Physical properties of entangled Majorana fermion states on textured surfaces of topological insulators

Colloquium Maike Schön

February 19, 2018

Content

- Introduction
- 2 The architecture
- 3 Applicability for quantum information processing
 - Majorana bound states
 - Braiding of Majorana zero modes
 - Fusion and read out method

① Existence of topological protected Majorana zero modes located at the boundaries

- Existence of topological protected Majorana zero modes located at the boundaries
- Controlled quantum state manipulations (braiding of Majorana bound states)

- Existence of topological protected Majorana zero modes located at the boundaries
- 2 Controlled quantum state manipulations (braiding of Majorana bound states)
- 3 Fusion

- Existence of topological protected Majorana zero modes located at the boundaries
- Controlled quantum state manipulations (braiding of Majorana bound states)
- 3 Fusion
- Read out
 (method for initialization and read out of the quantum bit states)

The architecture

SC: superconducting ring (blue)

3DTI: three dimensional topological insulator thin film (white)

M: ferromagnetic dopant (green)

Question:

Is that possibly a new potential quantum bit architecture?

Subsystem of consideration effective (2D) surface Hamiltonian

$$\mathcal{H}_{\text{surface}} = \frac{i}{2} [\sigma \mathbf{p}, \sigma \mathbf{n}] = \frac{i}{2} \mathbf{p} \mathbf{n} + \frac{1}{2} (\mathbf{n} (\mathbf{p} \times \sigma) + (\mathbf{p} \times \sigma) \mathbf{n})$$
 (regime of low-energy excitations) electrochemical potential:

effective surface Hamiltonian of the 3DTI

$$\mathcal{H}_{\mathrm{3DTI}} = v_F \left(\boldsymbol{\sigma} \times \boldsymbol{\rho} \right) \hat{\mathbf{e}}_z \tau_z - \mu \, \sigma_0 \tau_z = v_F \left(\sigma_x \rho_y - \sigma_y \rho_x \right) \tau_z - \mu \, \sigma_0 \tau_z$$

Subsystem of consideration magnetic flux quantum $\Phi_0 = \frac{h}{2e}$

 $\Phi_0 = \frac{h}{2e}$ created by external magnetic field $\boldsymbol{B} = |B| \, \hat{\boldsymbol{e}}_z$ (set $\hbar = 1$)

Subsystem of consideration proximitized super conductor $\Delta(r,\theta)$

$$\Delta(r,\theta) = \Delta_0 e^{i\theta} \Theta(R_{out} - r) \Theta(r - R_{in}) = \vartheta(r) e^{i\theta}$$
 (blue)

effective proximity induced Hamiltonian:

$$\mathcal{H}_{\Delta} = \frac{1}{2} \left[\Delta (\tau_{\mathsf{x}} + i \tau_{\mathsf{y}}) + \Delta^* (\tau_{\mathsf{x}} - i \tau_{\mathsf{y}}) \right]$$

Subsystem of consideration

doped magnetic field M(r)

$$M(r, \theta) \equiv M(r) = M_0[\Theta(r - R_{out}) + \Theta(R_{in} - r)]$$
 (green)

effective magnetic Hamiltonian: $\mathcal{H}_{\mathsf{M}} = \boldsymbol{M}(r)\boldsymbol{\sigma}\tau_0 = M(r)\sigma_z\tau_0$

Subsystem of consideration

geometric boundaries R_{in} and R_{out}

Goal: find states of zero energy at the boundaries R_{in} and R_{out} (red)

The full Hamiltonian matrix for the low energy surface states:

$$\mathcal{H} = \mathcal{H}_{\mathsf{3DTI}} + \mathcal{H}_{\Delta} + \mathcal{H}_{\mathsf{M}} = egin{pmatrix} -\mu + M & v_F p_+ & \Delta & 0 \\ v_F p_- & -\mu - M & 0 & \Delta \\ \Delta^* & 0 & \mu + M & -v_F p_+ \\ 0 & \Delta^* & -v_F p_- & \mu - M \end{pmatrix}$$

The total Hamiltonian: $H = 1/2\Psi^{\dagger} \mathcal{H} \Psi$

(in polar coordinates)
$$p_{+}=e^{-i\theta}\left(\partial_{r}-\frac{i}{r}\partial_{\theta}\right),\;p_{-}=-e^{+i\theta}\left(\partial_{r}-\frac{i}{r}\partial_{\theta}\right),\;p_{+}=p_{-}^{*}$$

$$\psi=\left(\psi_{\uparrow},\psi_{\downarrow}\right)^{T}\text{ (spin space)}$$

$$\Psi=\left(\left(\psi_{\uparrow},\psi_{\downarrow}\right),\left(\psi_{\downarrow}^{\dagger},-\psi_{\uparrow}^{\dagger}\right)\right)^{T}\text{ (Nambu spinor space)}$$

Important property of the Hamiltonian matrix: ${\mathcal H}$

particle-hole symmetry: $\Xi \mathcal{H} \Xi = -\mathcal{H}$, with particle-hole symmetry operator $\Xi = \sigma_x \tau_v \hat{C}$

