Deterministic Dynamic Programming

T. Kam

02_ddp_theory.tex
March 12, 2019

Outline

- 1 Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

- Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

2. Infinite-horizon Decisions I

Notation:

- Time: $t \in \mathbb{N}$
- State space: $X \subset \mathbb{R}^n$, $n \ge 1$
- State (vector): $x_t \in X$
- Action space: $A \subset \mathbb{R}^k$, $k \ge 1$
- Control (vector): $u_t \in A$
- Feasible control set at x_t : $\Gamma(x_t)$
- Controllable transition law: $x_{t+1} = f(x_t, u_t)$, with $x_0 \in X$ given.
- Payoff criterion: $\sum_{t\in\mathbb{N}} \beta^t U(x_t,u_t)$, with $U:X\times A\to\mathbb{R}$, and $\beta\in(0,1)$.

2. Infinite-horizon Decisions II

Planning problem:

$$(\text{P1}) \qquad v(x_0) = \sup_{\{u_t \in \Gamma(x_t)\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t U(u_t, x_t)$$
 s.t.
$$x_{t+1} = f(x_t, u_t)$$

$$x_0 \text{ given.}$$

Value of the optimal problem is a function of the current state $v(x_t)$. We also call this the indirect utility.

2. Infinite-horizon Decisions III

Example

- Single firm's intertemporal profit maximization problem.
 Choosing optimal investment path.
- Single firm's intertemporal profit maximization problem.
 Choosing optimal pricing path.
- Optimal resource depletion problem
- Optimal growth/savings problem

2. Infinite-horizon Decisions IV

- We said it was impossible to exactly solve (PI) in a direct way. Why?
- The infinite sequence solution to (P1) can be found recursively as the solution to the "Bellman (functional) equation".
 Bellman Principle of Optimality (BPO).
 - Need a well-defined valued function v consistent with (P1), which also satisfies BPO. Existence? Unique?
 - **2** Properties of solution σ that sustains v? Exists? Unique?
- Goal:
 - lacktriangle Characterize "solution" v satisfying BPO generally. Regularity Conditions.
 - **2** Then describe conditions for σ to exist. Require more conditions to ensure unique σ .

- 1 Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

2. Infinite-horizon Decisions I

Histories, Strategies, Value

Deconstructing the infinite-sequence problem (P1). ...

A few notations:

- A t-history: $h^t = \{x_0, u_0, ..., x_{t-1}, u_{t-1}, x_t\}.$
- Set of all possible t-histories: Let $H_0 = X$. Then $H_t = \{h^t | t = 1, 2, ...\}.$
- Period t state under history h^t : $x_t[h^t]$.
- A strategy $\sigma = \{\sigma_t(h^t)\}_{t=0}^{\infty}$ is a plan of action specified as a function of the revealed history, such that for each $t \in \mathbb{N}$, $\sigma_t : H_t \to A$ and the actions are feasible for each history: $\sigma_t(h^t) \in \Gamma(x_t[h^t])$.
- Set of all strategies: Σ .

2. Infinite-horizon Decisions II

Histories, Strategies, Value

Selections from strategies. Generating infinite sequence of states and actions $\{x_t(\sigma, x_0), u_t(\sigma, x_0)\}_{t \in \mathbb{N}}$ for a given strategy σ .

Fix a strategy $\sigma \in \Sigma$.

