COASTAL ENGINEERING RESEARCH CENTER FORT BELVOIR VA
PROTOTYPE SCALE MOORING LOAD AND TRANSMISSION TESTS FOR A FLOAT--ETC(U)
APR 78 M L GILES, R M SORENSEN
CERC-TP-78-3 UNCLASSIFIED NL OF AD-A056198 M112 Marie END DATE 8 -78

AD-A056 198

LEVELITA

TP 78-3

Prototype Scale Mooring Load and Transmission Tests for a Floating Tire Breakwater

by

Michael L. Giles and Robert M. Sorensen

TECHNICAL PAPER NO. 78-3

APRIL 1978

AD NO. DDC FILE COPY

Approved for public release; distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING
RESEARCH CENTER

Kingman Building
Fort 848, 706 30 019

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22151

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

	REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM	
. REPORT N	UMBER	2. GOVT A	CCESSION NO.		
TP 78-	3				
TITLE (and	1 Subtitle)		1	TYPE OF REPORT & PERIOD COVERED	
PROTOT	YPE SCALE MOORING LOAD	AND TRANSM	ISSION	Technical Paper	
TESTS	FOR A FLOATING TIRE BR	REAKWATER	133101	6. PERFORMING ORG. REPORT NUMBER	
(P			-		
AUTHOR((14)	CONTRACT OR GRANT NUMBER(.)	
	l L./Giles			CERC-TP-78-3	
	M./Sorensen				
AND THE PERSON NAMED IN COLUMN	NG ORGANIZATION NAME AND AD	DDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
	ment of the Army 1 Engineering Research	Center (CE	PRF-CS)	F31538	
	n Building, Fort Belvo			131330	
11. CONTROL	LING OFFICE NAME AND ADDRES	ss	(11	1) REPORT DATE	
	ment of the Army		•	Apr 1078	
	l Engineering Research n Building, Fort Belvo		a 22060	50 (12) 53P.	
14. MONITOR	ING AGENCY NAME & ADDRESS(II	different from Conti	rolling Office)	15. SECURITY CLASS. (of this report)	
				UNCLASSIFIED	
1				15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
Approv	TION STATEMENT (of this Report) ed for public release,				
Approv	ed for public release,				
Approv 17. DISTRIBU 18. SUPPLEM	ed for public release,	entered in Block 20	, if different from		
Approv 17. DISTRIBU 18. SUPPLEM	ed for public release, TION STATEMENT (of the abstract ENTARY NOTES DS (Continue on reverse side If neces	entered in Block 20	, If different from y block number) Mono	n Report)	
Approv 17. DISTRIBU 18. SUPPLEM	ed for public release, TION STATEMENT (of the abstract ENTARY NOTES DS (Continue on reverse side if neces Breakwaters Floating tire brea	entered in Block 20	, if different from y block number) Mono Moor	n Report)	
Approv 17. DISTRIBU 18. SUPPLEM 19. KEY WORK	ed for public release, TION STATEMENT (of the abstract ENTARY NOTES DS (Continue on reverse side If neces	entered in Block 20	, if different from y block number) Mono Moor Wave	chromatic waves	

EDITION OF 1 NOV 65 IS OBSOLETE

WITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

0 37 050 78 06 30 07 9

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

13.12 feet). Monochromatic waves with a 2.64- to 8.25-second period range and heights up to 1.4 meters (4.6 feet) were used in the tests.

Test results indicate that wave transmission is mainly a function of the breakwater width to incident wavelength ratio with a slight dependence on the incident wave height. However, the mooring forces are mainly a function of the incident wave height with only a slight dependence on the incident wavelength and breakwater width. Recommended design curves for the wave transmission coefficient versus breakwater width to wavelength ratio and mooring load as a function of incident wave height are presented.

PREFACE

This report describes a brief series of prototype scale tests of a floating tire breakwater system that uses the Goodyear Tire and Rubber Co. tire module arrangement. The report is published to provide coastal engineers with information on the mooring load and wave transmission characteristics of the floating tire breakwater system for a range of incident wave conditions at two water depths. The research was carried out under the structure-sediment-hydraulic interaction research program of the U.S. Army Coastal Engineering Research Center (CERC).

The report was prepared by Michael L. Giles and Robert M. Sorensen, Coastal Structures Branch, Research Division, CERC, under the general supervision of R.P. Savage, Chief, Research Division.

The tests were conducted jointly by CERC and the Lake Erie Marine Science Center (LEMSC) in the CERC large wave tank. The LEMSC provided the tire breakwater and the mooring system. The load cells used to measure the mooring loads were provided by the Lord Corporation, Erie, Pennsylvania, through the LEMSC. Dr. R. Pierce and several students from the LEMSC actively participated in setting up and conducting the wave tank tests. M.L. Giles, the CERC project engineer for the tests, was also assisted by F.L. Lago and L. Meyerle.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

NVES DOC URANITOUNCE JUSTIFICATIO	
AV	······································
	M/AVAILABILITY COOES AVAIL. and/or SPECIAL

JOHN H. COUSINS

Colonel, Corps of Engineers Commander and Director

CONTENTS

	CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	age 6
	SYMBOLS AND DEFINITIONS	7
I	INTRODUCTION	9
11	THE GOODYEAR FLOATING TIRE BREAKWATER SYSTEM	10 10
	2. Breakwater Assembly and Anchoring	11
	3. Breakwater Costs	11
III	EXPERIMENTAL SETUP AND PROCEDURE	16
	1. Test Facility and Instrumentation	16
	2. Module Arrangement and Test Setup	16
	 Test Procedure	20 20
	4. Difficulties encountered burning lests	
IV	EXPERIMENTAL RESULTS	23
	1. Wave Record Analysis	23
	2. Mooring Force Record Analysis	23 23
	 Results	27
V	SUMMARY AND CONCLUSIONS	41
	LITERATURE CITED	42
PPENDI X	TEST RESULTS	43
	FIGURES	
	tion of flotation material and punched holes in an	
indi	ividual tire	12
	mbled modular unit consisting of eighteen 14- or 15-inch	
auto	omobile tires	12
3 Asser	mbly of modules for use in the FTB	13
4 Secti	ion of assembled breakwater composed of individual modules .	14
5 Typi	cal anchoring arrangement for a four-module-wide FTB	15
6 FTB s	sections before testing in CERC's large wave tank	17
7 Large	e wave tank setup	18
0 D1	wise of as sight makels ETD on imptalled in the large server	
8 Plan	view of an eight-module FTB as installed in the large wave	19

CONTENTS

FIGURES-Continued

		Page
9	The 2,500-pound-load cell used to measure forward mooring forces	21
10	Front anchor-pulley system used to moore FTB and measure mooring loads	21
11	Original anchor-pulley system used at the beginning of the study	22
12	Typical wave and force records for a 3-second wave period	24
13	Typical wave and force records for a 4-second wave period	25
14	Typical wave and force record for an 8-second wave period	. 26
15	Transmission coefficient for an eight-module structure in 4 meters of water	28
16	Transmission coefficient for a 12-module structure in 4 meters of water	29
17	Transmission coefficient for a 12-module structure in 2 meters of water	30
18	Design curve for predicting the transmission coefficient knowing the W/L ratio	31
19	Peak mooring load per meter length of breakwater for an eight-module FTB in 4 meters of water	33
20	Average mooring load per meter length of breakwater for an eight-module FTB in 4 meters of water	34
21	Peak mooring load per meter length of breakwater for a 12-module FTB in 4 meters of water	35
22	Average mooring load per meter length of breakwater for a 12-module FTB in 4 meters of water	36
23	Peak mooring load per meter length of breakwater for a 12-module FTB in 2 meters of water	37
24	Average mooring load per meter length of breakwater for a 12-module FTB in 2 meters of water	38
25	Design curve for predicting peak forces per meter length of breakwater for a given incident wave height	39
26	Design curve for predicting average forces per meter length of breakwater for a given incident wave	40

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

 ${\tt U.S.}$ customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.8532	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.1745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F - 32) + 273.15.

SYMBOLS AND DEFINITIONS

- F_n forward average force
- F_D forward peak force
- H₂ incident wave height (centimeters)
- H:/L wave steepness; incident, wave height/wavelength
- H_t transmitted wave height (centimeters)
- K_t transmission coefficient; H_t/H_i
- L incident wavelength (meters)
- ℓ length of breakwater measured parallel to the wave crest
- T incident wave period (seconds)
- W breakwater width measured in the direction of wave travel
- W/L breakwater width/wavelength ratio
- Y/D breakwater depth/water depth ratio

PROTOTYPE SCALE MOORING LOAD AND TRANSMISSION TESTS FOR A FLOATING TIRE BREAKWATER

by

Michael L. Giles and Robert M. Sorensen

I. INTRODUCTION

Floating breakwaters of varying size, shape, and constituent material have been in use for several decades. However, during the past few years there has been an increased interest in floating breakwaters, particularly at sites exposed to short-period waves. They are being used for shoreline erosion control, as combination breakwaters and docks for marinas, and for the temporary protection of dredging and logging operations, waterfront construction, and other coastal activities.

