《计算机系统》 整数

湖南大学

《计算机系统》课程教学组

内容提要

转换 & 类型变换

有符号数 & 无符号数

扩展&截断

整数的运算操作

小结

整型数据 (32位机)

C数据类型	最小值	最大值			
char	-128	127			
unsigned char	0	255			
short	-32 768	32 767			
unsigned short	0	65 535			
int	-2 147 483 648	2 147 483 647			
unsigned int	0	4 294 967 295			
long	-2 147 483 648	2 147 483 647			
unsigned long	0	4 294 967 295			
longlong	-9 223 372 036 854 775 808	9 223 372 036 854 775 807			
unsigned long long	0	18 446 744 073 709 551 615			

整型数据 (64位机)

C数据类型	最小值	最大值
char	-128	127
unsigned char	0	255
short	-32 768	32 767
unsigned short	0	65 535
int	-2 147 483 648	2 147 483 647
unsigned int	0	4 294 967 295
long	-9 223 372 036 854 775 808	9 223 372 036 854 775 807
unsigned long	0	18 446 744 073 709 551 605
long long	-9 223 372 036 854 775 808	9 223 372 036 854 775 807
unsigned long long	0	18 446 744 073 709 551 615

整数的编码

二进制补码

B2T(X)

符号位

无符号数

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

● C 中短整型为两个字节长度

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

●符号位

- 二进制补码中,最高位为符号位
 - 0表示非负数
 - 1表示负数

补码的本质

$$B2T_w(x) \equiv -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

用最高位的负权重将数值往数轴负方向迁移

从9点往前7小时,或往后5小时都指向4点;

在取值12的范围内,+7和-5形成绝对值为12的"互补"

将无符号数中最高位为1的一半 用来表示负数

补码的本质

以 w = 4 为例,可以表示从 0000~1111共16个数, "表盘"大小就是16。

做无符号数解释:则是从 0~15这16个非负数;

做有符号数解释:

0000~0111这八个数依然是0~7不变,所以正数的补码依然是其本身;

1000~1111这8个数被用来表示负数,这其中每一个数表示的负数就是其对应的正数在 16这个范围内有互补关系的负数。

例如: 1010原本表示的是+10, 在16的范围内对应的互补关系是-6, 所以1010就是-6的补码表示。

补码的值

补码与十进制相互转换使用的值盒子及示例

-128	64	32	16	8	4	2	1

8位二进制补码的值盒子

-128	64	32	16	8	4	2	1
1	0	0	0	0	0	1	1

例1: -125 = -128+2+1

-128	64	32	16	8	4	2	1
1	0	0	0	1	0	0	0

例2: -120 = -128+8

补码示例

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213

补码取值范围

	81	立机	16	6位机
	unsigned	signed	unsigned	signed
原码	0~255	-127~+127	0~65535	-32767~+32767
反码	0~255	-127~+127	0~65535	-32767~+32767
补码	0~255	-128~+127	0~65535	-32768~+32767

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

不同字长的 取值范围

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

●观察

- | TMin | = TMax + 1
 - 非对称取值范围
- UMax = 2 * TMax + 1

• C语言编程

- #include <limits.h>
- 声明常数,例如,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- 具体取值根据机器平台不同而不同

求补码的 四种方法

对字长为w的负数x求补码

•方法1

- $2^{w-1} |x| = a$, 则x的补码为符号位1,接上a的二进制表达。
- ●例: -6的4位补码为: 符号位1,接上2³ 6 = 2的二进制表达010,即 1010;

•方法2

- $2^w |x| = a$,则a的二进制表达即为x的w位补码
- •例: -6的4位补码为 $2^4-6=10$ 的二进制表达 1010

求补码的 四种方法

对字长为w的负数x求补码

•方法3

- ●写出x的w位原码;
- ●符号位不变,其余各位取反加1即得。
- ●例: -6 的原码为 1110, 首位符号位不变, 余下三位取反加1 得 1010.

