

## INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA ENGENHARIA DE TELECOMUNICAÇÕES – CAMPUS SÃO JOSÉ

#### PROTOCOLO 6LoWPAN

Allex Magno Andrade

Disciplina: Comunicações Sem Fio

Professor: Mário Noronha Neto

São José 2019



# **SUMÁRIO**





- INTERNET DAS COISAS
- PROTOCOLO 6LoWPAN
- CONCLUSÕES
- REFERÊNCIAS













INSTITUTO FEDERAL Santa Catarina





REFERÊNCIAS



#### **Internet of Things - IoT**

Internet das
Coisas, Internet
de Tudo ou
Internet
Industrial



International Telecommunication Union (ITU)

"uma infraestrutura global para a Sociedade da Informação, permitindo serviços avançados interconectando coisas (físicas e virtuais) com base em tecnologias de informação e comunicação interoperáveis existentes e em evolução" (ITU, 2012).

## Elementos básicos para implementação da IoT

INSTITUTO

Santa Catarina





#### Camada de Aplicação

Fornece os serviços solicitados pelos clientes.

#### Camada de Percepção

Representa os sensores e atuadores físicos da IoT que visam coletar informações.

#### Camada de Rede

Transfere os dados produzidos pela camada de percepção para a camada superior.

#### Camada de Processamento

 Permite que programadores de aplicativos IoT trabalhem com objetos heterogêneos sem considerar uma plataforma específica. Essa camada processa dados recebidos, toma decisões e fornece os serviços necessários.

#### Camada de Negócios

 Gere as atividades e serviços globais do sistema IoT. As responsabilidades desta camada são a construção de um modelo de negócio, gráficos, fluxogramas, etc. Com base nos dados recebidos da camada de aplicação.

### O que 6LoWPAN tem a ver com isso? Tudo!







INSTITUTO

Santa Catarina

### PERSONAL AREA NETWORK (WPAN) – IEEE 802.15.4



Definir um padrão de transmissão de dados para WPANs que tinham como quesitos:







#### PERSONAL AREA NETWORK (WPAN) – IEEE 802.15.4





Permite o acesso ao canal físico para todos os tipos de transferências.



Transceptor de rádio frequência.



#### PERSONAL AREA NETWORK (WPAN) – IEEE 802.15.4

#### Bandas de frequência do padrão IEEE 802.15.4

|                         | Faixa de Frequências (MHz) |              |             |  |  |  |  |
|-------------------------|----------------------------|--------------|-------------|--|--|--|--|
|                         | 868.3                      | 902-928      | 2400-2483.5 |  |  |  |  |
| Número de Canais        | 1                          | 10           | 16          |  |  |  |  |
| Taxa de dados (kbps)    | 20                         | 40           | 250         |  |  |  |  |
| Taxa de Símbolos (ksps) | 20                         | 40           | 62.5        |  |  |  |  |
| Região Geográfica       | Europa                     | Am. do Norte | Mundial     |  |  |  |  |



#### PERSONAL AREA NETWORK (WPAN) – IEEE 802.15.4

INSTITUTO FEDERAL

Santa Catarina

**Topologias** 





Santa Catarina

## Novos serviços ou otimização dos antigos





IPv6

Conexão dos objetos inteligentes



## PROTOCOLO IPv6



INTRODUÇÃO

• **RFC 2460** – Especificações do IPv6, de dezembro 1998.

CONCLUSÕES

REFERÊNCIAS

 RFC 2461 – Especificações de descoberta de vizinhos IPv6 (Neighbor Discovery).

- **RFC 4291** Definições da arquitetura de endereçamento IPv6, em fevereiro de 2006.
- **RFC 4443** Especificações do protocolo de controle de mensagem para Internet IPv6 (Internet Control Message protocol), chamado de ICMPv6.

