Final Project Python Results S01B-01

Teammates: Kai Yang(Ben), Jiaheng Shao(Steve), Qianqian Xiao, Elly

```
In [ ]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import scipy.stats
        import statsmodels.api as sm
        import numpy.ma as ma
        import datetime as dt
        import pingouin
In [ ]: data_1 = pd.read_excel("Regression 1.xlsx")
        data 2 = pd.read excel("Regression 2.xlsx")
        data_3_1 = pd.read_excel("Regression 3-1.xlsx")
        data 3 2 = pd.read excel("Regression 3-2.xlsx")
        /opt/anaconda3/lib/python3.9/site-packages/outdated/utils.py:14: OutdatedPac
        kageWarning: The package outdated is out of date. Your version is 0.2.1, the
        latest is 0.2.2.
        Set the environment variable OUTDATED IGNORE=1 to disable these warnings.
          return warn(
In [ ]: #Test 1
        ## Processing the data
        factors1 = ["Market Average Spread", "Rating", "Issuing Amount", "Tenor", "G
        model1 = sm.OLS(data 1["Coupon"], data 1[factors1]).fit()
        # Fit the model
        prediction1 = model1.predict(data_1[factors1])
        # Print the parameters of the fitted model
        b1, b2, b3, b4, b5, b6, b7 = model1.params
        print("Parameters of the fitted model: \nb1: %f\nb2: %f\nb3: %f\nb4: %f\nb5:
        model1.summary()
        Parameters of the fitted model:
        b1: 1.095392
        b2: -0.124030
        b3: -0.003469
        b4: 0.023794
        b5: -0.087472
        b6: 0.094825
        b7: 0.034230
```

Dep. Variable:	Coupon	R-squared (uncentered):	0.989
Model:	OLS	Adj. R-squared (uncentered):	0.989
Method:	Least Squares	F-statistic:	2606.
Date:	Sun, 30 Oct 2022	Prob (F-statistic):	9.19e-196
Time:	15:59:32	Log-Likelihood:	-39.264
No. Observations:	211	AIC:	92.53
Df Residuals:	204	BIC:	116.0
Df Model:	7		
Covariance Type:	nonrobust		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Market Average Spread	1.0954	0.044	24.885	0.000	1.009	1.182
Rating	-0.1240	0.027	-4.669	0.000	-0.176	-0.072
Issuing Amount	-0.0035	0.002	-1.745	0.082	-0.007	0.000
Tenor	0.0238	0.018	1.303	0.194	-0.012	0.060
Green Indicator	-0.0875	0.131	-0.666	0.506	-0.346	0.171
Russell ESG Score	0.0948	0.039	2.433	0.016	0.018	0.172
interaction	0.0342	0.072	0.476	0.635	-0.108	0.176

1.248	Durbin-Watson:	115.164	Omnibus:
1139.247	Jarque-Bera (JB):	0.000	Prob(Omnibus):
4.13e-248	Prob(JB):	1.864	Skew:
150.	Cond. No.	13.755	Kurtosis:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [ ]: ## Obtaining the prediction and residual values
        result1 = pd.concat([prediction1, model1.resid], axis =1)
        result1 = result1.rename(columns = {0:'prediction', 1:'residual'})
In [ ]: ## Print the regression results
        with pd.option_context('display.max_rows', None,
                                'display.max_columns', None,
                               'display.precision', 3,
                               ):
            print(result1)
```

