

# **SMPS MOSFET**

PD - 95363

IRF3708PbF IRF3708SPbF IRF3708LPbF

#### **Applications**

- High Frequency DC-DC Isolated Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Computer Processor Power
- Lead-Free

#### **Benefits**

- Ultra-Low Gate Impedance
- Very Low R<sub>DS(on)</sub> at 4.5V V<sub>GS</sub>
- Fully Characterized Avalanche Voltage and Current

## HEXFET® Power MOSFET

| V <sub>DSS</sub> | R <sub>DS(on)</sub> max | I <sub>D</sub> |
|------------------|-------------------------|----------------|
| 30V              | <b>12m</b> Ω            | 62A            |



#### **Absolute Maximum Ratings**

| Symbol                                 | Parameter                                       | Max.         | Units |
|----------------------------------------|-------------------------------------------------|--------------|-------|
| V <sub>DS</sub>                        | Drain-Source Voltage                            | 30           | V     |
| V <sub>GS</sub>                        | Gate-to-Source Voltage                          | ±12          | V     |
| I <sub>D</sub> @ T <sub>C</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 62           |       |
| $I_D @ T_C = 70^{\circ}C$              | Continuous Drain Current, V <sub>GS</sub> @ 10V | 52           | Α     |
| I <sub>DM</sub>                        | Pulsed Drain Current①                           | 248          |       |
| P <sub>D</sub> @T <sub>C</sub> = 25°C  | Maximum Power Dissipation③                      | 87           | W     |
| P <sub>D</sub> @T <sub>C</sub> = 70°C  | Maximum Power Dissipation③                      | 61           | W     |
|                                        | Linear Derating Factor                          | 0.58         | W/°C  |
| T <sub>J</sub> , T <sub>STG</sub>      | Junction and Storage Temperature Range          | -55 to + 175 | °C    |

#### **Thermal Resistance**

|                  | Parameter                             | Тур. | Max. | Units |
|------------------|---------------------------------------|------|------|-------|
| $R_{\theta JC}$  | Junction-to-Case                      |      | 1.73 |       |
| R <sub>θCS</sub> | Case-to-Sink, Flat, Greased Surface 4 | 0.50 |      | °C/W  |
| R <sub>θJA</sub> | Junction-to-Ambient®                  |      | 62   |       |
| R <sub>θJA</sub> | Junction-to-Ambient (PCB mount)*      |      | 40   |       |

<sup>\*</sup> When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994

# Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

|                                             | Parameter                            | Min.                              | Тур.  | Max. | Units | Conditions                                        |
|---------------------------------------------|--------------------------------------|-----------------------------------|-------|------|-------|---------------------------------------------------|
| V <sub>(BR)DSS</sub>                        | Drain-to-Source Breakdown Voltage    | 30                                |       |      | V     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta V_{(BR)DSS}/\Delta T_J$             | Breakdown Voltage Temp. Coefficient  |                                   | 0.028 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA           |
|                                             | Static Drain-to-Source On-Resistance |                                   | 8     | 12.0 |       | V <sub>GS</sub> = 10V, I <sub>D</sub> = 15A ③     |
| R <sub>DS(on)</sub>                         |                                      |                                   | 9.5   | 13.5 | mΩ    | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 12A ③    |
|                                             |                                      |                                   | 14.5  | 29   |       | $V_{GS} = 2.8V, I_D = 7.5A$ ③                     |
| V <sub>GS(th)</sub>                         | Gate Threshold Voltage               | 0.6                               |       | 2.0  | V     | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$              |
| I <sub>DSS</sub> Drain-to-Source Leakage Cu | Dusin to Course I called a Course    |                                   |       | 20   | μA    | $V_{DS} = 24V$ , $V_{GS} = 0V$                    |
|                                             | Drain-to-Source Leakage Current      |                                   |       | 100  | μΛ    | $V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| 1                                           | Gate-to-Source Forward Leakage       | e-to-Source Forward Leakage — — — |       | 200  | nA    | V <sub>GS</sub> = 12V                             |
| IGSS                                        | Gate-to-Source Reverse Leakage       |                                   |       | -200 | ''^   | V <sub>GS</sub> = -12V                            |

