Lecture 3: More lexing

John Wickerson

Anatomy of a compiler

What we know so far...

- Lexing is about recognising tokens in a stream of characters.
- The form of tokens can be defined using **regular expressions**.
- Given a regex, we can define the language that it accepts.
- **This lecture:** How can we tell whether a given word is accepted by a given regex?

Quiz time!

Regexes and automata

- Does the regular expression ((a+b)(ba)*b+a)* accept the word abababa? How can we answer this question in general?
- A regular expression can be understood as a finite automaton (also called a state machine).
- Example:

aa*b

• If we can convert a regular expression into a finite automaton, we can use the automaton to check whether a word matches.

Regexes and automata

2.
$$(bb)^*(aa)^*$$

3.
$$a(1+b)a$$

$$\rightarrow$$
 $\begin{pmatrix} a \\ b \\ \epsilon \end{pmatrix}$

Finite automata

	Deterministic finite automaton (DFA)	Nondeterministic finite automaton (NFA)
Outgoing transitions from each state	Exactly one per symbol	Any number
ε-transitions	Not allowed	Allowed
Key advantage	Simpler to run	More concise

• The following algorithm for converting a regular expression into an NFA is due to Thompson, creator of Unix.

$$\bullet \ \mathsf{NFA}(\mathbf{0}) = \longrightarrow \bigcirc$$

• NFA(1) =
$$\longrightarrow$$

$$\bullet \ \mathsf{NFA}(\mathbf{C}) = \longrightarrow \bigcirc^{\mathbf{C}} \longrightarrow \bigcirc$$

• NFA(
$$\mathbf{r}$$
+ \mathbf{s}) = \longrightarrow NFA(\mathbf{s}) \bigcirc

$$\bullet \ \mathsf{NFA}(\mathbf{0}) = \longrightarrow \bigcirc$$

• NFA(1) =
$$\longrightarrow$$

$$\bullet \ \mathsf{NFA}(\mathbf{C}) = \longrightarrow \bigcirc^{\mathbf{C}} \longrightarrow \bigcirc$$

• NFA(
$$\mathbf{r}$$
+ \mathbf{s}) = \mathbf{v} NFA(\mathbf{r}) \mathbf{v} NFA(\mathbf{s})

$$\bullet \ \mathsf{NFA}(\mathbf{0}) = \longrightarrow \bigcirc$$

• NFA(1) =
$$\longrightarrow$$

$$\bullet \mathsf{NFA}(\mathbf{C}) = \longrightarrow \bigcirc^{\mathbf{C}} \bigcirc$$

• NFA(
$$\mathbf{r}+\mathbf{s}$$
) = \mathbf{v} NFA(\mathbf{r}) \mathbf{v} NFA(\mathbf{s})

• NFA(
$$rs$$
) = \rightarrow NFA(r)

• NFA(rs) =
$$\longrightarrow$$
 NFA(r) \bigcirc NFA(s) \bigcirc

•
$$NFA(r^*) =$$

$$\rightarrow$$
 NFA(\mathbf{r})

• NFA(
$$\mathbf{r}$$
+ \mathbf{s}) = \mathbf{v} NFA(\mathbf{r}) \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}

• NFA(rs) =
$$\rightarrow$$
 NFA(r) \bigcirc NFA(s) \bigcirc

• NFA(
$$\mathbf{r}^*$$
) = \sum_{ϵ} NFA(\mathbf{r})

• NFA(
$$\mathbf{r}$$
+ \mathbf{s}) = \mathbf{v} NFA(\mathbf{r}) \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}

NFAs and DFAs

- These automata are non-deterministic, so not very helpful –
 we have to keep track of lots of states at once!
- However, we can convert a **non-deterministic** automaton into a **deterministic** one using the **subset construction**.

NFA -> DFA

- To simulate a DFA: keep track of **the** state you are in.
- To simulate an NFA: keep track of all the states you are in.
- So: convert an NFA with states $\{s_1, s_2, ...\}$ into a DFA whose states are **all subsets** of $\{s_1, s_2, ...\}$.
- Example.

Summary

- Lexing is about recognising **tokens** in a stream of characters.
- The form of tokens can be defined using **regular expressions**.
- Given a regex, we can define the language that it accepts.
- We can turn any regex into an equivalent NFA.
- We can turn any NFA into an equivalent DFA.
- By simulating this DFA, we can quickly check whether a given word matches the regex.

Something to ponder

$$R_1 = aR_2 + bR_3$$

$$R_2 = aR_2 + bR_4 + 1$$

$$R_3 = aR_3 + bR_3$$

$$R_4 = aR_2 + bR_3 + 1$$

$$R_1 = aR_2 + bR_3$$

$$R_2 = aR_2 + b(aR_2 + bR_3 + 1) + 1$$

$$R_3 = aR_3 + bR_3$$

$$R_1 = aR_2 + bR_3$$

$$R_2 = aR_2 + baR_2 + bbR_3 + b1 + 1$$

$$R_3 = aR_3 + bR_3$$

$$R_1 = aR_2 + bR_3$$

$$R_2 = aR_2 + baR_2 + bbR_3 + b + 1$$

$$R_3 = aR_3 + bR_3$$

$$R_1 = aR_2 + bR_3$$

$$R_2 = (a + ba)R_2 + bbR_3 + b + 1$$

$$R_3 = aR_3 + bR_3$$

DFA → Regex

$$R_1 = aR_2 + bR_3$$

$$R_2 = (a + ba)R_2 + bbR_3 + b + 1$$

$$R_3 = (\mathbf{a} + \mathbf{b})R_3$$

$$R_1 = aR_2 + bR_3$$

$$R_2 = (a + ba)R_2 + bbR_3 + b + 1$$

$$R_3 = \mathbf{0}$$

$$R_1 = aR_2 + b0$$

$$R_2 = (a + ba)R_2 + bb0 + b + 1$$

$$R_1 = aR_2$$

$$R_2 = (a + ba)R_2 + b + 1$$

$$R_1 = aR_2$$

$$R_2 = (a + ba)^*(b + 1)$$

$$R_1 = a(a + ba)^*(b + 1)$$

Something to ponder

What about Lex?

- So far: decide whether some regex matches some input.
- Lex must decide <u>which</u> regex matches <u>how much</u> input.
- So: run <u>multiple DFAs in parallel</u>, and choose the one that can consume the <u>most</u> input characters.

2.
$$(bb)^*(aa)^*$$

3.
$$a(1+b)a$$

$$\rightarrow$$
 $\begin{pmatrix} a \\ b \\ \end{pmatrix}$
 $\begin{pmatrix} a \\ b \\ \end{pmatrix}$

a

b

a

k

a

b

a

\$

1. (ab)*a

2. $(bb)^*(aa)^*$

a

b

a

þ

a

b

a

\$

1. (ab)*a

2. $(bb)^*(aa)^*$

a

b

a

b

a

b

a

\$

1. (ab)*a

2. $(bb)^*(aa)^*$

a b

a

b

a

b

a

\$

1. (ab)*a

2. $(bb)^*(aa)^*$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

2.
$$(bb)^*(aa)^*$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

a b a b a b a

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

2.
$$(bb)^*(aa)^*$$

3.
$$a(1+b)a$$

a b a b a

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

3.
$$a(1+b)a$$

What's next?

• Tomorrow's lecture will be on the topic of **parsing**.