

NASA Contractor Report 159047

NASA CR-159047 19790017672

Validation of Aircraft Noise Prediction Program

C. Y. Kapper

Douglas Aircraft Company McDonnell Douglas Corporation Long Beach, California 90846

CONTRACT NAS1-15471 JUNE 1979

LIBRARY COPY

Jul > 19/9

Library, NASA HAMPTON, VIRGINIA

NASA

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NASA CR 159047		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Validation of Aircraft Noise		FINAL, 6-21-78 to 1-21-79
Prediction Program		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
C. Y. Kapper		NAS1-15471
9. PERFORMING ORGANIZATION NAME AND ADDRESS Douglas Aircraft Company		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
3855 Lakewood Boulevard Long Beach, California 90846		1-12.2610.0218-A
11. CONTROLLING OFFICE NAME AND ADDRESS	arithmeter for the significant of the desired for the significant for the significant case of the sign	12. REPORT DATE
National Aeronautics & Space Admi	lnistration	June 1979
Langley Research Center		13. NUMBER OF PAGES
Hampton, Virginia 23665		83
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
SAME		Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

SAME

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Aircraft Noise ANOPP Prediction Program Flyover Noise

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A study to validate the NASA Noise Prediction Program (ANOPP) by comparing the predictions with flyover noise data was performed. A data base of six flyover noise runs for the DC-10-40/JT9D-59A configuration was used. It was shown that for all power settings ANOPP consistently underpredicted the low frequency spectral levels, overpredicted high frequency spectral levels and consequently overpredicted the inlet and aft PNLT time histories.

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 |

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
■ 1. 大大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、
사고 있다. 그는 사람들은 사람들은 사람들이 있다면 하는 사람들이 되었다. 그 사람들은 사람들이 되었다.

CONTENTS

		PAGE
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	DESCRIPTION OF THE FLYOVER NOISE TEST	4
	3.1 Aircraft/Engine Performance Data	4
	3.2 Weather Data	4
	3.3 Aircraft Position Data	5
	3.4 Physical Site Data	5
	3.5 Flyover Noise Data	5
4.0	FLYOVER DESCRIPTION	7
5.0	ANOPP PROGRAM DESCRIPTION AND OPERATION	8
	5.1 Overview of Program	8
	5.2 Method of Operation	8
6.0	COMPARISON OF ANOPP PREDICTIONS WITH FLYOVER DATA	10
7.0	CONCLUDING REMARKS	12
8.0	RECOMMENDATIONS	14
REFE	RENCES	15
TABL	ES	16-29
FIGU	IRES	30-67
APPF	NDIXES	68-81

1.0 SUMMARY

A study to validate the NASA Aircraft Noise Prediction Program (ANOPP) by comparing the predictions with flyover noise data was carried out. A data base of six flyover noise runs for the DC-10-40/JT9D-59A airplane/engine configuration was used. The data consisted of the flyover noise measurements as well as flight path profile, propulsion characteristics and configuration characteristics such as wing area and flap deflection angle. Predicted and measured 1/3-octave band sound pressure levels at selected angles from the flight path were compared for all six runs. Predicted and measur-d PNLT histories were also compared. It was shown that for all power settings ANOPP consistently underpredicted the low frequency spectral levels, overpredicted high frequency spectral levels, and consequently overpredicted the inlet and aft PNLT time histories.

2.0 INTRODUCTION

Over the past several years there has been a continuing effort by the National Aeronautics and Space Administration (NASA) to develop a computer program for the prediction of aircraft noise. One of the capabilities of the Aircraft Noise Prediction Program (ANOPP) is to predict levels, spectra, and directivity of aircraft flyover noise and its component noise sources. The prediction methodologies incorporated into ANOPP by NASA are based on selected theoretical and empirical techniques for predicting aircraft noise sources currently deemed to be the best methods available. However, many of these prediction methods involve the use of model-scale data, empirical correction factors, and static test data bases. Flight effects include Doppler shift and convective amplification terms but omit the effects of installation and forward motion on engine noise. Verification of the ANOPP prediction procedures against actual flyover noise measurements for current commercial conventional takeoff and landing (CTOL) aircraft has been limited by the availability of flyover noise data bases. Since the DC-10 airplane represents a large portion of the United States commercial wide-body fleet, the Douglas Aircraft Company (DAC) has conducted, under contract to the NASA Langley Research Center (LaRC), a validation study of ANOPP. This report contains the results of that study.

Selected for the ANOPP validation was a flyover noise data base consisting of six flyovers for the DC-10-40/JT9D-59A airplane/engine configuration with fully treated engine nacelles. The data base contains flyovers at various approach and takeoff engine power settings (1800 through 3600 rpm) wach with constant glideslope and pitch angle during the flyover. Approach measurements are with the aircraft in a "dirty" configuration, i.e., large flap deflections and landing gear deployed. Takeoff measurements represent an aircraft in a similar configuration with samll flap deflections. The flyover noise measurements

were made with tripod mounted microphones above sandy soil on the runway centerline at various distances from the end of the runway at the Douglas test facility in Yuma, Arizona.

The flyover noise predicted by ANOPP for the six runs are graphically compared to the measured flight data. The comparisons include perceived noise versus directivity and 1/3-octave-band spectra at selected angles from the inlet The ANOPP noise source breakdowns are also included in the spectral plots.

3.0 DESCRIPTION OF THE FLYOVER NOISE TEST

The flyover noise runs used in the ANOPP validation study were conducted at the Yuma International Airport, Yuma, Arizona in January 1976. The recordings of the flyover noise histories were made in compliance with requirements of FAR Part 36 (Reference 1) with the special equipment and procedures used as described in Reference 2. The various types of information recorded and means of recording each is presented below. Figure 1 depicts the airplane flyover noise measurement system.

3.1 Aircraft/Engine Performance Data

Aircraft/engine performance data were recorded by the Airborne Digital Data System (ADDS) to allow for merging with space/time histories of the flyovers determined by another system. All performance data were measured with production instrumentation or taken from flight card tabulations when such data remained constant during a run. Table I shows the measured or derived aircraft/engine performance data determined for each run.

3.2 Weather Data

The necessary meteorological information was determined by several means. A Mobile Atmospheric Recording Tower (MART) was used to continuously measure surface weather conditions consisting of wet and dry bulb temperatures and wind speed and direction at a height of ten meters above the ground. Upper air sounding data were taken during the flyover noise tests to define the vertical gradients of temperature, humidity, and wind. A meteorologically instrumented light plane airplane continuously flying a flight pattern from runway level ten meters above the ground to at least test airplane altitude was used to measure temperature and humidity. Upper air wind speed and direction were obtained by theodolite tracking of weather balloons. In addition, small portable weather stations were

used to record weather data at selected locations.

3.3 Aircraft Position Data

For all flyovers, the airplane space position relative to the microphone locations was obtained as a function of time using a Mobile Automatic Laser Tracking (MALT) system. This system consists of an autotrack monopulse optical radar with a multipower laser as the ranging beam energy source. The airplane was equipped with a retroreflector positioned on the vertical stabilizer. The MALT system was displaced laterally from the flight path so no part of the fuselage or wing could interupt the beam path. During the data reduction process, the airplane reference point used in all space positioning was switched from the retroflector to the Instrument Landing System (ILS) glideslope antenna located in the nose of the airplane. The ILS position is shown in Figures 2 and 3.

3.4 Physical Site Data

The general topography of the area at the Yuma test site allowed for the microphone measuring positions to be located at the southwest corner of the Yuma airport in an agricultural area interlaced with irrigation canals at an elevation from about 36 to 65 meters above sea level. The terrain was nearly flat at all measuring points and consisted of sandy soil with various degrees of compaction. There were no obstructions to interfere with the acoustic measurements.

