

用 Bootloader 给 K60 下载程序

V1.03

本文将向大家介绍如何用**拉普兰德**提供的 Kinetis Bootloader 下载用户程序,同时讲解 Bootloader 的工作流程,对初学者有一定指导意义。在最新版本的 Bootloader 下载器中,我们还实现了自动下载功能,用户不需要手动复位 MCU、不需要重新选择程序文件,就可以在 IAR 开发环境中实现编译后无缝启动下载功能。

1. 为什么要用 Bootloader

大量的案例表明,K60 单片机的 Flash 被锁是由于下载器使用不当或者发生故障导致的,虽然这种情况可以通过解锁恢复正常,但是也有一定几率会使芯片造成永久损坏。那么有没有一种安全的方式下载程序呢,答案是肯定的——用 Bootloader。有人会问这样岂不是就不能对 K60 进行在线调试了吗?没错,但是其实我们在开发应用的后期,对程序的框架一般是不会再做改动了,要做的大量工作是调试参数,试想如此反复的插拔下载器的插头,难免会造成失误。如果使用 Bootloader 进行下载,那么仅需一根 USB 线就可以轻松完成程序的下载了!

2. 什么是 Bootloader

那么什么是 Bootloader? 他的原理又是什么呢? 如果你是初学者,本节将通过简洁的描述让你对它有一个感性认识;如果你已经了解,则可以直接跳过这里。

用一句话解释 Bootloader, 它是一段用来加载用户程序的小程序。图 1 展示了拉普兰德编写的 K60 Bootloader 程序流程, 这是一个抽象简化的流程图, 作为初学者只需要了解大概的过程即可。

图 1

单片机上电复位后,首先检测是否要执行 Bootloader 程序,这个检测的过程通常是判断某一个 IO 口是否被拉高或者拉低,如果该 IO 口电平状态符合条件,则执行 Bootloader 程序,否则程序会直接跳到用户程序的入口向量地址,并执行用户的应用。如果执行 Bootloader 程序,则将初始化用来传输用户程序文件的相关通讯接口,这里我们用到了 USB 或串口。接下来程序会和 PC 上的上位机进行通信,获取用户程序文件。在成功擦除并编程 Flash 后,Bootloader 会将堆栈(SP)指针地址及程序计数器(PC)指针地址赋予新值,最终程序会跳到用户程序中去执行。

3. 使用拉普兰德 Kinetis Bootloader 程序

3.1. 下载对应的 Bootloader 程序

为了使用 Bootloader 下载用户程序,我们首先要将 Bootloader 程序本身下载到 K60 中。该程序大小仅占用目标 MCU 很小的一片 Flash 区域(小于 20KB)。拉普兰德现阶段为开发者提供了三种型号 K60 的 Bootloader 程序,支持 USB 或串口下载方式。程序对应的芯片如表 1 所示。表中得程序文件有两种格式,一种是 bin 文件,可以用 JFlash 下载,一种是 out 格式,可以用 IAR 等开发工具下载。

表 1

Bootloader 程序文件名	对应的单片机
LPLD_Bootloader_MK60DN512ZVLQ10.bin/.out	MK60DN512ZVLQ10 (LQFP144)

Bootloader 程序文件名	对应的单片机
LPLD_Bootloader_MK60DX256ZVLQ10.bin/.out	MK60DX256ZVLQ10 (LQFP144)
LPLD_Bootloader_MK60Fx.bin/.out	MK60Fx 系列 (LQFP144)

3.2. 用 J-Flash 给 K60 下载 Bootloader

如果用户使用的是 **J-link** 下载器,那么你可以用 J-link 自带的 **J-Flash** 软件下载 bin 格式的 bootloader 程序。J-Flash 软件是你在安装 J-Link 驱动时自带的一个软件,他可以 对 MCU 的 Flash 进行擦除、编程等操作。

打开 J-Flash ARM 软件, 依次点击 "File" - "Open project", 如图 2 所示。

图 2

在选择文件对话框中选择要下载的 MCU 型号,不管你用的是 K60DX256 还是 K60DN512,这里均选择"MK60N512.jflash",因为这是它提供的唯一 K60 型号。不过经过验证,该文件对以上两种 K60 型号均可支持下载。点击打开后即可看到界面左侧显示了该芯片的相关信息。

