

腾讯V265编码器的业务体验优化

讲师: 张贤国

个人简介

张贤国

腾讯 云架平 专家工程师 编码内核组负责人

- ▶ 2003-2013, 北京大学 博士毕业
 - 数字视频编解码技术国家工程实验室
 - AVS监控视频编码
- > 多年视频编码标准和编码器研发经验
 - MediaTek 仟壹-金山云
 - HEVC/VVC, KSC265
- > 目前从事视频编码器的研发工作
 - 腾讯服务端视频编码器V265

2 V265码率控制优化

3 V265的业务落地优化

功能

可配置的编码速度级别

包含11个上编码速度级别,对应不同的使用场景,最高支持4k@60fps

多平台编码支持

产品全面支持X86、X64等服务端和PC端的docker和分布式架构,完善的多线程控制机制

多种延迟环境

视频直播, 离线转码、云游戏、视频会议

多种码率控制

ABR, CBR, VFR, 多PASS, CRF

低码率、高画质、高速

实现相同画质下的,相比X265veryslow 近20%的码率节省,同时加速80%。 从0写起,无开源代码依赖, 完全自主软件著作权

无缝对接ffmpeg, 节省业务带宽20-40% 或提升画质

分布式码率控制

提升分布式转码主观

自适应码率编码

自适应计算符合用户需要的码率和质量参数

兼容性和场景自适应

完善编码器的播放段兼容能力,并提升特定场景下的压缩率。

ROI编码、视频处理

支持ROI和部分处理。

10bit HDR

支持4K 10bit HDR和杜比画质

编码器V1.0版本,参加MSU 1080p 项目。2018.8,主观评价结果中排名 软件编码器第一

> 2017.6 项目启动

2017.11

基础架构搭建 版本0.4 2019.7,在腾讯云的多个客户中全面落地

2019.5

2019.1

版本1.3.2相比 x265优势扩大

到18%, 码控

版本1.2.2 支持基本完善 自测各个档次

2018.09

均领先竞品

2018.04

版本1.0,自测

相比x265 节省

15%, 报名参

赛MSU

2019.8

1.4.0全面 支持10bit编码, 压缩率优势扩 大至20%

1.3.8 全面满足业务 需求,系统解 决兼容性问题 4K实时编码

编码器V1.2版本,参加MSU的4K编码比赛, 2018.12, PSNR/SSIM综合效果最佳

V265基本研发情况

与X264/X265对比

单pass下

- 相比x265@veryslow节省超20%
- 相比x264最慢档节省超60%
- 相同速度下,速度越快
 - 相比x265/x264节省越多
- 中间档相比x265节省近40%
- 10bit下节省和加速近似
- CRF下与ABR下的码率节省近似、加速更多

better

测试集:

140个8bit 视频,20个10bit 视频,包多种分辨率,共划分15个场景

测试条件:

ABR, CBR, Strict CBR, CRF, CQP, CRFVBV, Zerolatency

				[
	<u>ABR@SSIM</u>	V26	55_placebo		V265	_veryslow	,	V	265_slow		V265	_medium		V	265_fast	
	Vs. x265 veryslow, tune SSIM	PSNR	SSIM	Speed	PSNR	SSIM	Speed	PSNR	SSIM	Speed	PSNR	SSIM	Speed	PSNR	SSIM	Speed
	JCTVC-ClassB	-22.85%	-27.55%	1.66	-21.43%	-26.31%	3.37	-15.68%	-21.25%	11.38	-9.99%	-15.49%	20.58	-3.04%	-8.59%	30.51
	JCTVC-ClassC	-24.28%	-30.29%	2.35	-23.19%	-29.37%	4.37	-16.94%	-23.76%	15.90	-11.58%	-18.40%	28.61	-4.46%	-12.48%	39.18
	JCTVC-ClassD	-20.38%	-28.28%	3.10	-19.36%	-27.35%	5.27	-11.80%	-20.91%	19.13	-6.38%	-15.77%	33.80	-1.12%	-11.61%	45.15
	JCTVC-ClassE	-36.57%	-32.59%	1.62	-35.08%	-30.83%	3.60	-28.44%	-24.55%	14.34	-24.03%	-19.63%	23.92	-15.70%	-11.39%	33.91
	JCTVC-ClassF	-34.58%	-39.64%	2.56	-33.13%	-38.17%	5.05	-19.48%	-26.60%	17.88	-13.27%	-19.33%	29.22	-5.04%	-11.73%	39.58
見欠	· <mark>Iower Res. 中小分辨率</mark>	-11.77%	-15.58%	2.21	-10.06%	-13.68%	4.55	-3.62%	-7.41%	18.00	1.61%	-1.67%	32.44	10.46%	5.92%	45.61
	Short720P,短视频	-20.20%	-16.80%	1.64	-18.89%	-15.48%	3.17	-14.04%	-9.83%	11.54	-7.21%	-3.25%	22.78	0.15%	5.28%	34.41
	Short540P,短视频	-18.36%	-17.72%	1.69	-16.85%	-16.13%	3.50	-12.08%	-11.31%	11.81	-5.48%	-3.74%	22.97	1.30%	2.81%	32.82
	Movie,电影	-21.18%	-17.74%	1.77	-19.83%	-16.21%	3.66	-14.40%	-10.94%	12.72	-9.77%	-5.92%	22.53	-2.73%	0.38%	33.95
	Game,游戏动画	-17.85%	-19.52%	1.94	-16.36%	-17.93%	3.92	-7.78%	-10.14%	13.44	-1.83%	-3.04%	24.54	6.83%	5.99%	35.26
	Show,秀场	-9.41%	-9.38%	1.53	-7.18%	-7.10%	3.28	-0.68%	-0.68%	13.63	4.91%	5.14%	25.13	15.19%	14.62%	39.51
,	Mv,演唱会、MV	-11.93%	-10.35%	1.83	-10.25%	-8.22%	3.87	-3.81%	-2.13%	13.04	1.65%	4.38%	23.20	8.59%	10.78%	34.44
	Sport,体育赛事	-19.04%	-21.88%	1.81	-17.77%	-20.58%	3.67	-13.22%	-15.90%	12.61	-9.44%	-11.45%	22.50	-4.43%	-6.25%	32.86
	MSU,复杂混合测试集	-23.23%	-16.57%	1.63	-21.53%	-14.91%	3.41	-15.79%	-8.86%	12.24	-10.83%	-2.90%	21.95	-2.38%	5.01%	33.31
	4K,超高清视频	-20.39%	-19.81%	1.91	-19.09%	-18.44%	4.03	-14.21%	-13.68%	13.76	-9.84%	-8.97%	24.05	-2.94%	-3.18%	32.39
	AVERAGE	-20.30%	-19.28%	1.86	-18.80%	-17.72%	3.79	-12.68%	-11.77%	13.46	-7.52%	-5.99%	24.11	0.09%	1.14%	34.85
										アドド				XNNX		

ॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗॗ

MSU结果

MSU主观对比结果

2 V265码率控制优化

3 V265的业务落地优化

码率控制优化策略

自适应码率分配

区分静态、简单、普通、复杂场景 并智能分配码率

精准码率控制

建立CTU/行/帧 三级码率控制模型,精确控制码率、减少损失

多遍编码及其他优化

优化和平衡不同场景在2pass时的qp计 算,更多功能支持

40余项创新算法,达到节省8+%以上码率,功能支持丰富、码控精准度远超x265的效果

自适应码率分配

❷ 腾讯云

➢码控模型与lookahead和vbv无缝结合

- ➤ 定质量CRF模式 (QP预测模型优化)
 - ▶问题: crf 取值与 QP的关系
 - ➤ 开源软件与帧率绑定、与纹理无关
 - ▶优化:根据纹理复杂度动态调节crf与qp 的关系
 - ▶3%以上带宽节省
 - ▶更多的码率用于人眼敏感的平坦区域