```
prediction
                  residual
0
                 5.317e-01
          3.138
1
          3.029
                 4.409e-01
2
          2.822
                 3.877e-01
3
          2.981
                  1.988e-01
4
          3.007
                  3.425e-01
5
                 1.071e-01
          2.993
6
          2.991
                  3.386e-01
7
          3.117
                 8.265e-02
                 3.682e-01
8
          2.882
9
          2.824
                 1.458e-01
10
          2.629
                  2.213e-01
11
          2.315
                 3.646e-01
12
          2.575
                 2.947e-01
13
          2.601
                 1.793e-01
14
          2.728
                  2.018e-01
15
          2.603
                  2.774e-01
16
          2.550
                 1.998e-01
          2.259 -2.591e-01
17
18
          2.675 -3.451e-01
19
          2.479 -2.292e-01
          2.287 -1.465e-01
20
21
          2.453 -2.226e-01
22
          2.207 2.268e-02
          2.293 -1.229e-01
23
24
          2.425 2.492e-02
25
          2.478
                 2.180e-02
26
          2.372
                 1.279e-01
27
          2.791 -1.913e-01
          2.237 -4.065e-01
28
29
          1.426
                 4.545e-01
30
          1.437
                 6.323e-02
31
          1.720 -1.098e-01
32
          1.716 -1.063e-01
          1.720 -1.098e-01
33
34
          1.593 -9.294e-02
35
          1.715 7.547e-02
36
          1.497 -2.692e-02
          1.701 -1.113e-01
37
                 1.611e-02
38
          1.484
39
          1.896
                 2.367e-02
40
          1.507 -2.739e-02
41
          1.524 -2.741e-01
42
          1.690 -1.904e-01
43
          1.666 -1.662e-01
          1.681 2.915e-02
44
45
          1.819 -2.693e-01
46
          1.617 -1.169e-01
47
          1.621 -1.214e-01
48
          1.624 -1.238e-01
          1.726 1.394e-02
49
50
          1.684 -1.839e-01
51
          1.486 -2.622e-02
52
          1.650 -1.499e-01
53
          1.667
                 8.330e-02
54
          1.672 -9.164e-02
55
          1.360
                 1.097e-01
56
          1.671
                 5.790e-01
          1.604
                 4.625e-02
57
          1.529
58
                 1.007e-01
59
                 3.579e-01
          1.642
                 5.862e-02
60
          1.411
61
          1.635
                 1.512e-02
62
          1.551 -4.076e-02
```

```
63
          1.583
                 1.369e-01
64
          1.907
                 5.733e-01
65
          1.813
                 1.366e-01
66
          2.140 -2.797e-01
          1.856
                 1.444e-01
67
68
          1.939 -1.087e-01
69
          1.939 -1.087e-01
70
          2.162
                 3.380e-01
71
          1.937
                 6.294e-02
72
          1.873
                 1.270e-01
73
          2.057 -3.659e-02
74
          1.961
                 3.902e-02
75
          1.961
                 3.902e-02
76
          1.961
                 3.902e-02
77
          1.961
                 3.902e-02
78
          1.961
                 3.902e-02
79
          2.211 -1.714e-01
80
          2.395 -1.954e-01
          2.231 -2.310e-01
81
82
          2.196 -1.963e-01
83
          2.196 -1.963e-01
84
          2.586 -6.062e-03
85
          2.922 -7.223e-01
86
          2.403 -2.931e-01
          2.261 -9.081e-02
87
88
          2.354 -1.538e-01
89
          2.303 -3.030e-01
90
          2.303 -3.030e-01
91
          2.338
                 1.201e-02
92
          2.302
                 1.278e-01
93
          2.331 -1.012e-01
94
          2.599
                 2.507e-01
95
          2.873 2.685e-02
96
          3.496 -1.161e-01
97
          3.004 -5.354e-02
98
          3.600 -9.021e-02
99
          3.050 -1.003e-01
100
          3.606 -5.601e-02
                 1.139e-01
101
          3.136
102
          3.547
                 3.004e-03
103
          3.701 -7.068e-02
104
          2.639
                 1.106e-01
105
          2.736
                 6.440e-02
106
          2.838
                 2.319e-01
107
          3.563 -4.727e-01
108
          3.068 -2.684e-01
109
          2.988 -3.882e-01
          2.867
                 2.327e-01
110
111
          2.422
                 7.762e-02
112
          2.807
                 1.828e-01
113
          3.040
                 1.100e-01
114
          2.958
                  1.216e-01
115
          3.043
                 8.726e-02
116
          3.374 -1.243e-01
117
          2.850 -1.503e-01
          3.480 -8.033e-02
118
          3.009 4.147e-02
119
120
          2.974 -2.399e-02
121
          3.359
                 4.124e-02
          3.510 -6.044e-02
122
123
          2.665
                 3.462e-02
124
          3.529 -1.388e-01
125
          3.010 -6.005e-02
126
          2.838 6.222e-02
```

