Tema I

Introducción y conceptos básicos

Bernardo D'Auria

Universidad Carlos III de Madrid

Procesos Estocásticos Grado en Estadística y Empresa

Objetivo del tema

El objetivo principal de esta tema es recordar y introducir los conceptos básicos de:

- Medidas características
- Transformadas de Fourier y Laplace. Funciones características.
- Probabilidad y Media condicionadas
- Definición de Procesos Estocásticos

Las medidas características son cantidades que se pueden usar para resumir las propiedades de una variable aleatoria. La más utilizada es la media

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \, \mathbb{P}(X \in dx) = \begin{cases} \sum_{x \in E} x \, p_X(x) & \text{v.a. discreta} \\ \int_{-\infty}^{\infty} x \, f(x) \, dx & \text{v.a. continua} \end{cases}$$

En general si se defina la esperanza de una función, $h(\cdot)$, como

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x) \, \mathbb{P}(X \in dx) = \begin{cases} \sum_{x \in E} h(x) \, p_X(x) & \text{v.a. discreta} \\ \\ \int_{-\infty}^{\infty} h(x) \, f(x) \, dx & \text{v.a. continua} \end{cases}$$

Las medidas características son cantidades que se pueden usar para resumir las propiedades de una variable aleatoria. La más utilizada es la media

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \, \mathbb{P}(X \in dx) = \begin{cases} \sum_{x \in E} x \, p_X(x) & \text{v.a. discreta} \\ \int_{-\infty}^{\infty} x \, f(x) \, dx & \text{v.a. continua} \end{cases}$$

En general si se defina la esperanza de una función, $h(\cdot)$, como

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x) \, \mathbb{P}(X \in dx) = \begin{cases} \sum_{x \in E} h(x) \, p_X(x) & \text{v.a. discreta} \\ \\ \int_{-\infty}^{\infty} h(x) \, f(x) \, dx & \text{v.a. continua} \end{cases}$$

Se definen los momentos de orden n como

$$\mu_X^{(n)} = \mathbb{E}[X^n]$$

como la media de X ponderada por la función $h(x) = x^n$, y los momentos centrados de orden n

$$\mu_X^{[n]} = \mathbb{E}[(X - \mathbb{E}[X])^n]$$

ponderando con la función $h(x) = (x - \mathbb{E}[X])^n$.

La varianza de X se define como el segundo momento centrado,

$$\mathbb{V}\mathrm{ar}[X] = \mu_X^{[2]} = \mathbb{E}[(X - \mathbb{E}[X])^2] \ .$$

Calcular la media de v.a. "positivas"

Si tenemos una variable aleatoria positiva, es decir

$$\mathbb{P}(X\geq 0)=1\;,$$

entonces la media se puede calcular con la fórmula

$$\mathbb{E}[X] = \begin{cases} \sum_{x=0}^{\infty} \bar{F}_X(x) & \text{v.a. discreta} \\ \int_{0}^{\infty} \bar{F}_X(x) \, dx & \text{v.a. continua} \end{cases}$$

donde $\bar{F}_X(x) = 1 - F(x) = \mathbb{P}(X > x)$, es la función cola de distribución.

Probabilidad como media de func. indicadoras

La probabilidad de que $X \in A$ se puede escribir como

$$\mathbb{P}(X \in A) = \int_{A} \mathbb{P}(X \in dx) = \int 1_{A}(x) \, \mathbb{P}(X \in dx)$$

$$= \begin{cases} \sum_{x \in E} 1_{A}(x) \, p_{X}(x) & \text{v.a. discreta} \\ \\ \\ \int_{-\infty}^{\infty} 1_{A}(x) \, f(x) \, dx & \text{v.a. continua} \end{cases}$$

donde $1_A(x)$ es la función indicadora del conjunto A, es decir

$$1_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Por lo tanto podemos escribir

$$\mathbb{P}(X \in A) = \mathbb{E}[1_A(X)]$$

Probabilidad como media de func. indicadoras

La probabilidad de que $X \in A$ se puede escribir como

$$\mathbb{P}(X \in A) = \int_{A} \mathbb{P}(X \in dx) = \int 1_{A}(x) \, \mathbb{P}(X \in dx)$$

