Marksheet Digitization using OCR and Report Generation for QAA

Team members

Anish Timsina (THA077BEI007)

Bishal Giri (THA077BEI014)

Sugam Khatiwada (THA077BEI046)

Supervised By:

Associate Professor Er. Shanta Maharjan

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

March, 2025

Presentation Outline

- Motivation
- Objectives
- Scope of Project
- Project Limitation
- Methodology
- Result and Analysis

- Future Enhancements
- Applications
- Conclusion
- Project Timeline
- Project Budget
- References

Motivation

- Paper-based and labor-intensive storage of documents like marksheets.
- Difficulty for students as well as administrators to access the required academic records.

Objectives

- To digitize hardcopy of marksheet using OCR and provide secure access through user-friendly web platform
- To develop a progress report as per the needs of QAA

Scope

- High-resolution scanning and for accurate digitization.
- Secure database for storing and organizing digitized marksheets
- User-friendly web interface for accessing digitized marksheets.

Limitation

- Designed for IOE marksheets, limiting adaptability to other institutions' formats.
- Faces challenges extracting text from noisy images with stamps or logos.
- Limited versatility and accuracy with diverse marksheet styles and formats.

Methodology System Block D

Methodology - [2

Methodology - [2] (Block Description)

Image Processing and Upload:

Scanned marksheets are uploaded via a user-friendly web interface and temporarily stored.

Preprocessing with OpenCV:

Images undergo preprocessing (noise reduction, contrast enhancement, skew correction) using OpenCV.

Text Extraction with OCR:

Preprocessed images are converted into machine-readable text with Tesseract OCR and Paddle-OCR

Data Management with SQLite:

Extracted text is stored in SQLite database, enabling access to academic records and query execution.

Reporting and Analytics:

The system generates QAA reports and analyzes scholarship results, utilizing stored data for insightful analytics.

Methodology - [3] (Image Preprocessing)

- For Image preprocessing,
 OpenCV is used.
- Image preprocessing includes:
 - Grayscale Conversion
 - Canny Edge Detection
 - Hough Line Transform
 - Rotate Image If Tilted

Methodology - [5] (Table Detection and Extraction)

- Table detection is done using YOLOv8 model.
- It is pretrained on dataset that includes table structures.
- The model gives bounding boxes around the table to detect table region which is then separated as cropped image.

Methodology – [6] (Paddle-OCR Working Procedure)

09/05/2025

12

Methodology – [6] (Paddle-OCR Working Procedure)

- Input Data: Images containing text.
- Label Text: Identify and mark text regions.
- Text Detection: Use models like DB, EAST, SAST to detect text.
- Classify Direction: Classify the orientation of detected text using a direction classifier.
- **Text Recognition**: Recognize text with models such as Rosetta, StarNet, CRNN, RARE, SRN.
- Output Data: Store the recognized text in a database.

13

Methodology – [7] (Tesseract-OCR Working Procedure)

Methodology – [7] (Tesseract-OCR Working Procedure)

- Input Image: Start with the image containing text.
- Adaptive Thresholding: Convert the image to a binary format (black and white).
- Connected Component Analysis: Analyze the binary image to find connected components, which correspond to character outlines.
- Find Lines and Words: Organize the character outlines into lines and words.
- Recognize Word (Pass 1): Perform an initial recognition of words.
- Recognize Word (Pass 2): Refine the recognition of words to improve accuracy.
- Extracted Text from Image: Output the final recognized text from the image.

Methodology <u>a</u> 0

Methodology

Methodology - [10] (User Interface-Performance Analysis)

- Admins can access a dedicated analysis page to evaluate student performance.
- Analysis includes class ranks, subject-wise and semester-wise pass ratios, overall pass/fail ratios, and more.
- Also allows comparisons of department-wise results and other performance metrics.

