Appendix A

A.1 Cross-section Ratio, R_{32}

Table A.1: Differential cross-sections (× 10^{-3} (pb/GeV)) and the cross-section ratio R_{32} at detector level in each bin of $H_{\rm T,2}/2$, along with statistical uncertainty (in %).

	2-jet	Stat.	3-jet	Stat.	Ratio	Stat.
${f Bin}$	${\bf cross\text{-}section}$	unc.	cross-section	unc.	R_{32}	unc.
300 - 330	29772.726	0.211	2640.629	0.707	0.089	$+0.665 \\ -0.661$
330 - 360	16792.917	0.231	1773.485	0.704	0.106	$+0.523 \\ -0.521$
360 - 390	9889.326	0.182	1176.544	0.526	0.119	$+0.485 \\ -0.483$
390 - 420	5976.777	0.179	778.034	0.492	0.130	$+0.206 \\ -0.206$
420 - 450	3731.760	0.067	522.624	0.180	0.140	$+0.167 \\ -0.167$
450 - 480	2398.741	0.084	357.622	0.217	0.149	$+0.201 \\ -0.200$
480 - 510	1570.192	0.104	246.051	0.262	0.157	$+0.241 \\ -0.241$
510 - 540	1048.665	0.127	171.080	0.314	0.163	$+0.288 \\ -0.287$
540 - 570	713.042	0.154	119.566	0.376	0.168	$+0.344 \\ -0.343$
570 - 600	490.776	0.186	84.798	0.447	0.173	$+0.407 \\ -0.406$
600 - 640	325.046	0.198	57.463	0.470	0.177	$+0.427 \\ -0.426$
640 - 680	205.727	0.248	37.282	0.583	0.181	$+0.529 \\ -0.527$
680 - 720	133.674	0.308	24.859	0.714	0.186	$+0.646 \\ -0.643$
720 - 760	87.911	0.380	16.560	0.875	0.188	$+0.791 \\ -0.786$
760 - 800	58.657	0.465	11.056	1.071	0.188	$+0.968 \\ -0.961$
800 - 850	38.106	0.516	7.318	1.178	0.192	$+1.063 \\ -1.054$
850 - 900	23.587	0.656	4.600	1.485	0.195	+1.339 -1.326
900 - 950	15.130	0.819	2.896	1.872	0.191	$+1.694 \\ -1.672$
950 - 1000	9.696	1.023	1.812	2.366	0.187	$+2.151 \\ -2.116$
1000 - 1060	6.026	1.185	1.186	2.670	0.197	+2.414 -2.371
1060 - 1120	3.668	1.518	0.716	3.436	0.195	$+3.118 \\ -3.046$
1120 - 1180	2.327	1.906	0.437	4.398	0.188	$+4.024 \\ -3.903$
1180 - 1250	1.419	2.260	0.265	5.227	0.187	$+4.798 \\ -4.627$
1250 - 1320	0.853	2.915	0.165	6.623	0.194	$+6.080 \\ -5.811$
1320 - 1390	0.477	3.898	0.080	9.492	0.169	$+8.951 \\ -8.355$
1390 - 1460	0.263	5.249	0.042	13.131	0.160	$+12.619 \\ -11.449$
1460 - 1530	0.192	6.143	0.029	15.811	0.151	+15.437 -13.698
1530 - 1600	0.104	8.362	0.021	18.570	0.203	$+17.571 \\ -15.536$
1600 - 1680	0.060	10.314	0.009	26.726	0.149	$+27.132 \\ -22.170$

A.2 Individual Sources of Jet Energy Correction Uncertainties

The sources of JEC considered in the current measurements are : AbsoluteStat, AbsoluteScale, AbsoluteFlavMap, AbsoluteMPFBias, Fragmentation, SinglePionECAL, SinglePionHCAL, FlavorQCD, RelativeJEREC1, RelativeJEREC2, RelativeJERHF, RelativePtBB, RelativePtEC1, RelativePtEC2, RelativePtHF, RelativeFSR, RelativeStatFSR, RelativeStatEC2, RelativeStatHF, PileUpDataMC, PileUpPtRef, PileUpPtBB, PileUpPtEC1, PileUpPtEC2 and PileUpPtHF. The AbsoluteFlavMap uncertainty is exactly zero for the 8 TeV and can be ignored. For the four sources : RelativeJERHF, RelativePtHF, RelativeStatHF, PileUpPtHF, the JEC uncertainty is exactly zero because of |y| < 2.5 cut used in the analysis. So only 20 sources contribute to the total JEC uncertainty.

Figure A.1: The fractional jet energy correction (JEC) uncertainties from individual sources are shown for inclusive 2-jet (top) and 3-jet (middle) events cross-sections and the cross-section ratio R_{32} (bottom). On left, JEC uncertainties are evaluated from AbsoluteStat (blue), AbsoluteScale (red), AbsoluteMPFBias (green) and Fragmentation (pink) sources whereas on right, these are evaluated from SinglePionECAL (blue), SinglePionHCAL (red) and FlavorQCD (green) sources.

Figure A.2: The fractional jet energy correction (JEC) uncertainties from individual sources are shown for inclusive 2-jet (top) and 3-jet (middle) events cross-sections and the cross-section ratio R_{32} (bottom). On left, JEC uncertainties are evaluated from RelativeJEREC1 (blue), RelativeJEREC2 (red), RelativePtBB (green) and RelativeJERHF (pink) sources whereas on right, these are evaluated from RelativePtEC1 (blue), RelativePtEC2 (red), RelativePtSR (green) and RelativePtHF (pink) sources.

Figure A.3: The fractional jet energy correction (JEC) uncertainties from individual sources are shown for inclusive 2-jet (top) and 3-jet (middle) events cross-sections and the cross-section ratio R_{32} (bottom). On left, JEC uncertainties are evaluated from RelativeStatFSR (blue), RelativeStatEC2 (red) and RelativeStatHF (green) sources whereas on right, these are evaluated from PileUpDataMC (blue), PileUpPtRef (red), PileUpPtBB (green), PileUpPtEC1 (pink), PileUpPtEC2 (orange) and PileUpPtHF (black) sources.

A.3 Experimental Uncertainties

Table A.2: Experimental uncertainties (in %), from all sources as well as the total uncertainty, affecting the cross-section measurement in each bin of $H_{\rm T,2}/2$ for inclusive 2-jet events.

