МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет

Н.Р. Стронгина, К.А. Баркалов

ПРАКТИКУМ ПО КУРСУ «ЧИСЛЕННЫЕ МЕТОДЫ» Применение итерационных методов решения разностных схем на примере задачи Дирихле для уравнения Пуассона

Учебно-методическое пособие

Рекомендовано методической комиссией факультета вычислительной математики и кибернетики для студентов ННГУ, обучающихся по направлению подготовки 010500 «Прикладная математика и информатика» и специальности 010501 «Прикладная математика и информатика»

УДК 519.6 ББК 22.19 С-86

С-86 Стронгина Н.Р., Баркалов К.А. Практикум по курсу «Численные методы»: Применение итерационных методов решения разностных схем на примере задачи Дирихле для уравнения Пуассона: Учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2011. – 40 с.

Рецензент: д.т.н., профессор В.П. Гергель

На примере задачи Дирихле для уравнения Пуассона рассмотрены свойства разностных схем как систем линейных алгебраических уравнений и их решение с помощью итерационных методов линейной алгебры. Показан вид матриц, приведены описания методов и программные коды, представлена структура погрешности. Предложены контрольные задания и примеры интерфейсов компьютерных программ.

Пособие предназначено для студентов университета, обучающихся по направлению подготовки и специальности «Прикладная математика и информатика» и изучающих общий курс «Численные методы», а также для преподавателей.

Ответственный за выпуск: председатель методической комиссии факультета ВМК ННГУ д.ф.-м.н., профессор Л.П. Жильцова

УДК 519.6 ББК 22.19

© Нижегородский государственный университет им. Н.И. Лобачевского, 2011 © Стронгина Н.Р., Баркалов К.А., 2011

Содержание

Введение	4
1. Разностная схема модельной задачи	6
2. Метод Зейделя	11
3. Решение разностной схемы методом Зейделя	15
4. Метод верхней релаксации	20
5. Решение разностной схемы методом верхней релаксации	24
6. Структура погрешности решения	26
Литература	27
Приложение 1. Форма отчета по контрольной работе, задание и варианты	28
Приложение 2. Примеры интерфейсов компьютерных программ	33

Введение

Развитие вычислительной техники открыло качественно новые возможности изучения сложных реальных объектов методами вычислительного эксперимента. Машинный вычислительный эксперимент предполагает дискретизацию исходной задачи и поэтому требует специальной проработки численного алгоритма (корректность, устойчивость, точность, сходимость). В связи с этим в современной системе подготовки по специальности и направлению «Прикладная математика и информатика» общего курса «Численные методы» познакомить учащихся с фундаментальными принципами построения и подготовить разработке анализа численных алгоритмов И ИΧ К эффективных необходимых вычислительных комплексов, ДЛЯ математического моделирования сложных систем.

В соответствии с государственным образовательным стандартом курс «Численные методы» включает многие разделы: основы машинной арифметики, анализ вычислительной погрешности, подходы и методы приближения функций, численное дифференцирование и интегрирование, решение спектральных задач, линейных и нелинейных алгебраических уравнений и систем. Особое внимание уделяется методам численного решения дифференциальных уравнений, включая уравнения в частных производных, а также структуре соответствующих вычислительных комплексов. Освоение принципов построения и исследования численных алгоритмов проводится на основе модельных задач, которые, с одной стороны, описывают свойства реальных объектов, а с другой стороны позволяют наглядно продемонстрировать фундаментальные свойства численного метода.

Задача Дирихле для уравнения Пуассона относится к числу основных модельных задач курса. На ее примере изучаются различные подходы к решению краевых задач, включая построение и анализ сходимости разностных схем, а также методы их решения. Кроме того, задача служит модельным примером для изучения обусловленности систем линейных алгебраических уравнений (СЛАУ) и анализа структуры погрешности. В данном пособии приведена матричная запись разностной схемы как семейства СЛАУ, реализация итерационных методов решения СЛАУ с учетом специфики матриц, описания методов и программные коды. Предложены контрольные задания и форма отчетности к ним, приведены примеры интерфейсов компьютерных программ.

Материал, представленный в пособии, необходим для подготовки студентов к выполнению цикла контрольных и лабораторных работ по

различным разделам курса «Численные методы», в которых задача Дирихле для уравнения Пуассона рассматривается как модельная задача.

Освоение материала опирается на общий курс «Численные методы», а также на общие курсы «Уравнения математической физики», «Математический анализ», «Геометрия и алгебра» и «Программирование на ЭВМ».

Практикум по курсу разработан в соответствии с задачами учебнонаучного инновационного комплекса «Модели, методы и программные средства» по приоритетной программе развития ННГУ как национального исследовательского университета.

1. Разностная схема модельной задачи

Рассмотрим задачу Дирихле для уравнения Пуассона в прямоугольной области:

$$\Delta u(x,y) = -f(x,y)$$
 при $x \in (a,b), y \in (c,d)$

$$u(a,y) = \mu_1(y), \ u(b,y) = \mu_2(y),$$

$$u(x,c) = \mu_3(x), \ u(x,d) = \mu_4(x),$$
(1.1)

где $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, функции f(x, y), $\mu_1(y)$, $\mu_2(y)$, $\mu_3(x)$, $\mu_4(x)$ заданы и числа a, b, c, d определены (b > a, d > c). С целью численного решения задачи (1.1) введем на множестве $[a, b] \times [c, d]$ прямоугольную сетку размерности (n, m), равномерную по каждому из направлений x и y с шагами h и k соответственно: h = (b - a)/n, k = (d - c)/m. Пары значений (x_i, y_j) , где $x_i = a + ih$, $y_j = c + jk$, i = 0, ...n, j = 0, ...m, назовем узлами сетки. Для узла (x_i, y_j) используем краткое обозначение (i, j).

Через u(x,y) обозначим точное решение задачи (1.1), а через $u_{ij} = u(x_i,y_j)$ – его значение в узле (i,j). Сеточной функцией называют функцию, заданную на множестве всех узлов сетки (i=0,...n,j=0,...m). Если v(x,y) – сеточная функция, то $v_{ij} = v(x_i,y_j)$ – ее значение в узле (i,j), i=0,...n,j=0,...m. Если функция u(x,y), являющаяся точным решением задачи (1.1), рассматривается только в узлах сетки, считаем, что обозначение u(x,y) соответствует сеточной функции.

Для отыскания численного решения задачи (1.1) построим *разностную схему*, основанную на аппроксимации частных производных второго порядка по x и по y центральными разностными операторами на трехточечных шаблонах:

$$v_{x\bar{x}, ij} + v_{y\bar{y}, ij} = -f_{ij}, \quad \text{при } i = 1, \dots n-1, j = 1, \dots m-1;$$

$$v_{0j} = \mu_{1j} = \mu_1(y_j), \quad v_{nj} = \mu_{2j} = \mu_2(y_j) \quad \text{при } j = 1, \dots m-1;$$

$$v_{i0} = \mu_{3i} = \mu_3(x_i), \quad v_{im} = \mu_{4i} = \mu_4(x_i) \quad \text{при } i = 1, \dots n-1$$

$$(1.2)$$

где

$$v_{x\bar{x},ij} = \frac{v_{i+1j} - 2v_{ij} + v_{i-1j}}{h^2}, \quad v_{y\bar{y},ij} = \frac{v_{ij+1} - 2v_{ij} + v_{ij-1}}{k^2}.$$
 (1.3)

Точное решение задачи (1.2) обозначим через v(x, y). Указанная функция также является сеточной. Будем рассматривать ее как численное (приближенное) решение задачи (1.1).

Так как значения v_{ij} при i=0 или i=n и значения v_{ij} при j=0 или j=m в задаче (1.2) заданы явно, указанную задачу можно рассматривать как систему линейных алгебраических уравнений (СЛАУ) относительно неизвестных v_{ij} , где $i=1,\ldots n-1$, $j=1,\ldots m-1$. Значения v_{ij} с индексами (0,0),(0,m),(n,0) и (n,m) в уравнениях задачи (1.2) не используются.

