

B
enlegungsschrift

40 03 575 A 1

(51) Int. Cl. 5:
C07 K 5/06
A 61 K 37/64

91239329

DEUTSCHES
PATENTAMT(21) Aktenzeichen: P 40 03 575.1
(22) Anmeldetag: 7. 2. 90
(23) Offenlegungstag: 8. 8. 91

DE 40 03 575 A 1

(71) Anmelder:

Bayer AG, 5090 Leverkusen, DE

(72) Erfinder:

Benz, Günter, Dipl.-Chem. Dr., 5620 Velbert, DE;
Henning, Rolf, Dipl.-Chem. Dr.; Dressel, Jürgen, Dr.;
Voges, Klaus-Peter, Dipl.-Chem. Dr.; Stasch,
Johannes-Peter, Dipl.-Chem. Dr.; 5800 Wuppertal,
DE; Knorr, Andreas, Dr., 4008 Erkrath, DE

(54) Retroisostere Dipeptide, Verfahren zur Herstellung und ihre Verwendung als Renininhibitoren in Arzneimitteln

(55) Die Erfindung betrifft neue retroisostere Dipeptide der allgemeinen Formel I

in welcher X, A, B, D, L, M, Y, R₁ und R₂ die in der Beschreibung angegebene Bedeutung haben, Verfahren zu ihrer Herstellung und ihre Verwendung als Renininhibitoren in Arzneimitteln, insbesondere in kreislaufbeeinflussenden Arzneimitteln.

NEW RETROISOSTERIC
DIPEPTIDE RENIN INHIBITORS
+ E.G. (2R, 4S, 5S)-2-
_{-ALPHA}
(VALERYLAMINO)-5-[N_F-(TERT.
BUTOXYCARBONYL)-L-CYCLO-
PROPYGLYCYL]AMINO-6-
CYCLOHEXYL-4-HYDROXY-
HEXANE.

Beschreibung

Die Erfindung betrifft neue retroisostere Dipeptide, Verfahren zu ihrer Herstellung und ihre Verwendung als Renininhibitoren in Arzneimitteln, insbesondere in kreislaufbeeinflussenden Arzneimitteln.

5 Renin ist ein proteolytisches Enzym, das überwiegend von den Nieren produziert und ins Plasma sezerniert wird. Es ist bekannt, daß Renin in vivo vom Angiotensinogen das Lekapeptid Angiotensin I abspaltet. Angiotensin I wiederum wird in der Lunge, den Nieren oder anderen Geweben zu dem blutdruckwirksamen Okapeptid Angiotensin II abgebaut. Die verschiedenen Effekte des Angiotensin II wie Vasokonstriktion, Na^+ -Retention in der Niere, Aldosteronfreisetzung in der Nebenniere und Tonuserhöhung des sympathischen Nervensystems wirken synergistisch im Sinne einer Blutdruckerhöhung.

10 Die Aktivität des Renin-Angiotensin-Systems kann durch die Hemmung der Aktivität von Renin oder dem Angiotensin-Konversionsenzym (ACE) sowie durch Blockade von Angiotensin II-Rezeptoren pharmakologisch manipuliert werden. Die Entwicklung von oral einsetzbaren ACE-Hemmern hat somit zu neuen Antihypertensiva geführt (vgl. DOS 36 28 650, Am. J. Med. 77, 690, 1984). ACE wirkt jedoch auch auf andere Substrate als Angiotensin I wie z. B. Kinine ein. Diese können unerwünschte Nebeneffekte wie Prostaglandinfreisetzung und eine Reihe verhaltens- und neurologischer Effekte hervorrufen. Die ACE-Inhibition führt darüber hinaus zu einer Akkumulation von Angiotensin I.

15 Ein spezifischer Ansatz ist, in die Renin-Angiotensin-Kaskade zu einem früheren Zeitpunkt einzugreifen, nämlich durch Inhibition der sauren Aspartase Renin, die nur Angiotensinogen als Substrat erkennt.

20 Bisher wurden verschiedene Arten von Renininhibitoren entwickelt: Reninspezifische Antikörper, Phospholipide, Peptide mit der N-terminalen Sequenz des Prorenins, synthetische Peptide als Substratanaloga und modifizierte Peptide. Bei vielen Renininhibitoren wird ferner das Leu-Val-Dipeptid durch Statin (EP 0 77 029) oder durch isostere Dipeptide ersetzt (vgl. US 44 24 207).

25 Außerdem werden in der PCT WO 88/02 374 Renininhibitoren umfaßt, die als proteasestabilen zentralen Mittelteil retroisostere Dipeptideinheiten enthalten. Retroisostere Dipeptide besitzen eine kopfständige Amino-gruppe; die Kupplung zu C-terminalen Aminosäuren führt zu einer Umkehrung der Amidfunktion (Retroamid), die sich durch eine hohe metabolische Stabilität gegenüber enzymatischem Abbau auszeichnet.

30 Über das erfundungsgemäße Verfahren wurden neue Renininhibitoren zugänglich, die überraschenderweise eine hohe Selektivität gegenüber humanem Renin und eine gute orale Wirksamkeit besitzen.

35 Die Erfindung betrifft retroisostere Dipeptide der allgemeinen Formel (I)

40 in welcher
 X – für Wasserstoff oder
 – für Alkoxy carbonyl oder Acyl mit jeweils bis zu 10 Kohlenstoffatomen steht,
 A, B und D gleich oder verschieden sind und jeweils
 – für eine direkte Bindung oder
 – für einen Rest der Formel

45 stehen, worin
 m – die Zahl 1 oder 2 bedeutet, oder
 – für eine Gruppe der Formel

50 stehen, worin
 p – die Zahl 0, 1 oder 2 bedeutet,
 R³ – Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen oder Phenyl bedeutet,
 R⁴ und R⁵ gleich oder verschieden sind und
 – einen 3- bis 8gliedrigen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe Stickstoff, Sauerstoff oder Schweiß bedeuten,
 – Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeuten, oder jeweils
 – Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das

gegebenenfalls durch Alkylthio mit bis zu 6 Kohlenstoffatomen, Hydroxy, Mercapto, Guanidyl oder durch eine Gruppe der Formel $-NR^6R^7$ oder R^8-OC- substituiert sind, worin R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen oder Phenyl bedeuten, und R⁸ — Hydroxy, Benzyloxy, Alkoxy mit bis zu 6 Kohlenstoffatomen oder die oben aufgeführte Gruppe $-NR^6R^7$ bedeutet,
oder Alkyl, das gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Halogen, Nitro, Alkoxy mit bis zu 8 Kohlenstoffatomen oder durch die Gruppe $-NR^6R^7$ substituiert ist, worin R⁶ und R⁷ die oben angegebene Bedeutung haben
oder Alkyl, das gegebenenfalls durch einen 5- oder 6gliedrigen stickstoffhaltigen Heterocyclus oder Indolyl substituiert ist, worin die entsprechenden $-NH$ -Funktionen gegebenenfalls durch Alkyl mit bis zu 6 Kohlenstoffatomen oder durch eine Aminoschutzgruppe geschützt sind.
L und M gleich oder verschieden sind und
— für eine direkte Bindung oder
— für eine Gruppe der Formel

stehen, worin p', R^{3'}, R^{4'} und R^{5'} die oben angegebene Bedeutung von p, R³, R⁴ und R⁵ haben und mit diesen gleich oder verschieden sind, und

R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, in ihrer D- oder L-Form, oder als D,L-Isomerenengemisch.

R¹ und R² gleich oder verschieden sind und

— für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen stehen, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist,

Y — für Wasserstoff oder

— für eine Gruppe der Formel $-CO-R^{10}$ steht, worin

R¹⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Pyridyl oder Phenyl substituiert ist, oder

— geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen bedeutet, oder

— für den Rest R¹⁰ steht, worin

R¹⁰ die oben angegebene Bedeutung hat, mit der Maßgabe, daß entweder

a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

steht, in welchen R³, R^{3'}, R⁴, R^{4'}, R⁵, R^{5'}, p und p' die oben angegebene Bedeutung haben, und mindestens einer der Substituenten R⁴, R⁵, R^{4'} oder R^{5'} für Cyclopentyl steht, oder R⁴ und R⁵ oder R^{4'} und R^{5'} jeweils für Methyl stehen, oder

b) L oder M für die Gruppe der Formel

stehen muß, in welcher R⁹ und R³ die oben angegebene Bedeutung haben, und deren physiologisch unbedenklichen Salze.

