

# Algorithms and Data Structures

### Lecture 4 Asymptotic notations

### Jiamou Liu The University of Auckland



# Comparing Algorithms by Running Time

### What we have learned from the previous lectures:

- The running time of the algorithm over an input is the number of elementary operations execute by the algorithm.
- The growth rate of the running time refers to how fast the running time grows with the input size.
- We only care about the situation when the input is very big.
- We can "speed-up" an algorithm by running it on a faster computer by a constant factor.

**Question.** Say we have two algorithms *A*, *B* that solve the same problem:

- A has running time  $6n^2 + 100n + 300$
- B has running time 100n + 300

What can we say about their running time?



How do we compare real-valued functions? We need a framework that "unifies" them.

## **Step 1.** Compare the curves: $f_1(n) = 6n^2 + 100n + 300$ and $f_2(n) = 6n^2$ :



**Step 1.** Compare the curves:  $f_1(n) = 6n^2 + 100n + 300$  and  $f_2(n) = 6n^2$ :



**Step 1.** Compare the curves:  $f_1(n) = 6n^2 + 100n + 300$  and  $f_2(n) = 6n^2$ :



- The  $6n^2$  term becomes larger than the remaining terms 100n + 300 when n is sufficiently large.
- As n grows, 100n + 300 becomes insignificant compared to  $6n^2$ , and  $6n^2$  increasingly resembles  $6n^2 + 100n + 300$ .
- We can thus say that  $6n^2$  dominates 100n + 300.

**Rule 1.** When expressing the growth of running time of an algorithm, keep only the dominant term.

# **Step 2.** Compare the curves: $f_2(n) = 6n^2$ , $f_3(n) = 100n + 300$ , and $f_4(n) = n^2$



**Step 2.** Compare the curves:  $f_2(n) = 6n^2$ ,  $f_3(n) = 100n + 300$ , and  $f_4(n) = n^2$ 



- The dominance of  $6n^2$  over 100n + 300 is not caused by the leading coefficient 6.
- The function  $n^2$  also dominates 100n + 300.

**Rule 2.** When expressing the growth of running time of an algorithm, drop the constant coefficient.

### Dominance Relation

To express the growth rate of running time of algorithm, we essentially "categorise" them into "classes".

### Example.

- $\log n$ ,  $3 \log_5 n$ ,  $\log_3 n^2$ ,  $10 \lg n + 100$  can all be seen as " $\log n$ ".
- n, 10n, n + 3, 100n + 20000 can all be seen as "n".
- $n^2$ ,  $0.5n^2$ ,  $n^2 + 100n + 3$  can all be seen as " $n^2$ ".
- $n^3$ ,  $0.1n^3 + 5n^2 + 100n + 20000$  can be seen as " $n^3$ ".

The dominance relation on these classes form a chain:

$$1 < \log n < (\log n)^2 < n < n \log n < n^2 < n^2 \log n < n^3 < \dots < 2^n < n!$$

where f < g denotes that f is dominated by g.

# Asymptotic Notation

Asymptotic notations such as big-O, big-Omega, and big-Theta are used to compare the limiting behaviours of functions:



Suppose f and g are functions from  $\mathbb N$  to  $\mathbb R$ , which take on non-negative values.

### **Definition** [O]

- We say that f(n) is O(g(n)) if there is some c > 0 and some  $n_0 \in \mathbb{N}$  such that for all  $n > n_0$  we have  $f(n) \le cg(n)$ .
- In this case, we also say g(n) is an asymptotic upper bound for f(n). Loosely, f(n) is O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$

### Examples.

- 5n 2 is O(n). Why? f(n) = 5n - 2, and g(n) = n. Take c = 5 and  $n_0 = 1$ , then for any  $n > n_0$ ,  $5n - 2 \le cn$ .
- 5n 2 is also  $O(n^2)$ .
- $4n^2$  is NOT O(n).

### **Definition** $[\Omega]$

- We say that f(n) is  $\Omega(g(n))$  if there are c > 0 and  $n_0 \in \mathbb{N}$  such that for all  $n > n_0$  we have  $f(n) \ge cg(n)$ .
- In this case, we also say that g(n) is an asymptotic lower bound for f(n). Loosely, f(n) is  $\Omega(g(n))$  iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$$

**Note.** f is  $\Omega(g)$  if and only if g is O(f).

### Examples.

- 2n + 2 is  $\Omega(10n + 20)$ . **Why?** f(n) = 2n + 2, and g(n) = 10n + 20. Take c = 6 and  $n_0 = 4$ . Then for any  $n > n_0$ ,  $6f(n) = 12n + 12 \ge 10n + 20 = g(n)$ .
- $3n^2$  is  $\Omega(n)$ .

