Лбораторная работа № 8

Модель TCP/AQM

Хамдамова Айжана

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Реализация в xcos	7
	3.2 Реализация модели в OpenModelica	10
4	Выводы	13
Сг	писок литературы	14

Список иллюстраций

3.1	Установка контекста	7
3.2	Модель TCP/AQM в xcos	8
3.3	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	8
3.4	Фазовый портрет (W, Q)	9
3.5	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	
	при С = 0.9	9
3.6	Фазовый портрет (W, Q) при C = 0.9	10
3.7	модель в OpenModelica	11
3.8	Динамика изменения размера TCP окна W (t) и размера очереди Q(t).	
	OpenModelica	11
3.9	Фазовый портрет (W. O). OpenModelica	12

Список таблиц

1 Цель работы

Реализовать модель TCP/AQM в xcos и OpenModelica.

2 Задание

- 1. Построить модель TCP/AQM в xcos;
- 2. Построить графики динамики изменения размера TCP окна W(t) и размера очереди Q(t);
- 3. Построить модель TCP/AQM в OpenModelica;

3 Выполнение лабораторной работы

3.1 Реализация в хсоѕ

Построим схему хсоs, моделирующую нашу систему, с начальными значениями параметров N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1. Для этого сначала зададим переменные окружения (рис. [3.1]).

Рис. 3.1: Установка контекста

Затем реализуем модель TCP/AQM, разместив блоки интегрирования, суммирования, произведения, констант, а также регистрирующие устройства (рис. [3.2]):

Рис. 3.2: Модель TCP/AQM в хсоs

В результате получим динамику изменения размера ТСР окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. [3.3], [3.4]):

Рис. 3.3: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 3.4: Фазовый портрет (W, Q)

Уменьшив скорость обработки пакетов C до 0.9 увидим, что автоколебания стали более выраженными (рис. [3.5], [3.6]).

Рис. 3.5: Динамика изменения размера TCP окна W (t) и размера очереди Q(t) при C=0.9

Рис. 3.6: Фазовый портрет (W, Q) при C = 0.9

3.2 Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Зададим параметры, начальные значения и систему уравнений.(рис. [3.7])

```
Ξ
                                    lab08*
🖶 🚜 🧧 🕦 | Доступный на запись | Model | Вид Текст | lab08 | /home/openmodelica/lab08.mo
      model lab08
      parameter Real N=1;
parameter Real R=1;
      parameter Real K=5.3;
      parameter Real C=1;
  6
      Real W(start=0.1);
      Real Q(start=1);
      equation
 11
      der(W) = 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
 12
 13
      der(Q) = if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
 14
      end lab08;
```

Рис. 3.7: модель в OpenModelica

Выполнив симуляцию, получим динамику изменения размера TCP окна W(t)(зеленая линия) и размера очереди Q(t)(черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. [3.8], [3.9]).

Рис. 3.8: Динамика изменения размера TCP окна W (t) и размера очереди Q(t). OpenModelica

Рис. 3.9: Фазовый портрет (W, Q). OpenModelica

4 Выводы

В процессе выполнения данной лабораторной работы я реализовала модель TCP/AQM в xcos и OpenModelica.

Список литературы

- 1. Братусь А. С., Новожилов Артем Сергеевич abd Платонов А. П. Динамические системы и модели биологии. М. : ФИЗМАТЛИТ, 2010. 400 с.
- $2. \ \ OM\, over all\, User's\, Guide. -2020. -URL: https://www.openmodelica.org/useresresources/userdomains. -2020. -URL: https://www.openmodelica.org/userdomains. -2020. -URL: https://www.openmode$
- 3. Modelica Language. URL: https://www.modelica.org/modelicalanguage.
- 4. OpenModelica. URL: https://www.openmodelica.org/.
- 5. Xcos. URL: https://www.scilab.org/software/xcos.