FONCTIONS VECTORIELLES DE LA VARIABLE REELLE

I I	Dérivation		
	.1	Dérivée en un point	1
I	.2	Opérations sur les fonctions dérivables	3
I	.3	Opérations sur les fonctions dérivables	4
II I	nté	egration sur un segment	6
		Intégrale d'une fonction continue par morceaux sur un segment	
I	I.2	Sommes de Riemann	7
III	Prin	mitives et intégrales	9
I	II.1	Lien entre primitives et intégrales	9
		Calculs d'intégrales	
		Intégration par parties	
		Changement de variable	
IVI	orn	mules de Taylor	11

I. Dérivation

Il s'agit d'étendre des notions vues en première année aux fonctions définies sur un intervalle de \mathbb{R} à valeurs dans un espace vectoriel normé F, de dimension finie dans le cadre du programme.

Dans ce qui suit, I est un intervalle de \mathbb{R} d'intérieur non vide, a un élément de I et F un espace vectoriel normé, $F \neq \{0\}$ et $f: I \longrightarrow F$.

Dans le cas où F est de dimension finie, on note $n=\dim F$ et $\mathcal{B}_F=(u_1,\ldots,u_n)$ est une base de F: la fonction f est caractérisée par ses fonctions composantes dans \mathcal{B}_F et on a alors

$$\forall x \in I, \ f(x) = \sum_{j=1}^{n} f_j(x) \ u_j.$$

I.1 Dérivée en un point

Définition 1 On considère la fonction taux d'accroissement en a, notée $\tau_a(f): I \setminus \{a\} \longrightarrow F$ $x \longmapsto \frac{f(x) - f(a)}{x - a}$

On dit que f est dérivable en a si la fonction $\tau_{a}\left(f\right)$ a une limite (dans F) en a.

Cette limite est alors appelée la dérivée de f en a, et notée f'(a), $\frac{df}{dx}(a)$ ou Df(a). Une condition nécessaire et suffisante pour que f soit dérivable en a, de dérivée f'(a) en a est qu'il ex-

Une condition nécessaire et suffisante pour que f soit dérivable en a, de dérivée f'(a) en a est qu'il existe une fonction $\varepsilon: I \longrightarrow F$ vérifiant $\lim_{x \to a} \varepsilon(x) = 0$ telle que $\forall x \in I, \ f(x) = f(a) + (x-a) \ f'(a) + (x-a) \ \varepsilon(x)$.

Ceci permet d'écrire f(x) = f(a) + (x - a) f'(a) + o(x - a) au voisinage de a, ce qui est appelé un développement limité à l'ordre 1 de f au voisinage de a.

On dit aussi que f est différentiable en a.

Remarque I.1 Dans le cas où F est de dimension finie, avec les notations précédentes, une condition nécessaire et suffisante pour que f soit dérivable en a est que f_1, \ldots, f_n le soient et dans ce

$$cas f'(a) = \sum_{j=1}^{n} f'_{j}(a) u_{j}.$$

Par exemple soit $M: I \longrightarrow \mathcal{M}_n(\mathbb{K})$ définie par $\forall x \in I$, $M(x) = (m_{i,j}(x))_{1 \leq i,j \leq n}$. Une condition nécessaire et suffisante pour que M soit dérivable en a est que les fonctions scalaires $m_{i,j}$, $1 \leq i,j \leq n$, le soient et dans ce cas $M'(a) = (m'_{i,j}(a))_{1 \leq i,j \leq n}$.

Remarque I.2 Interprétation graphique et cinématique :

• si f est dérivable en a et $f'(a) \neq 0$, l'application affine $T_a(f)$: $\mathbb{R} \longrightarrow F$ $x \longmapsto f(a) + (x-a) f'(a)$

est tangente à f en a car vérifie $f(x) - T_a(f)(x) =_a o(x-a)$ et appelée application affine tangente à f en a. Son image est une droite affine de F appelée la tangente à f en a.

• si la fonction f décrit le mouvement d'un point matériel, f'(a) est le vecteur vitesse du mobile à l'instant a.

Proposition I.1 Si la fonction f est dérivable en a, alors f est continue en a.

Définition 2 On dit que f est dérivable à droite (resp. à gauche) en a lorsque la fonction $\tau_a(f)$ admet une limite à droite (resp. à gauche) dans F en a.

En cas d'existence, cette limite est appelée dérivée à droite (resp. à gauche) de f en a et notée $f'_d(a)$ (resp. $f'_d(a)$).

