Derivation of the Kalman Filter

Kai Borre

Danish GPS Center, Denmark

Block Matrix Identities

The key formulas give the inverse of a 2 by 2 block matrix, assuming *T* is invertible:

$$\begin{bmatrix} T & U \\ V & W \end{bmatrix}^{-1} = \begin{bmatrix} L & M \\ N & P \end{bmatrix}. \tag{1}$$

Our applications have symmetric matrices. All blocks on the diagonal are symmetric; the blocks off the diagonal are $U = V^{T}$ and $M = N^{T}$. The key to Kalman's success is that the matrix to be inverted is *block* tridiagonal. Thus U and V are nonzero only in their last block entries, and T itself is block tridiagonal. But the general formula gives the inverse

without using any special properties of T, U, V, W:

$$L = T^{-1} + T^{-1}UPVT^{-1}$$

$$M = -T^{-1}UP$$

$$N = -PVT^{-1}$$

$$P = (W - VT^{-1}U)^{-1}.$$
(2)

The simplest proof is to multiply matrices and obtain I. The actual derivation of (2) is by block elimination. Multiply the row $\begin{bmatrix} T & U \end{bmatrix}$ by VT^{-1} and subtract from $\begin{bmatrix} V & W \end{bmatrix}$:

$$\begin{bmatrix} I & 0 \\ -VT^{-1} & I \end{bmatrix} \begin{bmatrix} T & U \\ V & W \end{bmatrix} = \begin{bmatrix} T & U \\ 0 & W - VT^{-1}U \end{bmatrix}. \tag{3}$$

The two triangular matrices are easily inverted, and then block multiplication produces (2). This is only Gaussian elimination with blocks. In the scalar case the last corner is W - VU/T. In the matrix case we keep the blocks in the right order! The inverse of that last entry is P.

Now make a trivial but valuable observation. We could eliminate in the opposite order. This means that we subtract UW^{-1} times the *second* row $[V \ W]$ from the *first* row $[T \ U]$:

$$\begin{bmatrix} I & -UW^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} T & U \\ V & W \end{bmatrix} = \begin{bmatrix} T - UW^{-1}V & 0 \\ V & W \end{bmatrix}.$$

Inverting this new right side yields different (but still correct) formulas for the blocks L, M, N, P in the inverse matrix.

We pay particular attention to the (1, 1) block. It becomes $L = (T - UW^{-1}V)^{-1}$. That is completely parallel to $P = (W - VT^{-1}U)^{-1}$, just changing letters.

Now compare the new form of L with the form in (2). Their equality is the most important formula in matrix update theory. We only mention four of its originators: **Sherman–Morrison–Woodbury–Schur**:

$$(T - UW^{-1}V)^{-1} = T^{-1} + T^{-1}U(W - VT^{-1}U)^{-1}VT^{-1}.$$
 (4)

We are looking at this as an update formula, when the matrix T is perturbed by $UW^{-1}V$. Often this is a perturbation of low rank. Previously we looked at (1) as a bordering formula, when the matrix T was bordered by U and V and W. Well, matrix theory is beautiful.

Derivation of the Kalman Filter

We will base all steps on the two previous matrix identities. Those identities come from the inverse of a 2 by 2 *block matrix*. The problem is to update the last entries of $(A^T \Sigma^{-1} A)^{-1}$, when new rows are added to the big matrix A. Those new rows will be of two kinds, coming from the *state equation* and the *observation equation*. A typical filtering step has two updates, from A_{k-1} to S_k (by including the state equation) and then

to A_k (by including the observation equation):

The step to S_k adds a new row and column (this is *bordering*). The second step only adds a new row (this is *updating*). The least-squares solution $\hat{x}_{k-1|k-1}$ for the old state leads to $\hat{x}_{k|k-1}$ (using the state equation) and then to $\hat{x}_{k|k}$ (using the new observation b_k).

Remember that least squares works with the symmetric block tridiagonal matrices $\mathcal{T}_k = \mathcal{A}_k^{\mathrm{T}} \Sigma_k^{-1} \mathcal{A}_k$. So we need the change in \mathcal{T}_{k-1} when \mathcal{A}_{k-1} is bordered and then updated:

Bordering by the row
$$R = \begin{bmatrix} 0 & \dots & -F_{k-1} & I \end{bmatrix}$$
 adds $R^{T} \Sigma_{\epsilon,k}^{-1} R$
Updating by the row $W = \begin{bmatrix} 0 & \dots & 0 & A_k \end{bmatrix}$ adds $W^{T} \Sigma_{e,k}^{-1} W$.

