Complexity Analysis Report

Complexity Analysis for extended_euclidean

Best Fit Complexity: Constant: time = 6E-06 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for eratosthenes_primality

Best Fit Complexity: Constant: time = 1E-05 (sec)

Complexity Analysis for fermat_primality

Best Fit Complexity: Constant: time = 3.4E-05 (sec)

Complexity Analysis for miller_rabin_primality

Best Fit Complexity: Constant: time = 7.2E-05 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for pi_function

Best Fit Complexity: Linearithmic: time = -0.0072 + 5.4E-07*n*log(n) (sec)

Complexity Analysis for prob_function

Best Fit Complexity: Linear: time = 0.00032 + 8.3E-09*n (sec)

Complexity Analysis for pnt_prime_count

Best Fit Complexity: Linear: time = 0.00097 + 3.8E-07*n (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for approx_pnt_prime_count

Best Fit Complexity: Constant: time = 1.4E-06 (sec)

Complexity Analysis for divisors

Best Fit Complexity: Constant: time = 5.9E-05 (sec)

Complexity Analysis for prime_factors

Best Fit Complexity: Constant: time = 7.9E-05 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for factorize

Best Fit Complexity: Constant: time = 8.2E-05 (sec)

Complexity Analysis for sigma

Best Fit Complexity: Constant: time = 5.5E-05 (sec)

Complexity Analysis for sigma_k

Best Fit Complexity: Constant: time = 6.8E-05 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for T_divisor_count

Best Fit Complexity: Constant: time = 5.9E-05 (sec)

Complexity Analysis for omega_distinct

Best Fit Complexity: Constant: time = 7.6E-05 (sec)

Complexity Analysis for Omega_total

Best Fit Complexity: Constant: time = 8.1E-05 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for phi_totient

Best Fit Complexity: Constant: time = 8.1E-05 (sec)

Complexity Analysis for lambda_liouville

Best Fit Complexity: Constant: time = 7.9E-05 (sec)

Complexity Analysis for mu_mobius

Best Fit Complexity: Constant: time = 0.0002 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for I_indicator

Best Fit Complexity: Constant: time = 8.7E-07 (sec)

Complexity Analysis for N_identity

Best Fit Complexity: Constant: time = 8.5E-07 (sec)

Complexity Analysis for Z_is_perfect

Best Fit Complexity: Constant: time = 5.8E-05 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for Z_is_square_free

Best Fit Complexity: Constant: time = 0.00017 (sec)

Complexity Analysis for Z_n_order

Best Fit Complexity: Constant: time = 0.00043 (sec)

Complexity Analysis for Z_n_inverse

Best Fit Complexity: Constant: time = 9.9E-06 (sec)

Execution Time vs. Input Size Plot:

Complexity Analysis for Z_n_legendre

Best Fit Complexity: Constant: time = 9.5E-05 (sec)

