NOM :

PRENOM: GROUPE:

Contrôle 2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM(4 points, pas de points négatifs)

Entourer la bonne réponse

1- L'énergie mécanique de la masse m d'un pendule simple est d'expression :

$$E_m = \frac{1}{2} mL^2 \cdot (\dot{\theta})^2 + mgL(1 - \cos(\theta))$$
; Où m, L et g sont des constantes.

La dérivée de cette énergie par rapport au temps est

a)
$$\frac{dE_m}{dt} = mL^2\ddot{\theta} \dot{\theta} - mgLsin(\theta).\dot{\theta}$$

b)
$$\frac{d\widetilde{E}_m}{dt} = mL^2\ddot{\theta} + mgL\sin(\theta)$$

a)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} \ \dot{\theta} - mgLsin(\theta) . \dot{\theta}$$
b)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} + mgLsin(\theta)$$
c)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} \ \dot{\theta} + mgLsin(\theta) . \dot{\theta}$$

2- L'équation différentielle du mouvement de la masse du pendule simple, obtenue en écrivant $\frac{dE_m}{dt} = 0$, est

a)
$$\ddot{\theta} + \frac{g}{i}\cos(\theta) = 0$$

a)
$$\ddot{\theta} + \frac{g}{L}\cos(\theta) = 0$$
 b) $\ddot{\theta} + \frac{g}{L}\sin(\theta) = 0$ c) $\ddot{\theta} - \frac{g}{L}\sin(\theta) = 0$

3- La résolution de l'équation différentielle $x + \frac{\alpha}{m}x + \omega_0^2x = 0$ nécessite de distinguer trois régimes. Le régime critique correspond à une valeur particulière de α (α étant le coefficient de frottement).

a)
$$\alpha_{crit} = 0$$

b)
$$\alpha_{crit} > 2m\omega_0$$
 c) $\alpha_{crit} = 2m\omega_0$ d) $\alpha_{crit} < 2m\omega_0$

c)
$$\alpha_{crit} = 2m\omega_0$$

d)
$$\alpha_{crit} < 2m\omega_0$$

4- Un système qui n'échange ni matière, ni énergie avec le milieu extérieur est appelé :

- a) un système isolé
- b) un système exclusif
- c) un système fermé

5- Quelle est l'expression de la résistance thermique ?

a)
$$R_{th} = -\frac{\Phi}{\Delta \theta}$$

a)
$$R_{th} = -\frac{\Phi}{\Delta\theta}$$
 b) $R_{th} = \frac{e}{\lambda_{th}.S}$ c) $R_{th} = \frac{\lambda_{th}.S}{e}$

c)
$$R_{th} = \frac{\lambda_{th}.S}{e}$$

6- Un double vitrage est constitué de deux vitres en verre, chacune de résistance R_{verre}, séparées par un espace rempli d'air de résistance R_{air} . Que vaut la résistance totale du double vitrage?

a)
$$R_{verre} + R_{ain}$$

b)
$$\frac{2}{R_{verre}} + \frac{1}{R_{air}}$$

a)
$$R_{verre} + R_{air}$$
 b) $\frac{2}{R_{verre}} + \frac{1}{R_{air}}$ c) $2R_{verre} + R_{air}$

7- La température d'équilibre atteinte lorsque l'on mélange dans un calorimètre (de capacité calorifique négligeable) un volume V_1 d'eau à la température θ_1 et un volume V_2 d'eau à la température θ_2 est

a)
$$\theta_e = \frac{V_1 \theta_1 + V_2 \theta_2}{V_1 + V_2}$$
 b) $\theta_e = \frac{\theta_1 + \theta_2}{2}$ c) $\theta_e = V_1 \theta_1 + V_2 \theta_2$

b)
$$\theta_e = \frac{\theta_1 + \theta_2}{2}$$

c)
$$\theta_e = V_1 \theta_1 + V_2 \theta_2$$

8- Laquelle des grandeurs ci-dessous n'est pas extensive?

- a) la température
- b) la masse
- d) le nombre de moles

Exercice 1 (5 points)

On considère un système (ressort, masse m) représenté sur la figure ci-dessous. On écarte la masse de sa position d'équilibre x = 0 d'une distance x_0 , $(x_0 > 0)$, et on la lâche sans vitesse initiale.

La masse est soumise à une force de frottement d'expression : $\vec{f} = -\alpha$. \vec{V} , α est un coefficient de frottement positif.

On pose x(t) la position de la masse à un instant t quelconque et k le coefficient de raideur du ressort.

- 1- Représenter sur le schéma les forces appliquées sur la masse m. On suppose la masse se déplaçant de x_0 vers x = 0.
- 2- a) Utiliser la deuxième loi de Newton pour retrouver l'équation différentielle du mouvement donnée par $x + \frac{\alpha}{m}x + \frac{k}{m}x = 0$.

6					
empérature ∆0	(5 points) expression du flux t) et de la résistance : n régime stationnaire.	thermique R _{th} . On	suppose une p	propagation de cl	naleur à u

2- Montrer que la résistance thermique Rth d'un système formé de trois milieux, de conductivités respectives λ_1 , λ_2 et λ_3 , de même surface S et d'épaisseurs respectives e_1 , e_2 et e_3 , s'écrit : $R_{th} = R_{th1} + R_{th2} + R_{th3}$. Les trois milieux sont traversés par le même flux thermique Φ . Exercice 3 (6 points) Les questions 1, 2 et 3 sont indépendantes. 1- Dans un calorimètre de capacité thermique 100 J.K⁻¹, on introduit 100 g d'eau, l'ensemble est à 20°C. On y ajoute 100 g d'huile à 100°C (température inférieure à sa température d'ébullition). La température finale est de 40°C. Calculer la capacité massique de l'huile. On donne : c_{eau} = 4.10³ J.kg⁻¹.K⁻¹

Caldrinétre (05) expression littérale
Application numérique

	Capacité massique Chaleur latente de Capacité massique de Capacité	le fusion de la gl ie de la glace C	lace $L_f = 335.1$ $g = 2.10^3 J.kg^{-1}$	0 ³ J.kg ⁻¹ .K ⁻¹		
	Chaleur latente d	e vaporisation i	$N = 223.10^{\circ} \text{J}.$	kg -		
			V			
)						
(
1						
		25 10	150 12			
θ ₁ =20°C Calculer	lorimètre contient On ajoute une mas la capacité thermique la capacité massic	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	
θ ₁ =20°C Calculer	On ajoute une mas la capacité thermique	sse m ₂ = 250g d'o ue C _{cal} du calorii	eau à la tempé nètre sachant c	rature θ2=70°C jue la températ	· .	