

1. Considere o autômato finito representado abaixo.



a) Defina formalmente o autômato.

$$\begin{split} M &= (Q, \Sigma, \delta, q0, F) \text{ com} \\ Q &= \{q0, q1, q2, q3\} \\ \Sigma &= \{a, b\} \\ \delta &= \{(q0, a) \rightarrow q1, (q0, b) \rightarrow q2, (q1, a) \rightarrow q1, (q1, b) \rightarrow q3, (q2, a) \rightarrow q3, (q3, b) \rightarrow q3, (q3, \epsilon) \rightarrow q0\} \\ F &= \{q0\} \end{split}$$

b) Determine as computações para as entradas *baab*, *bababa* e *abaabaa*, explicitando se elas são aceitas ou não pelo autômato.

#### Cadeia baab:

$$(q0, baab) \vdash (q1, aab) \vdash (q1, ab) \vdash (q1, b) \vdash (q3, \varepsilon) \vdash (q0, \varepsilon) \in q0 \in F, : baab \in L(M)$$

#### Cadeia bababa:

$$(q0, bababa) \vdash (q2, ababa) \vdash (q3, baba)$$

duas possibilidade:

$$\vdash$$
 (q3, aba)

mais duas possibilidade:

$$\vdash (q0, aba) \vdash (q1, ba) \vdash (q3, a)$$

mais duas possibilidades:

$$\vdash$$
 (q3, a) para e rejeita



 $\vdash (q0, a) \vdash (q1, \varepsilon)$  rejeita, pois  $q1 \notin F$ 

 $\vdash (q0, baba) \vdash (q2, aba) \vdash (q3, ba)$ 

mais duas possibilidades:

 $\vdash$  (q3, a)

mais duas possibilidades:

 $\vdash$  (q3, a) para e rejeita

 $\vdash (q0, a) \vdash (q1, \varepsilon)$  rejeita, pois  $q1 \notin F$ 

 $\vdash (q0, ba) \vdash (q2, a) \vdash (q3, \varepsilon) \vdash (q0, \varepsilon) e q0 \in F, : bababa \in L(M)$ 

#### Cadeia abaabaa:

 $(q0, abaabaa) \vdash (q1, baabaa) \vdash (q3, aabaa)$ 

duas possibilidades:

⊢ (q3, *aabaa*) para e rejeita

 $\vdash (q0, aabaa) \vdash (q1, abaa) \vdash (q1, baa) \vdash (q3, aa)$ 

mais duas possibilidades:

 $\vdash$  (q3, aa) para e rejeita

 $\vdash (q0, aa) \vdash (q1, a) \vdash (q1, \epsilon)$  rejeita, pois  $q1 \notin F$ 

Para todos os caminhos possíveis a cadeia *abaabaa* foi rejeitada, *∴ abaabaa* ∉ L(M)

c) Determine a linguagem que é reconhecida pelo autômato.

$$L(M) = (a+b+|bab*)*$$

- 2. Construa AFD's para reconhecer todas as sentenças em {0, 1}\* de modo que:
  - a) apresentem cada imediatamente

 $q_0$   $q_1$   $q_2$ 

1 seguido de dois 0.



b) todo 0 apareça entre dois terminais 1.



c) o último símbolo seja 1 e o número de símbolos 0 seja par.



### 3. Construa AFD's para reconhecer:

a) todas



as

sentenças de  $\{a, b\}^*$  que contenham exatamente 3 símbolos a

b) qualquer valor expresso em reais no seguinte formato: R\$ d.ddd,dd



Professor: Jefferson Morais





c) conjuntos dos strings que não contenham a sequência 11011 sobre o alfabeto {0, 1}



Professor: Jefferson Morais

d) conjuntos dos strings que contenham a sequência 11011 sobre o alfabeto {0, 1}



e) palavras w, onde o terceiro símbolo da direita para a esquerda de w é a sobre o alfabeto



 $\{a, b\}$ 



Professor: Jefferson Morais

- 4. Desenvolva autômatos finitos determinísticos ou não, sem transições em vazio, que reconheçam as seguintes linguagens:
  - a)  $L = \{ w \mid w \in \{0, 1, 2\}^+ \text{ e não cont\'em 2 zeros ou 2 uns consecutivos } \}$



b)  $L = \{ w \mid w \in \{a, b\}^+ \text{ e o quinto símbolo da esquerda para direita de } w \notin a \}$ 







Professor: Jefferson Morais

d)  $L = \{ w \mid w \in \{a, b\}^+ \text{ e w possui } aaa \text{ como subpalavra } \}$ 



b} + e o sufixo

e)  $L = \{ w \mid w \in \{a, a\} \}$ 

de w é bb }



f)  $L = \{ w \mid w \in \{a, b\}^+ \text{ e possui } aa \text{ ou } bb \text{ como subpalavra } \}$ 



g)  $L = \{ w \mid w \in \{a, b, c\}^+, aa \text{ ou } bb \text{ \'e subpalavra e } cc \text{ \'e sufixo de } w \}$ 





h)  $L = \{ w \mid w \in \{a, b\}^+ \text{ e o quarto símbolo da direita para a esquerda de w é } a \}$ 



5. Considere o autômato abaixo e obtenha um autômato finito equivalente isento de (i) transições em vazio, (ii) não-determinismos, (iii) estados inacessíveis e (iv) estados inúteis.



