PREDICTING THE IMPACT OF COVID-19 ON THE EMERGENCY DEPARTMENTS IN LOMBARDY, ITALY

ANGELA ANDREELLA¹, SPYROS BALAFAS¹, ANTONIETTA MIRA^{1,2}, GIULIA GHILARDI³, GRETA CARRARA³, FABRIZIO RUGGERI ⁴, ERNST WIT², GUIDO BERTOLINI ³, GIOVANNI NATTINO ³

JSM - AUGUST 2021

¹University of Insubria, Varese, Italy

²University of Svizzera Italiana, Lugano, Switzerland

³Institute of Pharmacological Research Mario Negri, Milan, Italy

⁴NATIONAL RESEARCH COUNCIL, INSTITUTE OF APPLIED MATHEMATICS AND INFORMATION TECHNOLOGY, MILAN, ITALY

INTRODUCTION - TSUNAMI PROJECT

The Lombardy region in Italy relies on the emergency medical service called Agenzia Regionale Emergenza Urgenza (AREU).

The number and type of calls to the emergency call center changed dramatically during and after the **COVID-19** epidemic peak.

The development of a valuable **predictive model** is then crucial in this emergency period to have an accurate **organization** of the actions towards the solution of an emergency event.

TSUNAMI PROJECT

INTRODUCTION - SPATIAL ORGANIZATION

AREU is organized by peripheral structures called Articolazioni Aziendali Territoriali (AAT) and Sale Operative Regionali di Emergenza Urgenza (SOREU).

AREU must deals with various **factors**: daily-seasonal variations, social and demographic factors, weather circumstances, and epidemiological factors.

- AREU data: information about all the calls received → SOREU, Time, AAT, if the calls activated an aid, i.e., it becomes an event, etc;
- ARPA data: weather data collected from sensors located across the Lombardy → Temperature, rainfall, snowfall;
- **ISTAT and ISS data**: demographic and epidemiological data → Flu incidence, number of car accidents, etc.

BUT also COVID-19 related factors.

■ **Dipartimento della Protezione Civile data**: number of hospitalised patients with symptoms, swabs, etc.

Here, we computed the **reproduction number** R_t based on the number of

- 1. the total amount of positive cases;
- 2. and total hospitalized patients

considering a daily and weekly window. The computation of these R_t follows the one used by the ISS.

MODEL

Here, we talk about the model to predict **events**, i.e., dispatch of transport and equipment until the rescue is completed, for the SOREUS **Pianura** and **Metropolitana**.

- We used a Generalized Additive Model (GAM) with negative-binomial family to deal with over-dispersed count data and no linear relationship between dependent and independent variables;
- The data were aggregated at hour and SOREU levels;
- However, the final predictions (one day ahead) were aggregated at the day level.

MODEL SELECTION

We evaluated a set of negative-binomial GAM models cross-validating across 4 period of time on 2020 and 2021 years using as performance metric the mean absolute error. The **prediction error** requested by AREU is defined as

$$E_i = \frac{\hat{y}_i - y_i}{y_i},$$

where y_i is the observed value and \hat{y}_i the predicted one at day i level.

MODEL

The following covariates were then selected:

- cubic regression spline for Hours with 24 basis;
- cubic regression spline for Quarter with 4 basis;
- P-spline for Day with 7 basis;
- Tensor product smooths between Day and Hour;
- Temperature lagged one day;
- Events of the day before lagged 1-2-3 by hour;
- Events aggregated by day and lagged 1, 2 and 7 days;
- \blacksquare R_t lagged one day;
- Flu incidence lagged one day.

RESULTS - PIANURA

RESULTS - PIANURA

Month	Year	MAE	MeAE	MaxAE	MinAE	RMSE
1	2021	5.471	4.638	16.129	0.562	6.856
2	2021	7.161	5.478	20.561	0.279	9.409
3	2021	5.343	5.651	15.401	0.783	6.189
4	2021	4.528	3.804	14.286	0.265	5.907
5	2021	4.394	3.989	7.868	1.366	4.817
4	2020	7.269	6.823	20.736	0.267	8.666
5	2020	5.550	3.846	17.000	0.590	6.887
6	2020	6.036	4.907	21.724	0.526	7.527
7	2020	5.994	5.325	22.260	0.000	7.812
8	2020	7.451	7.055	16.340	1.153	8.581
9	2020	4.498	3.789	13.003	0.275	5.780
10	2020	5.146	3.352	28.881	0.272	7.696
11	2020	5.507	4.596	13.174	0.820	6.451
12	2020	6.827	5.307	18.152	0.299	8.450

RESULTS - PIANURA

RESULTS - METROPOLITANA

RESULTS - METROPOLITANA

Month	Year	MAE	MeAE	MaxAE	MinAE	RMSE
1	2021	5.441	4.430	19.540	0.224	7.040
2	2021	3.175	2.670	8.712	0.110	3.888
3	2021	3.317	2.678	9.944	0.097	4.230
4	2021	3.911	3.489	10.479	0.096	4.639
5	2021	3.295	2.679	9.006	0.305	4.302
4	2020	5.706	4.475	16.586	1.087	7.399
5	2020	4.607	3.322	14.770	0.114	5.850
6	2020	4.597	3.771	17.769	0.000	5.749
7	2020	4.495	3.386	10.489	0.111	5.496
8	2020	4.534	3.415	13.750	0.236	5.720
9	2020	4.115	3.907	14.053	0.346	5.186
10	2020	4.172	3.175	15.422	0.360	5.157
11	2020	4.198	2.496	14.955	0.090	5.678
12	2020	5.383	3.395	24.462	0.669	7.197

RESULTS - METROPOLITANA

Take home messages and Further Directions

- We proposed a valuable model to predict the number of events occured on the SOREU **Pianura** and **Metropolitana**;
- capturing the daily and seasonal variation and incorporating epidemiological aspects as well as weather information.

Further direction would be applying

- the Generalized Additive Mixed Models to better deal with the data autocorrelation structure;
- a Bayesian extension assigning appropriate Markov random field priors with different forms and degrees of smoothness to deal with the trend and seasonal components.

Thanks to the amazing TSUNAMI group that worked on this project and thanks for your attention!

You can find the full analysis on https://github.com/angeella/Tsunami_project.

- ngeella angeella
- 💟 @aangeella
- angela.andreella@uninsubria.it