Midterm

Ec240a - Second Half, Fall 2023

Please read each question carefully. Start each question on a new bluebook page (or sheet of paper). The use of calculators and other computational aides is not allowed. Good luck!

[1] [5 Points] Please write your full name on this exam sheet and turn it in with your bluebook.

[2] **[25 Points]** Let $X \in \{0,1,2\}$ and $Y \in \{0,1,2\}$. The probability of the event X = x and Y = y for all possible combinations of x and y is given in the following table:

$X \setminus Y$	0	1	2
0	$\frac{1}{18}$	$\frac{1}{9}$	$\frac{3}{18}$
1	$\frac{3}{18}$	$\frac{1}{18}$	$\frac{1}{9}$
2	$\frac{1}{9}$	$\frac{3}{18}$	$\frac{1}{18}$

[a] [5 Points] Calculate $\mathbb{E}[Y]$ and $\mathbb{E}[Y|X=1]$. Are X and Y independent?

[b] [5 Points] Calculate $\mathbb{E}[X]$, $\mathbb{E}[X^2]$ and hence $\mathbb{V}(X)$.

[c] [7 Points] Calculate $\mathbb{C}(X,Y)$ and also the coefficient on X in $\mathbb{E}^*[Y|X]$.

[d] [3 Points] Calculate the intercept of $\mathbb{E}^* [Y|X]$.

[e] [5 Points] Repeat [a] to [d] above for the following joint distribution

$X \setminus Y$	0	1	2
0	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
1	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
2	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

[3] [45 Points] You have been hired by UNICEF to estimate the prevalence of childhood stunting (low height-for-age) across municipalities in a country where childhood malnutrition is commonplace. Let Y_{it} be the height-for-age Z score of individual t = 1, ..., T in municipality i = 1, ..., N. In each municipality you draw T children at random and compute the average height-for-age Z score

$$\bar{Y}_i = \frac{1}{T} \sum_{t=1}^T Y_{it}.$$

You assume that $Y_{it}|\theta_i \sim \mathcal{N}\left(\theta_i, \sigma^2\right)$ for $i=1,\ldots,N$ and $t=1,\ldots,T$ (and hence we have that $\bar{Y}_i|\theta_i \sim \mathcal{N}\left(\theta_i, \frac{\sigma^2}{T}\right)$.). In this model the expected height-for-age Z score, θ_i , varies across municipalities. Your goal is to estimate the municipality (population) means $\theta_1, \theta_2, \ldots, \theta_N$. Municipalities with low θ_i estimates will be slated to receive new anti-hunger and nutrition programs. Initially you may assume that σ^2 is known (in a healthy population of children $\sigma^2 \approx 1$ since height-for-age Z scores are calibrated to have unit variance in such a setting).

[a] [5 Points] Let $\|\mathbf{m}\| = \left[\sum_{i=1}^{N} m_i^2\right]^{1/2}$ denote the Euclidean norm of a vector. Let $\theta = (\theta_1, \dots, \theta_N)'$. Show that

$$\mathbb{E}\left[\left\|\hat{\theta} - \theta\right\|^{2}\right] = \sum_{i=1}^{N} \mathbb{E}\left[\left(\hat{\theta}_{i} - \theta_{i}\right)^{2}\right],$$

with $\hat{\theta}$ some estimate – based upon the sample data $\mathbf{Y} = (Y_{11}, \dots, Y_{1T}, \dots, Y_{N1}, \dots, Y_{NT})'$ – of θ . Explain why this measures *expected* estimation accuracy or *risk*? What is being averaged in the expectation? [2 - 3 sentences].

[b] [8 Points] Consider the following family of estimators for θ_i (for i = 1, ..., N):

$$\hat{\theta}_i = (1 - \lambda) \, \bar{Y}_i + \lambda \mu,$$

with μ the country-wide mean of Y_{it} (i.e., the expected height-for-age Z score of a randomly sampled child from the full country-wide population). You may assume that μ is known (perhaps from prior research). Assume that $0 \le \lambda \le 1$. Interpret this estimator? Why might the estimator with $\lambda = 0$ be sensible? How might you justify the estimator when $\lambda > 0$ [3 - 4 sentences].