3.5 Flyover Noise Data

The flyover noise data selected to form the flight data base in the ANOPP validation study were measured using half-inch, tripod-mounted microphone cartridges with wind screens 1.2 meters above the ground. The microphones were oriented such that the sound path was at approximately grazing incidence throughout the recording. The flyover noise data were recorded in such a way so as to allow merging the performance and space/time positioning data with the noise data when the data were

processed. High frequency pre-emphasis was utilized to record data during the takeoff and approach noise runs. For each noise recording, the gain setting on the signal conditioning amplifiers was set to obtain optimum signal-to-noise ratios for optimum dynamic recording range on the magnetic tape.

For takeoff flight runs, the microphone measuring position was located on the runway centerline 2225 meters beyond the end of the runway. For approach runs, the microphone was positioned 1684 meters beyond the end of the runway centerline.

4.0 FLYOVER DESCRIPTION

A McDonnell Douglas model DC-10-40 wide-bodied commercial transport powered by three Pratt and Whitney JT9D-59A high bypass-ratio turbofan engines with acoustically treated nacelles was flown and its noise characteristics in various attitudes and configurations were measured. Figures 2 and 3 are the top and side views of the Series 40 aircraft and show the gross dimensions, locations of the engines, and the positioning of the ILS glideslope antenna and the laser tracking target on the aircraft.

A total of six flyover runs were used for the validation study. The aircraft systems configuration for the flyover noise runs were with leading edge slats extended, flaps deflected, gear down and the auxiliary power unit off. The Series 40 aircraft landing gear consists of a two carriage nose gear, two four carriage sets of wing gear, and a two carriage landing gear located in the main fuselage between the wing gear. The slats and flaps are of one segment.

Table I lists all the aircraft configurations and the associated flight operations for the flyovers. For the purpose of this study, the acoustical treatment in the inlet cowl, fan cowl, fan reverser and aft cowl and primary nozzle are considered essentially the same for all three engines.

Tables II through VII describe the aircraft parameters necessary to predict flyover noise using ANOPP. The weather at various altitudes is presented in Table VIII.

5.0 ANOPP PROGRAM DESCRIPTION AND OPERATION

5.1 Overview of Program

The ANOPP computer program used in the validation study was the version stored on the NASA-Langley computer system at the time of contract execution. The ANOPP system contains several levels of increasingly more complex and detailed noise prediction methodologies. The level used in this study consisted of predicting levels, spectra, and directivity for an aircraft flyover. Using aerodynamic and propulsion characteristics which are functions of time (held constant for the selected flyovers), the spectral levels for the component noise sources consisting of airframe, fan inlet and exhaust, turbine, core, and jet noise were predicted at a constant distance from the aircraft using the appropriate ANOPP source noise modules. Based on inputs describing the space-time positioning of the aircraft for the measured flyovers, the component source noise for each time point desired was propagated to the observer location (microphone position) taking into account spherical attenuation, atmospheric absorption, and excess ground attenuation. For each specified time point, spectral, levels, and directivity for each noise source were output as well as corresponding values for the total noise. Perceived noise level angle histories were determined using another ANOPP module. A sample ANOPP input deck describing the procedure used to predict the flyover noise for the first approach run is listed in Appendix A.

5.2 Method of Operation

Execution of the ANOPP computer program on the NASA-Langley Control Data Corporation (CDC) computer system was accomplished by using a remote batch site facility located at the Douglas Long Beach plant. Once initial contact feasibility was established, card decks in the ANOPP executive system control statement language containing the necessary descriptive inputs were submitted and the printout received at the remote batch facility. The remote facility consisted of a computer

terminal, and reader, line printer, and acoustic coupler.

Further detailed information regarding the capabilities and operational use of the ANOPP noise prediction system can be obtained from Dr. William Zorumski of Langley Research Center.

6.0 COMPARISON OF ANOPP PREDICTIONS WITH FLYOVER DATA

Comparisons of the ANOPP prediction and the flyover noise data for each of the six flyovers are presented in Figures 4 through 38. These graphical comparisons consist of PNLT versus directivity and spectra at selected angles. It should be noted that the version of ANOPP used for the validation study did not contain provisions to predict noise from an acoustically treated nacelle/engine combination. Since the aircraft used in the flyover noise data base was flown with three acoustically treated engines, i.e., treatment in the fan inlet, fan exhaust, and turbine ducts, the ANOPP levels predicted for these sources are higher than they should be. However, these differences are small with respect to the overall data trends that can be determined from the figures because the ANOPP option in the fan noise module for predicting noise for an unattenuated cut on tone was turned off. This resulted in a comparison of unattenuated predicted broadband noise with flyover levels containing an attenuated tone and broadband noise.

The PNLT directivity on approach shows that ANOPP overpredicted inlet turbo-machinery noise from 1 to 6 PNdB with better agreement at the higher approach power settings. ANOPP likewise overpredicted the aft noise on approach from 1 to 3 PNdB. The aft noise was consistently higher up to 4 PNdB and agreed better at higher thrust settings.

The approach spectra at the inlet angles show ANOPP underpredicted the jet noise below 1250 Hz and overpredicted the fan inlet noise above 1250 Hz with a smooth shaped spectra. For the approach aft angles, ANOPP predicted a higher fan exhaust noise than the measured total noise and underpredicts jet and core noise. The airframe noise for the low frequencies seems to be too high.

The takeoff spectra for the inlet angles shows a consistent underprediction of jet and core noise at low frequencies and an overprediction of fan inlet noise

by up to 15 PNdB. For these power settings, the fan exhaust noise for the last four third octave bands was also overpredicted. The aft takeoff spectra show a jet noise prediction too low at low frequencies and a fan exhaust noise overprediction at high frequencies.

Appendix B contains the necessary information needed to predict the attenuation spectra for the fan inlet, fan exhaust, and turbine tailpipe for each of the three engines. Specific acoustic impedance values were calculated using a method similar to the one found in Reference 3. This information is included so that more accurate flyover noise predictions can be made once the capability to predict attenuation spectra is included in ANOPP.

7.0 CONCLUDING REMARKS

ANOPP predictions were made and compared with flyover noise data obtained for a DC-10-40 airplane with acoustically treated nacelles. Since an ANOPP module to predict noise from a treated nacelle was not available, an approximation for this condition was made by eliminating the calculation of tones for a hardwall nacelle in the fan noise module.

ANOPP applied in this manner predicted EPNL values in excess of measured values within a three EPNdB margin at both the approach and takeoff conditions.

ANOPP predictions of the total noise on a spectral basis at low frequencies were consistently lower than the measured flyover noise. ANOPP predictions of the total noise at high frequencies were consistently higher than the measured noise.

Although measured data were not available for individual sources, some inferences were drawn regarding ANOPP prediction of individual sources. These inferences were made by comparing ANOPP source predictions with total measured noise in those regions of the spectra where individual sources dominated the total noise. The low frequency difference between predicted and measured noise may be due to an underprediction in those frequency bands of either jet or airframe noise or a combination of both. The high frequency differences showed that at inlet angles for all power settings, ANOPP overpredicted the fan inlet noise. Fan exhaust noise for all power settings at aft angles was also overpredicted. In addition, at takeoff power settings fan exhaust noise was overpredicted for the inlet angels.

The predicted hardwall broadband levels appeared higher than the measured broadband fan noise levels as expected. Whether the overprediction was of the right magnitude could not be determined since data on the attenuation of broadband noise for the treatment was unavailable. No inference could be drawn

about the other sources because they fell so far below the total measured flyover noise. The PNLT directivity information showed higher levels at the inlet and aft angles for all power settings corresponding to the SPL differences.

