NEUROCIENCIA Y TOMA DE DECISIONES

MÓDULO II: EL PROBLEMA DE MONTY HALL

Hay 3 puertas.

Detrás de una hay un auto último modelo; detrás de las otras hay cabras.

Ustedes eligen una. Supongamos que elijen la 3.

El comentarista (Monty) abre una de las puertas restantes, que contenga una cabra.

Quedan 2 sin abrir.

¿Qué harían ustedes?

Este problema, basado en un procedimiento que se llevaba acabo en el programa Let's Make a Deal!, fue presentado y resuelto por primera vez en la revista American Statistician, en 1975. Sin embargo, se hizo famoso a partir de una pregunta de un lector en la columna de Marilyn vos Savant (revista Parade) en 1990.

- Este problema, basado en un procedimiento que se llevaba acabo en el programa Let's Make a Deal!, fue presentado y resuelto por primera vez en la revista American Statistician, en 1975. Sin embargo, se hizo famoso a partir de una pregunta de un lector en la columna de Marilyn vos Savant (revista Parade) en 1990.
- Marilyn (Guinness en IQ, 1985-1989) lo resolvió correctamente. Sin embargo, alrededor de 10.000 personas (entre ellos, 1.000 doctores en ciencias) le escribieron argumentando que su respuesta era incorrecta. Matemáticos de renombre (como Paul Erdős) se negaron a aceptar el resultado hasta ver simulaciones computacionales que lo evidenciaron.

- Este problema, basado en un procedimiento que se llevaba acabo en el programa Let's Make a Deal!, fue presentado y resuelto por primera vez en la revista American Statistician, en 1975. Sin embargo, se hizo famoso a partir de una pregunta de un lector en la columna de Marilyn vos Savant (revista Parade) en 1990.
- Marilyn (Guinness en IQ, 1985-1989) lo resolvió correctamente. Sin embargo, alrededor de 10.000 personas (entre ellos, 1.000 doctores en ciencias) le escribieron argumentando que su respuesta era incorrecta. Matemáticos de renombre (como Paul Erdős) se negaron a aceptar el resultado hasta ver simulaciones computacionales que lo evidenciaron.
- Problemas de este tipo, donde la respuesta es tan contraintuitiva que parece absurda, son conocidos como "veridical paradoxes".

- Este problema, basado en un procedimiento que se llevaba acabo en el programa Let's Make a Deal!, fue presentado y resuelto por primera vez en la revista American Statistician, en 1975. Sin embargo, se hizo famoso a partir de una pregunta de un lector en la columna de Marilyn vos Savant (revista Parade) en 1990.
- Marilyn (Guinness en IQ, 1985-1989) lo resolvió correctamente. Sin embargo, alrededor de 10.000 personas (entre ellos, 1.000 doctores en ciencias) le escribieron argumentando que su respuesta era incorrecta. Matemáticos de renombre (como Paul Erdős) se negaron a aceptar el resultado hasta ver simulaciones computacionales que lo evidenciaron.
- Problemas de este tipo, donde la respuesta es tan contraintuitiva que parece absurda, son conocidos como "veridical paradoxes".

Pero... ¿no es 50-50?

¿No da igual, dado que una de las dos tiene un auto, y la otra, una cabra?

Este problema (un clásico en cursos básicos de probabilidad) ilustra el concepto de **Probabilidad Condicional**

Antes, pensémoslo "intuitivamente"... Idea I:

Este problema (un clásico en cursos básicos de probabilidad) ilustra el concepto de **Probabilidad Condicional**

Antes, pensémoslo "intuitivamente"...

Este problema (un clásico en cursos básicos de probabilidad) ilustra el concepto de **Probabilidad Condicional**

Antes, pensémoslo "intuitivamente"...

La clave es que esta segunda decisión NO es independiente de la primera; solo tenés más información ahora que antes.

 $^{2}/_{3}$

Este problema (un clásico en cursos básicos de probabilidad) ilustra el concepto de **Probabilidad Condicional**

Antes, pensémoslo "intuitivamente"... Idea 2:

Behind door 1	Behind door 2	Behind door 3	Result if staying at door #3	Result if switching to the door offered
Goat	Goat	Car	Wins car	Wins goat
Goat	Car	Goat	Wins goat	Wins car
Car	Goat	Goat	Wins goat	Wins car

Considerar todas las posibilidades puede ayudar a encontrar la solución (aún si es contraintuitiva)

Este problema (un clásico en cursos básicos de probabilidad) ilustra el concepto de **Probabilidad Condicional**

Antes, pensémoslo "intuitivamente"... Idea 3:

999.999 puertas con cabras, I con auto.

Proba: I/I.000.000

Este problema (un clásico en cursos básicos de probabilidad) ilustra el concepto de **Probabilidad Condicional**

Antes, pensémoslo "intuitivamente"... Idea 3:

999.999 puertas con cabras, I con auto.

Proba: I/I.000.000

Elegís la #2 y Monty abre 999.998 puertas con cabras. ¿Cambiarías?

Modificar el N también puede ayudar a la intuición

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

Monty abrió ó la 1 ó la 2 (la 3 es tuya). Supongamos que abrió la 1:

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió 1)

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) =
$$\frac{P(\text{auto en 3 }^{\text{}} \text{ Monty abrió I})}{P(\text{Monty abrió I})}$$

$$P(A/B) = \frac{P(A^{\wedge}B)}{P(B)}$$

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) =
$$\frac{P(\text{auto en 3 }^{\text{}} \text{ Monty abrió I})}{P(\text{Monty abrió I})}$$

P(auto en 3 ^ abra I) =
$$\frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) =
$$\frac{P(\text{auto en 3 }^{\text{}} \text{ Monty abrió I})}{P(\text{Monty abrió I})}$$

P(auto en 3 ^ abra I) =
$$\frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$

P(auto en 2 ^ abra I) =
$$\frac{1}{3} * 1 = \frac{1}{3}$$

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

Monty abrió ó la 1 ó la 2 (la 3 es tuya). Supongamos que abrió la 1:

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) = $\frac{P(auto en 3 ^ Monty abrió I)}{P(Monty abrió I)}$

P(auto en 3 ^ abra I) =
$$\frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$

P(auto en 2 ^ abra I) =
$$\frac{1}{3} * 1 = \frac{1}{3}$$

P(auto en I (ó 2) ^ abra I (ó 2)) =
$$\frac{1}{3} * 0 = 0$$

P(auto en 3 ^ abra 3) =
$$\frac{1}{3} * 0 = 0$$

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

Monty abrió ó la I ó la 2 (la 3 es tuya). Supongamos que abrió la I:

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) = $\frac{P(\text{auto en 3 }^{\text{}} \text{ Monty abrió I})}{P(\text{Monty abrió I})}$

P(auto en 3 ^ abra I) =
$$\frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$
 = P(auto en 3 ^ abra 2)

P(auto en 2 ^ abra I) =
$$\frac{1}{3} * 1 = \frac{1}{3} = P(auto en I ^ abra 2)$$

P(auto en I (ó 2) ^ abra I (ó 2)) =
$$\frac{1}{3} * 0 = 0$$

P(auto en 3 ^ abra 3) =
$$\frac{1}{3} * 0 = 0$$

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

Monty abrió ó la 1 ó la 2 (la 3 es tuya). Supongamos que abrió la 1:

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) = $\frac{P(\text{auto en 3 }^{\text{}} \text{ Monty abrió I})}{P(\text{Monty abrió I})}$

P(auto en 3 ^ abra I) =
$$\frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$
 = P(auto en 3 ^ abra 2)

P(auto en 2 ^ abra I) =
$$\frac{1}{3} * 1 = \frac{1}{3} = P(auto en I ^ abra 2)$$

P(auto en I (ó 2) ^ abra I (ó 2)) =
$$\frac{1}{3} * 0 = 0$$

P(auto en 3 ^ abra 3) =
$$\frac{1}{3} * 0 = 0$$

$$\frac{\text{P(auto en 3 ^ Monty abrió I)}}{\text{P(Monty abrió I)}} = \frac{1/6}{\frac{1}{3} + \frac{1}{6} + 0} = \frac{1}{3}$$

(https://www.analyticsvidhya.com/blog/2020/08/probability-conditional-probability-monty-hall-problem/)

Supongamos que el concursante eligió la puerta 3.

¿Qué chances hay de quedarse con la puerta 3 y ganar?

Monty sabe en qué puerta está qué, y eso determinó cuál abrió.

Monty abrió ó la 1 ó la 2 (la 3 es tuya). Supongamos que abrió la 1:

P(ganar quedándote en 3) = P(auto en 3 / Monty abrió I) = $\frac{P(auto en 3 ^ Monty abrió I)}{P(Monty abrió I)}$

P(auto en 3 ^ abra I) =
$$\frac{1}{3} * \frac{1}{2} = \frac{1}{6}$$
 = P(auto en 3 ^ abra 2)

P(auto en 2 ^ abra I) =
$$\frac{1}{3} * 1 = \frac{1}{3} = P(auto en I ^ abra 2)$$

P(auto en I (ó 2) ^ abra I (ó 2)) =
$$\frac{1}{3} * 0 = 0$$

P(auto en 3 ^ abra 3) =
$$\frac{1}{3} * 0 = 0$$

$$\frac{\text{P(auto en 3 ^ Monty abrió I)}}{\text{P(Monty abrió I)}} = \frac{1/6}{\frac{1}{3} + \frac{1}{6} + 0} = \frac{1}{3}$$

PERO SI SON COMO ERDŐS, Y TODAVÍA NO SE LA CREEN...

Hagamos la simulación

Archivo: MontyHall.ipynb

Link:

https://colab.research.google.com/drive/INgBknlQXkmXL-laEYUNrDIQYQW-0FEzE?usp=sharing

Tarea: extender la simulación al caso de N puertas (se tiene que poder cambiar el N a voluntad al ingresar a la simulación, i.e. N=...), donde N-I tienen cabras, y la restante tiene I auto. Luego de la elección del sujeto, Monty abre N-2 puertas, todas con cabras (al final quedan 2, la que elegimos, y la otra). Entrega: notebook (muy recomendado usar Colab y entregar el link; sino R). Es INDIVIDUAL.