Bin	Statistical	JEC	Unfolding	Lumi	Residual	Total
300 - 330	0.242	$+2.612 \\ -2.565$	$+0.948 \\ -0.928$	2.6	1.0	$+3.942 \\ -3.906$
330 - 360	0.258	$+2.507 \\ -2.473$	$^{+0.976}_{-0.969}$	2.6	1.0	$+3.882 \\ -3.858$
360 - 390	0.202	+2.504 -2.465	+0.779 -0.783	2.6	1.0	+3.831 -3.807
390 - 420	0.193	+2.363 -2.381	+0.905 -0.904	2.6	1.0	$+3.768 \\ -3.780$
420 - 450	0.084	+2.448 -2.422	+0.904 -0.895	2.6	1.0	+3.818 -3.799
450 - 480	0.096	+2.440 -2.352	+0.797 -0.795	2.6	1.0	+3.789 -3.733
480 - 510	0.107	+2.427 -2.406	+0.728 -0.715	2.6	1.0	+3.767 -3.751
510 - 540	0.128	+2.425 -2.395	+0.835 -0.862	2.6	1.0	+3.789 -3.775
540 - 570	0.154	$ \begin{array}{r} -2.335 \\ +2.425 \\ -2.376 \end{array} $	-0.802 $+0.687$ -0.674	2.6	1.0	$+3.760 \\ -3.726$
570 - 600	0.180	$ \begin{array}{r} -2.370 \\ +2.497 \\ -2.474 \end{array} $	-0.874 $+0.839$ -0.827	2.6	1.0	+3.838 -3.820
600 - 640	0.209	$ \begin{array}{r} -2.474 \\ +2.495 \\ -2.491 \end{array} $	-0.827 $+0.744$ -0.743	2.6	1.0	-3.820 $+3.819$ -3.816
640 - 680	0.264	$ \begin{array}{r} -2.431 \\ +2.582 \\ -2.545 \end{array} $	$ \begin{array}{r} -0.743 \\ +0.912 \\ -0.912 \end{array} $	2.6	1.0	+3.915 -3.891
680 - 720	0.320	$ \begin{array}{r} -2.545 \\ +2.691 \\ -2.574 \end{array} $	$ \begin{array}{r} -0.912 \\ +0.763 \\ -0.756 \end{array} $	2.6	1.0	+3.961 -3.880
720 - 760	0.387	$ \begin{array}{r} -2.574 \\ +2.690 \\ -2.755 \end{array} $	$ \begin{array}{r} -0.736 \\ +0.705 \\ -0.712 \end{array} $	2.6	1.0	+3.955 -4.001
760 - 800	0.465	+2.858 -2.846	-0.712 $+0.859$ -0.846	2.6	1.0	$\begin{array}{r} -4.001 \\ +4.109 \\ -4.098 \end{array}$
800 - 850	0.548	+2.889 -2.913	-0.840 $+0.783$ -0.787	2.6	1.0	$\begin{array}{r} -4.038 \\ +4.126 \\ -4.143 \end{array}$
850 - 900	0.698	+3.145 -3.102	+0.961 -0.958	2.6	1.0	+4.366 -4.334
900 - 950	0.847	+3.298 -3.233	+0.828 -0.829	2.6	1.0	+4.476 -4.429
950 - 1000	1.041	+3.291 -3.330	+0.895 -0.872	2.6	1.0	+4.525 -4.549
1000 - 1060	1.268	$+3.598 \\ -3.569$	+0.945 -0.956	2.6	1.0	+4.817 -4.798
1060 - 1120	1.611	$+3.759 \\ -3.756$	+0.970 -0.967	2.6	1.0	+5.043 -5.040
1120 - 1180	1.985	$+4.154 \\ -4.053$	+1.089 -1.080	2.6	1.0	+5.490 -5.413
1180 - 1250	2.406	+4.251 -4.313	$+1.062 \\ -1.070$	2.6	1.0	+5.722 -5.770
1250 - 1320	3.101	+4.696 -4.624	+1.151 -1.144	2.6	1.0	+6.384 -6.330
1320 - 1390	4.157	+4.934 -4.979	+1.343 -1.341	2.6	1.0	$+7.155 \\ -7.186$
1390 - 1460	5.270	$+5.148 \\ -5.104$	+1.185 -1.177	2.6	1.0	+7.965 -7.936
1460 - 1530	6.360	+5.890 -5.652	+1.405 -1.406	2.6	1.0	+9.213 -9.063
1530 - 1600	8.183	+5.924 -6.311	+1.598 -1.590	2.6	1.0	+10.601 -10.821
1600 - 1680	10.630	+5.969 -5.655	+1.607 -1.592	2.6	1.0	+12.608 -12.461
1680 - 1760	13.864	+7.245 -7.603	+1.821 -1.839	2.6	1.0	+15.993 -16.161
1760 - 1840	18.192	+7.781 -7.820	+1.902 -1.906	2.6	1.0	+20.071 -20.087
1840 - 1920	22.612	+7.647 -7.537	$+1.588 \\ -1.590$	2.6	1.0	+24.085 -24.050
1920 - 2000	29.530	+9.199 -9.469	$+1.511 \\ -1.505$	2.6	1.0	+31.092 -31.172

Table A.3: Experimental uncertainties (in %), from all sources as well as the total uncertainty, affecting the cross-section measurement in each bin of $H_{\rm T,2}/2$ for inclusive 3-jet events.

