Numerical Analysis 24 Fall

I. Multiple Choice Questions (16 pts)

- 1) **Evaluate the function** $f(x) = 2x^2 0.1x$ at x = 5.21 using 4-digit arithmetic with chopping. What is the result?
- (A) 53.75
- (B) 53.76
- (C) 53.77
- (D) 53.74
- 2) Given a symmetric, positive real matrix A and initial eigenvalue guesses λ_1^*, λ_2^* such that $|\lambda_1^* \lambda_1| > |\lambda_2^* \lambda_2|$, which iterative method will converge with the best rate?
- (A) $x_n = \left(A \lambda_1^* I\right) x_{n-1}$
- (B) $x_n = (A \lambda_2^* I) x_{n-1}$
- (C) $(A \lambda_1^* I) x_n = x_{n-1}$
- (D) $(A \lambda_2^* I) x_n = x_{n-1}$
- 3) Which of the following iterative methods is unstable with respect to numerical error growth at x_0 ?
- (A) $x_{n+1} = 3x_n + 2$
- (B) $x_{n+1} = \frac{1}{6}x_n + 100$
- (C) $x_{n+1} = \frac{7}{8}x_n + 20$
- (D) $x_{n+1} = 0.1x_n + 10$
- 4) Given the points $x_0 = 1, x_1 = 2, x_2 = 3$, which of the following is not a Lagrange basis function?
- (A) -(x-1)(x-3)
- (B) $\frac{(x-1)(x-2)}{2}$
- (C) $\frac{(x-2)(x-3)}{2}$
- (D) $\frac{(x-1)(x-3)}{2}$

II. Fill in the Blanks (30 pts)

- 1) For the equation $5x^2 + x 6 = 0$, determine if the following fixed-point iterations starting with $x_0 = 0.9$ are convergent. Fill 'True' if convergent, 'False' if not. (2 pts each)
- $x = \sqrt{\frac{6-x}{5}}$
- $x = 6 5x^2$
- $x = \sqrt{\frac{-3x^2 x + 6}{2}}$
- 2) Given points $x_0 = 1$, $x_1 = 2$, and the derivative at x_0 , determine the three basis polynomials for Hermite interpolation. (2 pts each)
- 3) **Given the matrix** $\begin{bmatrix} 100 & 14 \\ 14 & 4 \end{bmatrix}$, find its eigenvalues and condition number under the spectral norm. (2 pts each)

4) To minimize the local truncation error of the formula

$$w_{l+1} = a_0 w_l + a_1 w_{l-1} + \beta h f_{l+1}$$

for solving the IVP y'=f(t,y), find the values of a_0 , a_1 , and β . (2 pts each)

5) Find the monic polynomials $\varphi_k(x)$ (for k=0,1,2) that are orthogonal on [0,4] with respect to the weight function $\rho(x)=1$. (2 pts each)

III. Iterative Method Convergence (12 pts)

Given $A = \begin{bmatrix} 8 & 2 \\ 0 & 4 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and the iterative method

$$\vec{x}^{(k)} = \vec{x}^{(k-1)} + \omega \left(A\vec{x}^{(k-1)} - \vec{b}\right)$$

answer the following:

- 1) For which values of ω will the method converge? (8 pts)
- 2) For which values of ω will the method converge the fastest? (4 pts)

IV. Vector Norm Proof (10 pts)

Prove that $||X||_1 = \sum_{i=1}^n |X_i|$ is a valid vector norm, where X_i is the *i*-th component of vector X.

V. Richardson Extrapolation (10 pts)

Given the formula for the second derivative approximation

$$f^*(x_0) = \frac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2} - \frac{h^2}{12} f^{(4)}(x_0) - \frac{h^4}{360} f^{(6)}(\xi),$$

derive a better formula to approximate $f''(x_0)$ with error $O(h^4)$ using Richardson extrapolation.

VI. Least Squares Fit (12 pts)

Find the values of a and b such that $y = ax + bx^3$ fits the following data using least squares, weighted by the given weights:

$$egin{array}{c|cccc} X & 1 & 2 & 3 \\ Y & -4 & 24 & 6 \\ \hline \mbox{Weights} & 1 & 1/4 & 1/9 \\ \hline \end{array}$$

VII. Region of Absolute Stability (10 pts)

For the following methods solving Initial-Value Problems for ODEs, calculate the region of absolute stability using the test equation $y' = \lambda y$ with Re $(\lambda) < 0$. Which method is more stable (or are they the same)?

