

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Risoluzione di sistema lineari: metodi iterativi Lezione 3.4a

Metodi iterativi classici: Jacobi e Gauss-Seidel

Risoluzione di sistemi lineari: metodi iterativi

Metodi iterativi classici basati sullo splitting

$$A = P - N$$

- Esempi specifici di metodi iterativi
 - ✓ Strategie per la scelta di P ed N
 - ✓ Metodo di Jacobi
 - ✓ Metodo di Gauss Seidel

Risoluzione di sistemi lineari (scomposizione di Jacobi)

ightharpoonup Scomposizione della matrice $A \in \mathbb{R}^{n imes n}$ in tre sottomatrici

$$A = D + E + F$$

- $\,D\,$ parte diagonale di $A\,$
- E parte triangolare inferiore di A
- F parte triangolare superiore di A

Risoluzione di sistemi lineari (scomposizione di Jacobi)

A

 $ightarrow D \in \mathbb{R}^{n imes n}$ è la diagonale di A

$$D = \operatorname{diag}(a_{ii})$$

 $ightharpoonup E\in\mathbb{R}^{n imes n}$ è la triangolare inferiore di A

$$E = \begin{cases} e_{ij} = a_{ij} & i > j \\ e_{ij} = 0 & i \le j \end{cases}$$

 $ightarrow F \in \mathbb{R}^{n imes n}$ è la triangolare superiore di A

$$F = \begin{cases} f_{ij} = 0 & i \ge j \\ f_{ij} = a_{ij} & i < j \end{cases}$$

Risoluzione di sistemi lineari (successione di Jacobi)

> Le matrici di splitting del metodo di Jacobi sono

$$A = P - N$$
 $A = D + E + F$

$$P = D$$

$$P = D \qquad N = D - A = -(E + F)$$

La successione iterativa di Jacobi

$$P\mathbf{x}^{(k+1)} = N\mathbf{x}^{(k)} + \mathbf{b} \qquad k \ge 0$$

Dato $\mathbf{x}^{(0)}$, si generi una successione $\{\mathbf{x}^{(k)}\}$ risolvendo

$$D\mathbf{x}^{(k+1)} = (D-A)\mathbf{x}^{(k)} + \mathbf{b} \qquad k \ge 0$$

Risoluzione di sistemi lineari (matrice di iter. di Jacobi)

ightharpoonup Riscrivendo per componenti la $D\mathbf{x}^{(k+1)} = (D-A)\mathbf{x}^{(k)} + \mathbf{b}$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) \quad i = 1, \dots, n, \ k \ge 0$$

 \blacktriangleright La matrice di iterazione $B=P^{-1}N$ del metodo di Jacobi è

$$B_J = -D^{-1}(E+F)$$

Condizione di convergenza per il metodo di Jacobi è

$$||B_J|| < 1 \iff \rho(B_J) < 1$$