

Entrance Exam 2017 - 2018
The distribution of grades is over 50

Mathematics

Duration: 3 hours July 08, 2017

Exercise 1 (7 points)

The complex plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$.

- A- Let A be the point of affix 10 and (γ) the circle of diameter [OA].
 - 1- Prove that the points B and C of respective affixes b=1+3i and c=8-4i belong to (γ) .
 - 2- Let D be the point of affix d = 2 + 2i.

Calculate $\frac{b-d}{b-c}$ and $\frac{d}{b-c}$. Deduce that D is the orthogonal projection of O on (BC).

Draw (γ) and plot the points A, B, C and D.

- **B-** To each point M of plane with affix z, distinct from O, we associate the point M' of affix z' such that $z' = \frac{20}{z}$.
 - 1- Prove that the points O, M and M' are collinear.
 - 2- Suppose in this part that M belongs to the straight line (Δ) of equation x=2.
 - a) Verify that $z + \overline{z} = 4$ and prove that $5(z' + \overline{z'}) = z' \overline{z'}$. Deduce that M' belongs to (γ) .
 - b) Take a point M on (Δ) and plot the associated point M'.

Exercise 2 (7 points)

30% of the students of a high school are members of the "extracurricular activities club" (EAC). We know that one quarter of girls and one third of boys of the school are members of the EAC.

- A- A student is chosen randomly from the high school. Consider the two events:
 - G: "the chosen student is a girl" and A: "the chosen student is a member of the EAC".
 - 1- a) Prove that the probability of the event G is equal to $\frac{2}{5}$.
 - b) Calculate the probability that the chosen student is a boy not a member of the EAC.
 - 2- We choose a student in the EAC. What is the probability that this student is a girl?
- **B-** To finance the school ceremony for the national day, the EAC organizes a lottery. Each day, a student is randomly and independently chosen from the school to hold the lottery.
 - 1- Determine the probability that, among the students chosen in a week of 5 days, there are exactly two members of the EAC.
 - 2- For any non zero natural number n, denote by p_n the probability that in n consecutive weeks,

there is at least one member of the EAC chosen. Prove that $p_n = 1 - \left(\frac{7}{10}\right)^{5n}$.

3- Determine the minimum number of weeks so that $p_n > 0.999$.

Exercise 3 (7 points)

1- Consider the functions f and h defined on the interval K = [1; 2] by:

 $f(x) = 1 + 2\ell n(x+1) - \ell n(x^2+1)$ and h(x) = f(x) - x.

- a) Prove that the two functions f and h are strictly decreasing in K.
- b) Prove that if $x \in K$, then $f(x) \in K$.
- c) Prove that the equation f(x) = x has a unique solution α .
- 2- Consider the sequence (U_n) of first term $U_0 = \frac{1}{5}$ such that, for all natural numbers n, $U_{n+1} = f(U_n)$.
 - a) Prove that, for all $n \ge 1$, $1 \le U_n \le 2$.
 - b) We admit that, for all $x \in K$, $|f'(x)| \le \frac{1}{4}$.

Knowing that, for all $x \in K$, we have $|f(x) - \alpha| \le \frac{1}{4} |x - \alpha|$, prove that for all $n \ge 1$,

$$\left|U_{n+1}-\alpha\right| \leq \frac{1}{4} \left|U_n-\alpha\right| .$$

c) Prove by induction that, for all natural numbers n, $|U_n - \alpha| \le \left(\frac{1}{4}\right)^{n-1}$.

Deduce the limit of the sequence (U_n) .

Exercise 4 (9 points)

The plane is referred to a direct orthonormal system $(O; \vec{i}, \vec{j})$.

Consider the ellipse (γ) of equation $\frac{x^2}{4} + (y+1)^2 = 1$.

