

GP-Bandits

Thompson Sampling

Emile Mathieu January 9, 2017

Ecole des Ponts ParisTech

Table of contents

- 1. Problem Statement
- 2. Gaussian Processes
- 3. Algorithms
- 4. Experiments
- 5. Conclusion

Problem Statement

Problem Statement

Goal

Optimize a sequence sampled from an unknown reward function $f:D\to\mathbb{R}$.

At each round t:

- 1. Choose a point $\mathbf{x}_t \in D$
- 2. Observe the function value perturbed by noise: $y_t = f(\mathbf{x}_t) + \epsilon_t$

Aim to perform as well as $\mathbf{x}^* = \arg \max_{\mathbf{x} \in D} f(\mathbf{x})$.

Minimize cumulative regret $R_T = \sum_t^T r_t$, with $r_t = f(\mathbf{x}^*) - f(\mathbf{x}_t)$.

2

Gaussian Processes

Gaussian Processes

$$f \sim \mathcal{GP}(\mu, k)$$

with $\mu:D\to\mathbb{R}$ and $k:D\times D\to\mathbb{R}$

For any finite combination of dimensions $A = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$, and by denoting $\mathbf{K} = [k(\mathbf{x}, \mathbf{x}')]_{\mathbf{x}, \mathbf{x}' \in A}$ and $\mathbf{m} = [\mu(\mathbf{x})]_{\mathbf{x} \in A}$:

$$f_{A} \sim \mathcal{N}\left(m,K\right)$$

Common choices of covariance functions:

- Finite dimensional linear: $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Squared Exponential kernel: $k(\mathbf{x}, \mathbf{x}') = \exp\{-(2l^2)^{-1}||\mathbf{x} \mathbf{x}'||^2\}$
- Matern kernel: $k(\mathbf{x}, \mathbf{x}') = (2^{1-\nu}/\Gamma(\nu))r^{\nu}B_{\nu}(r)$, $r = (\sqrt{2\nu}/I) \|\mathbf{x} \mathbf{x}'\|$

GP as prior on f

Use a $GP(0_d, k(\cdot, \cdot))$ as a prior distribution over f.

Observe
$$y_t = f(\mathbf{x}_t) + \epsilon_t$$
, with i.i.d. $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$

The posterior over f is still a GP distribution which mean and variance are:

- $\mu_t = k_{t-1}(\mathbf{x})^T (K_{t-1} + \sigma^2 I_d)^{-1} \mathbf{y}_t$
- $k_t = k(\mathbf{x}, \mathbf{x}') k_{t-1}(\mathbf{x})^T (K_{t-1} + \sigma^2 I_d)^{-1} k_{t-1}(\mathbf{x}')$
- $\bullet \ \sigma_t^2 = k_t(\mathbf{x}, \mathbf{x})$

with $k_t(\mathbf{x}) = [k(\mathbf{x}_1, \mathbf{x}), \dots, k(\mathbf{x}_T, \mathbf{x})]^T$ and $\mathbf{K}_T = [k(\mathbf{x}, \mathbf{x}')]_{\mathbf{x}, \mathbf{x}' \in A_T}$.

4

Algorithms

GP-UCB

Algorithm 1 GP-UCB

Require: k

1:
$$\mu \leftarrow 0_d$$

2: **for**
$$t \leftarrow 1$$
 to T **do**

3:
$$\beta_t \leftarrow 2 \log(|D| t^2 \pi^2 / 6\delta)$$

4: Choose
$$\mathbf{x}_t \leftarrow arg \max_i \mu_{t-1} + \sqrt{\beta_t} \sigma_{t-1}$$

5: Observe
$$y_t = f(\mathbf{x}_t) + \epsilon_t$$

6:
$$\mu_t = k_{t-1}(\mathbf{x})^T (K_{t-1} + \sigma^2 I_d)^{-1} \mathbf{y}_t$$

7:
$$k_t = k(\mathbf{x}, \mathbf{x}') - k_{t-1}(\mathbf{x})^T (K_{t-1} + \sigma^2 I_d)^{-1} k_{t-1}(\mathbf{x}')$$

