Demystifying Barycentric Coordinates

Cody Johnson

September 22, 2013

1 Introduction

Consider any triangle $\triangle ABC$ and a point P not necessarily within $\triangle ABC$. Let A', B', and C' be the intersections of lines AP, BP, and CP with BC, AC, and AB, respectively, as shown in the figure below. Now let x = PA', y = PB', and z = PC', as also shown in the figure.

We write the barycentric coordinate of P as P=(x:y:z), but since barycentric coordinates are homogeneous, we usually use normalized barycentric coordinates. Normalized barycentric coordinates are in the form of (a,b,c) such that a+b+c=1. To convert from general barycentric coordinates to normalized barycentric coordinates, we use $(a,b,c)=\left(\frac{x}{x+y+z},\frac{y}{x+y+z},\frac{z}{x+y+z}\right)$. Note that if any one of a,b,c is negative, then the point is not within the triangle.

Exercise 1. Find the normalized barycentric coordinates of A, B, and C.

Solution 1. Clearly, if point P in the diagram above is point A, then y = z = 0, so the ratio is (x : 0 : 0). Normalizing, we get A = (1, 0, 0). Similarly, we get B = (0, 1, 0) and C = (0, 0, 1).

Theorem 1. Given points $P = (a_1, b_1, c_1)$, $Q = (a_2, b_2, c_2)$, and $R = (a_3, b_3, c_3)$, the signed area

$$[PQR] = [ABC] \cdot \left| egin{array}{ccc} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \ \end{array} \right|$$

Corollary 1. Three points $P = (a_1, b_1, c_1)$, $Q = (a_2, b_2, c_2)$, and $R = (a_3, b_3, c_3)$ are collinear if and only if

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Exercise 2. Find the equations of lines AB, AC, and BC.

Solution 2. If a point P(a,b,c) is on AB, then A, B, and P are collinear. Hence,

$$\left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{array} \right| = c = 0$$

1

Thus, the equation of line AB is c=0. Similarly, the equations of lines AC and BC are b=0 and a=0, respectively.

Exercise 3. Find the coordinates of the midpoints $M_{\overline{AB}}$, $M_{\overline{AC}}$, and $M_{\overline{BC}}$ of segments \overline{AB} , \overline{AC} , and \overline{BC} .

Solution 3. Since the midpoint of segment \overline{AB} is on line AB, it follows that c=0. Also, the distances x=y, so the general barycentric coordinate is $M_{\overline{AB}}=(x:x:0)$. Normalizing, we get $M_{\overline{AB}}=\left(\frac{1}{2},\frac{1}{2},0\right)$. Similarly, we get $M_{\overline{AC}}=\left(\frac{1}{2},0\frac{1}{2}\right)$ and $M_{\overline{BC}}=\left(0,\frac{1}{2},\frac{1}{2}\right)$.

Exercise 4. Find the coordinates of the trisectors T_1 and T_2 of segment \overline{AB} , with $AT_1 < AT_2$.

Solution 4. Since the trisector of segment \overline{AB} is on line AB, it follows that c=0. Also, the distances 2y=x, so the general barycentric coordinate is $T_1=(2y:y:0)$. Normalizing, we get $T_1=\left(\frac{2}{3},\frac{1}{3},0\right)$. Similarly, we get $T_2=\left(\frac{1}{3},\frac{2}{3},0\right)$.

Exercise 5 (Ceva's Theorem). Prove that cevians $\overline{AA'}$, $\overline{BB'}$, and $\overline{CC'}$ are concurrent if and only if

$$\frac{\overline{BA'}}{\overline{A'C}} \frac{\overline{CB'}}{\overline{B'A}} \frac{\overline{AC'}}{\overline{C'B}} = 1$$

Proof. Let the intersection of the cevians be P = (a, b, c) and A' = (0, d, 1 - d), B' = (1 - e, 0, e), and C' = (f, 1 - f, 0). We have from collinearity

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & d & 1 - d \\ a & b & c \end{vmatrix} = dc - b(1 - d) = 0 \to \frac{c}{b} = \frac{1 - d}{d},$$

$$\begin{vmatrix} 0 & 1 & 0 \\ 1 - e & 0 & e \\ a & b & c \end{vmatrix} = ea - (1 - e)c = 0 \to \frac{a}{c} = \frac{1 - e}{e}, \text{ and}$$

$$\begin{vmatrix} 0 & 0 & 1 \\ f & 1 - f & 0 \\ a & b & c \end{vmatrix} = fb - (1 - f)a = 0 \to \frac{b}{a} = \frac{1 - f}{f}$$

Multiplying these three together yields

$$\frac{1-d}{d}\frac{1-e}{e}\frac{1-f}{f} = 1$$

which is equivalent to Ceva's Theorem from homogeneity.