вариант	ф. номер	група	поток	курс	специалност
ДР2	2MI0800684	3	1	I	Компютърни науки
Име:	Александър Илиев Девинизов				

Домашна работа № 2

Задача 1. Да се реши матричното уравнение AXB = C, където

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 1 & 4 \\ -1 & 3 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -1 & -1 \\ -2 & -3 & -3 \\ -2 & -4 & -5 \end{pmatrix}, \quad C = \begin{pmatrix} 39 & 63 & 66 \\ -58 & -107 & -122 \\ -6 & 8 & 22 \end{pmatrix}.$$

Задача 2. Да се пресметне детерминантата

Задача 3. Нека $\mathbb{V} = M_2(\mathbb{F})$. Дадени са изображенията:

a)
$$\varphi(X) = \begin{pmatrix} 1 & 4 \\ 1 & 3 \end{pmatrix} X + X \begin{pmatrix} -1 & -2 \\ -2 & -5 \end{pmatrix};$$

б)
$$\psi(X) = X \begin{pmatrix} 1 & 4 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} -1 & -2 \\ -2 & -5 \end{pmatrix}$$
, където $X \in \mathbb{V}$.

Да се провери дали φ и ψ са линейни оператори във $\mathbb V$ и когато са такива, да се напишат матриците им в базиса E_{11} , E_{12} , E_{21} , E_{22} .

Задача 4. В линейно пространство V с базис e_1 , e_2 , e_3 и e_4 е даден линейният оператор A:

$$\mathcal{A}(\xi_1 \mathbf{e}_1 + \xi_2 \mathbf{e}_2 + \xi_3 \mathbf{e}_3 + \xi_4 \mathbf{e}_4) = \\
= \mathbf{e}_1 (2\xi_1 - \xi_2 + \xi_4) + \mathbf{e}_2 (\xi_1 - 2\xi_2 + \xi_3) + \\
+ \mathbf{e}_3 (-3\xi_1 + \xi_3 - 2\xi_4) + \mathbf{e}_4 (3\xi_1 - 6\xi_2 + 3\xi_3).$$

Да се намерят матрицата на оператора \mathcal{A} в този базис, както и базиси на $\operatorname{Ker}(\mathcal{A})$, $\operatorname{Im}(\mathcal{A})$.

Задача 5. В линейно пространство \mathbb{V} с базис $\mathbf{e_1},\,\mathbf{e_2}$ и $\mathbf{e_3}$ е даден линейният оператор $\mathcal A$ с матрица

$$A = \left(\begin{array}{rrr} 0 & 6 & -6 \\ -2 & 8 & -2 \\ -4 & 4 & 2 \end{array}\right).$$

Да се намери базис, в който матрицата на \mathcal{A} е диагонална, както и матрицата на оператора в този базис.