NAME: HRISHIKESH SHIVPUTRA KAMBLE

PROJECT:-

SOLVING CLASSIFICATION PREDICTION FOR "MANUFACTURING DEFECT" DATASET USING "LOGISTIC REGRESSION", "NAIVES BAYES CLASSIFICATION", "SUPPORT VECTOR CLASSIFIER", "K NEAREST NEIGHBOUR", "DESICION TREE CLASSIFIER".

DATA:-

PRODUCTION METRICS

PRODUCTION VOLUME:-

NUMBER OF UNITS PRODUCED PER DAY.

DATA TYPE: INTEGER.

RANGE: 100 TO 1000 UNITS/DAY.

PRODUCTION COST:-

COST INCURRED FOR PRODUCTION PER DAY.

DATA TYPE: FLOAT.

RANGE: 5000 TO 20000.

SUPPLY CHAIN AND LOGISTICS

SUPPLIER QUALITY:-

QUALITY RATINGS OF SUPPLIERS.

DATA TYPE: FLOAT (%).

RANGE: 80% TO 100%.

DELIVERY DELAY:-

AVERAGE DELAY IN DELIVERY.

DATA TYPE: INTEGER (DAYS).

RANGE: 0 TO 5 DAYS.

QUALITY CONTROL AND DEFECT RATES

DEFECT RATE:-

DEFECTS PER THOUSAND UNITS PRODUCED.

DATA TYPE: FLOAT.

RANGE: 0.5 TO 5.0 DEFECTS.

QUALITY SCORE:-

OVERALL QUALITY ASSESSMENT.

DATA TYPE: FLOAT (%).

RANGE: 60% TO 100%.

MAINTENANCE AND DOWNTIME

MAINTENANCE HOURS:-

HOURS SPENT ON MAINTENANCE PER WEEK.

DATA TYPE: INTEGER.

RANGE: 0 TO 24 HOURS.

DOWNTIME PERCENTAGE:

PERCENTAGE OF PRODUCTION DOWNTIME.

DATA TYPE: FLOAT (%).

RANGE: 0% TO 5%.

INVENTORY MANAGEMENT

INVENTORY TURNOVER:-

RATIO OF INVENTORY TURNOVER.

DATA TYPE: FLOAT.

RANGE: 2 TO 10.

STOCKOUT RATE:-

RATE OF INVENTORY STOCKOUTS.

DATA TYPE: FLOAT (%).

RANGE: 0% TO 10%.

WORKFORCE PRODUCTIVITY AND SAFETY

WORKER PRODUCTIVITY:-

PRODUCTIVITY LEVEL OF THE WORKFORCE.

DATA TYPE: FLOAT (%).

RANGE: 80% TO 100%.

SAFETY INCIDENTS:-

NUMBER OF SAFETY INCIDENTS PER MONTH.

DATA TYPE: INTEGER.

RANGE: 0 TO 10 INCIDENTS.

ENERGY CONSUMPTION AND EFFICIENCY

ENERGY CONSUMPTION:-

ENERGY CONSUMED IN KWH.

DATA TYPE: FLOAT.

RANGE: 1000 TO 5000 KWH.

ENERGY EFFICIENCY:-

EFFICIENCY FACTOR OF ENERGY USAGE.

DATA TYPE: FLOAT.

RANGE: 0.1 TO 0.5.

ADDITIVE MANUFACTURING

ADDITIVE PROCESS TIME:-

TIME TAKEN FOR ADDITIVE MANUFACTURING.

DATA TYPE: FLOAT (HOURS).

RANGE: 1 TO 10 HOURS.

ADDITIVE MATERIAL COST:-

COST OF ADDITIVE MATERIALS PER UNIT.

DATA TYPE: FLOAT.

RANGE:100 TO \$500.

