre k-1 dans P' (car P comporte alors un facteur $(X-\alpha)^k$, qui devient $k(X-\alpha)^{k-1}$ en dérivant, ceci est d'ailleurs la définition de l'ordre d'une racine).

Question 3. Soit donc $P = \alpha \prod_{1 \le i \le p} (X - \alpha_i)^{k_i}$, polynôme scindé de \mathbb{R}^X . Ce polynôme possède alors $\sum_i k_i$ racines

réelles par définition (avec multiplicité). Montrons donc que P' possède $\left[\sum_{i} k_{i}\right] - 1$ racines réelles :

Chaque pôle perd une multiplicité, nous obtenons donc $\sum_i (k_i - 1) = \left\lfloor \sum_i k_i \right\rfloor - p$ racines. Or, le théorème de Rolle nous indique qu'entre chaque couple successif (α_i, α_{i+1}) , il existe une nouvelle racine (qui diffère donc de α_i et α_{i+1}).

Ceci nous offre donc p-1 racines distinctes, soit donc un nombre total de racines valant $\left[\sum_i k_i\right]-1$. Il vient de plus que P' ne peut posséder plus de racines, car doit être de degré strictement inférieur à celui de P. Dès lors, P peut s'écrire comme produit de racines réelles, d'où le fait que P' soit également scindé.

4.2 Exercice 2

Posons $f: x \mapsto \arctan(x) + x - 1$, application de classe \mathscr{C}^{∞} de \mathbb{R} dans \mathbb{R} .

Nous avons $\forall x \in \mathbb{R}, \ f'(x) = \frac{1}{1+x^2} + 1$. En particulier, $\forall x \in \mathbb{R}, \ f'(x) > 0$: f est strictement croissante.

Or, f(0) = -1 < 0, et $f(1) = \frac{\pi}{4} + 1 - 1 > 0$. Le théorème des valeurs intermédiaires nous indique qu'il existe un zéro de f dans [0,1]. Le corollaire du Théorème des valeurs intermédiaires permet de conclure quant à son unicité. Ainsi, $\exists ! x_0 \in [0,1]$, $\arctan(x) + x = 1$

4.3 Exercice 3

f étant de classe \mathscr{C}^2 , nous pouvons en donner un Développement Limité en tout point de \mathbb{R} . (Attention, la réciproque est fausse pour les ordres supérieurs à 1!).

Dès lors, soit $f \in \mathscr{C}^2(\mathbb{R},\mathbb{R})$ et $t \in \mathbb{R}$. Il vient pour $h \in \mathbb{R}$:

$$f(t+h) = f(t) + hf'(t) + \frac{h^2}{2}f''(t) + o(h^2) \quad \text{et} \quad f(t-h) = f(t) - hf'(t) + \frac{h^2}{2}f''(t) + o(h^2).$$

$$\text{Ainsi, } f(t+h) + f(t-h) - 2f(t) = h^2 f''(t) + o(h^2), \\ \text{d'où } \lim_{h \to 0} \frac{f(t+h) - 2f(t) + f(t-h)}{h^2} = f''(t).$$

Nous prenons donc a = c = 1 et b = -2. Ce triplet est de plus l'unique triplet convenant (il suffit de faire le raisonnement à l'envers afin d'obtenir un système d'équations respecté par ces cœfficients).

4.4 Exercice 4

Question a. Par concavité du sinus sur $[0,\pi]$, il vient que sin est inférieure à ses tangentes. Or, l'application $f: x \mapsto x$ correspond à la corde de sin en x = 0. Au-delà de π , il vient que $x \geqslant \pi$, et $\sin(x) \leqslant 1$, d'où l'égalité $\sin(x) \leqslant x$ sur \mathbb{R}_+

L'inégalité de gauche utilise cette première inégalité : étudions la fonction $f: x \mapsto \sin(x) - x + \frac{x^3}{6}$. Alors f est bien de classe \mathscr{C}^{∞} sur \mathbb{R} . De plus, $\forall x \in \mathbb{R}$, $f'(x) = \cos(x) - 1 + \frac{x^2}{2}$ et $f''(x) = -\sin(x) + x$: Nous savons d'après ce qui précède que f'' est positive sur \mathbb{R}_+ , donc que f' est croissante sur \mathbb{R}_+ .

