Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2018

MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

These marking guidelines consist of 18 pages. *Hierdie nasienriglyne bestaan uit 18 bladsye.*

Need an amazing tutor? www.teachme2.com/matric

Physical Sciences P2/Fisiese Wetenskappe V2 2 DBE/November 2018 NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 1/VRAAG 1

1.10	B√√	(2) [20]
1.9	$D\checkmark\checkmark$	(2)
1.8	$D\checkmark\!\checkmark$	(2)
1.7	B√✓	(2)
1.6	B√√	(2)
1.5	$D\checkmark\checkmark$	(2)
1.4	A✓✓	(2)
1.3	C✓✓	(2)
1.2	C✓✓	(2)
1.1	C✓✓	(2)

Physical Sciences P2/Fisiese Wetenskappe V2 3 NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne DBE/November 2018

QUESTION 2/VRAAG 2

2.1 **ANY ONE/ENIGE EEN**:

- (Alcohol/ethanol) is flammable/catches fire easily. √
 (Alkohol/etanol) is vlambaar/slaan maklik aan die brand.
- To heat it evenly./Om dit eweredig te verhit.
- Water bath is used for low heat/low temperature./Waterbad word gebruik vir lae hitte/lae temperatuur.
- Alcohol/ethanol will evaporate too quickly./(Alkohol/etanol) sal te vinnig verdamp.

Accept/Aanvaar:

(Alcohol/ethanol) is volatile. (Alkohol/etanol) is vlugtig.

(1)

2.2

2.2.3

2.2.1 Esterification/condensation √ Verestering/esterifikasie/kondensasie

(1)

(1)

- 2.2.2 H₂SO₄ ✓
 - Esters ✓ (1)
 - 2.3 $\frac{M(ester)}{M(C_4H_8O)} = \frac{144}{72} = 2$ $\therefore 2 \times C_4H_8O = C_8H_{16}O_2 \checkmark$

Marking guidelines/Nasienriglyne

- If only answer given, award 2 marks on final answer./Indien slegs antwoord gegee, ken 2 punte toe vir finale antwoord.
- If 72 g·mol⁻¹ calculated without substituting, no mark is awarded./Indien 72 g·mol⁻¹ bereken is sonder om te vervang word geen punt toegeken nie.

(2)

2.4 Ethyl ✓ hexanoate ✓ Etielheksanoaat

Note/Aantekening

Accept any other ethyl ESTER from QUESTION 2.3. Aanvaar enige ander etiel ESTER vanaf VRAAG 2.3.

(2)

Physical Sciences P2/Fisiese Wetenskappe V2 4
NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

2.5 **POSITIVE MARKING FROM QUESTION 2.4. POSITIEWE NASIEN VANAF VRAAG 2.4.**

Marking criteria/Nasienriglyne

• Whole structure correct/Hele struktuur korrek:

- $\frac{2}{2}$
- Only functional group correct/Slegs funksionele groep korrek: Max/Maks.: $\frac{1}{2}$
- Accept/Aanvaar -OH as condensed/gekondenseerd.

IF/INDIEN

- More than one functional group/wrong functional group/Meer as een funksionele groep/foutiewe funksionele groep:
- If condensed structural formulae used/Indien gekondenseerde struktuur-formules gebruik:
 Max/Maks.: 1/2

(2) [10]

QUESTION 3/VRAAG 3

3.1 Marking guidelines/Nasienriglyne

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

The <u>temperature</u> at which the <u>vapour pressure</u> of a substance <u>equals</u> atmospheric/external pressure.

Die <u>temperatuur</u> waar die <u>dampdruk</u> van 'n stof <u>gelyk is aan atmosferiese</u>/ <u>eksterne druk</u>.

(2)

3.2

3.2.1 Carboxyl (group)/karboksiel(groep) ✓

Accept/Aanvaar

Carboxylic/Karboksiel (1)

3.2.2 Propanoic acid/propanoësuur √ (1)

Physical Sciences P2/Fisiese Wetenskappe V2 5 NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne DBE/November 2018

Marking criteria/Nasienriglyne

Whole structure correct:
 Hele struktuur korrek:

2/ /2

Only functional group correct:
 Slegs funksionele groep korrek: Max/Maks: 1/2

IF/INDIEN

- More than one functional group/wrong functional group/Meer as een funksionele groep/foutiewe funksionele groep:
- If condensed structural formulae used/Indien gekondenseerde struktuur-formules gebruik:
 Max/Maks: 1/2

ACCEPT/AANVAAR
(2 or/of 0)

O—H O
H—C——C—H ✓✓
H

O—H
H—C——C—O—H✓✓
H

O—H O—H
H—C——C—H

3.3 (A ×

Lowest boiling point./Shortest chain length. ✓ Laagste kookpunt./Kortste kettinglengte.

