Cyclistic Case Study Jan21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for January 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                                 – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                                   0.3.5
                        ✓ purrr
## ✓ tibble 3.1.8

✓ dplyr

                                   1.0.10
## ✔ tidyr
             1.2.1

✓ stringr 1.4.1

           2.1.3
                        ✓ forcats 0.5.2
## ✓ readr
## — Conflicts -
                                                           – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                     masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("C:/Users/theby/Documents/202101-divvy-tripdata.csv")</pre>
```

```
## Rows: 96834 Columns: 13
## — Column specification
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(Jan21)
 colnames(Jan21)
      [1] "ride_id"
                                   "rideable_type"
                                                            "started_at"
      [4] "ended_at"
                                   "start_station_name"
 ##
                                                            "start_station_id"
     [7] "end station name"
                                                            "start lat"
                                   "end station id"
 ## [10] "start lng"
                                   "end lat"
                                                            "end lng"
 ## [13] "member_casual"
 nrow(Jan21)
 ## [1] 96834
 dim(Jan21)
 ## [1] 96834
                    13
 head(Jan21)
 ## # A tibble: 6 × 13
 ##
       ride_id
                         ridea...¹ start...² ended...³ start...⁴ start...⁵ end_s...6 end_s...7 start...8
 ##
                         <chr> <chr>
                                           <chr>
                                                    <chr>
                                                              <chr>
                                                                       <chr>
                                                                                 <chr>
                                                                                             <dbl>
 ## 1 E19E6F1B8D4C4... electr... 1/23/2... 1/23/2... Califo... 17660
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 2 DC88F20C2C55F... electr... 1/27/2... 1/27/2... Califo... 17660
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 3 EC45C94683FE3... electr... 1/21/2... 1/21/2... Califo... 17660
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 4 4FA453A75AE37... electr... 1/7/20... 1/7/20... Califo... 17660
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 5 BE5E8EB4E7263... electr... 1/23/2... 1/23/2... Califo... 17660
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
                                                                       <NA>
                                                                                 <NA>
 ## 6 5D8969F88C773... electr... 1/9/20... 1/9/20... Califo... 17660
                                                                                              41.9
 ## # ... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
         member casual <chr>, and abbreviated variable names ¹rideable type,
         <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
 ## #
         <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
 ## #
 tail(Jan21)
 ## # A tibble: 6 × 13
 ##
                        ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...⁶ start...௧
       ride id
 ##
                                           <chr>
                         <chr>
                                 <chr>
                                                   <chr>
                                                                       <chr>
 ## 1 44DE07FCDD3AD... docked... 1/17/2... 1/17/2... Lake S... 13300
                                                                       Lake S... 13300
                                                                                              41.9
                                                                                              41.9
 ## 2 B1A5336E1412D... classi... 1/19/2... 1/19/2... Lake S... 13300
                                                                       Lakefr... KA1504...
 ## 3 57EA5CB7DCD75... classi... 1/5/20... 1/5/20... Lake S... 13300
                                                                       Lakefr... KA1504...
 ## 4 815B319A078CC... classi... 1/7/20... 1/7/20... Lakefr... KA1504... Lakefr... KA1504...
                                                                                              42.0
 ## 5 6DB04151565CE... classi... 1/6/20... 1/6/20... Lakefr... KA1504... Lakefr... KA1504...
                                                                                              42.0
 ## 6 8008C9C998083... docked... 1/17/2... 1/17/2... Lake S... 13300
                                                                      Lake S... 13300
                                                                                              41.9
```

... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,

2started_at, 3ended_at, 4start_station_name, 5start_station_id,

6end_station_name, 7end_station_id, 8start_lat

member_casual <chr>, and abbreviated variable names ¹rideable_type,

```
summary(Jan21)
```

#

#

#

```
##
     ride id
                      rideable_type
                                         started_at
                                                             ended at
##
   Length:96834
                      Length:96834
                                        Length:96834
                                                           Length: 96834
##
                      Class :character
                                                           Class :character
   Class :character
                                        Class :character
##
   Mode :character Mode :character
                                        Mode :character
                                                           Mode :character
##
##
##
##
##
   start station name start station id
                                       end station name
                                                           end station id
##
   Length:96834
                     Length:96834
                                        Length:96834
                                                           Length:96834
                     Class :character
                                        Class :character
                                                           Class :character
##
   Class :character
##
   Mode :character Mode :character
                                        Mode :character
                                                          Mode :character
##
##
##
##
##
     start_lat
                     start_lng
                                      end lat
                                                      end lng
                  Min. :-87.78
   Min. :41.64
                                   Min. :41.64
                                                   Min. :-87.81
##
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                   1st Qu.:41.88
                                                   1st Qu.:-87.66
##
   Median :41.90
                   Median :-87.64
                                   Median :41.90
                                                   Median :-87.64
##
   Mean :41.90
                   Mean :-87.65
                                   Mean :41.90
                                                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
                                   3rd Qu.:41.93
                                                   3rd Qu.:-87.63
##
   Max. :42.06 Max. :-87.53
                                   Max. :42.07
                                                   Max. :-87.51
                                   NA's :103
                                                   NA's :103
##
##
   member casual
##
   Length: 96834
##
   Class :character
   Mode :character
##
##
##
##
##
```

str(Jan21)

