## Projet RISC-V Zynq

Réunion de projet 5

## Tâches effectuées

#### 02/01/2024

- Installation de Vivado 2023.2 avec le support des boards ZYBO.
- Ajout des boards files contenant la Zybo Z720

#### 03/01/2024

- Creation d'un projet vivado, packaging de l'IP picorv32\_axi\_0 et création d'un premier bloc design

#### 04/01/2024

- Recherches sur l'IP du ZYNQ, comment connecter le picorv32 à la mémoire du processeur 11/01/24
- Réunion de projet
- Découpe en tache :
  - Recherche AXI: Guicheteau
  - Recherche PCPI, si on désactive : Assier
  - Recherche Systeme : MORAL
- Install Vivado : Guicheteau

12/01/24 - 13/01/24

- Modification des

PCW\_UIPARAM\_DDR\_DQS\_TO\_CLK\_DELAY

- Modification des connexions entre l'axi interconnect et rst\_ps7\_0\_50M
- Implémentation

### IP PicoRV32 AXI





## **ZYNQ7 Processing System**



 Les DDR sont des mémoires vives qui transfèrent des données rapidement, et les DQS sont des signaux d'horloge qui aident à synchroniser la transmission de ces données.

#### DDR TO CLK DELAY

```
CRITICAL WARNING: [PSU-1] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 0 has negative value -0.050 .
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-2] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 1 has negative value -0.044 .
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-3] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 2 has negative value -0.035 .
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-4] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 3 has negative value -0.100.
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-1] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 0 has negative value -0.050 .
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-2] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 1 has negative value -0.044.
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-3] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 2 has negative value -0.035 .
PS DDR interfaces might fail when entering negative DQS skew values.
CRITICAL WARNING: [PSU-4] Parameter : PCW UIPARAM DDR DQS TO CLK DELAY 3 has negative value -0.100.
PS DDR interfaces might fail when entering negative DQS skew values.
```



#### **Reset Source** [BD 41-1347] Reset pin /picorv32 axi 0/resetn (associated clock /picorv32 axi 0/clk) is connected to asynchronous reset source /processing system7 0/FCLK RESET0 N. This may prevent design from meeting timing. Instead it should be connected to reset source /rst ps7 0 50M/peripheral aresetn. [BD 41-1347] Reset pin /axi mem intercon/M00 ARESETN (associated clock /axi mem intercon/M00 ACLK) is connected to asynchronous reset source /processing system7 0/FCLK RESETO N. This may prevent design from meeting timing. Instead it should be connected to reset source /rst ps7 0 50M/peripheral aresetn. [BD 41-1347] Reset pin /picorv32 axi 0/resetn (associated clock /picorv32 axi 0/clk) is connected to asynchronous reset source /processing system7 0/FCLK RESETO N. This may prevent design from meeting timing. Instead it should be connected to reset source /rst\_ps7\_0\_50M/peripheral\_aresetn. [BD 41-1347] Reset pin /axi mem intercon/M00 ARESETN (associated clock /axi mem intercon/M00 ACLK) is connected to asynchronous reset source /processing\_system7\_0/FCLK\_RESET0\_N. This may prevent design from meeting timing. Instead it should be connected to reset source /rst ps7 0 50M/peripheral aresetn.

# AVANT : \* processing\_system7\_0/FCLK\_RESET0\_N -> rst\_ps7\_0\_50M/ext\_reset\_in \* processing\_system7\_0/FCLK\_RESET0\_N -> picorv32\_axi\_0/resetn \* processing\_system7\_0/FCLK\_RESET0\_N -> axi\_mem\_intercon/M00\_ARESETN \* rst\_ps7\_0\_50M/peripheral\_aresetn -> axi\_mem\_intercon/ARESETN \* rst\_ps7\_0\_50M/peripheral\_aresetn -> axi\_mem\_intercon/S00\_ARESETN

#### **APRES**:

\* processing\_system7\_0/FCLK\_RESET0\_N -> rst\_ps7\_0\_50M/ext\_reset\_in
\* rst\_ps7\_0\_50M/peripheral\_aresetn -> picorv32\_axi\_0/resetn
\* rst\_ps7\_0\_50M/peripheral\_aresetn -> axi\_mem\_intercon/ARESETN
\* rst\_ps7\_0\_50M/peripheral\_aresetn -> axi\_mem\_intercon/S00\_ARESETN
\* rst\_ps7\_0\_50M/peripheral\_aresetn -> axi\_mem\_intercon/M00\_ARESETN

#### PCPI

```
[BD 41-759] The input pins (listed below) are either not connected or do not have a source port, and they don't have a tie-off specified. These pins are tied-off to all 0's to avoid error in Implementation flow.

Please check your design and connect them as needed:
/picorv32_axi_0/pcpi_wr
/picorv32_axi_0/pcpi_rd
/picorv32_axi_0/pcpi_wait
/picorv32_axi_0/pcpi_ready
/picorv32_axi_0/irq
```