We are multiplying matrices using "columns times rows". Every matrix product BA is the sum of (column j of B) times (row j of A). In our case B is the transpose of A, and these are block rows and columns. The matrices $\Sigma_{\epsilon,k}^{-1}$ and $\Sigma_{e,k}^{-1}$ appear in the middle, because this is weighted least squares.

The complete system, including all errors up to ϵ_k and e_k in the error vector e_k , is $A_k x_k = b_k - e_k$:

$$A_{2}x_{2} = \begin{bmatrix} A_{0} \\ -F_{0} & I \\ A_{1} \\ -F_{1} & I \\ A_{2} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} b_{0} \\ 0 \\ b_{1} \\ 0 \\ b_{2} \end{bmatrix} - \begin{bmatrix} e_{0} \\ \epsilon_{1} \\ e_{1} \\ \epsilon_{2} \\ e_{2} \end{bmatrix} = b_{2} - e_{2}. (5)$$

The weight matrix Σ_k^{-1} for the least-squares solution is block diagonal:

$$\Sigma_{e,0}^{-1} = \begin{bmatrix} \Sigma_{e,0}^{-1} & & & & \\ & \ddots & & & \\ & & \Sigma_{e,2}^{-1} & & \\ & & & \Sigma_{e,2}^{-1} \end{bmatrix}$$

Our task is to compute the last corner block $P_{k|k}$ of the matrix $(A_k^T \Sigma_k^{-1} A_k)^{-1}$. We do that in two steps. The "prediction" finds $P_{k|k-1}$ from the bordering step, when the state row is added to A_{k-1} (producing S_k). Then the "correction" finds $P_{k|k}$ when the observation row is included too.

The second task is to compute the prediction $\hat{x}_{k|k-1}$ and correction $\hat{x}_{k|k}$ for the new state vector x_k . This is the last component of \hat{x}_k . If we compute *all* components of \hat{x}_k , then we are smoothing old estimates as well as filtering to find the new $\hat{x}_{k|k}$.

Naturally Σ affects all the update formulas. The derivation of these formulas will be simpler if we begin with the case $\Sigma = I$, in which all noise is "white". Then we adjust the formulas to account for the weight matrices.

We compute the last entries in $(\mathcal{A}^T \Sigma^{-1} \mathcal{A})^{-1}$ and then in $(\mathcal{A}^T \Sigma^{-1} \mathcal{A})^{-1} \mathcal{A}^T \Sigma^{-1} \mathcal{b}$. These entries are $P_{k|k}$ and $\hat{x}_{k|k}$. Block matrices will be everywhere.

There is another approach to the same result. Instead of working with $\mathcal{A}^T \mathcal{A}$ (which here is block tridiagonal) we could *orthogonalize* the columns of \mathcal{A} . This Gram-Schmidt process factors \mathcal{A} into a block orthogonal \mathcal{Q} times a block bidiagonal \mathcal{R} . Those factors are updated at each step of the *square root information filter*. This $\mathcal{Q}\mathcal{R}$ approach adds new insight about "orthogonalizing the innovations".

Updates of the Covariance Matrices

We now compute the blocks $P_{k|k-1}$ and $P_{k|k}$ in the lower right corners of $(S_k^T S_k)^{-1}$ and $(A_k^T A_k)^{-1}$. Then we operate on the right side, to find the new state $\hat{x}_{k|k}$.

Remember that S_k comes by adding the new row $\begin{bmatrix} V & I \end{bmatrix}$ = $\begin{bmatrix} 0 & \dots & -F_{k-1} & I \end{bmatrix}$. Then $A_{k-1}^T A_{k-1}$ grows to $S_k^T S_k$ by adding $\begin{bmatrix} V & I \end{bmatrix}^T \begin{bmatrix} V & I \end{bmatrix}$:

$$S_k^{\mathrm{T}} S_k = \begin{bmatrix} A_{k-1}^{\mathrm{T}} A_{k-1} + V^{\mathrm{T}} V & V^{\mathrm{T}} \\ V & I \end{bmatrix}. \tag{6}$$

Because V is zero until its last block, equation (6) is really the addition of a 2 by 2 block in the lower right corner. This has two effects at once. It perturbs the existing matrix $T = \mathcal{A}_{k-1}^T \mathcal{A}_{k-1}$ and it borders the result T_{new} . The perturbation is by V^TV . The bordering is by the row V and the column V^T and the corner block I. Therefore the update formula for T_{new}^{-1} goes inside the bordering formula:

Update to
$$T + V^{T}V$$
: $T_{\text{new}}^{-1} = T^{-1} - T^{-1}V^{T}(I + VT^{-1}V^{T})^{-1}VT^{-1}$
Border by V, V^{T}, I : $P = (I - VT_{\text{new}}^{-1}V^{T})^{-1}$.

