Name	

Enrollment Number AMENUU AK20143

Amrita Vishwa Vidyapeetham Amrita School of Computing, Amritapuri 21MAT301—Mathematics for Intelligent Systems 5 Mid Term Examination, November 2022

Time: 2 hours Maximum Marks: 50 (4 marks for Q1–Q3; 6 marks for Q4, Q5; 8 marks for Q6, Q7; 10 marks for Q8)

1. Let X, Y, Z be binary random variables with joint distribution

X	Y	Z	P(X, Y, Y)
_	_	_	1/15
+	-	_	2/15
-	+	_	1/15
+	+	-	1/15
-	-	+	2/15
+	_	+	4/15
_	+	+	2/15
+	+	+	2/15

Are X and Y conditionally independent given Z? Justify your answer.

- 2. Fifty-two percent of the students at a certain college are females. Five percent of the students in this college are majoring in computer science. Two percent of the students are women majoring in computer science. If a student is selected at random, find the conditional probability that
 - a) the student is female given that the student is majoring in computer science
 - b) this student is majoring in computer science given that the student is female.

- 3. Suppose that an insurance company classifies people into one of three classes: good risks, average risks, and bad risks. The company's records indicate that the probabilities that good-, average-, and bad-risk persons will be involved in an accident over a 1-year span are, respectively, 0.05, 0.15, and 0.30. If 20 percent of the population is a good risk, 50 percent an average risk, and 30 percent a bad risk, what proportion of people have accidents in a fixed year? If policyholder A had no accidents in 1997, what is the probability that he or she is in a good or average risk class?
- 4. Show that P(X, Y|Z) = P(X|Y, Z)P(Y|Z) for any discrete random variables X, Y, Z.
- 5. Let *X* and *Y* be binary random variables. Complete the below table with their joint distribution in such a way that *X* and *Y* are independent.

-		
X	Y	P(X, Y)
-	-	1/15
+		2/15
-	+	0.
+	+	b

- 6. In a Markov Model, we have $X_3 \perp X_1 \mid X_2$ and $X_4 \perp X_1, X_2 \mid X_3$. Does this imply that $X_1 \perp X_3, X_4 \mid X_2$? Justify your answer.
- 7. In a stationary Markov process X_1, X_2, \ldots , the transition probabilities are as following:

X_1	X_2	$P(X_2 \mid X_1)$	
1	1	2/3	
1	2	1/3	
2	2	2/3	
2	3	1/3	
3	3	2/3	
3	1	1/3	

Calculate the stationary distribution of the process.

8. Consider a HMM with transition probabilities given in the previous question, an initial distribution

$$P(X_1 = 1) = P(X_2 = 2) = P(X_3 = 3) = 1/3$$

and emission probabilities

$$P(E_k = +e_k | X_k = s) = 1 - P(E_k = -e_k | X_k = s) = 1/s$$
 for $s = 1, 2, 3$.

Use the Forward algorithm to calculate the distribution of $X_2 \mid -e_1, -e_2$.