Transformer and its applications

김주영

NAVER Connect: boostcamp AI Tech - 3기

Computer Vision Track

GitHub: nestiank

nestiank@naver.com

목차

- Transformer 이해
 - Attention is All You Need (https://arxiv.org/pdf/1706.03762)
 - Transformers in Vision: A Survey (https://arxiv.org/pdf/2101.0116)
- Transformer 활용
 - Non-local Neural Networks
 - BERT
 - ViT
 - UNITER
 - Unicoder
 - Vilbert
 - Oscar

- 12-in-1
- VILLA
- LXMERT
- VirTex
- DEIT
- DETR
- Deformable DETR
- Generative Pretraining from Pixels

Transformer 이해

- Attention is All You Need
- Transformers in Vision: A Survey*
 - * 여기서 다루지는 못하지만 읽어보면 많이 유용함

Positional Encoding

- 입력은 임베딩이 필요하다
- 임베딩에 Positional Encoding을 가한다

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Query, Key, Value

- 파란 벡터가 Positional Encoding을 마친 입력 토큰이라고 하자 Single-Head Attention을 가정하자
- 주황색 레이어마다 3개의 W가 있음
- 이들을 곱해서 Q, K, V를 얻음

Multi-Head Attention

Masked Multi-Head Attention

Attention

• 구한 Q, K, V로 Attention을 구함

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Attention

Keys, Values: 5 token sequence to associate with the input queries

Embeddings are processed in parallel with a simple matrix multiplication

Attention matrix each dot product show the similarity between a query and key vector (softmax is applied row-wise) The output weighted values: information is aggregated/routed

Transformer: Encoder

- Attention의 차원은 입력 토큰의 차원과 같음 (그렇게 되도록 W^V의 차원을 고정함)
- 이들을 더하고 Normalization (또는 각각 Normalization 후 더함)
- 이후 Residual FC 레이어를 거침

Transformer: Decoder

- 먼저 Masked Attention을 구함(이후 설명)
- 이것을 Q로 사용
- 마지막 Encoder의 출력을 K, V로 사용 (같은 차례의 Encoder의 출력이 아님)
- 이후 Encoder와 같음
- 마지막 Decoder 뒤에는 FC 레이어를 통과

Masked Attention

• 이전 출력 토큰만을 가지고 다음 출력 토큰을 예측

Multi-Head Attention

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

$$where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

Multi-Head Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Thinking Machines

추가적인 W^O의 도입

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Wo

Transformer 활용

- Non-local Neural Networks
- BERT
- ViT
- UNITER
- Unicoder
- Vilbert
- Oscar

- 12-in-1
- VILLA
- LXMERT
- VirTex
- DEIT
- DETR
- Deformable DETR
- Generative Pretraining from Pixels

Non-local Neural Networks (2017/11) CVPR 2018

영상 처리를 위해 모든 프레임에 대해 Attention 계산

Figure 3. Examples of the behavior of a non-local block in res₃ computed by a 5-block non-local model trained on Kinetics. These examples are from held-out validation videos. The starting point of arrows represents one x_i , and the ending points represent x_j . The 20 highest weighted arrows for each x_i are visualized. The 4 frames are from a 32-frame input, shown with a stride of 8 frames. These visualizations show how the model finds related clues to support its prediction.

BERT(2018/10)

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER Encoder만 사용해서 단일 모델로 여러 가지 Task 처리

ViT(2020/10) ICLR 2021

Encoder만 사용해서 이미지를 조각내서 분류

UNITER(2019/09) ECCV 2020

Encoder만 사용해서 여러 ViL* Task 처리

* Vision-and-Language

Unicoder(2019/09) EMNLP2019

(a) Cross-lingual word recovery

(b) Cross-lingual paraphrase classification

Encoder만 사용해서 다중 언어 Task 처리

(c) Cross-lingual masked language model

Vilbert(2019/08)

Co-Attention Transformer 레이어를 도입해 ViL Task 처리

Oscar(2020/04) ECCV 2020

Object 태그와 Region 패치를 넣어서 ViL Task 처리

12-in-1(2019/12)

Visual Question Answering

What color is the child's outfit? Orange

Referring Expressions

child sheep basket people sitting on chair

Multi-modal Verification

The child is petting a dog. false

Caption-based Image Retrieval

A child in orange clothes plays with sheep.

ViLBERT의 학습 규칙을 살짝 수정해서 12가지 ViL Task를 단일 모델로 처리

VILLA(2020/06) NeurIPS 2020

GAN처럼 Adversarial 학습을 통해 ViL Task 처리

LXMERT(2019/08) EMNLP 2019

ViLBERT를 응용한 모델

VirTex(2020/06) CVPR 2021

Text를 써서 Visual Backbone을 학습시켜 Image Task 처리

DEIT(2020/12)

Pretrained 모델을 이용해서 적은 새로운 학습 데이터로 학습을 진행

DETR(2020/05)

Transformer만으로 Detection Task 처리

Deformable DETR(2020/10) ICLR 2021

DETR을 개선하여 점차 이미지의 특정 부분에 집중해 나감

Generative Pretraining from Pixels (PMLR 2020)

Generative 학습이 Unsupervised Image Representation 학습을 위해 가장 나은 방법임을 재확인

Thank you! Q & A