Métodos Numéricos

Primer Cuatrimestre 2020

Práctica 1

Elementos de Álgebra Lineal

Ejercicio 21. Sea $A \in \mathbb{R}^{n \times n}$. Demostrar que las siguientes condiciones son equivalentes (es decir, si una de ellas vale, todas valen).

- (a) A es inversible.
- (b) No existe $x \in \mathbb{R}^n$, $x \neq 0$, tal que Ax = 0.
- (c) Las columnas de A son linealmente independientes.
- (d) Las filas de A son linealmente independientes.

Resolución:

(a) \Longrightarrow (b): Supongamos que existe dicho x. Como por hipótesis existe A^{-1} , resulta que $A^{-1}Ax = A^{-1}0 = 0$. Como $A^{-1}Ax = Ix = x$, obtuvimos que x = 0. Absurdo, luego no puede existir un $x \neq 0$ tal que Ax = 0.

(b) \Longrightarrow (c): Supongamos que las columnas de A son linealmente dependientes (LD). Entonces existen $\alpha_1, \ldots, \alpha_n$ no todos nulos tales que $\alpha_1 col_1(A) + \cdots + \alpha_n col_n(A) = 0$. Por el lema de antes, dicha sumatoria es igual a $A(\alpha_1, \ldots, \alpha_n)^t$, por lo que encontramos un vector α no nulo tal que $A\alpha = 0$, lo que contradice (b). Por lo tanto, las columnas de A tienen que ser linealmente independientes (LI).

 $(c) \Longrightarrow (a)$: Como las columnas de A son un conjunto de n vectores LI en \mathbb{R}^n , forman una base. Es decir que todo $x \in \mathbb{R}^n$ lo podemos escribir como una combinación lineal de dichos vectores. Por lo tanto, para todo $x \in \mathbb{R}^n$ existe un $y \in \mathbb{R}^n$ tal que Ay = x (¿por qué?)

Llamemos v_i al vector que cumple $Av_i = e_i$. Entonces, si llamamos V a la matriz que tiene como columnas a los v_i , tenemos que:

$$AV = A \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \dots & v_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ Av_1 & Av_2 & \dots & Av_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ e_1 & e_2 & \dots & e_n \\ | & | & & | \end{pmatrix} = I$$

Entonces V es la inversa a derecha de A, con lo cual A es inversible.

Para seguir, nos conviene usar una condición intermedia:

• (b') No existe $x \in \mathbb{R}^n$, $x \neq 0$, tal que $x^t A = 0^t$.

Es fácil ver que (a) \Longrightarrow (b'), con una demostración análoga a la de (a) \Longrightarrow (b): Si existiera tal x, entonces $0^t = 0^t A^{-1} = (x^t A)A^{-1} = x^t I = x^t$, absurdo.

Ídem con (b') \Longrightarrow (d):

Si las filas fueran LD, existirían $\alpha_1, \ldots, \alpha_n$ no todos nulos tales que $\alpha_1 fila_1(A) + \cdots + \alpha_n fila_n(A) = 0$. Entonces, llamando $\alpha^t = (\alpha_1, \ldots, \alpha_n)$, tenemos $\alpha^t A = \alpha_1 fila_1(A) + \cdots + \alpha_n fila_n(A) = 0$, lo que contradice (b) pues $\alpha \neq 0$.

Mostrar $(d) \implies (a)$ les queda de tarea, utilizando las mismas ideas que con $(c) \implies (a)$. Pista: mostrar que existen u_i tal que $u_i^t A = e_i^t$, y usarlos para encontrar una inversa a izquierda de A.

1