UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

Cálculo Numérico (521230) 2009-2

I. CONTENIDOS

- Revisión de conceptos básicos.
 - Normas: Normas vectoriales y matriciales. Productos interiores.
 - Errores: Fuentes del error en la resolución numérica de modelos matemáticos de fenómenos reales. Errores computacionales. Propagación de errores.
- Sistemas de ecuaciones lineales.
 - Preliminares: Expresión matricial. Relación con la matriz inversa. Métodos directos e iterativos. Costo computacional operacional y en memoria. Propagación de errores de redondeo.
 - Factorización LU: Eliminación Gaussiana. Relación con la factorización LU. Solución de sistemas triangulares. Costo operacional. Conveniencia de la factorización.
 - **Pivoteo:** Estrategia de pivoteo parcial; necesidad. Matrices de permutación. Matrices "psicológicamente" triangulares.
 - Adaptación a matrices con estructuras particulares: Matrices simétricas y definidas positivas; método de Cholesky. Matrices banda. Matrices tridiagonales.
 - Propagación de errores: Propagación de errores en los datos. Número de condición. Propagación de errores de redondeo. Estimación a posteriori del error.
 - Métodos iterativos: Matrices dispersas; almacenamiento. Esquema general de métodos iterativos. Matriz de iteración. Criterios de convergencia. Criterios de detención.
 - **Métodos iterativos clásicos:** Métodos de Jacobi y Gauss-Seidel. Criterios de convergencia.
 - Métodos de tipo gradiente: Método del gradiente. Método del gradiente conjugado. Convergencia. Precondicionamiento.
- Aproximación por cuadrados mínimos.
 - Ajuste de curvas: Solución en el sentido de cuadrados mínimos de sistemas rectangulares. Ecuaciones normales. Problemas de rango deficiente.
 - Ortogonalización: Factorización QR. Método de Gram-Schmidt. [Método de Householder].
 - Problemas de cuadrados mínimos no lineales: Reducción a problemas lineales.

Interpolación numérica.

- Interpolación polinomial: Existencia y unicidad del polinomio de interpolación. Fórmula de Lagrange. Error en la interpolación. Fenómeno de Runge.
- Interpolación por "splines": Interpolación lineal a trozos. "Splines" cúbicos.

• Integración numérica.

- **Métodos elementales:** Reglas del punto medio, de los trapecios y de Simpson. Acotación del error.
- Método de Romberg: Extrapolación de Richardson. Método de Romberg.
- Método de Gauss: Polinomios de Legendre. Reglas de Gauss. Precisión. Aplicación.
- Integración de funciones singulares: Reducción a integrales de funciones regulares. Métodos adaptativos.
- Integrales múltiples.

• Ecuaciones no lineales.

- Métodos de convergencia garantizada: Bisección. Convergencia lineal.
- Métodos de convergencia veloz: Newton-Raphson. Convergencia cuadrática. Condiciones de convergencia. Criterio de detención. Método de la secante.
- Sistemas de ecuaciones no lineales: Método de Newton.

• Ecuaciones diferenciales ordinarias.

- Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales. Ecuaciones de orden superior. Métodos numéricos de paso simple y múltiple. Método de Euler. Error local de truncamiento. Error global.
- Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Runge Kutta de orden 4. Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
- **Métodos de paso múltiple:** Métodos explícitos: Adams-Bashforth. Métodos implícitos: Adams-Moulton. Métodos predictor-corrector.
- Ecuaciones "Stiff": Estabilidad de las ecuaciones y de los métodos numéricos. Ecuaciones "Stiff". Métodos implícitos: métodos de Euler y de los trapecios.
- Problemas de valores de contorno: Existencia y unicidad de solución. Método de "shooting". Método de diferencias finitas. Método de elementos finitos.

