Grundbegriffe der Informatik Übung

S. Wacker/T. Worsch

Karlsruher Institut für Technologie

Wintersemester 2015/2016

Welcher Graph hat die Einheitsmatrix als Adjazenzmatrix?

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

Welcher Graph hat die Einheitsmatrix als Adjazenzmatrix?

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

Wie verändert sich die Adjazenzmatrix, wenn man alle Pfeilrichtingen umkehrt?

1	0	1	1	1 1 1 0 0	1	1
	0	0	1	1	1	
	0	0	0	1	1	
	0	0	0	0	1	
	0	0	0	0	0	J

Wie verändert sich die Adjazenzmatrix, wenn man alle Pfeilrichtingen umkehrt? Spiegelung an Hauptdiagonale


```
\left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)
```


Wie verändert sich die Adjazenzmatrix, wenn man alle Pfeilrichtingen umkehrt?

$$G = (V, E)$$
 vor und $G' = (V, E')$ nach Umkehrung der Pfeile

A, A' Adjazenzmatrizen von G bzw. G'

$$A'_{i,j} = 1 \text{ gdw. } (i,j) \in E'$$

 $\text{gdw. } (j,i) \in E$
 $\text{gdw. } A_{j,i} = 1$

 $A' = A^t$... Spiegeln an Hauptdiagonale!

Wie ändert sich die Adjazenzmatrix, wenn für jede gerichtete Kante die entgegengesetzte hinzukommt?

1	0	1 0 0 0 0	1	1	1	1
	0	0	1	1	1	
	0	0	0	1	1	
	0	0	0	0	1	1
	0	0	0	0	0	J

Wie ändert sich die Adjazenzmatrix, wenn für jede gerichtete Kante die entgegengesetzte hinzukommt?

0	1	1	1	1)
0	0	1	1	1	
0	0	0	1	1	
0	0	0	0	1	
0	0	0	0	0	
	0 0 0 0	0 1 0 0 0 0 0 0 0 0	0 1 1 0 0 1 0 0 0 0 0 0 0 0 0	0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0	0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Wie ändert sich die Adjazenzmatrix, wenn für jede gerichtete Kante die entgegengesetzte hinzukommt?

$$G = (V, E)$$
 vor und $G' = (V, E')$ nach Aktion

A, A' Adjazenzmatrizen von G bzw. G'

$$A'_{i,j} = 1$$
 gdw. $(i,j) \in E'$
gdw. $(i,j) \in E \lor (j,i) \in E$
gdw. $A_{i,j} = 1 \lor A_{j,i} = 1$

Definition

Ein Graph heißt planar, wenn man ihn kreuzungsfrei zeichnen kann.

Definition

Für jedes $n \in \mathbb{N}_+$ ist $K_n = (\mathbb{Z}_n, \{\{x, y\} \in 2^{\mathbb{Z}_n} \mid x \neq y\}).$

Definition

Ein Graph heißt planar, wenn man ihn kreuzungsfrei zeichnen kann.

Definition

Für jedes $n \in \mathbb{N}_+$ ist $K_n = (\mathbb{Z}_n, \{\{x, y\} \in 2^{\mathbb{Z}_n} \mid x \neq y\}).$

man sieht: K_4 ist planar

Definition

Ein Graph heißt planar, wenn man ihn kreuzungsfrei zeichnen kann.

Definition

Für jedes $n \in \mathbb{N}_+$ ist $K_n = (\mathbb{Z}_n, \{\{x, y\} \in 2^{\mathbb{Z}_n} \mid x \neq y\}).$

man sieht: K_4 ist planar

K₅ ist nicht planar

Behauptung

 K_5 ist nicht planar.

