## **DATA MINING**

## Food Marketing

## P1-Report

## Group 6

#### Team Members

Font I Cabarrocas, Marc Garcia Ayala, Jesus Hernández Navarro, Arnau Khalipskaya Soboleva, Aglaya Mediavilla Jiménez, Alex Michel

#### Professor

Sergi Ramirez Mitjans

September 24, 2025

## Contents

| 1 | Wo  | rking Plan                                                       | 3  |  |  |  |  |
|---|-----|------------------------------------------------------------------|----|--|--|--|--|
|   | 1.1 | Gantt Diagram                                                    | 3  |  |  |  |  |
|   | 1.2 | Risk Contingency Plan                                            | 4  |  |  |  |  |
| 2 | Met | tadata                                                           | 5  |  |  |  |  |
|   | 2.1 | Basic Initial Univariate Descriptive Statistics of Raw Variables | 11 |  |  |  |  |
| 3 | Pre | Preprocessing                                                    |    |  |  |  |  |
|   | 3.1 | Step 1: Getting data                                             | 52 |  |  |  |  |
|   | 3.2 | Step 2: Visualizing data                                         | 52 |  |  |  |  |
|   | 3.3 | Step 3: Filtering variables selection                            | 52 |  |  |  |  |
|   | 3.4 | Step 4: Missing detection and treatment                          | 53 |  |  |  |  |
|   | 3.5 | Step 5: Outlier detection and treatment                          | 54 |  |  |  |  |
|   | 3.6 | Step 6: Feature selection                                        |    |  |  |  |  |
|   | 3.7 | Step 7: Transformation and new variables                         |    |  |  |  |  |

## 1 Working Plan

#### 1.1 Gantt Diagram



Figure 1: Gantt Diagram for Tasks

- Jesus Garcia Ayala Data preparation
- Arnau Hernández Navarro Statistical analysis
- Marc Font I Cabarrocas PCA analysis & Project Coordinator
- Aglaya Khalipskaya Soboleva Hierarchical clustering
- Alex Michel Mediavilla Jiménez Cluster profiling
- All team members Shared responsibilities

#### Task Dependencies:

- T8 (Statistical analysis) depends on completion of T5-T7 (Data preprocessing)
- T9 (PCA analysis) depends on T8 completion
- T10 (Hierarchical clustering) depends on T9 completion
- T11 (Cluster profiling) depends on T10 completion
- T12-T14 (Final sections) run in parallel but require integration of all analyses

Critical Path: T5-T7  $\rightarrow$  T8  $\rightarrow$  T9  $\rightarrow$  T10  $\rightarrow$  T11 (Total: 48 days including overlaps)

## 1.2 Risk Contingency Plan

The following risk assessment identifies potential project challenges and establishes prevention and management strategies:

| Risk                            | Description                                                                          | How to Prevent                                                                                       | How to Manage                                                                                                 |
|---------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Team Member Un-<br>availability | Member becomes unavail-<br>able due to illness or per-<br>sonal issues               | Regular communication, backup assignments for critical tasks                                         | Redistribute work among remain-<br>ing members, Jesus provides tech-<br>nical support to any task             |
| Data Quality Issues             | Missing values, outliers, or<br>structural problems affect-<br>ing analysis validity | Early data exploration, comprehensive preprocessing planning, document assumptions                   | Apply robust methods, imputa-<br>tion techniques, transformations.<br>Document all decisions and im-<br>pacts |
| Technical Difficulties          | Software issues, R package conflicts, computational limitations                      | Test packages early, ensure compatible versions, backup environments                                 | Use alternative tools (Python),<br>simplify models, apply sampling<br>techniques                              |
| Analysis Method<br>Limitations  | PCA/clustering methods<br>unsuitable for dataset char-<br>acteristics                | Verify assumptions early, plan al-<br>ternative methods (factor analy-<br>sis, different algorithms) | Switch to non-parametric methods, apply transformations, document unsuitability reasons                       |
| Time Management                 | Tasks exceed estimated duration, especially complex analyses                         | Buffer time in schedule, early<br>start of critical tasks, regular<br>monitoring                     | Prioritize essential analyses, sim-<br>plify sections, redistribute com-<br>pleted work                       |
| Integration Chal-<br>lenges     | Difficulty combining PCA<br>and clustering results coher-<br>ently                   | Plan integration strategy early,<br>common framework, regular team<br>meetings                       | Focus on significant results, use<br>visual methods, accept contradic-<br>tions with discussion               |
| Report Quality                  | Poor synthesis, unclear<br>writing, insufficient analysis<br>depth                   | Early writing assignments, multiple review cycles, detailed outlines                                 | Peer review process, clarity focus, visual aids support                                                       |
| Data Access Delays              | Late dataset availability or<br>understanding                                        | Confirm access early, request documentation in advance                                               | Use similar public datasets, adjust scope, focus on methodological rigor                                      |

Table 1: Risk Assessment and Mitigation Strategies

#### Task Assignment Grid:

| Task                    | Jesus | Arnau | Marc | Aglaya | Michel |
|-------------------------|-------|-------|------|--------|--------|
| T1-T4: Initial sec-     | X     | X     | X    | X      | X      |
| tions                   |       |       |      |        |        |
| T5-T7: Data prep        | X     |       |      |        |        |
| T8: Statistical         |       | X     |      |        |        |
| analysis                |       |       |      |        |        |
| T9: PCA analysis        |       |       | X    |        |        |
| T10: Clustering         |       |       |      | X      |        |
| T11: Profiling          |       |       |      |        | X      |
| T12-T14: Final sections | X     | X     | X    | X      | X      |

Table 2: Task Assignment and Coordination Matrix

#### 2 Metadata

## Metadata — iFood Dataset

**How to use:** Place this <code>.Rmd</code> in the same folder as <code>ifood\_base.csv</code> (or update the <code>data\_path</code> below). Knit to HTML/Word to get a nice metadata table. It will also write <code>data\_dictionary.csv</code> next to the Rmd.

## 11. Setup

```
required_pkgs <- c("readr","dplyr","tidyr","stringr","purrr","lubridate","knitr","kableExtra")
to_install <- setdiff(required_pkgs, rownames(installed.packages()))
if (length(to_install)) install.packages(to_install, repos = "https://cloud.r-project.org")

library(readr)
library(dplyr)
library(tidyr)
library(stringr)
library(purrr)
library(purrr)
library(whitr)
library(knitr)
library(kableExtra)

theme_kable <- function(tbl) {
   kbl(tbl, booktabs = TRUE, align = "l") |>
        kable_styling(full_width = FALSE, bootstrap_options = c("striped","hover","condensed"), font_size = 12)
}
```

## 22. Load data

```
# Adjust path if needed
data_path <- "ifood_base.csv"
stopifnot(file.exists(data_path))
df <- readr::read_csv(data_path, show_col_types = FALSE)
n_rows <- nrow(df); n_cols <- ncol(df)
glue_msg <- paste0("Loaded **", n_rows, "** rows x **", n_cols, "** columns from `", data_path, "`.")
glue_msg</pre>
```

```
## [1] "Loaded **2240** rows x **29** columns from `ifood_base.csv`."
```

