Avaliação de Classificadores

Ricardo Prudêncio

Tópicos

- Métricas
 - Como as predições devem ser avaliadas

- Metodologia de Experimento
 - Como replicar a avaliação para garantir robustez

Matriz de Confusão

Classificação Binária

		PREDITO	
		Classe A	Classe B
VERDADEIRO	Classe A	VP	FN
	Classe B	FP	VN

Classe Positiva =

VP: Verdadeiros Positivos +

FN: Falsos Negativos

Classe Negativa =

VN: Verdadeiros Negativos +

FP: Falsos Positivos

Acurácia:

	P^	N^	
Р	52	6	Acc = (52 + 44) / 120 = 0.8
Ν	18	44	
			maior que o acerto majoritário
			(62/120)

- Precisão para classe positiva:
 - = VP dividido por VP + FP

i.e., quanto eu acerto quando dou uma resposta positiva

	P^	N^
Р	52	6
Ν	18	44

Precision = 52 / (52 + 18) = 0.74

- Precisão para classe negativa
 - = VN dividido por VN + FN

i.e., quanto eu acerto quando dou uma resposta negativa

	P^	N^
Р	52	6
Ν	18	44

Precision = 44 / (44 + 6) = 0.88

obs.: nesse exemplo, o valor das predições negativas é maior

- True Positive Rate (Recall, Sensibilidade)
 - = VP dividido por VP + FN

i.e., quanto eu consigo identificar a classe positiva

	P^		TPR = $52 / (52 + 6) = 0.89$
Р	52 18	6	= 1717 - 327 (32 + 0) - 0.09
Ν	18	44	

- True Negative Rate (Especificidade)
 - = VN dividido por VN + FP

i.e., quanto eu consigo identificar a classe negativa

	P^	N^	
Р	52	6	-
Ν	18	44	

$$TNR = 44 / (44 + 18) = 0.70$$

obs.: nesse exemplo, o número de falsos positivo é alto (TNR = 1-FPR)

- F-Measure (média harmônica de precision e recall)
 - = 2*Precision * Recall dividido (Precision + Recall)

OBS.: média harmônica é penalidade quando apenas uma das métricas tem valor alto

Métricas - Análise da CURVA ROC

- Sensibilidade vs Especificidade
 - Muitas vezes conflitantes, em especial quando se usa funções de score
 - Exemplo: porque o colesterol LDL deve ser menor que 130? Por que não 120?

Métricas - Curva ROC

TPR vs FPR considerando diferentes limitares de decisão

Area Under the ROC Curve (AUC) indica qualidade média do modelo considerando diferentes limiares de decisão

Métricas - Curva ROC

AUC é igual a 1 para um modelo perfeito

AUC = 0.5 pode indicar um modelo aleatório

 AUC = probabilidade de um exemplo positivo escolhido aleatoriamente ter score maior que exemplo negativo escolhido aleatoriamente

Metodologia de Experimentos

- Validação Cruzada K-fold
 - Conjunto de exemplos é divididos em pacotes
 - Por exemplo K = 10
 - O algoritmo avaliado é executado K vezes, usando 1 conjunto por vez para teste e o restante para treinamento
 - As métricas de avaliação são calculadas para o conjunto de teste
 - Os resultados médios são calculados entre os conjuntos de teste
 - Opcionalmente a metodologia pode ser repetida usando uma nova divisão dos dados (e.g, 5 k-fold X 2 repetições)

Resumindo

Existem muitas outras medidas de avaliação

- A melhor medida depende da aplicação
 - Por exemplo, se predições envolverem priorização então uma métrica de qualidade do ranking (i.e. AUC) é adequada

Métrica deve ser calculada usando uma metodologia de replicação de experimentos