[c] [9 Points] Show, for the family of estimates introduced in part [d], that

$$\mathbb{E}\left[\left\|\hat{\theta} - \theta\right\|^{2}\right] = (1 - \lambda)^{2} \frac{N}{T} \sigma^{2} + \lambda^{2} \sum_{i=1}^{N} (\theta_{i} - \mu)^{2}.$$

You hear, in the hallways of Evans, that "small λ means small bias" and "big λ means low variance". Explain? [4 - 5 sentences].

[d] [5 Points] Show that the risk-minimizing choice of λ , say λ^* , is

$$\lambda^* = \frac{N\sigma^2}{N\sigma^2 + \sum_{i=1}^{N} T(\theta_i - \mu)^2}.$$

Discuss why λ^* is declining in $\sum_{i=1}^N T(\theta_i - \mu)^2$. Provide some intuition for why this is optimal. [3 - 4 sentences].

[e] [5 Points] Show that

$$\sum_{i=1}^{N} \mathbb{E}\left[\left(\bar{Y}_{i} - \hat{\theta}_{i}\right)^{2}\right] = \sum_{i=1}^{N} \mathbb{E}\left[\left(\bar{Y}_{i} - \theta_{i}\right)^{2}\right] + \sum_{i=1}^{N} \mathbb{E}\left[\left(\hat{\theta}_{i} - \theta_{i}\right)^{2}\right] - \frac{2\sigma^{2}}{T} \operatorname{df}\left(\hat{\theta}\right)$$

with the degree-of-freedom of $\hat{\theta}$ (or model complexity) equal to

$$\mathrm{df}\left(\hat{\theta}\right) = \sum_{i=1}^{N} \frac{T}{\sigma^{2}} \mathbb{C}\left(\bar{Y}_{i}, \hat{\theta}_{i}\right).$$

We call the term to the left of the first equality above apparent error.

[f] [5 Points] Show that

$$\sum_{i=1}^{N} \mathbb{E}\left[\left(\bar{Y}_{i} - \theta_{i}\right)^{2}\right] = \frac{N}{T}\sigma^{2}$$

and also, for the family of estimates indexed by λ introduced in part [d] above, that

$$\mathrm{df}\left(\hat{\theta}\right) = N\left(1 - \lambda\right).$$

[g] [4 Points] Calculate apparent error and model complexity for $\hat{\theta}$ when $\lambda = 0$. Explain? [2 - 3]

sentences].

- [h] [4 Points] Calculate apparent error and model complexity for $\hat{\theta}$ when $\lambda = 1$. Explain? [2 3 sentences].
- [4] [25 Points] Consider the following statistical model for the logarithm of daily city-wide sales of Bob Dylan's landmark *Christmas in the Heart* album:

$$\ln S = \alpha_0 + \beta_0 R + \gamma_0 P + U, \ \mathbb{E}[U|R, P] = 0,$$

where R is the number of times a song from the album is played on KALX on the given day, and P is the price of the album (which varies across your sample due to various (exogenous) record label promotions, holiday sales and so on). A friend estimates $\theta_0 = (\alpha_0, \beta_0, \gamma_0)'$ by the method of least squares. She claims that $\sqrt{N} \left(\hat{\theta} - \theta_0 \right) \stackrel{D}{\to} \mathcal{N} (0, \Lambda_0)$ and reports the following:

$$\hat{\theta} = \begin{pmatrix} 1.0 \\ 0.01 \\ -0.51 \end{pmatrix}, \ \frac{\hat{\Lambda}}{N} = \begin{pmatrix} 0.25 & -0.002 & 0.010 \\ -0.002 & 0.01 & 0.005 \\ 0.010 & 0.005 & 0.03 \end{pmatrix}.$$

- [a] [2 Points] Calculate a 95 confidence interval for β_0 .
- [b] [5 Points] Your friend would like to test the hypothesis that "for Bob Dylan one song on the radio is as good as cutting record price by \$1" (a phrase used by her record store boss). Explain why this corresponds to:

$$H_0: \beta_0 = -\gamma_0$$
$$H_1: \beta_0 \neq -\gamma_0$$

[c] [5 Points] We can re-write H_0 as

$$H_0: C\theta = c$$

Provide the appropriate forms for C and c.

- [d] [5 Points] How many restrictions on θ does H_0 imposes?
- [e] [5 Points] Calculate the Wald statistics for H_0 . Can we reject with size $\alpha = 0.05$?
- [f] [8 Points] Now formalize and test the hypothesis that "for Bob Dylan one song on the radio is as good as cutting record price by \$3".