NIV Engine v6 — Code-to-Formula Mapping and Verification Summary

Diren Kumaratilleke

2025

Purpose

This document provides a full one-to-one mapping between the mathematical formulation of the National Impact Velocity (NIV) Engine v6 and its corresponding Python implementation. It verifies that each symbol, transformation, and calibration parameter is reproducibly encoded in the source scripts (niv_make.py, niv_visualization_v6.py, and fred_fetch.py).

1. Core Equation Mapping

Concept	Mathematical Definition	Python Implementation	
National Impact Velocity	$NIV_t = \frac{u_t P_t^2}{(X_t + F_t)^{\eta}}$	NIV = (u * (P**2)) / ((X + F)**eta)	
Activation Intensity	$u_t = \tanh(\alpha_1 dG_t + \alpha_2 dA_t - \alpha_3 dr_t)$	u = np.tanh(a1*dG + a2*dA - a3*dr)	
Regeneration Share	$P_t = \frac{I_t + R_t + E_t}{GDP_t}$	P = (I + R + E) / GDP	
Idle Capacity	$X_t = 1 - \frac{TCU_t}{100}$	X = 1 - (TCU / 100)	
Aggregate Friction	$F_t = \beta_1 s_t + \beta_2 (r_t - \pi_t) + \beta_3 \sigma_{r,t}$	F = b1*s + b2*(r - pi) + b3*sigma_r	
Term Spread	$s_t = DGS10_t - TB3MS_t$	s = DGS10 - TB3MS	
Inflation	$\pi_t = \frac{CPI_t - CPI_{t-12}}{CPI_{t-12}}$	<pre>pi = (CPI - CPI.shift(12)) / CPI.shift(12)</pre>	
Rate Volatility	$\sigma_{r,t} = std_{12}(r_t)$	<pre>sigma_r = FEDFUNDS.rolling(12).std()</pre>	

2. Derived Indicators

Metric	Mathematical Definition	Python Implementation
Liquidity Stress Intensity (LSI)	$LSI_t = \frac{\sigma_{12}(NIV)}{ \mu_{12}(NIV) + \varepsilon}$	LSI = NIV.rolling(12).std() / (abs(NIV.rolling(12).mean() + eps)
Structural Drag	$Drag_t = 1 - \frac{NIV_t}{\mu_{24}(NIV)}$	<pre>Drag = 1 - (NIV / NIV.rolling(24).mean())</pre>
Impulse (Change in NIV)	$\Delta NIV_t = NIV_t - NIV_{t-1}$	<pre>Impulse = NIV.diff()</pre>

2

3. Calibration Parameters

Parameter	Symbol	Default	Function
Fiscal Sensitivity	α_1	1.0	Responsiveness to investment growth (dG_t) .
Monetary Sensitivity	$lpha_2$	1.0	Responsiveness to liquidity growth (dA_t) .
Rate Resistance	$lpha_3$	0.7	Damping effect of interest rate increases.
Spread Friction Weight	eta_1	0.4	Sensitivity to yield curve slope.
Real Rate Friction Weight	eta_2	0.4	Sensitivity to real interest burdens.
Volatility Friction Weight	eta_3	0.2	Sensitivity to rate instability.
Friction Sensitivity	η	1.0	Governs NIV's response to total friction.
Numerical Tolerance	ε	10^{-6}	Stabilizes denominators in ratio computations.

4. Rolling Computations and Spectral Windows

Diagnostic	Window Length	Python Operation
LSI Rolling Std	12 months	<pre>NIV.rolling(12).std()</pre>
LSI Rolling Mean	12 months	<pre>NIV.rolling(12).mean()</pre>
Drag Rolling Mean	24 months	<pre>NIV.rolling(24).mean()</pre>
Inflation Lag	12 months	CPI.shift(12)
Rate Volatility	12 months	FEDFUNDS.rolling(12).std()

5. Verification Statement

All computations are fully reproducible under Python 3.11 using the following libraries:

pandas >= 2.0

```
numpy >= 1.25
matplotlib >= 3.8
fredapi >= 0.5
```

The numerical outputs generated by the engine correspond exactly to the mathematical forms specified here, within rounding error. Every term has been directly tested for sign, range, and dimensional coherence.

6. Author's Note

The NIV Engine v6 forms the computational backbone of the Capital Velocity Economics (CVE) framework. It unites activation, regeneration, and frictional components into a live economic throughput measure — a dynamic gauge of how capital truly moves, regenerates, and decays within a system.

Diren Kumaratilleke Chapel Hill, 2025