K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS AC CIRCUITS

Numerical 1: A series RLC circuit containing a resistance of 50Ω , an inductance of 0.2H and a capacitor of 120μ F are connected in series across a 220V, 50Hz supply. Calculate:-

- a) the current drawn by the circuit
- b) V_R , V_L and V_C
- c) Power factor
- d) Draw the phasor digram

Figure 1: Circuit 1

Solution:

a) To calculate the current I we will first calculate the impedence Z We have $R=50\Omega$, L=0.2H, $C=120\mu F$, $V=220 \angle 0^{\circ}V$ and f=50Hz

$$X_{L} = 2\pi f L$$

$$= 2 \times \pi \times 50 \times 0.2$$

$$= 62.8318\Omega$$

$$X_{C} = \frac{1}{2\pi f C}$$

$$= \frac{1}{2 \times \pi \times 50 \times 120 \times 10^{-6}}$$

$$= 26.5258\Omega$$

$$\therefore Z = R + j(X_L - X_C)$$

$$= 50 + j(62.8318 - 26.5258)$$

$$= 50 + j36.306$$

$$= 61.791 \angle 35.9842^{\circ} \Omega$$

∴
$$I = \frac{V}{Z}$$

= $\frac{220 \angle 0^{\circ}}{61.791 \angle 35.9842^{\circ}}$
= $3.5604 \angle - 35.9842^{\circ}A$

$$\therefore I = 3.5604 \angle -35.9842^{\circ} A$$

- .: The current is 3.5604A lagging by 35.9842° w.r.t voltage
- b) Finding $V_{\rm R},\,V_{\rm L}$ and $V_{\rm C}$

 $V_{\rm R}$ is the voltage across the resistor.

$$\begin{array}{l} :: V_R = I \times R \\ \\ = 3.5604 \ \angle{-35.9842}^\circ{\times} \ 50 \\ \\ = 178.019 \ \angle{-35.9842}^\circ{V} \end{array}$$

 $\ensuremath{V_\mathrm{L}}$ is the voltage across the inductance.

$$\begin{split} \therefore V_{L} &= I \times X_{L} \\ &= 3.5604 \ \angle{-35.9842}^{\circ} \times 62.8318 \ \angle \ 90^{\circ} \\ &= 223.706 \ \angle \ 54.016^{\circ} V \end{split}$$

 $V_{\rm C}$ is the voltage across the capacitor.

$$\begin{array}{l} \therefore \, V_C = I \, \times \, X_C \\ = \, 3.5604 \, \angle - \, 35.9842^{\circ} \! \times \, 26.5258 \, \angle \, - \, 90^{\circ} \\ = \, 94.4422 \, \angle - \, 125.9842^{\circ} V \end{array}$$

$$\therefore V_R = 178.019 \angle -35.9842 ^{\circ} V$$

$$\therefore V_L = 223.706 \angle 54.016^{\circ} V$$

$$\therefore \mathbf{V_C} = 94.4422 \angle - 125.9842^{\circ} \mathbf{V}$$

c) Power Factor $(\cos\phi)$

$$\phi = 35.9842^{\circ}$$

$$\cos \phi = \cos 35.9842 = 0.8092$$
 (lagging)

$$\therefore P.F = 0.8092$$

d) Phasor Diagram

The phasor diagram for the circuit is as given figure 2:

Figure 2: Phasor Diagram

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

I. Simulation of circuit to find V_R , I and p.f

Figure 3: Circuit Schematic and Simulated Results for V_R, I and p.f

```
\begin{split} V_R &= 178.017 \ \angle{-35.9836}\text{°V} \\ I(R) &= 3.56034 \ \angle{-35.9836}\text{°A} \\ P.F &= \cos(-35.9386) = 0.80919 \end{split}
```

II. Simulation of circuit to find V_L

Figure 4: Circuit Schematic and Simulated Results for $V_{\rm L}$

 $V_{\rm L} = 223.703 \angle 54.0155 ^{\circ} V$

III. Simulation of circuit to find $V_{\rm C}$

Figure 5: Circuit Schematic and Simulated Results for V_C

 $V_{\rm C} = 94.441 \ \angle{-125.984}^{\circ}V$

Parameters	Theoretical values	Simulated values
I	3.5604 ∠− 35.9842°A	$3.56034 \angle - 35.9836$ °A
V_{R}	178.019 ∠− 35.9842°V	178.017 ∠− 35.9836°V
V_{L}	223.706 ∠ 54.016°V	$223.703 \angle 54.0155^{\circ}V$
$V_{\rm C}$	94.4422 ∠− 125.9842°V	94.441 ∠− 125.984°V
P.F $(\cos\phi)$	0.8092	0.80919

Table 1: Numerical 1

Numerical 2: A 60 Hz sinusoidal voltage $V=141 \sin \omega t$ is applied to a series R-L circuit. The values of the resistance and the inductance are 2Ω and 0.03 H respectively.

- a) The RMS value of the current in the circuit and its phase angle w.r.t to the voltage.
- b) The RMS value and the phase of the voltages appearing across the resistance and the inductance.
- c) Power factor of the circuit

Figure 6: Circuit 2

Solution:

a) To calculate the current I we will first calculate the impedence Z.

