Rappresentazione informazione Elementi di aritmetica dei computer Organizzazione della memoria e codici correttori

Salvatore Orlando

Arch. Elab. - S. Orlando 1

Rappresentazione dell'informazione

- Differenza tra simbolo e significato
 - la cifra (lettera) usata per scrivere è un simbolo che rappresenta l'informazione
 - il concetto di numero (suono) corrisponde al significato dell'informazione
- Per comunicare/rappresentare informazioni è quindi necessario usare dei simboli
 - necessaria una convenzione (rappresentazione, codifica o codice) per associare i simboli con il loro significato
- Per codificare l'informazione solitamente si usa un alfabeto di simboli
 - Alfabeto = insieme finito di simboli adottati per rappresentare informazione
 - Es: per rappresentare numeri nei calcolatori elettronici
 - Alfabeto binario: {0, 1}
 - · Simboli associati con stati elettrici facilmente distinguibili
 - es.: conducibilità o meno di un transistor

Codifica o codice

- Dati:
 - un Alfabeto A (ad esempio, alfabeto binario: A={0,1})
 - s dati distinti $D=\{d_0, d_1, ..., d_{s-1}\}$

una codifica (o codice) fornisce una corrispondenza tra

- sequenze (stringhe, configurazioni) di simboli in A, ed
- i vari dati d_i∈ D
- Solitamente, i codici fanno riferimento a sequenze di simboli di lunghezza finita
 - Alfabeto di N simboli e Sequenze di lunghezza K
 - N^K configurazioni possibili
 - Rispetto ad un alfabeto binario
 - numero totale di configurazioni: 2^k
 - $2^k >= s$ (dove $s \in la$ cardinalità dell'insieme D)
 - Es.: se D comprende le 26 lettere dell'alfabeto inglese (s=26)
 - sono necessari almeno sequenze di K simboli binari, con $K \ge 5$, poiché $2^4 = 16 < 26 < 32 = 2^5$

Arch. Elab. - S. Orlando 3

Codifica dei numeri

- Codifica informazioni non numeriche può essere effettuata in maniera semi arbitraria.
 - Basta fissare una convenzione per permettere di *riconoscere* i dati
 - Es. Codice ASCII American Standard Code for Information
 Exchange è una codifica di caratteri alfanumerici su sequenze di simboli binari di lunghezza k=8
- Codifica dei numeri
 - accurata, perché è necessario effettuare operazioni (sommare, moltiplicare ecc.) usando le rappresentazioni dei numeri
 - di solito si adotta il sistema di numerazione arabica, o posizionale

Sistema di codifica posizionale

- Sistema di numerazione arabica in base 10 (B=10)
 - cifre (simboli) appartenenti all'alfabeto di 10 simboli A={0,1,...,9}
 - simboli con valore diverso in base alla posizione nella stringa di simboli in A (unità, decine, centinaia, migliaia, ecc.)
- Per codificare i numeri naturali in una generica base B
 - fissare un alfabeto A di B simboli
 - fissare una corrispondenza tra
 - i B simboli di $A \Leftrightarrow$ i primi B numeri naturali {0,1,2,...,B-1}
 - numeri maggiori di B rappresentabili come stringhe di simboli d_i ∈ A :
 - $\bullet \ \ \mathbf{d_{n\text{-}1}} \ ... \ \mathbf{d_1} \ \mathbf{d_0}$
 - valore numerico della stringa, dove la significatività delle cifre è espressa in base alle varie potenze di B:
 - $B^{n-1} * d_{n-1} + ... + B^1 * d_1 + B^0 * d_0$

Arch. Elab. - S. Orlando 5

Numeri naturali in base 2

- Alfabeto binario A={0,1}, dove i simboli sono detti bit, con 0
 corrispondente al numero zero ed 1 al numero uno
- Nei calcolatori i numeri sono rappresentati come sequenze di bit di lunghezza finita
 - numeri rappresentati in notazione arabica, con base B=2 (numeri binari)
 - $\ d_{n\text{-}1} \ ... \ d_1 \ d_0 \ \ dove \ \ d_i \in \{0,1\}$
- Con stringhe di n bit, sono rappresentabili 2ⁿ dati (numeri diversi)
 - dal numero 0 al numero 2ⁿ-1
- Valore numerico corrispondente, dove la significatività delle cifre è espressa sulla base di una potenza di B=2:
 - $-2^{n-1}*d_{n-1} + ... + 2^{1}*d_{1} + 2^{0}*d_{0}$
- Es: per trovare il valore della stringa di simboli 1010 in base 2
 - $-1010_2 = 1*8 + 0*4 + 1*2 + 0*1 = 10_{10}$

