Interpolation

Computer Oriented Numerical and Statistical Methods

Minal Shah

Outline

- Polynomial Interpolation
- Difference Tables
- Netwon's Forward and Backward Interpolation Formula
- Lagrange's Formula
- Divided Difference Formula
- Inverse Interpolation

Introduction

- Suppose x and y are two variables and their relation can be expressed as y = f(x); x₁ ≤ x ≤ xn. Then we say that x is an independent variable and y is a dependent variable.
- When the form of f(x) is known, then the value of y can be computed directly corresponding to any value of x in the range x₁ ≤ x ≤ xn.
- However, if the form of f(x) is not known, and only a set of values (x_1,y_1) , (x_2,y_2) ,, (x_n,y_n) satisfying the relation y = f(x) are known, then the process of estimating the value of independent variable y for a given value of x in the range $x_1 \le x \le x_n$ is known as interpolation.

Minal Shah

Introduction

- However, if we move in opposite direction i.e. estimate the value of dependent variable x for a given value of independent variable y, the process is known as inverse interpolation.
- The process of estimating the value of independent variable y for a given value of x outside the range x₁ ≤ x ≤ x_n is known as extrapolation.

Introduction

Minal Shah

Methods Of Interpolation

- The decision of using a particular method depends in tabulation of the functions.
- The tabulated points (x_i,y_i) i = 1,2,...,n of function y = f(x), can be equally spaced or unequal spaced.
- Methods for equally spaced functions
 - Netwon's forward interpolation formula
 - Netwon's backward interpolation formula

Methods Of Interpolation

- Methods for unequally spaced functions
 - Netwon's divided difference interpolation formula
 - Lagrangian interpolation (Lagrange's)
 - These methods also works well for equally spaced function.

Minal Shah

Finite Differences

- The finite differences are either difference between the values of the function or the differences between the past differences.
- There are 3 types of differences
 - Forward Differences
 - Backward Differences
 - Divided Differences

Forward Differences

- If y₁, y₂, y₃,, y_n denotes the values of the function of type y = f(x) at x = x₁, x₂,, x_n then y₂ y₁, y₃ y₂, y₄ y₃,, y_n y_{n-1} are called the forward differences of y
- These differences are denoted as $\Delta y_1, \, \Delta y_2, \, \Delta y_3, \, \ldots, \, \Delta y_{n-1}$
- \forall \therefore $\Delta y_1 = y_2 y_1$, $\Delta y_2 = y_3 y_2$,, $\Delta y_{n-1} = y_n y_{n-1}$ where Δ is called forward difference operator and Δy_1 , Δy_2 , Δy_3 , ..., Δy_{n-1} are called first order forward differences.

Minal Shah

Forward Differences

- The differences of the first order forward differences are called second order forward differences and are denoted as Δ²y₁, Δ²y₂, Δ²y₃, ..., Δ²y_{n-1}
- $\forall \therefore \Delta^2 y_1 = \Delta y_2 \Delta y_1 = y_3 2y_2 + y_1$
- $\Delta^2 y_2 = \Delta y_3 \Delta y_2 = y_4 2y_3 + y_2$
- In the similar manner, the third order forward differences are

$$\forall \Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1 = y_4 - 3y_3 + 3y_2 - y_1$$

$$\forall \Delta^3 y_2 = \Delta^2 y_3 - \Delta^2 y_2 = y_5 - 3y_4 + 3y_3 - y_2$$

In general, the first order forward differences at the ith point is Δy_i = y_{i+1} - y_i and the jth order forward differences at the ith point is Δ^jy_i = Δ^{j-1}y_{i+1} - Δ^{j-1}y_i

Backward Differences

- If y₁, y₂, y₃,, y_n denotes the values of the function of type y = f(x) at x = x₁, x₂,, x_n then y₂ y₁, y₃ y₂, y₄ y₃,, y_n y_{n-1} are called the backward differences of y
- These differences are denoted as ∇y₂, ∇y₃, ..., ∇yₙ
 ∀ ∴ ∇y₂ = y₂ y₁, ∇y₃ = y₃ y₂,, ∇yₙ = yₙ yₙ-¹
 where ∇ is called backward difference operator and ∇y₂, ∇y₃, ..., ∇yₙ are called first order backward differences

