Department of Computer Science & Engineering (CSE)

B.Sc. Engineering 2nd Year 2nd Semester Summer-2023 CT-01

Full Marks: 15

Course Code: EEE 2265 Course Title: Electrical Drives and Instrumentation Time: 45 Minutes

Answer All the Questions Answer All the Questions A step-up transformer has a turn ratio of 0.5. Transformers' primary current and voltage rate and 10A and 2200V respectively. Transformer's winding parameters are given as $R_P = 15\Omega$, $X_R = 25\Omega$, $X_S = 3\Omega$. Core resistance, $X_C = 1.5\Omega$ and Magnetizing reactance, $X_C = 1.5\Omega$. Draw the Exact Equivalent circuit of this transformer referred to the primary side. A shunt do generator has output current of 450A at 250V output voltage. The shunt field armature resistances are 50Ω and 0.025Ω respectively. Calculate the armature generated voltage.	$G_M = G_M$ and 4
Q.4 A series dc generator has an output voltage of 250V and delivers 15 KW output power. The se field and armature resistances are 0.3Ω and 0.02Ω respectively. Calculate the total armature resistances are 0.3Ω and 0.02Ω respectively.	ries 4 ture
generated power. P= EAIA	

Department of Computer Science & Engineering (CSE) B.Sc. Engineering 2nd Year 2nd Semester Summer-2023 CT-02 Course Title: Electrical Drives and Instrumentation

Time: 45 Minutes

Course Code: EEE 2265 Full Marks: 15

Marks **Answer All the Ouestions** Define Slip. Draw the power flow diagram of induction motor. $\mathbf{Q.1}$ A 480V, 60 Hz, 50-hp, three phase induction motor is drawing 50A at 0.8 PF lagging. The QQ stator copper losses are 2.5 kW, the rotor copper losses are 700W. The friction and windage losses are 600W, the core losses are 2000W, and the stray losses are negligible. Find (a) The air

gap power P_{AG}, (b) The power converted P_{CONV}, (c) Output Power P_{OUT}. A shunt dc motor has a current load of 400A at 250V terminal voltage. The shunt field and

 Q_{i} armature resistances are 50Ω and 0.025Ω respectively. Calculate the armature generated 4-(IAXRA) voltage. A 50-hp, 250V, 1500 r/min dc shunt motor has armature resistances of 0.08 Ω , and it produces

Q.4

a no-load speed of 1500 r/min. Find the speed of this motor when its input current is 100A &

PRONY = PAGE - PROL

Department of Computer Science & Engineering (CSE)

B.Sc. Engineering 2nd Year 2nd Semester Summer-2023

CT-03

Course Code: EEE 2265

Course Title: Electrical Drives and Instrumentation Time: 45 Minutes

Full Marks: 15

	Answer All the Questions	Marks
QA	Draw three bulb connection method of parallel operation of synchronous generator.	3
Q.2	Draw a circuit diagram of an inverting amplifier. If the V_{in} =10mV, Input resistance R_1 = 5k Ω , feedback resistance R_f = 15k Ω , then find the voltage gain & V_0 for the inverting amplifier.	4
Q.3	Draw a circuit diagram of a non-inverting amplifier. If the V_{in} =15V, Input resistance R_1 = 15k Ω , feedback resistance R_f = 3k Ω , then find the voltage gain & V_o for the non-inverting amplifier.	4
Q.4	Calculate the V _o and Current i _o through the resistor R _L for the following amplifier circuit.	4

