Usando algoritmos genéticos como extrator de características no campo da bioinformática

Calebe Elias Ribeiro Brim

Quem sou eu?

Calebe Elias Ribeiro Brim

- Engenheiro de dados HunterCo (Presente)
- Mestre em Bioinformática UFPR (2015)
- Bacharel em Sistemas de informação UNIVILLE (2013)

Áreas de Interesse:

Programação; Inteligência artificial; Arduino; Arquitetura de software.

Aprendendo: Python

Usando: Nodejs

Visão Geral

Problemas -Biologia

Genômica

- Sequenciamento de DNA
- Identificação de Genes
- Identificação de genes correlacionados

Proteômica

- Identificação de proteinas
- Identificação dos genes que transcrevem aquela proteína
- Relacionamento entre proteínas (Folding)

Outros....

Problemas -Informática

- Velocidade na comunicação através de redes
- Organização de infraestrutura
- Engenharia de computadores
- Arquitetura de software
- Desenvolvimento de ferramentas
- Inteligência artificial
- ..

Bioinformática

- Ferramentas para facilitação de pesquisa
- Aplicação de algoritmos
- Criação de métodos
- ..

Aplicação - Classificação de Microorganismos Extração de

Técnicas de Inteligência Artificial Extração de características

- Classificação
- Algoritmos genéticos
- Classificação dos dados

Biologia -Entendendo o Problema

- 1. O que são microorganismos?
- 2. Patogênico?
- 3. Qual a importância de estudar a patogenicidade de um microorganismo?
- 4. Por que a biologia precisa da informática nessa área?
 - a. Precisão
 - b. Velocidade

Biologia Espectro de massas

15000

A.Veroni/Sobria

Biologia - Processo Laboratorial

Anatomia de um espectro de massas

Anatomia de um espectro de massas

Tópicos Apresentados

Perguntas?

Artificial Intelligence

Artificial Inteligence

- Feature Selection
- Feature Extraction
- Genetic Algorithm
- Classifier

Genetic Algorithms

Conceitos:

- Algoritmos evolutivos
- Indivíduo
- Gene
- Maximização ou Minimização
- Óptimos Locais
- Multiobjetivo

Indivíduo

População

i	g1	g2	g3	g5	g6	g7	g8	g9
1 -	0	1	1	0	0	1	0	1
2 -	1	0	1	0	0	0	1	1
3 -	0	1	0	0	0	1	0	0

- 0 Não expressa o gêne
- 1 Expressa o gêne

Maximização e Minimização

- Maximização
- Minimização

Óptimos Locais e Globais

Algoritmo Genético

- Geração
- Fitness

Seleção

Cruzamento

Mutação

Seleção

Critério de

TOE

parada

Saída

Cruzamento

i	g1	g2	g3	g5	g6	g7	g8	g9
1 -	0	1	1	0	0	1	0	1
2 -	1	0	1	0	0	0	1	1
3 -	0	1	1	0	0	0	1	1
4 -	1	0	1	0	0	1	0	1

Corte

Mutação

i	g1	g2	g3	g5	g6	g7	g8	g9
1 -	0	1	1	1	0	1	0	1

Tópicos

Apresentados

Perguntas?

Global Optima

- 1. Algoritmo Genético
- 2. Indivíduo
- 3. Gene
- 4. Maximização ou Minimização
- 5. Óptimos Locais/Globais
- 6. Cruzamento
- 7. Mutação
- 8. Fitness
- 9. Critério de Parada

Aplicação

Aplicação

- Correlation Peaks Selection
- Watch Points
- Feature Resonance
- Feature Combination

Correlation Peaks Selection

- Peaks selection
- Pearson Correlation
 - Positive correlation
 - Negative correlation

Watch Points

Fuzzy triangle

For *L* odd:

$$w(n) = \begin{cases} \frac{2n}{L+1} & 1 \le n \le (L+1)/2 \\ 2 - \frac{2n}{L+1} & (L+1)/2 + 1 \le n \le L \end{cases}$$

For *L* even:

$$w(n) = \begin{cases} \frac{(2n-1)}{L} & 1 \le n \le L/2 \\ 2 - \frac{(2n-1)}{L} & L/2 + 1 \le n \le L \end{cases}$$

Watch Points

Fuzzy triangle

Watch Points

Feature Resonance

General Sine Formula:

$$y = A\sin(Bx + C) + D$$

Feature Combination

Tópicos Apresentados

Perguntas?

Results

PCA Veroni Sobria X Todas

PCA Trota x Todas

PCA Hidrophila x Todas

PCA Cavie x Todas

Autors	Experiment(%)	Specificity(%)	Sensibility(%)	PPV(%)	Year
Petricoin	95.00	95.00	100.00	94.00	2002
Conrads	100.00	100.00	100.00	100.00	2003
ML-MS STDIO	100.00	100.00	100.00	100.00	2014

Análise comparativa da literatura de um dataset público com dados de Seldi-TOF comprovando a eficácia do extrator de características aplicando as features à uma rede MLP.

Obrigado!