Programação Linear - representação matricial Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

18 de outubro de 2023

Programação Linear - representação matricial

antes

• O algoritmo simplex foi implementado usando quadros.

Guião

- Uma matriz é uma forma de representar e condensar informação.
- As operações realizadas podem ser descritas usando matrizes.
- A representação matricial oferece uma nova perspectiva, que permite evidenciar o significado de componentes do quadro simplex,
- e conceber operações mais complexas, e.g., mudar directamente de um quadro inicial para qualquer outro quadro final, efectuando simultaneamente um conjunto dos pivôs.

depois

• A representação matricial será usada em análise de sensibilidade.

Conteúdo

- Sistema de equações e soluções básicas
- Operação matricial de mudança de base
- Significado de alguns componentes do quadro simplex
- Referência a aplicações
 - Análise de sensibilidade
 - Implementação computacional do algoritmo simplex

- Apêndice
 - Perspectiva: o algoritmo simplex como leilão
 - Implementação computacional do algoritmo simplex
 - Perspectiva: representação em bases diferentes

Problema de PL e representação matricial

Geral			Exemplo				
$ \begin{array}{ll} \max & cx + 0s \\ & Ax + Is = b \\ & x \ge 0 \end{array} $			$\begin{array}{ll} \max & 30x_1 + 20x_2 + 10x_3 \\ \text{suj.} & 1x_1 + 1x_2 + 2x_3 + s_1 = 40 \\ & 2x_1 + 2x_2 + 1x_3 + s_2 = 150 \\ & 2x_1 + 1x_2 & + s_3 = 20 \\ & x_1, \ x_2, \ x_3 \geq 0 \end{array}$				
a matriz do	quadro ii	nicial:					
			$s_1 \ 0 \ 1 \ 1 \ 2 \ 1 \ 0 \ 0 \ 40$				
<i>A</i>	1	b	$ s_2 0 2 2 1 0 1 0 150 $				
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
-c	0	0	z 1 -30 -20 -10 0 0 0 0				

- $\mathbf{A} = [\mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_{(n-m)}] \text{ e } \mathbf{I} = [\mathbf{e}_1 \mathbf{e}_2 \dots \mathbf{e}_m], \text{ sendo } \mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)^\top \text{ um vector coluna com um elemento } 1 \text{ na posição } i.$
- $c = (c_1 c_2 ... c_{(n-m)})$

Exemplo: quais as restrições activas no vértice *D*?

Exemplo: quais as restrições activas no vértice *D*?

Determinação coordenadas vértice D

Sistema de equações do vértice D, e sua representação matricial após ordenação de colunas:

Solução do sistema de equações é única: $\mathbf{x}_D = (x_1, x_2, s_1, s_2, s_3)_D^{\top} = (20, 30, 0, 0, 0, 10)^{\top}$

Caso geral

• Qual a solução do sistema de equações $Bx_B + Nx_N = b$ e $x_N = 0$?

В	N	*	X _B	b
0	I _{n-m}	*	x _N	0

Caso geral

• Qual a solução do sistema de equações $Bx_B + Nx_N = b$ e $x_N = 0$?

В	N	*	X _B	b
0	I _{n-m}	*		0

- A solução é $x_B = B^{-1}b$ e $x_N = 0$
- Nota: a matriz **B** deve ter inversa (ser não-singular).

Caso geral

• Qual a solução do sistema de equações $Bx_B + Nx_N = b$ e $x_N = 0$?

- A solução é $x_B = B^{-1}b$ e $x_N = 0$
- Nota: a matriz **B** deve ter inversa (ser não-singular).
- Vectores de **B** são linearmente independentes, e formam uma base.
- Por isso é que a solução se diz uma solução básica (vértice).

