CS233 B Linear Algebra

Quiz 2

Part 1 choices (30%)

- 1. Let A be a 2 x 2 matrix with tr(A) = 5 and det(A) = -2. The $tr(A^2) = ?$
 - (a) 4
 - (b) 21
 - (c) 25
 - (d) 29
- 2. Let $B = \begin{bmatrix} 4 & 1 & 0 & 0 & 1 \\ 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 & 1 \\ 1 & 0 & 0 & 1 & 4 \end{bmatrix}$. Which one is the eigenvalue of B?
 - (a) 1
 - (b) 4
 - (c) 5
 - (d) 6
- 3. Which of the following matrix has only real eigenvalues?
 - (a) $\begin{bmatrix} cos45^{\circ} & -sin45^{\circ} \\ sin45^{\circ} & cos45^{\circ} \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 0 & 3 \end{bmatrix}$
 - $(c) \begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
 - (d) $\begin{bmatrix} 4 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$
- 4. 4-189

Given the linear operator T with standard matrix $[T]_E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ and B-matrix

 $[T]_B = \begin{bmatrix} 1 & 9 & -6 \\ 0 & 7 & -4 \\ 2 & 11 & -8 \end{bmatrix}$, which can be a basis for B?

(a)
$$\left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-5\\4 \end{bmatrix}, \begin{bmatrix} 4\\-3\\9 \end{bmatrix} \right\}$$

$$(b) \left\{ \begin{bmatrix} -1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\-1 \end{bmatrix} \right\}$$

$$(c) \left\{ \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} 3\\5\\2 \end{bmatrix}, \begin{bmatrix} -2\\-3\\-4 \end{bmatrix} \right\}$$

(d) None of the above.

5. 4-190

Let T: R²->R² be linear transformation and let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $\beta = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$, If

$$[T]_{\beta} = A$$
, then $T\begin{bmatrix} x \\ y \end{bmatrix} = ?$

(a)
$$\begin{bmatrix} -2x + y \\ 2y \end{bmatrix}$$

(b)
$$\begin{bmatrix} -x + 2y \\ 2x + y \end{bmatrix}$$

(c)
$$\begin{bmatrix} -2y \\ -x + 5y \end{bmatrix}$$

(d)
$$\begin{bmatrix} y \\ 2x - 3y \end{bmatrix}$$

6. 3-136

Support S and T are subspace of R^{13} , with dim(S) = 7 and dim(T) = 8. What is the smallest possible dimension of S \cap T?

- (a) 1
- (b) 2
- (c) 7
- (d)8

Part 2 True of False (30%)

 $http://people.math.harvard.edu/\sim knill/teaching/math21b2018/mid2/solution9.pdf$

- 1. If A and B both have \vec{v} as an eigenvector, then \vec{v} is an eigenvector of AB.
- 2. Similar matrices have the same eigenvectors.
- 3. If the rank of an $n \times n$ matrix A is less than n, then 0 is an eigenvalue of A.
- 4. If a square matrix A is diagonalizable, then $(A^T)^2$ is diagonalizable
- 5. If a 3 × 3 matrix A satisfies $A^2 = I_3$ and A is diagonalizable, then A must be similar to the identity matrix.
- 6. If A is invertible, then A and A^{-1} have the same eigenvectors.
- 7. If $T: \mathbb{R}^n \to \mathbb{R}^m$, and $T(\vec{0}) = \vec{0}$, then T is linear.
- 8. Let β be a basis for a finite dimensional vector space V. If T is a linear operation on V then T is onto if and only if $T(\beta)$ is a basis for V.
- 9. If E is an n x n elementary matrix, then A and EA must have the same row space.
- 10. If V and W are subspaces of \mathbb{R}^n having the same dimension, then V = W.

Part 3 Essay (40%)

1. 5-97

Let $T: P_2 \rightarrow P_2$ be the linear transformation given by $T(ax^2 + bx + c) = cx^2 + (b+c)x + a$. Is T diagonalizable? If yes, find a basis β such that $[T]_{\beta}$ is a diagonal matrix. (8%)

No.

Let $\alpha = \{x^2, x, 1\}$: basis for P_2

$$A = [T]_{\alpha} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

det(A-λI) =-(
$$\lambda$$
+1) (λ -1)²
 λ = 1 重數 2 != 1=nullity(A-I)

2. 5-93

Diagonalize the matrix
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (8%)

A 的 eigenvalue = 1,3,3

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

3. 3-141

Let
$$V = \left\{\theta \in \mathbb{R} | -\frac{\pi}{2} < \theta < \frac{\pi}{2}\right\}$$
. Define the following two operation \oplus and \odot :

vector addition: $\alpha \oplus \beta = tan^{-1}(tan\alpha + tan\beta), \forall \alpha, \beta \in V$ scalar multiplication: $r\alpha = tan^{-1}(rtan\alpha), \forall \alpha \in V, r \in R$ Show that V is a vector space. (8%)

需證8項定理

4. 4-106

Let $L: P \rightarrow R^2$ defined by

$$L(p(x)) = \begin{bmatrix} \int_0^1 p(x)dx \\ p'(x) \end{bmatrix}$$

4A. Show that L is a linear transformation? (4%)

需證加法封閉性、純量積封閉性

4B. Find a matrix A such that $L(ax + b) = A \begin{bmatrix} a \\ b \end{bmatrix}$. (4%)

$$A = \begin{bmatrix} \frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix}$$

5. 4-121

Let $L:P_3 \rightarrow P_3$ defined by L(p(x)) = xp'(x) + p''(x)

5A. Find the matrix A representing L with respect to $\beta = \{1, x, x^2\}$ (2%)

5B. Find the matrix B representing L with respect to $\gamma = \{1, 1 + x, 1 + x^2\}$ (3%)

5C. Let $T: R^n ext{->} R^m$ be a linear transformation. And let $B = \{\overline{b_1}, \overline{b_2}, ..., \overline{b_n}\}$ and $C = \{\overline{c_1}, \overline{c_2}, ..., \overline{c_m}\}$ be bases for R^n and R^m , respectively. The matrix $\left[\left[T(\overline{b_1}) \right]_C \left[T(\overline{b_2}) \right]_C ... \left[T(\overline{b_n}) \right]_C \right]$ is called the matrix representation of T with

respect to B and C. It is denoted by $[T]_B^C$. Find $S = [I]_{\gamma}^{\beta}$, where I(p(x)) = p(x). (3%)

Part 4 Bonus (20%)

- 1. 給學弟妹的一段話,請考試結束後掃描 QRcode 填寫 (10%)
- 2. 請說明期末學分補完計畫 (4%)
- 3. 請說明作業四計算距離的公式(6%)