

Adhi Harmoko Saputro

Tujuan

- Mampu menjelaskan sistem pengolahan digital
- Mampu melakukan pemrosesan sinyal dalam domain waktu diskrit dan frekuensi diskrit
- Mampu menerapkan pengolahan digital untuk aplikasi filter digital

Silabus

- Pengenalan sinyal-sistem
- Konversi sinyal analog ke digital dan sebaliknya
- Sinyal waktu diskrit
- Transformasi Z dan penerapannya untuk sistem linear invarian waktu (LTI)
- Analisis frekuensi sinyal waktu kontinu dan analisis frekuensi sinyal waktu diskrit
- Transformasi Fourier untuk sinyal waktu diskrit
- Konsep filter, filter digital FIR, IIR, penerapan filter digital

Buku Referensi

- Digital Signal Processing Using MATLAB® Third Edition, *Vinay K. Ingle, John G. Proakis*, Northeastern University, 2012
- Digital Signal Processing: System Analysis and Design, *Paulo S. R. Diniz, Eduardo A. B. da Silva and Sergio L. Netto*, Cambridge University Press, 2002
- Digital Signal Processing using MATLAB and Wavelets, Michael Weeks, Infinity Science Press LLC, 2007
- Fundamentals of Digital Signal Processing using MATLAB, *Robert J. Schilling and Sandra L. Harris*, Cengage Learning, 2012
- Digital Signal Processing: Principles, Algorithms and Application,
 John G. Proakis, Dimitris K Manolakis, Prentice Hall, 2012

Prasyarat

- Fisika Modern
- Fisika Matematika 2
- Elektronika 2
- Komputasi Fisika
- Matlab Programming

Instrumen Evaluasi

- Tugas
- Ujian Tengah Semester
- Ujian Akhir Semester

Komponen Nilai

Kisaran Nilai

Nilai	Grade
≥ 85	A
80 - 84.9	A-
75 – 79.9	B+
70 - 74.9	В
65 - 69.9	B-

Nilai	Grade
60 - 64.9	C+
55 – 59.9	C
50 - 54.9	D
40 - 49.9	
0 - 40	Е

Aturan Kelas

- · Hadir paling lambat 15 menit setelah kuliah dimulai
- Tidak boleh memakai sandal jepit
- Tidak boleh mencontek. Tertangkap mencontek akan diberi nilai E.
- Tugas harus dikerjakan dan dikumpulkan tepat pada waktunya.
 Tidak mengerjakan dan/atau tidak mengumpulkan tugas pada waktunya mendapatkan nilai nol untuk tugas terkait, kecuali sakit dengan surat keterangan dokter.
- Tidak mengikuti presentasi di kelas mengakibatkan nilai terkait presentasi tadi sama dengan nol, kecuali sakit dengan surat keterangan dokter.

Adhi Harmoko Saputro

- Signal
 - A signal is a function of independent variables such as time, distance, position, temperature and pressure
 - Signals play an important role in our daily life. Most signals we encounter are generated naturally.
 - However, a signal can also be generated synthetically or by a computer.

- Depending on the nature of the independent variables and the value of the function, we can classify the signals as follows
 - Scalar signal
 - A signal generated by a single source
 - Vector signal (or multichannel signal)
 - A signal generated by multiple sources
 - One dimensional (1-D) signal
 - A function of a single independent variable
 - Multidimensional (M-D) signal
 - A function of more than one independent variables

- Continuous-time signal x(t)
 - The independent variable is continuous
- Discrete-time signal (sequence) x(n)
 - The independent variable is discrete
- Analog signal
 - A continuous-time signal with a continuous amplitude
- Quantized-boxcar signal
 - A continuous-time signal with a discrete-value amplitude
- Digital signal
 - A discrete-time signal with a discrete-value amplitude
- Sampled-data signal
 - A discrete-time signal with a continuous amplitude

- Deterministic signal
 - A signal that can be uniquely determined by a well-defined process, such as a mathematical expression or rule, or table look-up.
- Random signal
 - A single that is generated in a random fashion and cannot be predicted ahead of time.

- Periodic signal
 - A signal that repeats itself in a periodic fashion from negative to positive infinity.

$$x(t) = x(t + kT)$$

$$x(n) = x(n + kN)$$

- Aperiodic signal
 - A signal that extends to both positive and negative infinity without repeating in a periodic pattern.

