

Homework 9 Solutions

Weihao Li Fudan University

Problem 1

Apply \hat{x}^T on the left side of $(A+\Delta A)\hat{x}=\hat{x}\hat{\lambda}$, we have $\hat{x}^T\Delta A\hat{x}=0$, or $\hat{x}\perp\Delta A\hat{x}$.

Then we use this property and a Householder reflection to construct a ΔA that satisfies the two condition.

Let

$$egin{aligned} v &= rac{1}{\sqrt{2}} \left(rac{\hat{\lambda} \hat{x} - A \hat{x}}{||\hat{\lambda} \hat{x} - A \hat{x}||_2} - \hat{x}
ight), \ H &= I - 2 v v^T, \ \Delta A &= ||\hat{\lambda} \hat{x} - A \hat{x}||_2 H. \end{aligned}$$

It's not hard to show that

$$(A + \Delta A)\hat{x} = \hat{x}\hat{\lambda}$$

and

$$||\Delta A||_2 = ||\hat{\lambda}\hat{x} - A\hat{x}||_2 \cdot 1 = ||\hat{\lambda}\hat{x} - A\hat{x}||_2.$$

Problem 2

if $z^Tu=0$, then $Du=\lambda u$, since D have distinct eigenvalues, $u=\alpha e_i$ for some $i\in$

 $\{1,2,\ldots,n\}, \alpha \neq 0.$

Then $z^Tu=\alpha z^Te_i=0$, which is contradictory with that z has no zero entries. If $\lambda I-D$ is singular, then $e_i^T(\lambda I-D)=0$ for some $i\in\{1,2,\ldots,n\}$. Hence

$$0 = e_i^T (\lambda I - D) u = \rho e_i^T z^T u,$$

but $z^T u \neq 0$, then $e_i^T z = 0$, which is contradictory with that z has no zero entries.

For the abnormal cases:

- 1. If we want to eliminate zeros we don't want in z, say $z_i=0$, we find some $z_j\neq 0$, and just use a Givens rotation G(i,j) on the row i and j. We can show that $G^TDG=D$, so that won't change D.
- 2. Suppose $D=diag(d_1,d_2,\ldots,d_n)$. If d_i is equal(or very close to) d_j , we use a Givens rotation G(i,j) to produce zero on z_j . Do this for all closed entries so after that $w=V^Tz=(w_1,w_2,\ldots,w_n)$ (V is compound of Givens rotations) meet the condition that if $w_iw_j\neq 0$, then $d_i\neq d_j$. Then if w has r non-zero elements, use a permutation P to move all non-zero element of w to its front: $Pw=(w_{(1)},w_{(2)},\ldots,w_{(r)},0,\ldots,0)$. Let $w'=(w_{(1)},w_{(2)},\ldots,w_{(r)})$, then

$$PV^T(D+
ho zz^T)VP^T=egin{bmatrix} D_1+
ho w'w'^T & 0\ & & \ 0 & D_2 \end{bmatrix},$$

and all entries in D_1 are distinct, all entries in w^\prime are non-zero, which satisfy the assumptions.

Problem 3

By using elementary transformation on matrix

$$egin{bmatrix} \lambda I - D & z \ z^T & rac{1}{
ho} \end{bmatrix},$$

we can show that when λ is an eigenvalue of $D+
ho zz^T$, then

$$f(\lambda) = 1 + \rho z^T (D - \lambda I) z = 0.$$

Hence

$$egin{aligned} (D +
ho z z^T) (\lambda I - D)^{-1} z &= -z + (\lambda I +
ho z z^T) (\lambda I - D)^{-1} z \ &= \lambda (\lambda I - D)^{-1} z - z +
ho z (z^T (\lambda I - D)^{-1} z) \ &= \lambda (\lambda I - D)^{-1} z - z + z \ &= \lambda (\lambda I - D)^{-1} z, \end{aligned}$$

and that's the conclusion.□

Problem 4

see prob4.py

