Chiplet Placement for 2.5D IC with Sequence Pair Based Tree and Thermal Consideration

Hong-Wen Chiou, Jia-Hao Jiang, Yu-Teng Chang, Yu-Min Lee, Chi-Wen Pan

National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Outline

- Abstract
- Introduction
- Preliminary
- Problem formulation
- Chiplet placement with SP-based tree
- Post Chiplet placement (post-cp) with thermal consideration
- Experimental results

Abstract

- This work develops an efficient chiplet placer with thermal consideration for 2.5D ICs
- Combine the way of sequence-pair based tree, branchand-bound method, and advanced
 placement/pruning techniques to find the optimal TWL solution on HPWL fastly
- With the post placement procedure, the placer reduces maximum temperatures with slight increase of wirelength
- Can reduce 1.035% HPWL, and the placer can speed up at most 2 orders
- Can reduce maximum temperature up to 8.214°C with 5.376% increase of TWL on average

Introduction

2.5D ICs (or called interposer-based 3D IC) can provide better performance and yield than 2D ICs

Introduction

- Develop an efficient chiplet placer: SP-CP (Sequence-pair Chiplet placer)
- Build the **sequence pair based tree** (SP-Tree), which contains the rotation and partial/complete SP representation.
- Apply B&B method to get the optimal solution.
- Apply advance placement/pruning techniques for faster runtime
- Apply post placement procedure to reduce the operating temperatures but increase TWL slightly

1. Parallel B&B method for the chiplet placement

To considers the interconnect of chiplets and constructs a complete graph, the weight is calculate by:

$$w(i,j) = n(i,j) \times [w(i) + h(i) + w(j) + h(j)]/2$$

- n(i, j): the # of nets between c(i) and c(j)
- w(i) : the width of c(i)
- h(i) : the height of c(i)
- w(j) : the width of c(j)
- h(j) : the height of c(j)

1. Parallel B&B method for the chiplet placement

Consist of 2 parts:

這篇paper使用OpenMP來對B&B algorithm進行平行處理,並且每當 更新best TWL,他們就會暫停其他 thread來更新值以確保效率。

(a) branching part

Apply DFS to traverse the SP-Tree, and add a chiplet at a time. The paper will generate 4 new nodes for the partial SP node and n_k^2 new nodes for the rotational nodes.

(b) bounding(pruning) part

we prune the nodes which do not meet placement constraints, the nodes with estimated HPWL larger than the current best TWL, and the nodes which do not satisfy the A1 algorithm.

2. Placement optimization with whitespace

2. Placement optimization with whitespace

<法一>

把所有chiplets都看做為一個virtual chiplet,並且移動這個virtual chiplet以此來最小化terminal connections。接著會移動其中一個chiplet以此來最小化HPWL。以上的步驟會一直做,直到TWL沒有再變好了。

<法二>

固定一個chiplet,並將其他chiplets看作為**virtual chiplet**,並且移動這些virtual chiplet來最小化TWL with terminal net。接著會固定其他的一個chiplet並重複步驟,直到TWL沒有再變好了。

<法三>

固定**兩個**chiplet,並將其他chiplets看作為**virtual chiplet**,並且移動這些virtual chiplet來最小化TWL with terminal net。接著會固定其他的兩個chiplet並重複步驟,直到TWL沒有再變好了。

3. Terminal Handling (TH)

Minimal HPWL between die and related terminals

• When a chiplet is added to a partial placement, we looks forward to predicting WL augmentation from its terminal nets (use the way of "placement optimization of whhitespace")

Total 4 TH values because of the rotation

4. Forward Wirelength Checking (FC)

minimal HPWL between two dies

• calculates the minimum WL for each chiplet pair with the nets only connected between them (use the way of "placement optimization of whitespace")

total 64 TH values because of the rotation + topology

5. Sequence-pair Representation Methods

- $(\dots i \dots j \dots , \dots i \dots j \dots) \rightarrow C(i)$ is on the left side of C(j)
- $(... j ... i ..., ... j ... i ...) \rightarrow C(i)$ is on the right side of C(j)
- $(\dots i \dots j \dots , \dots j \dots i \dots) \rightarrow C(i)$ is under of C(j)
- $(\dots j \dots i \dots j \dots j \dots) \rightarrow C(i)$ is above of C(j)

