Peer prediction markets to elicit unverifiable information

Aurélien Baillon ¹ Cem Peker ² Sophie van der Zee ³

March 27, 2023

¹Department of Quantitative Finance and Economics, Emlyon Business School

²School of Management, Polytechnic University of Milan

³Erasmus School of Economics, Erasmus University Rotterdam

Education:

- PhD in Economics (30.03.2023, Erasmus University Rotterdam)
 Advisors: Aurélien Baillon, Han Bleichrodt, Peter Wakker.
- BSc in Industrial Engineering

Current position: Postdoctoral researcher at Polytechnic University of Milan, Italy (Sep 2022 -)

Education:

- PhD in Economics (30.03.2023, Erasmus University Rotterdam)
 Advisors: Aurélien Baillon, Han Bleichrodt, Peter Wakker.
- BSc in Industrial Engineering

Current position: Postdoctoral researcher at Polytechnic University of Milan, Italy (Sep 2022 -)

Fields: Decision Theory, Behavioral Economics, Experimental Economics

Education:

- PhD in Economics (30.03.2023, Erasmus University Rotterdam)
 Advisors: Aurélien Baillon, Han Bleichrodt, Peter Wakker.
- BSc in Industrial Engineering

Current position: Postdoctoral researcher at Polytechnic University of Milan, Italy (Sep 2022 -)

Fields: Decision Theory, Behavioral Economics, Experimental Economics

Interests:

Subjective judgments on uncertain events, wisdom of crowds.

Education:

- PhD in Economics (30.03.2023, Erasmus University Rotterdam)
 Advisors: Aurélien Baillon, Han Bleichrodt, Peter Wakker.
- BSc in Industrial Engineering

Current position: Postdoctoral researcher at Polytechnic University of Milan, Italy (Sep 2022 -)

Fields: Decision Theory, Behavioral Economics, Experimental Economics

Interests:

- Subjective judgments on uncertain events, wisdom of crowds.
- Belief elicitation with simple bets & market mechanisms.

Education:

- PhD in Economics (30.03.2023, Erasmus University Rotterdam)
 Advisors: Aurélien Baillon, Han Bleichrodt, Peter Wakker.
- BSc in Industrial Engineering

Current position: Postdoctoral researcher at Polytechnic University of Milan, Italy (Sep 2022 -)

Fields: Decision Theory, Behavioral Economics, Experimental Economics

Interests:

- Subjective judgments on uncertain events, wisdom of crowds.
- Belief elicitation with simple bets & market mechanisms.
- Lying and misreporting in surveys.

Peer prediction markets to elicit unverifiable information

Aurélien Baillon ¹ Cem Peker ² Sophie van der Zee ³

March 27, 2023

¹Department of Quantitative Finance and Economics, Emlyon Business School

²School of Management, Polytechnic University of Milan

³Erasmus School of Economics, Erasmus University Rotterdam

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Response is informative if you...

- 1. ...recall your experience accurately (cognitive effort).
- 2. ...report honestly (incentives to lie?).

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Response is informative if you...

- 1. ...recall your experience accurately (cognitive effort).
- 2. ...report honestly (incentives to lie?).

Incentivize carefully considered and truthful answers?

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Response is informative if you...

- 1. ...recall your experience accurately (cognitive effort).
- 2. ...report honestly (incentives to lie?).

Incentivize carefully considered and truthful answers?

Problem: Your answer is unverifiable!

Carefully considered and truthful answers

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Incentivize truthfulness when the truth is unverifiable?

Carefully considered and truthful answers

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Incentivize truthfulness when the truth is unverifiable?

Peer Prediction (Miller et al., 2005):

Your honest answer ↔ Your prediction on others' answers

Carefully considered and truthful answers

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Incentivize truthfulness when the truth is unverifiable?

Peer Prediction (Miller et al., 2005):

- Your honest answer ↔ Your prediction on others' answers
- Prediction on others' answers is verifiable.
 - → can be used for incentivization!

Your prediction on others' answers is verifiable.

Your prediction on others' answers is verifiable.

- One-shot market, buy/sell a single asset.
- Trade \equiv A bet on others' answers.

