OSNOVE UMETNE INTELIGENCE 2018/19

informirani preiskovalni algoritmi

Preiskovalni algoritmi

- neinformirani: razpolagajo samo z definicijo problema
 - iskanje v širino (angl. *breadth-first search*)
 - iskanje v globino (angl. depth-first search)
 - iterativno poglabljanje (angl. iterative deepening)
 - cenovno-optimalno iskanje (angl. uniform-cost search)
- **informirani**: razpolagajo tudi z dodatno informacijo (domensko znanje, hevristične ocene), kako bolj učinkovito najti rešitev
 - algoritem A*
 - algoritem IDA*
 - prioritetno preiskovanje (angl. best-first search)
 - algoritem RBFS (angl. recursive best-first search)
 - plezanje na hrib (angl. hill climbing)
 - iskanje v snopu (angl. beam search)
 - •

Pregled

neinformirani preiskovalni algoritmi

- iskanje v širino
- iskanje v globino
- iterativno poglabljanje
- cenovno-optimalno iskanje

informirani preiskovalni algoritmi

- hevristično preiskovanje (primer)
- požrešno preiskovanje
- A*
- IDA*
- kakovost hevrističnih funkcij

Hevristično preiskovanje

- potreba po usmerjanju iskanja z motivacijo, da hitreje/lažje najde optimalno rešitev
- ideja: uporabimo oceno vozlišč (stanj), ki ocenjujejo obetavnost za doseganje do cilja
- **hevristika** (ali hevristična ocena, ugibanje) je ocenitvena funkcija za oceno obetavnosti vozlišča (najcenejše poti iz vozlišča do najbližjega cilja)

 $h: vozlišče \rightarrow \mathbb{R}$

- izberemo in razvijemo vozlišče glede na najboljšo vrednost hevristike
 - nizek h nakazuje bolj obetavno vozlišče, višji h pa težji problem
 - fronta hrani vozlišča, urejena v prioritetni vrsti po obetavnosti
- primeri hevrističnih preiskovalnih algoritmov:
 - A*
 - IDA* (iterative deepening A*)
 - RBFS (recursive best-first search)
 - iskanje v snopu (beam search)
 - plezanje na hrib (hill climbing)

Požrešno iskanje

- angl. greedy best-first search
- vedno razvijemo najbolj obetavno vozlišče glede na hevristično oceno
- vrednotenje vozlišča: f(n) = h(n)

- primer: iskanje optimalne poti z upoštevanjem najkrajše zračne razdalje
- zračne razdalje do cilja (Bukarešta) lahko uporabimo kot hevristične ocene:

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244

Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244

Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

- primer 2: robotovo iskanje ciljne lokacije (Bratko, OUI, 2016/17)
- možni premiki: $1 \longrightarrow , 2 \uparrow , 3 \longleftarrow , 4 \downarrow$
- dolžina rešitve pri preiskovanju v globino je: 45
- optimalna dolžina rešitve: 7

- ideja: uporabimo hevristiko, ki ocenjuje obetavnost koordinate za doseganje do cilja - npr. manhattanska razdalja
- izberemo in razvijemo vozlišče glede na najmanjšo ocenjeno oceno (hevristiko)

Učinkovitost požrešnega iskanja

- popolnost (angl. completeness):
 - Ne.
 - Možnost ciklanja v lokalnih delih grafa (primer: pri iskanju poti lasi->Fagaras se lahko zaciklamo med lasi⇔Neamt).
- optimalnost (angl. optimality):
 - Ne.
 - Ali obstaja v našem primeru iskanja najkrajše poti bolj optimalna pot do cilja?
- časovna in prostorska zahtevnost:
 - $O(b^m)$, kjer je m največja globina drevesa
 - vsa vozlišča moramo hraniti v spominu, ker so kandidati za razvijanje nadaljnje poti
 - pomembnost ustrezne hevristične ocene (!)

