HYMO: PROBLEM-ORIENTED COMPUTER LANGUAGE FOR HYDROLOGIC MODELING

Users Manual

ARS-S-9 May 1973

AGRICULTURAL RESEARCH SERVICE . U.S. DEPARTMENT OF AGRICULTURE

Onto .

Agricultural Research Service

UNITED STATES DEPARTMENT OF AGRICULTURE

In Cooperation With

Texas Agricultural Experiment Station Texas A&M University

CONTENTS

	Page
Introduction	1
Operation of HYMO	
Hydrologic procedures used in HYMO	
Hydograph computation	2
Flood routing	З
Rating curves	. 4
Sediment yields	
Rules for using HYMO	4
General rules	4
Command rules	
Example HYMO program	
Literature cited	
Appendix — HYMO main program and subroutines	54
ILLUSTRATIONS	
	_
1. Dimensionless unit hydrograph	2
2. Relationship between dimensionless shape parameter and	
recession constant/time to peak	3
3. Relationship between dimensionless shape parameter n	
and watershed parameter B	3
4. Brushy Creek watershed near Riesel, Tex	9
TABLE	
Example input for HYMO commands	

HYMO: PROBLEM-ORIENTED COMPUTER LANGUAGE FOR HYDROLOGIC MODELING

Users Manual

By Jimmy R. Williams¹ and Roy W. Hann, Jr.²

INTRODUCTION

HYMO (7)³ is a problem-oriented computer language for modeling surface runoff and sediment yield from watersheds. The language is called HYMO from the words "hydrologic model." HYMO was designed for planning flood prevention projects, forecasting floods, and research studies. It consists of a main program and 16 subroutines written in FORTRAN IV, but it can be used by hydrologists with little knowledge of computer programing. The language provides 17 commands for the hydrologist to use in any sequence for application to any watershed.

HYMO was designed to transform rainfall data into runoff hydrographs and to route these hydrographs through streams and valleys or reservoirs. It will also compute the amount of sediment produced by a storm at any point on a watershed. It will be useful to research hydrologists in studying the effects of watershed and storm characteristics on the flood hydrograph. HYMO is also a good research tool for testing

hydrologic procedures; for example, a new flood-routing method could be added to HYMO and tested easily, because the inflow hydrographs and the rating curves are available in a HYMO program.

HYMO is flexible. Present hydrologic procedures can be modified or deleted, and other hydrologic procedures can be added by hydrologists familiar with FORTRAN IV programing. Adding a new command simply requires the addition of a new subroutine.

HYMO is efficient, practical, and generally applicable. HYMO programs can be written and the results interpreted by hydrologists who have no conventional computer programing experience. The hydrologic procedures used in HYMO are practical—required inputs are easy to obtain for most watersheds.

HYMO was written for the IBM 360-65 computer, but it could be run on an IBM 1130 with little modification. The storage requirement is about 73 K.

OPERATION OF HYMO

HYMO consists of a main program and 16 subroutines. The HYMO card deck is set up in the following order:

- 1. Main program.
- 2. Subroutines.
- 3. A data card containing the number of commands in the command table.
- 4. A data card containing the ZALFA array.
- 5. Seventeen data cards containing the command table.
- 6. The users program deck consisting of program and data cards.
- A printout of the main program, subroutines, ZALFA array, and command table is given in the appendix.

^{&#}x27;Hydraulic engineer, College Station Area, Southern Region, Agricultural Research Service, U.S. Department of Agriculture, Riesel, Tex.

²Head, Environmental Engineering Division, Civil Engineering, Texas A&M University, College Station, Tex.

[&]quot;Italicized number in parentheses refer to items in "Literature Cited" preceding the appendix.

The main program reads the command table and then calls the HONDO subroutine (2) to read a program data card. Subroutine HONDO determines the command name and number by comparing columns 1 through 20 of the program data card with the command table. Then HONDO determines individual data items by comparing columns 21 through 80 of the pro-

gram data card with the ZALFA array. The data are placed in an array and returned to the main program. Based on the command number, the main program calls the proper subroutine to do the desired calculations. When the calculations are complete, control is returned to the main program, and HONDO is called again to read the next program card.

HYDROLOGIC PROCEDURES USED IN HYMO

The procedures used in HYMO were selected because of their accuracy, general applicability, practicality of inputs, and computational efficiency. For most watersheds the input is easy to obtain, and the procedures produce reasonably accurate results without excessive computer time.

Hydrograph Computation

When flood routing is performed, a watershed is divided into many small areas according to its hydraulic characteristics. The hydrographs from these areas must be estimated, since streamflow measurements are seldom available. A procedure for computing unit hydrographs was developed previously (4). A modification of this procedure is used in HYMO. Unit hydrographs are divided into three parts for computation (fig. 1). From the beginning of rise to the inflection point, t_0 , the hydrograph is computed by the two-parameter gamma distribution equation

$$q = q_p \left[\bar{t}/t_p \right]^{(n-1)} e^{(1-n)(t/t_{p-1})}$$
 (1)

Figure 1. Dimensionless unit hydrograph.

where q = flow rate in cubic feet per second at time t, q_p = peak flow rate in cubic feet per second, t_p = time to peak in hours,

and n = dimensionless parameter.

From t_0 to t_1 ($t_1 = t_0 + 2K$) the hydrograph is computed by the recession depletion equation

$$\frac{t_0 - t}{K}$$

$$q = q_0 e \tag{2}$$

where q_0 = flow rate at the inflection point, t_0 = time at the inflection point, and K = recession constant in hours.

From t_1 to ∞ the recession depletion equation becomes

$$\frac{t_1 - t}{K_1}$$

$$q = q_1 e \tag{3}$$

where $q_1 = \text{flow rate at } t_1$, and $K_1 = 3K = \text{second recession constant.}$

The dimensionless shape parameter, n, is a function of K/t_p , as shown in figure 2. The peak flow rate is computed by the equation

$$q_p = \frac{BAQ}{t_p} \tag{4}$$

where B = a watershed parameter, a function of n as shown in figure 3,

A = watershed area in square miles, and Q = volume of runoff in inches.

Therefore, the entire unit hydrograph can be computed if K and t_p are known. K and t_p can be determined by hydrograph analysis (4) for gaged watersheds. To compute K and t_p for ungaged watersheds, HYMO uses the equations

$$K = 27.0A^{0.231}SLP^{-0.777}(L/W)^{0.124}$$
 (5)

and
$$tp = 4.63A^{0.422}SLP^{-0.46}(L/W)^{0.133}$$
 (6)

where SLP = difference in elevation in feet, divided by flood-plain distance in miles, between watershed outlet and most distant point on the watershed.

and L/W = watershed length-width ratio.

Storm hydrographs are computed by convolving unit hydrographs with incremental source runoff. To compute incremental source runoff, the mass rainfall curve is broken into equal time increments, and the Soil Conservation Service (SCS) rainfall-runoff relationship (3) is applied. The SCS rainfall-runoff relationship is expressed in a set of numbered curves. The SCS National Engineering Handbook (3) provides detailed instructions for selecting the proper curve number.

Hydrographs computed by this procedure compared closely with measured hydrographs from 34 watersheds located in Texas, Oklahoma, Arkansas, Louisiana, Mississippi, and Tennessee. The watershed areas ranged from 0.5 to 25 square miles.

Flood Routing

Streams and valleys

The variable storage coefficient (VSC) flood-routing method (5) was selected for HYMO.

Figure 2. Relationship between dimensionless shape parameter and recession constant/time to peak.

Figure 3. Relationship between dimensionless shape parameter n and watershed parameter B.

The VSC method has been revised (6) to account for the variation in water surface slope during a flood. The revised VSC method is about as accurate as the implicit method (1) and has the general applicability of simpler storage methods. Although an iterative solution is used, the VSC method requires little computer time and is free of convergence problems.

The VSC routing equations are

$$O_2 = C_2 \left[I_a + \left(\frac{1}{C_1} - 1 \right) O_{\underline{1}} \right].$$
 (7)

$$C_2 = \frac{2\Delta t}{2T_0 + \Delta t}. (8)$$

$$C_1 = \frac{2\Delta t}{2T_1 + \Delta t} \,. \tag{9}$$

$$T_{1} = \left(\frac{L}{1800(V_{I_{1}} + V_{O_{1}})}\right)$$

$$\times \left(\frac{L \times SLP_{0}}{L \times SLP_{0} + DI_{1} \cdot DO_{1}}\right)^{\frac{1}{2}}$$
(10)

$$T_{2} = \left(\frac{L}{1800 (V_{I_{2}} + V_{O_{2}})}\right) \times \left(\frac{L \times SLP_{0}}{L \times SLP_{0} + D_{I_{2}} - D_{O_{2}}}\right)^{\frac{1}{2}}$$
(11)

In these equations subscripts 1 and 2 refer to the beginning and end of the time interval $\triangle t$; the units are cubic feet per second for flow, hours for time, feet per second for velocity, and feet for length and depth. The symbols are defined as follows:

$$I = \text{inflow rate.}$$

$$O = \text{outflow rate.}$$

$$I_a = \frac{I_1 + I_2}{2} = \text{average inflow rate.}$$

$$C = \text{storage coefficient.}$$

$$T = \text{travel time through the reach.}$$

$$L = \text{reach length.}$$

$$V = \text{velocity.}$$

$$SLP_0 = \text{normal slope.}$$

$$D = \text{depth.}$$

Since T_2 and C_2 are dependent upon O_2 , an iterative technique is required to solve the routing equations. In equation 7, I_a and O_1 are known, and C_1 can be computed from equation 9. This leaves only O_2 and C_2 as unknowns. O_1 can be used as a first approximation of O_2 . The normal depth and velocity for the approximate value of O_2 are entered into equation 11 for computing T_2 . Then equation 8 is used to compute C_2 . The second approximation of O_2 is then obtained from equation 7. This iterative process continues until the difference between successive O2 values is acceptable. HYMO is set to accept differences of 0.1 percent or less. Usually about four iterations are required.

Reservoirs

HYMO uses the storage-indication method (3) to route floods through reservoirs. This method has been widely used and accepted because it is practical and accurate. The SCS National Engineering Handbook gives detailed instructions for using the method.

Rating Curves

Rating curves must be available at enough locations along a valley to adequately describe the hydraulics of the stream and valley. Most of these rating curves must be computed because there are never enough measured rating curves.

HYMO uses Manning's equation to compute the normal flow-rating curves that are used in the VSC flood-routing method. The normal flood-plain slope is determined for each valley section by plotting a profile of the flood plain. The normal channel slope is determined by plotting a profile of the flood plain with channel distances.

Sediment Yields

The universal soil loss equation (8) was modified to compute the sediment yield for individual storms on watersheds. The modified equation is

$$S = 95 (q_p \times Q)^{0.56} \times K \times C \times P \times LS, \qquad (12)$$

where |S| = sediment yield in tons, q_D = peak flow rate in cubic feet per second, Q = volume of runoff in acre-feet, K = the soil-erodibility factor, C = the cropping-management factor. P = the erosion control practice factor, LS^{\dagger} = the slope length and gradient factor.

Detailed instructions for determining K, C, P. and LS are given by Wischmeier and Smith (8).

Since equation 12 was designed to compute sediment yield from watersheds, a delivery ratio is not needed. The delivery ratio is built into equation 12 by including the peak flow rate. Many of the watershed characteristics that influence the peak flow rate also affect the delivery ratio. Equation 12 has performed well under limited testing, but future refinements are expected.

RULES FOR USING HYMO

and

The reader should refer to the table, "Example Input for HYMO Commands," as he follows the narrative description of the rules, The example HYMO program that is presented near the end of the manual may also be helpful.

General Rules

HYMO commands are expressed in the first 20 columns of the data card, and columns 21

through 79 are used for numeric data and keywords. Column 80 is reserved for a pagechange code (an asterisk in column 80 causes the card to be printed on a new page). Continuation cards are allowed when 59 characters are insufficient to express the data.

The data can be written in any format, but at least one blank space must be left between data items. A decimal is required for numbers containing fractions, but not for whole numbers. Keywords can be written with the data to describe individual data items. Comment cards may be used at any point in a HYMO program by punching an asterisk in column 1 and the comment in columns 2 through 79.

Example input for HYMO commands

Command	Required input
START	RAINFALL BEGINS AT 12.5 HRS PUNCH CODE=1
STORE HYD	ID=1 HYD NO=301 DT=.2 HR DA=1.5 SQ MI FLOW RATES= 0 10 50 100 500 1000 1800 2000 1900 1500 1200 1000 800 600 500 400 300 200 100 50 10 1
COMPUTE HYD	ID=2 HYD NO=302 DT=.5 HR DA=2.1 SQ MI CN=90 HT=100 FT L=3.3 MI MASS RAINFALL = 0 .31 .61 1.04 1.84 2.74 3.06 3.45 4.33 4.75
PRINT HYD	ID=2 CODE=1
PUNCH HYD	ID=2
PLOT HYD	ID I=3 ID II=4
ADD HYD	ID=4 HYD NO=101 ID I=5 ID II=6
STORE RATING CURVE	ID=2 VS NO=15 ELEV AREA FLOW 496.6 0 0 497 2 1 498 9 19 499 19 52 500 30 98
COMPUTE RATING CURVE	ID=1 VS NO=10 NO SEGS=3 MIN ELEV=482 FT MAX ELE V=492 FT CH SLP=.006 FP SLP=.0075 N=.05 DIST=175 FT N=.08 DIST=205 FT N=.05 DIST=450 FT DIST ELEV
COMPUTE TRAVEL TIME	ID=3 REACH NO=8 NO VS=5 L=4500 FT SLP=.0075
ROUTE	ID=3 HYD NO=8 INFLOW ID=6 DT=.25 HR
ROUTE RESERVOIR	ID=5 HYD NO=501 INFLOW ID=1 OUTFLOW (CFS) STORAGE (AC FT) 0 0 22 533 200 555 1000 601 2000 648 3000 694
ERROR ANALYSIS	ID I=3 ID II=5
SEDIMENT YIELD	ID=5 SOIL=.34 CROP=.5 EP=.6 LS=.8
FINISH	

Six hydrographs can be stored in a HYMO program at a time. The hydrographs are identified by storage location numbers 1 through 6. Therefore, the same storage location number must be used for many hydrographs in a HYMO program. This is especially true when routing is done through large watersheds. However, no more than six hydrographs are ever needed at one time because HYMO programs begin at the head of a watershed and work downstream through one reach at a time. When a storage location number is used to store or compute another hydrograph, the first hydrograph is lost. The user should be sure that the hydrograph will not be referred to again before using the storage location number for another command.

To store, compute, or route a hydrograph, the user must specify the time increment. There are no rigid rules about selecting the time increment, but generally it should not be greater than one-fifth of the time to the peak of the hydrograph. This rule usually provides enough points to adequately define the hydrograph. All hydrographs are limited to 300 points.

For the commands "STORE HYD," "COM-PUTE HYD," "ADD HYD," "ROUTE," and "ROUTE RESERVOIR," the user must specify the number of the outflow hydrograph. The hydrograph identification numbers are used to designate specific routing reaches, incremental areas, reservoirs, and partial hydrographs. The partial hydrograph number is given to all hydrographs other than outflow hydrographs from reaches, incremental areas, or reservoirs. The identification numbers for each group are

Reaches						1-100
Partial hydrographs						101-300
Incremental areas .						301-500
Reservoirs						501+

Command Rules

The first command for any watershed is START. The two data items associated with this command are the time rainfall begins on the watershed and a code for punching output data. If a storm is to be routed through a watershed only once, the punch code is deleted. However, if more than one routing is to be performed, set the punch code equal to a positive number, and the output data for the first routing will be

punched for use in the second routing. More than one routing is usually required.

Two commands, RECALL HYD and STORE TRAVEL TIME, were designed to be computer punched for second routings; consequently, these commands do not appear in the table.

The STORE HYD command is used to store the coordinates of a hydrograph in the computer. It can be used for storing measured hydrographs or hydrographs computed by methods other than the one used in HYMO. The input data required for STORE HYD are storage location number, hydrograph identification number, time increment, watershed area, and flow rates of the hydrograph at the specified time increment.

The COMPUTE HYD command is used to compute hydrographs from the incremental areas of the watershed. The first five items of data are storage location number, hydrograph identification number, time increment, watershed area, and SCS runoff curve number (3). Normally, data items 6 and 7 are watershed height and main stem length. The height and length are used to compute the recession constant K and the time to peak t_0 . However, if Kand to are known or estimated by some other method, they can be entered directly into the program. This is accomplished by placing a minus sign before the values of K and t_0 and entering them as data items 6 and 7, respectively. The remaining data items are values of the mass rainfall at the specified time increment.

Since most watersheds have a limited number of rain gages, the same mass rainfall data may be used to develop several hydrographs. Once the mass rainfall data have been entered in a COMPUTE HYD command, they can be repeated for any number of COMPUTE HYD commands without repunching the data. Instead, punch a negative number for the eighth data item of all COMPUTE HYD commands that use the same rain gage. When data from another rain gage are entered, the data from the first rain gage are lost and cannot be recalled by using the negative number code.

The RECALL HYD command is one of the two commands that are computer punched. When the punch code is a positive number, the output from STORE HYD and COMPUTE HYD are punched on cards with the RECALL HYD command. The RECALL HYD command stores

the computed and stored hydrographs on cards; it is therefore not necessary to recompute hydrographs for future routings. Instead, the previously computed hydrographs are read into the program, thus saving considerable computer time.

Although the input data for the RECALL HYD command are never punched manually, a list of the data items may be helpful in checking computer-punched cards. The input data are storage location number, hydrograph identification number, time increment, drainage area, peak flow rate, runoff volume, number of hydrograph points, and flow rates of the hydrograph.

The PRINT HYD command is used to print coordinates of a hydrograph, volume of runoff, and peak flow rate. The required input data are the storage location number and a peak-volume code. The peak-volume code is deleted if a complete hydrograph printout is desired. If a printout of only the runoff volume and the peak flow rate is needed, the peak-volume code is set to a positive value.

The PUNCH HYD command is used to punch any hydrograph in a HYMO program in the proper form for the RECALL HYD command. PUNCH HYD has two purposes: (1) If the punch code is not used, PUNCH HYD can be used to punch one or more hydrographs for future use; and (2) if it is desirable to punch outflow hydrographs associated with ROUTE, ROUTE RESERVOIR, or ADD HYD, PUNCH HYD must be used because the punch code only provides for punching hydrographs associated with STORE HYD and COMPUTE HYD. The only datum required for PUNCH HYD is the storage location number of the hydrograph to be punched.

The PLOT HYD command is used to plot hydrographs in a HYMO program. It will plot one hydrograph on a set of axes, or if a comparison is desired, it will plot two hydrographs on the same set of axes. The required input data are the storage location numbers of the hydrographs to be plotted.

The ADD HYD command adds the coordinates of any two hydrographs. The hydrographs are added at a time increment equal to that of the hydrograph with the shorter time increment. The only data required are the storage location number and hydrograph identification number

of the added hydrograph and the storage location numbers of the two hydrographs to be added.

The STORE RATING CURVE command is used to store rating curves that have been measured or computed previously. STORE RATING CURVE will save considerable computer time if measured or computed rating curves are available. The input data are the storage location number, valley section number, and individual rating curve points described by elevation, end-area, and flow rate. The number of points used to describe a rating curve is limited to 20.

The COMPUTE RATING CURVE command is used to compute the stage-area-flow relationship for a valley section. The input data are storage location number, valley section number, number of segments in the valley section, minimum elevation, maximum elevation, channel and flood-plain slopes, Manning's n value and segment boundary point for each segment, and horizontal and vertical position of points describing the valley section.

The storage location numbers of the valley sections in a particular reach must begin with 1 and increase by one for each valley section in the reach. However, the numbers are assigned without regard to upstream or downstream order. The valley section identification number can be any number from 0.1 to 999.9. These rules concerning storage location and valley section identification numbers also apply to the STORE RATING CURVE command.

Normally, valley sections are divided into three segments (two flood-plain segments and a channel segment) for computing the rating curve. However, some valley sections may have more than one channel or may have an extreme variation in n values across the flood plain, thus requiring more than three segments. A maximum of six segments is permitted. Manning's n values for each segment are input with segment boundary point (distance from the beginning of the valley section to the end of the segment). Flood-plain n values are positive and channel n values are negative.

Twenty points are used to define a rating curve. The location of the points is determined by dividing the difference between the maximum and minimum elevations into 19 equal increments.

The COMPUTE TRAVEL TIME command is used to compute the normal flow travel time relationship used in ROUTE. The input data are storage location number, reach identification number, number of valley sections in the reach, reach length, and slope. The reach identification number can be any number from 0.1 to 999.9. The maximum number of valley sections per reach is six. The slope can be either the channel or flood-plain slope or a weighted average of the two. If flow is confined to the channel, the channel slope is of course applicable. If most of the flow is in the flood plain, usually the flood-plain slope is used. However, a weighted slope based on the relative rates of flow in the channel and the flood plain may be used.

The COMPUTE TRAVEL TIME command considers each rating curve in the reach in computing the travel time flow relationship. COMPUTE TRAVEL TIME automatically selects the flow rates that are used in computing individual travel times. The flow rates of the rating curve with the lowest maximum flow rate are chosen. If the flow rates of any other rating curve in the reach were chosen, the rating curve with the lowest maximum flow rate would have to be extrapolated. The travel time table is limited to 19 points because of the 20-point limit for rating curves.

The STORE TRAVEL TIME command is one of the two computer-punched commands. When the punch code is a positive number, the output from COMPUTE TRAVEL TIME is punched on cards with the STORE TRAVEL TIME command. Therefore, it is not necessary to recompute rating curves or travel time for future routings. Instead, STORE TRAVEL TIME reads the previously computed travel time flow relationship into the program, thus saving considerable computer time.

The input data for STORE TRAVEL TIME are not punched manually, but a list of data items may be helpful in checking computer-punched cards. The input data are storage location number, reach identification number,

reach length, slope, and individual points of the relationship defined by depth, flow, and travel time.

The ROUTE command is used to route floods through streams and valleys. The input data are storage location number and hydrograph identification number of the outflow hydrograph, storage location number of the inflow hydrograph, and time increment. The storage location number of the outflow hydrograph must be the same as the storage location number used in COMPUTE TRAVEL TIME for the reach. To prevent unnecessary program stoppage, ROUTE extrapolates the travel-time table when it is exceeded and writes the message, "TRAVEL TIME TABLE EXCEEDED."

The ROUTE RESERVOIR command is used to route floods through reservoirs. The input data are storage location number and hydrograph identification number of the outflow hydrograph, storage location number of the inflow hydrograph, and individual points of the reservoir's outflow-storage relationship. The outflow-storage relationship must be expressed in 20 points or less. If the outflow-storage relationship is exceeded, ROUTE RESERVOIR will extrapolate the relationship and write the message, "STORAGE-DISCHARGE TABLE EXCEEDED."

The ERROR ANALYSIS command is used to determine the error standard deviation and the percentage error in peak flow between any two hydrographs in a HYMO program. These functions make ERROR ANALYSIS useful in research. The input data are the storage location numbers of the two hydrographs to be analyzed.

The SEDIMENT YIELD command is used to compute the sediment yield at any point in a watershed. Input data required are storage location number of the hydrograph from the area, a soils factor, a crop factor, a slope length and gradient factor, and a conservation practice factor (8).

The FINISH command is used to end HYMO programs. There are no data associated with FINISH.

EXAMPLE HYMO PROGRAM

A short example problem is presented to demonstrate HYMO. Figure 4 is a map of the 6.84-square-mile Brushy Creek watershed near

Riesel, Tex. A flood will be routed through the watershed in its present condition, and the routed outflow hydrograph will be compared to

the hydrograph measured at gaging station G. Also the sediment yield will be predicted and compared with the measured sediment yield. Then the same flood will be routed through the watershed with two proposed reservoirs. To determine the effects of the reservoirs, the outflow hydrograph and sediment yield will be compared to the outflow hydrograph and sediment yield of the present-condition routing.

Comment cards and keywords are used liberally in the example problem to acquaint the user with HYMO. After becoming familiar with HYMO, the user may write fewer comments and keywords, but generally users find them both quite helpful in describing the problem. To save space in the example problem, few of the hydrographs are printed or plotted. Some users may choose to print and plot all hydrographs.

Figure 4. Brushy Creek watershed near Riesel, Tex.

EXAMPLE HYMO PROGRAM

* TO PRINT ON A NEW PAGE AN ASTERISK IS PUNCHED IN COLUMN 60.

* COMMENTS ARE WRITTEN AT ANY POINT IN A HYMO PROGRAM BY PUNCHING AN

* ASTERISK IN COLUMN 1 AND THE COMMENT IN COLUMNS 2 - 79.

* THE FLOOD OF MARCH 29, 1965 WILL BE ROUTED THROUGH THE BRUSHY CREEK WATERSHED

* THE FLOOD OF MARCH 29, 1965 WILL BE FOUNTED THROUGH THE BRUSHY CREEK WATERSHED

* THE START COMMAND IS USED AT THE BEGINNING OF ALL HYMO PROGRAMS TO SET THE

* TIME RAINFALL BEGINS ON THE WATERSHED, AND TO INDICATE THE PUNCH CODE. THE

* PUNCH CODE IS USED TO PUNCH HAE OUTPUT FOR USE IN FUTURE ROUTINGS. IF ONLY

* GNE ROUTING IS PLANNED, THE PUNCH CODE IS DELETED.

RAINFALL BEGINS AT 12.5 HRS PUNCH CODE=1

* BEGINNING AT THE TOP OF THE WATERSHED THE FIRST STEP IS TO DETERMINE THE HYDROGRAPH FROM ARKA 301, IT IS NOT NECESSARY TO COMPUTE THE HYDROGRAPH, * BECAUSE IT WAS MEASURED PREVIOUSLY* THE STORE HYD COMMAND IS USED TO STORE * THE MEASURED HYDROGRAPH IN THE PROGRAM.

301
AREA
FROM
HYDROGRAPH

				ALTE CHOIC SALE	100		
TIME	FLOH	TIME	FLOW	TIME	FLOW	TIME	Ü.
HRS	CFS	HRS	CFS	HRS	CFS	HRS	Ü
12.500	0	16.000	1150.	19,500	140.	23.000	67
12,667	•	16.167	1000.	19.666	130.	23,166	i in
12,833	ċ	16,333	860.	19, 833	120.	23,333	Ň
13.000	•	16,500	.069	20,000	110.	23.500	· ^
13.167		16.667	560.	20.166	110.	23,666	2
13,333	ċ	16.833	460.	20,333	110.	23,833	1 71
13,500	20-	17.000	400	20.500	110.	23,999	10
13.667	-06	17,167	370.	20.666	110.	24.166	
13.833	220.	17,333	365.	20.833	100	24.333	۰ -
14.000	1025.	17.500	380.	21,000	100	24.499	۱
14.167	1420.	17,667	400*	21.166	•06	24.666	ښم ا
14,333	1380.	17,833	415.	21,333	80.	24, 833	,,,,
14.500	2085.	18.000	395.	21.500	70.	24,999	-
14.667	22 60.	18.167	370.	21,666	65.	25,166	-
14,833	2360.	18,333	330.	21,833	•09	25,333	
15.000	2110.	18,500	300.	22.000	, 20°	25.499	_
15.167	1885.	18.666	270.	22.166	47.	25.666	-
15,333	1890.	18,833	235.	22,333	44.	25.833	-
15.500	1760.	19.000	200	22,500	41.	25,999	
15,667	1560.	19-166	175.	22.666	38.	26.166	
15.833	1350.	19,333	160.	22,833	35.	26,333	

TIME

HRS

26.666

26.666

27.369

27.499

27.499

27.499

27.499

27.499

27.866

27.866

27.866

27.866

27.866

27.866

27.899

27.999

28.333

29.466

4.933 INCHES = 2360.0 CFS II RUNDFF VCLUME ≖ PEAK DISCHARGE RATE

* COMPUTE RATING CURVES FOR VALLEY SECTIONS 7 AND 6.

