MATH 221 - DIFFERENTIAL EQUATIONS

Lecture 8 Worksheet

Fall 2020

Subhadip Chowdhury

Sep 4

TITLE: Euler's Method

SUMMARY: Then we will learn about a simple numerical technique called Euler's Method¹ which approximates solutions to ODEs quantitatively. During class, we will learn to use Python and implement Euler's method using Python.

Related Reading: Chapter 2.6

§A. Euler's Method

Suppose our goal is to solve the IVP

$$y' = f(t, y), y(t_0) = y_0 (1)$$

and to determine y(T) for some value of T. We will describe a method to find a numerical approximation of the value by discretizing the interval $[t_0, T]$ into a partition of N subintervals

$$t_0 \le t_1 \le t_2 \le t_3 \le \ldots \le t_N = T$$

and using linear approximation to recursively calculate $y(t_{i+1})$ from $y(t_i)$ using tangent lines.

Assume $t_{i+1} - t_i = \Delta t = \frac{T - t_0}{N}$. Recall from your Calculus class that the equation of the tangent line to the curve y(t) at $t = t_0$ is

$$y = y_0 + y'(t_0)(t - t_0) \stackrel{\text{By eqn. } 1}{=\!=\!=\!=} y_0 + f(t_0, y_0)(t - t_0)$$

If Δt is small enough, then $y_1 = y_0 + f(t_0, y_0) \Delta t$ is a good approximation for $y(t_1)$. Refer to figure 1 in the next page. We can then continue the process with

$$y_{i+1} = y_i + f(t_i, y_i) \Delta t = y_i + \Delta y_i$$

for i = 1, 2, ..., N - 1.

¹https://www.youtube.com/watch?v=v-pbGAts Fg

Figure 1: Euler's Method

■ Question 1.

Consider the differential equation y' = -t/y with initial condition y(0) = 1. Recall that we found earlier in the Ant Path problem that the exact solution² is $y(t) = \sqrt{1 - t^2}$.

- (a) Use DF IELD to draw the slope field and the solution curve that starts at (0,1).
- (b) Visually estimate the value of y(1/2) from the output picture.
- (c) Compare your estimate with the exact value of y(1/2) using the formula $y(t) = \sqrt{1 t^2}$.
- (d) Next use Euler's Method with $\Delta t = .25$ to estimate y(1/2). You can use a table as below to keep track of the values as you calculate by hand.
- (e) Is your Euler's Method estimate an over-estimate or an under-estimate? Explain why.

i	t_i	y_i	$f(t_i, y_i)$	Δy_i
0				
1				
2				

■ Question 2.

(a) Consider the IVP

$$\frac{dy}{dx} = (3-y)(y+1), \qquad y(0) = 4$$

Use Euler's method with the step size $\Delta t = 1$ to fill out a table of the approximate values as above over the time interval $0 \le t \le 2$. Sketch a picture of the approximate solution curve. Use a calculator as necessary.

²Why are we are considering the positive square root only? Think about interval of definition.

(b) Now suppose we change the initial condition and have the new IVP

$$\frac{dy}{dx} = (3-y)(y+1), \qquad y(0) = 0$$

Do the same with $\Delta t = 0.5$ over the interval $0 \le t \le 2$. Your table will have at 4 rows.

- (c) Do a qualitative analysis of the solution of the ODE using a Phase Line and compare your conclusions with your results in the last two parts. What's wrong with the approximate solutions given by Euler's method?
- (d) What can you do to have a better approximation for the solution curves?