

Objetivo

La estimación correcta de la demanda de agua potable representa una condición indispensable para la planificación, diseño y operación eficiente y sostenible de todos los elementos que conforman los sistemas de captación, transporte y suministro de agua potable. Esta demanda está sujeta a variaciones interanuales, estacionales, semanales, diarias e incluso horarias, muy significativas y que dependen de múltiples factores como son los ciclos de actividad económica, la meteorología, las situaciones de crisis sanitaria, los cambios en los bloques tarifarios, etc.

Dado lo anterior y partiendo de un amplio dataset con un histórico de consumos y utilizando otras bases de datos abiertos, te retamos a crear el mejor modelo de predicción de consumos en base al cual podamos realizar estimaciones a futuro en cualquiera de los municipios que gestionamos en España.

Dataset entrada

Contiene la información sobre el consumo de agua de 2.747 contadores, ubicados en el litoral de la Comunidad Valenciana, pudiendo comprender viviendas, locales comerciales o industrias.

El consumo se proporciona con una frecuencia horaria desde el 01/02/2019 hasta el 31/01/2020.

El objetivo es predecir el consumo para cada uno de los contadores en los siguientes horizontes temporales:

- Consumo diario del 1 al 7 de febrero incluidos.
- Consumo de la primera semana de febrero (del 1 al 7 incluidos).
- Consumo de la segunda semana de febrero (del 8 al 14 incluidos).

Para ello deberás usar el dataset "Modelar_UH2022.txt". Con este fichero deberás construir un modelo predictivo que permita estimar el consumo de agua.

Variables

- ID: Identificador del Contador que registra la medida de lectura.
- SAMPLETIME: Fecha y hora del consumo en formato UTC. Momento en el que se produce el mensaje o el contador ha emitido el registro.
- **READINGINTEGER**: Medida registrada por el contador en litros. Parte entera.
- READINGTHOUSANDTH: Medida registrada por el contador en litros. Parte decimal.
- **DEL TAINTEGER:** Consumo calculado en litros a partir de la medida registrada por el contador. Parte entera.
- *DELTATHOUSANDTH*: Consumo calculado en litros a partir de la medida registrada por el contador. Parte decimal.

Los ID están ordenados de forma ascendente pero no son correlativos

Formato y estructura

Este dataset tiene extensión txt con la siguiente estructura y formato:

- Nombres de variables: incluidos en la cabecera
- Separador: "|"
- Codificación: UTF-8

Sin nombre de fila.

Dataset respuesta

Es el fichero solicitado con tus predicciones de consumo. Se denominará "Equipo_UH2022.txt" donde 'Equipo' será el nombre del equipo con el que te has inscrito.

Sin cabecera ni nombres de filas.

Constará de 2.747 filas con 10 columnas cada fila:

- ID: ordenado de forma ascendente
- Dia 1: Predicción para el día 01/02/2020
- Dia_2: Predicción para el día 02/02/2020
- Dia 3: Predicción para el día 03/02/2020
- Dia_4: Predicción para el día 04/02/2020
- Dia_5: Predicción para el día 05/02/2020
- *Dia_6*: Predicción para el día 06/02/2020
- Dia 7: Predicción para el día 07/02/2020
- Semana_1: Predicción para la semana del 01/02 al 07/02/2020, ambos inclusive
- Semana_2: Predicción para la semana del 08/02 al 14/02/2020, ambos inclusive

Las predicciones que piden son diarias Hay q

Hacer un modelo semanal?

Separando campos con "|", el valor de la predicción en litros, y los decimales con ".".

Se valorará

La calidad y la técnica utilizada para generar un modelo.

Se analizará la técnica analítica utilizada y se compararán objetivamente los valores reales frente a los valores predichos por el modelo. Para ello, se tendrá que minimizar las desviaciones con respecto a los datos reales.

Se calculará el "error cuadrático medio" o RMSE, definido como:

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Siendo:

"n" el número de casos,

"y" el valor estimado,

"y" el valor real

Se aplicará al subconjunto de las predicciones del mismo horizonte temporal, calculando una media para los 7 RMSE diarios y otra media para los 2 RMSE semanales, obteniéndose la métrica final del siguiente modo:

Métrica = 50% RMSE (media diaria) + 50%RMSE (media semanal).

¿Qué pedimos?

Además del "dataset respuesta", te pedimos:

- 1. Un script ("script exploración") que contendrá el análisis exploratorio y procesos relevantes testados o ejecutados pero no aplicados en la solución final.
- 2. Un script ("script predicción") que contendrá el proceso de extracción, transformación y carga de los datos, el procesado aplicado así como la generación de predicciones.
- 3. Una breve descripción donde se expondrá el proceso y la metodología seguida, las técnicas aplicadas y los resultados obtenidos (en formato presentación, pdf o html, máximo 5 páginas con 3 imágenes).

Un valor menor no conllevará explícitamente una mejor clasificación. El "script de predicción" mencionado debe cumplir que sea generalizable y en el caso de métricas equiparables, se tendrán en cuenta los criterios siguientes:

- el Jurado podrá valorar si la documentación interna aportada (código y comentarios) está correctamente estructurada, expresada y es reproducible.
- los scripts de exploración y predicción deben constituir un proyecto de data science con todas sus fases.