Math 550 Homework 10

Dr. Fuller
Due November 13

1. For a vector field $X = (f_x, f_y)$ on \mathbf{R}^2 , we may define an associated 1-form, different from the one in class, by

$$\star \omega_X^1 = -f_y \, dx + f_x \, dy.$$

We may also define

$$\operatorname{div} X = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}.$$

- (a) Let M be a compact 2-dimensional manifold with boundary in \mathbb{R}^2 . Show that for all points $p \in \partial M$, the equation $\star \omega_X^1 = X \cdot n \ ds$ holds.
- (b) Prove the following *Divergence form of Green's Theorem:* Let M be a compact 2-dimensional manifold-with-boundary in \mathbb{R}^2 , and let X be a vector field on M. Then

$$\int_{M} \operatorname{div} X \ dA = \int_{\partial M} X \cdot n \ ds.$$

2. Let M be a compact 3-dimensional manifold-with-boundary in \mathbf{R}^3 , with $(0,0,0) \in M - \partial M$. Consider the vector field $X(p) = \frac{p}{\|p\|^3}$ defined on $\mathbf{R}^3 - \{(0,0,0)\}$. Prove that

$$\int_{\partial M} X \cdot N \ dA = 4\pi.$$

- 3. (a) Show that if X is a vector field on \mathbb{R}^3 with curl X = 0, then X = grad f for some function $f : \mathbb{R}^3 \to \mathbb{R}$.
 - (b) Show that if X is a vector field on \mathbb{R}^3 with div X = 0, then X = curl Y for some vector field Y on \mathbb{R}^3 .
- 4. Let $\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$ be a 1-form on $\mathbb{R}^2 \{(0,0)\}$. Prove that ω does not extend to a 1-form on \mathbb{R}^2 .