Двоични функции

ightharpoonup Дефиниция: Функция $f(x_1,...,x_n)$ дефинирана в множеството $B^n=\{0,1\}^n$ и приемаща стойности в множеството $B=\{0,1\}$ се нарича двоична (булева) функция.

x_1	x_2	 x_{n-1}	x_n	$f(x_1,x_2,\ldots,x_{n-1},x_n)$
0	0	 0	0	$f(0, 0, \ldots, 0, 0)$
0	0	 0	1	$f(0,0,\ldots,0,1)$
0	0	 1	0	$f(0, 0, \ldots, 1, 0)$
1	1	 1		$f(1, 1, \ldots, 1, 1)$

ightharpoonup Дефиниция: Множеството на всички двоични функции ще означаваме с P_2 .

Броят на различните n- торки $(x_1,...,x_n)$ е 2^n . Тогава е в сила $|P_2|=2^{2^n}$.

Таблица на всички двоични функции на една променлива

x_1	0	x_1	$\overline{x_1}$	1
0	0	0	1	1
1	0	1	0	1
	константа		отрицание	константа

Таблица на всички двоични функции на две променливи

x_1	x_2	0	•		x_1		x_2	+	٧	↓	\leftrightarrow	$\overline{x_2}$		$\overline{x_1}$	\rightarrow		1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		константа 0	конюнкция					сума по модул 2	дизюнкция	стрелка на Пирс	еквиваленция	отрицание		отрицание	импликация	черта на Шефер	константа 1

Задачи:

Задача 1. Пресметнете следните изрази

$$x_{1}.0 =$$
 $x_{1}.x_{1} =$
 $x_{1} \lor 0 =$
 $x_{1} \lor x_{1} =$
 $x_{1} + 0 =$
 $x_{1} + x_{1} =$
 $x_{1}.1 =$
 $x_{1} \lor 1 =$
 $x_{1} \lor 1 =$
 $x_{1} \lor x_{1} =$

Задача 2. Докажете законите на ДеМорган

1)
$$\overline{x_1.x_2} = \overline{x_1} \vee \overline{x_2}$$
 2) $\overline{x_1} \vee \overline{x_2} = \overline{x_1.\overline{x_2}}$

Някои свойства:

$$x_{1}.x_{2} = x_{2}.x_{1} x_{1}.(x_{2}.x_{3}) = (x_{1}.x_{2}).x_{3} x_{1}.(x_{2} \lor x_{3}) = (x_{1}.x_{2}) \lor (x_{1}.x_{3})$$

$$x_{1} \lor x_{2} = x_{2} \lor x_{1} x_{1} \lor (x_{2} \lor x_{3}) = (x_{1} \lor x_{2}) \lor x_{3}$$

$$x_{1} + x_{2} = x_{2} + x_{1} x_{1} + (x_{2} + x_{3}) = (x_{1} + x_{2}) + x_{3} x_{1}.(x_{2} + x_{3}) = (x_{1}.x_{2}) + (x_{1}.x_{3})$$

Приоритет при изчисляване на изрази с двоични функции

- Скоби
- Отрицание
- Конюнкция
- Дизюнкция и сума по модул 2
- Останалите двоични функции
- **Дефиниция:** На всяка формула по естествен начин се съпоставя една единствена двоична функция и казваме, че формулата реализира тази функция.
- ightharpoonup Дефиниция: Нека F е множество от двоични функции. Множеството от всички функции, които можем да реализираме чрез формули над F се нарича затворена обвивка и бележим с [F].

Пример: Определете затворената обвивка на множеството $F = \{., -\}$.

Пълни множества от двоични функции

ightharpoonup Дефиниция: Множеството от двоични функции F е **пълно** тогава и само тогава, когато $[F] = P_2$, т.е. всяка двоична функция се реализира с формула над F .

Теорема на Бул: Множеството $F = \{\bullet, \lor, -\}$ е пълно.

Нека $f(x_1,...,x_n)$ е произволна двоична функция, различна от 0. Означаваме

$$x^{\alpha} = \begin{cases} \overline{x}, & \alpha = 0 \\ x, & \alpha = 1 \end{cases}$$

Не е трудно да се види, че $x^{\alpha}=1$ тогава и само тогава, когато $x=\alpha$. Следователно

$$f(x_1,\ldots,x_n) = \bigvee_{f(\alpha_1,\ldots,\alpha_n)=1} x_1^{\alpha_1} \ldots x_n^{\alpha_n} ,$$

където дизюнкция се взема по всички n- торки $\left<\alpha_1,\ldots,\alpha_n\right>$ за които $f\left(\alpha_1,\ldots,\alpha_n\right)=1$.

Задачи:

<u>Задача 1</u> Постройте формула над множеството $F = \{\bullet, \lor, -\}$, която да реализира функцията зададена чрез следната таблица.

