Calcul numeric Subspații. Matrice. Sisteme liniare pătratice.

Paul Irofti Andrei Pătrașcu Cristian Rusu

Departmentul de Informatică
Facultatea de Matematică și Informatică
Universitatea din București
Email: prenume.nume@fmi.unibuc.ro

Cuprins

- Introducere. Vectori. Operaţii elementare
- Subspaţii liniare. Produs scalar. Norme
- Matrice. Operaţii elementare. Proprietăţi
- Sisteme de ecuaţii liniare pătratice
- Algoritmi de rezolvare a SL pătratice
- Sisteme speciale

Vectori

Vom lucra cu entități (vectori și matrice) construite cu numere reale

- scalar: 1.2
- ▶ vector: [1]

Vectori

Definiție. Un vector real x de dimensiune n este o colecție de n numere reale dispuse ordonat într-o coloană.

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

Fig. 1.1: (a) Un vector în \mathbb{R}^3 și coordonatele sale; (b) vectorii unitate în \mathbb{R}^3

Vectori: Operatii

► Suma:
$$z = x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

▶ Înmulţire cu un scalar: $z = \alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix}$

Fig. 1.2: (a) Suma a doi vectori în \mathbb{R}^2 ; (b) Produsul cu un scalar

Vectori: Operatii

Considerând vectorii $X = \{x_1, x_2, \dots, x_p\}$, atunci vectorul

$$z = \alpha_1 x_1 + \cdots + \alpha_p x_p = \sum_{i=1}^p \alpha_i x_i$$

se numeste combinație liniară a vectorilor din X cu coeficienții $\alpha_1,\cdots,\alpha_p\in\mathbb{R}.$

Exemplu:
$$X = \{ \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}, \alpha = \begin{bmatrix} 1 & 1/2 \end{bmatrix}$$
$$z = 1 \cdot \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} + 1/2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Liniar dependenta

Considerând vectorii $X = \{x_1, x_2, \cdots, x_p\}$, atunci vectorul

$$z = \alpha_1 x_1 + \cdots + \alpha_p x_p = \sum_{i=1}^p \alpha_i x_i$$

se numeste combinație liniară a vectorilor din X cu coeficienții $\alpha_1, \cdots, \alpha_p \in \mathbb{R}$.

Exemplu:
$$X = \left\{ \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \alpha = \begin{bmatrix} 1 & 1/2 \end{bmatrix}$$

$$z = 1 \cdot \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} + 1/2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Observati: dacă $\alpha = [1 - 1/2]$ atunci z = 0

Liniar dependenta

Vectorii $X = \{x_1, x_2, \dots, x_p\}$ se numesc **liniar dependenţi** dacă $\exists \hat{\alpha} \neq 0 \in \mathbb{R}^p$ a.i.

$$z = \hat{\alpha_1} x_1 + \cdots + \hat{\alpha_p} x_p = \sum_{i=1}^p \hat{\alpha_i} x_i = 0$$

Altfel, se numesc liniar independenţi.

Exemplu liniar dependenţi:
$$X = \{ \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}, \hat{\alpha} = \begin{bmatrix} 1 & -1/2 \end{bmatrix}$$

$$z = 1 \cdot \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} - 1/2 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Exemplu liniar independenţi: $X = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}, \alpha = [\alpha_1 \ \alpha_2]^T$

$$z = \alpha_1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \neq 0$$

Arătaţi că $\alpha(z)$ este unic pentru X liniar independenţi! (exerciţiu)

Cuprins

- Introducere. Vectori. Operaţii elementare
- Subspaţii liniare. Produs scalar. Norme
- Matrice. Operaţii elementare. Proprietăţi
- Sisteme de ecuaţii liniare pătratice
- Algoritmi de rezolvare a SL pătratice
- Sisteme speciale

O mulţime S de vectori din \mathbb{R}^n este numită **subspaţiu liniar** al spaţiului \mathbb{R}^n dacă:

O mulţime S de vectori din \mathbb{R}^n este numită **subspaţiu liniar** al spaţiului \mathbb{R}^n dacă: (*i*) $x+y\in S, \forall x,y\in S;$ (*ii*) $\alpha x\in S, \forall x\in S, \alpha\in \mathbb{R}$ **Exemple:**

▶ in \mathbb{R} : axa reală $S = \{x \in \mathbb{R}\}$

O mulţime S de vectori din \mathbb{R}^n este numită **subspaţiu liniar** al spaţiului \mathbb{R}^n dacă: (*i*) $x+y\in S, \forall x,y\in S;$ (*ii*) $\alpha x\in S, \forall x\in S, \alpha\in \mathbb{R}$ **Exemple:**

- ▶ in \mathbb{R} : axa reală $S = \{x \in \mathbb{R}\}$
- ▶ in \mathbb{R}^2 : dreapta $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 = 0\}$

O mulţime S de vectori din \mathbb{R}^n este numită **subspaţiu liniar** al spaţiului \mathbb{R}^n dacă: (*i*) $x+y\in S, \forall x,y\in S;$ (*ii*) $\alpha x\in S, \forall x\in S, \alpha\in \mathbb{R}$ **Exemple:**

- ▶ in \mathbb{R} : axa reală $S = \{x \in \mathbb{R}\}$
- ▶ in \mathbb{R}^2 : dreapta $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 = 0\}$
- ▶ in \mathbb{R}^3 : plan $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 + x_3 = 0, x_1 x_2 = 0\}$

O mulţime S de vectori din \mathbb{R}^n este numită **subspaţiu liniar** al spaţiului \mathbb{R}^n dacă: (i) $x + y \in S$, $\forall x, y \in S$; (ii) $\alpha x \in S$, $\forall x \in S$, $\alpha \in \mathbb{R}$ **Exemple:**

