Robust Random Graph Matching in Dense Graphs via Vector Approximate Message Passing

Zhangsong Li

School of Mathematical Sciences, Peking University

June 3, 2025

International Conference on Applied Probability

 Goal: find a mapping between two node sets that maximally aligns the edges.

- Goal: find a mapping between two node sets that maximally aligns the edges.
- Quadratic Assignment Problem (QAP): $\max_{\Pi \in \mathfrak{S}_n} \langle A, \Pi B \Pi^\top \rangle$.

- Goal: find a mapping between two node sets that maximally aligns the edges.
- Quadratic Assignment Problem (QAP): $\max_{\Pi \in \mathfrak{S}_n} \langle A, \Pi B \Pi^\top \rangle$.
- NP-hard to solve/approximate in worst case.

• π_* : latent permutation on $[n] = \{1, \dots, n\}$.

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(j)}) \sim \mathbf{F}$.

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(j)}) \sim \mathbf{F}$.
- Two special cases:

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(j)}) \sim \mathbf{F}$.
- Two special cases:
 - Correlated Gaussian Wigner model. $\mathbf{F} = \mathcal{N}(0, \begin{pmatrix} 1 &
 ho \\
 ho & 1 \end{pmatrix})$.

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(j)}) \sim \mathbf{F}$.
- Two special cases:
 - Correlated Gaussian Wigner model. $\mathbf{F} = \mathcal{N}(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix})$.
 - Correlated Erdős-Rényi model. $\mathbf{F} = \text{law of two } \mathbf{Ber}(q)$ with covariance ρ .

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(j)}) \sim \mathbf{F}$.
- Two special cases:
 - Correlated Gaussian Wigner model. $\mathbf{F} = \mathcal{N}(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix})$.
 - Correlated Erdős-Rényi model. $\mathbf{F} = \text{law of two } \mathbf{Ber}(q)$ with covariance ρ .
- Goal: recover π_* (exactly/partially) using efficient algorithms

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(j)}) \sim \mathbf{F}$.
- Two special cases:
 - Correlated Gaussian Wigner model. $\mathbf{F} = \mathcal{N}(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix})$.
 - Correlated Erdős-Rényi model. $\mathbf{F} = \text{law of two } \mathbf{Ber}(q)$ with covariance ρ .
- \bullet Goal: recover π_* (exactly/partially) using efficient algorithms
 - Noiseless case ($\rho=1$): optimal condition is attained in linear-time [Bollobás'82, Czajka-Pandurangan'08].

- π_* : latent permutation on $[n] = \{1, \dots, n\}$.
- Observation: two *weighted* random graphs A and B, s.t. $(A_{i,j}, B_{\pi_*(i),\pi_*(i)}) \sim \mathbf{F}$.
- Two special cases:
 - Correlated Gaussian Wigner model. $\mathbf{F} = \mathcal{N}(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix})$.
 - Correlated Erdős-Rényi model. $\mathbf{F} = \text{law of two } \mathbf{Ber}(q)$ with covariance ρ .
- Goal: recover π_* (exactly/partially) using efficient algorithms
 - Noiseless case ($\rho=1$): optimal condition is attained in linear-time [Bollobás'82, Czajka-Pandurangan'08].
 - ullet Noisy case (ho < 1): little is known for efficient algorithms until recently.

In the case of correlated Erdős-Rényi model with edge-density q and correlation ρ :

 Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash'18, Barak-Chou-Lei-Schramm-Sheng'19, Ding-Ma-Wu-Xu'21, Mao-Rudelson-Tikhomirov'21, Ganassali-Massoulié-Lelarge'22], etc.)

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash'18, Barak-Chou-Lei-Schramm-Sheng'19, Ding-Ma-Wu-Xu'21, Mao-Rudelson-Tikhomirov'21, Ganassali-Massoulié-Lelarge'22], etc.)
- The state-of-the-art algorithm:

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash'18, Barak-Chou-Lei-Schramm-Sheng'19, Ding-Ma-Wu-Xu'21, Mao-Rudelson-Tikhomirov'21, Ganassali-Massoulié-Lelarge'22], etc.)
- The state-of-the-art algorithm:
 - [Mao-Wu-Xu-Yu'23,24]: polynomial-time algorithm for exact matching when $q>\frac{\log n}{n}$ and correlation $\rho>\sqrt{\alpha}$ where $\alpha\approx 0.338$ is the Otter's constant, based on counting carefully curated family of rooted trees.

