Problem (4.10)

Lad (X_n) være en følge af i.i.d. stokastiske variable defineret på sandsynlighedsfeltet $(\Omega, \mathcal{F}, \mathbb{P})$. Antag, at $X_1 \in \mathcal{L}^2(\mathbb{P})$, og at $\mathbb{E}[X] = 0$. Sæt endvidere $\sigma^2 = \text{Var}(X_1)$, og antag, at $\sigma^2 > 0$. Sæt endelig $S_n = \sum_{k=1}^n X_k$ for ethvert $n \in \mathbb{N}$.

- (a) Vis for ethert $q \in (0,2)$, at $n^{-1/q}S_n \to 0$ i 2-middel for $n \to \infty$.
- (b) Vis for ethvert $q \in (0, 2)$, at $n^{-1/q}S_n \to 0\mathbb{P}$ -n.o. for $n \to \infty$.
- (c) Vis, at følgen $(n^{-1/2}S_n)$ ikke er konvergent i 2-middel.

Solution

(a) For $m \neq n$ bemærker vi først, at

$$\mathbb{E}\left[X_{m}X_{n}\right] = \mathbb{E}\left[X_{m}\right]\mathbb{E}\left[X_{n}\right] = 0$$

idet X_m og X_n er uafhængige. Dette viser, at elementerne i følgen (X_n) er parvist ortogonale i $\mathcal{L}^2(\mathbb{P})$. Det følger fra Pythagoras' Sætning (Sætning 9.2.3 (ii) i [M&I]), at

$$\mathbb{E}\left[\left(n^{-1/q}S_{n}\right)^{2}\right] = n^{-2/q}\mathbb{E}\left[\left(\sum_{k=1}^{n}X_{k}\right)^{2}\right] = n^{-2/q}\sum_{k=1}^{n}\mathbb{E}\left[X_{k}^{2}\right] = n^{-2/q}n\sigma^{2} \to 0$$

som ønsket.

(b) Jf. Kroneckers Lemma (Lemma 4.3.1) med $b_n = n^{1/q}$ og $a_n = X_n$ er det nok at vise, at $\sum_{k=1}^{\infty} \frac{X_k}{k^{1/q}}$ er konvergent \mathbb{P} -n.o. Ifølge Korollar 4.2.8 er følger dette, hvis vi kan vise, at $\sum_{k=1}^{\infty} \frac{X_k}{k^{1/q}}$ er konvergent i \mathbb{P} - r-middel for et $r \in (0, \infty)$. Vi bemærker, at elementerne i følgen $(n^{-1/q}X_k)$ er parvist ortogonale. Det følger da fra Sætning 9.2.3 (iii) i [M&I], at $\sum_{k=1}^{\infty} \frac{X_k}{k^{1/q}}$ er konvergent i \mathbb{P} -2-middel, hvis blot $\sum_{k=1}^{\infty} \mathbb{E}\left[\left(k^{-1/q}X_k\right)^2\right] < \infty$. Vi ser, at

$$\sum_{k=1}^{\infty} \mathbb{E}\left[\left(k^{-1/q}X_k\right)^2\right] = \sum_{k=1}^{\infty} k^{-2/q} \mathbb{E}\left[X_k^2\right] = \sum_{k=1}^{\infty} k^{-2/q} \sigma^2 < \infty$$

idet 2/q > 1. Vi har dermed vist, at $n^{-1/q}S_n \to 0\mathbb{P}$ -n.o. for $n \to \infty$.

(c) Hvis $(n^{-1/2}S_n)$ er konvergent i 2-middel, er følgen nødvendigvis også Cauchy i 2-middel. Det er således nok at vise, at følgen ikke er Cauchy i 2-middel. For n > m ser vi først, at

$$\mathbb{E}\left[\left(S_{n}-S_{m}\right)S_{m}\right]=\mathbb{E}\left[\left(\sum_{k=m+1}^{n}X_{k}\right)S_{m}\right]=\mathbb{E}\left[\sum_{k=m+1}^{n}X_{k}\right]\mathbb{E}\left[S_{m}\right]=0$$

