Cheminformatics Introduction

Jeremy Yang
Associate Instructor
IU School of Informatics and Computing

Instructor: Prof. Joanne Luciano

Cheminformatics: Introduction

gid J. Wild

Cheminformatics is the study of all aspects of the representation and use of chemical and related biological information on computer. It has applications in drug discovery, health, data mining and many other areas

Cheminformatics: What makes drugs so special?

Cheminformatics: Chemotypes

- Benzodiazepines class of tranquilizers sharing a common ring system, a pattern, chemotype or scaffold.
- Similarity principle: similar chemicals, bioactivity.
- Representing chemicals as molecular graphs enables efficient storage and analysis.

Drug name	Brand names
diazepam	Valium, Ducene, Antenex, Valpam
oxazepam	Serepax, Murelax, Alepam
nitrazepam	Mogadon, Alodorm
temazepam	Normison, Temaze, Temtabs
lorazepam	Ativan
flunitrazepam	Rohypnol, Hypnodorm
bromazepam	Lexotan
clonazepam	Rivotril, Paxam

From https://www.wonderwhizkids.com/conceptmaps/Tranquilizers.html

Cheminformatics: Representing molecules JSME Molecular Editor computationally molecular depiction (2D) H₂N SMILES SMILES (Simplified Molecular NCCclccc(0)c(0)c1 Input Line Entry System) Close options: options newlook reaction hydrogens Get molfile Get smiles Upload NCCclccc(0)c(0)cl molfile (connection table) JME 2013-10-12 Sun Sep 17 12:15:13 GMT-600 2017 0.7000 2.1000 2.8000 0.0000 C 2,1000 0.0000 C Bruno Bienfait and Peter Ertl, JSME: a free molecule editor in

JavaScript, J. Cheminformatics 5:24 (2013).

http://pasilla.health.unm.edu/jsme.html

Cheminformatics: Chemical databases

https://pubchem.ncbi.nlm.nih.gov/

Cheminformatics: Chemical patterns

http://pasilla.health.unm.edu/tomcat/biocomp/depict

Cheminformatics: Molecules in 3D

Drug bioactivity is related to 3D properties and interactions.

Cheminformatics: Glossary

small molecule	not a protein or nucleic acid (macromolecule)
pharmacology	study of uses, effects and modes of action of drugs
bioactivity	effect of a chemical on a biological target
IC50, EC50	measures of bioactive potency
structure-activity relationship	bioactivity vs. structural features within a chemical series
molecular descriptor	measured, theoretical or computed property
substructure searching	searching for molecular subgraphs
similarity searching	searching for similar molecules
pharmacophore	3D features pattern interacting with a binding site
molecular modeling	computational models, 2D, 3D and statistical, for explaining, visualizing and predicting
computational chemistry	connotes physics-based modeling, molecular mechanics and dynamics, etc.
virtual screening	in silico search (assay) for bioactive candidates

Cheminformatics: Modeling protein-ligand binding

AutoDock is one of several tools for docking and modeling proteinligand binding.

http://autodock.scripps.edu/

structure.

Cheminformatics: Drug-likeness and lead-likeness

The Lipinski Rule of Five (Ro5) was formulated by Christopher A. Lipinski and published in 1997, and is intended to guide library selection for drug discovery. The following molecular descriptors are used:

- mwt avg molecular weight
- hbd hydrogen bond donor count
- hba hydrogen bond acceptor count
- LogP octanol-water partition coefficient
 The Ro5 specifies that compounds should violate no more than one of the following criteria:
- mwt <= 500
- hbd <= 5
- hba <= 10
- LogP < 5.0

Cheminformatics: Drug discovery applications

- Databases of relevant compounds and metadata
- 2D virtual screening (substructure, similarity)
- 3D virtual screening (shape, pharmacophores)
- Property prediction (e.g. solubility, logP)
- ADMET prediction (absorption, distribution, metabolism, excretion, toxicity)
- Clustering (unsupervised ML)
- Quantitative structure-activity relationship modeling (QSAR)
- Modeling/predicting protein-ligand binding
- De novo design (e.g. GAs)

Cheminformatics: Take home messages

- Understanding the structure and properties of chemicals enables us to explore biological effects and discover new drugs.
- Chemical databases provide access to a wealth of biomedical and drug discovery data, searchable via cheminformatics.
- In silico predictive modeling accelerates and economizes early stage drug discovery.