Prognozowanie PKB Republiki Czeskiej na podstawie danych historycznych Jakub Kur

Zmienną prognozowaną w badaniu jest Produkt krajowy brutto wytworzony przez Czechy. Dane przyjęte do analizy pobrany zostały z bazy danych <u>Europejskiego Urzędu statystycznego (EuroStat)</u>. Zestaw danych zawiera dane kwartalne o PKB (w milionach koron czeskich) w latach 1995 – 2020.

STATYSTYKI OPISOWE

Średnia	903990
Mediana	945160
Minimalna	351520
Maksymalna	1509400
Odchylenie standardowe	302260
Wsp. zmienności	0,3344
Skośność	0,0838
Kurtoza	-0,9371
Percentyl 5%	435550
Percentyl 95%	1437900
Zakres Q3-Q1	460450
Brakujące obs.	0

W badanym okresie Czechy wytwarzały PKB średnio na poziomie 903990 mln koron czeskich. Przez połowę tego okresu wartość ta była nie więcej niż 945160 CZK. Największy był w 4 (1509400 CZK) kwartale 2019 roku a najniższy w pierwszym badanym okresie (351520 CZK). PKB Czech różni się przeciętnie od wartości średniej o +/- 302260 CZK I odchyla o 33%. Ujemna kurtoza wskazuje na platykurtyczność (spłaszczenie rozkładu) i wskazuje na dużą liczbę wyników

skrajnych. Asymetria rozkładu jest umiarkowana. Skierowana prawostronnie. W 5% badanego czasu wartość nie przekraczała **435550 CZK** i w 95% nie była mniejsza od **1437900 CZK**. 50% środkowych obserwacji zawiera **460450 CZK**.

Wykres 1. PKB Republiki czeskiej. Lata 1995-2020 (dane kwartalne).

Źródło: Opracowanie własne na podstawie danych eurostat.

Rozpatrując jak kształtowały się dane w tym okresie zauważyć można występowanie sezonowości widoczne jest to na powyżej zbudowanym wykresie. Świadczą o tym regularne wahania na przestrzeni kwartałów.

TEST ADF

 H_0 : niestacjonarność zmiennej

 H_1 : stacjonarność zmiennej

```
Rozszerzony test Dickeya-Fullera dla procesu PKB
testowano istotność opóźnienia od rzędu 8, dla kryterium AIC
liczebność próby 99
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)

z wyrazem wolnym i trendem liniowym
dla opóźnienia rzędu 4 procesu (1-L)PKB
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
estymowana wartość (a-1) wynosi: -0,132247
Statystyka testu: tau_ct(1) = -2,67439
asymptotyczna wartość p = 0,2473
Autokorelacja reszt rzędu pierwszego: -0,059
opóźnione różnice: F(4, 92) = 132,409 [0,0000]
```

Autokorelacja reszt rzędu pierwszego:

-0,059 < 0,1 – Można zakładać, że opóźnienie do 8 rzędu jest właściwie dobrane i autokorelacja składnika zakłócającego w modelu pomocniczym testu ADF nie występuje.

Statystyka testu:

```
TAU = -2,674 [0,247]
```

 $p = 0.247 > \alpha = 0.1$ – Brak podstaw do odrzucenia hipotezy zerowej mówiącej o niestacjonarności PKB czech.

Przeprowadzono test integracji pierwszego przyrostu:

 H_0 : niestacjonarność pierwszego przyrostu

 H_1 : stacjonarność pierwszego przyrostu

```
Rozszerzony test Dickeya-Fullera dla procesu d_PKB
testowano istotność opóźnienia od rzędu 8, dla kryterium AIC
liczebność próby 99
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)

test z wyrazem wolnym (const)
dla opóźnienia rzędu 3 procesu (1-L)d_PKB
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estymowana wartość (a-1) wynosi: -0,910664
Statystyka testu: tau_c(1) = -3,40383
asymptotyczna wartość p = 0,01086
Autokorelacja reszt rzędu pierwszego: 0,002
opóźnione różnice: F(3, 94) = 175,117 [0,0000]
```

TAU = -3,404 [0,011]

 $p=0.011<\alpha=0.1$ – Odrzucana jest hipoteza zerowa na rzecz alternatywnej. I przyrost zmiennej jest stacjonarny. Dlatego ΔPKB także jest szeregiem stacjonarnym. Wtedy $PKB\sim I(1)$ jest stacjonarne. Dlatego d=1

