Shaoran Li

Ph.D. Candidate, Department of Electrical and Computer Engineering, Virginia Tech

☐ (540) 998-1896 • ☑ shaoran@vt.edu • ⑤ shaoranli.github.io

Education

Ph.D. Candidate, Electrical Engineering Virginia Tech, Blacksburg, VA, USA	Sept. 2017-Present GPA: 4.0/4.0
Master of Science, Information and Communication Engineering Beijing University of Posts and Telecommunications (BUPT), Beijing, China	Sept. 2014–Apr. 2017 GPA: 87.95/100
Bachelor of Engineering (Honors Program), Information Engineering Southeast University, Jiangsu, China	Sept. 2010–June 2014 GPA: 86.54/100
Interships	
Software Enginnering Intern, NVIDIA Output Design deep learning-based solution in compliant with 3GPP standards Algorithm tests and performance analysis in simulated 5G-NR scenarios	May 2021–Aug. 2021
Research Experiences	

Research Experiences

Wireless networking in presence of uncertainty

Provide probabilistic guarantees with uncertain network parameters

- o S. Li, N. Jiang, Y. Chen, Y.T. Hou, W. Lou, and W. Xie, "D²BF Data-Driven Beamforming in MU-MIMO with Channel Uncertainty," accepted to IEEE INFOCOM 2022
- o S. Li, C. Li, Y. Huang, Y.T. Hou and W. Lou, "On Task Offloading with Uncertain Processing Cycles in Mobile Edge Computing," ACM MobiHoc 2021
- o S. Li, Y. Huang, C. Li, B. Jalaian, Y.T. Hou and W. Lou, "Maximize Spectrum Efficiency in Underlay Coexistence With Channel Uncertainty," IEEE/ACM Trans. on Networking, 2021
- o S. Li, Y.T. Hou, W. Lou, B. Jalaian, S. Russell, and B. MacCall, "Optimal Power Control with Channel Uncertainty in Ad Hoc Networks," IEEE/AFCEA MILCOM 2019, Best Paper Award in unclassified technical program
 - Minimize energy consumption with probabilistic data rate guarantee of Transmitter-Receiver pairs
- o S. Li, Y. Huang, C. Li, B. Jalaian, Y.T. Hou and W. Lou, "Coping Uncertainty in Coexistence via Exploitation of Interference Threshold Violation," ACM MobiHoc 2019

Real-time optimization in wireless networking on GPU platforms

Design and implement parallel algorithms on NVIDIA GPU with $\sim 100~\mu s$ strict timing requirement

- o S. Li, Y. Huang, C. Li, Y.T. Hou, W. Lou, B. Jalaian, and S. Russell, "Achieving Real-Time Spectrum Sharing in 5G Underlay Coexistence with Channel Uncertainty," IEEE Trans. on Mobile Computing, 2021
 - Picocell scheduling and power control, $< 100~\mu s$ on NVIDIA Tesla V100
- o Y. Huang, S. Li, Y.T. Hou, and W. Lou, "GPF+: A Novel Ultrafast GPU-Based Proportional Fair Scheduler for 5G NR," IEEE/ACM Trans. on Networking, 2021
- o Y. Huang, S. Li, Y. Chen, Y.T. Hou, W. Lou, J. Delfeld, and V. Ditya, "GPU: A New Enabling Platform for Real-Time Optimization in Wireless Networks," IEEE Networks, 2020
- o S. Li, Y. Huang, C. Li, B. Jalaian, S. Russell, Y.T. Hou, W. Lou, and B. MacCall, "A Real-Time Solution for Underlay Coexistence with Channel Uncertainty," IEEE GLOBECOM 2019
- o Y. Huang, S. Li, Y.T. Hou and W. Lou, "GPF: A GPU-based Design to Achieve \sim 100 μ s Scheduling for 5G NR," ACM MobiCom 2018

Link-level transceiver implementation on FPGA platforms

- o SCMA transceiver, FTN transceiver, and DPSK/FM transceiver on Stratix V, Stratix IV, and Kintex-7
- o OFDM transceiver on Cyclone IV (Transmitter) and Stratix IV (Receiver)