Par définition, f est dérivable à droite (resp. à gauche) en a si, et seulement si, a est adhérent à

 $I\cap]a,+\infty[$ (resp. à $I\cap]-\infty,a[$) et la restriction de f à $I\cap [a,+\infty[$ (resp. $I\cap]-\infty,a]$) est dérivable en a.

Lorsque a est l'extrémité inférieure (resp. supérieure) de I, les notions de dérivabilité et de dérivabilité à droite (resp. à gauche) en a coïncident.

Remarque I.3 Si a n'est pas une extrémité de I, une condition nécessaire et suffisante pour que f soit dérivable en a est que f soit dérivable à droite et à gauche en a et que l'on ait $f'_d(a) = f'_g(a)$. Dans ce cas, on a $f'(a) = f'_d(a) = f'_d(a)$.

Propriété I.1 Si f est dérivable à droite (resp. à gauche) en a, alors f est continue à droite (resp. à gauche) en a.

Par conséquent si f est dérivable à droite et à gauche en a, alors f est continue en a.

Définition 3 On dit que f est dérivable sur I lorsque f est dérivable en tout point de I. Dans ce cas, on définit l'application $f': I \longrightarrow F$ appelée la fonction dérivée de f sur I. On note $x \longrightarrow f'(x)$

aussi $f' = Df = \frac{df}{dx}$.

On note $D^1(I,F)$ (ou D(I,F)) l'ensemble des fonctions de I dans F dérivables sur I.

De même, si f est dérivable à droite (resp. à gauche) sur I, on définit la fonction dérivée à droite (resp. à gauche) de f sur I.

Définition 4 On dit que f est continûment dérivable ou de classe C^1 (sur I) si f est dérivable sur I et f' est continue sur I.

On note $C^{1}(I, F)$ l'ensemble des fonctions de I dans F de classe C^{1} sur I.

Remarque I.4 Dans le cas où F est de dimension finie, avec les notations précédentes, une condition nécessaire et suffisante pour que f soit dérivable (resp. de classe C^1) est que f_1, \ldots, f_n le soient. Dans ce cas, si $f = \sum_{j=1}^n f_j u_j$, alors $f' = \sum_{j=1}^n f'_j u_j$.

Exemple 1 Etants donnés deux vecteurs v et w de F, la fonction $f: \mathbb{R} \longrightarrow F$ $t \longmapsto (1-t)v + tw$ est de classe C^1 sur R et $\forall t \in \mathbb{R}$, f'(t) = w - v.

Exercice 1 Soit $P \in \mathbb{K}_n[X]$ et f définie sur \mathbb{R} par $\forall t \in \mathbb{R}$, f(t) = P(tX). Montrer que f est de classe C^1 sur \mathbb{R} . On trouve $\forall t \in \mathbb{R}$, $f'(t) = \sum_{k=1}^n k a_k t^{k-1} X^k = X P'(tX)$.

Exercice 2 Rappel théorème de Darboux. Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable ; alors f'(I) est un intervalle.

Soit $f:]-1,+1[\longrightarrow \mathbb{R}^2$. Montrer que f est dérivable sur]-1,+1[et que $t \longmapsto \left(t^2\sin\frac{1}{t},t^2\cos\frac{1}{t}\right)$

f'(]-1,+1[) n'est pas connexe par arcs (ce qui prouve que f n'est pas de classe C^1 sur]-1,+1[). Indication: pour cela on pourra calculer $\|f'(t)\|_2^2$.

I.2 Opérations sur les fonctions dérivables

Proposition I.2 Soient f, g deux fonctions de I dans f dérivables en a et $\lambda \in \mathbb{K}$. Alors $\lambda f + g$ est dérivable en a et $(\lambda f + g)'(a) = \lambda f'(a) + g'(a)$.

Corollaire I.1 D(I,F) et $C^{1}(I,F)$ sont deux sous-espaces vectoriels de C(I,F). La dérivation est linéaire sur D(I,F) et induit une application linéaire de $C^{1}(I,F)$ dans C(I,F).

Proposition I.3 Soient G un espace vectoriel normé, $T \in \mathcal{L}_c(F,G)$ et $f: I \longrightarrow F$. Si f est dérivable en a, alors $T \circ f$ (notée aussi T(f)) est dérivable en a et T(f)'(a) = T(f'(a)).

Corollaire I.2 On suppose de plus f de classe C^1 sur I. Alors T(f) est de classe C^1 sur I et T(f)' = T(f').

Remarque I.5 La continuité de T est vérifiée si F est de dimension finie.

