AES

Presentation by:

V. Balasubramanian

SSN College of Engineering

Objectives

- Overview of the AES algorithm
- Internal structure of AES
 - Byte Substitution layer
 - Diffusion layer
 - Key Addition layer
 - Key schedule
- Decryption

Introduction

- AES is the most widely used symmetric cipher today
- The algorithm for AES was chosen by the US National Institute of Standards and Technology (NIST) in a multi-year selection process
- The requirements for all AES candidate submissions were:
 - Block cipher with 128-bit block size
 - Three supported key lengths: 128, 192 and 256 bit
 - Security relative to other submitted algorithms
 - Efficiency in software and hardware

Introduction

- The need for a new block cipher announced by NIST in January, 1997
- 15 candidates algorithms accepted in August, 1998
- 5 finalists announced in August, 1999:
 - Mars IBM Corporation
 - RC6 RSA Laboratories
 - Rijndael J. Daemen & V. Rijmen
 - Serpent Eli Biham et al.
 - Twofish B. Schneier et al.
- In October 2000, Rijndael was chosen as the AES
- AES was formally approved as a US federal standard in November 2001

■ AES: Overview

The number of rounds depends on the chosen key length:

Key length (bits)	Number of rounds
128	10
192	12
256	14

■ AES: Overview

- Iterated cipher with 10/12/14 rounds
- Each round consists of "Layers"

Internals

Key Addition layer A 128-bit round key, or subkey, which has been derived from the main key in the key schedule, is XORed to the state.

Byte Substitution layer (S-Box) Each element of the state is nonlinearly transformed using lookup tables with special mathematical properties. This introduces *confusion* to the data, i.e., it assures that changes in individual state bits propagate quickly across the data path.

Diffusion layer It provides *diffusion* over all state bits. It consists of two sublayers, both of which perform linear operations:

- The ShiftRows layer permutes the data on a byte level.
- The MixColumn layer is a matrix operation which combines (mixes) blocks of four bytes.

Similar to DES, the key schedule computes round keys, or subkeys, $(k_0, k_1, \dots, k_{n_r})$ from the original AES key.

State

32	88	31	e0
43	5a	31	37
f6	30	98	07
a8	8d	a2	34

This is a block from the plaintext message to be encrypted.

Cipher key

2b	28	ab	09
7e	ae	f7	cf
15	d2	15	4f
16	a6	88	3с

Hexadecimal notation (sample):

Encryption Process

(Performing the encryption of the given plaintext block using 4 different transformations in the initial round, the 9 main rounds and the final round)

The 4 types of transformations:

1-SubBytes

2-ShiftRows

3-MixColumns

4-AddRoundKey

19	a0	9a	e9
3d	f4	С6	f8
e3	e2	8d	48
be	2b	2a	08

									,	,							
he		0	1	2	3	4	5	6	7	8	9	a	b	С	d	e	f
	0	63	7c	77	7b	£2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	fO	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	£7	cc	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	la	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	of	aa	fb	43	4d	33	85	45	19	02	7£	50	3c	91	a8
	7	51	a3	40	8f	92	9d	38	15	be	b6	da	21	10	ff	f3	d2
×	8	cd	0c	13	OC.	51	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	de	22	2a	90	88	46	cc	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	ь	e7	C8	37	6d	8d	d5	4e	a9	6c	56	£4	ea	65	7a	ae	08
	c	ba	78	25	2e	le	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	cl	ld	9e
	e	el	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	£	8c	al	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

S-BOX byte substitution table

d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

Shift Rows

d4	e0	b8	1e	
bf	b4	41	27	
11	98	5d	52	rotate over 2 bytes
ae	f1	e5	30	

d4	e0	b8	1e	
bf	b4	41	27	
5d	52	11	98	
30	ae	f1	e5	virial rotate over 3 bytes
				•

Shift Rows

B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	<i>B</i> 7	B_{11}	B ₁₅

the output is the new state:

B_0	B_4	B_8	B_{12}	no shift
B_5	B 9	B_{13}	B_1	← one position left shift
B_{10}	B_{14}	B_2	B_6	← two positions left shift
B_{15}	<i>B</i> ₃	B 7	B_{11}	← three positions left shift

Mix Columns

MixColumn(B) = C,

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}.$$

Add Round Key

Key Schedule

(Expansion of the given Cipher key into 11 partial keys, used in the initial round, the 9 main rounds and the final round)

