

Metabolism

Impact of Aerobic Exercise Training on Age-Related Changes in Insulin Sensitivity and Muscle Oxidative Capacity

Kevin R. Short1, Janet L. Vittone2, Maureen L. Bigelow1, David N. Proctor3, Robert A. Rizza1, Jill M. Coenen-Schimke1 and K. Sreekumaran Nair1

Address correspondence and reprint requests to K. Sreekumaran Nair, PhD, Endocrinology Research Unit, 5–194 Joseph, Mayo Clinic, 200 First St. SW, Rochester, MN 55905. E-mail: nair.sree@mayo.edu

Diabetes 2003 Aug; 52(8): 1888-1896.

https://doi.org/10.2337/diabetes.52.8.1888

Abstract

Insulin resistance increases and muscle oxidative capacity decreases during aging, but lifestyle changes— especially physical activity—may reverse these trends. Here we report the effect of a 16-week aerobic exercise program (n = 65) or control activity (n = 37) performed by men and women aged 21–87 years on insulin sensitivity and muscle mitochondria. Insulin sensitivity, measured by intravenous glucose tolerance test, decreased with age (r = -0.32) and was related to abdominal fat content (r = -0.65). Exercise increased peak oxygen uptake (V_{Opeak} ; 10%), activity of muscle mitochondrial enzymes (citrate synthase and cytochrome c oxidase, 45–76%) and mRNA levels of mitochondrial genes (COX4, ND4, both 66%) and genes involved in mitochondrial biogenesis (PGC-1 α , 55%; NRF-1, 15%; TFAM, 85%). Exercise also increased muscle GLUT4 mRNA

and protein (30–52%) and reduced abdominal fat (5%) and plasma triglycerides (25%). None of these changes were affected by age. In contrast, insulin sensitivity improved in younger people but not in middle-aged or older groups. Thus, the muscle mitochondrial response to 4 months of aerobic exercise training was similar in all age-groups, although the older people did not have an improvement in insulin sensitivity.

GCRC, General Clinical Research Center NRF, nuclear respiratory factor PGC-1α, PPAR-γ coactivator 1α

PPAR, peroxisome proliferator–activated receptor TFAM, mitochondrial transcription factor A Vo2peak, peak oxygen uptake

SI, insulin sensitivity

The number of people with type 2 diabetes and impaired glucose tolerance is rapidly increasing (1,2). Key factors contributing to this increase in diabetes include age, obesity, and sedentary lifestyle (3–8). Exercise is a readily available intervention that can increase insulin action (9–14) and prevent the onset of diabetes (15–18). An important question is whether the effects of aerobic exercise on insulin action are diminished with advancing age. A recent study reported that a vigorous 7-day exercise program increased insulin sensitivity and muscle glucose transporter (GLUT4) content by a similar amount in younger (22 years) and older (61 years) people (12). However, current health and fitness guidelines for healthy adults recommend exercising at more moderate intensities at least 3 days per week over long periods (19). Thus, the first purpose of the current study was to determine whether a 4-month program of bicycle training that could be readily followed by most elderly individuals would lead to a similar improvement in insulin sensitivity in men and women across a wide age span.

Skeletal muscle is the major site of insulin-mediated glucose disposal and is implicated in the pathogenesis of insulin resistance and diabetes (20,21). Several pieces of evidence suggest that insulin action may be related to the oxidative capacity of skeletal muscle. First, aerobic exercise training improves both insulin sensitivity and activity of oxidative enzymes in muscle (22,23). Second, people who are obese and insulin resistant or have type 2 diabetes tend to have lower activity of muscle oxidative enzymes (24,25). Third, insulin infusion preferentially stimulates the synthesis rate of mitochondrial proteins in skeletal muscle (26) and increases the mRNA abundance genes associated with mitochondria and glucose metabolism (27,28). Fourth, recent work has shown that genes for mitochondrial proteins and the primary glucose transporter in muscle, GLUT4, are regulated by common signals, including elevations in cytosolic calcium (29,30) and the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor [PPAR]-γ coactivator 1α) (31). Muscle mitochondrial function and gene expression are reduced in aging muscle, but the underlying cause and the relationship to insulin action are not yet understood (32–34). The second purpose of this study, therefore, was to measure the effect of age and exercise training on the gene expression of PGC-1α, GLUT4, and mitochondrial genes and nuclear transcription factors that regulate mitochondrial genes, including PGC-1α, nuclear respiratory factor (NRF)-1, and mitochondrial transcription factor A (TFAM). We tested the hypothesis

that a moderate exercise program results in equivalent improvements in insulin sensitivity, GLUT4 expression, and mitochondrial genes and function in individuals whose age ranged between 22 and 87 years.

RESEARCH DESIGN AND METHODS

Participants.

Healthy men and women who exercised <30 min twice per week during the previous 9 months were recruited. Health status was assessed by medical history, physical exam, blood chemistries (liver enzymes, creatinine, electrolytes, and glucose), complete blood count, urinalysis, and electrocardiogram. Exclusion criteria included tobacco use, β -blockers, diabetes or other endocrine disorders, and debilitating chronic illness. Forty-nine women and 41 men between the ages of 21 and 87 years met these criteria and were enrolled after providing written and oral consent. Characteristics of the participants are shown in **Table 1**. Participants gave their informed oral and written consent before any tests were performed. The Mayo Foundation Institutional Review Board approved the study.

Study protocol.

Participants were randomized to either a 16-week aerobic control or exercise program. A similar 5-day protocol was completed at baseline and again within a week of completing the training or control phases. During each study period, a weight-maintaining diet (55:30:15% carbohydrate, fat, and protein, respectively) was provided for the first 4 days. On the morning of day 4, subjects were admitted to the General Clinical Research Center (GCRC) following an overnight fast. Insulin sensitivity and body composition were then measured. The following morning (day 5) blood and muscle biopsy samples from the vastus lateralis (32,35) were obtained.

