Tarea 1. Método de Newton para encontrar Máximos y Mínimos

Ciro Fabian Bermudez Marquez INAOE Mexico, Puebla cirofabian.bermudez@gmail.com

Resumen—Utilizando el método de Newton se encuentran los máximos y mínimos de la función f(x), posteriormente utilizando una heurística se encontró el mínimo global.

I. DESCRIPCIÓN DEL PROBLEMA

Se tiene la función de la ecuación (1) en el rango [0,7], y se desea encontrar los máximos y mínimos utilizando el método de Newton.

$$f(x) = (x-2)(x-5) + \sin(1.5\pi x) \tag{1}$$

su gráfica se muestra en la Figura 1.

Figura 1. Gráfica de la función.

II. MÉTODO DE NEWTON

El método de Newton se deduce de la serie de Taylor la cual se muestra en la ecuación (2) y tomando los primeros dos términos obtenemos la ecuación (3).

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 (2)

$$f(x) = f(a) + f'(a)(x - a)$$
 (3)

si consideramos x-a infinitesimal y encontrando las raíces de f(x) obtenemos la ecuación (4) (Newton V1).

$$dx = -\frac{f(a)}{f'(a)} \tag{4}$$

Si hacemos este mismo procedimiento pero considerando f'(x) para la serie de Taylor encontramos la ecuación del método de Newton para encontrar máximos y mínimos como se muestra en la ecuación (5) (Newton V2).

$$dx = -\frac{f'(a)}{f''(a)} \tag{5}$$

El método necesita un punto inicial a_0 para comenzar el proceso iterativo, $a_{i+1} = a_i + dx$ y la condición de paro son 20 iteraciones máximas o $|dx| < \epsilon$ donde $\epsilon = 1e^{-10}$.

III. UTILIZACIÓN DEL MÉTODO DE NEWTON V2

Para utilizar este método es necesario conocer hasta la segunda derivada de la función, las cuales se muestran en (6) y (7) y en en la Figura 2 se muestra la derivada de la función.

$$f'(x) = 2x - 7 + 1.5\pi\cos(1.5\pi x) \tag{6}$$

$$f''(x) = 2 - (1.5)^2 \sin(1.5\pi x) \tag{7}$$

Figura 2. Gráfica de la derivada función.

Observando cuidadosamente la gráfica de la Figura 2 resalta a la vista que la función es multimodal, esto significa que presenta más de un punto máximo y mínimo. La función presenta 3 mínimos locales, 3 máximos locales y un mínimo global.

El método de Newton necesita un punto inicial para comenzar el proceso iterativo de encontrar una solución y debido a que es multimodal a menos que se elija un punto muy cercano el mínimo global el método va a converger a alguna otra solución.

IV. RESULTADOS

IV-A. Prueba del método de Newton V2

Eligiendo un valor inicial a_0 cercano a los máximo y mínimos obtenemos los resultados de la Tabla I.

Tabla I Máximos y mínimos encontrados con el método de Newton V2.

$\overline{a_0}$	x	dx	Iteraciones	Max o Min
1.2	1.26419808	5.53050375e-11	5	Min
1.4	1.44108574	1.00957580e-16	16	Max
2.4	2.43305587	7.74529240e-13	4	Min
2.9	2.95000435	1.39272369e-11	4	Max
3.6	3.65288744	1.02705621e-14	4	Min Global
4.4	4.41828865	1.19983916e-14	4	Max
4.8	4.86849168	5.48555533e-15	5	Min

IV-B. Heurística para encontrar mínimo global

La heurístaica para encontrar el mínimo global consiste en generar un punto inicial a_0 aleatorio en el rango [0,7], ejecutar el método de Newton V2 y comprobar si la solución encontrada es el mínimo global utilizando el siguiente criterio:

$$|x - \operatorname{Min}_{\text{global}}| < 1e - 4 \tag{8}$$

esto se repite 100 veces considerando que el mínimo global se encuentra en x=3.65288744 y f(x)=-3.22451801.

De las 100 repeticiones la heuristica solo encontró el mínimo global 9 veces, esto equivale a una eficiencia del 9 %.

V. CONCLUSIONES

De la aplicación de esta heurística podemos decir que el método de Newton no es muy eficiente cuando se trata de problemas multimodales, y si se desea utilizar este método para problemas de más de una variable la eficiencia podemos esperar una eficiencia aun peor.

REFERENCIAS

[1] Dr. Luis Gerardo de la Fraga. "Apuntes de clase" .