TARGET VARIABLE

APPROACH:

- 1.LOAD THE REQUIRED LIBRARIES SUCH AS PANDAS, MATPLOTLIB, SEABORN ALONG WITH GIVEN DATASET.
- 2.PERFORM EDA ON THE GIVEN DATASET.
- 3.CONVERT ALL THE REQUIRED COLUMNS INTO NUMERIAL COLUMNS USING GET DUMMIES FUNCTION FROM PANDAS LIBRARY.
- 4.CHECK FOR CORRELATION BETWEEN FEATURES AND TARGET AND CONSIDER THE ONLY FEATURES WITH HIGHER CORRELATION.
- 5.IMPORT "LOGISTIC REGRESSION, NAIVES BAYES CLASSIFICATION, SUPPORT VECTOR CLASSIFIER, K NEAREST NEIGHBOUR", AND SPLIT THE GIVEN DATASET INTO TRAINING AND TESTING DATA USING TRAIN_TEST_SPLIT FUNCTION. THEN CALUCLATE ACCURACY SCORE USING SKLEARN LIBRARY BY IMPORTING METRICS.
- 6.ONCE WE GET ACCURACY SCORE OF ALL MODELS FOR BOTH TRAING AND TESTING DATA, CREATE A DATAFRAME AND LOAD ALL THE ACCURACY OF ALL MODEL.
- 7.VISUALIZATION: ONCE THE DATASET IS CREATED PLOT THE ACCURACIES OF ALL THE MODELS USING BARPLOT USING MATPLOTLIB.

