Trabalho de Conclusão de Curso - Bacharelado em Ciências da Computação

Compressão de Dados e Teoria da Informação

Lucas Silva Amorim

Título: Compressão de Dados e Teoria da Informação

Autor: Lucas Silva Amorim

Orientador: Profa Dr.a Cristiane M. Sato

Trabalho de conclusão de curso apresentado como requisito parcial para obtenção do título de Bacharel em Ciências da Computação pela Universidade Federal do ABC.

Banca Examinadora:

Prof. Dr. Circulando de Souza Universidade Federal de ..

Prof. Dr. Recirculando de Souza Universidade Federal de ..

Santo André, 30 de agosto de 2022.

Sumário

1	Intro	odução	7
2	Con	ceitos e definições fundamentais	8
	2.1	Código	8
		2.1.1 Códigos unicamente decodificáveis e livres de prefixo	8
	2.2	Relações fundamentais com a Teoria da Informação	9
		2.2.1 Distribuição de Probabilidade e Esperança	10

AGRADECIMENTO

Opcional. Agradeço a todos os que me ajudaram na elaboração deste trabalho...

RESUMO

Neste lugar vai um resumo do projeto e objetivos, apresentando os principais resultados;

Conforme as normas NBR 14724:2002 da ABNT, o resumo é elemento obrigatório, constituído de uma seqüência de frases concisas e objetivas e não de uma simples enumeração de tópicos, não ultrapassando 500 palavras, seguido, logo abaixo, das palavras representativas do conteúdo do trabalho, isto é, palavras-chave e/ou descritores.

Palavras Chaves: TCC, Trabalho, Modelo

ABSTRACT

Versão em língua estrangeira do resumo. Obrigatório, pela ABNT. O título é ABSTRACT, em inglês, RESUMEN, em espanhol castelhano, e RÉSUMÉ, em francês. Sugerimos Inglês.

Keywords: aubergine,carrot, radish

1 Introdução

Esta pesquisa pretende mostrar que [...] através de [...] conforme concepções apresentadas por [...] . Para isso, articulamos o conceito de [...] com o conceito de [...] . Fizemos pesquisas de recepção conforme [...] . Articulamos os resultados a partir de idéias de [...] . "Neste primeiro parágrafo você deve deixar completamente claro o que pretende com o trabalho. A introdução é redigida depois de escrito todo o trabalho porque, no decorrer da pesquisa, algumas coisas podem ser modificadas em relação ao projeto original". "Depois, em vários parágrafos, você deve falar sobre a problematização, a contextualização histórica, a revisão bibliográfica, os objetivos, a justificativa, a metodologia. As conclusões, evidentemente, devem ficar no capítulo Considerações Finais, para que o leitor não perca o interesse pelo seu trabalho ?. Toda a introdução é feita sem subtítulos, em texto normal".

2 Conceitos e definições fundamentais

Este capítulo apresenta algumas definições e conceitos fundametais para o entendimeto das técnicas de compressão que serão discutidas em capítulos posteriores.

2.1 Código

Um código C mapeia uma mensagem $m \in M$ para uma cadeia de palavras código em W^+ ,onde M é chamado alfabeto de origem e W^+ alfabeto de palavras código. Vamos utiliar a notação A^+ para se referir ao conjunto que contém todas as cadeias de A, i.e, $A^+ = \bigcup_{i \ge 1} A^i : A^i = (a_1, ..., a_i)$, $a \in A$. Deste modo, podemos representar um código como uma função $C: M \to W^+$.

Os elementos dos alfabetos de origem e de palavras código podem ter um comprimento fixo ou variável. Códigos nos quais os alfabetos possuem um comprimento fixo são chamados de **códigos de comprimento fixo**, enquanto os que possuem alfabetos de comprimento variáveis são chamados **códigos de comprimento váriavel**. Provavelmente o exemplo mais conhecido de código de comprimento fixo seja código ASCII, que mapeia 64 simbolos alfa-númericos (ou 256 em sua versão extendida) para palavras código de 8 bits. Todavia, a compressão de dados utiliza apenas códigos de comprimento variável, mas especificamente códigos que variam o comprimento de acordo com a probabilidade associada à mensagem (o tema será melhor detalhado em seções posteriores).

2.1.1 Códigos unicamente decodificáveis e livres de prefixo

Um código é **distinto** se pode ser representado como uma função **bijetora**, i.e, $\forall m_1$, $m_2 \in M$, $C(m_1) \neq C(m_2)$. Um código é dito **unicamente decodificável** quando $C(m) = w^n \leftrightarrow C^{-1}(w^n) = m$, com $m \in M$ e $w^n \in W^+$.

