Motion Prediction

Course 4, Module 4, Lesson 1

Learning Objectives

- Define the motion prediction problem for dynamic objects and its importance to planning
- Identify the requirements for accurate motion prediction
- Perform predictions with the Constant Velocity Prediction Model

Motion Prediction - Definition

- Motion prediction of the dynamic object's attempts to estimate the future position, heading and velocity
- Important as it allows:
 - Planning a set of maneuvers to correctly interact with dynamic objects
 - Avoid collisions on a planned trajectory

Requirements for Motion Prediction Models

- Mandatory Requirements:
 - Class of Dynamic Object
 - Current position, heading and velocity
- Optional Requirements:
 - History of the position, heading and velocity
 - Requires object tracking between identifications over a set amount of time
 - Current high definition roadmap
 - Image of the current dynamic object

Simplification of Motion Prediction - Cars

Maneuver-based Assumptions

Complexities of Motion Prediction - Pedestrians

Pedestrians are unpredictable!

Can rapidly change speed and heading

Pedestrians use crossings Pedestrians use sidewalks

Pedestrians have right of way, but will stop if threatened

Constant Velocity Prediction Model

- Simple
- Computationally efficient
- Assumption is that the dynamic object will maintain its velocity
 - Magnitude
 - Heading

Constant Velocity Prediction Model - Algorithm

Input:

- *T* time horizon to predict over
- o dt − time between predictions
- o x_{obj} current dynamic object state
 - Position: x_{obj} .pos
 - Velocity : x_{obj} .vel

Output:

o $x_{1:T}$ – list of future vehicle states

Algorithm Constant Velocity Prediction(x_{obj})

```
1. t \leftarrow 0

2. x_0 = x_{obj}

3. while t * dt < T do

4. t = t + 1

5. x_t \cdot pos \leftarrow x_{t-1} \cdot pos + dt * x_{t-1} \cdot vel

6. x_t \cdot vel \leftarrow x_{t-1} \cdot vel

7. end while

8. return x_{1:T}
```

Constant Velocity Prediction Model - Example

• Input:

- \circ T = 3 seconds
- \circ dt = 1 second
- $\circ x_{obj}$

• Output:

o Predictions

 x_1 x_2

 x_3

Constant Velocity Prediction Model - Issues

Don't account for Vehicle Dynamics fully

Don't account for the Road (Position adjustment)

- Don't account for Road Signs (Velocity adjustment)
- Assumptions are too Strong and Incorrect for most Dynamic Object Motion

Summary

- Identified motion prediction and its Importance
- Requirements for motion prediction
- Assumption for Simplifying the problem in the case of
 - Vehicles
 - Pedestrians
- Simple Constant Velocity Prediction Model
- Issues with Simple Constant Velocity Prediction Model
- Next: Map-aware Motion Prediction Model