8:
$$\sigma_t^2 = k_t(\mathbf{x}, \mathbf{x})$$

9: end for

For finite D: $\beta_t = 2 \log(|D|t^2\pi^2/6\delta)$, with $\delta \in (0,1)$

Figure 1: Posterior distribution of f at time step 1

Figure 2: Posterior distribution of f at time step 2

Figure 3: Posterior distribution of f at time step 3

Figure 4: Posterior distribution of f at time step 4

Figure 5: Posterior distribution of f at time step 5

Figure 6: Posterior distribution of f at time step 6

Figure 7: Posterior distribution of f at time step 7

Figure 8: Posterior distribution of f at time step 8

TS-UCB

Algorithm 2 GP-TS

Require: k

- 1: $\mu \leftarrow 0_d$
- 2: **for** $t \leftarrow 1$ to T **do**
- 3: Sample $f_t \sim \mathbf{GP}(\mu_t, k_t)$
- 4: Choose $\mathbf{x}_t \leftarrow arg \max_{\mathbf{x}} f_t(\mathbf{x})$
- 5: Observe $y_t = f(\mathbf{x}_t) + \epsilon_t$
- 6: $\mu_t = k_{t-1}(\mathbf{x})^T (K_{t-1} + \sigma^2 I_d)^{-1} \mathbf{y}_t$
- 7: $k_t = k(\mathbf{x}, \mathbf{x}') k_{t-1}(\mathbf{x})^T (K_{t-1} + \sigma^2 I_d)^{-1} k_{t-1}(\mathbf{x}')$
- 8: $\sigma_t^2 = k_t(\mathbf{x}, \mathbf{x})$
- 9: end for

Figure 9: Posterior distribution of f at time step 2

Figure 10: Posterior distribution of f at time step 2

Figure 11: Posterior distribution of f at time step 3

Figure 12: Posterior distribution of f at time step 3

Figure 13: Posterior distribution of f at time step 4

Figure 14: Posterior distribution of f at time step 4

Figure 15: Posterior distribution of f at time step 5

Figure 16: Posterior distribution of f at time step 5

Figure 17: Posterior distribution of f at time step 6

Figure 18: Posterior distribution of f at time step 6

Figure 19: Posterior distribution of f at time step 7

Experiments

Experiments

Methods

GP-UCB, GP-TS and 2 naives methods

Datasets

Synthetic, Temperature, Trafic data

Sources

https://github.com/emilemathieu/Project_GP-bandits

Synthetic Data

- Sample random functions from a GP
- Squared exponential kernel with I = 0.2
- Decision set D = [0, 1]
- Uniformly discretized into 1000 points
- $\sigma^2 = 0.025$
- T = 100
- $\delta = 0.1$
- 150 runs

Figure 20: samples of zero mean GP

Synthetic Data - Results

Figure 21: Performances on synthetic data

Temperature Data

- Sensors deployed at Intel Research Berkeley
- Preprocessing with python job
- 45 sensors
- One hour intervals
- A month

- $k = \frac{1}{N-1} \sum_{i=1}^{N} \mathbf{x_i} \mathbf{x_i}^T$
- *T* = 45
- $\sigma^2 = 5.0$
- $\delta = 0.1$
- 187 runs

Figure 22: Intel lab sensors' map from http://db.csail.mit.edu/labdata/labdata.html

Trafic Data

- Speed sensors in highway 5 South in San Diego
- Python job scheduled with cron
- 48 sensors
- One minute intervals
- 3 days from 6 AM to 11 AM (local time)

•
$$k = \frac{1}{N-1} \sum_{i=1}^{N} \mathbf{x_i} \mathbf{x_i}^T$$

- T = 48
- $\sigma^2 = 4.78$
- $\delta = 0.1$
- 360 runs

Figure 23: San Diego real-time traffic website from http:

//www.dot.ca.gov/dist11/d11tmc/
sdmap/showmap.php?route=sb5

Real Data - Results

Figure 24: Comparison of performances: GP-UCB, TS-UCB and 2 naive heuristics on temperature data (a) and trafic data (b).

Conclusion

Thank you for your attention!

Questions?

Kernel Learning

Squared exponential kernel:

$$k_l(\mathbf{x}, \mathbf{x}') = \exp\{-(2l^2)^{-1} ||\mathbf{x} - \mathbf{x}'||^2\}$$

Likelihood of observations $\mathbf{y} = [y_1, \dots, y_T]^T$:

$$\mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}_{l}) = (2\pi)^{-n/2}|\mathbf{K}_{l} + \sigma^{2}I|^{-1/2}\exp\{-\mathbf{y}^{T}(\mathbf{K}_{l} + \sigma^{2}I)^{-1}\mathbf{y}\}\$$

with
$$K_A = [k_I(\mathbf{x}, \mathbf{x}')]_{\mathbf{x}, \mathbf{x}' \in A}$$
 and $A = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$.

Convex optimization problem:

minimize
$$\frac{1}{2} \log |\mathbf{K}_I + \sigma^2 I| + \frac{\mathbf{y}^T (\mathbf{K}_I + \sigma^2 I)^{-1} \mathbf{y}}{2} \propto -\log \mathcal{N}(\mathbf{y}|0, \mathbf{K}_I)$$

Synthetic Data - Kernel Learning

Figure 25: Negative log likelihood versus kernel lengthscale