Mācību priekšmeta apraksts

Mācību priekšmeta nosaukums:

Mikroprocesoru tehnika

Mācību spēks: *Mārtiņš Rudovičs, inž.zin.maģ., lektors*

Studiju programma: AUTOMĀTIKA UN DATORTEHNIKA

Studiju veids: Akadēmiskā programma Studiju līmenis: Bakalaura studijas

Mācību priekšmeta apjoms: 3 KP

Mācību priekšmeta mērķis:

Sniegt akadēmisko izglītību mikroprocesoru tehnikā

Mācību priekšmeta uzdevumi:

Apgūt dažādu arhitektūru mikrodatoru organizāciju; mikroprocesoru arhitektūras un funkcijas, un to pielietojumu uz mikroprocesoriem un mikrokontrolleriem bāzētu sistēmu izstrādē.

Mācību grāmatas, izmantojamās un ieteiktās literatūras saraksts:

- 1. A.Čipa, MIKROPROCESORI. Lekciju konspekts. Rīga: RPI, 1979. 88 lpp.
- 2. A.Čipa, Elektroniskie skaitļotāji. Rīga: Zvaigzne, 1983. 235 lpp.
- 3. A.Čipa, Otrās paaudzes mikroprocesoru komplekts un vispārējās nozīmes skaitļotāja veidošana. Lekciju konspekts. Rīga: RTU, 1992. 78 lpp.
- 4. A.Čipa, Mikroprocesori i80286 un i80386. Lekciju konspekts. Rīga: RTU, 1994. 78 lpp.
- 5. A.Čipa, Mikroprocesori i80486 un Pentium. Lekciju konspekts. Rīga: RTU, 2001. 24 lpp.
- 6. Greivulis J., Raņķis I. Iekārtu vadības elektroniskie elementi un mezgli. Rīga: Avots, 1996. 288 lpp.
- 7. John Uffenbeck. The 8086/8088 Family: Design, programming, and interfacing. International Editions, Prentice-Hall, Inc., 1987. 630 lpp.
- 8. J.Murdocca, P.Heuring. Principles of Computer Architecture. Class test edition, Prentice-Hall, Inc., 1999. 654 lpp.
- 9. Morgan Kaufmann. Computer Architecture. 3rd edition, 2002. 1141 lpp.
- 10. Willam Stallings. Computer organization & Architecture. Sixth edition, Prentice-Hall, Inc., 2003. 826 lpp.
- 11. Linda Null, Julia Lobur. The Essentials of Computer Organization and Architecture, Jones and Bartlett Publishers, Inc., 2003. 673lpp.

Priekšmeta mācīšanas metode:

Lekcijas, laboratorijas darbi, praktiskie darbi.

<u>Priekšmeta apgūšanas vērtēšanas principi – atzīme:</u>

Attīstīt radošas spējas un izmantot priekšmetā iegūtās zināšanas praktiskajam un pētnieciskajam darbam.

<u>Vērtējuma svari:</u>

Kopā	100%
Praktiskie darbi	10%
Nodarbību apmeklēšana	10%
Piedalīšanās diskusijās	10%
Laboratorijas darbi	20%
Eksāmens	50%

Prasības priekšmeta apguvei:

Regulāra lekciju apmeklēšana un apguve, laboratorijas darbu un praktisku darbu pildīšana noteiktajos termiņos.

Priekšmeta situācijas apraksts un analīze:

Reālo situāciju apraksts un analīze, kur tiek izmantota mikroprocesoru tehnika.

Prasības studentiem, lai sagatavotos kārtējām nodarbībām:

Pirms lekcijas jāatkārto iepriekšējo lekciju viela. Pirms laboratorijas darbu izpildes ir jāiepazīstas ar konkrēto uzdevumu un aparatūru, kurai tiks izstrādāta konkrēto uzdevumu veicoša programma.

Plānotās diskusijas un pārrunas, to temati:

Izmantojamo procesoru organizācijas veidi un arhitektūras, un to attīstības tendences un lietošanas sfēras.

Kalendārais plāns.

Ne	Lekcijas temats	Laboratorijas darbi
dēļa	Sastopamās elektrisko signālu formas un to iezīmes. Ciparu elektronikas pamati.	Iepazīšanās ar laboratorijas darbu veikšanai nepieciešamo aparatūru (uz <i>ATmega128</i> mikrokontrollera bāzēta sistēma CHARON II) un programmatūru (AVR GCC kompilators).
2	Uz ciparu elektronikas pamatelementiem uzbūvēti mikroprocesoru elementi. Maģistrāles.	
3	Mikroprocesori un mikrokontrolleri. Atšķirības. CPU arhitektūra. Instrukcijas kopas arhitektūra.	Elektrisku signālu izvades uz mikrokontrollera porta programmēšana.
4	Atmiņas organizācijas arhitektūras. Informācijas saglabāšana un apstrāde mikroprocesoros.	
5	Atmiņas veidi un tipi mikrokontrolleros un to darbības principi.	Taimera pārtraukuma apstrādātāja programmēšana un tā izmantošana laika intervālu formēšanā.
6	Mikrokontrolleru perifērijas iekārtas. Ciparu ieejas/izejas, ar tām saistītas problēmas un to risinājumi.	
7	Analogas ieejas/izejas ar tām saistītas problēmas, sistēmu trūkumi un to risinājumi. ACP veidi un darbības	Sargtaimera (Watchdog timer) izmantošana programmas izpildes monitoringā, to realizācijas uz

	principi. Naikvista kritērijs.	ATmega 128 mikrokontrollera bāzes.
8	Pārtraukumi. To veidi. Pārtaukumu vektoru tabula. Pārtraukuma apstrāde augsta līmeņa programmēšanas valodās. Mūsdienīgu mikrokontrolleru pārtraukuma veidi.	
9	Taimeri. Skaitītāji. Iejās/izejas komparatori. PWM modulis.	Datu pārraides pa UART (RS-232) interfeisu programmēšana izmantojot interfeisa kontrolleri un pārtraukumus.
10	Sargtaimeris, to pielietojums. Barošanas enerģijas patērēšana, to pazemināšana, gulēšanas režīmi. Sistēmas restartēšanas iespējas.	
11	Mikrokontrolleru komunikācijas interfeisi. Tipi, risināmie uzdevumi. SCI interfeiss (UART). SPI interfeiss. IIC (I ² C) interfeiss. Datu pārraide. Ātruma regulēšana. Daudz-vedēju režīms. Paplašinātas adreses.	Reāla laika pulksteņa realizācija un tekoša laika izvade ASCII terminālī.
12	Programmēšanas īpatnības. Assembler un C valodas salīdzinājums. Programmas atkļūdošana.	
13	Programmatūras izstrādes vides. Mikrokontrolleru operācijas sistēmas. To veidi un tipi.	Nut/OS operētājsistēmas izmantošana.
14	ARM (Advanced Risc Machine) un PowerPC procesoru organizācija, arhitektūra un pielietojums iebūvējamajās sistēmās.	
15	Mūsdienīgu mikrokontrolleru arhitektūras salidzinājums. Dažu populāru mikrokontrolleru arhitektūras salidzinājums.	Ieskaite par laboratorijas darbiem
16	FPGA/CPLD/SPLD programmējamo matricu izmantošanas iespējas procesoru un mikrokontrolleru izstrādē.	