Quiz 1

David Trinh

September 28, 2024

• Question 1

$$r = \sum_{i=0}^{n} \sum_{j=0}^{n-i-1} 1 \tag{1}$$

$$r = \sum_{i=0}^{n} (n-i) \tag{2}$$

$$r = \sum_{i=0}^{n} n - \sum_{i=0}^{n} i \tag{3}$$

$$r = n(n+1) - \frac{n(n+1)}{2} \tag{4}$$

$$r = \frac{n(n+1)}{2} \tag{5}$$

$$r = \frac{n^2 + n}{2} \tag{6}$$

$$r = \frac{1}{2}n^2 + \frac{1}{2}n\tag{7}$$

Big- Θ : $\Theta(n^2)$

Let positive constants c_1 and n_o , we have:

$$\frac{1}{2}n^2 + \frac{1}{2}n \le c_1 \cdot n^2$$
 for all $n \ge n_0$

$$\frac{1}{2} + \frac{1}{2n} \le c_1$$

Let n be 1, we have:

$$\frac{1}{2} + \frac{1}{2 \cdot 1} \le c_1$$

$$1 \le c_1$$

As $n \to \infty$, the term $\frac{1}{2n}$ tend to 0.

Thus, for all $n \geq 1$, $c_1 \geq 1$.

Therefore, there exist $n_0 = 1$ and $c_1 = 6$ and Big-O: $O(n^2)$.

Let positive constants c_2 and n_o , we have:

$$\frac{1}{2}n^2 + \frac{1}{2}n \ge c_2 \cdot n^2$$
 for all $n \ge n_0$

$$\frac{1}{2} + \frac{1}{2n} \ge c_2$$

Let n be 1, we have:

$$\frac{1}{2} + \frac{1}{2 \cdot 1} \ge c_2$$

$$1 \ge c_2$$

As $n \to \infty$, the term $\frac{1}{2n}$ tend to 0, leaving constant $\frac{1}{2}$.

Thus, for all $n \ge 1$, $c_2 \ge \frac{1}{2}$.

Therefore, there exist $n_0 = 1$ and $c_2 = \frac{1}{2}$ and Big- Ω : $\Omega(n^2)$.

Therefore, $\frac{1}{2}n^2 + \frac{1}{2}n$ has a Big- Θ : $\Theta(n^2)$

• Question 2

1. Converting an image of size nxn from color to grayscale.

Big- Θ : $\Theta(n^2)$

Every pixel in the image is visited once to calculate its grayscale using a math formula based on its RGB values in constant time. Therefore, as the width/height of the image grows $(n \to \infty)$, the number of pixel grows exponentially (n^2) , but the time to calculate the grayscale for each pixel remains the same.

2. Multiplying two matrices of size nxn

Big-Θ: $\Theta(n^3)$

Multiply two nxn matrix would result in a nxn matrix, such that each value in the new matrix need to be calculated individually. In addition, going from n to n + 1 will meant that each value in the new matrix has to perform one more multiplication and addition. Therefor, as $n \to \infty$, the matrix multiplication grows at the rate of n^3 .

3. Searching for a number in an unsorted array of size n.

Big- Θ : $\Theta(n)$

The function is traversing the entire list and checking every number against a target, which is in linear time.

4. Searching for a number in an balanced binary search tree with n nodes.

Big- Θ : $\Theta(logn)$

The function only has to perform one operation at every level of the tree. Given that as the tree grow linearly in height, n grow exponentially. Therefore, the higher n is, the lower the rate of change in tree height is. And because this search function correlates linearly with tree height, it is in $\Theta(logn)$.

2