*교재 양 옆의 용어들 메모

CH01_컴퓨터시스템 개요

CH02_CPU의 구조와 기능

CH03_컴퓨터와 산술의 논리연산

CH04_제어 유니트

CH05_기억장치

CH06_보조저장장치

CH07_시스템 버스, I/O 및 인터럽트

CH08_고성능 컴퓨터시스템 구조

CH01_컴퓨터시스템 개요

CH01_컴퓨터시스템 개요

<u>Aa</u> 용어	로 설명	:= 태 그
<u>소프트웨어</u> (software)	정보처리의 종류와 수행시간을 지정해주는 명령(command)들의 집합	
<u>중앙처리장치</u> (<u>CPU)</u>	프로그램 실행과 데이터 처리를 담당하는 핵심 요소로서, 프로세서 (processor)라고도 부름	
<u>기억장치</u> (<u>memory)</u>	프로그램 코드와 데이터를 저장하는 장치	
<u>주기억장치(main</u> <u>memory)</u>	액세스 속도가 높지만, 프로그램 실행 중에만 사용될 수 있는 일시적 기억장치	
<u>보조저장장치</u>	속도는 느리지만, 영구저장 능력을 가진 보조적 기억 장치	
<u>입출력장치(I/O</u> <u>Device)</u>	사용자와 컴퓨터간의 상호작용(interaction)을 위한 장치	
<u>Untitled</u>		
<u>컴파일러</u> (compiler)	고급언어 프로그램을 기계어로 변환해주는 소프트웨어	
<u>기계어(machine</u> language)	컴퓨터 하드웨어가 이해할 수 있는 언어	

<u>Aa</u> 용어	■ 설명	: 태 그
<u>어셈블리 프로그램</u> (assembly program)	고급 언어와 기계어 사이의 중간 언어인 어셈블리 언어로 작성된 프로그 램	
<u>명령어</u> (instruction)	어셈블리 명령어(assembly instruction)의 약칭	
<u>니모닉스</u> (<u>mnemonics)</u>	명령어가 지정하는 동작을 나타내는 간략화된 기호	
<u>어셈블러</u> (assembler)	어셈블리 프로그램을 기계어로 번역해주는 소프트웨어	
명령어 형식 (instrcution format)	명령어의 비트 수와 용도 및 필드 구성 방법을 지정해주는 형식	
<u>단어(word)</u>	CPU에 의해 한 번에 처리 될 수 있는 비트들의 그룹	
<u>Untitled</u>		
시스템 버스 (system bus)	CPU와 다른 요소들 간의 정보교환 통로	
<u>주소 버스</u> (address bus)	주소 정보를 전송하기 위한 신호선들의 집합	
<u>데이터 버스(data</u> <u>bus)</u>	데이터를 전송하기 위한 신호선들의 집합	
제어 버스(control bus)	시스템 요소들의 동작을 제어하기 위한 신호선들의 집합	
<u>액세스(access)</u>	기억장치에 데이터를 쓰거나, 저장된 내용을 읽는 동작	
기억장치 쓰기 시 간(memory wirte time)	CPU가 기억장치로 주소와 데이터를 보낸 순간부터 저장이 완료될 때까지의 시간	
기억장치 읽기 시 간(memory read time)	CPU가 기억장치로 주소를 보낸 순간부터 읽기 동작이 완료될 때까지의 시간	
데이터 레지스터 (data register)	CPU와 I/O 장치간의 임시 데이터 기억 장치	
<u>상태 레지스터</u> (status register)	I/O 장치의 상태를 나타내는 비트들을 저장하는 레지스터	
데이터 버퍼(data buffer).	CPU와 I/O 장치간의 데이터 임시 기억장치인 데이터 레지스터의 다른 명 칭	

<u>Aa</u> 용어	= 설명	:= 태 그
<u>Untitled</u>		
<u>Difference</u> <u>Engine</u>	산술연산(덧셈, 뺄셈) 및 프린트 기능을 가진 최초의 계산기계	
Analytic Engine	네 가지 산술연산 기능과 입력 및 출력장치를 모두 갖춘 최초의 일반목적 용 계산기계	
<u>IAS 컴퓨터</u>	폰노이만의 설계개념을 적용하여 프로그램 저장과 변경이 가능하도록 구 현된 최초의 디지털 컴퓨터	
<u>폰노이만 아키텍쳐</u> (von Neumann Arcithecture)	폰노이만이 제안한 컴퓨터구조 설계 개념으로서, 기억 장치에 저장된 프로그램을 프로그램 카운터(program counter)가 지정하는 순서댈 실행 시킴	
<u>집적회로(IC)</u>	실리콘 반도체 칩에 다수의 트랜지스터들을 넣어(집적시켜) 제조한 전자 부품	
<u>실리콘 웨이퍼</u> (silicon wafer)	반도체 칩의 재료인 실리콘을 수평 방향으로 절단하여 만든 원형판	
<u>인쇄회로기판</u> <u>(PCB)</u>	전자회로들 간의 연결을 위한 회로 선들을 미리 부착시켜놓은 가판	
<u>마이크로프로세서</u> (microprocessor)	CPU 내부 회로 전체를 하나의 반도체 칩에 넣어 제조한 IC로서, 컴퓨터의 크기 감소 및 가격 하락에 지대한 영향을 미친 혁신적 전자부품	
<u>개인용 컴퓨터</u> (personal computer)	개인이 소유할 수 있는 수준의 크기와 가격대의 컴퓨터에 대한 통칭	
임베디드 컴퓨터 (embeded computer)	각종 기계장치 혹은 전자 장치의 내부에 설치되어 그 장치들의 동작을 제어(control)하는 기능을 수행하는 소형 컴퓨터	
<u>워크스테이션</u> (workstation)	고속 그래픽처리 및 시뮬레이션 등에 상요되는 64비트급 고성능 컴퓨터	
<u>슈퍼미니컴퓨터</u> (<u>super-</u> <u>minicomputer)</u>	미니컴퓨터의 수십 배 성능을 가지는 서버급 컴퓨터 시스템	
<u>다운사이징</u> <u>(downsizing)</u>	대형컴퓨터를 이용한 중앙집중식 처리 방식에서 여러 대의 중형급 시스템들을 이용한 응용별 처리 방식으로 바뀌어가는 현상	
<u>슈퍼컴퓨터</u> (supercomputer)	현존하는 컴퓨터들 중에서 처리 속도와 저장 용량이 상대적으로 월등한 컴퓨터들로서 주로 대규모 과학계산(scientific computation) 응용들을 처리하며 수천 개 이상의 CPU 들을 이용한 병렬처리(parallel processisng)를 수행함으로써 성능이 계속 높아지고 있음	

