Document Number: ENG2021002

InSight CANbus Specification

Author	Anna
Revision	Н
Date	9/27/2021

Table of Contents

1.		Purp	pose	2
	1.	1	CANbus Connections – Single Battery:	2
	1.	2	CANbus Connections – Multiple Batteries:	2
2.		Sco	pe	3
3.		Res	ponsibilities	3
4.		Prei	requisites	3
	4.	1	Hardware:	3
	4.	2	CANbus Details	3
5.		Mes	ssage Layout	4
6.		Broa	adcast Data	6
	6.	1	Broadcasted Data Frames:	6
	6.	2	Bit Definition for 0x20:	6
7.		Req	juesting Messages	7
	7.	1	Message Construction:	7
	7.	2	Frequently requested messages: (see appendix A for all messages)	7
	7.	3	CANbus Reset:	8
	7.	4	Sleep Timer:	8
8.		Defi	initions	9
9.		Rev	rision History	9
Αį	эре	endi	x	.10
Α.		Mes	ssage Definitions	.10
В.		Curi	rent reading	.12
C		Che	eck sum	.13
D		2s c	complement	.14

1. PURPOSE

This document gives the details of the hardware, and CANbus details. It also contains instructions on how to query the batteries via CAN.

1.1 CANbus Connections – Single Battery:

1.2 CANbus Connections – Multiple Batteries:

2. SCOPE

RELION InSight Series has built in CAN communication. This is the CAN protocol document for 48V-030-GC2, 24V-030-GC2 and 24V-030-GC2

3. RESPONSIBILITIES

This document is for engineering and technical support use only, it is not intended for customer use

4. PREREQUISITES

4.1 Hardware:

 120Ω termination resistors needs to be present on the CAN network for proper operation. The termination resistors must be provided by the system and not built into batteries. Ensure that the cables and connectors have a characteristic impedance of 120Ω . The RELiON insight series fuel gauge (Part Number BI-3140R) has the 120 Ohm termination resistor.

4.2 CANbus Details

CAN2.0A

Identifier: 11-bit

Pack Broadcast ID: 0x5FF

• Bit Rate: 250kbps

Multi-Byte value form: Little-Endian

48V-030-GC2 - Battery Connectors (M8-P5):

The Input connector is located on the negative side of the battery, and the output connector is located on the positive side of the battery.

Pin Number	CAN Input Connector (on battery negative)	CAN Output Connector (on battery positive)	CANbus Cable Wires (2-foot Cable)		
1	Reserve	Reserve	Green		
2	CANbus Address IN	CANbus Address IN	Blue		
3	CAN-L	CAN-L	Black		
4	CAN-H	CAN-H	Yellow		
5	P- (Battery Negative)	P- (Battery Negative)	Red		

5. MESSAGE LAYOUT

Message Format:

ID0 - ID10	DLC	DATA0	DATA1	DATA2	DATA3	DATA4 to DATAn	DATAm
Message ID	Data Length Code	Command ID	Continue sequential number	Command Type	Source Address	CANbus data	Checksum

— ID0-ID10:

Broadcast ID: 0x5FF (automatically broadcasted)

Message ID: 0x500 (data returned from BMS when requested)

— DLC, Data Length Code:

Data length 0 bytes to 8 bytes.

— DATA0:

Command ID for available data. For example, 0x09 for pack voltage.

— DATA1:

For data that is less than 1 byte = 0x81

For data that is greater than 8 bytes:

- The first set of data is assigned 0x01
- The second set of data is assigned 0x02
- For the last data set, DATA1 will be assigned 0x8(bytes)
 - For example: if there are three data sets, the last data set will be assigned 0x83

— DATA2:

Command Type	Value
CAN word read	0x01
CAN block read	0x02
CAN communication failure	0x0B
CAN bus broadcast	0x21
Checksum error	0x0C

— Data3:

Source address of the broadcast ID or message ID. The address is automatically assigned. For example, battery one is assigned an address of 0x01, battery two is assigned 0x02, and so on until 0xFF is reached.

