

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

ОТЧЕТ *К ЛАБОРАТОРНОЙ РАБОТЕ НА ТЕМУ*:

Итерационные методы решения систем линейных алгебраических уравнений Вариант 1

Студент	Φ Н2-51Б	_	Н.О. Акиньшин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-51Б		А.С. Джагарян
	(Группа)	(Подпись, дата)	(И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

Оглавление

L.	Контрольные вопросы																																	3
----	---------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1. Контрольные вопросы

1) Почему условие $\|C\| < 1$ гарантирует сходимость итерационных методов? **Ответ.** Любой одношаговый итерационный метод можно записать в виде

$$B_{k+1} \frac{x^{k+1} - x^k}{\tau_{k+1}} + Ax^k = b, \ k = 0, 1, 2, \dots$$

Из этого вида можно прийти к следующему:

$$x^{k+1} = Cx^k + y \tag{1}$$

Подставив истинное решение x в (1), получим

$$x \equiv Cx + y$$

Тогда, вычитая из (1),

$$x^{k+1} - x = C(x^k - x)$$

Переходя к выражению с нормами

$$||x^{k+1} - x|| = ||C(x^k - x)|| \le ||C|| ||x^k - x|| \le \dots \le ||C||^k ||x_0 - x||$$

Если ||C|| < 1, то последовательность сходится $\{x^k\}_{k=1}^{\infty}$ сходится к x для любого x_0 .

2) Каким следует выбирать итерационный параметр τ в методе простой итерации для увеличения скорости сходимости? Как выбрать начальное приближение x_0 ?

Ответ.

3) На примере системы из двух уравнений с двумя неизвестными дайте геометрическую интерпретацию метода Мкоби, метода Зейделя, метода релаксации.

Ответ. Рассмотрим метод Якоби.

$$\begin{cases} a_{11}x_1^{k+1} + a_{12}x_2^k = b_1, \\ a_{21}x_1^k + a_{22}x_2^{k+1} = b_2, \end{cases}$$
 (2)

Пусть $l_1:a_{11}x_1^{k+1}+a_{12}x_2^k=b_1$, и $l_2:a_{21}x_1^k+a_{22}x_2^{k+1}=b_2$ – прямые, задаваемые уравнениями системы. Точка их пересечения и есть истинное решение системы (2). На рис. 1 видно, что с каждой итерацией точка $x^k=(x_1^k,x_2^k)$ сходится к истинному решению x, причем каждая точка x^k лежит внутри области, ограниченных прямыми. Причем ни одна из итеративных точек не лежит на прямых.

Рис. 1. Графический смысл метода Якоби

Рассмотрим метод Зейделя.

$$\begin{cases} a_{11}x_1^{k+1} + a_{12}x_2^k = b_1, \\ a_{21}x_1^{k+1} + a_{22}x_2^{k+1} = b_2, \end{cases}$$
(3)

Аналогично, принимая за прямые $l_1=a_{11}x_1^{k+1}+a_{12}x_2^k=b_1$ и $l_2=a_{21}x_1^{k+1}+a_{22}x_2^{k+1}=b_2$ за прямые. Изобразим эти прямые на рис. 2. Из рис. 2 видно, что все точки лежат на прямых.

Рис. 2. Графический смысл метода Зейделя

Рассмотрим метод релаксации.

$$\begin{cases}
a_{11}(x_1^{k+1} - x_1^k) = \omega(-a_{11}x_1^k - a_{12}x_2^k + f_1), \\
a_{22}(x_2^{k+1} - x_2^k) = \omega(-a_{21}x_1^k - a_{22}x_2^k + f_2)
\end{cases}$$
(4)

Пусть $\boldsymbol{l_1} = (a_{11}, -a_{12})$ – вектор нормали первой прямой, тогда величина

$$|\omega(-a_{11}x_1^k - a_{12}x_2^k + f_1)| = \omega d_1 ||\boldsymbol{l_1}||,$$

где d_1 – расстояние от (x_1^k, x_2^k) до первой прямой.

4) При каких условиях сходятся метод простой итерации, метод Якоби, метод Зейделя и метод релаксации? Какую матрицу называют положительно определенной?

Ответ.

5) Выпишите матрицу C для методов Зейделя и релаксации.

Ответ. Рассмотрим метод Зейделя. Будем считать, что A = L + D + U, где L – нижнетреугольная матрица, D – диагональная матрица, U – верхнетреугольная матрица. Тогда метод Зейделя можно представить в каноническом виде:

$$(D+L)(x^{k+1}-x^k) + Ax^k = f$$

Из этого вида получаем:

$$C = E - (D+L)^{-1}A$$

Рассмотрим метод релаксации. Метод релаксации можно представить в каноническом виде:

$$(D+L)\frac{x^{k+1}-x^k}{\omega} + Ax^k = f$$

Тогда

$$C = E - \omega (D + L)^{-1} A$$

6) Почему в общем случае для остановки итерационного процесса нельзя использовать критерий $\|x^k - x^{k+1}\| < \varepsilon$?

Ответ.

Какие еще критерии окончания итерационного процесса Вы можете предложить?
 Ответ.