Algorithms and Computability

Lecture 6: Amortized Analysis

SW6 spring 2025 Simonas Šaltenis

Amortized analysis

- Main goals of the lecture:
 - to understand what is amortized analysis, when it is used, and how it differs from the average-case analysis;
 - to be able to apply the techniques of the aggregate analysis, the accounting method, and the potential method to analyze operations on simple data structures.

Sequence of operations

- The problem:
 - We have a data structure
 - We perform a sequence of operations
 - Operations may be of different types (e.g., insert, delete)
 - Depending on the state of the structure the actual cost of an operation may differ (e.g., inserting into a sorted array)
 - Just analyzing the worst-case time of a single operation may not say too much
 - We want the average running time of an operation (but from the worst-case sequence of operations!).

Case study: Dijkstra's and Prim's

- What is the running time?
 - Depends on the data structure:
 - V*cost(extractMin) + E*cost(modifyKey)
 - Simple array: $V *V + E *1 = \Theta(V^2)$
 - Binary heap: $V * \Theta(\lg V) + E * \Theta(\lg V) = \Theta(E \lg V)$
 - Fibonacci heap: $V*\Theta(\lg V) + E*\Theta(1) = \Theta(V \lg V + E)$

Binary counter example

- Example data structure: a binary counter
 - Operation: Increment
 - Implementation: An array of bits A[0..k-1]

- How many bit assignments do we have to do in the worstcase to perform Increment(A)?
 - But usually we do much less bit assignments!

Analysis of the binary counter

- How many bit-assignments do we do on average?
 - Let's consider a sequence of n Increments
 - Let's compute the sum of bit assignments:
 - A[0] assigned on each operation: n assignments
 - A[1] assigned every two operations: n/2 assignments
 - A[2] assigned every four ops: n/4 assignments
 - A[i] assigned every 2^i ops: $n/2^i$ assignments

$$\sum_{i=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor = n \sum_{i=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{1}{2^i} \right\rfloor < 2n$$

 Thus, a single operation takes 2n/n = 2 = O(1) amortized time

Aggregate analysis

- Aggregate analysis a simple way to do amortized analysis
 - Treat all operations equally
 - Compute the worst-case running time of a sequence of n operations.
 - Divide by n to get an amortized running time

Another look at the binary counter

- Another way of looking at it (proving the amortized time):
 - To assign a bit, I have to pay \$1
 - When I assign "1", I pay \$1, plus I put \$1 in my "savings account" associated with that bit.
 - When I assign "0", I can do it using a dollar from the savings account on that bit
 - How much do I have to pay for the Increment(A) for this scheme to work?
 - Only one assignment of "1" in the algorithm. Obviously, \$2 will always pay for the entire operation

```
Increment(A) k-1

1 i \leftarrow 0

2 while i < k and A[i] = 1 do

1 A[i] \leftarrow 0

2 i \leftarrow i + 1

5 if i < k then A[i] \leftarrow 1
```

$$k-1$$
 ... 3210
0000000000100111
... \$ \$\$\$
0000000000101000
... \$ \$

Accounting method

- Principles of the accounting method
 - 1. Associate credit accounts with different parts of the structure
 - 2. Associate amortized costs with operations and show how they credit or debit accounts
 - Different costs may be assigned to different operations
 - Requirement (c real cost, \hat{c} amortized cost):

$$\sum_{i=1}^{n} \hat{c}_i \geqslant \sum_{i=1}^{n} c_i$$

- This is equivalent to requiring that the sum of all credits in the data structure is non-negative after any sequence of operations
 - What would it mean not to satisfy this requirement?
- 3. Show that this requirement is satisfied

Stack example

- Start with an empty stack and consider a sequence of n operations: Push, Pop, and Multipop(k).
 - What is the worst-case running time of an operation from this sequence?
 - 1. Let's associate an account with each element in the stack
 - 2. After pushing an element, put a dollar into the account associated with it,
 - then *Pop* and *Multipop* can work only using money in the accounts (amortized cost 0)
 - Push has amortized cost 2
 - 3. The total credit in the structure is always ≥ 0
 - Thus, the amortized cost of an operation is O(1)

Potential method

- We can have one account associated with the whole structure:
 - We call it a potential
 - It's a function that maps a state of the data structure after operation i to a number: $\Phi(D_i)$
 - $\bullet \ \hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
- The main step of this method is defining the potential function
 - Requirement: $\Phi(D_n) \Phi(D_0) \ge 0$
- Once we have Φ, we can compute the amortized costs of operations

Binary counter example

- How do we define the potential function for the binary counter?
 - Potential of A: b_i a number of "1"s
 - What is $\Phi(D_i) \Phi(D_{i-1})$, if the number of bits set to 0 in operation i is t_i ?
 - What is the amortized cost of Increment(A)?
 - We showed that: $\Phi(D_i) \Phi(D_{i-1}) \leq 1 t_i$
 - Real cost: $c_i \le t_i + 1$
 - Thus, $\hat{C}_i \le C_i + \Phi(D_i) \Phi(D_{i-1}) \le (t_i + 1) + (1 t_i) = 2$

Increment(A)

```
1 i \leftarrow 0

2 while i < k and A[i] = 1 do

1 A[i] \leftarrow 0

2 i \leftarrow i + 1

5 if i < k then A[i] \leftarrow 1
```

Potential method

- We can analyze the counter even if it does not start at 0 using the potential method:
 - Let's say we start with b_0 and end with b_n "1"s

Observe that:
$$\sum_{i=1}^n c_i = \sum_{i=1}^n \hat{c}_i - \Phi(D_n) + \Phi(D_0)$$

- We have that: $\hat{c}_i \leq 2$
- This means that: $\sum_{i=1}^{n} c_i \le 2n b_n + b_0$
- Note that $b_0 \le k$. This means that the total cost $\le 2n+k$. If k = O(n), then the total cost is O(n). In other words: if $n = \Omega(k)$, the amortized cost per increment is O(1).

