Analisi Matematica 1 A

Davide Peccioli Anno accademico 2021-2022

1 Insiemi

Gli insiemi numerici a cui siamo abituati da sempre sono

20 set 2021

$$\mathbb{N} = \{0, 1, 2, \cdots\}$$

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$$

$$\mathbb{Q} = \{r = \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \setminus \{0\}, m, n \text{ primi tra loro}\}$$

Per l'insieme $\mathbb Q$ esiste una rappresentazione decimale:

$$r = n, \alpha_1 \alpha_2 \alpha_3 \cdots \alpha_j \cdots$$

con $n \in \mathbb{Z}$, $a_i \in \{0, 1, 2, \dots, 9\}$. " $\alpha_1 \alpha_2 \alpha_3 \cdots \alpha_j \cdots$ " prende il nome di allineamento periodico (o finisce o si ripete all'infinito).

1.1 Corrispondenza biunivoca

Due insiemi *finiti* possono essere messi in corrispondenza biunivoca se e solo se hanno lo stesso numero di oggetti.

1.1.1 Corrispondenza $\mathbb{N} - \mathbb{Z}$

1.1.2 Corrispondenza $\mathbb{N} - \mathbb{N} \times \mathbb{N}$

In rosso è segnato l'insieme \mathbb{N} , mentre in nero le coppie di $\mathbb{N} \times \mathbb{N}$, che sono state ordinate dalle freccie rosse:

In generale, se $K \leftrightarrow \mathbb{N}$ (dove \leftrightarrow si legge "in corrispondenza biunivoca") \Longrightarrow

$$\begin{split} K &\leftrightarrow K \times K = K^2 \\ K &\leftrightarrow K \times K \times K = K^3 \\ K &\leftrightarrow K \times K \times \dots \times K = K^n \end{split}$$

Definizione Un insieme A è detto numerabile se può essere messo in corrispondenza biunivoca con $\mathbb N$

Gli insiemi \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{N}^n , \mathbb{Z}^n , \mathbb{Q}^n sono numerabili

1.2 Insieme \mathbb{R}

21 set 2021

Proposizione p.i Sia d la diagonale del quadrato di lato 1, ovvero $d^2=2$. $d\notin \mathbb{Q}$

dim. (p.i) Assumiamo per assurdo che $d \in \mathbb{Q}$

 $\implies \exists\, m,n\in\mathbb{Z}, n\neq 0$ primi tra loro tali che $d=\frac{m}{n}$

$$\implies \frac{m^2}{n^2} = 2$$

$$\implies m^2 = 2n^2$$

 $\implies m^2$ è pari $\implies m$ è pari ¹

 $\implies \exists k \in \mathbb{Z} \text{ tale che } m = 2k$

$$\implies m^2 = 4k^2$$

$$\implies 2n^2 = 4k^2$$

$$\implies n^2 = 2k_2$$

$$\implies n^2$$
 è pari $\implies n$ è pari;

si ha contradizione dell'ipotesi che m,n fossero primi tra di loro (in quanto entrambi pari hanno almeno un divisore in comune, ovvero 2).

Proposizione p.ii $m \in \mathbb{Z}, m^2$ pari $\Longrightarrow m$ pari

¹ dimostrazione successiva

dim. (p.ii) Per assurdo, assumiamo m dispari

$$\implies \exists k \in \mathbb{Z} | m = 2k + 1$$

$$\implies m^2 = (2k+1)^2 = 4k^2 + 4k + 1$$

$$\implies m^2 = \underbrace{4k(k+1)}_{pari} + 1$$

 $\implies m^2$ è dispari.

Si ha contraddizione, pertanto m è pari.

Dal momento che si è utilizzata nelle ultime dimostrazioni, è bene aprire una parentesi sulle $dimostrazioni\ per\ assurdo$

Schema dimostrativo per assurdo

Proposizione p.iii (schema I) Siano p, q preposizioni

$$(p \implies q) \iff (p \land \neg q) \implies \neg p)$$

dim. (p.iii)

p	q	$\neg p$	$\neg q$	$p \implies q$	$p \wedge \neg q$	$(p \land \neg q) \implies \neg p$
1	1	0	0	1	0	1
1	0	0	1	0	1	0
0	1	1	0	1	0	1
0	0	1	1	1	0	1

Si noti come la quinta e l'ultima colonna siano uguali.

Proposizione p.iv (schema II) Siano p, q preposizioni

$$(p \implies q) \iff (p \land \neg q) \implies q)$$

dim. (p.iv)

p	q	$\neg q$	$p \wedge \neg q$	$p \implies q$	$(p \land \neg q) \implies q$
1	1	0	0	1	1
0	0	1	0	1	1
1	0	1	1	0	0
0	1	0	0	1	1

Si noti come la quinta e l'ultima colonna siano uguali.

Proposizione p.v (schema III) Siano p,q preposizioni

$$(p \implies q) \iff (\neg q \implies \neg p)$$

dim. (p.v)

p	q	$\neg q$	$\neg p$	$p \implies q$	$\neg q \implies \neg p$
1	1	0	0	1	1
1	0	1	0	0	0
0	1	0	1	1	1
0	0	1	1	1	1

Si noti come la quinta e l'ultima colonna siano uguali.

Dalle dimostrazioni precedenti (p.i) si è reso evidente che necessitiamo di un insieme numerico che permetta di risolvere il problema di trovare la diagonale di un quadrato di lato 1: infatti, questo semplice caso ci dimostra che la retta euclidea non è in corrispondenza biunivoca con \mathbb{Q} , ma che anzi la retta di \mathbb{Q} ha "un buco"

Vogliamo trovare X tale che $\mathbb{Q} \subseteq X$, $X \leftrightarrow \text{retta}$

Per trovare questo insieme è necessario introdurre le *relazioni* all'interno di un insieme

1.2.1 Relazioni

Sia A un insieme generico: diciamo \mathcal{R} relazione su A tale che

$$\mathcal{R} \subseteq A \times A$$

Dati $a,b \in A$ si scrive $a\mathcal{R}b \iff (a,b) \in \mathcal{R}$. Diciamo che a è in corrispondenza con b se $a\mathcal{R}b$

Proprietà

- \mathcal{R} si dice simmetrica se $a, b \in A$, $a\mathcal{R}b \implies b\mathcal{R}a$
- \mathcal{R} si dice riflessiva se $\forall a \in A, a\mathcal{R}a$

- \mathcal{R} si dice transitiva se dati $a, b, c \in A$, $a\mathcal{R}b \wedge b\mathcal{R}c \implies a\mathcal{R}c$
- \mathcal{R} si dice antisimmetrica se dati $a, b \in A$, $a\mathcal{R}b \wedge b\mathcal{R}a \implies a = b$

Definizione Una relazione \mathcal{R} su A è detta di ordine se soddisfa le proprietà riflessiva, antisimmetrica e transitiva

Definizione Una relazione \mathcal{R} su A è detta di *ordine totale* (o anche A è totalmente ordinato rispetto ad \mathcal{R}) se è una relazione d'ordine e vale

$$\forall a, b \in A \quad a\mathcal{R}b \lor b\mathcal{R}a$$

Esempi (1.1)