$$= \begin{cases} \sum_{x \in E} 1_{A}(x) \, p_{X}(x) & \text{v.a. discreta} \\ \int_{-\infty}^{\infty} 1_{A}(x) \, f(x) \, dx & \text{v.a. continua} \end{cases}$$

donde $1_A(x)$ es la función indicadora del conjunto A, es decir

$$1_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Por lo tanto podemos escribir

$$\mathbb{P}(X \in A) = \mathbb{E}[1_A(X)]$$

Funciones que caracterizan una variable aleatoria

Sea X una variable aleatoria, se definen las siguientes funciones

• La función característica, $\psi_X(s)$,

$$\psi_X(t) = \mathbb{E}[e^{itX}] \quad t \in \mathbb{R} .$$

• La función generatriz de momentos, $M_X(t)$,

$$M_X(t) = \mathbb{E}[e^{tX}] \quad t \in \mathbb{R} .$$

• La función generatriz, $\phi_X(z)$, generalmente cuando X es discreta,

$$\phi_{X}(z) = \mathbb{E}[z^{X}] \quad z \in \mathbb{C} \quad |z| < 1 \; .$$

• La trasformata de Laplace, $\tilde{F}_X(s)$, solo cuando $X \geq 0$,

$$ilde{F}_X(s) = \mathbb{E}[e^{-sX}] \quad s \in \mathbb{R} \ .$$

Todas estas funciones caracterizan la variable aleatoria, es decir si dos variables aleatorias, X e Y, tienen una de estas funciones iguales entonces todas serán iguales y $X \stackrel{\mathrm{d}}{=} Y$.

Función generatriz de momentos para calcular momentos

Sea X una variable aleatoria, y sea

$$M_X(t) = \mathbb{E}[e^{tX}] \quad t \in \mathbb{R} .$$

su función generatriz de momentos.

Es posible calcular los momentos de X de cualquier orden derivando la función $M_X(t)$ tantas veces cuanto es el orden del momento y calculando el valor de esta derivada en 0.

Es decir vale la siguiente fórmula

$$\mu_X^{(n)} = \mathbb{E}[X^n] = \left. \frac{dM_X(t)}{dt^n} \right|_{t=0}.$$

Variable aleatoria Bernoulli de parametro $p \in [0, 1]$.

$$X \sim \mathsf{Be}(p)$$

Tiene función de probabilidad

$$p_X(k) = \begin{cases} q & k = 0 \\ p & k = 1 \end{cases}$$

donde q = 1 - p.

$$\circ$$
 $\mathbb{E}[X] = p$

$$\circ$$
 $Var[X] = pq$

$$OM_X(t) = q + p e^t$$

Binomial(0.3, 4)

Ejemplos de Variables Aleatorias

Variable aleatoria Binomial de parámetros $p \in [0, 1]$ y $n \in \mathbb{N}$.

$$X \sim \text{Bin}(n, p)$$

Tiene función de probabilidad

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad 0 \le k \le n^{1-k}$$

donde $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ con $k \le n$.

$$\circ$$
 $\mathbb{E}[X] = n p$

$$\bigvee \operatorname{ar}[X] = n \, p \, (1 - p)$$

$$\phi_X(z) = (1 - p + p z)^n$$

•
$$Var[X] = n p (1-p)$$
 • $M_X(t) = (1-p+p e^t)^n$

Variable aleatoria Poisson de parámetros $\nu > 0$.

$$X \sim Po(\nu)$$

Tiene función de probabilidad

$$p_X(k) = \frac{\nu^k}{k!} e^{-\nu} \quad k \ge 0 \ .$$

$$\circ$$
 $\mathbb{E}[X] = \nu$

$$^{\circ} \ \mathbb{V}\mathrm{ar}[X] = \nu$$

$$OM_X(t) = \exp(\nu(e^t - 1))$$

Variable aleatoria Geométrica de parámetros p > 0.

