Lecture 1: <u>intruduction.pdf - Google Drive</u> Lecture 2: Types of cyber attack

Q: What is ayben security? Ans: Cyber security is a practice which intends to protect computers, networks, programs and data from unintended or unauthorized access, change or destruction. a web application to nanipulate # Cyben Attacks Cyber attack is an illegal attempt to gain something from a computer system. Tologi alo reliant 100 alprose · Web-based attacks: These are the attacks on a website on web application. file inclusion vulnerability · System-based attacks: Attacks that are intended to compromise a computer on a computer networkished shares it is started . Web-based attacks) Injection attack In Session hijacking 1) File inclusion attack of pulled x) URL interpretation (1) Cross-Site Scripting (XSS) XI) Social engineering XII) Man-in-the-middle attack IV) DNS spoofing XIII) Phishing V) Denial of Service (DoS) n) Brute force VII) Dictionary attack VIII) Buffen ovenflow

Annual Control	W	V
Date	1	1
Date		

Web based attacks

of shustni deithe seithourg is si plining and i.

In this type of attack some data will be injected into a web application to manipulate the application and get required information.

Example: SQL injection, Code injection, Log injection, XML injection etc.

11) file inclusion attack:

A file inclusion vulnerability allows an attacker to access unauthorized or sensitive files available on the web server or to execute malicious ifiles on the web server by making use of the include functionality.

It can be further classified into: North noite int

- · Local file inclusion: including local files available on server
- Remote file inclusion: includes and executes malicious code

xiii) Phiehay

V) Derrial of Somice (105)

W) Bride tona

Vij Hickonom altede

Scanner wolfness with a (u.v.

canned with CamScanner

CS

Date	:/	1

111) Cross-Site Scripting (XSS):

This can be done by editing javascript in a webpage such that it will be executed in client browser in a webpage such that it will be executed in client browser in a webpage such that it will be classified into it points after the classified into it points and the control of the control of

- It can be classified into: North 22X bentoto.
- · Volume based alooks Assattack . Wolume based MOD.

and is measured in bits per second : pritopood 2ND (vi

DNS spoofing (on DNS cache poisoning) is a computer hocking attack, whereby data is introduced into a Domain Name.

System (DNS) resolver's cache causing the name servers to return an incomment IP address, diverting traffic to the attacker's computer (on any other computer)

Date	:	1	1	
in Accessors	******			_

· Stoned XSS affacts

· DOM - based XSS allack

v) Denial of Service (DóS): pringing size and III

Dos attack is an attempt to make a server on network source vavailable to usens. This is generally done by flooding the server with communication mequests. Dos uses kingle system and single intermet connection to attack a server.

It can be classified into:

- · Volume based attacks
- → goal is to saturate the bandwidth of the attacked site and is measured in bits pen second without 2MJ (M
- · Protocal attack primosing alone 2110 no pritoge 2110 consumes octual server mesources and is measured
 - in packets per sound
- System (DNS) nesther's cretic causing Application layer attacks of tomorn no muton
- is measured in nequests per second.

MAIL

Date :	1	1
diameter and the second		

X1) Social Engineering:

VI) Brute force:

It is a trial and ermono method. Generates large number of guesser and validate them to obtain actual data (passwords in general).

vi) Dictionary attack:

Contains a list of commonly used passwoods and validate them to get original passwood.

VIII) Buffer overflow:

Occurs when a program on process tries to stone mone data in a buffer (temporrary data storage area) than it was intended to hold.

IX) Session hijacking:

Web applications uses cookier to stone state and details for user sessioner. By stealing the cookier, the attacker can have access to all of user data.

x) URL interpretation:

By changing cerrtain parts of a URL, one can make a web servore to deliver web pages for which he is not authorized to browse.

canned with CamScanner

Date:	1	1
Date		

V) Boute topic:

XI) Social Engineering:

The is a non-technical method that melies heavily on human interaction and often involves tricking people into brocaking normal security procedures.

vi) Dictionary altack:

Contains a list of commonly used passwords and validate than to get oniginal password.

vu) Buffen overflow:

Occups where a program on pricess this to stone move data in a buffer (temporary data stonege area) for it was intended to held.

