Analysis of the ICP Algorithm

Florian Donhauser, Cuong Ha, Panagiotis Petropoulakis, Suren Sritharan

Technical University of Munich

3D Scanning and Motion Capture Project Group 3

Munich, February 2022

https://drive.google.com/drive/folders/1zuWo1pvJ8PEGwiw NTvbL6bSAui2OWdO

^{*} The code is publicly available at:

https://github.com/PetropoulakisPanagiotis/ICP-Variants

^{*} Additional experimental results can be found at:

Introduction & Motivation

- Many applications require 3D registration of point clouds
 - 3D reconstruction, autonomous driving, etc

Yang et.al]

- Many ICP variants have been developed to align 3D data
- People care about their convergence and speed
- We did a comprehensive analysis on various ICP variants

Related Works

ТΙΠ

- Rusinkiewicz & Levoy 2001
 - In-depth comparison of ICP Variants
 - Root Mean square alignment error on 3 scenes

(b) Fractal landscape (c) Incised plane

- Symmetric ICP [Rusinkiewicz 19]
 - Symmetric error metric

- Color ICP [Johnson 97]
 - Registration on 3D texture data

Methodology

Data:

- Stanford Bunny
- RGB-D SLAM (freiburg1_xyz) [Sturm et.al. 2012]
- Benchmark point cloud registration [Fontana 2021]: various scenes

Convergence measure:

- RMSE
- Weighted average of Euclidean distances [Fontana 2021]

Analysis on bunny with multiple variants

RMSE for different variants

Analysis of convergence rate

Time for 20 iterations with different variants

RMSE variation for 20 iterations

Florian Donhauser, Cuong Ha, Panagiotis Petropoulakis, Suren Sritharan

Color and Projective variants

0.02

Color ICP (6-dim k-NN search) improves all metrics

- Though, x1.76 slower than normals compatibility

Color and Projective variants

Projective (win.size 8) with Symmetric-ICP visualization

- Projective Search struggles at the beginning but outperforms k-NN in the end
- Projective (win.size 8) is x3.82 slower than k-NN

Multi-Resolution along with Color and Projective variants

Multi-Resolution blends well with Color and Projective variants

Benchmark by Fontana et al.

$$\delta(P,G) = rac{\sum_{i=0}^n rac{\|p_i-g_i\|_2}{\|p_i-\overline{p}\|_2}}{n}$$
 Height on in

Same point cloud in poses
P and G
Weighted Euclidean distance based
on inverse distance to centroid

Compared variants

- Scaling factor $\theta = 0.1$
- Point-to-plane up to 13.4% less error but also no difference for scene "hauptgebaude"
- Symmetric ICP up to 22.1% less error but also 29.2% worse for scene "plain"

sequence	variant	θ	mean	median	std dev	min	max
plain	A	1	3.308733	2.965655	1.923608	0.196590	9.371940
	A	0.1	1.632221	1.26457	1.787482	0.0608	11.7137
	В	0.1	1.41389	0.962364	1.616845	0.050266	9.53577
	С	0.1	2.109305	1.33446	2.334786	0.079918	11.9195
hauptgebaude	A	0.1	0.384279	0.162546	0.525487	0.027522	3.61681
	В	0.1	0.387204	0.097541	0.616256	0.009919	2.80592
	C	0.1	0.29951	0.071693	0.639965	0.005803	4.39875
wood summer	A	0.1	0.840596	0.564219	0.9287	0.00579	4.22455
	В	0.1	0.813225	0.294635	0.944262	0.004005	3.79686
	С	0.1	0.80033	0.397184	0.930718	0.005369	3.82467

Table can also be found in report

A = point-to-point

B = point-to-plane

C = symmetric ICP

Table 1: Results for the benchmark by Fontana et al. [21]

Example for scene "eth/hauptgebaude"

12

Conclusion

- Provided a comprehensive comparison
- Tested different data sets including real-world data
- Implemented classical and recent approaches
- Code publicly available at https://github.com/PetropoulakisPanagiotis/ICP-Variants