Dynamic table

- It is often useful to have a dynamic table:
 - The table that expands and contracts as necessary when new elements are added or deleted.
 - Expands when insertion is done and the table is already full
 - Contracts when deletion is done and there is "too much" free space
 - Contracting or expanding involves relocating
 - Allocate new memory space of the new size
 - Copy all elements from the table into the new space
 - Free the old space
 - Worst-case time for insertions and deletions:
 - Without relocation: O(1)
 - With relocation: O(m), where m the number of elements in the table

Requirements

- Load factor
 - num current number of elements in the table
 - size the total number of elements that can be stored in the allocated memory
 - Load factor $\alpha = num/size$
- It would be nice to have these two properties:
 - 1) Amortized cost of insert and delete is constant
 - 2) The load factor is always above so

Naïve insertions

- Let's look only at insertions: Why not expand the table by some constant when it overflows?
 - What is the amortized cost of an insertion in a sequence of n insertions?
 - Let's start with 100 and expand with 100 when full (and count element insertions and copying)
 - Go to <u>Socrative</u> and vote:
 - A: \approx 2 B: \approx 1 + n/200 C: \approx 1 + n/100 D: other
 - Does it satisfy the two requirements?

Aggregate analysis / accounting

- The "right" way to expand double the size of the table
 - Let's do an aggregate analysis
 - The cost of the *i*-th insertion is:
 - i, if i-1 is an exact power of 2
 - 1, otherwise
 - Let's sum up...

$$\sum_{i=1}^{n} c_i = n + \sum_{j=1}^{\lfloor \lg n \rfloor} 2^j \le n + \frac{2^{\lg n+1} - 1}{2 - 1} = 3n - 1$$

- The total cost of n insertions is then < 3n
- Accounting method gives the intuition:
 - Pay \$1 for inserting the element
 - Put \$1 into element's account for reallocating it later
 - Put \$1 into the account of another element to pay for a later relocation of that element

Potential function

- What potential function do we want to have?
 - It is zero right after expansion (num = size/2) and grows...
 - ...to size right before the next expansion (num = size)
 - Thus, it has to grow by 2 on each insertion.
 - $\Phi_i = 2(num_i size_i/2) = 2num_i size_i$
 - It is always non-negative
 - Amortized cost of insertion:
 - Insertion does not trigger an expansion (size_{i-1}=size_i):

$$\triangle \Delta \Phi_i = \Phi_i - \Phi_{i-1} = 2(num_{i-1} + 1) - size_i - 2num_{i-1} + size_i = 2$$

$$\hat{c}_i = c_i + \Delta \phi_i = 1 + 2 = 3$$

Insertion triggers an expansion (size_{i-1}=num_{i-1}, size_i = 2num_{i-1}):

$$\triangle \Delta \Phi_i = \Phi_i - \Phi_{i-1} = 2(num_{i-1} + 1) - size_i - 2num_{i-1} + size_{i-1} = 2(num_{i-1} + 1) - 2num_{i-1} - 2num_{i-1} + num_{i-1} = 2 - num_{i-1}$$

$$\hat{c}_i = c_i + \Delta \Phi_i = num_{i-1} + 1 + 2 - num_{i-1} = 3$$

Both cases: 3

- Deletions: What if we contract whenever the table is about to get less than half full?
 - Would the amortized running times of a sequence of insertions and deletions be constant?
 - Problem: we want to avoid doing re-allocations often without having accumulated "the money" to pay for that!

- Idea: delay contraction!
 - Contract only when num = size/4
 - Second requirement still satisfied: $\alpha \ge \frac{1}{4}$
- Consider the following sequence of operations (starting with an empty table of size 1):
 - 6 ins, 3 dels, 5 ins, 7 dels, 7 ins
 - How many contractions and expansions are performed?
 - What is the final size of the table?

- Idea: delay contraction!
 - Contract only when num = size/4
 - Second requirement still satisfied: $\alpha \ge \frac{1}{4}$
- Consider the following sequence of operations (starting with an empty table of size 1):
 - 6 ins, 3 dels, 5 ins, 7 dels, 7 ins
 - How many contractions and expansions are performed?
 - What is the final size of the table?

- Contraction: num = size/4
- How do we define the potential function?

$$\Phi_{i} = \begin{cases} 2 \cdot num_{i} - size_{i} & \text{if } \alpha \ge 1/2\\ size_{i}/2 - num_{i} & \text{if } \alpha < 1/2 \end{cases}$$

- It is always non-negative
- Let's compute the amortized running time of deletions:
 - $\alpha < \frac{1}{2}$ (with contraction, without contraction)