REVIEW PROBLEMS FOR EXAM 3

(Note that all problems are odd-numbered problems from the textbook, so the answers are in the back of the book.)

Antiderivatives

Find the most general antiderivative of the following functions:

3.7.3
$$f(x) = 7x^{\frac{2}{5}} + 8x^{-\frac{4}{5}}$$

3.7.5
$$f(x) = 3\sqrt{x} - 2\sqrt[3]{x}$$

3.7.11
$$f(x) = 2 \sec t \tan t + \frac{1}{2} t^{-\frac{1}{2}}$$

3.7.15
$$f(x) = \frac{x^5 - x^4 + 2x}{x^4}$$

- **3.7.19** Find the most general form of f where $f''(t) = \frac{2}{3}x^{\frac{2}{3}}$.
- **3.7.21** Find the most general form of f where $f'''(t) = \cos t$.
- **3.7.31** Find f where $f''(\theta) = \sin \theta + \cos \theta$, f(0) = 3, and f'(0) = 4.

3.7.31 Find
$$f$$
 where $f''(x) = \frac{1}{x^2}$, $x > 0$, $f(1) = 0$, and $f(2) = 0$.

3.7.41 A particle is moving with acceleration $a(t) = 10 \sin t + 3 \cos t$, such that s(0) = 0 and $s(2\pi) = 12$. Find the position function s(t).

Integration with Riemann sums

Note that the following formulas will be provided on the exam:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

- **4.2.15** Express $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1-x_i^2}{4+x_i^2} \Delta x$ on the interval [2,6] as a definite integral.
- **4.2.17** Express $\lim_{n\to\infty}\sum_{i=1}^n \left(5(x_i^*)^3 4x_i^*\right) \Delta x$ on the interval [2,7] as a definite integral.
- **4.2.19** Evaluate $\int_2^5 (4-2x) dx$ using the definition of a definite integral, i.e., with a Riemann sum.

4.2.21 Evaluate $\int_{-2}^{0} (x^2 + x) dx$ using the definition of a definite integral, i.e., with a Riemann sum.

4.2.23 Evaluate $\int_0^1 (x^3 - 3x^2) dx$ using the definition of a definite integral, i.e., with a Riemann sum.

Evaluate the following integrals by interpreting them as areas of regions under curves and then using basic geometry.

4.2.31
$$\int_{-2}^{1} (1-x) \, dx$$

4.2.35
$$\int_{-2}^{1} |x| \, dx$$

Integration with the evaluation theorem

4.3.3
$$\int_{-2}^{0} \left(\frac{1}{2} t^4 + \frac{1}{4} t^3 - t \right) dt$$

4.3.7
$$\int_0^{\pi} (4\sin\theta - 3\cos\theta) \ d\theta$$

4.3.11
$$\int_0^1 x \left(\sqrt[3]{x} + \sqrt[4]{x} \right) dx$$

4.3.21
$$\int_{1}^{64} \frac{1 + \sqrt[3]{x}}{\sqrt{x}} dx$$

4.3.41
$$\int x\sqrt{x}\,dx$$

4.3.43
$$\int (x^2 + x^{-2}) dx$$

4.3.45
$$\int (u+4)(2u+1) du$$

Fundamental theorem of calculus

4.4.5 Evaluate
$$\frac{d}{dx} \int_{1}^{x} \frac{1}{t^3 + 1} dt$$
.

4.4.7 Evaluate
$$\frac{d}{dx} \int_{5}^{s} (t - t^2)^8 dt$$
.

4.4.9 Evaluate
$$\frac{d}{dx} \int_2^{\frac{1}{x}} \sin^4 t \, dt$$
.

4.4.11 Evaluate
$$\frac{d}{dx} \int_0^{\tan x} \sqrt{t + \sqrt{t}} dt$$
.

4.4.15 Find the average value of
$$g(x) = \sqrt[3]{x}$$
 on the interval [1, 8].

4.4.17 Find the average value of
$$g(x) = \cos x$$
 on the interval $\left[0, \frac{\pi}{2}\right]$.

Substitution rule (u-substitution)

4.5.7
$$\int (1-2x)^9 dx$$

4.5.15
$$\int \frac{a + bx^2}{\sqrt{3ax + bx^3}} \, dx$$

4.5.19
$$\int (x^2+1)(x^3+3x)^4 dx$$

$$4.5.21 \quad \int \frac{\cos x}{\sin x} \, dx$$

$$4.5.21 \quad \int \sec^3 x \tan x \, dx$$

4.5.31
$$\int_0^1 \cos \frac{\pi t}{2} dt$$

4.5.35
$$\int_0^{\pi} \sec^2 \frac{t}{4} dt$$

4.5.41
$$\int_{\frac{1}{2}}^{1} \frac{\cos x^{-2}}{x^3} dx$$

4.5.43
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^3 + x^4 \tan x) \, dx$$