Review of Homework-1 (Group-2)

Group 1

1 problem1

1.1

To prove equivalence, both necessity and sufficiently should be proved. In the solution, only the necessity is proved.

1.2

Same as the previous one.

1.3

The answer seems correct and clear.

1.4

The answer is correct and comprehensive.

1.5

Interesting and clear proof.

1.6

The solution should be correct.

2 problem2

2.1

Interesting and clear proof.

2.2

The answer seems correct.

2.3

We are a bit confused that the authors have already got the inequality result of (1) and (2) in problem 1.2.b:

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1) + \frac{1}{2L} \|\nabla f(x_2) - \nabla f(x_1)\|_2^2$$
 (1)

$$f(x_1) \ge f(x_2) + \nabla f(x_2)^T (x_1 - x_2) + \frac{1}{2L} \|\nabla f(x_1) - \nabla f(x_2)\|_2^2$$
 (2)

But the authors prove these inequality again by using another method different from their previous answer.

3 problem3

The authors give definition of different convergence rate without giving examples. There is a bit ambiguous in the inequality (31).

4 problem4

4.1 a

The answer seems to be correct.

4.2 b

The answer seems to be correct.

4.3

The matrix to compute Newton step should be like:

$$\begin{bmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_{nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}) \\ 0 \end{bmatrix}$$
(3)

instead of

$$\begin{bmatrix} \nabla^2 f(\mathbf{x})^2 & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_{nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}) \\ 0 \end{bmatrix}$$
(4)

And the authors also claim that it is computational infeasible to compute the inverse of $\begin{bmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix}$. But I would argue since the Hessian matrix $\nabla^2 f(\mathbf{x})$ is

diagonal matrix, we may still be able to compute the inverse of $\begin{bmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix}$

4.4 d

I believe the convexity of r(x) should be discussed.

5 problem5

The same as our solution.