```
La réaction chimique
 Equation - bilan [ X Ri (phose) = 2 a. P. (phose)
Coepicient stoe diometrique vi = - x; ou x;
Avancement

d \( \xi = \dn: \rightarrow \rightarrow \frac{1}{2} \)

Taux de dissociation d'un produit: \( \frac{1}{2} \)

Rendement de synthere d'un produit: \( \frac{1}{2} \)

\[
\text{ni (produit)} \]

\[
\text{ni (produit)} \]

\[
\text{ni (produit)} \]
Tableau d'avancement: ne pas oublier l'azote N2 cg) : toujours prover l'obst physique du constituent
Mothode des reachons simultanecs
Bilans avec Ponctions d'états
  Décomposition en étapes:

chimique (isotherme isobare)

physique (evolution de T, P pour les constituents finaire)
 Etat standard de référence
     État physique de stabilité à Tet P2 P° = 1 bor
     Exceptions: · C (57)
· H* (aq)
· C<sub>2</sub> (57) / N<sub>2</sub> (5) / H<sub>2</sub> (5) / C<sub>1</sub> (5) / E<sub>2</sub> (5)
 Réaction standard de pormation de l'espèce X
            Z a: (Etar stem dard) = 1 X
 Grandeur de réaction
                                 Drx (T,P, 3) = 7 v. Xm: (T,P,3)
                                 \Delta_{x} \times^{\circ}(T) = \sum_{i} \times_{mi} \times^{i}(T)
      · standard
                               \Delta_p \times \Delta_p \times^{\circ}
      · de formation
       Ax° = X2° - X1 - Ax° (32 - 31)
```


Entropie		e la H	
Troisième priv	scipe de la therm	odynamique /P.	rincipe de Normat
	des phases condensates Sm (T->		
L'augmentation toire un	de Ventropre la commentaire sor la	advit um augment aluma du dossare	après calcils d'entrops.
	Kirchoff	- 0 40	
	Δ, Cp° (T) = ξ vi Cpin;	A September 1 Like	rifique à P cst
	C, (t) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	capacité colo	ofique à Vest
dArsoct) 2 dT	Δ- C° (T) T	7.04	and the second
Approximation	d'Ellingham de changement	de phase sur	[293 K, T],
Δ, H° (t) 2	Art (298K) Arv (298K)		
Temperature	h Plamme,	d'explosion	
That por P		That for Y cor	
1. Premier prin		10= Q 2 0 2 A	Vx + AUx
2. Etape chimiz Alt x = Ar H	(Ts) (FE - E)	$\Delta U_{x} = \Delta_{r} U^{\circ} (T_{F})$	
	ile ance experientes	DUG = Z (nilp	TP (m. (it) at
	hongement de pha		L12 m T12
			142

```
En thalpie libre
Enthalpie libre / Pondron de Gibbs
                                                            6 = U + PV -TS
  1 dG = VdP - SaT
                                              p; :2 Gm; ~ D,G° = Zv; p;
Potential chimique pi
Δ, G° = Δ, H° - T - Δ, S°
Par approximate d'Ellingham, Dr 6° (T) est un pondion affine
par morceaux (praction co chois de phace)
Activité
     · Solvant, liquide or solide sed dans so phase
· Gaz dans mélange parfait
                                                                             a = 1
                                                                            a = Pi = Xi P
     · Milange ideal de liquales (solièles
                                                                            a 2 X:
                                                                            2 - Ci
Quotient de reaction Q2 TT as T
\Delta_r G = \Delta_r G^{\circ}(T) + RT \ln(Q) = RT \ln \left(\frac{Q}{k^{\circ}(T)}\right)
Relation de Gibbs - Helmboltz
  \frac{d \Delta_r G^{\circ}(T)}{dT} = -\Delta_r S^{\circ}(T) \qquad \Rightarrow \qquad \frac{d}{dT} \left( \frac{\Delta_r G^{\circ}(T)}{T} \right) = -\frac{\Delta_r H^{\circ}(T)}{T^2}
Relation de Vant Hopp
                                               \frac{1}{\text{Ellinghoun}} \left( \frac{\text{K}^{\circ}(T_{3})}{\text{K}^{\circ}(T_{3})} \right) = \frac{\Delta_{r} \text{ H}^{\circ}}{R} \left( \frac{1}{T_{3}} - \frac{1}{T} \right)
 d (in (κ°(τ))) = Δr (+°(τ))

R T<sup>2</sup>
Temperature d'inversion DrG (Ti) = 0 (Ti) = 1
Permet de déterminer l'influence de la température en fondron de l'exolendo thermicité de la réadron.
```

