Dinámica del cuerpo rígido

Un cuerpo rueda sin deslizar por un plano inclinado

Síntesis: Dinámica del cuerpo rígido

Conservación de cantidad de movimiento lineal (2da Ley de Newton)

$$\sum \bar{F}_{Ext} = M \cdot \bar{a}_{cm}$$

Conservación de cantidad de movimiento angular

$$\sum \bar{T}_O^{F_{Ext}} = I_O \cdot \bar{\gamma}$$

(sólo si el punto O es el CM o el CIR)

- Momento de inercia: $I_O = \sum r_{i/O}^2 \cdot m_i$ ó $I_O = \int r_{i/O}^2 \cdot dm$
- Teorema de Steiner: $I_O = I_{cm} + M \cdot r_{cm/O}^2$

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar

• DCL?

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar.

• ¿Fuerza de rozamiento?

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar.

- ¿Qué significa que rueda sin deslizar? Que la velocidad relativa entre las superficies en contacto en cero. Entonces el punto de contacto es CIR (porque el plano está quieto).
- ¿Cómo es la fuerza de rozamiento en este caso?
 - La fuerza de rozamiento es estática (no la máxima!)
 - ¿Cuál es la dirección y sentido?
 - Dirección: paralelo al plano.
 - Sentido: ¿?

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar.

• ¿Es posible determinar el sentido de la fuerza de rozamiento? En este caso SI

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar.

- Sobre el movimiento del objeto:
 - Al estar rodando hacia abajo, la velocidad angular es hacia "adentro" de la pantalla. (Para este sistemas de coordenadas la velocidad angular es negativa). \bigcirc \bigcirc
 - Como se mueve cada vez más rápido, la aceleración angular tiene el mismo sentido que la velocidad angular.

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar

• DCL

Un objeto de masa M y radio R sube por un plano inclinado (α) rodando sin deslizar

• DCL?

Un objeto de masa M y radio R sube por un plano inclinado (α) rodando sin deslizar.

• ¿Es posible determinar el sentido de la fuerza de rozamiento? En este caso SI

Un objeto de masa M y radio R sube por un plano inclinado (α) rodando sin deslizar.

- Sobre el movimiento del objeto:
 - Al estar rodando hacia arriba, la velocidad angular es hacia "afuera" de la pantalla. (Para este sistemas de coordenadas la velocidad angular es positiva). \bigcirc \bigcirc
 - Como se mueve cada vez más lento, la aceleración angular tiene sentido contrario a la velocidad angular.

Un objeto de masa M y radio R sube por un plano inclinado (α) rodando sin deslizar

Un objeto de masa M y radio R sube por un plano inclinado (α) rodando sin deslizar

• DCL (es igual a la situación anterior)

• ¿Es necesario hacer este análisis para determinar la fuerza de rozamiento? NO. Pero es recomendable "anticipar" resultados.

Un objeto de masa M y radio R se deja caer por un plano inclinado (α) rodando sin deslizar. Expresar en función de datos:

- la aceleración angular del objeto
- la aceleración del CM del objeto
- la fuerza de rozamiento
- ¿Este resultado es independiente de la distribución de masa del objeto?

• DCL y ecuaciones de movimiento

N

IMPORTANTE: Ser coherentes con los signos! Yo asumo, sin recordar lo que vimos antes que $\bar{\gamma} = \gamma \vec{k}$. Estaría bien si planteara esto

considerando que $\bar{\gamma} = -\gamma \check{k}$. Pero no mezclar!

$$\sum \bar{F} = M\bar{a}_{CM}$$

$$i)$$
 $Psen\alpha - F_r = Ma_{CM}$

$$\check{j}$$
) $N - P\cos\alpha = 0$

$$\sum \bar{T}_{CM} = I_{CM} \bar{\gamma}$$

$$\bar{r}_{CM \to CIR} \times \bar{F}_r = -R \breve{j} \times (-F_r \breve{i}) = I_{CM} \gamma \breve{k}$$
 $\breve{k}) \qquad -RF_r = I_{CM} \gamma$

Ecuaciones de movimiento

$$Psen\alpha - F_r = Ma_{CM}$$
$$-RF_r = I_{CM}\gamma$$

• Ecuaciones de vínculo: El objeto es un CR y rueda sin deslizar

IMPORTANTE: Asumí que $\bar{\gamma} = \gamma \check{k}$. Estaría bien si hubiese planteado que $\bar{\gamma} = -\gamma \check{k}$. Pero no mezclar!