## Cabeçalho IPv6 [RFC 2460]





## **Endereçamento IPv6**



- ✓40 bytes
- ✓ 128 bits
- ✓8 hexadecatetos representados por hexadecimais e separados por ":"

0010 0000 0000 0001



- ✓ Arquitetura 6LoWPAN
- ✓ Camada de Adaptação 6LoWPAN
- ✓ Cabeçalho 6LoWPAN

Compressão 6LoWPAN

Cabeçalhos para Broadcast

Cabeçalho de Encaminhamento Mesh

Cabeçalho 6LoWPAN para Fragmentação

- **✓ Principais RFCs**
- **✓** Comparação com outras tecnologias
- **✓** Aplicações



### Arquitetura 6LoWPAN



Oferece baixo consumo energético e capacidade de suportar vários dispositivos em uma mesma rede.



O 6LoWPAN utiliza pacotes IPv6 em redes IEEE 802.15.4







## Arquitetura 6LoWPAN

INSTITUTO FEDERAL

Santa Catarina



### Arquitetura 6LoWPAN

Simple – São redes simples, interligadas a outras redes ou mesmo à Internet através de um coordenador;



Extended – São múltiplas redes com arquiteturas simples interligadas por múltiplos coordenadores e ligadas a um backbone ou mesmo à Internet.

Ad-Hoc – São redes que não estão conectadas à Internet e que funcionam sem qualquer tipo de infraestrutura;

Router

## Camada de Adaptação 6LoWPAN

- **≻**Compressão do cabeçalho IPv6
- >Fragmentação/desfragmentação

| IPv6         |                   |  |  |  |  |  |  |  |  |  |
|--------------|-------------------|--|--|--|--|--|--|--|--|--|
| Ethernet MAC | LoWPAN adaptation |  |  |  |  |  |  |  |  |  |
|              | IEEE 802.15.4 MAC |  |  |  |  |  |  |  |  |  |
| Ethernet PHY | IEEE 802.15.4 PHY |  |  |  |  |  |  |  |  |  |
|              |                   |  |  |  |  |  |  |  |  |  |



## Camada de Adaptação 6LoWPAN



Encaminhamento de uma rede 6LoWPAN para uma rede IPv6

## Cabeçalho 6LoWPAN



Compressed UDP/IPv6 Header (fe80::0217:3b00:1111:2222 → fe80::0217:3b00:3333:4444)



Compressed UDP/IPv6 Header (fe80::0217:3b00:1111:2222 → ff02::1)



Compressed UDP/IPv6 Header (2001:5a8:4:3721:0217:3b00:1111:2222 → 2001:4860:b002::68)





## Cabeçalho 6LoWPAN

IEEE 802.15.4 Header - 22 bytes

Destination Address (00-17-3B-00-33-33-44-44)

22 bytes

Compressed UDP/IPv6 Header (fe80::0217:3b00:1111:2222 → fe80::0217:3b00:3333:4444)

Dispatch
IPHC
NHC
UDP Ports
UDP
Checksum

6 bytes

Compressed UDP/IPv6 Header (fe80::0217:3b00:1111:2222 -> ff02::1)



7 bytes

Compressed UDP/IPv6 Header (2001:5a8:4:3721:0217:3b00:1111:2222 - 2001:4860:b002::68)



10 bytes



### Compressão 6LoWPAN



| Campo                     | Tamanho IPv6 | Alteração                                       |
|---------------------------|--------------|-------------------------------------------------|
| Versão                    | 4 bits       | Versão é sempre 6                               |
| Classe do tráfego         | 8 bits       | Classe é sempre 0                               |
| Marcação do fluxo         | 20 bits      | Marcação é sempre 0                             |
| Tamanho do Payload        | 16 bits      | Inferido da camada de enlace ou do cabeçalho de |
|                           |              | fragmentação                                    |
| Tipo do próximo cabeçalho | 8 bits       | Utiliza LOWPAN_NHC                              |
| Limite de saltos          | 8 bits       | Fixo quando não há nós intermediários           |
| Endereço de origem        | 128 bits     | Inferido da camada de enlace                    |
| Endereço de destino       | 128 bits     | Inferido da camada de enlace                    |



