Chapter 4: Measurable Spaces

4.1 Families of Measurable Sets

4.1.1 σ -fields

Definition 4.1: σ-field

Let Ω be a non-empty set. A family of subsets \mathcal{F} of Ω is called a σ -field (or σ -algebra) on Ω if it satisfies:

- (i) The entire set is in the family: $\Omega \in \mathcal{F}$.
- (ii) It is closed under complementation: If $A\in\mathcal{F}$, then its complement $A^c=\Omega\setminus A$ is also in \mathcal{F} .
- (iii) It is closed under countable unions: If $\{A_i:i\in\mathbb{N}\}$ is a collection of sets where each $A_i\in\mathcal{F}$, then their union $\cup_{i\in\mathbb{N}}A_i$ is also in \mathcal{F} .

Remarks & Properties:

- From the definition, a σ -field $\mathcal F$ must also contain the empty set \emptyset , since $\Omega \in \mathcal F$ and $\emptyset = \Omega^c$.
- A σ -field is closed under countable intersections. If $\{A_i:i\in\mathbb{N}\}\subset\mathcal{F}$, then $\cap_{i\in\mathbb{N}}A_i=(\cup_{i\in\mathbb{N}}A_i^c)^c$, which is in \mathcal{F} .

Examples of σ -fields:

- 1. **Trivial \sigma-field:** $\mathcal{F} = \{\emptyset, \Omega\}$. This is the smallest possible σ -field on any set Ω .
- 2. Power Set: $\mathcal{F}=\mathcal{P}(\Omega)$ (the set of all subsets of Ω). This is the largest possible σ -field.

Definition 4.2: Measurable Space & Measurable Set

- A pair (Ω, \mathcal{F}) , where Ω is a set and \mathcal{F} is a σ -field on Ω , is called a **measurable space**.
- A set A is said to be **measurable** if $A \in \mathcal{F}$.

4.1.2 σ-fields Generated by Families of Sets

Proposition 4.1: Generated σ-field

Let \mathcal{G} be any family of subsets of Ω . There exists a unique, smallest σ -field, denoted $\sigma(\mathcal{G})$, that

contains \mathcal{G} . It is defined as the intersection of all σ -fields on Ω that contain \mathcal{G} .

$$\sigma(\mathcal{G}) = \bigcap \{\mathcal{U} : \mathcal{U} \text{ is a σ-field on Ω and $\mathcal{G} \subset \mathcal{U}$}\}$$

 $\sigma(\mathcal{G})$ is called the σ -field generated by \mathcal{G} .

4.1.3 Borel Sets of Real Coordinate Spaces

Definition 4.3 & 4.4: Borel σ-field

- The **Borel** σ -field on the real numbers, denoted $\mathcal{B}(\mathbb{R})$, is the σ -field generated by the family of all open (or closed, or half-open) intervals in \mathbb{R} .
- The **Borel** σ -field on \mathbb{R}^k , denoted $\mathcal{B}(\mathbb{R}^k)$, is the σ -field generated by the family of all open rectangles in \mathbb{R}^k .
- The elements of a Borel σ-field are called **Borel sets**.

Chapter 5: Measure Spaces

5.1 The Notion of a Measure

Definition 5.1: Measure

Let (Ω, \mathcal{F}) be a measurable space. A function $\mu : \mathcal{F} \to [0, \infty]$ is a **measure** if it satisfies: (i) The measure of the empty set is zero: $\mu(\emptyset) = 0$.

(ii) Countable Additivity (or σ -additivity): For any countable collection of pairwise disjoint sets $\{A_i:i\in\mathbb{N}\}\subset\mathcal{F}$, the measure of their union is the sum of their measures:

$$\mu\left(igcup_{i\in\mathbb{N}}A_i
ight)=\sum_{i\in\mathbb{N}}\mu(A_i)$$

Definition 5.2: Measure Space

A triple $(\Omega, \mathcal{F}, \mu)$ consisting of a set Ω , a σ -field \mathcal{F} on Ω , and a measure μ on \mathcal{F} , is called a **measure space**.

Examples of Measures

- 1. Point (Dirac) Measure: For a given point $x\in\Omega$, $\delta_x(A)=1$ if $x\in A$ and 0 otherwise.
- 2. Counting Measure: Defined on $(\Omega, \mathcal{P}(\Omega))$, $\mu(A) = \#A$ (the number of elements in A).
- 3. **Lebesgue Measure** (λ): A unique measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ that assigns to any interval its length.

5.1.3 Properties of a Measure

- Monotonicity: If $A \subset B$, then $\mu(A) \leq \mu(B)$.
- Continuity from Below: If $A_n \uparrow A$, then $\mu(A_n) \uparrow \mu(A)$.
- Continuity from Above: If $A_n \downarrow A$ and $\mu(A_1) < \infty$, then $\mu(A_n) \downarrow \mu(A)$.
- Countable Subadditivity: For any collection $\{A_i\}$, $\mu(\cup_i A_i) \leq \sum_i \mu(A_i)$.