Aminoschutzgruppe steht im Rahmen der Erfindung für die üblichen in der Peptid-Chemie verwendeten Aminoschutzgruppen.
Hierzu gehören bevorzugt: Benzyloxycarbonyl, 4-Brombenzyloxycarbonyl, 2-Chlorbenzyloxycarbonyl,

3-Chlorbenzyloxycarbonyl, 3,5-Dimethoxybenzylxycarbonyl, 4-Methoxybenzylxycarbonyl, 4-Nitrobenzyloxycarbonyl, 2-Nitrobenzyloxycarbonyl, 2-Nitro-4,5-dimethoxybenzylxycarbonyl, 3,4,5-Trimethoxybenzylxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, tert-Butoxycarbonyl, Pentoxy carbonyl, Isopentoxycarbonyl, Cyclohexoxycarbonyl, 2-Chlorethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, 2,2,2-Trichlor-tert-butoxycarbonyl, Benzhydryloxycarbonyl, Bis-(4-methoxyphenyl)methoxycarbonyl, Phenacyloxycarbonyl, 2-Trimethylsilylethoxycarbonyl, 2-Triphenylsilylethoxycarbonyl, Menthoxycarbonyl, Vinyloxycarbonyl, Allyloxycarbonyl, Fluoren-9-methoxycarbonyl, Ethylthiocarbonyl, Methylthiocarbonyl, Butylthiocarbonyl, Tert.-Butylthiocarbonyl, tert-Butylthiocarbonyl, Benzylthiocarbonyl, Formyl, Acetyl, Propionyl, Pivaloyl, 2-Chloracetyl, 2-Bromacetyl, 2-Iodacetyl, 2,2,2-Trifluoracetyl, 2,2,2-Trichloracetyl, Benzoyl, 4-Chlorbenzoyl, 4-Methoxybenzoyl, 4-Nitrobenzoyl, Naphthylcarbonyl, Phenoxyacetyl, Adamantylcarbonyl, Dicyclohexylphosphoryl, Diphenylphosphoryl, Dibenzylphosphoryl, Di-(4-nitrobenzyl)phosphoryl, Phenoxyphenylphosphoryl, Diethylphosphinyl, Diphenylphosphinyl oder Phthaloyl.

Besonders bevorzugte Aminoschutzgruppen sind Benzylxycarbonyl, 3,5-Dimethoxybenzylxycarbonyl, 4-Methoxybenzylxycarbonyl, 4-Nitrobenzylxycarbonyl, 2-Nitrobenzylxycarbonyl, 3,4,5-Trimethoxybenzylxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, tert-Butoxycarbonyl, Cyclohexoxycarbonyl, 2-Chlorethoxycarbonyl, Phenoxyacetyl, Naphthylcarbonyl, Adamantylcarbonyl, Phthaloyl, 2,2,2-Trichlorethoxycarbonyl, 2,2,2-Trichlor-tert-butoxycarbonyl, Menthoxycarbonyl, Vinyloxycarbonyl, Allyloxycarbonyl, Fluoren-9-methoxycarbonyl, Formyl, Acetyl, Propionyl, Pivaloyl, 2-Chloracetyl, 2-Bromacetyl, 2,2,2-Trifluoracetyl, 2,2,2-Trichloracetyl, Benzoyl, 4-Chlorbenzoyl, 4-Brombenzoyl, 4-Nitrobenzoyl, Isovaleryl oder Benzyloxymethylene.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) haben mehrere asymmetrische Kohlenstoffatome. Sie können unabhängig voneinander in der D- oder der L-Form vorliegen. Die Erfindung umfaßt die optischen Antipoden ebenso wie die Isomerengemische oder Racemate. Bevorzugt liegen die Gruppen A, B, D, L und M unabhängig voneinander in der optisch reinen, bevorzugt in der L-Form vor.

Die Gruppe der Formel

besitzt 3 asymmetrische Kohlenstoffatome, die unabhängig voneinander in der R- oder S-Konfiguration vorliegen können. Bevorzugt liegt diese Gruppe in der 1R, 3S, 4S-Konfiguration, 1R, 3R, 4S-Konfiguration, 1S, 3R, 4S-Konfiguration oder in der 1S, 3S, 4S-Konfiguration vor. Besonders bevorzugt ist die 1S, 3S, 4S-Konfiguration und die 1R, 3S, 4S-Konfiguration, die in Abhängigkeit der Natur des Substituenten R² die Konfiguration eines L,L-Dipeptides widerspiegelt.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können in Form ihrer Salze vorliegen. Dies können Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren oder Basen sein. Zu den Säureadditionsprodukten gehören bevorzugt Salze mit Salzsäure, Bromwasserstoffsäure, Iodwasserstoffsäure, Schwefelsäure, Phosphorsäure oder mit Carbonsäuren wie Essigsäure, Propionsäure, Oxalsäure, Glykolsäure, Bernsteinsäure, Maleinsäure, Hydroxymaleinsäure, Methylmaleinsäure, Fumarsäure, Adipinsäure, Äpfelsäure, Weinsäure, Zitronensäure, Benzoesäure, Zimtsäure, Milchsäure, Ascorbinsäure, Salicilsäure, 2-Acetoxybenzoësäure, Nicotinsäure, Isonicotinsäure, oder Sulfonsäuren wie Methansulfonsäure, Ethansulfonsäure, Benzoisulfonsäure, Toluolsulfonsäure, Naphthalin-2-sulfonsäure oder Naphthalindisulfonsäure.

Bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

X — für Wasserstoff oder

— für Alkoxy carbonyl oder Acyl mit jeweils bis zu 8 Kohlenstoffatomen steht,

A, B und D gleich oder verschieden sind und jeweils

— für eine direkte Bindung oder

— für Prolin stehen, oder

— für eine Gruppe der Formel

stehen, worin

p die Zahl 0 oder 1 bedeutet,
R³ — Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Phenyl bedeutet,

R⁴ und R⁵ gleich oder verschieden sind und Cyclopentyl oder Cyclohexyl bedeuten, oder Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Naphthyl oder Phenyl substituiert ist, die ihrerseits durch Fluor, Chlor, Nitro oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert sein können,

oder durch Indolyl, Imidazolyl, Pyridyl, Triazolyl oder Pyrazolyl substituiertes Alkyl (bis 6 C-Atome) bedeuten,

wobei die entsprechenden —NH-Funktionen gegebenenfalls durch Alkyl mit bis zu 4 Kohlenstoffatomen oder durch eine Aminoschutzgruppe geschützt sind,
L und M gleich oder verschieden sind und
— für eine direkte Bindung oder
— für eine Gruppe der Formel

5

10

stehen, worin
p', R3', R4' und R5' die oben angegebene Bedeutung von p, R3, R4 und R5 haben und mit diesen gleich oder verschieden sind, und

15

R9 — geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,
in ihrer D- oder L-Form, oder als D,L-Isomerengemisch,

R1 und R2 gleich oder verschieden sind und

— für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen stehen, das gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist,

20

Y — für Wasserstoff oder

— für eine Gruppe der Formel —CO-R10 steht, worin R10 geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Pyridyl oder Phenyl substituiert ist, oder

25

— geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeutet.

— für den Rest R10 steht, worin R10 die oben angegebene Bedeutung hat, mit der Maßgabe, daß entweder

a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

30

35

steht, in welchen R3, R3', R4, R4', R5, R5', p und p' die oben angegebene Bedeutung haben und mindestens einer der Substituenten R4, R5, R4' oder R5' für Cyclopentyl steht, oder R4 und R5 oder R4' und R5' jeweils für Methyl stehen, oder

40

b) L oder M für die Gruppe der Formel

45

stehen muß, in welchen R9 und R3' die oben angegebene Bedeutung haben,
und deren physiologisch unbedenkliche Salze.

50

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

X — für Wasserstoff oder

55

— für Alkoxykarbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen steht,

A, B und D gleich oder verschieden sind und

— für eine direkte Bindung oder

— für Prolin stehen, oder

— für eine Gruppe der Formel

60

65

stehen, worin p die Zahl 0 oder 1 bedeutet,

R³ – Wasserstoff oder Methyl bedeutet,
R⁴ und **R⁵** Cyclopentyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Naphthyl oder Phenyl substituiert ist, die ihrerseits durch Fluor, Chlor oder Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert sein können, oder durch Imidazolyl, Triazolyl, Pyridyl der Pyrazolyl substituiert ist, wobei die NH-Funktionen gegebenenfalls durch Methyl, Benzyloxymethylen oder t-Butyloxycarbonyl (Boc) geschützt sind,
L und **M** gleich oder verschieden sind und
– für eine direkte Bindung oder
– für eine Gruppe der Formel

stehen, worin
R^{3'}, R^{4'} und R^{5'} die oben angegebene Bedeutungen von R³, R⁴ und R⁵ haben und mit diesen gleich oder
verschieden sind, und
20 R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,
in ihrer D- oder L-Form, oder als D,L-Isomerengemisch,
R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffato-
men stehen, das gegebenenfalls durch Cyclohexyl oder Phenyl substituiert ist,
Y – für Wasserstoff oder
25 – für eine Gruppe der Formel –CO—R¹⁰ steht, worin
R¹⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch
Pyridyl oder Phenyl substituiert ist, oder Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet,
für den Rest R¹⁰ steht, worin
30 R¹⁰ die oben angegebene Bedeutung hat,
mit der Maßgabe, daß entweder

a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

40 stehen, in welchen $R^3, R^3', R^4, R^4', R^5, R^5'$, p und p' die oben angegebene Bedeutung haben und mindestens einer der Substituenten R^4, R^5, R^4' oder R^5' für Cyclopentyl steht, oder R^4 und R^5 oder R^4' und R^5' jeweils für Methyl stehen, oder
45 b) L oder M für die Gruppe der Formel

stehen muß, in welcher R³ und R⁹ die oben angegebene Bedeutung haben, und deren physiologisch unbedenklichen Salze.

