This is indeed the case, but a rigorous proof requires induction, and such a proof is surprisingly involved. Readers may accept without proof the fact that sums of the form $\sum_{i \in I} a_i$ are indeed well defined, and jump directly to Definition 3.3. For those who want to see the gory details, here we go.

First, we define sums $\sum_{i \in I} a_i$, where I is a finite sequence of distinct natural numbers, say $I = (i_1, \ldots, i_m)$. If $I = (i_1, \ldots, i_m)$ with $m \geq 2$, we denote the sequence (i_2, \ldots, i_m) by $I - \{i_1\}$. We proceed by induction on the size m of I. Let

$$\sum_{i \in I} a_i = a_{i_1}, \quad \text{if } m = 1,$$

$$\sum_{i \in I} a_i = a_{i_1} + \left(\sum_{i \in I - \{i_1\}} a_i\right), \quad \text{if } m > 1.$$

For example, if I = (1, 2, 3, 4), we have

$$\sum_{i \in I} a_i = a_1 + (a_2 + (a_3 + a_4)).$$

If the operation + is not associative, the grouping of the terms matters. For instance, in general

$$a_1 + (a_2 + (a_3 + a_4)) \neq (a_1 + a_2) + (a_3 + a_4).$$

However, if the operation + is associative, the sum $\sum_{i \in I} a_i$ should not depend on the grouping of the elements in I, as long as their order is preserved. For example, if I = (1, 2, 3, 4, 5), $J_1 = (1, 2)$, and $J_2 = (3, 4, 5)$, we expect that

$$\sum_{i \in I} a_i = \left(\sum_{j \in J_1} a_j\right) + \left(\sum_{j \in J_2} a_j\right).$$

This indeed the case, as we have the following proposition.

Proposition 3.2. Given any nonempty set A equipped with an associative binary operation $+: A \times A \to A$, for any nonempty finite sequence I of distinct natural numbers and for any partition of I into p nonempty sequences I_{k_1}, \ldots, I_{k_p} , for some nonempty sequence $K = (k_1, \ldots, k_p)$ of distinct natural numbers such that $k_i < k_j$ implies that $\alpha < \beta$ for all $\alpha \in I_{k_i}$ and all $\beta \in I_{k_j}$, for every sequence $(a_i)_{i \in I}$ of elements in A, we have

$$\sum_{\alpha \in I} a_{\alpha} = \sum_{k \in K} \left(\sum_{\alpha \in I_k} a_{\alpha} \right).$$

Proof. We proceed by induction on the size n of I.

If n = 1, then we must have p = 1 and $I_{k_1} = I$, so the proposition holds trivially.