"TRADER" SERVICE SHEET

The Alba 820.

HORT-WAVE ranges of 12-5-32 m (referred to below as SWI) and 28-85 m are covered by the Alba 820 4-valve (plus rectifier) AC 4-band

superhet.

Identical chassis are fitted in the 620 armchair console and the 670 console, while the chassis of the 725 radio-gramo-phone is very similar, the differences being explained under "725 Modifications." It should be noted that there are AC/DC models bearing the same model

numbers but this Service Sheet covers only

ALBA 820,

620, 670 AND 725 (AC)

the AC models and was prepared on an 820 table receiver.

Release date for 620, 670 and 820 (AC): March, 1938. Release date for 725 (AC): July, 1938.

Aerial input on MW and LW is via SW coupling coils L9, L10 and MW and LW Aerial input on MW and LW is via SW coupling coils L9, L10 and MW and LW coupling coils L1, L2 to inductively-coupled band-pass filter. Primary coils L3, L4 are tuned by C20; secondaries L13, L14 by C23; coupling by coils L5, L6, L7, L8. On SW, input is via coupling coils L9 (SW1) and L10 (SW2) to single tuned circuits L11, C23 (SW1) and L12, C23 (SW2).

First valve (V1, Mullard metallised TH4) is a triode hexode operating as frequency changer with internal coupling. Triode oscillator grid coils L15 (SW1), L16 (SW2), L17 (MW) and L18 (LW) are tuned by C24; parallel trimming by C26 (SW2), C27 (MW) and C28 (LW); series tracking by C5 (MW) and C25 (LW). Reaction by coils L19 (SW1), L20 (SW2), L21 (MW) and L22 (LW).

Second valve (V2, Mullard metallised VP4B) is a variable-mu RF pentode operating as intermediate frequency amplifier with tuned-primary tuned-secondary iron cored transformer couplings C29, L23, L24, C30 and C31, L25, L26, C32. Intermediate frequency 117.5 KC/8.

C29, L23, L24, C30 and C31, L25, L26, C32.

Intermediate frequency 117.5 KC/S.

double diode (V3, Mullard metallised Audio frequency component in 2D4A). 2D4A). Audio frequency component in rectified output is developed across load resistance R9 and passed via IF stopper R8, AF coupling condenser C11 and manual volume control R12 to CG of pentode output valve (V4, Mullard Pen A4). IF filtering by C10, R8 and C9. Provision for connection of gramophone pick-up across R12. Fixed tone correction by C13 and variable tone control by by C13, and variable tone control by C15, R14, both in anode circuit. Provision for connection of high impedance external speaker by terminals across primary of internal speaker input transformer T1.

Second diode of **V3**, fed from **L26** via **C12**, provides DC potentials which are developed across load resistances R10, R11 and fed back through decoupling circuits as GB to FC (except on the two SW bands) and IF valves, giving automatic volume control. Delay voltage is obtained from drop along R13 in V4 cathode circuit.

HT current is supplied by IHC full-wave rectifying valve (V5, Mullard IW4/350). Smoothing by speaker field L29 and dry electrolytic condensers C16, The mains aerial plug, when inserted in the aerial socket, couples one side of the mains to the aerial via **C18**. When it is not being used as such the plug is inserted in an extra earth socket, so that C18 becomes a mains RF by-pass condenser.

Under - chassis view. Diagrams of the two switch units are overleaf. The tone control components R14, C15 are wired to the speaker input panel inside the cabinet, and are therefore not shown in this orthe plan chassis view.

COMPONENTS AND VALUES

RESISTANCES	Values (ohms)
R1 V1 hexode CG decoupling V1 SG HT feed potential divider resistances V1 fixed GB resistance V1 fixed GB resistance V1 SG and osc, anode HT feed R7 V2 fixed GB resistance V3 signal diode load V3 AVC diode load resistances R12 Mantial volume control V4 GB and AVC delay V3 riable tone control V4 GB and AVC delay V4 riable t	1,000,000 10,000 25,000 25,000 13,000 150 500,000 500,000 500,000 150 500,000

