Anexo: Modelos Estocásticos de Ecología de Bacterias

(Attachment: Stochastic Models in Bacterial Ecology)

Jesús Arturo Moreno López Tutor: Dr. Juan Pedro García Villaluenga

Julio 2019

Trabajo de Fin de Grado Facultad de Ciencias Físicas Universidad Complutense de Madrid

${\bf \acute{I}ndice}$

1.	Demostración de la expresión (3)	1
2.	Demostración de la equivalencia entre poblaciones totales de un VL con difusión y sin difusión.	1
3.	Estructura del nuevo modelo (1ª y 2ª variante) 3.1. Figuras obtenidas variando las condiciones iniciales en la 2ª variante del nuevo modelo	2 4
4.	Figuras obtenidas variando la efectividad de caza de los depredadores en la 2^a variante del nuevo modelo	6
5.	Figuras obtenidas variando la probabilidad de muerte de los depredadores en la 2^a variante del nuevo modelo	8
6.	Figuras obtenidas variando la tasa de reproducción de las presas en la $2^{\rm a}$ variante del nuevo modelo	10
7.	Figuras obtenidas variando la probabilidad de muerte de las presas en la 2ª variante del nuevo modelo	12

1. Demostración de la expresión (3)

Integrando a ambos lados en la variable espacial:

$$\frac{dN(x,t)}{dt} = -D_N \frac{d^2N(x,t)}{dx^2}$$

$$\frac{dN_{total}(t)}{dt} = -D_N \int_0^L \frac{d^2N(x,t)}{dx^2} dx$$

$$\frac{dN_{total}(t)}{dt} = -D_N (\frac{dN(x,t)}{dx}|_L - \frac{dN(x,t)}{dx}|_0)$$

2. Demostración de la equivalencia entre poblaciones totales de un VL con difusión y sin difusión.

Condiciones:

•
$$N(L,t) = N(0,t) = 0$$

$$\frac{dN_{total}(t)}{dt} = a \int_{0}^{L} N(x,t)dx - b \int_{0}^{L} N(x,t)P(x,t)dx - D_{N}(\frac{dN(x,t)}{dx}|_{L} - \frac{dN(x,t)}{dx}|_{0})$$
aplicando la 1^acondición e integrando por partes
$$= aN_{total}(t) - b(N_{total}(t)P_{total}(t) - \int_{0}^{L} P_{total}(t)\frac{dN(x,t)}{dx}dx)$$

$$= aN_{total}(t) - b(N_{total}(t)P_{total}(t) - P_{total}(t)(N(L,t) - N(0,t)))$$
aplicando la 2^acondición
$$= aN_{total}(t) - bN_{total}(t)P_{total}(t)$$

3. Estructura del nuevo modelo (1^a y 2^a variante)

Aquellos elementos sólo introducidos para la variante 2 vendrán precedidos por (Variante 2) en el esquema.

Parámetros globales:

Definimos:

- Número inicial de agentes: num_agents
- Tamaño del recinto: recinto
- Proporciones iniciales de las distintas especies de presas: r_init, ra_init, h_init
- Proporciones iniciales de las distintas especies de depredadores: f_init, w_init
- Magnitud de movimiento de las presas / depredadores: mr / mf, mw
- Tiempo de espera para la reproducción: cdr, cdra, cdh
- Probabilidad por unidad de tiempo después del tiempo de espera: nrr, nrra, nrh
- Efectividad de la caza en un encuentro presa-depredador: hunting_f, hunting_w
- Fagos adicionales que nacen de la caza: offspring_f, offspring_w
- Probabilidad de muerte de las distintas especies de presas: dr, dra, dh
- Probabilidad de muerte de las distintas especies de depredadores: df,dw
- Distancia de interacción: cd

Inicializar:

- Crear num_agents agentes y asignar los distintos tipos según r_init, ra_init, h_init,
 f_init, w_init
 - Si el agente es una **presa**, añadir una propiedad al agente llamada **time** que represente el tiempo restante para iniciar la reproducción e inicializarla con un valor aleatorio entre 0 y cdr, cdra, cdh
 - (Variante 2) Si el agente es un **depredador**, añadir una propiedad al agente llamada off que representa los fagos producidos por caza fructuosa. Se inicializa, dependiendo de la especi de depredador, como off = offspring_f o off = offspring_f. Este valor ya no será fijo.
- Asignar de forma aleatoria y con distribución uniforme (-recinto, recinto) a cada agente unas coordenadas espaciales (x,y)

Actualizar:

Se actualiza el estado de **todos los agentes** en orden aleatorio. Cada vez que se completa un **actualizar**, se considera que ha pasado una unidad de tiempo. **Actualizar** se repite un cierto número de veces dado por el parámetro **Tstep** (longitud temporal de la simulación).

