1

(2024 - Apr)

(2024 - Apr)

2024 April 5 Shift 1

EE24BTECH11001 - ADITYA TRIPATHY

1. Let a circle C of radius 1 and closer to the origin be such that the lines passing through the point (3,2) and parallel to the coordinate axes touch it. Then the shortest distance of the circle from the

point (5,5)

	a) 5	b) 4 √2	c) 4	d) $2\sqrt{2}$			
2.	Let a rectangle $ABCD$ of sides 2 and 4 be inscribed in another rectangle $PQRS$ such that the vertices of the rectangle $ABCD$ lie on the sides og the rectangle $PQRS$. Let a and b be the sides of the rectangle $PQRS$ when its area is maximum. Then $(a+b)^2$ is equal to:						
	a) 80	b) 60	c) 72	d) 64			
3.	If						
	1	$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+}$	$\frac{1}{\sqrt{99}} + \dots \frac{1}{\sqrt{99} + \sqrt{99}}$	$\overline{\sqrt{100}} = m$	(1)		
	and	1 1	1 1				
		$\frac{1}{1.2} + \frac{1}{2.2}$	$\frac{1}{.3} + \dots \frac{1}{99.100} = n$		(2)		
	then the point (m, n) lie	es on the line		(20	24 - Apr		
	a) $11(x-1) - 100(y-1)$						
	b) $11(x-2) - 100(y-1)$	1)					
	c) $11(x-1) - 100y$ d) $11x - 100y$						
4.	Let d be this distance of	of the point of interse	ction of the lines				
		$\frac{x}{3}$	$\frac{6}{2} = \frac{y}{2} = \frac{z+1}{1}$		(3)		
	and						
		x-7	$=\frac{y-9}{3}=\frac{z-4}{2}$		(4)		
		4	$\equiv \frac{1}{3} \equiv \frac{1}{2}$		(4)		
	from the point $(7, 8, 9)$.	(20	24 - Apr				
	a) 72	b) 78	c) 69	d) 75			
5.	Let the line $2x + 3y - k = 0$, $k > 0$, intersect the x-axis and y-axis at the points A and B, respectively. If the equation of the circle having the line segment AB as a diameter is $x^2 + 9y^2 = k^2$ is $\frac{m}{n}$, where m and n are coprime, then $2m + n$ is equal to: (2024 – Apr)						
	a) 11	b) 10	c) 13	d) 12			
6.	The coefficients a, b, c in	n the quadratic equation	on $ax^2 + bx + c = 0$ are	chosen from the set $\{1, 2, 3\}$	3, 4, 5, 6, 7, 8}.		

The probability of this equation having repeated roots is:

	a) $\frac{5}{128}$	b) $\frac{1}{64}$	c) $\frac{1}{128}$	d) $\frac{5}{256}$			
7. Suppose $\theta \in \left[0, \frac{\pi}{4}\right]$ is a solution of $4\cos\theta - 3\sin\theta = 1$. Then $\cos\theta$ is equal to : $(2024 - Apr)$							
	a) $\frac{4}{(3\sqrt{6}-2)}$						
	b) $\frac{6-\sqrt{6}}{(3\sqrt{6}-2)}$						
	c) $\frac{(3\sqrt{6}-2)}{(3\sqrt{6}+2)}$						
	d) $\frac{6+\sqrt{6}}{(3\sqrt{6}+2)}$						
8.	For the function		2	_3			
	$f(x) = \sin x + 3x - \frac{2}{\pi} \left(x^2 + x \right), \text{ where } x \in \left[0, \frac{\pi}{2} \right] $ (5)						
	Consider the follwing t						
	1. f is increasing in $(0, 1)$	$\left(\frac{\pi}{2}\right)$					
	2. f' is decreasing in ($O, \frac{\pi}{2}$					
					(2024 - Apr)		
	a) Only 2 is true.						
	b) neither 1 nor 2 is true; c) both 1 and 2 are true						
	d) only 1 is true.						
9.	9. Let $f(x) = x^5 + 2x^3 + 3x + 1$, $x \in \mathbb{R}$, and $g(x)$ be a function such that $g(f(x)) = x$ for all $x \in \mathbb{R}$. The						
	$\frac{g(7)}{g'(7)}$ is equal to:				(2024 - Apr)		
	a) 7	b) 42	c) 14	d) 1			
10.	If the system of equation	ons					
			$11x + y + \lambda z = -5$		(6)		
			2x + 3y + 5z = 3		(7)		
	$8x - 19y - 39z = \mu$				(8)		
	, has infinitely many solutions, then $\lambda^4 - \mu$ is equal to :				(2024 - Apr)		
	a) 45	b) 51	c) 47	d) 49			
11	The value of						
	The value of		C^{π} 2v (1 + sin v)				
			$\int_{-\pi}^{\pi} \frac{2y(1+\sin y)}{1+\cos^2 y} dy$		(9)		
	is:	•	y-η		(2024 - Apr)		
	15 .	2			(2021 1191)		
	a) $\frac{\pi}{2}$	b) $\frac{\pi^2}{2}$	c) π^2	d) $2\pi^2$			
12.	If the line $\frac{2-x}{3} = \frac{3y-2}{4\lambda} =$	4 - z makes right	angle with the line $\frac{x+3}{3\mu} = \frac{1-7}{6}$	$\frac{2y}{7} = \frac{5-z}{7}$	(2024 - Apr)		

13. If A(1,-1,2), B(5,7,-6), C(3,4,-10) and D(-1,-4,-2) are the vertices of a quadrilateral ABCD, then its area is: (2024 – Apr)

b) 5

a) 13

c) 4

d) 6

ر م	10	1/20
a)	12	$\sqrt{29}$

b)
$$24\sqrt{29}$$

c)
$$48\sqrt{7}$$

d)
$$24\sqrt{7}$$

- 14. Let A and B be the two square matrices of order 3 such that |A| = 3 and |B| = 8. Then $\left| A^{\mathsf{T}} A \left(\operatorname{adj} \left(2A \right) \right)^{-1} \left(\operatorname{adj} \left(4b \right) \left(\operatorname{adj} \left(AB \right)^{-1} AA^{\mathsf{T}} \right) \right) \right|$ is equal to : (2024 Apr)
 - a) 64

b) 81

c) 108

- d) 32
- 15. Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 5, 7, 8, 10, 12\}$. Then the total number of one-one maps $f : A \to B$, such that f(1) + f(3) = 14 is : (2024 Apr)
 - a) 120

b) 180

c) 480

d) 240