Notes of "Solution of Linear Systems"

Jinxin Wang

1 Solution Space of a Homogenous Linear System

2 Solution Set of a Non-Homogenous Linear System

3 同解与秩

Proposition 1. Suppose $A = [A_{(1)}, A_{(2)}, \dots, A_{(s)}]$, $B = [B_{(1)}, B_{(2)}, \dots, B_{(t)}]$, in which $A_{(i)}$ and $B_{(j)}$ are row vectors with n elements. If every solution of AX = 0 is also a solution of BX = 0, then every row vector of B is a linear combination of the row vectors of A.

Corollary 1. Suppose $A = (a_{ij})_{s \times n}$, $B = (b_{ij})_{t \times n}$. AX = 0 and BX = 0 has the same solution space if and only if the row vectors of A and B are in the row space of each other.

Corollary 2. Suppose $A = (a_{ij})_{s \times n}$, $B = (b_{ij})_{t \times n}$. If AX = 0 and BX = 0 has the same solution space, then rank $A = \operatorname{rank} B$.

Remark 1. The converse is not true. Consider $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, which have the same rank as 2, but different solution space.

The above remark shows that given any two matrices $A_{s\times n}$ and $B_{t\times n}$ with the same number of columns, from the condition that rank $A = \operatorname{rank} B$ we cannot conclude anything about the solution spaces of their corresponding homogeneous linear systems AX = 0 and BX = 0. However, if the two matrices are connected by matrix multiplication, then we have

Proposition 2. Suppose $A = (a_{ij})_{s \times t}$, $B = (b_{ij})_{t \times n}$. (rank $AB = \operatorname{rank} B$) $\Leftrightarrow ABX = 0$ and BX = 0 has the same solution space \Leftrightarrow Every solution of ABX = 0 is also a solution of BX = 0.

4 带有特殊秩的矩阵

4.1 秩 1 矩阵

4.2 秩 0 矩阵

Proposition 3. Let A be a square matrix of order 2, and k be an interger greater than 2. $A^k = 0$ if and only if $A^2 = 0$