Napredni algoritmi i strukture podataka – zimski ispitni rok

22. veljače 2016.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- 1. (7) U inicijalno prazno crveno-crno stablo
 - a) (5) Unesite redom sljedeće elemente:

b) (2) Obrišite redom sljedeće elemente:

- 2. (11) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 2x5x2. Aktivacijska funkcija svih neurona u mreži je opći sigmoid.
 - a) (1) Skicirati tu mrežu.
 - b) (8) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

ulaz 1	ulaz 2	izlaz 1	izlaz 2
-5	8	1.5	6.5
7	1	4	-3
-1	-4	-2.5	-1.5
6	4	5	-1

Početne vrijednosti svih parametara mreže postavite na <u>jedan</u>, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

- c) (2) Objasniti nastavak postupka, tj. kako bi započeo sljedeći korak uvježbavanja mreže. Uputa: dovoljna je i samo jedna dobro sročena rečenica. Naravno, svako podrobnije objašnjenje je dobrodošlo i smanjit će mogućnost zabune prilikom ocjenjivanja.
- 3. (12) Usmjereni graf je zadan matricom udaljenosti (slova u tablici su oznake vrhova).

		Odredište							
		Α	В	С	D	E	F		
	Α		13	12					
	В				9		9		
Izvor	C					12			
2	ם		3	9			18		
	Ε				6		5		
	F		·						

- a) (4) Pronađite maksimalni tok između A i F.
- b) (8) Modelirajte zadani problem maksimalnog toka kao linearni program.

4. (12) Na raspolaganju imate 2000 EUR-a i trebate odlučiti kako ih alocirati na opcije dane u tablici ispod da biste osigurali najveću korisnost. Opcije su raspoređene u grupe i unutar svake grupe se smije odabrati maksimalno jedna opcija za alociranje sredstava. Također, nealocirani novac ima dodijeljenu korisnost, pa očito ne mora a priori nužno biti slučaj da je u optimalnom rješenju potrošen sav novac.

	Korisnost alokacija na "Opcija,#grupa" (ili novac)						
Alokacija [EUR]	A,#1	B,#2	C,#2	D,#3	E,#3	F,#4	novac
0	0	0	0	0	0	0	0
200	2	0	0	1	0	0	2
400	4	0	0	2	0	0	4
600	4	7	0	3	0	0	6
800	4	7	0	4	9	10	7
1000	4	7	0	5	9	10	8
1200	4	12	0	6	9	10	8
1400	4	12	14	7	9	10	8
1600	4	12	14	8	9	10	8
1800	4	12	14	13	9	10	8
2000	4	12	14	16	9	10	8

5. (8) Pronađite minimalno razapinjuće stablo Kruskalovim algoritmom na neusmjerenom grafu zadanom sljedećom matricom udaljenosti (slova u tablici su oznake vrhova, dane samo vrijednosti u gornjoj trokutastoj matrici, kako je matrica simetrična).

	Α	В	С	D	Ε	F	G	н
Α		6	10			3	6	
В						2		
С				7			1	
D					3		5	4
E								4
F							1	
G								9
Н								