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash'18, Barak-Chou-Lei-Schramm-Sheng'19, Ding-Ma-Wu-Xu'21, Mao-Rudelson-Tikhomirov'21, Ganassali-Massoulié-Lelarge'22], etc.)
- The state-of-the-art algorithm:
 - [Mao-Wu-Xu-Yu'23,24]: polynomial-time algorithm for exact matching when $q>\frac{\log n}{n}$ and correlation $\rho>\sqrt{\alpha}$ where $\alpha\approx 0.338$ is the Otter's constant, based on counting carefully curated family of rooted trees.
 - [Ding-L.'22+,23+] polynomial-time iterative algorithm for exact matching when $q \ge n^{-1+\delta}$ and correlation $\rho = \Omega(1)$.

- Progressively improved algorithms have been obtained by community (e.g. [Dai-Cullina-Kiyavash'18, Barak-Chou-Lei-Schramm-Sheng'19, Ding-Ma-Wu-Xu'21, Mao-Rudelson-Tikhomirov'21, Ganassali-Massoulié-Lelarge'22], etc.)
- The state-of-the-art algorithm:
 - [Mao-Wu-Xu-Yu'23,24]: polynomial-time algorithm for exact matching when $q>\frac{\log n}{n}$ and correlation $\rho>\sqrt{\alpha}$ where $\alpha\approx 0.338$ is the Otter's constant, based on counting carefully curated family of rooted trees.
 - [Ding-L.'22+,23+] polynomial-time iterative algorithm for exact matching when $q \ge n^{-1+\delta}$ and correlation $\rho = \Omega(1)$.
- Evidence in [Ding-Du-L.'23+] suggests that the state-of-the-art algorithms have nearly reached the limit of efficient algorithms.

• [Ameen-Hajek'24]: many efficient random graph matching algorithms will break down if one adversarially modify a small fraction of edges.

- [Ameen-Hajek'24]: many efficient random graph matching algorithms will break down if one adversarially modify a small fraction of edges.
- Reason: algorithms based on sophisticated subgraph structures/ delicate spectral properties are not robust under adversarial perturbations (e.g., planting a $\Theta(\sqrt{n})$ clique or other "undesired" subgraphs).

- [Ameen-Hajek'24]: many efficient random graph matching algorithms will break down if one adversarially modify a small fraction of edges.
- Reason: algorithms based on sophisticated subgraph structures/ delicate spectral properties are not robust under adversarial perturbations (e.g., planting a $\Theta(\sqrt{n})$ clique or other "undesired" subgraphs).
- Motivation from application: somewhat more "practical" graph matching algorithm for real networks?

- [Ameen-Hajek'24]: many efficient random graph matching algorithms will break down if one adversarially modify a small fraction of edges.
- Reason: algorithms based on sophisticated subgraph structures/ delicate spectral properties are not robust under adversarial perturbations (e.g., planting a $\Theta(\sqrt{n})$ clique or other "undesired" subgraphs).
- Motivation from application: somewhat more "practical" graph matching algorithm for real networks?
- Motivation from theory: can we find efficient graph matching algorithms for semi-random models?

• First sample (A, B) from the law of correlated Gaussian Wigner model.

- First sample (A, B) from the law of correlated Gaussian Wigner model.
- Corruption: An adversary can arbitrary choose two subsets $Q, R \subset [n]$ with $|Q|, |R| = \epsilon n$ and arbitrary revise the entries $\{A_{i,j} : i, j \in Q\}$ and $\{B_{i,j} : i, j \in R\}$ according to A, B.

- First sample (A, B) from the law of correlated Gaussian Wigner model.
- Corruption: An adversary can arbitrary choose two subsets $Q, R \subset [n]$ with $|Q|, |R| = \epsilon n$ and arbitrary revise the entries $\{A_{i,j} : i, j \in Q\}$ and $\{B_{i,j} : i, j \in R\}$ according to A, B.
- Observation: the revised matrices (A', B') = (A + E, B + F), where E, F supported on an unknown $\epsilon n * \epsilon n$ principle minor of (A, B).

Our result: a robust Gaussian matching algorithm

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

Theorem (L.'25)

Exact recovery is achieved efficiently by an approximate message passing algorithm w.h.p. if

$$\rho = \Omega(1)$$
 and $\epsilon = o(\frac{1}{(\log n)^{20}})$.

