Source:

1 | Algebreic and Geometric Multiplicities

I missed the last ten minutes of class and had to look up what the algebreic and geometric multiplicities are. I used this source.

Also it says something about

It is a fact that summing up the algebraic multiplicities of all the eigenvalues of an $n \times n$ matrix A gives exactly n.

Which reminds me of the fundamental theorem of algebra...

$$1.1 \mid \begin{pmatrix} 4 & -12 \\ 2 & 0 \end{pmatrix}$$

1.1.1 | Geometric multiplicity

The null space is span $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ which is dimension $\boxed{1}$.

1.1.2 | Algebraic multiplicity

The determinant of $\begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$ is

$$-2(4-\lambda) - 2(-\lambda) = 4(\lambda - 1)$$

So the algebraic multiplicity is $\boxed{1}$?

$$1.2 \mid \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$

1.2.1 | Geometric

Null space of 1 ((x,0,0)) has dim 1. Null space of 3 ($\left(x,\frac{-2x}{3},\frac{4x}{3}\right)$) has dim 1 as well.

1.2.2 | Algebraic

The determinant simplifies to one factored term:

$$(1-\lambda)^2(3-\lambda)$$

So 1 has a multiplicity 2 and 3 has multiplicity 1?

Exr0n · **2020-2021**

$$1.3 \mid \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$

1.3.1 | Geometric

For $\lambda=1$, null space is (x,y,0) so dim 2. For $\lambda=3$, null space is $(x,\frac{-x}{2},x)$ so dim 1.

1.3.2 | Algebraic

The determinant is the same as the previous matrix, so once again, 1 has multiplicity 2 and 3 has multiplicity 1

Exr0n · 2020-2021 Page 2