代数学方法(第一卷)勘误表 跨度: 2019—2022

李文威

2023-02-04

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误已在修订版改正 (2023 年 2 月网络发布, 纸本待出).

- ◇ 第 12 页, 倒数第 8 行 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- ◇第16页,定义 1.2.8原文若传递集 α 对于 \in 构成良序集更正若传递集 α 对 $\exists x < y \overset{\text{EV}}{\Longleftrightarrow} x \in y$ 成为良序集感谢王东瀚指正.
- **◇ 第 16 页, 倒数第 5 行 原文** 于是有 $\gamma \in \gamma$, 这同偏序的反称性矛盾. **更正** 于是 有 $\gamma \in \gamma$, 亦即在偏序集 (α, \leq) 中 $\gamma < \gamma$, 这同 < 的涵义 (≤ 但 \neq) 矛盾. 感谢王东 瀚指正.
- **◇ 第 18 页, 倒数第 10 行 原文** 而性质... 是容易的. **更正** 而且使性质... 成立, 这是容易的.
- \diamond 第 19 页, 倒数第 5 行
 原文
 $a_{\alpha} \notin C_{\alpha}$ 更正
 $a_{\alpha} \notin \{a_{\beta}\}_{\beta < \alpha}$ 感谢胡旻杰指正
- ◆ 第 23 页, 第 5 行
 原文
 由于 α 无穷...
 更正
 由于 Ν_α 无穷...
 感谢王东瀚指正.
- \diamond **第 26 页, 第一章习题 5** 将题目中的三个 $\mathbb{Z}_{\geq 1}$ 全改成 $\mathbb{Z}_{\geq 0}$.
- \diamond 第 35 页, 倒数第 4 行
 原文
 $X \in Ob(\mathscr{C})$ 更正
 $X \in Ob(\mathscr{C}')$ 感谢尹梓僮指正.
- **◇ 第 38 页, 第 12 行 (命题 2.2.10 证明)** 将两个箭头的方向调换. 感谢尹梓僮指正.

- ◆ 第 42 页, 倒数第 2 行 原文 … 同构. Z(…) ≃… 更正 … 同构 Z(…) ≃… 感谢
 王东瀚指正.

- \diamond 第 50 页, 第 3 行 ρ 原文 ρ 成 ρ 原文 ρ 成 ρ 感谢蒋之骏指正
- \diamond 第 53 页, 命题 2.6.10 第 2 行原文 $Y \in \mathrm{Ob}(\mathscr{C}_1)$ 更正 $Y \in \mathrm{Ob}(\mathscr{C}_2)$ 感谢苏福茵指正
- ◇ 第 56 页, 倒数第 13 行原文 $\epsilon'(FG\epsilon')(F\eta G)$ 更正 $\epsilon'(FG\epsilon'')(F\eta G)$ (严格来说, 这行里的所有 ϵ 都应该改作 ϵ .)感谢张好风指正
- ◇ 第 61 页, 第 2–3 行
 原文
 $\lim_{\longleftarrow} (\alpha(S)), \lim_{\longleftarrow} (\beta(S))$ 更正
 $\lim_{\longleftarrow} (\alpha(S)), \lim_{\longleftarrow} (\beta(S))$ 感

 谢巩峻成指正
- **第 65 页, 定理 2.8.3 陈述** 原文
 所有子集 $J \subset Ob(I)$ (出现两次)
 更正
 所有子

 集 $J \subset Mor(I)$ 感谢卢泓澄和指正
- ◇ 第 66 页, 第 1 行 余完备当且仅当它有所有"余"等化子和小余积. 感谢巩峻成指正
- \diamond 第 67 页, 第 7 行原文f(x)h(y)更正f(x)g(y)感谢巩峻成指正
- \diamond **第 77 页**, (3.8) 和 (3.9) 将交换图表中的 λ_2^{-1} 和 ρ_2^{-1} 分别改成 λ_2 和 ρ_2 , 相应地将箭头反转.
- \diamond 第 77 页, 倒数第 8 和倒数第 6 行 将 $\xi_F: F(\cdot) \times F(\cdot)$ 改成 $\xi_F: F(\cdot) \otimes F(\cdot)$. 将 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 改成 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 感谢巩峻成指正
- **第78页,第1行** 原文
 使得下图...
 更正
 使得 θ_{1_1} 为同构, 而且使下图...