Dette viser, at $(S_n - S_m)$ og S_m er ortogonale i $\mathcal{L}^2(\mathbb{P})$. Ved at anvende Pythagoras' Sætning får vi, at

$$\begin{split} \mathbb{E}\left[\left(n^{-1/2}S_{n}-m^{-1/2}S_{m}\right)^{2}\right] &= \mathbb{E}\left[\left(n^{-1/2}\left(S_{n}-S_{m}\right)+\left(n^{-1/2}-m^{-1/2}\right)S_{m}\right)^{2}\right] \\ &= \mathbb{E}\left[n^{-1}\left(S_{n}-S_{m}\right)^{2}\right]+\mathbb{E}\left[\left(n^{-1/2}-m^{-1/2}\right)^{2}S_{m}^{2}\right] \\ &= n^{-1}\mathbb{E}\left[\left(\sum_{k=m+1}^{n}X_{k}\right)^{2}\right]+\left(n^{-1/2}-m^{-1/2}\right)^{2}\mathbb{E}\left[\left(\sum_{k=1}^{m}X_{k}\right)^{2}\right] \\ &= n^{-1}\sum_{k=m+1}^{n}\mathbb{E}\left[X_{k}^{2}\right]+\left(n^{-1/2}-m^{-1/2}\right)^{2}\sum_{k=1}^{m}\mathbb{E}\left[X_{k}^{2}\right] \\ &= n^{-1}(n-m)\sigma^{2}+\left(n^{-1/2}-m^{-1/2}\right)^{2}m\sigma^{2} \\ &= \sigma^{2}-n^{-1}m\sigma^{2}+n^{-1}m\sigma^{2}+\sigma^{2}-2n^{-1/2}m^{-1/2}m\sigma^{2} \\ &= \sigma^{2}\left(2-2n^{-1/2}m^{1/2}\right) \end{split}$$

Vi ser dermed, at $\mathbb{E}\left[\left(n^{-1/2}S_n-m^{-1/2}S_m\right)^2\right]ikke$ går mod 0 for $m,n\to\infty$. Altså er ($n^{-1/2}S_n$) ikke Cauchy i 2-middel og således heller ikke konvergent i 2-middel.

Problem (5.2)

Lad X, X_1, X_2, \ldots være absolut kontinuerte stokastiske variable med tætheder hhv. g, g_1, g_2, \ldots med hensyn til lebesgue-målet λ

- (a) Vis, at hvis $g_n \to g$ i 1-middel for $n \to \infty$, da gælder der, at $X_n \xrightarrow{\sim}$ for $n \to \infty$, og at $\lim_{n \to \infty} P(X_n \in A) = P(X \in A)$ for enhvert Borel-mængde A i \mathbb{R} .
- (b) Vis, at hvis $g_n \to g \ \lambda$ -n.o. for $n \to \infty$, da gælder der, at $X_n \xrightarrow{\sim} X$ for $n \to \infty$.
- (c) Vis, at hvis $g_n \to g \lambda$ -n.o. for $n \to \infty$, da gælder der, at $\lim_{n \to \infty} P(X_n \in A) = P(X \in A)$ for enhvert Borel-mængde A i $\mathcal{B}(R)$.

Solution

(a) Vi ved, at

$$\int |g_n - g| \, d\lambda \to 0 \text{ for } n \to \infty$$

Vi skal give at $\mathsf{X}_n \xrightarrow{\sim} \mathsf{X}$ dsv $\mathbb{P}_{\mathsf{X}_n} \xrightarrow{\mathsf{w}} \mathbb{P}_{\mathsf{X}},$ altså

$$\forall f \in C_b(S) : \mathbb{E}[f(\mathsf{X}_n)] = \int_{\mathbb{R}} f(s) \mathbb{P}_{\mathsf{X}_n}(\ \mathrm{d}s) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} f(s) \mathbb{P}_{\mathsf{X}}(\ \mathrm{d}s) = \mathbb{E}[f(\mathsf{X})]$$

Så lad $f \in C_b(S)$. Så har vi:

$$\mathbb{E}[f(\mathsf{X}_n)] = \int_{\mathbb{R}} f(s) \, d\mathbb{P}_{\mathsf{X}_n} = \int_{\mathbb{R}} f(s) g_n(s) \, d\lambda$$

men f er en kontinuert funktion og da $g_n \to g$ i λ -mål så

$$\stackrel{\lambda}{\to} \int_{\mathbb{R}} f(s)g(s) \, d\lambda \stackrel{5.1.6}{\Rightarrow} \mathbb{E}[f(\mathsf{X}_n)] \stackrel{\sim}{\to} \mathbb{E}[f(\mathsf{X})]$$

