Problems in solving equations

- 1. If x is positive we have 1 < 3x so $x > \frac{1}{3}$, if x is negative $\frac{1}{3} < 3$ will always be true. Meanwhile, we have 1 < -4x so $x < -\frac{1}{4}$. Therefore, all x such that $x > \frac{1}{3}$ or $x < -\frac{1}{4}$ works.
- 2. Solving for x and substituting it into the third equation we get $z\frac{12\sqrt{6}}{y}=45\sqrt{3}$, we multiply this by the second equation to get $z^2=4\times54$ so $z=\pm6\sqrt{6}$. From there, its pretty easy to sub this value back into the equations to get two sets of solutions for (x,y,z), $(\pm4\sqrt{2},\pm3\sqrt{3},\pm6\sqrt{6})$.
- 3. We let $a=2^x$ and $b=3^x$. The equation becomes $\frac{a^3+b^3}{a^2b+b^2a}=\frac{7}{6}$. Which after some simplifying we get $6a^2-13ab+6b^2=0$, which is (2a-3b)(3a-2b)=0. Therefore $2^{x+1}=3^{x+1}$ or $2^{x-1}=3^{x-1}$, which implies x=-1 and x=1.
- 4. Mr Fat has the winning strategy, because by choosing a set of distinct rational nonzero numbers a,b,c, such that a+b+c=0 will make him win. Let a',b',c' be a random permutation of a,b,c and let $f(x)=a'x^2+b'x+c'$. Then f(1)=a'+b'+c'=a+b+c=0, and so 1 is a solution. Since the product of two numbers is $\frac{c'}{a'}$ by Vieta's, the other solution is clearly $\frac{c'}{a'}$, which is different from 1. Thus Mr Fat can guarantee two distinct solutions.
- 5. Official Solution: Let $x = \sqrt[3]{\sqrt[3]{2} 1}$ and $y = \sqrt[3]{2}$. So $y^3 = 2$ and $x = \sqrt[3]{y 1}$. Note that

$$1 = y^3 - 1 = (y - 1)(y^2 + y + 1)$$

and

$$y^2+y+1=\frac{3y^2+3y+3}{3}=\frac{(y+1)^2}{3}$$

which implies that

$$x^3=y-1=\frac{1}{y^2+y+1}=\frac{3}{(y+1)^3}$$

or

$$x = \frac{\sqrt[3]{3}}{y+1}.$$

On the other hand $3 = y^3 + 1 = (y+1)(y^2 - 1 + 1)$ from which it follows that

$$\frac{1}{y+1} = \frac{y^2 - y + 1}{3}.$$

Thus we have

$$x = \sqrt[3]{\frac{1}{9}}(\sqrt[3]{4} - \sqrt[3]{2} + 1).$$

Consequently $(a,b,c)=(\frac{4}{9},-\frac{2}{9},\frac{1}{9})$ is a desired triple.

Gauss's Lemma

1. In this case p = 19, P = (19 - 1)/2 = 9, a = 5. Reducing the numbers

$$5, 10, \dots, 45$$

into the range (-19/2, 19/2) gives

$$5, -9, -4, 1, 6, -8, -3, 2, 7.$$

There are 4 negative numbers, so

$$\left(\frac{5}{19}\right) = (-1)^4 = 1.$$

We verify this by observing that $9^2 \equiv 5 \pmod{19}$.

2. Some tedious work convinces us that (2|p) = 1 for

$$p = 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97$$

and (2|p) = -1 for

$$p = 3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83$$

for primes p under 100.

3. (a) Since

$$2u < \frac{p}{2}$$

and

$$2(u+1) > \frac{p}{2}$$

we have

$$u < \frac{p}{4}$$

and

$$u > \frac{p}{4} - 1.$$

Hence

$$\frac{p}{4} - 1 < u < \frac{p}{4}.$$

(b) If p = 4k + 1, then

$$k + \frac{1}{4} - 1 < u < k + \frac{1}{4}$$

which implies

$$k - \frac{3}{4} < u < k + \frac{1}{4}.$$

There is only one integer that satisfies this inequality, and that is u = k. Similarly if p = 4k + 3 then

$$k + \frac{3}{4} - 1 < u < k + \frac{3}{4}$$

which implies

$$k - \frac{1}{4} < u < k + \frac{3}{4}.$$

Again there is only one integer between those two bounds, and that is u = k.

(c) No; since v=P-u the parity of u needs to be known to determine the parity of v. Therefore the quadratic character of 2 modulo p does not depend on whether $p\equiv 1$ or $p\equiv -1$ modulo 4.

(d) Considering whether $p \equiv 1, 3, 5, 7$ modulo 8 is the idea. First let p = 8k+1; substituting it into the inequality found in the first part we get

$$2k - \frac{3}{4} < u < 2k + \frac{1}{4}.$$

From this we deduce that u = 2k and

$$v = \frac{p-1}{2} - u = 4k - 2k = 2k$$

which is even. Similarly, if p = 8k + 7 we have

$$2k + \frac{7}{4} - 1 < u < 2k + \frac{7}{4}.$$

This means u = 2k + 1; putting this in for v yields

$$v = 4k + 3 - (2k + 1) = 2k + 2$$

which is again even. Therefore (2|p)=1 for $p\equiv 1,7\pmod 8$.

The same procedure works for the other case. Let p=8k+3. The inequality for u becomes

$$2k - \frac{1}{4} < u < 2k + \frac{3}{4}.$$

So u = 2k; substituting this and p = 8k + 3 into v = P - u gives

$$v = 4k + 1 - 2k = 2k + 1,$$

an odd number. The same works for p=8k+5; now the inequality is

$$2k + \frac{1}{4} < u < 2k + \frac{5}{4}$$

from which it follows that u-2k+1. Thus

$$v = 4k + 2 - (2k + 1) = 2k + 1.$$

This completes the proof that

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1,7 \pmod{8}; \\ -1 & \text{if } p \equiv 3,5 \pmod{8}. \end{cases}$$