

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

Факультет: Робототехника и комплексная автоматизация

Кафедра: Системы автоматизированного проектирования

Интерпретация аппроксимирующих моделей машинного обучения

Выполнил: Конов А.В.

Консультант: к.т.н., доцент, Агасиев Т.А.

Научный руководитель: д.ф-м.н., профессор, Карпенко А.П.

Введение

Интерпретация аппроксимирующих моделей машинного обучения - это процесс понимания того, как модель принимает решения и какие признаки оказывают наибольшее влияние на результат.

Цели и задачи

Цель работы – разработка ПО для автоматизации процесса интерпретации аппроксимирующих моделей машинного обучения.

Задачи:

- Изучить аппроксимирующие модели машинного обучения;
- Изучить методы интерпретации моделей машинного обучения;
- Изучить существующее ПО для интерпретации;
- Реализовать ПО для автоматизации процесса интерпретации аппроксимирующих моделей машинного обучения;
- Анализ работы реализованного ПО.

Модели машинного обучения

Классические:

- Линейная регрессия
- Логистическая регрессия
- Метод опорных векторов
- Наивный байесовский классификатор

На основе решающих деревьев:

- Решающие деревья
- Случайный лес
- Бустинг

Нейронные сети:

- Прямого распространения
- Свёрточные
- Реккурентные

Решающее дерево

Рассмотрим решающее дерево, в котором:

- каждой внутренней вершине v приписан предикат B_v ;
- каждой листовой вершине v приписан прогноз $c_v \in Y$, где Y область значений целевой переменной (в случае классификации листу может быть также приписан вектор вероятностей классов).

Предикат B_v может иметь, произвольную структуру, но, как правило, на практике используют сравнение с порогом $t \in R$ по произвольному j-му признаку:

$$B_v(x,j,t) = [x_j \le t].$$

При проходе через узел дерева с данным предикатом объекты будут отправлены в правое поддерево, если значение j-го признака у них меньше либо равно t, и в левое — если больше.

В ходе предсказания осуществляется проход по этому дереву к некоторому листу. Для каждого объекта выборки x движение начинается из корня. В очередной внутренней вершине v проход продолжится вправо, если $B_v(x)$ меньше порогового значения t, и влево, если $B_v(x)$ больше или равен порогового значения t. Проход продолжается до момента, пока не будет достигнут некоторый лист, и ответом алгоритма на объекте x считается прогноз c_v , приписанный этому листу.

Методы интерпретации моделей машинного обучения

Локальные:

- LIME
- SHAP
- ICE

Глобальные:

- PDP
- ALE

Метод LIME

Суть метода LIME заключается в создании локальной модели, которая объясняет прогноз модели на конкретном объекте.

Математическое описание метода LIME:

$$E(x) = \arg\min_{g \in G} L(f, g, \pi_x) + \Omega(g)$$

Модель объяснения для объекта x — это локальная модель g, которая минимизирует функцию потерь L, которая измеряет, насколько близким является объяснение к прогнозу исходной модели машинного обучения f, при этом сохраняя низкую сложность модели $\Omega(g)$. G - это семейство возможных локальных моделей. Мера близости π_x определяет размер окрестности вокруг объекта x, которая рассматривается для объяснения.

Метод SHAP

Суть метода SHAP заключается в вычислении значений Шепли для каждого признака и объединении их в одну величину, которая показывает важность признака для прогноза модели на конкретном объекте. Математическое описание метода SHAP:

$$\Delta_f(i,S) = E[f(x)|x_{S\cup i}] - E[f(x)|x_S],$$

здесь x_S - признаки, для которых должна быть рассчитаны значения SHAP, $x_{S\cup i}$ - признаки, стоящие перед x_S , $\Delta(i,S)$ - изменение в предсказании x между условным математическим ожиданием $E[f(x)|x_S]$ признака, для которого рассчитываются значения SHAP, и условным математических ожиданием $E[f(x)|x_{S\cup i}]$ признаков, стоящих перед x_S .

Метод PDP

В основе метода PDP лежит идея оценки среднего значения прогноза модели для всех объектов, при фиксированных значениях определенных признаков, варьируя значения всех остальных признаков.

Математическое описание метода PDP:

Частичная функция f_S оценивается путем расчета средних значений на тренировочных входных данных, также известный как метод Монте-Карло:

$$f_S(x_S) = \frac{1}{n} \sum_{i=1}^n f(x_S, x_C^{(i)}),$$

здесь x_S представляют собой признаки, для которых должна быть построена частичная функция зависимости, $x_C^{(i)}$ представляют собой значения признаков из набора данных, которые не рассматриваются, n - количество объектов в наборе данных.

Важность определяется отклонением каждого уникального значения признака от средней кривой:

$$I(x_S) = \sqrt{\frac{1}{K-1} \sum_{k=1}^K (f_S(x_S^{(k)}) - \frac{1}{K} \sum_{k=1}^K f_S(x_S^{(k)}))}^2,$$

здесь $x_S^{(k)}$ представляет собой K уникальных значений признака X_S .

Алгоритм автоматизации процесса интерпретации аппроксимирующих моделей машинного обучения

Программная реализация ПО, автоматизирующего интерпретацию моделей машинного обучения, включает в себя следующий функционал:

- 1) создание и обучение модели машинного обучения, которую необходимо интерпретировать;
- 2) интерпретация модели машинного обучения различными методами;
- 3) визуализация интерпретации модели машинного обучения.