Important property of the Hamiltonian matrix: ${\mathcal H}$

particle-hole symmetry: $\Xi \mathcal{H} \Xi = -\mathcal{H}$, with particle-hole symmetry operator $\Xi = \sigma_x \tau_y \hat{C}$

$$\mathcal{H}\Psi_F = E\Psi_F$$
 and $E = 0$

Important property of the Hamiltonian matrix: ${\mathcal H}$

particle-hole symmetry: $\Xi \mathcal{H} \Xi = -\mathcal{H}$, with particle-hole symmetry operator $\Xi = \sigma_x \tau_y \hat{C}$

$$\mathcal{H}\Psi_E = E\Psi_E$$
 and $E = 0$

$$\Rightarrow \Xi \Psi_0 = \Psi_0$$

$$\Rightarrow$$
 $\Psi_0 = (a, b, b^*, -a^*)^T = \Psi_0(r, \theta)$

with
$$a(r,\theta) o \psi_{\uparrow}$$
 and $b(r,\theta) o \psi_{\downarrow}$

magnetic region

$$arepsilon_M(m{k}) = -\mu \pm \sqrt{v^2 k^2 + M_0^2} \Rightarrow arepsilon_M(m{k} = 0) = -\mu \pm |M_0|$$
 (i) $|M_0| < |\mu|$ (topological region) (ii) $|M_0| > |\mu|$ (topological trivial region)

superconducting region:

$$arepsilon(\mathbf{k}) = \sqrt{\left(\mu \pm v_F \, |\mathbf{k}|\right)^2 + \left|\Delta_0\right|^2}$$

 $|\Delta_0| \neq 0$ (topological region)

magnetic region

$$egin{aligned} arepsilon_M(m{k}) &= -\mu \pm \sqrt{v^2 k^2 + M_0^2} \Rightarrow arepsilon_M(m{k}=0) = -\mu \pm |M_0| \ & ext{(i)} \quad |M_0| \quad < \quad |\mu| \quad ext{(topological region)} \ & ext{(ii)} \quad |M_0| \quad > \quad |\mu| \quad ext{(topological trivial region)} \end{aligned}$$

superconducting region

$$arepsilon(m{k})=\sqrt{\left(\mu\pm v_F\,|m{k}|
ight)^2+\left|\Delta_0
ight|^2}$$

$$|\Delta_0|
eq 0 \quad ext{(topological region)}$$

magnetic region

$$egin{aligned} arepsilon_M(m{k}) &= -\mu \pm \sqrt{v^2 k^2 + M_0^2} \Rightarrow arepsilon_M(m{k} = 0) = -\mu \pm |M_0| \ & ext{(i)} \quad |M_0| \quad < \quad |\mu| \quad ext{(topological region)} \ & ext{(ii)} \quad |M_0| \quad > \quad |\mu| \quad ext{(topological trivial region)} \end{aligned}$$

superconducting region

$$\varepsilon(\mathbf{k}) = \sqrt{(\mu \pm v_F |\mathbf{k}|)^2 + |\Delta_0|^2}$$

 $|\Delta_0|
eq 0$ (topological region)

magnetic region

$$egin{aligned} arepsilon_M(m{k}) &= -\mu \pm \sqrt{v^2 k^2 + M_0^2} \Rightarrow arepsilon_M(m{k} = 0) = -\mu \pm |M_0| \end{aligned}$$
 (i) $|M_0| < |\mu|$ (topological region) (ii) $|M_0| > |\mu|$ (topological trivial region)

superconducting region:

$$arepsilon(oldsymbol{k}) = \sqrt{\left(\mu \pm v_F \left|oldsymbol{k}
ight|
ight)^2 + \left|\Delta_0
ight|^2}$$

 $|\Delta_0| \neq 0$ (topological region)

magnetic region

$$\begin{split} \varepsilon_M(\textbf{\textit{k}}) &= -\mu \pm \sqrt{v^2 k^2 + M_0^2} \Rightarrow \varepsilon_M(\textbf{\textit{k}} = 0) = -\mu \pm |M_0| \\ & \text{(i)} \quad |M_0| \quad < \quad |\mu| \quad \text{(topological region)} \\ & \text{(ii)} \quad |M_0| \quad > \quad |\mu| \quad \text{(topological trivial region)} \end{split}$$

superconducting region:

$$\varepsilon(\mathbf{k}) = \sqrt{(\mu \pm v_F |\mathbf{k}|)^2 + |\Delta_0|^2}$$

$$|\Delta_0| \neq 0 \text{ (topological region)}$$

chemical potential

solve for each region separately

for each region reduce to a set of two Bessel differential equations

in the following $f(r) o \psi_{\uparrow}$ and $g(r) o \psi_{\downarrow}$

solutions for different regions

for region (I):
$$f_{<}^{out}(r) = c_{<}^{out}I_{0}(ar)$$
$$g_{<}^{out}(r) = -bc_{<}^{out}I_{1}(ar)$$