## 3 3. Variable metadata (dictionary)

The table below combines your provided definitions with computed summaries from the data (min/max or levels).

```
# --- Your provided descriptions ---
descriptions <- c(
   Id = "The ID of the customer",
    Income = "Customer's yearly household income.",
    Kidhome = "Number of small children in the customer's household.",
    Teenhome = "Number of teenagers in the customer's household.",
   Recency = "Number of days since the last purchase.",
   MntWines = "Amount spent on wine in the last 2 years.",
    MntFruits = "Amount spent on fruits in the last 2 years.",
    MntMeatProducts = "Amount spent on meat products in the last 2 years.",
    MntFishProducts = "Amount spent on fish products in the last 2 years.",
    MntSweetProducts = "Amount spent on sweet products in the last 2 years.",
    MntGoldProds = "Amount spent on gold products in the last 2 years.",
    NumDealsPurchases = "Number of purchases made with a discount."
    NumWebPurchases = "Number of purchases made through the website.",
    NumCatalogPurchases = "Number of purchases made using a catalog.",
    NumStorePurchases = "Number of purchases made directly in a store.",
    NumbebVisitsMonth = "Number of visits to the company's website by the customer in the last month.",
    AcceptedCmp1 = "Whether the customer accepted the offer in the 1st campaign.",
    \label{eq:control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_co
    AcceptedCmp3 = "Whether the customer accepted the offer in the 3rd campaign.",
    \label{eq:control_control_control_control} Accepted Cmp4 = "Whether the customer accepted the offer in the 4th campaign."
    AcceptedCmp5 = "Whether the customer accepted the offer in the 5th campaign.",
    Complain = "Whether the customer has filed a complaint in the last 2 years.",
    Z CostContact = "Fixed cost of contacting the customer.",
    Z_Revenue = "Fixed revenue value.",
    Response = "Whether the customer accepted the offer in the last campaign.",
    Year_Birth = "Customer's year of birth.",
    Dt_Customer = "Date when the customer enrolled.",
    Marital_Status = "Marital status of the customer.",
    Education = "The level of studies the consumer has."
 # --- Your provided variable type classification ---
var_type_provided <- c(</pre>
   Id = "ID",
   Income = "Numerical Continuous",
    Kidhome = "Numerical Discrete"
   Teenhome = "Numerical Discrete",
    Recency = "Numerical Discrete",
    MntWines = "Numerical Continuous",
    MntFruits = "Numerical Continuous",
    MntMeatProducts = "Numerical Continuous",
    MntFishProducts = "Numerical Continuous",
   MntSweetProducts = "Numerical Continuous";
```

```
MntGoldProds = "Numerical Continuous",
  NumDealsPurchases = "Numerical Discrete",
  NumWebPurchases = "Numerical Discrete",
  NumCatalogPurchases = "Numerical Discrete",
 NumStorePurchases = "Numerical Discrete",
NumWebVisitsMonth = "Numerical Discrete",
  AcceptedCmp1 = "Categorical Binary",
  AcceptedCmp2 = "Categorical Binary",
 AcceptedCmp3 = "Categorical Binary",
AcceptedCmp4 = "Categorical Binary",
  AcceptedCmp5 = "Categorical Binary",
  Complain = "Categorical Binary",
  Z_CostContact = "Numerical Discrete",
  Z_Revenue = "Numerical Discrete",
  Response = "Categorical Binary",
  Year_Birth = "Numerical Discrete",
  Dt_Customer = "Date",
  Marital_Status = "Categorical Nominal",
  Education = "Categorical Nominal"
# --- Optional manual "possible values" overrides where they are fixed/known ---
manual_possible <- c(</pre>
 Id = "Random 3-5 digits",
  Income = "> 0",
 Kidhome = "0-5",
 Teenhome = "0-5",
  Recency = "0-365 (approx)",
  MntWines = "≥ 0",
  MntFruits = "≥ 0",
  MntMeatProducts = "≥ 0",
  MntFishProducts = "≥ 0",
  MntSweetProducts = "≥ 0",
  MntGoldProds = "≥ 0",
  NumDealsPurchases = "≥ 0",
  NumWebPurchases = "≥ 0",
  NumCatalogPurchases = "≥ 0",
  NumStorePurchases = "≥ 0",
  NumWebVisitsMonth = "≥ 0",
 AcceptedCmp1 = "0, 1",
AcceptedCmp2 = "0, 1",
  AcceptedCmp3 = "0, 1",
  AcceptedCmp4 = "0, 1",
  AcceptedCmp5 = "0, 1",
  Complain = "0, 1",
  Z_CostContact = "3",
  Z_Revenue = "11",
  Response = "0, 1",
  Year_Birth = "1900-2020",
```

```
Dt_Customer = "Date between 1900-01-01 and 2020-12-31",
  Marital_Status = "Divorced, Married, Single, Together, Widow",
 Education = "2nd Cycle, Basic, Graduation, Master, PhD"
# Rename common variations if present in the CSV
df <- df %>% rename(
 Year_Birth = dplyr::any_of(c("Year_Birth","Year_birth","year_birth","Year","YearBirth")),
 Dt_Customer = dplyr::any_of(c("Dt_Customer","DtCustomer","EnrollmentDate","Customer_Date","date_customer")),
 Marital_Status = dplyr::any_of(c("Marital_Status","Marital","marital_status")),
 Education = dplyr::any_of(c("Education","education"))
# Helper: summarize possible values from data
summ possible <- function(v) {</pre>
 x \leftarrow df[[v]]
  # Try to coerce dates if they are character
 if (inherits(x, "character")) {
    x_try <- suppressWarnings(lubridate::ymd(x))</pre>
    if (!all(is.na(x_try))) x <- x_try</pre>
  if (inherits(x, "Date")) {
    rng <- range(x, na.rm = TRUE)</pre>
    return(paste0(format(rng[1], "%Y-%m-%d"), " - ", format(rng[2], "%Y-%m-%d")))
  nu <- dplyr::n_distinct(x, na.rm = TRUE)</pre>
  if (is.numeric(x)) {
    rng <- range(x, na.rm = TRUE)</pre>
    nonneg <- ifelse(all(x[!is.na(x)] >= 0), " (\geq 0)", "")
    return(paste0(format(rng[1], scientific = FALSE, trim = TRUE), " - ",
                    format(rng[2], scientific = FALSE, trim = TRUE), nonneg))
  # Categorical-ish
  vals <- sort(unique(x))</pre>
  vals <- vals[!is.na(vals)]</pre>
  if (length(vals) == 0) return("-")
  if (length(vals) <= 10) return(paste(vals, collapse = ", "))</pre>
  paste0(paste(vals[1:10], collapse=", "), ", ... (", length(vals), " levels)")
# Build data dictionary
vars <- colnames(df)</pre>
{\tt dtypes} \, \leftarrow \, {\tt sapply}({\tt df, \, \, {\tt function}}({\tt x}) \, \, {\tt paste}({\tt class}({\tt x}), \, {\tt collapse} \, = \, {\tt "/"}))
```