2b	28	ab	09
7e	ae	f7	cf
15	d2	15	4f
16	a6	88	3с

C	iphe	er ke	У	Ro	und	key	1	Ro	ound	key	2	R	ound	l key	3	Ro	und	key	10
16	a6	88	3c	17	b1	39	05	f2	43	7a	7f	7d	3е	44	3b	a8	89	c8	a 6
15	d2	15	4f	fe	2c	39	76	95	b9	80	f6	47	fe	7e	88	 f9	25	0c	00
7e	ae	f7	cf	fa	54	a3	6c	c2	96	35	59	80	16	23	7a	14	ee	3f	63
2b	28	ab	09	a0	88	23	2a	f2	7a	59	73	3d	47	1e	6d	d0	c9	e1	be

Internals

- AES is a byte-oriented cipher
- The state A (i.e., the 128-bit data path) can be arranged in a 4x4 matrix:

A _O	A_4	A ₈	A ₁₂
A ₁	A_5	A ₉	A ₁₃
A_2	A ₆	A ₁₀	A ₁₄
A_3	A ₇	A ₁₁	A ₁₅

Internal Structure of AES

• Round function for rounds 1,2,...,n_{r-1}:

Note: In the last round, the MixColumn tansformation is omitted

Byte Substitution Layer

 The Byte Substitution layer consists of 16 S-Boxes with the following properties:

The S-Boxes are

- the only **nonlinear** elements of AES, i.e., ByteSub(A_i) + ByteSub(A_j) ByteSub($A_i + A_j$), for i, j = 0,...,15
- **bijective**, i.e., there exists a one-to-one mapping of input and output bytes
 - ⇒ S-Box can be uniquely reversed
- In software implementations, the S-Box is usually realized as a lookup table

Diffusion Layer

The Diffusion layer

provides diffusion over all input state bits

- consists of two sublayers:
 - ShiftRows Sublayer: Permutation of the data on a byte level
 - MixColumn Sublayer: Matrix operation which combines ("mixes") blocks of four bytes
- performs a linear operation on state matrices A, B, i.e.,

$$DIFF(A) + DIFF(B) = DIFF(A + B)$$

ShiftRows Sublayer

Rows of the state matrix are shifted cyclically:

Input matrix

B_0	B_4	B ₈	B ₁₂
B_1	B_5	B_9	B ₁₃
B_2	B_6	B ₁₀	B ₁₄
B_3	<i>B</i> ₇	B ₁₁	B ₁₅

Output matrix

B_0	B_4	B_8	B ₁₂
B_5	B_9	B ₁₃	B_1
B ₁₀	B ₁₄	B_2	B_6
B ₁₅	B_3	B ₇	B ₁₁

no shift
one position left shift
two positions left shift
three positions left shift

MixColumn Sublayer

 Linear transformation which mixes each column of the state matrix

 Each 4-byte column is considered as a vector and multiplied by a fixed 4x4 matrix, e.g.,

$$\begin{pmatrix}
C_0 \\
C_1 \\
C_2 \\
C_3
\end{pmatrix} = \begin{pmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{pmatrix} \cdot \begin{pmatrix}
B_0 \\
B_5 \\
B_{10} \\
B_{15}
\end{pmatrix}$$

where 01, 02 and 03 are given in hexadecimal notation

• All arithmetic is done in the Galois field *GF*(2⁸) (for more information see Chapter 4.3 in *Understanding Cryptography*)

Key Addition Layer

- Inputs:
 - 16-byte state matrix C
 - 16-byte subkey k_i
- Output: $C \oplus k_i$
- The subkeys are generated in the key schedule

Key Schedule

- Subkeys are derived recursively from the original 128/192/256-bit input key
- Each round has 1 subkey, plus 1 subkey at the beginning of AES

Key length (bits)	Number of subkeys	
128	11	
192	13	
256	15	

- Key whitening: Subkey is used both at the input and output of AES

 ⇒ # subkeys = # rounds + 1
- There are different key schedules for the different key sizes

Key Schedule

Example: Key schedule for 128-bit key AES

- Word-oriented: 1 word = 32 bits
- 11 subkeys are stored in W[0]...W[3],
 W[4]...W[7], ..., W[40]...W[43]
- First subkey W[0]...W[3] is the original AES key

Key Schedule

- Function g rotates its four input bytes and performs a bytewise S-Box substitution
 nonlinearity
- The round coefficient RC is only added to the leftmost byte and varies from round to round:

$$RC[1] = x^0 = (00000001)_2$$

 $RC[2] = x^1 = (00000010)_2$
 $RC[3] = x^2 = (00000100)_2$
...
 $RC[10] = x^9 = (00110110)_2$

 xⁱ represents an element in a Galois field (again, cf. Chapter 4.3 of *Understanding Cryptography*)

