Digital IC Design

Exercise 3 Sequential circuits

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Introduction of 3x3 Convolution

*

IFM

l ₁	I ₂	I ₃	I ₄	I ₅	I ₆	I ₇
l 8	l 9	I ₁₀	I ₁₁	I ₁₂	I ₁₃	I ₁₄
l ₁₅	I ₁₆	I ₁₇	I ₁₈	I ₁₉	I ₂₀	I ₂₁
I 22	I 23	l ₂₄	l ₂₅	I ₂₆	l ₂₇	I ₂₈
I 29	I ₃₀	I ₃₁	I ₃₂	I ₃₃	I ₃₄	I ₃₅
I ₃₆	I ₃₇	I ₃₈	I ₃₉	I 40	I ₄₁	I ₄₂
I ₄₃	I ₄₄	I ₄₅	I ₄₆	I ₄₇	I ₄₈	I ₄₉

Weight

OFM

The 25th output

$$O_1 = I_1 \times W_1 + I_2 \times W_2 + I_3 \times W_3 + I_4 \times W_4 + I_5 \times W_5 + I_6 \times W_6 + I_7 \times W_7 + I_8 \times W_8 + I_9 \times W_9$$

$$O_{25} = I_{33} \times W_1 + I_{34} \times W_2 + I_{35} \times W_3 + I_{40} \times W_4 + I_{41} \times W_5 + I_{42} \times W_6 + I_{47} \times W_7 + I_{48} \times W_8 + I_{49} \times W_9$$

Timing/Area Analysis of Sequential Circuits [30%]

- Use Verilog to implement 3x3 convolution kernel
 - ◆ Implement the kernels without pipeline techniques.
 - ➤ 2 input buffers (defined by TA) and 9 Multiplier(16bit) & 1 Adder tree
 - > Measure the area and throughput
 - > You can change the clock period (.tcl & pattern)
 - ◆ The function of this kernel should be correct
 - ➤ Verify the kernels in gate level simulation using the pattern provided by TA.

For the .tcl file, you can only modify:

(1)clock period

(2)design_name & search_path

Example: Block Diagram of 3x3 Convolution

3x3 Convolution kernel without pipeline

Timing/Area Analysis of Sequential Circuits [30%]

- Use Verilog to implement 3x3 convolution kernel
 - ◆ Implement the kernels using pipeline techniques.
 - ➤ 2 input buffers (defined by TA) and 9 Multiplier(16bit) & 1 Adder tree
 - > Measure the area and throughput
 - > You can change the clock period (.tcl & pattern)
 - ◆ The frequency of the kernel should faster than 1.25GHz
 - ◆ The function of these two kernels should be correct
 - ➤ Verify the kernels in gate level simulation using the pattern provided by TA.

For the .tcl file, you can only modify: (1)clock period

(2)design_name & search_path

Optimize the Sequential Circuits [40%]

- Design a 3x3 convolution kernel
 - Optimize the area efficiency (Throughput/Area)
 - You can change the clock period (.tcl & pattern)
 - > You can modify buffers, Mux, Multipliers, etc.
 - Area efficiency > 550 GOPS/mm² [get 40 point]
 - Area efficiency > 400 GOPS/mm² [get 30 point]
 - Area efficiency > 350 GOPS/mm²[get 50 point]
 - Area efficiency > 250 GOPS/mm²[get 10 point]
 - Plot the block diagram of the designed kernel
 - Verify the designs in gate level simulation using the pattern provided by TA.
 - ◆ Throughput (OPS) = (Operations/operating time)
 - Operations: (number of 16-bit multiplies during the operating time) x 2
 - Operating time: form positive edge of in_valid to negative edge of out_valid

For the .tcl file, you can only modify:

(1)clock period

(2)design_name & search_path

Specifications for 3x3 convolution kernels

Signals:

Input signals	Bit width	Description	
clk	1	Positive edge trigger clock	
rst_n	1	Asynchronous active-low reset.	
in_valid	1	When High, In_IFMs are valid	
Weight_valid	1	When High, In_Weights are valid	
In_IFM	16	Input feature map, give in 49 cycles	
In_Weight	16	Weights, give in 9 cycle	
Output signals	Bit width	Description	
Out_valid	1	High when out is valid, then Patten will check Out_OFM. (It should maintain 25 cycles)	
Out_OFM	36	The answers of the 3x3 convolution. (It should maintain 25 cycles)	

Settings:

- ◆ In_IFM & In_Weight should be received by registers.
- The output ports should be set as registers.

Submission of Exerice-3

- Please upload the following files
 - ◆ Due day: PM 11:55 on 11/13
 - ◆ Report.pdf
 - Convolution_without_pipeline.v
 - ◆ Convolution_with_pipeline.v
 - Convolution_optimize.v
 - Synthesis_clk_period.txt

(Please describe the clock periods, you chose to synthesis in the report, in the "Synthesis_clk_period.txt". TA will use the clock period to run and check your design correct or not.)