1x) Session hijeching:

Web applications uses acoldien to stone state and details for user sessions. By stealing the archies, the attacker can have access to all of users data.

x) U.C. Enteroprodution:

By changing extrain parts of a URL, one can make web service to deliver use pages for which he is not whomse to browse.

cs Scanned with CamScanner

CS

Web-based attacks

Man-in-the-middle attack

- Attacker intercepts the connection between client and server and acts as a bridge between them
- Attacker will be able to read, insert and modify the data in the intercepted communication

Phishing

- Phishing is the attempt to acquire sensitive information, often for malicious reasons, by masquerading as a trustworthy entity in an electronic communication
- Spear phishing
 - It is a form of phishing, which targets specific organizations for confidential data
- Whaling
 - In whaling, the targets are high-ranking bankers, executives or others in powerful positions or job titles

System-based attacks

Virus

- A computer virus is a self-replicating malicious computer program that replicates by inserting copies of itself into other computer programs when executed
- It can also execute instructions that cause harm to system

Worm

- o It works same as a computer virus
- but it can spread into other systems in the network by exploiting the vulnerabilities automatically

System-based attacks

· Trojan horse

- It appears to be a normal application, but when opened/executed some malicious code will run in background
- o These are generally spread by some form of social engineering

Backdoors

- Backdoor is a method of bypassing normal authentication process
- The backdoor is written by the programmer who creates the code for the program
- o It is often only known by the programmer

System-based attacks

Bots

- Bot is an automated process that interacts with other network services
- Can be classified into
 - × Spyware
 - Used to gather information of user without their knowledge
 - o Ex: Keyloggers

× Adware

- o Mainly used for promotions of products
- o Not so harmful

Methods to assist in cyberattacks

Spoofing

- o In spoofing, one person successfully impersonates as another by falsifying the data
- o Ex: IP spoofing, email spoofing etc.,

Sniffing

• Sniffing a process of capturing and analyzing the traffic in a network

Port scanning

- It is a method to probe a system for open ports
- o Intruder can exploit the vulnerabilities of open ports

CSE 317 Computer & Cyber Security

Date: 25 / 7 / 25

our in A	Cyben Attack	Description	Mitigation Techniques
n elv Pist	Phishing thros	Deceptive email/website tinick users into nevealing sensitive information.	s User education, email of filters, multi-factors authentication (MFA)
		Malware enemypts files and demands mansom to mestone access	Regular backups, endpoint protection, avoid suspicion, avoid suspicion, downloads on links.
	DDOS (Distributed	Overwhelms server with traffic, causing outager	Use finewalls, DDOS
	SQL injection	Injects malicious SQL code into web input fields to manipulate databases.	
	Man-in-the-middle (MitM)	Intercepts communication between two paraties	Use end-to-end encryption (SSL/TLS), VPNs, secure Ni-fi.
			Enforce strong password policies, account lockouts and CAPTCHA.
Vhilteth	Zeno-Day Exploit	Tarogets a vulnenability before it's publicly known	Regular software updater threat intelligence monitoring behaviour-bared detection

CSE 317

Obmpilated & Cyber Security

Date 25 7 25

-4			
som bjur	Cyben Attack	Description	Mitigation Techniques
	Cross-Site Scripting (XSS)	Injects malicious scripts into trauted websites:	Sanitize user inputs, use content security policy (CSP) and escape output data
200	stuffing shows.	Uses leaked username/ password combinations to gain access to account	Enable MFA, monitor for suspicious login behaviour and encourage password uniqueness.
Limil and a plant of a	Social mallit	Manipulator people into regreating to into	Security awareness training verification protocols and simulated
ereszy perszy	Vsc. and-to-end (SSL/TLS), VPN NI-Fi.	balabuses. Interacpts communicalin blucen two parties	Man-in-the-middle (MI+1)
		7 1 1 1 1 1 C	Bridge torres
S S S	Regulari soltumine Himoal Intelligence	Tangets a valuenability before it's publicly known or paddred mScanner	Explain Long

Caesar Cipher

A-Z alphabets are counted as 0-25 serially

		Date: / /
decryption by sustained	P=plaintext letters number. C= cipheratext letters number. K = key (shift value) Example: P= Hello It is since where the numbers of numbers. I. Convert to numbers: H=7, E 2. Add shift (K=3): H(7)+3 E(4)+3	Plead by a fixed number (K) recognition and 26 mod 26 detailed description From 0 , $(17-3)$ mod 26 = 14 mod 26 \rightarrow 26)14 (0 = 14 \rightarrow 14)26(1 if 26 mod 14 \rightarrow 14)26(1 important to convent into numbers men id = key will be given larger would need the formula to be used, = 4, L=11, L=11, 0=14 K = 10 \rightarrow K Use formula = 7 \rightarrow H = 14 \rightarrow 0

One Time Pad

	Date ://
Ann (A)r	One time pad: Process to solve: Description (ASCII valuer) into Binarry. Example: H = 72 = 01001000
	Ascir binary value 2) Grenerate a mandom key, same length. Example: Kecy = 10110101 3) XOR them bit by bit: touth stable: XOR P > 01001000 K > 10110101
	xor > 1.111101 ercrypted ciphentext 1.111101 ercrypted ciphentext

Assignment sample

- Take a sentence
- Generate a key of same length
- Encrypt the sentence using the key with one time pad (ASCII value of whitespace is 20(hx))
- Decrypt the ciphertext and check if you get back the original text.

