

Department of Computer Science

Ramakrishna Mission Vivekananda Educational Research Institute, Belur Math

Optimization for Machine Learning, BDA 2023 batch Problem set on Lagrangian Dual & KKT

Chapter 6, Nonlinear Programming by Bazaraa, Sherali and Shetty

Problem 6.10 (a,b), 6.11 (a,b), 6.16, 6.17, 6.26

Additional problems:

1. Consider the problem

minimize
$$f(x) = x_1^2 + x_2^2$$

subject to: $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$, $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$, $x \in \mathbb{R}^2$

- (a) Sketch the feasible set and level sets of the objective function. Find optimal point x^* and optimal value $f(x^*)$.
- (b) Give the KKT conditions. Do there exist Lagrange multipliers λ_1 and λ_2 that prove that x^* is optimal?
- (c) Derive and solve the Lagrange dual problem. Does strong duality hold?
- 2. Solve the problem minimize $f(x) = x_1^2 + x_2^2$, subject to: $x_1 + 2x_2 \ge 2$, $x_1, x_2 \ge 0$. Find the Dual variables and verify if duality gap is there
- 3. The hard-margin SVM is used when data is linearly separable, i.e., where, n = 1,..., N labeled data points are separated into, say, two classes $y_n = \{-1,+1\}$ by the hyperplane $\mathbf{w}^T \mathbf{x} + \mathbf{b}$. The associated primal optimization problem is convex QP and given as

$$\label{eq:minimize} \begin{split} & \underset{b,\mathbf{w}}{\text{minimize:}} & & \frac{1}{2}\mathbf{w}^{\text{\tiny T}}\mathbf{w} \\ & \text{subject to:} & & y_n(\mathbf{w}^{\text{\tiny T}}\mathbf{x}_n + b) \geq 1 \end{split} \qquad n = 1, \dots, N \end{split}$$

minimize: $\frac{1}{2}\mathbf{u}^{\mathrm{T}}\mathbf{Q}\mathbf{u} + \mathbf{p}^{\mathrm{T}}\mathbf{u}$

(a) Write the above problem in standard QP format

subject to: $Au \ge c$

find what are Q, p, A and c. Is Q a psd matrix?

(b) Derive the dual problem and show it is also QP of the following form

 $\label{eq:minimize:$

find what are Q_D , A (D stands for dual). Is Q_D a psd matrix?

- (c) Suppose instead of using the raw data we use a kernel function to transform it, i.e, we replace \mathbf{x} by $\mathbf{z} = \Phi(\mathbf{x})$. What is the change in dual formulation, does Q_D still remain psd?
- (d) Verify that for hard margin SVM, the min-max inequality holds with equality
- (e) Derive the dual of the dual and show that it is same as the primal (Hint: consider the dual as primal and construct the Lagrangian, then derive its dual).

4. The most common formulation of the (linear) soft-margin SVM is allowing a margin of ζ_n for each data point (\mathbf{x}_n, y_n) which captures by how much it fails to be separated

$$y_n\left(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b\right) \ge 1 - \xi_n.$$

So, ξ_n captures how far into the margin the data point can go. Ideally, we would like the total sum of margin violations to be small, so we modify the hard-margin SVM to the soft-margin SVM by allowing margin violations but adding a penalty term to discourage large violations. The result is the soft-margin optimization problem:

$$\begin{aligned} & \min_{\mathbf{w},b,\boldsymbol{\xi}} & & \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + C\sum_{n=1}^{N}\boldsymbol{\xi}_{n} \\ & \text{subject to} & & y_{n}\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{n} + b\right) \geq 1 - \boldsymbol{\xi}_{n} \text{ for } n = 1, 2, \dots, N; \\ & & \boldsymbol{\xi}_{n} \geq 0 \text{ for } n = 1, 2, \dots, N. \end{aligned}$$

a) Write the primal problem in standard QP format and show

$$\mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{d}^{\mathsf{\scriptscriptstyle T}} & \mathbf{0}_{N}^{\mathsf{\scriptscriptstyle T}} \\ \mathbf{0}_{d} & \mathbf{I}_{d} & \mathbf{0}_{d \times N} \\ \mathbf{0}_{N} & \mathbf{0}_{N \times d} & \mathbf{0}_{N \times N} \end{bmatrix}, \ \mathbf{p} = \begin{bmatrix} \mathbf{0}_{d+1} \\ C \cdot \mathbf{1}_{N} \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} \mathbf{Y} \mathbf{X} & \mathbf{I}_{N} \\ \mathbf{0}_{N \times (d+1)} & \mathbf{I}_{N} \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} \mathbf{1}_{N} \\ \mathbf{0}_{N} \end{bmatrix}$$

- b) Write the dual problem and verify that it is also a QP
- c) Show that the only change of the dual problem is that each dual variable α_n is now upper-bounded by C, the penalty rate, instead of ∞ .
- d) What happens to optimal solution of soft-margin optimal hyperplane as the penalty parameter $C \to \infty$
- e) For soft-margin SVM, show that the optimal b^* is not a fixed value, but it has a range of values which can be found from the optimal dual variables (Hint: for each n, we have $0 < \alpha^*_n < C$, using KKT conditions, find what happens to ξ_n when $\alpha^*_n > 0$ and $\alpha^*_n < C$)