Investigation of Satellite-Based Quantum Communication for FSO-QKD Systems in GEO-to-LEO Links

Takihara Yudai, 4th year Bachelor student The University of Aizu

Outline

- ➤ Introduction: QKD
- ➤ Why Is LEO-GEO Communication Essential for QKD?
- > Photon Source
- > Future works: Quantum channel loss

Introduction: QKD

- QKD is a promising method to <u>distribute secure keys</u> secretly between legitimate users
 - It bases on the laws of quantum physics
 - Some of best-known Japanese companies have been working on various QKD projects, e.g., Toshiba, NEC, and NTT
 - O Toshiba has succeeded in building a QKD system for quantum communication at a distance of 600 km.[1] ([1]: https://www.nature.com/articles/s41566-021-00811-0)

Why Is LEO-GEO Communication Essential for QKD?

Major challenge of current QKD System

The limitation of distance for secret key distribution in optical fiber communications

Solution: LEO-GEO satellite-based QKD offers a promising solution for long-distance key distribution.

> *E.g.*, *Starlink* enables global internet coverage by using a constellation of LEO satellites.

Challenge for Satellite-based QKD

- Photon Source Generation Challenges
- Quantum Channel Loss on Long-Distance QKD

Photon Source(1)

QKD (e.g., BB84 and BBM92) protocol inherently assume a Single Photon Source.

> One pulse (a wave of electrical signals with a certain width) should contain **one photon**.

But, Non-zero probability of multiple photons in a single pulse (Multiphoton pluse)

➤ A **Photon Number Splitting (PNS)** attack could be exploited by Eve.

Reason for Non-detection

- Eve steal without disturbing Bob's the quantum state.
- To counter PNS attacks, a new method for generating photon sources is required.

Photon Source(2)

Solution:

Decoy State method: Method of transmitting a mixture of pulses with different photon numbers (decoy pulses).

Eve cannot distinguish which pulses are real signal pulses, making it more difficult to attack.

How Decoy State method works:

- 1. Alice transmits a mixture of normal *signal pulses* and *decoy pulses*
 - a. Signal pulses \rightarrow normal light pulses for key generation
 - b. Decoy pulses → dummy pulses of different intensity or number of photon

Photon Source

Solution:

Decoy State method: Method of transmitting a mixture of pulses with different photon numbers (decoy pulses).

Eve cannot distinguish which pulses are real signal pulses, making it more difficult to attack.

How Decoy State method works:

- 2. Bob records the detection of each pulse from Alice and analyzes the statistics of the received pulses.
 - a. Without Eve, the detection rate of signal and decoy pulses is close to a pre-designed theoretical ratio.
 - b. If Eve has carried out a PNS attack, the ratio of the detection rate of decoy pulses to signal pulses collapses because the number of photons received by Bob changes.
 - Bob can detect anomalies.

The system mixes decoy pulses to make it easier to detect statistical discrepancies caused by Eve's PNS attacks.

Future work: Simulation for Quantum channel loss

- Modelling quantum channel losses in LEO-GEO long-distance QKD
 - Use the Lossy Bosonic Channel to correctly model 'photon loss'
 (Lossy Bosonic Channel: a theory for modelling quantum communication using photons)
 - Transmissivity of lossy bosonic channels: ηb (0 < $\eta b \le 1$)
 - **Percentage of photons that arrive at the receiver** through the channel.
 - The n probability distribution of the number of photons in the coherent state $|\mu\rangle$ follows a Poisson distribution:

$$P(n) = rac{\mu^n e^{-\mu}}{n!}$$
 μ : the average number of photons

O If the input coherent state $|\mu\rangle$ passes through a channel with transmission η b, the average photon number at the output: $\mu' = \eta_b \mu$

So, the probability distribution of n' is

$$P(n') = \frac{(\eta_b \mu)^{n'} e^{-\eta_b \mu}}{n'!}$$

Thank you for your listening