RLPBWT

Davide Cozzi

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

The Old Idea

The New Idea

The Old Idea

2 The New Idea

Durbin's Algorithm

Algorithm 1 Algorithm 5 from Durbin's paper

```
function FIND SET MAXIMAL MATCHES FROM Z(z)
    for k \leftarrow 0 to N do
        e, f, g \leftarrow Update \ Z \ Matches(k, z, e, f, g)
function UPDATE Z_MATCHES(k, z, e, f, g)
    f' \leftarrow w(k, f, z[k])
                                                                        \triangleright a_k, d_k and y_i^k as in Durbin's paper
    g' \leftarrow w(k, g, z[k])
    if f' < g' then
                                                          \triangleright if k is N - 1 report matches from e_k to N - 1
        e' \leftarrow e_{\nu}
    else
                                                                                ▷ report matches from e to k
        e' \leftarrow d_{k+1}[f'] - 1
        if z[e'] = 0 and f' > 0 then
             f' \leftarrow \sigma' - 1
             while z[e'-1] = v_{e'}^{k+1}[e'-1] do e' \leftarrow e'-1
             while d_{k+1}[f'] \leq e'' \operatorname{do} f' \leftarrow f' - 1
        else
             \varrho' \leftarrow f' + 1
             while z[e'-1] = y_{\epsilon'}^{k+1}[e'-1] do e' \leftarrow e'-1
             while g' < M and d_{k+1}[g'] < e' do g' \leftarrow g' + 1
    return e', f', g'
```

PBWT	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00		1	, 0	1 >	1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
02	1	1 ,	0	1 '-	, 1	1	0	0	0	1	1	1	0	1	1
03	1	1 :	0	1	1	0	0	0	1	0	0	1	1	0	1
04	0	1 >	0	1	0	1	0	0	1	0	0	1	1	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1 >	0	1 2	0	0	0	0	0	1	0	0	0
07	0	1	0	1	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1
09	0	1	0	1	0	0	0	0	1	0 🤌	0	0	0	0	1
10	0	1	0	1	1	0	0	0	0 >	0	0	1	1	0	1
11	0	1	0	0	1	(0)	1	1	0	0	0	1	0	0	1
12	0	1	0	0	1	0	0	1	0	0	0	0	0	0 }	1
13	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
14	0	1	0	0	0	0	, 0	0	0	. 0	0	0	0	0	1
15	0	0	, 0	0	0	0	·′ 0	0	0	0	0	0	0	0	1
16	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
17	1	0 ,	′ 1 <i>?</i>	0	0	0	0	0	0	0	1	1	0	0	1
18	0	0	1 '	·, 0	0	0	0	0	0	0	1	1	0	0	1
19	0	1	0	· ' 0	0	0	0	0	0	0	1	1	0	0	1
								\bigcirc	er ^e					\bigcirc	
\mathbf{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1

e = 0							3	e = 7 $e = 11$								
X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
00	(0)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
01	0	0	0	0	0	0	0	0	0	2	2	2	7	9	6	15
02	0	0	0	0	0	1	4	4	4	5	5	5	8	0	0	6
03	0	0	0	0	0	4	2	2	2	0	3	6	9	12	0	0
04	0	0	2	2	0	2	0	0	0	3	6	4	0	6	8	0
05	0	0	0	0	0	0	0	0	0	6	4	0	4	0	0	8
06	0	0	0	0	1	0	5	5	5	4	0	0	0	0	11	0
07	0	0	0	0	3	0	0	0	0	0	0	0	12	8	9	11
08	0	0	0	0	0	0	0	0	0	0	0	7	2	0	0	0
09	0	0	0	0	4	0	0	0	0	0	7	8	5	11	10	10
10	0	0	0	0	0	0	3	3	3	7	8	0	6	9	13	13
11	0	0	0	0	0	5	0	4	6	8	0	0	4	0	7	7
12	0	0	0	0	0	0	4	0	4	0	0	9	0	10	9	9
13	0	0	0	0	2	0	0	0	0	0	9	0	0	13	0	0
14	Q	0	0	0	0	0	0	6	0	9	0	4	8	7	12	12
15	0	1	0	0	0	3	6	4	0	0	4	0	0	9	2	2
16	0	0	0	0	0	0	4	0	7	4	0	11	11	0	6	6
17	0	0	0	1	0	4	0	0	8	0	(5)	9	9	12	14	14
18	0	0	0	3	0	0	0	0	0	5	0	0	0	2	9	9
19	0	0	1	0	0	0	(0)	7	0	0	10	10	10	6	0	0