4 At t=0. Set $x_0(\sigma,x_0)=x_0$, so $h^0=x_0$; and select $u_0(\sigma,x_0)=\sigma_0(h^0(\sigma,x_0))$. Then,

$$x_1(\sigma, x_0) = f(x_0(\sigma, x_0), u_0(\sigma, x_0))$$

$$h^1(\sigma, x_0) = \{x_0(\sigma), u_0(\sigma, x_0), x_1(\sigma, x_0)\}$$

2. Infinite-horizon Decisions III

Histories, Strategies, Value

2 At t=1. Given recorded time-1 history $h^1(\sigma,x_0)$, planner picks action $u_1=u_1(\sigma,x_0)$. Then,

$$u_1(\sigma, x_0) = \sigma_1(h^1(\sigma, x_0))$$

$$x_2(\sigma, x_0) = f(x_1(\sigma, x_0), u_1(\sigma, x_0))$$

3 So in general for $t \in \mathbb{N}$, we have the recursion under σ starting from x_0 as

$$h^{t}(\sigma, x_{0}) = \{x_{0}(\sigma), u_{0}(\sigma, x_{0}), ..., x_{t}(\sigma, x_{0})\}$$

$$u_{t}(\sigma, x_{0}) = \sigma_{t}(h^{t}(\sigma, x_{0}))$$

$$x_{t+1}(\sigma, x_{0}) = f(x_{t}(\sigma, x_{0}), u_{t}(\sigma, x_{0}))$$

2. Infinite-horizon Decisions IV

Histories, Strategies, Value

Assigning payoffs to σ -induced outcomes. Each strategy σ , starting from initial state x_0 , generates a period-t return:

$$U_t(\sigma)(x_0) = U[x_t(\sigma, x_0), u_t(\sigma, x_0)].$$

Total discounted payoffs from x_0 under strategy σ as

$$W(\sigma)(x_0) = \sum_{t=0}^{\infty} \beta^t U_t(\sigma)(x_0).$$

By definition, the value function is the maximal of all total discounted returns, across all possible strategies:

$$v(x_0) = \sup_{\sigma \in \Sigma} W(\sigma)(x_0).$$

2. Infinite-horizon Decisions V

Histories, Strategies, Value

Brute force solution proposal?

- ullet Construct all possible strategies σ from Σ , and
- Evaluate the discounted lifetime payoff of each strategy, $W(\sigma)(x_0)$.
- Pick the strategy (or strategies) that deliver the maximal value, $v(x_0) = \sup_{\sigma \in \Sigma} W(\sigma)(x_0)$.

... No es posible! ¿Por qué?

- Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

3. Recursive representation I

Bellman Functional Equation

A typical assumption to ensure that \boldsymbol{v} is well-defined would be the following:

Assumption

There is a real number $K<+\infty$ such that $|U(u_t,x_t)|\leq K$ for all $(u_t,x_t)\in A\times X$.

or

Assumption

 $A \times X$ is compact, and U is continuous on $A \times X$.

3. Recursive representation II

Bellman Functional Equation

Lemma

If *U* is bounded, then $v: X \to \mathbb{R}$ is bounded.

Lemma allows us to assign finite numbers when ordering or ranking alternative strategies.

- Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

3. Recursive representation I

Principle of Optimality

Let $x \equiv x_t$ and $x' \equiv x_{t+1}$.

Theorem (Bellman principle of optimality)

For each $x \in X$, the value function $v : X \to \mathbb{R}$ of (P1) satisfies

$$v(x) = \sup_{u \in \Gamma(x)} \{ U(x, u) + \beta v(x') \} \text{ s.t. } x' = f(x, u)$$
 (1)

3. Recursive representation II

Principle of Optimality

How to prove BPO. Part A:

- Define $W(x) = \sup_{u \in \Gamma(x)} \{U(x,u) + \beta v[f(x,u)]\}$, for any $x \in X$.
- Fix $\epsilon > 0$, then there is a strategy σ feasible from x s.t. $W[f(x,u);\sigma] \geq v[f(x,u)] \epsilon$. (Why?)
- Then,

$$v(x) \ge U(x, u) + \beta v[(f(x, u); \sigma] - \beta \epsilon$$

3. Recursive representation III

Principle of Optimality

• Take ϵ to zero. Then,

$$v(x) \ge U(x, u) + \beta v[(f(x, u); \sigma].$$

• This holds for all $u \in \Gamma(x)$, so that $v(x) \geq W(x)$.

