Black-Box Optimization Benchmarking Template for Noisy Function Testbed

An Example BBOB 2009 Workshop Paper

Steffen Finck
Vorarlberg University of Applied Sciences
Hochschulstrasse 1
Dornbirn, Austria
steffen.finck@fhv.at

The BBOBies

ABSTRACT

As an example, we benchmark the Simultaneous Perturbation Stochastic Algorithm (SPS) algorithm on the noisy BBOB 2009 testbed. Each canditate solution is sampled uniformly in $[-5,5]^{\text{DIM}}$, where DIM represents the search space dimension. The maximal number of function evaluation is set to 1000 times DIM.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: OptimizationGlobal Optimization, Unconstrained Optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization, Evolutionary computation

1. INTRODUCTION

The SPSA method [4] is a real-parameter black-box optimization method that approximates the gradient at the current search point with just $2 \times \lambda$ function evaluations, independent of the search space dimension. The parameter λ represents the number of approximations used to determine the gradient. In this paper, a multistart version of the SPSA method is benchmarked on the noisy BBOB 2009 testbed [1, 3] according to the experimental design from [2], cf. to Figure 1.

2. ALGORITHM PRESENTATION

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'09, July 8–12, 2009, Montréal Québec, Canada. Copyright 2009 ACM 978-1-60558-505-5/09/07 ...\$5.00. The 3 parts of the SPSA with restarts are shown in Fig. 1 – Fig. 3. In Fig. 1 the main function is displayed. In Fig. 2 the used multi start procedure is shown. Finally, in Fig. 3 the determination of the initial step sizes a_0 (for the update of the search point) and c_0 (for the test step) is presented. The step size reductions are chosen as recommended by Spall in [5].

3. RESULTS AND DISCUSSION

The results are presented in Tables 1 and 2 and in Figures 4 and 5. The algorithm solves at least one trial of f101 for DIM = (2,3,5), f102 for DIM = (2,3), and DIM = 3 for f103. The reason for the low convergence rate is the use of a relatively small number of maximal function evaluations $1e3 \times \text{DIM}$.

4. CPU TIMING EXPERIMENT

For the timing experiment the same multistart algorithm was run on f_8 and restarted until at least 30 seconds had passed (according to Figure 2 in [2]). These experiments have been conducted with an Intel Pentium 4 CPU processor with 3.0 GHz under Linux 2.6.27-19-3.2-pae using Octave 3.0.2 The results were 1.9; 2.0; 2.0; 1.5; 1.5 and 1.9 \times 10⁻³ seconds per function evaluation in dimension 2; 3; 5; 10; 20 and 40, respectively. Up to 40-D the dependency of CPU time on the search space dimensionality is small.

5. CONCLUSION

The SPSA algorithm, as implemented in Octave 3.0.2, equipped with a multistart procedure, is a common and reliable black-box search algorithm for noisy benchmark functions. In the given settings (low number of maximal function evaluations) the algorithm is not able to solve one benchmark function for all dimensions.

Acknowledgments

The author would like to acknowledge the great and hard work of the BBOB team with particular kudos to Anne Auger, Nikolaus Hansen and Raymond Ros.

6. REFERENCES

 S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.