 图表之后接一句 "作为练习, 可以证明对标准的 φ_F 和 φ_G 必然有 $\varphi_G = \theta_{1_1} \varphi_F$."

 后续另起一段.
- ◇第84页,第2行 原文 定义结合约束 更正 定义交换约束 感谢王东瀚指正
- **◇第91页,倒数第6行** "对于2-范畴"后加上逗号. 感谢巩峻成指正
- ◇ **第 94 页**, **习题 5 倒数第 2 行 原文** Yang-Baxter 方程. **更正** 杨-Baxter 方程.
- ◇ 第 102 页, 第 6 行 原文 它们仅与… 更正 前者仅与… 感谢巩峻成指正

◆ 第 109 页, 引理 4.3.4 第 4 行
 原文
 更正
 → 更正
 → 感谢雷嘉乐指正

◇ 第 111 页, 第 8—9 行原文Aut(G) ... Ad(s(h))| $_G$ 更正Aut(N) ... Ad(s(h))| $_N$ 感谢雷嘉乐指正

⋄ 第 113 页倒数第 3 行, 第 115 页引理 4.4.12 原文 这相当于要求对所有...

更正 这相当于要求 X 非空, 并且对所有...

原文 设 X 为 G-集 更正 设 X 为非空 G-集

感谢郑维喆指正

◇ 第 114 页, 倒数第 1 行原文Aut (G_1) × Aut $(G_2)^{op}$ 更正Aut $(G_1)^{op}$ × Aut $(G_2)^{op}$ 感谢巩峻成指正

 \diamond 第 116 页, 第 5 行
 原文
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$ 更正
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$

◇ 第 125 页, 第 10 行 更正 记 𝒯 的线性自同构群为...

感谢雷嘉乐指正

◇ 第 126 页, 第 6 行 原文 (…)ⁿ_{i=0} 更正 (…)ⁿ⁻¹_{i=0}

◇ 第 129 页, 第 2 行 原文 举自由群为例 更正 举自由幺半群为例 感谢雷嘉乐指 正

感谢雷嘉乐指正

感谢卢泓澄指正

 \diamond **第 131 页**, **引理 4.8.7 的陈述之后第一行 原文** 当 A 是群时引理条件... **更正** 当 每个 f_i 都是群之间的单同态时, 引理条件... 感谢卢泓澄指正

感谢巩峻成指正

◇第132页,第1—3行 原文 … 仿前段方法定义 (a',x') 使得 $xf_i(a) = f_i(a')x'$. 置

$$\alpha_i(\xi,\sigma) := \begin{cases} [a''a'; x'x_1, \dots, x_n], & i_1 = i, \\ [a''a'; x', x_1, \dots, x_n], & i_1 \neq i. \end{cases}$$

更正 … 仿前段方法定义下式涉及的 $(a',x') \in A \times H_i$: 置

$$\alpha_i(\xi,\sigma) := \begin{cases} [a''a';x',x_2,\dots,x_n], & \text{其中 } xf_i(a)x_1 = f_i(a')x', & i_1 = i, \\ [a''a';x',x_1,\dots,x_n], & \text{其中 } xf_i(a) = f_i(a')x', & i_1 \neq i. \end{cases}$$

感谢卢泓澄指正

- **第 132 页, 倒数第 2, 3 行** 原文
 假设 A 和每个 $M_i = G_i$ 都是群.
 更正
 假设 A

 和每个 $M_i = G_i$ 都是群, 而且 f_i 单.
- **第 134 页**, 第 5 行
 原文
 $\{gyg^{-1}: y \in Y, g \in G\}$ 更正
 $\{gyg^{-1}: y \in Y, g \in G\}$ 感

 谢雷嘉乐指正
- 今第137页,第13行
 原文
 $f(x_{\sigma^{-1}(1)},...,x_{\sigma^{-1}(n)})$ 更正
 $f(x_{\sigma(1)},...,x_{\sigma(n)})$ 感谢薛

