Chapitre 13. Limites et continuité

1 Voisinage

Définition 1.1. Soit $a \in \overline{\mathbb{R}}$

Un voisinage de a :

- * Si $a \in \mathbb{R}$, est un ensemble qui contient $[a \delta, a + \delta]$, pour un certain $\delta > 0$
- * Si $a = +\infty$, est un ensemble $[A, +\infty[$ pour un certain $A \in \mathbb{R}$
- * Si $a = -\infty$, est un ensemble $]-\infty$, A] pour un certain $A \in \mathbb{R}$

Lemme 1.2. Soit V un voisinage de $+\infty$

Alors il existe une suite $(v_n)_{n\in\mathbb{N}}\in V^{\mathbb{N}}$ telle que $v_n\xrightarrow[r\to+\infty]{}+\infty$

Définition 1.3. Soit $f: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$

On dit qu'une propriété (de la fonction f) est vraie <u>au voisinage de a</u> s'il existe un voisinage V de a tel que la propriété soit vraie sur $V \cap I$

2 Notion de limite

<u>Cadre</u>: Dans cette section, $f: I \to \mathbb{R}$ est une fonction définie sur une partie I de \mathbb{R} et a est un élément de I ou $\pm \infty$. En pratique, I sera un intervalle et a un point ou une borne de l'intervalle.

2.1 Limites en $\pm \infty$

Définition 2.1. Soit I un ensemble non majoré et $f:I\to\mathbb{R}$ On dit que :

- * f converge vers $l \in \mathbb{R}$ en $+\infty$ si $\forall \varepsilon > 0$, $\exists H \in \mathbb{R} : \forall x \in I$, $x \geq H \implies |f(x) l| \leq \varepsilon$
- * f tend vers $+\infty$ en $+\infty$ si $\forall A \in \mathbb{R}$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies f(x) \geq A$
- * f tend vers $-\infty$ en $+\infty$ si $\forall A \in \mathbb{R}$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies f(x) \leq A$

2.2 Limites en un réel

Cadre : $a \in \overline{I}$

Définition 2.2. Soit $a \in \overline{I}$ et $f: I \to \mathbb{R}$

* On dit que f tend vers $l \in \mathbb{R}$ en a si

$$\forall \varepsilon > 0, \exists \lambda > 0 : \forall x \in I, |x - a| \le \delta \implies |f(x) - l| \le \varepsilon$$

* On dit que f tend vers $+\infty$ en a si

$$\forall A \in \mathbb{R}, \exists \lambda > 0 : \forall x \in I, |x - a| \leq \delta \implies f(a) \geq A$$

* On dit que f tend vers $-\infty$ en a si

$$\forall A \in \mathbb{R}, \exists \lambda > 0 : \forall x \in I, |x - a| \leq \delta \implies f(a) \leq A$$

Proposition 2.3. Soit $a \in I$

Si f admet une limite (dans $\overline{\mathbb{R}}$) en a, cette limite est nécessairement f(a)

2.3 Variantes

Définition 2.4. Soit $f: I \to \mathbb{R}$, J une partie de I et $a \in \overline{I} \cup \{\pm \infty\}$. On suppose que a est arbitrairement proche d'éléments de J (càd $a \in \overline{J}$ ou $(a = +\infty)$ et J n'est pas majoré) ou $(a = -\infty)$ et J n'est pas minoré)) On dit alors que $f(x) \xrightarrow[x \to a]{x \to a} l \in \mathbb{R}$ si :

$$\forall \varepsilon > 0, \ \exists \delta > 0 : \forall x \in J, \ |x - a| \le \delta \implies |f(x) - l| \le \varepsilon \quad (\cos a \in \mathbb{R})$$

$$\forall \varepsilon > 0, \exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies |f(x) - l| \leq \varepsilon \quad (\cos a = +\infty)$$

etc...

Proposition 2.5. Soit J_1, J_2 deux parties de I, $a \in I \cup \{\pm \infty\}$ et $l \in \overline{R}$. On suppose que a est arbitrairement proche d'éléments de J_1 et de J_2

Alors

$$f(x) \xrightarrow[x \in J_1 \cup J_2]{x \to a} l \iff \begin{cases} f(x) \xrightarrow[x \to a]{x \to a} l \\ f(x) \xrightarrow[x \to a]{x \to a} l \end{cases}$$

3 Propriétés de la limite

3.1 Caractère local

Proposition 3.1. Soit $f,g:I\to\mathbb{R}$ et $a\in \overline{I}\cup\{\pm\infty\}$ arbitrairement proches d'éléments de I Si f et g coïncident au voisinage de a, alors f admet une limite en a ssi g en admet une. Dans ce cas, ces limites sont les mêmes.

3.2 Propriétés des fonctions convergentes

Proposition 3.2. Les fonctions convergentes sont localement bornés :

Soit
$$f: I \to \mathbb{R}$$
, $a \in \overline{I} \cup \{\pm \infty\}$ tel que $f(x) \xrightarrow[x \to a]{} l \in \mathbb{R}$ Alors f est bornée au voisinage de a .

