Variational inference Extensions and current topics

Helge Langseth and Thomas Dyhre Nielsen

Oct. 2018

Introduction

Plan for this weeks

- Day 1: Bayesian networks Definition and inference
 - Definition of Bayesian networks: Syntax and semantics
 - Exact inference
 - Approximate inference using MCMC
- Day 2: Variational inference Introduction and basis
 - Approximate inference through the Kullback-Leibler divergence
 - Variational Bayes
 - The mean-field approach to Variational Bayes
- Day 3: Variational Bayes cont'd
 - Solving the VB equations
 - Introducing Exponential families
- Day 4: Scalable Variational Bayes
 - Variational message passing
 - Stochastic gradient ascent
 - Stochastic variational inference
- Day 5: Current approaches and extensions
 - Variational Auto Encoders
 - Black Box variational inference
 - Probabilistic Programming Languages

Recap from last time

- The Exponential Family of distributions
- Variational Message Passing
- Stochastic approximations using Robbins-Monro
- Stochastic Variational Bayes

Our motivation for Bayesian models

Motivation

We seek to build models that:

- Reflect human understanding of a domain with a transparent model structure.
- Support a large (potentially unbounded) set of probabilistic models.
- Ability to capture fine structure in data.
- Sound semantics both wrt. modelling language and interpretation of the generated results.
- Efficient inference algorithms preferably with quality guarantees.
- Supported by a useful probabilistic programming language that allows simple implementation of these models.

Variational Auto-Encoders

Is a *Deep Neural Network* the solution?

Limits on the scope of deep learning*

Deep learning thus far [January 2018] ...

- ... is data hungry
- ... has no natural way to deal with hierarchical structure
- ... is not sufficiently transparent
- ... has not been well integrated with prior knowledge
- ... works well as an approximation, but its answers often cannot be fully trusted

^{*} Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.Al]

Is a *Deep Neural Network* the solution?

Limits on the scope of deep learning*

Deep learning thus far [January 2018] ...

- ... is data hungry
- ... has no natural way to deal with hierarchical structure
- ... is not sufficiently transparent
- ... has not been well integrated with prior knowledge
- ... works well as an approximation, but its answers often cannot be fully trusted

Deep Bayesian Learning

A marriage of Bayesian thinking and deep learning is a framework that ...

- ... allows explicit modelling.
- ... has a sound probabilistic foundation.
- ... balances expert knowledge and information from data.
- ... avoids restrictive assumptions about modelling families.
- ... supports efficient inference.

^{*} Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.Al]

Building-blocks of a Variational Auto Encoder

The conditional distribution

- Recall that a Bayesian network specification includes the conditional probability distribution $p(x_i \mid pa(x_i))$ for each variable X_i .
- Typically the CPD is assumed to belong to some distributional family out of convenience — e.g., to obtain conjugacy.
- Deep Bayesian models opens up for the CPDs to be represented through deep neural networks.

Building-blocks of a Variational Auto Encoder

The conditional distribution

- Recall that a Bayesian network specification includes the conditional probability distribution $p(x_i \mid pa(x_i))$ for each variable X_i .
- Typically the CPD is assumed to belong to some distributional family out of convenience — e.g., to obtain conjugacy.
- Deep Bayesian models opens up for the CPDs to be represented through deep neural networks.

The model structure

- Bayesian models often leverage from latent variables. These are variables Z that are unobserved, yet influence the observed variables X.
- We therefore consider a model of two components:
 - **Z** follows some distribution $p_{\theta}(\mathbf{z} \mid \boldsymbol{\theta})$ parameterized by $\boldsymbol{\theta}$.
 - $\mathbf{X} \mid \mathbf{Z}$ follows some distribution $p_{\theta}(\mathbf{x} \mid g_{\theta}(\mathbf{z}))$ where $g_{\theta}(\mathbf{z})$ is a function represented by a deep neural network.
- In VAE lingo, Z in a coded version of X. Therefore, p_θ(x | g_θ(z)) is the decoder model. Similarly, the process X → Z is the encoder.