Pregled

neinformirani preiskovalni algoritmi

- iskanje v širino
- iskanje v globino
- iterativno poglabljanje
- cenovno-optimalno iskanje

informirani preiskovalni algoritmi

- hevristično preiskovanje (primer)
- požrešno preiskovanje
- A*
- IDA*
- kakovost hevrističnih funkcij

Algoritem A*

- ideja: izboljšajmo hevristično funkcijo, ker so od nje očitno odvisni uspešnost iskanja in poraba časa/prostora
- vozlišča vrednotimo glede na ceno najboljše poti skozi vozlišče n:

```
f(n) = g(n) + h(n)

g(n) – cena poti do n (znano)

h(n) – cena od n do najbližjega cilja (ocena)
```


- vozlišča v fronti hranimo v prioritetni vrsti, ki je urejena naraščajoče glede na funkcijo f(n)
- pri preiskovanju lahko ponovno generiramo vozlišče n, ki je že med razvitimi vozlišči (n')
 - če je g(n') < g(n), smo našli boljšo pot do n, vozlišče dodamo v fronto
 - če je $g(n') \ge g(n)$, lahko ponovno generirano vozlišče n ignoriramo

• primer 1: preiskovanje manjšega grafa

primer 2: https://qiao.github.io/PathFinding.js/visual/

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244

Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244

Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244

Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244

Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Popolnost in optimalnost A*

- algoritem A* je popoln in optimalen, če ustreza pogoju dopustnosti (angl. admissibility)
- za hevristiko h(n) pravimo, da je dopustna, če nikoli ne precenjuje cene do cilja
 - formalno: hevristika h(n) je dopustna, če za vsako vozlišče n velja $h(n) <= h^*(n)$, kjer je $h^*(n)$ dejanska cena optimalne poti do cilja za vozlišče n
 - zgornje pomeni, da je hevristika h(n) "optimistična" (= predvideva, da je do cilja manj, kot dejansko je)
 - posledično tudi f(n) ne precenjuje cene do cilja, saj je g(n) znan, velja pa f(n) = g(n) + h(n)
 - ali je lahko h(n) = 0
 (to je tudi optimistična cenilka)?
 Da, vendar...
 - idealno velja $h(n) = h^*(n)$

Skica dokaza optimalnosti A*

- *G*1 je optimalen cilj, *G*2 neoptimalen
- ker je h(n) dopustna, so vrednosti funkcije f(n) = g(n) + h(n) nenegativne za vsak n na poti od začetka do cilja
- velja:
 - f(G2) = g(G2) + h(G2) = g(G2) + 0 = g(G2), ker je G2 cilj
 - f(G1) = g(G1), ker je G1 tudi cilj
 - $g(G2) > g(G1) \Rightarrow f(G2) > g(G1)$, ker je G1 optimalen cilj, G2 pa neoptimalen
 - f(G2) ≥ f(n),
 ker je h(n) dopustna cenilka (ne precenjuje cene do optimalnega cilja G1)
 - Ker velja $f(G2) \ge f(n)$, algoritem A* nikoli ne bo izbral cilja G2 za razvijanje (kot končni cilj).
 - torej: A* najde optimalni cilj G1

Skica dokaza optimalnosti A*

- še drugačen premislek o optimalnosti
- algoritem A* razvija vozlišča glede na naraščajočo oceno vozlišč f(n). Pri tem povečuje "raziskanost" prostora v obliki reliefnih kontur (vsaka kontura predstavlja večjo vrednost f(n))
- če hevristika ne bi bila dopustna (in bi v nekem vozlišču precenjevala ceno do cilja), to vozlišče ne bi bilo vsebovano v konturi, ki predstavlja vrednost optimalne poti do cilja
- primer prikazuje:
 - levo: optimalna pot
 - desno: A* bi zaobšel vozlišče R, ki je na optimalni poti, če bi imel preveliko vrednost f(n)

Učinkovitost algoritma A*

popolnost in optimalnost:

Da, če je hevristika dopustna.