One class of floating breakwaters currently being used at several locations, particularly in sheltered waters, is the floating tire breakwater (FTB). FTB's are constructed of scrap automobile or truck tires made buoyant by plastic foam or some other material and connected to form assemblages of modules with a variety of configurations (Candle and Fischer, 1977). Scrap tires are available at no cost (except transport costs to the site) and are extremely durable when placed in the marine environment. Thus, a floating breakwater made of scrap tires can often be constructed and installed at a low cost in comparison to breakwaters constructed with many other materials.

The most important information needed for an adequate functional design of a floating breakwater is the wave energy transmission characteristics, usually given in terms of the transmission coefficient (ratio of transmitted to incident wave height). The transmission coefficient depends on the incident wave period, height and direction, the water depth, the characteristics of the mooring system, and the characteristics of the breakwater. Floating breakwaters prevent wave energy transmission by reflection and by dissipation primarily through the generation of turbulence in breaking and the interaction of water particle motion with the breakwater structure. Also, the dynamic response of the breakwater to wave motion and the consequent regeneration of waves in the seaward direction helps to diminish wave energy transmission.

An important aspect of the structural design of a floating breakwater is the determination of mooring loads for the range of possible incident wave conditions and water depths. Mooring loads must be evaluated to determine the required mooring line strength and anchor requirements.

There has been little field or laboratory research into the wave transmission and mooring load characteristics of floating tire breakwaters. Kamel and Davidson (1968) conducted model tests, using 15.3-centimeter-diameter (6 inches) tires, for an FTB known as the "Wave-Maze" (Noble, 1969). They evaluated wave transmission and mooring loads for a range

of wave periods (0.75 to 2.5 seconds) and heights 0.03 to 0.30 meter (0.1 to 1.0 foot) at water depths of 0.30 and 0.61 meter (1 and 2 feet). In addition to usual Reynolds number scale effects involved in tests at reduced scale, the mooring load and transmission results obtained in their study may also have suffered scale problems due to the decreased flexibility of the rigid model tires in comparison to the greater flexibility of prototype automobile and truck tires.

Kowalski (1974) reported a brief field investigation of the wave transmission characteristics of a "mat-type" FTB made up of three layers of tires lying flat and strapped together to yield the dimensions 15.2 by 15.2 by 0.46 meters (50 by 50 by 1.5 feet). Two sets of wave measurements were made using a pair of wave gages, one placed seaward and the other shoreward of the FTB. The incident waves had significant heights of 0.8 and 0.9 meter (2.5 and 3.0 feet) and significant periods of 2.0 and 1.8 seconds, respectively. No mooring forces were measured.

Sucato (1975) conducted a brief field test using a module FTB proposed by Goodyear Tire and Rubber Co., with overall dimensions of approximately 25.6 by 5.9 by 0.8 meters (84 by 19.5 by 2.5 feet). Wave transmission and mooring loads were evaluated for an incident wave condition having a significant wave height of 0.46 meter (1.5 feet) and a significant period of 2.2 seconds. Sucato compared the effectiveness of this breakwater to the one used by Kowalski (1974) and found that the Goodyear module-type FTB was more effective in attenuating waves. He also found the mooring loads were less for the Goodyear FTB than for the mat-type FTB. Since loading is cyclic he speculated that premature failure due to creep could occur.

This study measures wave transmission and mooring load characteristics at prototype scale for an FTB constructed of tires arranged in one of the modular forms being used at several locations in coastal waters. Using an 18-tire module arrangement proposed by the Goodyear Tire and Rubber Co. (Candle and Fischer, 1977), breakwaters that were 4 and 6 modules (8.5 and 12.8 meters, 28 and 42 feet) in the direction of wave advance were tested in water 2 and 4 meters (6.56 and 13.12 feet) deep for a range of wave conditions. Tests were conducted in the large wave tank at the Coastal Engineering Research Center (CERC). This report describes the FTB characteristics typical of a field installation, the experimental setup in the large wave tank, experimental procedures, data reduction techniques, and the results obtained. Experimental results and their application to the design of FTB's for field installation are discussed.

II. THE GOODYEAR FLOATING TIRE BREAKWATER SYSTEM

Breakwater Components.

The Goodyear floating tire breakwater uses a modular construction concept. Eighteen 14- or 15-inch (36.6 or 38.1 centimeters) standard automobile tires are tied together to form a basic 1.98- by 2.13- by 0.76-meter (6.5 by 7.0 by 2.5 feet) module. Individual modules are then joined to form a floating breakwater of desired length, ℓ , and width, W.

Before the tires are tied together to form a module, two 5.1-centimeter-diameter (2 inches) holes are punched in the bottom and flotation is added to the crown of each tire (Fig. 1). The holes reduce the amount of sand and debris which would accumulate in the tire, and allow water to drain from the tires if the breakwater has to be removed from the water.

When placed vertically in the water, a tire traps a sufficient amount of air in the crown to support its immersed weight. However, this trapped air will dissolve with time or escape through holes in the tire. In addition, each tire provides an ideal environment for aquatic growth. The additional weight of this growth plus the loss of trapped air will eventually cause some tires to sink. The use of flotation materials such as rigid urethane or polystyrene will keep the breakwater uniformly afloat and will permit the use of severely damaged tires which otherwise could not be used.

Individual 18-tire modules are constructed by stacking the tires in a 3-2-3-2-3-2-3 combination and threading a line (e.g., chain, rope) through the tires as they are stacked (Figs. 2 and 3). The weight of the tire stack and physical compression of the tires by hand allow fastening of the line to form a tightly secured unit.

Various types and sizes of chain, synthetic rope, steel cable, and plastic straps are being evaluated in field tests by the University of Rhode Island, Kingston, Rhode Island, for use as a tieline (Davis, 1977). Candle and Fischer (1977) indicate that a specially manufactured 1.27-centimeter (0.5 inch) unwelded, open-link chain is best suited for the construction of floating tire breakwaters. The open-link chain has adequate strength, is easily handled, and can be spliced with simple handtools.

2. Breakwater Assembly and Anchoring.

Interconnection of the individual modular sections to form the desired length and width of the breakwater is accomplished by rotating the four corner tires of each module approximately 100°. Tires are then added to provide interlocking with adjacent modules (Fig. 4).

The breakwater is floated into position and moored (fore and aft) using an open-link chain and steel cable normally placed on a 1 on 7 slope to the anchor. Mooring lines are attached to two modules every 15 to 30 meters (50 to 100 feet) (Fig. 5), depending on the mooring loads expected and type of anchors used. The type of anchor depends on bottom conditions and expected loads. Anchors which have typically been used include formed concrete blocks, pilings, screw anchors, and embedment anchors.

Breakwater Costs.

Total breakwater cost will depend on the labor costs for obtaining the tires and assembling the tires into modules, and on types of flotation

Figure 1. Location of flotation material and punched holes in an individual tire.

Figure 2. Assembled modular unit consisting of eighteen 14- or 15-inch automobile tires.

a. Threading the chain through the tires as they are stacked.

b. Securing the chain to form a complete module.

Figure 3. Assembly of modules for use in the FTB.

Figure 4. Section of assembled breakwater composed of individual modules.

Figure 5. Typical anchoring arrangement for a four-module-wide FTB.

material, anchoring system, and tieline used. Flotation and tieline typically account for one-third of the breakwater cost. Labor and the anchoring system account for most of the remaining costs as the tires can usually be obtained free or at a nominal price. Typical costs reported in 1977 (Candle and Fischer, 1977) for a four-module-wide breakwater (see Fig. 5) varied from \$15 to \$40 per linear foot of breakwater with variable labor costs accounting for most of variation in total cost.

III. EXPERIMENTAL SETUP AND PROCEDURE

1. Test Facility and Instrumentation.

The FTB tests were conducted at prototype scale in CERC's large wave tank which is 6.1 meters (20 feet) deep, 4.6 meters (15 feet) wide, and 194 meters (635 feet) long (Fig. 6). Waves of constant period and height were generated by a piston-type wavemaker. A 1 on 15 sand absorber beach occupied 94 meters (308 feet) of the tank length during the testing. A schematic diagram of the large wave tank test setup is shown in Figure 7.

Two Marsh McBirney model 100 water level gages were used to measure the incident and transmitted wave heights. The output signals from the gages were recorded on two channels of a six-channel Brush recorder. The gages were calibrated for 2 meters full scale per channel. Mooring loads were measured using a commercial load cell rated at 2,500 pounds (1,135 kilograms). Before testing the FTB the load cell was checked by applying known weights to the cell and recording the output signal from the load cell.

