Programming Languages: Functional Programming

2. Introduction to Haskell: Simple Datatypes & Functions on Lists

Shin-Cheng Mu

Autumn 2023

1 Simple Datatypes

1.1 Booleans

Booleans

The datatype *Bool* can be introduced with a *datatype declaration*:

$$data Bool = False \mid True$$

(But you need not do so. The type Bool is already defined in the Haskell Prelude.)

Datatype Declaration

• In Haskell, a data declaration defines a new type.

$$\begin{array}{rcl} \mathbf{data} \ \mathit{Type} \ = \ \mathit{Con}_1 \ \mathit{Type}_{11} \ \mathit{Type}_{12} \dots \\ & \mid \ \mathit{Con}_2 \ \mathit{Type}_{21} \ \mathit{Type}_{22} \dots \\ & \mid \ \ \vdots \end{array}$$

- The declaration above introduces a new type, Type, with several cases.
- Each case starts with a constructor, and several (zero or more) arguments (also types).
- Informally it means "a value of type Type is either a Con_1 with arguments $Type_{11}$, $Type_{12}$..., or a Con_2 with arguments $Type_{21}$, $Type_{22}$..."
- Types and constructors begin in capital letters.

Functions on Booleans

Negation:

$$not$$
 :: $Bool \rightarrow Bool$
 $not \ False = True$
 $not \ True = False$

Notice the definition by pattern matching. The definition has two cases, because Bool is defined by two cases. The shape of the function follows the shape of its argument.

Functions on Booleans

Conjunction and disjunction:

$$(\land),(\lor)$$
 :: $Bool \rightarrow Bool \rightarrow Bool$
 $False \land x = False$
 $True \land x = x$
 $False \lor x = x$
 $True \lor x = True$

I use the symbols \land and \lor due to mathematical convension. In your Haskell code, \land should be written &&, and \lor should be ||.

Functions on Booleans

Equality check:

$$\begin{array}{ll} (==), (\neq) :: Bool \rightarrow Bool \rightarrow Bool \\ x == y &= (x \land y) \lor (not \ x \land not \ y) \\ x \neq y &= not \ (x == y) \end{array}$$

- = is a definition, while == is a function.
- = and ≠ are written respectively written == and /
 = in ASCII.

Example

$$\begin{array}{ll} leap y ear & :: Int \rightarrow Bool \\ leap y ear \ y = (y \ `mod \ `4 == 0) \ \land \\ & (y \ `mod \ `100 \neq 0 \lor y \ `mod \ `400 == 0) \end{array}$$

- Note: y 'mod' 100 could be written mod y 100. The backquotes turns an ordinary function to an infix operator.
- · It's just personal preference whether to do so.

1.2 Characters

Characters

• You can think of *Char* as a big **data** definition:

data
$$Char = 'a' \mid 'b' \mid \dots$$

with functions:

$$ord :: Char \rightarrow Int$$
 $chr :: Int \rightarrow Char$

• Characters are compared by their order:

$$isDigit$$
 :: $Char \rightarrow Bool$
 $isDigit$ $x = `0` \le x \land x \le `9`$

Equality Check

• Of course, you can test equality of characters too:

$$(==):: Char \rightarrow Char \rightarrow Bool$$

 (==) is an overloaded name — one name shared by many different definitions of equalities, for different types:

$$\begin{array}{l} - \ (::) :: Int \rightarrow Int \rightarrow Bool \\ - \ (::) :: (Int, Char) \rightarrow (Int, Char) \rightarrow Bool \\ - \ (::) :: [Int] \rightarrow [Int] \rightarrow Bool \dots \end{array}$$

- Haskell deals with overloading by a general mechanism called *type classes*. It is considered a major feature of Haskell.
- While the type class is an interesting topic, we might not cover much of it since it is orthogonal to the central message of this course.

1.3 Products

Tuples

 The polymorphic type (a, b) is essentially the same as the following declaration:

$$\mathbf{data}\ Pair\ a\ b = MkPair\ a\ b$$

• Or, had Haskell allow us to use symbols:

$$\mathbf{data}\,(a,b) = (a,b)$$

· Two projections:

$$\begin{array}{ll} fst & :: (a,b) \rightarrow a \\ fst \ (a,b) & = a \\ snd & :: (a,b) \rightarrow b \\ snd \ (a,b) & = b \end{array}$$

2 Functions on Lists

Lists in Haskell

- Traditionally an important datatype in functional languages.
- In Haskell, all elements in a list must be of the same type.
 - [1, 2, 3, 4] :: List Int
 - [True, False, True] :: List Bool
 - [[1, 2], [], [6, 7]] :: List (List Int)
 - [] :: List a, the empty list (whose element type is not determined).
- *String* is an abbreviation for *List Char*; "abcd" is an abbreviation of ['a', 'b', 'c', 'd'].

