Aluno: Raphael Henrique Braga Leivas

Código fonte LaTeX desse arquivo pode ser visto em meu GitHub pessoal:

https://github.com/RaphaelLeivas/latex/tree/main/ListaCEII

Aceito sugestões de melhoria do código :)

Problema P6.2

6.2 Pspice Multisim O pulso triangular de corrente mostrado na Figura P6.2 é aplicado a um indutor de 500 mH.

- a) Escreva as expressões que descrevem i(t) nos quatro intervalos $t < 0, 0 \le t \le 25$ ms, 25 ms $\le t \le 50$ ms e t > 50 ms.
- b) Deduza as expressões para a tensão, potência e energia do indutor. Use a convenção passiva.

(a)

Usando a figura, temos as expressões de i(t) dadas por

$$i(t) = \begin{cases} 0, & t < 0 \\ \frac{100 \cdot 10^{-3} - 0}{25 \cdot 10^{-3} - 0} t, & 0 \le t < 25 \text{ ms} \\ \frac{0 - 100 \cdot 10^{-3}}{50 \cdot 10^{-3} - 25 \cdot 10^{-3}} t + (200 \cdot 10^{-3}), & 25 \le t < 50 \text{ ms} \\ 0, & t \ge 50 \text{ ms} \end{cases} = \begin{cases} 0 \text{ A}, & t < 0 \\ 4t \text{ A}, & 0 \le t < 25 \text{ ms} \\ 0.2 - 4t \text{ A}, & 25 \le t < 50 \text{ ms} \\ 0 \text{ A}, & t \ge 50 \text{ ms} \end{cases}$$

(b)

Sabemos que a tensão em um indutor é dada por

$$v(t) = L\frac{\mathrm{d}i}{\mathrm{d}t} \tag{6.2.1}$$

Portanto, aplicando (??) sobre o resultado do item (a), temos

$$v(t) = \begin{cases} 0, & t < 0 \\ L \cdot 4, & 0 \le t < 25 \text{ ms} \\ L \cdot (-4), & 25 \le t < 50 \text{ ms} \\ 0, & t \ge 50 \text{ ms} \end{cases} = \begin{cases} 0 \text{ V}, & t < 0 \\ 2 \text{ V}, & 0 \le t < 25 \text{ ms} \\ -2 \text{ V}, & 25 \le t < 50 \text{ ms} \\ 0 \text{ V}, & t \ge 50 \text{ ms} \end{cases}$$

Além disso, temos que a potência no indutor é dada por

$$p(t) = v(t) \cdot i(t) \tag{6.2.2}$$

Assim,

$$p(t) = \begin{cases} 0, & t < 0 \\ 4t \cdot 2, & 0 \le t < 25 \text{ ms} \\ (0.2 - 4t) \cdot (-2), & 25 \le t < 50 \text{ ms} \\ 0, & t \ge 50 \text{ ms} \end{cases} = \begin{cases} 0 \text{ W}, & t < 0 \\ 8t \text{ W}, & 0 \le t < 25 \text{ ms} \\ 8t - 0.4 \text{ W}, & 25 \le t < 50 \text{ ms} \\ 0 \text{ W}, & t \ge 50 \text{ ms} \end{cases}$$

Finalmente, podemos determinar a energia E(t) no indutor a partir de p(t) substituindo (??) em (??).

$$p(t) = L \frac{\mathrm{d}i}{\mathrm{d}t} \cdot i(t) = L i(t) \frac{\mathrm{d}i}{\mathrm{d}t}$$

Note que a potência é energia por unidade de tempo, logo $p(t) = \frac{\mathrm{d}E}{\mathrm{d}t}$. Substituindo,

$$\frac{\mathrm{d}E}{\mathrm{d}t} = L \ i(t) \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$dE = L i(t)di$$

Integrando ambos lados, temos

$$\int_{t_i}^{t_f} E(t) dt = \int_{i_i}^{i_f} Li(t) di$$

$$E(t_f) - E(t_i) = \frac{1}{2}L\left[i_f^2 - i_i^2\right]$$

Assumimos a corrente inicial $i_i=0$ e energia inicial $E_i=0$ também nula. Além disso, fazemos a energia final $E(t_f)=E(t)$ e a corrente do estado final como $i_f=i(t)$. Assim, isolando E(t),

$$E(t) = \frac{1}{2}L[i(t)]^2$$
 (6.2.3)

Usando (??), temos

$$E(t) = \begin{cases} 0, & t < 0 \\ \frac{1}{2}L(4t)^2, & 0 \le t < 25 \text{ ms} \\ \frac{1}{2}L(0.2 - 4t)^2, & 25 \le t < 50 \text{ ms} \\ 0, & t \ge 50 \text{ ms} \end{cases} = \begin{cases} 0 \text{ J}, & t < 0 \\ 4t^2 \text{ J}, & 0 \le t < 25 \text{ ms} \\ 0.01 - 0.4t + 4t^2 \text{ J}, & 25 \le t < 50 \text{ ms} \\ 0 \text{ J}, & t \ge 50 \text{ ms} \end{cases}$$

Problema P6.21

6.21 Pspice Multisim O pulso de corrente de formato retangular mostrado na Figura P6.21 é aplicado a um capacitor de $0,1~\mu F$. A tensão inicial no capacitor é uma queda de $15\,V$ na direção de referência da corrente. Deduza a expressão da tensão no capacitor para os intervalos descritos nos itens (a)–(d).

