

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

COMBINED SCIENCE

0653/21

Paper 2 (Core)

May/June 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows an experiment to compare how three metals react with dilute hydrochloric acid.

Fig. 1.1

In two of the test-tubes, bubbles of a gas **G** are produced. Gas **G** is an element.

(i)	State the name of ga	as G .		[1]
(ii)	Describe a test for g	gas G .		
	test			
	result			
				[2]
(iii)	List the four elemen	ts X , copper, magnes	ium and G in order of reactivity.	
	most reactive			
			•••••	
	least reactive			[2]
(iv)	Suggest the identity	of metal X		[1]

(b) Fig. 1.2 shows how a teacher could use a Bunsen burner to heat a mixture of carbon and copper oxide until it starts to glow.

Fig. 1.2

The mixture glows even more brightly for some time after the burner is removed.

Carbon has reduced copper oxide to copper.

(i) State what is meant by the term reduced.

	•••••
	[1]
Name the other product that is formed in this reaction	

(ii) Name the other product that is formed in this reaction.

(c) Lead can be produced from molten lead bromide using electrolysis, as shown in Fig. 1.3.

Fig. 1.3

(i) Mark, with the letter **P** and a label line, the position on the diagram where lead first appears after the circuit is connected. [1]

(ii) Name the other element that is formed during the electrolysis.

[4]
נין

2 Fig. 2.1 shows a food web of the organisms in a woodland containing oak trees.

Fig. 2.1

(a)	State the source of energy for this food web.	
		[1]
(b)	From the food web, name	
	(i) one producer,	
		[1]
	(ii) one herbivore.	
		[1]
(c)	The food web is a network of interconnected food chains.	
	One food chain in Fig. 2.1 with three stages is shown.	
	oak tree —→ rabbit —→ hawk	

Write down a food chain from Fig. 2.1 which has four stages.

[2]

(a)	The oak trees are cut down.	
	Suggest two possible effects this could have on the organisms in the food web.	
	1	
	2	
		[2
(e)	Describe how the concentration of carbon dioxide in the atmosphere may change as t result of the oak trees being cleared from the woodland.	the
	Explain why this happens.	
		••••
		[2

3 Fig. 3.1 shows a small torch (flashlight). The torch contains cells (batteries), a lamp and a switch.

Fig. 3.1

(a) Draw a circuit diagram for the torch using standard circuit symbols.

[2]

(b) Fig. 3.2 shows a cell and lamp taken from the torch.

Fig. 3.2

(i)	State how many cells are needed to light up this lamp. Give a reason for your answer.	ı
	number of cells needed	
	reason	
		[1]
(ii)	State what is meant by the quantity 1.2A on the lamp.	
		[1]

(c) After a long time in use with the same cells, the torch lamp becomes less bright.

A student says that this is because the cell is running out of energy.

Draw a circuit, including an ammeter and a voltmeter, that could be used to test this.

[2]

4 (a) Petroleum (crude oil) is a fossil fuel consisting of a mixture of different hydrocarbons.

Fig. 4.1 shows the industrial apparatus used to separate useful products from petroleum.

Fig. 4.1

Petroleum is vaporised and passed up a tower. Useful products from petroleum condense at different positions in the tower.

(1)	State the name of the process shown in Fig. 4.1.	
		[1]
(ii)	Different products from this process have different boiling point ranges.	
	State how the boiling point of a product affects the position in the tower where a product condense.	luc
		[1]
(iii)	Three of the useful products obtained from petroleum are shown in Fig. 4.1.	
	State the name of another useful product that is separated from petroleum.	
	State one use of this product.	
	name of product	
	use	
		[2]

(b) Table 4.1 contains some information about gases in the Earth's atmosphere.