časovna zahtevnost:

- odvisni sta od kakovosti hevristike h(n)
 (boljša hevristika manjša poraba časa in prostora)
- definirajmo:
 - h^* naj bo dejanska cena do optimalne rešitve
 - relativna napaka hevristike $\epsilon = (h^* h)/h^*$
- zahtevnost je eksponentna glede na globino rešitve in največjo relativno napako: $O(b^{\epsilon d})$

prostorska zahtevnost:

- večji problem kot časovna zahtevnost, ker mora A* hraniti vsa vozlišča v spominu
- nepraktično za velike probleme
- boljše alternative glede porabe prostora:
 - algoritem IDA* (iterative deepening A*)
 - RBFS (recursive best-first search)
 - MA* (memory-bounded A*)
 - SMA* (simplified A*)
 - LRTA* (learning real-time A*)

Pregled

neinformirani preiskovalni algoritmi

- iskanje v širino
- iskanje v globino
- iterativno poglabljanje
- cenovno-optimalno iskanje

informirani preiskovalni algoritmi

- hevristično preiskovanje (primer)
- požrešno preiskovanje
- A *
- IDA*
- kakovost hevrističnih funkcij

Algoritem IDA*

- iterative-deepening A*
- deluje analogno kot **iterativno poglabljanje**, vendar za mejo ne uporabljamo globine, temveč vrednost funkcije f(n)
 - za mejo na začetku izberemo vrednost f(n) začetnega vozlišča
 - na vsaki iteraciji razvijemo vsa vozlišča z $f(n) \le mejni vrednosti$
 - za naslednjo iteracijo izberemo mejo, ki je najmanjši f(n) še nerazvitih vozlišč

```
procedure ida_star(root)
  bound := h(root)
  path := [root]
  loop
    t := search(path, 0, bound)
    if t = FOUND then return (path, bound)
    if t = ∞ then return NOT_FOUND
    bound := t
  end loop
end procedure
```

```
function search (path, g, bound)
  node := path.last
 f := q + h (node)
  if f > bound then return f
  if is goal (node) then return FOUND
 min := \infty
  for succ in successors (node) do
    if succ not in path then
      path.push(succ)
      t := search(path, g + cost(node, succ), bound)
      if t = FOUND then return FOUND
      if t < min then min := t
      path.pop()
    end if
  end for
  return min
end function
```

Algoritem IDA*

- primer:
 - podane so vrednost f(n) (= g(n) + h(n)) vozlišč
 - simuliraj preiskovanje z IDA*
- generirana vozlišča
 - 1. iteracija, meja=1: a/1, b/2, c/1, f/1, j/3, g/2
 - 2. iteracija, meja=2: a/1, b/2, d/10, e/10, c/1, f/1, j/3, g/2, k/4
 - 3. iteracija, meja=3: a/1, b/2, d/10, e/10, c/1, f/1, j/3, l/4, g/2, k/4
 - 4. iteracija, meja=4: a/1, b/2, d/10, e/10, c/1, f/1, j/3, l/4

Učinkovitost algoritma IDA*

- redundanca: ponovno generiranje velikega števila vozlišč
- neučinkovit, če prevladujejo vozlišča z zelo raznolikimi vrednostmi funkcije f(n)
- vendar: v spominu hrani samo trenutno pot (podobno kot pri iskanju v globino) in ne vseh vozlišč kot A*
- želimo si, da je IDA* optimalen glede na: <u>ceno</u> najdene rešitve, <u>porabljen prostor</u> in <u>porabljen čas</u>:
 - to je možno, če IDA* razvije najmanjše potrebno število vozlišč, čemur rečemo, da jih razvija v prioritetnem vrstnem redu
 - IDA* razvija vozlišča v prioritetnem vrstnem redu, če je hevristična ocena h(n) monotona ali konsistentna (monotone/consistent). To je res, kadar za vsaki povezani vozlišči n in n' velja (trikotniška neenakost): $h(n) \le c(n,n') + h(n')$
 - če je hevristika konsistentna je tudi dopustna (!)

