A Fuller Understanding of Fully Convolutional Networks

Evan Shelhamer* Jonathan Long* Trevor Darrell UC Berkeley in CVPR'15, PAMI'16

pixels in, pixels out

semantic segmentation [

monocular depth + normals Eigen & Fergus 2015

optical flow Fischer et al. 2015

colorization Zhang et al.2016

boundary prediction Xie & Tu 2015

convnets perform classification

lots of pixels, little time?

a classification network

becoming fully convolutional

becoming fully convolutional

upsampling output

end-to-end, pixels-to-pixels network

end-to-end, pixels-to-pixels network

spectrum of deep features

combine where (local, shallow) with what (global, deep)

(cf. Hariharan et al. CVPR15 "hypercolumn")

skip layers

skip layer refinement

skip FCN computation

A multi-stream network that fuses features/predictions across layers

Relative to prior state-of-the-art SDS:

- 30% relative improvement for mean IoU
- 286× faster

^{*}Simultaneous Detection and Segmentation Hariharan et al. ECCV14

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor	submission date
			abla	∇	∇	∇	abla	∇	∇	∇	∇	∇	egraphism	∇	∇	egraphical	abla	∇	egraphism	∇	egraphism	∇	abla
\triangleright	MSRA_BoxSup ^[?]	FCN 75.2	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	18-May-2015
D		FCN 74.7	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	22-Apr-2015
\triangleright	DeepLab-MSc-CRF-LargeFOV-COCO-CrossJo	-CN 73.9	89.2	46.7	88.5	63.5	68.4	87.0	81.2	86.3	32.6	80.7	62.4	81.0	81.3	84.3	82.1	56.2	84.6	58.3	76.2	67.2	26-Apr-2015
	Adelaide_Context_CNN_CRF_VOC [?]	FCN 72.9	89.7	37.6	77.4	62.1	72.9	88.1	84.8	81.9	34.4	80.0	55.9	79.3	82.3	84.0	82.9	59.7	82.8	54.1	77.5	70.3	25-May-2015
\triangleright	DeepLab-CRF-COCO-LargeFOV [?]	FCN 72.7	89.1	38.3	88.1	63.3	69.7	87.1	83.1	85.0	29.3	76.5	56.5	79.8	77.9	85.8	82.4	57.4	84.3	54.9	80.5	64.1	18-Mar-2015
\triangleright	POSTECH_EDeconvNet_CRF_VOC [?]	FCN 72.5	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	22-Apr-2015
\triangleright	Oxford_TVG_CRF_RNN_VOC [?]	FCN 72.0	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	22-Apr-2015
\triangleright	-	FCN 71.6	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	02-Apr-2015
\triangleright	MSRA_BoxSup ^[?]	FCN 71.0	86.4	35.5	79.7	65.2	65.2	84.3	78.5	83.7	30.5	76.2	62.6	79.3	76.1	82.1	81.3	57.0	78.2	55.0			10-Feb-2015
\triangleright	DeepLab-CRF-COCO-Strong [?]	FCN 70.4	85.3	36.2	84.8	61.2	67.5	84.6	81.4	81.0	30.8	73.8	53.8	77.5	76.5	82.3	81.6	56.3	78.9	52.3	76.6	63.3	11-Feb-2015
\triangleright	DeepLab-CRF-LargeFOV ^[?]	FCN 70.3	83.5	36.6	82.5	23	66.5	854	786	13/	304	729	21	B.	75/5	82.	\ /*I`	8.2	8 .0	48.8	3.7	fe	28-Mar-2015
	TTI_zoomout_v2 [?]	69.6	85.6	37.3	83.2	62.5	06.0	65 1	80.7	84.9	27.2	73.2	57.5	78.1	79.2	81.1	77.1	53.6	74.0	49.2	71.7	65.3	30-Mar-2015
\triangleright	DeepLab-CRF-MSc ^[?]	FCN 67.1	80.4	36.8	77.4	55.2	66.4	81.5	77.5	78.9	27.1	68.2	52.7	74.3	69.6	79.4	79.0	56.9	78.8	45.2	72.7	59.3	30-Dec-2014
	DeepLab-CRF [?]	FCN 66.4	78.4	33.1	78.2	55.6	65.3	81.3	75.5	78.6	25.3	69.2	52.7	75.2	69.0	79.1	77.6	54.7	78.3	45.1	73.3	56.2	23-Dec-2014
\triangleright	CRF_RNN ^[7]	FCN 65.2	80.9	34.0	72.9	52.6	62.5	79.8	76.3	79.9	23.6	67.7	51.8	74.8	69.9	76.9	76.9	49.0	74.7	42.7	72.1	59.6	10-Feb-2015
	TTI_zoomout_16 ^[?]	64.4	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3	70.2	40.2	68.9	55.3	24-Nov-2014
\triangleright	Hypercolumn ^[?]	62.6	68.7	33.5	69.8	51.3	70.2	81.1	71.9	74.9	23.9	60.6	46.9	72.1	68.3	74.5	72.9	52.6	64.4	45.4	64.9	57.4	09-Apr-2015
>	FCN-8s ^[?]	FCN 62.2	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	12-Nov-2014
\triangleright	MSRA_CFM [?]	61.8	75.7	26.7	69.5	48.8	65.6	81.0	69.2	73.3	30.0	68.7	51.5	69.1	68.1	71.7	67.5	50.4	66.5	44.4	58.9	53.5	17-Dec-2014
	TTI_zoomout [?]	58.4	70.3	31.9	68.3	46.4	52.1	75.3	68.4	75.3	19.2	58.4	49.9	69.6	63.0	70.1	67.6	41.5	64.0	34.9	64.2	47.3	17-Nov-2014
\triangleright	SDS [?]	51.6	63.3	25.7	63.0	39.8	59.2	70.9	61.4	54.9	16.8	45.0	48.2	50.5	51.0	57.7	63.3	31.8	58.7	31.2	55.7	48.5	21-Jul-2014
\triangleright	NUS_UDS ^[?]	50.0		24.5																	53.1		29-Oct-2014
\triangleright	TTIC-divmbest-rerank [?]	48.1																					
\triangleright	BONN_O2PCPMC_FGT_SEGM ^[?]	47.8			54.1								29.6								48.4		
\triangleright	BONN_O2PCPMC_FGT_SEGM ^[?]	47.5																					
\triangleright	BONNGC_O2P_CPMC_CSI ^[?]	46.8		26.8			47.1			55.1							53.4						23-Sep-2012
\triangleright	BONN_CMBR_O2P_CPMC_LIN [?]	46.7																					23-Sep 1 1 6 12