Δf	# ERT 10% 90% RT	=5014 T _{succ}	f101 in 20-D # ERT 10%		mFE=20014 RT _{succ}	Δf	f102 in # ERT	5-D, N 10%	=15, m	FE=5006 RT _{succ}	f102 i			mFE=20038 RT _{succ}
10		- succ	2 1.2e5 1.1e		1.0e4	10	12 1.3e3		2.2e3	1.3 e3	^π 2.1.3 ε			1.1 e4
1		.2e2	2 1.2e5 1.1e		1.0e4	1	12 2.1e3			1.4e3		0 46e-1		4.5e3
1e-1	13 1.0e3 3.5e2 1.7e3 6	6.2e2	2 1.2e5 1.1e	5 - 1.4e5	1.0e4	1e-1	10 3.3e3	2.2e3	$4.3\mathrm{e}3$	1.4e3				
		.2e3	2 1.2e5 1.1e		1.1e4	1e-3	7 7.1e3			2.0e3				
1e-5		2.1e3	0 11e+1 68e-	6 13e+1	$1.0\mathrm{e}4$	1e-5	2 3.5e4			2.6e3				
1e - 8		3.5 e3				1e - 8	0 33e-4			1.3e3				
Δf	f103 in 5-D, N=15, mFE= # ERT 10% 90% BT	=5003	f103 in 20-D # ERT 10%			Δf	f104 in # ERT		=15, m 90%	FE=5007			N=15, :	mFE=20005
$\frac{\Delta f}{10}$	7 5.8e3 3.7e3 7.9e3 3	T _{succ}	3 8.4e4 7.2e	0070	RT _{succ} 8.5e3	$\frac{\Delta f}{10}$	# ERT 0 35e+1	-0,0		RT _{succ} 3.5e2	# ER		00,0	RT _{succ} 4.5e3
10		1.2e3	2 1.4e5 1.2e		1.3e4	10	0 356+1	40e+0	200+3	3.5e2	0 0007	·3 30E+2	100+4	4.565
1e-1		1.2e3	2 1.4e5 1.2e		1.3 e4	1e-1								
1e - 3	3 2.0e4 1.7e4 2.3e4 5	5.0e3	1 2.9e5 2.7e	5 3.0e5	6.7e3	1e - 3								
1e-5		5.0e3	0 20e + 1 17e -	3 28e + 1	1.1e2	1e-5								
1e - 8		2.8e2				1e-8								
	f105 in 5-D, N=15, mFE=		f105 in 20-D					5-D, N		FE=5002				mFE=20003
Δf		T _{succ}	# ERT 10%		RT _{succ}	$\frac{\Delta f}{10}$	# ERT	10%	90%	RT _{succ}	# ER		90%	RT _{succ}
10 1	0 $84e+1$ $66e+0$ $53e+3$ 1	1.1e3	0 11e+4 10e+	3 77e+4	4.5e3	10		6.6e4 21e+0		5.0e3 1.3e3	U 55e7	1 17e+1	1 43e+4	5.0e3
1e-1			I: : :	:		1e – 1	0 100 / 1	210 / 0	020 12	1.505		:	:	
1e - 3						1e - 3								
1e-5						1e-5								
1e - 8						1e - 8								
	f107 in 5-D, N=15, mFE=	=5029	f107 in 20-D		mFE=20005					FE=5004				mFE=20006
Δf	# ERT 10% 90% RT	T _{succ}	# ERT 10%		RT _{succ}	Δf	# ERT	10%	90%	RT _{succ}	# ER		90%	RT _{succ}
10		6.6e2 1.0e2	0 17e+1 59e+	0 22e+1	4.0e3	10 1	0 39e+0	18e + 0	71e + 0	5.6e1	0 22e+	1 12e+1	! 28e+1	1.0e0
1e – 1	0 200+0 300-1 400+0 4	ez				1 1e – 1		•						
1e-1	1: : : :	:	I: : :			1e-1			:	:	l : :			
1e-5	l		[1e-5					[
1e-8						$1\mathrm{e}-8$								
	f109 in 5-D, N=15, mFE=	=5003	f ₁₀₉ in 20-D		mFE=20005					FE=5007				mFE=20027
Δf	# ERT 10% 90% RT	$\Gamma_{ m succ}$	# ERT 10%	0070	RT_{succ}	Δf	# ERT	10%	90%	RT_{succ}	# ER		90%	RT_{succ}
10	9 3.8e3 2.4e3 5.1e3 3	$1.1\mathrm{e}3$	1 2.8e5 2.6e		2.0e4	10	0 91e+2	72e + 0	82e + 3	2.0e2	0 32e+	4 91e+3	3 56e+4	6.3e1
1 1e – 1		.2e3 .4e3	1 2.8e5 2.7e 0 13e+1 65e+		2.0e4 5.0e3	$\frac{1}{1e-1}$								
1e-1		.3e3	0 136+1 036+	0 196+1	5.0es	1e-1			•					
1e - 5	0 020 1 040 4 500 70 1		I: : :	:	:	1e - 5	1: :	:				:	:	
1e - 8						1e - 8								
	f ₁₁₁ in 5-D, N=15, mFE=	=5004	f ₁₁₁ in 20-D	, N=15, 1	mFE=20003		f112 in	5-D, N	=15, m	FE=5004	f112 i	n 20-D,	N=15,	mFE=20003
Δf	# ERT 10% 90% R	$T_{ m succ}$	# ERT 10%	90%	RT_{succ}	Δf	# ERT	10%	90%	RT_{succ}	# ER		90%	RT_{succ}
10	0 33e+3 48e+2 99e+3 1	1.1e2	0 24e+4 14e+	4 63e+4	1.0e0	10		6.8e4	7.5e4	5.0e3	0 10e+	4 26e+1	! 20e+4	$5.0\mathrm{e}3$
1						1	0 16e+2	83e + 0	23e+3	1.3e3				
1e - 1 1e - 3					•	1e - 1 1e - 3								
1e - 5			I: : :	:		1e - 5	1: :			:		:	:	
1e - 8						1e - 8								
	f113 in 5-D, N=15, mFE=	=5011	f113 in 20-D	, N=15, 1	mFE=20013		f114 in	5-D, N	=15, m	FE=5007	f114 i	n 20-D,	N=15,	mFE=20008
Δf	# ERT 10% 90% RT	$T_{ m succ}$	# ERT 10%		RT_{succ}	Δf	# ERT	10%	90%	RT_{succ}	# ER		90%	RT_{succ}
10		3.8e3	0 18e+2 11e+	2 39e+2	5.6e1	10	0 14e+1	36e + 0	77e + 1	8.9e2	0 16e+	2 79e+1	45e+2	6.3e1
. 1		5.0e3				1								
1e - 1 1e - 3	$0 64e+0 73e-1 37e+1 \qquad 3$	3.2e2			•	1e - 1 1e - 3			•					
1e-5			I: : :			1e - 5	1		Ċ				:	
1e - 8						1e-8								
	f115 in 5-D, N=15, mFE=	=5004	f ₁₁₅ in 20-D		mFE=20003					FE=5007				mFE=20008
Δf	# ERT 10% 90% RT	$T_{ m succ}$	# ERT 10%	90%	RT_{succ}	Δf	# ERT	10%	90%	RT_{succ}	# ER		90%	RT_{succ}
10	6 7.7e3 6.0e3 9.4e3 3	3.5 e3 5.0 e3	4 6.0 e4 5.1 e		1.6e4 5.0e3	10	0 72e+2	96e + 1	52e+3	2.0e2	0 12e+	4 64e+3	38e+4	5.0e3
1e – 1		3.9e2	0 66e+1 50e-	1 146+2	5.0e5	1e – 1			•					
1e-1						1e-1			:	:	l : :			
1e-5						1e-5								
1e-8			[$1\mathrm{e}-8$								
	f117 in 5-D, N=15, mFE=	=5015	f117 in 20-D	, N=15, ı						FE=5003			N=15,	mFE=20003
Δf	# ERT 10% 90% R	Tsucc	# ERT 10%		RTsucc	Δf	# ERT	10%	90%	RTsucc	# ER		90%	RTsucc
10 1	0 10e+3 50e+1 19e+4 2	2.0e2	0 12e+4 74e+	3 26e+4	5.0e3	10 1	0 13e+2	16e + 1	15e+3	1.3e3	U 38e +	3 75e+1	1 12e+4	5.0e3
1e – 1			li i i			1e – 1					l :			
1e-3						1e-3		:	:				:	
1e-5						1e - 5								
1e-8]			$1\mathrm{e}-8$								
	f119 in 5-D, N=15, mFE=		f119 in 20-D		mFE=20008					FE=5010				mFE=20003
Δf	# ERT 10% 90% R	T _{succ}	# ERT 10%		RT _{succ}	Δf	# ERT	10%	90%	RT_{succ}	# ER		90%	RT _{succ}
10 1		l.2e3 5.0e3	0 91e+0 36e+	0 23e+1	6.3e1	10 1	5 1.2e4 0 16e+0		1.4 e4	4.8e3 2.8e1	0 11e+	1 39e+0	25e+1	6.3e1
1e – 1		1.1e3	li i i			1e – 1	J 100+0	4/6-1	376+0	2.001	l :			
1e-3			l. : :			1e-3		:			1		:	
1e-5						$1\mathrm{e}-5$								
1e-8						$1\mathrm{e}-8$					· ·			