(2)

(2)

3.4

3.4.1 The same molecular mass/molecular size. ✓ Dieselfde molekulêre massa/molekulêre grootte.

(1)

(2)

- 3.4.2 Primary/*Primêre* ✓
 - -OH group is bonded to a C atom bonded to one other C atom. ✓
 - -OH-groep is gebind aan 'n C-atoom wat aan een ander C-atoom gebind is.

OR/OF

- -OH group is bonded to a C atom that has two H atoms.
- -OH-groep is gebind aan 'n C-atoom wat twee H-atome bevat.

DBE/November 2018

3.4.3 Marking guidelines/Nasienriglyne

- BOTH have hydrogen bonding./BEIDE het waterstofbindings. ✓
- Compare number of sites for hydrogen bonding./Vergelyk aantal punte vir waterstofbinding. ✓
- Compare strength of IMFs./Vergelyk sterkte van IMKe. ✓
- Compare energy required./Vergelyk energie benodig. ✓
- Both compounds/X and B have (in addition to London forces and dipole-dipole forces) hydrogen bonding./Beide verbindings/X en B het waterstofbindings (behalwe Londonkragte en dipool-dipoolkragte). ✓
- Compound X/CH₃CH₂CH₂OH/propan-1-ol/alcohol has one site for hydrogen bonding and compound B/ethanoic acid/carboxylic acid has two/more sites for hydrogen bonding OR B/ethanoic acid/carboxylic acid has two/more sites for hydrogen bonding. ✓ Verbinding X/CH₃CH₂CH₂OH/propan-1-ol/alkohol het een punt vir waterstofbindings en verbinding B/etanoësuu/karboksielsuur het twee/meer punte vir waterstofbindings OF B/etanoësuu/karboksielsuur het twee/meer punte vir waterstofbindings.
- Intermolecular forces in compound <u>B</u>/ethanoic acid/carboxylic acid are <u>stronger</u> than intermolecular forces in compound X/CH₃CH₂CH₂OH/propan-1-ol/alcohol. ✓
 Intermolekulêre kragte in verbinding <u>B</u>/etanoësuur/karboksielsuur is <u>sterker</u> as die intermolekulêre kragte in verbinding X/CH₃CH₂CH₂OH/propan-1-ol/alkohol.

OR/OF

Intermolecular forces in <u>compound **X**</u>/CH₃CH₂CH₂OH/ propan-1-ol/alcohol are <u>weaker</u> than intermolecular forces in compound **B**/ethanoic acid/carboxylic acid./Intermolekulêre kragte in <u>verbinding</u> **X**/CH₃CH₂CH₂OH/propan-1-ol/alkohol is <u>swakker</u> as intermolekulêre kragte in verbinding **B**/etanoësuur/karboksielsuur.

More energy is needed to overcome/break intermolecular forces in compound B/ethanoic acid/carboxylic acid than in compound X/CH₃CH₂CH₂OH/ propan-1-ol/alcohol. ✓ Meer energie word benodig om intermolekulêre kragte in verbinding B/etanoësuur as in verbinding X/CH₃CH₂CH₂OH/ propan-1-ol/alkohol te oorkom/breek.

OR/OF

Less energy is needed to overcome/break intermolecular forces in compound X/CH₃CH₂CH₂OH/propan-1-ol/alcohol than in compound B/ethanoic acid/*carboxylic acid*.

Minder energie word benodig om intermolekulêre kragte in verbinding X/CH₃CH₂CH₂OH/propan-1-ol/alkohol te oorkom/breek as in verbinding B/etanoësuur/karboksielsuur.

(4) [**15**] Physical Sciences P2/Fisiese Wetenskappe V2 7
NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

QUESTION 4/VRAAG 4

4.1

4.1.1 (A series of organic) compounds that can be described by the <u>same general</u> formula/functional group. ✓✓ (2 or 0)

('n Reeks organiese) verbindings wat deur <u>dieselfde algemene formule/</u> funksionele groep beskryf kan word. **(2 of 0)**

OR/OF

(A series of organic) compounds in which one member <u>differs from the next</u> <u>by a CH_2 group</u>./('n Reeks organiese) verbindings waarin een lid van die volgende verskil met 'n CH_2 -groep. (2 or/of 0)

(2)

4.1.2 Substitution/halogenation/bromination ✓ Substitusie/halogenasie/halogenering/brominasie/brominering

(1)

4.1.3 HBr ✓ (1)

4.1.4

Marking criteria/Nasienriglyne

- Br on first C atom/Br op eerste Catoom: Max/Maks: 1/2
- Whole structure correct/Hele struktuur korrek: ²/₂

IF/INDIEN:

Br₂ but rest of structure correct/Br₂ maar res van struktuur korrek: $\frac{1}{2}$

(2)

4.1.5 $C_5H_{12} + 8O_2 \checkmark \rightarrow 5CO_2 + 6H_2O \checkmark$ Bal \checkmark

Marking guidelines/Nasienriglyne

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Ignore double arrows and phases./Ignoreer dubbelpyle en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10.
- If condensed structural formulae used/Indien gekondenseerde struktuur-

formules gebruik: Max/Maks: 2/

(3)

4.1.6 Marking guidelines/Nasienriglyne

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

The (chemical) process in which <u>longer chain hydrocarbons/longer chain alkanes</u> are <u>broken down to shorter/more useful hydrocarbons/molecules/</u> chains/alkanes and alkenes.

Die (chemiese) proses waarin <u>langketting koolwaterstowwe/langketting-alkane afgebreek word in korter/meer bruikbare koolwaterstowwe/molekule/kettings/alkane en alkene.</u>

(2)

Physical Sciences P2/Fisiese Wetenskappe V2 8
NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

4.1.7 H H H H

| | | | | \frac{\sqrt{c}}{\sqrt{c}}

H—C—C—C—C—C—H

| | | |

Marking guidelines/Nasienriglyne

- One or more H atoms omitted/Een of meer H-atome uitgelaat: Max/Maks: 1/2
- Condensed or semi-structural formula:
 Gekondenseerde of semi-struktuurformule:

 Max/Maks: 1/2

4.24.2.1 Butan-2-ol ✓✓ **OR/***OF* 2-butanol ✓✓

 $\frac{\text{IF/INDIEN:}}{\text{Butanol or/of butan-1-ol}}$

Marking criteria/Nasienriglyne

- Only functional group correct/Slegs
 funksionele groep korrek: Max/Maks: ½
 Whole structure correct:
- Whole structure correct:

 Hele struktuur korrek:

 2/2

(2) **[17]**

(2)

QUESTION 5/VRAAG 5

5.1 Temperature/*Temperatuur* ✓

(1)

(2)

5. 2 **NOTE/LET WEL**

Give the mark for <u>per unit time</u> only if in context of reaction rate.

Gee die punt vir <u>per eenheidtyd</u> slegs indien in konteks met reaksietempo.

ANY ONE/ENIGE EEN

- Change in concentration ✓ of products/reactants per (unit) time. ✓ Verandering in konsentrasie van produkte/reaktanse per (eenheid) tyd.
- Change in amount/number of moles/volume/mass of products or reactants per (unit) time.
 Verandering in hoeveelheid/getal mol/volume/massa van produkte of reaktanse per (eenheid) tyd.
- Amount/number of moles/volume/mass of products formed/reactants used per (unit) time. Hoeveelheid/getal mol/volume/massa van produkte gevorm/reaktanse gebruik per (eenheid) tyd.
- Rate of change in concentration/amount/number of moles/volume/mass.
 Tempo van verandering in konsentrasie/ hoeveelheid/getal mol/volume/massa. √√ (2 or/of 0)

5.3 14 (min) $\checkmark\checkmark$ (2)

Physical Sciences P2/Fisiese Wetenskappe V2 9 DNSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

5.4

5.4.1 Graph/grafiek B ✓

(Experiment **3)** has the highest (acid) concentration/more particles/higher number of moles. ✓

(Eksperiment 3) het die hoogste (suur)konsentrasie/meer deeltjies/groter aantal mol.

(2)

5.4.2 (Graph/grafiek) **C** ✓

(Experiment 5) is at highest temperature/more particles with sufficient kinetic energy/HCℓ is at 35°C ✓

(Eksperiment 5) is by die hoogste temperatuur/meer deeltjies met genoeg kinetiese energie/HCl is by 35°C.

(2)

5.5

5.5.1 Speeds up the reaction./Increases the reaction rate./Provides alternate pathway./Lowers the (net) activation energy.

Versnel die reaksie./Verhoog die reaksietempo./Verskaf alternatiewe

roete./Verlaag die (netto) aktiveringsenergie.

