

Chapter 3

Molecules, Moles, and Chemical Equations

Interpreting Chemical Equations

- Balanced chemical reactions provide stoichiometric ratios between reactants and products
- Ratios relate relative numbers of particles

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

- Two molecules of H₂ react with one molecule of O₂ to form two molecules of H₂O
- 20 molecules of H₂ react with 10 molecules of O₂ to form 20 molecules of H₂O

Avogadro's Number and the Mole (

- A mole is a means of counting the large number of particles in samples
 - One mole is the number of atoms in exactly 12 grams of ¹²C or carbon-12
 - This number is also referred to as Avogadro's number, and its value is 6.022×10²³ particles/mole
 - The mass of 6.022×10^{23} atoms of any element is the molar mass of that element

Avogadro's Number and the Mole (2 of 3)

- One mole samples of various elements are shown
- All have the same number of particles

Avogadro's Number and the Mole (3 of 3)

 Balanced chemical reactions also provide mole ratios between reactants and products

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

2 moles of H₂ and 1 mole of O₂ react to form 2 moles of H₂O

Determining Molar Mass

 The molar mass of a compound is the sum of the molar masses of all the atoms in a compound

$$\left(2 \text{ mol H} \times \frac{1.0 \text{ g H}}{1 \text{ mol H}}\right) + \left(1 \text{ mol O} \times \frac{16.0 \text{ g}}{1 \text{ mol O}}\right)$$
$$= 18.0 \text{ g/mol H}_2\text{O}$$

- Determine the molar mass of each of the following compounds, all of which are used as fertilizers for the production of biomass:
 - Calcium sulfate, CaSO₄
 - Urea, CO(NH₂)₂
 - Carnallite, H₁₂Cl₃KMgO₆

- Determine the molar mass of each of the following compounds, all of which are used as fertilizers for the production of biomass:
 - Calcium sulfate, CaSO₄

- Determine the molar mass of each of the following compounds, all of which are used as fertilizers for the production of biomass:
 - Urea, CO(NH₂)₂

- Determine the molar mass of each of the following compounds, all of which are used as fertilizers for the production of biomass:
 - Carnallite, H₁₂Cl₃KMgO₆ (Discussion Question)

Calculations Using Moles and Molar Mass (1 of 2)

- Molar mass allows conversion from mass to the number of moles, much like a unit conversion
 - 1 mol $C_7H_5N_3O_6 = 227.133 \text{ g } C_7H_5N_3O_6$

$$300.0 \text{ g C}_7 \text{H}_5 \text{N}_3 \text{O}_6 \times \frac{1 \text{ mol C}_7 \text{H}_5 \text{N}_3 \text{O}_6}{227.133 \text{ g C}_7 \text{H}_5 \text{N}_3 \text{O}_6}$$
$$= 1.320 \text{ mol C}_7 \text{H}_5 \text{N}_3 \text{O}_6$$

Calculations Using Moles and Molar Mass (2 of 2)

- Avogadro's number functions much like a unit conversion between moles to the number of particles
 - 1 mol $C_7H_5N_3O_6 = 6.022 \times 10^{23}C_7H_5N_3O_6$ molecules
 - How many molecules are in 1.320 moles of nitroglycerin?

1.320 mol
$$C_7H_5N_3O_6 \times \frac{6.022 \times 10^{23} \text{ molecules } C_7H_5N_3O_6}{1 \text{ mol } C_7H_5N_3O_6}$$

= 7.949 × 10²³ molecules $C_7H_5N_3O_6$

- A 245.3-g sample of glutamic acid, C₅H₉NO₄, is recovered from an experiment using fermentation to convert biomass
 - How many moles of C₅H₉NO₄ are in this sample?
 - How many molecules are in this sample?

- A 245.3-g sample of glutamic acid, C₅H₉NO₄, is recovered from an experiment using fermentation to convert biomass
 - How many moles of C₅H₉NO₄ are in this sample?

- A 245.3-g sample of glutamic acid, C₅H₉NO₄, is recovered from an experiment using fermentation to convert biomass
 - How many molecules are in this sample?

- Empirical formulas can be determined from an elemental analysis
 - An elemental analysis measures the mass percentage of each element in a compound
 - The formula describes the composition in terms of the number of atoms of each element
 - The molar masses of the elements provide the connection between the elemental analysis and the formula

- Assume a 100-gram sample size
- Percentage element multiplied by sample size equals mass element in compound
 - Example: 16% carbon equals 16 g carbon
- Convert mass of each element to moles using the molar mass
- Divide by the smallest number of moles to get the mole-to-mole ratio for the empirical formula

- Nitroaniline had been observed in experiments on biomass from pine needles and can be used as a precursor for pharmaceuticals
 - It contains 52.17% carbon, 4.38% hydrogen, 20.28% nitrogen, and 23.17% oxygen by mass
 - Determine the empirical formula of nitroaniline

- An alloy contains 70.8 mol % palladium and 29.2 mol % nickel
 - Express the composition of this alloy as weight percentage or wt %

- An alloy contains 70.8 mol % palladium and 29.2 mol % nickel
 - Express the composition of this alloy as weight percentage or wt %

Molarity

- Molarity or molar concentration, M, is the number of moles of solute per liter of solution
 - Provides relationship among molarity, moles of solute, and liters of solution

Molarity
$$(M) = \frac{\text{moles of solute}}{\text{liter of solution}}$$

If we know any two of these quantities, we can determine the third one

- A solution is prepared by dissolving 45.0 g of NaClO in enough water to produce exactly 750 mL of solution
 - What is the molarity of this solution?

Dilution

- Dilution is the process in which solvent is added to a solution to decrease the concentration of the solute
 - The number of moles of solute is the same before and after dilution.
 - Since the number of moles of solute equals the product of molarity and volume, we can write the following equation, where the subscripts denote initial and final values

$$M_i \times V_i = M_f \times V_f$$

- A chemist requires 1.5 M hydrochloric acid, HCl, for a series of reactions.
 The only solution available is 6.0 M HCl.
 - What volume of 6.0 M HCl must be diluted to obtain 5.0 L of 1.5 M HCl?

Join In, 12

What volume of 9.0 M HCI(aq) is needed initially to produce 2.5 L of 0.20 M solution?

- 0.055 mL
- 0.72 mL
- 4.5 mL
- 55 mL

