Druga fundamentalna forma

DEFINICIJA: Naj bo $\sigma(u,v)$ karta ploskve S in naj bo $\mathbf{N}(u,v)$ zvezno vektorsko polje, ki predstavlja normalo na S. (torej je $N = \sigma_u \times \sigma_v / ||\sigma_u \times \sigma_v||$) **Drugo fundamentalno formo** (IIFF) S glede na karto σ predstavljajo skalarni produkti:

- $L = \sigma_{uu} \cdot \mathbf{N}$;
- $M = \sigma_{uv} \cdot \mathbf{N}$;
- $N = \sigma_{vv} \cdot \mathbf{N}$.

DEFINICIJA: Naj bo γ pot na ploskvi S in naj bo φ kot med normalo krivulje $\mathbf n$ in normalo ploskve $\mathbf N$. Normalno ukrivljenost poti γ na S je

$$\kappa_n = \gamma'' \mathbf{N} = \kappa \cos \varphi.$$

Geodetska ukrivljenost poti γ na Sje

$$\kappa_g = \gamma''(\mathbf{N} \times \gamma') = \pm \kappa \sin \varphi.$$

Opomba: κ_n in κ_g spremenita predznak, če izberemo drugo normalo. Prav tako κ_g spremeni predznak (κ_n pa se ohrani), če pot γ parametriziramo v 'drugo smer'.

Trditev: Za poljubno ploskev S in poljubno pot $\gamma(t) = (u(t), v(t))$ na S veljajo naslednje formule:

- $\kappa^2 = \kappa_g^2 + \kappa_n^2$, $\kappa_n = Lu'^2 + 2Mu'v' + Nv'^2$, $\kappa_n = \frac{L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2}{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}$

Definicija: Naj bosta

$$F_I = \left(\begin{array}{cc} E & F \\ F & G \end{array} \right) \qquad F_{II} = \left(\begin{array}{cc} L & M \\ M & N \end{array} \right)$$

matriki, ki predstavljata fundamentalni formi ploskve S v bazi $\{\sigma_u, \sigma_v\}$. Vrednosti κ_1, κ_2 , za kateri ima determinanta $|F_{II} - \kappa F_I|$ vrednost 0, se imenujeta glavni ukrivljenosti ploskve S, bazna vektorja iz TS pripadajočih ničelnih prostorov matrike pa glavna vektorja. Matrika $W = -F_I^{-1}F_{II}$ se imenuje Weingartnova matrika.

OPOMBA: V nekaterih primerih dobimo le eno glavno ukrivljenost (glavna ukrivljenost vedno obstaja), kar pomeni, da so vsi vektorji tangentnega prostora v omenjeni točki glavni.

Trditev:

- (1) Glavna vektorja v vsaki točki na ploskvi tvorita bazo tangentnega prostora.
- (2) Če velja $\kappa_1 \neq \kappa_2$, sta glavna vektorja pravokotna.
- (3) $K = \det(\mathcal{W})$.
- (4) Glavni ukrivljenosti sta lastni vrednosti W, glavna vektorja sta lastna vektorja W.

DEFINICIJA: Gaussova ukrivljenost ploskve je enaka

$$K = \kappa_1 \kappa_2 = \frac{LN - M^2}{EG - F^2}.$$

Povprečna ukrivljenost ploskve je enaka

$$H = \frac{\kappa_1 + \kappa_2}{2} = \frac{LG - 2MF + NE}{2(EG - F^2)}.$$

Ploskev je **minimalna**, če zanjo velja H = 0.

Gaussova ukrivljenost sfere: $K = \frac{1}{R^2}$

Geodetke

DEFINICIJA: Pot γ na ploskvi S je **geodetka**, če velja $\ddot{\gamma} \perp S$ (to je ekvivalentno pogoju $\ddot{\gamma} \parallel \mathbf{N}$).

TRDITEV: Vsaka geodetka ima konstantno hitrost: $\frac{d}{dt}||\dot{\gamma}|| = 2\ddot{\gamma}\dot{\gamma} = 0$, (ker $\dot{\gamma} \in TS$).

