Matematično-fizikalni praktikum 2025/26

3. naloga: Lastne vrednosti in lastni vektorji

Samo Krejan, 28231092

Enodimenzionalni linearni harmonski oscilator (delec mase m s kinetično energijo $T(p) = p^2/2m$ v kvadratičnem potencialu $V(q) = m\omega^2q^2/2$) opišemo z brezdimenzijsko Hamiltonovo funkcijo

$$H_0 = \frac{1}{2} \left(p^2 + q^2 \right) ,$$

tako da energijo merimo v enotah $\hbar\omega$, gibalne količine v enotah $(\hbar m\omega)^{1/2}$ in dolžine v enotah $(\hbar/m\omega)^{1/2}$. Lastna stanja $|n\rangle$ nemotenega Hamiltonovega operatorja H_0 poznamo iz osnovnega tečaja kvantne mehanike [Strnad III]: v koordinatni reprezentaciji so lastne valovne funkcije

$$|n\rangle = (2^n n! \sqrt{\pi})^{-1/2} e^{-q^2/2} \mathcal{H}_n(q),$$

kjer so \mathcal{H}_n Hermitovi polinomi. Lastne funkcije zadoščajo stacionarni Schrödingerjevi enačbi

$$H_0|n^0\rangle = E_n^0|n^0\rangle$$

z nedegeneriranimi lastnimi energijami $E_n^0=n+1/2$ za $n=0,1,2,\ldots$. Matrika $\langle i|H_0|j\rangle$ z $i,j=0,1,2,\ldots,N-1$ je očitno diagonalna, z vrednostmi $\delta_{ij}(i+1/2)$ po diagonali. Nemoteni Hamiltonki dodamo anharmonski člen

$$H = H_0 + \lambda q^4.$$

Kako se zaradi te motnje spremenijo lastne energije? Iščemo torej matrične elemente $\langle i|H|j\rangle$ motenega Hamiltonovega operatorja v bazi nemotenih valovnih funkcij $|n^0\rangle$, kar vemo iz perturbacijske teorije v najnižjem redu. Pri računu si pomagamo s pričakovano vrednostjo prehodnega matričnega elementa za posplošeno koordinato

$$q_{ij} = \langle i|q|j\rangle = \frac{1}{2}\sqrt{i+j+1} \,\,\delta_{|i-j|,1} \,\,,$$

ki, mimogrede, uteleša izbirno pravilo za električni dipolni prehod med nivoji harmonskega oscilatorja. V praktičnem računu moramo seveda matriki q_{ij} in $\langle i|H|j\rangle$ omejiti na neko končno razsežnost N.

1 Naloga

Z diagonalizacijo poišči nekaj najnižjih lastnih vrednosti in lastnih valovnih funkcij za moteno Hamiltonko $H = H_0 + \lambda q^4$ ob vrednostih parametra $0 \le \lambda \le 1$.