solutions for different regions

$$f_{>}^{out}(r) = c_{>}^{out} K_0(ar)$$

 $g_{>}^{out}(r) = bc_{>}^{out} K_1(ar)$

solutions for different regions

for region (III):

$$f^{in}(r) = c_1^{in} J_0(\mu r) + c_2^{in} Y_0(\mu r)$$

 $g^{in}(r) = c_1^{in} J_1(\mu r) + c_2^{in} Y_1(\mu r)$

Wave functions of zero energy at the boundaries

$$\Psi^{R_{in}}_{0}(r,\theta) = e^{-V(r)} \begin{pmatrix} f_{<}(r) \\ g_{<}(r)e^{i\theta} \\ g_{<}(r)e^{-i\theta} \\ -f_{<}(r) \end{pmatrix}$$

$$\Psi^{R_{out}}_{0}(r,\theta) = e^{-V(r)} \begin{pmatrix} f_{>}(r) \\ g_{>}(r)e^{i\theta} \\ g_{>}(r)e^{-i\theta} \\ -f_{>}(r) \end{pmatrix}$$

outer boundary:
$$V(r) = \int\limits_{r}^{R_{out}} \mathrm{d}r' \vartheta(r'),$$

inner boundary: $V(r) = \int\limits_{R_{in}}^{r} \mathrm{d}r' \vartheta(r'),$
with $\vartheta(r) = \Delta_0 \Theta(R_{out} - r) \Theta(r - R_{in})$

When they are localized at the boundaries?

$$\Psi^{R_{in}}_{0}(r,\theta) = e^{-V(r)} \begin{pmatrix} f_{<}(r) \\ g_{<}(r)e^{i\theta} \\ g_{<}(r)e^{-i\theta} \\ -f_{<}(r) \end{pmatrix}$$

$$\Psi^{R_{out}}_{0}(r,\theta) = e^{-V(r)} \begin{pmatrix} f_{>}(r) \\ g_{>}(r)e^{i\theta} \\ g_{>}(r)e^{i\theta} \\ g_{>}(r)e^{-i\theta} \\ -f_{>}(r) \end{pmatrix}$$

outer boundary:
$$V(r) = \int\limits_{r}^{R_{out}} \mathrm{d}r' \vartheta(r'),$$

inner boundary: $V(r) = \int\limits_{R_{in}}^{r} \mathrm{d}r' \vartheta(r'),$
with $\vartheta(r) = \Delta_0 \Theta(R_{out} - r) \Theta(r - R_{in})$

Edge state components for different magnetic fields relative to μ

Edge state components for different values for gap strength Δ_0 (SC)

Majorana zero mode operators

$$\Psi = ((\psi_\uparrow, \psi_\downarrow), (\psi_\downarrow^\dagger, -\psi_\uparrow^\dagger))^{\mathcal{T}}$$

$$egin{aligned} \gamma_0^lpha &= \int \mathrm{d} m{r} (\Psi_0^lpha(m{r}))^\dagger \Psi(m{r}) \;, \ (\gamma_0^lpha)^\dagger &= \int \mathrm{d} m{r} \Psi^\dagger(m{r}) \Psi_0^lpha(m{r}) \;, \end{aligned}$$

for real functions f(r), g(r) it is

$$\gamma_0^{R_{in}} = \left(\gamma_0^{R_{in}}
ight)^\dagger$$
 and $\gamma_0^{R_{out}} = \left(\gamma_0^{R_{out}}
ight)^\dagger$

$$\Psi_{0}^{R_{in}}(r,\theta) = e^{-V(r)} \begin{pmatrix} f_{<}(r) \\ g_{<}(r)e^{i\theta} \\ g_{<}(r)e^{-i\theta} \\ -f_{<}(r) \end{pmatrix}, \ \Psi_{0}^{R_{out}}(r,\theta) = e^{-V(r)} \begin{pmatrix} f_{>}(r) \\ g_{>}(r)e^{i\theta} \\ g_{>}(r)e^{-i\theta} \\ -f_{>}(r) \end{pmatrix}$$

Questions

How to provide *Controlled* quantum state *manipulations*?

What are the *exchange statistics* of the present Majorana bound states?

schematic view: basis setup for an exchange process of two Majorana zero modes

 $\varepsilon_i(t) = 1$, for gate i is switched on, $\varepsilon_i(t) = 0$, for gate i is switched off.

adiabatically exchange of two Majorana zero modes

Throughout the exchange process:

stay in the degenerated ground state manifold!

Avoid ground state excitations!

The speed of the exchange process is limited by the energy gap.

adiabatically exchange of two Majorana zero modes

Throughout the exchange process:

stay in the degenerated ground state manifold!

adiabatic time evolution process from and back to an initial systems parameter set

adiabatically exchange of two Majorana zero modes

Throughout the exchange process:

stay in the degenerated ground state manifold!

adiabatic time evolution process from and back to an initial systems parameter set

⇒ unitary evolution of the systems ground state

adiabatically exchange of two Majorana zero modes

Throughout the exchange process:

stay in the degenerated ground state manifold!

adiabatic time evolution process from and back to an initial systems parameter set

⇒ unitary evolution of the systems ground state

 \Rightarrow braiding

adiabatically exchange of two Majorana zero modes

Throughout the exchange process:

stay in the degenerated ground state manifold!

adiabatic time evolution process from and back to an initial systems parameter set

⇒ unitary evolution of the systems ground state

\Rightarrow braiding

→ use the concept of Berry phase

$$\begin{split} H_{eff} &= i \big(n_1 \varepsilon_1(t) \gamma_3 \gamma_5 + n_2 \varepsilon_2(t) \gamma_1 \gamma_3 + n_3 \varepsilon_3(t) \gamma_7 \gamma_3 \big) \\ &= \alpha(t) \big(f_2 f_1 + f_2^{\dagger} f_1 \big) - \beta(t) \big(f_2^{\dagger} f_1^{\dagger} + f_2 f_1^{\dagger} \big) + \varepsilon_3(t) \big(1 - 2 f_2^{\dagger} f_2 \big), \end{split}$$

 $\alpha(t) = \varepsilon_1(t) - i\varepsilon_2(t)$, $\beta(t) = \varepsilon_1(t) + i\varepsilon_2(t)$ and we choose $n_i = 1$ for all i = 1, 2, 3

$2^4 = 16$ fold degenerated ground state manifold

$$egin{align} f_1 &= rac{1}{2} \left(\gamma_1 + i \gamma_5
ight), & f_2 &= rac{1}{2} \left(\gamma_3 + i \gamma_7
ight), \ f_3 &= rac{1}{2} \left(\gamma_2 + i \gamma_6
ight), & f_4 &= rac{1}{2} \left(\gamma_4 + i \gamma_8
ight), \end{array}$$

description of the time evolution of the system state in the ground state manifold

$$egin{aligned} H_{eff} &= i \left(n_1 arepsilon_1(t) \gamma_3 \gamma_5 + n_2 arepsilon_2(t) \gamma_1 \gamma_3 + n_3 arepsilon_3(t) \gamma_7 \gamma_3
ight) \ &= lpha(t) (f_2 f_1 + f_2^\dagger f_1) - eta(t) (f_2^\dagger f_1^\dagger + f_2 f_1^\dagger) + arepsilon_3(t) (1 - 2 f_2^\dagger f_2), \ &lpha(t) = arepsilon_1(t) - i arepsilon_2(t), \ eta(t) = arepsilon_1(t) + i arepsilon_2(t) \ ext{and we choose } n_i = 1 \ ext{for all } i = 1, 2, 3 \end{aligned}$$

the time evolution of the system state

$$= \alpha(t)(f_2f_1 + f_2^{\dagger}f_1) - \beta(t)(f_2^{\dagger}f_1^{\dagger} + f_2f_1^{\dagger}) + \varepsilon_3(t)(1 - 2f_2^{\dagger}f_2),$$

 $\alpha(t) = \varepsilon_1(t) - i\varepsilon_2(t)$, $\beta(t) = \varepsilon_1(t) + i\varepsilon_2(t)$ and we choose $n_i = 1$ for all i = 1, 2, 3

 $H_{eff} = i(n_1 \varepsilon_1(t) \gamma_3 \gamma_5 + n_2 \varepsilon_2(t) \gamma_1 \gamma_3 + n_3 \varepsilon_3(t) \gamma_7 \gamma_3)$

steps of reduction

$$\begin{split} H_{eff} &= i \left(n_1 \varepsilon_1(t) \gamma_3 \gamma_5 + n_2 \varepsilon_2(t) \gamma_1 \gamma_3 + n_3 \varepsilon_3(t) \gamma_7 \gamma_3 \right) \\ &= \alpha(t) (f_2 f_1 + f_2^\dagger f_1) - \beta(t) (f_2^\dagger f_1^\dagger + f_2 f_1^\dagger) + \varepsilon_3(t) (1 - 2 f_2^\dagger f_2), \\ \alpha(t) &= \varepsilon_1(t) - i \varepsilon_2(t), \ \beta(t) = \varepsilon_1(t) + i \varepsilon_2(t) \ \text{and we choose} \ n_i = 1 \ \text{for all} \ i = 1, 2, 3 \end{split}$$

steps of reduction

lacktriangle matrix representation (16 imes 16) matrix

$$\begin{split} H_{eff} &= i \left(n_1 \varepsilon_1(t) \gamma_3 \gamma_5 + n_2 \varepsilon_2(t) \gamma_1 \gamma_3 + n_3 \varepsilon_3(t) \gamma_7 \gamma_3 \right) \\ &= \alpha(t) \left(f_2 f_1 + f_2^\dagger f_1 \right) - \beta(t) \left(f_2^\dagger f_1^\dagger + f_2 f_1^\dagger \right) + \varepsilon_3(t) (1 - 2 f_2^\dagger f_2), \\ \alpha(t) &= \varepsilon_1(t) - i \varepsilon_2(t), \ \beta(t) = \varepsilon_1(t) + i \varepsilon_2(t) \ \text{and we choose} \ n_i = 1 \ \text{for all} \ i = 1, 2, 3 \end{split}$$

