Introduction
Existing Algorithms for General Graphs
Weighted graphs and weighted indices
CEPC Theorem and formula
CEPC algorithm and complexity analysis
Summary

The Wiener Index: From Trees to Graphs with Many Cut-Edges

Anne Christiono

 53^{rd} Southeastern International Conference on Combinatorics, Graph Theory, and Computing

March 8, 2022

Introduction to the Wiener Index

1947: Harry Wiener proposed the Wiener Index of a chemical graph.

- Oldest molecular topological index
 - Other topological indices created based on Wiener Index's success
- Correlated with various chemical properties of a molecule
 - Viscosity, density, boiling point

The Wiener Index

The sum of the distances between all pairs of vertices in a graph.

Introduction to Graphs

Distance: length of the shortest path between two vertices u and v

- denoted as d(u, v)
- if graph is weighted, distance refers to least weighted distance

Wiener Index Formula and Examples

Wiener Index of graph G:

$$W(G) = \sum_{(u,v)} d((u,v)).$$

Molecules	Wiener Indices
^	4
~	10
\rightarrow	9
\bigcirc	27
0	30

Existing Algorithms: Floyd-Warshall

Floyd-Warshall:

- Time complexity- O(N³)
- Weighted and directed graphs
- All pairs shortest path
- Dynamic programming

Existing Algorithms: BFS

Breadth-First Search (BFS):

- Time complexity- O(NE)
- Performs well on sparse graphs
- Unweighted and directed graphs
- Single source shortest path

Breadth first traversal: 4, 2, 6, 1, 3, 5, 7

Weighted Graphs

Edge Weighted Graphs

Each edge has a weight pre-assigned to it.

Wiener Index:

$$W(G) = \sum_{(u,v)} d((u,v)).$$

UnWeighted Graph

Weighted Graph

Weighted Graphs

Vertex Weighted Graphs

Each vertex has a weight pre-assigned to it.

Wiener Index:

$$VWW(G) = \sum_{(u,v)} d((u,v)) \cdot w(u) \cdot w(v).$$

Algorithms for Weighted Graphs

Floyd-Warshall:

- iterates through all possible paths between vertices
- large complexity: $O(N^3)$

Algorithms for Weighted Graphs

BFS: does not work for weighted cases

- relies on taking path with least edges
- longer path may be less expensive

Path A D 1 C Source 500 F 1 Sink

Algorithms for Weighted Graphs

Generalization: trees to graphs with many pseudo-components

- **Cut-edge:** edge such that if removed, the graph becomes disconnected; number of pseudo-components increases.
- Pseudo-component: Maximal induced subgraph of graph G with no cut-edges

Pseudo-Component Examples

Consider pseudo-components as more complex nodes

CEPC (Cut-Edge, Pseudo-Component) Theorem

$$W(G) = \sum_{i=1}^{n} W(C_{i}) + VWW(T) + \sum_{i=1}^{n} \sum_{s=1}^{k} d_{C_{i}}(u_{i}^{s}) \cdot \left(N - n_{u_{i}^{s}}(u_{i}^{s}u_{j}^{s'})\right) + \sum_{i=1}^{n} \sum_{1 \leq s < t \leq k} d_{C_{i}}(u_{i}^{s}u_{i}^{t}) \cdot \left(N - n_{u_{i}^{s}}(u_{i}^{s}u_{j}^{s'})\right) \cdot \left(N - n_{u_{i}^{t}}(u_{i}^{t}u_{\ell}^{t'})\right)$$

Term 1: $\sum_{i=1}^n W(C_i)$

The contribution from paths within the same pseudo-component

Term 1: $\sum_{i=1}^{n} W(C_i)$

The contribution from paths within the same pseudo-component

15/26

Term 2: VWW(T)

The contribution from the cut-edges to paths between pseudo-components

Term 3:
$$\sum_{i=1}^{n} \sum_{s=1}^{k} d_{C_i}(u_i^s) \cdot \left(N - n_{u_i^s}(u_i^s u_j^{s'})\right)$$

Contribution from edges in start/end p.c.'s for paths between p.c.'s

Term 4:
$$\sum_{i=1}^n \sum_{1 \leq s < t \leq k} d_{C_i}(u_i^s u_i^t) \cdot \left(N - n_{u_i^s}(u_i^s u_j^{s'})\right) \cdot \left(N - n_{u_i^t}(u_i^t u_\ell^{t'})\right)$$

Contribution from edges in intermediate p.c.'s for paths between p.c.'s

CEPC Algorithm Code

- Determine the pseudo-components and weighted tree structure of a given graph
 - Done by DFS (Depth-First Search)
 - Store the cut-edges and cut-vertices of a pseudo-component
- Calculate the Wiener Index using the CEPC formula
 - DFS the weighted tree
 - calculate each term of the CEPC formula

Weighted Tree Structure

Tables

CEPC Algorithm works best with more pseudo-components

Table: CEPC Algorithm

Density (/N)	Time (ms)
2	16
2.02	125
2.04	225
2.06	264
2.08	335
2.1	388
2.2	584
2.4	880
2.6	1039
2.8	1462
3	1666
4	1928
5	1918
10	2472
15	3623
20	4153

Table: BFS Algorithm

Density (/N)	Time (ms)
2	1387
2.02	1250
2.04	1264
2.06	1115
2.08	1136
2.1	1151
2.2	1123
2.4	1179
2.6	1184
2.8	1490
3	1604
4	1704
5	1624
10	2085
15	2980
20	3417

Graphs

Summary

- Generalized trees to graphs with many cut-edges
 - Consider pseudo-components as "nodes"
- Applied characteristics and existing algorithms for trees to analyze the Wiener Index of a general graph

Summary

CEPC Algorithm:

- determined pseudo-components and weighted tree structure
- calculated Wiener Index using the characteristics of trees
 - $W(C_i)$ using the BFS algorithm
 - VWW(T) for weighted trees as part of the CEPC Formula

Acknowledgements

My sincerest thanks to the following individuals:

- Hua Wang, PhD., Professor of Mathematics, Georgia Southern University
- Kevin Xiao, Westwood High School, Austin, TX
- Albert Jiang, Jasper High School, Dallas, TX
- My family and friends for their continued support

Existing Algorithms for General Graphs
Weighted graphs and weighted indices
CEPC Theorem and formula
CEPC algorithm and complexity analysis
Summary

Thank you to everyone for listening!