Aligning Subjective and Objective Assessments in Super-Resolution Models

Muhammad Hamza Zafar · Jon Y. Hardeberg

Introduction

- Super-resolution (SR) enhances image details
- Objective metrics dominate (e.g., PSNR, SSIM)
- Need: Incorporate human perceptual assessments

Motivation

- Why evaluate SR models beyond PSNR/SSIM?
- Problem: Objective metrics ≠ Human perception
- Visual: A high-PSNR image with poor perceptual quality
- Despite high **PSNR of 27.92** and **SSIM of 0.940**, the reconstructed image (center) appears **lacks perceptual sharpness**.
- LPIPS = 0.047 also indicates high perceptual similarity
- Traditional metrics like PSNR and SSIM can be misleading when evaluating perceptual quality in super-resolution.

Evaluated Models

- 4 SR models:
 - ResShift, Real-ESRGAN, BSRGAN, SwinIR
- Some models report only a subset of objective metrics, which can mislead comparisons.
 - For example, BSRGAN omits SSIM, while ResShift includes LPIPS, SSIM, PSNR, and even CLIPIQA.
 - Fair evaluation requires consistent reporting across metrics.
- ResShift (Diffusion-based) Claims SOTA
- Critical Missing Piece
 - No subjective evaluation for these models
 - Limited understanding of human preferences
 - Objective-subjective alignment unclear

Model	Year	Architecture	Objective Metrics	Subjective Assessment
ResShift	2023	Diffusion-based	PSNR, SSIM, LPIPS, CLIPIQA, MUSIQ	None
Real-ESRGAN	2021	GAN-based	PSNR, SSIM, LPIPS	None
BSRGAN	2021	GAN-based	PSNR, LPIPS	None
SwinIR	2021	Transformer-based	PSNR, SSIM, LPIPS	None

Dataset: DIV2K

- Standard benchmark used in super-resolution challenges
- High-quality, diverse 2K resolution images across various content types
- Low-resolution and high-resolution image pairs created using bicubic x8 and x2 downscaling
- Resolution details:
 - Low-resolution (LR): 255 × 169
 - High-resolution (HR): 1020 × 676 (4× upsampled)

Dataset Visualization: Low Res vs High Res

Setup

- No additional preprocessing.
- Setup follows official benchmark protocol
- Used in both objective and subjective evaluations:
 - 30 images for the online single-choice study
 - 10 images for the controlled lab pairwise comparison
 - Subset of the above 30 images.

30 images for the online single-choice study

10 images for the controlled lab pairwise comparison

Objective Evaluation

- Metrics: PSNR, SSIM, LPIPS, CLIPIQA on 30 DIV2K Images
- ResShift leads in 4/4 metrics
- BSRGAN shows strong pixel-level performance with second-highest PSNR
- RealESRGAN underperforms across most metrics despite being widely used
- SwinIR surprisingly lags in this comparison

Performance Metrics (DIV2K)

Model	PSNR ↑	SSIM ↑	LPIPS \	CLIPIQA ↑
ResShift	24.65	0.723	0.136	0.986
BSRGAN	24.35	0.703	0.172	0.977
SwinIR	23.85	0.705	0.164	0.968
Real-ESRGAN	23.73	0.697	0.169	0.972

Experiment 1 – Online Setup

- Total Images: 30
- Estimated Time: 15 minutes
- Low-Resolution Image:
 - Size: 255×169 pixels
 - Position: Center of the screen
- High-Resolution Images:
 - · Quantity: 4
 - Size: 1020×676 pixels each
 - Display: Surrounding the low-resolution image
- Choose the best HR image from randomized comparisons.

EXPERIMENT 1 SETUP

Experiment 1 – Results

- Subjective Results:
 - What Humans Actually Prefer
- 134 participants
- 54 completed
- ResShift dominant
 - ResShift: 624 selections 🛠
 - SwinIR: 377 selections
 - Real-ESRGAN: 351 selections
 - BSRGAN: 268 selections

Table 3: Model Preference Results.