| Variable name       | R Type    | Variable Type           | Description                                                                  | Possible values                               |
|---------------------|-----------|-------------------------|------------------------------------------------------------------------------|-----------------------------------------------|
| ID                  | numeric   | NA                      | NA                                                                           | 0 – 11191 (≥ 0)                               |
| Year_Birth          | numeric   | Numerical Discrete      | Customer's year of birth.                                                    | 1900–2020                                     |
| Education           | character | Categorical<br>Nominal  | The level of studies the consumer has.                                       | 2nd Cycle, Basic, Graduation,<br>Master, PhD  |
| Marital_Status      | character | Categorical<br>Nominal  | Marital status of the customer.                                              | Divorced, Married, Single,<br>Together, Widow |
| Income              | numeric   | Numerical<br>Continuous | Customer's yearly household income.                                          | > 0                                           |
| Kidhome             | numeric   | Numerical Discrete      | Number of small children in the customer's household.                        | 0–5                                           |
| Teenhome            | numeric   | Numerical Discrete      | Number of teenagers in the customer's household.                             | 0–5                                           |
| Dt_Customer         | Date      | Date                    | Date when the customer enrolled.                                             | Date between 1900-01-01 and 2020-12-31        |
| Recency             | numeric   | Numerical Discrete      | Number of days since the last purchase.                                      | 0-365 (approx)                                |
| MntWines            | numeric   | Numerical<br>Continuous | Amount spent on wine in the last 2 years.                                    | ≥ 0                                           |
| MntFruits           | numeric   | Numerical<br>Continuous | Amount spent on fruits in the last 2 years.                                  | ≥ 0                                           |
| MntMeatProducts     | numeric   | Numerical<br>Continuous | Amount spent on meat products in the last 2 years.                           | ≥ 0                                           |
| MntFishProducts     | numeric   | Numerical<br>Continuous | Amount spent on fish products in the last 2 years.                           | ≥ 0                                           |
| MntSweetProducts    | numeric   | Numerical<br>Continuous | Amount spent on sweet products in the last 2 years.                          | ≥ 0                                           |
| MntGoldProds        | numeric   | Numerical<br>Continuous | Amount spent on gold products in the last 2 years.                           | ≥ 0                                           |
| NumDealsPurchases   | numeric   | Numerical Discrete      | Number of purchases made with a discount.                                    | ≥ 0                                           |
| NumWebPurchases     | numeric   | Numerical Discrete      | Number of purchases made through the website.                                | ≥ 0                                           |
| NumCatalogPurchases | numeric   | Numerical Discrete      | Number of purchases made using a catalog.                                    | ≥ 0                                           |
| NumStorePurchases   | numeric   | Numerical Discrete      | Number of purchases made directly in a store.                                | ≥ 0                                           |
| NumWebVisitsMonth   | numeric   | Numerical Discrete      | Number of visits to the company's website by the customer in the last month. | ≥ 0                                           |
| AcceptedCmp3        | numeric   | Categorical Binary      | Whether the customer accepted the offer in the 3rd campaign.                 | 0, 1                                          |
| AcceptedCmp4        | numeric   | Categorical Binary      | Whether the customer accepted the offer in the 4th campaign.                 | 0, 1                                          |
| AcceptedCmp5        | numeric   | Categorical Binary      | Whether the customer accepted the offer in the 5th campaign.                 | 0, 1                                          |
| AcceptedCmp1        | numeric   | Categorical Binary      | Whether the customer accepted the offer in the 1st campaign.                 | 0, 1                                          |
| AcceptedCmp2        | numeric   | Categorical Binary      | Whether the customer accepted the offer in the 2nd campaign.                 | 0, 1                                          |
| Complain            | numeric   | Categorical Binary      | Whether the customer has filed a complaint in the last 2 years.              | 0, 1                                          |
| Z_CostContact       | numeric   | Numerical Discrete      | Fixed cost of contacting the customer.                                       | 3                                             |
| Z_Revenue           | numeric   | Numerical Discrete      | Fixed revenue value.                                                         | 11                                            |
| Response            | numeric   | Categorical Binary      | Whether the customer accepted the offer in the last campaign.                | 0, 1                                          |
|                     |           |                         | •                                                                            |                                               |

## 3.1 Save as CSV

```
# Also write to a CSV next to the data for reuse
out_csv <- "data_dictionary.csv"
readr::write_csv(dictionary, out_csv)
paste0("Wrote: ", normalizePath(out_csv))
```

## [1] "Wrote: C:\\Users\\arnau\\Downloads\\data\_dictionary.csv"

## 44. Notes

- Variable Type reflects your provided classification and may differ from a strict statistical interpretation (e.g., monetary amounts shown as "continuous" though often integer-valued in this dataset).
- · Possible values prefer your provided ranges when available; otherwise they are inferred from the actual data at knit time.
- If your CSV uses different column names (e.g., Year\_birth vs. Year\_Birth ), the Rmd attempts to standardize common variants

# 2.1 Basic Initial Univariate Descriptive Statistics of Raw Variables

# Basic Descriptive Statistics — iFood CSV (DOCX-safe)

## 1 Reference Descriptive Script (DOCX-safe)

Note: Use forward slashes in paths on Windows (e.g., C:/Users/...).

Place this .Rmd in the same folder as ifood base.csv or update data path below.

This version avoids HTML-only features so it **knits to Word (.docx) without errors**. If you knit to HTML, it will still show a floating ToC and nicer tables.

```
required_pkgs <- c("readr","dplyr","tidyr","stringr","purrr","lubridate","knitr")</pre>
to_install <- setdiff(required_pkgs, rownames(installed.packages()))</pre>
if (length(to_install)) install.packages(to_install, repos = "https://cloud.r-project.org")
library(readr); library(dplyr); library(tidyr); library(stringr); library(purrr)
library(lubridate); library(knitr)
# Safe Windows path
safe_path \leftarrow function(p) ifelse(is.na(p) || !nzchar(p), p, gsub("\\\", "/", p))
# Table helper: uses HTML styling only when knitting to HTML; plain kable for Word/PDF
theme table <- function(tbl) {
  if (knitr::is_html_output()) {
   if (!requireNamespace("kableExtra", quietly = TRUE)) {
     return(knitr::kable(tbl, align = "l"))
    kableExtra::kbl(tbl, booktabs = TRUE, align = "l") |>
     kableExtra::kable_styling(full_width = FALSE, bootstrap_options = c("striped", "hover", "condensed"), font_si
ze = 11)
 } else {
    knitr::kable(tbl, align = "l")
# Plot colors (enough for most categorical vars)
listOfColors <- grDevices::rainbow(40)
```

#### 1.1 Read data

#### 1.2 Dimensions and variable names

```
dim(dd)
## [1] 2240 29
n <- nrow(dd); K <- ncol(dd)
n; K
## [1] 2240
## [1] 29
names(dd)
                                                    "Education"
## [1] "ID"
                              "Year_Birth"
## [4] "Marital_Status"
                              "Income"
                                                    "Kidhome"
                              "Dt_Customer"
                                                    "Recency"
## [7] "Teenhome"
## [10] "MntWines"
                              "MntFruits"
                                                    "MntMeatProducts"
## [13] "MntFishProducts"
                              "MntSweetProducts"
                                                    "MntGoldProds"
## [16] "NumDealsPurchases" "NumWebPurchases"
                                                    "NumCatalogPurchases"
## [19] "NumStorePurchases"
                             "NumWebVisitsMonth"
                                                    "AcceptedCmp3"
## [22] "AcceptedCmp4"
## [25] "AcceptedCmp2"
                              "AcceptedCmp5"
                                                    "AcceptedCmp1"
                              "Complain"
                                                    "Z_CostContact"
## [28] "Z_Revenue"
                              "Response"
```