5.5.2 Equal to/Gelyk aan ✓

(1)

(1)

5.6

$$n(Zn) = \frac{m}{M}$$

$$= \frac{1,5}{65} \checkmark$$

$$= 0,023 \text{ mol}$$

$$rate/tempo = -\frac{\Delta n}{\Delta t}$$

$$= -(\frac{0 - 0,023}{14 \checkmark - 0})$$

$$= 1,65 \times 10^{-3} \text{ (mol· min}^{-1})$$

Marking guidelines/Nasienriglyne

Substitute/vervang 65 g·mol⁻¹ in

$$n=\frac{m}{M}\checkmark$$

- Substitute change in mol to calculate rate./Vervang verandering in mol om tempo te bereken. ✓
- Substitute change in time to calculate rate./Vervang verandering in tyd om tempo te bereken. ✓
- Final answer/Finale antwoord: 1,65 x 10⁻³ mol·min⁻¹ ✓

Range/Gebied:

1,43 x 10⁻³ to/tot 1,65 x 10⁻³ (mol·min⁻¹)

Notes/Aantekeninge

- Ignore if zeros omitted in calculation of reaction rate./Ignoreer indien nulle uitgelaat in berekening van reaksietempo.
- Accept negative answer i.e. -1,65 x 10⁻³ mol·min⁻¹/Aanvaar negatiewe antwoord d.i. -1,65 x 10⁻³ mol·min⁻¹.

(4)

[15]

Physical Sciences P2/Fisiese Wetenskappe V2 10 DBE NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

QUESTION 6/VRAAG 6

6.1 When the equilibrium in a closed system is disturbed, the system will reinstate a (new) equilibrium \(\sqrt{} \) by favouring the reaction that will cancel/oppose the disturbance. \(\sqrt{} \)

<u>Wanneer die ewewig</u> in 'n geslote sisteem <u>versteur word</u>, sal die sisteem 'n (nuwe) <u>ewewig instel</u> deur die reaksie te bevoordeel wat die <u>versteuring</u> kanselleer/teenwerk.

(2)

6.2 ___ Endothermic/Endotermies ✓

- Decrease in temperature favours the exothermic reaction. ✓ Afname in temperatuur bevoordeel die eksotermiese reaksie.
- The reverse reaction is favoured./Die terugwaartse reaksie word bevoordeel. ✓

OR/OF

Number of moles/amount/concentration of N_2O_4 /colourless gas increases. Aantal mol/hoeveelheid/konsentrasie van N_2O_4 /kleurlose gas neem toe.

OR/OF

Number of moles/amount of NO₂/brown gas decreases./Aantal mol/hoeveelheid NO₂ /bruin gas neem af.

(3)

6.3

- 6.3.1 Increases/*Verhoog* ✓ (1)
- 6.3.2 Remains the same/*Bly dieselfde* ✓ (1)
- 6.3.3 Increases/Verhoog ✓ (1)

6.4 <u>CALCULATIONS USING NUMBER OF MOLES</u> <u>BEREKENINGE WAT GETAL MOL GEBRUIK</u>

Marking guidelines/Nasienriglyne

- $\Delta n(N_2O_4) = 20\% \text{ of/} van x/0,2x. \checkmark$
- **USE** ratio/*GEBRUIK* verhouding: N₂O₄: NO₂: = 1:2. ✓
- $n(N_2O_4)_{\text{eq/ewe}} = n(N_2O_4)_{\text{initial/begin}} \Delta n(N_2O_4).$ $n(NO_2)_{\text{eq/ewe}} = n(NO_2)_{\text{initial/begin}} + \Delta n(NO_2).$
- Divide equilibrium moles by 2 dm³/Deel ewewigsmol deur 2 dm³. √
- Correct K_c expression (<u>formulae in square brackets</u>). ✓ Korrekte K_c uitdrukking (<u>formules in vierkanthakies</u>).
- Substitution of K_c value/*Vervanging van K_c-waarde*. ✓
- Substitution of concentrations into correct K_c expression. ✓
 Vervanging van konsentrasies in korrekte K_c-uitdrukking.
- Final answer/Finale antwoord: 1,6 (mol) √

OPTION 1/OPSIE 1

	N ₂ O ₄	NO ₂]
Initial amount (moles) Aanvangshoeveelheid (mol)	x	0	
Change in amount (moles) Verandering in hoeveelheid (mol)	0,2 x ✓	0,4 x	ratio ✓ verhouding
Equilibrium amount (moles) hoeveelheid (mol)	<u>0,8x</u>	0,4 x	√ Voimodding
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	(0,4x	0,2 x	Divide by 2 dm ³ ✓

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} \checkmark$$

$$0.16 \stackrel{\checkmark}{=} \frac{(0.2\mathbf{x})^{2}}{(0.4\mathbf{x})} \checkmark$$

x = 1,6 (mol)√

No K_c expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{7}{8}$

Wrong K_c expression/*Verkeerde K_c-uitdrukking*: Max./*Maks*. $\frac{5}{8}$

OPTION 2/OPSIE 2

$$\Delta n(N_2O_4) = \frac{20}{100} \mathbf{x} \checkmark = 0.2\mathbf{x}$$

$$\Delta n(NO_2) = 2\Delta n(N_2O_4) = 0.4 \mathbf{x} \checkmark$$

$$n(N_2O_4)_{eq/ewe} = \mathbf{x} - 0.2\mathbf{x} = 0.8\mathbf{x} \quad \text{AND} \quad n(NO_2)_{eq/ewe} = 0 + 0.4\mathbf{x} \checkmark$$