<u>Aa</u> 용어	를 설명	:= 태 그
<u>파이프라인 슈퍼컴</u> <u>퓨터</u>	고도로 파이프라이닝 된 구조를 가진 소수의 CPU들을 이용하여 구성되는 슈퍼컴퓨터	
<u>대규모 병렬처리시</u> <u>스템(MPP)</u>	매우 많은 수의 프로세서들을 이용하여 병렬처리를 수행하도록 설계되는 슈퍼컴퓨터의 구성 방식	
<u>병렬처리(parallel</u> processing)	많은 수의 프로세서들이 하나의 큰 작업을 분할하여 동시에 처리하는 기 술	

CH02_CPU의 구조와 기능

<u>Aa</u> 용어	를 설명	:≡ 태 그
<u>산술논리연산장치(ALU)</u>	산술 및 논리 연산들을 수행하는 회로들로 이루어진 하드웨어 모듈	
레지스터(register)	CPU내부 기억장치로서 액세스 속도가 기억장치들 중에서 가장 빠름	
<u>제어 유니트(control</u> <u>unit)</u>	인출된 명령어를 해독하고 그 실행을 위한 제어 신호들을 순차적으로 발생하는 하드웨어 모듈	
CPU 내부 버스	CPU 내부 기억장치로서 액세스 속도가 기억장치들 중에서 가장 빠름	
제어 유니트(control unit)	인출된 명령어를 해독하고 그 실행을 위한 제어 신호들을 순차적으로 발생하는 하드웨어 모듈	
<u>CPU 내부 버스</u>	CPU 내부 구성요소들 간의 정보 전송 통로	
<u>Untitled</u>		
<u>명령어 사이클</u> (instruction cycle)	한 명령어를 실행하는데 필요한 전체 과정으로서, 명령어 인출 단계 와 명령어 실행 단계로 나누어짐	
<u>인출 사이클(fetch</u> cycle)	CPU가 기억장치의 지정된 위치로부터 명령어를 읽어 오는 과정	
<u>마이크로-연산(micro</u> <u>operation</u>	CPU 클록의 각 주기 동안 수행되는 기본적인 동작	
실행 사이클(execute cycle)	CPU가 명령어를 해독하고, 그 결과에 따라 필요한 연산들을 수행하는 과정	
인터럽트(interrupt)	CPU로 하여금 현재 진행중인 프로그램을 처리하도록 요구하는 매 커니즘으로서 CPU와 외부장치들 간의 상호작용을 위하여 필요한 기능	

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>인터럽트 서비스 루틴</u> (ISR)	인터럽트 요구를 처리해주기 위해 수행하는 프로그램 루틴	
<u>인터럽트 사이클</u> (interrupt cycle)	인터럽트 요구가 들어왔는지 검사하고, 그 처리에 필요한 동작들을 수행하는 과정	
<u>스택 포인터(stack</u> pointer)	스택의 최상위 주소를 저장하고 있는 레지스터	
<u>다중 인터럽트(multiple</u> <u>interrupt)</u>	인터럽트 서비스 루틴을 수행하고 있는 동안에 다른 장치로부터 인 터럽트가 들어오는 경우	
<u>간접 사이클(indirect</u> cycle).	실행 사이클에서 사용디ㅗㄹ 데이터의 실제 주소를 기억장치로부 터 읽어오는 과정	
<u>Untitled</u>		
명령어 파이프라이닝 (instruction pipelining)	명령어 실행에 사용되는 하드웨어를 여러 단계로 분할함으로써 처 리 속도를 높여주는 기술	
명령어 선인출 (instructuion prefetch)	다음에 실행될 명령어를 미리 인출하는 동작	
<u>기억장치 충돌(memory</u> <u>conflict)</u>	두 개 이상의 하드웨어 모듈들이 동시에 기억장치 액세스를 시도하 는 상황	
조건 분기 명령어	지정된 조건이 만족하는 경우에는 프로그램 처리 순서를 변경하는 명령어	
<u>슈퍼파이프라이닝</u> (superpiplining)	명령어 파이프라인의 단계들을 더욱 작게 분할하여 처리 속도를 높 여주는 기술	
<u>상태 레지스터(status</u> <u>register)</u>	연사너리 결과(부호, 올림수 등) 및 시스템 상태를 가리키는 비트들을 저장하는 레지스터	
<u>슈퍼스칼라</u> (<u>superscalar)</u>	CPU 내에 여러 개의 명령어 파이프라인들을 두어, 동시에 그 수만큼의 명령어들을 실행할 수 있게 한 구조	
<u>데이터 의존성(data</u> <u>dependency)</u>	한 명령어를 실행한 다음에, 그 결과값을 보내주어야 다음 명령어의 실행이 가능한 관계	
<u>CPU 코어(core)</u>	CPU 칩의 내부회로 중에서 명령어 실행에 반드시 필요한 핵심 부분들로 이루어진 하드웨어 모듈	
멀티-코어 프로세서 (multi-core processor)	여러 개의 CPU 코어들을 포함하고 있는 프로세서 칩	
<u>멀티-태스킹</u>	여러 CPU 코어들을 이용하여 독립적인 태스크(혹은 스레드) 프로 그램을 동시에 처리하는 기술로서, 멀티-스레딩이라고도 함	
<u>멀티-스레딩</u>	하나의 CPU 코어가 다수의 스레드들을 동시에 실행하는 기법	

