Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 15, 2018

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

1/39

ntroductio

Summary of previous lecture

What are Markov chains?

- ► A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter *T* and discrete state space *S*.
- ▶ State residence times are geometrically distributed.
- ▶ Alternative: a DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:
 - ► state space *S*
 - ► transition probability function P
 - ightharpoonup initial distribution ι_{init}

What are transient probabilities?

- $lackbox{\ }\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- ▶ These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

- Introduction
- 2 Reachability Events
- A Measurable Space on Infinite Paths
- Reachability Probabilities as Linear Equation Solution
- 5 Reachability versus transient probabilities

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

2/30

Introducti

Aim of this lecture

How to determine reachability probabilities?

Three major steps

- 1. What are reachability probabilities? I mean, precisely. This requires a bit of measure theory. Sorry for that.
- 2. Reachability probabilities = unique solution of linear equation system.
- 3. Bounded reachability probabilities = transient probabilities 1 .

Joost-Pieter Katoen

¹in a slightly modified DTMC.

Recall Knuth's die

Heads = "go left"; tails = "go right". Does this DTMC model a six-sided die?

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

5/39

Reachability Events

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph G = (V, E) with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let Pre(s) be the *predecessors* of s, $Pre^*(s)$ its reflexive and transitive closure.

Paths

Paths in $\mathcal D$ are infinite paths in its state graph.

 $Paths(\mathcal{D})$ denotes the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ its finite prefixes.

Overview

- Introduction
- 2 Reachability Events
- A Measurable Space on Infinite Paths
- 4 Reachability Probabilities as Linear Equation Solution
- 5 Reachability versus transient probabilities

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

c /20

Reachability Eve

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond G = \{ \pi \in Paths(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in G \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N}. \, \pi[i] \in G \} = \overline{\Diamond \overline{G}}.$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$\overline{F} \cup G = \{ \pi \in Paths(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in G \land \forall j < i. \pi[j] \notin F \}$$

More events of interest

Repeated reachability

Repeatedly visit a state in G; formally:

$$\Box \lozenge G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \geqslant i. \pi[j] \in G \}$$

Persistence

Eventually reach in a state in *G* and always stay there; formally:

$$\Diamond \Box G = \{ \pi \in Paths(\mathcal{D}) \mid \exists i \in \mathbb{N}. \forall j \geqslant i. \pi[j] \in G \}$$

Modeling and Verification of Probabilistic Systems

Recall: Measurable space

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow \Omega A \in \mathcal{F}$

complement

3. $(\forall i \geq 0. \ A_i \in \mathcal{F}) \Rightarrow \bigcup_{i \geq 0} A_i \in \mathcal{F}$

countable union

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*.

The pair (Ω, \mathcal{F}) is called a *measurable space*.

Let Ω be a set. $\mathcal{F} = \{ \varnothing, \Omega \}$ yields the smallest σ -algebra; $\mathcal{F} = 2^{\Omega}$ yields the largest one.

Overview

- Reachability Events
- A Measurable Space on Infinite Paths
- **5** Reachability versus transient probabilities

Modeling and Verification of Probabilistic System

What's the probability of infinite paths?

Probability space

Probability space

A *probability space* \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- \blacktriangleright (Ω, \mathcal{F}) is a σ -algebra, and
- ▶ $Pr: \mathcal{F} \rightarrow [0,1]$ is a *probability measure*, i.e.:
 - 1. $Pr(\Omega) = 1$, i.e., Ω is the certain event

2.
$$Pr\left(\bigcup_{i\in I}A_i\right)=\sum_{i\in I}Pr(A_i)$$
 for any $A_i\in\mathcal{F}$ with $A_i\cap A_j=\varnothing$ for $i\neq j$

The events in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, Pr)$ are called *measurable*.

Joost-Pieter Katoer

Modeling and Verification of Probabilistic Systems

13/39

A Measurable Space on Infinite Path

Probability measure on DTMCs

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}$.

Probability space of a DTMC

The set of events of the probability space DTMC \mathcal{D} contains all cylinder sets $Cyl(\hat{\pi})$ where $\hat{\pi}$ ranges over all finite paths in \mathcal{D} .

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- ▶ Outcomes := set of all infinite paths starting in s.
- Events := subsets of these outcomes.
- ▶ These events are defined using cylinder sets.
- ► Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

14/20

A Measurable Space on Infinite Pat

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique probability measure defined by:

$$Pr(Cyl(s_0 \ldots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 s_1 \ldots s_n)$$

where
$$\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \le i \le n} \mathbf{P}(s_i, s_{i+1})$$
 for $n > 0$ and $\mathbf{P}(s_0) = 1$.