The Variational Auto Encoder (VAE)

Model of interest

- We assume parametric distributions $p_{\theta}(\mathbf{z} \mid \boldsymbol{\theta})$ and $p_{\theta}(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta})$.
- No further assumptions are made about the generative model.
- We want to learn θ to maximize the model's fit to the data-set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Simultaneously we seek a variational approximation $q_{\lambda}(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})$ parameterized by $\boldsymbol{\lambda}$.
- Notice that while VI approaches "typically" optimize λ for each \mathbf{x} , we here do **amortized inference**: Chose one λ for all \mathbf{x} , and define $q_{\lambda}(\mathbf{z} \,|\, \mathbf{x}, \lambda)$ with \mathbf{x} an explicit input to a DNN.

The Variational Auto Encoder (VAE)

Model of interest

- We assume parametric distributions $p_{\theta}(\mathbf{z} \mid \boldsymbol{\theta})$ and $p_{\theta}(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\theta})$.
- No further assumptions are made about the generative model.
- We want to learn θ to maximize the model's fit to the data-set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Simultaneously we seek a variational approximation $q_{\lambda}(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})$ parameterized by $\boldsymbol{\lambda}$.
- Notice that while VI approaches "typically" optimize λ for each \mathbf{x} , we here do **amortized inference**: Chose one λ for all \mathbf{x} , and define $q_{\lambda}(\mathbf{z} \mid \mathbf{x}, \lambda)$ with \mathbf{x} an explicit input to a DNN.

Obvious strategy:

Optimize $\mathcal{L}\left(q\right)$ to choose $\boldsymbol{\lambda}$ and $\boldsymbol{\theta}$, where

$$\mathcal{L}\left(q\right) = -\mathbb{E}_{q_{\lambda}}\left[\log\frac{q_{\lambda}(\mathbf{z}\,|\,\mathbf{x},\boldsymbol{\lambda})}{p_{\theta}(\mathbf{z},\mathbf{x}\,|\,\boldsymbol{\theta})}\right]$$

- We will parameterize $p_{\theta}(\mathbf{x} | \mathbf{z}, \boldsymbol{\theta})$ as a DNN with inputs \mathbf{z} and weights defined by $\boldsymbol{\theta}$;
- ... and $q_{\lambda}(\mathbf{z} \mid \mathbf{x}, \lambda)$ as a DNN with inputs \mathbf{x} and weights defined by λ .

We rephrase the ELBO as follows:

First recall that

$$\mathcal{L}(q) \leq \log p_{\theta}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}_i)$$

We will therefore now look at ELBO for a single observation x_i and later maximize the sum of these contributions. For a given x_i we get

$$\mathcal{L}(\mathbf{x}_{i}) = -\mathbb{E}_{q_{\lambda}} \left[\log \frac{q_{\lambda}(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\lambda})}{p_{\theta}(\mathbf{z}, \mathbf{x}_{i} \mid \boldsymbol{\theta})} \right]$$

$$= -\mathbb{E}_{q_{\lambda}} \left[\log q_{\lambda}(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\lambda}) \right] + \left\{ \mathbb{E}_{q_{\lambda}} \left[\log p_{\theta}(\mathbf{z}) \right] + \mathbb{E}_{q_{\lambda}} \left[\log p_{\theta}(\mathbf{x}_{i} \mid \mathbf{z}, \boldsymbol{\theta}) \right] \right\}$$

$$= -\text{KL} \left(q_{\lambda}(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\lambda}) || p_{\theta}(\mathbf{z}) \right) + \mathbb{E}_{q_{\lambda}} \left[\log p_{\theta}(\mathbf{x}_{i} \mid \mathbf{z}, \boldsymbol{\theta}) \right]$$

The two terms penalizes:

- ... a posterior over \mathbf{z} far from the prior $p_{\theta}(\mathbf{z})$
- ... and poor reconstruction ability averaged over $q_{\lambda}(\mathbf{z} \mid \mathbf{x}_i, \boldsymbol{\lambda})$