Or, f'(0) = 0, donc $f'(x) \ge 0$ sur \mathbb{R}_+ , donc f est croissante sur \mathbb{R}_+ . Or, f(0) = 0, donc f est bien positive sur \mathbb{R}_+ . Finalement:

 $\forall x \in \mathbb{R}_+, \ x - \frac{x^3}{6} \leqslant \sin(x) \leqslant x$

Question b. Cette inégalité vient d'être démontrée sur \mathbb{R}_+ (voir f'). Or, les deux fonctions proposées sont paires, donc $\forall x \in \mathbb{R}_+$, $\cos(-x) = \cos(x)$ et $1 - \frac{(-x)^2}{2} = 1 - \frac{x^2}{2}$. Nous vérifions ainsi l'égalité sur \mathbb{R} .

4.5 Exercice 5

Question a. Remarquons une somme de Riemann : Divisons le numérateur et le dénominateur de l'opérande par $\frac{1}{n^2}$.

 $\forall n \in \mathbb{N}, \ u_n = \sum_{k=1}^n \frac{1}{n} \times \frac{1}{1+\frac{k^2}{n^2}} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k^2}{n^2}}. \ \text{En posant } f: x \mapsto \frac{1}{1+x^2}, \ \text{le th\'eor\`eme portant sur les sommes de } \\ \text{Riemann donne } u_n \xrightarrow[n \to +\infty]{} \int_0^1 f(t) dt = \arctan(1) - \arctan(0) = \frac{\pi}{4}.$

Question b. Idem, rappelons qu'une somme de Riemann d'ordre n, associée à f entre a et b donne :

 $\frac{b-a}{n}\sum_{k=0}^{n-1}f(a+k\frac{b-a}{n}). \text{ Ainsi, par identification, nous remarquons que }\frac{\pi}{2}u_n \text{ est une somme de Riemann associée à cos entre 0 et }\frac{\pi}{2} \text{ (nous pouvons retirer le terme n de la somme, car vaut }\cos\left(\frac{\pi}{2}\right)=0, \text{ donc nous pouvons ramener la somme à 0}\leqslant k\leqslant n-1). Dès lors, \\\frac{\pi}{2}u_n\to\int_0^{\frac{\pi}{2}}\cos(t)dt=1, \text{ donc }u_n\to\frac{2}{\pi}.$

La dernière somme se traite de la même façon, en ajoutant le terme k=0 afin d'obtenir une somme de Riemann à gauche. Nous obtenons donc $u_n \to \int_0^1 \sqrt{t} dt = \frac{2}{3}$

4.6 Exercice 6

Question a. Posons $g: x \mapsto x^n$ et $h: x \mapsto (1-x)^n$.

Évaluons premièrement la dérivée n-ième de f via la formule de Leibniz : $\forall x \in \mathbb{R}, \ f^{(n)}(x) = \sum_{i=0}^n \binom{n}{i} h^{(i)}(x) g^{(n-i)}(x)$ (Donnons la puissance la plus simple au terme le plus compliqué)

$$Alors\ f^{(n)}(x) = \sum_{i=0}^{n} \binom{n}{i} \frac{n!}{(n-i)!} (-1)^{i} (1-x)^{n-i} \times \frac{n!}{i!} x^{i} = \sum_{i=0}^{n} \binom{n}{i}^{2} (-1)^{i} \cdot n! \cdot x^{i} \cdot (1-x)^{n-i}$$

Développons donc le terme $(1-x)^{n-i}$ pour donner le terme en x^n : $f^{(n)}(x) = \sum_{i=0}^n \sum_{k=0}^{n-i} \binom{n}{i}^2 \cdot n! \cdot \binom{n-i}{k} (-1)^{k+i} \cdot x^{k+i}$

