

Tarea 2

30 de agosto de 2023

 2^{0} semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 19:59:59 del 6 de septiembre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

- 1. Sean $P = \{p, q, r, s, t, v\}$ y $\varphi = \neg(p \to q) \lor ((r \lor s) \to (q \lor t)) \lor (\neg p \to \neg v)$ una fórmula en L(P). Encuentre una fórmula ψ en CNF tal que $\varphi \equiv \psi$. Debe demostrar la equivalencia lógica.
- 2. Dado $n \in \mathbb{N}$, sean $P = \{p_1, \dots, p_n, q_1, \dots, q_n\}$ y $\varphi = \bigvee_{i=1}^n (p_i \leftrightarrow q_i)$ una fórmula en L(P). Encuentre una fórmula ψ en DNF tal que $\varphi \equiv \psi$. Debe demostrar la equivalencia lógica.

Problema 2

1. El conectivo ternario M es definido de la siguiente forma:

p	q	r	M(p,q,r)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

¿Es $\{M\}$ funcionalmente completo? Demuestre su respuesta.

- 2. Sean Σ_1 y Σ_2 conjuntos de fórmulas y α, β fórmulas en lógica proposicional. Decida si las siguientes afirmaciones son verdaderas o falsas. En caso de ser verdadera demuestre, y en caso de ser falsa dé un contraejemplo.
 - a) Si $\Sigma_1 \cup \{\beta\} \models \alpha \text{ entonces } \Sigma_1 \models \alpha.$
 - b) Si $\Sigma_1 \models \alpha$ y $\Sigma_2 \models \beta$ entonces $\Sigma_1 \cup \Sigma_2 \models \alpha \wedge \beta$.
 - c) Si $\Sigma_1 \not\models \alpha$ entonces $\Sigma_1 \models \neg \alpha$.
 - d) $\Sigma_1 \models \alpha \rightarrow \beta$ si y sólo si $\Sigma_1 \cup \{\alpha\} \models \beta$.