

Machine Learning Process #2

Madson Luiz Dantas Dias e Lucas Silva de Sousa

Huawei / IFCE

March 8, 2021

Agenda

Model Validation

Training and Generalization Error Underfitting and Overfitting Model capacity Bias and Variance Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

Agenda

Model Validation
 Training and Generalization Error
 Underfitting and Overfitting
 Model capacity
 Bias and Variance
 Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

Model validation

Model validation

 The process where a trained model is evaluated with a testing data set

Model validation

- The process where a trained model is evaluated with a testing data set
- The main purpose of using the testing data set is to test the generalization ability of a trained model

Model validation

- The process where a trained model is evaluated with a testing data set
- The main purpose of using the testing data set is to test the generalization ability of a trained model

Generalization

Model validation

- The process where a trained model is evaluated with a testing data set
- The main purpose of using the testing data set is to test the generalization ability of a trained model

Generalization

 The goal of machine learning is that the model obtained after learning should perform well on new samples

Model validation

- The process where a **trained model** is evaluated with a **testing** data set
- The main purpose of using the testing data set is to test the generalization ability of a trained model

Generalization

- The goal of machine learning is that the model obtained after learning should perform well on new samples
- The capability of applying a model to new samples is called generalization or robustness

Agenda

Model Validation

Training and Generalization Error

Underfitting and Overfitting Model capacity Bias and Variance Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

Error

Error

 Difference between the sample result predicted by the model obtained after learning and the actual sample result.

Error

- Difference between the sample result predicted by the model obtained after learning and the actual sample result.
- **Training error**: error that you get when you run the model on the training data.

Error

- Difference between the sample result predicted by the model obtained after learning and the actual sample result.
- **Training error**: error that you get when you run the model on the training data.
- Generalization error: error that you get when you run the model on new samples.

Agenda

Model Validation

Training and Generalization Error

Underfitting and Overfitting

Model capacity
Bias and Variance
Model Complexity a

Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

Underfitting

 Occurs when the model or the algorithm does not fit the data well enough

Underfitting

 Occurs when the model or the algorithm does not fit the data well enough

Overfitting

 Occurs when the training error of the model obtained after learning is small but the generalization error is large

Underfitting

 Occurs when the model or the algorithm does not fit the data well enough

Overfitting

 Occurs when the training error of the model obtained after learning is small but the generalization error is large

Agenda

Model Validation

Training and Generalization Error Underfitting and Overfitting Model capacity
Bias and Variance
Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

 Model's capability of fitting functions, which is also called model complexity.

- Model's capability of fitting functions, which is also called model complexity.
- When the capacity suits the task complexity and the amount of training data provided, the algorithm effect is usually optimal.

- Model's capability of fitting functions, which is also called model complexity.
- When the capacity suits the task complexity and the amount of training data provided, the algorithm effect is usually optimal.
- Models with insufficient capacity cannot solve complex tasks and underfitting may occur.

- Model's capability of fitting functions, which is also called model complexity.
- When the capacity suits the task complexity and the amount of training data provided, the algorithm effect is usually optimal.
- Models with insufficient capacity cannot solve complex tasks and underfitting may occur.
- A high-capacity model can solve complex tasks, but overfitting may occur if the capacity is higher than that required by a task.

Agenda

Model Validation

Training and Generalization Error Underfitting and Overfitting Model capacity

Bias and Variance

Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

• Let $\mathcal{D}=\{m{x}_n,y_n\}_{n=1}^N$ a data set. We assume there is a relationship between a $m{x}_n$ and a y_n is

$$y_n = f(\boldsymbol{x}) + \epsilon \tag{1}$$

Where $\epsilon \sim \mathcal{N}(0, \sigma_e^2)$.

• Let $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$ a data set. We assume there is a relationship between a x_n and a y_n is

$$y_n = f(\boldsymbol{x}) + \epsilon \tag{1}$$

Where $\epsilon \sim \mathcal{N}(0, \sigma_e^2)$.

• We will make a model $\hat{f}(x)$ of f(x) using a modeling technique. So the expected squared error at a point x is

• Let $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$ a data set. We assume there is a relationship between a x_n and a y_n is

$$y_n = f(\boldsymbol{x}) + \epsilon \tag{1}$$

Where $\epsilon \sim \mathcal{N}(0, \sigma_e^2)$.

