Compito di Matematica Discreta e Algebra Lineare

 $10~{\rm Luglio}~2018$

Cognome e nome:
Numero di matricola:
$\underline{\text{IMPORTANTE:}}$ Scrivere il nome su ogni foglio. Mettere $\underline{\textbf{TASSATIVAMENTE}}$ nei riquadri le
risposte, e nel resto del foglio lo svolgimento.

Esercizio 1 (8 punti). Stabilire per quali valori del parametro intero a il sistema

$$\begin{cases} 5^x \equiv 4 \pmod{11} \\ 3x \equiv a \pmod{25} \end{cases}$$

ha soluzione, e determinarne tutte le soluzioni per a=9 e per a=10 (scrivere nessuna se non vi sono soluzioni).

valori di \boldsymbol{a}

a = 4 (5)

Caso a=9

X = 3 (25)

Caso a = 10

nesima

Esercizio 2 (8 punti). Consideriamo un'applicazione lineare
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 tale che
$$F\begin{bmatrix}2\\5\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix} \qquad \text{e} \qquad F\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}.$$
 (1) Scrivere la matrice $[F]$ di F rispetto alle basi standard.

- (2) Scrivere la matrice $[F]_{w_1,w_2}^{v_1,v_2}$ di F rispetto alla base $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in partenza e $w_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ in arrivo.

$$\begin{array}{c|c}
 & [F]_{w_1,w_2}^{v_1,v_2} \\
\hline
 & \begin{pmatrix} g & -5 \\ -l6 & g \end{pmatrix}
\end{array}$$

Esercizio 3 (7 punti). Sia V il sottospazio vettoriale di \mathbb{R}^3 dato dalle soluzioni dell'equazione x + y + z = 0.

- (1) Trovare un vettore $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ di lunghezza 1 tale che $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ sia una base ortogonale di V.
- (2) Trovare una base di V^{\perp} .

vettore v

$$\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}$$

base

Esercizio 4 (7 punti). Le caselle di una scacchiera 4x4 vengono colorate in modo che vi siano 4 caselle rosse, 4 blu, 4 gialle e 4 verdi.

- (1) Quante sono tutte le colorazioni possibili?
- (2) Quante sono le colorazioni in cui su ciascuna riga vi siano tutte caselle dello stesso colore?
- (3) Quante sono le colorazioni in cui su ciascuna riga vi siano 4 caselle di colori diversi?

