Trabajo Práctico Nº3:

Ejercicio N1:

Gramática Nº1:

- a) S = > SS* => SS+S* => aS+S* => aa+S* => aa+a*
- b) S => SS* => Sa* => SS+a* => Sa+a* => aa+a*

c)

d) No hay ambigüedad, único árbol.

Gramática Nº2:

- a) S => 0S1 => 00S11 => 000111
- b) S = > 0S1 = > 0011 X

c)

d) No es ambigua, no tiene otro árbol de análisis sintáctico.

Gramática Nº3:

Cadena 1:

- a) S => +SS => +*aSS => +*aaS => +*aaa
- b) S => +SS => +Sa => +*Saa => +*aaa

c)

d) No hay ambigüedad, único árbol.

Cadena 2:

- a) S => +SS => +S*SS => +a*SS => +a*aS => +a*aa
- b) S => +SS => +S*SS => +S*Sa => +S*aa => +a*aa

c)

d) No es ambigua, no hay otro árbol.

Cadena 3:

NO VALIDA.

Gramática Nº4:

- a) $S \Rightarrow S(S)S \Rightarrow \varepsilon(S)S \Rightarrow \varepsilon(S(S)S)S \Rightarrow \varepsilon(\varepsilon(\varepsilon)S)S \Rightarrow \varepsilon(\varepsilon(\varepsilon$
- b) $S \Rightarrow S(S)S \Rightarrow S(S)\varepsilon \Rightarrow S(S(S)S)\varepsilon \Rightarrow S(S(S)\varepsilon)\varepsilon \Rightarrow S(S(\varepsilon)\varepsilon)\varepsilon \Rightarrow S(S(S)S(\varepsilon)\varepsilon)\varepsilon \Rightarrow S$

d) Ambigua, hay otro árbol.

Gramática №5:

Cadena 1:

- a) S => SS => S*S => (S)*S => (S+S)*S => (a+S)*S => (a+a)*S => (a+a)*a
- b) S => SS => Sa => S*a => (S)*a => (S+S)*a => (S+a)*a => (a+a)*a

c)

d) No es ambigua, solo un árbol.

Cadena 2:

- a) S => SS => aS => aaS => aaSS => aaa(S) => aaa(SS) => aaa(aS) => aaa(aS+S) => aaa(aa+s) => aaa(aa+a)
- b) S => SS => SSSS => SSS(S) => SSS(SS) => SSS(SS+S) => SSS(SS+a) => SSS(Sa+a) => SSS(aa+a) => SSA(aa+a) => SAA(aa+a) => aaa(aa+a)

d) Es ambigua, hay más de un árbol.

Cadena 3:

- a) S => SS => aS => aS+S => aa+S => aa+a
- b) S => SS => SS+S => SS+a => Sa+a => aa+a

c)

d) Ambigua, hay más de un árbol.

Ejercicio Nº2:

$S \rightarrow aSb \mid \varepsilon$

La gramática dada pertenece a la categoría de gramáticas libres de contexto, también denominado como nivel tipo 2 según la jerarquía de Chomsky, ya que, si nos ponemos a analizar la gramática dada, vemos que S \rightarrow aSb nos muestra que el símbolo S se expande en una estructura recursiva, en donde la cantidad de a y b deben de ser igual. Por otro lado, al tener ϵ nos indica que S puede desaparecer, lo que nos permite derivaciones de cadenas vacías.

La gramática regular (**Tipo 3**), tiene reglas de producción restringidas y puede ser representada con un autómata finito, donde cada regla sigue la forma $A \rightarrow aB$ o $A \rightarrow a$.

Ejemplo de gramática regular: "S \rightarrow aS | b", este ejemplo permite cadenas terminadas en "b" con "a" antes.

En diferencia con la gramática libre de contexto (**Tipo 2**), la cual nos permite reglas más generales de la forma $A \rightarrow \alpha$, donde α puede contener múltiples símbolos, permitiendo estructuras más complejas.

Ejemplo de gramática libre de contexto: "S \rightarrow aS | b | ϵ ", este ejemplo nos dice que S \rightarrow aS permite agregar múltiples "a" antes de llegar a "b". Este ejemplo también determina que S \rightarrow b indica que la cadena siempre termina en "b". Y por último nos dice que S \rightarrow ϵ permite generar la cadena vacía.

Ejercicio Nº3:

 $S \rightarrow Sa \mid bS \mid a$

 $S \rightarrow b S \mid a S'$

 $S' \rightarrow a S' \mid \epsilon$

La variable S' que agregamos es para poder separar la recursión.

$$S \rightarrow b S \mid a S'$$

En nuestra primera transformación, la parte "S" "a" de nuestra gramática original, fue movida a una nueva variable S'. Por otro lado, "b" "S" y "a" permanecen en S, evitando recursión izquierda.

$$S' \rightarrow a S' \mid \epsilon$$

En nuestra segunda transformación, "S'" maneja la repetición de "a" y la " ϵ " permite finalizar la derivación.

De esta manera, obtenemos así la gramática dada al principio en una forma sin recursión izquierda.