```
127
          3.269 5.111e-02
128
          3.624 -5.370e-02
129
          3.121 -9.383e-04
130
          3.053 1.657e-02
          3.076 -1.553e-02
131
132
          2.545 -1.454e-01
          4.071 -3.708e-01
133
          3.012 -1.725e-01
134
135
          4.056 -3.161e-01
136
          3.073 -3.022e-03
          3.078 -8.828e-02
137
138
          3.495 -1.449e-01
          3.793 -3.432e-01
139
          2.343 -2.029e-01
140
          2.659 -2.895e-01
141
142
          3.377 -1.768e-01
          3.551 -1.514e-01
143
144
          2.937 -3.369e-01
          3.236 -4.858e-01
145
146
          3.002 -1.723e-01
147
          2.791 -3.008e-01
148
          3.268 -1.381e-01
149
          3.419 -1.187e-01
150
          3.712 -2.623e-01
          2.701 -2.114e-01
151
152
          3.338
                 3.422e-01
          2.911
                  2.895e-01
153
154
          2.797
                  1.326e-01
155
          2.995
                  5.509e-02
156
          3.136
                 6.393e-02
157
          2.757 -1.066e-01
158
          2.900 -2.004e-01
159
          2.941
                 1.094e-01
160
          2.995
                 8.052e-01
          3.403
161
                 4.969e-01
          3.090
162
                 9.536e-03
163
          3.784
                 2.016e+00
164
          2.975
                 2.473e-02
165
          2.914
                  1.759e-01
                  7.124e-02
166
          3.319
          3.143 -1.825e-01
167
          3.357
                  2.234e-01
168
169
          2.906
                 5.436e-01
170
          2.839
                  6.107e-01
                  7.059e-01
171
          3.444
172
          2.931
                  3.688e-01
          2.878
173
                 1.062e+00
174
          2.676 -2.959e-01
175
          2.923
                 7.709e-02
176
          2.812
                 1.684e-01
177
          2.724
                  2.261e-01
178
          3.087 -6.777e-03
179
          3.569 -4.886e-02
180
          3.729
                 3.143e-02
181
          2.519
                 6.810e-01
                  3.337e-01
182
          2.566
183
          2.696
                 3.038e-01
184
          3.731 -2.912e-01
          3.147 -5.709e-02
185
          2.920 -2.008e-02
186
          3.548 -1.482e-01
187
          3.617 -8.741e-02
188
189
          3.066 -2.665e-01
190
          2.841 -2.406e-01
```

```
192
                         3.026 9.445e-02
           193
                         3.502 -5.248e-02
                         2.984 -1.438e-01
           194
           195
                         3.854 -2.441e-01
                         2.740 2.604e-01
           196
           197
                         3.021 7.889e-02
           198
                         2.962 -2.816e-01
           199
                         2.654 -2.038e-01
                         2.846 -4.639e-02
           200
                         3.088 -1.378e-01
           201
           202
                         3.409 -2.085e-01
           203
                         2.933 -4.332e-01
                        2.952 -7.623e-01
           204
           205
                         3.050 -7.905e-01
           206
                         2.944 1.063e-01
           207
                         3.834 -3.449e-02
           208
                         3.559 -4.089e-01
           209
                         3.668 -4.179e-01
           210
                         3.689 2.137e-02
In [ ]: ## Show the regression in charts
           for x in range(len(factors1)):
                 fig = plt.figure(figsize=(14, 8))
                 fig = sm.graphics.plot_regress_exog(model1,
                                                            factors1[x],
                                                            fig=fig)
           eval_env: 1
           eval env: 1
           eval env: 1
           eval env: 1
           eval env: 1
           eval_env: 1
           eval_env: 1
                                               Regression Plots for Market Average Spread
                                Y and Fitted vs. X
                                                                          Residuals versus Market Average Spread
                                                              2.0
                                                              1.5
                                                              1.0
                                                            esid
0.5
                                                              0.0
                                                             -0.5
                                                                                2.5 3.0
Market Average Spread
                               2.5 3.0
Market Average Spread
                                                  3.5
                                                                                                    3.5
                              Partial regression plot
                                                                                   CCPR Plot
                                                            Spread*beta_0
2.5 0.5
2.7 0.5
           e(Coupon | X)
                                                            dverage 3.5
                                                            1+ Market A
2.5
                                                            Residual 1.5
                                                                                2.5 3.0
Market Average Spread
```

191

3.472 -3.204e-02

2 e(Tenor | X) 4

10

In []: ## Anova test
pingouin.anova(data = data_1, dv = "Coupon", between = "Russell ESG Score")