- ▶ in \mathbb{R} : axa reală $S = \{x \in \mathbb{R}\}$
- ▶ in \mathbb{R}^2 : dreapta $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 = 0\}$
- ▶ in \mathbb{R}^3 : plan $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 + x_3 = 0, x_1 x_2 = 0\}$
- ▶ in \mathbb{R}^n : subspaţiu $S = \{x \in \mathbb{R}^n : Ax = 0\}$, unde $A \in \mathbb{R}^{m \times n}$

O mulţime S de vectori din \mathbb{R}^n este numită **subspaţiu liniar** al spaţiului \mathbb{R}^n dacă:

- \triangleright $x + y \in S, \forall x, y \in S$

Exemple:

- ▶ in \mathbb{R} : axa reală $S = \{x \in \mathbb{R}\}$
- ▶ in \mathbb{R}^2 : dreapta $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 = 0\}$
- ▶ in \mathbb{R}^3 : plan $S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 + x_3 = 0, x_1 x_2 = 0\}$
- ▶ in \mathbb{R}^n : subspaţiu $S = \{x \in \mathbb{R}^n : Ax = 0\}$, unde $A \in \mathbb{R}^{m \times n}$

Combinatiile liniare ale vectorilor $X = \{x_1, x_2, \cdots, x_p\}$ genereaza un subspaţiu liniar!

O mulţime B de vectori din \mathbb{R}^n este numită **bază** al spaţiului $S \subseteq \mathbb{R}^n$ dacă:

- lack elementele din B sunt liniar independente
- B genereaza S

O mulţime B de vectori din \mathbb{R}^n este numită **bază** al spaţiului $S \subseteq \mathbb{R}^n$ dacă:

- elementele din B sunt liniar independente
- B genereaza S

- ► $S = \{x \in \mathbb{R}^n : x = \alpha_1 b_1 + \cdots + \alpha_p b_p, \alpha \in \mathbb{R}^p\}$ sau $S = span\{b_1, \cdots, b_p\}$

O mulţime B de vectori din \mathbb{R}^n este numită **bază** al spaţiului $S \subseteq \mathbb{R}^n$ dacă:

- lack elementele din B sunt liniar independente
- B genereaza S

- $S = \{x \in \mathbb{R}^n : x = \alpha_1 b_1 + \cdots + \alpha_p b_p, \alpha \in \mathbb{R}^p\} \text{ sau } S = span\{b_1, \cdots, b_p\}$
- ▶ $\{e_1, \dots, e_n\}$ baza (canonica) pentru spaţiul \mathbb{R}^n

Dimensiunea subspaţiului $S \subseteq \mathbb{R}^n$ = numărul de vectori din baza (nr. maxim de vectori liniar independenţi)

$$S = \left\{ x \in \mathbb{R}^n : x = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \alpha \in \mathbb{R} \right\} => \text{Dimensiune } Dim(S) = 1$$

Dimensiunea subspaţiului $S \subseteq \mathbb{R}^n$ = numărul de vectori din baza (nr. maxim de vectori liniar independenţi)

►
$$S = \left\{ x \in \mathbb{R}^n : x = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \alpha \in \mathbb{R} \right\} =$$
 Dimensiune $Dim(S) = 1$

Norme

În orice (sub)spaţiu este necesară o metrică de măsură a distanţelor

Multe probleme de calcul numeric și învăţare automată se formulează în termeni de **distanțe**

Support Vector Machine:

$$\min_{w \in \mathbb{R}^n} \|w\|_2^2$$

s.t. $y_i(w^T x_i + b) \ge 1 - \xi_i, \xi \ge 0$

Regresie liniară:

$$\min_{x \in \mathbb{R}^n} ||x||_2^2$$
s.t. $Ax = b$

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2$$

Produs scalar euclidian:
$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y

Norme $\|\cdot\|$: functii care satisfac urmatoarele conditii

▶ pozitivitate: $||x|| > 0, \forall x \in \mathbb{R}^n, x \neq 0$

Produs scalar euclidian:
$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

- ▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y
- in felul acesta, capata sensul unei măsuri de similaritate (în opoziţie cu distanţa)

Norme $\|\cdot\|$: functii care satisfac urmatoarele conditii

- ▶ pozitivitate: $||x|| > 0, \forall x \in \mathbb{R}^n, x \neq 0$
- ▶ omogenitate: $\|\alpha x\| = |\alpha| \|x\|, \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R}$

Produs scalar euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

- ▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y
- in felul acesta, capata sensul unei măsuri de similaritate (în opoziţie cu distanţa)

Norme $\|\cdot\|$: functii care satisfac urmatoarele conditii

- ▶ pozitivitate: $||x|| > 0, \forall x \in \mathbb{R}^n, x \neq 0$
- omogenitate: $\|\alpha x\| = |\alpha| \|x\|, \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R}$
- ▶ inegalitatea triunghiului: $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$

Produs scalar euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

▶ dacă x, y au norma unitate atunci $x^Ty = \cos(\theta)$, unde θ este unghiul format de x si y

Norme || · ||: functii care satisfac urmatoarele conditii

- ▶ pozitivitate: $||x|| > 0, \forall x \in \mathbb{R}^n, x \neq 0$
- omogenitate: $\|\alpha x\| = |\alpha| \|x\|, \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R}$
- ▶ inegalitatea triunghiului: $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$

Exemple:
$$||x||_2 = \sqrt{x^T x}$$
, $||x||_p := \left(\sum_i |x_i|^p\right)^{1/p}$

Produs scalar euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

- ▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y
- in felul acesta, capata sensul unei masuri de similaritate (in opozitie cu distanta)

