Question Number	Answer	Mark
4(a)(i)	EITHER	
	Repeat at different places and calculate a mean (1)	
	To reduce (the effect of) <u>random error</u> (1)	
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]	
	OR	
	Use the ratchet to avoid squashing the rubber (1)	
	To reduce (the effect of) <u>random error</u> (1)	
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]	
	OR	
	Check and correct for zero error (1)	
	To eliminate <u>systematic error</u> [Accept reduce for eliminate] (1)	2
	MP2 dependent on MP1 [Allow MP2 if MP1 partially correct]	
4(a)(ii)	Mean $t = 1.04 \text{ (mm)}$ 3 SF only (1)	1
	Example of calculation	
	Mean $t = \frac{(1.02 + 1.06 + 1.05 + 1.01)\text{mm}}{4} = 1.035 = 1.04 \text{ (mm)}$	
4(a)(iii)	Calculation using half range shown Or	
	Calculation of furthest from the mean shown (1)	
	Percentage uncertainty in $t = 3 \%$ e.c.f. (a)(ii) Accept 2 SF (1)	2
	Example of calculation	
	Half range = $\frac{(1.06 - 1.01)\text{mm}}{2}$ = 0.025 = 0.03 (mm)	
	$\%U = \frac{0.03 \text{mm}}{1.04 \text{mm}} \times 100 = 2.9\% = 3\%$	
	Note: use of 0.025 in calculation gives 2.4% or 2%	

4(a)(iv)	The measurement is larger but the uncertainty is the same Or The measurement is larger but the resolution (of the micrometer) is the same	(1) (1)	2
	So the percentage uncertainty is reduced (by a factor of 4) MP2 dependent on MP1		
4(a)(v)	The length <i>x</i> of the rubber band does not take into account the fold (at the ends).	(1)	
	The (length x of the) rubber band could be measured when it is not taut		
	Or The width w could be measured when the rubber band is compressed	(1)	2

4(b)(i) EITHER

Uses
$$2 \times percentage uncertainty in D$$

[Accept
$$2 \times \frac{\Delta D}{D}$$
]

Uncertainty in
$$D = 0.069$$
 (cm²)

Example of calculation

%U in
$$D^2 = 2 \times \frac{0.01}{3.45} \times 100 = 0.58\%$$

U in
$$D^2 = 3.45^2 \times \frac{0.58}{100} = 0.069 \text{ (cm}^2\text{)}$$

OR

Calculation of half range of
$$D^2$$
 shown

2

Uncertainty in
$$D = 0.069$$
 (cm²)

Example of calculation

U in
$$D^2 = \frac{3.46^2 - 3.44^2}{2} = 0.069 \text{ (cm}^2\text{)}$$

4(b)(ii) EITHER

U in
$$A = 0.052$$
 (cm²)

2 SF only e.c.f.
$$(b)(i)$$

Example of calculation

U in
$$A = (0.07 + 0.06 + 0.07) \times \frac{\pi}{12} = 0.052 \text{ (cm}^2)$$

OR

2

U in
$$A = 0.053$$
 (cm²)

Example of calculation

Maximum
$$A = (11.97 + 9.42 + 10.63) \times \frac{\pi}{12} = 8.383 \text{ cm}^2$$

Minimum
$$A = (11.83 + 9.30 + 10.49) \times \frac{\pi}{12} = 8.278 \text{ cm}^2$$

U in
$$A = \frac{8.383 - 8.278}{2} = 0.053 \text{ (cm}^2\text{)}$$

4(c)	Calculation of a relevant limit using percentage uncertainty shown Or		
	Calculation of a relevant uncertainty using percentage uncertainty shown	(1)	
	Upper limit ρ for rubber band = 1.20 (g cm ⁻³) and Lower limit ρ for rubber bung = 1.50 (g cm ⁻³)	(1)	
	They are not made from the same type of rubber as the upper limit of the rubber band does not overlap the lower limit for the rubber bung	(1)	3
	MP3 dependent MP2		
	Example of calculation		
	Upper limit ρ for rubber band = 1.15 × (1 + $\frac{4.3}{100}$) = 1.20 (g cm ⁻³)		
	Lower limit ρ for rubber bung = 1.52 × $(1 - \frac{1.2}{100})$ = 1.50 (g cm ⁻³)		

16

Total for question 4