Parte práctica

Dar una descripción implícita o caracterizar el subespacio

Planteó un sistemas de ecuaciones de los vectores generadores igualados a un vector genérico y las filas vacías me describen el subespacio

Dar una base W de los vectores generadores

Verifico que sean LI planteando un sistemas de ecuaciones poniendo los vectores de manera horizontal (me tiene que coincidir las filas con los vectores generadores) y busco eliminar algún vector SIN permutar filas. Eliminar el vector cuyas filas quedaron nulas del conjunto generador

Extender una base de W para generar todo V

Verifico que los generadores de W sean LI y si dimW < dimV, agrego los vectores canónicos de V en una matriz poniendo los vectores como fila y busco eliminar los vectores suficientes (SIN TOCAR LOS ORIGINALES) hasta que dimW = dimV.

Dar la imagen y el núcleo de una transformación lineal

Planteo la matriz A que es tomar $T(e_i)$ (vectores canónicos) y expresarlos en su fila correspondiente. Luego planteó la ecuación AX = Y donde Y = (y1, y2, ... yn), reduzco a merf y la imagen va a estar caracterizada por las filas nulas. Cada restricción a la imagen es una dimensión menos que puede tener

Para el núcleo, tomo AX = 0 (uso la merf que me quedo de la imagen) y el núcleo queda dado de forma paramétrica

Pasar de una coordenada a otra

Tengo una base $B = \{v1, \dots vn\}$ y quiero expresar a w en base B

$$[v]B = \tilde{\lambda}1v1 + ... + \tilde{\lambda}nvn$$

Planteo un sistema de ecuaciones y resuelvo

Matriz de cambio de base

P = [Id]B'B = tomo los vectores de B' y los expreso en coordenadas de B como columna y armo la matriz

La inversa de P (o sea P-1) es [Id]BB'

Mono, epi o iso morfismos?

Es monomorfismo si:

- Inyectiva
- NuT = 0
- dimT = 0
- T(un conjunto LI) es LI

Es epimorfismo si:

- Im(T) = W
- dim(ImT) = dim(W)

Es isomorfismo si es mono y epi a la vez

Transformación nose

[T(v)]B' = [T[BB' [v]B]

Matriz de transformación de una composición

 $[U \circ T]BB" = [U]B'B" [T]BB'$

Calcular autovalores y autovectores de una transformación lineal

Planteo la matriz A la cual es igual a T(e_i) (vectores canónicos) en cada fila.

Busco los autovalores planteando el polinomio característico de A: det(xld - A).

Busco las raices de ese polinomio y esos son los autovalores.

Planteo el autoespacio de cada autovalor planteando (λ Id -A) = 0 donde λ es el autovalor que estoy trabajando y busco llegar a una MERF y planteo el autoespacio de forma parametrica o generada.

Luego si los vectores que forman el autoespacio son iguales a la dimensiones de la transformacion etnonces es diagonalizable.

Teoremas que entran

Propieades P1, P2, P3, P4 del producto escalar (Proposicion 1.2.2)

Expresando en coordenadas $v = (v_1, ..., v_n)$ y $w = \langle w_1, ..., w_n \rangle$

P1
$$\langle v, w \rangle = \langle w, v \rangle$$

$$v_1w_1 + v_2w_2 + ... + v_nw_n = w_1v_1 + w_2v_2 + ... + w_nv_n$$

Por conmutatividad del producto

P2
$$\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle = \langle w + u, v \rangle$$

Sea u =
$$(u_1, ..., u_n)$$

 $\langle v, w + u \rangle = \langle (v_1 ... v_n), (w_1 + u_1, ..., w_n u_n) \rangle$
 $= v_1(w_1 + u_1) + ... + v_n(w_n + u_n)$
 $= v_1w_1 + v_1u_1 + ... + v_nw_n + v_nu_n$

Luego reordenando los terminos me queda

$$= v_1 w_1 + ... + v_n w_n + v_1 u_1 + ... + v_n u_n$$
 Que es lo mismo que $\langle v, w \rangle + \langle v, u \rangle$