- 1- Draw (γ) . (*Unit* : 2 cm)
- 2- Calculate the area of the domain interior to (γ) . Deduce $\int_{0}^{2} \sqrt{4-x^2} dx$.
- 3- Let F_1 and F_2 be the foci of (γ) (F_1 is the focus having positive abscissa), (d_1) the directrix associated to F_1 and $M(\alpha; \beta)$ where $\beta \neq -1$, a point on (γ) .
 - a) The tangent (δ) to the ellipse (γ) at M cuts (d_1) at L. Prove that the angle $L\hat{F}_1M$ is right.
 - b) Plot the point M on (γ) and describe a geometric construction of the tangent (δ) .
- 4- Let θ be the measure in radians of the angle $F_1 \hat{M} F_2$.
 - a) Calculate MF_1 in terms of α and deduce MF_2 .
 - b) Prove that $\cos\theta = \frac{3\alpha^2 8}{16 3\alpha^2}$ and determine θ when M is one of the vertices of (γ) that belong to the non focal axis.
 - c) Determine the abscissas of the points of (γ) that are also on the circle of diameter $[F_1F_2]$.

Exercise 5 (9 points)

In an oriented plane, consider an equilateral triangle \overrightarrow{ABC} such that $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{3}$ (2 π).

Let H be the mid point of [AC] and K the orthogonal projection of H on [AB].

- 1- Let S be the similitude of center A that transforms K into H and S' the similitude that transforms B into H and H into K.
 Determine the ratio and an angle of each of the similitudes S and S'.
- 2- Consider the transformation $T = S \circ S'$.
 - a) Determine T(H) and precise the nature and the elements of T.
 - b) Determine T(C). Deduce that S'(C) = A.
- 3- Let I be the mid point of [AB].
 - a) Justify that K is the mid point of [AI]. Deduce that S'(A) = I.
 - b) Determine the point J = S'(I).

- a) Determine the nature and the elements of f.
- b) Prove that f(C) = J. Deduce the center L of S'.

- a) Determine the complex relation of S'.
- b) Deduce the affix of J and that of the center L of S'.

Exercise 6 (11 points)

The plane is referred to an orthonormal system $(O; \vec{i}, \vec{j})$.

- A- Let T be the transformation that, to each point M(x; y), associates the point N(x'; y') such that x' = -x and y' = -2x + y.
 - 1- a) Prove that \overrightarrow{MN} is collinear to $\overrightarrow{i} + \overrightarrow{j}$ and the mid point P of [MN] belongs to the axis of ordinates.
 - b) Describe the geometric construction of the image N of any point M of the plane.
 - 2- a) Prove that any point of the axis of ordinates is invariant by T.
 - b) Let (d) be a straight line of director coefficient a. Prove that the image of (d) by T is a straight line (d') and that the straight lines (d) and (d') intersect on the axis of ordinates.

- **B-** 1- a) Set up the table of variations of the function g defined on $]-\infty;0]$ by $g(x)=x-1+2e^x$.
 - b) Set up the table of variations of the function h defined on $[0; +\infty[$ by $h(x) = x-1+2e^{-x}$.
 - 2- Let (C_1) and (C_2) be the representative curves of g and h respectively (It is not required to draw them).
 - a) Prove that (C_2) is the image of (C_1) by T.
 - b) Prove that the straight line (δ) of equation y = x 1 is asymptote to (C_1) and to (C_2) .
 - c) Determine the position of each of the curves (C_1) and (C_2) with respect to (δ) .
 - 3- Consider the function f defined on IR by $f(x) = x 1 + 2e^{-|x|}$. Let (C) be its representative curve.
 - a) Prove that (C) is the union of (C_1) and (C_2) .
 - b) Precise the semi tangents to (C) at the point A of abscissa 0.
 - c) Draw (C) (Graph unit: 2 cm).
 - 4- Let (Δ) be the straight line of equation y = x 1 + 2m where $m \in]0; 1[$.
 - a) Prove that, for all $m \in [0; 1[$, (Δ) cuts (C) at two points: E on (C_1) and F on (C_2) .
 - b) Verify that F = T(E) (T is the transformation defined in part A).
 - 5- Let (t_1) be the tangent at E to (C_1) and (t_2) the tangent at F to (C_2) . Knowing that (t_1) and (t_2) intersect on the axis of ordinates, deduce that (t_2) is the image of (t_1) by T.

Entrance Exam 2017 - 2018

Mathematics (SOLUTION)

July 08, 2017

(Program: Lebanese bac)

Exercise 1 (7 points)

A- (γ) is the circle of diameter [OA] of center the point I with affix 5, the mid point of [OA], and radius 5.

