

Mean Shift Parallel Computing Final-Term

Angelo D'Amante Fabian Greavu

Introduction: Mean shift idea

Mean Shift is a non-parametric feature-space analysis technique for locating the maximas of a density function

Applications:

- clustering
- computer vision
- image processing

Main idea: move each point to the center of mass of his surroundings and iterate on the dataset until convergence.

Introduction: Mean shift parallelization

Mean shift algorithm has 2 main parts:

- 1. for 1, 2, ..., K: shift $x \leftarrow m(x)$ for all x in dataset
- 2. reduce dataset to centroids

Idea: Step 1 Sequential → Parallel

Introduction: Mean shift squential algorithm

Pseudo-Code Algorithm:

```
new_data = original_points
while iteration < I do
    for p in new_data do
        num, den = 0
        for op in original points do
            d = Distance(p, op)
            gaussian = K(dist)
            num = num + op * gaussian
            den = den + gaussian
        end for
        p = num/den
    end for
end while
return reduce centroids(data, eps)
```


OpenMP Implementation

OpenMP: Introduction

- Advantages of the fork-join model.
- Only few directives needed for this task.
- Benefit from both shared and private memory.

- Exploit both workload sharing mechanism:
 - Static → set by User
 - Dynamic \rightarrow set by OpenMP

OpenMP: Solutions

#pragma omp parallel for default(none) shared(...) schedule(static) num_threads(num_thread

```
1: procedure MeanShift(original_points)
      new_data = original_points
 2:
      while iteration < I do
3:
          for p in new_data do
 4:
             num = 0
 5:
                                                    Static Version
             den = 0
 6:
             for op in original_points do
7:
                 d = Distance(p, op)
 8:
                gaussian = K(dist)
 9:
                num = num + op * gaussian
10:
                den = den + gaussian
11:
                                                   Dynamic Version
             end for
12:
             p = num/den
13:
         end for
14:
      end while
15:
      data = reduce_centroids(data, \epsilon)
16:
      return data
17:
```

#pragma omp parallel for default(none) shared(...) schedule(dynamic)

OpenMP: Experiments

Two CPU's architectures examined.

 Sequential and Parallel timings are taken by: CPU Intel(R) Core(TM) i7-8750H CPU @ 2.2GHz

Sequential and Parallel timings are taken by:
 CPU Intel(R) Core(TM) i7-9700K CPU @ 3.6GHz
 Each core boosts up to 4.6 Ghz OOTB

Dataset = {500, 1000, 2000, 5000, 10000}

Versions:

- Static with number of threads in [1, 8]
- Dynamic Version

CPU Intel(R) Core(TM) i7-8750H CPU @ 2.2GHz

CPU Intel(R) Core(TM) i7-9700K CPU @ 3.6GHz

CPU Intel(R) Core(TM) i7-8750H CPU @ 2.2GHz

CPU Intel(R) Core(TM) i7-9700K CPU @ 3.6GHz

CPU Intel(R) Core(TM) i7-8750H CPU @ 2.2GHz vs CPU Intel(R) Core(TM) i7-9700K CPU @ 3.6GHz

CUDA Implementation

CUDA: Introduction

- SIMT (Single Instruction Multiple Thread) model.
- User decides number of threads $T \to \left\lceil \frac{N}{T} \right\rceil$ blocks.
- Exploit both global and shared memory access.

CUDA: Solutions

Naive:

Shared Memory:

```
csv = load csv( ... );
csv = load csv( ... );
                                                         float *dev data, *dev data tmp;
float *dev data, *dev data tmp;
                                                         size t data bytes = POINTS NUMBER * D * sizeof(float);
size t data bytes = POINTS NUMBER * D * sizeof(float);
                                                         cudaMalloc(&dev data, data bytes);
cudaMalloc(&dev data, data bytes);
                                                         cudaMalloc(&dev data tmp, data bytes);
cudaMalloc(&dev data tmp, data bytes);
                                                         cudaMemcpy(dev data, data.data(), data bytes,
cudaMemcpy(dev data, data.data(), data bytes,
                                                         cudaMemcpyHostToDevice);
cudaMemcpyHostToDevice);
                                                         cudaMemcpy(dev data tmp, data next.data(), data bytes,
cudaMemcpy(dev data tmp, data next.data(), data bytes,
                                                         cudaMemcpyHostToDevice);
cudaMemcpyHostToDevice);
                                                         for (size ti = 0; i < NUM ITER; ++i) {
for (size ti = 0; i < NUM ITER; ++i) {
                                                               compute weights shared mem kernel << BLOCKS,
      compute weights naive kernel << BLOCKS,
                                                         TW>>>(dev data, dev data tmp, POINTS NUMBER,
TW>>>(dev data, dev data tmp, POINTS NUMBER);
                                                         BLOCKS);
      cudaDeviceSynchronize():
                                                               cudaDeviceSynchronize();
      temp data = dev data;
                                                               temp data = dev data;
      dev data = dev data tmp;
                                                               dev data = dev data tmp;
      dev data tmp = temp data;
                                                               dev data tmp = temp data;
cudaMemcpy(data.data(), dev_data, data bytes,
                                                         cudaMemcpy(data.data(), dev data, data bytes,
cudaMemcpyDeviceToHost);
                                                         cudaMemcpyDeviceToHost);
centers = resuce to centroids(data, MIN DISTANCE)
                                                         centers = resuce to centroids(data, MIN DISTANCE)
```

```
const int TW = 64;
const int BLOCKS = (POINTS_NUMBER + TW - 1) / TW;
```