P3
$$\langle \tilde{\Lambda} v, w \rangle = \tilde{\Lambda} \langle v, m \rangle y \langle v, \tilde{\Lambda} m \rangle = \tilde{\Lambda} \langle v, m \rangle$$

$$\langle \tilde{\Lambda} v, w \rangle = \tilde{\Lambda} v 1 w 1 + ... + \tilde{\Lambda} v n w n$$

= $\tilde{\Lambda} (v 1 w 1 + ... + v n w n)$

$$\lambda \langle v, m \rangle = \lambda (v_1 w_1 + ... + v_1 w_n)$$

P4
$$\langle v, v \rangle > 0$$
 excepto que $v = 0$

Proposición 2.7.2

1) Sea A, B, C \in M_{nxn} (K) (sean A,B,C matrices cuadradas en un cuerpo K) Tales que BA = Id_n y AC = Id_b entonces B = C

Demostración

B = B Id

que por hipótesis

B = B (AC)

por asociativa del producto de matrices

= (BA)C

por hipotesis

= Id C

ld es neutro

= C

2) Si A es invertible la inversa es única

Sean B y C inversas de A (BA = AB = Id y CA=AC=Id) o sea BA = Id y CA = Id, luego por el teorema anterior B=C

Teorema 2.7.4 (2)

Si A y B son invertibles, entonces AB es invertible y $(AB)^{-1} = B^{-1} A^{-1}$ (la inversa del producto es el producto de las inversas)

Demostración

Compruebo que B-1A-1 es inversa a la izquierda y derecha de AB

Por izquierda $(B^{-1}A^{-1})AB$ = por asociativa $B^{-1}(A^{-1}A)B$ $= \{A^{-1}A = Id\}$ B-1IdB = {Id es nuestro} B⁻¹B = ld Ahora por derecha $AB(B^{-1}A^{-1})$ = {asociativa} A(BB⁻¹)A⁻¹ $\equiv \{es id\}$ AidA⁻¹ **=** {Neutro} AA^{-1}

Teorema 2.7.9

ld

A es invertible si y sólo si los sistemas AX=Y y AX=0 tiene solución única

```
A es invertible \Rightarrow AX=Y tiene sol unica
Sea X_0 solucion del sistema AX=Y
AX_0=Y \Rightarrow
(multiplico A¹ de ambos lados)
A⁻¹AX_0 = A⁻¹Y \Rightarrow
(A⁻¹A es igual a ld asi que neutro
X_0 = A⁻¹Y
```

AX=Y tiene solucion unica \Rightarrow AX=0 tiene una unica solucion trivial Tomando Y=0 se cumple

AX=0 tiene una única solución trivial ⇒ A es invertible

Sea R la MERF equivalente a A. Si R tiene una fila nula, entonces el sistema AX=0 tiene más de una solución lo cual es un absurdo (por hipótesis). Por lo tanto, R no tiene final nulas y como es cuadrada y es MERF, R = Id. Luego A es equivalente por filas a ID y por

otro teorema decir que sea equivalente por filas a ld es lo mismo que decir que sea invertible

Proposicion 2.8.3

Fórmula del determinante de una matriz triangular superior Si A es triangular superior y los elementos de la diagonal son $d_1 \dots d_n$ Entonces detA = $d_1.d_2 \dots d_n$

Se prueba por induccion sobre n

Si n=1, entonces el determinante vale d_{1} . Si n > 1, A(1|1) tambien es triangular superior con valores d_{2} ... d_{b} en la diagonal principal. Entonces usando el desarrollo de determinante por columna nos queda que la primera columna solo tiene un termino ya que tiene un solo coeficiente no nulo en d_{1} en la primera posicion. Por lo tanto

 $det(A) = d_1 det(A(1|1), que por hipotesis inductiva equivale a: <math>d_1(d_2 ... d_n)$

Corolario 2.8.8

Si la matriz tiene dos filas iguales o una luna entonces el detA = 0

Supongamos que tenemos una matriz con dos filas iguales, Luego intercambiando sus filas tenemos que por propiedades del determinante que al aplicar el cambio de fila det(A) = -det(A), y el único número cuyo opuesto es igual es el 0, por lo tanto det(A) = 0

