

UNIDAD II

Filtros FIR

Método de ventana

PASOS DE DISEÑO

ESPECIFICACIÓN DEL DESEMPEÑO

CÁLCULO DE COEFICIENTES

Ecuaciones características – FIR

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

$$H(z) = \sum_{k=0}^{N-1} h(k)z^{-k}$$

• La respuesta en frecuencia de un filtro $^{H_D(\omega)}$ y la respuesta al impulso correspondiente $^{h_D(n)}$, se relacionan por la transformada inversa de Fourier.

$$h_D(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_D(\omega) e^{j\omega_n} d\omega$$

D= Respuesta ideal

Al conocer $H_D(\omega)$ es posible conocer $h_D(n)$

- Filtro pasabajas (ideal)
 - ω_c = Frecuencia de corte
 - Escala de frecuencia normalizada: T=1

$$h_D(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (1)e^{j\omega_n} d\omega$$

$$h_D(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} (1)e^{j\omega_n} d\omega$$

$$= \frac{2f_c \sin(n\omega_c)}{n\omega_c}, \quad n \neq 0, -\infty \leq n \leq \infty$$

$$= 2f_c, \qquad n = 0$$

RESPUESTAS IDEALES FILTROS

Tipo de	Respuesta ideal al impulso, ho(n)				
filtro	<i>h</i> _□ (<i>n</i>), <i>n</i> ≠0	<i>h</i> ∂(0)			
Pasabajas	$2f_c \frac{\sin(n\omega_c)}{n\omega_c}$	$2f_c$			
Pasaaltas	$-2f_c \frac{\sin(n\omega_c)}{n\omega_c}$	$1-2f_c$			
Pasabanda	$2f_2\frac{\sin(n\omega_2)}{n\omega_2} - 2f_1\frac{\sin(n\omega_1)}{n\omega_1}$	$2(f_2-f_1)$			
Rechazabanda	$2f_1 \frac{\sin(n\omega_1)}{n\omega_1} - 2f_2 \frac{\sin(n\omega_2)}{n\omega_2}$	$1-2(f_1-f_2)$			

• Número de coeficientes vs. Respuesta del filtro

Rizos y sobreimpulsos Fenómeno Gibbs

VENTANAS EN EL DOMINIO DEL TIEMPO

VENTANAS EN EL DOMINIO DE LA FRECUENCIA

FUNCIONES COMUNES DE VENTANAS

Nombre	Ancho de transición (Hz)	Rizo de la banda de paso (dB)	Relación lóbulos p/l (dB)	Aten. de la b. de rechazo (dB)	Función de ventana w(n) /n/<(n-1)/2
Rectangular	0.9/N	0.7416	13	21	1
Hanning	3.1/N	0.0546	31	44	$0.5 + 0.5 \cos\left(\frac{2\pi n}{N}\right)$
Hamming	3.3/N	0.194	41	53	$0.54 + 0.46 \cos\left(\frac{2\pi n}{N}\right)$
Blackman	5.5/N	0.0017	57	75	$0.42 + 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.8\cos\left(\frac{4\pi n}{N-1}\right)$

FUNCIONES COMUNES DE VENTANAS

Nombre	Ancho de transición (Hz)	Rizo de la banda de paso (dB)	Relación lóbulos p/l (dB)	Aten. de la b. de rechazo (dB)	Función de ventana w(n) /n/<(n-1)/2
Kaiser (β=4.54)	2.93/N	0.0274		50	$\frac{Io(\beta\{1-[2n/(N-1)]^2\}^{1/2})}{Io(\beta)}$
Kaiser (β=6.76)	4.32/N	0.00275		70	$\frac{Io(\beta\{1-[2n/(N-1)]^2\}^{1/2})}{Io(\beta)}$
Kaiser (β=8.96)	5.71/N	0.000275		90	$\frac{Io(\beta\{1-[2n/(N-1)]^2\}^{1/2})}{Io(\beta)}$

$$Io(x) = 1 + \sum_{k=1}^{L} \left[\frac{\left(\frac{x}{2}\right)^{k}}{k!} \right]^{2}$$

ESPECIFICACIÓN DEL DESEMPEÑO

- Ejemplo
 - Frecuencia de corte de la banda de paso 10 Hz
 - Frecuencia límite de la banda de rechazo < 20 Hz
 - Atenuación de la banda de rechazo > 30 db
 - Rizo de la banda de paso < 0.026 dB
 - Frecuencia de muestreo 256 Hz
 - El filtro debe introducir una mínima distorsión en la señales deseadas.
 - La longitud del filtro debe ser lo más pequeña posible (máximo 37)