Behauptung

 K_5 ist nicht planar.

vage "Beweis"-Skizze

Zeichne 5 Knoten

Behauptung

 K_5 ist nicht planar.

vage "Beweis"-Skizze

Zeichne 5 Knoten

Verbinde v_0 mit allen anderen Knoten

Behauptung

 K_5 ist nicht planar.

vage "Beweis"-Skizze

Zeichne 5 Knoten

Verbinde v_0 mit allen anderen Knoten

Verbinde v_1 mit v_3

Behauptung

 K_5 ist nicht planar.

vage "Beweis"-Skizze

Zeichne 5 Knoten

Verbinde v_0 mit allen anderen Knoten

Verbinde v_1 mit v_3

Nun ist keine kreuzungsfreie Kante mehr zwischen v_2 und v_4 möglich

Adjazenzmatrizen der Zusammenhangskomponenten

Adjazenzmatrizen der Zusammenhangskomponenten bei geschickter Knotennummerierung

Adjazenzmatrizen der Zusammenhangskomponenten bei geschickter Knotennummerierung

1	0	1	0 0 0 1 0	0	0	0	0	0	1
1	1	0	0	1	1	0	0	0	
ı	0	0	0	1	0	0	0	0	
١	0	1	1	0	1	0	0	0	
	0	1	0	1	0	0	0	0	
	0	0	0	0	0	0	1	0	-
l	0	0	0	0	0	1	0	1	
/	0	0	0	0	0	0	1	0	
	0 0	0 0	0 0 0	0 0	0 0	1 0	0	0 1 0	

Adjazenzmatrizen der Zusammenhangskomponenten bei geschickter Knotennummerierung

$$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)$$

Wegematrix eines zusammenhängenden ungerichteten Graphen

Wegematrix eines zusammenhängenden ungerichteten Graphen

Wegematrix eines unzusammenhängenden ungerichteten Graphen, geschickte Nummerierung

Wegematrix eines unzusammenhängenden ungerichteten Graphen, geschickte Nummerierung

1		1		1	1	0	0	
		1	1	1	1	0	0	
	1	1	1		1	0	0	
	1	1	1	1	1	0	0	
	1	1	1		1	0	0	
	0	0	0		0	1	1	۱
/	0	0	0	0	0	1	1	J

Wegematrix eines unzusammenhängenden ungerichteten Graphen, geschickte Nummerierung

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

geschickt nummeriert: alle Knoten einer Zusammenhangskomponente haben aufeinanderfolgende Nummern

$$A^{0} = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

$$(A^0)_{i,j} \neq 0 \text{ gdw. } i = j$$

gdw. $(i, j) \in E^0$

$$A^{1} = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{array}\right)$$

$$(A^1)_{i,j} \neq 0$$
 gdw. $(i,j) \in E^1$

$$A^2 = \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$$

$$(A^2)_{i,j} \neq 0$$
 gdw. $\sum_{k \in \mathbb{Z}_5} A_{i,k} A_{k,j} \neq 0$

gdw. $\exists k \in \mathbb{Z}_5 : A_{i,k} A_{k,j} \neq 0$

gdw. $\exists k \in \mathbb{Z}_5 : A_{i,k} \neq 0 \land A_{k,j} \neq 0$

gdw. $\exists k \in \mathbb{Z}_5 \colon (i,k) \in E \land (k,j) \in E$

gdw. $(i, j) \in E^2$

Für jedes $n \in \mathbb{N}_0$ gilt

$$(A^n)_{i,j} \neq 0$$
 gdw. $(i,j) \in E^n$

Beweis durch vollständige Induktion

Wegematrix

Längster wiederholungsfreier Pfad, der kein Zyklus ist, hat Länge 4

$$A^{0} + A^{1} + \dots + A^{4}$$

$$= \begin{pmatrix} 3 & 2 & 0 & 1 & 2 \\ 2 & 3 & 0 & 2 & 3 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 & 2 \\ 2 & 1 & 0 & 1 & 3 \end{pmatrix}$$

