Cohomologie de de Rham -1-

Abdelhak Abouqateb

Université Cadi Ayyad Faculté des Sciences et Techniques Marrakech

Rencontre du GGTM Géométrie, Topologie et systèmes dynamiques Casablanca, du 26-28 octobre 2011

U désigne un ouvert de \mathbb{R}^n . Les champs considérés sur U sont C^{∞} .

U désigne un ouvert de \mathbb{R}^n . Les champs considérés sur U sont C^{∞} .

Analyse 1 (n = 1): Toute application (continue) $f: U \to \mathbb{R}$ admet des primitives.

U désigne un ouvert de \mathbb{R}^n . Les champs considérés sur U sont C^{∞} .

Analyse 1 (n = 1): Toute application (continue) $f: U \to \mathbb{R}$ admet des primitives.

Analyse 2 (n = 2): Soit $f = (f_1, f_2)$ un champ de vecteurs sur U tel que

$$\frac{\partial f_1}{\partial x_2} = \frac{\partial f_2}{\partial x_1}$$

Question: Existence de $F: U \to \mathbb{R}$ tels que gradF = f.

U désigne un ouvert de \mathbb{R}^n . Les champs considérés sur U sont C^{∞} .

Analyse 1 (n = 1): Toute application (continue) $f: U \to \mathbb{R}$ admet des primitives.

Analyse 2 (n = 2): Soit $f = (f_1, f_2)$ un champ de vecteurs sur U tel que

$$\frac{\partial f_1}{\partial x_2} = \frac{\partial f_2}{\partial x_1}$$

Question: Existence de $F: U \to \mathbb{R}$ tels que gradF = f.

Réponse : Oui lorsque U est étoilé.

U désigne un ouvert de \mathbb{R}^n . Les champs considérés sur U sont C^{∞} .

Analyse 1 (n = 1): Toute application (continue) $f: U \to \mathbb{R}$ admet des primitives.

Analyse 2 (n = 2): Soit $f = (f_1, f_2)$ un champ de vecteurs sur U tel que

$$\frac{\partial f_1}{\partial x_2} = \frac{\partial f_2}{\partial x_1}$$

Question: Existence de $F: U \to \mathbb{R}$ tels que gradF = f.

Réponse : Oui lorsque U est étoilé.

<u>L'idée</u> : Lorsque U est étoilé par rapport à 0, On prend

$$F(x) = \int_0^1 \langle f(tx), x \rangle dt$$

Le gradient

$$grad: C^{\infty}(U,\mathbb{R}) \rightarrow C^{\infty}(U,\mathbb{R}^2)$$
 $f \mapsto gradf$

Le gradient

$$grad: C^{\infty}(U,\mathbb{R}) \rightarrow C^{\infty}(U,\mathbb{R}^2)$$
 $f \mapsto gradf$

Le rotationnel

$$\begin{array}{cccc} \textit{rot}: & \textit{C}^{\infty}(\textit{U}, \mathbb{R}^2) & \rightarrow & \textit{C}^{\infty}(\textit{U}, \mathbb{R}) \\ & \textit{g} & \mapsto & \frac{\partial \textit{g}_1}{\partial \textit{x}_2} - \frac{\partial \textit{g}_2}{\partial \textit{x}_1} \end{array}$$

Le gradient

$$grad: C^{\infty}(U,\mathbb{R}) \rightarrow C^{\infty}(U,\mathbb{R}^2)$$
 $f \mapsto gradf$

Le rotationnel

$$\begin{array}{cccc} \textit{rot}: & \textit{C}^{\infty}(\textit{U}, \mathbb{R}^2) & \rightarrow & \textit{C}^{\infty}(\textit{U}, \mathbb{R}) \\ & \textit{g} & \mapsto & \frac{\partial \textit{g}_1}{\partial \textit{x}_2} - \frac{\partial \textit{g}_2}{\partial \textit{x}_1} \end{array}$$

$$rot \circ grad = 0$$

Le gradient

$$grad: C^{\infty}(U,\mathbb{R}) \rightarrow C^{\infty}(U,\mathbb{R}^2)$$
 $f \mapsto gradf$

Le rotationnel

$$\begin{array}{cccc} \textit{rot}: & \textit{C}^{\infty}(\textit{U}, \mathbb{R}^2) & \rightarrow & \textit{C}^{\infty}(\textit{U}, \mathbb{R}) \\ & \textit{g} & \mapsto & \frac{\partial \textit{g}_1}{\partial \textit{x}_2} - \frac{\partial \textit{g}_2}{\partial \textit{x}_1} \end{array}$$

$$rot \circ grad = 0$$

Définition 1 :

$$H^1(U) = \ker(rot)/\operatorname{Im}(grad)$$

• Pour *U* étoilé, on a

$$H^1(\mathsf{U})=0$$

• Pour *U* étoilé, on a

$$H^1(U)=0$$

• Pour $U_0 = \mathbb{R}^2 - (0, 0)$, on prend

$$g_0(x_1, x_2) = \left(-\frac{x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$$

• Pour *U* étoilé, on a

$$H^1(U)=0$$

• Pour $U_0 = \mathbb{R}^2 - (0,0)$, on prend

$$g_0(x_1, x_2) = \left(-\frac{x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$$

alors $rot(g_0)=0$ et g_0 n'est pas un champ de gradient sur U_0

• Pour *U* étoilé, on a

$$H^1(U) = 0$$

 \bullet Pour $U_0 = \mathbb{R}^2 - (0,0)$, on prend

$$g_0(x_1, x_2) = \left(-\frac{x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$$

alors $rot(g_0)=0$ et g_0 n'est pas un champ de gradient sur U_0 puisque si prend le lacet : $\gamma(t)=(\cos(t),\sin(t)),\ t\in[0,2\pi]$; on a

$$\int_{0}^{2\pi} \langle g_0(\gamma(t)), \gamma'(t) \rangle dt = 2\pi \neq 0$$

• Pour *U* étoilé, on a

$$H^1(U) = 0$$

 \bullet Pour $U_0 = \mathbb{R}^2 - (0,0)$, on prend

$$g_0(x_1, x_2) = \left(-\frac{x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$$

alors $rot(g_0)=0$ et g_0 n'est pas un champ de gradient sur U_0 puisque si prend le lacet : $\gamma(t)=(\cos(t),\sin(t)),\ t\in[0,2\pi]$; on a

$$\int_{0}^{2\pi} \langle g_{0}(\gamma(t)), \gamma'(t) \rangle dt = 2\pi \neq 0$$

Ainsi : $H^1(U_0) \neq 0$.

• Pour *U* étoilé, on a

$$H^1(U) = 0$$

• Pour $U_0 = \mathbb{R}^2 - (0,0)$, on prend

$$g_0(x_1, x_2) = \left(-\frac{x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$$

alors $rot(g_0)=0$ et g_0 n'est pas un champ de gradient sur U_0 puisque si prend le lacet : $\gamma(t)=(\cos(t),\sin(t)),\ t\in[0,2\pi]$; on a

$$\int_0^{2\pi} < g_0(\gamma(t)), \gamma'(t) > dt = 2\pi \neq 0$$

Ainsi : $H^1(U_0) \neq 0$. On verra que $H^1(U_0) \cong \mathbb{R}$

On verra aussi que si F_k est un ensemble fini de k points du plan, alors

$$\mathsf{H}^1(\mathbb{R}^2 - \mathcal{F}_k) \cong \mathbb{R}^k$$

On verra aussi que si F_k est un ensemble fini de k points du plan, alors

$$H^1(\mathbb{R}^2 - F_k) \cong \mathbb{R}^k$$

En d'autres termes dim $H^1(U)$ serait "le nombre de trous" dans l'ouvert U.

