M392C NOTES: MATHEMATICAL GAUGE THEORY

ARUN DEBRAY MARCH 12, 2019

These notes were taken in UT Austin's M392C (Mathematical gauge theory) class in Spring 2019, taught by Dan Freed. I live-TeXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to a.debray@math.utexas.edu. Any mistakes in the notes are my own. Thanks to Yixian Wu for finding and fixing a typo.

Contents

1.	Some useful linear algebra: 1/22/19	1
2.	Fantastic 2-forms and where to find them: $1/24/19$	5
3.	Principal bundles, associated bundles, and the curvature 2-form: 1/29/19	7
4.	Harmonic forms and (anti)-self-dual connections: 1/31/19	10
5.	The Yang-Mills functional: 2/5/19	14
6.	Spinors in low dimensions and special isomorphisms of Lie groups: $2/7/19$	17
7.	Some linear algebra underlying spinors in dimension 4: 2/12/19	20
8.	Twistors and Dirac operators: 2/14/19	23
9.	The Nahm transform for anti-self-dual connections: $2/17/19$	26
10.	The Chern connection: 2/19/19	29
11.	Proof of the Nahm transform, part 1: 2/26/19	31
12.	Proof of the Nahm transform, part 2: 2/28/19	34
13.	Fredholm theory: $3/7/19$	37
14.	Transversality and the obstruction bundle: 3/12/19	41

Lecture 1.

Some useful linear algebra: 1/22/19

"Why did the typing stop?"

Today we'll discuss some basic linear algebra which, in addition to being useful on its own, is helpful for studying the self-duality equations. You should think of this as happening pointwise on the tangent space of a smooth manifold.

Let V be a real n-dimensional vector space. The exterior powers of V define more vector spaces: the scalars \mathbb{R} , V, Λ^2V , and so on, up to $\Lambda^nV = \mathrm{Det}\,V$. We can also apply this to the dual space, defining \mathbb{R} , V^* , Λ^2V^* , etc, up to $\Lambda^nV^* = \mathrm{Det}\,V^*$.

There is a duality pairing

(1.1)
$$\theta \colon \Lambda^k V^* \times \Lambda^k V \longrightarrow \mathbb{R}$$
$$(v^1 \wedge \dots \wedge v^k, v_1 \wedge \dots \wedge v_k) \longmapsto \det(v^i(v_i))_{i,i},$$

where $v^i \in V^*$ and $v_i \in V$.

Now fix a $\mu \in \text{Det } V^* \setminus 0$, which we call a volume form. Then we get another duality pairing

(1.2)
$$\Lambda^k V \times \Lambda^{n-k} V \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto \theta(\mu, x \wedge y).$$

Thus $\Lambda^k V \cong \Lambda^{n-k} V^*$.

Suppose we have additional structure: an inner product and an orientation. Let e_1, \ldots, e_n be an oriented, orthonormal basis of V, and e^1, \ldots, e^n be the dual basis. Now we can choose $\mu = e^1 \wedge \cdots \wedge e^n$.

Definition 1.3. The *Hodge star operator* is the linear operator $\star: \Lambda^k V^* \to \Lambda^{n-k} V^*$ characterized by

(1.4)
$$\alpha \wedge (\star \beta) = \langle \alpha, \beta \rangle_{\Lambda^k V} \cdot \mu.$$

The inner product on $\Lambda^k V^*$ is defined by

$$(1.5) \qquad \langle v^1 \wedge \dots \wedge v^k, w^1 \wedge \dots \wedge w^k \rangle := \det(\langle v^i, w^j \rangle)_{i,j}.$$

The Hodge star was named after W.V.D. Hodge, a British mathematician. Notice how we've used both the metric and the orientation – it's possible to work with unoriented vector spaces (and eventually unoriented Riemannian manifolds), but one must keep track of some additional data.

Example 1.6.