Calculating the ELBO terms

$$\mathcal{L}(\mathbf{x}_i) = - \text{KL}\left(q_{\lambda}(\mathbf{z} \mid \mathbf{x}_i, \boldsymbol{\lambda}) || p_{\theta}(\mathbf{z})\right) + \frac{\mathbb{E}_{q_{\lambda}}\left[\log p_{\theta}(\mathbf{x}_i \mid \mathbf{z}, \boldsymbol{\theta})\right]}{}$$

- The KL-term is dependent on the distributional families of $p_{\theta}(\mathbf{z})$ and $q_{\lambda}(\mathbf{z} \mid \mathbf{x}_i, \lambda)$.
 - One can assume a simple shape, like:
 - ullet $p_{ heta}(\mathbf{z})$ being Gaussian with zero mean and isotropic covariance;
 - $q_{\lambda}(z_{\ell} | \mathbf{x}_{i}, \boldsymbol{\lambda})$ is a Gaussian with mean and variance determined by a DNN.
 - Simplicity is **not required** as long as the KL can be calculated (numerically).

Calculating the ELBO terms

$$\mathcal{L}(\mathbf{x}_i) = - \text{KL}\left(q_{\lambda}(\mathbf{z} \mid \mathbf{x}_i, \boldsymbol{\lambda}) || p_{\theta}(\mathbf{z})\right) + \frac{\mathbb{E}_{q_{\lambda}}\left[\log p_{\theta}(\mathbf{x}_i \mid \mathbf{z}, \boldsymbol{\theta})\right]}{}$$

- The KL-term is dependent on the distributional families of $p_{\theta}(\mathbf{z})$ and $q_{\lambda}(\mathbf{z} \mid \mathbf{x}_i, \lambda)$.
 - One can assume a simple shape, like:
 - $p_{\theta}(\mathbf{z})$ being Gaussian with zero mean and isotropic covariance;
 - $q_{\lambda}(z_{\ell} | \mathbf{x}_{i}, \boldsymbol{\lambda})$ is a Gaussian with mean and variance determined by a DNN.
 - Simplicity is not required as long as the KL can be calculated (numerically).
- The reconstruction term involves two separate operations:
 - For a given z evaluate the log-probability of the data-point x_i , $\log p_{\theta}(x_i | z, \theta)$. The distribution is parameterized by a DNN, getting its weights from θ .
 - The expectation $\mathbb{E}_{q_{\lambda}}\left[\cdot\right]$ is approximated by a random sample that we generate from $q_{\lambda}(\mathbf{z}\,|\,\mathbf{x}_{i},\boldsymbol{\lambda})$:

$$\mathbb{E}_{q_{\lambda}}\left[\log p_{\theta}(\mathbf{x}_{i} \,|\, \mathbf{z}, \boldsymbol{\theta})\right] \approx \frac{1}{M} \sum_{j=1}^{M} \log p_{\theta}\left(\mathbf{x}_{i} \,|\, \tilde{\mathbf{z}}_{i,j}, \boldsymbol{\theta}\right),$$

where $\tilde{\mathbf{Z}}_{i,j} \sim q_{\lambda}(\cdot \mid \mathbf{x}_i, \boldsymbol{\lambda})$.

ELBO for VAEs

VAE implementation

Algorithm

- **1** Initialize λ , θ
- Repeat
 - For i = 1, ..., N:

 - Approximate ELBO contribution by

$$\tilde{\mathcal{L}}(\mathbf{x}_i) = -\operatorname{KL}\left(q_{\lambda}(\mathbf{z} \mid \mathbf{x}_i, \boldsymbol{\lambda})||p_{\theta}(\mathbf{z})\right) + \frac{1}{M} \sum_{j=1}^{M} \log p_{\theta}\left(\mathbf{x}_i \mid \tilde{\mathbf{z}}_{i,j}, \boldsymbol{\theta}\right)$$

② Update λ , θ using the approximate ELBO gradients found by

$$abla_{\lambda,\theta} \mathcal{L}\left(\mathcal{D}, \boldsymbol{\theta}, \boldsymbol{\lambda}\right) pprox
abla_{\lambda,\theta} \sum_{i=1}^{N} \tilde{\mathcal{L}}(\mathbf{x}_{i}).$$

Until convergence

3 Return λ , θ

Simple implementation

Notice that variational learning is casted as a gradient ascent procedure. We can therefore utilize Tensorflow, Theano or other similar tools.