2

1) Second-order Runge-Kutta implicit method

$$W_{i+1} = w_i + hK_1, \quad K_1 = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}K_1\right)$$

2) Adams-Moulton one-step implicit method

$$w_{i+1} = w_i + \frac{h}{2}(f_{i+1} + f_i)$$

Answer for Numerical Analysis 24 Fall

I. Multiple Choice Questions (16 pts)

- 1) Evaluate the function $f(x) = 2x^2 0.1x$ at x = 5.21 using 4-digit arithmetic with chopping. What is the result?
- (A) 53.75
- (B) 53.76
- (C) 53.77
- (D) 53.74
- 2) Given a symmetric, positive real matrix A and initial eigenvalue guesses λ_1^*, λ_2^* such that $|\lambda_1^* \lambda_1| > |\lambda_2^* \lambda_2|$, which iterative method will converge with the best rate?
- (A) $x_n = \left(A \lambda_1^* I\right) x_{n-1}$
- (B) $x_n = (A \lambda_2^* I) x_{n-1}$
- (C) $(A \lambda_1^* I) x_n = x_{n-1}$
- (D) $(A \lambda_2^* I) x_n = x_{n-1}$
- 3) Which of the following iterative methods is unstable with respect to numerical error growth at x_0 ?
- (A) $x_{n+1} = 3x_n + 2$
- (B) $x_{n+1} = \frac{1}{6}x_n + 100$
- (C) $x_{n+1} = \frac{7}{8}x_n + 20$
- (D) $x_{n+1} = 0.1x_n + 10$
- 4) Given the points $x_0=1, x_1=2, x_2=3$, which of the following is not a Lagrange basis function?
- (A) -(x-1)(x-3)
- (B) $\frac{(x-1)(x-2)}{2}$
- (C) $\frac{(x-2)(x-3)}{2}$
- (D) $\frac{(x-1)(x-3)}{2}$

II. Fill in the Blanks (30 pts)

- 1) For the equation $5x^2 + x 6 = 0$, determine if the following fixed-point iterations starting with $x_0 = 0.9$ are convergent. Fill 'True' if convergent, 'False' if not. (2 pts each)
- $x = \sqrt{\frac{6-x}{5}}$
- $x = 6 5x^2$
- $x = \sqrt{\frac{-3x^2 x + 6}{2}}$
- 2) Given points $x_0 = 1$, $x_1 = 2$, and the derivative at x_0 , determine the three basis polynomials for Hermite interpolation. (2 pts each)
- 3) **Given the matrix** $\begin{bmatrix} 100 & 14 \\ 14 & 4 \end{bmatrix}$, find its eigenvalues and condition number under the spectral norm. (2 pts each)

4) To minimize the local truncation error of the formula

$$w_{l+1} = a_0 w_l + a_1 w_{l-1} + \beta h f_{l+1}$$

for solving the IVP y'=f(t,y), find the values of $a_0, a_1,$ and $\beta.$ (2 pts each)

5) Find the monic polynomials $\varphi_k(x)$ (for k=0,1,2) that are orthogonal on [0,4] with respect to the weight function $\rho(x)=1$. (2 pts each)

III. Iterative Method Convergence (12 pts)

Given $A = \begin{bmatrix} 8 & 2 \\ 0 & 4 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and the iterative method

$$\vec{x}^{(k)} = \vec{x}^{(k-1)} + \omega \left(A\vec{x}^{(k-1)} - \vec{b}\right)$$

answer the following:

- 1) For which values of ω will the method converge? (8 pts)
- 2) For which values of ω will the method converge the fastest? (4 pts)

IV. Vector Norm Proof (10 pts)

Prove that $||X||_1 = \sum_{i=1}^n |X_i|$ is a valid vector norm, where X_i is the *i*-th component of vector X.

V. Richardson Extrapolation (10 pts)

Given the formula for the second derivative approximation

$$f^*(x_0) = \frac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2} - \frac{h^2}{12} f^{(4)}(x_0) - \frac{h^4}{360} f^{(6)}(\xi),$$

derive a better formula to approximate $f''(x_0)$ with error $O(h^4)$ using Richardson extrapolation.

VI. Least Squares Fit (12 pts)

Find the values of a and b such that $y = ax + bx^3$ fits the following data using least squares, weighted by the given weights:

$$egin{array}{c|cccc} X & 1 & 2 & 3 \\ Y & -4 & 24 & 6 \\ Weights & 1 & 1/4 & 1/9 \\ \hline \end{array}$$

VII. Region of Absolute Stability (10 pts)

For the following methods solving Initial-Value Problems for ODEs, calculate the region of absolute stability using the test equation $y'=\lambda y$ with Re $(\lambda)<0$. Which method is more stable (or are they the same)?

4

1) Second-order Runge-Kutta implicit method

$$W_{i+1} = w_i + hK_1, \quad K_1 = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}K_1\right)$$

2) Adams-Moulton one-step implicit method

$$w_{i+1} = w_i + \frac{h}{2}(f_{i+1} + f_i)$$