Digital Systems Design and Laboratory [6. Quine-McCluskey Method]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Two-Level Logic Minimization

Finding All Prime Implicants (1/5)

- □ Start with all minterms 3 output > 1 68 mintums
- ☐ Group pairs of adjacent minterms
 - ➤ Mark and remove all covered terms
- Repeat grouping until no more grouping possible

CD AE	00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

T	14/2=1121 minter	m有类(12) -
#1s	Minterm	Binary
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
2	9	1001
	10	1010
3	7	0111
	14	1110

Finding All Prime Implicants (2/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - Mark and remove all covered terms
- Repeat grouping until no more grouping possible

AE CD	3 00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

1931 68 Jun 7					
#1s	Minter	m Size 1/	Mintern	n Size 2	. don't care
0	0	0000 -	→ 0, 1	000-)4	don-t care = A'B'C'
	1	0001	0, 2	00-0	
1	2	0010	0, 8	-000	
	8	1000	1, 5	0-01	
	5	0101	1, 9	-001	
2	6	0110	2, 6	0-10	
2	9	1001	2, 10	-010	
(10	1010	9,10 8, 9	100-	
6 3	7	0111	8, 10	10-0	
	14	1110	5, 7	01-1	
52514	有配剂	б .	6, 7	011-	
67.50		Λ I	6, 14	-110	
9 / 5/4	1030	14	10,14	1-10	

リアン: 流神法被其をimplicant over 68 mplicant

- Start with all minterms
- ☐ Group pairs of adjacent minterms
 - ➤ Mark and remove all covered terms

Repeat grouping until no more grouping possible

AE	00	01	11	10
00	1 m ₀	m ₄	m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m_{3}	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

		<u> </u>
#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
Z	9	1001
	10	1010
2	7	0111
3	14	1110

	1 13 21 size	~
Minterm	Size 2	
0, 1	000-	7
0, 2	00-0	
0, 8	-000	
1, 5	0-01	
1, 9	-001	
2, 6	0-10	
2, 10	-010	
8, 9	100-	
8, 10	10-0	
5, 7	01-1	
6, 7	011-	
6, 14	-110	
10,14	1-10	

· 此受有能不能多方

Finding All Prime Implicants (4/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - Mark and remove all covered terms
- Repeat grouping until no more grouping possible

AE CD	3 00	01	11	10
00	1 m ₀	را: المان ا	ት 1,5 ት m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m_3	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Size 1	_k N
0	0	0000	水化 //
	1	0001	///
1	2	0010	
	8	1000	a
	5	0101	1
2	6	0110	
Z	9	1001	(;
	10	1010	
3	7	0111	9
	14	1110	_

_/a y 省 k-Mb	p .
Minterm	Size 2
// ₁ 0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110

10, 14

1-10

Minterm	Size 4
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10

Finding All Prime Implicants (5/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - Mark and remove all covered terms
- Repeat grouping until no more grouping possible

D AB	00	01	11	10
00	1			1
	m_0	m ₄	m ₁₂	m ₈
01	1	1		1
	m ₁	m ₅	m ₁₃	m ₉
11		1		
-	m_3	m ₇	m ₁₅	m ₁₁
10	1	1	1	1
Į	m_2	m_6	m ₁₄	$m_{\scriptscriptstyle 10}$

#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
2	9	1001
	10	1010
2	7	0111
3	14	1110

Minterm	Size 2
0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110

10, 14

Minterm	Size 4
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10

Comparing with Karnaugh Map

☐ Try to find all prime implicants directly in the Karnaugh map

CD AE	00	01	11	10
00	1			1
	m_0	m ₄	m ₁₂	m ₈
01	1 m₁	1 m ₅	m ₁₃	1 m ₉
11	•	1 m ₇		
10	m ₃	,	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
Z	9	1001
	10	1010
3	7	0111
<u> </u>	14	1110

Minterm	Size 2
0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110
10, 14	1-10

Minterm	Size 4
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10
	10
,不能再会了	
,不能再会了	
,不能再会了	

Finding a Minimum SOP (1/4)

K-mup: 可约式这圈国

- **□** Build the prime implicant chart (table)
- ☐ Simplify the table using essential
 - > Select an essential, delete covered minterms, and repeat
- Optimally select PIs by column covering