Запишем (1.2) в матричном виде. Для этого определим вектор V размерности (n-1)(m-1):

$$V = (v_{11}, v_{21}, ..., v_{n-11}, v_{12}, v_{22}, ..., v_{n-12}, ..., v_{1 m-1}, v_{2 m-1}, ..., v_{n-1 m-1}).$$

Если отложить по оси абсцисс x, по оси ординат y и нарисовать на плоскости (x, y) сетку с узлами (i, j), то окажется, что компоненты вектора V упорядочены слева направо по x и затем снизу вверх по y. Далее тем же способом упорядочим уравнения задачи (1.2): слева направо по x и снизу вверх по y. Тогда (1.2) примет вид:

$$\mathcal{A}V = \mathcal{F} \tag{1.4}$$

где \mathcal{A} — матрица размерности $(n-1)(m-1)\times(n-1)(m-1)$ и \mathbf{F} — вектор размерности (n-1)(m-1). На рис. 1.1 показан вид (1.4) для сетки (n,m)=(5,6). Число A, расположенное на главной диагонали матрицы \mathcal{A} , определяется шагами сетки:

$$A = -2 \times \left(\frac{1}{h^2} + \frac{1}{k^2}\right). \tag{1.5}$$

Нетрудно убедиться, что при любых (n, m), таких, что n > 2, m > 2, матрица \mathcal{A} является блочной трехдиагональной, состоящей из $(n-1)\times(n-1)$ блоков размерности $(m-1)\times(m-1)$. Ненулевые блоки расположены на главной блочной диагонали и блочных диагоналях выше и ниже главной. Из принципа максимума (для разностных схем) вытекает, что $\det \mathcal{A} \neq 0$ и решение задачи (1.4) при любой правой части существует и единственно.

При больших значениях *п* и *т* размерность системы (1.4) велика и матрица \mathcal{A} является разреженной (не более 5 ненулевых элементов в строке). Для решения систем линейных уравнений большой размерности имеет смысл использовать *итерационные методы линейной алгебры* — например, одношаговые явные или неявные стационарные методы. К их числу относятся, например, *методы Зейделя и верхней релаксации*. Стационарные одношаговые методы можно рассматривать как *обобщение метода простой итерации* (МПИ) и получить условия сходимости методов как обобщение условий сходимости МПИ. С другой стороны, сходимость каждого из методов можно изучать самостоятельно, и многие результаты о

сходимости, доказанные для различных одношаговых и многошаговых стационарных и нестационарных методов, предполагают, что матрица СЛАУ симметрична и положительно определена.

Матрица A размерности $n \times n$ называется *положительно определенной* (обозначается A > 0), если для $\forall h \in R^n$, такого, что $h \neq 0$, верно (Ah, h) > 0. Матрица A размерности $n \times n$ называется отрицательно определенной (обозначается A < 0), если для $\forall h \in R^n$, такого, что $h \neq 0$, верно (Ah, h) < 0. Доказано, что знакоопределенность симметричной матрицы $(A = A^T)$ зависит от знаков ее собственных чисел: если все собственные числа симметричной матрицы положительны, она положительно определена, отрицательны — отрицательно определена.

Из теоремы Гершгорина и принципа максимума (для разностных схем) следует отрицательная определенность матрицы А. Действительно, расположение кругов Гершгорина на комплексной плоскости показывает, что собственные числа матрицы ${\cal A}$ не могут попасть в полуплоскость справа от мнимой оси (центр кругов Гершгорина находится в точке A, радиус не превышает |A|). Так как $\mathcal{A} = \mathcal{A}^T$, собственные числа являются действительными. Следовательно, собственные числа ${\mathcal A}$ не могут быть положительными. Так как $\det \mathcal{A} \neq 0$, собственное число не может быть собственные матрицы Aнулевым. Таким образом, все числа отрицательны и она отрицательно определена.

Так как $\mathcal{A} = \mathcal{A}^T < 0$, умножим левую и правую части (1.4) на –1:

$$-\mathcal{A}V = -\mathcal{F} \tag{1.6}$$

Система (1.6) является системой линейных алгебраических уравнений с симметричной и положительно определенной матрицей ($-\mathcal{A}$). Решение (1.6) совпадает с решением (1.4).

Далее для решения (1.6) применим методы Зейделя и верхней релаксации. Вид разностной схемы (1.2), показанный на рис. 1.1 и 1.2, используется в других разделах курса при доказательстве принципа максимума для разностных схем и обосновании сходимости схемы.

где
$$A = -2 \times \left(\frac{1}{h^2} + \frac{1}{k^2}\right)$$
,
$$f_{ij} = f(x_i, y_j), \, \mu_{1j} = \mu_1(y_j), \, \mu_{2j} = \mu_2(y_j), \, \mu_{3i} = \mu_3(x_i), \, \mu_{4i} = \mu_4(x_i), \, i = 1, \dots n-1, \, j = 1, \dots m-1,$$

$$h = \frac{b-a}{n}, \, k = \frac{d-c}{m}$$

Рис. 1.1. Матричная запись разностной схемы на сетке размерности (n, m) = (5, 6)

Рис. 1.2. Вектор \mathcal{A} V, размерность (n-1)(m-1). Этот вектор нужен для формулировки и доказательства принципа максимума (для разностных схем)

2. Метод Зейделя

Рассмотрим систему линейных алгебраических уравнений

$$A \mathbf{x} = \mathbf{b}, \tag{2.1}$$

где $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$, матрица A размерности $n \times n$ симметрична и положительно определена ($A = A^T > 0$). Точное решение системы (2.1) обозначим через x^* . Запишем A в виде

$$A = L + D + R$$

где D — диагональная матрица (ее главная диагональ совпадает с главной диагональю A), L — нижняя треугольная матрица с нулевой главной диагональю и R — верхняя треугольная матрица с нулевой главной диагональю. Элементы матриц L и R, раположенные в нижнем и верхнем треугольнике соответственно, совпадают с элементами матрицы A, имеющими аналогичное расположение.

Метод Зейделя для решения задачи (2.1) можно записать в каноническом виде:

$$(D + L)(x^{s+1} - x^s) + A x^s = b.$$
 (2.2)

Здесь $x^s \in \mathbb{R}^n$ — приближение к точному решению системы (2.1), полученное на итерации с номером s, и $x^{s+1} \in \mathbb{R}^n$ — приближение, полученное на итерации с номером s+1. Начальное приближение $x^0 \in \mathbb{R}^n$ для запуска метода может быть выбрано любым. Доказано, что для любой $A = A^T > 0$ при любом начальном приближении $x^0 \in \mathbb{R}^n$ метод сходится к точному решению системы (2.1), то есть

$$\lim_{s \to +\infty} || x^s - x^* || = 0 \tag{2.3}$$

Остановку метода определяют числом Nmax — максимально допустимым числом итераций, и числом ε — минимально допустимым приростом приближенного решения на соседних итерациях. Числа Nmax и ε устанавливает пользователь. Как только $s \geq Nmax$ либо

$$||x^{s} - x^{s-1}|| \le \varepsilon. \tag{2.4}$$

(достигнут минимально допустимый прирост), дальнейшие итерации не проводятся. Вектор x^s , полученный на последней итерации, рассматривают как *итоговое численное решение* (2.1). Выход по критерию $s \ge Nmax$ называют выходом по числу итераций, выход по критерию (2.4) — выходом по точности. Если метод сходится и Nmax выбран достаточно большим, то состоится выход по точности, и чем меньше заданное поль-

зователем значение ε , тем, как правило, точнее x^s соответствукет x^* (в ситуациях, когда погрешностью счета можно пренебречь).

Чтобы применить критерий (2.4), в качестве нормы вектора x обычно используют

$$\|\boldsymbol{x}\| = \max_{i=1,...n} |x_i|$$
.

