Also published as:

PL301281 (A1)

NZ250344 (A)

NO934372 (A)

more >>

CZ9302614 (A3)

P0606044 (A1)

IMPROVEMENT IN ORGANIC COMPOUND

Publication number: JP6228122 (A)

Publication date:

1994-08-16

Inventor(s):

MAIKERU MORISU DOREIFUYUSU; ARUBERUTO

ROITOBUIRAA; ANDORIYUU ROORANDO MATSUKENJII; IERUKU SHIYUNAIDAA; RENE PAURU TORAABAA; ANRI

MATSUTO

Applicant(s):

SANDOZ AG

Classification:

- international: A61K31/365; A61P1/00; A61P9/10; A61P17/00; A61P29/00;

C07D313/00; C12P17/08; A61K31/365; A61P1/00; A61P9/00;

A61P17/00; A61P29/00; C07D313/00; C12P17/02; (IPC1-

7): C07D313/00; A61K31/365

- European:

C07D313/00; C12P17/08; C12R1/645

Application number: JP19930303866 19931203 **Priority number(s):** GB19920025396 19921204

Abstract not available for JP 6228122 (A)

Abstract of corresponding document: EP 0606044 (A1)

Novel compounds of formula I <CHEM> wherein R4, R5, R6, -a-b-, c, -d-e- and -f-g- are as defined are cytokine release inhibitors and IL-1 antagonists and are thus indicated for treatment of disorders with an aetiology associated with or comprising excessive cytokine release, particularly IL-1 beta release, including a wide variety of inflammatory states and diseases such as RA, osteoarthritis, septic shock, psoriasis, atherosclerosis, inflammatory bowel disease, Crohn's disease and asthma. Related known compounds Zearalenone and radicicol and derivatives thereof have also been found to have cytokine release inhibitor properties and have similar pharmaceutical applications.

Data supplied from the esp@cenet database — Worldwide

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-228122

(43)公開日 平成6年(1994)8月16日

(51)Int.Cl. ⁵ C 0 7 D 313/00 A 6 1 K 31/365	識別配号 ABG ABX ACJ ADA	庁内整理番号 9360-4 C 7431-4 C 7431-4 C 7431-4 C 7431-4 C	F I	技術表示箇所
			審査請求	未請求 請求項の数18 OL (全 14 頁)
(21)出願番号	特顯平5-303866		(71)出願人	390032997 サンド・アクチエンゲゼルシヤフト
(22)出願日	平成5年(1993)12	月3日		SANDOZ AKTIENGESELL SCHAFT
(31)優先権主張番号 (32)優先日	9225396 1992年12月4日			スイス国シーエイチー4002バーゼル・リヒ トシユトラーセ35
(33)優先權主張国	イギリス(GB)		(72)発明者	マイケル・モリス・ドレイフユス スイス、ツェーハーー4054パーゼル、パラ ディースホーフシュトラーセ82番
			(72)発明者	アルベルト・ロイトヴィラー スイス、ツェーハー-3178ベージンゲン、 リーダーベルク351番
			(74)代理人	弁理士 青山 葆 (外1名) 最終頁に続く

(54) 【発明の名称 】 有機化合物に関する改良

(57)【要約】 (修正有)

【目的】 サイトカイン放出阻害剤及び I L-1 拮抗物質として有用な化合物の提供。

【構成】 式 I で表わされる、過剰のサイトカイン放出、特に I L-1 β 放出に関連する又はこれより成る病因を伴う疾病、例えばリューマチ様関節炎、骨関節炎、敗血症ショック、乾癬、アテローム性動脈硬化症、非特異性炎症性腸疾患、クローン病及び喘息の処置に有効な新規化合物、該化合物を含む医薬組成物、ならびに再発酵法及び化学合成法による該化合物の製造方法。

$$R_{5}$$
 R_{4}
 R_{6}
 R_{6

【特許請求の範囲】 【請求項1】 式 I 【化1】

〔式中、R₄およびR₆は同一又は異なって、H、OH、 C_{1-4} アルコキシ又は C_{1-4} アルキルCOOーであり、R 5はOH、C₁₋₄アルコキシ又はC₁₋₄アルキルCOO-であり、-a-b-と-d-e-の一つは-CHR₇- CHR_8 -であり、他はシス又はトランスー CR_7 =CR8-(式中、 R_7 及び R_8 は同一又は異なって、H、O H、 C_{1-4} アルコキシ又は C_{1-4} アルキルCOO-であ る)であり、cはCH-OH又はC=Oであり、-fg-は-C H_2- C H_2- 或はシス又はトランス-CH=CH-である。但し、R4がH、R6がOHそして-fgーがトランスーCH=CH-であるとき、1. -a $b-m-CH_2-CH_2-r$, cmC=0r, -d-e-が $-CH_2-CH_2-$ である場合には、 R_5 はOHではな く、又は2. - a - b - が - C H₂ - C H₂ - 又はシスー CH=CH-で、cがC=O又はCH-OHで、-deーが-CHOH-CHOH-である場合には、Rsは メトキシではない〕の遊離形又は塩形の或は生理的に加 水分解可能で且つ許容しうるエステル形の化合物(星印 を付した不斉炭素並びに原子 a 及び/又はb 或はd 及び /又はeは、これらが不斉炭素原子のとき、R-又はS ーコンフィギュレーションであるか、或は化合物はその

光学異性体の混合物を含む)。

【請求項2】 R_4 及び R_6 が同一又は異なって、H、-OH、MeO-又はMe-COO-であり、 R_6 が-OH、MeO-又はMeCOO-であり、-a--b-がシス又はトランス--CR $_7$ '=-CR $_8$ '-(式中、-R $_7$ '及び-R $_8$ 'は同一又は異なって、-H、-OH、-MeO-又は-MeCOO-である)であり、-d--e-が--CHR $_7$ '-CHR $_8$ '-(式中、-R $_7$ '及び-R $_8$ 'は前記と同意義である)である、請求項1の化合物。

【請求項3】 R_4 がH又はMeOであり、 R_6 がMeOであり、 R_6 がOH又はMeOであり、-a-b-がシス又はトランス-CH=CH-であり、-d-e-が $-CH_2-$ 又は-CHOH-CHOHであり、-f-8ーがトランス-CH=CH-である、請求項2の化合物。

【請求項4】 R_4 がH又はメトキシであり、 R_6 がメトキシであり、 R_6 がOHであり、-a-b-がシス又はトランス-CH=CH-であり、-a-b-がシス又はトランス-CH=CH-であり、-d-e-が-CHOH-CHOH-であり、-f-g-がトランス-CH=CH-である(但し、-a-b-がシス-CH=CH-のとき、 R_4 はメトキシで、-0は-1には-1の化合物。

【請求項5】 ーa-b-がトランス-CH=CH-である、請求項1~4のいずれかの化合物。

【請求項6】 不斉炭素原子の全てがS-コンフィギュレーションである、請求項1~5のいずれかの化合物。 【請求項7】 式I'、I''、X、XI、XII又はXIIIの化合物。