Python-code for training a VAE

```
def train(self, dataset, no_epochs, batch_size):
    print("--- Training starts ---")
    for epoch in range (no_epochs):
        avg cost = 0
        total_batch = int(dataset.num_examples / batch_size)
        # Loop over all batches
        for i in range(total_batch):
            # Get data-batch
            batch x, = dataset.next batch(batch size)
            # Send in data, optimize parameters, get loss
            , cost = self.sess.run(
                [self.train op, self.loss],
                feed_dict={self.input_data_placeholder: batch_x})
            # Compute average loss per epoch
            avg cost += (cost / dataset.num examples) * batch size
        # Display loss per epoch
        print ("Epoch: {:4d}: Loss: {:11.6f}".format (epoch,
              self.avg free energy bound[epoch]))
    print("--- Training done ---")
```

Python-code for definition of learning objective

```
def _define_loss(self):
    with tf.name scope('Loss'):
        with tf.name_scope('KL_divergence'):
            kl loss = tf.reduce sum(
                self.z.kl divergence(tf.distributions.Normal(
                    loc=0., scale=1.)),
                axis=1)
        with tf.name scope('Reconstruction loss'):
            prediction = self.data reconstruction.mean()
            reconstruction loss = \
                - tf.reduce sum(
                    self.input_data_placeholder * tf.log(_prediction)
                    + (1 - self.input_data_placeholder) *
                    tf.log(1 - prediction), axis=1)
        _loss = tf.reduce_mean(tf.add(reconstruction_loss, kl_loss))
    self.loss = loss
```

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9")

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9")

- Encoding is done in **two** dimensions. A priori $\mathbf{Z}_i \sim p_{\theta}(\mathbf{z}_i) = \mathcal{N}\left(\mathbf{0}_2, \mathbf{I}_2\right)$.
- \bullet The approximate expectation in the ELBO is calculated using M=1 sample per data-point.
- The encoder network $X \rightsquigarrow Z$ is a 256 + 64 neural net with ReLU units.
 - The 64 outputs go through a linear layer to define $\mu_{\lambda}(\mathbf{x}_i)$ and $\log \Sigma_{\lambda}(\mathbf{x}_i)$.
 - Finally, $q_{\lambda}(\mathbf{z}_i \mid \mathbf{x}_i, \boldsymbol{\lambda}) = \mathcal{N}(\boldsymbol{\mu}_{\lambda}(\mathbf{x}_i), \boldsymbol{\Sigma}_{\lambda}(\mathbf{x}_i)).$

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9")

- Encoding is done in **two** dimensions. A priori $\mathbf{Z}_i \sim p_{\theta}(\mathbf{z}_i) = \mathcal{N}\left(\mathbf{0}_2, \mathbf{I}_2\right)$.
- \bullet The approximate expectation in the ELBO is calculated using M=1 sample per data-point.
- The encoder network $X \rightsquigarrow Z$ is a 256 + 64 neural net with ReLU units.
 - The 64 outputs go through a linear layer to define $\mu_{\lambda}(\mathbf{x}_i)$ and $\log \Sigma_{\lambda}(\mathbf{x}_i)$.
 - Finally, $q_{\lambda}(\mathbf{z}_i \mid \mathbf{x}_i, \boldsymbol{\lambda}) = \mathcal{N}(\boldsymbol{\mu}_{\lambda}(\mathbf{x}_i), \boldsymbol{\Sigma}_{\lambda}(\mathbf{x}_i)).$
- The **decoder network Z** \leadsto X is a 64 + 256 neural net with ReLU units.
 - The 256 outputs go through a linear layer to define logit $(\mathbf{p}_{\theta}(\mathbf{z}_i))$.
 - Then $p_{\theta}(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta})$ is Bernoulli with parameters $\mathbf{p}_{\theta}(\mathbf{z}_i)$.
 - $\mathbf{z}_i: 2 \text{ dim} \xrightarrow{\text{ReLU}} \text{Hidden, 64-d} \xrightarrow{\text{ReLU}} \text{Hidden, 256-d} \xrightarrow{\text{Linear}} \text{logit}(\mathbf{p}_i), 784-d \longrightarrow p_{\theta}(\mathbf{x}_i \,|\, \mathbf{z}_i) = \text{Bernoulli}(\mathbf{p}_i), 784-d$

