

Very Low Power CMOS SRAM 32K X 8 bit

Pb-Free and Green package materials are compliant to RoHS

BS62LV256

n FEATURES

Ÿ Wide V_{CC} operation voltage: 2.4V ~ 5.5V

Ÿ Very low power consumption:

 $V_{CC} = 3.0V$ Operation current : 25mA (Max.) at 70ns

1mA (Max.) at 1MHz

Standby current : 0.01uA(Typ.) at $25^{\circ}C$ $V_{CC} = 5.0V$ Operation current : 40mA (Max.) at 55ns

2mA (Max.) at 1MHz

Standby current: 0.4uA (Typ.) at 25°C

Ÿ High speed access time:

-55 55ns(Max.) at V_{CC} : 4.5~5.5V -70 70ns(Max.) at V_{CC} : 3.0~5.5V

Ÿ Automatic power down when chip is deselected

- Ÿ Easy expansion with CE and OE options
- Ÿ Three state outputs and TTL compatible
- Ÿ Fully static operation
- \ddot{Y} Data retention supply voltage as low as 1.5V

n DESCRIPTION

The BS62LV256 is a high performance, very low power CMOS Static Random Access Memory organized as 32,768 by 8 bits and operates form a wide range of 2.4V to 5.5V supply voltage.

Advanced CMOS technology and circuit techniques provide both high speed and low power features with typical CMOS standby current of 0.01uA and maximum access time of 70ns in 3.0V operation

Easy memory expansion is provided by an active LOW chip enable $\overline{(CE)}$, and active LOW output enable $\overline{(OE)}$ and three-state output drivers.

The BS62LV256 has an automatic power down feature, reducing the power consumption significantly when chip is deselected.

The BS62LV256 is available in DICE form, JEDEC standard 28 pin 330mil Plastic SOP, 600mil Plastic DIP, 8mmx13.4mm TSOP (normal type).

n POWER CONSUMPTION

				P	OWER D	ISSIPATIO	ON			
PRODUCT FAMILY	STANDBY Operating (I _{CCSB1} , Max) (I _{CC} , Max)						PKG TYPE			
	TEMPERATURE	V _{CC} =5.0V	V _{CC} =3.0V		V _{CC} =5.0V			V _{CC} =3.0V		
		v CC=3.0 v	VCC=3.0V	1MHz	10MHz	f _{Max.}	1MHz	10MHz	f _{Max.}	
BS62LV256DC	Commercial +0°C to +70°C									DICE
BS62LV256PC		4.0uA	0.4uA	1.5mA	18mA	35mA	0.8mA	12mA	20mA	PDIP-28
BS62LV256SC		+0°C to +70°C	4.0uA	0.4uA	1.5IIIA	TOTTA	SOMA	U.OIIIA	IZIIIA	ZUITA
BS62LV256TC]									TSOP-28
BS62LV256PI										PDIP-28
BS62LV256SI	Industrial -40°C to +85°C	5.0uA	0.7uA	2mA	20mA	40mA	1mA	15mA	25mA	SOP-28
BS62LV256TI	-40 C to +65 C									TSOP-28

n PIN CONFIGURATIONS

n BLOCK DIAGRAM

Brilliance Semiconductor, Inc. reserves the right to change products and specifications without notice.

n PIN DESCRIPTIONS

Name	Function
A0-A14 Address Input	These 15 address inputs select one of the 32,768 x 8-bit in the RAM
CE Chip Enable Input	CE is active LOW. Chip enable must be active when data read form or write to the device. If chip enable is not active, the device is deselected and is in standby power mode. The DQ pins will be in the high impedance state when the device is deselected.
WE Write Enable Input	The write enable input is active LOW and controls read and write operations. With the chip selected, when WE is HIGH and OE is LOW, output data will be present on the DQ pins; when WE is LOW, the data present on the DQ pins will be written into the selected memory location.
OE Output Enable Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impendence state when OE is inactive.
DQ0-DQ7 Data Input/Output Ports	There 8 bi-directional ports are used to read data from or write data into the RAM.
V _{cc}	Power Supply
GND	Ground

n TRUTH TABLE

MODE	CE	WE	ŌE	I/O OPERATION	V _{CC} CURRENT
Not selected (Power Down)	Н	Х	Х	High Z	I _{CCSB} , I _{CCSB1}
Output Disabled	L	Н	Н	High Z	I _{cc}
Read	L	Н	L	D _{OUT}	I _{cc}
Write	L	L	Х	D _{IN}	Icc

NOTES: H means V_{IH} ; L means V_{IL} ; X means don't care (Must be V_{IH} or V_{IL} state)

n ABSOLUTE MAXIMUM RATINGS (1)

