

Figure 6: Example qualitative results from PASCAL VOC 2012. (a) input, (b) ground truth, (c) supervised only, (d) ours (w/o CutMix Aug.), and (e) ours (w/ CutMix Aug.). All the approaches use DeepLabv3+ with ResNet-101 as the segmentation network.

[CVPR 2021] CPS: 基于交叉伪监督的半监督语义分割

Charles

在这篇文章,我们将解读一下我们发表在CVPR 2021的工作CPS: Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision. 我们提出的半监督语义分割算法,在Cityscapes 数据集中,使用额外3000张无标注的图像,可以在val set达到82.4% mloU (单尺度测试)。

Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

Xiaokang Chen^{1*} Yuhui Yuan² Gang Zeng¹ Jingdong Wang²

¹Key Laboratory of Machine Perception (MOE), Peking University

²Microsoft Research Asia

作者单位:北京大学,微软亚洲研究院

代码: git.io/CPS.

论文: arxiv.org/abs/2106.0122...

赞同 48

7

分享

相关工作

在最开始,我们先来回顾一下半监督语义分割任务的相关工作。不同于图像分类任务,数据的标注 对于语义分割任务来说是比较困难而且成本高昂的。我们需要为图像的每一个像素标注一个标签, 包括一些特别细节的物体,比如下图中的电线杆 (Pole)。但是,我们可以很轻松的获得RGB数据, 比如摄像头拍照。那么,如何利用大量的无标注数据去提高模型的性能,成为半监督语义分割领域 研究的问题。

赞同 48

知乎

首发于 **charles的论文解读**

- Semi-supervised learning
 - Labeled set: $L = \{(X_i, Y_i)\}$

Ground-truth Mask

• Unlabeled set: $U = \{(X_i^u)\}$, usually, $|U| \gg |L|$

我们将半监督分割的工作总结为两种: self-training和consistency learning。一般来说,self-training是离线处理的过程,而consistency learning是在线处理的。

赞同 48

分享

(1) Self-training

Self-training主要分为3步。第一步,我们在有标签数据上训练一个模型。第二步,我们用预训练好的模型,为无标签数据集生成伪标签。第三步,使用有标注数据集的真值标签,和无标注数据集的伪标签,重新训练一个模型。

赞同 48

分享

(2) Consistency learning

Consistency learning的核心idea是: 鼓励模型对经过不同变换的同一样本有相似的输出。这里 "变换"包括高斯噪声、随机旋转、颜色的改变等等。

Consistency learning基于两个假设: smoothness assumption 和 cluster assumption。

- Smoothness assumption: samples close to each other are likely to have the same label.
- Cluster assumption: Decision boundary should distribution.

分布密度低的区域。怎么理解这个"密度低"?我们知道,类别与类别之间的区域,样本是比较稀疏的,那么一个好的决策边界应该尽可能处于这种样本稀疏的区域,这样才能更好地区分不同类别的样本。例如下图中有三条黑线,代表三个决策边界,实线的分类效果明显好于另外两条虚线,这就是处于低密度区域的决策边界。

赞同 48

分享

那么,**consistency learning是如何提高模型效果的呢**?在consistency learning中,我们通过对一个样本进行扰动(添加噪声等等),即改变了它在feature space中的位置。但我们希望模型对于改变之后的样本,预测出同样的类别。这个就会导致,在模型输出的特征空间中,同类别样本的特征靠的更近,而不同类别的特征离的更远。只有这样,扰动之后才不会让当前样本超出这个类别的覆盖范围。这也就导致学习出一个更加compact的特征编码。

当前,Consistency learning主要有三类做法: mean teacher,CPC,PseudoSeg。

赞同 48

7

分享

- X → X1/X2: gaussian noise
- $f(\overline{\theta})$ is the EMA of $f(\theta)$
- //: stop gradient
- P1/P2: confidence vector

★ 收藏

Mean teacher是17年提出的模型。给定一个输入图像X,添加不同的高斯噪声后得到X1和X2。我们将X1输入网络 $f(\theta)$ 中,得到预测P1;我们对 $f(\theta)$ 计算EMA,得到另一个网络,然后将X2输入这个EMA模型,得到另一个输出P2。最后,我们用P2作为P1的目标,用MSE loss约束。

像输入同一个网络 $f(\theta)$,得到两个不同的输出。因为"弱增强"下训练更加稳定,他们用"弱增强"后的图像作为target。

CPC: Cross probability consistency [1] (ECCV 2020)

CPC是发表在ECCV 2020的工作(Guided Collaborative Training for Pixel-wise Semi-Supervised Learning)的**简化版本**。在这里,我只保留了他们的核心结构。他们将同一图像输入两个不同网络,然后约束两个网络的输出是相似的。这种方法虽然简单,但是效果很不错。

