H20T1A1

Beweisen Sie ausgehend von der Definition der Konvergenz einer reellen Folge:

- a) Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt.
- b) Die Summe zweier konvergenten reellen Folgen ist konvergent und der Grenzwert der Summe ist die Summe der Grenzwerte.

Zu a)

Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge.

 $a=\lim_{n\to\infty}a_n \text{ d.h. f\"ur alle } \epsilon>0 \text{ gibt es } N_\epsilon\in\mathbb{N} \text{ mit } |a_n\text{-a}|<\epsilon \text{ f\"ur alle } n\geq N_\epsilon.$

Sind $a,b \in \mathbb{R}$ Grenzwerte von $(a_n)_{n \in \mathbb{N}}$, so gibt es für alle $\epsilon > 0$ ein N_{ϵ} , $M_{\epsilon} \in \mathbb{N}$ mit

 $|a_n - a| < \varepsilon$ für alle $n \ge N_\varepsilon$ und $|a_n - b| < \varepsilon$ für alle $n \ge M_\varepsilon$. Nach Dreiecksungleichung gilt für alle $n \ge \max\{N_\varepsilon, M_\varepsilon\}$: $|a - b| \le |a - a_n| + |a_n - b| < 2\varepsilon$. Da dies für alle $\varepsilon > 0$ erfüllt ist, gilt $|a - b| \in \bigcap_{\varepsilon > 0} [0.2\varepsilon[=\{0\}, \text{ also a} = b.]$

Zu b)

Sind $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Folgen mit $a=\lim_{n\to\infty}a_n$, $b=\lim_{n\to\infty}b_n$, dann gibt es für jedes $\epsilon>0$ ein N_ϵ , $M_\epsilon\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für alle $n\geq N_\epsilon$ und $|b_n-b|<\frac{\epsilon}{2}$ für alle $n\geq M_\epsilon$.

Es gilt $|(a+b)-(a_n+b_n)|=|a-a_n+b-b_n|\leq |a-a_n|+|a_n-b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ für alle $n\geq \max\{N_{\varepsilon},M_{\varepsilon}\}$, daher ist $a+b=\lim_{n\to\infty}(a_n+b_n)$.