55 Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der erfundungsgemäßen Verbindungen der allgemeinen Formel (I)

65 in welcher X, A, B, D, R¹, R², L, M und Y die oben angegebene Bedeutung haben, gefunden, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel (II)

in welcher
R¹ und **R²** die oben angegebene Bedeutung haben,
Z – die oben angegebene Bedeutung von **X** hat, aber nicht für Wasserstoff steht, oder
– für eine der oben aufgeführten Aminoschutzgruppen steht, und
V – für einen hydrogenolytisch abspaltbaren Rest, wie beispielsweise Benzyl steht,
zunächst durch Hydrogenolyse unter Öffnung des Isoxazolidinrings zu den Aminoalkoholen der allgemeinen
Formel (III)

in welcher
Z, **R¹** und **R²** die oben angegebene Bedeutung haben,
reduziert, gegebenenfalls anschließend mit Verbindungen der allgemeinen Formel (IV) und (IVa)

in welcher
Y die oben angegebene Bedeutung hat und
L' und **M'** die oben angegebene Bedeutung von **L** und **M** haben, aber nicht gleichzeitig für eine direkte Bindung stehen,
gegebenenfalls in Anwesenheit eines wasserentziehenden Hilfsstoffes und/oder einer Base kondensiert,
anschließend nach Abspaltung der Schutzgruppe **Z** nach bekannter Methode mit Verbindungen der allgemeinen
Formel (V)

in welcher
B' und **D'** die oben angegebene Bedeutung von **B** und **D** haben, aber nicht gleichzeitig für eine direkte Bindung stehen, und
Z' die oben angegebene Bedeutung von **Z** hat und mit dieser gleich oder verschieden ist,
umgesetzt und in einem letzten Schritt nach Abspaltung der Schutzgruppe **Z'** mit Verbindungen der Formel (VI)

in welcher
X die oben angegebene Bedeutung hat und
A' die oben angegebene Bedeutung von **A** hat, aber nicht für eine direkte Bindung steht,
gegebenenfalls in Anwesenheit einer Base und inerten organischen Lösungsmitteln umgesetzt.
Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

45

50

55

60

65

Reduktion

50

55

60

65

45 Als Lösemittel eignen sich für alle Verfahrensschritte die üblichen inerten Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt organische Lösemittel wie Methanol, Ethanol, Propanol, Isopropanol oder Ether wie Diethylether, Glykolmono- oder dimethylether, Dioxan oder Tetrahydrofuran, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylool, Cyclohexan oder Erdölfractionen oder Halogenkohlenwasserstoffe wie Methylenechlorid, Chloroform, Tetrachlorkohlenwasserstoff, oder Aceton, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretriamid, Essigester, Pyridin, Triethylamin oder Picoline.
50 Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden.

Besonders bevorzugt sind für die Reduktion Methanol und Essigsäureethylester, für die Peptidkupplungen und die Umsetzung mit Verbindungen der allgemeinen Formeln (IV), (IVa) und (VI) Methylchlorid.

55 Die Reduktion der Verbindungen der allgemeinen Formel (II) erfolgt entweder mit den üblichen Katalysatoren, wie beispielsweise Palladiumhydroxid oder Palladium/Kohlenstoff, vorzugsweise mit Palladium/Kohlenstoff oder über eine katalytische Transferhydrierung in an sich bekannter Weise [vgl. Tetrahedron 41, 3469 (1985), 3463 (1985), Synthesis 1987, 53].

Der Katalysator wird in einer Menge von 0,05 bis 1 mol, bevorzugt von 0,1 bis 0,5 mol, bezogen auf 1 Mol der Verbindung der allgemeinen Formel (II).

Die Reduktion wird in einem Temperaturbereich von 40°C bis 160°C, vorzugsweise von 80°C bis 100°C durchgeführt.

Die Reduktion kann sowohl bei Normaldruck als auch bei erhöhtem oder erniedrigtem Druck (beispielsweise 0,5 bis 5 bar) vorzunehmen bei Normaldruck durchgeführt werden.

Die Verbindungen der allgemeinen Formel (II) sind neu und können hergestellt werden, indem man Verbindungen der allgemeinen Formel (VII)

5

in welcher
Z die oben angegebene Bedeutung hat,
in einer Cycloadditionsreaktion mit Verbindungen der allgemeinen Formel (VIII)

10

in welcher
V und R² die oben angegebene Bedeutung haben,
umsetzt.

Als Lösemittel eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, Propanol, Isopropanol, n-Butanol oder Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykolmono- oder Diethylether oder Kohlenwasserstoffe wie Benzol, Toluol, Xylool oder Edölfraktionen oder Essigsäure-n-butylester. Bevorzugt sind n-Butanol, Dioxan, Essigsäure-n-butylester, Toluol, Xylool oder Mesitylen.

Die Reaktion kann in einem Temperaturbereich von 0°C – 250°C, bevorzugt bei 100°C – 170°C bei normalem oder erhöhtem Druck durchgeführt werden.

Die Verbindungen der allgemeinen Formel (VII) sind an sich bekannt oder können nach üblicher Methode hergestellt werden [Chem. Pharm. Bull. 30, 1921 (1982), Chem. Pharm. Bull. 23, 3106 (1975); J. Org. Chem. 47, 3016 (1982)].

Die Verbindungen der allgemeinen Formel (VIII) sind an sich bekannt oder können nach üblichen Methoden hergestellt werden [J. J. Tufariello in 1,3-Dipolar Cycloaddition Chemistry Vol. 2, Ed. A. Padwa, p. 83 – 168, John Wiley (1984), R. Huisgen, H. Seidel, J. Bruning, Chem. Ber. 102, 1102 (1969)].

Die Verbindungen der allgemeinen Formeln (II) sind bekannt [vgl. PCT, WO 88/02 3'4] und können aber durch das oben angegebene neue Verfahren über die Stufe der Isoxazolidine (Formel II), in der bevorzugten Stereochemie und in besseren Ausbeuten erhalten werden.

Die Verbindungen der allgemeinen Formeln (IV) und (V) sind an sich bekannt und können durch Umsetzung eines entsprechenden Brückstückes, bestehend aus einer oder mehreren Aminosäuregruppierungen, mit einer freien, gegebenenfalls in aktivierter Form vorliegenden Carboxylgruppe mit einem komplementierenden Bruchstück, bestehend aus einer oder mehreren Aminosäuregruppierungen, mit einer Aminogruppe, gegebenenfalls in aktivierter Form, hergestellt werden, und durch Wiederholung des Vorgangs mit entsprechenden Bruchstücken aufgebaut werden, bis man die gewünschten Peptide der oben angegebenen allgemeinen Formeln hergestellt hat, und indem man anschließend gegebenenfalls Schutzgruppen abspaltet oder gegen andere Schutzgruppen austauscht [vgl. Houben – Weyl, Methoden der organischen Chemie, Synthese von Peptiden II, 4. Aufl. Bd. 15/1, 15/2, Georg Thieme Verlag, Stuttgart].

Als Hilfsstoffe für die Peptidkupplung und die Einführung des Restes Y (IV) und (IVa) werden bevorzugt Kondensationsmittel eingesetzt, die auch Basen sein können, insbesondere wenn die Carboxylgruppe als Anhydrid aktiviert vorliegt. Bevorzugt werden hier die üblichen Kondensationsmittel wie Carbodiimide, z. B. N,N'-Diethyl-, N,N'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid, oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfat oder 2-tert-Butyl-5-methyl-isoxazolium-perchlorid, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydrochinolin, oder Propanphosphonat, oder Isobutylchloroformat, oder Benzotriazolyloxy-tris-(dimethylamino)phosphonium-hexafluorophosphat.

Als Basen können bei der Peptidkupplung und bei der Umsetzung mit Verbindungen der allgemeinen Formel (VI) Alkalicarbonat z. B. Natrium- oder Kaliumcarbonat oder -hydrogencarbonat, oder organische Basen wie Trialkylamine z. B. Triethylamin, N-Ethylmorpholin, N-Methylpiperidin oder N-Methylmorpholin eingesetzt werden. Bevorzugt ist Triethylamin.

