Ph.D. Qualifying Exam, Real Analysis Fall 2021, part I

Do all five problems. Write your solution for each problem in a separate blue book.

1 Two short problems.

2

a. Suppose (X, \mathcal{B}, μ) is a measure space and f is a non-negative measureable function. Show that

$$\lim_{n \to \infty} \int_X n \log(1 + f/n) \, d\mu = \int_X f \, d\mu.$$

- **b.** Suppose that $f \in L^1(\mathbb{R})$. Show that the Fourier transform of f, given by $\hat{f}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} f(x) dx$, $\xi \in \mathbb{R}$, is continuous and $\lim_{|\xi| \to \infty} \hat{f}(\xi) = 0$.
- **a.** Suppose X is a Banach space, $A_n \in \mathcal{L}(X)$ are compact operators, $n \in \mathbb{N}$. Suppose $\{A_n\}_{n \in \mathbb{N}}$ converges to $A \in \mathcal{L}(X)$ in the operator norm topology. Show that A is compact.
- **b.** Give (with proof) an example of a sequence $\{A_n\}_{n\in\mathbb{N}}$ of compact operators on a Banach space X converging to a *non-compact* operator $A\in\mathcal{L}(X)$ in the strong operator topology.
- Recall that $W^{1,p} = W^{1,p}(\mathbb{R})$ is the collection of $L^p(\mathbb{R})$ functions f such that the distributional derivative f' of f is also in L^p . If $u \in W^{1,p}$ show that $|u| \in W^{1,p}$ and compute its distributional derivative.
- Let $\mathcal{D}'(\mathbb{T})$ denote the set of distributions on $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$, i.e. the dual of $C^{\infty}(\mathbb{T})$, equipped with the 'weak-* topology', i.e. the weakest topology in which the maps $E_{\phi}: \mathcal{D}'(\mathbb{T}) \to \mathbb{C}$, $E_{\phi}(u) = u(\phi)$ are continuous for all $\phi \in C^{\infty}(\mathbb{T})$.
 - **a.** For $\phi \in C^{\infty}(\mathbb{T}^2)$ let $\phi_x(y) = \phi(y, x)$, $(y, x) \in \mathbb{T} \times \mathbb{T}$, so $\phi_x \in C^{\infty}(\mathbb{T})$. Show that if $u \in \mathcal{D}'(\mathbb{T})$ and $\phi \in C^{\infty}(\mathbb{T}^2)$ then the function $f : \mathbb{T} \to \mathbb{C}$ defined by $f(x) = u(\phi_x)$ is C^{∞} .
 - **b.** Show that the convolution map $*: C(\mathbb{T}) \times C(\mathbb{T}) \to C(\mathbb{T})$ given by

$$*(f,g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-y)g(y) dy$$

(usually written as (f * g)(x)) has a unique separately continuous extension to a map $\tilde{*}: \mathcal{D}'(\mathbb{T}) \times \mathcal{D}'(\mathbb{T}) \to \mathcal{D}'(\mathbb{T})$.

- Suppose that H_1 and H_2 are separable Hilbert spaces and $A: H_1 \to H_2$ is a bounded linear operator. Suppose that there exist $B \in \mathcal{L}(H_2, H_1)$ and a compact operator E on H_1 , such that BA = I - E, where I is the identity operator on H_1 .
 - **a.** Show that the nullspace of A is finite dimensional and the range of A is closed in H_2 .
 - **b.** Give an example of such operators A, B, E (and spaces H_1, H_2) such that the orthocomplement of the range of A is infinite dimensional.
 - **c.** Show that if in addition A^* is injective then in fact A is surjective.

Ph.D. Qualifying Exam, Real Analysis

Fall 2021, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Suppose that X is a Banach space.
 - Show that the natural inclusion $\iota: X \to X^{**}$, given by $(\iota(x))(\lambda) = \lambda(x), x \in X, \lambda \in X^*$, is an isometry.
 - Show that if X is a Banach space and $X^* = X^{***}$ (under the natural inclusion) then $X = X^{**}$.
- Let μ be the Lebesgue measure on \mathbb{R}^n , $B_r(x) = \{y \in \mathbb{R}^n : |y x| < r\}$. For $f \in L^1_{loc}(\mathbb{R}^n)$, define the 2 maximal function

$$Mf(x) = \sup_{r>0} \frac{1}{\mu(B_r)} \int_{B_r(x)} |f|.$$

Show that there is C>0 (depending only on n) so that if $f\in L^1(\mathbb{R}^n)$ then a.

$$\mu(\lbrace x: Mf > t \rbrace) \le Ct^{-1} ||f||_{L^1}.$$

- For any non-zero $f \in L^1(\mathbb{R}^n)$, show that Mf is not in $L^1(\mathbb{R}^n)$.
- Suppose X is a Banach space, $A \in \mathcal{L}(X)$ and ||A|| < 1. Show that there exists $B \in \mathcal{L}(X)$ such that 3 $B^2 = I + A.$
- 4 Let $C^{\alpha}([0,1])$, $0 < \alpha < 1$, denote the space of Hölder continuous functions on [0,1], i.e. continuous functions such that $||f||_{\alpha} = \sup |f| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty$, equipped with the norm $||.||_{\alpha}$. Suppose that $0 < \beta < \alpha < 1$, $||f_n||_{C^{\alpha}([0,1])} \le 1$, $n \in \mathbb{N}$. Show that there is a subsequence $\{f_{n_i}\}_{i=1}^{\infty}$

that converges in $C^{\beta}([0,1])$.

- Suppose that $P(\xi) = \sum_{|\alpha| \leq m} a_{\alpha} \xi^{\alpha}$, $a_{\alpha} \in \mathbb{C}$, is a polynomial of degree m on \mathbb{R}^n ; here for $\alpha \in \mathbb{N}^n$, $|\alpha| = \sum_{j=1}^n \alpha_j$, and $\xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_n^{\alpha_n}$. Let P(D) be the corresponding differential operator, $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$, $D_j = -i\partial_j$, $D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}$. We say that P is elliptic if $\mathbb{R}^n \ni \xi \neq 0$ implies $\sum_{|\alpha| = m} a_{\alpha} \xi^{\alpha} \neq 0$. 5
 - Show that if P is elliptic, $u \in S'(\mathbb{R}^n)$ and $Pu \in S(\mathbb{R}^n)$ then $u \in C^{\infty}(\mathbb{R}^n)$.
 - Recall that for $m \geq 0$, $H^m(\mathbb{T}^n)$ is the subset of $L^2(\mathbb{T}^n)$ consisting of functions whose Fourier coefficients satisfy $\sum_{k\in\mathbb{Z}^n}(1+|k|^2)^m|\hat{f}(k)|^2<\infty$. Here $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$ and $\hat{f}(k)=(2\pi)^{-n/2}\int e^{-ix\cdot k}f(x)\,dx$, $k \in \mathbb{Z}^n$.

Show that if P is elliptic of order m then P considered as an operator $P: H^m(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$ has finite dimensional nullspace.