# 1.3 Optional: Declare/standardize types (recommended for iFood)

```
# Normalize common alternative names
dd <- dd %>% rename(
 Year_Birth = dplyr::any_of(c("Year_Birth","Year_birth","year_birth","Year","YearBirth")),

Dt_Customer = dplyr::any_of(c("Dt_Customer","DtCustomer","EnrollmentDate","Customer_Date","date_customer")),
 Marital_Status= dplyr::any_of(c("Marital_Status","Marital","marital_status")),
 Education = dplyr::any_of(c("Education","education"))
# Parse date column if present
if ("Dt_Customer" %in% names(dd)) {
 dd$Dt_Customer <- suppressWarnings(parse_date_time(dd$Dt_Customer,
                               orders = c("dmy","ymd","mdy","d-b-Y","Y-m-d","d/m/Y","m/d/Y")))
  dd$Dt_Customer <- as.Date(dd$Dt_Customer)
# Categorical text columns
for (col in c("Education", "Marital_Status")) {
if (col %in% names(dd)) dd[[col]] <- as.factor(dd[[col]])</pre>
# Binary 0/1 columns (if present)
bin_cols <- intersect(c("AcceptedCmp1","AcceptedCmp2","AcceptedCmp3","AcceptedCmp4",</pre>
                            "AcceptedCmp5","Complain","Response"), names(dd))
for (bc in bin_cols) {
  \textbf{if } (\texttt{all}(\texttt{na.omit}(\texttt{unique}(\texttt{dd}[[\texttt{bc}]])) ~\texttt{%in}\% ~\texttt{c(0,1)})) ~\{
    dd[[bc]] \leftarrow factor(dd[[bc]], levels = c(0,1))
}
str(dd)
```

```
## spc_tbl_ [2,240 x 29] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ID : num [1:2240] 5524 2174 4141 6182 5324 ...
## $ Year_Birth : num [1:2240] 1957 1954 1965 1984 1981 ...
## $ Education : Factor w/ 5 levels "2n Cycle", "Basic",..: 3 3 3 3 5 4 3 5 5 5 ...
## $ Marital_Status : Factor w/ 8 levels "Absurd", "Alone",..: 5 5 6 6 4 6 3 4 6 6 ...
## $ Income
                       : num [1:2240] 58138 46344 71613 26646 58293 ...
## $ Kidhome
                       : num [1:2240] 0 1 0 1 1 0 0 1 1 1 ...
## $ Teenhome
                       : num [1:2240] 0 1 0 0 0 1 1 0 0 1 ...
                     : Date[1:2240], format: "2012-09-04" "2014-03-08" ...
## $ Dt Customer
## $ Recency
                       : num [1:2240] 58 38 26 26 94 16 34 32 19 68 ...
## $ MntWines
                       : num [1:2240] 635 11 426 11 173 520 235 76 14 28 ...
                       : num [1:2240] 88 1 49 4 43 42 65 10 0 0 ...
## $ MntFruits
## $ MntMeatProducts : num [1:2240] 546 6 127 20 118 98 164 56 24 6 ...
## $ MntFishProducts : num [1:2240] 172 2 111 10 46 0 50 3 3 1 ...
## $ MntSweetProducts : num [1:2240] 88 1 21 3 27 42 49 1 3 1 ...
## $ MntGoldProds
                       : num [1:2240] 88 6 42 5 15 14 27 23 2 13 ...
## $ NumDealsPurchases : num [1:2240] 3 2 1 2 5 2 4 2 1 1 ...
## $ NumWebPurchases : num [1:2240] 8 1 8 2 5 6 7 4 3 1 ...
## $ NumCatalogPurchases: num [1:2240] 10 1 2 0 3 4 3 0 0 0 ...
## $ NumStorePurchases : num [1:2240] 4 2 10 4 6 10 7 4 2 0 ...
## $ NumWebVisitsMonth : num [1:2240] 7 5 4 6 5 6 6 8 9 20 ...
## $ AcceptedCmp3 : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 2 ...
                     : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ AcceptedCmp4
## $ AcceptedCmp5
                       : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
                       : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
## $ AcceptedCmp1
## $ AcceptedCmp2 : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ Complain
                     : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ Z CostContact
                       : num [1:2240] 3 3 3 3 3 3 3 3 3 ...
## $ Z_Revenue
                       : num [1:2240] 11 11 11 11 11 11 11 11 11 ...
                       : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 2 1 ...
## $ Response
## - attr(*, "spec")=
## .. cols(
    .. ID = col_double(),
##
         Year_Birth = col_double(),
    .. Education = col character(),
##
##
    .. Marital_Status = col_character(),
    .. Income = col_double(),
##
##
         Kidhome = col_double(),
    .. Teenhome = col_double(),
##
    .. Dt_Customer = col_date(format = ""),
    .. Recency = col_double(),
##
##
         MntWines = col_double(),
     .. MntFruits = col_double(),
##
    .. MntMeatProducts = col_double(),
##
    .. MntFishProducts = col_double(),
    .. MntSweetProducts = col_double(),
##
##
        MntGoldProds = col_double(),
    .. NumDealsPurchases = col_double(),
##
##
    .. NumWebPurchases = col_double(),
##
    .. NumCatalogPurchases = col_double(),
   .. NumStorePurchases = col_double(),
##
    .. NumWebVisitsMonth = col_double(),
##
    .. AcceptedCmp3 = col_double(),
    .. AcceptedCmp4 = col_double(),
##
##
        AcceptedCmp5 = col_double(),
    .. AcceptedCmp1 = col_double(),
##
    .. AcceptedCmp2 = col_double(),
##
    .. Complain = col_double(),
##
         Z CostContact = col double(),
    .. Z_Revenue = col_double(),
##
##
   .. Response = col_double()
## ..)
```

## - attr(\*, "problems")=<externalptr>

## 1.4 Missingness overview

```
miss_tbl <- tibble::tibble(
  variable = names(dd),
  missing_n = sapply(dd, function(x) sum(is.na(x))),
  missing_pct = round(100 * sapply(dd, function(x) mean(is.na(x))), 2)
) %% arrange(desc(missing_pct))

theme_table(miss_tbl)</pre>
```

| variable            | missing_n | missing_pct |
|---------------------|-----------|-------------|
| Income              | 24        | 1.07        |
| ID                  | 0         | 0.00        |
| Year_Birth          | 0         | 0.00        |
| Education           | 0         | 0.00        |
| Marital_Status      | 0         | 0.00        |
| Kidhome             | 0         | 0.00        |
| Teenhome            | 0         | 0.00        |
| Dt_Customer         | 0         | 0.00        |
| Recency             | 0         | 0.00        |
| MntWines            | 0         | 0.00        |
| MntFruits           | 0         | 0.00        |
| MntMeatProducts     | 0         | 0.00        |
| MntFishProducts     | 0         | 0.00        |
| MntSweetProducts    | 0         | 0.00        |
| MntGoldProds        | 0         | 0.00        |
| NumDealsPurchases   | 0         | 0.00        |
| NumWebPurchases     | 0         | 0.00        |
| NumCatalogPurchases | 0         | 0.00        |
| NumStorePurchases   | 0         | 0.00        |
| NumWebVisitsMonth   | 0         | 0.00        |
| AcceptedCmp3        | 0         | 0.00        |
| AcceptedCmp4        | 0         | 0.00        |
| AcceptedCmp5        | 0         | 0.00        |
| AcceptedCmp1        | 0         | 0.00        |
| AcceptedCmp2        | 0         | 0.00        |
| Complain            | 0         | 0.00        |
| Z_CostContact       | 0         | 0.00        |
| Z_Revenue           | 0         | 0.00        |
| Response            | 0         | 0.00        |

