

# Zynq-7000 All Programmable SoC (XC7Z010 and XC7Z020): DC and AC Switching Characteristics

DS187 (v1.2) September 12, 2012

**Advance Product Specification** 

## Introduction

The Zynq<sup>™</sup>-7000 All Programmable SoCs are available in -3, -2, and -1 speed grades, with -3 having the highest performance. Zynq-7000 device DC and AC characteristics are specified in commercial, extended, and industrial temperature ranges. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices are available in the extended or industrial temperature range.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications.

This Zynq-7000 AP SoC (XC7Z010 and XC7Z020) data sheet, part of an overall set of documentation on the Zynq-7000 AP SoCs, is available on the Xilinx website at <a href="https://www.xilinx.com/zynq">www.xilinx.com/zynq</a>. All specifications are subject to change without notice.

## DC Characteristics

Table 1: Absolute Maximum Ratings(1)

| Symbol                                | Description                                                                          | Min  | Max                    | Units |
|---------------------------------------|--------------------------------------------------------------------------------------|------|------------------------|-------|
| Processing Sys                        | stem (PS)                                                                            |      |                        |       |
| V <sub>CCPINT</sub>                   | PS internal logic supply                                                             | -0.5 | 1.1                    | V     |
| V <sub>CCPAUX</sub>                   | PS auxiliary supply voltage                                                          | -0.5 | 2.0                    | V     |
| V <sub>CCPLL</sub>                    | PS PLL supply                                                                        | -0.5 | 2.0                    | V     |
| V <sub>CCO_DDR</sub>                  | PS DDR I/O supply voltage                                                            | -0.5 | 2.0                    | V     |
| V <sub>CCO_MIO</sub> <sup>(2)</sup>   | PS MIO I/O supply voltage                                                            | -0.5 | 3.6                    | V     |
| V <sub>PREF</sub>                     | PS input reference voltage                                                           | -0.5 | 2.0                    | V     |
| V <sub>PIN</sub> <sup>(3)(4)(5)</sup> | PS DDR and MIO I/O input voltage                                                     | -0.5 | V <sub>CCO</sub> + 0.5 | V     |
|                                       | PS DDR and MIO I/O input voltage for V <sub>REF</sub> and differential I/O standards | -0.5 | 2.625                  | V     |
| Programmable                          | Logic (PL)                                                                           |      |                        |       |
| V <sub>CCINT</sub>                    | PL internal supply voltage                                                           | -0.5 | 1.1                    | V     |
| V <sub>CCAUX</sub>                    | PL auxiliary supply voltage                                                          | -0.5 | 2.0                    | V     |
| V <sub>CCBRAM</sub>                   | PL supply voltage for the block RAM memories                                         | -0.5 | 1.1                    | ٧     |
| V <sub>CCO</sub>                      | PL supply voltage for 3.3V HR I/O banks                                              | -0.5 | 3.6                    | V     |
| V <sub>REF</sub>                      | Input reference voltage                                                              | -0.5 | 2.0                    | V     |
| V <sub>IN</sub> (3)(4)(5)             | I/O input voltage                                                                    | -0.5 | V <sub>CCO</sub> + 0.5 | ٧     |
|                                       | I/O input voltage for V <sub>REF</sub> and differential I/O standards                | -0.5 | 2.625                  | V     |
| V <sub>CCBATT</sub>                   | Key memory battery backup supply                                                     | -0.5 | 2.0                    | ٧     |

<sup>©</sup> Copyright 2011–2012 Xilinx, Inc. Xilinx, the Xilinx logo, Zynq, Virtex, Artix, Kintex, Spartan, ISE, Vivado and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, Cortex-A9, CoreSight, Cortex, PrimeCell, ARM Powered, and ARM Connected Partner are trademarks of ARM Ltd. All other trademarks are the property of their respective owners.



## Table 1: Absolute Maximum Ratings(1) (Cont'd)

| Symbol             | Description                                                               | Min  | Max  | Units |
|--------------------|---------------------------------------------------------------------------|------|------|-------|
| XADC               |                                                                           |      |      |       |
| V <sub>CCADC</sub> | XADC supply relative to GNDADC                                            | -0.5 | 2.0  | V     |
| V <sub>REFP</sub>  | XADC reference input relative to GNDADC                                   | -0.5 | 2.0  | V     |
| Temperature        |                                                                           | ·    |      |       |
| T <sub>STG</sub>   | Storage temperature (ambient)                                             | -65  | 150  | °C    |
| T <sub>SOL</sub>   | Maximum soldering temperature for Pb/Sn component bodies <sup>(7)</sup>   | _    | +220 | °C    |
|                    | Maximum soldering temperature for Pb-free component bodies <sup>(7)</sup> | _    | +260 | °C    |
| T <sub>j</sub>     | Maximum junction temperature <sup>(7)</sup>                               | _    | +125 | °C    |

- Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
- 2. Applies to both MIO supply banks  $V_{\rm CCO\_MIO0}$  and  $V_{\rm CCO\_MIO1}$ .
- 3. The lower absolute voltage specification always applies.
- 4. For I/O operation, refer to <u>UG471</u>, 7 Series FPGAs SelectIO Resources User Guide or <u>UG585</u>, Zynq-7000 All Programmable SoC Technical Reference Manual.
- 5. The maximum limit applies to DC and AC signals.
- 6. For maximum undershoot and overshoot AC specifications, see Table 4.
- 7. For soldering guidelines and thermal considerations, see UG865, Zynq-7000 All Programmable SoC Packaging and Pinout Specification.

Table 2: Recommended Operating Conditions(1)

| Symbol                              | Description                                                                                         | Min   | Тур  | Max                     | Units |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|-------|------|-------------------------|-------|
| PS                                  |                                                                                                     |       |      |                         |       |
| V <sub>CCPINT</sub>                 | PS internal supply voltage                                                                          | 0.95  | 1.00 | 1.05                    | V     |
| V <sub>CCPAUX</sub>                 | PS auxiliary supply voltage                                                                         | 1.71  | 1.80 | 1.89                    | V     |
| V <sub>CCPLL</sub>                  | PS PLL supply                                                                                       | 1.71  | 1.80 | 1.89                    | V     |
| V <sub>CCO_DDR</sub>                | PS DDR I/O supply voltage                                                                           | 1.14  |      | 1.89                    | V     |
| V <sub>CCO_MIO</sub> <sup>(2)</sup> | PS MIO I/O supply voltage for MIO banks                                                             | 1.71  | _    | 3.465                   | V     |
| V <sub>PIN</sub> <sup>(3)</sup>     | PS DDR and MIO I/O input voltage                                                                    | -0.20 | _    | V <sub>CCO</sub> + 0.20 | V     |
|                                     | PS DDR and MIO I/O input voltage for V <sub>REF</sub> and differential I/O standards                | -0.20 | _    | 2.625                   | V     |
| PL                                  |                                                                                                     | 1     | 1    |                         |       |
| V <sub>CCINT</sub>                  | PL internal supply voltage                                                                          | 0.95  | 1.00 | 1.05                    | V     |
| V <sub>CCAUX</sub>                  | PL auxiliary supply voltage                                                                         | 1.71  | 1.80 | 1.89                    | V     |
| V <sub>CCBRAM</sub>                 | PL block RAM supply voltage                                                                         | 0.95  | 1.00 | 1.05                    | V     |
| V <sub>CCO</sub> <sup>(4)(5)</sup>  | PL supply voltage for 3.3V HR I/O banks                                                             | 1.14  | _    | 3.465                   | V     |
| V (3)                               | I/O input voltage                                                                                   | -0.20 | _    | V <sub>CCO</sub> + 0.20 | V     |
| V <sub>IN</sub> (3)                 | I/O input voltage for V <sub>REF</sub> and differential I/O standards                               | -0.20 | _    | 2.625                   | V     |
| I <sub>IN</sub> <sup>(6)</sup>      | Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode | -     | _    | 10                      | mA    |
| V <sub>CCBATT</sub> (7)             | Battery voltage                                                                                     | 1.0   | _    | 1.89                    | V     |
| XADC                                |                                                                                                     |       |      | ·                       |       |
| V <sub>CCADC</sub>                  | XADC supply relative to GNDADC                                                                      | 1.71  | 1.80 | 1.89                    | V     |
| V <sub>REFP</sub>                   | Externally supplied reference voltage                                                               | 1.20  | 1.25 | 1.30                    | V     |



## Table 2: Recommended Operating Conditions(1) (Cont'd)

| Symbol      | Description                                                                 | Min | Тур | Max | Units |
|-------------|-----------------------------------------------------------------------------|-----|-----|-----|-------|
| Temperature |                                                                             |     |     |     |       |
|             | Junction temperature operating range for commercial (C) temperature devices | 0   | _   | 85  | °C    |
| Tj          | Junction temperature operating range for extended (E) temperature devices   | 0   | _   | 100 | °C    |
|             | Junction temperature operating range for industrial (I) temperature devices | -40 | _   | 100 | °C    |

- 1. All voltages are relative to ground. The PL and PS share a common ground.
- 2. Applies to both MIO supply banks  $V_{CCO\ MIO0}$  and  $V_{CCO\ MIO1}$ .
- The lower absolute voltage specification always applies.
- 4. Configuration data is retained even if  $V_{\mbox{\footnotesize CCO}}$  drops to 0V.
- 5. Includes V<sub>CCO</sub> of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 6. A total of 200 mA per PS or PL bank should not be exceeded.
- 7. V<sub>CCBATT</sub> is required only when using bitstream encryption. If battery is not used, connect V<sub>CCBATT</sub> to either ground or V<sub>CCAUX</sub>.

Table 3: DC Characteristics Over Recommended Operating Conditions

| Symbol                              | Description                                                                                                                                                                          | Min  | Typ <sup>(1)</sup> | Max | Units |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|-----|-------|
| V <sub>DRINT</sub>                  | Data retention V <sub>CCINT</sub> voltage (below which configuration data might be lost)                                                                                             | 0.75 | -                  | -   | V     |
| $V_{DRI}$                           | Data retention V <sub>CCAUX</sub> voltage (below which configuration data might be lost)                                                                                             | 1.5  | -                  | _   | ٧     |
| I <sub>REF</sub>                    | V <sub>REF</sub> leakage current per pin                                                                                                                                             | _    | _                  | 15  | μΑ    |
| IL                                  | Input or output leakage current per pin (sample-tested)                                                                                                                              | _    | _                  | 15  | μΑ    |
| C <sub>IN</sub> <sup>(2)</sup>      | Die input capacitance at the pad                                                                                                                                                     | _    | -                  | 8   | pF    |
|                                     | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 3.3V                                                                                                          | 90   | _                  | 330 | μΑ    |
|                                     | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 2.5V                                                                                                          | 68   | -                  | 250 | μΑ    |
| I <sub>RPU</sub>                    | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 1.8V                                                                                                          | 34   | _                  | 220 | μΑ    |
|                                     | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 1.5V                                                                                                          | 23   | _                  | 150 | μA    |
|                                     | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V, V <sub>CCO</sub> = 1.2V                                                                                                          | 12   | _                  | 120 | μΑ    |
| . (3)                               | Pad pull-down (when selected) @ V <sub>IN</sub> = 3.3V                                                                                                                               | 68   | -                  | 330 | μA    |
| I <sub>RPD</sub> <sup>(3)</sup>     | Pad pull-down (when selected) @ V <sub>IN</sub> = 1.8V                                                                                                                               | 45   | _                  | 180 | μA    |
| I <sub>CCADC</sub>                  | Analog supply current, analog circuits in powered up state                                                                                                                           | _    | _                  | 25  | mA    |
| I <sub>BATT</sub> <sup>(4)</sup>    | Battery supply current                                                                                                                                                               | _    | _                  | 150 | nA    |
|                                     | Thevenin equivalent resistance of programmable input termination to V <sub>CCO</sub> /2 (UNTUNED_SPLIT_40) for commercial (C), industrial (I), and extended (E) temperature devices. | 28   | 40                 | 55  | Ω     |
| R <sub>IN_TERM</sub> <sup>(5)</sup> | Thevenin equivalent resistance of programmable input termination to V <sub>CCO</sub> /2 (UNTUNED_SPLIT_50) for commercial (C), industrial (I), and extended (E) temperature devices. | 35   | 50                 | 65  | Ω     |
|                                     | Thevenin equivalent resistance of programmable input termination to V <sub>CCO</sub> /2 (UNTUNED_SPLIT_60) for commercial (C), industrial (I), and extended (E) temperature devices. | 44   | 60                 | 83  | Ω     |



## Table 3: DC Characteristics Over Recommended Operating Conditions (Cont'd)

| Symbol | Description                         | Min | Typ <sup>(1)</sup> | Max | Units |
|--------|-------------------------------------|-----|--------------------|-----|-------|
| n      | Temperature diode ideality factor   | _   | 1.010              | _   | _     |
| r      | Temperature diode series resistance | _   | 2                  | _   | Ω     |

#### Notes:

- 1. Typical values are specified at nominal voltage, 25°C.
- 2. This measurement represents the die capacitance at the pad, not including the package.
- 3. The PS MIO pins do not have pull-down resistors.
- 4. Maximum value specified for worst case process at 25°C.
- 5. Termination resistance to a V<sub>CCO</sub>/2 level.

Table 4: Maximum Allowed AC Voltage Overshoot and Undershoot for PS I/O and 3.3V HR I/O Banks(1)

| AC Voltage Overshoot    | % of UI @-40°C to 100°C | AC Voltage Undershoot | % of UI @-40°C to 100°C |
|-------------------------|-------------------------|-----------------------|-------------------------|
| V <sub>CCO</sub> + 0.40 | 100                     | -0.40                 | 100                     |
| V <sub>CCO</sub> + 0.45 | 100                     | -0.45                 | 61.7                    |
| V <sub>CCO</sub> + 0.50 | 100                     | -0.50                 | 25.8                    |
| V <sub>CCO</sub> + 0.55 | 100                     | -0.55                 | 11.0                    |
| V <sub>CCO</sub> + 0.60 | 46.6                    | -0.60                 | 4.77                    |
| V <sub>CCO</sub> + 0.65 | 21.2                    | -0.65                 | 2.10                    |
| V <sub>CCO</sub> + 0.70 | 9.75                    | -0.70                 | 0.94                    |
| V <sub>CCO</sub> + 0.75 | 4.55                    | -0.75                 | 0.43                    |
| V <sub>CCO</sub> + 0.80 | 2.15                    | -0.80                 | 0.20                    |
| V <sub>CCO</sub> + 0.85 | 1.02                    | -0.85                 | 0.09                    |
| V <sub>CCO</sub> + 0.90 | 0.49                    | -0.90                 | 0.04                    |
| V <sub>CCO</sub> + 0.95 | 0.24                    | -0.95                 | 0.02                    |

## Notes:

1. A total of 200 mA per bank should not be exceeded.



Table 5: Typical Quiescent Supply Current

| Cumbal               | Description                                      | Davies  |    | Speed Grade | 9   | Unite                            |
|----------------------|--------------------------------------------------|---------|----|-------------|-----|----------------------------------|
| Symbol               | Description                                      | Device  | -3 | -2          | -1  | - Units                          |
|                      | DC quiescent V supply surrent                    | XC7Z010 |    | 152         | 152 | mA<br>mA<br>mA<br>mA<br>mA<br>mA |
| ICCPINTQ             | PS quiescent V <sub>CCPINT</sub> supply current  | XC7Z020 |    | 152         | 152 | mA                               |
| I <sub>CCPAUXQ</sub> | DC quiaggent V gunnly gurrent                    | XC7Z010 |    | 13          | 13  | mA                               |
|                      | PS quiescent V <sub>CCPAUX</sub> supply current  | XC7Z020 |    | 13          | 13  | mA                               |
| I <sub>CCDDRQ</sub>  | DO minarativ                                     | XC7Z010 |    | 2           | 2   | mA                               |
|                      | PS quiescent V <sub>CCO_DDR</sub> supply current | XC7Z020 |    | 2           | 2   | mA                               |
|                      | Di minanat V                                     | XC7Z010 |    | 49          | 49  | mA                               |
| ICCINTQ              | PL quiescent V <sub>CCINT</sub> supply current   | XC7Z020 |    | 112         | 112 | mA                               |
|                      | Di minanat V                                     | XC7Z010 |    | 10          | 10  | mA                               |
| ICCAUXQ              | PL quiescent V <sub>CCAUX</sub> supply current   | XC7Z020 |    | 21          | 21  | mA                               |
|                      | Di minanat V                                     | XC7Z010 |    | 1           | 1   | mA                               |
| Iccoq                | PL quiescent V <sub>CCO</sub> supply current     | XC7Z020 |    | 1           | 1   | mA                               |
|                      | Di guiagant V                                    | XC7Z010 |    | 3           | 3   | mA                               |
| ICCBRAMQ             | PL quiescent V <sub>CCBRAM</sub> supply current  | XC7Z020 |    | 6           | 6   | mA                               |

- 1. Typical values are specified at nominal voltage, 85°C junction temperatures (T<sub>i</sub>) with single-ended SelectIO resources.
- 2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- 3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at <a href="http://www.xilinx.com/power">http://www.xilinx.com/power</a>) to calculate static power consumption for conditions other than those specified.



## **PS Power-On/Off Power Supply Requirements**

The recommended power-on sequence is  $V_{CCPINT}$ ,  $V_{CCPAUX}$  and  $V_{CCPLL}$  together, then the PS  $V_{CCO}$  supplies ( $V_{CCO\_MIOO}$ ,  $V_{CCO\_MIO1}$ , and  $V_{CCO\_DDR}$ ) to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If  $V_{CCPAUX}$ ,  $V_{CCPLL}$  and the PS  $V_{CCO}$  supplies ( $V_{CCO\_MIO0}$ ,  $V_{CCO\_MIO1}$ , and  $V_{CCO\_DDR}$ ) have the same recommended voltage levels, then they can be powered by the same supply and ramped simultaneously. Xilinx recommends powering  $V_{CCPLL}$  with the same supply as  $V_{CCPAUX}$ , with an optional ferrite bead filter.

For  $V_{CCO\_MIO0}$  and  $V_{CCO\_MIO1}$  voltages of 3.3V:

- The voltage difference between V<sub>CCO\_MIO0</sub> /V<sub>CCO\_MIO1</sub> and V<sub>CCPAUX</sub> must not exceed 2.625V for longer than T<sub>VCCO2VCCAUX</sub> for each power-on/off cycle to maintain device reliability levels.
- The T<sub>VCCO2VCCAUX</sub> time can be allocated in any percentage between the power-on and power-off ramps.

## **PS Power-on Reset**

The PS provides the power on reset bar (PS\_POR\_B) input signal which must be held Low until all PS power supplies are stable and within operating limits. Additionally, PS\_POR\_B must be held Low until PS\_CLK is stable for 2,000 clocks.

## PL Power-On/Off Power Supply Sequencing

The recommended power-on sequence for the PL is  $V_{CCINT}$ ,  $V_{CCBRAM}$ ,  $V_{CCAUX}$ , and  $V_{CCO}$  to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If  $V_{CCINT}$  and  $V_{CCBRAM}$  have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If  $V_{CCAUX}$  and  $V_{CCO}$  have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously.

For V<sub>CCO</sub> voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V<sub>CCO</sub> and V<sub>CCAUX</sub> must not exceed 2.625V for longer than T<sub>VCCO2VCCAUX</sub> for each power-on/off cycle to maintain device reliability levels.
- The T<sub>VCCO2VCCAUX</sub> time can be allocated in any percentage between the power-on and power-off ramps.

# **PS—PL Power Sequencing**

The PS and PL power supplies are fully independent. There are no sequencing requirements between the PS ( $V_{CCPINT}$ ,  $V_{CCPAUX}$ ,  $V_{CCO_DDR}$ ,  $V_{CCO_MIO0}$ , and  $V_{CCO_MIO1}$ ) and PL ( $V_{CCINT}$ ,  $V_{CCBRAM}$ ,  $V_{CCAUX}$ ,  $V_{CCO}$ , and  $V_{CCADC}$ ) power supplies.

# **Power Supply and PS Reset Requirements**

Table 6 shows the minimum current, in addition to  $I_{CCQ}$ , that is required by Zynq-7000 devices for proper power-on and configuration. If the current minimums shown in Table 5 and Table 6 are met, the device powers on after all five supplies have passed through their power-on reset threshold voltages. The Zynq-7000 device must not be configured until after  $V_{CCINT}$  is applied. Once initialized and configured, use the Xilinx Power Estimator (XPE) tools to estimate current drain on these supplies.

Table 6: Power-On Current for Zyng-7000 Devices(1)

| Device  | I <sub>CCPINTMIN</sub> Typ <sup>(2)</sup> | I <sub>CCPAUXMIN</sub> Typ <sup>(2)</sup> | I <sub>CCDDRMIN</sub> Typ <sup>(2)</sup> | I <sub>CCINTMIN</sub> Typ <sup>(2)</sup> | I <sub>CCAUXMIN</sub> Typ <sup>(2)</sup> | I <sub>CCOMIN</sub> Typ <sup>(2)</sup> | I <sub>CCBRAMMIN</sub> Typ <sup>(2)</sup> | Units |
|---------|-------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------|-------|
| XC7Z010 |                                           |                                           |                                          |                                          |                                          |                                        |                                           | mA    |
| XC7Z020 | I <sub>CCPINTQ</sub> + 70                 | I <sub>CCPAUXQ</sub> + 40                 | I <sub>CCDDRQ</sub> + 100                | I <sub>CCINTQ</sub> + 70                 | I <sub>CCAUXQ</sub> + 40                 | I <sub>CCOMINQ</sub> + 90              | I <sub>CCBRAMQ</sub> + 40                 | mA    |

- Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.
- Typical values are specified at nominal voltage, 25°C.