Exemple 2 Soit $M: I \longrightarrow \mathcal{M}_n(\mathbb{K})$ une fonction dérivable en a. Alors $\operatorname{tr}(M)$ et tM sont dérivables en a et $\operatorname{tr}(M)'(a) = \operatorname{tr}(M'(a))$ ainsi que $({}^{t}M)'(a) = {}^{t}M'(a)$.

Proposition I.4 Soient G, H espaces vectoriels normés et $B: F \times G \longrightarrow H$ une application bilinéaire continue sur $F \times G$. Soient $f: I \longrightarrow F$ et $g: I \longrightarrow G$ deux fonctions dérivables en a. Alors B(f,g) est dérivable en a et B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),g'(a)).

Corollaire I.3 On suppose de plus f et g de classe C^1 sur I. Alors B(f,g) est de classe C^1 sur I et B(f,g)' = B(f',g) + B(f,g').

Remarque I.6 On étend les résultats précédents avec une application multilinéaire continue.

Exemple 3 • Soient $\alpha \in C^1(I, \mathbb{K})$, $f \in C^1(I, F)$. Alors $\alpha f \in C^1(I, F)$ et $(\alpha f)' = \alpha' f + \alpha f'$. • $F = E_n$ (espace vectoriel euclidien). Soient $f, g \in C^1(I, E_n)$. Alors $(f \mid g)$ est de classe C^1 sur

$$(f \mid g)' = (f' \mid g) + (f \mid g')$$

 $(f\mid g)' = (f'\mid g) + (f\mid g')$ De même $\|f\|_2^2$ est de classe C^1 sur I et $D\|f\|_2^2 = 2(f\mid Df)$. Si de plus f ne s'annule pas, alors $D \|f\|_{2} = \frac{(f \mid Df)}{\|f\|_{2}}.$

• Soit $(A, B) \in C^1(I, \mathcal{M}_n(\mathbb{K}))^2$: alors $A \times B \in C^1(I, \mathcal{M}_n(\mathbb{K}))$ et $(A \times B)' = A' \times B + A \times B'$.

Exercise 3 Soient $p, p \in \mathbb{N}^*$, $A, A \in C^1(I, \mathcal{M}_n(\mathbb{K}))$. Montrer que A^p est de classe C^1 et calculer $(A^p)'$.

Propriété I.2 Soit $f: I \longrightarrow F$ (algèbre normée de dimension finie) telle que $\forall t \in I, f(t) \in U(F)$ (ouvert de F). Si f est dérivable en a, il en est de même de la fonction $I \longrightarrow F$

à la notation f^{-1} !) car

$$f(a+h)^{-1} - f(a)^{-1} = -f(a+h)^{-1} (f(a+h) - f(a)) f(a)^{-1}$$

Exemple 4 Soit $A: I \longrightarrow \mathcal{M}_n(\mathbb{K})$ une fonction dérivable sur I vérifiant $\forall t \in I, A(t) \in GL_n(\mathbb{K})$. Alors la fonction A^{-1} est dérivable sur I et $(A^{-1})' = -A^{-1}A'A^{-1}$.

Exercice 4 $F = E_3$ (espace vectoriel euclidien). Soit $f : [a, b] \longrightarrow E_3$ (a, b réels tels que a < b)continue sur [a,b] telle que $f_{|]a,b[}$ soit dérivable sur]a,b[. Montrer l'existence de $c,\ c\in]a,b[$, tel que $||f(b) - f(a)||_2 \le (b - a) ||f'(c)||_2$. Pour cela considérer la fonction $t \longmapsto (f(b) - f(a) | f(t))$.

Proposition I.5 Dérivée d'une fonction composée.

Soient I, J deux intervalles d'intérieur non vide, $t_0 \in J$, $\varphi : J \longrightarrow \mathbb{R}$ dérivable en t_0 et vérifiant $\varphi(J) \subset I, \ f: I \longrightarrow F \ dérivable \ en \ \varphi(t_0).$ Alors $f \circ \varphi$ est dérivable en t_0 et $(f \circ \varphi)'(t_0) = \varphi'(t_0) f'(\varphi(t_0))$.

Corollaire I.4 Si on a de plus $\varphi \in C^1(J,\mathbb{R})$ et $f \in C^1(J,F)$, alors $f \circ \varphi \in C^1(J,F)$ et $(f \circ \varphi)' = \varphi' \cdot f' \circ \varphi.$

Exercice 5 Démontrer la proposition à l'aide de développements limités à l'ordre 1.

Proposition I.6 Inégalité des accroissements finis.

Soient $a, b \in \mathbb{R}$, a < b, $f: [a, b] \longrightarrow F$ et $g: [a, b] \longrightarrow \mathbb{R}$. On suppose f: f: [a, b], dérivables sur]a,b[telles que $\forall x \in]a,b[$, $||f'(x)|| \leq g'(x)$. Alors $||f(b) - f(a)|| \le g(b) - g(a)$.

Corollaire I.5 Soit $f: I \longrightarrow F$ continue sur I et dérivable sur I. Une condition nécessaire et suffisante pour que f soit constante sur I est $\forall x \in I$, f'(x) = 0.

Corollaire I.6 Soit $f: I \longrightarrow F$ continue sur I et dérivable sur I. Une condition nécessaire et suffisante pour que f soit lipschitzienne sur I est que f' soit bornée sur $\overset{\circ}{I}$.

I.3 Fonctions de classe C^k

Définition 5 On note $f^{(0)} = f$. Etant donné un entier naturel non nul k, on dit que f est k fois dérivable sur I si f est k-1 fois dérivable sur I et $f^{(k-1)}$ est dérivable sur I.

La dérivée k^{me} de f est notée $f^{(k)}$, $D^k f$ ou $\frac{d^k f}{dx^k}$

L'ensemble des fonctions de I dans F k fois dérivables sur I est noté $D^k(I,F)$.

Définition 6 Une fonction continue sur I est dite de classe C^0 sur I. On note aussi $C(I, F) = C^0(I, F)$. Etant donné $k, k \in \mathbb{N}^*$, et $f: I \longrightarrow F$, on dit que f est de classe C^k sur I si f est k fois dérivable sur I et $f^{(k)}$ est continue sur I. L'ensemble des fonctions de I dans F de classe C^k sur I est noté $C^{k}\left(I,F\right) .$

Une fonction de classe C^k sur I, pour tout entier naturel k, est dite de classe C^{∞} ou indéfiniment dérivable sur I. L'ensemble des fonctions de classe C^{∞} sur I à valeurs dans F est noté $C^{\infty}\left(I,F\right)$.

On a
$$C^{\infty}\left(I,F\right)=\bigcap_{k\in\mathbb{N}}C^{k}\left(I,F\right)=\bigcap_{k\in\mathbb{N}}D^{k}\left(I,F\right).$$

Remarque I.7 On suppose F de dimension finie et $\forall x \in I$, $f(x) = \sum_{j=1}^{n} f_j(x) u_j$.

Une condition nécessaire et suffisante pour que f soit k fois dérivable (resp. de classe C^k) sur I est que f_1, \ldots, f_n le soient.

Proposition I.7 Soient $k \in \mathbb{N}^*$, $f, g \in D^k(I, F)$ (resp. $C^k(I, F)$) et $\alpha \in \mathbb{K}$. Alors $\alpha f + g \in D^k(I, F)$ (resp. $C^k(I, F)$) et $(\alpha f + g)^{(k)} = \alpha f^{(k)} + g^{(k)}$.

Propriété I.3 • Soit $k \in \mathbb{N}^*$: $D^k(I, F)$, $C^k(I, F)$ et $C^{\infty}(I, F)$ sont des espaces vectoriels (sous-espaces vectoriels de F^I).

• Soit $k \in \mathbb{N}^*$: la dérivation définit une application linéaire de $D^k(I,F)$ dans $D^{k-1}(I,F)$ et de $C^k(I,F)$ dans $C^{k-1}(I,F)$ et un endomorphisme de $C^{\infty}(I,F)$.

Proposition I.8 Formule de Leibniz.

Soient G, H espaces vectoriels normés, $B: F \times G \longrightarrow H$ une application bilinéaire continue sur $F \times G$ et $k, k \in \mathbb{N} \cup \{\infty\}$. Soient $f: I \longrightarrow F$ et $g: I \longrightarrow G$ deux fonctions de classe C^k sur I.

Alors
$$B(f,g) \in C^k(I,H)$$
 et si k est un entier naturel, $B(f,g)^{(k)} = \sum_{p=0}^k \binom{k}{p} B\left(f^{(p)}, g^{(k-p)}\right)$.

Corollaire I.7 Pour tout $k, k \in \mathbb{N} \cup \{\infty\}, C^k(I, \mathbb{K})$ est une algèbre sur \mathbb{K} .

Remarque I.8 Plus généralement si F est une algèbre normée, $C^k(I,F)$ est une algèbre.

