How fair is your graph? Exploring fairness concerns in neuroimaging studies

Workshop on Responsible Machine Learning in Healthcare

CREATE CHANGE

Fairness - the quality of treating people equally or in a way that is right or reasonable

https://dictionary.cambridge.org/dictionary/english/fairness

Why is it difficult to build/define a fair Al

"Optimizing a given metric is a central aspect of most current Al approaches, yet premphasizing metrics leads to manipulation, gaming, a myopic focus on short-term goals, and other unexpected negative consequences." (Thomas and Uminsky, arXiv, 2020)

Measures of fairness

- Disparate treatment
 - System yields different outputs for different subgroups of people with the same features except the sensitive attribute

Measures of fairness

- Disparate impact
 - System provides outputs that benefit / hurt people sharing a sensitive attribute more frequently than others

Measures of fairness

- Disparate mistreatment
 - Failure of a system to achieve the same classification accuracy (or error rate) for subgroups of people with different values of a sensitive attribute

Fairness in medical imaging

Uncovering algorithmic bias

Fairness in medical imaging

Fairness in medical imaging

Seyyed-Kalantari et al., Nature Medicine (2021)

Fairness in medical imaging

Ricci Lara, Echeveste, and Ferrante, Nature Communications (2022)

Table 1 | Databases commonly used in fairness in MIC studies

Image modality	Database			
Chest X-ray	CheXpert ³¹ NIH Chest X-Ray ³²			
	MIMIC Chest X-Ray ³³			
	Emory University Hospital Chest X-Ray ²⁰			
Mammography	Digital Mammographic Imaging Screening Trial (DMIST) ³⁴			
	Emory University Hospital Mammography ²⁰			
Dermoscopy	ISIC Challenge 2017/18/20 ^{35,36}			
Dermatological clinical image	Fitzpatrick 17k ¹³			
	SD-198 ⁴⁹			
Fundus image	AREDS ³⁷			
	Kaggle EyePACS ⁵⁰			
Cardiac MRI	UK Biobank ³⁸			
Pulmonary angiography CT	Stanford University Medical Center ¹⁶			

What about graphs?

Definitions

Introduction

Graphs in neuroimaging

Introduction

- Structural connectome: The pattern of material connections between every pair of distinct brain regions
- Functional connectome: The pattern of statistical dependencies (or functional connections) between every pair of distinct brain regions
- Population graphs: nodes are associated with imaging-based feature vectors from patients, while other phenotypic information (such as sex) is integrated as edge weights (Parisot, Ktena et al., 2018)
- Cortical surfaces: discrete triangulated meshes; sparse graphs

Trends in Cognitive Sciences

Suarez et al., 2020

Analogies between Euclidean & irregular domains

Euclidean data

Irregular data

- Regular pixel/voxel grid
- Fixed number of neighbours per pixel/voxel
- Intrinsic node ordering

- Graph structure
 - Variable number of neighbours per node
 - No node ordering

Image intensities

signal

structure

Node feature vector

- Image classification
- Image segmentation

task

- Graph classification
- Node classification

Structure

Analogies between Euclidean & irregular domains

Euclidean data

Irregular data

- Regular pixel/voxel grid
- Fixed number of neighbours per pixel/voxel
- Intrinsic node ordering

- Graph structure
 - Variable number of neighbours per node
 - No node ordering

Image intensities

signal

structure

Node feature vector

- Image classification
- Image segmentation

task

- Graph classification
- Node classification

Fully labelled graph

Transductive learning

Population graph

Study population

Predicting Autism Spectrum Disorder using Graph Convolutional Neural Networks

Semi-supervised

classif cation

Case study

Parisot, S., Ktena, S. I., et al. Medical Image Analysis (2018)

Motivation

Findings

Parisot, S., Ktena, S. I., et al. Medical Image Analysis (2018)

Did the use of <u>sensitive attribute</u> to define the population graph affect subgroup prediction accuracy?

Ribeiro, F., Shumovskaia, V., Davies, T., Ktena, I., ML4Healthcare (2022)

Females are underrepresented

Motivation

Data Exchange

Females are *underrepresented* in the dataset

8 largest acquisition sites

	Male participants		Female participants		
Acquisition site	Neurodiverse	Neurotypical	Neurodiverse	Neurotypical	Total
NYU	64	72	10	26	172
UM	26	35	8	17	86
USM	43	24	0	0	67
UCLA	31	24	6	3	64
PITT	21	22	3	4	50
$MAX_{-}MUN$	16	26	3	1	46
TRINITY	19	25	0	0	44
YALE	14	11	8	8	41

Investigation 1

Algorithmic bias - Is the improvement in prediction accuracy due to algorithmic bias against the underrepresented group?

- Training data (stratification);
- Graph structure;

Difference of True Positive Rates (TPR)

→ True Positive Bias: |TPR_{male} - TPR_{female} |

Moritz Hardt, Eric Price, and Nati Srebro. Advances in neural information processing systems, 2016.

$$TPR = \frac{TP}{FN + TP}$$

- Accuracy
- AUC-ROC
- Sensitivity/Specificity

Stratification

Methods

Test - Included 2 male and 2 female participants, one neurotypical and one neurodiverse, from each collection site whenever possible

50% P / 50% N

Proportion of target labels in training / validation

The impact of stratification in a transductive setting

- Diagnosis
- Sex * Diagnosis
- Site * Diagnosis
- Sex * Site

Methods

The impact of graph structure

- Neurodiverse
- **Female**
- Male

- Sex
- Sex * Site
- Site
- Complete

Our findings

Investigation 2

Bias mitigation - Can we mitigate model bias without using sensitive attributes?

Methods

Mitigation techniques

sampling/Oversampling

fairness constraints

Fine-tuning

On labeled female sample

S₁ S₇ S₆ S₅ S₅

Neurodiverse
Female
Male

Neurotypical

Pre-trained

On labeled male sample

Fine-tuning

Fine-tuned on:

Fine-tuning

Fine-tuned on:

Take-home message

- Stratification strategy did not have a significant impact on fairness metrics
 - Surprising, but might be due to the transductive setting
 - Higher performance with GNNs did not come at the cost of higher TPR difference
- Fairness through awareness
 - Discarding the sensitive attributes does not solve the problem

Graph structure is more important than the composition of the training set

Future directions / Limitations

- Expanding these analyses to models with better performance (Traut et al., Neurolmage, 2022)
- Reducing "identity" to <u>binary</u> or <u>categorical attributes</u>
- Elements of identity that we are often concerned with are social constructs that vary depending on the context

What is a fair Al system?

Acknowledgement

CREATE CHANGE

Valentina Shumovskaia

Tom Davies @tda_vies ❤

Ira Ktena @s0f1ra ⊌

CREATE CHANGE

Thank you!

@NandaRibeiro93

fernanda.ribeiro@uq.edu.au