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>스레드(thread)</u>	독립적으로 실행될 수 있는 최소 크기의 프로그램 단위	
<u>명령어 형식(instruction</u> format)	명령어를 구성하는 필드의 종류와 개수, 배치 방식 및 필드 당 비트 수를 정의한 형식	
<u>주소지정 방식</u> (addressing mode)	주소 비트들을 이용하여 오퍼랜드의 유효 주소(effective address)를 결정하는 방법	
<u>직접 주소지정 방식</u>	명령어 내 오퍼랜드 필드으 ㅣ 값을 유효 주소로 사용하여 연산에 필 요한 데이터를 인출하는 방식	
<u>간접 주소지정 방식</u>	오퍼랜드가 가리키는 기억 장치의 내용을 유효 주소로 사용하여 연 산에 필요한 데이터를 인출하는 방식으로서, 두 번의 기억장치 액세 스가 필요함	
<u>묵시적 주소지정 방식</u> (implied addressing mode)	명령어 실행에 사용될 데이터가 묵시적으로 지정되어 있는 방식	
즉시 주소지정 방식 (immediate addressing mode)	명령어 내에 포함되어 있는 데이터를 연산에 직접 사용하는 방식	
레지스터 주소지정 방식	명령어의 오퍼랜드가 가리키는 레지스터에 저장되어 있는 데이터 를 연산에 사용하는 방식	
<u>레지스터 간접 주소지정</u> <u>방식</u>	지정된 레지스터의 내용을 유효 주소로 사용하여, 그 주소가 가리키는 기억장치로부터 읽어온 데이터를 연산에 사용하는 방식	
변위 주소지정 방식 (displacement addressing mode)	지정된 레지스터의 내용과 명령어 내 오퍼랜드(변위)를 더하여 유 효 주소를 결정하는 주소지정 방식	
<u>상대 주소지정 방식</u> (<u>relative addressing</u> <u>mode</u>)	프로그램 카운터(PC)의 내용과 명령어 내 오퍼랜드(변위)를 더하여 유효 주소를 결정하는 주소지정 방식	
인덱스 주소지정 방식 (indexed addressing mode)	인덱스 레지스터의 사용과 명령어 내 오퍼랜드(뼌위)를 더하여 유 효 주소를 결정하는 주소지정 방식	
<u>자동 인덱싱(guto-indexing)</u>	인덱스 주소지정이 완료된 후에 자동적으로 인덱스 레지스터 내용을 증가 혹은 감소하는 방식	
베이스-레지스터 주소지 정 방식	베이스 레지스터(base register)의 내용과 명령어 내 오펄내드(변위)를 더하여 유효 주소를 지정하는 주소지정 방식	

CH03_컴퓨터와 산술의 논리연산

CH03

		:=
<u>Aa</u> 용어	= 설명	· - 태 그
<u>산술논리연산장치</u> (<u>ALU)</u>	CPU 내부의 핵심 구성요소로서, 산술 연산과 논리 연산을 수행하는 하드웨어 모듈	
<u>2진 소수점(binary</u> point)	2진수 표현에서의 소수점으로서, 자릿수가 1보다 더 큰 수와 더 작은 수의 경계점	
<u>자릿수(weight)</u>	수 표현에 사용된 2진 비트들의 위치에 따른 10진값으로서, 가중치 라고도 함	
부호 비트(sign bit)	수가 양수인지 혹은 음수인지를 나타내는 비트로서 2진수의 맨 좌측 비트가 사용되며, 0은 양수, 1은 음수를 나타냄	
보수 표현 (complement representation)	음수를 2진수로 표현하는 방법으로서, 1의 보수 및 2의 보수 표현이 있음	
<u>부호-비트 확장(sign-</u> <u>bit extension)</u>	2의 보수를 더 긴 단어로 확장할 때 부호 비트를 상위 비트들로 복제 하는 동작	
<u>선택적-세트</u> (selective-set)	데이터의 일부 비트들을 1로 세트해주는 논리적 연산	
선택적-보수 (selective- complement)	데이터의 일부 비트들을 보수화 시키는 논리적 연산	
<u>마스크(masking) 연산</u>	데이터의 일부 비트들을 0으로 리셋 시키기 위한 논리적 연산	
<u>삽입(insert) 연산</u>	데이터의 일부 비트들을 새로운 값들로 대체시키기 위한 논리적 연 산	
<u>시프트 레지스터(shift</u> <u>register)</u>	데이터 비트들을 좌측 혹은 우측 방향으로 이동시키는 기능을 가지 고 있는 레지스터	
<u>순환 시프트(circular</u> <u>shift)</u>	좌측 혹은 우측 시프트 후에 최상위 혹은 최하위 비트를 버리지 않고 반대편 끝으로 이동시키는 시프트 연산	
<u> 직렬 데이터 전송(serial</u> <u>data transfer)</u>	두 레지스터들 간에 접속된 하나의 선을 통하여 데이터를 한 번에 한 비트씩 전송하는 동작	
<u>산술적 시프트</u> (arithmetic shift)	부호를 가진 데이터에 대한 시프트 동작으로서, 부호 비트는 변경되 지 않도록 해야함	
<u>병렬 가산기(parallel</u> adder).	여러 비트들로 이루어진 두 개의 데이터에 대한 덧셈을 수행하는 회로로서, 비트 수만큼의 전가산기(full adder)들로 구성	
오버플로우(overflow)	2의 보수들 간의 덧셈 결과 값이 표현 범위를 초과하는 경우에 발생 하는 오류	

