

Handson Technology

User Guide

128x64 Dot Graphic LCD Module – Blue Screen

A big, bold, beautiful blue LCD with white back-lit pixels. This LCD is the graphical upgrade to those popular 16x2 LCDs, but allows full graphical control. This is Negative Transmissive white character with blue background.

SKU: DSP1208

Brief Data:

• Operating Voltage: 5Vdc.

• Resolution: 128x64 dots.

• Driver: ST7920 LCD controller/driver.

• Display Mode: Blue STN.

• Polarizer Type: White Negative Transmissive.

• Interface: 8-Bits Parallel and Serial.

• Contrast Adjustment: On board Potentiometer.

Board Size: 93x70 mm.

Mechanical Dimension:

Pin Assignment:

Pin Num	Pin Name	Description								
1	VSS	GND								
2	VDD	Power Supply for Logic								
3	V0	Operating Voltage for LCD								
4	RS	H: data L: Instruction code								
5	R/W	H: read L: write								
6	E	Enable Signal								
7	DB0									
8	DB1									
9	DB2	- Data Bus Line								
10	DB3									
11	DB4									
12	DB5									
13	DB6									
14	DB7									
15	PSB	H: Parallel Mode L: Serial Mode								
16	NC	No Connection								
17	/RST	Reset Signal, Active "L"								
18	Vout	Negative Voltage Output								
19	LEDA	Backlight Anode (+5V)								
20	LEDK	Backlight Cathode (0V)								

Resources:

- Tutorial: Interfacing with Liquid Crystal Display
- LCD Application Manual
- Complete Guide to Arduino LCD Interfacing (PDF)

LCD Display Module

QC12864B

User Manual

LCD12864 Specification

1. Features

. Display construction - 128 * 64 Dots

. Display mode - STN

. Display color - Yellow Green / Blue

. Viewing direction. Operating Power- 6 o' clock- VCC 5V

. Type. MCU I/F- COB (Chip On Board)- 8-bit parallel or serial

. Backlight - LED

2. Read/Write Timing

(a) Parallel Mode Timing

(b) Serial Mode Timing

3. Electrical Characteristics

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit						
	Internal Clock Operation											
f_{OSC}	OSC Frequency	$R = 33K\Omega$	470	530	590	KHz						
		External Clock Operation	!									
$f_{\rm EX}$	External Frequency	-	470	530	590	KHz						
	Duty Cycle	-	45	50	55	%						
T_R,T_F	Rise/Fall Time	-	-	-	0.2	μs						
TSCYC	Serial clock cycle	Pin E	400	-	-	ns						
Tshw	SCLK high pulse width	Pin E	200	-	-	ns						
Tslw	SCLK low pulse width	Pin E	200	-	-	ns						
TSDS	SID data setup time	Pins RW	40	-	-	ns						
TSDH	SID data hold time	Pins RW	40	-	-	ns						
TCSS	CS setup time	Pins RS	60	-	-	ns						
TCSH	CS hold time	Pins RS	60	-	-	ns						

4. Block Diagram

5. Instruction Set

Instruction set 1: (RE=0: basic instruction)

Institucti	astruction set 1: (RE=0: dasic instruction)															
Ins					co	de					Description					
	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	-	(540KHZ)				
CLEAR	0	0	0	0	0	0	0	0	0	1	Fill DDRAM with "20H", and set DDRAM address counter (AC) to "00H"	1.6 ms				
HOME	0	0	0	0	0	0	0	0	1	1 X Set DDRAM address counter (AC) to "00H", and put cursor to origin ; the content of DDRAM are not changed		72us				
ENTRY MODE	0	0	0	0	0	0	0	1	I/D	Set cursor position and display shift when doing write or read operation		72us				
DISPLAY ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1: display ON C=1: cursor ON B=1: blink ON	72 us				
CURSOR DISPLAY CONTROL	0	0	0	0	0	1	S/C	R/L	х	Cursor position and display shift control ; the content of DDRAM are not changed		72 us				
FUNCTION SET	0	0	0	0	1	DL	х	0 RE	х	х	DL=1 8-BIT interface DL=0 4-BIT interface RE=1: extended instruction RE=0: basic instruction	72 us				

SET CGRAM ADDR.	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address to address counter (AC) Make sure that in extended instruction SR=0 (scroll or RAM address select)	72 us
SET DDRAM ADDR.	0	0	1	0 AC6	AC5	AC4	AC3	AC2	AC1	AC1 AC0 Set DDRAM address to address counter (AC) AC6 is fixed to 0		72 us
READ BUSY FLAG (BF) & ADDR.	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Read busy flag (BF) for completion of internal operation, also Read out the value of address counter (AC)	0 us
WRITE RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data to internal RAM (DDRAM/CGRAM/IRAM/GDRAM)	72 us
READ RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/IRAM/GDRAM)	72 us

Instruction set 2: (RE=1: extended instruction)