Table 1: Shown are, for functions f_{101} - f_{120} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 4); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 4 for the names of functions.

```
\mbox{\ensuremath{\mbox{\%}}} simple spsa function
function x = alg(FUN, x, parameter, maxGenerations, ftarget, DIM, maxfunevals)
    % intialze counters
    k = 1;
    % initialize algorithm parameter
    a0 = parameter(1);
    alpha = parameter(2);
    c0 = parameter(3);
    gamma = parameter(4);
    A = parameter(5);
    lambda = parameter(6);
    while 1
        % gain sequences ak and ck
        ak = a0 * (A + k)^(-alpha);
        ck = c0 * k^(-gamma);
        % gradient approximation with averaging of several approximations
        delta = 2*round(rand(DIM,lambda))-1;
        X = repmat(x,1,lambda);
        yplus = FUN(X + ck.*delta);
        yminus = FUN(X - ck.*delta);
        Gk = mean(repmat((yplus-yminus),DIM,1)./(2*ck.*delta),2);
        % update objectVector
        x = x - ak*Gk;
        % termination criterions
        fit = FUN(x);
        if fit <= ftarget || k > maxGenerations || max(isnan(x)) == 1 || max(isinf(x)) == 1 ...
                || feval(FUN, 'evaluations') >= maxfunevals
            break:
        end
        % increase k
        k = k + 1;
    end % of while loop
end % of function
```