8.0 RECOMMENDATIONS

It is recommended that the development of ANOPP be continued and that it include the incorporation of a method to predict noise from a treated nacelle. Once this modification is accomplished, the ANOPP validation done in this report should be repeated for a treated nacelle configuration and compared against the flyover noise data. It is further recommended that the development of ANOPP be continued by including in its prediction methodology ways to account for effects of multiple source locations, due to the distribution of engine locations on the airframe, airplane shielding, and wing- and jet-wake scattering.

REFERENCES

- 1. Anon., "Noise Standards: Aircraft Type Certification", Part 36 of the Federal Aviation Regulations, Federal Aviation Administration, Department of Transporation, Washington, D.C., 1 December 1969.
- 2. Zwieback, E. L., "Flyover Noise Testing of Commercial Jet Airplanes", Journal of Aircraft, Vol. 10, No. 9, 1973.
- 3. Bauer, A. B, "Impedance Theory and Measurements on Porous Acoustic Liners", Journal of Aircraft, Vol. 14, No. 8, 1977.

TABLE I
DC-10-40/JT9D-59A
ENGINE/AIRPLANE FLYOVER RUNS
AT OVERHEAD

(AZIMUTH ANGLE ♣0°)

RUN	CONDITION	PHYSICAL ENGINE SPEED	FLAPS	GEOMETRIC ALTITUDE	AIRCRAFT TRUE VELOCITY	GLIDESLOPE ANGLE	PITCH ANGLE	GROSS WEIGHT	AMBIENT TEMPERATURE AT ALTITUDE	RELATIVE HUMIDITY AT ALTITUDE
 		RPM	deg	m	m/s	deg	DEG	deg	K	PERCENT
and and	APPROACH	2530	53.4	119.3	84.22	-2.2	3.6	203,848	285.1	46
2	APPROACH	2380	52.7	120.4	78.61	-2.6	3.7	177,130	288.1	46
3	APPROACH	1959	36.7	115.5	76.25	-2.5	6.3	173,048	288.8	44
4	TAKEOFF	3511	10.9	363.1	100.53	7.1	16.8	245,443	285.4	66
5	TAKEOFF	3231	10.7	353.9	96.21	5.7	16.1	234.375	286.0	70
6	TAKEOFF	3408	10.3	345.5	97.03	7.3	16.5	230,610	286.3	71

^{*}Positive above horizontal, negative below horizontal

16

TABLE II

ANOPP AIRFRAME NOISE PARAMETERS , MODULE AFM

ANOPP	DECORPTO	No.			VALU	ES AT		
SYMBOL	DESCRIPTION	UNITS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
AW	Wing planform area	m ²	338.9	338.9	338.9	338.9	338.9	338.9
BW	Wing span	m_	50.3	50.3	50.3	50.3	50.3	50.3
AH	Horizontal tail planform area	m ²	101.3	101.3	101.3	101.3	101.3	101.3
ВН	Horizontal tail span	m	21.6	21.6	21.6	21.6	21.6	21.6
AV	Vertical tail planform area	m ²	56.2	56.2	56.2	56.2	56.2	56.2
ВУ	Vertical tail span	m	7.3	7.3	7.3	7.3	7.3	7.3
٧	Aircraft velocity	m/s	84.22	78.61	76.25	100.53	96.21	97.03
N	Conventional construc.		1	1		1	1	1
AF	Flap planform area	m ²	62.0	62.0	62.0	62.0	62.0	62.0
CF	Trailing edge flap gross chord	m	4.7	4.7	4.7	4.7	4.7	4.7
GAMMA	Trailing edge flap	deg	53.4	52.1	36.7	10.9	10.7	10.3
NF	No. trailing edge slots	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1	1,41
TDMG	Main landing gear tire diameter	m	1.32	1.32	1.32	1.32	1.32	1.32
CMG	Ratio main gear strut length to wheel dia.	•	1.92	1.92	1.92	1.92	1.92	1.92
NMGW	No. wheels per main gear	· •	4 4	4	4	4	4	4
NMG	No. main landing gear	-	3	3	3	3	3	3
TDNG	Nose landing gear tire diameter	m	1.02	1.02	1.02	1.02	1.02	1.02
CNG	Ratio nose gear strut length to wheel dia.		1.79	1.79	1.79	1.79	1.79	1.79

7

TABLE II - Continued

ANOPP	DESCRIPTION	UNITS			VALUE	S AT		
SYMBOL	DESCRIT TON	UNLIS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
NNGW	No. wheels per nose landing gear		2	2	2	2	2	2
NNG	No. nose landing gear	-	The second secon	Table To the Control of the Control	The state of the s	1	grander of the state of the sta	1
CA	Ambient sound speed	m/s	338.54	340.32	340.73	338.72	339.02	339.25
RHOA	Ambient air density	kg/m ³	1.1928	1.2245	1.2319	1.1960	1,2023	1.2054
MUA	Ambient coefficient of viscosity for air	kg/m-s	1.7746x10 ⁻⁵	1.7891x10 ⁻⁵	1.7925x10 ⁻⁵	1.7761x10 ⁻⁵	1.7790x10 ⁻⁵	1.7804x10 ⁻⁵
R R	Radius sound sphere centered at source	m	1.0	1.0	1.0	1.0	1.0	1.0
REFL	Total source power ref. length	m	1.0	1.0	1.0	1.0	1.0	1.0
ITEWN	Trailing edge wing noise code	-	1	1	1	1	1	1
ITEHTN	Trailing edge horizontal tail noise	-	Toron	T eres	1	1	1	1
ITEVTN	Trailing edge vertical tail noise	-	1	i e <mark>T</mark> ever i je	e Proces	1	1	1
ITEFN	Trailing edge flap noise	-		1 .	1		1	1
ILESN	Leading edge slat noise	=	1	1	7	1	1	1
IMGN	Main landing gear noise	-	1	1	7	1.	1	1
INGN	Nose landing gear noise	-	1	1	1	. 7	1	1
ITYPW	Conventional wing	-	1	1	1	· 1	1	1
IPRINT	Print input-output	-	3	3	3	3	3	3
IOUT	Output units (dB,dim.)	dB	3	3	3	3	3	3

TABLE II - Continued

ANOPP SYMBOL	DESCRIPTION	UNITS	VALUES AT						
		0.00	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6	
PREF	Reference pressure	N/m ²	2.0x10 ⁻⁵						
POWREF	Reference power	W	1.0x10 ⁻¹²						

TABLE III
ANOPP FAN INLET NOISE PARAMETERS , MODULE FAN

ANOPP	DESCRIPTION	UNITS		VALUES AT							
SYMBOL	DESCRIPTION	I UNITS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6			
AREA	Fan duct cross sectional area	m ²	4.3	4.3	4.3	4.3	4.3	4.3			
CA VO DELTA	Ambient sound speed Aircraft velocity Angle between flight vector and engine inlet axis	m/s m/s deg	338.54 84.22 6.8	340.32 78.61 6.7	340.73 76.25 9.8	338.72 100.53 10.7	339.02 96.21 11.4	339.25 97.03 10.2			
DELT	Total temperature rise across fan	K	50.0	44.0	31.0	97.0	81.0	92.0			
DIAM DIS	Fan duct outer diameter Inlet flow distortion factor	m -	2.34 0.0	2.34 0.0	2.34 0.0	2.34 0.0	2.34 0.0	2.34 0.0			
DM	Fan rotor tip relative Mach number at design point	-	1.36	1.36	1.36	1.36	1.36	1.36			
DOTM IDBB	Mass flow rate fan Discharge broad band code	kg/s	556.57 0	509.85 0	414.59 0	758.42 0	701.27 0	739.37 0			
IDRS	Discharge rotor stator code	-	0	0	0	0	0	0			
IGV	Inlet guide vane option	· -	0	0	0	0	0	0			
INBB	Broad band inlet code	-	1.	1	1	1		1			
INCT	Inlet combination tone code	-	0	0	0	0	0	0			
INDIS INRS	Inlet distortion code Inlet rotor stator code	-	0	0 0	0	0 0	0	0 0			
IPRINT	Print output-input	-	3	3	3	3	3	3			
NB NV OMEGA	Number rotor blades Number stator blades Fan rotor speed	- rev/s	46 96 42.17	46 96 39.67	46 96 32.65	46 96 58.52	46 96 53.85	46 96 56.80			