Minal Shah

Backward Differences

- The differences of the first order backward differences are called second order backward differences and are denoted as ∇²y₃, ∇²y₄, etc.
- $\forall \therefore \nabla^2 y_3 = \nabla y_3 \nabla y_2 = y_3 2y_2 + y_1$
- $\nabla^2 y_4 = \nabla y_4 \nabla y_3 = y_4 2y_3 + y_2$
- In the similar manner, the third order backward differences are
- $\forall \nabla^3 y_4 = y_4 3y_3 + 3y_2 y_1$ $\forall \nabla^3 y_5 = y_5 - 3y_4 + 3y_3 - y_2$
- In general, the first order backward differences at the ith point is ∇y_i = y_i y_{i-1} and the jth order backward differences at the ith point is ∇^jy_i = ∇^{j-1}y_i ∇^{j-1}y_{i-1}

12

Divided Differences

 If y₁, y₂, y₃,, y_n denotes the values of the function of type y = f(x) at x = x₁, x₂,, x_n then

$$\frac{y_2 - y_1}{x_2 - x_1}$$
, $\frac{y_3 - y_2}{x_3 - x_2}$, $\frac{y_4 - y_3}{x_4 - x_3}$,..., $\frac{y_n - y_{n-1}}{x_n - x_{n-1}}$

 are called the divided differences of y and are denoted as Δ_dy₁, Δ_dy₂, Δ_dy₃, ..., Δ_dy_{n-1}

$$\forall :: \Delta_d y_1 = (y_2 - y_1) / (x_2 - x_1) = [x_1, x_2]$$

$$\forall \Delta_{d} y_2 = (y_3 - y_2) / (x_3 - x_2) = [x_2, x_3]$$

$$\forall \Delta_d y_{n-1} = (y_n - y_{n-1}) / (x_n - x_{n-1}) = [x_{n-1}, x_n]$$

Where Δ_d is called divide difference operator and Δ_dy₁, Δ_dy₂, ..., Δ_dy_n are called first order divided differences.

differences.

Minal Shah

13

Divided Differences

- The differences of the first order divided differences are called second order divided differences and are denoted as Δ²_dy₁, Δ²_dy₂, ..., Δ²_dy_p etc.
- $\forall \therefore \Delta^2_{d} y_1 = (\Delta_{d} y_2 \Delta_{d} y_1) / (x_3 x_1)$
- $\forall \Delta^2_{d} y_2 = (\Delta_{d} y_3 \Delta_{d} y_2) / (x_4 x_2)$
- In the similar manner, the third order forward differences are
- $\forall \Delta_d^3 y_1 = (\Delta_d^2 y_2 \Delta_d^2 y_1) / (x_4 x_1)$
- $\forall \Delta_d^3 y_2 = (\Delta_d^2 y_3 \Delta_d^2 y_2) / (x_5 x_2)$
- In general, the first order divided differences at the ith point is $\Delta_d y_i = (y_{i+1} y_i) / (x_{i+1} x_i)$ and the jth order forward differences at the ith point is $\Delta_d^{j} y_1 = (\Delta_d^{j-1} y_{i+1} \Delta_d^{j-1} y_i) / (x_{i+1} x_i)$

14

Differences Tables

 A difference table is a table that lists the differences of the function values and the differences of differences in succession.

