

Métricas

Qualidade de Software

5º Semestre

Tecnologia em Análise e Desenvolvimento de Sistemas
Revisão Prof Vinicius Machado

Material Prof. Cibele da Rosa Christ Sinoti

Conceito

- Métrica é a medição de um atributo (produto, processo ou recursos).
- Medições se dedicam a obter um ou mais valores numéricos para um atributo de qualidade
 - Comparando os números, é possível inferir sobre a qualidade de um produto.
- Exemplos:
 - Número de Linhas de código;
 - Número de defeitos encontrados por fase de desenvolvimento;
 - Tempo para a realização de uma tarefa;
 - ...

Por que medir?

- Avaliações de qualidade podem ser demoradas;
- Medição permite empregar avaliações automatizadas;
- Muitas empresas não utilizam medições sistemáticas para avaliar qualidade, pois:
 - Os processos não são maduros o suficiente;
 - Não há métricas padronizadas;
 - As ferramentas de medição oferecem um apoio limitado.

O que medir?

- Atributos Internos são mais facilmente quantificáveis e medidos diretamente;
 - Linhas de código, número de pontos de decisão, ...
- Atributos Externos são mais difíceis de serem quantificados, pois só são observados quando o software é executado
 - Quantidade de falhas observadas pelos usuários, dificuldade de navegação entre telas, tempo gasto para procurar uma informação, ...
- Atributos de Qualidade são atributos externos que definem qualidade (segurança, confiabilidade, portabilidade, usabilidade, ...)

Problema

- Geralmente, é impossível medir um atributo de qualidade diretamente;
 - Facilidade de manutenção;
 - Facilidade de uso;
 - Confiabilidade;
 - **–** ...
- Deveria haver um relacionamento claro e válido entre atributos de qualidade e atributos internos (linhas de código, número de defeitos, ...)

Modelo de Qualidade

Processo de medição

- Deve fazer parte do processo de controle de qualidade (utilizam dados históricos de projetos anteriores);
- Atividades:
 - 1. Escolher medições a serem realizadas;
 - 2. Selecionar componentes a serem avaliados;
 - 3. Medir características dos componentes;
 - 4. Identificar medições anômalas;
 - 5. Analisar componentes anômalos.

1. Escolher medições a serem realizadas

- Uma das abordagens para escolher as medições é o GQM (Goal-Question-Metric);
- GQM é uma forma de sistematizar o processo, evitando medições que possuem pouco significado ou utilidade;
- Consiste em conduzir a análise a partir da meta organizacional, onde questões são formuladas para atender um objetivo e métricas são escolhidas para responderem às questões.

GQM

- *Goal* objetivo
 - Definem o que a organização quer melhorar.
 - Ex.: produtividade
- *Question* questões
 - Refinamento dos objetivos em áreas de incertezas.
 - Ex.: é possível aumentar o número de linhas de código produzidas?
- *Metric* métricas
 - Medição necessária para responder à questão.
 - Ex.: linhas de código por desenvolvedor

2. Selecionar componentes a serem avaliados

- · Pode não ser desejável (ou necessário) medir todo o sistema;
- É possível escolher um subconjunto representativo de componentes ou componentes particularmente críticos
- Exemplo:
 - Quais são os casos de uso principais?
 - Qual funcionalidade será mais usada?
 - Qual parte do sistema será mais "estressada" durante o uso?

3. Medir características dos componentes

- Componentes selecionados são medidos;
- Medidas são associadas aos atributos de qualidade;
- Podem ser usadas outras ferramentas para medir
 - Logs armazenados;
 - Ferramentas de testes;
 - ...

4. Identificar medições anômalas

- Comparar as medições obtidas com medições anteriores → utilizar dados históricos em busca de valores incomuns
 - Valores muito baixos ou muito altos para cada métrica;
 - Identificar outliers → dados que se diferenciam drasticamente de todos os outros. É um valor que foge da normalidade e que pode (e provavelmente irá) causar anomalias nos resultados obtidos.

5. Analisar componentes anômalos

- Componentes que estão gerando valores anômalos devem ser examinados – essa inspeção irá decidir se existe ou não problema no componente;
- Importante! Valores incomuns para componentes não necessariamente significam que a qualidade seja baixa.

Exemplo

• **Objetivo 1:** Melhorar a precisão das estimativas de projeto

• Questões:

1. Qual a precisão da estimativa de cronograma?

Métricas:

1a. Precisão total do cronograma = tempo real de todo o projeto tempo estimado do projeto

1b. Precisão do cronog. por macro-atividade = tempo real por macro-atividade tempo estimado para macro-ativ.

Exemplo

Objetivo 2: Aumentar a qualidade dos produtos liberados para uso

Questões:

- Qual qualidade dos produtos antes da sua liberação para uso?
- 2. Qual a qualidade dos produtos após sua liberação para uso?

Métricas:

1a. Densidade de defeitos = número de erros e modificações tamanho do sistema* 2a. Deterioração do software = esforço** após liberação para uso esforço antes da liberação

Exemplo

• **Objetivo 3:** Diminuir o custo final dos projetos

Questões:

- 1. Qual é o esforço total dos projetos?
- 2. Qual o percentual de retrabalho em relação ao esforço total?

Métricas:

- 1a. Esforço total do projeto;
- 1b. Esforço por macro-atividade do projeto
- 2a. Percentual de retrabalho = esforço em retrabalho * 100 esforço total do projeto
- 2b. Percentual retrab. Macro-atividade = $\frac{\text{esforço em ret. Macro-ativ}*100}{\text{esforço total na macro-atividade}}$