Example:

Plaintext: HELLO WORLD

Key: XWYXIHVZBNZ (uppercase letters, same length)
Ciphertext (in hexadecimal): [10,12,15,14,06,68,01,15,10,02,1e]

Decrypted Text: HELLO WORLD

ASCII VALUES

Space " " = 32

0-9 = 48 to 57

A-Z = 65-90

a-z = 97-122

There are several other ASCII values for certain symbols like: , .! < > Pray if these are given then their ASCII values will also be mentioned ::

Encryption:

Plaintext: HELLO WORLD

Char	ASCII (dec)	Binary
Н	72	01001000
E	69	01000101
L	76	01001100
L	76	01001100
0	79	01001111
(space)	32	00100000
w	87	01010111
0	79	01001111
R	82	01010010
L	76	01001100
D	68	01000100

Key: XWYXIHVZBNZ

Char	ASCII (dec)	Binary
X	88	01011000
W	87	01010111
Υ	89	01011001
Х	88	01011000
I	73	01001001
Н	72	01001000
V	86	01010110
Z	90	01011010
В	66	01000010
N	78	01001110
Z	90	01011010

Now after configuring the **ASCII values** and **Binary values** from the **Plaintext and Key** The process to Encrypt the message is using XOR

Ciphertext, C = P⊕K

Example:

• H (72 = 01001000) **XOR** (88 = 01011000) = 18 (00010010)

In the same process calculating for all other letters:

Plain (dec)	Key (dec)	XOR result	Cipher (hex)
72 (H)	88 (X)	16	10h
69 (E)	87 (W)	18	12h
76 (L)	89 (Y)	21	15h
76 (L)	88 (X)	20	14h
79 (O)	73 (I)	6	06h
32 ()	72 (H)	104	68h
87 (W)	86 (V)	1	01h
79 (O)	90 (Z)	21	15h
82 (R)	66 (B)	16	10h
76 (L)	78 (N)	2	02h
68 (D)	90 (Z)	30	1Eh

Ciphertext (in hexadecimal): [10,12,15,14,06,68,01,15,10,02,1e]

Decryption:

Decryption uses the same XOR:

If we XOR each ciphertext byte with its key byte \rightarrow we get back original: Plaintext, p = HELLO WORLD

Diffie Hellman Key

<u>Diffie Hellman</u> youtube video for better understanding

Date	:

Nothin Hallmann Key!

for Bob:

Breaking the 515 stepwise:

2)
$$5^2 = 25 \mod 23 = 2$$

3)
$$5^4 = (5^2 \mod 23) \times (5^2 \mod 23)$$

not $= 2 \times 2 = 4 \mod 23 = 4$

Why 50 not taken?

we can

2 (4 X 4 = 16 mod .23 = 16 form 5) 515 = 58 x 54 x 52 x 51

58 by 4+4

from 54,54

16 × 4 × 2 × 5 > the previous mod answers

640 mod 23 of the powers.

= 19 public keys: Alice, A = 8

canned with CamScanner

Bob, B = 19

Now, calculate the shared secret key:

$$S = B^{a} \mod P$$

$$= 19^{6} \mod 23$$

S = B^a mod P

For Alice; they exchange

= 19⁶ mod 231.

S = A^b mod P

For Bob

= 2815 mod 23

Ce;

$$S = A^b \mod P$$

$$= 815 \mod 23$$

2)
$$19^2 = 361 \mod 23 = 160\%$$

2) $19^2 = 361 \mod 23 = 160\%$

3) $19^4 = 16^2 / (19^2 \mod 23) \times (19^2 \mod 23) / \text{to save time!}$

4)
$$19^6 = 19^4 \times 19^2 = 3 \times 16 = 48 \mod 23$$

>> secret key

Alice de Bob will find the same secret key.

anned with CamScanner

Date	:

Bob: i yal tangas hayak wit wholeday would

3)
$$8^4 = 18^2 = 324 \mod 23 = 2$$

= 156 mod 23 = 3

More math example with different values:

Step 0: Choose public numbers

- Prime number p=17 (small for simplicity)
- Generator g=3

These are **public**, everyone can see them.

Step 1: Choose private keys

- Alice chooses a=5 (secret)
- Bob chooses b=7(secret)

Private keys are never shared.

