Theorem 7.1.5 (Master Theorem for this course upto this point)

Thursday, November 24, 2022 11:55 AM

THEOREM 7.1.5

- **Equivalent Statements** If A is an $n \times n$ matrix, and if $T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is multiplication by A, then the following are equivalent. (a) A is invertible. (b) Ax = 0 has only the trivial solution. (c) The reduced row-echelon form of A is In. (d) A is expressible as a product of elementary matrices. (e) $A_{\mathbf{X}} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} . (f) Ax = b has exactly one solution for every $n \times 1$ matrix b. (g) $det(A) \neq 0$ (h) The range of T_A is R^n . (i) TA is one-to-one. (j) The column vectors of A are linearly independent.
 - (k) The row vectors of A are linearly independent.
 - (1) The column vectors of A span \mathbb{R}^n .
 - (m) The row vectors of A span \mathbb{R}^n .
 - (n) The column vectors of A form a basis for \mathbb{R}^n .
 - (o) The row vectors of A form a basis for Rⁿ.
 - (p) A has rank n.

(p)	A has rank n.
()	
(q)	A has nullity 0.
(r)	The orthogonal complement of the nullspace of A is R^n .

- (s) The orthogonal complement of the row space of A is $\{0\}$.
- (t) $A^T A$ is invertible.
- (u) $\lambda = 0$ is not an eigenvalue of A.