We have $R = 2\Omega$, L = 0.03H, $V = 141 \sin \omega t$ and f = 60Hz

$$\begin{split} \mathbf{X_L} &= 2\pi f \mathbf{L} \\ &= 2 \times \pi \times 60 \times 0.03 \\ &= 11.3097\Omega \\ \mathbf{V_{RMS}} &= \frac{V_{\mathrm{peak}}}{\sqrt{2}} \\ &= \frac{141}{\sqrt{2}} \end{split}$$

∴
$$Z = R + jX_L$$

= 2 + j11.3097
= 11.4852 ∠ 79.9715° Ω

= 100V

$$\therefore I = \frac{V}{Z}$$

$$= \frac{100 \angle 0^{\circ}}{11.4852 \angle 79.9715^{\circ}}$$

$$= 8.7069 \angle - 79.9715^{\circ}A$$

$$\therefore I = 8.7069 \angle -79.9715^{\circ} A$$

... The current is 8.7069A lagging by 79.9715° w.r.t voltage

b) Finding $V_{\rm R}$ and $V_{\rm L}$

V_R is the voltage across the resistor.

$$\therefore V_R = I \times R$$

= 8.7069 \angle - 79.9715°× 2
= 17.4137 \angle - 79.9715°V

 $V_{\rm L}$ is the voltage across the inductance.

$$\therefore V_L = I \times X_L$$

= 8.7069 \angle - 79.9715°× 11.3097 \angle 90°
= 98.4724 \angle 10.0285°V

$$\therefore V_{R} = 17.4137 \angle -79.9715^{\circ} V$$

$$\therefore V_L = 98.4724 \angle 10.0285^{\circ} V$$

c) Power Factor $(\cos\phi)$

$$\phi = 79.9715^{\circ}$$

$$\cos \phi = \cos 79.9715 = 0.17414 \text{ (lagging)}$$

$$\therefore P.F = 0.17414$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

I. Simulation of circuit to find V_R, I and p.f

Figure 7: Circuit Schematic and Simulated Results for V_R , I and p.f

$$\begin{split} V_R &= 17.4134 \ \angle{-} \ 79.9666^\circ V \\ I(R) &= 8.70672 \ \angle{-} \ 79.9666^\circ A \\ P.F &= \cos(-79.9666) = 0.17422 \end{split}$$

II. Simulation of circuit to find $V_{\rm L}$

Figure 8: Circuit Schematic and Simulated Results for $V_{\rm L}$

 $V_{\rm L} = 98.4707 \ \angle \ 10.0283 ^{\circ} V$

Parameters	Theoretical values	Simulated values
I	8.7069 ∠− 79.9715°A	8.70672 ∠− 79.9666°A
V_{R}	17.4137 ∠− 79.9715°V	17.4134 ∠− 79.9666°V
$ m V_L$	$98.4724 \angle 10.0285$ °V	98.4702 ∠ 10.0283°V
P.F $(\cos\phi)$	0.17414	0.17422

Table 2: Numerical 2

Numerical 3: A pure resistance of 35 ohms is in series with a pure capacitance of 80uF.

The series combination is connected across 100V, 60 Hz supply. Find:-

- (a) the impedance
- (b) current
- (c) phase angle
- (d) power factor
- (e) voltage across resistor
- (f) voltage across capacitor.

Figure 9: Circuit 3

Solution:

a) Finding impedence Z

We have $R = 35\Omega$, $C = 80\mu F$, V = 100V and f = 60Hz

$$\begin{split} \mathbf{X_{C}} &= \frac{1}{2\pi fC} \\ &= \frac{1}{2\times\pi\times60\times80\times10^{\text{-}6}} \\ &= 33.1573\Omega \end{split}$$

∴
$$Z = R - jX_C$$

= 35 - j33.1573
= 48.2121 ∠- 43.4513° Ω

$$\therefore \mathbf{Z} = 48.2121 \angle - 43.4513^{\circ}\Omega$$

b) Finding Current I

$$\begin{split} \therefore \mathbf{I} &= \frac{V}{Z} \\ &= \frac{100 \angle 0^{\circ}}{48.2121 \angle -43.4513^{\circ}} \\ &= 2.0742 \angle 43.4513^{\circ} \mathbf{A} \end{split}$$

$\therefore I = 2.0742 \angle 43.4513^{\circ} A$

- \therefore The current is 2.0742A leading by 43.4513° w.r.t voltage
- c) Phase Angle (ϕ)

$$\phi = 45.4513^{\circ}$$

 \therefore Phase Angle = 45.4513°

d) Power Factor $(\cos\phi)$

$$\phi = 45.4513^{\circ}$$

$$\therefore \phi = \cos 45.4513 = 0.72596 \text{ (leading)}$$

$$\therefore P.F = 0.72596$$

e) Finding V_R

 $V_{\rm R}$ is the voltage across the resistor.

∴
$$V_R = I \times R$$

= 2.0742 ∠ 43.4513°× 35
= 72.597 ∠ - 43.4513°V

$$\therefore V_{\rm R} = 72.597 \angle 43.4513^{\circ} \, \mathrm{V}$$

f) Finding V_C

 $V_{\rm C}$ is the voltage across the capacitance.

$$\begin{split} \therefore V_{L} &= I \times X_{C} \\ &= 2.0742 \angle 43.4513^{\circ} \times 33.157 \angle -90^{\circ} \\ &= 68.7749 \angle -46.5487^{\circ} V \end{split}$$

$$\therefore V_{\rm C} = 68.7749 \angle -46.5487^{\circ} V$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

I. Simulation of circuit to find V_R, I, Z, phase angle and p.f

Figure 10: Circuit Schematic and Simulated Results for V_R, I, Z, phase angle and p.f

$$\begin{split} &V_R = 72.5959 \angle 43.4513°V \\ &I(R) = 2.07417 \angle - 136.549°A \\ &Z = \frac{V}{I(V)} = \frac{100 \angle 0°}{2.07417 \angle - 136.549°} = 48.21206 \angle 136.549° \\ &\phi = 43.4513° \\ &P.F = \cos(43.4513) = 0.72596 \end{split}$$

II. Simulation of circuit to find $V_{\rm C}$

Figure 11: Circuit Schematic and Simulated Results for V_C

 $V_{\rm C} = 68.7738 \ \angle{-46.5487}^{\circ} V$

Parameters	Theoretical values	Simulated values
Z	$48.2121 \angle -43.4513^{\circ}\Omega$	48.21206 ∠ 136.549°Ω
I	$2.0742 \angle 43.4513^{\circ} A$	$2.07417 \angle - 136.549$ °A
V_{R}	72.597 ∠ 43.4513°V	$72.5959 \angle 43.4513$ °V
$V_{\rm C}$	68.7749 ∠− 46.5487°V	68.7738 ∠− 46.5487°V
ϕ	43.4513°	43.4513°
P.F $(\cos\phi)$	0.72596	0.72596

Table 3: Numerical 3

Numerical 4: A circuit consists of resistance of 45Ω , an inductance of 34mH and a capacitor of $50\mu\text{F}$ are connected in parallel across a 110V, 50Hz supply. Calculate:

- a) Individual currents drawn by each element.
- b) Total current drawn from the supply.
- c) Overall power factor of the circuit.
- d) Draw the phasor diagram.