* COMPUTE RATING CURVES FOR VALLEY SECTIONS 7 AND 6.

* COMPUTE RATING CURVES FOR VALLEY SECTIONS 7 AND 6.

* COMPUTE RATING CURVES FOR VALLEY SECTIONS 7 AND 6.

** COMPUTE RATING CURVES FOR VALLEY SECTION NO COMPUTE RATING CURVES FOR VALLEY SECTION NO COMPUTE RELEVANCE FOR SECTION OF SECTION SECTION OF SECTION SECTION OF SECTION SECTION OF SECTION OF

* BEFORE ROUTING THE TRAVEL TIME - DEPTH - FLOW RELATIONSHIP HUST BE COMPUTED * * FOR THE REACH. *

COMPUTE TRAVEL TIME ID=2 REACH 2 2 VALLEY SECTIONS REACH LENGTH=3400 FT SLOPE=.0029 TRAVEL TIME TABLE REACH 2.0

•	H	RS	.831	9965	.498	.472	•389	.338	-345	.363	.359	.358	.359	.362	.352	.341	.335	+332	-307	-286	• 266
0	RATE	CFS	2.	•9	16.	38	9	53	ĽΩ	Ξ	5	10	990	5		672	670	85	225	793	13
ATE	α.	EET	'n,	0.68	0	'n	7	۲.	Ŋ	9	٩	4	۲.	7	10	80	2	Ġ	٠,	7	Q.

EA 301 THROUGH RE	TIME INTERVAL=.2 HR
HYDROGRAPH FROM AR	INFLOW HYD ID=1 T
IS USED TO ROUTE THE	ID=2 HYD NO=101 ID=2
* THE ROUTE COMMAND IS USED TO ROUTE THE HYDROGRAPH FROM AREA 301 THROUGH REACH* * 2.	ROUTE PRINT HYD

		TIME HRS 58,500 28,700 29,900 29,300 29,300 30,400 30,400 30,400 30,500 30,500 30,500 31,500 31,500 31,500
		T.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
		TIME HAS 24,500 24,500 24,700 25,300 25,300 25,300 26,300 26,300 26,300 26,300 26,300 26,300 26,300 27,100 27,100 27,700 27,500 27,700 27,500 27,700 27,500 27,700 27,500
TIME INTERVAL=.2 HR		ACE STATE OF
	OGRAPH 101	TIME HRS 20.500 20.500 20.500 21.100 21.500 21.500 21.500 22.900 22.900 23.900 23.900 23.900 23.900 23.900 23.900 23.900
INFLOW HYD ID=1	PARTIAL HYDROGRAPH	FLOW CFS 1031- 1031- 1031- 852- 696- 442- 442- 442- 442- 415- 415- 225- 225- 225- 163- 1128- 119-
HYD NO=101	ď	TIME HRS 16-500 16-700 17-100 17-300 17-500 17-500 17-500 18-300 18-300 18-300 18-300 19-500 19-500 19-500 19-500 19-500 19-500
ID=2 ID=2		HRS CFS 12.2500 0. 12.2700 0. 12.2700 0. 13.300 0. 13.500 0. 13.500 2. 13.500 1. 14.300 1. 15.10
ROUTE PRINT HYD		TIME HRS 12.500 12.500 12.900 13.900 13.500 13.500 14.500 14.500 15.900 15.900 15.900 15.900 15.900 15.900

TIME

HRS

28.1696

28.1696

28.1696

28.833

28.833

28.8439

29.949

30.336

30.9499

30.336

31.666

31.666

32.966

33.2666

33.2666

33.2666

33.2666

33.2666

33.2666

33.2666

33.26666

33.26666

33.2666666 ID=1 HYD ND=302 DT=.1666667 HR DA=.837 SQ MI CN=82 HEIGHT=69 FT LENGTH=1.33 MI REMAINING DATA DEFINE MASS RAINFALL FROM START TIME TO END IN INCREMENTS DF DT 0 0 .18 .46 .57 .65 .89 1.45 2.05 2.7 3.15 3.5 4 4.49 4.72 4.78 4.92 5 5.06 5.06 5.06 5.06 5.06 5.06 5.11 5.2 5.3 5.31 5.31 5.32 5.34 5.43 5.59 5.84 5.84 5.85 5.85 5.86 5.86 5.87 5.87 5.88 5.88 5.88 5.92 6.09 6.11 6.13 6.15 6.15 6.16 6.16 6.17 6.18 6.18 N = 2.208 227.0CFS BE COMPUTED* MUST HYDROGRAPH FROM AREA 302 FROM AREA 302 HYD 2 THE 4.124 INCHES 572.0 CFS TO OBTAIN THE OUTFLOW HYD FROM REACH AND ADDED TO THE ROUTED HYD 101. IĮ RUNDFF VOLUME = PEAK DISCHARGE RATE 10=1 SHAPE CONSTANT, UNIT PEAK = COMPUTE HYD TIME HRS 12.667 12.667 13.000 13.000 13.333 14.100 14.100 14.100 15.000 15.000 15.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 17.100 17.100 Π¥Ω PRINT

		_																																	
		TIME	#KS	33,166	33,332	33,499	33,666	33,832	33,999	34-166	34,332	34,499	34.666	34.832	34.999	35,165	35,332	35.499	35,665	35,832	35.999	36.165	36.332	36,499	36.665	36.832	36,999	37.165	37,332	37.499	37.665	37.832		٠	
		FLOW	CFS	17.	16.	15.	15.	14.	13.	13.	12.	12.	11.	10.	10.	o	6	80	<u>.</u>	••	•	S	;	,	4.	m •	en.	.2.	2.	2-	. 2.	2.	2.	1.	
*		HI L	SEE	27,999	28,166	28,333	28.499	28.666	28.833	28.999	29.166	29.333	29.499	29-566	29,832	56.65	30.166	30,332	30.499	30-656	30.832	30,999	31.166	31.332	31.499	31-666	31,832	31,999	32-166	32,332	32,499	32.666	32,832	32.999	
RE 1 AND 2	7 H	FLOW	CFS	95.	89.	83.	78.	73.	-89	64.	-09	56.	53.	50.	47.	45.	42.	40.	38.	36.	34	32.	30.	29.	28.	.92	25.	24.	23	22.	21.	20.	19.	18.	
TO BE ADDED ARE	HYDROGRAPH REACH	1136	#S#	22,833	23.000	23,166	23,333	23.500	23.666	23,833	53.999	24.166	24,333	54.499	24.666	24.833	54.999	25.166	25,333	25-499	25.666	25.833	25.999	26.166	26.333	26.499	26.666	26.833	26.999	27.166	27.333	27.499	27.666	27,833	
IDS OF HYDS	OUTFLOW HY	FLOW	CFS	618.	628	630	618.	593.	560.	522.	419.	434-	390.	350*	314.	282-	259.	253.	249.	246	243	237.	229.	218.	205	192.	177.	163.	151.	140.	129.	119.	110.	102.	
HYD NG=2		TIME	HRS	17.667	17,833	18,000	18.167	18,333	18.500	18.666	18.833	19.000	19.166	19,333	19.500	19.666	19.833	20.000	20.166	20,333	20.500	20.666	20.833	2.1-000	21.166	21,333	21.500	21.666	21.833	22.000	22.166	22,333	22,500	22-666	
10=3 10=3		FLOW	CFS	ô	ċ	0	•	٦.	m	11.	57.	206.	507.	884.	1260.	1662.	2095.	2398.	2541.	2561.	2504.	2421.	2281.	2099.	1900.	1700.	1510.	1331.	1164.	1012.	878.	769.	686.	634-	
ADD HYD PRINT HYD		TIME	ĦS	12.500	12.667	12.833	13,000	13.167	13.333	13.500	13.667	13.833	14.000	14.167	14.333	14.500	14-667	14.833	15.000	15.167	15.333	15.500	15.667	15.833	16.000	16.167	16.333	16.500	16.667	16.833	17-000	17,167	17.333	17.500	

RUNDFF VCLUME = 4.674 INCHES PEAK DISCHARGE RATE = 2560.5 CFS

PLOT HYD	DUTFL	-LOW HYD R	ON HYD REACH THO ID	ID = 3							
	8										
	Ö	, 0									
• •		0									
		0									
, 	•										
		.									
	0	o									
		0		,							i 1 1
,	0	0									
		o									
			0								
	o		0								
• •			, G								
				0							
	0			, o o o							
	0				00000000						
	0				8	000000	000000		0000000000		9
0000000_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		17 600	775 05	600		220-	20000000000	0000000000000	******	2 40

* THIS COMPLETES THE ROUTING THROUGH THE FIRST REACH. FOR THE REMAINDER OF THE * ROUTING, COMMENTS AND KEYWORDS WILL BE BRIEFER.

* VALLEY SECTIONS 5 6 AND 7 ARE USED TO ROUTE THROUGH REACH 3. THE RATING CURVE * HAS BEEN COMPUTED FOR VS. 7 AND IS STORED IN IO 2. ID NUMBERS 1 AND 3 MUST BE * USED FOR VS.—5 AND VS.—6.

* COMPUTE RATING CURVE ID=1 VS 6 3 SEG MIN ELEV=502.1 FT MAX ELEV=511 FT CH SLP=.0018 FP SLP=.00245

N=.05 DIST=680 N=.05 DIST=680 N=.05 DIST=685

DIST ELEV DIST ELEV

3 VS LENGTH=3330 FT SLP=,00245 REACH 3 COMPUTE TRAVEL TIME ID=1

TRAVEL TIME TABLE REACH 3.0

MATER FLOW TRAVEL DEPTH RATE TIME FEET CFS HRS 0.45 23 0.5484 1.45 23. 0.4135 1.45 23. 0.4135 2.37 63. 0.2674 3.22 122. 0.2447 3.22 122. 0.2447 3.58 10.0 0.257 3.99 215. 0.257 4.32 287. 0.257 6.91 592. 0.3160 5.57 887. 0.3265 6.45 1724. 0.3371 6.91 2557. 0.3349 7.40 3561. 0.3286 8.31 6826. 0.3288

* IT MAY NOT BE NECESSARY TO PRINT THE CCORDINATES OF ALL HYDS. FOR THE * REMAINDER OF THE EXAMPLE, DNLY REACH OUTFLOW HYDS WILL BE PRINTED. TO PRINT * CNLY THE RUNDFF VOLUME AND PEAK RATE, A CODE IS USED WITH PRINT HYD. ID=1 HYD NO=102

ROUTE

10=1 C00E=1

PRINT HYD

PARTIAL HYDROGRAPH 102

RUNDFF VOLUME = 4.672 INCHES PEAK DISCHARGE RATE = 2366.2 CFS

* COMPUTE THE HYD FROM AREA 303.

COMPUTE HYD

PUTE HYD 10=2 HYD NO 303 DT=.1666667 HR DA=1.108 SQ MI CN=82 HT=80 FT L=1.7 MI CODE=-1 (SIGNAL TO USE SAME MASS RAINFALL AS USED IN PREVIOUS HYD?

SHAPE CONSTANT, N = 2.248
UNIT PEAK = 253.1CFS

ID=2 CODE=1 PRINT HYD

HYDROGRAPH FROM AREA 303

RUNDFF VCLUME = 4.131 INCHES PEAK DISCHARGE RATE = 673.5 CFS

TO OBTAIN THE DUTFLCW FROM REACH 3, ADD HYD FROM AREA 303 TO ROUTED HYD 102.*

			FLOW	CFS	2.	2.	2		ř	i.		1.	i	1	4		•	ċ	c .	င်	0	0	ċ.	ċ	o ·	o.	6	င်	o ·	0	ċ	ċ	0	•	ċ	ċ	c	ċ		
			TIME	HRS	35.832	35.999	36.165	36.332	36.499	36.665	36.832	36,999	37.165	37.332	37,499	37.665	37.832	37,999	38-165	38.332	38.499	38.665	38.832	38,999	39.165	39,332	39.499	39.665	39.832	39,999	40.165	40.332	40.498	40.665	40.832	40,998	41.165	41.332		
			FLOW	CFS	24.	23.	22.	50 •	19.	18.	17.	16.	16.	15.	14.	13.	13.	12.	11.	11.	10.	10.	ċ	٠,	* 6	•	•	หก้	.	*	m	2.	?	5	.5	2.	
102.*			TIME	HRS	59.999	30.166	30,332	30.499	30.666	30.832	30,999	31-166	31.332	31.499	31.666	31.832	31,999	32.166	32,332	32.499	32.666	32,832	32.999	33.166	33.332	33,499	33.666	33.832	33.999	34.166	34.332	34.499	34-566	34.832	34.999	35.165	35.332	35.499	35.665	
ROUTED HYD		н э	FLOW	CFS	112.	105.	100.	* 76	•06	86.	82.	78.	74.	71.	•19	64.	62.	59.	57.	92.	53.	50.	48.	46.	+ 4•	45.	+ 0+	39.	37.	36.	34.	33*	32.	31.	30	28*	27.	26.	25.	
FROM AREA 303 TO ROUTED HYD 102.*	E 1 AND 2	JUTFLOW HYDROGRAPH REACH	TIME	HRS	24.166	24,333	54-499	24.666	24.833	54* 999	25,166	25,333	25.499	25.666	25,833	25.999	26,166	26.333	26.499	26.666	26.833	26.999	27,166	27.333	27.499	27.666	27-833	27,999	28-166	28.333	28.499	28.666	28.833	28.999	29.166	29,333	29,499	59*666	29.832	
	IDS ADDED ARE	OUTFLOW HY	FLOW	CFS	918.	883.	839.	789.	736.	680.	626.	574.	526.	485.	464	449	438.	429.	419.	406.	391.	374.	355	335.	315.	294.	273.	253.	235.	217.	200.	186.	173.	161.	151.	142.	133.	126.	118.	
FLOW FROM REACH 3, ADD HYD	HYD NO=3		TIME	HRS	18,333	18.500	18,666	18,833	19.000	19,166	19,333	19,500	19-666	19,833	20,000	20,166	20,333	20.500	20.666	20, 833	21.000	21,166	21,333	21.500	21-666	21,833	22.000	22.166	22-333	22,500	22,666	22, 833	23,000	23, 166	23, 333	23,500	23.666	23,833	23,999	
THE OUTFLOW F	10=3 10=3		FLOW	CFS	Ö	ó	ő	o	1	'n	10.	60.77	172	398	692*	1028.	1432	1877.	2288	2615.	2848.	2984-	3027.	2977.	2864.	2704.	2515.	2315.	2119.	1927.	1738.	1553	1380.	1226-	1104.	1028-	994	970-	947	
* TO OBTAIN THE OUT *	ADC HYD PRINT HYD		TIME	£	12,500	12.667	12,833	13,000	13,167	13,333	13,500	13.667	13,833	14,000	14-167	14,333	14.500	14-667	14.833	15,000	15,167	15,333	15,500	15.667	15.833	16,000	16.167	16,333	16.500	16.667	16.833	17.000	17.167	17, 333	17,500	17.667	17,833	18,000	18.167	

ROUTE	RDUTE THROUGH REACH 4.	EACH	,						
MPUTE	MPUTE RATING CURVE	۸ د	ID=1	V S=4		3 SEG MI	VELEV	491.8	
		ž	AX EL	MAX ELEV≂501	14	뭀	P=.0018 FP SL	FP St.P=.00	č
		ž	N=+05	DIST=1046	9+	N=03 D	.03 DIST=1068		5
		۵	IST	ELEV	DIST	ELEV	0151	Щ	
			0	501.0	200	500.3	250	500-3	
		4		499, 1	200	500.8		498.9	_
		7		499.5	800	499.6	850	499.0	•
		6	056	497.6	1000	497.1	1031	4.764	=
		7		494.5	1056	494.2	1061	491.9	-
		10		465.7	1072	497.4	1082	501.0	

	10M	RATE	Ę.	_	1.7		ď	ř	4	2	69	55.	-22	95.	93	53.	13.	195.	598.	078.	122.	4498.2	
VALLEY	2	AREA	ir G	0.0	1.6	4.1	7.3	11.2	16-0	ě	2	41.2		ċ	m	15.	8	96	80	12.	.64	1350.0	100
		SURFACE	ELEV	91.8	92.2	2.7	93.2	5.7	2	4.7	95.1	٩	96-1	96.6	7.1	97.6	98.0	98.5	0.66	99.5	00.0	500.51	6

3 VS L=3415 SLP=.003 CCMPUTE TRAVEL TIME ID=1 REACH 4

TRAVEL TIME TABLE REACH 4.0

TRAVEL TIME HRS 0.8177 0.01610 0.2189 0.3188 0.2883 0.

15. 45. 62. 62. 104. 1155. 223. 305. 403. 554. 403. 11196. 11196. 1196. 1196. 1196. 1196. MATER PLD PREPTH RATE POST PREPTH RATE POST PREPTH RATE POST PREPTH PRAFT PREPTH PREPT

HYD NO=103 CODE=1

10=1 10=1

ROUTE PRINT HYD

PARTIAL HYDROGRAPH 103

RUNDFF VOLUME = 4.508 INCHES PEAK DISCHARGE RATE = 2904.3 CFS

* CCMPUTE THE HYD FROM AREA 304.

COMPUTE HYD

15=2 CGDE=1 PRINT HYD HYDROGRAPH FROM AREA 304

RUNDFF VOLUME = 4.111 INCHES PEAK DISCHARGE RATE = 504.5 CFS

| PRINT HYD | 10=3
10=3 | HYD ND=4 | ICS ACDED ARE | te 1 AND 2 | | | | | |
|-----------|--------------|----------|---------------|--------------------------|------|--------|----------------|--------|----------|
| | | | OUTFLOW HY | OUTFLOW-HYDROGRAPH REACH | 4 | | | | |
| T X | 70 | <u> </u> | . O. F. | TIME | FLOW | TIME | FLOW | TIME | FLOW |
| T SE | . SES | HRS | CFS | HRS | CFS | HRS | CFS | HRS | ß |
| 12,500 | | 18,500 | 1149. | 24.500 | 141. | 30,500 | 30. | 36.500 | 2 |
| 12,700 | c. | 18,700 | 1097. | 24.700 | 132. | 30,700 | 29. | 36.790 | |
| 12,900 | ć | 18,900 | 1036. | 24.900 | 124. | 30.900 | 27. | 36.900 | |
| 13,100 | | 19,100 | 968 | 25,100 | 117. | 31,100 | 56. | 31-100 | |
| 13,300 | m | 19.300 | 896 | 25,300 | 111. | 31,300 | 24. | 37.390 | 2 |
| 13,500 | 10. | 19,500 | 820. | 25.500 | 105. | 31.500 | 23. | 37.500 | |
| 13,700 | *65 | 19,700 | 746. | 25.700 | *66 | 31,700 | 22. | 37.700 | |
| 13,900 | 215 | 19.900 | 675 | 25.900 | 94. | 31.900 | 20. | 37.900 | |
| 14-100 | 523. | 20,100 | 526 | 26.100 | -68 | 32+100 | 19. | 38.100 | |
| 14,300 | 873 | 20,300 | 586. | 26.300 | 85. | 32,300 | 17. | 38.300 | |
| 14,500 | 1277. | 20.500 | 555. | 26.500 | 81. | 32.500 | 16. | 38.500 | • |
| 14,700 | 1788. | 20.700 | 529. | 26.700 | .77 | 32,700 | 14. | 38.700 | |
| 14.900 | 2291 | 20,900 | 506. | 26.900 | 5. | 32.900 | 13. | 38.900 | . |
| 15,100 | 2727. | 21-100 | 481. | 27.100 | .0. | 33.100 | 12. | 39.100 | _ |
| 15,300 | 3072. | 21,300 | 454. | 27.300 | -99 | 33,300 | 12. | 39-300 | - |
| 15.500 | 32.90 | 21.500 | 426. | 27.500 | 63. | 33.500 | 4
11 | 39.500 | 0 (|
| 15.700 | 3351. | 21.700 | 397. | 27.700 | •09 | 33,700 | 10. | 39.700 | |
| 15,900 | 32.85 | 21,900 | 367. | 27.900 | 57. | 33.900 | 10. | 39.900 | 0 |
| 16-100 | 3131. | 22.100 | 338. | 28.100 | 54. | 34-100 | •6 | 40.100 | 0 |
| 16,300 | 2920. | 22,300 | 311. | 28,300 | 51. | 34*300 | 8 0 | 40.300 | 0 (|
| 16.500 | 2685. | 22,500 | 288. | 28,500 | 64 | 34.500 | • | 105.04 | |
| 16,700 | 2452* | 22.700 | 264- | 28.700 | 47. | 34-700 | • | 40-700 | |
| 16.900 | 2221. | 22.900 | 242. | 28,900 | 45. | 34.900 | • | 006.04 | • |
| 17.100 | 1988. | 23,100 | 224. | 29.100 | 43. | 35.100 | ٠ <u>٠</u> | 41.100 | _ |
| 17,300 | 1757. | 23,300 | 208- | 29,300 | 41. | 35,300 | • | 41.300 | _ |
| 17,500 | 1547. | 23,500 | 194. | 29.500 | 39. | 35.500 | . | 4I.500 | |
| 17.700 | 1400 | 23-700 | 181. | 29.700 | 37. | 35.700 | . • | 41.700 | C |
| 17,900 | 1302. | 23.900 | 170. | 29.900 | 35. | 35.900 | m [*] | 41.900 | - |
| 18,100 | 1240. | 24.100 | 160. | 30.100 | ¥• | 36.100 | m · | | |
| 18,300 | 1192. | 24.300 | 150. | 30,300 | 32. | 36.300 | 5 | | |

| - | |
|---------|---|
| REACH | |
| THROUGH | |
| ROUTE | |
| * | 1 |

| | | 88 | VELEV | 4.004 | | | | 492.9 | c | | | | | | | | | | | | | | | |
|------------|-----------|---------------|-------|--------|-------|-------|-------|-------|--------------|-------|---------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| | 36 | DIST=558 | DIST | | | 0014 |) (| 000 | 10N 2.0 | | RATE | CFS | 0-0 | 8.1 | 9.0 | 25.6 | 52.2 | 90.1 | 141.1 | 237.2 | 461-2 | 818.5 | 1316.9 | 1958.3 |
| 81.8 | SLP=.0036 | N=.05 | ELEV | 8-06-5 | 485.5 | 482.1 | | • | SECT | | | _ | o | | 5.7 | 4 | | | | | | | _ | |
| FLEV=481.8 | | | DIST | | | | 5.50 | 3 | > | FLOH | AREA | So | ò | Ä | 'n | 11.4 | 18.6 | 27.0 | 36.7 | 69 | 144.9 | 229.5 | 318. | 411. |
| SEG MIN | SLP=_0018 | N=03 DIST=405 | FLEV | 492.0 | 486.8 | 483.3 | 488.6 | • | KALING CURVE | HATER | SURFACE | ELEV | 481.80 | 482.39 | 482.98 | 483.57 | 484.16 | 484.75 | 485.34 | 485.93 | 486.51 | 487.10 | 487.69 | 488.28 |
| . E | Ç | | DIST | 150 | 270 | 392 | 427 | ! | X X | | | | • | • | • | • | 4 | 4 | 4 | 4 | 4 | • | 4 | 4 |
| 1 VS 2 | | DIST=387 | ELEV | 493.0 | 489-9 | 485.5 | 485.4 | 493.0 | | | | | | | | | | | | | | | | |
| _ | MAX EL | ¥ 0 | DIST | 131 | 258 | 387 | 405 | 558 | | | | | | | | | | | | | | | | |
| TING CURVE | | | | | | | | | | | | | | | | | | | | | | | | |
| UTE RATING | | | | | | | | | | | | | | | | | | | | | | | | |

TRAVEL HISME 0.7488 0.35416 0.2565 0.2203 0. 3 VS L=3310 SLP=.003 TRAVEL TIME TABLE REACH 5.0 HYD NO=104 CODE=1 ID=1 REACH 5 10=1 10=1 COMPUTE TRAVEL TIME ROUTE PRINT HYD

PARTIAL HYDROGRAPH 104

4.436 INCHES = 3318.5 CFS RUNDFF VOLUME = 4. PEAK DISCHARGE RATE = COMPUTE HYD

ID=2 CODE=1 PRINT HYD HYDRÜGRAPH FROM AREA 305

28

3.837 INCHES E = 936.7 CFS RUNDFF VOLUME = 3 PEAK DISCHARGE RATE =

* ADD THE HYD FROM AREA 305 TO THE PARTIAL HYD 104.

