Singular chains on Lie groups and the Cartan relations

Camilo Arias Abad

Universidad Nacional de Colombia (joint with Alexander Quintero)

Friday Fish Utrecht 2020

Outline

Chains on Lie groups and the Cartan relations

The compact case and Chern-Weil theory

Local systems on classifying spaces

Let us fix a simply connected Lie group ${\cal G}$ with Lie algebra ${\mathfrak g}.$

Let us fix a simply connected Lie group ${\cal G}$ with Lie algebra ${\mathfrak g}.$

We will consider the space $C_{ullet}(G)$ of smooth singular chains on G.

Let us fix a simply connected Lie group ${\cal G}$ with Lie algebra ${\mathfrak g}.$

We will consider the space $C_{\bullet}(G)$ of smooth singular chains on G.

This space has the algebraic structure of a $dg ext{-Hopf}$ algebra.

Let us fix a simply connected Lie group ${\cal G}$ with Lie algebra ${\mathfrak g}.$

We will consider the space $C_{\bullet}(G)$ of smooth singular chains on G.

This space has the algebraic structure of a $dg ext{-Hopf}$ algebra.

$dg ext{-Hopf algebra: product}$

The product map

$$\mu: C_{\bullet}(G) \otimes C_{\bullet}(G) \to C_{\bullet}(G)$$

is given by the composition:

The product map

$$\mu: C_{\bullet}(G) \otimes C_{\bullet}(G) \to C_{\bullet}(G)$$

is given by the composition:

$$C_{\bullet}(G) \otimes C_{\bullet}(G) \xrightarrow{\quad \mathsf{EZ} \quad} C_{\bullet}(G \times G) \xrightarrow{\quad m_* \quad} C_{\bullet}(G).$$

The product map

$$\mu: C_{\bullet}(G) \otimes C_{\bullet}(G) \to C_{\bullet}(G)$$

is given by the composition:

$$C_{\bullet}(G) \otimes C_{\bullet}(G) \xrightarrow{\mathsf{EZ}} C_{\bullet}(G \times G) \xrightarrow{m_*} C_{\bullet}(G).$$

Here $m: \overline{G} \times G \to G$ is the multiplication map,

The product map

$$\mu: C_{\bullet}(G) \otimes C_{\bullet}(G) \to C_{\bullet}(G)$$

is given by the composition:

$$C_{\bullet}(G) \otimes C_{\bullet}(G) \xrightarrow{\mathsf{EZ}} C_{\bullet}(G \times G) \xrightarrow{m_*} C_{\bullet}(G).$$

Here $m:G\times G\to G$ is the multiplication map, and EZ is the Eilenberg-Zilber map defined by

The product map

$$\mu: C_{\bullet}(G) \otimes C_{\bullet}(G) \to C_{\bullet}(G)$$

is given by the composition:

$$C_{\bullet}(G) \otimes C_{\bullet}(G) \xrightarrow{\mathsf{EZ}} C_{\bullet}(G \times G) \xrightarrow{m_*} C_{\bullet}(G).$$

Here $m:G\times G\to G$ is the multiplication map, and EZ is the Eilenberg-Zilber map defined by

$$\mathsf{EZ}(\sigma \otimes \nu) := \sum_{\chi \in \Sigma_{(r,s)}} (-1)^{|\chi|} (\sigma \times \nu) \circ \overline{\chi},$$

Eilenberg-Zilber

Eilenberg-Zilber

where $\overline{\chi}$ is the map:

$$\overline{\chi}: \Delta_{r+s} \to \Delta_r \times \Delta_s$$

$$\overline{\chi}(t_1, \dots, t_{r+s}) = ((t_{\chi(1)}, \dots, t_{\chi(r)}), (t_{\chi(r+1)}, \dots, t_{\chi(r+s)})).$$

The subalgebra of zero chains $C_0(G) \hookrightarrow C(G)$ is the group ring of G.

