

MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2018 - 9:00 am to 12:00 pm

PAPER 216

BAYESIAN MODELLING AND COMPUTATION

Attempt no more than **FOUR** questions.

There are **SIX** questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 Let $(X_i)_{i\geqslant 1}$ be a μ -reversible Markov chain on \mathcal{X} .
 - (a) Define geometric ergodicity for $(X_i)_{i\geqslant 1}$.
- (b) Let $X_1 = x$ with probability 1, and define $m_n = \lfloor n^{1/3} \rfloor$. Prove that if $(X_i)_{i \geq 1}$ is geometrically ergodic and $Y \sim \mu$, then for any measurable function $f : \mathcal{X} \to \mathbb{R}$, with $\sup_{x \in \mathcal{X}} |f(x)| < \infty$,

$$\limsup_{n \to \infty} \frac{1}{n - m_n} \operatorname{Var} \left(\sum_{i = m_n + 1}^n f(X_i) \right) \leqslant \gamma \operatorname{Var}(f(Y))$$

for some $\gamma < \infty$ which does not depend on f.

(c) Using the result of part (b) prove that under the same assumptions,

$$\limsup_{n \to \infty} \frac{1}{n} \operatorname{Var} \left(\sum_{i=1}^{n} f(X_i) \right) \leqslant \gamma \operatorname{Var}(f(Y))$$

for some $\gamma < \infty$ which does not depend on f.

[You can cite any result from the lecture notes.]

- **2** Let \mathcal{C} be a compact, convex subset of \mathbb{R}^2 .
- (a) Define the Hit-and-Run algorithm which produces approximate samples from the uniform distribution on C.
- (b) Prove that the Markov kernel K(x,dy) in the Hit-and-Run algorithm admits a density, p(x,y), with respect to the Lebesgue measure and that this density satisfies $\inf_{x,y\in\mathcal{C}}p(x,y)>0$.
 - (c) State the drift condition for geometric ergodicity.
 - (d) Using part (b), prove that the algorithm is geometrically ergodic.

Let Y_i be the number of trains departing more than 10 minutes late from London King's Cross, out of a total of n_i trains, on the *i*th day of the year. For each day, we have a vector $x_i \in \mathbb{R}^p$ of independent variables. For example, x_i may contain an indicator for the event of snow on day i, among other variables. The relationship between x_i and Y_i is modelled as follows,

$$Y_i \mid \theta_i \sim \text{Binomial}\left(n_i, \frac{e^{\theta_i}}{1 + e^{\theta_i}}\right)$$

$$\theta_i \sim N(x_i^\top \beta + \sigma^2 Z_i, \sigma_0^2) \qquad \text{for } i = 1, \dots, 365, \text{ independent,}$$

$$Z_i = \sqrt{\rho} Z_{i-1} + \xi_i \qquad \text{for } i = 2, \dots, 365,$$

$$Z_1 \sim N(0, 1), \quad \xi_i \sim N(0, 1 - \rho) \qquad \text{for } i = 2, \dots, 365, \text{ independent.}$$

The parameters in the model are $\beta \in \mathbb{R}^p$, $\sigma^2 > 0$, $\sigma_0^2 > 0$, $\rho \in (0,1)$. We put an improper prior distribution $p(\beta, \sigma^2, \sigma^2, \rho) = 1/(\sigma^2 \sigma_0^2)$ on the parameters.

- (a) How would you interpret a coefficient β_j for $j \in \{1, ..., p\}$? Why might it be desirable to make θ_i random, as opposed to making it equal to its expected value $x_i^{\top}\beta$? Discuss the role of the parameters $\sigma^2 + \sigma_0^2$ and ρ in this model.
- (b) Consider a Gibbs sampler targeting the posterior distribution of the variables $\beta, \sigma^2, \sigma_0^2, \rho, \theta, Z$ conditional on x and Y. Propose algorithms to draw <u>exact</u> samples from the following conditional distributions and justify your choice.

i)
$$p(Z \mid \beta, \sigma^2, \sigma_0^2, \rho, \theta, x, Y)$$
,

ii)
$$p(\theta \mid \beta, \sigma^2, \sigma_0^2, \rho, Z, x, Y)$$
.

4 A factor analysis model for observations (Y_1, \ldots, Y_n) with $Y_i \in \mathbb{R}^p$ for $i = 1, \ldots, n$, assumes that each vector is independent and

$$Y_i = \Lambda Z_i + \xi_i$$

where $Z_i \sim N(0, I_k)$, $\xi_i \sim N(0, \sigma^2 I_p)$ are independent, and the matrix $\Lambda \in \mathbb{R}^{p \times k}$ is a parameter. You may assume σ^2 is fixed.

- (a) What is the marginal distribution of Y_i ?
- (b) In the case k=1, derive an explicit formula for the parameter update in the EM algorithm for finding the maximum likelihood estimator of Λ .
- (c) Consider now a general model with parameters θ , latent variables Z, and observables Y. Prove that an iteration of the EM algorithm for finding the maximum likelihood estimator of θ cannot decrease the likelihood function.

Let $(Y_i)_{i\geqslant 0}$ be a Markov chain with state space \mathbb{R}^d , and π a probability density function on the same space. A step of the Markov chain may be simulated as follows. Given Y_i , propose a state $Z=g(Y_i,V_i)$, where V_i is a random variable in \mathbb{R}^d with distribution ν and independent of Y_i . The function $g:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^d$ satisfies g(g(y,v),-v)=y. Then, with probability min $\{1,\pi(Z)/\pi(Y_i)\}$ set $Y_{i+1}=Z$, and otherwise set $Y_{i+1}=Y_i$.

Show that Hamiltonian Monte Carlo is a Markov chain of this form by specifying g and ν for that algorithm. In general, which conditions on g and ν make $(Y_i)_{i\geqslant 0}$ π -reversible? Is it necessary that ν be normal?

You are given a collection of n bank notes, some of which are counterfeits. Let Y_i be 1 if bank note i is genuine, and 0 if it is a counterfeit. Let $x_i \in \mathbb{R}^p$ be a vector of features of bank note i, such as the weight and size. We apply a Probit regression model, which assumes

$$Y_i \sim \text{Bernoulli}(\mu_i), \quad \mu_i = \Phi(x_i^{\top} \beta),$$

independent for $i=1,\ldots,n$, where Φ is the standard normal cumulative distribution function. We put a prior $N(0,\sigma^2I)$ on the parameter β . For a bank note which is not in the training set, with features x_{test} , you are asked to estimate the posterior mean of $\Phi(x_{\text{test}}^{\top}\beta)$, the probability that it is genuine.

- (a) Given i.i.d. samples $\beta^{(1)}, \beta^{(2)}, \dots, \beta^{(n)}$ from the posterior distribution $p(\beta \mid Y)$, write down the Monte Carlo estimator for the desired posterior mean.
- (b) Derive the gradient of the log-posterior $g(\beta) = \nabla_{\beta} \log p(\beta \mid Y)$, and explain why this can be used as a control variate.
- (c) Suppose that the covariance matrix of the vector $(\Phi(x_{\text{test}}^{\top}\beta^{(1)}), g(\beta^{(1)})^{\top})$ is known. Derive the control variates estimator with minimal variance, and prove that it has smaller variance than the Monte Carlo estimator of part (a).

END OF PAPER