Partial Differential Equations

Semester 2, 20xx

Dr Michael Dallaston

Tarang Janawalkar

Contents

\mathbf{C}	ontei	nts
1	Fou	rier Series
	1.1	Integral Relationships
		1.1.1 Sine and Cosine
		1.1.2 Combinations of Sine and Cosine
	1.2	Coefficients of the Fourier Series
	1.3	Sine and Cosine Series

1 Fourier Series

Definition 1.1 (Fourier series expansion). The **Fourier series expansion** of f represents f by a periodic function on an interval, using trigonometric (sine and cosine) terms.

Suppose a function f(x) is defined on an interval [-L, L], then the Fourier series expansion of f is given by:

$$f_F\left(x\right) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) \tag{1}$$

so that $f = f_F$ on [-L, L]. Here we cannot be certain about the equality $f = f_F$ for all x as f_F is perdioc and the convergence properties of the infinite sum are not known.

Before attempting to determine the coefficients a_n and b_n for $n \ge 1$, we must first evaluate certain useful integral relationships involving trigonometric functions.

1.1 Integral Relationships

1.1.1 Sine and Cosine

For $n \in \mathbb{N}$:

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) dx = \frac{L}{n\pi} \left[\sin\left(\frac{n\pi x}{L}\right) \right]_{-L}^{L}$$

$$= \frac{L}{n\pi} \left[\sin\left(n\pi\right) - \sin\left(-n\pi\right) \right]$$

$$= \frac{L}{n\pi} \left[0 - 0 \right]$$

$$= 0. \tag{2}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) dx = -\frac{L}{n\pi} \left[\cos\left(\frac{n\pi x}{L}\right)\right]_{-L}^{L}$$

$$= \frac{L}{n\pi} \left[\cos\left(n\pi\right) - \cos\left(-n\pi\right)\right]$$

$$= \frac{L}{n\pi} \left[1 - 1\right]$$

$$= 0. \tag{3}$$

1.1.2 Combinations of Sine and Cosine

Recall the Werner formulas:

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$
$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$
$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

For $n, m \in \mathbb{N}$,

Product_of two cosine functions:

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \frac{1}{2} \int_{-L}^{L} \cos\left(\frac{(n-m)\pi x}{L}\right) dx + \frac{1}{2} \int_{-L}^{L} \cos\left(\frac{(n+m)\pi x}{L}\right) dx$$

As $n + m \in \mathbb{N}$, the second integral term will evaluate to 0 due to Equation 2. For the first integral term, $n - m \in \mathbb{N}$, except when n = m which results in $\cos(0) = 1$. Hence

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \end{cases}$$

Product of two sine functions:

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) \mathrm{d}x = \frac{1}{2} \int_{-L}^{L} \cos\left(\frac{(n-m)\pi x}{L}\right) \mathrm{d}x - \frac{1}{2} \int_{-L}^{L} \cos\left(\frac{(n+m)\pi x}{L}\right) \mathrm{d}x$$

By the same argument,

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \end{cases}$$

Product of sine and cosine functions:

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) \mathrm{d}x = \frac{1}{2} \int_{-L}^{L} \sin\left(\frac{(n-m)\pi x}{L}\right) \mathrm{d}x + \frac{1}{2} \int_{-L}^{L} \sin\left(\frac{(n+m)\pi x}{L}\right) \mathrm{d}x$$

Similarly, $n + m \in \mathbb{N}$ results in 0 for the second integral term, $n - m \in \mathbb{N}$ also results in 0 for the first term, and when n = m, as $\sin(0) = 0$, the first term is always 0. Therefore

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = 0$$

1.2 Coefficients of the Fourier Series

For a_0 consider integrating Equation 1 from -L to L.

$$\begin{split} \int_{-L}^{L} f\left(x\right) \mathrm{d}x &= \int_{-L}^{L} a_0 \, \mathrm{d}x + \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \mathrm{d}x + \sum_{n=1}^{\infty} b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \mathrm{d}x \\ \int_{-L}^{L} f\left(x\right) \mathrm{d}x &= 2a_0 L \\ a_0 &= \frac{1}{2L} \int_{-L}^{L} f\left(x\right) \mathrm{d}x \end{split}$$

so that a_0 represents the average value of f on [-L, L].

