Homework 1

Jakub Senko, Štefan Uherčík

10. marca 2014

Príklad 1

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

$$(x+y)^{3} = (x+y)^{2}(x+y)$$

$$= (x^{2} + 2xy + y^{2})(x+y)$$

$$= (x^{3} + 2x^{2}y + xy^{2}) + (x^{2}y + 2xy^{2} + y^{3})$$

$$= x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(0.1)$$

Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies.

0.1 Example of List (3*ITEMIZE)

- First item in a list
 - First item in a list
 - * First item in a list
 - * Second item in a list
 - Second item in a list
- Second item in a list

0.2 Example of List (enumerate)

- 1. First item in a list
- 2. Second item in a list
- 3. Third item in a list

Tvrdenie 1: Ľubovoľná postupnosť n operácií INSERT a MIN-ALL má zložitosť O(n).

Uvažujme prirodzené čísla n,k a l, pre ktoré platí n=k+l (n vyjadruje počet operácií)

$$l = \begin{cases} \frac{n}{2} & \text{ak } n \text{ je párne} \\ \frac{n-1}{2} & \text{ak } n \text{ is nepárne} \end{cases}$$

$$l = \begin{cases} \frac{n}{2} & \text{ak } n \text{ je párne} \\ \frac{n-1}{2} + 1 & \text{ak } n \text{ is nepárne} \end{cases}$$

Uvažujme k oprácií INSERT, každá z týchto operácií vloží do zoznamu rovnaké prirodzené číslo z. Po poslednej z týchto operácií bude mať zoznam dĺžku k.

Cena týchto operácií dohromady je k.

Po týchto operáciách nasleduje l operácií MIN-ALL. Všetky čísla v zozname sú rovnaké, teda všetky čísla v ňom sú minimálne. Znamená to, že pri žiadnom z volaní operácie MIN-ALL sa dĺžka zoznamu nezmení.

Cena týchto operácií bude

$$l*k = \begin{cases} \frac{n}{2} * \frac{n}{2} = \frac{n^2}{4} & \text{ak } n \text{ je párne} \\ \frac{n-1}{2} * (\frac{n}{2}+1) = \frac{n^2}{4} + \frac{n}{4} - \frac{1}{2} & \text{ak } n \text{ is nepárne} \end{cases}$$

Z predošlého tvrdenia vyplýva, že špecifikovaná postupnosť operácií bude minimimálne v zložitostnej triede O(n), teda tvrdenie **neplatí**.

Tvrdenie 2: Ľubovoľná postupnosť n operácií INSERT a MIN-ONE má zložitosť O(n). Príklad riešime pomocou metódy účtov, kredity pre jednotliv0 operácie stanovíme nasledovne

Operácia	Cena	Kredit
INSERT	1	2
MIN-ONE		1

Platí, že vždy počas výpočtu je veľkosť zoznamu rovná počtu kreditov na účte, teda počet kreditov nikdy nebude menší ako 0. Celkový kredit po vykonaní n operácií bude menší alebo rovný 2n, teda tvrdenie **platí**.

Tvrdenie 3: Ľubovoľná postupnosť n operácií INSERT a DELETE má zložitosť O(n).

Uvažujme prirodzené čísla n,k a l, pre ktoré platí n=k+l (n vyjadruje počet operácií Hodnotu čísel k a l stanovíme rovnako, ako pri tvrdení 1.

Uvažujme k oprácií INSERT, každá z týchto operácií vloží do zoznamu rovnaké prirodzené číslo z. Po poslednej z týchto operácií bude mať zoznam dĺžku k.

Cena týchto operácií dohromady je k.

Po týchto operáciách nasleduje l operácií DELETE(y), pričom platí, že y \neq z. To má za dôsledok, že po žiadnej z týchto operácií sa dĺžka zoznamu nezmení. Cena týchto operácií bude rovnaká, ako v tvrdení 1. Tvrdenie preto **neplatí**.

Tvrdenie 4: Ľubovoľná postupnosť n operácií INSERT a DELETE taká, že pri každom volaní sa operácia DELETE volá s iným parametrom i, má zložitosť má zložitosť O(n).

Uvažujme prirodzené čísla n,k a l, pre ktoré platí n=k+l (n vyjadruje počet operácií). Hodnotu čísel k a l stanovíme rovnako, ako pri tvrdení 1.

Uvažujme k oprácií INSERT, každá z týchto operácií vloží do zoznamu rovnaké prirodzené číslo z. Po poslednej z týchto operácií bude mať zoznam dĺžku k.

Cena týchto operácií dohromady je k.

Špecifikujeme množinu M o veľkosti l, v ktorej sa nachádzajú prirodzené čísla odližné od z. Vykonáme l operácií DELETE, pričom pri každej jej volaní predložíme ako parameter iný prvok z množiny M. To bude mať za následok, že veľkosť zoznamu sa nezmení. Cena týchto operácií bude rovnaká, ako v tvrdení 1. Tvrdenie preto **neplatí**.