 江维指正
- \diamond 第 137 页, 倒数第 12 行原文 $sgn(\sigma) = \pm 1$ 更正 $sgn(\sigma) \in \{\pm 1\}$ 感谢巩峻成指

- **\$ 144** 页, 定理 **4.10.6** 证明第三段 全体商映射 $q_i: G \to G/N_i$... 取 $y \in G$ 使得 $q_k(y) = x_k$... 都会有 $q_i(y) = x_i$...
- ◇ 第 145-146 页, 例 4.10.13 将所有 Grp 改成 Ab (出现两次)
- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.

明确给出从 $\Delta \setminus (G \times G)/\Delta$ 到 Coni(G) 的双射.

感谢苏福茵指正

- 感谢阳恩林指正
- ◆ **第 156 页**, **第 4** 行 **原文** *Ir = rI = I* **更正** *IR = I = RI*
- 感谢巩峻成指正感谢雷嘉乐指正

⋄ 第 163 页, 第 12 行

- 感谢雷嘉乐指正
- **第 174 页**, 第 15 行
 原文
 赋予每个 R/\mathfrak{a}_i ...
 更正
 赋予每个 $R_i := R/\mathfrak{a}_i$...
 感谢

 巩峻成指正

更正 $(\varphi \circ \psi)^{\sharp} = \psi^{\sharp} \circ \varphi^{\sharp}$

- \diamond 第 188 页, 第 13 行
 原文
 $\sum_{i=0}^{n} a_i p^i q^{n-j}$ 更正
 $\sum_{i=0}^{n} a_i p^i q^{n-i}$ 感谢雷嘉乐指正
- ◇ 第 188 页, 定义 5.7.11 之上两行 原文 ∀a 更正 ∀p

- ◇ 第 188 页, 倒数第 5 行 原文 ∈ R[X] 更正 ∈ K[X] 感谢巩峻成指正
- \diamond 第 189 页, 第 17 行原文 $g \in R \cap K[X]^{\times}$ 更正 $g \in R[X] \cap K[X]^{\times}$ 感谢巩峻成指正
- **⋄ 第 190 页, 倒数第 2 行的公式** 改成:

$$\bar{b}_{\nu}X^{k}$$
 + 高次项, $\bar{b}_{\nu}\neq 0$,

感谢巩峻成指正

- **第 191 页, 第 12** 行
 将 $(b_1, ..., b_m)$ 改成 $(b_1, ..., b_n)$, 并且将之后的 "留意到..." 一句删除.

 感谢巩峻成指正
- **※第 191 页, 第 15 和 16** 行
 原文
 $m_{\lambda_1,...,\lambda_n}$ 更正
 $m_{\lambda_1,...,\lambda_r}$

 原文
 $(\lambda_1,...,\lambda_r)$ 的所有不同排列.
 更正
 $(\lambda_1,...,\lambda_r,0,...,0)$ 的所有不同排列.

 排列 (n 个分量).
 感谢巩峻成指正
- 。第 192 页, 第 1 段最后 1 行 原文 使 m_λ 落在 Λ_n 中的充要条件是 λ_1 (即 Young 图 的宽度) 不超过 n. 更正 如果分拆的长度 r (即 Young 图的高度) 超过给定的 n,相应的 $m_\lambda \in \Lambda_n$ 规定为 0. 感谢巩峻成指正
- \diamond 第 192 页, 定义 5.8.1 第二项
 原文
 $\mu_i = \mu_k$ 更正
 $\mu_i = \lambda_i$ 感谢巩峻成指正
- \diamond 第 193 页, 定理 5.8.4 证明第 3 行
 原文
 $j_1 < \cdots > j_{\bar{\lambda}_2}$ 更正
 $j_1 < \cdots < j_{\bar{\lambda}_2}$ 感谢雷嘉乐指正
- \diamond 第 194 页, 例 5.8.6 的第 3 行
 原文
 $\sum_{i=0}^{n} c_i Y^{n-i}$ 更正
 $\sum_{i=0}^{n} (-1)^i c_i Y^{n-i}$ 感谢巩 修成指正

