

PG Certificate Course in Data Science, AI/ML and Data Engineering by IIT Roorkee

Final Project Submission - Chandramauli Joshi

Agenda

1.	About Project	Slide 5
2.	Impact	Slide 6
3.	POC Goal	Slide 7
4.	Model Exploration	Slide 8
5.	Regression Approach	Slide 9
6.	Performance Metrics	Slide 10
7.	Performance Impact	Slide 11
8.	Data Sources	Slide 12
9.	Data Preparation	Slide 13
10	. Feature Engineering	Slide 14

Agenda (Conti.)

11. Technology Stack	Slide 15
12. System Architecture	Slide 16
13. File Sequence	Slide 17
14. Key Concepts & Functionalities	Slide 18
15. Model Selection & Training	Slide 19
16. Evaluation & Validation	Slide 20
17. Testing Approach	Slide 21
18. Integration & Deployment	Slide 22
19. Requirement - Functional and Non-Functional	Slide 23
20. Modeling Trade-Offs	Slide 24
21. Interpretable vs. Complex Models	Slide 25

Agenda (Conti.)

22. Dataset Size: Constraints & Opportunities	Slide 26
23. Decision Timeline	Slide 27
24. Learnings	Slide 28
25. Key Takeaways	Slide 29
26. Future Scope	Slide 30
27. Solving Regional Model Performance Challenges	Slide 31
28. STAR Solution	Slide 32
29. Q&A	Slide 33
30. Appendix	Slide 34

Wildfire Prediction Project

- Predicting burned forest area using historical weather and environmental data
- Enables preventive action and response planning
- Bridges gap between meteorological data and actionable insights insights for early warning systems.

Impact/Goal

Proof of Concept -

To Validate Predictive Feasibility

1 Minimal Model

Built using data subset

2 Baseline Accuracy

Established performance benchmarks

3 Feasibility Validation

Confirmed regression approach viability

4 Production Justification

Provided rationale for full-scale implementation

Model Exploration

000

Linear Regression

Underperformed due to multicollinearity

Decision Trees

Overfitting risks, lacked interpretability

Lasso Regression

Good for feature selection, less stable

Ridge Regression

Selected for regularization and robustness

Regression Approach

Regression Problem

Predicting continuous numeric value

Target Variable

Burned area in hectares

Method Selection

No deep learning needed due to dataset size

Performance Metrics

R² Score

Measures predictionactual match

Mean Absolute Error

Average prediction deviation

Visualization

Predicted vs. actual plots plots

Performance Impacts: Simplicity vs. Power

Ridge

- Fast training
- Consistent generalization

Random Forest

- Potentially higher accuracy
- More overfitting on small data data

Neural Network

- High complexity
- Data hungry

82%

92%

Data Sources

UCI Repository

Trusted academic data source

Geographic Coverage

Bejaia and Sidi Bel-abbes regions

Data Components

Weather conditions and fire indices

Data Preparation - Ensuring Quality Inputs

Feature Engineering - Creating Meaningful Inputs

Technology Stack – Tools that Power the Solution

Languages & Frameworks

- Python
- Scikit-learn
- Flask

Libraries & Deployment

- Pandas, NumPy, Matplotlib, Seaborn
- AWS Elastic Beanstalk
- HTML Templates

System Architecture

Data Ingestion

CSV loading with Pandas

Data Cleaning

Handling nulls, formatting dates

Feature Engineering

Transforming and scaling features

Model Training

Ridge regression with Scikit-learn

Evaluation & Deployment

Metrics and Flask interface

File Sequence

- 1. README.md
- 2. dataset/Algerian_forest_fires_cleaned_dataset.csv
- 3. notebooks/3.0-Model Training.ipynb
- 4. models/scaler.pkl
- 5. models/ridge.pkl
- 6. application.py
- 7. templates/home.html
- 8. templates/index.html
- 9. .ebextensions/python.config
- 10. requirements.txt
- 11. .vscode/settings.json, extensions.json, tasks.json

Key Concepts & Functionalities – Core Technical Elements

- Core regression concepts with L2 regularization (Ridge).
- Feature scaling and correlation analysis.
- Flask routes and templates to build a responsive web interface.
- Backend inference pipeline using pre-trained .pkl models.