自适应码率分配

➢码控模型与lookahead和vbv无缝结合

- ▶定码率模式
 - ➤ ABR, CBR, Strict CBR
 - ▶ 内容自适应的码率、量化参数预测和更新机制
 - 多场景的帧级码率预测模型

I/GPB/B0/B1/B2 简单、复杂、静态 机器学习估计I帧码率

- ➤初始qp计算及CBR溢出控制 当前帧复杂度、码率、 累计复杂度三相关
- ▶VBV缓冲区上下限自适应计算
- ▶VBV内qp的调整优化
- ➤輸出QP限制
- ▶预测码率更新模型

自适应码率分配

❷腾讯云

▶自适应量化原理

➤时域(CUTree):

传播代价高区域QP更小

➤空域(AQ): 纹理复杂区域QP更大

≻时域优化

▶问题: Offset相比baseQP可能过大, 影响码控和压缩率

▶解决:在预分析过程建立帧间baseQP估计模型,

offset最大值与baseQP相关

>空域优化及联合优化

- **▶AQ和CUTree调整幅度**
- ▶高码率点的空域自适应量化
- ▶使得打开空域量化后PSNR损失很少

纹理复杂区域:人眼不敏感,少分bits

没有或很少被参考:少分bits

被大量参考:多分bits提高质量

码率控制优化策略

自适应码率分配

区分静态、简单、普通、复杂场景 并智能分配码率

精准码率控制

建立CTU/行/帧 三级码率控制模型,精确控制码率、减少损失

多遍编码及其他优化

优化和平衡不同场景在2pass时的qp计 算,更多功能支持

40余项创新算法,达到节省8+%以上码率,功能支持丰富、码控精准度远超x265的效果

精准码率控制

>多级码率控制

- > 图像、编码单元行,编码单元三级联合的码率估计
- ▶码率控制力度可配置
 - ➤ rc-peakrate-tolerance 从0.25~2
- > 内容自适应帧级码率控制:多码控模型,准确率高
- > 行级码率控制优化: 行级预测模型, 控制更加准确
- ➤新设计了CTU级QP调整模型,精准调整qp

>与X265比较

- ▶ X265最多到行级码控, QP每行调整一次
 - ➤仅在每行的对角线X处做QP调整
 - ▶高>宽时,空白区域失去调整能力
- ▶ V265有CTU级码控,所有区域均有QP调整能力

精准码率控制

>多级码率控制效果

- > 不同控制力度效果如右图
- ➤ ABR下与X265相比(点播)
 - ▶ 码率误差低1+%
- ▶直播下与X265相比
 - ▶码率误差只有1/3,节省30%带宽

码率控制优化策略

自适应码率分配

区分静态、简单、普通、复杂场景 并智能分配码率

精准码率控制

建立CTU/行/帧 三级码率控制模型,精确控制码率、减少损失

多遍编码及其他优化

优化和平衡不同场景在2pass时的qp计 算,更多功能支持

40余项创新算法,达到节省8+%以上码率,功能支持丰富、码控精准度远超x265的效果

多遍编码优化

❷ 腾讯云

>多遍编码码率控制问题

▶多遍编码的使用

- > 一遍crf编码估计二遍码率
- ➤ 二遍ABR编码各个分辨率、码率

▶问题:

- ▶第一遍和第二遍编码分辨率不同 X265不支持,支持的时候容易降低二遍编码压缩率
- ▶普通二遍编码压缩率有改善空间

>多遍编码码率优化:

- ▶添加两遍编码分辨率不同的支持
 - ▶720p的─遍结果可给二遍360p/1080p使用

▶添加对二遍编码的压缩率优化算法

- ▶二遍编码的预分析复杂度
- ▶二遍编码对一遍的运动矢量的重用

提升了2+%的二遍编码压缩率,PSNR提升更大

- ▶二遍编码中对简单、静态场景优化
- ▶多遍编码间的cutree关系优化

其他码率控制优化

ℰ 腾讯云

▶Region Of Interest 能力支持

- ➤ 提供ROI接口,用户可灵活控制ROI区域QP和整体crf偏移
- ▶低延迟、无延迟编码及码率控制
- ➤ 优化了VBV缓冲区上下限自适应计算
- ▶低延迟下的也可以使用分层GOP结构
 - ▶基于分层结构优化码率控制

▶VFR(variable frame rate) 码率控制

- ▶按照输入时间戳来控制码率分配
 - >数字: 时间戳相对值
- ➤X265只能定帧率编码
 - ▶按固定帧率重新计算时间戳
 - ▶重复编码3次绿色图像,绿色各分配一帧码率
- ▶V265支持可变帧率编码
 - >给绿色图像分配3帧码率,可保留原始时间戳编码
 - >绿色图像画质更高,总体码率控制精度大大提升

2 V265码率控制优化

3 V265的业务落地优化

V265在腾讯云中的业务落地优化

极速高清编码服务

主客观问题的发现和解决

业务侧265播放能力兼容

内容自适应: 预测满足用户主观质量

需求的转码码率或质量参数

块效应、模糊、马赛克等主观问题以 及压缩率变差等客观的解决 播放端黑屏、花屏、无法播放 等问题的定位和解决

极速高清-内容自适应转码

❷腾讯云

已有转码业务问题

- ➤ 传统方案:采用固定编码工具参数 (e.g. 参考帧个数)
- ▶ 问题:不同视频最优参数不同
- ▶ 传统方案:采用固定转码切分粒度(e.g. 1分钟)
- ▶ 问题:将不同场景切在一起,无法找最优参数
- ▶ 传统方案: 采用固定码率或质量转码参数
- ▶ 问题:不能合理分配码率,简单视频码率浪费、复杂视频质量不足。仍不能保证画质

视频3. 质量过高,浪费码率

视频2. 质量过差,码率不足

分析视频内容以确定一定质量下最合适的码率

极速高清-内容自适应转码

自适应切片和编码工具选择

场景切换监测,以镜头切片为基础进行分布式转码

业务场景/内容场景分类

- >对每类视频 进行 离线调优编码参数
 - ▶离线参数调优平台

业务场景/压缩性能	PSNR	SSIM	VMAF	参数限制
某电商平台	-19.11%	-14.38%	-11.93%	无

极速高清-内容自适应转码

自适应码率、质量参数

通过分析视频内容,精确预测各种质量指标下的压缩性能曲线。

例如:VMAF=90为输入,经视频特征计算、深度学习预测两步后得到的crf最大值为24。可有效防止浪费码率

视频内容分析——视频特征

特征1: 时空域复杂度

- ◎ 关键特征2:编码特征
- ◎ 仅有时空域复杂度特征信息描述不够准确,相同时空域信息编码结果表现可能不同
- ◎ 加入:视频级编码信息,帧级编码信息,块级编码信息等
- ❷预测准确率可达90%+

V265在腾讯云中的业务落地优化

极速高清编码服务

主客观问题的发现和解决

业务侧265播放能力兼容

预测满足用户主观质量需求的转码码 率或质量参数 块效应、模糊、马赛克等主观问题以 及压缩率变差等客观的解决 播放端黑屏、花屏、无法播放 等问题的定位和解决

客观问题的发现和解决

- 丰富测试集和测试条件
 - 发现更多的相比开源软件或之前版本更差的测试条件
 - 测试视频更多, 码率控制条件更多
 - 码率范围更大,业务问题视频搜集
 - PSNR/SSIM/VMAF要兼顾
 - 优化方法
 - 与竟品对比, 帧级码率控制分析
 - psnr/ssim哪一帧开始变差

