Assignment 6

Chayapon Thunsetkul 6280742

October 28, 2022

- 1. Assume that o(g) = n then $g^n = e_G$ where e_G is the identity in G. Then, by a lemma, we have $\theta(g^n) = \theta(e_G) = e_H$ where e_H is the identity in H. Also, by the definition of an isomorphism, $\theta(g^n) = (\theta(g))^n = e_H^n = e_H$. It follows from this that $o(\theta(g))|n = o(g)$.
 - Next, suppose that $o(\theta(g)) = m$ and $\theta(g)^m = e_H$. Then, since θ is an isomorphism, θ^{-1} is also an isomorphism, and $g^m = \theta^{-1}(\theta(g)^m) = \theta^{-1}(e_H) = e_G$ It follows from this that $o(g)|_{m=0} = o(\theta(g))$.
 - Thus, $o(g) = o(\theta(g))$
- 2. Given any $x \in \mathbb{Z}_{50}$ we can find an integer a such that $7a = x \mod 50$. This follows from the fact that 7 and 50 are coprime and 7 can generate \mathbb{Z}_{50} . Now, $\theta(x) = \theta(7a) = a\theta(7) = 13a$.
- 3. We have $\lambda_d(g) = dg$ for $g \in G$. Reading off the **d** in the Cayley table gives the map (a d f g)(b h e c). Representing this into numbers; (1 4 6 7)(2 8 5 3).
- 4. By a lemma, we have o(6) = 5 in \mathbb{Z}_{30} , o(15) = 3 in \mathbb{Z}_{45} , and o(4) = 25 in \mathbb{Z}_{25} . By another lemma, the order of (6, 15, 4) in $\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{25}$ is the lcm(5, 3, 25) = 25.
- 5. Let $a \in \mathbb{Z}_{25}$ then $b \in \mathbb{Z}_5$ and o((a,b)) = 5 in $\mathbb{Z}_{25} \times \mathbb{Z}_5 \iff \operatorname{lcm}(o(a),o(b)) = 5$. Since 5 is a prime o(a), o(b) must either be 1 or 5 but not both 1. Suppose o(a) = 5 then $25/\gcd(a,25) = 5 \iff \gcd(a,25) = 5$ which leaves 4 possible values of a. Suppose o(b) = 5 then $5/\gcd(b,5) = 5 \iff \gcd(b,5) = 1$. This leaves 4 possible values of b. Adding all the possible values when o(a) = 5 or o(b) = 5 or o(a) = 1 or o(b) = 1 and subtracting the case where o(a) = o(b) = 1 gives 1 + 1 + 4 + 4 1 = 9.