Conversione inversa

- Da base 10 a base B
- Procedimento per divisione
- Sia dato un certo numero N rappresentabile in base B come stringa di n simboli d_{n-1} ... d₁ d₀ il cui valore è:

$$N = B^{n-1} * d_{n-1} + ... + B^{1} * d_{1} + B^{0} * d_{0}$$

- Se dividiamo per B
 - otteniamo do come resto
 - Quoziente: Bⁿ⁻² * d_{n-1} + ... + B⁰ * d₁
 Resto: d₀, 0<= d₀<B
 - possiamo iterare il procedimento, ottenendo d₁, d₂, d₃ ecc. fino ad ottenere un Quoziente = 0

Arch. Elab. - S. Orlando 7

Rappresentazioni ottale ed esadecimale

- Ottale: B = 8
- Esadecimale: B = 16
- Usate per facilitare la comunicazione di numeri binari tra umani, o tra il computer e il programmatore
- Esiste infatti un metodo veloce per convertire tra base 8 (o base 16) e base 2, e viceversa

Rappresentazione ottale

- B = 8, $A = \{0,1,2,3,4,5,6,7\}$
- Come convertire:
 - Sia dato un numero binario di 10 cifre: d₉ ... d₁ d₀, il cui valore è:

$$\sum_{i=0}^{9} 2^{i} \cdot d_{i}$$

- Raggruppiamo le cifre: da destra, a 3 a 3
- Poniamo in evidenza la più grande potenza di 2 possibile: $(2^0 d_9) 2^9 + (2^3 d_8 + 2^1 d_7 + 2^0 d_6) 2^6 + (2^2 d_5 + 2^1 d_4 + 2^0 d_3) 2^3 + (2^2 d_2 + 2^1 d_1 + 2^0 d_0) 2^0$
- I termini tra parentesi sono numeri compresi tra 0 e 7
 - si possono far corrispondere ai simboli dell'alfabeto ottale
- I fattori messi in evidenza corrispondono alle potenze di B=8:

$$2^0 = 8^0$$
 $2^3 = 8^1$ $2^6 = 8^2$ $2^9 = 8^3$

- Da binario ad ottale: $1001010111_2 = 1001010111 = 1127_8$
- Da ottale a binario: $267_8 = 010 \ 110 \ 111 = 10110111_2$

Arch. Elab. - S. Orlando 9

Rappresentazione esadecimale

- B = 16, A = $\{0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f\}$
- Come convertire:
 - Si dato un numero binario di 10 cifre: d₉ ... d₁ d₀, il cui valore è:

$$\sum_{i=0}^{9} 2^{i} \cdot d_{i}$$

- Raggruppiamo le cifre: da destra, e a 4 a 4
- Poniamo in evidenza la più grande potenza di 2 possibile: $(2^1 \ d_9 + 2^0 \ d_8) \ 2^8 + (2^3 \ d_7 + 2^2 \ d_6 + 2^1 \ d_5 + 2^0 \ d_4) \ 2^4 + (2^3 \ d_3 + 2^2 \ d_2 + 2^1 \ d_1 + 2^0 \ d_0) \ 2^0$
- I termini tra parentesi sono numeri compresi tra 0 e 15
 - si possono far corrispondere ai simboli dell'alfabeto esadecimale
- I fattori messi in evidenza corrispondono alle potenze di B=16:
 20=160 24=161 28=162
- Da binario ad esadecimale: $1001011111_2 = 1001011111 = 25f_{16}$
- Da esadecimale a binario: $a67_{16} = 1010 0110 0111 = 101001100111_2$

Numeri naturali (interi) binari

- Il processore che studieremo (MIPS) rappresenta i numeri interi su 32 bit (32 bit = 1 word)
- I numeri interi (unsigned) rappresentabili su 32 bit sono allora:

Arch. Elab. - S. Orlando 11

Algoritmo di somma di numeri binari

- Per la somma di numeri rappresentati in binario possiamo adottare la stessa procedura usata per sommare numeri decimali
 - sommare via via i numeri dello stesso peso, più l'eventuale riporto:
- La tabella per sommare 3 cifre binarie è la seguente:

	d0	d1	rip	RIS	RIP
Ī	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

Esempio di somma

```
• Sia A = 13<sub>dieci</sub> = 01101<sub>due</sub> e B = 11<sub>dieci</sub> = 01011<sub>due</sub>

riporti: 1111
A: 01101 +
B: 01011 =
-------
11000 = 24<sub>dieci</sub>
```

