Project Title: Smart water fountain

Phase 4: development part 2

In this part you will continue building your project. Continue building the project by developing the water fountain status platform.

Use web development technologies (e.g., HTML,CSS, JavaScript) to create a platform that displays real-time water fountain status.

Design the platform to receive and display real-time water fountain data, including water flow rate and malfunction alerts.

To create a javascript for lot sensors that send real-time smart Water Fountains:

- Hardware Components:
- Microcontroller (e.g., Arduino, Raspberry Pi)
- Water level sensor
- Motion sensor (PIR sensor)
- Water pump
- Water container or reservoir
- Tubing or pipes for water flow
- Power supply

Software Development:

- Set Up the Microcontroller:
- Connect the microcontroller to your computer.
- Install the necessary development environment for the microcontroller (e.g., Arduino IDE for Arduino or Python libraries for Raspberry Pi).

Program the Microcontroller:

Write the firmware (code) for the microcontroller to control the water pump and sensors.

Use java for Raspberry Pi or C/C++ for Arduino.

Read data from the water level sensor to monitor the water level in the container.

Use the motion sensor to detect motion near the fountain.

Control the Water Pump:

- Write code to control the water pump based on the water level and motion sensor data.
- If the water level is low and motion is detected, turn on the pump to start the fountain.
- Feedback Mechanism:
- Implement feedback mechanisms to ensure the water pump doesn't run dry, which could damage the pump.
- Monitor the water level continuously and ensure the pump is turned off when the water level is too low.
- Web Interface or Mobile App (Optional):
- If you want remote control and monitoring, you can create a web interface or a mobile app.
- You'll need to establish communication between the microcontroller and the interface, possibly via Wi-Fi or Bluetooth.

- Testing and Debugging:
- Test your setup thoroughly.
- Debug any issues in hardware or software.
- Assembly and Waterproofing:
- Assemble the hardware components and ensure that all electrical connections are waterproofed to prevent damage from water splashes.
- Power Supply:
- Ensure you have a stable power supply to run the microcontroller and the water pump.
- Documentation and User Instructions:
- Document your project, including the wiring diagram, code, and any setup instructions for end users.
- Maintenance and Safety:
- Regularly check and maintain the system.
- Implement safety measures, such as emergency shutoffs in case of malfunctions.

JavaScript Program for Connecting mobile app with Smart water fountains IOT project:

});

```
Const five = require('johnny-five');
const board = new five.Board();
board.on('ready', function() {
  // Define pins for sensors and water pump
  const waterLevelPin = new five.Pin(2); // Replace with your actual pin number
  const motionSensorPin = new five.Motion(3); // Replace with your actual pin
 number
  const waterPump = new five.Relay(4); // Replace with your actual pin number
  // Initialize motion sensor
  motionSensorPin.on('calibrated', function() {
   console.log('Motion sensor calibrated');
```

```
// Event handler for motion detection
  motionSensorPin.on('motionstart', function() {
   console.log('Motion detected. Fountain is active.');
   waterPump.on();
 });
  motionSensorPin.on('motionend', function() {
   console.log('No motion detected. Fountain is inactive.');
   waterPump.off();
 });
 // Read water level
 waterLevelPin.query(function(state) {
   if (state === 0) {
    console.log('Water level is low. Turning on the water pump.');
    waterPump.on();
   } else {
    console.log('Water level is sufficient. Turning off the water pump.');
    waterPump.off();
 });
});
```

• Front-end Development:

•

 a. HTML: Create the HTML structure for your web application. Define the layout, including elements

•

for displaying data.

•

b. CSS: Style your web application using CSS. Use CSS to make it visually appealing and user-friendly.

•

• c. JavaScript: Use JavaScript to add interactivity and real-time updates to your platform. You can use

•

• JavaScript libraries and frameworks to simplify this process, such as React, Angular, or Vue.js.

• In this Arduino program:

- Define the pins for the water level sensor, motion sensor, and water pump.
- In the setup function, set the pinMode for each pin and ensure the water pump is initially turned off.
- In the loop function, continuously read the status of the water level sensor and motion sensor.
- If the water level is low, turn on the water pump; otherwise, turn it off.
- Print messages to the serial monitor to indicate the status of the water level and motion.
- Adjust the delay to control how often the sensors are checked.

Circiut diagram for Smart water fountains:

Interfacing of the water level sensor with Arduino:

