Correzione Esame di Calcolo Numerico 27/09/2019

- 1. I comandi Matlab necessari per lo svolgimento del punto 1 sono implementati nel file Es1.m.
 - 1a) eps è il più piccolo numero macchina positivo tale che 1+eps> 1.

Poichè $N=10^{-16} < \mathrm{eps}$, anziché risultare M>4, in aritmetica di macchina, si ha che M=N+4=4.

1b) Poichè il numero $\frac{1}{100}$, o analogamente 0.01, non viene "correttamente" rappresentato in aritmetica di macchina, la somma di 2000 addendi pari a tale numero non risulta uguale a 20 come in aritmetica esatta ma

$$\sum_{k=1}^{2000} \frac{1}{100} = 20.000000000000327.$$

- 2. Ricerca di radici di equazioni non lineari.
 - 2a) Data $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$, funzione non lineare tale che $f\in\mathcal{C}^m(a,b)$ con $m\in\mathbb{N}^+$, α dicesi radice semplice se $f(\alpha)=0$ e $f'(\alpha)\neq 0$.

Se $f^{(m-1)}(\alpha) = \ldots = f'(\alpha) = f(\alpha) = 0$ e $f^{(m)}(\alpha) \neq 0$ allora α è detta radice di ordine m. In tal caso $f(x) = (x - \alpha)^m h(x)$ con $h(\alpha) \neq 0$.

2b) Nella ricerca numerica di radici di equazioni non lineari, il criterio d'arresto basato sul controllo dell'incremento prevede che il metodo iterativo generante la successione

$$\lim_{i \to +\infty} x_i = \alpha$$

si arresti al minimo valore di $k \in \mathbb{N}$ tale per cui $|x_{k+1} - x_k| < \varepsilon$, con $\varepsilon \in \mathbb{R}^+$ tolleranza fissata. Questo criterio è impreciso nel caso in cui l'avanzamento verso la radice sia "lento".

2c) Approssimare il numero reale $\alpha = \sqrt[3]{10}$ significa approssimare numericamente la radice α dell'equazione non lineare

$$f(x) = x^3 - 10 = 0.$$

Tale radice è unica poichè la funzione f è continua e strettamente crescente in \mathbb{R} . Il metodo di bisezione si basa sul Teorema~di~esistenza~degli~zeri~per~funzioni~continue ossia sull'individuazione di un intervallo iniziale $[a,b]\subset\mathbb{R}$ tale che f(a)f(b)<0. Un buon intervallo di innesco del metodo è per esempio $[a^{(0)},b^{(0)}]=[2,3]$ poiché $f(2)=2^3-10=-2<0$ e f(3)=27-10=17>0: 1° passo

$$[a^{(0)}, b^{(0)}] = [2, 3]$$
 $x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2} = 2.5$ $f(2.5) = 5.625 > 0$

2° passo

$$[a^{(1)}, b^{(1)}] = [2, 2.5]$$
 $x^{(1)} = \frac{a^{(1)} + b^{(1)}}{2} = 2.25$ $f(2.25) = 1.390625 > 0$

3° passo

$$[a^{(2)}, b^{(2)}] = [2, 2.25]$$
 $x^{(1)} = \frac{a^{(1)} + b^{(1)}}{2} = 2.125$ $f(2.125) = -0.404296875 < 0$

- 3. I comandi Matlab necessari per lo svolgimento dei punti 3b), 3c), 3d), 3e), 3g), 3h) e 3i) sono implementati nel file **Es3.m**.
 - 3a) Sia $A \in \mathbb{R}^{n \times n}$ una matrice simmetrica definita positiva, allora esiste una matrice B triangolare superiore tale che A = B'B. Inoltre se gli elementi diagonali della matrice B sono scelti positivi, tale fattorizzazione è unica. Tale fattorizzazione si chiama fattorizzazione di Cholesky.
 - 3c) Per verificare che la fattorizzazione ricostruisca "correttamente" la matrice A, si può confrontare la differenza, in norma ∞ , tra gli elementi di A e di B'B. Si osserva che questa differenza è dell'ordine della precisione di macchina come atteso.
 - 3f) Data una matrice triangolare inferiore $L \in \mathbb{R}^{n \times n}$, l'algoritmo di sostituzione in avanti per la risoluzione del sistema lineare Ly = b

$$\begin{pmatrix} L_{11} & 0 & 0 & \cdots & 0 \\ L_{21} & L_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ L_{n-11} & L_{n-12} & \cdots & L_{n-1\,n-1} & 0 \\ L_{n1} & L_{n2} & \cdots & L_{n\,n-1} & L_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ b_n \end{pmatrix}$$

è:

$$\begin{cases} y_1 = \frac{b_1}{L_{11}} \\ y_i = \frac{\left(b_i - \sum_{j=1}^{i-1} L_{ij} y_j\right)}{L_{ii}} \end{cases} \qquad i = 2, \dots, n$$

3i) Dalla tabella risultante

$\mid n \mid$	Err "\"	Err "Forward+Backward"
10	$0.008881784197001 \cdot 10^{-13}$	$0.008881784197001 \cdot 10^{-13}$
20	$0.024424906541753 \cdot 10^{-13}$	$0.024424906541753 \cdot 10^{-13}$
30	$0.042188474935756 \cdot 10^{-13}$	$0.042188474935756 \cdot 10^{-13}$
40	$0.059952043329758 \cdot 10^{-13}$	$0.059952043329758 \cdot 10^{-13}$
50	$0.048849813083507 \cdot 10^{-13}$	$0.048849813083507 \cdot 10^{-13}$
60	$0.063282712403634 \cdot 10^{-13}$	$0.063282712403634 \cdot 10^{-13}$
70	$0.109912079437891 \cdot 10^{-13}$	$0.109912079437891 \cdot 10^{-13}$
80	$0.127675647831893 \cdot 10^{-13}$	$0.127675647831893 \cdot 10^{-13}$
90	$0.166533453693773 \cdot 10^{-13}$	$0.166533453693773 \cdot 10^{-13}$
100	$0.157651669496772 \cdot 10^{-13}$	$0.157651669496772 \cdot 10^{-13}$

si osserva che l'errore commesso con i differenti procedimenti è esattamente lo stesso e infatti, dal diagramma presente nella descrizione del comando "\", si conclude che l'algoritmo implementato in Matlab prevede la fattorizzazione di Cholesky

