Chapter 6 part 2 Jointly Distributed Random Variables

Jingchen (Monika) Hu

Vassar College

MATH 241

Outline

- Sums of independent random variables
- Conditional distributions: discrete case
- 3 Conditional distributions: continuous case

Outline

- Sums of independent random variables
- Conditional distributions: discrete case
- Conditional distributions: continuous case

Sums of continuous random variables

If X,Y have a joint density f(x,y), then X+Y has the following density

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$
$$= \int_{-\infty}^{\infty} f(z - y, y) dy$$

Sums of continuous random variables

If X,Y have a joint density f(x,y), then X+Y has the following density

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$
$$= \int_{-\infty}^{\infty} f(z - y, y) dy$$

If X and Y are independent, we can use the convolution formula

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$
$$= \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

Sums of continuous random variables

If X,Y have a joint density f(x,y), then X+Y has the following density

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$
$$= \int_{-\infty}^{\infty} f(z - y, y) dy$$

If X and Y are independent, we can use the convolution formula

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$
$$= \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

Cdf F_{X+Y} is called the *convolution* of the distributions F_X and F_Y .

$$F_{X+Y}(z) = \iint_{x+y \le z} f_{X,Y}(x,y) \ dy \ dx$$

$$F_{X+Y}(z) = \iint_{x+y \le z} f_{X,Y}(x,y) \ dy \ dx$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \ dy \ dx$$

$$F_{X+Y}(z) = \iint_{x+y \le z} f_{X,Y}(x,y) \ dy \ dx$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \ dy \ dx$$
$$f_{X+Y}(z) = \frac{d}{dz} F_{X+Y}(z)$$

$$F_{X+Y}(z) = \iint_{x+y \le z} f_{X,Y}(x,y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \, dy \, dx$$

$$f_{X+Y}(z) = \frac{d}{dz} F_{X+Y}(z)$$

$$= \int_{-\infty}^{\infty} \left\{ \frac{d}{dz} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \, dy \right\} \, dx$$

$$F_{X+Y}(z) = \iint_{x+y \le z} f_{X,Y}(x,y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \, dy \, dx$$

$$f_{X+Y}(z) = \frac{d}{dz} F_{X+Y}(z)$$

$$= \int_{-\infty}^{\infty} \left\{ \frac{d}{dz} \int_{-\infty}^{z-x} f_{X,Y}(x,y) \, dy \right\} \, dx$$

$$= \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) \, dx$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of X + Y is (0, 2).

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of X+Y is (0,2). For any $0 < z \le 1$,

Let X and Y have independent Unif(0,1) distribution. Find pdf of X+Y.

Range of
$$X+Y$$
 is $(0,2)$. For any $0< z \leq 1$,
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of
$$X+Y$$
 is $(0,2)$.
For any $0< z \leq 1$,
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

$$= \int_0^z 1 \ dx$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of
$$X+Y$$
 is $(0,2)$.
For any $0< z \leq 1$,
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

$$= \int_0^z 1 \ dx = z$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of
$$X+Y$$
 is $(0,2)$.
For any $0< z \leq 1$,
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

$$= \int_0^z 1 \ dx = z$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of X+Y is (0,2). For any $0< z \leq 1$, $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$ $= \int_0^z 1 \ dx = z$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of
$$X+Y$$
 is $(0,2)$.
For any $0< z \leq 1$,
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

$$= \int_0^z 1 \ dx = z$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) \ dx$$
$$= \int_{z-1}^{1} 1 \ dx$$

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of
$$X+Y$$
 is $(0,2)$.
For any $0< z \leq 1$,
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

$$= \int_0^z 1 \ dx = z$$

For any
$$1 < z < 2$$
,

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$
$$= \int_{z-1}^{1} 1 dx = 2 - z$$

Sum of two independent Uniforms: Triangular distribution

Let X and Y have independent $\mathsf{Unif}(0,1)$ distribution. Find pdf of X+Y.

Range of X + Y is (0, 2). For any $0 < z \le 1$,

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$
$$= \int_{0}^{z} 1 dx = z$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$
$$= \int_{z-1}^{1} 1 dx = 2 - z$$

Sum of two independent Uniforms: Triangular distribution

Let X and Y have independent Unif(0,1) distribution. Find pdf of X+Y.

