Earthquake Prediction Model using Python Al_Phase3 Development Part-1

Introduction:

To begin building an earthquake prediction project using Python, you first need to load and preprocess the dataset. The dataset could contain information about earthquake occurrences, such as location, time, magnitude, and other relevant factors.

Loading the dataset involves importing the required Python libraries, such as pandas, numpy and reading the dataset file, which could be in formats like CSV or Excel.

By loading and preprocessing the dataset effectively, you create a solid foundation for further analysis and model development in earthquake prediction using Python.

Data Sheet:

Date	Time	Latitude	Longitude Type	Depth	Depth Erro Depth Sei	Magnitud Magnitud	Magnitud Magn	itud Azimutha	Horizonta	Horizonta	Root Mea	ID	Source	Location	SM
*********	13:44:18	19.246	145.616 Earthqual	131.6		6 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	11:29:49	1.863	127.352 Earthqual	k 80		5.8 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	18:05:58	-20.579	-173.972 Earthqual	20		6.2 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	18:49:43	-59.076	-23.557 Earthqual	15		5.8 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	13:32:50	11.938	126.427 Earthqual	15		5.8 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	13:36:32	-13.405	166.629 Earthqual	35		6.7 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	13:32:25	27.357	87.867 Earthqual	20		5.9 MW						ISCGEM86	ISCGEM	ISCGEM	IS
01/15/196	23:17:42	-13.309	166.212 Earthqual	35		6 MW						ISCGEM86	ISCGEM	ISCGEM	IS
01/16/196	11:32:37	-56.452	-27.043 Earthqual	95		6 MW						ISCGEMSU	ISCGEMSU	ISCGEM	IS
01/17/196	10:43:17	-24.563	178.487 Earthqual	565		5.8 MW						ISCGEM86	ISCGEM	ISCGEM	IS
01/17/196	20:57:41	-6.807	108.988 Earthqual	227.9		5.9 MW						ISCGEM86	ISCGEM	ISCGEM	IS
01/24/196	00:11:17	-2.608	125.952 Earthqual	20		8.2 MW						ISCGEM86	ISCGEM	ISCGEM	IS
01/29/196	09:35:30	54.636	161.703 Earthqual	k 55		5.5 MW						ISCGEM86	ISCGEM	ISCGEM	IS
########	05:27:06	-18.697	-177.864 Earthqual	482.9		5.6 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	15:56:51	37.523	73.251 Earthqual	15		6 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	03:25:00	-51.84	139.741 Earthqual	(10		6.1 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	05:01:22	51.251	178.715 Earthqual	30.3		8.7 MW						OFFICIAL1	OFFICIAL	ISCGEM	0
########	06:04:59	51.639	175.055 Earthqual	30		6 MW						ISCGEMSU	ISCGEMSU	ISCGEM	IS
########	06:37:06	52.528	172.007 Earthqual	25		5.7 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	06:39:32	51.626	175.746 Earthqual	25		5.8 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	07:11:23	51.037	177.848 Earthqual	25		5.9 MW						ISCGEMSU	ISCGEMSU	ISCGEM	IS
########	07:14:59	51.73	173.975 Earthqual	20		5.9 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	07:23:12	51.775	173.058 Earthqual	(10		5.7 MW						ISCGEM85	ISCGEM	ISCGEM	IS
########	07:43:43	52.611	172.588 Earthqual	¢ 24		5.7 MW						ISCGEMSU	ISCGEMSU	ISCGEM	IS
########	08:06:17	51.831	174.368 Earthqual	31.8		5.7 MW						ISCGEM85	ISCGEM	ISCGEM	IS
*********	08:33:41	51.948	173.969 Earthqual	20		5.6 MW						ISCGEM85	ISCGEM	ISCGEM	IS

CODE:

By Importing the necessary libraries required for building the model and data analysis of the earthquakes.

