SM261 Final Examination

09 May 2013

1. Let
$$\vec{u} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$.

a. What is the angle between
$$\vec{u}$$
 and \vec{y} ?

b. What is $proj_L(\vec{\mathcal{Y}})$, where L is the line through the origin parallel to \vec{u} ?

c. What is ref_(v)? ref_(v) = 2pmj_(v).

 $= \begin{bmatrix} \frac{65}{5} - \frac{25}{5} \\ \frac{89}{5} - \frac{50}{5} \end{bmatrix} = \begin{bmatrix} \frac{41}{7} \\ \frac{89}{5} \\ \frac{89}{5} \end{bmatrix} = \frac{59}{5}$ d. Find the matrix of the linear transformation T which is a rotation and satisfies $T(\begin{bmatrix} 1\\0 \end{bmatrix}) = \vec{u}$.

The matrix is orthogonal. Its first column is
$$T([6]) = d = [1]$$

So its second column will be a unit vector orthogonal to it.

[315 -45]

The matrix is |4/5 3/5]

e. Find the matrix of the linear transformation R which is a reflection and satisfies $R\left(\begin{bmatrix}0\\1\end{bmatrix}\right) =$

2. Use Gaussian elimination techniques to find all solutions to the following system.

$$x + 2y + 3z = 3x + 2y + z = 7x + 2y + z = 7x + 2y + z = 7x + 2y - 3z = 6$$

Form the augmented matrix and kind its rref:

$$\begin{vmatrix} 2 & 3 & 1 \\ 3 & 2 & 1 \\ 7 & 2 & -3 \end{vmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 2 & 3 \\ -4 & -8 \\ -2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -12 & -24 \\ -2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 1/2 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_{1} - x_{3} = 0$$

$$x_{2} + 2x_{3} = \frac{1}{2}$$

$$x_{2} + 2x_{3} = \frac{1}{2}$$

$$x_{3} + 2x_{3} = \frac{1}{2}$$

- 3. Define the rank of a matrix.
- Suppose A is a 3×5 matrix. What are the possible values of the rank of the matrix?

Answer: 3 15 the maximum since each mus can have at most leading of mefits)

Other possibilities are 2,1,0.

b. Suppose A is a 3×5 matrix. What are the possible values of the nullity of the matrix?

By the Rank-Nulliby Theorem, rank + nulliby = 5, 50 nulliby can be

Suppose A is a 3×5 matrix and has rank 3. Must the system $A\vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ have a solution?

yes, ref.(A) has 3 leading lis since it has rank 3. We an set the free variables to 0. The leading one variables will equal a,b,c ref.([A|\frac{2}{3}]) has last column [\frac{a}{b}]

d. Give an example of a 3×5 matrix A which has rank 2 but $A\vec{x} = \begin{bmatrix} 1\\ 3 \end{bmatrix}$ has no solution.

4. Let
$$A$$
 be the matrix $\begin{bmatrix} 1 & 1 & 1 & -2 \\ 1 & 1 & 2 & -2 \\ 2 & 2 & 3 & -2 & -2 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$ and let $\vec{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$. In the following you may use the

a. Find all solutions to the system $A\vec{x}=\vec{b}$.

$$x_1 = -x_2 + 2x_5 + 1$$
 $x_2 = -x_2 + 2x_5 + 1$
 $x_3 = -2x_5 + 1$
 $x_4 = -2x_5 + 1$
 $x_4 = -2x_5 + 1$
 $x_4 = -2x_5 + 1$
 $x_5 = -2x_5 + 1$
 $x_6 = -2x_5 + 1$

read from the answer × ker (A) can b. Find a basis for ker(A).

c. Let
$$V=im(A)$$
. What is $\dim(V^{\perp})$?

V is a subsquee of \mathbb{R}^{+} of dimension for rank(A) = S_{0} V has dimension A_{0} .