• We will make a model $\hat{f}(x)$ of f(x) using a modeling technique. So the expected squared error at a point x is

$$\operatorname{Error}(\boldsymbol{x}) = \mathsf{E}\left[(y - \hat{f}(\boldsymbol{x}))^{2}\right]$$

$$= \underbrace{\left(\mathsf{E}\left[f(\boldsymbol{x})\right] - \hat{f}(\boldsymbol{x})\right)^{2}}_{\text{bias}^{2}} + \underbrace{\mathsf{E}\left[\left(\hat{f}(\boldsymbol{x}) - \mathsf{E}\left[\hat{f}(\boldsymbol{x})\right]\right)^{2}\right]}_{\text{variance}}$$

$$+ \underbrace{\sigma_{e}^{2}}_{\text{irreducible error}}$$

Variance

• Offset of the prediction result from the average value

Variance

Offset of the prediction result from the average value

Bias

Difference between the expected prediction value and the correct

Agenda

Model Validation

Training and Generalization Error Underfitting and Overfitting Model capacity
Bias and Variance

Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

As the model complexity increases

• The training error decreases

- The training error decreases
- The test error decreases to a certain point and then increases in the reverse direction, forming a convex curve.

- The training error decreases
- The test error decreases to a certain point and then increases in the reverse direction, forming a convex curve.

- The training error decreases
- The test error decreases to a certain point and then increases in the reverse direction, forming a convex curve.

Agenda

Model Validation
 Training and Generalization Error
 Underfitting and Overfitting
 Model capacity
 Bias and Variance
 Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

Agenda

Model Validation
 Training and Generalization Error
 Underfitting and Overfitting
 Model capacity
 Bias and Variance
 Model Complexity and Error

Model Learning Performance Evaluation Classification

Regression

 Classification is the process of predicting the class of given data points.

 Classification is the process of predicting the class of given data points.

 Classification is the process of predicting the class of given data points.

Binary classification

Binary classification

Binary classification

Terms and definitions

• Positive (P): indicating the number of real positive cases

- Positive (P): indicating the number of real positive cases
- Negative (N): indicating the number of real negative cases

- Positive (P): indicating the number of real positive cases
- Negative (N): indicating the number of real negative cases
- True positive (TP): indicating the number of correctly classified positive cases

- Positive (P): indicating the number of real positive cases
- Negative (N): indicating the number of real negative cases
- True positive (*TP*): indicating the number of correctly classified positive cases
- True negative (TN): indicating the number of correctly classified negative cases

- Positive (P): indicating the number of real positive cases
- Negative (N): indicating the number of real negative cases
- True positive (TP): indicating the number of correctly classified positive cases
- True negative (TN): indicating the number of correctly classified negative cases
- False positive (FP): indicating the number of incorrectly classified positive cases

- Positive (P): indicating the number of real positive cases
- Negative (N): indicating the number of real negative cases
- True positive (TP): indicating the number of correctly classified positive cases
- True negative (TN): indicating the number of correctly classified negative cases
- False positive (FP): indicating the number of incorrectly classified positive cases
- False negative (FN): indicating the number of incorrectly classified negative cases

Confusion matrix

• A table used to describe the performance of a classifier on a set of test data for which the true values are known.

Confusion matrix

 A table used to describe the performance of a classifier on a set of test data for which the true values are known.

Confusion matrix example and accuracy rate

Confusion matrix example and accuracy rate

$$ACC\left(\hat{f}(\mathcal{D}_{\mathsf{test}}; \mathcal{D}_{\mathsf{train}}, \boldsymbol{\theta})\right) = \frac{TP + TN}{TP + FP + TN + FN} \tag{3}$$

 $^{^1}$ where β is a non-negative real number

 $^{^1}$ where β is a non-negative real number

Other metrics

Error rate and misclassification rate

$$\frac{FN\!+\!FP}{TP\!+\!FP\!+\!TN\!+\!FN}$$

¹where β is a non-negative real number

Error rate and misclassification rate	$\frac{FN + FP}{TP + FP + TN + FN}$
Precision	$\frac{TP}{TP+FP}$

 $^{^{1}}$ where β is a non-negative real number

Error rate and misclassification rate	$\frac{FN+FP}{TP+FP+TN+FN}$
Precision	$\frac{TP}{TP+FP}$
Sensitivity or recall	$\frac{TP}{TP+FN}$

¹where β is a non-negative real number

Error rate and misclassification rate	$\frac{FN+FP}{TP+FP+TN+FN}$
Precision	$\frac{TP}{TP+FP}$
Sensitivity or recall	$\frac{TP}{TP+FN}$
Specificity and true negative rate	$\frac{TN}{TN+FP}$

