

### OVP Guide to Using Processor Models

### Model specific information for Renesas\_RL78-S2

Imperas Software Limited Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, U.K. docs@imperas.com



| Author   | Imperas Software Limited                        |
|----------|-------------------------------------------------|
| Version  | 20210408.0                                      |
| Filename | OVP_Model_Specific_Information_rl78_RL78-S2.pdf |
| Created  | 5 May 2021                                      |
| Status   | OVP Standard Release                            |

### Copyright Notice

Copyright (c) 2021 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

### Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

#### **Destination Control Statement**

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the readers responsibility to determine the applicable regulations and to comply with them.

#### Disclaimer

IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

#### Model Release Status

This model is released as part of OVP releases and is included in OVPworld packages. Please visit OVPworld.org.

# Contents

| 1         | Overview                            | 1        |
|-----------|-------------------------------------|----------|
|           | 1.1 Description                     | 1        |
|           | 1.2 Licensing                       | 1        |
|           | 1.3 Reference                       | 1        |
|           | 1.4 Limitations                     | 2        |
|           | 1.5 Verification                    | 2        |
|           | 1.6 Features                        | 2        |
| 2         | Configuration                       | 3        |
|           | 2.1 Location                        | 3        |
|           | 2.2 GDB Path                        | 3        |
|           | 2.3 Semi-Host Library               | 3        |
|           | 2.4 Processor Endian-ness           | 3        |
|           | 2.5 QuantumLeap Support             | 3        |
|           | 2.6 Processor ELF code              | 3        |
| 3         | All Variants in this model          | 4        |
| 4         | Bus Master Ports                    | 5        |
| 5         | Bus Slave Ports                     | 6        |
| 6         | Net Ports                           | 7        |
| 7         | FIFO Ports                          | 8        |
| 8         | Formal Parameters                   | 9        |
| 9         | Execution Modes                     | 10       |
| 10        | Exceptions                          | 11       |
| 11        | Hierarchy of the model 11.1 Level 1 | 12<br>12 |
|           |                                     | 14       |
| <b>12</b> | Model Commands                      | 13       |
|           | 12.1 Level 1                        | 13       |
|           | 12.1.1 isync                        | 13       |
|           | 10.1.9 itmage                       | 19       |

### Imperas OVP Fast Processor Model Documentation for Renesas\_RL78-S2

| Registers      | 14   |
|----------------|------|
| 13.1 Level 1   | . 14 |
| 13.1.1 GPR     | . 14 |
| 13.1.2 Bank1   | . 14 |
| 13.1.3 Bank2   | . 14 |
| 13.1.4 Bank3   | . 15 |
| 13.1.5 Bank4   | . 15 |
| 13.1.6. System | 15   |

### Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms. The models also provide a native interface for use in SystemC TLM2 platforms.

The models are written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor. The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance. Most models are provided as a binary shared object and also as source. This allows the download and use of the model binary or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model families are validated using technology provided by the processor IP owners. There is a companion document (OVP Guide to Using Processor Models) which explains the general concepts of OVP Fast Processor Models and their use. It is downloadable from the OVPworld website documentation pages.

### 1.1 Description

RL78 Family Processor Model.

### 1.2 Licensing

Open Source Apache 2.0

#### 1.3 Reference

RL78 User Manual: Software, Single-Chip microcontrollers, http://documentation.renesas.com/doc/products/mpumcu/doc/rl78/r01us0015ej0220\_rl78.pdf

#### 1.4 Limitations

All instructions are supported except the MULU, MULHU, MULH, DIVHU, MACHU, MACH and SEL instructions that are not implemented.

The PMC (Processor Model Control) register behavior is not modeled.

This processor model requires that RAM is available at the address range of the memory mapped registers

Address ranges 0xffEE0 to 0xffEFF for General purpose registers (e.g. X, A)

Address ranges 0xFFFF0 to 0xFFFFF for special function registers (e.g. SP)

This processor model should be started with a reset signal. The processor reads from the reset vector 0x0000 on reset and uses this value for the initial PC

#### 1.5 Verification

Models have been tested by eSOL TRINITY and Imperas

#### 1.6 Features

Banked registers are supported

External exceptions are supported

The BRK instruction (internal trap) is supported

Memory mirroring is supported

Memory mapped registers is supported

### Configuration

#### 2.1 Location

This model's VLNV is renesas.ovpworld.org/processor/rl78/1.0.