- $\star(e^{i_1} \wedge \cdots \wedge e^{i_k}) = e^{j_1} \wedge \cdots \wedge e^{j_{n-k}}$ if the permutation $1, \ldots, n$ to $i_1, \ldots, i_k, j_1, \ldots, j_{n-k}$ of $[n] := \{1, \ldots, n\}$ is even. Otherwise there's a factor of -1.
- Suppose n=4. Then $\star(e^1 \wedge e^2) = e^3 \wedge e^4$ and $\star(e^1 \wedge e^3) = -e^2 \wedge e^4$, and so on.

Remark 1.7. The Hodge star is natural. First, you can see that we didn't make any choices when defining it, other than an orientation and a volume form, but there's also a functoriality property. Let $T: V \to V$ be an automorphism; this induces $(\Lambda^k T^*)^{-1}: \Lambda^k T^* \to \Lambda^k T^*$, and if T is an orientation-preserving isometry,

(1.8)
$$\star \circ (\Lambda^k T^*)^{-1} = (\Lambda^{n-k} T^*)^{-1} \circ \star.$$

Hence $\star\star$: $\Lambda^kV^* \to \Lambda^kV^*$ is some nonzero scalar multiple of the identity, and we can determine which multiple it is. Certainly we know

(1.9)
$$\star \star (e^1 \wedge \dots \wedge e^k) = \star (e^{k+1} \wedge \dots \wedge e^1) = \lambda e^1 \wedge \dots \wedge e^k,$$

and we just have to compute the parity of these permutations: one uses k transpositions, and the other uses n-k. Therefore we conclude that

$$(1.10) \qquad \star \star = (-1)^{k(n-k)} \colon \Lambda^k V^* \to \Lambda^k V^*.$$

Now suppose n=2m, so we have a middle dimension m, and $\star\star: \Lambda^m \to \Lambda^m$ is $(-1)^m$. This induces additional structure on $\Lambda^m V^*$.

- If m is even (so $n \equiv 0 \mod 4$), the double Hodge star is an endomorphism squaring to 1. This defines a $\mathbb{Z}/2$ -grading on $\Lambda^m V^*$, given by the ± 1 -eigenspaces, which we'll denote $\Lambda^m_{\pm} V^*$. The +1-eigenspace is called self-dual m-forms, and the -1-eigenspace is called the anti-self-dual m-forms.
- If m is odd (so $n \equiv 2 \mod 4$), the double Hodge star squares to -1, so this defines a complex structure on $\Lambda^m V^*$, where i acts by the double Hodge star.

Exercise 1.11. Especially for those interested in physics, work out this linear algebra in indefinite signature (particularly Lorentz). The signs are different, and in Lorentz signature the two bullet points above switch!

Exercise 1.12. Show that if $4 \mid n$, the direct-sum decomposition $\Lambda^m V^* = \Lambda^m_+ V^* \oplus \Lambda^m_- V^*$ is orthogonal. See if you can find the one-line proof that self-dual and anti-self-dual forms are orthogonal.

Next we introduce conformal structures. This allows the sort of geometry which knows angles, but not lengths.

Definition 1.13. A conformal structure on a real vector space V is a set C of inner products on V such that any $g_1, g_2 \in C$ are related by $g_1 = \lambda g_2$ for a $\lambda \in \mathbb{R}_+$.

In this setting, one can obtain g_2 from g_1 by pulling back g_1 along the dilation $T_{\lambda}: v \mapsto \lambda v$. This induces an action of $(T_{\lambda}^*)^{-1}$ on $\Lambda^k V^*$, which is multiplication by λ^{-k} : if μ_i is the volume form induced from g_i , so that

$$(1.14) \alpha \wedge \star \beta = g_1(\alpha, \beta)\mu_1,$$

then

(1.15)
$$\lambda^{-2k}\alpha \wedge \star \beta = g_2(\alpha, \beta)\lambda^{-n}\mu_2.$$

Thus pulling back by dilation carries the Hodge star to $\lambda^{n-2k}\star$. Importantly, if n=2m, then $\star: \Lambda^m V^* \to \Lambda^m V^*$ is preserved by this dilation, so it only depends on the orientation and the conformal structure.

