

STATISTICS FOR DATA SCIENCE HYPOTHESIS and INFERENCE

Dr. Deepa NairDepartment of Science and Humanities

UNIT-4 HYPOTHESIS and INFERENCE

Session-5

Drawing Conclusions from the Results of Hypothesis Tests

Dr. Deepa Nair

Department of Science and Humanities

Drawing Conclusions from the Results of Hypothesis Tests

Choose H_0 to Answer the Right Question:

• When performing a hypothesis test, it is important to choose H_0 and H_1 appropriately so that the result of the test can be useful in forming a conclusion.

Drawing Conclusions from the Results of Hypothesis Tests

PES UNIVERSITY ONLINE

Choose H_0 to Answer the Right Question:

- Specifications for a water pipe call for a mean breaking strength μ of more than 2000 lb per linear foot.
- Engineers will perform a hypothesis test to decide whether or not to use a certain kind of pipe.
- They will select a random sample of 1 ft sections of pipe, measure their breaking strengths, and perform a hypothesis test.

Drawing Conclusions from the Results of Hypothesis Tests

Choose H_0 to Answer the Right Question:

- The pipe will not be used unless the engineers can conclude that $\mu > 2000$.
- Assume they test H_0 : $\mu \leq 2000 \ versus \ H_1$: $\mu > 2000$.
- Will the engineers decide to use the pipe if H_0 is rejected? What if H_0 is not rejected?

Drawing Conclusions from the Results of Hypothesis Tests

Choose H_0 to Answer the Right Question:

Solution:

- If H_0 is rejected, the engineers will conclude that $\mu > 2000$, and they will use the pipe.
- If H_0 is not rejected, the engineers will conclude that μ might be less than or equal to 2000, and they will not use the pipe.

Drawing Conclusions from the Results of Hypothesis Tests

Choose H_0 to Answer the Right Question:

- Assume the engineers test H_0 : $\mu \geq 2000 \ versus \ H_1$: $\mu < 2000$.
- Will the engineers decide to use the pipe if H_0 is rejected? What if H_0 is not rejected?

Drawing Conclusions from the Results of Hypothesis Tests

Choose H_0 to Answer the Right Question:

Solution:

- If H_0 is rejected, the engineers will conclude that $\mu < 2000$, and they will not use the pipe.
- If H_0 is not rejected, the engineers will conclude that μ might be greater than or equal to 2000, but that it also might not be. So again, they won't use the pipe.

Drawing Conclusions from the Results of Hypothesis Tests

Statistical Significance Is Not the Same as Practical Significance:

- The *P*-value does not measure practical significance.
- What it does measure is the degree of confidence we can have that the true value is really different from the value specified by the null hypothesis.

Drawing Conclusions from the Results of Hypothesis Tests

PES UNIVERSITY ONLINE

Statistical Significance Is Not the Same as Practical Significance:

- When the *P*-value is small, then we can be confident that the true value is really different.
- This does not necessarily imply that the difference is large enough to be of practical importance.

Drawing Conclusions from the Results of Hypothesis Tests

The Relationship Between Hypothesis Tests and Confidence Intervals:

- The values contained within a two-sided level $100(1-\alpha)\%$ confidence interval for a population mean μ are precisely those values for which the P-value of a two-tailed hypothesis test will be greater than α .
- Example: the 95% confidence interval consists of precisely those values of μ whose P-values are greater than 0.05 in a hypothesis test.

Drawing Conclusions from the Results of Hypothesis Tests

The Relationship Between Hypothesis Tests and Confidence Intervals:

- A one-sided level $100(1-\alpha)\%$ confidence interval consists of all the values for which the *P*-value in a one-tailed test would be greater than α .
- The confidence level is equivalent to (1α) level. So, if your significance level is 0.05, the corresponding confidence level is 95%.

Drawing Conclusions from the Results of Hypothesis Tests

Rejection Region approach for Hypothesis Test

Critical Point & Rejection Region

- A critical point is a value of the test statistic that produces a P-value exactly equal to α .
- The region on the side of the critical point that leads to rejection is called the rejection region.
- The critical point itself is also in the rejection region.

Drawing Conclusions from the Results of Hypothesis Tests

- A machine runs on an average of 125 hours/year.
- A random sample of 49 machines has an annual average use of 126.9 hours with standard deviation 8.4 hours.
- Does this suggest to believe that machines are used on the average more than 125 hours annually at 0.05 level of significance.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

 $\mu =$ average number of hours a machine runs in an year.

 H_0 . $\mu \leq 125$ hours/year , H_1 . $\mu > 125$

 $L.O.S.: \propto = 0.05$

Calculation:
$$Z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} = \frac{126.9 - 125}{8.4/\sqrt{49}} = 1.58$$

P- value is .0571 > 0.05

So we need to accept H_o .

We can not believe that machine works more than 125 hours in an year.

Drawing Conclusions from the Results of Hypothesis Tests

- A manufacture of tyres guarantees that the average lifetime of its tyres is more than 28000 miles.
- If 40 tyres of this company tested, yields a mean lifetime of 28463 miles with s.d. of 1348 miles.
- Can the guarantee be accepted at 0.01 L.O.S.?

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Significance level $\alpha = 0.01$

$$H_0: \ \mu \leq 28000, \qquad H_1: \ \mu > 28000$$

$$\overline{X} = 28463 \ miles, n = 40 \ \sigma \rightarrow s = 1348 \ miles$$

$$\mathbf{z} = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} = \frac{28463 - 28000}{1348/\sqrt{40}} = \mathbf{2.17}$$

P value: 0.015 > 0.01

We need to Reject the null hypothesis.

Drawing Conclusions from the Results of Hypothesis Tests

Example:

• Can it be concluded that the average lifespan of Indian is more than 70 years if a random sample of 100 Indians has an average lifespan of 71.8years with a s.d of 8.9 years

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Significance level $\alpha = 0.05$

$$H_0$$
: $\mu \leq 70~years$, H_1 : $\mu > 70$ years $\overline{X} = 71.8~years$, $n = 100~\sigma \rightarrow s = 8.9~years$ $z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} = \frac{71.8 - 70}{8.9/\sqrt{100}} = 2.02$

P value: 0.015 > 0.01

We need to Reject the null hypothesis.

Dr. Deepa Nair

Department of Science and Humanities

deepanair@pes.edu