The exercise program was performed on a stationary bicycle. Training started with three sessions per week, lasting 20 min each, at an intensity eliciting 70% of maximal heart rate. Intensity, duration, and number of sessions were gradually increased so that the final month of training consisted of four sessions per week at 80% of maximal heart rate for 40 min. Exercise specialists supervised each session and recorded heart rates. Compliance with the target workloads and number of sessions was >90%. The exercise protocol was completed by 41 of 47 participants originally assigned. The control group was taught a series of flexibility exercises and encouraged to perform them at home while maintaining their regular lifestyle. Follow-up tests were available for 37 of the 43 people in the control group. Subsequently, 24 control group members opted to complete the exercise program, yielding a total of 65 people studied before and after exercise training.

Because the goal of the study was to examine effects of the exercise program, participants were instructed to maintain body weight. Weight was recorded weekly, and the GCRC dietary staff provided further guidance if weight changed >2%. Only one person in the exercise group discontinued the study because of excessive weight loss.

Procedures.

A standard treadmill stress test was performed initially to assure cardiovascular health and was followed on another day with measurement of peak oxygen uptake ($V_{o_{2peak}}$) on a bicycle ergometer (36). Expired gases, heart rate, and blood pressure were continuously monitored throughout the tests (36). The posttraining assessment was made within 3 days of the completion of the last training bout.

Insulin sensitivity (S_i) was determined using an intravenous glucose tolerance test (37). Posttraining tests were performed 4 or 5 days after the last exercise session (this variation was unavoidable due to scheduling availability). There were no systematic differences across sex or age in the retesting schedule. Glucose (0.3 g/kg) and insulin (0.03 units/kg) were intravenously injected at 0 and 20 min, respectively. Fifteen blood samples were obtained between 0 and 180 min. S_i was calculated using minimal model analysis software (MINMOD, version 2.0).

Fat and fat-free mass were determined by dual X-ray absorptiometry (Lunar DPX-L, Madison, WI). Abdominal fat was measured using a single-slice (6-mm thickness) computed tomography scan (Imatron C-150, San Francisco, CA) at the level of the L4-L5 intervertebral space. Total and subcutaneous abdominal fat areas were estimated by manual planimetry using custom software (38). Visceral fat area was calculated as the difference between total and subcutaneous fat areas.

Plasma insulin was measured with a two-site immunoenzymatic assay (Access; Beckman Instruments, Chaska, MN). Glucose was measured with a Beckman Glucose Analyzer (Beckman Instruments, Porterville, CA). Nonesterified free fatty acids (NEFAs) were measured using an enzymatic colorimetric assay (NEFA C; Wako Chemicals, Richmond, VA).

A real-time quantitative PCR system (PE Biosystems, Foster City, CA) was used to measure the abundance of selected mRNAs in muscle tissue (35). Transcripts quantified included GLUT4, NRF-1, PGC-1α, TFAM, and two subunits of mitochondrial respiratory chain proteins. The mitochondrial mRNAs were cytochrome c oxidase subunit 4 (COX4), a nuclear gene encoding part of complex IV, and NADH-dehydrogenase subunit 4 (ND4), a mitochondrial-DNA gene encoding part of complex I. RNA was extracted from skeletal muscle of individual subjects by Trizol method (Life Technologies, Gaithersburg, MD), treated with DNase (Life Technologies), and then reverse-transcribed using the TaqMan Reverse Transcription Reagents (PE Biosystems).

The following primers and probes for human genes were used: GLUT4 (designed from GenBank Accession number M20747 sequence) forward primer: CATTGGTATCATCTCT CAGTGGCT, reverse primer: AGCACCGCCAGGACATTG, probe: ACCAGCATGGCCCT TTTCCTTC; NRF-1 (GenBank accession no. XM011548) forward primer: GAGTGATG TCCGCACAGAAGAG, reverse primer: TTATAACAGTTTTTAACTATGGTCCGTAGTG, probe: TGGGTCCATGAAACCCTCTGCTT; PGC-1α (GenBank accession no. AF106698) forward primer: AGATCGCCCTACAGCCGTC, reverse primer: TCTTCAGCCTCTCGTGCTGA, probe: ATTCCTCGTAGCTGTCATACCTGGGC; TFAM (GenBank accession no. M62810) forward primer:

TGTGCACCGGCTGTGG, reverse primer: TGGACAACTTGCCAAGACAGAT, probe: AGTCGACTGCGCTCCCCCTT;

COX4 (GenBank accession no. XM008055) forward primer: CCTCCTGGAGCAGCCTCTC, reverse primer:

TCAGCAAAGCTCTCCTTGA ACTT, probe: TGCGATACAACTCGACTTTCTCATCCAT; ND4 (GenBank accession no. NC 001807) forward primer: CCCCATTCTCCTCTATCCC, reverse primer: TTTTTTTTTTTTTTTTTTTTTTTAAGAG, probe: CAACCCCGACATCATTACCGGGT. The probes for nuclear genes were designed to span exon boundaries to ensure no amplification of contaminating DNA. Because the mitochondrial genome does not contain introns, the reverse primer for ND4 was designed to target several of the final nucleotides specific to the gene as well as a string of the poly-A tail that is present only in the mRNA. Samples were run in triplicate and quantified by normalizing the target signal for the 28S rRNA signal in each sample.

Activities of two mitochondrial enzymes, citrate synthase and cytochrome c oxidase, were measured in muscle homogenates as previously described (32).

Abundance of GLUT4 protein in muscle was determined by Western blotting. Muscle samples were homogenized in a buffer containing 250 mmol/l sucrose, 20 mmol/l HEPES, and 1 mmol/l EDTA, pH 7.4, containing 1 µg/ml leupeptin, 10 µg/ml aprotinin, and 2 mmol/l phenylmethylsulfonyl fluoride, then centrifuged at 100,000*g* for 60 min. Pellets were resuspended in phosphate buffer containing 1% Triton X-100 and centrifuged at 14,000*g* for 20 min. The resulting supernatants, containing membrane proteins, were separated on 10% polyacrylamide gels (BioRad Laboratories, Hercules, CA). Proteins were transferred to polyvinylidene difluoride membranes and incubated overnight with a primary antibody against GLUT4 (Biogenesis, Brentwood, NH). An enhanced chemiluminescent detection system (Amersham Biosciences, Piscataway, NJ), followed by digital imaging and densitometry (ImageStation 1000; Eastman Kodak Scientific Imaging, Rochester, NY), was used to quantify the relative abundance of GLUT4 in individual samples.

Statistical analysis.