SYMBOL	PARAMETER	RATING	UNITS
V_{TERM}	Terminal Voltage with Respect to GND	-0.5 ⁽²⁾ to 7.0	V
T _{BIAS}	Temperature Under Bias	-40 to +125	οС
T _{STG}	Storage Temperature	-60 to +150	οС
P_{T}	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	20	mA

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

n OPERATING RANGE

RANG	AMBIENT TEMPERATURE	Vcc
Commercial	0°C to + 70°C	2.4V ~ 5.5V
Industrial	-40°C to + 85°C	2.4V ~ 5.5V

n CAPACITANCE $^{(1)}$ (T_A = 25°C, f = 1.0MHz)

SYMBOL	PAMAMETER	CONDITIONS	MAX.	UNITS
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6	pF
C _{IO}	Input/Output Capacitance	$V_{I/O} = 0V$	8	pF

1. This parameter is guaranteed and not 100% tested.

^{2. -2.0}V in case of AC pulse width less than 30 ns.

n DC ELECTRICAL CHARACTERISTICS ($T_A = -40^{\circ}C$ to $+85^{\circ}C$)

PARAMETER NAME	PARAMETER	TEST CONDITIONS		MIN.	TYP. ⁽¹⁾	MAX.	UNITS
V _{cc}	Power Supply			2.4		5.5	V
V _{IL}	Input Low Voltage			-0.5 ⁽²⁾	1	0.8	V
V _{IH}	Input High Voltage			2.2	1	V _{CC} +0.3 ⁽³⁾	V
I _{IL}	Input Leakage Current	$V_{IN} = 0V \text{ to } V_{CC}$		-		1	uA
I _{LO}	Output Leakage Current	$\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, $V_{I/O} = 0V$ to V_{CC}		-		1	uA
V _{OL}	Output Low Voltage	V _{CC} = Max, I _{OL} = 0.5mA				0.4	V
V _{OH}	Output High Voltage	V _{CC} = Min, I _{OH} = -0.5mA		2.4			V
lcc ⁽⁵⁾	Operating Power Supply	CE = V _{IL} ,	V _{CC} =3.0V			25	mA
icc	Current	$I_{DQ} = 0mA, f = F_{MAX}^{(4)}$	V _{CC} =5.0V			40	ША
l	Operating Power Supply	CE = V _{IL} ,	V _{CC} =3.0V			1	mA
I _{CC1}	Current	$I_{DQ} = 0mA, f = 1MHz$	V _{CC} =5.0V			2	IIIA
IccsB	Standby Current – TTL	CE = V _{IH} ,	V _{CC} =3.0V			1.0	mA
ICCSB	Otaliaby Gailent – TTE	$I_{DQ} = 0mA$	V _{CC} =5.0V	1		2.0	ША
I _{CCSB1} ⁽⁶⁾	Standby Current – CMOS	$\overline{\text{CE}} \ge V_{\text{CC}}$ -0.2V,	V _{CC} =3.0V		0.01	0.7	uA
ICCSB1	Clariday Current – CIVICO	$V_{IN} {\ge} V_{CC} {-} 0.2 V$ or $V_{IN} {\le} 0.2 V$	V _{CC} =5.0V	1	0.4	5.0	uл

- Typical characteristics are at T_A=25°C and not 100% tested.
 Undershoot: -1.0V in case of pulse width less than 20 ns.
- 3. Overshoot: V_{CC}+1.0V in case of pulse width less than 20 ns.
- 4. $F_{MAX}{=}1/t_{RC.}$ 5. $I_{CC~(MAX.)}$ is 20mA/35mA at $V_{CC}{=}3.0V/5.0V$ and $T_{A}{=}70^{\circ}C.$
- 6. $I_{CCSB1(MAX.)}$ is 0.4uA/4.0uA at V_{CC} =3.0V/5.0V and T_A =70 O C.

n DATA RETENTION CHARACTERISTICS ($T_A = -40^{\circ}$ C to $+85^{\circ}$ C)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. (1)	MAX.	UNITS
V_{DR}	V _{CC} for Data Retention	$\overline{\text{CE}} \ge V_{\text{CC}}$ -0.2V, $V_{\text{IN}} \ge V_{\text{CC}}$ -0.2V or $V_{\text{IN}} \le 0.2V$	1.5	1		V
I _{CCDR} ⁽³⁾	Data Retention Current	$\overline{CE} \ge V_{CC}$ -0.2V, $V_{IN} \ge V_{CC}$ -0.2V or $V_{IN} \le 0.2V$		0.01	0.7	uA
t _{CDR}	Chip Deselect to Data Retention Time	See Retention Waveform	0			ns
t _R	Operation Recovery Time	Gee Neterition wavefollii	t _{RC} (2)			ns

