110A HW8

Warren Kim

Winter 2024

Throughout this section, F is a field and F[x] is the ring of polynomials with F coefficients.

Question 1

- 1. Let $a \in F$. Show that $x a \in F[x]$ is irreducible.
- 2. Let $f \in F[x]$, and suppose $\deg(f) = n > 0$. Show that f has at most n roots.

Response

1. Let $a \in F$. Show that $x - a \in F[x]$ is irreducible.

Proof: Let $a \in F$ and $x - a \in F[x]$. Since $\deg(x - a) = 1$, we have that the only polynomials with degree less than 1 are constant polynomials with degree 0. Take $g \in F[x]$ such that $g \mid (x - a)$. Then x - a = gh for some $h \in F[x]$, so

$$1 = \deg(x - a) = \deg(gh) = \deg(g) + \deg(h)$$

and since $g \mid (x-a)$ and $h \mid (x-a)$, $\deg(g) \neq 0$ and $\deg(h) \neq 0$. Since $g \mid (x-a)$, $0 \leq \deg(g) \leq \deg(x-a) = 1$. There are two cases:

- (a) If deg(g) = 1, then h is a unit, so g and x a are associates.
- (b) If deg(g) = 0, then g is a unit, so h and x a are associates.

Therefore, the only factors of x-a are units an associates, so x-a is irreducible. \Box

2. Let $f \in F[x]$, and suppose $\deg(f) = n > 0$. Show that f has at most n roots.

Proof: Let $f \in F[x]$ and suppose $\deg(f) = n > 0$. We will induct on $n \in \mathbb{N}$. At n = 1, we have that $f = a_0 + a_1 x = 0$ with $a_1 \neq 0$, so f has at most one root. Suppose the base case holds for all $1 \leq k < n$. Then when k = n, if f has a root f has a root f we can uniquely factor f to get f = (x - r)g for some f has at most f has at m

Let $I \subseteq F[x]$ be an ideal. Show that I is principal.

Response

Proof: Let $I \subseteq F[x]$ be an ideal. If $I = \{0\}$, then we are done since F is a field \Longrightarrow (0) is principal, so suppose not. Take $f \in I$ to be a nonzero polynomial of least degree, and consider (f). $((f) \subseteq I)$ Since $f \in I$, $fa \in I$ for all $a \in F[x]$, so $(f) \subseteq I$.

 $((f) \supseteq I)$ Take $a \in I$. Then we can write a = fq + r for $q, r \in F[x]$ where $0 \le \deg(r) < \deg(f)$. Then we can rewrite the equation as r = a - fq. Because $f \in I$, we have $fq \in I$ since I is an ideal. Then $r = a - fq \in I$ since $a, fq \in I$. Then it must be the case that $\deg(r) = 0$ since otherwise, we have that $\deg(r) = \deg(a - fq) < \deg(f)$ which is a contradiction since f was chosen to be the polynomial with least degree. Therefore, $\deg(r) = 0$ so a = fq; i.e. $f \mid a$, so $a \in (f)$. Since a was arbitrary, $I \subseteq (f)$.

Since we showed $(f) \subseteq I$ and $(f) \supseteq I$, we have that (f) = I is principal. \square

Let R be an integral domain (you can do this with any commutative ring). Show that the relation $a \sim b$ if a and b are associates forms an equivalence relation.

Response

Proof: Note that a, b are associates if a = bc for some $c \in R$. Let R be an integral domain and $a, b, c \in R$. Then

- (i) $a \sim a$. Pick $d = 1 \in R$. Then $a = ad = a \cdot 1 = a$; i.e. a and a are associates, so \sim is **reflexive**.
- (ii) $a \sim b \implies b \sim a$. We have that a = bd for some unit $d \in R$. Since d is a unit, there exists $d^{-1} \in R$. Multiplying both sides by d^{-1} , we get $ad^{-1} = bd \cdot d^{-1} = b$; i.e. b and a are associates, so \sim is **symmetric**.
- (iii) $a \sim b, b \sim c \implies a \sim c$. We have that a = bd and b = ce for some units $d, e \in R$. Then a = bd = (ce)d = c(ed). Then since $d, e \in R$ are units, there exist $d^{-1}, e^{-1} \in R$ such that $dd^{-1} = 1$ and $ee^{-1} = 0$. Then $de \cdot e^{-1}d^{-1} = d \cdot 1 \cdot d^{-1} = 1$, so de is a unit. Setting f := ed, we get a = cf. Therefore, a and c are associates, so \sim is **transitive**.

Since (1) - (3) hold, \sim is an equivalence relation on elements of R.

Let R be an integral domain, and let $p \in R$. Show that p is irreducible if and only if p = bc implies b or c is a unit.

Response

Proof: Let R be an integral domain, and let $p \in R$. (\Longrightarrow) Suppose p is irreducible. Let p = bc for some $b, c \in R$. Then $p \mid p = bc$. There are two cases:

Case 1: If b is a unit, then we are done.

Case 2: If b is an associate of p, then c is a unit.

In either case, either b or c is a unit.

(\iff) Suppose "p=bc implies that either b or c is a unit". Let $b\in R$ such that $b\mid p$. Then p=bc for some $c\in R$. Then either b or c is a unit. If b is a unit, then c is an associate of p. If c is a unit, then b is an associate of p. In either case, the only factors of p are units and associates, so p is irreducible. Because we have proved both directions, we have that p is irreducible if and only if p=bc implies b or c is a unit.

Let R be an integral domain, and let $p \in R$. Show that the principal ideal (p) is a prime ideal if and only if p is prime.

