On gradual LNL-models

Richard Blair and Harley Eades III

Computer Science, Augusta University Computer Science, University of Iowa

1 Gradual LNL model

Definition 1. A gradual LNL-model consists of

- 1. a gradual λ -model $G\lambda^* = (\mathcal{T}, \mathcal{C}, *_{\mathcal{C}}, \mathsf{T}, \mathsf{split}, \mathsf{squash}, \mathsf{box}, \mathsf{unbox}, \mathsf{error})$
- 2. a symmetric monoidal closed category $(\mathcal{L}, I, \otimes, \neg)$ with distinguished object $*_{\mathcal{L}}$
- 3. a pair of strong closed monoidal functors $(G,n): \mathcal{L} \longrightarrow C$ and $(F,\hat{F}): C \longrightarrow \mathcal{L}$ forming a monoidal adjunction with $F \dashv G$.

Theorem 2. A gradual LNL-model is an LNL model.

The subscript on * shall be omitted below where the meaning is clear from the context.

We now prepare to show that FG preserves the retract properties of squash_S and split_S in C for $*\Rightarrow *$ and $*\times *$. That is, we shall show that $FG(*) \multimap FG(*)$ is a retract of FG*, as is $FG * \otimes FG*$.

Lemma 3. $FG(*) \multimap FG(*)$ is a retract of FG* with morphisms

$$\mathcal{L}$$
squash $_{FG* \multimap FG*} := \hat{F}_{*,*}; F(\mathsf{Unbox}_{G*} \Rightarrow \Box G*); Fsquash_{*\to *}; F(\mathsf{Unbox}_{G*})$

and

$$\mathcal{L}\mathsf{split}_{FG* \multimap FG*} \coloneqq F(\mathsf{Box}_{G*}); F\mathsf{split}_{* \multimap *}; F(\mathsf{Box}_{G*} \Rightarrow \mathsf{Unbox}_{G*}); \hat{F}^{-1}_{*,*}$$

Proof. Observe that:

$$\mathcal{L}$$
squash; \mathcal{L} split = $m_{*,*}$; F squash $_{*\rightarrow *}$; F split $_{*\rightarrow *}$; $p_{*,*}$

References

- [1] G. M. Bierman. *On Intuitionistic Linear Logic*. PhD thesis, Wolfson College, Cambridge, December 1993.
- [2] Jean-Yves Girard. Linear logic. *Theoretical Computer Science*, 50(1):1 101, 1987.

- [3] Harley Eades III. Proposing a new foundation of attack trees in monoidal categories. Online: https://github.com/MonoidalAttackTrees/attack-trees-in-monoidal-cats/blob/master/drafts/Proposal-the-Project-Short/main.pdf, 2016.
- [4] Joachim Lambek. The mathematics of sentence structure. *American Mathematical Monthly*, pages 154–170, 1958.