Die Hilfsstoffe und Basen werden in einer Menge von 0,5 Mol bis 4 Mol, bevorzugt 1 bis 2 Mol, bezogen auf jeweils 1 Mol der Verbindungen der allgemeinen Formel VI eingesetzt.

Die Peptidkupplung wird in einem Temperaturbereich von 0°C bis 100°C, vorzugsweise bei 10 bis 50°C und bei Normaldruck durchgeführt.

Die Umsetzung mit Verbindungen der allgemeinen Formeln (IV), (IVa) und (VI) erfolgt in einem Temperaturbereich von –20°C bis +70°C, vorzugsweise bei Raumtemperatur.

Die Reaktionen können sowohl bei Normaldruck als auch bei erhöhtem oder erniedrigtem Druck (beispielsweise 0,5 bis 5 bar), vorzugsweise bei Normaldruck durchgeführt werden.

Die Verbindungen der allgemeinen Formel (IVa) und (V) sind bekannt.

Die Abspaltung der jeweiligen Schutzgruppen vor den einzelnen Peptidknüpfungen erfolgt in an sich bekannter Weise unter sauren oder basischen Bedingungen, oder reduktiv durch katalytische Hydrierung beispielsweise mit Pd/C in organischen Lösemitteln wie Ethern, z. B. Tetrahydrofuran oder Dioxan, oder Alkoholen z. B. mit Methanol, Ethanol oder Isopropanol [vgl. Protective Groups in Organic Synthesis, W. Greene, John Wiley &

65

Sons, New York, 1981; Chemistry and Biochemistry of the Amino Acids, g. C. Barrett, Chapman and Hall, London, New York, 1985].

In vitro Test

- 5 Die inhibitorische Stärke der erfundungsgemäßen Peptide gegen endogenes Renin vom Humanplasma wird in vitro bestimmt. Gepooltes Humanplasma wird unter Zusatz von Ethylenediamintetraessigsäure (EDTA) als Antikoagulanz erhalten und bei -20°C gelagert. Die Plasmareninaktivität (PRA) werden als Bildungsrate von Angiotensin I aus endogenem Angiotensinogen und Renin nach Inkubation bei 37°C bestimmt. Die Reaktionslösung enthält 150 µl Plasma, 3 µl 6,6%ige 8-Hydroxychinolinsulfatlösung, 3 µl 10%ige Dimercaprollösung und 144 µl Natriumphosphatpuffer (0,2 M; 0,1% EDTA; pH 5,6) mit oder ohne den erfundungsgemäßen Stoffen in verschiedenen Konzentrationen. Das pro Zeiteinheit gebildete Angiotensin I wird mit einem Radioimmunoassay (Sorin Biomedica, Italien) bestimmt. Die prozentuale Inhibition der Plasmareninaktivität wird berechnet durch Vergleich der hier beanspruchten Substanzen. Der Konzentrationsbereich, in dem die hier beanspruchten 15 Substanzen eine 50% Inhibition der Plasmareninaktivität zeigen, liegen zwischen 10^{-4} bis 10^{-8} M.

Anwendungsbeispiele

	Bsp.-Nr.	[%] Inhibition	IC ₅₀ (M)
20	2	100	$1,3 \times 10^{-6}$
	3	100	$7,0 \times 10^{-7}$
	7	100	$2,7 \times 10^{-7}$
25	18	100	$6,0 \times 10^{-8}$
	21	100	$1,5 \times 10^{-8}$

30 Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90 Gew.-% der Gesamtmi schung vorhanden sein, d. h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

35 Die Formulierungen werden beispielsweise hergestellt durch Verstreken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z. B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

40 Als Hilfsstoffe seien beispielsweise aufgeführt: Wasser, nicht-toxische organische Lösungsmittel, wie Paraffine (z. B. Erdölfractionen), pflanzliche Öle (z. B. Erdnuß/Sesamöl), Alkohole (z. B. Ethylalkohol, Glycerin), Trägerstoffe, wie z. B. natürliche Gesteinsmehle (z. B. Kaoline, Tonerden, Talcum, Kreide), synthetische Gesteinsmehle (z. B. hochdisperse Kieselsäure, Silikate), Zucker (z. B. Rohr-, Milch- und Traubenzucker), Emulgiermittel (z. B. Polyoxyethylen-Fettsäure-Ester), Polyoxyethyl en-Fettalkohol-Ether (z. B. Lignin, Sulfitablauen, Methylcellulose, Stärke und Polyvinylpyrrolidon) und Gleitmittel (z. B. Magnesiumstearat, Talcum, Stearinsäure und Natriumsulfat).

45 Die Applikation erfolgt in üblicher Weise, vorzugsweise oral oder parenteral, insbesondere perlingual oder intravenös. Im Falle der oralen Anwendung können Tabletten selbstverständlich außer den genannten Träger stoffen auch Zusätze, wie Natriumcitrat, Calciumcarbonat und Dicalciumphosphat zusammen mit verschiedenen Zuschlagstoffen, wie Stärke, vorzugsweise Kartoffelstärke, Gelatine und dergleichen enthalten. Weiterhin kön nen Gleitmittel, wie Magnesiumstearat, Natriumlaurylsulfat und Talcum zum Tablettieren mitverwendet werden. Im Falle wässriger Suspensionen können die Wirkstoffe außer den obengenannten Hilfsstoffen mit verschie denen Geschmacksaufbesserern oder Farbstoffen versetzt werden.

50 Für den Fall der parenteralen Anwendung können Lösungen der Wirkstoffe unter Verwendung geeigneter flüssiger Trägermaterialien eingesetzt werden.

55 Im allgemeinen hat es sich als vorteilhaft erwiesen, bei intravenöser Applikation Mengen von etwa 0,001 bis 1 mg/kg, vorzugsweise etwa 0,01 bis 0,5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,01 bis 20 mg/kg, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht.

60 Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht des Versuchstieres bzw. der Art der Applikation, aber auch aufgrund der Tierart und deren individuellem Verhalten gegenüber dem Medikament bzw. deren Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehrere Einzelgaben über den Tag zu verteilen. Für die Applikation in der Humanmedizin ist der gleiche Dosierungsspielraum vorgesehen. Sinngemäß gelten hierbei auch die obigen Ausführungen.

Anlage I

1. Aminosäuren

Im allgemeinen erfolgt die Bezeichnung der Konfiguration durch das Vorausstellen eines L bzw. D vor der Aminosäureabkürzung, im Fall des Racemats durch ein D,L- wobei zur Vereinfachung bei L-Aminosäuren die Konfigurationsbezeichnung unterbleiben kann und dann nur im Fall der D-Form bzw. des D,L-Gemisches eine explizite Bezeichnung erfolgt.

Ala	L-Alanin	10
Arg	L-Arginin	
Cys	L-Cystein	
Gln	L-Glutamin	
Glu	L-Glutaminsäure	15
Gly	L-Glycin	
His	L-Histidin	
Ile	L-Isoleucin	
Leu	L-Leucin	
Lys	L-Lysin	20
Phe	Phenylalanin	
Cpg	Cyclopentylglycin	

2. Aktivierungsreagenzien und Additive

HOBT	1-Hydroxybenzotriazol	
HOSU	N-Hydroxysuccinimid	
DCC	Dicyclohexylcarbodiimid	30
BOP	Benzotriazolyloxy-tris-(dimethylamino)-phosphoniumhexafluorophosphat	
nPPA	n-Propylphosphonsäureanhydrid	
NMM	N-Methylmorpholin	35

3. Schutzgruppen

Boc	tert.Butoxycarbonyl	
Z	Benzoyloxycarbonyl	40
AMP	2-Aminomethylpyridin	
BOM	Benzoyloxymethylen	
PAA	Pyridylessigsäure	

Anlage II

45

Die folgenden Laufmittelsysteme wurden verwandt:

A — Ether : Hexan	2 : 8	
B — Ether : Hexan	3 : 7	50
C — Ether : Hexan	4 : 6	
D — Ether : Hexan	7 : 3	
E — CH ₂ Cl ₂ : CH ₃ OH	95 : 5	
F — CH ₂ Cl ₂ : CH ₃ OH	98 : 2	
G — CH ₂ Cl ₂ : CH ₃ OH	90 : 10	55
H — CH ₂ Cl ₂ : CH ₃ OH : NH ₃	95 : 5 : 0,1	
I — CH ₂ Cl ₂ : CH ₃ OH : NH ₃	90 : 90 : 0,1	
J — Tol : Essigsäureethylester : CH ₃ OH	25 : 75 : 1	
K — nBuOH : HOAc : H ₂ O	8 : 2 : 2	60
L — Tol : Essigsäureethylester	1 : 1	
M — Tol : Essigsäureethylester	1 : 3	

Für die Verbindungen, die mit x gekennzeichnet sind, liegen ¹H-NMR-Daten vor.
Der in den Beispielen aufgeführte Rest der Formel + steht für die tert. Butylgruppe.