On verra aussi que si F_k est un ensemble fini de k points du plan, alors

$$\mathsf{H}^1(\mathbb{R}^2 - \mathcal{F}_k) \cong \mathbb{R}^k$$

En d'autres termes dim $H^1(U)$ serait "le nombre de trous" dans l'ouvert U.

Définition 2 : Pour U ouvert de \mathbb{R}^n , on pose

$$H^0(U) = \ker(grad)$$

On verra aussi que si F_k est un ensemble fini de k points du plan, alors

$$\mathsf{H}^1(\mathbb{R}^2 - \mathcal{F}_k) \cong \mathbb{R}^k$$

En d'autres termes dim $H^1(U)$ serait "le nombre de trous" dans l'ouvert U.

Définition 2 : Pour U ouvert de \mathbb{R}^n , on pose

$$H^0(U) = \ker(grad)$$

Théorème : U est connexe si et seulement si $H^0(U) \cong \mathbb{R}$.

On verra aussi que si F_k est un ensemble fini de k points du plan, alors

$$\mathsf{H}^1(\mathbb{R}^2 - \mathcal{F}_k) \cong \mathbb{R}^k$$

En d'autres termes dim $H^1(U)$ serait "le nombre de trous" dans l'ouvert U.

Définition 2 : Pour U ouvert de \mathbb{R}^n , on pose

$$H^0(U) = \ker(grad)$$

Théorème : U est connexe si et seulement si $H^0(U) \cong \mathbb{R}$.

Plus généralement, on montre que $\dim H^0(U)$ est le nombre de composantes connexes

Trois variables (n = 3)

Gradient : $grad : C^{\infty}(U, \mathbb{R}) \to C^{\infty}(U, \mathbb{R}^3)$

Rotationnel : $rot : C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R}^3)$

Divergence : $div : C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R})$

Trois variables (n = 3)

Gradient : $grad : C^{\infty}(U, \mathbb{R}) \to C^{\infty}(U, \mathbb{R}^3)$

Rotationnel : $rot : C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R}^3)$

Divergence: $div: C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R})$

$$rot \circ grad = 0$$
 et $div \circ rot = 0$

Trois variables (n = 3)

Gradient : $grad : C^{\infty}(U, \mathbb{R}) \to C^{\infty}(U, \mathbb{R}^3)$

Rotationnel : $rot : C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R}^3)$

Divergence: $div: C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R})$

$$rot \circ grad = 0$$
 et $div \circ rot = 0$

Définition 3 : $H^0(U)$ et $H^1(U)$ sont déjà définis. On pose

$$H^2(U) = \ker(div)/\operatorname{Im}(rot)$$

Théorème : Si U est étoilé, on a

$$H^0(U)\cong {\rm I\!R}, \ H^1(U)=0 \ \ \text{et} \ \ H^2(U)=0$$

Théorème : Si U est étoilé, on a

$$H^0(U) \cong \mathbb{R}, H^1(U) = 0 \text{ et } H^2(U) = 0$$

<u>L'idée</u>: Lorsque U est étoilé par rapport à l'origine, et si div(F) = 0, on considère

$$G(x) = \int_0^1 F(tx) \wedge txdt$$

Puis on vérifie que

$$rot(F(tx) \wedge tx) = \frac{d}{dt}(t^2F(tx)).$$

Définition [Forme différentielle]

Définition [Forme différentielle] Une p-forme différentielle sur U ($p=0,1,\cdots,n$) est la donnée d'une application

$$\omega: U \to Alt^p(\mathbb{R}^n)$$

Définition [Forme différentielle] Une p-forme différentielle sur U ($p=0,1,\cdots,n$) est la donnée d'une application

$$\omega: U \to Alt^p(\mathbb{R}^n)$$

L'espace vectoriel des p-formes différentielles sera noté $\Omega^p(U)$.

Définition [Forme différentielle] Une p-forme différentielle sur U ($p=0,1,\cdots,n$) est la donnée d'une application

$$\omega: U \to Alt^p({\rm I\!R}^n)$$

L'espace vectoriel des p-formes différentielles sera noté $\Omega^p(U)$.

Expression générale :

Définition [Forme différentielle] Une p-forme différentielle sur U ($p=0,1,\cdots,n$) est la donnée d'une application

$$\omega: U \to Alt^p({\rm I\!R}^n)$$

L'espace vectoriel des p-formes différentielles sera noté $\Omega^p(U)$.

Expression générale :

Pour
$$p=0$$
, on a $\Omega^0(U)=C^\infty(U,\mathbb{R})$.

Définition [Forme différentielle] Une p-forme différentielle sur U ($p=0,1,\cdots,n$) est la donnée d'une application

$$\omega: U \to Alt^p(\mathbb{R}^n)$$

L'espace vectoriel des p-formes différentielles sera noté $\Omega^p(U)$.

Expression générale :

Pour p=0, on a $\Omega^0(U)=C^\infty(U,\mathbb{R})$.

Pour p = 1, l'expression générale d'une 1-forme différentielle :

$$f_1 dx_1 + f_2 dx_2 + \cdots + f_n dx_n$$

où $f_i \in C^{\infty}(U, \mathbb{R})$ et dx_i la différentielle de la i-ème projection (c'-à-d $(dx_i)_x(v) = v_i$ la i-ème coordonnée du vecteur $v = (v_1, \ldots, v_n)$)

$$(\omega_1 \wedge \cdots \wedge \omega_p)(v^1, \dots, v^p) = \det[\omega_i(v^j)]$$

$$(\omega_1 \wedge \cdots \wedge \omega_p)(v^1, \ldots, v^p) = \det[\omega_i(v^j)]$$

▶ L'expression générale d'un élément $\omega \in \Omega^p(U)$:

$$\omega = \sum_{I} f_{I} dx_{I}$$

où la sommation porte sur les p-uplets $I=(i_1,\ldots,i_p)$ avec $1 \leq i_1 < \cdots < i_p \leq n$, $f_I \in C^{\infty}(U,\mathbb{R})$ et $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_p}$.

$$(\omega_1 \wedge \cdots \wedge \omega_p)(v^1, \ldots, v^p) = \det[\omega_i(v^j)]$$

▶ L'expression générale d'un élément $\omega \in \Omega^p(U)$:

$$\omega = \sum_{I} f_{I} dx_{I}$$

où la sommation porte sur les p-uplets $I=(i_1,\ldots,i_p)$ avec $1\leq i_1<\cdots< i_p\leq n,\ f_l\in C^\infty(U,{\rm I\!R})$ et $dx_l=dx_{i_1}\wedge\cdots\wedge dx_{i_p}.$ En particulier, lorsque $\omega_1\in\Omega^p(U)$ et $\omega_2\in\Omega^q(U)$ on définit le produit (externe) $\omega_1\wedge\omega_2\in\Omega^{p+q}(U).$ On a : $\omega_1\wedge\omega_2=(-1)^{pq}\omega_2\wedge\omega_1.$

$$(\omega_1 \wedge \cdots \wedge \omega_p)(v^1, \ldots, v^p) = \det[\omega_i(v^j)]$$