Učinkovitost algoritma IDA*

- poenostavitev: za zagotovitev razvijanja vozlišč v prioritetnem vrstnem redu ni nujno potrebno, da je monotona hevristika h, temveč že zadošča, da je monotona cenilna funkcija f
- cenilna funkcija f je monotona, če za vsak par povezanih vozlišč n in n' velja f(n) <= f(n')

- primer nemonotone funkcije f:
 - meja za f je enaka 5, vendar pa vozlišče z f=3 razvijemo pred vozlišči z f=1 in f=2

- Ali dopustna hevristična funkcija h zagotavlja, da je cenilna funkcija f monotona?
- Ali za monotone cenilne funkcije f velja, da zadoščajo pogoju iz izreka o dopustnosti hevristik h?

Kakovost hevrističnih funkcij

- primer: igra 8 ploščic
- povprečna dolžina rešitve je 22 korakov
- povprečni faktor vejanja je 3
 (2 potezi možni v vogalu, 3 ob robu, 4 v sredini)
- izčrpno preiskovanje bi torej pregledalo prostor 3²² stanj (za 3x3); na srečo je dosegljivih le približno 9!/2 = 181,440 stanj
- hevristična funkcija lahko učinkovito zmanjša prostorsko in časovno ceno iskanja
- pri iskanju ustrezne hevristike si pomagamo s poznavanjem problema

Kakovost hevrističnih funkcij

- primeri hevrističnih funkcij:
 - h_1 število ploščic, ki niso na pravem mestu (za primer na desni: $h_1 = 8$)
 - h_2 vsota manhattanskih razdalj ploščic do pravega mesta (za primer na desni: $h_2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$)

- kakovost h lahko ocenimo:
 - s številom generiranih vozlišč
 - z efektivnim faktorjem vejanja (koliko vozlišč N je algoritem generiral, da je na globini d našel rešitev)

	število generiranih vozlišč			efekt	efektivni faktor vejanja		
Globina	IDS	A*(h ₁)	A*(h ₂)	IDS	A*(h ₁)	A*(h ₂)	
2	10	6	3	2,45	1,79	1,79	
4	112	13	12	2,87	1,48	1,45	
6	680	20	18	2,73	1,34	1,30	
8	6384	39	25	2,80	1,33	1,24	
10	47127	93	39	2,79	1,38	1,22	
12	3644035	227	73	2,78	1,42	1,24	
14	?	539	113	?	1,44	1,23	
16	?	1301	211	?	1,45	1,25	
18	?	3056	363	?	1,46	1,26	
20	?	7276	676	?	1,47	1,27	
22	?	18094	1219	?	1,48	1,28	
24	?	39135	1641	?	1,48	1,26	

Kako do idej za hevristike?

- želimo imeti dopustne hevristike:
 - s čim večjimi vrednostmi
 - s sprejemljivo ceno (časom) izračuna
- v prejšnjem primeru je h_2 boljša od h_1 (ker $h_2(n) \ge h_1(n)$ za vsak n, pravimo, da h_2 dominira h_1)
- pridobivanje hevristik:
 - iz poenostavljenega (relaksiranega) problema:
 - "ploščico lahko prestavimo na poljubno (tudi neprazno) polje"
 - "ploščico lahko prestavimo na poljubno (tudi nesosednje) prazno polje"
 - "ploščico lahko prestavimo na sosednje (tudi neprazno) polje"
 - z vzorci podproblemov (osredotočimo se npr. samo na iskanje rešitve za del problema)
 - z izkušnjami in uteževanjem kriterijev (npr. oddaljenost od cilja, število sosednjih ploščic, ki ne mejijo na ciljno mesto ipd.)

Start State

Goal State