2. Module Arrangement and Test Setup.

Two floating tire breakwaters -- one containing 8 Goodyear modules, the other containing 12--were tested. The modules were constructed as described in Section II, using standard 14- and 15-inch automobile tires and arranged to form test breakwater sections as shown in Figure 6. The breakwater test sections were two modules long across the tank (parallel to the wave crest) and four (Fig. 6,a) and six (Fig. 6,b) modules wide along the tank (in the direction of wave travel). Since the test section was only two units long, various modifications were made to the test section to make the performance of the breakwater resemble that of an actual breakwater several hundred meters long. First, 1.9-centimeterdiameter (0.75 inch) stabilizer bars were attached to the front and rear modules and an open-link chain was secured along both sides of the breakwater to prevent the modules from being pulled together because of the lack of adjacent restraining modules along each side. In addition, wooden bumper plates were attached to the two outside tires of each module (normally used for attaching other modules) to prevent the tires from scraping the tank walls. A plan view of the modules and modifications is shown in Figure 8.

The test structure was placed in the tank (Fig. 7), with its seaward edge at station 56.3 (from the wave generator). Incident wave heights

a. Eight-module breakwater.

b. Twelve-module breakwater.

Figure 6. FTB sections before testing in CERC' large wave tank.

Figure 7. Large wave tank setup.

Figure 8. Plan view of an eight-module FTB as installed in the large wave tank.

were measured at station 40.0 and transmitted wave heights were measured 8.3 meters (27.2 feet) behind each test structure (i.e., at stations 72.7 and 77.3 for the 8- and 12-module tests, respectively). Mooring forces were measured at station 32.0 with the load cell mounted above the water surface midway over the top of the tank (Figs. 7 and 9).

The seaward (generator side) of the breakwater was moored using a single mooring line secured on a 1 on 7 slope. The mooring line was made from 6 meters (19.7 feet) of open-link chain and 0.48-centimeter (0.187 inch) stainless steel cable. It was fastened to the breakwater by forming a yoke between the two front modules similar to the connection used in field installations. The shoreward (absorber beach) side of the structure was moored using 0.24-centimeter (0.094 inch) stainless steel cable and 6 meters of open-link chain attached to each of the rear modules.

Each mooring line was threaded through a pulley (Fig. 10) secured to the tank floor. The line was then attached to a load cell (Fig. 9) located directly overhead. During the first series of tests, using the eight-module structure in 4 meters of water, a 2,000-pound (907 kilograms) load cell was attached to the right rear anchor line. This cell did not accurately measure loads less than 100 pounds (45.4 kilograms) because of the lack of adequate signal resolution; subsequently, the load cell was removed when modifications to the test section were made.

Tank limitations and the anchor locations during the series of tests conducted with a 2-meter water depth indicated a requirement that the front mooring line be secured on a 1 on 10 slope. Both of the mooring line slopes (1 on 7 and 1 on 10) were within the range of slopes used in field installations.

3. Test Procedure.

Each breakwater section was tested using wave conditions commonly found on a sheltered body of water such as a reservoir or bay. A total of 165 combinations of wave period, wave height, structure width, and water depth was tested. Wave periods ranged from 2.64 to 8.25 seconds. Wave heights varied from 20 to 140 centimeters (0.66 to 4.59 feet). Water depths of 2 and 4 meters were used: the 2-meter depth with the 12-module unit and the 4-meter depth with both the 8- and 12-module units.

Each combination of wave height, wave period, water depth, and structure width was tested for 5 minutes. This allowed sufficient time to determine the average mooring force loads and the incident and transmitted wave heights. Selected wave conditions were repeated during the study to determine the repeatability of mooring force and wave height measurements.

Difficulties Encountered During Tests.

Because each test duration was 5 minutes, reflections from the breakwater and the absorber beach were re-reflected from the breakwater and

Figure 9. The 2,500-pound load cell used to measure forward mooring forces.

Figure 10. Front anchor-pulley system used to moor FTB and measure mooring loads.

wave generator blade. These reflected waves created a partial standing wave in the wave tank during certain wave conditions. The amplitude of the standing wave was usually small compared to the incident wave height but did require special considerations when determining the incident and transmitted wave heights and the peak and average mooring loads. Wave and mooring force record analysis is discussed in Section IV.

Several attempts to moor the breakwater failed due to either the mooring line breaking, or the anchor-pulley system pulling loose from the tank floor. The front mooring line was a flexible cable with a rated breaking strength of 3,700 pounds (1,678 kilograms). Despite this strength the cable broke three times during the testing period. The failure was caused by fatigue of the line at the pulley. A larger diameter pulley should solve this problem in future tests.

The front anchor was originally installed in the tank by jacking 5.08-centimeter-diameter (2 inches) pipes across the tank bottom (Fig. 11). This system was soon found inadequate as it was pulled away from the floor with a force of 1,200 pounds (544 kilograms). (Maximum loads measured during the test period exceeded 2,000 pounds.) The anchorpulley system was then bolted to the floor and was able to withstand the larger forces encountered later in the study (Fig. 10).

Figure 11. Original anchor-pulley system used at the beginning of the study.

IV. EXPERIMENTAL RESULTS

1. Wave Record Analysis.

Typical wave records for the incident and transmitted waves are shown in Figures 12, 13, and 14. For the majority of the tests conducted, the wave height was uniform for the first 10 waves or so before the effects of reflected waves were observed. This allowed an accurate determination of the average value of the incident and transmitted wave heights to be made before reflected waves from the beach and wave generator modified recorded values. The wave records for the steeper wave conditions (Fig. 12) were more complex due to nonlinear effects. Incident and transmitted wave heights for these records represent an average of the highest one-third of the waves before the reflected waves reached the gage. All wave records were analyzed by hand and independently checked to ensure accurate determination of the values reported.

Mooring Force Record Analysis.

Maximum (peak) and average forward mooring forces associated with each test condition were measured from the mooring force records. The peak anchor force was taken as the maximum load recorded during the 5-minute test. This value occurred at the beginning of most of the records as shown in the forward load record in Figures 12 and 13. However, for a few conditions the peakload did not occur until after reflected waves had reached the gage (Fig. 14).

In addition to the peak force an average force was obtained by averaging the highest one-third of the cyclic peakloads. This value represents conditions that include the reflected waves. As shown in Figure 12, the average force is fairly constant during the part of the record when reflected waves were occurring. However, for some wave tests, the average force increased and decreased with time (Fig. 14). This varying force appeared to depend on the test period, water depth, reflected wave height, and breakwater width.

Results.

Wave measurements and mooring line force measurements for all tests are listed in the Appendix. Since several test conditions were repeated to assure quality control over the experiment, the composite incident wave height, transmitted wave height, and peak and average loads are also listed in the Appendix for each test condition. The transmission coefficient, K_t , was obtained by dividing the transmitted height, H_t , by the incident height, H_t . The wavelength, L (in meters), was calculated from the wave period and water depth using linear wave theory. Wave steepness, H_t/L , was found by dividing the incident height by the wavelength. W/L represents the ratio of the breakwater width to the wavelength. Peak force, F_p , and average force, F_n , are shown in kilograms per meter of breakwater length parallel to the wave crest (uncorrected

Typical wave and force records for a 3-second wave period. Figure 12.

Figure 13. Typical wave and force records for a 4-second wave period.

Typical wave and force record for an 8-second wave period, Figure 14.

for the slope of the morning line since the difference between the horizontal and slope force components is negligible for the slopes used).

4. Discussion of Results.

a. Transmission Coefficient. Plots of the transmission coefficient, K_t , versus the breakwater width to wavelength ratio, W/L, are shown in Figures 15, 16, and 17 for the 8-module FTB in 4 meters of water and the 12-module FTB in 4 and 2 meters of water, respectively. Ranges of incident wave heights are indicated by the legend symbols.

Generally, the data show that as W/L increases the transmission coefficient decreases. As expected, the transmission coefficient is asymptotic to unity as W/L approaches zero. Also, for the same value of W/L, as the incident wave height increases, the transmission coefficient decreases slightly. There is considerable scatter in the data for W/L values less than 0.40. This is because the incident wave height was usually small and was only 2 to 4 centimeters greater than the transmitted height. Thus, a small change in the measured transmitted height causes a large change in the value calculated for the transmission coefficient.

For each of the test sections, minimum measured values obtained for K_t were 0.7 for a W/L of 0.7 for the 8-module FTB in a 4-meter water depth, 0.5 for a W/L of 1.1 with a 12-module FTB in a 4-meter water depth, and 0.3 for a W/L of 1.35 with a 12-module FTB in a 2-meter water depth.

Comparing the data from the 8-module FTB (Fig. 15) and the 12-module FTB (Fig. 16) for the same water depth, transmission coefficients for the 12-module FTB appear to scatter less than the 8-module FTB for given wave heights. Also, the 8-module FTB appears to be more efficient in reducing wave transmission than the 12-module FTB for the same W/L ratios. However, closer examination shows that for the same W/L ratios, the incident wave heights were larger for the 8-module FTB data than with the 12-module FTB. Thus, as previously noted, for the conditions tested the larger the height, the better the FTB attenuates waves.

A comparison of Figures 16 and 17 (12-module FTB's in 4- and 2-meter water depths, respectively) shows that for the conditions tested the water depth does not appear to influence the transmission coefficient. This observation is contrary to the expectation that as more of the water depth is taken up by the breakwater section, the wave attenuation should increase.