▶ L'expression générale d'un élément $\omega \in \Omega^p(U)$:

$$\omega = \sum_{I} f_{I} dx_{I}$$

où la sommation porte sur les p-uplets $I=(i_1,\ldots,i_p)$ avec $1\leq i_1<\cdots< i_p\leq n,\ f_l\in C^\infty(U,\mathbb{R})$ et $dx_l=dx_{i_1}\wedge\cdots\wedge dx_{i_p}.$ En particulier, lorsque $\omega_1\in\Omega^p(U)$ et $\omega_2\in\Omega^q(U)$ on définit le produit (externe) $\omega_1\wedge\omega_2\in\Omega^{p+q}(U).$ On a : $\omega_1\wedge\omega_2=(-1)^{pq}\omega_2\wedge\omega_1.$ On obtient une algèbre graduée anti-commutative

$$\Omega^*(U) = \bigoplus_{0 \le p \le n} \Omega^p(U)$$

Différentielle externe

Théorème : Pour tout ouvert U de \mathbb{R}^n , il existe un unique opérateur linéaire

$$d:\Omega^p(U)\to\Omega^{p+1}(U)$$

pour tout p = 0, 1, ..., n tel que :

Différentielle externe

Théorème : Pour tout ouvert U de \mathbb{R}^n , il existe un unique opérateur linéaire

$$d:\Omega^p(U) o \Omega^{p+1}(U)$$

pour tout $p = 0, 1, \dots, n$ tel que :

Définition Le complexe de de Rham de U est le couple $(\Omega^*(U), d)$

Définition Le complexe de de Rham de U est le couple

$$(\Omega^*(U),d)$$

C'est une algèbre différentielle graduée anti-commutative.

Définition Le complexe de de Rham de *U* est le couple

$$(\Omega^*(U), d)$$

C'est une algèbre différentielle graduée anti-commutative.

Définition La cohomologie de de Rham de U est le quotient

$$\mathsf{H}^p(U) = rac{\mathsf{ker}(d:\Omega^p(U) o \Omega^{p+1}(U))}{\mathit{Im}(d:\Omega^{p-1}(U) o \Omega^p(U))}$$

Définition Le complexe de de Rham de U est le couple

$$(\Omega^*(U), d)$$

C'est une algèbre différentielle graduée anti-commutative.

Définition La cohomologie de de Rham de U est le quotient

$$\mathsf{H}^p(U) = rac{\mathsf{ker}(d:\Omega^p(U) o \Omega^{p+1}(U))}{\mathit{Im}(d:\Omega^{p-1}(U) o \Omega^p(U))}$$

 $\mathsf{H}^*(U) = \bigoplus_{0 \leq p \leq n} \mathsf{H}^p(U)$ est une algèbre anti-commutative pour la multiplication : $[\omega_1][\omega_2] = [\omega_1 \wedge \omega_2]$.

Effet d'une application

Soit $\phi: U_1 \to U_2$ une application de $U_1 \subset \mathbb{R}^n$ vers $U_1 \subset \mathbb{R}^m$.

Effet d'une application

Soit $\phi: U_1 \to U_2$ une application de $U_1 \subset \mathbb{R}^n$ vers $U_1 \subset \mathbb{R}^m$. On définit $\phi^*: \Omega^p(U_2) \to \Omega^p(U_1)$

Effet d'une application

Soit $\phi: U_1 \to U_2$ une application de $U_1 \subset \mathbb{R}^n$ vers $U_1 \subset \mathbb{R}^m$. On définit $\phi^*: \Omega^p(U_2) \to \Omega^p(U_1)$ par l'expression :

$$\phi^*(\sum_I f_I dx_I) = \sum_I (f_I \circ \phi) d\phi_I$$

où $d\phi_I = d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_p}$ et ϕ_i désigne la *i*-ème fonction coordonnée de ϕ .

ullet Pour $\gamma:[0,1] o U$ une courbe dans U et $\omega=\displaystyle{\sum_i}f_idx_i$, on a

$$\gamma^*(\omega) = \langle f(\gamma(t)), \gamma'(t) \rangle dt$$

ullet Pour $\gamma:[0,1] o U$ une courbe dans U et $\omega=\sum_i f_i d\mathbf{x}_i$, on a

$$\gamma^*(\omega) = \langle f(\gamma(t)), \gamma'(t) \rangle dt$$

• Lorsque n = m, on a

$$\phi^*(d\phi_1 \wedge \cdots \wedge dx_n)_x = \det((d\phi)_x)dx_1 \wedge \cdots dx_n$$

47

ullet Pour $\gamma:[0,1] o U$ une courbe dans U et $\omega=\sum_i f_i d{\sf x}_i$, on a

$$\gamma^*(\omega) = \langle f(\gamma(t)), \gamma'(t) \rangle dt$$

• Lorsque n = m, on a

$$\phi^*(d\phi_1\wedge\cdots\wedge dx_n)_x=\det((d\phi)_x)dx_1\wedge\cdots dx_n$$

• Pour $\phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ définie par $\phi(x,t) = k(t)x$ avec $k: \mathbb{R} \to \mathbb{R}$.

ullet Pour $\gamma:[0,1] o U$ une courbe dans U et $\omega=\sum_i f_i d\mathsf{x}_i$, on a

$$\gamma^*(\omega) = \langle f(\gamma(t)), \gamma'(t) \rangle dt$$

• Lorsque n = m, on a

$$\phi^*(d\phi_1 \wedge \cdots \wedge dx_n)_x = \det((d\phi)_x)dx_1 \wedge \cdots dx_n$$

• Pour $\phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ définie par $\phi(x, t) = k(t)x$ avec $k: \mathbb{R} \to \mathbb{R}$. On a :

$$\phi^*(dx_i) = k(t)dx_i + x_ik'(t)dt$$

On a

- $\phi^*(\alpha \wedge \beta) = \phi^*(\alpha) \wedge \phi^*(\beta)$
- $\phi^*(f) = f \circ \phi$ pour f une fonction.
- $\bullet d(\phi^*\omega) = \phi^*(d\omega).$

On a

- $\phi^*(\alpha \wedge \beta) = \phi^*(\alpha) \wedge \phi^*(\beta)$
- $\phi^*(f) = f \circ \phi$ pour f une fonction.

Conséquence : Toute application $\phi: U_1 \to U_2$ va induire une application linéaire :

$$H^p(\phi): H^p(U_2) \rightarrow H^p(U_1)$$

On a

- $\phi^*(\alpha \wedge \beta) = \phi^*(\alpha) \wedge \phi^*(\beta)$
- $\phi^*(f) = f \circ \phi$ pour f une fonction.

Conséquence : Toute application $\phi: U_1 \to U_2$ va induire une application linéaire :

$$H^p(\phi): H^p(U_2) \rightarrow H^p(U_1)$$

définie par $H^p(\phi)[\omega] = [\phi^*(\omega)].$

On a

- $\phi^*(\alpha \wedge \beta) = \phi^*(\alpha) \wedge \phi^*(\beta)$
- $\phi^*(f) = f \circ \phi$ pour f une fonction.

Conséquence : Toute application $\phi: U_1 \to U_2$ va induire une application linéaire :

$$H^p(\phi): H^p(U_2) \rightarrow H^p(U_1)$$

définie par $H^p(\phi)[\omega] = [\phi^*(\omega)].$

On a : $H^p(\phi_2 \circ \phi_1) = H^p(\phi_1) \circ H^p(\phi_2)$.