HYD ND=105 IDS ADDED ARE 1 AND CODE=1 ADC HYD PRINT HYD PARTIAL HYDROGRAPH 105

RUNDFF VGLUME = 4.259 INCHES PEAK DISCHARGE RATE = 4244.3 CFS

STORE HYD ID=1 HYD ND=306 DT=.25 DA=.483
FLOW RATE CFS= 0 0 0 0 45 280 560 638 570 370 258 170 97 72
64 61 80 70 59 54 52 51 50 46 44 40 38 33 30 27 25 24 23 22
1 20 20 19 18 16 16 15 13 11 10 9 8 7 6 5 5 4 4 3 3 3 2
* RDUTE THE HYD FROM AREA 306 THROUGH REACH 6. * THE HYD FROM AREA 306 WAS MEASURED, SO STORE HYD IS USED TO STORE IT IN THE * PREGRAM. COMPUTE RATING CURVE 10=1 VS=21 3 SEG MIN ELEV=506.0 MAX ELEV=514

CH SLP= .006 FP SLP= .0075

N=.03 DIST= 310

N=.05 DIST= 300

N=.05 DIST= 300

N=.05 DIST= 300

N=.05 DIST= ELEV

DIST ELEV

0 514.0 300 508.0 302 506.0 307 506.0
310 508.0 380 510.0 520 512.0 570 514.0

| | FLEV | 482.0 | 488.0 | | | 0 | | | | | |
|------------------|---|---|--|--|--|---|---|---|--|--|--|
| = 175 | DIST | 188 | 275 | | | ON 20 | LON | ATE | SH | 0.0 | |
| 05 DIST | ELEV | 484.0 | 486.0 | | | Y SECTI | L | æ | ں
ب | 0 | |
| .=N
IST=450 | DIST | 175 | 250 | | | E VALLE | FLON | AREA | SO | ċ | • |
| .0075
N=.05 0 | ELEV | 490.0 | 484.0 | 492.0 | | NG CURV | HATER | URFACE | ELEV | 32.00 | 100 |
| FP SLP=
05 | DIST | 100 | 205 | 450 | ! | RATI | _ | Ŋ | _ | 4 | • |
| *.006
DIST=2 | €LEV | 192.0 | 482-0 | 0-06 | | | | | | | |
| CH SLP:
N=03 | DIST | 0 | 190 | 310 4 | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | CH SLP=.006 FP SLP=.0075 N=.05 DIST= 175 N=03 DIST=205 N=.05 DIST=450 | CH SLP≈.006 FP SLP≈.0075 N=.05 DIST= 175
N=03 DIST=205 N=.05 DIST=450
DIST ELEV DIST ELEV DIST ELEV DIST ELEV | CH SLP=.006 FP SLP=.0075 N=.05 DIST= 175 N=.03 DIST ELEV DIST ELEV DIST ELEV DIST ELEV 0 492.0 100 490.0 175 484.0 188 482.0 | CH SLP=.006 FP SLP=.0075 N=.05 DIST= 175 N=.03 DIST=205 N=.05 DIST=450 DIST ELEV DIS | CH SLP=.006 FP SLP=.0075 N=.05 DIST= 175 N=.03 DIST=205 N=.05 DIST=450 DIST ELEV DIS | CH SLP=.006 FP SLP=.0075 N=.05 DIST= 175 N=.05 DIST=205 N=.05 DIST=450 DIST ELEV DIST ELEV DIST ELEV DIST ELEV BIST BIST ELEV | CH SLP==006 FP SLP==0075 N=-05 DIST= 175 N=-03 DIST=205 N=-05 DIST=450 DIST ELEV DIST | CH SLP=1006 FP SLP=6075 N=.05 DIST=175 N=-03 DIST=205 N=-05 DIST=450 DIST ELEV BIST ELEV FLOM FLOM FLOM | CH SLP=.006 FP SLP=.0075 N=05 DIST==175 N=05 DIST==206 N=05 DIST==450 DIST ELEV DIST E | CH SLP==006 FP SLP==0075 N==.05 DIST= 175 N==.05 DIST=205 N==.05 DIST=450 DIST ELEV ELEV FLOM FLOM FLOM SURFECE AREA RATE ELEV SQ FT CFS | CH SLP=1006 FP SLP=0075 N=.05 DIST=175 N=-03 DIST=205 N=-05 DIST=450 DIST ELEV DIST EL |

| SECTION 20.0
FLOW
RATE | # S | 5.5 | | 9 | 64. | 29. | | 17. | 384. | .666 | 2777.3 | 744. | 921. | 356. | 115. | 0274 | 2413. | 5306. | 275. | 4694 |
|------------------------------|---------|-----|---|------|------|------|-----|------|------|------|--------|------|------|------|------|------|-------|-------|--------|--------|
| VALLEY
FLOM
AREA | <u></u> | 3.0 | ò | ċ | 'n | Ļ. | ö | 32. | 83. | 42. | 308.0 | 80. | 90, | 48. | 4 | 49 | ċ | 023. | 1210.4 | 430 |
| | | 82. | 6 | 83.5 | 84°. | 84.6 | 5.3 | 85.6 | 86.2 | 86.7 | • | 87.7 | 88.3 | 88.8 | 89.3 | 86.8 | 90.4 | 6.0 | 491-47 | 492.00 |

| SLP=.0075 | 0 | | TRAVEL | TIME | HRS | 0.5893 | 0.4055 | 0.3346 | 0.2852 | 0.2525 | 0.2491 | 0.2478 | 0.2397 | 0.2277 | 0.2161 | 0.2045 | 0.1918 | 0.1791 | 0.1671 | 0.1542 | 0.1423 | 0.1318 | 0.1228 | 0,1157 | ~ | |
|---------------------|-------------------------|---|--------|-------|------|------------|-----------|
| C=4080 SL | TIME TABLE
REACH 6.0 | i | 7.CF | RATE | CFS | Š | 16. | 33. | 56. | 88. | 146. | 251. | 421. | 675. | 1019. | 1482. | 2102. | 2902 | 3908. | 5214. | 6796. | 8649. | 10796. | 13261. | IO=1 OI= | |
| 2 48 | TRAVEL | | A THE | DEPTH | FEET | 0.44 | 080 | 1.18 | 1.52 | 1.88 | 2.26 | 2-66 | 3.10 | 3,55 | 4.00 | 4.46 | 4.93 | 5.40 | 5-88 | 6-37 | 6.85 | 7.33 | 7.80 | 8-28 | INFLOW | |
| KEACH 0 | | | | | | | | | | | | | | | | | | | | | | | | | HYD NO=106 | CODE=1 |
| 7=01 | | | | | | | | | | | | | | | | | | | | | | | | | Z=0] | I C=2 |
| AVEL JIME | | | | | | | |
| CUBRUIE IRAVEL 11ME | | | | | | | | | | | | | | | | | | | | | | | | | ROUTE | PRINT HYD |
| | | | | | | | |

PARTIAL HYDROGRAPH 106

RUNDFF VCLUME = 3.364 INCHES PÉAK DISCHARGE RATE = 574.6 CFS

| PARTSON IN THE PY BECAUSE THE FLOW CFS 103. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98 | 4 4 T | A REACH 5 WILL
MMAND IS USED.
E ADD HYD COMM.
E ADD HYD COMM.
CLOW CLOW B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B89.
B8 | SINCE THE DUTFLOW HYDROGRAPH FROM REACH 5 WILL SECOND ROUTING, THE PUNCH HYD COMMAND IS USED. PUNCH CODE DOES NOT PUNCH HYD COMMAND IS USED. PUNCH CODE DOES NOT PUNCH HYD COMMAND IS USED. NOT SET IN THE FLOW HAS CFS. 12.700 69.300 60.40000 60.4000 60.4000 60.4000 60.4000 60.4000 60.4000 60.4000 60.4000 60.4000 60.4000 60. |
|--|-------|--|--|
| FLOW TIME FLOW CFS 103-98-98-98-98-98-98-98-98-98-98-98-98-98- | I | | |
| FLOW CFS 103- 98- 98- 98- 98- 98- 98- 98- 98- 98- 98 | | | |
| 103. 103. 103. 103. 103. 103. 103. 103. | | | |
| 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. | | | |
| 84. 86. 36. 300 15. 85. 300 15. 85. 300 15. 85. 300 15. 85. 500 13. 75. 87. 30. 500 13. 75. 87. 300 13. 85. 500 13 | | | |
| 89, 36,700 14, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86 | | | |
| 81. 36-900 13. 75. 81. 36-900 13. 75. 81. 36-900 13. 75. 81. 81. 81. 81. 85. 900 11. 64. 81. 81. 81. 81. 81. 81. 81. 81. 81. 81 | | | |
| 78. 37-100 12. 75. 37-100 12. 75. 37-500 111. 65. 37-500 111. 65. 37-500 111. 65. 38-100 10. 65. 55. 38-100 10. 65. 65. 65. 65. 65. 65. 65. 65. 65. 65 | | | |
| 75. 37.300 12. 69. 37.500 11. 69. 37.500 11. 61. 38.300 10. 64. 38.300 10. 65. 38.500 10. 67. 38.500 10. 67. 38.500 7. 67. 38.500 7. 68. 40.300 7. 68. 40.300 6. 69. 40.40 | | | |
| 69. 67. 67. 67. 67. 67. 68. 68. 68. 68. 68. 68. 68. 68. 68. 69. 69. 69. 69. 69. 69. 69. 69. 69. 69 | | | |
| 67. 37.900 10. 64. 38.190 10. 59. 38.190 10. 56. 38.290 10. 56. 38.290 7. 61. 62. 38.290 7. 62. 38.290 7. 62. 38.290 7. 62. 38.290 7. 62. 38.290 6. 62. 62. 62. 62. 62. 62. 62. 62. 62. | | | |
| 64. 38.100 10. 59. 38.700 10. 54. 38.700 7. 54. 38.700 7. 54. 39.100 7. 54. 39.100 7. 56. 40.300 6. 56. 40.500 6. 57. 40.100 6. 58. 40.500 6. 58. 40.500 6. 58. 40.500 6. 59. 41.100 6. 29. 41.100 6. 20. 42.300 7. 21. 42.300 7. 22. 42.300 7. 23. 42.300 7. 24. 42.300 7. 26. 42.300 7. 27. 42.300 7. 28. 42.300 7. 29. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. 20. 42.300 7. | | | |
| 59. 38.500 9.6 56. 38.700 7.6 57. 38.700 7.6 57. 39.300 7.6 57. 39.300 7.7 57. 39.300 7.7 57. 39.300 7.7 57. 39.300 7.7 57. 39.300 7.7 57. 39.300 7.7 57. 40.300 6.7 57. 40.500 6.7 57. 40.500 6.7 57. 40.500 6.7 57. 42.300 7.7 58. 42.300 7.7 59. 42 | | | |
| 56. 56. 57. 58.700 7. 57. 58.900 7. 67.900 7. | | | |
| 54. 54. 54. 55. 58.900 7. 64. 64. 64. 65. 58.900 7. 66. 66. 66. 66. 66. 66. 66. 66. 66. | | | |
| 7. 49. 39.100 7. 49. 49. 39.300 7. 45. 39.300 7. 45. 39.300 7. 45. 39.300 7. 45. 39.300 7. 45. 39.300 7. 45. 39.300 7. 45. 39.300 7. 45.300 6. 55. 45.300 6. 45. 55. 45.300 7. 4 | | | |
| 47. 47. 47. 47. 47. 47. 48. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40 | | | |
| 45. 39.700 6. 40. 40. 40. 40. 40. 40. 40. 40. 100 6. 40. 100 6. 40. 100 6. 40. 40. 40. 500 6. 35. 40. 40. 900 5. 29. 41. 100 5. 25. 42. 100 2. 25. 42. 100 2. 25. 42. 500 1. 18. 42. 500 1. 18. 43. 33. 0. 1. 18. 43. 33. 0. 1. 18. | | | |
| 42. 43.900 6. 42. 43.900 6. 38. 40.100 6. 35. 40.500 5. 33. 40.900 6. 33. 40.900 5. 28. 41.500 5. 28. 42.300 22. 42.300 22. 42.500 1. 18. 42.900 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 18. 43.300 1. 19. 43.300 1. 19. 43.300 1. 19. 43.300 1. 10. 43.3 | | | |
| 38. 40.300 6.
35. 40.500 6.
33. 40.900 5.
30. 41.100 5.
20. 41.700 4.
20. 41.700 3.
22. 42.100 2.
22. 42.300 1.
23. 42.300 1.
24. 42.500 1.
25. 42.300 1.
26. 43.100 1. | | | |
| 36. | | | |
| 35. | | | |
| 33. | | | |
| 31. 41.100 5. 29. 41.500 4. 28. 41.700 3. 25. 42.100 2. 22. 42.500 2. 22. 42.500 1. 21. 42.500 1. 19. 43.100 1. | | | |
| 29. 41.500 4.
28. 41.500 4.
26. 41.700 3.
26. 42.100 2.
27. 42.500 2.
22. 42.500 1.
21. 42.500 1.
29. 42.100 1.
19. 43.100 1. | | | |
| 28. 41.700 3.
26. 41.900 3.
27. 42.300 2.
22. 42.300 2.
21. 42.700 1.
20. 42.900 1.
42.900 1.
19. 43.100 1. | | | |
| 28. 41.700 3.
25. 41.900 3.
24. 42.300 2.
22. 42.500 1.
21. 42.700 1.
20. 43.100 1.
13. 43.300 1. | | | |
| 25. 42.100 3.
24. 42.300 2.
22. 42.300 2.
21. 42.500 1.
20. 42.400 1.
19. 43.100 1.
18. 43.300 1. | | | |
| 25. 42.100 2.
24. 42.300 2.
22. 42.300 1.
21. 42.700 1.
20. 42.900 1.
19. 43.100 1.
18. 43.300 1. | | | |
| 24. 42.300 2.
22. 42.500 1.
21. 42.700 1.
20. 42.900 1.
19. 43.100 1.
18. 43.310 1. | | | |
| 24. 42.500 1.
21. 42.700 1.
20. 42.900 1.
19. 43.100 1.
18. 43.300 1. | | | |
| 21. | | | |
| 20. 42.900 1.
19. 43.100 1.
18. 43.300 1. | | | |
| 19. 43.100 1.
18. 43.310 1.
17. 43.500 1. | | 123. | 27.300 123. |
| 18. 43.300 1. | | | |
| 17. 43.500 | | | |
| | | | |

RUNDFF VOLUME = 4.196 INCHES PEAK DISCHARGE RATE = 4367.5 CFS

* THE SEDIMENT YIELD COMMAND IS USED TO COMPUTE THE SEDIMENT YIELD PRODUCED BY *

* THE ROUTED FLOOD.

* SEDIMENT YIELD ID=6 SOIL=.34 CROP=.16 CP=.4 LS=.3

* SEDIMENT YIELD = 4.116.9 TONS

* THE MEASURED SEDIMENT YIELD FOR THIS FLOOD WAS 3916 TONS.

* THE MEASURED SEDIMENT YIELD FOR THIS FLOOD WAS 3916 TONS.

* THE ROUTED OUTFLOW HYDROGRAPH CAN BE COMPARED MITH THE MEASURED HYDROGRAPH BY

* PLOTTING AND ERROR ANALYSIS

* STORE THE MEASURED HYDROGRAPH

* STOR

* THE

| | | ERROR | N C | ်
ပို | -0- | •
• | m u | | 186. | -195 | -111- | 345. | 1047. | 335. | 32. | -160- | -187. | 1313. | -610- | -404- | -387 | 1347 | -181- | -63- | -17. | -18. | , m | -87. | -112. | -114. | -119. | *76- | . 601
. 665 | -31. | -53. | 133. | -61. | -74- | -74. | -71. | | -38. | -23- | -36- | 1961 |
|--------------------------|--------------------------|--------|-----------|----------|--------|--------|----------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|----------------|--------|---------|---|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| THE ERROR * | TMO | FLOW 2 | ج
ج ج | 0 | • | • | ี ผู้ | 104 | 378. | 829 | 1349. | 1855. | 2403. | 3537. | 3968 | 4260. | 4367. | 433/ | 3950. | 3684. | 3415. | 3143. | 2611. | 2353. | 2137. | 1978. | 1783. | 17071 | 1628. | 1446. | 1347 | 1244. | 1044. | 656 | 889. | 4 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 6 | 749 | 714. | 578. | 641. | 568. | 532. | -164 | 466. | •00+ |
| COMPUTE THE MAGNITUDE OF | ROUTED ID=6 (FLOW TWO) | PLOW 1 | ۲. د
د | .0 | ċ | •0 | . | 136 | 292. | 634. | 1238. | 2250. | 3450. | 3872 | 4000- | 4100. | 4180. | 4024. | 3540- | 3280- | 3028. | 2610 | 2430. | 2290 | 2120. | 1960. | 1720. | 1620- | 1516. | 1332. | 1228- | 1150. | 988. | 928- | 836. | 800.
740. | 688 | 640. | 604. | 570. | 506. | 494. | 474. | 490 | |
| COMMAND IS USED TO | MEASURED ID=2 (FLOW DNE) | TIME | 12-500 | 12,700 | 12,900 | 13.100 | 13, 300 | 13 200 | 13,900 | 14.100 | 14.300 | 14.500 | 14, 700 | 15,100 | 15,300 | 15.500 | 15,700 | 16 100 | 16.300 | 16,500 | 16, 700 | 17.100 | 17.300 | 17.500 | 17.700 | 17,900 | 0000 | 18.500 | 18.700 | 19,100 | 19,300 | 19.500 | 19.900 | 20.100 | 20, 300 | 20.200 | 20*02 | 21.100 | 21.300 | 21.500 | 21.900 | 22,100 | 22,300 | 22,500 | 001-57 |
| ERROR ANALYSIS | ANALYSIS | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

ERROR STANDARD DEVIATION = 177,294
PEAK DISCHARGE ERROR = 3.99 PERCENT

| • | |
|--|--|
| HE RUNDFF AND THE BON THE BATERSHED FFIRST TER. COMPUTER COMPUTER BER IS | 11.734 SQ MI 105 FLUM RATE 00 20 20 85 2260 60 1350 60 95 95 100 100 100 100 100 100 100 100 100 10 |
| CONDITIC ONTROL TI SERVOIR THE S OF FOR THE AND PLA OF THE | DA= 1.77 NO PTS=105 0. 2085. 0. 1560. 0. 1560. 0. 175. 0. 175. 0. 175. 0. 175. 0. 176. |
| PRESENT TED TO CO THESE RE WAS USE WAS USE HED BY TO PUNCHED LSO SOME OTTICE TH STORED | 8 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
| CONSTRUC
CONSTRUC
EECTS OF
5 IS ROUN
NCH CODE
IERE PUNC
MANUALLY
VVIRS. A
10.
10.
10.
10. NCH CODE
IERE PUNC
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MANUALLY
MA | DT= 0.166657 HRS RD= 4.933 INCHES 1025- 1420- 1388 1885- 1890- 176 860- 690- 56 870- 235- 20 170- 110- 110- 110 170- 44- 44- 44- 44- 44- 44- 44- 44- 44- 4 |
| WATERSHE
INS ARE
THE EFF
TO THE POUNTING WOUTING WATER WOUTING WATER WOUTING WOUTING WOUTING WATER WOUTING WATER WOUTING WATER W | 110 110 110 110 110 110 110 110 110 110 |
| FOR THE EVALUATE EVALUATE OF HARCHED. SING SECOND FOR COMMANOS CHANGED CHANGED THE HYD TRAVEL TIRAVEL TIRAVEN TIRAVEL TIRAVEL TIRAVEN TIRAVEN TIRAVEL TIRAVEN | HYD ND=301
2360.CFS
0.000.
220.
2100.
365.
366.
366.
366.
366.
366.
366.
366 |
| IS COMPLETES THE ROUTING FOR THE WATERSHED IN ITS PRESENT CONDITION. XT ASSUME FLOOD DETENTION RESERVOIRS ARE CONSTRUCTED TO CONTROL THE RUNDFF DON AREAS 301 AND 306. TO EVALUATE THE EFFECTS OF THESE RESERVOIRS ON THE ODD HYDROGRAPH THE FLOOD OF MARCH 29, 1965 IS ROUTED THROUGH THE WATERSHED TH THE RESERVOIRS INSTALLED. SINCE THE PUNCH CODE WAS USED FOR THE FIRST UTING, ALL CARDS FOR THE SECOND ROUTING WERE PUNCHED BY THE COMPUTER. WEVER, 'ROUTE RESERVOIR COMMANDS MUST BE MANUALLY PUNCHED AND PLACED IN THE OGRAM TO ROUTE THROUGH THE PROPOSED RESERVOIRS. ALSO SOME OF THE COMPUTER NICHED COMMENT CARDS ARE CHANGED OR DELETED. IE FIRST STEP IS TO STORE THE HYD FROM AREA 301. NOTICE THE ID NUMBER IS ANGED FROM I TO 5 SO THE RESERVOIR OUTFLOW CAN BE STORED IN ID I TO MAKE IT MARTABLE WITH THE STORE TRAVEL TIME AND ROUTE COMMANDS FOR REACH 2. | 10=5 PEAK = 22 00- 00- 1150- 1150- 1160- 1 |
| IS COMPLE
XT ASSUME
ON AREAS
ON AREAS
TH THE RE
UTING, AL
WEVER, 'S
OCERANTO
NCHE FIRST &
AANGED FRE | Tr HAD |

* THE ROUTE RESERVOIR COMMAND IS USED TO ROUTE HYD 301 THROUGH RESERVOIR 502. *

| ROUTE RESERVOIR | | MYD ND=501 INFLOW ID=5 REMAINING DATA CEFINE RESERVOIR DUTFLOW STORAGE RELATIONSHIP DUTFLOW(CFS) STORAGE(AC FT) 0 0 533 20 533 200 555 1000 601 2000 648 | 01 INFLOW ID=5 REMAINING ERVOIR DUTFLOW STORAGE RELA STORAGE(AC FT) 50 533 555 601 648 694 | REMAINING
Orage Relati | ONS H I P | | | |
|-----------------|------|--|--|---------------------------|-------------|--------|-------------|---------|
| PRINT HYD |][| 10=1 | | | | | | |
| | | oure | OUTFLOW HYDROGRAPH RESERVOIR | H RESERVOIR | 501 | | | |
| TIME | FLOW | TIME | FLOW | TIME | FLOW | TIME | FLOW | THAT |
| HRS. | c FS | HRS | CFS. | HRS | CFS | HRS | CFS | HRS |
| 12,500 | • • | 17.500 | 17. | 22.500 | 20. | 27,499 | 20- | 32.499 |
| 100.21 | | 14 000 | . I. | 22.666 | 20. | 27.666 | 20. | 32.666 |
| 13,000 | å | 1 8-000 | • d | 22.833 | 20. | 27.833 | 20. | 32-832 |
| 13-167 | ċ | 18-167 | . d | 22.166 | . 02 | 556 0E | • 00 | 92. 499 |
| 13,333 | 0 | 184333 | 18. | 23, 333 | | 28.333 | 20. | 35.100 |
| 13,500 | ö | 18.500 | 18. | 23.500 | 20. | 28.499 | 20, | 2007 EE |
| 13.667 | 0 | 18.667 | 19. | 23.666 | 20. | 28.666 | 20. | 33.666 |
| 13,833 | á | 18.833 | 19. | 23, 833 | 20. | 28.833 | 20. | 33,832 |
| 14.000 | ~ | 19.000 | 19. | 24.000 | zu. | 28,999 | 20° | 33,999 |
| 14.167 | 1. | 19.166 | 19. | 24.166 | 20. | 29.166 | 2 n.s | 34-166 |
| 14.333 | 2. | 19,333 | 19. | 24,333 | 20. | 29.333 | -02 | 34,332 |
| 14.500 | 'n | 19.500 | 19. | 54*488 | -02 | 59.499 | 20. | 34.499 |
| 14.667 | ę, | 19.666 | 19. | 24.666 | 20. | 29.666 | 2u . | 34.666 |
| 14.833 | •9 | 19.833 | 19. | 24.833 | 20. | 29.832 | 20- | 34.832 |
| 15.000 | 7* | 20.000 | 19. | 54.999 | 20. | 56.999 | 20. | 34.999 |
| 15.167 | o i | 20.166 | 19. | 25.166 | 20. | 30.166 | 20. | 35,165 |
| 15.333 | 10. | 20-333 | 19. | 25,333 | -02 | 30.332 | 29. | 35.332 |
| 15.500 | 11. | 20,500 | 20- | 25.499 | 20. | 30.499 | 20. | 35.499 |
| 15.667 | 12. | 20.666 | 20• | 25.666 | 20. | 30.666 | 20. | 35.665 |
| 15.833 | 13. | 20.833 | 20. | 25.833 | 20. | 30.832 | 20. | 35,832 |
| 16.000 | 14. | 21.000 | 50 • | 25.999 | 20. | 30.999 | 20. | 35,999 |
| 16.167 | 14. | 21-166 | 20. | 26-166 | 50 . | 31.166 | 20. | 36.165 |
| 16.333 | 15. | 21,333 | 20. | 26-333 | 20• | 31,332 | 2٠, | 36.332 |
| 16.500 | 15. | 21,500 | 20. | 26.499 | 20* | 31.499 | 20. | 36.499 |
| 16.667 | 16. | 21.666 | -02 | 26.666 | 20. | 31.666 | 20 . | 36.665 |
| 16,833 | 16. | 21.833 | 20. | 26.833 | 20. | 31,832 | 20. | 36.832 |
| 17,000 | 16. | 22-000 | 20. | 56.999 | 20. | 31,999 | 20. | 36.999 |
| 17.167 | 17. | 22.166 | 20. | 27.166 | 20 . | 32.166 | 20 . | 37,165 |
| 17,333 | 17. | 22,333 | 20. | 27,333 | 29. | 32,332 | 20. | 37.332 |
| | | | | | | | | |

RUNDFF VCLUME = 0.382 INCHES
PEAK DISCHARGE RATE = 2G_0 CFS

| | _ | |
|--|---|------------------|
| | * BEFORE ROUTING THE TRAVEL TIME - DEPTH - FLOW RELATIONSHIP MUST BE COMPUTED | |
| | υ | |
| . 2 | #UST | |
| REAC | d I H S N | |
| FHROUGH | RELATIO | |
| 6 | FLOW A | |
| * NEXI ROUTE THE OUTFLOW HYD FROM RESERVOIR 501 THROUGH REACH Z- | EPTH - | |
| ä | 1 | |
| FROM | TIME | |
| OYH HO | FRAVEL | |
| 17 TO | HE | |
| 出 | JTING | ACH. |
| 5 | 5 | W. |
| NEXT RE | BEFORE | * FOR THE REACH. |
| * | # | * |
| | | |

| # | | | | | | | | |
|-------|-------------------|------|-----------|-----------------------|-------|-------------|----------|----------------|
| STORE | STURE TRAVEL TIME | TIME | ID=2 | REACH NO= 2.0 LENGTH= | 2.0 L | | 3400- FT | |
| | | | SLOPE=0 | SLBPE=0.002900FT/FT | ı- | | | |
| | | | DEPTH(FT) | T) FLOW(CFS) | (CFS) | TIME (HRS) | S. | |
| | | | 0.30 | | 2. | 0.832 | 32 | |
| | | | 0.68 | | \$ | 795-0 | 47 | |
| | | | 1.07 | | 16. | 0.498 | 98 | |
| | | | 1.58 | | 38. | 0.472 | 72 | |
| | | | 2.18 | | 86. | ë.0 | 90 | |
| | | | 2.75 | | 153. | 9.338 | 38 | |
| | | | 3.28 | | 252 | Ř. | 43 | |
| | | | 3.66 | | 371. | 0.3 | 94 | |
| | | | 4.62 | | 545. | E*0 | 59 | |
| | | | 4.45 | | 810. | 0.3 | 59 | |
| | | | 4.78 | | 064. | 0.3 | 69 | |
| | | | 5-13 | | 431. | ₩.C | 63 | • |
| | | | 5.50 | ĭ | 980. | 0.3 | 53 | |
| | | | 5.86 | | 672. | ή.
Ο | 11 | |
| | | | 6.29 | š | 670. | 0.3 | 36 | |
| | | | 6.67 | | 853. | 0.332 | 32 | |
| | | | 6.98 | | 6225 | E*0 | 70 | |
| | | | 7.29 | | 793. | 0.286 | 86 | |
| | | | 7.60 | | 513. | 0.2 | 29 | |
| ROUTE | | | ID=2 | HYD NG=10 | | INFLOW ID=1 | | DT=0.200000HRS |
| PRINT | HYD | | 10=2 | CODE=1 | | | | |

PARTIAL HYDROGRAPH 101

RUNDFF VCLUME = 0.411 INCHES PEAK DISCHARGE RATE = 20.0 CFS

TO OBTAIN THE OUTFLOW HYD FROM REACH 2 THE HYD FROM AREA 302 MUST BE COMPUTED* AND ADDED TO THE ROUTED HYD 101.