```
Out[ ]:
                       Source ddof1 ddof2
                                                           p-unc
                                                                       np2
          0 Russell ESG Score
                                   17
                                         193 2.850154 0.000255 0.200671
In []:
          ## Heatmaps
          sns.heatmap(data 1.corr(), cmap='coolwarm', annot=True)
          <AxesSubplot:>
Out[]:
                                                                                                1.0
                          Coupon -
                                           0.9
                                                                      0.23
                                     1
                                                                                   0.22
                                                                                               - 0.8
                                    0.9
                                                 0.084 -0.0096
                                                                           -0.074
          Market Average Spread -
                                            1
                                                              0.83
                                                                      0.26
                                                                                   0.22
                                                                                              - 0.6
                           Rating --0.061 0.084
                                                        0.35
                                                              0.095 -0.072
                                                                            0.19
                                                              -0.088
                  Issuing Amount - -0.09 -0.0096
                                                 0.35
                                                         1
                                                                     -0.32
                                                                            0.24
                                                                                   -0.26
                                                                                              - 0.4
                           Tenor - 0.77
                                          0.83
                                                 0.095 -0.088
                                                                1
                                                                      0.21
                                                                            -0.021
                                                                                   0.18
                                                                                               - 0.2
                  Green Indicator - 0.23
                                          0.26
                                                       -0.32
                                                               0.21
                                                                            -0.21
                                                                                    0.9
                                                                                               - 0.0
                Russell ESG Score -- 0.019 -0.074
                                                 0.19
                                                        0.24
                                                                     -0.21
                                                                                   0.044
                                                                              1
                                                                                                -0.2
                      interaction - 0.22
                                          0.22
                                                        -0.26
                                                               0.18
                                                                      0.9
                                                                            0.044
                                                                                     1
                                                  Rating
                                    Coupon
                                           Market Average Spread
                                                         ssuing Amount
                                                                Tenor
                                                                      Green Indicator
                                                                             Russell ESG Score
                                                                                    interaction
In []: # Test 2
          ## Processing the data
          factors2 = ["overnight", "Refinitiv ESG Score", "rating", "Amount Issued (US)
          model2 = sm.OLS(data 2["Coupon"], data 2[factors2]).fit()
          # Fit the model
          prediction2 = model2.predict(data 2[factors2])
          # Print the parameters of the fitted model
          b1, b2, b3, b4, b5, b6 = model2.params
          print("Parameters of the fitted model: \nb1: %f\nb2: %f\nb3: %f\nb4: %f\nb5:
          model2.summary()
          Parameters of the fitted model:
          b1: 1.507549
          b2: 0.025737
          b3: -0.016074
          b4: 0.000000
```

b5: 0.001218 b6: -0.004568

Dep. Variable:	Coupon	R-squared (uncentered):	0.802
Model:	OLS	Adj. R-squared (uncentered):	0.799
Method:	Least Squares	F-statistic:	215.8
Date:	Sun, 30 Oct 2022	Prob (F-statistic):	4.19e-109
Time:	15:59:36	Log-Likelihood:	-511.05
No. Observations:	325	AIC:	1034.
Df Residuals:	319	BIC:	1057.
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