Minal Shah

Forward Difference Table

 Let us consider the values y₁, y₂, y₃, y₄ of the function type y = f(x) tabulated at equally spaced points x₁, x₂, x₃, x₄. The forward difference table along with tabulated points will look like

Forward Difference Table								
i	Xi	y _i	Δy_{i}	$\Delta^2 y_i$	$\Delta^3 y_i$			
1	X ₁	y ₁	$\Delta y_1 = y_2 - y_1$	$\Delta^2 \mathbf{y}_1 = \Delta \mathbf{y}_2 - \Delta \mathbf{y}_1$	$\Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1$			
2	X_2	y ₂	$\Delta y_2 = y_3 - y_2$	$\Delta^2 \mathbf{y}_2 = \Delta \mathbf{y}_3 - \Delta \mathbf{y}_2$				
3	X ₃	y ₃	$\Delta y_3 = y_4 - y_3$					
4	X ₄	y ₄						

Forward Difference Table

- The forward difference table for function tabulated at n equally spaced points can be represented by a matrix of size (n-1) * (n-1) where jth order frequency at the ith point (Δ^j y_i) is represented by the element d_{ij} of matrix D.
- Note that only the elements in the column 1 to (n i), for rows i = 1, 2,, n-1 are of interest.

Minal Shah

Backward Difference Table

 Let us consider the values y₁, y₂, y₃, y₄ of the function type y = f(x) tabulated at equally spaced points x₁, x₂, x₃, x₄. The Backward difference table along with tabulated points will look like

	Backward Difference Table						
i	Xi	y _i	∇y_i	$ abla^2 \mathbf{y_i}$	$ abla^3 \mathbf{y_i}$		
1	X ₁	y ₁					
2	X ₂	y ₂	$\nabla y_2 = y_2 - y_1$				
3	x ₃	y ₃	$\nabla y_3 = y_3 - y_2$	$\nabla^2 \mathbf{y}_3 = \nabla \mathbf{y}_3 - \nabla \mathbf{y}_2$			
4	X ₄	y ₄	$\nabla y_4 = y_4 - y_3$	$\nabla^2 \mathbf{y}_4 = \nabla \mathbf{y}_4 - \nabla \mathbf{y}_3$	$ \nabla^3 \mathbf{y}_4 = \nabla^2 \mathbf{y}_4 - \\ \nabla^2 \mathbf{y}_3 $		

Divided Difference Table

 Let us consider the values y₁, y₂, y₃, y₄ of the function type y = f(x) tabulated at points x₁, x₂, x₃, x₄ not necessarily equally spaced. The divide difference table along with tabulated points will look like

Minal Shah

Divided Difference Table

Divided Difference Table								
i	X _i	y _i	$\Delta_{ m d} { m y}_{ m i}$	$\Delta^2 y_{i}$	$\Delta^3 y_i$			
1	x ₁	y ₁	$\Delta_{d}y_{1} = (y_{2} - y_{1}) / (x_{2} - x_{1})$	$ \Delta_{d}^{2} y_{1} = (\Delta_{d} y_{2} - \Delta_{d} y_{1}) / (x_{3} - x_{1}) $	$\Delta_{d}^{3}y_{1} = (\Delta_{d}^{2}y_{2} - \Delta_{d}^{2}y_{1}) / (x_{4} - x_{1})$			
2	x ₂	y ₂	$\Delta_{d}y_{2} = (y_{3} - y_{2}) / (x_{3} - x_{2})$	$\Delta_{\rm d} y_2 = (\Delta_{\rm d} y_3 - \Delta_{\rm d} y_2) / (x_4 - x_2)$				
3	x ₃	y ₃	$\Delta_{d} y_{3} = (y_{4} - y_{3}) / (x_{4} - x_{3})$					
4	X ₄	y ₄						

Netwon's Methods Of Interpolation

- It is divided into following methods depending on the type of differences being used.
- 1. Netwon's Forward Difference Interpolation Formula
- 2. Netwon's Backward Difference Interpolation Formula
- 3. Netwon's Divided Difference Interpolation Formula
- If the function is tabulated at equal intervals, then we can use either Netwon's Forward Difference Interpolation Formula or Netwon's Backward Difference Interpolation Formula.

