Question 5 ~

A real number is algebraic if it satisfies some polynomial equation with integer coefficients. Why is the set of algebraic numbers countable?

Proof

- The set of algebraic numbers is the union of the set of every degree polynomial $\cup A_n$ where n is a natural number corresponding to the degree.
- For A_1 , or the set of polynomials with degree 1, i.e. any equation that satisfies n = N, clearly the set is just the natural numbers, implying countable
- For A_2 or the set of polynomials with degree 2, i.e. any equation that satisfies n+ax=N, there are in total \mathbb{N}^2 different polynomials with at most 2 distinct roots, which is also countable.
- It follows that in general for A_n , or the set of polynomials with degree n, there are in total \mathbb{N}^n elements of the set which is countable.
- Since the set of algebraic numbers is $\cup A_n, n \in \mathbb{N}$ and a countable union of countable sets is also countable, this implies that the set of algebraic numbers is also countable.

Question 6a ~

Let (a_n) be a sequence of real numbers and $a \in \mathbb{R}$. Suppose $a_n \to a$. Show that

$$\frac{a_1 + a_2 + \dots + a_n}{n} \to a$$

Proof

Let $|a_n| \leq M, \, orall n.$ /given $\epsilon > 0$ find N such that $orall n \geq N$,

$$|a_n-a|<\epsilon$$

From the triangle inequality,

$$\left|\frac{a_1+a_2+\cdots+a_n}{n}-a\right|\leq \frac{1}{n}\sum_{k=1}^n \lvert a_k-a\rvert$$

Splitting the sum up, we get

$$egin{aligned} rac{1}{n} \sum_{k=1}^{n} |a_k - a| &= rac{1}{n} \sum_{k=1}^{N-1} |a_k - a| + rac{1}{n} \sum_{k=N}^{n} |a_k - a| \ &\leq rac{2(N-1)M}{n} + rac{(n-N+1)\epsilon}{n} \end{aligned}$$

for some fixed number M and N, when we take $n \to \infty$, the first term converges to 0 and the second is less than ϵ . Therefore for large n we have

$$\left|\frac{a_1+a_2+\dots+a_n}{n}-a\right|<2\epsilon$$

Question 6b

Find a sequence such that (a_n) does not converge but

$$rac{a_1+a_2+\cdots+a_n}{n}$$

does

The sequence

$$a_n = egin{cases} 1 & n ext{ is even} \\ 0 & n ext{ is odd} \end{cases}$$

doesn't converge as it is an oscillating function, but the equation

$$\frac{0+1+0+1+\cdots}{n} \quad \text{or} \quad \frac{\overbrace{1+1+\cdots+1}^{n/2}}{n}$$

converges to $\frac{1}{2}$