$$X \sim \text{Geo}(p)$$

Tiene función de probabilidad

$$p_X(k) = p\,q^{k-1} \quad k \geq 1 \; .$$
donde $p+q=1.$

$$\mathbb{E}[X] = 1/p$$

$$^{\circ} \ \mathbb{V}\mathrm{ar}[X] = q/p^2$$

$$\phi_X(z) = \frac{z\,p}{1-z\,q}$$

$$\phi_X(z) = \frac{z p}{1-z q}$$

$$M_X(t) = \frac{p e^t}{1-q e^t} \quad t < -\ln(q)$$

Variable aleatoria Uniforme Discreta entre 1 y N, con $N \ge 1$.

$$X \sim \mathsf{U}(\{1,2,\ldots,N\})$$

Tiene función de probabilidad

$$p_X(k) = 1/N \quad k \in \{1, \ldots, N\} .$$

$$\mathbb{E}[X] = \frac{N+1}{2}$$

$$\phi_X(z) = \frac{z}{N} \frac{1-z^N}{1-z}$$

$$M_X(t) = \frac{e^t}{N} \frac{1 - e^{Nt}}{1 - e^t}$$

Variable aleatoria Uniforme Continua entre a y b, con b > a.

$$X \sim U([a, b])$$

Tiene función de densidad

$$f_X(x) = \begin{cases} (b-a)^{-1} & x \in [a,b] \\ 0 & \text{en el resto} \end{cases}$$

$$\circ$$
 $\mathbb{E}[X] = \frac{b+a}{2}$

•
$$Var[X] = \frac{(b-a)^2}{12}$$

$$\psi_X(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

$$M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$$

$$M_X(t) = \frac{e^{t\,b} - e^{t\,a}}{t(b-a)}$$

Variable aleatoria Exponencial con parametro $\lambda > 0$.

$$X \sim \mathsf{Exp}(\lambda)$$

Tiene función de densidad

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{en el resto} \end{cases}$$

$$\circ$$
 $\mathbb{E}[X] = 1/\lambda$

$$^{\circ} \ \mathbb{V}\mathrm{ar}[X] = 1/\lambda^2$$

$$M_X(t) = \lambda/(\lambda - t)$$

$$\tilde{F}_X(s) = \lambda/(\lambda + s)$$

$$\circ \ \tilde{F}_X(s) = \lambda/(\lambda + s)$$

Variable aleatoria Normal con parámetros $\mu \in \mathbb{R}$ y $\sigma \geq 0$.

$$X \sim N(\mu, \sigma^2)$$

Tiene función de densidad

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$\circ$$
 $\mathbb{E}[X] = \mu$

$$\circ$$
 $Var[X] = \sigma$

$$\psi_X(t) = \exp\left(i\,\mu\,t - \frac{\sigma^2\,t^2}{2}\right)$$

$$OM_X(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

Vect. Aleatorios - Medidas caracteristicas

Sea (X_1, X_2, \ldots, X_n) un vector aleatorio y $h(x_1, x_2, \ldots, x_n)$ una función, se denota la media de la función h aplicada al vector como

$$\mathbb{E}[h(X_1, X_2, \ldots, X_n)]$$
.

Si el vector es discreto tenemos que

$$\mathbb{E}[h(X_1, X_2, \ldots, X_n)] = \sum_{x_1} \cdots \sum_{x_n} h(x_1, \ldots, x_n) \, p(x_1, \ldots, x_n) \, ,$$

y si es continuo tenemos que

$$\mathbb{E}[h(X_1,\ldots,X_n)]=\int\cdots\int h(x_1,\ldots,x_n)\,f(x_1,\ldots,x_n)\,dx_1\cdots dx_n.$$

Vectores Aleatorios - Independencia

Dos variables aleatorias X e Y se dicen independientes, $X \perp Y$, si por cualquiera dos conjuntos A y B se tiene que

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \, \mathbb{P}(Y \in B) .$$

En particular esto es equivalente a decir que, por cualquiera dos funciones $f(\cdot)$ y $g(\cdot)$ tenemos que

$$\mathbb{E}[f(X)\,g(Y)] = \mathbb{E}[f(X)]\,\mathbb{E}[g(Y)] \;.$$

En el caso discreto eso quiere decir que

$$\mathbb{P}_{X,Y}(x,y) = \mathbb{P}_X(x) \mathbb{P}_Y(y)$$

y en el caso continuo

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

es decir las funciones conjuntas son el producto de las marginales.

