Lab 3: Cell Characterization using Spectre

Alex Anderson

UIN: 728001757

ECEN 714-603

Inverter:

Figure 1: Inverter Transient Sim

Table 1: Inverter Delay Table

Capacitance	Rise (ps)	Fall (ps)	Error
1f	45.2	27.1	40.0%
5f	74.5	57.7	22.6%
10f	101	85.8	15.0%
20f	144	131	9.0%
25f	166	153	7.8%
30f	188	175	6.9%
40f	232	219	5.6%
45f	255	240	5.9%
50f	277	262	5.4%
60f	321	306	4.7%
65f	345	329	4.6%
70f	368	351	4.6%
80f	410	393	4.1%
90f	451	439	2.7%
100f	498	481	3.4%

Figure 2: Inverter AC Sim

Table 2: Inverter Sink Capacitance

Frequency (MHz)	Current (uA)	Sink capacitance (fF)
100	2.06	3.279
200	4.12	3.279
300	6.17	3.273
400	8.23	3.275
500	10.3	3.279
600	12.3	3.263
700	14.4	3.274
800	16.5	3.283
900	18.5	3.272
1000	20.6	3.279

From these values, the average sink capacitance is 3.275fF.

NAND:

Figure 3: NAND Transient Sim

Table 3: NAND Delay Table

Capacitance	Rise (ps)	Fall (ps)	Error
1f	52.5	40.3	23.2%
5f	79.8	71	11.0%
10f	105	101	3.8%
20f	149	153	2.7%
25f	171	179	4.7%
30f	193	204	5.7%
40f	237	257	8.4%
45f	260	282	8.5%
50f	282	307	8.9%
60f	326	359	10.1%
65f	349	387	10.9%
70f	372	412	10.8%
80f	414	462	11.6%
90f	457	512	12.0%
100f	503	564	12.1%

Figure 4: NAND AC Sim

Table 4: NAND Sink Capacitance

Frequency (MHz)	Current (uA)	Sink capacitance (fF)
100	2.06	3.279
200	4.12	3.279
300	6.17	3.273
400	8.23	3.275
500	10.3	3.279
600	12.3	3.263
700	14.4	3.274
800	16.5	3.283
900	18.5	3.272
1000	20.6	3.279

From these values, the average sink capacitance is 3.275fF.

XOR:

Figure 5: XOR Transient Sim

Table 5: XOR Delay Table

Capacitance	Rise (ps)	Fall (ps)	Error
1f	59.3	30.3	48.9%
5f	95	58.8	38.1%
10f	137	90.6	33.9%
20f	223	144	35.4%
25f	266	170	36.1%
30f	310	196	36.8%
40f	394	247	37.3%
45f	438	273	37.7%
50f	478	299	37.4%
60f	563	350	37.8%
65f	604	376	37.7%
70f	649	401	38.2%
80f	732	453	38.1%
90f	815	504	38.2%
100f	900	555	38.3%

Figure 6: XOR AC Sim

Table 6: XOR Sink Capacitance

Frequency (MHz)	Current (uA)	Sink capacitance (fF)
100	4.12	6.557
200	8.23	6.549
300	12.3	6.525
400	16.5	6.565
500	20.6	6.557
600	24.7	6.552
700	28.8	6.548
800	32.9	6.545
900	37	6.543
1000	41.1	6.541

From these values, the average sink capacitance is 6.548fF.

```
[alexd43anderson]@n01-zeus ~/ecen714/cellcharacs> (22:21:57 02/22/23)
:: cat cell18.spi
//Spice netlist for an inverter
simulator lang=spectre
subckt IV (input output VDD VSS)
         parameters wp=0.6u lp=0.2u wn=0.3u ln=0.3u
         M1 output input VDD VDD tsmc18P w=wp l=lp
         M2 output input VSS VSS tsmc18N w=wn l=ln
ends IV
subckt NAND (A B output VDD VSS)
         parameters wp=0.9u lp=0.2u wn=0.4u ln=0.2u
         PO output A VDD VDD tsmc18P w=wp l=lp
         P1 output B VDD VDD tsmc18P w=wp l=lp
         NO c B VSS VSS tsmc18N w=wn l=ln
         N1 output A c VSS tsmc18N w=wn l=ln
ends NAND
subckt XOR (A B output VDD VSS)
         parameters wp=0.9u lp=0.2u wn=0.4u ln=0.2u
         I1 A _A VDD VSS IV wp=wp wn=wn lp=lp ln=ln
I2 B _B VDD VSS IV wp=wp wn=wn lp=lp ln=ln
         PO net12 B VDD VDD tsmc18P w=wp l=lp
         P1 output _A net12 VDD tsmc18P w=wp l=lp
P3 net11 _B VDD VDD tsmc18P w=wp l=lp
         P2 output A net11 VDD tsmc18P w=wp l=lp
         NO output _A net10 VSS tsmc18N w=wn l=ln
N1 net10 _B VSS VSS tsmc18N w=wn l=ln
         N2 output A net9 VSS tsmc18N w=wn l=ln
         N3 net9 B VSS VSS tsmc18N w=wn l=ln
ends XOR
[alexd43anderson]@n01-zeus ~/ecen714/cellcharacs> (22:48:30 02/22/23)
```

Figure 7: cell18.spi File

```
[alexd43anderson]@n01-zeus ~/ecen714/cellcharacs> (22:49:18 02/22/23)
:: cat inverter.spi
;Spice netlist for an inverter and a capacitor
simulator lang=spectre
include "~/ecen714/cellcharacs/model18.spi"
include "~/ecen714/cellcharacs/cell18.spi"

vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8

vpwl (IV_in 0) vsource type=pwl wave=[0n 0 1n 0 1.2n 1.8 4n 1.8 4.2n 0]

X1 (IV_in IV_out vdd gnd) IV wp=0.9u lp=0.2u wn=0.3u ln=0.2u

R1 (IV_out 1) resistor r=1
C1 (1 0) capacitor c=100f

TransientAnalysis tran start=0 stop=10ns step=1ps
save IV_in IV_out
```

Figure 8: inverter.spi File

```
[alexd43anderson]@n01-zeus ~/ecen714/cellcharacs> (22:49:21 02/22/23)
:: cat nand.spi
;Spice netlist for an inverter and a capacitor
simulator lang=spectre

include "~/ecen714/cellcharacs/model18.spi"

vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8

vpwl (IV_in 0) vsource type=pwl wave=[0n 0 1n 0 1.2n 1.8 4n 1.8 4.2n 0]

X1 (IV_in vdd IV_out vdd gnd) NAND wp=0.9u lp=0.2u wn=0.4u ln=0.2u

R1 (IV_out 1) resistor r=1
C1 (1 0) capacitor c=90f

TransientAnalysis tran start=0 stop=10ns step=1ps
save IV_in IV_out
```

Figure 9: nand.spi File

```
[alexd43anderson]@n01-zeus ~/ecen714/cellcharacs> (22:50:00 02/22/23)
:: cat xor.spi
;Spice netlist for an inverter and a capacitor
simulator lang=spectre

include "~/ecen714/cellcharacs/model18.spi"

vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8

vpwl (IV_in 0) vsource type=pwl wave=[0n 0 1n 0 1.2n 1.8 4n 1.8 4.2n 0]

X1 (IV_in vdd IV_out vdd gnd) XOR wp=0.9u lp=0.2u wn=0.4u ln=0.2u

R1 (IV_out 1) resistor r=1
C1 (1 0) capacitor c=90f

TransientAnalysis tran start=0 stop=10ns step=1ps
save IV_in IV_out
```

Figure 10: xor.spi File