Poincaré Embeddings for Learning Hierarchical Representations

Neural Information Processing Systems 2017 (2019 NLP GROUP STUDY)

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

WordNet Sub-Graph (English)

Verb tense

Male-Female

Country-Capital

Characteristics(?) of tree structured graph

Suppose there are b branching factors on each nodes

At level l, there are $(b+1)b^l$ nodes There are $\frac{\left((b+1)b^l-2\right)}{b-1}$ nodes on a level less or equal than l

Note: the # of nodes are exponentially increasing as level *l* (distance to the root of the tree) increases

선 밖의 한 점을 지나 그 직선에 평행한 직선은 단 하나만 존재한다.[1]

P

Figure 1: (a) Due to the negative curvature of \mathcal{B} , the distance of points increases exponentially (relative to their Euclidean distance) the closer they are to the boundary. (c) Growth of the Poincaré distance d(u, v) relative to the Euclidean distance and the norm of v (for fixed ||u|| = 0.9). (b) Embedding of a regular tree in \mathcal{B}^2 such that all connected nodes are spaced equally far apart (i.e., all black line segments have identical hyperbolic length).

$$g_{\boldsymbol{x}} = \left(\frac{2}{1 - \|\boldsymbol{x}\|^2}\right)^2 g^E,$$

$$d(\mathbf{u}, \mathbf{v}) = \operatorname{arcosh} \left(1 + 2 \frac{\|\mathbf{u} - \mathbf{v}\|^2}{(1 - \|\mathbf{u}\|^2)(1 - \|\mathbf{v}\|^2)} \right).$$

$$\Theta' \leftarrow \operatorname*{arg\,min}_{\Theta} \mathcal{L}(\Theta) \qquad \text{s.t. } \forall \, \boldsymbol{\theta}_i \in \Theta : \|\boldsymbol{\theta}_i\| < 1.$$

$$\theta_{t+1} = \Re_{\theta_t} (-\eta_t \nabla_R \mathcal{L}(\theta_t))$$

$$g_{\boldsymbol{x}} = \left(\frac{2}{1 - \|\boldsymbol{x}\|^2}\right)^2 g^E,$$

$$lpha=1-\|m{ heta}\|^2$$
 , $ar{eta}=1-\|m{x}\|^2$ and let $\gamma=1+rac{2}{lphaeta}\|m{ heta}-m{x}\|^2$

$$d(\boldsymbol{u}, \boldsymbol{v}) = \operatorname{arcosh} \left(1 + 2 \frac{\|\boldsymbol{u} - \boldsymbol{v}\|^2}{(1 - \|\boldsymbol{u}\|^2)(1 - \|\boldsymbol{v}\|^2)} \right). \qquad \frac{\partial d(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \boldsymbol{\theta}} = \frac{4}{\beta \sqrt{\gamma^2 - 1}} \left(\frac{\|\boldsymbol{x}\|^2 - 2\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle + 1}{\alpha^2} \boldsymbol{\theta} - \frac{\boldsymbol{x}}{\alpha} \right)$$

$$\frac{\partial d(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \boldsymbol{\theta}} = \frac{4}{\beta \sqrt{\gamma^2 - 1}} \left(\frac{\|\boldsymbol{x}\|^2 - 2\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle + 1}{\alpha^2} \boldsymbol{\theta} - \frac{\boldsymbol{x}}{\alpha} \right)$$

$$\Theta' \leftarrow \operatorname*{arg\,min}_{\Theta} \mathcal{L}(\Theta) \qquad \text{s.t. } \forall \, \boldsymbol{\theta}_i \in \Theta : \|\boldsymbol{\theta}_i\| < 1.$$

$$\theta_{t+1} = \Re_{\theta_t} (-\eta_t \nabla_R \mathcal{L}(\theta_t))$$

$$g_{\boldsymbol{x}} = \left(\frac{2}{1 - \|\boldsymbol{x}\|^2}\right)^2 g^E,$$

$$lpha=1-\|m{ heta}\|^2$$
 , $ar{eta}=1-\|m{x}\|^2$ and let $\gamma=1+rac{2}{lphaeta}\|m{ heta}-m{x}\|^2$

$$d(u, v) = \operatorname{arcosh} \left(1 + 2 \frac{\|u - v\|^2}{(1 - \|u\|^2)(1 - \|v\|^2)} \right).$$

$$\frac{\partial d(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \boldsymbol{\theta}} = \frac{4}{\beta \sqrt{\gamma^2 - 1}} \left(\frac{\|\boldsymbol{x}\|^2 - 2\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle + 1}{\alpha^2} \boldsymbol{\theta} - \frac{\boldsymbol{x}}{\alpha} \right)$$

$$\Theta' \leftarrow \operatorname*{arg\,min}_{\Theta} \mathcal{L}(\Theta)$$
 s.t. $\forall \, \boldsymbol{\theta}_i \in \Theta : \|\boldsymbol{\theta}_i\| < 1$.

