RCSJ model using python3

Felix E. Schmidt¹ and Mark D. Jenkins¹

Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.

(Dated: December 13, 2017)

This script is based on Tinkham's "Introduction to superconductivity" and Gross' "Applied superconductivity", chapter 3². All simulations were done using python3 and the rcsj module written by Felix³.

CONTENTS

I.	Current biasing	1
	A. Junction model and ODE	1
	1. Tinkham approach	2
	2. Gross approach	2
	B. Unit discussion	2
	C. Damping	3
	D. Frequency analysis	3
II.	Voltage biasing	3
	References	4

CURRENT BIASING

Junction model and ODE

We model the Josephson junction in the simplest way possible: A series network of a resistor R, a capacitor C and a nonlinear inductor. The total current running through the network is

$$I(t) = I_s(t) + I_R(t) + I_C(t)$$
 (1)

$$I(t) = I_c \sin(\phi) + \frac{V}{R} + C \frac{\mathrm{d}V}{\mathrm{d}t} \tag{2}$$

$$V(t) = \frac{\hbar}{2e} \frac{\mathrm{d}\phi}{\mathrm{d}t}, \quad \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\hbar}{2e} \frac{\mathrm{d}^2\phi}{\mathrm{d}t^2}$$
 (3)

$$I(t) = I_s(t) + I_R(t) + I_C(t)$$

$$I(t) = I_c \sin(\phi) + \frac{V}{R} + C \frac{dV}{dt}$$

$$V(t) = \frac{\hbar}{2e} \frac{d\phi}{dt}, \frac{dV}{dt} = \frac{\hbar}{2e} \frac{d^2\phi}{dt^2}$$

$$(3)$$

$$\to I(t) = I_c \sin(\phi) + \frac{\hbar}{2eR} \frac{d\phi}{dt} + \frac{\hbar C}{2e} \frac{d^2\phi}{dt^2}$$

Note that for this equation, the resistance in reality depends both on temperature and the voltage across the junction due to quasiparticle tunneling:

$$R(V,T) = \begin{cases} R_{sg}(T) & \text{for } |V| \le 2\Delta(T)/e \\ R_n & \text{for } |V| \ge 2\Delta(T)/e \end{cases}$$
 (5)

where typically $R_{sg} \gg R_n$. The characteristic voltage of the junction is accordingly defined as $V_c = I_c R_n$. There are two approaches to simplifying equation 4 in terms of normalization. We here call them the **Tinkham approach**¹ and the Gross approach².

Tinkham approach

The equation is simplified with normalized time via the plasma frequency, $\tau = \omega_p t$:

$$\omega_p = \frac{1}{\tau_p} = \frac{1}{\sqrt{L_c C}} = \sqrt{\frac{2eI_c}{\hbar C}} \tag{6}$$

$$dt = \frac{1}{\omega_p} d\tau \to \frac{d^n}{dt^n} = \omega_p^n \frac{d^n}{d\tau^n}$$
 (7)

$$\frac{I}{I_c} - \sin(\phi) = \underbrace{\frac{\hbar}{2eI_cR}} \sqrt{\frac{2eI_c}{\hbar C}} \frac{d\phi}{d\tau} + \underbrace{\frac{\hbar C}{2eI_c}} \frac{2eI_c}{\hbar C} \frac{d^2\phi}{d\tau^2}$$

$$\sqrt{\frac{\hbar C}{2eI_c}} \frac{1}{RC} \equiv Q^{-1}$$
(8)

Hence the final ODE is

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}\tau^2} = \frac{I}{I_c} - \sin(\phi) - \frac{1}{Q} \frac{\mathrm{d}\phi}{\mathrm{d}\tau} \tag{9}$$

Gross approach

This approach is different in that it seems more intuitive, but the time scale and damping are different: We normalize the time not by the plasma frequency, but the L_c/R_n time constant that yields the characteristic junction frequency:

$$\omega_c = \frac{1}{\tau_c} = \frac{R_n}{L_c} = \frac{2e}{\hbar} I_c R_n = \frac{\Phi_0}{2\pi} V_c \tag{10}$$

$$\tau = \frac{t}{\tau_c}, \ \tau_c = \frac{\hbar}{2eI_cR} \tag{11}$$

$$dt = \tau_c d\tau \to \frac{d^n}{dt^n} = \frac{1}{\tau_c^n} \frac{d^n}{d\tau^n}$$
(12)