Your prediction on others' answers is verifiable.

- One-shot market, buy/sell a single asset.
- Trade \equiv A bet on others' answers.
- Trades reveal carefully considered and truthful answers.

Your prediction on others' answers is verifiable.

- One-shot market, buy/sell a single asset.
- Trade \equiv A bet on others' answers.
- Trades reveal carefully considered and truthful answers.
- Theory & evidence from 2 experimental studies.

The Formal Framework

- $\bullet \ \ \textit{Center} \ \ \text{asks a binary question} \ \ \{\textit{Yes},\textit{No}\}$
- *N* risk-neutral *agents*

- Center asks a binary question { Yes, No}
- N risk-neutral agents
- Each agent i can receive a costly signal $\tau_i \in \{Yes, No\}$. Signal cost $= c_i$
- Signal $\tau_i \equiv$ Agent *i*'s honest answer

- Center asks a binary question { Yes, No}
- N risk-neutral agents
- Each agent i can receive a costly signal $\tau_i \in \{Yes, No\}$. Signal cost $= c_i$
- Signal $\tau_i \equiv$ Agent *i*'s honest answer

Assumptions:

- Common prior expectation $E[\omega]$ on ω .
- $E[\omega]$ is public knowledge.
- Agents follow Bayesian updating.

 $\ensuremath{\mathtt{3}}$ groups of agents with posterior expectations:

$$E[\omega| ext{effort and } au_i = Yes]$$

 $E[\omega| ext{effort and } au_i = No]$
 $E[\omega| ext{no effort}] = ext{Prior} = E[\omega]$

Posterior expectations satisfy:

$$E[\omega|\tau_i = Yes] > E[\omega] > E[\omega|\tau_i = No]$$

"Yes"-types expect $\omega > E[\omega] = \text{prior.}$

"No"-types expect $\omega < E[\omega] = \text{prior.}$

Peer prediction market

One-shot market

- Single asset
- Asset price $= p = E[\omega]$
- Asset value = v = proportion of agents who buy

One-shot market

- Single asset
- Asset price $= p = E[\omega]$
- Asset value = v = proportion of agents who buy

Numerical example:

- Currency is dollar, $\pi = 10$
- Price: $p = E[\omega] = 0.5$
- 40% of the participants buy, v = 0.4
- Buyer's payoff: 10(0.4 0.5) = -\$1
- Seller's payoff: 10(0.5 0.4) = \$1

 ${\sf Strategy} = {\sf Effort} \ {\sf or} \ {\sf not} \ + \ {\sf probability} \ {\sf of} \ {\sf buy} \ {\sf in} \ {\sf various} \ {\sf situations}$

 ${\sf Strategy} = {\sf Effort} \ {\sf or} \ {\sf not} \ + \ {\sf probability} \ {\sf of} \ {\sf buy} \ {\sf in} \ {\sf various} \ {\sf situations}$

Agent i's full strategy profile = $(e_i, R_i, R_i^{no}, R_i^{yes})$

- $e_i \in \{0,1\}$ effort or no effort
- R_i probability of buy if $e_i = 0$,
- R_i^{no} probability of buy if $e_i = 1$ and $\tau_i = No$,
- R_i^{yes} probability of buy if $e_i = 1$ and $\tau_i = Yes$.

 ${\sf Strategy} = {\sf Effort} \ {\sf or} \ {\sf not} \ + \ {\sf probability} \ {\sf of} \ {\sf buy} \ {\sf in} \ {\sf various} \ {\sf situations}$

Agent i's full strategy profile = $(e_i, R_i, R_i^{no}, R_i^{yes})$

- $e_i \in \{0,1\}$ effort or no effort
- R_i probability of buy if $e_i = 0$,
- R_i^{no} probability of buy if $e_i = 1$ and $\tau_i = No$,
- R_i^{yes} probability of buy if $e_i = 1$ and $\tau_i = Yes$.

Center would like: $e_i = 1$, $R_i^{no} = 0$, and $R_i^{yes} = 1$.