Broadcasted Frame: single battery

Battery No.	ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
One	0x5FF	8	0x20	0x81	0x21	0X01	Alarm1	Alarm2	Status	SOC

Broadcasted Frame: multiple batteries

Battery No.	ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
One	0x5FF	8	0x20	0x81	0x21	0X01	Alarm1	Alarm2	Status	SOC
Two	0x5FF	8	0x20	0x81	0x21	0X02	Alarm1	Alarm2	Status	SOC
Three	0x5FF	8	0x20	0x81	0x21	0X03	Alarm1	Alarm2	Status	SOC

Request Message Frame: For battery voltage (0x09) as an example for a single battery

Battery No.	Туре	ID	DLC	D0	D1	D2	D3	D4	D5	D6
One	Tx	0x001	5	0x09	0x81	0x01	0x00	0x00		
One	Rx	0x005	7	0x09	0x81	0x01	0X01	Volt	age	checksum

Request Message Frame: For battery voltage (0x09) as an example for multiple batteries

Troquest Misse	Jugo i it	aiiio. i oi	Duttory	vollage	(0,000)	ao an o	Admipio	ioi illallipi	o battoriot	,
Battery No.	Type	ID	DLC	D0	D1	D2	D3	D4	D5	D6
One	Tx	0x001	5	0x09	0x81	0x01	0x00	0x00		
Two	Tx	0x002	5	0x09	0x81	0x02	0x00	0x00		
Three	Tx	0x003	5	0x09	0x81	0x03	0x00	0x00		
One	Rx	0x005	7	0x09	0x81	0x01	0X01	Battery 1	Voltage	checksum
Two	Rx	0x005	7	0x09	0x81	0x01	0X02	Battery 2 Voltage		checksum
Three	Rx	0x005	7	0x09	0x81	0x01	0X03	Battery 3	3 Voltage	checksum

— DATA4 to DATAn:

Field data

— DATAm:

A Checksum Exclusive OR Operation of DATA3 to DATAn fields (See appendix C)

6. BROADCAST DATA

6.1 Broadcasted Data Frames:

The BMS broadcasts five data frames that communicate relevant information for applications every three seconds. The sixth frame, 0x7F8, is only used for internal purposes. All multi byte data is read in little endian ex. pack voltage would be read 0xD3D2

ID	DLC	D0*	D1**	D2	D3	D4	D5	D6	D7		
0x5FF	8	0x20	0x81	0x21	0X01	Alarm1	Alarm2	Status	SOC		
0x5FF	8	0x30	0X01			Max Disch. Current $((1,500)/10) = 150A$		Max Regen Current ((1,000)/10)=100A			
0x5FF	8	0x31	0X01	Pack Voltag	je	Cycle Count		Not Used	Not Used		
0x5FF	8	0x32	0X01	Temperatur	e 1	Temperature 2		Temperature 3			
0x5FF	8	0x33***	0X01	Low byte current 1	Low byte current 2	High byte current 1	High byte current 2	Not Used	Not Used		
0x7F8	7		This field is for inter-battery communication only.								

^{*} For field 0x20 (D0), D3 refers to the battery number.

6.2 Bit Definition for 0x20:

Alarm1	Bit7	0x80	Pack low-voltage alarm
	Bit6	-	Reserved
	Bit5	0x20	Over-temperature protection during discharge
	Bit4	0x10	Overload protection
	Bit3	-	Reserved
	Bit2	-	Reserved
	Bit1	0x02	Cell low voltage alarm
	Bit0	-	Reserved
Alarm2	Bit7	-	Not Used
	Bit6	0x40	Over-current alarm during discharge
	Bit5	0x20	Pack under-voltage protection
	Bit4	0x10	Cell under-voltage protection
	Bit3	-	Not Used
	Bit2	-	Reserved
	Bit1	0x02	Over-temperature alarm
	Bit0	-	Not Used
Status	Bit7	-	Not Used
	Bit6	0x40	Fully charged status (1 = during charge & SOC = 100%)
	Bit5	0x20	Heating-element ON
	Bit4	-	Not Used
	Bit3	-	Not Used
	Bit2	0x04	Discharge Current Detected
	Bit1	0x02	Charging Current Detected
	Bit0	-	Not Used

^{**}For fields 0x30 to 0x33, D1 refers to the battery number.

