Maximum Likelihood Estimation

Andrew Nobel

February, 2020

Distribution Family

Given: Family $\mathcal{P} = \{f_{\theta} : \theta \in \Theta\}$ of probability mass/density functions on \mathcal{X}

- $lackbox{egin{aligned} }\Theta\subset\mathbb{R}^d \mbox{ called parameter space, }\theta\in\Theta \mbox{ called parameters } \end{aligned}$
- lacktriangle parameter heta fully specifies mass/density function $f_{ heta}$

Examples

- Normal $\mathcal{P} = {\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0}$
- Exponential $\mathcal{P} = \{ \mathsf{Exp}(\lambda) : \lambda > 0 \}$
- ▶ Poisson $\mathcal{P} = \{ \mathsf{Poiss}(\lambda) : \lambda > 0 \}$
- $\blacktriangleright \ \, \mathsf{Binomial} \; \mathcal{P} = \{\mathsf{Bin}(n,p) : p \in [0,1]\}$

Distribution Family

Given

- ▶ Family $\mathcal{P} = \{f_{\theta} : \theta \in \Theta\}$ of interest
- ightharpoonup Data $x_1, \ldots, x_n \in \mathcal{X}$
- lacktriangle Assume data drawn independently from unknown $f_{ heta_0} \in \mathcal{P}$

Goal: Estimate θ_0 (and therefore f_{θ_0}) from data x_1, \ldots, x_n

Idea: Select $\theta \in \Theta$ that makes given x_1, \ldots, x_n most likely

Maximum Likelihood Estimation

Definition: The likelihood of $\theta \in \Theta$ is joint density of x_1, \ldots, x_n under f_{θ}

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

Definition: The maximum likelihood estimator (MLE) of θ_0 is

$$\hat{\theta}_n^{\mathsf{MLE}}(x_1^n) \ = \ \operatorname*{argmax}_{\theta \in \Theta} L(\theta)$$

Note: As $\log(u)$ strictly increasing, MLE can be written in equivalent form

$$\hat{\theta}_n^{\mathsf{MLE}}(x_1^n) \ = \ \underset{\theta \in \Theta}{\operatorname{argmax}} \log L(\theta) \ = \ \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^n \log f_\theta(x_i)$$

Maximum Likelihood Estimation

Fact: Under appropriate conditions the MLE is

- Consistent: $\hat{\theta}_n^{\mathsf{MLE}}(X_1^n) \to \theta_0$ in probability
- Asymptotically Normal: $n^{1/2} (\hat{\theta}_n^{\text{MLE}}(X_1^n) \theta_0) \Rightarrow \mathcal{N}(0, I(\theta_0)^{-1})$

Ex1. X_1,\ldots,X_n iid $\sim f\in\mathcal{P}=\{\mathcal{N}(\mu,\sigma^2):\mu\in\mathbb{R}\}$ with $\sigma^2>0$ known