Step 2 : Calculate the public keys

Formula:

$$A=g^a \mod p, \quad B=g^b \mod p$$

Alice's public key

$$A=g^a\mod p=3^5\mod 17$$

- Compute 3^5 step by step:
 - $3^1 = 3$
 - $3^2 = 9$
 - $3^4 = 9^2 = 81 \mod 17 = 13$
 - $3^5 = 3^4 * 3^1 = 13 * 3 = 39 \mod 17 = 5$
- Alice sends A = 5 to Bob

Bob's public key

$$B = g^b \mod p = 3^7 \mod 17$$

- Step by step:
 - $3^1 = 3$
 - $3^2 = 9$
 - $3^4 = 9^2 = 81 \mod 17 = 13$
 - $3^7 = 3^4 * 3^2 * 3^1 = 13 * 9 * 3 = 351 \mod 17 = 11$
- \blacksquare Bob sends **B** = 11 to Alice

Step 3: Calculate the shared secret key

Now each party uses the other's public key and their own private key:

Alice computes:

$$s = B^a \mod p = 11^5 \mod 17$$

Step by step:

- $11^2 = 121 \mod 17 = 2$
- $11^4 = 2^2 = 4$
- $11^5 = 11^4 * 11 = 4 * 11 = 44 \mod 17 = 10$
- Bob computes:

$$s = A^b \mod p = 5^7 \mod 17$$

Step by step:

- $5^2 = 25 \mod 17 = 8$
- $5^4 = 8^2 = 64 \mod 17 = 13$
- $5^7 = 5^4 * 5^2 * 5 = 13 * 8 * 5 = 520 \mod 17 = 10$
- $lue{s}$ Both get shared secret s=10

Step 4: Summary table

Party	Private Key	Public Key	Compute Shared Secret
Alice	5	5	$s=11^5 \mod 17=10$
Bob	7	11	$s=5^7 \mod 17=10$

Key points to remember:

- You never share private keys.
- Public keys are exchanged.
- Both use other's $\operatorname{public}^{\operatorname{my \ private}} \mod p \to \operatorname{\mathsf{same}}$ secret.
- Security comes from the **Discrete Log Problem** (hard to reverse).

(AES)Advanced Encryption Standard

■ AES: How to Design Secure Encryption

Eita janina ki porbo keu janle inbox koro

Modular Inverse

Nije korle handwritten notes add kore dibo....

/ Theorems / Methods for Modular Inverse

1. Extended Euclidean Algorithm (EEA)

- Most common method.
- Works when gcd(a, m) = 1.
- Finds integers x, y such that:

$$ax + my = \gcd(a, m) = 1$$

Then,

$$x \equiv a^{-1} \pmod{m}$$

Arr Example: $3^{-1} \pmod{11}$

Using EEA \rightarrow result = 4 (because $3 \times 4 \equiv 12 \equiv 1 \pmod{11}$).

2. Fermat's Little Theorem

- Works when *m* is **prime**.
- Formula:

$$a^{-1} \equiv a^{m-2} \pmod{m}$$

Arr Example: $3^{-1} \pmod{7}$

$$3^{7-2} = 3^5 = 243 \equiv 5 \pmod{7}$$

So inverse = 5.

3. Euler's Theorem

- More general than Fermat's (works when $\gcd(a,m)=1$, not just prime m).
- Formula:

$$a^{arphi(m)} \equiv 1 \pmod m$$

So,

$$a^{-1} \equiv a^{arphi(m)-1} \pmod{m}$$

(where $\varphi(m)$ = Euler's totient function).

 $lap{\square}$ Example: $3^{-1} \pmod{10}$

$$\varphi(10) = 4$$
.

$$3^{\varphi(10)-1}=3^3=27\equiv 7\pmod{10}$$

So inverse = 7.

Difference between Symmetric and Asymmetric Key Cryptography

Feature	Symmetric Key Cryptography	Asymmetric Key Cryptography	
Number of keys	1 key (same for encryption & decryption)	2 keys (Public & Private pair)	
Key relation	Same key is shared	Keys are mathematically related	
Speed	Very fast	Slower (more computation)	
Security	Key distribution is a problem	More secure for sharing keys	
Use cases	Encrypting large amounts of data (e.g., AES, DES)	Secure key exchange, digital signatures (RSA, DH, ECC)	
Example analogy	One house key for both people	Mailbox (public address + private key to open)	

Difference between public and private key

Aspect	Public Key	Private Key	
Who holds it?	Shared with everyone	Kept secret by the owner	
Function	Used to encrypt or verify	Used to decrypt or sign	
Security	Safe to distribute	Must never be shared	
Analogy	Your home address (anyone can send mail)	Your mailbox key (only you can open)	