# Mathematical models of complexity

Ovidiu Radulescu, IRMAR and Symbiose project IRISA

# **Summary**

CV

Brief state of the art: complex systems, systems biology

Contributions in biology:

- ✓ Markov processes in molecular biology
- ✓ Qualitative equations for functional genomics
- ✓ PDE models for pattern formation

Conclusion

#### CV

#### **Education:**

1989 Diplôme d'Ingénieur Physique des Solides, Bucarest 1994 Doctorat Physique des Solides, Orsay (félicitations) 1996 DEA probabilités, Marne-la-Vallée

Recherche: interdisciplinarité, transversalité

2 post-docs (Pays Bas et Angleterre)

27 articles acceptés, 12 proceedings conf.

#### **Enseignement:**

1991-1993, moniteur physique Orsay, vacataire Ecole Centrale de Paris 1993-1996 ATER et PRAG physique, Marne la Vallée depuis 1999 MC en mathématiques à Rennes 1 encadrement d'une thése (en mathématiques) et d'une dizaine de stages

#### Responsabilités:

membre commission informatique, animation d'un groupe de travail coordinateur d'une ACI

# Quasicrystals (Orsay)

# Complex systems

Incommensurate composites



#### wormike

Cellular physiology (Rennes)



Development (Rennes)







$$\sigma = \Sigma + \mu \dot{\gamma}$$







# What complex systems have in common

- Order as framework for transformation: crystals, dissipative structures, patterns
- Defects as motors for transformation: points, lines, interfaces
- Hierarchical organisation
- Nonlinearity
- Stability, robustness
- Universality

# Systems biology

- Mathematical modeling of physiology
- Transversal field, imports methods from physics, control theory, automata, chemical kinetics
- After rapid evolution, critical stage: obstacle raised by the complexity of higher organisms (models are scarce or weakly predictive)
- There is a need for new methods

   analysis methods for massive data
   model reduction
   more realistic models using physico-chemistry

# Generic complex metazoan transcriptional control modules



INR = initiator

DPE = downstream promoter element

# Gene regulation is the result of many interactions



Gap genes, first 3 hours of Drosophila



Nutritional stress, E. Coli

Network models unify various processes

#### **DNA Chip**



Various kind of data: differences of concentrations, direct test of qualitative interaction

## Strategy

#### Aims:

- Model construction
- Model analysis
- Biological predictions

#### Difficulties:

- Data collection is massive but unguided
- Reverse engineering is difficult
- Models are non-linear and in very high dimension
- Interpretation of computer simulations is difficult

#### My solutions:

- Guide data collection (experiment design)
- Do not start reverse engineering from scratch (model correction)
- Develop new mathematical techniques for model analysis
- Look for network design principles

# My mathematical garden Jump Markov processes

Partial thermodynamic limit Piecewise.deterministic Thermodynamic limit Averaging Ordinary differential equations Discretisation Qualitative equations

Partial differential equations

# My contributions

#### My contributions to this field:

- 1) Modeling stochasticity of molecular biology processes by piecewise deterministic Markov processes
- 2) Qualitative equations for analysis of massive data
- 3) Carr-Pego type model reduction for pattern formation
- 4) Measure concentration as framework for robustness

#### **Collaborations**

Computer scientists: A.Siegel, M.LeBorgne (IRISA Symbiose), M.Samsonova(St.Petersburg)

**Biologists:** N.Theret (INSERM), S.Lagarrigue (INRA), A.Lilienbaum (CNRS), J.Reinitz (Stony Brook)

Mathematicians: S.Vakulenko(St.Petersburg), A.Gorban(Leicester), E.Pécou(Nice)

Research project MathResoGen (2003-2006)