TABLE III - Continued

ANOPP	DESCRIPTION	UNITS			VALUES AT			
SYMBOL		ONTIS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
R	Radius sound sphere centered at source	: m	1.0	1.0	1.0	1.0	1.0	1.0
RHOA RSS TA NENG IOUT PREF	Ambient density Rotor stator spacing Ambient temperature Number of engines Output units (dB,dim.) Reference pressure	kg/m ³ Percent K - dB N/m ²	1.1928 26.0 285.1 3 3 2.0x10 ⁻⁵	1.2245 26.0 288.1 3 2.0x10 ⁻⁵	1.2319 26.0 288.8 3 3 2.0x10 ⁻⁵	1.1960 26.0 285.4 3 3 2.0x10 ⁻⁵	1.2023 26.0 286.0 3 3 2.0x10 ⁻⁵	1.2054 26.0 286.3 3 3 2.0x10 ⁻⁵

TABLE IV
ANOPP FAN EXHAUST NOISE PARAMETERS, MODULE FAN

ANOPP	DESCRIPTION	UNITS			VALU	ES AT		
SYMBOL	DESCRIPTION		RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
AREA	Fan duct cross sectional area	m ²	1.74	1.74	1.74	1.74	1.74	1.74
CA	Ambient sound speed	m/s	338.54	340.32	340.73	338.72	339.02	339.25
VO	Aircraft velocity	m/s	84.22	78.61	76.25	100.53	96.21	97.03
DELTA	Angle between flight vector and engine inlet axis	deg	6.8	6.7	9.8	10.7	11.4	10.2
DELT	Total temperature rise across fan	K	50.0	44.0	31.0	97.0	81.0	92.0
DIAM	Fan duct outer diameter	m	1.49	1.49	1.49	1.49	1.49	1.49
DIS	Inlet flow distortion factor		0.0	0.0	0.0	0.0	0.0	0.0
DM	Fan rotor tip relative Mach number at design point	-	1.36	1.36	1.36	1.36	1.36	1.36
DOTM	Mass flow rate fan	kg/s	473.1	433.6	353.8	625.5	584.2	612.4
IDBB	Discharge broad band code		1	1	Parasia Parasia		Parameter	р ижего
IDRS	Discharge rotor stator code	-	0	0	0	0	0	0
IGV	Inlet guide vane option	. 50	0	0	0	0	0	0
INBB	Broad band inlet code	-	0	0	0	0	0	0
INCT	Inlet combination tone code	55	0	0	0	0	0	0
INDIS	Inlet distortion code	-	0	0	0	0	0	0
INRS	Inlet rotor stator code	-	0	0	0 3	0	0	0
IPRINT	Print output-input	-	3	3	3	3	3	3
NB	Number rotor blades	-	46	46	46	46	46	46
NV	Number stator blades	_	96	96	96	96	96	96
OMEGA	Fan rotor speed	rev/s	42.17	39.67	32.65	58.52	53.85	56.80
R	Radius sound sphere centered at source	TT Statement of the sta	1.0	1.0	1.0	1.0	1.0	1.0
1					ESCHARIA A A A A A A A A A A A A A A A A A A		Reprinted to	

TABLE IV - Continued

ANOPP	DESCRIPTION	UNITS		VALUES AT						
SYMBOL		011213	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6		
RNOA RSS TA NENG IOUT PREF	Ambient density Rotor stator spacing Ambient temperature Number engines Output units (dB,dim.) Reference pressure	Kg/m ³ percent K - dB N/m ²	1.1928 26.0 285.1 3 3 2.0x10 ⁻⁵	1.2245 26.0 288.1 3 3 2.0x10 ⁻⁵	1.2319 26.0 288.8 3 3 2.0x10 ⁻⁵	1.1960 26.0 285.4 3 3 2.0x10 ⁻⁵	1.2023 26.0 286.0 3 3 2.0x10 ⁻⁵	1.2054 26.0 286.3 3 3 2.0x10 ⁻⁵		

TABLE V
ANOPP JET NOISE PARAMETERS ,MODULE JRSJET

ANOPP SYMBOL	DESCRIPTION	UNITS	VALUES AT							
SAMBOL	5200121 72011	ONITS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6		
CA TA	Ambient sound speed Ambient absolute temperature	m/s K	338.54 285.1	340.32 288.1	340.73 288.8	338.72 285.4	339.02 286.0	339.25 286.3		
RHOA R	Ambient density Radius sound sphere centered at source	kg/m ³ m	1.1928 1.0	1.2245 1.0	1.2319 1.0	1.1960 1.0	1.2023 1.0	1.2054 1.0		
PREF	Reference pressure	N/m ²	2.0x10 ⁻⁵							
POWREF	Reference power level	W	1.0x10 ⁻¹²							
IOPT	Coaxial nozzle with subsonic primary and secondary jets	_	5	5	5	5	5	5		
IOUT IPRINT	Output units (dB,dim.) Print output-input	dB -	3 3	3 3	3 3	3 3	3	3 3		
VO A1	Aircraft velocity Fully expanded primary jet area	m/s m ²	84.22 0.585	78.61 0.582	76.25 0.577	100.53 0.634	96.21 0.622	97.03 0.630		
DE1	Equivalent circular nozzle dia.	m	0.863	0.861	0.857	0.899	0.890	0.896		
DH1	Hydraulic dia. primary jet nozzle	m	0.863	0.861	0.857	0.899	0.890	0.896		
VI	Primary jet relative velocity	m/s	293.9	265.3	199.8	482.4	417.0	458.2		
RH01	Fully expanded primary jet density	kg/m ³	0.491	0.496	0.525	0.445	0.458	0.448		
TI	Fully expanded primary jet total temperature	K	760.0	744.6	688.9	873.7	821.6	855.9		
MD1	Design Mach number for supersonic primary nozzle	-	1.0	1.0	1.0	1.0	1.0	1.0		

TABLE V - Continued

ANOPP SYMBOL	DESCRIPTION	UNITS	VALUES AT						
			RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6	
A2	Fully expanded secondary jet area	m ²	1.792	1.795	1.794	1.772	1.786	1.776	
V2	Secondary jet relative velocity	m/s	229.1	212.0	173.6	316.7	292.6	308.6	
RH02	Fully expanded secondary jet density	kg/m ³	1.207	1.194	1.196	1.149	1.156	1.151	
T2	Fully expanded secondary jet total temperature	K	316.7	315.6	308.9	344.4	335.6	342.2	
AE	Cascade exit area	m ²	1.0	1.0	1.0	1.0	1.0	1.0	
AT KC	Tailpipe area Thrust reverser constant	m ² -	1.0 0.0	1.0 0.0	1.0 0.0	1.0 0.0	1.0	1.0	
KT	Reverser constant	-	149.0	149.0	149.0	149.0	149.0	149.0	
NENG	Number engines	-	3	3	3	3	3	3	

