Лабораторная работа "Ансамбли моделей машинного обучения"

Цель работы

Изучение ансамблей моделей машинного обучения.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

Загрузка датасета

```
# Подключение Google диска для загрузки датасета from google.colab import drive drive.mount('/gdrive') %load_ext tensorboard.notebook

□ Drive already mounted at /gdrive; to attempt to forcibly remount, call drive.
```

```
import warnings
warnings.filterwarnings('ignore')
```

Collecting git+git://github.com/kvoyager/GmdhPy.git

Cloning git://github.com/kvoyager/GmdhPy.git to /tmp/pip-req-build-kgmd5
Running command git clone -q git://github.com/kvoyager/GmdhPy.git /tmp/p
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-pack
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packag
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/di
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-pac
Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.6/di
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/di
Requirement already satisfied: python-dateutil>=2.5.0 in /usr/local/lib/py
Requirement already satisfied: pytz>=2011k in /usr/local/lib/python3.6/dis
Building wheels for collected packages: GmdhPy

Building wheel for GmdhPy (setup.py) ... done

Stored in directory: /tmp/pip-ephem-wheel-cache-roq6qv38/wheels/69/6c/43 Successfully built GmdhPy

Installing collected packages: GmdhPy
Successfully installed GmdhPy-2.0

₽		RI	Na	Mg	Al	Si	K	Ca	Ва	Fe	Туре
	0	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
	1	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
	2	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
	3	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
	4	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

train_test_split

Обучение

```
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import mean squared error
template = "Значение на тренируемой выборке: {:.2%} \
значение на тестовой выборке: {:.2%}"
class Classifier():
  def __init__(self, method, x_train, y_train, x_test, y_test):
    self._method = method
    self.x train = x train
    self.y_train = y_train
    self.x test = x test
    self.y_test = y_test
    self.target 1 = []
    self.target_2 = []
  def training(self):
    self. method.fit(self.x train, self.y train)
    self.target 1 = self. method.predict(self.x train)
    self.target_2 = self._method.predict(self.x_test)
  def result(self, metric):
    print(template.format(metric(self.y train, self.target 1),
                      metric(self.y test, self.target 2)))
```

▼ RandomForestClassifier

Г→ Значение на тренируемой выборке: 5.26% значение на тестовой выборке: 139.5

GradientBoostingClassifier

∑→ Значение на тренируемой выборке: 0.00% значение на тестовой выборке: 55.81

Подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации

RandomForestClassifier

```
n_range = np.array(range(3,10,1))
tuned_parameters = [{'max_features': n_range}]
tuned parameters
[{'max_features': array([3, 4, 5, 6, 7, 8, 9])}]
from sklearn.model selection import GridSearchCV
cl_rfc_gs = GridSearchCV(RandomForestClassifier(), tuned_parameters, cv=5,
                     scoring='accuracy')
cl_rfc_gs.fit(data_X_train, data_y_train)
/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/ search.py:
      DeprecationWarning)
    GridSearchCV(cv=5, error_score='raise-deprecating',
                  estimator=RandomForestClassifier(bootstrap=True, class_weight
                                                   criterion='gini', max depth=
                                                   max features='auto',
                                                   max leaf nodes=None,
                                                   min impurity decrease=0.0,
                                                   min impurity split=None,
                                                   min samples leaf=1,
                                                   min samples split=2,
                                                   min weight fraction leaf=0.0
                                                   n estimators='warn', n jobs=
                                                   oob score=False,
                                                   random state=None, verbose=0
                                                   warm start=False),
                  iid='warn', n jobs=None,
                 param_grid=[{'max_features': array([3, 4, 5, 6, 7, 8, 9])}],
                 pre dispatch='2*n jobs', refit=True, return train score=False
                 scoring='accuracy', verbose=0)
```

```
plt.plot(n_range, cl_rfc_gs.cv_results_['mean_test_score'])
```

[<matplotlib.lines.Line2D at 0x7fa5197fad30>]

▼ GradientBoostingClassifier

```
n_range = np.array(range(4,9,1))
tuned_parameters = [{'max_features': n_range}]
tuned_parameters
```

```
\vdash [{'max_features': array([4, 5, 6, 7, 8])}]
```

```
cl_gbc_gs = GridSearchCV(GradientBoostingClassifier(), tuned_parameters, cv=3,
                      scoring='accuracy')
cl_gbc_gs.fit(data_X_train, data_y_train)
```

/usr/local/lib/python3.6/dist-packages/sklearn/model selection/ search.py: DeprecationWarning)

GridSearchCV(cv=3, error score='raise-deprecating',

estimator=GradientBoostingClassifier(criterion='friedman mse' init=None, learning_rate loss='deviance', max dep max features=None, max leaf nodes=None, min impurity decrease=0. min_impurity_split=None, min_samples_leaf=1,

> min samples split=2, min weight fraction leaf n estimators=100,

n iter no change=None, presort='auto', random state=None,

subsample=1.0, tol=0.000 validation_fraction=0.1, verbose=0, warm start=Fa

iid='warn', n jobs=None, param grid=[{'max features': array([4, 5, 6, 7, 8])}], pre_dispatch='2*n_jobs', refit=True, return_train_score=False scoring='accuracy', verbose=0)

cl gbc gs.best params

{'max features': 5}

plt.plot(n_range, cl_gbc_gs.cv_results_['mean_test_score'])

[<matplotlib.lines.Line2D at 0x7fa516f4dd30>]

Сравнение модели с произвольным и лучшим параметром К

```
rfr2 = Classifier(RandomForestClassifier(max_features=8), data_X_train, data_y_train, data_x_test, data_y_test)
rfr2.training()
rfr2.result(mean_squared_error)

Значение на тренируемой выборке: 8.77% значение на тестовой выборке: 134.8

rfr.result(mean_squared_error)

Значение на тренируемой выборке: 5.26% значение на тестовой выборке: 139.5

gbc2 = Classifier(GradientBoostingClassifier(max_features=8), data_x_train, data_y_train, data_y_test)
gbc2.training()
gbc2.training()
gbc2.result(mean_squared_error)

Значение на тренируемой выборке: 0.00% значение на тестовой выборке: 76.74

gbc.result(mean_squared_error)

Значение на тренируемой выборке: 0.00% значение на тестовой выборке: 55.81
```

Как можно заметить, для классификаторов правильный подбор гиперпараметра существеннее исправил ошибку.