Занятие №1. Комплексные числа.

Комплексные числа и действия над ними. Алгебраическая, тригонометрическая и показательная форма комплексного числа, комплексно-сопряженное число. Возведение в степень и извлечение корня из комплексного числа. Построение множеств на комплексной плоскости.

І. Представьте число в алгебраической форме:

1)
$$\frac{2-i}{1+i}$$
; 2) $(1+i)^{10}$; 3) $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$; 4) $\frac{\left(-1+i\sqrt{3}\right)^6}{(i-1)^5}$.

Найдите все значения корней и изобразите их точками на комплексной плоскости:

5)
$$\sqrt[3]{-i}$$
; **6**) $\sqrt[4]{-1+i\sqrt{3}}$.

7) Представить в тригонометрической форме число:
$$\left(-\sin\frac{2\pi}{5} + i\cos\frac{2\pi}{5}\right)^9$$
.

II. Постройте множество точек на комплексной плоскости:

1)
$$\operatorname{Im}\left(\frac{1}{z} + \frac{2}{\overline{z}}\right) \ge 1$$
; 2) $\sqrt{2} < \left|(1-i)z - i\right| < 2\sqrt{2}$; 3) $\operatorname{Re}\frac{3}{z} \ge \operatorname{Im}\left(\frac{1}{z} - 1\right)$; 4) $\operatorname{Im}\frac{z+1}{z-i} = 0$;

5)
$$|z-i|+|z+i| < 4$$
; 6) $0 < \text{Re}(2iz) < 1$; 7) $|z| - \text{Re} z < 1$.

III. 1) Определить вид кривой, заданной уравнением:

a)
$$z(t) = t^2 - 2t + 3 + i(t^2 - 2t + 1), t \in (-\infty; +\infty);$$

6)
$$z(t) = 2e^{it} + \frac{1}{2}e^{-it}$$
.

2) Из всех чисел, удовлетворяющих условию $z \cdot \bar{z} = 25$, найти такие, что |z-7| + |z-7i| принимает наименьшее значение.

3) Решить уравнение:

a)
$$z^4 - z^2 + 1 = 0$$
; 6) $z^2 = 3 - 4i$.

Домашнее задание:

№№ 12.5-12.8, 12.11, 12.12. (первые две цифры соответствуют номеру главы «Теория функций комплексной переменной» сборника задач 1))

ЛИТЕРАТУРА:

1) Сборник задач по математике для ВТУЗов в 4 частях под общей редакцией А.В. Ефимова и А.С. Поспелова. Ч3. М.: Издательство Физико-математической литературы, 2007.

Ответы:

I. 1)
$$\frac{1}{2} - \frac{3i}{2}$$
; 2) $32i$; 3) $512(1 - i\sqrt{3})$; 4) $81(1+i)$;

5)
$$z_1 = -\frac{\sqrt{3}}{2} + \frac{i}{2}, z_2 = i, z_3 = -\frac{\sqrt{3}}{2} - \frac{i}{2};$$

6)
$$z_1 = \sqrt[4]{2} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$$
, $z_2 = \sqrt[4]{2} \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2} \right)$, $z_3 = -z_1$, $z_4 = -z_2$.

7)
$$\cos\frac{\pi}{10} + i\sin\frac{\pi}{10}$$

II. 1) круг с центром в точке $z_0 = i/2$ и радиусом 1/2 с выколотой точкой z = 0.

2) открытое кольцо с центром (-1/2;1/2) и радиусами 1 и 2.

3) полуплоскость $y \ge -3x$ с выколотой точкой (0;0).

4)
$$y = x + 1$$
, $x \ne 0.5$) $\frac{x^2}{3} + \frac{y^2}{4} < 1.6$) $-\frac{1}{2} < y < 0.7$) $x > \frac{y^2 - 1}{2}$.

III. 1)a)
$$y = x - 2$$
, $x \ge 2$. 1)6) $\frac{4x^2}{25} + \frac{4y^2}{9} = 1$. 2) $z_1 = 3 + 4i$, $z_2 = 4 + 3i$.

3)a)
$$z_{1,2} = \pm \frac{1}{2} \left(\sqrt{3} + i \right), \ z_{3,4} = \pm \frac{1}{2} \left(\sqrt{3} - i \right).$$
 3)б) $z_{1,2} = \pm \left(2 - i \right).$