Correctness ("Hoare") Triples

Part 1: Definitions and Basic Properties

CS 536: Science of Programming, Fall 2022

2022-09-15 pp. 1, 6, 2022-09-20 p.7

A. Why

- To specify a program's correctness, we need to know its precondition and postcondition (what should be true before and after executing it).
- The semantics of a verified program joins a program's state-transformation semantics with the state-oriented semantics of the specification predicates.

B. Objectives

At the end of today you should know

- The syntax of correctness triples (a.k.a. Hoare triples).
- What it means for a correctness triples to be satisfied or to be valid.
- That a state in which a correctness triple is not satisfied is a state where the program has a bug.

C. Correctness Triples ("Hoare Triples")

- A *correctness triple* (a.k.a. "*Hoare triple*," after C.A.R. Hoare) is a program *S* plus its specification predicates *p* and *q*.
 - The *precondition p* describes what we're assuming is true about the state before the program begins.
 - The $\it postcondition q$ describes what should be true about the state after the program terminates.
- Syntax of correctness triples: {p} S {q} (Think of it as /* p */ S /* q */)
 - ⇒ Note: The braces are not part of the precondition or postcondition ←
- The precondition of {p} S {q} is p, not {p}. Similarly the postcondition is q, not {q}.
 - Saying " $\{p\}$ " is like saying "In C, the test in 'if (B) x++;' is 'if (B)" instead of just B. [2022-09-15]

D. Satisfaction and Validity of a Correctness Triple

- Informally, for a state to **satisfy** {p} S {q}, it must be that if we run S in a state that satisfies p, then after running S, we should be in a state that satisfies q.
 - There's more than one way to understand "after running S", and this will give us two notions of satisfaction.

- *Important*: If we start in a state that doesn't satisfy *p*, we claim nothing about what happens when you run *S*.
 - In some sense, "the triple is satisfied in σ " means "the triple is not buggy in σ ", which seems like a rather weak claim.
 - However, "the triple is not satisfied in σ " means "the triple has a bug in σ ", which is a pretty strong statement.
- For example, say you're given the triple $\{x \ge 0\}$ $S\{y^2 \le x < (y+1)^2\}$.
 - The triple claims that running the program when *x* is nonnegative sets *y* to the integer square root of *x*.
 - If you run it when *x* is negative, all bets are off: *S* could run and terminate with *y* = some value, it could diverge, it could produce a runtime error. None of these behaviors are bugs because you ran *S* on a bad input.
- *Validity* for correctness triples is analogous to validity of a predicate: The triple must be satisfied in every (well-formed, proper) state.
 - Say you (as the user) have been told not to run S when x < 0 because S calculates sqrt(x).
 - And say the triple is $\{x \ge 0\}$ $y := sqrt(x) \{y^2 \le x < (y+1)^2\}$.
 - You can't say this program has a bug when you start in a state with x < 0, even though the program fails, because you ran the program on bad input.
- *Notation:* Analogous to our notation for predicates, for triples
 - $\sigma \models \{p\} \ S \ \{q\}$ means σ satisfies the triple.
 - $\sigma \not\models \{p\}$ $S\{q\}$ means σ does not satisfy the triple.
 - $\models \{p\}$ S $\{q\}$ means the triple is valid.
 - $\not\models \{p\}$ $S\{q\}$ means the triple is invalid: $\sigma \not\models \{p\}$ $S\{q\}$ for some σ .

