Регуляризация траектории параметров модели глубокого обучения на основе дистилляции знаний

M. Горпинич, О. Ю. Бахтеев, В. В. Стрижов gorpinich4@gmail.com; bakhteev@phystech.edu; strijov@ccas.ru

Исследуется задача оптимизации параметров модели глубокого обучения. Во время оптимизации учитывается информация, содержащаяся в модели с более сложной структурой, то есть применяется дистилляция. Предлагается обобщение методов дистилляции, заключающееся в градиентной оптимизации метапараметров. Под метапараметрами модели понимаются параметры оптимизационной задачи дистилляции, а именно, коэффициенты перед слагаемыми в функции ошибки и температура. Функция ошибки состоит из двух слагаемых: правдоподобия исходной выборки и правдоподобия выборки дистилляции. Исследуются свойства оптимизационной задачи и методы прогнозирования траектории оптимизации метапараметров модели. Предложенное обобщение позволяет получить модель модель с лучшими эксплуатационными характеристиками и за меньшее число итераций оптимизации. Проиллюстрирован данный подход с помощью вычислительного эксперимента на выборке CIFAR-10 и на синтетической выборке.

Ключевые слова: машинное обучение; дистилляция знаний; оптимизация метапараметров; градиентные методы оптимизации; прогнозирование метапараметров

DOI:

1 Введение

9

10

11

13

14

15

16

17

18

19

20

21

22

В работе исследуется задача оптимизации моделей глубоких нейросетей. Проведение оптимизации требует значительных вычислительных мощностей и является затратной по времени. В данной работе предлагается метод оптимизации, позволяющий улучшить точность предсказаний модели, а также ускорить сходимость траектории оптимизации параметров к точке оптимума.

Предлагается обобщение метода оптимизации на основе дистилляции знаний. Назовем дистилляцией знаний задачу оптимизации параметров модели прогнозирования, при которой учитывается не только информация, содержащаяся в выборке, но также и информация, содержащаяся в сторонней модели (модели-учителе). Рассматривается модель-учитель более сложной структуры, которая была обучена на выборке. Модель более простой структуры предлагается оптимизировать путем переноса знаний модели учителя на более простую модель, называемую моделью-учеником. При этом ее качество будет выше по сравнению с качеством, полученным после оптимизации на той же выборке. Данный подход описан в [1]. В [2] предложен подход к дистилляции знаний, переносящий знания на модель с архитектурой, значительно отличающейся от архитектуры модели-учителя.

Предлагается формулировка задачи в виде двухуровневой оптимизации. На первом уровне оптимизируются параметры модели, на втором уровне — ее метапараметры. Данный подход описан в [3–5]. В [3] рассматривается жадный градиентный метод оптимизации метапараметров. В [4] сравниваются различные градиентные методы оптимизации метапараметров, а также метод случайного поиска.

В работе рассматривается подход к прогнозированию значений метапараметров, полученных методом градиентной оптимизации. Под метапараметрами понимаются параметры

24 задачи оптимизации. Сложность градиентной оптимизации для метапараметров являет-25 ся квадратичной по числу параметров, и потому вычислительно затратна. Предлагается 26 аппроксимация траектории оптимизации метапараметров на основе приближения траек-27 тории линейной моделью. Вычислительный эксперимент проводится на выборке изобра-28 жений CIFAR-10 [6], а также синтетической выборке.

2 Постановка задачи

29

30

31

34

37

38

40

41

42

43

45

Решается задача классификации вида:

$$\mathfrak{D} = \{ (\mathbf{x}_i, y_i) \}_{i=1}^m, \ \mathbf{x}_i \in \mathbb{R}^n, \ y_i \in \mathbb{Y} = \{ 1, \dots, K \},$$

где y_i — это класс объекта, также будем обозначать \mathbf{y}_i вектором вероятности для класса y_i . Разобьем выборку следующим образом:

$$\mathfrak{D} = \mathfrak{D}_{\text{train}} \sqcup \mathfrak{D}_{\text{val}}. \tag{2}$$

Подвыборку \mathfrak{D}_{train} будем использовать для оптимизации параметров модели, а подвыборку \mathfrak{D}_{val} — для оптимизации метапараметров.

Внешним критерием качества назначена доля правильных ответов:

$$accuracy = \frac{1}{m} \sum_{i=1}^{m} [\mathbf{g}(\mathbf{x}_i, \mathbf{w}) = y_i],$$
(3)

39 где **g** — параметрическая модель классификации с параметрами **w**.