Substitute the update into the bordering formula and write Z for the block

 $VT^{-1}V^{\mathrm{T}}$. This gives the great simplification P = I + Z:

$$P = \left(I - V(T^{-1} - T^{-1}V^{T}(I+Z)^{-1}VT^{-1})V^{T}\right)^{-1}$$
$$= \left(I - Z + Z(I+Z)^{-1}Z\right)^{-1} = I + Z. \quad (7)$$

This block P is $P_{k|k-1}$. It is the corner block in $(S_k^T S_k)^{-1}$. The row $[V \ I]$ has been included, and the matrix Z is

$$VT^{-1}V^{T} = \begin{bmatrix} 0 & \dots & -F_{k-1} \end{bmatrix} \begin{bmatrix} \cdot & \dots & \cdot & \cdot \\ \vdots & \ddots & \vdots & \vdots \\ \cdot & \dots & P_{k-1|k-1} \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ -F_{k-1}^{T} \end{bmatrix}$$
$$= F_{k-1}P_{k-1|k-1}F_{k-1}^{T}.$$

Therefore P = I + Z in equation (7) is exactly the Kalman update formula

$$P_{k|k-1} = I + F_{k-1}P_{k-1|k-1}F_{k-1}^{\mathrm{T}}.$$
 (8)

The identity matrix I will change to $\Sigma_{\epsilon,k}$ when the covariance of the state equation error ϵ_k is accounted for.

Now comes the second half of the update. The new row $W = [0 \dots 0 \ A_k]$ enters from the observation equations. This row is placed below S_k to give A_k . Therefore W^TW is added to $S_k^TS_k$ to give $A_k^TA_k$. We write Y for the big tridiagonal matrix $S_k^TS_k$ before this update, and we use the update formula (4) for the new inverse:

$$(\mathcal{A}_k^{\mathrm{T}} \mathcal{A}_k)^{-1} = (\mathcal{Y} + W^{\mathrm{T}} I W)^{-1} = \mathcal{Y}^{-1} - \mathcal{Y}^{-1} W^{\mathrm{T}} (I + W \mathcal{Y}^{-1} W^{\mathrm{T}})^{-1} W \mathcal{Y}^{-1}.$$
(9)

Look at $W\mathcal{Y}^{-1}W^{T}$. The row $W = [0 \dots 0 A_{k}]$ is zero until the last block. The last corner of \mathcal{Y}^{-1} is $P_{k|k-1}$, found above.

Therefore $W\mathcal{Y}^{-1}W^{\mathrm{T}}$ reduces immediately to $A_k P_{k|k-1} A_k^{\mathrm{T}}$. Similarly the last block of $\mathcal{Y}^{-1}W^{\mathrm{T}}$ is $P_{k|k-1}A_k^{\mathrm{T}}$.

Now concentrate on the *last block row* in equation (9). Factoring out \mathcal{Y}^{-1} on the right, this last row of $(\mathcal{A}_k^T \mathcal{A}_k)^{-1}$ is

$$(I - P_{k|k-1}A_k^{\mathrm{T}}(I + A_k P_{k|k-1}A_k^{\mathrm{T}})^{-1}A_k)(\text{last row of } \mathcal{Y}^{-1})$$

$$= (I - K_k A_k)(\text{last row of } (S_k^{\mathrm{T}} S_k)^{-1}). \quad (10)$$

In particular the final entry of this last row is the corner entry $P_{k|k}$ in $(\mathcal{A}_k^T \mathcal{A}_k)^{-1}$:

$$P_{k|k} = (I - K_k A_k) P_{k|k-1}. (11)$$

This is the second half of the Kalman filter. It gives the error covariance $P_{k|k}$ from $P_{k|k-1}$. The new P uses the observation equation $\boldsymbol{b}_k = A_k \boldsymbol{x}_k + \boldsymbol{e}_k$, whereas the old P doesn't use it. The matrix K that was introduced to simplify the algebra in (10) is Kalman's *gain matrix*:

$$K_k = P_{k|k-1} A_k^{\mathrm{T}} (I + A_k P_{k|k-1} A_k^{\mathrm{T}})^{-1}.$$
 (12)

This identity matrix I will change to $\Sigma_{e,k}$ when the covariance of the observation error is accounted for. You will see in a later equation for $\hat{x}_{k|k}$ why we concentrated on the whole last row of $(\mathcal{A}_k^T \mathcal{A}_k)^{-1}$, as well as its final entry $P_{k|k}$ in (11).