Bin	Statistical	JEC	Unfolding	Lumi	Residual	Total
300 - 330	0.796	$+3.503 \\ -3.475$	$+0.564 \\ -0.552$	2.6	1.0	$+4.581 \\ -4.558$
330 - 360	0.781	$+3.303 \\ -3.186$	$^{+0.640}_{-0.633}$	2.6	1.0	+4.437 -4.350
360 - 390	0.583	+3.221 -3.094	+0.490 -0.496	2.6	1.0	+4.326 -4.233
390 - 420	0.531	+3.092 -3.149	-0.430 $+0.584$ -0.584	2.6	1.0	+4.236
420 - 450	0.224	+3.125	+0.604	2.6	1.0	$\frac{-4.278}{+4.236}$
450 - 480	0.248	-2.996 $+2.984$	$-0.592 \\ +0.531$	$\frac{2.6}{2.6}$	1.0	$\frac{-4.140}{+4.124}$
480 - 510	0.240	$-2.890 \\ +2.937$	$-0.528 \\ +0.511$	$\frac{2.0}{2.6}$	1.0	$\frac{-4.056}{+4.089}$
		$-2.963 \\ +3.021$	$-0.512 \\ +0.592$			$\frac{-4.108}{+4.164}$
510 - 540	0.318	$-2.797 \\ +2.999$	-0.612 $+0.506$	2.6	1.0	$\frac{-4.007}{+4.141}$
_ 540 - 570	0.375	-2.935	-0.500	2.6	1.0	-4.094
570 - 600	0.434	+2.824 -2.906	+0.646 -0.620	2.6	1.0	$+4.042 \\ -4.096$
600 - 640	0.497	$+2.952 \\ -2.956$	$+0.598 \\ -0.604$	2.6	1.0	$+4.133 \\ -4.136$
640 - 680	0.617	$+3.111 \\ -3.001$	$+0.777 \\ -0.786$	2.6	1.0	$+4.292 \\ -4.215$
680 - 720	0.739	+3.067 -2.984	$^{+0.642}_{-0.611}$	2.6	1.0	+4.257 -4.194
720 - 760	0.895	$+3.185 \\ -3.111$	$+0.595 \\ -0.607$	2.6	1.0	+4.366 -4.313
760 - 800	1.068	+3.231 -3.166	+0.763 -0.774	2.6	1.0	+4.464 -4.419
800 - 850	1.250	+3.427 -3.295	+0.674	2.6	1.0	+4.639 -4.544
850 - 900	1.578	+3.364	-0.687 $+0.903$	2.6	1.0	+4.731
900 - 950	1.961	$-3.540 \\ +3.594$	-0.898 $+0.792$	2.6	1.0	$\frac{-4.857}{+5.015}$
950 - 1000	2.420	$\frac{-3.524}{+3.603}$	$-0.793 \\ +0.846$	2.6	1.0	$\frac{-4.965}{+5.226}$
		$-3.783 \\ +4.164$	$-0.843 \\ +0.916$			$\frac{-5.351}{+5.834}$
1000 - 1060	2.844	-4.116 $+4.038$	$-0.940 \\ +0.963$	2.6	1.0	$\frac{-5.803}{+6.188}$
1060 - 1120	3.647	-3.815 $+4.278$	-0.957 $+1.084$	2.6	1.0	$\frac{-6.044}{+6.961}$
1120 - 1180	4.607	-4.183	-1.087	2.6	1.0	-6.904
1180 - 1250	5.532	$+4.894 \\ -4.771$	$^{+1.074}_{-1.069}$	2.6	1.0	+7.967 -7.891
1250 - 1320	7.141	$+5.144 \\ -5.273$	$+1.222 \\ -1.217$	2.6	1.0	+9.312 -9.383
1320 - 1390	10.207	$+5.542 \\ -5.642$	$+1.414 \\ -1.428$	2.6	1.0	$+12.027 \\ -12.076$
1390 - 1460	13.831	$+5.630 \\ -5.265$	$+1.257 \\ -1.256$	2.6	1.0	+15.242 -15.111
1460 - 1530	15.578	+5.576 -5.491	+1.546 -1.551	2.6	1.0	+16.850 -16.822
1530 - 1600	18.729	+6.409 -7.019	+1.718 -1.716	2.6	1.0	+20.063 -20.266
1600 - 1680	26.465	+7.017	+1.775	2.6	1.0	+27.578
	20.100	-6.255	-1.765			-27.393

Table A.4: Experimental uncertainties (in %), from all sources as well as the total uncertainty, affecting the measurement of cross-section ratio R_{32} , in each bin of $H_{\rm T,2}/2$.