Our result: a robust Gaussian matching algorithm

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

Theorem (L.'25)

Exact recovery is achieved efficiently by an approximate message passing algorithm w.h.p. if

$$ho = \Omega(1)$$
 and $\epsilon = o(\frac{1}{(\log n)^{20}})$.

• The first graph matching algorithm that is robust under $n^{1-o(1)}$ size of perturbations.

Our result: a robust Gaussian matching algorithm

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

Theorem (L.'25)

Exact recovery is achieved efficiently by an approximate message passing algorithm w.h.p. if

$$\rho = \Omega(1)$$
 and $\epsilon = o(\frac{1}{(\log n)^{20}})$.

- The first graph matching algorithm that is robust under $n^{1-o(1)}$ size of perturbations.
- Extends to the case of correlated Erdős-Rényi models when the edge-density q is a constant.

A general framework for estimating hidden structures given data matrix A.

• Compress sensing [Donoho-Maleki-Montanari'09]

- Compress sensing [Donoho-Maleki-Montanari'09]
- Sparse Principle Component Analysis (PCA) [Deshpande-Montanari'14]

- Compress sensing [Donoho-Maleki-Montanari'09]
- Sparse Principle Component Analysis (PCA) [Deshpande-Montanari'14]
- Non-negative PCA [Montanari-Richard'14]

- Compress sensing [Donoho-Maleki-Montanari'09]
- Sparse Principle Component Analysis (PCA) [Deshpande-Montanari'14]
- Non-negative PCA [Montanari-Richard'14]
- Linear regression [Krzakala-Mézard-Sausset-Sun-Zdeborová'12]

Approximate message passing (AMP) and applications

A general framework for estimating hidden structures given data matrix A.

- Compress sensing [Donoho-Maleki-Montanari'09]
- Sparse Principle Component Analysis (PCA) [Deshpande-Montanari'14]
- Non-negative PCA [Montanari-Richard'14]
- Linear regression [Krzakala-Mézard-Sausset-Sun-Zdeborová'12]
- Perceptron models [Ding-Sun'18]

Approximate message passing (AMP) and applications

A general framework for estimating hidden structures given data matrix A.

- Compress sensing [Donoho-Maleki-Montanari'09]
- Sparse Principle Component Analysis (PCA) [Deshpande-Montanari'14]
- Non-negative PCA [Montanari-Richard'14]
- Linear regression [Krzakala-Mézard-Sausset-Sun-Zdeborová'12]
- Perceptron models [Ding-Sun'18]

Usually in the form of the following iteration:

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} A f^{(t)}\right)$$

$$\uparrow \qquad \uparrow$$

estimator for the hidden signal

entrywise transform by a suitable denoiser

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

• Usually, in an AMP algorithm we hope our estimator $f^{(t)}$ converges to the hidden signal (e.g., the hidden matching).

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

- Usually, in an AMP algorithm we hope our estimator $f^{(t)}$ converges to the hidden signal (e.g., the hidden matching).
- Our strategy: iteratively construct "signatures" using AMP iteration

$$\begin{split} f^{(t+1)} &= \varphi \circ \left(\frac{1}{\sqrt{n}} A' f^{(t)}\right), \quad f^{(t)} &= \left(f_1^{(t)}, \dots, f_n^{(t)}\right)^\top, \\ g^{(t+1)} &= \varphi \circ \left(\frac{1}{\sqrt{n}} B' g^{(t)}\right), \quad g^{(t)} &= \left(g_1^{(t)}, \dots, g_n^{(t)}\right)^\top. \end{split}$$

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

- Usually, in an AMP algorithm we hope our estimator $f^{(t)}$ converges to the hidden signal (e.g., the hidden matching).
- Our strategy: iteratively construct "signatures" using AMP iteration

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} A' f^{(t)}\right), \quad f^{(t)} = \left(f_1^{(t)}, \dots, f_n^{(t)}\right)^\top,$$

$$g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} B' g^{(t)}\right), \quad g^{(t)} = \left(g_1^{(t)}, \dots, g_n^{(t)}\right)^\top.$$

• Hope: if we choose a suitable denoiser function φ , then at a large time t^* we will have

$$\Pi_* = \arg\max_{\Pi \in \mathfrak{S}_n} \langle f^{(t^*)}, \Pi g^{(t^*)} \rangle,$$

then we can find Π_* by solving a linear assignment problem.