```
## spc tbl [96,834 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:96834] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377D
##
   $ ride_id
R"
##
   $ rideable type
                        : chr [1:96834] "electric bike" "electric bike" "electric bike" "electric bike" ...
                        : chr [1:96834] "1/23/2021 16:14" "1/27/2021 18:43" "1/21/2021 22:35" "1/7/2021 13:31" ...
   $ started_at
                        : chr [1:96834] "1/23/2021 16:24" "1/27/2021 18:47" "1/21/2021 22:37" "1/7/2021 13:42" ...
##
   $ ended at
   $ start_station_name: chr [1:96834] "California Ave & Cortez St" "California Ave & Cortez St" "California Ave
& Cortez St" "California Ave & Cortez St" ...
   $ start station id : chr [1:96834] "17660" "17660" "17660" "17660" ...
   $ end station name : chr [1:96834] NA NA NA NA ...
##
   $ end_station_id : chr [1:96834] NA NA NA NA ...
##
                       : num [1:96834] 41.9 41.9 41.9 41.9 ...
    $ start_lat
                        : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
    $ start lng
                        : num [1:96834] 41.9 41.9 41.9 41.9 ...
##
    $ end lat
                       : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lna
                        : chr [1:96834] "member" "member" "member" "member" ...
##
    $ member casual
##
    - attr(*, "spec")=
##
     .. cols(
##
          ride id = col character(),
     . .
##
          rideable_type = col_character(),
     . .
##
          started_at = col_character(),
##
          ended at = col character(),
     . .
##
          start_station_name = col_character(),
     . .
##
          start_station_id = col_character(),
##
          end_station_name = col_character(),
     . .
##
          end station id = col character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end_lng = col_double(),
     . .
##
     . .
          member_casual = col_character()
##
     .. )
    - attr(*, "problems")=<externalptr>
##
```

Columns started_at and ended_at need to be convert from character data type to date data type. Str() syntax confirms changes.

```
Jan21$started_at <- mdy_hm(Jan21$started_at)
Jan21$ended_at <- mdy_hm(Jan21$ended_at)
str(Jan21)</pre>
```

```
## spc_tbl_[96,834 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:96834] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377D
## $ ride_id
В" ...
                      : chr [1:96834] "electric bike" "electric bike" "electric bike" ...
## $ rideable_type
                       : POSIXct[1:96834], format: "2021-01-23 16:14:00" "2021-01-27 18:43:00" ...
##
   $ started at
                       : POSIXct[1:96834], format: "2021-01-23 16:24:00" "2021-01-27 18:47:00"
##
   $ ended at
## $ start station name: chr [1:96834] "California Ave & Cortez St" "California Ave & Cortez St" "California Ave
& Cortez St" "California Ave & Cortez St" ...
## $ start_station id : chr [1:96834] "17660" "17660" "17660" "17660" ...
## \ end_station_name : chr [1:96834] NA NA NA NA ...
## $ end_station_id : chr [1:96834] NA NA NA NA ..
##
   $ start lat
                      : num [1:96834] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
   $ end_lat
                       : num [1:96834] 41.9 41.9 41.9 41.9 ...
                      : num [1:96834] -87.7 -87.7 -87.7 -87.7 ...
##
   $ end lna
                      : chr [1:96834] "member" "member" "member" "...
##
   $ member casual
##
    - attr(*, "spec")=
##
    .. cols(
##
         ride id = col character(),
     . .
##
         rideable_type = col_character(),
     . .
##
         started at = col character(),
     . .
##
         ended at = col character(),
##
         start_station_name = col_character(),
    . .
##
         start_station_id = col_character(),
##
         end station name = col character(),
     . .
##
         end station id = col character(),
     . .
##
         start lat = col double(),
         start_lng = col_double(),
##
     . .
##
         end lat = col double(),
    . .
##
     .. end_lng = col_double(),
##
     . .
         member_casual = col_character()
##
    ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Jan21$date <- as.Date(Jan21$started_at)
Jan21$month <- format(as.Date(Jan21$date), "%m")
Jan21$day <- format(as.Date(Jan21$date), "%d")
Jan21$year <- format(as.Date(Jan21$date), "%Y")
Jan21$year <- format(as.Date(Jan21$date), "%A")
Jan21$ride_length <- difftime(Jan21$ended_at,Jan21$started_at)</pre>
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Jan21$ride_length)
```

Recheck ride_length data type.

[1] FALSE

