4.5 Characteristic parameters (related to standard CMOS)

- Supply voltage:
 - V_{DD} typically between 3V and 15V in SSI and MSI chips
 - GND $(V_{SS}) = 0 V$
 - In 1980's, $V_{DD} = 5V$
 - V_{DD} has been reducing over the years in VLSI chips:
 - High V_{DD} may affect small current transistors of nowadays
 - A low V_{DD} decreases power consumption
 - $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$
 - VLSI chips have normally with 2 voltage supplies:
 - Logic "Core": low V_{DD} (e.g. 1V) -> Low power I/O cells: high V_{DD} (e.g. 2.5V) -> High current

4.5 CMOS characteristic parameters (2)

- Power Consumption:
 - Static regime: virtually null (≈ nA, pA), as there is always a transistor in cut-off mode (PMOS or NMOS)

 - Leakage currents:

 Now high K dielectric instead

 Insulated Gate -> of SiQ2
 - Subthreshold (when V_{GS} < V_T if V_T is very small) -> reverse surrents
 - Increasingly important in VLSI (a billion transistors nowadays)

4.5 CMOS characteristic parameters (3)

- Dynamic regime: $P_d = (V_{DD})^2 C_L f_i$, where:
 - C_L → parasitic capacitance of the load
 - f_i →switching frequency of inputs
 - This dissipated power is due to:
 - loading / unloading of C C Great
 - Current peaks during transitions: the two transistors (PMOS and NMOS) conduct simultaneously.
 - Dynamic power consumption is the most important in CMOS technology:

CL= Sall

- In fact, static power consumption can be neglected
- Note: If we refer P_a to the clock frequency "f" of the system:
 - $P_d = \alpha (V_{DD})^2 C_1 f$ where:
 - α → average activity factor of the inputs (average number of transitions in one clock cycle)
 - is equal or less than f/2

4.5 CMOS characteristic parameters (4): Dynamic power consumption

- The relevant dynamic consumption occurs in the transition L →H
- In the transition H → L there are only consumption due to simultaneous conduction of 2 transistors: short circuit.

4.5 CMOS characteristic parameters (5)

Logic levels. Noise Immunity

Input voltage

 V_{DD}

 $V_{DD}/2$

Very ideal transfer curve

 $V_{OHmin} = V_{DD} - 0.1V \simeq V_{DD}$ $V_{OLmax} = 0.1V \simeq 0V.$ $V_{DD} \simeq 0V.$ $V_{DD} \simeq 0V.$

Excellent noise inmunity (increases with

VDD) + 17L: 0.4U only!

4.5 CMOS characteristic parameters (6)

Current levels. FAN-OUT (Standard CMOS current values)

I _{OH} -0.5 mA	High level output current	Exits
I _{OL} 0.5 mA	Low level output current	Enters
I _{IH} 10 pA	High level input current	Enters
I _{IL} -10 pA	Low level input current	Exits

Very small input currents -> We can connect a lot of inputs to a

single output
$$\frac{1}{1} = \frac{1}{1} = 50.000.000$$
 $\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$

Real constraint to not increase the delays and dynamic power

consumption: the manufacturer recommends Fan-out = 50

dynamic fanout the most

important!

4.5 CMOS characteristic parameters (7)

Propagation delays

$$t_{p} = \frac{1}{2} \left(tp_{LH} + tp_{HL} \right) \approx \frac{C_{L}}{2V_{DD}} \left(\frac{1}{K_{p}} + \frac{1}{K_{n}} \right)$$

- Lower delay if high V_{DD}
- Lower delay if high K

 $\leftarrow t_{CYCLE}$

- CMOS is now very fast, with similar delays to TTL
 - High Speed CMOS Subfamilies
- Product Propagation Delay * Power consumption (PDP): $t_p^*P \rightarrow pJ$, rather low due to low consumption, although there is a small increase because propagation delays

RC model for propagation delay

• The delays are given by the charging time of C_L through R_p , and by the discharging time of C_L through R_n)

4.6 CMOS subfamilies

- CD 4XXX : original family
 - 4XXXA: conventional
 - 4XXXB: with output buffer
- 74CXXX: TTL functionally CMOS compatible (pins and functions), but not electrically
- 74HCXXX: high speed CMOS
- 74HCTXXX: high speed CMOS with TTL compatible inputs
- 74ACXXX: Advanced high speed CMOS
- 74ACTXXX: Advanced high speed CMOS with TTL compatible inputs
- 74FCTXXX: Fast CMOS, TTL compatible
- BCT: BiCMOS (Bipolar-CMOS)
- ABT: Advanced BiCMOS
- LVC, ALVC: Low Voltage CMOS

4.6 CMOS subfamilies (2)

- The HC, AC and BCT subfamilies:
 - Have higher output current than standard CMOS
 - Are faster
 - The logic levels are not as extreme
 - More restricted supply voltage (between 2V and 6V)
- The HCT, ACT and FCT subfamilies:
 - Have TTL compatible inputs and CMOS outputs
 - Have a voltage supply of +5 V, as TTL
- LVC and ALVC subfamilies:
 - Work with V_{DD} less or equal to 3.3V (2.5, 1.8, 1.5,..)
 - Low-power applications

4.6 CMOS subfamilies (2)

- Example: 54/74HC00 (4 2-input NAND gates)
 - 54HC: military version (it works between -40 ° C to +85 ° C)
 - 74HC: commercial version (it works between -55 ° C to +125 ° C)
- VDD between 2V and 6V (typical = +5V)
 - $-V_{IHmin} = 3.15V, V_{ILmax} = 1.35V$
 - $V_{OHmin} = 3.84V, V_{OLmax} = 0.33V$
 - $-I_{IHmax} = 1\mu A, I_{ILmax} = -1\mu A$
 - $-I_{OHmax} = -4mA, I_{IHmax} = 4mA$
 - $I_{CC(typ)}$ = 2 μA (average static current consumption)
 - $-T_{pd(typ)} = 9 \text{ ns (average delay)}$
 - C_{pd} (gate capacity, without load) = 22pF
 - Comparing with standard CMOS:
 - Less extreme output voltage levels
 - Lower noise margin
 - Higher output currents
 - More speed

5V

Voн min 3.84 4.9 VIH min 3.15 3.5 VIL max 1.35 1.5 Vol max 0.33 0.1

NMH 0.69 1.4

NAL 1.02 1.4