By plotting all the transmission data on one figure (Fig. 18), a design curve can be drawn which predicts the transmission coefficient for a given breakwater width to wavelength ratio. The curve is based on data having W/L ratios up to 1.4, wave heights up to 140 centimeters (4.6 feet), and water depths of 4 meters or less.

a. Mooring Forces. Two measures of the mooring force (peakload and average $\overline{10ad}$) were obtained for each of the test conditions. The peakload

Figure 15. Transmission coefficient for an eight-module structure in 4 meters of water.

Figure 16. Transmission coefficient for a 12-module structure in 4 meters of water.

Figure 17. Transmission coefficient for a 12-module structure in 2 meters of water.

Design curve for predicting the transmission coefficient knowing the W/L ratio. Figure 18.

and the average load per meter length of the breakwater for given incident heights for the 8-module FTB in 4 meters of water and the 12module FTB in 4 and 2 meters of water are shown in Figures 19 to 24, respectively. In comparing the peak force to the average force for each of the three conditions, it is noted that the peak force is the same or only slightly higher for the 8 modules in 4 meters of water and the 12 modules in 2 meters of water. However, when comparing the 12module structure in 4 meters of water the peak force is about 20 percent higher than the average force; the peak force is the largest overall force recorded. This indicates that for the same wavelength and wave height, additional modules increase the peak force slightly. Since only two breakwater lengths were tested, it is impossible to determine if this trend will continue if the breakwater width is increased significantly over the tested length of 12.8 meters. The peak forces presented in the various figures represent the maximum force measured during the test, as discussed previously. These forces usually occur when the motionless breakwater is first subjected to wave motion. The relative velocity between the water motion and breakwater is largest at this time. As the mass of the breakwater increases, a larger force is required to initiate movement of the structure and there is a longer time period before the force levels off.

In all cases, the larger the wave height and W/L ratio, the higher the peak and average force. However, no strong steepness or period effect was discernible in the data for either the peak or average force. Plotting all the peak force data together (Fig. 25) and the average force data together (Fig. 26) allows conservative prediction curves to be drawn through the upper parts of the data. These curves approach zero force when the incident height approaches zero, as expected.

Since the peak force represents the situation when the breakwater was initially at rest and then subjected to monochromatic waves, the maximum force that would be calculated using the peakload curve would probably be somewhat larger than the peakload that would occur in a train of irregular waves. Therefore, a conservative force prediction for an FTB would be to obtain the mooring force load based on the peakload curve (Fig. 25).

The anchor design depends as much on the bottom conditions as the force applied and the anchor should be designed accordingly. Also, the connection between the anchor and the mooring line should be such that it allows maximum movement to prevent fatigue of the mooring line.

Design of rear mooring lines and anchors was not investigated during the study. However, limited data were collected with the four-module-wide structure in 4 meters of water. These data show that with the waves approaching normal to the structure, the rear forces were on the order of 5 to 10 percent of the maximum force obtained on the front anchor. Thus, the rear anchor system should be designed for the largest force determined by either the force of the largest wave coming from the shore or, e.g., 20 percent of the seaward force.

Figure 19. Peak mooring load per meter length of breakwater for an eight-module FTB in 4 meters of water.

Figure 20. Average mooring load per meter length of breakwater for an eight-module FTB in 4 meters of water.

Figure 21. Peak mooring load per meter length of breakwater for a 12-module FTB in 4 meters of water.

Figure 22. Average mooring load per meter length of breakwater for a 12-module FTB in 4 meters of water.

Peak mooring load per meter length of breakwater for a 12-module FTB in 2 meters of water. Figure 23.

Figure 24. Average mooring load per meter length of breakwater for a 12-module FTB in 2 meters of water.

Design curve for predicting peak forces per meter length of breakwater for a given incident wave height. Figure 25.

Design curve for predicting average forces per meter length of breakwater for a given incident wave height. Figure 26.

V. SUMMARY AND CONCLUSIONS

Prototype scale tests to determine the mooring load and wave transmission characteristics of a floating tire breakwater system using 8-and 12-Goodyear-tire modules were conducted in CERC's large wave tank using wave conditions similar to those found on semisheltered bodies of water. Two structure widths (4 and 6 modules, respectively) were tested in water depths of 2 and 4 meters.

Results of the tests showed that as the breakwater width to incident wavelength ratio, W/L, increases, the transmission coefficient, \mathbf{K}_t , decreases. Also, for the same value of W/L, as the incident wave height, \mathbf{H}_i , increases, the transmission coefficient decreases slightly. In addition the breakwater depth to water depth ratio does not appear to influence the transmission coefficient for the range of wave conditions and water depths tested. A suggested design curve for predicting the transmission coefficient for a given breakwater width to wavelength ratio is given (Fig. 18). The curve is valid for W/L ratios up to 1.4 and wave heights up to 140 centimeters.

The tests also showed that the peak and average mooring loads are primarily a function of the incident wave height and to a lesser extent the W/L ratio. In all cases, the larger the wave height and W/L ratio, the higher the force obtained. It was concluded that a conservative prediction for design of the mooring lines and anchor system for an FTB would be to use the mooring force load based on the peakload curve shown in Figure 25.

LITERATURE CITED

- CANDLE, R.D., and FISCHER, W.J., "Scrap Tire Shore Protection Structures," Goodyear Tire and Rubber Co., Akron, Ohio, Mar. 1977.
- DAVIS, A.P., Jr., "Evaluation of Tying Materials for Floating Tire Breakwaters," Marine Technical Report No. 54, University of Rhode Island, Kingston, R.I., Apr. 1977.
- KAMEL, A.M., and DAVIDSON, D.D., "Hydraulic Characteristics of Mobile Breakwaters Composed of Tires or Spheres," Technical Report H-68-25, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1968.
- KOWALSKI, T., "Scrap Tire Floating Breakwaters," Proceedings of Floating Breakwaters Conference, University of Rhode Island, Kingston, R.I., 1974, pp. 233-246.
- NOBLE, H.M., "Wave-Maze, Floating Breakwater," Proceedings of Civil Engineering in the Ocean II, American Society of Civil Engineers, 1969, pp. 929-942.
- SUCATO, P.J., "Construction and Performance Analysis of Several Scrap Tire Floating Breakwater Configurations," M.S. Thesis, Ocean Engineering, Department of Civil Engineering, University of Rhode Island, Kingston, R.I., 1975.

APPENDIX

TEST RESULTS

The incident wave heights, transmitted wave heights, and peak and average loads measured during all tests are presented in Tables A-1, A-2, and A-3. Wave height measurements are to the nearest even centimeter and the loads are in total pounds recorded at the load cell.

Since several test conditions were repeated to assure quality control during the experiment, a composite incident wave height, transmitted wave height, and peak and average loads were determined for each stroke and wave period setting (Tables A-4, A-5, and A-6). The transmission coefficient, K_t , was obtained by dividing the transmitted wave height, H_t , by the incident height, H_i . The wavelength, L, was calculated using linear wave theory and the wave steepness, H_i/L was found by dividing the incident height by the wavelength. W/L represents the ratio of the the breakwater width to the wavelength. Peak force, F_p , and average force, F_n , are given in kilograms per meter of breakwater length parallel to the wave crest and uncorrected for the slope of the mooring line.

Table A-1. Wave measurements and mooring line force measurements for an eight-module floating tire breakwater in 4 meters of water.