•方法4

- •x的绝对值的二进制,所有位取反加1.
- ●例: -6的绝对值6的二进制为0110,全部取反加1,得1010。

```
w=8,
(1) 求 -58 的补码;
(2) (10010101) <sub>T</sub>= (?) <sub>10</sub>
```

- A 11000101; -104.
- B 11100101; -110.
- 11010011; -105.
- **11000110; -107.**

内容提要

转换 & 类型变换

有符号数 & 无符号数

扩展&截断

整数的运算操作

小结

Х	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

数值比较

●等价性

• 非负数的补码就是其本身

●唯一性

- ●每一个"位模式"表达唯一的一个整数值
- ●每一个整数有唯一的二进制 "位模式"

●⇒ 可以逆向映射 (双射)

- U2B(x) = B2U⁻¹(x)
 - 无符号数的位模式
- $T2B(x) = B2T^{-1}(x)$
 - 补码的位模式

相互映射

Maintain Same Bit Pattern

Maintain Same Bit Pattern

有符号数与无符号数之间的映射就是: 位模式不变, 重新(按照转换后的类型)解释

相互映射

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Signed	
0	
1	
2	
3	
4	
5	
6	
7	
-8	
-7	
-6	
-5	
-4	
-3	
-2	
-1	

相互映射

Bits	Signed		Unsigned
0000	0		0
0001	1		1
0010	2		2
0011	3	_ = _	3
0100	4	\longrightarrow	4
0101	5		5
0110	6		6
0111	7		7
1000	-8		8
1001	-7		9
1010	-6	+/- 16	10
1011	-5	★ ★ ↑ 	11
1100	-4		12
1101	-3		13
1110	-2		14
1111	-1		15

直观转换图

无符号数 取值范围

C语言中的整数

●常数

- •默认为有符号数
- ●使用U作为无符号数的后缀: 0U, 4294967259U

●转换

● 有符号数和无符号数的转换与 U2T 以及 T2U完全一样

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

也可以通过赋值语句和过程调用实现

```
tx = ux;

uy = ty;
```

特殊情况

表达式

- 如果一个表达式中既有无符号数又有有符号数, *有符号数直接转换成无符号数*
- 上述表达式包括比较运算: <,>,==,<=,>=
- 例如 w = 32: T_{MIN} = -2,147,483,648 , T_{MAX} = 2,147,483,647

常数1	常数2	关系	类型	结果
0	OU	II	unsigned	1
-1	0	~	signed	1
-1	0U	<	unsigned	0
2147483647	-2147483647-1	>	signed	1
2147483647U	-2147483647-1	>	unsigned	0
-1	-2	>	signed	1
(unsigned) -1	-2	>	unsigned	1
2147483647	2147483648U	<	unsigned	1
2147483647	(int) 2147483648U	<	signed	0

代码运行示例

- ◆ 因为-1的补码整数表示为 "11…1", 作为32位无符号数解释时, 其值为2³²-1= 4 294 967 296-1 = 4 294 967 295。
- ◆ 2^{31} 的无符号数表示为 "100...0",被解释为32位带符号整数时,其值为最小负数: -2^{32-1} = -2^{31} = -2^{147} 483 648。

有符号数小结

- •位模式不变
- ●本质是用最高位为1的数去表示有互补关系的负数
- ●重新解释
- 当加上或者减去2^w时会有意外情况
- •表达式中同时存在有符号数和无符号数时,
 - ●int 默认转换为 unsigned!!

内容提要

转换 & 类型变换

有符号数 & 无符号数

扩展&截断

整数的运算操作

小结

符号扩展

●任务:

- •给定一个w位的有符号数 x
- ●将其转换为 (w+k)-bit 的整数,保持值不变

•规则:

- ●将 X 符号位复制 k 个:
- $X = X_{N-1}, ..., X_{N-1}, X_{N-1}, X_{N-2}, ..., X_0$

符号扩展示例

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

将较小整型数据转换为较大整型数据

C语言中此类符号扩展自动完成(当发生数据类型变化时)

例如: -6 的补码为 1010 (w=4), 当 w=8, -6 的补码变为:

 $2^8 - 6 = 250 = (11111010)_2$,仅发生了符号扩展。

符号扩展

- ●为什么补码的扩展只需要做符号扩展,值保持不变?
 - w位二进制扩展成(w+k)位,补码"表盘"范围变成了 2^{w+k} ,此时对负数x求补码变为: $2^{w+k} |x|$
 - 之前的w位补码为: $2^w |x|$
 - 增加了: $(2^{w+k}-|x|)-(2^w-|x|)=2^{w+k}-2^w=2^w(2^k-1)$
- $2^k 1$ 的二进制就是k个1,乘以 2^k 就是左移w位,变成:

●把原本w位的x补码加上去,刚好填充w个0,变成x补码的符号扩展形式。

截断

- ●截断的规则 (例如从"无符号整型"变成"无符号短整型")
 - ●无符号/有符号:二进制位被截取
 - 截断结果意义与之前不同,需重新解释
 - ●对无符号数来说就是取模运算 mod
 - 对有符号数来说类似取模运算
 - 较小数值的截断结果比较符合预期

截断示例

教材P52,练习题2.24 假设将一个4位数值截断到3位数值。填写下表,根据位模式的无符号和补码解释,说明这些截断对某些情况的结果。

十六进制		无符号		补码	
原始值	截断值	原始值	截断值	原始值	截断值
0	0	0	0	0	0
2	2	2	2	2	2
9	1	9	1	-7	1
В	3	11	3	-5	3
F	7	15	7	-1	-1

无符号数截断, P52式(2-9): $B2U_k([x_{k-1},x_{k-2},\cdots,x_0])=B2U_w([x_{w-1},x_{w-2},\cdots,x_0]) \bmod 2^k$

有符号数截断, P52式(2-10): $B2T_k([x_{k-1},x_{k-2},\cdots,x_0]) = U2T_k(B2U_w([x_{w-1},x_{w-2},\cdots,x_0]) \mod 2^k)$

w=4, 那么13截断一位变成?

内容提要

转换 & 类型变换

有符号数 & 无符号数

扩展&截断

整数的运算操作

小结

无符号数加法 UAdd

操作数: w bits

实际结果: w+1 bits

舍弃最高进位: w bits

忽略最高进位

• 通过取模运算来实现

$$s = UAdd_w(u, v) = (u + v) \mod 2^w$$

加法的可视化 UAdd

$Add_4(u, v)$

• 整数加法的真实和

- 4-bit 整数 *u, v*
- 计算真实和 Add₄(u, ν)
- 和随着 u 与 v 值增加而线性增加
- 形成一个平坦表面

●功能实现

- 若真实和 ≥ 2^w
- 取模运算

真实和

加法的可视化 UAdd

补码加法 TAdd

操作数: w bits

真实和: w+1 bits

舍弃进位: w bits

- ●UAdd与TAdd在"位"的操作上完全一致
 - C 语言中的 UADD 与 TADD:

$$t = u + v$$

TAdd溢出

●功能实现

- ●真实和需要 w+1 bits
- ●舍弃 MSB
- 将余下的位看做补码结果

$$\bullet x +_w^t y =$$

$$U2T_w[(x+y)mod\ 2^w]$$

TAdd溢出

●功能实现

- ●真实和需要 w+1 bits
- 舍弃 MSB
- 将余下的位看做补码结果

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \end{cases}$$

Tadd可视化

●取值

- 4-bit 补码.
- 取值从 -8 到 +7

•功能实现

If sum ≥ 2^{11/2}, 补码结果为负数
 为正溢出, 导致结果减少16

例如:0110(6)+0111(7)=1101(-3)

最多一次

● If sum < -2^{*W*-1}, 补码结果为正数 为**负溢出**, 导致结果增加16

例如: 1010(-6)+1100(-4)=0110(6)

最多一次

有符号数减法

●写出下列过程(w = 4):

- **●** 5-3=2
- 5 的补码是 0101
- ●-3的补码是 1101
- 5-3=5+(-3)=0101+1101=10010, 实际结果为 **0010** (舍弃最高位)
- ●0010 是 2 的补码, 因此结果为 2。

●那么 -5-1=?

- ●-5的 补码为 1011; -1 的补码是 1111;
- ●1011 + 1111 = **1010** (舍弃最高位), 这是 -6 的补码, 因此结果为 -6。

乘法

计算 w 位的两个数 x 和 γ 的乘积 (有无符号均可)

- ●注意:结果可能会多于 w bits
 - 无符号数: 最大可以达到 2w bits: 0 ≤ x* y ≤ (2^w 1) ² = 2^{2w} 2^{w+1} + 1
 - 补码负的乘积最大可以到 2*w*-1 bits: *x* y ≥ (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}*
 - 补码正的乘积最大可以到 2*w* bits, 仅对(*TMin_w*)²成立: *x* y ≤* (-2^{w-1}) ² = 2^{2w-2}
- 所以为了得到完整的结果...
 - 需要随着乘积的表达扩展字长
 - 如有必要,可以使用软件完成(例如,使用 "arbitrary precision" 计算功能)

C语言的乘法

无符号数乘法

操作数: w bits

真实乘积: 2*w bits

舍弃 w bits, 得到 w bits

- ●标准乘法函数
 - 忽略乘积的高 w 位
- 采用取模运算
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