steps of reduction

- lacktriangle matrix representation (16 imes 16) matrix
- all fermion operators consisting of inner boundary modes commute with H_{eff} !
 - \Rightarrow reduction to a (4 × 4) matrix

$$|00\rangle\,,\;|11\rangle=f_1^{\dagger}f_2^{\dagger}\,|00\rangle\,,\;|10\rangle=f_1^{\dagger}\,|00\rangle\,,\;|01\rangle=f_2^{\dagger}\,|00\rangle$$

$$H_{\it eff} = \begin{pmatrix} \varepsilon_3 & \varepsilon_1 - i\varepsilon_2 & 0 & 0 \\ \varepsilon_1 + i\varepsilon_2 & -\varepsilon_3 & 0 & 0 \\ 0 & 0 & \varepsilon_3 & \varepsilon_1 + i\varepsilon_2 \\ 0 & 0 & \varepsilon_1 - i\varepsilon_2 & -\varepsilon_3 \end{pmatrix} = \begin{pmatrix} \textit{\textit{H}}_{\it even} & 0 \\ 0 & \textit{\textit{H}}_{\it odd} \end{pmatrix}$$

steps of reduction

- lacktriangle matrix representation (16 imes 16) matrix
- all fermion operators consisting of inner boundary modes **commute** with H_{eff} !
 - \Rightarrow reduction to a (4 × 4) matrix $|00\rangle$, $|11\rangle = f_1^{\dagger} f_2^{\dagger} |00\rangle$, $|10\rangle = f_1^{\dagger} |00\rangle$, $|01\rangle = f_2^{\dagger} |00\rangle$

$$H_{eff} = \begin{pmatrix} \varepsilon_3 & \varepsilon_1 - i\varepsilon_2 & 0 & 0\\ \varepsilon_1 + i\varepsilon_2 & -\varepsilon_3 & 0 & 0\\ 0 & 0 & \varepsilon_3 & \varepsilon_1 + i\varepsilon_2\\ 0 & 0 & \varepsilon_1 - i\varepsilon_2 & -\varepsilon_3 \end{pmatrix} = \begin{pmatrix} H_{even} & 0\\ 0 & H_{odd} \end{pmatrix}$$

steps of reduction

- \bigcirc matrix representation (16 \times 16) matrix
- all fermion operators consisting of inner boundary modes commute with H_{eff} !

$$\Rightarrow$$
 reduction to a (4 × 4) matrix $|00\rangle$, $|11\rangle = f_1^{\dagger} f_2^{\dagger} |00\rangle$, $|10\rangle = f_1^{\dagger} |00\rangle$, $|01\rangle = f_2^{\dagger} |00\rangle$

parity conservation

 \Rightarrow either *even* or *odd* parity subspace \rightarrow (2 × 2) matrix

$$H_{even} = \varepsilon_1 \sigma_1 + \varepsilon_2 \sigma_2 + \varepsilon_3 \sigma_3 = \boldsymbol{\varepsilon}_{even} \cdot \boldsymbol{\sigma},$$

 $H_{odd} = \varepsilon_1 \sigma_1 - \varepsilon_2 \sigma_2 + \varepsilon_3 \sigma_3 = \boldsymbol{\varepsilon}_{odd} \cdot \boldsymbol{\sigma}$

steps of reduction

- igcup matrix representation (16 imes 16) matrix
- lacktriangle all fermion operators consisting of inner boundary modes **commute** with H_{eff} !

$$\Rightarrow$$
 reduction to a (4 × 4) matrix $|00\rangle$, $|11\rangle = f_1^{\dagger} f_2^{\dagger} |00\rangle$, $|10\rangle = f_1^{\dagger} |00\rangle$, $|01\rangle = f_2^{\dagger} |00\rangle$

- parity conservation
 - \Rightarrow either even or odd parity subspace \rightarrow (2 × 2) matrix

mapping on a sphere

reduced time evolution of the system state

$$H_{even} = \begin{pmatrix} \varepsilon \cos \theta & \varepsilon \sin \theta e^{-i\phi} \\ \varepsilon \sin \theta e^{i\phi} & -\varepsilon \cos \theta \end{pmatrix}$$

$$arepsilon = |oldsymbol{arepsilon}_{even}|$$

eigenvalues:
$$\lambda_{\pm} = \pm \sqrt{\varepsilon_1(t)^2 + \varepsilon_2(t)^2 + \varepsilon_3(t)^2}$$

mapping of system state time evolution onto the time evolution of the gate vector

normalized gate vector:
$$\hat{m{\varepsilon}}(t) = \frac{m{\varepsilon}(t)}{|m{\varepsilon}(t)|}$$
, for all time: $m{\varepsilon}(t)
eq 0$

 \rightarrow unit vector moving on a sphere

mapping on a sphere

reduced time evolution of the system state

$$H_{even} = \begin{pmatrix} \varepsilon \cos \theta & \varepsilon \sin \theta e^{-i\phi} \\ \varepsilon \sin \theta e^{i\phi} & -\varepsilon \cos \theta \end{pmatrix}$$

$$arepsilon = |oldsymbol{arepsilon}_{even}|$$

eigenvalues:
$$\lambda_{\pm} = \pm \sqrt{\varepsilon_1(t)^2 + \varepsilon_2(t)^2 + \varepsilon_3(t)^2}$$

mapping of system state time evolution onto the time evolution of the gate vector

normalized gate vector:
$$\hat{m{\varepsilon}}(t) = \frac{m{\varepsilon}(t)}{|m{\varepsilon}(t)|}$$
, for all time: $m{\varepsilon}(t)
eq 0$

→ unit vector moving on a sphere

mapping on a sphere

reduced time evolution of the system state

$$H_{even} = \begin{pmatrix} \varepsilon \cos \theta & \varepsilon \sin \theta e^{-i\phi} \\ \varepsilon \sin \theta e^{i\phi} & -\varepsilon \cos \theta \end{pmatrix}$$

$$arepsilon = |oldsymbol{arepsilon}_{ ext{even}}|$$

eigenvalues:
$$\lambda_{\pm}=\pm\sqrt{arepsilon_{1}(t)^{2}+arepsilon_{2}(t)^{2}+arepsilon_{3}(t)^{2}}$$

mapping of system state time evolution onto the time evolution of the gate vector

normalized gate vector:
$$\hat{\boldsymbol{\varepsilon}}(t) = \frac{\boldsymbol{\varepsilon}(t)}{|\boldsymbol{\varepsilon}(t)|}$$
, for all time: $\boldsymbol{\varepsilon}(t) \neq 0$

→ unit vector moving on a sphere

$$t = t_0$$

$$\hat{oldsymbol{arepsilon}}(t_0) = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

$$t = t_1$$

$$\hat{oldsymbol{arepsilon}}(t_1) = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix}$$

$$H_{eff}(t_1) = i(\gamma_7 \gamma_3 + \gamma_3 \gamma_5)$$

$$t = t_2$$

$$\hat{\boldsymbol{\varepsilon}}(t_2) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$H_{eff}(t_2) = i \gamma_3 \gamma_5$$

$$t = t_3$$

$$\hat{oldsymbol{arepsilon}}(t_3) = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$$

$$H_{eff}(t_3) = i(\gamma_1\gamma_3 + \gamma_3\gamma_5)$$

$$t = t_4$$

$$\hat{\boldsymbol{\varepsilon}}(t_4) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$H_{eff}(t_4) = i \gamma_1 \gamma_3$$

$$t = t_5$$

$$\grave{\mathfrak{E}}(t_5) = rac{1}{\sqrt{2}} egin{pmatrix} 0 \ 1 \ 1 \end{pmatrix}$$

$$H_{eff}(t_5) = i(\gamma_1\gamma_3 + \gamma_7\gamma_3)$$

$$t = t_6$$

final Hamiltonian $H_{eff}(t_0) = i \gamma_7 \gamma_3 = H_{eff}(t_0)$

sketch of the braid process

Berry curvature: $\mathscr{F}_{\theta\phi} = \mp \frac{1}{2} \sin \theta$

Berry phase:

$$i arphi_{\mathsf{even}} = -i \int_0^ heta \int_0^\phi \mathrm{d} heta' \mathrm{d} \phi' \mathscr{F}_{ heta' \phi'} = \pm rac{i}{2} \Omega$$

Berry curvature: $\mathscr{F}_{\theta\phi}=\mp\frac{1}{2}\sin\theta$

Berry phase: $i\varphi_{even}=-i\int_0^\theta\int_0^\phi\mathrm{d}\theta'\mathrm{d}\phi'\mathscr{F}_{\theta'\phi'}=\pm\frac{i}{2}\Omega$

solid angle:

$$\Omega = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \mathrm{d} heta' \mathrm{d} \phi' \sin(heta') = \frac{\pi}{2}$$

Berry curvature: $\mathscr{F}_{\theta\phi} = \mp \frac{1}{2} \sin \theta$

Berry phase:
$$i\phi_{even} = -i\int_0^\theta \int_0^\phi \mathrm{d}\theta' \mathrm{d}\phi' \mathscr{F}_{\theta'\phi'} = \pm \frac{i}{2}\Omega$$

solid angle:
$$\Omega = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} d\theta' d\phi' \sin(\theta') = \frac{\pi}{2}$$

results

for the even and odd parity space

$$e^{i\phi_{even}} = e^{i\frac{\pi}{4}}$$

$$e^{i\varphi_{odd}} = e^{-i\frac{\pi}{4}}$$

Berry curvature: $\mathscr{F}_{\theta\phi}=\mp\frac{1}{2}\sin\theta$

Berry phase: $i\phi_{even} = -i\int_0^\theta \int_0^\phi d\theta' d\phi' \mathcal{F}_{\theta'\phi'} = \pm \frac{i}{2}\Omega$