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings("ignore")
    pd.set_option("Display.max_columns",100)
```

C:\Users\Hrishikesh\anaconda3\Lib\site-packages\pandas\core\arrays\masked.py:60: UserWarning: Pandas requires version
'1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).
from pandas.core import (

Out[3]:

	ProductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualityScore	MaintenanceHours	DowntimePercentage	Invent
0	202	13175.403783	86.648534	1	3.121492	63.463494	9	0.052343	
1	535	19770.046093	86.310664	4	0.819531	83.697818	20	4.908328	
2	960	19060.820997	82.132472	0	4.514504	90.350550	1	2.464923	
3	370	5647.606037	87.335966	5	0.638524	67.628690	8	4.692476	
4	206	7472.222236	81.989893	3	3.867784	82.728334	9	2.746726	
3235	762	11325.689263	89.252385	2	2.667570	87.141681	16	0.987719	
3236	335	5598.837988	95.701437	4	0.751272	95.562997	11	0.178163	
3237	835	11736.177712	96.431554	5	4.899756	77.973442	0	4.873429	
3238	302	13664.196210	91.089782	1	4.057665	95.755591	6	0.071663	
3239	355	13563.605806	83.595956	2	2.705502	94.630965	13	4.803394	

3240 rows × 17 columns

In [4]:	data.isna().sum()		# CH	ECKING FOR N	NULL VALUES	5			
Out[4]:	ProductionVolume	0							
	ProductionCost	0							
	SupplierQuality	0							
	DeliveryDelay	0							
	DefectRate	0							
	QualityScore	0							
	MaintenanceHours DowntimePercentage	0 0							
	InventoryTurnover	0							
	StockoutRate	0							
	WorkerProductivity								
	SafetyIncidents	0							
	EnergyConsumption	0							
	EnergyEfficiency	0							
	AdditiveProcessTim								
	AdditiveMaterialCo								
	DefectStatus	0							
	dtype: int64								
In [5]:	data.shape		# SHOW	S NUMBER OF	ROWS AND (COLUMNS			
Out[5]:	(3240, 17)								
In [6]:	data.head()		# DISP	LAYS FIRST 5	5 ROWS				
Out[6]:									
ouctoj.	ProductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualityScore	MaintenanceHours	DowntimePercentage	Inventory ⁻
	0 202	13175.403783	86.648534	1	3.121492	63.463494	9	0.052343	1
	1 535	19770.046093	86.310664	4	0.819531	83.697818	20	4.908328	!
	2 960	19060.820997	82.132472	0	4.514504	90.350550	1	2.464923	!
	3 370	5647.606037	87.335966	5	0.638524	67.628690	8	4.692476	;
	4 206	7472.222236	81.989893	3	3.867784	82.728334	9	2.746726	(
	4								

In [7]: data.info() # SHOWS ALL INFORMATION REGARDING THE DATA SUCH AS NULL VALUE, COLUMNS, DATATYPES

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3240 entries, 0 to 3239
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	ProductionVolume	3240 non-null	int64
1	ProductionCost	3240 non-null	float64
2	SupplierQuality	3240 non-null	float64
3	DeliveryDelay	3240 non-null	int64
4	DefectRate	3240 non-null	float64
5	QualityScore	3240 non-null	float64
6	MaintenanceHours	3240 non-null	int64
7	DowntimePercentage	3240 non-null	float64
8	InventoryTurnover	3240 non-null	float64
9	StockoutRate	3240 non-null	float64
10	WorkerProductivity	3240 non-null	float64
11	SafetyIncidents	3240 non-null	int64
12	EnergyConsumption	3240 non-null	float64
13	EnergyEfficiency	3240 non-null	float64
14	AdditiveProcessTime	3240 non-null	float64
15	AdditiveMaterialCost	3240 non-null	float64
16	DefectStatus	3240 non-null	int64

dtypes: float64(12), int64(5)

memory usage: 430.4 KB

In [8]: data.describe() # SHOWS THE ALL DETAILS REGARDING ALL NUMERICAL COLUMNS

Out[8]:

	ProductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualityScore	MaintenanceHours	DowntimePercentage	Inve
count	3240.000000	3240.000000	3240.000000	3240.000000	3240.000000	3240.000000	3240.000000	3240.000000	
mean	548.523148	12423.018476	89.833290	2.558951	2.749116	80.134272	11.476543	2.501373	
std	262.402073	4308.051904	5.759143	1.705804	1.310154	11.611750	6.872684	1.443684	
min	100.000000	5000.174521	80.004820	0.000000	0.500710	60.010098	0.000000	0.001665	
25%	322.000000	8728.829280	84.869219	1.000000	1.598033	70.103420	5.750000	1.264597	
50%	549.000000	12405.204656	89.704861	3.000000	2.708775	80.265312	12.000000	2.465151	
75%	775.250000	16124.462428	94.789936	4.000000	3.904533	90.353822	17.000000	3.774861	
max	999.000000	19993.365549	99.989214	5.000000	4.998529	99.996993	23.000000	4.997591	
4									•

In [11]: data.corr()*100

#CHECKING FOR CORRELATION BETWEEN FEATURES AND TARGET

Out[11]:

	ProductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualityScore	MaintenanceHours	DowntimePer
ProductionVolume	100.000000	2.958397	-2.655870	1.619300	-1.935997	1.782617	-0.455379	
ProductionCost	2.958397	100.000000	-2.410342	1.736470	1.442831	-0.160269	0.733253	-(
SupplierQuality	-2.655870	-2.410342	100.000000	1.423341	1.215710	-2.932955	-1.962564	(
DeliveryDelay	1.619300	1.736470	1.423341	100.000000	-2.302384	1.726761	1.814430	4
DefectRate	-1.935997	1.442831	1.215710	-2.302384	100.000000	-3.634961	-0.868677	^
QualityScore	1.782617	-0.160269	-2.932955	1.726761	-3.634961	100.000000	-1.336578	-(
MaintenanceHours	-0.455379	0.733253	-1.962564	1.814430	-0.868677	-1.336578	100.000000	-2
DowntimePercentage	1.990492	-0.407842	0.629765	4.624665	-1.120780	-0.050486	-2.049382	100
InventoryTurnover	0.694672	2.274864	1.822809	0.668538	-1.414767	-0.061775	1.275795	
StockoutRate	-0.263723	0.600573	-0.139270	-0.276676	0.754714	-3.504899	1.925128	(
WorkerProductivity	0.475361	0.503017	-1.738914	-1.386851	-0.038756	0.459116	0.962166	-:
SafetyIncidents	-2.419484	-0.695803	0.455226	0.602982	1.219621	0.129290	0.917376	(
EnergyConsumption	-1.021279	-0.672774	-0.358159	0.723315	0.529744	-0.169381	0.701653	(
EnergyEfficiency	0.992340	-0.277833	-1.161360	2.946756	-1.416829	-0.414694	-2.648641	
AdditiveProcessTime	-4.239337	1.107507	-1.250659	2.808467	-2.842590	0.998600	-0.181974	-(
AdditiveMaterialCost	-0.298013	-0.211446	-0.242994	-0.760067	1.159566	-2.122258	-0.084454	(
DefectStatus	12.897325	2.672044	3.818395	0.542464	24.574565	-19.921873	29.710679	(
4								•

In [12]: plt.figure(figsize=(18,10))
 sns.heatmap(data.corr(),annot=True)
 plt.show()