overnight	1.5075	0.122	12.405	0.000	1.268	1.747
Refinitiv ESG Score	0.0257	0.003	7.571	0.000	0.019	0.032
rating	-0.0161	0.028	-0.581	0.562	-0.071	0.038
Amount Issued (USD)	4.976e-10	2.31e-10	2.154	0.032	4.3e-11	9.52e-10
Year	0.0012	0.001	0.993	0.322	-0.001	0.004
interaction	-0.0046	0.009	-0.507	0.613	-0.022	0.013

1.172	Durbin-Watson:	20.744	Omnibus:
22.847	Jarque-Bera (JB):	0.000	Prob(Omnibus):
1.09e-05	Prob(JB):	0.628	Skew:
1.32e+09	Cond. No.	3.328	Kurtosis:

- [1] R² is computed without centering (uncentered) since the model does not contain a
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.32e+09. This might indicate that there are strong multicollinearity or other numerical problems.

	prediction	
0	3.324	1.051
1	0.891	0.693
2	6.387	-1.262
3	3.415	1.335
4	6.529	-1.154
5	6.529	-1.154
6	6.404	-0.904
7	6.404	-0.904
8	2.320	2.430
9	3.197	0.303
10	2.326	0.799
11	3.434	0.279
12	2.492	2.383
13	3.165	-0.040
14	2.830	0.045
15	3.115	1.385
16	5.548	0.705
17	5.548	0.705
18	3.165	-0.040
19	2.006	3.994
20	2.057	1.193
21	4.410	0.715
22	4.468	0.907
23	5.194	-0.244
24	1.688	2.437
25	2.531	1.219
26	2.700	2.050
27	2.302	1.765
28	4.346	3.248
29	2.218	1.272
30	1.937	0.688
31	2.242	1.883
32	3.893	0.857
33	6.239	-0.139
34	6.039	-1.889
35	5.896	-0.496
36	5.993	-0.393
37	2.254	0.621
38	4.370	1.461
39	4.370	1.461
40	4.344	2.192
41	4.344	2.192
42	1.150	3.350
43	4.979	-1.079
44	4.244	0.131
45	4.244	0.131
46	1.732	4.068
47	1.254	2.371
48	1.256	1.244
49	0.154	1.346
50	3.010	0.615
51	3.010	0.615
52	2.907	1.093
53	2.907	1.093
54	1.283	1.717
55	1.174	1.076
56	1.267	1.608
57	2.814	2.186
58	1.226	1.149
59	1.245	1.755
60	1.318	2.932
61	0.895	-0.271
62	1.708	0.542
\ <u>L</u>	1.700	0.512

60	1 560	0 001
63	1.569	0.931
64	1.258	0.867
65	1.415	1.835
66	1.715	0.410
67	1.274	1.476
68	1.615	-1.041
69	1.023	-0.379
70	1.707	0.418
71	1.564	0.686
72	3.368	1.257
73	3.368	1.257
74	1.300	0.950
75	1.597	0.528
76	2.406	1.844
77	0.601	1.149
78	1.032	0.887
79	0.568	0.495
80	1.491	-1.161
81	1.480	-0.906
82	0.904	0.721
83	2.613	1.287
84	1.041	0.959
85	1.591	1.159
86	1.312	-0.437
87	1.336	0.289
88	1.705	0.670
89	1.063	2.708
90	1.895	-0.395
91	1.273	-0.523
92	1.581	0.969
93	2.511	-0.240
94	1.581	0.969
95	2.513	0.021
96	1.583	1.217
97	1.583	1.217
98	2.394	0.573
99	2.378	1.497
100	1.795	0.080
101	2.443	0.557
102	2.286	0.975
103	1.371	0.004
104	1.529	-0.404
105	2.300	0.650
106	1.865	0.510
107	1.865	0.510
108	1.817	0.933
109	1.817	0.933
110	1.577	-0.827
111	-0.471	1.096
112	1.593	-0.718
113	1.721	0.079
114	1.673	0.577
115	0.701	2.869
116	0.701	2.869
117	1.596	0.976
118	1.596	0.976
119	1.778	1.072
120	0.980	0.145
121	1.206	-0.831
122	1.374	-0.499
123	1.170	-0.420
124	2.060	0.412
125	1.133	2.617
126	1.133	2.617

1 2 7	1.133	2.617
127		
128	2.182	-0.932
129	2.301	0.169
130	2.301	0.169
131	1.049	-0.799
132	1.982	-1.482
133	1.917	-0.917
134	1.169	-0.669
135	1.116	-0.116
136	1.092	-0.342
137	2.533	-0.408
138	2.114	-0.214
139	0.571	-0.424
140	1.185	-0.435
141	2.418	-0.880
142	2.418	-0.880
143	3.353	-0.103
144	0.995	-0.745
145	2.344	-0.287
146	1.254	-0.254
147	2.393	0.310
148	1.431	-1.056
149	1.458	-0.458
150	2.292	0.858
151	2.292	0.858
152	1.395	1.055
153	0.743	-0.118
154	0.762	0.738
155	1.956	-0.831
156	2.365	0.950
157	1.376	-0.876
158	3.092	-1.292
159	2.364	1.136
160	2.364	1.136
161	1.598	-0.021
162	0.071	0.054
163	2.266	-0.216
164	1.639	0.236
165	1.760	-0.260
166	2.368	0.482
167	1.854	-0.479
168	1.335	-1.085
169	0.956	0.419
170	2.527	-0.277
171	1.060	-0.685
172	2.379	-1.229
173	2.391	-1.266
174	2.369	-0.619
175	2.507	-1.157
176	1.975	-0.600
177	2.135	-0.760
	2.135	-0.760
178		
179	2.140	0.235
180	2.140	0.235
181	1.804	-1.004
182	1.711	-1.086
183	1.604	-0.729
184	0.781	2.119
185	1.813	-1.188
186	1.511	-1.136
187	0.750	-0.250
188	0.765	0.485
189	1.058	0.317
190	1.070	-0.445

101	1.279	-0.529
191		
192	1.298	-0.423
193	2.180	-0.805
194	2.539	-1.039
195	1.121	-0.246
196	0.922	0.203
197	1.563	-1.263
198	0.656	-0.406
199	1.286	-0.786
200	2.089	0.411
201	1.659	2.591
202	1.494	-0.728
203	1.212	2.413
204	1.212	2.413
205	1.866	0.434
206	1.128	0.247
207	2.268	-0.268
		-0.755
208	1.755	
209	1.755	-0.755
210	1.808	-0.058
211	1.808	-0.058
212	1.642	-0.267
213	1.364	-0.764
214	1.396	-0.496
215	1.038	-0.992
216	1.524	0.026
217	1.524	0.026
218	1.095	1.280
219	1.605	-1.105
220	1.322	-0.822
221	1.868	-0.618
222	2.089	-1.339
223	1.965	-1.215
224	1.205	-0.830
225	0.635	-0.510
226	2.370	-1.245
227	0.760	-0.010
228	0.515	-0.505
229	2.320	-0.320
230	3.067	-0.567
231	0.585	-0.517
232	1.717	-1.717
233	1.846	-1.346
234	1.765	0.110
235	0.891	-0.891
236	1.055	-0.805
237	2.606	-0.231
238	2.606	-0.231
239	2.100	-1.592
240	1.877	0.023
241	1.790	-1.790
242	2.301	-0.926
243	2.301	-0.926
244	2.404	0.046
245	2.404	0.046
246	1.188	-1.178
247	1.657	-1.032
248	1.507	-1.507
249	1.181	0.319
250	1.732	-1.607
	1.849	
251		-1.474
252	2.413	-0.713
253	0.996	0.004
254	2.203	-1.253

255	1.260	-1.135
256	1.890	-1.515
257	2.053	-1.053
258	1.378	-1.164
259	1.372	1.128
260	2.030	-0.480
261	1.974	0.976
262	0.835	1.290
263	1.448	1.427
264	1.324	-0.574
265	1.209	2.041
266	1.801	-0.926
267	2.416	-0.916
268	2.432	0.193
269	2.432	0.193
270	2.406	-0.656
271	1.968	-1.218
272	0.984	0.016
273	2.216	-0.366
274	2.342	-0.717
275	1.645	-0.895
276	0.560	2.390
277	1.495	-0.745
278	1.826	0.603
279	2.407	0.293
280	2.515	-1.115
281	2.515	-1.115
282	0.986	0.889
283	2.458	-0.508
284	2.460	-0.210
285	1.840	-0.715
286	1.266	-0.226
287	1.886	-1.136
288	0.976	-0.601
289	2.115	-0.990
290	2.115	-0.990
291	1.425	-0.050
292	1.938	-1.688
293	2.298	0.061
294	1.273	-0.398
295	0.722	2.028
296	1.573	0.052
297	2.382	0.818
298	2.029	0.921
299	1.490	0.260
300	2.600	0.025
301	1.505	0.620
302	3.748	-2.248
303	1.280	-1.030
304	1.655	-0.280
305	1.521	-0.896
306	1.797	-0.097
307	1.515	-1.140
308	1.872	-1.122
309	1.912	-1.412
310	0.816	1.059
311	1.489	0.511
312	1.544	-1.544
313	1.351	-0.476
314	1.566	-1.066
315	4.566	-2.366
316	0.720	0.905
317	1.547	-1.047
318	5.094	-3.044
310	J. 0 J. 4	3.011