▶ La correspondance $U \rightarrow H^p(U)$ est un foncteur contravariant

Lemme de Poincaré

Théorème Pour tout ouvert étoilé U de \mathbb{R}^n , on a :

$$H^p(U) = 0$$
 pour $p > 0$ et $H^0(U) = \mathbb{R}$

 $\underline{\mathsf{Id\acute{e}e}}.$ On suppose U étoilé par rapport à 0.

 $\underline{\mathsf{Id\acute{e}e}}$. On suppose U étoilé par rapport à 0.

• On choisit $k: \mathbb{R} \to \mathbb{R}$ telle que k(t) = 0 pour $t \le 0$, k(t) = 1 pour $t \ge 1$ et $0 \le k(t) \le 1$.

Idée. On suppose U étoilé par rapport à 0.

- On choisit $k : \mathbb{R} \to \mathbb{R}$ telle que k(t) = 0 pour $t \le 0$, k(t) = 1 pour $t \ge 1$ et $0 \le k(t) \le 1$.
- On considère $K: U \times \mathbb{R} \to U$, K(x,t) = k(t)x.

Idée. On suppose U étoilé par rapport à 0.

- On choisit $k : \mathbb{R} \to \mathbb{R}$ telle que k(t) = 0 pour $t \le 0$, k(t) = 1 pour $t \ge 1$ et $0 \le k(t) \le 1$.
- On considère $K: U \times \mathbb{R} \to U$, K(x,t) = k(t)x.
- On utilise l'opérateur d'intégration le long de la fibre

$$\int_0^1: \Omega^p(U \times \mathbb{R}) \to \Omega^{p-1}(U)$$

$$\int_0^1 (f_I dx_I + g_I dt \wedge dx_J) = (\int_0^1 g_J(x, t) dt) dx_J$$

Idée. On suppose U étoilé par rapport à 0.

- On choisit $k : \mathbb{R} \to \mathbb{R}$ telle que k(t) = 0 pour $t \le 0$, k(t) = 1 pour $t \ge 1$ et $0 \le k(t) \le 1$.
- On considère $K: U \times \mathbb{R} \to U$, K(x,t) = k(t)x.
- On utilise l'opérateur d'intégration le long de la fibre

$$\int_0^1: \Omega^p(U \times \mathbb{R}) \to \Omega^{p-1}(U)$$

$$\int_0^1 (f_I dx_I + g_I dt \wedge dx_J) = (\int_0^1 g_J(x, t) dt) dx_J$$

• On construit finalement (pour p>0) des opérateurs linéaires $K_p:\Omega^p(U)\to\Omega^{p-1}(U)$ tel que

$$dK_p + K_{p+1}d = id$$

Idée. On suppose U étoilé par rapport à 0.

- On choisit $k : \mathbb{R} \to \mathbb{R}$ telle que k(t) = 0 pour $t \le 0$, k(t) = 1 pour t > 1 et 0 < k(t) < 1.
- On considère $K: U \times \mathbb{R} \to U$, K(x,t) = k(t)x.
- On utilise l'opérateur d'intégration le long de la fibre

$$\int_0^1 : \Omega^p(U \times \mathbb{R}) \to \Omega^{p-1}(U)$$

$$\int_0^1 (f_I dx_I + g_I dt \wedge dx_J) = (\int_0^1 g_J(x, t) dt) dx_J$$

• On construit finalement (pour p > 0) des opérateurs linéaires $K_p: \Omega^p(U) \to \Omega^{p-1}(U)$ tel que

$$dK_p + K_{p+1}d = id$$

En posant :
$$K_p(\omega) = \int_0^1 (K^*\omega)$$
.

Proposition. Soient U_1 et U_2 deux ouverts de \mathbb{R}^n et $U = U_1 \cup U_2$. Alors la suite

$$0 \longrightarrow \Omega^{p}(U) \stackrel{I^{p}}{\longrightarrow} \Omega^{p}(U_{1}) \oplus \Omega^{p}(U_{2}) \stackrel{J^{p}}{\longrightarrow} \Omega^{p}(U_{1} \cap U_{2}) \to 0$$
est exate;
où $I^{p}(\omega) = (\omega_{|_{U_{1}}}, \omega_{|_{U_{2}}})$ et $J^{p}(\alpha, \beta) = \alpha_{|_{U_{1} \cap U_{2}}} - \beta_{|_{U_{1} \cap U_{2}}}.$

:

Proposition. Soient U_1 et U_2 deux ouverts de \mathbb{R}^n et $U = U_1 \cup U_2$. Alors la suite

$$0 \longrightarrow \Omega^p(U) \stackrel{I^p}{\longrightarrow} \Omega^p(U_1) \oplus \Omega^p(U_2) \stackrel{J^p}{\longrightarrow} \Omega^p(U_1 \cap U_2) \to 0$$
 est exate;

où
$$I^p(\omega)=(\omega_{|\nu_1},\omega_{|\nu_2})$$
 et $J^p(\alpha,\beta)=\alpha_{|\nu_1\cap\nu_2}-\beta_{|\nu_1\cap\nu_2}$.

Démonstration.

Seule la surjectivité de J^p mérite une explication :

Proposition. Soient U_1 et U_2 deux ouverts de \mathbb{R}^n et $U = U_1 \cup U_2$. Alors la suite

$$0 \longrightarrow \Omega^p(U) \stackrel{I^p}{\longrightarrow} \Omega^p(U_1) \oplus \Omega^p(U_2) \stackrel{J^p}{\longrightarrow} \Omega^p(U_1 \cap U_2) \to 0$$
 est exate; où $I^p(\omega) = (\omega_{|_{U_1}}, \omega_{|_{U_2}})$ et $J^p(\alpha, \beta) = \alpha_{|_{U_1 \cap U_2}} - \beta_{|_{U_1 \cap U_2}}$.

Démonstration.

Seule la surjectivité de J^p mérite une explication : On considère une partition de l'unité $\{\rho_1,\rho_2\}$ subordonnée au recouvrement $\{U_1,U_2\}$ ($\operatorname{Supp}(\rho_i)\subset U_i$ et $\rho_1+\rho_2=1$)

Proposition. Soient U_1 et U_2 deux ouverts de \mathbb{R}^n et $U = U_1 \cup U_2$. Alors la suite

$$0 \longrightarrow \Omega^p(U) \stackrel{I^p}{\longrightarrow} \Omega^p(U_1) \oplus \Omega^p(U_2) \stackrel{J^p}{\longrightarrow} \Omega^p(U_1 \cap U_2) \to 0$$
 est exate;

où
$$I^{p}(\omega) = (\omega_{|_{U_{1}}}, \omega_{|_{U_{2}}})$$
 et $J^{p}(\alpha, \beta) = \alpha_{|_{U_{1} \cap U_{2}}} - \beta_{|_{U_{1} \cap U_{2}}}$.

Démonstration.

Seule la surjectivité de J^p mérite une explication : On considère une partition de l'unité $\{\rho_1,\rho_2\}$ subordonnée au recouvrement $\{U_1,U_2\}$ ($\operatorname{Supp}(\rho_i)\subset U_i$ et $\rho_1+\rho_2=1$) puis il suffit d'écrire $\omega=\rho_2\omega-(-\rho_1\omega)$ et de remarquer que $(\rho_2\omega,-\rho_1\omega)\in\Omega^*(U_1)\oplus\Omega^*(U_2)$.