```
In [13]: sns.countplot(data=data,x="DefectStatus")
```

Out[13]: <Axes: xlabel='DefectStatus', ylabel='count'>

FROM ABOVE GRAPH I COME TO KNOW THAT THERE IS SOME BIASNESS IN DEFECT STATUS THAT NON DEFECTIVE ENTERIES ARE RARE.

In [14]: data["MaintenanceHours"].sum()

Out[14]: 37184

TOTAL MAINTENANCE HOUR IS 37184 HRS

```
In [15]: data["QualityScore"].mean()
```

Out[15]: 80.13427211241357

THE AVERAGE QUALITY SCORE FOR PRODUCTS IS 80

```
In [16]: data[["ProductionVolume","ProductionCost"]].sum().reset_index()
```

Out[16]:

	inaex	U
0	ProductionVolume	1.777215e+06
1	ProductionCost	4.025058e+07

TOTAL PRODUCTION COST FOR TOTAL PRODUCTION(1777215 QTY) IS RS.40250579

```
In [17]: data["SafetyIncidents"].sum()
```

Out[17]: 14877

TOTAL NUMBER OF SAFETY INCIDENT OCCURED ARE 14877

```
In [18]: data["DowntimePercentage"].mean()
```

Out[18]: 2.501373151490477

AVERAGE DOWNTIME FOR GIVEN DATASET IS 2.5%

```
In [19]: data["EnergyConsumption"].sum()
```

Out[19]: 9682722.028902918

TOTAL ENERGY CONSUMED IN KWH IS 9682722 KWH

```
In [20]: o=data[["ProductionCost","AdditiveMaterialCost"]].sum().reset_index()
o=np.around(o,2)
o
```

Out[20]:

	index	0
0	ProductionCost	40250579.86
1	AdditiveMaterialCost	070/30 15


```
In [22]: data["DefectRate"].mean()
```

Out[22]: 2.749116379386996

AVERAGE DEFECTIVE RATE IS 2.75%

