Homework 5

Name:		
STUDENT ID:		

- \bullet Reasoning and work must be shown to gain partial/full credit
- Please include the cover-page on your homework PDF with your name and student ID. Failure of doing so is considered bad citizenship.

- 1. (1–4 points) Lecture 7 Questions: Consider the following networks:
 - (a) (25%) Calculate the closeness centrality of each of the nodes in this network:

(b) (50%) Consider these three networks:

- 1. Find a 3-core in the first network.
- 2. What is the reciprocity of the second network?
- 3. What is the cosine similarity of nodes A and B in the third network?
- (c) (25%) Calculate the local clustering coefficient of each node in this network:

- 2. (1-4 points) **Lecture 8 Questions**: Consider the random graph G(n,p) with n large.
 - (a) (25%) If the network has a giant component that fills exactly half of the network, what is the average degree of a node?
 - (b) (25%) For this same random graph what is the probability that a node has degree exactly 5?
 - (c) (25%) What is the probability that a node belongs to the giant component if it has degree exactly 5?
 - (d) (25%) Hence or otherwise, calculate the fraction of nodes in the giant component that have degree exactly 5.
- 3. (1–4 points) **NetworkX Coding**: Consider the Erdős-Rényi graph or a binomial graph in NetworkX with the number of nodes n = 20 and probability for edge creation p = 0.2 (hint: $G = nx.qnp_random_qraph(20, 0.2, seed = 1096)$).
 - (a) Draw this graph and compute transitivity of this graph.
 - (b) Compute the clustering coefficient for each node and the average clustering coefficient for the graph.
 - (c) Plot the graph with the colormap of the various metrics of centrality, including Degree Centrality, Eigenvector Centrality and Closeness Centrality. (See examples of Week4_tutorials.ipynb in the Canvas.)
 - (d) Compute degree assortativity of graph.
 - (e) If p = 0.1, what are the above metrics and what is the minimum p for which you have a giant component?