Actividad 1 Control Automático

Profesor: Luis Miguel Esquivel Sancho

1. Presentación

La presente actividad pertenece al rubro de evaluación del curso Control Automático, denominado Quices y tareas y tiene la intención fomentar en el estudiante la investigación y el razonamiento critico en la elaboración y resolución de ejercicios prácticos en los temas sistemas descritos en el espacio de estados.

2. Objetivo

Fomentar el aprendizaje de los estudiantes basado en el desarrollo y solución colaborativa de ejercicios prácticos del tema de sistemas en el espacio de estados.

3. Instrucciones

En grupos de trabajo de 3 personas, para cada uno de los Problemas planteados generen la solución de forma clara y ordenada, de forma que aparezcan todos los pasos que los llevan a la respuesta, esta debe estar presentada en formato digital.

1. Controlador de Adelanto LGR.

Para el sistema cuya función en lazo abierto es $G_1(s)$, realice lo siguiente:

$$G_1(s) = \frac{6}{s(s+2)}$$

- Calcule el factor de amortiguamiento (ζ) , la frecuencia natural (ω_n) , el tiempo de estabilización al 2% (T_{s_2}) , el porcentaje de sobreimpulso $(\%M_p)$ y el error de estado estable (e_{ss}) del sistema sin compensar.
- Diseñe un compensador en adelanto usando el LGR que lleve al sistema a un tiempo de estabilización $T_{s_2\%}=1$ s y un sobreimpulso máximo $\%M_p=5\%$.

- Escriba la función de trasferencia del controlador.
- Escriba la función de trasferencia de lazo cerrado del sistema con el controlador.
- Gráfico de la respuesta al escalón y la rampa del sistema compensado.

2. Controlador de Adelanto Respuesta en frecuencia.

Se tiene un sistema sin compensar con la siguiente respuesta en frecuencia en lazo abierto:

Figura 1: Diagrama de Bode Problema 2

Para el cual se le desea aplicar un controlador de adelanto en el dominio de la frecuencia donde se logre un margen de fase de al menos 36° en $\omega = 3$ rad/s. Determine:

- Las características de lazo cerrado de la planta sin compensar, Margen de fase,
 Margen de Ganancia y la condición de estabilidad.
- La constante de tiempo y la Ganancia del controlador.
- La función de transferencia del controlador.

- La función de transferencia del sistema controlado en lazo cerrado.
- El diagrama de bode de magnitud y fase del sistema compensado.
- Gráfica de respuesta al escalón y la rampa

3. Controlador de Atraso LGR.

Se tiene un sistema sin compensar con la siguiente función de transferencia en en lazo abierto:

 $G_3(s) = \frac{16}{s(s+4)}$

Se solicita el diseño de un compensador serie en atraso con un valor de K_v que permita llevar el e_{ss} a 0.031. Si se sabe que la función de transferencia del compensador a diseñar tiene la forma:

$$G_{c3}(s) = K_c \frac{(s+0.02)}{(s+p)}$$

Calcule y determine lo siguiente:

- Tipo y orden del sistema.
- El factor de amortiguamiento.
- La frecuencia natural no amortiguada.
- \blacksquare El valor de β .
- El valor de T_2 .
- \blacksquare El valor de p.
- Verifique que se cumple $-5^{\circ} < \theta_z \theta_p < 0^{\circ}$.
- \bullet Ganancia K_c
- \blacksquare La ganancia K del sistema compensado a lazo abierto.
- La función de transferencia del controlador.
- Función de transferencia del sistema controlado a lazo cerrado.
- Grafique la respuesta del sistema controlado y sin controlar ante las entradas escalón y rampa.

4. Controlador de Atraso Respuesta en frecuencia.

Se tiene un sistema sin compensar con la siguiente respuesta en frecuencia en lazo abierto:

Figura 2: Diagrama de Bode Problema 4

Sabiendo que se requiere un compensador en atraso en serie, cuyo cero se ubica en 0,02, y se desea un $K_v = 32$; a partir de la respuesta en frecuencia del sistema mostrado. Si se sabe que la función de transferencia del compensador a diseñar tiene la forma:

$$G_{c4}(s) = K_c \frac{(s+z)}{(s+p)}$$

Determine:

- Tipo y orden del sistema.
- El margen de ganancia del sistema sin compensar.
- La margen de fase del sistema sin compensar.
- La posición del polo del compensador
- La función de transferencia del controlador.
- Función de transferencia del sistema controlado a lazo cerrado.

 Grafique la respuesta del sistema controlado y sin controlar ante las entradas escalón y rampa

5. Compensador Adelanto-Atraso LGR.

Dada la siguiente función de transferencia en lazo abierto:

$$G_5(s) = \frac{4}{s(s+3)}$$

Determine:

- a) Calcule e identifique para lazo cerrado sin compensar:
 - Función de transferencia.
 - Tipo y orden del sistema.
 - El factor de amortiguamiento.
 - La frecuencia natural no amortiguada.
 - Gráfica de respuesta al escalón y la rampa
- b) Utilizando $T_{s_{2\%}} \leq 0.3 \text{s y } \% M_p > 3\%$. Calcule:
 - Polos deseados para el sistema.
 - Factor de amortiguamiento y frecuencia natural no amortiguada nueva.
 - Ángulo de aporte para el compensador.
- c) Cálculo de la función de transferencia del compensador $G_c(s)$ para $\gamma \neq \beta$:
 - Determine la posición del cero y polo para el compensador.
 - Determine el valor de T_1 ; K_c ; T_2 y β
 - Brinde la expresión para el compensador final y la nueva función de transferencia para el sistema compensado en lazo abierto.
 - Función de transferencia del sistema controlado en lazo cerrado.
 - Gráfica de respuesta al escalón y la rampa.
- d) Cálculo de la función de transferencia del compensador $G_c(s)$ para $\gamma = \beta$
 - Determine la posición del cero y polo para el compensador.
 - Determine el valor de T_1 ; K_c ; T_2 y β
 - Brinde la expresión para el compensador final y la nueva función de transferencia para el sistema compensado en lazo abierto.
 - Función de transferencia del sistema controlado en lazo cerrado.
 - Gráfica de respuesta al escalón y la rampa.

4. Entregables

Cada grupo debe subir a la carpeta Actividad 1 en evaluaciones de la plataforma del curso en TECDigital esta debe subirse como un solo archivo comprimido .rar donde se encuentre la siguiente documentación:

- Solución de cada ejercicio en letra legible, clara y con todos los pasos necesarios para llegar al resultado (debe agregar comentarios que aclaren los procesos realizados), procure no omitir pasos importantes. Formato PDF, preferiblemente digital pero puede ser a mano escaneado pero que sea bien legible.
- 2. Simulación en Matlab de cada uno de los ejercicios, con la graficación correspondiente de el sistema sin compensar, ante la entrada Escalón y ante la entrada rampa, y el sistema compensado ante las mismas entradas.
- 3. Gráfico en Matlab del lugar de las raíces del sistema en lazo abierto y del sistema compensado en lazo abierto, para cada uno de los ejercicios de LGR, o bien los diagramas de bode del sistema compensado y sin compensar.

5. Evaluación

La nota de la actividad será otorgada de acuerdo a la siguiente rubrica de evaluación

Evaluación	
Rubro	m Valor%
Claridad de Documentación	20
Respuesta de los ejercicios	50
Simulación y gráficas en Matlab	30
Total	100 %

Disponen para estregar esta información hasta el día miércoles 28 de abril hasta las 11:55 hora servidor TECDigital. Documentos incompletos no serán revisados.