FEATURES

- Avalanche Rugged Technology
- Rugged Gate Oxide Technology
- Lower Input Capacitance
- Improved Gate Charge
- **■** Extended Safe Operating Area
- **■** 175°C Operating Temperature
- Lower Leakage Current : 10 µA (Max.) @ V_{DS} = 100V
- Lower $R_{DS(ON)}$: 0.092 Ω (Typ.)

 $BV_{DSS} = 100 V$ $R_{DS(on)} = 0.11 \Omega$ $I_D = 14 A$

Absolute Maximum Ratings

Symbol	Characteristic		Value	Units	
V _{DSS}	Drain-to-Source Voltage		100	٧	
,	Continuous Drain Current (T _c =25℃) Continuous Drain Current (T _c =100℃)		14	A	
l _D			9.9		
I _{DM}	Drain Current-Pulsed	0	56	Α	
V _{GS}	Gate-to-Source Voltage		±20	V	
E _{AS}	Single Pulsed Avalanche Energy	2	261	mJ	
AR	Avalanche Current	0	14	Α	
E _{AR}	Repetitive Avalanche Energy	(5.5	mJ	
d∨/dt	Peak Diode Recovery dv/dt	3	6.5	V/ns	
n	Total Power Dissipation (T _c =25℃)		55	W	
P_{D}	Linear Derating Factor	ļ	0.36	W℃	
	Operating Junction and		EE 4- 1476		
T, TstG	Storage Temperature Range		-55 to +175		
т	Maximum Lead Temp. for Soldering		200	T °C	
T _t	Purposes, 1/8" from case for 5-second	ds	300		

Thermal Resistance

Symbol	Characteristic	Тур.	Max.	Units	
R _{euc}	Junction-to-Case	_	2.74		
R _{ecs}	Case-to-Sink	0.5	_	∵cw.	
R _{8JA} Junction-to-Ambient		_	62.5	1	

Electrical Characteristics (T_c=25°C unless otherwise specified)

Symbol	Characteristic	Min.	Тур.	Max.	Units	Test Condition	
BV _{oss}	Drain-Source Breakdown Voltage	100	_		٧	V _{GS} =0V,I _D =250μA	
Δ BV/ Δ T,	Breakdown Voltage Temp. Coeff.		0.11		W°C	l _o =250μΑ See Fig 7	
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	٧	V _{DS} =5V,I _D =250μA	
1	Gate-Source Leakage, Forward		-	100	nΑ	V _{GS} =20V	
GSS	Gate-Source Leakage, Reverse	-	-	-100	ıς	V _{GS} =-20V	
,	Drain to Source Lackage Current	-	1	10	μА	V _{DS} =100V	
DSS	Drain-to-Source Leakage Current		1	100		V _{DS} =80V,T _C =150℃	
R _{DS(on)}	Static Drain-Source On-State Resistance	-		0.11	Ω	V _{GS} =10V,I _D =7A	
g _{fs}	Forward Transconductance		10.25	-	σ	V _{DS} =40V,I _D =7A	
C _{iss}	Input Capacitance		610	790		V -0VV -05V4-4MI-	
Coss	Output Capacitance	-	150	175	рF	V _{GS} =0V,V _{DS} =25V,f =1MH	
C _{riss}	Reverse Transfer Capacitance		62	72		See Fig 5	
t _{d(on)}	Turn-On Delay Time	_	13	40		\/ -E0\/ -14A	
t,	Rise Time		14	40	ns	V ₀₀ =50V,I ₀ =14A, R _G =12Ω See Fia 13 ④ ⑤	
t _{d(off)}	Turn-Off Delay Time	-	55	110			
ţ	Fall Time		36	80		See Fig 13 45	
Q _a	Total Gate Charge		27	36	пC	V _{DS} =80V, V _{GS} =10V,	
Q _{ga}	Gate-Source Charge	-	4.5			I _D =14A	
Q _{gd}	Gate-Drain("Miller") Charge		12.8			See Fig 6 & Fig 12 @ 5	

Source-Drain Diode Ratings and Characteristics

Symbol	Characteristic		Min.	Тур.	Max.	Units	Test Condition	
ıs	Continuous Source Current				14		Integral reverse pn-diode	
SM	Pulsed-Source Current	0			56	A	in the MOSFET	
V _{so}	Diode Forward Voltage	4		_	1.5	٧	T_=25°C,Is=14A,Vgs=0V	
t _{rr}	Reverse Recovery Time		_	109	-	ns	T _J =25℃,I _F =14A	
Q _n	Reverse Recovery Charge			0.41		μС	di _F /dt=100A/μs ④	

Notes;

- ① Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature
- \bigcirc L=2mH, I_{AS}=14A, V_{DD}=25V, R_G=27 Ω , Starting T, =25 $^{\circ}$ C
- 3 $I_{SD} \le 14A$, di/dt $\le 350A/\mu$ s, $V_{DD} \le BV_{DSS}$, Starting T, =25°C
- ④ Pulse Test: Pulse Width = 250 µs, Duty Cycle ≤ 2%
- 5 Essentially Independent of Operating Temperature

- ▶ 汇集 8,000 家半导体厂商,坐拥 70,000,000 个电子元器件 datasheet
- 涉及详细参数,器件、封装、应用图,参考设计,中文PDF
- 🕨 工程师首选 datasheet 全球数据中心,你能想到我们就能搜到

集成电路查询网:www.datasheet5.com

- 国内唯一一家电路图分享、交易平台,让电路体现你电子行业的价值
- 聚焦万量级热门免费电路,哪怕你是一个初学者,手把手教你创造出实物。

电路城:www.cirmall.com

- 百万电子行业工程师(创客)知识交流平台,电路图免费分享乐园
- 百万精品电路图为你倾心准备
- > 工程师的驿站、技术达人停泊的港湾

电子电路图网:www.cndzz.com

- 依托全球电子业 16 年的 Findchips 充当幕后器件搜索引擎
- ▶ 国内首家实时 BOM 批量比价平台,让你站在最高的舞台纵观电子行业

批量器件比价:www.bom2buy.com

Fig 9. Max. Safe Operating Area

Quantion in This Area

is limited by R on ton

100 µs

100 µs

100 µs

1 mm

100 mg

101 102

2 Ty = 175 °C

3. Single Pulse

V_{IS} , Drain-Source Voltage [V]

Fig 12. Gate Charge Test Circuit & Waveform

Fig 13. Resistive Switching Test Circuit & Waveforms

Fig 14. Unclamped inductive Switching Test Circuit & Waveforms

Fig 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

