Álgebra

Ignacio Cordón Castillo

Álgebra conmutativa

Resumen

Ejercicios

Ejercicio 1.25

Sean α y β ideales de un anillo R

- 1. Demuestra que $\alpha+\beta=R$ si y sólo si $\alpha^n+\beta^n=Rparacadanaturaln$
- 2. Demuestra que si α,β son ideales comaximales propios entonces $\alpha,\beta\subsetneq J(R)$
- 3. Demuestra que si $\alpha_1, \dots \alpha_t$ son ideales comaximales dos a dos, entonces $\alpha_1 + (\alpha_2, \dots \alpha_t)^n = R$ para cada $n \in \mathbb{N}$.

1-

La implicación hacia la izquierda es trivial tomando n = 1.

Hacia la derecha, n=1 obvio

Por inducción, supuesto que se cumple hasta $n \in \mathbb{N}$

Existen $u+v=1, \quad u \in \alpha^n, v \in \beta^n$. Desarrollando $(u+v)^{n+1}=1$ es fácil comprobar que pertenece a $\alpha^n+\beta^n$

2-

Supuesto sin pérdida de generalidad que $\alpha \subset J(R)$.

Como existen $x \in \alpha$, $y \in \beta$ verificando x+y=1 por ser comaximales, $y=1-x \in U(R)$ por caracterización de radical de Jacobson, luego $\beta=R$, contradicción.

3-

Si son primos dos a dos $\exists x_{i1} \in \alpha_1, y_i \in \alpha_i$ verificando $1 = x_i + y_i$ para todo $i \geq 2$. Luego:

$$\prod_{i=1}^{t} (1 - x_{i1}) = 1 + z = y_1 \cdots y_n \in \alpha_1, \dots \alpha_t$$

con $z \in \alpha_1$. Luego $1 \in \alpha_1 + (\alpha_1, \dots \alpha_t)$. Y la caracterización del apartado 1 acaba teniendo en cuenta que:

$$\alpha_1^n + (\alpha_1, \cdots \alpha_t)^n \subset \alpha_1 + (\alpha_1, \cdots \alpha_t)^n$$

Ejercicio 1.24

Sea R un anillo y $\mathcal N$ su nilradical. Demostrar que son equivalentes:

- 1. R tiene exactamente un ideal primo.
- 2. Cada elemento de R es o una unidad o nilpotente.

 $1 \Longrightarrow 2$. Entonces \mathcal{N} es maximal en R, por existir los ideales maximales en un anillo, ser todo ideal maximal primo y ser $Nil(R) = \{x \in \mathbb{R} : \exists n, x^n = 0\} = \bigcap_{\Pi \in Spec(R)} \Pi$ y en particular R es anillo local con maximal $\mathcal{N} \iff R - \mathcal{N} \subseteq U(R)$ lo que nos da el resultado.

 $2 \Longrightarrow 3$. Trivialmente, ya que todo elemento no nulo es invertible.

 $3 \Longrightarrow 1$. Los ideales primos de R/\mathcal{N} son de la forma $\alpha + \mathcal{N}$ con α ideal primo de R. Pero como R/\mathcal{N} es cuerpo, se tiene que sus únicos ideales son el total y $N \equiv 0$. Es decir $\alpha \subseteq \mathcal{N} \subseteq \alpha$ donde el último contenido viene dado por ser $\mathcal{N} \infty = \bigcap_{\Pi \in Spec(R)} \Pi$.

Luego $\alpha = \mathcal{N}$ único ideal primo de R.

Resumen de Álgebra III

Proposición. El elemento α es algebraico sobre F si y solo si la extension $F(\alpha)/F$ es finito.

Proposición. Si la extensión K/F es finita, entonces es algebraica

Definición. La extensión K/F es finita si y solo si K está generado por un número finito de elementos algebraicos sobre F. De hecho, una extensión generada por elementos de grado n_1, \ldots, n_k tiene grado menor o igual $n_1 n_2 \ldots n_k$

Teorema. K algebraico sobre F y L algebraico sobre K entonces L es algebraico sobre F

Cuerpos de descomposición

Definición. Sea K cuerpo, E/K extensión. $f(X) \in K[X]$ descompone en E si en E[X] se factoriza como:

$$f(X) = a(X - a_1) \cdots (X - a_n), \qquad a \in K, \quad a_1, \dots a_n \in E$$

 $Cada (X - a_i)$ es un factor lineal.

Si no existe F verificando $K \subseteq F \subseteq E$ y que f(X) descompone en F[X], E[X] se llama cuerpo de descomposición.

Se deduce que $E = K(\alpha_1, ..., \alpha_n)$ donde α_i son raíces de f(X) en E[X]. Por tanto todo polinomio $f(X) \in K[X]$ tiene un cuerpo de descomposición sobre K

Proposición. Un cuerpo de descomposición de un polinomio de grado n sobre F es de grado como mucho n! sobre F. Si el grado es n! entonces el polinomio es irreducible. El recíproco no se verifica.