Probabilidades condicionadas - caso discreto

Por simplicidad consideramos simplemente el caso bivariante, y consideramos un vector (X,Y) que supongamos discreto.

Al igual que tratando con sucesos, se puede calcular la probabilidad de que $X \in A$ una vez que ya sabemos que $Y \in B$.

Esto se define como

$$\mathbb{P}(X \in A | Y \in B) = \frac{\mathbb{P}(X \in A, Y \in B)}{\mathbb{P}(Y \in B)}.$$

Si fijamos el éxito Y=y tenemos que la nueva variable aleatoria X|Y=y, asume valores con probabilidad positiva solo en el nuevo espacio muestral E|Y=y.

En el caso discreto X|Y = y tendrá función de masa

$$p_{X|Y=y}(x) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Probabilidades condicionadas - caso continuo

En el caso continuo, usando la definición de probabilidad condicionada

$$\mathbb{P}(X \in A | Y \in B) = \frac{\mathbb{P}(X \in A, Y \in B)}{\mathbb{P}(Y \in B)}.$$

tenemos que

$$\mathbb{P}(X \in dx | Y \in dy) = \frac{\mathbb{P}(X \in dx, Y \in dy)}{\mathbb{P}(Y \in dy)} = \frac{f_{X,Y}(x,y) dx dy}{f_{Y}(y) dy}$$

entonces como $\mathbb{P}(X \in dx | Y \in dy) = f_{X|Y=y}(x) dx$ tenemos que la función de densidad de X|Y=y es

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

Comentario

Nota que en el caso continuo se ha condicionado la variable aleatoria X al caso del éxito de un suceso con probabilidad nula, Y = v!

Medias condicionadas

Teniendo en cuenta de que X|Y=y sigue siendo una variable aleatoria, se pueden calcular sus funciones características, como su media

$$\mathbb{E}[X|Y=y] = \begin{cases} \sum_{x \in E} x \, p_{X|Y=y}(x) & \text{caso discreto} \\ \\ \int_{-\infty}^{\infty} x \, f_{X|Y=y}(x) \, dx & \text{caso continuo} \end{cases}$$

o la media de una función $h(\cdot)$

$$\mathbb{E}[h(X)|Y=y] = \begin{cases} \sum_{x \in E} h(x) \, p_{X|Y=y}(x) & \text{caso discreto} \\ \\ \int\limits_{-\infty}^{\infty} h(x) \, f_{X|Y=y}(x) \, dx & \text{caso continuo} \end{cases}$$

Media condicionada

La media condicionada

$$\mathbb{E}[X|Y=y] = \begin{cases} \sum_{x \in E} x \, p_{X|Y=y}(x) & \text{caso discreto} \\ \\ \int_{-\infty}^{\infty} x \, f_{X|Y=y}(x) \, dx & \text{caso continuo} \end{cases}$$

es función del resultado y obtenido por Y. Si se calcula su valor antes de saber el resultado obtenido para Y se tiene una variable aleatoria que se denota por

$$\mathbb{E}[X|Y]$$

Propiedades de la media condicionada

La media condicionada $\mathbb{E}[X|Y]$ tiene las siguientes propiedades

- $^{\circ} \mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$
- $\circ \ \mathbb{E}[f(Y)X|Y] = f(Y)\mathbb{E}[X|Y]$
- $^{\circ} \mathbb{E}[\mathbb{E}[X|Z,Y]|Y] = \mathbb{E}[X|Y]$
- C constante $\Rightarrow \mathbb{E}[C|Y] = C$
- $\circ X \perp Y \Rightarrow \mathbb{E}[X|Y] = \mathbb{E}[X]$

Además, usando la función indicadora, se puede expresar la probabilidad condicionada como

$$\mathbb{P}(X \in A|Y) = \mathbb{E}[1_A(X)|Y] .$$

Ejemplo

Consideramos como experimento el lanzamiento de dos dados (X,Y).