	1		
x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

<u>Задача 2</u> Постройте формула над множеството $F = \{\bullet, \lor, -\}$, която да реализира функциите зададени чрез следната таблица.

x_1	x_2	x_3	f_1	f_2	f_3
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	0	0	1

<u>Задача 3.</u> Постройте формула над множеството $F = \{\cdot, \lor, -\}$, която да реализира функцията $f = (x_1 + x_2).\overline{x_3}.$

Теорема: Нека са дадени две множества от двоични функции $F = \{f_1, f_2, ...\}$ и $G = \{g_1, g_2, ...\}$ при това F **пълно множество.** Множеството G е пълно тогава и само о тогава, когато $\forall f_i \in F \Rightarrow f_i \in [G]$, т.е. когато може да се представи като формула над G.

Задача 4. Докажете, че следните множества са пълни:

1) $G = \{\bullet, -\}$

2) $G = \{ \lor, - \}$

3) $G = \{\downarrow\}$

4) $G = \{ | \}$

- 5) $G = \{\bullet, +, 1\}$
- 6) $G = \{\bullet, \lor\}$

Полином на Жегалкин

ightharpoonup Дефиниция: Израз от вида x_1, \dots, x_n без повтарящи се множители се нарича елементарна конюнкция.

Забележка: Понеже $x_1.x_1 = x_1$, то всяка конюнкция можем да я направим елементарна

$$x_1 x_2 x_3 x_2 = x_1 x_2 x_3$$

ightharpoonup Дефиниция: Сума от вида $E_1 + E_2 + \cdots + E_k$ без повтарящи се събираеми се нарича полином на Жегалкин и

$$E \coloneqq \begin{cases}$$
елементарна конюнкция 1

Забележка: Понеже $x_1 + x_1 = 0$, то всяка сума от елементарни конюнкции и 1 става полином на Жегалкин чрез зачертаване на повтарящите се събираеми

$$E_1 + E_2 + E_3 + E_2 = E_1 + E_3$$

Задача 1. Намерете полинома на Жегалкин за следната функция

x_1	x_2	f
0	0	1
0	1	0
1	0	0
1	1	1

Задача 2. Намерете полинома на Жегалкин за следните функции

a)

x_1	x_2	X 3	f_1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

б)

x_1	x_2	<i>x</i> ₃	f_2
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Теорема на Жегалкин: Всяка двоична функция се представя точно с един полином на Жегалкин.

Затворени множества

- ightharpoonup Дефиниция: Едно множество F се нарича затворено, ако [F] = F .
- ightharpoonup Дефиниция: Казваме, че функцията $f(x_1,\ldots,x_n)$ запазва нулата, ако $f(0,\ldots,0)=0$. Множеството от всички функции, запазващи нулата означаваме с $\mathbf{T_0}$.
- ightharpoonup Дефиниция: Казваме, че функцията $f(x_1,\ldots,x_n)$ запазва единицата, ако $f(1,\ldots,1)=1$. Множеството от всички функции, запазващи единицата означаваме с \mathbf{T}_1 .
- **> Дефиниция:** Казваме, че функцията $f*(x_1,...,x_n)$ е **двойнствена** на функцията $f(x_1,...,x_n)$, ако

$$f * (x_1, ..., x_n) = \overline{f}(\overline{x_1}, ..., \overline{x_n})$$

Задача 1. Намерете деойнствените на следните функции

x_1	x_2	x_3	f_{I}	f_2	f_3
0	0	0	0	1	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	1	0	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	1	1	1

Teopema:
$$(f^*)^* = f$$

Някои основни двойки функция и нейната двойнствена функция.

f	0	1	x	\overline{x}	$x \cdot y$	$x \lor y$	x + y	$x \leftrightarrow y$	$x \mid y$	$x \downarrow y$
f^*	1	0	x	\overline{x}	$x \vee y$	$x \cdot y$	$x \leftrightarrow y$	x + y	$x \downarrow y$	$x \mid y$

У Дефиниция: Казваме, че функцията $f(x_1,...,x_n)$ **е самодвойнствена**, ако $f=f^*$. Множеството от всички самодвойнствени функции означаваме с **S**.

Задача 2. Проверете дали функцията е самодвойнствена

x_1	x_2	X 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Нека $\alpha=(a_1,\dots a_n)$ и $\beta=(b_1,\dots b_n)$ са две произволни n-торки от 0 и 1 .

> Дефиниция: Казваме, че α предхожда β и означаваме $\alpha \prec \beta$, ако са изпълнени следните неравенства

$$a_1 \le b_1, \ a_2 \le b_2, \dots, a_n \le b_n$$
.

Дефиниция: Казваме, че функцията $f(x_1,...,x_n)$ е **монотонна,** ако от $\alpha \prec \beta$ следва, че функцията $f(\alpha) \leq f(\beta)$. Множеството от всички монотонни функции означаваме с \mathbf{M} .

