BRAC UNIVERSITY

Department of Computer Science and Engineering

Examination: Final Semester: Summer 2024

Duration: 1 Hour 10 Minutes Set - B Full Marks: 35

CSE 420: Compiler Design

Figures in the right margin indicate marks.

Answer all the questions

COs	Questions										<u>Marks</u>
CO3	1. Consider the following grammar and look at the SLR(1) parse table below: 1. $A \rightarrow A + B$ 2. $A \rightarrow B$ 3. $B \rightarrow B * C$ 4. $B \rightarrow C$ 5. $C \rightarrow (A)$ 6. $C \rightarrow id$										
	STATE	ACTION						GOTO			
		id	+	*	()	\$	A	В	С	
	0	s5			s4			1	2	3	
	1		s6				acc				
	2		r2	s7		r2	r2				
	3		r4	r4		r4	r4				
	4	s5			s4			8	2	3	
	5		r6	r6		r6	r6				
	6	s5			s4				9	3	
	7	s5			s4					10	
	8		s6			s11					
	9		r1	s7		r1	r1				
	10		r3	r3		r3	r3				
	11		r5	r5		r5	r5				

	Show the parsing simulation using <u>stack</u> for the input string, <i>id+(id*id)</i>						
CO4	2. Consider the following <i>SDT</i> . Draw the <u>Dependency Graph</u> and show the values of the attribute offset, type, and width next to the appropriate non-terminal nodes of the following input string float [5][2] y; int x;						
	$P \rightarrow \{ offset = 0; \} D$ $D \rightarrow T id ; \{ top.put(id.lexeme, T.type, offset); offset = offset + T.width; \} D_1$						
	$D \rightarrow \epsilon$ $T \rightarrow B \ \{ \ t = B.type; \ w = B.width; \ \} \ C \ \{ \text{T.type} = \text{C.type}; \ \text{T.width} = \text{C.width} \}$						
	$B \rightarrow \text{int}$ { $B.type = integer$; $B.width = 4$; }						
	$B \rightarrow \mathbf{float}$ { $B.type = float; B.width = 8; }$						
	$C \rightarrow \epsilon $ { $C.type = t; C.width = w; }$						
	$C \rightarrow [$ num $]$ C_1 { C.type = $array($ num . $value, C_1.type); C.width = $ num . $value \times C_1.width; $ }						
CO5	3. Construct the <u>Three Address Code</u> from the following code: $x = ((p-q)^*(-r)+(p+r))-(q^*p)+r;$ generateRandom(seed, seedMod2, seedMod5);	7					
CO4	4. Given the following C/C++ code below, suppose the CPU is executing the line 'result *= sqrt(multiplier); ' in the code. Draw the content of the active symbol tables at that point. Show the organization of the active symbol tables as a single list of hash-tables in your drawing and for each variable in a symbol table, write its name and type. Remember that, in	8					

```
you write a statement like 't n = v' in C, it means you are defining a new
       variable with the name n of the type t and assigning it an initial value v)
float a = 0.0;
float b = 0.0;
int table[10][20];
void main(int argc, char* argv[]) {
  a = atof(argv[1]);
  table[0][0] = atoi(argv[2]);
  float product = 1.0;
  int rowCount = 10;
  for (int i = 0; i < rowCount; i++) {
     float sum = 0.0;
     int colCount = 20;
     float multiplier = 1.0;
     for (int j = 0; j < 5; j++) {
       multiplier *= sqrt(a + j);
     }
     for (int k = 0; k < colCount; k++) {
       int value = table[i][k];
       float result = 1.0;
       for (int m = 0; m < value; m++) {
          result *= sqrt(multiplier);
          if(k > c) {
               int c = 0;
               c = x + k;
          int l = 100;
       sum += result;
     product *= sum;
  }
```