课程编号: A071001

北京理工大学 2007-2008 学年第一学期

2007级数学分析 B 期末试题(B)

- 一. 填空题 (每小题 3 分, 共 30 分)
- 1. 设 $y = \ln \left| f(\frac{1}{x}) \right|$, 其中 f 是可导函数, 则 dy =_______.
- 2. $\lim_{x \to +\infty} x[\ln(2+x) \ln x] =$ _____.
- 3. 曲线 $y = x^2 \ln x$ 上横坐标为 x = e 的点处的切线方程为______.
- 4. 已知 f'(1) = 8,则 $\lim_{x \to 0} \frac{f(1-x^2) f(1)}{1 \cos x} = \underline{\qquad}$
- $5. \int_{\frac{2}{\pi}}^{+\infty} \frac{4}{x^2} \sin \frac{1}{x} dx = \underline{\qquad}.$
- 6. 设 $y = C_1 e^{-x} + C_2 x e^{-x}$ 是某二阶常系数线性齐次微分方程的通解(其中 C_1, C_2 为任意常数),则此微分方程为______.
- 7. $\int_{-1}^{1} \frac{x^4}{\sqrt{1-x^2}} dx = \underline{\qquad}.$
- 9. 由曲线 $y = \sqrt{x}$ 与直线 x = 4 及 x 轴所围平面图形绕 y 轴旋转一周所得旋转体的体积等于_______.
- 10. 微分方程 $\frac{dy}{dx} + 4xy = 2x$ 的通解为______.
- 二. (8 分)计算定积分 $\int_0^{\pi} \left| x \frac{\pi}{2} \right| \sin x dx$.
- 三. (8 分)求函数 $f(x) = \sqrt[3]{(x^2 2x)^2}$ 在[-2,3]上的最大值和最小值.
- 四. (8 分)已知 f(x) 有二阶导函数,又曲线 y = f(x) 上点 (x, y) 处切线的斜率为 $ax^2 4x$,且 $(-1, \frac{8}{3})$ 是此曲线的拐点,求 a 的值及 f(x) 的表达式.
- 五. $(8 \, f)$ 设室温为 20° C 恒温,一个表面温度为 100° C 的热物体经过 20 分钟冷却到 60° C ,假定任意时刻热物体表面温度的下降速度与物体表面温度和室温的差值成正比,问 t 分钟后该物体的表面温度为多少?
- 六. (14 分)设函数 f(x) 连续,且满足方程 $\int_0^x (x-t)f(t)dt = xe^x f(x)$,求 f(x).

随米云打印 网址:sui.me

七. (8 分)设对 $(-\infty,+\infty)$ 内任意两点 x_1,x_2 , 函数 f(x) 都满足 $f(x_1+x_2)=f(x_1)+f(x_2)$, 且 f(x) 在 x=0 处连续, 证明 f(x) 在 $(-\infty,+\infty)$ 内连续.

八. (8 分) 已知
$$x \to 0$$
 时 $f(x) = \int_0^{x^2} \frac{\ln(1+t^{2k})}{t} dt$ 与 $g(x) = a(\cos x - 1)(1 - \sqrt{1-x^2})$ 是等价

无穷小, (其中a,k 是非零常数, 且k>0), 求a与k的值.

九. (8分)已知 f(x) 在[0,a]上有连续的导函数,且 $|f'(x)| \le M$,证明

$$\left| \int_0^a f(x) dx - af(a) \right| \le \frac{Ma^2}{2}.$$

数学分析 B 第一学期期末试题(B)解答(2008.1)

一.1.
$$-\frac{f'(\frac{1}{x})}{x^2 f(\frac{1}{x})} dx$$
 (没有 dx 扣 1 分)