^{1.} V_{CC} =1.5V, T_A =25 $^{\rm O}$ C and not 100% tested. 2. t_{RC} = Read Cycle Time. 3. $I_{CCDR(Max.)}$ is 0.4uA at T_A =70 $^{\rm O}$ C.

n LOW V_{CC} DATA RETENTION WAVEFORM (CE Controlled)

n AC TEST CONDITIONS

(Test Load and Input/Output Reference)

Input Pulse Le	Vcc / 0V						
Input Rise and	1V/ns						
Input and Outp Reference Lev		0.5Vcc					
	$t_{\text{CLZ}},t_{\text{OLZ}},t_{\text{CHZ}},t_{\text{OHZ}},t_{\text{WHZ}}$	C _L = 5pF+1TTL					
Output Load	Others	C _L = 100pF+1TTL					

^{1.} Including jig and scope capacitance.

n KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	MUST BE STEADY
	MAY CHANGE FROM "H" TO "L"	WILL BE CHANGE FROM "H" TO "L"
	MAY CHANGE FROM "L" TO "H"	WILL BE CHANGE FROM "L" TO "H"
	DON'T CARE ANY CHANGE PERMITTED	CHANGE : STATE UNKNOW
\longrightarrow	DOES NOT APPLY	CENTER LINE IS HIGH INPEDANCE "OFF" STATE

n AC ELECTRICAL CHARACTERISTICS (T_A = -40°C to +85°C)

READ CYCLE

JEDEC PARANETER PARAMETER		DESCRIPTION		CYCLE TIME : 55ns (V _{CC} = 4.5~5.5V)		CYCL (V _{cc}	UNITS		
NAME	NAME		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
t _{AVAX}	t _{RC}	Read Cycle Time	55			70	1		ns
t _{AVQX}	t _{AA}	Address Access Time			55			70	ns
t _{E1LQV}	t _{ACS}	Chip Select Access Time			55	1	1	70	ns
t _{GLQV}	t _{OE}	Output Enable to Output Valid			25	1	1	35	ns
t _{E1LQX}	t _{CLZ}	Chip Select to Output Low Z	10			10	1		ns
t _{GLQX}	t _{OLZ}	Output Enable to Output Low Z	10			10	1		ns
t _{E1HQZ}	t _{CHZ}	Chip Select to Output High Z			30		1	35	ns
t _{GHQZ}	t _{OHZ}	Output Enable to Output High Z			25	1	I	30	ns
t _{AVQX}	t _{OH}	Data Hold from Address Change	10			10	-1		ns

n SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE 1 (1,2,4)

READ CYCLE 2 (1,3,4)

READ CYCLE 3 (1, 4)

NOTES:

- 1. WE is high in read Cycle.
- 2. Device is continuously selected when $\overline{CE} = V_{IL}$.
- 3. Address valid prior to or coincident with CE transition low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Transition is measured \pm 500mV from steady state with C_L = 5pF. The parameter is guaranteed but not 100% tested.

n AC ELECTRICAL CHARACTERISTICS ($T_A = -40^{\circ}$ C to +85°C)

WRITE CYCLE

JEDEC PARAMETER	PARANETER NAME	DESCRIPTION		E TIME = 4.5~5	i.5V)	CYCL (V _{cc}	UNITS		
NAME			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
t _{AVAX}	t _{wc}	Write Cycle Time	55			70	-		ns
t _{AVWH}	t _{AW}	Address Valid to End of Write	55			70	1		ns
t _{E1LWH}	t _{CW}	Chip Select to End of Write	55			70		-	ns
t _{WLWH}	t _{WP}	Write Pulse Width	35			40	ł		ns
t _{AVWL}	t _{AS}	Address Set up Time	0			0			ns
twhax	t _{WR}	Write Recovery Time $(\overline{CE}, \overline{WE})$	0			0			ns
t _{WLQZ}	t _{WHZ}	Write to Output High Z	1		25	1	ł	30	ns
t _{DVWH}	t _{DW}	Data to Write Time Overlap	35			40	1	-	ns
t _{WHDX}	t _{DH}	Data Hold from Write Time	0			0	ł		ns
t _{GHQZ}	t _{OHZ}	Output Disable to Output in High Z	1		25	1	ł	30	ns
t _{WHQX}	tow	End of Write to Output Active	5			5			ns

n SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 1 (1)

WRITE CYCLE 2 (1,6)

NOTES:

- 1. $\overline{\text{WE}}$ must be high during address transitions.
- The internal write time of the memory is defined by the overlap of CE and WE low. All signals
 must be active to initiate a write and any one signal can terminate a write by going inactive. The
 data input setup and hold timing should be referenced to the second transition edge of the
 signal that terminates the write.
- 3. t_{WR} is measured from the earlier of \overline{CE} or \overline{WE} going high at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the CE low transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state.
- 6. \overline{OE} is continuously low ($\overline{OE} = V_{IL}$).
- 7. D_{OUT} is the same phase of write data of this write cycle.
- 8. D_{OUT} is the read data of next address.
- 9. If $\overline{\mathsf{CE}}$ is low during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 10. Transition is measured \pm 500mV from steady state with C_L = 5pF.
 - The parameter is guaranteed but not 100% tested.
- 11.t_{CW} is measured from the later of $\overline{\text{CE}}$ going low to the end of write.

n ORDERING INFORMATION

Note:

BSI (Brilliance Semiconductor Inc.) assumes no responsibility for the application or use of any product or circuit described herein. BSI does not authorize its products for use as critical components in any application in which the failure of the BSI product may be expected to result in significant injury or death, including life-support systems and critical medical instruments.

n PACKAGE DIMENSIONS

SYMBOL	INCH	MM	
A	0.106±0.006	2.692±0.152	
A1	0.009±0.005	0.226±0.124	
A2	0.098±0.005	2.489±0.127	
b	0.014 ~ 0.020	0.35 ~ 0.50	
b1	0.014 ~ 0.018	0.35 ~ 0.45	
С	0.008 ~ 0.012	0.20 ~ 0.32	
c1	0.008 ~ 0.011	0.20 ~ 0.28	
D	0.713±0.005	18.110±0.127	
E	0.331±0.005	8.407±0.127	
E1	0.465±0.012	11.811±0.305	
е	0.050±0.006	1.270±0.152	
L	0.0380 ± 0.0104	0.964±0.264	
L1	0.0677±0.0079	1.72±0.2	
у	0.004 Max.	0.1 Max.	
θ	0° ~ 10°	0° ~ 10°	

SOP - 28

n PACKAGE DIMENSIONS (continued)

INCH	MM	
0433±0.004	1.10±0.10	
0045±0.0026	0.115±0.065	
039±0.002	1.00±0.05	
009±0.002	0.22±0.05	
008±0.001	0.20±0.03	
0.008 ~ 0.008	0.10 ~ 0.21	
004 ~ 0.006	0.10 ~ 0.16	
465±0.004	11.80±0.10	
315±0.004	8.00±0.10	
022±0.004	0.55±0.10	
528±0.008	13.40±0.20	
.0197 +0.008	0.50 +0.20	
.0315±0.004	0.80±0.10	
004 Max.	0.1 Max.	
~ 8°	0°~ 8°	
	0433±0.004 0045±0.0026 0039±0.002 009±0.002 008±0.001 004 ~ 0.008 004 ~ 0.006 465±0.004 315±0.004 022±0.004 528±0.008 0.0197 ±0.008 0.0315±0.004 0.0315±0.004	

TSOP - 28

UNIT SYMBOL	INCH(BASE)	MM(REF)	
A1	0.010(MIN)	0.254(MIN)	
A2	0.150±0.005	3.810±0.127	
В	0.018±0.005	0.457±0.127	
B1	0.060±0.010	1.524±0.254	
с	0.010±0.004	0.254±0.102	
D	1.460±0.005	37.084±0.127	
E	0.600±0.010	15.240±0.254	
E1	0.544±0.004	13.818±0.102	
е	0.100(TYP)	2.540(TYP)	
eВ	0.640±0.020	16.256±0.508	
L	0.130±0.010	3.302±0.254	
S	0.080 ± 0.010	2.032±0.254	
Q1	0.070±0.005	1.778±0.127	
θ	6°±3°	6°±3°	

E1 eВ

PDIP - 28

n Revision History

Revision No.	<u>History</u>	Draft Date	Remark
2.4	Add Icc1 characteristic parameter	Jan. 13, 2006	
2.5	Change I-grade operation temperature range - from –25°C to –40°C	May. 25, 2006	
2.6	Revised I _{CCSB1} sepc from 1.0uA to 4.0uA for 5V C-grade - from 2.0uA to 5.0uA for 5V I-grade - from 0.2uA to 0.4uA for 3V C-grade - from 0.4uA to 0.7uA for 3V I-grade	Sep. 05, 2006	
	Revised I _{CCDR} sepc from 0.2uA to 0.4uA for C-grade - from 0.4uA to 0.7uA for I-grade		