Input:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
print(os.listdir("path of the input"))
```

By reading the data from csv and also columns which are necessary for the model and the column which needs to be predicted.

Input:

```
data = pd.read_csv("Path of the input")
data.head()
```

Input:

data.columns

Pointing out the main features from earthquake data and create a object of that features, namely, Date, Time, Latitude, Longitude, Depth, Magnitude

Input:

```
data = data[['Date', 'Time', 'Latitude', 'Longitude
', 'Depth', 'Magnitude']]
```

data.head()

Here, the data is random we need to scale according to inputs to the model. In this, we convert given Date and Time to Unix time which is in seconds and a numeral. This can be easily used as input for the network we built.

Input:

Input:

```
final_data = data.drop(['Date', 'Time'], axis=1)
final_data = final_data[final_data.Timestamp != '
ValueError']
final_data.head()
```

Input for importing necessary Libraries:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import os
print(os.listdir("../input"))
```

Reading data from csv file:

```
data = pd.read_csv("../input/database.csv")
data.head()
```

Output:

Date	Time	Latitude	Longitude	Туре	Depth	Depth Error	Depth Seismic Stations	N
01/02/1965	13:44:18	19.246	145.616	Earthquake	131.6	NaN	NaN	E
01/04/1965	11:29:49	1.863	127.352	Earthquake	80.0	NaN	NaN	Ę
01/05/1965	18:05:58	-20.579	-173.972	Earthquake	20.0	NaN	NaN	E
01/08/1965	18:49:43	-59.076	-23.557	Earthquake	15.0	NaN	NaN	Ę
01/09/1965	13:32:50	11.938	126.427	Earthquake	15.0	NaN	NaN	Ē

Input and Output:

```
data.columns
```

Input and output for pointing main Features:

```
data = data[['Date', 'Time', 'Latitude', 'Longitude', 'Depth', 'M
agnitude']]
data.head()
```

	Date	Time	Latitude	Longitude	Depth	Magnitude
0	01/02/1965	13:44:18	19.246	145.616	131.6	6.0
1	01/04/1965	11:29:49	1.863	127.352	80.0	5.8
2	01/05/1965	18:05:58	-20.579	-173.972	20.0	6.2
3	01/08/1965	18:49:43	-59.076	-23.557	15.0	5.8
4	01/09/1965	13:32:50	11.938	126.427	15.0	5.8

Inputs and output for given Date and Time to Unix time:

```
import datetime
import time

timestamp = []
for d, t in zip(data['Date'], data['Time']):
    try:
        ts = datetime.datetime.strptime(d+' '+t, '%m/%d/%Y %H:%

M:%S')
    timestamp.append(time.mktime(ts.timetuple()))
    except ValueError:
        # print('ValueError')
        timestamp.append('ValueError')
```

```
timeStamp = pd.Series(timestamp)
data['Timestamp'] = timeStamp.values
```

```
final_data = data.drop(['Date', 'Time'], axis=1)
final_data = final_data[final_data.Timestamp != 'ValueError']
final_data.head()
```

	Latitude	Longitude	Depth	Magnitude	Timestamp
0	19.246	145.616	131.6	6.0	-1.57631e+08
1	1.863	127.352	80.0	5.8	-1.57466e+08
2	-20.579	-173.972	20.0	6.2	-1.57356e+08
3	-59.076	-23.557	15.0	5.8	-1.57094e+08
4	11.938	126.427	15.0	5.8	-1.57026e+08

Conclusion:

Earthquake prediction using Python for projects can be achieved by effectively loading and preprocessing the dataset.

By employing Python's data manipulati on and analysis libraries such as pandas and numpy, it is possible to handle large datasets with ease. Through loading the dataset into a structured format, the necessary preprocessing steps like data cleaning, normalization, and fe ature engineering can be efficiently performed. By leveraging the power of Python, researcher s and engineers can make significant advance ments in earthquake prediction, contributing to saving lives and reducing the impact of such natural disasters.