Suite exacte longue:

Corollaire 1. Soit $U = U_1 \cup U_2$. Alors il existe une suite exacte longue (naturelle) de cohomologie :

$$\cdots \longrightarrow H^p(U) \stackrel{H(I)}{\longrightarrow} H^p(U_1) \oplus H^p(U_2) \stackrel{H(J)}{\longrightarrow} H^p(U_1 \cap U_2) \stackrel{\delta^p}{\longrightarrow} H^{p+1}(U)$$

où δ^p est l'opérateur connectant.

Suite exacte longue:

Corollaire 1. Soit $U = U_1 \cup U_2$. Alors il existe une suite exacte longue (naturelle) de cohomologie :

$$\cdots \longrightarrow H^p(U) \xrightarrow{H(I)} H^p(U_1) \oplus H^p(U_2) \xrightarrow{H(J)} H^p(U_1 \cap U_2) \xrightarrow{\delta^p} H^{p+1}(U)$$

où δ^p est l'opérateur connectant.

Corollaire 2. Si $U_1 \cap U_2 = \emptyset$, alors

$$H^p(U_1 \cup U_2) \cong H^p(U_1) \oplus H^p(U_2)$$

On prend

$$U_1 = \mathbb{R}^2 - \{(x,y)/\ x \ge 0, y = 0\}$$

et

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \le 0, y = 0\}$$

On prend

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \ge 0, y = 0\}$$

et

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \le 0, y = 0\}$$

 U_1 et U_2 sont étoilés, $U_1 \cup U_2 = U$ et $U_1 \cap U_2$ est réunion disjointe de deux ouverts convexes $\mathbb{R} \times \mathbb{R}_+^*$ et $\mathbb{R} \times \mathbb{R}_-^*$.

68

On prend

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \ge 0, y = 0\}$$

et

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \le 0, y = 0\}$$

 U_1 et U_2 sont étoilés, $U_1 \cup U_2 = U$ et $U_1 \cap U_2$ est réunion disjointe de deux ouverts convexes $\mathbb{R} \times \mathbb{R}_+^*$ et $\mathbb{R} \times \mathbb{R}_-^*$. Donc $H^p(U_1 \cap U_2) = 0$ pour p > 0 et $H^0(U_1 \cap U_2) = \mathbb{R} \oplus \mathbb{R}$.

On prend

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \ge 0, y = 0\}$$

et

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \le 0, y = 0\}$$

 U_1 et U_2 sont étoilés, $U_1 \cup U_2 = U$ et $U_1 \cap U_2$ est réunion disjointe de deux ouverts convexes $\mathbb{R} \times \mathbb{R}_+^*$ et $\mathbb{R} \times \mathbb{R}_-^*$. Donc $H^p(U_1 \cap U_2) = 0$ pour p > 0 et $H^0(U_1 \cap U_2) = \mathbb{R} \oplus \mathbb{R}$. On obtient alors que pour p > 0, on a la suite exacte

$$0\longrightarrow H^p(U_1\cap U_2)\stackrel{\delta^p}{\longrightarrow} H^{p+1}(U)\longrightarrow 0$$

On prend

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \ge 0, y = 0\}$$

et

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \le 0, y = 0\}$$

 U_1 et U_2 sont étoilés, $U_1 \cup U_2 = U$ et $U_1 \cap U_2$ est réunion disjointe de deux ouverts convexes $\mathbb{R} \times \mathbb{R}_+^*$ et $\mathbb{R} \times \mathbb{R}_-^*$. Donc $H^p(U_1 \cap U_2) = 0$ pour p > 0 et $H^0(U_1 \cap U_2) = \mathbb{R} \oplus \mathbb{R}$. On obtient alors que pour p > 0, on a la suite exacte

$$0\longrightarrow H^p(U_1\cap U_2)\stackrel{\delta^p}{\longrightarrow} H^{p+1}(U)\longrightarrow 0$$

Donc
$$H^q(U) = 0$$
 pour $q \ge 2$.

On prend

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \ge 0, y = 0\}$$

et

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \le 0, y = 0\}$$

 U_1 et U_2 sont étoilés, $U_1 \cup U_2 = U$ et $U_1 \cap U_2$ est réunion disjointe de deux ouverts convexes $\mathbb{R} \times \mathbb{R}_+^*$ et $\mathbb{R} \times \mathbb{R}_-^*$. Donc $H^p(U_1 \cap U_2) = 0$ pour p > 0 et $H^0(U_1 \cap U_2) = \mathbb{R} \oplus \mathbb{R}$. On obtient alors que pour p > 0, on a la suite exacte

$$0\longrightarrow H^p(U_1\cap U_2)\stackrel{\delta^p}{\longrightarrow} H^{p+1}(U)\longrightarrow 0$$

Donc $H^q(U) = 0$ pour $q \ge 2$. Pour le calcul de $H^1(U)$, on a la suite exacte

$$0\longrightarrow H^0(U)\stackrel{I^0}{\longrightarrow} H^0(U_1)\oplus H^0(U_2)\stackrel{J^0}{\longrightarrow} H^0(U_1\cap U_2)\stackrel{\delta^0}{\longrightarrow} H^1(U) \to 0$$

Exemple : $H^*(U)$ avec $U = \mathbb{R}^2 - \{(0,0)\}$

On prend

$$U_1 = \mathbb{R}^2 - \{(x, y)/ \ x \ge 0, y = 0\}$$

et

$$U_1=\mathbb{R}^2-\{(x,y)/\ x\leq 0,y=0\}$$
 U_1 et U_2 sont étoilés, $U_1\cup U_2=U$ et $U_1\cap U_2$ est réunion

disjointe de deux ouverts convexes $\mathbb{R} \times \mathbb{R}_+^*$ et $\mathbb{R} \times \mathbb{R}_-^*$. Donc $H^p(U_1 \cap U_2) = 0$ pour p > 0 et $H^0(U_1 \cap U_2) = \mathbb{R} \oplus \mathbb{R}$. On obtient alors que pour p > 0, on a la suite exacte

$$0\longrightarrow H^p(U_1\cap U_2)\stackrel{\delta^p}{\longrightarrow} H^{p+1}(U)\longrightarrow 0$$

Donc $H^q(U) = 0$ pour $q \ge 2$. Pour le calcul de $H^1(U)$, on a la suite exacte

$$0 \longrightarrow H^0(U) \stackrel{I^0}{\longrightarrow} H^0(U_1) \oplus H^0(U_2) \stackrel{J^0}{\longrightarrow} H^0(U_1 \cap U_2) \stackrel{\delta^0}{\longrightarrow} H^1(U) \to 0$$

Donc $H^1(U) \cong \mathbb{R}$.

Homotopie:

Définition Deux applications continues f et g, d'un espace topologique X vers un espace topologique Y, sont homotopes s'il existe une application continue $F:[0,1]\times X\to Y$, telle que F(0,x)=f(x) et F(1,x)=g(x), et on note $f\sim g$. L'application F est appelée homotopie de f à g.

Homotopie:

Définition Deux applications continues f et g, d'un espace topologique X vers un espace topologique Y, sont homotopes s'il existe une application continue $F:[0,1]\times X\to Y$, telle que F(0,x)=f(x) et F(1,x)=g(x), et on note $f\sim g$. L'application F est appelée homotopie de f à g.

Exemple

- Si Y est un ouvert convexe de \mathbb{R}^n et $f, g: X \to Y$, alors f et g sont homotopes (On considère F(t,x) = (1-t)f(x) + tg(x)).
- Montrer que si $f: X \to S^2$ est une application continue et non surjective, alors f est homotope à une application constante.
- Montrer que l'homotopie est une relation d'équivalence.