• Entonces:

$$Psen\alpha - F_r = Ma_{CM}$$

$$-RF_r = I_{CM}\gamma \qquad F_r = -\frac{I_{CM}\gamma}{R} = \frac{I_{CM} \cdot a_{CM}}{R^2}$$

$$a_{CM} = -\gamma R$$

$$Psen\alpha - \frac{I_{CM} \cdot a_{CM}}{R^2} = Ma_{CM}$$

$$\frac{R^2 \cdot Psen\alpha}{(M \cdot R^2 + I_{CM})} = a_{CM}$$

Momento de inercia

• En los casos de cuerpos con distribución de masa continua es un dato (no tienen que calcularlo)

TABLA DE MOMENTOS DE INERCIA PARA ALGUNOS CUERPOS				
	ESFERA	$I_{CM} = \frac{2}{5}MR^2$	$k^2 = \frac{2}{5}R^2$	$k = \sqrt{\frac{2}{5}}R$
	CILINDRO	$I_{CM} = \frac{1}{2}MR^2$	$k^2 = \frac{1}{2}R^2$	$k = \sqrt{\frac{1}{2}}R$
	VARILLA	$I_{CM} = \frac{1}{12}ML^2$	$k^2 = \frac{1}{12}L^2$	$k = \sqrt{\frac{1}{12}}L$
\bigcirc	ARO	$I_{CM} = MR^2$	$k^2 = R^2$	k = R

k=Radio de giro baricéntrico.

Es un coeficiente que indica el equivalente del momento de inercia de ese cuerpo para el caso de una partícula que se encuentra a una distancia k del eje de giro.

En cuerpos con geometría circular se puede escribir como NMR²

- Podemos considerar que I_{CM}=MK², siendo K el radio de giro baricéntrico del objeto, para simplificar un poco esta expresión general.
- O bien que I_{CM}=N.M.R². Entonces:

$$\frac{R^2 \cdot Psen\alpha}{(M \cdot R^2 + I_{CM})} = \alpha_{CM}$$

$$\frac{R^2 \cdot M \cdot g \cdot sen\alpha}{(M \cdot R^2 + N \cdot M \cdot R^2)} = a_{CM}$$

$$\frac{g \cdot sen\alpha}{1+N} = a_{CM}$$

• Finalmente:
$$a_{CM} = \frac{g \cdot sen\alpha}{1 + N}$$

• Si reemplazamos obtenemos que: $\gamma = -\frac{a_{CM}}{R} = -\frac{g \cdot sen\alpha}{R \cdot (1+N)}$

$$F_r = \frac{I_{CM} \cdot a_{CM}}{R^2} = \frac{N \cdot M \cdot R^2}{R^2} \left(\frac{g \cdot sen\alpha}{1+N} \right) = N \cdot M \left(\frac{g \cdot sen\alpha}{1+N} \right)$$

 Este valor es positivo, lo que significa que el sentido indicado en el DCL es el correcto.

Nota: Aro N=1, Disco N=1/2, Esfera hueca N=2/3, Esfera maciza N=2/5

• RESULTADOS:

$$\bar{a}_{CM} = \frac{g \cdot sen\alpha}{1+N} \check{t}$$

$$\bar{\gamma} = -\frac{g \cdot sen\alpha}{R \cdot (1+N)} \check{k}$$

$$\bar{F}_r = -N \cdot M \left(\frac{g \cdot sen\alpha}{1+N}\right) \check{t}$$

Nota: Aro N=1, Disco N=1/2, Esfera hueca N=2/3, Esfera maciza N=2/5

Análisis del resultado del ejemplo

• Si:

$$a_{CM} = \frac{g \cdot sen\alpha}{1 + N}$$

Esto significa que la aceleración del CM no depende de la masa ni del radio.
 Sólo de la distribución de la masa (por el coeficiente del momento de inercia)

Cilindros macizos: Distinta masa, radio y largo

Walter Lewin (MIT)

Cilindros con distinta distribución de masa

Walter Lewin (MIT)