DEFINITION 8.1 -

A **population** consists of all units of interest. Any numerical characteristic of a population is a **parameter**. A **sample** consists of observed units collected from the population. It is used to make statements about the population. Any function of a sample is called **statistic**.

Sample Statistics (Used as estimators for Population Parameters)

Mean

DEFINITION 8.3

Sample mean \bar{X} is the arithmetic average,

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n}$$

This is an unbiased, consistent estimator of Population Average.

DEFINITION 8.4 -

An estimator $\hat{\theta}$ is **unbiased** for a parameter θ if its expectation equals the parameter,

$$\mathbf{E}(\hat{\theta}) = \theta$$

for all possible values of θ .

Bias of $\hat{\theta}$ is defined as $Bias(\hat{\theta}) = \mathbf{E}(\hat{\theta} - \theta)$.

DEFINITION 8.5 -

An estimator $\hat{\theta}$ is **consistent** for a parameter θ if the probability of its sampling error of any magnitude converges to 0 as the sample size increases to infinity. Stating it rigorously,

$$P\left\{|\hat{\theta} - \theta| > \varepsilon\right\} \to 0 \text{ as } n \to \infty$$

for any $\varepsilon > 0$. That is, when we estimate θ from a large sample, the estimation error $|\hat{\theta} - \theta|$ is unlikely to exceed ε , and it does it with smaller and smaller probabilities as we increase the sample size.

Asymptotic Normality of Sample Mean. By Central Limit Theorem, Sample mean follows a normal distribution as number of samples increases

i.e.

$$Z = \frac{\bar{X} - \mathbf{E}\bar{X}}{\mathrm{Std}\bar{X}} = \frac{\bar{X} - \mu}{\sigma \! \! \sqrt{n}}$$
 converges to a Normal(0,1) as n $\rightarrow \infty$

Variance and Std. Deviation

DEFINITION 8.8 -

For a sample (X_1, X_2, \dots, X_n) , a sample variance is defined as

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$
 (8.4)

It measures variability among observations and estimates the population variance $\sigma^2 = \text{Var}(X)$.

Sample standard deviation is a square root of a sample variance,

$$s = \sqrt{s^2}$$
.

It measures variability in the same units as X and estimates the population standard deviation $\sigma = \text{Std}(X)$.

Alt formula for Variance:

$$s^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}}{n-1}.$$

DEFINITION 8.6 -

Median means a "central" value.

Sample median \hat{M} is a number that is exceeded by at most a half of observations and is preceded by at most a half of observations.

Population median M is a number that is exceeded with probability no greater than 0.5 and is preceded with probability no greater than 0.5. That is, M is such that

$$\left\{ \begin{array}{lcl} {\bf P} \left\{ {X > M} \right\} & \le & 0.5 \\ {\bf P} \left\{ {X < M} \right\} & \le & 0.5 \end{array} \right.$$

Sample median If n is odd, the $\left(\frac{n+1}{2}\right)$ -th smallest observation is a median. If n is even, any number between the $\left(\frac{n}{2}\right)$ -th smallest and the $\left(\frac{n+2}{2}\right)$ -th smallest observations is a median.

Shape of a distribution (comparing mean and median)

Symmetric distribution
$$\Rightarrow M = \mu$$

Right-skewed distribution $\Rightarrow M < \mu$
Left-skewed distribution $\Rightarrow M > \mu$

Quantiles, percentiles and quartiles

DEFINITION 8.7 -

A p-quantile of a population is such a number x that solves equations

$$\left\{ \begin{array}{lcl} \boldsymbol{P}\left\{X < x\right\} & \leq & p \\ \boldsymbol{P}\left\{X > x\right\} & \leq & 1-p \end{array} \right.$$

A sample p-quantile is any number that exceeds at most 100p% of the sample, and is exceeded by at most 100(1-p)% of the sample.

A γ -percentile is (0.01γ) -quantile.

First, second, and third **quartiles** are the 25th, 50th, and 75th percentiles. They split a population or a sample into four equal parts.

A median is at the same time a 0.5-quantile, 50th percentile, and 2nd quartile.

IQR and outliers.

DEFINITION 8.10 -

An **interquartile range** is defined as the difference between the first and the third quartiles,

$$IQR = Q_3 - Q_1.$$

It measures variability of data. Not much affected by outliers, it is often used to detect them. IQR is estimated by the sample interquartile range

$$\widehat{IQR} = \hat{Q}_3 - \hat{Q}_1.$$

Any samples that are less than $Q_1 - 1.5(IQR)$ or more than $Q_3 + 1.5(IQR)$ can be treated as potential outliers.

Standard error of any estimator is its std deviation.

$$\sigma(\hat{\theta}) = \text{standard error of estimator } \hat{\theta} \text{ of parameter } \theta$$
 $s(\hat{\theta}) = \text{estimated standard error } = \hat{\sigma}(\hat{\theta})$

Graphical Statistics:

Can be used to visualize the given samples to make observations about the nature of the population

- Histograms are bar charts for columns for each bin
 - If height of bin is freq count: Frequency histogram
 - o If height of bin is proportion of data: Relative Frequency histogram
 - Each sample value can have its own bin, or you can have multiple nearby values in one bin.
 - o You can use histograms to guess shape of distribution.
- Stem and leaf plots
 - Choose the stem such that the values are not all limited to one stem.
 - o Distribute values to each stem and sort he leaf values.
 - You can use this to calculate mean, median and guess shape of distribution
 - It can also be used to compare two distributions
- Boxplots
 - Boxplots are based on 5-point summaries
 - $< \min(X_i)$, $\widehat{Q_1}$, \widehat{M} , $\widehat{Q_3}$, $\max(X_i) >$
 - Represent sample mean with small cross. Draw a box between sample Q1 and Q3 and draw a line for sample median. Draw whiskers to smallest sample and largest sample that is within the 1.5 IQR range. Draw dots for all samples outside the 1.5 IQR range.
 - Can be used to compare multiple distributions.