Commande optimale

Jacques Bailhache (jacques.bailhache@gmail.com)

January 1, 2022

1 Multiplicateurs de Lagrange

On cherche le vecteur $x = (x_1, x_2, ... x_n)$ de \mathbb{R}^n tel que l(x) soit maximal tout en satisfaisant les contraintes :

- $h_1(x) = 0$
- $h_2(x) = 0$
- ..
- $h_p(x) = 0$

On définit le lagrangien :

$$L = l(x) - p_1 h_1(x) - p_2 h_2(x) - \dots - p_n h_n(x)$$

avec les multiplicateurs de Lagrange:

$$p = (p_1, p_2, ..., p_n)$$

On a alors:

$$\frac{\partial L}{\partial x_i} = 0$$

Pour plus de détails, voir http://log.chez.com/text/math/multiplicateurs_de_lagrange.pdf .

2 Commande optimale avec temps discret

On considère un système dont l'état à un instant donné est représenté par un réel x et dont l'évolution est commandée par un nombre u dont on peut faire varier la valeur à volonté. Plus précisément, dans le cas le plus général, l'état à l'instant t+1 vaut :

$$x(t+1) = x(t) + f(t, x(t), u(t))$$

où f est une fonction qui détermine la variation de l'état x en fonction du temps t, de l'état précédent et de la commande u.

Le système passe ainsi par plusieurs états successifs x(1) en t=1, x(2) en t=2, ... jusqu'à x(T) en t=T. A chaque instant précédant T, on a un certain gain l(t,x(t),u(t)) et on a aussi un gain final m(x(T)) qui dépend de l'état final. On cherche à maximiser la somme des gains à chaque instant plus le gain final, Pour simplifier les notations, on pourra écrire f(t) = f(t,x(t),u(t)) et l(t) = l(t,x(t),u(t)), mais il ne faudra pas oublier, notamment dans les calculs de dérivées, que f(t) et l(t) dépendent de x(t) et de u(t).

Considérons par exemple le cas où T=3 (les résultats obtenus pourront se généraliser à T quelconque). On a alors :

- $x(1) = x_0 \text{ donné}$
- x(2) = x(1) + f(1)
- x(3) = x(2) + f(2)

On cherche alors quelles sont les valeurs de x(1), x(2), x(3), u(1), u(2) qui maximisent l(1) + l(2) + m(x(3)) tout en satisfaisant les contraintes énumérées ci-dessus.

On définit le lagrangien :

$$L = l(1) + l(2) + m(x(3)) - p(0)(x(1) - x_0) - p(1)(x(2) - x(1) - f(1)) - p(2)(x(3) - x(2) - f(2))$$

en notant les multiplicateurs de Lagrange p(0), p(1), p(2).

On a alors:

$$\frac{\partial L}{\partial x(1)} = 0 = \frac{\partial l(1)}{\partial x(1)} - p(0) + p(1) + p(1)\frac{\partial f(1)}{\partial x(1)}$$

$$\frac{\partial L}{\partial x(2)} = 0 = \frac{\partial l(2)}{\partial x(2)} - p(1) + p(2) + p(2)\frac{\partial f(2)}{\partial x(2)}$$

$$\frac{\partial L}{\partial x(3)} = 0 = \frac{\partial m(x(3))}{\partial x(3)} - p(2) \ donc \ p(2) = \frac{\partial m(x(3))}{\partial x(3)}$$

$$\frac{\partial L}{\partial u(1)} = 0 = \frac{\partial l(1)}{\partial u(1)} + p(1)\frac{\partial f(1)}{\partial u(1)}$$

$$\frac{\partial L}{\partial u(2)} = 0 = \frac{\partial l(2)}{\partial u(2)} + p(2)\frac{\partial f(2)}{\partial u(2)}$$

Les deux premières équations peuvent être réécrites sous la forme :

$$p(1) - p(0) = -\frac{\partial l(1)}{\partial x(1)} - p(1)\frac{\partial f(1)}{\partial x(1)}$$

$$p(2) - p(1) = -\frac{\partial l(2)}{\partial x(2)} - p(2)\frac{\partial f(2)}{\partial x(2)}$$

On définit le hamiltonien :

$$H(t) = l(t) + p(t)f(t)$$

pour t = 1, ... T-1 (donc t = 1 ou 2 pour T=3). On a alors, pour les mêmes valeurs de t:

$$\Delta x(t) = x(t+1) - x(t) = f(t) = \frac{\partial H(t)}{\partial p(t)}$$

$$\Delta p(t-1) = p(t) - p(t-1) = -\frac{\partial l(t)}{\partial x(t)} - p(t) \frac{\partial f(t)}{\partial x(t)} = -\frac{\partial H(t)}{\partial x(t)}$$

$$\frac{\partial H(t)}{\partial u(t)} = \frac{\partial l(t)}{\partial u(t)} + p(t) \frac{\partial f(t)}{\partial u(t)} = 0$$

