Table 1: Calibration

Macroeconomic Parameters							
γ	0.36	36 Capital's Share of Income					
٦	$0.94^{1/4}$	Depreciation Factor					
σ_Θ^2	0.00001	Variance Aggregate Transitory Shocks					
σ_{Ψ}^2	0.00004	Variance Aggregate Permanent Shocks					
	Steady State of Perfect Foresight DSGE Model						
	$(\sigma_\Psi$ =	$\sigma_{\Theta} = \sigma_{\psi} = \sigma_{\theta} = \wp = D = 0, \ \Phi_t = 1$					
$reve{K}/reve{K}^arepsilon$	12.	SS Capital to Output Ratio					
$reve{K}$	≈ 48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\varepsilon)}$)					
W	≈ 2.59	SS Wage Rate $(=(1-\varepsilon)\breve{K}^{\epsilon})$					
ř	= 0.03	SS Interest Rate $(= \varepsilon \check{K}^{\varepsilon-1})$					
$reve{\mathcal{R}}$	≈ 1.014	SS Between-Period Return Factor $(= \exists + \check{r})$					
	Preference Parameters						
ho	2.	Coefficient of Relative Risk Aversion					
β_{SOE}	0.969	SOE Discount Factor (= $0.99 \cdot \mathcal{D} \breve{\mathcal{R}} / \mathbb{E} [\psi]^{-\rho}$)					
β_{DSGE}	≈ 0.986	HA-DSGE Discount Factor $(= \breve{\mathcal{R}}^{-1})$					
П	0.25	Probability of Updating Expectations (if Sticky)					
Idiosyncratic Shock Parameters							
σ_{ψ}^2	0.004	Variance Idiosyncratic Perm Shocks $(=\frac{4}{11} \times \text{Annual})$					
$\sigma_{ heta}^2$	0.12	Variance Idiosyncratic Tran Shocks (= $4\times$ Annual)					
\wp	0.05	Probability of Unemployment Spell					
D	0.005	Probability of Mortality					

Table 2: Equilibrium Statistics

	SOE Mod	lel	HA-DSGE Model	
	Frictionless Sticky		Frictionless	Sticky
Means				
A	7.76	7.70	59.95	59.82
C	2.71	2.71	3.48	3.48
Standard Deviations				
Aggregate Time Seri	es ('Macro')			
$\log A$	0.344	0.333	0.276	0.273
$\Delta \log {f C}$	0.011	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	$\Delta \log \mathbf{Y}$ 0.011		0.008	0.008
Individual Cross Sec	tional ('Micro')			
$\log \mathbf{a}$	1.028	1.030	1.006	1.006
$\log \mathbf{c}$	0.926	0.927	0.687	0.688
$\log p$	0.938	0.938	0.938	0.938
$\log \mathbf{y} \mathbf{y}>0$	0.995	0.995	0.995	0.995
$\Delta \log \mathbf{c}$	0.099	0.100	0.056	0.057
Cost of Stickiness 5.06e–4			4.79e-	4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3: Placeholder for Empirical US table

Table 4: Micro Consumption Regression on Simulated Data

$\Delta \log \mathbf{c}_{t+1,i} =$	=	$\varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \underline{a}_{t,i}$
------------------------------------	---	---

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.020			0.000
	(-)			
		0.011		0.003
		(-)		
			-0.187	0.009
			(-)	
	0.052	0.014	-0.181	0.014
	(-)	(-)	(-)	
Sticky				
	0.013			0.000
	(-)			
		0.011		0.003
		(-)		
			-0.188	0.009
			(-)	
	0.043	0.013	-0.182	0.013
	(-)	(-)	(-)	

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t. The notation "(—)" indicates that standard errors are close to zero, given the very large simulated sample size.