Norme $\|\cdot\|$: functii care satisfac urmatoarele conditii

- ▶ pozitivitate: $||x|| > 0, \forall x \in \mathbb{R}^n, x \neq 0$
- omogenitate: $\|\alpha x\| = |\alpha| \|x\|, \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R}$
- ▶ inegalitatea triunghiului: $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$

Exemple:
$$||x||_2 = \sqrt{x^T x}$$
, $||x||_p := \left(\sum_i |x_i|^p\right)^{1/p}$

Produs scalar euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y

Norme $\|\cdot\|$: exemple

▶ norma 2: $||x||_2 = \sqrt{\sum_i x_i^2}$ (fig. stanga)

Produs scalar euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

- ▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y
- in felul acesta, capata sensul unei masuri de similaritate (in opozitie cu distanta)

Norme $\|\cdot\|$: exemple

- ▶ norma 2: $||x||_2 = \sqrt{\sum_i x_i^2}$ (fig. stanga)
- ▶ norma 1: $||x||_1 = \sum_i |x_i|$ (fig. centru)

Produs scalar euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

- ▶ dacă x, y au norma unitate atunci $x^T y = \cos(\theta)$, unde θ este unghiul format de x si y
- in felul acesta, capata sensul unei masuri de similaritate (in opozitie cu distanta)

Norme $\|\cdot\|$: exemple

- ▶ norma 2: $||x||_2 = \sqrt{\sum_i x_i^2}$ (fig. stanga)
- ▶ norma 1: $||x||_1 = \sum_i |x_i|$ (fig. centru)
- ▶ norma ∞ : $||x||_1 = \max_i |x_i|$ (fig. dreapta)

Cuprins

- Introducere. Vectori. Operaţii elementare
- Subspaţii liniare. Produs scalar. Norme
- Matrice. Operaţii elementare. Proprietăţi
- Sisteme de ecuaţii liniare pătratice
- Algoritmi de rezolvare a SL pătratice
- Sisteme speciale

O matrice $A \in \mathbb{R}^{m \times n}$ reprezinta un tablou bidimensional de numere reale de forma:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

▶ dacă m = n atunci A este matrice patrata

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- dacă m = n atunci A este matrice patrata
- ➤ A patrata ⇒ diagonala principala este mulţimea pozitiilor pentru care i = j

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- ▶ dacă m = n atunci A este matrice patrata
- ▶ A patrata ⇒ diagonala principala este mulţimea pozitiilor pentru care i = j
- $\triangleright C = A + B \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- ▶ dacă m = n atunci A este matrice patrata
- ▶ A patrata ⇒ diagonala principala este mulţimea pozitiilor pentru care i = j
- $C = A + B \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$
- $C = \alpha A \Leftrightarrow c_{ij} = \alpha a_{ij}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- ▶ dacă m = n atunci A este matrice patrata
- ▶ A patrata ⇒ diagonala principala este mulţimea pozitiilor pentru care i = j
- $C = A + B \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$
- $C = \alpha A \Leftrightarrow c_{ij} = \alpha a_{ij}$
- ► Transpusa $B := A^T \Leftrightarrow b_{ij} = a_{ji}$

Matrice. Subspatii asociate

O matrice $A \in \mathbb{R}^{m \times n}$ generează subspaţiile:

▶ Imaginea matricii *A*: $Im(A) = \{ y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n \text{ astfel incat } y = Ax \}$

ightharpoonup rang(A) = dim(Im(A))

Exemplu!

Matrice. Subspatii asociate

O matrice $A \in \mathbb{R}^{m \times n}$ generează subspaţiile:

- Imaginea matricii A: $Im(A) = \{ y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n \text{ astfel incat } y = Ax \}$
 - rang(A) = dim(Im(A))
- ▶ Nucleul matricii *A*: $Ker(A) = \{x \in \mathbb{R}^n : Ax = 0\}$

Exemplu!

Matrice. Subspatii asociate

O matrice $A \in \mathbb{R}^{m \times n}$ genereaza subspatiile:

- Imaginea matricii A: $Im(A) = \{ y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n \text{ astfel incat } y = Ax \}$
 - rang(A) = dim(Im(A))
- ▶ Nucleul matricii *A*: $Ker(A) = \{x \in \mathbb{R}^n : Ax = 0\}$

Teorema. $Im(A) \perp Ker(A^T)$ si orice $x \in \mathbb{R}^m$ se decompune

$$x = u + v, u \in Im(A), v \in Ker(A^T)$$

Produs matrice-vector

O matrice $A \in \mathbb{R}^{m \times n}$ reprezinta un tablou bidimensional de numere reale de forma:

$$A := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

▶ dacă $A \in \mathbb{R}^{m \times n}$ si $x \in \mathbb{R}^n$

Produs matrice-vector

O matrice $A \in \mathbb{R}^{m \times n}$ reprezinta un tablou bidimensional de numere reale de forma:

$$A := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- ▶ dacă $A \in \mathbb{R}^{m \times n}$ si $x \in \mathbb{R}^n$
- Produs M-V: $y = Ax := \sum_{j=1}^{n} a_j x_j$

Produs matrice-vector

O matrice $A \in \mathbb{R}^{m \times n}$ reprezinta un tablou bidimensional de numere reale de forma:

$$y = Ax := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix}$$

Algorithm GAXPY(A, x, y)

- 1. **Pentru** i = 1 : m
 - 1. **Pentru** j = 1 : n

$$1. \ y_i = y_i + a_{ij}x_j$$

Produs matrice-matrice. Forme

$$C := AB = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ml} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{bmatrix}$$