Для реализации ПО создан класс *Inter*, включающий в себя методы класса, реализующие поставленные задачи. В качестве входных параметров класс *Inter* принимает набор данных *data*, целевую переменную *metka*, номер объекта *idd*, который необходимо интерпретировать локально, тип решаемой задачи *model_type*. Метод класса *__init__* производит инициализацию входных параметров. Метод класса *model* создает и обучает модель машинного обучения с помощью модели на основерешающих деревьев. Метод класса *inter_global* глобально интерпретирует модель машинного обучения методами SHAP и PDP и затем визуализирует результаты интерпретации. Метод класса *inter_local* локально интерпретирует модель машинного обучения методом LIME и затем визуализирует результаты интерпретации.

Блок-схема разработанного алгоритма

Вычислительные эксперименты

Вычислительные эксперименты проводились на существующих наборах данных:

- diabetes, который содержит медицинские данные, влияющие на риск развитие сахарного диабета. Набор данных состоит из 8 признаков и целевой переменной: Pregnancies количество беременностей; Glucose плазменные концентрации глюкозы в крови; BloodPressure диастолическое артериальное давление; SkinThickness толщина кожи в области трицепса; Insulin количество инсулина в крови; BMI индекс массы тела; DiabetesPedigreeFunction оценка предрасположенности к диабету; Age возраст; Outcome целевая переменная, показывающая прогноз, на предрасположенность к заболеванию сахарным диабетом в ближайшие пять лет.
- california housing, который содержит данные о средней стоимость домов в Калифорнии в зависимости от квартала. Набор данных состоит из 8 признаков и целевой переменной: Longitude долгота квартала с недвижимостью; Latitude широта квартала с недвижимостью; HouseAge медиана возраста домов в квартале; AveRooms общее количество комнат в квартале; AveBedrms общее количество спален в квартале; Population население квартала; AveOccup количество семей в квартале; MedInc медианный доход в квартале; MedHouseVal Целевая переменная, показывающая медианную стоимость дома в квартале.

Из левого рисунка можно сделать вывод, что чем выше значение таких признаков как плазменные концентрации глюкозы в крови, индекс массы тела, возраст, оценка предрасположенности к диабету, количество беременностей и толщина кожи в области трицепса, тем выше риск развития сахарного диабета в течении пяти лет. При этом, чем выше значения признаков количество инсулина в крови и диастолическое артериальное давление, тем риск развития сахарного диабета в течении пяти лет ниже.

Из правого рисунка можно сделать вывод, что самыми значимыми признаками, влияющими на развитие сахарного диабета в ближайшие пять лет, являются плазменные концентрации глюкозы в крови, индекс массы тела и возраст. Наименее значимыми признаками являются количество инсулина в крови и толщина кожи в области трицепса. Признаки оценка предрасположенности к диабету, диастолическое артериальное давление, количество инсулина в крови вносят умеренный вклад в риск развития сахарного диабета в ближайшие пять лет у объекта.

Из рисунка можно сделать выводы аналогичные выводам для левого рисунка представленным на предыдущем слайде

Feature	Value
Glucose	167.00
Age	43.00
DiabetesPedigreeFunction 0.17	
BMI	37.60
Pregnancies	8.00
BloodPressure	106.00
SkinThickness	46.00
Insulin	231.00

Из рисунка можно сделать вывод, что несмотря на то что значения признаков оценка предрасположенности к диабету, диастолическое артериальное давление и количество инсулина в крови не приводят к риску развития сахарного диабета у объекта, значения остальных признаков показывают, что у объекта есть риск развития сахарного диабета в течении пяти лет.

Из левого рисунка можно сделать вывод, что самыми значимыми признаками, влияющими медианную стоимость дома в квартале, являются широта квартала с недвижимостью, долгота квартала с недвижимостью, медианный доход в квартале и количество семей в квартале. Наименее значимыми признаками являются общее количество спален в квартале и население квартала. Признаки общее количество комнат в квартале и медиана возраста домов в квартале вносят умеренный вклад в медианную стоимость дома в квартале.

Из правого рисунка можно сделать вывод, что чем выше значение таких признаков как общее количество комнат в квартале, медиана возраста домов в квартале, медианный доход в квартале тем выше медианная стоимость дома в квартале. При этом, чем выше значения признаков широта квартала с недвижимостью, долгота квартала с недвижимостью, количество семей в квартале, тем ниже медианная стоимость дома в квартале. Значения признаков количество спален в квартале и население квартала почти не влияют на медианная стоимость дома в квартале.

Из рисунка можно сделать выводы аналогичные выводам для левого рисунка представленным на предыдущем слайде

Из рисунка можно сделать вывод, что на повышение медианной стоимости дома в квартале повлияли все признаки кроме долготы квартала с недвижимостью, общего количество комнат в квартале и населения квартала. Они снизили медианную стоимость дома в квартале.

Заключение

В результате проведенной работы:

- 1) изучены аппроксимирующие модели машинного обучения;
- 2) изучены методы интерпретации; аппроксимирующих моделей машинного обучения;
- 3) разработано ПО, реализующее алгоритм автоматизации процесса интерпретации;
- 4) проведены вычислительные эксперименты, показавшие работоспособность разработанного ПО.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!