INTERRO DE COURS 15

Exercice 1 – Soient x et y deux réels. Simplifier le plus possible les expressions suivantes.

$$1. \ A = \frac{e^x}{e^{2x}}$$

Solution:

$$A = \frac{e^x}{e^{2x}} = e^{x-2x} = e^{-x}$$

2. $B = e^x \times (e^x)^3$

Solution:

$$B = e^x \times (e^x)^3 = e^x \times e^{3x} = e^{x+3x} = e^{4x}$$

3. $C = \frac{e^x}{(e^y)^2} \times e^{2y}$

Solution:

$$C = \frac{e^x}{(e^y)^2} \times e^{2y} = \frac{e^x}{e^{2y}} \times e^{2y} = e^{x-2y} \times e^{2y} = e^{x-2y+2y} = e^x$$

4. $D = e^{-x} \times \frac{1}{(e^x)^2}$

Solution:

$$D = e^{-x} \times \frac{1}{(e^x)^2} = e^{-x} \times \frac{1}{e^{2x}} = e^{-x} \times e^{-2x} = e^{-3x}$$

5. $E = e^x \times (e^y)^2 \times \frac{e^{-y}}{(e^x)^2}$

Solution:

$$E = e^{x} \times (e^{y})^{2} \times \frac{e^{-y}}{(e^{x})^{2}} = e^{x} \times e^{2y} \times \frac{e^{-y}}{e^{2x}} = e^{x} \times e^{2y} \times e^{-y-2x} = e^{x+2y-y-2x} = e^{y-x}$$

Exercice 2 – Résoudre dans R les équations suivantes.

1. $e^x = 2$

Solution:

$$e^x = 2 \iff x = \ln(2)$$

Donc $S = \{\ln(2)\}.$

2.
$$e^{x^2-5x+6}=1$$

Solution:

$$e^{x^2-5x+6} = 1 = e^0 \iff x^2-5x+6 = 0$$

Je calcule le discriminant $\Delta = 25 - 24 = 1$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

Donc $S = \{2, 3\}.$

3. $e^{2x+1} = 1$

Solution:

$$e^{2x+1} = 1 = e^0 \iff 2x+1 = 0 \iff 2x = -1 \iff x = -\frac{1}{2}$$

Donc $S = \left\{-\frac{1}{2}\right\}$.

4. ln(2x-3) = 0

Solution: On a:

$$\ln(2x-3) = 0 = \ln(1) \iff 2x-3 = 1 \iff 2x = 4 \iff x = \frac{4}{2} = 2$$

Donc $S = \{2\}$.

5. $\frac{e^{2x+3}}{e^{4x-1}} = e^x$

Solution:

$$\frac{e^{2x+3}}{e^{4x-1}} = e^x \iff e^{2x+3-4x+1} = e^x \iff e^{-2x+4} = e^x \iff -2x+4 = x \iff -3x = -4$$
$$\iff x = \frac{-4}{-3} = \frac{4}{3}$$

Donc $S = \left\{ \frac{4}{3} \right\}$.