	CONDENSERS	Values (μF)
C1 C2 C3 C4 C5 C6 C7 C8 C10 C11 C12 C13 C14* C15* C17* C18 C19‡ C22† C22†	Vt hexode CG decoupling Vt SG decoupling Vt SG decoupling Vt cathode by-pass Vt osc. CG condenser Osc. circuit MW tracker Vt osc. anode decoupling Vz CG decoupling Vz CG decoupling Vz cathode by-pass IF by-pass condensers AF coupling to V4 Coupling to V3 AVC diode Fixed tone corrector V4 cathode by-pass Part of variable tone control HT smoothing Mains aerial coupling Band-pass primary tuning Aerial SW2 trimmer Band-pass sec. MW trimmer Band-pass sec. MW trimmer	0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1
C23† C24† C25‡ C26‡ C27‡	SW aerial and band-pass secondary tuning Oscillator circuit tuning Osc. circuit LW tracker Osc. circuit SW2 trimmer Osc. circuit MW trimmer Continued in next column	0.0003 0.0003

	CONDENSERS (Continued)	Values (μF)
C28‡ C29‡ C30‡ C31‡ C32‡	Osc. circuit LW trimmer 1st IF trans, pri. tuning 1st IF trans, sec. tuning 2nd IF trans. pri, tuning 2nd IF trans, sec. tuning	0.00003

*Electrolytic. † Variable. ‡ Pre-set.

	OTHER COMPONENTS	Approx. Values (ohms)
I.1 I.2	Aerial MW and LW coupling (60.0
L3 L4	Band-pass primary coils	18.5
L5 L6	Band-pass coupling coils, total	47.0
1.8	Band-pass coupling coils, total	45.0
L10	Aerial SW1 coupling coil Aerial SW2 coupling coil	0.1
1.11	Aerial SW1 tuning coil Aerial SW2 tuning coil	Very low
L13	Band-pass secondary coils	1.0
L15	Osc. circuit SW1 tuning coil. Osc. circuit SW2 tuning coil	0.02
L17 L18 L19	Osc. circuit MW tuning coil Osc. circuit LW tuning coil	13.0
L20	Oscillator SW1 reaction Oscillator SW2 reaction	0.4
1.22 L23	Oscillator MW reaction Oscillator LW reaction	44.0 87.0
L24 L25	st IF trans, { Pri. Sec. Pri.	33.0
L26	Speaker speech coil	33.0
L28 L20	Hum neutralising coil Speaker field coil	0.1
Ti	Speaker input Pri. trans. Sec.	1,200.0
Т2	Mains (Pri., total Heater sec.	0.4 24.0 0.05
	trans. Rect. heat. sec	0·1 470·0
S1-17 S18	Waveband switches Mains switch, ganged R12	

DISMANTLING THE SET

Removing Chassis.—Remove the two lowest knobs and the tuning knob (recessed screws) and the four bolts (with washers and rubber washers) holding the chassis to the shelf. The chassis can now be withdrawn from the cabinet to the extent of the speaker leads, which is sufficient for normal purposes

sufficient for normal purposes.

If it is desired to free the chassis entirely, unsolder the speaker leads and when replacing, connect them as follows, noting that the tags are numbered:—F and 3 joined, red; 1, black and one side of C15; F, blue. The white lead and the yellow lead from the tone control go to the earthing tag on the speaker frame.

yellow lead from the tone control go to the earthing tag on the speaker frame.

Removing Speaker.—The speaker can be removed from the cabinet by unsoldering the leads and removing the nuts, washers and rubber washers from the four screws holding it to the sub-baffle.

When replacing, see that there is a rubber washer opened of the fairness.

When replacing, see that there is a rubber washer on each of the fixing screws, between the sub-baffle and the speaker, place the transformer on the right and connect the leads as above.

VALVE ANALYSIS

THE ATTACTOR				
Valve	Anode Voltage (V)	Anode Current (mA)	Screen Voltage (V)	Screen Current (mA)
V1 TH4 V2 VP4B	250 Oscil	5.0	52	3.0
V2 VI 4B V3 2D4A V4 PenA4 V5 IW4/350	250 236 310†	8·0 	250	5·6

† Each anode, AC.

Valve voltages and currents given in the table above are those measured in our receiver when it was operating on mains Supplement to The Wireless & Electrical Trader, December 3, 1938

of 225 V, using the 220 V tapping on the mains transformer. The receiver was tuned to the lowest wavelength on the The receiver was medium band and the volume control was at maximum, but there was no signal

Voltages were measured on the 400 V scale of a model 7 Universal Avometer, chassis being negative.

GENERAL NOTES

Switches.—81-817 are the waveband switches, ganged in two rotary units beneath the chassis. These are indicated in our under-chassis view and are shown in detail in the diagrams in column 3, where they are drawn as seen from the front of the underside of the chassis. The table (column 2) gives the switch

The table (column 2) gives the switch positions for the four control settings, starting from fully anti-clockwise. A dash indicates open and C, closed.