Observam :
$$c_{ij} = a^i b_j$$

- A(BC) = (AB)C
- A(B+C) = AB + AC
- $(AB)^T = B^T A^T$

Produs matrice-matrice: Forma 1

$$C := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ml} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{bmatrix}$$

$$= [a_1 \cdots a_l] \begin{bmatrix} b^1 \\ \vdots \\ b^l \end{bmatrix}$$

Forma 1 :
$$C = AB = \sum_{k=1}^{l} a_k b^k$$

Produs matrice-matrice: Forma 2

$$C := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ml} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{bmatrix}$$

Forma 2 :
$$C = AB = \begin{bmatrix} Ab_1 \\ c_1 \end{bmatrix} \xrightarrow{Ab_2} \cdots \xrightarrow{Ab_n}$$

Produs matrice-matrice: Forma 3

$$C := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ml} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{bmatrix}$$

Forma 3 :
$$C = AB = \begin{bmatrix} a'B \\ a^2B \\ ... \\ a^mB \end{bmatrix} := \begin{bmatrix} c' \\ c^2 \\ ... \\ c^m \end{bmatrix}$$

Produs matrice-matrice: Algoritm

$$C := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ml} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{bmatrix}$$

Algorithm MM(A, B)1. Pentru i = 1 : m

- 1. **Pentru** j = 1 : n
 - 1. **Pentru** k = 1 : I
 - $1. \ c_{ij} = c_{ij} + a_{ik}b_{kj}$

Matrici structurate

- Triunghiulare
- Hessenberg
- Diagonale Bidiagonale Tridiagonale
- ▶ *U* superior triunghiulara $u_{ij} = 0$ pentru j < i:

$$\begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

▶ *L* inferior triunghiulara $I_{ij} = 0$ pentru j > i:

$$\begin{bmatrix} I_{11} & 0 & \cdots & 0 \\ I_{21} & I_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ I_{n1} & I_{n2} & \cdots & I_{nn} \end{bmatrix}$$

Matrici structurate

▶ *H* superior Hessenberg $h_{ij} = 0$ pentru j < i - 1:

$$\begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1n-1} & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n-1} & h_{2n} \\ 0 & h_{32} & \cdots & h_{3n-1} & h_{3n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & h_{nn-1} & h_{nn} \end{bmatrix}$$

► *H* inferior Hessenberg $h_{ij} = 0$ pentru i < j - 1:

$$\begin{bmatrix} h_{11} & h_{12} & 0 & \cdots & 0 \\ h_{21} & h_{22} & h_{23} & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ h_{n-11} & h_{n-12} & h_{n-13} & \cdots & h_{n-1n} \\ h_{n1} & h_{n2} & h_{n3} & \cdots & h_{nn} \end{bmatrix}$$

Matrici structurate

- ▶ D matrice diagonală $d_{ij} = 0$ pentru $j \neq i$
- B matrice bidiagonală :

$$\begin{bmatrix} b_{11} & b_{12} & 0 & \cdots & 0 \\ 0 & b_{22} & b_{23} & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n-1n-1} & b_{n-1n} \\ 0 & 0 & \cdots & 0 & b_{nn} \end{bmatrix} \qquad \begin{bmatrix} b_{11} & 0 & 0 & \cdots & 0 \\ b_{21} & b_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n-1n-1} & 0 \\ 0 & 0 & \cdots & b_{nn-1} & b_{nn} \end{bmatrix}$$

T tridiagonală:

Cuprins

- Introducere. Vectori. Operaţii elementare
- Subspaţii liniare. Produs scalar. Norme
- Matrice. Operaţii elementare. Proprietăţi
- Sisteme de ecuaţii liniare pătratice
- Algoritmi de rezolvare a SL pătratice
- Sisteme speciale

Un sistem de *m* ecuații cu *n* necunoscute are forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & = b_2 \\ \dots & & & \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & = b_m \end{cases},$$

Forma matriceala

$$Ax = b$$
.

unde A este matricea coeficienţilor, x vector necunoscutelor, b termen liber

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Sistemul

$$Ax = b$$

- Subdeterminat: m < n, posibil o infinitate de soluţii
- ightharpoonup Determinat: m = n, adesea soluţie unică
- Supradeterminat: m > n, adesea nu are soluţie

Teoremă. Sistemul Ax = b are soluţie dacă şi numai dacă $b \in Im(A)$.

Exemplu: Fie
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, atunci $Ax = b$ este
$$\begin{cases} x_1 + x_2 = 2 \\ x_2 + x_3 = 1. \end{cases}$$

- ► O soluţie particulară: $x = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
- $\qquad \qquad \qquad \mathbf{Multimea\ tuturor\ solutiilor:}\ X = \left\{ x = \begin{bmatrix} 1 + \alpha \\ 1 \alpha \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\}$

Teoremă. Dacă $A \in \mathbb{R}^{n \times n}$ atunci sistemul are soluție unică dacă şi numai dacă:

$$x=A^{-1}b.$$

 Nu este o formulă adecvată calculului numeric (vrem sa evităm A⁻¹)

Teoremă. Dacă $A \in \mathbb{R}^{n \times n}$ atunci sistemul are soluție unică dacă şi numai dacă:

$$x = A^{-1}b$$
.

- Nu este o formulă adecvată calculului numeric (vrem sa evităm A⁻¹)
- In general, existența unei soluții se determină greu

Teoremă. Dacă $A \in \mathbb{R}^{n \times n}$ atunci sistemul are soluţie unică dacă şi numai dacă:

$$x = A^{-1}b$$
.