Table 5: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$		
Frictionless: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);							
$\Delta \log \mathbf{C}_t^*$ Δ		A_t					
$0.287^{\bullet \bullet \bullet}$			OLS	0.083			
(0.066)							
$0.643^{\bullet \bullet}$			IV	0.037	0.245		
(0.312)					0.586		
	$0.436^{\bullet \bullet}$		IV	0.032	0.071		
	(0.211)				0.434		
		-6.19e-4	IV	0.025	0.000		
		(5.57e-4)			0.367		
0.407	0.245	$0.31\mathrm{e}{-4}$	IV	0.038	0.528		
(0.440)	(0.368)	(9.11e-4)			0.541		
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = Z_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	37; $var(\xi_t) = 6.14e-6$		
Sticky : Δ le	$\operatorname{og} \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	ξ_t);		
$\Delta \log \mathbf{C}_t^*$	•	A_t					
0.501	,		OLS	0.256			
(0.059)							
0.799			IV	0.252	0.000		
(0.105)					0.545		
	0.828		IV	0.188	0.072		
	(0.183)				0.239		
		$-7.58e-4^{\bullet \bullet}$	IV	0.063	0.000		
		(3.75e-4)			0.001		
$0.663^{\bullet\bullet\bullet}$	0.181	0.49e-4	IV	0.254	0.376		
(0.183)	(0.260)	(4.65e-4)			0.549		
Memo: For	Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.253$; $\operatorname{var}(\xi_t) = 6.14\text{e-}6$						

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	2 nd Stage	KP p -val	
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$	
Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.185^{\bullet \bullet}$			OLS	0.035		
(0.073)						
0.461			IV	0.018	0.318	
(0.350)					0.556	
	0.339		IV	0.016	0.141	
	(0.309)				0.463	
		-0.34e-4	IV	0.015	0.000	
		(0.93e-4)			0.443	
0.283	0.181	-0.06e-4	IV	0.019	0.596	
(0.475)	(0.561)	(1.74e-4)			0.545	
Memo: Fo	r instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	022; $var(\xi_t) = 4.22e-6$	
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measuren	nent eri	$\operatorname{ror} \mathbf{C}_t^* = \mathbf{C}_t \times$	ξ_t);	
	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.461^{\bullet\bullet\bullet}$			OLS	0.217		
(0.061)						
$0.772^{\bullet\bullet\bullet}$			IV	0.227	0.000	
(0.107)					0.533	
	$0.841^{\bullet \bullet \bullet}$	•	IV	0.136	0.139	
	(0.241)				0.197	
		$-0.95\mathrm{e}4^{\bullet}$	IV	0.058	0.000	
		(0.52e-4)			0.002	
$0.676^{\bullet\bullet\bullet}$	0.150	0.08e-4	IV	0.228	0.481	
(0.177)	(0.332)	(0.79e-4)			0.555	
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.230$; $\operatorname{var}(\xi_t) = 4.22 \text{e-}6$						

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$

Table 7: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	$2^{\rm nd}$ Stage	KP p -val			
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$			
Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);								
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t						
-0.014			OLS	0.002				
(0.077)								
0.404			IV	0.015	0.360			
(0.391)					0.581			
	0.395		IV	0.017	0.078			
	(0.307)				0.471			
		-0.27e-4	IV	0.016	0.000			
		(1.08e-4)			0.490			
0.133	0.267	0.11e-4	IV	0.019	0.561			
(0.528)	(0.586)	(2.13e-4)			0.579			
Memo: Fo	or instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = Z$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	18; $var(\xi_t) = 3.30e-6$			
Sticky: \(\Delta \)	$\Delta \log \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	ξ_t);			
	$\Delta \log \mathbf{Y}_{t+1}$	A_t		v	- /:			
$0.417^{\bullet \bullet \bullet}$	•		OLS	0.183				
(0.063)								
0.790	•		IV	0.188	0.001			
(0.134)					0.544			
	$0.651^{\bullet\bullet\bullet}$	•	IV	0.132	0.077			
	(0.164)				0.188			
		-0.50e-4	IV	0.076	0.000			
		(0.50e-4)			0.022			
$0.649^{\bullet \bullet \bullet}$	0.101	0.08e-4	IV	0.189	0.321			
(0.224)	(0.292)	(0.78e-4)			0.500			
Memo: Fo	or instrument	s $\mathbf{Z}_t,\Delta\logC$	Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.191$; $\operatorname{var}(\xi_t) = 3.30 \text{e-}6$					

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$