3.
$$y = 3ex - 2e^2$$

6.
$$y'' + 2y' + y = 0$$

7.
$$\frac{3\pi}{8}$$

9.
$$\frac{128}{5}\pi$$

10.
$$y = Ce^{-2x^2} + \frac{1}{2}$$
 (没写 y 扣 1 分) (只写出通解公式没算出积分给 1 分)

$$= -\int_{0}^{\frac{\pi}{2}} (\frac{\pi}{2} - x) d\cos x - \int_{\frac{\pi}{2}}^{\pi} (x - \frac{\pi}{2}) d\cos x \qquad \dots (3 \%)$$

$$= -(\frac{\pi}{2} - x)\cos x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos x dx - (x - \frac{\pi}{2})\cos x \Big|_{\frac{\pi}{2}}^{\pi} + \int_{\frac{\pi}{2}}^{\pi} \cos x dx \qquad \dots (6 \%)$$

$$= \frac{\pi}{2} - 1 + \frac{\pi}{2} - 1 = \pi - 2 \qquad(8 \, \%)$$

三.
$$f'(x) = \frac{2(2x-2)}{3(x^2-2x)^{\frac{1}{3}}} = \frac{4(x-1)}{3(x^2-2x)^{\frac{1}{3}}} \qquad (2 分)$$

令
$$f'(x) = 0$$
, 得 $x = 1$

当
$$x=0$$
, $x=2$ 时, $f'(x)$ 不存在(5分)

$$f(0) = 0$$
 $f(2) = 0$ $f(1) = 1$

$$f(3) = \sqrt[3]{9}$$
 $f(-2) = 4$ $M = 4$ $m = 0$ (8 $\%$)

1

四.
$$f'(x) = ax^{2} - 4x \qquad ... \qquad ..$$

五. 设t时刻物体表面温度为T = T(t),则

$$\frac{dT}{dt} = -k(T - 20)$$
 (2 分)
$$\frac{dT}{T - 20} = -kdt$$
 (3 分)
$$\ln|T - 20| = -kt + C_1$$

$$T = 20 + Ce^{-kt}$$
 (4 分)
$$T(0) = 100$$
 得 $C = 80$

$$T = 20 + 80e^{-kt}$$
 (6 分)
由 $T(20) = 60$ 得 $e^{-k} = (\frac{1}{2})^{\frac{1}{20}}$

$$T = 20 + \frac{80}{2^{\frac{t}{20}}} \tag{8 \%}$$

 $= f(x) + \lim_{\Delta x \to 0} f(\Delta x) = f(x) + f(0)$ (6 %)

= f(x+0) = f(x)

故 f(x) 在 x 处连续, 因此在 $(-\infty, +\infty)$ 连续

八. 由题设
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = 1 \qquad (1 \%)$$

$$\mathbb{Z} \lim_{x\to 0} \frac{f(x)}{g(x)}$$

$$= \lim_{x\to 0} \frac{\int_{0}^{x^{2}} \frac{\ln(1+t^{2k})}{t} dt}{a(-\frac{1}{2}x^{2}) \cdot \frac{1}{2}x^{2}} = \lim_{x\to 0} \frac{\int_{0}^{x^{2}} \frac{\ln(1+t^{2k})}{t} dt}{-\frac{a}{4}x^{4}} \qquad (3 \%)$$

$$= \lim_{x\to 0} \frac{\frac{\ln(1+x^{4k})}{x^{2}} 2x}{-ax^{3}} = \lim_{x\to 0} \frac{2\ln(1+x^{4k})}{-ax^{4}} \qquad (5 \%)$$

$$= \lim_{x\to 0} \frac{2x^{4k}}{-ax^{4}} \qquad (6 \%)$$

$$\text{id} \qquad 2 = -a \qquad 4k = 4$$

$$\text{d} \Rightarrow \qquad a = -2 \qquad k = 1 \qquad (8 \%)$$

$$\text{th.} \qquad \left| \int_{0}^{a} f(x) dx - af(a) \right|$$

$$= \left| \int_{0}^{a} f(x) dx - \int_{0}^{a} f(a) dx \right| = \left| \int_{0}^{a} (f(x) - f(a)) dx \right| \qquad (2 \%)$$

$$= \left| \int_{0}^{a} f'(\xi)(x - a) dx \right| \qquad (\xi \in (0, a)) \qquad (4 \%)$$

 $\leq \int_{0}^{a} |f'(\xi)(x-a)| dx$

$$\leq M \int_{0}^{a} |x - a| dx \qquad (6 \%)$$

$$= M \int_{0}^{a} (a - x) dx \qquad (7 \%)$$

$$= \frac{Ma^{2}}{2} \qquad (8 \%)$$