Guia N° 1 - Modelos y algoritmos para videojuegos II

Ejercicio 1

Anotar Verdadero o Falso (V o F), según corresponda.

a)	Todos los vectores son matrices	
b)	Todas las matrices son vectores	
c)	Algunas matrices son vectores	
d)	es una matriz de 2 filas	0
e)	El elemento (3,2) de una matriz está donde se cruzan el renglón 3 y la columna 2	
	$\begin{pmatrix} 1 & 0 & 9 \\ 5 & 1 & 0 \\ 4 & 2 & 8 \end{pmatrix}$ El elemento (3,2) de la matriz	
f)	El elemento (3,2) de la matriz (4 2 8) es cero	
g)	$\begin{pmatrix}6&1&2\\7&0&1\end{pmatrix},\ \text{los elementos (1,2) y (2,1) son iguales}$ En una matriz de tamaño 3x4, no existe el elemento a_{41}	0
h)	En una matriz de tamaño 3x4, no existe el elemento a_{41}	U
i)	$\begin{pmatrix} 4 & 1 & 7 \\ 2 & 7 & 8 \\ 0 & 0 & 0 \end{pmatrix}$ es una matriz de tamaño 2x3	0
j)	$ \begin{pmatrix} 3 & 9 & \sqrt{2} \\ 0 & 1 & -5 \end{pmatrix}_y \begin{pmatrix} 1 & 0 \\ 8 & -7 \\ \frac{1}{2} & 6 \end{pmatrix}_{\text{son matrices de igual tamaño}} $ son matrices de igual tamaño $ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_y \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\text{son matrices iguales}} $ Existe una única matriz cero de tamaño 2x2	0
k)	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{y} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\text{son matrices iguales}}$	
l)	Existe una única matriz cero de tamaño 2x2	
m)	Existe una única matriz cero que es cuadrada	U
n)	Hay matrices cero que no son cuadradas	U
ñ)	La matriz cero de tamaño 2x3 es igual a la matriz cero de tamaño 3x2	

o) En la matriz
$$\begin{bmatrix} 1 & 4 & 6 \\ -2 & 1 & 0 \\ 5 & -3 & 1 \end{bmatrix}$$
 se verifica que a_{ij} es igual a 1 cuando $i=j$

¿Cuáles de los siguientes pares de vectores y de matrices son iguales?

Ejercicio 3

Dadas las matrices $A = \begin{bmatrix} -1 & 2 \\ 7 & -4 \end{bmatrix}$; $B = \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}$; $C = \begin{bmatrix} 0 & 8 & -5 \\ 2 & 4 & 0 \end{bmatrix}$ y $D = \begin{bmatrix} -6 & 0 & 0 \\ 3 & -2 & 4 \end{bmatrix}$, y los vectores $u = \begin{bmatrix} 2 & -1 & 7 & 15 \end{bmatrix}$ y $v = \begin{bmatrix} 2 & 0 & -4 & 8 \end{bmatrix}$, calcular:

- a) A + B
- b) C-D
- c) 4A 2B
- d) $\frac{1}{2}C \frac{1}{3}D$
- e) -u-3v

Dadas las matrices
$$E = \begin{bmatrix} -1 & 4 & 0 \\ 0 & -3 & 6 \\ \frac{1}{2} & 0 & -1 \end{bmatrix}$$
 , $F = \begin{bmatrix} 3 & 1 & 1 \\ -2 & 0 & 2 \\ 5 & 5 & 0 \end{bmatrix}$ y $G = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 4 & 6 \\ 2 & 0 & 0 \end{bmatrix}$, encontrar X

tal que:

- a) 2E G + X = O (O matriz nula)
- $b) \quad \frac{1}{3}X E = G F$

Ejercicio 5

Completar las líneas de puntos:

- a) Dos matrices A y B son compatibles para el producto A.B, cuando......
- b) Si A es una matriz de tamaño 5x3 y B es una matriz de tamaño 3x1, entonces A.B es una matriz de tamaño......
- Si C y D son dos matrices compatibles para el producto C.D, entonces el número de filas de C.D es igual al número de filas de
- Si C y D son dos matrices compatibles para el producto C.D, entonces el número de columnas de C.D es igual al número de columnas de

