

CS 579: Online Social Network Analysis

Professor: Dr. Aron Culotta

DO PEOPLE BELIEVE IN FAKE NEWS?

Agnès Gaspard Rémi Blaise Alan Collet

Table of contents

- 1.Data Collection
- 2. Features
- 3. Used Method
 - Naive Bayes
 - LogisticRegression
 - Simple Neural Networks
- 4. Results
 - Accuracy/Matrix
 - Demo
- 5. Problems and solutions

Introduction

Context

- Lots of research on fake news detection
- Not one found on analysing readers' belief of the news

Goal of project

Guess if a user believes or not to a news article via one of his comments

Methods

NLP algorithms similar to sentiment analysis and machine learning classification methods

Data Collection

- Database with articles from Politifact
- Database with texts labelled with sarcasm
- Collect comments from Reddit

Labellized 3000 comments with

1: belief

-1: non-belief

0: none of the above

Introduction Data Collection Features Methods Results Conclusion

Features

Sarcasm

Method used instead of bag of words: Tf*idf:

Term frequency Inverse document frequency

Sentiment Analysis

Word representation: bag of words

- Using Naïve Bayes
- Using TextBlob

Introduction Data Collection <u>Features</u> Methods Results Conclusion

Used Methods

Naïve Bayes

$$\begin{split} \log \big(P(Y = y, X) \big) &= \log(P(X|Y = y)) + \log(P(Y = Y)) \\ &\log \big(P(Y = y) \big) = \log \frac{d_count[y]}{d_count} \\ &\log \big(P(X|Y = y) \big) = \sum_{w \in V} \log \frac{w_count[w][y] + \alpha}{w_count[y] + \alpha|V|} \end{split}$$

$$P(Y = y|X) = \frac{P(Y = y, X)}{\sum_{y' \in Y} P(Y = y', X)}$$

LogisticRegression

Simple Neural Networks

Librairies used:

Results

Class -1

Accuracy:

- Naive Bayes: 56% (Binary Class)
- Logistic Regression: 49% (3 Classes)
- Neural Networks: 46%(3 Classes)

- 50 - 40 - 30 - 20 - 10

Confusion matrix(%)

Class 0 Class 1

Introduction Style transfer Detection Interface Results Conclusion

Problems encountered & solutions

Problems	Solutions
Lots of comments on one subject	Shuffle data before labellization
Lots of comments non related and fights	0 to not disturb training
Authors did not comments on their belief, mostly on articles subjects	No solution really found
Unbalanced data (204 "non-belief" comments out of 3000)	 SMOTE Labelled more data Reduce "belief" comments size Weight class

Introduction Data Collection Features Methods Results Conclusion

Conclusion

Questions?

Introduction Style transfer Detection Interface Results <u>Conclusion</u>