## **Transformer**

### **Transformer-XL**



#### Learning goals

- Understand BPE
- Understand the Transformer Encoder + Decoder
- Understand how they are connected
- Understand the limitations for long sequences

#### LIMITATION OF THE TRANSFORMER

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

| Layer Type                  | Complexity per Layer     | Sequential<br>Operations | Maximum Path Length |
|-----------------------------|--------------------------|--------------------------|---------------------|
| Self-Attention              | $O(n^2) \cdot d$         | (O(1))                   | O(1)                |
| Recurrent                   | $O(n \cdot d^2)$         | O(n)                     | O(n)                |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | O(1)                     | $O(log_k(n))$       |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | O(1)                     | O(n/r)              |
| not cool                    |                          | cool                     |                     |

Source: Vaswani et al. (2017)

#### Advantage:

- Every token can directly attend to each other token
- Cf. RNN: At worst *n* sequential operations (last to first token)

#### Severe Limitation:

- Every token attends to each other token (incl. itself)
  - $\rightarrow$  We need to calculate  $n^2$  attention weights
- Computational complexity of Transformer scales quadratically with the sequence length
  - → Longer sequences are disproportionally expensive

#### TRANSFORMER-XL

#### **Key facts:**

- Objective: Autoregressive Language Modeling task
- Transformer decoder model
- Addresses long sequences
- Assumption: No infinite memory & compute; limited resources
- (Possible) Solution Vanilla Transformer:
  - Split corpus into shorter segments
  - Limited contextual information
- Solution Transformer-XL:
  - Segment-level recurrence mechanism
  - Able to model longer-term dependencies

### TRANSFORMER-XL



Figure 1: Illustration of the vanilla model with a segment length 4.

Source: Dai et al. (2019)

- Contextual information limited to segments
- Does not respect semantic or syntactic boundaries

#### TRANSFORMER-XL



Figure 2: Illustration of the Transformer-XL model with a segment length 4.

Source: Dai et al. (2019)

- Caches hidden states from the previous segment
- Contextual information flows across segments

#### SEGMENT RECURRENCE

- Let  $s_{\tau} = [x_{\tau,1}, \dots, x_{\tau,L}]$  and  $s_{\tau+1} = [x_{\tau+1,1}, \dots, x_{\tau+1,L}]$  be two consecutive segments of length L.
- Let  $h_{\tau}^n \in \mathbb{R}^{L \times d}$  denote the *n*-th layer hidden states for  $s_{\tau}$ .
- Using segment recurrence, the *n*-th layer hidden states for the following segment  $s_{\tau+1}$  are computed as follows:

$$\tilde{h}_{\tau+1}^{n-1} = \textit{Concat}[\textit{SG}(h_{\tau}^{n-1}), h_{\tau+1}^{n-1}]$$

$$q_{\tau+1}^n = h_{\tau+1}^{n-1} W_q^\mathsf{T}; \quad k_{\tau+1}^n = \tilde{h}_{\tau+1}^{n-1} W_k^\mathsf{T}; \quad v_{\tau+1}^n = \tilde{h}_{\tau+1}^{n-1} W_v^\mathsf{T}$$

$$h_{\tau+1}^{n} = Trafo(q_{\tau+1}^{n}, k_{\tau+1}^{n}, v_{\tau+1}^{n}),$$

where  $SG(\cdot)$  stands for "'stop-gradient"'.

# **RELATIVE POSITIONAL ENCODINGS**

Problem:

0