COMP30026 Models of Computation Assignments in the Computation Assignments in the Computation Assignments in the Computation and Computation a

https://eduassistpro.github.

Lecture Week 8 Part

Add Wechatedu_assist_pr

This Lecture is Being Recorded

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Subset Construction Again...

Assignment Project Exam Help

ps.//eduassistpro.github. Adding new state to DFA:

- Step 1: Move on a symbol on a symbol of the step of the symbol of the sy

C*={3}	D	C*
$D=\emptyset$	D	D

a,b

Closure Results for Regular Languages

The class of regular languages is to sed under unit lep Proof: Let A and B be regular languages, with DFAs M_A and M_B as recognis recognis https://eduassistpro.github.

Add WeChatedu_assist_pro

The ϵ -transitions go to the start states of M_A and M_B .

Closure Results for Regular Languages

Theorem: The class of regular languages is closed under o.

Assignment Project Fxam Help

https://eduassistpro.github.

From the Avid We estimat Edut reassist pr

That Last Construction, Formally

Assignment Project Exam Help

- $M_A = (Q, \Sigma, \delta, q_0, F)$
- https://eduassistpro.github.

$$Add \longrightarrow \{q'_0\} \text{ if } \mathbf{edu_assist_pr}$$

Closure Results for Regular Languages

Assignment Project Exam Help

Proof:

languag https://eduassistpro.github.

Add WeChat edu_assist_

NFA to recognise A^* :

Closure Results for Regular Languages

Assignment Project Exam Help

They are c

- int https://eduassistpro.github.
- complement, A^c
- diffeArdthis Weeshat edu_assist_pr
- reversal.

Algorithms for Manipulating Automata

Assignment Project Exam Help For some of these closure results, we will use the tutorials to develop

useful DF

For this https://eduassistpro.github.

You will see, for example, how to systematically bui r language down to systematically bui r

Equivalence of DFAs

Assignment Project Exam Help

We can always find a minimal DFA for a given regular language (by mini ates

Since a https://eduassistpro.github.

total and deterministic, we can test two DFAs for

(modulo the names used for their states) by minimi assist_pr

Minimizing DFAs

There is no guarantee that DFAs that are produced by the various

Algorithms authorith tube construction nethodowithe phimilip

 $A = \{1, 3\}, B^* = \{1, 2, 3\}, C^* = \{2, 3\}, \text{ and } D = \emptyset.$

Generating a Minimal DFA

Alegien properties profession also be a DFA.

- Re
- Dehttps://eduassistpro.github.io
- Determinize.

To reverse an NFA A with start states / edu_assist_pr simply reverse every transition in A and swap I and F.

Minimization Example

Consider again the NFA that we determinized two slides ago.

Here it is on the left, with its reversal on the right:

Assignment Project Exam Help

2 https://eduassistpro.github.

Now make the ders whe Chat edu assist production in the control of the control of

(we have renamed the states to avoid later confusion:

4 corresponds to $\{2\}$, 5 to $\{1,2\}$, and 6 to $\{1,2,3\}$).

Minimization Example

Now reverse the result:

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_predu_assist_predu_assist_predu_assist_preductions

a, b

Regular Expressions

Assignment Project Exam Help You are probably familiar with similar notation in Unix, Python or

You are probably familiar with similar notation in Unix, Python or JavaScr ifferent

things thttps://eduassistpro.github.

Example:

 $(0 \cup 1)(0 \cup 1)(0 \cup 1)((0 \cup 1)(0 \cup 1$

The star binds tighter than concatenation, which in turn binds tighter than union.

Regular Expressions

Syntax:

The regular expressions over an alphabet $\Sigma = \{a_1, \dots, a_n\}$ are given **Avsistement Project Exam Help** regex

https://eduassistpro.github.

Semantics:

Add
$$(R_1 \cup R_2) = \{a\}$$
 edu_assist_problem $(R_1 \cup R_2) = L(R_1) \cup L(R_2)$ $L(R_1 \cap R_2) = L(R_1) \circ L(R_2)$

 $L(R^*) = L(R)^*$

Regular Expressions – Examples

Assignment Project Exam Help

https://eduassistpro.github.

```
(0 \cup \epsilon)(\epsilon \cup 1) : \{\epsilon, 0, 1\} \epsilon \cdot \mathbf{Add_1}) \overset{1^*}{\mathsf{Chall}} \overset{\text{all finite seque}}{\mathsf{Chall}} \underset{(1^*0^*)^*}{\mathsf{assist}} \mathsf{pr}
```

Regular Expressions vs Automata

Theorem: L is regular iff L can be described by a regular expression.

First note that, given NFA $\mathbf{p} = (Q, \Sigma, \delta, I, F)$, we can build a probability of the p

https://eduassistpro.github. $\delta(q, \nu)$ otherwise

Example Add We Chat edu_assist_pr

NFAs from Regular Expressions

We now show the 'if' direction of the theorem, by showing how to convert presular expression Prints in NFA that recognises HR-1p. The propose by structural induction over the form of R.

Case R

Case R https://eduassistpro.github.

