课程名称: _____概率论与数理统计

华东师范大学期末试卷 A 2018—2019 年第一学期

- FILXI-	1.1					-50	100000				
专 址:					年级/	班级: _	_17	级			
课程性质	: 公共业	修、公	共选修、	专业必	修 、专业	选修					11.
	=	=	229	五	六	七	八	九	总分	阅卷人签名	
一、选择	陋(毎題	12分,	共 20	分)							DIT /2
1. 有10个	包裹,	其中	只有2	个有多	东西,	小明先	拿走	一个,	再由小	红拿一个,	即公
小红拿	到有物	的包裹	6的概	率为(17						
(A) 1/5		(B) 3/1	8	6	C) 1/6		(D) 3/	22			
						-					
2. 对于任								,	~		
(A) 若	AB=ø,	则 A,	B 一定	独立		(B) 若	AB=2	,则	99-5	定不独立	
										可能独立	
3. 设随机多	变量 X	的分布	律为	$P\{X =$: k} =	$b\lambda^k, k$	= 1, 2	$2, \cdots, n$,…,贝	(D)	
									$b = \lambda^{-1}$		
									$=\lambda^{-1}$		
4. 设随机变										400	
4. 以他小以	里(八	9 17	-14(µ	1, 42, 1	.0,20,0	7,5%2 1	hrt this	T-11-11-	. 17 II H J / C		
(A)X,Y ₹	数次;		(B)	对任	何实数		$\alpha_1 X$	$+\alpha_2 Y \bar{\chi}$	定服从	人正态分布;	
(C) V V T	-40 -V	,	(D)	7+ /T /:	正确。海		. V	v 18	X = IE	以正太公布	
										从正态分布	
5. 设两个随机	几变量	X与'	Y独立	同分	布,P{.	X = -	1) = 0	$1.5, P\{\}$	X = 1	= 0.5. 则下	列
式成立的是	₫ (A									
			1	D		orv -	v) _	1			
A. P											
C. P	$\{X+Y\}$	r = 0	$=\frac{1}{4}\frac{1}{2}$	D.		$P\{XY$	= 1} =	$=\frac{1}{4}$ \tilde{z} .			
设随机试验										的概率均为	1/3

将试验 E独立重复做两次, X表示两次试验中结果 A 发生的次数, Y表示两次试

验中B发生的次数,则X与Y的相关系数为(

7. 设 X 是离散型随机变量, P(X=a)=2/3, P(X=b)=1/3,且 a<b, 又已知 E(X)=4/3,

(A) 5/3

(B) 7/3

(C) 3

(D)11/3

8. 设总体X~N(μ , σ^2), X_1, X_2, \cdots, X_n ($n \ge 2$) 是来自总体X的随机样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 和 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 分别是样本均值和样本方差,则下列各式正确的是(

(A) $\frac{X_i - \mu}{s / \sqrt{n}} \sim t(n)$

(B) $\overline{X} \sim N(\mu, \sigma^2)$

(C) $\sum_{i=1}^{n} \left(\frac{x_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}(n)$ (D) $\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n)$

9. 某纤维的强力服从 N(µ,1.192)。原设计的平均强力为 6 克。现改进工艺后,测得 100 个强力数据的均值为 6.35, 假定标准差不变。如果要检验均值的提高是否工 艺改进的结果,则合理的零假设与备择假设应为(/)。

(A) H0: $\mu > 6$ H1: $\mu < 6$ (B) H0: $\mu < 6$ H1: $\mu > 6$

(C) H0: $\mu \le 6$ H1: $\mu > 6$ (D) H0: $\mu = 6$ H1: $\mu \ne 6$

10. P 值可显示检验统计量值在一定范围内出现的概率,对于单侧检验,将 P 值与给

定的显著性水平α相比()。

A、当 P 值≥α 时, 拒绝原假设

B、当P值≥α时,接受原假设

C、当P值<1-a, 拒绝原假设 D、当P值<1-a时,接受原假设

填空题 (每题 4 分, 共 20 分)

