Innhold

0.1	Følger	1
0.2	Trigonometriske uttrykk	2
0.3	Trigonometriske funksjoner	2
0.4	Vektorer	4
0.5	Rom	5
0.6	Integral	6
0.7	Differensialligninger	7

0.1 Følger

Sum[<Uttrykk>, <Variabel>, <Start>, <Slutt>]
(CAS)

Finner summen av en rekke med en løpende variabel på et intervall.

Eksempel

Finn summen av den uendelige rekka ..

$$1 + \frac{1}{5} + \frac{1}{25} + \dots$$

Svar:

Dette er en geometrisk rekke med $k = \frac{1}{5}$ og eksplisitt formel gitt som:

$$a_n = \frac{1}{5^{(n-1)}}$$

hvor $n \in [1, 2, ...]$.

I CAS skriver vi da (∞ -tegnet finner du ved å trykke på α -tegnet oppe i høyre hjørne):

$$\begin{array}{c|c} & \text{Sum}[1/5^{(n-1)}, n, 1, \infty] \\ 1 & & \frac{5}{4} \end{array}$$

0.2 Trigonometriske uttrykk

Løs[<Likning med x>] (CAS)

Løser en likning med x som ukjent.

Eksempel

CAS

Løs[sin(3x)=1]

$$\Rightarrow \left\{ x = \frac{2}{3} k_1 \pi + \frac{1}{6} \pi \right\}$$

I teoridelen til denne boka bruker vi $n \in \mathbb{N}$ som heltallsvariabel. GeoGebra bruker en indeksert k, her $k_1 \in \mathbb{N}$.

Merk: Du kan også løse ligningen $\sin(3x) = 1$ ved å skrive den inn i en CAS-celle og deretter trykke på Løs.

0.3 Trigonometriske funksjoner

TrigKombiner[<Funksjon>, sin(x)]

Skriver om en funksjon på formen $a \sin(kx) + b \cos(kx)$ til et kombinert uttrykk på formen $r \sin(kx + c)$.

Eksempel

RegSin[<Liste>]

Finner den best tilpassede sinusfunksjonen for punkt i en liste.

Eksempel

Gitt tabellen

x	f(x)
1	-2.12
2	-2.73
3	-0.62
4	2.37
5	2.88

Bruk regresjon for å finne en tilnærming til f(x).

Svar:

Vi velger Vis ► Regneark og skriver inn tabellen. Vi markerer så begge kolonner, høyreklikker innenfor markeringsfeltet og velger Lag ► Liste med punkt:

Om vi ønsker at alle punktene skal vises i grafikkfeltet, høyreklikker vi på grafikken og velger Vis alle objekt. Deretter skriver vi RegSin[Liste1] i kommandolinjen, og får funksjonen f(x) i algebrafeltet og grafen til f i grafikkfeltet. Denne funksjonen er en tilnærming til f(x) gitt i oppgaven.

Algebrafelt

Funksjon

**

0.4 Vektorer

Determinant[<Matrise>]

Finner determinanten til en matrise.

Eksempel

Regn ut:

$$\begin{vmatrix} 1 & -2 & 2 \\ 2 & 2 & -3 \\ 4 & -1 & 2 \end{vmatrix}$$

Svar:

0.5 Rom

Skalarprodukt[<Vektor>, <Vektor>]

Finner skalarproduktet av to vektorer. (Merk: For to vektorer u og v kan man like gjerne skrive u^*v).

Vektorprodukt[<Vektor>, <Vektor>] (CAS)

Finner vektorproduktet av to vektorer. (Merk: For to vektorer u og v kan man like gjerne skrive $u \otimes v$. Hurtigtast for \otimes er alt+shift+8).

Pyramide[<Punkt>, <Punkt>, ...]

Fremstiller en pyramide i Grafikkfelt 3D. Pyramide [A,B,C,D] lager en pyramide med grunnflate A,B,C og toppunkt D, mens Pyramide [A,B,C,D, E] har grunnflate A,B,C,D og toppunkt E. Under kategorien Pyramide i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

Prisme[<Punkt>, <Punkt>, ...]

Fremstiller en prisme i Grafikkfelt 3D. Prisme [A,B,C,D] lager en prisme med grunnflate ABC og tak DEF, Prisme [A,B,C,D, E] har grunnflate ABCD og tak EFG. F,G og eventelt E blir konstruert av GeoGebra slik at hver sideflate er et parallellogram. Under kategorien Prisme i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

Kurve[<Uttrykk>, <Uttrykk>, <Uttrykk>, <Parametervariabel>, <Start>, <Slutt>]

Viser parameteriseringen av en kurve i Grafikkfelt 3D på et gitt intervall. Uttrykkene er henholdsvis uttrykkene for x, y og z-koordinatene, bestemt av en gitt parametervariabel.