The subalgebra of zero chains $C_0(G) \hookrightarrow C(G)$ is the group ring of G.

$$C_0(G) = \mathbb{R}[G].$$

The subalgebra of zero chains $C_0(G) \hookrightarrow C(G)$ is the group ring of G.

$$C_0(G) = \mathbb{R}[G].$$

Modules over the group ring are the same as representations of G, which correspond to representations of the Lie algebra \mathfrak{g} .

The subalgebra of zero chains $C_0(G) \hookrightarrow C(G)$ is the group ring of G.

$$C_0(G) = \mathbb{R}[G].$$

Modules over the group ring are the same as representations of G, which correspond to representations of the Lie algebra \mathfrak{g} .

Question: Describe the modules over C(G) infinitesimally.

Given a finite dimensional Lie algebra ${\mathfrak g}$

Given a finite dimensional Lie algebra $\mathfrak g$ we define a differential graded Lie algebra $T\mathfrak g$ as follows:

Given a finite dimensional Lie algebra ${\mathfrak g}$ we define a differential graded Lie algebra $T{\mathfrak g}$ as follows:

$$T\mathfrak{g}:=\mathfrak{g}^{-1}\oplus\mathfrak{g}^0.$$

subject to the relations:

Given a finite dimensional Lie algebra ${\mathfrak g}$ we define a differential graded Lie algebra $T{\mathfrak g}$ as follows:

$$T\mathfrak{g}:=\mathfrak{g}^{-1}\oplus\mathfrak{g}^0.$$

subject to the relations:

$$\begin{aligned} [L_v, L_w] &= L_{[v,w]} \\ [L_v, \iota_w] &= \iota_{[v,w]} \\ [\iota_v, \iota_w] &= 0 \\ d\iota_v &= L_v \end{aligned}$$

Given a finite dimensional Lie algebra ${\mathfrak g}$ we define a differential graded Lie algebra $T{\mathfrak g}$ as follows:

$$T\mathfrak{g}:=\mathfrak{g}^{-1}\oplus\mathfrak{g}^0.$$

subject to the relations:

$$\begin{aligned} [L_v, L_w] &= L_{[v,w]} \\ [L_v, \iota_w] &= \iota_{[v,w]} \\ [\iota_v, \iota_w] &= 0 \\ d\iota_v &= L_v \end{aligned}$$

Suppose that the group ${\cal G}$ acts on a manifold ${\cal M}.$

Suppose that the group G acts on a manifold M. Then the Lie algebra $\mathfrak g$ acts on differential forms on M.

Suppose that the group G acts on a manifold M. Then the Lie algebra $\mathfrak g$ acts on differential forms on M.

More is true: the whole Lie algebra $T\mathfrak{g}$ acts on $\Omega(M)$ where L_v acts by Lie derivative and ι_v by contraction.

Suppose that the group G acts on a manifold M. Then the Lie algebra $\mathfrak g$ acts on differential forms on M.

More is true: the whole Lie algebra $T\mathfrak{g}$ acts on $\Omega(M)$ where L_v acts by Lie derivative and ι_v by contraction.

The relations above are called the Cartan relations.

Theorem [C.A]

Theorem [C.A]

There is an integration functor

Theorem [C.A]

There is an integration functor

$$\mathcal{I}: \mathsf{Rep}(T\mathfrak{g}) o \mathsf{Mod}(C_ullet(G))$$

Theorem [C.A]

There is an integration functor

$$\mathcal{I}: \mathsf{Rep}(T\mathfrak{g}) o \mathsf{Mod}(C_ullet(G))$$

which is an equivalence of categories.

Theorem [C.A]

There is an integration functor

$$\mathcal{I}: \mathsf{Rep}(T\mathfrak{g}) o \mathsf{Mod}(C_ullet(G))$$

which is an equivalence of categories.