Тогда (2.4) примет вид

$$\max_{i=1} \left| x_i^s - x_i^{s-1} \right| \leq \varepsilon$$

Погрешностью решения задачи (2.1) с помощью метода (2.2) на итерации с номером s называют вектор $z^s = x^s - x^*$. Невязкой задачи (2.1) на численном решении x^s , полученном на итерации с номером s, называют вектор $r^s = Ax^s - b$. Погрешность и невязка связаны уравнением $Az^s = r^s$.

Для оценки качества численного решения \mathbf{x}^s используют величины $\|\mathbf{z}^s\|$ и $\|\mathbf{r}^s\|$: чем они меньше, тем лучше. Если на итерации s задача (2.1) решена точно, т.е. $\mathbf{x}^s = \mathbf{x}^*$, то $\|\mathbf{z}^s\| = 0$ и $\|\mathbf{r}^s\| = 0$.

При проведении оценок качества решения существенно следующее: невязку \mathbf{r}^s и ее норму можно вычислить для любой задачи вида (2.1) — для этого достаточно знать \mathbf{x}^s . Погрешность \mathbf{z}^s и ее норму можно вычислить только для тестовых задач, так как кроме \mathbf{x}^s нужно знать точное решение \mathbf{x}^* . Так как в «обычной» ситуации точное решение неизвестно, норму погрешности пытаются оценить на основе теорем о сходимости метода.

Для того чтобы получить формулы для расчета каждой координаты вектора x^{s+1} , преобразуем выражение (2.2):

$$D x^{s+1} + L x^{s+1} + [-D x^{s} - L x^{s} + A x^{s}] = b.$$

Выражение в квадратных скобках составит $R x^s$. Для вычисления координат вектора x^{s+l} получим

$$a_{ii}x_i^{s+1} + \sum_{j=1}^{i-1} a_{ij}x_j^{s+1} + \sum_{j=i+1}^n a_{ij}x_j^s = b_i,$$

или

$$x_i^{s+1} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j^{s+1} - \sum_{j=i+1}^n a_{ij} x_j^s + b_i \right].$$
 (2.5)

где i = 1,...n.

Ниже приведен фрагмент кода, реализующего метод Зейделя:

```
int Nmax = 10000; // максимальное число итераций (не менее 1)
1.
2.
     int S=0; // счетчик итераций
     double eps = 0.0000001; // минимально допустимый прирост
3.
     double eps \max = 0; // текущее значение прироста
4.
     double eps cur = 0; // для подсчета текущего значения прироста
5.
     const int n; //размерность системы линейных уравнений
6.
     double a[n][n]; // элементы матрицы A
7.
8.
     double x[n]; // искомый вектор x
     double b[n]; // вектор правой части b
9.
     int i, j; //индексы
10.
     double x old; // старое значение преобразуемой компоненты вектора х
11.
     double x new; // новое значение преобразуемой компоненты вектора x
12.
13.
     bool f = false; // условие остановки
     while (!f) do
14.
     \{ eps max = 0; 
15.
       for(i = 0; i < n; i++)
16.
          \{ x \text{ old} = x[i]; 
17.
           x new = b[i];
18.
           for (j = 0; j < n; j++)
19.
           if (j!=i) {x new = x new - a[i][j]*x[j]};
20.
           x \text{ new} = x \text{ new/a[i][i]};
            eps cur = fabs(x old - x new);
22.
            if (eps cur > eps max) {eps max = eps cur};
23
           x[i]=x new;
24.
          }
25.
      S=S+1;
26.
      if ((eps max < eps) or (S \ge Nmax)){ f = true}
27.
28.
```

По завершении внешнего цикла переменная S показывает число проведенных итераций, массив x[n] содержит результат последней итерации, переменная eps_max показывает максимальное отличие компонент вектора x[n] от компонент вектора, полученного на предпоследней итерации.

Заметим, что до начала внешнего цикла необходимо задать параметры метода (Nmax и eps), указать размерность системы n, задать (передать, прочесть, вычислить) значения элементов массивов a[n][n], b[n] и задать начальное приближение, записав его в массив x[n].

По завершении работы метода необходимо сообщить пользователю, что «при решении системы Ax = b с помощью метода Зейделя с параметрами Nmax = ... и eps = ..., за S = ... итераций получено численное решение x[i]=..., i=0,...n-1, обеспечивающее точность eps max=...». Из текста

сообщения, в частности, будет видно, как был остановлен метод – по точности или по числу итераций.

При составлении кода учтено, что в C++ массив x[n] содержит элементы от x[0] до x[n-1].

Комментарии. Запишем задачу (2.1) в виде

$$(D + L)^{-1} Ax = (D + L)^{-1} b$$
 (2.6)

Тогда метод Зейделя для решения (2.1) можно рассматривать как метод простой итерации (МПИ) для решения (2.6):

$$(x^{s+1}-x^s)+(D+L)^{-1}Ax^s=(D+L)^{-1}b$$
 (2.7)

Для приближений, полученных при решении СЛАУ с помощью сходящегося МПИ, выведены оценки вида

$$||z^{s}|| \le C ||x^{s} - x^{s-1}||,$$
 (2.8)

где число C положительно и определяется нормой переходной матрицы метода. Если задача (2.6) такова, что $C \le 1$, получим

$$||z^{s}|| \le ||x^{s} - x^{s-I}|| \tag{2.9}$$

и критерий (2.4) выхода по точности гарантирует, что задача решена с погрешностью не более ε :

$$||\mathbf{z}^{s}|| \le ||\mathbf{x}^{s} - \mathbf{x}^{s-1}|| \le \varepsilon. \tag{2.10}$$

Если задача (2.6) такова, что C > 1, критерий (2.4) гарантирует погрешность не более $C \cdot \varepsilon$:

$$||z^{s}|| \le C ||x^{s} - x^{s-1}|| \le C \cdot \varepsilon. \tag{2.11}$$

Таким образом, для конкретной задачи (2.6) *чем меньше* ε , *тем лучше оценка погрешности*.

Аналогичные рассуждения верны при решении (2.1) с помощью любого одношагового стационарного сходящегося итерационного метода. В связи с этим величину ε , определяющую выход по точности, называют *точностью решения*. Величину

$$\varepsilon^{s} = || \mathbf{x}^{s} - \mathbf{x}^{s-I} || \tag{2.12}$$

называют точностью, достигнутой на итерации s. Критерий (2.4) можно записать в виде ε $^s \le \varepsilon$.

3. Решение разностной схемы методом Зейделя

Запишем расчетные формулы для решения задачи (1.2) методом Зейделя. Значения v_{i0} и v_{im} при i=1,...n-1 и значения v_{0j} и v_{nj} при j=1,...m-1 определены граничными условиями задачи (1.1). Решение задачи (1.2) сводится к решению (1.6). Точное решение системы (1.6) обозначим через V, начальное приближение — через V^0 , а приближение, полученное на итерации с номером s — через V^s . Векторы V, V^0 и V^s имеют компоненты v_{ij} , v^0_{ij} , v^s_{ij} соответственно, где i=1,...n-1, j=1,...m-1. При решении (1.6) на сетке (n,m)=(5,6) на итерации с номером s+1 получим:

$$\begin{split} v_{11}^{s+1} &= -\frac{1}{A} \Biggl(\Biggl(\frac{1}{h^2} v_{21}^s + \frac{1}{k^2} v_{12}^s \Biggr) + \Biggl(f_{11} + \frac{1}{h^2} v_{01} + \frac{1}{k^2} v_{10} \Biggr) \Biggr), \\ v_{21}^{s+1} &= -\frac{1}{A} \Biggl(\frac{1}{h^2} v_{11}^{s+1} + \Biggl(\frac{1}{h^2} v_{31}^s + \frac{1}{k^2} v_{22}^s \Biggr) + \Biggl(f_{ij} + \frac{1}{k^2} v_{20} \Biggr) \Biggr), \\ \cdots \\ v_{12}^{s+1} &= -\frac{1}{A} \Biggl(\frac{1}{k^2} v_{11}^{s+1} + \Biggl(\frac{1}{h^2} v_{22}^s + \frac{1}{k^2} v_{13}^s \Biggr) + \Biggl(f_{12} + \frac{1}{h^2} v_{02} \Biggr) \Biggr), \\ v_{22}^{s+1} &= -\frac{1}{A} \Biggl(\Biggl(\frac{1}{h^2} v_{i-1j}^{s+1} + \frac{1}{k^2} v_{ij-1}^{s+1} \Biggr) + \Biggl(\frac{1}{h^2} v_{i+1j}^s + \frac{1}{k^2} v_{ij+1}^s \Biggr) + f_{22} \Biggr), \\ \cdots \\ v_{45}^{s+1} &= -\frac{1}{A} \Biggl(\Biggl(\frac{1}{h^2} v_{35}^{s+1} + \frac{1}{k^2} v_{44}^{s+1} \Biggr) + \Biggl(f_{45} + \frac{1}{h^2} v_{55} + \frac{1}{k^2} v_{46} \Biggr) \Biggr). \end{split}$$

Если организовать массив с элементами \mathbf{v}_{ij} , где $i=0,\dots n, j=0,\dots m,$ и использовать для записи метода обозначения v_{i0}^s , v_{im}^s , v_{0j}^s , v_{nj}^s , полагая, что $v_{i0}^s = v_{i0}$, $v_{im}^s = v_{im}$, $v_{0j}^s = v_{0j}$, $v_{nj}^s = v_{nj}$ при любом $s=0,1,\dots$, расчетные формулы приобретают одинаковый вид:

$$v_{ij}^{s+1} = -\frac{1}{A} \left(\frac{1}{h^2} v_{i-1j}^{s+1} + \frac{1}{k^2} v_{ij-1}^{s+1} + \frac{1}{h^2} v_{i+1j}^{s} + \frac{1}{k^2} v_{ij+1}^{s} + f_{ij} \right),$$

где
$$i = 1,...n-1, j = 1,...m-1$$
.

Приведем фрагмент кода для решения (1.6) с помощью метода Зей-деля:

```
int Nmax = 10000; // максимальное число итераций (не менее 1)
1.
     int S = 0; // счетчик итераций
2.
     double eps = 0.0000001; // минимально допустимый прирост
3.
     double eps \max = 0; // текущее значение прироста
4.
     double eps cur = 0; // для подсчета текущего значения прироста
5.
     double a2, k2, h2; // ненулевые элементы матрицы (-A)
6.
     const int n, m; //размерность сетки
7.
8.
     double v[n+1][m+1]; // искомый вектор v
     double f[n+1][m+1]; //f(x,y) из дифф. уравнения в узлах сетки
9.
10.
     double a, b, c, d; // границы области определения уравнения
     int i, j; //индексы
11.
12.
     double v old; // старое значение преобразуемой компоненты вектора v
     double v new; // новое значение преобразуемой компоненты вектора v
13.
14.
     bool f = false; // условие остановки
     h2 = -(n/(b-a))^2;
15.
16.
     k2 = -(m/(d-c))^2:
     a2 = -2*(h2+k2);
17.
18.
     while (!f) do
19.
     \{ eps max = 0; 
       for(i = 1; i < m+1; i++)
20.
          for (i = 1; i < n+1; i++)
21.
            { v \text{ old} = v[i][i];
             v new = -(h2*(v[i+1][j]+v[i-1][j]) + k2*(v[i][j+1]+v[i][j-1]));
22.
              v \text{ new} = v \text{ new} + f[i][i];
23.
              v \text{ new} = v \text{ new/a2};
24.
25.
              eps cur = fabs(v old - v new);
              if (eps cur > eps max) {eps max = eps cur};
26.
              v[i][j] = v \text{ new};
27.
28.
29.
       S = S + 1;
       if ((eps max < eps) or (S \ge Nmax)) { f = true}
30.
31.
```

По завершении внешнего цикла переменная S показывает число проведенных итераций; массив v[n+1][m+1] содержит граничные условия (при i=0, i=n, j=1,...m-1; при j=0, j=m, i=1,...n-1) и результат последней итерации (при i=1,...n-1, j=1,...m-1); переменная ерѕ_тах показывает максимальное отличие компонент массива (вектора) v[n+1][m+1] от компонент массива (вектора), полученного на предпоследней итерации.

До начала внешнего цикла необходимо задать параметры метода (Nmax, eps); указать границы области (a, b, c, d) и размерность сетки (n, m); задать (передать, прочесть, вычислить) значения элементов f[i][j]

при i=1,...n-1, j=1,...m-1; задать начальное приближение, записав его в элементы v[i][j], i=1,...n-1, j=1,...m-1; определить значения элементов массива v[i][j] в узлах, расположенных на границе области (i=0, i=n, j=1,...m-1 и j=0, j=m, i=1,...n-1). Для корректной визуализации численного решения желательно определить значения элементов v[0][0], v[0][m], v[n][0], v[n][m].

По завершении работы метода необходимо сообщить пользователю, что «при решении разностной схемы с помощью метода Зейделя с параметрами Nmax =... и eps =..., за S =... итераций получено численное решение v[i][j]=..., i =0,...n, j=0,...m, обеспечивающее точность eps_max=...». Как и в общем случае (см. п. 2), из текста сообщения будет видно, как был остановлен метод — по точности или по числу итераций.

При составлении кода учтено, что в C++ массив v[n+1][m+1] содержит элементы от v[0][0] до v[n][m].

На рис. 3.1 и рис. 3.2 на примере сетки размерности (5, 6) показаны способы записи разностной схемы (1.2), использованные при построении расчетных формул метода и подготовке кода.

где
$$A = -2 \times \left(\frac{1}{h^2} + \frac{1}{k^2}\right)$$
,
$$f_{ij} = f(x_i, y_j), v_{oj} = \mu_1(y_j), v_{5j} = \mu_2(y_j), v_{i0} = \mu_3(x_i), v_{i6} = \mu_4(x_i), i = 1, ... n - 1, j = 1, ... m - 1,$$

$$\frac{1}{h^2} = \left(\frac{n}{b-a}\right)^2, \quad \frac{1}{k^2} = \left(\frac{m}{d-c}\right)^2$$

Рис. 3.1. Матричная запись разностной схемы на сетке размерности (n, m) = (5, 6), второй способ

где
$$h2=-\frac{1}{h^2}, \quad k2=-\frac{1}{k^2}, \quad a2=-A\,,$$

$$f_{ij}=f(x_i,y_j), v_{oj}=\mu_1(y_j), v_{5j}=\mu_2(y_j), v_{i0}=\mu_3(x_i), v_{i6}=\mu_4(x_i), i=1,...n-1, j=1,...m-1\,,$$

Рис. 3.2. Матричная запись разностной схемы на сетке размерности (n, m) = (5, 6), третий способ

4. Метод верхней релаксации

Метод верхней релаксации (MBP) для решения задачи (2.1) можно записать в каноническом виде:

$$(\mathbf{D} + \omega \mathbf{L})(\mathbf{x}^{s+1} - \mathbf{x}^{s}) \omega^{-1} + A \mathbf{x}^{s} = \mathbf{b}$$
 (4.1)

где ω – параметр метода, $\mathbf{x}^s \in \mathbf{R}^n$ – приближение к точному решению системы (2.1), полученное на итерации с номером s, и $\mathbf{x}^{s+l} \in \mathbf{R}^n$ – приближение, полученное на итерации с номером s+1. Доказано, что для любой $\mathbf{A} = \mathbf{A}^T > 0$ при любом значении параметра ω , взятом из интервала от 0 до 2, при любом начальном приближении $\mathbf{x}^0 \in \mathbf{R}^n$ МВР сходится к точному решению системы (2.1), то есть

$$\lim_{s \to +\infty} || x^s - x^* || = 0. \tag{4.2}$$

Так же, как и в методе Зейделя, остановку метода определяют числом Nmax — максимально допустимым числом итераций, и числом ε — минимально допустимым приростом приближенного решения на соседних итерациях. Для оценки качества приближенного решения, найденного на итерации s, используют погрешность z^s , невязку r^s и их нормы.