AE CD	00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

	,				I	VIInt	erms	5			
PIs		0	1	2	5	6	7	8	9	10	14
0,1,8,9	-00-	Х	X					X	X		
0,2,8,10	-0-0	Х		Χ				X		X	
2,6,10,14	10			X		X				X	Χ
1,5	0-01		X		X						
5,7	01-1				X		X				
6,7	011-					X	X				

Finding a Minimum SOP (2/4)

- ☐ Build the prime implicant chart (table)
- ☐ Simplify the table using essential prime implicants
- **Select <u>essential prime implicants</u>** and delete covered minterms
 - Optimally select PIs by column covering

CD AB	00	01	11	10	islential PZ Nix		·				ارر رز هرار Mint	11,77	esse		PL	
					Pls		0	1	2	5	6	7	8	V 9	10	14
00	1 m	m	m	1	0,1,8,9	-00-	Х	Х					Х	Χ		
-	m_0	m ₄	m ₁₂	m ₈	0,2,8,10	-0-0	Х		Х				Х		Х	
01	1	1		1	2,6,10,14	10			Х		Х				Х	Х
	m_1	m_5	m ₁₃	m_9	1,5	0-01		Х		Х				_		
					5,7	01-1				X		X	14.	义被2	-, 6,19/	少の言刊 ial PL
11		1			6,7	011-					Х	X	2/6,	19 19 3	LSSEAD	IN PL
	m ₃	m ₇	m ₁₅	m ₁₁			'									
10	1 m	1 m	1	1												
L	m_2	m_6	m_{14}	m_{10}												

9岁被小小月新到时已到

Finding a Minimum SOP (3/4)

- ☐ Build the prime implicant chart (table)
- ☐ Simplify the table using essential prime implicants
 - Select essential prime implicants and <u>delete covered minterms</u>
- Optimally select PIs by column covering

CDAB	00	01	11	10						١	Mint	erms	S
					PIs		0	1	2	5	6	7	8
00	1	m	m	1	0,1,8,9	-00-	×	×					Х
-	m_0	m ₄	m ₁₂	m ₈	0,2,8,10	-0-0	ж		ж				Х
01	1	1		1	2,6,10,14	10			ж		ж		
	m_1	m ₅	m ₁₃	m_9	1,5	0-01		ж		Х			
					5,7	01-1				X		X	
11		1			6,7	011-					×	Х	
-	m ₃	m ₇	m ₁₅	m ₁₁			1	p	1				
10	1	1	1	1		2	B 024	milial	•		16/8	alum	n 5
	m_2	m ₆	m ₁₄	m ₁₀					污点		5		O

10

14

Finding a Minimum SOP (4/4)

- ☐ Build the prime implicant chart (table)
- ☐ Simplify the table using essential prime implicants
 - > Select essential prime implicants and delete covered minterms
- Optimally select PIs by column covering

AE CD AE	00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

		iviinterms									
Pls		0	1	2	5	6	7	8	9	10	14
0,1,8,9	-00-	ж	Х					ж	Х		
0,2,8,10	-0-0	ж		Х				Х		Х	
2,6,10,14	10			ж		ж				ж	ж
1,5	0-01		ж		X						
5,7	01-1				X		Х				
6,7	011-					×	Х				

Comparing with Karnaugh Map

☐ Try to find a minimum SOP directly in the Karnaugh map

Difficulty and Summary

- Column covering is hard
 - ➤ NP-complete
 - Consider a Boolean expression with n variables, in general
 - ~2ⁿ minterms
 - ~3ⁿ/n prime implicants
 - The proof is optional: https://core.ac.uk/download/pdf/82016049.pdf
- Summary
 - > Karnaugh map / 新见Var 升程等
 - Exact and effective as # of variables ≤ 5
 - > Quine-McCluskey method & time complexity in.
 - Exact and realizable for more variables
 - Espresso
 - Heuristic and faster than the Quine-McCluskey method 个偏greedy 的方法、不能保管。plimml但了能比较快。

More Than Logic Design

- ☐ Are Integrated Circuit (IC) designers still doing this?
 - ➤ Maybe not...
 - > Existing semiconductor intellectual property (IP) core
 - ➤ Electronic Design Automation (EDA) tools
- ☐ How to decompose a complicated system to components (libraries) which you can implement easily?
 - > This decomposition must be correct, i.e., logically equivalent in this case

UX: how can expression -> minimum sop

Q&A