Ejercicio 6

- a) Encontrar el elemento (3,1) de la matriz L.M , con $L = \begin{bmatrix} 0 & 2 & 2 \\ 6 & 0 & -3 \\ -1 & 0 & 1 \end{bmatrix}$ y $M = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 6 & 2 \end{bmatrix}$
- b) Calcular M.N, siendo $M = \begin{bmatrix} -1 & \frac{1}{4} & -2 \\ 0 & 0 & 3 \\ 1 & 4 & -5 \end{bmatrix}$ y $N = \begin{bmatrix} -4 & 1 \\ 0 & 8 \\ 5 & 0 \end{bmatrix}$
- c) Dadas los vectores $U = \begin{bmatrix} 1 & -2 & 6 \end{bmatrix}$ y $V = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix}$, encontrar los productos $U \cdot V$ y $V \cdot U$

Ejercicio 7

Calcular el producto cruz de los siguientes vectores:

- a) $U = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ y $V = \begin{bmatrix} 2 \\ 14 \end{bmatrix}$. ¿Nota algo particular de este caso? ¿Que conclusión puede sacar?
- b) $U = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ y $V = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- c) $U = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ y $V = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Pruebe la igualdad

$$(\overline{\boldsymbol{u}} \times \overline{\boldsymbol{v}}) \cdot \overline{\boldsymbol{u}} = (\overline{\boldsymbol{u}} \times \overline{\boldsymbol{v}}) \cdot \overline{\boldsymbol{v}} = 0$$

Para los vectores $u=\begin{bmatrix}u_1\\u_2\\u_3\end{bmatrix}$, $v=\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}$. (Primero demuéstrelo para la primer parte y luego para la segunda)

Ejercicio 9

Utilizando los mismos vectores del punto anterior muestre que el producto cruz no es conmutativo.

Ejercicio 10

Determinar si las siguientes afirmaciones son verdaderas o falsas

- a) Si A es una matriz invertible de tamaño 2x2, su inversa también es 2x2.
- b) La matriz $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ es la inversa de $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix}$
- c) La matriz $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ del ejercicio d) es singular. Una matriz es singular si su

determinante es distinto de 0.

d) Si tanto A como B son las inversas de una cierta matriz C , entonces A es igual a B

Ejercicio 11

Encontrar las transpuestas de las matrices

a)
$$\begin{bmatrix} 5 & 1 \\ 9 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 3 & 7 & 5 \\ -1 & 2 & 0 \\ -2 & -9 & 16 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 6 \end{bmatrix}$

d)
$$\begin{bmatrix} 0 & 7 & -3 & 2 \end{bmatrix}$$
 e) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ f) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

g)
$$\begin{bmatrix} -2 & 1 & 2 & 3 \\ 1 & 0 & 4 & 5 \\ 2 & 4 & -1 & 6 \\ 3 & 5 & 6 & 12 \end{bmatrix}$$
 h)
$$\begin{bmatrix} 3 & -8 \\ -8 & 4 \end{bmatrix}$$

Sabiendo que
$$A^t = \begin{bmatrix} -1 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 7 \end{bmatrix}$$
 $y B^t = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 1 & 3 & 0 \end{bmatrix}$, usar las propiedades de la transposición

para encontrar

a)
$$(A+B)^t$$
 b) $(A.B)^t$ c) $(B.A)^t$

Ejercicio 13

Para cada una de las siguientes matrices, indicar si es: simétrica, triangular superior, triangular inferior, diagonal.

a)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Ejercicio 14

Dada
$$A = \begin{bmatrix} 1 & \alpha & \beta \\ 0 & 1 & 0 \\ \gamma & 0 & 2 \end{bmatrix}$$
, determinar las condiciones que deben verificar α , β y γ para que A sea:

- a) Triangular superior
- b) Triangular inferior
- c) Simétrica
- d) Diagonal

Ejercicio 15

Dado el vector
$$u = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

- a)Realice las operaciones necesarias para rotarlo 90° en sentido horario.
- b)Ahora rótelo 30° en sentido antihorario

Ejercicio 16

Dados los vectores
$$u = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$
 $y \ v = \begin{bmatrix} 10 \\ 2 \end{bmatrix}$

a)Encuentre la proyección de u sobre v

b)Encuentre la proyección de u sobre el eje x e y respectivamente. Repita lo mismo para el vector v.

Ejercicio 17

Responda V o F:

a)	Si es A es una matriz de nxn y b es un vector de n componentes: Ab siempre es u	ına
	transformación lineal	C
b)	Todas las transformaciones afines son lineales	
c)	Con las trasformaciones lineales podemos realizar traslaciones	C
d)	Con una trasnformación afin, sólo podemos desplazar un cuerpo, pero no rotarlo	C
	Las rotaciones se puede expresar como transformaciones lineales	