- Power signal
 - An infinite energy signal with finite average power.

$$P = \lim_{T \to \infty} \frac{1}{T} \int_0^T |x(t)|^2 dt < \infty \qquad P = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 < \infty$$

- Energy signal
 - An finite energy signal with zero average power.

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \qquad E = \sum_{-\infty}^{\infty} |x(n)|^2 < \infty$$

- a periodic sequence power signal
- a finite-length sequence energy signal

- System
 - A system is any process that produces an output signal in response to an input signal.

- Depending on the types of the signal processed, we can classify the systems as follows:
 - Analog input analog output
 - Digital recording of music
 - Analog input digital output
 - Touch tone phone dialing
 - Digital input analog output
 - Text to speech
 - Digital input digital output
 - Compression of a file on computer

- Depending on the types of the signal processed, we can classify the systems as follows:
 - Continuous-time system
 - input and output continuous-time signals
 - Discrete-time system
 - input and output discrete-time signals

- Signal Processing
 - A signal carries information!

- The objective of signal processing:
 - To extract, enhance, store and transmit the useful information carried by the signal.

Signal Processing

- Humans are the most advanced signal processors
 - speech and pattern recognition, speech synthesis,...
- We encounter many types of signals in various applications
 - Electrical signals: voltage, current, magnetic and electric fields,...
 - Mechanical signals: velocity, force, displacement,...
 - Acoustic signals: sound, vibration,...
 - Other signals: pressure, temperature,...
- Most real-world signals are analog
 - They are continuous in time and amplitude
 - Convert to voltage or currents using sensors and transducers

Signal Processing

- Analog circuits process these signals using
 - Resistors, Capacitors, Inductors, Amplifiers,...
- Analog signal processing examples
 - Audio processing in FM radios
 - Video processing in traditional TV sets

Limitations of Analog Signal Processing

- Accuracy limitations due to
 - Component tolerances
 - Undesired nonlinearities
- Limited repeatability due to
 - Tolerances
 - Changes in environmental conditions
 - Temperature
 - Vibration
- Sensitivity to electrical noise
- Limited dynamic range for voltage and currents

Limitations of Analog Signal Processing

- Inflexibility to changes
- Difficulty of implementing certain operations
 - Nonlinear operations
 - Time-varying operations
- Difficulty of storing information

Digital signal processing

- Represent signals by a sequence of numbers
 - Sampling or analog-to-digital conversions

- Perform processing on these numbers with a digital processor
 - Digital signal processing

- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

The Constitution of DSP System

Equivalent to an analog signal processor

PrF: antialiasing filtering

PoF: smooth out the staircase waveform

How to Implement the DSP

 To handle the DSP algorithms in a general-purpose microprocessor by means of software programming

 To handle the DSP algorithms in a specifically designed Digital Signal Processors (DSPs)

- The main tasks of DSP
 - Signal Analysis
 - Measurement of signal properties
 - Spectrum (frequency/phase) analysis
 - Target detection, verification, recognition
 - Signal Filtering
 - Signal-in-signal-out, filter
 - Removal of noise/interference
 - Separation of frequency bands
 - Shaping of the signal spectrum

- DSP application examples
 - Telecommunications
 - Multiplexing
 - Compression
 - Echo control
 - Audio Processing
 - Music
 - Speech generation
 - Speech recognition

- DSP application examples
 - Echo Location
 - Radar
 - Sonar
 - Reflection seismology
 - Image Processing
 - Medical
 - Space
 - Commercial Imaging Products

- DSP application examples
 - Digital image processing
 - Deblurring
 - Edge detection
 - Noise reduction

Pros and Cons of Digital Signal Processing

- Pros
 - Accuracy can be controlled by choosing word length
 - Repeatable
 - Sensitivity to electrical noise is minimal
 - Dynamic range can be controlled using floating point numbers
 - Flexibility can be achieved with software implementations
 - Non-linear and time-varying operations are easier to implement
 - Digital storage is cheap
 - Digital information can be encrypted for security
 - Price/performance and reduced time-to-market

Pros and Cons of Digital Signal Processing

- Cons
 - Sampling causes loss of information
 - A/D and D/A requires mixed-signal hardware
 - Limited speed of processors
 - Quantization and round-off errors

Terima Kasih