How the proof works

Given a representation $\rho:T\mathfrak{g}\to \operatorname{End}(V)$

How the proof works

Given a representation $\rho:T\mathfrak{g}\to \mathrm{End}(V)$ there is a unique equivariant differential form

Given a representation $\rho:T\mathfrak{g}\to \mathrm{End}(V)$ there is a unique equivariant differential form

$$\alpha = \alpha_0 + \alpha_1 + \alpha_2 + \dots \in \Omega(G, \mathsf{End}(V))$$

Given a representation $\rho:T\mathfrak{g}\to \mathrm{End}(V)$ there is a unique equivariant differential form

$$\alpha = \alpha_0 + \alpha_1 + \alpha_2 + \dots \in \Omega(G, \mathsf{End}(V))$$

such that:

Given a representation $\rho:T\mathfrak{g}\to \operatorname{End}(V)$ there is a unique equivariant differential form

$$\alpha = \alpha_0 + \alpha_1 + \alpha_2 + \dots \in \Omega(G, \mathsf{End}(V))$$

such that:

$$\alpha_k(e)(v_1,\ldots,v_k) = \rho(\iota_{v_1}) \circ \cdots \circ \rho(\iota_{v_k})$$

$$D(\alpha_0)(e)(v) = \rho(L_v)$$

$$D(\alpha_0)(e)(v) = \rho(L_v)$$

$$m^*(\alpha) = \pi_1^*(\alpha) \wedge \pi_2^*(\alpha)$$

$$D(\alpha_0)(e)(v) = \rho(L_v)$$

$$m^*(\alpha) = \pi_1^*(\alpha) \wedge \pi_2^*(\alpha)$$

$$d\alpha_k = \partial \alpha_{k+1}$$

$$D(\alpha_0)(e)(v) = \rho(L_v)$$

$$m^*(\alpha) = \pi_1^*(\alpha) \wedge \pi_2^*(\alpha)$$

$$d\alpha_k = \partial \alpha_{k+1}$$

Bott-Shulman-Stasheff algebra

$$\begin{array}{cccc}
& & & & & & & \\
\bar{d} & & & \bar{d} & & & \bar{d} \\
\Omega^2(G_0) & \xrightarrow{\partial} & \Omega^2(G_1) & \xrightarrow{\partial} & \Omega^2(G_2) & \xrightarrow{\partial} & \cdots \\
& \bar{d} & & \bar{d} & & \bar{d} \\
\Omega^1(G_0) & \xrightarrow{\partial} & \Omega^1(G_1) & \xrightarrow{\partial} & \Omega^1(G_2) & \xrightarrow{\partial} & \cdots \\
& \bar{d} & & \bar{d} & & \bar{d} \\
\Omega^0(G_0) & \xrightarrow{\partial} & \Omega^0(G_1) & \xrightarrow{\partial} & \Omega^0(G_2) & \xrightarrow{\partial} & \cdots \\
\end{array}$$

Bott-Shulman-Stasheff algebra

$$\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\bar{d} & \bar{d} & \bar{d} & \bar{d} \\
\Omega^{2}(G_{0}) & \xrightarrow{\partial} & \Omega^{2}(G_{1}) & \xrightarrow{\partial} & \Omega^{2}(G_{2}) & \xrightarrow{\partial} & \cdots \\
\bar{d} & \bar{d} & \bar{d} & \bar{d} \\
\Omega^{1}(G_{0}) & \xrightarrow{\partial} & \Omega^{1}(G_{1}) & \xrightarrow{\partial} & \Omega^{1}(G_{2}) & \xrightarrow{\partial} & \cdots \\
\bar{d} & \bar{d} & \bar{d} & \bar{d} & \bar{d} \\
\Omega^{0}(G_{0}) & \xrightarrow{\partial} & \Omega^{0}(G_{1}) & \xrightarrow{\partial} & \Omega^{0}(G_{2}) & \xrightarrow{\partial} & \cdots .
\end{array}$$