<u>Aa</u> 용어	■ 설명	:≡ 태 그
<u>보수기</u> (<u>complementer)</u>	입력 데이터에 대하여 보수 연산을 수행하는 회로 모듈	
부동소수점 표현	지수(exponent)를 이용하여 소수점의 위치를 이동 시킬 수 있는 수 표현 방법	
<u>2잔 부동소수점 수</u>	부동소수점 표현 방식을 적용하여 표현된 2진수	
<u>단일-정밀도 수(single-precision number)</u>	32 비트로 표현된 부동소수점 수	
<u>복수-정밀도 수(double</u> precision number)	64비트로 표현된 부동소수점 수	
<u>정규화된 표현</u> (normalized representation)	소수점 우측의 첫 번째 비트가 1이 되도록 지수를 조정하여 표현한 부동소수점 수	
<u>바이어스된 수(biased</u> number)	특정값(바이어스 값)을 더하여 표현된 2진수	
<u>숨겨진 비트(hidden</u> <u>bit)</u>	IEEE 부동소수점 형식인 1.2X2^E 로 수를 표현할 때 정밀도를 높이기 위하여 가수 필드에는 나타내지 않는 맨 앞의 1을 말함	
<u>부동소수점 덧셈</u> (floating-point addition)	부동소수점 수들 간의 덧셈	
<u>Untitled</u>		

CH04_제어 유니트

CH04_제어 유니트

<u>Aa</u> 용어	≡ 설명	:= 태 그
<u>마이크로-연산</u> (micro-operation)	명령어 실행 사이클의 각 주기 동안 수행되는 기본적인 CPU 동작	
<u>마이크로명령어</u> (microinstruction)	각 마이크로-연산을 나타내는 2진 비트 표현으로서, 제어 단어(control word)라고도 함	
<u>루틴(routine)</u>	CPU의 특정 기능을 수행하기 위한 마이크로프로그램(microprogram)	
<u>사상(mapping) 방</u> 싴	여기서는 명령어의 연산 코드를 이용하여 해당 사이클 루틴의 시작 주소 를 찾는 기법을 말함	

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>순서제어</u> (<u>sequencing)</u>	제어 유니트에서 다음에 실행될 마이크로명령어의 주소를 결정하는 기능	
<u>수직적 마이크로프</u> 로그래밍	마이크로명령어의 연산 필드에는 적은 수의 코드화된 제어 비트들만 두고, 해독기를 이용하여 그 비트들을 필욯나 수만큼의 제어 신호들로 확장시키는 마이크로프로그래밍 방식	
<u>수평적 마이크로프</u> 로그래밍	마이크로명령어의 연산 필드에 필요한 제어신호 수만큼의 비트들을 포함 시키고, 각 비트를 제어신호로 직접 사용하는 마이크로프로그래밍 방식	

CH05_기억장치

CH05_기억장치

<u>Aa</u> 용어	= 설명	: = 태 그
<u>액세스(access)</u>	기억장치에 대한 읽기 및 쓰기 동작	
<u>순차적 액세스</u> (<u>sequential access)</u>	기억장치에 저장된 정보를 처음부터 순서대로 액세스 하는 방식	
<u>직접 액세스(direct</u> access)	읽기/쓰기 장치를 정보가 위치한 근처로 직접 이동시킨 다음에, 순차 적 검색으로 최종 위치에 도달하여 액세스 하는 방식	
<u>임의 액세스(direct</u> access)	기억 장소들이 임의로 선택될 수 있으며, 기억장치 내의 어떤 위치든 액세스에 걸리는 시간이 동일한 방식	
<u>연관 액세스</u> (associative access)	각 기억 장소에 포함된 키(key)값의 검색을 통하여 액세스할 위치를 찾아내는 방식	
<u>전송 단위(unit of</u> <u>transfer)</u>	한 번의 기억장치 액세스에 의해 읽거나 쓸 수 있는 비트 수	
<u>주소지정 단위</u> (addressable unit)	하나의 주소에 의해 액세스 되는 비트들의 그룹	
<u>액세스 시간(access</u> time)	주소와 읽기/쓰기 신호가 기억장치에 도착한 순간부터 데이터가 저 장되거나 읽혀지는 동작이 완료될 때까지의 시간	
<u>기억장치 사이클 시간</u> (memory cycle time)	액세스 시간과 데이터 복원(data restoration) 시간을 합한 시간	
<u>데이터 전송률(data</u> <u>transfer rate)</u>	기억장치로부터 초당 읽혀지거나 쓰여질 수 있는 비트 수 :(1/액세스 시간)x(한 번에 읽혀지는 데이터 바이트의 수)	
<u>휘발성 기억장치</u> (volatile memory)	전력공급이 중단되면 저장된 내용이 사라지는 기억장치	