## Dynamic @ T<sub>J</sub> = 25°C (unless otherwise specified)

| Symbol              | Parameter                       | Min. | Тур. | Max. | Units | Conditions                                     |
|---------------------|---------------------------------|------|------|------|-------|------------------------------------------------|
| 9fs                 | Forward Transconductance        | 49   |      |      | S     | V <sub>DS</sub> = 15V, I <sub>D</sub> = 50A    |
| Qg                  | Total Gate Charge               |      | 24   |      |       | I <sub>D</sub> = 24.8A                         |
| Q <sub>gs</sub>     | Gate-to-Source Charge           |      | 6.7  |      | nC    | $V_{DS} = 15V$                                 |
| $Q_{gd}$            | Gate-to-Drain ("Miller") Charge |      | 5.8  |      |       | V <sub>GS</sub> = 4.5V ③                       |
| Q <sub>oss</sub>    | Output Gate Charge              |      | 14   | 21   |       | $V_{GS} = 0V$ , $I_D = 24.8A$ , $V_{DS} = 15V$ |
| t <sub>d(on)</sub>  | Turn-On Delay Time              |      | 7.2  |      |       | $V_{DD} = 15V$                                 |
| t <sub>r</sub>      | Rise Time                       |      | 50   |      | ns    | $I_D = 24.8A$                                  |
| t <sub>d(off)</sub> | Turn-Off Delay Time             |      | 17.6 |      | 113   | $R_G = 0.6\Omega$                              |
| tf                  | Fall Time                       |      | 3.7  |      | 1     | V <sub>GS</sub> = 4.5V ③                       |
| C <sub>iss</sub>    | Input Capacitance               |      | 2417 |      |       | $V_{GS} = 0V$                                  |
| Coss                | Output Capacitance              |      | 707  |      | 1     | $V_{DS} = 15V$                                 |
| C <sub>rss</sub>    | Reverse Transfer Capacitance    |      | 52   |      | pF    | f = 1.0MHz                                     |

### **Avalanche Characteristics**

| Symbol          | Parameter                      | Тур. | Max. | Units |
|-----------------|--------------------------------|------|------|-------|
| E <sub>AS</sub> | Single Pulse Avalanche Energy® |      | 213  | mJ    |
| I <sub>AR</sub> | Avalanche Current①             |      | 62   | Α     |

### **Diode Characteristics**

| Symbol          | Parameter                 | Min. | Тур. | Max. | Units | Conditions                                           |  |
|-----------------|---------------------------|------|------|------|-------|------------------------------------------------------|--|
| Is              | Continuous Source Current |      |      |      |       | MOSFET symbol                                        |  |
|                 | (Body Diode)              |      |      | 62   | Α     | showing the                                          |  |
| I <sub>SM</sub> | Pulsed Source Current     |      |      | 248  |       | integral reverse                                     |  |
|                 | (Body Diode) ①            |      |      | 240  |       | p-n junction diode.                                  |  |
| $V_{SD}$        | Diode Forward Voltage     |      | 0.88 | 1.3  | V     | $T_J = 25^{\circ}C$ , $I_S = 31A$ , $V_{GS} = 0V$ ③  |  |
| <b>*</b> 5D     |                           |      | 0.80 |      |       | $T_J = 125^{\circ}C$ , $I_S = 31A$ , $V_{GS} = 0V$ ③ |  |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 41   | 62   | ns    | $T_J = 25^{\circ}C$ , $I_F = 31A$ , $V_R = 20V$      |  |
| Q <sub>rr</sub> | Reverse Recovery Charge   |      | 64   | 96   | nC    | di/dt = 100A/µs ③                                    |  |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 43   | 65   | ns    | $T_J = 125^{\circ}C$ , $I_F = 31A$ , $V_R = 20V$     |  |
| Q <sub>rr</sub> | Reverse Recovery Charge   |      | 70   | 105  | nC    | di/dt = 100A/µs ③                                    |  |

# International Rectifier

# IRF3708/S/LPbF



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance Vs. Temperature

International

TOR Rectifier



(X) about the state of the stat

**Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage

**Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage





**Fig 7.** Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

# International Rectifier

# IRF3708/S/LPbF



**Fig 9.** Maximum Drain Current Vs. Case Temperature



Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case



0.017 Outing 0.015 0.013 0.009 0.009 0.009 0.009 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 V<sub>GS</sub>, Gate -to -Source Voltage (V)

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage







**Fig 15a&b.** Unclamped Inductive Test circuit and Waveforms

6



**Fig 15c.** Maximum Avalanche Energy Vs. Drain Current

## TO-220AB Package Outline

Dimensions are shown in millimeters (inches)



- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

## TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"



## D<sup>2</sup>Pak Package Outline



# D<sup>2</sup>Pak Part Marking Information (Lead-Free)



## TO-262 Package Outline



## TO-262 Part Marking Information



### D<sup>2</sup>Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)







#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting  $T_J = 25^{\circ}C$ , L = 0.7 mH  $R_G = 25\Omega$ ,  $I_{AS} = 24.8$  A.
- This is only applied to TO-220AB package

Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.06/04

Note: For the most current drawings please refer to the IR website at: <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>

#### IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

#### WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.