

IP ADDRESS

Definition: It is a unique address used to identify a device (like computer, smart phone, router, IP based phone, network printer etc) in network

IP Address		
IP v4	IP v6	
Decimal Format	Hexadecimal Format	
32 Bits address	128 Bits address	

IP V4

- •It is 32 bits address divided into 4 octet.
- •This 32 bits address is having Network ID and Host ID.

192	168	1	1
11000000	10101000	00000001	00000001
8 bits	8 bits	8 bits	8 bits
Network ID	→	← Ho	est ID

8 bits = 2×10^{-2} x power 8 = 256 (We can write -0.1.2....upto 255) only

32 bits = 2 x power 32 = Around 4.2 billions numbers

IP v4			
Classfull		Classle	SS
1) Class A – Used for large network			
	Subnetting	and	Supernetting
2) Class B – Used for medium network			1
3) Class C – Used for small network			
4) Class D – Used for multicasting			
5) Class E – Reserved for Research and			
Development			

Q: Which organization is responsible for managing IP addresses

IANA (Internet Assigned Number Authority).

IANA created some range to distribute these IP based on use.

IP Address Class Range		
Class	Starting IP	Ending IP
Α	1.0.0.0	126.255.255.255
В	128.0.0.0	191.255.255.255
С	192.0.0.0	223.255.255.255
D	224.0.0.0	239.255.255.255
Е	240.0.0.0	255.255.255.255

Note: 127.0.0.1 is reserved for local host and called loopback address.

Range: 127.0.0.1 – 127.255.255.254

To Remember		
Class	Range	
A	1 - 126	
В	128 - 191	
С	192 – 223	
D	224 – 239	
E	240 – 255	

Network bits and Host bits

Class A:

8 8 8 8

Subnet Mask:

11111111	00000000	00000000	00000000
255	0	0	0

Network Bits (N) = 8 Host Bits (H) = 24

Class B:

Subnet Mask

8	8	8	8
11111111	11111111	00000000	00000000
255	255	0	0

Network Bits (N) = 16 Host Bits (N) = 16

Class C:

 8
 8
 8
 8

 11111111
 11111111
 11111111
 00000000

 255
 255
 255
 0

Network Bits (N) = 24Host Bits (N) = 08

Condition to communicate

Note: To communicate 2 PC the network id must be same in both pc.

Calculation

No of network = 2^{N-R}

No of host/network $=2^{H}$

N – Network bits,

R-Reserved bits,

H – Host bits

Class A: N=8, R=1, H=24

No of network = $2 \times N - R = 2 \times N - R = 2 \times N - R = 128$

No of host/network = $2 \times power H = 2 \times power 24 = 16,777,216$

Class B : N=16, R=2, H=16

No of network = $2 \times N - R = 2 \times power 14 = 16,384$

No of host/network = $2 \times 10^{-2} \times$

Class C: N=24, R=3, H=8

No of network = $2 \times N-R = 2 \times power 21 = 2,097,152$

No of host/network = $2 \times 10^{-2} \times$

700 PC -- Class C IP

Public IP and Private IP

Differences

PUBLIC IP

- A) Assigned by ISP
- B) Used to connect Internet
- C) Can be directly accessed through internet

PRIVATE IP

- A) Assigned by user from a given range
- B) Used to share Internet connection
- C) Cannot be accessed through Internet

Private IP address range Ending Class Starting 10.0.0.0 10.255.255.255 A В 172.16.0.0 172.31.255.255 192.168.0.0 192.168.255.255

Types of address

Casting	Description
Unicast	One to one sending
	Sender -1, Receiver - 1
Multicast	One to many sending
	Sender -1, Receiver - many
Broadcast	One to all
	Sender -1, Receiver- all of that network

IP Address assigning method

- 1) Static or Manually
- 2) Dynamically
- through DHCP or through APIPA
- DHCP: DHCP is a centralized server used to assign IP address automatically to all client systems
- APIPA: Automatic Private IP Addressing (**APIPA**) is a feature in operating systems (such as Windows) that enables computers to automatically self-configure an IP address and subnet mask when their DHCP server isn't reachable.
- The IP address range is 169.254.0.1 through 169.254.255.254.

That's all

Thank you

Subnetting

Subnetting enables the network administrator to further divide the host part of the address into two or more subnets.

The subnetting process allows the administrator to divide a single Class A, Class B, or Class C network number into smaller portions. The subnets can be subnetted again into sub-subnets.

192.168.1.0/26

192.168.1.0/24 255.255.255.0 11111111.111111111111111110000000

2 X power 2 -4 subnetwork

2 X power 6 --> 64 host/network

192.168.1.0/27

11111111.11111111.11111111.11100000

N H

2 x power 3 - 8 subnetwork

2 X power 5 = 32 host /network

Readymade calculation(B-D)

1 bits --128

2 bits - 192

3 bits - 224

4 bits -- 240

5 bits -- 248

6 bits - 254

Most preferred Subnetting

10.100.0.0/16 - Main Network

