Atomic Structure DPP-1

Ashish Bibyan B.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

- **1.** What is the number of electrons in ${}^{40}_{19}\text{K}^{+}$?
- **2.** An atom has a net charge of -1. It has 18 electrons and 20 neutrons. Give:
 - (a) its isotopic symbol

(b) its atomic number

(c) its mass number

(d) the charge on its nucleus

- (e) the number of protons
- **3.** (a) For the ion $_{19}^{39}K^{+}$, state how many electrons, how many protons, and how many neutrons are present. (b) Which of these particles–electron, proton, neutron–has the smallest mass?
- **4.** (a) What is the atomic number of sodium?
 - (b) How many protons are there in the sodium nucleus?
 - (c) How many protons are there in the sodium atom?
- **5.** Complete the following table.

atomic	mass	number of	number of	number of	
number	number	protons	neutrons	electrons	charge
19			20		1+
		1	2	0	
	number	number number	number number protons	number number protons neutrons 19 20	number number protons neutrons electrons 19 20

- 6. At one time there was a chemical atomic weight scale based on the assignment of the value 16.0000 to naturally occurring oxygen. What would have been the atomic weight, on such a table, of silver, if current information had been available? The atomic weights of oxygen and silver on the present table are 15.9994 and 107.868.
- 7. Naturally occurring argon consists of three isotopes, the atoms of which occur in the following abundances: 0.34% ³⁶Ar (At. Mass = 35.9676), 0.07% ³⁸ Ar (At. Mass = 37.9627), and 99.59% ⁴⁰Ar (At. Mass = 39.9624). Calculate the atomic weight of argon from these data.
- **8.** Find the wavelength λ in the indicated units for light of the following frequencies:
 - (a) 55 MHz (λ in m)

(b) 1000 Hz (λ in cm)

- (c) 7.5×10^{15} Hz (λ in Å)
- **9.** (i) Calculate the number of electrons which will together weigh one gram.
 - (ii) Calculate the mass and charge of one mole of electrons. (NCERT Problem)
- **10.** (i) Calculate the total number of electrons present in one mole of methane.
 - (ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of 14 C. (Assume that mass of a neutron = 1.675×10^{-27} kg).
 - (iii) Find (a) the total number and (b) the total mass of protons in 34 mg of NH_3 at STP. (NCERT Problem)
- 11. Calculate the wavelength, frequency and wavenumber of a light wave whose period is 2.0×10^{-10} s. (NCERT Problem)
- **12.** The mass number of an atom is equal to
 - (a) n + p
- (b) n-p
- (c) n
- (d) p

13.	When α -particles are sent through a thin metal foil most of them go straight through the foil because						
	(a) α -particles are more heavier than electrons						
	(b) α-particles are positively charged						
	(c) most part of atom is empty space						
	(d) α-particles move	with high velocity					
14.	X ⁻² has 56 electrons, the atomic number x is						
	(a) 56	(b) 58	(c) 28	(d) 54			
15 .	The ratio of specific	charge (e/m) of a proto	n and that of an α -particle is				
	(a) 2:1	(b) 1:2	(c) 1:4	(d) 1:1			
16 .	Rutherford's scattering experiment is related to the size of the						
	(a) nucleus	(b) atom	(c) electron	(d) neutron			
17 .	Cathode rays are						
	(a) electromagnetic	waves	(b) a stream of α -particles				
	(c) a stream of electr	c) a stream of electrons		(d) a stream of positrons			
18.	The number of electrons in Al ³⁺ is						
	(a) 13	(b) 16	(c) 10	(d) 19			
19.	The triad of nuclei t	hat is isotonic is					
	(a) ${}_{6}C^{14}$, ${}_{7}N^{15}$, ${}_{9}F^{17}$	(b) ${}_{6}C^{12}$, ${}_{7}N^{14}$, ${}_{9}F^{19}$	(c) ${}_{6}C^{14}$, ${}_{7}N^{14}$, ${}_{9}F^{17}$	(d) ${}_{6}C^{14}$, ${}_{7}N^{14}$, ${}_{9}F^{19}$			
20.	Which of the following electromagnetic radiations has the minimum value of wavelength?						
	(a) Gamma radiation	n	(b) X-ray				
	(c) Cosmic ray		(d) Radio wave				
21.	Which of the following types of electromagnetic radiations has the maximum wavelength?						
	(a) Ultraviolet radiat	ion	(b) Radio wave				
	(c) X-ray		(d) Infrared radiation				

ANSWERS

- **1.** 18
- **2.** (a) ${}^{37}_{17}$ Cl⁻, (b) 17, (c) 37, (d) 17+ (e) 17
- 3. (a) 18 electrons, 19 protons, 20 neutrons, (b) electron
- **4.** (a) 11, (b) 11, (c) 11

5.

Isotopic	atomic	mass	number of	number of	number of	
symbol	number	number	protons	neutrons	electrons	charge
¹⁵ N	7	15	7	8	7	0
³⁹ K ⁺	19	39	19	20	18	1+
$^{3}\text{H}^{^{+}}$	1	3	1	2	0	1+

- **6.** 107.872
- **7.** 39.95 u.
- **8.** (a) 5.5 m, (b) $3.0 \times 10^7 \text{ cm}$, (c) 400 Å,
- **9.** (i) 1.099×10^{27} electrons (ii) 5.48×10^{-7} kg, -96320C
- **10.** (i) 6.022×10^{24} electrons, (ii) (a) 2.4088×10^{21} neutrons (b) 4.035×10^{-6} kg (iii) (a) 1.2044×10^{22} protons (b) 2.015×10^{-5} kg
- **11.** 3.14×10^{10} ; 9.55×10^{-3} ; 104.712 m^{-1}
- **12.** (a)
- **13.** (c)
- **14.** (d)
- **15.** (a)

- **16.** (c)
- **17.** (c)
- **18.** (c)
- **19.** (a)

- **20.** (c)
- **21.** (b)