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

• Initialization: starts with a constant-size seed $U \xrightarrow{\pi_*} V$ (obtained by brutal-force searching) and let

$$f^{(0)} = \varphi \circ (A'_{[n] \times U}), \quad g^{(0)} = \varphi \circ (B'_{[n] \times V}).$$

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

• Initialization: starts with a constant-size seed $U \xrightarrow{\pi_*} V$ (obtained by brutal-force searching) and let

$$f^{(0)} = \varphi \circ (A'_{[n] \times U}), \quad g^{(0)} = \varphi \circ (B'_{[n] \times V}).$$

• Problem in iteration: for any n * K matrix $f^{(t)}, g^{(t)}$

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}}A'f^{(t)}\right), \quad g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}}B'g^{(t)}\right),$$

one can check that the covariance between $f_i^{(t)}$ and $g_{\pi_*(i)}^{(t)}$ must decreases in t (i.e., entrywise signal is decreasing).

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}}A'f^{(t)}\Xi^{(t)}\right), \quad g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}}B'g^{(t)}\Xi^{(t)}\right).$$

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

 Strategy in the iteration (motivated by [Ding-L.'22,23]): increase the dimension of the signature

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} A' f^{(t)} \Xi^{(t)}\right), \quad g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} B' g^{(t)} \Xi^{(t)}\right).$$

• By choosing an appropriate $K_t * K_{t+1}$ matrix $\Xi^{(t)}$ we can guarantee that

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} A' f^{(t)} \Xi^{(t)}\right), \quad g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} B' g^{(t)} \Xi^{(t)}\right).$$

- ullet By choosing an appropriate $K_t * K_{t+1}$ matrix $\Xi^{(t)}$ we can guarantee that
 - $\langle f_i^{(t)}, g_{\pi_*(i)}^{(t)} \rangle$ have expectation $\epsilon_t K_t$ and variance K_t (i.e., in true pairs entrywise signal is ϵ_t and signals in each entry are near independent);

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} A' f^{(t)} \Xi^{(t)}\right), \quad g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} B' g^{(t)} \Xi^{(t)}\right).$$

- ullet By choosing an appropriate $K_t * K_{t+1}$ matrix $\Xi^{(t)}$ we can guarantee that
 - $\langle f_i^{(t)}, g_{\pi_*(i)}^{(t)} \rangle$ have expectation $\epsilon_t K_t$ and variance K_t (i.e., in true pairs entrywise signal is ϵ_t and signals in each entry are near independent);
 - $\langle f_i^{(t)}, g_j^{(t)} \rangle$ have expectation 0 and variance K_t (i.e., no signal in fake pairs).

 ρ : edge correlation; ϵn : size of corruption; π_* : hidden matching.

$$f^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} A' f^{(t)} \Xi^{(t)}\right), \quad g^{(t+1)} = \varphi \circ \left(\frac{1}{\sqrt{n}} B' g^{(t)} \Xi^{(t)}\right).$$

- ullet By choosing an appropriate $K_t * K_{t+1}$ matrix $\Xi^{(t)}$ we can guarantee that
 - $\langle f_i^{(t)}, g_{\pi_*(i)}^{(t)} \rangle$ have expectation $\epsilon_t K_t$ and variance K_t (i.e., in true pairs entrywise signal is ϵ_t and signals in each entry are near independent);
 - $\langle f_i^{(t)}, g_j^{(t)} \rangle$ have expectation 0 and variance K_t (i.e., no signal in fake pairs).
 - The signal-to-noise ratio $\frac{(\epsilon_t K_t)^2}{K_t} = \epsilon_t^2 K_t$ grows rapidly in t.

Dealing with adversarial corruption

Input: a spectral cleaning procedure proposed in [Ivkov-Schramm'24].

Theorem (Ivkov-Schramm'24)

Given a matrix M'=M+E with $\|M\|_{op}=O(\sqrt{n})$ and E supported on an $\epsilon n*\epsilon n$ minor of M, there exists a polynomial-time algorithm that zeros-out $O(\epsilon n)$ rows and columns of M' such that the "cleaned" matrix \widehat{M} satisfies $\|\widehat{M}\|_{op}=O(\sqrt{n})$.

Dealing with adversarial corruption

Input: a spectral cleaning procedure proposed in [Ivkov-Schramm'24].

