مبادئ في المنطق

<u>I- تعاریف ومصطلحات</u>

1- العبارة – الدالة العبارية

آ- تعريف

كل جملة صحيحة نحويا و يمكن الحكم عن صحة معناها أو خطأه بدون نقاش تسمى عبارة.

<u>أمثلة</u> نعتبر النصوص التالية

عدد زوجي
$$p_2$$
 : p_2 $-2 \times 4 = -8$: p_1

$$5 + 7 > 4$$
 : p_3

و p_3 عبارتان صحیحتان p_1

عبارة خاطئة p_2

<u>ب- تعریف</u>

كل نص رياضي يحتوي على متغير ينتمي الى مجموعة معينة و يصبح عبارة كلما عوضنا هذا المتغير بعنصر محدد من هذه المجموعة يسـمى دالة عبارية.

<u>امثلة</u>

دالة عبارية
$$x \in \mathbb{R}$$
 دالة عبارية

دالة عبارية
$$(x;y) \in \mathbb{Z}^2$$
 دالة عبارية $x-2y=3$

<u>2- المكممات – العبارات المكممة</u>

أ- المكمم الوجودي

لتكن
$$x \in E$$
 ; $p(x)$ دالة عبارية

$$p(x)$$
 تعني يوجد على الأقل عنصرا x من E من يحقق ($\exists x \in E$): $D(x)$

الرمز ∃ يسمى المكمم الوجودي .

$$(\exists ! x \in E)$$
: $p(x)$ فإننا نكتب $p(x)$ في يحقق $p(x)$ عنصرا وحيداً x من

<u>أمثلة</u>

عبارة خاطئة
$$\exists x \in \mathbb{R}$$
 عبارة خاطئة

عبارة صحيحة
$$\exists x \in \mathbb{Z} \quad \frac{x}{4} \in \mathbb{Z}$$

عبارة صحيحة
$$\exists ! x \in [0; \pi]$$
 $\cos x = \frac{1}{2}$

عبارة خاطئة
$$\exists ! x \in \mathbb{R}$$
 $x^2 = 4$

<u>ب- المكمم الكوني</u>

لتكن
$$p(x)$$
 دالة عبارية $x \in E$

العبارة
$$p(x)$$
 , E من x من x تعني أن جمع عناصر E تحقق E تحقق أن جمع عناصر E تعني أن جمع عناصر E تعني أن جمع عناصر E أو صحيحة).

اِلْرِمَزِ ∀ يَسْمِي المكمم الكوني.

ا<u>َمثلة</u>

عبارة صحيحة.
$$\forall x \in \mathbb{R} \quad x^2 \ge 0$$

عبارة خاطئة
$$\forall (x;y) \in \mathbb{R}^2$$
 عبارة خاطئة

<u>د- العبارات المكممة</u>

$$E \times F$$
 دالة عبارية معرفة معرفة على $p(x;y)$ لتكن

$$x$$
 بالنسبة للمتغير ونطبق أحد المكممين على الخاصية $p(x;y)$

$$(\forall x \in E)$$
: $p(x;y)$ مثلا المكمم الكوني، نحصل على

$$x$$
 دالة عبارية للمتغير y وهي غير مرتبطة ب

نطبق عليها أحد المكممين بالنسبة للمتغير
$$y$$
. مثلا المكمم الوجودي،

 $.(\exists y \in F) \ (\forall x \in E) \ p(x;y)$ فنحصل على العبارة

<u>أمثلة</u>

عبارة خاطئة
$$(\forall x \in \mathbb{R})$$
 $(\exists y \in \mathbb{R})$ $y^2 = x$ ($x = -1$ نأخد)

عبارة صحيحة
$$(\forall x \in \mathbb{R}) \ (\exists y \in \mathbb{R}) \ x + y = -2$$

عبارة خاطئة
$$(\exists y \in \mathbb{R}) \ (\forall x \in \mathbb{R}) \ x + y = -2$$

عبارة صحيحة.
$$(\forall x \in \mathbb{R}) \ (\forall y \in \mathbb{R}) \ |x+y| \le |x| + |y|$$

عبارة صحيحة.
$$(\exists x \in \mathbb{R}) \ (\exists y \in \mathbb{R}) \ x + y = 3$$

<u>ملاحظة هامة</u>

ترتيب مكممات من نفس الطبيعة ليس له أهمية في تحديد المعنى التي تحمله العبارة المكممة . ترتيب مكممات من طبيعة مختلفة له أهمية في تحديد المعنى التي تحمله العبارة المكممة .

