Продвинутая кластеризация

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

пастеризация, основанная на плотности совектов

Содержание

- 1 Кластеризация, основанная на плотности объектов
 - Алгоритм DBScan
- 2 Иерархическая кластеризация

Продвинутая кластеризация - Виктор Китов
Кластеризация, основанная на плотности объектов
Алгоритм DBScan

- 1 Кластеризация, основанная на плотности объектов
 - Алгоритм DBScan

DBScan

 $k,\,arepsilon$ - параметры метода.

Разделим множество объектов на 3 категории:

- ullet основные точки: имеющие $\geq k$ точек внутри arepsilon-окрестности
- пограничные точки: не основные, но содержащие хотя бы одну основную внутри ε -окрестности
- шумовые точки: не основные и не пограничные

Алгоритм

ВХОД: выборка, параметры ε, k .

- 1) Определить основные/пограничные/шумовые точки, используя ε, k .
- 2) Создать граф: узлы-основные точки, связи если точки на расстоянии $\leq \varepsilon$ друг от друга.
- Определить компоненты связности в графе =кластеры (методом распространения).
- 4) Соотнести основные точки кластерам=компонентам связности, а пограничные-по основным в их ε окрестности.

ВЫХОД: разбиение на кластеры (основных и пограничных точек)

Пример работы DBScan¹

¹Источник иллюстрации.

Комментарии

- Соединение основных точек метод одиночной связи в аггломеративной кластеризации с остановкой $\rho > \varepsilon$.
- Преимущества: автоматически определяется # кластеров, устойчиво к выбросам.
- Недостаток: не работает с кластерами разной плотности
 - высокое k-пропустим C; низкое k-A и B объединяться:

Кластеризация, основанная на плотности объектов Алгоритм DBScan

Кластеризация сдвигом среднего значения

Кластеризация сдвигом среднего значения (mean shift): точки итеративно сдвигаются в направлении локального увеличения плотности по правилу

Пример сходимости для top-hat ядра
$$K = \mathbb{I}\left[\frac{\rho(z,x)}{h} \leq 1\right]$$

Кластер - итоговый локальный максимум плотности (отбрасываем максимумы с $p(x) < \tau$).

Комментарии

• Правило сдвига:

$$z_0 = x_n, \quad z = \frac{\sum_{k=1}^{N} K(\rho(z_i, x_k)/h) x_k}{\sum_{k=1}^{N} K(\rho(z, x_k)/h)}$$

- Ядро $K(\cdot)$ некоторая ↓ ф-ция (ядро).
- Пример: Гауссово ядро

$$K(\rho(x, x')/h) = e^{-\rho(x, x')^2/h^2}$$

- Преимущества:
 - автоматически определяется #кластеров, кластеры могут быть произвольной формы
- Недостаток: вычислительная сложность, нет фильтрации выбросов

Кластеризация mean shift

ВХОД: выборка $x_1,...x_N$, ядро $K(\cdot)$, ширина окна h.

ДЛЯ n=1,...N:

 $z_n := x_n$

ПОВТОРЯТЬ до сходимости:

$$z_n := \frac{\sum_{k=1}^{N} K(\rho(z_n, x_k)/h) x_k}{\sum_{k=1}^{N} K(\rho(z, x_k)/h)}$$

ассоциировать x_n пику z_n

Объединить почти одинаковые расположения пиков $z_1,...z_N$.

ВЕРНУТЬ кластеры точек, отнесенных одинаковым пикам плотности.

Содержание

- Кластеризация, основанная на плотности объектов
- 2 Иерархическая кластеризация
 - Иерархическая кластеризация сверху вниз
 - Иерархическая кластеризация снизу вверх

Мотивация иерархической кластеризации

- ullet #кластеров K заранее неизвестно.
- Кластеризация обычно не плоская, а иерархическая с разными уровнями детализации:
 - сайты в интернете
 - книги в библиотеке
 - животные в природе
- Подходы к иерархической кластеризации:
 - сверху вниз
 - более естественное для людей
 - снизу вверху (аггломеративная кластеризация)

- 2 Иерархическая кластеризация
 - Иерархическая кластеризация сверху вниз
 - Иерархическая кластеризация снизу вверх

Продвинутая кластеризация - Виктор Китов

Иерархическая кластеризация

Иерархическая кластеризация сверху вниз

Алгоритм

ВХОД:

выборка объектов, алгоритм плоской кластеризации A, правила выбора листа и остановки

