مسائل نمونه فصل چهارم۔ سیکنال ها و سیستم ها۔ دانشگاه آزاد اسلامی- واحد تهران جنوب - فغرانی

INFORMATION SHEET

Fourier transform properties

Property	Transform Pain/Property
Linearity	$ax(r) + bv(r) \leftrightarrow aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \leftrightarrow X(\alpha)e^{-j\alpha c}$
Time scaling	$x(ar) \leftrightarrow \frac{1}{a}X(\frac{ar}{a}) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\infty) = \overline{X(\omega)}$
Multiplication by power of r	$t^n x(t) \leftrightarrow f^n \frac{d^n}{dx^n} X(x) n = 1, 2,$
Multiplication by complex exponential	$x(t)e^{j\omega_0t} \leftrightarrow X(\omega - \omega_0)$ ag real
Multiplication by cos(agr)	$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dx^n} \pi(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2,$
Integration	$\int_{-\infty}^{t} x(\lambda)d\lambda \leftrightarrow \frac{1}{t_0}X(\omega) + xX(0)\delta(\omega)$
Convolution in time domain	$x(r) * o(r) \leftrightarrow X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)e(t)dt \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(u)}V(u)du$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$

Common Fourier Transform Pairs

x(r)	X (a)
I (-∞ < t < ∞)	2x 6(a)
-0.5 + w(t)	744
w(/)	$\pi \delta(\omega) + \frac{1}{f\omega}$
d(r)	1
$\delta(t-c)$	e ^{-jac} (c any real number)
$e^{-bt}a(t)$	70+5 (b > 0)
e) and	$2\pi \delta(\omega - \omega_0)$ (ω_0 any real number)
$p_{\pi}(t)$	rainc 22
raine ##	$2\pi p_T(\alpha)$
$\left(1-\frac{2i}{T}\right)p_{T}(t)$	$\frac{r}{2} \operatorname{sinc}^2 \left(\frac{r\omega}{4\pi} \right)$
\$ sinc ² ff	$2\pi \left(1 - \frac{2 \omega }{T}\right) p_T(\omega)$.
$con(agt + \theta)$	$\pi \left[e^{-j\theta}\delta(\omega + \alpha \eta) + e^{j\theta}\delta(\omega - \alpha \eta)\right]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$

Trigonometric identities

```
\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) \\ \sin^2(\theta) &+ \cos^2(\theta) = 1 & \sin(2\theta) = 2\sin(\theta)\cos(\theta) \\ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) + 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}
```

مسائل نمونه فصل چهارم سیکنال ها و سیستم ها دانشگاه آزاد اسلامی- واحد تهران جنوب غغرانی

ستعنال زون بيولت (xct) داده الهامات، مطوست تتبيل فورس ليعيال (X(jis))

$$\chi(t)=\bar{e}^{3t}\omega_{s}(lot)\omega(t)$$
 $\bar{e}^{3t}\omega(t) \rightarrow \frac{1}{3+j\omega}$

$$X(j\omega) = \frac{1}{2} \left(\frac{1}{3+j(\omega-10)} + \frac{1}{3+j(\omega+10)} \right)$$

ل جهارم سبكتال ها و سيستم ها دانشكاه آزاد اسلامي- واحد تهران جنوب

$$\mu(t) = 2 \operatorname{rect}\left(\frac{t-1}{2}\right)$$

rect(
$$\frac{\xi}{2}$$
) + 3 rect
$$\frac{3}{4\mu^{-2}} = 0 \quad 2 \quad 4 \quad \epsilon$$

$$2(t)=3 \operatorname{rect}\left(\frac{t-3}{2}\right)+3\operatorname{rect}\left(\frac{t+3}{2}\right)$$

 $rect(\frac{t}{2}) \rightarrow 2 sinc(\frac{\omega}{\pi})$

$$rect\left(\frac{t-3}{2}\right) \rightarrow e^{j3\omega} \cdot 2\sin(\frac{\omega}{2}) = 6\sin(\frac{\omega}{2}) \cdot \left(e^{-j3\omega} + e^{j3\omega}\right)$$

$$rect\left(\frac{t+3}{2}\right) \rightarrow e^{j3\omega} \cdot 2\sin(\frac{\omega}{2}) = 12 Col(3\omega) \cdot \sin(\frac{\omega}{2})$$

$$g(t) = \frac{dx(t)}{dt}$$

$$\frac{dx(t)}{dt} \rightarrow \chi(j\omega)$$

Makes on the state of the state

$$rect(\frac{t-2}{4}) \rightarrow e^{j2\omega}$$
, 4 sinc $(\frac{2\omega}{\pi})$