3

5. Find the area of the parallelogram with vertices (1,4), (2,5), (2,-1) and (3,0).

Two sides of the parallelogram correspond to
$$\vec{v} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

6. Let
$$\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

a. State the Cauchy-Schwarz Inequality and show that it holds for these vectors.

b. State the Triangle Inequality and show that it holds for these vectors.

c. Find an orthonormal basis for
$$V = span(\vec{v}, \vec{w})$$
. $\vec{J}_{i} = \frac{1}{||\vec{J}_{i}||} \vec{v} = \frac{1}{||\vec{J}_{i}||} \vec{v}$

d. Find an orthonormal basis for V^{\perp} .

7. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
.

a. Use Gaussian elimination techniques to find A^{-1} .

$$\begin{bmatrix} 1 & 2 & 0 & 2 & | & 1 & 0 & 0 & 0 & | & 1 & 0 & | & 1 & 0 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & 0 & | & 1 & 0 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1 & 0 & | & 1$$

Find all eigenvalues of A. For each eigenvalue determine its algebraic and geometric multiplicity. þ.

$$|A-\lambda_{\perp}| = |\frac{1-\lambda}{0} = \frac{2}{0} =$$

=> only evers are salar multiples of 1 has als mult 7 50 that (A-I) 2= 0 8 Does A have an eigenbasis? Explain. 0000 For eval 221 000

match the geometric multiplicity for each algebraic multiplicity must becade the 2

- 8. Define "V is a subspace of R^n ".
- a. Show by example that the union of a pair V,W of subspaces of R^n need not be a subspace

is not a If V, W are a pair of lines their union

- b. Show that the set of all vectors $\vec{v} + \vec{w}$, where \vec{v} is in V and \vec{w} is in W, forms a subspace.
- Let] + 12, and J2+ 12, be in the set, then
 their sun is (1/4) + (1/4) + (1/4) and 1/4/2, in J 1/4/2, in W
 - 2) If d+W in the set the a (d+W) = at (s) in the set, since (2) is in de a (d+W) = (d+W) = (d+W) is in the set, since (d+W)

9. State the Rank-Nullity Theorem and illustrate for the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 1 \end{bmatrix}$$
. $A = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 & 1 \end{bmatrix}$.

Any vector in ter (A) solistice
$$x_1 = -2x_2 - 3x_4$$

Any vector in ter (A) solistice $x_3 = -2x_2 - 3x_4$

so
$$\chi = 5 \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$$
 so miliby = dim (ker(A)) = 2.

10. Use Cramer's Rule to find the solution \vec{x} to $\begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix} \vec{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

$$x_1 = \frac{|32|}{|48|} = \frac{16}{2} = 8$$
 and $x_2 = \frac{|34|}{|38|} = \frac{2}{2}$

- 11. Consider the vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

 a. Show that these vectors form a basis of R^3 .

b. Find the coordinates of the vector $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ with respect to this basis.

c. Let T be the linear transformation given by $T(\vec{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ \vec{x} . Find the matrix of T with respect to the hards $T(\vec{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 1 of the matrix is -04 respect to the basis. W.th S=

12. Determine an invertible matrix
$$S$$
 and a diagonal matrix D such that $S^{-1}AS = D$, where $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. $A = A + \lambda = (2 - \lambda)^2 - (1 - \lambda)^2 - (1 - \lambda)^2 - (2 - \lambda)^2 - (1 - \lambda)^2 - (2 - \lambda)^2 -$

Then with
$$S = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $S^{-1}AS = D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$

- $13.~{
 m A}$ square matrix A is called a permutation matrix if there is a single 1 in each row and each 0] 1 is a permutation matrix. 0 column, and if all other entries are 0. For example, $\begin{vmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{vmatrix}$
 - a. List all 3×3 symmetric permutation matrices.

b. Explain why all $n \times n$ permutation matrices are invertible.

c. Must the inverse of a permutation matrix also be a permutation matrix? Explain.