

5 Arauak eta Erreferentziak

Kapitulu honetan, proiektuan zehar erabilitako araudia, bibliografia, metodoak, tresnak, ereduak, metrikak eta prototipoak deskribatuko dira.

5.1 Aplikatutako Legedia eta Araudia

Hainbat esparrutako legedia eta araudia aplikatzen da. Alde batetik, GrALari eta dokumentazioari buruzkoak eta bestetik erlazionatuta dauden administrazio publikoaren legeak.

Gradu Amaierako Lanen inguruko bete beharreko arautegia:

- <u>UPV/EHUko gradu amaierako lanen araudia</u>. Euskal Herriko Unibertsitatean gradu amaierako lana egin eta defendatzeari buruzko arautegia.
- <u>Informatika Fakultateko gradu amaierako lanen araudia</u>. Informatika Fakultateko Gradu Amaierako Lanari buruzko arautegia.
- BOE-A-2009-12977. Informatika Ingeniaritzako Graduko edo Ingeniaritza Teknikoko titulazioak bete beharreko konpetentzia profesionalak eta Gradu Amaierako Lanen izaera profesionala ezartzen duen Errege Dekretua.

Administrazioa Publikoak ezarritako Sektore Publikoko Kontratuen legeak eta aurkeztutako kexak:

- BOE-261-2007-18874. 30/2007 Legea, urriaren 30ekoa, Sektore Publikoko Kontratuei buruzkoa.
- BOE-A-2011-17887. 3/2011 Legegintzako Errege Dekretua, azaroaren 14koa, Sektore Publikoko Kontratuei buruzko Legearen testu bategina onartzen duena.
- BOE-A-2017-12902. 9/2017 Legea, azaroaren 8koa, Sektore Publikoko Kontratuena, Europako Parlamentuaren eta Kontseiluaren 2014ko otsailaren 26ko 2014/23/EB eta 2014/24/EB zuzentarauen transposizioa egiten duena Espainiako ordenamendu juridikora. 93. Artikulua: Kalitatea bermatzeko arauak betetzen direla egiaztatzea.
- Recurso nº 6/2016 Resolución nº 100/2016. Kontratu baliabideen administrazio zentralaren erresoluzioa OESIA NETWORKS, S.L enpresaren errekurtsoari.

Kalitate-eredu eta giden inguruko informazio eta baliabideak:

- <u>CMMI-DEV, V1.3</u>. Improving processes for developing better products and services.
- CMMI 2.0. Capability and performance model. Berarekin batera bakiabide multzo bat dakar:
 - o Eredua erraztua (erredundantziak murriztuz) eta azken joera metodologikoak gehituta
 - o Ebaluazio metodoa erakundeen maila jakiteko.
 - o Prestakuntza ikastaroak dagozkio ziurtagiriak lortzeko.
 - Sistema eta erreminta berriak. Kalitate-eredua online atzitzeko eta ebaluaziok egiteko.
 - o CMMI V2.0 hartzeko edo CMMI 1.3-tik migratzeko gidak.
- <u>PMBOK</u>. Project Management Body of Knowledge.
- <u>SWEBOK</u>. Software Engineering Body of Knowledge.

Proiektu honen dokumentazioen antolaketarako eta proiektuaren aurkezpenerako aplikatu den araua CCII-N2016 estandarra da.

- <u>CCII-N2016-01</u>. Ingeniaritza informatikoko proiektuen ikuskaritza edo bisa egiteko araua CCII N2016-01 estandarra da. Estandarrak dokumentuen osotasuna berrikusteko zerbitzuen prozesua deskribatzen du.
- <u>CCII-N2016-02</u>. Estandar honek ingeniaritza informatikoko proiektuen dokumentazioaren antolaketa eta bere aurkezpena zehazten du. Memoria eta bere eranskinak estandar honen arabera antolatu dira, baita memoriarekin batera entregatu den webgunearen antolaketa.

5.2 Bibliografia

Jarraian, proiektuan zehar informazioa bilatzeko eta datuak lortzeko erabili diren erreferentzia bibliografikoak zerrendatuko dira.