Sistema de equações e soluções básicas

• Dada uma qualquer escolha de variáveis básicas, o problema $\max z = cx$, suj. a Ax = b, $x \ge 0$ é equivalente a:

max
$$z=c_Bx_B+c_Nx_N$$
 suj. a $Bx_B+Nx_N=b$ $x_B,x_N\geq 0$

• em que o vector de variáveis x é partido em dois subvectores:

 $\mathbf{x}_B \in \mathbb{R}_+^{m \times 1}$: subvector de \mathbf{x} com as variáveis básicas, $\mathbf{x}_M \in \mathbb{R}_+^{(n-m) \times 1}$: subvector de \mathbf{x} com as variáveis não-básicas,

 $oldsymbol{\circ}$ o vector de custos $oldsymbol{c}$ é partido em dois subvectores:

 $c_B \in \mathbb{R}^{1 \times m}$: subvector de c com os custos das variáveis básicas, $c_N \in \mathbb{R}^{1 \times (n-m)}$: subvector de c com os custos das variáveis não-básicas,

a matriz A é partida em duas submatrizes:

 $\mathbf{B} \in \mathbb{R}^{m \times m}$: submatriz de \mathbf{A} das variáveis básicas (não-singular), $\mathbf{N} \in \mathbb{R}^{m \times (n-m)}$: submatriz de \mathbf{A} das variáveis não-básicas.

Resolve-se o sistema de equações em ordem a x_B ...

 pré-multiplicando o sistema de equações por B⁻¹, obtendo-se o seguinte sistema de equações equivalente:

$$B^{-1}(Bx_B + Nx_N) = B^{-1}b$$

 $x_B + B^{-1}Nx_N = B^{-1}b$
 $x_B = B^{-1}b - B^{-1}Nx_N$

Substituindo x_B na função objectivo, obtém-se:

$$z = c_B x_B + c_N x_N =$$

= $c_B (B^{-1} b - B^{-1} N x_N) + c_N x_N =$
= $c_B B^{-1} b + (c_N - c_B B^{-1} N) x_N$

Quando $\tilde{x}_N = 0$, a solução do sistema de equações é a solução básica \tilde{x} :

$$\bullet \quad \widetilde{\mathbf{x}} \quad = \quad \left(\begin{array}{c} \widetilde{\mathbf{x}}_{B} \\ \widetilde{\mathbf{x}}_{N} \end{array}\right) = \left(\begin{array}{c} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{array}\right)$$

- que tem um valor de função objectivo $\tilde{z} = c_B B^{-1} b = c_B \tilde{x}_B$
- Se $\widetilde{x}_B \ge 0$ então \widetilde{x} é uma solução básica admissível.

Exemplo 2: efectuar vários pivôs simultaneamente ...

• para um vértice não adjacente, em que as vars básicas são x_3 , s_2 e x_2 .

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	s 2	<i>s</i> ₃	
<i>s</i> ₁	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>s</i> ₃	0	2	1 2 1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

• Para resolver o sistema de equações em ordem às variáveis básicas x_3, s_2 e x_2 , as matrizes $\boldsymbol{B}, \boldsymbol{N}$ e os vectores $\boldsymbol{c_B}$ e $\boldsymbol{c_N}$ são:

$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{a}_2 \end{bmatrix} \qquad \mathbf{N} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{e}_1 & \mathbf{e}_3 \end{bmatrix} \\
\mathbf{B} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{N} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$\mathbf{c}_{B} = \begin{bmatrix} c_{3} & 0 & c_{2} \end{bmatrix} \quad \mathbf{c}_{N} = \begin{bmatrix} c_{1} & 0 & 0 \end{bmatrix} \\
 \mathbf{c}_{B} = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix} \quad \mathbf{c}_{N} = \begin{bmatrix} 30 & 0 & 0 \end{bmatrix}$$

• Nota: as colunas da matriz B e do vector c_B estão ordenadas na sequência pretendida para as variáveis básicas no quadro final.

