Calculus I Derivative of a power of expression

Todor Miley

2019

• In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.

- In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.
- The derivative was $\frac{dy}{dx} = 3u^2 \frac{du}{dx} = (3\cos^2 x)(-\sin x)$.

- In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.
- The derivative was $\frac{dy}{dx} = 3u^2 \frac{du}{dx} = (3\cos^2 x)(-\sin x)$.
- We can generalize this:

Observation (The Power Rule Combined with the Chain Rule)

If n is any real number and u = h(x) is differentiable, then

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Alternatively,

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = ?$
Then $y = ?$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = ?$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = ?$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)$ (?)

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99})$ (?)

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99})$ (?)

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99}) (3x^2)$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.
Then $y = u^{100}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (100u^{99})(3x^2)$
 $= 300x^2(x^3 - 1)^{99}$.