Для того, чтобы получить формулы для расчета каждой координаты вектора x^{s+I} , преобразуем выражение (4.1):

$$D \omega^{-1} x^{s+1} + L x^{s+1} + [-D \omega^{-1} x^{s} - L x^{s} + A x^{s}] = b.$$

Выражение в квадратных скобках составляет

$$R x^{s} + (\omega - 1) \omega^{-1} D x^{s}$$
.

Для вычисления компонент вектора \boldsymbol{x}^{s+1} получим

$$\frac{1}{\omega}a_{ii}x_i^{s+1} + \sum_{j=1}^{i-1}a_{ij}x_j^{s+1} + \sum_{j=i+1}^n a_{ij}x_j^s + (1 - \frac{1}{\omega})a_{ii}x_i^s = b_i,$$

или

$$x_i^{s+1} = \frac{1}{a_{ii}} \left[-\omega \sum_{j=1}^{i-1} a_{ij} x_j^{s+1} - \omega \sum_{j=i+1}^{n} a_{ij} x_j^{s} + (1-\omega) a_{ii} x_i^{s} + \omega b_i \right]. \tag{4.3}$$

где i = 1,...n.

Ниже приведен фрагмент кода, реализующего метод верхней релаксации:

double w; // параметр метода (в интервале от 0 до 2)

```
int Nmax = 10000; // максимальное число итераций (не менее 1)
2.
     int S=0; // счетчик итераций
3.
     double eps = 0.0000001; // минимально допустимый прирост
4.
     double eps \max = 0; // текущее значение прироста
5.
     double eps cur = 0; // для подсчета текущего значения прироста
6.
7.
     double a[n][n]; // элементы матрицы A
     double x[n]; // искомый вектор x
8.
     double b[n]; // вектор правой части b
9.
     int n; //размерность системы линейных уравнений
10.
11.
     int i, j; //индексы
     double x old; // старое значение преобразуемой компоненты вектора x
12.
13.
     double x new; // новое значение преобразуемой компоненты вектора x
     bool f = false; // условие остановки
14.
15.
     while (!f) do
     \{ eps max = 0; 
16.
       for( i = 0; i < n; i++)
17.
18.
          \{ x \text{ old} = x[i]; 
            x \text{ new} = (1-w)*a[i][i]*x[i] + w*b[i]
19.
            for (i = 0; i < n; i++)
20.
            if (j!=i) \{x \text{ new} = x \text{ new} - w*a[i][j]*x[j]\};
21.
            x \text{ new} = x \text{ new/a[i][i]};
22
            eps cur = abs(x old - x new);
23
           if (eps_cur > eps_max) {eps_max = eps_cur};
24.
            x[i]=x new;
25.
          }
26.
       S=S+1;
27.
      if ((eps max < eps) or (S >= Nmax)){ f = true}
28.
29.
```

Аналогично программной реализации метода Зейделя (см. п. 2), по завершении внешнего цикла переменная S показывает число проведенных итераций, массив x[n] содержит результат последней итерации, переменная ерs_max показывает максимальное отличие компонент вектора x[n] от компонент вектора, полученного на предпоследней итерации.

До начала внешнего цикла необходимо задать параметры метода (w, Nmax и eps), указать размерность системы n, задать (передать, прочесть, вычислить) значения элементов массивов a[n][n], b[n] и задать начальное приближение, записав его в массив x[n].

По завершении работы метода необходимо сообщить пользователю, что «при решении системы Ax = b с помощью MBP с параметрами w = ..., Nmax = ... и eps = ..., за S = ... итераций получено численное решение x[i]=..., i=0,...n-1, обеспечивающее точность eps_max=...». Из текста

сообщения будет видно, как был остановлен метод – по точности или по числу итераций.

Пример (счет вручную)¹. Используя метод верхней релаксации с параметром $\omega = 1.2$ и точность $\varepsilon = 0.001$, найдите приближенное решение системы вида (2.1), где матрица \boldsymbol{A} и вектор \boldsymbol{b} заданы следующим образом:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \, \mathbf{b} = \begin{bmatrix} 3.7 \\ 5.8 \\ 6.2 \\ 4.3 \end{bmatrix}. \tag{4.4}$$

Решение. Запишем расчетные формулы метода:

$$x_{1}^{s+1} = (1 - \omega)x_{1}^{s} - \frac{\omega}{2}x_{2}^{s} + 3.7 \cdot \frac{\omega}{2}$$

$$x_{2}^{s+1} + \frac{\omega}{2}x_{1}^{s+1} = (1 - \omega)x_{2}^{s} - \frac{\omega}{2}x_{3}^{s} + 5.8 \cdot \frac{\omega}{2}$$

$$x_{3}^{s+1} + \frac{\omega}{2}x_{2}^{s+1} = (1 - \omega)x_{3}^{s} - \frac{\omega}{2}x_{4}^{s} + 6.2 \cdot \frac{\omega}{2}$$

$$x_{4}^{s+1} + x_{3}^{s+1} = (1 - \omega)x_{4}^{s} + 4.3 \cdot \frac{\omega}{2}$$

$$(4.5)$$

Зададим начальные значения:

$$x_{1}^{0} = 1$$
; $x_{2}^{0} = 1$; $x_{3}^{0} = 1$; $x_{4}^{0} = 1$.

На первой итерации получим

$$x_{1}^{1} = 1.42; x_{2}^{1} = 1.8784; x_{3}^{1} = 1.708634; x_{4}^{1} = 1.286791.$$

На второй:

$$x^{2}_{1} = 0.80896$$
; $x^{2}_{2} = 1,520439$; $x^{2}_{3} = 1.708634$; $x^{2}_{4} = 1.728299$.

На третьей:

$$x_{1}^{3} = 1.095729$$
; $x_{2}^{3} = 1.497157$; $x_{3}^{3} = 1.700684$; $x_{4}^{3} = 1.300032$.

На четвертой:

$$x_{1}^{4} = 1.106176$$
; $x_{2}^{4} = 1.49545$; $x_{3}^{4} = 1.702738$; $x_{4}^{4} = 1.298651$.

На пятой:

¹ Данный пример подготовлен А.Л. Ирхиной.

$$x_{1}^{5} = 1.100743; x_{2}^{5} = 1.499343; x_{3}^{5} = 1.700282; x_{4}^{5} = 1.29989.$$

Модуль разности компонент векторов, полученных на пятой и четвертой итерациях, не превышает 0.00075 и критерий остановки по точности выполнен:

$$|| \mathbf{x}^5 - \mathbf{x}^4 || \le 0.00075 \le \varepsilon = 0.001.$$

Качество численного решения $\mathbf{x}^5 = (x_1^5, x_2^5, x_3^5, x_4^5)$ можно оценить, вычислив норму невязки.

В данном примере точное решение x^* известно:

$$x_1^* = 1.1; x_2^* = 1.5; x_3^* = 1.7; x_4^* = 1.3.$$

Поэтому численное решение x^5 можно сравнить с точным решением x^* и вычислить вектор погрешности z^5 и его норму.