Theorem (Ivkov-Schramm'24)

Given a matrix M'=M+E with $\|M\|_{op}=O(\sqrt{n})$ and E supported on an $\epsilon n*\epsilon n$ minor of M, there exists a polynomial-time algorithm that zeros-out $O(\epsilon n)$ rows and columns of M' such that the "cleaned" matrix \widehat{M} satisfies $\|\widehat{M}\|_{op}=O(\sqrt{n})$.

• Our method: apply the spectral cleaning procedure to A', B' respectively to obtain \widehat{A}, \widehat{B} . Then run the iteration w.r.t. $(\widehat{A}, \widehat{B})$:

$$\begin{split} \widehat{f}^{(0)} &= \varphi \circ \left(\widehat{A}_{[n] \times U}\right), \quad \widehat{f}^{(t+1)} &= \varphi \circ \left(\frac{1}{\sqrt{n}} \widehat{A} \widehat{f}^{(t)} \Xi^{(t)}\right), \\ \widehat{g}^{(0)} &= \varphi \circ \left(\widehat{B}_{[n] \times V}\right), \quad \widehat{g}^{(t+1)} &= \varphi \circ \left(\frac{1}{\sqrt{n}} \widehat{B} \widehat{g}^{(t)} \Xi^{(t)}\right), \end{split}$$

 $\widehat{f}^{(t)}$: iterations w.r.t. \widehat{A} ; $f^{(t)}$: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E;

```
\widehat{f}^{(t)}: iterations w.r.t. \widehat{A}; f^{(t)}: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E; • Initialization: \widehat{f}^{(0)} = \varphi \circ (\widehat{A}_{[n] \times U}) \approx \varphi \circ (A_{[n] \times U}) = f^{(0)}.
```

 $\widehat{f}^{(t)}$: iterations w.r.t. \widehat{A} ; $f^{(t)}$: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E;

- Initialization: $\widehat{f}^{(0)} = \varphi \circ (\widehat{A}_{[n] \times U}) \approx \varphi \circ (A_{[n] \times U}) = f^{(0)}$.
- Iteration: suppose $\widehat{f}^{(t)} \approx f^{(t)}$, then

$$\widehat{A}\widehat{f}^{(t)}\Xi^{(t)} - Af^{(t)}\Xi^{(t)} = \widehat{A}(\widehat{f}^{(t)} - f^{(t)})\Xi^{(t)} + (\widehat{A} - A)f^{(t)}\Xi^{(t)}$$

$$\uparrow$$

$$E_{Q \setminus S \times Q \setminus S} + A_{[n] \times Q \setminus S} + A_{Q \setminus S \times [n]}$$

 $\widehat{f}^{(t)}$: iterations w.r.t. \widehat{A} ; $f^{(t)}$: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E;

- Initialization: $\widehat{f}^{(0)} = \varphi \circ (\widehat{A}_{[n] \times U}) \approx \varphi \circ (A_{[n] \times U}) = f^{(0)}$.
- Iteration: suppose $\widehat{f}^{(t)} \approx f^{(t)}$, then

$$\widehat{A}\widehat{f}^{(t)}\Xi^{(t)} - Af^{(t)}\Xi^{(t)} = \widehat{A}(\widehat{f}^{(t)} - f^{(t)})\Xi^{(t)} + (\widehat{A} - A)f^{(t)}\Xi^{(t)}$$

$$\uparrow$$

$$E_{Q \setminus S \times Q \setminus S} + A_{[n] \times Q \setminus S} + A_{Q \setminus S \times [n]}$$

Induction hypothesis \Longrightarrow (*) \approx 0;

 $\widehat{f}^{(t)}$: iterations w.r.t. \widehat{A} ; $f^{(t)}$: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E;

- Initialization: $\widehat{f}^{(0)} = \varphi \circ (\widehat{A}_{[n] \times U}) \approx \varphi \circ (A_{[n] \times U}) = f^{(0)}$.
- Iteration: suppose $\widehat{f}^{(t)} \approx f^{(t)}$, then

$$\widehat{A}\widehat{f}^{(t)}\Xi^{(t)} - Af^{(t)}\Xi^{(t)} = \widehat{A}(\widehat{f}^{(t)} - f^{(t)})\Xi^{(t)} + (\widehat{A} - A)f^{(t)}\Xi^{(t)}$$

$$\uparrow$$

$$E_{Q\setminus S\times Q\setminus S} + A_{[n]\times Q\setminus S} + A_{Q\setminus S\times [n]}$$

