HOMEWORK 9

VECTOR SPACES AND EIGENVALUES

Consider vector space V which contains real 3-component vectors $|a\rangle$, $|b\rangle$ and $|c\rangle$. For **Questions 1-4**, state whether the following would also be contained in V. (Answer True if it is contained in V or False if it is not.)

- 1. $|w\rangle = 2|a\rangle$
 - a) True
 - b) False
- $2. \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 - a) True
 - b) False
- 3. Inner product: $\langle a|b\rangle$
 - a) True
 - b) False
- 4. $|v\rangle = \alpha |a\rangle + \beta |b\rangle + \gamma |c\rangle$, for any real numbers α , β and γ
 - a) True
 - b) False
- 5. Given a set of 3 vectors $\{|x\rangle, |y\rangle, |z\rangle\}$ and coefficients α , β and γ , the vectors are **linearly independent** if:
 - a) $\alpha |x\rangle + \beta |y\rangle + \gamma |z\rangle = 0$ has exactly one **non-zero** soluton.
 - b) $\alpha |x\rangle + \beta |y\rangle + \gamma |z\rangle = 0$ is only solved by $\alpha = \beta = \gamma = 0$
 - c) $\alpha |x\rangle + \beta |y\rangle + \gamma |z\rangle = 0$ has infinitely many solutions

- 6. For a set of vectors $\{|x\rangle, |y\rangle, |z\rangle\}$, what is meant by $\mathbf{span}(\{|x\rangle, |y\rangle, |z\rangle\})$?
 - a) The set of all vectors that **can** be constructed using linear combinations of $\{|x\rangle, |y\rangle, |z\rangle\}$.
 - b) The set of all vectors that **cannot** be constructed using linear combinations of $\{|x\rangle, |y\rangle, |z\rangle\}$.
 - c) The set of all vectors that **are** orthogonal to $\{|x\rangle, |y\rangle, |z\rangle\}$.
 - d) The set of all vectors that **are not** orthogonal to $\{|x\rangle, |y\rangle, |z\rangle\}$.
- 7. True or False: The span of a set of vectors is a vector space.
 - a) True
 - b) False
- 8. Which of the following statements best describes the link between the **span of a set** of vectors and the dimension of the vector space it generates.
 - a) The span of any 3 vectors is a vector space with dimension of 3.
 - b) The span of **3 linearly independent vectors** is a vector space with dimension of 3.
 - c) The span of **3-component vectors** is a vector space with dimension of 3.

2

d) Only the span of **exactly 3 linearly independent 3-component vectors** can be a vector space with dimension of 3.

For Questions 9-11, state whether the following vectors are linearly independent.

9.
$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

- a) Linearly Independent
- b) Linearly Dependent

10.
$$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 3\\6 \end{pmatrix} \right\}$$

- a) Linearly Independent
- b) Linearly Dependent

11.
$$\left\{ \begin{pmatrix} 3 \\ -4 \end{pmatrix}, \begin{pmatrix} 7 \\ 1 \end{pmatrix} \right\}$$

- a) Linearly Independent
- b) Linearly Dependent

For Questions 12-14, state whether the following sets of vectors span \mathbb{R}^2 . Answer True if the span of the set is \mathbb{R}^2 or False if it is not.

- 12. $\left\{ \begin{pmatrix} 1\\3 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\}$
 - a) True
 - b) False
- 13. $\left\{ \begin{pmatrix} 2 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \end{pmatrix} \right\}$
 - a) True
 - b) False
- 14. $\left\{ \begin{pmatrix} 5 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$
 - a) True
 - b) False

Consider an operator represented by a square matrix A. The eigenvalue equation for A is:

$$A|v\rangle = \lambda |v\rangle$$

where λ is the eigenvalue and $|v\rangle$ is the eigenvector.

Eigenvalues and eigenvectors are like the fingerprint of a matrix. It is possible to uniquely identify a matrix using only its eigenvalues and eigenvectors. In quantum mechanics, the eigenvalues and eigenvectors play an important role in **measurement**. The eigenvectors, called **eigenstates**, gives the possible outcomes of any given measurement.

For Questions 15-17, verify that the given matrix and vector follow the eigenvalue equation. Then state the eigenvalue λ .

15.
$$\begin{pmatrix} 1 & 4 \\ 0 & 5 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- a) $\lambda = 1$
- b) $\lambda = 5$
- c) $\lambda = -1$
- d) $\lambda = 4$

16.
$$\begin{pmatrix} 7 & 0 \\ -3 & 4 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

- a) $\lambda = 7$
- b) $\lambda = 10$
- c) $\lambda = 6$
- d) $\lambda = 2$

17.
$$\begin{pmatrix} 7 & -1 \\ 2 & 4 \end{pmatrix}$$
, $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$

- a) $\lambda = 1$
- b) $\lambda = \frac{3}{2}$
- c) $\lambda = -3$
- d) $\lambda = 5$