Bin	Statistical	JEC	Unfolding	Total
300 - 330	0.741	$+1.059 \\ -1.097$	$+0.754 \\ -0.751$	$+1.496 \\ -1.522$
330 - 360	0.587	+0.954	+0.685	+1.313
		$-0.923 \\ +0.902$	-0.689 +0.594	-1.292 +1.199
360 - 390	0.519	-0.855	-0.593	-1.163
390 - 420	0.236	$+0.907 \\ -0.952$	$+0.439 \\ -0.438$	$+1.035 \\ -1.074$
420 - 450	0.192	$+0.900 \\ -0.835$	$+0.360 \\ -0.361$	$+0.988 \\ -0.930$
450 - 480	0.209	$+0.788 \\ -0.802$	+0.307 -0.308	+0.872 -0.884
480 - 510	0.245	$\frac{-0.802}{+0.795}$	-0.308 +0.254	$\frac{-0.884}{+0.870}$
		-0.867	-0.235	-0.931
510 - 540	0.287	$+0.852 \\ -0.682$	$+0.264 \\ -0.268$	$+0.937 \\ -0.787$
540 - 570	0.326	+0.807	+0.193	+0.891
		$\frac{-0.803}{+0.656}$	$-0.189 \\ +0.199$	$\frac{-0.887}{+0.792}$
570 - 600	0.397	-0.774	-0.219	-0.898
600 - 640	0.447	$+0.763 \\ -0.797$	$^{+0.150}_{-0.154}$	+0.897 -0.926
		$\frac{-0.797}{+0.861}$	-0.154 +0.153	$\frac{-0.926}{+1.045}$
640 - 680	0.573	-0.781	-0.140	-0.979
680 - 720	0.663	$+0.766 \\ -0.787$	$+0.147 \\ -0.164$	$+1.024 \\ -1.042$
720 - 760	0.774	+0.842	+0.118	+1.149
		$-0.769 \\ +0.800$	-0.118 +0.115	-1.097 $+1.263$
760 - 800	0.970	-0.729	-0.096	-1.218
800 - 850	1.116	+0.873	+0.115	+1.422
		$\frac{-0.775}{+0.770}$	$-0.104 \\ +0.069$	-1.363 + 1.631
850 - 900	1.436	-0.896	-0.069	-1.694
900 - 950	1.716	$+0.704 \\ -0.752$	$^{+0.050}_{-0.051}$	$+1.855 \\ -1.874$
950 - 1000	2.156	+0.824	+0.089	+2.310
-		-0.897 +0.812	$-0.045 \\ +0.045$	-2.336 $+2.680$
1000 - 1060	2.554	-0.870	-0.040	-2.698
1060 - 1120	3.244	$+0.792 \\ -0.658$	$^{+0.018}_{-0.027}$	+3.339 -3.310
-	4.121	-0.038 +0.985	-0.027 +0.025	-3.310 +4.237
1120 - 1180		-0.757	-0.043	-4.191
1180 - 1250	4.990	$+1.031 \\ -0.848$	$+0.023 \\ -0.041$	$+5.095 \\ -5.062$
1250 - 1320	6.456	$+0.750 \\ -1.087$	$^{+0.079}_{-0.079}$	$+6.500 \\ -6.548$
1320 - 1390	8.990	+1.112	+0.080	+9.059
		$\frac{-1.144}{+1.157}$	$\frac{-0.099}{+0.076}$	-9.063 + 12.751
1390 - 1460	12.699	-0.815	-0.078	-12.725
1460 - 1530	13.926	$+0.768 \\ -1.235$	$+0.143 \\ -0.145$	$+13.948 \\ -13.981$
1530 - 1600	16.903	$+1.050 \\ -1.258$	$+0.120 \\ -0.127$	$+16.936 \\ -16.950$
1600 - 1680	28.070	$+1.471 \\ -0.859$	$+0.178 \\ -0.177$	+28.109 -28.084
		0.000	Ü.111	20.001

A.4 Theoretical Uncertainties

Table A.5: Theoretical uncertainties (in %), calculated using CT10-NLO PDF set from all sources as well as the total uncertainty, affecting the cross-section measurement in each bin of $H_{\rm T,2}/2$ for inclusive 2-jet events.