- L'algoritmo impiegato dal calcolatore per effettuare la somma è simile a quella carta e penna
 - le cifre sono prodotte una dopo l'altra, da quelle meno significative a quelle più significative

Arch. Elab. - S. Orlando 13

Overflow

- L'overflow si verifica quando il risultato è troppo grande per essere rappresentato nel numero finito di bit messo a disposizione dalle rappresentazioni dei numeri
 - ⇒ il riporto fluisce fuori
- Es.: la somma di due numeri di n-bit produce un numero non rappresentabile su n bit

Sottrazione e numeri relativi

- L'algoritmo impiegato nei calcolatori per sottrarre numeri binari
 - è diverso da quello carta e penna, che usa la ben nota nozione di "prestito" delle cifre
- Non viene impiegata l'ovvia rappresentazione in modulo e segno per rappresentare i numeri relativi
 - si usa invece una particolare rappresentazione dei numeri negativi
- Questa particolare rappresentazione permette di usare lo stesso algoritmo efficiente già impiegato per la somma
- In pratica, nel calcolatore si usa lo stesso circuito
 - sia per la somma di numeri naturali (unsigned)
 - sia per la somma di numeri relativi (signed)

Arch. Elab. - S. Orlando 15

Possibili rappresentazioni

Modulo e Segno	One's Complement	Two's Complement
000 = + 0	000 = + 0	000 = + 0
001 = +1	001 = +1	001 = +1
010 = +2	010 = +2	010 = +2
011 = +3	011 = +3	011 = +3
100 = - 0	100 = - 3	100 = - 4
101 = - 1	101 = - 2	101 = - 3
110 = - 2	110 = - 1	110 = - 2
111 = - 3	111 = - 0	111 = - 1

- Problemi:
 - bilanciamento: nel Complemento a Due, nessun numero positivo corrisponde al più piccolo valore negativo
 - numero di zeri: le rappresentazioni in Modulo e Segno, e quella in Complemento a Uno, hanno 2 rappresentazioni per lo zero
 - semplicità delle operazioni: per il Modulo e Segno bisogna prima guardare i segni e confrontare i moduli, per decidere sia il segno del risultato, e sia per decidere se bisogna sommare o sottrarre.
 Il Complemento a uno non permette di sommare numeri negativi.
- Qual è quindi la migliore rappresentazione e perché?

Complemento a 2

- La rappresentazione in complemento a 2 è quella adottata dai calcolatori per i numeri con segno (signed)
- Il bit più significativo corrisponde al segno (0 positivo, 1 negativo)
- MIPS: Numeri relativi (signed) su 32 bit:

Complemento a 2

• Rappresentazione di numeri in complemento a 2 su *n* bit dei numeri signed:

- 2ⁿ⁻¹-1 numeri positivi:

• 1 (001) • 2ⁿ⁻¹-1 (massimo) (01......11)

- 2ⁿ⁻¹ numeri negativi
 - -|N| rappresentato dal numero *unsigned* ottenuto tramite la seguente operazione:

• -1: 2^{n-1} (1........1) • -2ⁿ⁻¹ (minimo): 2^{n} - 2^{n-1} = 2^{n-1} (10......0)

Complemento a 2

- Il valore corrispondente alla rappresentazione dei numeri *positivi* è quella solita
- Per quanto riguarda i numeri negativi, per ottenere direttamente il valore di un numero negativo su n posizioni, basta considerare
 - il bit di segno (=1) in posizione *n-1* con *peso: -2ⁿ⁻¹*
 - tutti gli altri bit in posizione i con peso 2i
- Dimostrazione:
 - -|N| viene rappresentato in complemento a 2 dal numero unsigned 2ⁿ-|N|
 - supponiamo che 2ⁿ-|N| corrisponda alla n-upla

$$1 d_{n-2} \dots d_1 d_0 \Rightarrow$$

Arch. Elab. - S. Orlando 19

Complemento a 2

- Dato un numero positivo N, con bit di segno uguale a 0
- Per ottenere la rappresentazione in complemento a 2 di -N è possibile impiegare equivalentemente
 - Alg. 1: inverti tutti i bit (ovvero Complementa a uno) e somma 1
 - Alg. 2: inverti tutti i bit a sinistra della cifra "1" meno significativa

