Outline

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

7 September 2011

ISTA 116: Statistical Foundations for the Information Age LOutline

- Web Quiz 2 due Friday
- Lab Assignment 2 posted, due next week in lab
 - Can do first half now
 - Second half after today's/Monday's class
- New d2l discussion forum for R issues

- 1 Density Revisited
- 2 Handedness Example

ISTA 116: Statistical Foundations for the Information Age

- 3 Measures of Variability
 - The Range
 - Variance and Standard Deviation
 - z-scores
 - lacksquare Problems with s and s^2
 - The IQR and H-Spread

ISTA 116: Statistical Foundations for the Information Age $$\sqsubseteq$$ Density Revisited

Figure: Histograms of Babies' Birth Weights

Warmup

- Turn to the person next to you, and work together to produce your guess at:
 - A bar plot showing proportions of left-handed, ambidextrous and right-handed people.
 - A (rough) histogram with density estimate curve showing the quantitative measure of handedness (range is -1 for pure left to +1 for pure right).
 - On your histogram, show the mean, median and mode with vertical lines.

Figure: Densities of Babies' Birth Weights

ISTA 116: Statistical Foundations for the Information Age Handedness Example The Results...

Figure: Handedness Distribution for Our Class

ISTA 116: Statistical Foundations for the Information Age

Handedness Example

Measures of Central Tendency

- Most common value (the **mode**)
 - Advantages
 - Works for categorical data
 - Is a possible value
 - Disadvantages
 - Doesn't use much data
 - Often far from the center
- Value separating the data into halves (the median)
 - Advantages
 - In the middle of the data
 - Robust to extreme values
 - Disadvantages
 - Only sensitive to ranks
 - Discontinuous

Measures of Central Tendency

- Value at the "balance point" (the **mean**)
 - Advantages
 - Uses all the data
 - Intuitive for numeric data
 - Disadvantages
 - Not necessarily a possible value (discrete case)
 - Sensitive to extreme values
- Halfway between highest and lowest values (the midrange)
 - Advantages
 - Very easy to see on a graph
 - Disadvantages
 - Sensitive to *only* extreme values

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

Quantifying "Spread"

■ How might we quantify the "spread" in a data set?

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

A Simple Comparison

1 st Test	Stem	2 nd Test
	4	0
	5	7
	6	
7 5	7	0
87520	8	2 8
	9	6
	10	0

Q: What's the difference between these two sets of exam scores?

A: Similar *centers*, but very different *spreads*.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

Quantifying "Spread"

- How might we quantify the "spread" in a data set?
- Some intuitions:
 - Difference between smallest and largest values (the range)
 - Average distance from the center (which center?)
 - Range of the central "bulk" of the data.

The Range

Easy to compute

Stem	2 nd Test
4	0
5	7
6	
7	0
8	2 8
9	6
10	0
	4 5 6 7 8 9

Measures of Variability

LThe Range

ISTA 116: Statistical Foundations for the Information Age

The Range

■ But very different distributions can have similar ranges.

1 st Test	Stem	2 nd Test
0	4	0
	5	7
	6	
7 5	7	0
87520	8	2 8
	9	6
0	10	0

ISTA 116: Statistical Foundations for the Information Age

☐ Measures of Variability

The Range

The Range

• And similar distributions can have very different ranges.

1 st Test	Stem	2 nd Test
0	4	
	5	
	6	0
7 5	7	0 5 7
87520	8	0257
	9	
0	10	0

■ This is because the range (like the midrange) is only sensitive to extreme values.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability ∟The Range

Deviations

- Rather than simply measuring the distance between the extremes, we can develop measures based on distance from "center".
- Which center? The mean is the logical choice, since it is the only one that uses specific numeric values.
- For each data point, its **deviation score** is its "distance" from the mean.

$$\mathsf{Deviation}_i = x_i - \bar{x}$$

Measures of Variability LThe Range

ISTA 116: Statistical Foundations for the Information Age

Deviations

Height of 4-year-olds in in.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

L The Range

Deviations

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

LThe Range

Deviations

Height of 4-year-olds in in.

Height of 4-year-olds in in.

Measures of Variability

LThe Range

Deviations

Height of 4-year-olds in in.

How can we use these for an overall measure of spread?

ISTA 116: Statistical Foundations for the Information Age

☐ Measures of Variability

└Variance and Standard Deviation

Standard Deviation

- The problem with variance (s^2) as a measure of spread is that it's in squared units.
- No problem: just take the square root.
- $s = \sqrt{s^2}$ is the standard deviation

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^n \mathsf{Deviation}_i^2}{n-1}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$$

ISTA 116: Statistical Foundations for the Information Age

☐ Measures of Variability

└Variance and Standard Deviation

Variance

- Problem with "average deviation": always zero, because of the definition of the mean.
- Could use "average absolute deviation", but absolute value has inconvenient mathematical properties.
- Instead, we use "average squared deviation", which is the variance.

$$s^{2} = \frac{\sum_{i=1}^{n} \text{Deviation}_{i}^{2}}{n-1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

└Variance and Standard Deviation

Geometric Analogy

- Suppose we have just two data points: 1 and 7
- $\bar{x}=4$

Geometric Analogy

■ Imagine plotting one value on the x-axis, and one on the y-axis.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

Variance and Standard Deviation

Geometric Analogy

■ The standard deviation is the distance between these two points.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

└─Variance and Standard Deviation

Geometric Analogy

Now plot the data set with the same mean, but no variability (i.e. every value equal to the mean).