Learning progress; learning rate $\mu = 10^{-4}$

Trying to reconstruct \mathbf{x}_i by $\mathbb{E}_{p_{\theta}}\left[\mathbf{X} \,|\, \mathbf{Z} = \mathbb{E}_{q_{\lambda}}\left[\mathbf{Z} \,|\, \mathbf{x}_i\right]\right]$

After 1 epoch

After 250 epochs

After 500 epoch

Using separate test-set

Averaged distribution over **Z**

Averaged distribution over **Z** – per class

The picture manifold $-\mathbb{E}_{p_{\theta}}[\mathbf{X} \mid \mathbf{z}]$ for different values of \mathbf{z}

Manifold after 1 epoch

The picture manifold $-\mathbb{E}_{p_{\theta}}\left[\mathbf{X} \mid \mathbf{z}\right]$ for different values of \mathbf{z}

```
66660000000b
   799666660000000000000
7996666000000000000
aaabbbbooo00000000000
```

Manifold after 250 epochs

The picture manifold $-\mathbb{E}_{p_{\theta}}\left[\mathbf{X} \mid \mathbf{z}\right]$ for different values of \mathbf{z}

```
92660000000666
     9 = 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0
    $66600000000000
 7996666000000000000
7774666600000000000
7796660000000000000
747444000000000000000000
```

Manifold after 500 epochs

Black Box Variational Inference

Introduction

- Variational inference will efficiently (both computer time and programming time) do inference in some models:
 - Exponential Family distributions, through variational message passing
 - Models that can be formulated as a variational auto encoder or other tailor-made structures
- However, we have not seen a general purpose inference technique that works for all structures and all conditional distributions.
- Black Box Variational Inference (BBVI) promises to be just that...

Main idea

The key idea is as for VAEs:

- Cast variational inference as an optimization problem: Maximize ELBO.
- Then use iterative refinement (stochastic gradient ascent) to optimize the variational distributions.

However, here we do operations directly on a model fully specified by statistical distributions, and do not need a DNN as a "catch-all" representation.

BBVI - Vanilla version

Key requirements

We want the approach to be ...

"Black Box": Not requiring tailor-made adaptations by the modeller.

Applicable: Useful independently of the underlying model assumptions.

Efficient: Utilize modelling assumptions, including the mean field assumption, to improve computational speed.

Algorithm: Maximize $\mathcal{L}\left(q\right) = \mathbb{E}_{q_{\lambda}}\left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z})}\right]$ by gradient ascent

- Initialization:
 - $t \leftarrow 0$;
 - $\hat{\lambda}_0 \leftarrow$ random initialization;
 - $\rho \leftarrow$ a Robbins-Monro sequence.
- Repeat until negligible improvement in terms of $\mathcal{L}\left(q\right)$:
 - $t \leftarrow t + 1$;
 - $\hat{\boldsymbol{\lambda}}_{t} \leftarrow \hat{\boldsymbol{\lambda}}_{t-1} + \rho_{t} \nabla_{\lambda} \mathcal{L}(q) |_{\hat{\boldsymbol{\lambda}}_{t-1}};$

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \right].$$

We can use these properties to simplify the equation:

$$\textcircled{\scriptsize 0} \ \, \mathbb{E}_{q_{\lambda}}\left[\nabla_{\lambda}\log q_{\lambda}(\mathbf{z}\,|\,\boldsymbol{\lambda})\right] = 0 \text{ for a density function } q_{\lambda}(\mathbf{z}\,|\,\boldsymbol{\lambda})$$