Regole per complementare a 2

• Esempio Alg. 1

00010101000

Esempio Alg. 2

00010101000

Arch. Elab. - S. Orlando 21

Regole per complementare a 2

Alg. 1: inverti tutti i bit e somma 1 (dimostrazione)

• La rappresentazione in complemento a 2 del numero negativo -|N| è:

• Il valore è:

-
$$|N| = -2^{n-1} + 2^{n-2} * d_{n-2} + ... + 2^{1} * d_{1} + 2^{0} * d_{0}$$

Sommando e sottraendo 1

Allora:

$$|N| = 2^{n-1} - 2^{n-2} \cdot d_{n-2} - \dots - 2^{1} \cdot d_{1} - 2^{0} \cdot d_{0} = 4$$

$$= (2^{n-1}-1)+1 - (2^{n-2} \cdot d_{n-2} + \dots + 2^{1} \cdot d_{1} + 2^{0} \cdot d_{0}) = 4$$

$$= (2^{n-2} \cdot 1 + \dots + 2^{1} \cdot 1 + 2^{0} \cdot 1) - (2^{n-2} \cdot d_{n-2} + \dots + 2^{1} \cdot d_{1} + 2^{0} \cdot d_{0}) + 1 = 4$$

$$= (2^{n-2} \cdot (1 - d_{n-2}) + \dots + 2^{0} \cdot (1 - d_{0})) + 1$$

$$2^{n-1} - 1 = \sum_{i=0}^{n-2} 2^{i}$$
poiché (serie geometrica):

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

 \Rightarrow Invertendo tutti i bit della rappresentazione di -|N| otteniamo 0(1- d_{n-2})...(1 - d₀)

dove $0=1-d_{n-1}$

Il valore del numero complementato (positivo) è:

$$2^{n-2}*(1-d_{n-2}) + ... + 2^{0}*(1-d_{0})$$

Sommando 1, otteniamo proprio il valore di |N| sopra derivato

Regole per complementare a 2

Alg. 1: inverti tutti i bit e somma 1 (dimostrazione - continuazione)

• Se N è un numero positivo, la rappresentazione di N sarà

$$0 d_{n-2} \dots d_1 d_0$$

il cui valore è:

$$2^{n-2} * d_{n-2} + ... + 2^{1} * d_{1} + 2^{0} * d_{0}$$

Quindi il valore del numero negativo -N sarà uguale a

$$\begin{array}{rcl} - N & = & -2^{n-2} * d_{n-2} - \dots - 2^0 * d_0 = \\ & = & (2^{n-1}-1) - (2^{n-1}-1) & -2^{n-2} * d_{n-2} - \dots - 2^0 * d_0 = \\ & = & (2^{n-2} * 1 & + \dots + 2^0 * 1) - (2^{n-1}-1) - \\ & & (2^{n-2} * d_{n-2} + \dots + 2^0 * d_0) & = \\ & = & -2^{n-1} + (2^{n-2} * (1 - d_{n-2}) + \dots + 2^0 * (1 - d_0)) & + 1 \end{array}$$

Sommando e sottraendo (2ⁿ⁻²-1)

 \Rightarrow Invertendo tutti i bit della rappresentazione di N otteniamo 1(1- d_{n-2})...(1 - d₀)

dove $1=1-d_{n-1}$

Il valore del numero complementato (negativo) è:

$$-2^{n-2} + 2^{n-2} * (1 - d_{n-2}) + ... + 2^{0} * (1 - d_{0})$$

Sommando 1, otteniamo proprio il valore di -N sopra derivato

Arch. Elab. - S. Orlando 23

Estensione del numero bit della rappresentazione

- Regola: copiare il bit più significativo (bit di segno) negli altri bit

- L'estensione del bit di segno funziona anche per i numeri negativi
 - il complemento a 2 del numero negativo 1010 è 110, indipendentemente dal numero di 1 iniziali (es. 1...1010)
- Esempio di applicabilità dell'estensione del segno:
 - un operando di una istruzione macchina può essere più corto di una word (32 bit)
 - l'operando deve essere esteso nella corrispondente rappresentazione a 32 bit prima che i circuiti della CPU possano effettuare l'operazione aritmetica richiesta dall'istruzione

Addizioni & Sottrazioni

- Operazioni di numeri binari in complemento a 2 sono facili
 - sottraiamo usando semplicemente l'algoritmo dell'addizione
 - il sottraendo (negativo) deve essere espresso in complemento a 2
 - Esempio:

Sottrazione dei valori assoluti vs Somma dei numeri relativi in compl. 2

7-	0111-	7 +	0111+
<u>6=</u>	<u>0110=</u>	<u>(-6)=</u>	1010=
1	0001	1	0001

Arch. Elab. - S. Orlando 25

Addizioni & Sottrazioni

- Per sottrarre N1 N2 (numeri di n-bit), N1>0 e N2>0
 - sommiamo (N1 + (2ⁿ N2)) mod 2ⁿ
- Perché questo tipo di somma algebrica funziona ?
 Perché in questo caso non possiamo avere un overflow ?
- se N1 > N2, il risultato dovrà essere positivo. Otterremo un bit di peso n che non verrà considerato (a causa del modulo 2ⁿ)

$$\Rightarrow$$
 (N1 + 2ⁿ - N2) mod 2ⁿ = N1 - N2 poiché (N1 + 2ⁿ - N2) > 2ⁿ
7- 0111+
6= 1010=
1 0001

- se N1 < N2, il risultato dovrà essere negativo. Il modulo non avrà effetto, poiché (N1 + 2ⁿ - N2) < 2ⁿ
 - \Rightarrow (N1 + 2ⁿ N2) mod 2ⁿ = 2ⁿ (N2 N1), che corrisponde proprio alla rappresentazione in complemento a 2 di (N2 N1)>0

Scoprire gli Overflow

- No overflow se somma di numeri con segno discorde
- No overflow se sottrazione di numeri con segno concorde
- Overflow se si ottiene un numero con segno diverso da quello aspettato, ovvero se si sommano algebricamente due numeri con segno concorde, e il segno del risultato è diverso. Quindi otteniamo overflow
 - se sommando due positivi si ottiene un negativo
 - se sommando due negativi si ottiene un positivo
 - se sottraendo un negativo da un positivo si ottiene un negativo
 - se sottraendo un positivo da un negativo si ottiene un positivo
- Considera le operazioni A + B, e A B
 - Può verificarsi overflow se B è 0 ?
 - Può verificarsi overflow se A è 0 ?

Arch. Elab. - S. Orlando 27

Scoprire gli Overflow

- Somma algebrica di due numeri positivi A e B la cui somma non può essere rappresentata su n-bit in complemento a 2
 - Overflow se A+B>=2ⁿ⁻¹
 A=01111 B=00001 (OVERFLOW ⇒ due ultimi riporti discordi)
 A=01100 B=00001 (NON OVERFLOW ⇒ due ultimi riporti concordi)

```
01 00
01111+ 01100+
00001= 00001=
10000 01101
```

- Somma algebrica di due numeri negativi A e B la cui somma non può essere rappresentata su n-bit in complemento a 2
 - Overflow se |A|+|B|>2ⁿ⁻¹
 A=10100 B=10101 (OVERFLOW ⇒ due ultimi riporti discordi)
 A=10111 B=11101 (NON OVERFLOW ⇒ due ultimi riporti concordi)

```
    10
    11

    10100+
    10111+

    10101=
    11101=

    01001
    10100
```

Arch. Elab. - S. Orlando 28

Numeri razionali (a virgola fissa)

- Numeri con la virgola (o con il punto, secondo la convenzione anglosassone)
- Nel sistema di numerazione posizionale in base B, con *n cifre intere* e *m cifre frazionarie:*

$$\begin{array}{c} d_{n\text{-}1} \, \dots \, d_1 \, d_0 \, , \, d_{\text{-}1} \, d_{\text{-}2} \, \dots \, d_{\text{-}m} \\ \text{Significatività:} \\ B^{n\text{-}1} \, {}^* \, d_{n\text{-}1} \, + \, \dots \, + \, B^1 \, {}^* \, d_1 \, + \, B^0 \, {}^* \, d_0 \, + \\ B^{-1} \, {}^* \, d_{\text{-}1} \, + \, B^{-2} \, {}^* \, d_{\text{-}2} \, + \, \dots \, + \, B^{-m} \, {}^* \, d_{\text{-}m} \end{array}$$

- La notazione con n+m cifre è detta a virgola fissa (fixed point)
- Conversione da base 10 a base 2
 - 10,5_{dieci} 1010,1_{due}

Arch. Elab. - S. Orlando 29

Conversione della parte frazionaria

- Vogliamo convertire in base 2 a partire da una base B
- La parte frazionaria in base 2 che vorremmo ottenere sarà:

-
$$0,d_{-1}$$
 d_{-2} ... d_{-m} dove $d_{-i} \in \{0,1\}$ con significatività
2⁻¹ * d_{-1} + 2⁻² * d_{-2} + ... + 2^{-m} * d_{-m}

 se moltiplichiamo per 2, la virgola si sposta a destra

$$2^{0} * d_{-1} + 2^{-1} * d_{-2} + ... + 2^{-m+1} * d_{-m}$$

 dopo aver moltiplicato per 2, la parte intera diventa del numero diventa d₋₁

$$\mathbf{d}_{-1}$$
 , \mathbf{d}_{-2} ... \mathbf{d}_{-m}

 il processo di moltiplicazione deve essere iterato con la nuova parte frazionaria (fino a quando la parte frazionaria diventa nulla)

Processo di conversione di 0,43_{dieci}

	*2	Cifre frazionarie	
0,43	0,86	0	d ₋₁
0, 86	1,72	1	d ₋₂
0, 72	1,44	1	d ₋₃
0, 44	0,88	0	d ₋₄
0, 88	1,76	1	d ₋₅
0, 76	1,52	1	d ₋₆
0, 52	1,04	1	d ₋₇
0, 04	0,08	0	d ₋₈
0, 08	0,16	0	d ₋₉
0, 16			

0,011011100..._{due}

Numeri razionali (a virgola mobile)

- La notazione a virgola fissa (es.: n=8 e m=8) non permette di rappresentare numeri molto grandi o molto piccoli
- per numeri grandi
 - utile spostare la virgola a destra e usare la maggior parte dei bit della rappresentazione per la parte intera
 - 10000000000,0100 parte intera non rappresentabile su n=8 bit
- per numeri piccoli
 - utile spostare la virgola a sinistra e usare la maggior parte dei bit della rappresentazione per la parte frazionaria
 - 0,0000000000000 parte frazionaria non rappresentabile su m=8 bit
- Notazione in virgola mobile, o FP (Floating Point)
 - si usa la notazione scientifica, con l'esponente per far fluttuare la virgola
 - Segno, Esponente, Mantissa \Rightarrow (-1)^S * 10^E * M 0,121 +10⁰ * 0,121 14,1 +10² * 0,141 -911 -10³ * 0,911
 - Standard ⇒ Mantissa rappresentata come numero frazionario, con parte intera uguale a 0

 Arch. Elab. - S. Orlando 31

Numeri razionali (a virgola mobile)

- In base 2, l'esponente E si riferisce ad una potenza di 2
 - Segno, Esponente, Mantissa ⇒ (-1)^S * 2^E * M
- Dati i bit disponibili per la rappresentazione FP, si suddividono in
 - 1 bit per il segno
 - gruppo di bit per E
 - gruppo di bit per M

 Torneremo alla rappresentazione FP, e allo standard IEEE 754 di rappresentazione, quando parleremo delle operazioni FP e dei circuiti corrispondenti

Rappresentazione informazione alfanumerica

- Per rappresentare le lettere (maiuscole, minuscole, punteggiature, ecc.) è necessario fissare uno standard
- L'esistenza di uno standard permette la comunicazione di documenti elettronici (testi, programmi, ecc.), anche tra tra computer differenti
- ASCII (American Standard Code for Information)
 - in origine ogni carattere una stringhe 7 bit
 - 128 caratteri, da 0 a 7F
 - codici da 0 a 1F usati per caratteri non stampabili (caratteri di controllo)

0A	(Line Feed)
0D	(Carriage Return)
1R	(Escape)

20	(Space)
2C	,
2E	

41	Α	
5A	Z	

61	а	
7A	Z	

30	0	
39	9	

Arch. Elab. - S. Orlando 33

ASCII e evoluzioni

- Codici ASCII esteso a 8 bit
- 256 codici diversi non bastano a coprire i set di caratteri usati, ad esempio, nelle lingue latine, slave, turche, ecc.
- IS (International Standard) con concetto di code page
 - IS 8859-1 è il codice ASCII a 8 bit per Latin-1 (esempio l'inglese o l'italiano con le lettere accentate ecc.)
 - IS 8859-2 è il codice ASCII a 8 bit per Latin-2 (lingue latine slave cocoslovacco, polacco, e ungherese)
 - ecc.