### **Definition** $[\Theta]$

- We say that f(n) is  $\Theta(g(n))$  if f(n) is O(g(n)) and g(n) is O(f(n)).
- In this case, we also say that f(n) grows at the same rate as g(n). Loosely, f(n) is  $\Omega(g(n))$  iff

$$\lim_{n\to\infty} \frac{g(n)}{f(n)}$$
 is a positive real number

### Examples.

- 5n 2 is  $\Theta(16n + 33)$ .
- $\log_{10} n$  is  $\Theta(\log n)$ .
- $2n^2 + 3n$  is  $\Theta(n^2)$ .

#### Note.

- $\Theta$ -notation captures our categorisation of growth functions above. If f is  $\Theta(g)$  then they belong to the same class.
- We sometimes write " $f \in O(g)$ ", " $f \in \Omega(g)$ ", " $f \in \Theta(g)$ " with the same meaning as "f is O(g)", "f is  $\Omega(g)$ ", "f is  $\Theta(g)$ ", respectively.

**Example.** Every linear function f(n) = an + b, a > 0, is O(n).

**Proof.** Take a linear function f(n) = an + b where a > 0. For any  $n \ge 1$ , we have

$$an + b \le an + |b| \le (a + |b|)n$$

So if we set c = a + |b| and  $n_0 = 1$ , the condition in the definition holds. Thus an + b is O(n).

Alternative proof.

$$\lim_{n \to \infty} \frac{an + b}{n} = a$$

Thus by definition f(n) is O(n).

**Example.** If f(n) = n,  $g(n) = n^2/2$ , then f is O(g) and g is not O(f).

#### Proof.

- Note that  $f(n) \le 2g(n)$  for any  $n \ge 0$ . Thus f(n) is O(g(n)).
- Conversely, we prove that g(n) is not O(f(n)) by contradiction. Suppose, for a contradiction, that eventually  $n^2 \le Cn$  for some constant C.

Then  $n \le C$  for all sufficiently large n.

This is a contradiction. Thus g(n) is not O(f(n)).

### Alternative proof.

$$\lim_{n\to\infty}\frac{n}{n^2/2}=0$$

So *n* is  $O(n^2/2)$  but is not  $\Omega(n^2/2)$ .

П

**Example.** Show that  $n \lg n$  is  $O(2^{-10}n^2)$ .

**Proof.** Set  $c = 2^{-10}$  and  $n_0 = 2$ .

Then for any  $n > n_0$ , we have

$$2^{-10}n\lg n \le 2^{-10}n^2.$$

Thus  $n \lg n$  is  $O(2^{-10}n^2)$ .

Alternative proof.

$$\lim_{n \to \infty} \frac{n \lg n}{2^{-10} n^2} = \lim_{n \to \infty} \frac{\lg n}{2^{-10} n} = 0 \qquad \text{(apply L'Hopital Rule)}$$

Thus by definition  $n \lg n$  is  $O(2^{-10}n^2)$ .

- Reflexivity:
  - f(n) is O(f(n)),  $\Omega(f(n))$  and  $\Theta(f(n))$
- Symmetry:

$$f(n)$$
 is  $\Theta(g(n)) \Leftrightarrow g(n)$  is  $\Theta(f(n))$ 

- Transitivity:
  - f(n) is O(g(n)) and g(n) is  $O(h(n)) \Rightarrow f(n)$  is O(h(n)). f(n) is  $\Omega(g(n))$  and g(n) is  $\Omega(h(n)) \Rightarrow f(n)$  is  $\Omega(h(n))$ . f(n) is  $\Theta(g(n))$  and g(n) is  $\Theta(h(n)) \Rightarrow f(n)$  is  $\Theta(h(n))$ .
- **Sum rule**: If  $f_1$  is  $O(g_1)$  and  $f_2$  is  $O(g_2)$ , then  $f_1 + f_2$  is  $O(\max\{g_1, g_2\})$ .
- **Product rule**: If  $f_1$  is  $O(g_1)$  and  $f_2$  is  $O(g_2)$  then  $f_1f_2$  is  $O(g_1g_2)$ .