Proposition 3.3 (\mathbb{R}_+^* est ouvert). Soit $f: I \to \mathbb{R}$ et $a \in \overline{I} \cup \{\pm \infty\}$ Si $f(x) \xrightarrow[r \to a]{} l \in \mathbb{R}_+^*$, alors f est > 0 au voisinage de a.

3.3 Caractérisation séquentielle de la limite

Théorème 3.4. Soit $f: I \to \mathbb{R}$ et $a \in \overline{I} \cup \{\pm \infty\}$. Soit $l \in \overline{\mathbb{R}}$ On a $f(x) \xrightarrow[x \to a]{} l$ si et seulement si, pour toute suite $(\xi_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ telle que $\xi_n \xrightarrow[x \to +\infty]{} a$, on a $f(\xi_n) \xrightarrow[x \to +\infty]{} l$

3.4 Composition des limites

Théorème 3.5 (À retenir mais mal énoncé). Si $f(x) \xrightarrow[x \to a]{} b$ et $g(y) \xrightarrow[y \to b]{} l$, alors $g(f(x)) \xrightarrow[x \to a]{} l$

Théorème 3.6 (Plus précis). Soit $f: I \to J$ et $a \in \overline{I} \cup \{\pm \infty\}$ et $b \in \overline{\mathbb{R}}$ tels que $f(x) \xrightarrow[x \to a]{} b$

- * Déjà, $b \in \overline{J} \cup \{\pm \infty\}$
- * Pour toute fonction $g: J \to \mathbb{R}$ telle que $g(y) \xrightarrow[y \to b]{} l \in \overline{\mathbb{R}}$, on a $g(f(x)) \xrightarrow[x \to a]{} l$

3.5 Théorème de la limite monotone

Théorème 3.7. Soit $f: I \to \mathbb{R}$ une fonction monotone.

- * Si *I* n'est pas majoré, *f* admet une limite $l \in \overline{\mathbb{R}}$ et $+\infty$
- * Si I n'est pas minoré, f admet une limite $l \in \overline{\mathbb{R}}$ en $-\infty$
- * Si a est un réel tel que $a \in \overline{I \cap]-\infty, a[}$, f admet une limite $l \in \overline{\mathbb{R}}$ à gauche de a
- * Si a est un réel tel que $a \in \overline{I \cap [a, +\infty[}$, f admet une limite $l \in \overline{\mathbb{R}}$ à droite de a

4 Continuité

4.1 Continuité en un point

Cadre : $f: I \to \mathbb{R}$ et $a \in I$

Définition 4.1. f est continue en a si $\forall \varepsilon > 0$, $\exists \delta > 0 : \forall x \in I$, $|x - a| \le \delta \implies |f(x) - f(a)| \le \varepsilon$

Proposition 4.2 (Caractère local de la continuité). Soit $f,g:I\to\mathbb{R}$ deux fonctions.

Si f et g coïncident au voisinage de a, alors f est continue en a ssi g l'est.

Définition 4.3.
$$f: I \to \mathbb{R}$$
 est continue à gauche (resp. à droite) et a si $f(x) \xrightarrow[x \to a]{x \to a} f(a)$ (resp. $f(x) \xrightarrow[x \to a]{x \to a} f(a)$

4.2 Continuité globale

Définition 4.4. Une fonction $f: I \to \mathbb{R}$ est continue si elle est continue en tout point de I On note $C^0(I) = C^0(I; \mathbb{R})$ l'ensemble des fonctions $f: I \to \mathbb{R}$ continues.

4.3 Opérations

Théorème 4.5. Soit $f,g:I\to\mathbb{R}$ et $\lambda\in\mathbb{R}$

- * Soit $a \in I$. Si f et g sont continues en a, alors λf , |f|, $\max(f,g)$, f+g, fg sont continues en a.
- * Si $f,g \in C^0(I)$, alors λf , |f|, $\max(f,g)$, f+g, $fg \in C^0(I)$

Théorème 4.6. Soit $I, J \subseteq \mathbb{R}$ et $f: I \to J, g: J \to \mathbb{R}$

- * Soit $a \in I$. Si f est continue en a et que g est continue en f(a), alors $g \circ f$ est continue en a.
- * Si f et g sont continues, $g \circ f$ l'est aussi.

Théorème 4.7 ("Théorème"). Les fonctions usuelles vues au chapitre 5 (exponentielle, logarithme, fonctions trigonométriques, trigonométriques réciproques, trigonométriques hyperboliques) sont continues.

