R Notebook-CLASS-1

Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*.

```
31*78
```

Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing Ctrl+Alt+1.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the *Preview* button or press *Ctrl+Shift+K* to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike *Knit*, *Preview* does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

Ex-1

```
a <- 5*3
a
```

```
## [1] 15
```

```
help(log)
```

```
## starting httpd help server ... done
```

```
a<-1
b<- (-6)
c<-1
s1<- (-b+sqrt(b^2 - 4*a*c))/(2*a)
s2<- (-b-sqrt(b^2 - 4*a*c))/(2*a)
print(s1)</pre>
```

```
## [1] 5.828427
```

```
print(s2)
```

```
## [1] 0.1715729
```

Vectros

```
vector1<- c(1,2,3)
vector1
```

```
## [1] 1 2 3
class(vector1)
## [1] "numeric"
vect2<- c('i','n','d','i','a')</pre>
vect2
## [1] "i" "n" "d" "i" "a"
class(vect2)
## [1] "character"
vect3<-c(1,2,'i','p')</pre>
vect3
## [1] "1" "2" "i" "p"
class(vect3)
## [1] "character"
vect4<-c("italy"=10,"canada"=20,"usa"=30 )</pre>
vect4
## italy canada
                  usa
##
       10
                     30
              20
class(vect4)
## [1] "numeric"
seq(1,10)
## [1] 1 2 3 4 5 6 7 8 9 10
1:5
## [1] 1 2 3 4 5
```

```
names(vect4)
## [1] "italy" "canada" "usa"
vect4["italy"]
## italy
vect4[2]
## canada
##
      20
vect4[1:3]
                 usa
## italy canada
##
      10
           20
                    30
vect4[c(1,3)]
## italy
         usa
##
   10
         30
a<- c(1, "canada", 2)
class(a)
## [1] "character"
vect3<-c(1,2,'i','v')</pre>
class(vect3)
## [1] "character"
x<- 1:10
Χ
## [1] 1 2 3 4 5 6 7 8 9 10
y<- as.character(x)</pre>
У
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
```

```
as.numeric(y)
```

```
## [1] 1 2 3 4 5 6 7 8 9 10
```

matrix

```
mat<- matrix(1:12,nrow = 4,ncol = 3)
mat</pre>
```

```
## [,1] [,2] [,3]

## [1,] 1 5 9

## [2,] 2 6 10

## [3,] 3 7 11

## [4,] 4 8 12
```

```
mat[2,2]
```

```
## [1] 6
```

```
mat[2,]
```

```
## [1] 2 6 10
```

```
mat[,3]
```

```
## [1] 9 10 11 12
```

```
mat[,2:3]
```

```
## [,1] [,2]
## [1,] 5 9
## [2,] 6 10
## [3,] 7 11
## [4,] 8 12
```

```
mat[1,2:3]
```

```
## [1] 5 9
```

```
as.data.frame(mat)
```

```
      V1
      V2
      V3

      <int>
      <int>

      1
      5
      9
```

```
    V½
    V6
    Y8

    <int>
    <int>
    <int>

    3
    7
    11

    4
    8
    12

    4 rows
```

list

```
list1=list(1,2,3)
list1
## [[1]]
## [1] 1
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
mylist1=list(name="prabal",degree="msc",course="dsai")
mylist1
## $name
## [1] "prabal"
##
## $degree
## [1] "msc"
##
## $course
## [1] "dsai"
out=t.test(1:10,c(7:20))
out
```

```
##
## Welch Two Sample t-test
##
## data: 1:10 and c(7:20)
## t = -5.4349, df = 21.982, p-value = 1.855e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.052802 -4.947198
## sample estimates:
## mean of x mean of y
## 5.5 13.5
```

```
a<-c(1,2,3,4)
b<-c("d","e","f","g")
c<-c("hi","bp","np","gh")
df<-data.frame(a,b,c)
df</pre>
```

a <dbl></dbl>	b <chr></chr>	c <chr></chr>
1	d	hi
2	е	bp
3	f	np
4	g	gh
4 rows		

df[1:3,1:2]

```
    a
    b

    <dbl> <chr>

    1
    1

    2
    2

    3
    3

    3 rows
```

```
df[1,2]
```

```
## [1] "d"
```

df[1,]

	a b <dbl> <chr></chr></dbl>	c <chr></chr>
1	1 d	hi
1 row		

```
df[,3]
```

```
## [1] "hi" "bp" "np" "gh"
```

```
new_c1<- c("kol","hol","jol","pol")
df$city<- new_c1
df</pre>
```

a <dbl></dbl>	b <chr></chr>	c <chr></chr>	city <chr></chr>
1	d	hi	kol
2	е	bp	hol
3	f	np	jol
4	g	gh	pol
4 rows			

subset(df,a>2)

	a b <dbl> <chr></chr></dbl>	c <chr></chr>	city <chr></chr>	
3	3 f	np	jol	
4	4 g	gh	pol	
2 rows				

