2	241	10	3/	20	2	Ω																		
	E7		7	at	7	, ,	<	17		NIL		TI												
					•			2	-			2												
					1	<u> </u>	2	+	. 7	B -	-2	\mathcal{O}^{S}	Ва	asta ch	ıe una eqi	uazione ı	non sia li	ineare	e il sistem	a dive	enta non li	neare.		
)	n	2 =	_	24	~	Z														
					y	\(\)	8	7/	+ '	NZ	1	2ر												
	^)	V	_		_							,	2	Deterr	minare	i vari stati	e le u	ıscite di e	quilibrio	per un	
	1		12	e		9	P		U	(+)				=	71	ζ,	detern	ninato	u(t) =	u}= 1				
	2	7	5	ST	> }	or li	N	e	Ple	rh	ton		Discute	ere la s	tabilità de	egli equili	bri even	tualme	nte trovati					
	3		<u> </u>	کارج	4	. 1	しい	ese	اکو	esti) (Determinar	e i siste	emi line	earizzati n	nell'intorn	o degli e	quilibri	i eventualı	mente	trovati			
•											•													
1		1	1	1					1	I I	1	ı l	1									1	1	

Stools stati epinhans 7 (ricavato dalla seconda equazione) sostituisco nella prima equazione

(come convenzione i vari stati di equilibrio li distinguiamo con delle lettere ai pedici (_a e_b), così non facciamo confusione fra i pedici che denotano la variabile di stato (numeri) e i pedici che denotano gli stati di equilibrio (lettere))

W Com 500 WOLLZ-2 I'uscita agli stati di equilibrio valgono: rice A del generico sist. line suzzets derivata di x 2 (derivata di x 1^2)

Piccolo ricordo sulla teoria (meglio comunque controllare nella parte di teoria): Il sistema linearizzato è fatto sviluppando l'equazione di stato in serie fermandosi al primo ordine, e al primo ordine il termine noto è 0 (per definizione di equilibrio) e poi abbiamo la matrice delle deriivate parziali delle funzioni f rispetto alle variabili x

		. , ,																
E	Q lu	ub	א`ס	2	•													
			a dentro la			rovata i va	lori di equili	brio c	he sono:									
		n	= - 2		21	= ~ ′	2. (<u>,</u>	<u> </u>									
		Λ			2	•												
		\cap 1				7			, 7									
	-	Lal				-	~ 4		4	—	() ,	natrice	e A nello sta	ato di equili	brio a			
	(] ')			Ĭ		1	~	- 1		' '3			'				
			epuil	huo e	a				7									
		non riesco	a trarre cor	clusioni a	priori s	u questa m	natrice, quir	ndi gu	ardiamo il p	olinomio ca	aratteristico)						
		det	(5	I -	_ A	$\left(\begin{array}{c} a \end{array}\right)$	=0											
			ر ب				_											
		det	-	5+	4		1				2	7	c 15					
				/	1	2.	+1	_			5 +	5	5 +3	=0				
					•		1											
		CO(255	C O			1.				•	\	c · L	/ \		7	_ /	\ _
			eff,			1	=	$ \geqslant $	2 12	edic	e =	>)	255	Mu	· =)	t	ρ , t	15
		e	20	& V	90	20			2 K	Re x	(0		A	5			,	
				U														

1	- PU	il t	√ 10	6:	(stessa	cosa che a	abbiamo fat	tto per l'equ	uilibrio a)							
		$\tilde{\gamma}$	\bar{i} , $=$	1	nz	= 1	ĺ) <u>_</u>	1							
			1	1			(
		0 (T	7	, 7								
					2		_	1		+1.						
		12	4	·, ·			1 -	- 1		5						
		,	epuh	ips of	D D											
	In q	uesto caso	senza fare	conti aggiu	ıntivi notiam	o che la tra	accia è neg	ativa, quin	di:							
	+	BCC	1,2	\setminus \cap	=	Sl	were	2 (1)		toyal		=) {	\geq_{ρ} .			
	l l					C ^			~ (stord	٣-५		l	P		
							er K	16 %	\mathcal{O}							

Ricordiamo il meccanismo di studio della stabilità degli equilibri:

Se il sistema linearizzato nell'intorno di un equilibrio è asintoticamente stabile, l'equilibrio è asintoticamente stabile.

Se il sistema linearizzato nell'intorno di un equilibrio ha almeno un autovalore con parte reale positiva (che non significa dire che il sistema linearizzato è instabile), allora l'equilibrio è instabile. In tutti gli altri casi non si può dire nulla (dipendono da termini di sviluppo in serie maggiori del primo, quindi non si può dire nulla guardando il sistema linearizzato), non ci sarà mai richiesto.

$$\begin{cases} 8x = \begin{bmatrix} -4 & 1 \\ 1 & -1 \end{bmatrix} \\ 8y = \begin{bmatrix} -32 & 1 \end{bmatrix} \\ 8$$

$$\frac{\partial v}{\partial x} = \frac{1}{2}$$

fare la stessa cosa per l'equilibrio b ...

Quivali Trasformata di Laplace
$$O(S) = \frac{2}{S} - \frac{1}{S^2} e^{-2S} + \frac{1}{S^2} e^{-4S}$$

$$O(Lb)$$

$$O(Lb$$

Consider our us Fol T G(s) gra scomposts lu source du Fratti Possiamo riscriverla come una somma di profotti di fratti semplici con denominatori di primo grado: t. seublici cen sleu. In

1		Per ora noi siamo	capaci di passare da	alle matrici A b c d	alla funzione di ti	rasferimento G, n	non sappiamo ancora fare il v	iceversa, vediamo come fare:	
	wterr	me 250:							
		Supponiamo il segue	nte						
		\mathref{n} = 2	12 + E				godine	1 (206)	sosta
			- 82						
		47					J. May	sistema di ordine 1 (quin scalari) e il sistema è str	
		Siccome siamo in ur è facilmente calcolat	n caso scalare, la funz pile come segue:	zione di trasferimer	nto G(s)			(non c'è termine d)	
		(3/5) =	1(5-6	a) h =					
		900			5	-2			
	(<u>S</u>)	wish					Possiamo ricavare faci	ilmente un sistema fatto così:	
			Data una funzio	ne di trasferimento	in questa forma	:	$Southern = \frac{1}{2}$	r + r	
			G(s)				3		
1				S -	- 		(4 = 2	C	
							Finchè il sistema è s	scalare questa operazione è se	emplice.
							Se il sistema non è s	scalare questo metodo non fur ime slide come affrontare il ca	nziona,
							veulamo nelle pioss	ime siide come amontare ii Ca	ou mailluale.