<u>II- العمليات المنطقية</u>

أ- <u>تعريف</u>

نفي عبارة p هي عبارة نرمز لهابـ \overline{p} أو بـ p تكون صحيحة إذا كانت p خاطئة و تكون خاطئة إذا كانت \overline{p} صحيحة. \overline{p} تقرأ نفي p

 \bar{p} جدول حقیقة

\overline{p}	p
1	1
0	0

 $1 \ge \sqrt{2}$ نفي العبارة $1 < \sqrt{2}$ هي العبارة $\sqrt{3} \in \mathbb{Q}$ هي العبارة $\sqrt{3} \notin \mathbb{Q}$ هي العبارة $\sqrt{3} \notin \mathbb{Q}$

<u>ب- نفي عبارة مكممة</u>

$$\exists x \in E \quad \overline{A(X)}$$
 في العبارة $\forall x \in E \quad A(X)$ *

.
$$\forall x \in E \quad \overline{A\left(X\right)}$$
 في العبارة $\exists x \in E \quad A\left(X\right)$ *

$$(\exists x \in E)$$
 $(\exists y \in F)$ $\overline{A(x;y)}$ هي العبارة $(\forall x \in E)$ $(\forall y \in F)$ $A(x;y)$ هي العبارة $(\exists x \in E)$ $(\forall y \in F)$ $\overline{A(x;y)}$ هي العبارة $(\forall x \in E)$ $(\exists y \in F)$ $A(x;y)$ هي العبارة $(\forall z \succ 0)$ $(\exists x \in]0;1[)$ $(\exists y \in]0;1[)$: $(x^2 + y^2 \prec z)$

<u>د- نتيجة (الاستدلال بالمثال المضاد)</u>

للبرهان على أن عبارة ما p خاطئةً ، يكفي أن نبين أن نفيها $ar{p}$ صحيحة.

 $\left[\left(\exists x\in E\right)\colon \ \overline{A\left(x\right)}
ight]$ محف ان نبرهن صحة $\left[\left(\forall x\in E\right)\colon \ A\left(x\right)
ight]$ يكفي أن نبرهن

$$(\forall x \in \mathbb{R}^*)$$
: $x + \frac{1}{x} \ge 2$ خاطئة

نعتبر
$$(\exists x \in \mathbb{R}^*)$$
: $x + \frac{1}{x} < 2$ ادن لدینا $-2 + \frac{1}{-2} = \frac{-5}{2} < 2$ $x = -2$ نعتبر

و منه
$$(\forall x \in \mathbb{R}^*)$$
: $x + \frac{1}{x} \ge 2$ و منه

<u>2- الفصل المنطقي</u>

<u>تعریف</u>

. فصل العبارتين p و p هو العبارة التي تكون صحيحة إذا كانت على الأقل إحدى العبارتين p و p صحيحتين p و تكتب $p \lor q$ أ و $p \lor q$ نكتبها أيضا $p \lor q$

 $p \lor q$ جدول حقیقة

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

العبارة
$$\frac{3}{2} \in \mathbb{N}$$
 أو $5 > 2$ صحيحة

العبارة 4-2=2 أو $1 \le 3 \le -3$

<u>ملاحظة</u>

العبارتان ($\,p$ أ و $\,q$) و ($\,p$ أ و $\,p$) تحملان نفس المعنى نقول عملية الفصل تبادلية $\,*$

» العبارتان r أو p أ و q أ و q أ و q أ و q تحملان نفس المعنى، نقول عملية الفصل تجميعية.

<u>3- العطف المنطقى</u>

<u>تعریف</u>

عطف العبارتين p و p هو العبارة التي تكون صحيحة فقط إذا كانت العبارتان p و p صحيحتين معا. و تكتب $p \land q$ نكتبها أيضا $p \land q$

 $p \wedge q$ جدول حقیقة

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

مثال

العبارة
$$3 \in \mathbb{N}$$
 و 5×2 خاطئة

العبارة
$$(\forall x \in \mathbb{R} \ x^2 \ge 0)$$
 و العبارة

<u>ملاحظة</u>

العبارتان (p و q) و p اتحملان نفس المعنى نقول عملية العطف تبادلية st

* العبارتان r و q و q و q و q و q و q و q و q و q العبارتان q و العطف تجميعية.