- Nu este o formulă adecvată calculului numeric (vrem sa evităm A⁻¹)
- In general, existența unei soluții se determină greu
- In particular, existenţa unei soluţii se detectează imediat in cazul matricilor triunghiulare

Sisteme liniare triunghiulare

Exista instanțe foarte simple de SL pătratice: sistem triunghiulare! Distingem:

► A = U superior triunghiulara $u_{ij} = 0$ pentru j < i:

$$\begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

► A = L inferior triunghiulara $I_{ij} = 0$ pentru j > i:

$$\begin{bmatrix} I_{11} & 0 & \cdots & 0 \\ I_{21} & I_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ I_{n1} & I_{n2} & \cdots & I_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Sisteme liniare triunghiulare

Exista instanțe foarte simple de SL pătratice: sistem triunghiulare! Distingem: A = L inferior triunghiulara $I_{ij} = 0$ pentru j > i:

$$\begin{bmatrix} I_{11} & 0 & \cdots & 0 \\ I_{21} & I_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ I_{n1} & I_{n2} & \cdots & I_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

▶ Observăm că: $x_1 = \frac{b_1}{l_{11}}$

Sisteme liniare triunghiulare

Exista instanțe foarte simple de SL pătratice: sistem triunghiulare! Distingem: A = L inferior triunghiulara $I_{ij} = 0$ pentru j > i:

$$\begin{bmatrix} I_{11} & 0 & \cdots & 0 \\ I_{21} & I_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ I_{n1} & I_{n2} & \cdots & I_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- Observăm că: $x_1 = \frac{b_1}{l_{11}}$
- ▶ Dacă se cunosc x_1, \dots, x_{i-1} atunci :

$$x_i = \frac{b_i - \sum_{j=1}^{i-1} I_{ij} x_j}{I_{ii}}$$

Algorithm LTRIS(L, b)

- 1. x := b
- 2. **Pentru** i = 1 : n
 - 1. **Pentru** j = 1 : i 1
 - $1. \quad x_i = x_i I_{ij}x_j$
 - 2. $x_i = x_i / I_{ii}$

La fiecare pas al buclei necesită 2(i-1) flopi

Algorithm LTRIS(L, b)

- 1. x := b
- 2. **Pentru** i = 1 : n
 - 1. **Pentru** j = 1 : i 1
 - 1. $x_i = x_i l_{ij}x_j$
 - 2. $x_i = x_i/I_{ii}$

- La fiecare pas al buclei necesită 2(i-1) flopi
- ► Complexitate: $O(n^2)$ (comparativ cazul general $O(n^3)$)

Algorithm LTRIS(L, b)

- 1. x := b
- 2. **Pentru** i = 1 : n
 - 1. **Pentru** j = 1 : i 1

$$1. \quad x_i = x_i - I_{ij}x_j$$

2.
$$x_i = x_i/I_{ii}$$

- La fiecare pas al buclei necesită 2(i-1) flopi
- ► Complexitate: $O(n^2)$ (comparativ cazul general $O(n^3)$)
- Exercitiu: Scrieti pseudocodul alg. UTRIS

Algorithm LTRIS(L, b)

- 1. x := b
- 2. **Pentru** i = 1 : n
 - 1. **Pentru** j = 1 : i 1
 - 1. $x_i = x_i l_{ij}x_j$
 - 2. $x_i = x_i/I_{ii}$

- La fiecare pas al buclei necesită 2(i-1) flopi
- ► Complexitate: $O(n^2)$ (comparativ cazul general $O(n^3)$)
- Exercitiu: Scrieti pseudocodul alg. UTRIS
- Idee: Putem reduce un sistem general la unul triunghiular?

Cuprins

- Introducere. Vectori. Operaţii elementare
- Subspaţii liniare. Produs scalar. Norme
- Matrice. Operaţii elementare. Proprietăţi
- Sisteme de ecuaţii liniare pătratice
- Algoritmi de rezolvare a SL pătratice
- Sisteme speciale

Definiție. Transformare inferior triunghiulară elementară (ITE) de ordin n și indice k are forma:

$$M_k = I_n - m_k e_k^T$$

unde

$$m_k = I_n - m_k \mathbf{c}_k$$
 $m_k = \begin{bmatrix} 0 & 0 & \cdots & 0 & \mu_{k+1,k} & \cdots & \mu_{n,k} \end{bmatrix}$ elemente nenule.

are primele *k* elemente nenule.

$$M_k = \begin{bmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ & & \ddots & & & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & \dots & -\mu_{k+1,k} & \dots & 0 \\ & & \dots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & -\mu_{nk} & \dots & 1 \end{bmatrix}.$$

Proprietăți ale matricilor de transformare ITE:

► M_k este inversabilă şi $M_k^{-1} = I_n + m_k e_k^T$

Proprietăți ale matricilor de transformare ITE:

► M_k este inversabilă şi $M_k^{-1} = I_n + m_k e_k^T$

$$(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ x_i - \mu_{ik} x_k & \text{pentru } i = k + 1 : n \end{cases}$$

- M_k este inversabilă şi $M_k^{-1} = I_n + m_k e_k^T$
- $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ x_i \mu_{ik} x_k & \text{pentru } i = k + 1 : n \end{cases}$
- ▶ Pe scurt, M_k schimba elementele din x de la indicele k mai departe

- M_k este inversabilă şi $M_k^{-1} = I_n + m_k e_k^T$
- $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ x_i \mu_{ik} x_k & \text{pentru } i = k + 1 : n \end{cases}$
- ▶ Pe scurt, M_k schimba elementele din x de la indicele k mai departe
- Dacă alegem valori potrivite pentru multiplicatorii μ_{ik} , putem obţine $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ 0 & \text{pentru } i = k+1 : n \end{cases}$