Определение 1. Траекторией параметров ν назовем последовательность $\mathbf{w}_1, \dots, \mathbf{w}_t, \dots$ обновления параметров в ходе оптимизации, где t — количество шагов оптимизации.

Определение 2. Пусть задана функция $D: \mathbb{R}^s \to \mathbb{R}_+$, задающая схожесть моделиученика \mathbf{g} и фиксированной модели-учителя \mathbf{f} . D-дистилляцией модели-ученика назовем оптимизацию параметров модели-ученика с траекторией $\boldsymbol{\nu}$, такую что $\lim_{t\to\infty} D(\mathbf{w}_t) = \min_{\mathbf{r} \in \mathbb{R}^s} D(\mathbf{w}_t')$.

Функция потерь \mathcal{L}_{train} , в которой учитывается перенос информации от модели учите-47 ля \mathbf{f} к модели ученика \mathbf{g} , имеет вид:

$$\mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda}) = -\lambda_1 \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\text{train}}} \underbrace{\sum_{k=1}^{K} y^k \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_i/T}}{\sum_{j} e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j/T}}|_{T=1}}_{\text{исходная функция потерь}} -\lambda_2 \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\text{train}}} \underbrace{\sum_{j}^{K} \frac{e^{\mathbf{f}(\mathbf{x})_i/T}}{\sum_{j} e^{\mathbf{f}(\mathbf{x})_j/T}}|_{T=T_0} \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_i/T}}{\sum_{j} e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j/T}}|_{T=T_0}}, \quad (4)$$

48 где y^k-k -я компонента целевого вектора (ответ на k-м классе), T — параметр темпера-49 туры. Параметр температуры T имеет следующие свойства:

1) при $T \to 0$ получаем вектор, в котором один из классов имеет единичную вероятность;

 $_{1}$ 2) при $T o\infty$ получаем равновероятные классы.

⁵² Выражение $\cdot|_{T=t}$ означает, что параметр температуры T в предыдущей функции равняет⁵³ ся t.

Зададим множество метапараметров λ как вектор, состоящий из температуры и коэффициента перед слагаемым дистилляции:

$$\lambda = [\lambda_1, \lambda_2, T].$$

Утверждение 1. Функция потерь при $\lambda_1 = 0$ является КL-дистилляцией модели. Доказательство При $\lambda_1 = 0$:

$$\mathcal{L}_{\text{train}} = \sum_{(\mathbf{x}, \mathbf{u}) \in \mathcal{D}_{\text{train}}} \sum_{k=1}^{K} \mathbf{f}(\mathbf{x})|_{T=T_0} \log \mathbf{g}(\mathbf{x}, \mathbf{w})|_{T=T_0} = D_{KL}(\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}, \mathbf{w}))$$

По определению D-дистилляции получим, что должно выполняться условие:

$$\lim_{t \to \infty} D_{KL}(\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}, \mathbf{w}_t)) = \min_{\mathbf{w}_t' \in \mathbb{R}^s} D_{KL}(\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}, \mathbf{w}_t'))$$

Так как для оптимизации используется градиентный спуск, то

$$D_{KL}(\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}, \mathbf{w}'_{i+1})) \leqslant D_{KL}(\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}, \mathbf{w}'_{i}))$$

- Также выполняется $D_{KL}(\mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x}, \mathbf{w})) \geqslant 0$
- 61 Тогда получаем, что

56

57

58

59

63

64

66

$$\lim_{t\to\infty} D_{KL}(\mathbf{f}(\mathbf{x}),\mathbf{g}(\mathbf{x},\mathbf{w}_t)) = \min_{\mathbf{w}_t'\in\mathbb{R}^s} D_{KL}(\mathbf{f}(\mathbf{x}),\mathbf{g}(\mathbf{x},\mathbf{w}_t'))$$

62 Итоговая оптимизационная задача выглядит следующим образом:

$$\hat{\lambda} = \arg\max_{\lambda \in \mathbb{R}^3} \mathcal{L}_{\text{val}}(\hat{\mathbf{w}}, \lambda), \tag{5}$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^s} \mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda}), \tag{6}$$

ь где функция $\mathcal{L}_{ ext{val}}$ определяется как:

$$\mathcal{L}_{\text{val}}(\mathbf{w}, \boldsymbol{\lambda}) = \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\text{val}}} \sum_{k=1}^{K} y^k \log \mathbf{g}(\mathbf{x}, \mathbf{w})|_{T=1}.$$
 (7)

7 3 Градиентные методы оптимизации

В данном разделе рассматриваются детали оптимизации метапараметров градиентны-69 ми методами.