Figure 12: Circuit 4

Solution:

a) To calculate the individual currents I_R , I_L and I_C , we will first calculate the impedences Z_R , Z_L and Z_C across R1, L1 and C1 respectively.

We have $R = 45\Omega$, L = 34mH, $C = 50\mu F$, $V = 110 \angle 0^{\circ}V$ and f = 50Hz

$$\begin{split} \mathbf{X_L} &= 2\pi f \mathbf{L} \\ &= 2 \times \pi \times 50 \times 34 \times 10^{-3} \\ &= 10.6814\Omega \end{split}$$

$$X_{C} = \frac{1}{2\pi f C}$$

$$= \frac{1}{2 \times \pi \times 50 \times 50 \times 10^{-6}}$$

$$= 63.662\Omega$$

$$\therefore Z_R = R = 45\Omega$$

$$\therefore Z_L = jX_L = j10.6814 = 10.6814 \angle 90^{\circ} \Omega$$

$$\therefore Z_{\rm C} = -jX_{\rm C} = -j63.662 = 63.662 \angle -90^{\circ} \Omega$$

$$\begin{split} \therefore \mathrm{I_R} &= \frac{V}{Z_\mathrm{R}} \\ &= \frac{110 \angle 0^\circ}{45 \angle 0^\circ} \\ &= 2.4444 \angle 0^\circ \mathrm{A} \end{split}$$

$$\begin{split} \therefore \mathbf{I_L} &= \frac{V}{Z_{\mathrm{L}}} \\ &= \frac{110 \angle 0^{\circ}}{10.6814 \angle 90^{\circ}} \\ &= 10.2983 \ \angle - \ 90^{\circ} \mathbf{A} \end{split}$$

$$\therefore I_{\rm C} = \frac{V}{Z_{\rm C}}$$

$$= \frac{110 \angle 0^{\circ}}{63.662 \angle -90^{\circ}}$$

$$= 1.7279 \angle 90^{\circ} A$$

\therefore I_R = 2.4444 \angle 0° A

The current across the resistor is 2.4444A in phase with the voltage.

$$\therefore I_L = 10.2983 \, \angle - 90^\circ \; A$$

The current across the inductor is 10.2983A lagging by $\angle -90^{\circ}\,\mathrm{w.r.t}$ voltage.

$$\therefore$$
 $I_C = 1.7279 \angle 90^{\circ}$ A

The current across the capacitance is 1.7279A leading by \angle 90° w.r.t voltage.

b) Finding the total current I

$$\begin{split} I &= I_R + I_L + I_C \\ &= 2.4444 \angle 0^\circ + 10.2983 \angle -90^\circ + 1.7279 \angle 90^\circ \\ &= 2.4444 + j0 + 0 - j10.2983 + 0 + j1.7279 \\ &= 2.4444 - j8.5704 \\ &= 8.9122 \angle -74.081^\circ \end{split}$$

$\therefore I = 8.9122 \angle -74.081^{\circ} A$

...The total current is 8.9122A lagging by 74.081° w.r.t voltage.

c) Power Factor $(\cos\phi)$

$$\phi = 74.081^{\circ}$$

$$\cos \phi = \cos (74.081) = 0.2743 \text{ (lagging)}$$

$$\therefore P.F = 0.2743$$

d) Phasor Diagram

The phasor diagram for the circuit is as given figure 13:

Figure 13: Phasor Diagram

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 14: Circuit Schematic and Simulated Results

 $I(R) = 2.4444 \angle 0^{\circ}A$

 $I(L) = 10.2983 \angle - 89.9946$ °A

 $I(C) = 1.72788 \angle 90^{\circ}A$

 $I(V) = 8.91244 \angle 105.925^{\circ} = 8.91244 \angle 105.925 - 180^{\circ} = 8.91244 \angle - 74.075^{\circ} A$

 $P.F = \cos(74.075) = 0.2744$

Parameters	Theoretical values	Simulated values
I	8.9122 ∠− 74.081°A	$8.91244 \angle - 74.075^{\circ}A$
I_{R}	$2.4444 \angle 0^{\circ}A$	2.4444 ∠ 0°A
I_{L}	10.2983 ∠− 90°A	$10.2983 \angle - 89.9946$ °A
$I_{\rm C}$	1.7279 ∠ 90°A	1.72788 ∠ 90°A
P.F $(\cos\phi)$	0. 2743	0.2744

Table 4: Numerical 4

Numerical 5: A coil having a resistance of $R1=4\Omega$ and an inductance of L1=0.03 H is arranged in parallel with another coil having a resistance of $R2=3\Omega$ and an inductance of L2=0.09 H. Calculate the currents I, I1 and I2 when a voltage of V1=100 V at 50 Hz is applied. Also calculate the power factor of the circuit.

Figure 15: Circuit 5

Solution:

To calculate the currents, we will first calculate the impedences.