$$c(N_2O_4)_{eq/ewe} = \frac{0.8\mathbf{x}}{2} = 0.4\mathbf{x}$$

$$c(NO_2)_{eq/ewe} = \frac{0.4\mathbf{x}}{2} = 0.2\mathbf{x}$$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]} \checkmark$$

$$0.16 \checkmark = \frac{(0.2\mathbf{x})^2}{(0.4\mathbf{x})} \checkmark$$

$$No \ K_c \text{ expression, correct substitution/Geen } K_c - \text{uitdrukking, korrekte substitusie: Max./Maks. } \frac{7}{8}$$

$$Wrong \ K_c \text{ expression/Verkeerde } K_c - \text{uitdrukking: } Max./Maks. } \frac{5}{8}$$

 $x = 1.6 \text{ (mol)} \checkmark$

CALCULATIONS USING CONCENTRATION BEREKENINGE WAT KONSENTRASIE GEBRUIK

Marking guidelines/Nasienriglyne

- Initial n(N₂O₄)/x divide by 2 dm³. √
 Aanvanklike n(N₂O₄)/x gedeel deur 2 dm³.
- $\Delta c(N_2O_4) = 20\%$ of initial concentration/0,1x. \checkmark
- <u>USE</u> ratio/<u>GEBRUIK</u> verhouding: c(N₂O₄): c(NO₂) = 1:2. √
- $c(N_2O_4)_{eq/ewe} = c(N_2O_4)_{initial/begin} \Delta c(N_2O_4).$ $c(NO_2)_{eq/ewe} = c(NO_2)_{initial/begin} + \Delta c(NO_2).$
- Correct K_c expression (<u>formulae in square brackets</u>). ✓ Korrekte K_c uitdrukking (<u>formules in vierkanthakies</u>).
- Substitution of K_c value/*Vervanging van K_c-waarde*. ✓
- Substitution of concentrations into K_c expression. ✓ *Vervanging van konsentrasies in K_c-uitdrukking.*
- Final answer/Finale antwoord: 1,6 (mol) ✓

OPTION 3/OPSIE 3

	N_2O_4	NO_2	
Initial concentration (mol·dm ⁻³) Aanvanklike konsentrasie (mol·dm ⁻³)	$\frac{x}{2} = 0.5x$	0	Divide by 2 dm³ ✓
Change (mol·dm ⁻³) Verandering (mol·dm ⁻³)	0,1 x ✓	0,2 x	ratio √ verhouding
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	(0,4 x	0,2 x	\checkmark

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} \checkmark$$

$$0.16 \checkmark = \frac{(0.2\mathbf{x})^{2}}{0.4\mathbf{x}} \checkmark$$

$$\mathbf{x} = 1.6 \text{ (mol)} \checkmark$$

No K_c expression, correct substitution/Geen K_cuitdrukking, korrekte substitusie: Max./Maks. $\frac{6}{8}$

Wrong K_c expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{5}{8}$

(8)

[16]

Physical Sciences P2/Fisiese Wetenskappe V2 13
NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

QUESTION 7/VRAAG 7

7.1

7.1.1 An acid is a <u>proton donor</u>. ✓ ✓ 'n Suur is 'n protondonor/skenker.

7.1.2 $H_2O \checkmark$ (1)

7.1.3 $HSO_4^- \checkmark \checkmark$ (2)

7.2

7.2.1 Reaction of a salt with water/ H_2O . $\checkmark\checkmark$ Reaksie van 'n sout met water/ H_2O .

Accept/Aanvaar

Reaction of cations or anions with water Reaksie van katione of anione met water

(2)

(3)

(2)

7.2.2 • $CO_3^{2-}(aq) + 2H_2O(\ell) \checkmark = H_2CO_3(aq) + 2OH^-(aq) \checkmark$ • OR/OF• $CO_3^{2-}(aq) + H_2O(\ell) \Rightarrow HCO_3^-(aq) + OH^-(aq)$

Accept/Aanvaar:

 $CaCO_3(aq) + 2H_2O(l) = H_2CO_3(aq) + Ca(OH)_2(aq)$

The formation of OH⁻(aq) neutralises the excess acid. ✓
 Die vorming van OH⁻(aq) neutraliseer die oormaat suur.

Marking guidelines/Nasienriglyne

- Reactants ✓ Products ✓
 Reaktanse Produkte
- The formation of OH⁻(aq) neutralises the excess acid. ✓ Die vorming van OH⁻(aq) neutraliseer die oormaat suur.
- Ignore single arrows and phases./Ignoreer enkelpyle en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10.
- Ignore balancing./Ignoreer balansering.