## 1.5 Descriptive function

```
descriptiva <- function(X, nom, nrows_total) {</pre>
     if (!(is.numeric(X) || inherits(X, "Date"))) {
           # Categorical
          frecs <- table(as.factor(X), useNA = "ifany")</pre>
          proportions <- frecs / nrows_total</pre>
          pie(frecs, cex = 0.7, main = paste("Pie of", nom))
          barplot(frecs, las = 3, cex.names = 0.7, main = paste("Barplot of", nom), col = listOfColors)
          cat("\nNumber of modalities:", length(frecs), "\n")
          cat("\nFrequency table\n"); print(frecs)
          cat("\nRelative frequency table (proportions)\n"); print(round(proportions, 4))
          cat("\nFrequency table sorted\n"); print(sort(frecs, decreasing = TRUE))
          \verb|cat("\nRelative frequency table (proportions) sorted \verb|\n"|); print(round(sort(proportions, decreasing = TRUE), respectively) | TRUE | TRU
4))
     } else {
          if (inherits(X, "Date")) {
               # Date
              cat("\nExtended Summary Statistics (Date)\n"); print(summary(X))
              sd\_days <- \ tryCatch(sd(as.numeric(X), na.rm = TRUE), error = \ function(e) \ NA\_real\_)
               cat("\nsd (days):", round(sd_days, 3), "\n")
              hist(X, breaks = "weeks", main = paste("Histogram (weekly) of", nom), xlab = nom)
               # Numeric
               hist(X, main = paste("Histogram of", nom), xlab = nom)
              boxplot(X, horizontal = TRUE, main = paste("Boxplot of", nom), xlab = nom)
              cat("\nExtended Summary Statistics\n"); \ print(summary(X))
              sd_x \leftarrow sd(x, na.rm = TRUE)
               mn_x <- mean(X, na.rm = TRUE)</pre>
              cat("\nsd:", round(sd_x, 6), "\n")
                \mathsf{cat}(\texttt{"vc (sd/mean):", ifelse}(\mathsf{is.na(mn\_x}) \mid | \ \mathsf{mn\_x} == 0, \ \mathsf{NA, round}(\mathsf{sd\_x} \ / \ \mathsf{mn\_x}, \ \mathsf{6})), \ \texttt{"\n"}) 
}
```

## 1.6 Run basic descriptives for all variables

```
# Exclude known constants/IDs by default; adjust as needed
exclude <- intersect(c("Id","Z_CostContact","Z_Revenue"), names(dd))
actives <- setdiff(seq_len(ncol(dd)), match(exclude, names(dd)))

for (k in actives) {
   cat("\n\n## Variable", k, "-", names(dd)[k], "\n")
   descriptiva(dd[[k]], names(dd)[k], n)
}</pre>
```

```
##
##
## ## Variable 1 - ID
```

#### Histogram of ID



#### **Boxplot of ID**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 2828 5458 5592 8428 11191
##
## sd: 3246.662
## vc (sd/mean): 0.580574
##
##
## ## Variable 2 - Year_Birth
```

## Histogram of Year\_Birth



## Boxplot of Year\_Birth



```
##
## Extended Summary Statistics
##
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                           Max.
                                           1996
##
     1893
           1959
                   1970
                           1969 1977
## sd: 11.98407
## vc (sd/mean): 0.006087
##
##
## ## Variable 3 - Education
```

Pie of Education



## **Barplot of Education**



```
## Number of modalities: 5
##
## Frequency table
##
## 2n Cycle Basic Graduation Master
## 203 54 1127 370
                                            PhD
486
## Relative frequency table (proportions)
##
## 2n Cycle Basic Graduation Master
                                                PhD
    0.0906 0.0241 0.5031 0.1652
                                             0.2170
##
## Frequency table sorted
##
              PhD Master 2n Cycle
486 370 203
## Graduation
                                              Basic
                                             54
## 1127
##
## Relative frequency table (proportions) sorted
##
## Graduation PhD Master 2n Cycle
## 0.5031 0.2170 0.1652 0.0906
                                               Basic
                                             0.0241
##
##
## ## Variable 4 - Marital_Status
```

Pie of Marital\_Status



## Barplot of Marital\_Status



```
## Number of modalities: 8
## Frequency table
##
## Absurd Alone Divorced Married Single Together Widow
                                                                  YOLO
    2 3 232 864 480 580 77
##
## Relative frequency table (proportions)
##
## Absurd Alone Divorced Married Single Together Widow YOLO ## 0.0009 0.0013 0.1036 0.3857 0.2143 0.2589 0.0344 0.0009
##
## Frequency table sorted
##
## Married Together Single Divorced Widow Alone Absurd
                                                                   YOLO
##
      864 580
                      480 232
                                        77
                                                   3
##
## Relative frequency table (proportions) sorted
##
## Married Together Single Divorced Widow Alone Absurd YOLO ## 0.3857 0.2589 0.2143 0.1036 0.0344 0.0013 0.0009 0.0009
                                                                  YOLO
##
##
## ## Variable 5 - Income
```

## Histogram of Income



## **Boxplot of Income**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1730 35303 51382 52247 68522 666666 24
##
## sd: 25173.08
## vc (sd/mean): 0.481807
##
##
##
## ## Variable 6 - Kidhome
```

## Histogram of Kidhome



## **Boxplot of Kidhome**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.4442 1.0000 2.0000
##
## sd: 0.538398
## vc (sd/mean): 1.212072
##
##
##
## ## Variable 7 - Teenhome
```

## Histogram of Teenhome



## **Boxplot of Teenhome**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu.
                                         Max.
## 0.0000 0.0000 0.0000 0.5062 1.0000 2.0000
##
## sd: 0.544538
## vc (sd/mean): 1.075631
##
##
## ## Variable 8 - Dt_Customer
##
## Extended Summary Statistics (Date)
##
        Min.
               1st Qu. Median
                                            Mean
                                                     3rd Qu.
## "2012-07-30" "2013-01-16" "2013-07-08" "2013-07-10" "2013-12-30" "2014-06-29"
## sd (days): 202.123
```

#### Histogram (weekly) of Dt\_Customer



```
##
##
## Variable 9 - Recency
```

## **Histogram of Recency**



#### **Boxplot of Recency**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 24.00 49.00 49.11 74.00 99.00
##
## sd: 28.96245
## vc (sd/mean): 0.589754
##
##
## ## Variable 10 - MntWines
```

## **Histogram of MntWines**



## **Boxplot of MntWines**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 23.75 173.50 303.94 504.25 1493.00
##
## sd: 336.5974
## vc (sd/mean): 1.107462
##
##
## ## Wariable 11 - MntFruits
```