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>비휘발성 기억장치</u> (nonvolatile memory)	전력공급이 중단되어도 저장된 내용이 그대로 유지되는 기억장치	
<u>계층적 기억장치시스템</u>	속도, 가격 및 크기가 다양한 기억장치들을 계층적으로 설치함으로 써 성능대 가격비(performance/cost ratio)를 높이는 시스템 구성 방식	
<u>지역성의 원리</u> (principle of locality)	CPU가 기억장치의 한정된 몇몇 영역들을 집중적으로 액세스하면서 작업을 수행한다는 원리	
<u>내부 기억장치(internal</u> <u>memory)</u>	CPU가 직접 액세스 할 수 있는 기억장치들	
<u>외부 기억장치(external</u> memory)	CPU가 직접 액세스 할 수 없으며, 장치 제어기(device controller) 를 통해 서만 액세스 할 수 있는 기억 장치들	
RAM(Random Access Memory)	읽기와 쓰기가 모두 가능한 반도체 기억장치	
DRAM(Dynamic RAM)	충전 방식을 이용하여 데이터를 저장하는 RAM으로서, 주기적인 재 충전(refesh)이 필요함	
SRAM(Static RAM)	플립-플롭형 기억 셀(memory cell)을 이용함으로써, 전력이 공급되는 동안에는 데이터가 계속 유지되는 RAM	
RAS 신호	기억장치의 행 주소(row address) 래치 신호	
<u>CAS 신호</u>	기억장치의 열 주소(column address) 래치 신호	
기억장치 제어기	CPU와 기억장치 사이에 위치하여 주소 및 데이터 전송을 제어하는 장치	
ROM(Read Only Memory)	저장된 내용을 읽는 것만 가능한 반도체 기억장치	
PROM(Programmable ROM)	한 번은 쓰는 것도 가능한 ROM	
EPROM(Erasable PROM)	자외선을 이용하여 저장된 내용을 삭제할 수 있어서 여러 번의 갱신 이 가능한 PROM	
EEPROM(Electrically Erasable PROM)	전기적으로도 삭제할 수 있는 PROM	
<u> 플래시 메모리(flash</u> <u>memroy)</u>	삭제에 걸리는 시간이 매우 짧은 EEPROM이며, 쓰기 동작과 삭제 동작시의 데이터 크기가 서로 다름	
<u>캐시 메모리(cache</u> memory)	CPU와 주기억장치의 속도 차이를 보완하기 위하여 그 사이에 설치 하는 반도체 기억장치	
<u> 캐시 적중(cache hit)</u>	CPU가 이미 액세스 하려는 데이터가 이미 캐시에 적재되어 있는 상 태	

<u>Aa</u> 용어	■ 설명	:= EH
캐시 미스(cache miss)	CPU가 액세스하려는 데이터가 캐시에 없어서 주기억장치로부터 인 출해 와야 하는 상태	그
<u>캐시 적중률(cache hit</u> ratio)	전체 기억장치 액세스들 중에서 캐시에 적중되는 비율	
<u>지역성(locality)</u>	CPU가 주기억장치의 특정 위치에 저장되어 있는 명령어들이나 데 이터를 빈번히 혹은 집중적으로 액세스하는 현상	
<u>요구 인출(demand</u> fetch)	캐시 미스가 발생한 경우에, CPU가 필요한 정보만 주기억장치로부터 캐시로 인출해오는 방식	
<u>선인출(prefetch)</u>	CPU가 필요한 정보 외에도 그와 인접해 있는 정보들을 함께 캐시로 인출해오는 방식	
<u>캐시라인(cache line)</u>	주기억장치로부터 캐시로 인출되는 단위인 한 블록(block)이 적재되는 캐시 내 공간	
<u>사상방식(mapping</u> scheme)	주기억장치 블록이 어느 캐시 라인에 적재될 수 있는지를 결정해주 는 알고리즘	
<u>직접 사상(direct</u> <u>mapping)</u>	주기억장치 블록이 지정된 어느 한 라인에만 적재될 수 있는 사상 방 식	
<u>완전-연관 사상(fully-associative mapping)</u>	주기억장치 블록이 캐시의 어느 라인으로든 적재될 수 있는 사상 방 식	
<u>세트-연관 사상(set-associative mapping)</u>	주기억장치 블록이 지정된 어느 한 세트로만 적재될 수 있으며, 각 세트는 두 개 이상의 라인들로 구성된 사상 방식	
<u>최소 최근 사용(LRU) 알</u> <u>고리즘</u>	세트 라인에 적재되어 있는 블록들 중에서 최근의 사용 빈도가 가장 낮은 블록을 선택하여 교체하는 방식	
FIFO 알고리즘	캐시에 적재된지 가장 오래된 블록을 교체하는 방식	
<u>최소 사용 빈도(LFU) 알</u> <u>고리즘</u>	캐시에 적재된 이래 사용된 빈도가 가장 낮은 블록을 교체하는 방식	
<u>쓰기 정책(write policy)</u>	캐시에 적재된 데이터를 새로운 값으로 변경할 때 주기억장치에 갱 신하는 시기와 방법을 결정하는 방식	
write-through	캐시에 쓰기 동작을 수행할 때 주기억장치에도 동시에 이루어지는 방식	
write-back	쓰기 동작이 캐시까지만 이루어지는 방식	
<u>온-칩 캐시(on-chip</u> cache)	CPU 칩 내부에 포함되어 있는 캐시	
계층적 캐시 (hierachical cache)	여러 레벨의 캐시들을 계층적으로 설치한 구조	