Kule[<Punkt>, <Radius>]

Viser en kule i Grafikkfelt 3D med sentrum i et gitt punkt og med en gitt radius.

Plan[<Punkt>, <Punkt>, <Punkt>]

Viser et plan i Grafikkfelt 3D, utspent av to av vektorene mellom tre gitte punkt.

Prisme[<Punkt>, <Punkt>, ...]

Fremstiller en prisme i Grafikkfelt 3D. Prisme [A,B,C,D] lager en prisme med grunnflate ABC og tak DEF, Prisme [A,B,C,D, E] har grunnflate ABCD og tak EFG. F,G og eventelt E blir konstruert av GeoGebra slik at hver sideflate er et parallellogram. Under kategorien Prisme i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

0.6 Integral

Deriverte[<Funksjon>]

Gir den deriverte av en funksjon. (Merk: For en definert funksjon f(x), kan man like gjerne skrive f'(x))

Integral[<Funksjon>]

Gir uttrykket til det ubestemte integralet av en funksjon. (Merk: Hvis kommandoen skrives i inntastingsfeltet, blir konstantleddet utelatt).

Eksempel

CAS

Integral[
$$x^2$$
]

$$\frac{1}{3}x^3 + c_1$$

 c_1 er en vilkårlig konstant.

Integral[<Funksjon>, <Start>, <Slutt>]

Gir det bestemte integralet av en funksjon på et intervall.

Eksempel 1

Eksempel 2

Finn volumet av omdreiningslegemet til $f(x) = x^2$ på intervallet [0, 1].

Svar:

CAS
$$\begin{array}{c|c}
f(x) := x^2 \\
\hline
0 & f(x) := x^2 \\
\hline
0 & \pi *Integral[f^2, 0, 1] \\
\hline
0 & \frac{1}{5} \pi
\end{array}$$

I CAS-celle 1 definerer vif(x) (huske å skrive :=). Volumet er gitt som $\pi \int_{0}^{1} (f(x))^2 dx$, som vi finner i celle 2.

0.7 Differensialligninger

LøsODE[<Likning>] (CAS)

Finner generell løsning av en gitt differensialligning av første eller andre orden.

Eksempel 1

Løs ligningen:

$$y' + 2y = 2$$

7

Svar:

 c_1 er en vilkårlig konstant.

Eksempel 2

Løs ligningen:

$$y' + 5y^2 = 0$$

Svar:

CAS

LøsODE[y'+5y^2=0]

$$y = \frac{1}{c_1 + 5 x}$$

 c_1 er en vilkårlig konstant.

Eksempel 3

Løs ligningen:

$$y'' + y' - 6y = 0$$

Svar:

CAS

LØSODE[y"+y'-6y=0]

$$y = c_1 e^{2x} + c_2 e^{-3x}$$

 c_1 og c_2 er en vilkårlige konstanter.

LøsODE[,
$$(x_0, y(x_0))$$
, $(x_1, y'(x_1))$] (CAS)

Finner løsningen av en gitt differensialligning av første eller andre orden, for randverdier gitt som punkter.

8

Eksempel 1

Finn løsningnen av ligningen

$$y' - 3y = 0$$

med randbetingelsen y(0) = 5.

Svar:

Randbetingelsen gir oss punktet $(x_0, y(x_0)) = (0, 5)$:

Eksempel 2

Finn løsningnen av ligningen

$$y'' + y - 6 = 0$$

med randbetingelsene y(0) = -1 og y'(0) = 0

Svar:

Randbetingelsen gir oss punktene $(x_0, y(x_0)) = (0, -1)$ og $(x_1, y'(x_1)) = (0, 0)$:

CAS

LøsODE[y"+y'-6y=0, (0,-1), (0,0)]

$$y = -\frac{2}{5} e^{-3x} - \frac{3}{5} e^{2x}$$

Retningsdiagram[f(x,y)] (Inntastingsfelt)

Lager et retningsdiagram for en differensialligning hvor f(x,y) = y'.

9

Eksempel

Gitt differensialligningen

$$y' + xy = x$$

- a) Tegn et retningsdiagram for løsningene av ligningen.
- b) Tegn integralkurven for løsningen som krysser vertikalaksen når y=2.

Svar:

a) Vi starter med å finne y':

$$y' = x - xy$$

I inntastingsfeltet skyriver vi så Retnigsdiagram[x-x y] og får dette bildet i grafikkfeltet:

b) Vi starter med å løse ligningen for punktet (0,2), og gir deretter løsningen navnet f(x):

▶ CAS		
1	LøsODE[y'+x y=x, (0,2)]	
0	$\rightarrow \mathbf{y} = \mathbf{e}^{-\frac{\mathbf{x}^2}{2}} + 1$	
2	f(x):=\$1	
•	\rightarrow f(x) := $e^{-\frac{1}{2}x^2} + 1$	

Vi får da grafen:

