ELETTRONICA DI POTENZA

Finalità

Questa parte del corso intende affrontare i problemi di analisi e progetto dei circuiti elettronici di interesse per le applicazioni industriali, con particolare attenzione per i circuiti di potenza per la conversione statica dell'energia

Programma

- Introduzione ai circuiti e dispositivi elettronici di potenza
- Rettificatori non controllati, monofase e trifase
- Convertitori DC/DC 'switching'
- Inverter monofase e trifase

Testo di riferimento

M. H. Rashid, *Elettronica di potenza: dispositivi e circuiti*, volume 1, 3ª Edizione, Prentice-Hall, 2007

AZIONAMENTO ELETTRICO

ELETTRONICA DI POTENZA

- Interruttori a <u>stato solido</u> ⇒ <u>economicità</u>, <u>flessibilità</u>, <u>affidabilità</u>, <u>rendimento</u>
- Sviluppo della <u>tecnologia</u> ⇒ aumento di <u>velocità</u> e <u>potenza</u>, riduzione dei <u>costi</u>
- <u>Microprocessori</u> (cervello) ⇒ migliori strategie di controllo e pilotaggio
- Costo dell'energia ⇒ richiesta di mercato in un campo sempre più vasto

APPLICAZIONI DELL'ELETTRONICA DI POTENZA

- Railway and automotive transport
- DC-AC regulated power supplies
- High voltage DC system
- Motor control
- Induction heating
- Heating and lighting control
- Electronic welding _____
- Electro-chemical processes
- Variable speed, constant frequency systems
- Solid state circuit breakers

Motor control

High voltage DC lines (HVDC)

Electronic welding

Traction

CLASSIFICAZIONE DEI CONVERTITORI

A. Convertitori di linea

È la tensione di linea a favorire lo spegnimento dei dispositivi a stato solido e anche la loro accensione è agganciata alla frequenza di linea (50 Hz)

B. Convertitori switching

Utilizzano internamente interruttori commutanti a frequenza molto maggiore di quella di linea, per fornire in uscita un segnale continuo o a bassa frequenza

- Rettificatori non controllati (a diodi)
 Conversione AC-DC (sia da trifase che da monofase)
- Convertitori AC-DC controllati (a SCR)
 Conversione AC-DC con controllo del valore medio
- Convertitori AC-AC
 Output AC di ampiezza variabile da sorgente AC fissa
 (variando il periodo di conduzione)
- Convertitori DC-DC
 - Conversione DC-DC con controllo del valore medio (variando il periodo di conduzione)
- Convertitori DC-AC (inverter)
 Conversione DC-AC sfruttando gli interruttori controllati

PRINCIPALI DISPOSITIVI DI POTENZA

• Transistori bipolari (BJT) di potenza

TABLE 1.2	.2 Ratings of Power Semiconductor Devices					
Device Type	Devices		Voltage/Current Rating	Upper Frequency (Hz)	Switching Time (µs) 50–100 50–100	On-State Resistance (Ω) 0.32 m 0.6 m
Power Diodes	Power diodes	General purpose	4000 V/4500 A 1 k 6000 V/3500 A 1 k			
		High speed	600 V/9570 A 2800 V/1700 A 4500 V/1950 A 6000 V/1100 A	1 k 20 k 20 k 20 k	50–100 5–10 5–10 5–10	0.1 m 0.4 m 1.2 m 1.96 m
		Schottky	600 V/17 A 150 V/80 A	30 k 30 k	0.2 0.2	0.14 8.63 m
Power Transistors	Bipolar transistors	Single	400 V/250 A 400 V/40 A 630 V/50 A	25 k 30 k 35 k	9 6 2	4 m 31 m 15 m
		Darlington	1200 V/400 A	20 k	30	10 m
	MOSFETs	Single	800 V/7.5 A	100 k	1.6	1
	COOLMOS	Single	800 V/7.8 A 600 V/40 A 1000 V/6.1 A	125 k 125 k 125 k	2 1 1.5	1.2 m 0.12 m 2 Ω
	IGBTs	Single	2500 V/2400 A 1200 V/52 A 1200 V/25 A 1200 V/80 A 1800 V/2200 A	100 k 100 k 100 k 100 k 100 k	5–10 5–10 5–10 5–10 5–10	2.3 m 0.13 0.14 44 m 1.76 m
	SITs		1200 V/300 A	100 k	0.5	1.2
Thyristors (Silicon- Controlled Rectifiers)	Phase control thyristors	Line- commutated low speed	6500 V/4200 A 2800 V/1500 A 5000 V/4600 A 5000 V/3600 A 5000 V/5000 A	60 60 60 60	100-400 100-400 100-400 100-400 100-400	0.58 m 0.72 m 0.48 m 0.50 m 0.45 m
	Forced- turned-off thyristors	Reverse blocking high speed Bidirectional RCT GATT	2800 V/1850 A 1800 V/2100 A 4500 V/3000 A 6000 V/2300 A 4500 V/3700 A 4200 V/1920 A 2500 V/1000 A 1200 V/400 A	20 k 20 k 20 k 20 k 20 k 20 k 20 k 20 k	20–100 20–100 20–100 20–100 20–100 20–100 20–100 10–50 200–400	0.87 m 0.78 m 0.5 m 0.52 m 0.53 m 0.77 m 2.1 m 2.2 m 0.53 m
	Self-turned- off thyristors	Light triggered GTO HD-GTO Pulse GTO SITH MTO ETO IGCT	6000 V/1500 A 4500 V/4000 A 4500 V/3000 A 5000 V/4600 A 4000 V/2200 A 4500 V/500 A 4500 V/3000 A	10 k 10 k 10 k 20 k 5 k 5 k	50–400 50–110 50–110 50–110 5–10 80–110 80–110	1.07 m 1.07 m 0.48 m 5.6 m 10.2 m 0.5 m 0.8 m
	TRIACs	Bidirectional	1200 V/300 A	400	200-400	3.6 m
	MCTs	Single	4500 V/250 A 1400 V/65 A	5 k 5 k	50–110 50–110	10.4 m 28 m

DISPOSITIVI DI POTENZA E APPLICAZIONI

CARATTERISTICHE

TIPO DI CONTROLLO

- Assenza del controllo (diodi)
- Solo turn-on (SCR)
- Turn-on e turn-off (GTO)
- Continuo (BJT, MOS, IGBT)

TIPO DI ISOLAMENTO

- Unipolare (diodi, BJT, MOS)
- Bipolare (SCR, GTO, IGBT)

CONDUZIONE DI CORRENTE

Unidirezionale (tutti)

INTERRUTTORI CONTROLLATI

Switch control

INTERRUTTORE IDEALE:

- Off-state: blocca qualunque tensione con I_T = 0
- On-state: conduce qualunque corrente con V_T = 0
- Commuta istantaneamente
- Potenza nulla per il controllo

signal On Off Off (b) · v_T , i_T V_d $V_{\rm on}$ td(off) $p_T(t)$ V_dI_d $W_{c(\text{off})} \simeq \frac{1}{2} V_d I_o t_{c(\text{off})}$ $W_{c(\text{on})} = \frac{1}{2} V_d I_o t_{c(\text{on})}$ (c)

(a)

Figure 2-6 Generic-switch switching characteristics (linearized): (a) simplified clamped-inductive-switching circuit, (b) switch waveforms, (c) instantaneous switch power loss.