Table 7: Power Supply Ramp Time

| Symbol                    | Description                                                                     | Conditions                 | Min | Max | Units |
|---------------------------|---------------------------------------------------------------------------------|----------------------------|-----|-----|-------|
| V <sub>CCPINT</sub>       | PS internal supply voltage relative to GND                                      |                            | 0.2 | 50  | ms    |
| V <sub>CCPAUX</sub>       | PS auxiliary supply voltage relative to GND                                     |                            | 0.2 | 50  | ms    |
| V <sub>CCO_DDR</sub>      | PS DDR supply voltage relative to GND                                           |                            | 0.2 | 50  | ms    |
| V <sub>CCO_MIO</sub>      | PS MIO banks supply voltage relative to GND                                     |                            | 0.2 | 50  | ms    |
| T <sub>VCCINT</sub>       | PL ramp time from GND to 90% of V <sub>CCINT</sub>                              |                            | 0.2 | 50  | ms    |
| T <sub>VCCO</sub>         | PL ramp time from GND to 90% of V <sub>CCO</sub>                                |                            | 0.2 | 50  | ms    |
| T <sub>VCCAUX</sub>       | PL ramp time from GND to 90% of V <sub>CCAUX</sub>                              |                            | 0.2 | 50  | ms    |
| T <sub>VCCBRAM</sub>      | PL ramp time from GND to 90% of V <sub>CCBRAM</sub>                             |                            | 0.2 | 50  | ms    |
| т                         | Allowed time per power cycle for V <sub>CCO</sub> – V <sub>CCAUX</sub> > 2.625V | $T_j = 100^{\circ}C^{(1)}$ | _   | 500 | me    |
| T <sub>VCCO2</sub> VCCAUX | and V <sub>CCO_MIO</sub> - V <sub>CCPAUX</sub> > 2.625V                         | $T_j = 85^{\circ}C^{(1)}$  | _   | 800 | ms    |

# **DC Input and Output Levels**

Values for  $V_{IL}$  and  $V_{IH}$  are recommended input voltages. Values for  $I_{OL}$  and  $I_{OH}$  are guaranteed over the recommended operating conditions at the  $V_{OL}$  and  $V_{OH}$  test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum  $V_{CCO}$  with the respective  $V_{OL}$  and  $V_{OH}$  voltage levels shown. Other standards are sample tested.

Table 8: PS Input and Output Levels(1)

| Bank  | Rank I/O    |        | V <sub>IL</sub>           |                           | V <sub>IH</sub>              | V <sub>OL</sub>                 | V <sub>OH</sub>                 | I <sub>OL</sub> | I <sub>OH</sub> |
|-------|-------------|--------|---------------------------|---------------------------|------------------------------|---------------------------------|---------------------------------|-----------------|-----------------|
| Dalik | Standard    | V, Min | V, Max                    | V, Min                    | V, Max                       | V, Max                          | V, Min                          | mA              | mA              |
| MIO   | LVCMOS18(2) | -0.300 | 35% V <sub>CCO</sub>      | 65% V <sub>CCO</sub>      | $V_{CCO\_MIO} + 0.300$       | 0.450                           | V <sub>CCO_MIO</sub> - 0.450    | 8               | -8              |
| MIO   | LVCMOS25(3) | -0.300 | 0.700                     | 1.700                     | $V_{CCO\_MIO} + 0.300$       | 0.400                           | V <sub>CCO_MIO</sub> - 0.400    | 8               | -8              |
| MIO   | LVCMOS33(3) | -0.300 | 0.800                     | 2.000                     | 3.450                        | 0.400                           | V <sub>CCO_MIO</sub> - 0.400    | 8               | -8              |
| MIO   | HSTL_I_18   | -0.300 | V <sub>PREF</sub> – 0.100 | V <sub>PREF</sub> + 0.100 | $V_{CCO\_MIO} + 0.300$       | 0.400                           | V <sub>CCO_MIO</sub> - 0.400    | 8               | -8              |
| MIO   | LVTTL       | -0.300 | 0.800                     | 2.000                     | 3.450                        | 0.400                           | 2.400                           | 8               | -8              |
| DDR   | SSTL18_I    | -0.300 | V <sub>PREF</sub> – 0.125 | V <sub>PREF</sub> + 0.125 | $V_{CCO\_DDR} + 0.300$       | V <sub>CCO_DDR</sub> /2 - 0.470 | V <sub>CCO_DDR</sub> /2 + 0.470 | 8               | -8              |
| DDR   | SSTL15      | -0.300 | V <sub>PREF</sub> – 0.100 | V <sub>PREF</sub> + 0.100 | V <sub>CCO_DDR</sub> + 0.300 | V <sub>CCO_DDR</sub> /2 - 0.175 | V <sub>CCO_DDR</sub> /2 + 0.175 | 13.0            | -13.0           |
| DDR   | HSUL_12     | -0.300 | V <sub>PREF</sub> – 0.130 | V <sub>PREF</sub> + 0.130 | V <sub>CCO_DDR</sub> + 0.300 | 20% V <sub>CCO_DDR</sub>        | 80% V <sub>CCO_DDR</sub>        | 0.1             | -0.1            |

- 1. Tested according to relevant specifications.
- 2. With bank  $V_{MODE}$  pin connected to  $V_{CCO}$  for the bank.
- 3. With bank  $V_{MODE}$  pin connected to GND for the bank.

Based on 240,000 power cycles with nominal V<sub>CCO</sub> of 3.3V or 36,500 power cycles with worst case V<sub>CCO</sub> of 3.465V.



Table 9: SelectIO DC Input and Output Levels(1)(2)

| I/O Standard |        | V <sub>IL</sub>          | V <sub>II</sub>          | Н                        | V <sub>OL</sub>             | V <sub>OH</sub>             | I <sub>OL</sub> | I <sub>OH</sub> |
|--------------|--------|--------------------------|--------------------------|--------------------------|-----------------------------|-----------------------------|-----------------|-----------------|
| I/O Standard | V, Min | V, Max                   | V, Min                   | V, Max                   | V, Max                      | V, Min                      | mA              | mA              |
| HSTL_I       | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> – 0.400    | 8.00            | -8.00           |
| HSTL_I_12    | -0.300 | V <sub>REF</sub> - 0.080 | V <sub>REF</sub> + 0.080 | V <sub>CCO</sub> + 0.300 | 25% V <sub>CCO</sub>        | 75% V <sub>CCO</sub>        | 6.30            | -6.30           |
| HSTL_I_18    | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 8.00            | -8.00           |
| HSTL_II      | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 16.00           | -16.00          |
| HSTL_II_18   | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 16.00           | -16.00          |
| HSUL_12      | -0.300 | V <sub>REF</sub> – 0.130 | V <sub>REF</sub> + 0.130 | V <sub>CCO</sub> + 0.300 | 20% V <sub>CCO</sub>        | 80% V <sub>CCO</sub>        | 0.10            | -0.10           |
| LVCMOS12     | -0.300 | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | Note 3          | Note 3          |
| LVCMOS15     | -0.300 | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 25% V <sub>CCO</sub>        | 75% V <sub>CCO</sub>        | Note 4          | Note 4          |
| LVCMOS18     | -0.300 | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | $V_{CCO} + 0.300$        | 0.450                       | V <sub>CCO</sub> - 0.450    | Note 5          | Note 5          |
| LVCMOS25     | -0.300 | 0.7                      | 1.700                    | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | Note 4          | Note 4          |
| LVCMOS33     | -0.300 | 0.8                      | 2.000                    | 3.450                    | 0.400                       | V <sub>CCO</sub> - 0.400    | Note 4          | Note 4          |
| LVTTL        | -0.300 | 0.8                      | 2.000                    | 3.450                    | 0.400                       | 2.400                       | Note 5          | Note 5          |
| MOBILE_DDR   | -0.300 | 20% V <sub>CCO</sub>     | 80% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 10% V <sub>CCO</sub>        | 90% V <sub>CCO</sub>        | 0.10            | -0.10           |
| PCl33_3      | -0.500 | 30% V <sub>CCO</sub>     | 50% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.500 | 10% V <sub>CCO</sub>        | 90% V <sub>CCO</sub>        | 1.50            | -0.50           |
| SSTL12       | -0.300 | V <sub>REF</sub> - 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2 - 0.150 | V <sub>CCO</sub> /2 + 0.150 | 14.25           | -14.25          |
| SSTL135      | -0.300 | V <sub>REF</sub> - 0.090 | V <sub>REF</sub> + 0.090 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2 - 0.150 | V <sub>CCO</sub> /2 + 0.150 | 13.00           | -13.00          |
| SSTL135_R    | -0.300 | V <sub>REF</sub> - 0.090 | V <sub>REF</sub> + 0.090 | $V_{CCO} + 0.300$        | V <sub>CCO</sub> /2 - 0.150 | V <sub>CCO</sub> /2 + 0.150 | 8.90            | -8.90           |
| SSTL15       | -0.300 | V <sub>REF</sub> - 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2 - 0.175 | V <sub>CCO</sub> /2 + 0.175 | 13.00           | -13.00          |
| SSTL15_R     | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2 – 0.175 | V <sub>CCO</sub> /2 + 0.175 | 8.90            | -8.90           |
| SSTL18_I     | -0.300 | V <sub>REF</sub> – 0.125 | V <sub>REF</sub> + 0.125 | $V_{CCO} + 0.300$        | V <sub>CCO</sub> /2 - 0.470 | $V_{CCO}/2 + 0.470$         | 8.00            | -8.00           |
| SSTL18_II    | -0.300 | V <sub>REF</sub> – 0.125 | V <sub>REF</sub> + 0.125 | $V_{CCO} + 0.300$        | V <sub>CCO</sub> /2 - 0.600 | $V_{CCO}/2 + 0.600$         | 13.40           | -13.40          |

- 1. Tested according to relevant specifications.
- 2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.
- 3. Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.
- 4. Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.
- 5. Supported drive strengths of 4, 8, 12, 16, or 24 mA in HR I/O banks.
- 6. For detailed interface specific DC voltage levels, see UG471: 7 Series FPGAs SelectIO Resources User Guide.

Table 10: Differential SelectIO DC Input and Output Levels

| I/O Standard | I/O Standard |        |                    | V <sub>ID</sub> <sup>(2)</sup> |        |        | V <sub>OCM</sub> (3)    |                         |                         | V <sub>OD</sub> <sup>(4)</sup> |        |        |
|--------------|--------------|--------|--------------------|--------------------------------|--------|--------|-------------------------|-------------------------|-------------------------|--------------------------------|--------|--------|
| i/O Standard | V, Min       | V, Typ | V, Max             | V, Min                         | V, Typ | V, Max | V, Min                  | V, Typ                  | V, Max                  | V, Min                         | V, Typ | V, Max |
| BLVDS_25     | 0.300        | 1.200  | 1.425              | 0.100                          | -      | -      | -                       | 1.250                   | -                       |                                | Note 5 |        |
| MINI_LVDS_25 | 0.300        | 1.200  | V <sub>CCAUX</sub> | 0.200                          | 0.400  | 0.600  | 1.000                   | 1.200                   | 1.400                   | 0.300                          | 0.450  | 0.600  |
| PPDS_25      | 0.200        | 0.900  | $V_{CCAUX}$        | 0.100                          | 0.250  | 0.400  | 0.500                   | 0.950                   | 1.400                   | 0.100                          | 0.250  | 0.400  |
| RSDS_25      | 0.300        | 0.900  | 1.500              | 0.100                          | 0.350  | 0.600  | 1.000                   | 1.200                   | 1.400                   | 0.100                          | 0.350  | 0.600  |
| TMDS_33      | 2.700        | 2.965  | 3.230              | 0.150                          | 0.675  | 1.200  | V <sub>CCO</sub> -0.405 | V <sub>CCO</sub> -0.300 | V <sub>CCO</sub> -0.190 | 0.400                          | 0.600  | 0.800  |

- 1.  $V_{ICM}$  is the input common mode voltage.
- 2.  $V_{ID}$  is the input differential voltage  $(Q-\overline{Q})$ .
- 3. V<sub>OCM</sub> is the output common mode voltage.
- 4.  $V_{OD}$  is the output differential voltage  $(Q-\overline{Q})$ .
- 5.  $V_{OD}$  for BLVDS will vary significantly depending on topology and loading.



Table 11: Complementary Differential SelectIO DC Input and Output Levels

| I/O Standard    |        | V <sub>ICM</sub> <sup>(1)</sup> |        | VII   | o <sup>(2)</sup> | V <sub>OL</sub> (3)           | V <sub>OH</sub> <sup>(4)</sup> | l <sub>OL</sub> | I <sub>OH</sub> |
|-----------------|--------|---------------------------------|--------|-------|------------------|-------------------------------|--------------------------------|-----------------|-----------------|
| i/O Standard    | V, Min | V,Typ                           | V, Max | V,Min | V, Max           | V, Max                        | V, Min                         | mA, Max         | mA, Min         |
| DIFF_HSTL_I     | 0.300  | 0.750                           | 1.125  | 0.100 | _                | 0.400                         | V <sub>CCO</sub> -0.400        | 8.00            | -8.00           |
| DIFF_HSTL_I_18  | 0.300  | 0.900                           | 1.425  | 0.100 | _                | 0.400                         | V <sub>CCO</sub> -0.400        | 8.00            | -8.00           |
| DIFF_HSTL_II    | 0.300  | 0.750                           | 1.125  | 0.100 | _                | 0.400                         | V <sub>CCO</sub> -0.400        | 16.00           | -16.00          |
| DIFF_HSTL_II_18 | 0.300  | 0.900                           | 1.425  | 0.100 | _                | 0.400                         | V <sub>CCO</sub> -0.400        | 16.00           | -16.00          |
| DIFF_HSUL_12    | 0.300  | 0.600                           | 0.850  | 0.100 | _                | 20% V <sub>CCO</sub>          | 80% V <sub>CCO</sub>           | 0.100           | -0.100          |
| DIFF_MOBILE_DDR | 0.300  | 0.900                           | 1.425  | 0.100 | _                | 10% V <sub>CCO</sub>          | 90% V <sub>CCO</sub>           | 0.100           | -0.100          |
| DIFF_SSTL12     | 0.300  | 0.600                           | 0.850  | 0.100 | _                | (V <sub>CCO</sub> /2) - 0.150 | $(V_{CCO}/2) + 0.150$          | 14.25           | -14.25          |
| DIFF_SSTL135    | 0.300  | 0.675                           | 1.000  | 0.100 | _                | $(V_{CCO}/2) - 0.150$         | $(V_{CCO}/2) + 0.150$          | 13.0            | -13.0           |
| DIFF_SSTL135_R  | 0.300  | 0.675                           | 1.000  | 0.100 | _                | $(V_{CCO}/2) - 0.150$         | $(V_{CCO}/2) + 0.150$          | 8.9             | -8.9            |
| DIFF_SSTL15     | 0.300  | 0.750                           | 1.125  | 0.100 | _                | (V <sub>CCO</sub> /2) - 0.175 | $(V_{CCO}/2) + 0.175$          | 13.0            | -13.0           |
| DIFF_SSTL15_R   | 0.300  | 0.750                           | 1.125  | 0.100 | _                | $(V_{CCO}/2) - 0.175$         | $(V_{CCO}/2) + 0.175$          | 8.9             | -8.9            |
| DIFF_SSTL18_I   | 0.300  | 0.900                           | 1.425  | 0.100 | _                | $(V_{CCO}/2) - 0.470$         | $(V_{CCO}/2) + 0.470$          | 8.00            | -8.00           |
| DIFF_SSTL18_II  | 0.300  | 0.900                           | 1.425  | 0.100 | _                | $(V_{CCO}/2) - 0.600$         | $(V_{CCO}/2) + 0.600$          | 13.4            | -13.4           |

- 1. V<sub>ICM</sub> is the input common mode voltage.
- 2.  $V_{ID}$  is the input differential voltage  $(Q-\overline{Q})$ .
- 3.  $V_{OL}$  is the single-ended low-output voltage.
- 4. V<sub>OH</sub> is the single-ended high-output voltage.

Table 12: LVDS\_25 DC Specifications(1)

| Symbol             | DC Parameter                                                                                                            | Conditions                                             | Min   | Тур  | Max   | Units |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|------|-------|-------|
| V <sub>CCO</sub>   | Supply voltage                                                                                                          |                                                        | 2.38  | 2.5  | 2.63  | V     |
| V <sub>OH</sub>    | Output High voltage for Q and Q                                                                                         | $R_T = 100 \Omega$ across Q and $\overline{Q}$ signals | _     | _    | 1.675 | V     |
| V <sub>OL</sub>    | Output Low voltage for Q and Q                                                                                          | $R_T = 100 \Omega$ across Q and $\overline{Q}$ signals | 0.700 | _    | _     | V     |
| V <sub>ODIFF</sub> | Differential output voltage $(Q - \overline{Q})$ , $Q = \text{High } (\overline{Q} - Q)$ , $\overline{Q} = \text{High}$ | $R_T = 100 \Omega$ across Q and $\overline{Q}$ signals | 247   | 350  | 600   | mV    |
| V <sub>OCM</sub>   | Output common-mode voltage                                                                                              | $R_T = 100 \Omega$ across Q and $\overline{Q}$ signals | 1.00  | 1.25 | 1.425 | V     |
| V <sub>IDIFF</sub> | Differential input voltage $(Q - \overline{Q})$ , $Q = \text{High } (\overline{Q} - Q)$ , $\overline{Q} = \text{High}$  |                                                        | 100   | 350  | 600   | mV    |
| V <sub>ICM</sub>   | Input common-mode voltage                                                                                               |                                                        | 0.3   | 1.2  | 1.425 | V     |

## Notes:

1. For detailed interface specific DC voltage levels, see <u>UG471</u>: 7 Series FPGAs SelectIO Resources User Guide.



# **AC Switching Characteristics**

All values represented in this data sheet are based on the advance speed specifications in ISE® Design Suite 14.2 v1.02 for the -3, -2, and -1 speed grades.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

## Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

## **Preliminary Product Specification**

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

## **Production Product Specification**

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

## **Testing of AC Switching Characteristics**

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Zyng-7000 devices.

# **Speed Grade Designations**

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 13 correlates the current status of each Zynq-7000 device on a per speed grade basis.

Table 13: Zyng-7000 Device Speed Grade Designations

| Device  | Speed Grade Designations |             |            |  |  |  |  |
|---------|--------------------------|-------------|------------|--|--|--|--|
| Device  | Advance                  | Preliminary | Production |  |  |  |  |
| XC7Z010 | -3, -2, -1               |             |            |  |  |  |  |
| XC7Z020 | -3, -2, -1               |             |            |  |  |  |  |



## **Production Silicon and ISE Software Status**

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 14 lists the production released Zynq-7000 device, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 14: Zyng-7000 Device Production Software and Speed Specification Release

| Device  | Speed Grade Designations |    |    |  |  |  |
|---------|--------------------------|----|----|--|--|--|
| Device  | -3                       | -2 | -1 |  |  |  |
| XC7Z010 |                          |    |    |  |  |  |
| XC7Z020 |                          |    |    |  |  |  |

#### Notes:

1. Blank entries indicate a device and/or speed grade in advance or preliminary status.



# **PS Performance Characteristics**

For further design requirement details, refer to UG585, Zynq-7000 All Programmable SoC Technical Reference Manual.

Table 15: CPU Clock Domains Performance

| Symbol                        | Clock Ratio | Description                    | 9   | Speed Grade |     |       |  |
|-------------------------------|-------------|--------------------------------|-----|-------------|-----|-------|--|
|                               | CIOCK HALIO | Description                    | -3  | -2          | -1  | Units |  |
| F <sub>CPU_6X4X_621_MAX</sub> |             | Maximum CPU clock frequency    | 800 | 733         | 667 | MHz   |  |
| F <sub>CPU_3X2X_621_MAX</sub> | 6:2:1       | Maximum CPU_3X clock frequency | 400 | 367         | 333 | MHz   |  |
| F <sub>CPU_2X_621_MAX</sub>   | _           | Maximum CPU_2X clock frequency | 267 | 244         | 222 | MHz   |  |
| F <sub>CPU_1X_621_MAX</sub>   |             | Maximum CPU_1X clock frequency | 133 | 122         | 111 | MHz   |  |

## Table 16: PS DDR Clock Domains Performance

| Symbol                    | Description                          | 9    | Units |      |       |
|---------------------------|--------------------------------------|------|-------|------|-------|
| Symbol                    | Description                          | -3   | -2    | -1   | Units |
| F <sub>DDR3_MAX</sub>     | Maximum DDR3 interface performance   | 1066 | 1066  | 1066 | Mb/s  |
| F <sub>DDR2_MAX</sub>     | Maximum DDR2 interface performance   | 800  | 800   | 800  | Mb/s  |
| F <sub>LPDDR2_MAX</sub>   | Maximum LPDDR2 interface performance | 800  | 800   | 800  | Mb/s  |
| F <sub>DDRCLK_2XMAX</sub> | Maximum DDR_2X clock frequency       | 444  | 408   | 355  | MHz   |

# **PS Switching Characteristics**

## **Clocks and Resets**

Table 17: PS Reference Clock Input Requirements

| Symbol                 | Description                         | Min | Тур | Max | Units |
|------------------------|-------------------------------------|-----|-----|-----|-------|
| T <sub>JT_PS_CLK</sub> | PS reference clock jitter tolerance |     |     |     | ps    |
| T <sub>DC_PS_CLK</sub> | PS reference clock duty cycle       | 40  |     | 60  | %     |
| F <sub>PS_CLK</sub>    | PS reference clock frequency        | 30  |     | 60  | MHz   |

## Table 18: PS PLL Switching Characteristics

| Symbol                  | Description                  | 9    | Units |      |       |
|-------------------------|------------------------------|------|-------|------|-------|
|                         | Description                  | -3   | -2    | -1   | Onits |
| T <sub>LOCK_PSPLL</sub> | PLL maximum lock time        | 60   | 60    | 60   | μs    |
| F <sub>PSPLL_MAX</sub>  | PLL maximum output frequency | 2000 |       | 1600 | MHz   |
| F <sub>PSPLL_MIN</sub>  | PLL minimum output frequency | 780  | 780   | 780  | MHz   |

## Table 19: PS Reset Requirements

| Symbol                 | Description                                                                                | S    | peed Grad | Units |                           |
|------------------------|--------------------------------------------------------------------------------------------|------|-----------|-------|---------------------------|
|                        | Description                                                                                | -3   | -2        | -1    |                           |
| T <sub>PSPOR_MIN</sub> | Minimum reference clock cycles at power-on before deassertion of PS_POR_B <sup>(1)</sup> . | 2000 | 2000      | 2000  | Reference Clock<br>Cycles |
| T <sub>PSRST_MIN</sub> | PS_SRST_B reset minimum assertion period.                                                  | 2000 | 2000      | 2000  | Reference Clock<br>Cycles |

#### Notes:

1. PS\_POR\_B needs to be asserted low until PS supply voltages reach minimum levels and the PS\_CLK input is stable.



Table 20: PS Mode Pins Sampling Timing

| Symbol                     | Description                                                                                     | S  | peed Grad | Units |                           |
|----------------------------|-------------------------------------------------------------------------------------------------|----|-----------|-------|---------------------------|
|                            | Description                                                                                     | -3 | -2        | -1    | Office                    |
| T <sub>PSPORMODE_MIN</sub> | Minimum reference clock cycles from PS_POR_B pin deassertion to when the mode pins are sampled. | 50 | 50        | 50    | Reference Clock<br>Cycles |

# **Memory Interfaces**

Figure 1 through Figure 4 show the timing parameters specified in Table 21.