# Modeling stochasticity in molecular biology by Markov processes

# Modeling stochastic effects

Markov jump processes: Renyi, Bartholomay, 50'

$$A_1, \ldots, A_n$$
 are n chemical species

$$X \in \mathbb{Z}^n$$
 is the state

$$\alpha_{i1}A_1 + \dots + \alpha_{in}A_n \stackrel{\rightarrow}{\leftarrow} \beta_{i1}A_1 + \dots + \beta_{in}A_n$$

biochemical reaction

$$\theta_i = \beta_i - \alpha_i \in Z^n, i=1,n_r$$

jump vector

$$\lambda(X) = \sum_{i=1}^{nr} [V_i(X) + V_{-i}(X)]$$
 intensity

$$\mu(X,.) = \sum_{i=1}^{nr} [q_i(X)\delta_{X+\theta_i}(.) + q_{-i}(X)\delta_{X-\theta_i}(.)]$$
 distribution of jumps

$$q_{i}(X)=V_{i}(X)/\sum_{j=1}^{nr}[V_{j}(X)+V_{-j}(X)]$$
 jump probability

# Thermodynamic (deterministic) limit

Suppose that the mass action law is satisfied

$$V_i(X) = \Omega v_i(X), \quad v_i(X) = k_i \prod_{s=1}^n x_s^{\alpha_{is}}$$

$$V_{-i}(X) = \Omega v_{-i}(X), \quad v_{-i}(X) = k_{-i} \prod_{s=1}^n x_s^{\beta_{is}}$$

$$\Omega : \text{reaction volume}$$

Rescale the process  $x_i = X_i/\Omega$ 

For  $\Omega \rightarrow \infty$  the Markov jump processes  $x_i$  converges in probability to the solution of a system of ordinary differential equations (Kurtz, 70)

$$\frac{dx(s)}{ds} = F(x(s)), \quad F(x) = \sum_{i=1}^{nr} v_i(x) \theta_i$$

#### Piecewise deterministic limit

Some species are in small numbers!

$$\Omega \rightarrow \infty$$
,  $\varepsilon \rightarrow 0$ ,  $\Omega \varepsilon \rightarrow 1$  concentration of rare species

use frequent/rare species decomposition

$$X = (X^f, X^r)$$

mass action law is not applicable and should be replaced by

$$V_i(X) = \tilde{V}_i(\frac{X^f}{\Omega}, \frac{X^r}{\varepsilon\Omega}), \quad \forall i, \theta_i^r \neq 0$$
 reactions acting on rare species  $V_i(X) = \tilde{\Omega} \tilde{V}_i(\frac{X^f}{\Omega}, \frac{X^r}{\varepsilon\Omega}), \quad \forall i, \theta_i^r = 0$  reactions not acting on rare species

#### Piecewise deterministic limit result

For  $\Omega \rightarrow \infty, \varepsilon \rightarrow 0, \Omega \varepsilon \rightarrow 1$  the Markov jump process  $X = (X^f/\Omega, X^r)$  converges to a piecewise deterministic process:

 $X^{r}(s)$  is discrete and jumps with intensity  $\tilde{V}_{i}(x^{f},X^{r})$ 

Between two jumps  $x^f(s)$  is continuous and satisfies:

$$\frac{dx^f(s)}{ds} = F^f(x^f(s), X^r(s)) = \sum_{\theta_i^r = 0} \tilde{v}_i \theta_i$$

# Application: hybrid stochastic simulation algorithm

- 1. Initialize  $x^f = x_0^f$ ,  $X^r = X_0^r$ , t = 0
- 2. Generate exponential random time  $\tau \sim \exp[\lambda(x^f, X^r)]$
- 3. Use deterministic solver to propagate  $x^f(t) \rightarrow x^f(t+\tau)$
- 4. Change  $X^r$  to a new discrete value
- 5. Increment time  $t \rightarrow t + \tau$
- 6. If t<tmax goto 2

# Application to happloinsufficiency



#### Biological problem:

Syndrom due to deficient genotype : insufficient copy number Phenotype: heterogenous cell populations

#### Aim:

Find the simplest model that reproduces this situation

# Model for haploinsufficiency

Markov jump model (Cook 99)

$$G \overset{k1}{\underset{k-1}{\rightleftharpoons}} G^*$$

$$G^{*} \overset{k2}{\rightarrow} G^* + P$$

$$G \overset{k3}{\rightarrow} G^* + P$$

$$G + G^* = 1$$

$$\varepsilon=1/\Omega$$



 $dP/dt = k_2 - k_3 P$  $dP/dt = -k_3P$ piecewise deterministic approximation

 $\underline{dP} = \begin{cases} -k_3P + k_2, & \text{if } G^* = 1 \\ -k_3P, & \text{if } G^* = 0 \end{cases}$ 

