Assignment - 2

Name: Inchara Raveendra

SCU ID: 00001653600

3.1-2 Show that for any real constants a and b, where b > 0, $(n+a)^b = \Theta(n^b)$.

Let
$$C = x^b$$
 and $ro \ge 2a$
For all $n \ge ro$, we have $(n+a)^b \le (2n)^b = cn^b$
Let $ro \ge \frac{-a}{1-\frac{1}{2}}$ and $c = \frac{1}{2}$

then,
$$n \ge n_0 \ge \frac{-a}{1 - \frac{1}{2} \frac{1}{b}}$$
 $\Rightarrow n - \frac{n}{a^{\frac{1}{b}}} \ge -a$
 $n+a \ge (\frac{1}{b})^n$ and $(n+a)^b \ge cn^b$
 $\left(\frac{1}{a}\right)^{a/b} = cn^b$
 $(\frac{1}{a})^a n^b \ge cn^b$
 $(\frac{1}{a})^a n^b \ge cn^b$
 $(\frac{1}{a})^a n^b \ge cn^b$

3.1-4
Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

$$\lambda^{n+1} = \lambda^n * \lambda$$

For $n \ge 1$ and any constant $C \ge \lambda$,

 $0 \le \lambda^{n+1} \le C \cdot \lambda^n$
 $\lambda^{n+1} = O(\lambda^n)$

So, $2^n \leq c$ for $n \geq n_0$ which is not possible

3.2-3 Prove equation (3.19).

Equation 3.19, $\log (n!) = O(n \log n)$

To prove 3.19, apply Stirling's approximation

For large values of n, $\theta(n)$ will be very small compared to 1

:.
$$log(n!) \approx log(\sqrt{\alpha \pi n} \left(\frac{n}{e}\right)^n)$$

$$= \log \sqrt{\pi} n + \log \left(\frac{n}{e}\right)^n$$

=
$$log \sqrt{2\pi} + log \sqrt{n} + n log \left(\frac{n}{e}\right)$$

$$= O(1) + O(\log n) + O(\log n) - O(n)$$

$$= O(n \log n)$$

3-3 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

b. Give an example of a single nonnegative function f(n) such that for all functions $g_i(n)$ in part (a), f(n) is neither $O(g_i(n))$ nor $\Omega(g_i(n))$.

$$f(n) = \int_{0}^{\infty} x^{n+2} dx$$
if n is even if n is odd

 d^{n+2} is asymptotically larger than all the above functions and $\frac{1}{n}$ is asymptotically smaller than all of the above functions. Hence, it is neither $O(g_i(n))$ nor Ω $(g_i(n))$

4.2-4

What is the largest k such that if you can multiply 3×3 matrices using k multiplications (not assuming commutativity of multiplication), then you can multiply $n \times n$ matrices in time $o(n^{\lg 7})$? What would the running time of this algorithm be?

From Strannin algorithm, for a sub-problem rize n/3 and 1k' matrix multiplications in each recurrive step, we can write,

$$T(n) = kT(n/3) + O(n^2)$$
Using case 1 of Master's theorem,
$$T(n) = O(n^{\log_3 k})$$

For T(n) to be $O(n^{lg7})$, $n^{log_2k} < n^{lg7}$ $log_3k < lg7$ $k < 3^{lg7} \approx 21.85$

: Largest possible value of K is 21

Running time of this algorithm would be $T(n) = \Theta(n^{\log_3 2^{1}}) = \Theta(n^{d-77})$