Figure 1: Command Latch Timing Diagram



Figure 2: Address Latch Timing Diagram



Figure 3: Data Input Cycle Timing Diagram



Figure 4: Data Output Cycle Timing Diagram

Table 21: ONFI Interface Switching Characteristics(1)(2)(3)

| Symbol                 | Description              | Min  | Max | Units |
|------------------------|--------------------------|------|-----|-------|
| T <sub>ONFICLEWE</sub> | NAND_CLE setup time      | 10.0 |     | ns    |
| T <sub>ONFIWECLE</sub> | NAND_CLE hold time       | 5.0  |     | ns    |
| T <sub>ONFICSWE</sub>  | NAND_CE_B setup time     | 15.0 |     | ns    |
| T <sub>ONFIWECS</sub>  | NAND_CE_B hold time      | 5.0  |     | ns    |
| T <sub>ONFIWP</sub>    | NAND_WE_B pulse width    | 10.0 |     | ns    |
| T <sub>ONFIWH</sub>    | NAND_WE_B high hold time | 7.0  |     | ns    |
| T <sub>ONFIALEWE</sub> | NAND_ALE setup time      | 10.0 |     | ns    |



Table 21: ONFI Interface Switching Characteristics(1)(2)(3) (Cont'd)

| Symbol                 | Description                   | Min  | Max  | Units |
|------------------------|-------------------------------|------|------|-------|
| T <sub>ONFIWEALE</sub> | NAND_ALE hold time            | 5.0  |      | ns    |
| T <sub>ONFIRC</sub>    | Read cycle duration           | 20.0 |      | ns    |
| T <sub>ONFIRR</sub>    | Ready to NAND_RE_B Low        | 20.0 |      | ns    |
| T <sub>ONFICEA</sub>   | NAND_CE_B access time         |      | 25.0 | ns    |
| T <sub>ONFIREA</sub>   | NAND_RE_B access time         |      | 16.0 | ns    |
| T <sub>ONFIRHZ</sub>   | NAND_RE_B High to Hi-Z        |      | 100  | ns    |
| T <sub>ONFIRHCH</sub>  | NAND_RE_B High to output hold | 15.0 |      | ns    |
| T <sub>ONFIWC</sub>    | Write cycle duration          | 20.0 |      | ns    |
| T <sub>ONFIRP</sub>    | NAND_RE_B pulse duration      | 10.0 |      | ns    |
| T <sub>ONFIREH</sub>   | NAND_RE_B high hold time      | 7.0  |      | ns    |
| T <sub>ONFIIOWE</sub>  | NAND_IO setup time            | 7.0  |      | ns    |
| T <sub>ONFIWEIO</sub>  | NAND_IO hold time             | 5.0  |      | ns    |

- 1. Refer to UG585: Zynq-7000 All Programmable SoC Technical Reference Manual for static memory controller programming information.
- 2. The static memory controller is compatible with the Open NAND Flash Interface Specification rev 1.0.
- 3. The static memory controller supports ONFI timing mode 5.

Table 22: Parallel NOR FLASH/SRAM Interface Asynchronous Mode Switching Characteristics

| Symbol              | Description                  | Min | Max | Units |
|---------------------|------------------------------|-----|-----|-------|
| T <sub>SRAMRC</sub> | Read cycle duration          | 8   | 100 | ns    |
| T <sub>SRAMOE</sub> | SRAM/NOR_OE pulse duration   | 4   | 25  | ns    |
| T <sub>SRAMWC</sub> | Write cycle duration         | 8   | 100 | ns    |
| T <sub>SRAMWP</sub> | SRAM/NOR_WE_B pulse duration | 6.5 | 30  | ns    |

## Notes:

1. Refer to UG585: Zynq-7000 All Programmable SoC Technical Reference Manual for static memory controller programming information.



Figure 5: Quad-SPI Interface Timing Diagram



Table 23: Quad-SPI Interface Switching Characteristics

| Symbol                    | Description                        | Min | Max       | Units |
|---------------------------|------------------------------------|-----|-----------|-------|
| Feedback Clock            | Enabled                            |     |           |       |
| T <sub>QSPICKO1</sub>     | Data and slave select output delay |     | 3.0       | ns    |
| T <sub>QSPIDCK1</sub>     | Input data setup time              | 1.5 |           | ns    |
| T <sub>QSPICKD1</sub>     | Input data hold time               | 1.0 |           | ns    |
| T <sub>DCQSPICLK1</sub>   | Quad-SPI clock duty cycle          | 40  | 60        | %     |
| F <sub>QSPICLK1</sub>     | Quad-SPI device clock frequency    |     | 100(1)(2) | MHz   |
| Feedback Clock            | Disabled                           |     |           |       |
| T <sub>QSPICKO2</sub>     | Data and slave select output delay |     | 3.0       | ns    |
| T <sub>QSPIDCK2</sub>     | Input data setup time              | 8.9 |           | ns    |
| T <sub>QSPICKD2</sub>     | Input data hold time               | 1.1 |           | ns    |
| T <sub>DCQSPICLK2</sub>   | Quad-SPI clock duty cycle          | 40  | 60        | %     |
| F <sub>QSPICLK2</sub>     | Quad-SPI device clock frequency    |     | 40(1)     | MHz   |
| Feedback Clock            | Enabled or Disabled                |     | -         |       |
| F <sub>QSPI_REF_CLK</sub> | Quad-SPI reference clock frequency | _   | 200       | MHz   |

- 1. Single and dual stacked Quad-SPI memory configurations only.
- 2. Requires appropriate component selection/board design.

# I/O Peripherals



Figure 6: ULPI Interface Timing Diagram

Table 24: ULPI Interface Clock Receiving Mode Switching Characteristics

| Symbol               | Description                             | Min   | Max   | Units |
|----------------------|-----------------------------------------|-------|-------|-------|
| T <sub>ULPIDCK</sub> | Input setup to ULPI clock, all inputs   | 10.67 |       | ns    |
| T <sub>ULPICKD</sub> | Input hold to ULPI clock, all inputs    | 1.0   |       | ns    |
| T <sub>ULPICKO</sub> | ULPI clock to output valid, all outputs |       | 8.86  | ns    |
| F <sub>ULPICLK</sub> | ULPI reference clock frequency          | 59.97 | 60.03 | MHz   |



Figure 7: RGMII Interface Timing Diagram

Table 25: RGMII Interface Switching Characteristics(1)(2)(3)

| Symbol                    | Description                                     | Min  | Тур | Max | Units |
|---------------------------|-------------------------------------------------|------|-----|-----|-------|
| T <sub>DCGETXCLK</sub>    | Transmit clock duty cycle                       |      |     |     | %     |
| T <sub>GEMTXCKO</sub>     | RGMII_TX_D[3:0], RGMII_TX_CTL clock to out time | -0.5 |     |     | ns    |
| T <sub>GEMRXDCK</sub>     | RGMII_RX_D[3:0], RGMII_RX_CTL setup time        | 0.41 |     |     | ns    |
| T <sub>GEMRXCKD</sub>     | RGMII_RX_D[3:0], RGMII_RX_CTL hold time         | 0.45 |     |     | ns    |
| T <sub>MDIOCLK</sub>      | MDC output clock period                         | 400  |     |     | ns    |
| T <sub>MDIOCKH</sub>      | MDC clock High time                             | 160  |     |     | ns    |
| T <sub>MDIOCKL</sub>      | MDC clock Low time                              | 160  |     |     | ns    |
| T <sub>MDIODCK</sub>      | MDIO input data setup time                      | 100  |     |     | ns    |
| T <sub>MDIOCKD</sub>      | MDIO input data hold time                       | 0    |     |     | ns    |
| T <sub>MDIOCKO</sub>      | MDIO data output delay                          |      |     | 10  | ns    |
| F <sub>GETXCLK</sub>      | RGMII_TX_CLK transmit clock frequency           |      | 125 |     | MHz   |
| F <sub>GERXCLK</sub>      | RGMII_RX_CLK receive clock frequency            | -    |     | 125 | MHz   |
| F <sub>ENET_REF_CLK</sub> | Ethernet reference clock frequency              | -    |     | 125 | MHz   |

- 1. The gigabit Ethernet MAC is compatible with the IEEE 802.3 standard.
- 2. Values in this table are specified during 1000 Mb/s operation.
- 3. LVCMOS33 is not supported.



Figure 8: SD/SDIO Interface Timing Diagram

Table 26: SD/SDIO Interface Full/High Speed Mode Switching Characteristics(1)

| Symbol                    | Description                              | Min  | Max | Units |
|---------------------------|------------------------------------------|------|-----|-------|
| T <sub>DCSDCLK</sub>      | SDIO clock duty cycle                    |      |     | %     |
| T <sub>SDCKO</sub>        | SD clock to out time, all outputs        |      | 12  | ns    |
| T <sub>SDDCK</sub>        | Input setup time to SD clock, all inputs | 3    |     | ns    |
| T <sub>SDCKD</sub>        | Input hold time to SD clock, all inputs  | 1.05 |     | ns    |
| F <sub>SDCLK</sub>        | SDIO device clock frequency              | 25   | 50  | MHz   |
| F <sub>SDIO_REF_CLK</sub> | SDIO reference clock frequency           | -    | 125 | MHz   |

1. The SD/SDIO peripheral interface is compliant with the standard SD host controller specification version 2.0 Part A2 standard.



Figure 9: I2C Fast Mode Interface Timing Diagram

Table 27: I2C Fast Mode Interface Switching Characteristics (1)

| Symbol               | Description                     | Min | Max | Units |
|----------------------|---------------------------------|-----|-----|-------|
| T <sub>I2CFCKL</sub> | I2C{0,1}SCL Low time            | 1.3 |     | μs    |
| T <sub>I2CFCKH</sub> | I2C{0,1}SCL High time           | 0.6 |     | μs    |
| T <sub>I2CFCKO</sub> | I2C{0,1}SDAO clock to out delay |     | 0.9 | μs    |
| T <sub>I2CFDCK</sub> | I2C{0,1}SDAI setup time         | 100 |     | ns    |
| F <sub>I2CFCLK</sub> | I2C{0,1}SCL clock frequency     | 0   | 400 | KHz   |

#### Notes:

1. The I2C peripheral interface is compliant with the I2C-bus specification 2.



Figure 10: I2C Standard Mode Interface Timing Diagram

Table 28: I2C Standard Mode Interface Switching Characteristics

| Symbol               | Description                     | Min | Max  | Units |
|----------------------|---------------------------------|-----|------|-------|
| T <sub>I2CSCKL</sub> | I2C{0,1}SCL Low time            | 4.7 |      | μs    |
| T <sub>I2CSCKH</sub> | I2C{0,1}SCL High time           | 4.0 |      | μs    |
| T <sub>I2CSCKO</sub> | I2C{0,1}SDAO clock to out delay |     | 3.45 | μs    |
| T <sub>I2CSDCK</sub> | I2C{0,1}SDAI setup time         | 250 |      | ns    |
| F <sub>I2CSCLK</sub> | I2C{0,1}SCL clock frequency     | 0   | 100  | KHz   |

1. The I2C peripheral interface is compliant with the I2C-bus specification 2.



Figure 11: SPI Master Mode Interface Timing Diagram

Table 29: SPI Master Mode Interface Switching Characteristics (1)

| Symbol                   | Description                                  | Min | Max | Units |
|--------------------------|----------------------------------------------|-----|-----|-------|
| T <sub>DCMSPICLK</sub>   | SPI master mode clock duty cycle             |     |     | %     |
| T <sub>MSPIDCK</sub>     | Input setup time for SPI{0,1}_MI             |     |     | ns    |
| T <sub>MSPICKD</sub>     | Input hold time for SPI{0,1}_MI              |     |     | ns    |
| T <sub>MSPICKO</sub>     | Output delay for SPI{0,1}_MO and SPI{0,1}_SS |     |     | ns    |
| F <sub>MSPICLK</sub>     | SPI master mode device clock frequency       |     | 44  | MHz   |
| F <sub>SPI_REF_CLK</sub> | SPI reference clock frequency                | -   | 200 | MHz   |

## Notes:

1. These parameters apply to all SPI controllers in the PS.



Figure 12: SPI Slave Mode Interface Timing Diagram

## Table 30: SPI Slave Mode Interface Switching Characteristics (1)

| Symbol                   | Description                           | Min | Max  | Units |
|--------------------------|---------------------------------------|-----|------|-------|
| T <sub>DCSSPICLK</sub>   | SPI slave mode clock duty cycle       |     |      | %     |
| T <sub>SSPIDCK</sub>     | Input setup time for MOSI and SS      |     |      | ns    |
| T <sub>SSPICKD</sub>     | Input hold time for MOSI and SS       |     |      | ns    |
| T <sub>SSPICKO</sub>     | Output delay for MISO                 |     | 15.2 | ns    |
| F <sub>SSPICLK</sub>     | SPI slave mode device clock frequency |     | 25   | MHz   |
| F <sub>SPI_REF_CLK</sub> | SPI reference clock frequency         | _   | 200  | MHz   |

#### Notes:

1. These parameters apply to all SPI controllers in the PS.

## Table 31: CAN Interface Switching Characteristics

| Symbol                   | Description                   | Min | Max | Units |
|--------------------------|-------------------------------|-----|-----|-------|
| T <sub>PWCANRX</sub>     | Minimum receive pulse width   | 1   | _   | μs    |
| T <sub>PWCANTX</sub>     | Minimum transmit pulse width  | 1   | _   | μs    |
| F <sub>CAN REF CLK</sub> | CAN reference clock frequency | _   | 100 | MHz   |

## Table 32: UART Interface Switching Characteristics

| Symbol                    | Description                    | Min | Max | Units |
|---------------------------|--------------------------------|-----|-----|-------|
| BAUD <sub>TXMAX</sub>     | Maximum transmit baud rate     | _   | 1   | Mb/s  |
| BAUD <sub>RXMAX</sub>     | Maximum receive baud rate      | _   | 1   | Mb/s  |
| F <sub>UART_REF_CLK</sub> | UART reference clock frequency | _   | 100 | MHz   |

## Table 33: GPIO Banks Switching Characteristics

| Symbol                | Description                               | Min | Max | Units |
|-----------------------|-------------------------------------------|-----|-----|-------|
| T <sub>PWGPIOHL</sub> | Input low/high pulse width <sup>(1)</sup> | 1   |     | μs    |
| SR <sub>GPIO</sub>    | Output slew rate                          |     |     | V/µs  |

#### Notes:

1. Pulse width requirement for interrupt.



# **Debug and Timer Interfaces**

## Table 34: Trace Interface Switching Characteristics

| Symbol                 | Description                     | Min | Max | Units |
|------------------------|---------------------------------|-----|-----|-------|
| T <sub>TCECKQ</sub>    | Trace databus output delay      |     |     | ns    |
| T <sub>TCECTLCKQ</sub> | Trace port control output delay |     |     | ns    |
| T <sub>DCTCECLK</sub>  | Trace clock duty cycle          | 40  | 60  | %     |
| F <sub>TCECLK</sub>    | Trace clock frequency           |     | 109 | MHz   |

## Table 35: Triple Time Counter Interface Switching Characteristics

| Symbol                 | Description                                 | Min | Max | Units |
|------------------------|---------------------------------------------|-----|-----|-------|
| T <sub>DCTTCOCLK</sub> | Triple time counter output clock duty cycle | 40  | 60  | %     |
| T <sub>DCTTCICLK</sub> | Triple time counter input clock duty cycle  | 40  | 60  | %     |
| F <sub>TTCOCLK</sub>   | Triple time counter output clock frequency  |     |     | MHz   |
| F <sub>TTCICLK</sub>   | Triple time counter input clock frequency   |     |     | MHz   |

## Table 36: Watchdog Timer Interface Switching Characteristics

| Symbol              | Description                          | Min | Max | Units |
|---------------------|--------------------------------------|-----|-----|-------|
| F <sub>WDTCLK</sub> | Watchdog timer input clock frequency |     |     | MHz   |

## **PS-PL Interface**

## Table 37: EMIO Ethernet Switching Characteristics

| Symbol                   | Description                                                         | S    | Units |      |       |
|--------------------------|---------------------------------------------------------------------|------|-------|------|-------|
|                          |                                                                     | -3   | -2    | -1   | Units |
| T <sub>EMIOENETDCK</sub> | EMIO Ethernet signals setup time, all inputs <sup>(1)</sup>         | 0.96 | 1.11  | 1.34 | ns    |
| T <sub>EMIOENETCKD</sub> | EMIO Ethernet signals hold time, all inputs <sup>(1)</sup>          | 0.00 | 0.00  | 0.00 | ns    |
| T <sub>EMIOENETCKO</sub> | EMIO Ethernet signals clock to out time, all outputs <sup>(2)</sup> | 2.11 | 2.58  | 3.29 | ns    |
| F <sub>EMIOGEMCLK</sub>  | EMIO Ethernet maximum MAC frequency                                 | 125  | 125   | 125  | MHz   |

## Notes:

- 1. Reference to EMIOENET#GMIIRXCLK.
- 2. Reference to EMIOENET#GMIITXCLK.

## Table 38: EMIO SPI Switching Characteristics

| Symbol                   | Description                                                    | S  | Units |    |        |
|--------------------------|----------------------------------------------------------------|----|-------|----|--------|
|                          |                                                                | -3 | -2    | -1 | Ullits |
| T <sub>EMIOSPIDCK</sub>  | EMIO SPI signals setup time, all inputs <sup>(1)</sup>         |    |       |    | ns     |
| T <sub>EMIOSPIACKD</sub> | EMIO SPI signals hold time, all inputs <sup>(1)</sup>          |    |       |    | ns     |
| T <sub>EMIOSPICKQ</sub>  | EMIO SPI signals clock to out time, all outputs <sup>(1)</sup> |    |       |    | ns     |
| F <sub>EMIOSPICLK</sub>  | EMIO SPI maximum frequency                                     | 25 | 25    | 25 | MHz    |

## Notes:

1. Reference to EMIOSPI#SCLK.



Table 39: EMIO SD Switching Characteristics

| Symbol                  | Description                                                   | S    | Units |      |        |
|-------------------------|---------------------------------------------------------------|------|-------|------|--------|
|                         |                                                               | -3   | -2    | -1   | Ullits |
| T <sub>EMIOSDDCK</sub>  | EMIO SD signals setup time, all inputs <sup>(1)</sup>         | 0.40 | 0.46  | 0.55 | ns     |
| T <sub>EMIOSDACKD</sub> | EMIO SD signals hold time, all inputs <sup>(1)</sup>          | 0.12 | 0.29  | 0.54 | ns     |
| T <sub>EMIOSDCKQ</sub>  | EMIO SD signals clock to out time, all outputs <sup>(1)</sup> |      |       |      | ns     |
| F <sub>EMIOSDCLK</sub>  | EMIO SD maximum frequency                                     | 25   | 25    | 25   | MHz    |

Reference to EMIOSDIO#CLKFB.

Table 40: EMIO JTAG Switching Characteristics

| Symbol                   | Description                                                     | S    | Units |      |        |
|--------------------------|-----------------------------------------------------------------|------|-------|------|--------|
|                          |                                                                 | -3   | -2    | -1   | Office |
| T <sub>EMIOJTAGDCK</sub> | EMIO JTAG signals setup time, all inputs <sup>(1)</sup>         | 2.02 | 2.36  | 2.87 | ns     |
| T <sub>EMIOJTAGCKD</sub> | EMIO JTAG signals hold time, all inputs <sup>(1)</sup>          | 0.00 | 0.00  | 0.00 | ns     |
| T <sub>EMIOJTAGCKO</sub> | EMIO JTAG signals clock to out time, all outputs <sup>(1)</sup> | 5.01 | 5.85  | 7.12 | ns     |
| F <sub>EMIOJTAGCLK</sub> | EMIO JTAG maximum frequency                                     | 50   | 50    | 50   | MHz    |

## Notes:

1. Reference to EMIOPJTAGTCK.

Table 41: EMIO Trace Packet Output Switching Characteristics

| Symbol                    | Description                                              | Sı   | Unito |      |       |
|---------------------------|----------------------------------------------------------|------|-------|------|-------|
|                           | Description                                              | -3   | -2    | -1   | Units |
| T <sub>EMIOTRACECKO</sub> | EMIO trace clock to out time, all outputs <sup>(1)</sup> | 1.16 | 1.43  | 1.84 | ns    |
| F <sub>EMIOTRACECLK</sub> | EMIO trace maximum frequency                             | 125  | 125   | 125  | MHz   |

#### Notes:

1. Reference to EMIOTRACECLK.

Table 42: Fabric Trace Monitor Switching Characteristics

| Symbol              | Description                                    | S    | Units |      |       |
|---------------------|------------------------------------------------|------|-------|------|-------|
|                     |                                                | -3   | -2    | -1   | Units |
| T <sub>FTMDCK</sub> | Fabric trace monitor setup time <sup>(1)</sup> | 0.58 | 0.72  | 0.92 | ns    |
| T <sub>FTMCKD</sub> | Fabric trace monitor hold time <sup>(1)</sup>  | 0.00 | 0.00  | 0.02 | ns    |
| F <sub>FTMCLK</sub> | Fabric trace monitor maximum frequency         | 125  | 125   | 125  | MHz   |

## Notes:

1. Reference to FTMDTRACEINCLOCK.

Table 43: DMA Peripheral Request Interface Switching Characteristics

| Cumbal                  | Description                                                                            | S    | Units |      |       |
|-------------------------|----------------------------------------------------------------------------------------|------|-------|------|-------|
| Symbol                  |                                                                                        | -3   | -2    | -1   | Units |
| T <sub>EMIODMADCK</sub> | DMA peripheral request interface signals setup time, all inputs <sup>(1)</sup>         | 0.42 | 0.55  | 0.74 | ns    |
| T <sub>EMIODMACKD</sub> | DMA peripheral request interface signals hold time, all inputs <sup>(1)</sup>          | 0.00 | 0.02  | 0.14 | ns    |
| T <sub>EMIODMACKO</sub> | DMA peripheral request interface signals clock to out time, all outputs <sup>(1)</sup> | 1.40 | 1.74  | 2.27 | ns    |
| F <sub>EMIODMACLK</sub> | DMA maximum frequency                                                                  | 100  | 100   | 100  | MHz   |

Reference to DMA#ACLK.

