

000641969
WPI Acc No: 1968-88155P/*196800*

Heat-stabiliser mixtures for polyamides contain

Patent Assignee: FARBENFAB BAYER AG (FARB)
Number of Countries: 001 Number of Patents: 001

D
#6

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 1245591	B			196800	B	

Priority Applications (No Type Date): DE F48224 A 19660121

Abstract (Basic): DE 1245591 B

Heat stabiliser mixtures for polyamides comprise an inorganic or organic salt of hydriodic acid in addition to a copper salt of an inorganic or organic acid and a phosphine.

Examples of suitable hydriodic acids salts include potassium iodide, N,N-dimethyldodecylaminohydroiodide, N-dodecyl-N,N,N-trimethylammonium iodide, etc.

Derwent Class: A00

X

DEUTSCHES PATENTAMT

AUSLEGESCHRIFT

1 245 591

Deutsche Kl.: 39 b - 22/04

Nummer: 1 245 591
 Aktenzeichen: F 48224 IV c/39 b
 Anmeldetag: 21. Januar 1966
 Auslegetag: 27. Juli 1967

Gegenstand der Hauptpatentanmeldung ist ein Verfahren zur Herstellung stabilisierter Polyamide durch Zusatz von Kupfer und Phosphor enthaltenden Verbindungen, das dadurch gekennzeichnet ist, daß man als Stabilisator eine Kombination aus a) einem Salz des ein- oder zweiwertigen Kupfers mit einer anorganischen oder organischen Säure und b) einem Phosphin verwendet oder als Stabilisator eine Additionsverbindung aus Phosphinen und Kupferverbindungen der Formel CuX (X = Chlor, Brom, Jod oder Cyan).

In Weiterbildung dieses Verfahrens wurde nun gefunden, daß man die Stabilisatorwirkung der genannten Stabilisatorkombination noch verstärken kann, wenn man als weiteren Zusatz ein anorganisches oder organisches Salz der Jodwasserstoffsäure verwendet.

Beispiele für anorganische oder organische Salze der Jodwasserstoffsäure sind:

1. Ammoniumjodid, Natriumjodid, Kaliumjodid, Calciumjodid, Magnesiumjodid, Zinkjodid oder Cadmiumjodid.
2. Hydrojodide primärer Amine, wie Hexadecylaminhydrojodid, Hexamethylenediaminhydrojodid oder Cyclohexylaminhydrojodid.
3. Hydrojodide sekundärer Amine, wie N-Äthylbenzylaminhydrojodid, Piperidinhydrojodid oder N-Methyloctadecylaminhydrojodid.
4. Hydrojodide tertärer Amine, wie N,N-Dimethylbenzolaminhydrojodid, N,N,N-Triäthanolaminhydrojodid, Pyridinhydrojodid, Trioctadecylaminhydrojodid oder N,N-Dimethyldodecylaminhydrojodid.
5. Jodide quartärer Ammoniumverbindungen, wie N-Benzyl-N,N,N-trimethylammoniumjodid, N-Äthyl-N-benzyl-N,N-dimethylammoniumjodid, N-Dodecyl-N,N,N-triäthylammoniumjodid oder N,N,N,N'-Hexamethyl-N,N'-äthylen-bisammoniumjodid.
6. Hydrojodide von Aminocarbonsäureestern oder -amiden, wie N,N-Dimethyl-6-aminocapronsäuremorpholidhydrojodid, N,N-Dimethyl-6-aminocapronsäuredodecylamidhydrojodid, N-Methyl-N-cyclohexyl-6-aminocapronsäureäthylesterhydrojodid oder N,N-Dimethyl-11-aminoundekansäureanilidhydrojodid.
7. Jodide von Carbamylammoniumverbindungen, wie N-(N'-Dodecylcarbamylpentyl)-N,N,N-trimethylammoniumjodid oder N-(N'-3,4-Dichlorophenylcarbamylpentyl)-N,N,N-trimethylammoniumjodid.

