Perfect Security

Symmetric Encryption Scheme

- A symmetric encryption scheme is a triple of algorithms (K,E,D)
 - K keys generation
 - E encryption algorithm
 - D decryption algorithm
- For simplicity assume that $\mathbf{k} \leftarrow \mathbf{K}$ uniformly at random, $k \in \{0,1\}^l$ or $k \in U_l$
- $P \in \{0,1\}^m$ plaintext

$$E: \{0,1\}^{l} \times \{0,1\}^{m} \to \{0,1\}^{*} \mid E_{k}(P) = C$$

 $D: \{0,1\}^{l} \times \{0,1\}^{*} \to \{0,1\}^{m} \mid D_{k}(C) = P$

In general, E (and possibly D) are randomized

Perfect Security

Let (K,E,D) be a symmetric encryption scheme. It is said to be perfectly secure if for any two plaintexts P₁,P₂ and a ciphertext C

$$Pr[E_k(P_1) = C] = Pr[E_k(P_2) = C],$$

where the probability is over the random choice $k \leftarrow K$, and also over the coins flipped by E

Security as a Game

- We assume that Eve is almighty
- Game
 - Alice chooses a key k
 - Eve chooses 2 plaintexts and gives them to Alice
 - Alice encrypts one of them and sends to Eve
 - Eve decides which one is encrypted

Eve wins if her decision is right

- The system is perfectly secure if Eve wins with probability 1/2
- This notion of security is very strong:

Suppose that Eve can learn something about P. More precisely she can compute a function $g(C) = f(P) \in \{0,1\}$

Then she chooses P_1, P_2 with $f(P_1) \neq f(P_2)$

Example

• Let (K,E,D) be a substitution cipher over the alphabet Σ consisting of 26 Latin letters. K picks a random permutation of Σ , that is $\pi \leftarrow \text{Perm}(\Sigma)$.

The set of possible plaintexts is the set of all 3-letters English words.

- This SES is not perfectly secure.
- There are P_1, P_2 such that for some C

$$\Pr[E_k(P_1) = C] \neq \Pr[E_k(P_2) = C],$$

Take P_1 = `FEE' and P_2 = `FAR', and C = `XYY'. Then $\Pr[E_k(P_1) = C] = [\text{prob. that } F \to X, E \to Y] = \frac{24!}{26!} = \frac{1}{25 \cdot 26}$ $\Pr[E_k(P_2) = C] = 0$

One-Time Pad

- The one-time pad is the following cryptosystem (K,E,D):
 - k \leftarrow K uniformly at random from $\{0,1\}^m$
 - the set of possible plaintexts is $\{0,1\}^m$
 - $E: \{0,1\}^m \times \{0,1\}^m \to \{0,1\}^m$ $P = P^1 \dots P^m, \qquad k = k^1 \dots k^m$ $C = C^1 \dots C^m, \quad \text{where } C^i = P^i \oplus k^1 \pmod{2}$ - $D: \{0,1\}^m \times \{0,1\}^m \to \{0,1\}^m$ $P^i = C^i \oplus k^i \pmod{2}$

Perfect Security of OTP

Theorem.

The OTP is perfectly secure

Proof.

For any $P_1, P_2, C \in \{0,1\}^m$ we have to prove that

$$\Pr[E_k(P_1) = C] = \Pr[E_k(P_2) = C],$$

Indeed,

$$\Pr[E_k(P_1) = C] = \Pr[k \oplus P_1 = C]$$

$$= \frac{|\{k \in \{0,1\}^m : k \oplus P_1 = C\}|}{|\{0,1\}^m|} = \frac{1}{2^m}$$

$$\Pr[E_k(P_2) = C] = \frac{1}{2^m}$$

Short Key – No Security

Theorem

There is no perfectly secure SES with m-bit messages and m – 1 –bit keys

Proof

Suppose (K,E,D) is such SES. Set $S_0 = \{E_k(0^m) \mid k \in \{0,1\}^{m-1}\}$ Since $|\{0,1\}^{m-1}| = 2^{m-1}$ we have $|S_0| \le 2^{m-1}$ Choose $C \notin S_0$ and P such that there is key k with $E_k(P) = C$

Then

$$\Pr[E_k(0^m) = C] = 0 , \text{ while}$$

$$\Pr[E_k(P) = C] > 0$$