## **AXI Interconnects**

The typical clock frequencies for the AXI interconnects in Table 44 through Table 47 are based on a default system. The PL resources utilized in a system are:

- 70% LUT/flip-flop
- 70% block RAM
- 80% I/Os.

Table 44: Master AXI General Purpose Interfaces Switching Characteristics

| Symbol                 | Description                                                              | S    | Speed Grade |      |       |  |
|------------------------|--------------------------------------------------------------------------|------|-------------|------|-------|--|
|                        |                                                                          | -3   | -2          | -1   | Units |  |
| T <sub>MAXIGPDCK</sub> | Master AXI general purpose port signals setup time <sup>(1)</sup>        | 0.50 | 0.64        | 0.84 | ns    |  |
| T <sub>MAXIGPCKD</sub> | Master AXI general purpose port signals hold time <sup>(1)</sup>         | 0.00 | 0.10        | 0.26 | ns    |  |
| T <sub>MAXIGPCKO</sub> | Master AXI general purpose port signals clock to out time <sup>(1)</sup> | 1.11 | 1.37        | 1.76 | ns    |  |
| F <sub>MAXIGPCLK</sub> | Master AXI general purpose port typical frequency                        |      |             | 150  | MHz   |  |

## Notes:

Reference to M\_AXI\_GP#\_ACLK.

Table 45: Slave General Purpose AXI Interfaces Switching Characteristics

| Symbol                 | Deparintion                                                             | S    | Speed Grade |      |       |  |  |
|------------------------|-------------------------------------------------------------------------|------|-------------|------|-------|--|--|
| Symbol                 | Description                                                             | -3   | -2          | -1   | Units |  |  |
| T <sub>SAXIGPDCK</sub> | Slave AXI general purpose port signals setup time <sup>(1)</sup>        | 0.65 | 0.83        | 1.09 | ns    |  |  |
| T <sub>SAXIGPCKD</sub> | Slave AXI general purpose port signals hold time <sup>(1)</sup>         | 0.00 | 0.01        | 0.19 | ns    |  |  |
| T <sub>SAXIGPCKO</sub> | Slave AXI general purpose port signals clock to out time <sup>(1)</sup> | 1.32 | 1.61        | 2.04 | ns    |  |  |
| F <sub>SAXIGPCLK</sub> | Slave AXI general purpose port typical frequency                        |      |             | 150  | MHz   |  |  |

#### Notes:

1. Reference to S\_AXI\_GP#\_ACLK.

Table 46: Accelerator Coherency Port Slave AXI Interfaces Switching Characteristics

| Symbol                  | Description                                             | S    | Units |      |       |
|-------------------------|---------------------------------------------------------|------|-------|------|-------|
| Symbol                  | Description                                             | -3   | -2    | -1   | Uiils |
| T <sub>SAXIACPDCK</sub> | Slave ACP port signals setup time <sup>(1)</sup>        | 0.57 | 0.68  | 0.85 | ns    |
| T <sub>SAXIACPCKD</sub> | Slave ACP port signals hold time <sup>(1)</sup>         | 0.00 | 0.07  | 0.27 | ns    |
| T <sub>SAXIACPCKO</sub> | Slave ACP port signals clock to out time <sup>(1)</sup> | 1.10 | 1.37  | 1.79 | ns    |
| F <sub>SAXIACPCLK</sub> | Slave ACP port typical frequency                        |      |       |      | MHz   |

Reference to S\_AXI\_ACP\_ACLK.

Table 47: High-Performance Slave AXI Interfaces Switching Characteristics

| Symbol                 | Description                                                              | S    | Speed Grade |      |       |  |  |
|------------------------|--------------------------------------------------------------------------|------|-------------|------|-------|--|--|
| Symbol                 | Description                                                              | -3   | -2          | -1   | Units |  |  |
| T <sub>SAXIHPDCK</sub> | Slave AXI high-performance port signals setup time <sup>(1)</sup>        | 0.61 | 0.79        | 1.05 | ns    |  |  |
| T <sub>SAXIHPCKD</sub> | Slave AXI high-performance port signals hold time <sup>(1)</sup>         | 0.00 | 0.10        | 0.31 | ns    |  |  |
| T <sub>SAXIHPCKO</sub> | Slave AXI high-performance port signals clock to out time <sup>(1)</sup> | 1.07 | 1.34        | 1.73 | ns    |  |  |
| F <sub>SAXIHPCLK</sub> | Slave AXI high-performance port typical frequency                        |      |             | 150  | MHz   |  |  |

#### Notes:

Reference to S\_AXI\_HP#\_ACLK.

# **PL Performance Characteristics**

This section provides the performance characteristics of some common functions and designs implemented in the PL. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the AC Switching Characteristics, page 10.

Table 48: PL Networking Applications Interface Performances

| Description                                                | S    | Units |     |        |
|------------------------------------------------------------|------|-------|-----|--------|
| Description                                                | -3   | -2    | -1  | Office |
| SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)  | 710  | 710   | 625 | Mb/s   |
| DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14) | 1250 | 1250  | 950 | Mb/s   |
| SDR LVDS receiver (SFI-4.1) <sup>(1)</sup>                 | 710  | 710   | 625 | Mb/s   |
| DDR LVDS receiver (SPI-4.2) <sup>(1)</sup>                 | 1250 | 1250  | 950 | Mb/s   |

## Notes:

 LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) algorithms dominate deterministic performance.



## Table 49: PL Maximum Physical Interface (PHY) Rate for Memory Interfaces (CLG Packages)(1)(2)

| Moment Standard |                     | Units |     |       |
|-----------------|---------------------|-------|-----|-------|
| Memory Standard | -3                  | -2    | -1  | Uiils |
| DDR3            | 1066 <sup>(3)</sup> | 800   | 800 | Mb/s  |
| DDR3L           | 800                 | 800   | 667 | Mb/s  |
| DDR2            | 800                 | 800   | 667 | Mb/s  |
| LPDDR2          | 667                 | 667   | 533 | Mb/s  |

- 1. V<sub>REF</sub> tracking is required. For more information, see <u>UG586</u>, 7 Series FPGAs Memory Interface Solutions User Guide.
- 2. When using the internal  $V_{REF}$  the maximum data rate is 800 Mb/s (400 MHz).
- 3. The maximum PHY rate is 800 Mb/s in bank 13 of the XC7Z020 device.



# **PL Switching Characteristics**

## IOB Pad Input/Output/3-State

Table 50 summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard), and 3-state delays.

- T<sub>IOPI</sub> is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer.
- T<sub>IOOP</sub> is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.
- T<sub>IOTP</sub> is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. In HR I/O banks, the IN\_TERM termination turn-on time is always faster than T<sub>IOTP</sub> when the INTERMDISABLE pin is used.

Table 50: 3.3V IOB High Range (HR) Switching Characteristics

|                          |      | T <sub>IOPI</sub> |      |      | T <sub>IOOP</sub> |      |      | T <sub>IOTP</sub> |      |       |
|--------------------------|------|-------------------|------|------|-------------------|------|------|-------------------|------|-------|
| I/O Standard             | Sp   | eed Gra           | de   | Sp   | peed Gra          | de   | Sp   | eed Gra           | de   | Units |
|                          | -3   | -2                | -1   | -3   | -2                | -1   | -3   | -2                | -1   |       |
| LVTTL_S4                 | 1.57 | 1.70              | 1.94 | 5.74 | 6.18              | 6.87 | 5.74 | 6.18              | 6.87 | ns    |
| LVTTL_S8                 | 1.57 | 1.70              | 1.94 | 5.74 | 6.19              | 6.87 | 5.74 | 6.19              | 6.87 | ns    |
| LVTTL_S12                | 1.57 | 1.70              | 1.94 | 4.57 | 4.77              | 5.09 | 4.57 | 4.77              | 5.09 | ns    |
| LVTTL_S16                | 1.57 | 1.70              | 1.94 | 4.54 | 4.75              | 5.08 | 4.54 | 4.75              | 5.08 | ns    |
| LVTTL_S24                | 1.57 | 1.70              | 1.94 | 3.53 | 3.93              | 4.53 | 3.53 | 3.93              | 4.53 | ns    |
| LVTTL_F4                 | 1.57 | 1.70              | 1.94 | 5.75 | 6.13              | 6.69 | 5.75 | 6.13              | 6.69 | ns    |
| LVTTL_F8                 | 1.57 | 1.70              | 1.94 | 5.64 | 6.05              | 6.69 | 5.64 | 6.05              | 6.69 | ns    |
| LVTTL_F12                | 1.57 | 1.70              | 1.94 | 4.45 | 4.65              | 4.96 | 4.45 | 4.65              | 4.96 | ns    |
| LVTTL_F16                | 1.57 | 1.70              | 1.94 | 4.45 | 4.64              | 4.94 | 4.45 | 4.64              | 4.94 | ns    |
| LVTTL_F24                | 1.57 | 1.70              | 1.94 | 2.55 | 3.29              | 4.41 | 2.55 | 3.29              | 4.41 | ns    |
| LVDS_25                  | 0.70 | 0.77              | 0.89 | 1.38 | 1.44              | 1.55 | 1.38 | 1.44              | 1.55 | ns    |
| MINI_LVDS_25             | 0.70 | 0.76              | 0.87 | 1.38 | 1.44              | 1.55 | 1.38 | 1.44              | 1.55 | ns    |
| BLVDS_25                 | 0.70 | 0.77              | 0.91 | 1.91 | 2.07              | 2.32 | 1.91 | 2.07              | 2.32 | ns    |
| RSDS_25 (point to point) | 0.70 | 0.77              | 0.89 | 1.38 | 1.44              | 1.55 | 1.38 | 1.44              | 1.55 | ns    |
| PPDS_25                  | 0.73 | 0.79              | 0.91 | 1.35 | 1.44              | 1.58 | 1.35 | 1.44              | 1.58 | ns    |
| TMDS_33                  | 0.84 | 0.92              | 1.07 | 1.45 | 1.51              | 1.62 | 1.45 | 1.51              | 1.62 | ns    |
| PCl33_3                  | 1.54 | 1.68              | 1.92 | 2.94 | 3.22              | 3.66 | 2.94 | 3.22              | 3.66 | ns    |
| HSUL_12                  | 0.65 | 0.69              | 0.77 | 2.31 | 2.60              | 3.04 | 2.31 | 2.60              | 3.04 | ns    |
| DIFF_HSUL_12             | 0.62 | 0.67              | 0.77 | 1.93 | 2.13              | 2.45 | 1.93 | 2.13              | 2.45 | ns    |
| HSTL_I_S                 | 0.66 | 0.71              | 0.80 | 1.51 | 1.61              | 1.77 | 1.51 | 1.61              | 1.77 | ns    |
| HSTL_II_S                | 0.66 | 0.71              | 0.80 | 1.11 | 1.16              | 1.25 | 1.11 | 1.16              | 1.25 | ns    |
| HSTL_I_18_S              | 0.67 | 0.71              | 0.80 | 1.29 | 1.37              | 1.49 | 1.29 | 1.37              | 1.49 | ns    |
| HSTL_II_18_S             | 0.67 | 0.71              | 0.80 | 1.17 | 1.23              | 1.33 | 1.17 | 1.23              | 1.33 | ns    |
| DIFF_HSTL_I_S            | 0.70 | 0.75              | 0.84 | 1.40 | 1.48              | 1.61 | 1.40 | 1.48              | 1.61 | ns    |
| DIFF_HSTL_II_S           | 0.70 | 0.75              | 0.84 | 1.08 | 1.12              | 1.20 | 1.08 | 1.12              | 1.20 | ns    |
| DIFF_HSTL_I_18_S         | 0.72 | 0.77              | 0.87 | 1.23 | 1.29              | 1.40 | 1.23 | 1.29              | 1.40 | ns    |
| DIFF_HSTL_II_18_S        | 0.72 | 0.77              | 0.87 | 1.07 | 1.11              | 1.20 | 1.07 | 1.11              | 1.20 | ns    |



Table 50: 3.3V IOB High Range (HR) Switching Characteristics (Cont'd)

|                   |      | T <sub>IOPI</sub> |      |      | T <sub>IOOP</sub> |      |      | T <sub>IOTP</sub> |      |       |
|-------------------|------|-------------------|------|------|-------------------|------|------|-------------------|------|-------|
| I/O Standard      | Sp   | peed Gra          | de   | Sr   | peed Gra          | de   | Sp   | peed Gra          | de   | Units |
|                   | -3   | -2                | -1   | -3   | -2                | -1   | -3   | -2                | -1   | -     |
| HSTL_I_F          | 0.66 | 0.71              | 0.80 | 1.07 | 1.13              | 1.24 | 1.07 | 1.13              | 1.24 | ns    |
| HSTL_II_F         | 0.66 | 0.71              | 0.80 | 0.97 | 1.02              | 1.11 | 0.97 | 1.02              | 1.11 | ns    |
| HSTL_I_18_F       | 0.67 | 0.71              | 0.80 | 1.05 | 1.10              | 1.21 | 1.05 | 1.10              | 1.21 | ns    |
| HSTL_II_18_F      | 0.67 | 0.71              | 0.80 | 0.97 | 1.02              | 1.12 | 0.97 | 1.02              | 1.12 | ns    |
| DIFF_HSTL_I_F     | 0.70 | 0.75              | 0.84 | 1.02 | 1.07              | 1.16 | 1.02 | 1.07              | 1.16 | ns    |
| DIFF_HSTL_II_F    | 0.70 | 0.75              | 0.84 | 0.94 | 0.99              | 1.08 | 0.94 | 0.99              | 1.08 | ns    |
| DIFF_HSTL_I_18_F  | 0.72 | 0.77              | 0.87 | 1.01 | 1.06              | 1.15 | 1.01 | 1.06              | 1.15 | ns    |
| DIFF_HSTL_II_18_F | 0.72 | 0.77              | 0.87 | 0.93 | 0.98              | 1.07 | 0.93 | 0.98              | 1.07 | ns    |
| LVCMOS33_S4       | 1.78 | 1.90              | 2.12 | 5.65 | 6.03              | 6.60 | 5.65 | 6.03              | 6.60 | ns    |
| LVCMOS33_S8       | 1.78 | 1.90              | 2.12 | 4.79 | 5.21              | 5.86 | 4.79 | 5.21              | 5.86 | ns    |
| LVCMOS33_S12      | 1.78 | 1.90              | 2.12 | 3.86 | 4.23              | 4.80 | 3.86 | 4.23              | 4.80 | ns    |
| LVCMOS33_S16      | 1.78 | 1.90              | 2.12 | 3.30 | 3.66              | 4.21 | 3.30 | 3.66              | 4.21 | ns    |
| LVCMOS33_F4       | 1.78 | 1.90              | 2.12 | 5.04 | 5.32              | 5.76 | 5.04 | 5.32              | 5.76 | ns    |
| LVCMOS33_F8       | 1.78 | 1.90              | 2.12 | 4.29 | 4.55              | 4.97 | 4.29 | 4.55              | 4.97 | ns    |
| LVCMOS33_F12      | 1.78 | 1.90              | 2.12 | 2.72 | 3.39              | 4.42 | 2.72 | 3.39              | 4.42 | ns    |
| LVCMOS33_F16      | 1.78 | 1.90              | 2.12 | 2.59 | 2.82              | 3.19 | 2.59 | 2.82              | 3.19 | ns    |
| LVCMOS25_S4       | 1.49 | 1.58              | 1.76 | 4.95 | 5.41              | 6.11 | 4.95 | 5.41              | 6.11 | ns    |
| LVCMOS25_S8       | 1.49 | 1.58              | 1.76 | 3.88 | 4.29              | 4.92 | 3.88 | 4.29              | 4.92 | ns    |
| LVCMOS25_S12      | 1.49 | 1.58              | 1.76 | 3.07 | 3.59              | 4.40 | 3.07 | 3.59              | 4.40 | ns    |
| LVCMOS25_S16      | 1.49 | 1.58              | 1.76 | 3.52 | 3.93              | 4.55 | 3.52 | 3.93              | 4.55 | ns    |
| LVCMOS25_F4       | 1.49 | 1.58              | 1.76 | 4.69 | 5.02              | 5.54 | 4.69 | 5.02              | 5.54 | ns    |
| LVCMOS25_F8       | 1.49 | 1.58              | 1.76 | 2.73 | 3.25              | 4.05 | 2.73 | 3.25              | 4.05 | ns    |
| LVCMOS25_F12      | 1.49 | 1.58              | 1.76 | 2.72 | 3.24              | 4.04 | 2.72 | 3.24              | 4.04 | ns    |
| LVCMOS25_F16      | 1.49 | 1.58              | 1.76 | 2.17 | 2.48              | 2.97 | 2.17 | 2.48              | 2.97 | ns    |
| LVCMOS18_S4       | 0.78 | 0.82              | 0.92 | 3.72 | 3.90              | 4.19 | 3.72 | 3.90              | 4.19 | ns    |
| LVCMOS18_S8       | 0.78 | 0.82              | 0.92 | 2.91 | 3.23              | 3.74 | 2.91 | 3.23              | 3.74 | ns    |
| LVCMOS18_S12      | 0.78 | 0.82              | 0.92 | 2.91 | 3.23              | 3.74 | 2.91 | 3.23              | 3.74 | ns    |
| LVCMOS18_S16      | 0.78 | 0.82              | 0.92 | 2.01 | 2.22              | 2.56 | 2.01 | 2.22              | 2.56 | ns    |
| LVCMOS18_S24      | 0.78 | 0.82              | 0.92 | 1.87 | 2.03              | 2.28 | 1.87 | 2.03              | 2.28 | ns    |
| LVCMOS18_F4       | 0.78 | 0.82              | 0.92 | 3.58 | 3.71              | 3.93 | 3.58 | 3.71              | 3.93 | ns    |
| LVCMOS18_F8       | 0.78 | 0.82              | 0.92 | 2.11 | 2.42              | 2.89 | 2.11 | 2.42              | 2.89 | ns    |
| LVCMOS18_F12      | 0.78 | 0.82              | 0.92 | 2.11 | 2.42              | 2.89 | 2.11 | 2.42              | 2.89 | ns    |
| LVCMOS18_F16      | 0.78 | 0.82              | 0.92 | 1.59 | 1.73              | 1.96 | 1.59 | 1.73              | 1.96 | ns    |
| LVCMOS18_F24      | 0.78 | 0.82              | 0.92 | 1.34 | 1.44              | 1.60 | 1.34 | 1.44              | 1.60 | ns    |
| LVCMOS15_S4       | 0.80 | 0.86              | 0.97 | 4.14 | 4.36              | 4.71 | 4.14 | 4.36              | 4.71 | ns    |
| LVCMOS15_S8       | 0.80 | 0.86              | 0.97 | 2.50 | 2.81              | 3.29 | 2.50 | 2.81              | 3.29 | ns    |
| LVCMOS15_S12      | 0.80 | 0.86              | 0.97 | 2.00 | 2.19              | 2.50 | 2.00 | 2.19              | 2.50 | ns    |
| LVCMOS15_S16      | 0.80 | 0.86              | 0.97 | 1.90 | 2.07              | 2.35 | 1.90 | 2.07              | 2.35 | ns    |



Table 50: 3.3V IOB High Range (HR) Switching Characteristics (Cont'd)

|                  |      | T <sub>IOPI</sub> |      |      | T <sub>IOOP</sub> |      |      | T <sub>IOTP</sub> |      |       |
|------------------|------|-------------------|------|------|-------------------|------|------|-------------------|------|-------|
| I/O Standard     | Sp   | oeed Gra          | de   | Sı   | oeed Gra          | de   | Sp   | eed Gra           | de   | Units |
|                  | -3   | -2                | -1   | -3   | -2                | -1   | -3   | -2                | -1   |       |
| LVCMOS15_F4      | 0.80 | 0.86              | 0.97 | 3.96 | 4.15              | 4.46 | 3.96 | 4.15              | 4.46 | ns    |
| LVCMOS15_F8      | 0.80 | 0.86              | 0.97 | 1.84 | 2.06              | 2.41 | 1.84 | 2.06              | 2.41 | ns    |
| LVCMOS15_F12     | 0.80 | 0.86              | 0.97 | 1.43 | 1.54              | 1.73 | 1.43 | 1.54              | 1.73 | ns    |
| LVCMOS15_F16     | 0.80 | 0.86              | 0.97 | 1.39 | 1.50              | 1.67 | 1.39 | 1.50              | 1.67 | ns    |
| LVCMOS12_S4      | 0.90 | 0.95              | 1.07 | 4.66 | 5.03              | 5.60 | 4.66 | 5.03              | 5.60 | ns    |
| LVCMOS12_S8      | 0.90 | 0.95              | 1.07 | 3.17 | 3.62              | 4.31 | 3.17 | 3.62              | 4.31 | ns    |
| LVCMOS12_S12     | 0.90 | 0.95              | 1.07 | 2.31 | 2.60              | 3.04 | 2.31 | 2.60              | 3.04 | ns    |
| LVCMOS12_F4      | 0.90 | 0.95              | 1.07 | 4.11 | 4.38              | 4.80 | 4.11 | 4.38              | 4.80 | ns    |
| LVCMOS12_F8      | 0.90 | 0.95              | 1.07 | 1.97 | 2.56              | 3.47 | 1.97 | 2.56              | 3.47 | ns    |
| LVCMOS12_F12     | 0.90 | 0.95              | 1.07 | 1.62 | 1.79              | 2.05 | 1.62 | 1.79              | 2.05 | ns    |
| SSTL135_S        | 0.66 | 0.69              | 0.77 | 1.10 | 1.15              | 1.25 | 1.10 | 1.15              | 1.25 | ns    |
| SSTL15_S         | 0.66 | 0.71              | 0.80 | 1.10 | 1.15              | 1.24 | 1.10 | 1.15              | 1.24 | ns    |
| SSTL18_I_S       | 0.67 | 0.71              | 0.80 | 1.55 | 1.65              | 1.82 | 1.55 | 1.65              | 1.82 | ns    |
| SSTL18_II_S      | 0.67 | 0.71              | 0.80 | 1.10 | 1.15              | 1.24 | 1.10 | 1.15              | 1.24 | ns    |
| DIFF_SSTL135_S   | 0.64 | 0.71              | 0.83 | 1.10 | 1.15              | 1.25 | 1.10 | 1.15              | 1.25 | ns    |
| DIFF_SSTL15_S    | 0.70 | 0.75              | 0.84 | 1.10 | 1.15              | 1.24 | 1.10 | 1.15              | 1.24 | ns    |
| DIFF_SSTL18_I_S  | 0.72 | 0.77              | 0.87 | 1.51 | 1.60              | 1.76 | 1.51 | 1.60              | 1.76 | ns    |
| DIFF_SSTL18_II_S | 0.72 | 0.77              | 0.87 | 1.06 | 1.11              | 1.19 | 1.06 | 1.11              | 1.19 | ns    |
| SSTL135_F        | 0.66 | 0.69              | 0.77 | 0.98 | 1.03              | 1.13 | 0.98 | 1.03              | 1.13 | ns    |
| SSTL15_F         | 0.66 | 0.71              | 0.80 | 0.97 | 1.02              | 1.12 | 0.97 | 1.02              | 1.12 | ns    |
| SSTL18_I_F       | 0.67 | 0.71              | 0.80 | 1.07 | 1.13              | 1.23 | 1.07 | 1.13              | 1.23 | ns    |
| SSTL18_II_F      | 0.67 | 0.71              | 0.80 | 0.97 | 1.01              | 1.09 | 0.97 | 1.01              | 1.09 | ns    |
| DIFF_SSTL135_F   | 0.64 | 0.71              | 0.83 | 0.98 | 1.03              | 1.13 | 0.98 | 1.03              | 1.13 | ns    |
| DIFF_SSTL15_F    | 0.70 | 0.75              | 0.84 | 0.97 | 1.02              | 1.12 | 0.97 | 1.02              | 1.12 | ns    |
| DIFF_SSTL18_I_F  | 0.72 | 0.77              | 0.87 | 1.03 | 1.08              | 1.18 | 1.03 | 1.08              | 1.18 | ns    |
| DIFF_SSTL18_II_F | 0.72 | 0.77              | 0.87 | 0.94 | 0.98              | 1.07 | 0.94 | 0.98              | 1.07 | ns    |

Table 51 specifies the values of  $T_{IOTPHZ}$  and  $T_{IOIBUFDISABLE}$ .  $T_{IOTPHZ}$  is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state).  $T_{IOIBUFDISABLE}$  is described as the IOB delay from IBUFDISABLE to O output. In HR I/O banks, the internal IN\_TERM termination turn-off time is always faster than  $T_{IOTPHZ}$  when the INTERMDISABLE pin is used.

