Table B.8 Properties of Z-transforms

Property	Response	ROC
1 HX	$x_1(n) \stackrel{ZT}{\longleftrightarrow} X_1(z)$	R ₁ Trails 1
	$x_2(n) \xleftarrow{ZT} X_2(z)$	R ₂ (h) ±
Linearity	$ax_1(n) + bx_2(n) \stackrel{ZT}{\longleftrightarrow} aX_1(z) + bX_2(z)$	$R_1 \cap R_2$
Time shifting	$x(n-m) \stackrel{ZT}{\longleftrightarrow} z^{-m} X(z)$	Same as $X(z)$ except $z=0$
Multiplication by	$X(n+m) \stackrel{ZT}{\longleftrightarrow} z^m X(z)$	Same as $X(z)$ except $z = \infty$
or scaling in z-domain	$a^n u(n) \stackrel{ZT}{\longleftrightarrow} X\left(\frac{z}{a}\right)$	$ a R_1 < z < a R_2$
Time reversal	$X(-n) \stackrel{ZT}{\longleftrightarrow} X(z^{-1})$	$\frac{1}{R_2} < z < \frac{1}{R_1}$
Time expansion	$x\left(\frac{n}{k}\right) \xleftarrow{z\tau} X(z^k)$	Total No. 11
Differentiation in z-domain	$nx(n) \stackrel{ZT}{\longleftrightarrow} -z \frac{d}{dz}X(z)$	$R_1 < z < R_2$
Conjugation	$x^*(n) \stackrel{ZT}{\longleftrightarrow} X^*(z)^*$	$R_1 < z < R_2$
Accumulation	$\sum_{k=-\infty}^{n} x(k) \xleftarrow{z_{\overline{1}}} \frac{1}{1-z^{-1}} X(z)$	
Convolution	$x_1(n) * x_2(n) \xleftarrow{ZT} X_1(z) X_2(z)$	At least the intersection of R_1 and R_2
Correlation	$R_{x_1x_2}(n) = x_1(n) \otimes x_2(n) \stackrel{\text{ZT}}{\longleftrightarrow} X_1(z) X_2(z^{-1})$	At least the intersection of the ROC of $X_1(z)$ and $X_2(z^{-1})$
Multiplication	$x_1(n) x_2(n) \stackrel{\text{ZT}}{\longleftrightarrow} \frac{1}{2\pi i} \oint X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	At least
* If		$R_{11}R_{21} < z < R_{1u}R_{2u}$
Parseval's theorem	$\sum_{n=-\infty}^{+\infty} x_1(n) x_2 * (n) = \frac{1}{2\pi j} \oint_{c} X_1(v) X_2 * \left(\frac{1}{v *}\right) v^{-1} dv$	
Initial value theorem	$x(0) = \operatorname{Lt}_{n \to 0} x(n) = \operatorname{Lt}_{z \to \infty} X(z)$	the (annual) of the state of th
Final value theorem	$x(\infty) = \underset{n \to \infty}{\text{Lt}} x(n) = \underset{z \to 1}{\text{Lt}} (z-1) X(z),$	$\frac{(1-1)^2-\lambda_1-\nu_1!}{(1-\lambda_1)}$ (1-1)
11	If $(1 - z^{-1})$ has no pole on or outside the unit circle	Own out a

Note: The initial value theorem and the final value theorem hold true only for causal signals. ||u|| > |u| > |u|

Table B.7 Some Common Z-transform Pairs

	Sequence x(n)	Z-transform X(z)	ROC effects
1.	$\delta(n)$	1	All z
	u(n)	$z/(z-1) = 1/(1-z^{-1})$	z >1
3.	u(-n)	$\frac{1}{1-z} = -\frac{1}{z-1} = -\frac{z^{-1}}{1-z^{-1}}$	z <1
4.	u(-n-1)	$z/(z-1)=1/(1-z^{-1})$	z <1
	u(-n-2)	$z^2/(z-1)$	z <1
6.	u(-n-k)	$z^k/(z-1)$	z <1
	$\delta(n-k)$	z-4	All z except at $z = 0$ (if $k > 0$) All z except at $z = \infty$ (if $k < 0$)
8.	a" u (n)	$(z/(z-a)) = 1/(1-az^{-1})$	z > a
9.	$-a^n u(-n)$	al(z-a)	2 < a
10.	$-a^nu(-n-1)$	$z/(z-a) = 1/(1-az^{-1})$	z < a
11.	nu (n)	$-z/(z-1)^2 = -[z^{-1}/(1-z^{-1})^2]$	z > 1
12.	na" u (n)	$az/(z-a)^2 = az^{-1}/(1-az^{-1})^2$	z > a
13.	$-na^{n}u(-n-1)$	$az/(z-a)^2 = az^{-1}/(1-az^{-1})^2$	z < a
	$e^{-j\omega n}u(n)$	$z/(z-e^{-j\omega})=1/(1-z^{-1}e^{-j\omega})$	z > 1
	cos wn u(n)	$\frac{z(z-\cos\omega)}{z^2-2z\cos\omega+1} = \frac{1-z^{-1}\cos\omega}{1-2z^{-1}\cos\omega+z^{-2}}$	z > 1
16.	sin wnu(n)	$\frac{z \sin \omega}{z^2 - 2z \cos \omega + 1} = \frac{z^{-1} \sin \omega}{1 - 2z^{-1} \cos \omega + z^{-2}}$	z > 1
17.	a ⁿ cos ωn u(n)	$\frac{z(z - a\cos\omega)}{z^2 - 2az\cos\omega + a^2} = \frac{1 - z^{-1}a\cos\omega}{1 - 2az^{-1}\cos\omega + a^2z}$	z > a
18.	a ⁿ sin ωn u(n)	$\frac{az\sin\omega}{z^2 - 2az\cos\omega + a^2} = \frac{az^{-1}\sin\omega}{1 - 2az^{-1}\cos\omega + a^2z^{-2}}$	z > a
19.	$(n+1)a^nu(n)$	$z^2/(z-a)^2 = 1/(1-az^{-1})^2$	z > a
20.	-nu(-n-1)	$z/(z-1)^2 = z^{-1}/(1-z^{-1})^2$	z < 1
	na* u(n)	$z/(z-a)^2$	z > a
	$[n(n-1)a^{n-2}u(n)]/2!$		z > a
23.	$\frac{n(n-1)[n-(k-2)]}{(k-1)!}$	$\frac{ a^{n-k+1} u(n) }{ u(n) } u(z-a)^k$	z > a
	1/n, n > 0	$-\ln(1-z^{-1})$	z > 1
25.	nka", k<0	az 1 1 – az	··· z < a
26.	a ^h for all n	$(1-a^2)/[(1-az)(1-az^{-1})]$	a < z < 1/a