

Two Way ANOVA

Dr. A. Ramesh DEPARTMENT OF MANAGEMENT IIT ROORKEE

Frebried approach alled Learning objectives

2 may ANOVA

- Design and conduct engineering experiments involving several factors using the factorial design approach
- Understand how the ANOVA is used to analyze the data from these experiments
- Know how to use the two-level series of factorial designs

Squapus -> Prod. by Dlowl of freebox Factorial Experiment

- A factorial experiment is an experimental design that allows simultaneous conclusions about two or more factors.
- The term factorial is used because the experimental conditions include all possible combinations of the factors.
- The effect of a factor is defined as the change in response produced by a change in the level of the factor. It is called a main effect because it refers to the primary factors in the study
- For example, for a levels of factor A and b levels of factor B, the experiment will involve collecting data on ab treatment combinations.
- Factorial experiments are the only way to discover interactions between variables.

Factorial Experiment

Factorial Experiment, no interaction

Factorial Experiment, with interaction

Two-factor Factorial Experiments

- The simplest type of factorial experiment involves only two factors, say, A and B.
- There are a levels of factor A and b levels of factor B.
- This two-factor factorial is shown in next table.
- The experiment has n replicates, and each replicate contains all ab treatment combinations.

Data Arran

Two-factor Factorial Experiments

Data Arrangement for a Two-Factor Factorial Design

axb level glampanahan

			Factor 1	3			
		1	2		b	Totals	Averages
	1	$y_{111}, y_{112},$	$y_{121}, y_{122},$		$y_{1b1}, y_{1b2},$		
	1	\dots, y_{11n}	\dots, y_{12n}		\dots, y_{1bn}	y_1	\bar{y}_1
		$y_{211}, y_{212},$	$y_{221}, y_{222},$		$y_{2b1}, y_{2b2},$		
Factor A	2	\dots, y_{21n}	\dots, y_{22n}		\dots, y_{2bn}	<i>y</i> ₂	\bar{y}_2
	:						
		$y_{a11}, y_{a12},$	$y_{a21}, y_{a22},$		$y_{ab1}, y_{ab2},$		
	a	\dots, y_{a1n}	\dots, y_{a2n}		\dots, y_{abn}	y_a	\bar{y}_{a}
Totals		<i>y</i> . ₁ .	<i>y</i> . ₂ .		<i>y._b</i> .	<i>y</i>	
Averages		$\overline{y}_{\cdot 1}$.	$\bar{y}_{\cdot 2}$.		$\overline{y}_{\cdot b}$.		\overline{y}

Two-factor Factorial Experiments

- The observation in the ijth cell for the kth replicate is denoted by yijk
- In performing the experiment, the abn observations would be run in random order.
- Thus, like the single factor experiment, the two-factor factorial is a completely randomized design.

Example

- As an illustration of a two-factor factorial experiment, we will consider a study involving the Common Admission test (CAT), a standardized test used by graduate schools of business to evaluate an applicant's ability to pursue a graduate program in that field.
- Scores on the CAT range from 200 to 800, with higher scores implying higher aptitude.

Three CAT preparation programs.

- In an attempt to improve students' performance on the CAT, a major university is considering offering the following three CAT preparation programs.
- A three-hour review session covering the types of questions generally asked on the CAT.
- 2. A one-day program covering relevant exam material, along with the taking and grading of a sample exam.
- 3. An intensive 10-week course involving the identification of each student's weaknesses and the setting up of individualized programs for improvement.

Factor - 1, 3 treatment

- One factor in this study is the CAT preparation program, which has three treatments:
 - Three-hour review,
 - One-day program, and
 - 10-week course.
- Before selecting the preparation program to adopt, further study will be conducted to determine how the proposed programs affect CAT scores.

Factor 2:3 Treatment

The CAT is usually taken by students from three colleges: the College of Business, the College of Arts and Sciences.

Therefore. a second f

- Therefore, a second factor of interest in the experiment is whether a student's undergraduate college affects the CAT score.
- This second factor, undergraduate college, also has three treatments:
 - Business,
 - Engineering, and
 - Arts and sciences.

Nine Treatment Combinations for The Two-factor CAT Experiment

Factor A:		Factor B: College	
Preparation Program	Business	Engineering	Arts and sciences
Three-hour review	1	2	3
One-day program	4	5	6
10-Week course	7	8	9

Replication

• In experimental design terminology, the sample size of two for each treatment combination indicates that we have two **replications**.

CAT SCORES FOR THE TWO-FACTOR EXPERIMENT,

<i>O</i> . •	V	1 (1.61 2/10
Factor A:		Factor B: College	epo
Preparation Program	Business	Engineering	Arts and sciences
Three-hour review	500	540	480
	580	460	400
One-day program	460	560	420
	540	620	480
10-Week course	560	600	480
	600	580	410

the following questions.

Main effect (factor A): Do the preparation programs differ in terms of effect on CAT scores?

Main effect (factor B): Do the undergraduate colleges differ in terms of effect on CAT scores?

Interaction effect (factors A and B): Do students in some colleges do better on one type of preparation program whereas others do better on a different type of preparation program?

those in cost hour port dend?

Interaction

- The term **interaction** refers to a new effect that we can now study because we used a factorial experiment.
- If the interaction effect has a significant impact on the CAT scores, we can conclude that the effect of the type of preparation program depends on the undergraduate college.