| | IW OS | | 6 | 491. | 451. | 544. | 219. | 135. | 128. | 86. | 53. | 33. | 24. | 18. | 13. | 10. | 7. | 4. | 2. | | | ċ | . | . |
|------------------------------|--------------------------------------|--------|----|------|-------|----------|------|------|------|-------|-----|-----|-----|-----|-----|-----|------------|----------|----|----|---|---|----------|----------|
| | DA= 0.837
PTS=154 | | 2- | 411. | 495. | 264. | 219. | 147. | 127. | 92. | 57. | 35. | 25. | 19. | 14. | 10. | B | . | 2. | 1. | | ċ | ċ | ċ |
| | 5 | | - | .35. | 32. | .82. | 11. | .09 | 24. | -66 | 61. | 37. | 26. | 19. | 14. | 11. | | 'n | 2. | ij | ; | ċ | .0 | ċ |
| | DT= 0.166667 HRS
RQ= 4.124 INCHES | | | | | | | | | | | | | | | | | | | | | | 0 | |
| | DT= 0.16
= 4.124 | | | | | | | | | | | | | | | | | | | | | | ò | |
| _ | ND=302
CFS RD | | | | | | | | | | | | | | | | | | | | | | ď | |
| 110 101 | [0=1 HYD NO
PEAK= 572.CI | ATES | ٠. | 6. | 8. 5. | 7. | 3. 2 | 2. 2 | 5. | 5. 1. | | | , × | 3. | 7. | 3. | . 6 | ۲. | | 2. | ; | | ٥. | • |
| AUDED IC INE KOUIED NTD 191. | 10=1
PEAK= | FLOW R | | m | 54 | 0 | 22 | 21 | 12 | 12 | æ | 4 | m | N | _ | - | | | | | | | | |
| 2 | | | | | | | | | | | | | | | | | | | | | | | | |
| AUDEO | T HYD | | | | | | | | | | | | | | | | | | | | | | | |

| | | FL 0W | 17. | 16. | 15. | 14. | 13. | 12. | 11. | | 6 | o. | αů | <i>-</i> ' | 7. | • | \$ | | រភ្នំ : | 4 | 4 | 4 | ri i | m . | m I | m. | m i | • 7 | , Z | , | 7 | ~ | 2- | 2. | ·, | -; | 1: | ; | 1. | |
|----------------------|--------------------------|--------------|---|--------|--------|--------|-----------------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|---------|-------------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| | | TIME | 37.832 | 37,999 | 38.165 | 38.332 | 38.499 | 38.665 | 39.832 | 38,999 | 39.165 | 39.332 | 39.499 | 39,665 | 39,832 | 39,999 | 40.165 | 40.332 | 665.05 | 40.665 | 40.832 | 866 01 | 41,165 | 41,332 | 41.408 | 41-665 | 41.832 | 8000 | 42.165 | 42.332 | 42.478 | 45.665 | 42.832 | 45.998 | 43.165 | 43,332 | 43.498 | 43,665 | 43.832 | |
| | | FLOW | . 62 | 22. | 22. | 22. | 22. | 22. | 22. | 22. | 22. | 21. | 21. | 21. | 20. | 5ù• | 20- | 20. | 20. | 5 0. | 20. | 19. | 19. | 19 . | 19. | 19. | *6T | 19. | 16. | 19. | . 6 | 19. | -61 | 19. | 19, | 19. | 19+ | 19. | 19. | 18. |
| * | | TIME | 31.499 | 31.666 | 31,832 | 31,999 | 32-166 | 32,332 | 32.499 | 32.666 | 32.832 | 32,999 | 33.166 | 33.332 | 33.499 | 33.666 | 33,832 | 33,999 | 34.166 | 34.332 | 34.499 | 34.666 | 34.832 | 34.999 | 35-165 | 35,332 | 35.499 | 35,665 | 35,832 | 35.999 | 36.165 | 36-332 | 36-499 | 36.665 | 36,832 | 36.999 | 37.165 | 37-332 | 37.499 | 37.665 |
| ID II=2 | СН 2 | FLOX | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 43. | 42. | 41. | 40 . | 39. | 39. | 38. | 37. | 36. | 36. | 35. | 34. | 34. | 33. | 33. | 32, | 32. | 31. | 31. | 30. | 30. | 29. | 29• | 29. | 28- | 2B. | 28. | 27. | 27. | 26. | 56. | 25. | 25. | 24. | 24. | 23. | 23. |
| 10 | OUTFLOW HYDROGRAPH REACH | TI ME | 25.166 | 25,333 | 25.499 | 25.666 | 25.833 | 25.999 | 26.156 | 26-333 | 26.499 | 26.666 | 26.833 | 26,999 | 27.166 | 27,333 | 27.499 | 27.666 | 27-833 | 27.999 | 28-166 | 28.333 | 28.499 | 28.666 | 28.833 | 28,999 | 29-166 | 29.333 | 29.499 | 29.666 | 29.832 | 56.999 | 30.166 | 30.332 | 30.499 | 30.666 | 30.832 | 30.999 | 31-166 | 31.332 |
| 1=1 OI | OUTFLOW HYD | FLOH | 192 | 178. | 166. | 154. | 144. | 134. | 128. | 136. | 143. | 145. | 147. | 144. | 139. | 133. | 126. | 119. | 112. | 106. | 101. | 95. | •06 | 85. | 81- | 77. | 73. | .69 | .99 | 63. | •09 | 57. | 55. | 53. | 52. | 50. | 49. | 47. | 46. | 45. |
| HYD NO= 2
CODE=0 | | TIME | 18,833 | 19,000 | 19,166 | 19.333 | 19,500 | 19,666 | 19.833 | 20,000 | 20.166 | 20.333 | 20.500 | 20.666 | 20.833 | 21,000 | 21-166 | 21,333 | 21,500 | 21-666 | 21.833 | 22,000 | 22.166 | 22,333 | 22,500 | 22.666 | 22.833 | 23.000 | 23,166 | 23,333 | 23.500 | 23.666 | 23.833 | 24.000 | 24-166 | 24.333 | 24,499 | 24-666 | 24,833 | 24-999 |
| ID=3
ID=3 | | #01 <u>.</u> | n c | . 0 | • | • | . | 2. | •6 | 36. | 89. | 169. | 254. | 333. | 412. | 493 | 550. | 574. | 577. | 564. | 540. | 504. | 461. | 418. | 375. | 339. | 314. | 296- | 279. | 259. | 239. | 220. | 209. | 210. | 228. | 236. | 236- | 230 | 219. | 206. |
| ADD HYD
PRINT HYD | | TIME | 12,500 | 12.667 | 12.833 | 13.000 | 13,167 | 13,333 | 13,500 | 13-667 | 13,833 | 14,000 | 14-167 | 14,333 | 14,500 | 14.667 | 14.833 | 15-000 | 15,167 | 15,333 | 15,500 | 15-667 | 15.833 | 16.000 | 16-167 | 16,333 | 16.500 | 16.667 | 16.833 | 17.000 | 17.167 | 17,333 | 17.500 | 17-667 | 17,833 | 18.000 | 18-167 | 18,333 | 18,500 | 18,667 |

RUNDFF VOLUME = 1.619 INCHES PEAK DISCHARGE RATE = 576.8 GFS

* ROUTE THROUGH REACH 3. *
*
STORE TRAVEL TIME TOWN

| <u></u> | | | | | | | | | | | | | | | | | | | | | | 0T=0.200000HRS | |
|-----------------------|---------------------|------------|-------|-------|-------|-------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|-------|
| GTH= 3330, FT | | TIME(HRS) | 0.862 | 0.548 | 0-414 | 0.343 | 0.299 | 0.267 | 0.245 | 0.253 | 0.270 | 0.291 | 0.316 | 0.324 | 0.327 | 0.321 | 0.337 | 0.335 | 0.333 | 0.329 | 0.304 | INFLOW ID=3 | |
| REACH NO= 3.0 LENGTH= | SLOPE=0.002450FT/FT | FLOW (CFS) | 2. | 10. | 23. | 41 * | 63. | •06 | 122. | 160. | 215. | 287. | 403. | 592- | 887. | 1273. | 1724. | 2527. | 3561. | 4956. | 6826. | HYD NO=102 IN |)DE=1 |
| 10=1 | SLOPE=0.0 | DEPTH(FT) | 0.45 | 96.0 | 1.45 | 1.92 | 2.37 | 2.80 | 3.22 | 3.58 | 3.99 | 4.32 | 4.69 | 5.10 | 5.57 | 6.03 | 6.45 | 16.9 | 7.40 | 7.86 | 8.31 | | I=0I |
| TINE T | | | | | | | | | | | | | | | | | | | | | | | |
| TRAVEL | | | | | | | | | | | | | | | | | | | | | | | HYD |
| STORE TRAVEL | | | | | | | | | | | | | | | | | | | | | | | PRINT |

PARTIAL HYDROGRAPH 102

RUNDFF VOLUME = 1.619 INCHES PEAK DISCHARGE RATE = 536.6 CFS

| 303. |
|---------|
| AREA |
| FROM |
| ΗŽΩ |
| 표 |
| COMPUTE |

| L HYD | Р | 10=2 | HYD | N0=303 | DT= | 0.166667 | | = 1.108 | SON |
|-------|---|-------------|-----|-----------|--------|------------------|----------|------------------|----------|
| | | PEAK= | 674 | = 674.CFS | RO= 4. | RO= 4.131 INCHES | | NO PTS=175 | |
| | | TLUN KA | ű | | | | | | |
| | | 0 | | ċ | | ់ | 1 | 2. | 80 |
| | | 33. | | 84. | 164. | 253. | 341. | 433. | 528. |
| | | 50 4 | | 648. | 671. | 674. | -099 | 632. | 594. |
| | | 550 | | 504. | 462. | 428. | 404 | 379. | 354. |
| | | 328 | | 304. | 287. | 281. | 292. | 297. | 295 |
| | | 285 | | 273. | 257. | 240. | 223- | 206. | 191. |
| | | 177 | | 164. | 155. | 160. | 165. | 168. | 169. |
| | | 166 | | 162. | 155. | 148. | 140. | 132. | 125. |
| | | 118 | | 110. | 103. | .16 | •06 | 80
1/1
0/1 | 80° |
| | | 75 | | 71. | 67. | 63. | •09 | 56. | 53. |
| | | 51. | | 48. | 46. | 43. | 42. | 40. | 38 |
| | | 37. | | 35. | 34. | 33. | 32. | 31. | 58. |
| | | 28. | | 27. | 26. | 26. | 25. | 24. | 23. |
| | | 22 | | 21. | 21. | 20. | 19. | 19. | 18. |
| | | 17. | | 17. | 16. | 16. | 15. | 14. | 14 |
| | | 13. | | 13. | 13. | 12. | 12. | 11. | 11. |
| | | 11 | | 10. | 10. | 6 | 6 | 9. | 8. |
| | | 80 | | ф
ф | œ | ۲. | 7. | 7. | 7. |
| | | ó | | • | 'n | 5. | + | 4. | m |
| | | เก๋ | | 2. | 2• | 2. | 2• | 2. | 2 |
| | | 2 | | 2. | 2. | 1. | 1. | .: | Ħ |
| | | Ä | | -; | ; | 1. | 1. | ċ | ċ |
| | | ó | | ċ | ċ | ô | 0 | ° | . |
| | | o. | | ö | ó | ċ | ò | c | 0 |
| | | Ó | | ċ | 0 | ċ | 0 | . | ċ |

* TO OBTAIN THE DUTFLCW FROM REACH 3, ADD HYD FROM AREA 303 TO ROUTED HYD 102.* * ADD HYD ID=3 HYO NO= 3 ID I=1 ID II*2 PRINT HYD ID=3 CODE=0

HYD NO≠ 3 ID I=1 CODE=0

10=3 10=3

OUTFLOW HYDROGRAPH REACH

| | FLON | CFS | 15. | 14. | 13, | 12. | 11. | 2 | ő | | r a | | ٠, | ٠. | . | Ů | •
• 1 | ,
, | | ; . | ÷. | . | . | | ก็ก | . . | • • | | 1 | • • | ; ~ | , , | , , | | | *
V F | | ÷, | | -1 - | •
-i # | • |
|--------|------|--------|---------|--------|--------|------------|--------|-----------|--------|--------|--------|--------|--------|---------|----------|--------|----------|--------|--------|------------|--------|----------|----------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------|--------|--------|--------|--------|---|---|
| | TIME | E S | 38.499 | 38.665 | 38.832 | 38.999 | 39.165 | 39,332 | 39,499 | 39.665 | | 2000 | 10000 | 40, 332 | 2007 07 | 40.655 | 00000 | 769.07 | 27. 17 | 11110 | 707 17 | 07111 | 11.000 | 11.000 | DF 6 7 | 625 67 | 266.27 | 27 445 | 42 832 | 42-99R | 43.165 | 43.332 | 43.498 | 42.665 | 100 E 7 | 20087 | 44.145 | 000 44 | 74.002 | 0/1-11 | 44.000 | 33.0 . † |
| ; | FLOW | CFS | 31. | 30. | 30. | 30. | 30. | 28. | 28. | 28. | 28. | 27. | 27. | 26. | 7. | 24. | 2.4 | | | | 22. | 110 | 21. | 21. | | | 21. | 21. | 202 | 20. | 20. | 22 | 20. | 20. | -6.0 | 20. | 20. | | | | • - - | , |
| :
: | | ES | 31.999 | 32.166 | 32,332 | 32-499 | 32.666 | 32.832 | 32,999 | 33.166 | 33.332 | 33,499 | 33.666 | 33.832 | 93.999 | 34.166 | 34.332 | 34.499 | 34-666 | 34-832 | 34.999 | 35.165 | 35,332 | 35,499 | 35-665 | 35,832 | 35,999 | 36.165 | 36.332 | 36.499 | 36.665 | 36.832 | 36.999 | 37.165 | 37,332 | 37.499 | 37.665 | 37.832 | 37 999 | 38.165 | 3 C C C C C C C C C C C C C C C C C C C | 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| Č | | 2 | 18. | .92 | 74. | 72. | 7.1. | -89 | •99 | 64. | 62. | 62. | •09 | 58° | 57. | 55. | 54. | 53. | 52. | 50. | 50. | 48. | 47 | 46 | 45. | 45. | 43 | 42. | 45. | 40. | 49. | 36 | 38. | 37. | 36. | 35. | 35 | 23 | 33. | 32. | 31. | , |
| 177 | | 22.00 | 664.67 | 22.000 | 25.833 | 52.999 | 26.166 | 26-333 | 26.499 | 26.666 | 26.833 | 56.98 | 27.166 | 27, 333 | 27.499 | 27.666 | 27,833 | 27.999 | 28-166 | 28,333 | 28,499 | 28,666 | 28 833 | 28.999 | 29.166 | 29.333 | 29.499 | 29-666 | 29.832 | 29,999 | 30.166 | 30,332 | 30.499 | 30.666 | 30.832 | 30,999 | 31.166 | 31,332 | 31,499 | 31.666 | 31.832 | |
| 3 | | 200 | • • • • | • 0 0 | 200 | 246 | 318. | 200 | 300 | 305 | 310. | 313. | 311. | 305. | 294. | 283. | 268. | 253. | 239. | 225. | 212. | 199. | 188. | 176. | 167. | 157 | 149 | 141. | 134. | 127. | 121. | 114. | 109. | 105. | 100. | 97. | 92. | •06 | 87. | 84. | 81. | |
| TEME | V CY | 000 | 10.166 | 10.100 | 000 | 12.000 | 000. | 9 9 9 9 9 | 20.000 | 20.166 | 20.333 | 20-500 | 20.666 | 20.833 | 21.000 | 21.166 | 21.333 | 21.500 | 21.666 | 21.833 | 22-000 | 22.166 | 22,333 | 22-500 | 22.666 | 22, 833 | 23.000 | 23.166 | 23,333 | 23.500 | 23.666 | 23.833 | 24.000 | 24.166 | 24.333 | 24.499 | 24.666 | 24,833 | 24,999 | 25,166 | 25,333 | |
| FLOW | CFS | d | | | | : - | • ~ | | , | * 7 * | 120. | 252 | +00+ | 558 | | 870. | 1011 | 1110. | 1174. | 1202. | 1197. | 1160. | 1103. | 1031. | 953. | 877. | 810. | 759. | 710. | 662. | 614. | 569 | 533 | 514. | 520. | 526. | 526. | 516. | 502. | 479. | 452. | |
| TIME | ¥ | 12,500 | 12.667 | 17.822 | 200 | 13.167 | 12.4 | 33 500 | 13.50 | 000 | 13.833 | 14.000 | 74-TO | 14.333 | 14.000 | 14.66 | 14.833 | 15.000 | 15,167 | 15.333 | 15-500 | 15.667 | 15.833 | 16-000 | 16.167 | 16.333 | 16.500 | 16.667 | 16.833 | 17.000 | 17.167 | 17.333 | 17.500 | 17-667 | 17.833 | 18.000 | 18.167 | 18.333 | 18,500 | 18.667 | 18,833 | |

RUNDFF VOLUME = 2.375 INCHES PEAK DISCHARGE RATE = 1201.8 CFS

| Č. | |
|---------|---|
| T REACH | |
| THROUGH | |
| ROUTE | |
| ¥ | Ħ |

| ! | | | | | | | | | | | | | | | | | | | | | | DT=0.200000HRS | |
|----------------------|---------------------|-------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|-----------|
| 4.0 LENGTH= 3415. FT | | TIME (HRS) | 0.878 | ,0.614 | 0.472 | 068-0 | 0.339 | 0.319 | 0.268 | 0.233 | 0.208 | 0.200 | 202.0 | 0.231 | 0.251 | 0.249 | 0.253 | 0.262 | 0.257 | 0.246 | 0.230 | INFLOW ID=3 | |
| REACH NO= 4.0 | SLOPE=0.003000FT/FT |) FLOW(CFS) | 2. | 7. | 15. | 28. | 45* | .82 | 104. | 155. | 223. | 305. | 403. | 554. | 814. | 1196. | 1598. | 2078. | 3122. | 4498 | 6405 | HYD NO=103 | C#8t=1 |
| 10=1 | SLOPE=0. | DEPTH(FT) | 0.38 | C-84 | 1.25 | 1-69 | 2.14 | 2.54 | 3.15 | 3.75 | 4.32 | 4.87 | 5.36 | 5-82 | 6.32 | 6.83 | 7.28 | 7.69 | 8.27 | 8.86 | 74.4 | 10=1 | T=0. |
| TIME | | | | | | | | | | | | | | | | | | | | | | | |
| STORE TRAVEL | | | | - | | | | | | | | | | | | | | | | | | | PRINI HYD |

PARTIAL HYDROGRAPH 103

RUNDFF VOLUME = 2.375 INCHES PEAK DISCHARGE RATE = 1159.1 CFS

| SO MI | 153. | 201 | 173. | 79. | * 64 | 35. | 21. | 14. | 6 | •9 | 2 | 1. | • | • | ċ |
|--------------------------------------|------|--|------|------|-------------|-------------|-----|-----|-----|----------|----|----------|--------------|----------|----|
| S DA= 0.807 SQ
ND PTS=119 | 53. | 220. | 192. | 88. | 51. | 37 | 23. | 15. | 10. | | 2. | 1. | ċ | ċ | 0. |
| RS DA=
NO PT | 8 40 | 248. | 207. | 97. | 51. | 39 | 24. | 16. | 11. | 7. | m | 1. | ċ | ċ | • |
| DT= 0.250000 HRS
RO= 4.111 INCHES | | 275. | 215. | 108. | 54. | 41. | 26- | 17. | 11. | . | • | 2• | - | <u>.</u> | 0 |
| DT= 0.
RO= 4.11 | .03 | 299 | 217. | 122. | .09 | 43 | 28- | 18 | 12. | ě | 4 | 2- | | • | • |
| NO=304 | 0 0 | 336. | 218. | 137. | -09 | 454 | 30- | 19. | 12. | ϡ | 'n | 4 | . | • | ၀ |
| PEAK 504.CFS | 0.00 | 200
200
200
200
200
200
200
200
200
200 | 211. | 154. | 72. | 47 * | 99 | 50. | 13. | 6 | • | ~ | .i | ò | ċ |

* ADD THE HTD FROM AREA 304 TO THE PARTIAL HYD 103 TO OBTAIN THE OUTFLOW FROM * REACH 4.

ID 11=2

10 1=1

HYD NO= 4 CODE=0

1D=3 1D=3

ADD HYD PRINT HYD

| | 6.0 | ā | | - | | - | | | | | • | | • | | | | | | | | | | | | | | | | | | | | | |
|-------------------------|-------------|------------------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|------------|--------|
| | TIME
HRS | 000.00
000.00 | 40.100 | 40.300 | 40.500 | 40.700 | 40° 900 | 41.100 | 41.300 | 41.500 | 41.700 | 41.900 | 42.100 | 42.300 | 42,500 | 42,700 | 42,900 | 43.100 | 43,300 | 43.500 | 43.700 | 43.900 | 44.100 | 44.300 | 44.500 | 44.700 | 44.900 | 45.100 | 45,300 | 45.500 | 45.700 | | | |
| | FLOW
CFS | 9.7 | 90.6 | 30. | 29. | 28. | 28. | 27. | 25. | 25. | 24. | 23. | 23. | 23. | 23. | 22. | 22. | 21. | 21. | 21. | 20. | 5ù. | 20. | 5ن• | <u>2</u> 0. | 19. | 18. | 17. | 16. | 15. | 14. | 13. | 12. | 11. |
| | TIME
HRS | 33.100 | 33,300 | 33,500 | 33.709 | 33.990 | 34.100 | 34.300 | 34.590 | 34.700 | 34.900 | 35.100 | 35,300 | 35.500 | 35.700 | 35.900 | 36.100 | 36-35 | 36.500 | 36.700 | 36.900 | 37.100 | 37.300 | 37,500 | 37,730 | 37.900 | 38.100 | 38.300 | 38.500 | 38.730 | 38,900 | 39,100 | 39.300 | 39,500 |
| 4 | FLOW
CFS | 92. | 89. | 86. | 83. | 80. | 78* | 75. | 73. | 70. | 68. | -99 | 63. | .29 | •09 | 58. | 57. | 55. | 53. | 51. | -05 | 48. | 47. | 46. | 45. | 43. | 42. | 40. | 39. | 33 | 36. | 35. | 34. | 33. |
| UTFLOW HYDROGRAPH REACH | TIME
HRS | 26.300 | 26.500 | 26.700 | 26.900 | 27.100 | 27.300 | 27.500 | 27.700 | 27.900 | 28.100 | 28.300 | 28.500 | 28.700 | 28,900 | 29,100 | 29.300 | 29.500 | 29.700 | 29.900 | 39.100 | 30,300 | 30.500 | 30,700 | 30.900 | 31,100 | 31.300 | 31.500 | 31,700 | 31.900 | 32,100 | 32,300 | 32,500 | 32.700 |
| OUTFLOW HY | FLOW
CFS | 537. | 489. | 450. | 426. | 414. | 407. | 401. | 389. | 374. | 355. | 334. | 313. | 291. | 270. | 252. | 237. | 223. | 211. | 198. | 187. | 176. | 167. | 158. | 150. | 143. | 136. | 129. | 123. | 117. | 112. | 108. | 103. | 100. |
| | TIME
HRS | 19.500 | 19.700 | 19.900 | 20.100 | 20.300 | 20,500 | 20, 700 | 20.900 | 21.100 | 21,300 | 21,500 | 21.700 | 21.900 | 22.100 | 22.300 | 22-500 | 22.700 | 22.900 | 23.100 | 23,300 | 23,500 | 23.700 | 23,900 | 24.100 | 24-300 | 24.500 | 24.700 | 24.900 | 25.100 | 25,300 | 25,500 | 25.700 | 25.900 |
| | FLOW
CFS | ំតំ | ď | ó | °. | 10. | 56. | 179. | 399. | 651. | 869. | 1099. | 1308. | 1477. | 1587. | 1630. | 1606. | 1535. | 1434. | 1321. | 1210. | 1118. | 1036. | 956 | 878. | 809. | 774. | 757. | 751. | 744. | 734. | 713. | 680 | 637. |
| | TIME
HRS | 12,700 | 12,900 | 13,100 | 13,300 | 13,500 | 13,700 | 13,900 | 14.100 | 14,300 | 14.500 | 14.700 | 14.900 | 15.100 | 15,300 | 15,500 | 15.700 | 15.900 | 16.100 | 16.300 | 16.500 | 16.700 | 16.900 | 17.100 | 17,300 | 17.500 | 17.700 | 17,900 | 18,100 | 18,300 | 18,500 | 18.700 | 18.900 | 19.100 |

RUNDFF VOLUME = 2.686 INCHES PEAK DISCHARGE RATE = 1630.0 CFS

* ROUTE THROUGH REACH 5. * STORE TRAVEL TIME ID#1

| | | | | | | | | | | | | | | | | | | | | | | DT=0.200005HRS | |
|-----------------------|---------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|--------|----------------|-----------|
| = 3310, FT | | TIME (HRS) | 0.749 | 0.542 | 0.400 | 2.317 | ū-267 | 1.231 | 0.220 | 0.210 | 0.208 | 0.195 | 0.177 | 9.151 | 0.148 | 0.137 | 0.132 | 0.132 | 5.127 | 0.120 | 0.113 | # ID=3 | |
| O LEVETH | | - | | • | • | | | -1 | 7. | | * | | • | | • | • | | | ۶. | .' | • | INFLOW | |
| REACH NO= 5.0 LENGTH= | 3000FT/FT | FLOW(CFS) | • | • | 2 | ŢĻ | ŏ | 141. | 23. | 44 | 81 | 131 | 195 | 275 | 371 | 4861. | 5880 | • +699 | 8589 | 11067 | 14199, | NO=104 | C00E=1 |
| ID=1 RE/ | SLOPE=0.003000FT/FT | DEPTH(FT) | 0.35 | 0.96 | 1.57 | 2.19 | 2.82 | 3.45 | 4.28 | 5.30 | 6.13 | 6.83 | 7.47 | 8.09 | 8.71 | 9-31 | 9.78 | 10.18 | 10.77 | 11.33 | 11.89 | ID=1 HYC | ID=1 COU |
| 7.1.W | S | a | | | | | | | | | | | | | | | | | | | | г | |
| STORE TRAVEL | | | | | | | | | | | | | | | | | | | | | | ROUTE | PRINT HYD |

PARTIAL HYDROGRAPH 104

RUNDFF VOLUME = 2.686 INCHES PEAK DISCHARGE RATE = 1610.2 CFS

| | 363. | 729. | 373 | 167. | 104. | 65. | 41. | 27. | 18. | 13. | œ | •9 | .; | 1: | c. | ci | |
|---|----------|------|------|------|------|-----|-----|-----|-----|-----|-----|----------|---------|----------|----|----|----|
| DA= 1.875
NO PTS=117 | 157. | 793. | 425. | 182. | 111. | 70. | 43. | 29. | 20. | 13. | o, | • | 2. | ; | ċ | ç, | |
| | 28. | 880. | 474. | 197. | 119. | 75. | 46. | 30. | 21. | 14. | o. | •9 | m | .; | ċ | • | 0 |
| DT= 0.333333 HRS
RO≂ 3.837 INCHES | 5 | 937. | 517. | 216. | 128. | 81. | 49. | 32. | 22. | 15. | 10. | - | 4. | . | ċ | ċ | ċ |
| | ċ | 924. | 550- | 240. | 136. | 87. | 52. | 34. | 23. | 16. | 11. | <u>,</u> | ٠.
م | 1. | ō | ò | ċ |
| NO=305
.CFS | ċ | 821. | 610. | 278. | 145. | 93. | 56. | 36. | 24. | 17. | 11. | 8 | 5. | i. | 0 | ö | ó |
| ID=2 HYD NO=
PEAK= 937.CFS
FLOW RATES | ċ | 614. | 419 | 324. | 155. | 98 | .09 | 38* | 26. | 17. | 12. | 80 | | 1. | ò | 6 | ດໍ |
| | | | | | | | | | | | | | | | | | |
| ¥ | | | | | | | | | | | | | | | | | |
| RECALL | | | | | | | | | | | | | | | | | |

100 THE HYD FROM AREA 305 TO THE PARTIAL HYD 104.

| AVD HYD | 10=3 | HYD NO=105 | 1=1 Q1 | ID 11=2 |
|-----------|------|------------|--------|---------|
| PRINT HYD | ID=3 | CODE=1 | | |