- [1] J. Rojo, «ProWF proiektua: Software proiektuen elaboraziorako workflowetan oinarritutako sistemaren sorkuntza eta bizi-zikloa definitzeko metodologia baten ezarpena. Gradu Amaierako Lana.,» 2020. [Online]. Available: https://juletx.github.io/ProWF/.
- [2] Eclipse Foundation, «OpenUP: Open Unified Process,» 2012. [Online]. Available: https://420-gel-hy.github.io/EPF/openup/index.htm.
- [3] Eclipse Foundation, «ABRD: Agile Business Rules Development,» 2012. [Online]. Available: https://420-gel-hy.github.io/EPF/ARBD/index.htm.
- [4] L. Torvalds, «Git Documentation,» [Online]. Available: https://git-scm.com/doc.
- [5] Microsoft, «GitHub Documentation,» [Online]. Available: https://docs.github.com/.
- [6] Microsoft, «GitHub Pages Documentation,» [Online]. Available: https://docs.github.com/en/pages.
- [7] Eclipse Foundation, «Xtext Documentation,» [Online]. Available: https://www.eclipse.org/Xtext/documentation/index.html.
- [8] Drupal, «Drupal Documentation,» 2021. [Online]. Available: https://www.drupal.org/documentation.
- [9] Apache Friends, «XAMPP Documentation,» [Online]. Available: https://www.apachefriends.org/docs/.
- [10] Pantheon, «Pantheon Documentation,» 2021. [Online]. Available: https://pantheon.io/docs/.
- [11] CCII, «Norma CCII-N2016-01: Norma de Visado de Proyectos y Actuaciones Profesionales en Ingeniería Informática,» 2016. [Online]. Available: https://juletx.github.io/ProMeta/Proiektua/Memoriaren%20Eranskinak/A1%20-%20Sarrerako%20dokumentazioa/CCII-N2016-01.pdf.
- [12] CCII, «Norma CCII-N2016-02: Norma Técnica para la realización de la Documentación de Proyectos en Ingeniería Informática,» 2016. [Online]. Available:

https://juletx.github.io/ProMeta/Proiektua/Memoriaren%20Eranskinak/A1%20-%20Sarrerako%20dokumentazioa/CCII-N2016-02.pdf.

- [13] P. Kruchten, «RUP: Rationat Unified Process,» [Online]. Available: https://www.researchgate.net/publication/220018149_The_Rational_Unified_Process--An_Introduction.
- [14] J. Legarda, «BETRADOK proiektua: Betekizunen trazabilitate inpaktu-analisi automatikoa eta dokumentazio formalaren sorkuntza automatikoa modeloetan oinarritutako ekosistemetan. Gradu Amaierako Lana.,» 2019. [Online]. Available: https://juletx.github.io/BETRADOK/.

5.3 Metodoak

Proiektuan hainbat metodo erabili dira, garapena baldintzatu dutenak.

5.3.1 OpenUP

OpenUP softwarea garatzeko metodo eta prozesu bat da, teknologien sektoreko enpresa multzo batek proposatutakoa, zeintzuk 2007an Eclipse Fundazioari dohaintzan eman zioten [2]. Fundazioak lizentzia libre bezala argitaratu du eta eredu gisa mantentzen du Eclipse Process Framework (EPF) proiektuaren barruan.

Metodologia honek garrantzi handia izan du proiektu osoan zehar. Batetik, proiektuaren helburuetako bat metodologia baten definizioa eta ezarpena izan da eta OpenUP izan da aukeratutako metodologia. Bestetik, proiektuaren elaborazio prozesurako OpenUP metodologia jarraitu da, dokumentazioa bilduz eta proiektuaren kontrola eramanez.

5.3.2 ABRD

Agile Business Rules Development metodologiaren eredua ere erabili da. Horrela, bi metodologia erabiliz ziurtatzen da sistemaren egitura egokia dela. ABRD negozio erregela aplikazioa garatzeko metodologia da, erregela motorra eta erregelak kudeatzeko sistema erabiliz [3]. Metodologia honek erregelen prozesua eta sistema hedatzeko beharrezkoa diren arkitektura diziplinak zehazten ditu. 5.1. Irudian metodologiaren prozesua ikus daiteke, fase eta jarduerekin.

5.1. Irudia. ABRD metodologiaren prozesuko faseak.

5.3.3 MDE

Model Driven Engineering (MDE) edo eredu bidezko ingeniaritza softwarea garatzeko metodologia da. Domeinu ereduak erabiltzen ditu, hau da, arazo zehatz bati lotutako gai guztien eredu kontzeptualak. Hori dela eta, aplikazioen domeinu jakin baten ezagutzaren eta jardueren irudikapen abstraktuak nabarmentzea du helburu, kontzeptu informatikoetan sartu gabe.

5.4 Tresnak

Atal honetan erabili diren tresna nagusien deskribapen labur bat egingo da.

5.4.1 Git

Linus Torvaldsek garatutako bertsio-kontrol software bat da [4]. Hain zuzen, produktu edo konfigurazio batean egin daitezkeen aldaketak kudeatzeko programa da. Proiektuaren fitxategi guztien bertsio-kontrolerako erabili da, hainbat biltegitan banatuta.