E. Simple Informal Examples of Correctness

- Before going to the formal definitions of partial and total correctness, let's look at some simple examples, informally. (As usual, we'll assume the variables range over \mathbb{Z} .)
- **Example 1**: $= \{x > 0\}$ x := x+1 $\{x > 0\}$. The triple is valid: It's satisfied for all states where x > 0.
- **Example 2**:
 - $\{x = 1\} \not\models \{x > 0\} \ x := x-1 \ \{x > 0\}$: The triple is not satisfied (has a bug) when run with x = 1 because it terminates with x = 0, not x = 0. Thus the triple is not valid: x = 0 and x = 0.
- There are a number of ways to fix the buggy program in Example 2:
 - **Example 3**: Make the precondition "**stronger**' = "more restrictive": $= \{x > 1\} \ x := x 1 \ \{x > 0\}$.
 - **Example 4**: Make the postcondition "**weaker**" = "less restrictive": $\models \{x > 0\}$ $x := x-1 \{x > -1\}$.
 - **Example 5**: Change the program. One way is $\{x > 0\}$ if x > 1 then x := x-1 fi $\{x > 0\}$.
- Let's have some more complicated examples.

- **Example 6**: $\models \{x \ge 0 \land (x = 2*k \lor x = 2*k+1)\} \ x := x / 2 \ \{x = k \ge 0\}.$
 - If *x* is nonnegative, then the program halves it with truncation.
- **Example 7**: $\models \{s = 0 + 1 + 2 + ... + k\} s := s + k + 1; k := k + 1 \{s = 0 + 1 + 2 + ... + k\}.$
 - Note: strictly speaking, we need something like s = sum(0, k) instead of s = 1 + 2 + ... + k, which doesn't have the form of a predicate.
 - The triple says if s = sum(0, k) when we start, then s = sum(0, k) when we finish.
 - It's ok that s and k are changed by the program because s = sum(0, k) is true in both places relative to the state at that point in time.
 - (Later, we'll use this program as part of a larger program, and we'll augment the conditions with information about how the ending values of *k* and *s* are larger than the starting values.)
- **Example 8**: $\models \{s = sum(0, k)\} \ k := k+1; \ s := s+k \ \{s = sum(0, k)\}$
 - This has the same specification as Example 7 but the code is different: It increments k first and then update s by adding k (not k+1) to it.)
- **Example 9**: [Note the invalidity] $\neq \{s = sum(0, k)\}\ k := k+1;\ s := s+k+1 \ \{s = sum(0, k)\}\$
 - This is like Example 8 but the program doesn't meet its specification. To get validity, the postcondition should be s = sum(0, k) + 1. (Or more likely, the code needs to be fixed.)

F. Connecting Starting and Ending Values of Variables

- There are times when we want the postcondition to be able to refer to values that the variables started with.
- Recall Examples 7 and 8: $= \{s = sum(0, k)\} S \{s = sum(0, k)\} \}$ (where S is different in the two examples). Say we want the postcondition to include "k gets larger by 1" somehow. What we can do is create a new variable (call it k_0) whose job it is to refer to the value of k before S.
 - We'll make the precondition $k = k_0 \land s = sum(0, k)$ ("k has some value and s is the sum of 0 through k"). We'll make the postcondition $k = k_0 + 1 \land s = sum(0, k)$ ("k is one larger than its starting value and s is the sum of 0 through k (for this new value of k)".
- We actually did the same thing in Example 6: $= \{x \ge 0 \land (x = 2*k \lor x = 2*k+1)\} \ x := x / 2 \ \{x = k \ge 0\}$. The variable k helps describe the value of x before and after execution.
- One interesting feature of the variables k_0 and k is that they don't appear in the program, only the specifications.
- Where do variables appear in correctness triples?
- **Definition:** For a triple { p } S { q },
 - A variable that appears in *S* is a *program variable*. E.g., in *x* := 1, *x* is a program variable. We manipulate them to get work done.

- A variable that appears in p or q is a **condition variable**. E.g., y in $\{y > 0\}$... $\{\dots\}$. We use condition variables to reason about our program. They may or may not also be program variables.
 - E.g., in $\{y > 0\}$ y := y+1 $\{y > 1\}$, y is a program and a condition variable.
 - A *logical variable* is a condition variable that is not also a program variable. E.g., c in $\{z \ge c\}$ z := z+1 $\{z > c\}$. We use them to reason about our program but they don't appear in the program itself.²
 - A *logical constant* is a named constant logical variable. E.g., *c* in the previous example. Logical constants are great for keeping track of an old value of a variable.
- **Example 10**: $= \{x = x_0 \ge 0\}$ x := x / 2 $\{x_0 \ge 0 \land x = x_0 / 2\}$. If x is ≥ 0 , then after the assignment x := x/2, the old value of x (we're calling it x_0) was ≥ 0 and x = its old value divided by $x = x_0 / 2$. Here, $x = x_0 / 2$ is a program and condition variable and $x_0 = x_0 / 2$ is a logical constant.