Case $R = \emptyset$: Construct $R = R_1$ Construct $R = R_2$ Construct R =

We already gave the constructions when we showed that regular languages are closed under the regular operations! They work because we can assume each NFA involved has a single start state.

NFAs from Regular Expressions: Example

Let us construct, in the proposed systematic way, an NFA for $(a \cup b)^*bc$.

Assignment Project Exam Help

https://edwassistpro.github.

NFAs from Regular Expressions

Then $(a \cup b)^*$ yields:

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

21/36

Regular Expressions from NFAs

We now show the 'only if' direction of the theorem.

q_f becohttps://eduassistpro.github.

$$\delta'(q, v) = \delta(q, v)$$
 otherwise Add WeChat edu_assist_pr

Regular Expressions from NFAs

We sketch how an NFA can be turned into a regular expression in a systematic process of "state elimination".

Assignment Peroject Fxam Help

Start by m gle start stahttps://eduassistpro.github.
Repeatedly eliminate states that are neither start nor accept states.

Add WeChat edu_assist_pr

The process produces either \longrightarrow R_4 or \longrightarrow

We get $(R_1 \cup R_2 R_3^* R_4)^* R_2 R_3^*$ in the first case; R^* in the second.

The State Elimination Process

Assignment Project Exam Help

Any such pair of incoming/outgoing arcs get replaced by a single arc that by

3.

If there are the ps://eduassistpro.github. by $m \times n$ by passing arcs when the node is remov

Let us iller the Ween hier act un assist_pr

State Elimination Example

Assignment Project Exam Help

https://eduassistpro.github.

Add We Chat edu_assist_pr

Now eliminate B:

 $0 \cup 1$

and then C:

 $1(0\cup 1)(\epsilon\cup 0\cup 1)$

State Elimination Example

Assignment Project Exam Help with

- R₁ https://eduassistpro.github.

 $(0 \cup 1)^*1(0 \cup 1)(\epsilon \cup 0 \cup 1)$

Sipser (see "Readings Online" on Canvas) provides more details of this kind of translation.

Some Useful Laws for Regular Expressions

Assignment Project Exam Help

 $_{(A B)}^{(A \cup B)}$ https://eduassistpro.github.

A = A = A = A = A A = A = A = A A = A = A = A

 $\emptyset A = A \emptyset = \emptyset$

More Useful Laws for Regular Expressions

Assignment Project Exam Help

$$(A^*)^*$$
 = https://eduassistpro.github.

 $(\epsilon \cup A)^*$ Add WeChat edu_assist_properties $(A \cup B)^* = (A^*B^*)^*$

Limitations of Finite-State Automata

Assignment Project Exam Help

```
Intuitive https://eduassistpro.github.
a DFA has n
```

```
Pumping And driv Welchhart edu_assist_pr
```

```
Exercise: Is the language L_1 = \{0^n 1^n \mid 0 \quad n \quad 999999999 \text{ regular}\}
```

The Pumping Lemma for Regular Languages

This is the standard tool for proving languages non-regular.

Acosely, it says that if we have a regular language A and consider a particle by long string $I \in I$, then I coop in some loop to accept s.

So A m https://eduassistpro.github.

Pumping Lemma: If A is regular then the ch that for a string swifting the limit, edu_assistying

- $y \neq \epsilon$
- $|xy| \leq p$

Proving the Pumping Lemma

Let DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognise A. Let p = |Q| and consider s with $|s| \ge p$. Let the number of states of **Assignment Project Exam**. Help In an accepting run for s, some stat Let q_i bhttps://eduassistpro.github. consumed, at the second, xy, (strictly longer than WeChat edu_assist_procession consider the first time a state (qi) is re-vi of splitting s into x, y and z such that xz, xyz, xyyz, ... are all in A. Notice that $y \neq \epsilon$. Let m+1 be the number of state visits when reading xy, then |xy| = m < p, because m+1 is the number of state visits with only one repetition.

Using the Pumping Lemma

Assignment: Project Exam Help

We can https://eduassistpro.github.

Atd We Cuchat edu_assist_pr

Coming up with such an s is sometimes easy, sometimes difficult.

Pumping Example 1

We show that $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Assignment Projects Exam Help

Conside

By the https://eduassistpro.github. $v \neq \epsilon$, an

Since |xy| Add construction of Osedu_assist_pr

But then $xyyz \notin B$, a contradiction.

So we inevitably arrive at a contradiction if we assume that B is regular.

Pumping Example 2

Assignment Project Exam Help

```
C = \{w
A simple https://eduassistpro.github.
```

regular, s

intersection.

Add WeChat edu_assist_pr

Pumping Example 3

Assume it is, and let p be the pumping length.

Conside https://eduassistpro.github.

By the pu $y \neq \epsilon$, and $|xy| \leq p$.

Since $|xy| \leq p$, consists entirely of 0s. edu_assist_pr

But then $xyyz \notin D$, a contradiction.

Example 4 – Pumping Down

Assume it is, and let p be the pumping length.

Conside https://eduassistpro.github.

By the pu $y \neq \epsilon$, and $|xy| \leq p$.

Since $|xy| \leq p$, consists entirely of 0s. edu_assist_processing the put of the

But then $xz \notin E$, a contradiction.