We have $R_1 = 4\Omega$, $R_2 = 3\Omega$, $L_1 = 0.03H$, $L_2 = 0.09H$, V = 100V and f = 50Hz.

$$X_{L_1} = 2\pi f L_1$$

$$= 2 \times \pi \times 50 \times 0.03$$

$$= 9.4248\Omega$$

$$X_{L_2} = 2\pi f L_2$$

= 2 × \pi × 50 × 0.09
= 28.2743\Omega

∴
$$Z_1 = R + jX_{L_1}$$

= 4 + j9.4248
= 10.2385 ∠ 67° Ω

$$\begin{split} \therefore Z_2 &= R + j X_{L_2} \\ &= 3 + j 28.2743 \\ &= 28.433 \angle 83.9433 ^{\circ} \Omega \end{split}$$

∴
$$I_1 = \frac{V}{Z_1}$$

= $\frac{100 \angle 0^{\circ}}{10.2385 \angle 67^{\circ}}$
= $9.7671 \angle -67^{\circ}A$

∴
$$I_2 = \frac{V}{Z_2}$$

= $\frac{100 \angle 0^{\circ}}{28.433 \angle 83.9433^{\circ}}$
= $3.51704 \angle - 83.9433^{\circ}A$

$$I=I_1\,+\,I_2$$

$$= 9.7671 \angle - 67^{\circ} + 3.51704 \angle - 83.9433^{\circ}$$

$$= 3.8163 - j8.9907 + 0.3711 - j3.4974$$

$$= 4.1874 - j12.4881$$

$$= 13.1714 \angle -71.463^{\circ}$$

$$\therefore \mathbf{I_1} = 9.7671 \angle -67^{\circ} \mathbf{A}$$

The current across Z_1 is 9.7671A lagging by 67° w.r.t voltage

$$\therefore \mathbf{I_2} = 3.51704 \angle - 83.9433^{\circ} \ \mathbf{A}$$

The current across Z₂ is 3.517041A lagging by 83.9433° w.r.t voltage

$$\therefore$$
 I = 13.1714 \angle - 71.463° A

The total current is 13.1714A lagging by 71.463° w.r.t voltage

c) Power Factor $(\cos\phi)$

$$\phi = 71.463^{\circ}$$

$$\cos \phi = \cos 71.463 = 0.31792 \text{ (lagging)}$$

$$P.F = 0.31792$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 16: Circuit Schematic and Simulated Results

$$\begin{split} I_1 &= I(L1) = 9.7667 \ \angle{-66.9978}^\circ A \\ I_2 &= I(L2) = 3.51702 \ \angle{-83.9414}^\circ A \\ I &= 13.171 \ \angle{108.539}^\circ = 13.171 \ \angle{108.539}^\circ - 180^\circ = 13.171 \ \angle{-71.461}^\circ A \\ P.F &= \cos(71.461) = 0.31795 \end{split}$$

Parameters	Theoretical values	Simulated values
I_1	9.7671 ∠− 67°A	$9.7667 \angle -66.9978^{\circ}A$
I_2	$3.51704 \angle - 83.9433$ °A	$3.51702 \angle - 83.9414^{\circ}A$
I	13.1714 ∠− 71.463°A	13.171 ∠− 71.461°A
P.F $(\cos\phi)$	0. 31792	0.31795

Table 5: Numerical 5

Numerical 6: Find I, I_1 and I_2 and voltage drops in each branch in the circuit shown in figure 6, if $R_1=2\Omega$, $L_1=j8\Omega$, $R_2=15\Omega$, $L_2=j10\Omega$, $R_3=12\Omega$, $C_1=-j2\Omega$, V1=100V and frequency = 50 Hz

Figure 17: Circuit 6

Solution:

To calculate the currents and voltage drops we will first calculate the impedences.

We have $R_1 = 2\Omega$, $L_1 = j8\Omega$, $R_2 = 15\Omega$, $L_2 = j10\Omega$, $R_3 = 12\Omega$, $C_1 = -j2\Omega$, V1 = 100V and f = 50Hz

$$X_{L_1} = 2\pi f L_1$$

$$\therefore 8 = 2\pi f L_1$$

$$\therefore L_1 = \frac{8}{2\pi \times 50}$$
$$= 0.02546H$$

$$X_{L_2} = 2\pi f L_2$$

$$\therefore 10 = 2\pi f \mathcal{L}_2$$

$$\therefore L_1 = \frac{10}{2\pi \times 50} = 0.031831H$$

$$X_{C_1} = \frac{1}{2\pi f C_1}$$

$$\therefore 2 = \frac{1}{2\pi f C_1}$$

$$\therefore C_1 = \frac{1}{2 \times \pi \times 50 \times 2}$$

$$= 1.59155 mF$$

$$\begin{split} \therefore Z_1 &= R + j X_{L_1} \\ &= 2 + j 8 \\ &= 8.2462 \angle 75.9638^{\circ} \, \Omega \end{split}$$

$$\begin{split} \therefore \, Z_2 &= R + j X_{L_2} \\ &= 15 \, + j 10 \\ &= 18.0278 \, \angle \, 33.69^\circ \, \Omega \end{split}$$

∴
$$Z_3 = R = jX_{C_1}$$

= 12 - j2
= 12.1655 ∠- 9.4623° Ω

Impedences Z_2 and Z_3 are connected in parallel and this combination in turn, is connected in series with Z_1 .

So the effective impedence \mathbf{Z}_{eff} is :-

$$\begin{array}{l} \therefore Z_{\rm eff} = Z_1 + (Z_2 \mid\mid Z_3) \\ = Z_1 + \frac{Z_2 \times Z_3}{Z_2 + Z_3} \\ = 8.2462 \angle 75.9638^\circ + \frac{18.0278 \angle 33.69^\circ \times 12.1655 \angle - 9.4623}{18.0278 \angle 33.69^\circ + 12.1655 \angle - 9.4623} \\ = 2 + j8 + \frac{219.372 \angle 24.2277^\circ}{15 + j10 + 12 - j2} \\ = 2 + j8 + \frac{219.372 \angle 24.2277^\circ}{28.1603 \angle 16.5044^\circ} \\ = 2 + j8 + 7.7882 \angle 7.7233^\circ \\ = 2 + j8 + 7.7176 + j1.0466 \\ = 9.7176 + j9.0466 \\ = 13.2768 \angle 42.952^\circ \end{array}$$

$$\begin{split} \therefore \mathbf{I} &= \frac{V}{Z_{\text{eff}}} \\ &= \frac{100 \angle 0^{\circ}}{13.2768 \angle 42.952^{\circ}} \\ &= 7.53193 \ \angle -\ 42.952^{\circ} \mathbf{A} \end{split}$$