Minal Shah 21

Netwon's Forward Difference Interpolation Formula

- Let us assume that the function y(x) is tabulated at (n+1) equally spaced (interval size h) points.
- To derive the formula for netwon's forward difference interpolation assume a polynomial of type
 y(x) = a₁ + a₂(x-x₁) + a₃(x-x₁)(x-x₂)+ +a_{n+1}(x-x₁)(x-x₂) (x-x_n)
- It is the nth order polynomial in x.
- It is an interpolation polynomial for the table values x_i and y_i then the polynomial must pass through all points.
- \forall ... we can obtain y_i by substituting the corresponding x_i for x

- At $x = x_1$ $y_1 = a_1$
- $x = x_2$ $y_2 = a_1 + a_2(x_2-x_1)$
- $x = x_3$ $y_3 = a_1 + a_2(x_3 x_1) + a_3(x_3 x_1)(x_3 x_2)$
- And so on.
- Since x_i's are equally spaced therefore we can write x_{i+1} x_i = h and x_{i+m} x_i = mh then we can express the function values y_i's in terms of intervals values as

$$y_1 = a_1$$

 $y_2 = a_1 + a_2h$
 $y_3 = a_1 + a_2(2h) + a_3(2h)(h)$

 $y_{n+1} = a_1 + a_2(nh) + a_3(nh)((n-1)h) + + a_{n+1}(nh)((n-1)h)...(h)$

Minal Shah

Netwon's Forward Difference Interpolation Formula

Now for a₁, a₂, a₃, a_{n+1} we get

$$a_1 = y_1$$
 $a_2 = \frac{y_2 - a_1}{h} = \frac{y_2 - y_1}{h}$

$$a_3 = \frac{y_3 - 2y_2 + y_1}{2!h^2}$$

$$a_{n+1} = \frac{y_{n+1} - ny_n + \dots + y_1}{n!h^n}$$

· Using forward difference table we get

$$a_{1} = y_{1}$$

$$a_{2} = \frac{\Delta y_{1}}{h}$$

$$a_{3} = \frac{\Delta^{2} y_{1}}{2!h^{2}}$$

$$\vdots$$

$$a_{n+1} = \frac{\Delta^{n} y_{1}}{n!h^{n}}$$

Minal Shah

25

Netwon's Forward Difference Interpolation Formula

Substituting these values of a₁, a₂, a₃, a_{n+1} in equation [a] we get

$$y(x) = y_{1} + \frac{\Delta y_{1}}{h}(x - x_{1}) + \frac{\Delta y_{1}}{2W^{2}}(x - x_{1})(x - x_{2}) + \frac{\Delta^{2}y_{1}}{2W^{2}}(x - x_{1})(x - x_{2}) + \frac{\Delta^{2}y_{1}}{nW^{2}}(x - x_{1})(x - x_{2}) \dots (x - x_{n})$$
.....b

- If we use the relation $(x-x_1)/h = u$ then $x x_1 = hu$ $x - x_2 = x - (x_1 + h) = h(u-1)$ $x - x_3 = x - (x_2 + h) = h(u-2) \dots$ $x - x_n = h(u-(n-1))$
- Substituting these values $(x-x_1)$, $(x-x_2)$,, $(x-x_n)$ in equation [b] we get

Minal Shah

Netwon's Forward Difference Interpolation Formula

Simplifying we get

$$y(x) = y_1 + \Delta y_1 + \frac{2y_1}{2}u(u - 1) + \frac{2y_1}{n}u(u - 1) + \frac{2y_1}$$

- The above derivation assumes that x₁ < x < x₂
- This polynomial is called Netwon's Forward Difference Interpolation Formula

29

Netwon's Backward Difference Interpolation Formula

- Let us assume that the function y(x) is tabulated at (n+1) equally spaced (interval size h) points.
- To derive the formula for netwon's backward difference interpolation assume a polynomial of type $y(x) = a_1 + a_2(x-x_n) + a_3(x-x_n)(x-x_{n-1}) + \dots + a_{n+1}(x-x_n)(x-x_{n-1}) \dots (x-x_1)$ [a]
- It is the nth order polynomial in x.
- It is an interpolation polynomial for the table values x_i and y_i then the polynomial must pass through all points.
- \forall ... we can obtain y_i by substituting the corresponding x_i for x