The above ODE then can be resorted into

$$I - I_c \sin(\phi) = \frac{\hbar \tau_c}{2eR} \frac{\mathrm{d}\phi}{\mathrm{d}\tau} + \frac{\hbar C \tau^2}{2e} \frac{\mathrm{d}^2 \phi}{\mathrm{d}\tau^2}$$
 (13)

$$I - I_c \sin(\phi) = \frac{\hbar \tau_c}{2eR} \frac{d\phi}{d\tau} + \frac{\hbar C \tau^2}{2e} \frac{d^2 \phi}{d\tau^2}$$

$$i - \sin(\phi) = \underbrace{\frac{\hbar}{2eRI_c} \left(\frac{2eI_cR}{\hbar}\right)}_{1} \frac{d\phi}{d\tau} + \underbrace{\frac{\hbar C}{2e} \left(\frac{2eI_cR}{\hbar}\right)^2}_{2\frac{2eI_cR^2C}{\hbar} = \beta_c} \frac{d^2\phi}{d\tau^2}$$

$$(13)$$

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}\tau^2} = \frac{1}{\beta_c} \left(i - \sin(\phi) - \frac{\mathrm{d}\phi}{\mathrm{d}\tau} \right) \tag{15}$$

Note that $\beta_c \equiv Q^2 \equiv \tau_c RC$. For this ODE it is much easier to distinguish between $\beta_c \gg 1$ and $\beta_c \ll 1$, simply because of its form. However, it is important to keep in mind that the timescales are different!

Unit discussion B.

We consider first τ_c . The units of $\hbar/(2e) = \Phi_0/(2\pi)$ are Wb=kg m² s⁻² A⁻¹. Critical current is in A, resistance in $\Omega = \text{kg m}^2 \text{ s}^{-3} \text{ A}^{-2}$. Therefore

$$[\tau_c] = \left[\frac{\hbar}{2e} \frac{1}{I_c} \frac{1}{R} \right] = \frac{\text{kg m}^2}{\text{s}^2 \text{ A}} \frac{1}{\text{A}} \frac{\text{s}^3 \text{ A}^2}{\text{kg m}^2} = \text{s}$$
 (16)

$$\to [\tau] = \left[\frac{t}{\tau_c}\right] = \frac{s}{s} = 1 \tag{17}$$

Figure 1. (a) Current-voltage curves for various damping cases. As predicted by theory, high damping $(Q \ll 1)$ corresponds to a square-root like IVC with no hysteresis, while low damping $(Q \gg 1)$ results in strong hystersis with a almost linear retrapping branch. (b) Hysteresis as a function of damping in terms of the Steeqart-McCumber parameter. For low damping, $\beta_c \gg 1$, the hysteresis can be approximated by $4/(\pi Q)$.

Now the same for the plasma frequency: Capacitance is given in units of $F=s^4\,A^2\,m^{-2}\,kg^{-1}$

$$[\omega_p] = \left[\sqrt{\frac{2e I_c}{\hbar C}} \right] = \sqrt{\frac{s^2 A}{kg m^2} A \frac{m^2 kg}{s^4 A^2}} = \sqrt{\frac{1}{s^2}} = \frac{1}{s}$$
 (18)

$$\rightarrow [\tau] = [\omega_p t] = \frac{s}{s} = 1 \tag{19}$$

C. Damping and hysteresis

We consider eq. 15 for simplicity. For **very weak damping**, i.e. $\beta_c \gg 1$, the left hand side of the ODE can be set to zero. The result is a linear IVC on the retrapping branch, with $I_r \leq I_c$:

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}\tau^2} = 0 \to \langle V(t) \rangle = IR_n \tag{20}$$

$$\frac{I_r}{I_c} \approx \frac{4}{\pi \sqrt{\beta_c}} \equiv \frac{4}{\pi Q} \tag{21}$$

An open question is why Gross (and others) report significant hysteresis $I_r/I_c \approx 0.85$ already for $\beta_c = 1$, while we achieve at least $I_r/I_c = 0.95$ for the implemented python simulations.

For **very strong damping**, i.e. $\beta_c \ll 1$, the right hand side of the ODE is zero:

$$\frac{\mathrm{d}\phi}{\mathrm{d}\tau} = i - \sin(\phi) \to \langle V(t) \rangle = I_c R \sqrt{(I/I_c)^2 - 1} \tag{22}$$

without hysteresis. See also Fig. 1 for the resulting simulations of the two cases.

D. Frequency analysis

II. VOLTAGE BIASING

The system equation only slightly changes. What remains to be seen is the normalization and the exact values needed to achieve voltage biasing.

REFERENCES

¹M. Tinkham, Introduction to Superconductivity: Second Edition (Dover Books on Physics) (Vol i), 2nd ed. (Dover Publications, 2004).

²R. Gross and A. Marx, "Lecture notes in Applied Superconductivity," https://www.wmi.badw.de/teaching/Lecturenotes/AS/AS_Chapter3.pdf (2005).

³F. E. Schmidt, "RCSJ model," https://github.com/feschmidt/rcsj (2017).