UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL DEPARTAMENTO ACADEMICO DE MATEMÁTICA Y FÍSICA

Escuela Profesional de Ciencias Físico Matemáticas

CURSO: Cáculo de Probabilidades

PROFESOR: ROMERO PLASENCIA, Jackson

ALUMNO: TITO MENDOZA, Máximo

- 1. Demuestre que \mathcal{F} es una σ -álgebra de subconjuntos de si, y sólo si, satisface las siguientes propiedades:
 - a. $\emptyset \in \mathcal{F}$
 - b. $A \in \longrightarrow A^c \in \mathcal{F}$
 - c. $A_1, A_2, A_3 \ldots \in \mathcal{F} \longrightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$

Demostración:

- a. Sabemos que $\Omega \in \mathcal{F}$ entonces su complento $\Omega^c \in \mathcal{F}$ es $\emptyset \in \mathcal{F}$.
- b. $A \in \longrightarrow A^c \in \mathcal{F}$ (propiedad 2 de σ -álgebra).
- c. $A_1, A_2, A_3 \ldots \in \mathcal{F}$ entonces su comlemento $A_1^c, A_2^c, A_3^c \ldots \in \mathcal{F}$ entonces $\bigcup_{n=1}^{\infty} A_n^c \in \mathcal{F}$ entonces su complemento es $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.
- 2. Sea $\mathcal F$ una σ -álgebra; demuestre que $\mathcal F^c$ es una σ -álgebra definida por: $\mathcal F^c=\{A^c:A\in\mathcal F\}.$

Demostración:

- a. Si $\emptyset \in \mathcal{F}$ entonces su complemento $\emptyset^c \in \mathcal{F}^c$ entonces $\Omega \in \mathcal{F}^c$.
- b. $A \in \mathcal{F}$ entonces su complemento $A^c \in \mathcal{F}^c$
- c. $A_1, A_2, A_3 \ldots \in \mathcal{F}$ entonces su comlemento $A_1^c, A_2^c, A_3^c \ldots \in \mathcal{F}^c$ entonces $\bigcap_{n=1}^{\infty} A_n^c \in \mathcal{F}^c$ entonces su complemto es $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}^c$.
- 3. Sea $\{A_n\}_{n\in\mathbb{N}}$ la sucesión de eventos, definida por:

$$A_n = A$$
 si $n = 1, 3, 5...$
 $A_n = A^c$ si $n = 2, 4, 6...$

Determine el $\lim_{x\to\infty} A_n$

Demostración:

$$\left(\lim_{x\to\infty} \inf A_n \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right) = \bigcup_{n=1}^{\infty} \left(A \cap A^c\right) = \bigcup_{\emptyset} = \emptyset$$

$$\left(\lim_{x\to\infty} \sup A_n \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k\right) = \bigcap_{n=1}^{\infty} \Omega = \Omega$$

como los limites

$$\lim_{x \to \infty} \inf A_n \neq \lim_{x \to \infty} \sup A_n$$

entonces el limite $\lim_{x\to\infty} A_n$ no existe

4. Sea $\{A_n\}_{n\in\mathbb{N}}$ la sucesión de eventos, definida por:

$$A_n = \begin{bmatrix} \frac{-1}{n}, 0 \end{bmatrix} \quad si \quad n = 1, 3, 5 \dots$$
$$A_n = \begin{bmatrix} 0, \frac{1}{n} \end{bmatrix} \quad si \quad n = 2, 4, 6 \dots$$

Determine el $\lim_{x\to\infty} A_n$

Demostración:

$$\lim_{x \to \infty} \inf A_n = \bigcup_{\substack{n=1 \ k=n}}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=1}^{\infty} A_k \bigcap_{k=2}^{\infty} A_k \dots \right) = \bigcup_{n=1}^{\infty} \{0\}$$

$$\lim_{x \to \infty} \sup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

5. Sean $A_1, A_2, A_3 \dots$ eventos aleatorios, demuestre:

a.
$$P\left(\bigcup_{k=1}^{n} A_{k}\right) \ge 1 - \sum_{k=1}^{n} P\left(A_{k}^{c}\right)$$

b. Si
$$P(A_k) \ge 1 - e$$
 para $K = 1, 2, 3, \dots, n$ entonces $P(\bigcap_{n=1}^n) \ge 1 - ne$

c.
$$P\left(\bigcup_{k=1}^{\infty} A_k\right) \ge 1 - \sum_{k=1}^{n} P\left(A_k^c\right)$$