Supongamos que tenemos una fila nula en a. Si multiplicamos esa fila por una constante, por propiedades del determinante, multiplicar una fila por una constante 'c \neq 1' multiplica el determinante por esa misma constante pero al multiplicar la fila nula nos queda la misma fila entonces det(A) = cdet(A) por lo tanto detA = 0

REVISAR ESTE

Colorario 2.8.10 (1)

Si A es invertible $det(A^{-1}) = det(A)^{-1}$ Como A es invertible si y solo si $det(A) \neq 0$ entonces $det(AA^{-1}) = det(A)det(A^{-1})$. Como $AA^{-1} = Id$, etnonces $1 = det(Id) = det(AA^{-1}) = det(A)det(A^{-1})$. Por lo tanto $det(A^{-1}) = 1/det(A)$

(2)

det(AB) = det(BA)

det(AB) = det(A)det(B) = det(B)det(A) = det(BA)

Proposición 2.9.8

λ es autovalor de A si y sólo si λ es raíz del polinomio característico de a

 λ es autovalor $\Leftrightarrow \exists v \neq 0 \text{ tq } Av = \lambda v$ $\Leftrightarrow 0 = \lambda v - Av = \lambda \text{Id}v - Av = (A - \lambda \text{Id})v$ $\Leftrightarrow (\lambda \text{Id} - A)X = 0 \text{ tiene solución no trivial}$

```
\Leftrightarrow XA(\tilde{\lambda}) = det(\tilde{\lambda}Id - A) = 0
```

⇔ ¾ es raíz del polinomio característico

Proposición 3.1.2

1)
$$\lambda \cdot 0 = 0 \quad \forall \quad \lambda \in K$$

Como 0 es neutro de la suma en V entonces 0 = 0 + 0

$$\lambda \cdot 0 = \lambda (0 + 0)$$

{distribuyo}

$$\lambda \cdot 0 = \lambda 0 + \lambda 0$$

{sumo en ambos lados -λ 0}

$$\lambda.0 - \lambda.0 = \lambda.0 + \lambda.0 - \lambda.0$$

{opuestos}

$$0 = \lambda.0 + 0$$

{neutro de la suma}

$$0 = \tilde{\lambda}.0$$

2)
$$0.v = 0 \forall v \in V$$

Como 0 es neutro de la suma en V entonces 0 = 0 + 0

$$v.0 = v (0 + 0)$$

{distribuyo}

$$v.0 = v.0 + v.0$$

{sumo en ambos lados -v.0}

$$v.0 - v.0 = v.0 + v.0 - v.0$$

{opuestos}

$$0 = v.0 + 0$$

{neutro de la suma}

$$0 = v.0$$

3) Si $\lambda \in K$, $v \in V$, $v \neq 0$ y $\lambda \cdot v = 0$ entonces $\lambda = 0$

Supongamos que $\lambda v = 0$ y $\lambda \neq 0$

$$\tilde{\lambda}.v = 0 \equiv \tilde{\lambda}^{-1}(\tilde{\lambda}.v) =$$

$$(\tilde{\lambda}^{-1}.\tilde{\lambda}).v = 0$$

$$1.v = 0$$

$$v = 0$$

Lo cual contradice la hipótesis. Como el absurdo vino de suponer $\lambda \neq 0$ entonces $\lambda = 0$.

4)
$$(-1) v = -v \forall v \in V$$

$$(-1).v + v = (-1).v + 1.v$$

por distributiva

$$(-1 + 1)v = 0 \cdot v = 0$$

Es decir
$$(-1)v + v = 0$$

por lo tanto (-1).v es el opuesto de v (que es -v)

Observacion 3.2.2

El vector nulo pertenece a todos los subespacios

Si W subespacio de V, entonces $0 \in W$, como W \neq vacio, tomo cualquier $v \in W$ y como el subespacio es cerrado por la suma tenemos que $0 \cdot w \in W$. Y como $0 \cdot w = 0$ entonces $0 \in W$