```
Jan21$ride_length <- as.numeric(as.character(Jan21$ride_length))
is.numeric(Jan21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Jan21 <- na.omit(Jan21)</pre>
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Jan21 <- subset(Jan21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
Jan21 <- subset (Jan21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Jan21$ride_length)
 ## [1] 878.8599
 median(Jan21$ride_length)
 ## [1] 540
 max(Jan21$ride_length)
 ## [1] 1189560
 min(Jan21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(Jan21$ride_length)
 ##
         Min.
                 1st Qu.
                            Median
                                         Mean
                                                 3rd Qu.
                                                               Max.
 ##
         60.0
                   360.0
                              540.0
                                        878.9
                                                   960.0 1189560.0
Compare the members and casual users
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = mean)
      Jan21$member_casual Jan21$ride_length
 ##
 ## 1
                    casual
                                    1588.8783
 ## 2
                    member
                                     726.8542
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = median)
 ##
      {\tt Jan21\$member\_casual\ Jan21\$ride\_length}
 ## 1
                    casual
 ## 2
                    member
                                           540
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = max)
 ##
      Jan21$member_casual Jan21$ride_length
 ## 1
                    casual
                                      1189560
 ## 2
                    member
                                        73560
 aggregate(Jan21$ride_length ~ Jan21$member_casual, FUN = min)
 ##
      Jan21$member_casual Jan21$ride_length
 ## 1
                    casual
 ## 2
                    member
                                            60
Aggregate the average ride length by each day of the week for members and users.
```

aggregate(Jan21\$ride_length ~ Jan21\$member_casual + Jan21\$day_of_week, FUN = mean)

```
##
      Jan21$member_casual Jan21$day_of_week Jan21$ride_length
## 1
                                                  1418.8809
                                    Friday
                   casual
## 2
                   member
                                     Friday
                                                     708.9743
## 3
                   casual
                                    Monday
                                                    1198.0084
## 4
                                    Monday
                                                     687.4889
                   member
## 5
                                                    1998.5973
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                     791.2074
## 7
                                                    1857.6845
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                     783.9969
                                   Thursday
## 9
                   casual
                                                    1229.8414
## 10
                   member
                                   Thursday
                                                    695.9691
## 11
                   casual
                                    Tuesday
                                                    1394.9593
## 12
                   member
                                    Tuesday
                                                     698.6534
## 13
                   casual
                                  Wednesday
                                                    1575.2793
## 14
                                                    731.4766
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
Jan21$day_of_week <- ordered(Jan21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Jan21$ride_length ~ Jan21$member_casual + Jan21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
     Jan21$member_casual Jan21$day_of_week Jan21$ride_length
## 1
                  casual
                                     Sunday
                                                    1857.6845
## 2
                  member
                                     Sunday
                                                     783.9969
## 3
                  casual
                                     Monday
                                                    1198.0084
## 4
                  member
                                    Monday
                                                     687.4889
## 5
                                   Tuesday
                                                    1394.9593
                  casual
## 6
                  member
                                   Tuesday
                                                     698.6534
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                       2358
                                                        1858.
                         1
## 2 casual
                         2
                                       1657
                                                        1198.
## 3 casual
                         3
                                       1476
                                                        1395.
## 4 casual
                         4
                                       1665
                                                        1575.
## 5 casual
                                       1892
                                                        1230.
## 6 casual
                         6
                                       2216
                                                        1419.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Jan21$member_casual)
```

```
##
## casual member
## 14629 68332
```

```
table(Jan21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 61013 2091 19857
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

```
Jan21 %>%
  mutate(day_of_week) %>%
  group_by(member_casual,day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")+
labs(x = "Day of Week",
    y= "Number of Rides",
    title= "Days of the Week")
```

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Jan21$day_of_week,Jan21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                         casual 2358
## 2
          Monday
                         casual 1657
         Tuesday
## 3
                         casual 1476
## 4
       Wednesday
                         casual 1665
## 5
        Thursday
                         casual 1892
                         casual 2216
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Jan21$rideable_type,Jan21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual Freq
## 1 classic bike
                         casual
                                 8191
## 2
      docked bike
                         casual
                                 2090
## 3 electric_bike
                         casual 4348
## 4 classic bike
                         member 52822
## 5
      docked bike
                         member
                         member 15509
## 6 electric_bike
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Jan21, "Jan21.csv")