^{***}See appendix B for Current Readings details.

7. REQUESTING MESSAGES

7.1 Message Construction:

Requesting data from the BMS. The Message ID of battery one is 0x001 and the Message ID of battery two is 0x002, and so on until 0x5FF is reached. Follow the message layout for D1 and D2.

Example Pack voltage of single battery:

ID	DLC	D0	D1	D2	D3	D4
0x001	5	0x09	0x81	0x01	0X00	0X00

Example Pack voltage of multiple batteries:

Battery No.	ĪD	DLC	D0	D1	D2	D3	D4
One	0x001	5	0x09	0x81	0x01	0X00	0X00
Two	0x002	5	0x09	0x81	0x02	0X00	0X00

7.2 Frequently requested messages: (see appendix A for all messages)

		CAN Mess	sages an	d Resp	onses	;				
Message Description	Туре	ID	DLC	D0	D1	D2	D3	D4	D5	D6 (CRC)
Pack Voltage	Tx	0x001	5 7	09	81	01 01	00 01	00 37	CD	FB
Cell Temperature	Rx Tx	0x500 0x001	5	09 08	81 81	01	00	00	CD	ГБ
	Rx	0x500	7	80	81	01	01	A1	0B	AB
Relative State of	Tx	0x001	5	0D	81	01	00	00		
Charge	Rx	0x500	7	0D	81	01	01	46	00	47
Charging	Tx	0x001	5	14	81	01	00	00		
Current	Rx	0x500	7	14	81	01	01	10	27	36
Cycle Count	Tx	0x001	5	17	81	01	00	00		
	Rx	0x500	7	17	81	01	01	80	01	09

			Cell Vo	ltages	5						
Message Description	Transmission Type	ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
Serial Cell	Tx	0x001	5	28	81	02	00	00			
Voltages	Rx	0x500	8	28	1	2	1	20*	8	0D	5
	Rx	0x500	8	28	2	2	0D	4	0D	E8	0C
	Rx	0x500	8	28	3	2	5	0D	6	0D	9
	Rx	0x500	8	28	4	2	0D	4	0D	4	0D
	Rx	0x500	8	28	5	2	6	0D	6	0D	17
	Rx	0x500	8	28	6	2	0D	2	0D	3	0D
	Rx	0x500	8	28	87	2	2	0D	7	0D	D8**

^{*2} times Number of cells in hex.

Boxed in area is all 16 cell voltages read from left to right in sets of two, reordered in little endian.

Ex: Cell 1 0D08, Cell 2 0D05, Cell 16 0D07

7.3 CANbus Reset:

The CANbus reset command is a global command that is received by all the batteries and is sent to ID 0x7F8. Only the CANbus is reset during the reset sequence. The battery continues to operate as normal. The reset cycle time is 3.15 seconds. The table below shows how the command should be constructed.

ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x7F8	6	10	81	21	22	55	77		

7.4 Sleep Timer:

The sleep timer function has a range of 20 to 160 hours. The command sequence requires three CAN IDs to be accessed (0x50, 0xD0, and 0x52). The sequence for a 48 hour sleep timer is shown below. D4 in frame DO (highlighted in green), sets the time. D6 in frame DO is the CRC of bytes D3 and D4. This should be done one battery at a time.

ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x001	7	50	81	11	22	00	00	22	
0x001	7	D0	81	11	22	30	00	12	
0x001	7	52	81	11	22	00	00	22	

To verify timer use.

ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x001	5	D0	81	01	22	22			

^{**}check sum

8. **DEFINITIONS**

- State of Charge (SOC)
- State of Health (SOH)
- Over Voltage Protection (OVP)
- Under Voltage Protection (UVP)
- Data Length Code (DLC)

9. REVISION HISTORY

Rev	Change Summary	Effective Date	Author	Reviewer/Approved
G	Added software fields for new SW	03/05/2021	Ronald P.	
н	Update for software 2A-06 and other improvements	09/27/2021	Anna Kirchan	Pradeep Jaltota

APPENDIX

A. MESSAGE DEFINITIONS

		CANb	us Read	Message	S		
Pack ID	Param ID	Parameter Description	Size	DLC	Data Type	Range	Unit
0x001	0x06 (High)	Pack Voltage (high byte)	Word	5	Unsigned Int	65536-131071	mV
	0x09 (Low)	Pack Voltage (low byte)				0-65535	
0x001	0x08	Battery Temperature	Word	5	Unsigned Int	-40C - 120C (value - 2731)/10= tempC	С
0x001	0x0D	Relative SOC (Remaining Capacity / Full Charge Capacity)	Word	5	Unsigned Int	0-100	%
0x001	0x0E	Absolute SOC (Remaining Capacity / Design Capacity)	Word	5	Unsigned Int	0-100	%
0x001	0x1E (High)	Remaining Capacity (returns the predicted remaining capacity)	Word	5	Unsigned Int	65536-131071	mAh
	0x0F (Low)	Tomaning supposition				0-65535	-
0x001	0x1F (High)	Full Charge Capacity (returns the predicted	Word	5	Unsigned Int	65536-131071	mAh
	0x10 (Low)	remaining capacity value when it is fully charged)				0-65535	
0x001	0x14	Desired Charging Current	Word	5	Unsigned Int	0-65535	mA
0x001	0x15	Desired Charging Voltage	Word	5	Unsigned Int	0-65535	mV
0x001	0x17	Cycle Count	Word	5	Unsigned Int	N/A	N/A
0x001	0x1D (High)	Design Capacity (returns the capacity value (mAh) of the batery pack	Word	5	Unsigned Int	65536-131071	mAh
	0x18 (Low)	of the batery pack				0-65535	

powerpros@relionbattery.com

			CANbus Read Me	essages	- Conti	nued		
Pack ID	Param ID	Paramet	er Description	Size	DLC	Data Type	Range	Unit
0x001	0x19	Des	gn Voltage	Word	5	Unsigned Int	0-65535	mV
0x001	0x28	Cel	l Voltages	Block	5	Unsigned Int	0-65535	mV
		Byte 0	(No. of cells) x 2					
		byte2:byte1	Vcell1					
		byte4:byte3	Vcell2					
		byte6:byte5	Vcell3					
		byte32- byte31	Vcell16					
0x001	0x29	Ten	nperatures	Block	5	Unsigned	-40C - 120C	С
		Byte 0	(No. of cells) x 2			Int	(value - 2731)/10=	
		byte2:byte1	Temp. 1				tempC	
		byte4:byte3	Temp. 2					
		byte6:byte5	Temp. 3					
0x001	0x2A*	Batt	ery Current	Block	5	Unsigned	0-65535	mA
		Byte 0	(No. of cells) x 2			Int		
		byte2:byte1	Low Current					
		byte4:byte3	High Current					
0x001	0x23	Softwa	are Version 1	Block	5	Unsigned	N/A	N/A
		Byte 0 (length)	0x11 or 0x12			Int		
		Byte 1	MainPack Major					
		Byte 16	MainPack Minor					
		Byte 17	(106C-CANbus) Major					
0x001	0xEE	Softwa	are Version 2	Block	5	Unsigned	N/A	N/A
		Byte 0 (length)	0x00			Int		
		Byte 3	(106C-CANbus) Minor					

Note about Parameter Description: Bytes listed here are representative of the byte number the whole block of data, not location in one word in a data block.

