(Hypothesis testing)

• Hypothesis test for the mean μ

Case 1: X has a normal distribution with known variance σ^2 .

Case 2: X has a normal distribution with unknown variance σ^2 .

Case 3: X has a general distribution, but we have a large sample size.

Case 1:

$$\left\{ \begin{array}{ll} H_0: \ \mu=\mu_0 \\ H_a: \ \mu>\mu_0 \end{array} \right.$$

Test statistics is

$$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

The rejection region is given by

$$[z_{\alpha}, +\infty[$$

$$\begin{cases} H_0: & \mu = \mu_0 \\ H_a: & \mu < \mu_0 \end{cases}$$

We have that the rejection region is

$$]-\infty,-z_{\alpha}].$$

$$\begin{cases} H_0: \ \mu = \mu_0 \\ H_a: \ \mu \neq \mu_0 \end{cases}$$

We reject H_0 if \bar{X} is far from μ_0 in either direction. The rejection region is

$$]-\infty,-z_{\frac{\alpha}{2}}]\cup[z_{\frac{\alpha}{2}},+\infty[.$$

Example:

From a long term experience a factory owner knows that a worker can produce a product in an average time of 89 min. However on Monday morning, there is the impression that it takes longer.

To test whether this impression is correct a sample (n=12) is taken with $\bar{x}=92.2$. We assume that the production time is normal with $\sigma^2=144$. Verify whether this impression is correct at significance level 5%.

Solution:

$$\left\{ \begin{array}{ll} H_0: \ \mu=89 \\ H_a: \ \mu>89 \end{array} \right.$$

In the example, we reject H_0 if the test statistic is within the interval $[z_{0.05}, +\infty[=[1.645, +\infty[$.

We have that n = 12, $\bar{x} = 92.2$ and $\sigma^2 = 144$ such that

$$t = \frac{92.2 - 89}{12/\sqrt{12}} = 0.9237 < 1.645.$$

We can not reject H_0 at significance level 5%.

There is insufficient evidence to show that it takes longer to produce on Monday morning.

Case 2:

$$\begin{cases} H_0: & \mu = \mu_0 \\ H_a: & \mu > \mu_0 \end{cases}$$

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} \sim t(n-1)$$

The rejection region is given by

$$[t_{\alpha}, +\infty[.$$

$$\begin{cases} H_0: \ \mu = \mu_0 \\ H_a: \ \mu < \mu_0 \end{cases}$$

We have that the rejection region is

$$]-\infty,-t_{\alpha}].$$

$$\begin{cases} H_0: \ \mu = \mu_0 \\ H_a: \ \mu \neq \mu_0 \end{cases}$$

We reject H_0 if \bar{X} is far from μ_0 in either direction. The rejection region is

$$]-\infty,-t_{\frac{\alpha}{2}}]\cup [t_{\frac{\alpha}{2}},+\infty[.$$

Case 3: For large sample size

the test statistic

$$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \approx N(0, 1)$$
 under H_0

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} \approx N(0, 1)$$
 under H_0

• Matched pairs:

$$H_0: \mu_D = d, d \in \mathbb{R}.$$

versus

 H_a : $\mu_D > d$ H_a : $\mu_D < d$

 $H_a: \mu_D \neq d$

We define the test statistic, under H_0 ,

$$T = \frac{\bar{D} - d}{\sqrt{S_D^2/n}} \sim t(n-1)$$

Example:

In 10 women the systolic blood pressure (mm Hg) is measured at the beginning of a clinical trial. Afterwards they have a fertility treatment with hormones. During this treatment they are again measured.

