This cheat sheet is based on the textbook by Papadimitriou (1994).

Deterministic single-tape Turing machine

A Turing machine is a quadruple $M = (K, \Sigma, \delta, s)$ where

- K is a finite set of **states** and $s \in K$ is a designated **initial state**,
- Σ is a finite set of **symbols** (the **alphabet** of M) so that $\triangleright, \sqcup \in \Sigma$
- \triangleright is the **start symbol** and
- ⊔ is the blank symbol,
- δ is the **transition function**:

$$\delta: K \times \Sigma \to (K \cup \{h, yes, no\}) \times \Sigma \times \{\to, \leftarrow, -\}$$

where the **halting state** h, the **accepting state** yes, and the **rejecting state** no are not in K, and the symbols \rightarrow (right), \leftarrow (left), and - (stay) indicate **cursor directions** on the input tape.

Transition functions

For current state $q \in K$ and current symbol $\sigma \in \Sigma$, $\delta(q, \sigma) = (p, \rho, D)$ where

- p is the new state,
- ρ is the symbol to be replacing σ , and
- D ∈ {→, ←, −} is the direction in which the cursor will move.

It is required that \triangleright alway directs the cursor to the right and is never erased. Formally, for any states, p and q we have $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$.

If the machine moves off the right end of the tape, it reads the black symbol \sqcup . The string of the tape can become longer, but not shorter. The blanks \sqcup keep track of the space used by the machine.

Starting and Halting

The program starts with

- initial state s,
- the tape contents initialized to $\triangleright x$ where the **input** x is a finitely long string in $(\Sigma \{\sqcup\})^*$ and
- the cursor is pointing to \triangleright .

Machine has **halted** when it has reached one of the halting states $\{h, yes, no\}$. On yes, machine **accepts** the input, and on no machine **rejects** the input.

The **output** M(x) is

- If M accepts/rejects, then M(x) = yes/no.
- If M reaches state h, then M(x) = y, where $\triangleright y \sqcup \sqcup ...$ is the string on the tape of M at the time of halting.
- If M does not halt, then $M(x) = \nearrow$.

Operational Semantics

A **configuration** of machine M is a triple (q, w, u), where

- $q \in K$ is the current state,
- $w \in \Sigma^+$ is the string to the left of the cursor, including the symbol scanned by the cursor, and
- $u \in \Sigma^*$ is the string to the right of the cursor

The relation \to^M yields in one step $(q, w, u) \to^M$ (q', w', u'), where q', w', u' are obtained according to the transition function.

The relation **yields in** k **steps** $(q_1, w_1, u_1) \rightarrow^{M^k} (q_k, w_k, u_k)$ if there exists configurations

$$(q_1,w_1,u_1) \rightarrow^M (q_2,w_2,u_2) \rightarrow^M \ldots \rightarrow^M (q_k,w_k,u_k)$$

The relation **yields** $(q, w, u) \rightarrow^{M^*} (q', w', u')$ if there exists some $k \geq 0$ such that $(q, w, u) \rightarrow^{M^k} (q', w', u')$.

Decidable and Semidecidable Languages

Let $L \subseteq (\Sigma - \{\sqcup\})^*$ be a **language**.

A Turing machine M decides L, if for every string $x \in (\Sigma - \{\sqcup\})^*$,

- if $x \in L$, then M(x) = yes and
- if $x \in L$, then M(x) = no.

If L is decided by some Turing machine, L is called a **decidable** language.

A Turing machine M computes a function

$$f: (\Sigma - \{\sqcup\})^* \to \Sigma^*,$$

if for every string $x \in (\Sigma - \{\sqcup\})^*$, M(x) = f(x). If such an M exists, f is called a **computable** function.

A Turing machine M accepts or semidecides L, if for every string $x \in (\Sigma - \{\sqcup\})^*$,

- if $x \in L$, then M(x) = yes and
- if $x \in L$, then $M(x) = \nearrow$.

If L is accepted by some Turing machine, L is called a **semidecidable** language.

