Введение

Тема: Использование системы компьютерной алгебры при решении задач математического анализа.

Цель:

- 1. Познакомиться с основными командами системы компьютерной алгебры Махіта для:
 - Нахождения пределов.
 - Нахождения производных
 - Нахождения интегралов.

Примечания:

- 1. Каждое задание лабораторной работы надо выполнять в отдельном файле.
- 2. Формат имени файла: "ФИО студента, номер группы/подгруппы, тема 6, ЛР (задание ...).wxmx".

Требования к отчету по работе:

- 1. Прикрепить файлы, созданные в программе Maxima, в Moodle.
- 2. Выложить отчёт с кратким описанием выполненных заданий на сайт со своим портфолио.

Ход лабораторной работы

Задание 6.1

- Откройте новый файл.
- Сохраните файл. Формат имени файла: "ФИО студента, номер группы/подгруппы, тема 6, ЛР (задание 6.1).wxmx"

Нахождение пределов

- Добавьте заголовок: Нахождение пределов
- Выполните действия и проанализируйте результаты. Примечание: номера команд могут не совпадать.

Синтаксис: limit(функция, переменная, значение); или limit(функция, переменная, значение, слева/справа);

Предел слева обозначается minus, а справа - plus.

Пример 1:

```
\lim_{x \to \infty} x^{2}
(%i65) \lim_{x \to \infty} (x^{2}, x, \inf);
(%o65) \infty
```

Пример 2:

$$\lim_{x \to 4^{+}} a \tan \left(\frac{1}{x-4}\right)$$
(%i68) limit (atan (1/(x-4)), x, 4, plus);
(%o68) $\frac{*pi}{2}$

$$\lim_{x \to 4^{-}} a \tan \left(\frac{1}{x-4}\right)$$
(%i70) limit (atan (1/(x-4)), x, 4, minus);
(%o70) $-\frac{*pi}{2}$

Залание 6.2

- Откройте новый файл.
- Сохраните файл. Формат имени файла: "ФИО студента, номер группы/подгруппы, тема 6, ЛР (задание 6.2).wxmx"

Нахождение производных

- Добавьте заголовок: Нахождение производных
- Выполните действия и проанализируйте результаты. Примечание: номера команд могут не совпадать.

Функция diff позволяет найти производные, как первого, так и более высоких порядков. При наличии у функции нескольких переменных можно найти частную производную по одной из них.

Синтаксис: diff(функция, переменная, порядок производной);

Пример: найти первую производную функции $y(x)=e^{x}/x^{2}$.

Сначала введем функцию: y(x):=exp(x)/x^2; (обратите внимание, что в отличие от присвоения значения переменной, здесь используется комбинация символов ":=" (двоеточие и равно)), а затем найдем ее производную по переменной x.

Для этого введем команду: diff(y(x),x,1); или diff(y(x),x);. В случае первой производной ее порядок можно не указывать.

(%i56)
$$y(x) := \exp(x) / x^2;$$

(%o56) $y(x) := \frac{\exp(x)}{x^2}$

(%i57) diff(y(x),x);
(%o57)
$$\frac{3e^{x}}{x^{2}} - \frac{23e^{x}}{x^{3}}$$

При вычислении кратных производных по нескольким переменным после указания функции перечисляются переменные дифференцирования с указанием соответствующих кратностей, например, diff(x^8*y^5, x, 4, y, 2);

Задание 6.3

- Откройте новый файл.
- Сохраните файл. Формат имени файла: "ФИО студента, номер группы/подгруппы, тема 6, ЛР (задание 6.3).wxmx"

Нахождение интегралов

- Добавьте заголовок: Нахождение интегралов
- Выполните действия и проанализируйте результаты. Примечание: номера команд могут не совпалать.

Для нахождения неопределенного интеграла в качестве аргументов указывается функция и переменная интегрирования.

Синтаксис: integrate(функция, переменная);

Пример: вычислить интеграл функции x²+5x+3 по переменной x.

(%i59) integrate (x^2+5*x+3,x);
(%o59)
$$\frac{x^3}{3} + \frac{5x^2}{2} + 3x$$

При нахождении значения определенного интеграла помимо рассмотренных параметров указываются пределы интегрирования.

В качестве пределов интегрирования могут фигурировать бесконечность (inf) и минус бесконечность (minf).

Синтаксис: integrate(функция, переменная, левый предел, правый предел);

Пример: вычислить интеграл функции sin(x) по переменной x на отрезке от 0 до π .

```
(%i60) integrate(sin(x),x,0,%pi);
(%o60) 2
```

В случае, когда интеграл расходится Maxima выдает сообщение "Integral is divergent".

Например integrate(1/x, x, 0, inf); выдаст именно такое сообщение.

```
(%i61) integrate(1/x, x, 0, inf);
Integral is divergent
```

В некоторых случаях Maxima может попросить доопределить некоторую переменную, как в случае интегрирования функции хⁿ:

```
(%i63) integrate (x^n, x);

Is n+1 zero or nonzero?nonzero;

(%o63) \frac{x^{n+1}}{n+1}
```