Lad nu $A \in \mathcal{B}(\mathbb{R})$. Så er

$$\mathbb{P}(\mathsf{X}_n \in A) = \mathbb{P}_{\mathsf{X}_n}(A) = \int_A g_n \, d\lambda$$

$$0 \le |\mathbb{P}(\mathsf{X} \in A) - \mathbb{P}(\mathsf{X}_n \in A)| = |\mathbb{P}_{\mathsf{X}}(A) - \mathbb{P}_{\mathsf{X}_n}(A)| = \left| \int_A g \, d\lambda - \int_A g_n \, d\lambda \right| = \left| \int_A g - g_n \, d\lambda \right| \le \lim_{n \to \infty} \mathbb{P}_{\mathsf{X}_n}(A) = \mathbb{P}_{\mathsf{X}}(A) \forall A \in \mathcal{B}(\mathbb{R})$$

(b) Vi ved at $\lambda(\{x \in \mathbb{R} | \lim_{n \to \infty} g_n(x) = g(x)\}^C) = 0$

$$\Rightarrow \lim_{n \to \infty} \int_{\mathbb{R}} |g_n| \, d\lambda = \lim_{n \to \infty} \int_{\mathbb{R}} g_n \, d\lambda = \int_{\mathbb{R}} g \, d\lambda = \int_{\mathbb{R}} |g| \, d\lambda$$

da tætheder altid er positive. Scheffes lemma giver at dette er ækvivalent med at $g_n \to g$ i 1-middel. Det følger da af a) at $X_n \xrightarrow{\sim} X$.

(c) Det følger af b) at $g_n \to g$ i 1-middel for $n \to \infty$. Delopgave a) giver nu at $\lim_{n\to\infty} P(X_n \in A) = P(X \in A)$ for enhver Borel-mængde $A \in \mathcal{B}(R)$.

Problem (5.4)

Lad $(X_n)_{n\geq 1}$ være en følge af stokastiske variable defineret på sandsynlighedsfeltet $(\Omega, \mathcal{F}, \mathbb{P})$, og antag, at $X_n \xrightarrow{\sim} N(0, 1)$. Vis da, at der findes et sandsynlighedsmål μ på $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, således at $X_n^2 \xrightarrow{\sim} \mu$, og bestem μ .

Solution

Lad X være en stokastisk variabel (defineret på et eller andet sandsynlighedsfelt), således at $X \sim N(0,1)$. Idet $X_n \stackrel{\sim}{\to} X$ giver Sætning 5.2.5 (i), at $X_n^2 \stackrel{\sim}{\to} X^2$ (funktionen $x \mapsto x^2$ er jo kontinuert!). Dvs. at hvis vi lader μ være fordelingen af X^2 , har vi $X_n^2 \stackrel{\sim}{\to} \mu$ som \varnothing nsket.

Eks. 11.1.5 (B) i [M&I] viser, at μ er absolut kontinuert mht. Lebesgue-målet med tæthed

$$f(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2} \mathbf{1}_{(0,\infty)}(x)$$

Dvs. at $\mu = \chi^2(1)$ (altså chi-i-anden-fordelingen med 1 frihedsgrad).

Problem (5.3)

Lad $X, X_1, Y_1, X_2, Y_2, \ldots$ være stokastiske variable på sandsynlighedsfeltet $(\Omega, \mathcal{F}, \mathbb{P})$, og antag, at $X_n \xrightarrow{\sim} X$ for $n \to \infty$.

- (a) Vis, at hvis $\mathbb{P}(X_n < 0) = 0$ for alle n, så gælder der også, at $\mathbb{P}(X < 0) = 0$.
- (b) Vis, at hvis $X_n Y_n \xrightarrow{\sim} 0$, så gælder der også, at $Y_n \xrightarrow{\sim} X$.

Solution

(a) Mængden $(-\infty, 0)$ er åben, så det følger fra Sætning 5.2.3 (iii), at

$$\mathbb{P}(X \in (-\infty, 0)) \le \liminf_{n \to \infty} \mathbb{P}(X_n \in (-\infty, 0)) = 0$$

hvilket viser det ønskede.

(b) Idet 0 er udartet (ikke-stokastisk) følger det fra Sætning 5.2.5 (ii), at $(X_n, X_n \ Y_n) \xrightarrow{\sim} (X, 0)$. Lad nu f(x, y) = x - y, og bemærk at f er kontinuert på hele \mathbb{R}^2 . Da giver Sætning 5.2.5 (i), at

$$Y_n = f(X_n, X_n - Y_n) \xrightarrow{\sim} f(X, 0) = X$$

som ønsket.

Problem (5.6)

5.6. En stokastisk variabel X kaldes udartet (eller degenereret), hvis der findes en konstant $a \in \mathbb{R}$, således at $\mathbb{P}(X = a) = 1$.