Effectuons le changement d'indice $k \to k+i$: $f^{(n)}(x) = \sum_{i=0}^{n} \sum_{k=i}^{n} \binom{n}{i}^2 \cdot n! \cdot \binom{n-i}{k-i} \cdot (-1)^k x^k$

 $\text{Ces deux sommes \'etant finies, nous pouvons intervertir}: f^{(n)}(x) = \sum_{k=0}^n \sum_{i=0}^k \binom{n}{i}^2 \cdot n! \cdot \binom{n-i}{k-i} \cdot (-1)^k x^k$

Le coefficient de x^n intervient alors en k = n, et vaut exactement $n! \cdot (-1)^n \sum_{i=0}^n \binom{n}{i}^2$

Question b. Remarquons que le binôme de Newton donne $\forall x \in \mathbb{R}$, $f(x) = \sum_{i=0}^{n} \binom{n}{i} (-1)^{i} x^{n+i}$.

$$\text{D\`es lors, } f^{(k)}(x) = \sum_{i=0}^{n} \binom{n}{i} (-1)^i \frac{(n+i)!}{(n+i-k)!} x^{n+i-k} = \sum_{i=0}^{n} \binom{n}{i} \binom{n+i}{k} (-1)^i \times k! \times x^{n+i-k}$$

 $\text{Le cœfficient de } x^n \text{ de } f^{(n)} \text{ se situe donc en } i = n \text{ : ce cœfficient vaut } \binom{n}{n} \times (-1)^n \frac{(2n)!}{n!} = (-1)^n \frac{(2n)!}{n!} = (-1)^n n! \binom{2n}{n} \times (-1)^n \binom{2n}{n} = (-1)^n \binom{2n}{n} \times (-1)^n \binom{2n}{n} = (-1)^n \binom{2n}{n} \times (-1)^n \binom{2n}{n} \times (-1)^n \binom{2n}{n} = (-1)^n \binom{2n}{n} \times (-1)^n \binom{2n}{n} = (-1)^n \binom{2n}{n} \times (-1)^n \binom{2n}{n}$

D'après ce qui précède, nous avons alors $n! \cdot (-1)^n \sum_{i=0}^n \binom{n}{i}^2 = (-1)^n \cdot n! \cdot \binom{2n}{n}$. Il vient donc $\sum_{i=0}^n \binom{n}{i}^2 = \binom{2n}{n}$.

Question c. Nous pouvions établir ce résultat par deux dénombrements d'une même quantité : Considérons un sac comportant $\mathfrak n$ billes noires et $\mathfrak n$ billes blanches. Nous nous proposons de compter le nombre de groupes de $\mathfrak n$ billes que l'on peut tirer d'un tel sac :

Une première manière de compter serait de brutalement prendre n billes de ce sac, soit $\binom{2n}{n}$ possibilités.

Nous pouvons également commencer par prendre k billes blanches, puis n-k billes noires : Ceci nous donne

$$\sum_{k=0}^{n} \binom{n}{k} \times \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^2 \text{ par symétrie des cœfficients binomiaux. D'où } \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

4.7 Exercice 7

 $\text{Calcul classique à connaître! } \cos(kx) = \Re(e^{\mathfrak{i}\,kx}). \ \text{Donc} \ \sum_{k=0}^n \cos(kx) = \sum_{k=0}^n \Re(e^{\mathfrak{i}\,kx}) = \Re\left[\sum_{k=0}^n e^{\mathfrak{i}\,kx}\right]$