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
00	0	4	0	0	8	14	14	14	14	0	0	0	7	1	18	11
01	1	5	1	1	11	15	15	15	15	16	16	16	19	9	4	18
02	2	6	2	2	12	17	0	0	0	8	11	18	1	10	5	4
03	3	7	3	3	13	0	9	9	9	11	18	17	14	18	6	5
04	4	8	4	4	14	4	10	10	10	18	17	4	15	4	2	6
05	5	9	5	5	15	5	16	16	16	17	4	5	9	5	3	2
06	6	10	6	6	17	6	8	8	8	4	5	6	10	6	11	3
07	7	11	7	7	18	7	11	11	11	5	6	7	0	2	12	12
08	8	12	8	8	19	9	12	12	12	6	7	19	16	3	13	13
09	9	13	9	9	0	10	13	13	13	7	19	1	18	11	8	8
10	10	14	10	10	1	16	18	18	18	19	1	2	17	12	7	7
11	11	15	11	11	2	8	19	1	17	1	2	3	4	13	19	19
12	12	16	12	12	3	11	1	2	4	2	3	14	5	8	14	14
13	13	18	13	13	4	12	2	3	5	3	14	15	6	7	15	15
14	14	19	14	14	5	13	3	17	6	14	15	9	2	19	0	0
15	15	0	15	15	6	18	17	4	7	15	9	10	3	14	16	16
16	16	1	16	16	7	19	4	5	19	9	10	(11)	11	15	17	17
17	17	2	18	17	9	1	5	6	1	10	12	12	12	0	1	1
18	18	3	19	18	10	2	6	7	2	12	13	13	13	16	9	9
19	19	17	17	19	16	3	7	$\overline{19}$	3	13	8	8	8	$\overline{17}$	10	10

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0.	11	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
			/	▼											
\mathbf{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1

pre_e = 6 at 7 pre_e = 8 pre_e = 13 at 11 at 13

\mathbf{X}	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
								_							
\mathbf{Z}	0	1	0	0	1	0]	1	[0	0	0	1	[1]	1	0	1

The Old Idea

The New Idea

New Idea I

Let's take a step back and get closer to Durbin's original idea.

At the moment we save:

- the position of every head of a run
- a boolean to mark if the first run is composed by zeros or ones
- the c value of the column
- \blacksquare a single value for u and v (that are as in Durbin)
- the whole divergence array, actually the LCP array, (WIP)

New Idea I

```
column: 5
start with 0? yes, c: 15
0
    0
   5
0 5 4 1 3 5 5 5 5 5 5 0 5 5 5 2 5 1 5 5
```

Figura: Example, column 5: 0010111100000000000

New Idea II

uv values trick

Values u and v increase alternately in the biallelic case so we save every time the only value that increase at the head of a run.

The, with a simple If/Else selection based on the first element of the column and the index of the run and on being even or odd of the index we can extract both u and v values. Infact the two values are, alternatively, saved in the current index and in the previous one.

$w(i, \sigma)$ function

We can use the same *LF-mapping* as in Durbin but we have to consider sometimes an *offset* between the position of the head of the run, that's *i*, which contains the "virtual" index, and the index itself.

$$w(i,\sigma) = \begin{cases} u[i] + offset & \text{if } \sigma = 0\\ c + v[i] + offset & \text{if } \sigma = 1 \end{cases}$$

New Idea III

External haplotype matches

Than we proceed as in Durbin, updating f and g using $w(i, \sigma)$.

Every time we "virtually" use indexes over the whole column but actually run heads plus offsets are used.

In case we update e using f and the divergence/LCP array (**WIP**). In order to update e we should in theory follow the line indicated in i+1 by f in the original panel which we have not memorized. So, at most at a cost of O(r) for every column, we proceed to reverse te use of u and v to move backwards between the columns virtually following a row of the original panel.

Than we use the divergence/LCP array (**WIP**) to update f and g depending on the case.

After detect a match, we can know the cardinality of the lines that match but not what they are,

New Idea IV

WIP

At the moment *divergence array* is saved as an sdsl::int_vector<> on which it's used sdsl::util::bit_compress() in order to save space. The original idea of thresholds seems to me absolutely not applicable but maybe we can think of storing only a subset of the *divergence/LCP array* and I'm thinking how to do it.

Testing

Benchmark

At the moment I'm testing the implementation using the sample data (VCF files) at:

 $\label{lem:https://github.com/ZhiGroup/Syllable-PBWT/tree/master/sample_data} $$ (the panel is 900 \times 500 with 100 queries).$

Next Work

Trying to implement also non maximal matches with a query, as, for example, in Naseri's paper.

The Old Idea

2 The New Idea

The column data I

We save, for every column:

- a bit vector of the same length of the dense PBWT column, with 1 in every position before a head of a run
- 2 bit vector that can be queried to obtain *u* and *v* value. So we have a bitvector for zeros that contains 1 in position *i* iff we have *i* zeros at point in the column when we change value anche similar for ones(to be exaplained better)
- the c value and a bool to indicate how a column start

The column data II

example

If we have a column:

c = 00001110001111111000011111111

We save:

h = 000100100100000100010000000(1)

u = 00010010001 (to rappresent 4,3 and 4 zeros)

v = 0010000010000001 (to rappresent 3,6 and 7 ones)

The column data III

example

If we want to obtain, for example, the number of zeros before and index i, for example i=18:

- we rank h to obtain the run that contain i, rank_h(18) = 4
- we know that the column start with 0 so we are in a run of zeros and we have $\left|\frac{4}{2}\right| = 2$ run's of zeros before
- we know that the number of zeros in the previous complete runs is $select_u(2) + 1 = 7$
- remain zeros in the run to compute are given by $i (select_h(4) + 1)$

Idea to change the use of whole lcp array

When we have an ending match, discovered in k+1, with f and g-1 in k, we could:

- **•** take maximum lcp between f and first 0/1 above f
- $lue{}$ take maximum lcp between g and first 0/1 below g-1
- take maximum between these two values, we call it x
- new interval is [psv[x], nsv[x] 1] and we use this value to obtain new e

We could obtain *psv* and *nsv* array using *RMQ* of *sdsl-lite*. In future we will use thresholds.

