А. Разложение на множители

2 секунды, 256 мегабайт

Дано число. Требуется разложить его на простые множители.

Входные данные

Вводится число n ($2 \le n \le 10^9$).

Выходные данные

Выведите через пробел разложение на простые множители в порядке неубывания множителей.

входные данные	
17	
выходные данные	
17	

входные данные	
60	
выходные данные	
2 2 3 5	

В. Большая проверка на простоту больших чисел

2 секунды, 64 мегабайта

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число $n, 1 \le n \le 5000$ и далее n чисел $a_i, 1 \le a_i \le 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести ${\tt YES}$, для составного числа программа должна вывести ${\tt NO}$.

входные	данные
4	
1	
5	
10	
239	
выходные	е данные
NO	
VEC	
YES	
NO	

С. Китайская теорема

2 секунды, 64 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m ($1 \le n, m \le 10^6, 0 \le a \le n, 0 \le b \le m$).

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число x.

входные данные	
1 0 2 3	
выходные данные	

3

входные данные

3 2 5 9

выходные данные

38

D. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $ed \mod (p-1)(q-1)=1$ (заметим, что $(p-1)(q-1)=\varphi(n)$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M — исходное сообщение. Для его шифрования вычисляется значение $C = M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M = C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: $n, e, C, n \le 10^9, e \le 10^9, C < n$. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M ($0 \le M < n$), которое было зашифровано такой криптосхемой.

входные данные

143

113 41

выходные данные

123

входные данные

9173503

4051753

выходные данные

111111

Е. Перемножение полиномов

1 секунда, 256 мегабайт

Даны два полинома $A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ и $B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$. Найдите их произведение в виде $C(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{2n} x^{2n}$.

Входные данные

Первая строка содержит число n ($1 \le n \le 10^5$). Вторая строка содержит n+1 число $-a_0, a_1, \ldots, a_n$, третья строка содержит n+1 целое число $-b_0, b_1, \ldots, b_n$ ($0 \le a_i, b_i \le 100$).

Выходные данные

Выведите 2n+1 число $-c_0,c_1,\ldots,c_{2n}$.

входные данные

выходные данные

2 13 30 34 12

F. Дуэль

2 секунды, 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

входные данные	
101010101	
выходные данные	
4	
вхолные ланные	

входные данные	
101001	
выходные данные	
Θ	

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0