Table 51: IOB 3-state Output Switching Characteristics

| Symbol                     | Description                                    | •    | Units |      |        |
|----------------------------|------------------------------------------------|------|-------|------|--------|
|                            | Description                                    | -3   | -2    | -1   | Ullits |
| T <sub>IOTPHZ</sub>        | T input to pad high-impedance                  | 2.06 | 2.19  | 2.37 | ns     |
| T <sub>IOIBUFDISABLE</sub> | IBUF turn-on time from IBUFDISABLE to O output | 2.11 | 2.30  | 2.60 | ns     |



# **Input/Output Logic Switching Characteristics**

Table 52: ILOGIC Switching Characteristics

| Compleal                                 | Description                                                  |            | Speed Grade | е          | Units   |
|------------------------------------------|--------------------------------------------------------------|------------|-------------|------------|---------|
| Symbol                                   | Description                                                  | -3         | -2          | -1         | Units   |
| Setup/Hold                               |                                                              |            |             |            | •       |
| T <sub>ICE1CK</sub> /T <sub>ICKCE1</sub> | CE1 pin setup/hold with respect to CLK                       | 0.46/0.01  | 0.51/0.01   | 0.72/0.01  | ns      |
| T <sub>ISRCK</sub> /T <sub>ICKSR</sub>   | SR pin setup/hold with respect to CLK                        | 0.57/-0.15 | 0.66/-0.15  | 1.07/-0.15 | ns      |
| T <sub>IDOCK</sub> /T <sub>IOCKD</sub>   | D pin setup/hold with respect to CLK without Delay           | 0.01/0.25  | 0.02/0.26   | 0.02/0.30  | ns      |
| T <sub>IDOCKD</sub> /T <sub>IOCKDD</sub> | DDLY pin setup/hold with respect to CLK (using IDELAY)       | 0.02/0.25  | 0.02/0.26   | 0.02/0.30  | ns      |
| Combinatorial                            |                                                              |            | 1           | 1          | 1       |
| T <sub>IDI</sub>                         | D pin to O pin propagation delay, no Delay                   | 0.10       | 0.11        | 0.13       | ns      |
| T <sub>IDID</sub>                        | DDLY pin to O pin propagation delay (using IDELAY)           | 0.11       | 0.12        | 0.14       | ns      |
| Sequential Delays                        | 3                                                            |            | 1           | 1          | 1       |
| T <sub>IDLO</sub>                        | D pin to Q1 pin using flip-flop as a latch without Delay     | 0.39       | 0.42        | 0.48       | ns      |
| T <sub>IDLOD</sub>                       | DDLY pin to Q1 pin using flip-flop as a latch (using IDELAY) | 0.39       | 0.42        | 0.49       | ns      |
| T <sub>ICKQ</sub>                        | CLK to Q outputs                                             | 0.50       | 0.54        | 0.63       | ns      |
| T <sub>RQ_ILOGIC</sub>                   | SR pin to OQ/TQ out                                          | 0.91       | 1.02        | 1.25       | ns      |
| T <sub>GSRQ_ILOGIC</sub>                 | Global set/reset to Q outputs                                | 7.60       | 7.60        | 10.51      | ns      |
| Set/Reset                                |                                                              |            |             |            |         |
| T <sub>RPW_ILOGIC</sub>                  | Minimum pulse width, SR inputs                               | 0.64       | 0.74        | 0.74       | ns, Min |

## Table 53: OLOGIC Switching Characteristics

| Combal                                   | Description                               |            | Speed Grad | е          | Unito   |
|------------------------------------------|-------------------------------------------|------------|------------|------------|---------|
| Symbol                                   | Description                               | -3         | -2         | -1         | Units   |
| Setup/Hold                               |                                           | ·          |            |            |         |
| T <sub>ODCK</sub> /T <sub>OCKD</sub>     | D1/D2 pins setup/hold with respect to CLK | 0.64/-0.14 | 0.67/–0.14 | 0.80/-0.14 | ns      |
| T <sub>OOCECK</sub> /T <sub>OCKOCE</sub> | OCE pin setup/hold with respect to CLK    | 0.30/-0.08 | 0.32/0.08  | 0.48/-0.08 | ns      |
| T <sub>OSRCK</sub> /T <sub>OCKSR</sub>   | SR pin setup/hold with respect to CLK     | 0.35/0.12  | 0.41/0.12  | 0.76/0.12  | ns      |
| T <sub>OTCK</sub> /T <sub>OCKT</sub>     | T1/T2 pins setup/hold with respect to CLK | 0.65/-0.14 | 0.69/0.14  | 0.84/-0.14 | ns      |
| T <sub>OTCECK</sub> /T <sub>OCKTCE</sub> | TCE pin setup/hold with respect to CLK    | 0.31/-0.08 | 0.32/0.08  | 0.48/-0.08 | ns      |
| Combinatorial                            |                                           | ·          |            |            |         |
| T <sub>ODQ</sub>                         | D1 to OQ out or T1 to TQ out              | 0.79       | 0.87       | 1.05       | ns      |
| Sequential Delays                        |                                           | ·          |            |            |         |
| T <sub>OCKQ</sub>                        | CLK to OQ/TQ out                          | 0.44       | 0.47       | 0.53       | ns      |
| T <sub>RQ_OLOGIC</sub>                   | SR pin to OQ/TQ out                       | 0.68       | 0.75       | 0.90       | ns      |
| T <sub>GSRQ_OLOGIC</sub>                 | Global set/reset to Q outputs             | 7.60       | 7.60       | 10.51      | ns      |
| Set/Reset                                |                                           | •          |            |            |         |
| T <sub>RPW_OLOGIC</sub>                  | Minimum pulse width, SR inputs            | 0.64       | 0.74       | 0.74       | ns, Min |



# Input Serializer/Deserializer Switching Characteristics

Table 54: ISERDES Switching Characteristics

| Symbol                                                   | Description                                                                    | •          | Speed Grade | е          | Units  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|------------|-------------|------------|--------|
| Symbol                                                   | Description                                                                    | -3         | -2          | -1         | Ullits |
| Setup/Hold for Control Lines                             |                                                                                |            |             |            |        |
| TISCCK_BITSLIP/ TISCKC_BITSLIP                           | BITSLIP pin setup/hold with respect to CLKDIV                                  | 0.01/0.13  | 0.02/0.14   | 0.02/0.17  | ns     |
| T <sub>ISCCK_CE</sub> / T <sub>ISCKC_CE</sub> (2)        | CE pin setup/hold with respect to CLK (for CE1)                                | 0.42/-0.02 | 0.48/-0.02  | 0.68/-0.02 | ns     |
| T <sub>ISCCK_CE2</sub> / T <sub>ISCKC_CE2</sub> (2)      | CE pin setup/hold with respect to CLKDIV (for CE2)                             | -0.11/0.31 | -0.11/0.34  | -0.11/0.38 | ns     |
| Setup/Hold for Data Lines                                |                                                                                | 1          | 1           |            |        |
| T <sub>ISDCK_D</sub> /T <sub>ISCKD_D</sub>               | D pin setup/hold with respect to CLK                                           | -0.02/0.12 | -0.02/0.13  | -0.02/0.16 | ns     |
| T <sub>ISDCK_DDLY</sub> /T <sub>ISCKD_DDLY</sub>         | DDLY pin setup/hold with respect to CLK (using IDELAY) <sup>(1)</sup>          | -0.02/0.11 | -0.02/0.13  | -0.02/0.16 | ns     |
| T <sub>ISDCK_D_DDR</sub> /T <sub>ISCKD_D_DDR</sub>       | D pin setup/hold with respect to CLK at DDR mode                               | -0.02/0.12 | -0.02/0.13  | -0.02/0.16 | ns     |
| T <sub>ISDCK_DDLY_DDR</sub> /T <sub>ISCKD_DDLY_DDR</sub> | D pin setup/hold with respect to CLK at DDR mode (using IDELAY) <sup>(1)</sup> | 0.11/0.11  | 0.13/0.13   | 0.16/0.16  | ns     |
| Sequential Delays                                        |                                                                                |            |             |            |        |
| T <sub>ISCKO_Q</sub>                                     | CLKDIV to out at Q pin                                                         | 0.47       | 0.51        | 0.57       | ns     |
| Propagation Delays                                       |                                                                                |            |             |            |        |
| T <sub>ISDO_DO</sub>                                     | D input to DO output pin                                                       | 0.10       | 0.11        | 0.13       | ns     |

#### Notes:

- 1. Recorded at 0 tap value.
- 2.  $T_{ISCCK\_CE2}$  and  $T_{ISCKC\_CE2}$  are reported as  $T_{ISCCK\_CE}/T_{ISCKC\_CE}$  in TRACE report.

# **Output Serializer/Deserializer Switching Characteristics**

Table 55: OSERDES Switching Characteristics

| Symbol                                                      | Description                                   | ;          | Speed Grad | <b>e</b>   | Unito |
|-------------------------------------------------------------|-----------------------------------------------|------------|------------|------------|-------|
| Symbol                                                      | Description                                   | -3         | -2         | -1         | Units |
| Setup/Hold                                                  |                                               |            |            |            |       |
| T <sub>OSDCK_D</sub> /T <sub>OSCKD_D</sub>                  | D input setup/hold with respect to CLKDIV     | 0.40/-0.05 | 0.43/0.05  | 0.60/-0.05 | ns    |
| T <sub>OSDCK_T</sub> /T <sub>OSCKD_T</sub> <sup>(1)</sup>   | T input setup/hold with respect to CLK        | 0.65/-0.14 | 0.69/-0.14 | 0.83/-0.14 | ns    |
| T <sub>OSDCK_T2</sub> /T <sub>OSCKD_T2</sub> <sup>(1)</sup> | T input setup/hold with respect to CLKDIV     | 0.29/-0.14 | 0.32/-0.14 | 0.37/-0.14 | ns    |
| T <sub>OSCCK_OCE</sub> /T <sub>OSCKC_OCE</sub>              | OCE input setup/hold with respect to CLK      | 0.30/-0.02 | 0.32/-0.02 | 0.48/-0.02 | ns    |
| T <sub>OSCCK_S</sub>                                        | SR (reset) input setup with respect to CLKDIV | 0.44       | 0.49       | 0.81       | ns    |
| T <sub>OSCCK_TCE</sub> /T <sub>OSCKC_TCE</sub>              | TCE input setup/hold with respect to CLK      | 0.31/-0.08 | 0.32/-0.08 | 0.48/-0.08 | ns    |
| Sequential Delays                                           |                                               |            |            |            |       |
| T <sub>OSCKO_OQ</sub>                                       | Clock to out from CLK to OQ                   | 0.38       | 0.40       | 0.45       | ns    |
| T <sub>OSCKO_TQ</sub>                                       | Clock to out from CLK to TQ                   | 0.44       | 0.47       | 0.53       | ns    |
| Combinatorial                                               |                                               | •          |            |            |       |
| T <sub>OSDO_TTQ</sub>                                       | T input to TQ out                             | 0.79       | 0.87       | 1.05       | ns    |

### Notes:

1.  $T_{OSDCK\_T2}$  and  $T_{OSCKD\_T2}$  are reported as  $T_{OSDCK\_T}/T_{OSCKD\_T}$  in TRACE report.



# **Input Delay Switching Characteristics**

Table 56: Input Delay Switching Characteristics

| Symbol                                          | Decembring                                                                                      |           | Speed Grad                | е               | Units      |  |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|---------------------------|-----------------|------------|--|
| Symbol                                          | Description                                                                                     | -3        | -3 -2                     |                 | Oille      |  |
| IDELAYCTRL                                      |                                                                                                 |           |                           |                 |            |  |
| T <sub>DLYCCO_RDY</sub>                         | Reset to ready for IDELAYCTRL                                                                   | 3.48      | 3.48                      | 3.48            | μs         |  |
| F <sub>IDELAYCTRL_REF</sub>                     | Attribute REFCLK frequency = 200.0 <sup>(1)</sup>                                               | 200       | 200                       | 200             | MHz        |  |
|                                                 | Attribute REFCLK frequency = 300.0 <sup>(1)</sup>                                               | 300       | 300                       | N/A             | MHz        |  |
| IDELAYCTRL_REF_PRECISION                        | REFCLK precision                                                                                | ±10       | ±10                       | ±10             | MHz        |  |
| T <sub>IDELAYCTRL_RPW</sub>                     | Minimum reset pulse width                                                                       | 56.16     | 56.16                     | 56.16           | ns         |  |
| IDELAY                                          |                                                                                                 |           |                           |                 |            |  |
| T <sub>IDELAYRESOLUTION</sub>                   | IDELAY chain delay resolution                                                                   | 1/        | (32 x 2 x F <sub>RE</sub> | <sub>EF</sub> ) | ps         |  |
|                                                 | Pattern dependent period jitter in delay chain for clock pattern. (2)                           | 0         | 0                         | 0               | ps per tap |  |
| T <sub>IDELAYPAT_JIT</sub>                      | Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) <sup>(3)</sup> | ±5        | ±5                        | ±5              | ps per tap |  |
|                                                 | Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) <sup>(4)</sup> | ±10       | ±10                       | ±10             | ps per tap |  |
| T <sub>IDELAY_CLK_MAX</sub>                     | Maximum frequency of CLK input to IDELAY                                                        | 680       | 680                       | 680             | MHz        |  |
| T <sub>IDCCK_CE</sub> / T <sub>IDCKC_CE</sub>   | CE pin setup/hold with respect to C for IDELAY                                                  | 0.12/0.11 | 0.15/0.13                 | 0.20/0.15       | ns         |  |
| T <sub>IDCCK_INC</sub> / T <sub>IDCKC_INC</sub> | INC pin setup/hold with respect to C for IDELAY                                                 | 0.11/0.15 | 0.13/0.17                 | 0.15/0.21       | ns         |  |
| T <sub>IDCCK_RST</sub> / T <sub>IDCKC_RST</sub> | RST pin setup/hold with respect to C for IDELAY                                                 | 0.14/0.09 | 0.15/0.11                 | 0.17/0.13       | ns         |  |
| T <sub>IDDO_IDATAIN</sub>                       | Propagation delay through IDELAY                                                                | Note 5    | Note 5                    | Note 5          | ps         |  |

- 1. Average tap delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
- 2. When HIGH\_PERFORMANCE mode is set to TRUE or FALSE.
- 3. When HIGH\_PERFORMANCE mode is set to TRUE.
- 4. When HIGH\_PERFORMANCE mode is set to FALSE.
- 5. Delay depends on IDELAY tap setting. See TRACE report for actual values.

Table 57: IO\_FIFO Switching Characteristics

| Symbol                                             | Description            | :          | Speed Grad | е         | Unito |
|----------------------------------------------------|------------------------|------------|------------|-----------|-------|
| Symbol                                             | Description            | -3         | -2         | -1        | Units |
| IO_FIFO Clock to Out Delays                        |                        |            |            |           | •     |
| T <sub>OFFCKO_DO</sub>                             | RDCLK to Q outputs     | 0.55       | 0.60       | 0.68      | ns    |
| T <sub>CKO_FLAGS</sub>                             | Clock to IO_FIFO flags | 0.47       | 0.50       | 0.54      | ns    |
| Setup/Hold                                         |                        | ,          |            | l         | •     |
| T <sub>CCK_D</sub> /T <sub>CKC_D</sub>             | D inputs to WRCLK      | 0.47/-0.01 | 0.51/-0.01 | 0.58/0.01 | ns    |
| T <sub>IFFCCK_WREN</sub> /T <sub>IFFCKC_WREN</sub> | WREN to WRCLK          | 0.42/-0.01 | 0.47/-0.01 | 0.53/0.01 | ns    |
| T <sub>OFFCCK_RDEN</sub> /T <sub>OFFCKC_RDEN</sub> | RDEN to RDCLK          | 0.53/0.02  | 0.58/0.02  | 0.66/0.02 | ns    |
| Minimum Pulse Width                                |                        | -1         |            | 1         | J.    |
| T <sub>PWH_IO_FIFO</sub>                           | RESET, RDCLK, WRCLK    | 0.81       | 0.92       | 1.08      | ns    |
| T <sub>PWL_IO_FIFO</sub>                           | RESET, RDCLK, WRCLK    | 0.81       | 0.92       | 1.08      | ns    |
| Maximum Frequency                                  |                        | 1          | 1          | 1         | ı     |
| F <sub>MAX</sub>                                   | RDCLK and WRCLK        | 266        | 200        | 200       | MHz   |



# **CLB Switching Characteristics**

Table 58: CLB Switching Characteristics

| Combal                                       | De a suinki a u                                                                | 9         | Speed Grad | Э         | l laite |
|----------------------------------------------|--------------------------------------------------------------------------------|-----------|------------|-----------|---------|
| Symbol                                       | Description                                                                    | -3        | -2         | -1        | Units   |
| Combinatorial Delays                         |                                                                                | <u> </u>  |            |           |         |
| T <sub>ILO</sub>                             | An – Dn LUT address to A                                                       | 0.10      | 0.11       | 0.13      | ns, Max |
| T <sub>ILO_2</sub>                           | An – Dn LUT address to AMUX/CMUX                                               | 0.27      | 0.30       | 0.36      | ns, Max |
| T <sub>ILO_3</sub>                           | An – Dn LUT address to BMUX_A                                                  | 0.42      | 0.46       | 0.55      | ns, Max |
| T <sub>ITO</sub>                             | An – Dn inputs to A – D Q outputs                                              | 0.94      | 1.05       | 1.27      | ns, Max |
| T <sub>AXA</sub>                             | AX inputs to AMUX output                                                       | 0.62      | 0.69       | 0.84      | ns, Max |
| T <sub>AXB</sub>                             | AX inputs to BMUX output                                                       | 0.58      | 0.66       | 0.83      | ns, Max |
| T <sub>AXC</sub>                             | AX inputs to CMUX output                                                       | 0.60      | 0.68       | 0.82      | ns, Max |
| T <sub>AXD</sub>                             | AX inputs to DMUX output                                                       | 0.68      | 0.75       | 0.90      | ns, Max |
| T <sub>BXB</sub>                             | BX inputs to BMUX output                                                       | 0.51      | 0.57       | 0.69      | ns, Max |
| T <sub>BXD</sub>                             | BX inputs to DMUX output                                                       | 0.62      | 0.69       | 0.82      | ns, Max |
| T <sub>CXC</sub>                             | CX inputs to CMUX output                                                       | 0.42      | 0.48       | 0.58      | ns, Max |
| T <sub>CXD</sub>                             | CX inputs to DMUX output                                                       | 0.53      | 0.59       | 0.71      | ns, Max |
| T <sub>DXD</sub>                             | DX inputs to DMUX output                                                       | 0.52      | 0.58       | 0.70      | ns, Max |
| Sequential Delays                            |                                                                                |           |            |           |         |
| T <sub>CKO</sub>                             | Clock to AQ – DQ outputs                                                       | 0.40      | 0.44       | 0.53      | ns, Max |
| T <sub>SHCKO</sub>                           | Clock to AMUX – DMUX outputs                                                   | 0.47      | 0.53       | 0.66      | ns, Max |
| Setup and Hold Times                         | of CLB Flip-Flops Before/After Clock CLK                                       |           |            |           |         |
| T <sub>AS</sub> /T <sub>AH</sub>             | A <sub>N</sub> – D <sub>N</sub> input to CLK on A – D flip-flops               | 0.07/0.12 | 0.09/0.14  | 0.11/0.18 | ns, Min |
| T <sub>DICK</sub> /T <sub>CKDI</sub>         | A <sub>X</sub> – D <sub>X</sub> input to CLK on A – D flip-flops               | 0.06/0.19 | 0.07/0.21  | 0.09/0.26 | ns, Min |
|                                              | $A_X - D_X$ input through MUXs and/or carry logic to CLK on $A - D$ flip-flops | 0.59/0.08 | 0.66/0.09  | 0.81/0.11 | ns, Min |
| T <sub>CECK_CLB</sub> /T <sub>CKCE_CLB</sub> | CE input to CLK on A – D flip-flops                                            | 0.15/0.00 | 0.17/0.00  | 0.21/0.01 | ns, Min |
| T <sub>SRCK</sub> /T <sub>CKSR</sub>         | SR input to CLK on A – D flip-flops                                            | 0.38/0.03 | 0.43/0.04  | 0.53/0.05 | ns, Min |
| Set/Reset                                    |                                                                                |           | ll         | II.       | 1       |
| T <sub>SRMIN</sub>                           | SR input minimum pulse width                                                   | 0.52      | 0.78       | 1.04      | ns, Min |
| T <sub>RQ</sub>                              | Delay from SR input to AQ – DQ flip-flops                                      | 0.53      | 0.59       | 0.71      | ns, Max |
| T <sub>CEO</sub>                             | Delay from CE input to AQ – DQ flip-flops                                      | 0.52      | 0.58       | 0.70      | ns, Max |
| F <sub>TOG</sub>                             | Toggle frequency (for export control)                                          | 1412      | 1286       | 1098      | MHz     |

- 1. A Zero "0" hold time listing indicates no hold time or a negative hold time.
- 2. These items are of interest for carry-chain applications.



