The skin-in-the-game bond

A novel sustainable capital instrument

Eva Verschueren

Globally Sustainable Banking & Finance: in support of evidence based policy making October 12, 2021

Joint work with K. Antonio, J. De Spiegeleer & W. Schoutens

Outline of the presentation

- 1. Motivation
- 2. Features of the Skin-in-the-game Bond
- 3. Valuation of the Skin-in-the-game Bond
- 4. Data Example

Motivation

Introduction

The **skin-in-the-game** bond is a **sustainable capital** instrument.

Sustainable investing refers to the process of taking due account of environmental (E), but also social (S) and corporate governance (G) considerations in investment decision-making [1].

A person having **skin-in-the-game** is directly involved in and affected by an action and its negative consequences, especially financially [2].

Introduction

The **skin-in-the-game** bond is a **sustainable capital** instrument.

Sustainable investing refers to the process of taking due account of environmental (E), but also social (S) and corporate governance (G) considerations in investment decision-making [1].

A person having **skin-in-the-game** is directly involved in and affected by an action and its negative consequences, especially financially [2].

Lack of skin-in-the-game may cause moral hazard.
e.g. 2008 financial crisis, Deepwater Horizon oil spill ...

Sustainable investing: green, social and sustainability bonds

Green, social and sustainability bonds are issued with the purpose of financing resp. a green project, social project or combination of both [3].

Sustainable investing: green, social and sustainability bonds

Green, social and sustainability bonds are issued with the purpose of financing resp. a green project, social project or combination of both [3].

Both issuer and investor do not have skin-in-the-game.

Sustainable investing: sustainability-linked bonds

Sustainability-linked bonds have varying financial characteristics, depending on whether the issuer achieves predefined sustainability objectives [4].

Example - energy company **Enel** [5]

- ▶ Bonds were first issued in September 2019.
- Sustainable targets related to greenhouse gas emission and renewable energy.
- ► The bond's coupon increases if Enel fails to reach the sustainable targets.

Sustainable investing: sustainability-linked bonds

Sustainability-linked bonds have varying financial characteristics, depending on whether the issuer achieves predefined sustainability objectives [4].

Example - energy company **Enel** [5]

- ▶ Bonds were first issued in September 2019.
- Sustainable targets related to greenhouse gas emission and renewable energy.
- ► The bond's coupon increases if Enel fails to reach the sustainable targets.
- The **issuer** has **skin-in-the-game**.
 - The **investor** has no skin-in-the-game.

Sustainable investing: skin-in-the-game bond

Which parties do have skin-in-the-game in sustainable investing?

	Issuer	Investor
Green, Social or Sustainability bond	×	X
Sustainability-linked bond	✓	X
Skin-in-the-game bond	✓	✓

The skin-in-the-game bond is built on the principle that both parties, issuer and investor, should have skin-in-the-game and suffer if sustainability promises are not delivered.

Features of the

Skin-in-the-game Bond

The design of the skin-in-the-game bond

	Contingent C	Convertible [6]
Issuer	financial institu	ution
Benchmark	related to the	capital level
Trigger event		benchmark below a fixed threshold
Trigger consequence		(part of) the face value is withheld
Withheld part	to the issuer	

The design of the skin-in-the-game bond

	Contingent Convertible [6]	Skin-in-the-game Bond
Issuer	financial institution	company in any sector
Benchmark	related to the capital level	related to the broad concept of sustainability (E,S,G)
Trigger event	benchmark below a f	ixed threshold
Trigger consequence	(part of) the face val	ue is withheld
Withheld part	to the issuer	to an external fund

The skin-in-the-game bond's life cycle

Scenario A: **no trigger** event.

The skin-in-the-game bond's life cycle

Scenario A: **no trigger** event.

Advantages

- 1. The **investor** has skin-in-the-game.
 - ► speculate on meeting the E, S and/or G related goals
 - cash-in an above risk-free coupon
- 2. The **issuer** has skin-in-the-game.
 - ► clear market driven incentive to optimize the level of the benchmark
 - excessive risk-taking and mismanagement are immediately punished
 - cost of capital increases
 - reputational risk
- 3. External **fund** makes sure that issuer is not exempt from payment and it may be used to cover costs related to trigger event.
 - e.g. oil spill, nuclear event ...

Valuation of the

Skin-in-the-game Bond

The valuation of a skin-in-the-game bond

Standard corporate bond

- subject to the issuer's bankruptcy risk
- offers a **yield** $c = r + c_s$, with r the risk-free rate and c_s the credit spread

Skin-in-the-game bond

- trigger characteristic increases the probability for the investor to suffer a loss on the invested amount
- ightharpoonup to compensate, a higher **yield** $c=r+c_s+t_s$ is offered, with t_s the trigger spread

The valuation of a skin-in-the-game bond

The **price** *P* of the bond is determined as

$$P = \sum_{t=1}^{T} \frac{\mathbb{E}_{\mathcal{Q}}[C_t]}{(1+r+c_s)^t} := N,$$

with T the maturity, C_t the cash-flow at time t, Q the pricing measure, and N the notional.