Data are reported as means \pm SE. Differences between men and women and between pre- and posttesting within groups were analyzed using unpaired and paired t tests, respectively. Pearson correlation coefficients were used to measure association among selected variables. Multiple regression analysis was used to determine the relationship of age, body composition, and other variables to insulin sensitivity. P < 0.05 was considered statistically significant.

RESULTS

Physical characteristics and body composition.

The baseline physical characteristics of the participants are given in **Table 1**, and univariate correlations between these variables and age are listed in **Table 2**. Although BMI was similar among age-groups, fat-free mass decreased with age and total body fat and abdominal fat increased with age. Subcutaneous abdominal fat also tended to increase with age, but this change was more variable. Exercise resulted in statistically significant reductions in body weight (0.7%), BMI (0.7%), abdominal fat (5.3%), and waist circumference (1.9%) (**Table 3**). The loss of abdominal fat occurred equally in the visceral and subcutaneous compartments. Except

for a small but significant increase in waist size (**Table 3**), the physical characteristics of the control group did not change during the study.

Aerobic capacity.

At baseline, V_{2peak} declined linearly with age from a mean of 50.0 \pm 1.0 ml·kg⁻¹ FFM·min⁻¹ in 20- to 30-year-olds to 19.7 \pm 1.1 in those \geq 70 years (r = 0.82, P < 0.001). The rate of decline was 7.5% per decade. There was no change in V_{2peak} in control subjects (**Table 3**), whereas the exercise program increased V_{2peak} by 9.5% (P < 0.001). This response to exercise training was similar in men and women of all ages.

Insulin sensitivity.

 S_{\parallel} declined ~8% per decade in both men and women (P < 0.01). When plotted against age, however, the residual errors for S_{\parallel} were not uniform for either men or women. For this reason, linear modeling of S_{\parallel} was performed after log transformation. The transformed S_{\parallel} was 16% higher in women (P < 0.05) but did not prevent the pooled data from both sexes from being fit by a single line, since the difference was not affected by age (Fig. 1). Univariate correlations between S_{\parallel} (after log transformation) and other variables are listed in Table 2. S_{\parallel} was more closely related to abdominal fat and fasting insulin levels than age (Fig. 1). Like S_{\parallel} , insulin values were also log transformed because of nonuniform distribution.

Multiple regression analyses were used to determine the effects of age, adiposity, and other parameters on S_1 at baseline. Men and women were analyzed separately. Using step-wise (step-up) regression, only two variables with significant individual contributions were entered into the model for men, namely total abdominal fat area and triglycerides. This model had a multiple R^2 of 0.57 and an adjusted R^2 of 0.54. When a step-down approach was used for men, total abdominal fat and insulin were retained in the model (multiple R^2 = 0.55, adjusted R^2 = 0.51). In women, both the step-up and step-down models had a single variable, total abdominal fat area, with a multiple R^2 of 0.39 and adjusted R^2 of 0.37. Combining men and women in the regression analysis yielded a model with total abdominal fat and insulin as predictors (multiple R^2 = 0.48, adjusted R^2 = 0.47). Age made a significant contribution to these models only if total abdominal fat and/or insulin were intentionally left out (data not shown).

Exercise training increased insulin sensitivity by an average of 26% (**Table 3**). However, the response to training (absolute change) was inversely related to age in men and women (**Fig. 2**). When separated into younger (20–39 years), middle-aged (40–59 years), and older (\geq 60 years) groups, the posttraining S_{\parallel} increased 72% for younger (5.77 \pm 0.73 vs. 9.92 \pm 1.36; P< 0.001) and 20% for middle-aged (5.42 \pm 0.68 vs. 6.52 \pm 0.82; P= 0.11) and decreased 5% for older (3.90 \pm 0.44 vs. 3.71 \pm 0.53; P= 0.42) people. The response of S_{\parallel} to training was not related to changes in $V_{02peak'}$ body composition, muscle metabolic parameters, or any other variables, besides age. When the S_{\parallel} values in the exercise group were expressed as a percentage change from baseline, the negative relationship with age remained statistically significant in women but not in men (**Fig. 2**). This difference between men and women was due to the strong influence of three men over 40 years of age who began the

study with low S_1 values and had small absolute changes that represented high percentage changes. When considered separately, the percentage change in S_1 in exercising young men (41 ± 19% for n = 6; P = 0.08 vs. zero) was less than that of young women (116 ± 27% for n = 9; P < 0.01 vs. zero) but stands in contrast to the middle-aged and older groups who showed no trends toward a positive change in S_1 . Thus, the age-dependent increase in S_1 after training appears to be present in men and women when considered as either absolute or percentage change.

GLUT4.

GLUT4 mRNA levels did not differ with age among the participants (Fig. 3). After the exercise training program, GLUT4 mRNA levels were elevated by 52% (Table 3), and no effect of either age or sex on the response to exercise was evident. GLUT4 protein levels were measured on a subset of younger (n = 9) and older (n = 11) persons because of limited availability of muscle samples. GLUT4 protein abundance (in arbitrary units) was not significantly different between the younger (5.71 \pm 0.41 AU) and older (4.67 \pm 0.49 AU) group at baseline. In younger and older exercisers, protein levels were increased 20–40% to 6.83 \pm 0.72 and 6.64 \pm 0.62 AU, respectively (P < 0.02), with no difference between age groups.

Mitochondrial enzyme activities and gene transcripts.

At baseline, activity of COX declined with age (5% per decade) (Table 2). Citrate synthase activity declined with age in women (4% per decade) (Table 2) but not in men. The exercise program increased COX and citrate synthase activities by 87 and 46%, respectively (Table 3). Enzyme changes with training were not related to either age or sex.

Transcript levels of COX4 and ND4 followed similar patterns to one another, as they both declined significantly with age (Fig. 3) and increased 65–67% with aerobic exercise training (Table 4). These responses to training were not affected by either age or sex. The abundance of mRNAs encoding PCG-1 α , NRF-1, and TFAM was unrelated to age at baseline (Fig. 4). Exercise training increased PGC-1 α , NRF-1, and TFAM transcript levels by 55, 15, and 85%, respectively, but there was no interaction between age and the training response (Table 4). PGC-1 mRNA levels at baseline were positively associated (P < 0.01) with abundance of NRF-1 (r = 0.67), TFAM (r = 0.53), GLUT4 (r = 0.46), and COX4 (r = 0.40) mRNA. The change in PGC-1 α mRNA after training was associated with the change in NRF-1 (r = 0.40, P < 0.01), but not with the changes in TFAM, GLUT4, or COX4.