Remark 1.16. A conformal structure is independent from an orientation. For example, on a one-dimensional vector space, a conformal structure is no information at all (all inner products are multiples of each other), but an orientation is a choice.

Example 1.17. Suppose n=2 and choose an orientation and a conformal structure on V. As we just saw, this is enough to define the Hodge star \star : $V^* \to V^*$, which defines a complex structure on V. Pick a square root i of -1 and let \star act by it (there are two choices, acted on by a Galois group).

We get more structure by complexifying: $V^* \otimes \mathbb{C}$ splits as a the $\pm i$ -eigenspaces of the Hodge star; we denote the i-eigenspace by $V^{(1,0)}$ (the (1,0)-forms) and the -i-eigenspace by $V^{(0,1)}$ (the (0,1)-forms).

Now let's globalize this: everything has been completely natural, so given an oriented, conformal 2-manifold X, it picks up a complex structure, hence is a Riemann surface, and the Hodge star is a map $\star \colon \Omega^1_X \to \Omega^1_X$. Moreover, we can do this on the complex differential forms, which split into (1,0)-forms and (0,1)-forms.

How do 1-forms most naturally appear? They're differentials of functions, so given an $f: X \to \mathbb{C}$, we can ask what it means for $df \in \Omega_X^{1,0}$. This is the equation

$$\star \, \mathrm{d}f = i \, \mathrm{d}f.$$

This is precisely the Cauchy-Riemann equation; its solutions are precisely the holomorphic functions on X.

Remark 1.19. More generally, one can ask about functions to \mathbb{C}^n or even sections of complex vector bundles; the analogue gives you notions of holomorphic sections. In this case, the equations have the notation

$$\overline{\partial}f = \left(\frac{1+i\star}{2}\right)\mathrm{d}f.$$

We'll spend some time in this class understanding a four-dimensional analogue of all of this structure.

Symmetry groups. Symmetry is a powerful perspective on geometry. If we think about V together with some structure (orientation, metric, conformal structure, some combination,...), we can ask about the symmetries of V preserving this structure. Of course, to know this, we must know V, but we can instead look at a model space \mathbb{R}^n to define a *symmetry type*, and ask about its symmetry group G: then an isomorphism $\mathbb{R}^n \to V$ preserving all of the data we're interested in defines an isomorphism from G to the symmetry group of V.

Example 1.21. When dim V = 2, the most general symmetry group is $GL_2(\mathbb{R})$, the invertible matrices acting on \mathbb{R}^2 . Adding more structure we get more options.

- If we restrict to orientation-preserving symmetries, we get $GL_2^+(\mathbb{R})$.
- If we restrict to symmetries preserving a conformal structure, the group is called $CO_2 = O_2 \times \mathbb{R}^{>0}$.
- If we ask to preserve an orientation and a complex structure, we get $CO_2^+ = SO_2 \times \mathbb{R}^{>0}$. This is isomorphic to $\mathbb{C}^{\times} = GL_1(\mathbb{C})$: an element of $SO_2 \times \mathbb{R}^{>0}$ is rotation through some angle θ and a positive number r; this is sent to $re^{i\theta} \in \mathbb{C}^{\times}$.

This provides another perspective on why an orientation and a conformal structure give us a complex structure. \blacktriangleleft

Example 1.22. Now suppose n=4, and choose a conformal structure C and an orientation on V. Then orthogonal makes sense, though orthonormal doesn't, and the Hodge star induces a $\mathbb{Z}/2$ -grading on $\Lambda^2V^*=\Lambda^2_+V^*\oplus\Lambda^2_-V^*$, the self-dual and anti-self-dual 2-forms. The total space Λ^2V^* is six-dimensional, and these two subspaces are each three-dimensional.