Or, cette somme est une somme géométrique, de raison e^{ix} : La somme intérieure est connue et vaut:

$$\frac{1-e^{\mathrm{i}(n+1)x}}{1-e^{\mathrm{i}x}} = \frac{e^{\mathrm{i}\frac{n+1}{2}x}}{e^{\mathrm{i}\frac{x}{2}}} \times \frac{e^{-\mathrm{i}\frac{n+1}{2}x} - e^{\mathrm{i}\frac{n+1}{2}x}}{e^{-\mathrm{i}\frac{x}{2}} - e^{\mathrm{i}\frac{n+1}{2}x}} = \frac{e^{\mathrm{i}\frac{n+1}{2}x}}{e^{\mathrm{i}\frac{x}{2}}} \times \frac{-2\mathrm{i}\sin\left(\frac{n+1}{2}x\right)}{-2\mathrm{i}\sin\left(\frac{x}{2}\right)}$$

$$\mathrm{Ainsi}, \mathfrak{R}\left[\sum_{k=0}^n e^{\mathrm{i}kx}\right] = \mathfrak{R}\left(\frac{e^{\mathrm{i}\frac{n+1}{2}x}}{e^{\mathrm{i}\frac{x}{2}}}\right) \times \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)} = \cos\left(\frac{nx}{2}\right) \times \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}$$

4.8 Exercice 8

Soit $n \in \mathbb{N}$. Évaluons cette intégrale via une Intégration par Parties : Nous choisissons de dériver f, qui est bien de classe \mathscr{C}^1 , et d'intégrer cos.

$$\begin{aligned} & \text{Donc} \int_{\alpha}^{b} \cos(nt) f(t) dt = \left[\frac{\sin(nt)}{n} f(t) \right]_{\alpha}^{b} - \frac{1}{n} \int_{\alpha}^{b} \sin(nt) f'(t) dt. \\ & \text{En particulier, } \left| \int_{\alpha}^{b} \cos(nt) f(t) dt \right| \leqslant \frac{1}{n} \left| \sin(nb) f(b) - \sin(na) f(a) - \int_{\alpha}^{b} \sin(nt) f'(t) dt \right| \leqslant \frac{1}{n} \left[|f(b)| + |f(a)| + \int_{\alpha}^{b} \|f\|_{\infty}^{[a,b]} \right] \end{aligned}$$

Or, la quantité interne est indépendante de n, donc $\lim_{n\to+\infty}\frac{1}{n}\left[|f(b)|+|f(a)|+\int_a^b\|f\|_{\infty}^{[a,b]}\right]=0$ D'où :

$$\lim_{n\to+\infty}\int_a^b\cos(nt)f(t)dt=0$$

4.9 Exercice 9

Notons $Q(X) := (X^2 + X + 1)^2 = (X - j)^2 (X - j^2)^2$, avec j et j^2 , les deux racines cubiques de l'unité complexes. Afin de déterminer que Q divise tout polynôme $P_n(X)$ défini comme $P_n := (X + 1)^{6n+1} - X^{6n+1} - 1$, il faut démontrer que j et j^2 sont racines double de tout polynôme P_n .

 $Soit \ n \in \mathbb{N}. \ Montrons \ que \ P_n(j) = P_n(j^2) = P_n'(j) = P_n'(j^2) = 0 \ : \ Rappelons \ que \ 1+j+j^2 = 0, \ donc \ 1+j=-j^2.$

•
$$P_n(j) = (j+1)^{6n+1} - j^{6n+1} - 1 = (-j^2)^{6n+1} - j - 1 = (-1)^{6n+1} j^2 - j - 1 = -j^2 - j - 1 = 0$$

•
$$P_n(j^2) = (j^2 + 1)^{6n+1} - (j^2)^{6n+1} - 1 = (-j)^{6n+1} - j^2 - 1 = -j - j^2 - 1 = 0$$

•
$$P'_n(X) = (6n+1)(X+1)^{6n} - (6n+1)X^{6n}$$
, donc $P'_n(j) = (6n+1)(j+1)^{6n} - (6n+1)j^{6n} = (6n+1) - (6n+1) = 0$

•
$$P'_n(j^2) = (6n+1)(j^2+1)^{6n} - (6n+1)(j^2)^{6n} = (6n+1) - (6n+1) = 0$$

Du fait que j et j^2 soient des racines d'ordre deux de chaque P_n , il vient que chaque polynôme P_n est scindé sur \mathbb{C} , et comporte un facteur $(X-j)^2(X-j^2)^2=Q$. Donc $Q\mid P_n$ pour tout $n\in\mathbb{N}$.