Test No.	Stroke	Wave period, T	Incident height, II,	Transmitted height, He	Total front load		
	(m)	(a) (cm)		(cm)	Peak (lb)	Avg (lb)	
1	0.61	2.8 3.0	90 88	68	1,170 900 600 300 175	80 50	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.61	3.0	88	70	900	50	
3	0.61 0.61	3.5	78	64	600	38	
4	0.61	4.0	64	64	300	38 18	
5	0.61	4.0 4.5	56	52	175	10	
6	0.61	5.0	78 64 56 48 44 38 32 64 64 56 56 80 80 88	48	120	100 70 66 55 177 171 112 400 400 566 750	
7	0.61	5.5	44	44	120 72	6	
	0.61	6.0	38	38		6	
0	0.61	6.9 8.0	32	32	70 320 325 190 180 600 600 920 1,150	5	
10	0.61	10	64	64	320	17	
11	0.61	4.0 4.5 4.5 3.5 3.5 3.0 2.8	4	4	325	1 17	
12	0.61	1.5	- 4	54	100	l ii	
12	0.61 0.61 0.61	4.5	- 2 2	52	180	12	
14	0.61	2.5	90	68	600	40	
15	0.61	3.5	90	~	600	10	
16	0.61	3.0	90	69	920	56	
10	0.61 0.61	3.0	90	70	1 150	75	
	0.61		92	10	1,130	1 10	
18	0.76	3.0	110	88	1,200	95	
19	0.76	3.5	98	80	825	42	
20	0.76	4.0	80	76	500	95 42 22 19	
21	0.76	4.5	72	68	345	19	
18 19 20 21 22 23 24 25 26 27 28	0.76 0.76 0.76 0.76 0.76 0.76 0.76	3.0 3.5 4.0 4.5 5.0 5.5 6.0 8.0 4.0 3.5 3.0	110 98 80 72 64 54 48 38 80 100	60	1,200 825 500 345 130 45 30	6 2 2	
23	0.76	5.5	54	54	45	2	
24	0.76	6.0	48	48	30	2	
25	0.76	8.0	38	36			
26	0.76 0.76 0.76 0.76	4.0	80	80	300 700 975	24	
27	0.76	3.5	100	80	700	52	
20	0.76	3.0	110	90	975	24 52 69	
20	0.70			~	713		
29	0.91 0.91 6.91	3.5	116	96	900 875 625 300 120 130	60	
30	0.91	4.0 4.5 5.0	92	92	875	49	
31	6.91	4.5	84	80	625	60 49 40	
32	0.91 0.91 0.91 0.91	5.0	76	72	300	20	
33	0.91	5.5	68	64	120	4	
34	0.91	6.0	60	60	130	4	
35	0.91	8.0	44	42			
36	0.01	4.5	84	80		40	
37	0.91 0.91 0.91 0.91 0.91 0.91 0.91	40	92	92	900	52 52	
30	0.71	4.0	92	92	950	50	
30	0.91	2.5	116	08	Washing Str.		
40	0.91	9.0	44	42	100	3	
41	0.91	4.5	94	90	520	30 40 80	
40	0.91	7.0	04	04	800	10	
42	0.91	2.5	116	QR.	1 400	80	
44	0.91	3.3	9.1	90	450	20	
72	0.91	9.3	100	04	1 200	60	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	0.91 0.91	5.5 6.0 8.0 4.5 4.0 3.5 8.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 8.25	116 92 84 76 68 60 44 84 92 116 44 84 94 116 88 48	24	520 800 1,400 450 1,200 650	10	
40	0.91	4.25	40	40	030	40	
47	0.91 0.91	7.75	46	40		20 60 40 5	
48	0.91		42	40	92	0	
49	0.68 0.68	2.8	110	80	1,400	1,20	
50	0.68	3.0	108	80	1,225	80	
51	0.68	3.5	92	72	825	1,20 80 24 12 10	
52	0.68 0.68	4.0	76	72	440	12	
53	0.68	4.5	66	60	220	10	
54	0.68 0.68	4.0	72	70	200	12	
49 50 51 52 53 54 55 56 57 58 59 60 61 62 66 66 67 70	0.68	2.8 3.0 3.5 4.0 4.5 4.0 3.75	110 108 108 76 66 72 74 84 68 92 84 74 68 64 55 52 44 36 44 36	68 764 652 48 438 336 666 670 88 80 66 67 88 80 66 67 88 80 69 69 69 69 69 69 69 69 69 69 69 69 69	1,400 1,225 440 220 200 410 500 260 720 560 410 280 250 150	12	
56	0.68 0.68	3.75	84	72	500	22	
57	0.68	4.25	68	64	260	20	
58	0.68 0.68	4.25 3.5 3.75	92	72	720	30	
50	0.00	3.75	94	72	560	20	
60	0.68 0.68 0.68 0.68	4.0	74	60	410	15	
61	0.00	4.0 4.25 4.5 5.0 5.5 6.0 8.0	68	4	280	20	
62	0.08	4.25	44	2	250	10	
62	0.08	4.5	64	54	150	10	
0.3	0.68	5.0	50	50	130	1 2	
04	0.68	3.5	32	32	80	0	
00	0.68	0.0	22	99		9	
00	0.68	8.0	30	32	50		
67	0.68	6.0	44	44	56 72 60 70 55	0	
68	0.68	7.75	36	36	60	12/ 12/ 22/ 20/ 30/ 22/ 15/ 20/ 18/ 6/ 6/ 44/ 6/	
69	0.68	7.75 8.25 7.0	34	32	70	6	
70	0.68	7.0	40	40	55	4	
	1.06	3.5	140	116	1.700	1,400 800 400 200	
72	1.06	4.0	120	110	1,300	80	
73	1.06	15	100	ů.	800	40	
74	1.06	5.0	00	po	A20	20	
71 72 73 74 75 76	1.06 1.06 1.06	3.5 4.0 4.5 5.0 5.5 6.0 8.0	140 120 108 98 88 82 60	76	1,700 1,300 800 420 280 270 130	150 100 80	
10	1.00	0.3	00	10	200	1	
74	1 14	40	97	60	270	1 1/1	

Table A-2. Wave measurements and mooring line force measurements for a 12-module floating tire breakwater in 4 meters of water.

					Peak	
	(m)	(s)	(cm)	(cm)	(Ib)	Ave (lb
201	0.61 2.8		100	60	1,200	8.5
202	0.61	2.8	104	60	1,200	96
203	0.61	3.0	86	62	1,150	8
204	0.61	3.0	86	62	1,000	8:
205	0.61	3.5	76	64	850	60
206	0.61	4.0	68	60	550	2
207	0.61	4.5	54	52	500	2
		5.0	50	48	300	1 1:
208	0.61		44	42	200	1:
209	0.61	5.5		40		
210	0.61		40		180	1:
211	0.61	8.0	30	28	125	1
212	0.61 2.8	96	58	1,250	1.00	
213	0.61	3.0	88	64	1,160	93
214	0.61	3.5	76	64	850	60
215	0.61	4.0	68	60	500	21
216	0.61	4.5	56	52	475	27
217	0.61	5.0	52	50	290	18
218	0.61	4.0	68	60	*******	26
and the same of th				64	1 550	1
2194	0.68	2.8	116		1,550	1,10
220A	0.68	3.0	100	76	1,400	1,05
221A	0.68	3.5	88	72	1,000	60
222A	0.68	4.0	76	70	720	35
223A	0.68	4.5	60	60	580	32
224A	0.68	5.0	56	56	460	
219	0.68	2.8	116	60	1,460	1,20
220	0.68	3.0	100	72	1,375	1,10
221	0.68	3.0	100	74	1,400	1,15
222	0.68	3.5	88	74	1,150	70
223	0.68	4.0	78	68	700	30
224	0.68	2.8	116	66		1,15
225	0.68	3.0	100	72	1,300	1,10
226	0.68	3.5	88	76	1,100	60
227	0.68	4.0	78	68	650	3:
220	0.08	4.5	64	60	575	40
229		5.0	60	56	400	20
	0.68		52	48	200	12
230	0.68	5.5				
231	0.68	5.5	52	48	325	10
232	0.68	6.0	48	46	220	12
233	0.68	8.0	34	34	80	7
234	0.76	3.0	112	80	1,550	1,20
235	0.76	3.5	96	80	1,300	80
236	0.76	4.0	84	76	900	40
237	0.76	4.5	68	68		
238		4.5	68	68	980	50
	0.76		64	64	600	30
239	0.76	5.0		56		
240	0.76	5.5	58		400	15
241	0.76	5.5	58	56	450	15
242	0.76	6.0	56	54	300	15
243	0.76	8.0	40	40	150	10
244	0.91	3.5	120	92	1,700	1,20
245	0.91	4.0	104	92	1,220	70
246	0.91	4.5	84	84	1,100	90
247	0.91	5.0	78	76	1,000	70
248	0.91	5.5	72	66	740	30
249	0.91	6.0	64	64	600	25
250	0.91	8.0	48	48	150	10
200						
251	1.06	8.0	58	56	200	10
252	1.06	6.0	80	72	850	40
253	1.06	5.5	86	76	950	45
254	1.06	5.0	96	92	1,000	90
255	1.06	4.5	100	100	1,400	1,00
256	1.06	4.0	116	104	1,700	1,30
		3.5	132	108		1,70

Table A-3. Wave measurements and mooring line force measurements for a 12-module floating tire breakwater in 2 meters of water,