Others: Age of Information, MIMO, CBRS, and Faster-than-Nyquist sampling

- C. Li, Q. Liu, S. Li, Y. Chen, Y.T. Hou, W. Lou, S. Kompella, "Scheduling With Age of Information Guarantee," IEEE/ACM Transactions on Networking, 2022
- N. Jai, S. Li, C. Li, Y.T. Hou and W. Lou, "Optimal Channel Allocation in the CBRS Band with Shipborne Radar Incumbents," IEEE DySPAN 2021
- o Y. Chen, S. Li, C. Li, H. Zeng, B. Jalaian, Y.T. Hou, and W. Lou, "On DoF Conservation in MIMO Interference Cancellation based on Signal Strength in the Eigenspace," *IEEE Trans. on Mobile Computing*, 2021
- o C. Li, Y. Huang, S. Li, Y. Chen, B. Jalaian, Y.T. Hou, W. Lou, J.H. Reed and S. Kompella, "Minimizing AoI in a 5G-based IoT Network under Varying Channel Conditions," IEEE Internet of Things Journal, 2021
- C. Li, Q. Liu, S. Li, Y. Chen, Y.T. Hou, and W. Lou, "On Scheduling with Aol Violation Tolerance," IEEE INFOCOM 2021
- o C. Li, S. Li, Y. Chen, Y.T. Hou, W. Lou, "AoI Scheduling with Maximum Thresholds," IEEE INFOCOM 2020
- o Y. Huang, S. Li, C. Li, Y.T. Hou, W. Lou, "A Deep Reinforcement Learning-based Approach to Dynamic eMBB/URLLC Multiplexing in 5G NR," *IEEE Internet of Things Journal*, 2020
- C. Li, S. Li, and Y.T. Hou, "A General Model for Minimizing Age of Information at Network Edge," IEEE INFOCOM 2019
- o Y. Chen, S. Li, C. Li, Y.T. Hou and B. Jalaian, "To Cancel or Not to Cancel: Exploiting Interference Signal Strength in the Eigenspace for Efficient MIMO DoF Utilization," *IEEE INFOCOM 2019*
- C. Li, S. Li, Y. Chen, Y.T. Hou, and W. Lou, "Minimizing Age of Information under General Models for IoT Data Collection," IEEE Trans. on Network Science and Engineering, accepted, 2019
- o S. Li, Z. Wu, and H. Che, "Faster-than-Nyquist System Based on Novel Shaping Waveforms," IEEE IMCCC 2016
- Z. Wu, Hui Che, and S. Li, "Spectral efficiency and parameter optimization analysis for faster-than-Nyquist signaling,"
 System Engineering and Electronics, 2016

Skills

- Experienced knowledge in wireless communication, network optimization, 4G-LTE, and 5G-NR.
- o Familiar with air interface performance analysis, characterization and optimization
- o Academic Language: C/C++, Python, CUDA, Matlab, Verilog HDL, and LATEX

Honors and Awards

o Prasad Scholarship	Aug. 2019–May 2020
 Silver Medal Award in the First 5G Algorithm Innovation Competition 	
by the InnovateAsia FPGA Design Contest (4/184)	Dec. 2015
 Third Prize in National Postgraduate Mathematics Contest in Modeling 	Nov. 2015
 Top Ten Annual Individuals 	Dec. 2012
 Third Prize in National Undergraduate Mathematics Contest in Modeling 	Oct. 2012
o The First Prize Scholarship $\times 3$	Sept. 2014-Dec. 2016

Extracurricular Activities

Graduate Teaching Assistant at Virginia Tech	Aug. 2017–May 2018
Volunteers of Video Games Live at National Stadium (Bird's Nest), Beijing	July 2016
Graduate Teaching Assistant at BUPT	Sept. 2014–June 2015

References

- Dr. Tom Hou, Bradley Distinguished Professor of ECE, Virginia Tech, thou@vt.edu
- Dr. Wenjing Lou, W. C. English Endowed Professor of CS, Virginia Tech, wjlou@vt.edu
- Dr. Chris Dick, R&D Engineering at the Intersection of 5G and AI, NVIDIA, cdick@nvidia.com