7.3
7.3.1
$$pH = -log[H_3O^{+}] \checkmark$$

 $5 \checkmark = -log[H_3O^{+}]$
 $[H_3O^{+}] = 1 \times 10^{-5} \text{ mol} \cdot dm^{-3} \checkmark$ (3)

7.3.2 **POSITIVE MARKING FROM QUESTION 7.3.1. POSITIEWE NASIEN VAN VRAAG 7.3.1.**

Marking guidelines/Nasienriglyne

- Any formula/Enige formule: $c = \frac{n}{V}/n = \frac{m}{M}/\frac{c_a \times V_a}{c_b \times V_b} = \frac{n_a}{n_b}/c = \frac{m}{MV} \checkmark$
- Substitute/vervang V = 4 x 10⁹ dm³ ✓
- Calculate $n_a(reacted) = n_a(initial) n_a(final) \checkmark \checkmark$ Bereken $n_a(reageer) = n_a(begin) - n_a(finaal)$
- Use/Gebruik n(CaO): n(H₃O⁺) = 1:2 √
- Substitution of/Vervanging van 56 g·mol⁻¹ ✓
- Final answer/Finale antwoord: $m = 1,08 \times 10^6 \text{ g to/tot } 1,09 \times 10^6 \text{ g} \checkmark$

IF final answer is negative:/**INDIEN** finale antwoord negatief is Max/Maks: $\frac{6}{7}$

OPTION 1/OPSIE 1 OPTION 2/OPSIE 2 $c(H_3O^+)_{ini/aanv.} = \frac{n}{V}$ $c(H_3O^+)_{fin} = \frac{n}{V}$ $= \frac{1,26 \times 10^{3}}{4 \times 10^{9}}$ = 3,15 \times 10⁻⁷ mol·dm⁻³ $1 \times 10^{-5} = \frac{n}{4 \times 10^{9}} \checkmark$ $n_a = 4 \times 10^4 \text{ mol}$ $n(H_3O^+)_{react/rea}$ = 4 x $10^4 - 1,26$ x $10^3 \checkmark \checkmark$ $c(H_3O^+)_{rea} = 1 \times 10^{-5} - 3.15 \times 10^{-7} \checkmark \checkmark$ = 9.69 x 10⁻⁶ mol·dm⁻³ $= 3.87 \times 10^4 \text{ mol}$ $n(H_3O^+)_{rea} = cV$ $n(CaO) = \frac{1}{2}n(H_3^*O^+)$ $= (9,65 \times 10^{-6})(4 \times 10^{9})$ $= \frac{1}{2} \times 3.87 \times 10^4 \checkmark$ $= 3.87 \times 10^4 \text{ mol}$ $= 1,94 \times 10^4 \text{ mol}$ $n(CaO) = \frac{1}{2}n(H_3O^+)$ $= \frac{1}{2} \times 3,87 \times 10^4 \checkmark$ $= 1.94 \times 10^4 \text{ mol}$ OR/OF $n(CaO) = \frac{m}{M}$ 1 mol : 56 g ✓ $1,94 \times 10^4 \text{ mol}$: m $1,94 \times 10^4 = \frac{\text{m}}{56}$ \therefore m = 1.09 x 10⁶ q \checkmark

∴ m = 1,09 x 10^6 g ✓ **OPTION** 3/**OPSIE** 3

$$\begin{split} c(H_3O^+)_{fin} &= \frac{n}{V} \checkmark \\ &= \frac{1,26 \times 10^3}{4 \times 10^9 \checkmark} \\ &= 3,15 \times 10^{-7} \text{ mol·dm}^{-3} \\ c(H_3O^+)_{rea} &= 1 \times 10^{-5} - 3,15 \times 10^{-7} \checkmark \checkmark \\ &= 9,69 \times 10^{-6} \text{ mol·dm}^{-3} \\ c(CaO) &= \frac{1}{2}c(H_3O^+) \checkmark = 4,845 \times 10^{-6} \text{ mol·dm}^{-3} \\ c &= \frac{m}{MV} \quad \therefore \quad 4,845 \times 10^{-6} = \frac{m}{\sqrt{56(4 \times 10^9)}} \quad \therefore \quad m = 1,09 \times 10^6 \text{ g} \checkmark \end{split}$$

Physical Sciences P2/Fisiese Wetenskappe V2 NSC/NSS - NSC/NSS - Marking Guidelines/Nasienriglyne DBE/November 2018

