AMENDMENTS TO THE CLAIMS

1. (Canceled)	
2. (Canceled)	
3. (Canceled)	
4. (Canceled)	
5. (Canceled)	
6. (Canceled)	
7. (Canceled)	
8. (Canceled)	
9. (Canceled)	
10. (Canceled)	
11. (Canceled)	
12. (Previously Presented) A method for forming a passivation layer on a memory device	e with
n interconnect structure thereon, comprising:	

ar

forming a first dielectric layer over the surface of the interconnect structure; forming a silicon-oxy-nitride (SiOxNy) layer over the surface of the first dielectric layer; and

Application No. 10/671,773 Amendment dated July 14, 2006 After Final Office Action of April 14, 2006

forming a second dielectric layer over the surface of the silicon-oxy-nitride layer; wherein the interconnect structure comprises a metal interconnect layer and a substantially planarized inter-layered dielectric layer covering the metal interconnect layer; and wherein the memory device comprises a charge loss in a range of approximately 0.060 to 0.096 and a standard deviation in a range of approximately 0.108 to 0.047.

- 13. (Previously Presented) The method as claimed in claim 12, wherein the first dielectric layer is formed by depositing a HDP oxide over the interconnect structure with high density plasma chemical vapor deposition (HDPCVD).
- 14. (Previously Presented) The method as claimed in claim 13, wherein the thickness of the first dielectric layer is between 7000 to 10000Å.
- 15. (Previously Presented) The method as claimed in claim 12, wherein the second dielectric layer is formed by depositing phosphorous silica glass over the silicon-oxy-nitride layer with atmospheric pressure chemical vapor deposition (APCVD).
- 16. (Previously Presented) The method as claimed in claim 15, wherein the thickness of the second dielectric layer is between 8000 to 10000 Å.
- 17. (Previously Presented) The method as claimed in claim 12, wherein the silicon-oxy-nitride (SiOxNy) layer is formed by chemical vapor deposition.
- 18. (Previously Presented) The method as claimed in claim 12, wherein the thickness of the silicon-oxy-nitride (SiOxNy) layer is between 4000 to 7000Å.
- 19. (Previously Presented) The method as claimed in claim 12, wherein the memory device is a flash memory device.

Application No. 10/671,773 Docket No.: 4448-0184PUS1 Amendment dated July 14, 2006

After Final Office Action of April 14, 2006

20. (Previously Presented) The method as claimed in claim 12, wherein the memory device is

a mask ROM.

21. (Previously Presented) The method as claimed in claim 12, wherein the first dielectric

layer is thicker than or equal to the silicon-oxy-nitride (SiO_XN_Y) layer.

22. The method as claimed in claim 12, wherein at least one of the first dielectric layer, the

silicon-oxy-nitride (SiO_XN_Y) layer, or the second dielectric layer comprises a substantially

planarized surface.

23. (Canceled)

24. (Canceled)

25. (Canceled)