- A insieme delle parole del dizionario italiano, R ordine lessicografico
 a, b ∈ A aRb se a viene prima o coincide con b nell'ordine alfabetico.
 R è riflessiva, transitiva e antisimmetrica, R è di ordine totale.
- Sia U insieme universo, $\mathscr{P}(U)$ l'insieme delle parti di U^2 , \mathcal{R} relazione di inclusione (\subset)

$$A, B \in \mathcal{P}(U), A \subset B \iff \forall x \in A \implies x \in B$$

 \mathcal{R} è di ordine su $\mathscr{P}(U)$ ma non è di ordine totale

- Nell'insieme Q si consideri la relazione
 - minore stretto

a < b se a precede strettamente b nell'ordine da sinistra a destra della retta euclidea

- minore uguale

 $a \leq b$ se a precede o coincide bnell'ordine da sinistra a destra della retta euclidea

Si noti che

< non è di ordine (non soddisfa né la proprietà riflessiva né la proprietà antisimmetrica)

 $[\]overline{^2}$ Si è fatto così e non si è scelto \overline{V} (insieme di tutti gli insiemi) per evitare i paradossi; in particolare, vedasi $paradosso\ di\ Russel$

 \leq è di ordine totale

La relazione < non è di ordine in quanto

- 1. non soddisfa la proprietà riflessiva: ogni numero non è minore a se stesso
- 2. non soddisfa la proprietà di antisimmetria, in quanto non esiste nessuna coppia di numeri per cui valgano le relazioni a < b e b < a

La relazione \leq è di ordine totale, in quanto soddisfa tutte e tre le proprietà:

- 1. è riflessiva, in quanto ogni numero è minore o uguale a se stesso
- 2. è antisimmetrica, in quanto l'unico modo per cui valga la relazione $a \le b$ e $b \le a$ è che a = b
- 3. è transitiva, in quanto se $a \leq b$ è $b \leq c$ allora $a \leq c$
- 4. inoltre, per ogni coppia (non ordinata) di numeri reali, è sempre possibile stabilire almeno un ordine che permetta di soddisfare la relazione.

Definizione La relazione \mathcal{R} su A è detta relazione di equivalenza se soddisfa le proprietà riflessiva, simmetrica e transitiva. Si indica generalmente con $x \sim y$ invece di $x\mathcal{R}y$

Una classe di equivalenza di $u \in A$ (dove u è detto "rappresentante") è

$$[u] = \{v \in A: \, v \sim u\}$$

L'insieme quoziente di A rispetto a \sim :

$$A/\sim:=\{[u]:u\in A\}$$

22 set 2021 **Definizione** Un insieme U si dice totalmente ordinato con la relazione d'ordine " \preceq "

Consideriamo $A \subseteq U$

1. A è limitato superiormente se

$$\exists k \in U \text{ t. c. } \forall a \in A, a \leq k$$

 $\implies k$ è detto maggiorante di A

2. A è limitato inferiormente se

$$\exists h \in U \text{ t. c. } \forall a \in A, h \leq a$$

 $\implies k$ è detto minorante di A

Possono esistere infiniti maggioranti e infiniti minoranti

Definizione M è il massimo di A se M è un maggiorante $(a \leq M \forall a \in A)$ e $M \in A$

Definizione m è il minimo di A se m è un minorante $(m \leq a \forall a \in A)$ e $m \in A$

Si dice che $M = \max A$ e $m = \min A$

Esempi (1.2) Per tutti gli esempi successivi si consideri $U=\mathbb{Q}$ e $\preceq=\leq$

1. $A = \{5, 7, 9, -4, 588\}$. min A = -4, max A = 588

Con $A \subseteq Q$ e A contenente un numero finito di valori

- \implies A ammette max e min
- 2. $B=\{2^n\,|\,n\in\mathbb{N}\},\,B$ è limitato inferiormente

 \implies min B = 1, B non è limitato superiormente

3. $C = \{1 + 1/n \mid n \in \mathbb{N} \setminus \{0\}\}, C$ è limitato: $\forall x \in C, 1 < x \le 2$ C ammette un massimo (max C = 2), C non ammette un minimo

4. $D = \{1 - 1/n \mid n \in \mathbb{N} \setminus \{0\}\}$

 $\forall\,x\in D,\,0\leq x<1$

 $\min D = 0$, D non ammette \max

Definizione Sia U totalmente ordinato con relazione d'ordine \leq , e sia $a \in U$.

- \bullet Diciamo estremo superiore di A (sup A) il più piccolo dei maggioranti.
- \bullet Diciamo estremo inferiore di A (infA)il più grande dei minoranti

 $\sup A = \min\{M \in U \mid \forall \, x \in A, x \preceq M\}, \quad \inf A = \max\{m \in U \mid \forall \, x \in A, m \preceq a\}$ Se esistono $\max A$ e/o $\min A$

 $\implies \sup A = \max A, \inf A = \min A$

Esempio (1.3) Sia
$$C = \{1 + 1/n \mid n \in \mathbb{N} \setminus \{0\}\}$$

$$\max C = 2 = \sup C$$

$$\min C = \nexists$$

 \implies se m è minorante di C

$$\implies m \le 1 \implies \inf C = 1.$$

Sia
$$D = \{1 - 1/n \mid n \in \mathbb{N} \setminus \{0\}\}\$$

$$\min D = 0 = \inf D$$

$$\max D = \nexists$$

 \implies se M è maggiorante di D

$$\implies M \ge 1 \implies \sup D = 1$$

Esempio (1.4)

$$E = \{r \in \mathbb{Q}; r \ge 0, r^2 < 2\} \subseteq \mathbb{Q}$$

- E è limitato: $\forall r \in E, 0 \le r < 2$
- $\inf E = \min E = 0$
- $\sup E$? Se $x^2 < 2$ $\implies 0 \le x < \sqrt{2} \notin \mathbb{Q}$. Un candidato $\sup E = \sqrt{2} \notin \mathbb{Q}$ $\implies \sup E = \#$

L'obiettivo, quindi, è quello di costruire un insieme numerico X (con $\mathbb{Q} \subseteq X$) con operazioni + e \cdot tale che ogni sottoinsieme limitato ammetta estremo superiore e inferiore.

1.2.2 Definizione assiomatica dei numeri reali

- \mathcal{R}_1 . È definita un'applicazione $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, indicata con il segno "+" detta addizione o somma, che soddisfa le seguenti proprietà:
 - $-\ \forall\, a,b,c\in\mathbb{R},\, (a+b)+c=a+(b+c)$ (associativa);
 - $\forall a, b \in \mathbb{R}, a + b = b + a \text{ (commutativa)};$
 - esiste un elemento in \mathbb{R} indicato con 0 (zero) tale che $\forall a \in \mathbb{R}$, a + 0 = a (esistenza elemento neutro per +);

- ∀ $a \in \mathbb{R}$, $\exists *$ tale che a + * = 0, si indica * = -a, detto *inverso*, opposto di a (esistenza dell'inverso per +).
- \mathcal{R}_2 . È definita un'applicazione $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, indicata con il segno "·" detta prodotto o moltiplicazione, che soddisfa le seguenti proprietà:
 - $\forall a, b, c \in \mathbb{R}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativa);
 - $\forall a, b \in \mathbb{R}, a \cdot b = b \cdot a \text{ (commutativa)};$
 - esiste un elemento in \mathbb{R} indicato con 1 (uno) tale che $\forall a \in \mathbb{R}$, $a \cdot 1 = a$ (esistenza elemento neutro per +);
 - $\forall a \in \mathbb{R}, a \neq 0 \exists * \text{ tale che } a \cdot * = 1, \text{ si indica } * = a^{-1}, \text{ detto } inverso, reciproco di a (esistenza dell'inverso per ·);}$
 - $\forall a, b, c \in \mathbb{R}, (a+b) \cdot c = (a \cdot c) + (b \cdot c)$ (distributiva).
- \mathcal{R}_3 . È definita in \mathbb{R} una relazione di ordine totale, indicata con " \leq ", che soddisfa le seguenti proprietà:
 - $\forall a, b, c \in \mathbb{R}: a \leq b \implies a + c \leq b + c;$
 - $\forall a, b, c \in \mathbb{R}, 0 \le c: a \cdot c \le b \cdot c.$
- \mathcal{R}_4 . Sia $A \subset R$, $A \neq \emptyset$

Se A è limitato superiormente, allora A ammette un estremo superiore.

