

UNIVERSIDADE ESTADUAL DE MARINGÁ – UEM CENTRO DE TECNOLOGIA – CTC - DEPARTAMENTO DE INFORMÁTICA – DIN

DISCIPLINA: Programação em Linguagem de Montagem

PROFESSOR: Felippe	Fernandes	da	Silva
---------------------------	------------------	----	-------

ALUNO(A):	RA:

- 1. (3,5) Crie um programa que classifica triângulos em isósceles, escaleno e equilátero e retorne o resultado na tela. Faça esse exercício com um looping em que o usuário deve informar se deseja continuar a execução do algoritmo.
- 2. (3,5) Faça um programa que calcule a área das seguintes figuras geométricas:
 - a) Retângulo
 - b) Triângulo
 - c) Circunferência

RETANGULO: (base*altura); TRIÂNGULO: (base*altura)/2;

CIRCUNFERÊNCIA: π^* raio²; (use $\pi = 3$).

3. Considere o seguinte código:

```
.section .data
output: .ascii "O ID do fabricante eh 'xxxxxxxxxxxx'!\n"
.section .text
.globl _start
_start:
mov1 $0, %eax
cupid
movl $output,%edi
movl %ebx, 23(%edi)
movl %edx, 27(%edi)
movl %ecx, 31(%edi)
mov] $4, %eax
movl $1, %ebx
movl $output, %ecx movl $38, %edx
int $0x80
mov<u>]</u> $1, %eax
mov1 $0,
           %ebx
int $0x80
```

Agora resolva:

a) (1,5) Troque a inicialização da string output por: "O fabricante 'xxxxxxxxxxxx foi identificado\n" (45 bytes) e ajuste o restante do programa para que o mesmo funcione adequadamente.

UNIVERSIDADE ESTADUAL DE MARINGÁ – UEM CENTRO DE TECNOLOGIA – CTC - DEPARTAMENTO DE INFORMÁTICA – DIN DISCIPLINA: Programação em Linguagem de Montagem PROFESSOR: Felippe Fernandes da Silva

b) (1,5) Declare a string *output*2 após a string *output* e a inicialize com uma sequência de 15 caracteres '#'. Altere o código e use a instrução "movl \$60, %edx" no lugar da que estiver no código.