Tribhuvan University Institute of Science and Technology 2079

Bachelor Level / second-semester / Science

Computer Science and Information Technology (MTH163)

Mathematics II

Full Marks: 80

Pass Marks: 32 Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Group A

Attempt any THREE questions (3 x 10 = 30).

Reduce the system of equations into echelon form and solve:

$$x_1 - 2x_2 - x_3 + 3x_4 = 0$$

ı

$$-2x_1 + 4x_2 + 5x_3 - 5x_4 = 3$$

$$3x_1 - 6x_2 - 6x_3 + 8x_4 = 2$$

Define linear transformation of a matrix A.

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $v = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$, $v = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

2

and define a tranformation $T:R^2 \rightarrow R^2$ by T(x) = Ax then

- a. find T(v)
- b. find $x \in R^2$ whose image under T is c.

The PDF PAssword is: dyxh6BYNFwEp7Ucj7UJ8vnDYjubUWagZjETZ6JDpQUnMEaGnUf

1/2/23, 7:35 PM

$$C = \begin{bmatrix} 0.5 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.1 \\ 0.1 & 0.1 & 0.3 \end{bmatrix}$$

and the final demand is 50 units for manufacturing, 30 units for agriculture and 20 units for service. Find the production level *x* that will satisfy this demand.

Find the equation $y = a_0 + a_1x$ of the least square line that best fits the data points (0, 1), (1, 1), (1, 1), (2, 2), (3, 2).

Group B

Attempt any TEN questions (10 x 5 = 50).

When a linear system of equation is consistent? Find the values of h and k for which the system: $2x_1 - x_2 = h$; $-6x_1 + 3x_2 = k$ is consistent?

Determine the column of the matrix A are linearly independent, where

$$6 \quad A = \begin{bmatrix}
-2 & 8 & -1 \\
0 & 0 & 0 \\
0 & -5 & 3
\end{bmatrix}$$

When two column vector in \mathbb{R}^2 are equal? Give an example. Computer \mathbf{u} + 3 \mathbf{v} , \mathbf{u} – 2 \mathbf{v} , where

7
$$u = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

The column of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $(e_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a linear transformation from R^2 into R^3 such that

The PDF PAssword is: dyxh6BYNFwEp7Ucj7UJ8vnDYjubUWagZjETZ6JDpQUnMEaGnUf

$$T(e_1) = \begin{bmatrix} 5\\1\\-2 \end{bmatrix} \text{ and } T(e_2) = \begin{bmatrix} 0\\-1\\8 \end{bmatrix}$$

find a formula for the image of an arbitrary x in R^2 . That is, find T(x) for x in R^2 .

9 Find the eigenvalues of the matrix $egin{pmatrix} 6 & 3 & -8 \ 0 & -2 & 0 \ 1 & 0 & -3 \end{pmatrix}$

Define null space of a matrix A. If

10
$$A = \begin{bmatrix} -1 & -3 & 2 \\ -5 & -9 & 1 \end{bmatrix}$$
, and $v = \begin{bmatrix} 5 \\ -3 \\ -2 \end{bmatrix}$

Verify that 1^k, (-2)^k, 3^k are linearly independent signals.

Evaluate the determinant of the matrix

12
$$\begin{bmatrix} 5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6 \end{bmatrix}$$

Define unit vector. Find a unit vector v of u = (0, -2, 2, -3) in the direction of u.

Define group. Show that the set of integers is not a group with respect to subtraction operation.

Define ring. Show that set of positive integers with respect to addition and multiplication operation is not a ring.

The PDF PAssword is: dyxh6BYNFwEp7Ucj7UJ8vnDYjubUWagZjETZ6JDpQUnMEaGnUf