

Technology Design Practice for Optimization & Innovative Solutions

- About
- Projects
- Resources
- A.I. in Design

Common supervised learning models - (pros and cons)

January 29, 2018

 $\frac{Emergence}{0} \, / \, \frac{Experiment}{0} \, / \, \frac{Genetic \, Algorithms}{0} \, / \, \frac{laga}{0} \, / \, \frac{Machine \, Learning}{0} \, / \, \frac{Optimization}{0}$

Supervised learning its about to taking examples of inputs and outputs (labels) and now, given a new input, we need to predict its output. Supervised Learning is one of the biggest branches in Machine learning. The following table describes the most common algorithms for supervised learning. I'm particular fan of gradient boosting classifier.

Have a look my research here: https://github.com/cidelab/MachineLearnResearch

Supervised Learning Models

Model	Advantages	Disadvantages	Comments
Bagging	Robust against outliers and noiseDecrease the variance	 Slow when complex Lack of transparency in underlying model Sensitive to bias. 	Ensemble method FamilyPredict bankruptcy
Gradient Boosting Classifier	 Robustness to outliers. Trees are build sequentially, which can improve over the previous trees. Prone to overfitting unless tree depth and learning rate are controlled correctly Fast training without sacrificing accuracy. 	 scalability since is sequential it can hardly be parallelized slow in some cases Cannot compute Conditional class probabilities Long sequential computation times. 	 Ensemble method Family Costume churn, predict costumer loss. (Salford systems use Gradient boosting classifier) This mode tends to arrive at somewhat better results that other ensemble methods. Compare to bagging will be

1 of 6 09/03/19, 11:43 pm

Model	Advantages	Disadvantages	Comments
	 can handle different types of predictor variables (numerical, categorical) (heterogeneous features) Accommodate missing data Predictive power Feature-importance vector. 		 interesting. Higgs Boson Discovery. The large hadron collider dataset Ranking websites Ecology
Random Forest Classifier	 Efficiently in large data sets Applicable to both regression and classification problems Is not parametric, therefore no formal distribution assumption. Can handle highly non-linear interactions and classification boundaries. highly accurate classifier. Stability. if you change the data a little, the individual trees may change, but the forest is relatively stable, because is the combination of many trees. Maintains accuracy when a large proportion of data is missing. Gives estimates of what variables are important in the classification Less likely to overfit than a decision tree 	 Difficult to interpret Slow to evaluation If the data includes groups of correlated features of equal relevance for the output variable, then small groups are favored over large groups. 	 Ensemble method Family Video classification for YouTube (decide which video is appropriate or not) Improves DTs model by reducing overfitting without losing the correctness of the outputs. Random Forest is a collection of DTs with a small maxdepth, to avoid overfitting. Because to the number of DTs in the forest the error is not going to increase. Random Forest is a way to reduce bias-variance tradeoff in DTs. Xbox Kinect is used for real time human pose recognition

Model	Advantages	Disadvantages	Comments
	 Generates an internal unbiased estimate of generalization error. Provides an experimental way to detect variable interactions 		
AdaBoost Classifier	 Can be used by any type of data, textual, numeric, discrete. Can be combined with any other learning algorithm Less prone to over-fitting Simple to implement Fast, versatile Agnostic to the classifier 	 Sensitive to noisy data and outliers. The performance depends on data and weak learner. Weak classifiers too complex leads to overfitting or low margins. 	 Face detection, text classification Binary classification where the model needs to classify if is a face or is a background image Pre-processing is important. Ensemble method Family boosting type During the training, it continuously gives more weight to misclassified labels to allow the classifier to focus on the harder cases which increases the overall model performance
Logistic Regression	 Low Variance Probability for outcomes Robust to noise Can also be used in big data scenarios. 	 Can hardly handle categorical features. High bias You must assume the features are roughly linear and the problem is linearly separable. Limited to capture complex features in the data, when are not linear. 	 Medical outcomes (survival studies) Social science (treatment effects)
Support Vector Machines (SVM)	 Works well in complex domains where there is not a clear margin of separation. 	 Don't perform well in larger data sets, because the training time happens to be cubic to the size of 	 Performs like Logistic Regression when no linear separation. The main reason to use

Model	Advantages	Disadvantages	Comments
	 Perform well with non-linear boundary (depends of the kernel used) Handle high dimensional data well Best suited for problems with complex domains where there are clear margins of data separation. Separation planes through custom kernels. 	the data set. Needs fine tune the parameters Don't work well with noise data. So, where the classes are very overlapping, you must count independent evidence. Susceptible to overfitting when the data has noisy or overlaps. Long train in large data sets	SVM instead LR is because your problem might not be linearly separable. Use a SVM with a nonlinear Kernel example (RBF). • Text classification, Image recognition • Handwritten digit identification • Protein identification • Image recognition • Writing / digit recognition
Stochastic Gradient Descent Classifier (SGDC)	•	 Sensitive to feature scaling Require several hyperparameters such as the regularization parameter and the number of iterations. 	• Text classification and natural language processing.
K-Nearest Neighbours (KNNeighbors)	 The computation cost is very high since the algorithm hast to compute distance to all training samples which leads to the curse of dimensionality KNN is not parametric Is not influenced by noise in the data Every decision is based on locality Easy to implement 	 If you increase the number of features the computational cost increase exponentially It's hard to find what K distance function should use without experimentation. Therefore, are hard to interpret it. The query time of KNNs is higher than the training time, since is a lazy learner. 	 Used when you need to find similar items by calculating the distance function. Used in recommended system It's a lazy algorithm
Decision Trees	 Can analyse both numerical and categorical data Non-parametric Work fast if is a 	• Tends to overfit with many features but we can pick the optimal max-depth to avoid the problem	 Used in astronomy Complexity of O(mnlg) where m is the number of features, and n is the number of rows.

Model	Advantages	Disadvantages	Comments
	simple structure.		
Gaussian Naïve Bayes (GaussianNB)	Computationally fastSimple to implement	 Relies on independence assumption and will perform badly if this assumption is not met 	
	 Works well with high dimensions You need less training data, because converge quickly Good for few categories variables 	• If the model encounters unseen feature-label combination (not trained before). It will incorrectly estimate likelihood as 0 which can cause it to incorrectly classify the label.	• Text classification

Leave a Reply

Contact

5 of 6 09/03/19, 11:43 pm

Send

© Copyright designEmergente | Entries (RSS) | Comments (RSS).

6 of 6 09/03/19, 11:43 pm