65

Ausgangsverbindungen

Beispiel I

BOC-Phenylalanin

5

10

15 300 g (1,91 mol) L-Phenylalanin wurden in 360 ml Dioxan und 360 ml H₂O suspendiert. 432,9 g (1,98 mol) Di-tert.-butyldicarbonat werden unter Rühren bei pH 9,8 zugegeben. Der pH wird mit ca. 975 ml 4n NaOH konstant gehalten. Nach 16 h wird das Reaktionsgemisch mit Ether extrahiert, die wässrige Phase wird mit Zitronensäure auf pH 3–4 eingestellt und anschließend mit 2 × Ether, 2 × Essigester extrahiert. Die organischen Phasen werden vereinigt und 3 × mit Wasser gewaschen. Nach Einrotieren Kristallisation aus Diethylether/Hexan erhält man 291,6 g (60,7%).

20 Fp: 88–89°C.

NMR (DMSO, 300 MHz): δ = 1,35 (s; 9H, C(CH₃)₃).

Beispiel II

BOC-Cyclohexylalanin

25

30

35

40

265 g (1,0 mol) der Verbindung aus Beispiel I werden in 2 l Methanol gelöst und über 20 g 5% Rh/C 5 h bei 40 atm hydriert. Der Katalysator wird über Celite abgesaugt, mit Methanol gewaschen und die erhaltene Lösung eingeengt. Es werden 271 g (100%) des Beispiels 6 erhalten.

NMR (DMSO, 300 MHz): δ = 0,8–1,8 (m; 22H, Cyclohexylmethylen, C(CH₃)₃).

Beispiel III

BOC-Cyclohexylalanin-N-methyl-O-methyl-hydroxamat

45

50

55

60

163,0 g (0,601 mol) der Verbindung aus Beispiel II und 40,3 g (0,661 mol) N,O-Dimethylhydroxylamin werden in 2 l Methylenechlorid bei Raumtemperatur gelöst. Bei 0°C werden 303,5 g (3,00 5 mol) Triethylamin zugetropft (pH ~8). Bei max. –10°C wird eine 50%ige Lösung 390,65 ml (0,601 mol) von n-PPa in Methylenchlorid zugetropft. Über Nacht wird auf 25°C erwärmt und 16 h gerührt. Anschließend wird die Reaktionslösung eingeengt, der Rückstand mit 500 ml ges. Bicarbonatlösung versetzt und 20 min bei 25°C gerührt. Nach dreimaliger Extraktion mit Essigester wurde die organische Phase über Na₂SO₄ getrocknet und eingeengt. Rohausbeute: 178 g (94,6%). Das Rohmaterial wurde an Kieselgel chromatographiert (Laufmittel F).

Ausbeute: 136,6 g (72,3%).

NMR (DMSO, 300 MHz): δ = 1,37 (s; 9H, C(CH₃)₃), 3,08 (s; 3H, N—CH₃); 3,71 (s; 3H; O—CH₃).

65

Beispiel IV

BOC-Cyclohexylalaninal

5

10

15

20

In einer ausgeheizten Apparatur werden unter Stickstoff 63,7 g (0,21 mol) der Verbindung aus Beispiel III in 1,5 l aloxiertem Ether gelöst, bei 0°C werden 10 g (0,263 mol) LiAlH₄ portionsweise dazugegeben, und anschließend 20 min bei 0°C gerührt. Danach wird vorsichtig eine Lösung von 50 g (0,367 mol) KHSO₄ in 1 l H₂O bei 0°C dazugetropft. Die Phasen werden getrennt, die wäßrige Phase noch 3 x mit Diethylether 300 ml extrahiert, die vereinigten organischen Phasen dreimal mit 3n HCl, 3 x mit NaHCO₃-Lösung und 2 x mit NaCl-Lösung gewaschen. Die organische Phase wird über Na₂SO₄ getrocknet und eingeengt. Ausbeute: 45 g (84,1%). Der Aldehyd wird entweder sofort weiterverarbeitet oder ein bis zwei Tage bei -24°C gelagert.

Beispiel V

BOC-Allylamin

25

30

35

14,6 g (35 mmol) "Instant Ylide" (Fluka 69 500) werden in 90 ml wasserfreiem Tetrahydrofuran suspendiert. Unter Eiskühlung wird bei einer Reaktionstemperatur zwischen 20 und 25°C eine Lösung von 9,0 g (35 mmol) BOC-Cyclohexylalaninal in 45 ml wasserfreiem Tetrahydrofuran zugetropft. Nach 15 min Rühren wird das Reaktionsgemisch auf 250 ml Eis gegossen und zweimal mit je 150 ml Essigester/nHexan 3 : 1 extrahiert. Nach Trocknen über Na₂SO₄ und Einengen wird der Rückstand an Kieselgel chromatographiert (Laufmittel D). Ausbeute: 3,2 g (40,0%).
EI-MS: m/z = 253 (0,1% M + H), 197 (9%).

40

Beispiel VI

BOC-Allylamin

45

50

Darstellung erfolgt analog der Vorschrift aus Beispiel V mit einem 0,24 Mol-Ansatz.
Ausbeute: 25,92 g (50,6%).

55

Beispiel VII

2-Benzyl-3-(1-methyl)ethyl-5-(1-[N_α-tert.butoxycarbonyl]amino-2-cyclohexyl)-ethyl-isoxazolidin

60

65

202,4 g (0,8 mol) der Verbindung aus Beispiel V werden in 1000 ml Mesitylen gelöst und auf 140°C am Wasserabscheider erwärmt. Bei dieser Temperatur wird eine Mischung von 197 g (1,6 mol) N-Benzylhydroxylamin und 70,4 g (1,6 mol) Acetaldehyd in 800 ml Mesitylen über 2 h zugetropft. Nach 4 h und 8 h Reaktionszeit wird die gleiche Menge N-Benzylhydroxylamin, Acetaldehyd in Mesitylen zugetropft. Nach insgesamt 16 h Reaktionszeit wird der Ansatz eingeengt, der Rückstand mit Diethylether versetzt und anschließend mit 1 m KHSO₄-Lösung gewaschen. Nach Trocknen über Na₂SO₄ und Einer. gen wurde an Kieselgel chromatographiert (Laufmittel B).

Ausbeute: 168 g (52,2% der Theorie).

Es wurden 4 Diastereomere erhalten:

10	Diastereomer	Ausbeute	DC, R(B)	¹ H-NMR C-4-NH
15	a) 1S 3S 4S	11 g	0,42	6,37
	b) 1R 3R 4S	10 g	0,29	6,57
	c) 1R 3S 4S	69 g	0,25	6,41
	d) 1S 3R 4S	34 g	0,18	6,63

20 Die in Tabelle I aufgeführten Beispiele wurden in Analogie zur Vorschrift des Beispiels VII hergestellt:

Tabelle I

30	Bsp.-Nr.	R ¹	R ²	FAB-MS M + H [%]
35	VIII	—CH ₂ —CH(CH ₃) ₂	—CH(CH ₃) ₂	391 (55) Isomer B
	IX	—CH ₂ —C ₆ H ₅	—CH ₃	403 (51)

Beispiel X

40 (2R, 4S, 5S)-2-Amino-5-(tert.butoxycarbonylamino)-6-cyclohexyl-4-hydroxyhexan

45 18,1 g (45 mmol) der Verbindung aus Beispiel IX (Diastereomer C) werden in 300 ml Methanol gelöst. Nach Zugabe von 14,2 g (225 mmol) Ammoniumformiat wird intensiv mit N₂ gespült und 3,6 g Palladium/Kohle (10%) zugegeben. Unter Rückfluß wird 3 h gerührt. Nach Abkühlen wird der Katalysator abfiltriert, die Lösung eingeengt, in Essigsäureethylester gelöst und zweimal mit gesättigter Bicarbonatlösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet, filtriert, eingeengt und im Hochvakuum getrocknet.

50 Ausbeute: 11,36 g (80,3% der Theorie).

R_f = 0,27 (I).

55 60 Die in Tabelle II aufgeführten Verbindungen wurden in Analogie zur Vorschrift des Beispiels X hergestellt.

