Lecture4 Optimization & Regularization

1. 优化的需求

我们已经知道梯度下降是如何完成的了

$$w^{(t+1)}=w^{(t)}-\eta_t
abla_{w^{(t)}}L$$

w: 某一层的参数

• $w^{(t)}$: 在 t 次更新的时候, w 的值

• η_t : 在 t 次更新的时候, 学习率的值

• $\nabla_{w^{(t)}}L$: 在 t 次更新的时候,w 下降在损失函数计算为 L 时的梯度

但是, 针对梯度下降, 其实有很多个版本

• 业如何初始化

• 学习率 η 怎么调整

优化存在的挑战

- 步长 (学习率) 的选择存在问题
- 局部最小值
- 寻找的最优解所在的解空间非常复杂
 - 。 鞍点和其他平坦的范围

3-D representation for loss contour of a VGG-56 deep network's loss function on the CIFAR-10 dataset.

• 不同的优化方法下降的效果不一样

什么是最佳的优化

- 不幸的是,这个问题还没有一个普遍接受的答案
- 对于不同的优化方法,可以通过下面的网站查看一些可视化的优化效果 https://github.com/Jaewan-Yun/optimizer-visualization
- 也可以看下面这个网站,总结了一些好的优化方法 http://ruder.io/optimizing-gradient-descent/ https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

2. 梯度下降的优化方法

批处理梯度下降 Batch Gradient Descent

如果我们在在整个训练集训练一次后,进行一次梯度下降的话,那么叫做批处理梯度下降

$$abla_{w^{(t)}}L = rac{1}{m}\sum_{i=1}^{m}
abla_{w^{(t)}}L\left(w;x_{i},y_{i}
ight)$$

- m: 训练集中训练样本 (x_i, y_i) 的总个数
- 对 batch 内的样本进行加权求平均
 - 。 减少噪音的影响
- 但注意,这只是一个整体样本梯度下降效果,这个估计可能与真实梯度不同
- 在实践中,我们将损失计算为所有训练样本的平均损失,然后我们计算这个数的梯度

优点

- 可以使用加速度技术基于二阶导数 (Hessian)
- 我们不仅可以测量梯度,也可以测量损失函数的曲率
- 可以对收敛速度做一个简单的理论分析

缺点

- 数据集可能太大了,无法进行完整的梯度计算
- 在每次参数更新之前,多次为数据很接近的样本重新计算梯度(冗余)
- 损失表面是非凸的和高维的

随机梯度下降 Stochastic Gradient Descent

另一种方法是我们在逐个输入训练样本时便计算梯度,使用它来更新权值,这个方法叫做随机梯度下降

$$w^{(t+1)} = w^{(t)} - \eta_t
abla_{w^{(t)}} L(w; x_i, y_i)$$

• 来一个样本,就计算一次梯度下降

伪代码

- 随机选择各层权重 w 和学习率 η
- 重复此步骤,直到得到近似的最小值
 - 。 随机 Shuffle 训练集的样本
 - o for i = 1,2,...,n:
 - 对每个样本 (x_i, y_i) 计算梯度并更新各层权重 w

优点

- 比梯度下降快
 - 。 从第一个样本开始更新梯度, 而不是等待, 此外, 在考虑整个训练数据时, 可能存在冗余
- 随机性有助于避免过拟合,从而提高准确性
- 适用于随时间变化的数据集

缺点

- 大多数情况下,**它是近似值的近似值**,所以它注定是不完美的
 - 。 SGD 执行频繁的更新与高方差,导致目标函数波动很大
 - 。 但实际上这不是问题, 事实上这是一个优势 (噪声有助于防止过拟合)
- 主要问题是,对于大小为1的样本,无法利用大规模并行性

Mini-batch 梯度下降

那么为什么既不使用多于 1 个数据样本更新算梯度,也不是使用整个训练集呢?这种方法叫做 mini-batch 梯度下降

$$w^{(t+1)} = w^{(t)} - rac{\eta_t}{|B|} \sum_{b \in B}
abla_{w^{(t)}} L(w;b)$$

• 其中 B 是挑选出来的样本集大小 $1 \le B \le m$

o m: 训练集样本个数

• 它是更广义的随机梯度下降法 (通常也称为 SGD)

伪代码

Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule $\epsilon_1, \epsilon_2, \dots$