赞同 48

分享

Motivation

大家近年来都focus在consistency learning上,而忽略了self-training。实际上,我们实验发现,self-training在数据量不那么小的时候,性能非常的强。那么我们很自然的就想到,为什么不把这两种方法结合起来呢?于是就有了我们提出的CPS: cross pseudo supervision。

Cross Pseudo Supervision (CPS)

赞同 48

7

分享

我们可以看到,CPS的设计非常的简洁。训练时,我们使用两个网络 $f(\theta 1)$ 和 $f(\theta 2)$ 。这样对于同一个输入图像X,我们可以有两个不同的输出P1和P2。我们通过argmax操作得到对应的one-hot标签Y1和Y2。类似于self-training中的操作,我们将这两个伪标签作为监督信号。举例来说,我们用Y2作为P1的监督,Y1作为P2的监督,并用cross entro

特定的初始化,没准CPS的效果会更好~

在测试的时候,我们只使用其中一个网络进行inference,所以不增加任何测试/部署时候的开销。

实验部分

(1) Low data setting.

首先是有标签数据比较少的情况。

我们的方法在VOC和Cityscapes两个数据集的几种不同的数据量情况下都达到了SOTA。表格中 1/16, 1/4等表示用原始训练集的 1/16, 1/4作为labeled set, 剩余的 15/16, 3/4作为unlabeled set。

赞同 48

charles的论文解读

Method	Resiver-00				Resirct-101			
	1/16 (662)	1/8 (1323)	1/4 (2646)	1/2 (5291)	1/16 (662)	1/8 (1323)	1/4 (2646)	1/2 (5291)
MT [32]	66.77	70.78	73.22	75.41	70.59	73.20	76.62	77.61
CCT [27]	65.22	70.87	73.43	74.75	67.94	73.00	76.17	77.56
CutMix-Seg [11]	68.90	70.70	72.46	74.49	72.56	72.69	74.25	75.89
GCT [17]	64.05	70.47	73.45	75.20	69.77	73.30	75.25	77.14
Ours (w/o CutMix Aug.)	68.21	73.20	74.24	75.91	72.18	75.83	77.55	78.64
Ours (w/ CutMix Aug.)	71.98	73.67	74.90	76.15	74.48	76.44	77.68	78.64

Table 2: Comparison with state-of-the-arts on the Cityscapes val set under different partition protocols. All the methods are based on DeepLabv3+.

Method	ResNet-50				ResNet-101			
	1/16 (186)	1/8 (372)	1/4 (744)	1/2(1488)	1/16 (186)	1/8 (372)	1/4 (744)	1/2 (1488
MT [32]	66.14	72.03	74.47	77.43	68.08	73.71	76.53	78.59
CCT [27]	66.35	72.46	75.68	76.78	69.64	74.48	76.35	78.29
GCT [17]	65.81	71.33	75.30	77.09	66.90	72.96	76.45	78.58
Ours (w/o CutMix Aug.)	69.79	74.39	76.85	78.64	70.50	75.71	77.41	80.08
Ours (w/ CutMix Aug.)	74.47	76.61	77.83	78.77	74.72	77.62	79.21	80.21

在跟PseudoSeg的对比中,和他们同样的数据划分list,我们也超越了他们的性能:

赞同 48

知乎

doSeg [44]. The results of all the other methods are from [44].

Method	#(labeled samples)							
Method	732	366	183	92				
AdvSemSeg [13]	65.27	59.97	47.58	39.69				
CCT [27]	62.10	58.80	47.60	33.10				
MT [32]	69.16	63.01	55.81	48.70				
GCT [17]	70.67	64.71	54.98	46.04				
VAT [26]	63.34	56.88	49.35	36.92				
CutMix-Seg [11]	69.84	68.36	63.20	55.58				
PseudoSeg [44]	72.41	69.14	65.50	57.60				
Ours (w/ CutMix Aug.)	75.88	71.71	67.42	64.07				

这是我们的方法跟self-training进行比较的结果。可以看到,我们的方法由于鼓励模型学习一个更 加compact的特征编码,显著地优于self-training。

赞同 48

Figure 5: Comparison with self-training on PASCAL VOC 2012. The self-training approach is a two-stage approach which takes more training epochs. For a fair comparison, we train our approach with more training epochs (denoted by 'Ours⁺) so that their epochs are comparable. The CutMix augmentation is not used.