下面给你的 K60 目标板供电,并连接好 J-Link 下载器。依次点击"Target"-"Connect", 对目标板进行连接。如图 3 所示。

图 3

连接成功后会在LOG对话框中显示如下信息:

- JTAG speed: 100 kHz (Fixed)
- Initializing CPU core (Init sequence) ...
- Initialized successfully
- JTAG speed: 4000 kHz (Fixed)
- Connected successfully

接下来就要打开我们的 Bootloader 程序文件了,依次点击"File"—"Open data file",在打开的对话框中选择需要打开的 bin 程序文件,这里请按照你的 K60 实际型号来对应选择。如图 4 所示,由于我们使用的核心板采用 MK60DX256ZVLQ10 芯片,因此需要选择"LPLD_Bootloader_MK60DX256ZVLQ10.bin"文件。

图 4

点击打开后,会弹出输入起始地址的对话框,这里不用改默认为 0 即可。因为 Bootloader程序通常是从 MCU 的 Flash 绝对地址 0x000000000 开始运行的。如图 5 所示。

图 5

点击 OK 后此时并没有将程序下载到 Flash 中,需要依次点击"Target"—" Program", 在接下来的对话框中全部点 OK 或确定即可将程序成功地下载进去! 下载成功后会在 LOG 对 话框中显示如下信息。

Programming target (11280 bytes, 1 range)
- RAM tested O.K.
- Erasing affected sectors
- Erasing bank 0, sector 0, 1, 2, 3, 4, 5
- Erase operation completed successfully

注意,此时下载完毕后,Bootloader 程序并不会自动开始运行哦。下面我们将继续讲解如何使用Bootloader 下载用户程序。

3.3. 用 IAR 给 K60 下载 Bootloader

如果你有 OSJTAG 仿真器,也可以用它通过 IAR 开发工具下载 out 格式的程序。步骤如下:

连接好 OSJTAG 与目标板;

随便用 IAR 打开一个可用的 K60 工程;

依次点击菜单的"Project"-"Download"-"Download file…";

在弹出的"打开"对话框中选择相应芯片的.out 程序文件,点击"打开"即可下载。

4. 生成 Bootloader 需要的用戶程序

要想使用 Bootloader 下载用户程序,就需要我们对用户的工程配置稍微做一下修改。 这里只需要轻松的**两步**,就可以在不改动代码的情况下生成所需的程序!以下步骤均在 **IAR** for **ARM** 6.3 开发环境中完成。

A) 生成 Bootloader 上位机软件所需的 **bin** 格式程序文件。例如,这里我们打开 K60 底层库中的 LED 例程 "LPLD_LedLight"。右键工程名,选择"**Option**",如图 6 所示。

在左侧的分类下选择"Output Converter"分类,在右侧的"Output"选项卡中勾选

中"Generate additional output",并在下面的"Output format"下拉列表中选则"binary"即可,如图7所示。这样在我们make工程后,便可以生成相应的bin格式程序文件了。

图 7

B)接下来要更改 icf 文件,即链接器配置文件。由于我们要使用 bootloader 加载程序,因此用户程序就不是由原来的地址启动了,我们需要通过配置 icf 文件来更改用户应用程序的起始地址。在拉普兰德 K60 底层库(下载地址见下文)中已经提供了 DX256 和 DN512 所需的 icf 文件,用户只需要更改调用即可。还是打开上一步的"Option"工程选项对话框,在左侧选择"Linker"分类,在右侧的"Config"选项卡中,修改"Linker configuration file"的文件目录。如图 8 所示。

图 8

拉普兰德 K60 底层库提供的 icf 文件均在 "\iar_config_files" 目录下,如果用户使用的是 DX256 芯片,需要将原来的 icf 文件名替换为 "LPLD_B007_K60DX256. icf",例如:

\$PROJ_DIR\$\..\..\lib\iar_config_files\LPLD_BOOT_K60DX256.icf

如果用户使用的 DN512 芯片,需将原来的 icf 文件名替换为"LPLD_BOOT_K60DN512. icf"。 其实即使用户手动修改 icf 文件,也并非一件复杂的事情,我们将在下面的小节中具体 介绍如何修改 icf 文件来适应 Bootloader 程序工程。

至此,我们就可以名正言顺的生成适用于 Bootloader 下载的程序啦! 在 IAR 开发界面接 F7 或者点击 "Project" - "make"来生成程序。生成成功后会在工程目录对应配置文件夹下的"Exe"目录中多出一个. bin 格式的文件,这个就是我们所需要下载的用户程序。如图 9 所示。

图9

★小提示 1:如何切换配置?

经过修改配置后的工程,不能通过点击 Debug 按钮来用仿真器进行在线调试,因为下载进去的程序后根本不会正常运行。因此在这里笔者建议大家在原有的配置基础上新建一个专门用于 Bootloader 的工程配置,以便在在线调试和 Bootloader 下载间切换。方法是在点击"Project"-"Edit Configurations",在弹出的对话框中点击"New"按钮,为新的配置起一个名字,例如叫"BOOT",然后点击"OK"即可。接下来再按照上面的 A、B 两步重新配置这个名为 BOOT 的方案即可。

5. 通过 Bootloader 上位机下载用户程序

终于到了最关键的时刻,为了使用之前下载好的 Bootloader 程序下载我们编写的用户应用,我们需要使目标板的 MCU 在上电后进入 Bootloader 模式,而不是直接跳过去执行用户应用。拉普兰德的 K60 Bootloader 通过判断 K60 的 PTAO 引脚电位来决定是否进入 Bootloader 引导程序,通过判断 PTA3 的电平决定进入 USB 模式还是串口模式。模式的逻辑关系如表 2 所示。

表 2

PTA0 引脚状态	PTA3 引脚状态	模式
低电平	悬空/高电平	USB Bootloader 模式
	低电平	串口 Bootloader 模式
悬空/高电平	任意	直接进入用户程序

为了进入 Bootloader 模式,用户需要通过跳线帽或者杜邦线,对相应的引脚进行电平 跳变。**例如将 K60 的 PTA0 引脚与 GND (地)相连则会进入 USB 下载的 Bootloader** 模式,图 10 展示了拉普兰德 K60 Nano 核心板的跳线方式。由于 PTA0 为 JTAG 下载接口的其 中一个引脚,因此可以很方便的通过跳线帽将其与 GND 相连。如果需要进入串口下载的 Bootloader 模式,还需要将 PTA3 与 GND 相连。

★小提示 2: 如何进入 Bootloader 模式?

先断电目标板,再对相应引脚进行跳接,最后再上电才进入相应的模式哦!

图 10

5.1. K60 Nano 核心板的连接方法

如果用户使用的是拉普兰德的 K60 Nano 核心板,则可以直接通过 USB Mini 线将核心板与电脑相连。如果是初次连接,电脑会提示安装驱动,用户需掉过自动安装驱动,并在"设备管理器"中手动更新驱动。右键"其他设备"中的"USB_UART",选择"更新驱动程序软件",如图 11 所示。

图 11

在弹出的对话框中选择"浏览计算机以查找驱动程序软件",再点击"浏览",定位目录于拉普兰德 K60 Bootloader 资料包的"\driver"目录。点击"确定",再点击"下一步"。如果是 Windows 7 操作系统,可能会弹出安全提示,选择第二项"始终安装此驱动程序软件"即可完成安装。如图 12 所示。

图 12

驱动安装成功后会在"设备管理器"的"端口"中多出一个虚拟串口设备,如图 13 所示。

5.1. K60 Card 核心板的连接方法

如果用户使用的是拉普兰德的 K60 Card 核心板,则有两种连接方式:第一种即通过板载的 USB 接口与电脑相连,方法和步骤与 Nano 板相同,此时的跳线帽如图 14 所示,直接将跳线帽插在 OSJTAG 下载接口的标注位置即可。