بين ذلك
$$\overline{p \vee q} = \overline{p} \wedge \overline{q}$$
 $\overline{p \wedge q} = \overline{p} \vee \overline{q} *$

4- الاستلزام

<u>تعریف</u>

استلزام العبارتين p و q هو العبارة التي تكون خاطئة فقط إذا كانت p صحيحة و q خاطئة. و تكتب $p \Rightarrow q$ تقرأ p تستلزم p

 $p \Rightarrow q$ جدول حقيقة

p	q	$p \Rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

أمثلة

العبارة
$$\forall x \in \mathbb{R}$$
 $x^2 \ge 0$ $\Rightarrow 4+1=5$ صحيحة العبارة $2 + 1 \Rightarrow -1 = 2+3$ خاطئة العبارة $2 + 2 \Rightarrow 5 - 1 = 2+3$ صحيحة العبارة $2 + 2 \Rightarrow 5 - 1 = 2+3$

العبارة
$$\forall \in \mathbb{R} \quad |x| \ge 0$$
 صحيحة العبارة 1=1-2

. p منطقي للعبارة q صحيحة ، نقول إن q استنتاج منطقي للعبارة $p \Rightarrow q$

ملاحظة

العبارتان $p \Rightarrow q$ و $(\overline{p} \lor q)$ تحملان نفس المعنى *

 $p\Rightarrow q$ يسمى الاستلزام العكسي للاستلزام $q\Rightarrow p$ *

* للبرهنة على أن $p\Rightarrow q$ صحيحة ، يكفي أن نفترض أن p صحيحة و نبين أن q صحيحة. نقول إن p شرط كاف لتحقيق p

<u>تمرين تطبيقي</u>

 $x \in \mathbb{R}$ ليكن

$$-2 \le x \le \frac{1}{3} \Rightarrow \frac{-3x+5}{x+4} \le \frac{11}{2}$$
 بين أن

$$\left(\frac{-3x+5}{x+4} \le \frac{11}{2}\right)$$
 (idition of $\frac{-2}{x+4} \le \frac{1}{3}$

<u>5- التكافؤ المنطقي</u>

<u>تعریف</u>

لیکن p و p عبارتین

العبارة ($p\Rightarrow p$ و p و p تسمى تكافؤ العبارتين p و p وتكون صحيحة إذا كانت p و p لهما نفس قيم الحقيقة و نرمز لها بـ $p\Leftrightarrow q$ و تقرأ p تكافئ p أو p إذا وفقط إذا p أو p شـرط لازم و كاف لتحقيق p

 $p \Leftrightarrow q$ جدول حقيقة

p	q	$p \Leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

أمثلة العبارة (5 عدد فردي
$$\Leftrightarrow$$
 2 \prec 3) صحيحة

العبارة (1- عدد موجب
$$\Leftrightarrow$$
 5 + 2 = 3 صحيحة

العبارة
$$(2 > 1 \Leftrightarrow -1 \in \mathbb{N})$$
 خاطئة

ملاحظة

نقول إن التكافؤ عملية تبادلية
$$(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)^*$$

نقول إن التكافؤ عملية تجميعية
$$(p \Leftrightarrow (q \Leftrightarrow r)) \Leftrightarrow ((p \Leftrightarrow q) \Leftrightarrow r) *$$

نمرين

باستعمال جداول الحقيقة بين أن

$$(\overline{p} \Rightarrow q) \Leftrightarrow (p \lor q)$$
 g $(p \Rightarrow q) \Leftrightarrow (\overline{p} \lor q)$

صحيحة
$$p \Rightarrow q \Leftrightarrow (p \land q)$$

III- القوانين المنطقية

كل عبارة مكونة من عبارتين أو عدة عبارات r;q;p...مرتبطةبينها بالعمليات المنطقية و تكون صحيحة مهما كانت العبارات r;q;p...تسمى قانونا منطقيا

<u>1- انشطة</u>

بين أن العبارات التالية قوانين منطقية

$$(p \land (p \Rightarrow q)) \Rightarrow q \cdot p \Leftrightarrow \overline{p} \cdot p \vee \overline{p}$$

$$\lceil (p \Rightarrow q) \land (q \Rightarrow r) \rceil \Rightarrow (p \Rightarrow r)$$

ملاحظة و اصطلاح

. لدينا $p \wedge (p \Rightarrow q)$ قانون منطقي و يسمى القاعدة العامة للاستدلال الاستنتاجي *

q للبرهان على صحة العبارة

نبين أن الاستلزام $p\Rightarrow q$ صحيحا حيث p عبارة ما صحيحة، ثم نستنتج أن p صحيحة.

لدينا $(p\Rightarrow q) \land (q\Rightarrow r)$ قانون منطقي نقول إن الاستلزام عملية متعدية. *

2- بعض القوانين المنطقية

*أ- قوانين موركان LOIS DE MORGAN

$$\overline{(p \land q)} \Leftrightarrow \overline{p} \lor \overline{q} \qquad \overline{(p \lor q)} \Leftrightarrow \overline{p} \land \overline{q}$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