```
5.162
                                              -2.287
              321
              322
                               1.795
                                              -1.495
              323
                               3.363
                                              -1.285
                                                0.222
              324
                               1.902
In [ ]: ## Show the regression in charts
              for x in range(len(factors2)):
                     fig = plt.figure(figsize=(14, 8))
                     fig = sm.graphics.plot regress exog(model2,
                                                                            factors2[x],
                                                                            fig=fig)
              eval env: 1
              eval_env: 1
              eval_env: 1
              eval env: 1
              eval_env: 1
              eval_env: 1
                                                                  Regression Plots for overnight
                                         Y and Fitted vs. X
                                                                                                       Residuals versus overnight
                                                                                 -2
                                                                                 -3
                                                                  2.5
                                                                         3.0
                                                                                         -0.5
                                                                                                0.0
                                                                                                       0.5
                                                                                                              1.0
overnight
                                                                                                              CCPR Plot
                                        Partial regression plot
             e(Coupon | X)
                                              0.5
                                                                    2.0
                                                                           2.5
                                                                                                                             2.0
                                                                                                                                    2.5
                                                     1.0
                                                                                                       0.5
                                                                                                               1.0
overnight
                                           e(overnight | X)
                                                               Regression Plots for Refinitiv ESG Score
                                         Y and Fitted vs. X
                                                                                                   Residuals versus Refinitiv ESG Score
                                                                                 -1
                                                                                 -2
                                        40 60
Refinitiv ESG Score
                                                                                                         40 60
Refinitiv ESG Score
                                        Partial regression plot
                                                                                                              CCPR Plot
                                                                               Residual + Refinitiv ESG Score*beta 1
                                                                                  5
             e(Coupon | X)
                2
                -2
                                        -20 0
e(Refinitiv ESG Score | X)
                                                                                             20
                                                                20
                                                                                                         40 60
Refinitiv ESG Score
```

319

320

1.359

4.401

-0.984

-1.301