Opomba: V definiciji je geodetka parametrizirana pot, trditev pa pove, da mora imeti ta parametrizacija konstantno hitrost. Izkaže se: pot γ je geodetka natanko tedaj, ko je njena reparametrizacija z naravnim parametrom geodetka.

Za poljuben $k \neq 0$ velja tudi sledeče: $s \mapsto \gamma(s)$ je geodetka natanko tedaj, ko je $s \mapsto \gamma(ks)$ geodetka.

Trditev: Geodetke imajo naslednje lastnosti:

- (1) linearne poti so geodetke:
- (2) geodetke so lokalno najkrajše poti med dvema točkama;
- (3) $\forall x \in S, \forall v \in T_x S$ obstaja natanko ena parametrizirana geodetka γ na S, za katero velja $\gamma(0) = x, \dot{\gamma}(0) = v;$
- (4) naj bo $\sigma(u,v)$ karta ploskve S. Pot $\gamma(t) = \sigma(u(t),v(t))$ je parametrizirana geodetka na S natanko tedaj, ko zadošča sistemu

$$\frac{d}{dt}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)$$

$$\frac{d}{dt}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2).$$

(5) izometrije ploskve slikajo geodetke v geodetke

Lastnosti geodetk:

- $\bullet \ \, \gamma$ je geodetka natanko tedaj, ko je $\kappa_g=0$
- $\bullet\,$ Normalni presek ploskveS in ravnine je vedno geodetka.
- Na stožcu poteka skozi poljubni dve točki geodetka (ni samo ena), poljubni dve geodetki se ne sekata nujno v eni točki, obstajata geodetki, ki se ne sekata, geodetka lahko seka samo sebe.

Risanje geodetk na vrteninah

Trditev:

- Naj bo $\sigma(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$ parametrizacija vrtenine, pri čemer je u naravni parameter poti (f,g), tj. $f'^2 + g'^2 = 1$.
- Označimo oddaljenost točke $\sigma(u, v)$ od osi vrtenja kot $\rho = \rho(u) := f(u)$.
- Naj bo $\psi(s)$ kot med geodetko γ in poldnevnikom $\sigma(t,v(s))$ skozi $\gamma(s)=\sigma(u(s),v(s))$ in definirajmo $\Omega:=\rho\sin\psi$.

Tedaj za geodetke na vrtenini veljajo naslednje lastnosti:

- (1) Poldnevnik (pot pri konstantnem v) je vedno geodetka.
- (2) Vzporednik (pot pri konstantnem u) je geodetka natanko tedaj, ko je $\rho'(u) = 0$.
- (3) Clairotov princip: $\Omega := \rho \sin \psi$ je konstanta vzdolž vsake geodetke.
- (4) Če je Ω konstanta vzdolž poti γ in γ ni vzporednik, potem je γ geodetka.
- (5) Zaradi fleksibilnosti pri izbiri orientacije je $\sin \psi$ določen le do predznaka natančno. Z upoštevanjem simetričnosti je dovolj obravnavati le nenegativne vrednosti Ω .
- (6) Vzdolž geodetke velja $(u')^2 = 1 \Omega^2 \rho^{-2}$. Torej velja $\rho \ge \Omega$.
- (7) Če v točki $\gamma(s)$ velja $\rho(s) > \Omega(s)$, potem je $u'(s) \neq 0$ in geodetka zato seka vzporednik skozi $\gamma(s)$.
- (8) Če v točki $\gamma(s)$ velja $\rho(s) = \Omega(s)$, potem je u'(s) = 0, zato se geodetka v tej točki dotika vzporednika. Če poleg tega velja $\rho'(s) = 0$, je zaradi enoličnosti geodetk γ kar omenjeni vzporednik.