Se A è limitato inferiormente, allora A ammette un estremo inferiore

 \mathcal{R}_1 garantisce che $(\mathbb{R},+)$ è un gruppo

Queste proprietà possono essere definite anche per \mathbb{Q} , in cui valgono però solo le proprietà corrispondenti a \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 .

Se valgono le proprietà \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 per un qualche insieme \mathbb{K} , questo insieme prende il nome di *campo totalmente ordinato*.

 \mathbb{R} e \mathbb{Q} sono campi totalmente ordinati, e \mathbb{R} è un campo ordinato completo

1.3 Campi ordinati completi

Si è costruito un insieme \mathbb{R} con $(+,\cdot,\geq)$, che soddisfa \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 e \mathcal{R}_4 .

- Quanti insiemi con queste proprietà esistono?
- Che relazione c'è tra di loro?
- Come li rappresentiamo?

Definizione Dati B e B' campi ordinati (soddisfano \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3), si definisce isomorfismo tra B e B' una relazione

$$\varphi: B \to B'$$
$$a \mapsto a' = \varphi(a)$$

che gode delle seguenti proprietà:

- φ è biunivoca
- $\forall a, b \in B$

i.
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

ii.
$$\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$$

iii.
$$a \le b \implies \varphi(a) \le \varphi(b)$$

Teorema I Siano B e B' campi ordinati $(+,\cdot,\leq,\mathcal{R}_1,\mathcal{R}_2,\mathcal{R}_3)$, con B completo e B' completo

 $\implies \exists$ un isomorfismo $\varphi: B \to B'$

Si dice che B è isomorfo a B' (e viceversa) poiché la relazione di isomorfismo è di equivalenza: $B \sim B'$

Non lo dimostreremo

Scelto un campo B a piacere possiamo costruire la classe di equivalenza

$$[B] = \{\text{campi ordinati completi}\}\$$

$$\mathbb{R} = [B]$$

1.3.1 Rappresentazione

Modello decimale: $x \in \mathbb{R}$ si rappresenta come

$$x = p, \alpha_1 \alpha_2 \cdots \alpha_n \cdots$$

dove $p \in \mathbb{Z}$ e $[\alpha_1 \alpha_2 \cdots \alpha_n \cdots]$ è un allineamento infinito di cifre tra $\{1, \cdots, 9\}$

Modello binario: $y \in \mathbb{R}$ si rappresenta come

$$y = p, \beta_1 \beta_2 \cdots \beta_n \cdots$$

dove $p \in \mathbb{Z}$ e $[\beta_1 \beta_2 \cdots \beta_n \cdots]$ è un allineamento infinito di cifre tra $\{1,2\}$

Non conta il modello che si usa; è necessario dimostrare che questi modelli soddisfino gli assiomi: fare riferimento al libro di testo

2 Limite successione

Data $\{a_n\}_{n=0}^{\infty}, \mathbb{N} \to \mathbb{R}, a: n \to a_n, l \in \mathbb{R}^*, \text{ diciamo che}$

2 nov 2021

$$\lim_{n \to \infty} a_n = l$$

se $\forall V(l) \exists U(+\infty) n \in (\mathbb{N}intersezioneD) \implies a_{n \in V(l)}$ Scriviamo $\forall V(l) \exists n_{segnato} \in N | \forall n > n_{segnato} a_n \in V(l)$

 $l \in \mathbb{R}$, diciamo che $\{a_n\}_{n=0}^{\infty}$ è **convergente** a l se $\forall \varepsilon \exists n_{segnato} \in \mathbb{N} | \forall n > n_{segnato} | a_n - l | < \varepsilon$

Se $l = \pm \infty$ a_n è divergente a $\pm \infty$, se $\lim_{n \to +\infty} a_n = \nexists$ allora $\{a_n\}_{n=0}^{\infty}$ è irregolare (o oscillante).

Esempio (2.1)

- $\{a_n\}_{n=0}^{\infty} = (-1)^n$ con $n \in \mathbb{N}$ è irregolare e limitata
- $\{b_n\}_{n=0}^{\infty} = (-1)^n \cdot n$ con $n = 0, -1, 2, -3, 4, \cdots$ è irregolare e non limitata

Si dice di una successione $\{a_n\}_{n=0}^{\infty}$

- $\forall \{a_n\}$ è crescente se $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$
- $\forall \{a_n\}$ è strettamente crescente se $\forall n \in \mathbb{N}, \, a_n < a_{n+1}$
- $\forall \{a_n\}$ è decrescente se $\forall n \in \mathbb{N}, \, a_n \geq a_{n+1}$
- $\forall \{a_n\}$ è strettamente decrescente se $\forall n \in \mathbb{N}, \, a_n > a_{n+1}$

Una successione crescente o decrescente si dice monotona, se strettamente crescente o decrescente si dice strettamente monotona.

Un predicato P(n) è verificato definitivamente se $\exists n_{segnato} \forall n \leq n_{segnato}$ P(n) è vero

Valgono per $\{a_n\}_{n=0}^{\infty}$ i seguenti teoremi

- Teorema di unicità del Limite
- Teorema di permanenza del segno

• Teorema di limitatezza:

Teorema II

$$\lim_{n\to\infty} a_n = l \in \mathbb{R} \implies \{a_n\}_{n=0}^{\infty} \text{ è convergente e limitata}$$

- Teorema del confronto
- Teorema di esistenza del Limite per successioni definitivamente monotone

Teorema III $\{a_n\}_{n=0}^{\infty}$ è definitivamente crescente

 \implies ammette limite in $\mathbb{R}*$

Precisamente se

- $\{a_n\}_{n=0}^{\infty}$ è definitivamente monotona e limitata \implies è convergente
- $-\{a_n\}_{n=0}^{\infty}$ è definitivamente monotona e non limitata \implies è divergente

Teorema IV Principio di Archimede $\forall a,b \in \mathbb{R}_+, a,b > 0$

 $\implies \exists n \in \mathbb{N} \text{ tale che } na > b$

dim. (IV) Utilizziamo la funzione parte intera:

 $x \in \mathbb{R} \text{ si dice } [x] = \max_{n \in \mathbb{Z}} \{n \le x\}$

Si verifica che $\forall x \in \mathbb{R}, [x] < x \leq [x] + 1$

Se $x \ge 0$, $[x] \ge 0$, $[x] \in \mathbb{R}$

Considerato $x = \frac{b}{a}$

$$\left[\frac{b}{a}\right] \le \frac{b}{a} < \left[\frac{b}{a}\right] + 1$$

Posto $n_{segnato} = \left[\frac{b}{a}\right] + 1 \in \mathbb{N}$

$$\frac{b}{a} < n_{segnato} \implies n_{segnato}a > b$$

14

Osserviamo che posto a=1 si ha che $\forall b \in \mathbb{R}, \, \exists n \in \mathbb{N}$ t.c. n>b

