

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

AS & A Level	Cambridge international Advanced	Subsidiary and Advanced Le	evei
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
BIOLOGY			9700/22
Paper 2 Struc	ctured Questions AS		May/June 2014
			1 hour 15 minutes
Candidates ar	nswer on the Question Paper.		
No Additional	Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces provided at the top of this page. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, or rough working.

Do not use red ink, staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Answer all the questions.

1 Fig. 1.1 is a summary of energy flow in a forest ecosystem. The width of the arrows is proportional to the energy that flows between each component in the ecosystem.

Fig. 1.1

(a) Add an arrow to Fig. 1.1 to show where the ecosystem receives its initial input of energy. [1]

(b)	State the process represented by A .
	[1]
(c)	State one type of organism that is a member of the decomposer system.
	[1]
(d)	Name two processes represented by arrow B .
	1
	2
	[2]
	[Total: 5]

2 Fig. 2.1 is a transmission electron micrograph of cells from a spinach leaf.

Fig. 2.1

/ _\	Noma tha	organelles	Λ	D and	
(a)	Mame the	organelles	Δ	B and	1 (-

Α	
В	
D	
C	
	[3]

(b) List two cell structures that could be present in animal cells that are not present in plant leaf cells.

1.	 	 	 	

[1]

(c)	Water is transported up the stem, to the spinach leaf, in the xylem. Once it leaves the xylem it moves via the apoplast and symplast pathways, to reach the cells in Fig. 2.1.						
		Outline the differences between the apoplast and symplast pathways after the water has left the xylem.					
		[4]					
(d)	Wat	er, containing dissolved mineral ions such as magnesium, enters spinach leaf cells.					
	(i)	State two ways that water is used in the leaf cell.					
		1					
		2					
		[2]					
	(ii)	State one role of magnesium ions in the leaf cell.					
		[1]					
		[Total: 11]					

			6
3	(a)		tilage is present in some parts of the gas exchange system to prevent collapse due to ssure changes during inhalation.
		Stat	e the parts of the gas exchange system in which cartilage is located.
			[1]
	(b)		3.1 shows the changes that occur in atmospheric pressure and oxygen partial pressure lititude changes. The highest altitude at which people live permanently is 5100 m.
			100-20
			80 - 15
		osphe essur	eric 60 oxygen partial
		kPa	40 to the pressure of the pres
			20 5
			0 2000 4000 6000 8000 10000
			altitude/m
		\ A (" 1	Fig 3.1
		vvitr	reference to Fig. 3.1:
		(i)	describe the effect of increasing altitude on both atmospheric pressure and the partial pressure of oxygen
			[2]
		(ii)	calculate the change in the atmospheric pressure when a person travels from sea level to an altitude of 3500 $\rm m. $
			Show your working.
			answer[2]
			L 3

(c)	affe	When a person travels from 0 m (sea level) to a high altitude, gas exchange in the lungs is affected. A condition known as hypoxia results, where the body tissues do not receive an adequate oxygen supply.					
	Exp	plain how hypoxia occurs when a person ascends from sea level to a high altitude.					
		[4]					
(d)	At h	nigh altitudes, short-term responses by the body to hypoxia include:					
	•	a decrease in the volume of plasma in the blood a decrease in the volume of blood pumped out of the heart per heart beat an increase in the heart rate an increase in the breathing rate.					
	(i)	Suggest why a decrease in the volume of plasma in the blood may reduce the effects of hypoxia.					
		[1]					
	(ii)	Explain why an increase in the heart rate occurs in response to hypoxia.					
		เดา					

(e)	People with sickle cell anaemia have a form of haemoglobin that is unable to bind to oxygen efficiently. The cause of the condition is a mutation in the gene coding for the β -globin polypeptide of haemoglobin.
	Outline how this mutation can lead to an altered amino acid sequence of the $\beta\mbox{-globin}$ polypeptide.
	[3]
	[Total: 15]

