ISE - 364/464: Introduction to Machine Learning Homework Assignment 6

The goal of this assignment is to provide a series of problems that strengthen knowledge in support vector machines, hyperplanes, margins, kernel functions, as well as identifying certain ML model equivalences.

Grading: This assignment is due on Coursesite by E.O.D. 11/29/2024. All problems are worth the same number of points. If a problem has multiple parts, each of those parts will be worth equal amounts and will sum to the total number of points of the original problem (Example: If each problem is worth a single point, and problem 1 has 4 parts, each part will be worth 1/4th of a point). ISE - 364 students are only required to answer problems 1 through 4; however, you are allowed to answer the 5th graduate-level question (if done so correctly, you will receive extra credit in the amount that the 5th problem will be worth for the ISE - 464 students). ISE - 464 students are required to answer all 5 problems.

Submitting: Only electronic submissions on Coursesite are accepted.

1 Problems

1. (**Dual Objective Function for Hard-SVM**) Given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^m$ where $x^{(i)} \in \mathbb{R}^n$ and $y^{(i)} \in \{1, -1\}$, recall that the primal optimization problem for the Hard-Margin formulation of SVM is given as

$$\min_{w \in \mathbb{R}^n, \ b \in \mathbb{R}} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)} \left(w^\top x^{(i)} - b \right) \ge 1, \quad \forall i \in \{1, 2, ..., m\}.$

Prove that the dual objective function (the objective function for the dual formulation of Hard-SVM) is

$$\hat{\mathcal{L}}(\alpha) := \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \left(x^{(i)^{\top}} x^{(j)} \right),$$

where the Lagrange multipliers satisfy $\alpha_i \geq 0$ for all $i \in \{1, 2, ..., m\}$. (Hint: Refer to the SVM lecture slides.)

2. (Deriving the Dual Problem for Soft-SVM) Given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^m$ where $x^{(i)} \in \mathbb{R}^n$ and $y^{(i)} \in \{1, -1\}$, recall that the primal optimization problem for the

Soft-Margin formulation of SVM, given some constant $C \geq 0$, is defined as

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
s.t. $y^{(i)} \left(w^\top x^{(i)} - b \right) \ge 1 - \xi_i, \quad \forall i \in \{1, 2, ..., m\},$

$$\xi_i \ge 0, \quad \forall i \in \{1, 2, ..., m\}.$$

Prove that the corresponding dual problem formulation of Soft-SVM is

$$\max_{\alpha \in \mathbb{R}^{m}, \ \mu \in \mathbb{R}^{m}} \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \left(x^{(i)^{\top}} x^{(j)} \right)$$
s.t.
$$\sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0,$$

$$C - \alpha_{i} - \mu_{i} = 0, \qquad \forall i \in \{1, 2, ..., m\},$$

$$\mu_{i} \geq 0, \qquad \forall i \in \{1, 2, ..., m\},$$

$$\alpha_{i} \geq 0, \qquad \forall i \in \{1, 2, ..., m\}.$$

(Hint: Refer to the SVM lecture slides.)

- 3. (Hyperplanes, Functional Margins, and Geometric Margins) Consider the three training examples $(x^{(1)}, y^{(1)}) = ([3, 4]^{\top}, 1), (x^{(2)}, y^{(2)}) = ([1, -1]^{\top}, -1), \text{ and } (x^{(3)}, y^{(3)}) = ([-2, -3]^{\top}, -1)$. Further, consider the hyperplane given by $h(x; w, b) = w^{\top}x b$, where $w = [1, 2]^{\top}$ and b = 1.
 - a) Compute the functional margins and geometric margins of these three datapoints with respect the hyperplane h.
 - **b)** Compute the normalized normal vector $\frac{w}{\|w\|}$ as well as the distance from the origin to the hyperplane.
 - c) Plot the three datapoints in \mathbb{R}^2 (colored by their target class) as well as the hyperplane
 - d) Does the hyperplane correctly classify the three datapoints? Is this hyperplane the "best-fit" (i.e., does this hyperplane yield the largest margins among the support vectors)?
- **4.** (Evaluating Kernel Functions) Consider the two training examples $x^{(1)} = [3, 4]^{\top}$ and $x^{(2)} = [1, -1]^{\top}$.
 - a) Compute the value of the Linear Kernel function on these two datapoints.
 - **b)** Compute the value of the Gaussian Kernel function, given that $\sigma = 1.5$, on these two datapoints.

Figure 1: Illustration of a GDA model for two multivariate Gaussian distributions with different means but equal covariances.

5. (ISE-464 Graduate Students) (Logistic Regression and GDA) Gaussian Discriminant Analysis (GDA) is a generative machine learning model that utilizes Baye's rule to calculate posterior distribution probabilities

$$\mathbb{P}(y|x) = \frac{\mathbb{P}(y)\mathbb{P}(x|y)}{\mathbb{P}(x)},$$

where $\mathbb{P}(x|y)$ is a multivariate Gaussian distribution given by

$$\mathbb{P}(x|y=c) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu_c)^{\top} \Sigma^{-1}(x-\mu_c)},$$

where Σ is the covariance matrix and μ_c is the mean of Gaussian corresponding to the c-th target class. Further, assume that $x \in \mathbb{R}^n$ and $y \in \{0,1\}$ (i.e., the target variable is binary). This means that $\mathbb{P}(x|y=0)$ and $\mathbb{P}(x|y=1)$ are multivariate Gaussian distributions with means of μ_0 and μ_1 and covariance of Σ (for both), respectively. The GDA model for this type of data can be visualized in Figure 1.

Prove that a GDA model with two target classes and the same covariance Σ for both classes' Gaussians, leads to a logistic regression model. That is, prove that $\mathbb{P}(y=1|x)=\sigma(z)$, where σ is the sigmoid function and z is some linear function.

where σ is the sigmoid function and z is some linear function. (Hint: Notice that one can write $\mathbb{P}(y=1|x) = \frac{\mathbb{P}(y=1)\mathbb{P}(x|y=1)}{\mathbb{P}(x)} = \frac{1}{1+\exp\left\{\log\frac{\mathbb{P}(y=0)\mathbb{P}(x|y=0)}{\mathbb{P}(y=1)\mathbb{P}(x|y=1)}\right\}}$.)