Utility Scale Experiment I

2024/07/05
Tamiya Onodera
IBM Research – Tokyo

Outline

- Introduction of the Utility Paper
 - published in Nature Vol 618, 15 June 2023
 - ushered in an era of Quantum Utility

<Break>

- Jupyter notebook with
 - a simpler experiment based on the Utility paper
 - your assignment

A new era has begun: Quantum Utility

6 Years ago..

2017: 4 qubit, depth 2

• Spin lattice shares hardware topology (127Q device)

$$H = -J \sum_{(i,j) \in E} Z_i Z_j + h \sum_{i \in V} X_i$$

• Spin lattice shares hardware topology (127Q device)

$$H = -J \sum_{(i,j) \in E} Z_i Z_j + h \sum_{i \in V} X_i$$

• (poorly) Trotterized time evolution dynamics

• Spin lattice shares hardware topology (127Q device)

$$H = -J \sum_{(i,j) \in E} Z_i Z_j + h \sum_{i \in V} X_i$$

• (poorly) Trotterized time evolution dynamics

$$e^{-iHt}|\psi_0\rangle \simeq \prod_{n=1}^N e^{-iH_{ZZ}(\delta t)}e^{-iH_X(\delta t)}|\psi_0\rangle$$

- We can express $\mathbf{R}_{\mathbf{Z}\mathbf{Z}}(-\frac{\pi}{2})$ with one CNOT $\mathbb{R}_{\mathbf{Z}\mathbf{Z}}(\frac{-\pi}{2}) = \frac{\mathsf{S}^{\dagger}}{\mathsf{S}^{\dagger}} \sqrt{\mathsf{Y}}$
- Change single qubit gate rotation (θ_h) to explore different parameter range of the circuit

IBM **Quantum**

• Building a 127 qubit system

- Building a 127 qubit system
- Coherence improvements

What made this experiment possible?

- Building a 127 qubit system
- Coherence improvements
- Advances in device calibration

What made this experiment possible?

- Building a 127 qubit system
- Coherence improvements
- Advances in device calibration
- Noise modeling & error mitigation
 - (1) Scalable noise characterization
 - (2) More accurate noise amplification

IBM **Quantum**

An efficiently learnable noise model

Reduced model complexity:

 $\sim 4^{127} \rightarrow \sim 1700$ parameters

Exponential extrapolation: Endo et al PRX 8, 031027 (2018).

random circuit instances 2. Z. Cai, npj Quantum Information 7, 80 (2021)

(2021)

 Light cone reductions enable exact verification at Non-Clifford points

 Light cone reductions enable exact verification at Non-Clifford points

 MPS and isoTNS methods begin to fail in the limit of increasing entanglement

IBM Quantum

Rx angle θ_h

arXiv:2306.14887 (BP-TNS) arXiv:2306.16372 (CPT) arXiv:2306.15970 (31 qubit) arXiv:2306.17839 (MPS extrap., Heis.) Quantum computers today can provide reliable results at a scale that is beyond exact, brute-force classical computation.

(this is not a quantum advantage claim)

IBM Quantum

Mapping the path to useful quantum computing

100x100 land is where we predict we can start looking for quantum advantage

^{[1]:} Kandala et al. Nature 567, 491 (2019)

^{[2]:} Kim et al. Nature Physics, in prep (2021)

^{[3]:} van den Berg et al. arXiv:2201.09866 (2022)

^{[4]:} Temme et al. https://research.ibm.com/blog/gammabar-for-quantum-advantage

^{[5]:} Kim et al., Nature **618**, 500–505 (2023), O. Shtanko, et al. arXiv:2307.07552 (2023)

#qubits x #entangling gates	127 x 60
qubit mapping	manual
2 qubit placement	manual = hardware topology
2 qubit gate / 1 qubit gate	logical (CNOT, RX, S, Sqrt(Y),)
gate error mitigation	Probabilistic Error Amplification (PEA) + Zero Noise Extrapolation (ZNE)
read error mitigation	Twirled Readout Error eXtinction (TREX)

References

- Kim, Y., Eddins, A., Anand, S. *et al.* Evidence for the utility of quantum computing before fault tolerance. *Nature* **618**, 500–505 (2023). https://doi.org/10.1038/
- Evidence for the Utility of Quantum Computing before Fault Tolerance | Qiskit Seminar Series, https://www.youtube.com/watch?v=hIUydsivY9k

Break

We then have a hands-on session.