Exemplo 2: cálculo de B^{-1} e $c_B B^{-1}$

• Dada uma matriz B, podemos calcular a matriz B^{-1} e o vector $c_B B^{-1}$, que aparecem várias vezes nos cálculos:

$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{a}_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix}
\mathbf{c}_{\mathbf{B}} = \begin{bmatrix} c_3 & 0 & c_2 \\ 10 & 0 & 20 \end{bmatrix} \qquad \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix}$$

Perspectiva: a matriz B^{-1} como operador matricial

 A matriz B⁻¹ opera uma mudança de base, guardando informação sobre todos os pivôs efectuados para fazer entrar na base as variáveis básicas pretendidas.

Exemplo 2: cálculo da solução, determinando $\widetilde{\mathbf{x}}_{B}$

$$\begin{aligned} \mathbf{x}_{B} &= & \mathbf{B}^{-1}\mathbf{b} & - & \mathbf{B}^{-1}\mathbf{N} \ \mathbf{x}_{N} \\ \begin{bmatrix} x_{3} \\ s_{2} \\ x_{2} \end{bmatrix} &= \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} - \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_{1} \\ s_{1} \\ s_{3} \end{bmatrix} \\ \begin{bmatrix} x_{3} \\ s_{2} \\ x_{2} \end{bmatrix} &= \begin{bmatrix} 10 \\ 100 \\ 20 \end{bmatrix} & - \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ -3/2 & -1/2 & -3/2 \\ 2 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_{1} \\ s_{1} \\ s_{3} \end{bmatrix}$$

- A solução é admissível: $\widetilde{\mathbf{x}}_{B}$ têm coordenadas não-negativas.
- Os valores das variáveis básicas são: $\widetilde{\mathbf{x}}_B = (x_3, s_2, x_2)^\top = (10, 100, 20)^\top$
- Os valores das vars não-básicas são: $\widetilde{\mathbf{x}}_{N} = (x_1, s_1, s_3)^{\top} = (0, 0, 0)^{\top}$
- $\widetilde{\mathbf{x}} = (x_1, x_2, x_3, s_1, s_2, s_3)^{\top} = (0, 20, 10, 0, 100, 0)^{\top}$

Exemplo 2: cálculo do valor da solução, \tilde{z}

$$z = c_B B^{-1} \quad b \quad + (c_N - c_B B^{-1} N) x_N$$

$$z = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} + \begin{bmatrix} 30 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_1 \\ s_1 \\ s_3 \end{bmatrix}$$

$$z = 500 \quad + \begin{bmatrix} -5 & -5 & -15 \end{bmatrix} * \begin{bmatrix} x_1 \\ s_1 \\ s_3 \end{bmatrix}$$

- O valor da função objectivo da solução obtida, \tilde{z} , é 500.
- A solução também é óptima para o problema de maximização (dado que $z = 500 5x_1 5s_1 15s_3$).

Exemplo 2: o quadro inicial e o quadro final

 x_1

 A informação anterior pode ser usada para construir o quadro final, colocando as colunas na devida posição.

*X*3

*S*1

S2

*5*3

 X_2

• Os dois quadros apresentam dois sistemas de equações equivalentes, representados nas bases $\beta_{Q_I} = \{e_1, e_2, e_3\}$ e $\beta_{Q_F} = \{a_3, e_2, a_2\}$, respectivamente (ver Apêndice).

J.M. Valério de Carvalho, U.Minho Prog

Uma base de um espaço vectorial é um conjunto ordenado de vectores linearmente independentes que geram esse espaço (e.g., $\beta_{Q_F} = \{a_3, e_2, a_2\}$). Também designamos por base o conjunto ordenado de variávéis básicas (e.g., $\mathcal{B}_{Q_F} = \{x_3, x_2, x_2\}$).