- ► M_k este inversabilă şi $M_k^{-1} = I_n + m_k e_k^T$
- $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ x_i \mu_{ik} x_k & \text{pentru } i = k + 1 : n \end{cases}$
- Pe scurt, M_k schimba elementele din x de la indicele k mai departe
- Dacă alegem valori potrivite pentru multiplicatorii μ_{ik} , putem obţine $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ 0 & \text{pentru } i = k + 1 : n \end{cases}$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$
 $M_2 x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ 0 \end{bmatrix}$ alegând $\mu_{i1} = \frac{x_i}{x_2}$

- ► M_k este inversabilă şi $M_k^{-1} = I_n + m_k e_k^T$
- $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ x_i \mu_{ik} x_k & \text{pentru } i = k + 1 : n \end{cases}$
- Pe scurt, M_k schimba elementele din x de la indicele k mai departe
- Dacă alegem valori potrivite pentru multiplicatorii μ_{ik} , putem obţine $(M_k x)_i := \begin{cases} x_i & \text{pentru } i = 1 : k \\ 0 & \text{pentru } i = k+1 : n \end{cases}$
- ▶ Daca $x_k = 0$, atunci $M_k x = x$

$$x = \begin{bmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 $M_2 x = \begin{bmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ alegând $\mu_{i1} = \frac{x_i}{x_2}$

Eliminare gaussiană

Algoritmul de EG propune triangularizarea progresiva a matricii A **Initializare**: $A_1 = A, b_{(1)} = b$

Pas 1: $A_2 = M_1 A$ are elementele sub-diagonale de pe coloana 1 egale cu 0

$$A_2 = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & \dots & a_{1n}^{(2)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ 0 & a_{32}^{(2)} & \dots & a_{3n}^{(2)} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{bmatrix}.$$

Pas 2: $A_3 = M_2 M_1 A$ are elementele sub-diagonale de pe coloanele 1 si 2 egale cu 0

.

Pas k: $A_k = M_k \cdots M_2 M_1 A$ are elementele sub-diagonale de pe coloanele 1 : k egale cu 0; nu sunt afectate primele k-1 coloane

- 1. **Pentru** k = 1 : n 1
- 1. Se calculează matricea M_k (adică multiplicatorii $\mu_{ik}, i=k+1:n$), astfel încât $(M_kA)_i=0$, pentru i=k+1:n 2. $A=M_kA$
 - Multiplicatorii necesari $\mu_{ik} = \frac{a_{ik}^k}{a_{kk}^k}$

- 1. **Pentru** k = 1 : n 1
- 1. Se calculează matricea M_k (adică multiplicatorii $\mu_{ik}, i=k+1:n$), astfel încât $(M_kA)_i=0$, pentru i=k+1:n 2. $A=M_kA$
 - Multiplicatorii necesari $\mu_{ik} = \frac{a_{ik}^k}{a_{kk}^k}$
 - ► Algoritmul produce $U = A_n = \underbrace{M_{n-1}M_{n-2}\cdots M_1}_{M} A$

- 1. **Pentru** k = 1 : n 1
- 1. Se calculează matricea M_k (adică multiplicatorii $\mu_{ik}, i=k+1:n$), astfel încât $(M_kA)_i=0$, pentru i=k+1:n 2. $A=M_kA$
 - Multiplicatorii necesari $\mu_{ik} = \frac{a_{ik}^k}{a_{kk}^k}$
 - Algoritmul produce $U = A_n = \underbrace{M_{n-1}M_{n-2}\cdots M_1}_{M}A$
 - Matricea M este inferior triunghiulară (de ce?)

- 1. **Pentru** k = 1 : n 1
- 1. Se calculează matricea M_k (adică multiplicatorii $\mu_{ik}, i=k+1:n$), astfel încât $(M_kA)_i=0$, pentru i=k+1:n 2. $A=M_kA$
 - Multiplicatorii necesari $\mu_{ik} = \frac{a_{ik}^k}{a_{kk}^k}$
 - Algoritmul produce $U = A_n = \underbrace{M_{n-1}M_{n-2}\cdots M_1}_{M}A$
 - Matricea M este inferior triunghiulară (de ce?)
 - ▶ Important: Daca toate matricile lider principale A^[k] din A sunt nesingulare, atunci algoritmul produce un U nesingular (sistemul are soluţie unică!)

- 1. **Pentru** k = 1 : n 1
- 1. Se calculează matricea M_k (adică multiplicatorii $\mu_{ik}, i=k+1:n$), astfel încât $(M_kA)_i=0$, pentru i=k+1:n 2. $A=M_kA$
 - Multiplicatorii necesari $\mu_{ik} = \frac{a_{ik}^k}{a_{kk}^k}$
 - Algoritmul produce $U = A_n = \underbrace{M_{n-1}M_{n-2}\cdots M_1}_{M}A$
 - Matricea M este inferior triunghiulară (de ce?)
 - ► Important: Daca toate matricile lider principale A^[k] din A sunt nesingulare, atunci algoritmul produce un U nesingular (sistemul are soluţie unică!)
 - Altfel EG produce un U singular (care sunt consecinţele?)

