

Figure 1: Postion (x,y,z) by geomentry

Position and Rotation matrixes are found using geomentry instead of DH parameters in this approach. Let the world frame be the frame zero and position (x,y,z) is (0,0,0).

$$P_0^1 = (0, 0, 10)$$

 P_0^2 can be determined by projecting d2*sin(45) on the y-axis of the world frame. See the picture 1 for clarity.

$$P_0^2 = (-d2*\cos(\pi/4)*\sin(\theta_1), d2*\sin(\pi/4)*\cos(\theta_1), 10 - d2*\cos(\pi/4))$$

 $P_0^3 = (-d2*\cos(\pi/4)*\sin(\theta_1) - 5*\cos(\theta_3)*\sin(\theta_1), d2*\sin(\pi/4)*\cos(\theta_1) + 5*\cos(\theta_3)*\cos(\theta_1), 10 - d2*\cos(\pi/4) + 5*\sin(\theta_3))$

$$R_0^0 = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0\\ \sin(\theta_1) & \cos(\theta_1) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_0^1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-3pi/4) & -\sin(-3pi/4) \\ 0 & \sin(-3pi/4) & \cos(-3pi/4) \end{bmatrix}$$

$$T_0^1 = \begin{bmatrix} \cos(\theta_1) & \frac{\sin(\theta_1)}{\sqrt{2}} & \frac{-\sin(\theta_1)}{\sqrt{2}} & 0\\ \sin(\theta_1) & \frac{-\cos(\theta_1)}{\sqrt{2}} & \frac{\cos(\theta_1)}{\sqrt{2}} & 0\\ 0 & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 10 \end{bmatrix}$$

 R_0^1 is rotated by 135 degress CW. By multiplying $R0^1 = R0^0 * R0^1$ we get rotation from frame 0 to 1.

$$R_1^2 inter 1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(-pi/2) & -sin(-pi/2) \\ 0 & sin(-pi/2) & cos(-pi/2) \end{bmatrix}$$

$$R_1^2 inter 2 = \begin{bmatrix} cos(pi/2) & 0 & sin(pi/2) \\ 0 & 1 & 0 \\ -sin(pi/2) & 0 & cos(pi/2) \end{bmatrix}$$

 $R02 = R01 * R12_{i}nter1 * R12_{i}nter2;$

$$T_0^2 = \begin{bmatrix} \frac{-\sin(\theta_1)}{\sqrt{2}} & \frac{\sin(\theta_1)}{\sqrt{2}} & \cos(\theta_1) & -d2 * \cos(\pi/4) * \sin(\theta_1) \\ \frac{\cos(\theta_1)}{\sqrt{2}} & \frac{-\cos(\theta_1)}{\sqrt{2}} & \sin(\theta_1) & d2 * \sin(\pi/4) * \cos(\theta_1) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 10 - d2 * \cos(\pi/4) \end{bmatrix}$$

For R_2^3 rotation:

$$R_2^3 inter 0 = \begin{bmatrix} cos(\pi/4) & -sin(\pi/4) & 0\\ sin(\pi/4) & cos(\pi/4) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_2^3 inter 1 = \begin{bmatrix} cos(\theta_3) & -sin(\theta_3) & 0\\ sin(\theta_3) & cos(\theta_3) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_1^2 inter 2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(pi/2) & -sin(pi/2) \\ 0 & sin(pi/2) & cos(pi/2) \end{bmatrix}$$

$$R_2^3 inter 3 = \begin{bmatrix} cos(\pi/2) & -sin(\pi/2) & 0\\ sin(\pi/2) & cos(\pi/2) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

 $R_0^3 = R_0^2 * R_2^3 inter 0 * R_2^3 inter 1 * R_2^3 inter 2 * R_2^3 inter 3$

$$T_0^3 = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1)\cos(\theta_3) & \sin(\theta_1)\sin(\theta_3) & -d2*\cos(\pi/4)*\sin(\theta_1) - 5*\cos(\theta_3)*\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1)\cos(\theta_3) & -\cos(\theta_1)\sin(\theta_3) & d2*\sin(\pi/4)*\cos(\theta_1) + 5*\cos(\theta_3)*\cos(\theta_1) \\ 0 & -\sin(\theta_3) & -\cos(\theta_3) & 10 - d2*\cos(\pi/4) + 5*\sin(\theta_3) \end{bmatrix}$$

Inverse Kinematics

$$R_0^3 = \begin{bmatrix} cos(\theta_1) & -sin(\theta_1)cos(\theta_3) & sin(\theta_1)sin(\theta_3) \\ sin(\theta_1) & cos(\theta_1)cos(\theta_3) & -cos(\theta_1)sin(\theta_3) \\ 0 & -sin(\theta_3) & -cos(\theta_3) \end{bmatrix}$$