G. Having a Set of States that Satisfy a Predicate

- Before looking at the definitions of program correctness, it will help if we extend the notion of a single state satisfying a predicate to having a set of states satisfying a predicate.
- **Notation**: Recall that $\Sigma_{\perp} = \Sigma \cup \{\bot\}$, where Σ is the set of all (well-formed, proper) states.
 - Then, $\sigma \in \Sigma_{\perp}$ allows $\sigma = \bot$, but $\sigma \in \Sigma$ implies $\sigma \neq \bot$.
 - Similarly for a set of states Σ_0 , if $\Sigma_0 \subseteq \Sigma_{\perp}$, then we may have $\bot \in \Sigma_0$.
 - On the other hand, if $\Sigma_0 \subseteq \Sigma$, then $\bot \notin \Sigma_0$.
- **Notation**: $\Sigma_0 \bot$ means $\Sigma_0 \cap \Sigma$, the subset of Σ_0 containing its non- \bot members.
- **Definition**: Let $\Sigma_0 \subseteq \Sigma_\perp$. We say Σ_0 **satisfies** p if every element of Σ_0 satisfies p.
 - In symbols, $\Sigma_0 \vDash p$ iff for all $\tau \in \Sigma_0$, $\tau \vDash p$. (Note $\emptyset \vDash p$, since there exists no $\tau \in \emptyset$ where $\tau \nvDash p$.)
- Some consequences of the definition:
 - If $\bot \in \Sigma_0$, then $\Sigma_0 \not\models p$ and $\Sigma_0 \not\models \neg p$.
 - $(\Sigma_0 \vDash p \text{ and } \Sigma_0 \vDash \neg p) \text{ iff } \Sigma_0 = \emptyset$.
 - Since $\bot \not\models p$ (and $\not\models \neg p$), we have $\bot \not\in \Sigma_0$. If $\tau \not= \bot$ and $\tau \models p$ then $\tau \not\models \neg p$, so $\tau \not\in \Sigma_0$. So $\Sigma_0 = \emptyset$.
 - If $\bot \notin \Sigma_0$ and Σ_0 is a singleton set (it has size = 1), then $\Sigma_0 \models p$ iff $\Sigma_0 \models \neg p$ (and $\Sigma_0 \models \neg p$ iff $\Sigma_0 \not\models p$).
 - Either $\tau \vDash p$ or $\tau \vDash \neg p$ but not both, so $(\tau \vDash p \text{ and } \tau \nvDash \neg p)$ or $(\tau \nvDash p \text{ and } \tau \vDash \neg p)$.
 - If $\Sigma_0 \bot$ is not a singleton set then it is possible that $\Sigma_0 \bot \not\models$ both p and $\neg p$.
 - Say we have σ_1 , $\sigma_2 \in \Sigma_0 \bot$ where $\sigma_1 \models p$ and $\sigma_2 \models \neg p$. For $\Sigma_0 \bot \models p$, we need all its members to satisfy p, but that's false, so $\Sigma_0 \bot \not\models p$. Similarly, $\Sigma_0 \bot \not\models \neg p$ because not all members of $\Sigma_0 \bot$ satisfy $\neg p$.

¹ In distributed programming, "condition variable" has a related but different meaning.

² "Logical variable" here not the same as "boolean variable".

³ If you run across an old set of these notes, you should know I changed how the notation works in F'20.