```
In [ ]:
In [23]: FEATURE=data[['ProductionVolume', 'ProductionCost', 'SupplierQuality',
                 'DeliveryDelay', 'DefectRate', 'QualityScore', 'MaintenanceHours',
                 'DowntimePercentage', 'InventoryTurnover', 'StockoutRate',
                 'WorkerProductivity', 'SafetyIncidents', 'EnergyConsumption',
                'EnergyEfficiency', 'AdditiveProcessTime', 'AdditiveMaterialCost']]
         TARGET=data['DefectStatus']
                                  # STORE DATA INTO FEATURES AND TARGET ACCORDINGLY
In [24]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(FEATURE,TARGET,train size=.85)
           # SPLIT THE DATASET INTO TRAIN AND TESTING DATA
In [25]: from sklearn.preprocessing import MinMaxScaler
         M=MinMaxScaler()
                                 # IMPORT MINMAX SCALER FOR SCALING
In [26]: x train[[ 'ProductionCost', 'SupplierQuality', 'WorkerProductivity', 'EnergyConsumption', 'AdditiveMaterialCost', 'Quality'
         x test[[ 'ProductionCost', 'SupplierOuality', 'WorkerProductivity', 'EnergyConsumption', 'AdditiveMaterialCost', 'OualityS
```

In [27]: x_train

Out[27]:

	ProductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualityScore	MaintenanceHours	DowntimePercentage	Invent
750	314	0.741229	0.864223	0	1.767439	0.494821	14	4.147022	
854	612	0.974625	0.368772	5	2.414440	0.889253	3	2.617827	
618	424	0.877477	0.423033	3	0.590979	0.829542	17	3.377587	
874	747	0.544718	0.149785	0	1.162732	0.532157	8	0.951805	
511	669	0.673261	0.421389	4	1.645821	0.488925	13	1.836956	
2459	433	0.672544	0.113234	4	4.586594	0.945415	3	1.787886	
956	871	0.357180	0.832350	3	3.009391	0.354431	9	0.111644	
1917	342	0.399689	0.550879	4	1.543858	0.759708	19	0.423848	
2770	201	0.861798	0.892530	4	4.870485	0.633665	17	1.952001	
808	737	0.395299	0.927068	1	1.241016	0.341955	12	3.511869	

2754 rows × 16 columns

4

In [28]: x_test

Out[28]:

oductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualityScore	MaintenanceHours	DowntimePercentage	Invent
404	0.059633	0.678411	5	4.814604	0.349189	6	3.591952	
488	0.754596	0.966031	0	2.945905	0.113183	17	4.538595	
139	0.255441	0.613640	0	0.556960	0.631937	10	0.953749	
242	0.009904	0.209442	3	3.896071	0.024530	13	1.358449	
474	0.161985	0.861545	1	3.258825	0.066955	11	3.646038	
594	0.220576	0.209329	3	4.897323	0.719271	2	0.893239	
220	0.514076	0.788409	4	2.235725	0.399279	11	0.928073	
904	0.485303	0.727489	3	0.908772	0.117463	3	1.765946	
545	0.880303	0.121743	5	4.426865	0.641324	22	3.126963	
813	0.572856	0.075345	5	2.632025	0.941877	16	1.760580	
	404 488 139 242 474 594 220 904 545	404 0.059633 488 0.754596 139 0.255441 242 0.009904 474 0.161985 594 0.220576 220 0.514076 904 0.485303 545 0.880303	404 0.059633 0.678411 488 0.754596 0.966031 139 0.255441 0.613640 242 0.009904 0.209442 474 0.161985 0.861545 594 0.220576 0.209329 220 0.514076 0.788409 904 0.485303 0.727489 545 0.880303 0.121743	404 0.059633 0.678411 5 488 0.754596 0.966031 0 139 0.255441 0.613640 0 242 0.009904 0.209442 3 474 0.161985 0.861545 1 594 0.220576 0.209329 3 220 0.514076 0.788409 4 904 0.485303 0.727489 3 545 0.880303 0.121743 5	404 0.059633 0.678411 5 4.814604 488 0.754596 0.966031 0 2.945905 139 0.255441 0.613640 0 0.556960 242 0.009904 0.209442 3 3.896071 474 0.161985 0.861545 1 3.258825 594 0.220576 0.209329 3 4.897323 220 0.514076 0.788409 4 2.235725 904 0.485303 0.727489 3 0.908772 545 0.880303 0.121743 5 4.426865	404 0.059633 0.678411 5 4.814604 0.349189 488 0.754596 0.966031 0 2.945905 0.113183 139 0.255441 0.613640 0 0.556960 0.631937 242 0.009904 0.209442 3 3.896071 0.024530 474 0.161985 0.861545 1 3.258825 0.066955 594 0.220576 0.209329 3 4.897323 0.719271 220 0.514076 0.788409 4 2.235725 0.399279 904 0.485303 0.727489 3 0.908772 0.117463 545 0.880303 0.121743 5 4.426865 0.641324	404 0.059633 0.678411 5 4.814604 0.349189 6 488 0.754596 0.966031 0 2.945905 0.113183 17 139 0.255441 0.613640 0 0.556960 0.631937 10 242 0.009904 0.209442 3 3.896071 0.024530 13 474 0.161985 0.861545 1 3.258825 0.066955 11 594 0.220576 0.209329 3 4.897323 0.719271 2 220 0.514076 0.788409 4 2.235725 0.399279 11 904 0.485303 0.727489 3 0.908772 0.117463 3 545 0.880303 0.121743 5 4.426865 0.641324 22	404 0.059633 0.678411 5 4.814604 0.349189 6 3.591952 488 0.754596 0.966031 0 2.945905 0.113183 17 4.538595 139 0.255441 0.613640 0 0.556960 0.631937 10 0.953749 242 0.009904 0.209442 3 3.896071 0.024530 13 1.358449 474 0.161985 0.861545 1 3.258825 0.066955 11 3.646038 594 0.220576 0.209329 3 4.897323 0.719271 2 0.893239 220 0.514076 0.788409 4 2.235725 0.399279 11 0.928073 904 0.485303 0.727489 3 0.908772 0.117463 3 1.765946 545 0.880303 0.121743 5 4.426865 0.641324 22 3.126963