#### Cabeçalho de Encaminhamento Mesh

| Value | 1 | 0 | Orig | Final | Hops left |   | ft | Hops left | Originador      | Destinatário Final |                    |
|-------|---|---|------|-------|-----------|---|----|-----------|-----------------|--------------------|--------------------|
| bit   | 0 | 1 | 2    | 3     | 4         | 5 | 6  | 7         | Optional 8 bits | 16 bits or 64 bits | 16 bits or 64 bits |

| bit | valor         | Explicação                                                                                                                                               |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | 1             | Os dois primeiros bits são 1 e 0, respectivamente e servem para identificar que                                                                          |
| 1   | 0             | este é um cabeçalho para encaminhamento mesh.                                                                                                            |
| 2   | Originador    | Estes bits designam o tipo de endereçamento adotado para o originador do pacote e para o destinatário final do pacote. O código é 0 para endereços de 64 |
| 3   | Destino Final | bits e 1 para endereços de 16-bits.                                                                                                                      |
| 4   |               | Este campo de 4 bits refere-se ao número máximo de nós pelos quais o pacote pode passer antes de ser descartado. É decrementado ao passar por cada nó. O |
|     | Hops left     | valor 1111 é reservado e significa que há um campo de 1 byte para designar a                                                                             |
| 7   |               | quantidades de saltos permitidos.                                                                                                                        |

INTERNET DAS COISAS



### Cabeçalho para Broadcast

Tratam de evitar que as mensagens entrem em loop

| Campo | 0 | 1 | Lo | Lowpan_BC0 dispatch |   |   |   |   |   | Número Sequencial |    |    |    |    |    |    |  |
|-------|---|---|----|---------------------|---|---|---|---|---|-------------------|----|----|----|----|----|----|--|
| bits  | 0 | 1 | 2  | 3                   | 4 | 5 | 6 | 7 | 8 | 9                 | 10 | 11 | 12 | 13 | 14 | 15 |  |

2 Bytes

Unicast

6LowPAN Broadcast header



## Exemplos de cabeçalho 6LoWPAN

Cabeçalho IPv6 Completo

IEEE 802.15.4 Expedição IPv6

IPv6

Dados

Uso de compressão para o IP, sem necessidade de roteamento na PAN

IEEE 802.15.4

Expedição HC1

HC1

Dados

Compressão IP e necessidade de roteamento

IEEE 802.15.4

Mesh

Expedição HC1

HC1

Dados

Compressão IP, roteamento e fragmentação

IEEE 802.15.4

Mesh

Fragmentação

Expedição HC1

HC1

Dados

CONCLUSÕES

Compressão IP, roteamento e emulação de broadcast

IEEE 802.15.4

Mesh

Broadcast

Expedição HC1

HC1

Dados

Compressão IP, roteamento, emulação de broadcast e fragmentação

IEEE 802.15.4

Mesh

Broadcast

Fragmentação

Expedição HC1

HC1

Dados

REFERÊNCIAS

## Cabeçalho 6LoWPAN para Fragmentação

| bit          | valor                   | Explicação                                                                                                                                                                                 |
|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | 1                       | Os primeiros 5 bits identificam este cabeçalho como sendo o de fragmentação.                                                                                                               |
| 1            | 1                       | O valor 11000 designa o primeiro fragmento de um pacote. Todos os demais fragmentos começam com o valor 11100.                                                                             |
| 2            | 0/1                     |                                                                                                                                                                                            |
| 3            | 0                       |                                                                                                                                                                                            |
| 4            | 0                       |                                                                                                                                                                                            |
| 5<br><br>15  | Tamanho do<br>Datagrama | Este campo de 11 bits guarda o tamanho do pacote antes da fragmentação.<br>Não há necessidade de ser carregado em todos os fragmentos, pois pode ser calculado na fase de remontagem.      |
| 16<br><br>31 | Tag do<br>Datagrama     | Este campo de 16 bits identifica os fragmentos de um mesmo datagrama. Pacotes sucessivos de um mesmo remetente devem ter valores sucessivos.                                               |
| 0<br>        | Datagram<br>offset      | Este campo de 8 bits especifica, em incrementos de 8 octetos, quanto do pacote já foi transmitido até o fragmento atual. Não está presente no primeiro fragmento, já que seu valor é zero. |





INTRODUÇÃO

## **Principais RFCs**

RFC 4019 – Estabelece uma visão geral do 6LoWPAN (declarações de problemas, metas, suposições).