TABLE VI
ANOPP CORE NOISE PARAMETERS, MODULE COR

ANOPP	DESCRIPTION	UNITS	VALUES AT					
SYMBOL	DESCRIPTION	UNITS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
DOTM T3	Core mass flow Combustor inlet total temperature	kg/s K	83.46 677.7	76.20 662.0	60.78 613.0	132.90 810.5	117.03 767.4	120.01 795.0
T4	Turbine inlet total temperature	°K	1232.3	1181.3	1048.3	1565.3	1444.3	1526.6
P3	Combustor inlet total pressure	N/m ²	10113.3	9011.6	6895.8	18358.1	15504.6	17273.1
VA R	Aircraft velocity Radius sound sphere centered at source	m/s m	84.22 1.0	78.61 1.0	76.25 1.0	100.53 1.0	96.21 1.0	97.03 1.0
TA CA RHOA PA PREF	Ambient temperature Ambient sound speed Ambient density Ambient pressure Reference pressure	°K m/s kg/m ² N/m ² N/m ²	285.1 338.54 1.1928 0.976x10 ⁵ 2.0x10 ⁻⁵	288.1 340.32 1.2245 1.013x10 ⁵ 2.0x10-5	288.8 340.73 1.2319 1.021x10 ⁵ 2.0x10 ⁻⁵	285.4 338.72 1.1960 0.979x10 ⁵ 2.0x10 ⁻⁵	286.0 339.02 1.2023 0.987x10 ⁵ 2.0x10 ⁻⁵	286.3 339.25 1.2054 0.991x10 ⁵ 2.0x10 ⁻⁵
POWREF IPRINT	Reference power Printed output-input	W -	1.0x10 ⁻¹²	1.0x10 ⁻¹²	1.0x10 ⁻¹²	1.0x10 ⁻¹²	1.0x10 ⁻¹²	1.0x10 ⁻¹²
IOUT	Output units (dB,dim.)	dB	3 · .	3	3	3	3	3

TABLE VII
ANOPP TURBINE NOISE PARAMETERS, MODULE TUR

ANOPP SYMBOL	Description	UNITS	VALUES AT					
		ONLIS	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
NB	No. blades last rotor stage	•	102	102	102	102	102	102
SRS	Rotor/stator spacing ratio	- - -	1.88	1.88	1.88	1.88	1.88	1.88
CL	Sound speed at turbine exit	m/s	522.7	547.1	526.3	592.6	574.7	586.6
CA VTR	Ambient sound speed Relative tip speed of last rotor	m/s m/s	338.54 149.3	340.32 140.2	340.73 121.9	338.72 213.3	339.02 199.6	339.25 208.8
DOTM	Mass flow through turbine	kg/s	83.46	76.20	60.78	132.90	117.03	120.01
RHOA R	Ambient density Radius sound sphere centered at source	kg/m ³ m	1.1928 1.0	1.2245 1.0	1.2319 1.0	1.1960 1.0	1.2023 1.0	1.2054 1.0
MA ITOPT OMEGA IPRINT	Aircraft Mach number Turbofan correction code Shaft speed Printed output-input	- - rev/s -	0.249 2 42.17 3	0.231 2 39.67 3	0.212 2 32.65 3	0.297 2 58.52 3	0.284 2 53.85 3	0.286 2 56.80 3
NENG IOUT PREF	Number engines Output units (dB,dim.) Reference pressure	- dB	3 3 2.0x10 ⁻⁵					

TABLE VIII
FLYOVER WEATHER CONDITIONS

	ALTITUDE	TEMPERATURE	WIND SPEED	RELATIVE HUMIDITY
:	m	К	m/s	%
RUN 1, approach	0	285.1	0.5	40
	100	285.1	1.0	46
	200	285.1	2.6	61
	300	285.1	3.1	63
	400	285.1	3.6	40
	500	285.1	4.6	33
RUN 2, approach	0	288.1	0.6	46
	100	288.1	1.0	46
	200	283.7	1.5	46
	300	283.1	2.0	51
	400	283.1	3.6	45
	500	283.1	4.6	41
RUN 3, approach	0	289.0	0.6	44
	100	288.8	1.2	44
	200	284.0	1.7	44
	300	283.2	2.1	43
	400	283.0	3.5	42
	500	283.0	4.5	41
RUN 4, takeoff	0	285.4	0.2	75
	100	285.4	0.5	73
	200	285.4	1.5	72
	300	285.4	1.5	66
	400	287.0	3.6	64
	500	287.0	6.2	60
RUN 5, takeoff	0	286.0	1.0	72
	100	286.0	1.0	71
	200	286.0	2.6	70
	300	286.0	4.1	70
	400	286.0	4.6	64
	500	286.0	3.6	64

TABLE VIII - Continued

	ALTITUDE	TEMPERATURE	WIND SPEED	RELATIVE HUMIDITY	
	m aja jaka a	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m/s	%	
RUN 6, takeoff	0 100 200 300 400 500	286.3 286.3 286.3 286.3 286.3 286.3	2.0 2.0 2.0 1.1 1.8 2.0	71 71 71 71 70 70	

AIRPLANE FLYOVER NOISE MEASUREMENT SYSTEMS

FIGURE 1.

MODEL DC-10 SERIES 40 — SIDE VIEW

ANGLE FROM INLET, DEGREES
FIGURE 4. COMPARISON OF MEASURED AND PREDICTED PNLT DIRECTIVITY FOR RUN 1

FIGURE 5. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 1, ANGLE FROM INLET=30°

FIGURE 6. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 1, ANGLE FROM INLET=50°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 7. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 1, ANGLE FROM INLET=90°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 8. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 1 ANGLE FROM INLET=120°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 9. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 1, ANGLE FROM INLET=150°

FIGURE 10. COMPARISON OF MEASURED AND PREDICTED PNLT DIRECTIVITY FOR RUN 2

FIGURE 11. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 2, ANGLE FROM INLET=30°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 12. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 2 ANGLE FROM INLET=50°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 13. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 2, ANGLE FROM INLET=90°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 14. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 2 ANGLE FROM INLET=120°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 15. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 2 ANGLE FROM INLET=150°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

TONE-CORRECTED PERCEIVED MOISE LEVEL, PMAR

FIGURE 16. COMPARISON OF MEASURED AND PREDICTED PNLT DIRECTIVITY FOR RUN 3

FIGURE 17. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 3 ANGLE FROM INLET=30°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

SOUND PRESSURE LEVEL, d8 (re $2x10^{-6} \, \text{M/m}^2$)

FIGURE 19. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 3.ANGLE FROM INLET=90°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 20. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 3, ANGLE FROM INLET=120°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 21. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 3, ANGLE FROM INLET=150°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 22. COMPARISON OF MEASURED AND PREDICTED PNLT DIRECTIVITY FOR RUN 4

FIGURE 23. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 4.ANGLE FROM INLET=30°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 24. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 4, ANGLE FROM INLET=50°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 25. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 4 ANGLE FROM INLET=90°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

SOUND PRESSURE LEVEL, dB (re $2x10^5 N/m^2$)

FIGURE 27. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 4 ANGLE FROM INLET=150°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

TONE-CORRECTED PERCEIVED MOISE LEVEL, PMAR

FIGURE 28. COMPARISON OF MEASURED AND PREDICTED PNLT DIRECTIVITY FOR RUN 5

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

sound pressure level, ab (re $2x10^{-6}\,M/m^2)$

FIGURE 30. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 5, ANGLE FROM INLET=50°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 31. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 5 ANGLE FROM INLET=90

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 32. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 5.ANGLE FROM INLET=120°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

1/3 OCTAVE.BAND CENTER FREQUENCY, HZ

2000 PRESSURE LEVEL, dB (re $2\times10^{-5}\,\mathrm{M/m}^2$)

FIGURE 34. COMPARISON OF MEASURED AND PREDICTED PNLT DIRECTIVITY FOR RUN 6

FIGURE 35. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 6 ANGLE FROM INLET=50°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 35. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 6, ANGLE FROM INLET=90°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 37. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 6, ANGLE FROM INLET=120°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

