

Longitudinal Top-up Injection for Small Aperture Storage Rings

M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut

Introduction

- Lower and lower horizontal emittances (to be) achieved in 3rd generation light sources
 - Smaller physical/dynamic aperture available in corresponding low emittance storage rings (multi-bend achromat lattice) → Transversely on-axis
- Top-up injection for stable photon beam flux
 - Frequent injections to keep the e-beam current essentially constant → Top-up compatible

(Transparent to circulating bunches)

 Injection chicane introduces adverse beam disturbances although it is transparent to circulating bunches in principle...

→Without injection chicane

Conventional Scheme

- Septum + Injection chicane (pulsed)
 - Off-axis injection*
 - Transparent to circulating bunches (in principle)

*Can be on-axis injection when the injection section is dispersive (P. Collier, *Synchrotron phase space injection*, see backup slide)

Multipole kicker injection*

- Septum + Multipole-kicker
 - Off-axis injection
 - Quasi-transparent to circulating bunches
 - Without injection chicane

* H. Takaki et al., Phys. Rev. ST Accel. Beams, 13, 020705 (2010)

Swap Injection*

- Bunch-by-bunch / The entire train at one time
- Septum + Short/Long-pulse dipole-kicker
 - On-axis injection
 - Pseudo-transparent to circulating bunches
 - Without injection chicane

It fulfills our goals but may include some disadvantages...

* L. Emery and M. Borland, Proc. PAC 2003, pp.256-258 (2003)

Longitudinal Injection

- Septum + Short-pulse dipole-kicker
 - On-axis injection
 - Transparent to circulating bunches

The injected bunch will be accepted?

Longitudinal Acceptance (1)

Equations of motion & RF bucket:

$$\frac{dz}{dt} = -c\alpha\delta$$

$$\frac{d\delta}{dt} \underbrace{eV - U_0(1 + 3\delta + 3\delta^2 + \delta^3)}_{E_0 T_0}$$

z: Longitudinal position

c:Speed of light

 α : Momentum compaction

 δ : Relative momentum deviation, $\frac{dP}{P} \sim \frac{dE}{E}$

e: Electron charge

V: RF voltage

 U_0 : Radiation loss per turn for the nominal energy

 E_0 : Nominal beam energy

 T_0 : Revolution period

RF bucket is modified by the energy dependent terms

Longitudinal Acceptance (2)

- "Golf-club" acceptance
 - Well known for the cases
 with acceleration*
 - Because of energy dependent radiation loss in electron storage rings

Long. acceptance plot with synchrotron radiation loss

It allows an injection between two circulating bunches at the expense of slightly higher injection energy!

(Need to match the injection orbit to the off-momentum closed-orbit)

^{*} e.g., P. M. Lapostolle, Los Alamos National Laboratory, LA-11601-MS (1989)

Simulation (1)

Application to MAX-IV 3 GeV lattice*/**

Relevant parameters with 2 damping wigglers

Parameter	Value	Unit
Circumference	528	m
Beam energy	3.0	GeV
Momentum compaction	3.07×10 ⁻⁴	-
Radiation loss per turn	0.58	MeV
Damping time Hor./Ver./Long.	12 / 18 / 12	ms
RF frequency	100	MHz
RF voltage (Fundamental/3HC)	1.42/0.423	MV
Hor. equilibrium emittance	0.25	nm
Betatron tune, Hor./Ver.	40.20 / 16.28	-

Parameters corresponding to ±5% bucket height

7BA lattice functions

^{*} Lattice file, courtesy of S. C. Leemann

^{**} Multipole injection is planned

Simulation (2)

- On-axis injection (Fast injection)
 - Septum + 2 short pulse kickers, ~1.8 mrad each

Injection orbit matched to the off-momentum closed-orbit

Separation of ~10 mm with reasonable kick angle. Straight section may be available for one more beamline if the septum is situated at the end.

Simulation (3)

Tracking (Elegant code*)

Beta-beat, rms, 3~6% (H/V) **Errors**:

Sextupole ver. misalignment 50 mm rms

Quad roll error, 0.2 mrad rms

Sextupole and Octupole roll error, 0.2 mrad rms \rightarrow Skew resonances

+ Injection error, 0.5 mm at the middle of straight section (βx^9 m, βy^2 m)

Injection beam**: Normalised emittance 10 μm, Energy spread 0.1%, Bunch length 5 ps

40 machines generated: 100% efficiency for 39 (95% for 1) Robust against machine imperfections

*M. Borland, Advanced Photon Source LS-287 (2000)

**S. C. Leemann, Phys. Rev. ST Accel. Beams, 15, 050705 (2012)

→ Linear coupling

Short pulse kicker (1)

- Short pulse kicker R&Ds
 - T. Naito et al., NIM-A, 571,p.599 (2007)
 - D. Alesini et al., PRSTAB, 111002 (2010)

- Preliminary FEM field simulation
 - Pulser voltage 28 kV
 - Strip-line aperture ~27 mm diameter
 - Integrated kick angle ~1.8 mrad@3 GeV
 - Length ~1 m
 - Matched to 50Ω

Kicker with pulse length of <10 ns (100 MHz) has been developed Enough kick angle for MAX-IV example can be achieved

Short pulse kicker (2)

Very short pulser (spec. from a company)

Output voltage	Rise time	Pulse width	Max repetition rate
2 kV	0.1-1 ns	0.2 - 3 ns	300 kHz
5 kV	0.1-1 ns	0.2 - 3 ns	200 kHz
10 kV	0.1-1 ns	0.2 - 3 ns	100 kHz
20 kV	0.1-1 ns	1 - 2 ns	10 kHz
50 kV	0.1-1 ns	1 - 2 ns	2 kHz
100 kV	0.1-1 ns	1 - 2 ns	1 kHz
200 kV	0.2-1 ns	1 - 2 ns	1 kHz

Very short pulser is commercially available

- → "Nano-second kicker" is feasible
- → Applicable to the rings with a common 500 MHz RF system

Comparison

Longitudinal injection and Swap injection fulfill our goals
 Pros and Cons

	Longitudinal injection	Bunch-by-bunch swap injection	Bunch train swap injection
On-axis injection	Yes (+dP)	Yes	
Transparent to circulating bunches	Yes	Pseudo	
Injection chicane	No	No	
Injector	Small long. emittance	Full bunch charge injector	Another ring required
Top-up dead-band	As in normal top-up	Wider dead-band	As in normal top-up
Kicker pulse length	~ bunch spacing	~ twice bunch spacing	Long flat-top (?)
Beam loss (radiation)	As in normal top-up	A few orders of magnitude higher	~twice

Summary

- We investigated longitudinal injection scheme:
 - On-axis transversely and top-up compatible
 - "Golf-club" acceptance allows one to inject a bunch between two circulating bunches
 - Robust against machine imperfections
 - Required short pulse kicker is feasible

Thank you for your attention!

Backup slide

Synchrotron phase space injection*

- Septum + Injection chicane (pulsed)
 - On-axis injection
 - Transparent to circulating bunches (in principle)

*P. Collier, Proc. of PAC 1995, pp.551-553 (1995)