 $Strategy = Effort \ or \ not \ + \ probability \ of \ buy \ in \ various \ situations$

Agent i's full strategy profile = $(e_i, R_i, R_i^{no}, R_i^{yes})$

- $e_i \in \{0,1\}$ effort or no effort
- R_i probability of buy if $e_i = 0$,
- R_i^{no} probability of buy if $e_i = 1$ and $\tau_i = No$,
- R_i^{yes} probability of buy if $e_i = 1$ and $\tau_i = Yes$.
- Center would like: $e_i = 1$, $R_i^{no} = 0$, and $R_i^{yes} = 1$.
- → Truthful strategy: Trades reflect carefully considered and honest answers.

Bayesian game

Assumption. The following are common knowledge:

- The market mechanism
- Signal technology, beliefs, costs and the strategy space.
- Risk-neutrality and Bayesianism of agents.

Ensures that we have a *Bayesian game* (Osborne and Rubinstein, 1994, Definition 25.1).

For convenience, we let $N \to \infty$.

Equilibrium analysis

Equilibria

Truthful equilibrium: For $N \to \infty$, truthful strategy is a Nash equilibrium if the rewards are scaled sufficiently high such that

$$rac{c_i}{\pi} < E[\omega] \left(E[\omega | au_i = extsf{Yes}] - E[\omega]
ight) + \left(1 - E[\omega]
ight) \left(E[\omega] - E[\omega | au_i = extsf{No}]
ight)$$

for all $i \in \{1, \dots, N\}$

Truthful equilibrium: For $N \to \infty$, truthful strategy is a Nash equilibrium if the rewards are scaled sufficiently high such that

$$rac{c_i}{\pi} < E[\omega] \left(E[\omega | au_i = ext{Yes}] - E[\omega]
ight) + \left(1 - E[\omega]
ight) \left(E[\omega] - E[\omega | au_i = ext{No}]
ight)$$

for all
$$i \in \{1, \dots, N\}$$

In the truthful equilibrium...

- All agents make effort
- Yes-types buy, No-types sell
- ullet Carefully considered and truthful answer \equiv Equilibrium trade

Truthful equilibrium: Full effort, Yes-types buy, No-types sell

How?

Truthful equilibrium: Full effort, Yes-types buy, No-types sell

How?

Types
$$E[\omega|\tau_i = No] < E[\omega] < E[\omega|\tau_i = Yes]$$

Truthful equilibrium: Full effort, Yes-types buy, No-types sell

How?

Types
$$E[\omega|\tau_i=No]$$
 $<$ $E[\omega]$ $<$ $E[\omega|\tau_i=Yes]$ Market

Truthful equilibrium: Full effort, Yes-types buy, No-types sell

How?

Types
$$E[\omega|\tau_i=No]$$
 $<$ $E[\omega]$ $<$ $E[\omega|\tau_i=Yes]$ Market $E[v|\tau_i=No]$ $<$ p $<$ $E[v|\tau_i=Yes]$

Asset value (v) \equiv Proportion of buyers \rightarrow Proportion of Yes-type (ω)

Truthful equilibrium: Full effort, Yes-types buy, No-types sell

How?

Types
$$E[\omega|\tau_i=No] < E[\omega] < E[\omega|\tau_i=Yes]$$

Market $E[v|\tau_i=No]$

Optimal: Buy if $\tau_i = \textit{Yes}$, sell if $\tau_i = \textit{No}$

Truthful equilibrium: Full effort, Yes-types buy, No-types sell

How?

Types
$$E[\omega | \tau_i = No] < E[\omega] < E[\omega | \tau_i = Yes]$$

Market $E[v | \tau_i = No]$

Optimal: Buy if $\tau_i = Yes$, sell if $\tau_i = No$ Incentive to "learn" your type \rightarrow effort

Multiple equilibria

No-effort equilibrium: If $c_i > \pi$ for all $i \in \{1, ..., N\}$, then Nash equilibria are characterized by $e_i = 0$ and $R_i \in \{0, E[\omega], 1\}$. Expected payoffs are 0.

 \rightarrow No effort when costs are too high.

Multiple equilibria

No-effort equilibrium: If $c_i > \pi$ for all $i \in \{1, ..., N\}$, then Nash equilibria are characterized by $e_i = 0$ and $R_i \in \{0, E[\omega], 1\}$. Expected payoffs are 0.