Deterministic k-tape Turing machine

A k-tape Turing machine, for some integer $k \geq 1$, is a quadruple $M = (K, \Sigma, \delta, s)$ where the transition function is generalized to handle k-tapes simultaneously

$$\delta: K \times \Sigma \to (K \cup \{h, yes, no\}) \times (\Sigma \times \{\to, \leftarrow, -\})^k.$$

Transitions for k-tape machines are of the form

$$\delta(q,\sigma_{1},...,\sigma_{2})=(p,\rho_{1},D_{1},...,\rho_{k},D_{k}).$$

A **configuration** is defined as a 2k + 1-tuple

$$(q, w_1, u_1, ..., w_k, u_k).$$

A k-tape machine with input x starts from the configuration

$$(s, \triangleright, x, \triangleright, \epsilon, ..., \triangleright, \epsilon),$$

where ϵ is the empty string.

Output is defined as for standard machines

• if $(s, \triangleright, x, \triangleright, \epsilon, ..., \triangleright, \epsilon) \rightarrow^{M^*} (h, w_1, u_1, ..., w_k, u_k)$, then M(x) = y where y is $w_k u_k$ with the leading \triangleright and trailing \sqcup s removed, that is, output is read from the last (kth)tape.

The **runtime** of M on input x is t if

$$(s, \triangleright, x, \triangleright, \epsilon, ..., \triangleright, \epsilon) \rightarrow^{M^t} (H, w_1, u_1, ..., w_k, u_k),$$

where $H \in \{h, yes, no\}$. If $M(x) = \nearrow$, then the runtime is considered to be ∞ .

Time Complexity

Machine M operates within time f(n), if for any input string x, the runtime by M on x is at most f(|x|) where |x| is the size of the input x.

Also, f(n) is (upper) time bound for M and the language L decided by M belongs to the time complexity class $\mathbf{TIME}(f(n))$.

The set of all languages decidable by deterministic Turing machines in polynomial time is defined as:

$$\mathbf{P} = \bigcup_{k>0} \mathbf{TIME}(n^k).$$

Space Complexity

A k-tape Turing machine k > 2 with input and output is an ordinary k-tape Turing machine with the following restrictions on the transitions function δ :

If
$$\delta(q, \sigma_1, ..., \sigma_k) = (p, \rho_1, D_1, ..., \rho_k, D_k)$$
, then

- 1) $\rho_1 = \sigma_1$ (read-only input string)
- 2) $D_k \neq \leftarrow$ (write-only output string), and
- 3) if $\sigma_1 = \sqcup$, then $D_1 = \leftarrow$ (end of input respected).

Space Usage

Suppose for a k-tape Turing machine M and an input x we have

$$(s,\rhd,x,\rhd,\epsilon,...,\rhd,\epsilon)\to^{M^*}(H,w_1,u_1,...,w_k,u_k),$$

where $H \in \{h, yes, no\}$ is Halting state. Then, the **space** used is

$$\sum_{i=1}^{k} |w_i u_i|$$

If M is a Turing machine with input and output, the space used is

$$\sum_{i=2}^{k-1} |w_i u_i|$$

We exclude the effect of reading the input and writing the output as regards TM space usage.

Let $f: \mathbb{N} \to \mathbb{R}^+$. Turing machine M operates within space f(n) if for any input x, M uses space at most f(|x|).

Space Complexity Classes

The space complexity class SPACE(f(n)) comprises the family of languages L that can be decided by Turing machines with input and output operating within space f(n).

The class $\mathbf{SPACE}(log(n))$ is denoted by \mathbf{L} .

Nondeterministic Turing Machines

A nondeterministic Turing machine (NTM) is a quadruple $N=(K,\Sigma,\Delta,s)$ where Δ is a **transition relation**:

$$\Delta \subset (K \times \Sigma) \times [(K \cup \{h, yes, no\}) \times \Sigma \times \{\rightarrow, \leftarrow, -\}]$$

Yields is a relation $(q, w, u) \vdash_N (q', w', u')$ if there exists a tuple in Δ that makes this a legal transition. We have relations \vdash_N^k and \vdash_N^* defined as previously.

A nondeterministic Turing machine N decides a language L if for any $x \in \Sigma^*$, the following holds.