4.4 Prolongement par continuité

Théorème 4.8. Soit $I \subseteq R$, $a \in I$ tel que $a \in \overline{I \setminus \{a\}}$ et $f : I \setminus \{a\} \to \mathbb{R}$ une fonction continue. Alors il existe un prolongement continu $\tilde{f} : I \to \mathbb{R}$ de f si et seulement si f admet une limite finie en a. Dans ce cas, un tel prolongement est unique, c'est

$$\tilde{f}: \begin{cases} I \to \mathbb{R} \\ x \mapsto \begin{cases} f(x) \text{ si } x \neq a \\ \lim_{x \to a} f(x) \text{ si } x = a \end{cases} \end{cases}$$

4.5 Prolongement des identités

Théorème 4.9 (Prolongement des identités, version continue). Soit $f,g:I\to\mathbb{R}$ continues et $A\subseteq I$

- * Si f et g coïncident sur A, alors elles coïncident sur $\overline{A} \cap I$
- * En particulier, si f et g coïncident sur A et que A est dense dans I, alors f = g

5 Fonctions continues sur un intervalle : propriétés globales

Dans toute cette section, *I* est un intervalle.

5.1 Théorème des valeurs intermédiaires

Théorème 5.1. Soit I un intervalle et $f \in C^0(I)$. Soit $a < b \in I$. Soit $y \in \mathbb{R}$ compris entre f(a) et f(b) (càd $y \in [f(a), f(b)]$ ou $y \in [f(b), f(a)]$) Alors il existe $c \in [a, b]$ tel que y = f(c)

Corollaire 5.2. Soit $f \in C^0(I)$ et $J \subseteq I$ un intervalle.

Alors f[J] est un intervalle.

"L'image continu d'un intervalle est un intervalle."

Corollaire 5.3. Soit *I* un intervalle et $f \in C^0(I)$. On suppose que f ne s'annule pas.

Alors f est de signe constant. On a f > 0 ou f < 0

Corollaire 5.4 (TVI généralisé). Soit $f:]a,b[\to \mathbb{R}$ continue et y strictement compris entre $\lim_{x \to a} f(x)$ et $\lim_{x \to b} f(x)$ (dont on suppose qu'elles existent).

Alors il existe $c \in]a, b[$ tel que f(c) = y

5.2 Fonctions continues bijectives

Théorème 5.5 (de la bijection monotone). Soit a < b deux réels et $f \in C^0([a,b])$ strictement monotone. Alors f induit une bijection entre [a,b] et le segment joignant f(a) et f(b)

Théorème 5.6. Soit I et J deux intervalles et $f:I\to J$ une bijection continue. Alors :

- * *f* est strictement monotone.
- * $f^{-1}: I \to I$ est encore continue.

Proposition 5.7. Soit *I* un intervalle et $f: I \to \mathbb{R}$ continue et injective.

Alors *f* est strictement monotone.

Lemme 5.8. Soit $g: J \to I$ une application bijective strictement monotone entre intervalles. Alors g est continue.

5.3 Théorème des bornes atteintes

Théorème 5.9 (de bornes atteintes). Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur un segment.

Alors il existe $\sigma, \tau \in [a, b]$ tels que $\forall x \in [a, b], f(\sigma) \leq f(x) \leq f(\tau)$

"Une fonction continue sur un segment est bornée et atteint ses bornes."

Corollaire 5.10. "L'image continue d'un segment est un segment"

Plus précisément, soit $f : [a, b] \to \mathbb{R}$ continue.

Alors f[[a,b]] est un segment.

5.4 Uniforme continuité

Définition 5.11. $f: I \to \mathbb{R}$ est <u>uniformément continue</u> si $\forall \varepsilon > 0, \exists \delta > 0: \forall x, y \in I, |x - y| \le \delta \implies |f(x) - f(y)| \le \varepsilon$

Théorème 5.12 (Heine). Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur un segment.

Alors f est uniformément continue.

6 Brève extension aux fonctions à valeurs complexes

On considère des fonction $I \to \mathbb{C}$ où I est une partie de \mathbb{R} (le plus souvent un intervalle). Comme dans le cas des suites, on définit $f(x) \xrightarrow[x \to a]{} l \in \mathbb{C}$ soit avec la définition usuelle (interprétée avec des modules) soit avec

$$\begin{cases} \operatorname{Re}(f(x)) \xrightarrow[x \to a]{} \operatorname{Re}(l) \\ \operatorname{Im}(f(x)) \xrightarrow[x \to a]{} \operatorname{Im}(l) \end{cases}$$

En particulier, si $a \in I$, f est continue en a

(ce qui signifie
$$\forall \varepsilon > 0$$
, $\exists \delta > 0 : \forall x \in I$, $|x - a| \le \delta \implies |f(x) - f(a)| \le \varepsilon$)

ssi Re f et Im $f: I \to \mathbb{R}$ sont continues.

On abandonne : les fonctions tendant vers $\pm \infty$, gendarmes et compagnie, limite monotone, le TVI, les bijections monotones.

On garde : les théorèmes d'opération, la caractérisation séquentielle, le continuité uniforme et le théorème de Heine.

Pour le théorème de bornes atteintes, on peut appliques la version réelle à |f|.

Théorème 6.1. Soit $f \in C^0([a,b];\mathbb{C})$ une fonction continue sur un segment.

Alors f est bornée.

Plus précisément, on peut trouver $\tau \in [a,b]$ tel que $\forall x \in [a,b], |f(x)| \leq |f(\tau)|$