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>분리 캐시(split cache)</u>	명령어와 데이터를 분리하여 별도로 저장하는 캐시 구조	
<u>동기식</u> <u>DRAM(synchronous</u> <u>DRAM)</u>	액세스 및 데이터 전송 동작이 시스템 클록 신호에 동기화되어 수행되는 DRAM	
<u>버스트 모드(burst</u> <u>mode)</u>	한 번의 액세스 동작 때 여러 바이트들을 연속적으로 전송하는 방식	
<u>버스트 길이(burst</u> <u>length)</u> .	버스트 모드에서 연속적으로 전송되는 바이트들의 수	
CAS 지연	DRAM 칩으로 CAS 신호와 열 주소가 인가되는 순간부터 데이터가 인출되어 버스에 실릴 때까지의 시간	
DDR(Double Data Rate)	SDRAM에서 액세스된 데이터들을 전송할 때 버스 클록의 상승 에 지와 하강 에지에서 각각 하나씩 전송함으로써 클록 당 두 번 전송하 는 기법	
DDR SDRAM	DDR 전송 방식이 사용되는 SDRAM	
DDR2 SDRAM	두 배 높은 버스 클록 주파수를 사용하는 DDR SDRAM	
<u>기억장치 대역폭</u> (memory bandwidth)	기억장치로부터 CPU로 제공될 수 있는 단위시간당 데이터 전송량	
<u>기억장치 랭크(memory</u> rank)	데이터 입출력 폭이 64비트가 되도록 구성한 기억장치 모듈	
SIMM	칩들과 접속 핀들을 한 며에만 부착한 기억장치 모듈 기판(PCB)	
DIMM	칩들과 접속 핀들을 양면에 모두 부착한 기억장치 모듈 기판	
<u>단일-랭크 모듈(single-rank module)</u>	하나의 랭크로 구성된 기억장치 모듈	
<u>2중-랭크 모듈(dual-</u> rank module)	두 개의 랭크들로 구성된 기억장치 모듈	
<u>4중-랭크 모듈(quad-</u> rank module)	네 개의 랭크들로 구성된 기억장치 모듈로서, 양면기판의 면 당 두 개씩의 랭크들 배치	
PRAM(Phase-change RAM)	화합물 반도체의 상태 변화를 이용하여 2진 정보를 저장하는 RAM	
FRAM(Ferroelectric RAM)	강유전체의 전극 위치를 조절하여 2진 정보를 저장하는 반도체 기억 장치	
MRAM(Magnetic RAM)	강자성체에서 자화되는 방향을 조절하여 2진 정보를 저장하는 반도 체 기억장치	

CH06_보조저장장치

CH06_보조저장장치

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>트랙(track)</u>	디스크 평판 위의 동심원들로서, 데이터가 실제 저장되는 곳	
<u>섹터(sector)</u>	트랙의 분할된 각 부분으로서, 데이터 전송 단위인 한 블록을 저장	
<u>섹터간 갭</u>	섹터들 간을 구분하기 위한 빈 공간	
<u>트랙간 개</u>	트랙들 간을 구분하기 위한 빈 공간	
<u>등각속도(CAV)</u>	중심부에 가까운 트랙을 액세스하든 멀리 위치한 트랙을 액세스하든 일정한 속도로 회전시키는 방식	
<u>다중 영역 기록(MZR)</u>	디스크 상의 트랙들을 몇 개의 영역들로 나눔으로써 저장 용량을 늘리는 방식	
<u>디스크 드라이브(disk</u> <u>drive)</u>	디스크 평판, 디스크 팔, 회전 구동장치 및 데이터 전송회로를 포함한 패키지	
<u>실린더(cylinder)</u>	서로 다른 디스크 표면들 위에 있지만 동일한 반경에 위치하고 있는 트랙들의 집합	
<u>탐색 시간(seek time)</u>	헤드를 액세스할 트랙으로 이동시키는 데 걸리는 시간	
<u>회전 지연시간</u> <u>(rotational latency)</u>	헤드가 해당 트랙에 도달한 순간부터 원하는 섹터가 회전하여 헤드 아 래에 도달할 때까지의 시간	
<u>탐색 시간(seek time)</u>	헤드를 액세스할 트랙으로 이동시키는 데 걸리는 시간	
<u>회전 지연시간</u> <u>(rotational latency)</u>	헤드가 해당 트랙에 도달한 순간부터 원하는 섹터가 회전하여 헤드 아 래에 도달할 때까지의 시간	
<u>데이터 전송 시간</u> (data transfer time)	헤드를 통하여 섹터의 데이터 비트들을 전송하는데 걸리는 시간	
RAID	다수의 작은 디스크들을 배열로 연결하여 용량을 늘리고 신뢰성도 향 상시킨 대용량 디스크시스템	
<u>디스크 인터리빙(disk</u> interleaving)	데이터 블록들을 여러 개의 디스크들에 분산 저장 하는 기술	
<u>MTTF</u>	장치에 결함이 발생하는 평균 시간 간격	
<u>검사 디스크(check</u> <u>disk)</u>	RAID에서 오류 검출 및 복구에 사용될 비트들을 저장하기 위해 추가 되는 디스크	
MTTR	데이터 오류 혹은 디스크 결함 발생 시에 원래 내용을 복구하는데 걸 리는 평균 시간	
<u>디스크 미러링(disk</u> mirroring).	디스크에 데이터를 저장할 때 다른 디스크에도 같은 내용을 동시에 저 장하는 기법	