【化2】

【請求項8】 87-250904-F1生産性真菌株を培養し、生産された87-250904-F1を分離することを特徴とする、式1'の化合物の製造法。

【請求項9】 真菌株がNRRL18919である、請求項8の製造法。

【請求項10】 真菌株NRRL18919。

【請求項11】 真菌株NRRL18919の培養により得られる発酵ブロス。

【請求項12】 緩和なアルカリ性条件下に対応するシス異性体を異性化することを特徴とする、-a-b-がトランス-CH=CH-である、式Iの化合物の製造法。

【請求項13】 式IV

【化3】

(式中、 R_4 、 R_5 、 R_6 、-a-b-、-d-e-及び -f-g-は、-a-b-又は-d-e-上の〇日置換 基の少なくともいずれかが適当に保護された形であることを除いては請求項1で定義した通りであり、 R_{11} は日 又は〇日保護基である)の化合物を環化させ、次いで〇日保護基を除去することを特徴とする、-cがCHOHである式-c0の化合物の製造法。

【請求項14】 cがCHOHである式 I の化合物の c CHOH基を酸化することを特徴とする、cがC=O

である式 I の化合物の製造法。

【請求項15】 a)請求項1の化合物、又はb)式II

【化4】

$$\begin{array}{c|c} \text{OH} & \text{O} \\ \hline \\ R_1 \\ \hline \\ R_4 \\ \end{array} \begin{array}{c} \text{A} \\ \\ \\ R_3 \\ \\ R_2 \\ \end{array} \begin{array}{c} \text{II} \\ \\ \end{array}$$

(式中、 R_1 はH又はメチルであり、 R_2 及び R_3 はH又はOHであり、 R_4 はH又はメトキシであり、-a-bーは $-CH_2$ - CH_2 -又は-CH=CH-であり、cは C=O又はCH-OHである(請求項1の化合物以外)) の化合物、又は

c)式III

【化5】

(式中、RはH又はメチルである)の化合物の有効量を、遊離形又は塩形、或はその生理的に加水分解可能で且つ許容しうるエステル形で投与することを特徴とする、過剰のサイトカイン放出、特に I L -1 β 放出に関

連した又はこれを含む、病菌を伴う疾病、例えばリューマチ様関節炎、骨関節炎、敗血症ショック、乾癬、アテローム性動脈硬化症、非特異性炎症腸疾患、クローン病又は喘息の処置方法。

【請求項16】 R_1 がメチルであり、 R_2 及び R_3 がH 又はOHであり、 R_4 がH又はメトキシであり、-a-b-が $-CH_2-$ CH $_2-$ 又はシス-CH=CH-であり、cがC=O又はCH-OHである、請求項15で述べた式Hの遊離形又は塩形の或は生理的に加水分解可能で且つ許容しうるエステル形の化合物。

【請求項17】 請求項1の化合物を含む医薬組成物。 【請求項18】 R_1 がメチルであり、 R_2 及び R_3 が H 又はOHであり、 R_4 がH又はメトキシであり、-a-b-が $-CH_2-CH_2-$ 又はシス-CH=CH-であり、cがC=O又はCH-OHである、請求項15で述べた式Hの遊離形又は塩形の或は生理的に加水分解可能で且つ許容しうるエステル形の化合物を含む医薬組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、サイトカイン放出阻害 剤及び I L-1 拮抗物質として有用な化合物に関する。 【0002】

【技術の技術及び発明が解決しようとする課題】本発明は式 I

【化6】

〔式中、R4およびR6は同一又は異なって、H、OH、 C_{1-4} アルコキシ又は C_{1-4} アルキルCOO-であり、R5はOH、C1-4アルコキシ又はC1-4アルキルCOO-であり、-a-b-と-d-e-の一つは-CHR₇- CHR_8 ーであり、他はシス又はトランスー CR_7 =CR $_8$ - (式中、 R_7 及び R_8 は同一又は異なって、H、O H、 C_{1-4} アルコキシ又は C_{1-4} アルキルCOO-であ る)であり、cはCH-OH又はC=Oであり、-fgーはーCH2ーCH2ー或はシス又はトランスーCH= CH-である。但し、R4がH、R6がOHそして、-f -g-mh) --b-が-CH₂-CH₂-で、cがC=Oで、-d-eーが-CH₂-CH₂-である場合には、R₅はOHでは なく、又は2. -a-b-が-CH,-CH,-又はシス -CH=CH-で、cがC=O又はCH-OHで、-d -e-が-CHOH-CHOH-である場合には、 R_5 はメトキシではない〕の遊離形又は塩形の或は生理的に

加水分解可能で且つ許容しうるエステル形の化合物(星 印を付した不斉炭素並びに原子a及び/又はb或はd及び/又はeは、これらが不斉炭素原子のとき、R-又は S-コンフィギュレーションであるか、或は化合物はその光学異性体の混合物を含む)で提供する。

【0003】好ましくは、 R_4 及び R_6 は同一又は異なって、H、-OH、MeO-又はMe-COO-である。好ましくは R_5 は-OH、MeO-又はMeCOO-である。より好ましくは R_4 はH又はMeOであり、 R_5 はMeOで、 R_6 はOH又はMeOである。

【0004】好ましくは、-a-b-はシス又はトランス $-CR_7$ '= CR_8 '-(式中、 R_7 '及び R_8 'は同一又は異なって、H、OH、MeO-又はMe-COO-である)である。より好ましくは-a-b-はシス又は特にトランス-CH=CH-である。

【0005】好ましくは、 $-d-e-icCHR_7$ '-CHR $_8$ '-(式中、 R_7 '及び R_8 'は上記定義と同じである)である。より好ましくは $-d-e-id-CH_2-CH_2-$ 又は特に-CHOH-CHOH-(式中、OH基は遊離又は保護形でありうる)である。

【0006】最も好ましくは、-f-g-はトランス-CH=CH-である。

【0007】好ましくは、本発明の化合物の不斉炭素原子は全てSーコンフィギュレーションである。

【0008】実施態様において、本発明は、 R_4 がH又はメトキシであり、 R_6 がクトキシであり、 R_6 がOHであり、-a-b-がシス又はトランス-CH=CH-であり、-d-e-がってHOH-CHOH-であり、そして-f-g-がトランス-CH=CH-である、(但し、-a-b-がシス-CH=CH-のとき R_4 はメトキシで-はC+0である)式 -0の代合物を、遊離形又は塩基塩形で或は生理的に加水分解可能で許容しうるエステルの形で提供する。

【化7】

は87-250904-F1と名付けられた新規な代謝 産物とされて来た構造で、以下の性質を有する。

【0010】白色針結晶 (メタノール/水1:1から)

融点173-174℃、

 $[\alpha]_D^{25} = -43.6$ ° (MeOH、c=0.76) マススペクトル (FAB): m/e=393 (MH+) KBr中IRスペクトル: 図1参照

CDCI₈中 プロトンNMR、内部標準としてTMSにより360MHz、図2参照。

【0011】溶解性:水にほとんど不溶、メタノール、 DMSO、クロロホルムに易溶。

HPLC:カラム リクロスファー 100 RP-8 (5μm) (リクロカルト 125-4、メルク)

移動相:アセトニトリル/水/オルトリン酸

350:650:0.175(容量)

流速: 1.0 ml / 分 検出: UV 2 1 0 nm 保持時間: 3.8分

【0012】式Iの化合物は、新規化合物で、ゼアラレノンと同じクラスの化合物で、これは式II

【化8】

(式中、 $R_1=R_2=R_3=R_4=H$ 、 $-a-b-=-CH_2-CH_2-$ でc=C=Oである)の化合物である。ゼアラレノンは同化効果を有することが知られる。 R_1 がメチルであり、 $R_2=R_3=OH$ 、 $R_4=H$ 、 $-a-b-=CH_2-CH_2-$ 又はシスーCH=CH-及びc=C=O又はCH-OHの式Hの化合物は、エレスタド等により記載され、ジャーナル・オブ・オーガニック・ケミストリィ(J.Org.Chem. 43、2339(1978))、そこで、これらには「特に興味のある活性」はないと述べており、そしてフェノールエーテル(即ち、ベンゼン環上のメトキシ基)の存在はこの活性の欠除に関与しうると考えられている。

【0013】このことを考慮すると、式 I の化合物が薬 理活性を有することは驚くべきことである。

【0014】式Iの化合物は、又、式III 【化9】

(式中、RはHである)の化合物である、化合物ラディシコールと関連する。Rがメチルである対応するメトキシ化合物も知られている。

【0015】モノスポリウム・ボノルデンの代謝産物、ラディシコールは、抗菌作用を有することが知られている(デルモット、ネイチャー(Nature)171、344(1953))。

【0016】驚くべきことに、上記の化合物、即ち式Iの新規化合物、ラディシコール、Oーメチルラディシコール及びエレスタッド等により記載されたゼアラレノン誘導体も、サイトカイン放出阻害剤特性を有し、特にこれらは、IL-1、IL-6及びTNF-αの放出を阻害し、IL-1の機能的拮抗物質として作用することが明らかになった。

[0017]

【課題を解決するための手段】式 I'の化合物は、栄養培地中、生成微生物株を培養することにより生成しうる。好ましい微生物は分生子穀 (pycnidial) 不完全菌、特に代謝産物87-250904-F1を生成するF/87-250904株である。

【0018】本株は、南アフリカで採取された未分類の地衣から分離され、その株の生培養菌は1991年11月6日、米国イリノイ州の、ARSパテント・カルチャー・コレクション、USデパートメント・オブ・アグリカルチャー、ノーザン・レジオナル・リサーチ・センターに、ブダペスト条約の規定の下に寄託され、寄託番号NRRL18919が与えられた。培養株は、又、スイス、バーゼル、サンド株式会社から得られうる。

【0019】真菌株NRRL18919は最も普通の真菌寒天培地、例えば2%麦芽エキス寒天上に生育する。生育の温度範囲は、約5ないし37℃で、生育至適温度は約24ないし32℃である。ペトリ皿の2%麦芽エキス寒天に27℃で、NRRL18919株は10日の培養後、直径25ないし35mmのコロニーを形成する。コロニーは、緩やかに発達する気菌系と共に褐色ないし緑黒色ないし黒色に見える。これらの条件下では、報告するような拡散される色素は形成しない。NRRL18919株は澱粉及びケラチン分解できるが、ごく限られた程度セルロース及びキチンに分解するか又は分解しない。

【0020】NRRL18919株の分生子穀は、形及び大きさが非常に変わる。それらは単一孔を有する約30 μ 大の球形ないしセイヨウナシ形から、幾つかの孔を有する、不規則な形の600 μ までの大きさの分生子穀又は分生子穀コンプレックスまで及ぶ。分生子穀外壁は褐色壁から成る。分生子はガラス様無隔膜、小棒状、腎臓状ないしソーセージ形であり、しばしば3.0-5.5×1.0-1.7 μ 大に収縮する。分生子は、細長いフィリドにより分生子穀内に生成し、白っぽい固まりで小孔の外側に集合する。NRRL18919株はフォマ・サク(Phoma Sacc.)属に最もよく適応し、フォマ・カバ(Phoma cava.)シュルザーの記載に非常によく合う。

【0021】新規NRRL18919株は、適当な栄養素とミネラル物質を用いる種々の培地中、好気表面又は浸漬培養として、適当な温度で培養しうる。本発明は、又、87-250904-F1生成真菌株、特にNRRL18919株の培養により得られる発酵ブロスをも提供する。本発明の次の局面は、87-250904-F1-生成真菌株を培養すること、及び形成した代謝産物87-250904-F1を分離することを含む、式Iの化合物の製造法を提供する。

【 O O 2 2 】発酵培地は、炭素の利用可能な根源並びに 所望によりミネラル塩及び成長因子を含むべきであり、 これらの全ては、よく明示された形で又は種々の起源の 生物学的生成物に見出されるような複合体混合物として 添加できる。

【0023】新規代謝産物87-250904-F1を 生成させるために、紫外線放射X線の影響下での淘汰又 は変異により、或は他の手段例えば化学的変異誘発物質 により得られる株も用いうる。

【0024】十分量の代謝産物が培地中に蓄積されたならば直ちに慣用方法により、例えば抽出及び続くクロマトグラフィ方法により、濃縮し、分離しうる。

【0025】a-bがトランス-CH=CH-である式 Iの化合物はa-bがシス-CH=CH-である対応す る化合物から、温和なアルカリ条件下、例えばピリジン 溶液中、適当には0ないし80℃で、好ましくは約50 ℃で12~48時間、異性化することにより製造しう る。

【0026】式Iの化合物は、又、慣用の合成技術を用い完全又は部分化学合成により製造しうる。

【0027】従って、次の局面では、本発明はcがCH OHである式 I の化合物の製造法を提供し、それは、式 I V

$$R_6$$
 O IV

OH OR_{11} OH

 R_5 R_4

(式中、 R_4 、 R_5 、 R_6 、-a-b-、-d-e- - D -f-g- d -d -e- D -e -e -d -e- -D -e -e -D -e -e -D -e -e -D -e -e -D -e -D

【0028】cがC=Oである式Iの化合物は環化された生成物から、cにおけるCHOH基の酸化により製造しうる。

【0029】-f-g-がトランス-CH=CH-である式IVの化合物は、式<math>V及び式VI

【化11】

(式中、 R_4 、 R_5 、 R_6 、 R_{11} 、-a-b-、-d-e- - 及び-f-g- は - は - 以 - 以 - と 及び - - なび - の - と 及び - ない -

【0030】式中VIの化合物は、4-ヒドロキシブトー 1-インのヒドロキシ保護類似体とヘキシー1-エンー 5-オンとを結合すること、アセチレン結合を部分的に 又は完全に還元すること、及びふさわしくは R_{11} OH保 護基を付することにより製造しうる。

【0031】 $-f-g-が-CH_2-CH_2-$ である式IV の化合物は、式VII及びVIII

【化12】

VII
$$\frac{R_6}{OR_{12}}$$
 OR_{14}

(式中、 R_4 、 R_5 、 R_6 及び R_{12} は式中IV及びVにおいて定義した通りであり、 R_{14} はOH保護基である)の化合物を結合すること、アセチレン結合を部分的に又は完

全に還元すること、及びふさわしくはOH保護基を除去。 することにより製造しうる。

【0032】式VIIの化合物は、上記の通りの式Vの化

合物と6ーヒドロキシーへキシー1ーエンのヒドロキシ 保護類似体とを結合すること、式Iのfーgに対応する アルキレン結合を還元すること、 C_6 側鎖の末端ヒドロ キシ基から保護基を除去すること、及びこのヒドロキシ 基をアルデヒド基に酸化することにより製造しうる。

【0033】上記の方法は、例えば以下の実施例に記載 したように、慣用の合成手段、試薬及び条件を用い実施 しうる。

【0034】aーbがトランスーCH=CHーである好ましい化合物は、式I''、X及びXIの化合物である。 【化13】

【化15】

【0035】aーbがシスーCH=CH-である好ましい化合物は、式I'、XII及びXIIIの化合物である。 【化16】

【化17】

【化18】

[0036]

