AML Lab Assignment-6:

Name: Gurvinder Kaur Matharu

PRN: 1032230432 Roll No.: PA14

AIM:

Perform ML performance analysis on a given dataset to find Accuracy, Error rate, precision, recall and confusion matrix for supervised learning algorithms

THEORY:

Performing a machine learning (ML) performance analysis involves evaluating models using various metrics to gauge their effectiveness in making predictions. Here are the metrics and their roles in assessing supervised learning algorithms:

Accuracy: It measures the proportion of correctly classified instances out of the total instances. High accuracy indicates a good overall performance but might not be sufficient for imbalanced datasets.

Precision: It quantifies the ratio of correctly predicted positive observations to the total predicted positives. It's essential when the cost of false positives is high.

Recall (Sensitivity): It calculates the ratio of correctly predicted positive observations to the all-actual positives in the dataset. It's crucial when the cost of false negatives is high.

F1 Score: The F1 score is the harmonic mean of precision and recall and provides a balanced evaluation metric, particularly useful in imbalanced datasets. The F1 score ranges between 0 and 1, where a higher score indicates better balance between precision and recall.

Confusion Matrix: This matrix summarizes the performance of a classification algorithm by presenting the counts of true positives, true negatives, false positives, and false negatives.

ROC Curve: Plots the trade-off between sensitivity (true positive rate) and specificity (true negative rate) for different threshold values. It illustrates how well the model distinguishes between classes.

AUC (Area Under the Curve): Measures the entire two-dimensional area under the ROC curve from (0,0) to (1,1). An AUC closer to 1 signifies better model performance, indicating a higher true positive rate and lower false positive rate across various thresholds.

CODE EXECUTION & OUTPUT:

data = pd.read_csv('/content/Employee.csv')

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc_auc_score, roc_curve, auc
from sklearn.preprocessing import LabelEncoder
```

```
data.head()
```

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	ExperienceInCurrentDomain	LeaveOrNot
0	Bachelors	2017	Bangalore	3	34	Male	No	0	0
1	Bachelors	2013	Pune	1	28	Female	No	3	1
2	Bachelors	2014	New Delhi	3	38	Female	No	2	0

data.columns

data.describe()

\Rightarrow		JoiningYear	PaymentTier	Age	ExperienceInCurrentDomain	Leave0rNot
	count	4653.000000	4653.000000	4653.000000	4653.000000	4653.000000
	mean	2015.062970	2.698259	29.393295	2.905652	0.343864
	std	1.863377	0.561435	4.826087	1.558240	0.475047
	min	2012.000000	1.000000	22.000000	0.000000	0.000000
	25%	2013.000000	3.000000	26.000000	2.000000	0.000000
	50%	2015.000000	3.000000	28.000000	3.000000	0.000000
	75%	2017.000000	3.000000	32.000000	4.000000	1.000000
	max	2018.000000	3.000000	41.000000	7.000000	1.000000

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4653 entries, 0 to 4652
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Education	4653 non-null	object
1	JoiningYear	4653 non-null	int64
2	City	4653 non-null	object
3	PaymentTier	4653 non-null	int64
4	Age	4653 non-null	int64
5	Gender	4653 non-null	object
6	EverBenched	4653 non-null	object
7	ExperienceInCurrentDomain	4653 non-null	int64
8	LeaveOrNot	4653 non-null	int64

dtypes: int64(5), object(4)
memory usage: 327.3+ KB

data.shape

(4653, 9)

data.isnull().sum()

Education 0 JoiningYear 0 0 City PaymentTier 0 Age Gender 0 EverBenched 0 ${\tt ExperienceInCurrentDomain}$ 0 LeaveOrNot dtype: int64

encoder = LabelEncoder()

```
data['City'] = encoder.fit_transform(data['City'])
data['Education'] = encoder.fit_transform(data['Education'])
data['Gender'] = encoder.fit_transform(data['Gender'])
data['EverBenched'] = encoder.fit_transform(data['EverBenched'])
```

data.head()

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	Exp
0	0	2017	0	3	34	1	0	
1	0	2013	2	1	28	0	0	
2	0	2014	1	3	38	0	0	
3	1	2016	0	3	27	1	0	
4	1	2017	2	3	24	1	1	
4								•

