ECSE-211

Lecture 14 5 February 2016 Design V

The Creative Problem Solving Process For the Entire System and Each Sub-

Problem

clear..

 This is the identification phase – find out what is really required. Do not go past this point until everything is

Design - Plan

- Next
 - List the known and unknown quantities separately
 - Model the problem mathematically
 - Test the accuracy of the model and the assumptions made
 - What do you do if it doesn't do what was intended?

 Go had to liet

Design – Plan and Conceptualize

- Basically, the design process is similar to the scientific method with respect to a step-by-step routine but it differs in objectives and end results...
 - It encompasses the following activities, all of which must be completed.
 - 1. Define the problem to be solved /
 - 2. Acquire and assemble pertinent data
 - 3. Identify solution constraints and criteria
 - 4. Develop alternative solutions
 - 5. Select a solution based on analysis of alternatives
 - 6. Communicate the results.

Generate Ideas

• OK – what might work?

• Let's break it into subproblems:

Sub-Problems?

We need a possible way of solving each one...

Are there interfaces between each sub-problem?

 Bottom line – list all the sub-problems, list possible solutions (with sketches if necessary)

Ideas, Problems and Sub-Problems

- Each Sub-Problem needs its own specification
 - A Requirements Document
 - Could be a section in the main document or completely separate
 - Each Sub-Problem undergoes a design process which must be completed before the main process can continue
 - Sub-Problem solution can happen in parallel if they can be isolated

Design - Plan

- Next (for the problem and each sub-problem)
 - List the known and unknown quantities separately
 - Model the problem mathematically
 - Test the accuracy of the model and the assumptions made
 - What do you do if it doesn't do what was intended?

The Creative Problem Solving Process

- This is the first major breakpoint... Is it all likely to work?
- Can we come up with simple analytical models to 'test' it

Creative Idea Evaluation

- What-If? Scenarios...
 - This is *Testing*...
 - Testing is needed to be able to decide to go on or to go back...

The Creative Problem Solving Process

 OK – so we have several possible candidates for subproblem solutions.. We want a system – which set give us the best chance of getting it?

The Creative Problem Solving Process

• OK so you've implemented it – now what?

Tests and Experiments – a Continuation of R&D

- When you need to get answers to questions, design experiments
 - How well can the robot localize itself?
 - What is the error in position keeping?
 - This defines a tolerance
- The results of tests and experiments in the early stages of the design process will influence the final design.
- · Questions to be answered?
 - How rigid can Lego be made?
 - How efficient are the motor systems?
 - How much energy will be required for the task?

...

Testing

What makes a good test?

Testing

- Tests of a prototype serve to confirm the validity of the entire design
- An effective, carefully considered test plan should include the following:
 - Statement of specific purposes of the tests.
 - What decisions will the test validate?
 - Specific test objectives
 - What needs to be measured during the test?

Testing

- A step-by-step procedure for conducting the test
 - Attention should be paid to the variables to be controlled or monitored
- An outline of the expected results
 - A data sheet with the predicted data outcomes
 - If you don't know roughly what should happen how do you know if it is wrong?