Computergrafik

Prof. Dr.-Ing. Kerstin Müller

FH Bielefeld University of Applied Sciences

Einführung

Was ist Computergrafik?

 Computergrafik beschäftigt sich mit mathematischen und algorithmischen Ansätzen, die der Erzeugung von Bildern am Rechner dienen.

Photorealistische Darstellung von Modellen

Was ist Computergrafik?

 Computergrafik beschäftigt sich mit mathematischen und algorithmischen Ansätzen, die der Erzeugung von Bildern am Rechner dienen.

Darstellung von Fraktalen

Was ist Computergrafik?

 Computergrafik beschäftigt sich mit mathematischen und algorithmischen Ansätzen, die der Erzeugung von Bildern am Rechner dienen.

Vektorgrafik

Computergrafik: Methodischer Kern

Geometric Modelling

Datenstrukturen zur Repräsentation und effiziente algorithmische Verarbeitung von geometrischen Formen.

Simulation & Animation

The generation and representation of dynamic imagery on a computer

Bildaufnahme, -verarbeitung und Computer Vision

Manipulation von Bildern und Extraktion von Objekten aus Bildern

Visualisierung

Visuelle Repräsentation von Informationen und oft großen, mehrdimensionalen und/oder multi-modalen Daten.

Computergrafik: Zusammenspiel von Teilgebieten

Inhalte Computergraphik & Friends:

Verwandte Disziplinen

Bildverarbeitung

- "Verbesserung" gegebener Bilder
- Erkennen von Mustern (pattern) in digitalen Bildern (bitmap)
- Anwendungen: automatische Qualitätskontrolle, Sicherheitstechnik, etc.

Computer Vision

- "Verstehen" von Bildern mit Hilfe des Rechners
- Wahrnehmungs- und Interpretationsprozess des Gehirns wird in Software ab- und nachgebildet
- Teilgebiet der KI
- Anwendung: z.B. Suche in Mediendatenbanken

Verwandte Disziplinen

- Mensch-Maschine-Interaktion / Human-Computer Interaction (MMI / HCI)
 - Aufgaben- und benutzerorientierte Software
 - Interaktionskonzepte
- Visualisierung
 - Nutzung der Methoden der Computergrafik
 - Wahrnehmungs- und aufgabenorientierte Darstellung von abstrakten, gemessenen oder simulierten Daten
- Computer Aided Geometric Design
 - Repräsentation (Datenstrukturen) und Verarbeitung (Algorithmen) beliebig geformter Objekte beliebiger Topologie (Freiformgeometrie)

(Photorealistische) Bildsynthese

Algorithmen zur Bildsynthese (rendering algorithms):

Welche Operationen müssen vorgenommen werden um ein photorealistisches Bild eines gegebenen Modells zu erzeugen?

 Ein photorealistisches Bild ist eines das nicht von einer Fotografie des echten Objekts unterschieden werden kann.

Real oder Computergrafik?

http://area.autodesk.com/fakeorfoto

Echtzeit-Bildsynthese

https://www.youtube.com/watch?v=DRqMbHgBly
Y

Photorealistische Bildsynthese

- Voraussetzungen und Bestandteile der Bildsynthese:
- Szenenbeschreibung
 - Objektform
 - Erscheinungsbild
 - Farbe und Textur
 - Reflektionseigenschaften
 - Lichtquellen
 - Intensität
 - Farbe
 - Richtung
- Physik der Lichtausbreitung

Bildsynthese – wireframe

Bildsynthese – color

Bildsynthese – hidden line removal

Bildsynthese – constant shading

Bildsynthese – flat shading

Bildsynthese – Phong shading

Bildsynthese – bicubic models, advanced illumination

Bildsynthese – texture mapping

Bildsynthese – bump mapping

Bildsynthese – reflection mapping

Historie

Grundlagen-Ära der Computergrafik

- Start Anfang siebziger Jahre, bis Mitte achtziger Jahre
- Basierend auf technologischer Entwicklung der Rastergrafik-Hardware
- Erster Siegeszug der Computergrafik in der wissenschaftlichen und high-end Anwendungsbereichen
- Entwicklung von Algorithmen und Datenstrukturen für fotorealistische Bildsynthese und Modellierung von Objekten
- Grundlagen heute benutzter Verfahren (z. B. Ray Tracing) und Anwendungen (z. B. CAD-Systeme) aus dieser Zeit