List as a Datatype

- [] :: List a is the empty list whose element type is not determined.
- If a list is non-empty, the leftmost element is called its *head* and the rest its *tail*.
- The constructor (:) :: a → List a → List a builds a list. E.g. in x : xs, x is the head and xs the tail of the new list.
- · You can think of a list as being defined by

$$\mathbf{data} \ List \ a = [] \mid a : List \ a$$

• [1, 2, 3] is an abbreviation of 1 : (2 : (3 : [])).

Head and Tail

- head :: List $a \to a$. e.g. head [1, 2, 3] = 1.
- $tail :: List \ a \rightarrow List \ a. \ e.g. \ tail \ [1, 2, 3] = [2, 3].$
- $init :: List \ a \to List \ a. \ e.g. \ init \ [1, 2, 3] = [1, 2].$
- $last :: List \ a \to a$. e.g. $last \ [1, 2, 3] = 3$.
- They are all partial functions on non-empty lists. e.g. $head [] = \bot$.
- $null :: List \ a \rightarrow Bool$ checks whether a list is empty.

$$null[] = True$$

 $null(x : xs) = False$

2.1 List Generation

List Generation

- [0..25] generates the list [0, 1, 2..25].
- [0, 2..25] yields [0, 2, 4..24].
- [2..0] yields [].
- The same works for all *ordered* types. For example *Char*:
 - ['a'..'z'] yields ['a', 'b', 'c'..'z'].
- [1..] yields the *infinite* list [1, 2, 3..].

List Comprehension

- Some functional languages provide a convenient notation for list generation. It can be defined in terms of simpler functions.
- e.g. $[x \times x \mid x \leftarrow [1..5], odd \ x] = [1, 9, 25].$
- Syntax: $[e \mid Q_1, Q_2..]$. Each Q_i is either
 - a generator $x \leftarrow xs$, where x is a (local) variable or pattern of type a while xs is an expression yielding a list of type $List\ a$, or
 - a guard, a boolean valued expression (e.g. odd x).
 - *e* is an expression that can involve new local variables introduced by the generators.

List Comprehension

Examples:

- $[(a,b) \mid a \leftarrow [1..3], b \leftarrow [1..2]] = [(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)]$
- $[(a,b) \mid b \leftarrow [1..2], a \leftarrow [1..3]]$ [(1,1), (2,1), (3,1), (1,2), (2,2), (3,2)]
- $[(i,j) \mid i \leftarrow [1..4], j \leftarrow [i+1..4]] = [(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)]$
- $[(i,j) \mid \leftarrow [1..4], even \ i,j \leftarrow [i+1..4], odd \ j] = [(2,3)]$

2.2 Combinators on Lists

Two Modes of Programming

- Functional programmers switch between two modes of programming.
 - Inductive/recursive mode: go into the structure of the input data and recursively process it.
 - Combinatorial mode: compose programs using existing functions (combinators), process the input in stages.
- We will try the latter style today. However, that means we have to familiarise ourselves to a large collection of library functions.
- In the next lecture we will talk about how these library functions can be defined, in the former style.

Length and Indexing

- (!!) :: $List\ a \to Int \to a$. List indexing starts from zero. e.g. [1,2,3]!!0=1.
- $length :: List \ a \rightarrow Int. \ e.g. \ length \ [0..9] = 10.$

Append and Concatenation

- Append: (++) :: $List\ a \rightarrow List\ a \rightarrow List\ a$. In ASCII one types (++).
 - -[1,2]++[3,4,5]=[1,2,3,4,5]
 - -[]++[3,4,5]=[3,4,5]=[3,4,5]++[]
- Compare with (:) :: $a \to List \ a \to List \ a$. It is a type error to write $[\]: [3,4,5].$ (++) is defined in terms of (:).
- $concat :: List (List a) \rightarrow List a.$
 - e.g. concat [[1, 2], [], [3, 4], [5]] = [1, 2, 3, 4, 5].
 - concat is defined in terms of (++).

