1. Nech $a_0 = 0$, $a_1 = -2$ a

$$a_{n+2} - 4a_{n+1} + 3a_n = 3 \cdot 2^{n+2}$$
 pre každé $n \ge 0$.

Dokážte, že $(a_n) \stackrel{\text{ogf}}{\longleftrightarrow} \frac{16x^2-2x}{(1-x)(1-2x)(1-3x)}$ a nájdite explicitné vyjadrenie a_n .

2. O postupnosti $(b_n)_{n\geq 0}$ je známe, že $b_0=1$ a

$$b_n = 1 + \sum_{k=1}^{n} (n-k)b_k$$
 pre každé $n \ge 1$.

Dokážte, že pre n>0 platí $b_n=F_{2n-1}$

3. Odhadnite s absolútnou presnosťou $O(n^{-3})$ hodnotu

$$\sum_{k>0} ke^{-k/n^2}.$$

4. Odhadnite s absolútnou presnosťou O(1) hodnotu

$$\sum_{k=1}^{2n} (-1)^k H_k.$$

5. Rozhodnite, či existuje kladná konštanta c taká, že

$$S_n = \sum_{k=0}^{\lfloor n/3 \rfloor} {n-2k \choose k} \left(\frac{-4}{27}\right)^k = \Theta(c^n).$$

Ak existuje, nájdite ju. Ak neexistuje, nájdite čo najmenšiu konštantu d takú, že $S_n = O(d^n)$.