Betragt nu en følge (X_n) af udartede stokastiske variable med tilhørende følge af konstanter (a_n) . Vis da, at følgende betingelser er ækvivalente:

- (i) $\lim_{n\to\infty} a_n$ eksisterer i \mathbb{R} (i sædvanlig forstand).
- (ii) (X_n) er konvergent \mathbb{P} -n.o.
- (iii) (X_n) er konvergent i sandsynlighed.
- (iv) (X_n) er konvergent i fordeling.

Solution

Vi ser først, at implikationerne '(ii) \Rightarrow (iii)' og '(iii) \Rightarrow (iv)' følger fra hhv. Sætning 2.4.2 (i) og Sætning 5.1.6.

Antag nu, at (i) er opfyldt, og sæt $a = \lim_{n \to \infty} a_n$. For hvert $n \in \mathbb{N}$ kan vi vælge en \mathbb{P} -nulmængde N_n , således at $X_n(\omega) = a_n$ for alle $\omega \in N_n^c$. Sæt så $N = \bigcup_{n \in \mathbb{N}} N_n$, og bemærk at N er en \mathbb{P} -nulmængde. For $\omega \in N^c = \bigcap_{n \in \mathbb{N}} N_n^c$ gælder der, at $X_n(\omega) = a_n \to a$. Dette viser, at $X_n \to a\mathbb{P}$ -n.o., så specielt er (ii) opfyldt.

Vi mangler implikationen '(iv) \Rightarrow (i)'. Antag derfor, at (iv) er opfyldt. Dvs. at der eksisterer et sandsynlighedsmål μ , således at $X_n \xrightarrow{\sim} \mu$. Vælg jf. Lemma A.5.9 (viii) i [M&I] to delfølger (a_{n_k}) og (a_{m_k}) , således at

$$\lim_{k \to \infty} a_{n_k} = \limsup_{n \to \infty} a_n, \quad \text{og} \quad \lim_{k \to \infty} a_{m_k} = \liminf_{n \to \infty} a_n$$

Vi ønsker nu at vise, at grænseværdierne for (a_{n_k}) og (a_{m_k}) ligger i \mathbb{R} (dvs. at de ikke er ∞ og $-\infty$). Dette følger, hvis vi kan vise, at følgen (a_n) er begrænset. Idet (X_n) er konvergent i fordeling, er (X_n) stram jf. Sætning 5.3.3. Vi kan derfor vælge en kompakt mængde $K \subseteq \mathbb{R}$, således at $\sup_{n \in \mathbb{N}} \mathbb{P}(X_n \in K^c) \leq \frac{1}{2}$. Da gælder der nødvendigvis, at $a_n \in K$ for alle n, hvilket viser, at følgen (a_n) er begrænset (idet kompakte mængder er begrænsede). Vi har nu vist, at $\lim_{k \to \infty} a_{n_k}$ og $\lim_{k \to \infty} a_{m_k}$ eksisterer i \mathbb{R} . Da følger det fra ovenstående (implikationen '(i) \Rightarrow (iv)', at $X_{n_k} \xrightarrow{\sim} \lim\sup_{n \to \infty} a_n$ og $X_{m_k} \xrightarrow{\sim} \lim\inf_{n \to \infty} a_n$. Samtidig har vi, at $X_{n_k} \xrightarrow{\sim} \mu$ og $X_{m_k} \xrightarrow{\sim} \mu$. Pr. entydighed af grænsefordeling (Korollar 5.1.5) gælder der, at $\lim\sup_{n \to \infty} a_n \sim \mu$, samt at $\lim\inf_{n \to \infty} a_n \sim \mu$. Vi konkluderer, at $\lim\sup_{n \to \infty} a_n = \lim\inf_{n \to \infty} a_n$, hvilket viser, at grænseværdien $\lim_{n \to \infty} a_n$ eksisterer.

Problem (5.7)

Denne opgave går ud på at vise, at enhver ikke-tom, åben delmængde G af \mathbb{R} kan skrives på formen: $G = \bigcup_{i \in I} (a_i, b_i)$, hvor

- (i) $I = \mathbb{N}$, eller $I = \{1, \dots, N\}$ for et $N \in \mathbb{N}$.
- (ii) $-\infty \le a_i < b_i \le \infty$ for alle $i \in I$.
- (iii) Intervallerne (a_i, b_i) er disjunkte.

