TD 2 APPLICATION DU SECOND PRINCIPE A LA TRANSFORMATION CHIMIQUE

Référence : MP EZZINE Youssef Version du: 03/12/2018 Page 1

Exercice 1: Pression de sublimation et de vapeur saturante

1. Déterminer, à l'aide des données suivantes, la pression de sublimation du diiode à 298,15K.

Données :
$$\mu^*\left(I_2,s\right)=0\ J.mol^{-1}$$
 et $\mu^0\left(I_2,g\right)=19,38\ kJ.mol^{-1}$

2. Déterminer la pression de vapeur saturante de l'eau oxygénée à l'aide des données suivantes, à 298,15 K.

Données :
$$\mu^* \left(H_2 O_2, l \right) = -306,67 \; kJ.mol^{-1}$$
 et $\mu^0 \left(H_2 O_2, g \right) = -298,05 \; kJ.mol^{-1}$

Exercice 2 : Du graphite au diamant

À 298 K, les potentiels chimiques standard du carbone graphite et du carbone diamant sont tels que $\mu^0(D) - \mu^0(G) = 2850 \ J.mol^{-1}$

Le volume molaire du carbone graphite est $V_m\left(G\right)=5,21~cm^3.mol^{-1}$ et celui du carbone diamant est $V_m\left(D\right)=3,38~cm^3.mol^{-1}$.

- 1. Sous quelle variété allotropique le carbone est-il stable à 25 °C?
- **2.** Quelle pression minimale faut-il exercer sur un échantillon de la variété la plus stable, pour la transformer en l'autre variété à 25 °C ?

On suppose les volumes molaires invariants avec la pression.

Exercice 3 : Réaction de formation d'un métal-carbonyle

On enferme dans un réacteur de volume variable maintenu à 320 K, 0,1 mole de Fe et 1,0 mole de CO. La transformation chimique totale modélisée par l'équation de réaction se produit :

$$Fe(s) + 5CO(g) = Fe(CO)_5(l)$$

On donne à 320 $K: \Delta_r H^0 = -220 \ kJ.mol^{-1}$

$$\mu^0\left(\operatorname{Fe}\left(\operatorname{CO}\right)_5,l\right) - 5\mu^0\left(\operatorname{CO},g\right) - \mu^0\left(\operatorname{Fe},s\right) = -5\ kJ.mol^{-1}$$

- 1. Calculer la quantité de chaleur reçue par le système entre l'état initial et l'état final pour un réacteur maintenu à la pression $P=1,0\ bar$
- 2. Calculer le travail reçu par le système entre l'état initial et l'état final pour un réacteur maintenu à la pression $P=1,0\ bar$.
- 3. Calculer les variations des fonctions d'état ΔH , ΔG et ΔS au cours de cette transformation réalisée dans un réacteur maintenu à la pression P=2,0~bar.

Exercice 4 : Équilibre liquide/vapeur de l'acide nitrique

On fournit le tableau ci-dessous donnant l'évolution de la pression de vapeur saturante de l'acide nitrique pur en fonction de la température

$T / {^{\circ}C}$	0	20	40	50	70	80	90	100
								i

TD 2 APPLICATION DU SECOND PRINCIPE A LA TRANSFORMATION CHIMIQUE

	Référence :
,	MP
,	EZZINE Youssef
,	Version du: 03/12/2018
	Page 2

|--|

- 1. Calculer l'enthalpie de vaporisation de l'acide nitrique sous la pression standard (considérée indépendante de la température). On supposera que le volume molaire du gaz est très supérieur à celui du liquide et que le gaz se comporte comme un gaz parfait.
- Calculer la température d'ébullition de l'acide nitrique sous la pression standard. On donne la valeur de la constante des gaz parfaits : $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

Exercice 5 : Équilibres triphasés de l'ammoniac

La pression de vapeur saturante de l'ammoniac liquide est donnée en fonction de la température par la relation (p en pascal, T en kelvin):

$$\ln p(liq) = 19,49 - \frac{3063}{T}$$

et la pression de sublimation de l'ammoniac solide par :

$$\ln p(sol) = 23,03 - \frac{3754}{T}$$

- 1. En déduire la température du point triple de l'ammoniac.
- Calculer les enthalpies standards de vaporisation, sublimation et fusion au point triple. On rappelle la valeur de la constante des gaz parfaits : $R = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Exercice 6: Étude d'un équilibre liquide vapeur (d'après Agrégation 2006)

On considère un mélange liquide vapeur constitué pour la phase liquide de cyclohexane pur, et pour la phase vapeur d'un mélange eau-cyclohexane.

- 1. Définir le potentiel chimique μ_i pour une espèce chimique i, et établir une relation entre μ_i , l'enthalpie molaire partielle h_i et l'entropie molaire partielle s_i du constituant i.
- 2. Exprimer le potentiel chimique du cyclohexane $\mu_2^v\left(T,P\right)$ dans la phase vapeur supposée parfaite en fonction de $\mu_2^{*v}\left(T,P\right)$, potentiel chimique du cyclohexane gaz parfait pur sous la pression totale P et à la température T, et de x_2^v , fraction molaire du cyclohexane dans la vapeur.
- **3.** Exprimer la condition d'équilibre entre les différentes phases pour le constituant cyclohexane.

