The phyloseq package and analysis of high throughput amplicon sequencing data

Paul McMurdie Statistics Department Stanford University

BioC 2012

July 24-25, 2012 (Developer Day: July 23) Fred Hutchinson Cancer Research Center - Seattle, WA

Workshop Outline:

- Background of modern phylogenetic sequencing (if needed).
- Motivation, Design, and Philosophy of phyloseq
- How to import data with phyloseq
- Basic interaction with data and simple summary graphics

live . code .

- Data preprocessing using phyloseq tools
- More complex exploratory/summary graphics, including ordination
- Validation tools supported in phyloseq
- Additional validation/testing using other R tools (getting data components to other R functions)

Goal: Infer original abundance of different types of target gene

Extract DNA (mixture)

Amplify single gene of interest.
Sequence products

Repeat many times with different samples/replicates

parallel tagged sequencing "bar-coded" sequences

Overview of amplicon sequencing and analysis

why we wrote phyloseq

"phyloseq" = phylogenetic sequencing

There are already several ecology and phylogenetic packages available in R, including the vegan, ade4, ape, phangorn, picante and others. To varying degrees, these packages already take advantage of the many powerful statistical and graphics tools available in R.

However, prior to phyloseq there was no standard within Bioconductor (or R generally) for storing or sharing the suite of related data objects that describe a phylogenetic sequencing project, leading to a common (and usually poorly documented) hurdle to using R for phylogenetic sequencing analysis.

phyloseq philosophy

The goal of the phyloseq package is to provide an infrastructure for storing the data from phylogenetic sequencing experiments in a manner this convenient, concise, and complete; such that it is very easy to share -- and reproduce -- the complex multivariate statistical analyses often required of these experiments. We also aim to provide enough tools, extensions of existing tools, and examples to make using the phyloseq package a worthwhile endeavor.

phyloseq design and features

- A single, explicitly-defined S4 class that can store the different data types of a phylogenetic sequencing experiment in a single object.
- Importers all create this special "phyloseq" class
- Most phyloseq functions will act on this experiment-level object. It doesn't need to be diced-up to work. (Keep data together)
- Internal tools check validity and agreement among components of an experiment. Helps prevent mistakes.
- Plotting tools for creating quality graphics, built using ggplot2.
- Example datasets from real published data, with references, documentation, and examples.
- Examples using other R tools after importing with phyloseq

phyloseq classes and "data infrastructure"

phyloseq accessors

Function	Description
	Standard extraction operator. works on otuTable, sampleData, and taxonomyTable
access	General slot accessor function for phyloseq-package
<pre>getslots.phyloseq</pre>	Return the slot names of phyloseq objects
getSpecies	Returns the abundance values of sample 'i' for all species in 'x'
getSamples	Returns the abundance values of species 'i' for all samples in 'x'
getTaxa	Get a unique vector of the observed taxa at a particular taxonomic rank
getVariable	Returns an individual sample variable vector/factor
nsamples	Get the number of samples described by an object
nspecies	Get the number of species (taxa) described by an object
otuTable	Build or access otuTable objects
rank.names	Get the names of the available taxonomic ranks
sampleData	Build or access sampleData objects
sample.names	Return the names of the samples described by an object
species.names	Return the names of the species described by an object
sampleSums	Returns the total number of individuals observed from each sample
sample.variables	Returns the names of sample variables in an object
speciesSums	Returns the total number of individuals observed from each species
speciesAreRows	Returns the orientation of the abundance table
taxTab	Build or access taxTab objects
tre	Access the tree contained in a phyloseq object

phyloseq constructors

T	<i>(</i> ·	1 •1 1•	1	1 1	1 • 1
Himotiona	tor	hillding	component	doto	Objects
PHICHIONS	1()1	1)1111(111119	сонноонень	Claba	ODJECTS

Function	Input Class	Output Description
otuTable	numeric matrix	otuTable object storing taxa abundance
otuTable	data.frame	otuTable object storing taxa abundance
${\tt sampleData}$	data.frame	sampleData object storing sample variables
taxTab	character string	taxonomyTable object storing taxonomic identities
tre	file path char	phylo4-class tree, read from file
tre	phylo-class tree	phylo4-class tree, converted from argument
read.table	table file path	A matrix or data.frame (Std Rcore function)
read.tree	Newick file path	phylo-class tree object (ape)
read.nexus	Nexus file path	phylo-class tree object (ape)
readNexus	Nexus file path	phylo4-class tree object (phylobase)

Functions for building complex data objects

Function	Input Class	Output Description
phyloseq	2 or more component objects	phyloseq-class, "experiment-level" object
merge_phyloseq	2 or more component or phyloseq-class objects	Combined instance of phyloseq-class

Overview of analysis using phyloseq

phyloseq wiki

Example Data

https://github.com/joey711/phyloseq-demo

(Begin live demo)