```
corr = data.corr()
plt.figure(figsize=(8,6))
sns.heatmap(corr, cmap = 'coolwarm', annot=True)
plt.show()
```



```
X = data.drop("LeaveOrNot", axis=1)
y = data["LeaveOrNot"]
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
```

```
MLA = [
    #KNN
    KNeighborsClassifier(n_neighbors=6, metric='euclidean'),
    #SVM
   SVC(kernel='linear'),
    #Trees
   DecisionTreeClassifier(),
MLA_columns = []
MLA_compare = pd.DataFrame(columns = MLA_columns)
row_index = 0
for alg in MLA:
    predicted = alg.fit(X_train, y_train).predict(X_test)
    print(alg)
    print(classification_report(y_test,predicted))
    fp, tp, th = roc_curve(y_test, predicted)
   MLA_name = alg.__class__.__name__
   MLA_compare.loc[row_index,'MLA Name'] = MLA_name
   MLA_compare.loc[row_index, 'MLA Train Accuracy'] = round(alg.score(X_train, y_train), 4)
   MLA_compare.loc[row_index, 'MLA Test Accuracy'] = round(alg.score(X_test, y_test), 4)
   MLA_compare.loc[row_index, 'MLA AUC'] = auc(fp, tp)
   row_index+=1
    KNeighborsClassifier(metric='euclidean', n_neighbors=6)
                  precision
                             recall f1-score support
               0
                       0.80
                                 0.96
                                          0.87
                                                      775
               1
                       0.87
                                0.52
                                          0.65
                                                     389
                                          0.81
                                                    1164
        accuracy
        macro avg
                       0.84
                                 0.74
                                          0.76
                                                     1164
                                          0.80
                                                    1164
    weighted avg
                       0.82
                                 0.81
    SVC(kernel='linear')
                  precision
                             recall f1-score
                                                support
               0
                       0.74
                                0.89
                                          0.81
                                                     775
                       0.63
                                0.37
                                          0.46
                                                     389
               1
                                          0.72
                                                     1164
        accuracy
                               0.63
       macro avg
                       0.69
                                          0.64
                                                     1164
                                0.72
                                                     1164
     weighted avg
                                          0.69
     DecisionTreeClassifier()
                  precision
                             recall f1-score
                                                 support
               0
                       0.87
                                0.89
                                          0.88
                                                     775
                                 0.72
                                          0.75
                                                     389
                       0.77
        accuracy
                                          0.84
                                                    1164
                       0.82
                                 0.81
                                          0.81
                                                    1164
       macro avg
     weighted avg
                       0.83
                                 0.84
                                          0.83
                                                    1164
```

MLA_compare.sort_values(by = ['MLA Test Accuracy'], ascending = False, inplace = True)
MLA_compare

	MLA Name	MLA Train Accuracy	MLA Test Accuracy	MLA AUC	
	2 DecisionTreeClassifier	0.9301	0.8351	0.807629	Ш
(MNeighborsClassifier	0.8240	0.8136	0.739645	
	1 SVC	0.6916	0.7174	0.629616	

```
plt.figsize=(6,4)
sns.barplot(x="MLA Name", y="MLA Train Accuracy",data=MLA_compare,palette='pastel')
plt.xticks(rotation=90)
plt.title('MLA Train Accuracy Comparison')
plt.show()
```



```
plt.figsize=(6,4)
sns.barplot(x="MLA Name", y="MLA Test Accuracy",data=MLA_compare,palette='pastel')
plt.xticks(rotation=90)
plt.title('MLA Test Accuracy Comparison')
plt.show()
```


plt.xticks(rotation=90)
plt.title('MLA AUC Comparison')
plt.show()


```
index = 1
for alg in MLA:
    predicted = alg.fit(X_train, y_train).predict(X_test)
    fp, tp, th = roc_curve(y_test, predicted)
    roc_auc_mla = auc(fp, tp)
    MLA_name = alg.__class__.__name_
    plt.plot(fp, tp, lw=2, alpha=0.3, label='ROC %s (AUC = %0.2f)' % (MLA_name, roc_auc_mla))
    index+=1
plt.title('ROC Curve comparison')
\verb|plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)|\\
plt.plot([0,1],[0,1],'r--')
plt.xlim([0,1])
plt.ylim([0,1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

