

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2022/0360277 A1 **NIKITIN**

Nov. 10, 2022 (43) **Pub. Date:**

(54) METHOD OF VERNIER DIGITAL-TO-ANALOG CONVERSION

(71) Applicant: Yury Alexandrovich NIKITIN, Saint

Petersburg (RU)

Yury Alexandrovich NIKITIN, Saint Inventor:

Petersburg (RU)

17/621,380 (21) Appl. No.:

(22) PCT Filed: Jun. 30, 2020

(86) PCT No.: PCT/RU2020/050138

§ 371 (c)(1),

(2) Date: Dec. 21, 2021

(30)Foreign Application Priority Data

(RU) 2019120873

Publication Classification

(51) **Int. Cl.** H03M 1/68 (2006.01)H03M 1/74 (2006.01) (52) U.S. Cl.

CPC H03M 1/68 (2013.01); H03M 1/74

(2013.01)

(57)ABSTRACT

A digital-to-analog conversion, including: converting signal Y using word $X=M+a^{-\alpha}N$ having length $\Psi=\alpha+\beta$ digits, where M is high order digits of a long control word X, a^{-a}N is low order digits of β long control word X, wherein $\alpha \approx \beta$; subjecting analog signal Z to three conversions, wherein, in the first conversion, signal Z_1 is proportional to M α long high order digits of X, and to reference signal Y1, where $Z_1=Y_1\times M$, in the second and third conversions, signals Z_2 and Z_3 are proportional to N β long low order digits of X and to signals Y_1 and Y_2 , respectively, where $Z_2=Y_1\times N$, and $Z_3=Y_2\times N$, wherein, before the conversions, $a^{-\alpha}N$ low order digits of X are multiplied by a^a ; and adding Z_1 , Z_2 , Z_3 to generate output signal Zo, wherein Y1 and Y2 relate by $Y_2 = Y_1(1 \pm a^{-a})$, wherein a is the base of the numbering system, α is the number of digits, by which $a^{-a}N$ is shifted.

