# 딥러닝 시작하기

CNN 기본 및 활용

# 목차

- ▶ 01 기본 이해
- ▶ 02 합성곱 연산 패딩
- ▶ 03 합성곱 신경망 요약
- ▶ 04 Data Augmentaion(데이터 증식)을 알아보기
- ▶ 05 사전 훈련된 네트워크 알아보기
- ▶ 06 사전 훈련 네트워크 종류 몇 가지
- ▶ 07 사전 훈련된 네트워크를 사용하는 두가지 방법

## 01 기본 이해

#### ▶ 채널, Channel

- 이미지 픽셀 하나하나는 실수, 컬러 사진은 천연색을 표현하기 위해 각 픽셀을 RGB 3개의 실수로 표현한 3차원 데이터. 컬러 이미지는 3개의 채널로 구성.

#### ▶ 필터(Filter)

- 필터는 이미지의 특징을 찾아내기 위한 공용 파라미터. Filter를 Kernel이라고도 한다.
- CNN에서 학습의 대상은 필터 파라미터가 된다.

# 00 기본 이해

- ▶ 스트라이드, stride
- 필터를 적용하는 간격의 크기 stride라 함.

- ► feature map, activation map
- 필터를 적용해서 얻어진 결과를 말함.

# 00 기본 이해

- ▶ 패딩(padding)
- 특성맵 이미지가 줄어드는 것을 막기 위해 고안된 방법

- ▶ 특성맵 이미지의 크기를 유지하기 위해 고안된 방법
- ► Convolution Filter를 통과하면 Input 이미지가 작아진다. 단, Padding을 이용하여 그대로 유지가 가능하다.
- ▶ Edge쪽 픽셀 정보를 잘 이용하기 위한 방법
  - (1) 컨볼루션 레이어를 적용할 때, 이미지 주변의 픽셀이 많이 사용되지 않아, 손실되는 경향이 있다.

▶ 컨볼루션 레이어를 적용할 때, 이미지 주변의 픽셀이 많이 사용되지 않아, 손실되는 경향이 있다.



▶ 컨볼루션 레이어를 적용할 때, 이미지 주변의 픽셀이 많이 사용되지 않아, 손실되는 경향이 있다.



- ▶ 일반적으로 3 x 3의 필터는 zero pad 1
- ▶ 일반적으로 5 x 5의 필터는 zero pad 2
- ▶ 일반적으로 7 x 7의 필터는 zero pad 3
- ▶ Padding 지정
  - (1) Valid Padding : padding을 하지 않음.
  - (2) Same Padding: output image가 input image와 크기가 동일

# 03 합성곱 신경망(Convolutional Neural Network, CNN) 요약



# 04 Data Augmentaion(데이터 증식)을 알아보기

- (1) 컴퓨터 비전에서 과대 적합을 줄이기 위한 강력한 방법.
- (2) 데이터 증식은 기존 훈련 샘플로부터 더 많은 훈련 데이터를 생성하는 방법입니다.
- (3) 그럴듯한 이미지를 생성하도록 여러가지 랜덤 변환(각도, 좌우변환 등)을 적용하여 샘플을 늘린다.
- (4) 케라스에서는 ImageDataGenerator 클래스를 사용.

## 04 사전 훈련된 네트워크 알아보기

- (1) 작은 이미지 데이터 셋에서 딥러닝을 적용하는 일반적이고 매우 효과적인 방법.
- (2) 사전 훈련된 네트워크(pretrained network)는 일반적으로 대규모 이미지 분류 문제를 위해 대량의 데이터셋에서 미리 훈련되어 저장된 네트워크
- (3) 1400만개의 레이블된 이미지와 1000개의 클래스로 이루어진 데이터셋(ImageNet)

# 05 사전 훈련 네트워크 몇 가지

- (1) VGG
- (2) ResNet
- (3) Inception-ResNet
- (4) Xception

\* Keras에서는 keras.applications 모듈에서 임포트가 가능.

## 06 사전 훈련된 네트워크를 사용하는 두가지 방법

#### (1) 특성 추출(feature extraction)

사전에 학습된 네트워크의 표현을 사용하여 새로운 샘플에서 흥미로운 특성을 뽑아낸다. 즉, 합성곱 기반층은 사전 훈련 네트워크 가중치를 이용하고 분류기 부분을 훈련 시킨다.

#### (2) 미세 조정(fine tuning)

미세 조정은 특성 추출에 사용했던 동결 모델의 상위 층 몇 개를 동결에서 해제하고 모델에 새로 추가한 층과 함께 훈련하는 것.