The Continuation Monad

Aresh Pourkavoos

November 29, 2022

Within System F, there is a monad Cont which maps type α to Cont $\alpha := (\omega : \text{Type}) \to (\alpha \to \omega) \to \omega$, i.e. a polymorphic function parameterized by type ω . In this monad, return : $(\alpha : \text{Type}) \to \alpha \to \text{Cont } \alpha$ is defined by return α a ω f := f a, where $a : \alpha$ and $f : \alpha \to \omega$. The operation bind has type

$$(\alpha : \text{Type}) \to (\beta : \text{Type}) \to (\alpha \to \text{Cont } \beta) \to \text{Cont } \alpha \to \text{Cont } \beta.$$

In order to see how it should be defined, we may unpack its arguments:

$$\begin{aligned} &\alpha: \text{Type} \\ &\beta: \text{Type} \\ &f: \alpha \to \operatorname{Cont} \beta \\ &g: \operatorname{Cont} \alpha \end{aligned}$$

The return type, then, is Cont $\beta = (\omega : \text{Type}) \to (\alpha \to \omega) \to \omega$, so we may take two more arguments:

$$\omega$$
: Type $h: \beta \to \omega$

So the new return type is ω . Given what we have, there are a few potential ways to obtain a term of type ω :

 $\bullet\,$ The type of f may be expanded to $\alpha\to l$

is defined by

bind
$$\alpha \beta f g \omega h := g \omega (\lambda a.(f a \omega h)).$$