## Résultats première implémentation

Confirmation par l'implémentation le picorv32 correspond bien au projet



## Résultats première implémentation



#### **Design Timing Summary**

| tup                            |              | Hold                         |          | Pulse Width                              |          |  |    |
|--------------------------------|--------------|------------------------------|----------|------------------------------------------|----------|--|----|
| Worst Negative Slack (WNS):    | 11,371 ns    | Worst Hold Slack (WHS):      | 0,120 ns | Worst Pulse Width Slack (WPWS):          | 8,750 ns |  |    |
| Total Negative Slack (TNS):    | 0,000 ns     | Total Hold Slack (THS):      | 0,000 ns | Total Pulse Width Negative Slack (TPWS): | 0,000 n  |  |    |
| Number of Failing Endpoints:   | 0            | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |  |    |
| Total Number of Endpoints:     | 1983         | Total Number of Endpoints:   | 1983     | Total Number of Endpoints:               | 702      |  |    |
| user specified timing constrai | nts are met. |                              |          |                                          |          |  | 12 |

## **Gantt**



• Comme prévu, la première semaine est surtout dédiée à implémenter le pico sur la carte

## **Presentation 6**



## Tâches effectuées

#### 15/01/24

 Installation de Vivado terminée et fetch du projet : GUICHETEAU

16/01/24

- Recherches sur le PCPI et documentation : ASSIER
- Recherche mémoire pour mettre code et tester : ASSIER MORAL
- Ajout d'un ILA : MORAL

#### 17/01/24

- Reunion
- Depart documentation toolchain et préparation d'un code qui utilise la mémoire : ASSIER
- Recherches comment interfacer le processeur le processeur et ajouter du code compilé : GUICHETEAU
- Recherches Comment on crée un espace d'adressage pour le processeur : dire qu'a l'adresse 0 c'est une bootrom,a ladresse 3M c'est autre chose... etc?: GUICHETEAU

## Tâches effectuées

#### 18/01/24-19/01/24

- MaJ du design vivado pour utiliser les ports AXI S HP pour interfacer la mémoire : MORAL
- Creation d'un design utilisant une bootrom : MORAL
- Ajout fichier de test mémoire pour la bootrom : ASSIER

#### 21/01/24

- Ajout fichier md d'explication pour Setup une ToolChain : ASSIER

#### 22/01/24

- Test implémentation fichier .coe en bootrom : ASSIER - MORAL

#### 23/01/24

- Modification du .coe pour essayer d'observer des transitions sur le bus AXI : MORAL ASSIER
- Modification du bloc design et des ILA : Il y a bien des transactions avec la bootrom et du code s'exécute : MORAL

## **Adresses**

| Iprovitor_axi_o                                    |           |                |             |      |   |             |  |  |  |  |  |  |  |
|----------------------------------------------------|-----------|----------------|-------------|------|---|-------------|--|--|--|--|--|--|--|
| ✓ Ⅲ /picorv32_axi_0/mem_axi (32 address bits : 4G) |           |                |             |      |   |             |  |  |  |  |  |  |  |
| <pre>/axi_bram_ctrl_0/S_AXI</pre>                  | S_AXI     | Mem0           | 0x0         | 8K   | + | 0x1FFF      |  |  |  |  |  |  |  |
| <pre>/processing_system7_0/S_AXI_HP0</pre>         | S_AXI_HP0 | HP0_DDR_LOWOCM | 0x2000_0000 | 512N | + | 0x3FFF_FFFF |  |  |  |  |  |  |  |
| ✓ □ Incomplete Paths (1)                           |           |                |             |      |   |             |  |  |  |  |  |  |  |
| /axi_mem_intercon/M01_AXI                          |           |                |             |      |   |             |  |  |  |  |  |  |  |

## Code pour valider

```
lui t0, 0x2000
lui t1, 0
Iw t2, O(t0)
add t3, t2, t1
lui t4, 10
add t3, t3, t4
sw t3, O(t0)
jalr x0, 0(x0)
```

## **ILA Bootrom**



### **Problèmes actuels**

- Pas de transactions visibles vers AXI HPO, mais validation de la bootrom et du processeur
- Une fois que l'on arrive à communiquer avec AXI S HPO, connecter au Central Interconnect à la place pour interfacer et avoir accès avec les autres ?
- Pas possible "d'éteindre" le CPU



## **Planning GANTT**

Analyse du projet

Etude de la carte

Etat de l'art

Cahier des charges

Plaque de protection

Vacances de fin d'année

Implémentation

Implementation carte PICO RV32

Connexion Entrees/Sorties et tests

Validation



- Léger retard par rapport au planning : pas encore commencé à tester les E/S car problème mémoire (M.THIEBOLT pensais que l'implémentation était plus simple)
- Mais en soit tests sur l'accès mémoire, on est à peu près bon dans le planning.