FALL 2017 BCB5200 Final Ex	kam (Dec 7, 2017)
----------------------------	-------------------

Name:		
Total final po	oints = 100 pts	

Part I. Take-= Home Exam (70point) (Due: Dec 8, 2017 4:00pm)

- 1. Suffix tree and overlap problem. (15 points)
 - a. Consider the text T = ACGACA. Show the suffix tree for T with terminator S.

b. Consider the text T1 = ACGACA and T2 = GACACG. Show how to find the longest common substring of the two strings. Explain how you search the longest common substring.

Sol>

- 2. Genome assembly by de Buijn graph problem. (20 points)
 Let's suppose you have 6 bp reads as below:
 TCGACA, GTCGAC, AAGACG, CGACAT, AGTCGA, GACATA, ACATCG, AAGTCG,
 GACATC, AAAGTC
 - a. Build a de Bruijn graph with k=5 (you need to draw the paths). You need to draw all paths from the sequences. Sol>

b. Do you see any tip in the graph? If yes, then remove the tip in the graph. If no, report "No tip".

Sol>

	Do you see any bubble in the graph? If yes, then remove the bubble in the graph (by removing any node in this exam). If no, report "No bubble".
	Do you see any sequencing error(s)? If yes, then report the error(s) and correct the errors in the reads.
e. I Sol>	Finally, report the longest sequence after the error corrections.

3.	Gene finding problem. (15 points) a. Describe an open reading frame (ORF). (1 sentence answer expected) Sol>
	 b. Describe the purpose of performing a homology search with a DNA sequences? (1 sentence answer expected) Sol>
	 c. Why is it relatively easy to identify ORFs in prokaryotic genomes then eukaryotic genomes by computer analysis? (1-3 sentences answer expected) Sol>
	 d. How can gene annotation or prediction tools determine the difference between the stop codon in the intron and the actual stop codon at the end of the exon? (1-3 sentences answer expected) Sol>

4.	Mutations and	Variant	Calling.	(10)	points))
----	----------------------	---------	----------	--------------	---------	---

a. What is the difference between SNP and SNV? Sol>

b. Why coverage (depth of coverage) is important in variant calling?Sol>

- 5. RNA-Seq Analysis. (10 points)
 - a. What are the benefits of RNA-Seq compared to microarray? Sol>

b. A test for a disease has a sensitivity of 95% and a specificity of 91%. You plan to screen a population in which the prevalence of the disease is 0.2% (Prevalence is a statistical concept referring to the number of cases of a disease that are present in a particular population at a given time, whereas incidence refers to the number of new cases that develop in a given period of time). What is the positive prediction value (PPV) that is a proportion of positive test that are true positives and represent the presence of disease?

Sol>