 \rightarrow No effort when costs are too high.

Partial effort equilibrium: There are NE in which K < N agents exert no effort and buy with probability $E[\omega]$ while the other agents are truthful.

 \rightarrow People with low cost exert effort, others do not.

Multiple equilibria

All-buy or all-sell: There exists Nash equilibria such that $e_i = 0$ and $R_i = 0$ or $R_i = 1$ for all i. Expected payoffs are 0.

Multiple equilibria

All-buy or all-sell: There exists Nash equilibria such that $e_i = 0$ and $R_i = 0$ or $R_i = 1$ for all i. Expected payoffs are 0.

Truthful equilibrium: Strictly higher payoff than no-effort, all-buy and all-sell equilibria

Psychological costs

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Reporting "Yes" is shameful \rightarrow higher cost?

Psychological costs

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Reporting "Yes" is shameful \rightarrow higher cost?

- Asymmetric reporting cost of reporting "Yes".
- Deception cost of knowing that you lied.

Psychological costs

"Have you stood less than 6 feet apart from another person in a queue yesterday?"

Reporting "Yes" is shameful \rightarrow higher cost?

- Asymmetric reporting cost of reporting "Yes".
- Deception cost of knowing that you lied.

Truthful equilibrium if π is scaled appropriately

Experimental Evidence

Testing PPM

Two experimental studies.

Study 1:

- Closely follows the theoretical model.
- Real effort task.

Study 2:

- Survey on behavior under Covid-19 safety guidelines.
- Psychological costs & practical feasibility.

Study 1 - A pair of boxes

One of the boxes is selected at random (Q= "more yellow" or I= "less yellow").

Guess which one.

Study 1 - A pair of boxes

One of the boxes is selected at random (Q= "more yellow" or I= "less yellow").

Guess which one. Want to see a ball from the selected box?

Study 1 - Real effort task

Count the number of 0s and you draw..

OR

Color of your draw \equiv signal

Link with the theory

- Let's say a yellow draw is equivalent to $(\tau_i = Yes)$.
- $E[\omega] = 0.6$ (common prior expectation on prop. yellow).

Link with the theory

- Let's say a yellow draw is equivalent to $(\tau_i = Yes)$.
- $E[\omega] = 0.6$ (common prior expectation on prop. yellow).
- $c_i = \text{cognitive effort of counting 0s in matrix.}$

Link with the theory

- Let's say a yellow draw is equivalent to $(\tau_i = Yes)$.
- $E[\omega] = 0.6$ (common prior expectation on prop. yellow).
- $c_i = \text{cognitive effort of counting 0s in matrix.}$
- Yellow draw \rightarrow Higher expectation on Yellow \rightarrow Box Q is the truthful pick.

Study 1 - Three treatments

- Flat fee: £3.25 completion fee.
- Accuracy incentives: £3.25 \pm 0.20 per prediction task if the pick is correct or not.
- PPM: £3.25 + PPM incentives.
 Bonus in each question:
 (% of people who pick the same box) (prior).

"Accuracy" is a benchmark for verifiable tasks.

Procedure

- Online experiment (Qualtrics), May 2020.
- 210 U.S. citizens, students, recruited on Prolific.
- 10 tasks (10 pairs of boxes, 10 matrices).
- Quiz about incentives (pre and post experiment).

Study 1 - Effort

How often the effort task is completed?

Accuracy > PPM > Flat in effort elicitation

Study 1 - Picks

Picks are as predicted by the truthful equilibrium.

Marginal effects, logistic regression

Dep. var.: P(effort task completed)					
	(whole sample)		(filtered sample)		
	(1)	(2)	(3)	(4)	
PPM	0.16**	0.14**	0.16**	0.14*	
	(0.05)	(0.06)	(0.06)	(0.06)	
Accuracy	0.23***	0.23***	0.23***	0.23***	
	(0.05)	(0.05)	(0.05)	(0.05)	
Age		-0.00		-0.00	
		(0.00)		(0.00)	
Female?		0.04		0.04	
		(0.04)		(0.04)	
US resident?		-0.03		-0.02	
		(0.07)		(0.07)	
Num. obs.	2100	2070	2060	2030	
LR test p-val	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
*** . 0.001 ** . 0.01 * . 0.05 + . 0.1					

^{***}p < 0.001; **p < 0.01; *p < 0.05; *p < 0.1

PPM can elicit effort when Accuracy is not feasible.

