

F3

Faculty of Electrical Engineering Department of Measurement

Bachelor's Thesis

On-board computer for PC104 format CubeSats

Filip Geib

Cybernetics and Robotics

February 2021

https://github.com/visionspacetec/VST104

Supervisor: Ing. Vojtěch Petrucha, Ph.D.

Acknowledgement / Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any and all computer programs incorporated therein or attached thereto and all corresponding documentation (hereinafter collectively referred to as the "Work"), to any and all persons that wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only, in any way that does not detract from its value. This authorization is not limited in terms of time, location and quantity.

In	Prag	gue o	n Feb	oruary	25,	1999	

Abstrakt / Abstract

Kľúčové slová: CubeSat; PC104; OBC; hardvér; PCB dizajn; schémy.

Preklad titulu: Palubný počítač pre

CubeSaty formátu PC104

Keywords: CubeSat; PC104; OBC; hardware; PCB design; schematics.

iv **Draft: 9. 3. 2021**

Contents /

1 Introduction	1
2 Project description	2
2.1 CubeSat concept	2
2.2 OBC requirements	
2.2.1 Radiation and redundancy .	
$2.2.2$ Capabilities and features \dots	
2.2.3 Components certification	
2.2.4 Components selection	
2.3 PCI104 standard	
2.3.1 Mechanical specification	
2.3.2 Main header pinout	
3 Board Sierra - single OBC	
3.1 Submodules and circuit design	
3.1.1 Microcontroller	
3.1.2 External clock sources	
3.1.3 Power management	
3.1.4 Peripheral isolators	
3.1.5 External memory	
3.1.6 CAN bus drivers	
3.1.7 Temperature monitoring	
3.2 PCB design and assembly	
3.2.1 PCB specifications	
3.2.2 Submodles placement	
3.2.3 Routing and fanout	
3.2.4 Assembly and debug	
3.3 Board Delta - double OBC	
3.3.1 Circuit modification	
3.3.2 PCB modification	
	8
4.1 Submodules and circuit design	
4.1.1 Ordinary power source	
4.1.2 USB-C power source	
4.1.3 Voltage handling	
4.1.4 PC104 modules slots	
4.2 PCB design and assembly	
4.2.1 PCB specifications	
4.2.2 Submodles placement 4.2.3 Routing and fanout	
4.2.4 Assembly and debug	
_	9 0
5.1 Testing software	
5.2 Radiation testing	
5.3 Environmental testing	9

6 Conclusion

	References	11
A	Thesis Assignment	13
В	Schematic diagrams	14
C	Additional materials	17

Tables / Figures

3.1	Power management rating	 6
6.1	Unqualified parts variants	 17

3.1	Clock sources schematic4
3.2	Power management diagram5
3.3	Peripheral isolators diagram 6
3.4	Peripheral isolators schematic6
3.5	CAN drivers schematic
6.1	Thesis assignment
6.2	Power management schematic . 14
6.3	External memory schematic 15
6.4	Temp. monitoring schematic 16

vi **Draft: 9. 3. 2021**

Chapter 1 Introduction

Chapter 2

Project description

2.1 CubeSat concept

2.2 OBC requirements

2.2.1 Radiation and redundancy

Occasionally traveling through weaker parts of the Earth's magnetic field and not shielded by the Earth's atmosphere, the CubeSats have to operate in an environment full of radiation. A direct hit of a high-energy particle might have serious consequences for OBC functionality. These include transistor gate ruptures, memory bit flips, software upsets, or latch-ups. A proper strategy must be taken to increase the OBC durability and ability to handle such an error, resulting in maximizing a possible mission life.

One approach is to use special radiation-hardened components. This strategy is typical for professional and more expensive satellites than the CubeSats. These components are usually bigger, more costly, and have less functionality than ordinary COTS.

Considering the size and budget requirements of our OBC, we chose to implement another option. Instead of the previously mentioned physical hardening technique, a logical one was realized. The OBC hosts many schematic design-related features ensuring the proper handling of any radiation-related event. These include: i) over-current sensing power management, ii) separate peripheral isolators, iii) full high-impedance mode requested by the higher logic, iv) triple-redundant memories, v) multiple temperature sensors. A fully double-redundant OBC is presented in chapter 3.3.