Definimos la variable aleatoria Z = X + Y y hallamos la esperanza condicionada de X dado Z, es decir $\mathbb{E}[X|Z]$.

Tenemos de inmediato que

$$\mathbb{E}[X|Z=2] = 1$$
 y $\mathbb{E}[X|Z=12] = 6$

у

Ejemplo

Consideramos como experimento el lanzamiento de dos dados (X, Y).

Definimos la variable aleatoria Z = X + Y y hallamos la esperanza condicionada de X dado Z, es decir $\mathbb{E}[X|Z]$.

Tenemos de inmediato que

$$\mathbb{E}[X|Z=2] = 1$$
 y $\mathbb{E}[X|Z=12] = 6$

У

$$\mathbb{E}[X|Z=3] = \sum_{x=1}^{x=6} x \, \mathbb{P}(X=x|Z=3)$$

$$= 1 \, \mathbb{P}(X=1|Z=3) + 2 \, \mathbb{P}(X=1|Z=3)$$

$$= 1 \, \frac{\mathbb{P}(X=1,Y=2)}{\mathbb{P}(Z=3)} + 2 \, \frac{\mathbb{P}(X=2,Y=1)}{\mathbb{P}(Z=3)} = \frac{3}{2}$$

Ejemplo

Consideramos como experimento el lanzamiento de dos dados (X, Y).

Definimos la variable aleatoria Z = X + Y y hallamos la esperanza condicionada de X dado Z, es decir $\mathbb{E}[X|Z]$.

Tenemos de inmediato que

$$\mathbb{E}[X|Z=2] = 1$$
 y $\mathbb{E}[X|Z=12] = 6$

y al final

$$\mathbb{E}[X|Z=z]=\frac{z}{2}$$

es decir la función de probabilidad de $\mathbb{E}[X|Z]$ es

$$\mathbb{E}[X|Z] = \left\{ \begin{array}{lll} 1 & \text{con prob. } 1/36; & 1.5 & \text{con prob. } 2/36; \\ 2 & \text{con prob. } 3/36; & 2.5 & \text{con prob. } 4/36; \\ 3 & \text{con prob. } 5/36; & & & \\ 3.5 & \text{con prob. } 6/36; & & \\ 4 & \text{con prob. } 5/36; & 4.5 & \text{con prob. } 4/36; \\ 5 & \text{con prob. } 3/36; & 5.5 & \text{con prob. } 2/36; \\ 6 & \text{con prob. } 1/36; & & & \\ \end{array} \right.$$

Sean, X, y Y dos variables aleatorias independientes, tenemos que la suma Z = X + Y tiene esta distribución

$$F_Z(z) = \mathbb{P}(Z \leq z) = \mathbb{E}[1(X + Y \leq z)] = \mathbb{E}[\mathbb{E}[1(X + Y \leq z)|Y]]$$

en el caso discreto

$$F_{Z}(z) = \sum_{y=-\infty}^{\infty} \mathbb{E}[1(X+Y \le z)|Y=y]\mathbb{P}(Y=y)$$
$$= \sum_{y=-\infty}^{\infty} \mathbb{P}(X \le z-y)\mathbb{P}(Y=y)$$

es decir

$$p_Z(z) = \sum_{y=-\infty} \mathbb{P}(X=z-y)\mathbb{P}(Y=y) = p_X \star p_Y(z)$$

donde datas dos funciones discretas g(k) y h(k) se define su convolución

$$g \star h(k) = h \star g(k) = \sum_{i=1}^{\infty} g(k-i) h(i)$$

Sean, X, y Y dos variables aleatorias independientes, tenemos que la suma Z = X + Y tiene esta distribución