**RFC 4944** – Estabelece a forma de transmissão dos pacotes IPv6 nas redes 802.15.4.

RFC 6550 – Estabelece o protocolo de encaminhamento nas redes de baixa potência e com perdas.

RFC 6775 – Estabelece otimização do Neightbor Discovery para o 6LoWPAN.

**RFC 6282** – Estabelece a formatação da compressão dos pacotes IPv6 nas redes 802.15.4.



## Comparações com outras tecnologias de comunicação

|               | $\mathbf{ZigBee}$             | Bluetooth          | Wi-Fi               | $\mathbf{Z}\text{-}\mathbf{W}\mathbf{a}\mathbf{v}\mathbf{e}$ | 6LoWPAN       |
|---------------|-------------------------------|--------------------|---------------------|--------------------------------------------------------------|---------------|
|               | $2.4~\mathrm{GHz}/$           | $2.4~\mathrm{GHz}$ | $2.4~\mathrm{GHz}/$ | $908~\mathrm{MHz}$                                           | 2.4 GHz/      |
| Frequência    | $915~\mathrm{MHz}$            |                    | $5.8~\mathrm{GHz}$  |                                                              | 915 MHz/      |
|               |                               |                    |                     |                                                              | 868 MHz       |
| Alcance       | $10-75 \mathrm{m}$            | 10 m               | 100 m               | 30 m                                                         | Até 200 m     |
| Alcance       |                               |                    | (indoor)            |                                                              |               |
| Taxa de dados | 250  Kbps                     | 1 Mbps 300 Mbps    |                     | $40~{ m Kbps}$                                               | 250 Kbps      |
| (máx)         |                               |                    |                     |                                                              |               |
|               | Custo baixo, menor            | Alta taxa de       | Alta taxa de        | Pouca                                                        | Suporte IP,   |
| Vantagens     | consumo de                    | dados              | dados, padrões      | interferência                                                | rede mesh     |
|               | energia, rede $\mathit{mesh}$ |                    | bem definidos       |                                                              |               |
|               | Baixa                         | Conexão            | Consumo de          | Padrão                                                       | Consumo de    |
| Dogwontogona  | interoperabilidade            | frágil, baixo      | energia             | fechado                                                      | energia       |
| Desvantagens  |                               | alcance            |                     |                                                              | relativamente |
|               |                               |                    |                     |                                                              | alto          |



## Aplicações (Cenários)

Embarcados que se comunicam com serviços da internet

Baixo consumo

Rede aberta

Grande
infraestruturas
que necessitam
de
escalabilidade

























ADAT, Vipindev; GUPTA, B. B.. Security in Internet of Things: issues, challenges, taxonomy, and architecture. **Telecommunication Systems**, [s.l.], v. 67, n. 3, p.423-441, 13 jun. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11235-017-0345-9.

**REFERÊNCIAS** 

AL-FUQAHA, A.; GUIZANI, M.; MOHAMMADI, M.; ALEDHARI, M.; AYYASH, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE COMMUNICATION SURVEYS & TUTORIALS, v. 17, Novembro de 2015.

ASHTON, K. That 'Internet of Things' thing RFID J. (2009)

ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The Internet of Things: A survey. **Computer Networks**, [s.l.], v. 54, n. 15, p.2787-2805, out. 2010. Elsevier BV. http://dx.doi.org/10.1016/j.comnet.2010.05.010.