Measurability

Measurability theorem

Events $\lozenge G$, $\square G$, $\overline{F} \cup G$, $\square \lozenge G$ and $\lozenge \square G$ are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that $\Box G = \overline{\Diamond G}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

17/3

A Measurable Space on Infinite Paths

Proof for $\Box \Diamond G$

Proof for $\lozenge G$

Which event does $\lozenge G$ exactly mean?

the union of all cylinders $Cyl(s_0 ... s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\lozenge G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$Pr(\lozenge G) = \sum_{s_0...s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^*G} Pr(Cyl(s_0...s_n))$$

$$= \sum_{s_0...s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^*G} \iota_{init}(s_0) \cdot \mathbf{P}(s_0...s_n)$$

A similar proof strategy applies to the case \overline{F} U G.

Joost-Pieter Katoen

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

18/30

A Measurable Space on Infinite Par

Reachability probabilities: Knuth's die

- ► Consider the event ♦4
- ▶ Using the previous theorem we obtain:

$$Pr(\lozenge 4) = \sum_{s_0...s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0...s_n)$$

► This yields:

 $P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$

 $\qquad \text{Or: } \sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$

 $r: \frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$

• Geometric series: $\frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$

There is however an simpler way to obtain reachability probabilities!

Overview

- Introduction
- 2 Reachability Events
- 3 A Measurable Space on Infinite Paths
- 4 Reachability Probabilities as Linear Equation Solution
- 5 Reachability versus transient probabilities

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

21 /3

Reachability Probabilities as Linear Equation Solution

Reachability probabilities: Knuth's die

- ► Consider the event **◊**4
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

$$x_{s_2} = \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6}$$

$$x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$$

$$x_{s_6} = \frac{1}{2}x_{s_2} + \frac{1}{2}x_6$$

Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}$$
, $x_{s_2} = \frac{1}{3}$, $x_{s_6} = \frac{1}{6}$, and $x_{s_0} = \frac{1}{6}$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{ \pi \in Paths(s) \mid \pi \in \Diamond G \}$ where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Characterisation of reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if G is not reachable from s, then $x_s = 0$
 - ▶ if $s \in G$ then $x_s = 1$
- ▶ For any state $s \in Pre^*(G) \setminus G$:

$$x_s = \underbrace{\sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_t}_{\text{reach } G \text{ via } t \in S \setminus G} + \underbrace{\sum_{u \in G} \mathbf{P}(s, u)}_{\text{reach } G \text{ in one step}}$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

22/30

Reachability Probabilities as Linear Equation Solution

Linear equation system

Reachability probabilities as linear equation system

- ▶ Let $S_? = Pre^*(G) \setminus G$, the states that can reach G by > 0 steps
- ▶ **A** = $(P(s, t))_{s,t \in S_7}$, the transition probabilities in S_7
- ▶ **b** = $(b_s)_{s \in S_?}$, the probs to reach G in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Then: $\mathbf{x} = (x_s)_{s \in S_7}$ with $x_s = Pr(s \models \lozenge G)$ is the unique solution of:

$$x = A \cdot x + b$$
 or $(I - A) \cdot x = b$

where **I** is the identity matrix of cardinality $|S_2| \times |S_2|$.

Reachability probabilities: Knuth's die

- ► Consider the event ♦4
- $S_7 = \{s_0, s_2, s_5, s_6\}$

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}$$
, $x_{s_2} = \frac{1}{3}$, $x_{s_6} = \frac{1}{6}$, and $x_{s_0} = \frac{1}{6}$

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

Jo

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

26/30

Reachability Probabilities as Linear Equation Solution

Proof

Constrained reachability probabilities

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

Aim:
$$Pr(s \models \overline{F} \cup G) = Pr_s(\overline{F} \cup G) = Pr_s\{\pi \in Paths(s) \mid \pi \models \overline{F} \cup G\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Characterisation of constrained reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \overline{F} \cup G)$ for any state s
 - if G is not reachable from s via \overline{F} , then $x_s = 0$
 - ▶ if $s \in G$ then $x_s = 1$
- ▶ For any state $s \in (Pre^*(G) \cap \overline{F}) \setminus G$:

$$x_s = \sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_t + \sum_{u \in G} \mathbf{P}(s, u)$$

Reachability Probabilities as Linear Equation Soluti

In the previous characterisation we basically set:

- ► $S_{-1} = G$
- $\triangleright S_? = S \setminus (S_{=0} \cup S_{=1})$

In fact any partition of S satisfying the following constraints will do:

- ▶ $G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$
- $\triangleright S_? = S \setminus (S_{=0} \cup S_{=1})$

In practice, $S_{=0}$ and $S_{=1}$ should be chosen as large as possible, as then $S_{?}$ is of minimal size, and the smallest linear equation system needs to be solved.

Thus $S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$ and $S_{=1} = \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$.

These sets can easily be determined in linear time by a graph analysis.

