The Case for Learned Index Structures

Tim Kraska*
MIT
Cambridge, MA
kraska@mit.edu

Alex Beutel
Google, Inc.
Mountain View, CA
alexbeutel@google.com

Ed H. Chi Google, Inc. Mountain View, CA edchi@google.com

Jeffrey Dean Google, Inc. Mountain View, CA jeff@google.com

Neoklis Polyzotis
Google, Inc.
Mountain View, CA
npolyzotis@google.com

分享人:张腾

阿里巴巴数据库内核团队

2017-12-29

Outline

- Introduction
- Range Index
- Point Index
- Existence Index
- Related Work
- Conclusion and Future Work

 Index structures are used to speed up queries

 Need to be stored and maintained

 O(logn) or O(1) time complexity

No index structures any more

Replaced by a model/function

Always O(1) time complexity

- Different data access pattern leads to different index structures
 - Range queries -> B-Trees
 - Key-based lookups -> Hash-Maps
 - Record existence check -> Bloom-Filters

- Given a known data distribution
 - Fix-length
 - Continuous Integer Keys
 - 1M ~ 100M

- Learned Index
 - Data distribution counts
 - Index structures can be viewed as models
 - B-Tree -> key as input, position as output
 - Bloom-Filter -> Binary Classifier
 - Next generation of new hardware
 - 1000x improvement of GPU by 2025

- Backgrounds of Machine Learning
 - Task
 - Classification
 - Regression

Supervised learning

- Recommendation
- Rank
- Clustering

Unsupervised learning

- Training & Test
 - Generalization
 - Over-fitting
- Metrics
 - Average error

- Backgrounds of Machine Learning
 - Model
 - Linear regression
 - Neural Network
 - Neuron
 - Input layer / hidden layer / output layer
 - Fully connected
 - Activation function
 - Sigmod
 - Relu
 - tanh
 - CNN、RNN、LSTM、GAN…

Outline

- Introduction
- Range Index
- Point Index
- Existence Index
- Related Work
- Conclusion and Future Work

- B-Tree are models
 - Task: Predict the location of a value given a key
 - Decision tree
 - min-error: 0
 - Max-error : page-size
 - Guarantee that the key can be found
 - Sorted data
 - New data -> re-balanced
 - Re-trained

- Range Index are CDF models
 - Cumulative Distribution Function
 - B-Tree learns CDF by forming a regression tree
 - Linear regression model learns CDF by minimizing the RMSE of a linear function

$$p = F(Key) * N$$

- A naïve learned index
 - two-layer fully-connected NN(width: 32)
 - Activation function: RELU
 - Tensorflow and python
- Performance
 - 80000 ns vs 300ns (model execution), no search time benefits
- Reason
 - Invocation overhead
 - "Last mile accuracy" dilemma
 - Only consider average error
 - Not cache efficient

- The Learning Index Framework
 - Index synthesis system
 - Tensorflow for training, C++ for inference
 - Execute simple models in 30ns

- The RM-Index (Recursive Model Index)
 - Internal model -> pick model at next stage
 - Leaf mode -> predict position

The RM Index

- Differences with B-Tree
 - Each model covers different number of records
 - Internal model output to pick the expert about certain keys
- Benefits
 - Able to learn the overall shape of the data distribution
 - Divided into sub-range to improve "last mile" accuracy
 - No search process between stages

- Hybrid Index
 - NN
 - B-Tree if absolute min/maxerror is above the threshold
 - Bound the worst performance to the performance of B-Tree

```
Algorithm 1: Hybrid End-To-End Training
   Input: int threshold, int stages[], NN_complexity
   Data: record data[], Model index[][]
   Result: trained index
 1 M = \text{stages.size};
 2 tmp_records[][];
 3 \text{ tmp\_records}[1][1] = \text{all\_data};
 4 for i \leftarrow 1 to M do
       for i \leftarrow 1 to stages[i] do
          index[i][j] = new NN trained on tmp_records[i][j];
           if i < M then
               for r \in tmp\_records[i][j] do
 8
                   p = f(r.key) / stages[i + 1];
                  tmp\_records[i+1][p].add(r);
10
11 for j \leftarrow 1 to index[M].size do
       index[M][j].calc\_err(tmp\_records[M][j]);
12
       if index[M][j].max\_abs\_err > threshold then
13
          index[M][j] = new B-Tree trained on tmp_records[M][j];
14
15 return index:
```

- Indexing strings
 - Tokenization
 - ASCII value
 - Vector as input

$$\mathbf{x} \in \mathbb{R}^n$$

- Complexity grows
 - Linear regression scales linearly *O(N)*
 - NN scales O(hmN) -- h (width), m(width)
- Interaction between characters -> RNN

- Search Strategies
 - Model Binary Search
 - middle point set to the value predicted by the model
 - Biased Search
 - Considering the standard deviation of the last stage model

$$min(middle + \sigma, (middle + right)/2)$$

Biased Quaternary

$$pos - \sigma, pos, pos + \sigma$$

- Inserts and updates
 - Appends/Insert in the middle
 - Generality vs Accuracy
 - Avoid over-fitting
 - Solutions
 - Spread the space dependent on CDF
 - Distribution change detection -> model split and retrain