Now it follows that

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda})} \, \cdot \, \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda}) \right].$$

Calculating the gradient – Things to notice

$$abla_{\lambda} \mathcal{L}\left(q\right) = \boxed{\mathbb{E}_{q_{\boldsymbol{\lambda}}}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda})} \cdot \left| \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda}) \right| \right].$$

Calculating the gradient – Things to notice

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda}) \right].$$

Calculating the gradient – Things to notice

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \lambda)} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \lambda) \right].$$

ullet $q_{\lambda}(\mathbf{z}\,|\,oldsymbol{\lambda})$ factorizes under $\overline{\mathsf{MF}}$, s.t. we can optimize per variable: $q_{\lambda_i}(z_i\,|\,oldsymbol{\lambda}_i)$.

Calculating the gradient – Things to notice

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda}) \right].$$

- $q_{\lambda}(\mathbf{z}\,|\,\boldsymbol{\lambda})$ factorizes under MF , s.t. we can optimize per variable: $q_{\lambda_i}(z_i\,|\,\boldsymbol{\lambda}_i)$
- We must calculate $\nabla_{\lambda} \log q(\mathbf{z} \,|\, \lambda)$, which is also known as the "score function". This depends on the distributional family of $q(\cdot)$; can be precomputed for standard distributions.

Calculating the gradient – Things to notice

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \cdot \middle \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda}) \right].$$

- $q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})$ factorizes under MF, s.t. we can optimize per variable: $q_{\lambda_i}(z_i \mid \boldsymbol{\lambda}_i)$.
- We must calculate $\nabla_{\lambda} \log q(\mathbf{z} \,|\, \lambda)$, which is also known as the "score function". This depends on the distributional family of $q(\cdot)$; can be precomputed for standard distributions.
- The expectation will be approximated using a sample $\{\mathbf{z}_1, \dots, \mathbf{z}_M\}$ generated from $q(\mathbf{z} \mid \boldsymbol{\lambda})$. Hence we require that we can **sample from** $q_{\lambda_i}(\cdot)$.

Calculating the gradient – Things to notice

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} | \boldsymbol{\lambda})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} | \boldsymbol{\lambda}) \right].$$

- $q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})$ factorizes under MF, s.t. we can optimize per variable: $q_{\lambda_i}(z_i \mid \boldsymbol{\lambda}_i)$.
- We must calculate $\nabla_{\lambda} \log q(\mathbf{z} \,|\, \lambda)$, which is also known as the "score function". This depends on the distributional family of $q(\cdot)$; can be precomputed for standard distributions.
- The expectation will be approximated using a sample $\{\mathbf{z}_1,\ldots,\mathbf{z}_M\}$ generated from $q(\mathbf{z}\,|\,\boldsymbol{\lambda})$. Hence we require that we can **sample from** $q_{\lambda_i}(\cdot)$.

Calculating the gradient - in summary

We have observed the datapoint x, and our current estimate for λ_i is $\hat{\lambda}_i$. Then

$$\left. \nabla_{\lambda_{i}} \mathcal{L}\left(q\right) \right|_{\lambda = \hat{\lambda}_{i}} \approx \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(z_{i,j}, \mathbf{x})}{q(z_{i,j} \mid \hat{\lambda}_{i})} \cdot \nabla_{\lambda_{i}} \log q_{i}(z_{i,j} \mid \hat{\lambda}_{i}).$$

where $\{z_{i,1}, \dots z_{i,M}\}$ are samples from $q_{\lambda_i}(\cdot | \hat{\lambda}_i)$.

BBVI in Python

Example model

We assume a simple generative model:

Now, data is generated using $\mu=10$, we assume a variational model with $q(\mu\,|\,\lambda)=\mathcal{N}(\lambda,1)$ and want to maximize the ELBO wrt. the posterior mean for μ in the variational formulation.