Verfahren zur Herstellung stabilisierter Polyamide

Zusatz zur Anmeldung: F 47169 IV c/39-b —
 Auslegeschrift 1 237 309

Anmelder:

Farbenfabriken Bayer Aktiengesellschaft,
 Leverkusen

Als Erfinder benannt:

Dr. Karl Heinz Hermann,
 Dr. Hans Rudolph,
 Dr. Werner Daum, Krefeld-Bockum

2

Die anorganischen oder organischen Salze der Jodwasserstoffsäure werden zweckmäßig in einer solchen Menge zugesetzt, daß das Polyamid 0,001 bis 5 Gewichtsprozent, vorzugsweise 0,01 bis 1,0 Gewichtsprozent, Jod enthält. Die Stabilisatorkombination kann dem polyamidbildenden Ausgangsgemisch vor der Polymerisation zugesetzt werden und die Polymerisation anschließend in bekannter Weise kontinuierlich oder diskontinuierlich durchgeführt werden, ohne daß dabei Verfärbungen der Polyamidschmelze auftreten.

Es ist jedoch auch möglich, die Stabilisatoren, gegebenenfalls auch in Form eines Konzentrates in Polyamid, erst während oder nach der Polymerisation zusammen oder getrennt mit der Polyamidschmelze zu vermischen, wobei bekannte Mischvorrichtungen wie Extruder oder Kneiter benutzt werden können. Neben den Stabilisatoren können die Polyamide noch übliche Zusätze wie Pigmente, Farbstoffe, Lichtstabilisatoren, Füllstoffe wie Glas, oder Asbestfasern, Gleit- und Entformungsmittel, Kristallisierungsanreger usw. enthalten.

Die erfindungsgemäß stabilisierten Polyamide, die insbesondere gegen die oxidative Schädigung bei höheren Temperaturen stabilisiert sind, eignen sich hervorragend für die Herstellung von technischer Seide für Fischnetze, Treibriemen, Förderbänder, Reifencord oder Formkörpern, die einer thermischen

Belastung bei freiem Zutritt von Luft oder Sauerstoff ausgesetzt sind.

Beispiel 1

1 kg eines auf übliche Weise hergestellten farblosen Polycaprolactams mit einer relativen Viskosität

von 3,12 (gemessen an der 1%igen Lösung in m-Kresol) werden mittels einer üblichen Schneckenpresse aufgeschmolzen und dabei mit verschiedenen Stabilisatoren homogen vermischt. Das stabilisatorhaltige Polycaprolactam wird als Borste von etwa 3 mm Durchmesser abgesponnen, zu Granulat

Tabelle I

Probe Nr.	Jodid	g	J im Polyamid %	Cu-Verbindung
1	KJ	5,0	0,38	Cu (I) Cl. 1 Triphenylphosphin
2	KJ	2,0	0,17	Cu (I) J. 2 Triphenylphosphin
3	KJ	1,0	0,10	Cu (I) J. 2 Triphenylphosphin
4	KJ	10,0	0,76	Cu (I) CN. 2 Triphenylphosphin
5	KJ	5,0	0,38	Cu (I) Br. 1 Triphenylphosphin
6	N,N-Dimethyldodecylaminhydrojodid	1,50	0,056	Cu (I) J. 2 Triphenylphosphin
7	N,N-Dimethylbenzylaminhydrojodid	1,16	0,056	Cu (I) J. 2 Triphenylphosphin
8	N-Dodecyl-N,N,N-trimethylammoniumjodid	0,63	0,022	Cu (I) J. 2 Triphenylphosphin
9	N-Dodecyl-N,N,N-trimethylammoniumjodid	1,57	0,056	Cu (I) J. 2 Triphenylphosphin
10	N-Äthyl-N-benzyl-N,N-dimethylammonium-jodid	1,28	0,056	Cu (I) J. 2 Triphenylphosphin
11	N,N-Dimethyl-6-aminocapronsäuredodecylamidhydrojodid	2,01	0,056	Cu (I) J. 2 Triphenylphosphin
12	N-(N'-3,4-Dichlorphenylcarbamylpentyl)-N,N,N-trimethylammoniumjodid	0,79	0,022	Cu (I) J. 2 Triphenylphosphin
13	—	—	—	Cu (I) J. 2 Triphenylphosphin
14	—	—	—	—

