HW 1

Exercises: 1.2.1, 1.3.1, 1.3.2, (1.3.3), (1.4.1), (1.5.1), 1.6.1, 1.6.2.

Exercises in parentheses are not required. (Please do not submit solutions to these exercises.)

- **1.2.1.** Find a signature appropriate for the description of vector spaces over a give field \mathcal{K} .
- **1.3.1.** Given $X \subseteq M$, let $\operatorname{Aut}_{\{X\}} \mathcal{M}$ be the set $\{h \in \operatorname{Aut} \mathcal{M} : h[X] = X\}$. Show that $\operatorname{Aut}_X \mathcal{M}$ is a normal subgroup of $\operatorname{Aut}_{\{X\}} \mathcal{M}$. What happens if, instead of h[X] = X, we require only $h[X] \subseteq X$?
- **1.3.2.** Find a structure with a bijective endomorphism that is not an automorphism.
- **(1.3.3)** Find an infinite structure \mathcal{M} with a trivial automorphism group, i.e., Aut $\mathcal{M} = \{ \mathrm{id}_M \}$.
- **(1.4.1)** Describe the difference between substructures of \mathbb{Z} according to whether \mathbb{Z} is considered in the signature (0;+) or in the signature (0;+,-).
- **(1.5.1)** Given a signature σ , find a signature $\sigma_1 \supseteq \sigma$ such that all σ -sturctures \mathcal{M} and \mathcal{N} with $\mathcal{N} \leq \mathcal{M}$ have expansions \mathcal{M}' and \mathcal{N}' to σ_1 such that $\mathcal{N}' \subseteq \mathcal{M}'$ and $\operatorname{Aut} \mathcal{M}' = \operatorname{Aut}_{\{N\}} \mathcal{M}$
- **1.6.1.** Show that $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i$ is uncountable as soon as no M_i is empty and infinitely many of the M_i have at least two elements.
- **1.6.2.** Find an embedding $e: \mathcal{M} \to \mathcal{M}^I$ such that $p_i e = \mathrm{id}_M$ for all $i \in I$.