Math 146: Homework 4

Due: Friday, March 1, by 11:59pm Please submit your solutions as a single PDF on Canvas

Reminders:

- You are encouraged to work together on homework. If you work with other students, please indicate who you worked with on this assignment.
- The usual extension policy applies to this assignment: if you would like an extension on this homework over the weekend, simply email the professor to ask for it. No justification is required.
- 1. Let F be a field and let $f \in F[x]$ be a monic polynomial. Prove that f is irreducible if and only if f cannot be factored as a product of two *monic* polynomials of smaller degree.
- **2.** Let p be a prime and let \mathbb{F}_p be the field with p elements.
 - a) List all possible ways that a monic polynomial $f \in \mathbb{F}_p[x]$ with deg f = 3 could factor.
 - b) Prove that there are exactly $\frac{p^3-p}{3}$ monic, irreducible polynomials $f \in \mathbb{F}_p[x]$ with degree 3. (*Hint:* You may use that there are exactly $\frac{p^2-p}{2}$ monic irreducible degree 2 polynomials.)
 - c) Conclude that there is a field of order p^3 .
- **3.** Let F and K be field and suppose that K is an extension of F. Let $\alpha \in K$ be such that α^2 is algebraic over F. Prove that α is algebraic over F.
- **4.** Let F and K be fields and suppose that K is an extension of F. An automorphism of K over F is a bijective homomorphism $\phi \colon K \to K$ such that $\phi(a) = a$ for every $a \in F$. Let $\operatorname{Aut}_F(K)$ be the set of automorphisms of K over F.
 - a) Prove that $\operatorname{Aut}_F(K)$ is a group under composition of functions.
 - b) If $\alpha \in K$ is algebraic over F, prove that $\phi(\alpha)$ is also algebraic over F for every $\phi \in \operatorname{Aut}_F(K)$.
 - c) Find $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(i))$, $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2}))$, and $\operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$.