FIGURE 38. COMPARISON OF TOTAL MEASURED AND PREDICTED SPECTRA FOR RUN 6, ANGLE FROM INLET=150°

1/3 OCTAVE-BAND CENTER FREQUENCY, Hz

APPENDIX A

INPUT DECK LISTING FOR APPROACH RUN #1

5 * *	****	*****************	*****	
- \$全体技术会 _{表 文 全} 中			*****	
\$#### _{##} #		RUN 1 APPRUACH	****	
5 **	*****		****	
3 * *	****	******************************	******	
3			1	
5	RETRI	EVE JHS TABLES FROM LIBRARY FILE	•	
5				
	CAD	/ANUPDAT/ JR5 \$		
\$				
	PARAM	ZEHORO, UNERI, IMURZ, THREERS &		
	PARAM	NREC=0 5		
6		ELIMINATE PARAM MEDSAGES		
	PARAM	ITHOUTED, SHRET.4, DELT2=0., DELT3=0., DELT4=0., DELT5=0., DELT6=0., DELT6=0., DELT7=0., DELT8=0.,	, DELT1020.,	
		REFREI., IGEFEI \$		
	PARAM	PURREFUL OE-12, DISEO.O, ALELOU, ATELOU, KLHO. U, KTHI	19.0 \$	
	PARAM	YAMO.O, NINTHS, METHUDH2, CLCH. U1, OHH1.O, SIGMAE250000., NEW1, NNGHH2, HEFLH1.O &	·	
	PARAM	ITEMNUS, ITEMINES, IEVINOS, ITYPHOS, RREFES, 0 5		

ANUPP INPUT STREAM EDIT PHASE (PRIMARY EDIT)

PADAM ROTD4.6, RH1.0, DELT1#0., FLTNUME6HFLT001, PREP#2.E=5 \$

CREATE EXFAN, TUT1, TUT2, TOT3, TOT4, [UT5, TOT6 \$

CHEATE PRUCEDURE FUR MOVING AND PROPAGATING THE SOURCE ERPATE PHUC S UPHATE NEWUSPHUC, SUUNCER+ \$ -ADDR OLDMAN, NEWMAMUVE, MNKA200 3 \$ 5 CALCULATE TIME DEPENDENT SECMETRY 5 PAPAM ALTEZA S FXFCUTE IUG S CALCULATE AIRPRAME NOISE AND PROPAGATE TO OBSERVER \$ FXECUTE AFH & EXECUTE SUM DUISAFM, UMISHOP, DUIISCRATCH, NSUMEDNE, IPRINTEZERO & EXECUTE ASP SCARNUISUM, IPHINTETHNEE, OBSPECTATOTI & CALCULATE FAN INLET NUISE AND PROPAGATE TO UBSERVER 3 PARAM AREAS4,3,DIAME2.54,DUTME556.6,IGVE0,IDBBE0,IDRSE0,INBBE1,INCTE0, INDISEO, INRSEO S FXFCUTE FAN YORV 5 EXECUTE SUM DUIRFANUUT, DMIEMSP, DUIIESCRATCH, NSUMEONE, IPRINTEZERU S EXECUTE ASP SCARNUISUM, IPHINTETHNEE, UBSPECTATOTE & CALCULATE FAN EXHAUST NOISE AND PROPAGATE TO OBSERVER PADAM AREAmi.74,DIAMMI.49,DOTMM475.0,IDBB#1,IDKS#0,IGV#0,INBB#0, INCT#0, INDISEO, INRSEO 5 FX#CUTE FAN VGEV, FANUUTPEXPAN S FXECUTE SUM DUIMEXPAN, DMIMMSP, DUIIMSCRATCH, NSUMMUNE, IPRÎNIMZERO \$ FX#CUTE ASP SCARNUISUM, IPHINTSTHREE, UNSPECTATUTS & ANUPP INPUT STREAM EULI PHASE (PRIMARY EDIT) 5 CALCULATE JET NUISE AND PHUPAGATE TO UBSERVER 5 FXFCUTE JRSJET VORV S FX#CUTE SUM DUIHJRSUU!, UMIRHSP, DUIIHSCRATCH, NSUMHONE, IPRINTEZERO \$ FXFCUTE ASP SCARNUISUM, IPHINTETHMEE, UBSPECTATUT4 \$

CALCULATE CURE NUISE AND PROPAGATE TO USSERVER

S

S

```
PADAM DUTMEB3.46 3
      FXFCUTE COR VARV &
      FXFCUTE SUM DUI=CURUUI, DMI#45P, DUII#5CRATCH, NSUM#ONE, IPRINT#ZERD 3
      EXECUTE ASP SCARNUISUM, IPHINTETHREE, OBSPECTATOIS &
               CALCULATE TURBINE NOISE AND PROPAGATE TO OBSERVER
5
5
      FXECUTE TUR S
      FXECUTE SUM DUINTURUUI, DMINASP, DUILOSCRATCH, NSUMMOVE, IPRINTOZERO &
      FXECUTE ASP SCAENDIBUM, IPHINTETHREE, OBSPECIATOIL $
               CALCULATE TUTAL NOISE AND PROPAGATE TO UNSEVBER
      PARAM NSUM F 6 3
      EXECUTE SUM DUINAFM, DUZNFANDUT, DUSNEXFAN, DUANJRSOUT, DUSNEUROUT,

DUANTUHUUI, DMINHSP, DMENSP, DMSNASP, DMSNASP, DMSNASP,
      FXFCUTE ASP SCARNUISUM, IPRINTATHREE S
      PADAM NREC # NREC + 1 $
END# 5
3
               CREATE FREQUENCY, THETA, AND PHI DATA MEMBERS
5
      CREATE SPIELD 5
      UPNATE NEWURSFIELD, SUURCERA S
-ADDR OLDMAR, NEWMETRED, FUKMATAHHARSS, MNRE1 8
50,,634,40,,100,,125,,160,,200,,250,,315,,400,,500,,630,,800,,1000,,1250,,
1600,,2000,,2500,,3150,,4000,,5000,,6300,,8000,,10000, $
-ADDR NEWMETHETA, OLDMAR, FURMATEUHARSS MOREL &
10,,201,40,,40,,50,,60,,70,,80,,90,,100,,110,,120,,130,,140,,150,,160,,170, 5
                   ANUPP INPUT STREAM EULT PHASE (PRIMARY EDIT)
-ADDR OLDMRA, NEWMEPHI, FURMATERMERSS, MARTI S
0. 5
END# 3
               CREATE INPUT FUR ATMOSPHENIC MODEL
3
      CREATE ATMU 5
```

UPPATE NEWURATMU, BUUHCER'S

```
MADDH DLDDER, NEWHEIN, FURMATED, MNKH109 S
100.0,10,325.0,6,1,1,6 %
0.0,285,1,0,5,40,0 $
100.0, PAR. 1, 1. 0, 46.0 3
200.0,786.1,2.6,61.0 $
300.0,296.1,3.1,63.0 $
400.0, >94.1,3.6,40.0 $
500.0, PAR. 1,4. 6,35.0 $
ENU# 5
       TARLE ATMU (MALABOUM) 1 SUUNCER+ &
INT=1
IND1EHS.59.1.1.0...25..50..00..70..80..40.1.0.1.1.1.2.1.3.
15.1.7,2.0,2.3,2.5,2.8,5.0,3.3,3.0,4.15,4.45,4.8,5.25
5.70,0.05,0.50,7.0,10.0

DEPRKS,0...315,.70,.840,.950,.975,.996,1.0,.970,.900,.840,
.750...670,.570,.495,.450,.400,.370,.330,.300,.260,.245,
.250...220,.210,.205,.200,.200
         5.1.7.2.0.2.3.2.5.2.8,5.0.3.3.3.0.4.15,4.45,4.8.5.25,
END# $
S
                 CREATE UBSERVER COURDINATES FOR DUTPUT DESIRED
5
       CREATE DUSERV $
       IJPHATE NEWUSDESERY, SUUHCESE S
-ADDR NEWM&COORD, OLDMax, FURMATHUMSHSS, MNRH3 S
                      ANUPP INPUT STREAM EULT PHASE (PRIMARY EDIT)
0.,0.,0. $
END# $
                 CREATE UUTPUT AND SCRATCH DATA UNITS
       CREATE OBSPECT, UBSLEV S
       CREATE NUISUM, SCRATCH, DULL, FANOUT, JRBOUT, CORUUT, TUROUT, AFM S
5
                 AIRFRAME NUISE PARAMETERS
```

