

Филиал акционерного общества

«Корпорация космических систем специального назначения «Комета» -

«Научно-проектный центр оптоэлектронных комплексов наблюдения»

(Филиал АО «Корпорация «Комета» – «НПЦ ОЭКН»)

ОЦЕНКА ОСТАТОЧНОГО РЕАКТИВНОГО МОМЕНТА

Научный руководитель: к.т.н, доцент кафедры ЛИСН - Ларионов Д.Ю.

> Санкт-Петербург 2025 г.

Введение

Космические тела находятся в невесомости, не имея точек опоры. Следовательно, любой двигатель, оказывающий момент на подвижную часть спутника, прикладывает равный по значению и противоположный по знаку момент к основанию космического аппарата (КА), который приведет к развороту КА вокруг его центра тяжести в направлении противоположном направлению перемещения подвижной массы. Таким образом в результате взаимного перемещения оптической системы на некоторый заданный угол и перемещения самого КА в пространстве - ось визирования оптической системы займет в пространстве некоторое положение, не совпадающее с заданными углами на перенацеливание. Особенно сильно влияние реактивных моментов и сил в случае инфракрасных оптических систем космического назначения имеющими значительный вес и габариты.

Оценка момента на основание при перенацеливании

Устройство измерения момента

Оптическая система помещается в узел подвеса устройства измерения. При выполнении поворота блока зеркал оптической системы, возникает нескомпенсированный момент на основание подвеса. В следствии чего вся рама подвеса совершает колебания. Скорость этих колебаний регистрирует лазерный гироскоп.

По измерениям гироскопа находим нескомпенсированный момент.

$$M = \frac{J\Delta\omega}{\Delta t}$$

J– Момент инерции стенда с оптической системой, кг \cdot м

 Δt -период между фиксируемыми соседними значениями угловой скорости, с

Измеренная скорость колебаний рамы при перенацеливании сравнивается со скоростью колебаний, вызванными тестовым моментом, ускорение и момент инерции которого точно определены

Моделирование работы стенда

Узел подвеса стенда представляет собой колебательное звено первого порядка

АЧХ и ФЧХ колебательного звена

$$J\ddot{\varphi}(t) + b\dot{\varphi}(t) + c\varphi(t) = M(t)$$
 $\omega_0 = \sqrt{\frac{c}{J}} = 0,52 \frac{\text{рад}}{\text{c}}$
 $\omega = \frac{2\pi}{T} = \frac{2\pi}{4} = 1,57 \frac{\text{рад}}{\text{c}}$

 $\omega \gg \omega_0 \rightarrow$ система работает как интегратор

Ускорение рамы с различным декрементом затухания

Аттестация стенда. Измерение момента инерции маховика

Определяем погрешность по формуле:

$$J_{i} = J_{i} \sqrt{\left(\frac{\partial \ln(J_{i})}{\partial m_{i}} \Delta m_{i}\right)^{2} + \left(\frac{\partial \ln(J_{i})}{\partial r_{i}} \Delta r\right)^{2}}$$

- Стороны маховика измеряются с помощью штангенциркуля ШЦЦ-І-125-0,01 с погрешностью 0,03 mm.
- Массу маховика измеряем на весах ЕК-12Кі с пределом допускаемой погрешности ±3 г.
- Рассчитываем плотность материала
- Рассчитываем массу частей составных $m_i = \rho \cdot V_i$
- Определяем момент инерции составных частей $J_i = \frac{m_i}{2} r_i$
- $J_i = J_i \sqrt{\left(\frac{\partial \ln(J_i)}{\partial m_i} \Delta m_i \right)^2 + \left(\frac{\partial \ln(J_i)}{\partial r_i} \Delta r \right)^2} + \left(\frac{\partial \ln(J_i)}{\partial r_i} \Delta r \right)^2 + \left(\frac{\partial \ln(J_i)}{$

Аттестация стенда. Измерение ускорения маховика

Эталонный маховик

Многократные измерения ускорения

Маховик устанавливается на бесколлекторный двигатель ДБМ-40.

Двигатель ускоряется по трапециевидному закону. Скорость двигателя измеряется по датчику угла ЛИР-ДА190К (№ ФИФ ОЕИ 80050-20).

Погрешность измерения ускорения определяется многократными измерениями

$$\Delta \varepsilon = \pm 0.17 \frac{\text{рад}}{\text{c}^2}$$

Итоговая погрешность измерения тестового момента:

$$\Delta M = \sqrt{(\Delta J \cdot \varepsilon)^2 + (\Delta \varepsilon \cdot J)^2} = 5 \cdot 10^{-5} \text{ H} \cdot \text{M}$$

$$M = 0.005 \pm 5 \cdot 10^{-5} \,\mathrm{H} \cdot \mathrm{M}$$

Аттестация стенда. Погрешность гироскопа

Рисунок 8 – Измерения скорости вращения Земли

$$\omega_{\varphi} = \omega_{3} \cdot \cos(\varphi)$$

$$\delta = \frac{\overline{\omega_{\Gamma}} - \omega_{\varphi}}{\omega_{\varphi}} = 0.006^{\circ}$$

Аттестация стенда

Рисунок 9 – Свидетельство об аттестации методики

$$M = 0,005 \pm 7.07 \cdot 10^{-5} \text{ H} \cdot \text{M}$$

$$\delta M = \frac{7,07 \cdot 10^{-5}}{0,005} \approx 1,5 \%$$

Оценка момента на основание при перенацеливании

Скорость колебаний рамы при тестовом воздействии

Ускорение колебаний рамы при тестовом воздействии

Скорость колебаний рамы при перенацеливании

Ускорение колебаний рамы при перенацеливании

Оценка момента на основание при перенацеливании

Итоговый момент определяется как отношение ускорений рамы при перенацеливании и при тестовом воздействии

$$M = \frac{\varepsilon_{\Pi}}{\varepsilon_{T}} \cdot M_{T}$$

Где ε_{T} - ускорение рамы при перенацеливании; ε_{T} - ускорение рамы при тестовом воздействии; M_{T} - эталонный момент маховика, равный 0,005 Н·м

Нескомпенсированный момент

Заключение

- Разработан стенд для измерения остаточного реактивного момента при перенацеливании оптических систем.
- Проведено моделирование, определены оптимальные параметры колебательного звена.
- Методика измерения прошла аттестацию в Государственном реестре средств измерений.
- Достигнута высокая точность погрешность менее 5%.
- Методика может применяться для настройки оптико-механических систем различного назначения