 $\alpha \in \Omega(BG) \otimes \operatorname{End}(V)$

Bott-Shulman-Stasheff algebra

$$\begin{array}{cccc}
\vdots & \vdots & \vdots \\
\bar{d} & \bar{d} & \bar{d} \\
\Omega^{2}(G_{0}) & \xrightarrow{\partial} \Omega^{2}(G_{1}) & \xrightarrow{\partial} \Omega^{2}(G_{2}) & \xrightarrow{\partial} \cdots \\
\bar{d} & \bar{d} & \bar{d} \\
\Omega^{1}(G_{0}) & \xrightarrow{\partial} \Omega^{1}(G_{1}) & \xrightarrow{\partial} \Omega^{1}(G_{2}) & \xrightarrow{\partial} \cdots \\
\bar{d} & \bar{d} & \bar{d} & \bar{d} \\
\Omega^{0}(G_{0}) & \xrightarrow{\partial} \Omega^{0}(G_{1}) & \xrightarrow{\partial} \Omega^{0}(G_{2}) & \xrightarrow{\partial} \cdots \end{array}$$

 $\alpha \in \Omega(BG) \otimes \operatorname{End}(V)$ satisfies the Maurer-Cartan equation.

The map: $\mathcal{I}(\rho): C_{ullet}(G) \to \operatorname{End}(V)$ defined by:

The map: $\mathcal{I}(\rho): C_{\bullet}(G) \to \operatorname{End}(V)$ defined by:

$$\rho(\sigma) := \int_{\Delta_k} \sigma^*(\alpha_k)$$

The map: $\mathcal{I}(\rho): C_{\bullet}(G) \to \operatorname{End}(V)$ defined by:

$$\rho(\sigma) := \int_{\Delta_k} \sigma^*(\alpha_k)$$

is a homomorphism of differential graded algebras.

The map: $\mathcal{I}(\rho): C_{\bullet}(G) \to \operatorname{End}(V)$ defined by:

$$\rho(\sigma) := \int_{\Delta_k} \sigma^*(\alpha_k)$$

is a homomorphism of differential graded algebras.

Summary

Chern and Weil provided a description of the theory of characteristic classes in terms of differential geometry and Lie theory.

Chern and Weil provided a description of the theory of characteristic classes in terms of differential geometry and Lie theory.

Let $\pi:P\to X$ be a principal G bundle over X.

Chern and Weil provided a description of the theory of characteristic classes in terms of differential geometry and Lie theory.

Let $\pi: P \to X$ be a principal G bundle over X.

This is classified by a map $f: X \to BG$,

Chern and Weil provided a description of the theory of characteristic classes in terms of differential geometry and Lie theory.

Let $\pi: P \to X$ be a principal G bundle over X.

This is classified by a map $f: X \to BG$, and therefore defines a morphism:

Chern and Weil provided a description of the theory of characteristic classes in terms of differential geometry and Lie theory.

Let $\pi: P \to X$ be a principal G bundle over X.

This is classified by a map $f: X \to BG$, and therefore defines a morphism:

$$f^*: H(BG) \to H(X)$$

The Weil algebra is: $W(\mathfrak{g}) := C(T\mathfrak{g})$

The Weil algebra is: $W(\mathfrak{g}) := C(T\mathfrak{g})$

It is contractible and behaves as if $W(\mathfrak{g}) \simeq \Omega(EG)$

The Weil algebra is: $W(\mathfrak{g}) := C(T\mathfrak{g})$

It is contractible and behaves as if $W(\mathfrak{g}) \simeq \Omega(EG)$

Also $W(\mathfrak{g})^{\mathsf{basic}} \simeq \Omega(BG) \simeq H(BG) \simeq S(\mathfrak{g}^*)^G$

The Weil algebra is: $W(\mathfrak{g}) := C(T\mathfrak{g})$

It is contractible and behaves as if $W(\mathfrak{g}) \simeq \Omega(EG)$

Also $W(\mathfrak{g})^{\mathrm{basic}} \simeq \Omega(BG) \simeq H(BG) \simeq S(\mathfrak{g}^*)^G$