5.4.2 GitHub

Bertsio kontrolerako web-ostatu zerbitzua da, Git erabiltzen duena [5]. Gehienbat iturburu koderako erabiltzen da. Git-en bertsio-kontrol banatu eta iturburu-kode kudeatzaile funtzionalitate guztiak eskaintzeaz gain bere ezaugarri propioak gehitzen ditu. Proiektuan Git biltegi guztiak igotzeko erabili da. Adibidez, 5.2. Irudian dokumentazio webgunearen biltegia ikus daiteke.

5.2. Irudia. ProMeta proiektuko webgunearen GitHub biltegia.

5.4.3 GitHub Pages

GitHub-ekin integratuta, automatikoki eraikitzen da webgunea kodea GitHub-era igotakoan [6]. Konfigurazio oso erraza, biltegitik bertatik egiten da. Webgune estatikoak bakarrik onartzen ditu, beraz, drupal-erako ez du balio, PHP erabiltzen baitu. Webguneak HTML, CSS, eta JavaScript-en idatzita egon daitezke edo Jekyll webgune estatiko sortzailea erabiliz.

5.4.4 Toggle Track

Proiektuko denbora neurtzeko erabili den tresna. Tenporizadore baten bidez ataza bakoitzean pasatako denbora neurtu daiteke. Eskuz ere aldatu daiteke denbora ahaztu egin bazaigu. Abisatu egiten du inaktibo bagaude eta denbora neurtzen ari bagara. Aspaldian denborarik ez badugu neurtu ere abisatzen du, ez ahazteko. Denbora proiektutan, atazatan eta kategoriatan sailkatu daiteke. Edozein momentuko denboraren estatistikak ikusi eta deskargatu daitezke. Adibidez, 5.3. Irudian hilabete bateko egun bakoitzeko denbora ikus daiteke.

5.3. Irudia. Toggle Track tresnan hilabete bateko egun bakoitzeko denbora.

5.4.5 Java

Sun Microsystems-ek garatutako programazio lengoaia eta plataforma informatikoa da. Plataforma makina birtual bat da eta Java programazio lengoaia eta garapen tresnak erabiliz garatutako aplikazioak exekutatzeko gai da. Proiektuan Java 8 bertsioa erabili da EPF Composer-erako eta Java 11 eta 15 Eclipseko garapenerako. Java programazio lengoaia erabili da ModelEditor azpisistemaren garapenerako.

5.4.6 Eclipse IDE

Kode irekiko software plataforma bat da. Ematen zaion erabilera nagusia Javaz programatzeko garapen ingurune integratuarena (IDE) da. Proiektuan zehar ModelEditor azpisistemaren garapenerako erabili da, 5.4. Irudian ikus daitekeen bezala.

5.4. Irudia. ModelEditor azpisistemako proiektuak Eclipse IDE editorean.

5.4.7 EPF Composer

EPF Composer tresna erabili da metodologien informazioa eskuratu eta bistaratzeko. Gainera, metodologia aldatzeko erabil daiteke eta metodologien webgunea sortzeko. 5.5. Irudian ikus daiteke EPF Composer tresnaren erabilera adibide bat.

5.5. Irudia. OpenUP bizi-zikloa EPF Composer tresnan.

5.4.8 Visual Studio Code

Microsoftek garatutako kode editorea. Bertsio kontrola, sintaxi nabarmentzea eta kode osatze automatikoa bezalako aukerak eskaintzen ditu. Software librea eta doakoa da. Proiektuan zehar hainbat fitxategi mota editatzeko erabili da. IO-System sistemaren garapenena editore nagusia izan da. Gainera, bertsio kontrolerako ere erabili da, *commit* eta *push* guztiak bertatik eginez. 5.6. Irudian ProMeta dokumentazio webgunearen errepositorioa ikus daiteke Visual Studio Code-n.

5.6. Irudia. ProMeta dokumentazio webgunearen errepositorioa Visual Studio Code-n.

5.4.9 Xtext

Programazio lengoaiak eta domeinu espezifikoko lengoaiak (DSL) garatzeko kode irekiko ingurunea da [7]. Xtext-ek analizatzaile bat, sintaxi zuhaitz abstraktuaren klase eredua eta Eclipse-n oinarritutako IDE pertsonalizagarria sortzen ditu. Proiektuan testu editorea sortzeko eta SQL kodea sortzeko erabili da.

5.4.10 XSLT

eXtensible Stylesheet Language Transformations (XSLT) XMLn oinarritutako lengoaia da, XML fitxategiak transformatzeko balio duena. Proiektuan ModelEditor azpisisteman XMI eredua UMAra transformatzeko erabili da.

