IMO Winter Training - January 2002

Functional Equations

Let \mathbb{N} denote the set of positive integers.

- 1. Find $f: \mathbb{R} \to \mathbb{R}$ if f(x)f(y) f(x+y) = x+y for all $x, y \in \mathbb{R}$.
- 2. Find all functions f from \mathbb{Q} to \mathbb{Q} which satisfy the following two conditions: (i) f(1) = 2, and (ii) f(xy) = f(x)f(y) f(x+y) + 1 for all x, y in \mathbb{Q} .
- 3. Find $f: \mathbb{N} \to \mathbb{N}$ if f(x+y) + f(x-y) = 2f(x) + 2f(y) for all $x, y \in \mathbb{N}$.
- 4. The function f satisfies

$$f(x) + f\left(\frac{1}{1-x}\right) = x$$

for all $x \in \mathbb{R}$, $x \neq 0$, 1. Find f(x).

- 5. Find all functions $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ which satisfy:
 - (i) f(x, x) = x,
 - (ii) f(x,y) = f(y,x), and
 - (iii) (x+y)f(x,y) = yf(x, x+y)

for all $x, y \in \mathbb{N}$.

- 6. Let $f:[0,\infty)\to\mathbb{R}$, such that f(1)=1 and $f(x^2+y^2)=f(x+y)$ for all $x,y\geq 0$. Prove that f(x)=1 for all x,
- 7. The function $f: \mathbb{N} \to \mathbb{N}$ satisfies f(f(m) + f(n)) = m + n for all $m, n \in \mathbb{N}$. Find all possible values of f(2002).
- 8. A non-negative integer f(n) is assigned to each positive integer n in such a way that the following conditions are satisfied:
 - (i) f(mn) = f(m) + f(n), for all positive integers m and n,
 - (ii) f(n) = 0 whenever the units digit of n (in base 10) is a '3', and
 - (iii) f(10) = 0.

Prove that f(n) = 0 for all positive integers n.

9. Let n be a fixed positive integer, $n \ge 3$, and let f be a function assigning to each point in the plane a real number. If A_1, A_2, \ldots, A_n are the vertices of a regular n-gon, then

$$f(A_1) + f(A_2) + \cdots + f(A_n) = 0.$$

Prove that f(P) = 0 for all points P.

- 10. Let $f: \mathbb{N} \to \mathbb{N}$, such that f(n) + f(f(n)) = 6n for all $n \in \mathbb{N}$. Find f(n).
- 11. Let \mathbb{Q}^+ be the set of positive rational numbers. Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that for all $x \in \mathbb{Q}^+$,
 - (i) f(x+1) = f(x) + 1, and
 - (ii) $f(x^2) = f^2(x)$.

12. A sequence (u_n) is defined by $u_0 = 2$, $u_1 = 5/2$, $u_{n+1} = u_n(u_{n-1}^2 - 2) - u_1$ for $n = 1, 2, \ldots$ Prove that for positive integers n,

 $|u_n| = 2^{[2^n - (-1)^n]/3}$

where |x| denotes the greatest integer less than or equal to x.

- 13. Find all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy $xf(x) + f(1-x) = x^3 x$ for all $x \in \mathbb{R}$.
- 14. The set of all positive integers is the union of disjoint subsets $\{f(1), f(2), \ldots\}, \{g(1), g(2), \ldots\},$ where

$$f(1) < f(2) < \cdots$$
,
 $g(2) < g(2) < \cdots$, and
 $g(n) = f(f(n)) + 1$ for all $n \ge 1$.

Determine f(240).

- 15. The function f(n) is defined for all positive integers n and takes on non-negative integer values. Also, for all m, n, f(m+n) - f(m) - f(n) = 0 or 1, f(2) = 0, f(3) > 0, and f(9999) = 3333. Determine f(1982).
- 16. Find all functions f defined on the set of positive real numbers which take positive real values and satisfy the conditions:
 - (i) f(xf(y)) = yf(x) for all positive x, y,
 - (ii) $f(x) \to 0$ as $x \to \infty$.
- 17. Find all functions f, defined on the non-negative real numbers and taking non-negative real numbers, such that:
 - (i) f(xf(y))f(y) = f(x+y) for all $x, y \ge 0$,
 - (ii) f(2) = 0,
 - (iii) $f(x) \neq 0$ for $0 \le x < 2$.
- 18. Prove that there is no function f from the set of non-negative integers into itself such that f(f(n)) =n + 1987 for every n.
- 19. Let \mathbb{Q}^+ be the set of positive rational numbers. Construct a function $f:\mathbb{Q}^+\to\mathbb{Q}^+$ such that

$$f(xf(y)) = \frac{f(x)}{y}$$

for all x, y in \mathbb{Q}^+ .

20. A function f is defined for all positive integers, such that f(1) = 1 and

$$f(1) + f(2) + \cdots + f(n) = n^2 f(n)$$

for all n > 1. Find f(2002).