SSA Experiments on SMALLPRESENT-[8]

Md. Mohsin Ali Khan

May 13, 2015

1 SSA Capacities

Table 1: SSA Capacities

Round	C =	$\sigma^2_{C(a)}$	$\sigma_{C(a)}^2$	Distance	Variance of $\sigma_{p_{\eta}(a)}^2$
	$\frac{1}{2^8} \sum_{a \in \mathbb{F}_2^8} C(a)$	(Experimental)	(Theoretical)		(over all η)
1	1.25000000	0.5781250000000	0.01225490196078	0.56587009803921	0.0000000000000000000000000000000000000
2	0.27648926	0.0145425647497	0.00059957889949	0.01394298585022	0.000000000000916679926410
3	0.08090577	0.0019491542362	0.00005133916322	0.00189781507307	0.000000000000237786179678
4	0.01151728	0.0000308265434	0.00000104037363	0.00002978616979	0.000000000000004380139875
5	0.00155004	0.0000008116343	0.00000001884419	0.00000079279016	0.000000000000000082168489
6	0.00025617	0.0000000244511	0.00000000051470	0.00000002393643	0.000000000000000005158124
7	0.00004981	0.0000000003949	0.00000000001945	0.00000000037548	0.000000000000000000057306

2 Statistic $T(\phi, a)$:

Let N be the size of the sample ϕ for a given fixation a. Let us assume that ϕ is chosen without replacement. Y is the set of possible values at the output of the trail. Let C be the capacity of the distribution at the output of the trail. In this circumstances the formulas for theoretical mean and standard deviation of $T(\phi, a)$ are following:

$$\mu_{T(\phi,a)} = (|Y| - 1) B + NC$$

$$\sigma_{T(\phi,a)} = \sqrt{\frac{2}{|Y| - 1}} \times \mu_{T(\phi,a)}$$

where
$$B = \left(1 - \frac{N}{|\phi|_{max}}\right)$$
. In this case, $|\phi|_{max} = 2^{24}$ and $|Y| = 2^8$.

In the below plots, we observe how the value $T(\phi, a)$ evolves as the value N grows. There are 9 different plots for rounds 3, 4, 5, 6, 7, 8, 9, 10 and 13.

Figure 1: $T(\phi, a)$ with 3 rounds

Figure 2: $T(\phi, a)$ with 4 rounds

Figure 3: $T(\phi, a)$ with 5 rounds

Figure 4: $T(\phi, a)$ with 6 rounds

Figure 5: $T(\phi, a)$ with 7 rounds

Figure 6: $T(\phi, a)$ with 8 rounds

Figure 7: $T(\phi, a)$ with 9 rounds

Figure 8: $T(\phi, a)$ with 10 rounds

Figure 9: $T(\phi, a)$ with 13 rounds