Определение 3. Назовем *оператором оптимизации* алгоритм U выбора вектора параметров \mathbf{w}' по параметрам предыдущего шага \mathbf{w} :

$$\mathbf{w}' = U(\mathbf{w}).$$

Машинное обучение и анализ ланных 2017. Том ?? № ??

Оптимизируем параметры **w** при помощи η шагов оптимизации:

$$\hat{\mathbf{w}} = U \circ U \circ \cdots \circ U(\mathbf{w}_0, \lambda) = U^{\eta}(\mathbf{w}_0, \lambda), \tag{8}$$

74 где ${f w}_0$ — начальное значение вектора параметров ${f w},\,{m \lambda}$ — совокупность метапараметров модели.

Переопределим задачу минимизации согласно определению оператора U:

$$\hat{\boldsymbol{\lambda}} = \arg\max_{\boldsymbol{\lambda} \in \mathbb{R}^3} \mathcal{L}_{\text{val}} (U^{\eta}(\mathbf{w}_0, \boldsymbol{\lambda})). \tag{9}$$

Схема оптимизации метапараметров:

- 79 1. Для каждого $i=\overline{0,l}$, где l число итераций, используемых для оптимизации мета-80 параметров.
- 81 2. Решим задачу (9) и получим новое значение метапараметров λ' .
- 82 3. Положим $\lambda = \lambda'$.

72

76

78

83

84

89

90

91

92

93

94

98

100

101

102

104

105

Оптимизационную задачу (5) и (6) решает оператор градиентного спуска:

$$U(\mathbf{w}, \lambda) = \mathbf{w} - \gamma \nabla \mathcal{L}_{\text{train}}(\mathbf{w}, \lambda), \tag{10}$$

85 где γ — длина шага градиентного спуска.

Используем метод градиентного спуска, который зависит только от значений парамет ров w на предыдущем шаге. На каждой итерации получим следующее значение метапа раметров:

$$\lambda' = \lambda - \gamma_{\lambda} \nabla_{\lambda} \mathcal{L}_{val}(U(\mathbf{w}, \lambda), \lambda) = \lambda - \gamma_{\lambda} \nabla_{\lambda} \mathcal{L}_{val}(\mathbf{w} - \gamma \nabla \mathcal{L}_{train}(\mathbf{w}, \lambda), \lambda).$$
(11)

Градиентная оптимизация является вычислительно затратной, поэтому предлагается аппроксимировать траекторию оптимизации модели. Предлагается предсказывать траекторию изменения метапараметров модели (а конкретно, их градиенты) с помощью линейных моделей через определенное число итераций:

$$\lambda' = \lambda + \mathbf{c}^{\mathsf{T}} \begin{pmatrix} z \\ 1 \end{pmatrix} \tag{12}$$

95 где σ — сигмоида, z — номер итерации по модулю периодичности обучения линейной модели, ${f c}$ — коэффициенты линейного многочлена. В остальное время используются гра- диентные методы.

4 Вычислительный эксперимент

Целью эксперимента является проверка работоспособности предложенного метода дистилляции моделей, а также анализ полученных моделей и их метапараметров. Эксперимент проводится на двух выборках: синтетической модели и выборке CIFAR-10. Результаты данной работы и исходный код эксперимента опубликованы в [7] и могут быть проверены или использованы в дальнейшей работе.

4.1 Эксперимент на синтетической выборке

В эксперименте используется синтетическая выборка:

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, x_{ij} \in (0, 1), j = 1, 2, x_{i3} = [\operatorname{sign}(x_{i1}) + \operatorname{sign}(x_{i2}) > 0]$$

$$y_i = \operatorname{sign}(x_{i1} \cdot x_{i2} + \delta) \in \mathbb{Y},$$

106 где δ — это шум. При этом размер выборки модели-ученика намного меньше размера 107 выборки модели-учителя.

Рис. 1 Визуализация выборки а) для обучения учителя; б) для обучения ученика; в) тестовой выборки

Обучение модели-ученика проводилось несколькими методами: с использованием дистилляции и оптимизации метапараметров градиентными методами, дистилляции с предсказанием траектории оптимизации модели, дистилляции со случайными метапараметрами. При этом для обучения модели с использованием линейной модели дополнительно проводились серии экспериментов для определения наилучшего размера эпохи и наилучшего числа эпох между предсказаниями траектории с помощью линейной модели.

На рис. 2 показан график зависимости точности от номера итерации при различных размерах эпохи. Согласно данному графику размер эпохи был выбран равным 100.