<u>Задача 1.</u> Проверете дали е монотонна следната функция

x_1	x_2	f
0	0	0
0	1	0
1	0	1
1	1	1

<u>Задача 2.</u> Проверете кои от следните функции са монотонни и кои не:

$$x_1, \overline{x_1}, x_1.x_2, x_1 + x_2, x_1 \lor x_2, x_1 \longleftrightarrow x_2$$

ightharpoonup Дефиниция: Казваме, че функцията $f(x_1, ..., x_n)$ е линейна, ако тя има линеен полином на Жегалкин, т.е. f може да се представи като

$$f(x_1, x_2, ... x_n) = a_n x_n + a_{n-1} x_{n-1} + ... + a_1 x_1 + a_0$$

където от $\,a_{i}\in\{0,1\}\,.$ Множеството от всички линейни функции означаваме с ${f L}_{\cdot}$

Теорема: Множествата T_0 , T_1 , S, M и L са затворени множества.

Теорема на Пост-Яблонски

 $\it Teopema:$ Множеството $\it F$ е пълно тогава и само тогава, когато

$$F \not\subset T_0, T_1, S, M, L$$
.

Задача 1. Проверете кои от следните множества са пълни и кои не:

a)
$$F_1 = \{f_1, f_2, f_3\}$$

x_1	x_2	x_3	f_{l}	f_2	f_3
0	0	0	0	1	1
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	1	0	0

6)
$$F_2 = \{f_1, f_2, f_3\}$$

x_1	x_2	x_3	f_1	f_2	f_3
0	0	0	1	1	1
0	0	1	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0

$$\overline{\mathbf{B}}) \, F_3 = \{0, 1, x_1 x_2 + 1\}$$

$$\Gamma$$
) $F_4 = \{0, 1, x_1 x_2\}$

$$_{5} = \{\overline{x_{1}}, x_{1} + x_{2} + x_{3}\}$$

e)
$$F_6 = \{0, \overline{x_1}\}$$

ж)
$$F_7 = \{0, \overline{x_1 x_2}\}$$
 - пълно

ightharpoonup Дефиниция: Казваме, че функцията $f(x_1, ..., x_n)$ е шеферова, ако множеството $\{f\}$ е пълно и $f \notin T_0 \bigcup T_1 \bigcup S$.

3ada4a 2 За кои стойности на n функцията е шеферова

$$f = x_1 x_2 + x_2 x_3 + \ldots + x_n x_1 + 1$$

Допълнителни задачи:

<u>Задача 1.</u> Постройте формула над множеството $F = \{ \cdot, \lor, - \}$, която да реализира функциите:

1)
$$f = (\overline{x_1}x_2 + x_3).(x_1x_3 \to x_2);$$

2)
$$f = (x_1 \lor x_2) \to x_3$$

Задача 2. Намерете полинома на Жегалкин за следните функции

a)
$$f = x_1 \rightarrow x_2$$

6)
$$f = x_1 x_2 \lor x_1 x_3 \lor x_2 x_3$$

B)
$$f = x_1(x_1 \vee \overline{x_3})$$

$$\Gamma) f = (x_1 \downarrow x_2) | (x_2 \downarrow x_3)$$

д)	x_1	x_2	<i>x</i> ₃	f	g
	0	0	0	1	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	1	0
	1	1	0	1	1
	1	1	1	0	1

Задача 3. Пълна ли е системата от двоични функции:

1)
$$A = \{xy, x \lor y, x + y, xy \lor yz \lor zx\};$$

2)
$$A = \{xy, \ x \lor y, \ x + y + z + 1\};$$

3)
$$A = \{1, \ \overline{x}, \ x(y \leftrightarrow z) + \overline{x}(y+z), x \leftrightarrow y\};$$

4)
$$A = \{0, \ \overline{x}, \ x(y+z) + yz\};$$

5)
$$A = {\overline{x}, x(x \leftrightarrow z) \leftrightarrow (y \lor z), x + y + z};$$

6)
$$A = {\overline{x}, \ x(y \leftrightarrow z) \leftrightarrow yz, \ x + y + z}$$

3adaua 3. За кои стойности на n функцията е шеферова

1)
$$f(\widetilde{x}^n) = 1 \oplus x_1 x_2 \oplus \ldots \oplus x_i x_{i+1} \oplus \ldots \oplus x_{n-1} x_n \oplus x_n x_1;$$

2)
$$f(\widetilde{x}^n) = 1 \oplus x_1 x_2 \oplus \ldots \oplus x_i x_{i+1} \oplus \ldots \oplus x_{n-1} x_n;$$

3)
$$f(\widetilde{x}^n) = \bigvee_{1 \leqslant i < j \leqslant n} \overline{x}_i \overline{x}_j; \quad 4^*) \ f(\widetilde{x}^n) = 1 \oplus \sum_{1 \leqslant i < j \leqslant n} x_i x_j;$$
5)
$$f(\widetilde{x}^n) = \bigvee_{1 \leqslant i_1 < \dots < i_{\lfloor n/2 \rfloor} \leqslant n} \overline{x}_{i_1} \overline{x}_{i_2} \dots \overline{x}_{i_{\lfloor n/2 \rfloor}};$$

5)
$$f(\widetilde{x}^n) = \bigvee_{1 \leqslant i_1 < \dots < i_{\lfloor n/2 \rfloor} \leqslant n} \overline{x}_{i_1} \overline{x}_{i_2} \dots \overline{x}_{i_{\lfloor n/2 \rfloor}};$$