CUDA: Solutions

Naive:

```
__global___ void naive_kernel(data, data_tmp,
POINTS_NUMBER){
  int tid = (blockldx.x * blockDim.x) + threadIdx.x;
  int x = tid*2, y = tid*2+1;
  if (tid < POINTS_NUMBER) {
    float new_position = {0., 0.}; // and other variables
    for (int i = 0; i < POINTS_NUMBER; ++i) {
        int xloop = i*2, yloop = i*2+1;
        eucl_dict =// calculate distance data[x], data[xloop]
        if (eucl_dist <= RADIUS) {
            weight = expf(-eucl_dist / BANDWIDTH);
            new_position += ... //update position
        }
    }
    data_tmp[x, y] = new_position // move p
}</pre>
```

Shared Memory:

```
const int BLOCKS = (POINTS NUMBER + TW - 1) / TW;
  global void sm kernel(data, data tmp, POINTS NUMBER){
   shared float local data[TW * 2];
   shared float flag data[TW];
 int tid = (blockldx.x * blockDim.x) + threadldx.x;
 int x = tid^2, y = tid^2+1; // and other variables
 for (int t = 0; t < BLOCKS; ++t) {
  tid in tile = t * TILE WIDTH + threadIdx.x;
  if (tid in tile < POINTS NUMBER) {
   local data[threadIdx.x * 2] = data[tid_in_tile * 2]
   local data[threadIdx.x * 2 +1] = data[tid in tile * 2 +1]
   flag data[threadIdx.x] = 1;
  }else{
   flag data[threadIdx.x] = 0;
    syncthreads();
  for (int i = 0; i < TW; ++i) {
   int local x tile = i*2, local y tile = i*2+1;
   eucl dict = ... // calculate distance dtat[x], data[x in tile]
   if (eucl_dist <= RADIUS) {
    weight = expf(-eucl dist / BANDWIDTH);
    new position += ... //update position data[x], data[local x tile]
    syncthreads();
 if (tid < POINTS NUMBER) {new position = ... // move p }
```


CUDA: Experiments

Sequential Timings are taken by:

CPU Intel(R) Core(TM) i7-9700K CPU @ 3.6GHz (Boosting at 4.6Ghz ootb)

Parallel Timings are taken by:

GPU NVIDIA GeForce GTX 1050 Ti
With 4096 MB dedicated and 768 CUDA Cores

- Experiments with:
 - Dataset = {500, 1000, 2000, 5000, 10000}
 - Tile Width = {8, 16, 32, 64, 128, 256, 512, 1024}

CUDA: naive results (timings)

CUDA: naive results (speedups)

CUDA: shared memory results (timings)

CUDA: shared memory results (speedups)

CUDA: shared vs naive (speedups)

CUDA: comparison results (speedups)

Extra results: Comparison between different GPUS and architectures

Sequential Timings are taken by:

CPU Intel(R) Core(TM) i7-9700K CPU @ 3.6GHz

• Parallel Timings on:

GPU NVIDIA GeForce GTX 1050 Ti m

4096 MB dedicated and 768 CUDA Cores

GPU NVIDIA GeForce GTX 1660 Ti

6144 MB dedicated and 1536 CUDA Cores

GPU NVIDIA GeForce RTX 2060

6144 MB dedicated and 1920 CUDA Cores

Pascal

Turing

Turing

- Experiments with:
 - Dataset = {10000}
 - Tile Width = {8, 16, 32, 64, 128, 256, 512, 1024}

CUDA: comparison results (speedups)

RTX 2060 max speedup 91764 at TW=256

CUDA: comparison results (speedups)

RTX 2060 max speedup 91764 at TW=256

Conclusions:

Three implementations of MM: one sequential and two parallel.

https://github.com/fabian57fabian/mean-shift-in-parallel

Thanks for your attention

Angelo D'Amante Fabian Greavu