Plasma lipids, glucose, and insulin.

Total cholesterol increased from 4.24 ± 0.18 mmol/l in 20- to 30-year-olds to 5.54 ± 0.27 in people over 70 years (P < 0.025), whereas HDL and LDL cholesterol levels did not change with age (**Table 2**). Cholesterol levels were not significantly altered by exercise training (**Table 3**). Triglyceride ($134 \pm 15 \text{ mg/dl}$, 20-30 years; $160 \pm 15 \text{, } \ge 70 \text{ years}$) and nonesterified fatty acid ($485 \pm 34 \text{ } \mu \text{mol/l}$, 20-30 years; $587 \pm 27 \text{, } \ge 70 \text{ years}$) levels both increased with age (**Table 2**). Exercise training lowered fasting plasma triglycerides 23% and nonesterified fatty acids 6% (**Table 3**). Age and sex did not affect these responses.

Fasting glucose levels increased 2% per decade in men and women, whereas insulin increased 13% per decade in women but did not change with age in men (**Table 2**). Fasting glucose and insulin were positively related (P < 0.01) to abdominal fat (r = 0.56 and 0.65, respectively). Men had higher (P < 0.01) plasma glucose (5%) and insulin (16%) than women. Overall, exercise training did not alter fasting glucose or insulin concentrations (**Table 3**). When separated into three age-groups, however, fasting insulin levels were significantly reduced from pre- to postexercise in middle-aged people (age 40–59 years, 36 ± 3 vs. 31 ± 3 pmol/l; P = 0.020) and showed a tendency to decline in older people (≥ 60 years, 44 ± 5 vs. 35 ± 3 pmol/l; P = 0.098). Fasting insulin did not change in younger exercisers (20-39 years old, 32 ± 5 vs. 37 ± 7 pmol/l; P = 0.40). Fasting glucose levels were unchanged in any age-group.

DISCUSSION

This study examined the effect of a 4-month moderate-intensity aerobic exercise program on insulin sensitivity and muscle mitochondrial biogenesis in people between the ages of 22 and 87 years. In agreement with previous reports, insulin sensitivity declined with age (5–8) but improved with exercise training (9–14). A key finding of the current study is that the increment in insulin sensitivity due to exercise training was present in younger people but not in middle-age and older groups. Several potential factors that might explain the age-dependent change in insulin action with exercise were examined. Abdominal adiposity (which was the best correlate with insulin sensitivity at baseline) and plasma triglycerides were decreased by exercise. In skeletal muscle, glucose transporter mRNA and protein levels were increased, and mitochondrial biogenesis was evident from increased activity of mitochondrial enzymes and higher levels of mitochondrial protein mRNAs. These changes occurred in men and women across the age span. Thus, insulin sensitivity was the only variable that demonstrated an age-dependent response to exercise training.

Insulin-mediated glucose transport in muscle depends on the content and function of GLUT4 (21). Work by Houmard et al. (6) suggested that the age-related decline in insulin action might be due in part to a lower abundance of GLUT4 protein in muscle. Subsequently, it was reported that short-term vigorous training elevated GLUT4 protein content and insulin sensitivity in young and old people (12). In the current study, we found that muscle GLUT4 mRNA and protein levels did not change with age in previously untrained people. Exercise training resulted in increased muscle content of GLUT4 mRNA and protein, but this increment did not differ with age. Thus, in the present study, muscle GLUT4 abundance does not explain the age-related decline in insulin sensitivity or the age-dependent response to exercise training. One possibility is that despite normal GLUT4 content in older muscle, the insulin-mediated trafficking of GLUT4 to the sarcolemma or its inherent function is somehow impaired (20,21). At present, the interaction of age and exercise status on GLUT4 trafficking and transport function is unknown. This is an important question that should be addressed in future work.

The activity of oxidative enzymes is reduced in skeletal muscle from older people (32,34,39) and can contribute to reductions in V_{2peak} and the ability to sustain muscular activity. In turn, this could potentially contribute to insulin resistance by limiting the ability to metabolize glucose. There is evidence that people with type 2 diabetes or insulin resistance have lower activity of oxidative enzymes and reduced aerobic capacity (24,25,40). In the present study, V_{2peak} and activity of mitochondrial enzymes were positively related to S_l at baseline. Despite this relationship, muscle mitochondrial variables did not contribute significantly to the multivariate model for S_l after the inclusion of abdominal fat. We found that aerobic exercise training increased the glucose transport capacity (higher GLUT4) and mitochondrial content of skeletal muscle as previously reported (22,23). However, these changes were not related to the change in S_l . These findings suggest that insulin action and mitochondrial biogenesis may respond to common regulatory events, such as exercise, but that the two pathways are not directly related.

We have considered other factors that may explain the age-dependent exercise response in insulin sensitivity. First, compared to the current study, training programs that improved insulin sensitivity in older people typically had more intense or frequent sessions (12,13) or were longer (6-12 months) (9,11,13). In one study, 63-year-old people engaged in low-intensity exercise (e.g., walking) showed no change in insulin action after 6 months, but improved after an additional 6 months of more intensive exercise (9). Thus, older people may require more intensive or longer exercise training programs to improve S_1 , whereas other factors, such as mitochondrial function, are more readily altered. A second possibility is that the effect of exercise on S_1 response is more rapidly lost in older people. Timing of the posttraining measurements of S_1 could be important. In most studies, S_i was measured 14–17 h after the last exercise session (9,11,12), whereas we waited 96–120 h to examine chronic training adaptations instead of acute exercise effects. Although there was some variation in the timing of our follow-up tests (≤24 h), there was no systematic difference in the time interval across age or sex, nor was there an effect on the magnitude in S_1 improvement. In well-trained athletes, S_1 declines within 6–14 days if regular exercise is not maintained (14,41,42). Future work will need to examine how S₁ changes in the first 7 days after completing a training program with comparisons made between younger and older people. A third explanation is that inherent aging processes may blunt the adaptability of S_i even if regular vigorous exercise is performed. It was recently shown that S_i is lower in both older sedentary and endurance-trained people versus younger people with similar respective exercise status (43). Further, as we and others have found (7,8,44), the age effect on S_1 disappeared in sedentary subjects after controlling for body fatness (43). In contrast, after controlling for body fat, S₁ was still 33% lower in older athletes (43). Insulin sensitivity in the older runners was equal to or greater than that in sedentary groups, indicating a clear benefit of maintaining a long-term vigorous exercise training program (43). Nevertheless, the lower S_i in older versus younger runners suggests that the capacity to improve insulin action with exercise may be somehow limited in older people.