H. Total Correctness

- Normally, we want our programs to always terminate⁴ in states satisfying their postcondition
 (assuming we start in a state satisfying the precondition). This property is called *total*correctness.
- **Definition**: The triple $\{p\}$ S $\{q\}$ is **totally correct in** σ or σ satisfies the triple under **total correctness** iff it's the case that if σ satisfies p, then running S in σ always terminates in a state satisfying q.
- In symbols, $\sigma \vDash_{tot} \{p\} S \{q\} \text{ iff } \sigma \neq \bot \text{ and (if } \sigma \vDash p \text{ then } \bot \notin M(S, \sigma) \text{ and } M(S, \sigma) \vDash q).$
 - The $\bot \notin M(S, \sigma)$ clause is redundant because $M(S, \sigma) \models q$ implies $\bot \notin M(S, \sigma)$.
- We specifically require $\sigma = \bot$ because $\bot \not\models p$ and $M(S, \bot) = \{\bot\} \not\models q$, so $(\sigma \models p \text{ implies } M(S, \sigma) \models q)$ reduces to (false implies false), which is true.
- **Definition**: The triple $\{p\}$ S $\{q\}$ is **totally correct** (is **valid** under **total correctness**) iff $\sigma \vDash_{tot} \{p\}$ S $\{q\}$ for all $\sigma \in \Sigma$ (Recall Σ is the set of well-formed proper states.) Usually, we'll write $\vDash_{tot} \{p\}$ S $\{q\}$.

I. Partial vs Total Correctness

- It turns out that reasoning about total correctness can be broken up into two steps: Determine "partial" correctness, where we ignore the possibility of divergence or runtime errors, and then show termination -- i.e., that those errors won't occur.
- **Definition**: The triple $\{p\}$ S $\{q\}$ is **partially correct in** σ or σ satisfies the triple under **partial correctness** iff $\sigma \neq \bot$ and if σ satisfies p, then whenever running S in σ terminates (without error), the final state satisfies q. Note if S diverges or causes a runtime error, we ignore those cases.
- In symbols, $\sigma \vDash \{p\}$ S $\{q\}$ iff $\sigma \ne \bot$ and $(\sigma \vDash p \text{ implies (for every } \tau \in M(S, \sigma), \text{ if } \tau \in \Sigma, \text{ then } \tau \vDash q)).$
- Equivalently, $\sigma \vDash \{p\} \ S \ \{q\} \ \text{iff} \ \sigma \neq \bot \ \text{and} \ (\sigma \vDash p \ \text{implies} \ M(S, \ \sigma) \bot \vDash q).$
- As with total correctness, we can't allow $\sigma = \bot$ for partial correctness because $\bot \not\models p$, which would make ($\sigma \models p \Rightarrow ...$) true.
- **Definition**: The triple $\{p\}$ S $\{q\}$ is **partially correct** (i.e., is **valid** under/for **partial correctness**) iff $\sigma \models \{p\}$ S $\{q\}$ for all states σ . **Notation**: We usually write $\models \{p\}$ S $\{q\}$ but $\Sigma \models \{p\}$ S $\{q\}$ is also ok.

J. More Phrasings of Total and Partial Correctness

• An equivalent way to understand partial and total correctness uses the property that if $\sigma \neq \bot$, then $(\sigma \vDash \neg p)$ iff $\sigma \nvDash p)$ and $(\sigma \vDash p)$ iff $\sigma \nvDash \neg p)$.

⁴ "Terminate" will mean "terminate without error" (Final state $\in \Sigma - \bot$). "Terminate possibly with an error" means we end in Σ_{\bot} .

⁵ The sense of "implies" or "if... then..." used here is not like \rightarrow (which appears in predicates) or \Rightarrow (which is a relationship between predicates). It's "if...then" at a semantic level: If this triple is satisfied or if this set is nonempty, then ... holds.

