- Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Énumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n=2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Quelques simplifications du problème

- Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- 2 Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Énumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n = 2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Décomposition de n en éléments irréductibles

Proposition

Soit $n = \prod_{i=1}^{k} p_i^{\alpha_i}$ avec p_i des nombres premiers distincts. Alors,

$$(\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z})\cong\prod_{i=1}^k(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^2$$

Décomposition de n en éléments irréductibles

```
fonction rho_pollard P n x y k i d
   Si d <> 1:
        Retourne d
Sinon :
        x = P ( x ) mod n
        d = pgcd (| y - x | , n )
        Si i = k :
            Retourne rho_pollard P n x x 2k (i+1) d
        Sinon
            Retourne rho_pollard P n x y k (i+1) d
```

Simplification des sous-groupes

Proposition

$$\mathbb{Z}^2/n\mathbb{Z} \times n\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

Simplification des sous-groupes

Proposition

$$\mathbb{Z}^2/n\mathbb{Z} \times n\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

Remarque

Le problème se résout à trouver les sous-groupes $\mathbb G$ de $\mathbb Z^2$ telsque et

$$n\mathbb{Z} imes n\mathbb{Z} \subseteq \mathbb{G} = <\left(rac{\overline{a}}{\overline{b}}
ight), \left(rac{\overline{c}}{\overline{d}}
ight) >$$

- Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- 2 Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Énumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n = 2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Matrices à coefficients entier

Proposition

Soient $A \in M_{m,n}(\mathbb{Z})$ et $Q \in GL_n(\mathbb{Z})$ alors

$$\operatorname{Im}(AQ) = \operatorname{Im}(A)$$

Formes normales de Hermite

Définition

Soit $A \in M_{m,n}(\mathbb{Z})$ alors, il existe une unique matrice échelonnée réduite suivant les colonnes $H \in M_{m,n}(\mathbb{Z})$ telle qu'il existe $Q \in GL_n(\mathbb{Z})$ avec H = AQ. La matrice H s'appelle la forme normale de Hermite de A.

- 💶 Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- 2 Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Énumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n = 2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Génération des sous-groupes

• Dans cette section, nous supposerons que $n = p^m$

Theomème

Les seules matrices dont les colonnes génèrent un sous-groupe de $\mathbb{Z}/p^m\mathbb{Z}\times\mathbb{Z}/p^m\mathbb{Z}$ sont les matrices de la forme

$$H = \begin{pmatrix} p^a & 0 \\ j & p^b \end{pmatrix}$$
 avec $a \le m, b \le m$ et $j < p^b$

ou

$$H = \begin{pmatrix} p^a & 0 \\ jp^k & p^b \end{pmatrix}$$
 avec $a \le m, b \le m, k \le m$ et $j < p^(b-k)$

Corollaire

Soit la suite $(A_k)_{0 \le k \le n}$ telle que

$$A_0 = \{(a, b) \mid a + b \le m\}$$

$$A_k = \{(a, b) \mid a \leq m, b \leq m, a + b = m + k\}$$

Alors, l'ensemble des matrices du théorème, c'est-à-dire, les matrices dont les colonnes génèrent les sous-groupes $\mathbb{Z}/p^m\mathbb{Z}\times p^m\mathbb{Z}$ est

$$M = \bigcup_{k=0}^{m} M_k$$

οù

$$M_k = \left\{ \begin{pmatrix} p^a & 0 \\ jp^k & p^b \end{pmatrix} \mid (a,b) \in A_k, 0 \le j \le p^{(b-k)} \right\}$$

←□▶ ←□▶ ←□▶ ←□▶ →□ ● ●○○○

Énumération des sous-groupes

Theomème

Soit $\psi: \mathbb{N}^2 \to \mathbb{N}$ définie par

$$\psi(p,n) = \sum_{i=0}^{n} (n-i)p^{i} + \sum_{i=0}^{n} \frac{1-p^{n-i+1}}{1-p}$$

Alors, le nombre de sous groupe de $\mathbb{Z}/p^m\mathbb{Z} \times \mathbb{Z}/p^m\mathbb{Z}$ est $\psi(p,m)$

Proposition

Soit $n = \prod_{i=1}^{\kappa} p_i^{\alpha_i}$ avec p_i des nombres premiers distincts. Le nombre total de sous-groupes de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ est

$$\prod_{i=1}^{k} \psi(p_i, \alpha_i) = \prod_{i=1}^{k} \left(\sum_{j=0}^{\alpha_i} (\alpha_i - j) p_i^j + \sum_{j=0}^{\alpha_i} \frac{1 - p_i^{\alpha_i - j + 1}}{1 - p_i} \right)$$

Génération du treillis

- Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Énumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n = 2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Génération du treillis

- Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- 2 Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Énumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n = 2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Pour n = 2

• Nombre de sous-groupe de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$: 5

Quelques valeur de la suite du nombre de sous-groupes

n					4						
$ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} $	∞	1	5	6	15	8	30	10	37	23	40

- Quelques simplifications du problème
 - Décomposition de n en éléments irréductibles
 - Simplification des sous-groupes
- 2 Matrices à coefficients entier et forme normales de Hermite
 - Matrices à coefficients entier
 - Formes normales de Hermite
- 3 Génération et énumération des sous-groupes
 - Génération des sous-groupes
 - Enumération des sous-groupes
- 4 Génération du treillis
- Quelques résultats
 - Pour n = 2
 - Quelques valeur de la suite du nombre de sous-groupes
- 6 Bibliographie

Bibliographie

- COSTE Michel ; Algèbre linéaire sur les entiers ; Mars 2018
- Thomas H. Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein;
 Algorithmique: cours avec 957 exercices et 158 problèmes, 3e
 édition, Paris: Dunod; DL 2010
- PERNET Clément ; Calcul de formes normales matricielles : de l'algorithmique à la mise en pratique ; Séminaire SIESTE ; ENS-Lyon ; 12 février 2013
- BERHURY Grégory; Algèbre le grand combat : Cours et exercices;
 2e édition; Paris : Calvage Mounet; 2020. 1215 p. (Mathématiques en devenir)
- Mario Hampejs, Nicki Holighaus, László Tóth, Christoph Wiesmeyr ; Representing and counting the subgroups of the group Zm \times Zn ; 2012