【発明の効果】本発明の化合物は薬理的性質を有する。特に、IL-1、IL-6及び $TNF-\alpha$ の放出を阻止するだけでなく、以下に示すようにインビトロサイトカイン阻害効果を示す。

[0037]

1. THP-1細胞からサイトカインの放出 THP-1細胞系は一般に入手可能であり、ツキヤ等、 インターナショナル・ジャーナル・オブ・キャンサー (Int. J. Cancer) 26、171-176(1980) に記載され る。900µ1THP-1細胞(0.5×106細胞)並 びに100U rーインターフェロン/0.9ml RP M1 1640培地(2mM L-グルタミン及び5 %)加熱不活性化ウシ胎児血清含有)をピペットで24 ウエル培養皿に入れる。次いで試験すべき化合物100 µ1を加える。5% CO₂/95%空気中、37℃で3 時間後、10μ1リポ多糖500μg/mlを加え、インキ ュベーションをさらに40時間続ける。適当なコントロ ール(刺激し又はすることなく、溶媒)も含まれる。次 いで培養物を1000gで10分間遠心することにより 除去し清澄にする。1.0㎡ジギトニン0.01%をウエ ルに加えて、ゴムポリスマンでこすることによりほぐし た細胞を溶解し4℃で10分間放置する。次いで乳酸デ ヒドロゲナーゼ測定を直ちに実施し、試料は他の測定を するまで-20℃で保存する。検定はIL-1B(培地 及び溶解物)、IL-6(培地)、 $TNF-\alpha$ (培 地)、PGE2(培地及び溶解物)、乳酸デヒドロゲナ ーゼ(LDH) (培地及び溶解物) 及びDNA (溶解物) である。IL-1β、IL-6及びTNF-α検定は商 業的に入手可能なELISAキット(シストロン)を用 い測定し、PGE2は標準的RIAを用い測定しDNA はDAPI (4',6-ジアミジノ-2-フェニルインド ール・2HC1)を用い蛍光定量的に行う。

【0038】この試験で、本発明の化合物は、約0.001ないし 10μ Mの濃度で、 $IL-1\beta$ 、IL-6、 $TNF-\alpha$ 及びPGE 2放出を阻害する。対照的に、DNAレベルは実質的に影響されずにそのままであり、LDH放出は変わらないので化合物は無毒性である。

【0039】2. ヒト単該球からのサイトカイン放出 【0040】a) ヒト単該球

単該細胞を、遠心及び種々の濃度の試験化合物と組織培養皿上の培養により健康なボランティアの血液から得る〔シュナイダー等、エイジェンツ・アンド・アクションズ、30、350-362(1990)〕。非粘着性リンパ球を4時間後、数回洗浄することにより除去する。新鮮な培地、試験化合物及び促進剤としてLPS(10μg/ml)を加え、単該球をさらに1日インキュベートする。集めた培養培地を新鮮な培地で1:10に希釈し、融合ウサギ軟骨細胞に加える。軟骨細胞培養培地中のメタロープロテナーゼ(MP)活性をさらに2日後、下記のように測

定する。本発明の化合物は、0.001ないし10μM のオーダーの濃度で本試験方法においてモノカイン放出 を制御するのに有効である。

【0041】b) 軟骨細胞試験による I L-1の測定 精製 IL-1、組換えヒト $IL-1-\beta$ (rh IL-1) 又は活性化ヒト単該球から収集した調整培地、マウスマ クロファージ又はマウス細胞系P388D,は、軟骨細 胞の分泌パターンで特徴的変化を生ずる。特に、潜在金 属プロテインナーゼ (MP) は増加し、これに対しプラ スミノーゲンアクチベーターの分泌は減少する。メタロ プロテインナーゼ又はストロメリシンの性質は詳細に記 載され〔チン等、ジャーナル・オブ・バイオロジカル・ ケミストリィ(J.Biol.Chem.) 260、12367-1237 6(1985)〕、同様にプラスミノーゲンアクチベーターの 性質も記載されている〔シュナイダー等、アナリティカ ル・バイオケミストリィ (Analyt. Biochem.) 20 〇、156-162(1992)〕。精製又は組換え I L-1及びヒ ト単該球 I L-1 に対する抗体による中和を用いる用量 反応曲線は、この系が I L-1の特異的且つ感受性に富 むバイオアッセーに用いうることを示した。ウサギ関節 軟骨細胞による潜在プロテインナーゼの分泌の刺激は相 対的にIL-1特異的、IL-2、TNF-α、組換え ヒトインターフェロン $-\alpha$ 及び $-\gamma$ 、ホルボールミリス テート酢酸、コンカナバリンA、E-型プロスタグラン ジン及び影響のないインドメタシンである〔シュナイダ 一及びペイン、ブリティッシュ・ジャーナル・オブ・リ ューマトロジィ (Brit. J. Rheumatol.) 24、(補遺 1)128-132(1985)、シュナイダー等、ジャーナル・オ ブ・イムノロジィ (J. Immunol.) 138、496-503(1 987)).

【0042】軟骨細胞は記述されたように収集し、培養する [xベクオズ等、バイオケミカル・ジャーナル (B iochem. J.) 219、667-677(1984)]。簡単に述べると、軟骨細胞は、約1. 2kg雌ニュージーランド白ウサギの遠位大腿関節軟骨のスライスから、プロテインナーゼで処理することにより取りはずす。洗浄した細胞を、1%抗生物質、2mMグルタミン及び10%加熱不活性化ウシ胎児血清を強化したDMEM中、48-ウエル培養プレートで培養する。集合に達したのち、細胞を IL-1バイオアッセイ用に20 μ l試料の試験培養培地とインキュベートし、300 μ lイスコーブの修飾ゲルベッコ培地の容量とする。48時間後上清培地を集め、遠心し、生化学分析に用いる。

【0043】生化学アッセイ

メタロプロテインナーゼをパーソナルコンピュータに連結した96-ウエルプレートツインリーダー(フロー・ラボラトリーズAG)を用いることにより動態的に測定する。 $Ac-Pro-Leu-Gly-S-Leu-Leu-Gly-OC_2H_5$ 、脊椎動物コラゲナーゼの合成基質をMPの測定に用いる〔ワインガーテン及びフェーダー、アナリ

ティカル・バイオケミストリィ、147、437-440(198 5)]。50μ1の潜在MPを50μ1トリプシン(20m M CaCl₂を含有する50mMPIPES pH6.8中120μg/ml)で30分間37℃で活性化し、その後で、全セリンプロテインナーゼの活性を150μ1大豆トリプシン阻害剤(SBTI、上記緩衝液中166μ1/ml)を加えることにより停止する。次いで活性MPの50μ1アリコートを、100μ1試薬溶液(上記緩衝液中、2.5mM 5,5′ージチオービス-2-二トロ安息香酸、DTNB、100μg/ml SBTI、20mM CaCl₂)と混合し、10分間室温で放置し、全ての遊離SH-基と反応させる。次いで100μ1基質溶液(100μg/mlSBTIを含有する緩衝液中1.25m M)を加えることにより反応を開始し、414mmでの吸収の変化を1分間隔で11回測定する。

【0044】3.機能的 IL-1 拮抗作用上記2)に記載した試験方法を繰り返すが、軟骨細胞培地にヒト単該球を加える代わりに、IL-1 自体(組換えヒト IL-1 β 、サンド)を 1 ng/ml の濃度で加える。軟骨細胞培養媒体中のMP活性を 2 日後に検定する。本発明の化合物は 1-3 0 n m の濃度で機能的 1 L-1 拮抗物質として活性である。