2.1 Applicazione del Principio di Archimede

Verifichiamo che

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Fissiamo $\varepsilon > 0$, vogliamo verificare che definitivamente $\left| \frac{1}{n} \right| < \varepsilon$

$$\iff \frac{1}{n} < \varepsilon$$

$$\iff n > \frac{1}{\varepsilon}$$

 $\frac{1}{\varepsilon} \in \mathbb{R}$ allora per il principio di archimede

$$\exists n_{segnato} \in \mathbb{N}, n_{segnato} > \frac{1}{\varepsilon}$$

Allora $\forall n \geq n_{segnato}, n > \frac{1}{\varepsilon}$

 $\implies \frac{1}{n} \leq \varepsilon$ dunque $\frac{1}{n} < \varepsilon$ definitivamente

Dunque

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Teorema V Disugualiganza di Bernoulli

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x > -1$$

si ha che

$$(1+x)^n \ge 1 + nx$$

dim. (V) Dimostrazione per induzione

$$P(n): (1+x)^n \ge 1 + nx, x > -1$$

1. P(0)

$$1 + x > 0 (1 + x)^0 = 1 = 1 + n0$$

P(0) è vera

2. Assumiamo vera P(n)

2.2 Limiti

Progressione geometrica

$$q \in \mathbb{R}, \lim_{n \to \infty} q^n = ?, n \in \mathbb{N}$$

• q > 1, q = 1 + p con p > 0 $q^n = (1 + p)^n \ge 1 + np$ per la disuguaglianza di Bernoulli

$$1 + np \to +\infty$$
 per $n \to +\infty$

Per confronto

$$\lim_{n \to +\infty} q^n = +\infty$$

• q = 1 $q^n = 1$ $\forall n$

$$\lim_{n \to +\infty} q^n = 1$$

 $\bullet \ -1 < q < 1 \iff |q| < 1$ $\Longrightarrow |q| = \frac{1}{1+p} \text{ con } p > 0$

$$|q^n| = |q|^n = \frac{1}{(1+p)^n} \le \frac{1}{1+np}$$

 $1+np \to +\infty$ per $n \to +\infty$

$$\implies \frac{1}{1+np} \to 0$$

Per confronto

$$\lim_{n \to +\infty} |q^n| = 0 \implies \lim_{n \to +\infty} q^n = 0$$

• q = -1

 q^n è irregolare e limitata

• q < -1

$$q^n = (-1)^n |q|^n$$

ma |q|>1quindi $|q|^n\to +\infty$ per $n\to +\infty,$ e quindi q^n è irregolare non limitata

Riassumendo

$$q^n \begin{cases} \text{divergente a} + \infty & q > 1 \\ \text{convergente a 1} & q = 1 \\ \text{convergente a 0} & |q| < 1 \\ \text{irregolare limitata} & q = -1 \\ \text{irregolare non limitata} & q < -1 \end{cases}$$

Esercizio Posto $q \in \mathbb{R}$ e

$$b_n = \sum_{k=0}^n q^k$$

calcolare

$$\lim_{n\to+\infty}b_n$$

Soluzione Da risolvere

Teorema VI Sia $f: D \to \mathbb{R}$: $x \to f(x)$, $x_0 \in D'$ e $x_0 \in \mathbb{R}$ *, $l \in \mathbb{R}$ * Allora $\lim_{x \to x_0} f(x) = l$ (A)

 \iff

per ogni successione $a: \{a_n\}_{n=0}^{\infty}$ a valori in $D \setminus \{x_0\}$

$$a_n \xrightarrow{n \to +\infty} x_0 \implies f(a_n) \xrightarrow{n \to +\infty} l)$$
 (B)

dim. (VI)

(A) \Longrightarrow (B) Sappiamo che $\lim_{x\to x_0} f(x) = l$ ovvero

$$\forall V(l) \exists U(x_0) | x \in U \land x \in V landx \neq x_0 \implies f(x) \in V(l)(1)$$

Consideriamo $\{a_n\}_{n=0}^{\infty}$ con $a_n \xrightarrow{n \to +\infty} x_0$ con $a_n \in D$ e $a_n \neq x_0$ ossia

$$\exists n_{segnato} \in \mathbb{N} \forall n \geq n_{segnato} a_n \in D \land a_n \neq x_0 \land a_n \in U(x_0)$$

allora $f(a_n) \in V(l)(2)$

Concludendo unendo (1) e (2)

$$\forall V(l) \exists n_{segnato} \in \mathbb{N} | \forall n > n_{segnato} f(a_n) \in V(l)$$

ossia

$$\lim_{n \to +\infty} f(a_n) = l$$

(B) \Longrightarrow (A) Procediamo per assurdo: verificando $\neg A \Longrightarrow \neg B$

¬B: esiste una successione $\{a_n\}_{n=0}^{\infty}$ tale che $a_n \in D \setminus \{x_0\}$ per cui $a_n \xrightarrow{\rightarrow}$

Consideriamo $\delta = 1 \; \exists x_1 \, 0 < |x - x_0| < 1 \, \land \, f(x_1) \notin V(l)$

Consideriamo $\delta = \frac{1}{2} \exists x_2 \, 0 < |x_2 - x_0| < 1 \, \land \, f(x_2) \notin V(l)$

Consideriamo $\delta = \frac{1}{n} \exists x_n \, 0 < |x_n - x_0| < 1 \land f(x_n) \notin V(l)$

Allora abbiamo costruito una successione $\{x_n\}_{n=0}^{\infty}$ tale che $x_n \in D$, $x_n \neq x_0$ e $f(x_n) \notin V(l)$

inoltre $\forall \varepsilon > 0 \exists n_{segnato} | \forall n > n_{segnato} 0 < |x_n - x_0| < \varepsilon \ (n_{segnato} > \frac{1}{\varepsilon})$

ossia $x_n \xrightarrow{n \to +\infty} x_0$

Abbiamo costruto una successione $\{x_n\}_{n=0}^{\infty}$ con $x_n \to x_0, x_n \neq x_0$ e $\lim_{n \to +\infty} f(x_n) = l$

ossia abbiamo ottenuto che $\neg B$ è vera

2.3 Confronti tra infiniti

1. Dati a > 1 e $n \in \mathbb{N}$ osserviamo che

$$0 \le \frac{\sqrt{n}}{a^n} = \frac{\sqrt{n}}{(1+h)^n} \le$$

$$\le \frac{\sqrt{n}}{1+hn} \le \frac{\sqrt{n}}{hn} =$$

$$= \frac{1}{h} \cdot \frac{1}{\sqrt{n}}$$

 $e \xrightarrow{\frac{1}{\sqrt{n}}} \xrightarrow{n \to +\infty} 0$ allora per confronto

$$\lim_{n \to +\infty} \frac{\sqrt{n}}{a^n} = 0$$

ovvero

$$\sqrt{n} = o(a^n)_{n \to +\infty}$$

2. Dato a > 1

$$0 \le \frac{n}{a^n} = \left(\frac{\sqrt{n}}{(\sqrt{a})^n}\right)^2$$

ma
$$\frac{\sqrt{n}}{(\sqrt{a})^n} \xrightarrow{n \to +\infty} 0$$

Otteniamo che

$$\lim_{n \to +\infty} \frac{n}{a^n} = 0$$

ovvero

$$n = o(a^n)_{n \to +\infty}$$

3. Dato $k \in \mathbb{N} \setminus \{0, 1\}$

$$0 \le \frac{n^k}{a^n} = \left(\frac{n}{(\sqrt[k]{a})^n}\right)^k$$

ma
$$\frac{n}{(\sqrt[k]{a})^n} \xrightarrow{n \to +\infty} 0$$

Dato che a>1e $\sqrt[k]{a}>1$ concludiamo che

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0$$

ovvero

$$n^k = o(a^n)_{n \to +\infty}$$

4.