Površina ploskve

Če je $\sigma(u,v)$ parametrizacija ploskve, njeno površino izračunamo po naslednji formuli:

$$P(A) = \iint_{A} \|\sigma_{u} \times \sigma_{v}\| du dv = \iint_{A} \sqrt{EG - F^{2}} du dv$$

V zgornji formuli ne rabiš Jacobijeve determinante!

Trditev: Naj bo ${\bf N}$ normala ploskve $\sigma(u,v).$ Potem velja:

- $\mathbf{N}_u \cdot \sigma_u = -L$
- $\mathbf{N}_u \cdot \sigma_v = -M$
- $\mathbf{N}_v \cdot \sigma_v = -N$

Trditev: Če velja IIFF = 0, potem je ploskev vsebovana v ravnini.

DEFINICIJA: Pot γ na ploskvi S je **pot ukrivljenosti**, če je $\dot{\gamma}$ glavni vektor za vsak t (neodvisno od parametrizacije).

Gauss-Bonnet

IZREK: Naj bo $\gamma(s)$ enostavna (omejuje disk oz. nekaj disku homeomorfnega), sklenjena, orientirana enotska pot na orientabilni ploskvi S. Potem velja:

$$\int_{0}^{l(\gamma)} \kappa_{g} ds = 2\pi - \iint_{int\gamma} K dA,$$

kjer je κ_q geodetska ukrivljenost, $l(\gamma)$ dolžina krivulje γ , $int\gamma$ območje, ki ga γ omejuje in K Gaussova ukrivljenost.

Pri uporabi izreka pazi, da izbereš pravo smer γ in glede na to smer še normalo na ploskev tako, da bo $int\gamma$ na levi strani.

TRDITEV: Če je Gaussova ukrivljenost $K \leq 0$, potem na S ne obstaja enostavna sklenjena geodetka.

IZREK: Naj bo $\gamma(s)$ enostaven sklenjen orientiran enotski poligon na orientirani ploskvi S z notranjimi koti $\alpha_1, \alpha_2, \ldots, \alpha_n \in (0, 2\pi)$. Potem velja:

$$\int_0^{l(\gamma)} \kappa_g ds = \sum_{i=1}^n \alpha_i - (n-2)\pi - \iint_{int\gamma} KdA.$$

IZREK (EULERJEVA KARAKTERISTIKA): Naj bo ${\cal S}$ orientirana, sklenjena ploskev. Tedaj velja

$$\iint_{S} KdA = 2\pi\chi,$$

kjer je $\chi = T_E + V$, T je število trikotnikov v simplicialnem kompleksu, E število stranic in V število točk (oglišč).

$$\chi(\text{sfera}) = 2, \quad \chi(\text{torus}) = 0$$

Gaussova ukrivljenost sfere: $K = \frac{1}{R^2}$

Frenetove formule in podobno

Naj bo \vec{t} tangentni vektor poti γ in \vec{N} normala na ploskev. Definiramo $\vec{B} := \vec{t} \times \vec{N}$.

Frenetove formule:

- (1) $\vec{t}' = \kappa \vec{n}$
- (2) $\vec{n}' = -\kappa \vec{t} + \tau \vec{b}$
- (3) $\vec{b}' = -\tau \vec{n}$

Veljajo naslednje enakosti:

- (1) $\vec{t}' = \kappa_n \vec{N} \kappa_g \vec{B}$ (2) $\vec{N}' = -\kappa_n \vec{t} + \tau_g \vec{B}$ (3) $\vec{B}' = \kappa_g \vec{t} \tau_g \vec{N}$
- (4) γ je pot ukrivljenosti $\iff \tau_g = 0$

 $au_g = au + arphi'$, kjer je arphi kot med normalo krivulje $ec{n}$ in normalo ploskve $ec{N}$ (odvod po naravnem parametru) se imenuje **geodetska torzija**.

Trditev: Naj bosta S_1, S_2 ploskvi in $\gamma = S_1 \cap S_2$ pot, ki je tudi pot ukrivljenosti na S_1 . Potem je γ pot ukrivljenosti na $S_2 \Longleftrightarrow$ kot med ploskvama je konstanten vzdolž preseka.