Import Library

```
library(dslabs)
data(murders)
class(murders)
```

```
## [1] "data.frame"
```

str(murders)

head(murders)

state <chr></chr>	abb <chr></chr>	region <fct></fct>	population <dbl></dbl>	total <dbl></dbl>
1 Alabama	AL	South	4779736	135
2 Alaska	AK	West	710231	19
3 Arizona	AZ	West	6392017	232
4 Arkansas	AR	South	2915918	93

	state <chr></chr>	abb <chr></chr>	region <fct></fct>	population <dbl></dbl>	total <dbl></dbl>
5	California	CA	West	37253956	1257
6	Colorado	СО	West	5029196	65
6 rc	ows				

names(murders)

```
## [1] "state" "abb" "region" "population" "total"
```

murders\$population

```
##
        4779736
                   710231
                           6392017
                                    2915918 37253956
                                                      5029196
                                                                3574097
                                                                          897934
   [1]
   [9]
          601723 19687653
                           9920000
                                    1360301
                                             1567582 12830632
                                                                6483802
                                                                         3046355
##
         2853118
                  4339367
                           4533372
                                    1328361
                                             5773552
                                                      6547629
                                                                9883640
                                                                         5303925
## [17]
  [25]
         2967297
                  5988927
                            989415
                                    1826341
                                             2700551
                                                      1316470
                                                                8791894
                                                                         2059179
## [33] 19378102
                  9535483
                            672591 11536504
                                             3751351
                                                      3831074 12702379
                                                                         1052567
## [41]
         4625364
                   814180
                           6346105 25145561 2763885
                                                        625741
                                                               8001024
                                                                         6724540
## [49]
        1852994
                  5686986
                            563626
```

plot(1:10,(1:10)^4)

 $plot(1:10,(1:10)^4,xlab = 'val1',ylab = 'val2',pch=19,type = 'b',col='red',main = "Plot1",cex = 3,lty=3)$

library(RColorBrewer)
barplot(1:4,col=brewer.pal(4,"Set1"))

barplot(1:4,col=c("red","green"))

Scatter plot

```
x<- murders$population/10^6
y<- murders$total
plot(x,y,xlim = c(0,40), ylim =c(0,1500),pch=19,xlab = 'population',ylab = 'total',col='red',
main = "Murders")
legend("bottomright",legend = "data points",pch=19,col = "red")
abline(a=0,b=30,lty=2,lwd=2.5,col=("blue"))</pre>
```


BOX PLOT

murders\$rate<- with(murders,total/population * 100000)
head(murders)</pre>

state	abb	region	population	total	rate
<chr></chr>	<chr></chr>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Alabama	AL	South	4779736	135	2.824424
2 Alaska	AK	West	710231	19	2.675186
3 Arizona	AZ	West	6392017	232	3.629527
4 Arkansas	AR	South	2915918	93	3.189390
5 California	CA	West	37253956	1257	3.374138
6 Colorado	СО	West	5029196	65	1.292453

6 rows

boxplot(rate~region, data = murders)

Histogram

x<- with(murders,total/population * 100000)
hist(x)</pre>

Histogram of x


```
murders$state[which.max(x)]

## [1] "District of Columbia"

x= runif(100,0,1)
par(mflow=c(1,2))
```

Warning in par(mflow = c(1, 2)): "mflow" is not a graphical parameter

hist(x)

Histogram of x

hist(x, breaks=2)

Histogram of x

hist(x, breaks=100)

Density plot

```
x= runif(100,0,1)

hist(x, freq = FALSE)
# hist(x, breaks=2)
# hist(x, breaks=100)
f=density(x)
lines(f,col="red",lty=2,lwd=2.5)
```

Histogram of x

QQ PLOT

x= runif(100,0,1)
qqnorm(x)

Normal Q-Q Plot

pie charts

pie(summary(murders\$region))

Pair Plot

x<-murders[,4:6]
pairs(x,col= as.numeric(murders\$region),pch=as.numeric(murders\$region))</pre>

IF ELSE AND LOOPS ===

```
x<-10
if(x<20){
  print("hi i am in france")
}</pre>
```

```
## [1] "hi i am in france"
```

```
x<-10
if(x>20){
  print("hi i am in france")
}else{
  print(" Hi I am in USA")
}
```

```
## [1] " Hi I am in USA"
```

```
x<-9
if(x>20){
  print("hi i am in france")
}else if(x <10){
  print(" I am in Germany")
  }else{
  print(" Hi I am in USA")
}</pre>
```

```
## [1] " I am in Germany"
runif(1,0,10)
## [1] 3.076148
x<-9
y<- if(x>20){
  "hi i am in france"
}else if(x <10){
 " I am in Germany"
  }else{
  " Hi I am in USA"
У
## [1] " I am in Germany"
for(i in 1:10){
  print(i)
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
count<-10
while(count>1){
  print(count)
  count<- count-1
}
## [1] 10
## [1] 9
## [1] 8
## [1] 7
## [1] 6
## [1] 5
## [1] 4
## [1] 3
## [1] 2
```