1-
$$IB = |b-5| = |-4+3i| = 5$$
 then, B belongs to (γ) .

$$IC = |c-5| = |3-4i| = 5$$
 then C belongs to (γ) .

2- D is the point of affix d = 2 + 2i;

$$\frac{b-d}{b-c} = \frac{-1+i}{-7+7i} = \frac{1}{7} \text{ and}$$

$$\frac{d}{b-c} = \frac{2+2i}{-7+7i} = \frac{2i(1-i)}{-7(1-i)} = -\frac{2}{7}i.$$

$$\frac{b-d}{b-c}$$
 is real then, $D \in (BC)$;

 $\dfrac{d}{b-c}$ is pure imaginary then , (OD) is perpendicular to (BC) .

Therefore (OD) is perpendicular to (BC) at D; that is D is the orthogonal projection of O on (BC). Drawing a figure showing (γ) , A, B and C.

B- 1- $\frac{z'}{z} = \frac{20}{z\bar{z}}$ then, $\frac{z'}{z}$ is a pure positive real number; therefore $(\overrightarrow{OM}; \overrightarrow{OM'}) = 0$ (2π) and the points

O, M and M' are collinear.

2- (Δ) is the straight line of equation x = 2 and M a point of (Δ) then, z = 2 + yi with $y \in IR$.

a)
$$z + \bar{z} = 2 + yi + 2 - yi = 4$$
.

$$z' + \overline{z'} = \frac{20}{\overline{z}} + \frac{20}{z} = \frac{20(z + \overline{z})}{z\overline{z}} = \frac{80}{z\overline{z}} ; \quad 5(z' + \overline{z'}) = \frac{400}{z\overline{z}} = \frac{20}{\overline{z}} \times \frac{20}{z} = z'\overline{z'} .$$

$$IM^{2} = (z'-5)(\overline{z'-5}) = z'\overline{z'} - 5(z'+\overline{z'}) + 25 = 25 \text{ then}, IM' = 5 \text{ and } M' \in (\gamma)$$
.

Therefore, M' is the point of intersection of (OM) and (γ) .

b) Plotting M ' on the figure as the point where (OM) cuts (γ) .

Exercise 2 (7 points)

- A- It is given that $p(A) = \frac{3}{10}$, $p(A/G) = \frac{1}{4}$ and $p(A/\overline{G}) = \frac{1}{3}$.
 - 1- a) Let x = p(G). By the law of total probability,

$$P(A) = p(A \cap G) + p(A \cap \overline{G}) = p(G) \times p(A/G) + p(\overline{G}) \times p(A/\overline{G}) \text{, then } \frac{3}{10} = x \times \frac{1}{4} + (1-x) \times \frac{1}{3}.$$

Therefore, $\frac{1}{12}x = \frac{1}{30}$, then $x = \frac{2}{5}$; that is $p(G) = \frac{2}{5}$.

- b) The required probability is $p(\overline{G} \cap \overline{A}) = p(\overline{G}) \times P(\overline{A}/\overline{G}) = p(\overline{G}) \times (1 P(A/\overline{G})) = \frac{3}{5} \times \frac{2}{3} = \frac{2}{5}$.
- 2- The required probability is $p(G/A) = \frac{p(G \cap A)}{p(A)} = \frac{p(G) \times p(A/G)}{p(A)} = \frac{2}{5} \times \frac{1}{4} \div \frac{3}{10} = \frac{1}{3}$.
- **B-** 1- The 2 days of choosing a member of the EAC can be selected in ${}_{5}C_{2} = 10$ ways;

in addition $p(A) = \frac{3}{10}$ and $p(\overline{A}) = \frac{7}{10}$; therefore, the required probability is

$$p = 10 \times \left(\frac{3}{10}\right)^2 \times \left(\frac{7}{10}\right)^3 = \frac{30870}{100000} = 0.3087.$$

2- In n weeks there are 5n days. Consider the event:

E: " no student is a member of the EAC "; $p(E) = \left(\frac{7}{10}\right)^{5n}$.