Exercice 7 : Grandeurs de mélange

Considérons à la température T un mélange liquide idéal M formé de n_1 moles de constituant A_1 et de n_2 moles de constituant A_2 .

1. Établir l'expression de l'enthalpie libre G_{mel} du mélange en fonction des quantités de matière n_i et des potentiels chimiques standard μ_i° . Montrer que G_{mel} s'écrit sous la forme :

$$G_{\text{mel}} = n_1 \mu_1^{\circ} + n_2 \mu_2^{\circ} + G_{1,2}$$

L'un de ces termes, noté $G_{1,2}$ est qualifié d'enthalpie libre de mélange, l'identifier et justifier cette appellation.

TD 2 APPLICATION DU SECOND PRINCIPE A LA TRANSFORMATION CHIMIQUE

Référence : MP EZZINE Youssef Version du: 03/12/2018

Page 3

2. Donner l'expression de l'entropie S_{mel} du mélange idéal. En procédant comme à la question **1.**, identifier $S_{1,2}$ entropie de mélange telle que :

$$S_{\text{mel}} = n_1 S_1^{\circ} + n_2 S_2^{\circ} + S_{1,2}$$

avec S_1° et S_2° les entropies molaires standard des constituants 1 et 2.

3. Montrer que le mélange idéal de deux liquides s'effectue sans enthalpie de mélange (c'està-dire que $H_{1,2}=0$).

Exercice 8: Potentiels chimiques standard

La solubilité du diiode (corps pur solide sous p = 1 bar à T = 298 K) dans l'eau liquide solvant est égale à 0.340 g.L⁻¹.

- **1.** Écrire la condition d'équilibre thermodynamique pour l'échange de matière possible de diiode entre la phase aqueuse et la phase solide.
- 2. Préciser les états de référence de chaque participant.
- **3.** Calculer la différence $\mu^{\circ, \text{ solide}} \mu^{\circ, \text{ aqueux}}$ des potentiels chimiques standard du diiode solide et du diiode en solution aqueuse.

La masse molaire atomique de l'iode est $M(I) = 126.9 \text{ g} \cdot \text{mol}^{-1}$.

Exercice 9: Réaction d'isomérisation (d'après Oral ENS Lyon/Cachan)

Considérons les deux énantiomères d'un acide aminé (alanine). Lorsqu'un seul des deux énantiomères est introduit à la température T, on assiste à une racémisation du milieu au cours du temps. Nous cherchons à expliquer ce phénomène par des considérations thermodynamiques. Notons les stéréoisomères de l'alanine par leur descripteur stéréochimique. Ainsi R désignera le stéréoisomère de descripteur stéréochimique R. On précise que $\mu_R^* = \mu_S^*$ (μ_X^* désigne le potentiel chimique du composé X pur). L'état initial est constitué de l'isomère R pur (la quantité de matière est égale à $n_0 = 1$ mol).

1. Pour expliquer la racémisation nous envisageons la réaction menée à pression et température constantes :

$$R = S$$
.

Exprimer l'enthalpie libre du système en évolution en fonction de l'avancement ξ , de n_0 et des potentiels chimiques que vous jugerez nécessaires. On approximera le mélange liquide par un mélange idéal.

2. Vers quel état d'équilibre évolue le système ? Calculer la grandeur ΔG entre l'état initial et l'état d'équilibre (en fonction de n_0 , R et T).

Résolution de problème : Du carbone graphite au carbone diamant

Le carbone existe à l'état solide sous deux variétés allotropiques principales que sont le carbone graphite et le carbone diamant.

Est-il possible de synthétiser du carbone diamant à partir de carbone graphite à T=298 K par élévation de pression ?

TD 2 APPLICATION DU SECOND PRINCIPE A LA TRANSFORMATION CHIMIQUE

Référence : MP EZZINE Youssef Version du: 03/12/2018

Page 4

Données à 298K:

Espèce	$\Delta_f H^0 \ / \ \mathrm{kJ.mol^{-1}}$	$S_m^0 / \mathrm{J.K^{ ext{-}1}.mol^{ ext{-}1}}$	
C (graphite)	0	5,70	
C (diamant)	1,90	2,40	

Masse molaire du carbone : $M = 12,0 \text{ g.mol}^{-1}$

Nombre d'avogadro : $\mathcal{N}_{A}=6{,}022.10^{23}~\mathrm{mol^{\text{-}1}}$

Structures du carbone diamant et du carbone graphite :

Les chiffres entre parenthèses indique la ou les positions des atomes sur une échelle de 1 (dans ce dernier cas, un point virgule sépare les deux chiffres).