$$F_Z(z) = \mathbb{P}(Z \le z) = \mathbb{E}[1(X + Y \le z)] = \mathbb{E}[\mathbb{E}[1(X + Y \le z)|Y]]$$

en el caso continuo

$$F_{Z}(z) = \int_{y=-\infty}^{\infty} \mathbb{E}[1(X+Y \le z)|Y=y] \, \mathbb{P}(Y \in dy)$$
$$= \int_{y=-\infty}^{\infty} \mathbb{P}(X \le z-y) \, f_{Y}(y) \, dy$$

es decir

$$f_Z(z) = \int_{Y=-\infty}^{\infty} f_X(z-y) \mathbb{P}(Y \in dy) = f_X \star f_Y(z)$$

donde datas dos funciones continuas g(x) y h(x) se define su convolución

$$g \star h(x) = h \star g(x) = \int_{u=-\infty}^{\infty} g(x-u) h(u) du$$

Sean, X, y Y dos variables aleatorias independientes, tenemos que la suma Z = X + Y tiene esta distribución

$$F_Z(z) = \mathbb{P}(Z \le z) = \mathbb{E}[1(X + Y \le z)] = \mathbb{E}[\mathbb{E}[1(X + Y \le z)|Y]]$$

en los dos caso se puede también escribir

$$F_Z(z) = \int_{y=-\infty}^{\infty} F_X(z-y) \, dF_Y(y) = F_X \otimes F_Y(z)$$

donde la convolución de Stieltjes de dos funciones no decrecientes G(x) y H(x) se define como

$$G \otimes H(x) = H \otimes G(x) = \int_{u=-\infty}^{\infty} G(x-u) H'(u) du$$

La función característica de la suma

$$\psi_{Z}(z) = \mathbb{E}[e^{izZ}] = \mathbb{E}[e^{iz(X+Y)}] = \mathbb{E}[e^{izX}e^{izY}]$$

$$\stackrel{\text{ind}}{=} \mathbb{E}[e^{izX}]\mathbb{E}[e^{izY}] = \psi_{X}(z)\psi_{Y}(z)$$

Lo mismo vale para las otras funciones

$$M_{Z}(t) = M_{X}(t) M_{Y}(t)$$

$$\phi_{Z}(z) = \phi_{X}(z) \phi_{Y}(z)$$

$$\tilde{F}_{Z}(s) = \tilde{F}_{X}(s) \tilde{F}_{Y}(s)$$

Esto es útil al momento de calcular los momentos de la suma de variables aleatorias independientes usando la función generatriz de momentos, M_Z , por la fórmula

$$\mu_Z^{(n)} = \mathbb{E}[Z^n] = \left. \frac{dM_Z(t)}{dt^n} \right|_{t=0} .$$

Ejemplo: Distribución Poisson compuesta

Sea N una variable aleatoria de Poisson de parametro ν , y sea X_1 , X_2 , ... una sucesión de variables aleatorias independientes y igualmente distribuidas independientes de N.

La variable aleatoria de Poisson compuesta, Z, se define como la suma aleatoria de N de esas variables, es decir

$$Z = \sum_{n=1}^{N} X_n$$

y vale 0 si N = 0.

Tenemos que, con $X \sim X_1$

$$\mathbb{E}[Z] = \mathbb{E}[N] \,\mathbb{E}[X] = \nu \,\mathbb{E}[X] = \nu \,\mu_X^{(1)}$$

$$\mathbb{V}\mathrm{ar}[Z] = \mathbb{E}[N] \, \mathbb{V}\mathrm{ar}[X] + \mathbb{E}^2[X] \, \mathbb{V}\mathrm{ar}[N] = \nu \, \mathbb{E}[X^2] = \nu \, \mu_X^{(2)}$$

Definición de Proceso Estocástico

Un Proceso Estocástico en tiempo discreto $X=(X_n, n\geq 0)$, es una colección numerable de variables aleatorias definidas sobre un mismo espacio de probabilidad $(\Omega, \Sigma, \mathbb{P})$.