By Current Division Rule, we have

$$\begin{split} \mathbf{I}_1 &= \mathbf{I} \times \frac{Z_3}{Z_2 + Z_3} \\ &= 7.53193 \angle - 42.952^{\circ} \times \frac{12.1655 \angle - 9.4623^{\circ}}{15 + j10 + 12 - j2} \\ &= \frac{91.6297 \angle - 52.4143^{\circ}}{27 + j8} \\ &= \frac{91.6297 \angle - 52.4143^{\circ}}{28.1603 \angle 16.5044^{\circ}} \\ &= 3.25386 \angle - 68.919^{\circ} \mathbf{A} \end{split}$$

$$\begin{split} \therefore I_2 &= I - I_1 \\ &= 7.53193 \ \angle{-42.952 - 3.25386} \ \angle{-68.919} \\ &= 5.5128 - j5.1321 - 1.17037 + j3.0361 \\ &= 4.34243 - j2.096 \\ &= 4.82182 \ \angle{-25.7656}^\circ A \end{split}$$

$I = 7.53193 \angle -42.952^{\circ} A$

The total current is 7.53193A lagging by 42.952° w.r.t voltage

$\therefore I_1 = 3.25386 \angle -68.919^{\circ} A$

The current through Z_1 is 3.25386A lagging by 68.919° w.r.t voltage

$$I_2 = 4.82182 \angle -25.7656^{\circ} A$$

The current through Z_2 is 4.82182A lagging by 25.7656° w.r.t voltage

The branch voltages are $V_{\rm A}$ and $V_{\rm B}$.

$$\therefore V_B = I_1 Z_2$$

= 3.25386 \angle - 68.919°× 18.0278 \angle 33.69°
= 58.6599 \angle - 35.229°V

$$\therefore$$
 V_A = I Z₁
= 7.53193 \angle - 42.952°× 8.2462 \angle 75.9638°
= 62.1098 \angle 33.0118°V

\therefore V_A = 62.1098 \angle 33.0118° V

The branch voltage through Z₁ is 62.1098V leading by 33.0118° w.r.t supply voltage

$$\therefore \, \mathbf{V_B} \, = 58.6599 \, \angle -35.229^\circ \, \mathbf{V}$$

The branch voltage through Z₂ and Z₂ is 58.6599V lagging by 35.229° w.r.t supply voltage

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 18: Circuit Schematic and Simulated Results

$$\begin{split} &I_1 = I(L2) = 3.25385 \ \angle{-68.91}^\circ A \\ &I_2 = I(C1) = 4.82201 \ \angle{-154.241}^\circ = 4.82201 \ \angle{-154.241}^\circ - 180^\circ = 4.82201 \ \angle{-25.759}^\circ A \\ &I = 7.53213 \ \angle{-137.056}^\circ = 7.53213 \ \angle{-137.056}^\circ - 180^\circ = 7.53213 \ \angle{-42.944}^\circ A \\ &V_B = V(b) = 58.6623 \ \angle{-35.2217}^\circ V \\ &V_A = V(a) - V(b) = 100 \ \angle{-0}^\circ - 58.6623 \ \angle{-35.2217}^\circ = 62.1024 \ \angle{-33.0106}^\circ V \end{split}$$

Parameters	Theoretical values	Simulated values
I_1	$3.25386 \angle -68.919$ °A	$3.25385 \angle -68.91^{\circ}A$
I_2	4.82182 ∠− 25.7656°A	4.82201 ∠− 25.759°A
I	$7.53193 \angle -42.952$ °A	7.53213 ∠- 42.944°A
V_{A}	62.1098 ∠ 33.0118°A	62.1024 ∠ 33.0106°V
V_{B}	$58.6599 \angle -35.229$ °A	58.6623 ∠- 35.2217°V

Table 6: Numerical 6

Numerical 7: A 60 Hz sinusoidal voltage $V = 141 \sin \omega t$ is applied to a series R-L circuit. The values of the resistance and the inductance are 2Ω and 0.03 H respectively. Determine the following:

- a) Calculate the peak voltage across resistor and inductor and also find the peak value of source current in LTspice
- b) Plot input source voltage V_S(t) vs input source current I_S(t) in LTspice
- c) Measure the phase delay/difference between $V_S(t)$ vs $I_S(t)$ in time and degrees
- d) Plot input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$ in LTspice
- e) Measure the phase delay/difference between $V_S(t)$ vs $V_R(t)$ in time and degrees
- f) Plot input source voltage $V_S(t)$ vs voltage across inductor $V_L(t)$ in LTspice
- g) Measure the phase delay/difference between $V_S(t)$ vs $V_L(t)$ in time and degrees
- h) Calculate the power factor of the circuit.

