CONCOURS D'ADMISSION 2005

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Étude de certaines matrices symétriques réelles

Le but de ce problème est l'étude des valeurs propres et vecteurs propres de certaines matrices symétriques réelles.

On désigne par N un nombre entier au moins égal à 2. On munit l'espace \mathbf{R}^N de son produit scalaire et de sa norme usuels notés respectivement (|) et $\| \|$. On identifie une matrice $N \times N$ réelle A avec l'endomorphisme qu'elle représente dans la base naturelle de \mathbf{R}^N et on note $\|A\| = \sup \{\|Ax\| \mid \|x\| \le 1\}$.

Première partie

- 1. Étant donné une matrice $N \times N$ réelle symétrique A, démontrer les assertions suivantes :
 - a) ||A|| est égal au maximum des valeurs absolues des valeurs propres de A.
- **b)** La plus grande valeur propre de A, notée λ , est égale à la borne supérieure des nombres $\frac{(Ax|x)}{\|x\|^2}$ où $x \in \mathbf{R}^N$ et $x \neq 0$.
 - c) Pour un élément x de \mathbb{R}^N , on a $Ax = \lambda x$ si et seulement si $(Ax|x) = \lambda ||x||^2$.

Dans la suite du problème, on désigne par E un ensemble de couples (i,j) de $\{1,\ldots,N\}$ \times $\{1,\ldots,N\}$, tels que $i\neq j$ et que $(i,j)\in E$ implique $(j,i)\in E$; on note M_E l'ensemble des matrices $N\times N$ réelles symétriques et dont les coefficients $a_{i,j}$ satisfont, pour $i\neq j$:

 $a_{i,j} > 0$ si $(i,j) \in E$, $a_{i,j} = 0$ dans le cas contraire.

Deuxième partie

Dans cette deuxième partie, on prend pour E l'ensemble des couples (i, i+1) et (i+1, i) où $i=1,\ldots,N-1$.

2. Montrer que toutes les valeurs propres de toute matrice A de M_E sont simples.

Dans la suite de cette partie, on prend pour A la matrice, notée A_N , de coefficients

$$a_{i,i} = 0$$
, $a_{i,j} = 1$ si $(i,j) \in E$,

tous les autres coefficients étant nuls. On note P_N son polynôme caractéristique : $P_N(X) = \det(X.id - A_N)$. On pose $P_1(X) = X$.

- **3.a)** Calculer P_2 et P_3 .
 - b) Écrire une relation donnant P_N en fonction de P_{N-1} et P_{N-2} .
 - c) Calculer dét A_N .
 - d) Le polynôme P_N est-il pair, impair?
- **4.** Soit x un vecteur propre de A_N associé à une valeur propre λ , de coordonnées x_1, \ldots, x_N . Exprimer x_k en fonction de x_1 et de $P_{k-1}(\lambda)$ pour $k=2,\ldots,N$, puis x_{N-k} en fonction de x_N et de $P_k(\lambda)$ pour $k=1,\ldots,N-1$.
 - 5.a) Démontrer les inégalités

$$4 - \frac{6}{N} \leqslant ||A_N||^2 < 4$$
.

[On pourra écrire $4||x||^2 - ||A_N x||^2$ sous la forme d'une somme de carrés de termes de la forme x_i ou $x_i - x_j$.]

- **b)** Vérifier que l'on a $||A_{N-1}|| < ||A_N||$.
- 6. Soit λ_N la plus grande valeur propre de A_N . Montrer qu'il existe un vecteur propre x pour cette valeur propre dont toutes les coordonnées x_k sont strictement positives.

Troisième partie

Dans cette partie, on prend pour E l'ensemble formé des couples (i, i + 1) et (i + 1, i) où $i = 1, \ldots, N - 1$, et des couples (1, N) et (N, 1). On définit A par

$$a_{i,i} = 0$$
, $a_{i,j} = 1$ si $(i,j) \in E$,

tous les autres coefficients étant nuls.

On munit \mathbf{C}^N de son produit scalaire usuel.

- 7.a) Déterminer les nombres réels c pour lesquels le vecteur x de coordonnées $x_k = e^{ikc}$ est vecteur propre de A. Préciser la valeur propre correspondante λ_c .
- **b)** Construire une base orthonormée (e_n) , $n=0,\ldots,N-1$, de \mathbf{C}^N formée de vecteurs propres de A.
 - c) Déterminer les multiplicités des valeurs propres de A.

On pose $\alpha = e^{2\pi i/N}$ et on note F l'espace vectoriel des applications $f: \mathbf{Z} \to \mathbf{C}$ satisfaisant f(q+N) = f(q) pour tout $q \in \mathbf{Z}$. On définit un endomorphisme Φ de F par

$$(\Phi f)(p) = N^{-\frac{1}{2}} \sum_{q=0}^{N-1} \alpha^{-pq} f(q) .$$

- **8.a)** Montrer que Φ est un isomorphisme unitaire, et déterminer son inverse.
 - b) On définit un endomorphisme Ψ de F par

$$(\Psi f)(p) = f(p-1) + f(p+1)$$
.

Calculer l'endomorphisme $\Omega = \Phi \circ \Psi \circ \Phi^{-1}$.

c) Déduire de ce qui précède une nouvelle démonstration de la question 7.b).

Quatrième partie

On suppose maintenant que l'ensemble E satisfait la condition suivante :

(C) Pour tout couple $(i, j) \in \{1, \dots, N\} \times \{1, \dots, N\}, i \neq j$, il existe un entier $p \geqslant 1$ et des indices k_0, k_1, \dots, k_p tels que $k_0 = i, k_p = j, (k_q, k_{q+1}) \in E$ pour tout $q = 0, \dots, p-1$.

On note A une matrice de M_E , et λ sa plus grande valeur propre. On se propose de démontrer le résultat suivant :

- (R) La valeur propre λ est simple et le sous-espace propre correspondant E_{λ} dans \mathbf{R}^{N} contient un vecteur x ayant toutes ses coordonnées strictement positives.
- 9. Vérifier que, si un vecteur x appartient à E_{λ} , il en est de même du vecteur |x| de coordonnées $|x_i|$.
- 10. On suppose que E_{λ} contient un vecteur x, non nul, tel que $x_i \ge 0$ pour tout i et $x_{i_0} = 0$ pour un certain indice i_0 .
 - a) Montrer qu'il existe deux indices u et v tels que $x_u = 0, x_v > 0$ et $(u, v) \in E$.
- **b)** On fixe u et v ayant la propriété ci-dessus. Pour tout $\varepsilon>0$ on définit un vecteur x_ε par ses coordonnées

$$x_{\varepsilon,i} = x_i$$
 si $i \neq u$, $x_{\varepsilon,u} = \varepsilon$.

Montrer que, pour tout ε suffisamment petit, on a

$$\frac{(Ax_{\varepsilon}|x_{\varepsilon})}{\|x_{\varepsilon}\|^2} > \frac{(Ax|x)}{\|x\|^2} .$$

- c) L'hypothèse faite au début de la question 10. est-elle valide?
- 11. Démontrer le résultat (R).

* *

*