Motivação: as operações matriciais no quadro simplex

- De seguida, vamos realizar as mesmas operações, mas mantendo as colunas na mesma ordem em que aparecem no quadro simplex.
- Vamos identificar a matriz M que opera a mudança de base, do quadro inicial para o quadro final.
- A matriz do quadro final Q_F é o produto da multiplicação da matriz M pela matriz do quadro inicial Q_I:

$$Q_F = M * Q_I$$

Operação matricial de mudança de base - i

- Para obter o quadro simplex final em que as variáveis básicas são as variáveis de x_B , temos de identificar:
 - a matriz B, que é a submatriz de [A | I] com as colunas das variáveis básicas de x_B, e
 - o vector c_B , com os coeficientes do vector c das mesmas variáveis.

A matriz que opera a mudança do quadro inicial para o final é:

$$m{M} = egin{bmatrix} m{B}^{-1} & m{0} \\ \hline m{c}_{B} m{B}^{-1} & 1 \end{bmatrix} \in \mathbb{R}^{(m+1) \times (m+1)}$$

Operação matricial de mudança de base - ii

Prova:

- No quadro simplex final, as variáveis básicas são as pretendidas, porque:
 - a matriz identidade I aparece nas posições da matriz B, e
 - o vector nulo aparece na linha da função objectivo.

$$\begin{bmatrix} & B^{-1} & 0 \\ & c_B B^{-1} & 1 \end{bmatrix} * \begin{bmatrix} & B & \\ & -c_B & \end{bmatrix} = \begin{bmatrix} & B^{-1}B + 0(-c_B) \\ & \hline & c_B B^{-1}B + 1(-c_B) \end{bmatrix} = \begin{bmatrix} & I & \\ & & 0 & \end{bmatrix}$$

 A regra de multiplicação de matrizes partidas (em submatrizes) é semelhante à da multiplicação de matrizes.

Operação matricial de mudança de base - iii

• O produto da multiplicação da matriz M pela matriz do quadro inicial Q_I é a matriz do quadro final Q_F :

B^{-1} $c_B B^{-1}$	0	*	А -с	0	b	
		=	$B^{-1}A$ $c_BB^{-1}A-c$	B^{-1} $c_B B^{-1}$	$B^{-1}b$ $c_BB^{-1}b$	

 Nota: tal como vimos, nas posições que a matriz B ocupa no Quadro Inicial, aparecem as colunas da matriz identidade no Quadro Final.

O mesmo Exemplo 2

Dado o Quadro Inicial:

				<i>X</i> 3				
$\overline{s_1}$	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>s</i> ₃	0	2	1	2 1 0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

• para obter o quadro com as variáveis básicas x_3, s_2 e x_2 , a matriz que opera a mudança de base é **M**:

$$B = \begin{bmatrix} a_3 & e_2 & a_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{rcl} \boldsymbol{c}_{B} & = & \left[\begin{array}{ccc} c_{3} & 0 & c_{2} \end{array} \right] \\ \boldsymbol{c}_{B} & = & \left[\begin{array}{ccc} 10 & 0 & 20 \end{array} \right] \end{array}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{a}_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}
\mathbf{M} = \begin{bmatrix} 1/2 & 0 & -1/2 & 0 \\ -1/2 & 1 & -3/2 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 5 & 0 & 15 & 1 \end{bmatrix}
\mathbf{c}_B = \begin{bmatrix} c_3 & 0 & c_2 \end{bmatrix}$$

Exemplo 2

1/2	0	-1/2	0
-1/2	1	-3/2	0
0	0	1	0
5	0	15	1

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
*	<i>s</i> ₁	0	1	1	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>s</i> ₃	0	1 2 2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
=	Х3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500
						1			

B^{-1}	0
$c_B B^{-1}$	1

Α	1	ь
- c	0	0

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

Notas

- No exemplo, o quadro final é a solução óptima, porque eu escolhi as variáveis básicas que sabia de antemão serem as da solução óptima.
- No caso geral, quando se escolhe um conjunto de variáveis básicas:
 - se algum elemento do vector B⁻¹b for negativo, obtém-se uma solução não-admissível;
 - se algum elemento dos vectores $c_B B^{-1}$ ou $c_B B^{-1} A c$ for negativo, obtém-se uma solução que não é óptima (prob. de maximização).