Take and Drop

• $take \ n$ takes the first n elements of the list. For a definition:

$$\begin{array}{ll} take & \text{:: } Int \rightarrow List \ a \rightarrow List \ a \\ take \ 0 \ xs & = [] \\ take \ (n+1) \ [] & = [] \\ take \ (n+1) \ (x:xs) = x: take \ n \ xs \end{array}$$

- For example, $take\ 0\ xs = []$
- *take* 3 "abcde" = "abc"
- take 3 "ab" = "ab"
- Working with infinite list: $take \ 5 \ [1..] = [1,2,3,4,5]$. Thanks to normal order (lazy) evaluation.
- Dually, $drop \ n$ drops the first n elements of the list. For a definition:

$$\begin{array}{ll} drop & :: Int \rightarrow List \ a \rightarrow List \ a \\ drop \ 0 \ xs & = xs \\ drop \ (n+1) \ [] & = [] \\ drop \ (n+1) \ (x : xs) & = drop \ n \ xs \end{array}$$

- For example, $drop\ 0\ xs = xs$
- drop 3 "abcde" = "cd"
- drop 3 "ab" = ""
- $take \ n \ xs + take \ n \ xs = xs$, as long as $n \neq \bot$.

Map and λ

- $map :: (a \to b) \to List \ a \to List \ b$. e.g. $map \ (1+) \ [1,2,3,4,5] = [2,3,4,5,6]$.
- $map\ square\ [1,2,3,4] = [1,4,9,16].$
- Every once in a while you may need a small function which you do not want to give a name to. At such moments you can use the λ notation:
 - $map (\lambda x \to x \times x) [1, 2, 3, 4] = [1, 4, 9, 16]$
 - In ASCII λ is written \.
- λ is an important primitive notion. We will talk more about it later.

Filter

- $filter :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a$.
 - e.g. filter even [2, 7, 4, 3] = [2, 4]
 - filter $(\lambda n \to n \text{ `mod' } 3 = 0) [3, 2, 6, 7] = [3, 6]$
- Application: count the number of occurrences of 'a' in a list:
 - $length \cdot filter ('a' ==)$
 - Or length · filter $(\lambda x \rightarrow a' = x)$
- **Note** a list comprehension can always be translated into a combination of primitive list generators and *map*, *filter*, and *concat*.

Zip

- $zip :: List \ a \to List \ b \to List \ (a,b)$
- e.g. zip "abcde" [1,2,3] = [('a',1), ('b',2), ('c',3)]
- The length of the resulting list is the length of the shorter input list.

Positions

- Exercise: define $positions :: Char \rightarrow String \rightarrow List Int$, such that $positions \ x \ xs$ returns the positions of occurrences of x in xs. E.g. $positions \ 'o'$ "roodo" = [1, 2, 4].
- positions x xs = map snd (filter ((x = 1) · fst) (zip xs [0..])
- Or, positions x xs = map snd (filter $(\lambda(y,i) \rightarrow x = y)$ (zip xs [0...])
- What if you want only the position of the *first* occurrence of *x*?

$$pos$$
 :: $Char \rightarrow String \rightarrow Int$
 $pos \ x \ xs = head \ (positions \ x \ xs)$

- Due to lazy evaluation (normal order evaluation), positions of the other occurrences are not evaluated!
- Note For now, think of "lazy evaluation" as another (more popular) name for normal order evaluation. Some people distinguish them by saying that normal order evaluation is a mathematical idea while lazy evaluation is a way to implement normal order evaluation.

Morals of the Story

- · Lazy evaluation helps to improve modularity.
 - List combinators can be conveniently re-used.
 Only the relevant parts are computed.
- The combinator style encourages "wholemeal programming".
 - Think of aggregate data as a whole, and process them as a whole!

3 λ expressions

- $\lambda x \rightarrow e$ denotes a function whose argument is x and whose body is e.
- $(\lambda x \to e_1)$ e_2 denotes the function $(\lambda x \to e_1)$ applied to e_2 . It can be reduced to e_1 with its *free* occurrences of x replaced by e_2 .
- E.g.

$$(\lambda x \to x \times x) (3+4)$$

$$= (3+4) \times (3+4)$$

$$= 49$$

- λ expression is a primitive and essential notion. Many other constructs can be seen as syntax sugar of λ 's.
- For example, our previous definition of square can be seen as an abbreviation of

```
square :: Int \rightarrow Int 
 square = \lambda x \rightarrow x \times x .
```

- Indeed, square is merely a value that happens to be a function, which is in turn given by a λ expression.
- λ's are like all values they can appear inside an expression, be passed as parameters, returned as results, etc.
- In fact, it is possible to build a complete programming language consisting of only λ expressions and applications. Look up " λ calculus".
- $\lambda x \to \lambda y \to e$ is abbreviated to $\lambda x y \to e$.
- · The following definitions are all equivalent:

```
\begin{array}{ll} smaller \ x \ y \ = \ \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y \\ smaller \ x \ = \ \lambda y \to \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y \\ smaller \ = \ \lambda x \to \lambda y \to \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y \\ smaller \ = \ \lambda x \ y \to \mathbf{if} \ x \le y \ \mathbf{then} \ x \ \mathbf{else} \ y \end{array}.
```