Study intermittency of trajectories and the invariant distribution

**Result:** If  $k_{\gamma}=O(\Omega)$  the model allows a

O.Radulescu, A.Muller, A.Crudu (TSI in press)



20

#### Conclusion

#### Results:

- The protein production is intermittent
- The heterogeneity of the phenotype can be described by a Beta distribution

The same method will be applied to larger, more complex models; in project NFκB signaling

# Qualitative equations

## Qualitative equations

#### Biological problem:

Following a perturbation (stress, signal) the state of the cell changes. Variations of hundreds or thousands of variables can be monitored. How to use this information?

#### Steps:

- develop an "elasticity" theory of graphs (O.Radulescu et al. J.R.Soc.Interface 2006)
- translate this theory into qualitative equations (with A.Siegel et al. Biosystems 2006)
- polynomial algorithms for solving systems of qualitative equations (with Ph.Veber, M.leBorgne et al. Complexus 2006)
- application to huge networks (with C. Vargas et al., proc. RIAMS 2006)

## Elasticity of graphs

$$\frac{dX}{dt} = F(X,P)$$
 dynamics

F(X,P)=0 Steady state equation

Steady state is perturbed  $\delta P \rightarrow \delta X$ 



Dirichlet solution: 
$$\delta X_i = \sum_{j \in \partial G} \sum_{j \to i} \frac{a_{j \to i}}{C_{j \to i}} \delta X_j$$
Soc.Interface 2006)

#### Qualitative equations

$$\delta X_{i} = -\left(\frac{\partial F_{i}}{\partial X_{i}}\right) - 1 \sum_{j \in pred(i)} a_{ji} \delta X_{j}$$
 Dirichlet solution for subgraph

$$sign(\delta X_i) = \sum_{j \in pred(i)} sign(a_{ji}) sign(\delta X_j)$$
 Qualitative equation

 $sign \in \{-,+,?\}$  Sign algebra





$$++-=?$$
  $+++=+$   
 $+\times-= +\times+=+$   
 $?+-=?$   $?++=?$   
 $?\times-=?$   $?\times+=?$ 

|   | $\approx$ | + | _ | ? |
|---|-----------|---|---|---|
| - | +         | T | F | T |
| • | _         | F | T | T |
| • | ?         | T | T | T |

(with A.Siegel et al.Biosystems 2006, with Ph.Veber, M.LeBorgne Complexus 2006)

## Algorithm for solving qualitative equations

- •Map signs to elements of the finite field Z/3Z
- •Map qualitative equations to polynomial equations over Z/3Z
- •NP complete problem
- •Ternary Decision Trees contracted to directed acyclic graphs and systematic use of cache memory for non-redundant computation
- •Obtain exhaustive lists of solutions within minutes for 1000 nodes



#### Predictions of a model

hard components: variables whose values are the same (+ or -) in any solution

the hard components are the predictions of the model



Li,G,LacZ,LacY, LacI are hard components

# Experiment design



Any value of the triplet (Le,G,A) can be extended to a solution

These variables have no validation power

#### Use validation power for experiment design



Define validation power as:

$$\tau(X_1, \dots X_p) = 1 - \frac{\text{val}(X_1, \dots X_p)}{2^p}$$

Choose high validation power sets for optimal design

#### Large scale application: nutritional stress of E.Coli

1258 nodes, 2526 interactions,  $10^{600}$  states,  $10^{16}$  solutions



#### We have obtained both:

- a set of predictions: from 40 observations in the stationary phase, 401 hard components, 26% of the network
  - a set of corrections to the model: necessarily include  $\sigma$  factors

# Partial differential equations

#### Pattern formation

#### Problem:

- Patterns form in very different complex systems (Drosophila embryo before gastrulation, shear banding of complex fluids).
- The examples are of Wolpert type, less studied in mathematics. Can we find an unified approach?