Linha da função objectivo do quadro óptimo

 Usam-se designações especiais para os coeficientes da linha da função objectivo do quadro óptimo.

$B^{-1}A$	B^{-1}	$B^{-1}b$			
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$			

Custo reduzido da variável de decisão x_j

- é o valor do elemento $c_j c_B B^{-1} a_j$ do vector $-(c c_B B^{-1} A)$.
- Os valores do vector custo c são <u>reduzidos</u> de $c_B B^{-1} A$.

Preço-sombra da restrição i (recurso i)

- é o valor do elemento $(c_B B^{-1})_i$ do vector $c_B B^{-1}$.
- Vamos explorar o que significam na Análise de sensibilidade.

O vector $c_B B^{-1}$, e o vector c reduzido de $c_B B^{-1} A$

Perspectiva

- O vector c_BB⁻¹ guarda informação sobre as transformações efectuadas na linha da função objectivo quando a ela se subtraem múltiplos das linhas pivôs.
- Vamos calcular $(c c_B B^{-1} A)$ e o resultado é $-(c_B B^{-1} A c)$.
- Exemplo: $c_B B^{-1} = [5 \ 0 \ 15]$
- A forma como a função objectivo aparece no quadro óptimo é:

Aplicação 1: análise de sensibilidade

- A Análise de sensibilidade, também designada por Análise pós-optimização é efectuada depois de obter a solução óptima,
- para estudar os efeitos na solução óptima de uma alteração de dados.
- Neste âmbito, dispomos do quadro inicial e do quadro óptimo (que apresenta a matriz B^{-1} e o vector $c_B B^{-1}$), o que permite construir a matriz que opera a mudança de base.
- Portanto, podemos recalcular o quadro final que resulta de uma alteração de um elemento dos vectores b ou c do quadro inicial.

Aplicação 2: implementação do algoritmo simplex

Ideia chave da implementação computacional:

- O algoritmo apenas mantém e actualiza a matriz B^{-1} ,
- porque a matriz B^{-1} e as matrizes do quadro inicial (A, b, c) são suficientes para calcular todos os elementos do quadro simplex.

Mas não é preciso calculá-los todos. Para determinar o elemento pivô,

- só é preciso calcular a linha da função objectivo (para identificar a coluna pivô), e
- a coluna do lado direito e a coluna pivô, para identificar a linha pivô.
- Não é necessário calcular mais nenhuma coluna; para actualizar a matriz B^{-1} , apenas são necessárias as colunas das variáveis básicas.

Algoritmo simplex primal na forma matricial

- /* Calcular custos reduzidos das variáveis não-básicas */ Calcular $c_B B^{-1} a_j c_j$, $\forall j$
- ② /* Testar optimalidade (prob. de maximização) */ Se $c_B B^{-1} a_j c_j \ge 0, \forall j$, a solução é óptima. Senão,
- /* Seleccionar coluna pivô k */

$$k = \operatorname*{argmin}_{j \in \mathcal{N}} \left\{ \boldsymbol{c}_{\boldsymbol{B}} \boldsymbol{B}^{-1} \boldsymbol{a}_{j} - c_{j} \right\}$$

- Calcular coluna pivô, $B^{-1}a_k$
- **5** Se todos os elementos de $B^{-1}a_k \le 0$, a solução é ilimitada. Senão,
- **©** Calcular coluna do lado direito, $B^{-1}b$, e seleccionar linha pivô p

$$p = \underset{i}{\operatorname{argmin}} \{ (\mathbf{B}^{-1}\mathbf{b})_i / (\mathbf{B}^{-1}\mathbf{a}_k)_i \}.$$

Actualizar a matriz B⁻¹, e voltar ao passo 1.

Notar que $(c_BB^{-1})_j$ é um caso particular de $c_BB^{-1}a_j-c_j$ quando se trata da variável de folga i $(a_j=e_i$ (a coluna i da matriz identidade) e $c_i=0$).