Bin	Scale	PDF	NP	Total
300 - 330	$+0.942 \\ -6.149$	$+3.566 \\ -3.090$	0.825	$+3.780 \\ -6.931$
330 - 360	$+1.035 \\ -6.289$	$+3.906 \\ -3.342$	0.736	+4.107 -7.159
360 - 390	+1.159 -6.438	+4.232 -3.573	0.696	+4.442 -7.396
390 - 420	+1.220 -6.536	+4.551 -3.794	0.723	+4.767 -7.592
420 - 450	+1.326	+4.857	0.745	+5.089
450 - 480	$ \begin{array}{r} -6.660 \\ +1.421 \end{array} $	$-3.997 \\ +5.153$	0.765	$-7.802 \\ +5.399$
	$\frac{-6.776}{+1.512}$	$-4.186 \\ +5.444$		$\frac{-8.001}{+5.704}$
480 - 510	$-6.888 \\ +1.566$	$-4.365 \\ +5.721$	0.782	$-8.192 \\ +5.984$
510 - 540	-6.967 $+1.666$	-4.527 $+6.000$	0.797	-8.347
540 - 570	-7.082	-4.682	0.810	$+6.279 \\ -8.528$
570 - 600	$^{+1.731}_{-7.172}$	$+6.269 \\ -4.825$	0.822	$+6.555 \\ -8.683$
600 - 640	$^{+1.805}_{-7.271}$	$+6.597 \\ -4.979$	0.833	$+6.890 \\ -8.852$
640 - 680	$^{+1.930}_{-7.416}$	$+6.978 \\ -5.143$	0.845	+7.289 -9.064
680 - 720	+2.007 -7.527	+7.364 -5.295	0.856	+7.680 -9.243
720 - 760	+2.113	+7.749	0.865	+8.078
760 - 800	-7.663 $+2.196$	-5.437 $+8.140$	0.873	$-9.436 \\ +8.476$
800 - 850	$-7.781 \\ +2.323$	$-5.569 \\ +8.573$	0.881	$-9.609 \\ +8.926$
	$-7.945 \\ +2.389$	$\frac{-5.706}{+9.082}$		-9.822 $+9.433$
850 - 900	-8.062 $+2.499$	-5.863 $+9.600$	0.889	-10.008 $+9.961$
900 - 950	-8.227	-6.018 $+10.134$	0.896	-10.232
950 - 1000	+2.631 -8.402	-6.166	0.902	$+10.509 \\ -10.460$
1000 - 1060	$^{+2.738}_{-8.569}$	$^{+10.747}_{-6.343}$	0.908	$^{+11.127}_{-10.700}$
1060 - 1120	$+2.853 \\ -8.751$	$+11.431 \\ -6.526$	0.914	$+11.817 \\ -10.955$
1120 - 1180	$+2.992 \\ -8.970$	$+12.183 \\ -6.727$	0.919	$+12.579 \\ -11.250$
1180 - 1250	+3.135 -9.194	+13.019 -6.944	0.924	+13.423 -11.558
1250 - 1320	+3.324 -9.469	+14.004 -7.189	0.929	+14.423
1320 - 1390	+3.434	+15.080	0.933	-11.925 $+15.494$
1390 - 1460	-9.677 $+3.629$	-7.444 $+16.223$	0.937	$-12.244 \\ +16.650$
1460 - 1530	$\frac{-9.976}{+3.760}$	$\frac{-7.700}{+17.505}$	0.940	$\frac{-12.637}{+17.929}$
	-10.224 $+3.894$	$-7.980 \\ +18.891$		$-13.004 \\ +19.311$
1530 - 1600	$-10.471 \\ +4.107$	-8.258 $+20.496$	0.943	-13.368 $+20.925$
1600 - 1680	-10.813	-8.560	0.946	-13.824
<u>1680 - 1760</u>	+4.421 -11.101	+22.481 -8.905	0.949	+22.931 -14.263
1760 - 1840	$^{+4.921}_{-11.461}$	$+24.654 \\ -9.251$	0.951	$+25.158 \\ -14.760$
1840 - 1920	$+5.404 \\ -11.813$	+27.143 -9.607	0.953	$+27.692 \\ -15.256$
1920 - 2000	+5.867	+29.986	0.955	+30.570
=======================================	-12.154	-9.973	0.555	-15.751

Table A.6: Theoretical uncertainties (in %), calculated using CT10-NLO PDF set from all sources as well as the total uncertainty, affecting the cross-section measurement in each bin of $H_{\mathrm{T},2}/2$ for inclusive 3-jet events.