#### Cornerstones:

- of complex fluids: understand the relation between structure and flow properties
- of developmental biology: understand canalization, stability of development

#### Collaborations:

- P.D.Olmsted (Physics,Leeds), JP.Decruppe(Physics,Metz), JF.Berret, G.Porte (Physics,Montpellier) on wormlike micelles
- S.Vakulenko (Maths,St.Petersburg), J.Reinitz(Appl.Maths and Biology, Stony Brook) on Drosophila

## Problem 1: Drosophila segmentation genes

FlyEx Database: http://flyex.ams.sunysb.edu/FlyEx/



— data image of expression patterns for genes eve, Kr, and hb

1D approximation: Expression patterns for gap genes hb, Kr, kni, gt, tll, and cad



# Model Reaction-diffusion equations

$$\frac{\partial u_a(x,t)}{\partial t} = R_a g_a \left( \sum_{b=1}^{N} T_{ab} u_b(x,t) + T_a m(x) + h_a \right)$$

$$+D_a\nabla^2u_a(x,t)$$

$$-\lambda_a u_a(x,t)$$

$$\frac{du_a(x,t)}{dt} = Raga(\sum_{b=1}^{N} T_{ab}u_b(x,t) + T_am(x) + h_a)$$

## **Genetic Interconnectivity Matrix (T):**

| Gene | a b | 1                      | 2                      | <br>N               |
|------|-----|------------------------|------------------------|---------------------|
|      | 1   | <b>T</b> <sup>11</sup> | <b>T</b> <sup>12</sup> | <br>T <sup>1N</sup> |
|      | 2   | <b>T</b> <sup>21</sup> | T <sup>22</sup>        | <br>T <sup>2N</sup> |
|      | ÷   | :                      | ÷                      | ŧ                   |
|      | N   | T <sup>N1</sup>        | TN2                    | <br>TNN             |

#### T parameters:

positive: activation negative: repression

zero: no interaction

$$\frac{du_a(x,t)}{dt} = Rag_a(\sum_{b=1}^{N} Tabu_b(x,t) + Tam(x) + h_a)$$

## Action of maternal gradient (bicoid)

Bicoid profile m(x) develops in 1h after fertilization and remains constant during the blastoderm

$$\frac{du_a(x,t)}{dt} = Raga(\sum_{b=1}^{N} T_{ab}u_b(x,t) + T_{am}(x) + h_a)$$

## The regulation-expression function g(u):



## Problem 2: Shear banding of wormlike micelles



## Model: Fluid-structure coupling

### **Navier-Stokes**

Johnson-Segalman constitutive model + stress diffusion

$$\rho(\partial_t + \mathbf{v}.\nabla)\mathbf{v} = \nabla \cdot \boldsymbol{\sigma} \qquad (\partial_t + \mathbf{v}.$$

$$\mathbf{Re} = \mathbf{0} \text{ approximation}$$

$$(\partial_t + \mathbf{v} \cdot \nabla) \Sigma - (\Omega \Sigma - \Sigma \Omega) - a(\Delta \Sigma + \Sigma \Delta) = D \nabla^2 \Sigma + 2\mu \Delta / \tau - \Sigma / \tau$$

principal flow equations

$$\nabla . \sigma = 0, \quad \sigma = S + \varepsilon \dot{\gamma} = const.$$

$$\frac{\partial S}{\partial t} = D \frac{\partial^2 S}{\partial y^2} - \frac{S}{\tau} + \dot{\gamma} (1 - W)$$

$$\frac{\partial W}{\partial t} = D \frac{\partial^2 W}{\partial y^2} - \frac{W}{\tau} + \dot{\gamma} (1 - W)$$

$$\frac{\partial W}{\partial t} = D \frac{\partial^{2} V}{\partial y^{2}} - \frac{W}{\tau} + \gamma S$$

Stress dynamics is described by a reaction-diffusion system

### Common framework: R-D PDE with small diffusion

### **Cauchy problem for the PDE system**

$$u_t = \mathcal{E}^2 D \nabla^2 u + f(u, x, \mathcal{E}t)$$

$$u=u(x,t)\in R^n$$
  $x\in \Omega\subset R^q$ ,  $\Omega$  is compact with smooth frontier

$$D=diag\{d1,d2,...,dn\}$$

$$u(x,0)=u_0(x)$$
 initial data

$$\nabla u(x).n(x)=0$$
,  $x \in \partial \Omega$  no flux boundary conditions

idea: consider the following shorted equation

$$v_t = f(v, x, \varepsilon t)$$

## Result 1: Classification of patterning mechanisms

Patterning is diffusion neutral if for vanishing diffusion, the solution of the full system converges uniformly to the solution of the shorted equation

