0.1 Symmetri

Bilder hentet fra freesvg.org.

Mange figurer kan deles inn i minst to deler hvor den éne delen bare er en forskjøvet, speilvendt eller rotert utgave av den andre. Dette kalles *symmetri*. De tre kommende regelboksene definerer de tre variantene for symmetri, men merk dette: Symmetri blir som regel intuitivt forstått ved å studere figurer, men er omstendelig å beskrive med ord. Her vil det derfor, for mange, være en fordel å hoppe rett til eksemplene.

0.1 Translasjonssymmetri (parallellforskyvning)

En symmetri hvor minst to deler er forskjøvne utgaver av hverandre kalles en *translasjonssymmetri*.

Når en form forskyves, blir hvert punkt på formen flyttet langs den samme vektoren¹.

Eksempel 1

Figuren under viser en translasjonssymmetri som består av to sommerfugler.

Bilde hentet fra freesvg.org.

¹En vektor er et linjestykke med retning.

Under vises $\triangle ABC$ og en blå vektor.

Under vises $\triangle ABC$ forskjøvet med den blå vektoren.

0.2 Speiling

En symmetri hvor minst to deler er vendte utgaver av hverandre kalles en *speilingssymmetri* og har minst én *symmetrilinje* (*symmetriakse*).

Når et punkt speiles, blir det forskjøvet vinkelrett på symmetrilinja, fram til det nye og det opprinnelige punktet har samme avstand til symmetrilinja.

Sommerfuglen er en speilsymmetri, med den røde linja som symmetrilinje.

Eksempel 2

Den røde linja og den blå linja er begge symmetrilinjer til det grønne rektangelet.

Eksempel 3

Under vises en form laget av punktene A,B,C,D,E og F, og denne formen speilet om den blå linja.

0.3 Rotasjonssymmetri

En symmetri hvor minst to deler er en rotert utgave av hverandre kalles en rotasjonssymmetri og har alltid et tilhørende rotasjonspunkt og en rotasjonsvinkel.

Når et punkt roteres vil det nye og det opprinnelige punktet

- ligge langs den samme sirkelbuen, som har sentrum i rotasjonspunktet.
- med rotasjonspunktet som toppunkt danne rotasjonsvinkelen.

Hvis rotasjonsvinkelen er et positivt tall, vil det nye punktet forflyttes langs sirkelbuen *mot* klokka. Hvis rotasjonsvinkelen er et negativt tall, vil det nye punktet forflyttes langs sirkelbuen *med* klokka.

Eksempel 1

Mønsteret under er rotasjonssymmetrisk. Rotasjonssenteret er i midten av figuren og rotasjonsvinkelen er 120°

Bilde hentet fra freesvg.org.

Figuren under viser $\triangle ABC$ rotert 80° om rotasjonspunktet P.

Da er

$$PA = 'PA$$
 , $PB = PB'$, $PC = PC'$

og

$$\angle APA' = \angle BPB' = \angle CPC' = 80^{\circ}$$

Språkboksen

En form som er en forskjøvet, speilvendt eller rotert utgave av en annen form, kalles en kongruensavbilding.

0.2 Omkrets, areal og volum med enheter

Merk: I eksemplene til denne seksjonen bruker vi areal- og volumformler som du finner i MB.

Når vi måler lengder med linjal eller lignende, må vi passe på å ta med benevningene i svaret vårt.

Eksempel 1

Omkretsen til rektangelet =
$$5 \text{ cm} + 2 \text{ cm} + 5 \text{ cm} + 2 \text{ cm}$$

= 14 cm

Arealet til rektangelet =
$$2 \text{ cm} \cdot 5 \text{ cm}$$

= $2 \cdot 5 \text{ cm}^2$
= 10 cm^2

Vi skriver cm² fordi vi har ganget sammen 2 lengder som vi har målt i cm.

En sylinder har radius $4\,\mathrm{m}$ og høgde $2\,\mathrm{m}.$ Finn volumet til sylinderen.

Svar:

Så lenge vi er sikre på at størrelsene vår har samme benevning (i dette tilfellet 'm'), kan vi først regne uten størrelser:

grunnflate til sylinderen =
$$\pi \cdot 4^2$$

= 16π

volumet til sylinderen =
$$16\pi \cdot 2$$

= 32π

Vi har her ganget sammen tre lengder (to faktorer lik 4 m og én faktor lik 2 m) med meter som enhet, altså er volumet til svlinderen 32π m³.

Merk

Når vi finner volumet til gjenstander, måler vi gjerne lengder som høgde, bredde, radius og lignende. Disse lengdene har enheten 'meter'. Men i det daglige oppgir vi gjerne volum med enheten 'liter'. Da er det verdt å ha med seg at

$$1\,L=1\,dm^3$$