Vamos definir C^+ como a **codificação** correspondente ao código C, tal que $C^+(m^n) = C(m_1)C(m_2)...C(m_n) : m^n = m_1m_2...m_n$, i.e, $C^+ : M^+ \to W^+$. A função de **decodificação** $D^+ : W^+ \to M^+$ se refere a operação inversa da codificação, de modo que dado um código **unicamente decodificável** C, $D^+(C^+(m^n)) = m^n$.

Um **código livre de prefixo** é um código C' em que $\nexists w_1^n, w_2^n \in W^+ \mid w_1^n$ é **prefixo** de w_2^n , por exemplo, o conjunto de palavras código $W^+ := \{1,01,000,001\}$ não possui nenhuma cadeia que é prefixo de outra dentro do conjunto. Códigos livres de prefixo podem ser *decodificados instantaneamente*, ou seja, podemos decodificar uma palavra código sem precisar verificar o início da seguinte.

Teorema 2.1 Todo código livre de prefixo é unicamente decodificável.

Demonstração: Seja C um código livre de prefixo e $S_n = s_1...s_n$ uma mensagem codificada por C. Vamos provar por indução que o teorema é verdadeiro para todo $n \in \mathbb{Z}+$

Casos base: Quando n = 1, a mensagem S só possui uma palavra código, logo é unicamente decodificável. Se n = 2, então S possui uma palavra código s_1 que não pode ser prefixo de s_2 (pela própria definição de códigos livres de prefixo), o que claramente significa que S é unicamente decodificável.

Passo indutivo: Seja $k \in \mathbb{Z}+$, e suponha por hipótese de indução que o teorema vale para $n \le k$. Como S_{k+1} é livre de prefixo, existe um prefixo de S_{k+1} , $S_j = s_1...s_j$ (com $j \le k+1$) que é unicamente decodificável (dado que ela não pode ser prefixo de nenhuma outra). a mensagem $S'_{k+1} = s_{j+1}...s_{k+1}$ ainda é uma concatenação decodificável e $|S'_{k+1}| \le |S_{k+1}|$, o que significa que por hipótese de indução S'_{k+1} é unicamente decodificável. Como $S_{k+1} = S_j S'_{k+1}$, segue que S_{k+1} é unicamente decodificável.

2.2 Relações fundamentais com a Teoria da Informação

A codificação é comumente divida em duas componentes diferentes: *modelo* e *codificador*. O *modelo* identifica a distribuição de probabilidade das mensagens baseado em sua semântica e estrutura. O *codificador* toma vantagem de um possível *bias* apontado pela modelagem, e usa uma estratégia gulosa em relação a probabilidade associada às mensagens para reduzir seu tamanho. (substituindo as mensagens que ocorrem com maior frequência por símbolos menores).

Desta forma, é evidente que os algoritmos de compressão sempre devem tomar vantagem de alguma distribuição de probabilidades "desbalanceada" sobre as mensagens para efetivamente reduzir o tamanho destas, portanto, a compressão é fortemente relacionada com a probabilidade. Nesta seção, vamos construir o embasamento teórico necessário para entender a relação entre as probabilidades associadas e o comprimento das mensagens, e consequentemente criar uma noção dos parametros que devem ser maximizados para alcançar uma codificação eficiente.

2.2.1 Distribuição de Probabilidade e Esperança

Dado um experimento e um espaço amostral Ω , uma variável aleatória X associa um número real a cada um dos possíveis resultados em Ω . Em outras palavras, X é uma função que mapeia os elementos do espaço amostral para números reais. Quando a imagem de X pode assumir um número finito de valores, dizemos que X é uma variável aleatória discreta.

Podemos descrever melhor uma variável aleatória, atribuindo probabilidades sobre os valores que esta pode assumir. Esses valores são atribuídos pela **função de densidade de probabilidade**, denotada por p_X . Portanto, a probabilidade do evento $\{X = x\}$ é a função de distribuição de probabilidade aplicada a x, i.e, $p_X(x)$.

$$p_X(x) = P(\{X = x\})$$

Note que, a variável aleatória pode assumir qualquer um dos valores no espaço amostral que possuem uma probabilidade P > 0, portato

$$\sum_{x} p_X(x) = 1.$$

O **valor experado** (ou **esperança**) da variável aleatória *X* é definido como

$$\mathbf{E}[X] = \sum_{x} x p_X(x).$$

2.2.2 Entropia

Referências Bibliográficas

- [HL] HIRSCHBERG, D.S; LELEWER D.A; *Data compression*, Computing Surveys 19.3, 1987.
- [Ble] BLELLOCH G.E; Introduction to Data Compression, Carnegie Mellon, 2013
- [BT] BERTSEKAS D.P; TSITSIKLIS J.N; *Introduction to Probability* M.I.T, Lecture Notes Course 6.041-6.431, 2000