```
In [ ]: # Test 3 1
        ## Processing the data
        factors3 1 = ["Bloomberg ESG Score", "Credit Rating", "Risk free rate with s
        model3 1 = sm.OLS(data 3 1["Coupon"], data 3 1[factors3 1]).fit()
        # Fit the model
        prediction3 1 = model3 1.predict(data 3 1[factors3 1])
        # Print the parameters of the fitted model
        b1, b2, b3, b4, b5 = model3 1.params
        print("Parameters of the fitted model: \nb1: %f\nb2: %f\nb3: %f\nb4: %f\nb5:
        model3_1.summary()
        Parameters of the fitted model:
        b1: 0.028814
        b2: -0.057580
        b3: 1.070635
        b4: 0.032890
        b5: -0.324753
```

OLS Regression Results

0.949	R-squared (uncentered):	Coupon	Dep. Variable:
0.942	Adj. R-squared (uncentered):	OLS	Model:
131.5	F-statistic:	Least Squares	Method:
1.17e-21	Prob (F-statistic):	Sun, 30 Oct 2022	Date:
-47.104	Log-Likelihood:	15:59:39	Time:
104.2	AIC:	40	No. Observations:
112.7	BIC:	35	Df Residuals:
		5	Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Bloomberg ESG Score	0.0288	0.008	3.583	0.001	0.012	0.045
Credit Rating	-0.0576	0.040	-1.457	0.154	-0.138	0.023
Risk free rate with same tenor	1.0706	0.151	7.107	0.000	0.765	1.376
Tenor	0.0329	0.022	1.497	0.143	-0.012	0.077
Option	-0.3248	0.411	-0.790	0.435	-1.159	0.510

Omnibus:	5.350	Durbin-watson:	1.937
Prob(Omnibus):	0.069	Jarque-Bera (JB):	4.587
Skew:	0.828	Prob(JB):	0.101
Kurtosis:	3.112	Cond. No.	167.

- [1] R² is computed without centering (uncentered) since the model does not contain a constant
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
prediction residual
        0
                  5.657
                          -0.707
        1
                  5.301
                            0.799
        2
                  4.766
                            1.770
        3
                           -0.461
                  4.361
         4
                  4.845
                           -0.470
        5
                  5.141
                           0.734
         6
                  4.861
                           -0.361
        7
                  4.457
                           -0.207
        8
                  4.483
                           0.142
        9
                  4.926
                            1.199
        10
                  2.334
                            0.216
        11
                  4.372
                           -0.497
        12
                  2.832
                           0.048
        13
                  2.371
                           -0.571
        14
                  3.283
                           -0.908
        15
                           -0.886
                  3.186
        16
                  4.613
                           -1.213
        17
                           -0.826
                  3.097
        18
                  4.164
                           -0.314
        19
                  4.026
                           -0.401
        20
                  2.732
                           -0.482
        21
                  2.736
                            1.014
        22
                  2.599
                            0.276
        23
                  1.595
                            0.405
        24
                  3.360
                           -0.860
        25
                           -0.877
                  3.127
        26
                  2.268
                           1.982
        27
                  1.690
                           -0.815
        28
                            0.472
                  4.278
        29
                  1.580
                            0.045
        30
                  2.117
                           1.883
                           -0.092
        31
                  2.592
        32
                  2.755
                            0.370
        33
                  1.634
                           -0.009
        34
                  0.325
                            1.128
        35
                  0.273
                           -0.023
        36
                  1.666
                            0.334
        37
                            0.066
                  1.059
        38
                           -0.044
                  0.669
         39
                  0.757
                           -0.507
In []: ## Show the regression in charts
         for x in range(len(factors3 1)):
             fig = plt.figure(figsize=(14, 8))
             fig = sm.graphics.plot regress exog(model3 1,
                                              factors3 1[x],
                                              fig=fig)
        eval env: 1
        eval_env: 1
        eval_env: 1
        eval env: 1
        eval env: 1
```



```
In []: # Test 3 2
        ## Processing the data
        factors3_2 = ["Market Average Spread", "Tenor", "Credit rating", "Issuer Typ
        model3_2 = sm.OLS(data_3_2["coupon"], data_3_2[factors3_2]).fit()
        # Fit the model
        prediction3 2 = model3 2.predict(data 3 2[factors3 2])
        # Print the parameters of the fitted model
        b1, b2, b3, b4, b5 = model3_2.params
        print("Parameters of the fitted model: \nb1: %f\nb2: %f\nb3: %f\nb4: %f\nb5:
        model3 2.summary()
        Parameters of the fitted model:
        b1: 1.836354
        b2: 0.037878
        b3: -0.252250
        b4: -0.241804
        b5: 0.052598
```