PARTIAL HYDROGRAPH 105

PARTIAL HYDRO

RUNDFF VOLUME = 3.025 INCHES PEAK DISCHARGE RATE = 2542.0 CFS

| 502 | | |
|---|---|--|
| JIR | | 2 |
| ERV | | |
| RES | | ٠
د |
| 10 | | , |
| Q∧H | | ċ |
| ð | | |
| I NFI | | ĭ |
| 里 | | Č |
| 15. | | 200 |
| Ω. | | |
| USE | | 2 |
| AND | | 4 |
| 8 | | 5 |
| ALL | | |
| REC | | = |
| IS | | |
| 306 | | TALE TO BE TO THE TALE TO SECOND TO THE WIND TO THE TALE TO THE TALE THE TA |
| * THE HYD FROM AREA 306 IS RECALLED AND USED AS THE INFLOW HYD TO RESERVOIR 502 | | |
| × | | |
| F. | | |
| ξ | | |
| THE | | |
| * | # | |
| | | |

| # | | | | | | | | |
|--|-----------|--------|------------|-----------|------------------|---------|------|-------------|
| RECALL HYD | ID=5 | Η | HYD NO=306 | DT= (| DT= 0.250000 HRS | tS DA= | 0.48 | C.483 SO MI |
| | PEAK | | 638.CFS | RO= 3.3 | 169 INCHES | NO PTS= | 19 = | LOW RATE |
| | | • | ċ | ô | ċ | 45. | 280. | 560. |
| | * | 38. | 570. | 370. | 258. | 170. | 97. | 72. |
| | | 64. | 61. | 80. | 70. | 59. | 54. | 52. |
| | | 51. | 50. | 46. | 44* | 40 | 38. | 33. |
| | | 30. | 27. | 25. | 24. | 23. | 22. | 21. |
| | | 20- | 20- | .61 | 18. | 16. | 16. | 15. |
| | | 13. | 11. | 10. | o. | 8 | ۲- | ò |
| | | 4 | 'n | 'n | * | 4 | m | en
en |
| | | m
m | 2. | 2. | 2. | 1. | | |
| OTOVICE AND ADOR MOOD FOR THE PRINCE A | ADDA MOGO | 17 ACE | 100000 | IUN GENER | . 505 | | | |

* ROUTE THE HYD FROM AREA 306 THKOUGH RESERVOIR 502.
* ROUTE RESERVOIR ID=1 HYD NO=502 INFLOW ID=5

ROUTE RESERVOIR ID=1 HYD NG=502 INFLOW ID=5

OUTFLOW(CFS) STORAGE(AC FT)

O 1

-1 2.5

-2 5

-4 8

-4 15

500 PRINT HYD ID=1 C00E=1 OUTFLOW HYDROGRAPH RESERVOIR 502

RUNDFF VOLUME = 0.369 INCHES PEAK DISCHARGE RATE = 3.4 CFS

* RDUTE OUTFLOW FROM RESERVOIR 502 THROUGH REACH 6. *

| . | | | | | | | | | | | | | | | | | | | | | DT=0.200000HRS | |
|----------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|----------------|-------------|
| l= 4080. FT | TIME (HRS) | 0.589 | 0.496 | 0.335 | 0.285 | 0.252 | 0.249 | 0.248 | 0.240 | 0.228 | 0.216 | 0.205 | 0.192 | 0.179 | 0.167 | 0.154 | 0.142 | 0.132 | 0.123 | 0.116 | 1=01 MC | |
| 0= 6.0 LENGTH= | | 'n | 16. | 33. | 56. | 88. | 146. | 251. | 421. | 675. | 1019. | 1482. | 2102. | 2902. | 3908. | 5214. | 6796. | 8649. | 10796. | 13261. | 106 INFLOW | |
| ID=2 REACH NO= 6.0 | EPTH(FT) F | 0.44 | 0.80 | 1.18 | 1.52 | 80 | 2.26 | 2-66 | 3.10 | 3.55 | 4-00 | 4.46 | 4.93 | 5.40 | 5.88 | 6.37 | 6.85 | 7-33 | 7.80 | 8.28 | D=2 HYD NO=106 | ID=2 CODE=1 |
| STORE TRAVEL TIME IN | | i | | | | | | | | | | | | | | | | | | | ROUTE | HYD |

PARTIAL HYDROGRAPH 106

RUNDFF VOLUME = 0.381 INCHES PEAK DISCHARGE RATE = 3.4 CFS

| * | |
|-------------------------------|----------------------|
| | |
| 105 | |
| AND | ID 11=2 |
| 901 | 9 |
| HYDS 106 AND 105. | |
| FROM REACH 5, ADD PARTIAL | 1D 1=3 |
| ADD | <u>.</u> |
| 5, | ın |
| REAC | - N 0: |
| FROM | HYD NO=
CODE=0 |
| HYD | . 0 .0 |
| * TO DETAIN THE OUTFLOW HYD F | 10=6
I0=6 |
| THE | |
| OBTAIN | ADD HYD
PRINT HYD |
| # 10 | ADD
PRIN |

| | | 1 | 7.11 | 7 | | | |
|-----------|-------------|--------------------------|-------------|-------------|--------|------------|---------|
| N HTO | ID=6 CODE=0 | | | | | | |
| | | OUTFLOW HYDROGRAPH REACH | OGRAPH REAC | is | | | |
| TIME FLOW | TIME | FLOW | TIME | FLOW | TIME | HO TH | TIME |
| | | 617. | 78.900 | 103 | A7.100 |)
L u | 45 400 |
| | | 597. | 29.100 | 100. | 37,300 | , e | 45.500 |
| | | 575. | 29.300 | 97. | 37.500 | i in | 45,700 |
| | | 551. | 29.500 | -76 | 37.700 | 32. | 45, 900 |
| | | 524. | 29.700 | 91. | 37,900 | 31. | 46.100 |
| | | *96* | 29-900 | 88. | 38.100 | 31. | 46.300 |
| | | .69* | 30-100 | 85. | 38.300 | 30. | 46.500 |
| | | 445. | 30.300 | 83. | 38.500 | 29. | 46.700 |
| | | 417. | 30.500 | 81. | 38.700 | 28. | 46.900 |
| | | 394. | 30.700 | 78. | 38.900 | 26. | 47.190 |
| | | 373. | 30.900 | 76. | 39.100 | 25. | 47,300 |
| | | 354. | 31.100 | 74. | 39.300 | 24. | 47.500 |
| | | 335. | 31.300 | 72. | 39,500 | 22. | 47.700 |
| | | 318. | 31,500 | 9 69 | 39.700 | 21. | 47.900 |
| • | | 302. | 31,700 | 67. | 39.900 | 20. | 48,100 |
| • | | 287. | 31.900 | 65. | 40.100 | 20. | 48.299 |
| | | 274. | 32,105 | 63. | 40.300 | 18. | 48*499 |
| . • | | 261. | 32.300 | 61. | 40.500 | 17. | 48,599 |
| • | | 250. | 32.500 | .09 | 40.700 | 16. | 48.899 |
| | | 240. | 32.700 | 58. | 40.900 | 25. | 660.64 |
| | | 228. | 32,900 | 56. | 41.100 | 15. | 49.299 |
| | | 217. | 33,100 | 54. | 41.300 | 14. | 49.499 |
| | | 207. | 33.300 | 52. | 41.500 | 13. | 669*64 |
| | | 198. | 33.500 | 51. | 41.700 | 12. | 49.899 |
| • | | 190. | 33.700 | 50. | 41.900 | 11. | 50.099 |
| | | 182. | 33.900 | .64 | 42.100 | 10. | 50.299 |
| | | 175. | 34.100 | 48. | 42,300 | 6 | 50.499 |
| • • | | 169. | 34,300 | 47. | 42.596 | œ | 50.699 |
| | | 162- | 34.500 | 45. | 42.700 | a 0 | 50.899 |
| _ | | 156. | 34.700 | ‡ | 42.900 | 80 | 51.099 |
| _ | | 150. | 34.900 | 45- | 43.100 | . 8 | 51,299 |
| | | 144. | 35.100 | 41. | 43,300 | ۲. | 51,499 |
| • | | 139. | 35,300 | 40* | 43.500 | 7. | 51,699 |
| | | 134. | 35,500 | 39. | 43.700 | ~ | 51,899 |
| | | 130. | 35,700 | 39. | 43.900 | 7. | 52,099 |
| | | 126. | 35.900 | 38. | 44.130 | | 52,299 |
| | | 121. | 36.199 | 37. | 44.300 | 7. | 52,499 |
| | | 117. | 36.300 | 36. | 44.500 | •9 | 52,699 |
| | | 113. | 36.500 | 36. | 44.160 | 6 * | |
| | | 110. | 36-700 | 35. | 44.900 | 9 | |
| | | | | | | | |

RUNDFF VOLUME = 2.838 INCHES PEAK DISCHARGE RATE = 2544.1 CFS

* THE SEDIMENT YIELD COMMAND IS USED TO COMPUTE THE SEDIMENT YIELD PRODUCED BY *

* THE ROUTED FLOOD.

* SEDIMENT YIELD

* SEDIMENT YIELD

* 2444.6 IGNS

* RECALL THE REACH 5 DUTFLOW HYD ROUTED WITH PRESENT CONDITIONS.

* RECALL HYD

IG=2 HYD NG= 5 DT= 0.200000 HRS DA= 6.844 SQ MI

| 1 M 0'S | C) | Ę | 8 | - | W. | 788. | m | (1) | N | เก | - | 81. | 61. | 45. | 31. | 22. | 15. | 11. | ۲. | • | m | .; | Ι. | 0 | 0 | ō | 0 | |
|------------------------|-----|-------|-------|-------|-------|-------|------|------|------|------|------|-------------|------|-----|-----|-----|-----|-----|-----|----|------------|----------|--------------|--------------|---|---|-----|---|
| 6.844
S=194 | 15. | σ | o | 2137. | - | ω | 568. | 354. | 237. | 164. | 118. | 85. | - 49 | 47. | 33. | 24. | 16. | 12. | 7. | • | 4 | 1. | ÷ 7 | 0 | ċ | ċ | ċ | |
| HRS DA=
S ND PT: | m | 5 | ä | (U) | 5 | 889 | 0 | - | ŭ | 72 | ∾ | 0 | Α. | 49. | 35. | 25. | 17. | N | ¢. | •9 | 4 • | 1. | L | 0 | ò | ċ | င်င | • |
| 0.200000 H | ċ | യ | m | 2611. | VO. | u | 641. | 401. | 265. | 181. | 129. | • 76 | .69 | 52. | 36. | 26. | 18. | 13. | ο. | • | ທໍ | .; | ; | 0 | ċ | ô | ó | • |
| DT= 0.
RO= 4.19 | 6 | 1349. | 4367. | 2880. | 1707. | 1044. | 678. | 436. | 279. | 190. | 135. | 98 • | 72. | 54. | 38. | 28. | 19. | 13. | 10. | • | ស | | ! | • | 0 | ċ | o c | ; |
| NO= 5 | | 829. | 4260. | 3143. | 1783. | 1141. | 714. | 466- | 294. | 200. | 141. | 103. | 75. | 56. | 40, | 29. | 20. | 14. | 10. | 7. | 'n | 5 | ÷ | 1. | ં | ċ | o c | ; |
| HYD
= 4367
841FS | o | 378. | 968. | 415. | 869. | 244- | 749. | 497. | 312. | 211. | 148. | 107. | 78. | 59. | 45. | 30. | 21. | 15. | 11. | 7. | 'n | 3. | 1. | . | ò | ċ | o c | • |
| I D=2
PEAK
FI DM | | | m | m | | 1 | | | | | | | | | | | | | | | | | | | | | | |
| 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

LITERATURE CITED

- Brakensiek, D. L., Heath, A. L., and Comer, G. H. 1966. Numerical techniques for small watershed flood routing. U.S. Dept. Agr., Agr. Res. Serv., ARS 41-113, 41 pp.
- (2) Hann, R. W., Jr., and Carpenter, S. B.
 - 1970. Estuarine systems projects problem-oriented language package. Texas A&M Univ., Environmental Engin. Div., Civil Engin. Dept., Tech. Rpt. 16, 53 pp.
- (3) United States Department of Agriculture. 1969. Soil Conserv. Serv., Natl. Engin. Handb., Hydrol., Sect. 4: 10.1-17.48.
- (4) Williams, J. R.
 - 1968. Runoff hydrographs from small Texas blacklands watersheds. U.S. Dept. Agr., Agr. Res. Serv., ARS 41-143, 24 pp.

- (5) Williams, J. R.
 - 1969. Flood routing with variable travel time or variable storage coefficients. Amer. Soc. Agr. Engin. Trans. 12 (1): 100-103.
- (6)
 - 1971. Variable storage coefficient flood routing with variable slope. Pending publication. 10 pp. (Available from author.)
- (7) _____ and Hann, R. W., Jr.
- 1972. HYMO, a problem-oriented computer language for building hydrologic models. Water Resources Res. 8 (1): 79-86.
- (8) Wischmeier, W. H., and Smith, D. D.
 - 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. U.S. Dept. Agr., Agr. Handb. 282, 47 pp.

APPENDIX HYMO MAIN PROGRAM AND SUBROUTINES

```
//$OPTIONS
                                                                                               Α
                                        HYMO
     C
             THIS PROGRAM IS A PROBLEM ORIENTED COMPUTER LANGUAGE FOR
                                                                                                    3
                                                                                               A
             DEVELOPING WATERSHED MODELS.
      C
     C
                                                                                               Δ
      C
                                                                                               Δ
             DEFINITION OF VARIABLES
      C
             ID = STORAGE LOCATION NUMBER
                                                                                                    8
      C
            NHD = HYDROGRAPH IDENTIFICATION NUMBER
      Ċ
                                                                                               A
                                                                                                   10
      Ċ
             DT = TIME INCREMENT IN HOURS
                                                                                               Δ
             DA = DRAINAGE AREA IN SQ MI
                                                                                                   11
     C
                                                                                               Α
                                                                                                   12
            OCFS = FLOW RATE ARRAY
      C
                                                                                                   13
             OCFSF = CUTOFF FLOW RATE IN CFS
     Ċ
            IEND = NUMBER OF POINTS IN A HYDROGRAPH
SCFS = FLOW RATE ARRAY FOR TRAVEL TIME TABLE
                                                                                               A
                                                                                                   14
     C
                                                                                                   1.5
                                                                                               Δ
      C
                                                                                                   16
             A = END AREA IN SQ FT
     C
                                                                                                   17
             Q = FLOW RATE ARRAY FOR RATING CURVES
     C
                                                                                                   18
             RAIN = MASS RAINFALL ARRAY
      C
            COMMON CFS(300), DCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHO
                                                                                                   19
                                                                                               Α
 1
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXND, NCO
                                                                                               A
                                                                                                   20
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                                   21
                                                                                               A
                                                                                                   22
            3(6), TIME, PEAK (6), ROIN, [SG(6)
                                                                                               A
                                                                                                   23
             NC ODE=0
 2
                                                                                                   24
      C
             READ ZALFA ARRAY
             READ (5,20) (ZALFA(I), I=1,15)
                                                                                               Α
                                                                                                   25
 3
                                                                                                   26
                                                                                               A
     C
             READ NUMBER OF COMMANDS
                                                                                               Δ
                                                                                                   27
             READ (5,21) NCOMM
 4
            READ COMMAND TABLE
READ (5,22) ((CTBLE(I,J),J=1,11),(ITBTE(I,J),J=1,2),I=1,NCOMM)
                                                                                               ٨
                                                                                                   28
      Ċ
                                                                                                   29
 5
                                                                                               Α
                                                                                                   30
             WRITE (6,23) (ZALFA(I), I=1,15)
 6
             WRITE (6,24)
WRITE (6,25) ((CTBLE(I,J),J=1,11),(ITBLE(I,J),J=1,2),I=1,NCOMM)
ZERO CODES -- NPU = PUNCH, ICC = CONTINUATION CARD, NER = ERROR
                                                                                                   31
                                                                                               Α
 7
                                                                                               A
                                                                                                   32
 8
                                                                                                Α
                                                                                                   33
     C
                                                                                               A
                                                                                                   34
 Q
             NP U=0
                                                                                                   35
                                                                                               Δ
             ICC=0
10
                                                                                               Α
                                                                                                   36
      1
             NER=0
11
             CALL HONDO
                                                                                                A
                                                                                                   37
12
                                                                                               Α
                                                                                                   38
             IF (NER) 2,2,19
13
             GO TO (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), NCODE
                                                                                               Δ
                                                                                                   39
14
             TIME=DATA(1)
                                                                                                A
                                                                                                   40
15
             NPU=DATA(2)
                                                                                                A
                                                                                                   41
16
                                                                                                A
                                                                                                   42
             GO TO 1
17
                                                                                                A
                                                                                                   43
18
      4
             CALL STHYD
             GO TO 1
                                                                                                A
                                                                                                   44
19
                                                                                                   45
      5
             CALL RECHD
20
             GO TO 1
                                                                                                A
                                                                                                   46
21
                                                                                                   47
                                                                                                ٨
22
      6
             CALL CMPHYD
23
             GO TO 1
                                                                                                Ą
                                                                                                   48
                                                                                                A
                                                                                                   49
      7
             CALL PRIHYD
24
                                                                                                Α
                                                                                                    50
25
             GO TO 1
             CALL PUHYD
                                                                                                A
26
      8
                                                                                                    51
             GO TO 1
                                                                                                A
                                                                                                    52
27
             CALL HPLOT
                                                                                                    53
28
                                                                                                A
                                                                                                    54
29
             GO TO 1
                                                                                                   55
30
      10
             CALL ADHYD
                                                                                                A
             GO TO 1
                                                                                                   56
31
      11
             CALL SRC
                                                                                                A
                                                                                                    57
32
                                                                                                    58
37
             GO TO 1
                                                                                                A
             CALL CMPRC
34
      12
                                                                                                   59
```

```
G0 T0 1
35
                                                                                                60
      13
             CALL STT
36
                                                                                            A
                                                                                                61
             GO TO 1
37
                                                                                                62
      14
             CALL . CMPTT
38
                                                                                            A
                                                                                                63
39
             GO TO 1
                                                                                            A
                                                                                                64
      15
             CALL ROUTE
                                                                                                65
             GO TO 1.
41
                                                                                            A
42
      16
             CALL RESVO
                                                                                                67
43
             GO TO 1
                                                                                            A
                                                                                                68
             CALL ERROR
      17
                                                                                                69
45
             GO TO 1
                                                                                                70
             CALL SEDT
46
      18
                                                                                                71
47
             GO TO 1
                                                                                                72
             STOP
48
      19
                                                                                            Δ
                                                                                                73
      C.
                                                                                             A
                                                                                                74
      20
             FORMAT (15A1)
FORMAT (12)
49
                                                                                                75
50
      21
                                                                                             A
                                                                                                76
             FORMAT (2A1,9A2,2I3)
51
      22
                                                                                                77
                                                                                             Δ
             FORMAT (1H1,9X,8HZALFA = ,15A1///)
52
      23
                                                                                             A
                                                                                                78
             FORMAT (16X,13HCOMMAND TABLE//)
53
      24
                                                                                             A
                                                                                                79
54
             FORMAT (10X,2A1,9A2,2I3)
                                                                                                80
55
              END
                                                                                                81-
              SUBROUTINE HONDO
56
                                                                                             R
                                                                                                 1
             THIS SUBROUTINE READS IN A DATA CARD , SEARCHES AN ALPHAMERIC CODE TABLE TO DETERMINE THE NCODE OF THE OPERATION AND
      C
                                                                                             В
      C
             COLLECTS VARIABLES FROM THE FREEFLOATING DATA FIELD
      C
             COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
5.7
                                                                                             8
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                             A
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                             В
            3(6) . TIME . PEAK (6) . ROIN . ISG (6)
                                                                                             В
58
              DIMENSION CHAR(60), ALPHA(11)
                                                                                             B
                                                                                                10
59
              DIMENSION AUXA(10), AUXB(10)
60
              IF (ICC) 1,1,3
                                                                                             8
                                                                                                 11
             READ IN DATA CARD
READ (5,42) (ALPHA(I), [=1,11), (CHAR(I), I=1,60)
                                                                                             В
                                                                                                 12
      C
                                                                                                 13
61
              IF FIRST CHARACTER IS BLANK THE CARD IS A CONTINUATION OF
                                                                                             В
                                                                                                 14
                                                                                                 15
                                                                                             B
      C
              PREVIOUS CARD.
              IF (ALPHA(1)-ZALFA(11)) 2,9,2
                                                                                                 16
62
                                                                                                 17
       2
              IF (ICC) 3,3,40
63
              ASTERISK IN COL. 80 MEANS SKIP TO NEW PAGE BEFORE PRINTING CARD
                                                                                                 18
                                                                                                 19
              IF (CHAR(60)-ZALFA(11)) 4,5,4
64
              WRITE (6,43)
WRITE (6,44) (ALPHA(I), I=1,11), (CHAR(I), I=1,60)
                                                                                                 20
65
                                                                                                 21
66
       5
              IF FIRST CHARACTER IS A * THE PREVIOUS CARD WAS A COMMENT CARD IF (ALPHA(1)-ZALFA(12)) 10,6,10
                                                                                                 23
67
              IF PUNCH CODE POSITIVE, COMMENT CARDS ARE PUNCHED.
                                                                                                 24
                                                                                             R
       C.
                                                                                             R
                                                                                                 25
68
              IF (NPU) 8,8,7
              WRITE (7,45) (ALPHA(I), I=1,11), (CHAR(I), I=1,60)
69
                                                                                             В
                                                                                                 27
 70
              ICC=0
       8
                                                                                             B
                                                                                                 28
              GO TO 1
WRITE (6,44) (ALPHA(I), I=1,11), (CHAR(I), I=1,60)
 71
                                                                                             R
                                                                                                 29
 72
       9
                                                                                                 30
              GO TO 24
 73
              SEARCH FIRST TWO ALPHAMERIC CHARACTERS TO SEE IF THEY ARE NUMBERS
                                                                                                 32
 74
       10
              ICC=1
                                                                                                 33
 75
              DO 12 I=1,10
                                                                                              R
                                                                                                 34
                 (ALPHA(1)-ZALFA(I)) 11,15,11
 76
                                                                                              В
                                                                                                 35
              IF (ALPHA(2)-ZALFA(I)) 12,15,12
 77
       11
                                                                                                 36
 78
       12
              CONTINUE
              STATEMENT NUMBER 7 IS BRANCHED TO IF NUMBERS ARE PRESENT
       C
```

```
В
                                                                                         38
            IF NOT NUMBER SEARCH COMMAND TABLE FOR MATCH
      C
            CALL FIRST 10 VALUES FROM PERMANENT DATA STORAGE
                                                                                      А
                                                                                         39
      C.
                                                                                         40
            DO 14 I=1,50
 79
                                                                                         41
            00 13 J=1,11
 80
                                                                                         42
            IF (CTBLE(I,J)-ALPHA(J)) 14,13,14
 81
                                                                                         43
            SN 10=PART MATCH
      C.
                                                                                         44
      13
            CONTINUE
 82
            IF THIS LOOP IS COMPLETED WE HAVE COMPLETE MATCH- CALL NCODE
      C
                                                                                      В
                                                                                         46
            AND MAX NUMBER AND EXIT LOOP
      C.
                                                                                      R
                                                                                         47
            NCODE=ITBLE(1,1)
 83
                                                                                         48
            MAXNO=ITBLE(1.2)
 84
                                                                                      В
                                                                                          49
            GO TO 21
 85
                                                                                         50
                                                                                      В
      14
            CONTINUE
 86
            IF MAJOR LOOPS FINISHED WITHOUT A MATCH WRITE ERROR MESSAGE
                                                                                      В
                                                                                          51
      C.
                                                                                      В
                                                                                          52
            AND SET NER = 1
      C.
                                                                                      ₿
                                                                                         53
 87
            NFR=1
                                                                                         54
                                                                                      А
 88
            WRITE (6,46)
                                                                                      В
                                                                                          55
 89
            RETURN
            CONVERT DIGIT INPUT CODE FROM ALPHAMERIC TO INTEGER FORM
                                                                                         56
      С
                                                                                      В
                                                                                          57
            NCODE=GIT(ALPHA,1,2,1.)+0.5
 ٩n
      15
            FIND MAX NUMBER OF DATA ITEMS FOR THIS NCODE
                                                                                      В
                                                                                          58
      C
                                                                                      В
                                                                                          59
 91
            DO 17 I=1,50
                                                                                      8
                                                                                          60
            IF (ITBLE(I,1)-NCODE) 17,16,17
 92
                                                                                      ß
                                                                                         61
 93
            MAXNO=ITBLE(1,2)
      16
                                                                                      R
                                                                                          62
            GO TO 21
 94
                                                                                      В
                                                                                          63
 95
      17
            CONTINUE
                                                                                      В
                                                                                         64
            SEARCH DATA ROUTINE
      С
                                                                                      В
                                                                                         65
            SEE IF ANY DATA FOR THIS CARD
      C
                                                                                      В
                                                                                          66
 96
            DO 19 I=1,50
            [F (ITBLE(I,1)-NCODE) 19,18,19
                                                                                      В
                                                                                         67
 97
                                                                                      В
                                                                                         68
 98
      18
            MAXNO=ITBLE(I,2)
                                                                                      B
                                                                                          40
 99
            GO TO 20
                                                                                      В
                                                                                          70
            CONTINUE
100
      19
                                                                                      В
                                                                                          71
101
      20
            CONTINUE
                                                                                      В
                                                                                          72
102
      21
            IF (MAXNO) 23,22,23
103
      22
            RETURN
                                                                                      В
                                                                                          73
            ZERO ARRAYS AND COUNTERS
DO 47 I=1,310
                                                                                      В
                                                                                          74
      C
                                                                                          75
104
      23
                                                                                      В
                                                                                      В
                                                                                          76
105
      47
            DATA (1)=0.
                                                                                          77
106
            NDATA=1
                                                                                      B
107
      24
            NCHAR=0
                                                                                      В
                                                                                          78
      25
108
            DO 26 1=1,10
                                                                                      В
                                                                                          79
            AUXA(I)=0.
109
                                                                                      В
                                                                                          80
                                                                                          81
110
      26
            AUXB(I)=0.
                                                                                      В
                                                                                      В
                                                                                          82
111
             IT1=1
                                                                                      В
                                                                                          83
112
            TT2=1
                                                                                      B
                                                                                          84
            SIGN=1.
113
114
            LDGIT=0
                                                                                      В
                                                                                          85
115
            KDGIT=0
                                                                                          86
            CARRY OUT DIGIT BY DIGIT SEARCH AND ACCUMULATION
      C
                                                                                      В
                                                                                          87
      27
            NCHAR=NCHAR+1
                                                                                          នន
116
                                                                                      A
            HAVE WE CONSIDERED ALL CHARACTERS - RETURN IF SO
                                                                                          89
      C
                                                                                      R
117
             IF (NCHAR-60) 28,32,1
                                                                                      В
                                                                                          90
118
            DO 29 I=1,15
                                                                                          91
119
             IF (CHAR(NCHAR)-ZALFA(I)) 29,30,29
                                                                                      В
                                                                                          92
      29
            CONTINUE
120
                                                                                      В
                                                                                          93
                                                                                          94
121
            GO TO 32
      30
            GO TO (33,33,33,33,33,33,33,33,33,32,27,36,32,31,27), I
122
                                                                                          95
                                                                                      B
            SN 39 HANDLES SIGN CONTROL ON 1130 VERSION
      С
                                                                                          96
123
      31
            SIGN=-1.0
                                                                                          97
```

```
124
             GO TO 27
                                                                                        QA
                                                                                     A
             CHARACTER IS BLANK OR COMMA - DOES IT FOLLOW A DIGIT
      C
                                                                                        99
             GO TO (27,48), IT1
CHARACTER IS A DIGIT - HAS A DECIMAL BEEN ENCOUNTERED
125
      32
                                                                                       100
      C
                                                                                       101
      33
126
             GO TO (34,35), IT2
                                                                                     B 102
127
             LDGIT=LDGIT+1
                                                                                     В
                                                                                       103
128
             171=2
                                                                                     B 104
             AUXA(LDGIT)=CHAR(NCHAR)
129
                                                                                     В
                                                                                       105
130
             GO TO 27
                                                                                       106
                                                                                     A
131
       35
             KDGIT=KDGIT+1
                                                                                     8 107
132
             AUXB(K DGIT)=CHAR (NCHAR)
                                                                                     В
                                                                                       108
133
             GO TO 27
                                                                                     B 109
       С
             CHARACTER IS A DECIMAL - DOES IT FOLLOW A DIGIT
                                                                                     B 110
134
      36
             GO TO (37,38), IT1
                                                                                     В
                                                                                       111
135
             IT1=2
       37
                                                                                      112
136
             LDGIT=1
                                                                                     B 113
137
       38
             IT2=2
                                                                                     8 114
138
                                                                                     B 115
             ROUTINE TO CONVERT ALPHABETIC ARRAY TO FLOATING POINT NUMBER
       r
                                                                                     В
                                                                                       116
139
             DATA (NDATA)=GIT(AUXA,1,LDGIT,1.)+GIT(AUXB,1,10,0.)
       48
                                                                                     8 117
140
             DATA (NDATA)=DATA(NDATA)*SIGN
                                                                                     B 118
             IS ALL DATA FURNISHED YES-RETURN NO INCREASE N DATA KEEP ON
                                                                                     B 119
             IF (NDATA-MAXNO) 41,39,39
141
                                                                                     B 120
       39
             ICC=0
142
                                                                                     B 121
143
             RETURN
       40
                                                                                     B 122
             NDATA=NDATA+1
144
       41
                                                                                     8 123
145
             GU TO 25
                                                                                     В
                                                                                       124
      С
                                                                                     B 125
             FORMAT (2A1,9A2,60A1)
146
       42
                                                                                     B 126
             FORMAT (1H1)
147
       43
                                                                                     ·B
                                                                                       127
             FORMAT (5X,2A1,9A2,6OA1)
FORMAT (2A1,9A2,6OA1)
148
       44
                                                                                       128
      45
149
                                                                                     8
                                                                                       129
150
             FORMAT (10X,20HCOMMAND NOT IN TABLE)
                                                                                     B 130
151
                                                                                     B 131-
152
             FUNCTION GIT (TCARD, J, JLAST, SHIFT)
153
             DIMENSION TCARD(10), A(10)
             DATA A(1)/1H1/,A(2)/1H2/,A(3)/1H3/,A(4)/1H4/,A(5)/1H5/,A(6)/1H6/
154
                                                                                         3
155
             DATA A(7)/1H7/,A(8)/1H8/,A(9)/1H9/,A(10)/1H0/
156
             GIT=0.
                                                                                          5
157
             TEN=10.
                                                                                          6
158
             SUM=0.
                                                                                         7
             DO 3 JNOW=J,JLAST
159
                                                                                          Я
             TTEST=TCARD(JNOW)
160
                                                                                          9
      C
             CHECK FOR LAST ENTRY
                                                                                         10
             IF (TTEST.EQ.O.) GO TO 4
161
                                                                                        11
       C
             FIND NUMBER AND COMPUTE VALUE
                                                                                        12
162
             DO 2 NUMB=1,10
                                                                                         13
163
             IF (TTEST-A(NUMB)) 2,1,2
                                                                                        14
164
             Z TEST=NUMB
                                                                                        15
             IF (ZTEST.EQ.10.) ZTEST=0.
165
                                                                                         16
             SUM=SUM*TEN+ZTEST
166
                                                                                     C.
                                                                                        17
167
             GO TO 3
                                                                                         18
             CONTINUE
168
      2
                                                                                        19
169
       3
             CONTINUE
                                                                                         20
             IF (SHIFT) 6,5,6
170
       4
                                                                                     C
                                                                                         21
171
       5
             FI=JNOW-1
                                                                                         22
             SUM = SUM * (0 . 1 * * FI)
172
                                                                                     C
                                                                                         23
             GIT=SUM
173
       6
                                                                                     Ċ
                                                                                         24
174
             RETURN
                                                                                         25
```

```
C .
                                                                                                    26-
175
             END
                                                                                                D
              SUBROUTINE STHYD
176
             THIS SUBROUTINE STORES THE COORDINATES OF HYDROGRAPHS.
      C
             COMMON CFS (300) +OCFS (300+6) , IEND(6) , DATA(310) , DA(6) , DP(20) , NPU , NHD
                                                                                                D
                                                                                                     3
177
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                                D
            2MM, ICC, NCDDE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                                D
                                                                                                     5
            3(6), TIME, PEAK (6), ROIN, ISG(6)
                                                                                                D
                                                                                                     6
                                                                                                D
178
              ID=DATA(1)
                                                                                                D
                                                                                                     8
             NHD=DATA(2)
179
                                                                                                D
                                                                                                     9
180
              DT(ID)=DATA(3)
                                                                                                D
                                                                                                    10
             DA(ID)=DATA(4)
181
                                                                                                D
                                                                                                    11
182
              J = 5
                                                                                                D
                                                                                                    12
             REMAINING DATA ARE FLOW RATES
       C
             OCFS(1, ID) = DATA(J)
                                                                                                D
                                                                                                    13
183
                                                                                                D
                                                                                                    14
184
             PFAK(ID)=1.
                                                                                                D
                                                                                                    15
185
             RO=DATA(J)
                                                                                                D
                                                                                                    16
              DO 4 I=2,300
186
                                                                                                D
                                                                                                    17
              J = J + 1
187
             OCFS(I,ID)=DATA(J)
                                                                                                D
                                                                                                    18
188
                                                                                                Đ
                                                                                                    19
189
             RO=RO+OCFS(I, ID)
                                                                                                O
                                                                                                    20
       С
              IS FLOW RECEDING
                                                                                                D
              IF (OCFS(I,ID)-OCFS(I-1,ID)) 1,2,2
                                                                                                    21
190
             HAS FLOW RECEDED TO CUTOFF RATE
                                                                                                D
                                                                                                    22
       ¢
                                                                                                D
                                                                                                    23
             IF (OCFS(I,ID)) 5,5,4
191
       1
                                                                                                D
                                                                                                    24
       C
             DETERMINE PEAK FLOW
                                                                                                    25
              IF (OCFS(I, ID)-PEAK(ID)) 4,4,3
                                                                                                D
192
       2
                                                                                                D
                                                                                                    26
193
             PEAK(ID)=OCFS(I.ID)
       3
                                                                                                    27
                                                                                                Đ
194
             CONTINUE
                                                                                                D
195
       5
              IEND(ID)=I-1
                                                                                                    28
                                                                                                D
                                                                                                    29
196
             M = I END (ID)
                                                                                                D
                                                                                                    30
197
             ROIN=(RO*DT(ID))/(DA(ID)*645.333)
                                                                                                D
                                                                                                    31
       C.
             PUNCH CODE
                                                                                                D
                                                                                                    32
198
              IF (NPU) 7,7,6
              WRITE (7,8) ID, NHD, DT(ID), DA(ID), PEAK(ID), ROIN, IEND(ID)
199
                                                                                                D
                                                                                                    33
       6
200
              WRITE (7,9) (OCFS(J,ID),J=1,M)
                                                                                                D
                                                                                                    34
                                                                                                    35
       7
                                                                                                D
             RETURN
201
                                                                                                D
                                                                                                    36
            FORMAT( *RECALL HYD*, T21, *ID=*, I1, T29, *HYD NO=*, I3, T42, *DT=*, F9.
16, *HRS*, T61, *DA=*, F8.3, *SQ MI*/T21, *PEAK=*, F7.0, *CFS*, T40, *RO=*,
                                                                                                    37
202
       8
                                                                                                n
                                                                                                D
                                                                                                    38
             2F6.3, INCHES', T59, 'NO PTS=', 13/T21, 'FLOW RATES')
                                                                                                D
                                                                                                    39
                                                                                                D
                                                                                                    40
             FORMAT (T21,7F8.0)
203
       9
204
              END
                                                                                                D
                                                                                                    41-
              SUBROUTINE RECHO
                                                                                                E
                                                                                                     1
20.5
              THIS SUBROUTINE RECALLS PREVIOUSLY COMPUTED AND PUNCHED
       C
                                                                                                F
                                                                                                     2
                                                                                                     3
              COMMON CFS (300), OCFS (300,6), IEND (6), DATA (310), DA (6), DP (20), NPU, NHD
                                                                                                E
206
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                                £
                                                                                                E
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                                     6
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                                E
207
              ID=DATA(1)
                                                                                                Ε
208
             NHD=DATA(2)
                                                                                                    10
209
              DT(ID)=DATA(3)
                                                                                                F
210
              DA(ID)=DATA(4)
                                                                                                E
                                                                                                    11
                                                                                                 E
                                                                                                    12
21 Ł
              PEAK(ID)=DATA(5)
                                                                                                    13
                                                                                                Ε
             RMIN=DATA(6)
212
                                                                                                Ë
                                                                                                    14
213
              IEND(ID)=DATA(7)
             M=IEND(ID)
                                                                                                 E
                                                                                                    15
214
```