Implementação: alguns pormenores

Adicionalmente

- A matriz A é tipicamente uma matriz dispersa (esparsa). A percentagem de elementos não-zero de A pode ser 2% ou 5%.
- Há estruturas de dados para representar matrizes dispersas que permitem grandes economias de espaço.
- A multiplicação de matrizes dispersas só envolve os cálculos com os elementos diferentes de 0.
- A matriz B⁻¹ é guardada como o produto de uma matriz triangular inferior (lower) e uma matriz triangular superior (upper), i.e., uma factorização LU.
- Isso permite a sua actualização eficiente em cada pivô.

Conclusão

- A representação matricial oferece uma nova perspectiva das operações efectuadas no método simplex;
- explica o significado de componentes do quadro simplex;
- permite ver a forma de realizar operações mais complexas, como a mudança entre bases não adjacentes;
- permite conceber uma implementação do algoritmo simplex com grandes economias de cálculo, o que possibilita a resolução de problemas de muito grande dimensão.

Apêndice

Perspectiva: o algoritmo simplex como leilão

Ideias gerais

- O algoritmo simplex pode ser visto como um leilão em que as actividades competem pelos recursos disponíveis.
- Cada actividade tem um lucro associado, e necessita de recursos, pelos quais tem de pagar.
- Cada recurso tem um valor que resulta da procura pelas actividades.
- São as actividades capazes de pagar o valor de mercado dos recursos as que são realizadas (na solução óptima).
- O leilão é que determina o valor de cada recurso.

Perspectiva

- c_i é o valor (lucro) unitário da actividade j.
- $(c_B B^{-1})_i$ é o valor de uma unidade de recurso i.

Significado de $c_B B^{-1} a_j - c_j$ da actividade j

$c_B B^{-1} a_j$ é o valor dos recursos usados numa unidade da actividade j:

$$\sum_{i=1}^{m} (c_B B^{-1})_i \times a_{ij} = c_B B^{-1} a_j, \quad \forall j,$$

- a_{ij} é a quantidade de recurso i usado numa unidade da actividade j.
- c_i é o valor unitário da actividade j.

Na solução óptima de um problema de maximização,

- se $c_B B^{-1} a_j c_j = 0$, o valor da actividade iguala o valor dos recursos usados; esta actividade dá o maior valor possível aos recursos;
- se $c_B B^{-1} a_j c_j > 0$, o valor dos recursos usados é maior do que o valor da actividade; é melhor não a fazer, porque há outras que usam melhor os recursos.

o leilão

- Cada actividade compete pelos recursos disponíveis, e paga por eles.
- O leiloeiro tem o poder de decidir os preços unitários dos recursos;
- o seu objectivo é maximizar o valor total dos recursos vendidos, e o que faz é ajustá-los iterativamente.

Em cada iteração:

- O leiloeiro anuncia o preço $(c_B B^{-1})_i$ tentativo de cada recurso i.
- Face a esses preços, a actividade j tem um custo de uso de recursos $c_B B^{-1} a_j$.
- Se o seu valor c_j for maior do que o custo, a actividade é atractiva;
 a licitação mais alta é a da actividade cujo saldo é mais positivo.
- A actividade faz um lance para reservar recursos, alterando a quantidade reservada de cada recurso, e também cada preço.
- O leilão repete-se até à iteração em que nenhuma actividade licita.
- As actividades óptimas são aquelas que repartem os recursos reservados, e os conseguem pagar aos preços finais do leilão.

Perspectiva

- Um quadro simplex apresenta um conjunto de equações, das restrições e da função objectivo.
- Apesar de serem sempre as mesmas, as equações são representadas numa base diferente em cada quadro simplex.
- A análise das equações matriciais fornece uma perspectiva do significado de alguns componentes de um quadro simplex.