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

└Variance and Standard Deviation

Geometric Analogy

Notice that, since $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$ always, all possible data sets of two points with $\bar{x} = 4$ lie on a line.

☐ Measures of Variability
☐ Variance and Standard Deviation

Geometric Analogy

- Notice that, since $\sum_{i=1}^{n} (x_i \bar{x}) = 0$ always, all possible data sets of two points with $\bar{x} = 4$ lie on a line.
- This is the reason for the n-1 in the denominator: 2 data points, 1 dimension of deviations.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

Variance and Standard Deviation

z-scores

- A common application of standard deviation is as a way to measure how far a data point is from the mean, on a scale that is *independent of units*.
- By dividing each individual deviation score by the standard deviation, we obtain a **z-score** for that data point.

$$z_i = \frac{(x_i - \bar{x})}{s}$$

■ Interpretation: "How many standard deviation units above the mean is that observation?" (negative = below the mean)

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

Variance and Standard Deviation

Same \bar{x} , different s

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

└Variance and Standard Deviation

z-scores

• We can compute z-scores for the whole data set, and see their distribution.

ISTA 116: Statistical Foundations for the Information Age L Measures of Variability L Variance and Standard Deviation

z-scores

• We can compute z-scores for the whole data set, and see their distribution.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

Variance and Standard Deviation

Problems with s and s^2

■ These measures, even more than the mean itself, are heavily influenced by extreme values.

Problems with s and s^2

■ These measures, even more than the mean itself, are heavily influenced by extreme values.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

The IQR and H-Spread

Robust Measures of Variability

- We'd like a more **robust** measure of variability, for cases like the above.
- Analogous to the median: describe what the "middle" part of the data is doing.
- The idea: describe the range of the "middle half" of the data.
- That is, exclude the lowest 25% and the highest 25%, and take the range of what remains.

Quantiles

- Recall: the **median** is the point that one half, or 50%, of the data is below
- Generalize this idea to define **percentiles**.
- The median is the _____ percentile.
- A similar idea, expressed with proportions rather than percentages, is that of the $p^{\rm th}$ quantile: same as the $100p^{\rm th}$ percentile.
- The median is the _____ quantile.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

☐The IQR and H-Spread

Quartiles

Height of 4-year-olds in in.

ISTA 116: Statistical Foundations for the Information Age

└─ Measures of Variability

LThe IQR and H-Spread

Quartiles

- Notice that percentiles divide the data into 100ths. We could just as easily divide the data into tenths ("deciles"), fifths ("quintiles"), etc.
- After percentiles, the most common division is into quarters. The k^{th} quartile (written Q_k) is the point below which k quarters of the data lies.
- So, the median is ______, the minimum is ______, the maximum is ______.
- We can re-express the range as _____.

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

The IQR and H-Spread

The Inter-Quartile Range (IQR)

■ We define the **Inter-Quartile Range** (or **IQR**) as the distance between the first and third quartiles:

$$IQR = Q_3 - Q_1$$

■ Easily computed in R (use the IQR() function), but complicated to do by hand (different rules for quartiles depending on whether n is divisible by 4, by 2 but not by 4, is one more, or one less, than a multiple of 4, etc.)

The Inter-Quartile Range (IQR)

Height of 4-year-olds in in.

ISTA 116: Statistical Foundations for the Information Age

☐ Measures of Variability

The IQR and H-Spread

The Hinges

Height of 4-year-olds in in.

ISTA 116: Statistical Foundations for the Information Age Measures of Variability

The IQR and H-Spread

The Hinges

- A closely related notion to quartiles is that of **hinges**: easier to compute by hand.
- Arguably obsolete due to computers, but still used for historical reasons.
- The **lower hinge** (or H_1) is defined by looking at the data at or below the median. It is the median of this subset.
- The **upper hinge** is the same idea, using the data at or above the median (or H_3)

ISTA 116: Statistical Foundations for the Information Age

Measures of Variability

The IQR and H-Spread

The H-spread

■ The **H-spread** is defined the same way as the IQR, but with hinges rather than quartiles:

$$H$$
-spread = $H_3 - H_1$

■ Sometimes identical, almost always very close, to the IQR.

The H-spread

■ The **H-spread** is defined the same way as the IQR, but with hinges rather than quartiles:

$$H$$
-spread = $H_3 - H_1$

■ Sometimes identical, almost always very close, to the IQR.