solid angle:
$$\Omega = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} d\theta' d\phi' \sin(\theta') = \frac{\pi}{2}$$

results

for the even and odd parity space

$$e^{i\phi_{even}}=e^{i\frac{\pi}{4}}$$

$$e^{i\varphi_{odd}}=e^{-i\frac{\pi}{4}}$$

braid matrix: $U_{15} = e^{\frac{\pi}{4}\gamma_1\gamma_5}$

Berry curvature: $\mathscr{F}_{\theta\phi}=\mp\frac{1}{2}\sin\theta$

Berry phase: $i\phi_{even} = -i\int_0^\theta \int_0^\phi \mathrm{d}\theta' \mathrm{d}\phi' \mathscr{F}_{\theta'\phi'} = \pm \frac{i}{2}\Omega$

solid angle: $\Omega = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} d\theta' d\phi' \sin(\theta') = \frac{\pi}{2}$ results

for the even and odd parity space $m{e}^{i\phi_{even}} = m{e}^{i\frac{\pi}{4}}$

 $e^{i\varphi_{odd}} = e^{-i\frac{\pi}{4}}$

braid matrix: $U_{15} = e^{\frac{\pi}{4}\gamma_1\gamma_5}$

acting on system states: $\boldsymbol{U}|\Psi\rangle=e^{\pm i\frac{\pi}{4}}|\Psi\rangle$ with $\boldsymbol{U}_{15}\boldsymbol{\gamma}_{1}\boldsymbol{U}_{15}^{\dagger}=-\boldsymbol{\gamma}_{5}$ and $\boldsymbol{U}_{15}\boldsymbol{\gamma}_{5}\boldsymbol{U}_{15}^{\dagger}=\boldsymbol{\gamma}_{1}$

fusion

split up the ground state degeneracy

lacksquare gating (adjust μ) o overlap of 2 outer Majorana wave functions

fusion

anyon types of mzm $\sigma \times \sigma = I + \Psi$ vacuum channel particle channe

split up the ground state degeneracy

- lacktriangle gating (adjust μ) o overlap of 2 outer Majorana wave functions
- lacktriangle parity-to-charge conversion o inner and outer Majoranas to charge state

parity-to-charge conversion

Fuse inner and outer Majoranas of one ring

- initialize the quantum bit in a well defined state
- create pairs of Majorana zero mode out of the vacuum (degenerated ground state manifold)

- initialize the quantum bit in a well defined state
- create pairs of Majorana zero mode out of the vacuum (degenerated ground state manifold)
- braid them how explained above

- initialize the quantum bit in a well defined state
- create pairs of Majorana zero mode out of the vacuum (degenerated ground state manifold)
- braid them how explained above
- fuse the pairs of Majorana zero modes of the corresponding rings
 - \rightarrow non-trivial fusion outcome

- initialize the quantum bit in a well defined state
- create pairs of Majorana zero mode out of the vacuum (degenerated ground state manifold)
- braid them how explained above
- fuse the pairs of Majorana zero modes of the corresponding rings
 - \rightarrow non-trivial fusion outcome
- read out the final system state

initialization: parity-to-charge conversion (side gate at each ring)

read out: charge sensing (Single Electron Transistor)

initialization: parity-to-charge conversion (side gate at each ring)

read out: charge sensing (Single Electron Transistor)

initialization: parity-to-charge conversion (side gate at each ring)

read out: charge sensing (Single Electron Transistor)

initialization: parity-to-charge conversion (side gate at each ring)

read out: charge sensing (Single Electron Transistor)

initialization: parity-to-charge conversion (side gate at each ring)

read out: charge sensing (Single Electron Transistor)

Quantum mechanical solution of the master equation

System of two read out circuits:

$$\begin{aligned} \left| a \right\rangle, \left| b \right\rangle, \left| c \right\rangle, \left| d \right\rangle &\in \left\{ \left| 0_{qb} 0_1 0_2 \right\rangle, \left| 0_{qb} 0_1 1_2 \right\rangle, \left| 0_{qb} 1_1 0_2 \right\rangle, \left| 0_{qb} 1_1 1_2 \right\rangle, \\ &\left| 1_{qb} 0_1 0_2 \right\rangle, \left| 1_{qb} 0_1 1_2 \right\rangle, \left| 1_{qb} 1_1 0_2 \right\rangle, \left| 1_{qb} 1_1 1_2 \right\rangle \right\} \end{aligned}$$

general notation: $|a\rangle=|lpha \ n_{1,0} \ n_{2,0}
angle$, $|b\rangle=|eta \ m_{1,0} \ m_{2,0}
angle$,...