### (i) Eliminação de transições em vazio

Construção da notação tabular do autômato original:

| δ    | а  | b  | λ  |
|------|----|----|----|
| → q0 | q0 |    | q1 |
| q1   |    | q1 | q2 |
| q2   | q2 |    | q3 |
| ← q3 |    | q3 |    |



## Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Graduação em Ciência da Computação

Disciplina: Teoria da Computação Professor: Jefferson Morais

# Construção da notação tabular do autômato sem transições em vazio:

| δ                    | a        | b        |
|----------------------|----------|----------|
| $\leftrightarrow$ q0 | {q0, q2} | {q1, q3} |
| ← q1                 | q2       | {q1, q3} |
| ← q2                 | q2       | q3       |
| ← q3                 |          | q3       |

# (ii) Eliminação de não-determinismos

# Criando o estado q0q2:

| δ            | a    | b        |  |
|--------------|------|----------|--|
| ↔ <b>q</b> 0 | q0q2 | {q1, q3} |  |
| ← q1         | q2   | {q1, q3} |  |
| ← q2         | q2   | q3       |  |
| ← q3         |      | q3       |  |
| ← q0q2       | q0q2 | {q1, q3} |  |

# Criando o estado q1q3:

| δ            | а    | b    |  |
|--------------|------|------|--|
| ↔ <b>q</b> 0 | q0q2 | q1q3 |  |
| ← q1         | q2   | q1q3 |  |
| ← q2         | q2   | q3   |  |
| ← q3         |      | q3   |  |
| ← q0q2       | q0q2 | q1q3 |  |
| ← q1q3       | q2   | q1q3 |  |

### O autômato sem transições em vazio e sem não-determinismos:





Professor: Jefferson Morais

# (iii) Eliminação de estados inacessíveis

Nota-se abaixo que após a aplicação do algoritmo para eliminação de estados inacessíveis, apenas o estado q1 não está acessível.

| δ            | а    | b    | Acessível | Considerado |
|--------------|------|------|-----------|-------------|
| ↔ <b>q</b> 0 | q0q2 | q1q3 | √(1)      | √(4)        |
| ← q1         | q2   | q1q3 |           |             |
| ← q2         | q2   | q3   | √(6)      | √(9)        |
| ← q3         |      | q3   | √(8)      | √(10)       |
| ← q0q2       | q0q2 | q1q3 | √(2)      | √(5)        |
| ← q1q3       | q2   | q1q3 | √(3)      | √(7)        |

Portanto, o

estado q1 será resultando no



(iv) Eliminação de estados inúteis



### Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Graduação em Ciência da Computação

Disciplina: Teoria da Computação Professor: Jefferson Morais

Todos os estados do autômato resultante são estados finais. Portanto, não há eliminação de nenhum estado. O autômato final é representado na notação tabular abaixo.

| δ            | а    | b    | Útil     | Considerado |
|--------------|------|------|----------|-------------|
| ↔ <b>q</b> 0 | q0q2 | q1q3 | <b>√</b> | ✓           |
| ← q2         | q2   | q3   | <b>√</b> | ✓           |
| ← q3         |      | q3   | ✓        | <b>√</b>    |
| ← q0q2       | q0q2 | q1q3 | <b>√</b> | ✓           |
| ← q1q3       | q2   | q1q3 | ✓        | <b>√</b>    |

6. Considere as seguintes expressões regulares cujo alfabeto é {a, b}.

$$R1 = a(a \cup b)*$$

$$R2 = b(a \cup b)*$$

Se L(R) é a linguagem associada a uma expressão regular R, é correto afirmar que

- a) L(R1) = L(R2).
- b)  $L(R2) = \{w \mid w \text{ termina com b}\}.$
- c) existe um autômato finito determinístico cuja linguagem é igual a L(R1) ∪ L(R2).
- d) se R3 é uma expressão regular tal que  $L(R3) = L(R1) \cap L(R2)$ , então L(R3) é uma linguagem infinita.
- e) um autômato finito não determinístico que reconheça L(R1) ∪ L(R2) tem, pelo menos, quatro estados.