图 14

第二种方法是通过 Card 板的转接板连接, Card 转接板上板载了 USB 转串口功能,用户可以利用该 USB 接口实现 Bootloader 自动下载程序,即不用手动复位和插跳线帽就可以直

接在上位机上下载。该 USB 转串口电路与普通的电路有一些不同,具体设计原理见下面的章节。Card 板转接板的连接方法如图 15 所示。

图 15

5.2. 其他 K60 核心板的连接方法

该 Bootloader 程序同样支持其他 K60 核心板,拉普兰德为没有 USB 接口的核心板提供了串口下载功能,大家只要将手上核心板的 UART5 串口模块的 **PTE8** 和 **PTE9** 两个串口引脚与电脑的串口相连就可以了。当然这需要大家动手来搭建外围串口电路,使用 RS232 或者使用串口转 USB 电路均可。

5.3. 下载用戶程序

终于到最后一步了,在将 K60 核心板与电脑连接完毕之后,需要将核心板供电,如果使用 USB 接口则无需额外供电,因为核心板已经通过 USB 接口直接向核心板供电了。打开 "Kinetis Bootloader 下载器. exe" 软件,点击"连接 MCU" 按钮,如果连接正确,则软件会自动与目标板连接,并显示 MCU 型号。如图 16 所示。

★小提示 3: 下载器软件打不开?

如果无法打开此软件,请下载.net framework 4.0 安装包并安装。

http://www.microsoft.com/zh-cn/download/details.aspx?id=17718

图 16

然后点击"选择文件"按钮会弹出选择文件的对话框,选择我们之前生成的.bin 程序文件即可。这里我们选择刚才生成的 LED 流水灯程序"LPLD_LedLight_K60.bin",点击打开后会在文本框中显示出该文件的相关信息。如图 17 所示。

图 17

最后点击"开始下载",稍等片刻之后,该软件就会将.bin 程序自动下载到目标板中了。 下载成功后如图 18 所示。此时再看核心板已经自动开始运行 LED 流水灯程序了!

图 18

5.4. 自动下载用户程序

如果用户使用 Card 转接板的 USB 接口,则可以实现通过 Bootloader 自动下载 bin 程序。 首先要通过 USB 线连接好 Card 转接板,然后打开"Kinetis Bootloader 下载器.exe"软件, 手动选择串口号,然后勾选上"自动下载"选择框,如图 19 所示。

图 19

如果你不知道 Card 转接板的串口号是多少,可以在"设备管理器"中的"端口(COM 和LPT)"分类下看到。如图 20 所示,当前转接板的串口为 COM6。

图 20

接下来点击"连接 MCU","下载器"便会自动复位目标核心板并使之进入 Bootloader 下载模式。然后选择要下载的 Bin 程序文件,软件就会自动下载该程序。

自动下载功能不仅仅可以自动复位核心板并下载,还可以在你编译完工程后自动下载该

工程,犹如使用仿真器一样方便!如果你第一次所选择的 Bin 程序就是当前 IAR 所打开的工程所生成的,那么在你重新编译整个工程后,"下载器"软件会自动弹出,将最新生成的 Bin 程序下载到核心板中,如图 21 所示。你必须确保你的工程代码有所变动,生成的 Bin 程序才会被下载,否则不会生成新的 Bin。在 IAR 工程中按 F7 快捷键便会立即启动 Make 程序编译新工程。

图 21

6. 自动下载的原理说明

我们通常要使用跳线帽来设置相关引脚的电平来使 MCU 进入 Bootloader 模式,而且每次下载必须手动复位 MCU 才可以。那么有没有办法通过上位机来控制 MCU 复位来自动进入 Bootloader 模式呢,答案是肯定得。拉普兰德 Kinetis Bootloader 在 V1.02 版以后便加入了此功能。

在 K60 Card 核心板的转接板中,我们是这样设计 USB 转串口电路的:我们使用最常用的 PL-2303 芯片来做 USB 转串口功能,与其他电路不同的是,**我们通过连接 P1.-2303 的** DTR 引脚和 MCU 的复位引脚,来突现自动复位 MCU 的功能。DTR 信号是全功能串口中的(Data Terminal Ready)数据终端就绪信号,在简化串口中不用这个信号,但是我们依然可以使用它作为一个控制信号,来控制 MCU 的 RESET 引脚。如果用户使用非 K60 Card 转接板,一样可以利用此方法制作能够实现自动下载功能的串口电路。电路原理图如图 22 所示。

图 22

★ 小提示 4: MCU 上电反复复位?

