Exercice 1 question 4 Concours général 2023

Romain Lemahieu

November 13, 2023

1 Sujet

Exercice 1: Soyons rationnels!

Pour tout entier $n \ge 1$, on note v(n) le plus grand entier k tel que $\frac{n}{2^k}$ soit un entier. On définit la suite $(u_n)_{n\ge 1}$ par récurrence, en posant $u_1 = 1$ puis, pour tout entier $n \ge 2$,

$$u_n = \begin{cases} 0 & \text{si } u_{n-1} = 0; \\ 1 + 2v(n) - \frac{1}{u_{n-1}} & \text{si } u_{n-1} \neq 0. \end{cases}$$

- Donner la valeur des entiers v(1), v(2), v(3) et v(4).
- 2) Démontrer, pour tout entier $n \ge 1$, que v(n) = 0 si n est impair et que $v(n) = v\left(\frac{n}{2}\right) + 1$ si n est pair.
- 3) Calculer les huit premiers termes de la suite $(u_n)_{n\geq 1}$ et vérifier que $u_8=4$.
- 4) Démontrer, pour tout entier $n \ge 1$, que u_n est un nombre rationnel strictement positif, que $u_{2n} = u_n + 1$ et que $u_{2n+1} = \frac{u_n}{u_n + 1}$.
- Démontrer que tout nombre rationnel strictement positif est égal à un terme u_n.
- Démontrer que tout nombre rationnel strictement positif est égal à un unique terme u_n.

2 Correction

Soit 3 propriétés définis pour tout entiers naturels non nul :

$$\mathcal{P}_1(n): u_n \in \mathbb{Q}^*$$

$$\mathcal{P}_2(n): u_{2n} = u_n + 1$$

$$\mathcal{P}_3(n): u_{2n+1} = \frac{u_n}{u_n + 1}$$

2.1 Initialisation

Montrons que $\mathcal{P}_1(1)$ est vraie :

$$u_1 = 1 \quad 1 \in \mathbb{Q}^*$$

Montrons que $\mathcal{P}_2(1)$ est vraie :

$$u_{2\times 1} = 1 + 2\nu(2) - \frac{1}{u_{2\times 1-1}}$$

$$u_{2} = 1 + 2\times 1 - \frac{1}{u_{1}}$$

$$u_{2} = 1 + 2\times 1 - \frac{1}{1}$$

$$u_{2} = 2$$

$$u_{1} + 1 = 2$$

Montrons que $\mathcal{P}_3(1)$ est vraie :

$$u_{2\times 1+1} = 1 + 2\nu(3) - \frac{1}{u_{2\times 1+1-1}}$$

$$u_{3} = 1 - \frac{1}{u_{2}}$$

$$u_{3} = 1 - \frac{1}{2}$$

$$u_{3} = \frac{1}{2}$$

$$u_{3} = \frac{1}{2}$$

2.2 Hérédité

En supposant que $\mathcal{P}_1(k)$, $\mathcal{P}_2(k)$ et $\mathcal{P}_3(k)$ sont vraie pour un certain entier k naturel non nul montrons que $\mathcal{P}_1(2k)$, $\mathcal{P}_1(2k+1)$, $\mathcal{P}_2(k+1)$ et $\mathcal{P}_3(k+1)$ le sont :

2.2.1 Montrons que \mathcal{P}_1 est héréditaire

Montrons que $\mathcal{P}_1(2k)$ est vraie supposant que $\mathcal{P}_1(k)$ et $\mathcal{P}_2(k)$ est vraie :

$$u_k \in \mathbb{Q}^* \Rightarrow u_k + 1 \in \mathbb{Q}^* \Rightarrow u_{2k} \in \mathbb{Q}^*$$

Montrons que $\mathcal{P}_1(2k+1)$ est vraie:

$$u_k \in \mathbb{Q}^*$$

$$\Rightarrow u_k > 0$$

$$\Rightarrow u_k + 1 > 1$$

$$\Rightarrow \frac{1}{u_k + 1} < 1$$

$$\Rightarrow -1 + \frac{1}{u_k + 1} < 0$$

$$\Rightarrow 1 - \frac{1}{u_k + 1} > 0$$

$$\Rightarrow \frac{u_k}{u_k + 1} > 0$$

$$\Rightarrow u_{2k+1} > 0$$

$$\Rightarrow u_{2k+1} \in \mathbb{Q}^*$$

Car la fonction $\frac{1}{x}$ est décroissante sur \mathbb{Q}^*

En supposant que $\mathcal{P}_2(k)$ est vraie

2.2.2 Montrons que P_2 est héréditaire

$$u_{k+1} + 1 = 1 + 1 + 2\nu(k+1) - \frac{1}{u_k}$$
 En supposant que $\mathcal{P}_1(k)$ est vraie
$$u_{k+1} + 1 = 2 + 2(\nu(2k+2) - 1) + 1 - \left(1 + \frac{1}{u_k}\right)$$
 Car $2k + 2$ est pair ssi $\nu(2k+2) = \nu(k+1) + 1$
$$u_{k+1} + 1 = 1 + 2 - 2 + 2\nu(2k+2) - \frac{u_k + 1}{u_k}$$
 En supposant que $\mathcal{P}_3(k)$ et $\mathcal{P}_1(2k+1)$ sont vraies
$$u_{k+1} + 1 = u_{2k+2}$$

2.2.3 Montrons que \mathcal{P}_3 est héréditaire

$$u_{2k+3} = 1 + 2\nu(2k+3) - \frac{1}{u_{2k+2}}$$
 En supposant que $\mathcal{P}_1(2k)$ est vraie
$$u_{2k+3} = 1 - \frac{1}{u_{2k+2}}$$
 Car $2k+3$ est impair ssi $\nu(2k+3) = 0$
$$u_{2k+3} = 1 - \frac{1}{u_{k+1}+1}$$
 En supposant que $\mathcal{P}_2(k)$ est vraie
$$u_{2k+3} = \frac{u_{k+1}+1-1}{u_{k+1}+1}$$

$$u_{2k+3} = \frac{u_{k+1}}{u_{k+1}+1}$$

2.3 Conclusion

Les propriétés $\mathcal{P}_1,\,\mathcal{P}_2$ et \mathcal{P}_3 étant initialisées et héréditaires donc :

$$\forall n \in \mathbb{N}^*, u_n \in \mathbb{Q}^*, u_{2n} = u_n + 1, u_{2n+1} = \frac{u_n}{u_n + 1}$$