Définition Deux espaces topologiques X et Y ont même type d'homotopie s'il existe deux applications continues $f: X \to Y$ et $g: Y \to X$ telles que $f \circ g \sim id_Y$ et $g \circ f \sim id_X$.

 Deux espaces homéomorphes ont même type d'homotopie.

- Deux espaces homéomorphes ont même type d'homotopie.
- Un espace X est dit contractile s'il a le même type d'homotopie qu'un point.

- Deux espaces homéomorphes ont même type d'homotopie.
- Un espace X est dit contractile s'il a le même type d'homotopie qu'un point.
- Tout ouvert étoilé est contractile.

- 2 $\iota \circ r$ est homotope à Id_U .

- \circ $\iota \circ r$ est homotope à Id_U .

Les applications ι et r sont ainsi des équivalences d'homotopie.

- \circ $\iota \circ r$ est homotope à Id_U .

Les applications ι et r sont ainsi des équivalences d'homotopie.

- 2 $\iota \circ r$ est homotope à Id_U .

Les applications ι et r sont ainsi des équivalences d'homotopie.

Exemple Les espaces $\mathbb{R}^{n+1} - \{0\}$ et la sphère S^n ont même type d'homotopie.

- 2 $\iota \circ r$ est homotope à Id_U .

Les applications ι et r sont ainsi des équivalences d'homotopie.

Exemple Les espaces $\mathbb{R}^{n+1} - \{0\}$ et la sphère S^n ont même type d'homotopie. En effet, considérons l'application $r: \mathbb{R}^{n+1} \setminus \{0\} \to S^n$ définie par $r(x) = \frac{x}{\|x\|}$. On a $r \circ \iota = id_{S^n}$ et $\iota \circ r \sim id_{\mathbb{R}^{n+1} - \{0\}}$ par l'homotopie : $F(t,x) = tx + (1-t)\frac{x}{\|x\|}$.

Homotopie différentiable

Lemme Soient $U \subset \mathbb{R}^n$ et $V \subset \mathbb{R}^m$ (ouverts).

- Toute application continue $h: U \to V$ est homotpe à une application C^{∞} .
- Si $f_0, f_1: U \to V$ sont C^{∞} et homotopes, alors il existe une homotopie C^{∞} reliant f_0 et f_1 (càd $F: \mathbb{R} \times U \to V$ C^{∞} avec $F(t,x) = f_0$ pour $t \leq 0$ et $F(t,x) = f_1$ pour $t \geq 1$).

Proposition Deux applications différentiables différentiablement homotopes induisent la même application en cohomologie de de Rham.

Proposition Deux applications différentiables différentiablement homotopes induisent la même application en cohomologie de de Rham.

Démonstration.

Soit $F: \mathbb{R} \times U \to V$ une homotopie C^{∞} entre f_0 et f_1 . On vérifie par le calcul que

$$f_1^*(\alpha) - f_0^*(\alpha) = d\left(\int_0^1 \circ F^*(\alpha)\right)$$

dès que α est une forme fermée.

Corollaire Si $U \subset \mathbb{R}^n$ est un ouvert contractile, alors $H^p(U) = 0$ pour p > 0 et $H^0(U) = \mathbb{R}$.

Corollaire Si $U \subset \mathbb{R}^n$ est un ouvert contractile, alors $H^p(U) = 0$ pour p > 0 et $H^0(U) = \mathbb{R}$.

Proposition (#) Soit A un fermé de \mathbb{R}^n , $A \neq \mathbb{R}^n$. On identifie A à un fermé de \mathbb{R}^{n+1} : $A \subset \mathbb{R}^n \cong \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$.

Corollaire Si $U \subset \mathbb{R}^n$ est un ouvert contractile, alors $H^p(U) = 0$ pour p > 0 et $H^0(U) = \mathbb{R}$.

Proposition (\sharp **)** Soit A un fermé de \mathbb{R}^n , $A \neq \mathbb{R}^n$. On identifie A à un fermé de $\mathbb{R}^{n+1}: A \subset \mathbb{R}^n \cong \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$. On a des isomorphismes :

- $H^{p+1}(\mathbb{R}^{n+1}-A)\cong H^p(\mathbb{R}^n-A)$, pour $p\geq 1$
- $H^1(\mathbb{R}^{n+1}-A)\cong H^0(\mathbb{R}^n-A)/\mathbb{R}\cdot 1$
- $\bullet \ H^0(\mathbb{R}^{n+1}-A)\cong \mathbb{R}.$

On utilise les deux ouverts :

- $U_1 = (\mathbb{R}^n \times]0, +\infty[) \cup ((\mathbb{R}^n A) \times]-1, +\infty[)$
- $U_2 = (\mathbb{R}^n \times] \infty, 0[) \cup ((\mathbb{R}^n A) \times] \infty, 1[)$

On utilise les deux ouverts :

- $U_1 = (\mathbb{R}^n \times]0, +\infty[) \cup ((\mathbb{R}^n A) \times]-1, +\infty[)$
- $U_2 = (\mathbb{R}^n \times] \infty, 0[) \cup ((\mathbb{R}^n A) \times] \infty, 1[)$

On vérifie que

- $U_1 \cup U_2 = \mathbb{R}^{n+1} A$

On utilise les deux ouverts :

•
$$U_1 = (\mathbb{R}^n \times]0, +\infty[) \cup ((\mathbb{R}^n - A) \times]-1, +\infty[)$$

•
$$U_2 = (\mathbb{R}^n \times] - \infty, 0[) \cup ((\mathbb{R}^n - A) \times] - \infty, 1[)$$

On vérifie que

•
$$U_1 \cup U_2 = \mathbb{R}^{n+1} - A$$

•
$$U_1 \cap U_2 = (\mathbb{R}^n - A) \times] - 1, 1[$$

La suite exacte longue de Mayer-Vietoris permet de conclure.

On utilise les deux ouverts :

•
$$U_1 = (\mathbb{R}^n \times]0, +\infty[) \cup ((\mathbb{R}^n - A) \times]-1, +\infty[)$$

•
$$U_2 = (\mathbb{R}^n \times] - \infty, 0[) \cup ((\mathbb{R}^n - A) \times] - \infty, 1[)$$

On vérifie que

•
$$U_1 \cup U_2 = \mathbb{R}^{n+1} - A$$

•
$$U_1 \cap U_2 = (\mathbb{R}^n - A) \times] - 1, 1[$$

La suite exacte longue de Mayer-Vietoris permet de conclure.

Corollaire Pour n > 2, on a

$$H^{p}(\mathbb{R}^{n}-\{0\})=\left\{\begin{array}{ll}\mathbb{R} & si & p=0, \ n-1\\ 0 & sinon\end{array}\right.$$

 D^n désigne le disque unité de \mathbb{R}^n .

Théorème [du point fixe de Brouwer] Toute application continue $f: D^n \to D^n$ a un point fixe.

 D^n désigne le disque unité de \mathbb{R}^n .

Théorème [du point fixe de Brouwer] Toute application continue $f: D^n \to D^n$ a un point fixe.

Supposons que $f(x) \neq x$ pour tout $x \in D^n$.

 D^n désigne le disque unité de \mathbb{R}^n .

Théorème [du point fixe de Brouwer] Toute application continue $f: D^n \to D^n$ a un point fixe.