See example on next page.

Ex: Below is some of the cell voltage Rx message with the data bytes numbers according to how they are referred to in the parameter description

Transmission Type	ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
Rx	0x500	8	28	1	2	1	Byte 0	Byte 1	Byte 2	Byte 3
Rx	0x500	8	28							
Rx	0x500	8	28	87	2	Byte 29	Byte 30	Byte 31	Byte 32	D8

B. CURRENT READING

Current is broadcasted as 32-bit signed integer, the most significant bit (MSB) is the sign bit .

Current = Signed Int32(D5D4D3D2)

Request Message Current Example:

ĪD	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x001	5	0x2A	0x81	0x02	0x00	0x00			
0x500	8	0x2A	0x01	0x02	0x01	0x04	0xB2	0x08	0x00
0x500	5	0x2A	0x82	0x02	0x00	0xBF			

Current =Signed Int32(0x00 00 08 B2) = 2226 mA

- 1. Read bytes 5 and 6 in little endian => 08B2
- 2. Read byte 7 from first signal and byte 3 from second in little endian = >0000
- 3. Put together => 0000 08B2
- 4. Convert to decimal => 2226 mA

Broadcasted Message Current Example:

D. Gaaga		.go oao.	ic Examp.	v .					
ID	DLC	D0	D1	D2	D3	D4	D5	D6	D7
0x5FF	8	0x33	0x01	0x48	0xF4	0xFF	0xFF	0xFF	0xFF

Current = Signed Int32(0x FFFF F448) = -3000 mA (discharge)

- 1. Read bytes 2 and 3 in little endian => F448
- 2. Read byte 4 and 5 in little endian = >FFFF
- 3. Put together => FFFF F448
- 4. Do a 2s complement => 0000 0BB8 (See appendix D)
- 5. Convert to decimal => 3000mA

C. CHECK SUM

The Check sum is an Exclusive OR Operation (XOR) of DATA3 to DATAn fields.

Examples: Looking at the Pack Voltage message, DATA3 to DATAn correspond to D3-D5 to the value of D6 should be equal to XOR of (D3, D4 and D5)

Message Description	Type	ID	DLC	D0	D1	D2	D3	D4	D5	D6 (CRC)
Pack Voltage	Тх	0x001	5	09	81	01	00	00		
	Rx	0x500	7	09	81	01	01	37	CD	FB

This is computed as follows: convert hexadecimal to binary

D3 hex		D4 he	X	D5 he	X	=	D3 bin		D4 bin		D5 bin		
0	1	3	7	С	D	=	0000	0001	0011	0111	1100	1101	

XOR operation (compare all bits if there is an odd number of 1s = 1 if an even $\#/no \ 1s = 0$)

D3	0	0	0	0	0	0	0	1
D4	0	0	1	1	0	1	1	1
D5	1	1	0	0	1	1	0	1
XOR	1	1	1	1	1	0	1	1

Convert XOR to hex and compare to D6

XOR b	oin	=	XC	R hex	D6	
1111	1011	=	F	В	F	В

D. 2S COMPLEMENT

2s complements are done because the values are signed.
Using the first example of discharge current reading FFFE F10C

Long way of computing: Convert to binary, invert all values (NOT operation 1=0 and 0=1) Add 1 and convert back to Hexadecimal

Hex		I	=			I	=			F	=			ı	Ε			I	F				1				0			()	
Bin	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	0	0	1	0	0	0	0	1	1	0	0
NOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	1	1	0	0	1	1
+																																1
Bin	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	1	1	0	1	0	0
Hex		()			()			()			•	1			(0				Е				F			4	1	

Simpler way: Take the maximum value possible with 8 bits (FFFF FFFF) and subtract the received value and add 1.

	F	F	F	F	F	F	F	F
-	F	F	F	Е	F	1	0	С
+								1
=	0	0	0	1	0	Е	F	4