Figure 19: Circuit 7

Solution:

a) Finding peak voltages across resistor and inductor (VR_{(peak)} and VL_{(peak)}) and peak current (I_{(peak)})

We have $R = 2\Omega$, L = 0.03H, $V = 141\sin\omega t$ and f = 60Hz

$$V_{RMS} = \frac{V_{peak}}{\sqrt{2}}$$
$$= \frac{141}{\sqrt{2}}$$
$$= 100V$$

$$\begin{split} \mathbf{X_L} &= 2\pi f \mathbf{L} \\ &= 2 \times \pi \times 60 \times 0.03 \\ &= 11.3097 \Omega \end{split}$$

∴
$$Z = R + jX_L$$

= 2 + j11.3097
= 11.4852 ∠ 79.9715° Ω

$$\begin{split} \therefore \, \mathrm{I}_{\mathrm{RMS}} &= \frac{V_{\mathrm{RMS}}}{Z} \\ &= \frac{100 \angle 0^{\circ}}{11.4852 \angle 79.9715^{\circ}} \\ &= 8.7069 \, \angle - \, 79.9715^{\circ} \mathrm{A} \end{split}$$

$$\therefore I_{(peak)} = I_{RMS} \times \sqrt{2}$$

=
$$8.7069 \angle - 79.9715^{\circ} \times \sqrt{2}$$

= $12.3133 \angle - 79.9715^{\circ} A$

$$\begin{split} V_R &= I_{RMS} \times R \\ &= 8.7069 \ \angle{-} \ 79.9715 \times 2 \\ &= 17.41372 \ \angle{-} \ 79.9715 ^{\circ} V \end{split}$$

$$\begin{split} \therefore V_{R_{(\mathrm{peak})}} &= V_{R} \times \sqrt{2} \\ &= 17.41372 \ \angle{-} \ 79.9715^{\circ} \times \sqrt{2} \\ &= 24.6267 \ \angle{-} \ 79.9715^{\circ} V \end{split}$$

$$\begin{split} V_L &= I_{RMS} \, \times \, X_L \\ &= 8.7069 \, \angle{-} \, \, 79.9715^{\circ} \! \times \, 11.3097 \, \angle \, \, 90^{\circ} \\ &= 98.4719 \, \angle \, \, 10.0285^{\circ} V \end{split}$$

$$\begin{split} \therefore V_{L_{(peak)}} &= V_L \times \sqrt{2} \\ &= 98.4719 \angle 10.02855^{\circ} \times \sqrt{2} \\ &= 139.26047 \angle 10.0285^{\circ} V \end{split}$$

$$\therefore I_{(peak)} = 12.3133 \angle -79.9715^{\circ} A$$

$$\therefore V_{R_{(peak)}} = 24.6267 \angle -79.9715^{\circ}~V$$

$$\therefore V_{L_{(peak)}} = 139.2604 \, \angle 10.0285^{\circ} \, V$$

b) Graph of input source voltage $V_S(t)$ vs input source current $I_S(t)$

Figure 20: $V_S(t)$ vs $I_S(t)$

c) Phase delay/difference between $V_S(t)$ vs $I_S(t)$ in time and degrees.

$$f = 60$$
Hz
 $\therefore T = \frac{1}{f} = \frac{1}{50} = 16.67$ ms

We have V = 100
$$\angle$$
 0°, I = 8.7069 $\angle -$ 79.9715°A

Phase difference =
$$\Delta \theta = 180^{\circ}$$
- 79.9715° = 100.0285°

Phase delay =
$$\Delta t = \frac{\Delta \theta \times T}{360}$$

= $\frac{100.0285 \times 16.67}{360}$
= 4.63187 ms

- $\therefore \Delta \theta = 100.0285^{\circ}$
- $\Delta t = 4.63187 \text{ ms}$
- d) Graph of input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$

Figure 21: $V_S(t)$ vs $V_R(t)$

e) Phase delay/difference between $V_{\rm S}(t)$ vs $V_{\rm R}(t)$ in time and degrees.

We have V = 100
$$\angle$$
 0°, V_R = 17.41372 \angle - 79.9715°V

Phase difference = $\Delta \theta = 79.9715^{\circ}$

Phase delay =
$$\Delta t = \frac{\Delta \theta \times T}{360}$$

= $\frac{79.9715 \times 16.67}{360}$
= 3.703124 ms

$$\therefore \Delta \theta = 79.9715^{\circ}$$

$$\therefore \Delta t = 3.703124 \text{ ms}$$

f) Graph of input source voltage $V_{\rm S}(t)$ vs voltage across inductor $V_{\rm L}(t)$

Figure 22: $V_S(t)$ vs $V_L(t)$

g) Phase delay/difference between $V_{\rm S}(t)$ vs $V_{\rm L}(t)$ in time and degrees.

We have V = 100 \angle 0°, V_L = 98.4719 \angle 10.0285°V

Phase difference = $\Delta\theta$ = 10.0285°

Phase delay =
$$\Delta t = \frac{\Delta \theta \times T}{360}$$

= $\frac{10.0285 \times 16.67}{360}$
= 0.464375 ms

- $\therefore \Delta \theta = 10.0285^{\circ}$
- $\Delta t = 0.464375 \text{ ms}$
- h) Power Factor $(\cos\phi)$

$$\phi = 79.9715^{\circ}$$

- $\cos \phi = \cos (79.9715) = 0.174138 \text{ (lagging)}$
- $\therefore P.F = 0.174138$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

V(peak) = 140.99121V VR(peak) = 25.06099V VL(peak) = 138.14462V I(peak) = 12.122803A p.f = cos(79.8597) = 0.17605

phase delay between V(peak) and I(peak) = 4.6099291*360/16.67 = 99.5545 phase delay between V(peak) and VR(peak) = 3.6919505*360/16.67 = 79.8597 phase delay between V(peak) and VL(peak) = 0.46439628*360/16.6 = 10.0289

Figure 23: Circuit Schematic and Simulated Results

Graph of input source voltage V_S(t) vs input source current I_S(t) is shown in figure 24

Figure 24: $V_S(t)$ vs $I_S(t)$

Graph of input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$ is shown in figure 25

Figure 25: $V_S(t)$ vs $V_R(t)$

Graph of input source voltage $V_{\rm S}(t)$ vs voltage across inductor $V_{\rm L}(t)$ is shown in figure 26

Figure 26: $V_S(t)$ vs $V_L(t)$

Parameters	Theoretical values	Simulated values
$V_{ m R(peak)}$	24.6767V	25.06099V
$V_{L(peak)}$	139.26047V	138.14462V
$I_{ m peak}$	12.3133A	12.122803A
Phase delay between $V_S(t)$ vs $I_S(t)$	4.63187 ms	4.6099291 ms
	100.0285°	99.5545°
Phase delay between $V_S(t)$ vs $V_R(t)$	3.70312 ms	3.6919505 ms
	79.9715°	79.8597°
Phase delay between $V_S(t)$ vs $V_L(t)$	0.464375 ms	0.46439628 ms
	10.0285°	10.0289°
P.F $(\cos\phi)$	0.174138	0.17605

Table 7: Numerical 7

Numerical 8: A pure resistance of 35Ω is in series with a pure capacitance of 80μ F. The series combination is connected across 100V, 60 Hz supply.