INTERRUTTORI REALI:

$$P_{S} = \frac{1}{2} V_{d} I_{0} f_{s} [t_{c(on)} + t_{c(off)}] \implies \propto f_{s}, t_{c} (f_{S}: frequenza di commutazione)$$

$$P_{ON} = V_{ON} I_0 \frac{t_{on}}{T_s} = V_{ON} I_0 t_{on} f_s$$

$$P_{TOT} = P_{S} + P_{ON}$$

(P_{OFF} è trascurabile)

DIODI DI POTENZA

- Accensione e spegnimento controllati dal circuito di potenza
- Accensione: ~ ideale
- Spegnimento: reverse recovery time (t_{RR})
- Stato di conduzione: resistenza serie (r_{ON}) ⇒ V_F
- Frequenze da 50 Hz a 1 MHz
- Bassa caduta diretta (V_F = 0.7 ÷ 2 V)
- $V_{block} = 600 \div 6000 \text{ V}$
- $I_F = 700 \div 10000 \text{ A}$

Caratteristica I-V idealizzata

Utilizzo del diodo: RETTIFICATORE

- Solo la semionda positiva della tensione di ingresso viene riportata al carico
- L'accensione del diodo non può essere controllata, quindi valore medio e valore efficace del segnale di uscita sono fissati

Itilizzo del diodo: FREE-WEELING

$$\label{eq:model} \begin{array}{ll} \text{Modo 1, S}_1 \text{ chiuso:} & L\frac{di_1}{dt} + R\,i_1(t) = V_S \text{ , } & i_1(0) = 0 \\ & \text{se } t_1 \text{ è sufficientemente lungo:} & i_1 = I_S = \frac{V_S}{R} \end{array} \\ \text{se } t_1 \text{ è sufficientemente lungo:} & i_1 = I_S = \frac{V_S}{R} \end{array}$$

Modo 2, S_1 aperto (t(0) = t_1 = 0):

$$\begin{split} L\frac{di_2}{dt} + Ri_2(t) &= 0 \qquad con \qquad i_2(0) = I_S = \frac{V_S}{R} \\ \Rightarrow \qquad i_2(t) &= \frac{V_S}{R} e^{-tR/L} \end{split}$$

D_m fornisce il cammino per la corrente causata dall'energia immagazzinata in L.

BJT di potenza

- Bassa dissipazione in on-state (V_{CEsat} ≈ 1 ÷ 2 V)
- Lunghi tempi di storage in spegnimento (tempi di commutazione: svariati μs)
- V_{block} < 1500 V; I_{max} ≈ 100 A ⇒ connessioni in parallelo
- Pilotaggio in corrente: $\beta = I_C/I_B$ in zona attiva diretta
- Base molto spessa, per evitare reach-through ⇒ β basso (≈ 10 ÷ 20)
- Funzionamento in quasi-saturazione durante i transitori

• Breakdown secondario

MOSFET di potenza

- Controllo in tensione (accensione per V_{GS} > V_T)
- Facilità di pilotaggio e dissipazione statica nulla in ingresso
- Commutazione veloce (10 ÷ 100 ns) ⇒ perdite di commutazione ridotte
- Elevata dissipazione in on-state (r_{DS(on)} ≈ kBVη)
- V_{block} < 1000 V; I_{MAX} ≈ 100 A ⇒ connessioni in parallelo

Power Electronics 14

IGBT (Insulated Gate Bipolar Transistor)

- Ingresso ad alta impedenza e transcaratteristica lineare (MOSFET)
- Piccola V_F (2÷3 V) e grande V_{block} (6500 V) (BJT)
- Capacità di bloccare tensioni di entrambe le polarità (GTO)
- Spegnimento e accensione in tempi anche molto inferiori al μs
- I_{max} ≈ 100 A ⇒ connessioni in parallelo

Power Electronics 15

INDUTTORE

$$v(t) = L \frac{di(t)}{dt}$$

- se i(t) è costante equivale ad un cortocircuito
- i(t) è una funzione continua

Induttanza:
$$L = \mu \frac{NA}{l}$$

$$\mu = \mu_0 \mu_r$$

$$w = \frac{1}{2}L i^2$$

CONDENSATORE

Relazione caratteristica:

$$i(t) = C \frac{dv(t)}{dt}$$

- se v(t) è costante equivale ad un circuito aperto
- v(t) è una funzione continua

Capacità:

$$C = \varepsilon \frac{A}{d}$$

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

Il condensatore immagazzina l'energia del campo elettrico:

$$w = \frac{1}{2} C v^2$$