5. Решение разностной схемы методом верхней релаксации

Формулы для отыскания решения разностной схемы (1.2) методом верхней релаксации можно вывести по аналогии с методом Зейделя. Значения v_{i0} и v_{im} при i=1,...m-1 и значения v_{0j} и v_{nj} при j=1,...m-1 определены граничными условиями задачи (1.1). Точное решение системы (1.6) обозначим через V, начальное приближение – через V^0 , а приближение, полученное на итерации с номером s – через V^s . Векторы V, V^0 и V^s имеют компоненты v_{ij} , v^0_{ij} , v^s_{ij} соответственно, где i=1,...n-1, j=1,...m-1. При решении (1.6) на сетке (n,m)=(5,6) на итерации с номером s+1 получим:

$$v_{11}^{s+1} = -\frac{1}{A} \left((1-\omega) \cdot (-A) \cdot v_{11}^s + \omega \cdot \left(\frac{1}{h^2} v_{21}^s + \frac{1}{k^2} v_{12}^s \right) + \omega \cdot \left(f_{11} + \frac{1}{h^2} v_{01} + \frac{1}{k^2} v_{10} \right) \right),$$

$$v_{21}^{s+1} = -\frac{1}{A} \left((1-\omega) \cdot (-A) \cdot v_{21}^{s} + \omega \cdot \frac{1}{h^{2}} v_{11}^{s+1} + \omega \cdot \left(\frac{1}{h^{2}} v_{31}^{s} + \frac{1}{k^{2}} v_{22}^{s} \right) + \omega \cdot \left(f_{ij} + \frac{1}{k^{2}} v_{20} \right) \right),$$

. . .

$$v_{12}^{s+1} = -\frac{1}{A} \left((1-\omega) \cdot (-A) \cdot v_{12}^{s} + \omega \cdot \frac{1}{k^{2}} v_{11}^{s+1} + \omega \cdot \left(\frac{1}{h^{2}} v_{22}^{s} + \frac{1}{k^{2}} v_{13}^{s} \right) + \omega \cdot \left(f_{12} + \frac{1}{h^{2}} v_{02} \right) \right),$$

$$v_{22}^{s+1} = -\frac{1}{A} \left((1-\omega) \cdot (-A) \cdot v_{22}^{s} + \omega \cdot \left(\frac{1}{h^{2}} v_{i-1j}^{s+1} + \frac{1}{k^{2}} v_{ij-1}^{s+1} \right) + \omega \cdot \left(\frac{1}{h^{2}} v_{i+1j}^{s} + \frac{1}{k^{2}} v_{ij+1}^{s} \right) + \omega \cdot f_{22} \right),$$

. . .

$$v_{45}^{s+1} = -\frac{1}{A} \left((1 - \omega) \cdot (-A) \cdot v_{45}^{s} + \omega \cdot \left(\frac{1}{h^2} v_{35}^{s+1} + \frac{1}{k^2} v_{44}^{s+1} \right) + \omega \cdot \left(f_{45} + \frac{1}{h^2} v_{55} + \frac{1}{k^2} v_{46} \right) \right).$$

Если использовать обозначения v_{i0}^s , v_{im}^s , v_{0j}^s , v_{nj}^s , полагая, что при любом $s=0,1,\ldots$ $v_{i0}^s=v_{i0}$, $v_{im}^s=v_{im}$, $v_{0j}^s=v_{0j}$, $v_{nj}^s=v_{nj}$, формулы метода ВР при любых $i=1,\ldots n-1, j=1,\ldots m-1$ приобретают одинаковый вид:

$$v_{ij}^{s+1} = -\frac{1}{A} \left((1-\omega) \cdot (-A) \cdot v_{ij}^{s} + \omega \cdot \left(\frac{1}{h^{2}} v_{i-1j}^{s+1} + \frac{1}{k^{2}} v_{ij-1}^{s+1} \right) + \omega \cdot \left(\frac{1}{h^{2}} v_{i+1j}^{s} + \frac{1}{k^{2}} v_{ij+1}^{s} \right) + \omega \cdot f_{ij} \right).$$

Приведем фрагмент кода для решения (1.6) с помощью МВР:

```
double w; // параметр метода (в интервале от 0 до 2)
1.
     int Nmax = 10000; // максимальное число итераций (не менее 1)
2.
     int S = 0; // счетчик итераций
3.
     double eps = 0.0000001; // минимально допустимый прирост
4.
     double eps \max = 0; // текущее значение прироста
5.
6.
     double eps cur = 0; // для подсчета текущего значения прироста
     double a2, k2, h2; // ненулевые элементы матрицы (-A)
7.
     double v[n+1][m+1]; // искомый вектор v
8.
     double f[n+1][m+1]; // f(x,y) из дифф. уравнения в узлах сетки
9.
     double a, b, c, d; // границы области
10.
     int n, m; //размерность сетки
11.
12.
     int i, j; //индексы
13.
     double v old; // старое значение преобразуемой компоненты вектора v
     double v new; // новое значение преобразуемой компоненты вектора v
14.
     bool f = false; // условие остановки
15.
     h2 = -(n/(b-a))^2;
16.
     k2 = -(m/(d-c))^2;
17.
     a2 = -2*(h1+k1);
18.
     while (!f) do
19.
     \{ eps max = 0; 
20.
       for(j = 1; j < m; j++)
21.
          for (i = 1; i < n; i++)
22.
            \{ v \text{ old} = v[i][j]; 
23.
              v new = -w*(h2*(v[i+1][j]+v[i-1][j]) + k2*(v[i][j+1]+v[i][j-1]));
24.
              v \text{ new} = v \text{ new} + (1-w)*a2*v[i][j] + w*f[i][j];
25.
              v \text{ new} = v \text{ new/a2};
26.
              eps cur = abs(v old - v new);
              if (eps cur > eps max) {eps max = eps cur};
28.
              v[i][j] = v \text{ new};
29.
30.
       S = S + 1:
31.
       if ((eps max < eps) or (S \ge Nmax)) { f = true}
32.
33.
```

По завершении работы метода необходимо сообщить пользователю, что «при решении разностной схемы с помощью MBP с параметрами w = ..., Nmax = ... и eps = ..., 3a S = ... итераций получено численное решение v[i][j]=..., i=0,...n, j=0,...m, обеспечивающее точность eps_max=...». Из текста сообщения, в частности, будет видно, как был остановлен метод – по точности или по числу итераций.

Способ записи системы (1.6), использованный при получении кода, показан на рис. 3.2.

6. Структура погрешности решения

Вернемся к задаче (1.1) и разностной схеме (1.2). Общей погрешностью решения задачи (1.1) с помощью схемы (1.2) на сетке размерности (n, m) назовем сеточную функцию $z_{oбш}(x, y)$, определяемую как

$$z_{obu}(x, y) = u(x, y) - v^{**}(x, y)$$
(6.1)

где u(x, y) – сеточная функция, соответствующая точному решению задачи (1.1) и $v^{**}(x, y)$ – сеточная функция, соответствующая какому-либо численному (приближенному) решению разностной схемы (1.2).

Если (1.2) решена с помощью итерационного метода линейной алгебры, общую погрешность можно записать в виде

$$z_{oбu}(x, y) = u(x, y) - v^{s**}(x, y),$$

причем

$$z_{o \delta u u}(x, y) = [u(x, y) - v(x, y)] + [v(x, y) - v^{s}(x, y)] + [v^{s}(x, y) - v^{s^{**}}(x, y)].$$

Здесь v(x, y) — сеточная функция, являющаяся точным решением (1.2), $v^s(x, y)$ — сеточная функция, которая должна получиться на итерации с номером s в случае, если погрешность счета отсутствует, и $v^{s**}(x, y)$ — результат, полученный на итерации с номером s под влиянием погрешности счета.

Первое слагаемое, заключенное в квадратные скобки, есть *погрешность решения задачи* (1.1) *с помощью схемы* (1.2), второе слагаемое в квадратных скобках – *погрешность решения схемы* (1.2) *с помощью итерационного метода*, и третье слагаемое, заключенное в квадратные скобки, показывает *погрешность счета*, накопленную за *s* итераций.