- Se ordena aleatoriamente la lista de agentes disponibles.
- Para todos los agentes de la lista se ejecuta la dinámica de mortalidad:
 - Si el agente es un **depredador**:
 - \circ Dependiendo de la especie de depredador se asocia un parámetro de movilidad m=mf, mw
 - o Si número aleatorio generado uniformemente entre 0 y 1 es menor que la probabilidad de muerte del depredador (df o dw), se borra el agente.
 - Si el agente es una **presa**:
 - o Se le asocia un parámetro de movimiento m = mr
 - o Si número aleatorio generado uniformemente entre 0 y 1 es menor que la probabilidad de muerte de la presa en cuestión (dr, dra o dh), se borra el agente.
- Para todos los agentes de la lista se ejecuta la dinámica de movilidad:
 - Añadimos a su posición un número dado por la distribución uniforme (-m,m) donde m = mr para las presas y m = mf o mw para los depredadores. Existe la opción de elegir una distribución gaussiana con media 0 y desviación 2m.
 - Si la posición supera los límites del recinto, se coloca al agente en los bordes del recinto.
- Para todos los agentes de la lista se ejecuta la dinámica de caza y/o reproducción:
 - Si el agente que se está actualizando es un **depredador**:
 - o Identifica a los vecinos dentro del rango dado por cd.
 - Si hay presas vecinas:
 - ◊ (Variante 2) Si hay más de 1 vecino depredador, el parámetro off del depredador que estamos examinando baja. Como mínimo este valor puede ser 0.
 - ♦ (Variante 2) En caso contrario, el parámetro off sube. Como máximo este valor puede ser 2.
 - ♦ Si un número generado aleatoriamente entre 0 y 1 es menor que la efectividad de caza (hunting_f o hunting_w):
 - Se borra a la presa más cercana y se crean tanto agentes como dicte el parámetro global offspring_f o offspring_w, dependiendo de la especie de agente.
 - (Variante 2) Se borra a la presa más cercana y se crean tantos agentes como dicte el parámetro individual off del agente en cuestión.
 - Si el agente que se está actualizando es una **presa**:
 - Se añade una unidad de tiempo al contador time asociado a las presas.
 - o Si dicho parámetro time es mayor que el tiempo de espera para la reproducción de dicho agente (cdr, cdra o cdh) y un número aleatorio generado uniformemente entre 0 y 1 es menor que la probabilidad de reproducción (nrr, nrra o nrh) entonces se realiza una copia del agente en cuestión.

3.1. Figuras obtenidas variando las condiciones iniciales en la 2^a variante del nuevo modelo

Figura 1: Media y dispersión de las poblaciones al variar el número total inicial de agentes, manteniendo la densidad inicial de agentes constante.

Figura 2: Media y dispersión de las poblaciones al variar el número total inicial de agentes, recinto fijo.

Figura 3: Media y dispersión de las poblaciones al variar la proporción presas/depredadores inicial.

4. Figuras obtenidas variando la efectividad de caza de los depredadores en la 2ª variante del nuevo modelo

Figura 4: Evolución de las poblaciones al variar la efectividad de caza de los depredadores.

Figura 5: Evolución de la diferencia entre poblaciones al variar la efectividad de caza de los depredadores.

Figura 6: Evolución de la medida de inercia al variar la efectividad de caza de los depredadores.

Figura 7: Evolución del coeficiente de correlación de Pearson entre las poblaciones al variar la efectividad de caza de los depredadores.

5. Figuras obtenidas variando la probabilidad de muerte de los depredadores en la 2ª variante del nuevo modelo

Figura 8: Evolución de las poblaciones al variar la probabilidad de muerte de los depredadores.

Figura 9: Evolución de la diferencia entre poblaciones al variar la probabilidad de muerte de los depredadores.

Figura 10: Evolución de la medida de inercia al variar la probabilidad de muerte de los depredadores.

Figura 11: Evolución del coeficiente de correlación de Pearson la probabilidad de muerte de los depredadores.

6. Figuras obtenidas variando la tasa de reproducción de las presas en la 2ª variante del nuevo modelo

Figura 12: Evolución de las poblaciones al variar la tasa de reproducción de las presas.

Figura 13: Evolución de la diferencia entre poblaciones al variar la tasa de reproducción de las presas.

Figura 14: Evolución de la medida de inercia al variar la tasa de reproducción de las presas.

Figura 15: Evolución del coeficiente de correlación de Pearson la tasa de reproducción de las presas.

7. Figuras obtenidas variando la probabilidad de muerte de las presas en la 2ª variante del nuevo modelo

Figura 16: Evolución de las poblaciones al variar la probabilidad de muerte de las presas.

Figura 17: Evolución de la diferencia entre poblaciones al variar la probabilidad de muerte de las presas.

Figura 18: Evolución de la medida de inercia al variar la probabilidad de muerte de las presas.

Figura 19: Evolución del coeficiente de correlación de Pearson al variar la probabilidad de muerte de las presas.