3 Costante di Nepero

Consideriamo la successione $a_n = \left(1 + \frac{1}{n}\right)^n$

 $8~{\rm nov}~2021$

$$\lim_{n \to +\infty} (1 + \frac{1}{n})^n = 1^{+\infty}$$

è una forma indeterminata

Verifichiamo la convergenza:

- 1. a_n è crescente
- 2. a_n è superiormente limitata
- 3. applichiamo il teorema di esistenza del limite per le succesioni monotone

1. $a_1 = 2$, per $n \ge 2$ stimiamo il rapporto

$$\frac{a_n}{a_{n-1}} = \frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n-1})^{n-1}} =$$

$$= \frac{(\frac{1+n}{n})^n}{(\frac{n}{n-1})^{n-1}} = \frac{(\frac{1+n}{n})^n}{(\frac{n}{n-1})^n(\frac{n}{n-1})^{-1}} =$$

$$= \frac{(\frac{1+n}{n})^n(\frac{n-1}{n})^n}{\frac{n-1}{n}} = \frac{(\frac{n^2-1}{n^2})^n}{\frac{n-1}{n}} =$$

$$= \frac{(1-\frac{1}{n^2})^n}{\frac{n-1}{n}} = **$$

Applico la disuguaglianza di Bernoulli

$$\frac{1}{n^2} < 1, -\frac{1}{n^2} > -1$$

$$\implies (1 - \frac{1}{n^2}) \ge 1 - n\frac{1}{n^2} = 1 - \frac{1}{n}$$

$$\implies ** \ge \frac{1 - \frac{1}{n}}{1 - \frac{1}{n}} = 1$$

Quindi $\forall n \geq 2, \ a_n \geq a_{n-1},$ quindi a_n è crescente definitivamente

2. Dimostriamo ora che a_n è limitata superiormente.

Consideriamo
$$b_n = (1 + \frac{1}{n})^{n+1} \ (a_n \le b_n \forall n \in \mathbb{N})$$

Verifichiamo che b_n è decrescente.

$$\frac{b_n}{b_{n-1}} = \frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n-1})^n} = \dots = \frac{1+\frac{1}{n}}{(1+\frac{1}{n^2-1})^n}$$

Stimiamo $(1+\frac{1}{n^2-1})^n$; per qualsiasi $n\geq 2,\,\frac{1}{n^2-1}>0,$ e posso applicare Bernoulli:

$$(1 + \frac{1}{n^2 - 1})^n \ge 1 - \frac{n}{n^2 - 1} \ge 1 + \frac{n}{n^2} = 1 + \frac{1}{n}$$

Ottengo quindi che

$$\frac{b_n}{b_{n-1}} = \frac{1 + \frac{1}{n}}{(1 + \frac{1}{n^2 - 1})^n} \le \frac{1 + \frac{1}{n}}{1 + \frac{1}{n}} = 1$$

Quindi $\forall n \geq 2, b_n < b_{n-1}$, quindi b_n decrescente definitivamente, ma $b_2 = 4 \implies b_n \leq 4$ definitivamente

Poiché $a_n \leq b_n \forall n \in \mathbb{N}$ si ha a_n crescente e $a_n \leq 4$ definitivamente

3. Dunque, per il teorema di esistenza del limite per successioni monotone limitate, otteniamo che

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = \sup\left\{ \left(1 + \frac{1}{n}\right)^n \right\} \in \mathbb{R}$$

(esiste ed è un numero reale), e lo chiamiamo e, detta costante di Nepero $\hfill\Box$

Quindi

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

Osserviamo che

$$a_1 = 2 \le \left(1 + \frac{1}{n}\right)^n \le 4$$

Una prima stima di e risulta essere

$$2 \le e \le 4$$

Con opportuni algoritmi di approssimazione si stima che

$$e = 2,7182818284...$$

Osservazione (3.1) $e \in \mathbb{R} \setminus \mathbb{Q}$ (dimostrazione sul libro di testo)

Proposizione p.vi

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Lemma *l.*i Sia $x_n \xrightarrow{n \to +\infty} \pm \infty$ allora

$$\lim_{n \to +\infty} \left(1 + \frac{1}{x_n} \right)^{x_n} = e$$

dim. (p.vi) Applicando il teorema di relazione, a partire dal lemma (l.i) si ottiene

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{n} \right)^n = e$$

dim. (l.i)

1.
$$x_n \xrightarrow{n \to +\infty} +\infty$$
, ricordiamo $[x_n] \le x_n \le [x_n] + 1$

$$2. \dots$$

4 Continuità

Sia $f: D \to \mathbb{R}, D \subseteq \mathbb{R} \ x_0 \in D', x_0 \in \mathbb{R}, l \in \mathbb{R}$

Diciamo $\lim_{x\to x_0} f(x) = l$

$$\iff \forall \varepsilon > 0 \exists \delta > 0 \text{ t. c. } 0 < |x - x_0| < \delta \implies |f(x) - l| < \varepsilon$$

Il valore di l non è in alcun modo legato ad $f(x_0)$

Consideriamo $x_0 \in D$

Esempi (4.1)

•
$$f(x) = x^2$$

$$\lim_{x \to 0} f(x) = 0 = f(0)$$

•
$$f(x) = \begin{cases} x^2 & x \neq 0 \\ 1 & x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = 0 \neq f(0)$$

•
$$\operatorname{sgn}(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

$$\lim_{x\to 0}\operatorname{sgn}(x)=\nexists$$

$$\lim_{x\to 0^+}\operatorname{sgn}(x)=1\neq\operatorname{sgn}(0)=0$$

$$\lim_{x\to 0^-}\operatorname{sgn}(x)=-1\neq\operatorname{sgn}(0)=0$$

•
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = 0 = f(0)$$

Definizione Consideriamo $D \subseteq \mathbb{R}^n$

$$f: D \to \mathbb{R}^m$$

 $x \mapsto f(x)$

con
$$x = (x_1, \dots, x_n), f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$

Diciamo che f è continua in $x_0 \in D$ se

 $a. x_0$ punto isolato di D

b. $x_0 \in D'$ e vale una delle seguenti affermazioni tra di loro equivalenti:

i.
$$\forall V(f(x_0)) \ \exists U(x_0) \ \text{tale che} \ x \in U \cap D$$

$$\implies f(x) \in V$$

ii.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tale che} \ |x - x_0| < \delta$$

$$\implies |f(x) - f(x_0)| < \varepsilon$$

iii.
$$\lim_{x \to x_0} f(x) = f(x_0)$$

iv.data $\{x_n\}_{n=0}^{\infty}$ a valori in Dtale che $x_n \xrightarrow{n \to \infty} x_0$ allora

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

Lemma l.ii Le quattro affermazioni precedenti sono equivalenti

dim. (l.ii)

i. ⇔ ii. è ovvio

 $ii. \Longrightarrow iii.$ è ovvio

 $iii. \iff iv.$ per il teorema di relazione

$$iii. \Longrightarrow ii. \lim_{x \to x_0} f(x) = f(x_0)$$
 vale

$$\forall \varepsilon > 0 \,\exists \delta > 0 : |x - x_0| < \delta \wedge x \neq x_0 \implies |f(x) - f(x_0)| < \varepsilon$$

se
$$x = x_0 |f(x) - f(x_0)| = |f(x_0) - f(x_0)| = 0 < \varepsilon$$

 $\implies \forall \varepsilon > 0 \,\exists \delta > 0 : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon \text{ ossia } f \text{ continua in } x_0$

Diciamo che f è continua in $E \subseteq D$ se $\forall x_0 \in E$ f è continua in x_0

Esempi (4.2) In generale dati $f: D \to \mathbb{R}$ con $D \subseteq \mathbb{R}$, e $x_0 \in D$ se si ha

$$\begin{cases} \lim_{x \to x_0^+} f(x) = f(x_0) \text{ si dice che } f \text{ è continua da destra} \\ \lim_{x \to x_0^-} f(x) = f(x_0) \text{ si dice che } f \text{ è continua da sinistra} \end{cases}$$

9 nov 2021

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{h \to 0} f(x_0 + h) = f(x_0) \iff \lim_{h \to 0} f(x_0 + h) - f(x_0) = 0$$

Esempio (4.3) Verifichiamo che $\forall x_0 \in \mathbb{R}$, $\sin x$ è continua in x_0 . Sappiamo che $\lim_{x\to 0} \sin x = 0$.