- **◇第205页,第7行 原文** *M* 作为 *R*/ann(*M*)-模自动是无挠的. **更正** *M* 作为 *R*/ann(*M*)-模的零化子自动是 {0}. **感谢戴懿韡指正.**
- ◆第 209 页, 定义 6.3.3 列表第二项 原文 成为 更正 称为

- \diamond 第 218 页, 第 13 行原文B(rx, ys) = rB(x, y)s, $r \in R$, $s \in S$.更正B(qx, ys) = qB(x, y)s, $q \in Q$, $s \in S$.感谢冯敏立指正.
- **◇第220页** 本页出现的 Bil(•ו;•) 都应该改成 Bil(•,•;•), 以和 216 页的符号保持一致.

- ◇ 第 225 页, 引理 6.6.7 证明第一段原文Hom $(_SS,_SM) \overset{\sim}{\to} \mathscr{F}_{R\to S}(M)$ 更正Hom $(S_S,M_S) \overset{\sim}{\to}$
- \diamond 第 228 页, 倒数第 12 行原文粘合为 $\mathcal{Y}' \to B$ 更正粘合为 $\mathcal{Y}' \to M$ 感谢巩峻成指正
- ◇第230页,第13行
 原文
 萃取处
 更正
 萃取
- **⋄ 第 235 页底部** 图表中的垂直箭头 f_i, f_{i-1} 应改为 ϕ_i, ϕ_{i-1} .
- ◇第236页,第6行
 原文
 直和 ∏;
 更正
 直和 ⊕;
 感谢巩峻成指正
- \diamond 第 237 页, 第 2 行原文存在 $r: M' \to M$ 更正存在 $r: M \to M'$ 感谢雷嘉乐指

- \diamond 第 237 页, 命题 6.8.5 证明最后两行
 原文
 故 $(v) \Rightarrow (i);$ 更正
 故 $(iv) \Rightarrow (i);$
- ◆ 第 240 页, 定义 6.9.3 第二条 原文 … 正合, 则称 I 是内射模. 更正 … 正合, 亦即它保持短正合列, 则称 I 是内射模.
 感谢张好风指正
- ◇ **第 244 页, 倒数第 10 行 原文** 下面的引理 6.10.4 **更正** 引理 5.7.4 感谢郑维喆 指正
- **◇ 第 245 页, 引理 6.10.2 证明最后的短正合列** 将 $0 \to M \to \cdots$ 改成 $0 \to N \to \cdots$

- ◆ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7 "交换 Noether 模"应改为 "交换 Noether 环".
 两个定理的陈述中应该要求 *R* 是交换 Noether 环.
 感谢郑维喆指正
- \diamond 第 246 页, 倒数第 4 行 原文 $a_n \ge 0$ 更正 $a_n \ne 0$ 感谢颜硕俣指正
- **◇第247頁,第6—7行 原文** 其长度记为 *n* + 1. **更正** 其长度定为 *n*.
- \diamond 第 251 页, 第 6 行 原文 $\operatorname{im}(u^{\infty}) = \ker(u^n)$ 更正 $\operatorname{im}(u^{\infty}) = \operatorname{im}(u^n)$ 感谢巩峻成指正
- ◇ **第 251 页起**, **第 6.12 节** 术语 "不可分模"似作 "不可分解模"更佳,以免歧义. (第 4 页倒数第 3 行和索引里的条目也应当同步修改) 感谢郑维喆指正
- ◆ 第 252 頁, 第 2 行
 原文
 1 ≤ 1 ≤ n.
 更正
 1 ≤ i ≤ n.
 感谢傅煌指正.
- ◇ 第 255 页, 第 1 题 原文

$$N = \left\langle \alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j \right\rangle$$

更正

◇ 第 264 頁, 第 14 行

$$N = \left(\alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right)$$

感谢郑维喆指正

 \diamond **第 260 页, 倒数第 5** 行 将 ϕ : $R \to A$ 改为 σ : $R \to A$.