# **CLB Distributed RAM Switching Characteristics (SLICEM Only)**

Table 59: CLB Distributed RAM Switching Characteristics

| Symbol                                         | Description                                                | \$        | Speed Grad | е         | Units    |  |
|------------------------------------------------|------------------------------------------------------------|-----------|------------|-----------|----------|--|
| Symbol                                         | Description                                                | -3 -2 -1  |            | -1        | - UiillS |  |
| Sequential Delays                              |                                                            |           |            |           |          |  |
| T <sub>SHCKO</sub>                             | Clock to A – B outputs                                     | 0.98      | 1.09       | 1.32      | ns, Max  |  |
| T <sub>SHCKO_1</sub>                           | Clock to AMUX – BMUX outputs                               | 1.37      | 1.53       | 1.86      | ns, Max  |  |
| Setup and Hold Times Before/After Clock CLK    |                                                            |           |            |           |          |  |
| T <sub>DS_LRAM</sub> /T <sub>DH_LRAM</sub>     | A – D inputs to CLK                                        | 0.54/0.28 | 0.60/0.30  | 0.72/0.35 | ns, Min  |  |
| T <sub>AS_LRAM</sub> /T <sub>AH_LRAM</sub>     | Address An inputs to clock                                 | 0.27/0.55 | 0.30/0.60  | 0.37/0.70 | ns, Min  |  |
|                                                | Address An inputs through MUXs and/or carry logic to clock | 0.69/0.18 | 0.77/0.21  | 0.94/0.26 | ns, Min  |  |
| T <sub>WS_LRAM</sub> /T <sub>WH_LRAM</sub>     | WE input to clock                                          | 0.38/0.10 | 0.43/0.10  | 0.53/0.12 | ns, Min  |  |
| T <sub>CECK_LRAM</sub> /T <sub>CKCE_LRAM</sub> | CE input to CLK                                            | 0.39/0.10 | 0.44/0.10  | 0.53/0.11 | ns, Min  |  |
| Clock CLK                                      |                                                            |           |            |           |          |  |
| T <sub>MPW_LRAM</sub>                          | Minimum pulse width                                        | 0.70      | 0.82       | 1.00      | ns, Min  |  |
| T <sub>MCP</sub>                               | Minimum clock period                                       | 1.40      | 1.64       | 2.00      | ns, Min  |  |

#### Notes:

- 1. A Zero "0" hold time listing indicates no hold time or a negative hold time.
- 2. T<sub>SHCKO</sub> also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path.

# **CLB Shift Register Switching Characteristics (SLICEM Only)**

Table 60: CLB Shift Register Switching Characteristics

| Symbol                                             | Description                         | (         | Speed Grad | е         | Units   |
|----------------------------------------------------|-------------------------------------|-----------|------------|-----------|---------|
| Symbol                                             | Description                         | -3        | -2         | -1        | Units   |
| Sequential Delays                                  |                                     |           |            |           |         |
| T <sub>REG</sub>                                   | Clock to A – D outputs              | 1.19      | 1.21       | 1.30      | ns, Max |
| T <sub>REG_MUX</sub>                               | Clock to AMUX – DMUX output         | 1.58      | 1.65       | 1.84      | ns, Max |
| T <sub>REG_M31</sub>                               | Clock to DMUX output via M31 output | 1.09      | 1.14       | 1.27      | ns, Max |
| Setup and Hold Times Before                        | After Clock CLK                     |           |            |           |         |
| T <sub>WS_SHFREG</sub> /T <sub>WH_SHFREG</sub>     | WE input                            | 0.37/0.10 | 0.37/0.11  | 0.37/0.13 | ns, Min |
| T <sub>CECK_SHFREG</sub> /T <sub>CKCE_SHFREG</sub> | CE input to CLK                     | 0.37/0.10 | 0.37/0.11  | 0.37/0.13 | ns, Min |
| T <sub>DS_SHFREG</sub> /T <sub>DH_SHFREG</sub>     | A – D inputs to CLK                 | 0.33/0.34 | 0.35/0.35  | 0.40/0.39 | ns, Min |
| Clock CLK                                          |                                     |           |            |           |         |
| T <sub>MPW_SHFREG</sub>                            | Minimum pulse width                 | 0.60      | 0.70       | 0.85      | ns, Min |

#### Notes:

1. A Zero "0" hold time listing indicates no hold time or a negative hold time.



# **Block RAM and FIFO Switching Characteristics**

Table 61: Block RAM and FIFO Switching Characteristics

| Symbol                                                              | Description                                                                                             |           | Speed Grade |           | Units   |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|---------|
| Symbol                                                              | Description                                                                                             | -3        | -2          | -1        | Uiilis  |
| Block RAM and FIFO Clock to O                                       | ut Delays                                                                                               |           |             |           |         |
| T <sub>RCKO_DO</sub> and<br>T <sub>RCKO_DO_REG</sub> <sup>(1)</sup> | Clock CLK to DOUT output (without output register) <sup>(2)(3)</sup>                                    | 2.10      | 2.24        | 2.46      | ns, Max |
|                                                                     | Clock CLK to DOUT output (with output register) <sup>(4)(5)</sup>                                       | 0.64      | 0.74        | 0.89      | ns, Max |
| T <sub>RCKO_DO_ECC</sub> and T <sub>RCKO DO ECC REG</sub>           | Clock CLK to DOUT output with ECC (without output register) <sup>(2)(3)</sup>                           | 2.77      | 3.20        | 3.84      | ns, Max |
|                                                                     | Clock CLK to DOUT output with ECC (with output register) <sup>(4)(5)</sup>                              | 0.73      | 0.81        | 0.94      | ns, Max |
| RCKO_DO_CASCOUT and RCKO_DO_CASCOUT_REG                             | Clock CLK to DOUT output with cascade (without output register) <sup>(2)</sup>                          | 2.61      | 2.88        | 3.30      | ns, Max |
|                                                                     | Clock CLK to DOUT output with cascade (with output register) <sup>(4)</sup>                             | 1.16      | 1.28        | 1.46      | ns, Max |
| T <sub>RCKO_FLAGS</sub>                                             | Clock CLK to FIFO flags outputs <sup>(6)</sup>                                                          | 0.76      | 0.87        | 1.05      | ns, Max |
| T <sub>RCKO_POINTERS</sub>                                          | Clock CLK to FIFO pointers outputs <sup>(7)</sup>                                                       | 0.94      | 1.02        | 1.15      | ns, Max |
| T <sub>RCKO_PARITY_ECC</sub>                                        | Clock CLK to ECCPARITY in ECC encode only mode                                                          | 0.78      | 0.85        | 0.94      | ns, Max |
| T <sub>RCKO_SDBIT_ECC</sub> and                                     | Clock CLK to BITERR (without output register)                                                           | 2.56      | 2.95        | 3.55      | ns, Max |
| T <sub>RCKO_SDBIT_ECC_REG</sub>                                     | Clock CLK to BITERR (with output register)                                                              | 0.68      | 0.76        | 0.89      | ns, Max |
| T <sub>RCKO_RDADDR_ECC</sub> and T <sub>RCKO_RDADDR_ECC_REG</sub>   | Clock CLK to RDADDR output with ECC (without output register)                                           | 0.75      | 0.88        | 1.07      | ns, Max |
|                                                                     | Clock CLK to RDADDR output with ECC (with output register)                                              | 0.84      | 0.93        | 1.08      | ns, Max |
| Setup and Hold Times Before/Af                                      | ter Clock CLK                                                                                           | 1         | 1           | 1         | 1       |
| T <sub>RCCK_ADDRA</sub> /T <sub>RCKC_ADDRA</sub>                    | ADDR inputs <sup>(8)</sup>                                                                              | 0.45/0.31 | 0.49/0.33   | 0.57/0.36 | ns, Min |
| T <sub>RDCK_DI_WF_NC</sub> /<br>T <sub>RCKD_DI_WF_NC</sub>          | Data input setup/hold time when block RAM is configured in WRITE_FIRST or NO_CHANGE mode <sup>(9)</sup> | 0.58/0.60 | 0.65/0.63   | 0.74/0.67 | ns, Min |
| T <sub>RDCK_DI_RF</sub> /T <sub>RCKD_DI_RF</sub>                    | Data input setup/hold time when block RAM is configured in READ_FIRST mode <sup>(9)</sup>               | 0.20/0.29 | 0.22/0.34   | 0.25/0.41 | ns, Min |
| T <sub>RDCK_DI_ECC</sub> /T <sub>RCKD_DI_ECC</sub>                  | DIN inputs with block RAM ECC in standard mode <sup>(9)</sup>                                           | 0.50/0.43 | 0.55/0.46   | 0.63/0.50 | ns, Min |
|                                                                     | DIN inputs with block RAM ECC encode only <sup>(9)</sup>                                                | 0.93/0.43 | 1.02/0.46   | 1.17/0.50 | ns, Min |
|                                                                     | DIN inputs with FIFO ECC in standard mode <sup>(9)</sup>                                                | 1.04/0.56 | 1.15/0.59   | 1.32/0.64 | ns, Min |
| T <sub>RCCK_INJECTBITERR</sub> /<br>T <sub>RCKC_INJECTBITERR</sub>  | Inject single/double bit error in ECC mode                                                              | 0.58/0.35 | 0.64/0.37   | 0.74/0.40 | ns, Min |
| T <sub>RCCK_RDEN</sub> /T <sub>RCKC_RDEN</sub>                      | Block RAM enable (EN) input                                                                             | 0.35/0.20 | 0.39/0.21   | 0.45/0.23 | ns, Min |
| T <sub>RCCK_REGCE</sub> /T <sub>RCKC_REGCE</sub>                    | CE input of output register                                                                             | 0.24/0.15 | 0.29/0.15   | 0.36/0.16 | ns, Min |
| T <sub>RCCK_RSTREG</sub> /T <sub>RCKC_RSTREG</sub>                  | Synchronous RSTREG input                                                                                | 0.29/0.07 | 0.32/0.07   | 0.35/0.07 | ns, Min |
| T <sub>RCCK_RSTRAM</sub> /T <sub>RCKC_RSTRAM</sub>                  | Synchronous RSTRAM input                                                                                | 0.32/0.42 | 0.34/0.43   | 0.36/0.46 | ns, Min |
| T <sub>RCCK_WEA</sub> /T <sub>RCKC_WEA</sub>                        | Write enable (WE) input (block RAM only)                                                                | 0.44/0.18 | 0.48/0.19   | 0.54/0.20 | ns, Min |
| T <sub>RCCK_WREN</sub> /T <sub>RCKC_WREN</sub>                      | WREN FIFO inputs                                                                                        | 0.46/0.30 | 0.46/0.35   | 0.47/0.43 | ns, Min |
| T <sub>RCCK_RDEN</sub> /T <sub>RCKC_RDEN</sub>                      | RDEN FIFO inputs                                                                                        | 0.42/0.30 | 0.43/0.35   | 0.43/0.43 | ns, Min |



Table 61: Block RAM and FIFO Switching Characteristics (Cont'd)

| Symbol                                       | Description                                                                                                                               | :          | Speed Grad | е          | Units   |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|---------|--|
| Symbol                                       | Description                                                                                                                               | -3 -2      |            | -1         | Units   |  |
| Reset Delays                                 |                                                                                                                                           |            | •          | •          |         |  |
| T <sub>RCO_FLAGS</sub>                       | Reset RST to FIFO flags/pointers <sup>(10)</sup>                                                                                          | 0.90       | 0.98       | 1.10       | ns, Max |  |
| T <sub>RREC_RST</sub> /T <sub>RREM_RST</sub> | FIFO reset recovery and removal timing <sup>(11)</sup>                                                                                    | 1.87/–0.81 | 2.07/-0.81 | 2.37/-0.81 | ns, Max |  |
| Maximum Frequency                            |                                                                                                                                           | 1          | 1          | ı          | 1       |  |
| F <sub>MAX_BRAM_WF_NC</sub>                  | Block RAM (write first and no change modes) When not in SDP RF mode.                                                                      | 509        | 460        | 388        | MHz     |  |
| F <sub>MAX_BRAM_RF_PERFORMANCE</sub>         | Block RAM (read first, performance mode) When in SDP RF mode but no address overlap between port A and port B.                            | 509        | 460        | 388        | MHz     |  |
| F <sub>MAX_BRAM_RF_DELAYED_WRITE</sub>       | Block RAM (read first, delayed write mode) When in SDP RF mode and there is possibility of overlap between port A and port B addresses.   | 447        | 404        | 339        | MHz     |  |
| F <sub>MAX_CAS_WF_NC</sub>                   | Block RAM cascade (write first, no change mode) When cascade but not in RF mode.                                                          | 467        | 418        | 345        | MHz     |  |
| F <sub>MAX_CAS_RF_PERFORMANCE</sub>          | Block RAM cascade (read first, performance mode) When in cascade with RF mode and no possibility of address overlap/one port is disabled. | 467        | 418        | 345        | MHz     |  |
| F <sub>MAX_CAS_RF_DELAYED_WRITE</sub>        | When in cascade RF mode and there is a possibility of address overlap between port A and port B.                                          | 405        | 362        | 297        | MHz     |  |
| F <sub>MAX_FIFO</sub>                        | FIFO in all modes without ECC                                                                                                             | 509        | 460        | 388        | MHz     |  |
| F <sub>MAX_ECC</sub>                         | Block RAM and FIFO in ECC configuration                                                                                                   | 410        | 365        | 297        | MHz     |  |

- 1. TRACE will report all of these parameters as  $T_{\mbox{RCKO\_DO}}$ .
- 2. T<sub>RCKO DOR</sub> includes T<sub>RCKO DOW</sub>, T<sub>RCKO DOPR</sub>, and T<sub>RCKO DOPW</sub> as well as the B port equivalent timing parameters.
- 3. These parameters also apply to synchronous FIFO with DO\_REG = 0.
- 4.  $T_{RCKO\_DO}$  includes  $T_{RCKO\_DOP}$  as well as the B port equivalent timing parameters.
- 5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO\_REG = 1.
- 6. T<sub>RCKO\_FLAGS</sub> includes the following parameters: T<sub>RCKO\_AEMPTY</sub>, T<sub>RCKO\_AFULL</sub>, T<sub>RCKO\_EMPTY</sub>, T<sub>RCKO\_EMPTY</sub>, T<sub>RCKO\_EMPTY</sub>, T<sub>RCKO\_EMPTY</sub>, and T<sub>RCKO\_MERR</sub>, and T<sub>RCKO\_EMPTY</sub>.
- T<sub>RCKO\_POINTERS</sub> includes both T<sub>RCKO\_RDCOUNT</sub> and T<sub>RCKO\_WRCOUNT</sub>.
- The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
- 9. These parameters include both A and B inputs as well as the parity inputs of A and B.
- 10. T<sub>BCO FLAGS</sub> includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
- 11. RDEN and WREN must be held Low prior to and during reset. The FIFO reset must be asserted for at least five positive clock edges of the slowest clock (WRCLK or RDCLK).



# **DSP48E1 Switching Characteristics**

Table 62: DSP48E1 Switching Characteristics

|                                                                                 |                                                     |            | Speed Grade | e          |       |
|---------------------------------------------------------------------------------|-----------------------------------------------------|------------|-------------|------------|-------|
| Symbol                                                                          | Description                                         | -3         | -2          | -1         | Units |
| Setup and Hold Times of Data/Control Pins                                       | to the Input Register Clock                         |            |             |            |       |
| T <sub>DSPDCK_A_AREG</sub> / T <sub>DSPCKD_A_AREG</sub>                         | A input to A register CLK                           | 0.26/0.12  | 0.30/0.13   | 0.37/0.14  | ns    |
| T <sub>DSPDCK_B_BREG</sub> /T <sub>DSPCKD_B_BREG</sub>                          | B input to B register CLK                           | 0.33/0.15  | 0.38/0.16   | 0.45/0.18  | ns    |
| T <sub>DSPDCK_C_CREG</sub> /T <sub>DSPCKD_C_CREG</sub>                          | C input to C register CLK                           | 0.17/0.17  | 0.20/0.19   | 0.24/0.21  | ns    |
| T <sub>DSPDCK_D_DREG</sub> /T <sub>DSPCKD_D_DREG</sub>                          | D input to D register CLK                           | 0.25/0.18  | 0.32/0.20   | 0.42/0.22  | ns    |
| T <sub>DSPDCK_ACIN_AREG</sub> /T <sub>DSPCKD_ACIN_AREG</sub>                    | ACIN input to A register CLK                        | 0.23/0.12  | 0.27/0.13   | 0.32/0.14  | ns    |
| T <sub>DSPDCK_BCIN_BREG</sub> /T <sub>DSPCKD_BCIN_BREG</sub>                    | BCIN input to B register CLK                        | 0.25/0.15  | 0.29/0.16   | 0.36/0.18  | ns    |
| Setup and Hold Times of Data Pins to the P                                      | ipeline Register Clock                              |            |             |            |       |
| TDSPDCK_{A, B}_MREG_MULT/ TDSPCKD_B_MREG_MULT                                   | {A, B,} input to M register CLK using multiplier    | 2.40/-0.01 | 2.76/-0.01  | 3.29/-0.01 | ns    |
| T <sub>DSPDCK_{A, B}_ADREG</sub> /T <sub>DSPCKD_D_ADREG</sub>                   | {A, D} input to AD register CLK                     | 1.29/-0.02 | 1.48/-0.02  | 1.76/-0.02 | ns    |
| Setup and Hold Times of Data/Control Pins                                       | to the Output Register Clock                        |            |             |            |       |
| T <sub>DSPDCK_{A, B}</sub> _PREG_MULT/<br>T <sub>DSPCKD_{A, B}</sub> _PREG_MULT | {A, B} input to P register CLK using multiplier     | 4.02/-0.28 | 4.60/-0.28  | 5.48/-0.28 | ns    |
| T <sub>DSPDCK_D_PREG_MULT</sub> / T <sub>DSPCKD_D_PREG_MULT</sub>               | D input to P register CLK using multiplier          | 3.93/–0.73 | 4.50/–0.73  | 5.35/-0.73 | ns    |
| T <sub>DSPDCK_{A, B}</sub> _PREG/<br>T <sub>DSPCKD_{A, B}</sub> _PREG           | A or B input to P register CLK not using multiplier | 1.73/–0.28 | 1.98/-0.28  | 2.35/-0.28 | ns    |
| T <sub>DSPDCK_C_PREG</sub> /<br>T <sub>DSPCKD_C_PREG</sub>                      | C input to P register CLK not using multiplier      | 1.54/-0.26 | 1.76/-0.26  | 2.10/-0.26 | ns    |
| TDSPDCK_PCIN_PREG/<br>TDSPCKD_PCIN_PREG                                         | PCIN input to P register CLK                        | 1.32/-0.15 | 1.51/–0.15  | 1.80/-0.15 | ns    |
| Setup and Hold Times of the CE Pins                                             |                                                     |            |             |            |       |
| TDSPDCK_{CEA;CEB}_{AREG;BREG}/ TDSPCKD_{CEA;CEB}_{AREG;BREG}                    | {CEA; CEB} input to {A; B} register CLK             | 0.35/0.06  | 0.42/0.08   | 0.52/0.11  | ns    |
| T <sub>DSPDCK_CEC_CREG</sub> / T <sub>DSPCKD_CEC_CREG</sub>                     | CEC input to C register CLK                         | 0.28/0.10  | 0.34/0.11   | 0.42/0.13  | ns    |
| T <sub>DSPDCK_CED_DREG</sub> / T <sub>DSPCKD_CED_DREG</sub>                     | CED input to D register CLK                         | 0.36/0.03  | 0.43/-0.03  | 0.52/-0.03 | ns    |
| TDSPDCK_CEM_MREG/<br>TDSPCKD_CEM_MREG                                           | CEM input to M register CLK                         | 0.17/0.18  | 0.21/0.20   | 0.27/0.23  | ns    |
| T <sub>DSPDCK_CEP_PREG</sub> /T <sub>DSPCKD_CEP_PREG</sub>                      | CEP input to P register CLK                         | 0.36/0.01  | 0.43/0.01   | 0.53/0.01  | ns    |
| Setup and Hold Times of the RST Pins                                            |                                                     |            |             |            |       |
| TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/ TDSPCKD_{RSTA; RSTB}_{AREG; BREG}            | {RSTA, RSTB} input to {A, B} register CLK           | 0.41/0.11  | 0.46/0.13   | 0.55/0.15  | ns    |
| T <sub>DSPDCK_RSTC_CREG</sub> / T <sub>DSPCKD_RSTC_CREG</sub>                   | RSTC input to C register CLK                        | 0.07/0.10  | 0.08/0.11   | 0.09/0.12  | ns    |
| T <sub>DSPDCK_RSTD_DREG</sub> / T <sub>DSPCKD_RSTD_DREG</sub>                   | RSTD input to D register CLK                        | 0.44/0.07  | 0.50/0.08   | 0.59/0.09  | ns    |
| TDSPDCK_RSTM_MREG/ TDSPCKD_RSTM_MREG                                            | RSTM input to M register CLK                        | 0.21/0.22  | 0.23/0.24   | 0.27/0.28  | ns    |
| T <sub>DSPDCK_RSTP_PREG</sub> / T <sub>DSPCKD_RSTP_PREG</sub>                   | RSTP input to P register CLK                        | 0.27/0.01  | 0.30/0.01   | 0.35/0.01  | ns    |