- Paging
 - Disk-based system
 - Violation of CDF

$$p = F(X < \text{Key}) * N$$

- Duplicate records for overlapped partition
- Additional translate table
 - <first_key, disk_position>

- The evaluation of RMI -- Speedup
 - Datasets (200M)
 - Maps (longitude of features)
 - Weblogs (University website request timestamp)
 - Lognormal distribution
 - Metrics
 - Space
 - Time (model execution + search)
 - Model error
 - Baseline
 - B-tree with page size 128

$$rac{1}{2}+rac{1}{2}\operatorname{erf}\left[rac{\ln x-\mu}{\sqrt{2}\sigma}
ight] \qquad egin{aligned} \operatorname{erf}(x)&=rac{1}{\sqrt{\pi}}\int_{-x}^{x}e^{-t^{2}}\,dt \ &=rac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}\,dt. \end{aligned}$$

The evaluation of RMI (Speedup)

The evaluation of RMI (Model Error)

• The evaluation of RMI (Space savings)

- The evaluation of RMI on String dataset
 - String-based document id

• The evaluation of RMI on String dataset

- Conclusion
 - 3x faster, an order-of-magnitude smaller
 - Data distribution dependent
 - Complex model has stronger expression ability, but is prone to over-fitting
 - Performance on String dataset still need to be improved

Outline

- Introduction
- Range Index
- Point Index
- Existence Index
- Related Work
- Conclusion and Future Work

Point Index

- Key challenge of Hash-Maps
 - Hash collisions (33%)
 - Linked list or secondary probing
- Learned Hash-Map
 - Learn better hash function
 - Learn the CDF of the key distribution
 - Scale to target size

$$h(K) = F(K) * M$$

Point Index

- Evaluation
 - Randomized hash function
 - 2 multiplications, 3 bitshifts, 3 XORs
 - 50% slot, no noticeable difference

Dataset	Slots	Hash Type	Search	Empty Slots	Space
			Time (ns)		Improvement
Мар	75%	Model Hash	67	0.63GB (05%)	-20%
		Random Hash	52	0.80GB (25%)	
	100%	Model Hash	53	1.10GB (08%)	-27%
		Random Hash	48	1.50GB (35%)	
	125%	Model Hash	64	2.16GB (26%)	-6%
		Random Hash	49	2.31GB (43%)	
Web Log	75%	Model Hash	78	0.18GB (19%)	-78%
		Random Hash	53	0.84GB (25%)	
	100%	Model Hash	63	0.35GB (25%)	-78%
		Random Hash	50	1.58GB (35%)	
	125%	Model Hash	77	1.47GB (40%)	-39%
		Random Hash	50	2.43GB (43%)	
Log	75%	Model Hash	79	0.63GB (20%)	-22%
Normal		Random Hash	52	0.80GB (25%)	
	100%	Model Hash	66	1.10GB (26%)	-30%
		Random Hash	46	1.50GB (35%)	
	125%	Model Hash	77	2.16GB (41%)	-9%
		Random Hash	46	2.31GB (44%)	

Outline

- Introduction
- Range Index
- Point Index
- Existence Index
- Related Work
- Conclusion and Future Work

- Bloom-Filters
 - Bit array size *m*, *k* hash functions
 - Targeted FPR, FNR = 0
 - Occupy a significant amount of memory
 - 100 M records
 - FPR = 0.1% -> 1.76G
 - FPR = 0.01% -> 2.23G

- Learned Bloom Filters
 - No memory footprint if we know the exact data distribution

$$f(x) \equiv \mathbb{1}[0 \le x < n]$$

- Lots of collisions among keys, few collisions of keys and non-keys
- Learn a function to separate keys from everything else
 - Non-keys (randomly generated, based on previous queries)

Classification Problem

$$\mathcal{D} = \{(x_i, y_i = 1) | x_i \in \mathcal{K}\} \cup \{(x_i, y_i = 0) | x_i \in \mathcal{U}\}$$

$$L = \sum_{(x,y)\in\mathcal{D}} y \log f(x) + (1-y) \log(1 - f(x)).$$

Overflow Bloom-Filter to maintain FNR = 0

$$\mathcal{K}_{\tau}^{-} = \{ x \in \mathcal{K} | f(x) < \tau \}$$

Map keys to higher bits, non-keys to lower bits

$$d(p) = \lfloor mp \rfloor$$

- Evaluation
 - Task: keeping track of blacklisted phishing URLs
 - Model: RNN
 - More accurate -> better savings

Outline

- Introduction
- Range Index
- Point Index
- Existence Index
- Related Work
- Conclusion and Future Work

Related Work

- B-Tree Optimization
 - A-Trees (piecewise linear functions to reduce leaf nodes)
 - BF-Trees (B+ tree + bloom filter)
- Better Hash Functions
 - Feature hashing
- Bloom-Filters
 - 《Adaptive range filters for cold data》
 - 《Practically better than bloom》

Related Work

- Succinct Data Structures
 - Wavelet trees
- Modeling CDFs
 - PDF vs CDF
- Mixture of Experts
 - Building experts of subset of the data

Outline

- Introduction
- Range Index
- Point Index
- Existence Index
- Related Work
- Conclusion and Future Work

Conclusion and Future Work

Multi-Dimensional Index

Learned Algorithm

New generation of hardware