```
In [1]: # import the necessary libraries
         import pandas as pd
         df = pd.read_csv(r"C:\Users\309962\Desktop\salaries.csv")
In [2]:
         df.head()
Out[2]:
            company
                                   job
                                         degree salary_more_then_100k
         0
              google
                          sales executive
                                       bachelors
                                                                  0
                                                                  0
          1
              google
                          sales executive
                                         masters
         2
              google
                        business manager
                                       bachelors
                                                                  1
         3
                                                                  1
              google
                        business manager
                                         masters
                     computer programmer
                                       bachelors
                                                                  0
In [3]:
         # drop the last column
         inputs = df.drop('salary_more_then_100k',axis='columns')
In [4]: # Prediction column
         target = df['salary more then 100k']
In [6]: # Label encoder is used to convert text into numbers by use of sklearn LabelEncode
         # Create 3 object for 3 columns
         from sklearn.preprocessing import LabelEncoder
         le company = LabelEncoder()
         le_job = LabelEncoder()
         le_degree = LabelEncoder()
In [8]: # The dataframe is now converted to labels
         inputs['company_n'] = le_company.fit_transform(inputs['company'])
         inputs['job_n'] = le_job.fit_transform(inputs['job'])
         inputs['degree_n'] = le_degree.fit_transform(inputs['degree'])
```

In [9]: inputs

Out[9]:

	company	job	degree	company_n	job_n	degree_n
0	google	sales executive	bachelors	2	2	0
1	google	sales executive	masters	2	2	1
2	google	business manager	bachelors	2	0	0
3	google	business manager	masters	2	0	1
4	google	computer programmer	bachelors	2	1	0
5	google	computer programmer	masters	2	1	1
6	abc pharma	sales executive	masters	0	2	1
7	abc pharma	computer programmer	bachelors	0	1	0
8	abc pharma	business manager	bachelors	0	0	0
9	abc pharma	business manager	masters	0	0	1
10	facebook	sales executive	bachelors	1	2	0
11	facebook	sales executive	masters	1	2	1
12	facebook	business manager	bachelors	1	0	0
13	facebook	business manager	masters	1	0	1
14	facebook	computer programmer	bachelors	1	1	0
15	facebook	computer programmer	masters	1	1	1

```
In [12]: # Drop Label columns
inputs_n = inputs.drop(['company','job','degree'],axis='columns')
```

```
In [13]: inputs_n
```

Out[13]:

	company_n	job_n	degree_n
0	2	2	0
1	2	2	1
2	2	0	0
3	2	0	1
4	2	1	0
5	2	1	1
6	0	2	1
7	0	1	0
8	0	0	0
9	0	0	1
10	1	2	0
11	1	2	1
12	1	0	0
13	1	0	1
14	1	1	0
15	1	1	1

```
In [14]: # predicted value column
target
```

```
Out[14]:
```

```
0
2
      1
3
      1
4
      0
5
      1
6
7
      0
8
      0
9
      1
10
      1
11
      1
12
      1
13
      1
      1
14
```

Name: salary_more_then_100k, dtype: int64

```
In [15]: # import tree module from sklearn and create a object of the module
         from sklearn import tree
         model = tree.DecisionTreeClassifier()
In [16]: # train the model
         model.fit(inputs_n, target)
Out[16]: DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
                     max features=None, max leaf nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random state=None,
                     splitter='best')
In [18]: # Evaluate the score of the model
         model.score(inputs_n, target)
Out[18]: 1.0
In [19]: # Now predict the value : Is salary of Google, Computer Engineer, Bachelors degree
         model.predict([[2,1,0]])
Out[19]: array([0], dtype=int64)
In [21]: # Now predict the value : Is salary of Google, Computer Engineer, Masters degree
         model.predict([[2,1,1]])
Out[21]: array([1], dtype=int64)
In [ ]:
```