Table 4.1

gases in the Earth's atmosphere	percentage
carbon dioxide	very small
nitrogen	
oxygen	
other gases	about 1%
water vapour	variable

Complete Table 4.1 to show the percentages of nitrogen and oxygen in the atmosphere. [2]

(c)		ural gas is a fossil fuel consisting mostly of methane. It is used as a fuel to heat enhouse for growing vegetables.	а
	(i)	Describe the changes to the atmosphere in a greenhouse that will occur.	
			••••
			[2]
	(ii)	Burning methane is an exothermic chemical change.	
		State the meaning of	
		exothermic,	
			••••
			••••
		chemical change.	
			••••

[2]

5 (a) A boy looks at himself in a mirror and waves his hand. Fig. 5.1 shows what he sees in the mirror.

Fig. 5.1

	Whi	ich hand is he waving?	
	Exp	olain your answer.	
			[1]
(b)	The	e boy uses headphones to listen to the radio.	
	(i)	State the useful energy transformation that occurs in his headphones.	
		from energy to energy	[1]
	(ii)	The radio emits sounds with frequencies between 100 Hz and 10 000 Hz.	
		Explain why the boy is able to hear all the sounds emitted through the headphones. boy has normal hearing.	Γhe
			[1]

5)		o seconds.
	(i)	Calculate his speed.
		State the formula you use, show your working and state the units of your answer.
		formula
		working
		speed = units [3]
	(ii)	Fig. 5.2 shows two forces, the driving force and the frictional force, acting on the boy as he swims.
		frictional force — driving force
		Fig. 5.2
		The boy exerts a driving force of 100 N and swims at a constant speed.
		Deduce the value of the frictional force and explain your reasoning.
		The frictional force isN
		because
		[1]

Fig. 5.3 shows waves created by a wind blowing at constant speed across the water in the pool.

Fig. 5.3

- (iii) On Fig. 5.3, mark clearly and label **one** complete wavelength of the wave motion between **P** and **Q**. [1]
- (iv) As the water in the pool gets shallower between **Q** and **R**, the wavelength becomes shorter.

Use Fig. 5.3 to state **one** property of the wave motion that **increases** between **Q** and **R**.

(d) The boy switches on a television set using a remote control.

Fig. 5.4 shows some of the parts of the electromagnetic spectrum.

In the correct blank box on Fig. 5.4, write the name of the part of the spectrum used by the remote control.

X-rays visible	nt microwaves
----------------	---------------

Fig. 5.4

[2]

Please turn over for Question 6.

6 Fig. 6.1 shows part of the human life cycle. The cells are not drawn to scale.

Fig. 6.1

(a)	From Fig. 6.1						
	(i)	name a diploid cell,	[1]				
	(ii)	State the term to describe what happens at A .					
			[1]				
(b)	Cel	I division of the zygote produces a ball of cells.					
	Des	Describe in detail where in the female reproductive system this hall of cells is positioned for					

[2]

© UCLES 2014 0653/21/M/J/14

the next stage of development.

(c) Table 6.1 summarises some of the nutrients contained in 100 g of milk.

Table 6.1

nutrient	mass in milk sample	
protein	1.2g	
fat	3.8 g	
carbohydrate	7.6 g	
vitamin C	3.9 mg	
calcium	33.0 mg	

Name **one** vitamin, present in milk but not included in Table 6.1, which is essential for healthy growth of the baby and describe the function of this vitamin in the body.

vitamin		
function		 2]
Energy i	is released from milk by respiration.	
1g of fat	t releases 37 kJ of energy.	
Use the	information about milk in Table 6.1 to calculate how much energy can be release	d

from the fat in the 100 g sample of milk.

Show your working.

(d)

kJ	[2]
	kJ

7 (a) Table 7.1 shows some of the properties of the halogens in Group VII of the Periodic Table.

Table 7.1

period	halogen	colour	physical state at room temperature	
3	chlorine	pale yellow-green	gas	
4	bromine	dark red-brown	liquid	
5	iodine	blue-black	solid	

	Describe one trend in the physical properties of chlorine, bromine and iodine.				
			[1]		
(b)	(i)	A dilute solution of chlorine is added to a colourless solution of potassium bromide. Describe what is seen.			
	(ii)	Write a word equation for this reaction.	[1]		
		+ - +			
			[2]		

(c) Fig. 7.1 shows the arrangement of the outer electrons of the atoms in a chlorine molecule, Cl_2 .

