Fuzzy Logic and Systems

Why Fuzzy

- Based on intuition and judgment
- No need for a mathematical model
- Provides a smooth transition between members and nonmembers
- Relatively simple, fast and adaptive
- Less sensitive to system fluctuations
- Can implement design objectives, difficult to express mathematically, in linguistic or descriptive rules.

Applications Domain

- Fuzzy Logic
- Fuzzy Control
 - Neuro-Fuzzy System
 - Intelligent Control
 - Hybrid Control
- Fuzzy Pattern Recognition
- Fuzzy Modeling

Some Interesting Applications

- Ride smoothness control
- Camcorder auto-focus and jiggle control
- Braking systems
- Copier quality control
- Rice cooker temperature control
- High performance drives
- Air-conditioning systems

Conventional or *crisp* sets are binary. An element either belongs to the set or doesn't.

> {True, false} {1, 0}

Fuzzy Linguistic Variables

 Examples of fuzzy measures include close, heavy, light, big, small, smart, fast, slow, hot, cold, tall and short.

Fuzzy Indicators

- Can you distinguish between American and French person?
- Some Rules:
 - If speaks English then American
 - If speaks French then French
 - If loves perfume then French
 - If loves outdoors then American
 - If good cook then French
 - If plays baseball then American

Fuzzy Indicators

- Rules may give contradictory indicators
 {good cook, loves outdoors, speaks French}
- The right answer is a question of a degree of association
- Fuzzy logic resolves these conflicting indicators
 - Membership of the person in the French set is 0.9
 - Membership of the person in the American set is 0.1

Fuzzy Versus Probability

- Fuzzy ≠ Probability
- Probability deals with uncertainty and likelihood
- Fuzzy logic deals with ambiguity and vagueness

Fuzzy Versus Probability

- Fuzzy ≠ Probability
- Example #1
 - Billy has ten toes. The probability Billy has nine toes is zero. The fuzzy membership of Billy in the set of people with nine toes, however, is nonzero.

(cite: Professor Marks)

Fuzzy Versus Probability

Example #2

- A bottle of liquid has a probability of % of being rat poison and % of being pure water
- A second bottle's contents, in the funzy set of liquids containing lots of rat poison, is %.
- The meaning of % for the two bottles clearly differs significantly and would impact your choice should you be dying of thirst.
- 50% probability means 50% chance that the water is clean.
- 50% fizzy membership means that the water has poison.

(olden Beautek):

Crisp Membership Functions

- Crisp membership functions (μ) are either one or zero.
- e.g. Numbers greater than 10.

Fuzzy Membership Functions

 The set, B, of numbers near to 2 can be represented by a membership function

$$\mu_{\mathcal{B}}(x) = e^{-|x-2|}$$

Fuzzy Subsets

A fuzzy set, A, is said to be a subset of B if

$$\mu_A(x) \le \mu_B(x)$$

- e.g. B = far and A=very far.
- For example...

$$\mu_A(x) = \mu_B^2(x)$$

Fuzzy Logic Operations Fuzzy union operation or fuzzy OR

$$\mu_{A+B}(x) = \max \left[\mu_A(x), \mu_B(x)\right]$$

Fuzzy Logic Operations

Fuzzy intersection operation or fuzzy AND

$$\mu_{AB}(x) = \min \left[\mu_A(x), \mu_B(x) \right]$$

Fuzzy Logic Operations

Complement operation

$$\mu_{\overline{A}}(x) = 1 - \mu_{A}(x)$$

Fuzzy Logic Operations

Fuzzy union operation or fuzzy OR

$$\mu_{A+B}(x) = \max \left[\mu_A(x), \mu_B(x) \right]$$

Fuzzy intersection operation or fuzzy AND

$$\mu_{A:B}(x) = \min \left[\mu_A(x), \mu_B(x) \right]$$

Complement operation

$$\mu_{\overline{A}}(x) = 1 - \mu_{A}(x)$$

Step 1: Fuzzification

- Fuzzifier converts a crisp input into a fuzzy variable.
- Definition of the membership functions must
 - reflects the designer's knowledge
 - provides smooth transition between member and nonmembers of a fuzzy set
 - simple to calculate
- Typical shapes of the membership function are Gaussian, trapezoidal and triangular.

