

Report NO.: TS201410325001 Page 106 / 120

Measurement Conditions

as far as not given on page 1.

ASY system configuration, as fair as first	DASY5	V52.8.6
DASY Version		
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
	835 MHz ± 1 MHz	
requency	835 MHZ ± 1 WHZ	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and carcounters	Temperature	Permittivity	Conductivity
	22.0 °C	41.5	0.90 mho/m
Nominal Head TSL parameters	(22.0 ± 0.2) °C	40.4±6%	0.94 mho/m ± 6 %
Measured Head TSL parameters			
Head TSL temperature change during test	< 0.5 °C	1444	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
	250 mW input power	2.47 W/kg
SAR measured		9.51 W/kg ± 17.0 % (ks/2)
SAR for nominal Head TSL parameters	normalized to 1W	9.01 11119

TSI Mend TSI	condition	
SAR averaged over 10 cm ² (10 g) of Head TSL	250 mW input power	1.59 W/kg
SAR measured		6.17 W/kg ± 16.5 % (k=2)
SAR for nominal Head TSL parameters	normalized to 1W	otti ming -

Body TSL parameters

he following parameters and calculations were appoint	Temperature	Permittivity	Conductivity	
	22.0 °C	55.2	0.97 mho/m	
Nominal Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	1.00 mho/m ± 6 %	
Measured Body TSL parameters	<0.5°C	2445	-	
Body TSI temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR averaged over 1 cm (1 a)	250 mW input power	2.44 W/kg
SAR measured		9.51 W/kg ± 17.0 % (k=2)
CAD for nominal Body TSL parameters	normalized to 1W	3,01

1 to a 1 Dady TCI	condition		
SAR averaged over 10 cm3 (10 g) of Body TSL	250 mW input power	1.59 W/kg	
SAR measured		6.23 W/kg ± 16.5 % (k=2)	
CAR for cominal Body TSL parameters	normalized to 1W	6.23 W/kg = 10.5 /6 (10.2)	

Certificate No: D835V2-4d154_Jun13

Page 3 of 8

<u>Report NO.: TS201410325001</u> Page 107 / 120

Appendix

Antenna Parameters with Head TSL

	70.10.00.00	
Impedance, transformed to feed point	52.4 Ω + 2.8 jΩ	
Impedance, transformed to receipt	+ 28.8 dB	
Deturn Lots		

Antenna Parameters with Body TSL

t and to lead point	48.2 Ω - 4.5 Ω
Impedance, transformed to feed point	- 26.0 dB
Return Loss	- 20.0 00

General Antenna Parameters and Design

Electrical Delay (one direction)	1,432 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still "exercise to the Standard."

according to the standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	SPEAG
Manufactured by	December 28, 2012
Manufactured on	December 651 551

Certificate No: D835V2-4d154_Jun13

Page 4 of 8

Report NO.: TS201410325001 Page 108 / 120

DASY5 Validation Report for Head TSL

Date: 06.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated; 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.316 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.76 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

Report NO.: TS201410325001 Page 109 / 120

Report NO.: TS201410325001 Page 110 / 120

DASY5 Validation Report for Body TSL

Date: 05.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\epsilon_c = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type; QD000P49AA; Serial: 1001
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55,428 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Report NO.: TS201410325001 Page 111 / 120

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d154_Jun13

Page 8 of 8

Report NO.: TS201410325001 Page 112 / 120

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Certificate No: D1900V2-5d142 Jun13

Client Sunway CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d142 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date June 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 11, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d142_Jun13

Page 1 of 8

Report NO.: TS201410325001 Page 113 / 120

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d142_Jun13

Report NO.: TS201410325001 Page 114 / 120

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2022	444

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5,41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Report NO.: TS201410325001 Page 115 / 120

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.8 \Omega + 5.8 j\Omega$
Return Loss	- 24.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.0 \Omega + 6.2 j\Omega$	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d142_Jun13

Report NO.: TS201410325001 Page 116 / 120

DASY5 Validation Report for Head TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.34$ S/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.950 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.83 W/kg: SAR(10 g) = 5.18 W/kg

SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.18 W/kgMaximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dBW/kg

Report NO.: TS201410325001 Page 117 / 120

Impedance Measurement Plot for Head TSL

Report NO.: TS201410325001 Page 118 / 120

DASY5 Validation Report for Body TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.950 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Report NO.: TS201410325001

Page 119 / 120

Impedance Measurement Plot for Body TSL

Report NO.: TS201410325001 Page 120 / 120

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(Registration No. CNAS L6487)

Shenzhen Sunway Communication Co., Ltd. Testing Center

1/F., Building A, SDG Info Port, Kefeng Road, Hi-Tech Park,

Nanshan District, Shenzhen, Guangdong, China

is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence of testing.

The scope of accreditation is detailed in the attached appendices bearing the same registration number as above. The appendices form an integral part of this certificate.

Date of Issue: 2013-10-29

Date of Expiry: 2016-10-28

Date of Initial Accreditation: 2013-10-29

Date of Update: 2013-10-29

其建筑

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment, CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

No.CNASAL2

0008227