Assignment 7

Overdrawn.csv has data collected from "Sensation-Seeking, Risk-Taking, and Problematic Financial Behaviors of College Students," by Worthy S.L., Jonkman J.N., Blinn-Pike L. (2010).

The dataset contains following variables:

```
Age Age of the student (in years)

Sex 0=male or 1=female

DaysDrink Number of days drinking alcohol (in past 30 days)

Overdrawn Has student overdrawn a checking account? 0=no or 1=yes
```

Machine Learning algorithm

1. Logistic Regression

→Applying the Logistic regression on the given data set since the outcome variable 'overdrawn' is 2 class variable, it has value 0 or 1.

Logistic regression for the OVerdrawn data set.

```
> Overdrawndt <- read.csv(file.choose(), header = TRUE, sep = ",")</pre>
> View(Overdrawndt)
 dim(Overdrawndt)
[1] 450
> #Removing the rows containing the N/A values
> Overdrawndt <- na.omit(Overdrawndt)</pre>
 dim(Overdrawndt)
[1] 437
> set.seed(1234)
 View(Overdrawndt)
 Overdrawndt$DyDrnkCat <- with(smplp, ifelse(Overdrawndt$DaysDrink < 7
 0,
                               ifelse(Overdrawndt$DaysDrink <= 14, 1,2))</pre>
+
> # Since the Overdrawn==1 class is rare class i.e. only 60 instances f
or Overdrawn==1 out of 450
> # Distributing the Overdrawn==1 class approximately equal to train an
d test data
> population <- sample(nrow(Overdrawndt), 0.75 * nrow(Overdrawndt))</pre>
> Overdrawn_train = Overdrawndt[population,]
> Overdrawn_test = Overdrawndt[-population,]
> summary(Overdrawndt$Overdrawn==1)
   Mode
          FALSE
                   TRUE
logical
            381
                      56
 summary(Overdrawn_train$Overdrawn==1)
   Mode
          FALSE
                   TRUE
            287
                      40
logical
> summary(Overdrawn_test$Overdrawn==1)
   Mode
          FALSE
                   TRUE
```

```
logical
                94
                         16
   > mdl = glm(Overdrawn~Age+Sex+DyDrnkCat, family = binomial(link = "logi
   t"),data = Overdrawn_train)
   > summary(mdl)
   call:
   glm(formula = Overdrawn ~ Age + Sex + DyDrnkCat, family = binomial(link
   = "logit"),
       data = Overdrawn_train)
   Deviance Residuals:
                      Median
                 1Q
                                             Max
           -0.538\overline{5}
                              -0.2814
   -1.5172
                                          2.6567
                     -0.4291
   Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                                     -3.658 0.000255 ***
   (Intercept)
                -9.0114
                             2.4638
                                      2.435 0.014894 *
   Age
                 0.2901
                             0.1191
                             0.3974
                                       2.964 0.003042 **
                 1.1778
   Sex
                                       3.827 0.000130 ***
   DyDrnkCat
                 0.8207
                             0.2145
   Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 242.98 on 326
                                       degrees of freedom
   Residual deviance: 218.53 on 323
                                       degrees of freedom
   AIC: 226.53
   Number of Fisher Scoring iterations: 5
   > rs = predict(mdl,newdata = Overdrawn_test,type="response")
   > rs1 = ifelse(rs > 0.5,1,0)
    misClass = mean(rs1 != Overdrawn_test$Overdrawn)
   > accry = 1 - misClass
    accry
   [1] 0.8545455
2. kNN
   \rightarrow
   We can kNN to classify the data for two class problems.
  > names(Overdrawndt)
[1] "X" "Age
Cat"
                                "sex"
                                             "DaysDrink" "Overdrawn" "DyDrnk
   > #Selecting only required columns
    Overdrawndt_new = Overdrawndt[c("Age", "Sex", "DaysDrink", "Overdrawn")]
   > mpldta = sample(2,nrow(Overdrawndt_new),replace = TRUE, prob = c(0.75
   , 0.25)
```

Total Observations in Table: 116

N / Table Total

Overdrawn_pred	Overdrawndt 0	oels Row Total	
0	100 0.909 0.943 0.862	10 0.091 1.000 0.086	110 0.948
1	1.000 0.057 0.052	0 0.000 0.000 0.000	6 0.052
Column Total	106 0.914	10 0.086	116

> library(gmodels)
> CrossTable(x=Overdrawn_pred, y=Overdrawndt_new.testLabels, prop.chisq

= FALSE)

```
Cell Contents
             N / Row Total
N / Col Total
N / Table Total
```

Total Observations in Table: 116

Overdrawn_pred	Overdrawndt 0	t_new.testLak 1	oels Row Total
0	102 0.911 0.962 0.879	10 0.089 1.000 0.086	 112 0.966
1	1.000 0.038 0.034	0.000 0.000 0.000 0.000	0.034
Column Total	106 0.914	10 0.086	116
	ı		1 1

```
> # Accuracy is [(103+0)/116 = 88.79%]
> #kNN for k=4
> Overdrawn_pred <- knn(train = Overdrawndt_new.training, test = Overdrawndt_new.test, cl = Overdrawndt_new.trainLabels, k=4)
> library(gmodels)
```

> CrossTable(x=Overdrawn_pred, y=Overdrawndt_new.testLabels, prop.chisq = FALSE)

Cell Contents					
N / Row Total N / Col Total N / Table Total					

Total Observations in Table: 116

Overdrawn_pred	Overdrawndt_new.testLabels 0 1 Row Total			
0	105 0.913 0.991	10 0.087 1.000	115 0.991	
1	0.905 1 1.000 0.009 0.009	0.086 0 0.000 0.000 0.000	0.009	
Column Total	106 0.914	10 0.086	116	

 $^{^{&}gt;}$ $^{>}$ # Accuracy is [(104+0)/116 = 89.65%], this could be the case of model overfitting