Ces résultats peuvent se généraliser :

- pour T quelconque
- dans le cas où x n'est pas un simple réel mais un vecteur $x = (x_1, x_2, ...x_n)$: dans ce cas, f(t) et p(t) sont également des vecteurs, et le produit p(t) (x(t+1) x(t) f(t)) devient un produit scalaire de vecteurs:

$$p(t).(x(t+1) - x(t) - f(t)) = \sum_{i=0}^{n} p_i(t)(x_i(t+1) - x_i(t) - f_i(t))$$

- dans le cas où la commande u n'est pas un simple réel mais un vecteur $u=(u_1,u_2,...,u_q)$.
- dans le cas du temps continu.

Dans le cas général avec temps discret, l'évolution de l'état $x = (x_1, x_2, ..., x_n)$ en fonction de la commande $u = (u_1, u_2, ..., u_q)$ est toujours déterminée par la formule :

$$x(t+1) = x(t) + f(t, x(t), u(t))$$

mais cette fois on a des vecteurs au lieu de scalaires.

On a toujours un gain l(t,x(t),u(t)) à chaque instant et un gain final m(x(T)).

On cherche les valeurs (vectorielles) de x(1), x(2), ..., x(T), u(1), u(2), ..., u(T-1) qui maximisent

$$\sum_{t=1}^{T-1} l(t) + m(x(T))$$

tout en satisfaisant les contraintes $x(1) = x_0$ donné et x(t+1) = x(t) + f(t) pour t = 1, 2, ... T-1. On définit le lagrangien :

$$L = \sum_{t=1}^{T-1} l(t) + m(x(T)) - p(0).(x(1) - x_0) - \sum_{t=1}^{T-1} p(t).(x(t+1) - x(t) - f(t))$$

ou en développant les produits scalaire :

$$L = \sum_{t=1}^{T-1} l(t) + m(x(T)) - \sum_{j=1}^{n} p_j(0)(x_j(1) - x_{0j}) - \sum_{t=1}^{T-1} \sum_{j=1}^{n} p_j(t)(x_j(t+1) - x_j(t) - f_j(t))$$

On a alors pour i = 1, 2, ..., n:

$$\frac{\partial L}{\partial x_i(T)} = 0 = \frac{\partial m(x(T))}{\partial x_i(T)} - p_i(T-1)$$

donc

$$p_i(T-1) = \frac{\partial m(x(T))}{\partial x_i(T)}$$

et pour $t=1,\,2,\,\dots$, T-1 et $k=1,\,2,\,\dots$, q :

$$\frac{\partial L}{\partial u_k(t)} = 0 = \frac{\partial l(t)}{\partial u_k(t)} + \sum_{j=1}^n p_j(t) \frac{\partial f_j(t)}{\partial u_k(t)}$$

et

$$\frac{\partial L}{\partial x_i(t)} = 0 = \frac{\partial l(t)}{\partial x_i(t)} - p_i(t-1) + p_i(t) + \sum_{j=1}^n p_j(t) \frac{\partial f_j(t)}{\partial x_i(t)}$$

que l'on peut réécrire sous la forme

$$p_i(t) - p_i(t-1) = -\frac{\partial l(t)}{\partial x_i(t)} - \sum_{i=1}^n p_j(t) \frac{\partial f_j(t)}{\partial x_i(t)}$$

On définit le hamiltonien pour t = 1, 2, ..., T-1:

$$H(t) = l(t) + p(t).f(t) = l(t) + \sum_{j=1}^{n} p_j(t)f_j(t)$$

On a alors, pour $t=1,\,2,\,\dots$, T-1 et $i=1,\,2,\,\dots$, n :

$$\Delta x_i(t) = x_i(t+1) - x_i(t) = f_i(t) = \frac{\partial H(t)}{\partial p_i(t)}$$

$$\Delta p_i(t-1) = p_i(t) - p_i(t-1) = -\frac{\partial l(t)}{\partial x_i(t)} - \sum_{j=1}^n p_j(t) \frac{\partial f_j(t)}{\partial x_i(t)} = -\frac{\partial H(t)}{\partial x_i(t)}$$

$$\frac{\partial H(t)}{\partial u_k(t)} = \frac{\partial l(t)}{\partial u_k(t)} + \sum_{j=1}^n p_j(t) \frac{\partial f_j(t)}{\partial u_k(t)} = 0$$