Demostración:

solución a

$$P\left(\bigcap_{k=1}^{n} A_k\right) \ge 1 - \sum_{k=1}^{n} P\left(A_k^{c}\right)$$

$$P\left(\bigcap_{k=1}^{n} A_{k}\right) = 1 - P\left(\bigcup_{k=1}^{n} A_{k}\right) \ge 1 - \sum_{k=1}^{n} P\left(A_{k}^{c}\right)$$

solución b

$$P(A_k) \ge 1 - e$$

$$e \ge 1 - P(A_k)$$

$$\prod_{i=1}^n e \ge \prod_{i=1}^n (A_k)^c$$

$$ne \ge \prod_{i=1}^n (1 - P(A_k))$$

$$\Rightarrow ne \ge 1 - P\left(\bigcup_{i=1}^n A_k\right)$$

$$\Rightarrow ne \ge 1 - P\left(\bigcup_{k=1}^n A_k\right)$$

6. Demuestre las desigualdades de Boole.

Demostración:

(a)
$$P\left(\bigcup_{k=1}^{\infty} A_k\right) \leq \sum_{k=1}^{\infty} P\left(A_k\right)$$

(b)
$$P\left(\bigcup_{k=1}^{\infty} A_k\right) \ge 1 - \sum_{k=1}^{\infty} P\left(A_k^c\right)$$

solución a

Sea

$$B_n = A_n$$

$$B_n = A_n$$
- $\left(\bigcup_{k=1}^{n-1} A_k\right)$ donde $n = 2, 3, 4 \dots, n$

entonces
$$\left(\bigcup_{n=1}^{\infty} A_n\right) = \left(\bigcup_{n=1}^{\infty} B_n\right)$$
 luego ; $B_n \cap B_m$ si $n \neq m$ luego $B_n \subseteq A_m$

por tanto

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = P\left(\bigcup_{n=1}^{\infty} B_n\right)$$
$$= \sum_{n=1}^{\infty} P(B_n)$$
$$\leq \sum_{n=1}^{\infty} P(A_n)$$

solución b

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = 1 - P\left(\bigcup_{n=1}^{\infty} A_n^c\right)$$
$$\geq 1 - \sum_{n=1}^{\infty} P\left(A_n^c\right)$$

7. Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión de eventos, demuestre que:

a.
$$\left(\lim_{x\to\infty}infA_n\right)^c = \lim_{x\to\infty}supA_n^c$$

b.
$$\left(\lim_{x\to\infty} \sup A_n\right)^c = \lim_{x\to\infty} \inf A_n^c$$

c.
$$P\left(\lim_{x\to\infty} \inf A_n\right) = 1 - P\left(\lim_{x\to\infty} \sup A_n^c\right)$$

Demostración:

solución a

$$\left(\lim_{x \to \infty} \inf A_n\right)^c = \lim_{x \to \infty} \sup A_n^c$$

$$= \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right)^c$$

$$= \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k^c$$

$$= \lim_{x \to \infty} \sup A_n^c$$

solución b

$$\left(\lim_{x \to \infty} \sup A_n\right)^c = \lim_{x \to \infty} \inf A_n^c$$

$$= \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k\right)^c$$

$$= \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$$

$$= \lim_{x \to \infty} \inf A_n^c$$

solución c

$$P\left(\lim_{x \to \infty} \inf A_n\right) = 1 - P\left(\lim_{x \to \infty} \sup A_n\right)^c$$

$$\left(\left[P \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right]^c\right)^c = 1 - P\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right)^c$$

$$= 1 - P\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k^c\right)$$

$$= 1 - P\left(\lim_{x \to \infty} \sup A_n^c\right)$$

8. Encuentre las condiciones sobre los eventos A_1 y A_2 para que la siguiente suceción sea convergente.

Demostración: