République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Carthage

INSTITUT DES HAUTES ÉTUDES COMMERCIALES DE CARTHAGE

Projet de Fin d'études

Titre du sujet : Automatisation du modèle de profiling des clients basé sur les données collectées.

Organisme d'accueil:

Troisième année de la Licence en Informatique de gestion

Parcours: Business Intelligence

Réalisé par : Imen SOUIDI et Mariem BEN NACEF

Encadrés par :

Encadrante académique : Madame Jihen TOUNSI

Encadrant professionnel: Monsieur Aymen MECHERGUI

Année universitaire: 2022-2023

Dédicaces

À mes chères sœurs qui n'ont jamais cessé de me motiver et de me pousser à faire de mon mieux. Je suis reconnaissante pour tout l'amour, le soutien indéfectible et l'encouragement que vous m'avez offert. Il n'y a pas de mots qui puissent exprimer toute ma joie, ma gratitude et ma reconnaissance pour tout ce que vous avez fait pour moi.

À mes ami(e)s qui m'ont beaucoup soutenu durant cette période, pour l'amitié qui nous unit et pour tous les merveilleux moments et les bons souvenirs que nous avons partagés ensemble. Je vous souhaite le succès dans vos vies.

À tous ceux que j'aime et qui m'aiment, je dédie ce modeste travail.

Imen Souidi

À mon père, Hedi, ma raison d'être, ma source inépuisable d'inspiration.

À ma mère, Thouraya, ma muse éternelle, la femme qui a fait de moi ce que je suis aujourd'hui.

À mon frère Bechir, l'épaule sur laquelle je me repose.

À mes oncles Ahmed, Slim, Khaled et ma tante Amel, vous êtes et vous resterez toujours des figures paternelles dans ma vie.

À ma cousine Sarra et ma meilleure amie Farah, qui, malgré la distance, ont toujours été présentes pour me soutenir.

Je remercie particulièrement **Belhsan** pour sa présence et son soutien constant qui m'a permis de rester motivée et concentrée sur mes objectifs.

Je tiens finalement à adresser mes remerciements à ma deuxième famille, **mes amies Sarra, Souleima, Sinda, Azza** qui n'ont jamais cessé de me soutenir et de me pousser vers l'avant.

Mariem BEN NACEF

Remerciements

Au terme de ce travail, nous tenons à remercier **le cadre enseignant** de l'institut supérieur des hautes études commerciales de Carthage ainsi que tous nos enseignant qui ont largement contribué à l'atteinte de nos objectifs.

Nous remercions notre encadrante académique **Madame Jihen TOUNSI** pour son accompagnement, ses encouragements, sa patience, pour le temps qu'elle nous a consacré pour ses précieux conseils.

Un grand merci à **Monsieur Mohamed Aymen Mechergui** pour son encadrement, l'effort qu'il a fourni pour nous accueillir au sein de Queney.

Nous adressons particulièrement nos remerciements à notre encadrant technique **Mohamed Berrima** qui nous a accompagné tout au long de notre stage et qui nous a assuré un suivi continu.

Nous saisissons cette occasion pour remercier **les membres du jury** tout en espérant qu'ils trouvent dans ce rapport les qualités de la clarté et motivation qu'ils attendent.

Enfin, nous souhaitons exprimer notre gratitude envers **le club Radio Libertad** qui a marqué notre parcours étudiant et nous a apporté plusieurs leçons et expériences.

Table des matières

DEDICACES	2
REMERCIEMENTS	3
TABLE DES FIGURES	7
TABLE DES TABLEAUX	q
ACRONYMES	10
INTRODUCTION GENERALE	11
I . Presentation du cadre de projet	14
I. 1. Introduction	
I. 2. Cadre général	
I. 3. Présentation de l'organisme d'accueil	
I. 3.1. Description de l'organisme	14
I. 3.2. Les services offerts par Naxxum	2
I. 3.3. Les technologies adoptées par Naxxum	2
I. 3.4. Organigramme de la société	2
I. 3.5. Description de Queney	3
I. 4. Analyse de l'existant	3
I. 5. Problématique	
I. 6. Solution proposée	4
I. 7. Méthodologie de travail	5
I. 7.1. Exploration des méthodologies	5
I. 7.1.1. KDD	5
I. 7.1.2. SEMMA	6
I. 7.1.3. CRISP-DM	7
I. 7.2. Comparaison entre les méthodes	9
I. 7.3. Méthode adoptée :	
I. 8. Planification du projet	
I. 9. Conclusion	11
II . ÉTUDE PRELIMINAIRE	14
II. 1. Introduction	
II. 2. Spécification des besoins	
II. 2.1. Identification des acteurs	14
II. 2.2. Spécification des besoins fonctionnels	15
II. 2.3. Spécification des besoins non fonctionnels	15
II. 3. Architecture	
II. 3.1. Architecture physique trois-tiers	
II. 3.2. Architecture logique	16
II. 4. Environnement de travail	
II. 4.1. Environnement matériel	17

II. 4.2. Environnement logiciel	18
II. 4.3. Technologies adoptées	19
II. 4.3.1. Technologies Front-end	19
II. 4.3.2. Technologies Back-end	19
II. 5. Intégration du Traitement automatique des langues et de l'apprentissage automatique	20
II. 5.1. Traitement automatique des langues	20
II. 5.1.1. Avantages du TAL	20
II. 5.1.2. Application pratique du TAL	21
II. 5.2. Apprentissage automatique :	21
5.2.1. Les techniques d'apprentissage automatique	21
II. 5.2.1.1. Régression:	21
II. 5.2.1.2. Regroupement (Clustering):	21
II. 5.2.1.3. Classification:	22
II. 5.2.2. Technique choisie	22
II. 5.2.3. Les algorithmes de regroupement	23
II. 5.2.3.1. K-means	23
II. 5.2.3.2. Meanshift	24
II. 5.2.3.3. DBSCAN	25
II. 5.2.4. Comparaison entre les algorithmes et l'algorithme choisi	27
II. 5.3. Rôle de l'apprentissage automatique dans le traitement automatique des langues	
II. 6. Bibliothèques, modules et classes utilisés	28
II. 7. Conclusion	30
III . Proposition d'une solution d'apprentissage automatique	32
III. 1. Introduction	32
III. 2. Collecte des données	32
III. 2.1. Source de stockage de données	
III. 2.2. Extraction de données	
III. 3. Compréhension des données	
III. 3.1. Analyse exploratoire des données	
III. 3.1.1. La campagne « Pour mieux vous servir »	
III. 3.1.2. La campagne « Votre profil »	
III. 3.1.3. La campagne « Queney »	
III. 3.2. Évaluation de la qualité des données	
III. 4. Préparation des données	
III. 4.1. Création d'un dictionnaire de synonymes	
III. 4.2. Structuration des données	
III. 4.2.1. Opération de jointure	
III. 4.2.2. La normalisation de la trame de données	
III. 4.2.3. Organisation et qualification des questions selon des critères spécifiques dans la trame de dor	
III. 4.2.3.1. Recherche de questions répondant à un même critère	
III. 4.2.3.2. Croisement des réponses	
III. 4.2.4. Création d'une nouvelle trame de données avec les réponses correctes pour chaque critère	
III. 4.2.5. Création d'une nouvelle trame de données avec les réponses correctes pour les autres question	
III. 5. Modélisation	

III. 5.1. Encodage et traitement des données	48
III. 5.2. Paramètres d'entrée de l'algorithme de MeanShift	49
III. 5.3. Application du Mean-Shift	50
III. 5.4. Evaluation du modèle	52
III. 5.4.1. Métriques d'évaluation	52
III. 5.4.2. Interprétation des clusters	52
III. 6. Conclusion	53
IV. DEPLOIEMENT	55
IV. 1. Introduction	55
IV. 2. Modélisation conceptuelle	55
IV. 2.1. Diagramme de cas d'utilisation globale	56
IV. 2.1.1. Description textuelle du cas d'utilisation global	56
IV. 2.1.1.1. Description textuelle du diagramme de cas d'utilisation « Consulter le tableau de bord »	56
IV. 2.1.1.2. Description textuelle du diagramme de cas d'utilisation « Télécharger une trame de donnée	es »
57	
IV. 2.1.1.3. Description textuelle du diagramme de cas d'utilisation « Gérer les administrateurs »	57
IV. 2.1.1.4. Description textuelle du diagramme de cas d'utilisation « S'inscrire »	59
IV. 2.1.1.5. Description textuelle du diagramme de cas d'utilisation « S'authentifier »	60
IV. 2.2. Diagrammes de séquences du cas d'utilisation	61
IV. 2.2.1. Diagramme de séquences du cas d'utilisation « S'inscrire »	61
IV. 2.2.2. Diagramme de séquences du cas d'utilisation « S'authentifier »	62
IV. 2.2.3. Diagramme de séquences du cas d'utilisation « Activer un compte »	63
IV. 2.2.4. Diagramme de séquences du cas d'utilisation « Désactiver un compte »	63
IV. 2.3. Diagramme de classes	64
IV. 2.3.1. Dictionnaire de données	64
IV. 2.3.2. Diagramme de classe	65
IV. 3. Réalisation:	65
IV. 3.1. TopBar	66
IV. 3.1.1. Rechercher	66
IV. 3.1.2. Mode jour	66
IV. 3.1.3. Profil	67
IV. 3.2. Interface d'inscription	1
IV. 3.3. Interface d'authentification	1
IV. 3.4. Interface de Dashboard	2
IV. 3.5. Les interfaces des trames de données	3
IV. 3.5.1. Interface de la table « Informations générales »	3
IV. 3.5.2. Interface de la table des autres questions	
IV. 3.5.3. Interface du tableau des clusters	5
IV. 3.5.4. Interface de la liste des utilisateurs	5
IV. 3.6. Interface de Chart Line	
IV. 4. Conclusion	7
CONCLUSION GENERALE ET PERSPECTIVES	8
BIBLIOGRAPHIE	10
PIDLIOUNAI IIIE	IV

Table des figures

Figure I-1. Logo de la société Naxxum	2
Figure I-2. Les services offerts par Naxxum [1]	2
Figure I-3. Les technologies utilisées par Naxxum [1]	2
Figure I-4. Organigramme de la société Naxxum Mea	2
Figure I-5. Logo de Queney [2]	3
Figure I-6. Logo de JAYEG [3]	3
Figure I-7. Les conditions pour effectuer la qualification des réponses	2
Figure I-8. Regroupement en fonction du critère « Genre »	3
Figure I-9. Architecture de la méthodologie de KDD [5]	6
Figure I-10. Architecture de la méthodologie de SEMMA [7]	7
Figure I-11. Architecture de la méthodologie de CRISP-DM [9]	8
Figure I-12. Diagramme de Gantt	11
Figure II-1. Architecture trois-tiers [12]	16
Figure II-2. Architecture MVC de l'application Web [14]	17
Figure II-3. K-means avec différents nombres de clusters	24
Figure II-4. Mean-Shift pour un nombre de clusters égal à 3	25
Figure II-5. DBSCAN avec 3 valeurs différentes d'épsilon [38]	26
La figure III-1 représente un document ayant l'identifiant de la campagne « Votre profil »	33
Figure III-2. Reporting d'une campagne dans le Backoffice de l'application "JAYEG"	34
Figure III-3 Type de données et réponses possibles pour chaque question de la campagne "Pour m	ieux
vous servir"	35
Figure III-4 Type de données et réponses possibles pour chaque question de la campagne "Votre	
profil"	36
Figure III-5 Type de données et réponses possibles pour chaque question de la campagne "Queney	/" 36
Figure III-6. Exemple de réponses incohérentes pour les questions relatives au genre	37
Figure III-7. Nombre de réponses vides	38
Figure III-8: Le dictionnaire	40
Figure III-9. Fonction pour effectuer la jointure entre les trois campagnes	41
Figure III-10. Un exemple illustrant avant et après la normalisation.	42
Figure III-11. Fonction compatible_columns	43
Figure III-12. Fonction compatible_columns_lignes	43
La figure III-13 représente le résultat de la fonction compatible_columns_lignes :	44
Figure III-14 . Résultat de la fonction compatible_columns_lignes	44

Figure	III-15. Fonction compatible_columns_colonnes	.44
La figu	re III-16 représente le résultat de la fonction compatible_columns_colonnes :	.45
Figure	III-17. Résultat de la fonction compatible_columns_lignes	.45
Figure	III-18. Trame de données structurée pour les critères "Genre" et "Age".	.46
Figure	III-19. Trame de données des critères	.47
Figure	III-20. Trame de données des autres questions	.48
Figure	III-21. Traitement des colonnes catégorielles	.49
Figure	III-22. Trame de données encodée	.49
Figure	III-23. Application du Mean-Shift	.50
Figure	III-24. Nombre de clusters obtenus	.50
Figure	III-25. Les caractéristiques d'un cluster	.51
Figure	III-26. Trame de données des caractéristiques des clusters	.51
Figure	III-27: Valeur de l'indice de silhouette moyen	.52
Figure	IV-1: Diagramme du cas d'utilisation	.56
Figure	IV-2. Diagramme de séquences du cas d'utilisation « S'inscrire »	.61
Figure	IV-3. Diagramme de séquence du cas d'utilisation « S'authentifier »	.62
Figure	IV-4. Diagramme de séquences du cas d'utilisation « Activer un compte »	.63
Figure	IV-5. Diagramme de séquences du cas d'utilisation « Désactiver un compte »	.64
Figure	IV-6. Diagramme de classe	.65
Figure	IV-7: Capture du TopBar	.66
Figure	IV-8: Alerte de recherche 'Aucun résultat trouvé'	.66
Figure	IV-9: Mode nuit	.67
Figure	IV-10: Mode jour	.67
Figure	IV-11: Profil	.67
Figure	IV-12. Interface d'inscription	1
Figure	IV-13. Interface d'authentification	2
Figure	IV-14. Interface de Dashboard	3
Figure	IV-15. Interface de la table "Informations générales"	4
Figure	IV-16. Interface de la table des autres questions posées	4
Figure	IV-18. Interface des Clusters	5
Figure	IV-19. Interface de la liste des utilisateurs	6
	IV-20. Interface de Line Chart	6

Table des tableaux

Tableau	I-1. Tableau comparatif des méthodologies	9
Tableau	II-1. Environnement matériel	.17
Tableau	II-2: Environnements logiciels	.18
Tableau	II-3. Technologies Front-end.	.19
Tableau	II-4. Technologies Back-end	.19
Tableau	II-5 Comparaison des techniques d'apprentissage automatique	.22
Tableau	II-6. Les étapes du K-means [31]	.23
Tableau	II-7. Étapes pour appliquer l'algorithme de Mean-Shift [34]	.25
Tableau	II-8. Les étapes pour appliquer l'algorithme de DBSCAN [37]	.26
Tableau	II-9. Comparaison des algorithmes de regroupement	.27
Tableau	II-10: Bibliothèques utilisées	.29
Tableau	II-11: Modules utilisés	.29
Tableau	II-12. Classes utilisées	.30
Tableau	III-1. Les étapes de l'extraction des données	.34
Tableau	III-2. Composition des fichiers CSV	.35
Tableau	III-3. Description de l'utilité de chaque caractéristique dans le profiling	.39
Tableau	IV-1. Description textuelle du cas d'utilisation « Consulter le tableau de bord »	.57
Tableau	IV-2. Description textuelle du cas d'utilisation « Télécharger une trame de doonées »	.57
Tableau	IV-3. Description textuelle du cas d'utilisation « Gérer les administrateurs »	.58
Tableau	IV-4. Description textuelle du cas d'utilisation « S'inscrire »	.60
Tableau	IV-5. Description textuelle du cas d'utilisation « S'authentifier »	.61
Tableau	IV-6. Dictionnaire de données	.65

Acronymes

SEMMA: Sample, Explore, Modify, Model, Assess

CRISP-DM: Cross-Industry Standard Process

KDD: Knowledge, Discovery, Data Mining

ML: Machine Learning

TAL: traitement des langues automatique

MinPts: nombre minimum de points

NLP: Natural language processing

DBSCAN: Density-based Spatial Clustering of Applications with Noise

Ast: Arbres Syntaxiques Abstraits

Nltk : Natural Language Toolkit

MVC : Model-View-Controller

Introduction générale

Le profilage des clients consiste à recueillir, analyser et exploiter des données pertinentes sur les clients afin de dresser leur portrait de manière détaillée. Cette pratique permet d'obtenir des informations précieuses sur leurs comportements, leurs préférences, leurs habitudes d'achat, et bien d'autres éléments clés. Grâce à ces connaissances, les entreprises peuvent ajuster leur offre, personnaliser leurs communications, et offrir des expériences client plus pertinentes et satisfaisantes.

La gestion efficace de la relation client est essentielle pour assurer la réussite d'une entreprise. Dans un contexte concurrentiel où les clients sont de plus en plus exigeants et informés, il est primordial de développer des approches stratégiques visant à mieux comprendre et anticiper leurs besoins. C'est dans cette optique que le profilage client et l'apprentissage automatique ont pris une place prépondérante.

Avec la quantité massive de données disponibles de nos jours, il devient complexe de traiter ces informations de manière manuelle et efficace. C'est là que l'apprentissage automatique entre en jeu. L'apprentissage automatique est un domaine de l'intelligence artificielle qui permet aux ordinateurs d'apprendre à partir des données et de prendre des décisions ou d'effectuer des prédictions de manière autonome. En utilisant des algorithmes sophistiqués, l'apprentissage automatique permet d'analyser et d'exploiter les données de profilage client de manière rapide et précise, facilitant ainsi la prise de décisions éclairées et la mise en place de stratégies efficaces.

Ce projet ambitieux vise à développer un système de profilage automatisé en utilisant des techniques de Machine Learning. L'objectif principal est de créer un modèle prédictif capable d'analyser des données client complexes et de générer des profils précis. Nous cherchons à exploiter efficacement les données disponibles pour comprendre les utilisateurs de l'application JAYEG. Grâce à ce modèle prédictif, QUENEY pourra prendre des décisions éclairées et personnalisées, adaptées aux besoins spécifiques de chaque client.

Ce rapport présentera en détail la méthodologie et les étapes nécessaires à la mise en place de ce système de profilage automatisé. Il s'articule autour de quatre chapitres :

Le premier chapitre est un chapitre introductif dans lequel nous présenterons en détail les différentes étapes de ce projet. Nous commencerons par une introduction du cadre général, en mettant en lumière l'importance du profilage client et les avantages de son automatisation. Une analyse de l'existant est réalisée pour mettre en évidence la problématique à résoudre, suivie d'une proposition de solution. La méthodologie de travail adoptée et la planification du projet sont également abordées.

Le deuxième chapitre décrit les objectifs spécifiques du projet, les outils et les technologies utilisés mises en œuvre. L'environnement de travail, tant matériel que logiciel, est également décrit, suivi d'une explication de l'intégration du Traitement Automatique des Langues (TAL) et de l'apprentissage automatique dans le projet.

Le troisième chapitre propose une solution basée sur le ML. Nous présenterons en détail la solution proposée, en décrivant les modèles de Machine Learning utilisés et les techniques de prétraitement des données.

Le quatrième chapitre, quant à lui, se concentre sur le déploiement de la solution proposée. Il présente une modélisation conceptuelle à l'aide de différents diagrammes pour représenter la structure du système. La réalisation pratique de l'application est également abordée, avec des descriptions des interfaces utilisateur et des fonctionnalités clés.

Enfin, nous évaluerons les résultats obtenus, en analysant les performances du modèle, sa capacité à générer des profils précis et sa valeur ajoutée pour les entreprises. Nous discuterons également des limites et des perspectives d'amélioration du système, ouvrant ainsi la voie à de futures recherches et développements.

Chapitre I

Présentation du cadre de projet

I. Présentation du cadre de projet

I. 1. Introduction

Le premier chapitre de ce rapport est consacré à l'introduction du cadre général du projet et à la description des exigences. Nous entamerons cette section en présentant l'organisation d'accueil, qui joue un rôle central dans la réalisation de ce projet. Ensuite, nous aborderons la problématique qui motive notre démarche et l'étude approfondie de l'existant. Enfin, nous présenterons la solution que nous proposons pour répondre à cette problématique.

Ce chapitre constitue une étape essentielle pour comprendre le contexte dans lequel s'inscrit notre projet et les objectifs que nous visons. Il nous permettra également de poser les bases nécessaires à la compréhension des chapitres suivants, où nous détaillerons les étapes de mise en œuvre de notre solution.

I. 2. Cadre général

Nous allons développer une solution innovante qui permet l'automatisation du modèle de profiling des clients basé sur les données collectées. Ce modèle a pour objectif de réaliser des croisements des réponses d'un même utilisateur suite à sa participation aux campagnes lancées par l'application JAYEG en vue de vérifier la validité de ses réponses et ajuster son profil selon les informations vérifiées. Cette solution vise à améliorer l'efficacité et la productivité en automatisant les processus clés et en offrant des outils d'analyse avancés.

I. 3. Présentation de l'organisme d'accueil

Dans cette partie nous allons présenter l'organisme d'accueil tout en mentionnant les services et les technologies adoptées par la société.

I. 3.1. Description de l'organisme

Fondée en 2014, Naxxum [1] est une société mondiale de conseil en informatique et de de développement de logiciels personnalisés avec plus de 400 projets livrés. Naxxum offre à ses clients et partenaires une suite de produits numériques permettant de transformer une idée de l'état embryonnaire à la concrétisation et au développement d'un business réel. Présente dans huit pays, dont le Qatar, le Canada, la France, les Philippines, Madagascar, la Tunisie, le Maroc

et l'Algérie, Naxxum bénéficie d'une portée internationale pour répondre aux besoins et aux exigences de ses clients à travers le monde.

Figure I-1. Logo de la société Naxxum

I. 3.2. Les services offerts par Naxxum

Naxxum offre une gamme variée de service et se distingue par sa capacité à s'adapter en fonction des besoins changeants et des avancées technologiques. Grâce à sa flexibilité, la société est en mesure d'offrir des solutions performantes, tout en maintenant un haut niveau de qualité et de satisfaction client.

La figure I-2 extraite du site officiel de Naxxum représente les différents services offerts par Naxxum :

Figure I-2. Les services offerts par Naxxum [1]

I. 3.3. Les technologies adoptées par Naxxum

Naxxum reste constamment à l'affût des dernières avancées technologiques, elle utilise des technologies de pointe pour le développement de ses solutions, que ce soit pour le front-end web, le back-end web ou les applications mobiles.

La figure I-3 représente les différentes technologies utilisées par Naxxum :

Figure 1-3. Les technologies utilisées par Naxxum [1]

I. 3.4. Organigramme de la société

Notre stage est réalisé au sein de Naxxum Mea en Tunisie. Nous présentons la hiérarchie de la société par l'organigramme suivant :

Figure 1-4. Organigramme de la société Naxxum Mea

I. 3.5. Description de Queney

Queney (Question for money) est une Business Unit au sein de Naxxum Mea, qui explore de nouvelles méthodes de collecte d'informations sur les utilisateurs. Queney a choisi l'utilisation de la gamification pour encourager les utilisateurs à partager davantage d'informations sur eux-mêmes en lançant des challenges amusants et interactifs qui offrent des récompenses en échange d'informations sur leurs préférences et leurs comportements. Grâce à cette approche, nous sommes en mesure de collecter des données plus précises des utilisateurs, sans qu'ils aient l'impression d'être surveillés ou de subir une enquête. Ces données nous permettent de mieux comprendre les besoins et les attentes des utilisateurs.

Figure 1-5. Logo de Queney [2]

Dans le contexte de notre projet, l'application étudiée sera « JAYEG » :

JAYEG est une application qui permet aux abonnés mobile Orange Tunisie de gagner instantanément de l'internet mobile en regardant des vidéos et en participant à des campagnes contenant des questionnaires qui permettent par la suite de collecter des informations sur les utilisateurs pour mieux les connaître et comprendre leurs besoins.

Figure 1-6. Logo de JAYEG
[3]

I. 4. Analyse de l'existant

Nous entamons maintenant l'analyse de l'existant afin d'identifier les points faibles à corriger. Le processus du profiling existant suit ses étapes :

- L'extraction les réponses des utilisateurs, qui peuvent atteindre un nombre important, pouvant dépasser les 10 000 utilisateurs, et nous les exportons dans un fichier Excel au format xlsx.
- 2. L'établissement des relations entre les questions et croisement des réponses possibles pour créer un tableau représentant toutes les conditions envisageables afin de vérifier la cohérence. Cette étape implique une classification manuelle des questions et leur regroupement, ce qui permet d'organiser les questions de manière structurée et de faciliter leur analyse ultérieure.

La Figure I-7 tirée du fichier préparé montrant les croisements des questions possibles suivis de la qualification pour chaque cas :

Quel est ton age		
Q=626faf67817db3001f653998; C=627008c74307c7001f0838ed	Q=6267a85072e4c0002a4be892; C=6267b64772e4c0002a4bf803	
Moins de 18 ans	Moins de 2004	COHERENCE
Entre 18 et 24 ans	1998 - 2004	COHERENCE
Entre 25 et 34 ans	1988 - 1997	COHERENCE
Je suis ?		
Q=626fadd9a43c670020803205; C=627008c74307c7001f0838ed		
Les réponses doiver	t etre iddentiques	COHERENCE
Je suis		
Q=626fafb1a43c67002080323f; C=627008c74307c7001f0838ed	Q=6267a85072e4c0002a4be892; C=6267b64772e4c0002a4bf803	
college	Moins de 2004	COHERENCE
lycee	Moins de 2004	COHERENCE
Université	1988 - 2004	COHERENCE
Parmi les catégories suivantes, laquelle décrit le mieux votre statut professionnel actuel ?		
Parmi les categories suivantes, iaqueile décrit le mieux votre statut professionnel actuel : Q=6266973f72e4c0002a4bd225: C=6267b64772e4c0002a4bf803		
Q=6266973172e4C0U028400225; C=6267064772e4C0U028401803		
Etudiant	Au college	COHERENCE
Etudiant	Au lycee	COHERENCE
Etudiant	Université	COHERENCE
Quel est votre plus haut niveau d'éducation ?		
Q=62729b5d817db3001f654558; C=6273e424a43c670020805557		
Ecole primaire	université	INCOHERENCE
Ecole secondaire	université	INCOHERENCE
Université	College /lycee	INCOHERENCE
3 ^{ème} cycle	College /lycee	INCOHERENCE
Doctorat	College /lycee	INCOHERENCE
Avez -vous un permis de conduire	Etes-vous motorisé	
Q=626fb767817db3001f653a01; C=627008c74307c7001f0838ed	Q=6272a0fc0800b3002047df7a; C=6273e424a43c670020805557	
Oui	Oui	COHERENCE
Non	Oui	INCOHERENCE
non	I vai	THE OTHER PROPERTY.

Figure 1-7. Les conditions pour effectuer la qualification des réponses

- 3. La comparaison manuelle des réponses correspondantes : Cela implique un examen attentif des réponses fournies par les utilisateurs, à la recherche de similitudes, de différences ou de contradictions en fonction des conditions établies. Cette étape permet de détecter d'éventuelles incohérences ou divergences dans les réponses des utilisateurs.
- 4. La prise de décisions est basée sur l'analyse et la comparaison des réponses, quant à leur cohérence. Les réponses sont considérées comme cohérentes si elles concordent et nous les jugeons incohérentes si elles présentent des divergences significatives en fonction

des conditions définies. Cette évaluation se fait pour chaque critère spécifique dans une feuille unique.

La figure I-8 montre le résultat de l'attribution de la qualification pour chaque utilisateur pour le critère « Genre » :

Figure I-8. Regroupement en fonction du critère « Genre »

I. 5. Problématique

Le processus de profilage des clients est actuellement réalisé de manière manuelle, ce qui présente plusieurs limitations et peut avoir un impact négatif sur l'efficacité des campagnes. Ces limitations comprennent :

• Temps et ressources: Le processus manuel de profilage des clients est fastidieux et demande beaucoup de temps et de ressources. Les équipes marketing doivent collecter, analyser et interpréter manuellement un grand volume de données pour identifier les caractéristiques et les comportements des clients. Cela peut entraîner des retards dans la mise en place des campagnes marketing et une utilisation inefficace des ressources humaines.

- Erreurs et subjectivité: Lorsque le profilage est effectué manuellement, il y a un risque accru d'erreurs et de subjectivité. Les interprétations individuelles peuvent varier, ce qui peut entraîner une segmentation inexacte des clients et une compréhension incomplète de leurs besoins et préférences. Ces erreurs peuvent conduire à des actions marketing mal ciblées et à un gaspillage de ressources.
- Manque de scalabilité: Le processus manuel de profilage des clients n'est pas facilement scalable pour des volumes de données importants. Avec la croissance des données disponibles, il devient de plus en plus difficile de gérer efficacement le profilage manuel pour un grand nombre de clients. Cela limite la capacité des entreprises à analyser et à exploiter pleinement les données pour des campagnes marketing personnalisées et ciblées.

Ces limitations ont des conséquences directes sur l'efficacité des campagnes lancées. En raison du processus manuel, Queney peut manquer de comprendre réellement les besoins et les préférences des utilisateurs, ce qui conduit à des actions marketing moins pertinentes. Cela peut entraîner une baisse du taux de conversion, une augmentation des coûts marketing et une insatisfaction des utilisateurs. De plus, l'incapacité à gérer efficacement les volumes de données peut limiter la capacité des entreprises à s'adapter rapidement aux évolutions du marché et à saisir de nouvelles opportunités.

I. 6. Solution proposée

Le projet consiste à mettre en place un système d'aide à la décision et plus précisément le ciblage dédié à la déduction de la cohérence des informations des utilisateurs à travers leurs réponses à des campagnes lancées par l'application JAYEG afin de pouvoir analyser leurs comportements pour anticiper leurs besoins et intérêts.

La solution se base sur :

- La mise en place d'un système d'analyse des réponses fournies par les utilisateurs :
 - o Traitement des données.
 - o Définition les critères de profiling.
 - o Implémentation d'un modèle d'apprentissage automatique.

- o Implémentation d'un dictionnaire afin d'améliorer les résultats du modèle.
- Déduction de la cohérence d'une réponse à travers la comparaison avec des questions similaires.
- Intégration des données en récupérant les différentes fichiers Excel et de les regrouper dans une seule base unique.
- Restitution des données en créant des tableaux de bords afin de visualiser et analyser les réponses des utilisateurs pour mettre à jour et affiner leurs profils, en les classant de manière plus précise en fonction de leurs caractéristiques.

I. 7. Méthodologie de travail

Dans notre projet, nous avons suivi un processus de conception méthodique pour assurer la productivité et l'optimisation de la phase de réalisation, tout en estimant correctement le temps de développement. Dans cette partie, nous expliquons notre approche justifiée afin d'atteindre les objectifs fixés.

I. 7.1. Exploration des méthodologies

La définition des méthodes SEMMA, KDD et CRISP-DM sera abordées dans la partie suivante

I. 7.1.1. KDD

KDD [4], abréviation de "Knowledge Discovery in Databases" (découverte de connaissances dans les bases de données), est un processus largement utilisé qui répond aux besoins des entreprises. Cette technique englobe la préparation, la sélection et le nettoyage des données, ainsi que l'intégration de connaissances préexistantes sur de grandes quantités de données, et l'interprétation de solutions précises à partir des résultats observés.

Le processus KDD fait appel à des méthodes de Data Mining et comporte cinq étapes :

- Sélection :
 Cette étape a pour objectif de choisir les données à analyser.
- Prétraitement :

Il s'agit d'une étape visant à obtenir des données cohérentes en nettoyant et en prétraitant les données ciblées.

• Transformation:

Cette étape vise à transformer les données à l'aide de méthodes afin de réduire et de transformer les dimensions.

• Data Mining:

Cette étape a pour but de trouver des modèles qui correspondent aux objectifs du Data Mining.

• Interprétation / Évaluation :

Il s'agit de l'étape où les modèles construits sont interprétés et évalués.

Figure I-9. Architecture de la méthodologie de KDD [5]

I. 7.1.2. SEMMA

SEMMA [6] est une méthode développée par l'institut SAS qui facilite et rend plus compréhensible le processus d'exploration, de visualisation, de sélection, de transformation et de modélisation des données pour un data scientist. La signification de SEMMA, "Échantillon, Explorer, Modifier, Modèle, Évaluer", se réfère aux cinq étapes du processus d'un projet de Data Mining :

• Échantillon : L'échantillonnage consiste à extraire une partie significative et moins volumineuse d'un ensemble de données pour faciliter leur manipulation rapide.

- Explorer : Cette étape vise à rechercher les tendances et les anomalies inattendues lors de l'exploration des données, dans le but d'acquérir une compréhension approfondie.
- Modifier : La modification des données consiste à créer, sélectionner et transformer des variables afin de garantir le processus de sélection du modèle.
- Modèle : Cette étape consiste à construire un modèle adapté pour résoudre les problématiques du Data Mining.
- Évaluer : L'évaluation de l'utilité et de la fiabilité des résultats du processus de Data
 Mining, ainsi que l'estimation des performances des données.

Figure I-10. Architecture de la méthodologie de SEMMA [7]

I. 7.1.3. CRISP-DM

CRISP-DM [8] est une méthode qui permet de gérer les projets de Data Mining. Plusieurs entreprises utilisent cette méthode car elle a prouvé son efficacité dans le domaine et est devenue le processus le plus couramment utilisé pour les projets de Data Mining.

La méthode comprend un cycle de six étapes :

 Compréhension du domaine : Cette première étape consiste à bien identifier le périmètre, la nécessité et les ressources du projet. Elle comprend l'évaluation des risques, des avantages, des coûts et la planification du projet.

- Compréhension des données : Cette étape consiste à explorer et à obtenir une vue d'ensemble de la qualité des données en identifiant les besoins et en effectuant une collecte de données.
- Préparation des données : Il s'agit d'une étape qui vise à sélectionner, nettoyer, formater et intégrer les données. La préparation des données nécessite des transformations et des enrichissements afin de permettre une analyse plus approfondie. Cette partie est souvent la plus longue des projets de Data Mining.
- Modélisation : Dans cette étape, une technique de modélisation est choisie et ses paramètres sont calibrés pour obtenir les meilleures valeurs possibles.
- Évaluation : Cette étape implique une évaluation approfondie du modèle obtenu et la révision des étapes de construction du modèle pour s'assurer qu'il atteint avec succès les objectifs commerciaux.
- Déploiement : Dans cette étape, nous devons déployer notre projet sur un système où tous nos besoins seront exécutés. Nous effectuons également un examen final du projet suivi d'une planification pour les phases suivantes.

Figure I-11. Architecture de la méthodologie de CRISP-DM [9]

I. 7.2. Comparaison entre les méthodes

Le tableau I-1 représente une comparaison faite entre les trois méthodologies [10] en fonction de leur origine, de leur domaine d'application, de leur flexibilité, de leur popularité, ainsi que de leurs avantages et limites.

Méthodologie	KDD	CRISP-DM	SEMMA
Origine	Domaine de la découverte de connaissances dans les bases de données	Développée par le consortium CRISP- DM	Développée par SAS Institute
Domaine d'application	Analyse de grandes quantités de données pour la découverte de connaissances	Projet de Data Mining dans divers domaines	Analyse de données pour la résolution de problèmes complexes
Flexibilité	Offre une approche générale et flexible pour la découverte de connaissances	Offre une méthodologie structurée et itérative pour les projets de Data Mining	Offre une approche spécifique et structurée pour la résolution de problèmes complexes
Popularité	bien connue et largement utilisée	Couramment utilisée dans l'industrie du Data Mining	Utilisée dans les produits logiciels de SAS Institute
Avantages	Prise en compte de l'intégration de connaissances préexistantes, résultats précis	Approche itérative, flexibilité, adaptation aux projets de Data Mining	Approche spécifique pour les problèmes complexes, mise en œuvre pratique
Les limites	Peut nécessiter une préparation intensive des données, complexité de l'interprétation des résultats	Peut-être trop générique pour certains projets spécifiques, dépendant du contexte	Nécessite l'utilisation d'outils spécifiques de SAS Institute

Tableau I-1. Tableau comparatif des méthodologies

I. 7.3. Méthode adoptée :

Nous avons choisi de suivre le processus CRISP-DM pour plusieurs raisons. Parmi celles-ci, ce modèle se distingue des deux autres modèles principalement par sa phase de compréhension du métier, qui joue un rôle essentiel dans la réussite d'un projet de Data Mining. Il met également l'accent sur le déploiement du modèle pour mettre la solution en production, nous permettra de créer une stratégie à long terme qui améliore la stratégie préalablement développée. De plus, CRISP-DM propose un processus itératif avec la possibilité d'effectuer des allers-retours entre les différentes étapes ce qui nous permettra de procéder à des adaptations continuelles pour une amélioration continue de notre stratégie et de nos résultats.

I. 8. Planification du projet

La durée de notre stage s'est déroulée sur une période de 4 mois, débutant du début février jusqu'à la fin du mois de juin. La planification du projet se fera en suivant une méthodologie rigoureuse et structurée. Nous diviserons le travail en différentes phases afin de garantir une progression cohérente et efficace.

- 1. Au cours de la phase initiale, nous nous concentrerons sur la compréhension approfondie du problème métier, en analysant les besoins et en définissant clairement les objectifs à atteindre.
- 2. Ensuite, nous procéderons à la phase de collecte et d'exploration des données, où nous examinerons attentivement les sources de données disponibles, leur qualité et leur pertinence pour notre projet. Cette étape sera suivie par la phase de préparation des données, au cours de laquelle nous effectuerons des opérations de nettoyage, de transformation et de normalisation pour assurer la qualité et la cohérence des données utilisées dans notre projet.
- 3. Par la suite, nous entamerons la phase de modélisation, où nous sélectionnerons les techniques et les algorithmes d'apprentissage automatique les plus adaptés à notre problème. Nous entraînerons et ajusterons ces modèles en utilisant les données préalablement préparées. Une fois les modèles développés, nous évaluerons leurs performances à l'aide de métriques appropriées pour mesurer l'efficacité de notre approche.

4. Enfin, nous procéderons au déploiement de la solution, intégrant les résultats de notre projet dans une application fonctionnelle prête à être utilisée par les utilisateurs finaux. Tout au long du projet, nous veillerons à itérer entre les différentes étapes, en effectuant des ajustements et des améliorations au besoin, afin d'assurer une progression continue et une adaptation aux besoins du projet.

La rédaction du rapport s'est étalée sur tout le long de la durée du stage

Figure I-12. Diagramme de Gantt

I. 9. Conclusion

Dans ce premier chapitre, nous avons introduit le cadre général du projet et décrit les exigences qui le guident. Nous avons commencé par présenter l'organisation d'accueil. Ensuite, nous avons exposé la problématique à laquelle nous nous confrontons, en soulignant l'importance de trouver une solution adaptée. Nous avons également effectué une étude de l'existant, ce qui nous a permis de mieux comprendre le contexte et les enjeux liés à notre projet.

Pour répondre à cette problématique, nous avons développé une solution que nous présenterons en détail dans les chapitres suivants. Cette solution vise à apporter des réponses concrètes et efficaces, en utilisant des méthodologies et des outils appropriés.

En somme, ce premier chapitre constitue une base solide pour la suite de notre rapport. Il nous permet de situer notre projet dans son contexte global, de comprendre les enjeux et les besoins, et de définir les fondements de notre approche. Dans les chapitres à venir, nous développerons les différentes étapes de mise en œuvre de notre solution, en mettant en évidence les choix et les résultats obtenus.

Chapitre II

Étude préliminaire

II. Étude préliminaire

II. 1. Introduction

Ce chapitre constitue une étape essentielle de notre projet, car il se concentre sur l'étude préliminaire et la spécification des besoins. Nous débuterons en posant les bases nécessaires à la mise en œuvre de notre solution, en identifiant clairement les exigences et les objectifs à atteindre. Nous aborderons également deux aspects fondamentaux de notre étude, à savoir l'architecture logique et physique, ainsi que l'environnement de travail.

Au cours de cette étude préliminaire, nous mettrons en évidence les différentes techniques et algorithmes que nous avons sélectionnés pour l'apprentissage automatique et le traitement automatique de langues. Nous expliquerons en détail les technologies que nous avons choisies pour le développement du back-end et du front-end de notre application. Ces choix technologiques ont été faits en fonction de leur pertinence et de leur adéquation aux besoins spécifiques de notre projet.

II. 2. Spécification des besoins

Nous allons nous concentrer sur la spécification des besoins liés au développement de la solution.

II. 2.1. Identification des acteurs

Pour chaque rôle bien précis, nous désignons un acteur.

Les acteurs se désignent comme suit :

Admin : Il dispose des droits de visualiser les tableaux de bords, les trames de données nettoyées avant et après l'application des techniques d'apprentissage automatique.

Super Admin : Il s'agit du gestionnaire de l'application Web, il peut gérer les comptes des utilisateurs, il est responsable du maintien du bon fonctionnement de l'application.

II. 2.2. Spécification des besoins fonctionnels

Dans cette partie, nous aborderons les besoins fonctionnels de la solution. Les principaux objectifs sont les suivants :

- Collecte des données stockées dans des fichiers Excel.
- Alimentation de la solution par un modèle d'apprentissage.
- Réalisation d'une solution permettant d'enrichir un dictionnaire de critères de profiling pour renforcer le modèle.
- Visualisation du résultat
- Création des tableaux de bords analytique pour aider l'entreprise à obtenir une idée générale sur les utilisateurs de l'application et mieux les comprendre.

II. 2.3. Spécification des besoins non fonctionnels

La solution proposée devrait avoir les qualités suivantes :

- **Fiabilité**: le système doit fournir aux administrateurs des résultats et des analyses fiables et valides.
- **Précision :** les calculs des prédictions doivent être aussi précis que possible.
- **Performance :** le système doit fournir des données en termes de rapidité et de vélocité pour améliorer ses performances.
- **Utilisation**: l'utilisation doit être simple.

II. 3. Architecture

Nous allons aborder l'architecture de la solution proposée.

II. 3.1. Architecture physique trois-tiers

Une architecture physique en trois tiers [11] sépare les différentes couches fonctionnelles en trois niveaux distincts. Chaque niveau est responsable de tâches spécifiques et interagit avec les

autres niveaux de manière bien définie. Les trois niveaux typiques d'une architecture physique en trois tiers sont les suivants :

- Couche de présentation : Ce niveau est responsable de la présentation de l'interface utilisateur à l'utilisateur final. Il gère l'interaction avec l'utilisateur et fournit une interface conviviale pour entrer et afficher les données.
- Couche logique : Ce niveau contient la logique métier de l'application. Il traite les demandes de l'utilisateur, effectue des calculs, applique des règles métier et accède aux données nécessaires. Cette couche est responsable de la manipulation et de la transformation des données en fonction des règles métier spécifiques de l'application.
- Couche de données : Ce niveau est responsable de la gestion des données utilisées par l'application. Il stocke et récupère les données à partir d'une base de données.

Figure II-1. Architecture trois-tiers [12]

II. 3.2. Architecture logique

Pour clarifier davantage l'interaction entre les calques pendant le traitement effectué dans l'application, nous avons opté pour l'architecture MVC [13] qui illustre les interactions entre les modules.

MVC est un modèle architectural composé de trois parties : Modèle, Vue, Contrôleur.

- Modèle : Gère la logique des données.
- Vue : Affiche les informations du modèle à l'utilisateur.
- Contrôleur : Synchronisation du modèle et de la vue.

Il met l'accent sur une séparation entre la logique métier du logiciel et les détails de la présentation.

La figure II-2 illustre cette architecture :

Figure II-2. Architecture MVC de l'application Web [14]

II. 4. Environnement de travail

Dans cette section, nous exposons l'environnement matériel et logiciel exploité.

II. 4.1. Environnement matériel

Tout au long de ce projet nous avons utilisé deux ordinateurs portables pour assurer tous les traitements nécessaires à la réalisation de ce projet. Ces deux ordinateurs ont les caractéristiques suivantes :

	Ordinateur portable 1	Ordinateur portable 2
Processeur	Intel(R) Core (TM) i7-10510U	11th Gen Intel(R) Core (TM) i5-
	CPU @ 1.80GHz 2.30 GHz	11300H @ 3.10GHz 3.11 GHz
Système d'exploitation	Système d'exploitation 64 bits,	Système d'exploitation 64 bits,
	processeur x64	processeur x64
Mémoire RAM	8,00 Go	8,00 Go
Disque Dur	WDC WD10SPZX-08Z10	
Carte graphique	NVIDIA GeForce MX330	NIVIDIA GEFORCE GTX

Tableau II-1. Environnement matériel

II. 4.2. Environnement logiciel

D'après les spécifications de notre projet nous avons eu besoin des logiciels suivants :

Logiciel	Description	Objectif
Visual Studio Code	Un éditeur de code cross Platform,	Nous avons utilisé ce logiciel
[15]	open source et gratuit supportant	pour développer la partie
×	une dizaine de langages.	front-end et back-end de
		l'application.
Draw.io [16]	C'est un logiciel gratuit disponible	Nous avons utilisé ce logiciel
<u></u>	en ligne. Il permet de concevoir	pour tracer les diagrammes
	toutes sortes de dessins vectoriels	de séquence.
	et de les enregistrer en format XML	
	puis les exporter.	
Visual Paradigm [17]	C'est un outil de conception de	Nous avons utilisé ce logiciel
	diagrammes en ligne.	pour tracer le diagramme de
		cas d'utilisation.
Postman [18]	C'est une application permettant de	Nous avons utilisé ce logiciel
	tester les API.	pour tester non API.
Jupyter Notebook	Jupyter Notebook est un	Nous avons utilisé Jupyter
[19]	environnement de développement	Notebook pour analyser ,
Wovtor	interactif largement utilisé pour	mieux comprendre nos
Jupyter	l'analyse de données, la	données ainsi que visualiser
	visualisation, l'apprentissage	le résultat pour notre travail.
	automatique et d'autres tâches liées	
	à la programmation.	

Tableau II-2: Environnements logiciels

II. 4.3. Technologies adoptées

II. 4.3.1. Technologies Front-end

Le tableau II-3 présente l'ensemble des technologies utilisées pour la réalisation du front-end.

Technologie	Description	
React [20]	React est une bibliothèque JavaScript conçu par Meta pour la création	
	d'interface utilisateurs à partir de composants.	
	JavaScript est un langage de script léger, orienté object utilisé pour le	
JavaScript [21]	développement d'application web interactives. Ce langage permet aux	
-JZ	concepteurs d'ajouter du comportement et de l'interactivité aux sites Web	
	en manipulant le contenu et la structure des pages en réponse aux actions	
	des utilisateurs.	

Tableau II-3. Technologies Front-end

II. 4.3.2. Technologies Back-end

Le tableau II-4 ci-dessous présente l'ensemble des technologies utilisées pour la réalisation du back-end :

Technologie	Description		
	MongoDB est un programme de base de données multiplateforme orienté		
MongoDB [22]	document disponible en source. Classé comme programme de base de		
	données NoSQL, MongoDB utilise des documents de type JSON avec des		
	schémas facultatifs. MongoDB est développé par MongoDB Inc. et sous		
	licence publique côté serveur.		
Flask [23]	Flask est un micro framework open-source de développement web en		
Flask	Python. Il est classé comme microframework car il est très léger.		
	Python est un langage de programmation interprété, polyvalent,		
Python [24]	dynamique et facile à apprendre. Python est un excellent choix en tant que		
	langage de backend pour le développement d'applications web. Sa		
5	bibliothèque standard riche, sa syntaxe claire et sa communauté active en		
	font un langage puissant et apprécié des développeurs.		

Tableau II-4. Technologies Back-end

II. 5. Intégration du Traitement automatique des langues et de l'apprentissage automatique

II. 5.1. Traitement automatique des langues

Le Traitement Automatique des Langues [25] (TAL), également connu sous le nom de Traitement du Langage Naturel (NLP) en anglais, est un sous-domaine de la linguistique, des technologies de l'information et de l'intelligence artificielle qui se concentre sur les interactions entre les ordinateurs et le langage humain. Il englobe la programmation informatique visant le traitement et l'analyse des données exprimées dans un langage naturel. Le NLP vise à permettre aux machines de comprendre, d'interpréter et de générer du langage humain de manière efficace, en utilisant des techniques telles que la reconnaissance automatique de la parole, la traduction automatique, l'analyse sémantique, la génération de texte, la compréhension du langage naturel et bien d'autres. Ces avancées dans le domaine du NLP ouvrent de nombreuses possibilités dans des domaines tels que la recherche d'informations, les chatbots, l'analyse de sentiments, la classification de textes, le résumé automatique, et bien d'autres applications liées au langage humain et à l'interaction homme-machine.

II. 5.1.1. Avantages du TAL

Ci-après quelques avantages [26] offerts par le TAL :

- Traitement efficace d'une grande quantité de données textuelles en analysant rapidement d'énormes volumes de textes, permettant ainsi d'extraire des informations pertinentes et d'en tirer des connaissances précieuses.
- Automatisation des tâches linguistiques telles que la traduction, la génération ou la classification de texte et l'analyse sémantique.
- Faciliter les interactions homme-machine en comprenant et en traitant le langage naturel.

II. 5.1.2. Application pratique du TAL

- Analyse des réponses des utilisateurs afin de comprendre leurs opinions, leurs sentiments et leurs besoins. Cela peut aider à améliorer les produits ou les services proposés en tenant compte des retours des utilisateurs.
- Classification automatique des données textuelles dans des catégories prédéfinies, ce qui peut être utile pour organiser et structurer les informations.
- Extraction d'informations importantes à partir de grandes quantités de données textuelles, facilitant ainsi l'analyse et l'interprétation des données.

II. 5.2. Apprentissage automatique :

L'apprentissage automatique [27], également connu sous le nom de Machine Learning, est un domaine de l'intelligence artificielle qui se concentre sur le développement de techniques permettant aux ordinateurs d'apprendre à partir des données et d'accomplir des tâches spécifiques sans être explicitement programmés. Il repose sur l'idée de permettre aux machines d'acquérir des connaissances à partir de l'expérience et de s'améliorer au fil du temps au lieu de suivre des instructions précises. Les algorithmes peuvent analyser des ensembles de données volumineux pour extraire des informations précieuses, même dans des situations où les relations entre les variables sont complexes et non linéaires.

5.2.1. Les techniques d'apprentissage automatique

Nous allons explorer les techniques d'apprentissage automatique [28] afin de choisir la technique convenable à notre projet

II. 5.2.1.1. Régression :

La régression est une technique d'apprentissage automatique utilisée pour modéliser la relation entre une variable de sortie continue et des variables d'entrée. L'objectif est de prédire des valeurs numériques en se basant sur les relations et les tendances présentes dans les données d'entraînement.

II. 5.2.1.2. Regroupement (Clustering):

Le regroupement est une méthode d'apprentissage non supervisé utilisée pour identifier des structures ou des groupes similaires dans un ensemble de données. Les algorithmes de regroupement cherchent à regrouper les données en fonction de leurs similarités, sans avoir d'étiquettes de classe préexistantes.

II. 5.2.1.3. Classification:

La classification est une technique d'apprentissage automatique utilisée pour prédire une variable de sortie discrète ou catégorique en fonction des caractéristiques d'entrée. L'objectif est de trouver des modèles et des règles permettant de classer correctement de nouvelles instances dans des classes prédéfinies.

II. 5.2.2. Technique choisie

Comparons ces trois techniques en fonction de certains critères pour déterminer laquelle est la mieux adaptée à notre sujet.

Algorithme	Critères			
	Nature des données	Objectif de l'analyse		
	Les variables de sortie sont continues,	L'objectif de la régression est		
	c'est-à-dire des valeurs numériques.	de prédire des valeurs		
Régression		continues et de modéliser la		
		relation entre les variables		
		d'entrée et de sortie.		
	Utilisé lorsque nous souhaitons identifier	L'objectif du regroupement		
	des structures similaires ou des groupes	est de trouver des structures		
Dogwoynomont	au sein de nos données, sans avoir de	similaires ou des groupes		
Regroupement	variables de sortie prédéfinies.	dans les données sans avoir		
		d'étiquettes de classe		
		préexistantes.		
	Utilisée lorsque nous avons des variables	L'objectif de la classification		
Classification	de sortie discrètes ou catégoriques.	est de prédire la classe ou la		
		catégorie d'une variable de		
		sortie en se basant sur les		
		caractéristiques d'entrée.		

Tableau II-5 Comparaison des techniques d'apprentissage automatique

Pour notre sujet, nous cherchons à regrouper des données similaires, notre objectif principal est de regrouper les profils similaires à partir de nos données, le regroupement s'avère la technique la plus adaptée.

II. 5.2.3. Les algorithmes de regroupement

Suite à notre choix du regroupement, nous allons maintenant explorer les algorithmes [29] de cette technique et leurs étapes d'application.

II. 5.2.3.1. K-means

K-means [30] partitionne les données en k clusters où k est un nombre prédéfini par l'utilisateur. Il converge vers une solution finale où les points de données sont regroupés de manière à minimiser la distance moyenne entre les points et les centres de cluster.

Le tableau II-6 présente les étapes du K-means:

Étapes	Description	
Initialisation	Sélectionner aléatoirement k centres de clusters à partir des données	
intialisation	d'entrée.	
Attribution des	Chaque point de données est attribué au centre de cluster le plus proche	
points	en calculant la distance entre eux.	
Mise à jour des	Recalculer les positions des k centres de cluster.	
centres de		
cluster		
Boucle itérative	Répéter les deux étapes précédentes jusqu'à ce que les centres ne bougent	
Boucie nerative	plus.	
Sortie	Les centres de cluster déterminent les groupes dans lesquels les points de	
Sortie	données sont regroupés.	

Tableau II-6. Les étapes du K-means [31]

La figure II-3 représente un exemple d'application de K-means avec différentes valeurs de clusters :

Figure II-3. K-means avec différents nombres de clusters

II. 5.2.3.2. Meanshift

Mean-Shift [33] est un algorithme itératif qui a pour objectif de faire converger un point vers le maximum local le plus proche. Cet algorithme est basé sur une approche de déplacement de densité. Il fonctionne en déplaçant itérativement les centres de cluster vers les régions de densité maximale des données.

Le tableau II-7 présente les étapes du Mean-Shift :

Étapes	Description		
Initialisation	Chaque point de données est utilisé comme centre initial.		
	Pour chaque centre, une fenêtre de noyau (kernel window) est définie		
Calcul de la	autour de ce centre, sa taille est déterminée par un paramètre de bande		
densité	passante (bandwidth) qui contrôle l'influence des points à l'intérieur qui		
	sont considérés comme des voisins.		
Déplacement	Déplacement en fonction de la moyenne pondérée des positions des points		
_	voisins. Cette étape est répétée jusqu'à ce que les centres ne se déplacent		
des centres	plus.		
Attribution des	Chaque point est attribué au centre le plus proche en fonction du calcul		
points	de la distance.		
Réduction du	Étape supplémentaire : les centres très proches peuvent être fusionnés en		
nombre des	un seul cluster pour éviter la fragmentation.		
clusters			

Tableau II-7. Étapes pour appliquer l'algorithme de Mean-Shift [34]

Figure II-4. Mean-Shift pour un nombre de clusters égal à 3

II. 5.2.3.3. DBSCAN

DBSCAN [36] identifie les régions denses de points de données et les regroupe en clusters en utilisant l'estimation de la densité locale. Il peut également détecter les points de données qui ne font partie d'aucun cluster. Son fonctionnement repose sur deux paramètres principaux :

- Epsilon (ε): une mesure de la distance maximale qui sépare deux points. Lorsque tous les points ont une distance inférieure ou égale à ε d'un autre point, ils sont considérés comme appartenant à son voisinage direct.
- 2. Le nombre minimum de points (MinPts) : C'est le nombre minimal de voisins pour qu'un point soit considéré comme un point central et pas un point aberrant.

Le tableau II-8 présente les étapes du DBSCAN :

	Étapes	Description
	Sélection d'un point de	Un point de départ non visité est choisi aléatoirement parmi les données d'entrée.
	départ	
	Recherche des	Examiner l'epsilon du point de départ pour déterminer les
Répétitions	voisins	points voisins de ce dernier.
de ces étapes pour tous les points non visités	Vérification de la densité	 Nombre de voisins >= MinPts : Le point de départ est considéré comme un point central et un nouveau cluster est créé. Sinon : Le point de départ est marqué comme une un point de bruit
	Expansion du	Ajout des points voisins du point central au cluster.
	cluster	
Exploration des autres points		L'arrêt du processus de répétitions des étapes précédentes lorsque tous les points soient attribués à un cluster ou marqués comme un bruit.
Sortie		Les points attribués à un même cluster sont regroupés ensembles.

Tableau II-8. Les étapes pour appliquer l'algorithme de DBSCAN [37]

Figure II-5. DBSCAN avec 3 valeurs différentes d'épsilon [38]

II. 5.2.4. Comparaison entre les algorithmes et l'algorithme choisi

Le tableau II-9 présente une comparaison faite entre K-means, DBSCAN et Mean-Shift :

Critères	K-means	DBSCAN	Mean-Shift
Paramètres	Nombre de clusters (k)	Epsilon MinPts	bandwidth
Choix de clusters	L'utilisateur doit spécifier le nombre de clusters.	Détermine automatiquement le nombre de clusters.	
Inconvénients	Sensible aux valeurs initiales des centres.	Sensible aux paramètres epsilon et minPts	Le choix de la bande passante est crucial
Résultat	Les centres finaux déterminent les groupes dans lesquels les points sont regroupés	Les clusters sont déterminés en fonction de la densité et de la connectivité des points	Les centres finaux déterminent les groupes dans lesquels les points sont regroupés

Tableau II-9. Comparaison des algorithmes de regroupement

Après cette comparaison, il ressort que Mean-Shift présente des caractéristiques uniques. Cet algorithme est choisi parce qu'il est capable d'identifier le nombre des clusters de forme arbitraire en fonction de la densité des données. De plus, Mean-Shift est capable de gérer des données présentant des variations de densité et n'est pas limité à des données spécifiques ou à des formes prédéfinies de clusters. Cela permet une flexibilité et une précision accrues dans la détection des structures de données complexes.

II. 5.3. Rôle de l'apprentissage automatique dans le traitement automatique des langues

L'apprentissage automatique joue un rôle [39] essentiel dans la réalisation des tâches de TAL. Il permet de développer des modèles et des algorithmes capables de traiter et d'analyser efficacement les données en langage naturel. Il fournit les outils nécessaires pour comprendre et interpréter les structures linguistiques, extraire des informations, effectuer des traductions automatiques, effectuer des classifications de textes, et bien plus encore.

En combinant le TAL et l'apprentissage automatique, il est possible d'obtenir des systèmes plus performants et adaptatifs dans le traitement du langage humain.

II. 6. Bibliothèques, modules et classes utilisés

Nous avons utilisé plusieurs bibliothèques, modules et classes qui nous ont permis d'accomplir différentes tâches pour effectuer le traitement automatique des langues et de l'apprentissage automatique. Ces outils puissants offrent des fonctionnalités spécifiques pour la manipulation, le traitement et l'analyse des données linguistiques, ainsi que pour la préparation des données et la création de modèles d'apprentissage automatique.

Le tableau II-10 présente les bibliothèques [40] que nous avons importées et leurs utilités :

Bibliothèque	Description et utilité	
pandas	Manipulation et analyse des données.	
numpy	Manipuler et analyser les données numériques.	
	Fournit des types de données spécialisés et efficaces pour la	
Collections	manipulation d'objets itérables, tels que les listes, les chaînes de	
	caractères et les dictionnaires.	
String	Utilisée pour effectuer des opérations sur les chaînes.	
Nltk	Utilisée pour le traitement du langage naturel.	
Ast	Utilisée pour convertir des chaînes de caractères en objets Python.	

	Fournit un large éventail d'outils et de fonctionnalités pour
Scikit-learn	faciliter le développement, l'évaluation et le déploiement de
	modèles d'apprentissage automatique.

Tableau II-10: Bibliothèques utilisées

Le tableau II-11 présente les modules que nous avons importées et leurs descriptions :

Module	Description		
Nltk.corpus	Fournit des ressources linguistiques pour NLTK		
Nltk.stem	Fournit des classes pour la normalisation des mots		
sklearn.cluster	Contient des classes et des fonctions pour le clustering des données.		
sklearn.preprocessing	Contient des classes et des fonctions pour la préparation des données.		
Sklearn.metrics	Fournit des métriques et des fonctions pour évaluer les performances des modèles d'apprentissage automatique.		

Tableau II-11: Modules utilisés

Le tableau II-12 présente les classes que nous avons utilisé et leurs descriptions :

Classe	Description	
nltk.corpus.wordnet	Elle contient des synsets (ensembles de synonymes) et des relations sémantiques entre les mots. Elle est utilisée pour l'analyse sémantique et la recherche de synonymes.	
nltk.corpus.stopwords	Contient des mots couramment utilisés et considérés comme non informatifs ou sans importance dans l'analyse de texte. Ces mots, tels que "le", "de", "et", sont souvent supprimés lors du prétraitement du texte.	
nltk.stem.WordNetLem matizer	Outil de lemmatisation, utilisé pour réduire les mots à leur forme de base ou lemmes.	

	LabelEncoder est une classe du module sklearn.preprocessing. Il		
sklearn.preprocessing.L	est utilisé pour encoder les variables catégorielles en nombres		
abelEncoder	entiers. Cela permet de représenter les catégories de manière		
	numérique dans les modèles d'apprentissage automatique.		
sklearn.cluster.MeanShi	Utilisé pour la segmentation des données et l'identification de		
ft	clusters.		
	Counter est utilisé pour le comptage des éléments dans une liste		
collections.Counter	ou une séquence. Il permet d'analyser la distribution et la		
	fréquence des éléments.		

Tableau II-12. Classes utilisées

II. 7. Conclusion

Dans ce chapitre, nous avons réalisé une étude préliminaire approfondie afin de spécifier d'une part les besoins et de poser d'autre part les bases de notre projet. Nous avons ainsi identifié les exigences clés et les objectifs à atteindre, ce qui nous a permis de définir une vision claire de la solution cible. Nous avons également abordé deux aspects essentiels de notre étude, à savoir l'architecture logique et physique, ainsi que l'environnement de travail.

En ce qui concerne l'apprentissage automatique et le traitement automatique de langues, nous avons choisi avec soin les techniques et les algorithmes appropriés pour répondre aux exigences de notre projet. De plus, nous avons sélectionné les technologies adéquates pour le développement du back-end et du front-end de notre application, en tenant compte de leur pertinence et de leur adéquation aux besoins spécifiques.

Grâce à cette étude préliminaire approfondie, nous disposons désormais d'une base solide sur laquelle nous pourrons construire et mettre en œuvre notre solution de manière efficace.

Chapitre III

Proposition d'une solution d'apprentissage automatique

III. Proposition d'une solution d'apprentissage automatique

III. 1. Introduction

Dans ce chapitre, nous avons entrepris une série d'étapes clés pour analyser les données de profilage. Tout d'abord, nous avons extrait les données pertinentes de MongoDB, une base de données flexible et évolutive. Ensuite, nous avons effectué une compréhension approfondie des données et les avons traitées pour les rendre plus structurées et exploitables. Nous avons également identifié les critères de profiling pertinents et créé un dictionnaire pour les catégoriser. Enfin, nous avons appliqué l'algorithme de clustering MeanShift pour regrouper les réponses des utilisateurs similaires et détecter des tendances significatives.

III. 2. Collecte des données

Dans cette section, nous explorerons le processus de collecte des données, en commençant par examiner la source de stockage des données ensuite nous aborderons l'étape de l'extraction des réponses.

III. 2.1. Source de stockage de données

Les réponses de tous les utilisateurs qui ont participé à une campagne spécifique sont enregistrées dans une collection MongoDB nommée "campaignanswers". Cette collection est constituée de plusieurs documents, chaque document représente la participation d'un utilisateur à une campagne spécifique, identifiée par leurs identifiants respectifs. Chaque document contient également l'identifiant de chaque question de la campagne, accompagné de la valeur correspondante qui représente la réponse de l'utilisateur.

```
_id: ObjectId('634c8d18d2e2ca002b3f22c7')
 score: 0
▼ answers: Array
 ▼ 0: Object
      _id: ObjectId('634c8d2ad34855002af9640c')
    ▶ questionAnswers: Array
     questionId: "634c6b9ebeccf0002a7d0f9a"
      updatedAt: 2022-10-16T23:00:58.708+00:00
      createdAt: 2022-10-16T23:00:58.708+00:00
  ▶ 1: Object
  ▶ 2: Object
  ▶ 3: Object
  ▶ 4: Object
 campaignId: ObjectId('634c6b9fbeccf0002a7d0fa7')
 status: "done"
 progress: 100
▶ deviceConfiguration: Object
 userId: "634c499bc1caa5002b90bada"
 createdAt: 2022-10-16T23:00:40.173+00:00
 updatedAt: 2022-10-16T23:00:58.708+00:00
  __v: 0
▶ geoLocation: Object
```

Figure III-1. Un document de la collection "campaignanswers »

III. 2.2. Extraction de données

Le processus d'extraction des données des réponses des utilisateurs de trois campagnes « Queney », « Votre profil » et « Pour mieux vous servir » a été réalisé selon les étapes suivantes :

Étape	Description		
Sélection des campagnes	Dans le backoffice de l'application JAYEG, nous avons choisi trois campagnes spécifiques pour lesquelles nous souhaitions extraire les réponses des utilisateurs.		
Activation de l'extraction	Une fois la campagne sélectionnée, nous avons cliqué sur le bouton "Export to CSV" pour déclencher le processus d'extraction des données.		
Extraction des	Le processus d'extraction des données associées à la campagne		
données à partir de	sélectionnée est déclenché automatiquement, extrayant ainsi les		
MongoDB	réponses des utilisateurs.		
Génération du fichier CSV	Une fois l'extraction des données terminée, nous avons reçu un courrier électronique contenant un lien permettant de télécharger le fichier CSV contenant les données extraites. Ce fichier CSV est		

structuré de manière à fournir une représentation tabulaire des réponses des utilisateurs pour chaque campagne.

Tableau III-1. Les étapes de l'extraction des données

La figure III-2 illustre l'interface du Backoffice de l'application « JAYEG » :

Figure III-2. Reporting d'une campagne dans le Backoffice de l'application "JAYEG"

III. 3. Compréhension des données

Dans cette section, nous aborderons la phase de compréhension des données.

III. 3.1. Analyse exploratoire des données

Nous avons à notre disposition 3 fichiers CSV correspondant à trois campagnes distinctes. Chaque fichier est structuré en colonnes comprenant les questions posées, une colonne "User id" contenant l'identifiant de chaque utilisateur, une colonne "S.No" contenant un identifiant généré par MongoDB, ainsi que les colonnes "Created at" et "Updated at" pour indiquer les

dates de création et de mise à jour des données. Les lignes de chaque fichier représentent les réponses associées à chaque question posée. Voici les détails spécifiques de chaque fichier :

Fichiers	Queney	Votre profil	Pour mieux vous servir
Lignes	38 221	12 728	38 955
Colonnes	20	10	18

Tableau III-2. Composition des fichiers CSV

Pour chaque campagne, nous avons examiné le type de données correspondant à chaque colonne ainsi que les réponses possibles pour chaque question.

III. 3.1.1. La campagne « Pour mieux vous servir »

	Type de données	Réponses possibles
je suis?	object	[Un homme , Une femme , -]
Quel est ton âge?	object	[moins de 18 ans , entre 18 et 24 ans , entre
Dans quelle region vous habitez?	object	[sidi bouzid , Tunis , Siliana , Nabeul , Sous
je suis	object	[au lycée , à l'université , au collège , entr
j'habite?	object	[Chez mes parents , Dans un foyer , Dans un ap
Pour me déplacer je prends	object	[le bus , autre , la voiture , le taxi , le tr
Que faites vous pendant votre temps libre?	object	[Activités sportives , autre , TV/jeux vidéos
Quel sport pratiquez vous?	object	[Football , autre , Football -Basketball -Nata
Parmi ces clubs quel est votre club préféré ?	object	[CLUB AFRICAIN , ES TUNIS , ES SAHEL , US MONA
As-tu accès à internet facilement?	object	[false , true]
Avez- vous un permis de conduire?	object	[false , true]
Vous aimez les jeux videos?	object	[Non , Oui , -]
Votre type de film preféré	object	[action , comédie , science fiction , horreur
vous préférez quelles marques	object	[Chanel, Saint laurent, Dior et Louis vuitton

Figure III-3 Type de données et réponses possibles pour chaque question de la campagne "Pour mieux vous servir"

III. 3.1.2. La campagne « Votre profil »

	Type de données	Réponses possibles
Je suis un (e)	object	[Homme , Femme]
le revenue de votre famille	object	[entre 1200 et 1800 dtn par mois , entre 3000
Vous disposez (plusieurs réponses possible)	object	[une machine a laver automatique , aucun , un \dots
vous êtes	object	[propiétaire , locataire , -]
Etes vous motorisé?	object	[true , false]
combien de voitures disposez vous dans votre famille	object	[aucune , 1, 2, plus que 2 , -]

Figure III-4 Type de données et réponses possibles pour chaque question de la campagne "Votre profil"

III. 3.1.3. La campagne « Queney »

	Type de données	Réponses possibles
je suis?	object	[Un garçon , Une fille , -]
Quel est ton âge?	object	[entre 18 et 24 ans , moins de 18 ans , entre \dots
je suis	object	[au lycée , à l'université , au collège , sala
j'habite?	object	[Chez mes parents , Dans un internat , Dans un
Pour me déplacer je prends	object	[le bus , le vélo , le metro , la voiture , la
Que fais tu pendant ton temps libre?	object	[Activités sportives -TV/jeux vidéos , Interne
Quel sport pratiquez vous?	object	[Football , Aucun , Basketball , Football -Nat
Parmi ces clubs quel est votre club préféré ?	object	[ES TUNIS , ES SAHEL , CLUB AFRICAIN , CS SFAX
As-tu accès à internet facilement?	object	[false , true]
Vous avez un compte?	object	[Facebook , Facebook -Instagram -Tik Tok -Snap
En général quel type d'information as tu besoin?	object	[Etudes/Formations , Santé , Vie pratique (tra
Plus globalement, as-tu des projets personnels ?	object	[projet d'etudes , Voyage , pas de projet en p
T'intéresses tu à la politique ?	object	[false , true]
Vois-tu un intérêt à voter ?	object	[false , true]
D'après toi, qu'est-ce qui manque le plus aux jeunes de ton âge?	object	[Des évènements culturels , Des structures spo
Avez- vous un permis de conduire?	object	[false , true]

Figure III-5 Type de données et réponses possibles pour chaque question de la campagne "Queney"

III. 3.2. Évaluation de la qualité des données

Après avoir exploré les données, nous avons remarqué que certaines colonnes telles que "S.No", "Created at" et "Updated at" sont présentes mais ne sont pas nécessaires pour notre analyse.

Nous avons aussi identifié un schéma récurrent : certaines questions sont présentes dans les trois campagnes, souvent formulées de manière similaire, mais les réponses fournies par les utilisateurs ne sont pas cohérentes. Cette incohérence peut être attribuée à plusieurs causes potentielles :

- O Différences d'interprétation des questions : Les utilisateurs peuvent comprendre les questions de manière différente.
- o Influence des circonstances : Les réponses peuvent être influencées par des facteurs externes tels que l'humeur, les événements récents ou les préoccupations personnelles.
- Réponses impromptues pour obtenir des points : Il est possible que certains utilisateurs répondent de manière précipitée et sans réflexion dans le seul but de terminer leurs réponses et d'accumuler des points.

La figure III-6 présente un exemple de réponses incohérentes d'un utilisateur pour trois questions relatives au genre :

Figure III-6. Exemple de réponses incohérentes pour les questions relatives au genre

De plus, lors de l'exploration des données, nous avons également constaté la présence de valeurs manquantes pour certaines questions. Cela indique que certains utilisateurs ont choisi de ne pas répondre à ces questions ou ont omis de le faire, ce qui peut également introduire des incohérences dans les données.

La figure III-7 présente le nombre de réponses vide d'un utilisateur pour les trois campagnes :

```
queney.stack().str.count('-').sum()
149233
profil.stack().str.count('-').sum()
1116
servir.stack().str.count('-').sum()
32513
```

Figure III-7. Nombre de réponses vides

III. 4. Préparation des données

Dans cette section, nous aborderons la phase de préparation des données.

III. 4.1. Création d'un dictionnaire de synonymes

Dans le but d'améliorer la performance de notre modèle d'apprentissage automatique, nous avons mis en place un dictionnaire de synonymes. Ce dictionnaire joue un rôle crucial dans la comparaison des réponses fournies par les utilisateurs et dans la vérification de leur cohérence. Il est spécifiquement conçu en fonction des critères de profilage que nous avons sélectionnés. Chaque critère de profilage est associé à des sous-éléments qui regroupent les synonymes pertinents.

Le tableau III-4 présente les critères de profiling définis et leurs descriptions

Critère	Description
Âge	Cette caractéristique peut être utilisée pour segmenter les individus en groupes générationnels et fournir des indications sur leurs préférences, leurs comportements et leurs besoins spécifiques en fonction de leur stade de vie.
Genre	Cette caractéristique peut être utilisée pour comprendre les différences dans les préférences, les comportements et les besoins en fonction du genre.

es liées à la nts liés à la							
pétences, les							
sponsabilités							
ne.							
voir d'achat,							
le niveau de vie et les préférences de consommation d'une personne.							
différences							
culturelles, les influences régionales et les habitudes de consommation							
spécifiques à une zone géographique donnée.							
éférences en							
ion.							
alisation des							
hension des							
les intérêts							
miques.							
des services							
ou des expériences en fonction des intérêts personnels et des préférences.							

Tableau III-3. Description de l'utilité de chaque caractéristique dans le profiling

La figure III-8 représente le dictionnaire créé :

```
{
    "Genre": {
        "similarite": ["homme", "femme", "masculin", "féminin", "garçon", "fille"],
        "synonymes": {
            "masculin": ["garçon", "homme"],
            "feminin": ["fille", "femme"]
        }
    }
    [lub": {
        "similarite": [],
        "synonymes": {
        }
    }
    *Situation familiale": {
        "similarite": [],
        "synonymes": {}
    }
    *Interactions en ligne": {
        "similarite": ["facebook", "instagram", "tik tok", "snapshat"],
        "synonymes": {}
    }
    *Revenu": {
        "similarite": ["dtn", "mois"],
        "synonymes": {}
    }
    *Niveau d'études": {
        "similarite": ["permis", "conduire"],
        "synonymes": {}
    }
    *Permis de conduire": {
        "similarite": ["permis", "conduire"],
        "synonymes": {}
    }
    *Notorisé": {
        "similarite": ["motorisé?"],
        "synonymes": {}
    }
    *Langues": {
        "similarite": ["français", "anglais", "arabe"],
        "ey": ["français", "french"],
        "ey": ["français", "french"],
        "ar": ["arabic", "arabe"]}
    }
}
```

```
"Film": {
    "simajnatte": ["science", "fiction", "horreur", "action", "comédie", "tragédie", "romantique", "policier", "film"],
    "synonymes": {
    ""fiction": ["science", "fiction"],
    "horreur": ["horreur"];
    "comédie": ["comédie"],
    "tragédie": ["romédie"],
    "policier": ["policier"],
    "policier": ["policier"])
}

Zone géogranhique": {
    "sisilarite": ["policier"],
    "birerte", "gabbes", "medenine", "zaghouan", "sidi bouzid", "tataouine", "foreur", "ariana", "ben arous", "monastir",
    "masserine", "manouba", "beja"],
    "je": ["jendouba"],
    "je": ["jendouba"],
```

Figure III-8: Le dictionnaire

III. 4.2. Structuration des données

Dans cette section, nous allons explorer les différentes étapes que nous avons effectué pour contribuer à la structuration des données.

III. 4.2.1. Opération de jointure

Afin de structurer nos données, nous commençons par effectuer une opération de jointure des trois fichiers CSV, en utilisant l'identifiant de l'utilisateur (User id) comme clé commune pour rassembler les données des utilisateurs qui ont participé aux trois campagnes sélectionnées.

La figure III-9 représente la fonction que nous avons utilisé afin de rassembler les trois campagnes dans une même trame de données.

```
def jointure():
    servir=lecture_fichier('servir.csv')
    profil=lecture_fichier('profil.csv')
    queney=lecture_fichier('queney.csv')
    df = pd.merge(servir, queney, on='User id', suffixes=('', ''))
    df = pd.merge(df, profil, on='User id', suffixes=('', ''))
    df.insert(0, 'User id', df.pop('User id'))
    return df
```

Figure III-9. Fonction pour effectuer la jointure entre les trois campagnes

III. 4.2.2. La normalisation de la trame de données

La normalisation [41] fait référence à un ensemble de techniques utilisées pour standardiser les données textuelles. Dans ce contexte, nous avons normalisé la trame de données résultante de la jointure en convertissant les noms de colonnes en minuscules et en supprimant la ponctuation. De plus, nous avons défini les stopwords et initialisé le lemmatizer pour la langue française. Ensuite, nous avons prétraité les données en lemmatisant les mots et en supprimant les stopwords, à la fois pour chaque valeur dans la trame de données et pour les noms de colonnes. Cela nous permet d'avoir une représentation cohérente des données pour une analyse ultérieure.

La figure III-11 représente avant et après l'application de la normalisation :

Avant normalisation	Après normalisation
Un homme	homme
Une femme	femme

Figure III-10. Un exemple illustrant avant et après la normalisation

III. 4.2.3. Organisation et qualification des questions selon des critères spécifiques dans la trame de données

L'objectif des étapes suivantes est de regrouper les questions répondant à un même critère afin de procéder à l'étape de comparaison des réponses et avoir pour chaque critère une réponse vérifiée.

III. 4.2.3.1. Recherche de questions répondant à un même critère

Dans un premier temps, nous avons structuré notre jeu de données en regroupant les questions en fonction des critères définis dans notre dictionnaire. Pour atteindre cet objectif, nous avons créé trois fonctions qui nous a permis d'organiser notre trame de données en identifiant les colonnes compatibles avec les critères définis. Voici une explication de ces trois fonctions en détaillant le résultat obtenu :

• La fonction **compatible_columns** parcourt les colonnes d'une ligne d'un DataFrame et compare les réponses avec le dictionnaire de synonymes. Elle recherche les mots similaires et les synonymes dans chaque valeur de colonne. Si un mot similaire ou un synonyme est trouvé, la colonne correspondante est considérée comme compatible avec un critère correspondant dans le dictionnaire.

```
def compatible_columns(row, synonym_dict):
    compatible_columns = {} # Dictionnaire pour stocker les colonnes compatibles avec les critères
   for col in row.index:
       #variable value pour stocker la réponse de la colonne
       value = row[col]
       if isinstance(value, str): # Vérifier si la réponse est une chaîne de caractères
            words = value.split()
            for critere, details in synonym dict.items():
                similarite = details.get('similarite', []) # Liste des mots similaires
                synonymes = details.get('synonymes', {}) # Dictionnaire des synonymes
                # Vérifier si un mot similaire est présent dans les mots de la valeur
                if any(synonyme in words for synonyme in similarite):
                    if critere not in compatible columns:
                        compatible_columns[critere] = [col]
                    else:
                        compatible columns[critere].append(col)
                else:
                    for synonyme, synonyme_values in synonymes.items():
                        # Vérifier si un synonyme est présent dans les mots de la réponses
                        if any(syn in words for syn in synonyme_values):
                            if critere not in compatible_columns:
                               compatible_columns[critere] = [col]
                            else:
                                compatible_columns[critere].append(col)
   if compatible columns: # Vérifier si des colonnes compatibles ont été trouvées
       return True, compatible_columns
   return False, None
```

Figure III-11. Fonction compatible_columns

• La fonction compatible_columns_lignes parcourt les lignes d'un DataFrame et applique la fonction compatible_columns à chaque ligne. Elle utilise un dictionnaire de synonymes pour déterminer les colonnes compatibles pour chaque ligne.

```
def compatible_columns_lignes(df):
    for i in range(df.shape[0]):
        # Récupérer une ligne du DataFrame à l'indice i
        result = compatible_columns(df.iloc[i], lecture_dictionnaire('dic.txt'))

# Vérifier si des colonnes compatibles ont été trouvées pour la ligne actuelle
    if result is not None and result[0] == True:
        # Retourner True et le dictionnaire des colonnes compatibles
        return result[0], result[1]

# Si aucune ligne ne contient de colonnes compatibles, retourner False et None
    return False, None
```

Figure III-12. Fonction compatible_columns_lignes

La figure III-13 représente le résultat de la fonction compatible_columns_lignes :

```
{'Genre': ['je suis?', 'je suis? ', 'Je suis un (e)'],
  'Age': ['Quel est ton âge?', 'Quel est ton âge? '],
  'Zone géographique': ['Dans quelle region vous habitez?'],
  'Occupation': ['je suis', 'je suis '],
  'Sport': ['Quel sport pratiquez vous?', 'Quel sport pratiquez vous? '],
  'Film': ['Votre type de film preféré'],
  'Interactions en ligne': ['Vous avez un compte?'],
  'Revenu': ['le revenue de votre famille']}
```

Figure III-14 . Résultat de la fonction compatible_columns_lignes

 La fonction compatible_columns_colonnes parcourt les colonnes d'un DataFrame et recherche des critères de compatibilité dans les noms de colonnes. Elle utilise le dictionnaire pour déterminer si un mot similaire ou un synonyme est présent dans le nom de la colonne. Si un critère de compatibilité est satisfait, la colonne est ajoutée au dictionnaire des colonnes compatibles correspondantes.

```
def compatible_columns_colonnes(df, synonym_dict):
    compatible_columns = {} # Dictionnaire pour stocker les colonnes compatibles avec les critères
    for col in df.columns:
        value = str(col)
        words = value.split()
        for critere, details in synonym_dict.items():
    similarite = details["similarite"] # Liste des mots similaires
    synonymes = details["synonymes"] # Dictionnaire des synonymes
    # Vérifier si un mot similaire est présent dans les mots de la réponse
             if any(synonyme in words for synonyme in similarite):
                  if critere not in compatible columns:
                       compatible_columns[critere] = [col] # Ajouter la colonne au dictionnaire des colonnes compatibles
                       # Ajouter la colonne à la liste des colonnes compatibles pour le critère
                      compatible columns[critere].append(col)
             for syn, syn values in synonymes.items():
                  # Vérifier si un synonyme est présent dans les mots de la valeur
                  if any(syn_value in words for syn_value in syn_values):
                      if critere not in compatible columns:
                           # Ajouter la colonne au dictionnaire des colonnes compatibles
                           compatible_columns[critere] = [col]
                       else:
                           # Ajouter la colonne à la liste des colonnes compatibles pour le critère
                           compatible columns[critere].append(col)
    if compatible_columns: # Vérifier si des colonnes compatibles ont été trouvées
        return compatible_columns
    return None
```

Figure III-15. Fonction compatible_columns_colonnes

La figure III-16 représente le résultat de la fonction compatible_columns_colonnes :

```
{'Permis de conduire': ['Avez- vous un permis de conduire?',
   'Avez- vous un permis de conduire?'],
   'Film': ['Votre type de film preféré'],
   'Motorisé': ['Etes vous motorisé?']}
```

Figure III-17. Résultat de la fonction compatible_columns_lignes

III. 4.2.3.2. Croisement des réponses

Dans cette étape, nous avons créé une trame de données contenant le résultat du regroupement des questions suivies de deux colonnes supplémentaires :

- "critere_Qualification": Dans cette colonne, nous avons évalué la cohérence des réponses en utilisant une fonction de comparaison, attribuant les valeurs "Cohérent" ou "Incohérent" selon le cas.
- 2. "nom_critere". Cette colonne a été remplie en déterminant la réponse appropriée pour chaque critère, grâce à une fonction dédiée. Ainsi, la trame de données a été structurée de manière à faciliter l'analyse ultérieure.
 - Suite à cette étape, cette trame de données est composée de 37 colonnes.

La figure III-18 illustre le résultat des fonctions qui ont permis de déterminer la cohérence des réponses et le choix d'une valeur correcte.

User id	je suis?	je suis?	Je suis un (e)	Genre Qualification	Genre	Quel est ton âge?	Quel est ton âge?	Age Qualification	Age
6234f7b96d818c001e35edc9	homme	garçon	homme	Cohérent	homme	entre 25 34 an	entre 25 34 an	Cohérent	entre 25 34 an
62057143cbad6e0020e11f6e	femme	fille	femme	Cohérent	femme	entre 18 24 an	entre 18 24 an	Cohérent	entre 18 24 an
6218aa29a2acb3001fb2cab5	homme	garçon	homme	Cohérent	homme	moins 18 an	moins 18 an	Cohérent	moins 18 an
620d56c47db2fa002a6ab6ae	homme	garçon	homme	Cohérent	homme	entre 18 24 an	entre 18 24 an	Cohérent	entre 18 24 an
627e8554e0f7fe002b52e5af	homme	fille	femme	Incohérent	None	entre 25 34 an	entre 18 24 an	Incohérent	None

Figure III-18. Trame de données structurée pour les critères "Genre" et "Age".

III. 4.2.4. Création d'une nouvelle trame de données avec les réponses correctes pour chaque critère

Dans cette étape, nous avons créé une nouvelle trame de données en extrayant les colonnes correspondant à chaque critère et en incluant uniquement les réponses correctes de la trame de données précédent. Cette nouvelle trame de données est structurée de manière à regrouper les réponses correctes associées à chaque critère spécifique. Cela nous permet d'avoir une vision claire et organisée des réponses cohérentes pour chaque critère, ce qui facilite les analyses ultérieures et la prise de décision basée sur des données fiables.

Nous avons comme résultat une trame de données composée de 3120 lignes et 12 colonnes.

User id	Club	Genre	Age	Zone géographique	Occupation	Sport	Film	Interactions en ligne	Revenu	Permis de conduire	Motorisé
6234f7b96d818c001e35edc9	ES, SAHEL	homme	entre 25 34 an	nabeul	entrepreneur	football	science fiction	facebook instagram tik tok	plus der 5000 dtn mois	true	true
62057143cbad6e0020e11f6e	ES, TUNIS	femme	entre 18 24 an	jendouba	None	None	horreur	facebook instagram tik tok	entre 650 1200 dtn mois	false	false
6218aa29a2acb3001fb2cab5	ES, TUNIS	homme	moins 18 an	tunis	lycée	None	horreur	facebook tik tok	entre 3000 5000 dtn mois	None	None
620d56c47db2fa002a6ab6ae	ES, TUNIS	homme	entre 18 24 an	tunis	None	aucun	action	facebook instagram autre	entre 1800 3000 dtn mois	None	false
627e8554e0f7fe002b52e5af	None	None	None	nabeul	luniversité	handball	horreur	tik tok instagram facebook snapshat	entre 3000 5000 dtn mois	true	true
6231bf3a6d818c001e346bf2	CLUB, AFRICAIN	homme	entre 25 34 an	tunis	None	None	action		entre 400 650 dtn mois	true	false
62c767dc3317a600295fd1fd	None	homme	entre 18 24 an	tunis	luniversité	None	action	facebook instagram snapshat	entre 1800 3000 dtn mois	None	false
6206015acbad6e0020e15750	CS, SFAXIEN	homme	entre 25 34 an	sfax	salariée	None	action	facebook instagram tik tok autre	entre 1200 1800 dtn mois	true	true
6208fda0f75cbe001f0a800a	None	homme	entre 18 24	sfax	None	volleyball	horreur	facebook instagram tik	entre 1000 1800	None	false

Figure III-19. Trame de données des critères

III. 4.2.5. Création d'une nouvelle trame de données avec les réponses correctes pour les autres questions

Dans cette étape, nous avons créé une nouvelle trame de données en extrayant les colonnes qui ne correspondent à aucun critère et en incluant uniquement les réponses correctes de la trame de données résultante de la comparaison faite précédemment.

Nous avons comme résultat une trame de données composée de 3120 lignes et 17 colonnes.

User id	Que faites vous pendant votre temps libre?	Vous aimez les jeux videos?	vous préférez quelles marques	Que fais tu pendant ton temps libre?	En général quel type d'information as tu besoin?	Plus globalement, as-tu des projets personnels ?	T'intéresses tu à la politique ?	Vois- tu un intérêt à voter ?	D'après toi, qu'est-ce qui manque le plus aux jeunes de ton âge?	Vous disposez (plusieurs réponses possible)
6234f7b96d818c001e35edc9	Sorties entre amis	Oui	Nike, Lacoste, Boss, Prada	Internet - TV/jeux vidéos - Sorties entre amis	Sport et losirs - Projets à l'étranger (voyages	projet professionnel -Voyage	true	true	Des espaces pour jeunes - Des lieux où s'infor	une machine a laver automatique
62057143cbad6e0020e11f6e	Activités sportives - TV/jeux vidéos - Internet	Oui	Chanel, Saint laurent, Dior et Louis vuitton	Activités sportives	Etudes/Formations -Offres d'emploi	projet d'etudes - Voyage	false	false	Des évènements culturels	un congélateur hors celui du réfrigérateur
6218aa29a2acb3001fb2cab5	Activités associatives	Non	Nike, Lacoste, Boss, Prada	Internet	Etudes/Formations	projet professionnel	false	true	Des évènements culturels	une machine a laver semi automatique
620d56c47db2fa002a6ab6ae	Internet - TV/jeux vidéos	Oui	Nike, Lacoste, Boss, Prada	Activités sportives - Internet - TV/jeux vidéos	Métiers - Etudes/Formations	Voyage - projet professionnel	false	false	Des transports - La sécurité - Des instances p	une machine a laver automatique
627e8554e0f7fe002b52e5af	Activités associatives	Oui	Nike, Lacoste, Boss, Prada	Activités associatives	Vie pratique (transports, horaires d'ouverture	Voyage - projet d'etudes - projet professionnel	true	true	Des transports	une machine a laver automatique

Figure III-20. Trame de données des autres questions

III. 5. Modélisation

Dans cette partie nous nous intéressons à l'application de l'algorithme de regroupement Mean-Shift.

III. 5.1. Encodage et traitement des données

Avant d'appliquer l'algorithme de MeanShift, nous avons effectué un encodage et un traitement des données afin de les rendre compatibles avec l'algorithme d'apprentissage automatique et prêtes à être utilisées. Durant cette étape nous avons identifié les colonnes catégorielles et nous avons utilisé la technique d'encodage Label Encoding.

La figure III-21 présente les instructions nécessaires pour encoder les colonnes catégorielles :

```
# Prétraitement des colonnes catégorielles
colonnes_categorielles = tableau_copie.select_dtypes(include=["object"]).columns
for colonne in colonnes_categorielles:
    # Encoder les valeurs catégorielles en numériques
    label_encoder = LabelEncoder()
    tableau_copie[colonne] = label_encoder.fit_transform(tableau_copie[colonne])
```

Figure III-21. Traitement des colonnes catégorielles

La figure III-22 illustre le résultat de l'encodage :

Userid	Club	Genre	Age	Zone géographique	Occupation	Sport	Film	Interactions en ligne	Revenu	Permis de conduire	Motorisé
6234f7b96d818c001e35edc9	10	1	1	9	2	9	6	23	8	1	1
62057143cbad6e0020e11f6e	12	0	0	4	7	41	3	23	6	0	0
6218aa29a2acb3001fb2cab5	12	1	2	16	4	41	3	33	4	2	2
620d56c47db2fa002a6ab6ae	12	1	0	16	7	0	1	17	3	2	0
627e8554e0f7fe002b52e5af	18	2	3	9	3	32	3	77	4	1	1
6231bf3a6d818c001e346bf2	5	1	1	16	7	41	1	0	5	1	0
62c767dc3317a600295fd1fd	18	1	0	16	3	41	1	20	3	2	0
6206015acbad6e0020e15750	3	1	1	10	6	41	1	24	2	1	1
6208fda0f75cbe001f0a800a	18	1	0	10	7	39	3	25	1	2	0
6208e04169ce2d0020d04ee6	12	1	0	10	4	9	3	11	8	2	1

Figure III-22. Trame de données encodée

III. 5.2. Paramètres d'entrée de l'algorithme de Mean--Shift

Les paramètres d'entrée de l'algorithme de Mean-Shift sont :

 La bande passante (bandwidth) qui représente un paramètre clé, contrôlant la distance maximale autorisée entre un point et ses voisins pour être regroupé dans le même cluster.

Dans notre cas, nous avons choisi une valeur de 20 pour avoir une taille de clusters relativement grande.

 L'option bin-seeding (amorçage par regroupement) est une technique utilisée pour initialiser les centres de cluster. Dans notre cas, nous avons bin_seeding a été activée pour améliorer l'efficacité de l'algorithme en accélérant l'initialisation des centres de cluster, contribuant ainsi à une exécution plus rapide de l'algorithme.

III. 5.3. Application du Mean-Shift

Après avoir défini les paramètres d'entrée, nous avons entraîné le modèle de Mean-Shift sur les données préalablement préparées. Le modèle a été ajusté aux données pour identifier les clusters.

La figure III-23 présente l'estimation de bandwidth et l'application du Mean-Shift :

```
#Estimation de bandwidth

est_bandwidth = 20

#Application de l'algorithme

ms = MeanShift(bandwidth=est_bandwidth, bin_seeding=True).fit(tableau_copie)
```

Figure III-23. Application du Mean-Shift

La figure III-24 présente le nombre de clusters obtenu suite à l'application de l'algorithme :

```
nombre_clusters = len(np.unique(labels))
print("Nombre de clusters obtenus : ", nombre_clusters)

Nombre de clusters obtenus : 15
```

Figure III-24. Nombre de clusters obtenus

Nous avons ensuite extrait des informations sur chaque cluster, telles que les valeurs les plus courantes pour chaque colonne. Le nombre d'utilisateurs dans chaque cluster a également été enregistré.

La figure III-25 présente un exemple illustrant les caractéristiques du cluster 0 :

Cluster Label: 0 Nombre d'utilisateurs: 1197 Caractéristiques communes: Club ES, TUNIS Genre homme entre 18 24 an Age Zone géographique tunis Occupation lycée Sport football Film action Interactions en ligne facebook plus der 5000 dtn mois Revenu Permis de conduire false false Motorisé Number of Users 1197.0

Figure III-25. Les caractéristiques d'un cluster

Nous avons également créé une trame de données pour mieux visualiser le résultat contenant pour chaque numéro de cluster les caractéristiques communes ainsi que le nombre d'utilisateurs.

La figure III-26 présente 5 lignes de cette trame de données :

cluster	Club	Genre	Age	Zone géographique	Occupation	Sport	Film	Interactions en ligne	Revenu	Permis de conduire	Motorisé	Number of Users
0	ES, SAHEL	homme	entre 25 34 an	nabeul	entrepreneur	football	science fiction	facebook instagram tik tok	plus der 5000 dtn mois	true	true	1197
1	ES, TUNIS	femme	entre 18 24 an	jendouba	salariée	volleyball	horreur	facebook instagram tik tok	entre 650 1200 dtn mois	false	false	698
2	ES, SAHEL	femme	moins 18 an	siliana	entrepreneur	tennis	tragédie	autre	entre 3000 5000 dtn mois	true	false	294
3	ES, TUNIS	homme	moins 18 an	tunis	lycée	handball	horreur	facebook tik tok	entre 3000 5000 dtn mois	false	true	209
4	ES, TUNIS	homme	entre 18 24 an	bizerte	luniversité	football	action	instagram	entre 1200 1800 dtn mois	false	false	191

Figure III-26. Trame de données des caractéristiques des clusters

III. 5.4. Evaluation du modèle

Dans cette section, nous aborderons l'évaluation de notre modèle.

III. 5.4.1. Métriques d'évaluation

Nous allons évaluer les mesures de performance en utilisant la méthode d'indice de silhouette qui mesure la cohésion et la séparation des clusters. Cette mesure combine la distance moyenne des points à l'intérieur d'un cluster et la distance moyenne des points entre les clusters adjacents. Suite au calcul, nous aurons une valeur dans l'intervalle de 1 et -1.

En utilisant la classe silhouette_score pour effectuer ce calcul nous avons eu ce résultat illustré dans la figure III-27 :

L'indice de silhouette moyen est : 0.8600714875910346

Figure III-27: Valeur de l'indice de silhouette moyen

→ Cette valeur indique un niveau élevé de cohérence et de séparation entre les clusters.

III. 5.4.2. Interprétation des clusters

Nous avons identifié un total de 15 clusters dans notre analyse. Le nombre d'utilisateurs dans chaque cluster varie de 1 à 1197, ce qui indique une répartition inégale des utilisateurs entre les clusters. Certains clusters peuvent contenir un nombre significatif d'utilisateurs, tandis que d'autres ne contiennent qu'un seul utilisateur. Cela suggère que notre application JAYEG présente une diversité dans les profils d'utilisateurs, avec certains clusters regroupant un grand nombre d'individus partageant des caractéristiques similaires, tandis que d'autres sont plus spécifiques et représentent des profils d'utilisateurs uniques.

III. 6. Conclusion

Ce chapitre a joué un rôle crucial dans notre processus d'analyse de données de profilage. Nous avons réussi à extraire et à traiter les données brutes, puis à les regrouper en utilisant l'algorithme de clustering MeanShift. Les résultats obtenus ont fourni des informations précieuses pour résoudre le problème initial. Dans les chapitres suivants, nous explorerons d'autres méthodes d'apprentissage automatique et d'analyse afin d'approfondir notre compréhension des données de profilage et d'obtenir des résultats plus précis et significatifs.

Chapitre IV

Déploiement

IV. Déploiement

IV. 1. Introduction

Dans ce chapitre consacré au déploiement de notre projet, nous aborderons les différentes étapes qui nous ont permis de concrétiser notre application. Nous présenterons la modélisation conceptuelle sous forme de diagrammes, mettant en évidence la structure et les fonctionnalités de l'application. De plus, nous détaillerons la mise en œuvre pratique de l'application, en mettant l'accent sur les choix technologiques et les étapes de développement.

IV. 2. Modélisation conceptuelle

Nous commencerons par présenter les diagrammes de modélisation conceptuelle, tels que le diagramme de cas d'utilisation, le diagramme de classes, et les diagrammes de séquence. Ces diagrammes nous permettront de visualiser l'interaction entre les différents acteurs et les fonctionnalités clés de l'application.

IV. 2.1. Diagramme de cas d'utilisation globale

La figure IV-1 représente le diagramme de cas d'utilisation global :

Figure IV-1: Diagramme du cas d'utilisation

IV. 2.1.1. Description textuelle du cas d'utilisation global

Dans cette partie nous allons décrire textuellement chaque cas d'utilisation.

IV. 2.1.1.1. Description textuelle du diagramme de cas d'utilisation « Consulter le tableau de bord »

Le tableau IV-1 suivant représente la description textuelle du cas d'utilisation « Consulter le tableau de bord »

Titre	Consulter le tableau de bord	
Acteur principal	Administrateur	
Résumé	À travers ce cas, l'utilisateur peut consulter le tableau de bord.	
Précondition	L'administrateur doit s'authentifier.	
Scénario principal	L'administrateur accède à la page d'accueil où se trouve le tableau de bord.	
Post condition	Le tableau de bord sera affiché.	

Tableau IV-1. Description textuelle du cas d'utilisation « Consulter le tableau de bord »

IV. 2.1.1.2. Description textuelle du diagramme de cas d'utilisation « Télécharger une trame de données »

Le tableau IV-2 représente la description textuelle du cas d'utilisation « Télécharger une trame de données »

Titre	Télécharger une trame de données	
Acteur principal	Administrateur	
Résumé	À travers ce cas, l'administrateur peut télécharger une trame de données sous format CSV.	
Précondition	L'administrateur doit s'authentifier.	
Scénario principal	 L'administrateur accède à la page qui affiche la table qu'il souhaite télécharger. L'utilisateur clique sur le bouton « Télécharger ». 	
Post condition	La trame de donnée choisie sera téléchargée.	

Tableau IV-2. Description textuelle du cas d'utilisation « Télécharger une trame de doonées »

IV. 2.1.1.3. Description textuelle du diagramme de cas d'utilisation « Gérer les administrateurs »

Le tableau IV-3 représente la description textuelle du cas d'utilisation « Gérer les administrateurs »

Titre		Gérer les utilisateurs	
Acteur principal		Super Admin	
Résumé		À travers ce cas, le super admin peut afficher la liste des	
		utilisateurs, activer, désactiver ou supprimer un compte	
		désactivé.	
Précondition		Le super admin doit s'authentifier.	
Affichage de la S	Scénario	Accéder à la page « Administration »	
liste des p	principal	2. Le système affiche la liste des administrateurs de	
administrateurs Post condition		la base de données.	
		La liste sera automatiquement affichée.	
Activer un I	Précondition	Affichage de la liste des utilisateurs avec des comptes	
compte Scénario principal		désactivés.	
		1. Cliquer sur le bouton « Activer » dans la ligne de	
		l'administrateur à activer	
		2. Le système modifie le statut de l'administrateur	
		choisi dans la base de données	
Post-		L'administrateur possède le statut « Activé » et peut	
C	condition	accéder à l'application.	
Désactiver un I	Précondition	Affichage de la liste des utilisateurs avec des comptes	
compte		activés.	
S	Scénario	Cliquer sur le bouton « Désactiver » dans la	
I	principal	ligne de l'administrateur à activer	
		2. Le système modifie le statut de l'administrateur	
		choisi dans la base de données.	
I	Post-	L'administrateur possède le statut « Désactivé » et ne	
condition		peut plus accéder à l'application.	

Tableau IV-3. Description textuelle du cas d'utilisation « Gérer les administrateurs »

IV. 2.1.1.4. Description textuelle du diagramme de cas d'utilisation « S'inscrire »

Le tableau IV-4 représente la description textuelle du cas d'utilisation « S'inscrire »

Titre	S'inscrire	
Acteur principal	Administrateur	
Résumé	A travers ce cas, l'administrateur peut créer un compte.	
Précondition	L'administrateur fait partie de Queney.	
Scénario principal	1. L'admin choisit l'action « Sign up ».	
	2. Le système affiche un formulaire.	
	3. L'admin remplit le formulaire.	
	4. Le système vérifie les données saisies.	
	5. Le système enregistre les données dans la base.	
Post condition	Le compte est ajouté à la base de données avec le statut	
	« Désactivé »	
Scénario alternatif	A1: Les champs sont vides	
	L'enchaînement A1 démarre après le point 4	
	5. Le système affiche un message d'erreur pour informer l'admin	
	qu'il y a des champs obligatoires vides.	
	Le scénario nominal reprend au point 2.	
	A2 : L'adresse e-mail ne représente pas une adresse des	
	employés de Naxxum.	
	5. Le système affiche un message d'erreur pour informer l'admin	
	que son e-mail ne représente pas une adresse e-mail	
	professionnelle de Naxxum.	
	Le scénario nominal reprend au point 2.	
	A3 : L'adresse e-mail est déjà utilisée par un autre compte	
	L'enchaînement A3 démarre après le point 4	
	5. Le système affiche un message d'erreur pour informer l'admin	
	que l'adresse e-mail est utilisée par un autre compte	
	Le scénario nominal reprend au point 2.	
	A4 : Le mot de passe est faible.	

L'enchaînement A4 démarre après le point 4	
5. Le système affiche un message d'erreur pour informer l'admin	
que le mot de passe saisi est faible.	
Le scénario nominal reprend au point 2.	

Tableau IV-4. Description textuelle du cas d'utilisation « S'inscrire »

IV. 2.1.1.5. Description textuelle du diagramme de cas d'utilisation « S'authentifier »

Le tableau IV-5 représente la description textuelle du cas d'utilisation « S'authentifier »

Titre	S'authentifier	
Acteur principal	Administrateur	
Résumé	A travers ce cas, l'administrateur peut accéder à l'application.	
Précondition	L'administrateur possède un compte	
Scénario principal	L'admin choisit l'action « Sign in ».	
	1. Le système affiche un formulaire d'authentification.	
	2. L'admin remplit le formulaire.	
	3. Le système vérifie les données saisies.	
	4. Le système dirige l'admin vers la page d'accueil.	
Post condition	L'admin est dirigé vers la page d'accueil.	
Scénario alternatif	A1 : Les données saisies n'existent pas dans la base de données :	
	mot de passe ou adresse e-mail peut être saisi incorrectement.	
	L'enchaînement A1 démarre après le point 3	
	4. Le système affiche un message d'erreur pour informer l'admin	
	que ce compte n'existe pas ou les données fournies sont	
	incorrectes.	
	Le scénario nominal reprend au point 1.	
	E1 : Le compte est « Désactivé »	
	L'enchaînement A2 démarre après le point 3	
	4. Le système affiche un message d'erreur pour informer l'admin	
	que son compte est « Désactivé »	
Scénario d'exception	E1 : Le compte est « Désactivé »	

L'enchaînement A2 démarre après le point 3

4. Le système affiche un message d'erreur pour informer l'admin que son compte est « Désactivé »

Tableau IV-5. Description textuelle du cas d'utilisation « S'authentifier »

IV. 2.2. Diagrammes de séquences du cas d'utilisation

Nous allons maintenant passer à la présentation des diagrammes de séquence, qui nous permettront de représenter de manière visuelle les interactions et les séquences d'événements entre les différents éléments de notre système.

IV. 2.2.1. Diagramme de séquences du cas d'utilisation « S'inscrire »

La figure IV-2 présente Diagramme de séquences du cas d'utilisation « S'inscrire » :

Figure IV-2. Diagramme de séquences du cas d'utilisation « S'inscrire »

IV. 2.2.2. Diagramme de séquences du cas d'utilisation « S'authentifier

>>

La figure IV-3 présente Diagramme de séquences du cas d'utilisation « S'authentifier » :

Figure IV-3. Diagramme de séquence du cas d'utilisation « S'authentifier »

IV. 2.2.3. Diagramme de séquences du cas d'utilisation « Activer un compte »

La figure IV-4 présente Diagramme de séquences du cas d'utilisation « Activer un compte »

Figure IV-4. Diagramme de séquences du cas d'utilisation « Activer un compte »

IV. 2.2.4. Diagramme de séquences du cas d'utilisation « Désactiver un compte »

La figure IV-5 présente Diagramme de séquences du cas d'utilisation « Désactiver un compte »

Figure IV-5. Diagramme de séquences du cas d'utilisation « Désactiver un compte »

IV. 2.3. Diagramme de classes

Nous allons maintenant présenter le diagramme de classe qui offre une représentation structurée des entités principales de notre système, ainsi que de leurs attributs et relations.

IV. 2.3.1. Dictionnaire de données

Numéro	Attribut	Libellé	Туре
1	Id_utilisateur	Identifiant d'un utilisateur de l'application.	String
2	Email	L'email d'un utilisateur.	String
3	Last_name	Le nom d'un utilisateur.	String
4	First_name	Le prénom d'un utilisateur.	String
5	Phone_number	Le numéro de téléphone d'un utilisateur.	String
6	Status	Le statut du compte d'un utilisateur (activé/désactivé).	String
7	Password	Le mot de passe d'un utilisateur	String

8	Rôle	La désignation du rôle des utilisateurs	String
		(Admin/ Super Admin).	

Tableau IV-6. Dictionnaire de données

IV. 2.3.2. Diagramme de classe

Notre diagramme de classe représenté par la figure IV-6 est composé de trois entités principales : Utilisateur, Super Admin et Admin.

Figure IV-6. Diagramme de classe

IV. 3. Réalisation:

Dans cette section nous allons exposer les diverses interfaces de notre application.

IV. 3.1. TopBar

Figure IV-7: Capture du TopBar

Cette figure IV-6 représente TopBar qui est une barre de navigation située en haut de l'interface, qui offre aux utilisateurs un accès rapide aux éléments suivant :

IV. 3.1.1. Rechercher

Un champ interactif permettant aux utilisateurs d'entrer des mots-clés qui sont les éléments de SideBar pour accéder directement à l'interface recherchée.

Dans le cas où le terme recherché n'est pas trouvé, une alerte s'affiche pour en informer l'utilisateur.

Figure IV-8: Alerte de recherche 'Aucun résultat trouvé'

IV. 3.1.2. Mode jour

Un bouton qui permet aux utilisateurs de basculer entre le mode jour et le mode nuit de l'application. En cliquant sur ce bouton, l'interface peut passer d'un thème clair à un thème sombre, offrant ainsi une expérience visuelle adaptée aux préférences de l'utilisateur.

Figure IV-9: Mode nuit

Figure IV-10: Mode jour

IV. 3.1.3. Profil

L'icône de la figure IV-11 représente un utilisateur, qui permet d'afficher le rôle de l'utilisateur :

Figure IV-11: Profil

IV. 3.2. Interface d'inscription

Cette figure IV-12 représente l'interface qui permet à l'administrateur de créer un nouveau compte :

Figure IV-12. Interface d'inscription

IV. 3.3. Interface d'authentification

L'utilisateur utilise cette interface pour s'authentifier en saisissant son adresse e-mail et son mot de passe, afin d'accéder à l'application :

Figure IV-13. Interface d'authentification

IV. 3.4. Interface de Dashboard

L'interface IV-14 représente la page d'accueil de notre application, où l'on trouve un tableau de bord contenant plusieurs composants :

Figure IV-14. Interface de Dashboard

IV. 3.5. Les interfaces des trames de données

Les interfaces qui seront présentées dans cette section sont regroupées dans un même box dans la barre-latérale de notre application nommée « Data » où nous trouverons les différentes trames de données

IV. 3.5.1. Interface de la table « Informations générales »

Cette interface présentée par la figure IV-15 permet de visualiser la trame de données contenant les réponses vérifiées de chaque utilisateur pour chaque critère de profiling et d'afficher un bouton de téléchargement pour obtenir les données au format CSV.

Figure IV-15. Interface de la table "Informations générales"

IV. 3.5.2. Interface de la table des autres questions

Cette interface permet de visualiser la trame de données contenant les réponses vérifiées de chaque utilisateur à d'autres questions posées et d'afficher un bouton de téléchargement pour obtenir les données au format CSV.

Figure IV-16. Interface de la table des autres questions posées

IV. 3.5.3. Interface du tableau des clusters

La figure IV-17 présente le résultat de la trame de données générée suite à l'application de l'algorithme de Mean-Shift. Chaque cluster est accompagné de ses caractéristiques spécifiques et du nombre d'utilisateurs correspondants. De plus, un bouton de téléchargement est disponible pour obtenir les données au format CSV.

Figure IV-17. Interface des Clusters

IV. 3.5.4. Interface de la liste des utilisateurs

La figure IV-18 illustre l'interface qui affiche la liste des administrateurs inscrits dans l'application. Cette liste permet au Super Admin d'accéder aux informations des administrateurs, de les activer ou de les désactiver, de les supprimer, ainsi que de télécharger la liste au format CSV.

Figure IV-18. Interface de la liste des utilisateurs

IV. 3.6. Interface de Chart Line

Cette interface IV-19 est présentée dans la section "Data" de la barre latérale de notre application, où l'on trouve un graphique en ligne des salaires en fonction de l'occupation des utilisateurs.

Figure IV-19. Interface de Line Chart

IV. 4. Conclusion

Ce chapitre consacré au déploiement de notre application a été crucial pour concrétiser notre projet. Nous avons pu présenter les diagrammes de modélisation conceptuelle qui ont permis de définir la structure et les fonctionnalités clés de l'application. Ces diagrammes ont été des outils précieux pour visualiser l'interaction entre les acteurs et les différents cas d'utilisation.

De plus, nous avons détaillé la réalisation de l'application en mettant en avant les choix technologiques et les étapes de développement. Nous avons pu concrétiser les fonctionnalités principales de l'application et mettre en place une interface utilisateur conviviale et intuitive.

Conclusion générale et perspectives

Ce rapport présente les résultats du travail accompli au sein de la startup Queney dans le cadre de notre projet de fin d'études de la licence fondamentale en Business Intelligence à l'IHEC Carthage. Pendant le stage de quatre mois, nous avons contribué à la conception et au développement d'une application web dédiée au profilage des clients. Ce rapport de stage résume les différentes étapes et activités entreprises tout au long de cette expérience enrichissante.

L'objectif principal de ce stage était de mettre en place un système de profilage automatique des clients de Queney. Cette solution permet d'identifier les caractéristiques des profils des clients et offre aux administrateurs de la startup la possibilité de visualiser le tableau de bord, les composants graphiques et les tables directement sur le portail développé. Le projet a débuté par des réunions pour définir les objectifs et les besoins fonctionnels et non fonctionnels de notre système. Nous avons ensuite divisé le projet en étapes en choisissant la méthodologie CRISP-DM, la plus adaptée pour sa réalisation.

À la fin de ce stage, nous avons réussi à automatiser le modèle de profilage des clients en utilisant les données collectées par les campagnes. L'étape de prétraitement des données a joué un rôle important dans les résultats obtenus, et l'implémentation d'un dictionnaire a amélioré les performances du modèle. Nous avons également obtenu des informations cohérentes et vérifiées. Ainsi, nous avons créé un tableau de bord présentant les différents axes d'analyse pour répondre aux besoins.

Ce projet nous a permis de mettre en évidence nos connaissances acquises lors de notre cursus et nous a offert l'occasion de développer de nouvelles compétences. Dans l'ensemble, ce stage a été très enrichissant, nous permettant d'améliorer nos compétences techniques et humaines. Cette expérience exceptionnelle nous a également familiarisé avec le milieu professionnel.

Notre processus n'est pas simple, et nous devons faire face à certaines difficultés telles que la compréhension du sujet, la compréhension des données et l'étude des technologies. Malgré ces obstacles, nous avons réussi à mettre en œuvre l'application.

Cependant, notre travail ne s'arrête pas là, et plusieurs perspectives d'amélioration peuvent être envisagées. Nous reconnaissons que certaines données complexes peuvent encore poser des défis en termes de précision du profilage. Ainsi, nous croyons fermement qu'en élargissant

progressivement le dictionnaire utilisé, nous pourrions améliorer de manière significative la précision de notre application. De plus, l'exploration d'autres méthodes et techniques avancées d'apprentissage automatique pourrait être bénéfique pour une meilleure compréhension et interprétation des données clients.

En poursuivant nos efforts pour affiner et enrichir notre approche, nous nous engageons à fournir des résultats plus précis et pertinents, répondant ainsi aux besoins de notre startup et de ses utilisateurs. Une perspective supplémentaire consisterait à intégrer des filtres permettant de spécifier les critères selon lesquels le clustering doit opérer, offrant ainsi une personnalisation plus fine et des résultats encore plus adaptés aux attentes des utilisateurs. En résumé, notre objectif continuera d'être l'amélioration constante de notre application de profilage des clients, en explorant de nouvelles méthodes, en élargissant nos ressources et en prenant en compte les commentaires des utilisateurs pour une expérience toujours plus satisfaisante.

Finalement, nous espérons avoir réalisé un travail sérieux et convenable tout en ayant laissant une bonne impression.

Bibliographie

[1] Naxxum

https://naxxum.com/

[2] Queney

https://www.google.com/search?q=queney&tbm=isch&ved=2ahUKEwi zcv6pt7 AhVPpCc CHVP5CDUQ2-

cCegQIABAA&oq=queney&gs lcp=CgNpbWcQAzIECCMQJzIECCMQJzIGCAAQBRAe
MgYIABAFEB4yBggAEAUQHjIHCAAQGBCABDIJCAAQGBCABBAKMgcIABAYEIA
EMgkIABAYEIAEEAo6BwgAEBMQgAQ6CAgAEAUQHhATOggIABCABBCxAzoFCA
AQgARQ1QRYpwlg4wpoAHAAeACAAcYBiAHQB5IBAzAuN5gBAKABAaoBC2d3cy13
aXotaW1nwAEB&sclient=img&ei=NiOYZL aMM InsEP0 KjqAM&bih=688&biw=1536&
rlz=1C1GCEU_frTN1045TN1045#imgrc=-3lq4mNnkHBjjM

[3] JAYEG

 $\underline{https://www.google.com/search?rlz=1C1GCEU_frTN1045TN1045\&sxsrf=APwXEdfd50dR9}\\ nDVqFftllOz2PkHOBdj-$

w:1687692084952&q=jayeg&tbm=isch&sa=X&ved=2ahUKEwihtdr5pt7 AhWNTqQEHQ1 gAlIQ0pQJegQICxAB&biw=1536&bih=688&dpr=1.25#imgrc=3OYjNNuaHq075M

[4] KDD

https://en.wikipedia.org/wiki/Data_mining

[5] Architecture de la méthodologie de KDD

https://www.google.com/search?rlz=1C1GCEU_frTN1045TN1045&hl=fr&sxsrf=APwXEdfn
jyAZPDP_D22DotZuBxX5SUYM0w:1687692187666&q=kdd&tbm=isch&sa=X&ved=2ahU
KEwjz3Neqp97_AhWZaqQEHZR2AP0Q0pQJegQIDRAB&biw=767&bih=679&dpr=1.25#i
mgrc=Oeyjiu_FfEkI6M

[6] SEMMA

https://www.datascience-pm.com/semma/

[7] Architecture de la méthodologie de SEMMA

https://www.google.com/search?q=Architecture+de+la+m%C3%A9thodologie+de+SEMMA &tbm=isch&ved=2ahUKEwicicn9hMv_AhWc7LsIHXIFDlIQ2-

cCegQIABAA&oq=Architecture+de+la+m%C3%A9thodologie+de+SEMMA&gs lcp=CgN pbWcQAzIECCMQJ1D5G1j5G2CAI2gAcAB4AIABjgGIAZcCkgEDMC4ymAEAoAEBqg ELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=cwmOZNyDDZzZ7_UP8oq4kAU&bih=746 &biw=1536&rlz=1C1GCEU_frTN1045TN1045#imgrc=zDRxPUbBBED-iM

[8] CRISP-DM

https://www.datascience-pm.com/crisp-dm-2/

[9] Architecture de la méthodologie de CRISP-DM

https://www.google.com/search?q=crispdm+methodology&tbm=isch&ved=2ahUKEwjw7L6cqN7 AhXUtEwKHZykBkQQ2-

cCegQIABAA&oq=crispdm+methodology&gs_lcp=CgNpbWcQAzIHCAAQExCABDoECC
MQJzoGCAAQBxAeOggIABAIEAcQHjoFCAAQgARQlQVYvRtg4h1oAnAAeACAAaEBi
AHFCpIBBDAuMTCYAQCgAQGqAQtnd3Mtd2l6LWltZ8ABAQ&sclient=img&ei=iiSYZP
D_E9TpsgKcyZqgBA&bih=662&biw=750&rlz=1C1GCEU_frTN1045TN1045&hl=fr#imgrc
=aUZik5jA29VJwM

[10] La comparaison entre KDD, CRISP-DM et SEMMA

https://core.ac.uk/download/pdf/47135941.pdf

[11] Architecture trois tiers

https://www.techno-science.net/definition/5266.html

[12] Représentation de l'architecture trois tiers

https://www.memoireonline.com/02/17/9661/m_Conception-et-realisation-dun-robot-virtuel-marketiste11.html

[13] MVC

https://www.irif.fr/~carton/Enseignement/InterfacesGraphiques/Cours/Swing/mvc.html

[14] Figure de MVC

https://fr.wikipedia.org/wiki/Mod%C3%A8le-vue-contr%C3%B4leur

[15] Visual Studio Code

https://framalibre.org/content/visual-studio-code

[16] Draw.io

https://www.tice-education.fr/tous-les-articles-er-ressources/articles-internet/819-draw-io-un-outil-pour-dessiner-des-diagrammes-en-ligne

[17] Visual paradigm

https://digitiz.fr/outil/visual-paradigm-online/

[18] Postman

https://www.postman.com/product/what-is-postman/

[19] Jupyer Notebook

https://realpython.com/jupyter-notebook-introduction/

[20] React

https://fr.wikipedia.org/wiki/React

[21] JavaScript

https://www.journaldunet.fr/web-tech/dictionnaire-du-webmastering/1203585-javascript/

[22] MongoDB

https://www.mongodb.com/fr-fr/what-is-mongodb

[23] Flask

https://pythonbasics.org/what-is-flask-python/

[24] Python

https://www.journaldunet.fr/web-tech/dictionnaire-du-webmastering/1445304-python-definition-et-utilisation-de-ce-langage-informatique/

[25] Le traitement automatique des langues

https://www.demotal.fr/le-traitement-automatique-des-

langues/#:~:text=Avec%20l'av%C3%A8nement%20d'internet,%C3%A0%20une%20analyse %20s%C3%A9mantique%20fine.

[26] Avantages du TAL

https://www.itconvergence.com/blog/natural-language-processing-key-benefits-and-use-cases/

[27] Apprentissage automatique

https://www.ibm.com/fr-fr/topics/machine-learning

[28] Les techniques d'apprentissage automatique

https://www.trendmicro.com/fr_fr/what-is/machine-learning.html

[29] Algorithmes de regroupement

https://www.javatpoint.com/clustering-in-machine-

<u>learning</u>#:~:text=Mean%2Dshift%20algorithm%3A%20Mean%2D,points%20within%20a%2 <u>Ogiven%20region</u>.

[30] K-means

https://mrmint.fr/algorithme-k-means

[31] Les étapes de K-means

http://www.metz.supelec.fr/metz/personnel/vialle/course/BigData-2A-CS/slides-pdf/13-MachineLearning-Clustering-2spp.pdf

[32] K-means avec différents nombres de clusters

https://datascientest.com/algorithme-des-k-means

[33] Mean-Shift

https://en.wikipedia.org/wiki/Mean_shift

[34] Les étapes de Mean-Shift

https://elearn.univ-tlemcen.dz/pluginfile.php/108519/mod_resource/content/1/MID-RdF-06.pdf

[35] Mean-Shift pour un nombre de clusters égal à 3

A demo of the mean-shift clustering algorithm — scikit-learn 1.2.2 documentation

[36] DBSCAN

https://datascientest.com/machine-learning-clustering-

dbscan#:~:text=Le%20DBSCAN%20est%20un%20algorithme%20simple%20qui%20d%C3 %A9finit%20des%20clusters,%2Dvoisinage%20de%20l'observation.

[37] Les étapes de DBSCAN

https://fr.wikipedia.org/wiki/DBSCAN

[38] DBSCAN avec 3 valeurs différentes d'épsilon

https://datascientest.com/machine-learning-clustering-dbscan

[39] Le rôle du ML dans le NLP

https://ts2.space/fr/le-role-de-lapprentissage-automatique-dans-le-traitement-et-la-comprehension-du-langage-naturel/

[40] Les bibliothèques Python

https://geekflare.com/fr/popular-python-libraries-modules/

[41] La normalisation

https://www.actuia.com/contribution/victorbigand/tutoriel-tal-pour-les-debutants-classification-de-texte/