	PARAM	AARS38.9, BHR50.5, AMELO1.3, BMR21.6, AVES0.2, BVE7.3, VEB4.22 NR1, APE02.0, CFR4.7, GAMMAR55.4, TDMGR1.32, CMGE1.92, NMGHR4,
		NMG=3,TUNG=1,02,CNG=1,79,4NG=1 \$
•	PARAM	CAB338.54, RHUAB1.19280, MUARU.000017746, ITEFNEL, ILESNEL, IMUNEL, INUNEL, IUUTES \$
5	•	•
\$		FAN NUISE PANAMETERS (COMMUN TO INLET AND EXHAUST)
5		
	PARAM	DELTAPO.8, DELIBO.0, UMB1.30, NDB46, NVB90, OMEGAR42.17, KSSE20.0, TAR285.1, NENGRS 5
\$		
5		JET NUISE PAHAMETENS
\$		
	PARAM	TUPT85, A1#0.585, DE1#0.863, UM1#0.863, V1#293.9, KHO1#0.491, T1#760.0, A2#1.79, V2#229.1, KHU2#1.207, T2#310.7 \$
		ANOPP INPUT STREAM EULT PHASE (PHIMARY EDIT)
\$		
3		CORE NUISE PARAMETERS
\$	PARAM	T3#677.70, T4#1232.3, P3#10115.30, PA#47620.65 \$
•		TUNNINE HUISE PANAMATENS
	PARAM	NB#102, 8H5#1.88, CL#552.7, VIK#149.30, MARU. 249, ITOPT#2 \$
5		BEGIN FUNCTIONAL MUDULE EXECUTION

PARAM IPRINTED &

EXECUTE ATHD S BUILD A

BUILD ATHUSPHERIC DATA FUNCTIONS
BUILD ATTENUATION DATA FUNCTIONS

PXFCUTE ATT S

PARAM IPHINTES &

PARAMETER VALUES FUR THETAN 10 DEGREES

PADAM XAR-2011,58,ZAR197,10,TG-25.V0 S

CAI'L PRUC(MUVE) S

BETSYS JECHUM.FALSE. 5

PADAM IPHINTMU S

PARAMETER VALUES FUR THETAE 20 DEGREES

ANUPP INPUT STREAM EDIT PHASE (PRIMARY EDIT)
PANAM XAE-482.0, ZA-158.32, TR-5.72 & CAI'L PROC(MUVE) \$

- PARAMETER VALUES FUR THETAE 30 DEGREES

 PARAM XAR=246.88, ZAE129.29, TREE.93 S

 CAI'L PROL(MUVE) S
- PARAMETER VALUES FUR THETAE 40 DEGNEES

 PARAM XAB=166.41, ZAB126.19, TE=1.48 \$

 CAT'L PROC(MOVE) \$
 - PARAMETER VALUES FUR THEIAM 50 DEGREES

 PADAM XAM-115.80, ZAM124.25, TRW1.38 S

 CAI'L PROC(MOVE) \$
 - PARAMETER VALUES FUR THETAN 60 DEGREES
 PARAM XAR-81.5H, ZAR122.93, TR-0.47 &

CAI'L PROC (MOVE) \$

- PARAMETER VALUED FUR THE AN 70 DEGREES

 PARAM XAN-54,25, ZAN121,88, TH=0.04 5

 CAT'L PROC(MOVE) S
- PARAMETER VALUES FUR THETAE 80 DEGREES

 PARAM XAE=51,10, ZAE120,99, TE=0.57 &

 CAI'L PROC(MUVE) 5
- B PARAMETER VALUES FOR THETAN OF DEGREES

ANUPP INPUT STREAM EDIT PHASE (PRIMARY EDIT)

PARAM XAR-10.00, ZARIZO.18, TR-0.12 5

CAI'L PROC(MOVE) S

- PARAMETER VALUES FUR THETAR 100 DEGMEES

 PARAM XAR10.97, ZAR119.38, TRO.13 %

 CAT'L PROC(MUVE) \$
 - PARAMETER VALUES FOR THETAB \$10 DEGMEES

 PARAM KARSZ, 94, ZARS \$2, \$20,34 \$

 CAI'L PROC(MOVE) 5
- PARAMETER VALUES FUR THETAN 120 DEGREES

 PARAM XANSS.47, ZAN117.67, THU.66 %

 CAI'L PHOC(MUVE) S
- S PARAMETER VALUES FUR THETAM 130 DEGREES

 PARAM XARR2.29, ZAB115.64, TRO.98 S

 CALL PROC(MOVE) S
- S PARAMETER VALUES FUR THETAN \$40 DEGREES

PARAM XAR115,82, ZAR115,35, TR1,58 & CALL PROL(MUVE) \$

S PARAMETER VALUES FUR THETAE 150 DEGREES

PARAM XAM165,10, ZAM113,46, TH1,90 B

CAI'L PROC(MUVE) S

, PARAMETER VALUES FUR THETAU 160 DEGREES

PARAM XA=244.20, ZA#110.42, T#2.40 \$

CA¡'L PROC(MOVE) \$

PAHAMETER VALUES FUR THETAE 170 DEGREES

PARAM XAE408,50, ZAE104,11, YE4,84 S

CAI'L PROC(MUVE) S

PARAM IPHINTES S

5

CALCULATE THE TUTAL EPNL FOR THE UBSERVER

5

EXECUTE SRI NIENREC, UBSPECTATUTI S

EXECUTE SRI NTENREC, UBSPECTATUTE S

FXECUTE SRI NTENREC, UBSPECTATUTE S

FXECUTE SRI NTENREC, UBSPECTATUTE S

EXECUTE SRI NTENREC, UBSPECTATUTE S

EXECUTE SRI NIENREC, UBSPECTATUTE S

FXECUTE SRI NIENREC, UBSPECTATUTE S

s

GOYO STOP S
PROCEED S
UP('IST S
CATALOG S

APPENDIX B

IMPEDANCE VALUES FOR DC-10-40/JT9D-59A APPROACH AND TAKEOFF FLYOVER RUNS

FAN INLET - NOSE COWL FORWARD (WING ENGINES)*

	SPECIFIC ACOUSTIC IMPEDANCE			
	APPR(DACH	TAKEOFF	
1/3-OCTAVE BAND		SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC
CENTER FREQUENCY	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
50	0.8	- 56.9	1.3	-56.9
63	^	-45.2	A	-45.2
80		-35.9		-35.9
100		-28.5		-28.5
125		-22.6		-22.6
160		-17.9		-17.9
200		-14.2		-14.2
250		-11.3		-11.3
315		- 8.9		- 8.9
400		- 7.1		- 7.1
500		- 5.6		- 5.6
630		- 4.4		- 4.4
800	·	- 3.4		- 3.4
1,000	ļ	- 2.6		- 2.6
1,250	1	- 2.0		- 2.0
1,600		- 1.5		- 1.5
2,000		- 1.0		- 1.0
2,500		- 0.6		- 0.6
3,150		- 0.3	1	- 0.3
4,000		1.4		0.0
5,000		0.4		0.4
6,300		1.1		1.1
8,000		3.1		3.1
10,000	¥ '	- 2.1	†	- 2.0

