复旦大学计算机科学与技术学院

2021~2022 学年第一学期期末考试试卷(第一部分)

■ A 卷 □	B卷[C卷
---------	-----	----

课程	! 名称:	数据结构	课程代码:	COMP130004.01
开课	·院系: _	计算机科学技术学院	考试形式:	开卷/闭卷/课程论文/其他
提	示:请同	学们秉持诚实守信宗旨,谨守考	试纪律,摒	弃考试作弊。学生如有违反学校
考试纪	律的行为	ງ,学校将按《复旦大学学生纪律	聿处分条例》	规定予以严肃处理。
-,	填空题	(共13题,每题2分,共2	26分)	
		·个10阶对称矩阵 A,采用压缩存 且存储地址为1,设每个元素占用		
2.	若正文	工串长度为n,模式串长度为m,则	串匹配的 KMP	算法的时间复杂度为。
3. 出栈顺序:		·栈初始为空,现将一些元素入栈 f, e, a,则这个栈至少需要能同		元素的入栈顺序为 a, b, c, d, e, f, 个元素。
		计动窗口最大值问题时,使用的主 队列; D. 优先队列)。	三要数据结构	为(A. 栈; B. 先进先
5. 为	若一想 。	是二叉树的中序遍历为 HBIACFEC	GD,后序遍历	历为 HIABFDGEC,则其先序遍历
6.	若一棵	是完全二叉树有 n 个叶子节点,则	则它一共有_	
7.	若使用	左子女-右兄弟表示法存储如下	三叉树,则料	将产生个空指针。
		A		
			B F E	
8. 法查找关 ⁴		表 (8, 11, 15, 19, 25, 26, 30, 33, 4),需做的关键码比较次数为	2, 48, 50, 55, 次。	59,62,64)中,用二分(折半)
9.	若一个	非联通简单无向图有 36 条边,	则其至少有_	个顶点。
10). 求图的]最小生成树有两种算法,其中_	更注	适合求稀疏图的最小生成树。

- 11. 在 AOE 网中, 从源点到汇点路径上各活动时间总和最长的路径称为。
- 12. 设用希尔排序对数组 {98, 36, 19, 5, 47, 23, 1, 8, 10, 7} 从小到大排序, 给出的步长(也称增量序列)依次是 5、3、1,则写出首趟排序结束后,数组各元素的值为 。
- 13. 请选出一个最适合外排序的排序算法_____(A. 三路划分快速排序; B. 多路归并排序; C. 堆排序; D. 基数排序)。

二、 简答题(共4题34分)

答题时可以直接引用教科书上的算法,无需描述其具体实现细节;如对该算法有优化,则需要简要说明。

1. (8分) 定义如下数据结构用于多元多项式的存储和计算,请回答以下问题:

〇1) 已知三元多项式 $3x_0^4(2x_1^2(x_2^{10}+3x_2)-x_1x_2)+12x_0^2(31x_1^5+6x_2^3)+13$ 。每个节点参考下图,画出基于该数据结构的示意图(依次以 x_0,x_1,x_2 作为第一到第三层的变元)。(4 分)

(2) 若给定 x_0, x_1, x_2 的值,如何计算上述多元多项式的值?阐明解答该问题的算法原理。(4分)

- 2. (8分)查找算法包括哈希查找,AVL 树查找,解答下列问题。
- (1) 已知一个散列表: 其散列函数为h(key) = key % 9, 试用开放定址法中线性探测再散列解决冲突,分别在表 1 里依次插入 40, 32。(2 分)

				表	1				
下标序号	0	1	2	3	4	5	6	7	8
关键字					49		24	7	33

(2) 若使用 AVL 树查找方法,在图 1 建立 AVL 树过程中依次插入关键字 40,32。分别画出每个操作后的 AVL 树。(2分)

图 1

- (3) 已知所有查询在整数区间[1,50]上等概率分布。求在插入40,32前,上述散列表和AVL树的平均查找长度(设AVL树搜索失败无额外开销)。请写出计算过程。(4分)
- 3. $(10 \, \text{分})$ 给定 $5 \, \text{个村庄}$ (A、B、C、D、E) 之间的交通图如下图所示,若村庄 i 到 j 有道路,则将顶点 i 到 j 用有向边连接,边上 w_{ij} 表达这条道路长度。请回答如下问题:
 - (1) 若使用有向图的邻接表存储该交通图, 画出该图的邻接表存储构造。(2分)
 - (2) 若要求其他各村庄到村庄 B 的最短途径长度,阐明解答上述问题算法,要求时间复杂度尽可能最优。(4分)
 - (3) 若要从这 5 个村庄中选取一种村庄建一所医院,使各村往返医院的平均最短路程最小,阐明解答上述问题算法。(4 分)

4. (8分) 定义一个升序排序算法如下所示,请回答如下问题:

```
vector<int> A;
2
3
   void myfunc(int l, int r) {
       if (r - l + 1 >= 3) {
4
          int m = (r - l + 1) / 3;
5
          myfunc(l, r - m);
6
:7
          myfunc(l + m, r);
          myfunc(l, r - m);
8
9
       }
       else if (A[l] > A[r]) {
10
          swap(A[l], A[r]); // 交换 A[l], A[r]的值
11
12
       }
13 }
```

- (1) 该函数是否能正确实现数组 *A* 的升序排列?如果能,请给出简要证明;如果不能,请给出反例并说明计算过程。(4分)
- (2) 请给出该算法的时间复杂度并简要证明。(4分)