UNICODE

- ulteriore estensione (IS 10646) con codici a 16 bit (65536 codici diversi)
- standard creato da un consorzio di gruppi industriali
- i codici che vanno da 0000 a 00FF corrispondono a IS 8859-1
 - per rendere più facile la conversione di documenti da ASCII a UNICODE

UNICODE

- Gruppi di codici (code points) consecutivi associati ai più importanti alfabeti
 - 336 al Latino, 256 al cirillico, ecc.
- Molti gruppi di codici assegnati a cinese, giapponese e coreano
 - 1024 per i simboli fonetici
 - 20992 per gli ideogrammi (Han) usati in cinese e giapponese
 - 11156 per le sillabe Hangul usate in coreano
 - cinesi e giapponesi richiedono nuovi ideogrammi per le parole nuove (modem, laser, smileys) e quindi nuovi codici
 - molti problemi ancora aperti ...

Arch. Elab. - S. Orlando 35

Istruzioni machina e codifica binaria

- Le istruzioni macchina, ovvero il linguaggio che la macchina (processore) comprende, hanno bisogno anch'esse di essere codificate in binario
 - devono essere rappresentate in binario in accordo ad un formato ben definito
- Il linguaggio macchina è molto restrittivo
 - il processore che studieremo sarà il MIPS, usato da Nintendo, Silicon Graphics, Sony
 - l'ISA del MIPS è simile a altre architetture RISC sviluppate dal 1980
 - le istruzioni aritmetiche del MIPS permettono solo operazioni elementari (add, sub, mult, div) tra coppie di operandi a 32 bit
 - le istruzioni MIPS operano su particolari supporti di memoria denominati registri, la cui lunghezza è di 32 bit = 4 Byte

Formato (codifica) delle istruzioni macchina

• Esempio:

```
add $9, $17, $18 (semantica: $9=$17+$18)
```

dove i registri sono identificati dai numeri 9, 17, 18

Formato delle istruzioni:

Arch. Elab. - S. Orlando 37

Informazione e memoria

- L'informazione, opportunamente codificata, ha bisogno di essere memorizzata nel calcolatore per essere utilizzata.
- In particolare i programmi (e i dati) devono essere trasferiti nella memoria principale del computer per l'esecuzione
- Organizzazione della memoria
 - sequenza di celle (o locazioni) di lunghezza prefissata
 - ogni cella è associata con un numero (chiamato indirizzo)
 - se un indirizzo è espresso come numero binario di m bit
 - sono indirizzabili 2^m celle diverse (da 0 a 2^m -1)
 - indirizzi consecutivi ⇒ celle contigue
 - nelle memorie attuali, ogni cella di memoria è lunga
 - 2³= 8 bit = 1 Byte (memoria indirizzabile al Byte)
- I Byte consecutivi sono organizzate in gruppi
 - ogni gruppo è una Word
 - processori a 64 bit (Word di 8 Bytes) e a 32 bit (Word di 4 Bytes)
 - le istruzioni aritmetiche operano su Word
 - la dimensione della Word stabilisce qual è il massimo intero rappresentabile

0	8 bits of data
1	8 bits of data
2	8 bits of data
3	8 bits of data
4	8 bits of data
5	8 bits of data
6	8 bits of data

Numeri binari magici

```
2^3 = 8
                            (8 \text{ bit} = 1 \text{ Byte} \quad \textbf{B})
2^5 = 32
                            (32 bit = 1 Word)
                            La dimensione della word dipende dal processore.
                            Esistono processori dove la Word è di
                            2^6 = 64 bit (oppure di 2^4 = 16 bit)
2^{10} = 1024
                            (K Kilo Migliaia - KB (kilobytes) - Kb (kilobits))
 2<sup>20</sup>
                            (M Mega Milioni - MB)
 2<sup>30</sup>
                            (G Giga Miliardi - GB)
 240
                            (T Tera Migliaia di Miliardi - TB)
                            (P Peta Milioni di Miliardi - PB)
 250
```

8 bit (1 B) è un'unità fondamentale:

- è l'unità di allocazione della memoria
- codici ASCII e UNICODE hanno dimensione, rispettivamente, 1 B e 2 B

Arch. Elab. - S. Orlando 39

Codici per correggere o scoprire errori

- Le memorie elettroniche (o magnetiche come i dischi) memorizzano bit usando meccanismi che possono occasionalmente generare errori
 - es.: un bit settato ad 1 viene poi letto uguale a 0, o viceversa
- Formalizziamo il concetto di errore in una codifica a n bit
 - C codifica corretta, C' codifica letta
 - Distanza di Hamming tra le codifiche
 - H(C,C') : numero di cifre binarie differenti a parità di posizione
 - Possibili situazioni
 - H(C, C')=0 : significa che C e C' sono uguali (OK)
 - H(C, C')=1 : significa che C e C' differiscono per 1 solo bit
 H(C, C')=2 : significa che C e C' differiscono per 2 soli bit
 - ecc.