<u>Aa</u> 용어	를 설명	:= 태 그
<u>작은 쓰기 문제(small</u> write problem)	RAID-5에서 한 블록을 디스크에 쓰는(갱신하는) 경우에 네 번의 디스크 액세스가 필요하게 되는 문제점	
<u>솔리드-스테이트 드라</u> <u>이브(SSD)</u>	플래시 메모리 칩들을 이용하여 구성한 대용량 저장장치이며, 반도체 드라이브라고도 부름	
<u> 플래시 메모리(flash</u> <u>memory)</u>	EEPROM의 일종으로서, 저장밀도가 높고 저전력 고신뢰성의 특징을 가진 반도체 기억장치	
<u>터널링 효과</u> (tunneling effect)	N-채널의 전자들이 강력한 전기장의 영향을 받아 부동 게이트로 들어 가는 현상	
블록(block)	플래시 메모리에서는 한 블록이 64개 혹은 128개의 페이지들로 이루 어지며, 각 페이지의 크기는 2K 혹은 4K 바이트	
SLC(single-level cell)	한 비트씩 저장하는 메모리 셀	
MLC(multi-level cell).	두 비트를 저장하여 네 가지 값들을 구분해주는 메모리 셀	
TLC(triple-level cell)	세 비트를 저장하여 8가지 값들을 구분해주는 메모리 셀	
QLC(quadruple- level cell)	네 비트를 저장하여 16가지 값들을 구분해주는 메모리 셀	
SSD 제어기	SSD에서 데이터 저장과 인출, 칩 관리 등과 같은 핵심적인 기능을 수행하는 전자회로 모듈	
<u>플래시 변환 계층</u> (<u>FTL</u>)	플래시 메모리의 블록/페이지 구조를 논리적으로 HDD의 섹터와 같은 구조로 변환해주는 S/W	
<u>마모 평준화(wear</u> leveling)	플래시 메모리의 모든 페이지들이 균등하게 사용되도록 관리함으로써 수명을 연장시키는 기술	
<u>쓰레기 수집(garbage</u> <u>collection)</u>	수정되었으나 삭제되지 않은 무효 페이지들으 ㄹ모아두었다가 한꺼번 에 삭제하는 작업	
<u>TRIM명령</u>	SSD 제어기에게 무효가 된 페이지들을 알려주는 OS의 명령	
<u>대비공간(over-</u> provisioning)	마모평준화의 효과를 높이기 위하여 SSD 내부에 추가해주는 여유 저 장 공간	
<u>Untitled</u>		

CH07_시스템 버스, I/O 및 인터럽트

CH07_시스템 버스, I/O 및 인터럽트

<u>Aa</u> 용어	를 설명	ः 태 그
<u>데이터 버스(data bus)</u>	시스템 요소들 간의 데이터 전송에 사용되는 선(line)들의 집합	
<u>주소 버스(address</u> <u>bus)</u>	CPU가 기억장치나 I/O 장치를 액세스할 때 주소 비트들을 전송하는 데 사용되는 선들의 집합	
<u>제어 버스(control bus)</u>	제어 신호(control signal)들을 전송하기 위한 선들의 집합	
<u> 버스 마스터(bus</u> <u>master)</u>	시스템 버스 사용의 주체가 되는 요소	
<u>버스 중재(bus</u> arbitration)	두 개 이상의 버스 마스터들이 동시에 버스 사용을 요청할 경우에 순 서를 결정해주는 시스템 동작	
중재 버스(arbitration bus)	버스 중재 동작에 필요한 신호 선들의 집합	
인터럽트 버스 (interrupt bus)	인터럽트 매커니즘을 지원하는 신호 선들의 집합	
<u>버스 대역폭(bus</u> <u>bandwidth)</u>	버스를 통하여 단위시간 당 전송할 수 있는 데이터량으로서, 다위는 초당 바이트 수[bytes/sec]로 나타냄	
<u>동기식 버스</u> (synchronous bus)	공통의 버스 클록을 기준으로 버스 동작들이 발생되는 버스	
<u>비동기식 버스</u> (asynchronous bus)	버스 클록을 사용하지 않으며, 버스 동작들의 발생 시간이 다른 관련 동작의 발생에 따라 결정되는 버스	
<u>버스 경합(bus</u> contention)	두 개 이상의 버스 마스터들이 동시에 버스 사용을 위해 경쟁하는 상 황	
<u>버스 중재기(bus</u> <u>arbiter)</u>	버스 중재 기능을 수행하는 하드웨어 모듈	
병렬 중재 방식(parallel arbitration scheme)	각 버스 마스터가 독립적인 버스요구 신호를 버스 중재기로 보내며, 별도의 버스 승인 신호를 받는 방식	
<u>직렬 중재 방식(serial</u> arbitration scheme)	버스요구 신호와 버스승인 신호가 하나씩 있으며, 각 신호 선이 모드 느 버스 마스터들 간에 직렬로 접속되는 방식	
중앙집중식 중재 방식	한 개의 버스 중재기가 모든 버스 중재 기능을 수행하는 방식	
<u>분산식 중재 방식</u>	버스 중재 동작이 각 버스 마스터가 별도로 가지고 있는 버스 중재기들에 의해 이루어지는 방식	
<u> 버스 요구(BREQ) 신호</u>	버스 마스터가 버스 사용을 요청하는 신호	
<u> 버스 승인(BGNT) 신호</u>	버스 마스터에게 버스 사용을 허가하는 신호	
<u>가변 우선순위 방식</u> (dynamic-priority scheme)	버스 사용 우선순위를 계속 변경시키는 중재 방식으로서, 버스 사용 기회의 불균등이나 기근 현상을 방지해주지만 회로 구현이 더 어려 움	

