

P2P lending: Employing explainable Al to optimize the return target function of a loan portfolio

Building Competence. Crossing Borders.

Dr. Thomas Gramespacher, Dr. Jan-Alexander Posth
ZHAW - Institute of Wealth & Asset Management

Contents

- i. Defaults are expensive a motivation
- ii. P2P context & data
- iii. AI, ML & profit optimization: Avoiding (potential) defaulters vs. maximizing economic payoff
- iv. XAI: Providing transparency without sacrificing accuracy
- v. Conclusio

i. Defaults are expensive – a motivation

Remember: If you (or somebody else) can put a **price tag** on it, it's most probably a risk. If not, it's something else – e.g. uncertainty, bad luck or chaos.

Credit Risk is **asymmetric**: Credit risk is skewed towards large losses with low probability and small gains with high probability ("fat tail").

Economic payoff = target function:

"few"

"many"

ii. P2P context & data: Overview

Data source:

Fintech-ho2020 project: www.fintech-ho2020.eu

Use case I: smaller_dataset.csv

Total data set:

Total # loans: 4514

Non-defaults: 4016 (88.97%)
Defaults: 498 (11.03%)

Split in-sample (train) **60%** / out-of-sample (test) **40%**: 2708 loans vs. 1806 loans Split preserves ratio of defaults to non-defaults in each sub-set

ii. P2P context & data: The good, the bad, and...

-1.0

ratio005

ratio011

	Non-Defalult	Default	t-Values	p-Values
ratio005	1.243633	0.757088	13.798067	4.900817e-39
ratio011	0.047816	-0.133996	14.139802	1.431940e-38
ratio012	0.008752	-0.694699	13.210514	9.767516e-35
ratio004	1.597079	1.041546	12.834535	2.662133e-34
ratio029	0.084345	-0.118976	13.017858	9.449645e-34
ratio030	0.091696	-0.119036	12.802153	7.326660e-33
ratio003	1.487742	1.086767	11.702571	8.294173e-29
ratio008	26.217702	-2.334116	9.623006	1.271021e-20
ratio027	40.178063	6.955663	9.116989	7.749628e-19
DPO	67.347361	145.180723	-8.947930	6.163742e-18
turnover	3542.273904	1749.405622	8.260879	4.223880e-16
DSO	91.071215	133.317269	-5.269663	1.955716e-07
ratio019	0.211768	0.050361	5.145753	3.699050e-07
DIO	100.609313	142.471888	-2.003893	4.555395e-02
ratio006	7.929163	6.089699	1.423779	1.550459e-01
ratio017	1.380640	1.301807	1.412098	1.584418e-01
ratio018	1.341287	1.287108	0.948039	3.434978e-01
ratio002	1.248618	1.389016	-0.616914	5.375488e-01
ratio001	8.852383	9.148855	-0.243575	8.076496e-01

RATIO011: (Profit (loss) before tax + Interest paid)/Total assets

RATIO012: P/L after tax/Shareholders Funds

RATIO004: Current assets/Current liabilities

RATIO029: EBITDA/Operating revenues

30 20 10

200 150 100

50

-50

RATIO005:

(Current assets - Current assets:

stocks)/Current liabilities

Total number of samples: 4514 Share of Defaulters: 11.03%

Number of Features: 19

100

ratio001

ratio002

iii. Al, ML & profit optimization: The naïve estimator & the economic target function

Naïve estimator: Accept ALL loans!

Total # loans: 4514

Non-defaults: 4016 (88.97%)
Defaults: 498 (11.03%)

Predicted defaults: 0

Accepted # loans: 4514 (100%)

Accuracy: 88.97%

True-positive rate: 0

Confusion matrix:

	0	1
0	4016	0
1	498	0
		1

Economic target function

Recovery rate: 20%

All loans: \$1

Cost of defaults:

498 x \$1 x (1-20%) = \$398.40

Necessary Risk premium:

Cost of defaults = \$398.40

to be paid by non-defaults only:

 $398.40 / (4016 \times 1) = 9.92\%$

Spread: 500 bps

Income from Spread: 4016 x \$1 x 500 bps = \$200.80

iii. Al, ML & profit optimization: Logistic regression – In and out of sample

Threshold

@ 0.5

In sample:

True defaults: 299

Predicted defaults: 115

Accuracy: 91.36%

True-positive rate: 0.30

Confusion matrix:

	0	1
0	2384	25
1	209	90

Out-of sample:

True defaults: 199

Predicted defaults: 53

Accuracy: 89.92%

True-positive rate: 0.18

Confusion matrix:

	0	1
0	1589	18
1	164	35

iii. Al, ML & profit optimization: Logistic regression – Accuracy vs. profit

Now: Vary **threshold** ("thresholding") to find maximum accuracy or profit (**full data set**)

Max. accuracy: Max. profit:

True defaults:	498	498
Optimal threshold:	0.37	0.14
Predicted defaults:	260	819
Accuracy:	90.96%	84.78%
True-positive rate:	0.35	0.63

Confusion matrix:

	0	1
0	3931	85
1	323	175

	0	1
0	3512	504
1	183	315

Max. profit @ $0.14 \approx $375 > profit @ <math>0.37 > 201

iv. XAI: Decision Trees – Explainable at a glance

iv. XAI: Decision Trees - Rebalancing: Accuracy vs. profit

Here: Vary ratio of weight "defaults / non-defaults" to find maximum accuracy or profit

Max. accuracy: Max.

True defaults: 498 498
Optimal ratio: 1 5

Accuracy: 92.45% 83.83%

Accepted loans: 78.73% (3554)

Defaults in full data set: 11.03% Defaults in accepted loans: 3.77%

Non-defaults in rejected loans: 62.08%

Max. profit @ $5 \approx $403 > \text{profit}$ @ $1 \approx 351

Max. profit @ $5 \approx $403 > 375 (logistic regression)

iv. XAI: Decision Trees – Method generalizes nicely, too

Out-of-sample: Apply in-sample profit-optimization to test data set

Stats @ profit maximum	In sample:	Out-of sample:
True defaults: Optimal ratio: Accuracy:	299 8 81.94%	199 8 78.29%
Accepted loans: Defaults in full train data set: Defaults in accepted loans: Non-defaults in rejected loans:	74.00% 11.04% 2.10% 63.49%	75.03% 11.02% 5.17% 71.40%

Why the fuss? – Out-of sample profit @

naïve estimator:	\$ 80.32	
max. accuracy (ratio = 0.5, in sample):	\$128.19	⇒ 59.60% more profit
max. profit (ratio = 8 , in sample):	\$135.73	⇒ 69.00% more profit

v. Conclusio

- Credit risk is asymmetric and defaults are expensive: with P2P loan selection, this skews the cost of errors in prediction
- An economic target function is needed to correctly state the true optimization problem: Maximize profit, and not prediction accuracy
- ML techniques operating under the constraint of profit maximization yield a substantial pick-up in profitability while prediction accuracy may be inferior to even the naïve estimator
- ❖ XAI techniques, like Decision Trees, provide easy and intuitive explainability of the prediction process while being as accurate as their non-explainable peers. They, too, can be subjected to profit maximization constraints

Thank you very much

https://www.linkedin.com/in/thomas-gramespacher-cfa-69145693/

grat@zhaw.ch

www.linkedin.com/in/dr-jan-alexander-posth-5324b152

posh@zhaw.ch