Exercise training resulted in an average reduction in body weight of 0.6 kg, which appears to have come mainly from abdominal fat stores. This reduction was similar in visceral and subcutaneous abdominal fat depots and

did not vary with age. Thus, despite the close correlation between abdominal fat and S_1 at baseline, the magnitude of the improvement in S_1 after exercise training was not related to the amount of fat lost. In overweight men, exercise training and weight loss are attributed with distinct effects on glucose metabolism that are additive when combined (45). We encouraged participants to maintain their diet and body weight in this study, so it is possible that a weight-loss component would have resulted in greater gains in insulin sensitivity in the exercise group (45,46).

Fasting insulin and glucose showed little or no change with exercise training and were therefore unrelated to changes in S_1 . Exercise-induced improvements in S_1 in the absence of a change in fasting insulin or glucose have been noted before (12,47). When reductions in fasting insulin occur in response to exercise training, a common cofactor is weight loss, specifically fat loss (9,11,13,45). Fasting insulin levels are positively associated with body fat (r = 0.65 in the present study at baseline). The exercise group had a 5% reduction in abdominal fat, but a larger decrease may be required to substantially affect fasting insulin levels.

At baseline we found that S_{\parallel} decreased with age, consistent with other reports (5–8). This decline appears to result from an increase in abdominal fat rather than age per se. Earlier reports found a relationship between S_{\parallel} and anthropometric measures like waist circumference or BMI (7,8,44). In the current study, S_{\parallel} was more closely related to visceral than subcutaneous fat, but S_{\parallel} was most closely related to total abdominal fat area, in agreement with the findings of Goodpaster et al. (48). A consensus has not been reached on whether visceral or subcutaneous fat regions are more important for conferring insulin resistance (48–50).

The decline with age in activity of mitochondrial enzymes indicates that muscle oxidative capacity is reduced (32,34,39). Previous work suggested that mitochondrial functional decline might be related to lower synthesis rate of mitochondrial proteins (32). The current results now indicate that protein synthesis in older muscle may be limited by template availability, since mRNA levels for both nuclear-encoded (COX4) and mitochondrialencoded (ND4) respiratory chain proteins decreased with age. We tested whether these changes were related to parallel reductions in transcription factors that regulate mitochondrial genes upstream. PGC-1α has generated interest because it acts with transcription factors like NRF-1 to control expression of genes of oxidative metabolism, including TFAM (51,52). TFAM is the signal through which the nucleus regulates mitochondrial DNA transcription and replication (53). The mRNA level of PGC-1α was positively associated at baseline with that of GLUT4, NRF-1, and TFAM, supporting the evidence that PGC-1 α is a key regulator of energy-utilizing pathways. However, PGC-1α, NRF-1, and TFAM transcript abundance did not change with age. This implies that the reduction in COX4 and ND4 mRNA with age must be regulated at other control points such as mRNA stability or transcription factor activity, or perhaps by other transcription factors. Oxidative damage to DNA has been shown to increase with age (54) and could limit the expression of specific mitochondrial genes in the presence of normal levels of transcription factors. We are aware of only one other study that has examined age effects on mitochondrial-related transcription factors in human muscle (55). In contrast to our findings, mRNA levels of TFAM and NRF-1 were reported to be higher in a group of elderly (71– 88 years) than in younger (21-33 years) people (55). However, the muscle samples in that study were obtained

from only four to seven people per group who were undergoing orthopedic surgery. The clinical state, anesthesia, or any treatments could modulate the mRNA level of these transcription factors, and the data may not be applicable to healthy populations.

The exercise training program resulted in an enhancement of mitochondrial biogenesis, as shown by several markers. There were no interactions between age and the training response of the mitochondrial measurements. Improvements in Vo_{2peak} and oxidative enzymes in response to aerobic exercise have been previously shown in older people (56,57). Earlier studies also showed that vigorous training results in higher muscle mRNA content of TFAM and other mitochondrial genes in young men (58,59). The present study is the first to show that aerobic training stimulates expression of mitochondrial genes and transcription factors in muscle from older and younger people. The potency of the training effect on muscle oxidative pathways is shown by the fact that all of the changes in muscle that were measured were clearly evident 5–6 days after the last training session. Collectively, these findings demonstrate that despite age-related functional decline, skeletal muscle capacity for mitochondrial biogenesis remains high in older muscle when faced with the metabolic demands of regular exercise. Exercise-induced increases in muscle oxidative enzymes are consistent with higher ATP production capacity (56) and may lead to greater ability to utilize glucose. However, the present data demonstrate that changes in muscle mitochondrial function and insulin-mediated glucose disposal are not closely related.

In conclusion, 4 months of moderate-intensity aerobic exercise performed by previously sedentary men and women improved insulin sensitivity in young people but not in middle-aged and older groups. This unique finding could not be explained by loss of body fat or increased expression of glucose transporter protein in skeletal muscle, since exercise training had an equivalent effect on these parameters in people of all ages. Muscle mitochondrial enzyme activity declined with age and improved with exercise training regardless of age. The exercise-induced increase in muscle oxidative capacity was closely related to the availability of the mRNA abundance of mitochondrial proteins. These findings suggest that the ability of aerobic exercise to enhance muscle mitochondrial function is not age-limited, whereas improvement in insulin sensitivity is impaired in older people. This observation will need to be considered in the design of exercise programs aimed at preventing or delaying diabetes in older people.