[chap2:features]

2.2.2 Capabilities and features

Having in mind the expectations of the VST supervisors, features common for OBCs by different professional manufacturers, and design requirements created by the radiation, we created and implemented the following list of desired OBC's features:

Microcontroller:

- External clock sources: The MCU has two internal resistor-capacitor (RC) oscillators that can be used to drive a master system clock and auxiliary clocks [1]. These internal oscillators have a significantly lower frequency stability and a higher temperature dependency than the external ones [2]. Therefore, to ensure the clock reliability in the harsh space environment, we had to implement external clock sources.
- Robust power management: The electric power subsystem (EPS) is known to be the most vital subsystem of a spacecraft. Its reliability and error handling should be ensured by the power control and distribution unit (PDCU). However, it is a good engineering practice by professional OBC manufacturers to include an additional power control to their designs [3–10]. Our OBC requires 3.3[V] and 5[V] power inputs from the main power buses. In the case of their malfunction, it is our responsibility

2

to sense it and power down the OBC. This feature is also important for some of the OBC on-earth user cases. During a hardware development or a system presentation, the user might misconnect the power line or use an unsupported power source.

- Isolation of the peripherals: The spacecraft OBC is connected to many data buses shared among all other subsystems. In some scenarios, the OBC must be able to isolate itself from a specific or multiple data buses. For example, to switch between OBCs in a redundant configuration, handle the failure on a data bus, or prevent unintentional interferences. Standard approaches to addressing this isolation feature are analog switches [11], optocouplers [12], or FPGAs [3]. These isolators should also guarantee that all data lines are high impedance when the OBC is powered off.
- Redundant external memory:
- CAN bus peripherals:
- Temperature monitoring:
- Maximal payload sector:

2.2.3 Components certification

2.2.4 Components selection

After listing all of the technical requirements for a specific electronic part, we had to chose a particular component. As there are usually multiple similar components from various manufacturers, we had to use additional criteriums for the selection process.

As this OBC module is not primarily designed for an actual space flight (explained in chapter 1), an individual component's price is not negligible. With a lower overall cost of the OBC, a broader project expansion in the LibreCube cominity can be achieved. Thus components with sufficient attributes but lower price were favored.

Another criterium in the component selection was the available PCB surface. As a result of maximizing the payload sector of the PC104 module, the actual OBC subsystem area was significantly decreased. Therefore the components of smaller dimensions available in fine-pitch packages (e.g. SSOP or QFN) were preferred. After researching the technical capabilities and related costs of PCB manufacturers, we decided not to use the BGA package components. Their significantly small footprints would require more precise fanout, resulting in increased manufacturing difficulty and price.

Different components are available from various distributors, which can prolong the assembling process. We chose to use Mouser Electronics for purchasing the components. Therefore the availability of a specific component in this store was also a selection factor. This decision was influenced by the VST supervisors and previous experiences.

- 2.3 PCI104 standard
- 2.3.1 Mechanical specification
- 2.3.2 Main header pinout

Chapter 3

Board Sierra - single OBC

3.1 Submodules and circuit design

3.1.1 Microcontroller

3.1.2 External clock sources

A $4-48 [\mathrm{MHz}]$ high speed external oscillator (HSE) can drive the system clock. Supported types are crystal, ceramic resonator, or silicone oscillator [1]. The last option seems to be the best as it is insensitive to electromagnetic interference (EMI) and vibration. The only downside is its slightly lower temperature rejection [13]. We chose the SiT8924B, a $26 [\mathrm{MHz}]$ silicon microelectromechanical system (MEMS) oscillator [14]. Accordingly to the clock configuration tool of the stm32cube software, we can reach various system clock frequencies up to $78 [\mathrm{MHz}]$ (the max. is $80 [\mathrm{MHz}]$ [1]). The circuitry follows the HSE datasheet [14] and is shown on the right side of figure 3.1. The HSE output OSE IN can be enabled or disabled by the binary OSC EN signal.

[fig:clockSource]

Figure 3.1. Schematic diagram of external clock sources.

A 32.768[kHz] low speed external oscillator (LSE) can drive the real time clock (RTC), hardware auto calibration, or other timing functions. Table 7 in [15] recommends individual crystal resonators for this specific purpose with STM32 MCUs. After a consideration of these options, we decided to use the ABS07AIG ceramic base crystal [16]. The LSE circuitry is based on the reference design in figure 5 in [15]. To achieve a stable frequency of this Pierce oscillator, it is required to determine the values of load capacitors C_{L1} , C_{L2} and an external resistor R_{Ext} . This can be done using equations

$$C_L = \frac{C_{L1}C_{L2}}{C_{L1} + C_{L2}} + C_S \quad \land \quad C_{L1} = C_{L2}, \tag{1}$$

$$R_{Ext} = \frac{1}{2\pi f C_{L2}},\tag{2}$$

where C_L is the crystal load capacitance, f is the crystal oscillation frequency and C_S is the stray capacitance [15]. Values of C_L and f are listed in the crystal datasheet [16]. We can assume as a rule of thumb, that $C_S = 4[\mathrm{pF}]$. The final LSE circuitry with computed values of the components is shown on the left side of figure 3.1.