Proposition I.9 Soient $k, k \in \mathbb{N} \cup \{\infty\}$, I, J deux intervalles d'intérieur non vide, $\varphi : J \longrightarrow \mathbb{R}$ de classe C^k telle que $\varphi(J) \subset I$ et $f : I \longrightarrow F$ de classe C^k sur I. Alors $f \circ \varphi \in C^k(J, F)$.

II. Intégration sur un segment

Dans ce \S , a et b sont deux réels tels a < b. F est un espace vectoriel normé de dimension finie (hypothèse obligée dans le cadre du programme pour définir la notion d'intégrale de fonction à valeurs

dans F) et on utilise des notations déjà introduites, notamment $\forall x \in [a,b], f(x) = \sum_{j=1}^{n} f_j(x) u_j$.

On munit l'espace vectoriel $\mathcal{B}([a,b],F)$ des fonctions bornées de [a,b] dans F de la norme $\|\cdot\|_{\infty}$.

II.1 Intégrale d'une fonction continue par morceaux sur un segment

Définition 7 La fonction $f, f : [a, b] \longrightarrow F$, est dite continue par morceaux sur [a, b] si elle admet un nombre fini de points de discontinuité dans [a, b], qui sont des points de discontinuité de première espèce (c'est-à-dire en lesquels elle a une limite à droite et à gauche dans F).

Ainsi la fonction f est continue par morceaux sur [a,b] s'il existe une subdivision $\sigma=(x_i)_{0\leqslant i\leqslant N}$ de [a,b] telle que pour tout élément i de [1,N], la fonction $f_{|]x_{i-1},x_i[}$ admette un prolongement par continuité à $[x_{i-1},x_i]$. Une telle subdivision σ de [a,b] est dite adaptée à f.

Propriété II.1 Une fonction continue par morceaux sur [a,b] est bornée sur [a,b]. Si f est continue par morceaux sur [a,b], il en est de même de ||f||.

Remarque II.1 Une condition nécessaire et suffisante pour que f soit continue par morceaux (resp. en escalier) sur [a,b] est que ses fonctions composantes f_1, \ldots, f_n le soient.

Propriété II.2 L'ensemble $\mathcal{CM}([a,b],F)$ des fonctions continues par morceaux sur [a,b] à valeurs dans F est un espace vectoriel sur \mathbb{K} (en tant que sous-espace vectoriel de $\mathcal{B}([a,b],F)$).

Définition 8 La fonction f, $f:[a,b] \longrightarrow F$, est dite en escalier s'il existe une subdivision $\sigma, \sigma = (x_i)_{0 \le i \le N}$, de [a,b] telle que pour tout élément i de [1,N], la fonction $f_{|]x_{i-1},x_i[}$ soit constante.

Avec ces notations, on dit que la subdivision σ de [a,b] est adaptée à f.

Propriété II.3 Une fonction en escalier sur [a,b] est continue par morceaux et ainsi bornée sur [a,b].

Si f est en escalier sur [a, b], il en est de même de ||f||.

Propriété II.4 L'ensemble $\mathcal{E}([a,b],F)$ des fonctions en escalier sur [a,b] à valeurs dans F est un espace vectoriel sur \mathbb{K} (en tant que sous-espace vectoriel de $\mathcal{CM}([a,b],F)$).

Définition 9 Soit $f:[a,b] \longrightarrow F$ continue par morceaux. On définit l'intégrale de f sur [a,b] de la façon suivante

$$\int_{[a,b]} f = \sum_{j=1}^{n} \left(\int_{[a,b]} f_j \right) u_j$$

Remarque II.2 Soit $f:[a,b] \longrightarrow F$ continue par morceaux. Alors f est limite uniforme d'une suite $(\varphi_k)_{k\in\mathbb{N}}$ de fonctions en escalier de [a,b] dans F, dite associée à f.

La suite $\left(\int_{[a,b]} \varphi_k\right)_{k \in \mathbb{N}}$ converge et a pour limite $\int_{[a,b]} f$ (ce que l'on obtient en raisonnant sur les composantes des fonctions).

Proposition II.1 L'application $\mathcal{CM}([a,b],F) \longrightarrow F$ est linéaire. $f \longmapsto \int_{[a,b]} f$

Propriété II.5 Deux fonctions continues par morceaux de [a,b] dans F égales sauf sur une partie finie de [a,b] ont des intégrales sur [a,b] égales.

Proposition II.2 $\forall f \in \mathcal{CM}([a,b],F), \left\| \int_{[a,b]} f \right\| \leq \int_{[a,b]} \|f\| \leq (b-a) \|f\|_{\infty}.$

Corollaire II.1 L'application $\mathcal{CM}([a,b],F) \longrightarrow F$ est (linéaire) continue. $f \longmapsto \int_{[a,b]} f$

Proposition II.3 Additivité par rapport aux intervalles.

