Статистика для анализа данных Лабораторная работа 3

Бутстрап-оценки

3.1	Выполнение лабораторной работы	1
3.2	Описание лабораторной работы	1
3.3	Рекомендации	2

3.1 Выполнение лабораторной работы

В результаты выполнения работы участником (командой) должны быть предоставлены: код, используемый при выполнении заданий лабораторной работы, а также отчет о ходе выполнения работы. Отчет должен содержать:

- 1. Титульную информацию: для каждого участника должны быть указаны ФИО, ИСУ, практический поток.
- 2. Ход выполнения работы: краткая информация о выполненных шагах.
- 3. Основную часть: описание каждого шага, промежуточные результаты и их анализ.
- 4. Заключение: приоритетные выводы по результатам выполнения всей лабораторной работы.

3.2 Описание лабораторной работы

1. Генерация данных и базовые оценки

- (a) Сгенерируйте выборку объема N=500 из непрерывного распределения с произвольными параметрами (см. описание предыдущей лабораторной работы).
- (b) Рассчитайте точечные оценки:
 - Выборочное среднее, медиану, дисперсию, интерквартильный размах (IQR)
 - Постройте теоретеческие значения этих величин и сравните точечные оценку с теоретическими значениями.
- (c) Постройте гистограмму данных с наложением ядерной оценки плотности (KDE). Сравните KDE с гистограммой при разном числе бинов (3 значения, заданные вручную).

2. Бутстрап для точечных оценок

- (а) Реализуйте алгоритм бутстрапа:
 - Сгенерируйте B = 1000 бутстрап-выборок (с возвращением)
 - Для каждой выборки вычислите: среднее, медиану, дисперсию, IQR
- (b) Постройте гистограммы распределения бутстрап-оценок для каждой статистики. Нанесите исходные оценки вертикальными линиями.

3. Построение доверительных интервалов

(а) Используя процентильный метод, постройте доверительные интервалы для:

- Среднего и медианы
- Уровней доверия: 90% ($\alpha = 0.1$), 95% ($\alpha = 0.05$), 99% ($\alpha = 0.01$)
- (b) Визуализируйте интервалы для каждой статистики на отдельных графиках.

4. Влияние объема выборки и числа итераций

- (a) Исследуйте зависимость от N:
 - Сгенерируйте выборки N = [50, 100, 200, 500, 1000]
 - Постройте 95%-доверительный интервал среднего (B=1000)
 - \bullet Постройте график ширины интервала от N
- (b) Исследуйте зависимость от B:
 - Для N = 500 выберите B = [100, 200, 400, 1600, 3200]
 - Постройте 95%-доверительный интервал среднего
 - Визуализируйте изменение ширины интервала

5. Проверка покрытия интервалов

- (a) Для $\mathcal{N}(0,1)$:
 - Сгенерируйте 100 выборок N = [50, 100, 200, 500, 1000]
 - Постройте 95%-доверительный интервал среднего B = [100, 200, 400, 1600, 3200]
 - Определите долю интервалов, содержащих $\mu = 0$
- (b) Результаты оформите в таблицу:

Объем выборки N	Число итераций В	Доля покрытия
50	1000	0.92
100	1000	0.95
200	1000	0.96

(c) Постройте heatmap с этими данными.

3.3 Рекомендации

- Для генерации данных и построения точечных оценок используйте методы из предыдущей лабораторной работы;
- Для визуализации:
 - KDE: seaborn.kdeplot(data, label="KDE")
 - Интервалы: plt.hlines(y, xmin, xmax, colors="red") или аналогичные.
- Для бутстрапа используйте numpy.random.choice с заменой (replace=True).