حل في \mathbb{R}^2 النظمة

$$\begin{cases} 2x - y = 2 \\ x^2 - y^2 = 0 \end{cases}$$

$$(x;y) \in S \Leftrightarrow 2x - y = 2 \land (x - y = 0 \lor x + y = 0)$$

$$\Leftrightarrow \begin{cases} (2x - y = 2 \land x - y = 0) \\ \lor (2x - y = 2 \land x + y = 0) \end{cases}$$

$$\Leftrightarrow (x = 2 \land y = 2) \lor \left(x = \frac{2}{3} \land y = -\frac{2}{3}\right)$$

$$S = \left\{ (2;2); \left(\frac{2}{3}; -\frac{2}{3}\right) \right\}$$
 lè

$$\forall x \in \mathbb{R}: \ x+1 \ge 0 \ \lor \ x^2-1 \prec 0$$
 اعط نفي العبارات

$$\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad (x;y) \in [0;1] \Rightarrow 0 \le \frac{x+y}{1+xy} \le 1$$

*<u>ب- قانون التكافؤات المتتالية</u>

. منطقي قانون منطقي
$$\left[\left(A\Leftrightarrow B\right)\land\left(B\Leftrightarrow C\right)\right]$$

نتبحة (الاستدلال بالتكافؤات المتتالية)

نستنتج من هذا القانون أنه اذا كان $(A \Leftrightarrow B)$ و $(A \Leftrightarrow C)$ فان

$$(x;y) \in \mathbb{R}^2$$
 ليكن

$$\sqrt{x-1} + 2\sqrt{y-4} = \frac{x+y}{2} \Leftrightarrow (x;y) = (2;8)$$
 بين أن

* د- قانون الاستلزام المضاد للعكس

العبارة
$$(A\Rightarrow B)\Leftrightarrow (\overline{B}\Rightarrow \overline{A})$$
 قانون منطقي

ملاحظة

 $A \Rightarrow B$ في بعض الأحيان يصعب البرهان على صحة

 $A\Rightarrow B$ فنلجأ الى البرهان على صحة $\overline{B}\Rightarrow\overline{A}$ ثم نستنتج صحة

هذا البرهان يسمى الاستدلال بالاستلزام المضاد للعكس

 $x \in \mathbb{R}$ تمرین لیکن

$$x \neq -8 \Rightarrow \frac{x+2}{x+5} \neq 2$$
 بین أن

قانون منطقي
$$(A \Leftrightarrow B) \Leftrightarrow (\overline{A} \Leftrightarrow \overline{B})$$

*ج- قانون الخلف

قانون منطقي $((\overline{B} \Rightarrow \overline{C}) \land (\overline{B} \Rightarrow C)) \Rightarrow B$

نتيجة (الاستدلال بالخلف)

 \overline{C} نفترض أن \overline{B} صحيحة ، ونبين أن $\overline{B} \Rightarrow \overline{C}$ صحيحة

 $B \Rightarrow C$ محيحة) حيث Cعبارة ما محيحة (أي

و هذا تناقض لأن $\, C \,$ لا يمكن أن تكون صحيحة و خاطئة في نفس الوقت .ثم نستنتج أن $\, B \,$ صحيحة. هذا نوع من الاستدلال يسمى الاستدلال بالخلف.

 $\sqrt{2} \notin \mathbb{Q}$ تمرین برهن أن

* ر- قانون فصل الحالات

قانون منطقي $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow \lceil (A \lor B) \Rightarrow C \rceil$

<u>ملاحظة</u>

، محیحة و $B\Rightarrow C$ محیحة و نانه للبرهنة علی صحة C ، نبین أن Aee B محیحة و Aee BC ثم نستنتج أن C صحيحة.

هذا الاستدلال بسمى الاستدلال بفصل الحالات

عملیا نطبق C عملیا نطبق C عملیا نطبق C عملیا نطبق C عملیا نطبق عملیا نطبق C عملیا نطبق عملیا نطبق C

 $|x|^2 - |x| + 1 = 0$ المعادلة \mathbb{R} حل في

VI<u>- مبدأ الترجـــع</u>

لتكن p(n) خاصية لمتغير p(n)

. اذا كان يوجد عدد صحيح طبيعي n_0 بحيث تكون العبارة $p\left(n_0\right)$ صحيحة

و اذا كانت العبارة $p(n) : p(n) : p(n) : \forall n \geq n_0 \quad p(n) \Rightarrow p(n+1)$ صحيحة.

للبرهان على أن p(n):p(n) صحيحة، نتبع الخطوات التالية

• <u>التحقق</u>:

نتحقق أن العبارة $p(n_0)$ صحيحة

افتراض الترجع:

نفترض أن العبارة p(n+1) صحيحة $n \ge n_0$ صحيحة p(n+1) صحيحة.

هذا الاستدالال يسمى الاستدلال بالترجع

 $\forall n \geq 4$ $2^n \geq n^2$ تمرین بین بالترجع

$$\forall n \in \mathbb{N}^*$$
 $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$