Study 2

Study 1: Simple task, carefully controlled setup.

Study 2: Online field experiment

- Health & safety guidelines during the Covid-19 pandemic.
- Did people follow them? (Difficult to measure)

Study 2

Study 1: Simple task, carefully controlled setup.

Study 2: Online field experiment

- Health & safety guidelines during the Covid-19 pandemic.
- Did people follow them? (Difficult to measure)
- Would they self-report their unsafe behavior? (Unverifiable)
- Covid-19 survey with the PPM incentives.
- Weekly survey in the UK, 3 weeks.

Study 2 - Covid Survey

Question 2 of 8 (show instructions)

Please try to remember how many times you were in the following situation:

I was seated less than 2 metres away from someone who is not part of my household in a restaurant/cafe/bar at least once in the last 7 days.

True (picked by 44% last week)

False (picked by 56% last week)

Submit

Study 2 - Covid Survey

Question 2 of 8 (show instructions) Please try to remember how many times you were in the following situation: I was seated less than 2 metres away from someone who is not part of my household in a restaurant/cafe/bar at least once in the last 7 days. True False (picked by 44% last week) (picked by 56% last week) Submit

"True" could be underreported.

PPM may elicit a higher % of "True" responses

Study 2 - True/False statements

1.	I have been in an elevator with another person in it at least once
	in the last 7 days
2.	I may have stood less than 2 metres away from the person in front
	in a queue at least once in the last 7 days
3.	I was seated less than 2 metres away from someone who is not part
	of my household in a restaurant/cafe/bar at least once in the last
	7 days
4.	I have been in a social gathering with more than 6 people who are
	not part of my household at least once in the last 7 days
5.	I have been in a busy shop/market with no restrictions on number
	of customers at least once in the last 7 days
6.	I participated in an indoor activity with more than 6 people who
	are not part of my household at least once in the last 7 days
7.	I have been in a shop/market where one or more of the staff did
	not wear a mask at least once in the last 7 days
8.	I had an interaction with someone experiencing high body temper-
	ature, persistent cough or loss of taste/smell at least once in the
	last 7 days

Study 2 - True/False statements

1.	I have been in an elevator with another person in it at least once
	in the last 7 days
2.	I may have stood less than 2 metres away from the person in front
	in a queue at least once in the last 7 days
3.	I was seated less than 2 metres away from someone who is not part
	of my household in a restaurant/cafe/bar at least once in the last
	7 days
4.	I have been in a social gathering with more than 6 people who are
	not part of my household at least once in the last 7 days
5.	I have been in a busy shop/market with no restrictions on number
	of customers at least once in the last 7 days
6.	I participated in an indoor activity with more than 6 people who
	are not part of my household at least once in the last 7 days
7.	I have been in a shop/market where one or more of the staff did
	not wear a mask at least once in the last 7 days
8.	I had an interaction with someone experiencing high body temper-
	ature, persistent cough or loss of taste/smell at least once in the
	last 7 days

Study 2 - True/False statements

1.	I have been in an elevator with another person in it at least once
	in the last 7 days
2.	I may have stood less than 2 metres away from the person in front
	in a queue at least once in the last 7 days
3.	I was seated less than 2 metres away from someone who is not part
	of my household in a restaurant/cafe/bar at least once in the last
	7 days
4.	I have been in a social gathering with more than 6 people who are
	not part of my household at least once in the last 7 days
5.	I have been in a busy shop/market with no restrictions on number
	of customers at least once in the last 7 days
6.	I participated in an indoor activity with more than 6 people who
	are not part of my household at least once in the last 7 days
7.	I have been in a shop/market where one or more of the staff did
	not wear a mask at least once in the last 7 days
8.	I had an interaction with someone experiencing high body temper-
	ature, persistent cough or loss of taste/smell at least once in the
	last 7 days

Study 2 - Link with the theory

If you report True,

PPM bonus = % True this week - % True last week (=44).