## **Boxplot of MntFruits**



.....

```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 1.0 8.0 26.3 33.0 199.0
##
## sd: 39.77343
## vc (sd/mean): 1.51217
##
##
## ## Variable 12 - MntMeatProducts
```

## Histogram of MntMeatProducts



## **Boxplot of MntMeatProducts**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 16.0 67.0 166.9 232.0 1725.0
##
## sd: 225.7154
## vc (sd/mean): 1.351994
##
##
##
## ## Variable 13 - MntFishProducts
```

## Histogram of MntFishProducts



#### **Boxplot of MntFishProducts**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 3.00 12.00 37.53 50.00 259.00
##
## sd: 54.62898
## vc (sd/mean): 1.455785
##
##
## ## Variable 14 - MntSweetProducts
```

#### Histogram of MntSweetProducts



#### **Boxplot of MntSweetProducts**



```
##
## Extended Summary Statistics
##
     Min. 1st Qu. Median
                          Mean 3rd Qu.
                                           Max.
                   8.00 27.06 33.00 263.00
##
     0.00
            1.00
##
## sd: 41.2805
## vc (sd/mean): 1.525351
##
##
## ## Variable 15 - MntGoldProds
```

## Histogram of MntGoldProds



## **Boxplot of MntGoldProds**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.00 24.00 44.02 56.00 362.00
##
## sd: 52.16744
## vc (sd/mean): 1.185034
##
##
##
## ## Variable 16 — NumDealsPurchases
```

## Histogram of NumDealsPurchases



## **Boxplot of NumDealsPurchases**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 1.000 2.000 2.325 3.000 15.000
##
## sd: 1.932238
## vc (sd/mean): 0.83107
##
##
## ## Variable 17 - NumWebPurchases
```

## Histogram of NumWebPurchases



## **Boxplot of NumWebPurchases**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.000 4.000 4.085 6.000 27.000
##
## sd: 2.778714
## vc (sd/mean): 0.680254
##
##
## ## Variable 18 — NumCatalogPurchases
```

## Histogram of NumCatalogPurchases



## **Boxplot of NumCatalogPurchases**



-

```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 2.000 2.662 4.000 28.000
##
## sd: 2.923101
## vc (sd/mean): 1.098062
##
##
## ## Variable 19 — NumStorePurchases
```

# Histogram of NumStorePurchases



# **Boxplot of NumStorePurchases**



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 3.00 5.00 5.79 8.00 13.00
##
## sd: 3.250958
## vc (sd/mean): 0.561461
##
##
## ## Variable 20 — NumblebVisitsMonth
```

# Histogram of NumWebVisitsMonth



# Boxplot of NumWebVisitsMonth



```
##
## Extended Summary Statistics
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.000 6.000 5.317 7.000 20.000
##
## sd: 2.426645
## vc (sd/mean): 0.456435
##
##
## ## Variable 21 — AcceptedCmp3
```

Pie of AcceptedCmp3





```
## Number of modalities: 2
##
## Frequency table
##
## 0 1
## 2077 163
## Relative frequency table (proportions)
##
## 0 1
## 0.9272 0.0728
##
## Frequency table sorted
##
## 0 1
## 2077 163
##
## Relative frequency table (proportions) sorted
##
## 0 1
## 0.9272 0.0728
##
## ## Variable 22 - AcceptedCmp4
```

# Pie of AcceptedCmp4





```
##
## Number of modalities: 2
##
## Frequency table
##
## 2073 167
## Relative frequency table (proportions)
##
     0 1
##
## 0.9254 0.0746
##
## Frequency table sorted
##
## 0 1
## 2073 167
##
## Relative frequency table (proportions) sorted
##
## 0.9254 0.0746
##
##
## ## Variable 23 - AcceptedCmp5
```

Pie of AcceptedCmp5





```
## Number of modalities: 2
##
## Frequency table
##
## 0 1
## 2077 163
##
## Relative frequency table (proportions)
##
     0 1
## 0.9272 0.0728
##
## Frequency table sorted
##
## 0 1
## 2077 163
## Relative frequency table (proportions) sorted
##
## 0.9272 0.0728
##
##
## ## Variable 24 - AcceptedCmp1
```

# Pie of AcceptedCmp1





```
##
## Number of modalities: 2
##
## Frequency table
## 0 1
## 2096 144
## Relative frequency table (proportions)
##
## 0 1
## 0.9357 0.0643
##
## Frequency table sorted
##
## 2096 144
## Relative frequency table (proportions) sorted
##
      0
## 0.9357 0.0643
##
## ## Variable 25 — AcceptedCmp2
```

Pie of AcceptedCmp2





```
##
## Number of modalities: 2
##
## Frequency table
##
## 0 1
## 2210 30
## Relative frequency table (proportions)
##
##
## 0.9866 0.0134
##
## Frequency table sorted
##
## 0
        1
## 2210 30
##
## Relative frequency table (proportions) sorted
##
##
      0
## 0.9866 0.0134
##
##
## ## Variable 26 - Complain
```

# Pie of Complain



# **Barplot of Complain**



```
## Number of modalities: 2
##
## Frequency table
##
## 0 1
## 2219 21
##
## Relative frequency table (proportions)
##
## 0.9906 0.0094
##
## Frequency table sorted
## 0 1
## 2219 21
##
## Relative frequency table (proportions) sorted
##
## 0.9906 0.0094
##
##
## ## Variable 29 - Response
```

# Pie of Response



# **Barplot of Response**



```
##
## Number of modalities: 2
##
## Frequency table
##
##
## 1906 334
## Relative frequency table (proportions)
##
##
## 0.8509 0.1491
##
## Frequency table sorted
##
##
## 1906 334
## Relative frequency table (proportions) sorted
##
##
      0
## 0.8509 0.1491
```

# 1.7 Appendix: Quick numeric summary table

```
num_vars <- names(dd)[sapply(dd, is.numeric)]</pre>
if (length(num_vars)) {
  num_summary <- dd %>%
   summarise(across(all_of(num_vars),
                    list(min = ~min(.x, na.rm = TRUE),
                         q1 = ~quantile(.x, 0.25, na.rm = TRUE),
                          mean= ~mean(.x, na.rm = TRUE),
                          median= ~median(.x, na.rm = TRUE),
                          q3 = \simquantile(.x, 0.75, na.rm = TRUE),
                          max = ~max(.x, na.rm = TRUE),
                         sd = ~sd(.x, na.rm = TRUE)), .names = "{.col}_{.fn}")) %>%
   pivot_longer(everything(), names_to = c("variable", "stat"), names_sep = "_") %>%
   pivot_wider(names_from = stat, values_from = value)
 theme_table(num_summary)
} else {
 cat("No numeric variables detected.")
```