Test No.	Stroke	Wave period, T	Incident height, H _i	Transmitted height, II _t	Total front load		
	(m)	(s)	(cm)	(cm)	Peak (Ib)	Avg (lb)	
301	1.06	8.0	38	38	60	40	
302	1.06	6.0	50	42	260	150	
303	1.06	5.5	60	44	400	250	
			66	56			
304	1.06	5.0	00	30	320	150	
305	1.06	4.5	72	56	600	350	
306	1.06	4.0	78	58	700	600	
307	1.06	3.5	96	58	700	600	
308	1.06	3.0	72	44	600	300	
309	1.06	3.2	92	52	750	500	
				24		1	
310	0.61	2.61	68	24	600	460	
311	0.61	2.8	62	30	440	400	
312	0.61	3.0	56	32 32	360	280	
313	0.61	3.2	52	32	220	150	
314	0.61	3.5	52	32	180	100	
315	0.61	4.0	40	32	170	110	
316	0.61	4.5	36	30	110	60	
317	0.61	5.0	34	28	70	50	
318	0.61	5.5	30	24	60	40	
			26	99		40	
319	0.61	6.0	20	24 22 20	*****		
320	0.61	8.0	20	20	100		
321	0.61	3.5	52	32	180	120	
322	0.61	3.2	52	32	190	170	
323	0.61	3.0	54	32	320	250	
324	0.61	2.8	62	28	480	360	
325	0.61	2.64	66	22	600	460	
326	0.61	2.8	62	28	460	400	
327	0.68	2.64	82	24	700	580	
328	0.68	2.64	82	24	660	560	
329	0.68	2.8	74	32	580	480	
330	0.68	3.0	62	38	440	340	
331	0.68	3.2	58	34	280	200	
			60	36	250	160	
332	0.68	3.5		24			
333	0.68	4.0	48	36	280	170	
334	0.68	4.5	42	32	140	70	
335	0.68	5.0	40	32	011	70	
336	0.68	5.5	34	28	140	80	
337	0.68	6.0	30	26	100	50	
338	0.68	8.0	22	22	******		
339	0.08	9.5	- 60	36	250	190	
340	0.68	3.2	58	36	280	220	
341	0.68	3.2	56	34	280	220	
342	0.68	3.0	62	36	450	350	
343	0.68	2.8	72	32	620	500	
			72 84	26	760	600	
344	0.68	2.64					
345	0.76	2.64	84	28	850	740	
346	0.76	2.8	80	34	740	650	
347	0.76	3.0	66	38	550	430	
348	0.76	3.2	64	38	350	280	
349	0.76	3.5	64	40	325	200	
350	0.76	4.0	52	40	350	200	
			44	38	190	110	
351	0.76	4.5	04				
352	0.76	2.64	84	30	870	750	
353	0.76	5.0	44	36	140	80	
354	0.76	5.5	38	32	170	70	
355	0.76	6.0	32	30	120	50	
356	0.76	8.0	24	24	55	40	
357	0.76	2.8	80	34	720	640	
358	0.76	3.0	68	38	540	460	
359	0.76	3.2	66	40	355	300	
		3.5	58	42	335	240	
360	0.76	3.5	56	14	333	240	
36.	0.76	4.0	54	44	310	200	
362	0.76	4.5	16	40	190	100	
363	0.76	5.0	44	38	120	65	
364		8.0	30		90	50	
304	0.83	6.0		30 32 36 42			
365	0.83	6.0	40	32	140	100	
366	0.83	5.5	44	36	180	140	
367	0.83	5.0	48	42	160	80	
	0.83	4.5	52	40 46	270	160	
368	0.83	4.0	60	46	330	225	
368			30	10		200	
369		3.5	79	47	4(10)	300	
369 370	0.83	3.5	72 74	42	400	300 410	
369		3.5 3.2 3.0	72 74 76	42 44 44 40	400 470 720	410 640	

Table A-3. Wave measurements and mooring line force measurements for a 12-module floating tire breakwater in 2 meters of water.

—Continued

Test No.	Stroke	Wave period, T	Incident height, Hi	Transmitted height, He	Total front load		
	(m)	(s)	(cm)	(cm)	Peak (lb)	Avg (lb)	
374	0.83	8.0	28	28	55	40	
375	0.83	6.0	38	34	145	105	
376	0.83	5.5	46	31	285	150	
377	0.83	5.0	50	44	165	100	
378	0.83	4.5	52	44	310	175	
	0.83	4.0	60	46	350	210	
379			72	46	410	320	
380	0.83	3.5	80	44	760	600	
381	0.83	3.0					
382	0.83	3.2	76	40	550	440	
383	0.83	2.8	92	40	980	740	
384	0.91	8.0	32	32 36	85	40	
385	0.91	6.0	44	36	175	120	
386	0.91	5.5	50	38	180	155	
387	0.91	5.0	56	46	165	110	
388	0.91	4.5	58	46	350	240	
389	0.91	4.0	68	50	450	280	
390	0.91	3.5	80	50	525	425	
391	0.91	3.2	81	44	590	480	
			58	46		245	
392	0.91	4.5	68	50	425 525	340	
393	0.91	4.0		52 46			
394	0.91	5.0	56	46	190	105	
395	0.91	3.0	88	44	800	640	
396	0.91	8.0	32	32 36	140	60	
397	0.91	6.0	42	36	220	155	
398	0.91	5.5	50	36	210	155	
399	0.91	5.0	54	44	205	100	
400	0.91	4.5	58	46	475	250	
401	0.91	4.0	64	52	510	260	
402	0.91	3.5	76	50	515	420	
403	0.91	3.2	82	42	620	445	
404	0.91	3.0	84	44	860	710	
405	0.91	3.5	78	48	550	420	
406	0.91	8.0	32	32	120	60	
			64	52	500	290	
407	0.91	4.0					
408	0.98	8.0	36	36	120	55	
409	0.98	6.0	48	40	280	170	
410	0.98	5.5	54	40	330	210	
411	0.98	5.0	60	50	265	90	
412	0.98	4.5	64	50		310	
413	0.98	4.5	62	48	460	280	
414	0.98	4.0	70	56	560	420	
415	0.98	3.5	84	52	660	500	
416	0.98	3.2	88	46	650	480	
417	0.98	3.0	86	52	750	630	
418	0.98	8.0	36	36	110	70	
419	0.98	6.0	46	40	285	170	
			54	40	290	220	
420	0.98	5.5	64	40	300	100	
421	0.98	5.0	64	48 56			
422	0.98	4.0	70 84	52	675	380	
423	0.98	3.5	84		650	480	
424	0.98	3.2	88	48	660	510	
424	0.98	4.5	62	50	490	345	
426	0.98	8.0	34	34	135	55	
427	1.06	8.0	40	38	155	60	
428	1.06	6.0	54	44	300	190	
429	1.06	5.5	60	42	300	240	
430	1.06	5.0	68	56	270	140	
431	1.06	4.5	70	52	805	460	
432	1.06	4.0	78	60	760	580	
433	1.06	3.5	96	56	840	600	
434	1.06	3.2	92	48	910	540	
435	1.06	8.0	40	36	200	80	
436	1.06	6.0	52	44	330	210	
437	1.22	8.0	48	46			
				48			
438	1.22	6.0	64	50			
439	1.22	5.5	70	52 64	-		
440	1.22	5.0	76	60			
441	1.22	4.5	80	62			
442	1.22	4.0	88	68			
443	1.22	3.5	100	60			
444	1.22	8.0	46	44			
445	1.22	6.0	60	48			
446	1.22	6.0	60	48		******	
770							

Table A-4. Summary data table for an eight-module floating tire breakwater in 4 meters of water. 1

Stroke	T	Hi		K,	L	H _i /L	W/L	\mathbf{F}_{p}	\mathbf{F}_{n}
(m)	(s)	(cm)	(cm)		(m)			(kg/m)	(kg/m)
0.61	2.80	92	70	0.761	11.9	0.0774	0.72	122.0	84.8
0.61	3.00	88	68	0.773	13.4	0.0656	0.64	96.7	59.5
0.61	3.50	80	66	0.825	17.2	0.0466	0.50	62.5	41.7
0.61	4.00	64	64	1.000	20.9	0.0307	0.41	32.7	17.9
0.61	4.50	56	52	0.929	24.4	0.0229	0.35	17.9	10.4
0.61	5.00	48	48	1.000	27.9	0.0172	0.31	11.9	7.4
0.61	5.50	44	44	1.000	31.4	0.0140	0.27	7.4	6.0
0.61	6.00	38	38	1.000	34.8	0.0109	0.25	0.0	6.0
0.61	8.00	32	32	1.000	48.0	0.0067	0.18	7.4	6.0
0.68	2.80	110	80	0.727	11.9	0.0925	0.72	148.8	126.5
0.68	3.00	108	80	0.741	13.4	0.0806	0.64	129.5	84.8
0.68	3.50	92	72	0.783	17.2	0.0536	0.50	86.3	31.2
0.68	3.75	84	72	0.857	19.0	0.0441	0.45	59.5	22.3
0.68	4.00	74	72	0.973	20.9	0.0355	0.41	43.2	14.9
0.68	4.25	68	64	0.941	22.7	0.0300	0.38	29.8	20.8
0.68	4.50	64	60	0.938	24.4	0.0262	0.35	25.3	17.9
0.68	5.00	56	54	0.964	27.9	0.0200	0.31	14.9	8.9
0.68	5.50	52	52	1.000	31.4	0.0166	0.27	7.4	6.0
0.68	6.00	44	44	1.000	34.8	0.0127	0.25	6.0	4.5
0.68	7.00	40	40	1.000	41.4	0.0097	0.21	4.5	4.5
0.68	7.75	36	36	1.000	46.4	0.0078	0.18	6.0	4.5
0.68	8.00	36	32	0.889	48.0	0.0075	0.18	6.0	3.0
0.68	8.25	34	32	0.941	49.6	0.0068	0.17	7.4	6.0
0.76	3.00	110	88	0.800	13.4	0.0821	0.64	126.5	99.7
0.76	3.50	98	80	0.816	17.2	0.0570	0.50	86.3	44.6
0.76	4.00	80	76	0.950	20.9	0.0383	0.41	52.1	25.3
0.76	4.50	72	68	0.944	24.4	0.0295	0.35	35.7	19.3
0.76	5.00	64	60	0.938	27.9	0.0229	0.31	13.4	6.0
0.76	5.50	54	54	1.000	31.4	0.0172	0.27	4.5	1.5
0.76	6.00	48	48	1.000	34.8	0.0138	0.25	3.0	1.5
0.76	8.00	38	36	0.947	48.0	0.0079	0.18	0.0	0.0
0.91	3.50	116	98	0.845	17.2	0.0675	0.50	148.8	84.8
0.91	3.75	108	96	0.889	19.0	0.0567	0.45	126.5	62.5
0.91	4.00	92	92	1.000	20.9	0.0441	0.41	95.2	55.1
0.91	4.25	88	84	0.955	22.7	0.0388	0.38	68.4	41.7
0.91	4.50	84	80	0.952	24.4	0.0344	0.35	65.5	41.7
0.91	5.00	76	72	0.947	27.9	0.0272	0.31	31.2	20.8
0.91	5.50	68	64	0.941	31.4	0.0217	0.27	11.9	3.0
0.91	6.00	- 60	60	1.000	34.8	0.0173	0.25	13.4	3.0
0.91	7.75	48	48	1.000	46.4	0.0104	0.18	0.0	4.5
0.91	8.00	44	42	0.955	48.0	0.0092	0.18	3.0	3.0
0.91	8.25	42	42	0.953	49.6	0.0092	0.17	8.9	7.4
1.06	3.50	140	116	0.932	17.2	0.0003	0.50	180.0	148.8
1.06	4.00	120	110	0.829	20.9	0.0575	0.30	136.9	84.8
			94		24.4	0.0373	0.35	84.8	41.7
1.06	4.50	108		0.870	27.9	0.0351	0.33	44.6	20.8
1.06	5.00	98	88	0.898		0.0331	0.31	29.8	14.9
1.06	5.50	88	76	0.864	31.4		0.27	29.8	
1.06	6.00	82	68	0.829	34.8	0.0236			10.4 7.4
1.06	8.00	60	52	0.867	48.0	0.0125	0.18	13.4	(.4