The model source is usually at:

\$IMPERAS\_HOME/ImperasLib/source/renesas.ovpworld.org/processor/rl78/1.0

The model binary is usually at:

\$IMPERAS\_HOME/lib/\$IMPERAS\_ARCH/ImperasLib/renesas.ovpworld.org/processor/rl78/1.0

#### 2.2 GDB Path

The default GDB for this model is: \$IMPERAS\_HOME/lib/\$IMPERAS\_ARCH/gdb/rl78-elf-gdb.

### 2.3 Semi-Host Library

The default semi-host library file is renesas.ovpworld.org/semihosting/rl78Newlib/1.0

#### 2.4 Processor Endian-ness

This is a LITTLE endian model.

### 2.5 QuantumLeap Support

A simulator using this processor will not be able to use QuantumLeap.

#### 2.6 Processor ELF code

The ELF code supported by this model is: 0xc5.

## All Variants in this model

This model has these variants

| Variant | Description |
|---------|-------------|
| RL78-S1 | RL78-S1     |
| RL78-S2 | RL78-S2     |
| RL78-S3 | RL78-S3     |

Table 3.1: All Variants in this model

### **Bus Master Ports**

This model has these bus master ports.

| Name        | min | max | Connect?  | Description |
|-------------|-----|-----|-----------|-------------|
| INSTRUCTION | 20  | 32  | mandatory |             |
| DATA        | 20  | 32  | mandatory |             |

Table 4.1: Bus Master Ports

## **Bus Slave Ports**

This model has these bus slave ports.

| Name  | Size(bytes) | Connect? | Description |
|-------|-------------|----------|-------------|
| GPRSP | 0x100000    | optional |             |
| SFRSP | 0x100000    | optional |             |

Table 5.1: Bus Slave Ports

# Net Ports

This model has these net ports.

| Name   | Type   | Connect? | Description |
|--------|--------|----------|-------------|
| reset  | input  | optional |             |
| extint | input  | optional |             |
| intAck | output | optional |             |

Table 6.1: Net Ports

# FIFO Ports

This model has no FIFO ports.

## Formal Parameters

| Name              | Type        | Description                              |
|-------------------|-------------|------------------------------------------|
| verbose           | Boolean     | Verbose mode                             |
| variant           | Enumeration | processor variant                        |
| sim_ac_flag       | Boolean     | simulate PSW.AC flag                     |
| exit_on_halt      | Boolean     | simulation will exit on HALT instruction |
| mirror_rom_addr   | Uns32       | mirror rom addr                          |
| mirror_start_addr | Uns32       | mirror start addr                        |
| mirror_end_addr   | Uns32       | mirror end addr                          |

Table 8.1: Parameters

## **Execution Modes**

| Mode | Code |
|------|------|
| RB0  | 0    |
| RB1  | 1    |
| RB2  | 2    |
| RB3  | 3    |

Table 9.1: Modes implemented in this processor

# Exceptions

| Exception | Code  |
|-----------|-------|
| RST       | 0     |
| TRP       | 0     |
| IAW       | 0     |
| BRK       | 126   |
| IRQ       | 65535 |

Table 10.1: Exceptions implemented by this processor

### Hierarchy of the model

A CPU core may be configured to instance many processors of a Symmetrical Multi Processor (SMP). A CPU core may also have sub elements within a processor, for example hardware threading blocks.

OVP processor models can be written to include SMP blocks and to have many levels of hierarchy. Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a configuration register. Please see the register definitions of this model.

This model documentation shows the settings and hierarchy of the default settings for this model variant.

#### 11.1 Level 1

This level in the model hierarchy has 2 commands.

This level in the model hierarchy has 6 register groups:

| Group name | Registers |
|------------|-----------|
| GPR        | 8         |
| Bank1      | 8         |
| Bank2      | 8         |
| Bank3      | 8         |
| Bank4      | 8         |
| System     | 7         |

Table 11.1: Register groups

This level in the model hierarchy has no children.

### **Model Commands**

A Processor model can implement one or more **Model Commands** available to be invoked from the simulator command line, from the OP API or from the Imperas Multiprocessor Debugger.