Goal: determine the tunneling rates Γ in the SET and its dependence on the quantum bit state

The final Makovian master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_S^{ab}(t) = -\Gamma_{\mathrm{out}}^{a,b}\,\rho_S^{ab}(t) + \Gamma_{\mathrm{in,-}}^{a-1,b-1}\rho_S^{a-1,b-1}(t) + \Gamma_{\mathrm{in,+}}^{a+1,b+1}\rho_S^{a+1,b+1}(t)$$

notation:
$$a \pm 1 = |\alpha| n_{1,0} \pm 1 |n_{2,0}\rangle$$
, $b \pm 1 = |\beta| m_{1,0} \pm 1 |m_{2,0}\rangle$

$$\Gamma_{\text{in},\pm}^{a\pm1,b\pm1} \equiv \Gamma_{\text{in},\pm}(\alpha,\beta,n_{1,0},m_{1,0},\underline{t}), \ \Gamma_{\text{out}}^{a,b} \equiv \Gamma_{\text{out}}(\alpha,\beta,n_{1,0},m_{1,0})$$

ightarrow current through the SET depends on the fixed qubit charge state

Fusion inner and outer Majoranas after braiding

$$\begin{array}{ll} t_{0} : \ f_{1} = \frac{1}{2}(\gamma_{1} + i\gamma_{2}), & t_{6} : \ c_{1} = \frac{1}{2}(\gamma_{5} + i\gamma_{2}) \\ f_{2} = \frac{1}{2}(\gamma_{6} + i\gamma_{5}) & c_{2} = \frac{1}{2}(\gamma_{6} + i\gamma_{1}) \end{array}$$

$$\begin{pmatrix} |00\rangle_{f} \\ |11\rangle_{f} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} |00\rangle_{c} \\ |11\rangle_{c} \end{pmatrix}$$

$$\begin{pmatrix} |00\rangle_f \\ |11\rangle_f \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} |00\rangle_c \\ |11\rangle_c \end{pmatrix}$$

initial state after one braiding:

$$|00
angle
ightarrow |\Psi_{in}
angle = rac{1}{\sqrt{2}}(|00
angle + i\,|11
angle) \ \hat{
ho}_{in}(0) = |\Psi_{in}
angle\,\langle\Psi_{in}| = rac{1}{2}egin{pmatrix} 1 & -i \ i & 1 \end{pmatrix} \stackrel{t
ightarrow +\infty}{\longrightarrow} rac{1}{2}egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = \hat{
ho}_{\infty} \ .$$

$$\begin{pmatrix} |00\rangle_f \\ |11\rangle_f \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} |00\rangle_c \\ |11\rangle_c \end{pmatrix}$$

initial state after one braiding:

$$|00
angle
ightarrow |\Psi_{in}
angle = rac{1}{\sqrt{2}}(|00
angle + i\,|11
angle)$$
 $\hat{
ho}_{in}(0) = |\Psi_{in}
angle \langle \Psi_{in}| = rac{1}{2} egin{pmatrix} 1 & -i \ i & 1 \end{pmatrix} rac{t
ightarrow + \infty}{2} egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = \hat{
ho}_{\infty}$

$$\begin{pmatrix} |00\rangle_f \\ |11\rangle_f \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} |00\rangle_c \\ |11\rangle_c \end{pmatrix}$$

initial state after one braiding:

$$|00
angle
ightarrow |\Psi_{\textit{in}}
angle = rac{1}{\sqrt{2}} (|00
angle + \textit{i}\,|11
angle)$$

$$\hat{
ho}_{in}(0) = \ket{\Psi_{in}}ra{\Psi_{in}} = rac{1}{2}egin{pmatrix} 1 & -i \ i & 1 \end{pmatrix} \xrightarrow{t o +\infty} rac{1}{2}egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = \hat{
ho}_{\infty}$$

$$\begin{pmatrix} |00\rangle_f \\ |11\rangle_f \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} |00\rangle_c \\ |11\rangle_c \end{pmatrix}$$

initial state after one braiding:

$$|00
angle
ightarrow |\Psi_{in}
angle = rac{1}{\sqrt{2}}(|00
angle + i\,|11
angle)$$
 $\hat{
ho}_{in}(0) = |\Psi_{in}
angle \langle \Psi_{in}| = rac{1}{2} egin{pmatrix} 1 & -i \ i & 1 \end{pmatrix} rac{t
ightarrow + \infty}{2} egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = \hat{
ho}_{\infty}$

Measure the braid outcome

$$\begin{pmatrix} |00\rangle_f \\ |11\rangle_f \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} |00\rangle_c \\ |11\rangle_c \end{pmatrix}$$

initial state after one braiding:

$$|00
angle
ightarrow |\Psi_{\textit{in}}
angle = rac{1}{\sqrt{2}} (|00
angle + \textit{i}\,|11
angle)$$

$$\hat{
ho}_{in}(0) = \ket{\Psi_{in}}ra{\Psi_{in}} = rac{1}{2}egin{pmatrix} 1 & -i \ i & 1 \end{pmatrix} \xrightarrow{t o +\infty} rac{1}{2}egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = \hat{
ho}_{\infty}$$

Conclusion

Existence of localized Majorana zero modes

Conclusion

- Existence of localized Majorana zero modes
- Braiding of Majorana zero modes is possible

Conclusion

- Existence of localized Majorana zero modes
- Braiding of Majorana zero modes is possible
- Measuring of the outcome of braiding is realizable