Bin	Scale	PDF	NP	Total
300 - 330	$+0.539 \\ -8.294$	$+5.716 \\ -4.657$	1.692	+5.986 -9.662
330 - 360	$+0.550 \\ -8.577$	+5.977 -4.779	1.516	$+6.191 \\ -9.935$
360 - 390	$+0.599 \\ -8.709$	+6.187 -4.987	1.363	$+6.363 \\ -10.128$
390 - 420	$+0.719 \\ -8.948$	+6.751 -5.223	1.228	+6.900 -10.433
420 - 450	+0.799 -9.145	+7.031 -5.395	1.110	+7.162 -10.676
450 - 480	+0.847 -9.247	+7.404 -5.578	1.005	+7.520 -10.845
480 - 510	+0.847 -9.294	+7.837 -5.717	0.937	+7.938 -10.951
510 - 540	+0.922 -9.436	+8.198 -5.884	0.921	+8.301 -11.158
540 - 570	+0.974 -9.566	+8.529 -6.000	0.904	+8.632 -11.328
570 - 600	+1.086 -9.786	+8.970 -6.156	0.886	+9.079 -11.595
600 - 640	+1.107 -9.852	+9.402 -6.297	0.866	+9.506 -11.724
640 - 680	+1.278 -10.101	+10.310 -6.526	0.842	+10.423 -12.055
680 - 720	+1.384 -10.342	+9.682 -6.618	0.820	+9.815 -12.305
720 - 760	+1.415 -10.404	$+11.051 \\ -6.826$	0.798	+11.170 -12.469
760 - 800	+1.547 -10.615	+11.565 -7.009	0.777	+11.694 -12.744
800 - 850	+1.679 -10.804	+12.242 -7.185	0.755	+12.379 -12.997
850 - 900	+2.085 -11.134	+13.097 -7.461	0.731	+13.282 -13.422
900 - 950	+2.475 -11.432	+13.889 -7.703	0.709	+14.125 -13.804
950 - 1000	+2.655 -11.608	+14.614 -7.915	0.688	+14.869 -14.066
1000 - 1060	+3.025 -11.926	+15.576 -8.173	0.667	+15.881 -14.473
1060 - 1120	+3.299 -12.189	+14.250 -8.441	0.645	+14.641 -14.840
1120 - 1180	+3.741 -12.584	+17.984 -8.787	0.625	+18.380 -15.361
1180 - 1250	+3.969 -12.843	+19.324 -9.127	0.625	+19.737 -15.768
1250 - 1320	$+4.663 \\ -13.452$	+21.246 -9.517	0.642	+21.761 -16.490
1320 - 1390	+4.878 -13.702	+22.884 -9.899	0.657	+23.407 -16.916
1390 - 1460	+5.242 -14.095	+24.854 -10.332	0.670	+25.410 -17.489
1460 - 1530	$+5.582 \\ -14.464$	+27.170 -10.733	0.682	+27.746 -18.024
1530 - 1600	+6.003 -14.907	+29.741 -11.165	0.692	+30.349 -18.637
1600 - 1680	$+6.503 \\ -15.418$	+32.855 -11.617	0.702	+33.500 -19.317

Table A.7: Theoretical uncertainties (in %) calculated using CT10-NLO PDF set from all sources as well as the total uncertainty, affecting the measurement of cross-section ratio R_{32} , in each bin of $H_{\rm T,2}/2$.