Supposons que $f(x) \neq x$ pour tout $x \in D^n$. Pour $x \in D^n$, on désigne par g(x) le point d'intersection de la demi droite passant par x d'origine f(x), avec la sphère S^{n-1} .

 D^n désigne le disque unité de \mathbb{R}^n .

Théorème [du point fixe de Brouwer] Toute application continue $f: D^n \to D^n$ a un point fixe.

Supposons que $f(x) \neq x$ pour tout $x \in D^n$. Pour $x \in D^n$, on désigne par g(x) le point d'intersection de la demi droite passant par x d'origine f(x), avec la sphère S^{n-1} .

 D^n désigne le disque unité de \mathbb{R}^n .

Théorème [du point fixe de Brouwer] Toute application continue $f: D^n \to D^n$ a un point fixe.

Supposons que $f(x) \neq x$ pour tout $x \in D^n$. Pour $x \in D^n$, on désigne par g(x) le point d'intersection de la demi droite passant par x d'origine f(x), avec la sphère S^{n-1} . L'application $g:D^n \to S^{n-1}$ est une rétraction de D^n sur S^{n-1} !

Lemme II n'existe pas d'application continue $g:D^n\to S^{n-1}$ telle que $g_{|_{S^{n-1}}}=id_{S^{n-1}}.$

Lemme II n'existe pas d'application continue $g: D^n \to S^{n-1}$ telle que $g_{|_{S^{n-1}}} = id_{S^{n-1}}$.

Démonstration.

 $(n \ge 2)$. L'application

$$r: \mathbb{R}^n - \{0\} \to \mathbb{R}^n - \{0\}, \quad r(x) = \frac{x}{\|x\|}$$

est homotope à $id_{\mathbb{R}^n-\{0\}}$.

Lemme II n'existe pas d'application continue $g: D^n \to S^{n-1}$ telle que $g_{|_{S^{n-1}}} = id_{S^{n-1}}$.

Démonstration.

 $(n \ge 2)$. L'application

$$r: \mathbb{R}^n - \{0\} \to \mathbb{R}^n - \{0\}, \quad r(x) = \frac{x}{\|x\|}$$

est homotope à $id_{\mathbb{R}^n-\{0\}}$. D'un autre côté, l'application g permet de construire une homotopie entre r et l'application constante $x\mapsto g(0)$ (en prenant G(t,x)=g(tr(x))).

Lemme II n'existe pas d'application continue $g: D^n \to S^{n-1}$ telle que $g|_{S^{n-1}} = id_{S^{n-1}}$.

Démonstration.

 $(n \ge 2)$. L'application

$$r: \mathbb{R}^n - \{0\} \to \mathbb{R}^n - \{0\}, \quad r(x) = \frac{x}{\|x\|}$$

est homotope à $id_{\mathbb{R}^n-\{0\}}$. D'un autre côté, l'application g permet de construire une homotopie entre r et l'application constante $x\mapsto g(0)$ (en prenant G(t,x)=g(tr(x))). Il en résulte que $\mathbb{R}^n-\{0\}$ est contractile.

Lemme II n'existe pas d'application continue $g: D^n \to S^{n-1}$ telle que $g_{|_{S^{n-1}}} = id_{S^{n-1}}$.

Démonstration.

 $(n \ge 2)$. L'application

$$r: \mathbb{R}^n - \{0\} \to \mathbb{R}^n - \{0\}, \quad r(x) = \frac{x}{\|x\|}$$

est homotope à $id_{\mathbb{R}^n-\{0\}}$. D'un autre côté, l'application g permet de construire une homotopie entre r et l'application constante $x\mapsto g(0)$ (en prenant G(t,x)=g(tr(x))). Il en résulte que $\mathbb{R}^n-\{0\}$ est contractile. Ce qui est faux puisque $H^{n-1}(\mathbb{R}^n-\{0\})=\mathbb{R}$.

Théorème Il existe un champ de vecteurs non nul sur la sphère S^n si et seulement si n est impair.

Théorème Il existe un champ de vecteurs non nul sur la sphère S^n si et seulement si n est impair.

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Dans le cas n est pair, supposons l'existence de $v: S^n \to \mathbb{R}^{n+1}$ tel que $v(x) \neq 0$ et < v(x), x >= 0 pour tout $x \in S^n$.

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Dans le cas n est pair, supposons l'existence de $v: S^n \to \mathbb{R}^{n+1}$ tel que $v(x) \neq 0$ et < v(x), x>= 0 pour tout $x \in S^n$.

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Dans le cas n est pair, supposons l'existence de $v: S^n \to \mathbb{R}^{n+1}$ tel que $v(x) \neq 0$ et < v(x), x>=0 pour tout $x \in S^n$. On pose $w(x) = v(\frac{x}{\parallel x \parallel})$, et on considère l'application $F(t,x) = \cos(\pi t)x + \sin(\pi t)w(x)$

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Dans le cas n est pair, supposons l'existence de $v: S^n \to \mathbb{R}^{n+1}$ tel que $v(x) \neq 0$ et < v(x), x>=0 pour tout $x \in S^n$. On pose $w(x) = v(\frac{x}{\parallel x \parallel})$, et on considère l'application $F(t,x) = \cos(\pi t)x + \sin(\pi t)w(x)$ F définit une homotopie entre $id_{\mathbb{R}^{n+1}-\{0\}}$ et l'application f(x) = -x.

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Dans le cas n est pair, supposons l'existence de $v: S^n \to \mathbb{R}^{n+1}$ tel que $v(x) \neq 0$ et < v(x), x >= 0 pour tout $x \in S^n$. On pose $w(x) = v(\frac{x}{\parallel x \parallel})$, et on considère l'application $F(t,x) = \cos(\pi t)x + \sin(\pi t)w(x)$ F définit une homotopie entre $id_{\mathbb{R}^{n+1}-\{0\}}$ et l'application f(x) = -x. D'où

$$H^n(f) = Id$$
 identité de $H^n(\mathbb{R}^{n+1} - \{0\})$.

Démonstration.

Lorsque n = 2m - 1, on peut considérer le champ

$$v(x_1, x_2, \dots, x_{2m}) = (-x_2, x_1, -x_4, x_3, \dots, -x_{2m}, x_{2m-1}).$$

Dans le cas n est pair, supposons l'existence de $v: S^n \to \mathbb{R}^{n+1}$ tel que $v(x) \neq 0$ et < v(x), x >= 0 pour tout $x \in S^n$. On pose $w(x) = v(\frac{x}{\parallel x \parallel})$, et on considère l'application $F(t,x) = \cos(\pi t)x + \sin(\pi t)w(x)$ F définit une homotopie entre $id_{\mathbb{R}^{n+1}-\{0\}}$ et l'application f(x) = -x. D'où $H^n(f) = Id$ identité de $H^n(\mathbb{R}^{n+1} - \{0\})$. Ceci est faux : n étant supposé pair, on montre (exercice!) que $H^n(f) = -Id$.

Remarque Lorsque A et B sont deux fermés de \mathbb{R}^n et que A est homéomorphe à B,

Remarque Lorsque A et B sont deux fermés de \mathbb{R}^n et que A est homéomorphe à B, alors $\mathbb{R}^n - A$ n'est pas forcement homéomorphe à $\mathbb{R}^n - B$

Remarque Lorsque A et B sont deux fermés de \mathbb{R}^n et que A est homéomorphe à B, alors $\mathbb{R}^n - A$ n'est pas forcement homéomorphe à $\mathbb{R}^n - B$:Il existe $\Sigma \approx S^2$ mais $\mathbb{R}^3 - \Sigma$ n'est pas homéomorphe à $\mathbb{R}^3 - S^2$.