ANOVA Table for the Two-factor Factorial Experiment with r Replications with r Replications

	Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
7	Factor A	SSA	(a -1)	SSA/a-1	MSA / MSE	
7	Factor B	SSB	(b-1)	SSB/b-1	MSB/ MSE	
	Interaction	SSAB	(a-1)(b-1)	MSAB = SSAB/(a-1)(b-1)	MSAB / MSE •	
	Error	SSE	ab(r-1)	MSE= SSE/(ab)(r-1)		
	Total	SST	пт-1			

Abbreviation

a = number of levels of factor A

b = number of levels of factor B

r = number of replications

No dead Position. n_T = total number of observations taken in the experiment $n_T = abr$

ANOVA Procedure

- The ANOVA procedure for the two-factor factorial experiment requires us to partition the sum of squares total (SST) into four groups:
 - sum of squares for factor A (SSA),
 - sum of squares for factor B (SSB),
 - sum of squares for interaction (SSAB), and
 - sum of squares due to error (SSE).
- The formula for this partitioning follows.

$$SST = SSA + SSB + SSAB + SSE$$

Computations and Conclusions

```
x_{iik} = observation corresponding to the kth replicate taken from treatment i
       of factor A and treatment j of factor B
\bar{x}_i. = sample mean for the observations in treatment i (factor A)
    = sample mean for the observations in treatment j (factor B)
\bar{x}_{ii} = sample mean for the observations corresponding to the combination
       of treatment i (factor A) and treatment j (factor B)
 \bar{x} = overall sample mean of all n_T observations
```


CAT Summary Data for The Two-factor Experiment

Factor A:		Factor B: College		Row totals
Preparation Program	Business	Engineering	Arts and sciences	(Sun)
Three-hour review	500 $\overline{x_{11}}$ =540 580	540 $\overline{x_{12}}$ = 500 460	480 $\overline{x_{13}}$ = 440 400	2960
One-day program	460 $\overline{x_{21}}$ = 500 540	560 $\overline{x_{22}}$ = 590 620	420 $\overline{x_{23}}$ = 450 480	3080
10-Week course	560 $\overline{x_{31}}$ = 580 600	600 $\overline{x_{32}}$ = 590 580	480 $\overline{x_{33}}$ = 445 410	3230
Column totals	3240	3360	2670	Overall $=$ $x = 515$ $= 5270$

CAT Summary Data for The Two-factor Experiment

• Factor A means
$$\frac{1}{x_{1.}} = 493.33$$
 (all college) $\frac{1}{x_{2.}} = 513.33$ (All College) $\frac{1}{x_{2.}} = 538.33$

Factor B means

$$\frac{\overline{x_{.1}}}{\overline{x_{.2}}} = 540 \qquad \text{(All freq Sings)}$$

$$\frac{\overline{x_{.1}}}{\overline{x_{.2}}} = 560 \qquad \text{(All freq Sings)}$$

$$\frac{\overline{x_{.1}}}{\overline{x_{.3}}} = 445 \qquad \text{(All freq Sings)}$$

Step 1. Compute the total sum of squares.

SST =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (x_{ijk} - \bar{x})^2$$

Step 1. SST =
$$(500 - 515)^2 + (580 - 515)^2 + (540 - 515)^2 + \cdots + (410 - 515)^2 = 82,450$$

51s = ourall

may man

Step 3. Compute the sum of squares for factor B.

Step 4. Compute the sum of squares for interaction.

$$SSAB = r \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{x}_{ij} - \bar{x}_{i} - \bar{x}_{.j} + \bar{x}$$

Step 4. SSAB =
$$2[(540 - 493.33 - 540 + 515)^2 + (500 - 493.33 - 560 + 515)^2 + \cdots + (445 - 538.33 - 445 + 515)^2] = 11,200$$

Step 5. Compute the sum of squares due to error.

$$SSE = SST - SSA - SSB - SSAB$$

Step 5. SSE =
$$82,450 - 6100 - 45,300 - 11,200 = 19,850$$

ANOVA Table for the CAT two-factor design which is

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
variation	Bquares	Freedom 410	Ź		perpt
Factor A	6100	2	3050	1.38	0.299
			<u> </u>		م را
Factor B	45300	2	22650	10.27	0.005
Interaction	11200	4	2800	1.27	0.350
Error	19850	9 178	2206		1
Total	82450	17			

Jupyter Code

```
In [15]: df2 = pd.read_excel('2way.xlsx')
In [16]: df2
```


Jupyter code

Out[16]:

16]:				
		Value	prep_pro	college
	0	500	three_hr	Business
	1	580	three_hr	Business
	2	540	three_h	Engineering
	3	460	three_hr	Engineering
	4	480	three_hi	Artsandscience
	5	400	three_hr	Artsandscience
	6	460	One-day	Business
	7	540	One-day	Business
	8	560	One-day	Engineering
	9	620	One-day	Engineering
	10	420	One-day	Artsandscience
	11	480	One-day	Artsandscience
	12	560	10-Week	Business
	13	600	10-Week	Business
	14	600	10-Week	Engineering
	15	580	10-Week	Engineering
	16	480	10-Week	Artsandscience
	17	410	10-Week	Artsandscience

Jupyter Code

```
In [20]:
        formula = 'Value ~C(college)+C(prep_pro)+C(college):C(prep_pro)'
         model = ols(formula, df2).fit()
         aov table = anova lm(model, typ=2)
         print(aov_table)
                                         df
                                                          PR(>F)
                                 sum sq
         C(college)
                                45300.0
                                         2.0
                                              10.269521 0.004757
         C(prep_pro)
                                6100.0 2.0
                                              1.382872 0.299436
         C(college):C(prep_pro)
                                11200.0 4.0
                                              1.269521 0.350328
         Residual
                                19850.0 9.0
                                                             NaN
                                                   NaN
```


Thank You