Teorema 3.2.6

Sea V un espacio vectorial sobre K y sean $v_1, \dots v_k \in V$. Entonces

$$W = \{\lambda_1 V_1 + \dots + \lambda_k V_k : \lambda_1 \dots \lambda_k \in K\}$$

es un subespacio vectorial

El conjunto de las combinaciones lineales de los vectores de V es un subespacio vectorial

Sean $\lambda_1 v_1 + ... + \lambda_k v_k y u_1 v_1 + ... + u_k v_k$ dos combinaciones lineales de los vectores de V

$$(\lambda_1 v_1 + ... + \lambda_k v_k) + (u_1 v_1 + ... + u_k v_k) = \lambda_1 v_1 + u_1 v_1 + ... + \lambda_k v_k + u_k v_k$$

Que sacando factor común queda

$$(\lambda 1 + u1)v1 + ... + (\lambda k + uk)vk$$

lo cual es una combinación lineal de v1 ... vk

Si $\lambda \in K$ y $\lambda 1 v 1 + + \lambda k v k$ es combinación lineal de v 1 v k entonces

$$\lambda(\lambda 1 \vee 1 + ... + \lambda k \vee k) = \lambda(\lambda 1 \vee 1) + ... + \lambda(\lambda k \vee k)$$
$$= (\lambda \lambda 1) \vee 1 + ... + (\lambda \lambda k) \vee k$$

que es una combinación lineal por lo tanto pertenece a W

Teorema 3.2.8

La interseccion de subespaacios es un subespcios

Sea $\{W_i\}_{i \in I}$ una familia de subespacios vectorial y sea W = la interseccion de todos los subespacios de l

Como 0 pertence a todos los subespacios por lo tanto en la intersección de de los subespacios de W_i es no vacia

- (a) si $w_1, w_2 \in W$, tenemos que $w_1, w_2 \in W_i$ para todo $i \in I$, luego, como W_i es subespacio vectorial, $w_1 + w_2 \in W_i$ para todo $i \in I$, por lo tanto $w_1 + w_2 \in W$;
- (b) si $\lambda \in \mathbb{K}$ y $w \in W$, entonces $w \in W_i$ para todo $i \in I$ y, por lo tanto, $\lambda w \in W_i$ para todo $i \in I$. En consecuencia $\lambda w \in W$.

Lema 3.3.7

Sea S un subconjunto LI de un espacio vectorial V. Suponiendo que w es un vector de V que no pertenece al subespacio generado por S. Entonces S U {w} es LI

Suponiendo que $v_1 \dots, v_n$ son vectores de S y sean $1 \dots 1$, $1 \in K$ tq

$$\lambda 1 v 1 + ... + \lambda n v n + \lambda w = 0$$

Hay que probar que los escalres son iguales a 0, pero supongamos que no son iguales a 0. Entonces pasando λ w a la derecha de la ecuación y dividiando por $-\lambda$ nos queda

$$w = (-\lambda 1/\lambda)v1 + ... + (-\lambda n/\lambda)vn$$

Lo cual contradice la hipotesis de que w no es combinacion lineal. Por lo tanto $\lambda = 0$ y como S es un conjunto LI, todos los esacalres son iguales a 0

Corolario 3.3.11

Si W es un subespacio propio de un espacio vectorial de dimensión finita V, entonces W es de dimensión finita y dimW < dimV

Si W = $\{0\}$, entonces dimW = 0, como W \subseteq V, tenemos que V es no nulo y por lo tanto dimW = 0 < dimV

Si W \neq {0}, sea S un subconjunto LI de W. Claramente S es LI en V, por lo tanto |S| < dim(V).

El axioma de buena ordenación nos garantiza que existe S subconjunto LI de W con |S| máximo

Si S no genera a W, entonces existiria $w \in W$ y $w \in V$. Como S es LI, la union de S y w es LI, entonces está incluido en W y tiene cardinal mayor a S. Esto es absurdo por la maximalidad de S.

