Design of a toy MonteCarlo model to predict experimental precision on flow measurement

Sorawich Maichum, Maxime Guilbaud

Outline

- The heavy ion collisions and QGP
- QGP anisotropic flow (v_n)
- The goals of the project
- Results

QGP and heavy ion collisions

Quark-Gluon Plasma (QGP)

- Free quark and gluon soup
- Produced few μs after the Big Bang
- Predicted by Quantum ChromoDynamics (QCD)

How to study QGP at the LHC?

- Heavy ion (Pb-Pb) collisions: little bang
- High temperature and zero density

CERN

QGP – a nearly perfect fluid

It behave a nearly perfect fluid → very small viscosity

Initial state

Final state

Characteristic patterns of the anisotropic:

Initial spatial/momentum anisotropy \rightarrow **final state particle** distribution Φ anisotropy

$$\frac{dN}{d\Phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\Phi - \Psi_{EP}))$$

Where Φ is azimuthal angle , v_n are Fourier coefficients and Ψ_{EP} is the reaction plane angle

The goals of the project

- Make a prediction on v_n measurement precision (using cumulant)
- Check that cumulant calculations and error calculations are valid at all M and v_n values
 - σ_{v_n} should scale as $M \times v_n^2$ if $M \times v_n^2 \gg 1$

The goals of the project

- Make a prediction on v_n measurement precision (using cumulant)
- Check that cumulant calculations and error calculations are valid at all M and v_n values
 - σ_{v_n} should scale as $M \times v_n^2$ if $M \times v_n^2 \gg 1$

Why?

The goals of the project (I)

- Make a prediction on v_n measurement precision (using cumulant)
- Check that cumulant calculations and error calculations are valid at all M and v_n values
 - σ_{v_n} should scale as $M \times v_n^2$ if $M \times v_n^2 \gg 1$

Why?

Flow (Ridge) can be observed in all collisions

8/9/2018 Document reference

The goals of the project (II)

8/9/2018 Document reference 7

The goals of the project (II)

 \rightarrow Are cumulant still valid to extract v_n at low multiplicity?

The goals of the project (II)

- ightarrow Are cumulant still valid to extract v_n at low multiplicity?
 - → How much more events do we need to extend our multiplicity reach in small systems?

Extracting v_n coefficient : Cumulants

2-particle cumulant correlation:

$$Q_n = \sum_{i=1}^M e^{in\phi_i} \qquad <2>_{n,n} = \frac{|Q_n|^2 - M}{M(M-1)} \qquad v_n\{2\} = \sqrt{\ll 2 \gg_{n,n}}$$
 Fluctuation (width) of v_n distribution
$$v_n\{2\}^2 = < v_n^2> = < v_n>^2 + \sigma_{v_n}^2$$
 mean of v_n distribution
$$\text{Where} \qquad \text{M} \qquad \text{is a number of particles} \\ <2>_{n,n} \text{ is an average over all particles of 1 event} \\ \ll 2\gg_{n,n} \text{ is an average over all particles and events} \\ v_n\{2\} \qquad \text{is a Fourier coefficient of 2-particle correlation} \\ v_n \qquad \text{is a true value of } v_n$$

Can be extended to more particle correlation: 4, 6, 8, ...

Toy Monte Carlo Model: Methodology

Input v_2 , v_3 , v_4 distribution

Build the TRUE ϕ particle distribution

Generate events with particle randomly In the ϕ distribution

Get the measured v_n coefficient

8/9/2018

Compute 2-particle correlation

Input distribution and random generator

Realistic v_n distribution based on CMS data

https://arxiv.org/abs/1711.05594

Use this distribution to generate the **TRUE** ϕ particle distribution

With
$$v_2$$
=0.1, v_3 =0.05, v_4 =0.03

Input distribution and random generator

Realistic v_n distribution based on CMS data

https://arxiv.org/abs/1711.05594

Generate **MEASURED** φ particle distribution using a random generator

Use this distribution to generate the TRUE ϕ particle distribution

With

$$v_2$$
=0.1, v_3 =0.05,

 v_4° =0.03

Precision predictions as a function of number of events

The v_n versus the number of events

** v_n {2} depend on the $< v_n >$ and the width but in our work we fix width to be zero (no fluctuation)

Cumulant measurement as a function of multiplicity

The v_n versus multiplicity

** v_n {2} depend on the $< v_n >$ and the width but in our work we fix width to be zero (no fluctuation)

Cumulant measurement as a function of v_n strength

The measured v_n versus input v_n

** v_n {2} depend on the $< v_n >$ and the width but in our work we fix width to be zero (no fluctuation)

v_n statistical uncertainties calculation

• Analytical formula are useable if σ_{v_n} scales with $M imes v_n^2$

v_n statistical uncertainties calculation

- Analytical formula are useable if σ_{v_n} scales with $M imes v_n^2$
 - When v_n is small, $M \times v_n^2 \gg 1$ is not valid anymore

8/9/2018

Conclusion

- A Toy Monte Carlo model created to reproduce flow like effect
- Got back correctly the input value for multiple flow coefficients with different magnitudes, multiplicities, ...
- The statistical precision evolution as a function of events was extracted

The current model will allow more precise predictions on the number of events needed for all cumulant analysis in AA, pA and pp collisions

Perspectives

- Increase higher order cumulant v_n {4}, v_n {6}, v_n {8},...
- Use realistic eta , p_T particles distribution

/9/2018 Document reference 1s

Thank you

8/9/2018 Document reference 1

Question?

v_n and viscosity

Phys. Rev. C 89, 0449076

CMS results

Phys. Rev. Lett. 110, 012302

IP glasma + MUSIC

8/9/2018 Document reference