Model Selection & Training– Making the Right Choice

Multicollinearity

Ridge chosen for feature correlation

Training Split

80% train, 20% test

Pickle Serialization

Models ready for deployment

Fogressidents and three 3 regression curves

Ridge comention's in the regression arve, neads, and tutle on the ccompland, that out, caens if your allon differences but and differences, the difference from :s and rentigemester.

Evaluation & Validation – Testing for Generalization

Testing Approach – Validating End-to-End Performance

____ Model Testing

Prediction accuracy check

2 ____ Web UI Testing

Form and output validation

Scenario Testing

Edge weather case analysis

Integration & Deployment – Making It Accessible

Flask App

application.py, modular routes

Frontend

home.html, index.html templates

AWS Deployment

Public access, scalable cloud

Real-time Prediction

Live user input & inference

Requirements – Functional and Non-Functional

Functional

- Accept user input for weather and FWI data.
- o Display predicted burned area.

Non-Functional

- Fast response time.
- o Simple and clean UI.
- o Secure and stable deployment environment.

Modeling Trade-Offs in Machine Learning Solutions

Exploring key trade-offs: interpretability vs. complexity, backend flexibility, performance vs. dataset constraints. Examining real-world model selection decisions and their impacts.

Interpretable vs. Complex Models

Ridge Regression

- High interpretability
- Lower variance
- Efficient on small data

Random Forest

- Less transparency
- Higher complexity
- Harder to tune

Dataset Size: Constraints & Opportunities

Decision Timeline: Key Milestones

1 ____ Data Exploration

Assessed feature space

2 ____ Model Screening

Tested Ridge & Forest

3 Framework Selection

Chose Flask backend

4 ____ Final Evaluation

Validated model output

Learnings – Lessons from the Journey

Feature Scaling Impact

Regression performance boost

Model Selection

Ridge outperformed alternatives

Deployment Flexibility

Rapid iterations with Flask

Preprocessing/Segmentation

Higher accuracy via domain logic

Key Takeaways

1

Prioritize Interpretability

For stakeholder impact

2

Optimize for Data Size

Model must match scale

3

Backend Flexibility

Facilitates iteration

4

Continuous Evaluation

Refine as project grows

Future Scope – Looking Ahead

Real-time Weather API

Automate data streams

Satellite Features

Integrate remote sensing

Enhanced Visual UI

Heatmaps, risk zones, charts

4 Expand Regions
Global wildfire prediction

Solving Regional Model Performance Challenges

Building a predictive model across two distinct regions posed sharp drops in accuracy. Geographical variation led to feature influence inconsistencies. Addressing this challenge required careful technical analysis and targeted strategy. Our approach boosted reliability and set the app up for broader, more robust deployments.

STAR Solution: Regional Model Stabilization

S

Observed model performance loss when merging regional datasets; detected varying feature influence driven by geography.

T

Needed to maintain high accuracy and stability across both regions without bias or generalization loss.

Α

- Explored data to reveal distinct patterns per region.
- Trained two region-specific models with robust individual evaluation.
- Deployed preprocessing that auto-detects and routes inputs.
- Applied scaling and Ridge Regression regularization.

R

- R² increased from 0.67 to 0.86.
- Elevated accuracy and seamless region-aware app deployment.

Thank You & Questions

Appreciate your attention

Thank you for joining today

Open Q&A

Any questions or feedback?

Appendix

Link - Code Repo, Dataset, PDF

https://github.com/cjoshi1983/IIT-Roorkee-Capstone-Project-Wildfire-Prediction.git

Heatmap for Multicollinearity

Box Plots to understand the effect of Standard Scalar

Linear Regression

Lasso Regression

Cross Validation Lasso

Ridge Regression Model

Elasticnet Regression

