Assignment #1 Name: 20192250 지용현

공개키 암호 (Public Key Cryptography)

• RSA의 개인키의 크기를 줄이시오.

Proof. Recall that RSA-CRT algorithm: Suppose we have a system of k linear congruences:

$$x \equiv a_1 \pmod{n_1} x \qquad \equiv a_2 \pmod{n_2} \stackrel{:}{:} x \qquad \equiv a_k \pmod{n_k}$$

where n_1, n_2, \ldots, n_k are pairwise coprime. Let $N = n_1 n_2 \cdots n_k$. Then, for each $i = 1, 2, \ldots, k$, let $N_i = N/n_i$ and let d_i be the inverse of N_i modulo n_i , i.e., $d_i N_i \equiv 1 \pmod{n_i}$. Then the unique solution of the system of congruences is given by:

$$x = \sum_{i=1}^{k} a_i N_i d_i \pmod{N}$$

To prove this, first note that for each i, the condition $n_i \mid (x - a_i)$ implies that $n_i \mid (x - a_j)$ for all $j \neq i$. Therefore, if y is any integer that satisfies the system of congruences, then we have $y \equiv x \pmod{n_i}$ for all i. In particular, y - x is divisible by each n_i , so $N \mid (y - x)$. Thus, any two solutions of the system of congruences differ by a multiple of N.

Now, we need to show that x is a solution to the system of congruences. For each i, we have:

$$x \equiv \sum_{j=1}^{k} a_j N_j d_j \pmod{n_i} \qquad = a_i N_i d_i + \sum_{j \neq i} a_j N_j d_j \pmod{n_i} \equiv a_i N_i d_i \pmod{n_i}$$

since n_i divides N_j for all $j \neq i$. Thus, x satisfies the i-th congruence. Therefore, x is a solution to the system of congruences.

Finally, we need to show that x is the unique solution modulo N. Suppose y is another solution. Then $y \equiv x \pmod{n_i}$ for all i, so y - x is divisible by each n_i , and hence by N. Therefore, $y \equiv x \pmod{N}$. Thus, any two solutions of the system of congruences are congruent modulo N, so x is the unique solution modulo N.

Instructions:

- a. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec pulvinar mauris in nisi fringilla, eu dictum mi laoreet. Vestibulum et lobortis libero.
- b. Suspendisse eget massa in augue eleifend egestas. Nam pulvinar euismod enim ac tristique.
- c. Proin auctor, arcu sit amet venenatis hendrerit, nisi quam maximus justo, nec tincidunt mauris nibh nec risus. Vivamus commodo sed mauris vel dapibus.

Questions:

- 1. Brightness (X points) Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec pulvinar mauris in nisi fringilla, eu dictum mi laoreet. Vestibulum et lobortis libero.
- 2. Color (X points) Suspendisse eget massa in augue eleifend egestas. Nam pulvinar euismod enim ac tristique.
- 3. Contrast (X points) Proin auctor, arcu sit amet venenatis hendrerit, nisi quam maximus justo, nec tincidunt mauris nibh nec risus. Vivamus commodo sed mauris vel dapibus.

Assignment #1 Name: 20192250 지용현

4. Motion (X points) - Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec pulvinar mauris in nisi fringilla, eu dictum mi laoreet. Vestibulum et lobortis libero.

5. Depth (X points) - Suspendisse eget massa in augue eleifend egestas. Nam pulvinar euismod enim ac tristique.

Submission instructions: Submit your completed assignment by emailing it to example@email.com by the due date.