- [2] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [3] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [4] J. C. Spall. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. *IEEE Transactions on Automatic* Control, 37(3):332–341, March 1992.
- [5] J. C. Spall. Introduction to Stochastic Search and Optimization. John Wiley & Sons, Hoboken, NJ, 2003.

```
% intermediate function to accompany restarts
function [x, ilaunch] = spsa(FUN, DIM, ftarget, maxfunevals)
   % make sure to terminate
   kmax = maxfunevals/12;
   % multistart such that ftarget is reached with reasonable prob.
   for ilaunch = 1:12; % relaunch optimizer up to 100 times
        % different restart scenarios
       % use information from previous runs? which information?
       % more deterministic rule for lambda?
        if ilaunch == 1
                                           % initial scenario
          xstart = 8 * rand(DIM, 1) - 4;  % new random start solution
          A = 0.1*kmax;
                                           % A approx 10% of max generations
          gamma = 0.101;
          alpha = 0.602;
          step = 0.1;
          lambda = 1;
                                           % will be steadily increased
           [a0,c0] = DetermineParameter(A,alpha,xstart,step,FUN,DIM);
            choice = round(3*rand) + 1;
            switch choice
                          % new point
               case 1
                    xstart = 8 * rand(DIM, 1) - 4;
                    [a0,c0] = DetermineParameter(A,alpha,xstart,step,FUN,DIM);
                          % increase step
                    step = max([step * 10,1e5]);
                    [a0,c0] = DetermineParameter(A,alpha,xstart,step,FUN,DIM);
                case 3
                          % decrease step
                    step = min([step / 10, 1e-15]);
                    [a0,c0] = DetermineParameter(A,alpha,xstart,step,FUN,DIM);
                         % increase lambda
                   lambda = lambda * 2;
            end % switch case
        end
       % try spsa
       parameter = [a0,alpha,c0,gamma,A,lambda];
       x = alg(FUN,xstart,parameter,kmax,ftarget,DIM,maxfunevals);
        % check for convergence and function budget
        if feval(FUN, 'fbest') < ftarget || feval(FUN, 'evaluations') >= maxfunevals
            break;
        end
    end
end % of function
```

```
\% determine c0 and a0
function [a0,c0] = DetermineParameter(A,alpha,x,step,FUN,DIM)
   X = repmat(x,1,DIM);
   % c0
   dummy = FUN(X);
   c0 = max([std(dummy,1),1e-5]);
   % generation of the simultaneous perturbation vector
   delta = 2*round(rand(DIM,DIM))-1;
   % function evaluation
   yplus = FUN(X + c0.*delta);
   yminus = FUN(X - c0.*delta);
   % gradient approximation
   gApprox = mean(repmat((yplus-yminus),DIM,1)./(2*c0.*delta),2);
   % mean of the magnitude of gradient element
   gMeanElement = abs(mean(gApprox));
   % determine parameter a
   a0 = min([step*(1+A)^alpha/gMeanElement,1e10]);
end % of function
```

