Capstone Project (DA):Credit Card Fraud Detection

Submitted By:- (DSC 43)

- Prashant Singh
- ☐ Vaibhav Singh
- ☐ Shreya Mandlesha

<u>AGENDA</u>

- Objective /Problem Statement
- Background
- Problem-solving approach
- Key Insights / Visualization
- Cost Benefit Analysis
- Appendix:-
 - □Data Attributes
 - □Data Methodology
 - □ Attached Files

OBJECTIVE / PROBLEM STATEMENT

- As a part of the analytics team working on a fraud detection model and its cost-benefit analysis. We need to develop a machine learning model to detect fraudulent transactions based on the historical transactional data of customers with a pool of merchants.
- We have to analyze the business impact of these fraudulent transactions and recommend the optimal ways that the bank can adopt to mitigate the fraud risks.
- We need to put proactive monitoring and fraud prevention mechanisms in place.
- Machine learning helps these institutions reduce time-consuming manual reviews, costly chargebacks and fees, and denial of legitimate transactions.

BACKGROUND

- The number of fraudulent transactions has increased drastically, due to which credit card companies are facing a lot of challenges. For many banks, retaining highly profitable customers is the most important business goal. Banking fraud, however, poses a significant threat to this goal.
- In terms of substantial financial loss, trust and credibility, banking fraud is a concerning issue for both banks and customers alike.
- With the rise in digital payment channels, the number of fraudulent transactions is also increasing as fraudsters are finding new and different ways to commit such crimes.
- We have performed the root cause analysis for the increasing number of frauds and high revenue loss, and you realized that building a fraud detection system using different machine learning techniques is quite important to identify such fraudulent activities at the right time and prevent them from happening.

PROBLEM-SOLVING APPROACH

- 1. Reading and Understanding the Data
- 2. Data Inspection/ Cleaning / Transformation
- 3. EDA (Univariate and Bivariate analysis)
- 4. Data Preparation (Train/Test Data Splitting)
- 5. Multiple Model Building or Hyperparameter Tuning
- 6. Model Evaluation
- 7. Business Impact: Cost Benefit Analysis (Before and After Model deployment)

KEY INSIGHTS / VISUALIZATION

 Data set is highly imbalanced, Out of a total of 18,52,394 transactions, 9651 are fraudulent, with the positive class (frauds) accounting for 0.521% of the total transactions. Class Not fraud accounting for 99.479% of total transactions.

Comments:-

- -Female having more fradulent transaction count over man the difference is not huge
- Need to focus on both gender equally to check fraudulent

Comment:-

- Mid Aged people between 30 to 50 are most no of fraudulent activity

Observation:-

In column "category" (Is_fraud =1)

- grocery_pos, shopping_net, misc_net, shopping_pos, gas_transport these are top 5 category which are having more chances of having fraudulent transaction.
- food_dining, health_fitness, grocery_net, travel having least fraud transaction.

Transaction amount, category and gender are the most important variables

Comments:-

-Saturday, sunday having highest fraud transactions

Comments

- -March & May showing highest no of fradulent transaction.
- April & July having least fraud transactions

COST BENEFIT ANALYSIS

Part 1 – Cost Benefit Analysis

Sr. No.	Questions	Results
1	Average number of transactions per month	77,183
2	Average number of fraudulent transaction per month	402.12
3	Average amount per fraud transaction	530.661

Part 2 – Cost Benefit Analysis

• Reduction in losses by ~82%

Sr. No.	Questions	Results
1	Cost incurred per month before the model was deployed (b*c)	213392.22
2	Average number of transactions per month detected as fraudulent by the model (TF)	237
3	Cost of providing customer executive support per fraudulent transaction detected by model	1.5
4	Total cost of providing customer support per month for fraudulent transactions detected by the model (TF*\$1.5)	355.50
5	Average number of transactions per month that are fraudulent but not detected by the model (FN)	68
6	Cost incurred due to fraudulent transactions left undetected by the model (FN*c)	35908.09
7	Cost incurred per month after the model is built and deployed (4+6)	36263.59
8	Final savings = Cost incurred before - Cost incurred after(1-7)	177128.63

APPENDIX: DATA ATTRIBUTES

Snapshot of the data:

- index Unique Identifier for each row
- trans_date_trans_time- Transaction DateTime
- cc_num Credit Card Number of Customer
- merchant Merchant Name
- category Category of Merchant
- amt Amount of Transaction
- first First Name of Credit Card Holder
- last Last Name of Credit Card Holder
- gender Gender of Credit Card Holder
- street Street Address of Credit Card Holder
- city City of Credit Card Holder

- state State of Credit Card Holder
- zip Zip of Credit Card Holder
- lat Latitude Location of Credit Card Holder
- long Longitude Location of Credit Card Holder
- city_pop Credit Card Holder's City Population
- job Job of Credit Card Holder
- dob Date of Birth of Credit Card Holder
- trans_num Transaction Number
- unix_time UNIX Time of transaction
- merch_lat Latitude Location of Merchant
- merch_long Longitude Location of Merchant
- is_fraud Fraud Flag <--- Target Class

APPENDIX: DATA METHODOLOGY

- Multiple ML Model classifier built on top of a Kaggle-simulated dataset - screenshot
- Class imbalance adjusted using Adaptive Synthetic (ADASYN)/SMOTE sampling method
- Manual hyperparameter tuning is done due to extensive computational times when using Grid Search Cross Validation

	Model	Recall on Train	Recall on Test	AUC Score
9	XGBoost - Unsampled	0.650	0.460	0.98
6	Random Forest - Unsampled	0.270	0.230	0.96
10	XGBoost - SMOTE	0.870	0.810	0.95
11	XGBoost - ADASYN	0.860	0.810	0.95
4	Decision Trees - SMOTE	0.850	0.830	0.93
5	Decision Trees - ADASYN	0.850	0.850	0.93
7	Random Forest - SMOTE	0.820	0.780	0.93
8	Random Forest - ADASYN	0.820	0.790	0.93
3	Decision Trees - Unsampled	0.330	0.300	0.73
2	Logistic Regression - ADASYN	0.729	1.000	0.63
1	Logistic Regression - SMOTE	0.780	1.000	0.56
0	Logistic Regression - Unsampled	0.000	0.988	0.52

APPENDIX: ATTACHED FILES

Cost Benefit Analysis:

Cost Benefit Analysis_FRAUD_PS_VS_SJ.xlsx

Multiple ML Model deployments:

credit card fraud_DA_capstone_PS_VS_SJ.ipynb

video submission Link:-