用户通过此电路的 USB 接口上电初期, MCU 会反复复位几次,原因是 PL-2303 驱动问题造成的, PL-2303 会在电脑识别过程中反复使能 DTR 引脚,通常过1至2秒便会正常。

★小提示 5: 串口惆试助手复位 MCU?

大多数串口调试助手会在打开串口时使能 DTR 信号,因此会导致 MCU 一直处于复位状态

不能运行。这是串口调试助手的设计缺陷,因此我们推荐用户使用 AccessPort (一种功能强大的串口调试器)来查看串口数据。下载地址: http://www.sudt.com/cn/ap/download.htm

该软件的所有串口功能都要强于普通串口调试助手,你可以通过以下步骤禁用串口的 DTR 信号,以保证 MCU 不会因此而复位:

- 1、点击"工具"-"配置参数",或直接使用快捷键 F2,打开选项对话框。
- 2、在"常规"选项下可以设置一些常见的参数,这里可以略过。
- 3、在"流控制"中的"硬件控制设置"下,选择"DTR"的选项为"Disable"即可,确定退出。

当然你也可以在主界面的"发送数据"按钮旁快速控制 DTR 信号,勾选或取消"DTR" 旁边的复选框即可。

7. 配置 ICF 文件以适合 Bootloader

虽然 K60 底层包提供了配置好的 icf 文件,但是本着**授之以迎**的精神,笔者在这里简要介绍下如何去手动修改你自己的 icf 文件,来生成适用于 bootloader 下载的程序。

我们知道,bootloader 引导程序是储存在 Flash 中最前端的一小块区域里的,拉普兰 德为 K60 的 bootloader 预留了 20k 字节的空间,因此我们需要在 icf 文件中为 bootloader 留出这 20kB 的空间。在文件我们只需要改变两处,第一处为**用户中断向量表的起始地址**,原先为 **0x00000000**0,向后推移 20kB 的空间后地址变为 **0x00005000**,最终修改如下所示:

define exported symbol __VECTOR_TABLE = 0x00005000;

第二处为**代码段的起始地址**,原先为 0x00000410,修改后的地址变为 0x00005410,最终修改如下:

define symbol $_$ code_start $_$ = 0x00000410;

8. 结束语

使用 Bootloader 为 K60 下载程序为我们提供了更多的便利, 开发者只需要使用下载器一次性地将 Bootloader 程序下载到目标板中, 就可以实现脱离下载器进行开发了!需要提醒的是, 在实际应用过程中不要忘记拔掉跳线帽哦, 否则程序会一直停在 Bootloader 里。

9. Bootloader 版本更新记录

版本号	更新记录	
V1.03 发布版本	固件增加版本号识别号。	
	固件连接、下载稳定性提升。	
	上位机下载软件更新至 V1.03。	
V1.02 内测版本	固件支持自动复位下载功能,需硬件电路支持。	
	上位机下载软件更新至 V1.02 , 增加自动下载、参数设置等 UI。	
V1.01 发布版本	固件更新 USB CDC 驱动,大幅提升下载速度。	
	固件追加支持 MK60F 系列单片机。	
	上位机下载软件更新至 V1.01。	
V1.0 发布版本	创建第一版 Bootloader 固件及上位机下载软件。	
	支持 MK60DN512、MK60DX256 单片机。	

10.资料索引

Bootloader 更新地址: http://www.lpld.cn/?p=108

K60 底层包下载地址: http://www.lpld.cn/?p=97

以下资料均可在 K60 底层包或 Bootloader 资料包根目录下找到。

USB 驱动: 见本压缩包 \driver

icf 配置文件: \lib\LPLD\iar_config_files\...

更多 K60 资料: http://www.lpld.cn/?tag=k60

技术支持: <u>laplenden@126.com</u>