Tabelle II

Bsp.-Nr.	R¹	FAB-MS M + H [%]	10
XI	—CH₂—CH(CH₃)₂	303 (95)	
XII	—CH₂—C₆H₁₁	343 (100)	15

Beispiel XIII

(2R, 4S, 5S)-2-(Valerylamino)-5-(tert.butoxycarbonyl-amino)-6-cyclohexyl-4-hydroxy-hexan

6,6 g (21 mmol) der Verbindung aus Beispiel X werden in 500 ml Methylenechlorid gelöst. Unter Feuchtigkeitsausschluß (CaCl₂-Rohr) wird eine Lösung von Pentansäureanhydrid [bereitet aus 2,16 g (21 mmol) Pentansäure und 2,16 g (10,5 mmol) Dicyclohexylcarbodiimid in 50 ml Methylenechlorid, Filtration] in Methylenechlorid bei Raumtemperatur zugegeben. Nach 3 h wird eingeengt, in Essigsäureethylester aufgenommen, mit gesättigter Bicarbonatlösung gewaschen und über Natriumsulfat getrocknet. Nach Filtration und Einengen wird im Hochvakuum getrocknet.

Ausbeute: 8,0 g (95,2% der Theorie).

R_f = 0,74 (G).

FAB-MS: m/z = 421 (12%, N + Na).

Die in Tabelle III aufgeführten Verbindungen wurden in Analogie zur Vorschrift des Beispiels XIII hergestellt.

Tabelle III

Bsp.-Nr.	R¹	FAB-MS M + H [%]	DC	50
XIV	—CH₂—CH(CH₃)₂	387 (100)		
XV	—CH₂—C₆H₁₁	327 (3%, M + H-Boc)		55

Beispiel XVI

(2R,4S,
5S)-5-(Valerylamino)-5-[Na-(tert.butoxycarbonyl)-N π -(tert.butoxycarbonyl)-L-histidyl]amino-6-cyclohexyl-
4-hydroxy-hexan

15 7,57 g (19 mmol) der Verbindung aus Beispiel XIII werden in 70 ml 4 n Salzsäure/Dioxan 30 min unter Feuchtigkeitausschluß gerührt. Die Lösung wird eingeeengt, mit Diethylether versetzt und zur Trockne einge-
 20 dampft. Nach Trocknen im Hochvakuum werden 5,54 g (16,5 mmol) des entsprechenden Hydrochlorids, 1,46 g (33 mmol) HOBT und 5,86 g (16,5 mmol) Boc-His(Boc)OH in 500 ml Methylenchlorid gelöst. Nach Kühren auf 0°C wird mit N-Methylmorpholin auf pH 8,5 eingestellt und 3,57 g (17,3 mmol) Dicyclohexylcarbodiimid zugege-
 ben. Nach 16 h bei 20°C wird der Harnstoff abfiltriert, die Lösung eingeeengt, in Essigsäureethylester aufgenom-
 men und mit gesättigter Bicarbonatlösung gewaschen. Nach Trocknen über Natriumsulfat wird eingeeengt und im Hochvakuum getrocknet.
 Ausbeute: 8,33 g (79,5% der Theorie).

25 R_f = 0,61 (G)

FAB-MS: m/z = 636 (79%, M + H).

Die in Tabelle IV aufgeführten Beispiele wurden in Analogie zur Vorschrift des Beispiels XVI hergestellt.

Tabelle IV

Bsp.-Nr.	R ¹	FAB-MS M + H [%]
XVII	—CH ₂ —CH(CH ₃) ₂	624 (16)
XVIII	—CH ₂ —C ₆ H ₁₁	670 (44, M + Li)

Herstellungsbeispiele

Beispiel 1

(2R,4S)-
5S)-2-(Valerylamino)-5-[Na-(tert.butoxycarbonyl)-L-cyclopropylglycyl]amino-6-cyclohexyl-4-hydroxy-hexan

65 5,6 g (24,4 mmol) BocCpOH werden in 50 ml wasserfreiem Tetrahydrofuran gelöst. Nach Zugabe von 2,7 ml (24,4 mmol) N-Methylmorpholin wird bei -20°C 3,2 ml (24,4 mmol) Chlorameisensäureisobutylester zugetropft und 15 min bei -20°C gerührt. Zu dieser Lösung werden 5,45 g (16,3 mmol) der Verbindung aus Beispiel XIII und 1,8 ml (16,3 mmol) der N-Methylmorpholin in 50 ml Tetrahydrofuran/Wasser 1 : 1 zugetropft und innerhalb von 30 min auf 20°C erwärmt. Nach weiteren 30 min wird die Reaktionslösung eingeengt, in 1 l Diethylether gegeben und auf 0°C gekühlt. Nach 16 h werden 4,6 g (54,0%) Kristalle abgesaugt. Die Mutterlauge wird mit

Diethylether extrahiert, anschließend mit gesättigter Bicarbonatlösung gewaschen, über Natriumsulfat getrocknet, eingeengt und im Hochvakuum getrocknet. Es werden 6 g gelbes Öl erhalten, das an Kieselgel chromatographiert (E) wird.

Ausbeute: 3,31 g (38,8% der Theorie).
 $R_f = 0,79$ (G).
 FAB-MS: m/z = 524 (38%, M + H).

5

Beispiel 2

(3S, 5S,
 6S)-3-[Na-[Na-(2-pyridylacetyl)-D-isoleucyl-amino]-6-[Na-[Na-(tert.butoxycarbonyl)-L-phenylalanyl]-methyl-L-histidyl]-amino-7-cyclohexyl-5-hydroxy-2-methyl-heptan

10

15

20

351,5 mg (0,25 mmol) des N-Methyl-His-BOM-geschützten Inhibitors werden in 5 ml Methanol gelöst. Nach Zugabe von 319 mg (5 mmol) Ammoniumformiat und 50 mg 10% Pd/C wird 4 h bei 60°C gerührt. Anschließend wird der Katalysator über Kieselgur abfiltriert und das Filtrat eingeengt. Der Rückstand wird in Essigester aufgenommen, 2 mal mit gesättigter Natriumhydrogencarbonatlösung gewaschen und über Natriumsulfat getrocknet. 209,6 mg (96%) Rohmaterial werden erhalten, das auf einer präparativen HPLC getrennt wird (Vydac 218 TP, Gradient 25–35% CH₃CN 0,05% TFE in 40 min; Fluß 10 ml/min).

FAB-MS: m/z = 895 (18%, M + Na),
 873 (16%, M + N),
 SF(MG): C₄₈H₇₂N₈O₇ (873,16).

25

30

35

Beispiel 3

(3S, 5S,
 6S)-3-[Na-[Na-(2-pyridylacetyl)-D-isoleucylamino]-6-[Na-[Na-[NB-(tert.butoxycarbonylamino)-3-methyl-propionyl]-L-phenylalanyl]-L-histidyl]-amino-7-cyclohexyl-5-hydroxy-2-methyl-heptan

40

45

50

240 mg (0,3 mmol) des deblockierten Inhibitors und 71,6 mg (0,33 mmol) tert.Butyloxycarbonyl-β-valin werden in 10 ml wasserfreiem Tetrahydrofuran suspendiert. Nach Zugabe von 51,6 mg (0,6 mmol) HOBT wird mit N-Methylmorpholin auf pH 8 eingestellt und bei 0°C 68 mg (0,33 mmol) DCC addiert. Nach 16 h Reaktion wird vom Harnstoff abfiltriert und das Filtrat eingeengt. Der Rückstand wird in Essigester aufgenommen und mit gesättigter Bicarbonatlösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet. Es werden 227,3 mg (80%) Rohmaterial erhalten, von denen 80 mg über eine präparative HPLC getrennt werden [Vydac 218 TP, Gradient 35–70% CH₃CN 0,05% TFE in 40 min; Fluß 10 ml/min].

FAB-MS: m/z = 972 (25%, M + H).
 SF(MG): C₅₃H₈₁N₉O₆ (972,29).