s.t.
$$\forall \theta_i \in \Theta : \|\theta_i\| < 1$$
.

$$\mathcal{L}(\Theta) = \sum_{(u,v)\in\mathcal{D}} \log \frac{e^{-d(\boldsymbol{u},\boldsymbol{v})}}{\sum_{\boldsymbol{v}'\in\mathcal{N}(u)} e^{-d(\boldsymbol{u},\boldsymbol{v}')}},$$

$$\theta_{t+1} = \Re_{\theta_t} \left(-\eta_t \nabla_R \mathcal{L}(\theta_t) \right)$$

$$\mathcal{R}_{ heta}(oldsymbol{v}) = oldsymbol{ heta} + oldsymbol{v}$$

$$\operatorname{proj}(\boldsymbol{\theta}) = egin{cases} \boldsymbol{\theta}/\|\boldsymbol{\theta}\| - \varepsilon & \text{if } \|\boldsymbol{\theta}\| \geq 1 \\ \boldsymbol{\theta} & \text{otherwise }, \end{cases}$$

$$egin{aligned} oldsymbol{ heta}_{t+1} \leftarrow \operatorname{proj}\left(oldsymbol{ heta}_t - \eta_t rac{(1 - \|oldsymbol{ heta}_t\|^2)^2}{4}
abla_E
ight) \end{aligned}$$

Table 1: Experimental results on the transitive closure of the WORDNET noun hierarchy. Highlighted cells indicate the best Euclidean embeddings as well as the Poincaré embeddings which acheive equal or better results. Bold numbers indicate absolute best results.

			Dimensionality						
			5	10	20	50	100	200	
WORDNET Reconstruction	Euclidean	Rank MAP	3542.3 0.024	2286.9 0.059	1685.9 0.087	1281.7 0.140	1187.3 0.162	1157.3 0.168	
	Translational	Rank MAP	205.9 0.517	179.4 0.503	95.3 0.563	92.8 0.566	92.7 0.562	91.0 0.565	
	Poincaré	Rank MAP	4.9 0.823	4.02 0.851	3.84 0.855	3.98 0.86	3.9 0.857	3.83 0.87	
WORDNET Link Pred.	Euclidean	Rank MAP	3311.1 0.024	2199.5 0.059	952.3 0.176	351.4 0.286	190.7 0.428	81.5 0.490	
	Translational	Rank MAP	65.7 0.545	56.6 0.554	52.1 0.554	47.2 0.56	43.2 0.562	40.4 0.559	
	Poincaré	Rank MAP	5.7 0.825	4.3 0.852	4.9 0.861	4.6 0.863	4.6 0.856	4.6 0.855	

Figure 2: Two-dimensional Poincaré embeddings of transitive closure of the WORDNET mammals subtree. Ground-truth is-a relations of the original WORDNET tree are indicated via blue edges. A Poincaré embedding with d=5 achieves mean rank 1.26 and MAP 0.927 on this subtree.

Table 2: Mean average precision for Reconstruction and Link Prediction on network data.

		Dimensionality								
		1	Reconstruction				Link Prediction			
		10	20	50	100	10	20	50	100	
ASTROPH	Euclidean	0.376	0.788	0.969	0.989	0.508	0.815	0.946	0.960	
N=18,772; E=198,110	Poincaré	0.703	0.897	0.982	0.990	0.671	0.860	0.977	0.988	
CONDMAT	Euclidean	0.356	0.860	0.991	0.998	0.308	0.617	0.725	0.736	
N=23,133; E=93,497	Poincaré	0.799	0.963	0.996	0.998	0.539	0.718	0.756	0.758	
GRQC	Euclidean	0.522	0.931	0.994	0.998	0.438	0.584	0.673	0.683	
N=5,242; E=14,496	Poincaré	0.990	0.999	0.999	0.999	0.660	0.691	0.695	0.697	
HEPPH	Euclidean	0.434	0.742	0.937	0.966	0.642	0.749	0.779	0.783	
N=12,008; E=118,521	Poincaré	0.811	0.960	0.994	0.997	0.683	0.743	0.770	0.774	

Table 3: Spearman's ρ for Lexical Entailment on HYPERLEX.

	FR	SLQS-Sim	WN-Basic	WN-WuP	WN-LCh	Vis-ID	Euclidean	Poincaré
ρ	0.283	0.229	0.240	0.214	0.214	0.253	0.389	0.512