Determine the following:

- a) Calculate the peak voltage across resistor and capacitor and also find the peak value of source current in LTspice
- b) Plot input source voltage V_S(t) vs input source current I_S(t) in LTspice
- c) Measure the phase delay/difference between $V_S(t)$ vs $I_S(t)$ in time and degrees
- d) Plot input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$ in LTspice
- e) Measure the phase delay/difference between $V_S(t)$ vs $V_R(t)$ in time and degrees
- f) Plot input source voltage $V_{\rm S}(t)$ vs voltage across capacitor $V_{\rm L}(t)$ in LTspice
- g) Measure the phase delay/difference between $V_S(t)$ vs $V_L(t)$ in time and degrees
- h) Calculate the power factor of the circuit.

Figure 27: Circuit 8

Solution:

a) Finding peak voltages across resistor and capacitor($V_{R_{(peak)}}$ and $V_{C_{(peak)}}$) and peak current($I_{(peak)}$)

We have $R = 35\Omega$, $C = 80\mu F$, V = 100V and f = 60Hz

$$= 100 \times \sqrt{2}$$

$$= 141V$$

$$X_{C} = \frac{1}{2\pi f C}$$

$$= \frac{1}{2 \times \pi \times 60 \times 80 \times 10^{-6}}$$

$$= 33.1573\Omega$$

 $V_{(peak)} = V_{RMS} \sqrt{2}$

∴
$$Z = R - jX_C$$

= 2 - j33.1573
= 48.2121 ∠- 43.4513° Ω

$$\begin{split} \therefore I_{(peak)} &= I_{RMS} \times \sqrt{2} \\ &= 2.0741 \angle 43.4513^{\circ} \times \sqrt{2} \\ &= 2.9333 \angle 43.4513^{\circ} A \end{split}$$

$$\begin{split} V_R &= I_{RMS} \times R \\ &= 2.0741 \angle 43.4513^{\circ} \!\! \times 35 \\ &= 72.5935 \angle 43.4513^{\circ} \!\! V \end{split}$$

$$\begin{split} \therefore V_{R_{(peak)}} &= V_R \, \times \sqrt{2} \\ &= 72.5935 \, \angle 43.4513^{\circ} \! \times \sqrt{2} \\ &= 102.6627 \, \angle 43.4513^{\circ} V \end{split}$$

$$\begin{split} V_{\rm C} &= I_{\rm RMS} \, \times \, X_{\rm C} \\ &= 2.0741 \, \angle \, 43.4513^{\circ} \! \times \, 33.1573 \, \angle -90^{\circ} \\ &= 68.7715 \, \angle -\, 46.5487^{\circ} V \end{split}$$

$$\begin{split} \therefore V_{C_{(peak)}} &= V_{C} \times \sqrt{2} \\ &= 68.7715 \ \angle{-46.5487} \times \sqrt{2} \\ &= 97.2577 \ \angle{-46.5487}^{\circ} V \end{split}$$

$$\therefore I_{(peak)} = 2.9333 \angle 43.4513^{\circ} A$$

$$\therefore V_{R_{(peak)}} = 102.6627 \, \angle 43.4513^{\circ} \, V$$

$$\therefore \mathrm{V_{C_{(peak)}}} = 97.2577 \, \angle -46.5487^{\circ} \, \mathrm{V}$$

b) Graph of input source voltage $V_S(t)$ vs input source current $I_S(t)$

Figure 28: $V_S(t)$ vs $I_S(t)$

c) Phase delay/difference between $V_S(t)$ vs $I_S(t)$ in time and degrees.

$$f = 60$$
Hz
 $\therefore T = \frac{1}{f} = \frac{1}{50} = 16.67$ ms

We have V = 100
$$\angle$$
 0°, I = 2.0741 \angle 43.4513°A

Phase difference =
$$\Delta \theta = 180^{\circ}$$
- 43.4513° = 136.5487°

Phase delay =
$$\Delta t = \frac{\Delta \theta \times T}{360}$$

= $\frac{136.54875 \times 16.67}{360}$
= 6.3229ms

- $\Delta \theta = 136.54875^{\circ}$
- $\therefore \Delta t = 6.3229 \text{ ms}$
- d) Graph of input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$

Figure 29: $V_S(t)$ vs $V_R(t)$

e) Phase delay/difference between $V_S(t)$ vs $V_R(t)$ in time and degrees.

We have V = 100
$$\angle$$
 0°, V_R = 72.5935 \angle 43.4513°V

Phase difference = $\Delta \theta = 43.4513^{\circ}$

Phase delay =
$$\Delta t = \frac{\Delta \theta \times T}{360}$$

= $\frac{43.4513 \times 16.67}{360}$
= 2.01204 ms

$$\Delta \theta = 43.4513^{\circ}$$

$$\therefore \Delta t = 2.01204 \text{ ms}$$

f) Graph of input source voltage $V_{\rm S}(t)$ vs voltage across capacitor $V_{\rm C}(t)$

Figure 30: $V_S(t)$ vs $V_C(t)$

g) Phase delay/difference between $V_{\rm S}(t)$ vs $V_{\rm C}(t)$ in time and degrees.