<u>Aa</u> 용어	물 설명	ः 태 그
<u>하드웨어 폴링 방식</u> (hardware polling scheme)	중재기 내의 고정된 하드웨어를 이용한 주기적 검사를 통해 중재 기 능을 수행하는 방식	
소프트웨어 폴링 방식 (software polling scheme)	중재기 내의 프로세서가 중재 프로그램을 수행하면서 다양한 중재 기능을 수행하는 방식	
I/O 제어기(controller)	CPU와 I/O 장치(들) 간의 인터페이스 역할을 수행해주는 하드웨어 모듈	
데이터 버퍼(data buffer)	I/O 장치로 보내질 데이터를 일시적으로 저장해두는 반도체 기억장 치	
프로그램을 이용한 I/O	CPU가 반복적으로 I/O 장치의 상태를 검사하면서 I/O 동작을 처리 하는 방식	
기억장치-사상 I <u>/O(memory-mapped</u> I <u>/O)</u>	I/O 제어기 내의 레지스터들에게 기억장치 주소 영역의 일부분을 할 당하고, 기억장치와 같은 방법으로 액세스하는 방식	
<u>분리형 I/O(isolated</u> I <u>/O)</u>	I/O 장치들에 별도의 I/O 주소 영역을 지정하고, I/O 전용 명령어들을 이용하여 액세스하는 방식	
<u>인터럽트-구동</u> <u>I/O(interrupt-driven</u> <u>I/O)</u>	인터럽트 메커니즘을 이용하여 CPU와 I/O 장치간의 상호작용이 처 리되는 방식	
<u>인터럽트 확인(INTA) 신</u> 호	CPU가 I/O 장치로부터의 인터럽트 요구를 인식했다는 것을 알려주는 신호	
<u>인터럽트 플래그</u> (interrupt flag)	CPU가 인터럽트를 처리할 수 있는 상태인지 혹은 아닌지를 알려주 는 상태 비트	
<u>인터럽트 벡터</u> <u>(interrupt vector)</u>	인터럽트를 요구한 I/O 장치의 식별(ID) 번호로서, 해당 장치를 위한 인터럽트 처리 루틴의 시작 주소를 찾는데 사용됨	
<u>DMA 제어기</u> (controller)	CPU 개입 없이 I/O 장치와 기억장치 간의 데이터 전송을 수행하는 DMA 동작을 지원하는 하드웨어 모듈	
<u>사이클 스틸링(cycle</u> stealing).	CPU가 시스템 버스를 사용하지 않는 동안에 DMA 제어기가 버스를 사용한다는 것을 의미하는 용어	
<u>I/O 프로세서(IOP)</u>	I/O 장치들의 동작을 제어하며 DMA 동작도 지원하는 프로세서로부 터, I/O 채널(channel)이라고도 부름	
<u>Untitled</u>		
<u>Untitled</u>		
<u>Untitled</u>		

CH08_고성능 컴퓨터시스템 구조

CH08_고성능 컴퓨터시스템 구조

<u>Aa</u> 용어	ः 태 그
processing). 처리하는 기술 문제 분할(problem partition). 병렬처리를 위하여 하나의 문제를 여러 개로 나누는 작업 프로세서간 통신 프로세서들이 서로 필요한 데이터를 교환하기 위한 통신	
partition). 병열서리를 위하여 하나의 문제를 여러 개도 나무는 작업 프로세서간 통신 프로세서들이 서로 필요한 데이터를 교환하기 위한 통신	
<u>멀티-스레딩(multi-</u> 가장 작은 크기의 독립적인 단위 프로그램인 스레드들을 여러 프로	
threading). 세서 코어들이 병렬로 처리하는 기술	
명령어 스트림 실행되기 위하여 순서대로 프로세서로 들어오는 명령어 코드들의 흐 (instruction stream). 름	
데이터 스트림(data stream). 명령어 실행에 사용되기 위하여 순서대로 프로세서로 들어오는 데이터 드를	
배열 프로세서(array) 다수의 PU들을 이용하여 여러 개의 데이터들에 대한 연산을 동시에 처리하는 프로세서	
<u>밀결합 시스템</u> 프로세서들 간의 상호작용 정도가 높은 다중프로세서 시스템	
<u>소결합 시스템</u> 프로세서들 간의 상호작용 정도가 낮고 거의 독립적으로 동작하는 다중프로세서 시스템	
UMA 모델 모든 프로세서들이 기억장치를 공유하며 액세스에 걸리는 시간도 같은 시스템 구조	
NUMA 모델 공유 기억장치들과 프로세서들 간의 거리에 따라 액세스 시간이 달라지는 시스템 구조	
NORMA 모델 각 프로세서들이 별도의 기억장치를 가지며, 공유 기억장치는 없는 구조로서, 분산-기억장치 시스템이라고도 함	
SMP(symmetric multiprocessors)프로세서들이 모든 시스템 자원들을 공유하며 동등한 권한을 가지는 시스템 구조	
MPP(massively parallel processors)프로세서와 기억장치로 이루어지는 많은 수의 노드들로 구성되며 자원 공유가 없는 시스템 구조	
CC-NUMA(cahce- coherent NUMA) 노드들에 포함된 모든 캐시들과 기억장치들 간에 데이터 일관성이 유지되는 분산-기억장치시스템 구조	
<u>디렉토리(directory).</u> 캐시에 적재된 주기억장치 블록들에 대한 상태 정보 및 포인터를 포함하는 데이터 구조	

<u>Aa</u> 용어	≡ 설명	: = 태 그
<u>클러스터 컴퓨터</u> (<u>cluster computer)</u>	고속 네트워크로 접속된 컴퓨터들의 집합체로서 단일 시스템 이미지 (SSI)를 가짐	
<u>다중-버스 구조</u>	버스 경합을 줄이기 위하여 두 개 이상의 버스들을 설치하는 시스템 구조	
계층적-버스 구조	시스템 버스 외에도 용도별 지역 버스들이 설치되는 시스템 구조	
<u>다단계-상호연결망</u> (<u>MIN)</u>	여러 단계(stage)들을 통하여 노드들을 연결해주는 네트워크	
<u>네트워크 지름</u> (network diameter)	네트워크 내에서 가장 멀리 떨어진 노드들 간의 거리	
<u>E-큐브 라우팅</u>	하이퍼큐브에서 적용되는 자동 경로설정 방식	
데이터 불일치 문제	주기억장치에 저장된 데이터와 캐시들에 적재된 복사본이 서로 다른 값을 가지는 현상	
<u>무효화 사이클</u> (invalidate cycle)	무효화 신호와 해당 데이터의 주소가 전송되는 버스 사이클	
<u>커널 함수(kernel</u> function)	병렬함수 및 데이터 구조를 명시하는 키워드들로 작성되는 코드로서 디바이스에 의해 실행됨	
<u> 왑(warp)</u>	동시에 처리될 수 있는 32개씩의 스레드 묶음	