Primer Parcial - Segundo Recuperatorio

Segundo cuatrimestre de 2020

¡Aclaraciones Importantes!

Este examen se debe **resolver** y **entregar** en un solo archivo imagen o PDF por el campus virtual de la materia, en la tarea pertinente. Contaran con 3 horas para resolverlo y 15 minutos para subirlo, pasado este tiempo no se aceptaran ejercicios sin excepciones. **No se aceptan entregas fuera de termino, ni fuera del espacio dedicado para tal fin**

1. Equivalente de Thevenin

Dado el circuito de la Figura 1:

- 1. Encontrar el equivalente de Thevenin y Norton entre los nodos A y B. Justificar claramente todos los pasos realizados.
- 2. Verificar la equivalencia entre ambos.

Sugerencia: En primera instancia intentar simplificar el circuito

Figura 1

2. Regimen Transitorio

Se tiene el circuito de la Figura 2. Las dos llaves cambian su estado en $t=20\,\mathrm{s}$. Inicialmente ni el capacitor ni el inductor tienen energía almacenada, es decir, tienen tensión y corriente nula respectivamente. Para estas condiciones:

- 1. Hallar analíticamente la corriente sobre el inductor para t>0.
- 2. Realizar un gráfico aproximado de la corriente sobre el inductor entre $t=0\,\mathrm{s}$ y $t=40\,\mathrm{s}$, respetando las amplitudes iniciales y finales en cada tramo, las constantes de tiempo y las frecuencias de las señales.

Figura 2

3. Regimen Senoidal Permanente - Máxima Transferencia de Potencia

Se tiene el circuito de la Figura 3. La carga tiene un valor de $Z_L=4+j3$.

- 1. Hallar la potencia activa, reactiva y aparente en la carga y calcular el factor de potencia. Atención: La carga sin compensar es únicamente Z_L , sin considerar Z_X .
- 2. Para compensar el factor de potencia se agrega una impedancia Z_X en paralelo a la carga tal como se indica en la figura. Esta impedancia posee un único elemento pasivo. Indicar qué elemento pondría y por qué e indicar al menos un valor posible para este elemento de manera que el factor de potencia sea mayor a 0.9.
- 3. Realizar el diagrama fasorial de tensión y corriente sobre la carga antes y después de conectar la impedancia.

Figura 3