6/	/2018	Impact of Aerobic Exercise Training on Age-Related Changes in Insulin Sensitivity and Muscle Oxidative Capacity Diabetes
		Download figure
		Open in new tab
		Download powerpoint
	FIG. 1.	
	Relationship betw	veen S_{l} and age, adiposity, and insulin levels. The variance in S_{l} and insulin was not evenly distributed, so data
	are shown after lo	og transformation. S_1 declined with age (A) but was more closely related to total abdominal fat (B), visceral fat
	(C), and fasting in	sulin (D) levels. Regression lines are shown for pooled data from men (\circ) and women (\bullet), except in C , where
	the solid line is to	or women and the dotted line is for men. $P < 0.01$ for all correlation coefficients shown.

/26/2018	Impact of Aerobic Exercise Training on Age-Related Changes in Insulin Sensitivity and Muscle Oxidative Capacity Diabetes
	Download figure
	Open in new tab
	Download powerpoint
	Download powerpoint
FIG. 2.	
Relationship bet to age (top pane men (<i>r</i> = 0.34) w inversely related	tween age and the post-exercise change in S_l . The absolute increment in S_l in exercisers was inversely related el, regression line for entire group). The relationship was significant ($P < 0.01$) for both women ($r = 0.53$) and when considered separately. The percent change in S_l (lower panel, regression line for entire group) was also d to age, but when considered separately, the effect was significant in women ($r = 0.61$, $P < 0.01$) but not in $P > 0.05$). S_l units in the top panel are $\times 10^{-5} \cdot \text{min}^{-1} \cdot \text{pmol}^{-1} \cdot \text{l}^{-1}$.

6/2018	Impact of Aerobic Exercise Training on Age-Related Changes in Insulin Sensitivity and Muscle Oxidative Capacity Diabetes
	Download figure
	Onen in neurtah
	Open in new tab
	Download powerpoint
FIG. 3.	
rid. 5.	
Effect of age or	n abundance of mRNA for selected genes in skeletal muscle. Measurements were performed on 78 people
during the base	eline phase of the study. Regression lines are given for COX4 and ND4, which declined significantly with age.
The other gene	es shown did not change with age. Values are given in arbitrary units (AU) after normalization to 28S rRNA.
The other gene	and the change manager values are given in an artist any artist from an action to 200 million

Download figure				
Open in new tab				
Download powerpoint				
FIG. 4. Effect of the aerobic training program on mRNA abundance of selected genes in skeletal muscle. Exercise caused an increase in the level of each of these mRNAs (averages given in Table 4). This figure demonstrates that the responses to training did not differ with age or sex. Values are given as the absolute difference between the pre- and posttraining measurements, in arbitrary units (AU) after normalization to 28S rRNA.				
	View inline			
Characteristics of the participants at baseline				
TABLE 2 Univariate correlations between age, insulin sensitivity index, and selected variables	View inline			
TABLE 3 Aerobic capacity, body composition, blood variables, and insulin sensitivity before and after control or exercise training periods	View inline ng			
TABLE 4	View inline			

Impact of Aerobic Exercise Training on Age-Related Changes in Insulin Sensitivity and Muscle Oxidative Capacity | Diabetes

6/26/2018

Values for muscle variables before and after control or exercise training periods

Acknowledgments

Funding was provided by Public Health Service Award RO1AG09531, Mayo Foundation, and the Dole-Murdock Professorship (K.S.N.), National Research Service Award T32-DK07352 and the Mayo-Thompson Fellowship (K.R.S.), and GCRC Grant MO1-RR00585.

The authors are grateful for the valuable technical support provided by Jane Kahl; Dawn Morse; Rebecca Kurup; Karen Townsend; the GCRC nurses, dieticians, and support staff; and the staff of the Healthy Living Center. We also thank the volunteers who completed the protocol.

Footnotes

- Accepted May 1, 2003.
- Received October 31, 2002.
- Revision received May 1, 2003.
- DIABETES

REFERENCES

- 1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS: Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA289:76 –79,2002 CrossRef Google Scholar
- 2. Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey. *JAMA* 37:356 –359,2002 CrossRef PubMed Web of Science Google Scholar
- 3. «Crespo CJ, Keteylan SJ, Heath GW, Sempos CT: Leisure-time physical activity among US adults. *Arch Intern Med***156**:93 –98,1996 CrossRef PubMed Web of Science Google Scholar
- 4. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP: The continuing epidemics of obesity and diabetes in the United States. *JAMA* 286:1195 –1200,2001 CrossRef PubMed Web of Science Google Scholar
- 5. «Shimokata H, Muller DC, Fleg JL, Sorkin J, Ziemba AW, Andres R: Age as independent determinant of glucose tolerance. *Diabetes* 40:44 –51,1991 Abstract/FREE Full Text Google Scholar
- 6. d'Houmard JA, Weidner MD, Dolan PL, Leggett-Frazier N, Gavigan KE, Hickey MS, Tyndall GL, Zheng D, Alshami A, Dohm GL: Skeletal muscle GLUT4 protein concentration and aging in humans. *Diabetes* 44:555 −560,1995 Abstract/FREE Full Text Google Scholar
- 7. «Khort WM, Kirwin JP, Staten MA, Bourey RE, King DS, Holloszy JO: Insulin resistance in aging is related to abdominal obesity. *Diabetes* 42:273 –281,1993 Abstract/FREE Full Text Google Scholar

- 8. «Coon PJ, Rogus EM, Drinkwater D, Muller DC, Goldberg AP: Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. *J Clin Endocrinol Metab* 75:1125 –1132,1992 CrossRef PubMed Web of Science Google Scholar
- 9. Seals DR, Hagberg JM, Hurley BF, Ehsani AA, Holloszy JO: Effects of endurance training on glucose tolerance and plasma lipid levels in older men and women. JAMA252:645 –649,1984 CrossRef PubMed Web of Science Google Scholar
- 10. Hughes VA, Fiatrone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ: Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. *Am J Physiol* 264: :E855 –E862,1993 Google Scholar
- 11. «Kirwin JP, Khort WM, Wojta DM, Bourey RE, Holloszy JO: Endurance exercise training reduces glucose-stimulated insulin levels in 60- to 70-year old men and women. *J Gerontol* 18: M84 M90,1993 Abstract Google Scholar
- 12. Cox JH, Cortright RN, Dohm GL, Houmard JA: Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. *J Appl Physiol*86:2019 –2025,1999 Abstract/FREE Full Text Google Scholar
- 13. «Kahn SE, Larson VG, Beard JC, Cain KC, Fellingham GW, Schwartz RS, Veith RC, Stratton JR, Cerqueira MD, Abrass IB: Effect of exercise on insulin action, glucose tolerance, and insulin secretion in aging. *Am J Physiol* 258: E937 –E943,1990 Google Scholar
- 14. & Houmard JA, Tyndall GL, Midyette JB, Hickey MS, Dolan PL, Gavigan KE, Weidner MD, Dohm GL: Effect of reduced training and training cessation on insulin action and muscle GLUT4. *J Appl Physiol*81:1162 –1168,1996