【0045】4. LPS-熱

LPS -懸濁液(シグマ、No.L-5886、 $100\mu g$ /5ml/0 μc /5ml/5m

【0046】ラットにおけるカラゲーナン誘発足浮腫5匹の〇FA雄ラット、体重150-170gを各群に用いる。試験化合物を、カラゲーナン注射の1時間前に、生理食塩水/0.5%トラガント中の懸濁液として経口投与する。カラゲーナン(生理食塩水中1%懸濁液の0.1ml)を一方の後足に足底下注射により与える。足の膨化をケンパー及びアメルムによる消炎測定器(antiphlogemeter)により測定する。コントロール記録は注射後、直ちに行い、膨化は3及び5時間後測定する。3及び5時間の記録の平均値はコントロール記録の削除後、取り、処理した動物から得た値は、未処理のコントロールから得た値のパーセントとして表す。 ED_{50} は3時間後、カラギーナン誘発膨化の50%阻止を生ずる用量である。本発明の化合物はそのアッセイで典型的に、約0.1ないし約1mg/kgの ED_{50} を有する。

【0047】従って、本発明の化合物は、過剰のサイトカイン放出、特に I L-1 β 放出と関連する又はそれを含む病因の疾病、例えば種々の炎症状態及び疾病、例えばリューマチ様関節炎、骨関節炎、敗血症ショック、乾癬、アテローム性動脈硬化症、非特異性炎症性腸疾患、クローン病及び喘息の処置に必要である。

【0048】上記の使用に関し、必要な用量は、もちろん投与の方式、処置されるための特別の条件及び所望される効果によって変わるであろう。しかしながら、一般に、約0.1ないし20 mg/kg動物体重、特に0.5ないし5mg/kgの用量割合で十分な結果に達する。式 I'の化合物はTHP-1試験(IL-1 β の放出を50%阻止する化合物の濃度)で0.06 μ Mの IC_{50} 值を有することが測定された。従って、本化合物は大型の動物、例えばヒトに8mgないし2gの1日用量で経口投与しうることを示す。

【0049】前述のように、本発明は又、

- i)過剰のサイトカイン放出、特にIL-1β放出に関連する又はそれを含む病因の疾病、例えばリューマチ様関節炎、骨関節炎、敗血症ショック、乾癬、アテローム性動脈硬化症、非特異性炎症性腸疾患、クローン病及び喘息のそれが必要な患者の処置方法であって、その方法は、患者に有効量の
- a)上で定義した通りの式 I の化合物、又は
- b)式HO化合物、(式中、 R_1 はH又はメチルである、 R_2 及び R_3 はH又はOHである、 R_4 はH又はメトキシである、 $-a-b-d-CH_2-CH_2-$ 又は-CH=CH-である、そして-CH0Hである(式-CH1の化合物以外)、或は
- c)式III(式中、RはH又はメチルである)の化合物を、遊離又は塩基塩形或はその生理的に加水分解可能で且つ許容しうるエステルで投与することを含む。

【0050】ii)式II(式中、 R_1 はメチルである、 R_2 及び R_3 はH又はOHである、 R_4 はH又はメトキシである、 $-a-b-lt-CH_2-CH_2-$ 又はシスーCH=CHーである、そしてcはC=O又はCH-OHである)の、医薬として使用するための、例えば上述した疾病のいずれかを処置するのに使用するための遊離塩基又は塩形、或は生理的に加水分解可能で且つ許容しうるエステルの化合物を提供する。

【0051】本発明の化合物は、全ての慣用経路により、特に経鼻的に、腸管経曲で、好ましくは経口で、例えば錠剤又はカプセルの形で、又は非経口的に、例えば注射可能な溶液又は懸濁液の形で、或は座薬形で投与しうる。単位用量形は、例えば約2mgないし1gの本発明の化合物を含む。本発明は又、上記b)で定義した通りの有効量の式IIの化合物を製薬上許容しうる希釈剤又は担体と共に含む医薬組成物を提供する。

【0052】試薬用途に好ましい化合物は、式 I'、 I''、X、XI、XII及びXIIIの化合物である。 【0053】以下の実施例は本発明を示す。

【0054】実施例1 発酵実施例

NRRL18919の種培養を、脱イオン水中、2%麦 芽エキス及び0.4%酵母エキスからなる無菌、液体培 地11を含む21エーレンマイヤーフラスコ中に接種す る。このエーレンマイヤーフラスコは、ロータリー撹拌 器上で、200rpmで24℃、3日間インキュベート し、501発酵用の前培養として役立つ。この中間培養 は、脱イオン水中2%麦芽エキス及び0.4%酵母エキ スからなる501の無菌液体培地を含む751の発酵槽中 で実施する。発酵の間、温度は25℃で、撹拌速度は5 Orpmで、通気は501/分で、重圧は0.5バールで一 定に保つ。前培養発酵は1日だけ続け、その後でより大 きなスケールで最終発酵で接種するのに用いる。この製 造培養は、脱イオン水中(g/1)20グルコース、2 一大豆蛋白、2麦芽エキス、2酵母エキス、2KH2P O₄及び2MgSO₄を含む31の無菌液体媒体を含む5000 1発酵槽中で実施する。接種に先だち、少量のメタノー ルに溶解した1mg/lのシクロスポリンAを無菌媒体に 加える。発酵の間、温度は25℃で、撹拌速度は25rp mで、通気は30001/分で、そして重圧は0.5バールで 一定に保つ。過剰の発泡は消泡剤を調節しつつ添加する ことにより防止する。本発明の化合物の生成はHPLC によりモニターし、生産培養を所望の代謝産物の最高タ イターの時に収集する。

【0055】実施例2 代謝産物の分離

菌系を培養ブロスから分離し、上清(28001)を28001の 酢酸エチルで抽出する。菌系を除く。酢酸エチル溶液を 蒸発させて45−50℃で真空下に乾燥する。目的の化 合物は、51のメタノールに60℃で抽出残渣(約1k g)を溶解し、得られる溶液を急速に冷却し、そのあと 室温で20時間保持することによる抽出残渣からの結晶 化によって直接得ることができる。 得られる結晶 (約2 50g)は沪過により分離し、メタノールに75℃で溶 解し、-25℃で一夜再結晶する。結晶を吸引沪過し、 冷メタノールで洗浄し、真空乾燥する。生成物は、[3] $S-(3R^*,5Z,8R^*,9R^*,11E)]-3,4,9,1$ 0-テトラヒドロ-8,9,16-トリヒドロキシ-13,14-ジメトキシ-3-メチル-1H[2]ベンズオキサシクロテトラデシン-1,7[8H]-ジオンであ り、以下の性質を有する白色針状形で得られる。融点1 $70-172^{\circ}$ C, $(\alpha)_{D}^{20}=-43.1^{\circ}$ (c=0.49 メタノール中)。

【0056】実施例3 式 I''の化合物の製造 式 I''の化合物、[3S-(3R*,5E,8R*,9R*,1 1E)]-3,4,9,10-テトラヒドロ-8,9,16-トリヒドロキシ-13,14-ジメトキシ-3-メチル -1H-2-ベンズオキシシクロテトラデシン-1,7 (8H)-ジオンを以下のように製造する。