The required probability is $p_n = p(\overline{E}) = 1 - \left(\frac{7}{10}\right)^{5n}$

3- We have to solve the inequality $1 - \left(\frac{7}{10}\right)^{5n} > 0.999$ which is equivalent to $\ln\left((0.7)^{5n}\right) < \ln\left(0.001\right)$;

that is $5n \ln(0.7) < \ln(0.001)$; $n > \frac{\ln(0.001)}{5 \ln(0.7)} \approx 3.87$.

Therefore we need at least 4 weeks for having $p_n > 0.999$.

Exercise 3 (7 points)

1-a)
$$f'(x) = \frac{2}{x+1} - \frac{2x}{x^2+1} = \frac{2(1-x)}{(x+1)(x^2+1)}$$
.

For all x in]1; 2[, f'(x) < 0 then f is strictly decreasing in K.

h'(x) = f'(x) - 1 where $f'(x) \le 0$ then, for all x in K, h'(x) < 0 and h is strictly decreasing in K.

- b) f is continuous and strictly decreasing in K then, for all x in K, f(2) < f(x) < f(1) where $f(1) = 1 + \ell n \cdot 2 < 2$ and $f(2) = 1 + \ell n \cdot 9 \ell n \cdot 5 > 1$ then, $f(x) \in K$.
- c) h is continuous and strictly decreasing in K then , h(K) = [h(2); h(1)] where $h(1) = \ln 2 \approx 0.693$ and $h(2) = -1 + \ln 9 \ln 5 \approx -0.412$.

h is a bijection of K into the interval h(K) that contains 0 then, the equation h(x) = 0 which is equivalent to f(x) = x has a unique solution α in K.

2- a)
$$U_1 = f(U_0) = 1 + \ell n \frac{18}{13} \approx 1.325$$
 then , $U_1 \in K$.

If , for a certain all $n \ge 1$, $U_n \in K$ then , $f(U_n) \in K$ (proved in 1-b); that is $U_{n+1} \in K$. Therefore , for all $n \ge 1$, $U_n \in K$.

$$\text{b) } \left| U_{n+1} - \alpha \right| = \left| f(U_n) - \alpha \right| \text{ where } U_n \in K \text{ then }, \left| U_{n+1} - \alpha \right| \leq \frac{1}{4} \left| U_n - \alpha \right| \;.$$

c) Proof by induction:

$$1 < \alpha < 2$$
 and $1 < U_1 < 2$ then, $-1 < \frac{U_1}{\alpha} - \alpha < 1$ and $|U_1 - \alpha| < 1 = \left(\frac{1}{4}\right)^{1-1}$.

If, for a certain all $n \ge 1$, $|U_n - \alpha| \le \left(\frac{1}{4}\right)^{n-1}$,

$$\left|U_{n+1} - \alpha\right| = \left|f(U_n) - \alpha\right| \le \frac{1}{4} \left|U_n - \alpha\right| \le \frac{1}{4} \times \left(\frac{1}{4}\right)^{n-1} = \left(\frac{1}{4}\right)^n$$

Therefore, for all $n \ge 1$, $|U_n - \alpha| \le \left(\frac{1}{4}\right)^{n-1}$.

$$\lim_{n \to +\infty} \left(\frac{1}{4}\right)^{n-1} = 0 \text{ then }, \quad \lim_{n \to +\infty} \left| U_n - \alpha \right| = 0 ; \quad \lim_{n \to +\infty} U_n = \alpha \text{ . Consequently }, \quad (U_n) \text{ converges to } \alpha \text{ .}$$

Exercise 4 (9 points)

Consider the ellipse (γ) of equation $\frac{x^2}{4} + (y+1)^2 = 1$.

1- For the ellipse (γ) , the center is I(0; -1) and the focal axis is the straight line (Δ) of equation y = -1.

a=2, b=1 then, the vertices of (γ) are: (2;-1), (-2;-1), (0;0), (0;-2). Drawing (γ) .

2- The area of the domain interior to (γ) is $S = \pi ab = 2\pi$ units of area.