Es decir a cada experimento $\omega \in \Omega$ corresponde una secuencia infinita de valores in \mathbb{R} :

$$X: \omega \in \Omega \to X(\omega) = (x_0, x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$$
.

Fijado un valor de ω , la secuencia $(x_0, x_1, x_2, ...)$, que nos da la trayectoria del proceso a lo largo de todo el tiempo, $n \ge 0$, toma el nombre de camino muestral.

Si fijamos un instante de tiempo $n \in \mathbb{N}$ tenemos la realización del proceso al tiempo n, es decir la variable aleatoria

$$X(n) \circ X_n : \omega \in \Omega \to X_n(\omega) = x_n \in \mathbb{R}$$
.

Distribuciones de Dimensiones Finitas

Para poder calcular la probabilidad de sucesos relacionados con el proceso X, tenemos que conocer las distribuciones de los vectores $(X_{t_1}, X_{t_2}, \ldots, X_{t_n})$ por cualquier indices finitos $t_1, t_2, \ldots t_n \in \mathbb{N}$.

Es decir, fijado un número $n<\infty$, n instantes de tiempo, $t_1,\ t_2,\ \dots t_n\in\mathbb{N}$ y un equivalente número de niveles $x_1,\ x_2,\ \dots x_n\in\mathbb{R}$ se necesita conocer el valor de la distribución conjunta

$$F_{t_1,t_2,\ldots,t_n}(x_1,x_2,\ldots,x_n) = \mathbb{P}(X_{t_1} \leq x_1, X_{t_2} \leq t_2, \ldots, X_{t_n} \leq t_n)$$
.

La colección de funciones

$$\{F_{t_1,t_2,...,t_n}: n < \infty \text{ y } t_1,t_2,...t_n \in \mathbb{N}\}$$

se llama distribuciones de dimensiones finitas o DDF.

Consistencia de las DDF

Para que las DDF sean consistentes, hay que cumplirse la siguiente propiedad

$$\lim_{x_k \to \infty} F_{t_1, \dots, t_{k-1}, t_k, t_{k+1}, \dots, t_n}(x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_n)
= F_{t_1, \dots, t_{k-1}, t_{k+1}, \dots, t_n}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n)$$

Además, dada un colección de funciones de distribución coherentes, siempre es posible construir un proceso X sobre un espacio de probabilidad que tenga esta colección como DDF.

Versiones, modificaciones y procesos indistinguibles

Datos dos procesos estocásticos, X y Y, decimos que

- o son versiones el uno del otro si tienen las mismas DDF
- o son modifaciones el uno del otro si están definidos sobre el mismo espacio de probabilidad $(\Omega, \Sigma, \mathbb{P})$ y

$$\mathbb{P}(X_n = Y_n) = 1 \quad n \in \mathbb{N}$$

o son indistinguibles si

$$\mathbb{P}(X_n = Y_n, n \in \mathbb{N}) = 1$$

Es inmediato verificar que modifaciones ⇒ versiones.

En tiempo discreto, modifaciones \iff indistinguibles.

Dos procesos que son versiones el uno del otro no tienen porque estar definidos sobre el mismo espacio de probabilidad.

Las medidas características de un proceso X son funciones del tiempo.

Por ejemplo, estas son algunas definiciones de medidas características comunes:

media:
$$\mu_X(n) = \mathbb{E}[X(n)]$$

varianza: $\sigma_X^2(n) = \mathbb{V}\mathrm{ar}[X(n)] = \mathbb{E}[(X(n) - \mu_X(n))^2]$
autocorrelación: $R_X(n,m) = \mathbb{E}[X(n)X(m)]$
autocovarianza: $\mathbb{C}\mathrm{ov}_X(n,m) = \mathbb{E}[(X(n) - \mu_X(n))(X(m) - \mu_X(m))]$

Medidas caracteristicas cruzadas

Sean X y Y dos procesos, se definen las funciones

correlación:
$$R_{X,Y}(n,m) = \mathbb{E}[X(n)Y(m)]$$

covarianza: $\mathbb{C}\text{ov}_{X,Y}(n,m) = \mathbb{E}[(X(n) - \mu_X(n))(Y(m) - \mu_Y(m))]$