感谢雷嘉乐指正

感谢雷嘉乐指正

- ◇第 261 页, 定义 7.1.6 第 1 行 **原文** R- 更正 R
 - 原文 如果 $ann(M) = \{0\}$ 更正 如果 $ann(N) = \{0\}$
- ◇ 第 270 页, 注记 7.3.6 原文 秩为 A, B 的秩之和 更正 秩为 A, B 的秩之积 感谢汤─鸣指正
- \diamond 第 270 页, (7.6) 式 前两项改为 $M_n(A)\otimes M_m(B)\simeq A\otimes M_n(R)\otimes M_m(R)\otimes B$, 后续不变. 感谢巩峻成指正

- **⋄ 第 274 页, 倒数第 2 行** 将两处 $A^k(M)$ 改成 $A^k(X)$.
- ◇ 第 277 页, 第 14 行等式右侧原文 $dx_{i_1} \wedge \cdots \wedge dx_{i_l}$ 更正 $dx_{j_1} \wedge \cdots \wedge dx_{j_l}$ 感谢侯学伦指正
- ◆ 第 279 页, 定理 7.5.2 陈述 原文 唯一的 R-模同态... 更正 唯一的 R-代数同态...
- **◇ 第 284 頁, 定理 7.6.6** 将定理陈述中的 U 由 "忘却函子" 改成 "映 A 为 A_1 的函子", 其余不变. 相应地, 证明第二行的 $\varphi: M \to A$ 应改成 $\varphi: M \to A_1$. 感谢郑维喆指正
- \diamond **第 285 頁, 倒数第 5 行** $T^n_\chi(M) := \{x \in T^n(M): \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指证
- \diamond **第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的 $e_1:$ 和 $e_{\rm sgn}:$ 皆删去. 感谢郑维喆指正

- **⋄第293页第8,10,13行** 将*M*都改成*E*,共三处.

感谢巩峻成指正

感谢巩峻成指正

- \diamond 第 311 页, 命题 8.3.2 证明第 2 行
 原文
 $1 \le j \le n_i$ 更正
 $1 \le j \le n_P$ 感谢雷嘉乐

 指正
- **◇第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和 $\overline{F}'_{|E'}$.
- \diamond **第 313 頁, 命题 8.3.9** (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 I 非空". 感谢郑维喆指正
- \diamond 第 315 頁, 定理 8.4.3 (iv) 原文 $\sum_{k\geq 0}^n$ 更正 $\sum_{k=0}^n$ 感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- **◇ 第 317 页, 倒数第 13 行** (出现两次) **原文** $\prod_{i=1}^{n}$ … **更正** $\prod_{m=1}^{n}$ …
- **◇ 第 321 页, 定理 8.6.1 的陈述 原文** $(-1)^n a_n$ **更正** $(-1)^n a_0$

- ◇ 第 323 页, 定理 8.6.3 的陈述 原文 $1, x, ..., x^n$ 更正 $1, x, ..., x^{n-1}$ ◇ 第 325 页, 第 10 行 (定义–定理 8.7.3 证明) 原文 a^{-p^m} 更正 $a^{p^{-m}}$
- ◇ 第 326 页第 4 行 原文 既然纯不可分扩张是特出的 更正 既然纯不可分扩张 对复合封闭 感谢巩峻成指正
- ◇ 第 340 页最后一行
 原文
 于是 Gal(E|K) 确实是拓扑群
 更正
 于是 Gal(E|F) 确