- At $x = x_n y_n = a_1$
- $x = x_{n-1}$ $y_{n-1} = a_1 + a_2(x_{n-1} x_n)$
- $x = x_{n-2}$ $y_{n-2} = a_1 + a_2(x_{n-2} x_n) + a_3(x_{n-2} x_n)(x_{n-2} x_{n-1})$
- And so on.
- Since x_i's are equally spaced therefore we can write x_i x_{i-1} = h and x_{i-1} x_i = -h and x_{i-m} x_i = -mh then we can express the function values y_i's in terms of intervals values as

$$y_n = a_1$$

 $y_{n-1} = a_1 + a_2(-h)$
 $y_{n-2} = a_1 + a_2(-2h) + a_3(-2h)(-h)$
.....

......
$$y_1 = a_1 + a_2(-nh) + a_3(-nh)(-(n-1)h)+....+a_{n+1}(-nh)(-(n-1)h)$$

1)h)...(-h)

Minal Shah

31

Netwon's Backward Difference Interpolation Formula

Now for a₁, a₂, a₃, a_{n+1} we get

$$a_1 = y_n$$
 $a_2 = \frac{y_{n-1} - a_1}{h} = \frac{y_n - y_{n-1}}{h}$

$$a_3 = \frac{y_n - 2y_{n-1} + yn - 2}{2!h^2}$$

$$a_{n+1} = \frac{y_1 - ny_2 + \dots + y_n}{n!h^n}$$

Using backward difference table we get

$$a_{1} = y_{n}$$

$$a_{2} = \frac{\nabla y_{n}}{h}$$

$$a_{3} = \frac{\nabla^{2} y_{n}}{2!h^{2}}$$

$$\vdots$$

$$\vdots$$

$$a_{n+1} = \frac{\nabla^{n} y_{n}}{n!h^{n}}$$

Minal Shah

33

Netwon's Backward Difference Interpolation Formula

Substituting these values of a₁, a₂, a₃, a_{n+1} in equation [a] we get

$$y(x) = y_n + \frac{\nabla y_n}{h}(x - x_n) + \frac{\nabla^2 y_n}{2 y_n^2} (x - x_n)(x - x_{n-1}) + \frac{\nabla^n y_n}{n y_n^2} (x - x_n)(x - x_{n-1}) + \frac{\nabla^n y_n}{n y_n^2} (x - x_n)(x - x_{n-1}) + \frac{\nabla^n y_n}{n y_n^2} (x - x_n)(x - x_n)(x - x_n) + \frac{\nabla^n y_n}{n y_n^2} (x - x_n)(x - x_n)(x - x_n) + \frac{\nabla^n y_n}{n y_n^2} (x - x_n)(x - x_n)(x$$

34

- If we use the relation $(x-x_n)/h = u$ then $x x_n = hu$ $x - x_{n-1} = x - (x_n - h) = h(u+1)$ $x - x_{n-2} = x - (x_{n-1} - h) = h(u+2) \dots$ $x - x_1 = h(u+(n-1))$
- Substituting these values (x-x_n), (x-x_{n-1}),, (x x₁) in equation [b] we get

Minal Shah 35

Netwon's Backward Difference Interpolation Formula

Simplifying we get

$$y(x) = y_n + \nabla y_{n} u + \frac{\nabla^2 y_n}{2} u(u + 1) + \frac{\nabla^2 y_n}{n} u(u + 1)^* \cdot \cdot \cdot *(u + (n - 1))$$

- The above derivation assumes that x_{n-1} < x < x_n
- This polynomial is called Netwon's Backward
 Difference Interpolation Formula

37

Netwon's Divided Difference Interpolation Formula

- Let us assume that the function y(x) is tabulated at (n+1) equally spaced (interval size h) points.
- To derive the formula for netwon's divided difference interpolation assume a polynomial of type
 y(x) = a₁ + a₂(x-x₁) + a₃(x-x₁)(x-x₂)+ +a_{n+1}(x-x₁)(x-x₂) (x-x_n)
- It is the nth order polynomial in x.
- It is an interpolation polynomial for the table values x_i and y_i then the polynomial must pass through all points.
- \forall ... we can obtain y_i by substituting the corresponding x_i for x

