Задание 1

Многопоточное использование числа π с помощью библиотеки pthreads

Отчёт

Фролова О.В

1 Постановка задачи

Реализовать параллельный алгоритм с использованием интерфейса POSIX Threads, вычислящий число π , как интеграл:

$$\int_0^1 \frac{4}{1+x^2} dx$$

методом прямоугольников.

2 Формат командной строки

./task1 < num-partition-intervals > < num-threads >

3 Спецификация системы

Процессор: AMD Ryzen 5 5500U 2.10 GHz

Число вычислительных ядер: 6

4 Полученные результаты

Число отрезков: $n = 2 * 10^8$

Для каждого числа нитей проводилось 3 теста, после которых считалось среднее арифметическое времени выполнения программы. Для каждого увеличения числа нитей считалось ускорение по формуле

 $S_p = \frac{T_1}{T_p},$

где T_1 - время работы программы на одной нити, а T_p - время работы программы на р нитях.

Число нитей (k)	Время работы (с)	Ускорение
1	1.014785	1.0
2	0.513983	1.974355
3	0.340908	2.976712
4	0.255807	3.966999
5	0.220051	4.61159
6	0.216309	4.691367