

BT2101 – TUTORIAL 1: DECISION TREE

Kaustubh Jagtap A0168820B

NATIONAL UNIVERSITY OF SINGAPORE

Overview

In this tutorial, I first performed manual calculations for the information gain for all 5 attributes, by constructing frequency tables for all of them. Following this, I abstracted my methodology by writing python functions to calculate entropy and information gain (adapted and modified from the course github page). To address the third question, I directly defined python methods to calculate the gini index. All my findings are presented below.

Questions 1 & 2 - Manual Calculation

For this step, I had to break down the given dataset into frequency tables for each attribute. These frequency tables are given below. It is interesting to note that intuitively, we can hypothesize that *gender* would be the best attribute for the first split, since it gives us the cleanest partitioning – we can tell just by visual inspection of the data.

Split on Passenger class		
	Survived = yes	survived = no
First	5	1
Second	3	5
Third	4	12

Split on Age class			
	Survived = yes	survived = no	
Childhood	4	4	
Young	6	٥	
Adulthood	0	9	
Middle	2	1	
Adulthood		1	
Elder Citizen	1	3	

Split on Gender		
	Survived = yes	survived = no
Male	2	16
Female	10	2

Split on no. of siblings/ spouses		
	Survived =	survived = no
	yes	surviveu – 110
0	4	13
1	7	2
>=2	1	3

Split on no. of parents/ children		
	Survived = yes	survived = no
0	9	14
1	1	2
>=2	2	2

<u>Sample Calculation for split on passenger class</u>

Using the entropy formula, I calculated the entropies for passenger class split as follows:

Split on Passenger class			
	Survived = yes	survived = no	Entropy
First	5	1	0.65
Second	3	5	0.954
Third	4	12	0.811
Weighted Entropy		0.817	

Results

The above calculations were performed for all 5 attributes, and the results are shown below.

Entropy Method		
Attribute	Weighted Entropy	Gain in Information
Age Class	0.868	0.103
Passenger Class	0.817	0.154
Gender	0.562	0.409
No of Siblings or spouses	0.783	0.187
No of parents or children	0.965	0.005
Note: Initial Entropy = 0.971		

We want to maximize the gain in information, hence we shall choose the *Gender* attribute for our first split. This is in line with our initial hypothesis.

Questions 1 & 2 - Python scripts

I thought it would be interesting to redo the above using python. I adapted some of the scripts from our course github and came up with an automated process to calculate information gain.

The first script I rewrote is that for entropy calculation. Below is an abstracted version of the function that can calculate entropy for *any* number of input sample labels.

General function to calculate entropy

```
def entropy(sample_labels):
     ""Input: A vector of sample labels e.g. [A,B,A,C,C,C,A,B,B,A,C,B,A,A].
      This input has to be for a particular segment of the attribute we are splitting on.
      e.g. if splitting on gender attribute, the vector will be the labels for all males. OR all females. etc
      Output: A number between 0 and 1, the entropy""
   # Assert that it it a numpy array
   sample_labels = np.array(sample_labels)
   # Return 0 if empty array
   if sample_labels.size == 0:
       return 0
   class values = np.unique(sample labels)
   entropy = 0 # initialize entropy
   # iterate over every class and get the proportion. From there, add to entropy using formula.
   for label in class_values:
       number_of_instances = len(list(filter(lambda x:x==label, sample_labels)))
       if number_of_instances == 0: # if no instances of this class, continue
           continue
       proportion = number_of_instances/len(sample_labels)
       entropy -= proportion*log(proportion,2)
   return entropy
```

I then defined a function to calculate information gain – this was done from scratch. Here, it takes a parameter called *method*. This is actually a function to be passed in – either entropy or gini_index. The function uses this *method* to calculate the information gain. Doing this allows for better abstraction.

Function to calculate information gain ¶

```
def calc_info_gain(df, selected_feature, label, method):
     ""df: Takes in the whole dataframe
      Selected Feature: Name of the column which we want to split on
      Label: Name of column which contains the labels
      method: The function we are using. eg entropy or gini_index. These are in fact functions.
       This function outputs a tuple (weighted_entropy, info_gain)'
   initial_measure = method(df[label]) # calculate overall entropy/ gini-index of dataframe
    attribute_segments = df[selected_feature].unique() # stores a list of all segments within chosen attribute eg.[male, female]
   weighted_measure = 0 # initialise weighted entropy/ gini-index
    for segment in attribute_segments:
        data_for_segment = df[df[selected_feature] == segment]
        labels_for_segment = data_for_segment[label]
        measure_for_this = method(labels_for_segment)
        weighted_measure += measure_for_this * len(data_for_segment)
    weighted measure /= len(df)
   info_gain = initial_measure - weighted_measure
    return (weighted_measure, info_gain)
```

Running the function gives the following result.

```
(Weighted Measure, Information Gain)

Age Class: (0.8675277182987636, 0.10342287615590495)

Passenger Class: (0.8172018848211989, 0.15374870963346965)

Gender: (0.5619639695247292, 0.4089866249299394)

No of Siblings or Spouses on Board: (0.7834701673945229, 0.18748042706014567)

No of Parents or Children on Board: (0.9654839523229165, 0.005466642131752075)
```

It is good to note that these results match with the ones calculated by hand above. Once again, it is affirmed that *Gender* would be the best attribute to split on.

Question 3 – Using the Gini Index

Below is a function to calculate the gini index for an attribute, given *any* number of class labels. This was written from scratch.

General function to calculate Gini Index

```
def gini_index(sample_labels):
     "Input: A vector of sample labels e.g. [A,B,A,C,C,C,A,B,B,A,C,B,A,A].
      This input has to be for a particular segment of the attribute we are splitting on.
       e.g. if splitting on gender attribute, the vector will be the labels for all males. OR all females. etc
      Output: The gini index for this split"
   # Assert that it it a numpy array
   sample_labels = np.array(sample_labels)
   # Return 0 if empty array
   if sample_labels.size == 0:
       return 0
   class_values = np.unique(sample_labels)
   intermediate_sum = 0 # initialize 1 - (gini index)
   # iterate over every class and get the proportion. From there, add to entropy using formula.
   for label in class values:
       number_of_instances = len(list(filter(lambda x:x==label, sample_labels)))
       proportion = number_of_instances/len(sample_labels)
       intermediate_sum += proportion**2
   return 1 - intermediate_sum
```

Results

Running the above script on the data produces the following raw results:

```
(Weighted Gini Index, Reduction in Gini Index)
Age Class: (0.4277777777778, 0.0522222222222227)
Passenger Class: (0.380555555555555554, 0.0994444444444445)
Gender: (0.22962962962962957, 0.2503703703704)
No of Siblings or Spouses on Board: (0.3576252723311547, 0.12237472766884527)
No of Parents or Children on Board: (0.4763285024154589, 0.0036714975845411058)
```

The consolidated results are presented in the table below:

Gini Index Method		
Attribute	Weighted Gini Index	Reduction from start
Age Class	0.428	0.052
Passenger Class	0.381	0.099
Gender	0.230	0.250
No of siblings or spouses	0.358	0.122
No of parents or children	0.476	0.004
Note: Initial Gini Index = 0.480		

The split on the *Gender* attribute produces the highest reduction in Gini Index. Hence, even using this method, *Gender* is the best root attribute to split upon.