A connection on P defines a map $W(\mathfrak{g}) o\Omega(P)$

The Weil algebra is: $W(\mathfrak{g}) := C(T\mathfrak{g})$

It is contractible and behaves as if $W(\mathfrak{g}) \simeq \Omega(EG)$

Also
$$W(\mathfrak{g})^{\mathrm{basic}} \simeq \Omega(BG) \simeq H(BG) \simeq S(\mathfrak{g}^*)^G$$

A connection on P defines a map $W(\mathfrak{g}) \to \Omega(P)$ and therefore a map:

$$W(\mathfrak{g})^{\mathsf{basic}} \simeq S(\mathfrak{g}^*)^G \to H(X).$$

A dg-category of representations of $T\mathfrak{g}$

The category $\mathsf{Rep}(T\mathfrak{g})$ can be naturally enhanced to a dg-category $\overline{\mathsf{Rep}}(T\mathfrak{g}).$

A dg-category of representations of $T\mathfrak{g}$

The category $\mathsf{Rep}(T\mathfrak{g})$ can be naturally enhanced to a dg-category $\overline{\mathsf{Rep}}(T\mathfrak{g}).$

The Hom spaces are defined in terms of equivariant cohomology.

A dg-category of modules over C(G)

The category $\mathsf{Mod}(C(G))$ can be naturally enhanced to a dg-category $\overline{\mathsf{Mod}}(C(G))$

A dg-category of modules over C(G)

The category $\mathsf{Mod}(C(G))$ can be naturally enhanced to a dg-category $\overline{\mathsf{Mod}}(C(G))$

The Hom spaces are defined in terms of Hochschild cohomology.

$\mathsf{A}_{\infty}\text{-equivalence}$

Theorem [C. A., A. Quintero]

A_{∞} -equivalence

Theorem [C. A., A. Quintero]

Let ${\cal G}$ be a compact, simply connected Lie group with Lie algebra ${\mathfrak g}.$

A_{∞} -equivalence

Theorem [C. A., A. Quintero]

Let G be a compact, simply connected Lie group with Lie algebra $\mathfrak g.$ The following dg-categories are naturally $\mathsf A_\infty$ equivalent:

A_{∞} -equivalence

Theorem [C. A., A. Quintero]

Let G be a compact, simply connected Lie group with Lie algebra $\mathfrak g.$ The following dg-categories are naturally $\mathsf A_\infty$ equivalent:

$$\overline{\mathsf{Rep}}(T\mathfrak{g}) \simeq \overline{\mathsf{Mod}}(C_{\bullet}(G))$$

Ingredients of the proof

Chen's iterated integrals

Ingredients of the proof

Chen's iterated integrals

Gugenheim's A_∞ version of de-Rham's theorem.

Ingredients of the proof

Chen's iterated integrals

Gugenheim's A_{∞} version of de-Rham's theorem

Alekseev-Meinrenken non-commutative Weil algebra

Ingredients of the proof

Chen's iterated integrals

Gugenheim's A_{∞} version of de-Rham's theorem.

Alekseev-Meinrenken non-commutative Weil algebra

The Van Est map.

Ingredients of the proof

Chen's iterated integrals

Gugenheim's A_{∞} version of de-Rham's theorem.

Alekseev-Meinrenken non-commutative Weil algebra

The Van Est map.

Sketch of the proof

Sketch of the proof

Each arrow represents an $\ensuremath{A_{\infty}}$ equivalence of dg-categories:

Sketch of the proof

Each arrow represents an $\ensuremath{\mathsf{A}}_\infty$ equivalence of dg-categories:

Idea: Construct differential forms on mapping spaces

Idea: Construct differential forms on mapping spaces

If ${\cal P}{\cal M}$ is the path space of ${\cal M}$, there is a map:

Idea: Construct differential forms on mapping spaces

If PM is the path space of M, there is a map:

$$\Omega(M)^{\otimes k} \mapsto \Omega(PM)$$

Idea: Construct differential forms on mapping spaces

If ${\cal P}{\cal M}$ is the path space of ${\cal M}$, there is a map:

$$\Omega(M)^{\otimes k} \mapsto \Omega(PM)$$

given by the composition

Idea: Construct differential forms on mapping spaces

If PM is the path space of M, there is a map:

$$\Omega(M)^{\otimes k} \mapsto \Omega(PM)$$

given by the composition

$$\Omega(M)^{\otimes k} \: \longrightarrow \: \Omega(M^k) \overset{\operatorname{ev}^*}{\longrightarrow} \: \Delta_k \times PM \overset{\int_{\Delta_k}}{\longrightarrow} \: PM$$

Gugenheim's A_{∞} de Rham theorem

I heorem [Gugenheim]

Gugenheim's A_{∞} de Rham theorem

Theorem [Gugenheim]

There is an $A_{\infty}\text{-quasi-isomorphism}$ constructed in terms of Chen's iterated integrals:

Gugenheim's A_{∞} de Rham theorem

Theorem [Gugenheim]

There is an $A_{\infty}\text{-quasi-isomorphism}$ constructed in terms of Chen's iterated integrals:

$$\psi:\Omega(M)\to C^{\bullet}(M)$$

Bott-Shulman-Stasheff algebra

A_{∞} de Rham theorem for classifying spaces

Theorem [C.A., Quintero]

A_{∞} de Rham theorem for classifying spaces

Theorem [C.A., Quintero]

There is an $A_{\infty}\text{-quasi-isomorphism:}$

A_{∞} de Rham theorem for classifying spaces

Theorem [C.A., Quintero]

There is an A_{∞} -quasi-isomorphism:

$$\psi:\Omega(BG)\to HC^{\bullet}(C_{\bullet}(G))$$

The non-commutative Weil algebra

The algebra $\Omega(BG)$ is non-commutative

The non-commutative Weil algebra

The algebra $\Omega(BG)$ is non-commutative

There are non-commutative versions of the Weil algebra.

The non-commutative Weil algebra

The algebra $\Omega(BG)$ is non-commutative

There are non-commutative versions of the Weil algebra.

Applications to Lie theory and Chern-Weil theory.

The Van Est map

Comparison map between Lie group and Lie algebra cohomology.

The Van Est map

Comparison map between Lie group and Lie algebra cohomology.

Generalizations by Weinstein-Xu, Crainic and others.

The Van Est map

Comparison map between Lie group and Lie algebra cohomology.

Generalizations by Weinstein-Xu, Crainic and others.

$$\begin{array}{ccc} \Omega(BG) & \xrightarrow{\mathrm{VE}} & W(\mathfrak{g}) \\ & & & & \\ & & &$$

What is a higher local system? There are several possible answers:

A. Geometry: A flat $\mathbb Z$ graded vector bundle $E \to X$ together with a flat superconnection.

- A. Geometry: A flat $\mathbb Z$ graded vector bundle $E \to X$ together with a flat superconnection.
- B. Algebra: A representation of the infinity groupoid $\pi_{\infty}(X)$.

- A. Geometry: A flat $\mathbb Z$ graded vector bundle $E \to X$ together with a flat superconnection.
- B. Algebra: A representation of the infinity groupoid $\pi_{\infty}(X)$.
- C. Homotopy: A dg-module over $C(\Omega(X))$, the algebra of chains on the Moore loop space of X.

- A. Geometry: A flat $\mathbb Z$ graded vector bundle $E \to X$ together with a flat superconnection.
- B. Algebra: A representation of the infinity groupoid $\pi_{\infty}(X)$.
- C. Homotopy: A dg-module over $C(\Omega(X))$, the algebra of chains on the Moore loop space of X.

Theorem

Theorem

For each of the points of view above, the corresponding notions of local system can be organized into a dg-category, and the resulting dg-categories are quasi-equivalent.

Theorem

For each of the points of view above, the corresponding notions of local system can be organized into a dg-category, and the resulting dg-categories are quasi-equivalent.

Works by Block-Smith, Holstein, C.A. Schaetz.

Theorem

For each of the points of view above, the corresponding notions of local system can be organized into a dg-category, and the resulting dg-categories are quasi-equivalent.