BBVI.ipynb

BBVI in Python – Evaluating the results

- Since the gradient estimate is based on a random sample, it is meaningful to evaluate the estimators' "robustness" in terms of a density function.
- We would hope to see robust estimates, also for small M, and in particular high probability for moving in the correct direction (gradient larger than 0).
- This is not the case, which has lead to a major focus on variance reduction techniques: while important we will not cover them here.

Probabilistic Programming Languages

Edward

Edward

Edward (edwardlib.org) is a Python library for probabilistic modeling, inference, and criticism, integrated with Tensorflow.

Modeling: • Directed graphical models

Neural networks (via libraries such as tf.layers and tf.keras)

• ...

Inference: • Variational inference – including BBVI, SVI

Monte Carlo – including Gibbs, Hamiltonian Monte Carlo

Traditional Message passing algorithms

...

Criticism: • Point-based evaluations

Posterior predictive checks

• ...

... and there are also many other possibilities

 ${\tt Tensorflow} \ is \ integrating \ probabilistic \ thinking \ into \ its \ core, \ Uber \ has \ recently \ released \ {\tt Pyro}, \ {\tt InferPy} \ is \ a \ local \ alternative, \ etc.$

First example – Edward for a Gaussian model

Example model

We assume a simple generative model:

Edward-simple-Gaussian.ipynb

Posterior variational distribution over $(\mu, 1/\Sigma)$

Posterior variational distribution over $(\mu, 1/\Sigma)$

Example: Variational Auto Encoder in Edward

Generative model: $\mathbf{Z} \leadsto \mathbf{X}$


```
z = ed.models.Normal(
   loc=tf.zeros([batch_size, z_dim]),
   scale=tf.ones([batch_size, z_dim]))
hidden_gen = tf.layers.dense(z, 64,
   activation=tf.nn.relu)
hidden_gen = tf.layers.dense(
   hidden_gen, 256, activation=tf.nn.relu)
x = ed.models.Bernoulli(
   logits=tf.layers.dense(hidden_gen, 28 * 28))
```

Example: Variational Auto Encoder in Edward

\mathbf{Z}_{i} \mathbf{Y}_{i} \mathbf{Y}_{i} \mathbf{Y}_{i}

Generative model: $\mathbf{Z} \leadsto \mathbf{X}$

```
z = ed.models.Normal(
    loc=tf.zeros([batch_size, z_dim]),
    scale=tf.ones([batch_size, z_dim]))
hidden_gen = tf.layers.dense(z, 64,
    activation=tf.nn.relu)
hidden_gen = tf.layers.dense(
    hidden_gen, 256, activation=tf.nn.relu)
x = ed.models.Bernoulli(
    logits=tf.layers.dense(hidden_gen, 28 * 28))
```

$\textbf{Variational model: } \mathbf{X} \leadsto \mathbf{Z}$


```
x_ph = tf.placeholder(
    tf.int32, [batch_size, 28 * 28])
hidden_vb = tf.layers.dense(
    tf.cast(x_ph, tf.float32), 256,
    activation=tf.nn.relu)
hidden_vb = tf.layers.dense(hidden_vb, 64,
    activation=tf.nn.relu)
qz = ed.models.Normal(
    loc=tf.layers.dense(hidden_vb, z_dim),
    scale=tf.layers.dense(hidden_vb, z_dim,
    activation=tf.nn.softplus))
```

Example: Variational Auto Encoder in Edward - cont'd

- Inference is done by binding distributions together. Here z and qz are bound, and relate to the same data x which is fed into the system using the placeholder x_ph .
- Notice how we can choose among different inference engines. Here we do KLqp, which is standard BBVI.
- Everything is built on top of Tensorflow, hence we have access to the standard optimization routines for training, here we use RMSprop

Code to define the optimization:

```
# Bind p(x, z) and q(z \mid x) to the same TensorFlow placeholder for x. inference = ed.KLqp({z: qz}, data={x: x_ph}) optimizer = tf.train.RMSPropOptimizer(0.01, epsilon=1.0) inference.initialize(optimizer=optimizer)
```