Пусть n — число эпох между использованием линейной модели. На рис. 3 показан график зависимости точности от номера итерации различных n. Наилучшие результаты достигнуты при n=2.

108

109

111

112

113

114

115

116

118

Рис. 2 График зависимости точности классификации от номера итерации при различных значениях размера эпохи

Рис. 3 График зависимости точности классификации от номера итерации при различных n

На рис. 10 показан график зависимости точности от номера итерации при различных подходах к обучению модели. Наилучшие результаты достигнуты при использовании оптимизированных метапараметров, но предсказание траектории с помощью линейной модели показало результат не намного хуже предыдущего, причем с увеличением числа итераций точность этих двух методов становилась одинаковой.

4.2 Эксперимент на выборке CIFAR-10

119

120

121

122

123

124

125

В эксперименте используется выборка CIFAR-10, которая состоит из 60000 цветных изображений размера 32×32 пикселя, разделенных на 10 непересекающихся классов. К каждому классу относится 6000 изображений. Выборка делится на обучающую (50000

Рис. 4 График зависимости точности классификации от номера итерации

изображений) и тестовую (10000 изображений) подвыборки. В тестовой выборке содержится 1000 изображений каждого класса.

Внешним критерием качества модели является точность (3). В качестве моделейучителей рассматриваются модели из [2], а именно, ResNet-18 и сверточная нейросеть с тремя сверточными слоями и двумя слоями полносвязной нейросети.

Проведено сравнение среднего качества обучения модели-ученика без дистилляции после 5 запусков, с дистилляцией с моделью-учителем ResNet и сверточной нейросетью после 20 запусков. Значение коэффициента λ_1 лежит в пределах от 0 до 1, значение температуры — от 0.1 до 10.

На рис. 6 изображена зависимость точности от величины коэффициента λ_1 . Различные точки отвечают за точность модели без дистилляции, с дистилляцией ResNet и CNN. Можно заметить, что с уменьшением значения коэффициента λ_1 значение точности увеличивается.

На рис. 7 изображена зависимость точности от T. Для изображения значений температуры используется логарифмическая шкала. По графику видно, что значение температуры уменьшается при увеличении логарифма температуры, но при значениях логарифма от 0.5 до 1 наблюдается резкое уменьшение точности.

На рис. 8 изображена зависимость λ_1 от величины T с выделенной цветом ассигасу. Заметим, что точки с большим значением точности в основном расположены в правом нижнем углу графика, а именно, при значениях λ_1 от 0 до 0.5 и значениях $\log(T)$ от -1 до 0. Наоборот, точки с низким значением точности, расположены в правом верхнем углу графика.

На рис. 9 изображена зависимость метапараметров от числа итераций.

На рис. 10 изображена зависимость точности от числа эпох для обучения моделиученика без дистилляции, обучения с дистилляцией и случайными метапараметрами, обучения с дистилляцией и оптимизацией метапараметров, а также обучения с дистилляцией и оптимальными метапараметрами, полученными в ходе их оптимизации. Можно заметить, что точность обучения с дистилляцией гораздо выше, чем без дистилляции. Также

Рис. 5 График зависимости а) $\lambda_1;$ б) $\lambda_2;$ в) температуры от номера итерации

Рис. 6 График зависимости точности от λ_1

Рис. 7 График зависимости точности от температуры

Рис. 8 График зависимости λ_1 от температуры с выделенной цветом ассигасу

наибольшая точность достигается при обучении с дистилляцией и прогнозированными 156 метапараметрами.

Заключение

157

158

159

160

161

162

163

164

165

166

167

169

170

Была исследована задача оптимизации параметров модели глубокого обучения. Было предложено обобщение методов дистилляции, заключающееся в градиентной оптимизации метапараметров. На первом уровне оптимизируются параметры модели, на втором метапараметры, задающие вид оптимизационной задачи. Были исследованы свойства оптимизационной задачи и методы предсказания траектории оптимизации метапараметров модели. Под метапараметрами модели понимаются параметры оптимизационной задачи дистилляции. Предложенное обобщение позволило производить дистилляцию модели с лучшими эксплуатационными характеристиками и за меньшее число итераций оптимизации. Комбинация данных подходов была проиллюстрирована с помощью вычислительного эксперимента на выборке CIFAR-10 и на синтетической выборке. Вычислительный эксперимент показал эффективность градиентной оптимизации для задачи выбора метарапараметров дистилляционной функции потерь. Проанализирована возможность аппроксимировать траекторию оптимизации метапараметров локально-линейной моделью. Планиру-

Рис. 9 График зависимости а) $\lambda_1;$ б) $\lambda_2;$ в) температуры от номера итерации

Рис. 10 График зависимости точности от числа эпох

ется дальнейшее исследование оптимизационной задачи и анализ качества аппроксимации
 траектории оптимизации метапараметров более сложными прогностическими моделями.