Vi sætter indledningsvist $Q = G \cap \mathbb{Q} \neq \emptyset$. For hvert $q \in Q$ sætter vi endvidere

$$q_1 = \inf\{a \in \mathbb{R} \mid (a, q] \subseteq G\}, \quad q_2 = \sup\{b \in \mathbb{R} \mid [q, b) \subseteq G\}, \quad \text{og} \quad I(q) = (q_1, q_2)$$

- (a) Vis, at $I(q) \subseteq G$ for alle $q \in Q$.
- (b) Vis, at der for alle $q, r \in Q$ gælder implikationen: $q \in I(r) \Longrightarrow I(q) = I(r)$. Lad nu \mathcal{J} betegne systemet af forskellige intervaller fra $\{I(q) \mid q \in Q\}$.
- (c) Redegør for, at \mathcal{J} kan skrives på formen: $\mathcal{J} = \{(a_i, b_i) \mid i \in I\}$, hvor I, a_i, b_i og (a_i, b_i) opfylder (1)-(3) ovenfor.
- (d) Vis, at $G = \bigcup_{i \in I} (a_i, b_i)$.

Solution

- (a) Lad $q \in Q$ og $s \in I(q)$. Hvis $s \leq q$ kan vi pr. definition af q_1 vælge $a \in \mathbb{R}$, således at $(a,q] \subseteq G$, og $q_1 < a < s$. Da ser vi, at $s \in (a,q] \subseteq G$. Hvis $s \geq q$ vælger vi i stedet $b \in \mathbb{R}$, således at $[q,b) \subseteq G$, og $s < b < q_1$. Da har vi, at $s \in [q,b) \subseteq G$. Altså har vi vist, at $I(q) \subseteq G$.
- (b) Lad $q, r \in Q$, og antag, at $q \in I(r)$. Vi viser først, at $I(r) \subseteq I(q)$. Lad derfor $s \in I(r)$. Hvis $s \ge q$ kan vi vælge $\epsilon > 0$, således at $[q, s + \epsilon) \subseteq I(r) \subseteq G$ (vælg f.eks. $\epsilon = (r_2 s)/2$). I så fald er $q_2 \ge s + \epsilon > s$, hvilket medfører, at $s \in [q, q_2) \subseteq I(q)$. Hvis $s \le q$ vælger vi $\epsilon > 0$, således at $(s \epsilon, q] \subseteq I(r) \subseteq G$. Da har vi, at $q_1 \le s \epsilon < s$, hvilket giver, at $s \in (q_1, q] \subseteq I(q)$. Vi har dermed vist, at $I(r) \subseteq I(q)$. Specielt gælder der så, at $r \in I(q)$ (da $r \in I(r)$). Så giver ovenstående (med q og r byttet rundt), at $I(q) \subseteq I(r)$. Vi konkluderer således, at I(q) = I(r).
- (c) Idet $Q \subseteq \mathbb{Q}$, er Q højst tællelig. Derfor må \mathcal{J} også højst have tælleligt mange elementer. Samtidig er elementerne i \mathcal{J} ikke-tomme, åbne intervaller. Vi kan derfor skrive $\mathcal{J} = \{(a_i, b_i) \mid i \in I\}$, hvor I opfylder (1), og hvor der gælder implikationen: $i \neq j \Longrightarrow (a_i, b_i) \neq (a_j, b_j)$. Betragt nu forskellige intervaller $(a_i, b_i) \neq (a_j, b_j)$. For ethvert $q \in (a_i, b_i)$ gælder der da, at $q \notin (a_j, b_j)$ jf. delopgave (b). Altså er (3) ligeledes opfyldt.

(d) For ethvert $i \in I$ husker vi, at $(a_i, b_i) = I(q) \subseteq G$, hvor $q \in Q$. Altså gælder der, at $G \supseteq \bigcup_{i \in I} (a_i, b_i)$. Lad nu $g \in G$. Vælg først $\epsilon > 0$, således at $(g - \epsilon, g + \epsilon) \subseteq G$, og vælg så $q \in (g - \epsilon, g + \epsilon) \cap \mathbb{Q} \subseteq Q$. Så gælder der, at $(g - \epsilon, q] \subseteq G \log[q, g + \epsilon) \subseteq G$. Det følger, at $(g - \epsilon, g + \epsilon) \subseteq I(q)$. Vi har således vist, at $g \in I(q)$ for et $q \in Q$. Der findes derfor $i \in I$ med $g \in (a_i, b_i)$. Dette viser, at $G \subseteq \bigcup_{i \in I} (a_i, b_i)$