## **Pivotal**

Petabyte Scale Data Warehousing Greenplum

MADlib -- In Database Parallel Analytics

Postgres Conf 2018

Marshall Presser
Craig Sylvester
Andreas Scherbaum
17 April 2018

# Agenda

- Why MADlib®?
- What is MADlib®
- Current MADlib® routines
- Small examples

## Why MADlib®?

- Most analytics is done by pulling the data to the analytic engine
  - Some enginges only accommodate in memory data
  - Sample data is the fall back often not satisfactory
  - Time to pull often outweighs analytic processing time
- Developers sometimes write their own code
- There is a better way



# Scalable, In-Database Machine Learning



### Big Data Machine Learning in SQL for Data Scientists

Open Source, commercially usable BSD license Supports Postgres, Pivotal Greenplum Database, and Pivotal HAWQ

Powerful analytics for Big Data

- Open Source Apache Top Level Progress
- Works on Greenplum and PostgreSQL
- In active development by Pivotal
- Downloads and Docs: <a href="http://madlib.apache.org/">http://madlib.apache.org/</a>

## MADlib Advantages



- Better parallelism
  - Algorithms designed to leverage MPP and Hadoop architecture
- Better scalability
  - Algorithms scale as your data set scales
- Better predictive accuracy
  - Can use all data, not a sample
- Open source
  - Available for customization and optimization by user if desired

Performing a linear regression on 10 million rows in seconds



Figure 5: Linear regression execution times using MADlib v0.3 on Greenplum Database 4.2.0, 10 million rows

Hellerstein, Joseph M., et al. "The MADlib analytics library: or MAD skills, the SQL." Proceedings of the VLDB Endowment 5.12 (2012): 1700-1711.













#### Predictive Analytics Library

#### **Supervised Learning**

#### Regression Models

- Cox Proportional Hazards Regression
- · Elastic Net Regularization
- Generalized Linear Models
- Linear Regression
- Logistic Regression
- Marginal Effects
- Multinomial Regression
- Ordinal Regression
- · Robust Variance, Clustered Variance
- Support Vector Machines

#### Tree Methods

- Decision Tree
- Random Forest

#### Other Methods

- Conditional Random Field
- Naïve Bayes

#### **Unsupervised Learning**

- · Association Rules (Apriori)
- Clustering (K-means)
- Topic Modeling (LDA)

#### **Time Series**

ARIMA

#### **Model Evaluation**

Cross Validation

#### **Other Modules**

- Conjugate Gradient
- Linear Solvers
- PMML Export
- Random Sampling
- Term Frequency for Text

#### **Data Types and Transformations**

- Array Operations
- Dimensionality Reduction (PCA)
- Encoding Categorical Variables
- Matrix Operations
- Matrix Factorization (SVD, Low Rank)
- · Norms and Distance Functions
- Sparse Vectors

#### **Statistics**

#### Descriptive

- Cardinality Estimators
- Correlation
- Summary

#### Inferential

Hypothesis Tests

#### Other Statistics

· Probability Functions

Aug 2015

# MADIIb Architecture



## Pivotal Technology: Hadoop & HAWQ

- Performance through massive parallelism
- Automatic parallelization
  - Load and query like any database
  - Automatically distributed tables across nodes
- Analytics-oriented query optimization
- Scalable MPP architecture
  - All nodes can scan and process in parallel
  - Linear scalability by adding nodes



## Calling MADlib Functions: Fast Training, Scoring

- MADlib allows users to easily and create models without moving data out of the systems
  - Model generation
  - Model validation
  - Scoring (evaluation of) new data
- All the data can be used in one model
- Built-in functionality to create of multiple smaller models (e.g. classification grouped by feature)
- Open-source lets you tweak and extend methods, or build your own



## Calling MADlib Functions: Fast Training, Scoring

- MADlib allows users to easily and create models without moving data out of the systems
  - Model generation
  - Model validation
  - Scoring (evaluation of) new data
- All the data can be used in one model
- Built-in functionality to create of multiple smaller models (e.g. classification grouped by feature)
- Open-source lets you tweak and extend methods, or build your own



## Calling MADlib Functions: Fast Training, Scoring

- MADlib allows users to easily and create models without moving data out of the systems
  - Model generation
  - Model validation
  - Scoring (evaluation of) new data
- All the data can be used in one model
- Built-in functionality to create of multiple smaller models (e.g. classification grouped by feature)
- Open-source lets you tweak and extend methods, or build your own

Table with data to be scored

Table containing model

### Pointer to Documentation

- General madlib documentation
  - http://madlib.apache.org/documentation.html
- Quick Start Guide
  - https://cwiki.apache.org/confluence/display/MADLIB/ Quick+Start+Guide+for+Users