•  $\log_a(n)$  is  $\Theta(\lg n)$  for each a > 1. Why?  $\log_a(n) = \lg n / \lg a$ .

- $\log_a(n)$  is  $\Theta(\lg n)$  for each a > 1. Why?  $\log_a(n) = \lg n / \lg a$ .
- $n \lg n$  is  $O(n^2)$  and  $n \lg n$  is not  $\Omega(n^2)$ . Why?

$$\lim_{n\to\infty} \frac{n \lg n}{n^2} = 0$$

- $\log_a(n)$  is  $\Theta(\lg n)$  for each a > 1. Why?  $\log_a(n) = \lg n / \lg a$ .
- $n \lg n$  is  $O(n^2)$  and  $n \lg n$  is not  $\Omega(n^2)$ . Why?

$$\lim_{n\to\infty} \frac{n\lg n}{n^2} = 0$$

•  $2^n$  is  $\Omega(n^{100})$ . **Why?** 

$$\lim_{n\to\infty}\frac{2^n}{n^{100}}=\infty$$

- $\log_a(n)$  is  $\Theta(\lg n)$  for each a > 1. Why?  $\log_a(n) = \lg n / \lg a$ .
- $n \lg n$  is  $O(n^2)$  and  $n \lg n$  is not  $\Omega(n^2)$ . Why?

$$\lim_{n\to\infty} \frac{n \lg n}{n^2} = 0$$

•  $2^n$  is  $\Omega(n^{100})$ . **Why?** 

$$\lim_{n\to\infty}\frac{2^n}{n^{100}}=\infty$$

•  $10^{-100}n^2 + 10^{100}n$  is  $\Omega(n)$  but NOT O(n). Why?

$$\lim_{n \to \infty} \frac{10^{-100}n^2 + 10^{100}n}{n} = \infty$$

•  $\log_a(n)$  is  $\Theta(\lg n)$  for each a > 1.

**Why?**  $\log_a(n) = \lg n / \lg a$ .

•  $n \lg n$  is  $O(n^2)$  and  $n \lg n$  is not  $\Omega(n^2)$ .

Why?

$$\lim_{n \to \infty} \frac{n \lg n}{n^2} = 0$$

•  $2^n$  is  $\Omega(n^{100})$ .

Why?

$$\lim_{n\to\infty}\frac{2^n}{n^{100}}=\infty$$

•  $10^{-100}n^2 + 10^{100}n$  is  $\Omega(n)$  but NOT O(n).

Why?

$$\lim_{n \to \infty} \frac{10^{-100}n^2 + 10^{100}n}{n} = \infty$$

•  $1 + (-1)^n$  is O(1) but not  $\Omega(1)$ .

Why?

For any  $n \ge 0$ ,  $1 + (-1)^n \le 1$ . So  $1 + (-1)^n$  is O(1).

Conversely,  $1 + (-1)^n = 0$  for any odd  $n \in \mathbb{N}$ . Thus no matter what c is  $c(1 + (-1)^n) = 0 < 1$  for infinitely many n. Thus  $1 + (-1)^n$  is not  $\Omega(1)$ .

### Summary



Here is a list of the main points covered in this lecture

- When comparing the running time of algorithms, the focus is to compare the growth rate of the function of running time with respect to input size.
- When expressing the growth rate of running time, we apply two rules:
  - **Rule 1.** Keep only the dominant term
  - Rule 2. Drop the constant coefficient
- One can categorise the growth rate functions into a number of classes, which form a chain under the dominance relation:

$$1 < \log n < (\log n)^2 < n < n \log n < n^2 < n^2 \log n < n^3 < \dots < 2^n < n!$$

- Asymptotic notations are used to compare the limiting behaviours of functions.
  - f is O(g): g is an asymptotic upper bound for f
  - f is  $\Omega(g)$ : g is an asymptotic lower bound for f
  - f is  $\Theta(g)$ : g and f have the same growth rate.
- Properties of asymptotic notations



## Math Time





# Evaluating a Sum

Suppose  $\varphi \colon \mathbb{N} \to \mathbb{R}$  is a function defined on the natural numbers,

$$\varphi(0), \varphi(1), \varphi(2), \varphi(3), \varphi(4), \dots$$

where each  $\varphi(i) \ge 0$ .

