Rank-346 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_1^2 X_2 = 0$$

(1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)The point rank of the equation over GF(2) is 346

General information

Number of lines	3
Number of points	9
Number of singular points	0
Number of Eckardt points	0
Number of double points	0
Number of single points	9
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^3
Type of lines on points	19

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{Pl}(1, 1, 1, 0, 1, 1)_{30}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{23} = \mathbf{Pl}(1, 1, 0, 1, 1, 1)_{31}$$

Rank of lines: (12, 10, 23)

Rank of points on Klein quadric: (32, 30, 31)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 9 single points:

The single points on the surface are:

0 : $P_4 = (1,1,1,1)$ lies on line ℓ_0

 $1: P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

 $2: P_6 = (1,0,1,0)$ lies on line ℓ_1

 $3: P_8 = (1, 1, 1, 0)$ lies on line ℓ_2

4: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_2

The single points on the surface are:

5 : $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_1

6: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_0

7: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_2

8: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

Line 1 intersects

Line in point

Line 2 intersects

	Line
in	point

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_4 = (1,1,1,1) & 4: \ P_{10} = (0,1,0,1) \\ 1: \ P_5 = (1,1,0,0) & 5: \ P_{11} = (1,1,0,1) \\ 2: \ P_6 = (1,0,1,0) & 6: \ P_{12} = (0,0,1,1) \\ 3: \ P_8 = (1,1,1,0) & 7: \ P_{13} = (1,0,1,1) \end{array}$$