3. Recursive representation IV

Principle of Optimality

Part B:

• Since there is an $\epsilon > 0$ s.t.

$$\begin{split} v(x) - \epsilon &\leq W(x;\sigma) = U(x,u) + \beta W[f(x,u);\sigma], \\ \text{and, since } v[f(x,u)] &\geq W[f(x,u);\sigma], \text{ then} \\ v(x) - \epsilon &\leq U(x,u) + \beta W[f(x,u);\sigma] \\ &\leq \sup_{u \in \Gamma(x)} \{U(x,u) + \beta v(f(x,u))\} = W(x). \end{split}$$

• Take ϵ (arbitrary) to zero, so then, $v(x) \leq W(x)$.

3. Recursive representation V

Principle of Optimality

Combining Part A and Part B:

- We have v(x) = W(x).
- Since by definition,

$$W(x) := \sup_{u \in \Gamma(x)} \{U(x, u) + \beta v[f(x, u)]\}$$

...

• Then, $v(x) = \sup_{u \in \Gamma(x)} \{U(x, u) + \beta v[f(x, u)]\}.$

3. Recursive representation VI

Principle of Optimality

Checkpoint!

Remember our heuristic example, where we thought we could re-write the infinite-sequence problem as this?

. . . .

- 1 Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

4. Fixed Point of Bellman Functional I

Checkpoint!

But, also recall we said, if we could rewrite the infinite sequence problem recursively ...

... as the BPO shows we can:

$$v(x) = \sup_{u \in \Gamma(x)} \{ U(x, u) + \beta v[f(x, u)] \}$$

... or, equivalently,

$$v(x) = \sup_{x' \in \Gamma(x)} \{ U[x, f^{-1}(x'; x)] + \beta v[x'] \}$$

... we still have to find v!

- Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

4. Fixed Point of Bellman Functional I

What is a functional operator?

Why Bellman "operator"?

First order of business:

Let

$$B(X):=\{w:X\to\mathbb{R}|\text{ w is bounded }\}.$$

4. Fixed Point of Bellman Functional II

What is a functional operator?

ullet For any $w \in B(X)$, let T(w) be a function(al) such that

$$T(w)(x) = \sup_{u \in \Gamma(x)} \{U(x,u) + \beta w(f(x,u))\}$$

at any $x \in X$.

• Since U and w are bounded, then $T(w) \in B(X)$.

4. Fixed Point of Bellman Functional III

What is a functional operator?

Remarks:

- So $T: B(X) \to B(X)$ is a self-map.
- Here, T maps the set of bounded functions into itself.
- Here, T operates on functions,

```
... a.k.a. "Bellman operator",
```

... "Bellman functional equation",

... or "Bellman equation".

4. Fixed Point of Bellman Functional IV

What is a functional operator?

- By analogy, recall the Solow-Swan equilibrium map,
 g: X → X? That was an operator that takes a point into another point in an interval X ⊆ R₊.
- Here, a "point" in B(X) is a function!

The fixed-point solution of the map $T:B(X)\to B(X)$, is v, the value function!

- ullet Recall, v in economic terms is an indirect utility. ...
 - ... By construction it encodes the "best" (total) payoff.

Then supporting v must be some optimal strategy σ^* ... ?

- Infinite-horizon Decisions
 - Histories, Strategies, Value
- 2 Recursive representation
 - Bellman Functional Equation
 - Principle of Optimality
- 3 Fixed Point of Bellman Functional
 - What is a functional operator?
 - ullet Existence and Uniqueness of v

4. Fixed Point of Bellman Functional I

Existence and Uniqueness of v

How do we know v exists? ...

... If it does, is it unique?

4. Fixed Point of Bellman Functional II

Existence and Uniqueness of v

It turns out, under some regularity conditions, we can apply the Banach fixed point theorem.

Goal

- Show that the Bellman operator $w \mapsto T(w)$ is a contraction mapping on a complete metric space.
- Then these conditions suffices for the existence of a unique function v, such that v = T(v).