3 Commande optimale avec temps continu

Avec un temps discret, pour simplifier on a considéré que l'écart entre deux instants successifs était de 1. On pourrait aussi avoir un écart de Δt avec $\frac{T}{\Delta t}$ instants successifs $t = \Delta t, t = 2\Delta t, ..., t = T$. Pour passer au continu, on fait tendre le nombre d'instants successifs vers l'infini et donc Δt vers 0. La loi d'évolution de l'état que l'on peut écrire en temps discret sous la forme

$$\Delta x(t) = x(t+1) - x(t) = f(t)$$

devient en temps continu

$$\frac{\partial x(t)}{\partial t} = f(t)$$

La valeur à maximiser qui était en temps discret

$$\sum_{t=1}^{T-1} l(t) + m(x(T))$$

devient en temps continu

$$J = \int_0^T l(t)dt + m(x(T))$$

La formule donnant le hamiltonien en temps discret

$$H(t) = l(t) + p(t).f(t) = l(t) + \sum_{j=1}^{n} p_j(t)f_j(t)$$

reste valable en temps continu.

Les résultats obtenus en temps discret

$$\Delta x_i(t) = x_i(t+1) - x_i(t) = f_i(t) = \frac{\partial H(t)}{\partial p_i(t)}$$
$$\Delta p_i(t-1) = p_i(t) - p_i(t-1) = -\frac{\partial H(t)}{\partial x_i(t)}$$
$$\frac{\partial H(t)}{\partial u_k(t)} = 0$$

donnent en temps continu le **principe du maximum de Pontryagin** dans sa version faible (sans contrainte sur les commandes $u_k(t)$):

Pour t compris entre 0 et T, i=1, 2, ..., n et k=1, 2, ..., q on a :

$$\dot{x}_i(t) = \frac{dx_i(t)}{dt} = f_i(t) = \frac{\partial H(t)}{\partial p_i(t)}$$
$$\dot{p}_i(t) = \frac{dp_i(t)}{dt} = -\frac{\partial H(t)}{\partial x_i(t)}$$
$$\frac{\partial H(t)}{\partial u_k(t)} = 0$$

4 Exemple

On considère un système dont l'état est représenté par un scalaire x qui vaut 0 en t=0 et dont l'évolution est contrôlée par une commande scalaire u avec $\dot{x}(t) = u(t)$. On veut maximiser

$$J = \int_0^T (x(t) - \frac{u(t)^2}{2}) dt$$

avec T; 0.

On définit le hamiltonien :

$$H(t) = x(t) - \frac{u(t)^2}{2} + p(t)u(t)$$

On a alors

$$\frac{\partial H(t)}{\partial u(t)} = 0 = -u(t) + p(t)$$

donc u(t) = p(t).

D'autre part,

$$\dot{p}(t) = -\frac{\partial H(t)}{\partial x(t)} = -1$$

donc $p(t) = p_0 - t$ et comme u(t) = p(t), $u(t) = u_0 - t$ (avec $u_0 = p_0$). Comme $\dot{x}(t) = u(t)$, on a

$$x = u_0 t - \frac{t^2}{2}$$

On a alors

$$J = \int_0^T (x - \frac{u^2}{2}) dt = \int_0^T (u_0 t - \frac{t^2}{2} - \frac{(u_0 - t)^2}{2}) dt = \int_0^T (2u_0 t - t^2 - \frac{u_0^2}{2}) dt = T^2 u_0 - \frac{T^3}{3} - T\frac{u_0^2}{2}$$

On cherche donc la valeur de u_0 qui maximise

$$J = -\frac{T}{2}u_0^2 + T^2u_0 - \frac{T^3}{3}$$

Cette valeur vérifie l'équation

$$\frac{\partial J}{\partial u_0} = 0 = -Tu_0 + T^2 = (-u_0 + T)T$$

On a donc $u_0 = T$, $u(t) = u_0 - t = T - t$ et en particulier $u(T) = u_0 - T = T - T = 0$.

5 Liens

Pour plus de détails, voir :

- https://imag.umontpellier.fr/~bayen/cours/module-doctoral-2016/pense-bete-PMP.pdf ou http://log.chez.com/text/math/pense-bete-PMP.pdf
- http://irma.math.unistra.fr/~privat/documents/M2_CO/PMPgal.pdf ou http://log.chez.com/text/math/PMPgal.pdf
- https://www.ljll.math.upmc.fr/~trelat/enseignement/M2controle_optimal/courscontopt.pdf ou http://log.chez.com/text/math/courscontopt.pdf
- http://log.chez.com/text/math/LIVREOPT.PDF
- http://log.chez.com/text/math/optimal.pdf