Machine-learning emergent spacetime from linear response

Daichi Takeda (RIKEN iTHEMS, Japan)

September 5, 2025
Machine Learning for Quantum Fields and Geometry
@UNIST

based on arXiv: <u>2411.16052</u> (published) with K. Hashimoto, K. Matsuo, M. Murata, G. Ogiwara

Self introduction

Daichi Takeda

Mar. 2025 Doctor in Kyoto U.

Apr. 2025 RIKEN, iTHEMS (first post doc)

1. H. Hata, **DT**, "Interior Product, Lie Derivative and Wilson Line in the KBc Subsector of Open String Field Theory", JHEP 07 (2021) 117.

2. **DT**, "Light-cone cuts and hole-ography: explicit reconstruction of bulk metrics", JHEP 04 (2022) 124.

3. H. Hata, **DT**, J. Yoshinaka, "Generating string field theory solutions with matter operators from KBc algebra",

PTEP 2022 9, 093B09 (2022)

4. K. Hashimoto, **DT**, K. Tanaka, S. Yonezawa, "Spacetime-emergent ring toward tabletop quantum gravity experiments",

Phys. Rev. Res. 5 (2023) 2, 023168.

- 5. K. Sugiura, **DT**, "Bulk reconstruction of AdSd+1 metrics and developing kinematic space", JHEP 06 (2023) 035.
- 6. S. Kinoshita, K. Murata, DT, "Shooting null geodesics into holographic spacetimes", JHEP 10 (2023) 074.
- 7. M. Bamba, K. Hashimoto, K. Murata, **D. Takeda**, D. Yamamoto, "Spacetime-localized response in quantum critical spin systems: Insights from holography", Phys. Rev. D 109, 126003.
- 8. **DT**, "Coarse-graining black holes out of equilibrium with boundary observables on time slice", JHEP 05 (2024) 319
- 9. K. Hashimoto, K. Matsuo, M. Murata, G. Ogiwara and **DT**, "Machine-learning emergent spacetime from linear response in future tabletop quantum gravity experiments", Mach.Learn.Sci.Tech. 6 (2025) 1, 015030
- 10. T. Shigemura, K. Shimizu, S. Sugishita, **DT**, T. Yoda, "Heat and work in black hole thermodynamic via holography", JHEP 05 (2025) 069

11. Takanori Ishii, **Daichi Takeda**, "Lindblad dynamics in holography", Phys.Rev.D 112 (2025) 4, 046020.

SFT

Bulk reconst.

SFT

AdS/CMT

Bulk reconst.

AdS/CMT

AdS/CMT

BH thermo

Today's topic

BH thermo

Open AdS/CFT 2 /34

Quantum gravity experiments in laboratories

Gravitational theories in laboratories?

Quantum gravity appears when a BH evaporates

AdS theory dual to a given material?

Find an AdS theory phenomenologically

What is the metric corresponding to a given CFT state?

Boundary linear response → bulk metric

Linear response is equivalent to the retarded Green's function

$$H(t) = H + V(t), \quad V(t) := \int \mathrm{d}^{d-1}\vec{x} \ \underline{J(t,\vec{x})} O_S(\vec{x})$$

$$\text{Support: } t > 0$$

$$\rho_I(t) = \mathrm{T} \exp\left[-i\int_0^t \mathrm{d} s \ \mathrm{ad}[V_I(s)]\right] \rho_0$$
 Gibbs state

$$\begin{split} \langle O_I(x) \rangle_J &\simeq \underline{\mathrm{Tr}}[\rho_0 O_I(x)] - 0 \text{ (assumption)} \\ &+ \int \! \mathrm{d}^d y \left\{ -i \Theta(x^0 - y^0) \mathrm{Tr} \left(\rho_0 [O_I(x), O_I(y)] \right) \right\} J(y) \\ &=: G_R(x,y) \end{split}$$

Boundary linear response → bulk metric

Prepare ring-shaped material in Gibbs state

Find the bulk metric that reproduces the data

Machine-learning $g_{\mu\nu}$ from linear response

Machine-learning emergent spacetime from linear response

- 1. The forward problem:
 Boundary linear response from bulk
- 2. The inverse problem:
 Bulk metric from boundary linear response
- 3. NN solves the inverse problem
- 4. Demonstration: NN reproduces BTZ metric

Machine-learning emergent spacetime from linear response

- 1. The forward problem:
 Boundary linear response from bulk
- 2. The inverse problem:
 Bulk metric from boundary linear response
- 3. NN solves the inverse problem
- 4. Demonstration: NN reproduces BTZ metric

AdS/CFT: Generating functionals are equal

AdS/CFT correspondence (large N)

$$\int \mathcal{D}\phi \, e^{iI_{\text{CFT}}[\phi] + i\int d^d x \, J(x) O_{\Delta}(x)} = e^{iI_{\text{AdS}}[\Phi_{\text{cl}}]} \Big|_{\Phi \sim r^{\Delta - d}J}$$

Quantum theory

AdS gravity (d + 1 dim)

Classical field theory

The bulk configuration dual to Gibbs state

Apply the dictionary in Euclidean signature

$$\operatorname{Tr} e^{-\beta H} = \left. \int \mathscr{D} \phi \, e^{-I_{\text{CFT}}[\phi]} = e^{-I_{\text{AdS}}[\Phi_{\text{cl}}]} \right|_{\Phi \sim r^{\Delta - d} \times 0}$$

If I_{AdS} is Einstein, we find two solutions:

In general theories, we do not know if the bulk has a BH. But, $g_{\mu\nu}$ is static and spherically symmetric.

Linear response around Gibbs state

Apply the dictionary for Schwinger-Keldysh contour

For linear response, this reduces to ...

When interested in $\mathcal{O}(J^1)$, we need free Φ on fixed $g_{\mu\nu}$

The one dual to the Gibbs state

Linear response around Gibbs state

One more B.C. is necessary

$$\Phi = 0$$
 for $t \le 0 \dots *$ (retarded B.C.)

If BH exists, *= ingoing B.C.

+ retarded $i\epsilon$ -presc.

If not, * = regular B.C.

Then, how to extract $\langle O \rangle_J$?

$$\Phi \sim r^{\Delta - d} J + r^{-\Delta} \langle O \rangle_J$$

Forward problem: Boundary linear response from bulk

$${
m Tr} e^{-eta H} = \int \!\!\!\! arphi \, e^{-I_{
m CFT}[\phi]} = e^{-I_{
m AdS}[\Phi_{
m cl}]} \Big|_{\Phi \sim r^{\Delta-d} imes 0}$$
 with $\Phi \sim r^{\Delta-d} J$ and retarded B.C.
$$\Phi \sim r^{\Delta-d} J + r^{-\Delta} \langle O \rangle_J$$

Machine-learning emergent spacetime from linear response

- 1. The forward problem:
 Boundary linear response from bulk
- 2. The inverse problem:
 Bulk metric from boundary linear response
- 3. NN solves the inverse problem
- 4. Demonstration: NN reproduces BTZ metric

Boundary linear response → bulk metric

Prepare ring-shaped (1+1d) material in Gibbs state

Get linear response data (by experiment or simulation)

O: scalar primary

Find the bulk metric that reproduces the data

$g_{\mu\nu}$ has two components

Static and spherically symmetric metric

$$ds^{2} = g_{tt}(r)dt^{2} + g_{rr}(r)dr^{2} + g_{\theta\theta}(r)d\theta^{2}$$

Residual gauge: $r = r(\xi)$

Gauge fix:
$$g^{\xi\xi}\sqrt{-g}\propto \xi^{-1}$$
 $(\xi\in[0,1])$

Two independent components

$$\Xi(\xi) := g_{\xi\xi}g^{tt}, \qquad \Theta(\xi) := g_{\xi\xi}g^{\theta\theta}$$

(Einstein is not assumed)

Bulk theory: a probe free scalar field

We have the data of $\langle O \rangle_I$ under

$$H(t) = H + V(t), \quad V(t) := \int d^{d-1}\vec{x} J(t, \vec{x}) O_S(\vec{x})$$

O: scalar primary with scale-dim Δ

J: small external source

$$\Phi \sim r^{\Delta-2}J + r^{-\Delta}\langle O \rangle_J$$

 Φ : probe free scalar

with mass

$$m^2 = \Delta(\Delta - 2)$$

lacktree lac

Klein-Gordon eq with (Ξ, Θ)

Below, $\Delta = 2$ $(m^2 = 0)$ for simplicity

In Fourier space
$$\Phi = e^{-i\omega t + ik\theta}\Phi(\xi)$$

$$Z'(\xi) = \begin{pmatrix} 0 & 1 \\ \omega^2 \Xi(\xi) + k^2 \Theta(\xi) & -1/\xi \end{pmatrix} Z(\xi)$$

$$Z(\xi) = \begin{pmatrix} \Phi(\xi) \\ \Phi'(\xi) \end{pmatrix} \qquad \Xi(\xi) := g_{\xi\xi} g^{tt}, \qquad \Theta(\xi) := g_{\xi\xi} g^{\theta\theta}$$
 Unknown functions

 $Z(\xi = 0)$ must satisfy the retarded B.C.

Inverse problem: Bulk metric from boundary linear response

Machine-learning emergent spacetime from linear response

- 1. The forward problem:
 Boundary linear response from bulk
- 2. The inverse problem:
 Bulk metric from boundary linear response
- 3. NN solves the inverse problem
- 4. Demonstration: NN reproduces BTZ metric

Solve with binary classification

Simple version

Data of the linear response (true and false)

Discretized EOM with weight (Ξ, Θ)

Ask if output matches B.C. with weight ρ

Bulk layer

$$Z'(\xi) = \begin{pmatrix} 0 & 1 \\ \omega^2 \Xi(\xi) + k^2 \Theta(\xi) & -1/\xi \end{pmatrix} Z(\xi) =: F(\xi, Z(\xi))$$

$$Z(\xi) = \begin{pmatrix} \Phi(\xi) \\ \Phi'(\xi) \end{pmatrix}$$

Boundary condition layer

Typical behavior at $\xi \sim 0$

If BH exists, *= ingoing B.C.

$$\Phi \sim \xi^{-iaa}$$

If not, * = regular B.C.

$$O = \frac{\xi_f Z^1(\xi_f) + \rho Z^2(\xi_f)}{\sqrt{\xi_f Z^1(\xi_f) + \rho Z^2(\xi_f) + \epsilon}}$$

$$\rho = ia\omega + b |k|$$
To be optimized

O is expected to be small for true data

Loss function

$$Loss = -t_{data} \ln t(O) - (1 - t_{data}) \ln(1 - t(O))$$

 $t_{\rm data}$ takes 0 or 1 according to true or false

$$t(O) := \frac{1}{2} \left[\tanh(100(O - 0.1)) - \tanh(100(O + 0.1)) + 2 \right]$$

$$O = \frac{\xi_f Z^1(\xi_f) + \rho Z^2(\xi_f)}{\sqrt{\xi_f Z^1(\xi_f) + \rho Z^2(\xi_f) + \epsilon}}$$

Solve with binary classification

Refined version

Data of the linear response (true and false)

Discretized EOM with weight (Ξ, Θ)

Ask if output matches B.C. with weight ρ

Runge-Kutta layer

EOM

$$Z'(\xi) = \begin{pmatrix} 0 & 1 \\ \omega^2 \Xi(\xi) + k^2 \Theta(\xi) & -1/\xi \end{pmatrix} Z(\xi) =: F(\xi, Z(\xi))$$

Euler method

$$Z(\xi + \Delta \xi) = Z(\xi) + \Delta \xi F(\xi, Z(\xi))$$

Runge-Kutta method

$$Z^1$$
 $\Theta(\xi)$ $F(\xi, \mathbf{Z})$ $\mathcal{F}(\xi, \mathbf{Z})$ $\mathcal{F}(\xi, \mathbf{Z})$ $\mathcal{F}(\xi, \mathbf{Z})$ $\mathcal{F}(\xi, \mathbf{Z})$ $\mathcal{F}(\xi, \mathbf{Z})$

$$Z(\xi + \Delta \xi) = Z(\xi) + \frac{\Delta \xi}{6} \left[F_1 + 2F_2 + 2F_3 + F_4 \right]$$

$$\begin{split} \underline{F_1} &= F(\xi, Z(\xi)), \qquad \underline{F_2} = F(\xi + \Delta \xi/2, Z(\xi) + \underline{F_1} \Delta \xi/2) \\ \underline{F_3} &= F(\xi + \Delta \xi/2, Z(\xi) + \underline{F_2} \Delta \xi/2), \qquad F_4 = F(\xi + \Delta \xi, Z(\xi) + \underline{F_3} \Delta \xi) \end{split}$$

Runge-Kutta layer

Runge-Kutta method

$$Z(\xi + \Delta \xi) = Z(\xi)$$

$$+ \frac{\Delta \xi}{6} \left[F_1 + 2F_2 + 2F_3 + F_4 \right]$$

$$\begin{split} F_1 &= F(\xi, Z(\xi)) \\ F_2 &= F(\xi + \Delta \xi/2, Z(\xi) + F_1 \Delta \xi/2) \\ F_3 &= F(\xi + \Delta \xi/2, Z(\xi) + F_2 \Delta \xi/2) \\ F_4 &= F(\xi + \Delta \xi, Z(\xi) + F_3 \Delta \xi) \end{split}$$

Solve with binary classification

Refined version

Data of the linear response (true and false)

Discretized EOM with weight (Ξ, Θ)

Ask if output matches B.C. with weight ρ

Machine-learning emergent spacetime from linear response

- 1. The forward problem:
 Boundary linear response from bulk
- 2. The inverse problem:
 Bulk metric from boundary linear response
- 3. NN solves the inverse problem
- 4. Demonstration: NN reproduces BTZ metric

The forward problem on BTZ spacetime

BTZ: 3D AdS black hole spacetime (vacuum Einstein solution)

Boundary linear response data computed from the bulk

$$\langle O(\omega,k)\rangle_{J} \propto \frac{\Gamma(1-\frac{iL^{2}}{2r_{h}}(\omega-k))\Gamma(1-\frac{iL^{2}}{2r_{h}}(\omega+k))}{\Gamma(-\frac{iL^{2}}{2r_{h}}(\omega-k))\Gamma(-\frac{iL^{2}}{2r_{h}}(\omega-k))}J(\omega,k)$$

Generate true data from this, and also prepare fake data

(with
$$L = r_h = 1$$
)

Solving inverse problem by ML

0.74 0.615 0.49 0.365 0.24

0

0.99 0.89

0.1

-25

0.99 0.89

E BTZ Blackhole

0.74 0.615 0.49 0.365 0.24

Machine-learning emergent spacetime from linear response

- 1. The forward problem:
 Boundary linear response from bulk
- 2. The inverse problem:
 Bulk metric from boundary linear response
- 3. NN solves the inverse problem
- 4. Demonstration: NN reproduces BTZ metric

Machine-learning $g_{\mu\nu}$ from linear response

Other graphs

Other graphs