4 Table 4.1 shows some information about five infectious diseases.

Table 4.1

infectious disease	name of causative organism(s)	type of causative organism	main mode of transmission
HIV/AIDS	human immunodeficiency virus (HIV)	virus	sexual contact
cholera	Vibrio cholerae		ingestion of contaminated water and food
tuberculosis	Mycobacterium tuberculosis	bacterium	
measles		virus	aerosol / droplet infection
	Plasmodium vivax or P. malariae or P. falciparum or P. ovale		

(a)	Complete Table 4.1. [3]
(b)	In 2011, the World Health Organization (WHO) published recommendations to help countries develop plans to prevent the spread of HIV.
	Discuss the factors that should be considered when making recommendations concerning the prevention of sexual transmission of HIV.

.....[4]

(c) HIV infects cells of the immune system, particularly helper T-lymphocytes (T_h cells). HIV can infect both non-dividing and dividing helper T-lymphocytes, including memory cells.

The onset of disease, which can occur many years later, coincides with a severely lowered primary and secondary immune response, owing to greatly reduced numbers of T_h cells in the body.

(i) An infected T_h cell can still carry out a normal cell cycle and divide to produce two cells.

	The following processes occur during one cell cycle:						
	DNA replication	mitosis	growth	cytokinesis			
	List the processes in	a correct seque	ence.				
	1						
	2		•••••				
	3		•••••				
	4						
					[1		
(ii)	Suggest and explain secondary immune r		ction of memor	ry T _h cells will contribute to a lo	wered		
					[3		

[Total: 11]

Question 5 starts on page 12

5 B-lymphocytes have antibodies located on their external surface. When B-lymphocytes become plasma cells they then secrete antibodies.

Fig. 5.1 shows how the enzyme papain digests an antibody to obtain three fragments.

Fig. 5.1

(a)	Fig. 5.1 shows the location of the region where papain acts.				
	Stat	te one role of this region in the intact antibody molecule.			
			[1]		
(b)	The	The three fragments, A , B and C still retain their ability to function.			
	Stat	State the function of:			
	(i)	fragments A and B			
			[1]		
	(ii)	fragment C.			
			[1]		

(c)	The region labelled X in Fig. 5.1 is hydrophilic in antibodies that are secreted by plas whereas in antibodies located on the surface of B-lymphocytes, region X is hydroph					
	Sug	gest reasons for this difference.				
		[2]				
/-1 \						
(d)	Рар	ain is a globular protein with a tertiary structure but no quaternary structure.				
	(i)	State how many polypeptides there are in a molecule of papain.				
		[1]				
	(ii)	Explain how the tertiary structure of the protein results in papain being globular.				
		[2]				
		[Total: 8]				

6

(a)	Explain the need for transport system	ns in multicellu	lar plants and	animals.	
					[3]
(b)	In mammals, the role of the heart is during one heart beat are known a shown in Fig. 6.1.				
P	V		W		
Q	Х	Υ		Z	
	0 0.1	0.2 0.3	0.4 0.5 seconds	0.6 0.7	0.8

Fig. 6.1

P and **Q** represent the two types of heart chambers.

 ${f V}, {f W}, {f X}$, ${f Y}$ and ${f Z}$ represent the systolic (contracted) or diastolic (relaxed) state of the relevant heart chambers.

	(i) In the spaces provided on Fig. 6.1, identify chambers P and Q .						
		riting the letters V , W , X , Y and Z in the appropriate box to eart chambers during the cardiac cycle as shown in Fig. 6.1.	0				
	systole						
	diastole						
		[2	2]				
(c) In plants, assimilates are transported in phloem sieve tube elements by a process know translocation.							
	Explain how assimilates that a translocated to other parts of t	arrive in the phloem sieve tubes from mesophyll cells can be he plant.	Э				
		[4	١]				
		FT 1 1 40					

[Total: 10]

BLANK PAGE

Copyright Acknowledgements:

Fig. 2.1 © PHOTOTAKE Inc./Alamy

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.