- Grundlagen-Ära der Computergrafik
 - nach Basisfundierung ab den späten achtziger Jahren Entwicklung weiterführender Techniken und Anwendungen
 - Notwendigkeit der Verwendung leistungsfähiger aber sehr teurer Grafikrechner
- Anwendungs- und Anwender-Ära der Computergrafik
 - ab Ende der neunziger Jahre
 - basierend auf technologischer (und preislicher) Entwicklung der PC-Hardware und Hochleistungs-3D-Grafikhardware
 - zweiter Siegeszug der Computergrafik in der Anwendungs- und Anwenderdomäne (Spiele!)
 - Algorithmen und Verfahren aus der Grundlagen-Ära erfahren effiziente Hardware-Unterstützung bzw. Umsetzung

- Anwendungs- und Anwender-Ära der Computergrafik (cont.)
 - Low-level Software-Zugang:
 - Moderne Software-Schichten kapseln in Form von APIs, wie z. B. OpenGL oder Direct3D, zunehmend höhere Funktionalitäten
 - Zugang eines breiten Kreises von Anwendungsprogrammierern zu Computergrafik-Möglichkeiten
 - High-level Software-Zugang:
 - Moderne Werkzeuge, wie z. B. 3D Studio Max oder Maya ermöglichen den komfortablen Umgang mit Computergrafiktechniken für eine breite Anwenderschicht

FH Bielefeld University of Applied Sciences Campus Minden

- Anwendungs- und Anwender-Ära der Computergrafik (cont.)
 - Im Mittelpunkt der wissenschaftlichen Entwicklung stehen die Anwendungen der Computergrafiktechniken, insbesondere in speziellen Teilbereichen, wie z. B.
 - Visualization, Scientific Visualization, Information Visualization
 - Computer-Animation
 - Virtual Reality, Virtual Environments, Augmented Reality

FH Bielefeld University of Applied Sciences Campus Minden

- Anwendungs- und Anwender-Ära der Computergrafik (cont.)
 - Spieleentwicklung ist ein wesentlicher Treiber der Innovation von Rendering-Algorithmen
 - optimale Kompromisse zwischen Geschwindigkeit und Realismus
 - Investition in Rendering schlägt sich teilweise unmittelbar im Verkaufserfolg eines Spiels nieder
 - Produktionsbudgets im Multi-Millionen USD-Bereich

Grafik-APIs und Middleware

- Moderne Grafik wird quasi ausnahmslos hardwarebeschleunigt realisiert, also mithilfe von Grafikkarten.
- Um von der konkreten Hardware einigermaßen unabhängig zu sein, werden oft die APIs OpenGL (multi-platform) und DirectX (Windows) genutzt. Diese abstrahieren Zugang zur Hardware auf einem relativ niedrigen Level.
- Sogenannte Middleware abstrahiert weiter und vereinfacht häufig wiederkehrende Aufgaben in bestimmten Bereichen (z.B. Spieleentwicklung → z.B. Unreal Engine).
- Oft bieten Programmiersprachen auch auf die Sprache zugeschnittene Bibliotheken an (z.B. Java3D).

FH Bielefeld University of Applied Sciences Campus Minden

In dieser Vorlesung

- Grundlagen und Algorithmen der Bildsynthese
 - Gegeben ein Modell, welche Algorithmen können benutzt werden, um ein realistisches Bild dieses Modells zu erzeugen?
 - Die besprochenen Probleme reichen von Modellrepräsentation und Datenstrukturen bis hin zu Lichtsimulation und Grafikhardware

FH Bielefeld University of Applied Sciences Campus Minden

In dieser Vorlesung

- Zwei völlig verschiedene Zugänge zur Bildsynthese:
 - Ray Tracing
 - Rasterisierung
- Sonstige mathematische und algorithmische Hilfsmittel.

Bevor es weitergeht...

 Computergrafik muss nicht unbedingt realistische Ergebnisse zum Ziel haben...