我们还在数据量比较多的情况下进行了实验。在Cityscapes数据集,我们拿训练集的全部图片(大约3000张)作为labeled set,并从coarse set中随机采样3000张RGB图片作为unlabeled set。我们在两个模型进行了实验: DeepLabv3+和HRNet-W48。可以看到,我们的半监督算法可以在非常强的baseline上显著提高性能,最终HRNet-W48在验证集上可以达到单尺度测试下82.4%的mloU。

赞同 48

(1) 分割预测的定量结果。

我们在PASCAL VOC数据集上可视化了一些分割的预测结果。(c)列是仅使用labeled data进行训练的结果,(d)(e)列是我们的预测,(b)列是真值标签。可以看出,由于标注数据很少,(c)的结果不能准确识别物体的语义和边界,而我们CPS可以很好地处理这些问题。

赞同 48

Figure 6: **Example qualitative results from PASCAL VOC** 2012. (a) input, (b) ground truth, (c) supervised only, (d) ours (w/o CutMix Aug.), and (e) ours (w/ CutMix Aug.). All the approaches use DeepLabv3+ with ResNet-101 as the segmentation network.

赞同 48

7

分享

(2) 两个网络的性质分析。

我们在PASCAL VOC上可视化了双路网络的预测的标签的重合情况。我们可以看到,训练初期,overlap较小,通过约束一致性,可以防止单个网络往带温的主点生化心 随着测练生化 overlap较小,说明两个网络的预测都变得更加准确。 ▲ 赞同 48 ▼ ● 18 条评论 ▼ 分享

Figure 7: Prediction overlap of the two networks on PASCAL VOC 2012 under the 1/8 partition. We use DeepLabv3+ with ResNet-50 as the segmentation network. We only calculate the overlap ratio in the object region, and the pixels belong to the 'background' class are ignored.

● 18 条评论

7 分享

★ 收藏

文章被以下专栏收录

charles的论文解读

介绍下自己的/别人的论文。

计算机视觉论文速递

欢迎关注微信公众号: CVer

CVer计算机视觉

CVer: 一个专注于分享计算机视觉的平台

推荐阅读

赞同 48

分享

【attention系列】捕捉全方位 的上下文信息(CVPR 2021)

树梢的风

发表于计算机视觉...

CVPR2019 Decoders 对于语义 分割的重要性

今天为大家推荐一篇CVPR2019关 于语义分割的文章 Decoders Matter for Semantic Segmentation: Data-Dependent **Decoding Enables Flexible** Feature Aggregation, 该文章提…

you62580

线上分享|申发力 分割: FCN和GI

|极视角线上分享 | 分割是对图像像素 计算机视觉领域的 究问题,在自动驾 和三维重建等需要 领域具有重要作用

极市平台

写下你的评论...

charlesnini

06-09

感觉这篇和也是前几天刚放出来的另一个工作Robust Mutual Learning for Semi-supervised Semantic Segmentation很像,不过没有用mean-teacher架构和对伪标签噪声的refine,更简洁一些。

1 1

0 0

Charles (作者) 回复 charlesnini

06-09

哈哈是的,我们的核心思路非常的像,只不过我们做的早了些~

始 赞

Charles (作者) 回复 charlesnini

06-09

还有一篇文章,是半监督pose的,CVPR 2021截稿之后放在Arxiv,跟我们的核心idea也几乎一样,算是同期工作,(但我们之前都不知道还有别的组在研究这种做法,也是很巧了),等于在不同的领域也论证了CPS的作用~

arxiv.org/pdf/2011.1249...

┢ 赞

展开其他 2 条回复

赞同 48

分享

Eli WU

06-12

分享一下我们今年MICCAI刚被接收的半监督工作,他20只要公割。按心思想和CDC对全国

归, Semi-supervised Left Atrium Segmentation

这个和带噪声训练的co-teaching方法有很大的相似性。有一个问题,两个模型随机初始化, 一开始的时候性能都很差,这个时候互相监督是不是没什么作用? 而且我似乎没看到已有的标 签的监督。没看原文,所以有些地方不是很清楚,如果有理解的不对的地方还请指出。

炒 赞

Charles (作者) 回复 姜饼哥

06-07

Hi, 有标签数据也是有监督的,这个在paper里有写具体的公式。关于训练初期的问题, GitHub也有人问过类似的,我在这引用一下在GitHub的回答~ question about paper • Issue #3 • charlesCXK/TorchSemiSeg

始 赞

姜饼哥 回复 Charles (作者)

06-09

不好意思我有点看不懂,在那个issue的回复中,两个model预测都为wrong的情况下, 为何有可能有利于模型的训练? 比如说简单的前景背景二类分割,两个模型全预测为背 景,那么互相作为target,岂不是互相肯定了错误的判断,往错误的方向越走越远了?

┢ 赞

查看全部8条回复

🎇 Jingbo 🍅

06-05

炒 赞

06-05

德普

不错 结果简洁有力😂