Per $x_0 \in \mathbb{R}$

$$\lim_{h \to 0} \sin(x_0 + h) - \sin(x_0) =$$

$$= \lim_{h \to 0} \left(\sin x_0 \cos h + \sin h \cos x_0 - \sin x_0 \right) =$$

$$= \lim_{h \to 0} \left(\sin x_0 (\cos h - 1) + \sin h \cos x_0 \right) =$$

Dato che $\sin h \xrightarrow{h \to 0} 0$

$$= \sin x_0 \lim_{h \to 0} \left(\cos h - 1\right) = 0$$

Allora $\forall x_0 \in \mathbb{R}$ si ha

$$\lim_{x \to x_0} \sin x = \sin x_0$$

 $\implies \sin x$ continua su $\mathbb R.$ Allo stesso modo si verifica che $\cos x$ è continua su $\mathbb R$

Proprietà (Algebra delle funzioni continue) Date $f, g : D \to \mathbb{R}$, con $x_0 \in D \subseteq \mathbb{R}$, f, g continue in x_0 , allora $\forall a \in \mathbb{R}$ si ha che af + g è continua in x_0

Inoltre

- fg continua in x_0
- se $g(x_0) \neq 0$ allora $\frac{f}{g}$ continua in x_0
- $f_+(x) = \max\{0, f(x)\}$ è continua in x_0

Teorema VII (Continuità della funzione composta) Sia $f: D \to \mathbb{R}$, $x_0 \in D$, $g: f(D) \to \mathbb{R}$. Se f è continua in x_0 e g continua in $f(x_0)$

 $\implies g \circ f$ è continua in x_0

dim. (VII)

$$\forall V(q(f(x_0))) \exists W(f(x_0)) \text{ tale che } \forall y \in W \cap f(D)$$

$$\implies g(y) \in V$$

 $\exists U(x_0) \text{ tale che } \forall x \in U \cap D \implies f(x) \in W$

Allora $\exists U(x_0)$ tale che $\forall x \in U \cap D \ g(f(x)) \in V$

 $\implies g \circ f$ è continua in x_0

Proprietà Date $f: D \to \mathbb{R}$, x_0 di accumulazione per $D, g: E \to \mathbb{R}$, con $f(D) \subseteq E$, assumiamo

i.

$$\lim_{x \to x_0} f(x) = l \in E$$

ii. g continua in $l, l \in \mathbb{R}$

$$\implies \lim_{x \to x_0} g(f(x)) = g(l)$$

Allora, date i. e ii., si ha

$$\lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right)$$

Si dimostra che sono continue nel loro dominio

- i polinomi
- le frazioni algebriche
- le funzioni esponenziali
- le funzioni logaritmiche
- le funzioni goniometriche e le loro inverse

Tutte queste funzioni sono dette "funzioni elementari"

Attenzione Data $f: D \to \mathbb{R}$, f invertibile su D, e f continua su D $\not \Rightarrow f^{-1}$ sia continua du f(D)

Esempio (4.4) La funzione è analiticamente definita come

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ x - 1 & 2 < x \le 3 \end{cases}$$

Notiamo che $D = [0,1] \cup (2,3]$, e che f sia continua nel suo dominio.

$$f(D) = [0, 2]$$

Invertendola:

$$f^{-1}(x) = \begin{cases} x & 0 \le x \le 1\\ x+1 & 1 < x \le 2 \end{cases}$$

Quindi f^{-1} non è continua su f(D), in particolare non è continua in $x_0 = 1$

Proprietà Data $f: I \to \mathbb{R}$, con I intervallo,

se f è invertibile e continua su I

$$\implies f^{-1}$$
 è continua su $J = f(I)$

4.1 Discontinuità

Consideriamo $f: D \to \mathbb{R}, x_0 \in D$ e f continua in $D \setminus \{x_0\}$

Diciamo che:

1. x_0 è una discontinuità eliminabile se

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R} \, \land \, l \neq f(x_0)$$

Esempio (4.5)

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

f è continua in $\mathbb{R} \setminus \{0\}$, vale

$$\lim_{x \to 0} f(x) = 1 \in \mathbb{R} \neq 0$$

Quindi $x_0=0$ è discontinuità eliminabile

2. x_0 è detto salto o punto di salto se

$$\lim_{x \to x_0^+} f(x) = l \in \mathbb{R}$$

$$\lim_{x \to x_0^-} f(x) = n \in \mathbb{R}$$

$$l \neq n$$

Si definisce ampiezza del salto la grandezza

$$s = l - n$$

Esempio (4.6) Data

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

si ha che $x_0 = 0$ è salto. s = 1

Esempio (4.7) Data

$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

si ha che $x_0 = 0$ è salto. s = 2

Notazione Nel Pagani Salsa i punti di salto sono detti discontinuità di prima specie

Notazione Nella terminologia a lezione, si intendono sia i salti che le discontinuità eliminabili come discontinuità di prima specie

3. x_0 è discontinuità di seconda specie se si verifica una delle seguenti condizioni

$$\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$$

$$\mp \infty$$

$$+ \infty$$

$$- \infty$$

$$\lim_{x \to x_0^{+}} f(x) = \nexists$$

$$\lim_{x \to x_0^{-}} f(x) = \nexists$$

4.2 Prolungamento per continuità di una funzione

Sia $f: D \to \mathbb{R}$ e $x_0 \in D'$.

Assumiamo che

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

Diciamo prolungamento per continuità di f in x_0 la funzione

$$\tilde{f}(x) = \begin{cases} f(x) & x \in D \setminus \{x_0\} \\ l & x = x_0 \end{cases}$$

 \tilde{f} è continua in x_0

Ovviamente se $x_0 \in D$ e f continua in x_0 allora

$$\tilde{f}(x) = f(x)$$

Esempi (4.8)

Consideriamo

$$f(x) = \begin{cases} x^2 & x \neq 0\\ 1 & x = 0 \end{cases}$$

fnon è continua in 0, con una discontinuità elimi
inabile

$$\tilde{f}(x) \begin{cases} x^2 & x \neq 0 \\ 0 & x = 0 \end{cases} = x^2$$

Questo è il prolungamento per continuità di f

Consideriamo

$$f(x) = x \sin \frac{1}{x}$$

Si ha che dom $f = \mathbb{R} \setminus \{0\}$. f è continua nel suo dominio.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

Allora

$$\tilde{f}(x) \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

è il prolungamento per continuità di f in 0; \tilde{f} è continua su $\mathbb R$

• Consideriamo $f(x) = x^x$. Si ha che $D = \text{dom } f = (0; +\infty)$.