Пренебрегая третьим слагаемым, норму общей погрешности можно оценить суммой нормы погрешности схемы и нормы погрешности метода:

$$||z_{oбu}(x, y)|| \le ||u(x, y) - v(x, y)|| + ||v(x, y) - v^{s}(x, y)||$$
 (6.2)

С одной стороны, для снижения нормы погрешности схемы нужны достаточно большие n и m (см. теорему о сходимости решения (1.2) к решению (1.1)). С другой стороны, чем больше n и m, тем выше обусловленность матрицы \mathcal{A} в задаче (1.6). Тогда для решения задач вида (1.6), имеющих разную размерность, нужно разное число итераций. А именно, при одном и том же ограничении на норму погрешности метода (такое ограничение виртуально устанавливает пользователь) и «сходных» (одинаково похожих на сеточную функцию u(x, y)) начальных приближениях для

решения (1.6) на более густой сетке (больше n и m) потребуется больше итераций (см. теоремы об оценках сходимости методов).

В проведенном выше рассмотрении (см. п. 1) сеточной функции v(x, y), заданной на сетке (n, m), соответствует вектор V размерности (n-1)(m-1) с компонентами

$$V = (v_{11}, v_{21}, ..., v_{n-11}, v_{12}, v_{22}, ..., v_{n-12}, ..., v_{1 m-1}, v_{2 m-1}, ..., v_{n-1 m-1}).$$

Тогда норму сеточной функции (т.е. нормированное пространство сеточных функций) можно определить на основе норм соответствующих векторов (т.е. нормированного пространства векторов). Например, включив в описание вектора V компоненты, соответствующие граничным узам сетки, полагаем

$$\|v(x, y)\| = \max_{\substack{i=1,\dots n\\j=1,\dots m}} |v_{ij}|.$$
 (6.3)

и оценка (6.2) может быть записана с помощью (6.3).

Изучить поведение общей погрешности в зависимости от выбора параметров сетки (n, m) и параметров счета $(Nmax, \varepsilon)$, начальное приближение, иные параметры метода) можно в ходе выполнения лабораторных работ на примере тестовых задач.

Литература

- 1. Вержбицкий В.М. Численные методы М.: Высшая школа, 2001.
- 2. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. М.: Наука, 1967.
- 3. Марчук Г.И. Методы вычислительной математики. М.: Наука, 1980.
- 4. Самарский А.А., Гулин А.В. Численные методы математической физики. М.: Научный мир, 2000.
- 5. Трифонов Н.П., Пасхин Е.Н. Практикум работы на ЭВМ. М.: Изд-во МГУ, 1980.
- 6. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. СПб: Лань, 2002.

Форма отчета по контрольной работе, задание и варианты

КОНТРОЛЬНАЯ РАБОТА №

Реализация итерационного метода для решения разностных схем на примере задачи Дирихле для уравнения Пуассона

Выполнил(а): _	
Группа:	Вариант №

1. Постановка задачи в частных производных:

$$u(x, ___) = ____$$

 $u(x, ___) = ____$

- 2. Точное решение задачи: u(x, y) =_____
- 3. Сетка для построения разностной схемы: $n = _____$, $m = _____$ (на рисунке нужно отметить узлы сетки)

- 4. Шаг сетки: $h = _____$, $k = _____$
- 5. Размерность линейной системы уравнений: ______.

6. Разностная схема как система линейных уравнений $\mathcal{A}v = \mathcal{F}$ (нужно заполнить таблицу)

v_{11}	v_{21}	v_{31}	v_{12}	v_{22}	v_{32}	v_{13}	v_{23}	v_{33}	_			F
										v_{11}		
										v_{21}		
										v_{31}		
										v_{12}		
										v_{22}	=	
										v_{32}		
										v_{13}		
										v_{23}		
										v_{33}		

7. Итерационный метод решения СЛ	АУ:
8. Параметр(ы) метода:	

9. Начальное при	ближение:		

же заполнить таблицу; использовать три знака после запятой)

<i>y</i> 4					
<i>y</i> ₃					
y_2					
<i>y</i> ₁					
\mathcal{Y}_0					
	x_0	x_1	x_2	x_3	x_4

Таблица №1 Точное решение тестовой задачи в узлах сетки

<i>y</i> ₄					
y_3					
<i>y</i> ₂					
<i>y</i> ₁					
\mathcal{Y}_0					
	x_0	x_1	x_2	x_3	x_4

Таблица №2 Результат первой итерации (ручной счет)

<i>y</i> 4					
<i>y</i> ₃					
<i>y</i> ₂					
\mathcal{Y}_1					
\mathcal{Y}_0					
	x_0	x_1	x_2	x_3	x_4

Таблица №3 Результат первой итерации (программа)

<i>y</i> 4					
<i>y</i> ₃					
y_2					
<i>y</i> ₁					
\mathcal{Y}_0					
	x_0	x_1	x_2	x_3	x_4

Таблица №4 Результат второй итерации (ручной счет)

<i>y</i> ₄					
<i>y</i> ₃					
<i>y</i> ₂					
<i>y</i> ₁					
<i>y</i> ₀					
	x_0	x_1	x_2	x_3	x_4

Таблица №5 Результат второй итерации (программа)

<i>y</i> ₄					
<i>y</i> ₃					
<i>y</i> ₂					
<i>y</i> ₁					
<i>y</i> ₀					
	x_0	x_1	x_2	x_3	x_4

Таблица №6 Результат длительной работы метода, $\varepsilon =$ ___ (программа)

<i>y</i> 4					
<i>y</i> ₃					
<i>y</i> ₂					
y_1					
<i>y</i> ₀					
	x_0	x_1	x_2	x_3	x_4

Задание

- 1. Заполните п. 1-9 формы в соответствии с вариантом задания.
- 2. На отдельных листах запишите метод в матричном виде и по компонентам, учитывая специфику СЛАУ.
- 3. В табл. 1 приложения 1 к отчету запишите точное решение разностной схе-
- 4. Проведите «вручную» расчет первой и второй итерации, результаты запишите в табл. 2, 4 приложения 1 к отчету.
- 5. Результаты первой и второй итерации, полученные с помощью программы, запишите в табл. 3, 5 приложения 1 к отчету.
- 6. В табл. 6 укажите результат работы метода после многих итераций (например, при $\varepsilon = 10^{-12}$).
- 7. В приложении 2 к отчету приведите код программы.

Отчет о выполнении работы должен включать форму (п. 1-9), листы с описанием метода, приложения №1 и №2.

Варианты (3адания выполняются на сетках (4, 4) и (3, 3))

$N\!$	Итерационный метод	$u\left(x,y\right)$	a; b; c; d
1	Метод простой итерации ²	$1-x^2-y^2$	-1; 1; -1; 1
2	Метод минимальных невязок	$1-x^2-y^2$	-1; 1; -1; 1
3	Явный итерационный метод с чебы- шевским набором параметров ³	$1-x^2-y^2$	-1; 1; -1; 1
4	Метод сопряженных градиентов	$1-x^2-y^2$	-1; 1; -1; 1
5	Метод простой итерации ⁴	$1 - (x - 1)^2 - (y - 0.5)^2$	0; 2; 0; 1
6	Метод минимальных невязок	$1-(x-1)^2-(y-0.5)^2$	0; 2; 0; 1
7	Явный итерационный метод с чебы- шевским набором параметров ⁵	$1 - (x - 1)^2 - (y - 0.5)^2$	0; 2; 0; 1
8	Метод сопряженных градиентов	$1-(x-1)^2-(y-0.5)^2$	0; 2; 0; 1

² При использовании метода простой итерации нужно взять оптимальное значение параметра или любое значение из области сходимости.

³ При использовании явного итерационного метода с чебышевским набором параметров используйте k > 1 (k = 2, например); для определения параметров можно брать границы спектра или оценку границ спектра.

