What is the difference between average & expected norming time?
Running time of a single execution of an algorith depends on:

1) the particular input data

2) the "random choices" made within the algorithm

· worst case; worst cases of both O and @

· average case: only discussed re: deterministic algorithms

- average naming time of all imports

- should be averaged over distribution of inputs (not equally likely)

- cannot be computed without knowing input probability distribution

expected (norst case): assume norst case input @, then compute expected runtime given distribution of @

RAND - QUICKSORT (A, p, r)
if per
9 = RAND-PARTITION (A, P, r)
RAND_QUCKSORT(A, ρ , $q-1$)
RAND_QUICKSORT(A, 9+1, r)
9 = RAND-PA RAND_QUCKS

To Prove: - Theorem: the expected # of comparisons in RAND-QUICKSORT is at most O(nlogn) (ie worst-case expected running time O(nlogn)).

· Vainablity in north done in quicksuf all comes from comparisons in Partition

elements are only compared to pivot

- ith & jth smallest elements are "split" by Partition exactly once

write total # of comparisons (X) as am of simpler random variables $X = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}$ where $X_{ij} = 1$ if i.j compared, 0 if not compared

:. $E(X) = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} E(X_{ij}) = \sum_{i=1}^{n} \sum_{j=1}^{n} P(X_{ij} = 1)$

* Recall expected value of indicator value of Bernoville trials is the probability of the enent occurring.

Now find P(i and j are compared);

I what is probability that i or j are pivot when split?

I only in this circustance will they be compared.

Consider point of execution where they are split:

[i'[i, i41, ..., ..., i-1, i] j+1]

Split only occurs iff pivot chosen between ith bjth element in A so we know that pivot x: i \(\times \times \)

Comparison between i & j only occurs if one is pivot

i. P(i, j compared) = P(i or j chosen as pivot from [i, ..., i]) = \(\frac{2}{j-i+1} \)

*\(E(X) = \(\Sigma_{i=1} \Sigma_{j-i+1} \Sigma_{j-i+1} \Sigma_{i=1} \Sigma_{k-1} \Sigma_

* Recall S," /x dx = log(h)