Tabelle II

Probe Nr.	Jodid	g	J im Polyamid %
1	KJ	5,0	0,38
2	KJ	2,0	0,17
3	KJ	1,0	0,10
4	KJ	10,0	0,76
5	KJ	5,0	0,38
6	N,N-Dimethyl-dodecylaminhydrojodid	1,50	0,056
7	N-Dodecyl-N,N,N-trimethylammoniumjodid	1,57	0,056
8	N,N-Dimethyl-6-aminocapronsäuredodecylamidhydrojodid	2,01	0,056
9	KJ	5,0	0,38
10	KJ	5,0	0,38

zerhackt und getrocknet. Das Granulat wird dann in einem Trockenschrank bei 150°C und freiem Luftzutritt aufbewahrt und nach 144, 500 und 1000 Stunden die relative Viskosität gemessen.

Die Versuchsergebnisse sind in Tabelle I aufgeführt.

Beispiel 2:

Ein Gemisch aus 1,0 kg Caprolactam, 35 g Aminocapronsäure und den Stabilisatoren wird in einem Autoklav in üblicher Weise bei einer Temperatur von 270°C polykondensiert. Die Farbe der erhaltenen Polyamide ist in Tabelle II aufgeführt.

g	Cu im Polyamid %	P im Polyamid %	Farbe des Polyamids	Nach Vermischung	Relative Viskosität		
					nach 144 Stunden	nach 500 Stunden	nach 1000 Stunden
0,64	0,011	0,0055	farblos	2,98	4,09	3,84	3,60
1,26	0,011	0,011	farblos	3,12	4,17	3,89	3,66
1,26	0,011	0,011	farblos	3,08	3,71	3,55	3,35
1,20	0,011	0,011	farblos	3,03	4,40	4,21	3,75
0,54	0,0085	0,004	farblos	3,06	4,04	3,79	3,35
1,26	0,011	0,011	farblos	3,10	3,92	3,56	3,20
1,26	0,011	0,011	farblos	3,05	3,86	3,55	3,16
1,26	0,011	0,011	farblos	3,05	3,64	3,25	2,97
1,26	0,011	0,011	farblos	3,05	3,81	3,48	3,12
1,26	0,011	0,011	farblos	3,06	3,82	3,55	3,38
1,26	0,011	0,011	farblos	3,05	3,86	3,72	3,25
1,26	0,011	0,011	farblos	3,08	3,65	3,29	3,06
1,26	0,011	0,011	farblos	3,12	3,43	3,12	2,90
—	—	—	farblos	3,09	2,73	2,36	2,21

Cu-Verbindung	g	Cu im Polyamid %	P im Polyamid %	Farbe des Polyamids
Cu (I) Cl. 1 Triphenylphosphin	0,64	0,011	0,0055	farblos
Cu (I) J. 2 Triphenylphosphin	1,26	0,011	0,011	farblos
Cu (I) J. 2 Triphenylphosphin	1,26	0,011	0,011	farblos
Cu (I) CN. 2 Triphenylphosphin	1,10	0,011	0,011	farblos
Cu (I) Br. 1 Triphenylphosphin	0,54	0,0085	0,004	farblos
Cu (I) J. 2 Triphenylphosphin	1,26	0,011	0,011	farblos
Cu (I) J. 2 Triphenylphosphin	1,26	0,011	0,011	farblos
Cu (I) J. 2 Triphenylphosphin	1,26	0,011	0,011	farblos
Cu (II) Cl ₂ · 2H ₂ O + Triphenylphosphin	0,27 0,42	0,011	0,005	farblos
Cu (II) Cl ₂ · 2H ₂ O	0,27	0,011	—	grünlich

Patentanspruch:

Weiterbildung des Verfahrens zur Wärmestabilisierung von Polyamiden durch Zusatz von Kombinationen von Kupfer und Phosphor enthaltenden Verbindungen, bei denen man zur Wärmestabilisierung eine Kombination aus a)

einem Salz des ein- oder zweiwertigen Kupfers mit einer anorganischen oder organischen Säure und b) einem Phosphin verwendet, gemäß Patentanmeldung F 47169 IVc/39b, dadurch gekennzeichnet, daß man als weiteren Zusatz ein anorganisches oder organisches Salz der Jodwasserstoffsäure verwendet.

--