^{*}EFFECTIVE TREATMENT LENGTH = 0.46 m, DIAMETER d = 2.34 m

FAN INLET - NOSE COWL AFT (WING ENGINES)*

		SPECIFIC ACOUS	TIC INDEDANCE	
	APPROACH		STIC IMPEDANCE	
1/3-OCTAVE BAND	SPECIFIC ACOUSTICISPECIFIC ACQUETTO		SPECIFIC ACOUSTIC SPECIFIC ACOUSTIC	
CENTER FREQUENCY	RESISTANCE	REACTANCE	RESISTANCE	SPECIFIC ACOUSTIC
			KE3131ANCE	REACTANCE
50	0.4	-21.3	0.7	07.0
63	†	-16.9). / A	-21.3
80		-13.4	Ī	-16.9
100 125		-10.6		-13.4 -10.6
160		- 8.4		- 8.4
200		- 6.7		- 6.7
250		- 5.3	i	- 5.3
315		- 4.1		- 4.1
400		- 3.2		- 3.2
500		- 2.5 - 1.9	1	- 2.5
630		- 1.4		- 1.9
800		- 1.0		- 1.4
1,000		- 0.7		- 1.0
1,250		- 0.3		- 0.7
1,600		- 0.0		- 0.3
2,000		0.3		- 0.0 0.3
2,500 3.150	į į	1.0		1.0
4,000		5.2		5.3
5,000		- 1.4		- 1.4
6,300		0.1		0.1
8,000		2.5		2.5
10,000	V	- 0.2		- 0.2
		10.9	*	11.6

^{*}EFFECTIVE TREATMENT LENGTH = 0.72 m, DIAMETER d = 2.34 m

FAN INLET - NOSE COWL FORWARD (TAIL ENGINE)*

	SPECIFIC ACOUSTIC IMPEDANCE			
	APPRO		TAKEC	
1/3 OCTAVE BAND	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC	
CENTER FREQUENCY	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
50	0.9	-42.8	1.5	-42.8
63	A	-33.9	,	-33.9
80		-26.9		-26.9
100		-21.4		-21.4
125		-17.0	Į.	-17.0
160		-13.5		-13.5
200		-10.7		-10.7
250		- 8.5		- 8.5
315		- 6.7		- 6.7
400		- 5.3		- 5.3
500		- 4.2	ŀ	- 4.2
630		- 3.3		- 3.3
800		- 2.5		- 2.5
1,000		- 1.9		- 1.9
1,250		- 1.4		- 1.4
1,600		- 1.0		- 1.0
2,000		- 0.6		- 0.6
2,500		- 0.3		- 0.3
3,150		1.0		0.0
4,000		0.0		0.5
5,000		1.2		1.2
6,300		5.3	1	5.3
8,000		- 1.2		- 1.2
10,000	Y	0.0	Y	0.5

^{*}EFFECTIVE TREATMENT LENGTH = 0.6 m, DIAMETER d = 2.34 m

FAN INLET - NOSE COWL AFT (TAIL ENGINE)*

	SPECIFIC ACOUSTIC IMPEDANCE			
Ì	APPROACH I		TAKEOFF	
1/3 OCTAVE BAND	SPECIFIC ACOUSTIC	ISPECIEIC ACQUETIC	I COUCTTO	SPECIFIC ACOUSTIC
CENTER FREQUENCY	RESISTANCE	REACTANCE	SPECIFIC ACOUSTIC	
100	TAESTO TARGE	KLACTANCE	RESISTANCE	REACTANCE
50	0.8	-59.3	1.3	50.2
63	l À	-47.1		-59.3
80		-37.4	1	-47.1 27.4
100		-29.7		-37.4 -29.7
125		-23.6		
160		-18.7		-23.6
200		-14.9		-18.7
250		-11.8		-14.9
315		- 9.4		-11.8
400		- 7.4		- 9.4 - 7.4
500	[- 5.9		- 7.4 - 5.9
630		- 4.6		- 4.6
800		- 3.6		- 3.6
1,000		- 2.8		- 2.8
1,250		- 2.1		- 2.1
1,600		- 1.6		- 1.6
2,000		- 1.1		- 1.0 - 1.1
2,500		- 0.7		- 0.7
3,150		- 0.4		- 0.4
4,000		0.0		0.0
5,000		0.4		0.4
6,300		1.0		1.0
8,000	1	2.4	[2.4
10,000	Ţ	- 3.9	4	- 3.9
		3.5		- 3.9

^{*}EFFECTIVE TREATMENT LENGTH = 0.3 m, DIAMETER d = 2.34 m

FAN EXHAUST DUCT (WING AND TAIL) \star

	SPECIFIC ACOUSTIC IMPEDANCE			
1 10 00Thum name	APPR	OACH	TAKE	OFF
1/3-OCTAVE BAND	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC
CENTER FREQUENCY	RESISTANCE	REACTANCE	RESISTANCE	REACTANCE
50	0.8	-58.7	1.1	-61.3
63	Ĭ Ā	-46.6	Å	-48.7
80		-37.0		-38.6
100		-29.4		-30.7
125		-23.3		-24.3
160		-18.5		-19.3
200	,	-14.7		-15.3
250	İ	-11.6		-12.1
315		- 9.2		- 9.6
400		- 7.3	}	- 7.6
500		- 5.7		- 6.0
630		- 4.5		- 4.7
800	l l	- 3.5		- 3.7
1,000	1 1	- 2.7		- 2.8
1,250	[- 2.0		- 2.1
1,600		- 1.5		- 1.6
2,000	}	- 1.0		- 1.1
2,500		- 0.6		- 0.6
3,150		- 0.2		- 0.2
4,000		0.2		0.1
5,000		0.6		0.5
6,300		1.3	[1.1
8,000		2.9		2.4
10,000	*	- 2.8	₩ 1	- 8.0

^{*}EFFECTIVE TREATMENT LENGTH = 1.5 m, DIAMETER d = 0.5 m

TURBINE EXHAUST DUCT (WING AND TAIL)*

	SPECIFIC ACOUSTIC IMPEDANCE			
	ΔDDD	OACH SPECIFIC ACOUS		
1/3-OCTAVE BAND	APPROACH SPECIFIC ACOUSTIC SPECIFIC ACOUSTIC		TAKEOFF	
CENTER FREQUENCY	RESISTANCE	REACTANCE	SPECIFIC ACOUSTIC	SPECIFIC ACOUSTIC
	VIZO TO TANOL	NLACIANCE	RESISTANCE	REACTANCE
50	0.7	-178.5	0.0	
63	1	-176.5 -141.7	0.8	-192.3
80	Î Î	-112.6	↑ ↑	-152.8
100		- 89.4		-121.3
125		- 71.0		- 96.4
160				- 76.5
200		- 56.4 - 44.8		- 60.8
250		- 44.6 - 35.6		- 48.3
315		- 33.6 - 28.2		- 38.3
400		- 22.4		- 30.4
500		- 17.8		- 24.1
630		- 14.1		- 19.2
800		- 11.1		- 15.2
1,000		- 8.8		- 12.0
1,250		- 6.9		- 9.5
1,600		- 5.5		- 7.5
2,000		- 4.3	1 1	- 5.9
2,500		- 3.3		- 4.6
3,150		- 2.5		- 3.6
4,000		- 1.8		- 2.7
5,000		- 1.3		- 2.0
6,300		- 0.8		- 1.4
8,000		- 0.3		- 0.9
10,000	Y	0.0	1 1	- 0.5
	· · · · · · · · · · · · · · · · · · ·	0.0	ĭ	- 0.0

^{*}EFFECTIVE TREATMENT LENGTH = 0.9 m, DIAMETER d = 0.3 m