C语言的乘法

有符号数乘法

操作数: w bits

真实乘积: 2*w bits

舍弃 w bits, 得到 w bits

●标准乘法函数

- 忽略乘积的高 w 位
- 采用取模运算
 - TMult_w $(u, v) = U2T_w[(u \cdot v) \mod 2^w)]$

2的幂次

- ●操作
 - ●u << k 得到 u * 2^k
 - ●对有/无符号数均适用

●举例

- 在大部分机器中移位和加法运算比乘法快得多
- 因此编译器总是自动将符合移位操作要求的乘法变成移位运算

编译后的 乘法指令

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

●与常数相乘时, C 编译器总是自动生成移位和加法指令以简化机器的运算。

除法

- ●除数为无符号数中 2 的幂次时, 商的计算如下:
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - 使用**逻辑右移**

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

除法

- ●除数为有符号数中 2 的幂次时, 商的计算如下:
 - $x \gg k$ gives $[x / 2^k]$
 - 使用算术右移

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

除法的矫正

- •被除数为负,除数为2的幂次
 - ●需要「x/2^k」 (向 0 取整)
 - ●计算: ⌊(x+2^k-1)/ 2^k ⌋
 - 在 C 中: (x + (1<<k)-1) >> k
 - 将被除数向 0 偏置

情况 1: 无需近似

被除数

除数

偏置无效果

除法的矫正

情况 2: 需要近似

因为偏置结果加一

除法指令

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

汇编代码

```
test1 %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

- 对整数采用算术移位操作
- •对 Java 用户,算术移位写作: >>

含义

```
if x < 0
x += 7;
return x >> 3; # Arithmetic shift
```

内容提要

转换 & 类型变换

有符号数 & 无符号数

扩展&截断

整数的运算操作

小结

运算规则

●加法

- ●有/无符号数: 正常相加后截断(舍弃最高位),两种加法在位操作上是完全一样
- 无符号数: 和对 2^w 模 (mod 2^w)
 - 算术加法+ 对 2^w 的减法 (如果必要)
- ●有符号数: 修正的和对 2[™]取模(确保结果在正确范围)
 - 算术加法+对 2^w 的加减法 (如果必要)

●乘法

- 有/无符号数:正常相乘后截断(舍弃高 w 位), 两种乘法在位操作上是完全一样
- 无符号数: 乘积 mod 2^w
- ●有符号数: 修正后乘积 mod 2^w (确保结果在正确范围)

何时使用 无符号数?

• 不要因为仅仅因为需要非负数而使用

- 极易犯错
 - unsigned i;
 - for (i = cnt-2; i > = 0; i--)
 - a[i] += a[i+1];
- 会非常微妙敏感
 - #define DELTA sizeof(int)
 - int i;
 - for (i = CNT; i-DELTA >= 0; i-= DELTA)
 - ...

• 取模运算时使用

- 多精度运算
- 使用位来表示集合时
 - •逻辑右移,没有符号扩展

随处可见的坑

```
1. #include <stdio.h>
2.
3. int main()
4. {
5.    if(sizeof(int) - sizeof(double) < 0)
6.    {
7.        printf("<\n");
8.    }
9.    else
10.    {
11.        printf(">=\n");
12.    }
13.
14.    return 0;
15. }
```

求以上程序的输出结果,我们知道sizeof(int) = 4, sizeof(double) = 8, 则4 -8 = -4 , 则if(sizeof(int) - sizeof(double) < 0)的条件为真,所以,输出应该是打印出"<",程序运行的结果如下:

点击(此处)折叠或打开

1. >=

发现和预期的结果相反,究其原因,原来sizeof()的返回值是一个无符号整型十进制数值,即: unsigend int 型,所以两个unsigend int型的数据进行运算后其结果只能是unsigend int型的,即大于等于0的一个整数值,所以,if()条件不满足,执行下一条语句。这个错误比较隐蔽,很容易出错,今天遇到了在此做一个记录,以便以后的复习。

又一个坑!

预测一下这道题的结果,注意unsigned与signed

sizeof()返回的值是无符号数,有符号数遇到无符号数变成无符号数,所以在i<sizeof(arr)/sizeof(arr[0])运算中i=-1变成无符号数,那么i将变成一个非常大的数,所以这个程序没有输出

以后编程千万小心,给自己挖的坑少点、再少点!

下一节: 浮点数

湖南大学

《计算机系统》课程教学组

