CLAIMS

- [1] A p-type semiconductor material expressed in a composition formula of $Zn_{(1-\alpha-\beta-\gamma)}Cu_{\alpha}A_{\beta}B_{\gamma}S_{(1-x-y)}Se_{x}Te_{y}$ (0.004 $\leq \alpha \leq$ 0.4, $\beta \leq$ 0.2, $\gamma \leq$ 0.2, $0 \leq x \leq$ 1, $0 \leq$ $y \leq$ 0.2, and $x + y \leq$ 1, A and B are elements selected from Cd, Hg and alkaline earth metals).
- [2] The p-type semiconductor material according to claim 1, wherein the A is Mg.
- [3] The p-type semiconductor material according to claim 1, wherein the B is Cd.
- [4] The p-type semiconductor material according to claim 2, wherein the B is Cd.
- [5] The p-type semiconductor material according to any of claims 1 to 4, wherein the semiconductor material contains at least one dopant selected from Cl, Br, I, Al, Ga and In as a compensation dopant and a concentration of the compensation dopant is 10¹⁷ to 10²⁰ cm⁻³.
- [6] The p-type semiconductor material according to any of claims 1 to 4, wherein the semiconductor material has a light absorption coefficient of 5 x 10^5 cm⁻¹ or less at 470 nm to 750 nm.
- [7] The p-type semiconductor material according to any of claims 1 to 4, wherein a volume resistivity of the semiconductor material is equal to or higher than $10^{-4}\Omega\text{cm}$ and is lower than $10^{-3}\Omega\text{cm}$.

- [8] The p-type semiconductor material according to any of claims 1 to 4, wherein a carrier concentration of the semiconductor material is equal to or higher than 10^{16} cm⁻³ and is lower than 10^{22} cm⁻³.
- [9] A semiconductor device in which the p-type semiconductor material according to any of claims 1 to 4 constitutes a hole injecting electrode layer in an amorphous phase or a polycrystalline phase.
- [10] The semiconductor device according to claim 9, wherein the semiconductor device is a light emitting device.