$$|\mathbf{u}^{\mathcal{E}}(\mathbf{x},t)-\mathbf{v}(\mathbf{x},t)| \to 0$$
, uniformly in  $x \in \Omega$ ,  $t>0$ , when  $\varepsilon \to 0$ 

$$\mathbf{u}^{\mathcal{E}}(\mathbf{x},t) \quad \text{solution of the full system}$$

$$\mathbf{v}(\mathbf{x},t) \quad \text{solution of the shorted equation}$$

If not, patterning is diffusion dependent

### Result 2: Classification of interfaces



## Theorem on the diffusion neutral patterning

Consider the time autonomous situation  $u_t = \mathcal{E}^2 D \nabla^2 u + f(u,x)$  and the shorted equation  $v_t = f(v,x)$ 

The patterning is diffusion neutral under the following conditions on the shorted equation:

i) uniform dissipativity

 $\exists R, \text{ s.t. } v.f(v,x) < 0, \text{ for any } v \text{ on a sphere of radius } R$ 

ii) strong linear stability

$$\sum_{j \neq i} |M_{ij}(x)| + M_{ii}(x) \le -b < 0, M(x) \text{ is the jacobian matrix of } f = (.,x)$$
calculated at the attractor

iii) attraction basin condition

 $u_0(x) \in B(\Phi(x)), \Phi(x)$  is a point attractor of the shorted eq.

## Theorem on the movement of type II interfaces in the histable case

the bistable case Invariant manifold decomposition for  $u_t = \mathcal{E}^2 \nabla^2 u + f(u, x, \mathcal{E}t), x \in [0, 1], u \in \mathbb{R}$ 

Travelling wave solution for the space homogeneous eq.

$$u_t = \nabla^2 u + f(u,q,\tau), q,\tau$$
 parameters  
 $u = \psi(x - V(q,\tau)t,q,\tau)$ 

**Equation for the position q(t)** of the interface

$$\frac{dq}{dt} = \varepsilon \left( V(q, \varepsilon t) + O(\varepsilon^{S_1}) \right), s_1 > 0$$

The solution of space inhomogeneous equation is of the moving interface type

$$u = \psi((x-q(t))/\varepsilon, q(t), \varepsilon t) + O(\varepsilon^{S}), s > 0$$

This extends results of Carr-Pego(90) and Fife (89)

The velocity of a Type II interface is proportional to the square root of the diffusion coefficient

# Application1: stress diffusion coefficient from interface kinetics



# Application2: Diffusion dependent patterning of Drosophila

- 1) parameter fit of Reinitz model from time dependent data by simulated annealing
- 2) compute attractors of shorted equation

Result: patterning is diffusion dependent with Gursky, Manu, Vakulenko, unpublished
Improvement of model fit: Rapid method of parameter identification using
interface kinetics

Resulted solution (solid curves) in comparison to data (dashed curves):



## Comment on the impact in biology

Compared to Turing models, the gene circuit model is realistic:

- the pattern is not a periodic modulation of a homogeneous state
- the pattern results from the interaction of development genes, is guided by maternal gradients and has aperiodic transients

Treating the set of segmentation genes as a dynamical system allows to understand:

- The logic of interactions (open problem) and transformations
- The stability of the result (open problem)
- The possible errors in mutants (open problem)

## Conclusion and future projects

Start of a long term project: produce powerful mathematical tools for analysis of complex systems.

### **Strategy:**

### **Model simplification**

- \*The invariant manifold technique of Carr-Pego
- \*piecewise deterministic approach for Markov processes
- \*graph theory methods for chemical kinetics models

An intrinsic relation exists between model reduction, stochasticity and robustness: concentration phenomena!

Physical chemistry for diffusion and transport in physiology.

#### **Collaboration**

Upi Bhalla NCBS Bangalore, planned co-tutored phD.
A.Gorban (Leicester) Egide/Alliance sponsorship
J.Reinitz (Stony Brook) and Samsonova (St.Petersburg)
ASC project with INRA on modeling lipid metabolism
project ANR SITCON with Curie
Symbiose team IRISA