3.1.3 Power management

A functional diagram of the implemented power management is shown in figure 3.2. The OBC is connected to each power bus through an electronic fuse (eFuse). This device continuously monitors the bus for events of under-voltage, over-voltage, and over-current¹. As a response to such an event, the eFuse will switch into high impedance and pull down specific input of an AND logic gate. This gate simultaneously controls two load switches, one for each power line. This approach ensures that a fault on one power bus will result in a high impedance of both OBC power inputs. It also eliminates the risk of a death loop, a state where a reset of eFuses is not possible as they are switching each other off. Added benefits of this design are simple current measurements (using the eFuse analog output) and a Kill Switch integration into the AND logic gate.

[fig:powerManagement]

Figure 3.2. Functional diagram of power management circuitry.

The final schematic diagram of power management circuitry is shown in figure 6.2. The most important part of this design is the eFuse, as it covers all of the power control features. We decided to use the TPS25940-Q1 device [17]. Custom monitoring thresholds values can be set following the typical application schematic in figure 10-1in [17]. This was achieved by connecting specific resistors to the device, with values calculated using the TPS2594x design calculation tool [18]. As the logic AND gate, we chose the 74LVC1G11-Q100 [19]. This device is designed to operate in a mixed 3.3V and 5V environment, what corresponds with our application. The last important component is the load switch. In our case, the TPS22965W-Q1 with an inbuilt output discharge function [20]. For a correct operation of the switch, the VBIAS pin should stay saturated for a while after disconnecting the VIN voltage. We achieved this behavior by charging a capacitor connected to the VBIAS from the VIN through a Schottky diode. Four reservoir capacitors are placed on both sides of the load switches, following the suggestions in [17, 20]. Nominal logic values of all switching signals are set by pull-up or pull-down resistors. The summary of the final power management ratings is listed in table 3.1. These values were chosen considering the power requirements of the remaining OBC components and are a subject of change by a potential user.

3.1.4 Peripheral isolators

We chose to implement the design using robust analog switches as isolators of data lines. This approach is more straightforward, less expensive, and requires a smaller PCB area than an optocoupler-based or an FPGA-based ones (referred in chapter 2.2.2). A functional diagram of the implementation is shown in figure 3.3. OBC data lines are connected to the rest of the spacecraft through a series of analog switches. These lines

¹ This is a crucial feature in handling and resolving a latch-up event.

Power input	Parameter	Min	Тур	Max	Unit
3V3 BUS	voltage current	2.9 0.0	3.3	3.5 1.2	V A
5V BUS	voltage current	4.6 0.0	5.0	5.4 1.2	V A

[tab:powerManagement]

Table 3.1. OBC power rating. Value out of range will cause a protective shutdown.

are grouped by particular data buses and are assigned to a separate switch. The OBC can enable or disable a specific switch and therefore isolate a particular data bus from the remaining spacecraft subsystems. Pulling low the Kill Switch will result in high impedance of all switches and completely isolating the OBC data lines.

[fig:peripheralIsolatorsDiag]

Figure 3.3. Functional diagram of peripheral isolators circuitry.

Schematic diagrams of two isolators are shown in figure 3.4. We decided to use the DGQ2788A device [21]. To cover all of the data buses, the OBC hosts fifteen of these analog switches in a dual double pole double throw (DPDT) configuration. The OBC data lines are connected to common (COM) terminals. Normally closed (NC) terminals are left floating, whereas normally open (NO) terminals are connected to the spacecraft data lines. The important Kill Switch functionality is implemented using the device's power down protection. If the switch loses power, it will enter the normal state. This approach simplifies the circuitry a lot as it substitutes an otherwise necessary system of multiple logic gates. The other beneficial features of this analog switch are inbuild signal clamping diodes and a high latch-up current of 300[mA]. The presence of pull-down resistors and decoupling capacitors in the schematic follows the device datasheet.

[fig:peripheralIsolatorsSchem]

Figure 3.4. Schematic diagram of two peripheral isolators.

3.1.5 External memory

3.1.6 CAN bus drivers

[fig:canBusDrivers]

Figure 3.5. Schematic diagram of CAN buses driving circuitry.