Breakwater width = 8.5 meters; water depth = 400 centimeters; Y/D = 0.15; front mooring line slope = 1 on 7.

Table A-5. Summary data table for a 12-module floating tire breakwater in 4 meters of water. 1

Stroke	T	H _i	Ht	Kt	L	H _i /L	W/L	\mathbf{F}_{p}	Fn
(m)	(s)	(cm)	(cm)		(m)			(kg/m)	(kg/m)
0.61	2.80	100	60	0.600	11.9	0.0841	1.08	132.4	95.2
0.61	3.00	86	62	0.721	13.4	0.0642	0.95	122.0	89.3
0.61	3.50	76	64	0.842	17.2	0.0442	0.75	89.3	62.5
0.61	4.00	68	60	0.882	20.9	0.0326	0.61	58.0	25.3
0.61	4.50	56	52	0.929	24.4	0.0229	0.52	52.1	25.3
0.61	5.00	50	48	0.960	27.9	0.0179	0.46	31.2	14.9
0.61	5.50	44	42	0.955	31.4	0.0140	0.41	20.8	11.9
0.61	6.00	40	40	1.000	34.8	0.0115	0.37	17.9	11.9
0.61	8.00	30	28	0.933	48.0	0.0062	0.27	11.9	7.4
0.68	2.80	116	64	0.552	11.9	0.0976	1.08	163.7	122.0
0.68	3.00	100	74	0.740	13.4	0.0746	0.95	148.8	116.1
0.68	3.50	88	74	0.841	17.2	0.0512	0.75	116.1	62.5
0.68	4.00	78	68	0.872	20.9	0.0374	0.61	74.4	37.2
0.68	4.50	64	60	0.938	24.4	0.0262	0.52	61.0	32.7
0.68	5.00	60	56	0.933	27.9	0.0215	0.46	47.6	20.8
0.68	5.50	52	48	0.923	31.4	0.0166	0.41	34.2	11.9
0.68	6.00	48	46	0.958	34.8	0.0138	0.37	22.3	11.9
0.68	8.00	34	34	1.000	48.0	0.0071	0.27	7.4	7.4
0.76	3.00	112	80	0.714	13.4	0.0835	0.95	163.7	126.5
0.76	3.50	96	80	0.833	17.2	0.0559	0.75	136.9	84.8
0.76	4.00	84	76	0.905	20.9	0.0403	0.61	95.2	41.7
0.76	4.50	68	68	1.000	24.4	0.0278	0.52	104.2	52.1
0.76	5.00	64	64	1.000	27.9	0.0229	0.46	62.5	31.2
0.76	5.50	58	56	0.966	31.4	0.0185	0.41	47.6	14.9
0.76	6.00	56	54	0.964	34.8	0.0161	0.37	31.2	14.9
0.76	8.00	40	40	1.000	48.0	0.0083	0.27	14.9	10.4
0.91	3.50	120	92	0.767	17.2	0.0699	0.75	180.0	126.5
0.91	4.00	104	92	0.885	20.9	0.0499	0.61	129.5	74.4
0.91	4.50	84	84	1.000	24.4	0.0344	0.52	116.1	95.2
0.91	5.00	78	76	0.974	27.9	0.0279	0.46	105.6	74.4
0.91	5.50	72	66	0.917	31.4	0.0229	0.41	77.4	31.2
0.91	6.00	64	64	1.000	34.8	0.0184	0.37	62.5	25.3
0.91	8.00	,48	48	1.000	48.0	0.0100	0.27	14.9	10.4
1.06	3.50	132	108	0.818	17.2	0.0768	0.75	0.0	180.0
1.06	4.00	116	104	0.897	20.9	0.0556	0.61	180.0	136.9
1.06	4.50	100	100	1.000	24.4	0.0409	0.52	148.8	105.6
1.06	5.00	96	92	0.958	27.9	0.0344	0.46	105.6	95.2
1.06	5.50	86	76	0.884	31.4	0.0274	0.41	99.7	47.6
1.06	6.00	80	72	0.900	34.8	0.0230	0.37	89.3	41.7
1.06	8.00	58	56	0.966	48.0	0.0121	0.27	20.8	10.4

¹Breakwater width = 12.8 meters; water depth = 400 centimeters; Y/D = 0.15; front mooring line slope = 1 on 7.