5.4.11 Microsoft Office

Microsoftek garatutako ofimatika aplikazioa suitea. Ordainpekoa da Office 365 programaren harpidetza bitartez. Proiektuan zehar Word eta Excel erabili dira memoria eta eranskinak idazteko. PowerPoint erabili da posterra eta aurkezpena egiteko.

5.4.12 PlantUML

Kode irekiko tresna. Testu planotik abiatuta eta etiketa bidezko lengoaia definitu bat erabiliz, UML diagramak sortzeko balio du. Adibidez, 5.7. Irudia lengoaia deskriptiboa erakusten da eta horretatik sortutako diagrama sinple baten eredua. Proiektu honetan, OpenUP metodologiak eskatzen dituen erabilpen kasuen ereduak sortzeko erabili da.

5.7. Irudia. PlantUMLren lengoain idatzitako sekuentzia-diagrama.

5.4.13 PHP

PHP (PHP: Hypertext Preprocessor) interpretatutako programazio lengoaia bat da, batez ere webgune dinamikoak sortzeko erabili ohi dena. Datu-base sistema ugarirekin funtzionatzeko aukera izatea eta sistema eragile gehienetarako eskuragarri izatea dira beronen abantaila nagusiak. Proiektuan Drupalerako programazio lengoaia moduan erabili da.

5.4.14 Drupal

Drupal edukiak kudeatzeko sistema edo CMS librea, modularra eta oso konfiguragarria da [8]. Sistema dinamikoa da, hau da, zerbitzariaren edukiak modu finkoan biltegiratu beharrean, orrien testu-edukia eta beste konfigurazio batzuk datu-base batean biltegiratzen dira eta web-ingurune bat erabiliz editatzen dira. 5.8. Irudian proiektuan sortutako Drupal webgunea ikus daiteke. ProMeta IO-System sistemaren interfaze moduan erabili da, datuen sarrera/irteerak kudeatzeko.

5.8. Irudia. Proiektuan sortutako Drupal webgunea.

5.4.15 XAMPP

XAMPP software libreko pakete bat da, nagusiki *MySQL* datu-baseen kudeaketa sistema eta *Apache* web zerbitzaria integratzen duena [9]. 5.9. Irudian ikus daiteke XAMPPen erabileraren adibide bat. Proiektuan honetan Drupal webgunea lokalean garatzeko erabili da.

5.9. Irudia. XAMPP kontrol panela Apache eta MySQL hasieratzeko.

5.4.16 Pantheon

Pantheon kode irekiko Drupal eta WordPress webguneetarako hosting plataforma da [10]. 5.10. Irudian Pantheon kontrol panela ikus daiteke.

5.10. Irudia. ProMeta webguneko Pantheon kontrol panela.

5.4.17 MariaDB

MariaDB datu-baseak kudeatzeko sistema erlazional libre bat da. Oracle Corporationek MySQLren jabea zen Sun Microsystems erostean MySQLren jatorrizko garatzaileetako batzuk GNU Lizentzia Publiko Orokorra lizentziapean libre mantentzeko asmoz sortutako *fork* bat da. Datu-base erlazional moduan erabili da proiektuan.

5.4.18 phpMyAdmin

phpMyAdmin PHP-n idatzitako tresna da MySQL administrazioa web orrien bidez kudeatzeko. Proiektuan datu-base erlazionalak kudeatzeko erabili da, 5.11. Irudian ikus daitekeen moduan.

5.11. Irudia. phpMyAdmin tresnarekin datu-baseko taulak kudeatzen.

5.5 Ereduak

Proiektuan hainbat eredu erabili dira, batzuek dokumentazioarekin erlazionatuak eta beste batzuk inplementazioarekin.

5.5.1 CCII-N2016-02

Arauen atalean aipatu den moduan, estandar honetan oinarrituta antolatu da memoria eta proiektuaren webgunea. CCII erakundeak sortutako araua da, ingeniaritza informatikoko proiektuetarako dokumentazioaren egitura eta beharrezkoak diren dokumentu eta sekzioak definitzen dituena.

5.5.2 OpenUP

OpenUP metodologiaren eredua erabili da. Eredu horrek metodologiaren informazio guztia du. Metodologia hau jarraitzeko, bere webgunean artefaktu batzuen txantiloiak daude eskuragarri. Txantiloi horiek jarraituz OpenUP metodologiaren bitartez sortutako artefaktuak idatzi dira.