Por lo tanto S es un conjunto LI que genera a W, es decir, S es una base de W Como W es un subespacio propio de V, existe un vector v en V que no esta en W. Agregando v a la base S de W se obtiene un subconjunto LI de V. Por lo tanto dimW < dimV

Observacion pagina 138

Si T es transformación lineal, entonces T(0) = 0

$$T(0) = T(0 + 0) = T(0) + T(0)$$

Por lo tanto restando $T(0)$ de ambos lados
- $T(0) + T(0) = -T(0) + T(0) + T(0)$
 $0 = 0 + T(0)$
 $0 = T(0)$

Teorema 4.2.2

T: V
$$\rightarrow$$
 W
ImT C W y Nu(T) C V son subespacios vectoriales
Im(T) \neq vacio, pues T(0) = 0 \in Im(T)
Si T(v1), T(v2) \in Im(t) y \hbar K, entonces
T(v1) + T(v2) = T(v1 + v2) \in Im(T) y \hbar T(v1) = T(\hbar v1) \in Im(T)

```
Nu(T) \neq Vacio pues T(0) = 0 \in Nu(T)
Si v, w \in V tales que T(v) = 0 y T(w) = 0, entonces
T(v) + T(w) = T(v + w) = 0
por lo tanto v + w \in Nu(T)
Si \lambda \in K, entonces T(\lambdav) = \lambda(Tv) = \lambda.0 = 0, luego \lambdav \in Nu(T)
```

Teorema 4.2.8

dim(ImT) + dim(NuT) = dimV

Sean n = dimV, k = dim(NuT)

hay que probrar que n - k = dim(ImT)

Sea {v1, ..., vk) una base de NuT. Entonces se puede extender la base del nucleo con vectores {vk+1, ..., vn) en V tales que {v1, ..., vn} es una base de V.

Vamos a probar que $\{T(vk+1), ..., T(vn)\}$ es una base de Im(t)

TERMINAR

Proposición 4.3.2

T es un monomorfismo si y solo si Nu(T) = 0

Demuestro la ida

Si T(v) = 0, como T(0) = 0, tenemos que T(v) = T(0), y como T es inyectiva (es un monomorfismo), implica que v = 0

Demuestro la vuelta

Sea v1, v2 \subseteq V tal que T(v1) = T(v2). Enontces

0 = T(v1) - T(v2) = T(v1 - v2)

Por lo tanto v1 - v2 \in Nu(T). Por hipotesis, v1 - v2 = 0, es decir v1 = v2

4.3.3 (1)

T es monomorfis si y solo si T de un conjunto LI es Li Ida

Sea {v1, ..., vk} un cojunto LI en V y sean ⅓1, ..., ⅙k ∈ K tales que

$$\lambda 1T(v1) + ... + \lambda nT(vn) = 0$$

entonces

$$0 = T(\lambda 1 v 1 + ... + \lambda n v n)$$

Como T es inyectiva, NuT = 0,

$$\lambda 1v1 + ... + \lambda nvn = 0$$

lo cual implica qe los λ son todos nulos por lo tanto T(v1),, T(vn) son Li

Vuelta

Sea $v \in V$ tq T(v) = 0. Demuesto que v = 0.

Sea $\{v1, ..., vn\}$ una base de V, entonces existen escalares $\hbar1,...\hbar n \in K$ tales que $v = \hbar1v1 + ... + \hbar nvn$

Por lo tanto

$$0 = T(v) = T(\tilde{\lambda}1v1 + \dots + \tilde{\lambda}nvn)$$

Como la base es LI, por hipotesis, $\{T(V1), ... T(vn)\}$ es LI y por lo tanto los escalres son todos nulos, lo cual implica que v = 0. Como el nucleo de T es 0, T es un monomorfismo

Proposición 4.3.3 (2)

T es epimorfismo si y solo si T de un conjunto de generados de V es un conjunto de generadores de W

lda

Sea $\{v1, ..., vn\}$ un conjunto de generadores de V y sea $w \in W$. Como T es epimorfismo, existe $v \in V$ tal que T(v) = w. Ahora bien

v es combinacion lineal del conjunto de generadores

Por lo tanto

$$w = T(v) = T(\lambda 1v1 + ... + \lambda nvn) = \lambda 1T(v1) + = \lambda nT(vn)$$

Es decir, cualquier $w \in W$ se puede escribir como combinacion lineal de las transformaciones del conjunto generador por lo tanto generan W.