Soient $f \in \mathcal{CM}([a,b],F)$ et c, a < c < b.

$$Alors \ f_{|[a,c]} \in \mathcal{CM} ([a,c],F) \ , \ f_{|[c,b]} \in \mathcal{CM} ([c,b],F) \ et \ \int_{[a,b]} f = \int_{[a,c]} f_{|[a,c]} + \int_{[c,b]} f_{|[c,b]}.$$

Corollaire II.2 Soient $f \in \mathcal{CM}([a,b],F)$ et σ , $\sigma = (x_i)_{0 \leqslant i \leqslant N}$ une subdivision de [a,b] adaptée à f. En notant pour tout i, $1 \leqslant i \leqslant N$, f_i le prolongement par continuité de $f_{|]x_{i-1},x_i[}$ à $[x_{i-1},x_i]$

on
$$a \int_{[a,b]} f = \sum_{i=1}^{N} \int_{[x_{i-1},x_i]} f_i$$
.

Proposition II.4 Croissance.

Soient
$$f, g \in \mathcal{CM}([a, b], \mathbb{R}), f \leqslant g. Alors \int_{[a, b]} f \leqslant \int_{[a, b]} g.$$

Proposition II.5 L'application $C([a,b],F) \longrightarrow \mathbb{R}$ est une norme sur C([a,b],F) (qui $f \longmapsto \int_{[a,b]} \|f\|$ induit une semi-norme sur $\mathcal{CM}([a,b],F)$) appelée norme (semi-norme) de la convergence en moyenne,

notée $\| \|_1$ ou \mathcal{N}_1 .

II.2 Sommes de Riemann

Définition 10 Soit $f:[a,b] \longrightarrow F$ continue par morceaux sur [a,b] et σ , $\sigma=(x_i)_{0\leqslant i\leqslant N}$ une subdivision de [a,b] et pour tout $i,\ i\in [\![1,N]\!]$, α_i un point arbitraire de $[x_{i-1},x_i]$. La quantité $\mathcal{R}_{\sigma}(f, \alpha_1, \dots, \alpha_N) = \sum_{i=1}^{N} (x_i - x_{i-1}) f(\alpha_i)$ est appelée somme de Riemann de f associée à la subdi-

Théorème 1 Soit $f:[a,b] \longrightarrow F$ une fonction continue par morceaux sur [a,b]. Pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que pour toute subdivision σ de [a,b], de pas inférieur ou égal à η , on ait pour toute somme de Riemann de f associée à σ $\left\| \mathcal{R}_{\sigma}(f, \alpha_1, \ldots, \alpha_N) - \int_{[a,b]} f \right\| \leqslant \varepsilon$.

Corollaire II.3 Soit $f:[a,b] \to \mathbb{K}$ une fonction continue par morceaux sur [a,b]. Posons pour $n \in \mathbb{N}^*$ $S_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a+k\frac{b-a}{n}\right)$. Alors $S_n \xrightarrow[n \to +\infty]{} \int_{[a,b]} f$.

Exercice 6 Déterminer
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \begin{pmatrix} \cos \frac{k\pi}{n} & -\sin \frac{k\pi}{n} \\ \sin \frac{k\pi}{n} & \cos \frac{k\pi}{n} \end{pmatrix}$$
.

III. Primitives et intégrales

I est un intervalle de \mathbb{R} d'intérieur non vide et F un espace vectoriel normé de dimension finie. Soit $f \in \mathcal{CM}(I,F)$. Etant donnés a et b appartenant à I, on note

$$\int_{a}^{b} f(t) dt = \int_{[a,b]} f \operatorname{si} a < b = -\int_{[b,a]} f \operatorname{si} b < a = 0 \operatorname{si} a = b$$

Proposition III.1 Relation de Chasles.

Avec ces notations et hypothèses, étant donnés a, b, c éléments de I, on $a \int_a^c f(t) dt = \int_a^b f(t) dt + \int_b^c f(t) dt$ ou encore $\int_a^c f(t) dt + \int_b^a f(t) dt = 0$.

Remarque III.1 Soient $a, b \in I$. L'application $\mathcal{CM}(I, F) \longrightarrow F$ est linéaire et $f \longmapsto \int_{b}^{a} f(t) dt$ $\forall f \in \mathcal{CM}(I, F), \left\| \int_{a}^{b} f(t) dt \right\| \leqslant \left| \int_{a}^{b} \|f(t)\| dt \right| \leqslant |b-a| \sup_{[a,b] \ ou \ [b,a]} \|f\|.$

III.1 Lien entre primitives et intégrales

Théorème 2 Primitives des fonctions continues.