E 16

215

J=8

```
REMAINING DATA ARE FLOW RATES
      C
                                                                                       E
                                                                                           17
216
             DO 1 I=1,M
                                                                                          18
                                                                                       E
217
             OCFS(I,ID) = DATA(J)
                                                                                       ε
                                                                                          19
218
      1
             J = J+ 1
                                                                                       E
                                                                                           20
             RETURN
219
                                                                                       E
                                                                                           21
220
             FND
                                                                                       F
                                                                                           22-
             SUBROUTINE CMPHYD
221
             THIS PROGRAM DEVELOPS A UNIT HYDROGRAPH, CONVERTS MASS RAINFALL
      C
                                                                                            2
             TO POINT RUNOFF, AND COMPUTES STORM HYDROGRAPHS BY SUMMATION.
      C
                                                                                            3
             COMMON CFS (300), OCFS (300, 6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
222
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                       F
                                                                                            5
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE (50,11), ITBLE (50,2), ZALFA(20), DT
            3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                       F
                                                                                            7
             ID=DATA(1)
                                                                                       F
                                                                                            8
224
             NHD=DATA(2)
                                                                                            9
225
             DT(ID)=DATA(3)
                                                                                           10
             DA(ID)=DATA(4)
226
                                                                                           1 1
227
             CN=DATA(5)
                                                                                       F
                                                                                           12
             ARE K AND TP FURNISHED OR WILL THEY BE COMPUTED
                                                                                       F
                                                                                           13
228
             IF (DATA(6)) 1,2,2
229
      1
             XK=-DATA(A)
                                                                                       F
                                                                                           15
230
             TP=-DATA(7)
                                                                                       F
                                                                                          16
231
             GO TO 3
                                                                                       F
                                                                                           17
232
      2
             HT=DATA(6)
                                                                                       F
                                                                                           18
233
             XL=DATA(7)
                                                                                           19
234
             SLOPE=HT/XL
                                                                                       F
                                                                                           20
235
             XLDW=(XL**2.)/DA(ID)
                                                                                       F
                                                                                           21
             XK=27.0*(DA(ID)**.231)*(SLOPE**(-.777))*(XLDW**.124)
236
                                                                                          22
237
             TP=4.63*(0A(I0)**.422)*(SLOPE**(-.46))*(XLDW**.133)
                                                                                           23
             PEAK(ID)=1.
238
      3
                                                                                           24
             DO 4 I=1,300
239
                                                                                       F
                                                                                           25
             OCFS([,ID)=0.
240
                                                                                       ۴
                                                                                           26
             COMPUTE N BY ITERATION.
                                                                                           27
241
             XN≈5.0
                                                                                       F
                                                                                           28
242
             XKTP=XK/TP
                                                                                       E
                                                                                           29
243
             00 6 I=1,50
                                                                                           30
244
             TINF =1. + SQRT(1./(XN-1.))
                                                                                       F
                                                                                           31
245
             XN1=.05/(XKTP*(ALOG(TINF/(TINF+.05))+.05))+1.
                                                                                       F
                                                                                           32
246
             DIFF=ABS(XN1-XN)
                                                                                       F
                                                                                           33
247
             IF (DIFF-.001) 7,7,5
                                                                                       ۴
                                                                                           34
248
      5
             XN = XN1
249
      6
             CONTINUE
                                                                                       F
                                                                                           36
250
             WRITE (6,29)
                                                                                       F
                                                                                           37
251
             GO TO 28
                                                                                       F
                                                                                           38
      C
             DETERMINE C1.
                                                                                       F
                                                                                           39
252
             DELT=TINF/100.
                                                                                           40
253
             TC1=0.
                                                                                       F
                                                                                           41
254
             XN1P=XN-1.
                                                                                       F
                                                                                           42
255
             X N 1 M = 1 . - X N
                                                                                           43
256
             008I=2,101
                                                                                       F
                                                                                           44
257
             TC1=TC1+DELT
                                                                                       F
                                                                                           45
258
             CFS(I) = (TCI **XN1P) *EXP(XN1M*(TCI-1.))
                                                                                       ۴
                                                                                           46
259
             SUM=CFS(101)/2.
                                                                                       F
                                                                                           47
260
             DO 9 I=2,100
                                                                                           48
261
      9
             SUM=SUM+CFS(I)
                                                                                       F
                                                                                           49
262
             C1=SUM*DELT
                                                                                       F
                                                                                           50
263
             CFSII=CFS(101)
                                                                                       £.
                                                                                           51
264
             TT INF=TINF*TP
                                                                                       F
                                                                                           52
265
             TREC1=TTINF+2.*XK
```

```
266
               EEE=EXP((TTINF-TREC1)/XK)
                                                                                             54
 267
               XK1=3.*XK
                                                                                          F
                                                                                             55
 268
               B=645.333/(C1+CFSII*(XKTP*(1.-EEE)+EEE*(XK1/TP)))
                                                                                             56
               COMPUTE B, QP, AND CFSI.
                                                                                          F
                                                                                             57
 269
               QP=(B*DA(ID))/TP
                                                                                          F
                                                                                             58
 270
               CFSI=QP*CFS(101)
                                                                                             59
 271
               CF SR1=CFSI *EEE
                                                                                          F
                                                                                             60
 272
               WRITE (6,30) XN,QP
                                                                                          F
                                                                                             61
        C
               DETERMINE INCREMENTAL RUNOFF.
                                                                                             62
 273
               R= 1000./CN-10.
                                                                                             63
 274
               B1=.2*R
                                                                                             64
 275
               J = 8
                                                                                             65
 276
               IF (DATA(J)) 13,10,10
                                                                                          F
                                                                                             66
 277
        10
               RAIN(1)=DATA(J)
                                                                                             67
 278
               DO 11 I=2,300
                                                                                         F
                                                                                             68
 279
               J = J + 1
                                                                                         F
                                                                                             69
280
               RAIN(I)=DATA(J)
                                                                                             70
 281
               IF (RAIN(I)-RAIN(I-1)) 12,11,11
                                                                                             71
282
        11
               CONTINUE
                                                                                             72
 283
        1,2
               NUMB=I-1
                                                                                         F
                                                                                             73
284
        13
               DO 15 I=1, NUMB
                                                                                         F
                                                                                             74
285
               IF (RAIN(I)-81) 33,33,14
                                                                                             75
286
        33
               DATA (1)=0.
                                                                                             76
287
               01=0.
                                                                                         F
                                                                                             77
288
              GO TO 15
                                                                                             78
289
               Q2=((RAIN(I)-B1)**2.)/(RAIN(1)+.8*R)
        14
290
              DATA (I)=Q2-Q1
                                                                                             80
291
              0.1 = 0.2
                                                                                             81
292
       15
              CONTINUE
                                                                                             82
       C
              COMPUTE UNIT HYDROGRAPH.
                                                                                             83
293
               T2=0.
                                                                                             84
294
              CFS(1)=0.
                                                                                             85
295
              DO 20 I=2,300
                                                                                             86
296
              T2=T2+DT([D)
                                                                                             87
              IF (T2-TTINF) 16,16,17
297
                                                                                             88
298
              CFS(I)=QP*((T2/TP)**XN1P)*EXP(XN1M*(T2/TP-1.))
                                                                                         F
                                                                                             89
              GO TO 20
IF (T2-TREC1) 18,18,19
299
                                                                                         F
                                                                                             90
300
       17
                                                                                             91
              CFS(I)=CFSI*EXP((TTINF-T2)/XK)
301
       18
                                                                                             92
302
              GO TO 20
                                                                                             93
303
       19
              CFS(I) =CFSR1*EXP((TREC1-T2)/XK1)
                                                                                         F
                                                                                             94
304
              IF (CFS(I)-1.) 21,21,20
                                                                                         F
                                                                                             95
305
       20
              CONTINUE
                                                                                             96
306
              I = 300
                                                                                             97
307
       21
              I CND=I
                                                                                            98
              COMPUTE STORM. HYDROGRAPH.
       C.
                                                                                            99
308
              DO .24 J=2.NUMB
                                                                                         F
                                                                                           100
309
              N=J+ICND-2
                                                                                           101
310
              IF (N-300) 23,23,22
                                                                                           102
311
       22
              N = 300
                                                                                         F
                                                                                           103
312
       23
              KK=j
                                                                                         F 104
313
              I = 2
                                                                                         F
                                                                                           105
314
              DO 24 K=KK,N
                                                                                         F 106.
315
              OCFS(K,ID)=OCFS(K,ID)+DATA(J)*CFS(I)
                                                                                         F 107
       24
316
              I = I + 1
                                                                                         F
                                                                                           108
317
              M=K-1
                                                                                         F 109
              RO=0.
318
                                                                                         F
                                                                                           110
              DO 26 I=2,M
319
                                                                                         F 111
              COMPUTE RUNOFF VOLUME
       C
                                                                                         F 112
              RO=RO+OCFS(I,ID)
320
```

```
DETERMINE PEAK
      С
                                                                                               F 114
              IF (OCFS(1, ID)-PEAK(ID)) 26,26,25
321
                                                                                               F 115
              PEAK(ID)=OCFS(I,ID)
322
                                                                                               F 116
323
             CONTINUE
      26
                                                                                               F 117
324
              I = M
                                                                                               F 118
325
              I = ND(ID) = I
                                                                                               F 119
326
             M = I
                                                                                               F 120
             ROIN=(RO*DT(ID))/(OA(ID)*645.333)
327
                                                                                               F 121
      C.
             PUNCH CODE
                                                                                               F
                                                                                                 122
328
              IF (NPU) 28,28,27
                                                                                               F 123
329
             WRITE (7,31) ID, NHD, DT(ID), DA(ID), PEAK(ID), ROIN, LEND(ID)
                                                                                               F 124
              WRITE (7,32) (OCFS(I,IO),I=1,M)
330
                                                                                               F 125
331
      28
             RETURN
                                                                                               F 126
                                                                                               F 127
             FORMAT('N DID NOT CONVERGE AFTER 50 ITERATIONS.')
332
      29
                                                                                               F 128
             FORMAT (T10, 'SHAPE CONSTANT, N = ', F6.3/T10, 'UNIT PEAK = ', F10.1, C F 129
373
      3.0
            1FS*/1
            FORMAT( 'RECALL HYD', T21, 'ID=', I1, T29, 'HYD NO=', I3, T42, 'DT=', F9.
16, 'HRS', T61, 'DA=', F8.3, 'SQ MI'/T21, 'PEAK=', F7.0, 'CFS', T40, 'RO=',
2F6.3, 'INCHES', T59, 'NO PTS=', I3/T21, 'FLOW RATES')
334
      31
                                                                                                 131
                                                                                               F 132
             FORMAT (T21,7F8.0)
335
      32
                                                                                               F 133
336
              END
                                                                                               F
                                                                                                 134-
              SUBROUTINE PRIHYD
337
                                                                                               G
      ¢
             THIS SUBROUTINE PRINTS THE COORDINATES OF A HYDROGRAPH.
             COMMON CFS (300), OCFS (300,6), IEND (6), DATA (310), DA(6), DP(20), NPU, NHD
338
            1, SCFS(20),C(20),A(20,6),Q(20,6),RAIN(200),DEEP(20,6),NER,MAXNO,NCO
                                                                                               G
            2MM.ICC.NCODE.DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                               G
                                                                                                    5
            3(6), TIME, PEAK (6), ROIN, 1SG(6)
339
             ID=DATA(1)
340
             NPK=DATA(2)
                                                                                                    В
             DETERMINE TYPE OF HYDROGRAPH
      C
                                                                                                    9
                                                                                               C.
             IF (NHD-100) 6,6,2
341
                                                                                                   10
             WRITE (6,14) NHD
GO TO 7
342
      1
                                                                                                   11
343
                                                                                                   12
             IF (NHD-300) 3,3,4
WRITE (6,15) NHD
344
      2
                                                                                                   17
345
      3
                                                                                               G
                                                                                                  14
346
             GO TO 7
                                                                                                   15
             IF (NHD-500) 1,1,5
347
                                                                                                  16
             WRITE (6,16) NHD
GO TO 7
      5
34B
                                                                                               G
                                                                                                   17
349
                                                                                               G
                                                                                                   18
             WRITE (6,17) NHD
350
                                                                                                   19
             POSITIVE NPK MEANS PRINT ONLY PEAK AND VOLUME
      C
                                                                                               G
                                                                                                   20
351
             IF (NPK) 8,8,11
      7
                                                                                               G
                                                                                                   21
352
      n
             0 = 1
                                                                                               G
                                                                                                   22
             WRITE (6,18)
353
                                                                                               G
                                                                                                   23
354
             M= [END(ID]
                                                                                               G
                                                                                                   24
355
             TIME1=TIME
                                                                                               G
                                                                                                   25
      C
             BUILD TIME ARRAY IN DATA
                                                                                               G
                                                                                                   26
356
             DO 9 I=1,M
                                                                                               G
                                                                                                   27
357
             DATA ( I )= TIME 1
                                                                                               G
                                                                                                   28
             TIME1=TIME1+DT(ID)
358
      9
                                                                                               G
                                                                                                   29
359
             MARM+4
                                                                                               G
                                                                                                   30
360
             M5=M4/5
                                                                                               G
                                                                                                   31
361
      10
             J=J+1
                                                                                               G
                                                                                                   32
             WRITE (6,19) (DATA(I), DCFS(I, ID), I=J, M, M5)
362
                                                                                               G
                                                                                                   33
363
             IF (J-M5) 10,11,11
                                                                                               G
                                                                                                   34
364
      11
             WRITE (6,20) ROIN, PEAK(ID)
                                                                                               G
                                                                                                  35
             IF (NPU) 13,13,12
365
                                                                                               G
                                                                                                  36
366
      12
             WRITE (7,21) ID, NPK
```

```
38
367
       13
             RETURN
                                                                                          G
                                                                                              30
                                                                                          G
                                                                                              40
             FORMAT (1H0,46X,21HHYDROGRAPH FROM AREA ,13/)
368
       14
             FORMAT (1H0,41X,19HPARTIAL HYDROGRAPH ,14/)
                                                                                              41
       15
369
             FORMAT (1H0,39X,29HOUTFLOW HYDROGRAPH RESERVOIR , 14/)
                                                                                              42
370
       16
                                                                                          G
371
       17
             FORMAT (1HO,44X,25HOUTFLOW HYDROGRAPH REACH ,14/)
                                                                                              43
                                         FLOW
                                                                      FLOW
372
       18
             FORMAT (10X,114HTIME
                                                                                 FLOW/1
                                                    FLOW
                                                                     TIME
                                                                                              45
             1T LME
                        FLOW
                                         TIME
                                                            CES
                                                                             HRS
                                                                                              46
                                                HRS
             21X,113HHRS
                                CES
                                                                      CEST
                                                                                           G
            3 CFS
                               HRS
                                                           HRS
                                                                                              47
       19
373
             FORMAT (5(5X,F10.3,F10.0))
                                                                                           G
                                                                                              48
             FORMAT (1HO,9X,16HRUNDFF VOLUME = F10.3,8H INCHES /10X,22HPEAK DIS
                                                                                              49
374
       20
                                                                                              50
            1CHARGE RATE = ,F10.1,4H CFS///)
                                                                                              51
375
       21
             FORMAT(
                        'PRINT HYD', T21, 'ID=', I1, T29, 'CODE=', I1)
                                                                                          G
                                                                                          G
376
                                                                                              52-
                                                                                          Н
                                                                                               1
377
             SUBROUTINE PUHYD
       C
             THIS SUBROUTINE PUNCHES HYDROGRAPHS IN FORM TO BE USED BY
                                                                                               2
       C
                                                                                               3
             SUBROUTINE RECHD
             COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
378
            1,SCFS(20),C(20),A(20,6),Q(20,6),RAIN(200),DEEP(20,6),NER,MAXNO,NCO
                                                                                               5
                                                                                          н
            2MM,ICC,NCODE,DIST(6),SEGN(6),CTBLE(50,11),ITBLE(50,2),ZALFA(20),DT
                                                                                          Н
                                                                                               6
            3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                               7
379
             ID=DATA(1)
                                                                                          н
                                                                                               8
380
             M=IEND(ID)
                                                                                               9
                                                                                          Н
381
             WRITE (7,1) IO, NHO, DT(ID), DA(ID), PEAK(ID), ROIN, IEND(ID) WRITE (7,2) (OCFS(I,ID), I=1,M)
                                                                                          н
                                                                                              10
382
                                                                                          Н
                                                                                              11
383
             RETURN
                                                                                              12
                                                                                          н
                                                                                              13
384
             FORMAT (
                        'RECALL HYD', T21, 'ID=', I1, T29, 'HYD NO=', I3, T42, 'DT=', F9.
                                                                                          н
                                                                                              14
            16, HRS', T61, DA=', F8.3, SQ MI'/T21, PEAK=', F7.0, CFS', T40, RO=',
                                                                                              15
            2F6.3, INCHES', T59, 'NO PTS=', 13/T21, 'FLOW RATES')
                                                                                          Н
                                                                                              16
385
       2
             FORMAT (T21,7F8.0)
                                                                                              17
                                                                                          н
386
                                                                                          н
                                                                                              18-
387
             SUBROUTINE HPLOT
      С
             THIS SUBROUTINE PLOTS EITHER 1 OR 2 HYDROGRAPHS ON A SET OF AXIS
                                                                                               2
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
388
                                                                                               3
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                               5
            3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                               6
389
             ID1=DATA(1)
390
             ID2=DATA(2)
                                                                                               8
391
             DATA ZERO, PLUS, BLANK, DASH, DOT/ 101, 1+1, 1 1, 1-1, 1.1/
                                                                                               9
392
             MR TO=1
                                                                                              10
393
             XMRTO=1.
                                                                                              11
394
             MAX=118
                                                                                              12
395
             J = 1
                                                                                              13
      C
             ARE THERE I OR 2 HYDROGRAPHS
                                                                                              14
396
             IF (ID2) 1,1,2
                                                                                              15
             DETERMINE HIGHEST PEAK IF 2 HYDROGRAPHS
                                                                                              16
             QMAX=PEAK(ID1)
397
      1
                                                                                              17
398
             GO TO 14
                                                                                              18
             IF (PEAK(ID1)-PEAK(ID2)) 3,3,4
399
      2
                                                                                              19
400
      3
             QMAX=PEAK(ID2)
                                                                                              20
401
             GO TO 5
                                                                                              21
402
             QMAX=PEAK(ID1)
                                                                                              22
             IF 2 HYDROGRAPHS DETERMINE LARGEST DT AND INTERPOLATE OTHER.
                                                                                          Ī
                                                                                              23
      C.
             HYDROGRAPH IF NECESSARY
                                                                                              24
403
             IF (DT(ID1)-DT(ID2)) 6,13,7
                                                                                              25
```

```
404
             L = IDI
                                                                                         F
                                                                                             26
405
             K = ID2
                                                                                         I
                                                                                             27
406
             GO TO 8
                                                                                             28
407
       7
             I = ID2
                                                                                             29
408
             K = ID1
                                                                                         ſ
                                                                                             30
409
       8
             M=IEND(L)
                                                                                             31
410
             TID=DT(K)
                                                                                             32
             TIDH=0.
411
                                                                                             33
             DO 11 [=2, M
412
                                                                                            34
413
             TIDH=TIDH+DT(L)
                                                                                         ī
                                                                                             35
             IF (TID-TIDH) 10,9,11
414
                                                                                            36
             J=J+1
415
                                                                                             37
416
             CFS(J)=DCFS(I,L)
                                                                                            38
417
             TID=TID+DT(K)
                                                                                            19
418
             GO TO 11
                                                                                             40
       10
419
             .1 = .1 + 1
                                                                                             41
             CFS(J) = OCFS(I-1,L)+((TID-TIDH+DT(L))/DT(L))*(OCFS(I,L)-OCFS(I-1,L)
420
                                                                                            42
                                                                                            43
421
                                                                                            44
422
       11
             CONTINUE
                                                                                            45
             IEND(L)=J
423
                                                                                            46
424
             DT(L)=DT(K)
                                                                                            47
425
             00 12 I=2,J
                                                                                            48
             UCFS(I,L)=CFS(I)
426
      12
                                                                                            49
427
      13
             IF (IEND(ID1)-IEND(ID2)) 14,14,15
                                                                                            50
                                                                                         Ŧ
428
       14
             M= [END(ID1)
                                                                                            51
429
             GO TO 16
                                                                                            52
       15
             M= [END(ID2)
430
                                                                                            53
             IF (M-MAX) 17,17,18
      16
431
             DETERMINE TIME SCALE
                                                                                            55
                                                                                         ī
432
      17
             MR TO=MAX/M
                                                                                            56
433
             XMRTO=MRTO
                                                                                            57
             GO TO 19
434
                                                                                            58
435
      18
             M=MAX
                                                                                            59
436
      19
             YSCL=QMAX/50.
                                                                                         I
                                                                                            60
             PLOT HYDROGRAPHS
                                                                                            61
437
             DO 20 I=1, MAX
                                                                                            62
      20
438
             CFS(I)=DASH
                                                                                            63
             WRITE (6,41) QMAX, (CFS(I), I=1, MAX), DOT
439
                                                                                            64
440
             Q1=QMAX
                                                                                            65
441
             J1 = 10
                                                                                            66
442
             00 37 J=1,50
                                                                                            67
             IF (J-J1) 23,21,23
443
                                                                                            68
444
             DO 22 I=1, MAX
      21
                                                                                            69
445
      22
             CFS(I)=DASH
                                                                                            70
446
             GO TO 25
                                                                                         Ţ
                                                                                            71
447
      23
             DO 24 I=1, MAX
                                                                                            72
448
      24
             CFS(I)=BLANK
                                                                                            73
      25
449
             Q2=Q1-YSCL
450
             K = 1
                                                                                            75
                                                                                         ī
451
             DO 28 I=2,M
                                                                                         ſ
                                                                                            76
452
             K = K + MRTO
                                                                                            77
453
             IF (OCFS(I,ID1)-Q1) 26,27,28
                                                                                            78
454
             IF (OCFS(1,1D1)-Q2) 28,28,27
      26
                                                                                         Ī
                                                                                            79
455
      27
             CFS(K)=ZERO
                                                                                            80
456
      28
             CONTINUE
                                                                                         I
                                                                                            81
457
             WRITE (6,44) DOT, (CFS(I), I=1, MAX), DOT IF (ID2) 34,34,29
                                                                                            82
458
                                                                                         I
                                                                                            83
459
      29
             K = 1
                                                                                         Ī
                                                                                            84
460
             DO 33 I=2, M
                                                                                            85
```

```
Ţ
                                                                                             86
461
             K≖K+MRTO
             IF (OCFS(1,1D2)-Q1) 30,31,32
                                                                                         I
                                                                                             87
462
                                                                                          Ī
                                                                                             88
463
      30
             IF (OCFS(1, ID 2)-Q2) 32, 32, 31
                                                                                             89
             CFS(K)=PLUS
464
      31
                                                                                             90
                                                                                          Ţ
             GO TO 33
465
                                                                                             91
                                                                                         Ï
466
             CFS(K)=BLANK
                                                                                             92
467
             CONTINUE
                                                                                             93
                                                                                          I
             WRITE (6,42) (CFS(I), I=1, MAX)
468
                                                                                             94
                                                                                          Ŧ
469
      34
             IF (J-J1) 36,35,36
                                                                                             95
                                                                                          ī
470
      35
             J1=J1+10
                                                                                             96
471
             WRITE (6,43) Q2
                                                                                             97
                                                                                         Ī
472
             Q1 = Q2
      36
                                                                                             98
                                                                                          Ĭ
             CONTINUE
473
      37
                                                                                         Ī
                                                                                            99
474
             CFS(1)=TIME
                                                                                          I 100
475
             DTT=DT(ID1)*10./XMRTO
                                                                                         I 101
             PUT TIME ARRAY IN CFS AND WRITE TIME SCALE
      С
                                                                                          1 102
             DO 38 I=2,12
476
                                                                                          I 103
             CFS(I)=CFS(I-1)+DTT
      38
477
                                                                                          I 104
478
             WRITE (6,45) (CFS(I), I=1,12)
                                                                                          1 105
             WRITE (6,46)
479
                                                                                         1 106
             IF (NPU) 40,40,39
480
                                                                                          1 107
48 I
      39
             WRITE (7,47) -ID1, ID2
                                                                                          I 108
482
      40
             RETURN
                                                                                          I 109
                                                                                          1 110
483
      41
             FORMAT(1X, F6.0, CFS. ', 119A1)
                                                                                         I 111
484
             FORMAT (1H+,11X,118A1)
      42
             FORMAT (1H+,F6.0)
                                                                                          I 112
485
      43
                                                                                          I 113
             FORMAT (11X,120A1)
486
      44
                                                                                         1 114
487
      45
             FORMAT (6X,12F10.3)
             FORMAT(49X,*TIME HOURS*///)
                                                                                          I 115
488
      46
                        'PLOT HYD', T21, 'ID I=', I1, T29, 'ID II=', I1)
                                                                                          1 116
      47
             FORMAT (
489
                                                                                          1 117-
490
             END
491
             SUBROUTINE ADHYD
                                                                                              1
             THIS SUBROUTINE ADDS TWO HYDROGRAPHS.
                                                                                              2
      C
             COMMON CFS (300), OCFS (300,6), TEND (6), DATA (310), DA(6), DP (20), NPU, NHD
492
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                              4
                                                                                              5
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
            3(6), TIME, PEAK(6), ROIN, ISG(6)
493
             ID=DATA(1)
             NHD=DATA(2)
                                                                                              Я
494
495
             ID1=DATA(3)
                                                                                              9
                                                                                             10
496
             ID2=DATA(4)
497
                                                                                             11
             PEAK(ID)=1.
             MAKE TIME INCREMENTS EQUAL IF NOT EQUAL. USE SMALLER INCREMENT
                                                                                             12
      ¢
498
             IF (DT(ID1)-DT(ID2)) 1,3,2
                                                                                             13
499
             DT(ID)=DT(ID1)
500
             L = ID1
                                                                                             15
             K=ID2
501
                                                                                             16
502
             GO TO 6
                                                                                             17
503
             DT(ID)=DT(ID2)
                                                                                             18
504
             L = ID2
                                                                                             19
505
             K = ID1
                                                                                             20
                                                                                          ı.
506
             GO TO 6
                                                                                             21
507
      3
             DT(ID) =DT(ID1)
                                                                                             22
508
             IF (IEND(ID1)-IEND(ID2)) 4,4,5
                                                                                             23
                                                                                          J.
             M3=IEND(ID1)
509
                                                                                             24
510
             K1=[D2
                                                                                             25
511
             IEND(ID)=IEND(ID2)
                                                                                             26
512
             GO TO 18
                                                                                             27
```

```
513
       5
             M3=IEND(ID2)
514
             K1=ID1
                                                                                           28
515
             IEND(ID) = IEND(ID1)
                                                                                            29
516
             GO TO 18
                                                                                            30
             DETERMINE DURATIONS OF FLOW
       ¢
                                                                                            31
             XIEND1 = IEND(ID1)-1
517
                                                                                            32
518
                                                                                            33
             XIEND2 = IEND(ID2) - 1
                                                                                        .1
519
             DUR1=XIEND1*DT(ID1)
                                                                                           34
520
             DUR2=XIEND2*DT(ID2)
                                                                                        J
                                                                                           35
             IF (DUR1-DUR2) 7,8,8
521
       7
             IEND(ID)=DUR2/DT(ID)+1.
                                                                                        J
                                                                                           37
522
                                                                                        J
523
             M3=DUR1/DT(ID)+1.
                                                                                           3.8
524
             K1=ID2
                                                                                           39
525
             GO TO 9
                                                                                           40
                                                                                           41
       8
526
             IEND(ID) = DUR1/DT(ID)+1.
527
             M3=DUR2/DT(ID)+1.
                                                                                           42
528
             K1=ID1
                                                                                           43
             IF (IEND(ID)-300) 11,11,10
529
       10
             I END(ID)=300
                                                                                           45
530
                                                                                           46
531
       11
             M2=IEND(K)
532
             J = 1
                                                                                        J
                                                                                           47
             INTERPOLATE ONE HYDROGRAPH IF NECESSARY
       С
                                                                                           48
533
             TIDH=0.
                                                                                        J
                                                                                           50
534
             (DI)TO=DIT
535
             DO 15 I=2,M2
                                                                                           51
             TIDH=TIDH+DT(K)
536
                                                                                           53
             IF (TIDH-TID) 15,13,14
537
      12
                                                                                           54
538
      13
             J = J + 1
                                                                                           55
             DATA (J)=OCFS(I,K)
                                                                                        J
539
540
             TID=TID+DT(ID)
                                                                                           56
             IF (J-300) 15,16,16
                                                                                           57
541
                                                                                           58
542
      14
             1+t=L
             DATA (J)=OCFS(I-1,K)+((TID-TIDH+DT(K))/DT(K))*(OCFS(I,K)-OCFS(I-1,
                                                                                           59
543
                                                                                           60
            1K ) )
                                                                                           61
544
             TID=TID+DT(ID)
545
             IF (J-300) 12,16,16
                                                                                           63
546
      15
             CONTINUE
                                                                                       .1
547
                                                                                           64
      16
             IEND(K)=J
                                                                                       .1
                                                                                           65
548
            DO 17 I=2,J
                                                                                       J
                                                                                           66
549
      17
             OCFS(I,K)=DATA(I)
                                                                                           67
550
      18
             M= IEND(ID)
                                                                                       J
                                                                                           68
551
             DA(ID) = DA(ID1) + DA(ID2)
552
             RO=0.
                                                                                       J
                                                                                           69
                                                                                       J
                                                                                           70
      C
            ADD HYDROGRAPHS
                                                                                           71
553
            DO 20 I=1,M3
                                                                                           72
            OCFS([,ID)=OCFS([,ID1)+OCFS([,ID2)
554
                                                                                       J
                                                                                           73
555
            IF (OCFS(1,ID)-PEAK(ID)) 20,20,19
                                                                                       J
                                                                                           74
            PEAK(ID)=OCFS(I,ID)
556
      19
                                                                                           75
557
      20
            RO=RO+OCFS(I,ID)
                                                                                       J
                                                                                           76
            IF (PEAK(ID)-PEAK(K1)) 21,22,22
558
                                                                                           77
            PEAK(ID)=PEAK(K1)
559
      21
                                                                                       J
                                                                                           78
560
      22
            IF (M-M3) 25,25,23
                                                                                       J
                                                                                           79
561
      23
            M3=M3+1
                                                                                           80
            DO 24 I=M3+M
OCFS(I+ID)=OCFS(I+K1)
562
                                                                                       J
                                                                                           81
563
                                                                                       J
                                                                                           82
564
      24
            RO=RO+OCFS(1, ID)
                                                                                       J
                                                                                           83
            ROIN=(RO*DT(ID))/(DA(ID)*645.333)
565
      25
                                                                                       J
                                                                                           84
            IF (NPU) 27,27,26
566
                                                                                           85
            WRITE (7,28) ID, NHD, ID1, ID2
567
      26
                                                                                       J
                                                                                           86
568
      27
            RETURN
                                                                                           87
```

```
88
             FORMAT( 'ADD HYD', T21, 'ID=', I1, T29, ' HYD NO=', I3, T45, 'ID I=', I1,
                                                                                               89
       28
569
                                                                                               90
                                                                                           Л
             1760, 'ID II = ', II)
                                                                                               91-
                                                                                           J
570
             END
571
              SUBROUTINE SRC
             THIS SUBROUTINE STORES AN ELEVATION - END AREA - FLOW TABLE.
       ¢
                                                                                                2
             COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                                2
572
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                                5
                                                                                                6
             3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                           ĸ
                                                                                                7
573
             ID=DATA(1)
                                                                                                8
574
             VS=DATA(2)
             VALLEY SECTION NUMBER
                                                                                                9
       С
             REMAINING DATA ARE ELEVATION, AREA, AND FLOW FOR EACH POINT OF
                                                                                               10
       ¢
              THE RATING CURVE
                                                                                               11
                                                                                               12
575
             EMIN=DATA(3)
                                                                                               13
576
              J = 3
             DO 1 I=1,20
                                                                                               14
577
578
             ELEV=DATA(J)
                                                                                               15
579
             DEEP(I, ID) = DATA(J) - EMIN
                                                                                           K
                                                                                               16
580
                                                                                               17
             A(I+I)\Delta TAG = (GI-I)A
581
                                                                                           ĸ
             Q(I,ID)=DATA(J+2)
                                                                                               18
582
             J = J + 3
                                                                                           ĸ
                                                                                               19
583
             CONTINUE
                                                                                           Κ
                                                                                               20
584
             RETURN
                                                                                               21
585
             FND
                                                                                           К
                                                                                               22-
586
             SUBROUTINE CMPRC
       C
             THIS SUBROUTINE COMPUTES THE DISCHARGE END-AREA ELEVATION
       C
             RELATIONSHIP FOR A VALLEY SECTION.
                                                                                                3
587
             COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                           L
                                                                                                4
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP (20,6), NER, MAXNO, NCO
                                                                                           L
                                                                                                5
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
            3(6), TIME, PEAK (6), RO IN, ISG (6)
                                                                                                7
588
             ID=DATA(1)
                                                                                                А
       C
             STORAGE LOCATION NUMBER. (1-6)
                                                                                           L
                                                                                                Q
589
             VS=DATA(2)
                                                                                               10
       С
             VALLEY SECTION IDENTIFICATION NUMBER.
                                                                                           L
                                                                                               11
             NSEG=DATA(3)
590
                                                                                           L
                                                                                               12
       C
             NUMBER OF SEGMENTS IN THE VALLEY SECTION.
                                                                                               13
591
             ELC=DATA(4)
592
             EMAX=DATA(5)
                                                                                           L
                                                                                               15
       C
             MAXIMUM ELEVATION FOR COMPUTATIONS.
                                                                                               16
593
             SLOPE1=DATA(6)
                                                                                           L
                                                                                               17
       C
             CHANNEL SLOPE.
594
             SLOPE2=DATA(7)
                                                                                           L
                                                                                               19
      C
             FLOOD PLAIN SLOPE.
                                                                                               20
595
             DIF=(EMAX-ELO)/19.
                                                                                           L
                                                                                               21
596
             C(1)=ELO
                                                                                               22
597
             DO 1 I=2,20
                                                                                               23
598
             C(I) = C(I - 1) + DIF
      1
                                                                                               24
      C
             SET AREA AND DISCHARGE ARRAYS = 0.
                                                                                               25
                                                                                           L
599
             DO 2 I=1,20
                                                                                              26
600
             A(I,ID)=0.
                                                                                              27
60 L
      2
             Q([,ID)=0.
                                                                                              28
                                                                                           L
602
             .l = ₽
                                                                                           L