 Abstract/FREE Full Text Google Scholar
- 15. «Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. *N Engl J Med* 344:1343 –1350,2001 CrossRef PubMed Web of Science Google Scholar
- 16. Hu FB, Manson JE, Meir JS, Colditz G, Liu S, Solomon CG, Willet WC: Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. *N Engl J Med* **345**:790 –797,2001 CrossRef PubMed Web of Science Google Scholar
- 17. Eriksson KF, Lindgarde F: Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise: the 6-year Malmo feasibility study. *Diabetologia* **34**:891 –898,1991 CrossRef PubMed Web of Science Google Scholar
- 18. Diabetes Prevention Program Research Group: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. *N Engl J Med* 346:393 –403,2002 CrossRef PubMed Web of Science Google Scholar
- 19. "American College of Sports Medicine: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. *Med Sci Sports Exer* 30:975 991,1998 CrossRef PubMed Web of Science Google Scholar
- 20. «Zierath JR, He L, Guma A, Wahlstrom E, Klip A, Wallberg-Henriksson H: Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. *Diabetologia* 39:1180 –1189,1996 CrossRef PubMed Web of Science Google Scholar
- 21. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD: Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. *J Clin Invest* 101:2377 –2386,1998 CrossRef PubMed Web of Science Google Scholar

- 22. «Ryder JW, Chibalin AV, Zierath JR: Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. *Acta Physiol Scand* 171:249 –257,2001 CrossRef PubMed Web of Science Google Scholar
- 23. 4Holloszy JO, Coyle EF: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. *J Appl Physiol***56**:831 –838,1984 Abstract/FREE Full Text Google Scholar
- 24. «Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE: Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J13:2051 –2060,1999 Abstract/FREE Full Text Google Scholar
- 25. «Simoneau JA, Kelley DE: Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. *J Appl Physiol* 83:166 –171,1997 Abstract/FREE Full Text Google Scholar
- 26. Boirie Y, Short KR, Ahlman B, Charlton M, Nair KS: Tissue-specific regulation of mitochondrial and sarcoplasmic protein synthesis rates by insulin. *Diabetes* 26:2652 –2658,2001 Google Scholar
- 27. Huang X, Eriksson KF, Vaag A, Lehtovirta M, Hansson M, Laurila E, Kanninen T, Olesen BT, Kurucz I, Koranyi L, Groop L: Insulin-regulated mitochondrial gene expression is associated with glucose flux in human skeletal muscle. *Diabetes* 48:1508 –1514,1999 Abstract Google Scholar
- 28. ←Pendergrass M, Koval J, Vogt C, Yki-Jarvinen H, Iozzo P, Pipek R, Ardehali H, Printz R, Granner D, DeFronzo RA, Mandarino LJ: Insulin-induced hexokinase II expression is reduced in obesity and NIDDM. *Diabetes* 47:387 –394,1998 Abstract Google Scholar
- 29. ¿Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy JO: Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca²⁺. *Am J Physiol***282** :E1008 –E1013,2002 Web of Science Google Scholar
- 30. Freyssenet D, DiCarlo M, Hood DA: Calcium-dependent regulation of cytochrome c gene expression in skeletal muscle cells: identification of a protein kinase C-dependent pathway. *J Biol Chem***274**:9305 –9311,1999

 Abstract/FREE Full Text Google Scholar
- 31. «Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JL, Kelly DP, Spiegelman BM: Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A98: 3820 –3825,2001 Abstract/FREE Full Text Google Scholar
- 32. «Rooyackers OE, Adey DB, Ades PA, Nair KS: Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. *Proc Natl Acad Sci U S A***93**:15364 –15369,1996 Abstract/FREE Full Text Google Scholar
- 33. Barazzoni R, Short KR, Nair KS: Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. *J Biol Chem***275**:3343 –3347,2000 Abstract/FREE Full Text Google Scholar
- 34. Papa S: Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and pathophysiological implications. *Biochim Biophys Acta* 1276:87 –105,1996 CrossRef PubMed Web of Science Google Scholar
- 35. Balagopal P, Schimke JC, Ades P, Adey D, Nair KS: Age effect on transcript levels and synthesis rate of MHC and response to resistance exercise. *Am J Physiol Endocrinol Metab* 280: E203 E208,2001 Abstract/FREE Full Text Google Scholar
- 36. Proctor DN, Beck KC: Delay time adjustments to minimize errors in breath-by-breath measurements of Vo₂ during exercise. *J Appl Physiol*81:2495 –2499,1996 Abstract/FREE Full Text Google Scholar

- 37. «Avagadro A, Bristow JD, Bier DM, Cobelli C, Toffolo G: Stable-label intravenous glucose tolerance test minimal model. *Diabetes* 38:1048 –1055,1989 Abstract/FREE Full Text Google Scholar
- 38. ←Jensen MD, Kanaley JA, Reed JE, Sheedy PF: Measurement of abdominal and visceral fat with computed tomography and dual-energy x-ray absorptiometry. *Am J Clin Nutr***61**:274 –278,1995 Abstract/FREE Full Text Google Scholar
- 39. & Houmard JA, Weidner ML, Gavigan KE, Tyndall GL, Hickey MS, Alshami A: Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging. *J Appl Physiol*85:1337 –1341,1998 Abstract/FREE Full Text Google Scholar
- 40. 4Regensteiner JG, Bauer TA, Reusch JEB, Brandenburg SL, Sippel JM, Vogelsong AM, Smith S, Wolfel EE, Eckel RH, Hiatt WR: Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. *J Appl Physiol*85:310 –317,1998 Abstract/FREE Full Text Google Scholar
- 41. &Rogers MA, King DS, Hagberg JM, Ehsani AA, Holloszy JO: Effect of 10 days of physical inactivity on glucose tolerance in master athletes. *J Appl Physiol***68**:1833 –1837,1990 Abstract/FREE Full Text Google Scholar
- 42. «Vukovich MD, Arciero PJ, Kohrt WM, Racette SB, Hansen PA, Holloszy JO: Changes in insulin action and GLUT-4 with 6 days of inactivity in endurance runners. *J Appl Physiol***80**:240 –244,1996 Abstract/FREE Full Text Google Scholar
- 43. «Clevenger CM, Jones PP, Tanaka H, Seals DR, DeSouza CA: Decline in insulin action with age in endurance-trained humans. *J Appl Physiol* 2105 –2111,2002 Abstract/FREE Full Text Google Scholar
- 44. Weidner MD, Gavigan KE, Tyndall GL, Hickey MS, McCammon MR, Houmard JA: Which anthropometric indices of regional adiposity are related to the insulin resistance of aging? *Int J Obes* 19:325 –330,1995 Google Scholar
- 45.