| variable            | min  | q1      | mean      | median  | q3      | max    | sd        | Birth                                                                                  | CostContact            | Revenue                      |
|---------------------|------|---------|-----------|---------|---------|--------|-----------|----------------------------------------------------------------------------------------|------------------------|------------------------------|
| ID                  | 0    | 2828.25 | 5592.16   | 5458.5  | 8427.75 | 11191  | 3246.662  | NULL                                                                                   | NULL                   | NULL                         |
| Year                | NULL | NULL    | NULL      | NULL    | NULL    | NULL   | NULL      | 1893.00000, 1959.00000,<br>1968.80580, 1970.00000,<br>1977.00000, 1996.00000, 11.98407 | NULL                   | NULL                         |
| Income              | 1730 | 35303   | 52247.25  | 51381.5 | 68522   | 666666 | 25173.08  | NULL                                                                                   | NULL                   | NULL                         |
| Kidhome             | 0    | 0       | 0.4441964 | 0       | 1       | 2      | 0.5383981 | NULL                                                                                   | NULL                   | NULL                         |
| Teenhome            | 0    | 0       | 0.50625   | 0       | 1       | 2      | 0.5445382 | NULL                                                                                   | NULL                   | NULL                         |
| Recency             | 0    | 24      | 49.10938  | 49      | 74      | 99     | 28.96245  | NULL                                                                                   | NULL                   | NULL                         |
| MntWines            | 0    | 23.75   | 303.9357  | 173.5   | 504.25  | 1493   | 336.5974  | NULL                                                                                   | NULL                   | NULL                         |
| MntFruits           | 0    | 1       | 26.30223  | 8       | 33      | 199    | 39.77343  | NULL                                                                                   | NULL                   | NULL                         |
| MntMeatProducts     | 0    | 16      | 166.95    | 67      | 232     | 1725   | 225.7154  | NULL                                                                                   | NULL                   | NULL                         |
| MntFishProducts     | 0    | 3       | 37.52545  | 12      | 50      | 259    | 54.62898  | NULL                                                                                   | NULL                   | NULL                         |
| MntSweetProducts    | 0    | 1       | 27.06295  | 8       | 33      | 263    | 41.2805   | NULL                                                                                   | NULL                   | NULL                         |
| MntGoldProds        | 0    | 9       | 44.02188  | 24      | 56      | 362    | 52.16744  | NULL                                                                                   | NULL                   | NULL                         |
| NumDealsPurchases   | 0    | 1       | 2.325     | 2       | 3       | 15     | 1.932238  | NULL                                                                                   | NULL                   | NULL                         |
| NumWebPurchases     | 0    | 2       | 4.084821  | 4       | 6       | 27     | 2.778714  | NULL                                                                                   | NULL                   | NULL                         |
| NumCatalogPurchases | 0    | 0       | 2.662054  | 2       | 4       | 28     | 2.923101  | NULL                                                                                   | NULL                   | NULL                         |
| NumStorePurchases   | 0    | 3       | 5.790179  | 5       | 8       | 13     | 3.250958  | NULL                                                                                   | NULL                   | NULL                         |
| NumWebVisitsMonth   | 0    | 3       | 5.316518  | 6       | 7       | 20     | 2.426645  | NULL                                                                                   | NULL                   | NULL                         |
| Z                   | NULL | NULL    | NULL      | NULL    | NULL    | NULL   | NULL      | NULL                                                                                   | 3, 3, 3, 3, 3,<br>3, 0 | 11, 11, 11, 11,<br>11, 11, 0 |

# 3 Preprocessing

These are the steps we followed to carry out the preprocessing of the data. The goal of this stage is to clean, transform, and prepare the dataset, ensuring that it is consistent, reliable, and ready for the subsequent data mining tasks.

# 3.1 Step 1: Getting data

The source of the dataset used in our project comes from kaggle.com, an online platform that provides datasets, competitions, and tools for data science and machine learning. Our dataset focuses on marketing data, which will be analyzed to extract valuable insights.

# 3.2 Step 2: Visualizing data

To visualize our data, we represented it using different types of graphs, in addition to the metadata from the previous section.

# 3.3 Step 3: Filtering variables selection

To make them easier to see and understand, we had to transform or rename a lot of variables.

- Age Calculation: ifood\$Age <- 2020 ifood\$Year\_Birth creates a new column Age by subtracting the Year\_Birth from the year 2020. The original Year\_Birth column is then dropped to avoid data redundancy.
- Days as a Customer: ifood\$CustDays <- as.numeric(reference\_date as.Date(ifood\$Dt\_Customer, format="%Y-%m-%d")) calculates the number of days a customer has been registered. It subtracts the customer's registration date (Dt\_Customer) from a set reference\_date (December 31, 2020), converting a date variable into a useful numerical one. The original Dt\_Customer column is also removed.

Finally, we shortened most variable names to make them easier to represent in graphs, tables, etc.

Load required libraries

```
# Suppress startup messages of library dplyr
suppressPackageStartupMessages(library(dplyr))
# Loading required libraries
library(dplyr, quietly = TRUE)
library(class, quietly = TRUE)
```

#### Load raw dataset

```
ifood <- read.csv("ifood_base.csv", sep=",", header=TRUE, stringsAsFactors = FALSE)</pre>
```

### 1. Remove irrelevant columns

```
ifood <- ifood[, !names(ifood) %in% c("ID", "Z_CostContact", "Z_Revenue")]</pre>
```

### Transform date-related variables

```
ifood$Age <- 2020 - ifood$Year_Birth
ifood <- ifood[, !names(ifood) %in% c("Year_Birth")]
reference_date <- as.Date("2020-12-31")
ifood$CustDays <- as.numeric(reference_date - as.Date(ifood$Dt_Customer, format="%Y-%m-%d"))
ifood <- ifood[, !names(ifood) %in% c("Dt_Customer")]</pre>
```

#### Rename columns for easier access

```
colnames(ifood) <- gsub("NumDealsPurchases", "DealsPurc", colnames(ifood))
colnames(ifood) <- gsub("NumMebPurchases", "WebPurc", colnames(ifood))
colnames(ifood) <- gsub("NumStorePurchases", "StorePurc", colnames(ifood))
colnames(ifood) <- gsub("NumWebVisitsMonth", "WebVisits", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmpOverall", "CmpOverall", colnames(ifood))
colnames(ifood) <- gsub("MnttWines", "WineExp", colnames(ifood))
colnames(ifood) <- gsub("MntFruits", "FruitExp", colnames(ifood))
colnames(ifood) <- gsub("MntFishProducts", "MeatExp", colnames(ifood))
colnames(ifood) <- gsub("MntSweetProducts", "SweetExp", colnames(ifood))
colnames(ifood) <- gsub("MntSweetProducts", "SweetExp", colnames(ifood))
colnames(ifood) <- gsub("MntGoldProds", "GoldExp", colnames(ifood))
colnames(ifood) <- gsub("Marital_Status", "MaritalSts", colnames(ifood))
colnames(ifood) <- gsub("NumCatalogPurchases", "CatalogPurc", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmp1", "AccCmp1", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmp2", "AccCmp2", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmp3", "AccCmp3", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmp4", "AccCmp4", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmp4", "AccCmp4", colnames(ifood))
colnames(ifood) <- gsub("AcceptedCmp5", "AccCmp5", colnames(ifood))</pre>
```

# 3.4 Step 4: Missing detection and treatment

During the preprocessing stage, we identified missing or inconsistent values by visually exploring the data to detect anomalies. For instance, in the variable Marital\_Status we found incorrect responses such as 'YOLO' and 'Absurd', which we removed to ensure data consistency.

Due to the fact that the Income cannot be less than 12500, we have had to impute the missing values using the KNN method.

