

ЛЕКТОР: РОМАН ИСАЧЕНКО

СЕМИНАРИСТ: ВЛАДИМИР КОНДРАТЕНКО

CTAPT KYPCA: 11.02.2021

О ПРЕПОДАВАТЕЛЯХ И КУРСЕ

РОМАН ИСАЧЕНКО, ЛЕКТОР

😂 Аспирант и преподаватель МФТИ

Разработчик в Yandex, Служба компьютерного зрения

☑ mail: roman.isachenko@phystech.edu

ВЛАДИМИР КОНДРАТЕНКО, СЕМИНАРИСТ

Выпускник МФТИ

Главный инженер по разработке, Управление речевых технологий SberDevices

КОРОТКО О КУРСЕ

O 4EM?

Курс посвящен современным генеративным моделям в приложении к компьютерному зрению:

- авторегрессионные модели;
- модели скрытых переменных;
- модели потоков;
- состязательные модели.

В курсе освещаются теоретические свойства различных генеративных моделей, их взаимосвязи и методам оценивания качества.

3A4EM?

Цель курса – объяснить студентам математический аппарат генеративных моделей и научить применять знания на практике.

ГЕНЕРАТИВНЫЕ МОДЕЛИ

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Text analysis

Active Learning

Image analysis

Reinforcement Learning

 $p(y = cat|\mathbf{x}) = 0.90$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.05$

noise

 $p(y = cat | \mathbf{x}) = 0.05$ $p(y = dog | \mathbf{x}) = 0.05$ $p(y = horse | \mathbf{x}) = 0.90$

Graph analysis

Medical data

Audio analysis

AND MORE

О КУРСЕ

СТРУКТУРА КУРСА

13 лекций

13 семинаров

6 домашних заданий:

4 практических + 2 теоретических

1-2 доклада

КАК ФОРМИРУЕТСЯ ОЦЕНКА?

6 домашних заданий по 12 баллов:

72 балла

1-2 доклада по 15-30 баллов:

30 баллов

102 балла

ТЕМЫ ЛЕКЦИЙ

No	Тема лекции
1	Логистика. Мотивация. Авторегрессионные модели (MADE, WaveNet, PixelCNN, PixelSnail).
2	Модели скрытых переменных. Байесовский метод главных компонент. Вариационная нижняя оценка. ЕМ-алгоритм.
3	Вариационный автокодировщик (VAE). Апроксимация среднего поля. EM-алгоритм для апроксимации среднего поля и его связь с VAE.
4	Модели нормализующих потоков (Planar flows, NICE, RealNVP, RevNet, Glow).
5	Генеративные модели без оценки правдоподобия. Модель генеративных состязательных сетей (GAN). Техники обучения GAN. Проблемы GAN (vanishing gradients, mode collapse). Сравнение VAE и GAN. DCGAN. Топологические особенности обучения GAN моделей.
6	Расстояние Bacceрштейна. Wasserstein GAN. Липшицевость и дуальность Кантторовича- Рубинштейна. Gradient penalty. Spectral Normalization. Вариационная минимизация f- дивергенций.
7	Оценивания качества likelihood-free моделей. Разбор конкретных GAN моделей (Self-attention GAN, BigGAN, Progressive Growing GAN, StyleGAN).
8	Вариационная деквантизация для дискретных данных (Flow++). Потоки в VAE. Авторегрессионные потоки (IAF, MAF). FlowGAN.
9	Связь авторегрессионных потоков с RealNVP. Parallel WaveNet. ELBO surgery. Выбор априорного распределения в VAE (VampPrior).
10	Коллапс апостериорного распределения в VAE. Авторегрессионный декодер (PixelVAE, VLAE). Техники ослабления декодера (free-bits, KL annealing, limited receptive field). Importance Sampling VAE. Adversarial autoencoders.
11	Задача распутывания представлений (disentanglement learning).
12	Модель потоков непрерывной динамики (NeuralODE, Ffjord). Квантизованные представления
13	Обучение представлений. Contrastive learning (CPC v1/2, MoCo v1/2, SimCLR v1/2).

И ЕЩЁ..

ЧТО НУЖНО ЗНАТЬ?

- Теория вероятностей,
- Статистика,
- Машинное обучение,
- Основы глубокого обучения

помним, что..

Курс новый – любой фидбек (особенно негативный) приветствуется

По любым оставшимся вопросам – пишите:

РОМАН ИСАЧЕНКО, ЛЕКТОР

telegram: @roman_isachenko

≥ mail: **roman.isachenko@phystech.edu**