• 测试集变更历史

53个测试视频 CQP/ABR

2017.11

60个测试视频,添加 4K, Crf Crfvbv

2018.05

103个测试视频,扩大 码率点范围,添加 CBR码控

2018,09

140个测试视频, 丰富视频场景, 添加 zerolatency

103个测试视频调整丰富码控评价指标

2019.5

2019.1

每个Tag要完成如下方向的"正交"测试

服务器核数 少核(8), 众核(64)

码率控制 ABR, CBR, Strict CBR, CRF, CQP, CRFVBV, Zerolatency

参数测试 关键帧间隔,分辨率,码率等

速度档 2pass, placebo, veryslow, slower, slow, universal, medium,

fast, faster, veryfast, superfast

客观问题的发现和解决

· 1. 部分简单video 指标骤降

- 极简场景下不能只做skip跳过merge模式
- 残差少, merge模式增加一个bit, psnr/ssim增加很多

· 2. 2pass比1pass编码的psnr变差很多

- 2pass倾向于均衡QP编码
- 对于简单场景要尽量follow第一遍
 - 第一遍编码中对简单、复杂场景做了自适应的位率分

配 (QP调节)

3			Tag 1.2.3 vs	s Tag 1.2.2		
9	Class	Reslution	(pr	al)		
)			BDBR-PSNR	BDBR-SSIM	FPS_Inc	Δ
1	class B	1920x1080	-2.72%	-0. 76%	-7.81%	
2	class C	832x480	-2.21%	0.05%	-11.00%	
3	class D	416x240	-1.75%	0. 32%	-14. 58%	
1	class E	1280x720	-1.79%	-1.09%	-2. 52%	
5	class F	1280x720	-4.09%	-4.66%	-7. 93%	
3	Kuaishou	720x1280	-0. 25%	0. 56%	-11. 50%	
7	Movie		-5. 29%	-2.01%	-6. 39%	
3	Game video		-5. 17%	-3. 23%	-7. 58%	
9	Show Video	1280x720	-5. 34%	-4.63%	-11. 32%	
)	MV video		-Z. 27%	-1.67%	-5. 64%	
1	NSU video	1080p	-11. 26%	6. 80%	-9. 50%	
2	4k		-8 22%	-9. 03%	-5. 64%	
3	Average		-7.04%	-5. 18%	-8. 28%	

客观问题的发现和解决

•3. 面向视频场景的粗调优

- Tune grain
 - 面向纹理细节的综合指标优化 (psnr-ssim-vmaf), 有利于树草等细节丰富场景
- Tune Artificial
- Tune vmaf/psnr/ssim
 - 单一指标的强化

Tune	PSNR	Artificial	VMAF
ClassB	-0. 21%		-9. 20%
ClassC	-0. 16%		-4. 10%
ClassD	-2. 22%		-7. 25%
ClassE	2. 55%		-16. 38%
ClassF	0. 97%	-2.21%	1. 75%
LOWRES	-0.46%		-9.67%
Short	-0.67%		-5. 29%
Movie	0. 16%		-13.04%
Game	-3.62%	-1.10%	-6. 55%
Show	0. 13%		-16. 09%
Mv	-1.77%		-9.99%
Sport	-0.96%		-10.05%
MSU	-2. 76%		-12.84%

❷ 腾讯云

• 组织内部大规模主观对比测试

- 开发主观比较工具
- 总结报告
- 出现问题video的问题排查

• 跟业务协同搭建灰度测试沙盒

• 添加问题主动上报机制

• 点播主观问题举例:

- 问题: 雪花在编码时丢失
- 原因:

vbv的管理(maxrate)

对于点播场景限制过多

・直播主观问题举例

• 问题: vfr编码下产生视频在场景切换后,码率极低,主观很差的现象。

• 原因: vfr时, 输入时间戳连续两帧相同(非正常), 引发编码器分配码率的bug。

• 视频编辑时产生的主观问题

问题:非场景切换位置指定I帧后,偶尔触发马赛克图像

解决:限制指定I帧附近不自动插入I帧,避免 I_0 和 I_k 之间的码率分配异常(k < = 8)