II. BIBLIOGRAFIA

- H. Alder & E. Figueroa: *Introducción al Análisis Numérico*. Facultad de Ciencias Físicas y Matemáticas. Universidad de Concepción. 1995.
- K. Atkinson: Elementary Numerical Analysis, John Wiley and Sons, 1993.
- R. L. Burden & J. D. Faires: Análisis Numérico, Thomson, 1998.
- E. CATALDO, R. SAMPAIO & R. RIQUELME: Introducción al Matlab. (Apunte) 2001.
- S. C. Chapra & R. P. Canale: Métodos Numéricos para Ingenieros, McGraw-Hill, 1999.
- G. HÄMMERLIN & K.-H. HOFFMANN: Numerical Mathematics, Springer-Verlag, 1991.
- D. R. KINCAID & W. CHENEY: Análisis Numérico: las Matemáticas del Cálculo Científico, Addison-Wesley Iberoamericana, 1994.
- A. Quarteroni & F. Saleri: Scientific Computing with MATLAB, Springer-Verlag, 2003.
- H. R. Shwartz: Numerical Analysis. A Comprehensive Introduction. John Wiley and Sons, 1989.
- J. Stoer & R. Bulirsch: Introduction to Numerical Analysis. Springer-Verlag, 1993.
- L.N. Trefethen & D. Bau: Numerical linear algebra, SIAM, 1997.

III. INFOALUMNO

Material de apoyo, notas de las evaluaciones, así como cualquier comunicado, se entregará por medio de Infoalumno.

IV. LABORATORIOS COMPUTACIONALES

Además de las clases teóricas el curso contempla un laboratorio computacional semanal, de dos horas, y al cual la asistencia es obligatoria. Los alumnos se deberán inscribir en los laboratorios desde las 12 horas del miércoles 05 de Agosto y hasta las 18 horas del jueves 06 de Agosto, mediante internet en la dirección electrónica:

www.ing-mat.udec.cl > Pregrado > Asignaturas > 521230 CALCULO NUMERICO

La elección de laboratorios será estrictamente por orden de inscripción y, preferentemente, para el día Miércoles.

V. EVALUACION

- (a) La evaluación en la asignatura se hará por medio de dos (2) certámenes y dos (2) tests de laboratorio.
- (b) Los dos (2) certámenes consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la nota final de un 40 %. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la nota final de un 10 %.
- (c) Al final del semestre habrá una (1) Evaluación de Recuperación que abarcará toda la materia del semestre y que remplazará la menor de las dos notas de los certámenes.
- (d) En las evaluaciones, así como en los tests, se prohíbe estrictamente el uso de calculadoras, celulares y cualquier otro medio (MP3, MP4, iPoD, etc).
- (e) La no asistencia a un certamen significará obtener Nota Final NCR. No obstante, quien justifique su inasistencia a un certamen (ver letra (g) siguiente) se deberá presentar a la Evaluación de Recuperación, y la nota que obtenga en ésta se le considerará como la nota del certamen al que faltó. Si su Nota Final resultara inferior a 4.0, la nota obtenida en la Evaluación de Recuperación también se le considerará como su nota de Evaluación de Recuperación para reemplazarla por la menor de las dos notas de los certámenes.
- (f) La no asistencia a un test significará obtener la calificación *NCR*. Quien justifique su inasistencia por los canales oficiales (ver letra (g) siguiente), se podrá presentar a un *test de recuperación*. No existe un test de recuperación para mejorar nota.
- (g) El alumno que no se presente a alguna de las evaluaciones programadas, tendrá un plazo máximo de 5 días hábiles para informar al profesor de la asignatura, *por escrito*, las razones de su inasistencia ya sea en forma personal o por intermedio de otra persona, sin perjuicio de que posteriormente se entregue en los plazos establecidos, la información que avale la inasistencia. (Art. 16, RIDP, FCFM).

■ Fechas tentativas de los laboratorios y tests:

Agosto			Septiembre				Octubre				Noviembre		
12-13	19-20	26-27	02-03	09-10	23-24	30-01	07-08	14-15	21-22	28-29	04-05	11-12	19
L1	L2	-	L3	L4	L5	L6	Test 1	L7	RT1+L8	L9	LC	Test 2	RT2

Este cronograma puede sufrir alteraciones las que serán anunciadas en las respectivas clases teóricas.

Fecha de las evaluaciones:

Evaluación-1: 28 de Septiembre, Evaluación-2: 26 de Noviembre,

Evaluación de Recuperación: 09 de Diciembre.

03 de Agosto de 2009.

27 de Agosto de 2009. (Reprogramación de Laboratorios/25-26 Actividades Congreso Nacional de Educación).

MCP/PC/CVL/AC.