Soient $f \in \mathcal{C}(I, F)$.

Pour tout élément a de I la fonction $I \longrightarrow F$ est la primitive de f qui s'annule en $x \longmapsto \int_{a}^{x} f(t) dt$

Etant donnés a,b éléments de I et g une primitive de f sur I, on $\int_a^b f(t) dt = g(b) - g(a)$ que l'on note $[g(t)]_a^b$.

Corollaire III.1 Si f est de classe C^1 sur I, alors : $\forall (a,b) \in I^2$, $\int_a^b f'(t) dt = f(b) - f(a)$.

Remarque III.2 On a ainsi une démonstration plus simple de l'inégalité des accroissements finis pour des fonctions de classe C^1 .

Soient $f, g, f \in C^1(I, F)$ et $g \in C^1(I, \mathbb{R})$ telles que $||f'|| \leq g'$.

Alors $\forall (a, b) \in I^2$, $||f(b) - f(a)|| \le |g(b) - g(a)|$.

 $\textit{Une application fréquente concerne le cas où g' \ est \ constante, \ c'est-\`{a}-dire \ g \ est \ linéaire \ (ou \ affine). }$

Remarque III.3 Les primitives d'une fonction continue sur I sont de classe C^1 sur I. Plus généralement, étant donné $k,\ k\in\mathbb{N}\cup\{\infty\}$, les primitives d'une fonction de classe C^k sur I sont de classe C^{k+1} sur I.

Exercice 7 Soit $P \in \mathbb{K}_n[X]$ et f définie sur \mathbb{R} par $\forall t \in \mathbb{R}$, $f(t) = \int_0^t P(uX) du$. Montrer que f est de classe C^1 sur \mathbb{R} et calculer f'.

III.2 Calculs d'intégrales

Nous disposons de deux outils de calcul de primitives de fonctions continue par morceaux, à savoir l'intégration par parties et le changement de variable.

Si f est une fonction continue (par morceaux) de I dans F, le symbole $\int f(x) dx$ désigne une primitive ("généralisée") quelconque de f sur I.

III.2.a Intégration par parties

Proposition III.2 Soient F, G, H trois espaces vectoriels normés, $\dim H < +\infty$, $f \in C^1(I, F)$, $g \in C^1(I, G)$ et B une application bilinéaire continue de $F \times G$ dans H. Alors $\int B(f'(x), g(x)) dx = B(f(x), g(x)) - \int B(f(x), g'(x)) dx.$ Notamment: $\forall (a, b) \in I^2$, $\int_{a}^{b} B(f'(x), g(x)) dx = B(f(b), g(b)) - B(f(a), g(a)) - \int_{a}^{b} B(f(x), g'(x)) dx.$

Remarque III.4 La continuité de B est satisfaite dès que F et G sont de dimension finie.

III.2.b Changement de variable

Proposition III.3 Soient J un intervalle de \mathbb{R} , $J \neq \emptyset$, $\varphi : J \longrightarrow \mathbb{R}$ une fonction de classe C^1 sur J telle que $\varphi(J) \subset I$, et $f \in \mathcal{C}(I, F)$.

Alors:
$$\forall (a,b) \in J^2$$
, $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b \varphi'(t) f(\varphi(t)) dt$.

Corollaire III.2 Soient J un intervalle de \mathbb{R} , $J \neq \emptyset$, $\varphi : J \longrightarrow \mathbb{R}$ une fonction strictement monotone de classe C^1 sur J telle que $\varphi(J) \subset I$, et $f \in \mathcal{CM}(I,F)$.

Alors
$$f \circ \varphi \in \mathcal{CM}(J, F)$$
 et $\forall (a, b) \in J^2$, $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b \varphi'(t) f(\varphi(t)) dt$.

