Fluid Mechanics and Rate Processes: Fluid Kinematics Tutorial: August 11, 2016

P1. The position of a fluid particle in a two-dimensional, Lagrangian system is described as:

$$x = x_0 e^{-kt} + y_0 (1 - e^{-2kt})$$
$$y = y_0 e^{kt}$$

Find (a) the Equation of the fluid particle trajectory, and (b) the velocity field in the Eulerian system.

P2. Find the acceleration components at point (1, 1, 1) for the following flow field:

$$u = 2x^2 + 3y$$
, $v = -2xy + 3y^2 + 3zy$, $w = -\frac{3}{2}z^2 + 2xz - 9y^2z$

P3. The velocity and density field in a diffuser are given by

$$u = u_0 e^{-2x/L}$$
 and $\rho = \rho_0 e^{-x/L}$

Find the rate of change of density at x = L

P4. The velocity field is defined by $\vec{V} = ay\hat{i} + b\hat{j}$, where $a = 1s^{-1}$, b = 2 m/s; coordinates are measured in meters.

Find: (a) Equation of streamline passing through (x, y) = (b, b)

- (b) At t = 1s, coordinates of particle that passed through point (1, 4) at t = 0
- (c) At t = 3s, coordinates of particle that passed through point (-3, 0) at t = 1s