Exercise 12.2

1. In a quadrilateral ABCD, $\overrightarrow{AB} \cong \overrightarrow{BC}$ and the right bisectors of \overrightarrow{AD} , \overrightarrow{CD} meet each other at point N. prove that \overrightarrow{BN} is a bisector of ∠ABC.

Given Quadrilateral ABCD in which $\overrightarrow{AB} \cong \overrightarrow{BC}$. Right bisectors of \overrightarrow{AD} and \overrightarrow{CD} meet each other at point N.

To prove

 \overline{BN} is a bisector of $\angle ABC$

Construction

Join N with A, B, C, D

Proof:

	Statements	Reasons	
	$\overline{NC} \cong \overline{ND}$ (i)	N is on the right bisector of $\overline{\text{CD}}$	
	$\overline{NA} \cong \overline{ND}$ (ii)	N is on the right bisector of \overrightarrow{AD}	
	NA≅NC (iii		
In	$\triangle ABN \leftrightarrow \triangle CBN$		
	$\overline{AB} \cong \overline{BC}$	Given	
	$\overline{BN} \cong \overline{BN}$	Common	
	$\overline{NA} \cong \overline{NC}$	Proved	
<i>:</i> .	$\triangle ABN \cong \triangle CBN$	$S.S.S \cong S.S.S$	
	$\angle ABN \cong \angle CBN$	Corresponding angles of congruent	
··.	BN is a bisector of ∠ABC.	triangles.	

2. The bisectors of $\angle A$, $\angle B$ and $\angle C$ of a quadrilateral ABCP meet each other at point O. Prove that the bisectors of $\angle P$ will also pass through the point O.

Given Bisector of the angles A, B, C meet at O.

To Prove

Bisector of $\angle P$ will also pass through O.

Construction

From O draw \perp on the sides of quadrilateral BCP.

Proof:

	Statements	Reasons
	OE≅OL(i)	O is on the bisector of ∠A
	OL≅OM (ii)	O is on the bisector of ∠B
	OM≅ON (iii)	O is on the bisector of $\angle C$
··	ŌE≅ŌN	By (i) and (ii), (iii)
<i>:</i> .	O is on the bisector of $\angle P$.	OE ≅ ON

Theorem

The bisectors of the angles of a triangle are concurrent.

Given

ΔΑΒC

To Prove

The bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent.

Construction

Draw the bisectors of $\angle B$ and $\angle C$ which intersect at point I. From I, draw $\overline{IF} \perp \overline{AB}$, $\overline{ID} \perp \overline{BC}$ and $\overline{IE} \perp \overline{CA}$.

Proof:

Statements	Reasons	
ĪD≅ĪF	(Any point on bisector of an angle is	
Similarly,	equidistant from its arms)	
ĪD≅ĪĒ		
∴ Œ≅Œ	Each ≅ ID, proved.	
So, the point I is on the bisector of $\angle A$		
(i)		
Also the point I is on the bisectors of $\angle ABC$		
and ∠BCA.		
(ii)	Construction	
Thus the bisectors of $\angle A$, $\angle B$ and $\angle C$ are	{from (i) and (ii)}	
concurrent at I.		