مسائل نمونه فصل چهارم سیکنال ها و سیستم ها دانشگاه آزاد اسلامی- واحد تهران جنوب غفرانی

$$z(t) = \bar{e}^t u(t) \cdot \sin(2\pi t)$$
 $\bar{e}^t u(t) \longrightarrow \frac{1}{1+j\omega}$

$$z(t) = \bar{e}^t u(t) \cdot \frac{1}{2j} \cdot (\bar{e}^{j2\pi t} - \bar{e}^{j2\pi t})$$

$$X(j\omega) = \frac{1}{2j} \cdot \left(\frac{1}{1+j(\omega-2s)} - \frac{1}{1+j(\omega+2s)} \right)$$

$$= \frac{1}{2j} \cdot \frac{j4\pi}{1+j2\omega - (\omega^2 - 4\pi^2)} = \frac{2\pi}{(1+4\pi^2 - \omega^2) + j2\omega}$$

$$x(t)=5e^{5t}u(t)$$
 $\chi(j\omega)=\frac{5}{5+j\omega}$

$$\chi(t) = e^{2t} C_3(4t) u(t)$$
 $\chi(t) = \frac{1}{2} e^{tt} u(t) \cdot \left(e^{t} + e^{j4t}\right)$

$$X(3\omega) = \frac{1}{2} \left(\frac{1}{2+3(\omega-4)} + \frac{1}{2+3(\omega+4)} \right)$$

$$z(t)=2 \operatorname{rect}\left(\frac{t-3}{2}\right)$$

مسائل نمونه فصل چهارم سیکنال ها و سیستم ها دانشگاه آزاد اسلامی- واحد تهران جنوب خفرانی

مستنال زمان ويولت (x(t) داده ك ه اب ، ملوب تبيل نور استعيال ، (اناق) X

$$z(t) = rect\left(\frac{t+1}{2}\right) - rect\left(\frac{t-1}{2}\right)$$

$$X(j\omega) = 2e^{j\omega} \sin \left(\frac{\omega}{2}\right) - 2e^{j\omega} \sin \left(\frac{\omega}{2}\right)$$

$$= 34 \sin(\omega) \cdot \sin \left(\frac{\omega}{2}\right)$$

$$= 34 \sin(\omega) \cdot \frac{\sin(\omega)}{\omega} = 34 \cdot \frac{\sin^2(\omega)}{\omega}$$

$$-xu = e^{-3t}$$

 $-3(t-1+1)$
 $-3(t-1+1)$
 $-3(t-1) = e^3 = e^{3(t-1)}u(t-1)$

$$e^{3t}$$

$$u(t) \rightarrow \frac{1}{3+j\omega}$$

$$x(j\omega) = e^{3} e^{3\omega} \frac{1}{3+j\omega} = e^{-j\omega-3} \frac{1}{3+j\omega}$$

$$-x(t) = e^{\alpha|t|}, \alpha = x(j\omega) = \int_{-\infty}^{\infty} e^{t} e^{j\omega t} dt + \int_{0}^{\infty} e^{at} e^{-j\omega t} dt$$

$$x(j\omega) = \frac{1}{a - j\omega} e^{(a - j\omega)t} \int_{-\infty}^{\infty} -\frac{1}{a + j\omega} e^{(a + j\omega)t} \int_{0}^{\infty}$$

$$X(j\omega) = \frac{1}{\alpha - j\omega} + \frac{1}{\alpha + j\omega} = \frac{2\alpha}{\alpha^2 + \omega^2}$$

17

مسائل نمونه فصل چهارم سیکنال ها و سیستم ها دانشگاه آزاد اسلامی- واحد تهران جنوب غغرانی

$$- \chi u_1 = \overline{e}^{[t]} \cdot \omega_1(zt)$$

$$= \overline{e}^{[t]} \rightarrow \frac{1}{1 + \omega^2}$$

$$= \overline{e}^{[t]} \cdot \omega_1(zt) = \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]}$$

$$= \overline{e}^{[t]} \cdot \omega_1(zt) = \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]}$$

$$= \overline{e}^{[t]} \cdot \omega_1(zt) = \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]} \cdot \overline{e}^{[t]}$$

$$= \overline{e}^{[t]} \cdot \omega_1(zt) = \overline{e}^{[t]} \cdot \overline{e}^{[t$$

- x(t) depicted below

$$x(t) = \sum_{K=-\infty}^{\infty} \delta(t-1-3K) - \sum_{K=-\infty}^{\infty} \delta(t-2-3K)$$

$$= \sum_{k=-\infty}^{\infty} e^{-j(1+3k)\omega} = e^{j(2+3k)\omega} = \sum_{k=-\infty}^{\infty} e^{-j(\frac{3+6k}{2})\omega} \left(e^{j\frac{1}{2}\omega} - j\frac{1}{2}\omega\right)$$

- عبران خبون مسل جهارم سیکنال ۱۱ و سیستم ها هانشگاه آزاد اسلامی - واحد تهران جنوب عفرانی - در مسائل خبون میران می

 $z(t) = e^{|t|} \Rightarrow x(j\omega) = \int_{-\infty}^{\infty} e^{-\frac{1}{(t+1)}} \int_{-\infty}^{\infty} e^{-\frac{1}{(t+1)}} dt$ $= \frac{1}{1-j\omega} e^{(1-j\omega)t} \int_{-\infty}^{\infty} e^{-\frac{1}{(t+1)}} dt$

$$X(j\omega) = \frac{1}{1-j\omega} + \frac{1}{1+j\omega} = \frac{2}{1+\omega^2}$$

$$X_2(j\omega) = \frac{1}{2j} \left(\frac{4}{4+(\omega-1)^2} - \frac{4}{4+(\omega+1)^2} \right)$$

$$(-jt)^{\frac{-2|t|}{e}} \rightarrow \frac{4(-2\omega)}{(4+\omega^2)^2} \Rightarrow X_3(j\omega) = \frac{-j8\omega}{(4+\omega^2)^2}$$

14 مسائل نمونه فصل جهارم سبكنال ها وسيستم ها دانشكاه آزاد اسلامي- واحد تهر

- تتبل فورس لسعيال (g(t) داده الده ا

ار کستال حای زمر را مدمت آورمه.

$$d) g_4(t) = \frac{dg(t)}{dt}$$

d)
$$g_4(t) = \frac{dg(t)}{dt}$$
 e) $g_5(t) = e^{-j(\omega t)}g(t)$

a)
$$g(zt) \Rightarrow g(zt) \Rightarrow \frac{1}{2}G(j\frac{\omega}{2})$$

$$G_1(j\omega) = \frac{1}{2}G(j\frac{\omega}{2}) = \frac{1}{2} \cdot \frac{j\omega/2}{-(\frac{\omega}{2})^2 + 5j(\frac{\omega}{2}) + 6}$$

$$G_1(j\omega) = \frac{j4\omega}{-\omega^2 + j10\omega + 24}$$

b)
$$\partial(a) \to G(3\omega)$$
 $g(3(t-2)) \to ?$
 $g(3t) \to \frac{1}{3}G(3\frac{\omega}{3})$
 $g(3(t-2)) \to \frac{1}{3}\tilde{e}^{j2\omega}G(3\frac{\omega}{3}) \Rightarrow G_2(3\omega) = \frac{1}{3}\tilde{e}^{j2\omega} - \frac{3\omega}{(\frac{\omega}{3})^2 + 53(\frac{\omega}{3}) + 6}$
 $G_2(3\omega) = \tilde{e}^{j2\omega} - \frac{3\omega}{(\frac{\omega}{3})^2 + 53(\frac{\omega}{3}) + 6}$

(d)
$$g(x) \rightarrow G(j\omega)$$
 $\frac{dg(x)}{dt} \rightarrow j\omega G(j\omega)$ $= \frac{j\omega}{\omega^2 + j5\omega - 6}$
 $G_4(j\omega) = \frac{(j\omega)^2}{-\omega^2 + 5j\omega + 6} = \frac{\omega^2}{\omega^2 - 5j\omega - 6}$

e)
$$g(t) \rightarrow G(j\omega)$$
, $e^{jloot}g(t) \rightarrow G(j(\omega+loo))$
 $G_g(j\omega) = \frac{j(\omega+loo)}{-(\omega+loo)^2+Gj(\omega+loo)+6}$

مسائل نمونه فصل چهارم سیکتال ها و سیستم ها دانشگاه آزاد اسلامی- واحد تهران جنوب غفرانی

تقبل فوريد لنفيال (ملك برام <u>در ٢ - ١</u> ابت . تقبل فوريد عروف از لسفيالهاى فررا

$$- x_{2}(t) = \int_{-\infty}^{t} z(\lambda) d\lambda$$

$$x_{2}(t) = x(t) * u(t) = \int_{-\infty}^{\infty} x(\lambda) u(t - \lambda) d\lambda = \int_{-\infty}^{t} x(\lambda) d\lambda$$

$$x_{2}(t) = x(t) * u(t) = \int_{-\infty}^{\infty} x(\lambda) u(t - \lambda) d\lambda = \int_{-\infty}^{t} x(\lambda) d\lambda$$

$$x_{3}(t) = x(t) * u(t) = \int_{-\infty}^{\infty} x(\lambda) u(t - \lambda) d\lambda$$

$$x_{4}(t) = x(t) * u(t) = \int_{-\infty}^{t} x(\lambda) u(t - \lambda) d\lambda$$

$$X_{2}(j\omega) = X(j\omega) \cdot U(j\omega)$$

$$= X(j\omega) \cdot \left(\frac{1}{j\omega} + \pi 6(\omega)\right)$$

$$X_2(j\omega) = \frac{4}{4+\omega^2} \left(\frac{1}{j\omega} + 78(\omega) \right)$$

$$X_2(j\omega) = \frac{4}{j\omega(4+\omega^2)} + 775(\omega)$$