5.2 Semirings

Definition 5.3: Semiring

A family of subsets A of Ω is a **semiring** if it satisfies:

- (i) $\emptyset \in \mathcal{A}$.
- (ii) It is closed under finite intersections: If $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.
- (iii) The difference of two sets can be written as a finite disjoint union of sets in the family.

Chapter 6: From Outer Measure to Measure

This chapter describes how to construct a measure on a σ -field, like the Lebesgue measure.

Key Concepts

- 1. Outer Measure (μ^*): A function on $\mathcal{P}(\Omega)$ that is non-negative, zero for \emptyset , monotone, and countably subadditive.
- 2. Carathéodory's Criterion: An outer measure μ^* can be restricted to a σ -field of " μ^* -measurable sets" to become a true measure. A set A is μ^* -measurable if $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$ for all $E \subset \Omega$.
- 3. **Carathéodory's Extension Theorem:** A finitely additive and countably subadditive function ρ on a semiring \mathcal{A} can be extended to a unique measure on the generated σ -field $\sigma(\mathcal{A})$.
- 4. Uniqueness of Lebesgue Measure: The Lebesgue measure λ is the unique measure on $\mathcal{B}(\mathbb{R})$ that satisfies $\lambda((a,b])=b-a$.

Chapter 7: Measurable Functions

7.1 The Concept of Measurable Functions

Definition 7.1: Measurable Function

Let (Ω, \mathcal{F}) and $(\Omega^*, \mathcal{F}^*)$ be two measurable spaces. A function $f:\Omega\to\Omega^*$ is **measurable** (specifically, $\mathcal{F}/\mathcal{F}^*$ measurable) if the pre-image of every measurable set in the target space is a measurable set in the domain space.

$$orall A^* \in \mathcal{F}^*, \quad f^{-1}(A^*) = \{\omega \in \Omega : f(\omega) \in A^*\} \in \mathcal{F}$$

Proposition 7.1: A Simpler Criterion for Measurability

If $\mathcal{F}^* = \sigma(\mathcal{G})$ for some family of sets \mathcal{G} , then f is measurable if and only if $f^{-1}(G) \in \mathcal{F}$ for all $G \in \mathcal{G}$.

Key Types of Measurable Functions

- Borel Function: A function $f:\mathbb{R}^m o\mathbb{R}^k$ that is $\mathcal{B}(\mathbb{R}^m)/\mathcal{B}(\mathbb{R}^k)$ measurable.
- Real-Valued Measurable Function: A function $f:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$. It is sufficient to check that sets of the form $\{\omega:f(\omega)\leq x\}$ are in \mathcal{F} for all $x\in\mathbb{R}$.
- Indicator Function: The function $1_A(\omega)$ is \mathcal{F} -measurable if and only if the set $A \in \mathcal{F}$.

Properties of Measurable Functions

- **Compositions:** The composition of measurable functions is measurable.
- Continuous Functions: Any continuous function $f:\mathbb{R}^m o \mathbb{R}^k$ is a Borel function.
- Algebraic Operations: If $f,g:\Omega\to\mathbb{R}$ are measurable, then so are f+g,fg,cf (for $c\in\mathbb{R}$), $\max\{f,g\},\min\{f,g\}$, and |f|.
- Limits: If $\{f_n\}$ is a sequence of measurable functions, then $\sup f_n$, $\inf f_n$, $\limsup f_n$, and $\liminf f_n$ are all measurable. If $f_n \to f$ pointwise, then f is also measurable.

7.1.1 Simple Functions

Definition 7.3: Simple Function

A function $f:\Omega\to\mathbb{R}$ is **simple** if it takes only a finite number of values. It can always be written as a finite linear combination of indicator functions:

$$f(\omega) = \sum_{i=1}^n lpha_i 1_{A_i}(\omega)$$

A simple function is measurable if all its carrier sets A_i are measurable.

Proposition 7.10 & 7.11: Approximation by Simple Functions

- Any non-negative measurable function f is the pointwise limit of a monotonically increasing sequence of non-negative simple measurable functions.
- Any measurable function $f:\Omega \to \mathbb{R}$ is the pointwise limit of a sequence of simple measurable functions.

7.3 Minimal Measurability

σ-field Generated by a Function

The σ -field generated by a function $f:\Omega\to\mathbb{R}^k$ is the smallest σ -field on Ω that makes f measurable. It is given by:

$$\sigma(f) = \{f^{-1}(B): B \in \mathcal{B}(\mathbb{R}^k)\}$$

Proposition 7.13: Doob-Dynkin Lemma

Let $f:\Omega\to\mathbb{R}^k$ be a function. A function $h:\Omega\to\mathbb{R}$ is $\sigma(f)$ -measurable if and only if there exists a Borel measurable function $g:\mathbb{R}^k\to\mathbb{R}$ such that h=g(f).