Range of X + Y is (0, 2). For any $0 < z \le 1$,

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$
$$= \int_{0}^{z} 1 dx = z$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

$$= \begin{cases} z & \text{if } 0 < z \le 1 \\ 2-z & \text{if } 1 < z < 2 \end{cases}$$

$$= \int_{z-1}^{1} 1 \ dx = 2-z$$

Random variables \boldsymbol{X} and \boldsymbol{Y} are independent, then

X	Y	X + Y
$N(\mu_1,\sigma_1^2)$	$N(\mu_2,\sigma_2^2)$	
$Poi(\lambda_1)$	$Poi(\lambda_2)$	
$Bin(n_1,p)$	$Bin(n_2,p)$	

Random variables X and Y are independent, then

X	Y	X + Y
$N(\mu_1,\sigma_1^2)$	$N(\mu_2,\sigma_2^2)$	$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
$Poi(\lambda_1)$	$Poi(\lambda_2)$	
$Bin(n_1,p)$	$Bin(n_2,p)$	

Random variables X and Y are independent, then

X	Y	X + Y
$N(\mu_1,\sigma_1^2)$	$N(\mu_2,\sigma_2^2)$	$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
$Poi(\lambda_1)$	$Poi(\lambda_2)$	
$Bin(n_1,p)$	$Bin(n_2,p)$	

Random variables \boldsymbol{X} and \boldsymbol{Y} are independent, then

X	Y	X + Y
$N(\mu_1,\sigma_1^2)$	$N(\mu_2,\sigma_2^2)$	$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
$Poi(\lambda_1)$	$Poi(\lambda_2)$	$Poi(\lambda_1 + \lambda_2)$
$Bin(n_1,p)$	$Bin(n_2,p)$	

Random variables \boldsymbol{X} and \boldsymbol{Y} are independent, then

X	Y	X + Y
$N(\mu_1,\sigma_1^2)$	$N(\mu_2,\sigma_2^2)$	$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
$Poi(\lambda_1)$	$Poi(\lambda_2)$	$Poi(\lambda_1 + \lambda_2)$
$Bin(n_1,p)$	$Bin(n_2,p)$	$Bin(n_1+n_2,p)$

Recap

Random variables X and Y are independent if any real sets $A,B\subset\mathbb{R}$,

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Random variables X and Y are independent if and only if

• Cdf: for any $x, y \in \mathbb{R}$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

• For any $x,y \in \mathbb{R}$, the pmf / pdf

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Recap

Random variables X and Y are independent if any real sets $A, B \subset \mathbb{R}$,

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Random variables X and Y are independent if and only if

• Cdf: for any $x, y \in \mathbb{R}$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

• For any $x, y \in \mathbb{R}$, the pmf / pdf

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

If X and Y are independent continuous random variables, then

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$$

Outline

- Sums of independent random variables
- Conditional distributions: discrete case
- Conditional distributions: continuous case

ullet Recall that for any two events E and F, the conditional probability of E given F is defined by

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

provided that P(F) > 0.

ullet Recall that for any two events E and F, the conditional probability of E given F is defined by

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

provided that P(F) > 0.

• If X and Y are discrete random variables, we define the conditional probability mass function (pmf) of X given Y=y by

$$p_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{P\{X = x, Y = y\}}{P\{Y = y\}} = \frac{p(x,y)}{p_Y(y)}$$

for all values of y such that $p_Y(y) > 0$.

 Similarly for the conditional probability density function (cdf), we define it by

$$F_{X|Y}(x|y) = P\{X \le x | Y \le y\} = \sum_{x \le a} p_{X|Y}(a|y)$$

 Similarly for the conditional probability density function (cdf), we define it by

$$F_{X|Y}(x|y) = P\{X \le x | Y \le y\} = \sum_{x \le a} p_{X|Y}(a|y)$$

• If X is independent of Y, then

$$\begin{array}{rcl} p_{X|Y}(x|y) & = & P\{X=x|Y=y\} \\ & = & \frac{P\{X=x,Y=y\}}{P\{Y=y\}} \\ & = & \frac{P\{X=x\}P\{Y=y\}}{P\{Y=y\}} \\ & = & P\{X=x\} \end{array}$$

Suppose $p(x_1, x_2)$ is the joint pmf of X_1 and X_2 , then

•
$$p(0,0) = \frac{\binom{11}{3}\binom{2}{0}}{\binom{13}{3}} = \frac{15}{26}$$
, $p(1,1) = \frac{\binom{11}{1}\binom{2}{2}}{\binom{13}{3}} = \frac{1}{26}$, $p(0,1) = p(1,0) = \frac{\binom{11}{2}\binom{1}{1}}{\binom{13}{3}} = \frac{5}{26}$