IV. Formules de Taylor

Théorème 3 Formule de Taylor reste intégrale ou de Taylor-Laplace. Soient $p \in \mathbb{N}$, $f \in C^{p+1}(I, F)$. On $a : \forall (a, x) \in I^2$,

$$f(x) = \sum_{k=0}^{p} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^p}{p!} f^{(p+1)}(t) dt$$
$$= \sum_{k=0}^{p} \frac{(x-a)^k}{k!} f^{(k)}(a) + (x-a)^{p+1} \int_0^1 \frac{(1-u)^p}{p!} f^{(p+1)}((1-u) a + u x) du$$

Exercice 8 Soit $\alpha \in \mathbb{R}$. On note $\mathcal{E}_{\alpha} = \left\{ f \in C^{2}\left(\left[0,1\right], \mathbb{R}\right) \mid f\left(0\right)\right) = f\left(1\right) = 0, f'\left(0\right) = \alpha \right\}$. Déterminer $\min_{f \in \mathcal{E}_{\alpha}} \int_{[0,1]} (f'')^2$.

Théorème 4 Inégalité de Taylor-Lagrange.

Soient
$$p \in \mathbb{N}, \ f \in C^{p+1}(I, F)$$
. On $a : \forall (a, b) \in I^2, \ \left\| f(b) - \sum_{k=0}^{p} \frac{(b-a)^k}{k!} f^{(k)}(a) \right\| \leqslant \frac{\left| b-a \right|^{p+1}}{(p+1)!} \sup_{[a,b]ou[b,a]} \left\| f^{(p+1)} \right\|.$

Définition 11 Soient $p \in \mathbb{N}$, $f: I \longrightarrow F$, $a \in \overline{I}$.

On dit que f a un développement limité à l'ordre p au voisinage de a s'il existe un polynôme P à coefficients dans F vérifiant :

$$\deg P \leqslant p \qquad f(x) =_a P(x-a) + o((x-a)^p).$$

Remarque IV.1 • En cas d'existence, P est unique, appelé la partie régulière du $DL_p(a)$ de f.

• Dans le cas où F est de dimension finie et $\forall x \in I$, $f(x) = \sum_{i=1}^{n} f_j(x) u_j$, une condition nécessaire

et suffisante pour que f ait un $DL_{p}\left(a\right)$ est que f_{1},\ldots,f_{n} en aient un.

Alors si pour tout
$$j, j \in [1, n], f_j(x) =_a P_j(x - a) + o((x - a)^p)$$
 alors $f(x) =_a \sum_{j=1}^n P_j(x - a) u_j + o((x - a)^p)$.

Proposition IV.1 Soient $p \in \mathbb{N}$, $f \in \mathcal{C}(I, F)$ et $a \in I$. On suppose que f a un $DL_p(a)$:

$$f(x) = v_0 + (x - a)v_1 + \dots + (x - a)^p v_p + o((x - a)^p).$$
Alors toute primitive g de f sur I a un $DL_{p+1}(a)$ obtenu en intégrant terme à terme celui de f , c 'est-à-dire $g(x) =_a g(a) + (x - a)v_0 + \dots + \frac{(x - a)^{p+1}}{p+1}v_p + o((x - a)^{p+1}).$

Corollaire IV.1 Soit $f \in C^1(I, F)$ et $a \in I$. On suppose que f a un $DL_{p+1}(a)$ et que f' a un $DL_{p}\left(a\right)$. Alors la partie régulière du $DL_{p}\left(a\right)$ de f' est la dérivée de celle du $DL_{p+1}\left(a\right)$ de f.

Remarque IV.2 L'existence d'un $DL_1(a)$ d'une fonction f assure la (ou le prolongement par) continuité de f en a ainsi que sa dérivabilité en a.

Un $DL_2(a)$ n'assure pas la dérivabilité seconde de f en a, ni l'existence d'un $DL_1(a)$ de f'.

Théorème 5 Formule de Taylor-Young.

Soient $p \in \mathbb{N}$, $f \in C^p(I, F)$, $a \in I$. Alors f a un $DL_p(a)$ donné par la formule de Taylor-Young:

$$f(x) =_a \sum_{k=0}^{p} \frac{(x-a)^k}{k!} f^{(k)}(a) + o((x-a)^p).$$

Remarque IV.3 • On peut dériver terme à terme le DL_p d'une fonction de classe C^p .

• La formule de Taylor-Young est un justificatif de l'existence d'un développement limité, rarement un moyen de calcul.

Exercice 9 Soit
$$f: \left] -\frac{\pi}{2}, +\frac{\pi}{2} \right[\longrightarrow \mathbb{R}$$
. On pose $\forall n \in \mathbb{N}, \ a_n = \frac{f^{(n)}(0)}{n!}$. Montrer que l'on a $\forall n \in \mathbb{N}, \ a_{n+1} = \frac{1}{n+1} \sum_{k=0}^n a_k a_{n-k}$.

Montrer que l'on a
$$\forall n \in \mathbb{N}, \ a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} a_k a_{n-k}$$