QUESTION 8/VRAAG 8

8.1

8.1.1 Loss of electrons./Verlies aan elektrone. ✓✓ (2 or/of 0) (2)

 $Fe \rightarrow Fe^{3+} + 3e^{-} \checkmark \checkmark$ 8.1.2

Marking guidelines/Nasienriglyne

• Fe = Fe³⁺ + 3e⁻ + 7e⁻
$$\frac{1}{2}$$
 Fe³⁺ + 3e⁻ = Fe $\frac{0}{2}$ Fe³⁺ + 3e⁻ - Fe $\frac{0}{2}$

$$Fe^{3+} + 3e^{-} \Rightarrow Fe \qquad \frac{0}{2}$$

$$Fe^{3+} + 3e^{-} \leftarrow Fe \qquad \frac{2}{2}$$

$$Fe^{3+} + 3e^{-} \rightarrow Fe$$

- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on Fe³⁺/Indien lading (+) weggelaat op Fe³⁺:

Example/Voorbeeld: Fe \rightarrow Fe³ + 3e⁻ \checkmark

Max./Maks: $\frac{1}{2}$ (2)

8.1.3 Reducing agent/Reduseermiddel < (1)

8.1.4 Fe is a stronger reducing agent ✓ than Cu ✓ and (Fe) will be oxidised ✓ (to Fe³⁺)./Fe is 'n sterker reduseermiddel as Cu en (Fe) sal geoksideer word (na Fe³⁺).

OR/OF

Cu is a weaker reducing agent ✓ than Fe ✓ and (Cu) will not be oxidised ✓ (to Cu²⁺)./Cu is 'n swakker reduseermiddel as Fe en (Cu) sal nie geoksideer word nie (na Cu²⁺).

(3)

Zinc/Zn ✓

Stronger reducing agent (than Fe)./Sterker reduseermiddel (as Fe). ✓

OR/OF

Zn will undergo oxidation (before Fe)./Zn sal oksidasie (voor Fe) ondergaan.

OR/OF

Cu is a weaker reducing agent (than Fe)./Cu is 'n swakker reduseermiddel (as Fe).

(2)

8.2

8.2.1
$$3Cu^{2+} + 2Fe \checkmark \rightarrow 3Cu + 2Fe^{3+} \checkmark$$
 Bal. \checkmark

Marking guidelines/Nasienriglyne

- Reactants ✓ Products ✓ Balancing ✓ Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

(3)

Physical Sciences P2/Fisiese Wetenskappe V2 16 NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne DBE/November 2018

8.2.2 **OPTION 1/OPSIE 1**

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \checkmark$$

$$= 0.34 \checkmark - (-0.06) \checkmark$$

$$= 0.40 \text{ V} \checkmark$$

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. $E^{\circ}_{cell} = E^{\circ}_{OA} E^{\circ}_{RA}$ followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv. $E^{\circ}_{sel} = E^{\circ}_{OM} E^{\circ}_{RM}$ gevolg deur korrekte vervangings: $\frac{3}{4}$

OPTION 2/OPSIE 2

$$Cu^{2^{+}} + 2e^{-} \rightarrow Cu$$
 $E^{\theta} = 0.34 \text{ V} \checkmark$
 $E^{\theta} = 0.06 \text{ V} \checkmark$
 $E^{\theta} = 0.06 \text{ V} \checkmark$
 $E^{\theta} = 0.06 \text{ V} \checkmark$

(4) [**17**]

QUESTION 9/VRAAG 9

9.1 A cell in which <u>electrical energy is converted to chemical energy</u>. ✓ ✓ **(2 or 0)**'n Sel waarin <u>elektriese energie omgeskakel word na chemiese energie</u>. **(2 of 0)**

OR/OF

A cell in which electrical energy/electricity is used to obtain a chemical change/reaction. (2 or 0)

'n Sel waarin elektriese energie/elektrisiteit gebruik word om 'n chemiese verandering/reaksie te veroorsaak. (2 of 0)

(2)

9.2 Any soluble copper(II) salt e.g./*Enige oplosbare koper(II)-sout bv.* CuSO₄/Cu(NO₃)₂/CuCℓ₂ ✓

(1)

9.3 B ✓

$$Cu^{2+} + 2e^{-} \rightarrow Cu \checkmark \checkmark$$

Marking guidelines/Nasienriglyne

•
$$Cu \leftarrow Cu^{2^{+}} + 2e^{-}$$
 $(\frac{2}{2})$
 $Cu^{2^{+}} + 2e^{-} \rightleftharpoons Cu$ $(\frac{1}{2})$

$$Cu \rightleftharpoons Cu^{2+} + 2e^{-} \quad (\frac{0}{2})$$

$${\sf Cu} o {\sf Cu}^{2^+}$$
 + $2{\sf e}^{\scriptscriptstyle{ extstyle -}}$ (${rac{0}{2}}$)

- Ignore if charge on electron is omitted./Ignoreer indien lading op elektron uitgelaat is.
- If a charge of an ion is omitted e.g. $Cu^2 + 2e^- \rightarrow Cu$ /Indien lading op ioon uitgelaat is bv. $Cu^2 + 2e^- \rightarrow Cu$ Max./Maks: $\frac{1}{2}$

