Assignment 8 - Finite Difference Method

SGTB Khalsa College, University of Delhi Ankur Kumar(2020PHY1113)(20068567010)

Unique Paper Code: 32221501

Paper Title: Quantum Mechanics

Submitted on: September 11, 2022

B.Sc(H) Physics Sem V

Submitted to: Dr. Mamta

	Page No Date
	Theory:
(a)	Finite Difference Method
	Minin Namax No.
	AU = EU
T. 1	$S.E \rightarrow d\dot{U}$ $(e-V(n))U=0$
	we divide the interval into n-topal points
	for an infinite potential well we unow that
	$U(0) = 0$ $V(n_i) \rightarrow V_i$ $N_i \rightarrow n_0 + j * h$
	Use Taylor expansion on: U(nj) > U; Nj.+1 and Nj1 to get!
	$U'''_{j} = U_{j+1} + U_{j-1} - 2U_{j} + O(h^{2})$
	we have the following eqs: $U(\delta) = 0$
	$U_0'' - V_0 U_0 = e U_0$ $U_1'' - V_1 U_1 = e V_1$
	U(N) =0

Page	No.	
Date		

0			
Put expression	of D": hab	a h-u	00
) 1040	Q DOVE	quarous.
11	the second and the	(S) While	

$$(0)''(0) = 0$$

$$\int U''_1 = U_2 + U_0 - 201$$

we get :

7

Simplifying we write

- U2 + U0 - 2U1 - h2V1U1 = h2eU,

$$U''(N) = 0 \Rightarrow U(N) = 0.$$

Page No Date
This gives us N equations with N variables which can be written as a matrix to form:
$\int_{j=1}^{\infty} \int_{-2U_1+U_2+0U_3+0U_4} \int_{-2U_1+0U_3+0U_4} \int_{-2U_1+0U_3+0U_5} \int_{-2U_1+0U_3+0U_5} \int_{-2U_1+0U_5} \int_{$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
= e U ₁ U ₂ U ₃ U ₄
This gives us a fridiagonal system with eigen vectors e and its tome-
The eigen values correspond to the Energy eigen values for the infinite potential well (V; =0)

	Page No Date	
	Comparision	
S.NO	Nomerical Eigen value	Analytic Eigen value. (n2712)
1.	9.3726	9.8696
Q.	32	39.4784
3.	54.6274	88. 8284
		*
. 00.2	Numerical Eigen vector	tralytic Eigen vector.
1.	1 √2 1	1-4142
۵.	0	-1 ≈ 1.55×10 ⁻¹⁵
3.	-1 √2 -1	1.4142

Programming

```
1 from scipy.linalg import eigh
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.integrate import simps
6 def matrix_formation(a, b, N, f):
       x_range = np.linspace(a, b, N+1)
      h = x_range[1] - x_range[0]
9
10
      X = x_nege[1: -1]
11
12
13
      l = np.zeros(len(X))
      d = np.zeros(len(X))
14
      u = np.zeros(len(X))
15
      potential = np.zeros(len(X))
17
18
      for i in range(0, len(X)):
           d[i] = -(-2/h**2)
19
           l[i] = -(1/h**2)
           u[i] = -(1/h**2)
21
22
           potential = f(X)
23
       diagonal = np.diag(d, k = 0)
24
       off_diag_l = np.diag(l[:-1], k = -1)
25
       off_diag_u = np.diag(u[:-1], k = 1)
26
27
       V = np.diag(potential, k = 0)
28
29
30
       matrix = diagonal + off_diag_l + off_diag_u + V
31
       return matrix, X
32
33
34 \text{ def pot(x):}
       potential = []
35
       for j in x:
36
37
           if j \ge 1/2 and j \le -1/2:
               potential.append(np.inf)
38
39
40
               potential.append(0)
41
42
       return potential
43
44 def analytic(x, n):
      L = 1
45
46
      if n % 2 == 0:
47
          return x, (-1)*np.sqrt(2/L)*np.sin((n*np.pi*x)/L)
48
50
           return x, (1)*np.sqrt(2/L)*np.cos((n*np.pi*x)/(L))
52
53 def normalize(x, u):
      norm = simps(u**2, x)
      return u/np.sqrt(norm)
57
58
matrix, X = matrix_formation(-1/2, 1/2, 100, pot)
61 e , vec = eigh(matrix)
63 print("First Ten Eigen Values")
64 print(e[:10])
```

```
66
67 for i in range(1, 5):
68
69
       plt.scatter(X, normalize(X, vec.T[i-1]), label = 'Numerical Solution', color =
       'red', s = 10)
70
       if i == 3 or i == 4:
71
           plt.plot(X, (-1)*analytic(X, i)[1], label = 'Analytical Solution')
73
           plt.grid()
74
           plt.legend()
75
           plt.title(f'Wave Function for n={i}')
76
           plt.xlabel('x')
77
           plt.ylabel('u(x)')
78
           plt.show()
79
80
81
       else:
           plt.plot(X, (1)*analytic(X, i)[1], label = 'Analytical Solution')
82
83
           plt.grid()
           plt.legend()
84
85
           plt.title(f'Wave Function for n={i}')
           plt.xlabel('x')
86
           plt.ylabel('u(x)')
87
88
           plt.show()
89
90 for i in range(1, 5):
91
92
       plt.scatter(X, (normalize(X, vec.T[i-1]))**2, label = f'Numerical Probability
       Density, i=\{i\}', s=10)
93
       plt.plot(X, (analytic(X, i)[1])**2, label = f'Analytical Probability Density, i
       ={i}'
95 plt.grid()
96 plt.legend()
97 plt.title(f'Probability Density')
plt.xlabel('x')
99 plt.ylabel('|u(x)^2|')
100 plt.show()
```

Result and Discussion

```
First Ten Eigen Values
[ 9.86879269 39.46543143 88.76070794 157.70597371 246.2331881 354.25498543 481.66476123 628.33677743 794.12628646 978.8696741 ]
```

Figure 1: First 10 Eigen Values

The first ten eigen values.

Figure 2: Wave Function for n=1

Wave Function for n=1.

Figure 3: Wave Function for n=2

Wave Function for n=2.

Figure 4: Wave Function for n=3

Wave Function for n=3.

Figure 5: Wave Function for n=4

Wave Function for n=4.

Figure 6: Probability Density Plots

All probability densities plotted in one plot. It can be seen that the finite difference method becomes more accurate as we increase the no of points.

From A3 the following plots were obtained:

Figure 7: First Five States

Figure 8: Probability Density Plots

It can be seen that both the methods predict the eigen values and the wave functions accurately if we take a large number of points.