Henry Leou

Open to Relocation | US Citizen | LinkedIn: https://www.linkedin.com/in/henry-leou-746731146/ GitHub: https://github.com/henryleou Email: henryleou927@gmail.com Phone: 408-930-2327

TECHNICAL SKILLS

Programming Languages: Python, C, Java, R, SQL, MATLAB, Ruby on Rails, C++

SW Tools & Debugging: Wireshark, tcpdump, QXDM, QCAT, trace32, adb logcat, git, Jenkins (CI/CD), pytest, unittest

Embedded / 3GPP Wireless: LTE, NR 5G, IMS (VoLTE, VoWiFi, VoNR), TCP/IP stack, NAS, RRC, PDCP, MAC, PHY

Libraries: Pandas, NumPy, SciPy, Matplotlib, Scikit learn, Pytorch, OpenCV, TensorFlow

Signal Processing Domain: FFT, Wavelet Transform, Bilateral Filtering, Quantization, PSNR Optimization, Image Processing

WORK EXPERIENCE

Senior Software Engineer @ Qualcomm

Cellular Modem Software Protocol Team – Python, C++, C

Sept 2020 - Present

- Collaborated with PHY/RF engineering teams to analyze signal processing behavior in LTE/NR5G modem chains
- Created and maintained backend test infrastructure on Linux using Keysight UXM and custom C and Python scripts to support continuous integration pipelines
- Debugged modem protocol layers (PDCP, RLC, IMS) and resolved VoNR/VoWiFi/VoLTE call flow issues using QXDM, QCAT, tcpdump, and trace32 logs
- Utilized Python and MATLAB for debugging modem audio paths and VoIP call audio issues specifically for analyzing RTP packets
- Developed and maintained backend scripts for Linux-based testing infrastructure using Keysight UXM APIs and Qualcomm HW modules
- Collaborated with hardware and PHY teams to validate signal chain performance; performed log parsing and large-scale data analysis in Python
- Integrated modem testing into internal CI workflows for regression testing and log analysis
- Proficient understanding in internet protocol such as TCP/IP and using Wireshark for tcpdump debugging
- Proficient understanding of modem protocol NR5G and LTE PHY L1
- ❖ Focused in debugging modem IMS VoIP such as VoLTE/VoWIFI/VoNR call related issues
- Filed a patent IDF in enhancing emergency 911 call protocol
- Participated in algorithm design and development of 3GPP VoIP call design and optimization
- 4+ years of experience in North America operator conformance lab (VZW, TMO, ATT) test cases
- ❖ 4+ years of experience in debugging PTCRB and GCF conformance test cases
- ❖ 4+ experience in debugging call boxes such as R&S CMW 500 and Keysight UXM

Undergraduate Student Researcher @ UC Berkeley Institute of Transportation Studies (Mobile Sensing Lab)

Project: Deep Learning Truck Vehicles – Python, C, MATLAB

June **2019** – December **2019**

- Worked in a team of 4 and personally responsible for back-end development, optimizing machine learning algorithms, and data analysis
 - Performed EDA on multiple raw data sets collected from a Volvo truck vehicle by using C and Python libraries such as pandas
 - Generated highway road elevation dataset and plots using Python, MATLAB and Google Road elevation API in order to optimize
 the simulations and run tests on the autonomous truck vehicles

EDUCATION

University of California, Berkeley — B.A. in Data Science & B.A. in Applied Mathematics

Domain Emphasis: Applied Mathematics & Modeling (Data Science)

Domain: Electrical Engineering & Computer Science (Applied Mathematics)

Courses: Machine Learning, Data Structures, Algorithms, Java, Python, Databases, Digital Signal Processing, Signals & Systems

HIGHLIGHTED PROJECTS

Video Compression with Embedded Channel Optimization (Best Demo Award) - MATLAB, Python, C

April **2019**

- Designed and implemented a video compression pipeline using wavelet transform (DB-4), FFT-based down sampling, and quantization in MATLAB
- > Developed post-processing techniques including bilateral filtering to improve compression PSNR by up to 3dB over baseline
- > Modified AX.25 communication protocol's digipeater field to increase transmission efficiency by reducing overhead 20+ bytes per packet
- Achieved final compressed file size of ~6.1KB at 24dB PSNR, improving baseline quality while reducing bandwidth
- > Demonstrated understanding of transform coding, quantization, signal reconstruction, embedded protocol optimization

Automated Blackjack Dealer Using Baxter - Python

December 2019

- Implemented inverse kinematics with the Movelt package to perform motion planning for card manipulation
 - Movements for both arms were parallelized for efficiency
- > Using techniques similar to CV Homography technique to build card classifier for playing cards recognition

Convolutional Neural Networks (CNNs) - Python

April **2019**

- > Built a CNN that classifies movements based on a single key frame as input
 - Created multiple model architectures and plotted a training, validation loss curves, confusion matrices to evaluate the best CNN trained