HOC VIÊN CÔNG NGHỆ BƯU CHÍNH VIỀN THÔNG

KHOA: CÔNG NGHỆ THÔNG TIN I BÔ MÔN: KHOA HOC MÁY TÍNH

ĐỂ THI KẾT THÚC HỌC PHẦN

(Hình thức thi viết)

Học phần: Toán ròi rạc 2 (Học kỳ 2 năm học 2018-2019)

Lóp: D17CN, D17AT

Thời gian thi: 90 phút

Đề số: 4

Câu 1 (1 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

$$Ke(1) = \{2,5\}$$

$$Ke(2) = \{1,3,4,6,9\}$$

$$Ke(3) = \{2,4\}$$

$$Ke(4) = \{2,3,6,7\}$$

$$Ke(5) = \{1,6,9\}$$

$$Ke(6) = \{2,4,5\}$$

$$Ke(7) = \{4,8,10\}$$

$$Ke(8) = \{7\}$$

$$Ke(9) = \{2,5\}$$

$$Ke(10) = \{7\}$$

a) Tìm bậc của mỗi đính trên đồ thị.

b) Biểu diễn đổ thị G dưới dạng ma trận liên thuộc

Câu 2 (2 điểm)

a) Viết hàm có tên **BFS** (int u) bằng C/C++ thực hiện thuật toán tìm kiếm theo chiều rộng bắt đầu từ đinh u trên đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận kề a[][]

b) Sử dụng thuật toán tìm kiếm theo chiều rộng **BFS**, duyệt toàn bộ đỉnh trụ trên đồ thị G cho trong Câu 1? (Không cần thực hiện chi tiết các bước của thuật toán BFS, chỉ cần ghi kết quả thực hiện)

Câu 3 (2 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng ma trận kề như sau:

,	50m 10 a aaq a cira a
	12)4567811
1	0100100101
2	+0110+0+00
3	040 1000000
4	0++00++000
5	+00001++++
	0 + 0 + + 0 + 0 0 0
7	000+++0++0
8	+ \ 0 0 \ \ 0 1 0 0 0
5	00001-01-00
10	4000700000
-	

- a) Trình bày điều kiện cần và đủ để một đồ thị vô hướng là nửa Euler. Áp dụng chứng minh đồ thị vô hướng G là nửa Euler.
- b) Áp dụng thuật toán tìm đường đi Euler trên đồ thị, tìm một đường đi Euler trên đồ thị G, chi rõ kết quả sau mỗi bước thực hiện.

Câu 4 (2 điểm)

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 12 đĩnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	2	∞	∞	4	3	∞	∞	∞	∞	∞	∞
2	2	0	2	∞	1	3	∞	∞	∞	∞	00	00
3	∞	2	0	3	5	∞	∞	∞	∞	∞	∞	∞
4	∞	∞	3	0	∞	∞	∞	∞	∞	∞	∞	∞
5	4	1	5	∞	0	∞	1	∞	3	2	00	∞
6	3	3	∞	∞	∞	0	∞	∞	∞	3	∞	∞
7	∞	∞	∞	∞	1	∞	0	4	∞	∞	∞	00
8	∞	∞	∞	∞	∞	∞	4	0	∞	∞	00	00
9	∞	∞	∞	∞	3	∞	∞	∞	0	∞	2	3
10	∞	∞	∞	∞	2	3	∞	∞	∞	0	∞	 ∞
11	∞	∞	2	 ∞	0	∞						
12	∞	3	∞	∞	0							

- a) Trình bày thuật toán Kruskal tim cây khung nhỏ nhất trên đồ thị vô hướng, liên thông, có trọng số.
- b) Áp dụng thuật toán Kruskal tìm cây khung nhỏ nhất của đồ thị G, chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

Câu 5: (3 điểm)

Cho đồ thị có hướng $G = \langle V, E \rangle$ như hình bên, trọng số được ghi bên mỗi cung.

- a) Viết hàm có tên là **BELLMAN**(int u) bằng C/C++ mô tả thuật toán Bellman-Ford tìm đường đi ngắn nhất d[v] xuất phát từ đinh u đến các đính khác của đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận trọng số a[][].
- b) Áp dụng thuật toán Bellman-Ford tim đường đi ngắn nhất từ đỉnh số 1 đến các đỉnh còn lại của đồ thị G. Chỉ ra đường đi ngắn nhất từ đỉnh 1 đến đĩnh 6.

Ghi chú: Sinh viên không được tham khảo tài liệu