The equation $\frac{x^2}{4} + (y+1)^2 = 1$ can be written $\sqrt{4-x^2}$

as
$$y = -1 \pm \frac{\sqrt{4 - x^2}}{2}$$
 where $x \in [-2; 2]$ then,

$$\frac{S}{4} = \int_{0}^{2} \left(\frac{\sqrt{4 - x^2}}{2} \right) dx \quad units \ of \ area \ .$$

Therefore $\int_{0}^{2} \sqrt{4-x^2} dx = \frac{S}{2} = \pi$.

(δ) cuts the directrix (d_1) of equation $x = \frac{4}{\sqrt{3}}$ at $L(\frac{4}{\sqrt{3}}; \frac{\sqrt{3} - \alpha}{\sqrt{3}(\beta + 1)} - 1)$.

 $\overrightarrow{F_1M}(\alpha - \sqrt{3}; \beta + 1)$ and $\overrightarrow{F_1L}(\frac{1}{\sqrt{3}}; \frac{\sqrt{3} - \alpha}{\sqrt{3}(\beta + 1)})$ then $\overrightarrow{F_1M} \cdot \overrightarrow{F_1L} = 0$ and the angle $L\widehat{F}M$ is right.

b) M being given on (γ) , the perpendicular to (F_1M) at F_1 cuts (d_1) at a point L such that (ML) is the tangent to (γ) at M.

4- a)
$$d(M;(d_1)) = \left|\alpha - \frac{4}{\sqrt{3}}\right| = \frac{4}{\sqrt{3}} - \alpha$$
 then, $MF_1 = ed(M;(d_1)) = \frac{\sqrt{3}}{2}(\frac{4}{\sqrt{3}} - \alpha) = 2 - \frac{\sqrt{3}}{2}\alpha$ and $MF_2 = 2a - MF_1 = 2 + \frac{\sqrt{3}}{2}\alpha$.

b)
$$\overrightarrow{MF_1}(\sqrt{3}-\alpha;-1-\beta)$$
 and $\overrightarrow{MF_2}(-\sqrt{3}-\alpha;-1-\beta)$ then,

$$\cos\theta = \cos(\overrightarrow{MF_1}; \overrightarrow{MF_2}) = \frac{\overrightarrow{MF_1} \cdot \overrightarrow{MF_2}}{MF_1 \times MF_2} = \frac{\alpha^2 - 3 + (\beta + 1)^2}{\left(2 - \frac{\sqrt{3}}{2}\alpha\right)\left(2 - \frac{\sqrt{3}}{2}\alpha\right)} = \frac{\alpha^2 - 3 + 1 - \frac{\alpha^2}{4}}{4 - 3\frac{\alpha^2}{4}} = \frac{3\alpha^2 - 8}{16 - 3\alpha^2}.$$

If M is one of the vertices on the non focal axis of (γ) then, $\alpha = 0$ and $\cos \theta = -\frac{1}{2}$; therefore $\theta = \frac{2\pi}{3}$ radians.

c) The points of (γ) of ordinate -1 do not belong to the circle of diameter $[F_1F_2]$. The points of (γ) that belong to the circle of diameter $[F_1F_2]$ are the points $M(\alpha;\beta)$ where $\beta \neq -1$ such that $F_1\hat{M}F_2$ is right; they are the points $M(\alpha;\beta)$ such that $\cos\theta = \frac{3\alpha^2 - 8}{16 - 3\alpha^2} = 0$; $3\alpha^2 - 8 = 0$; $\alpha = -2\sqrt{\frac{2}{3}}$ or $\alpha = 2\sqrt{\frac{2}{3}}$.

Therefore, the points of (γ) that are on the circle of diameter $[F_1F_2]$ are the 2 points of abscissas $-2\sqrt{\frac{2}{3}}$ and the 2 points of abscissas $2\sqrt{\frac{2}{3}}$.

Exercise 5 (9 points)

1- The similar S of center A transforms K into H.

The triangle AKH is semi equilateral then, the ratio of S is $\frac{AH}{AK} = 2$ and an angle of S is $\frac{\pi}{3}$.

The similar S 'transforms B into H and H into K where

$$\frac{HK}{BH} = \sin\frac{\pi}{6} = \frac{1}{2} \text{ and } (\overrightarrow{BH}; \overrightarrow{HK}) = (\overrightarrow{BH}; \overrightarrow{HA}) + (\overrightarrow{HA}; \overrightarrow{HK}) = \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3} (2\pi) \text{ then, the ratio}$$
of S' is $\frac{1}{2}$ and an angle of S' is $\frac{2\pi}{3}$.

