- **7.4** Which of the following are correct?
- a. False |= True. Correct
- **b**. True = False. **Incorrect**
- c. $(A \land B) \mid = (A \Leftrightarrow B)$. Correct
- **d**. $A \Leftrightarrow B = A \vee B$. Incorrect
- e. $A \Leftrightarrow B = \neg A \lor B$. correct
- **f**. (A \wedge B) \Rightarrow C |= (A \Rightarrow C) \vee (B \Rightarrow C). **Correct**
- **g**. $(C \lor (\neg A \land \neg B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C))$. **Correct**
- **h**. (A \vee B) \wedge (\neg C \vee \neg D \vee E) |= (A \vee B). Correct
- i. (A \vee B) \wedge (\neg C \vee \neg D \vee E) |= (A \vee B) \wedge (\neg D \vee E). Incorrect
- **j**. $(A \lor B) \land \neg (A \Rightarrow B)$ is satisfiable. **Correct**
- **k**. (A \Leftrightarrow B) \land (\neg A \lor B) is satisfiable. **Correct**
- **1.** $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $(A \Leftrightarrow B)$ for any fixed set of proposition symbols that includes A, B, C. **Correct**
- **7.14** According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.
 - **a.** Which of the following are correct representations of this assertion?
 - (ii) is right
- (i) $(R \land E) \Leftarrow \Rightarrow C$
- (ii) $R \Rightarrow (E \Leftarrow \Rightarrow C)$
- (iii) $R \Rightarrow ((C \Rightarrow E) \lor \neg E)$
 - **b.** Which of the sentences in (a) can be expressed in Horn form?
- (i),(ii),(iii) all can be expressed in Horn Form.
- **7.18** Consider the following sentence:

[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party].

a. Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.]

Valid: From the table below. I know that all models satisfy this sentence.

Food	Drink	Party	Food \wedge Drinks	Food ⇒ Party	Drink⇒Party	Left	Right
True	True	True	True	True	True	True	True
True	False	True	False	True	True	True	True
False	True	True	False	True	True	True	True
False	False	True	False	True	True	True	True
True	True	False	True	False	False	False	False
True	False	False	False	False	True	True	True
False	True	False	False	True	False	True	True
False	False	False	False	True	True	True	True

b. Convert the left-hand and right-hand sides of the main implication into CNF, showing each step, and explain how the results confirm your answer to (a). Left =

 $(\neg Food \cup Party) \cup (\neg Drink \cup Party) = \neg Food \cup \neg Drink \cup Party$

Right =

 $\neg(Food \cap Drink) \cup Party = (\neg Food) \cup (\neg Drink) \cup Party$

c. Prove your answer to (a) using resolution.

[(Food \Rightarrow Party) \lor (Drink \Rightarrow Party)] \Rightarrow [(Food \land Drink) \Rightarrow Party] To prove the negative is empty:

 $\neg [[(Food \Rightarrow Party) \lor (Drink \Rightarrow Party)] \Rightarrow [(Food \land Drink) \Rightarrow Party]]$

- $= \neg(\neg(\neg Food \cup Party) \cup (\neg Drink \cup Party)) \cup (\neg Food \cup \neg Drink \cup Party))$
- $= \neg (\neg (\neg Food \cup \neg Drink \cup Party) \cup (\neg Food \cup \neg Drink \cup Party))$
- $= \neg((Food \cap Drink \cap \neg Party) \cup (\neg Food \cup \neg Drink \cup Party))$
- $= \neg (Food \cap Drink \cap \neg Party) \cap \neg (\neg Food \cup \neg Drink \cup Party))$
- $= (\neg Food \cup \neg Drink \cup Party) \cap (Food \cap Drink \cap \neg Party))$
- $= \emptyset$

The negative sentence is empty, so the Original sentence is Valid

8.9(Extra) This exercise uses the function MapColor and predicates In(x, y), Borders(x, y), and

Country(x), whose arguments are geographical regions, along with constant symbols for various regions. In each of the following we give an English sentence and a number of candidate logical expressions. For each of the logical expressions, state whether it (1) correctly expresses the English sentence; (2) is syntactically invalid and therefore meaningless; or (3) is syntactically valid but does not express the meaning of the English sentence.

- a. Paris and Marseilles are both in France.
- (i) $In(Paris \land Marseilles, France)$. 2) Use \land in side the term.
- (ii) In(Paris, France) ∧ In(Marseilles, France). 1) Correct
- (iii) In(Paris, France) \vee In(Marseilles, France). 3) \vee is wrong. Both means \wedge
- **b**. There is a country that borders both Iraq and Pakistan.
- (i) \exists c Country(c) \land Border (c, Iraq) \land Border (c, Pakistan). 1) Correct
- (ii) \exists c Country(c) \Rightarrow [Border (c, Iraq) \land Border (c, Pakistan)]. 3) Incorrect
- (iii) $[\exists c Country(c)] \Rightarrow [Border(c, Iraq) \land Border(c, Pakistan)]. 2) Invalid <math>\Rightarrow$ is wrong
- (iv) \exists c Border (Country(c), Iraq \land Pakistan). 2) Use \land in side the term.

- c. All countries that border Ecuador are in South America.
- (i) \forall c Country(c) \land Border (c,Ecuador) \Rightarrow In(c, SouthAmerica). 1) Correct
- (ii) \forall c Country(c) \Rightarrow [Border (c,Ecuador) \Rightarrow In(c, SouthAmerica)]. 1) Correct
- (iii) \forall c [Country(c) \Rightarrow Border (c,Ecuador)] \Rightarrow In(c, SouthAmerica). 3) Incorrect RHS is empty
- (iv) \forall c Country(c) \land Border (c,Ecuador) \land In(c, SouthAmerica).
- **d**. No region in South America borders any region in Europe.
- (i) $\neg [\exists c, d In(c, SouthAmerica) \land In(d, Europe) \land Borders(c, d)].$ 1) Correct
- (ii) \forall c, d [In(c, SouthAmerica) \land In(d, Europe)] $\Rightarrow \neg$ Borders(c, d)]. 3) Incorrect It's the negative of the sentence.
- (iii) $\neg \forall c In(c, SouthAmerica) \Rightarrow \exists d In(d, Europe) \land \neg Borders(c, d). 1) Correct$
- (iv) \forall c In(c, SouthAmerica) \Rightarrow \forall d In(d, Europe) \Rightarrow \neg Borders(c, d). 1) Correct
- e. No two adjacent countries have the same map color.
- (i) \forall x, y \neg Country(x) \lor \neg Country(y) \lor \neg Borders(x, y) \lor
- \neg (MapColor (x) = MapColor (y)). 1) Correct
- (ii) \forall x, y (Country(x) \land Country(y) \land Borders(x, y) $\land \neg$ (x = y)) \Rightarrow
- \neg (MapColor (x) = MapColor (y)). 1) Correct
- (iii) \forall x, y Country(x) \land Country(y) \land Borders(x, y) \land
- \neg (MapColor (x) = MapColor (y)). 3) Incorrect Use \land inside the term
- (iv) \forall x, y (Country(x) \land Country(y) \land Borders(x, y)) \Rightarrow MapColor (x \sim _= y). 2)Invalid \neq inside the term is illegal.