For coefficients a_m , multiply the equation by $\cos\left(\frac{m\pi x}{L}\right)$ before integrating.

$$\begin{split} f\left(x\right)\cos\left(\frac{m\pi x}{L}\right) &= a_0\cos\left(\frac{m\pi x}{L}\right) + \sum_{n=1}^{\infty} a_n\cos\left(\frac{n\pi x}{L}\right)\cos\left(\frac{m\pi x}{L}\right) \\ &+ \sum_{n=1}^{\infty} b_n\sin\left(\frac{n\pi x}{L}\right)\cos\left(\frac{m\pi x}{L}\right) \\ \int_{-L}^{L} f\left(x\right)\cos\left(\frac{m\pi x}{L}\right)\mathrm{d}x &= a_0 \int_{-L}^{L}\cos\left(\frac{m\pi x}{L}\right)\mathrm{d}x + \sum_{n=1}^{\infty} a_n \int_{-L}^{L}\cos\left(\frac{n\pi x}{L}\right)\cos\left(\frac{m\pi x}{L}\right)\mathrm{d}x \\ &+ \sum_{n=1}^{\infty} b_n \int_{-L}^{L}\sin\left(\frac{n\pi x}{L}\right)\cos\left(\frac{m\pi x}{L}\right)\mathrm{d}x \\ \int_{-L}^{L} f\left(x\right)\cos\left(\frac{m\pi x}{L}\right)\mathrm{d}x &= a_m L \\ a_m &= \frac{1}{L} \int_{-L}^{L} f\left(x\right)\cos\left(\frac{m\pi x}{L}\right)\mathrm{d}x \end{split}$$

For coefficients b_m , multiply the equation by $\sin\left(\frac{m\pi x}{L}\right)$ before integrating.

$$\begin{split} f\left(x\right)\sin\left(\frac{m\pi x}{L}\right) &= a_0\sin\left(\frac{m\pi x}{L}\right) + \sum_{n=1}^{\infty} a_n\cos\left(\frac{n\pi x}{L}\right)\sin\left(\frac{m\pi x}{L}\right) \\ &+ \sum_{n=1}^{\infty} b_n\sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{m\pi x}{L}\right) \\ \int_{-L}^{L} f\left(x\right)\sin\left(\frac{m\pi x}{L}\right)\mathrm{d}x &= a_0 \int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right)\mathrm{d}x + \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right)\sin\left(\frac{m\pi x}{L}\right)\mathrm{d}x \\ &+ \sum_{n=1}^{\infty} b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{m\pi x}{L}\right)\mathrm{d}x \\ \int_{-L}^{L} f\left(x\right)\sin\left(\frac{m\pi x}{L}\right)\mathrm{d}x &= b_m L \\ b_m &= \frac{1}{L} \int_{-L}^{L} f\left(x\right)\sin\left(\frac{m\pi x}{L}\right)\mathrm{d}x \end{split}$$

To summarise,

$$\begin{split} a_0 &= \frac{1}{2L} \int_{-L}^L f\left(x\right) \mathrm{d}x \\ a_m &= \frac{1}{L} \int_{-L}^L f\left(x\right) \cos\left(\frac{m\pi x}{L}\right) \mathrm{d}x \\ b_m &= \frac{1}{L} \int_{-L}^L f\left(x\right) \sin\left(\frac{m\pi x}{L}\right) \mathrm{d}x \end{split}$$

for $m \in \mathbb{N}$.

Definition 1.2 (Piecewise smooth). A function $f : [a,b] \to \mathbb{R}$, is **piecewise smooth** if each component f_i of f has a bounded derivative f'_i which is continuous everywhere in [a,b], except at a finite number of points at which left- and right-sided derivatives exist.

Theorem 1.2.1 (Convergence of piecewise smooth functions). If f is a periodic piecewise smooth function on [-L, L], f_F will converge to

$$f_F(x) = \lim_{\epsilon \to 0^+} \frac{f(x+\epsilon) + f(x-\epsilon)}{2}$$

that is, $f = f_F$, except at discontinuities, where f_F is equal to the point halfway between the leftand right-hand limits.

Corollary 1.2.1.1 (Dirichlet conditions). The Dirichlet conditions provide sufficient conditions for a real-valued function f to be equal to its Fourier series f_F on [-L, L], at each point where f is continuous.

The conditions are:

- 1. f has a finite number of maxima and minima over [-L, L].
- 2. f has a finite number of discontinuities, in each of which the derivative f' exists and does not change sign.
- 3. $\int_{-L}^{L} |f(x)| dx$ exists.

Definition 1.3 (Gibbs phenomenon). If f_F does not converge to f at discontinuities x_i , then the f_F converges non-uniformally. For Fourier series this property is known as the *Gibbs phenomenon*.

Note 1.2.1. When f is non-periodic, f_F converges to the periodic extension of f. The endpoints may converge non-uniformally, corresponding to jump disontinuities in the periodic extension of f.

1.3 Sine and Cosine Series

Definition 1.4 (Odd function). f is an odd function if it satisfies

$$f\left(-x\right) = -f\left(x\right)$$

Definition 1.5 (Even function). f is an *even* function if it satisfies

$$f(-x) = f(x)$$

If f is an odd function on [-L, L], then the coefficients corresponding to the cosine terms will be zero. The Fourier series simplifies to

$$f_F = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$$

where $b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$.

Likewise if f is an even function on [-L, L], then the coefficients corresponding to the sine terms will be zero. The Fourier series simplifies to

$$f_F = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right)$$

where $a_0 = \frac{1}{L} \int_0^L f(x) dx$ and $a_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$. These special cases are known as the sine and cosine series expansions respectively, resulting in the **odd** or **even** periodic extension of f.