How do we analyse the limiting behaviours of the sum

$$\sum_{i=0}^{n} \varphi(i) = \varphi(0) + \varphi(1) + \varphi(2) + \dots + \varphi(n)?$$

**Example.** Say  $\varphi(n) = \sqrt{n} + 1$ , and we want to evaluate the limiting behaviour of

$$\sum_{i=0}^{n} \varphi(i) = \sqrt{0} + 1 + \sqrt{1} + 1 + \sqrt{2} + 1 + \dots + \sqrt{n} + 1$$

# **Integral Approximation**

**Idea:** Approximate the upper bound and lower bound of  $\sum_{i=0}^{n} \varphi(i)$  using integration.

**Example.** Say  $\varphi(n) = \sqrt{n} + 1$ .



Figure:  $\sum_{i=0}^{4} (\sqrt{i} + 1)$ 

# **Integral Approximation**

**Idea:** Approximate the upper bound and lower bound of  $\sum_{i=0}^{n} \varphi(i)$  using integration.

**Example.** Say  $\varphi(n) = \sqrt{n} + 1$ .



Figure: (Upper bound)  $\sum_{i=0}^{4} (\sqrt{i} + 1) \le \int_{0}^{5} \sqrt{x} + 1 dx$ 

# **Integral Approximation**

**Idea:** Approximate the upper bound and lower bound of  $\sum_{i=0}^{n} \varphi(i)$  using integration.

**Example.** Say  $\varphi(n) = \sqrt{n} + 1$ .



Figure: (Lower bound)  $\sum_{i=0}^{4} (\sqrt{i} + 1) \ge \int_{0}^{4} \sqrt{x} + 1 dx$ 

**Example.** Say  $\varphi(n) = \sqrt{n} + 1$ .

$$\int_0^n \sqrt{x} + 1 dx \le \sum_{i=0}^n (\sqrt{i} + 1) \le \int_0^{n+1} \sqrt{x} + 1 dx$$

We know that

$$\int \sqrt{x} + 1dx = \frac{2}{3}x^{3/2} + x + c$$

and thus

$$\int_0^n \sqrt{x} + 1 dx = \frac{2}{3} n^{3/2} + n \le \sum_{i=0}^n (\sqrt{i} + 1) \le \frac{2}{3} (n+1)^{3/2} + n$$

So 
$$\sum_{i=0}^{n} (\sqrt{i} + 1)$$
 is  $\Theta(n^{3/2})$ .

**Example.** Analyse the limiting behaviour of the sum

$$\sum_{i=1}^{n} 1/i$$

Using integral approximation, we have

$$\int_{1}^{n} 1/x dx \le \sum_{i=1}^{n} 1/i \le \int_{0}^{n+1} 1/x dx$$

Since  $\int 1/x dx = \ln x + c$ , we have

$$\ln n \le \sum_{i=1}^{n} 1/i \le \ln(n+1)dx$$

Thus  $\sum_{i=1}^{n} 1/i$  is  $\Theta(\log n)$ .

**Note.** The sum  $1/1 + 1/2 + 1/3 + \cdots + 1/n$  is called the *n*th harmonic number and is denoted by  $H_n$ . Our analysis shows  $H_n$  is  $\Theta(\log n)$ .

### **Example.** Analyse the limiting behaviour of the function $\ln n!$ .

- It is easy to see that  $\ln n! \le n \ln n$ , so  $\ln n!$  is  $O(n \ln n)$ .
- Apply integral approximation, we get

$$\int_{1}^{n} \ln x dx \le \ln n!$$

• We note  $\int \ln x dx = x \ln x - x + c$ . Thus

$$\int_{1}^{n} \ln x dx = n \ln n - n + 1$$

This means that

$$\ln n! \ge n \ln n - n + 1$$

We now need to show that  $n \ln n - n + 1$  is  $\Omega(n \ln n)$ .

### Continue from the example above.

- Now let  $h(x) = x \ln x/(x \ln x x)$ . We know that after x = 3 the function h is strictly decreasing.
- Let  $c = h(3) = 3 \ln 3/(3 \ln 3 3)$  and  $n_0 = 3$ .
- For any  $n > n_0$ ,  $c \ge h(n) = n \ln n / (n \ln n n)$ .
- Then  $c(n \ln n n) \ge n \ln n$ .
- Thus  $c(n \ln n n + 1) \ge n \ln n$ .

This means that  $\ln n!$  is  $\Omega(n \ln n)$ . In conclusion we have

$$\ln n!$$
 is  $\Theta(n \ln n)$ .