Dos procesos de dicen

```
incorrelados cuando \mathbb{C}\text{ov}_{X,Y}(n,m) = 0, ortogonales cuando R_{X,Y}(n,m) = 0.
```

Normal multivariante

Definición (Distribución Normal multivariante)

Un vector aleatorio $\vec{X}=(X_1,X_2,\ldots,X_m)$ tiene una distribución Normal multivariante si se puede escribir como una transformación linear de un vector $\vec{Z}=(Z_1,Z_2,\ldots,Z_n)$ hecho por Normales estándar independientes.

Es decir existe una matriz, $A=(a_{ij})$, y un vector determinista, $\vec{\mu}=(\mu_j)$, con $1\leq i\leq n$ y $1\leq j\leq m$, tal que se verifica

$$\vec{X} = \vec{Z} A + \vec{\mu}$$

Una distribución normal multivariante se caracteriza por su vector de medias y su matriz de covarianzas

$$\vec{\mu} = (\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_m]) \quad \mathsf{C} = (\mathbb{C}\mathrm{ov}(X_i, X_j))_{1 \le i, j \le m} .$$

Recuerda $\mathbb{C}\mathrm{ov}(X_i,X_i)=\mathbb{V}\mathrm{ar}[X_i]$ y

$$\mathbb{C}\mathrm{ov}(X_i,X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])] \ .$$

Proceso Gaussiano

Definición (Proceso Gaussiano)

Un proceso estocástico X(t) se dice Gaussiano si por cualquier conjuntos de tiempos t_1, t_2, \ldots, t_n el vector

$$(X(t_1),X(t_2),\ldots,X(t_n))$$

es una multivariante normal.

Un proceso Gaussiano se caracteriza por su funciones de media y covarianzas

$$\mu(t) = \mathbb{E}[X(t)]$$
 $C(s,t) = \mathbb{C}\text{ov}(X(s),X(t)) = \mathbb{E}[(X(s) - \mu(s))(X(t) - \mu(t))].$

Procesos independientes

Dos procesos, X y Y, se dicen independientes si los vectores

$$(X_{t_1}, X_{t_2}, \ldots, X_{t_n})$$
 y $(Y_{s_1}, Y_{s_2}, \ldots, Y_{s_m})$

son independientes, por cualquier valor de los indices

$$t_1, t_2, \ldots t_n \in \mathbb{N} \text{ y } s_1, s_2, \ldots s_m \in \mathbb{N} \text{ , } n, m < \infty \text{ .}$$

Tenemos que

independientes ⇒ incorrelados.
 independientes ≠ incorrelados.
 independientes ← incorrelados + Gaussianos.

Estacionariedad fuerte

Un proceso se dice estacionario en sentido fuerte si la familia de FFD es invariable por translaciones del tiempo.

$$F_{t_1,t_2,...,t_n} = F_{t_1+s,t_2+s,...,t_n+s}$$

para todos los $n < \infty, \ t_1, t_2, \dots t_n \in \mathbb{N}$ y $s \in \mathbb{N}$.

Estacionariedad debil

Se dice estacionario en sentido débil si las funciones media y autocorrelacion cumplen con la propiedad de invariancia.

$$\mu_X(n) = \mu_X(n+s) = \mu_X(0)$$

$$\mathbb{C}\text{ov}_X(n,m) = \mathbb{C}\text{ov}_X(n+s,m+s) = \mathbb{C}\text{ov}_X(0,m-n)$$

para todos los n, m y $s \in \mathbb{N}$.

Relaciones de estacionariedad

estacionario en sentido fuerte ⇒estacionario en sentido débil. estacionario en sentido fuerte ∉estacionario en sentido débil. estacionario en sentido fuerte ←estacionario en sentido débil + Gaussianos.

Bibliografia I

Stochastic processes.

John Wiley and Sons, Inc., 2ed., 1996.

Capítulo I

Essentials of stochastic processes.

Springer., 1999.

Apéndice A