Require: Initial parameter θ

 $k \leftarrow 1$

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{q}}$

 $k \leftarrow k + 1$

end while

- $\epsilon_1, \epsilon_2, \dots \epsilon_m$: 学习率 (范围为 mini-batch 的大小)
 - 。 当然可以设置 mini-batch 内所有的学习率都是一样的
- θ : 权重参数 (也就是之前的 w)
- x: 样本

• ĝ: 梯度

SGD 和传统 GD

- 当数据随时间变化时, SGD 工作得很好, 而 GD 偏向于"过去"的样本
- SGD 可以选择信息量最大的样本
- SGD 还可以选择在前一个 epoch 中产生最大错误的样本,从而产生更大的梯度,从而更快地学习

带动量计算的 SGD

Without momentum

With momentum

- 类比于物理中的动量
- 继续考虑过去的梯度,但让它们的贡献随时间呈指数衰减
- 这是通过累积先前梯度值的速度参数来实现的
- 这抑制了振荡,产生了更稳健的梯度,进而导致更快的收敛

伪代码

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α

Require: Initial parameter θ , initial velocity v

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}$.

Apply update: $\theta \leftarrow \theta + v$.

end while

- α: 描述动量的参数
 - 。 常见的取值为 0.5, 0.9 或者 0.99
 - 。 通常它开始时的值很低, 然后随时间增加
- v: 描述速度的参数

Nesterov 动量 SGD

• 就像标准的动量计算一样,但要使用未来梯度(这会产生更好的收敛)

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate ϵ , momentum parameter α

Require: Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v}

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding labels $y^{(i)}$.

Apply interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$.

Compute gradient (at interim point): $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\mathbf{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \mathbf{y}^{(i)}).$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}$.

Apply update: $\theta \leftarrow \theta + v$.

end while

二阶导优化

- 在求梯度 (一阶导) 的时候, 上面三个图的梯度下降完全一样
- 到目前为止,我们看到的方法只依赖于一阶信息 (梯度)
 - 。 梯度刻画的是方向
- 使用二阶导的信息 (Hessian 矩阵) 可以帮助更快的收敛
 - · Hessian 刻画的是方向变化的快慢
- 主要基于牛顿法,最速下降

$$oldsymbol{ heta}^* = oldsymbol{ heta}_0 - oldsymbol{H}^{-1}
abla_{oldsymbol{ heta}} J\left(oldsymbol{ heta}_0
ight)$$

- H^{-1} : Hessian 矩阵的逆
- ∇_θJ(θ₀): 梯度

Hessian 矩阵的计算

Hessian 是损失函数关于权值的所有组合的二重导数的矩阵

$$\frac{\partial^2}{\partial x_i \partial x_j} f(\boldsymbol{x})$$

$$m{H}(m{e}) = egin{bmatrix} rac{\partial^2 e}{\partial w_1^2} & rac{\partial^2 e}{\partial w_1 \partial w_2} & \cdots & rac{\partial^2 e}{\partial w_1 \partial w_n} \ rac{\partial^2 e}{\partial w_2 \partial w_1} & rac{\partial^2 e}{\partial w_2^2} & \cdots & rac{\partial^2 e}{\partial w_2 \partial w_n} \ dots & dots & dots & dots \ rac{\partial^2 e}{\partial w_n \partial w_1} & rac{\partial^2 e}{\partial w_n \partial w_2} & \cdots & rac{\partial^2 e}{\partial w_n^2} \ \end{pmatrix}$$

- 如果 J 是局部二次的 (H 是正定的) 那么我们可以直接跳到最小值
- 否则, 重复二次逼近并更新参数
- 如果 H 有负特征值,我们可能会走向错误的方向

使用二阶导的问题

- 计算 Hessian 矩阵的逆是非常昂贵的
- O(k³): 其中 k 是参数的个数

3. 学习率的优化方法

- 学习率对模型性能影响较大, 难以确定
 - 。 损失函数可以在不同方向上以不同的方式变化
 - 。 动量有帮助, 但它是另一个超参数
- 我们可以尝试学习每个参数的学习速率,并自动调整它们

Delta bar Delta

- 第一个启发式算法(1988)用于在训练过程中调整个体学习速率
- 如果损失相对于给定模型参数的偏导数的符号保持不变,那么学习率应该增加
- 如果它改变了, 学习速度就会下降
- 只适用于批量梯度下降

AdaGrad

- 调整模型参数的学习速率,方法是将它们缩放成与梯度的所有过去的平方和的平方根成反比
- loss 的偏导数值越大的参数学习率越低
 - 。 在缓慢倾斜的方向上更快的进展
- 但长期的梯度历史会减慢速度
- Adagrad 的主要好处之一是,它消除了手动调整学习速率的需要
- Adagrad 的主要缺点是它在分母中积累了梯度的平方:由于每增加一项都是正的,所以在训练过程中积累的总和不断增加,这反过来又会导致学习速率下降,最终变得无穷小

伪代码

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Accumulate squared gradient: $r \leftarrow r + g \odot g$.

Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$. (Division and square root applied element-wise)

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$.

end while

RMSprop

- RMSprop 是一个(未发布的)修改使用指数移动平均线累积过去的梯度的 AdaGrad
- AdaGrad 设计用于凸函数,而 RMSprop 在非凸设置(典型的深度学习)中工作得更好

伪代码

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small

numbers

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with

corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$

Accumulate squared gradient: $r \leftarrow \rho r + (1 - \rho)g \odot g$.

Compute parameter update: $\Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta + r}} \odot \boldsymbol{g}$. $(\frac{1}{\sqrt{\delta + r}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$.

end while

Adam

- 最好理解为将 RMSprop 与SGD + 动量结合起来的一种方式
- 使用平方梯度来缩放学习速率 RMSprop +动量梯度的移动平均
- 对超参数的选择是相当稳健的

伪代码

Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1).

(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization (Suggested default:

 10^{-8})

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Update biased first moment estimate: $s \leftarrow \rho_1 s + (1 - \rho_1)g$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$

Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-d}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ Apply update: $\theta \leftarrow \theta + \Delta \theta$ (operations applied element-wise)

end while

4. 防止过拟合的操作

深度神经网络存在的问题

深度神经网络可能有数百万个参数,通常超过训练数据的大小,这可能导致过拟合

需要正则化损失函数

$$w^* = argmin \sum_{x,y} L(w_{1,...,L}; x.\, y) + \lambda \Omega(heta)$$

• $\lambda\Omega(\theta)$: 只与 θ 有关,与样本 x 无关,直接对参数进行约束

可能的方法包括

• L1 正则化

- L2 正则化
- Dropout

目标是减少模型容量 model capacity

• 有的时候模型的搜索空间太大了,反而更容易过拟合

L1 正则化

- L1正则化强制稀疏权值
 - 。 很多权重变成 0
 - 。 删除一些连接
- 执行特征选择(我们应该保留输入数据的哪些特征?)

$$w^* = argmin \sum_{x,y} L(w_{1,...,L}; x.\, y) + \lambda \sum_l |w_l|$$

- 梯度更新公式: $w_l = w_l \lambda \eta rac{w_l}{|w_l|} \eta
 abla_w L$
 - λ: 正则化标量
 - η: 学习率
 - 。 $\frac{w_l}{|w_l|}$: 它其实就只是一个 +1 或 -1 的符号

L2 正则化

- 最流行的回归类型,使权重更接近原点
- 很好的解析形式 (可以推导并计算梯度)
- 通常 $\lambda = 10^{-1}/10^{-2}$

$$w^* = argmin \sum_{x,y} L(w_{1,...,L};x.\,y) + rac{\lambda}{2} \sum_l ||w_l||_2^2$$

- 梯度更新公式: $w_l = (1 \lambda \eta) w_l \eta_t \nabla_{w_l} L$
- 实际上, 我们降低了与输出目标具有低协方差的特征(即不太重要的特征)的权重

数据增强

- 减少过拟合的另一种方法是拥有更多的训练数据,而不是减少模型的容量
- 这种方法特别容易应用于物体识别任务,我们可以获取输入数据并生成它的转换版本,模拟真实世界的场景(例如,遮挡,旋转等)