Lembrete

- Qualquer vector $\vec{\mathbf{v}}$ do espaço vectorial $\mathcal V$ pode ser representado como uma combinação linear (única) dos vectores da base:

$$\vec{\mathbf{v}} = \alpha_1 \vec{\mathbf{v}}_1 + \alpha_2 \vec{\mathbf{v}}_2 + \dots + \alpha_m \vec{\mathbf{v}}_m$$

• Os valores $(\alpha_1, \alpha_2, ..., \alpha_m)$ são as coordenadas do vector $\vec{\mathbf{v}}$ na base β .

Exemplo: as mesmas equações em 2 quadros simplex

	z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃			z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	1	1	2	1	0	0	40	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	2	2	1	0	1	0	150	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
s 3	0	2	1	0	0	0	1	20	<i>x</i> ₂	0	2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0	Z	1	5	0	0	5	0	15	500

Quadro inicial:

$$\begin{bmatrix} \mathbf{a}_{3} & \mathbf{e}_{2} & \mathbf{a}_{2} \end{bmatrix} * \mathbf{x}_{B} = \mathbf{b} - \mathbf{N} & * \mathbf{x}_{N} \\ \begin{bmatrix} \mathbf{a}_{3} & \mathbf{e}_{2} & \mathbf{a}_{2} \end{bmatrix} * \mathbf{x}_{B} = \mathbf{b} - \begin{bmatrix} \mathbf{a}_{1} & \mathbf{e}_{1} & \mathbf{e}_{3} \end{bmatrix} * \mathbf{x}_{N} \\ \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_{3} \\ s_{2} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_{1} \\ s_{1} \\ s_{3} \end{bmatrix}$$

Quadro final:

Exemplo 1: Os elementos do vector $\mathbf{B}^{-1}\mathbf{b}$ são

• as coordenadas do vector **b** na base $\beta = \{a_3, e_2, a_2\}$.

$$\begin{array}{rcl}
\mathbf{b} & = & \mathbf{B} & * \mathbf{B}^{-1} \mathbf{b} \\
& \mathbf{a}_3 \mathbf{e}_2 \mathbf{a}_2 \\
\begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} & = & \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 10 \\ 100 \\ 20 \end{bmatrix} \\
\begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} & = & 10 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + 100 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 20 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \\
\mathbf{b} & = & 10 \mathbf{a}_3 + & 100 \mathbf{e}_2 + & 20 \mathbf{a}_2
\end{array}$$

- As coordenadas do vector \boldsymbol{b} na base $\beta = \{\boldsymbol{a}_3, \boldsymbol{e}_2, \boldsymbol{a}_2\}$ são os valores das variáveis na solução $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} = (x_3, s_2, x_2)^{\top} = (10, 100, 20)^{\top}$.
- A equação matricial, expressa com os vectores coluna do quadro inicial, mostra como as actividades usam os recursos.

Exemplo 2: os elementos do vector $B^{-1}a_1$ são

• as coordenadas do vector a_1 na base $\beta = \{a_3, e_2, a_2\}$.

$$\mathbf{a}_{1} = \mathbf{B} * \mathbf{B}^{-1} \mathbf{a}_{1}$$

$$\mathbf{a}_{3} \mathbf{e}_{2} \mathbf{a}_{2}$$

$$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} -1/2 \\ -3/2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = -1/2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - 3/2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{a}_{1} = -1/2 \mathbf{a}_{3} - 3/2 \mathbf{e}_{2} + 2 \mathbf{a}_{2}$$

- A equação matricial, expressa com as colunas do quadro inicial, mostra como devem variar os valores das variáveis num pivô.
- Quando se aumenta a variável x_1 , associada a a_1 , de 1 unidade, os valores das variáveis básicas variam de acordo com os coeficientes.

Operações com matrizes: exemplos

Adição de matrizes:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Multiplicação de matrizes:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 5+12 \\ 15+24 \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

Multiplicação de matrizes:

$$\begin{bmatrix} 1 & 2 \end{bmatrix} * \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3+10 & 4+12 \end{bmatrix} = \begin{bmatrix} 13 & 16 \end{bmatrix}$$

Fim