• For total correctness, if $\sigma \neq \bot$, then

```
[2022-09-15] If \sigma \neq \bot, then \sigma \vDash_{tot} \{p\} S \{q\}
iff \sigma \vDash p implies M(S, \sigma) \vDash q
iff \sigma \vDash \neg p or M(S, \sigma) \vDash q
iff \sigma \vDash \neg p or \tau \vDash q for every member \tau \in M(S, \sigma)
```

- Under total correctness, if *S* is deterministic, then there's only one $\tau \in M(S, \sigma)$, it's $\neq \bot$ and satisfies q. If *S* is nondeterministic, we can have multiple $\tau \in M(S, \sigma)$ and none of them can = \bot .
- For partial correctness, if $\sigma \neq \bot$, then

```
\sigma \vDash \{p\} \ S \ \{q\}
iff \sigma \vDash p implies M(S, \sigma) - \bot \vDash q
iff \sigma \vDash \neg p or M(S, \sigma) - \bot \vDash q
iff \sigma \vDash \neg p or for every \tau \in M(S, \sigma), either \tau = \bot or \tau \vDash q.
```

• Under partial correctness, if *S* is deterministic, then there is only one τ in $M(S, \sigma)$ and either it = \bot or satisfies q. If *S* is nondeterministic, we can have multiple $\tau \in M(S, \sigma)$ and all of them either = \bot_d or = \bot_e or satisfy q.

K. Unsatisfied Correctness Triples

• It's useful to figure out when a state *doesn't satisfy* a triple because not satisfying a triple tells you that there's some sort of bug in the program.

Unsatisfied Total Correctness

- For a state $\sigma \neq \bot$ to not satisfy $\{p\}$ S $\{q\}$ under total correctness, it must satisfy p and running S in it can cause an error or one of its final states does not satisfy q.
 - We have $\sigma \vDash_{tot} \{p\} \ S \ \{q\} \ \text{iff } \sigma \vDash \neg p \ \text{or} \ M(S, \sigma) \vDash q$
 - So $\sigma \not\models_{tot} \{p\} \ S \ \{q\} \ \text{iff } \sigma \vDash p \ \text{and} \ M(S, \ \sigma) \not\vDash q$ iff $\sigma \vDash p \ \text{and} \ (\bot \in M(S, \ \sigma) \ \text{or} \ \tau \not\vDash q \ \text{for some} \ \tau \in M(S, \ \sigma) \xrightarrow{} [2022-09-15]).$
 - (Recall if $\tau \neq \bot$ then $\tau \not\models q$ iff $\tau \models \neg q$.)
- If *S* is deterministic, then $\sigma \vDash p$ and $M(S, \sigma) = \{\tau\}$ where $\tau = \bot$ or $\tau \vDash \neg q$.
- If S is nondeterministic, then $\sigma \models p$ and $(\bot \in M(S, \sigma) \text{ or } \tau \models \neg q \text{ for some } \tau \in M(S, \sigma) = [2022-09-15])$.
 - Note for $\sigma \not\models_{tot} \{p\} \ S \ \{q\}$, it's still possible to have $\tau \in M(S, \sigma)$ where $\tau \vDash q$ because we only need one $\tau \vDash \neg q$.

Unsatisfied Partial Correctness

- For a state $\sigma \neq \bot$ to not satisfy $\{p\}$ S $\{q\}$ under partial correctness, it must satisfy p and running S in it always terminates in a state satisfying $\neg q$.
 - We have $\sigma \vDash \{p\} S \{q\} \text{ iff } \sigma \vDash \neg p \text{ or } M(S, \sigma) \bot \vDash q$
 - So $\sigma \not\models \{p\}$ S $\{q\}$ iff $\sigma \models p$ and $M(S, \sigma) \bot \not\models q$ iff $\sigma \models p$ and $\tau \models \neg q$ for some $\tau \ne \bot$ in $M(S, \sigma)$.

- For deterministic *S*, there's only one τ in $M(S, \sigma)$ and (it must be $\neq \bot$ and) satisfy $\neg q$.
- For nondeterministic *S*, we need one $\tau \in M(S, \sigma)$, $(\tau \neq \bot \text{ and}) \tau \vdash \neg q$.
 - The other $\tau \in M(S, \sigma)$ can be \bot or satisfy q.
 - I.e., at least one path $\langle S, \sigma \rangle \to *\langle E, \tau \rangle$ with $\tau \models \neg q$, but there can be paths $\langle S, \sigma \rangle \to *\langle E, \bot \rangle$ or $\langle S, \sigma \rangle \to *\langle E, \tau \rangle$ with $\tau \models q$.

L. Three Extreme (Mostly Trivial) Cases

- There are three edge cases where partial correctness occurs for uninformative reasons.. First recall the definition of partial correctness: $\sigma \vDash \{p\}$ S $\{q\}$ means (if $\sigma \vDash p$, then $M(S, \sigma) \bot \vDash q$).
 - *p is a contradiction* (i.e., $\models \neg p$). Since $\sigma \models p$ never holds, $M(S, \sigma) \bot \models q$ is irrelevant and partial correctness of $\{p\}$ S $\{q\}$ always holds. So for example, $\{F\}$ S $\{q\}$ is valid under partial correctness, for all S and G. (Even $\{F\}$ S $\{F\}$ and $\{F\}$ S $\{T\}$.)
 - S always doesn't terminate⁶. If $M(S, \sigma) = \{\bot\}$ then $M(S, \sigma) \bot = \emptyset \models q$, so we get partial correctness of $\{p\}$ S $\{q\}$.
 - *q is a tautology* (i.e., $\models q$). Then for any σ , $M(S, \sigma) \bot \models q$, so $(\sigma \models p \text{ implies } M(S, \sigma) \bot \models q)$ is true (so p is irrelevant) and we get partial correctness of $\{p\}$ S $\{q\}$. So for example, $\{p\}$ S $\{T\}$ is valid under partial correctness for all p and S. (Even $\{F\}$ S $\{T\}$.)
- For total correctness, recall $\sigma \vDash_{\text{tot}} \{p\} \ S \ \{q\} \ \text{means} \ (\text{if } \sigma \vDash p \text{, then } M(S, \sigma) \vDash q). \ \text{Note } \bot \not\in M(S, \sigma) \ \text{because} \ \bot \not\in M(S, \sigma) \ \text{implies} \ M(S, \sigma) \not\vDash q)$
 - *p is a contradiction*. The argument here is the same as for partial correctness, so for all *S* and *q*, we have $\vDash_{tot} \{F\} S \{q\}$.
 - *S always doesn't terminate*. Since $M(S, \sigma) = \{\bot\}$, we know $M(S, \sigma) \ne q$. So total correctness of $\{p\}$ *S* $\{q\}$ always fails. I.e., $\sigma \ne_{\mathsf{tot}} \{F\}$ *S* $\{q\}$ for all σ .
 - *q is a tautology*. This case is actually useful. Since $M(S, \sigma) \models T$ implies $\bot \notin M(S, \sigma)$, satisfaction of $\sigma \models_{tot} \{p\} \ S \ \{T\}$ requires S *to always terminate* under σ . So validity of $\models_{tot} \{p\} \ S \ \{T\}$ happens when S always terminates when started in a state satisfying p.
- **Lemma:** $\sigma \vDash_{tot} \{p\} \ S \ \{q\} \ \text{iff } \sigma \vDash \{p\} \ S \ \{q\} \ \text{and } \sigma \vDash_{tot} \{p\} \ S \ \{T\}.$
 - This just says that total correctness is partial correctness plus termination.
 - Partial correctness says that $\langle S, \sigma \rangle \to^*$ to a final state that $\models q$ or is \bot). Termination says every $\langle S, \sigma \rangle \to^*$ to a final state that satisfies true (and thus $\ne \bot$)). So we have total correctness: Every $\langle S, \sigma \rangle \to^*$ to a final state that $\models q$.

 $^{^6}$ Remember, just "terminate" implicitly includes "without error". "Not terminate" means "Diverges or gets a runtime error or whatever other flavor of \bot we have" [2022-09-20]