Remarque Lorsque A et B sont deux fermés de \mathbb{R}^n et que A est homéomorphe à B, alors $\mathbb{R}^n - A$ n'est pas forcement homéomorphe à $\mathbb{R}^n - B$:Il existe $\Sigma \approx S^2$ mais $\mathbb{R}^3 - \Sigma$ n'est pas homéomorphe à $\mathbb{R}^3 - S^2$. Ref. Rushing "Topological Embeddings. Academic Press, 1973."

Remarque Lorsque A et B sont deux fermés de \mathbb{R}^n et que A est homéomorphe à B, alors \mathbb{R}^n-A n'est pas forcement homéomorphe à \mathbb{R}^n-B :Il existe $\Sigma\approx S^2$ mais $\mathbb{R}^3-\Sigma$ n'est pas homéomorphe à \mathbb{R}^3-S^2 . Ref. Rushing "Topological Embeddings. Academic Press, 1973."

Théorème Supposons que $A \neq \mathbb{R}^n$ et $B \neq \mathbb{R}^n$ soient deux fermés de \mathbb{R}^n . Si A est homeomorphe à B, alors

$$H^p(\mathbb{R}^n - A) \cong H^p(\mathbb{R}^n - B)$$

pour tout p.

Démonstration.

Lemme Si $\phi: A \to B$ est un homéomorphisme, alors il existe un homéomorphisme $\tilde{\phi}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ prolongement de ϕ .

Démonstration.

Lemme Si $\phi: A \to B$ est un homéomorphisme, alors il existe un homéomorphisme $\tilde{\phi}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ prolongement de ϕ . En particulier $\mathbb{R}^{2n} - A \approx \mathbb{R}^{2n} - B$.

Démonstration.

Lemme Si $\phi: A \to B$ est un homéomorphisme, alors il existe un homéomorphisme $\tilde{\phi}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ prolongement de ϕ . En particulier $\mathbb{R}^{2n} - A \approx \mathbb{R}^{2n} - B$. Il en résulte (et en utilisant proposition \sharp) que pour p > 0:

$$H^p(\mathbb{R}^n-A)\cong H^{p+n}(\mathbb{R}^{2n}-A)\cong H^{p+n}(\mathbb{R}^{2n}-A)\cong H^p(\mathbb{R}^n-B)$$

et que

$$H^0(\mathbb{R}^n-A)/\mathbb{R}\cdot 1\cong H^n(\mathbb{R}^{2n}-A)\cong H^n(\mathbb{R}^{2n}-A)\cong /\mathbb{R}\cdot 1$$

Corollaire Soient A et B deux fermés de \mathbb{R}^n . Si $A \approx B$ alors $\mathbb{R}^n - A$ et $\mathbb{R}^n - B$ ont le même nombre de composantes connexes.

Corollaire Soient A et B deux fermés de \mathbb{R}^n . Si $A \approx B$ alors $\mathbb{R}^n - A$ et $\mathbb{R}^n - B$ ont le même nombre de composantes connexes.

Théorème (de séparation de Jordan-Brouwer) Si $\Sigma \subset \mathbb{R}^n$ $(n \ge 2)$ est un fermé homéomorphe à S^{n-1} , alors **Corollaire** Soient A et B deux fermés de \mathbb{R}^n . Si $A \approx B$ alors $\mathbb{R}^n - A$ et $\mathbb{R}^n - B$ ont le même nombre de composantes connexes.

Théorème (de séparation de Jordan-Brouwer) Si $\Sigma \subset \mathbb{R}^n$ $(n \ge 2)$ est un fermé homéomorphe à S^{n-1} , alors $\mathbb{R}^n - \Sigma$ a deux composantes connexes U_1 et U_2 avec U_1 est borné et U_2 est non bornée. En plus, Σ est leur frontière commune $(\Sigma = \partial U_1 = \partial U_2)$.

Théorème (Brouwer)

Soit $U \subseteq \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^n \to$ une application continue et injective, alors f(U) est un ouvert et f est un homéomorphisme de U sur f(U).

Théorème (Brouwer)

Soit $U \subseteq \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^n \to$ une application continue et injective, alors f(U) est un ouvert et f est un homéomorphisme de U sur f(U).

Corollaire 1. Si $V \subseteq \mathbb{R}^n$ est un sous-ensemble (qu'on muni de la topologie induite usuelle de \mathbb{R}^n) homéomorphe à un ouvert de \mathbb{R}^n , alors V est un ouvert de \mathbb{R}^n .

Théorème (Brouwer)

Soit $U \subseteq \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^n \to$ une application continue et injective, alors f(U) est un ouvert et f est un homéomorphisme de U sur f(U).

Corollaire 1. Si $V \subseteq \mathbb{R}^n$ est un sous-ensemble (qu'on muni de la topologie induite usuelle de \mathbb{R}^n) homéomorphe à un ouvert de \mathbb{R}^n , alors V est un ouvert de \mathbb{R}^n .

Corollaire 2. Si $U \subseteq \mathbb{R}^n$ et $V \subseteq \mathbb{R}^m$ sont deux ouverts (non vides) et que U est homéomorphe à V alors m = n.

Exercices

Exercice 1. Soit $\Sigma \subset \mathbb{R}^3$ un noeud $(\Sigma \approx S^1)$. Montrer que

$$H^p(\mathbb{R}^3 - \Sigma) = \left\{ egin{array}{ll} \mathbb{R} & \emph{si} & \emph{p} = 0, 1, 2 \ 0 & \emph{sinon} \end{array}
ight.$$

Exercices

Exercice 1. Soit $\Sigma \subset \mathbb{R}^3$ un noeud $(\Sigma \approx S^1)$. Montrer que

$$H^p(\mathbb{R}^3 - \Sigma) = \left\{ egin{array}{ll} \mathbb{R} & \emph{si} & \emph{p} = 0, 1, 2 \\ 0 & \emph{sinon} \end{array} \right.$$

Exercice 2. Soit $F_k = \{m_1, \dots, m_k\}$ un ensemble de k-points du plan \mathbb{R}^2 . Montrer que $H^1(\mathbb{R}^2 - F_k) \cong \mathbb{R}^k$.

Exercices

Exercice 1. Soit $\Sigma \subset \mathbb{R}^3$ un noeud $(\Sigma \approx S^1)$. Montrer que

$$H^p(\mathbb{R}^3 - \Sigma) = \left\{ egin{array}{ll} \mathbb{R} & \emph{si} & \emph{p} = 0, 1, 2 \\ 0 & \emph{sinon} \end{array} \right.$$

Exercice 2. Soit $F_k = \{m_1, \dots, m_k\}$ un ensemble de k-points du plan \mathbb{R}^2 . Montrer que $H^1(\mathbb{R}^2 - F_k) \cong \mathbb{R}^k$.

Exercice 3. Soient D_1, \cdots, D_m *m*-disques fermés disjoints de \mathbb{R}^n . Montrer que :

$$H^p(\mathbb{R}^n-(\cup_{j=1}^m D_j))=\left\{egin{array}{ll} \mathbb{R} & si & p=0 \ \mathbb{R}^m & si & p=n-1 \ 0 & sinon \end{array}
ight.$$