Exercise Sheet

Numerical Analysis

"All the world's a differential equation, and the men and women are merely variables."

-Ben Orlin

[1] Use Runge – Kutta method to:

i. Solve the differential equation: $\frac{dy}{dx} = x^2 - y$, over the intervals x = 0 to x = 0.5 with step size 0.5, where y(0) = 1 and from x = 0.5 to x = 1.5 with step size 1.0. [Final 2015]

ii. Solve the differential equation: $y' = x + y^2$ to find y(1). ; y(0.5) = 1 & h = 0.25

iii. Given
$$y' = x^2 - y$$
, $y(1) = 0.5$. Find $y(1.2)$ with $h = 0.1$.

iv. Using two steps, Solve the following system of ODEs to Find x(0.2) & y(0.2)

$$x' = x - y - t$$
, $y' = 4x - 2y$, $x(0) = 1$, $y(0) = 0$

[Summer 2021]

[2] Consider the Dirichlet problem $\nabla^2 u(x,y) = 18(x^2+y^2)$ over the square $0 \le x \le 1$ and $0 \le y \le 1$ Such that: u(x,y) = 0 on the top of the square and u(x,y) = 100 on the sides and bottom of the square.

- (i) Generate a grid by taking $h = \frac{1}{3}$ and applying the finite difference method
- (ii) Solve the resulting system of equations using Gauss Seidel method assuming zero initial values. **Obtain** the first three successive approximations of the solutions.

[3] Solve (using $h=\frac{1}{4}$) the Dirichlet boundary value problem for the Laplace equation: $\nabla^2 u=0$ in the region x>0, y>0, x+y<1.

With the boundary conditions defined by:

$$u(0,y) = 0,$$
 $u(x, 1-x) = 0,$ $u(x, 0) = x(1-x)$

Use Gauss – Seidel method to **solve** the resulting system of linear equations starting with zero values at interior points. **Perform** three iterations. [Spring 2021]

[4] Find the solution (accurate to 3D) for the Dirichlet boundary value problem for the Poisson equation $\nabla^2 u(x,y) = 10(x^2 + y^2)$ in the region and for the boundary conditions shown in the figure below. Use Gauss – Seidel method with zero initial approximations for the interior points.