Suppose e^1, e^2, e^3, e^4 is an orthonormal basis for some inner product in C. We can use these to define bases of $\Lambda^2_+V^*$, given by

(1.23)
$$\alpha_1^{\pm} \coloneqq e^1 \wedge e^2 \pm e^3 \wedge e^4$$

$$\alpha_2^{\pm} \coloneqq e^1 \wedge e^3 \mp e^2 \wedge e^4$$

$$\alpha_3^{\pm} \coloneqq e^1 \wedge e^4 \pm e^2 \wedge e^3.$$

Now, what symmetry groups do we have? Inside $GL_4(\mathbb{R})$, preserving an orientation lands in the subgroup $GL_4^+(\mathbb{R})$; preserving a conformal structure lands in $O_4 \times \mathbb{R}^{>0}$; and preserving both lands in $SO_4 \times \mathbb{R}^{>0}$. The

first three of these act irreducibly on $\Lambda^2(\mathbb{R}^4)^*$, but the action of $SO_4 \times \mathbb{R}^{>0}$ has two irreducible summands, $\Lambda^2_+(\mathbb{R}^4)^+$.

To understand this better, we should learn a little more about SO_4 . Recall that Sp_1 is the Lie group of unit quaternions. This is isomorphic to SU_2 , the group of determinant-1 unitary transformations of \mathbb{C}^2 . This group has an irreducible 3-dimensional representation ρ in which Sp_1 acts by conjugation on the imaginary quaternions (since $\mathbb{R} \subset \mathbb{H}$ is preserved by this action).

Remark 1.24. Another way of describing ρ is: let ρ' denote the action of SU₂ on \mathbb{C}^2 by matrix multiplication. Then $\rho \cong \operatorname{Sym}^2 \rho'$.

Proposition 1.25. There is a double cover $\operatorname{Sp}_1 \times \operatorname{Sp}_1 \to \operatorname{SO}_4$. Under this cover, the SO_4 -representation $\Lambda_{\pm}^4(\mathbb{R}^4)^*$ pulls back to a real three-dimensional representation in which one copy of Sp_1 acts by ρ and the other acts trivially.

Proof. Let W' and W'' be two-dimensional Hermitian vector spaces with compatible quaternionic structures J', resp. J''. Then, $V := W' \otimes_{\mathbb{C}} W''$ has a real structure $J' \otimes J''$: two minuses make a plus, and compatibility of J' and J'' means the real points of V have an inner product. (These kinds of linear-algebraic spaces are things you should prove once in your life.)

By tensoring symmetries we obtain a homomorphism $\operatorname{Sp}(W') \times \operatorname{Sp}(W'') \to \operatorname{O}(V)$. This factors through $\operatorname{SO}(V) \hookrightarrow \operatorname{O}(V)$, which you can see for two reasons:

- $\operatorname{Sp}(W')$ and $\operatorname{Sp}(W'')$ are connected, so this homomorphism must factor through the identity component of $\operatorname{O}(V)$, which is $\operatorname{SO}(V)$; or
- a complex vector space has a canonical orientation, and using this we know these symmetries are orientation-preserving.

Now we want to claim this map is two-to-one. One can quickly check that (-1, -1) is in the kernel; the rest is an exercise.

Since Spin_n is the double cover of SO_n , this is telling us $\operatorname{Spin}_4 = \operatorname{Sp}_1 \times \operatorname{Sp}_1$. This splitting is the genesis of a lot of what we'll do in the next several lectures.

