Tutorial 4: Proofs

- Q1. Using the method indicated, prove the following:
 - (a) The statement "for all $x, y, z \in \mathbb{Z}$ if y < z then xy < xz" is not true. (Counterexample)
 - (b) The product of an odd integer with an even integer is even. (Direct proof)
 - (c) Let $n, m \in \mathbb{Z}$. If nm is even then either n or m is even. (Contrapositive proof)
 - (d) The square root of 10 is not rational. (Contradiction proof)
 - (e) $\sum_{k=1}^{n} 4k 1 = 2n^2 + n$, for all $n \in \mathbb{N}$. (Induction proof)
 - (f) There exists a smallest $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $n! > 2n^2$ (Induction proof)
- **Q2**. Prove that the following sets are countably infinite. (Give bijections with \mathbb{N} , either by listing the elements without repetition or by giving an explicit formula.)
 - (a) The natural numbers divisible by 3.
 - (b) The odd integers.
- Q3. Prove the following statements or show that they are false. Indicate the method of proof that you are using.
 - (a) $\sqrt{2} + \sqrt{5}$ is not rational.
 - (b) $\sum_{k=1}^{n} \frac{1}{k^2} \ge \frac{3}{2} \frac{1}{n+1}$, for all $n \in \mathbb{N}$.
 - (c) If the sum of the digits of a 3-digit number is divisible by 3, then so is the original number.
 - (d) Every quadrilateral with perpendicular diagonals has equal sides.
 - (e) $8^{n+1} 3 \cdot 8^n + 2$ is divisible by 7 for all $n \in \mathbb{N}$.
- **Q4.** Prove that there are infinitely many prime numbers of the form 4n + 3 where n is an integer.