Suppose $p(x_1, x_2)$ is the joint pmf of X_1 and X_2 , then

•
$$p(0,0) = \frac{\binom{11}{3}\binom{2}{0}}{\binom{13}{3}} = \frac{15}{26}, \ p(1,1) = \frac{\binom{11}{1}\binom{2}{2}}{\binom{13}{3}} = \frac{1}{26},$$

 $p(0,1) = p(1,0) = \frac{\binom{11}{2}\binom{1}{1}}{\binom{13}{3}} = \frac{5}{26}$

$$\bullet$$
 Part (1): $p_{X_2}(1) = \sum_{x_1} p(x_1,1) = p(0,1) + p(1,1) = \frac{6}{26}$
$$p_{X_1|X_2}(0,1) = \frac{p(0,1)}{p_{X_2}(1)} = \frac{5}{6}, p_{X_1|X_2}(1,1) = \frac{p(1,1)}{p_{X_2}(1)} = \frac{1}{6}$$

Suppose $p(x_1, x_2)$ is the joint pmf of X_1 and X_2 , then

•
$$p(0,0) = \frac{\binom{11}{3}\binom{2}{0}}{\binom{13}{3}} = \frac{15}{26}, \ p(1,1) = \frac{\binom{11}{1}\binom{2}{2}}{\binom{13}{3}} = \frac{1}{26},$$

 $p(0,1) = p(1,0) = \frac{\binom{11}{2}\binom{1}{1}}{\binom{13}{3}} = \frac{5}{26}$

- Part (1): $p_{X_2}(1) = \sum_{x_1} p(x_1, 1) = p(0, 1) + p(1, 1) = \frac{6}{26}$ $p_{X_1|X_2}(0, 1) = \frac{p(0, 1)}{p_{X_2}(1)} = \frac{5}{6}, p_{X_1|X_2}(1, 1) = \frac{p(1, 1)}{p_{X_2}(1)} = \frac{1}{6}$
- Part (2): $p_{X_2}(0) = \sum_{x_1} p(x_1, 0) = p(0, 0) + p(1, 0) = \frac{20}{26}$ $p_{X_1|X_2}(0, 0) = \frac{p(0, 0)}{p_{X_2}(0)} = \frac{15}{20} = \frac{3}{4}, p_{X_1|X_2}(1, 0) = \frac{p(1, 0)}{p_{X_2}(0)} = \frac{5}{20} = \frac{1}{4}$

Outline

- Sums of independent random variables
- 2 Conditional distributions: discrete case
- Conditional distributions: continuous case

• With joint probability function of X and Y as f(x,y), the conditional pdf of X given that Y=y (for $f_Y(y)>0$) is defined by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

note that the event $\{Y=y\}$ has probability 0; we just use it for conditioning.

• With joint probability function of X and Y as f(x,y), the conditional pdf of X given that Y=y (for $f_Y(y)>0$) is defined by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

note that the event $\{Y=y\}$ has probability 0; we just use it for conditioning.

ullet If X and Y are jointly continuous, then for any set A

$$P\{X \in A|Y = y\} = \int_A f_{X|Y}(x|y)dx$$

This is defining conditional probabilities of events associated with one random variable when we are given the value of a second random variable.

 \bullet By setting $A=(-\infty,a),$ we can define the cdf of X given that Y=y by

$$F_{X|Y}(a|y) = P\{X \le a|Y = y\} = \int_{-\infty}^{a} f_{X|Y}(x|y)dx$$

 \bullet By setting $A=(-\infty,a),$ we can define the cdf of X given that Y=y by

$$F_{X|Y}(a|y) = P\{X \le a|Y = y\} = \int_{-\infty}^{a} f_{X|Y}(x|y)dx$$

And if X and Y are independent continuous random variables,

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{f_X(x)f_Y(y)}{f_Y(y)} = f_X(x)$$

This is the unconditional density of X.

The joint density of X and Y is given by

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Compute the conditional density of X given that Y = y, where 0 < y < 1.

The joint density of X and Y is given by

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Compute the conditional density of X given that Y=y, where 0 < y < 1.

For 0 < x < 1, 0 < y < 1, we have

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

The joint density of X and Y is given by

$$f(x,y) = \begin{cases} \frac{12}{5} x (2-x-y) & \text{ for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{ otherwise} \end{cases}$$

Compute the conditional density of X given that Y = y, where 0 < y < 1.

For 0 < x < 1, 0 < y < 1, we have

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \frac{f(x,y)}{\int_{-\infty}^{\infty} f(x,y)dx}$$

$$= \frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y)dx}$$

$$= \frac{x(2-x-y)}{2/3-y/2}$$

$$= \frac{6x(2-x-y)}{2}$$