Optimization and Data Science

5. Homework exercises

Theoretical exercise 1:

Consider the general descent method applied to a continuous differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. Let $(x_k)_{k \in \mathbb{N}_0}$ be the resulting sequence of iterates.

- a) Prove that if x^* and \hat{x} are two accumulation points of $(x_k)_{k\in\mathbb{N}_0}$, then $f(x^*)=f(\hat{x})$.
- b) Prove that if x^* is an accumulation points of $(x_k)_{k\in\mathbb{N}_0}$, then x^* is not a strict maximum.
- c) Find an example where the general descent method stops at a strict maximum.

Hint: Use the definition of accumulation points and the continuity of f to prove a) and the definition of accumulation points and strict maxima to prove b).

A sequence $(x_k)_{k\in\mathbb{N}_0}$ has an accumulation point x^* if and only if a subsequence $(x_{n_k})_{k\in\mathbb{N}_0}$ exists such that $\lim_{k\to\infty} x_{n_k} = x^*$. $(x_{n_k})_{k\in\mathbb{N}_0}$ is a subsequence of $(x_k)_{k\in\mathbb{N}_0}$ if $(n_k)_{k\in\mathbb{N}_0}$ is a strictly monotonically increasing sequence of natural numbers.

Theoretical exercise 2:

Consider the general descent method applied to

$$f: \mathbb{R}^2 \to \mathbb{R}, x \mapsto \frac{1}{2} ||x||_2^2$$

with $x_0 \in \mathbb{R}^2 \setminus \{0\}$ and search direction

$$d_k := s_k - \frac{1}{2^{k+3}} g_k$$

with $g_k := \nabla f(x_k)$ and $s_k \in \mathbb{R}^n$ such that $s_k \perp g_k$ and $||d_k||_2 = ||g_k||_2$ for all $k \in \mathbb{N}_0$. Let $(x_k)_{k \in \mathbb{N}_0}$ be the resulting sequence of iterates. Prove that

- a) $\rho_k < 2^{-(k+2)}$ for all $k \in \mathbb{N}_0$ (where ρ_k are the step-sizes).
- b) $||x_0 x_{k+1}||_2 \le \frac{1}{2} ||x_0||_2$ for all $k \in \mathbb{N}_0$
- c) $(x_k)_{k\in\mathbb{N}_0}$ has no accumulation point which is a local minimum of f.
- d) d_k are descent directions for all $k \in \mathbb{N}_0$.
- e) $(d_k)_{k\in\mathbb{N}_0}$ is not gradient-related.

Hint: A telescoping sum, the triangular inequality and the partial sum formula of the geometric series can be useful for proving b). The definition of descent directions and gradient-related directions might be useful for proving d) and e).

 $v\perp w$ for arbitrary $v,w\in\mathbb{R}^n$ means that the vectors are orthogonal, which means $v^Tw=0$.

Programming exercise 1:

- $a) \ \ Implement \ the \ Armijo \ step-size \ algorithm.$
- b) Implement the gradient method using the Armijo step-size algorithm.
- c) Test your implementation using the Roosenbrock and the Bazaraa-Shetty function with different start points.

The solutions of the theoretical exercises will be discussed on 11. Mai 2020.