• 复杂纹理区域的主观调优:

- 树草区域的主观问题
 - 场景切换后的人、草、树糊掉
- 原因:
 - 分布式码率控制时,对片间场景切换后做了调整。
- 解决:
 - 分布式码控的QP调整区间不超过场景切换

V265在腾讯云中的业务落地优化

极速高清编码服务

主客观问题的发现和解决

业务侧265播放能力兼容

预测满足用户主观质量需求的转码码 率或质量参数 块效应、模糊、马赛克等主观问题以 及压缩率变差等客观的解决 播放端黑屏、花屏、无法播放 等问题的定位和解决

业务侧265播放能力兼容

腾讯云

• 1) 长期参考帧的软解、芯片解码支持

- 部分电视机芯片驱动层支持不完善
- 部分软解播放器支持不完善
- ffmpeg解码器能力支持不完善
 - 当参考帧列表包含 poc=X(短期)和 poc=X+256(长期),
 - FFMPEG解码会崩溃
- 解决: V265避免同时出现X和X+256
- 解决: 部分用户强制关闭长期参考帧

• 2) CRA I 帧的软解、芯片播放支持

- CRA帧用于提升下图 (gop=4) 中B6,B5,B7的压缩率
 - 随机访问第8帧时,都只需要解码帧号大于8的图像
- 问题:
 - 随机访问CRA8后解码了B6B5B7, 导致播放出现花屏
- 解决:
 - 部分业务强制closegop编码

H.264 IDR GOP: IDR0 B4 B2 B1 B3 B6 B5 B7 DR8 B12 B10 B9 B11

前向

后向

H.265 CRA GOP: IDR0 B4 B2 B1 B3 CRA8 B6 B5 B7 B12 B10 B9 B11

前向

业务侧265播放能力兼容

ℰ 腾讯云

· 3) 电视机解码器不支持多分层B帧

- 部分电视机driver
 - 只支持一层参考B帧
 - follow X265
- 解决:
 - V265设置成一层参考B结构
 - 以牺牲压缩率为代价
 - 该厂商在升级,指定型号只推264

· 4) ffmpeg3.x解码时的seek到片头逻辑bug

- 开始处存在间隔较短的两个I帧时, 起始播放时刻错误
 - ffmpeg4.x修复
- V265避免开始处存在间隔较短两个I帧

· 5) PC硬件板卡解码播放卡顿

- 原因:不支持部分帧级SAO关闭的视频流的解码
 - slice header的解码完全follow x265码流
- 解决:支持在帧级不启用sao选择性关闭的快速算法

业务侧265播放能力兼容

8) SPS中dpb配置的手机、电视播放端兼容性问题

- 原因: 部分手机设备的早期ROM层解码问题
 - SPS管理follow x265的"冗余"的dpb标识方法
 - 不兼容精简标识方法,导致V265码流无法播放

小米note	android6.0.1	无法播放(播放2秒视频 画面卡住,声音继续播放)
小米4c	android 7.1.1	无法播放(播放2秒视频 画面卡住,声音继续播放)

sps_sub_layer_ordering_info_present_flag	u(1)				
for(i = (sps_sub_layer_ordering_info_present_flag ? 0 : sps_max_sub_layers_minus1);					
i <= sps_max_sub_layers_minus1; i++) {					
sps_max_dec_pic_buffering_minus1[i]	ue(v)				
sps_max_num_reorder_pics[i]	ue(v)				
sps_max_latency_increase_plus1[i]	ue(v)				
}					

解决: V265使用最大冗余标识方法 (浪费bit有限)

V265编码器具备:

远胜X265的压缩率和编码速度 完善的码率控制 主客观优化 设备兼容能力

助力腾讯云:

给客户以完备265体验

扫码关注视频云公众号

Thank you

扫码关注视频云公众号