Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 7

14 listopada 2017 r.

Zajęcia 6 grudnia 2017 r. Zaliczenie listy od 5 pkt.

L7.1. 1 punkt | Sprawdź, że wielomian $L_n \in \Pi_n$ interpolujący funkcję f w parami różnych $\overline{n+1}$ węzłach x_0,\ldots,x_n można zapisać w postaci

$$L_n(x) = \sum_{k=0}^{n} f(x_k) \frac{p_{n+1}(x)}{(x - x_k)p'_{n+1}(x_k)},$$

gdzie $p_{n+1}(x) := (x - x_0)(x - x_1) \cdots (x - x_n).$

L7.2. | 1 punkt | Podaj postać Newtona wielomianu interpolacyjnego dla następujących danych:

- L7.3. | 1 punkt | Ile i jakich operacji arytmetycznych należy wykonać, aby dla danych parami różnych punktów x_0, x_1, \ldots, x_n wyznaczyć ilorazy różnicowe $f[x_0, x_1, \ldots, x_k]$ dla k = $0, 1, \ldots, n$?
- **L7.4.** 1 punkt Niech $L_n \in \Pi_n$ oznacza wielomian interpolujący funkcję f w parami różnych węzłach x_0, x_1, \ldots, x_n . Sformułuj efektywny algorytm wyznaczania wartości

$$L_n(z_0), L_n(z_1), \ldots, L_n(z_M),$$

gdzie $z_0, z_1, \ldots, z_M \in \mathbb{R}$ są dane. Jaka jest jego złożoność?

L7.5. |1 punkt| Niech $L_n \in \Pi_n$ oznacza wielomian interpolacyjny Lagrange'a dla funkcji $f(x) = \sin(2x)$ i wezłów będących równoodległymi punktami przedziału [0, 1]. Jak należy dobrać n, aby mieć pewność, że dla każdego x z tego przedziału zachodzi

$$|f(x) - L_n(x)| \le 10^{-8}$$
?

L7.6. 1 punkt Funkcję $f(x) = \ln(x/3+1)$ interpolujemy wielomianem $L_n \in \Pi_n$ w pewnych $\overline{n+1}$ różnych punktach przedziału [4,5]. Jak należy dobrać n, aby mieć pewność, że

$$\max_{x \in [4,5]} |f(x) - L_n(x)| \le 10^{-10} ?$$

L7.7. 1 punkt Funkcję $f(x) = e^{\frac{x}{3}}$ interpolujemy wielomianem $L_n \in \Pi_n$ w węzłach będących zerami wielomianu Czebyszewa T_{n+1} . Jak należy dobrać n, aby mieć pewność, że

$$\max_{x \in [-1,1]} |f(x) - L_n(x)| \le 10^{-10} ?$$

L7.8. 2 punkty Język programowania PWO++ ma bogatą bibliotekę funkcji i procedur numerycznych. Wśród nich znajduje się m.in. procedura Interp_Newton(x,f) znajdująca dla wektora x:= $[x_0, x_1, \ldots, x_n]$ parami różnych liczb rzeczywistych i wektora f:= $[f_0, f_1, \ldots, f_n]$ współczynniki b_k $(k = 0, 1, \ldots, n)$ postaci Newtona wielomianu interpolacyjnego $L_n \in \Pi_n$,

$$L_n(x) := b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}),$$

spełniającego warunki $L_n(x_i) = f_i$ dla i = 0, 1, ..., n. Niestety procedura ta ma pewną wadę, mianowicie n musi być mniejsze niż 31. W jaki sposób, wykorzystując procedurę Interp_Newton, można szybko wyznaczyć współczynniki postaci Newtona wielomianu $L_{31} \in \Pi_{31}$ spełniającego warunki

$$L_{31}(z_i) = h_i$$
 $(i = 0, 1, ..., 31; z_i \neq z_j \text{ dla } i \neq j)$?

(-) Paweł Woźny

