Титульный лист Edubot-Shield

№ документа

import threading REG PARROT 1 = 0x0B # скорость вращения мотора А в попугаях в режиме WORK MODE PID 12C import smbus REG DIR 0 = 0x0C # направление import time вращения мотора А SHUNT OHMS = 0.01 # значение REG PWM 0 = 0x0D # ШИМ задаваемый сопротивления шунта на плате EduBot мотору А в режиме WORK MODE PWM I2C MAX EXPECTED AMPS = 2.0REG DIR 1 = 0x0E # направление вращения мотора В REG PWM 1 = 0x0F # ШИМ задаваемый import Adafruit SSD1306 # sudo pip3 install мотору В в режиме WORK MODE PWM I2C Adafruit-SSD1306 REG RESET ALL MOTOR = 0x10 # c6poc всех внутренних параметров display = REG BEEP = 0x11Adafruit SSD1306.SSD1306_128_64(rst=None) REG BUTTON = 0x12# создаем обект для работы с OLED дисплеем 128x64 except ImportError: class MotorMode: display = None""" Класс, хранящий режимы работы драйвера моторов """ try: MOTOR MODE PWM = 0x00 # режим from ina219 import INA219 # sudo pip3 install работы - напрямую от ШИМ вилки на плате pi-ina219 MOTOR MODE PID = 0x01 # режим работы - от ШИМ вилки на плате через ПИДina = INA219(SHUNT OHMS, регулятор MAX EXPECTED AMPS) # создаем обект для работы с INA219 ina.configure(INA219.RANGE 16V) # class Direction: """ Класс, хранящий возможные конфигурируем INA219 except ImportError: направления """ ina = None FORWARD = 0x00 # вперед BACKWARD = 0x01 # назад class Registers: """ Класс, хранящий регистры драйвера class EduBot: моторов """ """ Класс работы с шилдом едубота """ REG WHY IAM = 0x00 # perистр, возвращающий 42 def init (self, bus, addr=0x27): REG ONLINE = 0x01self. bus = bus # шина i2c REG SERVO 0 = 0x02self. addr = addr # адресс устройства REG SERVO 1 = 0x03self.online = False # флаг, определяющий REG MOTOR MODE = 0x04 # режимы шлется онлайн метка или нет self. exit = False # метка выхода из работы REG KP = 0x05 # пропорциональный потоков коэффициент REG KI = 0x06 # интегральный def whoIam(self): """ Должен вернуть 42 """ коэффициент REG KD = 0x07 # дифференциальный return self. bus.read byte data(self. addr, Registers.REG WHY IAM) коэффициент REG INT SUMM = 0x08 # предел интегральной суммы def setMotorMode(self, mode): REG PID PERIOD = 0x09 #""" Устанавливает режим работы драйвера ***** REG PARROT 0 = 0x0A # скорость вращения мотора А в попугаях в режиме self. bus.write byte data(self. addr, WORK MODE PID I2C Registers.REG MOTOR MODE, mode)

№ документа

	selfbus.write_byte_data(selfaddr,
def_setDirection0(self, direction): """ Устанавливает направление вращения	Registers.REG_PWM_1, abs(pwm))
мотора 0 """	def setKp(self, kp):
self. bus.write byte data(self. addr,	""" Устанавливает пропорциональный
Registers.REG DIR 0, direction)	коэффициент регулятора """
	selfbus.write_byte_data(selfaddr,
<pre>def _setDirection1(self, direction):</pre>	Registers.REG_KP, abs(int(kp * 10)))
""" Устанавливает направление вращения	
мотора 1 """	def setKi(self, ki):
selfbus.write_byte_data(selfaddr,	""" Устанавливает интегральный
Registers.REG_DIR_1, direction)	коэффициент регулятора """
	selfbus.write_byte_data(selfaddr,
def setParrot0(self, parrot):	Registers.REG_KI, abs(int(ki * 10)))
""" Устанавливает скорость вращение	
мотора 0 в попугаях """	def setKd(self, kd):
parrot = min(max(-100, parrot), 100) #	""" Устанавливает дифференциальный
проверяем значение parrot	коэффициент регулятора """
if parrot < 0:	selfbus.write_byte_data(selfaddr,
selfsetDirection0(Direction.FORWARD)	Registers.REG_KD, abs(int(kd * 10)))
else:	
10	def setServo0(self, pos):
selfsetDirection0(Direction.BACKWARD)	""" Установка позиции 0 сервы """
selfbus.write_byte_data(selfaddr,	pos = min(max(0, pos), 250) # проверяем
Registers.REG_PARROT_0, abs(parrot))	значение роз
1.0. 7	selfbus.write_byte_data(selfaddr,
def setParrot1(self, parrot):	Registers.REG_SERVO_0, pos)
""" Устанавливает скорость вращение	1 2 2 1/ 12
мотора 1 в попугаях """	def setServo1(self, pos):
parrot = min(max(-100, parrot), 100) #	""" Установка позиции 1 сервы """
проверяем значение parrot	pos = min(max(0, pos), 250) # проверяем
if parrot < 0:	значение pos
selfsetDirection1(Direction.FORWARD)	selfbus.write_byte_data(selfaddr,
else:	Registers.REG_SERVO_1, pos)
self. setDirection1(Direction.BACKWARD)	def beep(self):
self. bus.write byte data(self. addr,	чи" Бибикнуть """
Registers.REG PARROT 1, abs(parrot))	self. bus.write byte data(self. addr,
registers.red_17rrrro1_1, aos(par10t))	Registers.REG BEEP, 3)
def setPwm0(self, direction, pwm):	Registers.REG_BEET, 3)
""" Устанавливает скорость через	def onlineThread(self):
параметры шима """	""" поток отправляющий онлайн метки "
pwm = min(max(-255, pwm), 255) #	while not self. exit:
проверяем значение рwm	if self.online: # если включена посылка
self. setDirection0(direction)	онлайн меток
self. bus.write byte data(self. addr,	self. bus.write byte data(self. addr,
Registers.REG PWM 0, abs(pwm))	Registers.REG ONLINE, 1)
8	time.sleep(1)
<pre>def setPwm1(self, direction, pwm):</pre>	
""" Устанавливает скорость через	def start(self):
параметры шима """	· /
pwm = min(max(-255, pwm), 255) #	threading.Thread(target=self. onlineThread,
проверяем значение pwm	daemon=True).start() # включаем посылку
selfsetDirection1(direction)	онлайн меток

4 № документа

```
def exit(self):
    self.__exit = True

if __name__ == "__main__":
    bus = smbus.SMBus(1)
    bot = EduBot(bus)
    bot.start()
    print(bot.whoIam())

bot.setMotorMode(MotorMode.MOTOR_MODE
_PID)
    bot.setParrot0(0x05)
    time.sleep(5)
    bot.exit()
```