486 rows × 16 columns

In [30]: import tensorflow as tf
from tensorflow import keras

In [32]: model.fit(x_train,y_train,epochs=50)

Epoch		20	2ms/stan		266492644	0 7242		1000	2 0227
87/87 Epoch	2/50	25	zms/step	-	accuracy:	0.7243	-	1055:	3.9227
87/87		0s	2ms/step	-	accuracy:	0.7184	-	loss:	1.4627
Epoch								_	
87/87 Epoch	1/50	0s	2ms/step	-	accuracy:	0.7540	-	loss:	1.0775
	4/30	0s	2ms/step	_	accuracv:	0.7659	_	loss:	0.8670
Epoch			о, о сор		,				
		0s	2ms/step	-	accuracy:	0.7721	-	loss:	0.7054
Epoch		_						_	
	7/50	0s	2ms/step	-	accuracy:	0.8014	-	loss:	0.5783
	7/50	۵s	2ms/sten	_	accuracy:	0 8140	_	1055.	0 5848
	8/50	03	211137 3 CCP		accuracy.	0.0140		1033.	0.30-0
		0s	2ms/step	-	accuracy:	0.8124	-	loss:	0.5507
	9/50								
	10.450	0s	2ms/step	-	accuracy:	0.8153	-	loss:	0.5390
•	10/50	00	1mc/c+on		accuracy:	0 0240		1000	0 1751
	11/50	05	Ills/scep	-	accuracy.	0.0340	-	1055.	0.4/54
		0s	2ms/step	_	accuracy:	0.8131	_	loss:	0.5041
Epoch	12/50				_				
		0s	2ms/step	-	accuracy:	0.8226	-	loss:	0.4952
	13/50	•	2 / 1			0 0204		,	0 4704
	14/50	05	2ms/step	-	accuracy:	0.8301	-	TOSS:	0.4/81
87/87		0s	2ms/step	_	accuracv:	0.8176	_	loss:	0.4768
	15/50		-,						
		0s	2ms/step	-	accuracy:	0.8269	-	loss:	0.4666
	16/50	•	2 / 1			0.0500		,	0 4245
	17/50	ØS	2ms/step	-	accuracy:	0.8508	-	loss:	0.4315
		0s	2ms/step	_	accuracy:	0.8301	_	loss:	0.4519
	18/50		-,						
-		0s	2ms/step	-	accuracy:	0.8174	-	loss:	0.4689
•	19/50	_	o / :			0.00==		,	0 4005
87/87	20/50	Øs	2ms/step	-	accuracy:	0.8359	-	loss:	0.4389
87/87		95	2ms/sten	_	accuracy:	0.8391	_	1055.	0.4318
-	21/50		-3 , 3 сер		accar acy.	3.3371		1033.	3.4310

87/87		0s	2ms/step	_	accuracy:	0.8287	_	loss:	0.4441
	22/50		, , ,		,				
		0s	2ms/step	-	accuracy:	0.8350	-	loss:	0.4396
	23/50								
	24/52	0s	2ms/step	-	accuracy:	0.8249	-	loss:	0.4433
	24/50	00	2mc/c+on		26611026144	0 0226		10551	0 4405
	25/50	62	zms/scep	-	accuracy:	0.8236	-	1055:	0.4405
87/87	23/30	0s	2ms/step	_	accuracy:	0.8423	_	loss:	0.4119
	26/50		, т т т		,				
87/87		0s	2ms/step	-	accuracy:	0.8387	-	loss:	0.4189
•	27/50								
-		0s	2ms/step	-	accuracy:	0.8326	-	loss:	0.4140
	28/50	0.0	2ms/stan		200112011	0.000		1000	0 4012
	29/50	05	ziiis/step	_	accuracy.	0.0390	_	1055.	0.4012
-		0s	2ms/step	_	accuracy:	0.8333	_	loss:	0.4195
	30/50		-,						
87/87		0s	2ms/step	-	accuracy:	0.8429	-	loss:	0.4057
	31/50								
	22 /50	0s	2ms/step	-	accuracy:	0.8313	-	loss:	0.4112
	32/50	00	2mc/c+on		26611026144	0 0226		10551	0 4000
	33/50	05	ziiis/step	_	accuracy.	0.0330	_	1055.	0.4000
87/87		0s	2ms/step	_	accuracv:	0.8413	_	loss:	0.3916
Epoch	34/50								
87/87		0s	2ms/step	-	accuracy:	0.8398	-	loss:	0.3912
•	35/50	_						_	
	26/50	0s	2ms/step	-	accuracy:	0.8356	-	loss:	0.3904
	36/50	۵c	2ms/stan	_	accuracy.	0 8235	_	1000	0 1056
	37/50	03	21113/3CEP		accuracy.	0.0233		1033.	0.4000
		0s	2ms/step	-	accuracy:	0.8476	-	loss:	0.3698
Epoch	38/50				_				
		0s	2ms/step	-	accuracy:	0.8439	-	loss:	0.3768
•	39/50	0 -	2 / . !			0.046=		1	0.2626
87/87		US	∠ms/step	-	accuracy:	u.8467	-	TOSS:	0.3636
87/87	40/50	95	2ms/sten	_	accuracy:	0.8500	_	1055.	0.3650
	41/50	03	21113/3ccp		accuracy.	3.0500		1033.	0.5050
87/87		0s	2ms/step	-	accuracy:	0.8417	-	loss:	0.3805
Epoch	42/50		·		-				

•		0s	2ms/step	-	accuracy:	0.8306	-	loss:	0.3962
Epoch 87/87		0s	2ms/step	-	accuracy:	0.8388	_	loss:	0.3911
Epoch 87/87	44/50	0s	2ms/step	_	accuracy:	0.8398	_	loss:	0.3652
Epoch 87/87	45/50	0s	2ms/step	_	accuracy:	0.8408	_	loss:	0.3794
Epoch 87/87	46/50		·		accuracy:				
Epoch			•		accuracy:				
Epoch 87/87	48/50		•		accuracy:				
Epoch	49/50		·		-				
87/87 Epoch	50/50		•		accuracy:				
87/87		0s	2ms/step	-	accuracy:	0.8401	-	loss:	0.3684

Out[32]: <keras.src.callbacks.history.History at 0x11db09d7990>