инициализировать дерево корнем, содержащим все объекты

ПОВТОРЯТЬ

выбрать лист L по правилу выбора листа используя A разбить L на кластеры $L_1,...L_K$ добавить листы к T, соответствующие $L_1,...L_K$ ПОКА выполнено условие остановки

Комментарии

- Алгоритм выбора листа:
 - ближайший к корню
 - => сбалансированное дерево по высоте
 - с максимальным числом элементов
 - => сбалансированное дерево по #объектов в листах

Иерархическая кластеризация снизу вверх

- 2 Иерархическая кластеризация
 - Иерархическая кластеризация сверху вниз
 - Иерархическая кластеризация снизу вверх

DENCLUE - иерахическое обобщение mean shift

- ① Производим кластеризацию методом mean shift.
- ② Объединяем кластеры с пиками, соединяемые цепочкой высоко вероятных значений плотности $p(x_{i(k)}) \geq h$.
 - ullet варьируя h получаем иерархическую кластеризацию

Аггломеративная кластеризация - идея

Аггломеративная кластеризация - алгоритм

инициализировать матрицу попарных расстояний $M \in \mathbb{R}^{NxN}$ между кластерами из отдельных объектов $\{x_1\},...\{x_N\}$

ПОВТОРЯТЬ:

- 1) выбрать ближайшие кластеры i и j
- 2) объединить $i, j \rightarrow \{i+j\}$
- 3) удалить строки/столбцы i,j из M
- 4) добавить строку/столбец для нового $\{i+j\}$

ПОКА не выполнено условие остановки

ВЕРНУТЬ иерархическую кластеризацию

- Условие остановки:
 - Остался 1 кластер либо осталось $\leq K$ кластеров
 - расстояние между ближайшими кластерами > порога.
- Частичное обучение: если часть классов известна объединяем i и j, только если там представители одного класса.

Расстояние между кластерами

- Расстояние между объектами => расстояние между кластерами:
 - Метод одиночной связи (single linkage)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

• Метод полной связи (complete linkage)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

• Метод средней связи (group average link)

$$\rho(A, B) = \text{mean}_{a \in A, b \in B} \rho(a, b)$$

• Центроидный метод (pair-group method using the centroid average)

$$\rho(A,B) = \rho(\mu_A, \mu_B)$$

где
$$\mu_U = \frac{1}{|U|} \sum_{x \in U} x$$
 или $m_U = median_{x \in U} \{x\}$

Свойства межкластерных расстояний³

- Метод одиночной связи
 - извлекает кластеры произвольной формы
 - может случайно объединить разные кластеры цепочкой выбросов
 - $\bullet \ M_{(i\cup j)k} = \min\{M_{ik}, M_{jk}\}\$
- Метод полной связи
 - создает компактные кластеры
 - $\bullet \ M_{(i\cup j)k} = \max\{M_{ik}, M_{jk}\}\$
- Метод средней связи² и центроидный метод-компромисс между одиночной и полной связью.

² Как $M_{(i \cup j)k}$ будет пересчитываться для него?

³Пусть мы модифицируем ho(x,x') монотонным преобразованием F: ho'(x,x')=F(
ho(x,x')). При каких межкластерных расстояниях результат не изменится?

Иерархическая кластеризация снизу вверх

Свойства межкластерных расстояний

Метод средней связи предпочтительнее центроидного, поскольку

- центроидный метод может приводить к немонотонной последовательности расстояний дендрограммы.
 - методы одиночной, полной и средней связи дают монотонную последовательность
- представление кластера его центром не учитывает структуру кластера
- центроидный метод предпочитает более крупные кластера, для которых центроиды получаются в среднем ближе

Сложность аггломеративной кластеризации

- ullet Сложность кластеризации K объектов: $O\left(K^3\right)$
 - ullet K^2 для поиска ближайших K раз.
 - ullet $O(K^2 \ln K)$ через алгоритм кучи
- Для снижения вычислений:
 - lacksquare применим K средних к N объектам (сложность O(N))
 - ② применим аггломеративную кластеризацию к найденным K кластерам
 - она позволяет выделять невыпуклые кластера

Заключение

- Плоская кластеризация:
 - К представителей
 - μ_k вычисляемый (среднее: K-means [доступно ядерное обобщение], медиана: K medians)
 - ullet μ_k существующий объект
 - Основанная на плотности
 - DB-scan, mean-shift, DENCLUE
- Иерархическая кластеризация
 - сверху-вниз: рекурсивная плоская кластеризация
 - снизу-вверх (аггломеративная)