Id	before	during	Id	before	during
1	115	128	6	138	145
2	112	115	7	126	132
3	107	106	8	105	109
4	119	128	9	104	102
5	115	122	10	115	117

In the example, we have that

$$\begin{array}{lll} H_0 \ : & \mu_D &= 0 \\ H_a \ : & \mu_D &\neq 0 \end{array}$$

We get the test statistic

$$T = \frac{\bar{D} - 0}{\sqrt{S_D^2/10}} \sim t(9).$$

With $\alpha = 5\%$, the rejection region is

$$]-\infty,-t_{0.025}]\cup[t_{0.025},+\infty[\ =\]-\infty,-2.262]\cup[2.262,+\infty[$$

From the data, we get

individu \boldsymbol{i}	$D_i = Y_i - X_i$
1	13
2	3
3	-1
4	9
5	7
6	7
7	6
8	4
9	-2
10	2

and

$$\bar{D} = 4.8$$
 $S_D^2 = \frac{187.6}{9} = 20.8444.$

we have that

$$t = \frac{4.8 - 0}{\sqrt{20.8444/10}} = 3.3247$$

We reject H_0 at significance level 5%.

The hormones have a significant effect on the systolic blood pressure.

Remarque:

We can find a $(1-\alpha)100\%$ confidence interval for the mean difference μ_D ,

$$\left[\bar{D} - t_{\frac{\alpha}{2}} \sqrt{\frac{S_D^2}{n}}, \bar{D} + t_{\frac{\alpha}{2}} \sqrt{\frac{S_D^2}{n}} \ \right].$$

• Independent samples:

$$H_0: \mu_1 - \mu_2 = d$$

versus

$$H_a: \mu_1 - \mu_2 > d$$

$$H_a: \mu_1 - \mu_2 < d$$

$$H_a: \mu_1 - \mu_2 \neq d$$

if $\sigma^2 = \sigma_1^2 = \sigma_2^2$ unknown,

$$T = \frac{\bar{Y} - \bar{X} - [\mu_2 - \mu_1]_0}{\sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t(n_1 + n_2 - 2)$$

with S_P^2 a pooled variance

$$S_P^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{\sum\limits_{i = 1}^{n_1} (X_i - \bar{X})^2 + \sum\limits_{i = 1}^{n_2} (Y_i - \bar{Y})^2}{n_1 + n_2 - 2}$$

if $\sigma_1^2 \neq \sigma_2^2$ and $n_1, n_2 \geq 30$,

$$T = \frac{\bar{Y} - \bar{X} - [\mu_2 - \mu_1]_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1).$$

if $\sigma_1^2 \neq \sigma_2^2$,

$$T = \frac{\bar{Y} - \bar{X} - [\mu_2 - \mu_1]_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t(\nu)$$

with

$$\nu = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\left[\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}\right]}.$$

Example:

In an experiment, we compare the results of treatments A and B.

Treatment A: 17 19 15 18 21 18

 We assume that both populations are normal and have equal variances.

$$H_0: \mu_2 - \mu_1 = 0$$

 $H_a: \mu_2 - \mu_1 < 0$

The test statistic is given by, under H_0 ,

$$T = \frac{\bar{Y} - \bar{X} - 0}{\sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t(n_1 + n_2 - 2).$$

We get for $\alpha = 5\%$ the rejection region

$$]-\infty, -t_{0.05}] =]-\infty, -1.833].$$

From the data, we have

$$n_1 = 6$$
 $\bar{x} = 18$ $s_1^2 = \frac{20}{5} = 4$
 $n_2 = 5$ $\bar{y} = 15$ $s_2^2 = \frac{18}{4} = 4.5$.

The pooled variance s_P^2 is given by

$$s_P^2 = \frac{5\times 4 + 4\times 4.5}{5+6-2} = 4.22$$

and we have

$$t = \frac{15 - 18}{\sqrt{4.22\left(\frac{1}{6} + \frac{1}{5}\right)}} = -2.41 < -1.833.$$

We reject H_0 at significance level 5%. This means that treatment A has significant better results than treatment B

Remarque:

We can derive a confidence interval for $\mu_2 - \mu_1$.

For example when $\sigma^2 = \sigma_1^2 = \sigma_2^2$,

$$\bar{Y} - \bar{X} \pm t_{n_1 + n_2 - 2, \frac{\alpha}{2}} \sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}.$$