PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel

1. Tujuan:

Mempelajari metode Tabel untuk penyelesaian persamaan non linier

2. Dasar Teori:

Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier. Dimana akar sebuah persamaan f(x) = 0 adalah nilai-nilai x yang menyebabkan nilai f(x) sama dengan nol. Dengan kata lain akar persamaan f(x) adalah titik potong antara kurva f(x) dan sumbu X.

Theorema 1.1.

Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b) berlawanan tanda atau memenuhi f(a).f(b)<0

Secara sederhana, untuk menyelesaikan persamaan non linier dapat dilakukan dengan menggunakan metode table atau pembagian area. Dimana untuk $\mathbf{x} = [a,b]$ atau \mathbf{x} di antara a dan b dibagi sebanyak N bagian dan pada masing-masing bagian dihitung nilai f(x) sehingga diperoleh tabel :

X	f(x)
$x_0=a$	f(a)
\mathbf{x}_1	$f(x_1)$
X ₂	$f(x_2)$
X ₃	$f(x_3)$
$x_n=b$	f(b)

Dari tabel ini, bila ditemukan $f(x_k)=0$ atau mendekati nol maka dikatakan bahwa x_k adalah penyelesaian persamaan $f(x_k)=0$.Bila tidak ada $f(x_k)$ yang sama dengan nol, maka dicari nilai $f(x_k)$ dan $f(x_{k+1})$ yang berlawanan tanda, bila tidak ditemukan maka

dikatakan tidak mempunyai akar untuk x = [a,b], dan bila ditemukan maka ada 2 pendapat untuk menentukan akar persamaan, yaitu :

- 1. Akar persamaan ditentukan oleh nilai mana yang lebih dekat, bila $|f(x_k)| \le |f(x_{k+1})|$ maka akarnya x_k , dan bila $|f(x_{k+1})| < |f(x_k)|$ maka akarnya x_{k+1} .
- 2. Akarnya perlu di cari lagi, dengan range $x = [x_k, x_{k+1}]$.

3. Algoritma Metode Tabel:

- (1) Definisikan fungsi f(x)
- (2) Tentukan range untuk x yang berupa batas bawah x_{bawah} dan batas atas x_{atas} .
- (3) Tentukan jumlah pembagian N
- (4) Hitung step pembagi h

$$H = \frac{x_{atas} - x_{bawah}}{N}$$

(5) Untuk i = 0 s/d N, hitung

$$x_i = x_{bawah} + i.h$$

 $y_i = f(x_i)$

- (6) Untuk I = 0 s/d N dicari k dimana
 - *. Bila $f(x_k) = 0$ maka x_k adalah penyelesaian
 - *. Bila $f(x_k).f(x_{k+1}) < 0$ maka :
 - Bila $|f(x_k)| < |f(x_{k+1})|$ maka x_k adalah penyelesaian
 - Bila tidak x_{k+1} adalah penyelesaian atau dapat dikatakan penyelesaian berada di antara x_k dan x_{k+1} .

Flowchart Metode Tabel:

4. Prosedur Percobaan

- 1. Didefinisikan persoalan dari persamaan non linier dengan fungsi sebagai berikut : $F(x)=e^{-x}-x$
- 2. Pengamatan awal
 - a. Gunakan Gnu Plot untuk mendapatkan kurva fungsi persamaan
 - b. Amati kurva fungsi yang memotong sumbu x
 - c. Dapatkan dua nilai pendekatan awal diantara nilai x (b) sebagai nilai a
 (=batas bawah) dan nilai b (=batas atas)
 - d. Jumlah pembagi area (h) = 10, interval pengamatan akar = (b-a)/h.
- 3. Penulisan hasil
 - a. Dapatkan nilai akar x_r setiap iterasi dari awal sampai dengan akhir iterasi
 - b. Akar x_r terletak diantara nilai dua fungsi yang berubah tanda
 - c. Akhir iterasi ditentukan sampai dengan 10 iterasi
- 4. Pengamatan terhadap hasil dengan macam-macam parameter input
 - a. Nilai error (e) akar ditentukan = 0.0001 sebagai pembatas iterasi nilai f(x)
 - b. Jumlah iterasi maksimum
 - c. Bandingkan antara 3a dan 3b terhadap hasil yang diperoleh
 - d. Pengubahan nilai awal batas bawah dan batas atas

Tugas Pendahuluan

Tuliskan dasar-dasar komputasi dari metode tabel untuk menyelesaikan persamaan non linier, sebagai berikut :

- 1. Judul: METODE TABEL
- 2. Dasar teori dari metode Tabel
- 3. Algoritma dan Flowchart

	FORM L	APORAN AKHI	R
Algoritma :			
Listing progr	am yang sudah bena	r :	
Pengamatan a	wal		
a.	Gambar kurva fung		
	Perkiraan batas bav	vah dan batas atas	akar
Hasil percoba			
	hasil x[i] dan F(x[i])		
2. Pengar a.	natan terhadap parai Toleransi error(e) te		araci (N)
a.	a. Toleransi error(e) terhadap jumlah iterasi (N) Toleransi Error (e) Jumlah Iterasi (N)		
	0.1	y Junium Refus.	1 (11)
	0.01		
	0.001		
	0.0001		
b.	20 iterasi (N)	,	a) dan batas atas (b) terhad
	Batas Bawah (a)	Batas Atas (b)	Nilai Error (F(x)=e)
			į l
	0	1	
	0.25	0.75	