

SCC131: Digital Systems

Topic 6: Building the ALU

Reminder of the von Neumann architecture

What is the role of the ALU? (1)

- Implements arithmetic and logic operations:
 - add, subtract, multiply, divide, shift of integers, ...
 - (perhaps also floating point operations; or may use a separate floating point unit (FPU))
 - and, or, not, xor, ...
 - comparisons: <, ≤, =, ≠, ≥, >

What is the role of the ALU? (2)

- Provides the following facilities:
 - registers: working storage for operands and results
 - status flags: typically, overflow, zero and negative
 - Overflow flag tells us if the previous arithmetic instruction resulted in overflow
 - Zero and negative are also set by arithmetic operations, and are typically used to determine the outcome of branch decisions

The ALU in outline

Adding two binary bits: the "half adder"

Implementing a half adder

Α	В	Q				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

 $SUM = A \oplus B$

CANNI - AD							
Α	Q						
0	0	0					
0	1	0					
1	0	0					
1	1	1					

CARRY - AR

We can break the \oplus down into something easier to build...

Half adder with expanded \oplus

(Can you redesign this to use just NAND gates?)

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

SUM							
	Α	В	S				
	0	0	0				

0	0	0
0	1	1
1	0	1
1	1	0

Adding the 3rd bit

- A half adder adds only two bits
- But when adding mult-digit numbers consisting of multiple bits, we need also to consider CARRYs
 - When CARRYs are considered, we need to be able to add 3 bits: two input bits plus a possible CARRY from the previous stage
 - Where the CARRY and input bits are all 1s, this results in a maximum output of 3 (i.e., 1 + 1 + 1 = 11)
- To add these 3 bits, we can use two half adders; this is called a full adder...

Full adder

By combining these we can build adders that can handle any length of numbers...

Why does this work?

$$SUM = C_{in} \oplus (A \oplus B) \qquad C_{out} = AB + C_{in} (A \oplus B)$$

Proof by perfect induction

C _{in}	Α	В	SUM	C _{out}	A \oplus B	C _{in} ⊕ (A ⊕ B)	AB	C _{in} (A \oplus B)	AB + C _{in} (A \oplus
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	0	0
0	1	0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1	0	1
1	0	0	1	0	0	1	0	0	0
1	0	1	0	1	1	0	0	1	1
1	1	0	0	1	1	0	0	1	1
1	1	1	1	1	0	1	1	0	1
							C _{out} =	AB + C _{in} (A	б⊕ в)

 $SUM = C_{in} \oplus (A \oplus B)$

Multi-stage full adder with ripple carry

...Problem: timing issues – we would need to add "slow-down mechanisms"!

Carry-select adders

- Ripple-carry adders are slow because each stage must wait for the carry bit from the previous stage
- Solution: Split the problem: add the "lower" n/2 bits and the "upper" n/2 bits independently
 - Add the lower n/2 bits as normal
 - For the upper n/2 bits, use **two** sets of full adders: one set assumes $C_{in} = 0$, ...the other assumes $C_{in} = 1$
 - When we've added the first *n* bits, we'll know which set to use
 - This effectively doubles the speed
 - And we can keep splitting as long as cost/ space allows

Carry-select adder

Checkpoint: how far have we got with our ALU? (1)

- We can add whole numbers
 - And, of course, using two's complement gives us subtraction, too

...and subtraction allows us to do comparisons:

```
<, >, =
  (do "subtraction", then check for +ve, -ve, or zero
result)
```

Checkpoint: how far have we got with our ALU? (2)

- Multiplication and division??
 - We could do these in software, using addition and subtraction
 - Or we could do a hardware design based on long multiplication and long division methods
 - As with our adder, prediction can speed these up too

Checkpoint: how far have we got with our ALU? (3)

- Logic operations can easily be built directly from logic gates
 - AND, OR, NOT, ...

So, just the status flags to go...

The status flags

The status flags are bits organised into a special register called the flags register

• As we've already noted, each flag reflects an aspect of the outcome of

The overflow flag is a little more challenging...

Overflow flag

Leftmost (sign) input bits

"If the sign bits are the same but the result has a different sign, we have arithmetic overflow error"

Why does this work?

- If C_{in} is 0, A is 1, B is 1, SUM is 0
 - In these circumstances, we are adding two negative numbers and getting a positively-signed result
- If C_{in} is 1, A is 0, B is 0, SUM is 1
 - In these circumstances, we are adding two positive numbers and getting a negatively-signed result

In Both situations, Overflow bit: $C_{in} \bigoplus C_{out} = 1$ indicating <u>arithmetic</u> overflow error

1 bit addition

C _{in}	Α	В	SUM	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0 /	1	1	0	1
1	0	0	1	0
1	01	1	0	1
1	1	0	0	1
1	1	1	1	1

"If the sign bits are the same but the result has a different sign, we have arithmetic overflow error"

Bit shifting (1)

 As we've already seen, bit shifting enables simple multiplication/ division by powers of two, and can also speed up addition-based methods of multiplication

 Movement of a bit pattern left or right is also widely used in control systems and pattern matching

Bit shifting (2)

- Mainly 4 types of shifts: arithmetic shift (considers 2's complement), logical shift, rotate, and rotate through carry
- A simple "shifter" is shown on the next slide
 - More complex shifters can shift by multiple bits in a single operation (e.g. they employ "barrel shifters")
 - (Can you design this circuit from scratch, maybe a 3-bit version, using our now-familiar approach of:
 - truth table \rightarrow "sum of products" logic expression \rightarrow logic circuit??)

Summary

- We know (minimal forms of) all the fundamental facilities that an ALU needs to provide
 - We know how to do addition and, given 2's complement, subtraction
 - We can do this using full adders combined into either ripplecarry or carry-select multi-digit adders
 - We know how to implement the zero, negative and overflow flags
 - We know how to do bit shifting
- Again, all this is a minimal basis for an ALU a real ALU will likely offer more!