Listing of Claims

1. (Original) A circuit for performing multiplication of two elements from a finite Galois field $GF(2^k)$ wherein said elements are represented by polynomials a(x) and b(x) and multiplication is carried out modulo an irreducible polynomial p(x) of degree k, said circuit comprising:

a first multiplier modulo p(x) for $A_j(x)$ with $(T-1) \ge j \ge 0$ and b(x), where $A_j(x)$ is a polynomial of degree n-1 of the form $\sum_{i=0}^{n-1} a_{jn+i} x^j$ where a_{jn+i} is the coefficient for the x^{jn+i} term in the polynomial a(x) and wherein k = nT;

a summer receiving the output from said multiplier;

a storage means for holding the output from said summer for each of T cycles of operation of said circuit;

a second multiplier modulo p(x) for multiplying the current contents of said storage means by x^n , the output of said second multiplier also being supplied as an input to said summer.

- 2. (Original) The circuit of claim 1 further including means to supply in sequential order T successive representations of said polynomials $A_j(x)$, $(T-1) \ge j \ge 0$, to said first multiplier $A_{T-1}(x)$ being presented first.
- 3. (Original) The circuit of claim 1 wherein said first multiplier multiplies n bit wide representations of $A_i(x)$ with k bit wide representations of b(x).

- 4. (Original) A circuit for performing multiplication of two elements from a finite Galois field $GF(2^k)$ wherein said elements are represented by polynomials a(x) and b(x) and multiplication is carried out modulo an irreducible polynomial p(x) of degree k, said circuit comprising:
- a first multiplier modulo p(x) for $A_j(x)$ with $(T-1) \ge j \ge 0$ and b(x), where $A_j(x)$ is a polynomial of degree n-1 of the form $\sum_{i=0}^{n-1} a_{jn+i} x^i$ where a_{jn+i} is the coefficient for the x^{jn+i} term in the polynomial a(x) and wherein k is not originally equal to nT but where higher order terms in a(x) are added in sufficient number with zero coefficients to insure that k = nT;

a summer receiving the output from said multiplier;

a storage means for holding the output from said summer for each of T cycles of operation of said circuit;

a second multiplier modulo p(x) for multiplying the current contents of said storage means by x^n , the output of said second multiplier also being supplied as an input to said summer.