Study 2 - Link with the theory

If you report True,

PPM bonus = % True this week - % True last week (=44).

Analogous to PPM when,

Last week's % True \rightarrow Prior for this week.

Study 2 - Link with the theory

Costly signal:

- Mental cost of remembering.
- Shame of answering "True".

Study 2 - Treatments

Three treatments:

Flat (fixed payment)

I may have stood less than 2 metres away from the person in front in a queue at least once in the last 7 days.

True

False

Study 2 - Treatments

Three treatments:

Flat (fixed payment)

I may have stood less than 2 metres away from the person in front in a queue at least once in the last 7 days.

True False

PPM (incentives), Flat-PastRate (fixed payment)*

True False
(picked by 65% last week) (picked by 35% last week)

* tests the effect of just showing the last week's %s.

Procedure

- Weekly survey in the UK (Qualtrics).
 Three weeks, October-November 2020.
- 50-55 subjects per week & treatment, recruited on Prolific. Fixed payment: £1.75.
- Week 0 initializes % True and % False.
 Weeks 1 & 2 implement all treatments.
- Response times are recorded.

Study 2 - Marginal effects, Pr(Response = "True")

		(week 1)			(week 2)	
	(filtered sample)		(all)	(filtered sample)		(all)
	(1)	(2)	(3)	(4)	(5)	(6)
Flat-PastRate	0.05	0.04	0.04	-0.00	-0.01	-0.00
	(0.04)	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)
PPM	0.11***	0.09**	0.09**	0.08*	0.08*	0.08*
	(0.03)	(0.03)	(0.03)	(0.04)	(0.04)	(0.04)
Response time		0.00	0.00		0.00	0.00
		(0.00)	(0.00)		(0.00)	(0.00)
Age		-0.00	-0.00		-0.00	-0.00
		(0.00)	(0.00)		(0.00)	(0.00)
Female?		0.02	0.02		-0.02	-0.02
		(0.03)	(0.03)		(0.03)	(0.03)
UK citizen?		-0.00	0.00		0.04	0.04
		(0.03)	(0.03)		(0.04)	(0.04)
Num. obs.	1259	1259	1264	1279	1279	1280
LR test p-val	0.0054	0.0123	0.0144	0.0180	0.0455	0.0316

^{***}p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Higher rate of self-reported unsafe behavior in the PPM treatment.

Literature

Mechanism design literature: Explored ways to reveal private signals (Crémer and McLean, 1988).

Sender-Receiver games, Bayesian Elicitation (Whitmeyer, 2019)

Literature

Mechanism design literature: Explored ways to reveal private signals (Crémer and McLean, 1988).

Sender-Receiver games, Bayesian Elicitation (Whitmeyer, 2019)

Peer prediction method (Miller et al., 2005): Similar framework, but

- the complete prior must be known.
- scoring is not transparent.

Bayesian truth-serum (Prelec, 2004) and follow-ups:

• Detail-free (implementer needs less), but more demanding from respondents (answer + prediction).

Usually, costly effort to acquire signal not modelled.

Conclusion

Peer prediction markets: Transparent, easy to implement.

Conclusion

Peer prediction markets: Transparent, easy to implement.

Strong assumptions, but same as or weaker than in the literature.

Limitations: Binary questions only, multiple equilibria.

Thank you!

https://cempeker.github.io/

References

- Crémer, J. and McLean, R. P. (1988). Full extraction of the surplus in bayesian and dominant strategy auctions. *Econometrica: Journal of the Econometric Society*, pages 1247–1257.
- Miller, N., Resnick, P., and Zeckhauser, R. (2005). Eliciting informative feedback: The peer-prediction method. *Management Science*, 51(9):1359–1373.
- Osborne, M. J. and Rubinstein, A. (1994). A course in game theory. MIT press.
- Prelec, D. (2004). A bayesian truth serum for subjective data. *Science*, 306(5695):462–466.
- Whitmeyer, M. (2019). Bayesian elicitation. arXiv preprint arXiv:1902.00976.