TEST HEGY

 $t1 = -2,67 [0,991] > \alpha - Nie można odrzucić H_a$

 $t2 = -0.58 [0.343] > \alpha - Nie można odrzucić H_b$

F1 = 0,94 [0,444] < α – Odrzucamy H0

Podsumowanie: Nie można odrzucić hipotez **HA** i **HB** natomiast można odrzucić hipotezę **HC**. Stacjonarną zmienną można otrzymać poprzez $\mathbf{y_t} - \mathbf{y_{t-2}}$ Ze względu na brak możliwości obliczenia zastosowano filtr $\mathbf{\Delta_4y_t}$ Dlatego można wyprowadzić wniosek, że $\mathbf{D} = \mathbf{1}$.

MODEL SARIMA

р	d	q	Р	D	Q	AIC
1	1	1	1	1	1	2259,968
1	1	1	2	1	1	2261,166
1	1	1	1	1	2	2262,127
2	1	1	1	1	1	2261,967
1	1	2	1	1	1	2261,966

Na podstawie kryterium AIC wybrać można najlepszy model:

SARIMA (1,1,1) α $(1,1,1)_4$

PROGNOZOWANIE

EX POST

Wartości prognozowane pokrywają się z danymi zaobserwowanymi. Poniżej zestawiono miary dokładności prognoz ex post z wykorzystaniem 99 obserwacji.

```
Miary dokładności prognoz ex post wykorzystano 99 obserwacji
Średni błąd predykcji
                                 ME =
                                         -560
Pierwiastek błędu średniokwadr. RMSE =
Średni błąd absolutny
                                 MAE =
                                          12949
Średni błąd procentowy
                                 MPE =
                                         -0,13699
Średni absolutny błąd procentowy MAPE =
                                          1,3507
Współczynnik Theila (w procentach) I =
                                         0,28309
Udział obciążoności predykc. Il^2/MSE =
                                         0,00076875
Udział niedost.elastyczności I2^2/MSE =
                                         0,0011044
Udział niezgodności kierunku I3^2/MSE =
                                          0,99813
```

- ME średnia arytmetyczna błędu predykcji: prognozy są przeciętnie przeszacowane o 560 mln koron czeskich;
- RMSE średni błąd prognozy ex post (pierwiastek z MSE): wartości prognoz różnią się od wartości prognozowanych średnio o +/- 20197 mln koron czeskich;
- MAE średni błąd absolutny: wartości prognoz różnią się od wartości prognozowanych średnio o +/- 12949 mln koron czeskich;
- MPE średni błąd procentowy: miara nie ma ekonometrycznego znaczenia; przeciętnie błąd prognozy stanowi -0,13699%;

- MAPE średni absolutny błąd procentowy: wartości prognoz różnią się od wartości prognozowanych średnio o +/- 1,3507%. Prognoza jest dopuszczalna, granica dopuszczalności prognozy wynosi 5%;
- I współczynnik Theila (w procentach): prognoza jest niedoszacowana o **0,28309**%, co jest wynikiem dopuszczalnym (granicą dopuszczalności jest 10%).
- 1. **I**²₁ (Um) obciążoność predykcji: błędy prognoz w **0,076875%** powstają na skutek obciążenia metody estymacji;
- 2. I²₂ (Us)– niedostateczność elastyczności: błędy prognoz w **0,11044%** powstają na skutek niedostosowania elastyczności prognozy do faktycznych wahań zmiennej prognozowanej;
- 3. **I**²₃ (Uc)– niewłaściwe prognozowanie punktów zwrotnych: błędy prognoz w **99,813**% powstają na skutek braku zgodności między kierunkami zmian zmiennej prognozowanej i jej prognoz.

EX ANTE

Wartość prognozowana PKB Republiki Czeskiej dla pierwszego kwartału 2021 roku wyniosła 1372694,27 mln koron czeskich. Jednocześnie odchylając się średnio od zmiennej prognozowanej o +/-20197,405 mln koron czeskich. Stanowi to 0.01% wartości prognozy. Prognoza jest dopuszczalna. Przedział ufności z wartościami krańcowymi 1333108,08 i 1412280,45 mln koron czeskich z 95% prawdopodobieństwem. Pokrywa wartością prognozy dla PKB w Q1 2021.