 $\mathbb{E}_{\mathcal{Q}}[C_t]$ depends on the **trigger probability** PT_t and the trigger spread t_s :

$$\mathbb{E}_{\mathcal{Q}}[C_t] = PT_t \cdot 0 + (1 - PT_t) \cdot c \cdot N = (1 - PT_t) \cdot (r + c_s + t_s) \cdot N.$$

The valuation of a skin-in-the-game bond

The **price** *P* of the bond is determined as

$$P = \sum_{t=1}^{T} \frac{\mathbb{E}_{\mathcal{Q}}[C_t]}{(1+r+c_s)^t} := N,$$

with T the maturity, C_t the cash-flow at time t, Q the pricing measure, and N the notional.

 $\mathbb{E}_{\mathcal{Q}}[C_t]$ depends on the **trigger probability** PT_t and the trigger spread t_s :

$$\mathbb{E}_{\mathcal{Q}}[C_t] = PT_t \cdot 0 + (1 - PT_t) \cdot c \cdot N = (1 - PT_t) \cdot (r + c_s + t_s) \cdot N.$$

 \longrightarrow If we estimate PT_t , we can **calculate** t_s , assuming r, c_s known.

Data Example

The ESG skin-in-the-game bond

The ESG skin-in-the-game bond uses the **ESG rating of a company**, provided by a particular rating agency¹, **as the benchmark** underlying the trigger mechanism of the bond.

- ► The trigger probability is determined by the probability that the issuing firm's ESG rating drops to or below the trigger level.
- Historical ESG data from Sustainalytics is used to estimate the trigger probability.

11/19

 $^{^{1}}$ Due to the differences across the ratings published by various ESG rating providers, the ESG skin-in-the-game bond should merely be seen as an illustrative example [7].

ESG skin-in-the-game bond characteristics

The trigger spread depends on the bond's characteristics. We look at a specific example.

Characteristics	Bond-specific values
issuer	public firm in communication services sector
risk-free rate r	0.010
credit spread c_s	0.025
duration	5 years
notional N	100
coupon frequency	annual
initial rating	A
trigger level	BB
trigger penalty	permanent coupon loss

The trigger probability (1)

We exploit the literature on credit ratings [8, 9] to estimate trigger probabilities.

Step 1 Transform the raw ratings (between 0 and 100) into **ESG rating** categories [10].

Rating category	С	CCC	В	ВВ	BBB	А	AAA
Raw score	0-48	48-54	54-61	61-69	69-74	74-79	79-100

The trigger probability (1)

We exploit the literature on credit ratings [8, 9] to estimate trigger probabilities.

Step 1 Transform the raw ratings (between 0 and 100) into **ESG rating** categories [10].

Rating category	С	CCC	В	ВВ	BBB	А	AAA
Raw score	0-48	48-54	54-61	61-69	69-74	74-79	79-100

Step 2 Under the time-homogeneous, first-order Markov assumption, estimate a **transition probability matrix**, per company type and sector.

The trigger probability (2)

One-year transition matrix for a public firm in the communication services sector.

	С	CCC	В	ВВ	BBB	Α	AAA
С	0.53213	0.18029	0.22725	0.05577	0.00409	0.00042	0.00005
CCC	0.12705	0.47922	0.30573	0.08110	0.00618	0.00065	0.00007
В	0.06587	0.10967	0.51331	0.27567	0.03119	0.00379	0.00050
BB	0.00884	0.02761	0.12200	0.67539	0.14099	0.02163	0.00355
BBB	0.00089	0.00364	0.01845	0.19021	0.62482	0.13169	0.03031
Α	0.00009	0.00048	0.00263	0.03941	0.25367	0.58823	0.11549
AAA	0.00002	0.00012	0.00064	0.01078	0.08476	0.19875	0.70492

Step 3 Calculate the **trigger probability** based on transition probability matrix.

e.g.
$$PT_1 = 0.03941 + 0.00263 + 0.00048 + 0.00009 = 0.04261$$
.

The trigger probability (3)

Step 4 Transform \mathcal{P} to \mathcal{Q} .