. Литература

- 175 [1] Hinton Geoffrey E., Vinyals Oriol, Dean Jeffrey. Distilling the knowledge in a neural network // CoRR, 2015. Vol. abs/1503.02531. URL: http://arxiv.org/abs/1503.02531.
- 177 [2] Passalis Nikolaos, Tzelepi Maria, Tefas Anastasios. Heterogeneous knowledge distillation using information flow modeling // CVPR. 2020. P. 2336—2345. URL: https://ieeexplore.ieee.org/xpl/conhome/9142308/proceeding.
- Luketina Jelena, Berglund Mathias, Greff Klaus, Raiko Tapani. Scalable gradient-based tuning
 of continuous regularization hyperparameters // CoRR, 2015. Vol. abs/1511.06727. URL: http://arxiv.org/abs/1511.06727.
- 183 [4] Bakhteev Oleg Yu., Strijov Vadim V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms // Ann. Oper. Res, 2020. Vol. 289. No. 1. P. 51–65.
- Maclaurin Dougal, Duvenaud David, Adams Ryan P. Gradient-based hyperparameter optimization
 through reversible learning // CoRR, 2015. Vol. abs/1502.03492. URL: http://arxiv.org/abs/
 1502.03492.
- 188 [6] Krizhevsky Alex et al. Learning multiple layers of features from tiny images, 2009.
- 189 [7] URL: https://github.com/Intelligent-Systems-Phystech/2021-Project-84.

190 Received

Regularizing optimization trajectory of deep learning model parameters with knowledge distillation

 $M.\ Gorpinich,\ O.\ Yu.\ Bakhteev,\ V.\ V.\ Strijov$ gorpinich4@gmail.com; bakhteev@phystech.edu; strijov@ccas.ru

The paper investigates parameter optimization problem for deep learning neural networks. The knowledge of a cumbersome model is considered during optimization, i.e. the knowledge distillation is used. The paper proposes generalization of knowledge distillation method to optimize meta-parameters by gradient descent. Meta-parameters are the parameters of knowledge distillation optimization problem, namely, the coefficients before terms in error function and the temperature factor. The error function is a sum of likelihood of the initial dataset and the one of distillation dataset. Temperature is a factor of logits of models in softmax function. The authors investigate the properties of optimization problem and methods to predict the optimization path of meta-parameters. Generalized method produces models with higher performance and uses less number of iterations. The algorithm is evaluated on CIFAR-10 dataset and synthetic data.

Keywords: machine learning; knowledge distillation; metaparameter optimization; gradient-based optimization; metaparameter selection

DOI:

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

References

210 [1] Hinton Geoffrey E., Vinyals Oriol, Dean Jeffrey. Distilling the knowledge in a neural network //
211 CoRR, 2015. Vol. abs/1503.02531. URL: http://arxiv.org/abs/1503.02531.

. 2017. ??. ??.

M. Gorpinich et al.

212 [2] Passalis Nikolaos, Tzelepi Maria, Tefas Anastasios. Heterogeneous knowledge distillation using information flow modeling // CVPR. — 2020. P. 2336—2345. URL: https://ieeexplore.ieee. org/xpl/conhome/9142308/proceeding.

- 215 [3] Luketina Jelena, Berglund Mathias, Greff Klaus, Raiko Tapani. Scalable gradient-based tuning 216 of continuous regularization hyperparameters // CoRR, 2015. Vol. abs/1511.06727. URL: http: 217 //arxiv.org/abs/1511.06727.
- 218 [4] Bakhteev Oleg Yu., Strijov Vadim V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms // Ann. Oper. Res, 2020. Vol. 289. No. 1. P. 51–65.
- [5] Maclaurin Dougal, Duvenaud David, Adams Ryan P. Gradient-based hyperparameter optimization
 through reversible learning // CoRR, 2015. Vol. abs/1502.03492. URL: http://arxiv.org/abs/
 1502.03492.
- ²²³ [6] Krizhevsky Alex et al. Learning multiple layers of features from tiny images, 2009.
- 224 [7] URL: https://github.com/Intelligent-Systems-Phystech/2021-Project-84.

225 Received

2017. ??. ??.