

Проверил:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	_				
ФАКУЛЬТЕТ	Фундаментальные науки				
КАФЕДРА	Прикладная математика				
Отчёт по лабораторной работе №1 Прямые методы решения систем линейных					
алгебраических уравнений					
Студент:	ΦH2-52Б		Ю. А. Сафронов		
	(Группа)	(Подпись, дата)	(И. О. Фамилия)		

(Подпись, дата)

(И.О. Фамилия)

Оглавление

1.	Краткое описание алгоритмов	3
2.	Исходные данные	4
3.	Результаты расчетов	5
4.	Анализ результатов	6
5.	Контрольные вопросы	7

1. Краткое описание алгоритмов

2. Исходные данные

3. Результаты расчетов

4. Анализ результатов

5. Контрольные вопросы

1. Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

Метод Гаусса применим тогда и только тогда, когда все угловые миноры матрицы \mathcal{A} ненулевые, что равносильно условию $a_{ii}^{(i-1)} \neq 0$ для всех i=1,2,...,n, где $a_{ii}^{(i-1)}$ - элементы матрицы на главной диагонали после приведения ее к ступенчатому виду. Соотвественно, в противном случае метод Гаусса без выбора главного элемента в ходе работы может привести к делению на ноль, при этом матрица может быть и невырождена. Метод Гаусса с выбором главного элемента можно применять для любой невырожденной матрицы. Если матрица будет вырожденной, то в какой-то момент главный элемент будет равен нулю, что недопустимо.

2. Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.

Докажем от противного. Допустим, что возможна такая ситуация, когда при условии $\det \mathcal{A} \neq 0$, существует такой шаг k, для которого, соотвественно, в k-ом столбце все элементы не выше главной диагонали нулевые (на примере матрицы $n \times n$):

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{k1} & \dots & a_{1n-1} & a_{1n} \\ 0 & a_{22} & \dots & a_{k2} & \dots & a_{2n-1} & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & a_{k-1k-1} & a_{k,k-1} & \dots & a_{kn-1} & a_{kn} \\ 0 & 0 & 0 & \dots & a_{k+1n-1} & a_{k+1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & \dots & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & \dots & 0 & \dots & 0 & a_{nn} \end{pmatrix}$$