 实是拓扑群
 感谢巩峻成指正
- **◇ 第 343 页, 倒数第 6,7 行** 倒数第 6 行的 $Gal(K|L \cap M) \subset \cdots$ 改成 $Gal(L|K) \subset \cdots$, 另外 倒数第 7 行最后的 "故"字删去. 感谢张好风指正
- ◇ 第 348 页, 命题 9.3.6 陈述和证明原文 $\lim_{m} \mathbb{Z}/n\mathbb{Z}$ $\lim_{m} \mathbb{Z}/m\mathbb{Z}$ $\lim_{m} \mathbb{Z}/m\mathbb{Z}$ 原文 $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ 感谢郑维喆和巩峻成指正
- \diamond 第 350 页, 第 8 行
 原文
 \Leftrightarrow $d \mid n$ 更正
 \Leftrightarrow $n \mid d$ 感谢巩峻成指正
- ◇ 第 352 页, 第 7 行
 原文
 p | n
 更正
 p ∤ n
 感谢郑维喆指正
- ◇ **第 357 页, 第 4 行** 删除 "= Gal(E|F)". 感谢巩峻成指正
- ◇ 第 357 页, 倒数第 8 行 原文
 F(S)|S 更正
 F(S)|F
 感谢张好风指正
- \diamond **第 359 页**, **第 5** 行 **原文** 透过 Γ_E 分解 **更正** 透过 $\operatorname{Gal}(E|F)$ 分解 感谢巩峻成指 正
- ◇ 第 360 页, 定理 9.6.8 陈述 在 (9.10) 之后补上一句 (不缩进): "证明部分将解释如何定义 Hom 的拓扑."
 感谢张好风指正
- **% 第 360 页, 定理 9.6.8 证明**将证明第三行等号下方的 $\Gamma = \Gamma_F/\Gamma$ 和上方的文字删除,等号改成 $\stackrel{1:1}{\longleftrightarrow}$.感谢杨历和巩峻成指正
- ◆ 第 363 页, 倒数第 4 行
 原文

 ¬
 _[E:F]

 更正

 ¬
 _[L:F]

 感谢郑维喆指正

- **◇第 368 页, 定理 9.8.2 的表述第一句 原文** 给定子集 $\{0,1\}$ \subset \mathscr{S} \subset \mathbb{C} , 生成的... **更正** 给定子集 $\{0,1\}$ \subset \mathscr{S} \subset \mathbb{C} , 基于上述讨论不妨假定 \mathscr{S} 对复共轭封闭, 它生成的... 感谢郑维喆指正

- **今第370页, 习题2**将本题的所有q代换成p, 将"仿照..." 改为"参照", 开头加上"设p是素数, ..."感谢郑维喆指正
- **⋄ 第 372 页, 第 20 题** 条件 (b) 部分的 $P \in F[X]$ 改成 $Q \in F[X]$, 以免符号冲突. 相应地, 提示第一段的 P 都改成 Q. 感谢郑维喆指正
- **◇第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h\geq 0} c_{k,h} t^h$. 注意到 $\lim_{k\to\infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k\geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h\geq 0} c_h t^h \in K \langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_{k,h}| < \epsilon$. 于是

$$h \ge N \implies (\forall k \ge 0, |c_{k,h}| \le \epsilon) \implies |c_h| \le \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K\langle t \rangle$. 其次, 在 $K\langle t \rangle$ 中有等式

$$f - \sum_{k=0}^{M} f_k = \sum_{h \ge 0} \left(c_h - \sum_{k=0}^{M} c_{k,h} \right) t^h = \sum_{h \ge 0} \underbrace{\left(\sum_{k > M} c_{k,h} \right)}_{|h| < \epsilon} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$.

感谢高煦指正.

- ◇第397页,条目 V 下第6行 原文 w_{x.-} 更正 w_{x,-}
- ◇ 第 398 页, 倒数第 12 行 原文 , 而 $v: K^{\times} \to \Gamma$ 是商同态. 更正 . 取 $v: K^{\times} \to \Gamma$ 为商同态.
- **◇ 第 400 页, 倒数第 5-6 行** 改为: $e(w \mid u) = e(w \mid v)e(v \mid u), f(w \mid u) = f(w \mid v)f(v \mid u).$ 感谢巩峻成指正

- **\$\psi\$\$ 416 页, 定理 10.9.7** 将陈述的第一段修改为: "在所有 W(R) 上存在唯一的一族交换环结构, 使得 $w:W(R)\to\prod_{n\geq 0}R$ 为环同态, (0,0,...) 为零元, (1,0,...) 为幺元, 而且: "(换行, 开始表列)

对于表列第一项, 改述为"下图皆在 CRing 中交换".

对于表列第二项 ("存在唯一确定的多项式族... 所确定"), 最后补上 "... 所确定, 这些多项式与 *R* 无关."

证明第一段的"群运算"改为"环运算".

⋄第417页,最后一行 它被刻画为对...