Problem formulation

1. Optimize HPWL

$$min \sum_{num \ of \ nets}^{k} HPWL_{k}$$

- ullet Placement Consraint : $0 \leq x_{l,i}, x_{r,i} \leq W$; $0 \leq y_{l,i}, y_{r,i} \leq H$
- HPWL = $(x_{r,i} x_{l,j}) + (y_{t,i} y_{b,j})$
- Minimun distance between chiplets : $w_s \leqq min~\{~|x_{l,i}-x_{r,j}|,|x_{l,j}-x_{r,i}|,|x_{b,i}-x_{t,j}|,|x_{b,j}-x_{t,i}|~\}$

Problem formulation

2. Optimize maximum temperature

• We have found the optimal HPWL (TWL_{opt}), and this step we the goal is to satisfy the thermal constraint T_{cstr} , and satisfy the constraint of $\frac{TWL_{mod}}{TWL_{OPT}} < \eta\%$

$$cost = \phi \times \frac{\text{TWL} - \text{TWL}^{opt}}{\text{TWL}^{max} - \text{TWL}^{opt}} + (1 - \phi) \times \frac{T_{max} - T_{max}^{min}}{T_{max}^{max} - T_{max}^{min}}$$

Complete SP w/ 3 chiplets: (312, 312) (312, 132) (312, 123) (132, 312) (132, 132) (132, 123) (123, 312) (123, 132) (123, 123)

Figure 3: Sequence pair based tree.

1. Some of topology nodes in CSP-Tree might not be packed into a placement.

E.g.

- (a) chiplet B (cB) is at the left of chiplet A (cA)
- (b) chiplet C (cC) is at the right of chiplet A (cA)
- (c) chiplet C (Cc) is at the left of chiplet B (cB)

B-1(1)->C

-> form a cyclic horizontal constraint graph

2. one SP representation might cover multiple topology nodes in CSP-Tree

3. CSP-Tree has higher complexity

The solution spaces of CSP-Tree and SP-Tree for n chiplets are $4^n \times 4^{n(n-1)/2}$ and $4^n \times (n!)^2$, respectively, and $\forall n > 2, 4^{n(n-1)/2} > (n!)^2$. For instance, as the chiplet number n is 11, the solution spaces of CSP-Tree are about 5.44×10^{39} which is much larger than the solution spaces of SP-Tree which are 6.68×10^{21} .

- (a) 可以預先計算SP-Tree的Remaining distance (RD) : minimal HPWL for yet unassigned dies Remaining distance的意思是我們可以對尚未擺放的chiplets進行HPWL的估算。
- (i) 若是一個Partial SP node:

若有K個placed chiplets at the partial SP node,那node的RD可以利用以下進行計算:

- (1) For TH 會有 (n-k) 個 rotations
- (2) For FC 會有 $\frac{n \times (n-1)}{2} \frac{k \times (k-1)}{2}$ 個 topologies

(i) 若是一個rotational node:

若有K個placed chiplets at the rotational node,那node的RD可以利用以下進行計算:

- (1) For TH 會有 (n-k-1) 個 rotations
- (2) For FC 會有 $\frac{n\times(n-1)}{2}-\frac{(k-1)\times(k-2)}{2}$ 個 topologies

SP-CP在計算RD時,會選擇 最小的TH value (共有4個值)

另外也需要**最小的FC值**,但是需要64個值來進行計算。如果知道**其中一個**chiplet的rotation的值,可以降到16個值;如果知道**兩個**chiplet的rotation的值,可以降到4個值。

(i) for rotational node

 $esimated \ HPWL = TWL_{par,c2} +$ 現在node的TH + RD (the minimun value of c2 and c3)

(ii) for partial SP node

esimated HPWL = $TWL_{par,c2}$ + RD (the minimun value of c3)

Rotation node

Estimated HPWL: TWL_{par, c_2} + TH_{c_3} + RD_{level5} 24+7+6=37 > 36 \rightarrow unpromising

Partial SP node

Estimated HPWL:TWL_{par, c_2} + RD_{level4} 24+9=33 < 36 \rightarrow promising

• **PDSP**: when the estimated HPWL is larger than bestTWL, then will prune the

amount of
$$\frac{\text{bestTWL}}{n_k+1}$$
 nodes

• PDSP&A1: while a partial SP node in SP-Tree represents multiple topology

relationships, the paper will prune the amount of
$$\gamma[i] \times \frac{\text{bestTWL}}{n_k+1}$$
 topology nodes

E.g.

