Google

6. Modernization Efforts

Cleaning up the code and adding new LSTM technology

Ray Smith, Google Inc.

Code Cleanup

- Conversion to C++ completed
- Thread-compatibility: can run multiple instances in separate threads
- Multi-language (single and mixed) capability:
 copes with jpn, heb, hin, and mixes such as hin+eng
- Removed many hard-coded limits, eg on character set, dawgs
- New beam search
- ResultIterator for accessing the internal data
- More generic classifier API for plug-n-play experiments
- Removed lots of dead code, including IMAGE class.

Algorithmic Modernization

- Cube added Convolutional NN, but improvement was disappointing.
- It would be nice to eliminate the polygonal approximation...
- It would be nice to eliminate the need for accurate baseline normalization

=> New classifier experiments

Eliminate the Polygonal Approximation?

Pixel edge step outlines -> Polygonal approximation

Challeng Eliminate the Polygonal Approximation!

- Allow feature exaction from greyscale by elimination and dependence on the polygonal approxima.
- Make it faster and more a rate for CJK inc, and OSD.
- Keep everything else as constants as presible:
 - Same feature definition
 - Same segmentation search/work
 - Same training data, but add pe for significant ore fonts.

Experiments Failed!

Non-Obvious observation:

Despite being designed over 20 years ago, the current Tesseract classifier is incredibly difficult to beat with so-called modern methods.

(Without changing features or upping the number of training fonts)

Why?

Non-Obvious observation:

Despite being designed over 20 years ago, the current Tesseract classifier is incredibly difficult to beat with so-called modern methods.

(Without changing features or upping the number of training fonts)

Why?

For what it works with, it is probably as good as you can get.

Statistical Dependence Strikes Again

- Small features to large proto matching accounts well for large-scale features
- Binary quantization of feature space is a loser
- HMMs, DNNs and LSTMs have a better chance than other methods

LSTM Integration

- LSTM code based on OCROpus Python implementation.
- Expanded capabilities including 2-D, variable input sizes.
- Fully integrated with Tesseract at the group-of-similar-words level.
- Visualization with existing Viewer API.
- Training code included (unlike cube).
- Parallelized with openMP.
- Coming in next release of Tesseract.

Tesseract Network Definition Language

- Network defined by a terse string.
- Limited capabilities, but highly flexible within those limits.
- Very easy to use little to learn.

Legend for following description:

```
X Blue Literal value.
```

n Green Variable - substitute a number

(X|Y) Black Regular Expression syntax/explanation

Input Layers

grey.

```
    (I|G|N)d,h Image input in d dimensions, of height h.
    If d==1, then the input is h-valued, with 1 x-pixel per time-step.
    If d==2, then the input is 1-valued, with 1 y-pixel per time-step, arranged with width groups of h y pixels.
    I uses a color Image if available, G uses Grey, and N uses Normalized
```

Plumbing

```
[...] Execute ... networks in series (layers).
(...) Execute ... networks in parallel, with their output dimensions added.
Rt<net> Execute <net> with time-reversal.
Ry<net> Execute <net> with y-dimension reversal (only).
Sx,y Rescale 2-D input by shrink factor x,y, rearranging the data by
 increasing the depth of the input by factor xy.
Cx,y Convolves (only - no weights) using a 2x+1, 2y+1 window, with no
shrinkage, random infill. Output is (2x+1)(2y+1) deeper.
Px,y Maxpool the input, reducing each x,y rectangle to a single value,
independently in each depth dimension.
```

Functional Units

```
Ld, n d-dimensional (1 or 2) LSTM with n internal states, n outputs.
L(t|y|ty)d,n Multi d-dimensional LSTMs with built-in reversal, in time
    y, or ty=both, n states, 2n outputs for t,y and 4n outputs for ty.
    Lt1, n is short for (L1, nRtL1, n),
    Lty2, n is very short for ((L2, nRyL2, n)Rt(L2, nRyL2, n)).
LQ1, n 1-dimensional LSTM with n internal states, n outputs that scans each
    vertical strip independently, sQuashing the y-dimension to 1 output.
FTn 1x1 Convolution Tanh with n outputs.
FSn 1x1 Convolution clipped Symmetric linear (tanh-like) with n outputs.
FLn 1x1 Convolution Logistic with n outputs.
FPn 1x1 Convolution clipped Positive linear (logistic-like) with n outputs.
Note: 1x1 Convolution == Fully Connected but shared over time.
```

Output Units

O output softmax with number of outputs determined by the unicharset. L(S|E)1,n Single 1-dimensional LSTM with built-in softmax for output, with n internal states, number of outputs determined by the unicharset, and extra recurrence from the output of the softmax. With LS the softmax recurrence is 1-1.

With LE the softmax recurrence is binary Encoded.

Basic LSTM Block (no peep weights)

Graphic from: http://googleresearch.blogspot.com/2015/08/the-neural-networks-behind-google-voice.html Credit: Alex Graves

LSTM With Recurrence from Built-in Softmax

How Tesseract uses LSTMs...

Problems with Baseline Normalization (Still!)

- Simple LSTM is still dependent on good input size/position
- Deep networks can be designed to learn normalization
- Deep LSTM networks train slowly

Gradient Normalization

Google

Automatic layer-specific learning rate adjustment

Converging SGD

One dimension only, spread out, mostly monotonic

Diverging SGD

One dimension only, spread out, frequent sign changes

A More Complex Network Avoids Baseline Normalization

Increasing [G2,0C2,2FT16P3,3LQ1,64L1,128RtL1,128LS1,256] 5x5 convolution x 16 3x3 maxpool Tanh non-linearity Encyclopedia "Time, Y-dim sQuashing esseract language mode one Fwd Softmax x 105 step **LSTM x 128** Rev LSTM x LSTM x 64 recurrence **LSTM x 256** weights softmax 529513 131968 wts per pixel 99200 20928 wts 128

What about Tensor Flow?

- Tesseract LSTM (T-LSTM) came first, and only supports sequence processing
- Tensor Flow is built for speed, on batches of fixed-size input, but can be run from Tesseract! (Soon!)
- An entire TF graph is treated as a Tesseract Network element.
- TF graph must be designed to support variable width inputs, or work only on fixed-size images.

Thanks for Listening!

Questions?