Methodology - [11] (Requirements)

- Hardware, Software, Libraries and Frameworks Requirements:
 - Scanner
 - Google Collaboratory
 - Visual Studio Code
 - Keras
 - Scikit-Learn
 - NumPy
 - Pandas
 - Matplotlib

- OpenCV
- Pytesseract
- Django
- HTML/CSS
- SQLite
- Django ORM
- PyTorch
- PP Structure

Tribhuvan University Institute of Engineering Examination Control Division Chakupat, Lalitpur

Back-paper Examination 2080 Ashwin STATEMENT OF MARKS

Demokiliha Timosha po

Year/Part- III/II

 Name: Exam Roll No: 72254

 Level : Bachelor's in Engineering
 CRN: 2075/B

Campus:- Thapathali Campus T.U. Regd. No:- 3.2.26.404.2018

Programme:- Computer Engineering

2075/BCT/037

Subjects		Full Marks		Pass Marks		Marks Obtained			T
Code	Title	Asst.	Final	Asst.	Final	Asst.	Final	Total	Remarks
CE655	Engineering Economics	20	80	8	32	12	Α	_	
CT651	Object Oriented Analysis & Design	20	80	8	32	15	Α	_	
CT652	Database Management System	20	80	8	32	14	А	_	
CT653	Artificial Intelligence	20	80	8	32	17	A	_	
CT655	Embedded System	20	80	8	32	16	А	_	
CT656	Operating System	20	80	8	32	16	A	_	

Marks Enter By:Verified By:Date:- 11 JAN 2024

* - Fail A - Absent

Asst. Dean

Result and Analysis-[2] (Text Detection And Extraction)

 Extracted table text Formatted into Excel file using PP Structure

A	В	С	D	E	F	G	Н	1	J
Subjects		Full Marks	Full Marks		Pass Marks		Marks Obtained		
2 Code	Title	Asst.	Final	Asst.	Final	Asst.	Final	Total	Remarks
3 CE655	Engineering Economics	20	80	8	32	12	Α		
4 CT651	Object Oriented Analysis & Design	20	80	8	32	15	Α		
5 CT652	Database Management System	20	80	8	32	14	Α		
6 CT653	Artificial Intelligence	20	80	8	32	17	Α		
7 CT655	Embedded System	20	80	8	32	16	Α		
8 CT656	Operating System	20	80	8	32	16	Α		
9									

Result and Analysis-[2] (Text Detection And Extraction)

Extracted Text From TesseractOCR Formatted into Excel file

Name	Exam Roll No	Level	CRN	Campus	T.U. Regd. No	Year/Part	Programme
Samplifications	72254	Bachelors in Engineering	2075/BCT/037	Thapathali Campus	3.2.26.404.2018	III/II	Computer Engineering

Student Login Page and Dashboard Page

Result Generated

Result in PDF

Student Analysis

Academic Progression Analysis

Admin Login Page and Dashboard Page

Marksheet upload page

Result Analysis
 Page with type selection

 Programme wise Pass/fail Graph

 Subject wise Pass/fail Graph

 Semester wise Pass/fail Pie-chart Total Students for Year 2075, Year/Part IV/I: 31

Rank of Students

Pass Percentage
 Trend

Subject Average Marks

 Grade Distribution Analysis

 Assessment vs
 Final Comparison

Subject Improvement Pass Percentage Trend for Web Technologies and Applications (Elective I) (2072-2078)

Result and Analysis-[4] (Database Schema and Instances)

Student information table

Result and Analysis-[4] (Database Schema and Instances)

Marks obtained table

Result and Analysis-[4] (Database Schema and Instances)

Subject information table

Table Extracted by Paddle:

Subjects		Full Marks		Pass Marks		Marks Obtained		
Code	Title	Asst.	Final	Asst.	Final	Asst.	Final	Total
CT701	Project Management	20	80	8	32	18	46	64
CT702	Computer Network	20	80	8	32	12	32	44
CT702	Computer Network PRACTICAL	50		20		35		35
CT703	Distributed System	20	80	8	32	18	40	58
CT703	Distributed System PRACTICAL	25		10		24		24
CT704	Digital Signal Analysis & Processing	20	80	8	32	19	47	66
CT704	Digital Signal Analysis & Processing PRACTICAL	25		10		25		25
CT707	Project I PRACTICAL	50		20		45		45
EX701	Energy Environment & Society	10	40	4	16	6	24	30
ME708	Organization & Management	20	80	8	32	18	45	63
CT72502	Data Mining (Elective I)	20	80	8	32	14	45	59
CT72502	Data Mining (Elective I) PRACTICAL	25		10		20		20

Table Extracted by Tesseract:

Code	Title	Asst.	Final	Asst.	Final	Asst.	Final	Total	Remarks	
CT701	Project Management	20	80	8	32	18	46	64		
Sia	Computer Network	20	80	8	32	12	32	44		
CT702	Computer Network PRACTICAL SO oes Ge ee tC									
CT703	Distributed System	20	80	8	32	18	40	58		
CT703	Distributed System PRACTICAL	25	_	10	2s	24	24			
CT704	Digital Signal Analysis & Processing	20	80	8	32	19	47	66		
CT704	Digital Signal Analysis & Processing	25		10	_	25	_	25		
PRACTICAL										
CT707	Project	1	PRACTICAL	50		20		45	_	45
i										
EX701	Energy Environment & Society	10	40	4	16	6	24	30		
ME708	Organization & Management	20	80	8	32	18	45	63		
CT72502	Data Mining Elective I	20	80	8	32	14	45	59	i	
CT72502	Data Mining Elective I PRACTICAL	25	_	10	_	20	20			

Result and Analysis-[5] (Character Accuracy Rate)

- Dataset: 10 marksheets from the 2075 batch, IV/I part
- Comparison: Extracted text vs. Ground truth
- Error Detection: Used Levenshtein distance to identify: Substitutions, Deletions, Insertions
- Average CAR: 94.62% (High OCR accuracy)

Future Enhancement

- Integration of Student Records for Enhanced Analysis in QAA Reports
 - Enables multiparameter analysis of Exam Result
- Enhancing Accuracy with Paid OCR Integration
 - Improves text extraction accuracy
 - Better handling of low-quality images

Application

- In sectors requiring efficient management of large volumes of printed data such as government agencies and private organizations
- In healthcare facilities to digitize patient records.
- In banking for processing financial documents.
- In local shops and stores for managing handwritten/digital bills

Conclusion

- The system successfully automates marksheet processing and report generation, improving efficiency and accuracy in academic record management.
- It enhances accessibility by allowing admins to manage student records and generate reports while enabling students to easily view and download their results.
- Future improvements, such as better OCR handling for noisy marksheets and advanced data visualization, will further refine the system's performance and insights.

Project Schedule

Project Expenses

Particulars	Price				
Miscellaneous	10000				
Total	10000				

References

- P. Pyreddy and W. B. Croft, "TINTIN: A System for Retrieval in Text Tables," Proceedings of the second ACM international conference on Digital libraries, 1997.
- T. Kasar, P. Barlas, S. Adam, C. Chatelain and T. Paquet, "Learning to Detect Tables in Scanned Document Images Using Line Information," 2013 12th International Conference on Document Analysis and Recognition. IEEE, 2013.
- T. Ojala, M. Pietikäinen and T. & Mäenpää, "Gray scale and rotation invariant texture classification with local binary patterns," Springer Berlin Heidelberg, 2000.

References(Contd...)

- K. Wang, B. Babenko and S. Belongie, "End-to-end scene text recognition.," 2011 International conference on computer vision. IEEE, 2011.
- D. N. Tran, T. A. Tran, A. Oh, S. H. Kim and I. S. & Na, "Table detection from document image using vertical arrangement of text blocks," International Journal of Contents, 2015.
- M. Stonebraker, L. A. Rowe and M. Hirohama, "The Implementation Of Postgres,"1990.[Online]. Available: https://www.researchgate.net/publication/3296158_The_Implementation_ Of_Postgres.

THANK YOU