CPU Scheduling

J075 박상신

목차

- 1. CPU 스케쥴링이란
- 2. 스케쥴링 기준
- 3. 스케쥴링 알고리즘

CPU 스케쥴링이란

스케쥴링 기준

- 1. CPU utilization (이용률) CPU를 얼마나 많이 사용하는지
 - 2. Throughput (처리량) 작업이 얼마나 처리되는지
 - 3. Turnaround time (총 처리시간) 한 프로세스가 종료되기 까지 걸린 시간
 - 4. Waiting time (대기시간)
 Ready Queue에서 대기한 시간
 - 5. Response Time (응답 시간)

스케쥴링 알고리즘 - FCFS

First-Come, First-Served (FCFS)

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

■ Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

The Convoy Effect, Visualized Starvation

스케쥴링 알고리즘 - SJF

Shortest-Job-First (SJF)

<u>Process</u>	Burst Time	
P_1	6	
P_2	8	
P_3	7	
P_4	3	

■ SJF scheduling chart

■ Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

스케쥴링 알고리즘 – Priority 기반

Priority Scheduling

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

■ Priority scheduling Gantt Chart

■ Average waiting time = 8.2 msec

문제 : Starvation

해결: Aging: 시간이 지나면 우선순위를 높여준다.

스케쥴링 알고리즘 – RR

Round Robin(RR)

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

The Gantt chart is:

q(Time Quantum) = 4

- Typically, higher average turnaround than SJF, but better response
- q should be large compared to context switch time
 - q가 매우 크면, FIFO와 동일하게 됨
 - q가 매우 작으면, overhead 많아짐
- q usually 10ms to 100ms, context switch < 10 usec</p>