5.5.3 ABRD

Agile Business Rules Development metodologiaren eredua ere erabili da. Eredu horrek metodologiaren informazio guztia du. Metodologia hau jarraitzeko, bere webgunean artefaktu batzuen txantiloiak daude eskuragarri.

5.5.4 UMA

Unified Method Architecture metaeredua erabili da OpenUP eta ABRD ereduak definitzeko. Metaeredu honen helburua edozein metodologia modelatu ahal izatea da. 5.12. Irudian ikusten den moduan, UMAn metodoaren edukia prozesutik bereizten da. Horrela, metodoaren edukia hainbat prozesutan berrerabil daiteke.

5.12. Irudia. UMA metodologiako metodoaren eta prozesuaren kontzeptuak.

5.5.5 Ecore

EMF-ko Ecore meta-metaeredua erabili da UMA metaeredua definitzeko. Meta-metaeredu honen helburua edozein metaeredu modelatu ahal izatea da. Ecore oinarri moduan hartuta definitzen dira metaeredu guztiak, baita Ecore bera ere.

5.6 Metrikak

Proiektuaren helburuekin erlazionatutako 4 metrika nagusi daude: irismena, denbora, kostua eta kalitatea.

5.6.1 Irismena

Proiektuaren irismena neurtzeko atazak definitu dira eta bakoitzaren denbora estimazioa egin da. Kontuan hartuta proiektua eta proiektuko taldea txikiak direla, OpenUP metodologia erabiltzea nahikoa da. Gainera, metodologiako lehenengo bi edo hiru fase egitearekin nahikoa izango da. Talde handiagoa

edo proiektu konplexuagoa izango balitz agian RUP bezalako metodologia konplexuagoa bat beharko genuke.

5.6.2 Denbora

Denboraren kontrola egiteko ataza bakoitzean pasatako denbora neurtu da, Toggle Track aplikazioaren kronometroa erabiliz. Ondoren, neurtutako denbora estimatutakoarekin konparatu da, eta horren arabera erabakiak hartu dira.

5.6.3 Kostua

Proiektuaren kostua neurtzeko aurrekontua egin da. Bertan, giza baliabideen eta erreminten kostuak zehaztu dira. Erreminta guztiak doakoak izatea espero denez, kostua kudeatzea erraza da. Giza baliabideen kostua jakiteko proiektuko kide bakoitzaren ordu kopurua eta orduko kostua biderkatzen dira.

5.6.4 Kalitatea

Proiektuaren kalitatea neurtzea garrantzitsua da onargarria dela ziurtatzeko. Kudeaketa planean zehazten den moduan zaintzeko hiru aspektu kontrolatu behar dira: inplementazioa, funtzionalitateak eta dokumentazioa.

- Inplementazioa. Softwarearen ekoizpenerako azpiegitura teknologikoak arkitektura konplexua
 izango du BPM sistema arrakastatsuak dutenen ideia, pausuz pausuko hurbilpen batean,
 jarraitzen delako. Sistematizazioa eta automatizazioa oinarri bezala hartuta. Ondorioz,
 menpekotasun teknologiko mugatua suposatu behar duten osagai asko izan behar ditu, denak
 irekiak azpiegituraren bilakaera errazteko.
- Funtzionalitateak. Kalitatea, definizioz, bezeroen beharrak asebetetzearekin lotzen denez, azpiegitura aplikatuta kudeatzen diren proiektu errealak dagozkien bezeroen nahiak asebetetzeko besteko emaitzak (kode eta dokumentazioa) sortu behar dituzte. Azpiegitura teknologikoa bezero errealen beharren konplexutasun gorakorrera egokitu beharko da.
- 3. **Dokumentazioa**. Softwarearen ekoizpenerako azpiegitura teknologikoa proiektu askoren emaitza izango denez, ezagunak diren estandarrak erabilita eraiki behar da. Hau da, informazioaren konplexutasunera hobeto egokitzen den metodologia jarraituz adieraziko da hurrengo proiektuek beharko duten informazio guztia.

5.7 Prototipoak

Proiektuan bi prototipo nagusi garatu dira, azpisistema bakoitzari dagozkionak, ModelEditor eta IO-System.

5.7.1 ProMeta ModelEditor

Sortutako editore grafikoa eta testu editorea erabiliz prozesuaren eredua sortzeko eta editatzekoa aukera emango du. Sistema honen ardura prozesu ingeniari rolak izango du.

5.7.2 ProMeta IO-System

CMS baten bitartez kudeatutako web-aplikazioa izango da. Helburua metodologia jarraitzen duten proiektuen informazioa gordetzea da. Rol bakoitzak metodologian dituen ataza berdinak bete beharko ditu.