We inserting C3 into partial SP (12, 12), and we assume (312, 312) have the minimum estimated HPWL at the same level. we compare the topology of C3 with C1, and the topology of C3with C2:

```
1) (··3··1··,··3··1··)(··3··1··,··1··3··) the topology of c<sub>3</sub> and c<sub>1</sub> is different. ⇒ this case contributes 1 to α[1].
2) (··3··2··,··3··2··)(··3··2··,··1··2··) the topology of c<sub>3</sub> and c<sub>2</sub> is the same. ⇒ this case contributes 0 to α[1].
Here, α[1] = 1 + 0 = 1.
```

```
Algorithm 1 Modified coefficient γ on the same level of partial SP
Input: integer array [1, 2, ..., n^2] IP_1, IP_2
          float array [1, 2, ..., n^2] TWL
Output: float array [1, 2, ..., n^2] \gamma
 1: integer array [1, 2, ..., n^2] \alpha
 2: IP_{1min} = |\min(IP_1)|;
 3: IP_{2min} = |\min(IP_2)|;
 4: n = n_k;
 5: for each i \in [1, n^2] do
 6: IP_{qap}[i] = IP_1[i] - IP_2[i]
 7: IP_{qap\ min} = IP_{1\ min} - IP_{2\ min}
     \alpha[i] = (|IP_1[i] - IP_{1 min}| + |IP_2[i] - IP_{2 min}| + |IP_{qap}[i] -
       IP_{qap\ min}|)/2;
 9: end for
10: for each i \in [1, n^2] do
11: \gamma[i] = 1 - \frac{\alpha[i]}{n_k};
```

12: end for

1. Chip thermal simulation:

$$GT = P$$

G: thermal conductance matrix

T: thermal vector

P : power source vector

To model a 2.5D IC, 5 layers should be included:

- (a) The mesh size is $64\times64\times5$
- (b) The heat transfer coefficient for top/bottom side of the 2.5D IC is 8700/2017 W/ m^2K
- (c) It is adiabatic for the literal sides of 2.5D IC
- (d) Above condition model the primary heat flow to heat sink and secondary heat flow to PCB
- (e) Solve T with the sparse matrix solver, SuperLU 5.3.0

2. Placement refinement with thermal effects

↑ Move one chiplet at a time

↑ Move all chiplet toward the center

- 1) Calculate T_{max} and its position of a given placement by using the simulation in Section 6.1.
- 2) Define and calculate the thermal gain of each c_i , $g_i = T_{\max,i}/P_i$, $i=1 \sim n$. P_i is the power of c_i and $T_{\max} = \sum_{i=1}^n g_i P_i$.
- 3) Partially differentiate $T_{\max,d} = \sum_{i=1}^{n} d_i g_i P_i / (d_i + \Delta d_i)$ on each Δd_i and have $\delta T_i = -g_i P_i / d_i$. Here, d_i is the distance between c_i and the position of T_{\max} .
- 4) Calculate the increasing HPWL per unit moving length of c_i to be $\delta W_i = (|\cos \theta_i| + |\sin \theta_i|) * (\#net_i)$.
- 5) Calculate $\delta T_i/\delta W_i$ for each c_i and choose c_m having the lowest value.

- 6) Calculate $\Delta d_{m,\max}$ to be $(T_{\max} T_{cstr}) \div (g_i P_i/d_i)$.
- 7) Move c_m away from the point of T_{max} with a suitable distance $\Delta d_m \leq \Delta d_{m,\text{max}}$.
- 8) Renew the position and value of T_{max} .
- 9) Move all chiplets simultaneously along the direction of interposer center from the position of T_{max} , and the displacement is r% of the distance between the position of T_{max} and the interposer center (the default value of r is 1).
- 10) Repeat the above steps iteratively until the temperature meets the thermal threshold, or the chiplet cannot be moved.

- C++ language with compiler gcc 8.3.1
- Execute on linux workstation
- CPU: Intex Xeon E5-2620 v4 with 8 cores at 2.10 GHz
- Benchmarks:
 - (1) Interposer-based chiplets case with 4, 6, 8 chiplets (t4/t6/t8)
 - (2) MCNC benchmarks with 9, 10, 11 chiplets (apte/xeron/hp)
 - (3) Modified MCNC benchmarks for practical 2.5D IC within whitespace from 5%~20%

