Some Basic Facts

i) If A is an $n \times n$ matrix, explain why for all $c \in C$, $det(cA) = c^n \cdot det(A)$.

Review

(2) a) Is the matrix

$$U = \begin{pmatrix} \frac{1+i}{\sqrt{3}} & \frac{1+i}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{-2i}{\sqrt{6}} \end{pmatrix}$$

unitary? Why or why not?

b) Give a 2x2 matrix that maps u = (1+i, i) to 2u and v = (1+i, -2i) to -3v.

Check you answer!

Introduction to eigenvectors

3 Prove that if U is invertible, then the eigenvalues of A

are the same as the eigenvalues of UAU'

How are the eigenvectors of A related to the eigenvectors of UAU'?

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$$

be a diagonal matrix, with all $\lambda_i \in \mathbb{C}$.

be a diagonal matrix, with all $\lambda_i \in \mathbb{C}$. a) Give an SVD of A; what are the singular values and corresponding right and left singular vectors?

- b) Give a spectral decomposition of A; what are the eigenvalues and corresponding eigenvectors?
- Tor a polynomial $p(x) = \alpha_0 + \alpha_1 \times + \cdots + \alpha_k \times^k$, and a square matrix A, define p(A) to be the matrix $p(A) = \alpha_0 I + \alpha_1 A + \cdots + \alpha_k A^k$. Show that if \vec{v} is an eigenvector of A, with corresponding eigenvalue T, then \vec{v} is also an eigenvector of p(A), with corresponding eigenvalue $p(\lambda)$.
- Off $\vec{v}_1, ..., \vec{v}_k$ are eigenvectors of \vec{A} , all with the same eigenvalue $\vec{\lambda}$, explain why every nonzero linear combination $\vec{v} = c_1 \vec{v}_1 + ... + c_k \vec{v}_k$ is also an eigenvector of \vec{A} , with eigenvalue $\vec{\lambda}$. (This is why we talk of "eigenspaces".)

SOME CALCULATIONS

- (a) By hand (not using Mottlab), find the eigenvalues and corresponding eigenvectors for the matrix $A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$.
 - (b) What are the eigenvalues of (41)?

What are the eigenvalues of $\begin{pmatrix} 5 & 1 \\ 0 & 4 \end{pmatrix}$? In general, what are the eigenvalues of xI+A? Why?

 What are the eigenvalues and corresponding eigenvectors for

$$B = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
?

What are the eigenvalues for

$$C = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

In general, explain why knowing the eigenvalues and eigenvectors of matrices A and B also gives you the eigenvalues and eigenvectors of

$$C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}.$$

@ What are the eigenvalues and corresponding eigenvectors for

$$D = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$E = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \text{ and}$$

Feel free to use Matlab.

Then explain why, given the answer to parts @ and @, using Matlab is unnecessary.

(8) What are the eigenvalues and corresponding eigenspaces of the n * n matrix

(2's on the diagonal, 1's everywhere else)? What is its determinant?

What is the determinant of the n×n matrix

(1-n along the diagonal, I's off the diagonal)?

Hint: What are the eigenvalues?

- (43), find A¹⁰⁰ by diagonalizing A.
- Diagonalize $B = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ as $B = UDU^{-1}$ for some diagonal matrix D. Then use the diagonalization to prove that

$$B^{k} = \begin{pmatrix} 3^{k} & 3^{k} - 2^{k} \\ 0 & 2^{k} \end{pmatrix}.$$

The higher-order differential equation y"+y = 0 can be written as a first-order system by introducing the derivative y' as another unknown:

$$\frac{d}{dt} \left(\begin{array}{c} y \\ y \end{array} \right) = \left(\begin{array}{c} y' \\ y'' \end{array} \right) = \left(\begin{array}{c} y' \\ -y \end{array} \right).$$

If this is $\frac{d\vec{v}}{dt} = A\vec{v}$, what is the 2×2 matrix A?

Find its eigenvalues and eigenvectors, and compute the solution that starts from y(0) = 2, y'(0) = 0.