Bin	Scale	PDF	NP	Total
300 - 330	$+0.038 \\ -7.203$	$+2.458 \\ -3.463$	0.822	$+2.592 \\ -8.035$
330 - 360	$+0.027 \\ -6.626$	$+2.317 \\ -3.378$	0.734	$+2.431 \\ -7.474$
360 - 390	$+0.024 \\ -6.449$	$+2.149 \\ -3.367$	0.656	$+2.247 \\ -7.304$
390 - 420	$+0.084 \\ -5.894$	+2.411 -3.383	0.586	$+2.482 \\ -6.821$
420 - 450	$+0.113 \\ -5.532$	$+2.345 \\ -3.362$	0.523	$+2.405 \\ -6.494$
450 - 480	$+0.109 \\ -5.409$	$+2.390 \\ -3.357$	0.467	+2.438 -6.383
480 - 510	$^{+0.073}_{-5.442}$	$+2.506 \\ -3.327$	0.416	$+2.541 \\ -6.392$
510 - 540	$^{+0.107}_{-5.168}$	$+2.559 \\ -3.326$	0.371	$+2.588 \\ -6.157$
540 - 570	+0.112 -5.010	+2.586 -3.292	0.330	+2.609 -6.004
570 - 600	$+0.163 \\ -4.576$	+2.729 -3.292	0.292	+2.750 -5.645
600 - 640	+0.146 -4.565	+2.824 -3.270	0.253	+2.839 -5.621
640 - 680	+0.198 -4.163	+3.368 -3.298	0.236	$+3.382 \\ -5.316$
680 - 720	+0.155 -3.754	+2.352 -3.247	0.227	+2.368 -4.968
720 - 760	+0.196 -3.842	+3.267 -3.268	0.219	+3.280 -5.049
760 - 800	+0.126 -3.523	+3.366 -3.272	0.212	+3.375 -4.813
800 - 850	+0.110 -3.368	+3.596 -3.261	0.206	+3.604 -4.693
850 - 900	+0.048 -3.351	+3.909 -3.309	0.200	$ \begin{array}{r} -4.033 \\ +3.915 \\ -4.714 \end{array} $
900 - 950	+0.116 -3.504	+4.148 -3.334	0.196	$\begin{array}{r} -4.714 \\ +4.154 \\ -4.841 \end{array}$
950 - 1000	-3.504 $+0.127$ -3.511	+4.300 -3.335	0.192	$\begin{array}{r} -4.341 \\ +4.306 \\ -4.846 \end{array}$
1000 - 1060	-3.311 $+0.282$ -3.683	-3.335 $+4.604$ -3.357	0.204	-4.840 $+4.617$ -4.988
1060 - 1120	-3.083 $+0.436$ -3.779	-3.357 $+3.079$ -3.375	0.224	$\begin{array}{r} -4.988 \\ +3.118 \\ -5.071 \end{array}$
1120 - 1180	+0.732 -3.982	+5.430 -3.452	0.241	-5.071 $+5.485$ -5.276
1180 - 1250	-3.382 $+0.813$ -4.031	+5.835 -3.511	0.258	-5.270 $+5.897$ -5.352
1250 - 1320	+1.303 -4.414	+6.626 -3.591	0.275	-5.552 $+6.759$ -5.697
1320 - 1390	-4.414 $+1.403$ -4.471	$\begin{array}{r} -3.531 \\ +7.036 \\ -3.659 \end{array}$	0.290	-5.097 $+7.180$ -5.785
1390 - 1460	-4.471 $+1.564$ -4.590	-3.039 $+7.657$ -3.778	0.304	$ \begin{array}{r} -5.783 \\ +7.822 \\ -5.953 \end{array} $
1460 - 1530	-4.765 -4.738	-3.176 $+8.438$ -3.853	0.316	-3.935 $+8.626$ -6.115
1530 - 1600	+2.040 -4.972	-3.833 $+9.306$ -3.962	0.328	$ \begin{array}{r} -6.113 \\ +9.532 \\ -6.366 \end{array} $
1600 - 1680	$ \begin{array}{r} -4.972 \\ +2.313 \\ -5.179 \end{array} $	-3.902 $+10.381$ -4.075	0.339	-0.300 $+10.641$ -6.599
	0.113	4.010		-0.033

A.5 Crystal Ball Function

The Crystal Ball function, developed within the Crystal Ball Collaboration, is a probability density function which is often used as a fitting function in high energy physics. This function, described by Eq. A.1, consists of a Gaussian core with separate power-law low-end tails, below a certain threshold.

$$f = N \cdot \begin{cases} e^{-\frac{1}{2}\alpha_L^2} \cdot \left[\left(\frac{\alpha_L}{n_L} \right) \left(\frac{n_L}{\alpha_L} - \left[\alpha_L + x \right] \right) \right]^{-n_L}, & x < -\alpha_L \\ e^{-\frac{1}{2}x^2}, & -\alpha_L \le x \le \alpha_H \\ e^{-\frac{1}{2}\alpha_H^2} \cdot \left[\left(\frac{\alpha_H}{n_H} \right) \left(\frac{n_H}{\alpha_H} - \left[\alpha_H + x \right] \right) \right]^{-n_H}, & x > \alpha_H \end{cases}$$
(A.1)

where N is a normalisation factor, α_L and α_H delimit the Gaussian core, which is replaced by a power-law behaviour proportional to $1/n_L$ and $1/n_H$ to the lower and higher side, respectively. The Crystal Ball function itself and its first derivative are continuous.