Iteratively computing reachability probabilities

Theorem

The vector $\mathbf{x} = \left(Pr(s \models \overline{F} \cup G)\right)_{s \in S_2}$ is the *unique* solution of:

$$y = A \cdot y + b$$

with **A** and **b** as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leqslant i$.

Then:

- 1. $\mathbf{x}^{(n)}(s) = Pr(s \models \overline{F} \cup S^n G)$ for $s \in S_2$
- 2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x}$
- 3. $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$

where $\overline{F} \cup {}^{\leq n} G$ contains those paths that reach G via \overline{F} within n steps.

Modeling and Verification of Probabilistic System

Example: Knuth's die

- \blacktriangleright Let $G = \{1, 2, 3, 4, 5, 6\}$
- ▶ Then $Pr(s_0 \models \Diamond G) = 1$
- ightharpoonup And $Pr(s_0 \models \lozenge^{\leqslant k} G)$ for $k \in \mathbb{N}$ is given by:

Remark

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \le i$.

Then:

1. $\mathbf{x}^{(n)}(s) = Pr(s \models \lozenge^{\leq n} \mathbf{G}) \text{ for } s \in S_{?}$

Iterative algorithms to compute x

2. $\mathbf{x}^{(0)} \leqslant \mathbf{x}^{(1)} \leqslant \mathbf{x}^{(2)} \leqslant \ldots \leqslant \mathbf{x}$ and $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$

The Power method computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ and aborts if:

$$\max_{s \in S_7} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon$$
 for some small tolerance ε

This technique guarantees convergence.

Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).

Modeling and Verification of Probabilistic Systems

Overview

- Reachability Events
- 3 A Measurable Space on Infinite Paths
- 4 Reachability Probabilities as Linear Equation Solution
- 5 Reachability versus transient probabilities

Recall: transient probability distribution

Transient distribution

 $\mathbf{P}^{n}(s,t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC \mathcal{D} being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t) =$$

The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch n of \mathcal{D} .

When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t \in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \ldots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

Computation: $\Theta_0^{\mathcal{D}} = \iota_{\text{init}}$ and $\Theta_{n+1}^{\mathcal{D}} = \Theta_n^{\mathcal{D}} \cdot \mathbf{P}$ for $n \geqslant 0$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

33/3

Reachability versus transient probabilitie

Constrained reachabilities vs. transient probabilities

Aim

Compute $Pr(\overline{F} \cup S^n G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\textit{Pr}(\overline{\textit{F}}\; \mathsf{U}^{\leqslant n}\; \textit{G})}_{\text{reachability in }\mathcal{D}} = \underbrace{\textit{Pr}(\lozenge^{=n}\; \textit{G})}_{\text{reachability in }\mathcal{D}[\textit{F}\; \cup\; \textit{G}]} = \underbrace{\iota_{\text{init}}\cdot \mathbf{P}^n_{\textit{F}\cup\textit{G}}}_{\text{in }\mathcal{D}[\textit{F}\; \cup\; \textit{G}]} = \Theta^{\mathcal{D}[\textit{F}\cup\textit{G}]}_{n}$$

Reachability probabilities vs. transient probabilities

Aim

Compute $Pr(\lozenge^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC
$$\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$$
 and $\mathbf{G} \subseteq S$. The DTMC $\mathcal{D}[\mathbf{G}] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin \mathbf{G}$ and $\mathbf{P}_G(s, s) = 1$ if $s \in \mathbf{G}$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma

$$\underbrace{\mathit{Pr}(\lozenge^{\leqslant n}G)}_{\text{reachability in }\mathcal{D}} = \underbrace{\mathit{Pr}(\lozenge^{=n}G)}_{\text{reachability in }\mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_G^n}_{\text{in }\mathcal{D}[G]} = \Theta_n^{\mathcal{D}[G]}$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

34/39

Reachability versus transient probabiliti

Spare time tonight? Play Craps!

Reachability versus transient probabilities

Craps

- ► Roll two dice and bet
- ► Come-out roll ("pass line" wager):
 - ▶ outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- ▶ Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win
 - ▶ any other outcome: roll again

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

7/39

Reachability versus transient probabilities

Summary

How to determine reachability probabilities?

- 1. Probabilities of sets of infinite paths defined using cylinders.
- 2. Events $\lozenge G$, $\square \lozenge G$ and $\overline{F} \cup G$ are measurable.
- 3. Reachability probabilities = unique solution of linear equation system.
- 4. Bounded reachabilities = transient probabilities in a modified DTMC.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

A DTMC model of Craps

► Come-out roll:

- ▶ 7 or 11: win
- ▶ 2, 3, or 12: lose
- else: roll again
- ► Next roll(s):
 - ▶ 7: lose
 - point: win
 - else: roll again

What is the probability to win the Craps game?

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

38/30