care and feeding of fully convolutional networks

usage

- train full image at a time without sampling
- reshape network to take input of any size
- forward time is ~100ms for 500 x 500 x 21 output
 (on M. Titan X)

image-to-image optimization

this is a different learning regime and different tuning is needed

	batch size	mom.	pixel acc.	mean acc.	mean IU	f.w. IU
FCN-accum	20	0.9	86.0	66.5	51.9	76.5
FCN-online	1	0.9	89.3	76.2	60.7	81.8
FCN-heavy	1	0.99	90.5	76.5	63.6	83.5

momentum and batch size

momentum p and batch size k

$$p^{(1/k)} = p'^{(1/k')}$$

$$g_t = -\eta \sum_{i=0}^{k-1} \nabla_{\theta} \ell(x_{kt+i}; \theta_{t-1}) + p g_{t-1}$$

$$g_t = -\eta \sum_{s=0}^{\infty} \sum_{i=0}^{k-1} p^s
abla_{ heta} \ell(x_{k(t-s)+i}; heta_{t-s})$$

sampling images?

no need! no improvement from sampling across images

sampling pixels?

no need! no improvement from (partially) decorrelating pixels

context?

- do FCNs incorporate contextual cues?
- loses 3-4 % points when the background is masked
- can learn from BG/shape alone if forced to!
 - Standard 85 IU
 - BG alone 38 IU
 - Shape 29 IU

past and future history of fully convolutional networks

history

Shape Displacement Network Matan & LeCun 1992

Convolutional Locator Network Wolf & Platt 1994

pyramids

Scale Pyramid, Burt & Adelson '83

The scale pyramid is a classic multi-resolution representation

Fusing multi-resolution network layers is a learned, nonlinear counterpart

jets

The local jet collects the partial derivatives at a point for a rich local description

The deep jet collects layer compositions for a rich, learned description

extensions

- detection + instances
- structured output
- weak supervision

detection: fully conv. proposals

Fast R-CNN, Girshick ICCV'15

Faster R-CNN, Ren et al. NIPS'15

end-to-end detection by proposal FCN Rol classification

fully conv. nets + structured output

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Chen* & Papandreou* et al. ICLR 2015.

fully conv. nets + structured output

Method	Without COCO	With COCO		
Plain FCN-8s	61.3	68.3		
FCN-8s and CRF disconnected	63.7	69.5		
End-to-end training of CRF-RNN	69.6	72.9		

dilation for structured output

- enlarge effective receptive field for same no. params
- raise resolution
- convolutional context model: similar accuracy to CRF but non-probabilistic

[comparison credit: CRF as RNN, Zheng* & Jayasumana* et al. ICCV 2015]

DeepLab: Chen* & Papandreou* et al. ICLR 2015.

CRF-RNN: Zheng* & Jayasumana* et al. ICCV 2015

fully conv. nets + weak supervision

FCNs expose a spatial loss map to guide learning: segment from tags by MIL or pixelwise constraints

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Pathak et al. arXiv 2015.

fully conv. nets + weak supervision

FCNs expose a spatial loss map to guide learning: mine boxes + feedback to refine masks

BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. Dai et al. 2015.

fully conv. nets + weak supervision

FCNs can learn from sparse annotations == sampling the loss

conclusion

fully convolutional networks are fast, end-to-end models for image-to-image tasks

- code in Caffe
- models for PASCAL VOC, NYUDv2, SIFT Flow, PASCAL-Context

caffe.berkeleyvision.org

fcn.berkeleyvision.org

model example inference example solving example