Induction hypothesis
$$\Longrightarrow$$
 (*) \approx 0; $|Q \setminus S| \le \epsilon n \Longrightarrow$ (*) \approx 0;

 $\widehat{f}^{(t)}$: iterations w.r.t. \widehat{A} ; $f^{(t)}$: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E;

- Initialization: $\widehat{f}^{(0)} = \varphi \circ (\widehat{A}_{[n] \times U}) \approx \varphi \circ (A_{[n] \times U}) = f^{(0)}$.
- Iteration: suppose $\widehat{f}^{(t)} \approx f^{(t)}$, then

$$\widehat{A}\widehat{f}^{(t)}\Xi^{(t)} - Af^{(t)}\Xi^{(t)} = \widehat{A}(\widehat{f}^{(t)} - f^{(t)})\Xi^{(t)} + (\widehat{A} - A)f^{(t)}\Xi^{(t)}$$

$$\uparrow$$

$$E_{Q \setminus S \times Q \setminus S} + A_{[n] \times Q \setminus S} + A_{Q \setminus S \times [n]}$$

Induction hypothesis \Longrightarrow (*) \approx 0; $|Q \setminus S| \le \epsilon n \Longrightarrow$ (*) \approx 0; $||E_{Q \setminus S \times Q \setminus S}||_{op} \le ||\widehat{A} - A||_{op} = O(1) \Longrightarrow$ (*) $\le O(1) \cdot ||f_{Q \setminus S}^{(t)}||_{F} \approx 0$.

 $\widehat{f}^{(t)}$: iterations w.r.t. \widehat{A} ; $f^{(t)}$: iterations w.r.t. A; S: index are zeroed-out; E: adversarial corruption; Q: support of E;

- Initialization: $\widehat{f}^{(0)} = \varphi \circ (\widehat{A}_{[n] \times U}) \approx \varphi \circ (A_{[n] \times U}) = f^{(0)}$.
- Iteration: suppose $\hat{f}^{(t)} \approx f^{(t)}$, then

$$\widehat{A}\widehat{f}^{(t)}\Xi^{(t)} - Af^{(t)}\Xi^{(t)} = \widehat{A}(\widehat{f}^{(t)} - f^{(t)})\Xi^{(t)} + (\widehat{A} - A)f^{(t)}\Xi^{(t)}$$

$$\uparrow$$

$$E_{Q \setminus S \times Q \setminus S} + A_{[n] \times Q \setminus S} + A_{Q \setminus S \times [n]}$$

Induction hypothesis \Longrightarrow (*) \approx 0; $|Q \setminus S| \le \epsilon n \Longrightarrow$ (*) \approx 0;

$$||E_{Q\setminus S\times Q\setminus S}||_{\mathsf{op}} \leq ||\widehat{A}-A||_{\mathsf{op}} = O(1) \Longrightarrow (*) \leq O(1) \cdot ||f_{Q\setminus S}^{(t)}||_{\mathsf{F}} \approx 0.$$

• Then $\widehat{f}^{(t+1)} = \varphi \circ (\frac{1}{\sqrt{n}} \widehat{A} \widehat{f}^{(t)} \Xi^{(t)}) \approx \varphi \circ (\frac{1}{\sqrt{n}} A \widehat{f}^{(t)} \Xi^{(t)}) \approx f^{(t+1)}$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Conclusions and open problems

- We found a poly-time algorithm that matches two correlated Gaussian matrices with constant correlation even when two $\frac{n}{\text{poly}(\log n)}$ size submatrices are adversarially corrupted.
- Our method: construct "signatures" by iteratively running an vector AMP on two matrices.
- A few open problems:
 - Other ways of corruption (e.g., corruption on arbitrary small edge set).
 - Robust algorithm for sparse graphs (edge density $q=n^{-\alpha+o(1)}$ when $\alpha>0$)?

References

- Jian Ding and Zhangsong Li. A polynomial-time iterative algorithm for matching Gaussian matrices with non-vanishing correlation.
 Foundations of Computational Mathematics, to appear.
- Misha Ivkov and Tselil Schramm. Fast, robust approximate message passing. STOC 2025, to appear.
- Zhangsong Li. Robust random graph matching in dense graphs via vector approximate message passing. COLT 2025, to appear.

Thank you!