# BMT-72106 Cellular Biophysics Exercise 4, 12.4.2019

Contact assistant: Julia Johansson, julia.johansson@tuni.fi

# Exercise 1.

Explain following phenomena:

- a) Driving force of an ion species
- b) Voltage-gated ion channel
- c) Can action potential travel backwards? Justify.
- d) Complementary functions of ion channels and ion pumps
- e) Equivalent circuit of a cell membrane
- f) Intra- and extracellular recording

### Exercise 2.

- a) What is the difference between permeability and conductance (in the context of membrane properties)?
- b) How does the charge inside the cell membrane compare to the outside? Why is this?

#### Exercise 3.

Gap junctions and synapses are both used in the communication between cells. Compare gap junctions and synapses: similarities and differences, "advantages" and "disadvantages".

# Exercise 4.

A Na<sup>+</sup>-selective channel population has a constant conductance at membrane potential levels more negative than -50 mV. When the membrane is depolarized from -50 mV to -20 mV, there is a gradual 5-fold increase in conductance, and at potentials above -20 mV the conductance remains constant (see figure 1). The equilibrium potential of Na<sup>+</sup> is +60 mV.

- a) Sketch the current voltage plot of this channel population to the provided template in figure 2 (note that there is no scale for  $I_m$ , only the shape of the curve as a function of voltage is important).
- b) What happens to the current if you apply tetrodotoxin (TTX)?



Figure 1: Na<sup>+</sup>-selective channel population conductance as a function of voltage.



Figure 2: Current voltage plot template.  $\,$