Model	Count
ResShift	624
SwinIR	377
Real-ESRGAN	351
BSRGAN	268

Experiment 1 – Results

Image 1: Age Distribution (18-50)

- Participant demographics: Heavily skewed toward younger a dults
- Peak at 24-25 years: 29 and 16 participants respectively (majority of sample)
- Limited older representation: Only 3 participants over 35, which could be a limitation

Image 2: Age vs. Algorithm Preference (Age < 30)

- ResShift dominance: Consistently highest preference across ALL age groups from 18-28
- Interesting insight: ResShift is not the highest picked among 19 & 21 year old
- SwinIR as second choice: Generally second-most preferred across age groups

Image 3: Word Cloud - Reasons for Selection

- Most prominent terms (by size):
- "detail" Largest term, indicates primary selection criterion
- "artifact" Second largest, shows participants actively avoided visual artifacts

Im age 4: Word Cloud - General Feedback

- "generated", "detail" Fo cus on output quality
- "quality", "resolution" Technical assessment terms

Overall Analysis:

- Consistent preferences: ResShift dominance holds a cross all demographics
- Quality-focus ed s election: Participants prioritized detail preservation and artifact avoidance

Experiment 2 – Lab Study

- Pairwise comparisons, 10 images, 60 pairs per person
- BenQ calibrated monitor, sRGB, D65, 80 cd/m²
- Estimated Time: 15 minutes

Table 4: Model selections during Experiment 2.

Model	Selections	
ResShift	309	
RealESRGAN	228	
SwinIR	220	
BSRGAN	143	

Table 5: Ability estimates for SR models using Bradley-Terry and Thurstone methods.

Model	Bradley-Terry Score	Thurstone Score
ResShift	1.170	0.596
RealESRGAN	2.546	0.023
SwinIR	-1.996	-0.036
BSRGAN	-1.720	-0.583

Experiment 2 – Results

- 900 pairwise votes, 15 observers
- ResShift dominant again
- Chi-square test (p < 0.0001) Results are not due to random chance
- Bradley-Terry Scores:
 ResShift 1.170 (highest ability to be preferred)
- Multiple statistical methods confirm ResShift's superiority

Unified Comparison

- ResShift claims validated: Both objective metrics AND human preferences confirm SOTA status
- Cross-study consistency: Online (54 participants) and lab (15 observers) show identical model rankings
- BSRGAN:
 - Objective-subjective disconnect:
 2nd best PSNR but worst human preference
- Traditional metrics misleading: High PSNR ≠ Visual quality

(a) Objective Metrics Results on DIV Dataset.

(c) Experiment 1 Results.

(b) Objective Metrics Results from Paper.

(d) Experiment 2 Results.

Key Insights & Discussion

- Objective ≠ Perceptual always
- ResShift = technically & perceptually strong
- BSRGAN = objectively good, subjectively bad
- Hybrid evaluation is necessary for real-world quality
- Both studies show identical model rankings, validating the robustness of human preferences for ResShift's superior perceptual quality.
- The numbers above bars show selections from Exp1 (top) and Exp2 (bottom).

Limitations

- Only 4 models, DIV2K only
- No novel metric proposed
- Small lab (Exp 2) dataset (10 images)
- Still, robust reproducible framework

Conclusion & Future Work

- ResShift sets a new standard in perceptual SR
- Need larger and more diverse datasets
- Explore joint metric-subjective learning for SR
- Push toward human-centric model evaluation

Project Page

Contact

References

1.ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting Authors: Zongsheng Yue, Jianyi Wang, Chen Change Loy

URL: https://github.com/zsyOAOA/ResShift

2.Real-ESRGAN: Real-Enhanced Super-Resolution Generative Adversarial Networks Authors: Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy URL: https://github.com/xinntao/Real-ESRGAN

3.BSRGAN: Blind Super-Resolution Generative Adversarial Networks

Authors: Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy

URL: https://github.com/cszn/BSRGAN

4. Swin IR: Image Restoration Using Swin Transformer

Authors: Jingyun Liang, Yiming Ma, Chengjie Wang, Bineng Zhong, Dong Wang

URL: https://github.com/JingyunLiang/SwinlR

5. Agustsson, E., & Timofte, R. (2017). *NTIRE 2017 Challenge on Single Image Super-Resolution:* Dataset and Study. In CVPR Workshops.

Thank You

- Repo: <u>https://github.com/hamzafer/super-resolution-color</u>
- muhamhz@ntnu.no
- https://www.linkedin.com/in/ihamzafer/
- Open for questions ©