2- a) $T(H) = S \circ S'(H) = S(S'(H)) = S(K) = H$.

 $T = S \circ S'$ where S and S' are two similitudes of ratios 2 and $\frac{1}{2}$ of product 1 and angles $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ of sum π then T is a similitude of ratio 1, angle π that keeps H invariant.

Therefore, T is the central symmetry of center H.

b) T(C) = A then S(S'(C)) = A; that is S(S'(C)) = S(A) and S'(C) = A.

- 3- a) $AK = \frac{1}{2}AH = \frac{1}{4}AC$ then, $\overrightarrow{AK} = \frac{1}{4}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AI}$ then, K is the mid point of [AI]. S'(C) = A, S'(H) = K and A is the symmetric of C with respect to H then, S'(A) is the symmetric of S'(C) = A with respect to S'(H) = K; therefore S'(A) = I.
 - b) S'(A) = I, S'(B) = H and I is the mid point of [AB] then, S'(I) = J, the mid point of [IH].
- 4- a) S' is a similitude of ratio $\frac{1}{2}$ and angle $\frac{2\pi}{3}$ and $f = S' \circ S' \circ S'$ then, f is a similitude of ratio

 $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$ and angle $\frac{2\pi}{3} \times 3 = 2\pi$; therefore f is a dilation of ratio $\frac{1}{8}$ having same center as S'.

f is a dilation of ratio $\frac{1}{8}$ such that f(C) = J then,

its center is the point L such that $\overrightarrow{LJ} = \frac{1}{8}\overrightarrow{LC}$.

S' and f have the same center then , L is the center of S'.

5- The plane is referred to the direct orthonormal system

$$(A; \overrightarrow{u}; \overrightarrow{v})$$
 where $\overrightarrow{u} = \frac{1}{4} \overrightarrow{AB}$.

and angle
$$\frac{2\pi}{3}$$
 is of the form $z' = \frac{1}{2}e^{i\frac{2\pi}{3}}z + b$.

$$A(0;0)$$
, $I(2;0)$ and $S'(A) = I$ then $2 = b$; therefore $z' = \frac{-1 + \sqrt{3}i}{4}z + 2$.

b)
$$J = S'(I)$$
 then, the affix of J is $z_J = \frac{-1 + \sqrt{3}i}{4} \times 2 + 2 = \frac{3 + \sqrt{3}i}{2}$

The affix of the center L of S' is such that $z_L = \frac{-1 + \sqrt{3}i}{4}z_L + 2$ then,

$$z_L = \frac{8}{5 - \sqrt{3}i} = \frac{10 + 2\sqrt{3}i}{7}.$$

Exercise 6 (11 points)

A- 1- a) $\overrightarrow{MN} = (x'-x)\overrightarrow{i} + (y'-y)\overrightarrow{j} = -2x\overrightarrow{i} - 2x\overrightarrow{j} = -2x(\overrightarrow{i} + \overrightarrow{j})$ then, \overrightarrow{MN} is collinear to $\overrightarrow{i} + \overrightarrow{j}$

The abscissa of the mid point P of [MN] is $\frac{x'+x}{2} = 0$ then, P belongs to the axis of ordinates.

- b) Let (d) be the straight line of equation y = x having $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$ as a direction vector. M being any point of plane, the parallel to (d) drawn through M cuts the axis of ordinates at point P; the symmetric of M with respect to P is the image N of M by T.
- 2- a) Let M(0; y) be any point of the axis of ordinates; the coordinates of the image of M by T are x'=0 and y'=y then, M'=M and M is invariant by T.
 - b) Let (d) be a straight line of director coefficient a; an equation of (d) is of the form y = ax + b where $b \in IR$. An equation of the image of (d) by T is -2x + y = ax + b; y = (a+2)x + b; therefore, the image of (d) by T is a straight line (d') of equation y = (a+2)x + b.

The straight lines (d) and (d') intersect at the point (0; b) which is on the axis of ordinates.