S18 is the QMB mains switch, gauged with the volume control R12.
Coils.—L1-L6; L7, L8, L13, L14; L17, L18, L21, L22; and the HF transformers L23, L24 and L25, L26 are in five screened units on the chassis deck, the screened units on the chassis deck, the

last two containing their trimmers.

L9, L11; L10, L12; L15, L19 and L16, L20 are in four unscreened tubular units beneath the chassis.

External Speaker.—Two terminals are provided on the internal speaker transformer panel for a high impedance (about

Scale Lamps.—These are two Osram MES types, rated at 6·2 V, ο·3 A.

Condensers C16, C17.—These are two o μF dry electrolytics in a single carton beneath the chassis, having a common negative (black) lead. The red lead is the verifier of C18 and the valley the positive of C18 and the valley the positive positive of C16 and the yellow the positive

Chassis Divergencies. Our differs in several respects from the makers' original diagram. This shows **R5** returned

TABLE AND DIAGRAMS OF THE SWITCH UNITS

Switch	SWi	SW2	MW	LW
S1 S2 S3 S1 S5	C	C	Ç	
S1 S5 S6 S7 S8	c c		C C	
S8 S9 S10 S11	c	c C	C	c
St: St3 St1	C		C	C
S15 S16 S17		C	C	c

to chassis and no tone control circuit The tone control components C15, R14 are wired inside the cabinet to the speaker terminal strip and are therefore not shown in our chassis illustrations.

The values of the coil resistances in our chassis differ from those given by the makers, so that any discrepancies here may not indicate a fault, but merely that slightly different coils are in use.

The same applies to the resistances of the mains transformer windings.

MODEL 725 MODIFICATIONS

In the radiogram model 725 V2 is switched to provide ΔF amplification for the pick-up. The modifications are as follows.

One pick-up socket goes to chassis, while the other goes to a fixed contact on an extra switch bank. The bottom of L24 is disconnected from the AVC line and taken to the moving contact of the switch. The AVC line goes to four other fixed contacts of this switch. In the SW1 SW2, MW and LW positions, **L24** is connected to the AVC line, while in the gram position it is connected to the upper pick-up socket. The pick-up is thus fed into the grid circuit of **V2**.

In the anode circuit of V2, between the top of L25 and the HT line a 5,000 O load resistance is inserted. The junction of L25 and this resistance goes to one side of a 0.002 μE by-pass condenser, the other side of which goes to chassis. The junction of **L25** and the load resistance also goes to a $0.005\,\mu\mathrm{F}$ AF coupling condenser, the other side of which goes to one fixed contact of another rotary switch.

The junction of C11 and R12 is broken. and R12 is taken to the moving contact of this second rotary switch. C11 is taken to four fixed contacts of this switch. On SW1, SW2, MW and LW, C11 is thus connected to R12 as in our diagram, while on gram the AF coupling condenser goes to **R12**, **C11** being disconnected, and so muting radio.

CIRCUIT ALIGNMENT

IF Stages. -- Connect signal generator between control grid (top cap) of **V1** and chassis, and feed in a 117.5 KC/S signal, with the receiver switched to MW. Now adjust C32, C31, C30 and C29 in turn for maximum output, reducing the input progressively as the circuits come into alignment. Re-check these settings.

RF and Oscillator Stages.—See that the

scale pointer is horizontal when the gang is at maximum. If it is not, adjust it by means of the pointer clip on the drive spindle. The volume control should be set at maximum, and the signal generator connected to the A and E sockets.

MW.-Switch set to MW, tune to 250 m on scale, feed in a 250 m (1,200 KCS) signal, and adjust **C27**, then **C22** and **C19**, for maximum output. **LW.**—Switch set to LW, tune to 1,200 m

on scale, feed in a 1,200 m (250 KC/S) signal, and adjust C28 for maximum output,

rocking the gang for optimum results. Feed in a 1,900 m (157 KC/S) signal, tune it in, and adjust **C25** for maximum

tune it in, and adjust **C25** for maximum output, while rocking the gang. **SW2.**—Switch set to SW2 (28-85 m), tune to 31 m on scale and feed in a 31 m (9-67 MC/S) signal. Adjust **C26** for maximum output, choosing the peak obtained with **C26** nearest its minimum position. Now adjust **C91** for maximum position. position. Now adjust C21 for maximum

\$W1.—No alignment adjustments are possible on this band.

Plan view of the chassis. Note the six trimmers and the tracker which are adjustable through holes in the chassis deck.