Table 62: DSP48E1 Switching Characteristics (Cont'd)

| Symbol                                      | Description                                              | !    | Speed Grad | е    | Units  |
|---------------------------------------------|----------------------------------------------------------|------|------------|------|--------|
| Symbol                                      | Description                                              | -3   | -2         | -1   | Office |
| Combinatorial Delays from Input Pins to     | Output Pins                                              |      |            |      |        |
| T <sub>DSPDO_A_CARRYOUT_MULT</sub>          | A input to CARRYOUT output using multiplier              | 3.79 | 4.35       | 5.18 | ns     |
| T <sub>DSPDO_D_P_MULT</sub>                 | D input to P output using multiplier                     | 3.72 | 4.26       | 5.07 | ns     |
| T <sub>DSPDO_B_P</sub>                      | B input to P output not using multiplier                 | 1.53 | 1.75       | 2.08 | ns     |
| T <sub>DSPDO_C_P</sub>                      | C input to P output                                      | 1.33 | 1.53       | 1.82 | ns     |
| Combinatorial Delays from Input Pins to     | Cascading Output Pins                                    |      |            |      | ·      |
| T <sub>DSPDO_{A; B}_{ACOUT; BCOUT}</sub>    | {A, B} input to {ACOUT, BCOUT} output                    | 0.55 | 0.63       | 0.74 | ns     |
| T <sub>DSPDO_{A, B}_CARRYCASCOUT_MULT</sub> | {A, B} input to CARRYCASCOUT output using multiplier     | 4.06 | 4.65       | 5.54 | ns     |
| T <sub>DSPDO_D_CARRYCASCOUT_MULT</sub>      | D input to CARRYCASCOUT output using multiplier          | 3.97 | 4.54       | 5.40 | ns     |
| T <sub>DSPDO_{A, B}_CARRYCASCOUT</sub>      | {A, B} input to CARRYCASCOUT output not using multiplier | 1.77 | 2.03       | 2.41 | ns     |
| T <sub>DSPDO_C_CARRYCASCOUT</sub>           | C input to CARRYCASCOUT output                           | 1.58 | 1.81       | 2.15 | ns     |
| Combinatorial Delays from Cascading In      | put Pins to All Output Pins                              |      |            |      | ·      |
| T <sub>DSPDO_ACIN_P_MULT</sub>              | ACIN input to P output using multiplier                  | 3.65 | 4.19       | 5.00 | ns     |
| T <sub>DSPDO_ACIN_P</sub>                   | ACIN input to P output not using multiplier              | 1.37 | 1.57       | 1.88 | ns     |
| T <sub>DSPDO_ACIN_ACOUT</sub>               | ACIN input to ACOUT output                               | 0.38 | 0.44       | 0.53 | ns     |
| T <sub>DSPDO_ACIN_CARRYCASCOUT_MULT</sub>   | ACIN input to CARRYCASCOUT output using multiplier       | 3.90 | 4.47       | 5.33 | ns     |
| T <sub>DSPDO_ACIN_CARRYCASCOUT</sub>        | ACIN input to CARRYCASCOUT output not using multiplier   | 1.61 | 1.85       | 2.21 | ns     |
| T <sub>DSPDO_PCIN_P</sub>                   | PCIN input to P output                                   | 1.11 | 1.28       | 1.52 | ns     |
| T <sub>DSPDO_PCIN_CARRYCASCOUT</sub>        | PCIN input to CARRYCASCOUT output                        | 1.36 | 1.56       | 1.85 | ns     |
| Clock to Outs from Output Register Cloc     | k to Output Pins                                         |      |            |      |        |
| T <sub>DSPCKO_P_PREG</sub>                  | CLK PREG to P output                                     | 0.33 | 0.37       | 0.44 | ns     |
| T <sub>DSPCKO_CARRYCASCOUT_PREG</sub>       | CLK PREG to CARRYCASCOUT output                          | 0.52 | 0.59       | 0.69 | ns     |
| Clock to Outs from Pipeline Register Clo    | ck to Output Pins                                        |      |            |      | ·      |
| T <sub>DSPCKO_P_MREG</sub>                  | CLK MREG to P output                                     | 1.68 | 1.93       | 2.31 | ns     |
| T <sub>DSPCKO_CARRYCASCOUT_MREG</sub>       | CLK MREG to CARRYCASCOUT output                          | 1.92 | 2.21       | 2.64 | ns     |
| T <sub>DSPCKO_P_ADREG_MULT</sub>            | CLK ADREG to P output using multiplier                   | 2.72 | 3.10       | 3.69 | ns     |
| T <sub>DSPCKO_CARRYCASCOUT_ADREG_MULT</sub> | CLK ADREG to CARRYCASCOUT output using multiplier        | 2.96 | 3.38       | 4.02 | ns     |
| Clock to Outs from Input Register Clock     | to Output Pins                                           |      |            |      |        |
| T <sub>DSPCKO_P_AREG_MULT</sub>             | CLK AREG to P output using multiplier                    | 3.94 | 4.51       | 5.37 | ns     |
| T <sub>DSPCKO_P_BREG</sub>                  | CLK BREG to P output not using multiplier                | 1.64 | 1.87       | 2.22 | ns     |
| T <sub>DSPCKO_P_CREG</sub>                  | CLK CREG to P output not using multiplier                | 1.69 | 1.93       | 2.30 | ns     |
| T <sub>DSPCKO_P_DREG_MULT</sub>             | CLK DREG to P output using multiplier                    | 3.91 | 4.48       | 5.32 | ns     |



Table 62: DSP48E1 Switching Characteristics (Cont'd)

| O                                                  | De coniuntio u                                                 |      | Speed Grad | е    | 11    |
|----------------------------------------------------|----------------------------------------------------------------|------|------------|------|-------|
| Symbol                                             | Description                                                    | -3   | -2         | -1   | Units |
| Clock to Outs from Input Register Clock to         | Cascading Output Pins                                          |      |            | !    |       |
| T <sub>DSPCKO_{ACOUT; BCOUT}_{AREG; BREG}</sub>    | CLK (ACOUT, BCOUT) to {A,B} register output                    | 0.64 | 0.73       | 0.87 | ns    |
| T <sub>DSPCKO_CARRYCASCOUT_{AREG, BREG}_MULT</sub> | CLK (AREG, BREG) to<br>CARRYCASCOUT output using<br>multiplier | 4.19 | 4.79       | 5.70 | ns    |
| T <sub>DSPCKO_CARRYCASCOUT_BREG</sub>              | CLK BREG to CARRYCASCOUT output not using multiplier           | 1.88 | 2.15       | 2.55 | ns    |
| T <sub>DSPCKO_CARRYCASCOUT_DREG_MULT</sub>         | CLK DREG to CARRYCASCOUT output using multiplier               | 4.16 | 4.76       | 5.65 | ns    |
| T <sub>DSPCKO_CARRYCASCOUT_</sub> CREG             | CLK CREG to CARRYCASCOUT output                                | 1.94 | 2.21       | 2.63 | ns    |
| Maximum Frequency                                  |                                                                |      |            |      |       |
| F <sub>MAX</sub>                                   | With all registers used                                        | 628  | 550        | 464  | MHz   |
| F <sub>MAX_PATDET</sub>                            | With pattern detector                                          | 531  | 465        | 392  | MHz   |
| F <sub>MAX_MULT_NOMREG</sub>                       | Two register multiply without MREG                             | 349  | 305        | 257  | MHz   |
| F <sub>MAX_MULT_NOMREG_PATDET</sub>                | Two register multiply without MREG with pattern detect         | 317  | 277        | 233  | MHz   |
| F <sub>MAX_PREADD_MULT_NOADREG</sub>               | Without ADREG                                                  | 397  | 346        | 290  | MHz   |
| F <sub>MAX_PREADD_MULT_NOADREG_PATDET</sub>        | Without ADREG with pattern detect                              | 397  | 346        | 290  | MHz   |
| F <sub>MAX_NOPIPELINEREG</sub>                     | Without pipeline registers (MREG, ADREG)                       | 260  | 227        | 190  | MHz   |
| F <sub>MAX_NOPIPELINEREG_PATDET</sub>              | Without pipeline registers (MREG, ADREG) with pattern detect   | 241  | 211        | 177  | MHz   |



# **Clock Buffers and Networks**

Table 63: Global Clock Switching Characteristics (Including BUFGCTRL)

| Symbol                                                    | Description                    | 5         | Units     |           |        |
|-----------------------------------------------------------|--------------------------------|-----------|-----------|-----------|--------|
|                                                           |                                | -3        | -2        | -1        | Ullits |
| T <sub>BCCCK_CE</sub> /T <sub>BCCKC_CE</sub> (1)          | CE pins setup/hold             | 0.13/0.24 | 0.14/0.26 | 0.20/0.32 | ns     |
| T <sub>BCCCK_S</sub> /T <sub>BCCKC_S</sub> <sup>(1)</sup> | S pins setup/hold              | 0.13/0.24 | 0.14/0.26 | 0.20/0.32 | ns     |
| T <sub>BCCKO_O</sub> <sup>(2)</sup>                       | BUFGCTRL delay from I0/I1 to O | 0.08      | 0.09      | 0.12      | ns     |
| Maximum Frequency                                         |                                |           |           |           |        |
| F <sub>MAX_BUFG</sub>                                     | Global clock tree (BUFG)       | 628       | 550       | 464       | MHz    |

#### Notes:

# Table 64: Input/Output Clock Switching Characteristics (BUFIO)

| Symbol                 | Description                    | ,    | Units |      |       |
|------------------------|--------------------------------|------|-------|------|-------|
|                        | Description                    | -3   | -2    | -1   | Units |
| T <sub>BIOCKO_O</sub>  | Clock to out delay from I to O | 0.96 | 1.06  | 1.36 | ns    |
| Maximum Frequency      |                                |      |       |      |       |
| F <sub>MAX_BUFIO</sub> | I/O clock tree (BUFIO)         | 680  | 680   | 600  | MHz   |

## Table 65: Regional Clock Buffer Switching Characteristics (BUFR)

| Symbol                               | Description                                                     | ;    | Units |      |        |
|--------------------------------------|-----------------------------------------------------------------|------|-------|------|--------|
|                                      | Description                                                     | -3   | -2    | -1   | Ullits |
| T <sub>BRCKO_O</sub>                 | Clock to out delay from I to O                                  | 0.55 | 0.58  | 0.76 | ns     |
| T <sub>BRCKO_O_BYP</sub>             | Clock to out delay from I to O with Divide Bypass attribute set | 0.20 | 0.23  | 0.36 | ns     |
| T <sub>BRDO_O</sub>                  | Propagation delay from CLR to O                                 | 0.74 | 0.81  | 0.95 | ns     |
| Maximum Frequency                    |                                                                 |      |       |      |        |
| F <sub>MAX_BUFR</sub> <sup>(1)</sup> | Regional clock tree (BUFR)                                      | 420  | 375   | 315  | MHz    |

## Notes:

## Table 66: Horizontal Clock Buffer Switching Characteristics (BUFH)

| Symbol                                       | Description                    |           | Units     |           |       |
|----------------------------------------------|--------------------------------|-----------|-----------|-----------|-------|
|                                              |                                | -3        | -2        | -1        | Units |
| Т <sub>внско_о</sub>                         | BUFH delay from I to O         | 0.10      | 0.11      | 0.15      | ns    |
| T <sub>BHCCK_CE</sub> /T <sub>BHCKC_CE</sub> | CE pin setup and hold          | 0.20/0.13 | 0.23/0.15 | 0.27/0.22 | ns    |
| Maximum Frequency                            |                                |           |           |           |       |
| F <sub>MAX_BUFH</sub>                        | Horizontal clock buffer (BUFH) | 628       | 550       | 464       | MHz   |

T<sub>BCCCK\_CE</sub> and T<sub>BCCKC\_CE</sub> must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These
parameters do not apply to the BUFGMUX primitive that assures glitch-free operation. The other global clock setup and hold times are
optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between
clocks.

<sup>2.</sup> T<sub>BGCKO O</sub> (BUFG delay from I0 to O) values are the same as T<sub>BCCKO O</sub> values.

The maximum input frequency to the BUFR is the BUFIO F<sub>MAX</sub> frequency.

Table 67: Duty-Cycle Distortion and Clock-Tree Skew

| Symbol                 | Description                                            | Device  | 5    | Units |      |        |
|------------------------|--------------------------------------------------------|---------|------|-------|------|--------|
|                        | Description                                            | Device  | -3   | -2    | -1   | Ullits |
| T <sub>DCD_CLK</sub>   | Global clock tree duty-cycle distortion <sup>(1)</sup> | All     | 0.20 | 0.20  | 0.20 | ns     |
| T <sub>CKSKEW</sub>    | Global clock tree skew <sup>(2)</sup>                  | XC7Z010 | 0.24 | 0.24  | 0.24 | ns     |
|                        |                                                        | XC7Z020 | 0.30 | 0.34  | 0.37 | ns     |
| T <sub>DCD_BUFIO</sub> | I/O clock tree duty-cycle distortion                   | All     | 0.15 | 0.15  | 0.15 | ns     |
| T <sub>BUFIOSKEW</sub> | I/O clock tree skew across one clock region            | All     | 0.02 | 0.02  | 0.02 | ns     |
| T <sub>DCD_BUFR</sub>  | Regional clock tree duty-cycle distortion              | All     | 0.18 | 0.18  | 0.18 | ns     |

## Notes:

- 1. These parameters represent the worst-case duty-cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty-cycle distortion that might be caused by asymmetrical rise/fall times.
- 2. The T<sub>CKSKEW</sub> value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx Timing Analyzer tools to evaluate application specific clock skew.

# **MMCM Switching Characteristics**

Table 68: MMCM Specification

| Complete                        | Description                                            | 9       | peed Grac     | le           | Units    |
|---------------------------------|--------------------------------------------------------|---------|---------------|--------------|----------|
| Symbol                          |                                                        | -3      | -2            | -1           | Units    |
| MMCM_F <sub>INMAX</sub>         | Maximum input clock frequency                          | 800     | 800           | 800          | MHz      |
| MMCM_F <sub>INMIN</sub>         | Minimum input clock frequency                          | 10      | 10            | 10           | MHz      |
| MMCM_F <sub>INJITTER</sub>      | Maximum input clock period jitter                      | < 20% ( | of clock inpu | it period or | 1 ns Max |
| MMCM_F <sub>INDUTY</sub>        | Allowable input duty cycle: 10—49 MHz                  | 25      | 25            | 25           | %        |
|                                 | Allowable input duty cycle: 50—199 MHz                 | 30      | 30            | 30           | %        |
|                                 | Allowable input duty cycle: 200—399 MHz                | 35      | 35            | 35           | %        |
|                                 | Allowable input duty cycle: 400—499 MHz                | 40      | 40            | 40           | %        |
|                                 | Allowable input duty cycle: >500 MHz                   | 45      | 45            | 45           | %        |
| MMCM_F <sub>MIN_PSCLK</sub>     | Minimum dynamic phase-shift clock frequency            | 0.01    | 0.01          | 0.01         | MHz      |
| MMCM_F <sub>MAX_PSCLK</sub>     | Maximum dynamic phase-shift clock frequency            | 550     | 500           | 450          | MHz      |
| MMCM_F <sub>VCOMIN</sub>        | Minimum MMCM VCO frequency                             | 600     | 600           | 600          | MHz      |
| MMCM_F <sub>VCOMAX</sub>        | Maximum MMCM VCO frequency                             | 1600    | 1440          | 1200         | MHz      |
| MMCM_F <sub>BANDWIDTH</sub>     | Low MMCM bandwidth at typical <sup>(1)</sup>           | 1.00    | 1.00          | 1.00         | MHz      |
|                                 | High MMCM bandwidth at typical <sup>(1)</sup>          | 4.00    | 4.00          | 4.00         | MHz      |
| MMCM_T <sub>STATPHAOFFSET</sub> | Static phase offset of the MMCM outputs <sup>(2)</sup> | 0.12    | 0.12          | 0.12         | ns       |
| MMCM_T <sub>OUTJITTER</sub>     | MMCM output jitter                                     |         | No            | te 3         |          |
| MMCM_T <sub>OUTDUTY</sub>       | MMCM output clock duty-cycle precision <sup>(4)</sup>  | 0.20    | 0.20          | 0.20         | ns       |
| MMCM_T <sub>LOCKMAX</sub>       | MMCM maximum lock time                                 | 100     | 100           | 100          | μs       |
| MMCM_F <sub>OUTMAX</sub>        | MMCM maximum output frequency                          | 800     | 800           | 800          | MHz      |
| MMCM_F <sub>OUTMIN</sub>        | MMCM minimum output frequency <sup>(5)(6)</sup>        | 4.69    | 4.69          | 4.69         | MHz      |
| MMCM_T <sub>EXTFDVAR</sub>      | External clock feedback variation                      | < 20% ( | of clock inpu | it period or | 1 ns Max |
| MMCM_RST <sub>MINPULSE</sub>    | Minimum reset pulse width                              | 5.00    | 5.00          | 5.00         | ns       |
| MMCM_F <sub>PFDMAX</sub>        | Maximum frequency at the phase frequency detector      | 550     | 500           | 450          | MHz      |
| MMCM_F <sub>PFDMIN</sub>        | Minimum frequency at the phase frequency detector      | 10      | 10            | 10           | MHz      |



Table 68: MMCM Specification (Cont'd)

| Ob. a.l.                                                         | Description                                       | S         | Speed Grade |            |          |  |
|------------------------------------------------------------------|---------------------------------------------------|-----------|-------------|------------|----------|--|
| Symbol                                                           | Description                                       | -3        | -2          | -1         | Units    |  |
| MMCM_T <sub>FBDELAY</sub>                                        | Maximum delay in the feedback path                | 3 r       | ns Max or o | ne CLKIN c | ycle     |  |
| MMCM Switching Chara                                             | cteristics Setup and Hold                         | <u> </u>  |             |            |          |  |
| T <sub>MMCMDCK_PSEN</sub> /<br>T <sub>MMCMCKD_PSEN</sub>         | Setup and hold of phase-shift enable              | 1.04/0.00 | 1.04/0.00   | 1.04/0.00  | ns       |  |
| T <sub>MMCMDCK_PSINCDEC</sub> /<br>T <sub>MMCMCKD_PSINCDEC</sub> | Setup and hold of phase-shift increment/decrement | 1.04/0.00 | 1.04/0.00   | 1.04/0.00  | ns       |  |
| T <sub>MMCMCKO_PSDONE</sub>                                      | Phase shift clock-to-out of PSDONE                | 0.59      | 0.68        | 0.81       | ns       |  |
| Dynamic Reconfiguration                                          | on Port (DRP) for MMCM Before and After DCLK      | -         |             | 1          |          |  |
| T <sub>MMCMDCK_DADDR</sub> /<br>T <sub>MMCMCKD_DADDR</sub>       | DADDR setup/hold                                  | 1.25/0.15 | 1.40/0.15   | 1.63/0.15  | ns, Min  |  |
| T <sub>MMCMDCK_DI</sub> /<br>T <sub>MMCMCKD_DI</sub>             | DI setup/hold                                     | 1.25/0.15 | 1.40/0.15   | 1.63/0.15  | ns, Min  |  |
| T <sub>MMCMDCK_DEN</sub> /<br>T <sub>MMCMCKD_DEN</sub>           | DEN setup/hold                                    | 1.76/0.00 | 1.97/0.00   | 2.29/0.00  | ns, Min  |  |
| T <sub>MMCMDCK_DWE</sub> / T <sub>MMCMCKD_DWE</sub>              | DWE setup/hold                                    | 1.25/0.15 | 1.40/0.15   | 1.63/0.15  | ns, Min  |  |
| T <sub>MMCMCKO_DRDY</sub>                                        | CLK to out of DRDY                                | 0.65      | 0.72        | 0.99       | ns, Max  |  |
| F <sub>DCK</sub>                                                 | DCLK frequency                                    | 200       | 200         | 200        | MHz, Max |  |

- 1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any MMCM outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard. See <a href="http://www.xilinx.com/products/intellectual-property/clocking\_wizard.htm">http://www.xilinx.com/products/intellectual-property/clocking\_wizard.htm</a>.
- 4. Includes global clock buffer.
- 5. Calculated as  $F_{VCO}/128$  assuming output duty cycle is 50%.
- 6. When CLKOUT4\_CASCADE = TRUE, MMCM\_F<sub>OUTMIN</sub> is 0.036 MHz.