- 1. P(A)=P(B)=P(C)=1/4, P(AB)=P(BC)=0, P(AC)=1/8, 则 A,B,C 至少出现一个的概 率为 8。
- 2. 若总体 $X \sim N(0,2), X_1, X_2, X_3, X_4$ 是来自X的样本, $S^2 = \frac{1}{3} \sum_{i=1}^4 (X_i \overline{X})^2$ 是样本方差, 则 $E(S^4) = \frac{20}{2}$ 。
- 3. 设X, Y为随机变量,且D(X+Y)=7, D(X)=4, D(Y)=1,则 $Cov(X,Y)=___$
- 4. 从 17 级学生中随机抽取 100 人,测试其概率论期中平均成绩为 72 分。设学生成

续服从正态分布,均方差为 40. 以置信水平 0.975 求出这批学生成绩均值 " 的单侧置信下限为 ()

- 5. 设随机变量 X 服从参数为λ的指数分布,且 X 落入区间(1, 2)内的概率达到最大,则λ= β /n2
- 三、 计算题 (每题 10 分, 共 60 分)

附表: (其中Φ(X)是标准正态分布函数)

	0.10									
(x)	0.530	0.579	0.705	0.783	0.840	0.867	0.885	0.919	0.945	0.977

 $t_{0.05}(15) = 1.753, t_{0.05}(16) = 1.746, t_{0.025}(15) = 2.131, t_{0.025}(16) = 2.12$ $\chi^{2}_{0.05}(15) = 25, \ \chi^{2}_{0.95}(15) = 7.26, \ \chi^{2}_{0.025}(15) = 27.49, \ \chi^{2}_{0.975}(15) = 6.27$

- 某单位招聘 155 人,按考试成绩录用。共有 526 人报名、假设报名者的成绩 X~N(μ,σ²)。 己知 90 分以上有 12 人,60 分以下有 84 人。若从高分到低分依次 录取。某人成绩为 78 分,何此人是否在被录取之列?
- 2. 设二维随机变量(X. Y)的密度函数为

$$f(x,y) = \begin{cases} kxye^{-(x^2+y^2)} & x > 0, y > 0 \\ 0 & \text{1.6} \end{cases}$$

求 (1) 常数 k 的值:

- (2) X > 1 的条件下, Y > 1的概率P{Y > 1|X > 1};
- (3) $P(\max(X, Y) > 1)$.
- 3. 设 X_1 , X_2 , ..., X_n 是总体为N(0,2)的简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$, $T = \overline{X}^2 \frac{1}{n} S^2$.
 - (1)证明T是µ2的无偏估计量; (3分)
 - (2) 计算D(T): (4分)
- (3) 计算E(X₁e^{X₁}). (3 分)
- 经过分析,在接下来 600 个时间段内,股票价格每个时间段独立的以 0.3 概率下降 1 元, 0.2 的概率上升 0.5 元, 0.5 的概率上升 1 元。求 600 个时间段后,股票

价格比开始时上升 150 元的概率。(参考: $\sqrt{456} = 21.3542, \sqrt{4088} = 63.9375, \phi(0.4692) = 0.6808, \phi(1.4049) = 0.9192)$

5. 设ξ₁,ξ₂…,ξ_n是取自总体 X 的一个样本, X 的密度函数为

$$f(x;\;\theta_1,\theta_2) = \begin{cases} \frac{1}{\theta_2} e^{-\frac{i-\theta_1}{\theta_2}}, x > \theta_1 \\ 0, & \text{IF} \end{cases}, x > \theta_1$$

试束参数 θ 、和 θ 。的极大似然估计、并说明 θ 、的估计量是否是无偏估计量。

6. 企业用一种机器生产某产品、规定标准重量为 250 克,标准差不超过 3 克时,则 认为机器工作为正常。现抽取 16 件产品、测得平均重量X= 252 克,样本标准差 S=4 克,假定产品重量服从正态分布,试问目前该机器工作是否正常?