Osserivamo che

$$\lim_{x \to 0^+} x^x = e^l = 1$$

dove

$$l = \lim_{x \to 0^+} x \ln x = \dots = 0$$

La funzione \tilde{f}

$$\tilde{f}(x) \begin{cases} x^x & x \neq 0 \\ 1 & x = 0 \end{cases}$$

è l'estensione per continuità di f(x) in $x_0=0$. \tilde{f} è continua su $[0;+\infty)$

5 Successioni

5.1 Un limite notevole

$$\lim_{n \to +\infty} \sqrt[n]{n^{\alpha}} \qquad \text{con } \alpha \in \mathbb{R}$$

• $\alpha = 0 \implies$ il limite vale 1

• $\alpha > 0$; ricordiamo che

$$\lim_{n \to +\infty} \frac{n^{\alpha}}{(1+\varepsilon)^n} = 0$$

Allora $\forall \varepsilon > 0$

$$-(1-\varepsilon)^n < n^\alpha < (1+\varepsilon)^n$$

definitivamente

Ma è facile vedere

$$1 < n^{\alpha} < (1 + \varepsilon)^n$$

definitivamente

 $\implies 1 < \sqrt[n]{n^{\alpha}} < 1 + \varepsilon$ definitivamente

Per $\varepsilon \to 0$ si ha che

$$\lim_{n\to +\infty} \sqrt[n]{n^\alpha} = 1$$

α < 0

$$\sqrt[n]{n^{\alpha}} = \frac{1}{\sqrt[n]{n^{-\alpha}}} = \frac{1}{\sqrt[n]{n^{\beta}}}$$

Ma $\sqrt[n]{n^{\beta}} \xrightarrow{n \to +\infty} 1$, con $\beta = -\alpha > 0$ Quindi

$$\frac{1}{\sqrt[n]{n^{\beta}}} = 1$$

Ne segue che $\forall \alpha \in \mathbb{R}$

$$\lim_{n \to +\infty} \sqrt[n]{n^{\alpha}} = 1$$

5.2 Sottosuccessioni

Si ha l'obiettivo di indagare più a fondo il comportamento delle successioni irregolari

Esempi (5.1)

1. Si consideri

$$a_n = (-1)^n = 1, -1, 1, -1$$

• con gli indici pari

$$a_{2n} = (-1)^{2n} = 1, 1, 1 \qquad n \in \mathbb{N}$$

si ha che $a_{2n} \xrightarrow{n \to +\infty} 1$

• con gli indici dispari

$$a_{2n+}=(-1)^{2n+1}=-1,-1,.1 \qquad n\in \mathbb{N}$$
 si ha che $a_{2n+1}\xrightarrow{n\to +\infty}-1$

Definizione Sia $a:\{a_n\}_{n=0}^{\infty}$ successione a valori reali. Consideriamo una successione di indici

$$k: \mathbb{N} \to \mathbb{N}$$

 $n \mapsto k_n$

con k strettamente crescente, ovvero

$$k_n < k_{n+1} \quad \forall \, n \in \mathbb{N}$$

Diciamo sottosuccessione di a la successione

$$b_n = a_{k_n}$$

Concretamente per costruire $\{b_n\}_{n=0}^{\infty}$ cancelliamo ad $\{a_n\}_{n=0}^{\infty}$ una quantità infinita di termini lasciando gli altri invariati.

Ogni successione è sottosuccessione di se stessa, basta prendere $k_n=n$

Esercizio Dati

$$a_n = \sin\left(\frac{\pi}{2}n\right)$$
$$b_n = n\sin\left(\frac{\pi}{2}n\right)$$

estrarre le possibili sottosuccessioni regolari

Soluzione DA FARE

15 nov 2021

Teorema VIII (legame limite successione e sottosuccessione) Consideriamo $\{a_n\}_{n=0}^{\infty}, l \in \mathbb{R}^*,$

$$\lim_{n \to \infty} a_n = l$$

 \iff ogni sottosuccessione di a_n ammette una sottosuccessione che tende a l

dim. (VIII)

" \Longrightarrow " La prima implicazione è vera, pertanto

$$\forall V(l) \exists \overline{n} \forall n \geq \overline{n} : a_n \in V(l)$$

Sia $n \to k_n$ crescente, e $b_n = a_{k_n}$, allora

$$\exists \, \overline{\overline{n}} \, \forall \, n > \overline{\overline{n}} : \, k_n > \overline{n}$$

allora $b_n = a_{k_n} \in V(l)$.

Dunque

$$\forall V(l) \exists \overline{\overline{n}} \in \mathbb{N} \text{ t. c. } \forall n > \overline{\overline{n}} : b_n \in V(l)$$

$$\implies \lim_{n \to +\infty} b_n = l$$

Abbiamo anche dimostrato che $a_n \xrightarrow{n \to \infty} l$ implica che qualsiasi sua sottosuccessione $b_{k_n} \to l$

$$\forall V(l) \forall n \in \mathbb{N} \exists n' \ge n | a_{n'} \notin V(l)$$

Consideriamo n = 1; $\exists n'_1 > 1$ tale che $a_{n'_1} \notin V(l)$; $k_1 = n'_1$

Consideriamo $n=k_1+1; \exists n_2' \geq k_1+1 > k_1$ tale che $a_{n_2'} \notin V(l); k_2=n_2'$

Consideriamo $n=k_2+1;\ \exists n_3'\geq k_2+1>k_1$ tale che $a_{n_3'}\notin V(l);\ k_3=n_3'$

. . .

Otteniamo una successione di indici

$${\rm I\! N} \to {\rm I\! N}$$

$$n \mapsto k_n$$

strettamente crescente, e una successione $b_n = a_{k_n}$ tale che

$$\exists\,V(l)|\forall\,n,b_n\notin V(l)$$

Allora b_n non può ammettere sottosuccessioni che tendono a l

 \implies abbiamo dimostrato la negazione della seconda implicazione, partendo dalla negazione della prima, ovvero la prima implicazione implica la seconda $\hfill\Box$

5.3 Successioni a valori in \mathbb{R}^n

$$\{a_k\}_{k=0}^{\infty}$$
 $a_k = (a_1^k, a_2^k, a_3^k, \cdots, a_n^k) \in \mathbb{R}^n$

Esempio (5.2) Fissato $x \in \mathbb{R}^n$,

$$a_k = kx = (kx_1, kx_2, kx_3, \cdots, kx_n)$$

 $\{a_k\}_{k=0}^{\infty}$ a valori vettoriali è convergente a $l \in \mathbb{R}^n$ se

$$\forall \, \varepsilon > 0 \, \exists \overline{k} \in \mathbb{N} \, \forall \, k \geq \overline{k} : \underbrace{|a_k - l|}_{\left(\sum_{j=1}^n (a_j^k - l)^2\right)^{1/2}} < \varepsilon$$

 $\{a_k\}_{k=0}^{\infty}$ a valori vettoriali è divergente a $l\in\mathbb{R}^n$ se

$$\forall M > 0 \,\exists \overline{k} \in \mathbb{N} \,\forall k > \overline{k} : |a_k| > M$$

 $\{a_k\}_{k=0}^{\infty}$ si dice irregolare (oscillante) se non è né convergente né divergente

Osservazione (5.1) Per $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n vale il teorema di legame tra limiti di successione e sottosuccessioni