COLOMBO, Jamires Fátima; LUCCA FILHO, João de. INTERNET DAS COISAS (IOT) E INDÚSTRIA 4.0. **Revista Interface Tecnológica**, [s.l.], v. 15, n. 2, p.72-85, 30 dez. 2018. Interface Tecnologica. <a href="http://dx.doi.org/10.31510/infa.v15i2.496">http://dx.doi.org/10.31510/infa.v15i2.496</a>.

Daji Qiao, Sunghyun Choi, "Goodput analysis and link adaptation for IEEE 802.11a wireless LANs", *IEEE Transactions on Mobile Computing*, Vol.1, OctDec. 2002, pp. 278-292.

INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERING. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs): information technology – telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. New York, 2006.

#### INTRODUÇÃO INTERNET DAS COISAS PROTOCOLO 6LoWPAN CONCLUSÕES <u>REFERÊNCIAS</u>

ISTEPANIAN, R. S H, "The potential of Internet of Things (IoT) for assisted living applications," Assisted Living 2011, IET Seminar on , pp.1,40, 6-6 April 2011.

ITU (2012) New ITU standards define the internet of things and provide the blueprints for its development. <a href="https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559&lang=em">https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559&lang=em</a>

LEE, In; LEE, Kyoochun. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. **Business Horizons**, [s.l.], v. 58, n. 4, p.431-440, jul. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.bushor.2015.03.008.

Luís M. L. Oliveira, Amaro F. de Sousa, Joel J. P. C. Rodrigues, "Routing and mobility approaches in IPv6 over LoWPAN mesh networks", *International Journal of Communication Systems*, Vol. 24, Feb. 2011, pp. 1445–1466.

MAHMOUD, Rwan et al. Internet of things (IoT) security: Current status, challenges and prospective measures. **2015 10th** International Conference For Internet Technology And Secured Transactions (icitst), [s.l.], 2015. IEEE. http://dx.doi.org/10.1109/icitst.2015.7412116.

PAUL, P. Victer; SARASWATHI, R.. The Internet of Things — A comprehensive survey. **2017 International Conference**On Computation Of Power, Energy Information And Communication (iccpeic), [s.l.], mar. 2017. IEEE.

http://dx.doi.org/10.1109/iccpeic.2017.8290405.

RAY, P.p.. A survey on Internet of Things architectures. **Journal Of King Saud University - Computer And Information Sciences**, [s.l.], v. 30, n. 3, p.291-319, jul. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jksuci.2016.10.003.

SANTANA, Euller Moreira de. **Desenvolvimento de uma plataforma de comunicação 6lowPAN para redes de comunicação wireless de curto alcance.** 2017. 48 f. TCC (Graduação) - Curso de Engenharia Eletrônica e de Telecomunicações, Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia, Patos de Minas, 2017.

SHELBY, Z.; CHAKRABARTI, S.; NORDMARK, E. Draft Standard, Internet Draft Standard - Neighbor Discovery Optimization for Low Power and Lossy Networks (6LoWPAN). Agosto 2012.

SILVA, Wilson Alves da. Uma Arquitetura para Orquestração da Distribuição de Água no Semiárido Brasileiro Baseada em Internet das Coisas e Computação em Nuvem. 2017. 117 f. Dissertação (Mestrado) - Curso de Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2017.

WINTER, T. et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. Marco 2012.

802.15.4x-2019 - IEEE Standard for Low-Rate Wireless Networks - Amendment 7: Defining Enhancements to the Smart Utility Network (SUN) Physical Layers (PHYs) Supporting up to 2.4 Mb/s Data Rates IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011)



# **OBRIGADO!**

Allex Magno Andrade allex.m@aluno.ifsc.edu.br







## INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA ENGENHARIA DE TELECOMUNICAÇÕES – CAMPUS SÃO JOSÉ

#### PROTOCOLO 6LoWPAN

Allex Magno Andrade

Disciplina: Comunicações Sem Fio

Professor: Mário Noronha Neto

São José 2019