Consider the 16-dimensional space

$$(1.26) V^* \otimes V^* = (W')^* \otimes (W')^* \otimes (W'')^* \otimes (W'')^*.$$

Because the map

(1.27)
$$\omega' \colon W' \times W' \longrightarrow \mathbb{C} \\ \xi', \eta' \longmapsto h'(J'\xi', \eta')$$

is skew-symmetric, it lives in $\Lambda^2(W')^* \subset (W')^* \otimes (W')^*$. In particular, the embedding

$$(1.28) \operatorname{Sym}^{2}(W')^{*} \oplus \operatorname{Sym}^{2}(W'')^{*} \hookrightarrow (W')^{*} \otimes (W')^{*} \otimes (W'')^{*} \otimes (W'')^{*}$$

is the map sending

$$(1.29) \alpha, \beta \longmapsto \alpha \otimes w'' + \omega' \otimes \beta.$$

Remark 1.30. This story can be interpreted in terms of representations of $\operatorname{Sp}(W') \times \operatorname{Sp}(W'')$. Let 1 denote the trivial representation of Sp_1 and 3 be the three-dimensional irreducible representation we discussed above. Then (1.26) enhances to

$$(1.31) V^* \otimes V^* = \mathbf{1}_{\mathrm{Sp}(W')} \otimes \mathbf{3}_{\mathrm{Sp}(W')} \otimes \mathbf{1}_{\mathrm{Sp}(W'')} \otimes \mathbf{3}_{\mathrm{Sp}(W'')}.$$

The skew-symmetric part is $\mathbf{3}_{\mathrm{Sp}(W')} \otimes \mathbf{1}_{\mathrm{Sp}(W'')} \oplus \mathbf{1}_{\mathrm{Sp}(W')} \otimes \mathbf{3}_{\mathrm{Sp}(W'')}$, and the "rest" (complement) is symmetric.

The group $\operatorname{Sp}_1 \times \operatorname{Sp}_1 = \operatorname{Spin}_4$ has complex (quaternionic) two-dimensional representations S^{\pm} , the *spin representations*, and $\Lambda_+^2 V \cong \operatorname{Sym}^2 S^{\pm}$.

So two-forms have self-dual and anti-self-dual parts, and curvature is a natural source of 2-forms!

$$h(J'\xi, \overline{J'\eta}) = \overline{h(\xi, \eta)}$$
 and $h(J\xi, \eta) = -h(J\eta, \xi)$.

¹That is, J' is an antilinear endomorphism of W' squaring to -1, and similarly for J''. Compatible means with the Hermitian metric: h is a map $\overline{W} \times W \to \mathbb{C}$ and J is a map $W \to \overline{W}$, and if $\xi, \eta \in W'$, we want

Lecture 2.

Fantastic 2-forms and where to find them: 1/24/19

"I've taught this before, so I know it's true."

Last time, we discussed some linear algebra which is a local model for phenomena we will study in differential geometry. For example, we saw that on an oriented even-dimensional vector space with an inner product, the Hodge star defines a self-map of the middle-dimensional part of the exterior algebra, which induces extra structure, such a splitting into self-dual and anti-self-dual pieces in dimensions divisible by 4. This therefore generalizes to a 4k-dimensional manifold with a metric and an orientation: the space of 2k-forms splits as an orthogonal direct sum of self-dual and anti-self-dual forms. (We also discussed other examples, such as how 1-forms on an oriented 2-manifold split into holomorphic and anti-holomorphic pieces.)

We're particularly interested in the case k = 1, where this splitting depends only on a conformal structure, and applies to 2-forms. To study its consequences we'll discuss where one can find 2-forms in differential geometry.

Definition 2.1. A fiber bundle is the data of a smooth map $\pi: E \to X$ of smooth manifolds if for all $x \in X$ there's an open neighborhood U of x and a diffeomorphism $\varphi: U \times \pi^{-1}(x) \to \pi^{-1}(U)$ such that the diagram

(2.2)
$$U \times \pi^{-1}(x) \xrightarrow{\varphi} \pi^{-1}(U)$$

commutes. In this case we call X the base space and E the total space. If there is a manifold F such that in the above definition we can replace $\pi^{-1}(x)$ with F, we call π a fiber bundle with fiber F.² The map φ is called the local trivialization.

Example 2.3. The *trivial bundle* with fiber F is the projection map
$$X \times F \to X$$
.