- 1) all the computation sequences of N on input x halt, and
- 2) $x \in L$ iff at least one of them ends in-state yes

Time Complexity Classes

A nondeterministic Turing machine N decides a language L in time f(n) if N decides L and for any $x \in \Sigma^*$, if $(x, \triangleright, x) \vdash_N^k (q, w, u)$, then $k \le f(|x|)$.

The time complexity class $\mathbf{NTIME}(f(n))$ comprises the family of languages L that can be decided by nondeterministic Turing machines in time f(n).

The family ${\bf NP}$ of all languages decidable by nondeterministic Turing machines in polynomial time is defined as

$$\mathbf{NP} = \bigcup_{k>0} \mathbf{NTIME}(n^k).$$

Space Complexity Classes

Given a k-tape NTM N with input and output, we say that N decides language L within space f(n) if N decides L and for any $x \in (\Sigma - \{\sqcup\})^*$, if $(s, \rhd, x, \rhd, \epsilon, ..., \rhd, \epsilon) \vdash_N^* (h, w_1, u_1, ..., w_k, u_k)$, then $\sum_{i=2}^{k-1} |w_i u_i| \le f(|x|)$.

Universal Turing Machines and Undecidability

Encoding TMs using Integers

Encoding a Turing machine $M=(K,\Sigma,\delta,x)$ using integers:

- 1) $1, 2, ..., |\Sigma|$ encode symbols Σ
- 2) $|\Sigma|+1,..., |\Sigma|+|K|$ encode states K where $s=|\Sigma|+1$
- 3) $|\Sigma| + |K| + 1, ..., |\Sigma| + |K| + 6$ encode $\leftarrow, \rightarrow, -, h, yes, no$

Turing machine $M=(K,\Sigma,\delta,x)$ is encoded as

$$b(|\Sigma|); b(|K|); e(\delta)$$

where b(k) denotes an encoding of integer k with exactly $\lceil \log(|\Sigma| + |K| + 6) \rceil$ bits and $e(\delta)$ is a sequence of pairs $((q, p), (p, \rho, D))$ describing the transition function δ .

Universal Turing Machine

A universal Turing machine U takes as input a description (encoding) of another Turing machine M and an input x for M, and the simulates M on x so that U(M;x)=M(x).

Halting Problem

HALTING problem

- Instance: The description of a Turing machine M and its input x.
- Question: Does M halt on x?

The corresponding language is defined as

$$H = \{M; x \mid M(x) = \nearrow\}.$$

The Halting problem (the language H) is semidecidable. Halting is undecidable.

Undecidability

Assume two languages B and A. A **reduction from** B **to** A is a transformation t of the input y of B to the input t(y) of A such that, for all strings y, it holds that

$$y \in B$$
 if and only if $t(y) \in A$.

Problem A is undecidable if the algorithm for deciding A implies an algorithm for deciding the halting H. It can be shown by devising a reduction t from halting H to A.

Suppose A were decided by a Turing machine M_A . Then H would be decided by a machine M_H that on input M; x.

 $M_H(M;x)$:

- 1) $y \leftarrow M_t(M; x)$
- 2) $M_A(y)$

First, runs the machine M_t computing the transformation t. Then, runs M_A on the result.

Further Undecidable Problems

The following languages are not decidable:

- 1) $T = \{M \mid M \text{ halt on all inputs}\}$. Correspond to problem TOTAL
- 2) $\{M; x \mid M(x) = y \text{ for some } y\}$
- 3) $\{M; x \mid \text{the computation of } M \text{ on input } x \text{ uses all states of } M\}$
- 4) $\{M; x; y \mid M(x) = y\}$

A reduction of HALTING to TOTAL:

- Given input M; x, consider a machine M_x that works as follows: $M_x(y)$: if y = x then M(x) else halt.
- Define a reduction mapping $t(M; x) = M_x$. (That is, the input x is hardcoded into the machine code of M and the results is the new code.)
- Now $M; x \in H$ iff M halts on x iff M_x halts on all input iff $M_x \in T$.

References

Papadimitriou, C.H., 1994. Computational complexity. Addison-Wesley.pp.I–XV, 1–523.