                                                                                              29
603
             WRITE (6,24) VS
                                                                                           L
                                                                                              30
      C
             READ N VALUES AND SEGMENT BORDER POINTS.
                                                                                              31
604
             DO 3 I=1.NSEG
                                                                                              32
```

```
605
              SEGN(I)=DATA(J)
 606
              DIST(I)=DATA(J+1)
                                                                                           33
 607
              J = J + 2
                                                                                        ı
                                                                                           74
              REMAINING DATA ITEMS ARE DISTANCES AND ELEVATIONS.
       C
                                                                                           35
 608
              JJJ≖J
                                                                                        L
                                                                                           36
 609
              00 6 I=1, NSEG
                                                                                           37
 610
              J=J+2
                                                                                        L
                                                                                           38
 611
              IF (DATA(J)-DIST(I)) 4,5,5
                                                                                        Ł
                                                                                           79
       5
 612
              ISG(1)=J+1
                                                                                        L
                                                                                           40
 613
              CONTINUE
                                                                                        L
             COMPUTE DISCHARGES AND END AREAS FOR EACH SEGMENT.
       С
                                                                                           42
 614
             DO 22 K=1.NSEG
                                                                                        L
                                                                                           43
 615
              しししゃし
                                                                                       l.
                                                                                           44
 616
              JJJ1=JJJ+1
                                                                                           45
             IF (SEGN(K)) 7,7,8
 617
                                                                                           46
 618
             SLOPE=SLOPE1
                                                                                       L
                                                                                           47
 619
             SEGN(K)=-SEGN(K)
                                                                                       1
                                                                                           48
 620
             GO TO 9
                                                                                       L
                                                                                           49
 621
       8
             SL OPE= SLOPE2
                                                                                           50
 622
       9
             SLPN=1.486*SLOPE**.5
                                                                                           51
             COMPUTE AREA AND DISCHARGE FOR SEGMENT.
       С
                                                                                       ١.
                                                                                           52
 623
             DO 21 I=2.20
                                                                                           53
                                                                                       1
 624
             A A =0 .
                                                                                       Ł
                                                                                           54
             P = 0 .
 625
                                                                                           55
626
             J=JJJ-1
                                                                                       L
                                                                                           56
             DEP2=0.
 627
                                                                                           57
                                                                                       1
628
       10
             J=J+2
                                                                                       L
                                                                                           58
             IF (J-1SG(K)) 12,12,11
629
                                                                                       L
                                                                                           59
630
       11
             IF (AA-.001) 21,21,20
                                                                                       Ļ
                                                                                          60
             IF (DATA(J)-C(I)) 13,10,10
631
       12
                                                                                       L
                                                                                          61
             DEPI=C(I)-DATA(J)
632
       13
                                                                                       Ļ
                                                                                          62
             IF (J-JJJ1) 16,16,14
633
                                                                                       L
                                                                                          63
634
             XL = DATA(J-1) - DATA(J-3)
                                                                                       Ļ
                                                                                          64
635
            DEP3=ABS(DATA(J-2)-DATA(J))
                                                                                       L
                                                                                          65
636
             XL =XL *DEP1 /DEP3
                                                                                       L
                                                                                          66
             AA=AA+XL*(DEP1+DEP2)/2.
637
                                                                                       L
                                                                                          67
            P=P+SQRT((DEP1-DEP2)**2+XL**2)
638
                                                                                          68
639
      1.6
            DEP2=DEP1
                                                                                          69
640
             J = J + 2
                                                                                       1
                                                                                          70
            IF (J-ISG(K)) 17,17,20
641
                                                                                          71
642
      17
            IF (DATA(J)~C(I)) 18,18,19
                                                                                       L
                                                                                          72
643
      18
            DEP1=C(I)-DATA(J)
                                                                                      L
                                                                                          73
644
            XL=DATA(J-1)-DATA(J-3)
                                                                                       L
                                                                                          74
645
            60 TO 15
                                                                                      1
                                                                                          75
646
            DEP1=0.
                                                                                          76
647
            XL=DATA(J-1)-DATA(J-3)
                                                                                          77
            DEP3=ABS(DATA(J-2)-DATA(J))
648
                                                                                      L
                                                                                          78
649
            XL=XL*DEP2/DEP3
                                                                                      L
                                                                                          79
650
            AA=AA+XL*(DEP1+DEP2)/2.
                                                                                      L
                                                                                          80
651
            P=P+SQRT((DEP1-DEP2)**2+XL**2)
                                                                                          81
652
            DEP2=0.
                                                                                          82
653
            GO TO 10
                                                                                      1
                                                                                          RZ
654
      20
            R = AA/P
                                                                                          84
655
            SGN=SEGN(K)-.0025*R
                                                                                          85
            ADD DISCHARGES AND AREAS FOR ALL SEGMENTS TO OBTAIN TOTALS FOR
      Ç
                                                                                          86
            VALLEY SECTION.
      С
                                                                                          87
            Q(1,10)=Q(1,10)+AA*R**.66667*SLPN/SGN
656
                                                                                         88
657
            A(I,ID)=A(I,ID)+AA
                                                                                      L
                                                                                         89
658
      21
            CONTINUE
                                                                                      L
                                                                                         90
659
            JJJ=J-3
                                                                                      L
                                                                                         91
                                                                                         92
```

```
93
                                                                                           1
660
      22
             CONTINUE
                                                                                               94
                                                                                           L
             DO 23 I=1,20
661
                                                                                               95
             DEEP(1,10)=C(1)-ELO
662
                                                                                           L
                                                                                               96
             WRITE (6,25) C(I),A(I,ID),Q(I,ID)
663
                                                                                               97
                                                                                           L
       23
             CONTINUE
664
                                                                                               98
             RETURN
665
                                                                                               QQ.
      C
             FORMAT(1H0, T42, *RATING CURVE VALLEY SECTION*, F5.1/T46, *WATER*, T56,
                                                                                              100
                                                                                            L
666
       24
            1'FLOW', T66, 'FLOW'/T45, 'SURFACE', T56, 'AREA', T66, 'RATE'/T46, 'ELEV', T
                                                                                              101
                                                                                           ı
            256, 'SQ FT', T66, 'CFS')
                                                                                           L
                                                                                              102
                                                                                           L
                                                                                              103
667
      25
             FDRMAT (40X,F10.2,2F10.1)
                                                                                           L
                                                                                              104-
             END
668
                                                                                           М
669
             SUBROUTINE STT
             THIS SUBROUTINE STORES A DEPTH - FLOW - TRAVEL TIME TABLE.
                                                                                           М
                                                                                                2
      C
             COMMON CFS (300), QCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                                3
670
                                                                                           М
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXND, NCD
                                                                                           М
                                                                                                5
            2MM, ICC, NC ODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                           М
            3(6),TIME,PEAK(6),ROIN,ISG(6)
                                                                                           М
671
             ID=DATA(1)
                                                                                           М
                                                                                                Я
672
             REACH=DATA(2)
             XL =DATA(3)
                                                                                           М
                                                                                                Q
673
                                                                                           М
                                                                                               10
             SLOPE=DATA(4)
674
                                                                                               11
675
             DIST(ID)=SLOPE*XL
                                                                                           М
                                                                                               12
676
             J = 5
                                                                                           М
677
             DO 1 I=1,19
                                                                                               13
                                                                                           М
                                                                                               14
678
             DP(I)=DATA(J)
                                                                                           М
                                                                                               15
             SCFS(I)=DATA(J+1)
679
                                                                                           М
                                                                                               16
680
             C(I)=DATA(J+2)
                                                                                           М
681
      1
             J = J + 3
                                                                                               17
682
             RETURN
                                                                                           М
                                                                                               18
                                                                                           М
                                                                                               19-
683
             END
             SUBROUTINE CMPTT
684
                                                                                           N
                                                                                                ı
             THIS SUBROUTINE COMPUTES THE TRAVEL TIME AT GIVEN
      С
                                                                                           Ν
                                                                                                2
                                                                                                3
             DISCHARGE RATES
685
             COMMON CFS(300), DCFS(300,6), TEND(6), DATA(310), DA(6), DP(20), NPU, NHO
                                                                                           Ν
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                           Ν
                                                                                                5
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                           Ν
                                                                                                6
            3(6), TIME, PEAK(6), ROIN, ISG(6)
686
             ID=DATA(1)
                                                                                           N
                                                                                                8
687
             REACH=DATA(2)
                                                                                                9
                                                                                           N
             NOVS=DATA(3)
688
                                                                                            N
                                                                                               10
689
             XL=DATA(4)
                                                                                           N
                                                                                               11
690
             SLOPE=DATA(5)
                                                                                           N
                                                                                               12
691
             DIST(ID)=SLOPE*XL
                                                                                           М
                                                                                               13
             XLD36=XL/3600.
692
                                                                                            Ν
                                                                                               14
      C
             ZERO ARRAYS
                                                                                               15
693
             DO 1 J=1,20
                                                                                           N
                                                                                               16
694
             DATA (J)=0.
                                                                                           Ν
                                                                                               17
695
      1
             CFS(J)=0.
                                                                                               18
696
             ID1=1
                                                                                               19
      C
             FIND RATING CURVE WITH SMALLEST MAXIMUM FLOW RATE
                                                                                            N
                                                                                               20
697
      2
             QMIN=Q(20, ID1)
                                                                                            Ν
                                                                                               21
698
             MIN=ID1
                                                                                            N
                                                                                               22
699
             GO TO 4
                                                                                               23
700
      3
             ID1=ID1+1
                                                                                            N
                                                                                               24
701
             IF (QMIN-Q(20, ID1)) 4,4,2
                                                                                            N
                                                                                               25
             IF (ID1-NOVS) 3,5,5
702
      4
                                                                                            Ν
                                                                                               26
703
      5
             I = I
                                                                                            N
```

```
SET SCFS ARRAY EQUAL TO Q ARRAY OF LOWEST RATING CURVE
        C.
 704
               00 6 J=2,20
                                                                                                28
               SCFS(I)=Q(J,MIN)
 705
                                                                                                20
                                                                                            N
 706
               I = I + 1
                                                                                            Ν
                                                                                                30
               COMPUT END AREA AND DEPTH
        C.
                                                                                            Ν
                                                                                                31
 707
               00 9 ID1=1,NOVS
                                                                                                32
 708
               DO 9 J=1.19
                                                                                            N
                                                                                               33
 709
               DO 7 I=2,20
                                                                                            Ν
                                                                                                34
 710
               IF (Q(I,101)+SCFS(J)) 7,17,8
711
               CONTINUE
                                                                                               36
        17
               DATA(J)=A(I,IO1)+DATA(J)
712
                                                                                            N
                                                                                               37
713
               CFS(J)=DEEP(I,ID1)+CFS(J)
                                                                                            Ν
                                                                                               38
714
               GD TO 9
                                                                                            N
               XY=(SCFS(J)-Q(I-1,ID1))/(Q(I,ID1)-Q(I-1,ID1))
715
        Я
                                                                                               40
               DATA (J)=A(I-1,ID1)+XY*(A(I,ID1)-A(I-1,ID1))+DATA(J)
716
                                                                                            Ν
                                                                                               41
               CFS(J) = DEEP(I-1, ID1) + XY*(DEEP(I, ID1) - DEEP(I-1, ID1)) + CFS(J)
717
                                                                                            N
                                                                                               42
718
719
               XNCVS=NOVS
                                                                                               44
720
               WRITE (6,13) REACH
                                                                                               45
               COMPUTE TRAVEL TIME
                                                                                            Ν
                                                                                               46
721
               00 10 I=1,19
                                                                                           Ν
                                                                                               47
722
               AVAREA=DATA(I)/XNOVS
                                                                                               48
               DP(I)=CFS(I)/XNDVS
723
                                                                                           Ν
                                                                                               49
724
               S = AVAR EA*XLD36
                                                                                           N
                                                                                               50
               C(1)=S/SCFS(1)
725
                                                                                           N
                                                                                               51
               WRITE (6,14) DP(1),SCFS(1),C(1)
726
                                                                                               52
727
        10
               CONTINUE
                                                                                           Ν
                                                                                               53
               PUNCH CODE
                                                                                               54
                                                                                           N
               IF (NPU) 12,12,11
728
                                                                                           N
                                                                                               55
               WRITE (7,15) ID, REACH, XL, SLOPE
729
        11
                                                                                               56
              WRITE (7,16) (DP(I),SCFS(I),C(I),I=1,19)
730
                                                                                           N
                                                                                               57
        12
731
                                                                                           N
                                                                                               5.8
                                                                                               59
              FORMAT (1HO, T46, TRAVEL TIME TABLE ! / T54, REACH ! F5.1 / / T46, WATER ! , T
       13
732
                                                                                               60
             156, *FLOW*, T65, *TRAVEL*/T46, *DEPTH*, T56, *RATE*, T66, *TIME*/T46, *FEET
                                                                                              61
             2', T56, 'CFS', T66, 'HRS')
FORMAT (40X, F10.2, F10.0, F10.4)
                                                                                           Ν
                                                                                               62
733
       1.4
                                                                                           Ν
                                                                                               63
              FORMAT( STORE TRAVEL TIME + T21, "10= 1, 11, T29, "REACH NO= 1, F5.1, T44,
       15
734
                                                                                              64
             1'LENGTH=',F9.0,' FT'/T21,'SLOPE=',F8.6, FT/FT'
                                                                                           Ν
                                                                                              65
             21, 'DEPTH(FT)', T35, 'FLOW(CFS)', T49, 'TIME(HRS)')
                                                                                           Ν
                                                                                              66
735
       16
              FORMAT (T21, F7.2, F15.0, F15.3)
                                                                                           Ν
                                                                                               67
736
              END
                                                                                           Ν
                                                                                              68
                                                                                           Ν
                                                                                              69-
              SUBROUTINE ROUTE
737
              THIS SUBROUTINE ROUTES A HYDROGRAPH THROUGH A REACH WITH THE
       C
                                                                                           n
              NEW VSC METHOD OF FLOOD ROUTING. THIS METHOD ACCOUNTS FOR THE
       C
                                                                                           0
                                                                                               2
       C
              VARIATION IN WATER SURFACE SLOPE.
                                                                                           D
                                                                                               3
              COMMON CES(300), OCES(300,6), LEND(6), DATA(310), DA(6), DP(20), NPU, NHD
738
                                                                                           n
                                                                                               4
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCD
                                                                                          O
                                                                                               5
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                               6
             3(6), TIME, PEAK(6), RDIN, ISG(6)
                                                                                               7
739
              ID=DATA(1)
                                                                                          0
                                                                                               Я
740
              NHD=DATA(2)
                                                                                          0
                                                                                               9
741
              IDH=DATA(3)
                                                                                              10
742
              DT(ID)=DATA(4)
                                                                                          0
                                                                                              11
743
              DA(ID)=DA(IDH)
                                                                                          n
                                                                                              12
744
              M= [END(IDH)
                                                                                          n
                                                                                              13
              IF ID AND IDH ARE EQUAL, ADD 1 TO IDH
      C
                                                                                          0
                                                                                              14
              1F (ID-IDH) 3,1,3
745
                                                                                          0
                                                                                              15
746
       1
              10H=10H+1
                                                                                          O
                                                                                              16
                                                                                              17
```

```
747
             DO 2 I=1,M
748
      2
             OCFS([,IDH)=OCFS([,IDH-1)
749
             DT(IDH)=DT(IDH-1)
750
             PEAK(IDH) = PEAK(IDH-1)
751
      3
             NERRT= 0
752
             PEAK(ID)=1.
753
             RO=0.
754
             N=19
755
             OCFS(1,10)=0.
756
             S = 0.
757
             T1=C(1)
758
             J = 1
759
             GUES=1.
760
             CFS(1)=0.
             IF ROUTING INTERVAL IS NOT EQUAL TO TIME INCREMENT OF INFLOW
      C
             HYDROGRAPH, INTERPOLATE
761
             IF (DT([D)-DT(IDH)) 8,15,4
762
      4
             T1D=D1(10)
763
             TIDH=0.
764
             DO 7 I=2,M
765
             TIOH=TIDH+OT(IOH)
766
             IF (TID-TIDH) 6,5,7
             J = J + 1
767
       5
768
             CFS(J) = OCFS(I, IDH)
769
             TIC=TID+DT(ID)
770
             GO TO 7
771
       6
             J = J + 1
             CFS(J)=OCFS(I-1,IDH)+((TID-TIDH+OT(IDH))/DT(IDH))*(OCFS(I,IDH)-OC #
772
            15 (I-1, IDH))
773
             TIC=TID+DT(ID)
      7
             CONTINUE
774
775
             GO TO 13
776
      8
             TIDH=0.
777
             TID=OT(ID)
             DO 12 I=2,M
778
             TIDH=TIDH+DT(IDH)
779
             IF (TIDH-TID) 12,10,11
780
      9
781
       10
             J=J+1
             CFS(J) = OCFS(I, IDH)
782
             TID=TID+DT(ID)
783
             IF (J-300) 12,13,13
784
785
       11
             J=J+1
             CFS(J)=OCFS(I-1,IDH)+((TID-TIDH+DT(IDH))/DT(IDH))*(OCFS(I,IDH)-OCI
786
            1S( I-1, IDH) )
787
             TIC=TID+UT(ID)
788
             IF (J-300) 9,13,13
789
             CONTINUE
       12
             IEND(IDH)=J
790
       13
791
             DT(IDH)=DT(ID)
792
             M=J
793
             DO 14 I=2,M
             OCFS(I, IDH)=CFS(I)
794
       14
             IF INFLOW IS ZERO, SO IS OUTFLOW
      C
       15
795
             DD 16 L=2,M
796
             IF (OCFS(L, IDH)) 16,16,49
             DCFS(L,ID)=0.
797
       16
             ROUTE
       C
             DATA (L-1)=0.
       49
798
             DO 42 I=L,300
799
             IF (I-M) 18,18,17
800
```

```
801
              OCFS(I,IDH)=DCFS(I-1,IDH)*.9
       17
              AVIN=(OCFS(I, IDH)+OCFS(I-1, IDH))/2.
 802
        18
                                                                                      0
                                                                                         78
 803
              SIA=S+AVIN
                                                                                      O
                                                                                         79
 804
              J = 1
                                                                                      0
                                                                                         80
              DETERMINE DEPTH AND TRAVEL TIME OF INFLOW
       C.
                                                                                      0
                                                                                         81
              IF (OCFS(1,1DH)-SCFS(1)) 19,23,20
 805
                                                                                      0
                                                                                         8.2
              DI2=(OCFS(I,IDH)/SCFS(1))*DP(1)
 806
       19
                                                                                      0
                                                                                         83
 807
              TI2=C(1)
                                                                                      n
                                                                                         84
 808
              GO TO 25
                                                                                      O
                                                                                         85
 809
       20
              DO 21 J=2,N
                                                                                      0
                                                                                         86
              IF (OCFS(1,1DH)-SCFS(J1) 24,23,21
 810
                                                                                     0
                                                                                         87
 811
             CONTINUE
                                                                                     O
                                                                                         8.8
 812
              IF (NERRT) 22,22,36
                                                                                     O
                                                                                         89
       22
 813
             WRITE (6,46)
                                                                                     0
                                                                                         90
 814
             NERRT=1
                                                                                     0
                                                                                         91
 815
             GO TO 36
                                                                                     n
                                                                                         92
             DIZ=DP(J)
 816
       23
                                                                                     n
                                                                                        93
 817
             TI2=C(J)
                                                                                     O
                                                                                        94
 818
             GO TO 25
                                                                                     0
                                                                                        95
             RATID=(OCFS(1, IDH)-SCFS(J-1))/(SCFS(J)-SCFS(J-1))
 819
                                                                                     U
                                                                                        96
             DI2=DP(J-1)+RATIO*(DP(J)-DP(J-1))
 820
                                                                                     n
                                                                                        97
             TI2=C(J-1)+RATIO*(C(J)-C(J-1))
 821
                                                                                        98
                                                                                     Ð
 822
       25
             00 35 IT=1,10
                                                                                     Ω
                                                                                        99
823
             J = 1
                                                                                     0 100
             DETERMINE DEPTH AND TRAVEL TIME OF OUTFLOW
       С
                                                                                     0 101
             IF (GUES-SCFS(1)) 26,29,27
824
                                                                                     0 102
             DD 2=(GUES/SCFS(1))*DP(1)
825
       26
                                                                                     0 103
826
             TO2=C(1)
                                                                                     0.104
827
             GO TO 31
                                                                                     0 105
      27
             00 28 J=2,N
828
                                                                                     0 106
             IF (GUES-SCFS(J)) 30,29,28
829
                                                                                     0 107
830
       28
             CONTINUE
                                                                                     0.108
831
             A = N
                                                                                     0 109
      29
832
             002=DP(J)
                                                                                    0 110
833
             TO 2=C(J)
                                                                                     0 111
834
             GO TO 31
                                                                                    0 112
            RATIO= (GUES-SCFS(J-1))/(SCFS(J)-SCFS(J-1))
835
      30
                                                                                    0.113
            DD2=DP(J-1)+RATIO*(DP(J)-DP(J-1))
836
                                                                                    0 114
            TO 2=C(J-1)+RATIO*(C(J)-C(J-1))
837
                                                                                    0 115
            FIND WATER SURFACE SLOPE
                                                                                    0 116
838
      31
            DDD=DIST(ID)/(DIST(ID)+DI2-DO2)
                                                                                    0 117
            IF (000--01) 32,32,33
839
                                                                                    0 118
            GUES=OCFS(I-1,IDH)
840
      32
                                                                                    0 119
841
            GO TO 35
                                                                                    0 120
842
      33
            T2=.5*(T[2+T()2)
                                                                                    0 121
843
            T2=T2*SQRT(D00)
                                                                                    0 122
844
            T = T1 + T2
                                                                                    0 123
            COMPUTE ROUTING COEFFICIENT
                                                                                    0 124
845
            COEF=(2.*DT(ID))/(T+DT(ID))
                                                                                    0 125
846
            O2=COEF*SIA
                                                                                    0 126
847
            TRY1 = GUES
                                                                                    0 127
848
            RATIO=02/(GUES++1E-20)
                                                                                    0 128
849
            DIFF=ABS(1.-RATIO)
                                                                                    0.129
      ¢
            TEST FOR CONVERGENCE
                                                                                    0 130
            IF (DIFF-.001) 37,37,34
850
                                                                                    0 131
851
      34
            GUES≖02
                                                                                    0 132
852
      35
            CONTINUE
                                                                                    0 133
853
            DCFS(I+ID) =DATA(I-1)*SIA
                                                                                    0 134
854
            DATA (I)=DATA(I-1)
                                                                                    0 135
855
            WRITE (6,47) 1,00FS(1,10)
                                                                                    0 136
                                                                                    0 137
```

```
0.138
856
             GO TO 38
                                                                                         0 139
             OCFS(I, ID) = DATA(I-1) *SIA
857
       36
                                                                                          0 140
858
             DATA (I)=DATA(I-1)
                                                                                         0 141
             GO TO 38
859
                                                                                         D 142
             OCFS(I,ID)=02
860
       37
                                                                                         0 143
861
             DATA (I)=COEF
                                                                                          0 144
             COMPUTE NEW STORAGE
                                                                                         0 145
             S=SIA-OCFS(I,ID)
862
       38
                                                                                         0 146
863
             T1=T2
                                                                                          0 147
             RO =RO+OCFS(I, ID)
864
                                                                                          0 148
             IF (OCFS(1,ID)-OCFS(1-1,ID)) 39,40,40
865
                                                                                         0 149
866
       39
             IF (OCFS(I,ID)-1.) 43,43,42
             IF (OCFS(1,10)-PEAK(1D)) 42,42,41
                                                                                         0 150
867
       40
                                                                                         0 151
868
       41
             PEAK(ID)=OCFS(I,ID)
                                                                                         0 152
869
       42
             CONTINUE
                                                                                         0 153
870
             I = 300
                                                                                         0.154
       43
             IEND(ID)=I
871
             ROIN=(RO*DT([D))/(DA([D)*645.333)
                                                                                          0 155
872
                                                                                         0 156
       Ĉ
             PUNCH CODE
                                                                                         0.157
             IF (NPU) 45,45,44
873
                                                                                          0 158
       44
             WRITE (7,48) ID, NHD, IDH, DT(ID)
874
                                                                                          0 159
875
       45
             RETURN
                                                                                          0 160
       C
876
       46
             FORMAT(1HO, 'TRAVEL TIME TABLE EXCEEDED')
                                                                                          0.161
             FORMATITIO, PROBLEM FAILED TO CONVERGE AFTERIO ITERATIONS. CONVERG
                                                                                         0.162
877
       47
            1ENCE WAS FORCED. 1/T20, 10UTFLOW NUMBER = 1, 14, 1RATE = 1, F10, 2)
                                                                                          0 163
                       'ROUTE',T21,'ID=',I1,T29,'HYD NO=',I3,T45,'INFLOW ID=',I
                                                                                         0 164
878
       48
             FORMATI
                                                                                          0 165
            11, T65, 'DT = ', F8.6, 'HRS')
                                                                                          0.166 -
879
             SUBROUTINE RESVO
880
             THIS SUBROUTINE ROUTES A HYDROGRAPH THROUGH A RESERVOIR WITH THE
                                                                                          Р
                                                                                              2
       C
                                                                                          p
      C
             STORAGE-INDICATION METHOD.
                                                                                              3
             COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
881
                                                                                          ρ
                                                                                          p
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
            2MM,ICC,NCODE,DIST(6),SEGN(6),CTBLE(50,11),ITBLE(50,2),ZALFA(20),DT
                                                                                              6
                                                                                          ρ
            3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                              7
                                                                                          p
                                                                                              8
882
             ID=DATA(1)
883
             NHD=DATA(2)
884
                                                                                          p
                                                                                             10
             IDH=DATA(3)
                                                                                          р
885
             NERES=0
                                                                                             11
                                                                                          Ρ
                                                                                             12
886
             DT(ID)=DT(IDH)
                                                                                          P
887
             RO=O.
                                                                                             13
                                                                                          P
             DA(ID)=DA(IDH)
888
                                                                                             14
889
             PEAK(ID)=1.
                                                                                          Р
                                                                                             15
890
                                                                                          P
             J=1
                                                                                             16
             I = 4
                                                                                          P
                                                                                             17
891
             REFAINING DATA ARE FLOW AND STORAGE VALUES
                                                                                          р
       C
                                                                                             18
                                                                                          p
892
             SCFS(J)=DATA(I)
                                                                                             19
893
             STCRE1=DATA(I+1)*12.1
                                                                                          p
                                                                                             20
             STORE=STORE1
                                                                                          P
894
                                                                                             21
             COMPUTE STORAGE COEFFICIENT ARRAY C
       C.
                                                                                          р
                                                                                             22
895
             C(J)=(SCFS(J)/2.)+(STORE/DT(ID))
                                                                                          ρ
                                                                                             23
       1
                                                                                          Р
896
             I = I + 2
                                                                                             24
897
             J = J + I
                                                                                          P
                                                                                             25
             IF (J-20) 2,2,3
                                                                                          p
AGR
                                                                                             26
899
       2
             SCFS(J)=DATA(I)
                                                                                          P
                                                                                             27
900
             STORE=DATA(I+1)*12.1
                                                                                             28
901
             IF (SCFS(J)-.001) 3,3,1
                                                                                          p
                                                                                             29
902
       3
             N = J - 1
                                                                                             30
```

```
OCFS(1,10)=0.
 903
              S=STORE1/DT(ID)
 904
                                                                                              31
              ROUTE
       C
                                                                                           ρ
                                                                                              32
              00 - 15 = 1 = 2.150
 905
                                                                                           Р
                                                                                               33
              IF (1-1END(IDH)) 5,5,4
 906
                                                                                               34
              OCFS(I.IDH)=0.0
 907
                                                                                              35
              AVIN=(OCFS(1, IDH)+DCFS(I-1, IDH))/2.
 908
       5
                                                                                           ρ
                                                                                              36
              SIA=S+AVIN
 909
                                                                                           р
                                                                                              37
              DETERMINE PROPER C
       C
                                                                                           Р
                                                                                              38
              DU 6 J=1,N
IF (SIA-C(J)) 10,9,6
910
                                                                                              39
911
                                                                                           p
                                                                                              40
              CONTINUE
912
       6
                                                                                           р
                                                                                              41
              IF (NERES) 7,7,8
913
                                                                                           p
                                                                                              42
              WRITE (6,19)
914
       7
                                                                                           Р
                                                                                              43
              NERES=1
915
                                                                                           ρ
                                                                                              44
916
       8
              RESC=SCFS(N)/C(N)
                                                                                           D
              COMPUT DUTFLOW
       C
                                                                                           ρ
                                                                                              46
              OCFS(I, LD) = RESC*SIA
917
                                                                                              47
              GU TO 11
918
                                                                                           p
                                                                                              48
             OCFS(I,ID)=SCFS(J)
919
       9
                                                                                              49
              GO TO 11
920
             OCFS([, ID)=SCFS(J-1)+((S[A-C(J-1)])/(C(J)-C(J-1)))*(SCFS(J)-SCFS(J-
       10
921
                                                                                              51
                                                                                              52
             DETERMINE NEW STORAGE
       C
              S = SIA + OCFS(I, ID)
922
       11
                                                                                           p
923
             RO=RO+OCFS(1, ID)
                                                                                              55
             IF (OCFS(1, ID)-OCFS(1-1, ID)) 12, 13, 13
924
                                                                                          P
                                                                                              56
             IF (OCFS(I, tD)-1.) 16,16,15
925
       12
                                                                                          p
                                                                                              57
             IF (OCFS(I, ID)-PEAK(ID)) 15,15,14
926
       13
                                                                                          p
                                                                                              58
             PEAK(ID)=OCFS(I,ID)
927
       14
                                                                                          р
                                                                                              59
       15
             CONTINUE
928
                                                                                              60
929
             I = 150
                                                                                          Р
                                                                                              61
       16
             IEND(ID)=I
930
                                                                                          р
                                                                                              62
             RDIN=RO*DT(ID)/(DA(ID)*645.333)
931
                                                                                          р
                                                                                              63
       C
                                                                                          p
             PUNCH CODE
                                                                                              64
             IF (NPU) 18,18,17
932
                                                                                          Þ
                                                                                             65
             WRITE (7,20) ID,NHD, IDH
933
      17
                                                                                          p
                                                                                             66
934
                                                                                          P
             11=2*N+3
                                                                                             67
935
             WRITE (7,21) (DATA(1),1=5,11)
                                                                                             68
                                                                                          р
936
      1,8
             RE TURN
                                                                                             69
      C
                                                                                              70
             FORMAT (1HO,33HSTORAGE-DISCHARGE TABLE EXCEEDED.)
937
      19
                                                                                             71
             FORMATIC
                       *ROUTE RESERVOIR*, T21, *ID=*, II, T29, *HYD NO=*, I3, T42, *INF
938
      20
                                                                                          p
                                                                                              72
                                                                                             73
            11.0W ID=+, [1
                                                        /T21, OUTFLOW(CFS) , T37, STOR
                                                                                          р
            2AGE(AC FT) 1)
                                                                                             74
939
                                                                                          p
                                                                                             75
      21
             FORMAT (T21,F10.1,F13.1)
                                                                                             75
940
             END
                                                                                          p
                                                                                             76-
941
             SUBROUTINE ERROR
             THIS SUBROUTINE DETERMINES THE ERROR STANDARD DEVIATION AND THE
      C
                                                                                          ٥
             PEAK FLOW ERROR FOR 2 HYDROGRAPHS
      C
                                                                                               2
            COMMON CES (300) + UCES (300+6) + TEND(6) + DATA(310) + DA(6) + DP(20) + NPU + NHD
942
                                                                                              3
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                          Q
            3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                              6
                                                                                          ٥
943
             ID1=DATA(1)
944
                                                                                          ۵
                                                                                              8
             ID2mDATA(2)
                                                                                          0
945
             SSE=O.
                                                                                          Q
                                                                                             10
946
             WRITE (6,15)
                                                                                          ۵
947
                                                                                             11
             Jat
                                                                                             12
```

```
IF TIME INCREMENTS NOT EQUAL, INTERPOLATE
       ¢
                                                                                         ٥
                                                                                            17
 948
              IF (DT(ID1)-DT(ID2)) 1,8,2
                                                                                         0
                                                                                            14
 949
       1
              L=ID1
                                                                                         Q
                                                                                             15
 950
              K=ID2
                                                                                             16
 951
              GO TO 3
                                                                                            17
 952
       2
             L = ID2
                                                                                             18
 953
              K = I \cap I
                                                                                             19
 954
       7
              M=IEND(()
                                                                                             20
 955
              TIO=DT(K)
                                                                                             21
 956
              TIDH=0.
                                                                                             22
 957
             DO 6 I=2,M
                                                                                             23
 958
             TIDH=TIDH+DT(L)
                                                                                            24
 959
              IF (TID-TIDH) 5,4,6
                                                                                            25
 960
       4
              J = J+1
             CFS(J)=OCFS(1+L)
                                                                                            26
 961
                                                                                            27
 962
              TID=TID+OT(K)
 963
             GO TO 6
 964
       5
             J=J+1
                                                                                            30
 965
             CFS(J)=OCFS(I-1,L)+((TID-TIDH+DT(L))/DT(L))*(OCFS(I,L)-OCFS(I-1,L)
                                                                                            31
             11
                                                                                            32
 966
             TIC=TID+DT(K)
                                                                                            33
 967
       6
             CONTINUE
                                                                                            34
968
             IEND(L)=J
                                                                                            35
969
             DT(L)=DT(K)
                                                                                            36
970
             DO 7 I=2,J
                                                                                            37
971
       7
             OCFS(I,L)=CFS(I)
                                                                                         Q
                                                                                            38
             IF (IEND(ID1)-IEND(ID2)) 9,9,10
972
       8
                                                                                            39
973
             M=IEND(ID1)
                                                                                            40
974
             GO TO 11
                                                                                            41
975
       10
             M=IEND(ID2)
                                                                                            42
976
       11
             T2=TIME
                                                                                            43
             DETERMINE ERROR
                                                                                            44
977
             DO 12 I=1, M
                                                                                            45
978
             ERR=OCFS(I,ID1)-OCFS(I,ID2)
                                                                                            46
979
             WRITE (6,16) T2,0CFS(I,ID1),0CFS(I,ID2),ERR
                                                                                            47
980
             T2=T2+DT(T01)
                                                                                            48
       C
             SUM OF SQUARES OF ERROR
                                                                                            49
981
       12
             SSE=SSE+ERR*ERR
                                                                                            50
982
             XM=M
                                                                                        0
                                                                                            51
      C
             ERROR VARIANCE
                                                                                            52
983
             EVAR=SSE/XM
                                                                                         Q
                                                                                            53
      C.
             ERROR STANDARD DEVIATION
                                                                                            54
984
             ESDEV=SQRT(EVAR)
                                                                                            55
             WRITE (6,17) ESDEV
985
                                                                                        Q
                                                                                            56
      C
             PERCENT ERROR FOR PEAK FLOWS
                                                                                        O
                                                                                            57
986
             ERPK=ABS(PEAK(ID1)-PEAK(ID2))
                                                                                            58
987
             PCTER=(ERPK/PEAK(ID1))*100.
                                                                                            59
988
             WRITE (6,18) PCTER
                                                                                            60
      ¢
             PUNCH CODE
                                                                                            61
989
             IF (NPU) 14,14,13
                                                                                            62
990
      1.3
             WRITE (7,19) ID1, ID2
                                                                                            63
991
      14
                                                                                            64
                                                                                            65
992
      15
            FORMAT(1H0, T33, *TIME*, T55, *FLOW 1*, T76, *FLOW 2*, T95, *ERROR*/T34,
                                                                                            66
            1 HRS 1, T57, CFS 1, T78, CFS 1, T97, CFS 1)
                                                                                            67
            FORMAT (20X, F20.3, 3F20.0)
993
      16
                                                                                            68
994
      17
            FORMAT(1HO, T10, 'ERROR STANDARD DEVIATION = ',F10.3)
                                                                                            69
995
      18
            FORMAT(T10, PEAK DISCHARGE ERROR = 1, F7.2, PERCENT'///)
                                                                                            70
996
            FORMAT( 'ERROR ANALYSIS', T21, 'ID I=', I1, T29, 'ID II=', I1)
      19
                                                                                           71
997
            END
```