troke (m)	T (a)	H _i (cm)	ll _e (cm)	K,	L (m)	H _i /L	W/L	F _p (kg/m)	F _n (kg/m
0.61	2.64	68	24	0.353	9.5	0.0719	1.35	62.5	47.6
0.61	2.80	62	28	0.452	10.3	0.0603	1.24	47.6	41.7
0.61	3.00	56	32 32	0.571	11.3	0.0495	1.13	37.2	29.8
0.61 0.61	3.20 3.50	52 52	32	0.615	12.3	0.0422	0.93	22.3 17.9	17.9
0.61	4.00	40	32	0.800	16.2	0.0247	0.79	17.9	10.4
0.61	4.50	36	30	0.833	18.6	0.0193	0.69	10.4	6.0
0.61	5.50	30	24	0.800	23.3	0.0129	0.55	6.0	3.0
0.61	6.00	26	22	0.846	25.6	0.0102	0.50	0.0	0.0
0.61	8.00	20	20	1.000	34.7	0.0058	0.37	0.0	0.0
0.68	2.64	82 72	26	0.317	9.5	0.0867	1.35	74.4	61.0
0.68 0.68	3.00	62	32 36	0.444 0.581	10.3	0.0700 0.0548	1.13	61.0 46.1	50.6 37.2
0.68	3.20	58	34	0.586	12.3	0.0471	1.04	29.8	22.3
0.68	3.50	60	36	0.600	13.8	0.0435	0.93	29.8	19.3
86.0	4.00	48	36	0.750	16.2	0.0296	0.79	29.8	17.9
0.68	4.50	42	32	0.762	18.6	0.0226	0.69	14.9	7.4
0.68	5.00	40	32	0.800	21.0	0.0191	0.61	10.4	7.4
0.68	5.50	34	28	0.824	23.3	0.0146	0.55	14.9	7.4
0.68 0.68	6.00 8.00	30 22	26 22	0.867 1.000	25.6 34.7	0.0117	0.50 0.37	0.0	4.5
0.76	2.64	84	30	0.357	9.5	0.0888	1.35	92.3	78.9
0.76	2.80	80	34	0.425	10.3	0.0778	1.24	77.4	68.4
0.76	3.00	68	38	0.559	11.3	0.0601	1.13	58.0	47.6
0.76	3.20	66	40	0.606	12.3	0.0536	1.04	37.2	31.2
0.76	3.50	64	12	0.656	13.8	0.0464	0.93	34.2	25.3 20.8
0.76	4.00	54 46	44	0.815 0.870	16.2	0.0333 0.0247	0.79	32.7 19.3	10.4
0.76 0.76	5.00	44	38	0.864	21.0	0.0210	0.61	14.9	7.4
0.76	5.50	38	32	0.842	23.3	0.0163	0.55	17.9	7.4
0.76	6.00	32	30	0.938	25.6	0.0125	0.50	11.9	4.5
0.76	8.00	24	24	1.000	34.7	0.0069	0.37	4.5	3.0
0.83	2.80	90	40	0.111	10.3	0.0875	1.24	95.2 80.4	84.8
0.83 0.83	3.00	78 76	40	0.564 0.526	11.3	0.0690 0.0617	1.13	58.0	67.0 46.1
0.83	3.50	72	44	0.611	13.8	0.0522	0.93	43.2	32.7
0.83	4.00	60	46	0.767	16.2	0.0370	0.79	37.2	23.8
0.83	4.50	52	40	0.769	18.6	0.0279	0.69	37.2 32.7	17.9
0.83	5.00	48	42	0.875	21.0	0.0229	0.61	16.4	10.4
0.83	5.50	44	36	0.818	23.3	0.0189	0.55	17.9	14.9
0.83	6.00	38	34	0.895	25.6	7.0149	0.50	14.9	10.4
).83).91	8.00 3.00	30 88	30 14	1.000	34.7	0.0086	0.37 1.13	8.9 90.8	4.5 74.4
0.91	3.20	84	44	0.500	11.3	0.0682	1.04	65.5	50.6
0.91	3.50	78	50	0.641	13.8	0.0565	0.93	58.0	44.6
0.91	4.00	66	52	0.788	16.2	0.0407	0.79	52.1	29.8
0.91	4.50	58	46	0.793	18.6	0.0312	0.69	49.1	25.3
0.91	5.00	56	46	0.821	21.0	0.0267	0.61	20.8	10.4
0.91	5.50	50	38	0.760	23.3	0.0215	0.55	17.9	16.4
).91).91	6.00 8.00	44 32	36 32	0.818	25.6 34.7	0.0172 0.0092	0.50 0.37	17.9 11.9	11.9
).98	3.00	86	52	0.605	11.3	0.0761	1.13	78.9	67.0
0.98	3.20	88	46	0.523	12.3	0.0715	1.04	69.9	53.6
.98	3.50	84	52	0.619	13.8	0.0609	0.93	68.4	50.6
3.98	4.00	70	56	0.800	16.2	0.0431	0.79	59.5	44.6 32.7
).98	4.50	62	50 48	0.806	18.6	0.0333	0.69	52.1	32.7
).98).98	5.00 5.50	60 54	48	0.800	21.0 23.3	0.0286 0.0232	0.61 0.55	31.2 34.2	10.4 22.3
).98	6.00	46	40	0.870	25.6	0.0232	0.50	29.8	17.9
.98	8.00	36	36	1.000	34.7	0.0104	0.37	11.9	7.4
.06	3.00	72	44 52	0.611	11.3	0.0637	1.13	62.5	31.2
1.06	3.20	92	52	0.565	12.3	0.0747	1.04	78.9	56.5
.06	3.50	96	56	0.583	13.8	0.0696	0.93	89.3	62.5
1.06 1.06	4.00 4.50	78 72	60 56	0.769	16.2	0.0481 0.0387	0.79	80.4 62.5	62.5 37.2
.06	5.00	68	56	0.778	21.0	0.0387	0.61	32.7	14.9
.06	5.50	60	44	0.733	23.3	0.0258	0.55	41.7	25.3
.06	6.00	52	44 38	0.846	25.6	0.0203	0.50	31.2	19.3
.06	8.00	40		0.950	34.7	0.0115	0.37	20.8	7.4
.22	3.50	100	60	0.600	13.8	0.0725	0.93	0.0	0.0
.22	4.00	88	60	0.773	16.2	0.0542	0.79	0.0	0.0
.22	4.50	80	62	0.775	18.6	0.0430	0.69	0.0	0.0
.22	5.00 5.50	76 70	64 52	0.842 0.743	23.3	0.0363	0.61	0.0	0.0
.22	6.00	60	48	0.800	25.6	0.0301	0.50	0.0	0.0
.22	8.00	48	46	0.958	34.7	0.0138	0.37	0.0	0.0

Breakwater width = 12.8 meters: water depth = 200 centimeters; Y/D = 0.30; front mooring line slope = 1 on 10.

Giles, Michael L.

tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1978.
50 p. : ill. (Technical paper - U.S. Coastal Engineering Research Prototype scale mooring load and transmission tests for a floating

Center; no. 78-3)

large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules characteristics of a floating tire breakwater were conducted in CERC's wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) Bibliography: p. 42. Prototype scale tests of the mooring load and wave transmission

627 I. Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. period range and heights up to 1.4 meters.

1. Floating breakwaters. 2. Wave propagation. 3. Mooring. no. 78-3 .U581tp

Giles, Michael L.

tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1978. Prototype scale mooring load and transmission tests for a floating

(Technical paper - U.S. Coastal Engineering Research 50 p. : ill.

Center; no. 78-3)

large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules characteristics of a floating tire breakwater were conducted in CERC's wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) Prototype scale tests of the mooring load and wave transmission period range and heights up to 1.4 meters. Bibliography: p. 42.

627 I. Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. 1. Floating breakwaters. 2. Wave propagation. 3. Mooring. no. 78-3 .U581tp

Giles, Michael L.

Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield Prototype scale mooring load and transmission tests for a floating tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort Va. : available from National Technical Information Service, 1978.

(Technical paper - U.S. Coastal Engineering Research 50 p. : 111.

Bibliography: p. 42. Center : no. 78-3)

large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules characteristics of a floating tire breakwater were conducted in CERC's wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) Prototype scale tests of the mooring load and wave transmission

2 and 4 meters, using monoconnects.

1. Floating breakwaters.
2. Wave propagation. 3. Mooring.
1. Incating breakwaters.
1. Ititle. II. Series, Robert M., joint author. III. Series: U.S.
Coastal Engineering Research Center. Technical paper no. 78-3.
6

Giles, Michael L.

Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1978. Prototype scale mooring load and transmission tests for a floating tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort

(Technical paper - U.S. Coastal Engineering Research Center : no. 78-3) 50 p. : ill.

Bibliography: p. 42.

large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules characteristics of a floating tire breakwater were conducted in CERC's wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) Prototype scale tests of the mooring load and wave transmission period range and heights up to 1.4 meters.

I. Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. 1. Floating breakwaters. 2. Wave propagation. 3. Mooring.

Giles, Michael L.

Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1978. 50 p. : ill. (Technical paper - U.S. Coastal Engineering Research Prototype scale mooring load and transmission tests for a floating tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort

Bibliography: p. 42. Center; no. 78-3)

large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) characteristics of a floating tire breakwater were conducted in CERC's wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second Prototype scale tests of the mooring load and wave transmission

period range and heights up to 1.4 meters.
1. Floating breakwaters. 2. Wave propagation. 3. Mooring.
1. Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. по. 78-3 .U581tp

Giles, Michael L.

tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1978.

50 p. : ill. (Technical paper - U.S. Coastal Engineering Research Prototype scale mooring load and transmission tests for a floating

; no. 78-3)

Bibliography: p. 42.

characteristics of a floating tire breakwater were conducted in CERC's large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) Prototype scale tests of the mooring load and wave transmission period range and heights up to 1.4 meters.

I. Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. 1. Floating breakwaters. 2. Wave propagation. 3. Mooring. .U581tp

Giles. Michael L.

Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1978. 50 p. : ill. (Technical paper - U.S. Coastal Engineering Research Prototype scale mooring load and transmission tests for a floating tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort

Center: no. 78-3)

characteristics of a floating tire breakwater were conducted in CERC's large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) Prototype scale tests of the mooring load and wave transmission Bibliography: p. 42.

wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second period range and heights up to 1.4 meters.

1. Floating breakwaters. 2. Wave propagation. 3. Mooring.

1. Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. .U581tp

Giles, Michael L.

tire breakwater / by Michael L. Giles and Robert M. Sorensen. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Prototype scale mooring load and transmission tests for a floating Va. : available from National Technical Information Service, 1978.

(Technical paper - U.S. Coastal Engineering Research Center; no. 78-3) 50 p. : 111.

Bibliography: p. 42.

large wave tank. Standard Goodyear Tire and Rubber Co. 18-tire modules Prototype scale tests of the mooring load and wave transmission characteristics of a floating tire breakwater were conducted in CERC's wide in the direction of wave advance, were tested in water depths of 2 and 4 meters, using monochromatic waves with a 2.64- to 8.25-second connected to form breakwaters, 4 and 6 modules (8.5 and 12.8 meters) period range and heights up to 1.4 meters.

 Title. II. Sorensen, Robert M., joint author. III. Series: U.S. Coastal Engineering Research Center. Technical paper no. 78-3. 2. Wave propagation. 3. Mooring no. 78-3 .U581tp 1. Floating breakwaters.