### 12.1 Level 1

#### 12.1.1 isync

specify instruction address range for synchronous execution

| Argument   | Type  | Description                                  |
|------------|-------|----------------------------------------------|
| -addresshi | Uns64 | end address of synchronous execution range   |
| -addresslo | Uns64 | start address of synchronous execution range |

Table 12.1: isync command arguments

#### 12.1.2 itrace

enable or disable instruction tracing

| Argument          | Type    | Description                                  |
|-------------------|---------|----------------------------------------------|
| -after            | Uns64   | apply after this many instructions           |
| -enable           | Boolean | enable instruction tracing                   |
| -instructioncount | Boolean | include the instruction number in each trace |
| -off              | Boolean | disable instruction tracing                  |
| -on               | Boolean | enable instruction tracing                   |
| -registerchange   | Boolean | show registers changed by this instruction   |
| -registers        | Boolean | show registers after each trace              |

Table 12.2: itrace command arguments

# Registers

### 13.1 Level 1

#### 13.1.1 GPR

Registers at level:1, group:GPR

| Name | Bits | Initial-Hex | RW | Description |
|------|------|-------------|----|-------------|
| X    | 8    | 0           | rw | X           |
| A    | 8    | 0           | rw | A           |
| С    | 8    | 0           | rw | С           |
| В    | 8    | 0           | rw | В           |
| E    | 8    | 0           | rw | E           |
| D    | 8    | 0           | rw | D           |
| L    | 8    | 0           | rw | L           |
| H    | 8    | 0           | rw | Н           |

Table 13.1: Registers at level 1, group:GPR

#### 13.1.2 Bank1

Registers at level:1, group:Bank1

| Name   | Bits | Initial-Hex | RW | Description |
|--------|------|-------------|----|-------------|
| X[RB0] | 8    | 0           | rw | R00         |
| A[RB0] | 8    | 0           | rw | R01         |
| C[RB0] | 8    | 0           | rw | R02         |
| B[RB0] | 8    | 0           | rw | R03         |
| E[RB0] | 8    | 0           | rw | R04         |
| D[RB0] | 8    | 0           | rw | R05         |
| L[RB0] | 8    | 0           | rw | R06         |
| H[RB0] | 8    | 0           | rw | R07         |

Table 13.2: Registers at level 1, group:Bank1

#### 13.1.3 Bank2

Registers at level:1, group:Bank2

| Name   | Bits | Initial-Hex | RW | Description |
|--------|------|-------------|----|-------------|
| X[RB1] | 8    | 0           | rw | R08         |

| A[RB1] | 8 | 0 | rw | R09 |
|--------|---|---|----|-----|
| C[RB1] | 8 | 0 | rw | R10 |
| B[RB1] | 8 | 0 | rw | R11 |
| E[RB1] | 8 | 0 | rw | R12 |
| D[RB1] | 8 | 0 | rw | R13 |
| L[RB1] | 8 | 0 | rw | R14 |
| H[RB1] | 8 | 0 | rw | R15 |

Table 13.3: Registers at level 1, group:Bank2

#### 13.1.4 Bank3

Registers at level:1, group:Bank3

| Name   | Bits | Initial-Hex | RW | Description |
|--------|------|-------------|----|-------------|
| X[RB2] | 8    | 0           | rw | R16         |
| A[RB2] | 8    | 0           | rw | R17         |
| C[RB2] | 8    | 0           | rw | R18         |
| B[RB2] | 8    | 0           | rw | R19         |
| E[RB2] | 8    | 0           | rw | R20         |
| D[RB2] | 8    | 0           | rw | R21         |
| L[RB2] | 8    | 0           | rw | R22         |
| H[RB2] | 8    | 0           | rw | R23         |

Table 13.4: Registers at level 1, group:Bank3

#### 13.1.5 Bank4

Registers at level:1, group:Bank4

| Name   | Bits | Initial-Hex | RW | Description |
|--------|------|-------------|----|-------------|
| X[RB3] | 8    | 0           | rw | R24         |
| A[RB3] | 8    | 0           | rw | R25         |
| C[RB3] | 8    | 0           | rw | R26         |
| B[RB3] | 8    | 0           | rw | R27         |
| E[RB3] | 8    | 0           | rw | R28         |
| D[RB3] | 8    | 0           | rw | R29         |
| L[RB3] | 8    | 0           | rw | R30         |
| H[RB3] | 8    | 0           | rw | R31         |

Table 13.5: Registers at level 1, group:Bank4

#### 13.1.6 System

Registers at level:1, group:System

| Name | Bits | Initial-Hex | RW | Description            |
|------|------|-------------|----|------------------------|
| PSW  | 8    | 6           | r- | status register        |
| ES   | 8    | f           | rw | ES                     |
| CS   | 8    | 0           | rw | CS                     |
| PC   | 20   | 0           | rw | program counter        |
| PMC  | 8    | 0           | r- | processor mode control |
| MEM  | 8    | 0           | r- | MEM                    |
| SP   | 16   | 0           | rw | stack pointer          |

Table 13.6: Registers at level 1, group:System