- a) $0 \le t \le 10 \,\mu s$;
- b) $10 \,\mu \text{s} \le t \le 20 \,\mu \text{s}$;
- c) $20 \mu s \le t \le 40 \mu s$;

- d) $40 \,\mu \text{s} \le t < \infty$;
- e) Faça um gráfico de v(t) no intervalo −10
 μs ≤ t ≤ 50 μs.

Figura P6.21

(a), (b), (c), (d)

Sabemos que a tensão em um capacitor de capacitância C é dada por

$$v(t) = V_0 + \frac{1}{C} \int_{t_i}^{t_f} i(t) dt$$
 (6.21.1)

Usando a figura, e aplicando (??) nos intervalos correspondetes ao enunciado, temos

$$v(t) = \begin{cases} 15 + \frac{1}{C} \int_{0}^{t} (-50 \text{ mA}) dt, & 0 \le t \le 10 \text{ } \mu\text{s} \\ 10 + \frac{1}{C} \int_{10 \text{ } \mu\text{s}}^{t} (100 \text{ mA}) dt, & 10 \le t \le 20 \text{ } \mu\text{s} \\ 20 + \frac{1}{C} \int_{20 \text{ } \mu\text{s}}^{t} (160 \text{ mA}) dt, & 20 \le t \le 40 \text{ } \mu\text{s} \end{cases} = \begin{cases} 15 - 5 \cdot 10^{5} t \text{ V}, & 0 \le t \le 10 \text{ } \mu\text{s} \\ 10^{6} t \text{ V}, & 10 \le t \le 20 \text{ } \mu\text{s} \\ 1.6 \cdot 10^{6} t - 12 \text{ V}, & 20 \le t \le 40 \text{ } \mu\text{s} \end{cases}$$
$$52 + \frac{1}{C} \int_{40 \text{ } \mu\text{s}}^{t} (0 \text{ mA}) dt, & t > 40 \text{ } \mu\text{s} \end{cases}$$

(e)

Usando a ferramenta online Desmos, temos o gráfico de v(t) em função do tempo t abaixo.

$$v(t) = \left\{0 < t < 10 \cdot 10^{-6} : 15 - 5 \cdot 10^{5} t\right\}$$

$$v(t) = \{ 10 \cdot 10^{-6} < t < 20 \cdot 10^{-6} : 10^{6}t \}$$

$$v(t) = \left\{ 20 \cdot 10^{-6} < t < 40 \cdot 10^{-6} : 1.6 \cdot 10^{6} t - 12 \right\}$$

$$v(t) = \{ t > 40 \cdot 10^{-6} : 52 \}$$

https://www.desmos.com/calculator/3zabdb3vgt?lang=pt-BR

Problema P6.25

Pspice Multisim Os três indutores no circuito da Figura P6.25 estão ligados aos terminais de uma caixa preta em t=0. Sabe-se que a tensão resultante para t>0 é

$$v_0 = 2.000e^{-100t} \text{ V}.$$

Se $i_1(0) = -6$ A e $i_2(0) = 1$ A, determine:

- a) $i_0(0)$;
- b) $i_0(t), t \ge 0;$
- c) $i_1(t), t \ge 0;$
- d) $i_2(t), t \ge 0;$

- e) a energia inicial armazenada nos três indutores;
- f) a energia total fornecida à caixa preta;
- g) a energia final retida nos indutores ideais.

Figura P6.25

(a)

Aplicando análise nodal no nó essencial (B), temos

$$i_0(t) + i_1(t) + i_2(t) = 0 \implies i_0(t) = -i_1(t) - i_2(t)$$

Substituindo no instante t = 0,

$$i_0(0) = -(-6) - 1$$

$$i_0(0) = 5 \text{ A}$$

(b)

Reduzindo os três indutores da figura via redução série-paralelo, temos um indutor equivalente L_{eq} dado por

$$L_{eq} = (1 \text{ H} // 4 \text{ H}) + 3.2 \text{ H}$$

$$L_{eq} = 4.0 \; \text{H}$$

Assim, usando a expressão da corrente no indutor

$$i(t) = i_0 + \frac{1}{L} \int_{t_i}^{t_f} v_L(t) dt$$
 (6.25.1)

Note que no sentido em que $i_o(t)$ está definida na figura, temos, via análise de malhas,

$$+v_o(t) + v_{L_{eq}}(t) = 0 \quad \Rightarrow \quad v_{L_{eq}}(t) = -v_o(t)$$

Assim, temos que (??) deve ter o sinal ajustado para atender a convenção passiva definida acima, ficando

$$i(t) = i_0 - \frac{1}{L} \int_{t_i}^{t_f} v_0(t) dt$$
 (6.25.2)

Substituindo os valores do enunciado e resultado do item (a) em (??), temos

$$i(t) = 5 - \frac{1}{4} \int_0^t 2000e^{-100t} dt$$

$$i(t) = 5 - 2000 \frac{1}{4} \frac{1}{-100} \left[e^{-100t} - e^0 \right]$$

$$i(t) = 5 + 5 \left[e^{-100t} - 1 \right]$$

$$i(t) = 5e^{-100t} , \quad t > 0$$

(c)

Retornando ao circuito original, temos que a queda de tensão no indutor de