Vuelta

Sea $\{v1, ..., vn\}$ una base de V, por hipotesis T(v1), ..., T(vn) generan W, es decir dado cualquier $w \in W$ existen $\lambda 1, ..., \lambda n \in K$ tales que

$$w = \lambda 1T(v1) + ... + \lambda nT(vn)$$

y por lo tanto w = T(v) con $v = \lambda 1v1 + ... + \lambda nvn$

Proposicion 4.5.2

Sea V espacio vectorial de dimension finita y sea B = $\{v1, ..., vn\}$ una base ordenada de V. Entonces, para cada $v \in V$, existen unicos $x1, ..., xn \in K$ tales que

$$v = x1v1 + ... + xnvn$$

Como v1, ..., vn generan v, existen x1,m xn \in K tales que v sea combinacion lineal de los vectores y los escalares. Sean y1, ..., yn \in K tales que v = y1v1 + ... + ynvn

Como v es igual a la combinacion lineal de los vectores v con los escalares x y los vectores v con los escalares y, restando meimbro a mie

Como $v = \sum_{i=1}^{n} x_i v_i$ y $v = \sum_{i=1}^{n} y_i v_i$, restando miembro a miembro obtenemos

$$0 = \sum_{i=1}^{n} (x_i - y_i) v_i.$$

Ahora bien, $v_1, ..., v_n$ son LI, por lo tanto todos los coeficientes de la ecuación anterior son nulos, es decir $x_i - y_i = 0$ para $1 \le i \le n$ y entonces $x_i = y_i$ para $1 \le i \le n$.

4.7.2

Los autoespacios de una transformacion son subespacios vectoriales

Sean v1, v2 ∈ V tales que Tv1 = \(\tilde{\lambda} \v1 \) y Tv2 = \(\tilde{\lambda} \v2 \) entonces

$$T(v1 + v2) = T(v1) + T(v2) = \lambda v1 + \lambda v2 = \lambda (v1 + v2)$$

es decir si v1 v2 ∈ Vλ, probamos que v1 + v2 ∈ Vλ

 $T(cv) = cT(v1) = c\lambda v1 = \lambda (cv1)$ por lo tanto es cerrado por el producto por escalares

4.7.3

Si los autovalores son distintos entre sí, entonces sus autovectores son LI

Paso inductivo. Supongamos que el enunciado es verdadero para el caso m-1 con m>1, (hipótesis inductiva o HI), y probemos entonces que esto implica que es cierto para m. Debemos ver que si

$$c_1v_1 + c_2v_2 + \cdots c_mv_m = 0$$
 (*)

entonces $c_1 = \cdots c_m = 0$. Multipliquemos (*) por λ_1 , obtenemos:

$$c_1\lambda_1\nu_1 + c_2\lambda_1\nu_2 + \cdots + c_m\lambda_1\nu_m = 0. \tag{**}$$

También apliquemos T a (*) y obtenemos

$$c_1\lambda_1\nu_1+c_2\lambda_2\nu_2+\cdots c_m\lambda_m\nu_m=0. \hspace{1.5cm} (***)$$

Ahora a (**) le restamos (***) y obtenemos:

$$c_2(\lambda_1 - \lambda_2)\nu_2 + \cdots + c_m(\lambda_1 - \lambda_m)\nu_m = 0. \tag{4.7.2}$$

Como, por hipótesis inductiva, v_2, \ldots, v_m son LI, tenemos que $c_i(\lambda_1 - \lambda_i) = 0$ para $i \ge 2$. Como $\lambda_1 - \lambda_i \ne 0$ para $i \ge 2$, obtenemos que $c_i = 0$ para $i \ge 2$. Por (*) eso implica que $c_1 = 0$ y por lo tanto $c_i = 0$ para todo i.