0.991	R-squared (uncentered):	coupon	Dep. Variable:
0.990	Adj. R-squared (uncentered):	OLS	Model:
1184.	F-statistic:	Least Squares	Method:
2.88e-52	Prob (F-statistic):	Sun, 30 Oct 2022	Date:
-8.5486	Log-Likelihood:	15:59:41	Time:
27.10	AIC:	57	No. Observations:
37.31	BIC:	52	Df Residuals:
		5	Df Model:
		nonrobust	Covariance Type:

	coef	std err	t	P> t	[0.025	0.975]
Market Average Spread	1.8364	0.110	16.651	0.000	1.615	2.058
Tenor	0.0379	0.051	0.741	0.462	-0.065	0.140
Credit rating	-0.2523	0.043	-5.860	0.000	-0.339	-0.166
Issuer Type	-0.2418	0.042	-5.740	0.000	-0.326	-0.157
Russeel ESG Score	0.0526	0.061	0.863	0.392	-0.070	0.175

 Omnibus:
 4.368
 Durbin-Watson:
 1.762

 Prob(Omnibus):
 0.113
 Jarque-Bera (JB):
 3.481

 Skew:
 0.427
 Prob(JB):
 0.175

 Kurtosis:
 3.858
 Cond. No.
 20.1

- [1] R² is computed without centering (uncentered) since the model does not contain a
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
prediction residual
         3.001
0
                    0.329
1
         2.986
                    0.214
2
         1.770
                    0.230
3
                    0.296
         1.444
4
         2.614
                   -0.114
5
                  -0.080
         2.190
6
         1.925
                   0.425
7
         2.518
                   0.332
8
         2.495
                    0.255
9
         2.678
                    0.122
10
         2.964
                   -0.164
11
         2.643
                  -0.043
12
                  -0.527
         3.627
13
         3.060
                   0.190
14
         2.640
                    0.060
15
                    0.105
         3.295
16
         2.934
                    0.116
17
                   0.051
         2.899
18
         3.199
                   0.201
19
         3.494
                  -0.044
20
         2.941
                   0.119
21
         3.421
                   -0.071
22
         3.538
                  -0.088
23
         2.115
                   0.025
         2.459
                  -0.089
24
                  -0.413
25
         3.013
26
         2.985
                  -0.235
27
         3.140
                   -0.310
                  -0.394
28
         2.884
29
                  -0.089
         3.289
30
         2.601
                   0.049
31
         3.029
                  -0.329
32
                   0.143
         2.907
33
         3.869
                    0.031
34
         3.105
                  -0.005
35
                   0.908
         4.892
36
         2.908
                    0.092
37
                    0.044
         3.046
38
                   -0.035
         3.425
39
         3.592
                  -0.012
40
         3.220
                   0.080
                   0.695
41
         3.245
42
         2.706
                  -0.326
43
         2.853
                   0.347
         2.869
44
                   0.031
                  -0.112
45
         3.112
46
         2.777
                    0.023
47
         3.013
                  -0.413
48
         2.474
                   0.366
49
                   -0.485
         4.095
50
         2.543
                   0.137
51
         2.440
                   0.010
52
         2.878
                  -0.378
53
         2.578
                  -0.388
54
         2.739
                   -0.479
55
                   -0.319
         3.369
56
         3.646
                    0.064
```

```
In []: ## Show the regression in charts
for x in range(len(factors3_2)):
    fig = plt.figure(figsize=(14, 8))
    fig = sm.graphics.plot_regress_exog(model3_2,
```

factors3_2[x], fig=fig)

In []: ## Anova test
 print(pingouin.anova(data = data_3_2, dv = "coupon", between = "Russeel ESG
 print(pingouin.anova(data = data_3_2, dv = "coupon", between = "Issuer Type")

In []: ## Heatmaps
sns.heatmap(data_3_2.corr(), cmap='coolwarm', annot=True)

Out[]: <AxesSubplot:>