⁴ См. ²⁾

⁵ См. ³⁾

Примеры интерфейсов компьютерных программ

В соответствии с государственными образовательными стандартами по специальности и направлению «Прикладная математика и информатика» при выполнении контрольных и лабораторных работ по дисциплинам «Численные методы» и «Практикум на ЭВМ — Численные методы» перед студентами ставится задача развития компетенций разработки и применения программных средств разного уровня сложности, необходимых для решения разных задач численного исследования. С одной стороны, нужны программы для пробных расчетов и проверки возможностей методов. С другой стороны — программные системы, поддерживающих широкий спектр экспериментальных возможностей для изучения как свойств метода, так и свойств моделируемых объектов.

Общие требования к программам состоят в следующем:

- программа должна быть написана студентом на алгоритмическом языке высокого уровня;
- код, реализующий численный метод, должен быть подготовлен студентом самостоятельно;
 - объектно-ориентированный подход приветствуется;
- программа и способ работы с ней должны быть пригодны не только для выполнения конкретного расчета, но и для *проверки корректной реализации метода*.

Примеры интерфейсов таких компьютерных программ показаны на рис. Π -1 – Π -10.

Программа №1 (см. рис. П-1 – П-2) решает модельную задачу в соответствии с индивидуальным заданием студента. Интерфейс позволит сформировать параметры сетки, параметры метода (МВР), показать результат в табличном виде (режим прокрутки), фактическую точность метода и общую погрешность (если известна). Начальное приближение берется нулевым. Рис. П-1 соответствует расчетам на сетке (5, 5), а рис. П-2 — на сетке (40, 40). Лаконичный интерфейс программы предложен студентами факультета ВМК ННГУ (группа А. Бестаевой) и успешно использован ими при выполнении лабораторных работ на неравномерных сетках в плоской области с границей сложной формы (например, область вписана в прямоугольник и имеет закругленные края). Интерфейс, показанный на рис. П-1, будет достаточным для выполнения контрольной работы из Приложения 1.

Программа №2 (см. рис. П-3 – П-10) решает задачу типа (1.1) в *техмерной области*, когда нужно численно найти u(x, y, z) при $x \in [a, b]$, $y \in [c, d]$, $z \in [e, f]$. Разработчик программы — студент факультета ВМК ННГУ А. Коробейников (кафедра МО ЭВМ). Программа была подготовлена для выполнения лабораторных работ по курсу «Численные методы» с использованием МВР. Вкладка с названием *Постановка* позволяет формировать условия модельной задачи, вкладка *Решение* — задать параметры сетки и метода, выбрать

тип начального приближения. Вкладка 2-е решение даст возможность провести еще один контрольный расчет на сетке большей размерности, имеющей с исходной сеткой общие узлы. Так как оптимальный выбор параметров счета зависит от размерности системы, при построении двух численных решений параметры метода и начальное приближение можно выбрать независимо. Вкладка Проверка позволит сравнить полученные численные решения с любой другой сеточной функцией, определяемой на вкладке как точное решение дифференциальной задачи. На каждой вкладке предусмотрено управление режимом визуализации соответствующей сеточной функции и показ величин, характеризующих точность решения. При изменении постановки задачи, параметров сетки или метода массивы найденных решений и графические окна обновляются по кнопке Решить. При изменении параметров визуализации графические окна обновляются по кнопке Обновить. Для наблюдения за расчетом выводится всплывающее окно, показанное на рис. П-7. Заданные и вычисленные сеточные функции можно просмотреть в сечениях z = const в «объемном» графическом окне с осями X, Y - U (рис. $\Pi - 1 - \Pi - 6$) или в двух синхронных графических окнах: «объемном» и в проекции на плоскость Y-U, см. рис. $\Pi-8-\Pi-10$.

Интерфейс программы №2 может быть удобным для интерпретации решений. Например, если в исходной задаче речь идет о распределении температур в заданном объеме при заданной функции плотности источников тепла и заданных температурах на границе объема, цветовое сечение, предусмотренное программой, покажет распределение тепла при z = const, см. рис. П-5 и П-6. Кроме того, программа позволяет изучить зависимость общей погрешности от параметров сетки и метода (для тестовых задач).

В заключение отметим, как растет размерность СЛАУ при решении многомерных модельных задач: при решении трехмерной задачи на сетке (10, 10, 10) она составит 729×729 , на сетке $(20, 20, 20) - 6859 \times 6859$, а на сетке $(40, 40, 40) - 59319 \times 59319$. Если модельная задача поставлена в двумерной области, то на сетке (10, 10) размерность СЛАУ составит всего лишь 81×81 , на сетке $(20, 20) - 361 \times 361$, а на сетке $(40, 40) - 1521 \times 1521$.

⊪ Be _l	охняя рела	ксация ,	для обла	асти с за	акруглён	нным углом (Вторая тестовая задача) 💶 🗷			
Omega:	1,5	Точн	ость метода:	1e-12		Число разбиений по X: 5			
Решить Ограничение шагов:			1000		Число разбиений по Ү: 5				
-0,25	-0,09	-0,01	-0,01	-0,09	-0,25				
0,39	0,54999999	0,630000000	0,630000000	0,549999999	0,39				
0,71	0,870000000	0,950000000	0,950000000	0,869999999	0,71				
0,71	0,870000000	0,950000000	0,950000000	0,870000000	0,71				
0,39	0,550000000	0,629999999	0,629999999	0,550000000	0,39				
-0,25	-0,09	-0,01	-0,01	-0,09	-0,25				
Достигнутая точность метода: 4,62740956663765E-13 Число затраченых шагов: 43									
Точность решения тестовой задачи: 2.05502281858116Е-13									

Рис. П-1. Программа №1: Интерфейс для проверки метода, сетка (5, 5). Задача: тест. Область: с закругленным краем

Рис. П-2. Программа №1: Интерфейс для проверки метода, сетка (40, 40). Задача: тест. Область: с закругленным краем

Рис. П-3. Программа №2: Вкладка: выбор условий задачи. График: начальное приближение в сечении $z=z_4$

Рис. П-4. Программа №2: Вкладка: выбор параметров сетки, параметров метода и начального приближения. График: численное решение в сечении $z=z_4$

Рис. П-5. Программа №2: Вкладка: выбор параметров сетки, параметров метода и начального приближения для контрольного расчета. График: цветовые сечения основного численного решения для $z = z_2$ и $z = z_9$, основное численное решение (решетка) для $z = z_2$

Рис. П-6. Программа №2: Вкладка: задание тестовой функции (точное решение задачи). График: точное (поверхность) и численное (решетка) решение задачи в сечении $z=z_3$, а также цветовое сечение численного решения для $z=z_3$.

Рис. П-7. Программа №2: Информация о процессе счета (всплывающее окно)

Рис. П-8. Программа №2: Вкладка: выбор условий задачи. График: основное и контрольное решения (поверхности), их начальные приближения (решетки) в сечении $z = z_1$

Рис. П-9. Программа №2: Вкладка: выбор условий расчета. График: основное и контрольное решения (поверхности), их начальные приближения (решетки) в сечении $z = z_5$

Рис. П-10. Программа №2: Вкладка: выбор условий второго расчета. График: основное и контрольное решения (поверхности), их начальные приближения (решетки) в сечении $z = z_8$

Наталья Романовна **Стронгина** Константин Александрович **Баркалов**

ПРАКТИКУМ ПО КУРСУ «ЧИСЛЕННЫЕ МЕТОДЫ»

Применение итерационных методов решения разностных схем на примере задачи Дирихле для уравнения Пуассона

Учебно-методическое пособие

Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им. Н.И. Лобачевского». 603950, Нижний Новгород, пр. Гагарина, 23.

Подписано в печать . Формат 60r84 1/16. Бумага офсетная. Печать офсетная. Гарнитура Таймс. Усл. печ. л. 2,5. Уч.-изд. л. Заказ № . Тираж 100 экз.

Отпечатано в типографии Нижегородского госуниверситета им. Н.И. Лобачевского 603600, г. Нижний Новгород, ул. Большая Покровская, 37 Лицензия ПД № 18-0099 от 14.05.01