We have
$$V = 100 \angle 0^{\circ}$$
, $V_C = 68.7715 \angle -46.5487^{\circ}V$

Phase difference =
$$\Delta\theta = 46.5487^{\circ}$$

Phase delay =
$$\Delta t = \frac{\Delta \theta \times T}{360}$$

= $\frac{46.5487 \times 16.67}{360}$
= 2.1555 ms

$$\therefore \Delta\theta = 46.5487^{\circ}$$

$$\therefore \Delta t = 2.1555 \text{ ms}$$

h) Power Factor $(\cos\phi)$

$$\phi = 43.4513^{\circ}$$

$$\cos \phi = \cos (43.4513) = 0.7259 \text{ (leading)}$$

$$\therefore$$
 P.F = 0.7259

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

V(peak) = 140.98085V I(peak) = 2.9241068A VR(peak) = 102.36043V VC(peak) = 96.948538V p.f = cos(43.125) = 0.7298

phase delay between I(peak) and V(peak) = 6.3143394*360/16.67 = 136.36 phase delay between VR(peak) and V(peak) = 1.996904*360/16.67 = 43.125 phase delay between VC(peak) and V(peak) = 2.1594427*360/16.67 = 46.635

Figure 31: Circuit Schematic and Simulated Results

Graph of input source voltage V_S(t) vs input source current I_S(t) is shown in figure 32

Figure 32: $V_S(t)$ vs $I_S(t)$

Graph of input source voltage $V_S(t)$ vs voltage across resistor $V_R(t)$ is shown in figure 33

Figure 33: $V_S(t)$ vs $V_R(t)$

Graph of input source voltage $V_S(t)$ vs voltage across capacitor $V_C(t)$ is shown in figure 34

Figure 34: $V_S(t)$ vs $V_C(t)$

Parameters	Theoretical values	Simulated values
$V_{R(peak)}$	102.6627V	102.36043V
$ m V_{C(peak)}$	97.2577V	96.948538V
$I_{ m peak}$	2.9333A	2.92481068A
Phase delay between $V_S(t)$ vs $I_S(t)$	6.32297 ms	6.3143394 ms
	136.54875°	136.36°
Phase delay between $V_S(t)$ vs $V_R(t)$	2.01204ms	1.996904 ms
	43.4513°	43.125°
Phase delay between $V_S(t)$ vs $V_C(t)$	2.1555 ms	2.1594427ms
	46.5487°	46.635°
P.F $(\cos\phi)$	0.7259	0.7298

Table 8: Numerical 8

Numerical 9: A series resonance network consisting of a resistor of 27Ω , a capacitor of 2μ F and an inductor of 25mH is connected across a sinusoidal supply voltage which has a constant output of AC 9 volts at all frequencies. Calculate, the resonant frequency, the current at resonance, the voltage across the inductor and capacitor at resonance, the quality factor and the bandwidth of the circuit. Plot the resonance curve, the current at resonance, the voltage across the inductor and capacitor at resonance in LTspice.

Figure 35: Circuit 9

Solution:

a) Calculating Resonant Frequency (f_R)

We have $R = 27\Omega$, $C = 2\mu F$, L = 25mH and V = 9V.

$$V_{(peak)} = V_{RMS} \sqrt{2}$$

$$= 9 \times \sqrt{2}$$

$$= 12.727V$$

$$\therefore f_{R} = \frac{1}{2\pi\sqrt{LC}}$$

$$= \frac{2\pi\sqrt{LC}}{2\pi\sqrt{25 \times 10^{-3} \times 2 \times 10^{-6}}}$$
= 711.76Hz

 \therefore Resonant Frequency = $f_R = 711.76 \text{ Hz}$

b) Calculating the current at resonance

$$\therefore I_{RMS} = \frac{V}{R}$$

$$= \frac{9}{27}$$

$$= 333.333 \text{mA}$$

$$\begin{split} \therefore I_{(peak)} &= I_{RMS} \times \sqrt{2} \\ &= 333.333 \times \sqrt{2} \\ &= 471.404 mA \end{split}$$

$$\therefore I_{(peak)} = 2.9333 \angle 43.4513^{\circ} A$$

c) Calculating the voltage across inductor and capacitor at resonance Inductive reactance $X_L=2\pi f_R~L$

$$=2\times\pi\times711.76\times25\times10^{\text{-}3}$$

$$=111.8037\Omega$$

At resonance $X_L = X_C$

$$\therefore X_{\rm C} = 111.8037\Omega$$

At resonance,

$$\begin{split} V_{L} &= V_{C} = I_{RMS} \, \times X_{L} \\ &= 0.3333 \, \times \, 111.8037 \\ &= 37.2641 V \end{split}$$

$$\begin{split} \therefore V_{L_{(peak)}} &= V_{C_{(peak)}} = V_L \times \sqrt{2} \\ &= 37.2641 \times \sqrt{2} \\ &= 52.6995 V \end{split}$$

$$\therefore V_{L_{(\mathrm{peak})}} = V_{C_{(\mathrm{peak})}} = 52.6995 \; V$$

d) Calculating the Quality Factor (Q)

$$Q = \frac{X_{\rm L}}{R}$$
$$= \frac{111.8037}{27}$$
$$= 4.14088$$

$$\therefore Q = 4.14088$$

d) Calculating the Bandwidth (BW)

$$BW = \frac{f_{R}}{Q}$$

$$= \frac{711.76}{4.14088}$$

$$= 171.8862 \text{Hz}$$

 $\therefore BW = 171.8862 Hz$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 36: Circuit Schematic and Simulated Results

Plot of Resonant Frequency is shown in figure 37

Figure 37: Resonant Frequency

Plot of $V_{\rm L}$ and $V_{\rm C}$ at resonance is shown in figure 38

Figure 38: V_L and V_C at resonance

Plot of I at resonance is shown in figure 39

Figure 39: I at resonance

Parameters	Theoretical values	Simulated values
$V_{R(peak)}$	52.6995V	52.32142V
$V_{C(peak)}$	52.6995V	52.32142V
$I_{ m peak}$	471.404mA	467.36266 mA
Resonant Frequency	711.76Hz	710.81826Hz

Table 9: Numerical 9