```
In [33]: T=model.predict(x_test)
                                   - 0s 4ms/step
         16/16 -
Out[33]: array([[0.75250596],
                [0.9203568],
                [0.8428492],
                [0.91548973],
                [0.78184664],
                [0.91170174],
                [0.86980355],
                [0.8342533],
                [0.8301319],
                [0.57468915],
                [0.8848917],
                [0.98116946],
                [0.9379451],
                [0.9147485],
                [0.8482009],
                [0.649905],
                [0.9540807],
                [0 04738686]
In [34]: pred=[]
         for i in T:
             if i>0.5:
                 pred.append(1)
             else:
                 pred.append(0)
```

```
In [35]: pred
Out[35]: [1,
          1,
          1,
          1,
          1,
In [37]: from sklearn.metrics import confusion_matrix,accuracy_score, classification_report
         accuracy_score(y_test,pred)
Out[37]: 0.8436213991769548
In [38]: |confusion_matrix(y_test,pred)
Out[38]: array([[ 1, 75],
                [ 1, 409]], dtype=int64)
```

```
In [39]: print(classification report(y test,pred))
                      precision
                                   recall f1-score
                                                     support
                           0.50
                                              0.03
                                     0.01
                                                          76
                           0.85
                                     1.00
                                              0.91
                                                         410
                                              0.84
                                                         486
            accuracy
                                              0.47
                                                         486
            macro avg
                           0.67
                                     0.51
         weighted avg
                           0.79
                                     0.84
                                              0.78
                                                         486
In [40]: model.evaluate(x train,y train)
                       0s 1ms/step - accuracy: 0.8405 - loss: 0.3694
         87/87 ---
Out[40]: [0.3585779368877411, 0.8427741527557373]
In [41]: model.evaluate(x test,y test)
                           Os 952us/step - accuracy: 0.8447 - loss: 0.3470
         16/16 -
Out[41]: [0.3662823438644409, 0.8436213731765747]
In [ ]:
```

```
In [ ]:
```

LOGISTIC REGRESSION:-

```
In [ ]: from sklearn.linear_model import LogisticRegression
    L=LogisticRegression()
    L.fit(x_train,y_train) #IMPORT LOGISTIC REGRESSION AND FIT