#### 4. Handle outliers

```
ifood$Age <- ifelse(ifood$Age > 80, 80, ifood$Age)
```

### 5. Handle missing values

```
ifood <- ifood[!ifood$MaritalSts %in% c("YOLO", "Absurd"),]
ifood$MaritalSts[ifood$MaritalSts == "Alone"] <- "Single"</pre>
```

## 6. Impute missing Income using KNN

```
ifood$Income <- ifelse(ifood$Income < 12500, NA, ifood$Income)

num_vars <- sapply(ifood, is.numeric)
complete_vars <- colnames(ifood)[num_vars]
missing_threshold <- 0.2 * nrow(ifood)
complete_vars <- complete_vars[colSums(is.na(ifood[, complete_vars])) < missing_threshold]
aux <- ifood[, complete_vars]

var <- "Income"
aux1 <- aux[!is.na(ifood[[var]]), , drop = FALSE]
aux2 <- aux[is.na(ifood[[var]]), , drop = FALSE]

cols_na <- colnames(aux2)[colSums(is.na(aux2)) > 0]
if (length(cols_na) > 0) {
   aux1 <- aux1[, !(colnames(aux1) %in% cols_na), drop = FALSE]
   aux2 <- aux2[, !(colnames(aux2) %in% cols_na), drop = FALSE]
}

knn_impute <- knn(aux1, aux2, ifood[[var]][!is.na(ifood[[var]])], k = 1)
ifood[[var]][is.na(ifood[[var]])] <- as.numeric(as.character(knn_impute))</pre>
```

# 3.5 Step 5: Outlier detection and treatment

To handle the outliers with older people, we decided to set a limit of 80 years for individuals, so that anyone older than that age is included in the 80-year-old group.

### Correct calculation of TotAccCmp

```
ifood$TotAccCmp <- ifood$AccCmp1 + ifood$AccCmp2 + ifood$AccCmp3 + ifood$AccCmp4 + ifood$AccCmp5
```

### Remove duplicate records

```
ifood <- ifood %>% arrange(desc(Response)) %>% distinct_at(vars(-Response), .keep_all = TRUE)
```

#### Create TotalExp before using it

```
ifood$TotalExp <- rowSums(ifood[, c("WineExp", "FruitExp", "MeatExp", "FishExp", "SweetExp", "GoldExp")], na.rm = TRUE)
```

#### Save cleaned dataset

```
write.csv(ifood, "ifood_cleaned.csv", row.names = FALSE)
```

# 3.6 Step 6: Feature selection

To clean our variables we decided to remove irrelevant columns:

- ID: The ID column is a unique identifier for each record. It does'nt provide predictive value or relevant information about customer behavior or characteristics.
- Z\_CostContact and Z\_Revenue: Columns starting with the letter 'Z' are often metadata variables used internally in a database, usually represents auxiliary metrics or internal

calculations that are not useful for predictive analysis. In this case, both are synthetic or aggregated variables, likely related to internal company costs and revenues, which are not relevant to understanding customer behavior.

#### 1. Remove irrelevant columns

```
ifood <- ifood[, !names(ifood) %in% c("ID", "Z_CostContact", "Z_Revenue")]</pre>
```

# 3.7 Step 7: Transformation and new variables

These are the new variables we have created or modified from the existing ones to obtain new information.

# Variable Creation

## Second-Generation

#### **Total Purchases**

```
ifood$TotalPurchases <- ifood$DealsPurc + ifood$WebPurc + ifood$CatalogPurc + ifood$StorePurc
```

## Purchase Frequency

```
ifood$PurchaseFrequency <- ifelse(ifood$CustDays > 0, ifood$TotalPurchases / (ifood$CustDays / 30), 0)
```

### **Preferred Product Category**

```
product_categories <- c("WineExp", "FruitExp", "MeatExp", "FishExp", "SweetExp", "GoldExp")
max_index <- apply(ifood[ , product_categories], 1, which.max)
ifood$PreferredProductCategory <- product_categories[max_index]
ifood$PreferredProductCategory <- as.factor(ifood$PreferredProductCategory)</pre>
```

#### Preferred Purchase Channel

```
channels <- c("DealsPurc", "WebPurc", "CatalogPurc", "StorePurc")
max_ch_index <- apply(ifood[ , channels], 1, which.max)
ifood$PreferredChannel <- channels[max_ch_index]
ifood$PreferredChannel <- as.factor(ifood$PreferredChannel)
```

### Average Spend Per Purchase

```
ifood$AvgSpendPerPurchase <- ifelse(ifood$TotalPurchases > 0, ifood$TotalExp / ifood$TotalPurchases, 0)
```

### HasChildren

```
ifood$HasChildren <- ifelse(ifood$Kidhome + ifood$Teenhome > 0, 1, 0)
```

### IncomeSegment

#### CustomerTenure

```
ifood$CustomerTenure <- ifood$CustDays / 365
```

## CampaignAcceptanceRate

```
ifood$CampaignAcceptanceRate <- ifelse(ifood$TotAccCmp > 0, ifood$TotAccCmp / 5, 0)
```

## Third-Generation

## Third-Generation Feature 1: Customer Segmentation via Clustering

Prepare data for clustering: use Recency, TotalPurchases (frequency), and TotalExp (monetary)

```
cluster_data <- ifood %>% select(Recency, TotalPurchases, TotalExp)
```

## Scale the data for clustering

```
cluster_data_scaled <- scale(cluster_data)
```

### Perform k-means clustering with 3 clusters (as an example)

```
set.seed(123) # for reproducibility
k3 <- kmeans(cluster_data_scaled, centers = 3, nstart = 25) # nstart for better convergence</pre>
```

### Add the cluster assignment as a new feature

```
ifood$CustomerSegment <- as.factor(k3$cluster)
```

(Customers are now labeled 1, 2, or 3 based on their cluster segment)

## Third-Generation Feature 2: Propensity Score via Logistic Regression

Fit a logistic regression model to predict campaign response (Response) using relevant features

## Get predicted probabilities (propensity to respond)

```
ifood$PropensityScore <- predict(propensity_model, ifood, type = "response")</pre>
```

(PropensityScore is the model's predicted probability of Response=1 for each customer)

## Quick summary of PropensityScore range

```
summary(ifood$PropensityScore)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.03488 0.07725 0.15313 0.18046 0.99312
```

## Third-Generation Feature 3: Engagement Index

## Normalize components between 0 and 1

Note: For Recency, a lower value means more recent (more engaged), so we invert it.

```
recency_norm <- (max(ifood$Recency) - ifood$Recency) / max(ifood$Recency) # invert recency
frequency_norm <- ifood$TotalPurchases / max(ifood$TotalPurchases) # purchases normalized
monetary_norm <- ifood$TotalExp / max(ifood$TotalExp) # spending normalized
campaign_norm <- (ifood$TotAccCmp + ifood$Response) / 6 # campaign acceptance (out of 6 campaig
ns total including last response)
webvisit_norm <- ifood$WebVisits / max(ifood$WebVisits) # web visits normalized
```

## Calculate engagement index as average of all five components, scaled to 0-100

```
ifood$EngagementIndex <- (recency_norm + frequency_norm + monetary_norm + campaign_norm + webvisit_norm) / 5 * 100
```

## Preview EngagementIndex distribution

```
summary(ifood$EngagementIndex)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.892 20.859 27.401 28.453 35.209 62.573
```

### Save enriched dataset

```
write.csv(ifood, "ifood_enriched.csv", row.names = FALSE)
```