【0057】実施例2の生成物(1g)を100mlピリ

ジンに溶解し、アルゴン雰囲気下50℃で24時間、撹拌する。得られる黄色溶液を真空下に濃縮し、残液を酢酸エチルに取り、1N酒石酸と共に振盪する。有機相を分離し、食塩水で洗浄し、硫酸ナトリウムで乾燥し、蒸発させる。固体残渣を、移動相として酢酸エチルを用いるキーゼルゲル上クロマトグラフィにかけ、式I''の化合物を得る。融点171-173℃。NMR(CDC l_3):1.47(d,3H),2.25-2.85(m,4H),3.60(s,3H),3.89(s,3H),4.17(m,1H),4.65(d,1H),5.40(m,1H),5.93(m,1H),6.45(s,1H),6.47(d,1H),6.33(dd,1H),7.00(dt,1H),11.21(s,1H)ppm。

【0058】実施例4 式Xの化合物の製造 実施例3と同様にして、式Xの化合物、[3S-(3R*, 5E, 8R*, 9R*, 11E)] -3, 4, 9, 10-テトラヒドロ-8, 9, 16-トリヒドロキシ-14-メトキシ-3-メチル-1H-2-ベンズオキサシクロテトラデシン-1, 7(8H)-ジオンを得る。融点154-159 $\mathbb {C}$ 。

【0059】実施例5 式XIの化合物の製造 実施例8と同様にして、式XIの化合物、 $(3S-(3R^*,5E,8R^*,9R^*,11E)]-3,4,9,10-テトラヒドロ-8,9-ジヒドロキシ-13,14,16-トリメトキシ-3-メチル-1H-2-ベンズオキサシクロテトラデシン-1,7(8H)-ジオンを以下のNMRスペクトルを有する発泡体として得る。NMR (CDC <math>l_3$):1.4(d,3H);2.2-3.0(m,5H),3.61(s,3H),3.78(s,3H);3.83(s,3H);3.7-4.15(m,2H),4.75(d,3H);2.2-3.0(m,1H);6.15(d,1H),6.31(d,1H),6.38(s,1H);7.85(m,1H)ppm。

【0060】実施例6 式XIIIの化合物の製造 a)ペント-1-エン-5-オン

100mlのジクロロメタン中10g(100mモル)の5ーヒドロキシペントー1ーエンをジクロロメタン中43gのピリジニウムクロロクロマートの懸濁液に室温で加える。1/2時間後、ジエチルエーテルを加え、懸濁液をシリカゲルを沪過させ、固体残渣をジエチルエーテルで数回洗浄し、これは又、シリカゲルを沪過させ、そしてジエチルエーテルフラクションを混合し、ゆっくり蒸発させて7gの粗ペントー1ーエンー5ーオンを得る。

[0061]

b) 4ートリメチルシロキシへクス-1-イン 100mlのアセトニトリル中、8.1gの4-ヒドロキシへクス-1-イン、16gのt-ブチルジメチルシリルクロリド及び7.2gのイミダゾールの混合物を室温で一夜撹拌し、その後でジエチルエーテルを加え、懸濁 液はシリカゲルを沪過させる。次いで沪液を蒸発させて 残渣を水ポンプ真空下70℃で蒸留し、17.8g(9 3%)の表題生成物を得る。

【0062】c)2ートリメチルシロキシー7ーヒドロキシーウンデカー4ーイン-10-エン

ブチルリチウムの溶液(37ml)を、20mlのテトラヒドロフラン中、上記b)部分の生成物13.8gの溶液に-78℃で滴下し、混合物を-78℃で11/2時間撹拌する。次いで10mlのテトラヒドロフラン中上記a)部分のアルデヒド生成物6.0gの溶液をゆるやかに加え、混合物を-78℃で1時間撹拌し、次いで室温まで加温する。次いで水を加え、混合物を酢酸エチルで抽出し、有機相を乾燥し、沪過し、蒸発させて13.1g(72%)の表題生成物を不純の形で得る。

【0063】d)2ートリメチルシロキシー7ーヒドロキシーウンデカーシスー4,10ージエン

300 mlのピリジン中、上記 c) 部分の生成物 10.1 gの溶液に、 $BaSO_4$ 中、10%パラジウムの 1 gを加え、混合物を室温で水素添加する。24時間後、420 mlの水素を吸収し、さらに24時間後 720 mlの水素を吸収する。次いで混合物をハイフロ上で吸引沪過し、結晶を除去し、生成物を濃縮し、酢酸エチルに溶解し、10%クエン酸溶液及び飽和食塩水で洗浄し、 Na_2SO_4 で乾燥して濃縮する。この時点では、薄層クロマトグラフィは、わずか 15% の出発物質が変換したことを示すに過ぎない。そこで生成物を 300 mlのピリジンに再び溶解し、 $BaSO_4$ 中 10% パラジウムの 1.5 gを加えて、混合物を室温で撹拌しながら水素添加する。6 時間後、 700 mlの水素が吸収されたことが判る。生成物(10.2 g)は、薄層クロマトグラフィにより判断されるように約 90% 変換していることが判る。

【0064】e)2-トリメチルシロキシ-7-{(2-メトキシ)エトキシ}メトキシ-ウンデカーシス-4,10-ジエン

10gの上記d)部分の表題生成物を、室温で撹拌しながら80mlのジクロロメタンに溶解し、8.5mlのジイソプロピルエチルアミンを1分間で滴加し、次いで20mlのジクロロメタン中5.7mlの1-クロロメチルー2ーメチルーグリコールを10分間で滴加する。2時間後、薄層クロマトグラフィにより測定されるように反応が完了する。反応混合物を10%NaHCO $_3$ 、10%クエン酸溶液及び飽和食塩水で洗浄し、Na $_2$ SO $_4$ で乾燥し、濃縮して粗製形で、14gの表題生成物とする。生成物をシリカゲルクロマトグラフィ(ヘキサン/ジエチルエーテル8:1)により精製し、10.5g(83%)を得る。

【0065】f) R_4 がHであり、 R_5 及び R_6 がMeOであり、-a-b-がシスーC H=C H-であり、-d-e-が-C H_2- C H_2 T H_3 T H_4 H_5 H_5 H_6 H_6 H_7 H_8 H_8

9 0mlのトリエチルアミンをアルゴン雰囲気下に撹拌 し、これにR₄がHであり、R₅及びR₆がMeOでりR₁。 がMeである式Vの化合物7.5gを加え、次いで10. 8gの上記e)段階で得られる生成物、0.104gの パラジウムアセタート、0.564gのトリoートリル ホスフィン及び3.9gの酢酸銀を加える。混合物を撹 拌しながら油浴で80℃に加温し、60時間後さらに 0.104gのパラジウムジアセタートと0.564gの トリoートリルホスフィンを加えて反応をさらに48時 間続け、この時点で反応は、薄層クロマトグラフィによ り測定されるように完了する。生成混合物を濃縮し、酢 酸エチルで処理し、ハイフロに吸引することにより不溶 残渣を除去する。溶液を濃縮して中間体トリメチルシロ キシ(R₁₂がMeである生成物)をシリカゲルクロマト グラフィ(ヘキサン/酢酸エチル4:1)により精製し て約14gの収量を与える。

【0066】50miのDMSO及び30miの水に5.1 gのNaOHを溶解し、7.44gの上記中間生成物を加え、混合物を油浴中で撹拌しながら4時間100℃に加熱する。次いで混合物を冷却し、水に希釈し、エーテルで3回洗浄し、氷で冷却し、2NHC1でpH3に調節する。次いで生成物を酢酸エチルで3回抽出し、飽和食塩水で2回洗浄し、Na2SO4で乾燥し、濃縮し、高真空下で乾燥して6gの表題生成物を得る(m/z:453(MH+)、348(60)、329(100)、285(60)、207(60))。