$$\lambda \sim \operatorname{Beta}(\alpha, \alpha)$$
 $\tilde{x} = \lambda x_i + (1 - \lambda)x_j$
 $\tilde{y} = \lambda y_i + (1 - \lambda)y_j$

```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

- Mixup 是一种简单的数据增强的方法
- 它通过线性插值构造虚拟训练样本
- 假设:增加 Mixup 插值的强度,生成的虚拟例子应该离训练的例子更远,使记忆更难实现。

AugMix

 AugMix 是一种数据增强方法,它随机采样各种增强操作后进行加权组合,允许我们探索原始图像周围 语义等效的输入空间

对抗训练 Adversarial training

- 目前,提高对抗鲁棒性最有效的方法是对抗训练,即在标准训练中加入对抗例子。
- 白盒攻击: 快速梯度符号法 (FGSM)

$$\bullet \ x^{adv} = x + \epsilon \operatorname{sign}(\nabla_x L(f(x), y))$$

■ x^{adv} : 对抗训练生成的一个加入噪音的样本

早些停止 Early Stopping

- 简单的思想: 为了避免过拟合, 当验证集的误差开始增加时停止训练, 即使训练误差仍然在减少
- epoch 的数量可以看作是需要优化的超参数

Dropout

- 在每个 epoch, 我们随机地"停用"一些单元, 有效地训练基本网络的不同子网
- 在训练过程中,根据概率 p 随机"停用"一些单位
 - 。 有一定的概率不更新某一个参数
- 在测试时,使用所有的单元,它们的激活权重是 p
- 优点包括
 - 。 更快的训练
 - 。 更少的过拟合
 - 。 各个单元的鲁棒性更高

5. 预处理与参数初始化

除了选择优化方案和应用规则外,我们还可以使用其他标准做法来初始化网络参数和预处理输入数据

权重初始化

- 深度学习训练是迭代的,并且强烈依赖于初始化点(即,我们如何初始化网络参数)
- 重要的原则: 权重的非对称性
 - 为什么?因为如果两个单元共享相同的激活、相同的权重和相同的输入,它们将以相同的方式更新 (没有学习)
 - 。 所以, 不要给所有权重都赋予相同的值 (例如 0)
 - 。 权重由高斯或均匀抽样得出
- 但是,需要注意的是
 - 较大的权重具有较强的对称破坏效应,会在正向和反向传播时传播较强的信号
 - 。 然而,它们也可能导致爆炸值,单位的饱和
 - 。 但是我们也不想要较小的权重
 - 。 此外, 我们还希望保持输入和输出的方差相同(因为输出是下一层的输入)

均匀分布初始化 (tanh)

$$W_{ij}{\sim}\,U(-\sqrt{(rac{6}{m+n})},\sqrt{(rac{6}{m+n})})$$

• 其中 m 是输入的个数, n 是输出的个数

Xavier 初始化 (tanh)

$$W_{ij}{\sim}N(0,\sqrt{rac{1}{m}})$$

• 其中 m 是输入的个数, n 是输出的个数

均匀分布初始化 (sigmoid)

$$W_{ij}{\sim}\,U(-4\sqrt{(rac{6}{m+n})},4\sqrt{(rac{6}{m+n})})$$

• 其中 m 是输入的个数, n 是输出的个数

ReLU 初始化

$$W_{ij}{\sim}N(0,\sqrt{rac{2}{m}})$$

• 其中 m 是输入的个数, n 是输出的个数

预训练/fine-tuning 工作

- 你有一个机器学习的模型 m
- 预训练: 你有一个数据集 A, 在这个数据集上你训练 m 来完成一些特定的任务
- 你有一个数据集 B, 在你开始训练模型之前, 你用 m 的一些参数来初始化你的模型

数据预处理

• 激活函数通常以零为中心

- 这是一件好事,因为它可以帮助我们避免饱和,而饱和度会导致梯度消失
- 同时,我们喜欢单边饱和,因为它有助于避免由于噪声而产生的方差
- 减去均值,训练数据也以零为中心
 - 。 否则可能导致梯度消失
- 对输入进行缩放,使其具有类似的对角线协方差
 - 否则,具有非常不同协方差的输入样本会产生非常不同的梯度,使梯度更新更加困难

单元标准化 Unit Normalization

当输入变量是正态分布时,减去均值除以标准差

批处理标准化 Batch Normalization

两个重要的原则, 提供给网络各层的数据的分布应该是

- 以零为中心的
 - 。 我们已经解决了这个 问题
- 时间和数据不变 (小批量)
 - 。 规范化每一层的激活!

$$egin{aligned} oldsymbol{Z} &= oldsymbol{X} oldsymbol{W} \ & ilde{oldsymbol{Z}} &= oldsymbol{Z} - rac{1}{m} \sum_{i=1}^m oldsymbol{Z}_{i,:} \ & ilde{oldsymbol{Z}} &= rac{ ilde{oldsymbol{Z}}}{\sqrt{\epsilon + rac{1}{m} \sum_{i=1}^m ilde{oldsymbol{Z}}_{i,:}^2}} \ oldsymbol{H} &= \max\{0, \gamma \hat{Z} + oldsymbol{eta}\} \end{aligned}$$