CLAIM STATUS

Claims 1-13 (withdrawn)

Claim 14 (canceled)

Claim 15 (currently amended)

Claims 16 (canceled).

Claim 17 (currently amended)

Claims 18 (canceled).

Claim 19 (currently amended)

AMENDED CLAIM 15

- --15. An exchange for the trading of contracts based upon the volatility of an underlying, comprising performance of the following steps:
- (a) creating at least one volatility contract for a predetermined term, with a predetermined formula for settlement price based on a realized formula, selected from the group consisting of:

(1)
$$S_{vol} = \sqrt{\frac{P}{n-1}\sum_{t=1}^{n}(R_t - \overline{R})^2}$$

wherein:

P = approximate number of trading periods in a calendar year, and each observation point "t" is taken at the same time in each trading period; and

 \bar{R} = mean of all R_t 's;

(2)
$$S_{vol} = \sqrt{\frac{P_{hl}}{n} \sum_{t=1}^{n} (\ln \frac{ht}{lt})^2}$$

wherein:

P_{hl} = total number of trading periods in a year wherein two observations points "h_t" and "l_t" are used, and "h_t" is the high price point and "l_t" the low price point for each such trading period in that year; and

$$R_{t} = f\{h_{t, l_{t}}\}; \text{ and}$$

$$S_{vol} = \sqrt{\frac{P_{ohic}}{n} \sum_{t=1}^{n} \left[\frac{1}{2} (\ln \frac{h_{t}}{l_{t}})^{2} - (2 \ln(2) - 1) (\ln \frac{c_{t}}{\alpha_{t}})^{2}\right]}$$

wherein:

P_{ohle} = total number of trading periods, wherein four observations points "h_t", "l_t",

"c_t" and "o_t" are used, and "h_t" is the high price point, "l_t" the low price point,

"c_t" is the closing, last or daily settlement price, and "o_t" the opening price for each such trading period;

- 4 -

 R_t = $f \{h_t, l_t, c_t, o_t\}$; and

$$S_{vol} = \sqrt{\frac{P}{n} \sum_{t=1}^{n} R_t^2}$$

wherein:

- P = approximate number of trading periods in a calendar year, and each observation point "t" is taken at the same time in each trading period; and
- n = total number of observations within the term; and
- R_t = return of the underlying based upon each of the observation points in time " t_n ";
- (b) trading the at least one volatility contract at market-determined prices from creation through the date of expiration.--

AMENDED CLAIM 17

- --16. A method for the creation and trading of financial instruments based upon the volatility of an underlying comprising the following steps:
- (a) creating at least one volatility contract for a predetermined term, with a predetermined formula for settlement price based on a realized formula, selected from the group consisting of:

(1)
$$S_{vol} = \sqrt{\frac{P}{n-1}} \sum_{t=1}^{n} (R_t - \overline{R})^2$$

wherein:

P = approximate number of trading periods in a calendar year, and each observation point "t" is taken at the same time in each trading period; and

 \overline{R} = mean of all R_t 's;

$$S_{vol} = \sqrt{\frac{P_{hl}}{n} \sum_{t=1}^{n} (\ln \frac{ht}{lt})^2}$$

wherein:

P_{hl} = total number of trading periods in a year wherein two observations points "h_t" and "l_t" are used, and "h_t" is the high price point and "l_t" the low price point for each such trading period in that year; and

$$R_{t} = f\{h_{t}, l_{t}\}; \text{ and}$$

$$(3) \qquad S_{vol} = \sqrt{\frac{P_{ohlc}}{n} \sum_{t=1}^{n} \left[\frac{1}{2} (\ln \frac{h_{t}}{l_{t}})^{2} - (2 \ln(2) - 1) (\ln \frac{c_{t}}{\sigma_{t}})^{2}\right]}$$

wherein:

P_{ohlc} = total number of trading periods, wherein four observations points "h_t", "l_t",

"c_t" and "o_t" are used, and "h_t" is the high price point, "l_t" the low price point,

"c_t" is the closing, last or daily settlement price, and "o_t" the opening price for each such trading period;

 $R_t = f\{h_t l_t, c_t o_t\};$ and

$$S_{vol} = \sqrt{\frac{P}{n} \sum_{t=1}^{n} R_t^2}$$

wherein:

- P = approximate number of trading periods in a calendar year, and each observation point "t" is taken at the same time in each trading period; and
- n = total number of observations within the term; and
- R_t = return of the underlying based upon each of the observation points in time " t_n ";
- (b) trading the at least one volatility contract at market-determined prices from creation through the date of expiration.--

AMENDED CLAIM 19

- --19. A system for the creation, trading, and settlement of financial instruments based upon realized volatility, comprising:
 - (a) creating a volatility contract, by:
 - (1) prederermining a realized volatility period;
 - (2) predetermining a time during a trading period that observations
 - (3) predetermining an annualization factor; and
 - (4) predetermining a formula for the calculation of realized volatility;
 - (b) listing said volatility contract on an exchange;
- (c) trading said volatility contract on said exchange during an anticipatory period and a realized volatility period;
- (d) settling the volatility contract at expiration in accordance with the predetermined formula.
 - (e) wherein the settlement price of the volatility contract is determined in accordance with a formula selected from the group consisting of:

(1)

wherein:

are taken;

and

$$S_{vol} = \sqrt{\frac{P}{n-1}\sum_{t=1}^{n}(R_t - \overline{R})^2}$$

P = approximate number of
trading periods in a calendar year, and each observation point "t" is taken at the
same time in each trading period; and

 \bar{R} = mean of all R_t 's;

(2)
$$S_{vol} = \sqrt{\frac{P_{hl}}{n} \sum_{t=1}^{n} (\ln \frac{ht}{lt})^2}$$

wherein:

P_{hl} = total number of trading periods in a year wherein two observations points "h_t" and "l_t" are used, and "h_t" is the high price point and "l_t" the low price point for each such trading period in that year; and

 $R_{t} = f\{h_{t, l_{t}}\}; \text{ and}$ $S_{vol} = \sqrt{\frac{P_{ohlc}}{n} \sum_{t=1}^{n} \left[\frac{1}{2} (\ln \frac{ht}{l_{t}})^{2} - (2 \ln(2) - 1) (\ln \frac{ct}{ot})^{2}\right]}$

wherein:

P_{ohle} = total number of trading periods, wherein four observations points "h_t", "l_t",

"c_t" and "o_t" are used, and "h_t" is the high price point, "l_t" the low price point,

"c_t" is the closing, last or daily settlement price, and "o_t" the opening price for each such trading period;

 $R_t = f\{h_t l_t, c_t o_t\};$ and

$$S_{vol} = \sqrt{\frac{P}{n} \sum_{t=1}^{n} R_t^2}$$

wherein:

P = approximate number of trading periods in a calendar year, and each observation point "t" is taken at the same time in each trading period; and

n = total number of observations within the term; and

 R_t = return of the underlying based upon each of the observation points in time " t_n ".-