Fig. 7.1

State the name of this type of bonding. [1]

(d)	Chlorine is used in the purification of the public water supply.					
	Explain why chlorine is added to water supplied to homes.					
	[2]					

8 Fig. 8.1 shows a simple type of air conditioner called a 'swamp cooler' that is used in buildings in dry desert places.

Fig. 8.1

Hot dry air is blown by a fan over the surface of water in a metal container. The hot dry air evaporates some of the water. The air coming out of the swamp cooler is cool and damp.

(a) The boxes in Fig. 8.2 show different ways in which atoms and molecules may be arranged in different situations.

Three materials found in the swamp cooler are air, metal and water.

Draw lines from the materials in the left column to the correct arrangement of atoms or molecules for each material in the right column. One has been done for you.

Fig. 8.2

[2]

(b)	(i)	Explain, referring to molecules of water, why evaporation of water cools the remaining water.	
			[2]
	(ii)	Describe how the water cools the hot air.	
			[1]
(c)		buildings in hot desert countries, where days are hot and nights can be very cold, windon steel frames are often used.)WS
	_	. 8.3 shows how a space is left between the steel frame and the mudbricks of rounding wall.	the

Fig. 8.3

Explain why it is necessary to leave this space between the window frame and the mudbricks.

(d)	A mudbrick is 30 cm long, 15 cm wide and 10 cm thick, and has a mass of 7 500 g.						
	(i)	(i) Calculate the volume of the mudbrick in cubic centimetres.					
		cm ³ [1]					
	(ii)	Calculate the density of the mudbrick in g/cm ³ .					
		State the formula that you use and show your working.					
		formula:					
		working					
		working					
		donoity = / 3 [O]					
		density = g/cm^3 [2]					

Please turn over for Question 9.

(a) Table 9.1 shows diagrams of two blood cells. 9

Complete Table 9.1 to show the names and functions of these cells.

[4]

Table 9.1

diagram	name of cell	function of cell

(b) Fig. 9.1 is a flowchart to show the circulation of blood in the body.

Complete the paragraph using words or phrases from the list.

You may use each word or phrase once, more than once, or not at all.

	aorta	body left		lungs		
	pulmonary artery	pulmon	ary vein	right	valves	
Blood	leaves the			ventricle o	of the heart to go	through
blood	vessel P , which is the				It then goe	es to the
lungs	There are			in the hea	rt to make sure t	here is
a one	e-way flow of blood.					[3]

(c)	The	The composition of blood changes as it flows through the tissues of the small intestine.									
	Sta	ate									
	(i)	one substance that leaves the blood as it flows through the tissues of the small intestine,									
		[1]									
	(ii)	two substances that enter the blood as it flows through the tissues of the small intestine.									
		[2]									

DATA SHEET
The Periodic Table of the Elements

	0	# He Helium	20 Neon 10 40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Ľ
	5		19 Fluorine 35.5 C1 Chlorine	80 Br Bromine 35	127 T lodine	At Astatine 85		Yb Ytterbium 70	No silver
	>		16 Oxygen 8 32 Swifur 16	Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md
	>		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm
	≥		12 Carbon 6 Silicon 14	73 Ge Germanium 32	Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	ES
	=		11 Benon 5 27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Ç
				65 Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	8
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm
Group				59 Nicke l 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am
Ď				59 Co Cobalt	Rhodium 45	192 Ir Iridium 77		150 Sm Samarium 62	Pu
		1 Hydrogen		56 Fe Iron	Ru Ruthenium	190 Os Osmium 76		Pm Promethium 61	N
				Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 C
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Ра
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th
				48 Ti tanium 22	2 Zronium	178 Hf Hafnium 72			a = relative atomic mass X = atomic symbol
				Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	d series eries	a = relative atomic mass X = atomic symbol
	=		Berylium 4 24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Rad Radium 88	*58-71 Lanthanoid series	<i>a</i> ×
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium 19	Rubidium	133 Csesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.