3.1.7 Temperature monitoring

- 3.2 PCB design and assembly
- 3.2.1 PCB specifications
- 3.2.2 Submodles placement
- 3.2.3 Routing and fanout
- 3.2.4 Assembly and debug

[chap3:delta]

- 3.3 Board Delta double OBC
- 3.3.1 Circuit modification
- 3.3.2 PCB modification

7

Chapter 4

Element Foxtrot - FlatSat

- 4.1 Submodules and circuit design
- **4.1.1 Ordinary power source**
- 4.1.2 USB-C power source
- 4.1.3 Voltage handling
- 4.1.4 PC104 modules slots
- 4.2 PCB design and assembly
- **4.2.1 PCB specifications**
- 4.2.2 Submodles placement
- 4.2.3 Routing and fanout
- 4.2.4 Assembly and debug

Chapter 5

Board Sierra testing

- 5.1 Testing software
- 5.2 Radiation testing
- 5.3 Environmental testing

Chapter 6 Conclusion

References

[dat:mcu]

 DS11585. Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100 DMIPS, up to 1 MB Flash, 320 KB SRAM, USB OTG FS, audio, external SMPS. Geneva: STMicroelectronics, c2021. Rev 13.

[app:oscInt]

[2] AN5067. How to optimize STM32 MCUs internal RC oscillator accuracy. Geneva: STMicroelectronics, c2018. Rev 1.

obc:dataPatternsl

[3] DP-OBC-0402-QAC-DS-1V00-349. DP-OBC-0402 On Board Computer. Bengaluru: Data Patterns Pvt. Ltd..

[obc:isis]

[4] iOBC. ISIS On board computer. Delft: ISIS - Innovative Solutions In Space B.V..

[obc:mit]

[5] MIT OBC. Cubesat On-Board Computer. Rome: IMT s.r.l., c2016.

[obc:pumpkin]

[6] CubeSat KitTM Motherboard (MB). Single Board Computer Motherboard for Harsh Environments. San Francisco: Pumpkin Inc., 2012. Rev E.

[obc:gauss]

[7] ABACUS 201702. GAUSS OBC ABACUS 2017. Rome: G.A.U.S.S. Srl, 2017.

[obc:aac]

[8] KRYTEN-M3. Command & Data Handling. Uppsala: AAC Clyde Space, 2020.

[obc:anteleope]

[9] ANTELOPE OBC. On-board computer designed to keep your mission safe. Gliwice: KP Labs Sp. z o.o..

[obc:nanosatpro]

[10] NANOSATPRO. Space Qualified Processor Unit. Ankara: STM Savunma Teknolojileri Mühendislik ve Ticaret A.S..

[the:wurzburg]

[11] Busch, Stephan. Robust, Flexible and Efficient Design for Miniature Satellite Systems. Würzburg: University of Würzburg, Faculty of Mathematics and Computer Science, 2016. Doctoral thesis.

pap:satelliteLeo]

[12] FAJARDO, Isai, Aleksander A. LIDTKE, Sidi Ahmed BENDOUKHA et al. Design, Implementation, and Operation of a Small Satellite Mission to Explore the Space Weather Effects in LEO. 2019, Vol. 6, No. 10. ISSN 2226-4310.

[app:oscComp]

[13] APP2154. Microcontroller Clock—Crystal, Resonator, RC Oscillator, or Silicon Oscillator? San Jose: Maxim Integrated, 2003.

[dat:hse]

[14] SiT8924B. Automotive AEC-Q100 Oscillator. Santa Clara: SiTime Corporation, 2019. Rev 1.7.

[app:oscDes]

[15] AN2867. Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs. Geneva: STMicroelectronics, c2020. Rev 13.

[dat:lse]

[16] ABS07AIG. Automotive & Industrial Grade 32.768kHz Ceramic Base SMD Crystal. Hidden Creek: Abracon LLC, 2020. Rev 12-11-20.

[dat:efuse]

[17] TPS25940-Q1. TPS25940xx-Q1 2.7-V to 18-V eFuse with Integrated Short-to-Battery Protection. Dallas: Texas Instruments Incorporated, 2021. Rev January 2021.

[app:tps2594Calc]

[18] TPS2594x Design Calculation Tool. Getting started with STM32L4 Series and STM32L4+ Series hardware development. Geneva: STMicroelectronics, c2019. Rev 8.

11

[dat:gate]

[19] 74LVC1G11-Q100. Single 3-input AND gate. Nijmegen: Nexperia B.V., 2016. Rev 2.

