EXERCISE 5(*) Let A be a n-by-n symmetric positive definite matrix, and define the function $\|\mathbf{x}\|_A : \mathbb{R}^n \to \mathbb{R}$ by $\|\mathbf{x}\|_A = \sqrt{\mathbf{x}^T A \mathbf{x}}$.

(a) Let $A^{1/2}$ denote the unique symmetric positive definite square root of A, which satisfies $(A^{1/2})^2 = A$ (you may assume without proof that $A^{1/2}$ exists). Show that $\|\mathbf{x}\|_A = \|A^{1/2}\mathbf{x}\|_2$, and use this fact to check that the function $\|\mathbf{x}\|_A$ defines a norm on \mathbb{R}^n . Determine constants 0 < c < C such that

$$c\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_A \le C\|\mathbf{x}\|_2, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

(b) Now consider the stationary Richardson method for the solution of the linear system $A\mathbf{x} = \mathbf{b}$, with iteration matrix $B_{\alpha} = I - \alpha A$. Show that $A^{1/2}B_{\alpha} = B_{\alpha}A^{1/2}$. Use this to prove that

$$\|\mathbf{e}^{k+1}\|_A \le \rho(B_\alpha)\|\mathbf{e}^k\|_A$$

where $\mathbf{e}^k = \mathbf{x} - \mathbf{x}^k$ denotes the solution error after the kth iteration.

Sol :

a), Firstly, we should show that $\|X\|_{A} = \|A^{\frac{1}{2}} \times \|_{2}$. Since $\|A^{\frac{1}{2}} \times \|_{2} = \sqrt{(A^{\frac{1}{2}} \times) \cdot (A^{\frac{1}{2}} \times)^{T}}$,
and $\|X\|_{A} = \sqrt{X^{T}A_{X}} = \sqrt{X^{T}[(A^{\frac{1}{2}})^{T}A^{\frac{1}{2}}]} \times -\sqrt{(A^{\frac{1}{2}} \cdot x)^{T} \cdot (A^{\frac{1}{2}} \cdot x)} = \|A^{\frac{1}{2}} \times \|_{2}$

Next, we should check the function IIxIIA defines a norm on Rn.

If $\|x\|_A : \mathbb{R}^n \to \mathbb{R}$ is a norm on \mathbb{R}^n , it must satisfy the following conditions:

- 1. (i) $\|x\|_A \ge 0$, $\forall x \in \mathbb{R}^n$, and (ii) $\|x\|_A = 0$ if and only if x = 0; Check: Since $A^{\frac{1}{2}}$ is symmetric positive matrix, so if $x \in \mathbb{R}^n$ and $x \neq 0$, we must have $A^{\frac{1}{2}}x \neq 0$, and $(A^{\frac{1}{2}}x)^2 \ge 0$; And only x = 0. $A^{\frac{1}{2}}x = 0$.
- 2, $||A \times ||A = |A| ||X||A \forall A \in \mathbb{R}$ and $\forall x \in \mathbb{R}^n$; Check: $||A \times ||A = ||A \cdot A^{\frac{1}{2}} \times ||_2 = |A| ||A^{\frac{1}{2}} \times ||_2 = |A| ||X||A|$
- 3, $||x + w||_A \le ||x||_A + ||w||_A$, $\forall x, w \in \mathbb{R}^n$; $||x + w||_A = ||A^{\frac{1}{2}}(x + w)||_2 \le ||A^{\frac{1}{2}} \times ||_2 + ||A^{\frac{1}{2}} w||_2 = ||x||_A + ||w||_A$

Therefore, the function IIXIIA defines a norm on Rn.

Finally, the constants $0 < c \le C$ such that $c ||x||_2 \le ||x||_A \le C ||x||_2$, $\forall x \in \mathbb{R}^n$ Since the function $||x||_A$ defines a norm, and $||x||_A = ||A^{\frac{1}{2}}x||_2$, we can get that: $||cx||_2 \le ||A^{\frac{1}{2}}x||_2 \le ||Cx||_2$ Because $||A||_2 \le ||A||_2 \le ||Cx||_2$ Because $||A||_2 \ge ||Cx||_2$ of $||A||_2 \le ||Cx||_2$. Therefore, $||C||_2 \le ||C||_2$.

b), Firstly, we should to prove that $A^{\frac{1}{2}}B_{a} = B_{a}A^{\frac{1}{2}}$, Since $B_{d} = I - AA$, so we can get: $A^{\frac{1}{2}}B_{d} = B_{d}A^{\frac{1}{2}} \Rightarrow A^{\frac{1}{2}}(I - AA) = (I - AA) \cdot A^{\frac{1}{2}}$ $\Rightarrow A^{\frac{1}{2}} - A^{\frac{1}{2}}AA = A^{\frac{1}{2}} - AAA^{\frac{1}{2}}$ Because relaxation parameter $A \in R$, so, $\Rightarrow A^{\frac{1}{2}} - AA^{\frac{1}{2}}A = A^{\frac{1}{2}} - AAA^{\frac{1}{2}}$ $\Rightarrow A^{\frac{1}{2}} - AI = A^{\frac{1}{2}} - AI$ Therefore, $A^{\frac{1}{2}}B_{d} = B_{d}A^{\frac{1}{2}}$.

Next, we need to prove that $||e^{k+1}||_A \leq P(B_A)||e^k||_A$. According to the question, we can get that: $\begin{aligned} &||e^{k+1}||_2 = |||B_{\lambda} \cdot e^k||_2 \leq ||B_{\lambda}||_2 \cdot ||e^k||_2 \\ &||A^{\frac{1}{2}}||_2 ||e^{k+1}||_2 \leq ||A^{\frac{1}{2}}||_2 \cdot ||B_{\lambda}||_2 \cdot ||e^k||_2 \\ &||B_{\alpha}||_2 ||e^{k+1}||_2 \leq ||A^{\frac{1}{2}}||_2 \cdot ||B_{\lambda}||_2 \cdot ||e^k||_2 \\ &||B_{\alpha}||_2 \cdot ||A^{\frac{1}{2}}||_2 \cdot ||A^{\frac{1}{2}}||_2 \cdot ||A^{\frac{1}{2}}||_2 \\ &||A^{\frac{1}{2}}||_2 \leq ||B_{\lambda}||_2 \cdot ||A^{\frac{1}{2}}||_2 \cdot e^k||_2 \\ &||From Lemma 4.4.3, we can know that ||B_{\lambda}||_2 = P(B_{\lambda}). \\ &||e^{k+1}||_A \leq P(B_{\lambda}) ||e^k||_A, \end{aligned}$