Pseudocodul algoritmului EG:

Algoritm G(A)

- 1. **Pentru** k = 1 : n 1
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$ 2. **Pentru** j = k + 1: n
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ii} \leftarrow a_{ii} \mu_{ik} a_{ki}$

Multiplicatorii μ_{ik} se pot memora in triunghiul inferior al matricii A

$$\begin{bmatrix} u_{11} & u_{12} & \dots & u_{1k} & u_{1,k+1} & \dots & u_{1n} \\ \mu_{21} & u_{22} & \dots & u_{2k} & u_{2,k+1} & \dots & u_{2n} \\ & & & & & & & & \\ \mu_{k1} & \mu_{k2} & \dots & u_{kk} & u_{k,k+1} & \dots & u_{kn} \\ \mu_{k+1,1} & \mu_{k+1,2} & \dots & \mu_{k+1,k} & a_{k+1,k+1}^{(k+1)} & \dots & a_{k+1,n}^{(k+1)} \\ & & & & & & & \\ \mu_{n1} & \mu_{n2} & \dots & \mu_{nk} & a_{n,k+1}^{(k+1)} & \dots & a_{nn}^{(k+1)} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1k} & \dots & u_{1n} \\ \mu_{21} & u_{22} & \dots & u_{2k} & \dots & u_{2n} \\ & & & & & & & \\ \mu_{k1} & \mu_{k2} & \dots & u_{kk} & \dots & u_{kn} \\ & & & & & & & \\ \mu_{k1} & \mu_{k2} & \dots & u_{kk} & \dots & u_{kn} \\ & & & & & & & \\ \mu_{n1} & \mu_{n2} & \dots & \mu_{nk} & \dots & u_{nn} \end{bmatrix}$$

După pasul k

În final

Pseudocodul algoritmului EG:

- 1. **Pentru** k = 1 : n 1
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$
 - 2. **Pentru** j = k + 1 : n1. **Pentru** j = k + 1 : n
 - 1. $a_{ij} \leftarrow a_{ij} \mu_{ik} a_{kj}$
- ightharpoonup În final: Ux = Mb se rezolvă cu UTRIS

Pseudocodul algoritmului EG:

- 1. **Pentru** k = 1 : n 1
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$
 - 2. **Pentru** $j = k + \tilde{1}^n$: n
 - 1. **Pentru** i = k + 1 : n

1.
$$a_{ij} \leftarrow a_{ij} - \mu_{ik} a_{kj}$$

- ightharpoonup În final: Ux = Mb se rezolvă cu UTRIS
- ► Complexitate totală: $\sum_{k=1}^{n-1} (n-k+2(n-k)^2) \approx \frac{2n^3}{3} = O(n^3)$

Pseudocodul algoritmului EG:

- 1. **Pentru** k = 1 : n 1
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$
 - 2. **Pentru** $j = k + 1^n$: *n*
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ij} \leftarrow a_{ij} \mu_{ik} a_{kj}$
- ightharpoonup În final: Ux = Mb se rezolvă cu UTRIS
- ► Complexitate totală: $\sum_{k=1}^{n-1} (n-k+2(n-k)^2) \approx \frac{2n^3}{3} = O(n^3)$
- Probleme: Ce se întâmplă dacă o submatrice lider principală este singulară?

Pseudocodul algoritmului EG:

- 1. **Pentru** k = 1 : n 1
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$
 - 2. **Pentru** j = k + 1: n1. **Pentru** i = k + 1 : n
 - 1. $a_{ij} \leftarrow a_{ij} \mu_{ik} a_{kj}$
- ightharpoonup În final: Ux = Mb se rezolvă cu UTRIS
- ► Complexitate totală: $\sum_{k=1}^{n-1} (n-k+2(n-k)^2) \approx \frac{2n^3}{3} = O(n^3)$
- Probleme: Ce se întâmplă dacă o submatrice lider principală este singulară?
- ▶ Răspuns: La pasul k pivotul $a_{kk}^{(k)}$ este nul; cum se pot calcula, în situația aceasta, multiplicatorii μ_{ik} ?

Modificăm algoritmul *G* prin interschimbarea de linii (şi/sau coloane) pentru a aduce în poziția pivotului un element nenul.

$$A_k = \begin{bmatrix} u_{11} \dots u_{1k} \dots u_{1n} \\ 0 & \ddots & \dots \\ & a_{kk}^{(k)} \dots a_{kn}^{(k)} \\ 0 & & \dots \\ & a_{i_kk}^{(k)} \dots a_{i_kn}^{(k)} \\ 0 & & & \dots \\ & a_{nk}^{(k)} \dots a_{nn}^{(k)} \end{bmatrix} \qquad P_{ki_k} A_k = \begin{bmatrix} u_{11} \dots u_{1k} \dots u_{1n} \\ 0 & \ddots & \dots \\ & a_{i_kk}^{(k)} \dots a_{i_kn}^{(k)} \\ 0 & & \dots \\ & a_{nk}^{(k)} \dots a_{nn}^{(k)} \end{bmatrix}$$

Modificare Pas k:

1. Se determină cel mai mic $i_k : |a_{i_k k}| = \max_{i=k,n} |a_{ik}|$

Modificăm algoritmul *G* prin interschimbarea de linii (şi/sau coloane) pentru a aduce în poziția pivotului un element nenul.

$$A_k = \begin{bmatrix} u_{11} \dots u_{1k} \dots u_{1n} \\ 0 & \ddots & \dots \\ & a_{kk}^{(k)} \dots a_{kn}^{(k)} \\ 0 & & \dots \\ & a_{i_kk}^{(k)} \dots a_{i_kn}^{(k)} \\ 0 & & & \dots \\ & & a_{nk}^{(k)} \dots a_{nn}^{(k)} \end{bmatrix} \qquad P_{ki_k} A_k = \begin{bmatrix} u_{11} \dots u_{1k} \dots u_{1n} \\ 0 & \ddots & \dots \\ & a_{i_kk}^{(k)} \dots a_{i_kn}^{(k)} \\ 0 & & & \dots \\ & a_{nk}^{(k)} \dots a_{nn}^{(k)} \\ 0 & & \dots \\ & & a_{nk}^{(k)} \dots a_{nn}^{(k)} \end{bmatrix}$$

Modificare Pas k:

- 1. Se determină cel mai mic $i_k : |a_{i_k k}| = \max_{i=k:n} |a_{ik}|$
- 2. Se interschimbă liniile i_k şi k: $A \leftarrow P_{i_k k} A$

Modificăm algoritmul *G* prin interschimbarea de linii (şi/sau coloane) pentru a aduce în poziția pivotului un element nenul.

$$A_k = \begin{bmatrix} u_{11} \ \dots \ u_{1k} \ \dots \ u_{1n} \\ 0 \ \ddots \ \dots \\ & a_{kk}^{(k)} \ \dots \ a_{kn}^{(k)} \\ 0 \ & \dots \\ & a_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & \dots \\ & a_{nk}^{(k)} \ \dots \ a_{nn}^{(k)} \end{bmatrix} \qquad P_{ki_k} A_k = \begin{bmatrix} u_{11} \ \dots \ u_{1k} \ \dots \ u_{1n} \\ 0 \ \ddots \ \dots \\ & a_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & \dots \\ & a_{nk}^{(k)} \ \dots \ a_{nn}^{(k)} \\ \end{bmatrix}$$

Modificare Pas k:

- 1. Se determină cel mai mic $i_k : |a_{i_k k}| = \max_{i=k:n} |a_{ik}|$
- 2. Se interschimbă liniile i_k şi k: $A \leftarrow P_{i_k k} A$
- 3. Se calculează M_k pentru $(M_k A)_{ik} = 0, i = k + 1 : n$

Modificăm algoritmul *G* prin interschimbarea de linii (şi/sau coloane) pentru a aduce în poziția pivotului un element nenul.

$$A_k = \begin{bmatrix} u_{11} \ \dots \ u_{1k} \ \dots \ u_{1n} \\ 0 \ \ddots \ \dots \\ & a_{kk}^{(k)} \ \dots \ a_{kn}^{(k)} \\ 0 \ & \dots \\ & a_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & u_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & u_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & u_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & u_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & u_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ & u_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \end{bmatrix}$$

Modificare Pas k:

- 1. Se determină cel mai mic $i_k : |a_{i_k k}| = \max_{i=k:n} |a_{ik}|$
- 2. Se interschimbă liniile i_k şi k: $A \leftarrow P_{i_k k} A$
- 3. Se calculează M_k pentru $(M_k A)_{ik} = 0, i = k + 1 : n$
- 4. Se aplică transformarea $A \leftarrow M_k A$

Modificăm algoritmul G prin interschimbarea de linii (şi/sau coloane) pentru a aduce în poziția pivotului un element nenul.

$$A_k = \begin{bmatrix} u_{11} \ \dots \ u_{1k} \ \dots \ u_{1n} \\ 0 \ \ddots \ \dots \\ a_{kk}^{(k)} \ \dots \ a_{kn}^{(k)} \\ 0 \ \alpha_{i_k}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ \alpha_{i_kk}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ \alpha_{nk}^{(k)} \ \dots \ a_{nn}^{(k)} \end{bmatrix} \qquad P_{ki_k} A_k = \begin{bmatrix} u_{11} \ \dots \ u_{1k} \ \dots \ u_{1n} \\ 0 \ \ddots \ \dots \\ a_{i_k}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ \alpha_{i_k}^{(k)} \ \dots \ a_{i_kn}^{(k)} \\ 0 \ \alpha_{nk}^{(k)} \ \dots \ a_{nn}^{(k)} \end{bmatrix}$$

Modificare Pas k:

- 1. Se determină cel mai mic $i_k : |a_{i_k k}| = \max_{i=k:n} |a_{ik}|$
- 2. Se interschimbă liniile i_k şi k: $A \leftarrow P_{i_k k} A$
- 3. Se calculează M_k pentru $(M_k A)_{ik} = 0, i = k + 1 : n$
- 4. Se aplică transformarea $A \leftarrow M_k A$

Pe scurt: $A_{k+1} = M_k P_k A_k$

În final:
$$U := A_n = M_{n-1}P_{n-1}M_{n-2}P_{n-2}\cdots M_1P_1A_k$$

- 1. **Pentru** k = 1 : n 1
 - 1. Se determină cel mai mic i_k : $|a_{i_k k}| = \max_{i=k:n} |a_{ik}|$
 - 2. $p(k) = i_k$
 - 3. **Pentru** j = k : n
 - 1. $a_{kj} \leftrightarrow a_{i_k j}$
 - 4. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$
 - 5. **Pentru** $j = k + \tilde{1}^{\kappa}$: n
 - 1. **Pentru** i = k + 1 : n
 - 1. $a_{ij} \leftarrow a_{ij} \mu_{ik} a_{kj}$
- ightharpoonup În final: Ux = Mb se rezolvă cu UTRIS

- 1. **Pentru** k = 1 : n 1
 - 1. Se determină cel mai mic $i_k : |a_{i_k k}| = \max_{i=k:n} |a_{ik}|$
 - 2. $p(k) = i_k$
 - 3. **Pentru** j = k : n
 - 1. $a_{kj} \leftrightarrow a_{i_k j}$
 - 4. **Pentru** i = k + 1 : n
 - 1. $a_{ik} \leftarrow \mu_{ik} = \frac{a_{ik}}{a_{kk}}$
 - 5. **Pentru** $j = k + \tilde{1}^{kk}$: n
 - 1. **Pentru** i = k + 1 : n

1.
$$a_{ij} \leftarrow a_{ij} - \mu_{ik} a_{kj}$$

- ightharpoonup În final: Ux = Mb se rezolvă cu UTRIS
- ► Complexitate suplimentară faţă de G:

$$\sum_{k=1}^{n-1} (n-k+1) \approx \frac{n^2}{2} = O(n^2)$$