Code to do the actual training:

```
for epoch in range(n_epoch):
    print("Epoch: {:3d}: ".format(epoch), end='')
    loss = 0.0

    for t in range(n_iter_per_epoch):
        x_batch = next(x_train_generator)
        info_dict = inference.update(feed_dict={x_ph: x_batch})
        loss += info_dict['loss']
```

Example: Variational Auto Encoder in Edward - cont'd

- Inference is done by binding distributions together. Here z and qz are bound, and relate to the same data x which is fed into the system using the placeholder x_ph .
- Notice how we can choose among different inference engines. Here we do KLqp, which is standard BBVI.
- Everything is built on top of Tensorflow, hence we have access to the standard optimization routines for training, here we use RMSprop

Example - Python notebook

Show notebook: Edward-VAE.ipynb

```
print("Epoch: {:3d}: ".format(epoch), end='')
loss = 0.0

for t in range(n_iter_per_epoch):
    x_batch = next(x_train_generator)
    info_dict = inference.update(feed_dict={x_ph: x_batch})
    loss += info_dict['loss']
```

Generated pictures from Edward: $\mathbb{E}_{p_{\theta}}[\mathbf{X} | \mathbf{z}]$ for sampled **Z**-values

Examples after 1 epoch

Generated pictures from Edward: $\mathbb{E}_{p_{\theta}}[\mathbf{X} | \mathbf{z}]$ for sampled **Z**-values

Examples after 250 epoch

Generated pictures from Edward: $\mathbb{E}_{p_{\theta}}[\mathbf{X} | \mathbf{z}]$ for sampled **Z**-values

Manifold after 500 epochs

Conclusions

Variational Bayes: VB is a deterministic alternative to sampling for approximate inference in Bayesian models.

- VB seeks the model $q_{\lambda}(\mathbf{z} \mid \lambda_{\mathbf{x}})$ inside a family of applicable models \mathcal{Q} that is closest to the (unattainable) posterior $p(\mathbf{z} \mid \mathbf{x})$ in terms of a Kullback Leibler divergence.
- Depending on Q, we can assert efficient inference a very common choice is the mean field assumption:

$$q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda}) = \prod_{i} q_{\lambda_{i}}(z_{i} \,|\, \boldsymbol{\lambda}_{i}).$$

Variational Bayes: VB is a deterministic alternative to sampling for approximate inference in Bayesian models.

VB message passing: Variational Bayes for Exponential Family models.

Variational Bayes: VB is a deterministic alternative to sampling for approximate inference in Bayesian models.

VB message passing: Variational Bayes for Exponential Family models.

Stochastic VB: Mini-batching in VMP. Leaning heavily on stochastic approximation theory.

- Variational Bayes: VB is a deterministic alternative to sampling for approximate inference in Bayesian models.
- **VB message passing:** Variational Bayes for **Exponential Family** models.
- **Stochastic VB: Mini-batching** in VMP. Leaning heavily on stochastic approximation theory.
- VB outside Exponential Family models: VB for general distribution families.
 - The goal is to obtain efficient inference in unconstrained Bayesian network models – any structure, any combination of distributional families.
 - Variational Auto-Encoders efficiently implements bipartite latent-variable models with flexible conditional probability distributions.
 - Black-Box Variational Inference promises VB inference in any model, but at the cost that inference relies on sampling – and it sometimes shows poor converge properties in practice.

- Variational Bayes: VB is a deterministic alternative to sampling for approximate inference in Bayesian models.
- **VB message passing:** Variational Bayes for **Exponential Family** models.
- **Stochastic VB: Mini-batching** in VMP. Leaning heavily on stochastic approximation theory.
- VB outside Exponential Family models: VB for general distribution families.
- **Probabilistic Programming Languages:** PPLs are programming languages to describe probabilistic models and perform inference in them.
 - Edward is a PPL built on top of Tensorflow, and which supports several inference techniques, including BBVI, SVI, MCMC, and exact inference.
 - Several other alternatives exist as well (Pyro, Stan, JAGS, InferPy...)