# **PLL Switching Characteristics**

Table 69: PLL Specification

| Comphal                                              | Description                                           | S         | peed Grad     | Speed Grade  |          |  |  |
|------------------------------------------------------|-------------------------------------------------------|-----------|---------------|--------------|----------|--|--|
| Symbol                                               | Description                                           | -3        | -2            | -1           | Units    |  |  |
| PLL_F <sub>INMAX</sub>                               | Maximum input clock frequency                         | 800       | 800           | 800          | MHz      |  |  |
| PLL_F <sub>INMIN</sub>                               | Minimum input clock frequency                         | 19        | 19            | 19           | MHz      |  |  |
| PLL_F <sub>INJITTER</sub>                            | Maximum input clock period jitter                     | < 20% c   | of clock inpu | it period or | 1 ns Max |  |  |
| PLL_F <sub>INDUTY</sub>                              | Allowable input duty cycle: 19—49 MHz                 | 25        | 25            | 25           | %        |  |  |
|                                                      | Allowable input duty cycle: 50—199 MHz                | 30        | 30            | 30           | %        |  |  |
|                                                      | Allowable input duty cycle: 200—399 MHz               | 35        | 35            | 35           | %        |  |  |
|                                                      | Allowable input duty cycle: 400—499 MHz               | 40        | 40            | 40           | %        |  |  |
|                                                      | Allowable input duty cycle: >500 MHz                  | 45        | 45            | 45           | %        |  |  |
| PLL_F <sub>VCOMIN</sub>                              | Minimum PLL VCO frequency                             | 800       | 800           | 800          | MHz      |  |  |
| PLL_F <sub>VCOMAX</sub>                              | Maximum PLL VCO frequency                             | 2133      | 1866          | 1600         | MHz      |  |  |
| PLL_F <sub>BANDWIDTH</sub>                           | Low PLL bandwidth at typical <sup>(1)</sup>           | 1.00      | 1.00          | 1.00         | MHz      |  |  |
|                                                      | High PLL bandwidth at typical <sup>(1)</sup>          | 4.00      | 4.00          | 4.00         | MHz      |  |  |
| PLL_T <sub>STATPHAOFFSET</sub>                       | Static phase offset of the PLL outputs <sup>(2)</sup> | 0.12      | 0.12          | 0.12         | ns       |  |  |
| PLL_T <sub>OUTJITTER</sub>                           | PLL output jitter                                     |           | No            | te 3         |          |  |  |
| PLL_T <sub>OUTDUTY</sub>                             | PLL output clock duty-cycle precision <sup>(4)</sup>  | 0.20      | 0.20          | 0.20         | ns       |  |  |
| PLL_T <sub>LOCKMAX</sub>                             | PLL maximum lock time                                 | 100       | 100           | 100          | μs       |  |  |
| PLL_F <sub>OUTMAX</sub>                              | PLL maximum output frequency                          | 800       | 800           | 800          | MHz      |  |  |
| PLL_F <sub>OUTMIN</sub>                              | PLL minimum output frequency <sup>(5)</sup>           | 6.25      | 6.25          | 6.25         | MHz      |  |  |
| PLL_T <sub>EXTFDVAR</sub>                            | External clock feedback variation                     | < 20% c   | of clock inpu | it period or | 1 ns Max |  |  |
| PLL_RST <sub>MINPULSE</sub>                          | Minimum reset pulse width                             | 5.00      | 5.00          | 5.00         | ns       |  |  |
| PLL_F <sub>PFDMAX</sub>                              | Maximum frequency at the phase frequency detector     | 550       | 500           | 450          | MHz      |  |  |
| PLL_F <sub>PFDMIN</sub>                              | Minimum frequency at the phase frequency detector     | 19        | 19            | 19           | MHz      |  |  |
| PLL_T <sub>FBDELAY</sub>                             | Maximum delay in the feedback path                    | 3 r       | s Max or o    | ne CLKIN c   | ycle     |  |  |
| Dynamic Reconfiguration Por                          | t (DRP) for PLL Before and After DCLK                 |           |               |              |          |  |  |
| T <sub>PLLCCK_DADDR</sub> /T <sub>PLLCKC_DADDR</sub> | Setup and hold of D address                           | 1.25/0.15 | 1.40/0.15     | 1.63/0.15    | ns, Min  |  |  |
| T <sub>PLLCCK_DI</sub> /T <sub>PLLCKC_DI</sub>       | Setup and hold of D input                             | 1.25/0.15 | 1.40/0.15     | 1.63/0.15    | ns, Min  |  |  |
| T <sub>PLLCCK_DEN</sub> /T <sub>PLLCKC_DEN</sub>     | Setup and hold of D enable                            | 1.76/0.00 | 1.97/0.00     | 2.29/0.00    | ns, Min  |  |  |
| T <sub>PLLCCK_DWE</sub> /T <sub>PLLCKC_DWE</sub>     | Setup and hold of D write enable                      | 1.25/0.15 | 1.40/0.15     | 1.63/0.15    | ns, Min  |  |  |
| T <sub>PLLCKO_DRDY</sub>                             | CLK to out of DRDY                                    | 0.65      | 0.72          | 0.99         | ns, Max  |  |  |
| F <sub>DCK</sub>                                     | DCLK frequency                                        | 200       | 200           | 200          | MHz, Max |  |  |

- 1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any PLL outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard. See <a href="http://www.xilinx.com/products/intellectual-property/clocking\_wizard.htm">http://www.xilinx.com/products/intellectual-property/clocking\_wizard.htm</a>.
- 4. Includes global clock buffer.
- 5. Calculated as F<sub>VCO</sub>/128 assuming output duty cycle is 50%.



# **Device Pin-to-Pin Output Parameter Guidelines**

Table 70: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

| Symbol                                                                                                      | Symbol Description Device                   | Dovice  |      | Speed Grade | )    | Units  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|------|-------------|------|--------|--|
| Symbol                                                                                                      | Description                                 | Device  | -3   | -2          | -1   | Uiiiis |  |
| SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flops, Fast Slew Rate, without MMCM/PLL. |                                             |         |      |             |      |        |  |
| T <sub>ICKOF</sub>                                                                                          | Clock-capable clock input and OUTFF without | XC7Z010 | 4.61 | 4.88        | 5.72 | ns     |  |
| ľ                                                                                                           | MMCM/PLL (near clock region)                | XC7Z020 | 4.96 | 5.25        | 6.13 | ns     |  |

## Notes:

This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.

## Table 71: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

| Symbol                | Symbol Description Device                                                                                   | 5       | Speed Grade | •    | Units |        |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|---------|-------------|------|-------|--------|--|
| Symbol                | Description                                                                                                 | Device  | -3          | -2   | -1    | Uiills |  |
| SSTL15 Clock-Capa     | SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flops, Fast Slew Rate, without MMCM/PLL. |         |             |      |       |        |  |
| T <sub>ICKOFFAR</sub> | Clock-capable clock input and OUTFF without                                                                 | XC7Z010 | 4.61        | 4.88 | 5.72  | ns     |  |
|                       | MMCM/PLL (far clock region)                                                                                 | XC7Z020 | 5.25        | 5.54 | 6.51  | ns     |  |

#### Notes:

1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

## Table 72: Clock-Capable Clock Input to Output Delay With MMCM

| Symbol Description       | Description                                                          | Device                            | 5    | Units |      |        |
|--------------------------|----------------------------------------------------------------------|-----------------------------------|------|-------|------|--------|
| Symbol                   | Description                                                          | Device                            | -3   | -2    | -1   | Oiills |
| SSTL15 Clock-Capa        | able Clock Input to Output Delay using Output Flip-Flop              | Flops, Fast Slew Rate, with MMCM. |      |       |      |        |
| T <sub>ICKOFMMCMCC</sub> | Clock-capable clock input and OUTFF with MMCM XC7Z010 1.30 0.82 0.82 |                                   |      |       |      |        |
|                          |                                                                      | XC7Z020                           | 1.33 | 0.88  | 0.88 | ns     |

#### Notes:

- This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all
  accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. MMCM output jitter is already included in the timing calculation.

## Table 73: Clock-Capable Clock Input to Output Delay With PLL

| Symbol                                                                                              | Description                                                           | Device  | 5    | Speed Grade | Э    | Units |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|------|-------------|------|-------|
| Symbol                                                                                              | Description                                                           |         | -3   | -2          | -1   | Units |
| SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flops, Fast Slew Rate, with PLL. |                                                                       |         |      |             |      |       |
| T <sub>ICKOFPLLCC</sub>                                                                             | Clock-capable clock input and OUTFF with PLL XC7Z010 0.69 0.69 0.69 r |         |      |             |      |       |
|                                                                                                     |                                                                       | XC7Z020 | 0.75 | 0.75        | 0.75 | ns    |

- This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all
  accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. PLL output jitter is already included in the timing calculation.



# Table 74: Pin-to-Pin, Clock-to-Out using BUFIO

| Symbol                                                                                               | Description                              | (  | Speed Grade |    |       |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------|----|-------------|----|-------|--|
| Зушьог                                                                                               | Description                              | -3 |             | -1 | Units |  |
| SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, with BUFIO. |                                          |    |             |    |       |  |
| T <sub>ICKOFCS</sub>                                                                                 | Clock to out of I/O clock 4.93 5.52 6.20 |    |             |    | ns    |  |

# **Device Pin-to-Pin Input Parameter Guidelines**

## Table 75: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD\_DELAY on HR I/O Banks

| Symbol Description                                                                      | Dovice                                                                                      |         | Units      |            |            |        |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|------------|------------|------------|--------|
| Symbol                                                                                  | Description Device                                                                          |         | -3         | -2         | -1         | Oilles |
| Input Setup and Hold Time Relative to Global Clock Input Signal for SSTL15 Standard.(1) |                                                                                             |         |            |            |            |        |
| T <sub>PSFD</sub> /T <sub>PHFD</sub> Full delay (legacy delay or default delay)         |                                                                                             | XC7Z010 | 1.89/-0.56 | 2.25/-0.56 | 2.43/-0.56 | ns     |
|                                                                                         | global clock input and IFF <sup>(2)</sup> without MMCM/PLL with ZHOLD_DELAY on HR I/O banks | XC7Z020 | 2.41/-0.60 | 2.84/-0.60 | 3.07/-0.60 | ns     |

#### Notes:

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- 3. A zero "0" hold time listing indicates no hold time or a negative hold time.

## Table 76: Clock-Capable Clock Input Setup and Hold With MMCM

| Symbol                                                                                  | Description                                        | Device  | (          | Speed Grade | Units      |        |
|-----------------------------------------------------------------------------------------|----------------------------------------------------|---------|------------|-------------|------------|--------|
| Symbol                                                                                  | Description                                        | Device  | -3         | -2          | -1         | Oillis |
| Input Setup and Hold Time Relative to Global Clock Input Signal for SSTL15 Standard.(1) |                                                    |         |            |             |            |        |
| T <sub>PSMMCMCC</sub> /                                                                 | No delay clock-capable clock input and IFF(2) with | XC7Z010 | 1.68/-0.42 | 2.57/-0.42  | 3.06/-0.42 | ns     |
| ТРНММСМСС                                                                               | MMCM                                               | XC7Z020 | 1.82/-0.36 | 2.72/-0.36  | 3.23/-0.36 | ns     |

#### Notes:

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- IFF = Input flip-flop or latch
- 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

## Table 77: Clock-Capable Clock Input Setup and Hold With PLL

| Symbol                                                                                          | Description                                        | Dovice  | 5          | Speed Grade | е          | Units  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|------------|-------------|------------|--------|
| Symbol                                                                                          | Description                                        | Device  | -3         | -2          | -1         | UiillS |
| Input Setup and Hold Time Relative to Clock-Capable Clock Input Signal for SSTL15 Standard. (1) |                                                    |         |            |             |            |        |
| T <sub>PSPLLCC</sub> /                                                                          | No delay clock-capable clock input and IFF(2) with | XC7Z010 | 2.39/-0.55 | 2.87/-0.55  | 3.40/-0.55 | ns     |
| PHPLLCC                                                                                         | ·   B                                              | XC7Z020 | 2.52/-0.49 | 3.02/-0.49  | 3.57/-0.49 | ns     |

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
  global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global
  clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- Use IBIS to determine any duty-cycle distortion incurred using various standards.



## Table 78: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

| Symbol                                                                                             | Description                 | :                                    | Speed Grade |       |    |  |
|----------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|-------------|-------|----|--|
| Symbol                                                                                             | Description                 | -3 -2 -1                             |             | Units |    |  |
| Input Setup and Hold Time Relative to a Forwarded Clock Input Pin Using BUFIO for SSTL15 Standard. |                             |                                      |             |       |    |  |
| T <sub>PSCS</sub> /T <sub>PHCS</sub>                                                               | Setup and hold of I/O clock | -0.36/1.36   -0.36/1.50   -0.36/1.70 |             |       | ns |  |

## Table 79: Sample Window

| Symbol                  | Description                                                |      | Units |      |        |
|-------------------------|------------------------------------------------------------|------|-------|------|--------|
| Symbol                  | boi Description                                            | -3   | -2    | -1   | Ullits |
| T <sub>SAMP</sub>       | Sampling error at receiver pins <sup>(1)</sup>             | 0.61 | 0.67  | 0.72 | ns     |
| T <sub>SAMP_BUFIO</sub> | Sampling error at receiver pins using BUFIO <sup>(2)</sup> | 0.36 | 0.42  | 0.48 | ns     |

#### Notes:

- This parameter indicates the total sampling error of the PL DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
  - CLK0 MMCM jitter
  - MMCM accuracy (phase offset)MMCM phase shift resolution

  - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the PL DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

# Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for PL clock transmitter and receiver data-valid windows.

Table 80: Package Skew

| Symbol               | Description                 | Device  | Package | Value | Units |
|----------------------|-----------------------------|---------|---------|-------|-------|
| T <sub>PKGSKEW</sub> | Package skew <sup>(1)</sup> | XC7Z010 | CLG225  |       | ps    |
|                      |                             | XC72010 | CLG400  |       | ps    |
|                      |                             | XC7Z020 | CLG400  | 166   | ps    |
|                      |                             | XC72020 | CLG484  | 248   | ps    |

- These values represent the worst-case skew between any two SelectIO resources in the package: shortest flight time to longest flight time from pad to ball (7.0 ps per mm).
- Package trace length information is available for these device/package combinations. This information can be used to deskew the package.



# **XADC Specifications**

Table 81: XADC Specifications

| Parameter                                      | Symbol                  | Comments/Conditions                                                                            | Min        | Тур       | Max                 | Units        |
|------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|------------|-----------|---------------------|--------------|
| $V_{CCADC} = 1.8V \pm 5\%, V_{REFP} = 1$       | .25V, V <sub>REFN</sub> | = 0V, ADCCLK = 26 MHz, $T_j = -40$ °C to 100°C,                                                | Typical va | lues at T | <sub>j</sub> =+40°C |              |
| ADC Accuracy <sup>(1)</sup>                    |                         |                                                                                                |            |           |                     |              |
| Resolution                                     |                         |                                                                                                | 12         | _         | _                   | Bits         |
| Integral Nonlinearity <sup>(2)</sup>           | INL                     |                                                                                                | _          | _         | ±2                  | LSBs         |
| Differential Nonlinearity                      | DNL                     | No missing codes, guaranteed monotonic                                                         | _          | _         | ±1                  | LSBs         |
| Offset Error                                   | 1                       | Offset calibration enabled                                                                     | _          | -         | ±4                  | LSBs         |
| Gain Error                                     |                         | Gain calibration disabled                                                                      | _          | _         | ±0.4                | %            |
| Offset Matching                                |                         | Offset calibration enabled                                                                     | _          | _         | 4                   | LSBs         |
| Gain Matching                                  |                         | Gain calibration disabled                                                                      | _          | _         | 0.2                 | %            |
| Sample Rate                                    |                         |                                                                                                | 0.1        | _         | 1                   | MS/s         |
| Signal to Noise Ratio <sup>(2)</sup>           | SNR                     | F <sub>SAMPLE</sub> = 500KS/s, F <sub>IN</sub> = 20KHz                                         | 60         | _         | _                   | dB           |
| RMS Code Noise                                 |                         | External 1.25V reference                                                                       | _          | _         | 2                   | LSBs         |
|                                                |                         | On-chip reference                                                                              | _          | 3         | _                   | LSBs         |
| Total Harmonic Distortion(2)                   | THD                     | F <sub>SAMPLE</sub> = 500KS/s, F <sub>IN</sub> = 20KHz                                         | 70         | _         | _                   | dB           |
| ADC Accuracy at Extended Te                    | mperatures              | (-55°C to 125°C)                                                                               | 1          |           |                     |              |
| Resolution                                     |                         |                                                                                                | 10         | _         | _                   | Bits         |
| Integral Nonlinearity <sup>(2)</sup>           | INL                     |                                                                                                | _          | _         | ±1                  | LSB          |
| Differential Nonlinearity                      | DNL                     | No missing codes, guaranteed monotonic                                                         | _          | _         | ±1                  | (at 10 bits) |
| Analog Inputs <sup>(3)</sup>                   |                         |                                                                                                |            |           |                     |              |
| ADC Input Ranges                               |                         | Unipolar operation                                                                             | 0          | _         | 1                   | V            |
|                                                |                         | Bipolar operation                                                                              | -0.5       | _         | +0.5                | V            |
|                                                |                         | Unipolar common mode range (FS input)                                                          | 0          | _         | +0.5                | V            |
|                                                |                         | Bipolar common mode range (FS input)                                                           | +0.5       | _         | +0.6                | V            |
| Maximum External Channel Inpu                  | ut Ranges               | Adjacent channels set within these ranges should not corrupt measurements on adjacent channels | -0.1       | _         | V <sub>CCADC</sub>  | V            |
| Auxiliary Channel Full<br>Resolution Bandwidth | FRBW                    |                                                                                                | 250        | _         | _                   | KHz          |
| On-Chip Sensors                                |                         |                                                                                                |            |           |                     |              |
| Temperature Sensor Error                       |                         | $T_j = -40^{\circ}\text{C to } 100^{\circ}\text{C}.$                                           | _          | _         | ±4                  | °C           |
|                                                |                         | $T_j = -55^{\circ}\text{C to } +125^{\circ}\text{C}$                                           | _          | _         | ±6                  | °C           |
| Supply Sensor Error                            |                         | Measurement range of $V_{CCAUX}$ 1.8V ±5% $T_j = -40^{\circ}\text{C}$ to +100°C                | _          | _         | ±1                  | %            |
|                                                |                         | Measurement range of $V_{CCAUX}$ 1.8V ±5% $T_j = -55$ °C to +125°C                             | _          | _         | ±2                  | %            |
| Conversion Rate <sup>(4)</sup>                 |                         |                                                                                                |            |           | +                   | •            |
| Conversion Time - Continuous                   | t <sub>CONV</sub>       | Number of ADCCLK cycles                                                                        | 26         | _         | 32                  | Cycles       |
| Conversion Time - Event                        | t <sub>CONV</sub>       | Number of CLK cycles                                                                           | _          | _         | 21                  | Cycles       |
| DRP Clock Frequency                            | DCLK                    | DRP clock frequency                                                                            | 8          | _         | 250                 | MHz          |
| ADC Clock Frequency                            | ADCCLK                  | Derived from DCLK                                                                              | 1          | _         | 26                  | MHz          |
| DCLK Duty Cycle                                | 1                       | •                                                                                              | 40         | _         | 60                  | %            |



Table 81: XADC Specifications (Cont'd)

| Parameter                     | Symbol            | Comments/Conditions                                       | Min    | Тур  | Max    | Units |
|-------------------------------|-------------------|-----------------------------------------------------------|--------|------|--------|-------|
| XADC Reference <sup>(5)</sup> |                   |                                                           |        |      |        |       |
| External Reference            | V <sub>REFP</sub> | Externally supplied reference voltage                     | 1.20   | 1.25 | 1.30   | V     |
| On-Chip Reference             |                   | Ground $V_{REFP}$ pin to AGND,<br>$T_j = -40$ °C to 100°C | 1.2375 | 1.25 | 1.2625 | V     |

#### Notes:

- 1. Offset and gain errors are removed by enabling the XADC automatic gain calibration feature. The values are specified for when this feature is enabled.
- 2. Only specified for new BitGen option XADCEnhancedLinearity = ON.
- 3. See the ADC chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 4. See the Timing chapter in UG480: 7 Series FPGAs XADC User Guide for a detailed description.
- 5. Any variation in the reference voltage from the nominal V<sub>REFP</sub> = 1.25V and V<sub>REFN</sub> = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. On-chip reference variation is ±1%.

# **Configuration Switching Characteristics**

Table 82: Configuration Switching Characteristics

| Symbol                                   | Description                    | :       | Speed Grade |         |          |  |
|------------------------------------------|--------------------------------|---------|-------------|---------|----------|--|
| Symbol                                   | Description                    | -3      | -2          | -1      | Units    |  |
| Power-up Timing Ch                       | aracteristics                  |         |             | •       |          |  |
| T <sub>POR</sub>                         | Power-on reset                 | 50      | 50          | 50      | ms, Max  |  |
| Boundary-Scan Port                       | Timing Specifications          | ·       |             |         |          |  |
| T <sub>TAPTCK</sub> /T <sub>TCKTAP</sub> | TMS and TDI setup/hold         | 3.0/2.0 | 3.0/2.0     | 3.0/2.0 | ns, Min  |  |
| T <sub>TCKTDO</sub>                      | TCK falling edge to TDO output | 7.0     | 7.0         | 7.0     | ns, Max  |  |
| F <sub>TCK</sub>                         | TCK frequency                  | 66      | 66          | 66      | MHz, Max |  |

# **eFUSE Programming Conditions**

Table 83 lists the programming conditions specifically for eFUSE. For more information, see <u>UG470</u>: 7 Series FPGA Configuration User Guide.

Table 83: eFUSE Programming Conditions(1)

| Symbol          | Description                       | Min | Тур | Max | Units |
|-----------------|-----------------------------------|-----|-----|-----|-------|
| I <sub>FS</sub> | V <sub>CCAUX</sub> supply current | _   | _   | 115 | mA    |
| t j             | Temperature range                 | 15  | _   | 125 | °C    |

## Notes:

1. The Zynq-7000 device must not be configured during eFUSE programming.



# **Revision History**

The following table shows the revision history for this document:

| Date     | Version | Description of Revisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 05/07/12 | 1.0     | Initial Xilinx release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 06/27/12 | 1.1     | Updated the descriptions, changed V <sub>IN</sub> , Note 3, Note 4, and added V <sub>PREF</sub> , V <sub>PIN</sub> , and Note 5 in Table 1. In Table 2, updated descriptions and notes. Updated Table 3 and added R <sub>IN_TERM</sub> . Removed I <sub>CCMIOQ</sub> from Table 5. Removed I <sub>CCMIOQ</sub> and updated XC7Z020 in Table 6. Updated LVCMOS12, SSTL135, and SSTL15 in Table 9. Updated Table 16.                                                                                    |  |
|          |         | In PS Performance Characteristics section, added timing diagrams and revised many tables.  Updated Table 48 and removed notes 2 and 3. Added Note 2 and Note 3 to Table 49. Changed Table 51 by adding T <sub>IOIBUFDISABLE</sub> . Removed many of the combinatorial delay specifications and T <sub>CINCK</sub> /T <sub>CKCIN</sub> from Table 58.  In Table 81 updated Offset Error and Matching descriptions and Gain Error and Matching descriptions, and added Note 2 to Integral Nonlinearity. |  |
| 09/12/12 | 1.2     | Changed Note 3 and added Note 6 in Table 1. Updated T <sub>j</sub> in Table 2, also revised Note 3 and Note 6. Updated specifications including R <sub>IN_TERM</sub> in Table 3. Added Table 4. Updated the XC7Z020 specifications in Table 6. Updated standards in Table 8. Updated specifications in Table 11. Updated the AC Switching Characteristics section for the ISE 14.2 speed specifications throughout the document.                                                                      |  |
|          |         | In PS Performance Characteristics section introduction, revised tables, updated Figure 4, and added Figure 5. Updated parameters in Figure 6 through Figure 12. Updated values in Table 15. Added Note 2 to Table 23. Added Note 3 to Table 25. Updated descriptions and revised F <sub>MSPICLK</sub> in Table 29. Updated Note 3 in Table 49. Changed F <sub>PFDMAX</sub> conditions in Table 68 and Table 69. Updated devices and added values to Table 80.                                         |  |

# **Notice of Disclaimer**

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at <a href="http://www.xilinx.com/warranty.htm">http://www.xilinx.com/warranty.htm</a>; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: <a href="http://www.xilinx.com/warranty.htm#critapps">http://www.xilinx.com/warranty.htm#critapps</a>.

#### **AUTOMOTIVE APPLICATIONS DISCLAIMER**

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.