Response

Proof: Let R be an integral domain and $p \in R$. Consider the principal ideal $(p) \subseteq R$. (\Longrightarrow) Suppose (p) is a prime ideal. Then, whenever $ab \in (p)$ for $a, b \in R$, we have either $a \in (p)$ or $b \in (p)$. Take $a, b \in R$ such that $ab \in (p)$. Then $p \mid ab$ by definition since we can represent ab = pr for some $r \in R$. Since either $a \in (p)$ or $b \in (p)$, we have that $p \mid a$ or $p \mid b$, so p is prime.

(\iff) Suppose p is prime; i.e. if $p \mid ab$ for $a, b \in R$, then either $p \mid a$ or $p \mid b$. Then since $p \mid ab$, we can write ab = pr for some $r \in R$, so $pr = ab \in (p)$. Without loss of generality, suppose $p \mid a$. Then a = pq for some $q \in R$, so $pq = a \in (p)$. Since $a, b \in R$ were arbitrary, (p) is a prime ideal. Because we have proven both directions, we have that (p) is a prime ideal if and only if p is prime. \square

Let R be an integral domain. We denote $S(R) = \{(a,b)|a,b \in R; b \neq 0\}$. Consider the relation $(a,b) \sim (a',b')$ if ab' = a'b.

- 1. Show that the relation \sim forms an equivalence relation on elements of S(R).
- 2. Suppose $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Show that $(ad+bc,bd) \sim (a'd'+b'c',b'd')$

Response

Let R be an integral domain and define $S(R) = \{(a,b) : a,b \in R; b \neq 0\}$. Consider the relation $(a,b) \sim (a',b')$ if ab' = a'b.

1. Show that the relation \sim forms an equivalence relation on elements of S(R).

Proof: Let $a, b, c, d, e, f \in R$. Then

- (i) $(a,b) \sim (a,b)$. By definition, $(a,b) \sim (a,b) \iff ab = ba$. Since integral domains are commutative, this is true, so \sim is **reflexive**.
- (ii) $(a,b) \sim (c,d) \implies (c,d) \sim (a,b)$. By definition, $(a,b) \sim (c,d) \iff ac = bd$. Since equality is symmetric, we have that $bd = ac \iff (c,d) \sim (a,b)$, so \sim is **symmetric**.
- (iii) $(a,b) \sim (c,d), (c,d) \sim (e,f)$. By definition, $(a,b) \sim (c,d) \iff ad = bc$ and $(c,d) \sim (e,f) \iff cf = de$. Then

$$ad = bc$$
 $adf = bcf$
 $afd = bde$
 $cf = de$
 $cancellation property since $d \neq 0$$

Therefore, \sim is transitive.

Since (1) - (3) hold, \sim is an equivalence relation on elements of S(R).

2. Suppose $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Show that $(ad+bc,bd) \sim (a'd'+b'c',b'd')$

Proof: Suppose $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. By definition, ab' = a'b and cd' = c'd. Note that R is commutative since it is an integral domain. Then

$$ab' = a'b$$
$$ab'dd' = a'bdd'$$

and

$$cd' = c'd$$
$$cd'bb' = c'dbb'$$

So,

$$ab'dd' = a'bdd'$$

$$ab'dd' + cd'bb' = a'bdd' + c'dbb'$$

$$ad(b'd') + bc(b'd') = a'd'(bd) + b'c'(bd)$$

$$(ad + bc) \cdot (b'd') = (a'd' + b'c') \cdot (bd)$$

so
$$(ad + bc, bd) \sim (a'd' + b'c', b'd')$$
.

Let F be a field, and consider its field of fractions Frac(F). Show that $F \cong Frac(F)$. [Hint: what can you say about the homomorphism $f: F \to Frac(F)$ given by $f(a) = \frac{a}{1}$?]

Response

Proof: Let F be a field, and consider its field of fractions Frac(F). Define $f: F \to Frac(F)$ given by $a \mapsto \frac{a}{1}$.

- 1. For any $a, b \in F$, $f(a+b) = \frac{a+b}{1} = \frac{a}{1} + \frac{b}{1} = f(a) + f(b)$, so f is closed under addition.
- 2. For any $a, b \in F$, $f(a \cdot b) = \frac{a \cdot b}{1} = \frac{a}{1} \cdot \frac{b}{1} = f(a) \cdot f(b)$, so f is closed under multiplication.
- 3. $f(1_F) = \frac{1}{1} = 1_{Frac(F)}$, so $1 \in Frac(F)$.

so f is a ring homomorphism. To show that f is injective, note that since F is a field, it has two ideals: (0) and F. Then since $f(1) = \frac{1}{1} = 1 \neq 0$, we have that $1 \notin \ker(f)$, so $\ker(f) = \{0\}$ which implies that f is **injective**. To show that f is surjective, consider an arbitrary $\frac{a}{b} \in Frac(F)$ where $a, b \in F$ and $b \neq 0$. Since F is a field and $b \neq 0$, b is a unit, there exists $b^{-1} \in F$. Then

$$a = a \cdot 1$$
$$= a \cdot (bb^{-1})$$
$$a \cdot 1 = ab^{-1} \cdot b$$

so $\frac{a}{b} = \frac{ab^{-1}}{1}$. Put $x \in F$ to be $x := ab^{-1}$. Then $f(x) = \frac{ab^{-1}}{1} = \frac{a}{b}$. Since $\frac{a}{b}$ was arbitrary, f is **surjective**. Because f is both injective and surjective, f is a bijection so $F \simeq Frac(F)$.