10.3. ЗАДАНИЕ 8 ДЕЛЕНИЕ ЧИСЕЛ С ПЛАВАЮЩЕЙ ЗАПЯТОЙ

1. Заданные числа A (делимое) и B (делитель) представить в форматах $\Phi 1$ и $\Phi 2$ с укороченной мантиссой (8 двоичных разрядов). Метод округления выбирается произвольно.

Примечание: общее число разрядов в формате – 16.

- 2. Выполнить операцию деления операндов в формате $\Phi 1$.
- 3. В случае положительного результата «пробного» вычитания сохранить младшую тетраду.
- 4. Выполнить операцию деления операндов в формате $\Phi 2$.
- 5. Результаты представить в форматах операндов, перевести в десятичную систему счисления и проверить их правильность.
- 6. Определить абсолютную и относительную погрешности результатов и обосновать их причину.

Варианты задания приведены в табл. 8 Приложения 1.

Пример 1. Деление в формате $\Phi 2$.

$$A = 7,7 = (111.10110011)_2 = (0.11110110)_2 \cdot 2^3$$

$$B = 0,028 = (0.0000011100101)_2 = (0.11100101)_2 \cdot 2^{-5}$$

$$X_C = X_A - X_B + d$$

$$d + P_C = \mathbf{P}_A + d - \mathbf{P}_B - \mathbf{d} + d$$

$$\mathbf{P}_C$$

$$X_C = 3 - (-5) + 128 = 136$$

$$P_C = 8$$

N шага	Действие	Делимое	Частное
	M_A	0 1 1 1 1 0 1 1 0	0 0 0 0 0 0 0 0
0	$[-M_B]_{ m доп}$	$1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1$	
	R_0	000010001	00000001
	<i>←R</i> ₀	0 0 0 1 0 0 0 1 0	0 0 0 0 0 0 1 0
1	$[-M_B]_{ ext{ iny MOI}}$	$1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1$	
	R_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 1 0
			<u> </u>
	$\leftarrow R_1$	$0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 0$	$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0$
2	$M_{B~{ m \pi p}}$	$0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1$	
	R_2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 1 0 0
			<u> </u>
	<i>←R</i> ₂	$0\ 1\ 0\ 1\ 1\ 1\ 1\ 0$	0 0 0 0 1 0 0 0
3	$M_{B~{ m \pi p}}$	$0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1$	
	R_3	1 1 0 1 0 0 0 1 1	0 0 0 0 1 0 0
	← R ₃	101000110	0 0 0 1 0 0 0 0
4	B_{np}	$0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1$	

	R_4	0 0 0 1 0 1 0 1 1	0 0 0 1 0 0 0
	<i>←R</i> ₄	0 0 1 0 1 0 1 1 0	0 0 1 0 0 0 1 0
5	$[-M_B]_{ m доп}$	$1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1$	
	R_5	101110001	0 0 1 0 0 0 1
	$\leftarrow R_5$	$0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 0$	0 1 0 0 0 1 0 0
6	$M_{B~{ m np}}$	$0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1$	
	R_6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 0 0 1 0 0
			_
	<i>←R</i> ₆	1 1 0 0 0 1 1 1 0	1 0 0 0 1 0 0 0
7	$M_{B~{ m np}}$	$0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1$	
	R_7 $M_C \rightarrow$	${\color{red}0}$ 0 1 1 1 0 0 1 1	1 0 0 0 1 0 0 1
	$M_C \rightarrow$		<u> </u>
			0 1 0 0 0 1 0 0 1

$$C^* = (0.10001001)_2 \cdot 2^9 = (100010010)_2 = 274.$$

 $C^{T} = 275$ (точное значение).

$$\Delta C = C_{\rm T} - C^* = 275 - 274 = 1,$$

$$\delta C = \left| \frac{\Delta C}{C_T} \right| \cdot 100\% = \left| \frac{1}{275} \right| \cdot 100\% = 0.36\%.$$

Погрешность вызвана неточным представлением операндов.

Пример 2. Деление в формате $\Phi 1$.

N шага	Действие	Делимое	Частное
	M_A	0 0 1 1 1 1 0 1 1	0 0 0 0 0 0 0
0	$[-M_B]_{ ext{ДОП}}$	$1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0$	
	R_0	$0\ 0\ 0\ 0\ 1\ 0\ 0\ 1$	$R_0>0$
	$M_A \rightarrow 4$	$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1$	1 0 1 1 0 0 0 0
	$[-M_B]_{ ext{ iny JOII}}$	$1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0$	
	R_{O}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 1 1 0 0 0 0
			Т
	$\leftarrow R_0$	$1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1$	0 1 1 0 0 0 0 0
1	$M_{B~\Pi m p}$	$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	
	R_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 0 0 0 0 0
			<u> </u>
	$\leftarrow R_1$	1 0 0 1 1 1 0 1 0	1 1 0 0 0 0 0 0
2	$M_{B \; \mathrm{пp}}$	$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	
	R_2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 0 0 0 0 0 0
			<u> </u>
	← R ₂	1 0 1 0 1 1 0 0 1	1 0 0 0 0 0 0 0
3	B_{np}	$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	
	R_3	<mark>1</mark> 1 1 0 0 1 0 1 1	1 0 0 0 0 0 0 0

	<i>←R</i> ₃	$1\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 1$	0 0 0 0 0 0 0 0
4	$M_{B { m пp}}$	$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	
	R_4	$0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1$	0 0 0 0 0 0 0 1
			_
	<i>←R</i> ₄	0 0 0 0 1 0 0 1 0	0 0 0 0 0 0 1 0
5	$[-M_B]_{ m ДОП}$	$1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0$	
	R_5	1 1 0 1 0 0 0 0 0	0 0 0 0 0 0 1 0
			
	<i>←R</i> ₅	1 0 1 0 0 0 0 0 0	0 0 0 0 0 1 0 0
6	$M_{B \text{ mp}}$	$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	
Ü	R_6	1 1 0 1 1 0 0 1 0	0 0 0 0 0 1 0 0
	110		1
	<i>←R</i> ₆	1 0 1 1 0 0 1 0 0	0 0 0 0 1 0 0 0
7	$M_{B \text{ mp}}$	$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0$	0000100
,	R_7	$\frac{1}{1}$ 1 1 0 1 0 1 1 0	0 0 0 0 1 0 0 0
	IN/		*
	, D ₀	1 1 0 1 0 1 1 0 0	0 0 0 1 0 0 0 0
8	$\leftarrow R_7$		
ð	$M_{B \text{ np}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.001.0001
	R_8	0 0 0 0 1 1 1 1 0	0 0 0 1 0 0 0

$$C^* = (1,1)_{16} \ 16^3 = (110)_{16} = 272$$

$$\Delta C = C_{\rm T} - C^* = 275 - 272 = 3,$$

$$\delta C = \left| \frac{\Delta C}{C_T} \right| \cdot 100\% = \left| \frac{1}{275} \right| \cdot 100\% = 1,09\%.$$

Погрешность вызвана неточным представлением операндов и она больше, чем при делении в формате $\Phi 2$.