/

Congratulations! You passed!

Next Item

1. This quiz will be to familiarise yourself with vectors and some basic vector operations.

1/1 point

For the following questions, the vectors ${\bf a}$, ${\bf b}$, ${\bf c}$, ${\bf d}$ and ${\bf e}$ refer to those in this diagram:

What is the numerical representation of the vector **a**?

- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Correct

You can get the numerical representation by following the arrow along the grid.

_	١
	7

2. Which vector corresponds to $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$?

1/1 point

Vector **a**

Vector **b**

Vector **c**

O Vector **d**

Correct

You can get the numerical representation by following the arrow along the grid.

3. What vector is 2c?

Please select all correct answers.

1/1 point

Un-selected is correct

 \mathbf{a}

Correct

Multiplying by a positive scalar is like stretching out a vector in the same direction.

 $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$

Correct

A scalar multiple of a vector can be calculated by multiplying each component.

Un-selected is correct

4. What vector is $-\mathbf{b}$?

1/1 point Please select all correct answers.

Correct

A scalar multiple of a vector can be calculated by multiplying each component.

Un-selected is correct

 \mathbf{d}

Correct

Multiplying by a negative changes the direction of the vector.

 \mathbf{e}

Un-selected is correct

5. What is the vector $\mathbf{b} + \mathbf{e}$?

point

$$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Correct

You add vectors entry by entry.

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

6. What is the vector $\mathbf{d} - \mathbf{b}$?

1/1 point

$$egin{bmatrix} 4 \ -2 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Correct

Remember that vectors add by attaching the end of one to the start of the other.

$$\begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