In [ ]: L1=L.score(x_train,y_train)*100 #TRAINING ACCURACY
    L1

In [ ]: L2=L.score(x_test,y_test)*100 #TESTING ACCURACY
    L2

In [ ]:
```

SUPPORT VECTOR CLASSIFIER:-

```
In [ ]: from sklearn.svm import SVC
S=SVC()
S.fit(x_train,y_train)

In [ ]: S1=S.score(x_train,y_train)*100 #TRAINING ACCURACY
S1

In [ ]: S2=S.score(x_test,y_test)*100 #TESTING ACCURACY
S2
```

KNEIGHBOR CLASSIFIER:-

```
In [ ]: from sklearn.neighbors import KNeighborsClassifier
    K=KNeighborsClassifier()
    K.fit(x_train,y_train) #IMPORT KNN AND FIT

In [ ]: K1=K.score(x_train,y_train)*100 #TRAINING ACCURACY
    K1

In [ ]: K2=K.score(x_test,y_test)*100 #TESTING ACCURACY
    K2
In [ ]: From sklearn.neighbors import KNeighborsClassifier
    K=KNeighborsClassifier()
    #IMPORT KNN AND FIT

### IMPORT KNN AND FIT

### ITESTING ACCURACY
####
```

NAIVES BAYES:-

```
In []: from sklearn.naive_bayes import GaussianNB,ComplementNB,MultinomialNB,BernoulliNB
G=GaussianNB()
C=ComplementNB()
M=MultinomialNB()
B=BernoulliNB() #IMPORT NAIVES BAYES AND FIT
```

GaussianNB:-

```
In [ ]: G.fit(x_train,y_train)
In [ ]: G1=G.score(x_train,y_train)*100
G1 #TRAINING ACCURACY
```

```
In [ ]: G2=G.score(x_test,y_test)*100 #TESTING ACCURACY
G2
```

BernoulliNB:-

```
In [ ]: B.fit(x_train,y_train)
In [ ]: B1=B.score(x_train,y_train)*100 #TRAINING ACCURACY
B1
In [ ]: B2=B.score(x_test,y_test)*100 #TESTING ACCURACY
B2
```

ComplementNB:-

```
In [ ]: C.fit(x_train,y_train)
In [ ]: C1=C.score(x_train,y_train)*100 #TRAINING ACCURACY
C1
In [ ]: C2=C.score(x_test,y_test)*100 #TESTING ACCURACY
C2
In [ ]:
```

MultinomialNB:-

```
In [ ]: M.fit(x_train,y_train)
```

```
In [ ]: M1=M.score(x_train,y_train)*100  #TRAINING ACCURACY
M1
In [ ]: M2=M.score(x_train,y_train)*100  #TESTING ACCURACY
M2
In [ ]:
```

DECISION TREE CLASSIFIER:-

ADABOOST:-

```
In [ ]: A.fit(x_train,y_train)
In [ ]: A1=A.score(x_train,y_train)*100
A1
In [ ]: A2=A.score(x_test,y_test)*100
A2
```

ACCURACY GRAPH:-

```
In []: A={"METHODS":["LOGISTIC REGRESSION","SVC","GAUSSIAN NB","BERNOULLI NB","COMPLEMENT NB","MULTINOMIAL NB","K NEAREST NEI
A=pd.DataFrame(A)
A=np.around(A,2)
A  #CREATE A DATAFRAME FOR ALL ACCURACIES

In []: plt.bar(A["METHODS"],A["TRAIN ACCURACY"],width=0.3,label="TRAINING ACCURACY")
plt.bar(A["METHODS"],A["TEST ACCURACY"],align="edge",width=0.3,label="TESTING ACCURACY")
plt.legend(bbox_to_anchor=[1,0,0,1])
plt.xlabel("METHODS------>")
plt.ylabel("ACCURACY----->")
plt.ylabel("ACCURACY----->")
plt.xticks(rotation=90)
plt.show()  # PLOT THE ACCURACY CHART BETWEEN ALL MODELS ACCURACIES
```

CONCLUSION:

FROM THE ABOVE BAR CHART IT IS CLEAR THAT ADABOOST BEST FOR CLASSIFICATION FOR THIS DATASET.

```
In [ ]:
```