Exercise 3.3

Q1. Write the following into sum or difference.

i)
$$\log(A \times B)$$

Sol:
$$\log(A \times B) = \log A + \log B$$

ii)
$$\log \frac{15.2}{30.5}$$

Sol:
$$\log \frac{15.2}{30.5} = \log 15.2 - \log 30.5$$

iii)
$$\log \frac{21 \times 5}{8}$$

Sol:
$$\log \frac{21 \times 5}{8} = \log 21 + \log 5 - \log 8$$

iv)
$$\log \sqrt[3]{\frac{7}{15}}$$

Sol:
$$\log \sqrt[3]{\frac{7}{15}} = \log \left(\frac{7}{15}\right)^{\frac{1}{3}} = \frac{1}{3} \log \left(\frac{7}{15}\right)^{\frac{1}{3}} = \frac{1}{3} (\log 7 - \log 15)$$

v)
$$\log \frac{(22)^{\frac{1}{3}}}{5^3}$$

Sol:
$$\log \frac{(22)^{\frac{1}{3}}}{5^3} = \log (22)^{\frac{1}{3}} - \log 5^3$$

= $\frac{1}{3} \log 22 - 3 \log 5$

vi)
$$\log \frac{25 \times 47}{29}$$

= $\log 25 + \log 47 - \log 29$

Q2. Express

$$\log x - 2\log x + 3\log(x+1) - \log(x^2-1)$$

as a single logarithm

Sol:

$$\log x - 2\log x + 3\log(x+1) - \log(x^2 - 1)$$

$$= \log x - \log x^2 + \log(x+1)^3 - \log(x^2 - 1)$$

$$= \log x + \log(x+1)^3 - \log x^2 - \log(x^2 - 1)$$

$$= \log \frac{x(x+1)^3}{x^2(x^2 - 1)}$$

$$= \log \frac{(x+1)^3}{x(x-1)(x+1)}$$

$$= \log \frac{(x+1)^2}{x(x-1)}$$

Q3. Write the following in the form of a single logarithm.

i)
$$\log 21 + \log 5$$

Sol:
$$\log 21 + \log 5$$

= $\log 21 \times 5$

ii)
$$\log 25 - 2 \log 3$$

= $\log 25 - \log 3^2$
= $\log \frac{25}{3^2} = \log \frac{25}{9}$

iii)
$$2\log x - 3\log y$$

Sol:
$$2 \log x - 3 \log y$$

= $\log x^2 - \log y^3$
= $\log \frac{x^2}{y^3}$

iv)
$$\log 5 + \log 6 - \log 2$$

Sol:
$$\log 5 + \log 6 - \log 2$$
$$= \log \frac{5 \times 6}{2}$$

Q4. Calculate the following:

i) $\log_3 2 \times \log_3 81$

Sol: As we know that $\log_a n = \frac{\log_b n}{\log_b a}$

$$\therefore \log_3 2 \times \log_2 81 = \frac{\log 2}{\log 3} \times \frac{\log 81}{\log 2}$$

$$= \frac{\log 81}{\log 3}$$

$$= \frac{\log 3^4}{\log 3}$$

$$= \frac{4 \log 3}{\log 3}$$

ii) $\log_5 3 \times \log_3 25$

Sol: As we know that

$$\log_a n = \frac{\log_b n}{\log_b a}$$

$$\log_5 3 \times \log_3 25 = \frac{\log 3}{\log 5} \times \frac{\log 25}{\log 5}$$

$$= \frac{\log 25}{\log 5}$$

$$= \frac{\log 5^2}{\log 5}$$

$$= \frac{2\log 5}{\log 5}$$

$$= 2$$

Q5. If $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 5 = 0.6990$, then find the values of

the following.

=5(0.3010)

i)
$$\log 32$$

Sol: $\log 32$
 $= \log 2^5$
 $= 5 \log 2$

$$= 1.5050$$

ii)
$$\log 24$$

 $= \log 8 \times 3$
 $= \log 2^3 \times 3$
 $= \log 2^3 + \log 3$
 $= 3\log 2 + \log 3$
 $= 3(0.3010) + 0.4771$
 $= 0.9030 + 0.4771$
 $= 1.3801$

iii)
$$\log \sqrt{3\frac{1}{3}}$$

$$= \log \sqrt{\frac{10}{3}}$$

$$= \log \left(\frac{2 \times 5}{3}\right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \log \left(\frac{2 \times 5}{3}\right) = \frac{1}{2} (\log 2 + \log 5 - \log 3)$$

$$= \frac{1}{2} (0.3010 + 0.6990 - 0.4771)$$

$$= \frac{1}{2} (0.5229)$$

$$= 0.2615$$

iv)
$$\log \frac{8}{3}$$

 $= \log \frac{2^3}{3}$
 $= \log 2^3 - \log 3$
 $= 3\log 2 - \log 3$
 $= 3(0.3010) - 0.4771$
 $= 0.4259$
v) $\log 30$

$$= \log 2 \times 3 \times 5$$

$$= \log 2 + \log 3 + \log 5$$

$$= 0.3010 + 0.4771 + 0.6990$$

$$= 1.4771$$