Two forms of Machine Learning

- Discriminative
- Generative

Counterfeiter

Fraud Detector

Counterfeiter

Generator

Fraud Detector

Discriminator

generates fake samples as real as possible and tries to fool the Discriminator

Generator

Discriminator

tries to detect the fake samples generated by the **Generator**

Generator

Discriminator

They are trained in an adversarial setting to master each other's task.

Magic of GANs....

- Images generated using StyleGAN- a GAN variant
- These people don't exist in real!!!!!!
- Image from Paper 'A Style-Based
 Generator Architecture for Generative

 Adversarial Networks'

Generator

Discriminator

Real Data Distribution

Random Sample

Real Data Distribution

Random Sample

Generator

Random Sample

Generator

Random Sample

Generator

GAN Framework

- Generator + Discriminator = GAN
- The <u>latent vector</u> belongs to some random distribution (Uniform/Gaussian)
- Both the generator and discriminator network parameters are <u>updated during training</u>

GAN – Loss Function

- Discriminator's decision over real data should be accurate
 - Maximize $\mathbb{E}_{x \sim p_r(x)}[\log D(x)]$
- Discriminator's decision over generated data should be considered fake
 - Maximize $\mathbb{E}_{z \sim p_z(z)}[\log(1 D(G(z)))]$.
- . Generator is trained to increase the chances of D producing a high probability for a fake sample

$$\min_{G} \max_{D} L(D,G) = \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$