72-

```
SUBROUTINE SEDT
 998
                THIS SUBROUTINE COMPUTES THE SEDIMENT YIELD FOR A FLOOD
        C
                COMMON CFS (300), OCFS (300,6), IEND (6), DATA (310), DA(6), DP (20), NPU, NHD
                                                                                                         3
 999
               1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                                    R
                                                                                                         4
5
               2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                                         6
               3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                                    R
1000
                ID=DATA(1)
                                                                                                    R
                                                                                                         8
1001
                SOIL=DATA(2)
                                                                                                    R
                                                                                                         9
                CROP=DATA(3)
1002
                CP=DATA(4)
                                                                                                    R
                                                                                                        10
1003
                                                                                                        11
1004
                SL=DATA(5)
                                                                                                    R
                                                                                                        12
                COMPUTE SEDIMENT YIELD
1005
                X=ROIN*DA(10)*53.333*PEAK(10)
                                                                                                    R
                                                                                                        13
                SED=95.*X**.56*SOIL*CROP*CP*SL
1006
                                                                                                        15
1007
                WRITE (6,3) SED
                                                                                                    R
                                                                                                        16
        C
                PUNCH CODE
                IF (NPU) 2,2,1
                                                                                                    R
                                                                                                        17
1008
                WRITE (7,4) ID. SOIL , CROP, CP, SL
1009
                                                                                                        18
        1
                                                                                                        19
1010
        2
                R E TURN
                                                                                                        20
        С
               FORMAT (10X, 'SEDIMENT YIELD = ', F10.1, ' TONS')
FORMAT( 'SEDIMENT YIELD', T21, 'ID=', I1, T29, 'SOIL=', F5.3, T42, 'CROP
1=', F5.3, T57, 'CP=', F5.3, T70, 'LS=', F5.3)
        3
                                                                                                        21
1011
                                                                                                       22
1012
                                                                                                    R
                                                                                                        23
                                                                                                       24-
                                                                                                    R
1013
```

//\$DATA

ZALFA = 1234567890 +.,-

COMMAND TABLE

| START | 1 | 2 |
|----------------------|-----|-----|
| STORE HYD | 2: | 310 |
| RECALL HYD | 33 | 310 |
| COMPUTE HYD | 4 | 310 |
| PRINT HYD | 5 | 2 |
| PUNCH HYD | 6 | 1 |
| PLOT HYD | 7 | 2 |
| AOD HYD | 8 | 4 |
| STORE RATING CURVE | 91 | .00 |
| COMPUTE RATING CURVE | 103 | 10 |
| STORE TRAVEL TIME | 111 | 00 |
| COMPUTE TRAVEL TIME | 12 | 5 |
| ROUTE | 13 | 4 |
| ROUTE RESERVOIR | 141 | 00 |
| ERROR ANALYSIS | 15 | 2 |
| SEDIMENT YIELD | 16 | 5 |
| FINISH | 17 | 0 |
| | | |