Valgono tutti i teoremi sui limiti che non coinvolgono l'ordinamento del codominio. (In particolare, non si definiscono le successioni monotone, e quindi non vale il teorema sui limiti delle successioni monotone)

Proposizione *p.*vii Sia $E \subseteq \mathbb{R}^n$, sia $y \in \mathbb{R}^n \cup \{\infty\}$

Se y è di accumulazione per E

 $\implies \exists \{x_k\}_{k=0}^{\infty}$ a valori in E, con $x_k \neq y \ \forall k \in \mathbb{N}$ e tale che

$$\lim_{k \to +\infty} x_k = y$$

dim. (p.vii)

caso 1. $y \in \mathbb{R}^n$: $y \in E'$, si ha

$$\forall r > 0 \exists x \in E, x \neq y, x \in B_r(y)$$

Consideriamo k = 1, 2, 3, ...; possiamo determinare $x_k \in E$, con $x_k \neq y$ e $x_k \in B_{1/k}(y)$

Abbiamo ottenuto una successione $\{x_k\}_{k=0}^{\infty}$ a valori in E tale che $\forall \varepsilon > 0 \; \exists \; \overline{k} \; | \; \forall \; k \geq \overline{k} : x_k \in B_{1/k}(y) \subset B_{1/\overline{k}}(y) \subset B_{\varepsilon}(y)$

Allora
$$x_k \xrightarrow{k \to +\infty} y, x_k \neq y$$

caso 2. $y = \infty, y \in E'$

$$\forall M > 0 \exists x \in E : |x| > M$$

Per $k = 1, 2, 3, \ldots$ consideriamo $x_k \in E$, con $|x_k| \ge k$ allora

$$\forall \varepsilon > 0 \,\exists \overline{k} \in \mathbb{N} \,\forall k \geq \overline{k} : |x_k| \geq k \geq \overline{k} > M$$

$$\implies x_k \to \infty$$

Teorema IX (di Bolzano-Weierstrass per le successioni) Data $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n (valori vettoriali), si ha che

se $\{a_k\}_{k=0}^{\infty}$ è limitata

 $\implies \exists \{a_{h_k}\}_{k=0}^{\infty} \text{ sottosuccessione tale che } a_{h_k} \text{ è convergente a } l \in \mathbb{R}$

Ogni successione limitata ammette sempre una sottosuccessione convergente

dim. (IX) Indichiamo con $E = \{a_k\}$ = insieme dei valori della successione. E è limitato per ipotesi;

caso 1. assumiamo che E abbia un numero infinito di elementi.

 \implies per il teorema di Bolzano-Weiesrtrass sui sottoinsiemi infiniti di \mathbb{R}^n \implies E ammette almeno un punto di accumulazione $\lambda \in \mathbb{R}^n$

$$\implies \exists \{b_k\}_{k=0}^{\infty} \text{ a valori in } E, \text{ tale che } b_k \xrightarrow{k \to +\infty} \lambda$$

Ma $E \equiv i$ valori di $\{a_k\}_{k=0}^{\infty}$

dunque b_k è sottosuccessione di a_k .

Allora esiste una sottosuccessione di a_k convergente.

caso 2. assumiamo che E abbia un numero finito di elementi.

 \implies esisterà sicuramente un valore di E assunto infinite volte dalla successione $\{a_k\}_{k=0}^{\infty}$. Sia $a_k=l$ per infiniti indici.

Consideriamo $b_k = l$, $\forall k \in \mathbb{N}$, b_k è successioni a valori in E, ed essendo costante: $b_k \xrightarrow{k \to +\infty} l$, dunque b_n è convergente

Osservazione (5.2) Il teorema di Bolzano-Weierstrass per le successioni utilizza il teorema di Bolzano-Weierstrass per gli insiemi in \mathbb{R}^n . Dunque è necessaria la completezza di \mathbb{R}

Se $\{a_n\} \subset \mathbb{R}^n$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{R}$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{C}$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{Q}$ ed è limitata $\Rightarrow \{a_n\}$ convergente

5.3.1 Successioni e chiusura di $E \in \mathbb{R}^n$

Si ricorda che la chiusura è

$$\overline{E} = E \cup \delta E$$

Proprietà Data $E \in \mathbb{R}^n$ e $y \in \mathbb{R}$

$$y \in \overline{E} \iff \exists \{x_k\}_{k=0}^{\infty} \text{ a valori in } E \text{ tale che } x_k \xrightarrow{k \to +\infty} y$$

Dimostrazione. Procediamo spezzando le due implicazioni

" \Longrightarrow " Ricordiamo che $\overline{E}=E\cup E'$

$$y\in \overline{E}=E\cup E'$$

- se $y \in E$, allora consideriamo $x_k \equiv y \in E$ si ha $x_k \xrightarrow{k \to +\infty} y$
- se $y \in E'$ e $y \notin E$, per la proposizione (p.vii), $\exists \{x_k\}_{k=0}^{\infty}$ a valori in E tale che $x_k \xrightarrow{k \to +\infty} y$
- " \Leftarrow " Assumiamo per assurdo che esista $x_k \xrightarrow{k \to +\infty} y$ e $y \notin \overline{E}$, con $x_k \in E$.

 \overline{E} è un insieme chiuso, allora $(\overline{E})^C$ è aperto, ovvero $\exists\, r>0$ tale che $B_r(y)\subset (\overline{E})^C$

Allora $B_r(y) \cap \overline{E} = \emptyset$, allora poiché $E \subset \overline{E}$

$$\exists r > 0 : B_r(y) \cap E = \emptyset$$

allora qualsiasi successione a valori in E non può convergere a y, dunque neghiamo $x_k \xrightarrow{k \to +\infty} y$, si ha contraddizione, dunque

$$y \in \overline{E}$$

Teorema X Dato $E \in \mathbb{R}^n$

- (A) E è chiuso
- (B) \iff se esiste $\{x_k\}_{k=0}^{\infty}$ a valori in E tale che $x_k \xrightarrow{k \to +\infty} y$ allora $y \in E$ Equivalentemente:
- (A) E è chiuso
- (B) \iff tutte le sue successioni convergenti hanno limite in E stesso

dim. (X)

" \Longrightarrow " E è chiuso. Ricordiamo che E è chiuso $\iff E=\overline{E}$ Allora per proprietà precedente

$$\{x_k\}_{k=0}^{\infty} \subset E \land x_k \to y \implies y \in \overline{E} = E$$

" \Leftarrow " Ricordiamo che E chiuso \Leftrightarrow $E' \subset E$. Dimostriamo che $E' \subset E$.

Consideriamo $y \in E', \implies \exists \{x_k\}_{k=0}^{\infty} \subset E, \text{ con } x_k \neq y, x_k \to y, \text{ allora per (B)}, y \in E$

Dunque
$$E' \subset E$$
, ed E chiuso \square

Definizione Sia $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n . Questa successione è detta successione di Cauchy (o successione fondamentale) se

$$\forall \varepsilon > 0 \,\exists \, \overline{k} \in \mathbb{N} \, | \, \forall \, k, m \geq \overline{k} \, |a_k - a_m| < \varepsilon$$

O, equivalentemente

$$\forall\,\varepsilon>0\,\exists\,\overline{k}\in\mathbb{N}\,\forall\,k>\overline{k}\,\forall\,p\in\mathbb{N}\,|a_k-a_{k+p}|<\varepsilon$$

(Definitivamente $|a_k - a_{k+p}| < \varepsilon$)

Intuitivamente, da un certo punto in poi i valori della successione di Cauchy sono vicini a piacere

Studieremo il legame tra l'essere di Cauchy l'essere convergente.