Instructi						de					description	Exec. time
	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(540KHZ)
STAND BY	0	0	0	0	0	0	0	0	0	1	Enter stand by mode, any other instruction can terminate (Com132 halted, only Com33 ICON can display)	72 us
SCROLL or RAM ADDR. SELECT	0	0	0	0	0	0	0	0	1	SR=1: enable vertical scroll position SR = 0: enable IRAM address (extended instruction) SR=0: enable CGRAM address(basic instruction)		72 us
REVERSE	0	0	0	0	0	0	0	1	R1	R0	Select 1 out of 4 line (in DDRAM) and decide whether to reverse the display by toggling this instruction R1,R0 initial value is 00	72 us
EXTENDED FUNCTION SET	0	0	0	0	1	DL	х	1 RE	G	0	DL=1 8-BIT interface DL=0 4-BIT interface RE=1: extended instruction set RE=0: basic instruction set G=1 : graphic display ON G=0 : graphic display OFF	72 us
SET IRAM or SCROLL ADDR	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	SR=1: AC5~AC0 the address of vertical scroll SR=0: AC3~AC0 the address of ICON RAM	72 us
SET GRAPHIC RAM ADDR.	0	0	1	0 AC6	0 AC5	0 AC4		AC2			Set GDRAM address to address counter (AC) First set vertical address and the horizontal address by consecutive writing Vertical address range AC6AC0 Horizontal address range AC3AC0	72 us

Note:

- 1. Make sure that ST7920 is not in busy state by reading the busy flag before sending instruction or data. If use delay loop instead please make sure the delay time is enough. Please refer to the instruction execution time.
- 2. "RE" is the selection bit of basic and extended instruction set. Each time when altering the value of RE i t will remain. There is no need to set RE every time when using the same group of instruction set.

6. Coordinate

6.1 Graphic display coordinate

- Horizontal X : unit is bytes.

- Vertical Y: unit is bit.

6.2 Character Display Coordinate

	X Address									
Line1	80H	81H	82H	83H	84H	85H	86H	87H		
Line2	90H	91H	92H	93H	94H	95H	96H	97H		
Line3	88H	89H	8AH	8BH	8CH	8DH	8EH	8FH		
Line4	98H	99H	9AH	9BH	9CH	9DH	9EH	9FH		

6.3 Character Map

- Address: 00 - 7F

7. Access Graphic RAM (GDRAM)

GDRAM address is set by writing 2 consecutive bytes for vertical address and horizontal address. Two-bytes data write to GDRAM for one address. Address counter will automatically increase by one for the next two-byte data. The procedure is as followings.

- 1. Set vertical address (Y) for GDRAM
- 2. Set horizontal address (X) for GDRAM
- 3. Write D15~D8 to GDRAM 中(first byte)
- 4. Write D7~D0 to GDRAM 中(second byte)

8. Dimension

9. Interface

PIN NO.	SYMBOL	DESCRIPTION	FUNCTION		
1	VSS	GROUND	0V (GND)		
2	VDD	POWER SUPPLY FOR LOGIC CIRCUIT	+5V		
3	V0/VDD/NC	LCD CONTRAST ADJUSTMENT OR LCD VOLTAGE OR NC			
4	D/I	INSTRUCTION/DATA REGISTER SELECTION	D/I = 0 : INSTRUCTION REGISTER D/I = 1 : DATA REGISTER		
5	R/W	READ/WRITE SELECTION	R/W = 0 : REGISTER WRITE R/W = 1 : REGISTER READ		
6	Е	ENABLE SIGNAL			
7	DB0				
8	DB1				
9	DB2				
10	DB3	DATA INPUT/OUTPUT LINES	8 BIT: DB0-DB7		
11	DB4	DATA INFOT/OUTFOT LINES	8 BH. DB0-DB7		
12	DB5				
13	DB6				
14	DB7	1			
15	PSB	SERIAL/PARALLEL SELECTION	PSB=0:SERIAL MODE PSB=1:8/4BIT PARALLEL BUS MODE		
16	NC				
17	RST	RESET SIGNAL	RSTB=0,DISPLAY OFF,DISPLAY FROM LINE 0.		
18	VEE/NC	LCD DRIVE VOLTAGE/NC			
19	A	SUPPLY VOLTAGE FOR LED+	+5V		
20	K	SUPPLY VOLTAGE FOR LED-	0V		

Handsontec.com

We have the parts for your ideas

HandsOn Technology provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer. Information, education, inspiration and entertainment. Analog and digital, practical and theoretical; software and hardware.

Hands *On* Technology support Open Source Hardware (OSHW) Development Platform.

Learn: Design: Share

handsontec.com

The Face behind our product quality...

In a world of constant change and continuous technological development, a new or replacement product is never far away – and they all need to be tested.

Many vendors simply import and sell without checks and this cannot be the ultimate interests of anyone, particularly the customer. Every part sell on Handsotec is fully tested. So when buying from Handsontec products range, you can be confident you're getting outstanding quality and value.

We keep adding the new parts so that you can get rolling on your next project.

Breakout Boards & Modules

Connectors

Electro-Mechanical Parts

Engineering Material

Mechanical Hardware

Electronics Components

P

Power Supply

Arduino Board & Shield

Tools & Accessory