【0067】g)式XIIIの化合物

上記段階 f) の生成物 5.4 g を 3.51のテトラヒドロフランに室温で撹拌しながら加える。18.7 mlのジエチルアゾジカルボキシラート、次いで 31.3 g のトリフェニルホスフィンを加え、混合物を油浴中で 50 $^{\circ}$ に加温し、一夜反応させる。生成混合物を濃縮し、残渣を2本の Al_2O_3 カラム及びヘキサン/酢酸エチル (2:1) による溶出を用いて精製する。第一カラムからのフラクション 6-1 及び第二カラムからのフラクション 7-20 を集めて 5 g の粗組成物を得、これをシリカゲルクロマトグラフィによりさらに精製して、3.2 g (62%) の純粋な樹脂状中間生成物を得、これは、c が C H $^{\circ}$ の C $^{\circ}$ によって $^{\circ}$ に対して $^{\circ}$ の 2 $^{\circ}$ の 3 $^{\circ}$

【0068】この中間生成物を酸で処理することにより、cがCHOHである次の中間体生成物に変換する。5.2gの上記中間生成物を12mlのテトラヒドロフランに溶解し、10mlの1N HC1を加えて45℃で $24時間撹拌し、次いで酢酸エチルで3回抽出し、飽和食塩水及びNaHCO<math>_3$ 溶液で洗浄する。酢酸エチル相を Na_2SO_4 で乾燥し、濃縮してシリカゲルクロマトグラフィ(ヘキサン/酢酸エチル1:1)により精製して約3.4gの粘着性の次の中間生成物を得る。

【0069】2mlのジクロロメタンを室温で撹拌し、7

 $6\mu l$ の塩化オキサリルを加え、混合物を-60 ℃に冷却し、1m l のジクロロメタン中0.13m l のDMSOの溶液を 3 分間で滴下する。ガスの発生が 3 分間続き、その後で 3m l のジクロロメタン中280m g の上記次の中間生成物の溶液を 5 分間で滴下し、その間に沈澱が生成する。混合物をさらに 15 分間撹拌した後、0.56m l のトリエチルアミンを 5 分間で添加し、得られるペースト状の沈澱を室温で集積させる。ペーストをジクロロメタンで抽出し、有機相を 10% 2 エン酸で 2 回、飽和食塩水で 2 回洗浄し、 Na_2 SO $_4$ で乾燥し、濃縮し、シリカゲルクロマトグラフィ(ジクロロメタン)により精製して式XIIIの表題生成物を純粋な形で得る。純粋生成物は以下の性質を有する。融点 159 ℃、m/z:344 (M+)、217(80)、189(60)、178(100)、95(60)。

【0070】実施例7 式IIIの化合物の製造 a) cが $CH-OCH_2-O-CH_2-CH_2-OCH_3$ で ある式IIIの化合物の類似体

[0071]

b) cがCHOHである式XIIの化合物の類似体本実施例の段階 a) の生成物510mgを12mlのテトラヒドロフランに溶解し、10mlの1N HClを加えて、混合物を45℃で24時間撹拌する。生成混合物を酢酸エチルで3回抽出し、飽和食塩水及びNaHCO3で洗浄する。酢酸エチル相をNa2SO4で乾燥し、濃縮してシリカゲルクロマトグラフィ(ヘキサン/酢酸エチル1:1)により精製して330mgの粘着性の表題生成物を得る(m/z:332(M+)、314(10)、203(75)、190(55)、164(60))。【0072】c)式XIIの化合物

段階り)の生成物280msを、室温で撹拌しながら10mlのジクロロメタンに溶解し、475mgのピリジニウムジクロマートを加えて混合物を室温で一夜撹拌する。終了後、さらに158mgのピリジニウムジクロマートを加えて混合物を再び一夜、さらに24時間室温で撹拌する。得られる生成溶液を、ハイフロ戸過により固体の副生成物と分離し、クロマトグラフィ(ジクロロメタンによる溶出)により生成して表題生成物を純粋形で得る

(融点137°C、m/z:330 (M+)、312 (20)、202 (100)、175 (75))。 【0073】実施例8 R_4 がHであり、 R_5 及び R_6 が OMeであり、-a-b-がシス-CH=CH-であり、c がC=Oであり、そして-d-e-及び-f-g-が- CH_2 - CH_2 -である式 I の化合物 a) 4-ジメチル、t-ブチルーシリルオキシーペント-1-イン

17.8gの(±)-4-ペンチン-2-オールを室温で撹拌しながら150mlのアセトニトリルに溶解し、15.8gのイミダゾール次いで35gのジメチル、セーブチルーシリルクロリドを加えると発熱反応が生じ、これにより反応混合物の全成分はまず溶液となるが、その後沈澱が直ちに形成する。混合物を室温で一夜撹拌し、その後吸引沪過し、液体区分を濃縮し、さらに2.9gのイミダゾールと6.3gのジメチル、セーブチルーシリルクロリドを加える。3時間後、反応混合物を再び吸引沪過し、液体区分を濃縮して分別蒸留に付す。表題生成物は初めの三つのフラクションに存在し、これを混合し、生成物を減圧(12mmHg)で64-68℃で蒸留することにより精製する。

【OO74】b) R₄がHであり、R₅及びR₆がOMeで あり、R₁₂がMeである式VIIの生成物 式Vの対応する化合物14.6g、本実施例a)の生成 物14.6g、0.3gのパラジウムジアセタート、1. 1gのトリロートリルホスフィン及び7.6gの酢酸銀 を60mlのテトラヒドロフランに加え、混合物を油浴中 で撹拌しながら70℃に加温する。48時間後(この時 点で反応は、薄層クロマトグラフィにより測定して約7 0%完了している)、さらに0.3gのパラジウムジア セタートと1.1gのトリoートリルホスフィンを加え て混合物を70℃で週末に渡って加温する。次いで混合 物はハイフロを吸引沪過させ、高真空下に濃縮し、シリ カゲルクロマトグラフィ (ヘキサン/酢酸エチル4: 1)により精製して、第一の中間生成物、即ちR₆=O Me、R₅=OMe、R₄=H、R₁₂=MeそしてC₆側鎖の アルデヒド基がジメチル、tーブチルーシリルー保護O H基である式VIIの対応する化合物の類似体を得る。

【0075】この第一の中間生成物6.7gを100mlのメタノールに溶解し、10%パラジウムを含むパラジウム/木炭触媒(Pd/C 10%)を加えて混合物を48時間撹拌下に水素添加する(初めの24時間後、350mlの H_2 を吸収している)。次いで反応混合物はハイフロを吸収沪過させ、濃縮する。この段階で C_6 側鎖二重結合はNMRによる測定ではわずかに30%還元されていることが判る。従って反応生成物を再び150mlのメタノールに取り、500mgのPd/C 10%m媒を加えて混合物を室温で週末に渡って水素添加する。得られる反応混合物はハイフロを吸引沪過させ、濃縮し、第二中間生成物、即5 C_6 側鎖のアルデヒド基がOH基