Example 1

- Assume we want to evaluate the health of a person based on his height and weight.
- The input variables are the crisp numbers of the person's height and weight.
- Fuzzification is a process by which the numbers are changes into linguistic words

VS = very short

S = Short

M = Medium

etc.

Step 2: Rules

- Rules reflect experts decisions.
- Rules are tabulated as fuzzy words
- Rules can be grouped in subsets
- Rules can be redundant
- Rules can be adjusted to match desired results

Rules Function

- Rules are tabulated as fuzzy words
 - Healthy (H)
 - Somewhat healthy (SH)
 - Less Healthy (LH)
 - Unhealthy (U)
- Rule function f

$$f = \{U, LH, SH, H\}$$

Fuzzy Rules Table

10 TO 1		10.0
w	e12	

Height

	Very Slim	Slim	Medium	Heavy	Very Heavy
Very Short	Н	SH	LH	Ū	U
Short	SH	Н	SH	LH	U
Medium	LH	Н	Н	LH	U
Tall	U	SH	Н	SH	U
Very Tall	U	LH	Н	SH	LH

Step 3: Calculate

- For a given person, compute the membership of his/her weight and height
- Example:
 - Assume that a person height is 6' 1"
 - Assume that the person's weight is 140 lb

Step 4: Activate Rules

Weight						
		Very Slim	Slim	Medium	Heavy	Very Heavy
=	Very Short	Н	SH	LH	U	U
Height	Short	SH	Н	SH	LH	U
H	Medium			Н	LH	U
	Tall			Н	SH	U
	Very Tall	U	LH	Н	SH	LH

Substitute Membership Values

Weight						
		8.0	0.2	Medium	Heavy	Very Heavy
ıt	Very Short	Н	SH	LH	U	U
Height	Short	SH	Н	SH	LH	U
H	0.7	LH	Н	Н	LH	U
	0.3	U	SH	Н	SH	U
	Very Tall	U	LH	Н	SH	LH

Perform min operation

Weight						
		0.8	0.2	Medium (0)	Heavy (0)	V.Heavy (0)
nt	V. Short (0)	0	0	0	0	0
Height	Short (0)	0	0	0	0	0
Н	0.7	, 0.7 [*]	0.2	0	0	0
	0.3	0.3	0.2	0	0	0
	V. Tall (0)	0	0	0	0	0

Step 5: Compute Decision Function

Weight				
	0.8	0.2		
V. Short 60	0	0		
Short (3)	0	9		
0.7	0.7	0.2		
0.5	0.3	0.2		
V.140 60	0	0		

Weight					
		0.8	0.2		
	Very there	H	SH		
	Sherr	SH	H		
	0.7	LH	H		
	0.3	U	SH		
	Vey full	U	LH		

$$f = \{U, LH, SH, H\}$$

 $f = \{0.3, 0.7, 0.2, 0.2\}$

Decision Index

$$f = \{U, LH, SH, H\}$$

$$f = \{0.3, 0.7, 0.2, 0.2\}$$

Step 6: Compute Final Decision

- Use the fuzzified rules to compute the final decision.
- Two methods are often used.
 - -Maximum Method (not often used)
 - Centroid

Max Hettook

- Fuzzy set with the largest membership value is selected.
- Fuzzy decision:

$$f = \{U, LH, SH, H\}$$

 $f = \{0.3, 0.7, 0.2, 0.2\}$

- Final Decision (FD) = Less Healthy
- If two decisions have same membership max, use the average of the two.

Centroid Method

$$FD = \frac{\sum \mu \, D}{\sum \mu} = \frac{\mu_U \, D_U + \mu_{LH} \, D_{LH} + \dots }{\mu_U + \mu_{LH} + \dots }$$

$$FD = \frac{0.3 \times 0.2 + 0.7 \times 0.4 + 0.2 \times 0.6 + 0.2 \times 0.8}{0.3 + 0.7 + 0.2 + 0.2} = 0.4429$$

Grisp Decision Index (D) = 0.4429