55

Die in Tabelle 1 aufgeführten Beispiele wurden in Analogie zu den Vorschriften der Beispiele 1, 2 und 3 hergestellt:

60

65

Tabelle 1

Bsp.-Nr. Formel

5

15

NMR: x
FAB-MS: 682 (5%, M + H)

Summenformel: C₃₇H₅₉N₉O₅
DC: HPLC

20

30

NMR: x
FAB-MS: 830 (38%, M + H)

Summenformel: C₄₅H₆₇N₉O₆
R_f = 0,46 (I)

35

45

NMR: x
FAB-MS: 721 (55%, M + H)

Summenformel: C₄₂H₆₄N₄O₆
R_f = 0,17 (E)

50

NMR: x
FAB-MS: 721 (100%, M + H)

Summenformel: C₄₂H₆₄N₄O₆
R_f = 0,26 (G)

60

65

Bsp.-Nr. Formel

NMR: x
FAB-MS: 721 (60%, M + H)

Summenformel: C₄₂H₆₄N₄O₆
R_f = 0,58 (G)

NMR: x
FAB-MS: 721 (100%, M + H)

Summenformel: C₄₂H₆₄N₄O₆
R_f = 0,52 (G)

NMR: x
FAB-MS: 699 (100%, M + H)

Summenformel: C₄₀H₆₄N₄O₆

NMR: x
FAB-MS: 699 (73%, M + H)

Summenformel: C₄₀H₆₄N₄O₆

NMR: x
FAB-MS: 671 (38%, M + H)

Summenformel: C₃₈H₆₄N₄O₆
R_f = 0,48 (I)

Bsp.-Nr. Formel

NMR: x
FAB-MS: 643 (40%, M + H)
Summenformel: C₃₆H₅₈N₄O₆
R_f = 0.49 (I)

NMR: x
EAB-MS: 693 (87% M + H)
Summenformel: C₄₀H₆₀N₄O₆
R_f: 0.55 (I)

NMR: x
FAB-MS: 693 (100%, M + H) **Summenformel:** C₄₀H₆₀N₄O₆
R_f = 0,52 (I)

NMR: x
FAB-MS: 762 (100%, M + H) **Summenformel:** C₁₉H₆₁N₁O₃
R_f: 0,52 (E)

Bsp.-
Nr. Formel

NMR: x
FAB-MS: 676 (100%, M + Li)

Summenformel: C₃₅H₅₅N₇O₆
R_f = 0,06 (I)

NMR: x
FAB-MS: 565 (100%, M + H)

Summenformel: C₃₄H₅₃N₇O₆
R_f = 0,05 (I)

NMR: x
FAB-MS: 930 (85%, M + H)

Summenformel: C₅₀H₇₅N₉O₈
R_f = 0,48 (I)

NMR: x
FAB-MS: 669 (60%, M + H)

Summenformel: C₃₉H₆₄N₄O₅
R_f = 0,40 (G)

Bsp.-Nr. Formel

5

10 21

15

NMR: x
FAB-MS: 669 (100%, M + H)Summenformel: C₃₉H₆₄N₄O₅
R_f = 0,59 (G)

20

25 22

NMR: x
FAB-MS: 691 (100%, M + Li)Summenformel: C₃₉H₆₄N₄O₆
R_f = 0,46 (G)

30

Patentansprüche

1. Retroisostere Dipeptide der allgemeinen Formel (I)

35

40

in welcher

X — für Wasserstoff oder

— für Alkoxy carbonyl oder Acyl mit jeweils bis zu 10 Kohlenstoffatomen steht,

A, B und D gleich oder verschieden sind und jeweils

— für eine direkte Bindung oder

— für einen Rest der Formel

50

worin

m — die Zahl 1 oder 2 bedeutet, oder

— für eine Gruppe der Formel

60

65

stehen, worin

p — die Zahl 0, 1 oder 2 bedeutet,

R³ — Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen oder Phenyl

bedeutet,

R⁴ und R⁵ gleich oder verschieden sind und

— einen 3- bis 8-gliedrigen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe Stickstoff, Sauerstoff oder Schwefel bedeuten,

— Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeuten, oder jeweils

— Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Alkylthio mit bis zu 6 Kohlenstoffatomen, Hydroxy, Mercapto, Guanidyl oder durch eine Gruppe der Formel —NR⁶R⁷ oder R⁸—OC— substituiert sei, worin R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen oder Phenyl bedeuten, und

R⁸ — Hydroxy, Benzyloxy, Alkoxy mit bis zu 6 Kohlenstoffatomen oder die oben aufgeführte Gruppe —NR⁶R⁷ bedeutet,

oder Alkyl, das gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Halogen, Nitro, Alkoxy mit bis zu 8 Kohlenstoffatomen oder durch die Gruppe —NR⁶R⁷ substituiert ist, worin

R⁶ und R⁷ die oben angegebene Bedeutung haben
oder Alkyl, das gegebenenfalls durch einen 5- oder 6gliedrigen stickstoffhaltigen Heterocyclus oder Indolyl substituiert ist, worin die entsprechenden —NH-Funktionen gegebenenfalls durch Alkyl mit bis zu 6 Kohlenstoffatomen oder durch eine Aminoschutzgruppe geschützt sind.

L und M gleich oder verschieden sind und

- für eine direkte Bindung oder
- für eine Gruppe der Formel

stehen, worin p', R^{3'}, R^{4'} und R^{5'} die oben angegebene Bedeutung von p, R³, R⁴ und R⁵ haben und mit diesen gleich oder verschieden sind, und

R⁹ geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet,
in ihrer D- oder L-Form, oder als D,L-Isomerengemisch,

R¹ und R² gleich oder verschieden sind und

— für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen stehen, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist,

Y — für Wasserstoff oder

— für eine Gruppe der Formel —CO—R¹⁰ steht, worin R¹⁰ geradkettiger oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Pyridyl oder Phenyl substituiert ist, oder

— geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen bedeutet, oder

— für den Rest R¹⁰ steht, worin

R¹⁰ die oben angegebene Bedeutung hat,
mit der Maßgabe, daß entweder

a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

in welchen R³, R^{3'}, R⁴, R^{4'}, R⁵, R^{5'}, p und p' die oben angegebene Bedeutung haben, und mindestens einer der Substituenten R⁴, R⁵, R^{4'} oder R^{5'} für Cyclopentyl, steht, oder

R⁴ und R⁵ oder R^{4'} und R^{5'} jeweils für Methyl stehen, oder

b) L oder M für die Gruppe der Formel

stehen muß, in welcher R⁹ und R^{3'} die oben angegebene Bedeutung haben,

und deren physiologisch unbedenklichen Salze.

2. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

- X — für Wasserstoff oder
 — für Alkoxy carbonyl oder Acyl mit jeweils bis zu 8 Kohlenstoffatomen steht,
 A, B und D gleich oder verschieden sind und jeweils
 — für eine direkte Bindung oder
 — für Prolin stehen, oder
 — für eine Gruppe der Formel

- 15 stehen, worin
 p die Zahl 0 oder 1 bedeutet,
 R³ — Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Phenyl bedeutet,
 20 R⁴ und R⁵ gleich oder verschieden sind und Cyclopentyl oder Cyclohexyl bedeuten, oder Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Naphthyl oder Phenyl substituiert ist, die ihrerseits durch Fluor, Chlor, Nitro oder Alkoxy mit bis zu 6 Kohlenstoffatomen substituiert sein können,
 oder durch Indolyl, Imidazolyl, Pyridyl, Triazolyl oder Pyrazolyl substituiertes Alkyl (bis 6 C-Atome) bedeuten, wobei die entsprechenden —NH-Funktionen gegebenenfalls durch Alkyl mit bis zu 4 Kohlenstoffatomen oder durch eine Aminoschutzgruppe geschützt sind,
 25 L und M gleich oder verschieden sind und
 — für eine direkte Bindung oder
 — für eine Gruppe der Formel

- 35 stehen, worin
 p', R³', R⁴' und R⁵' die oben angegebene Bedeutung von p, R³, R⁴ und R⁵ haben und mit diesen gleich oder verschieden sind, und
 R⁹ — geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet,
 in ihrer D- oder L-Form, oder als D,L-Isomerengemisch,
 40 R¹ und R² gleich oder verschieden sind und
 — für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen stehen, das gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl substituiert ist,
 Y — für Wasserstoff oder
 — für eine Gruppe der Formel —CO—R¹⁰ steht, worin
 45 R¹⁰ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Pyridyl oder Phenyl substituiert ist, oder
 — geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeutet,
 — für den Rest R¹⁰ steht, worin
 R¹⁰ die oben angegebene Bedeutung hat, mit der Maßgabe, daß entweder
 50 a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

- 60 steht, in welchen
 R³, R³', R⁴, R⁴', R⁵, R⁵', p und p' die oben angegebene Bedeutung haben und mindestens einer der Substituenten R⁹, R⁹', R⁴' und R⁵' für Cyclopentyl steht, oder
 R⁹ und R⁹' oder R⁴' und R⁵' jeweils für Methyl stehen, oder
 b) L oder M für die Gruppe der Formel

stehen muß, in welchen
 R^9 und R^{10} die oben angegebene Bedeutung haben,
 und deren physiologisch unbedenkliche Salze.

3. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
 X – für Wasserstoff oder
 – für Alkoxy carbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen steht,
 A, B und D gleich oder verschieden sind und
 – für eine direkte Bindung oder
 – für Prolin stehen, oder
 – für eine Gruppe der Formel

stehen, worin
 p die Zahl 0 oder 1 bedeutet,

R^3 – Wasserstoff oder Methyl bedeutet,

R^4 und R^5 Cyclopentyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,
 das gegebenenfalls durch Naphthyl oder Phenyl substituiert ist, die ihrerseits durch Fluor, Chlor oder
 Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert sein können, oder durch Imidazolyl, Triazolyl, Pyridyl
 oder Pyrazolyl substituiert ist, wobei die NH-Funktionen gegebenenfalls durch Methyl, Benzyloxymethylen
 oder t-Butyloxycarbonyl (Boc) geschützt sind,

L und M gleich oder verschieden sind und

- für eine direkte Bindung oder
- für eine Gruppe der Formel

stehen, worin
 R^3 , R^4 und R^5 die oben angegebene Bedeutungen von R^3 , R^4 und R^5 haben und mit diesen gleich oder
 verschieden sind, und

R^9 geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

in ihrer D- oder L-Form, oder als D,L-Isomerengemisch,
 R^1 und R^2 gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlen-
 stoffatomen stehen, das gegebenenfalls durch Cyclohexyl oder Phenyl substituiert ist,

Y – für Wasserstoff oder

– für eine Gruppe der Formel $-CO-R^{10}$ steht, worin
 R^{10} geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls
 durch Pyridyl oder Phenyl substituiert ist, oder Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet,

für den Rest R^{10} steht, worin

R^{10} die oben angegebene Bedeutung hat,

mit der Maßgabe, daß entweder

- a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

stehen, in welchen
 R^3 , R^4 , R^4' , R^5 , R^5' , p und p' die oben angegebene Bedeutung haben, und mindestens einer der
 Substituenten R^4 , R^5 , R^4' oder R^5' für Cyclopentyl steht, oder
 R^4 und R^5 oder R^4' und R^5' jeweils für Methyl stehen, oder

- b) L oder M für die Gruppe der Formel

stehen muß, in welcher R³ und R⁹ die oben angegebene Bedeutung haben, und deren physiologisch unbedenklichen Salze.

4. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 zur Verwendung bei der Bekämpfung von Erkrankungen. 5. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I)

15 in welcher
X — für Wasserstoff oder
— für Alkoxy carbonyl oder Acyl mit jeweils bis zu 10 Kohlenstoffatomen steht.
A, B und D gleich oder verschieden sind und jeweils
— für eine direkte Bindung oder
— für einen Rest der Formel

stehen, worin
m – die Zahl 1 oder 2 bedeutet, oder
– für eine Gruppe der Formel

stehen, worin
 p — die Zahl 0, 1 oder 2 bedeutet,
 R^3 — Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen oder Phenyl bedeutet,
 R^4 und R^5 gleich oder verschieden sind und
 — einen 3- bis 8gliedrigen Heterocyclicus mit bis zu 4 Heteroatomen aus der Reihe Stickstoff, Sauerstoff oder Schwefel bedeuten,
 — Cycloalkyl mit 3 bis 8 Kohlenstoffatomen bedeuten, oder jeweils
 — Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten, das gegebenenfalls durch Alkylthio mit bis zu 6 Kohlenstoffatomen, Hydroxy, Mercapto, Guanidyl oder durch eine Gruppe der Formel $-NR^6R^7$ oder R^8-OC- substituiert sind, worin
 R^6 und R^7 gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen oder Phenyl bedeuten, und
 R^8 — Hydroxy, Benzyloxy, Alkoxy mit bis zu 6 Kohlenstoffatomen oder die oben aufgeführte Gruppe
 — NR^6R^7 bedeutet,
 oder Alkyl, das gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits

oder Alkyl, das gegebenenfalls durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, das seinerseits durch Hydroxy, Halogen, Nitro, Alkoxy mit bis zu 8 Kohlenstoffatomen oder durch die Gruppe $-N R^6 R^7$ substituiert ist, worin
 55 R⁶ und R⁷ die oben angegebene Bedeutung haben
 oder Alkyl, das gegebenenfalls durch einen 5- oder 6gliedrigen stickstoffhaltigen Heterocyclus oder Indolyl substituiert ist, worin die entsprechenden -NH-Funktionen gegebenenfalls durch Alkyl mit bis zu 6 Kohlenstoffatomen oder durch eine Aminoschutzgruppe geschützt sind,
 L und M gleich oder verschieden sind und
 60 — für eine direkte Bindung oder
 — für eine Gruppe der Formel

stehen, worin

p' , R^3 , R^4 und R^5 die oben angegebene Bedeutung von p , R^3 , R^4 und R^5 haben und mit diesen gleich oder verschieden sind, und

R^9 geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet,

in ihrer D- oder L-Form, oder als D,L-Isomergemisch,

R^1 und R^2 gleich oder verschieden sind und

— für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen stehen, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist,

Y — für Wasserstoff oder

— für eine Gruppe der Formel $-\text{CO}-\text{R}^{10}$ steht, worin

R^{10} geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Pyridyl oder Phenyl substituiert ist, oder

— geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen bedeutet, oder

— für den Rest R^{10} steht, worin

R^{10} die oben angegebene Bedeutung hat, mit der Maßgabe, daß entweder

a) mindestens einer der Aminosäurereste A, B, D, L oder M für eine Gruppe der Formel

oder

steht, in welchen

R^3 , $R^{3'}$, R^4 , $R^{4'}$, R^5 , $R^{5'}$, p und p' die oben angegebene Bedeutung haben, und mindestens einer der Substituenten R^4 , R^5 , $R^{4'}$ oder $R^{5'}$ für Cyclopentyl, steht, oder

R^4 und R^5 oder $R^{4'}$ und $R^{5'}$ jeweils für Methyl stehen, oder

b) L oder M für die Gruppe der Formel

stehen muß, in welcher

R^9 und $R^{3'}$ die oben angegebene Bedeutung haben, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel (II)

in welcher

R^1 und R^2 die oben angegebene Bedeutung haben,

Z — die oben angegebene Bedeutung von X hat, aber nicht für Wasserstoff steht, oder

— für eine der oben aufgeführten Aminoschutzgruppen steht, und

V — für einen hydrogenolytisch abspaltbaren Rest, wie beispielsweise Benzyl steht, zunächst durch Hydrogenolyse unter Öffnung des Isoxazolidinrings zu den Aminoalkoholen der allgemeinen Formel (III)

in welcher

Z, R^1 und R^2 die oben angegebene Bedeutung haben, reduziert, gegebenenfalls anschließend mit Verbindungen der allgemeinen Formel (IV) und (IVa)

$\text{HO}-\text{L}'-\text{M}'-\text{Y}$ (IV)

$\text{HO}-\text{Y}$ (IVa)

in welcher

Y die oben angegebene Bedeutung hat und

5 L' und M' die oben angegebene Bedeutung von L und M haben, aber nicht gleichzeitig für eine direkte Bindung stehen,
gegebenenfalls in Anwesenheit eines wasserentziehenden Hilfsstoffes und/oder einer Base kondensiert,
anschließend nach Abspaltung der Schutzgruppe Z nach bekannter Methode mit Verbindungen der allgemeinen Formel (V)

15 in welcher
B' und D' die oben angegebene Bedeutung von B und D haben, aber nicht gleichzeitig für eine direkte Bindung stehen, und
Z' die oben angegebene Bedeutung von Z hat und mit dieser gleich oder verschieden ist,
umsetzt und in einem letzten Schritt nach Abspaltung der Schutzgruppe Z' mit Verbindungen der Formel (VI)

25 in welcher
X die oben angegebene Bedeutung hat und
A' die oben angegebene Bedeutung von A hat, aber nicht für eine direkte Bindung steht,
gegebenenfalls in Anwesenheit einer Base und inerten organischen Lösungsmitteln umsetzt.

30 6. Verbindungen der allgemeinen Formel (II)

40 in welcher
R¹ und R² gleich oder verschieden sind und für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen stehen, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder durch Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist,
G für eine Aminoschutzgruppe steht und
V für einen hydrogenolytisch abspaltbaren Rest wie z. B. Benzyl steht.
45 7. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (II)

55 in welcher
R¹ und R² die oben angegebene Bedeutung haben,
G — für eine der oben aufgeführten Aminoschutzgruppen steht, und
V — für einen hydrogenolytisch abspaltbaren Rest, wie beispielsweise Benzyl steht,
dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel (VII)

65 in welcher
G die oben angegebene Bedeutung hat,
in einer Cycloadditionsreaktion mit Verbindungen der allgemeinen Formel (VIII)

75 in welcher
V und R² die oben angegebene Bedeutung haben,
gegebenenfalls in Gegenwart von inerten organischen Lösungsmitteln umsetzt.
8. Arzneimittel, enthaltend mindestens eine Verbindung der allgemeinen Formel (I) gemäß Anspruch 1.

9. Verfahren zur Herstellung von Arzneimitteln, dadurch gekennzeichnet, daß man mindestens eine Verbindung der allgemeinen Formel (I) gemäß Anspruch 1 gegebenenfalls unter Verwendung üblicher Hilfs- und Trägerstoffe in eine geeignete Applikationsform überführt.
10. Verwendung von Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 bei der Herstellung von Arzneimitteln mit renininhibitorischer Wirkung.

5

10

15

20

25

30

35

40

45

50

55

60

65