Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
		1	
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	
15	1111	17	

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal	
16	10000	20	10	
17	10001	21	11	
18	10010	22	12	
19	10011	23	13	
20	10100	24	14	
21	10101	25	15	
22	10110	26	16	
23	10111	27	17	Etc.

Conversion Among Bases

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

Decimal to Decimal (just for fun)

Binary

Hexadecimal

Next slide...

Weight

$$125_{10} \Rightarrow 5 \times 10^{0} = 5$$

$$2 \times 10^{1} = 20$$

$$1 \times 10^{2} = 100$$

$$125$$

Base

Binary to Decimal

Hexadecimal

Binary to Decimal

- Technique
 - Multiply each bit by 2ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

- Technique
 - Multiply each bit by 8ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$

$$2 \times 8^1 = 16$$

$$7 \times 8^2 = 448$$

$$468_{10}$$

Hexadecimal to Decimal

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 16ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

ABC₁₆ => C x
$$16^{\circ}$$
 = 12 x 1 = 12
B x 16° = 11 x 16 = 176
A x 16° = 10 x 256 = 2560

Decimal to Binary

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

$$125_{10} = ?_2$$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$

 $705_8 = 111000101_2$

Hexadecimal to Binary

Binary Hexadecimal

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

 $10AF_{16} = ?_2$

 $10AF_{16} = 000100001011111_2$

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

$$1234_{10} = ?_{8}$$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

$$1234_{10} = ?_{16}$$

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

 $1011010111_2 = ?_8$

Binary to Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

 $1010111011_2 = ?_{16}$

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

$$1076_8 = ?_{16}$$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!