OM-S20-11: SVD, Least Squares and Least Norm

C. V. Jawahar

IIIT Hyderabad

http://preon.iiit.ac.in/om_quiz

14 Feb 2020

Singular Value Decomposition (SVD)

- Singular Value Decomposition (SVD) is a very powerful and popular matrix factorization.
- $A = UDV^T$
 - A is $m \times n$; U is $m \times n$; D is $n \times n$; V is $n \times n$
 - U is orthogonal
 - D is diagonal elements, D_{ii} the singular values.
 - V is orthogonal
 - $U^T U = V^T V = VV^T = I$

More on SVD

Relationship to eigen values and eigen vectors

$$A^TAV = VD^2$$

$$AA^TU = UD^2$$

Finding transpose

$$A^T = VDU^T$$

Finding inverse

$$A^{-1} = VD^{-1}U^T$$

Least Square Problem and Solution

Given A and target vector b, Least square error (MSE) problem is:

$$\min_{x} ||Ax - b||$$

$$\min_{x}[Ax-b]^{T}[Ax-b]$$

$$\min_{x} (x^{T}A^{T}Ax + b^{T}b - 2x^{T}A^{T}b)$$

$$2A^TAx - 2A^Tb = 0$$

$$A^T A x = A^T b$$

To obtain x, solve the above equation.

$$x = (A^T A)^{-1} A^T b$$

Least Norm Solution

$$\begin{aligned} & \text{Minimize}||x|| \\ & \text{Subject to} \quad Ax = b \end{aligned}$$

Soln:
$$x^* = A^T (AA^T)^{-1}b$$

- x^* satisfy the Ax = b
- No other vector $x = x^* + (x x^*)$ can be smaller.

$$||x||^2 = ||x^*||^2 + ||(x - x^*)||^2 + 2x^{*T}[x - x^*]$$

Third term is zero

$$||x||^2 = ||x^*||^2 + ||(x - x^*)||^2$$

 $||x||^2 = ||x^*|| + \text{Positive Term}$

Hence x^* is the smallest.

Efficient Solutions for Least Squaes and Least Norm

Least Squares

$$x^* = (A^T A)^{-1} A^T b$$

or Solve $A^T A x = A^T b$

Least Norm

$$x^* = A^T (AA^T)^{-1} b$$

How do we use:

- Cholesky
 - LU
 - QR
 - SVD