Chapter 8: Integration (First Part)

8.1 The Integral for Nonnegative Functions

Definition 8.3: The Integral

For a non-negative measurable function $f:(\Omega,\mathcal{F},\mu) \to [0,\infty]$, the integral is defined as:

$$\int_{\Omega} f(\omega) \mu(d\omega) = \sup \left\{ \sum_{A \in \xi} \inf_{\omega \in A} f(\omega) \mu(A) : \xi \text{ is a finite measurable partition of } \Omega \right\}$$

Integral of a Simple Function: For a non-negative simple function $f = \sum_{i=1}^{N} \alpha_i 1_{A_i}$ in standard form, the integral is:

$$\int_{\Omega}f\,d\mu=\sum_{i=1}^{N}lpha_{i}\mu(A_{i})$$

Proposition 8.2: Monotone Convergence Theorem (MCT)

If $\{f_n\}$ is a sequence of non-negative measurable functions such that $f_n(\omega) \uparrow f(\omega)$ for all ω , then:

$$\lim_{n o\infty}\int f_n\,d\mu=\int f\,d\mu$$

Proposition 8.3: Linearity

For non-negative measurable functions f, g and $\alpha, \beta \geq 0$:

$$\int (\alpha f + \beta g) \, d\mu = lpha \int f \, d\mu + eta \int g \, d\mu$$

Definition 8.4: Almost Everywhere (a.e.)

A property holds μ -almost everywhere if the set of points where it fails has measure zero.

8.2 Integrable Functions

Positive and Negative Parts: $f=f^+-f^-$ where $f^+=\max\{f,0\}$ and $f^-=\max\{-f,0\}$.

Definition 8.5: Integral of a Real-Valued Function

For a measurable function $f:\Omega \to \mathbb{R}$, its integral is defined as:

$$\int f\,d\mu = \int f^+\,d\mu - \int f^-\,d\mu$$

provided at least one of the integrals on the right is finite. The function f is **integrable** if both are finite.

Proposition 8.6: Integrability Criterion

A measurable function f is integrable if and only if $\int |f| \, d\mu < \infty$.

8.3 Limit Theorems

Proposition 8.9: Fatou's Lemma

For any sequence $\{f_n\}$ of non-negative measurable functions:

$$\int (\liminf_{n o \infty} f_n) \, d\mu \leq \liminf_{n o \infty} \int f_n \, d\mu$$

Proposition 8.10: Lebesgue's Dominated Convergence Theorem (DCT)

Let $\{f_n\}$ be a sequence of measurable functions such that:

- 1. $f_n(\omega) \to f(\omega)$ a.e.
- 2. There exists an integrable function g such that $|f_n(\omega)| \leq g(\omega)$ a.e. for all n. Then f is integrable and:

$$\lim_{n o\infty}\int f_n\,d\mu=\int f\,d\mu=\int (\lim_{n o\infty}f_n)\,d\mu$$

8.4 Integration over Measurable Sets

Definition 8.6: The integral of f over a set $A \in \mathcal{F}$ is defined as:

$$\int_A f\,d\mu = \int f\cdot 1_A\,d\mu$$

Chapter 9: Integration (Second Part)

9.1 Pushforward Measure

Definition 9.1: Pushforward Measure

Let μ be a measure on (Ω, \mathcal{F}) and $g:(\Omega, \mathcal{F}) \to (\Omega^*, \mathcal{F}^*)$ be a measurable function. The **pushforward measure** $\mu_{g^{-1}}$ (or simply μ_g) on $(\Omega^*, \mathcal{F}^*)$ is defined by:

$$\mu_{g^{-1}}(A^*)=\mu(g^{-1}(A^*))\quad ext{for any } A^*\in\mathcal{F}^*$$

Proposition 9.1: Change of Variables Formula

Let $f:(\Omega^*,\mathcal{F}^*)\to\mathbb{R}$ be a measurable function that is either non-negative or integrable with respect to $\mu_{g^{-1}}$. Then $f\circ g$ is either non-negative or integrable with respect to μ , and:

$$\int_{\Omega^*} f(y)\, \mu_{g^{-1}}(dy) = \int_{\Omega} f(g(\omega))\, \mu(d\omega)$$

9.2 Densities

Definition 9.2: Density

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A non-negative measurable function $\phi : \Omega \to \mathbb{R}$ is a **density** (or Radon-Nikodym derivative) of a measure ν with respect to a measure μ if:

$$u(A) = \int_A \phi(\omega) \, \mu(d\omega) \quad ext{for all } A \in \mathcal{F}$$

This is often written as $d
u = \phi \, d\mu$ or $\frac{d
u}{d\mu} = \phi.$

Proposition 9.3: Integration with a Density

If ν has density ϕ with respect to μ , then for any non-negative or ν -integrable function f:

$$\int f \, d
u = \int f \cdot \phi \, d\mu$$