[dat:switch]

[20] TPS22965-Q1. TPS22965x-Q1 5.5-V, 4-A, 16-m Ω On-Resistance Load Switch. Dallas: Texas Instruments Incorporated, 2019. Rev December 2019.

[dat:isolator]

[21] DGQ2788A. Automotive 125 °C Analog Switch Dual DPDT / Quad SPDT, 0.37 , 338 MHz Bandwidth. Malvern: VISHAY INTERTECHNOLOGY, INC., 2021. Rev 01-Jan-2021.

BACHELOR'S THESIS ASSIGNMENT

I. Personal and study details

Student's name: Personal ID number: 483567

Faculty / Institute: **Faculty of Electrical Engineering** Department / Institute: Department of Measurement Study program: **Cybernetics and Robotics**

Bachelor's thesis title in English:			
On-board computer for PC104 fo	ormat CubeSats		
Bachelor's thesis title in Czech:			
Palubní počítač pro CubeSaty fo	rmátu PC104		
Guidelines:			
Design a concept of an STM32 based Implement redundancy for the critical Construct the device and conduct tes Concentrate on providing detailed and	components to improviting of the whole system	e reliability of the des m, e.g. using a flatsat	ign.
Bibliography / sources:			
[1] Anil K. Maini et al.: "Satellite Techno [2] Ahmet Bindal: "Electronics for Embe [3] Report Concerning Space Data Sys Consultative Committee for Space Data [4] Dogan Ibrahim: "ARM-Based Microsoft	edded Systems", Sprin stem Standards, Missio a Systems, Washingtor	ger International Publ n Operations Service n, DC, USA, 2020	ishing, Switzerland 2017 s Concept, CCSDS 520.0-G-3,
Name and workplace of bachelor's t	thesis supervisor:		
Ing. Vojtěch Petrucha, Ph.D., 13	3138		
Name and workplace of second bac	chelor's thesis super	visor or consultant:	
Data of backglar's thosis casianas	ent: 13.01.2021 [Deadline for bachelo	or thesis submission:
Date of pachelor's thesis assignme			
Date of bachelor's thesis assignment valid until: by the end of summer semester:	2021/2022		

[app:thesisAssignment]

III. Assignment receipt

Date of assignment receipt

Figure 6.1. Assignment of this bachelor's thesis.

The student acknowledges that the bachelor's thesis is an individual work. The student must produce his thesis without the assistance of others, with the exception of provided consultations. Within the bachelor's thesis, the author must state the names of consultants and include a list of references

Student's signature

Appendix **B**

Schematic diagrams

[app:powerManagement]

Figure 6.2. Schematic diagram of power management circuitry.

SPI1_MISO SPI1_SCK 7P10 TP11 +3V3 +3V3 +3/3 OS IS 0S VSS VDD AOLD VSS CY15B102Q CY15B102Q CY15B102Q VDD R35 100k R36 100k SO WP HD SO WP HD SO WP 0S IS IS +3/3 +3v3 <--M CLK СГК СГК SP11_CS1 SPI1_CS2 SPI1_CS3 _QSPI_BK1_100 _QSPI_BK1_101 QSPI_BK1_102 QSPI_CLK 8 92 +3V3 +3/3 S25FL256L S25FL256L S25FL256L VSS Q2 Q3 Q0 Q1 Q2 Q3 ao a1 a2 a3 Q3/RST Q3/RST Q3/RST Q1/S0 Q1/S0 Q2/WP 00 01 05/10 IS/00 IS/00 15/00 +3/3 +373 +373 R27 10k R28 10k R29 10k QSPI_CS2_ QSPL_CS3_

[app:externalMemory] Figure 6.3. Schematic diagram of external memory circuitry.

QSPI_CS1

[app:temperatureMonitoring]

Figure 6.4. Schematic diagram of temperature monitoring circuitry.

Appendix C **Additional materials**

Designator	Qualified part no.	Unqualified part no.	Difference
M1 - M3	S25FL256LAGNFN	S25FL256LAGNFI S25FL256LDPNFI	temp. temp., speed
Q1 - Q3	TPS22965W-Q1	TPS22965-Q1 TPS22975	temp. temp., auto.
TS1 - TS7	MCP9804x-E/MC	MCP9808x-E/MC	accuracy
LG1	74LVC1G11GW-Q100	74LVC1G11GW	auto.

[tab:unqualifiedParts]

Table 6.1. List of available unqualified variants to some of the qualified parts.

Requests for correction