 $^{^1}$ where β is a non-negative real number

Error rate and misclassification rate	$\frac{FN+FP}{TP+FP+TN+FN}$
Precision	$rac{TP}{TP+FP}$
Sensitivity or recall	$\frac{TP}{TP+FN}$
Specificity and true negative rate	$\frac{TN}{TN+FP}$
F_1 -score	$2 imes rac{ ext{precision} imes ext{recall}}{ ext{precision} + ext{recall}}$

 $^{^{1}}$ where β is a non-negative real number

Other metrics

Error rate and misclassification rate	$\frac{FN + FP}{TP + FP + TN + FN}$
Precision	$rac{TP}{TP+FP}$
Sensitivity or recall	$rac{TP}{TP+FN}$
Specificity and true negative rate	$\frac{TN}{TN+FP}$
F_1 -score	$2 imes rac{ extsf{precision} imes extrm{recall}}{ extsf{precision} + extrm{recall}}$
F_{β} -score ¹	$(1-\beta^2) imes rac{\operatorname{precision} imes \operatorname{recall}}{\beta^2 imes \operatorname{precision} + \operatorname{recall}}$

 $^{^{1}}$ where β is a non-negative real number

Receiving Operating Characteristic (ROC) curves

 Shows the sensitivity/specificity trade-off of a classifier for all possible classification thresholds

Receiving Operating Characteristic (ROC) curves

 Shows the sensitivity/specificity trade-off of a classifier for all possible classification thresholds

Area under a ROC curve

 Abbreviated as AUC, is a single scalar value that measures the overall performance of a binary classifier

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

Accuracy rate?

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

• Accuracy rate? $\frac{150}{200} = 0.75$

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

•	Accuracy	rate?	$\frac{150}{200}$	= 0.7	5
---	----------	-------	-------------------	-------	---

• Precision?

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

• Accuracy rate?
$$\frac{150}{200} = 0.75$$

• Precision?
$$\frac{140}{140+20} = 0.875$$

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

• Accuracy rate?
$$\frac{150}{200} = 0.75$$

• Precision?
$$\frac{140}{140+20} = 0.875$$

Recall?

Performance evaluation example

 We have trained a machine learning model to identify whether the object in an image is a cat. Now we use 200 pictures to verify the model performance. Among the 200 images, objects in 170 images are cats, while others are not. The identification result of the model is that objects in 160 images are cats, while others are not.

	yes	no
yes	140	30
no	20	10

• Accuracy rate?
$$\frac{150}{200} = 0.75$$

• Precision?
$$\frac{140}{140+20} = 0.875$$

• Recall?
$$\frac{140}{140+30} = 0.824$$

Agenda

Model Validation
 Training and Generalization Error
 Underfitting and Overfitting
 Model capacity
 Bias and Variance
 Model Complexity and Error

Model Learning Performance Evaluation Classification Regression

 A method for fitting a curve (not necessarily a straight line) through a set of points using some goodness-of-fit criterion.

- A method for fitting a curve (not necessarily a straight line) through a set of points using some goodness-of-fit criterion.
- The most common type of regression is linear regression.

- A method for fitting a curve (not necessarily a straight line) through a set of points using some goodness-of-fit criterion.
- The most common type of regression is linear regression.

- A method for fitting a curve (not necessarily a straight line) through a set of points using some goodness-of-fit criterion.
- The most common type of regression is linear regression.

Mean Squared Error (MSE)
$$MSE = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$

Mean Squared Error (MSE)
$$MSE = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$

Mean Absolute Error (MSE) $MAE = \frac{1}{N} \sum_{n=1}^{N} |y_n - \hat{y}_n|$

Mean Squared Error (MSE)
$$\begin{aligned} & \text{MSE} = \frac{1}{N} \sum_{n=1}^{N} (y_n - \hat{y}_n)^2 \\ & \text{Mean Absolute Error (MSE)} \end{aligned}$$

$$\begin{aligned} & \text{MAE} = \frac{1}{N} \sum_{n=1}^{N} |y_n - \hat{y}_n| \\ & \text{R-squared } (R^2) \end{aligned}$$

$$\begin{aligned} & R^2 = 1 - \frac{\sum_{n=1}^{N} (y_n - \hat{y}_n)^2}{\sum_{n=1}^{N} (y_n - \bar{y}_n)^2} \end{aligned}$$