Netwon's Divided Difference Interpolation Formula

- At $x = x_1 y_1 = a_1$
- $x = x_2$ $y_2 = a_1 + a_2(x_2-x_1)$
- $x = x_3$ $y_3 = a_1 + a_2(x_3 x_1) + a_3(x_3 x_1)(x_3 x_2)$
- And so on.
- Solving for a₁, a₂, a₃, a_{n+1} we get

Minal Shah 39

Netwon's Divided Difference Interpolation Formula

$$a_1 = y_1$$
 $a_2 = \frac{y_2 - a_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$

$$a_3 = \frac{1}{(x_3 - x_2)} * \left[\frac{(y_3 - y_1)}{(x_3 - x_1)} - \frac{(y_2 - y_1)}{(x_2 - x_1)} \right]$$

andon

Netwon's Divided Difference Interpolation Formula

Using divided difference table we get

$$a_{1} = y_{1}$$

$$a_{2} = \Delta_{d} y_{1}$$

$$a_{3} = \Delta_{d}^{2} y_{1}$$

$$\vdots$$

$$a_{n+1} = \Delta_{d}^{n} y_{1}$$

Minal Shah 41

Netwon's Divided Difference Interpolation Formula

Substituting these values of a₁, a₂, a₃, a_{n+1} in equation [a] we get

 This polynomial is called Netwon's Divided Difference Interpolation Formula

Lagrangian / Lagranges Interpolation Formula

 In order to derive a general formula for lagrangian interpolation, we consider a second order polynomial of type.

$$y(x) = a_1(x-x_2)(x-x_3) + a_2(x-x_1)(x-x_3) + a_3(x-x_1)(x-x_2)$$
.....[a

passing through the points (x_1,y_1) , (x_2,y_2) , and (x_3,y_3) where a_1 , a_2 , and a_3 are unknown constants whose values are determined as follows.

• At $x = x_1$ $y(x_1) = a_1(x_1 - x_2)(x_1 - x_3)$

Minal Shah 43

Lagrangian / Lagranges Interpolation Formula

$$At \ x = x_1 \quad y(x_1) = a_1(x_1 - x_2)(x_1 - x_3)$$

$$\Rightarrow a_1 = \frac{y_1}{(x_1 - x_2)(x_1 - x_3)}$$

$$At \ x = x_2 \quad y(x_2) = a_2(x_2 - x_1)(x_2 - x_3)$$

$$\Rightarrow a_2 = \frac{y_2}{(x_2 - x_1)(x_2 - x_3)}$$

$$At \ x = x_3 \quad y(x_3) = a_3(x_3 - x_1)(x_3 - x_2)$$

$$\Rightarrow a_3 = \frac{y_3}{(x_3 - x_1)(x_3 - x_2)}$$

Lagrangian / Lagranges Interpolation Formula

Substituting these values of a₁, a₂, a₃ in equation [a] we get

$$y(x) = y_1 * \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} +$$

$$y_2 * \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} +$$

$$y_3 * \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$$

Minal Shah 45

Lagrangian / Lagranges Interpolation Formula

$$f(x) = f(x_0) * (x_1) (x_2) ... x_{n-1}(x_1) + (x_1 x_2) (x_2) ... x_{n-1}(x_1) + \dots + (x_1 x_2) (x_2) ... x_{n-1}(x_1) + \dots + (x_1 x_2) (x_2) ... x_{n-1}(x_1) + \dots + (x_1 x_2) (x_1 x_2) (x_1 x_2) ... x_{n-1}(x_1) + \dots + (x_n x_n) (x_n x_n) (x_n x_n) (x_n x_n) ... x_n x_{n-1}(x_n)$$

 This polynomial is known as the Lagrange's polynomial