f121 in 5-D, N=15, mFE=5007	f121 in 20-D, N=15, mFE=20005	f122 in 5-D, N=15, mFE=5007	f122 in 20-D, N=15, mFE=20005
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 11 2.1e3 1.2e3 3.1e3 1.2e3	0 $55e+0$ $21e+0$ $10e+1$ $5.0e3$	10 8 4.7e3 3.3e3 6.3e3 1.4e3	0 $25e+0$ $15e+0$ $12e+1$ 1.3e3
1 3 2.0e4 1.7e4 2.3e4 3.4e3 1e-1 2 3.3e4 2.8e4 3.8e4 5.0e3		1 0 $76e-1$ $42e-1$ $46e+0$ $6.3e2$	
		1e-1	
1e-3 0 38e-1 37e-3 27e+0 7.1e2 1e-5		1e-3	
1e-5		1e-5	
	1		
Δf # ERT 10% 90% RT _{succ}		Δf # ERT 10% 90% RT _{SUCC}	f124 in 20-D, N=15, mFE=20008 # ERT 10% 90% RT _{SUCC}
i Bucc		, Bacc	Bucc
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 $27e+0$ $14e+0$ $94e+0$ $1.8e2$	10 13 1.4e3 7.2e2 2.0e3 9.6e2 1 2 3.2e4 2.8e4 3.6e4 5.0e3	
1 0 13e+0 12e-1 24e+0 5.0e1 1e-1			
1e-1		1e-1 0 $43e-1$ $80e-2$ $10e+0$ $1.1e3$ $1e-3$	
1e-5		1e-5	
1e-8		1e-8	
	1: 00 D N 15 DD 00007	· · · · · · · · · · · · · · · · · · ·	Later to D. N. 15 DD 00000
f125 in 5-D, N=15, mFE=5007	f125 in 20-D, N=15, mFE=20007	f126 in 5-D, N=15, mFE=5004	f126 in 20-D, N=15, mFE=20008
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 1.0e0 1.0e0 1.0e0 1.0e0	15 1.0e0 1.0e0 1.0e0 1.0e0	10 14 3.6e2 1.1e0 7.2e2 3.6e2	15 1.0e0 1.0e0 1.0e0 1.0e0
1 15 2.1 e2 4.4 e1 3.8 e2 2.1 e2	9 1.5e4 9.9e3 2.1e4 1.1e4	1 7 6.4e3 4.8e3 8.1e3 2.1e3	0 31e-1 17e-1 49e-1 5.0e3
1e-1 4 1.4e4 1.2e4 1.7e4 2.7e3	0 $95e-2$ $46e-2$ $19e-1$ $5.6e3$	1e-1 0 12e-1 32e-2 68e-1 1.3e3	
1e-3 0 18e-2 33e-3 30e-2 8.9e2		1e-3	
1e-5		1e-5	
· · · · ·			
f127 in 5-D, N=15, mFE=5004	f127 in 20-D, N=15, mFE=20003	f128 in 5-D, N=15, mFE=5007	f128 in 20-D, N=15, mFE=20002
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 5.5e0 1.0e0 1.0e1 5.5e0 1 12 1.5e3 7.0e2 2.3e3 1.5e3	15 1.0e0 1.0e0 1.0e0 1.0e0 1 2.8e5 2.6e5 3.0e5 2.0e4	10 0 34e+0 17e+0 64e+0 5.0e1	0 $76e+0$ $69e+0$ $83e+0$ 5.0 e2
		1	
1e-1 0 38e-2 21e-2 19e-1 3.5e2 1e-3	0 19e-1 12e-1 24e-1 1.0e4	1e-1	
1e-5		1e-5	
1e-5		1e-5	
1			
f129 in 5-D, N=15, mFE=5003	f129 in 20-D, N=15, mFE=20005	f130 in 5-D, N=15, mFE=5003	f130 in 20-D, N=15, mFE=20003
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 0 20e+0 13e+0 65e+0 1.3e3	0 $76e+0$ $73e+0$ $85e+0$ 1.0e0	10 6 8.1e3 6.4e3 1.0e4 3.3e3 1 7.0e4 6.5e4 7.5e4 5.0e3	0 $76e+0$ $72e+0$ $81e+0$ $6.3e3$
1			
1e-1	1	1e-1 1 7.0e4 6.6e4 7.5e4 5.0e3 1e-3 0 16e+0 11e-1 36e+0 1.6e3	
1e-5	1	1e-3 0 1be+0 11e-1 3be+0 1.6e3	
1e-5	1	1e-5	
16-6	1	16-6	1

Table 2: Shown are, for functions f_{121} - f_{130} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 4); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 4 for the names of functions.

Figure 4: Expected Running Time (ERT, ullet) to reach $f_{\mathrm{opt}}+\Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f=10,1,10^{-1},10^{-2},10^{-3},10^{-5},10^{-8}$ (the exponent is given in the legend of f_{101} and f_{130}) versus dimension in log-log presentation. The $\mathrm{ERT}(\Delta f)$ equals to $\#\mathrm{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\mathrm{opt}}+\Delta f$ was surpassed during the trial. The $\#\mathrm{FEs}(\Delta f)$ are the total number of function evaluations while $f_{\mathrm{opt}}+\Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and f_{opt} denotes the optimal function value. Crosses (×) indicate the total number of function evaluations $\#\mathrm{FEs}(-\infty)$. Numbers above ERT-symbols indicate the number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

Figure 5: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left subplots) or versus Δf (right subplots). The thick red line represents the best achieved results. Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, $10\,D$, $100\,D$... function evaluations (from right to left cycling black-cyan-magenta). Top row: all results from all functions; second row: moderate noise functions; third row: severe noise functions; fourth row: severe noise and highly-multimodal functions. The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value.