である式VIIの対応する化合物の類似体を、シリカゲルクロマトグラフィ(ヘキサン/酢酸エチル2:1)により、対応するシロキシ保護化合物と4.9gの収量で分離する。

【0076】1.2mlの塩化オキサリルを30mlのジクロロメタンに室温で撹拌しながら加え、混合物を-60℃に冷却して7mlのジクロロメタン中1.9mlのDMSOを5分間で滴下し、その後で混合物をさらに3分間撹拌し、20mlのジクロロメタン中、本実施例の第二中間生成物3.5gの溶液を10分間で滴下する。沈澱が形成し、混合物をさらに20分間撹拌し、濃縮して8.2mlのトリエチルアミンを5分間で添加する。粘着性ペースト沈澱が形成し、室温で1.5時間集合させる。固体生成物をジクロロメタンで抽出し、10%クエン酸溶液で2回、飽和食塩水及びNaHCO₃で各1回洗浄し、Na2SO4で乾燥し、濃縮して3.6gの表題生成物をゴムの形で得る。

【0077】c) R_4 がHであり、 R_5 及び R_6 がOMeであり、-a-b-がシスーCH=CH-であり、-d-e-及び-f-g-が-CH $_2$ -CH $_2$ -であり、そして R_{11} がHである式IVの生成物

本実施例の段階 a)の生成物 0.39 gを窒素雰囲気 下、5mlのテトラヒドロフランに加え、1.2mlのブチ ルリチウムを-70℃で2分間で滴下する。1時間後、 4mlのテトラヒドロフラン中、本実施例の段階b)の最 終生成物0.5gの溶液を5分間で滴下し、混合物を-70℃で1.5時間撹拌し、次いで室温まで加温する。 この時点で、反応は薄層クロマトグラフィにより測定し て完了している。水で冷却しながら、生成物を10%ク エン酸溶液で洗浄し、酢酸エチルで3回抽出し、飽和食 塩水及びNaHCO3で洗浄し、Na2SO4で乾燥し、濃 縮して 0.87gの樹脂質第一中間生成物、即ち、CO 〇H置換基がメトキシエステルの形で存在し、式Iの化 合物の一a-b-結合に対応する結合がアセチレン結合 であり、そして C_{11} 側鎖の C_{10} 炭素原子のOH置換基が tーブチルーシリル保護されている、式IVの対応する化 合物の類似体を得る。

【0078】3.1gのこの第一の中間生成物を50mlのピリジンに溶解し、200mgの10%Pd/BaSO4を加えて混合物を室温で磁気撹拌しながら水素添加する。4時間後、理論水素所要量(240ml)より大が吸収される。次いで得られる生成物をサンプリングし、濃縮し、ジクロロメタンに取り、10%クエン酸溶液で洗浄する(この時点で、反応はNMRにより完了していることが判る)。生成物はN1つを吸引P過することにより触媒と分離し、濃縮し、酢酸エチルに取り、飽和食塩水で洗浄し、 Na_2SO_4 で乾燥し、濃縮して3.05gの樹脂質第二中間生成物、即ち、式I0化合物の-a-b 与結合に対応する結合がシス-CH=CH-である、本段階の第一中間生成物の類似体3.05gを得る。

【0079】実施例6の段階f)と同様の方法により、本段階の第二中間生成物を表題生成物(m/z:367(MH+)、349(40)、331(100)、305(90)、191;(100))に変換する。

【0080】 d) R_4 がHであり、 R_5 及び R_6 がOMeであり、-a-b-がシスーC H=C H-であり、cがC=Oであり、そして-d-e-及び-f-g-が-C H $_2$ -である式 I o化合物

上記段階 c)の最終生成物 1.7g を 1.81のアセトニトリルに撹拌しながら溶解し、5.9g の 2-0 ロロピリジンヨージド及び 6.5 mlのトリエチルアミンを加えて混合物を油浴中で撹拌しながら週末に渡って 50 ℃に加温する。次いで生成物を濃縮し、酢酸エチルに取り、10% クエン酢酸溶液、 $NaHCO_3$ 及び飽和食塩水で洗浄し、 Na_2 SO_4 で乾燥し、濃縮して、1.6g の粗製中間生成(即ち、c が CHOH である表題生成物の類似体)を褐色樹脂の形で得る。この粗生成物を、中間生成物を溶解するためジクロロメタンを用い、シリカゲルクロマトグラフィ(ヘキサン/酢酸エチル3:2)により精製する。

【0081】2mlのジクロロメタンに室温で5 μ lの塩化オキサリルを加え、混合物を-70 $^{\circ}$ に冷却し、ジクロロメタン1ml中DMSO93 μ lの溶液を撹拌しながら3分間で滴下する。混合物をさらに5分間撹拌し、その後で本段階の中間生成物0.2gの溶液を5分間で滴下する。沈澱が形成し、混合物をさらに15分間撹拌し、0.4mlのトリエチルアミンを5分間で滴下し、混合物を1時間-70 $^{\circ}$ で撹拌し、次いで1時間で室温まで加温する。得られる生成混合物をジクロロメタンで希釈し、10%クエン酸溶液で20」飽和食塩水で10洗 10 $^{\circ}$ 0、10 $^{\circ}$ 0、10 $^{\circ}$ 0 で
就構起、10 $^{\circ}$ 0 で
なが見た、10 $^{\circ}$ 0 で
なが見た、10 $^{\circ}$ 0 で
ながります。

【0082】実施例9 R₄及びR₆がHであり、R₅が OMeであり、-a-b-がトランス-CH=CH-で あり、cがC = Oであり、-d - e - Dび-f - g - m-CH2-CH2-である式Iの化合物 35mgのマグネシウムを1mlのジエチルエーテル及び1 mlのベンゼンと共に撹拌し、0.18gのヨウ素を加 え、暗褐色が1.5時間後に消失する。得られる混合物 の溶液相をベンゼン2ml中、実施例6の最終生成物50 mgの溶液に加え、その間に沈澱の形成を伴う。混合物を 60℃で2.5時間撹拌し、生成物を酢酸エチルに取 り、1N HC1、飽和NaHCO3及び飽和食塩水で洗 浄し、Na2SO4で乾燥し、濃縮し、シリカゲルクロマ トグラフィ(トルエン/メタノール98:2)により精 製する。生成物をシリカゲルカラム(ヘキサン/酢酸エ チル3:2)で精製し、約30mgの純粋な表題生成物を 油の形で得る(m/z:333(MH+)、315(8 0), 265(100), 177(90)). 【0083】実施例10 R_4 がHであり、 R_5 及び R_6 がOMeであり、ーaーbーがトランスーCH=CH-であり、cがC=Oであり、-d-e-及び-f-g-が一CH。-CH。-である式Iの化合物 実施例3及び9と同様の方法により、表題生成物を、a-b-がシス-CH=CH-である対応する生成物か ら製造する、即ち実施例の最終生成物は一a-b-結合 の異性化による。表題生成物は油の形で得られる (m/ z:346 (M+), 205 (50), 191 (10)0), 178(40), 152(40), 95(5

【図面の簡単な説明】

5))。

【図1】 式 I'の化合物の赤外線吸収スペクトルである

【図2】 式 I 'の化合物の陽子NMRスペクトルである。

【図2】

フロントページの続き

- (72)発明者 アンドリュー・ローランド・マッケンジー スイス、ツェーハーー3251ヴェンギ・バ イ・ビューレン、ティーアガルテン27ベー 来
- (72)発明者 イェルク・シュナイダー スイス、ツェーハー-3006ベルン、ホーフ マイスターシュトラーセ18番
- (72) 発明者 レネ・パウル・トラーバー スイス、ツェーハーー4052バーゼル、ヒル ツボーデンパルク20番
- (72) 発明者 アンリ・マット フランス、エフー68200ブルンシュタット リュ・ダンベルク67番