Amendment and Response Applicant: Singh, et al.

Serial No.: 11/805,966

Page 2 of 17

Amendment to the Claims

Please amend claims 1 and 24 as follows:

1 (Currently Amended): A plasma immersion ion implant apparatus comprising:

a plasma chamber configured to receive a process gas;

a radio frequency (RF) source configured to resonate radio frequency currents in a

radio frequency antenna;

a radio frequency antenna including an active antenna surrounding the plasma

chamber and coupled to the RF source at a first end and coupled to ground at a

second end and a parasitic antenna surrounding the plasma chamber to provide a

parasitic effect, wherein the parasitic antenna is not directly coupled to any RF

source; and

a platen for holding a target and biasing the target with a negative voltage,

wherein electro-magnetic fields induced by the radio frequency currents are

effective to pass into the plasma chamber and excite and ionize the process gas to

generate plasma within the plasma chamber, the plasma comprising ions that are

attracted to the target by the negative voltage, thereby implanting ions into the

target; and tuned by parasitic damping via the parasitic antenna.

a coil adjuster positioned in the parasitic antenna that adjusts a number of turns of

the parasitic antenna for tuning the ionic plasma by parasitically damping.

Amendment and Response Applicant: Singh, et al. Serial No.: 11/805,966

Page 3 of 17

- 2 (Original): The apparatus of claim 1, wherein the active antenna includes a horizontally-extending coil and the parasitic antenna includes a verticallyextending coil.
- 3 (Original): The apparatus of claim 1, wherein the active antenna includes a vertically-extending coil and the parasitic antenna includes a horizontallyextending coil.
- 4 (Original): The apparatus of claim 1, wherein the parasitic antenna includes a plurality of turns with one end grounded.
- Original): The apparatus of claim 4, further comprising means for adjusting a number of turns of the parasitic antenna providing a parasitic effect.
- 6 (Withdrawn): The apparatus of claim 1, wherein the parasitic antenna includes a plurality of turns with both ends floating.
- 7 (Original): The apparatus of claim 1, wherein an inner diameter of each antenna is greater than a size of the target.
- 8 (Original): The apparatus of claim 1, wherein the parasitic antenna is above and coaxial with the active antenna.
- 9 (Original): The apparatus of claim 1, wherein at least one antenna is liquid cooled.
- 10 Cancelled.
- 11 (Original): The apparatus of claim 1, wherein the plasma chamber includes: a horizontal planar section positioned above the platen;

Amendment and Response Applicant: Singh, et al. Serial No.: 11/805,966

Page 4 of 17

a vertical cylindrical section extending from the horizontal planar section; and a top section coupled to the vertical cylindrical section.

- (Original): The apparatus of claim 11, wherein the horizontal planar section and vertical cylindrical section are dielectric, and the top section is conductive and grounded.
- 13 (Original): The apparatus of claim 12, wherein the horizontal planar section and vertical cylindrical section are formed of a high purity ceramic material.
- 14 (Original): The apparatus of claim 13, wherein the high purity ceramic material is >99.6% Al₂O₃, AlN, Yittria or YAG.
- 15 (Original): The apparatus of claim 12, wherein the top section is formed of Al.
- 16 (Original): The apparatus of claim 11, wherein the top section is liquid cooled.
- 17 (Original): The apparatus of claim 1, further comprising a plasma igniter for introducing a strike gas into the plasma chamber to assist in igniting a plasma.
- (Original): The apparatus of claim 1, further comprising a gas source controller for maintaining a pressure of the plasma chamber at a predetermined value.
- 19 (Original): The apparatus of claim 1, wherein the RF source operates at a low RF frequency.
- 20 (Original): The apparatus of claim 19, wherein the low RF frequency is less than 27 MHz.

Amendment and Response Applicant: Singh, et al.

Serial No.: 11/805,966

Page 5 of 17

21 (Original): The apparatus of claim 19, wherein the low RF frequency is 400 KHz, 2 MHz, 4 MHz or 13.56 Mhz.

22 (Withdrawn): A method of plasma immersion ion implantation, the method comprising the steps of:

generating an ionic plasma by exposing a process gas to a radio frequency (RF) source via a first active coil;

tuning the ionic plasma by parasitically damping via a second parasitic coil that is not connected to any RF source; and

implanting a target using the ionic plasma by providing a negative voltage to the target.

- 23 (Withdrawn): The method of claim 22, wherein the generating step further includes introducing a strike gas to the RF source.
- 24 (Currently Amended): A plasma chamber comprising:

a horizontal planar dielectric section for positioning above a platen;

a vertical cylindrical dielectric section extending from the horizontal planar

a liquid cooled top conductive section coupled to the vertical dielectric section;

and

section;

a radio frequency antenna including a horizontally-extending coil positioned proximate to the horizontal planar dielectric section and a vertically-extending coil positioned proximate to the vertical cylindrical dielectric section,

Amendment and Response

Applicant: Singh, et al. Serial No.: 11/805,966

Page 6 of 17

wherein one of the horizontally-extending coil and the vertically-extending coil

comprises a parasitic antenna, the radio frequency antenna inducing radio

frequency currents into the plasma chamber that excite and ionize a process gas so

as to generate a plasma in the plasma chamber that is tuned by parasitic damping

via the parasitic antenna; and

a coil adjuster positioned in the parasitic antenna that adjusts a number of turns of

the parasitic antenna for tuning the ionic plasma by parasitically damping.

25 (Original): The plasma chamber of claim 24, wherein the top conductive section

is grounded.

26 Canceled.

30

27 (Previously Presented): The plasma chamber of claim 24, wherein the vertically-

extending coil comprises a parasitic antenna that is not coupled to any radio

frequency (RF) source.

28 (Original): The plasma chamber of claim 27, wherein the parasitic antenna

includes a plurality of turns with one end grounded.

29 (Original): The plasma chamber of claim 28, further comprising means for

adjusting a number of turns of the parasitic antenna providing a parasitic effect.

(Previously Presented): The plasma chamber of claim 24, wherein the radio

frequency antenna is liquid cooled.

Amendment and Response

Applicant: Singh, et al. Serial No.: 11/805,966

Page 7 of 17

31 (Previously Presented): The plasma chamber of claim 24, wherein the

horizontally-extending coil an active radio frequency antenna that is coupled to a

radio frequency (RF) source.

32 (Original): The plasma chamber of claim 24, further comprising a process gas

inlet and a strike gas inlet.

REMARKS

Interview Summary

The Applicants and the Applicant's attorney thank the Examiner for the telephone

interview on October 9, 2007. In the interview the parasitic antenna claimed in the

pending claims was discussed in detail. Also, the primary references, Kadomura and

Okumura were discussed in detail. Several proposed claim amendments to claim 1 were

discussed including amendments to recite that one end of the active antenna is coupled to

ground, the position of the parasitic antenna, and the addition of a coil adjuster. Also,

amendments to recite structural limitations that require the apparatus to implant ions into

the target were discussed. The present Amendment and Response includes these

proposed claim amendments.

If the present Amendment and Response does not overcome the pending

rejections, the Applicants and the Applicant's attorney hereby request an interview with

the Applicant's Attorney and with Dr. Vikram Singh. In particular, the Applicants

request an interview to discuss why the prior art of record does not describe the claimed

parasitic antennas. In addition, Applicants request an interview to discuss why the prior