	Chiplets	Pins	Nets	Terminals	[8]			SP-CI	2	Comparison		
Case						Time		w/ PDSP	w/ PDSP & A1	TWL	w/ PDSP	w/ PDSP & A1
					TWL		TWL	Time	Time	Diff.	Speedup	Speedup
					(m)	(s)	(m)	(s)	(s)	(%)	(×)	(×)
t4_s	4	15611	1808	789	10.87000	0.263	10.87000	0.127	0.123	0.000	2.071	2.138
t4_m	4	91005	5326	1174	38.14000	0.577	38.14000	0.226	0.214	0.000	2.553	2.696
t4_b	4	223781	12265	1033	58.92000	1.180	58.92000	0.411	0.396	0.000	2.871	2.980
t6_s	6	20138	1720	639	9.01000	0.366	9.01000	0.122	0.098	0.000	3.000	4.572
t6_m	6	121935	7123	1162	33.77000	1.791	33.77000	0.439	0.392	0.000	4.080	4.572
t6_b	6	229228	14264	1192	62.71000	2.470	62.71000	0.945	0.886	0.000	2.614	2.788
t8_s	8	18689	1918	882	23.51000	1.341	23.51000	0.192	0.165	0.000	6.984	8.127
t8_m	8	159149	8391	1391	36.39000	2.058	36.39000	0.711	0.683	0.000	2.895	3.013
t8_b	8	306057	12593	1049	66.61000	12.116	66.61000	1.094	0.933	0.000	11.075	12.986
apte_scaled20	9	287	97	73	0.37701	17.620	0.37704	9.782	8.501	0.008	1.801	2.073
apte_scaled15	9	287	97	73	0.37320	14.087	0.37265	9.559	8.457	-0.147	1.474	1.666
apte_scaled10	9	287	97	73	0.36630	12.192	0.36551	9.430	6.963	-0.216	1.293	1.751
apte_scaled5	9	287	97	73	0.37526	31.774	0.37526	6.299	5.270	0.000	5.044	6.029
xerox_scaled20	10	698	203	2	0.36399	22881.822	0.36398	220.391	146.051	-0.003	103.824	156.670
xerox_scaled15	10	698	203	2	0.37876	4634.995	0.37861	111.165	88.330	-0.040	41.695	52.474
xerox_scaled10	10	698	203	2	0.41998	3685.743	0.41830	101.963	65.245	-0.400	36.148	56.491
xerox_scaled5	10	698	203	2	0.43747	1853.318	0.43747	64.173	50.623	0.000	28.880	36.610
hp_scaled20	11	309	83	45	0.14002	17.315	0.13992	10.044	9.524	-0.071	1.724	1.818
hp_scaled15	11	309	83	45	0.14342	9.649	0.14194	2.851	2.580	-1.035	3.384	3.740
hp_scaled10	11	309	83	45	0.14377	5.140	0.14295	1.729	1.641	-0.570	2.974	3.132
hp_scaled5	11	309	83	45	0.16401	4718.180	0.16401	930.729	836.377	0.000	5.069	5.641
apte	9	287	97	73	0.43751	1397.697	0.43751	323.930	186.660	0.000	4.315	7.488
xerox	10	698	203	2	0.36587	>12hr	0.36430	34994.700	22187.000	-0.430	NA	NA
hp	11	309	83	45	0.15026	14281.288	0.15014	438.440	348.699	-0.080	32.573	40.956
Avg.										-0.124	13.406	18.242

```
w_{space} = 0.1 \, mm T_{cstr} = 85^{\circ}C

\eta = 10

\Phi = 0.5
```

		SP-CP		SP-CP & Post-CP							
Case	TWL	Max. Temp.	Time	TWL	Max. Temp.	Time	Increasing TWL	Max. Temp. Reduction	Runtime Overhead		
Case	(m)	(℃)	(s)	(m)	(℃)	(s)	(%)	(°C)	(s)		
apte_scaled30	0.40872	92.669	17.504	0.42707	84.455	75.605	4.490	8.214	58.101		
apte_scaled25	0.40213	91.889	15.803	0.43193	84.979	87.846	7.411	6.910	72.043		
apte_scaled20	0.39267	99.579	9.782	0.41887	94.562	83.610	6.672	5.017	73.828		
apte_scaled15	0.41692	95.123	43.177	0.43818	91.556	88.489	5.099	3.567	45.312		
xerox_scaled30	0.40664	88.631	149.792	0.42894	83.603	184.882	5.484	5.028	35.090		
xerox_scaled25	0.42087	89.632	71.292	0.45233	84.673	187.037	7.475	4.959	115.745		
xerox_scaled20	0.48135	87.810	192.405	0.50846	84.091	220.035	5.632	3.719	27.630		
xerox_scaled15	0.51508	86.778	334.773	0.56097	84.918	344.944	8.909	1.860	10.171		
hp_scaled30	0.16144	86.284	10.252	0.16362	84.773	23.564	1.350	1.511	13.312		
hp_scaled25	0.19377	85.050	265.859	0.19617	84.584	320.769	1.239	0.466	54.910		
Avg.							5.376	4.125	50.614		

Thank you for listening