 dDengel DR, Pratley RE, Hagberg JM, Rogus EM, Goldberg AP: Distinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men. *J Appl Physiol* 318 −325,1996 Abstract/FREE Full Text Google Scholar
- 46. «Kelley DE, Goodpaster BH: Skeletal muscle triglyceride: an aspect of regional adiposity and insulin resistance. Diabetes Care 24:933 –941,2001 Abstract/FREE Full Text Google Scholar
- 47. ∉Houmard JA, Shinebarger MH, Dolan PL, Leggett-Frazier N, Bruner RK, McCammon MR, Isreal RG, Dohm GL: Exercise training increases GLUT4 concentration in previously sedentary middle-aged men. *Am J Physiol* 264:E896 –E901,1993 Google Scholar
- 48. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE: Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. *Diabetes* 6:1579 –1585,1997 Abstract/FREE Full Text Google Scholar
- 49. Abate N, Garg A, Peshock RM, Stray-Gunderson J, Adams-Huet B, Grundy SM: Relationships of generalized and regional adiposity to insulin sensitivity in men. *J Clin Invest***96**:88 –98,1995 Google Scholar
- 50. «Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH: Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. *Am J Physiol* 278: E941 –E948,2000 Google Scholar
- 51. «Scarpula RC: Nuclear activators and coactivators in mammalian mitochondrial biogenesis. *Biochim Biophys Acta***1576**:1 –14,2002 CrossRef PubMed Google Scholar

- 52. «Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM: Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibers. *Nature***418**:797 800,2002 CrossRef PubMed Web of Science Google Scholar
- 53. Gordon JW, Rungi AA, Inagaki H, Hood DA: Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. *J Appl Physiol***90**:389 –396,2001 Abstract/FREE Full Text Google Scholar
- 54. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A: Does oxidative damage to DNA increase with age? *Proc Natl Acad Sci U S A***98**:10469 –10474,2001 Abstract/FREE Full Text Google Scholar
- 55. «Lezza AMS, Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Cantatore P, Gadaleta MN: Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 in skeletal muscle from aged human subjects. *FEBS Lett* 501:74 –78,2001 CrossRef PubMed Web of Science Google Scholar
- 56. Berthon P, Freyssenet D, Chatard JC, Castells J, Mujika I, Geyssant A, Guezennec CY, Denis C: Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training. *Acta Physiol Scand* **154**:269 –274,1995 PubMed Web of Science Google Scholar
- 57. «Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO: Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. *J Appl Physiol* 72:1780 –1786,1992 Abstract/FREE Full Text Google Scholar
- 58. ←Bengtssson J, Gustofsson T, Widegren U, Jansson E, Sundberg CJ: Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. *Pflugers Arch* 443:61 –66,2001 CrossRef PubMed Web of Science Google Scholar
- 59. Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R: mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. *Am J Physiol* 269: C619 C625,1995 Google Scholar

View Abstract

We recommend

Changes in aerobic capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in overweight and obese men.

Seng Khee Gan et al., Diabetes Care

Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes.

Javier Ibañez et al., Diabetes Care

Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content.

Frederico G S Toledo et al., Diabetes

Aerobic exercise and CVD in women with fatty liver disease

MedicalXpress

Strength Exercise Improves Muscle Mass, Insulin Sensitivity in Obese Youth

Gert-Jan van der Heijden et al., Medscape

Exercise and Weight Loss Improvements After Gastric Bypass

Paul M. Coen et al., Medscape

Physiological adaptations to resistance exercise as a function of age

Bethan E. Phillips et. al.. Williams,1 Paul L. Greenhaff,2 Kenneth Smith,1 and Philip J. Atherton1, JCI Insight 6/26/2018

Paradoxical coupling of triglyceride synthesis and fatty acid oxidation in skeletal muscle overexpressing DGAT1.

Li Liu et al., Diabetes

Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training.

Adam R Konopka et al., Diabetes

Effect of regular exercise training on changes in HbA1c, BMI and VO2max among patients with type 2 diabetes mellitus: an 8-year trial

Farzad Najafipour et al., BMJ Open Diab Res Care

Powered by

Previous

**Back to top

In this Issue

August 2003, 52(8)

Table of Contents Index by Author

Search this issue Q

Sign up to receive current issue alerts

- Niew Selected Citations (0)
 - Print
 - **▲** Download PDF
 - Article Alerts
 - **▼** Email Article
 - Citation Tools

© Request Permissions

7.0

+ Add to Selected Citations

▼ Related Articles

No related articles found.

Scopus PubMed Google Scholar

- ▶ Cited By...
- ▶ More in this TOC Section
- **▶** Similar Articles

Navigate

Current Issue

Online Ahead of Print

Scientific Sessions Abstracts

Collections

Archives

Submit

Subscribe

Email Alerts

RSS Feeds

More Information

About the Journal

Instructions for Authors

Journal Policies

Reprints and Permissions

For Advertisers

Privacy Policy: ADA Journals

Copyright Notice/Public Access Policy

Contact Us

Other ADA Resources

Diabetes Care

Clinical Diabetes

Diabetes Spectrum

Standards of Medical Care in Diabetes

BMJ Open - Diabetes Research & Care

Scientific Sessions Abstracts

Professional Books

Diabetes Forecast

DiabetesJournals.org

Diabetes Core Update

ADA's DiabetesPro

ADA Member Directory

Diabetes.org

© 2018 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.