Parità

- Per scoprire gli errori singoli, ovvero per accorgersi se H(C, C')=1
 - aggiungiamo bit di parità alla codifica
 - bit aggiuntivo posto a 1 o a 0
 - affinché il numero di bit 1 nelle varie codifiche sia pari (dispari)
 - se si verifica un errore singolo (un numero di errori dispari) in C',
 allora il numero di bit 1 non sarà più pari
 - purtroppo, con un singolo bit di parità, non scopriremo mai un numero di errori doppio, o in generale pari
- In verità, usare un bit di parità significa usare una *codifica non minimale* nella rappresentazione dell'informazione
 - una codifica minimale usa tutte stringhe possibili
 - in questo si usano solo la metà delle stringhe permesse su n+1 bit
 - la distanza "minima" di Hamming tra coppie di codifiche permesse è 2
 - es.: n=2 con 1 bit di parità (no. bit pari)
 - Stringhe (codifiche) permesse
 - 000 011 101 110
 - Stringhe (codifiche) non permesse
 - 001 010 100 111

Arch. Elab. - S. Orlando 41

Codici correttori

- In generale, possiamo avere più di un bit per correggere o scoprire possibili errori multipli
 - n sono i bit della codifica minimale
 - m sono i bit della codifica estesa, m>n
 - -r = m-n sono i bit ridondanti che estendono la codifica minimale
 - solo 2ⁿ delle 2^m codifiche possibili sono valide
 - per ogni codifica su n bit, i rimanenti r bit ridondanti possono essere codificati soltanto in modo fisso affinché la codifica sia valida e corretta
 - se singolo bit di parità
 - *m=n+1*
 - solo 2ⁿ delle 2ⁿ⁺¹ codifiche possibili sono valide (solo metà)

Distanza di Hamming e codici correttori

- E' possibile definire una codifica non minimale su m bit per correggere o scoprire errori
- La distanza di Hamming della codifica è definita come:
 - la distanza di Hamming "minima" tra le varie coppie di codici validi
- Nota che la distanza di Hamming in una codifiche minimale è 1
- Codifica non minimale su 6 bit con distanza di Hamming uguale a 3
 - solo 4 codici validi: 000000 000111 111000 111111
 H(000000,000111)=3 H(000000,111000)=3
 H(000000,111111)=6 H(000111,111000)=6
 H(000111,111111)=3 H(111000,111111)=3
 - la codifica di sopra permette di
 - scoprire fino a 2 errori
 - es.: se siamo sicuri che ci possono essere al massimo 2 errori, la distanza tra una stringa corretta C e la stringa erronea C' è 2 < 3.
 C' non può essere scambiato per un codice corretto perché la distanza di Hamming del codice è 3.
 - · correggere fino a 1 errore
 - es.: 010000 è più vicino a 000000

Arch. Elab. - S. Orlando 43

Distanza di Hamming e codici correttori

- Per scoprire fino a d errori su singoli bit
 - è necessario che la distanza di Hamming della codifica sia d+1
 - supponiamo di avere una codifica siffatta
 - supponiamo che C' sia una codifica erronea di C tale che:
 1 < H(C,C') ≤ d
 - C' non può essere scambiato per una codifica valida, perché in questo caso dovrebbe essere vero che: $H(C,C') \ge d+1$
- Per correggere fino a d errori su singoli bit
 - è necessario che la distanza di Hamming della codifica sia 2d+1
 - supponiamo di avere una codifica siffatta
 - supponiamo che C' sia una codifica erronea di C tale che: $1 < H(C,C') \le d$
 - C' non può essere scambiato per una codifica valida, perché in questo caso dovrebbe essere vero che: H(C,C') ≥ 2d+1
 - poiché C è la codifica valida più vicina a C', possiamo pensare che C sia la codifica corretta e correggere l'errore

Codici correttori

 Esiste un algoritmo dovuto a Hamming (1950) che permette di determinare una codifica con un numero minimo di bit di ridondanza per la correzione degli errori

• Esempio:

- Numero minimo di check bit (bit ridondanti) per correggere errori singoli (d=1)
- I check bit devono essere configurati in modo che la distanza di Hamming tra le codifiche valide sia 2d+1= 3

Word size	Check bits	Total size	Percent overhead
8	4	12	50
16	5	21	31
32	6	38	19
64	7	71	11
128	8	136	6
256	9	265	4
512	10	522	2

Arch. Elab. - S. Orlando 45