- lacktriangleright transition probabilities based on historical data are under measure ${\cal P}$
- lacktriangle pricing requires probabilities under pricing measure ${\mathcal Q}$
- ▶ use transformation from Cariboni et al. [11]

	Year 1	Year 2	Year 3	Year 4	Year 5
$PT^{\mathcal{P}}$	0.04261	0.12309	0.20974	0.29175	0.36613
$PT^{\mathcal{Q}}$	0.10174	0.21241	0.30324	0.37521	0.43258

The trigger probability (4)

Step 5 Calculate the **trigger spread**.

$$P = \sum_{t=1}^{T} \frac{\mathbb{E}_{\mathcal{Q}}[C_t]}{(1+r+c_s)^t}$$

$$= \frac{0.89826cN}{1.035} + \frac{0.78759cN}{1.035^2} + \frac{0.69676cN}{1.0356^3} + \frac{0.62479cN}{1.035^4} + \frac{0.56742cN + N}{1.035^4}$$

$$= N = 100.$$

We find c = 0.048567, with r = 0.010, and $c_s = 0.025$, this results in

$$t_s = 0.013567.$$

Discussion on the trigger spread

Trigger spread (bps) for a 5-year ESG skin-in-the-game bond with annual coupon payment, permanent coupon loss, and trigger level (column). The issuer has initial rating (row).

	C	CCC	В	BB	BBB	A
CCC	173					
В	107	223				
BB	40	90	228			
BBB	15	35	84	300		
Α	6	16	39	136	424	
AAA	4	8	21	75	222	459

Conclusion

We argue for the **skin-in-the-game bond** as a sustainable capital instrument with an embedded financial penalty related to E, S and/or G promises.

- 1. clear incentives to the **issuer** to reduce excessive risk-taking, reach sustainability goals and bring transparency
- 2. mechanism for **investors** to gain above risk-free returns in compensation for clearly upfront specified risks

skin-in-the-game is enforced and moral hazard risk is reduced

Thank you!

eva.verschueren@kuleuven.be

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3827001

References

- [1] European Commission, "Action Plan: Financing Sustainable Growth," https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX: 52018DC0097, Brussels, pp. 1–20, 2018, online; accessed November 25, 2020.
- [2] W. Safire, "Skin in the Game," The New York Times Magazine, no. September 17, 2006.
- [3] M. Bhatia, "Green, Social and Sustainability Bonds," https://www.sustainalytics.com/sustainable-finance/2019/03/19/green-social-and-sustainability-bonds/, 2019, online; accessed November 27, 2020.
- [4] S. Keegan, "Beyond Green Bonds: Innovations in Sustainable Investing," AllianceBernstein: https://www.alliancebernstein.com/library/beyond-green-bonds-innovations-in-sustainable-investing.htm, 2020, online; accessed November 25, 2020.
- [5] Enel, "Sustainability-Linked Bonds," https://www.enel.com/investors/investing/sustainable-finance/sustainability-linked-finance/sustainability-linked-bonds, 2021, online; accessed July 2, 2021.
- [6] J. De Spiegeleer, W. Schoutens, and C. Van Hulle, The Handbook of Hybrid Securities: Convertible Bonds, CoCo Bonds, and Bail-In, 1st ed. Wiley Finance, 2014.
- [7] G. Dorfleitner, G. Halbritter, and M. Nguyen, "Measuring the level and risk of corporate responsibility: An empirical comparison of different ESG rating approaches." Journal of Asset Management, vol. 16, no. 7, pp. 450–466, 2015.
- [8] J. Kalbfleisch and J. Lawless, "The Analysis of Panel Data Under a Markov Assumption," Journal of the American Statistical Association, vol. 80, no. 392, pp. 863–871, 1985.
- [9] C. H. Jackson, "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, vol. 38, no. 8, pp. 1–29, 2011.
- [10] H. Dahl and S. Larsen, "ESG: A new equity factor," Nykredit Asset Management holds, Tech. Rep., May 2014.
- [11] J. Cariboni, S. Maccaferri, and W. Schoutens, "Applying Credit Risk Techniques to Design an Effective Deposit Guarantee Schemes' Funds," in Actuarial and Financial Mathematics Conference: Interplay between finance and insurance. Royal Flemish Academy of Belgium for Science and Arts (KVAB), 2011, pp. 107–112.

Additional information

Examples of trigger penalties

ESG data

Data is provided by **Sustainalytics**.

- monthly data between January 2017 and September 2019
- companies are subdivided into public or private and grouped into 11 sectors
- ► ESG score between 0 and 100, higher score means better ESG practice

Discussion on the trigger spread (2)

- ► The trigger penalty has a large impact on the trigger spread.
 - smallest spreads for a temporary coupon loss and coupon withholding penalty
 - largest spreads for a full write-down penalty
- Calculations are done for an average company within a specific sector. In reality, market mechanism will charge different yields for different companies.
 - lower yield if it is likely that promises are fulfilled
 - higher yield if it is likely that promises turn out differently than promoted