B- 1-a) g is defined on $]-\infty$; 0] by $g(x) = x-1+2e^x$.

ℓ im e^x	=0 then,	$\ell im g($	$(x) = -\infty$.
$x \rightarrow -\infty$		$x \rightarrow -\infty$	

 $g'(x) = 1 + 2e^x.$

Table of variations of g.

b) h is defined on $[0; +\infty[$ by $h(x) = x-1+2e^{-x}$. $\lim_{x \to +\infty} e^{-x} = 0 \text{ then }, \lim_{x \to +\infty} h(x) = +\infty.$

 $h'(x) = 1 - 2e^{-x}$.

Table of variations of h.

\boldsymbol{x}	$-\infty$		0
g'(x)		+	2
g(x)			1

- 2- a) The relations x' = -x and y' = -2x + y are equivalent to x = -x' and y = y' 2x'. M(x; y) belongs to (C_1) if and only if $y = x 1 + 2e^x$; that is $y' 2x' = -x' 1 + 2e^{-x'}$; $y' = x' 1 + 2e^{-x'}$; therefore an equation of the image of (C_1) by T is $y = x 1 + 2e^{-x}$. Therefore, (C_2) is the image of (C_1) by T.
 - b) $\lim_{x \to -\infty} (g(x) (x-1)) = \lim_{x \to -\infty} e^x = 0$ then , the straight line (δ) is asymptote to (C_1) at $-\infty$; $\lim_{x \to +\infty} (h(x) (x-1)) = \lim_{x \to +\infty} e^{-x} = 0$ then , the straight line (δ) is asymptote to (C_2) at $+\infty$.

- c) For all $x \in]-\infty$; 0], $g(x)-(x-1)=2e^x>0$ and, for all $x \in [0; +\infty[, h(x)-(x-1)=2e^{-x}>0]$ then, each of (C_1) and (C_2) lies above (δ) .
- 3- The function f is defined on IR by $f(x) = x 1 + 2e^{-|x|}$.
 - a) $f(x) = \begin{cases} x 1 + 2e^x = g(x) & \text{if } x \in]-\infty ; 0] \\ x 1 + 2e^{-x} = h(x) & \text{if } x \in [0; +\infty[] \end{cases}$; therefore (C) is the union of (C_1) and (C_2) .
 - b) The semi tangent to (C) at the point A of abscissa 0 from the left has the slope $g_{\ell}'(0) = 2$ while the semi tangent to (C) at the point A of abscissa 0 from the right has the slope $h_r'(0) = -1$.
 - c) Drawing $(C) = (C_1) \cup (C_2)$ (Graph unit 2 cm).

- 4- (Δ) is the straight line of equation y = x 1 + 2m where $m \in]0; 1[$.
 - a) The equation f(x) = x 1 + 2m is equivalent to $e^{-|x|} = m$; that is $-|x| = \ell n(m)$;

$$|x| = -\ell n(m) ;$$

$$x = \ell n(m)$$
 or $x = -\ell n(m)$.

Therefore, (Δ) cuts (C) at two points E and F of abscissas $\ell n(m)$ and $-\ell n(m)$.

For all $m \in]0$; $[1, \ell n(m) < 0 \text{ then }, E \in (C_1) \text{ and } -\ell n(m) > 0 \text{ then }, F \in (C_2).$

b) The coordinates of E are $x = \ell n(m)$ and $y = g(\ell n(m)) = \ell n(m) - 1 + 2m$.

The coordinates of F are $x = -\ell n(m)$ and $y = h(-\ell n(m)) = -\ell n(m) - 1 + 2m$.

The coordinates of the image of E by T are $x' = -x = -\ell n(m)$ and

$$y' = -2x + y = -2 \ln(m) + \ln(m) - 1 + 2m = -\ln(m) - 1 + 2m$$
.

Therefore T(E) = F.

- 5- It is given that the tangent (t_1) at E to (C_1) and the tangent (t_2) at F to (C_2) intersect at a point L belonging to the axis of ordinates.
 - (t_1) is the straight line (LE) where T(E) = F and T(L) = L since L is on the axis of ordinates then, the image
 - (t_1) , which is a straight line , is the straight line (LF) which is the straight line (t_2) .