Works by Block-Smith, Holstein, C.A. Schaetz

We will abuse the notation and write $\mathsf{Loc}(X)$ for any of these dg -categories.

Higher local systems on classifying spaces

Theorem [C.A.- Quintero]

Higher local systems on classifying spaces

Theorem [C.A.- Quintero]

Let G be a compact an simply connected Lie group. The following dg-categories are A_∞ equivalent:

Higher local systems on classifying spaces

Theorem [C.A.- Quintero]

Let G be a compact an simply connected Lie group. The following dg-categories are A_∞ equivalent:

$$\overline{\mathsf{Rep}}(T\mathfrak{g}) \simeq \overline{\mathsf{Mod}}(C_{\bullet}(G)) \simeq \mathsf{Loc}(BG)$$

Example I: The trivial representation

We have seen that $\operatorname{Loc}(BG) \simeq \overline{\operatorname{Mod}}(C_{\bullet}(G)) \simeq \overline{\operatorname{Rep}}(T\mathfrak{g}).$

Example I: The trivial representation

We have seen that $Loc(BG) \simeq \overline{Mod}(C_{\bullet}(G)) \simeq \overline{Rep}(T\mathfrak{g})$.

Therefore:

$$H(BG) \simeq \operatorname{End}_{\overline{\operatorname{Mod}}(C_{\bullet}(G))}(\mathbb{R}) \simeq \overline{\operatorname{Rep}}(\operatorname{T}\mathfrak{g})_{\overline{\operatorname{Rep}}(T\mathfrak{g})}(\mathbb{R})$$

Example I: The trivial representation

We have seen that $Loc(BG) \simeq \overline{Mod}(C_{\bullet}(G)) \simeq \overline{Rep}(T\mathfrak{g})$.

Therefore:

$$H(BG) \simeq \operatorname{End}_{\overline{\operatorname{Mod}}(C_{\bullet}(G))}(\mathbb{R}) \simeq \overline{\operatorname{Rep}}(\operatorname{T}\mathfrak{g})_{\overline{\operatorname{Rep}}(T\mathfrak{g})}(\mathbb{R})$$

And one recovers the usual fact that:

$$H(BG) \simeq HC^{\bullet}(C_{\bullet}(G)) \simeq W(\mathfrak{g})^{\operatorname{basic}} \simeq S(\mathfrak{g}^*)^G.$$

The loop space fibration $\pi:L(BG)\to BG$

The loop space fibration $\pi:L(BG)\to BG$ has a Gauss-Manin local system that corresponds to $C(\mathfrak{g})\in\overline{\operatorname{Rep}}(T\mathfrak{g}).$

The loop space fibration $\pi:L(BG)\to BG$ has a Gauss-Manin local system that corresponds to $C(\mathfrak{g})\in\overline{\operatorname{Rep}}(T\mathfrak{g})$. This implies that:

The loop space fibration $\pi:L(BG)\to BG$ has a Gauss-Manin local system that corresponds to $C(\mathfrak{g})\in\overline{\operatorname{Rep}}(T\mathfrak{g})$. This implies that:

$$H(L(BG)) \simeq H_G(G)$$

The loop space fibration $\pi:L(BG)\to BG$ has a Gauss-Manin local system that corresponds to $C(\mathfrak{g})\in \overline{\operatorname{Rep}}(T\mathfrak{g})$. This implies that:

$$H(L(BG)) \simeq H_G(G)$$

The cohomology of the free loop space of BG is the equivariant cohomology of G acting on itself by conjugation.

The loop space fibration $\pi:L(BG)\to BG$ has a Gauss-Manin local system that corresponds to $C(\mathfrak{g})\in\overline{\operatorname{Rep}}(T\mathfrak{g})$. This implies that:

$$H(L(BG)) \simeq H_G(G)$$

The cohomology of the free loop space of BG is the equivariant cohomology of G acting on itself by conjugation.

There is additional structure, that of a Batalin-Vilkovisky algebra...

Thank you for your attention!