(3)

9.4 Platinum/Pt ✓ **AND/EN** silver/Ag/silwer ✓

(2)

[8]

Physical Sciences P2/Fisiese Wetenskappe V2 17 NSC/NSS - NSC/NSS - Marking Guidelines/Nasienriglyne DBE/November 2018

(1)

QUESTION 10/VRAAG 10

10.1

10.1.2 Ostwald (process)/Ostwald(proses) ✓ (1)

10.2

10.2.2 Iron/iron oxide/Fe/FeO ✓ Yster/ysteroksied/Fe/FeO

10.3
$$2NH_3 + H_2SO_4 \checkmark \rightarrow (NH_4)_2SO_4 \checkmark Bal \checkmark$$
 (3)

Marking guidelines/Nasienriglyne

- Reactants ✓ Products ✓ Balancing ✓ Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10./Nasienreël 6.3.10.

10.4 Marking guidelines/Nasienriglyne

- Any ONE molar mass correct/Enige EEN molêre massa korrek: 80 g·mol⁻¹/164 g·mol⁻¹/74,5 g·mol⁻¹ ✓
- m(N) = 7 (kg) OR/OF 0,14 √
- $m(P) = 2.27 (kg) OR/OF 0.045 \checkmark$
- $m(K) = 9.42 (kg) OR/OF 0.188 \checkmark$
- Final answer/Finale antwoord: 3:1:4 ✓

ACCEPT/*AANVAAR***:** 3,08 : 1 : 4,15 **OR/***OF* 7 : 2,27 : 9,42

OPTION 1/OPSIE 1

NH₄NO₃:

$$80 \text{ g}^{\checkmark} \rightarrow 28 \text{ g N}$$

20 kg
$$\rightarrow \frac{28}{80}$$
 x 20

$$\therefore$$
 m(N) = 7 kg \checkmark

Na₃PO₄:

$$164 g \rightarrow 31 g P$$

12 kg
$$\rightarrow \frac{31}{164} \times 12$$

∴
$$m(P) = 2,27 \text{ kg} \checkmark$$

KCl:

$$74,5 g \rightarrow 39 g K$$

18 kg
$$\rightarrow \frac{39}{74.5} \times 18$$

$$\therefore$$
 m(K) = 9,42 kg \checkmark

$$\therefore \ N : \ P : \ K$$

OPTION 2/OPSIE 2

$$n(NH_4NO_3) = \frac{m}{M}$$
$$= \frac{20\ 000}{80^{\checkmark}} = 250\ mol$$

$$n(N) = 2n(NH_4NO_3) = 500 \text{ mol}$$

$$m(N) = 500 \times 14$$

$$= 7000 g = 7 kg \checkmark$$

$$n(Na_3PO_4) = \frac{12\,000}{164} = 73,17 \text{ mol}$$

$$m(P) = 73,17 \times 31$$

$$= 2268 g = 2.27 kg \checkmark$$

$$n(KC\ell) = \frac{18\ 000}{74.5} = 241,61\ mol$$

$$m(K) = 241,61 \times 39$$

$$= 9423 g = 942 kg \checkmark$$

Physical Sciences P2/Fisiese Wetenskappe V2 18 NSC/NSS – NSC/NSS – Marking Guidelines/Nasienriglyne DBE/November 2018

OPTION 3/OPSIE 3 NH₄NO₃: %N = $\frac{28}{80}$ x 100 = 35% m(N) = $\frac{35}{100}$ × 20 = 7 kg ✓ Na₃PO₄: %P = $\frac{31}{164}$ x 100 = 18,9% m(N) = $\frac{18,9}{100}$ × 12 = 2,27 kg ✓ KCℓ: %K = $\frac{39}{74,5}$ x 100 = 52,34% m(K) = $\frac{52,34}{100}$ × 18 = 9,42 kg ✓ ∴ N : P : K = 7 : 2,27 : 9,42 = 3 : 1 : 4 ✓

OPTION 4/OPSIE 4

NH₄NO₃:

%N =
$$\frac{28}{80}$$
 x 100 = 35%

Na₃PO₄:

%P = $\frac{31}{164}$ x 100 = 18,9%

KCl:

%K = $\frac{39}{74,5}$ x 100 = 52,34%

N: $\frac{20}{50}$ x 35 = 0,14 \checkmark

P: $\frac{12}{50}$ x 18,9 = 0,045 \checkmark

K: $\frac{18}{50}$ x 52,34 = 0,188 \checkmark

N : P : K = 0,14 : 0,045 : 0,188

(5) **[12]**

TOTAL/TOTAAL: 150