Wegematrix

Längster wiederholungsfreier Pfad, der kein Zyklus ist, hat Länge 4

$$A^{0} + A^{1} + \dots + A^{4}$$

$$= \begin{pmatrix} 3 & 2 & 0 & 1 & 2 \\ 2 & 3 & 0 & 2 & 3 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 & 2 \\ 2 & 1 & 0 & 1 & 3 \end{pmatrix}$$

$$W = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Alte Klausuraufgabe

Zeichnen Sie alle gerichteten Graphen $G = (\mathbb{Z}_4, E)$, für deren Adjazenzmatrix A gilt:

Alte Klausuraufgabe

Zeichnen Sie alle gerichteten Graphen $G = (\mathbb{Z}_4, E)$, für deren Adjazenzmatrix A gilt:

(2) (3)

Alte Klausuraufgabe

Zeichnen Sie alle gerichteten Graphen $G = (\mathbb{Z}_4, E)$, für deren Adjazenzmatrix A gilt:

Alte Klausuraufgabe

Zeichnen Sie alle gerichteten Graphen $G = (\mathbb{Z}_4, E)$, für deren Adjazenzmatrix A gilt:

Alte Klausuraufgabe

Zeichnen Sie alle gerichteten Graphen $G = (\mathbb{Z}_4, E)$, für deren Adjazenzmatrix A gilt:

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
 P_0
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 1$$

```
for i \leftarrow 0 to n-1 do
for j \leftarrow 0 to n-1 do
P_0
od
```

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}$$

```
for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

P_0

od

od
```

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}$$

```
for i \leftarrow 0 to n-1 do
for j \leftarrow 0 to n-1 do
P_0
od
od
```

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
 P_0
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 1 = \sum_{i=0}^{n-1} r$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
 P_0
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 1 = \sum_{i=0}^{n-1} n^{i}$$

$$= n \cdot n$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
 P_0
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 1 = \sum_{i=0}^{n-1} n^{i}$$

$$= n \cdot n$$

$$= n^{2}$$

Wieviel ist 0+1+2+3+4+5+6+7+8+9?

Wieviel ist 0+1+2+3+4+5+6+7+8+9?

Idee des kleinen Gauß: die Hälfte von

Wieviel ist
$$0+1+2+3+4+5+6+7+8+9$$
?

Idee des kleinen Gauß: die Hälfte von

$$0+1+2+3+4+5+6+7+8+9$$

 $+9+8+7+6+5+4+3+2+1+0$

Wieviel ist
$$0+1+2+3+4+5+6+7+8+9$$
?

Idee des kleinen Gauß: die Hälfte von

$$0+1+2+3+4+5+6+7+8+9$$

+ 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0
= 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 = 90

Wieviel ist
$$0+1+2+3+4+5+6+7+8+9$$
?

Idee des kleinen Gauß: die Hälfte von

$$0+1+2+3+4+5+6+7+8+9$$

+ 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0
= 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 = 90

also 45

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $i-1$ do
 P_0
od
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $i-1$ do
 P_0
od
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} i \right)$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $i-1$ do
 P_0
od
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = \frac{1}{2} (\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} i) = \frac{1}{2} (\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} n - 1 - i)$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $i-1$ do
 P_0
od
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} i \right) = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} n - 1 - i \right)$$

$$= \frac{1}{2} \left(\sum_{i=0}^{n-1} i + (n-1-i) \right)$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $i-1$ do
 P_0
od
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} i \right) = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} n - 1 - i \right)$$
$$= \frac{1}{2} \left(\sum_{i=0}^{n-1} i + (n-1-i) \right) = \frac{1}{2} \sum_{i=0}^{n-1} n - 1$$

for
$$i \leftarrow 0$$
 to $n-1$ do
for $j \leftarrow 0$ to $i-1$ do
 P_0
od
od

$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} i \right) = \frac{1}{2} \left(\sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} n - 1 - i \right)$$
$$= \frac{1}{2} \left(\sum_{i=0}^{n-1} i + (n-1-i) \right) = \frac{1}{2} \sum_{i=0}^{n-1} n - 1 = \frac{1}{2} n(n-1)$$