Remark 2.4. Fiber bundles were first defined by Steenrod [Ste51] in the 1940s, albeit in a different-looking way. His key insight was local triviality. There are variants depending on what kind of space you care about: for example, you can replace manifolds with spaces and smooth maps with continuous maps.

Keep in mind that a fiber bundle is data (π) and a condition. Often people say "E is a fiber bundle" when they really mean " π is a fiber bundle"; specifying E doesn't uniquely specify π .

If F has more structure, such as a Lie group, torsor, vector space, algebra, Lie algebra, etc., we ask that $\varphi|_{\pi^{-1}(x)} \colon F \to \pi^{-1}(x)$ preserve this structure. For example, in a fiber bundle whose fibers are vector spaces, we want φ to be linear; in this case we call it a *vector bundle*.

Definition 2.5. If $\pi: E \to X$ is a vector bundle, the space of k-forms valued in E, denoted $\Omega_X^k(E)$, is the space of C^{∞} sections of $\Lambda^k T^* X \otimes E \to X$.

For ordinary differential forms (so when E is a trivial bundle), we have the de Rham differential d: $\Omega_X^k \to \Omega_X^{k+1}$, but we do not have this in general.

Definition 2.6. Let X be a smooth manifold.

- (1) A distribution on X is the subbundle $E \subset TX$.
- (2) A vector field ξ on X belongs to E if $\xi_x \in E_x \subset T_x X$ for all X.
- (3) A submanifold $Y \subset X$ is an integral submanifold for E if for all $y \in Y$, $T_yY = E_y$ inside T_yX .

Do integral submanifolds exist? This is a local question and a global question (the latter about maximal integral submanifolds). In general, the answer is "no," as in the next example.

Example 2.7. Consider a distribution on \mathbb{A}^3 with coordinates (x, y, z) given by

(2.8)
$$E_{(x,y,z)} = \operatorname{span}\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y} + x\frac{\partial}{\partial z}\right\}.$$

There is no integral surface for this distribution. TODO: I missed the argument, sorry.

²Not all fiber bundles have a fiber in this sense, e.g. a fiber bundle with different fibers over different connected components.

 \boxtimes

This is the basic example that illustrates curvature. It turns out that the existence of an integral submanifold is determined completely by the (non)vanishing of a tensor.

Definition 2.9. Let $E \subset TX$ be a distribution. The Frobenius tensor $\phi_E \colon E \times E \to TX/E$ given by

$$\xi_1, \xi_2 \longmapsto [\xi_1, \xi_2] \mod E$$
.

Let's think about this: the Lie bracket is defined for vector fields, not vectors. So we have to extend ξ_1 and ξ_2 to vector fields (well, sections of E, since they're in E), which is a choice, and then check that what we obtain is independent of this choice. It suffices to know that this is linear over functions: that

$$[f_1\xi_1, f_2\xi_2] \stackrel{?}{=} f_1f_2[\xi_1, \xi_2].$$

Of course, this is not what the Lie bracket does: it differentiates in both variables, so we have the extra terms $f_1(\xi \cdot f_2)\xi_2$ and $f_2(\xi \cdot f_1)\xi_1$. But both of these are sections of E, so vanish mod E, and therefore we do get a well-defined, skew-symmetric form, a section of $\Lambda^2 E^* \otimes TX/E$ – not quite a differential form.

Frobenius did many important things in mathematics, across group theory and representation theory and this theorem, which is about differential equations!

Theorem 2.11 (Frobenius theorem). An integral submanifold of E exists locally iff $\phi_E = 0$.

This is a nonlinear ODE. As such, our proof will rely on some facts from a course on ODEs.

Lemma 2.12. Let X be a smooth manifold, ξ be a vector field on X, and $x \in X$ be a point where ξ doesn't vanish. Then there are local coordinates x^1, \ldots, x^n around x such that $\xi = \partial x^1$ in this neighborhood.

Proof. Let φ_t be the local flow generated by ξ , and choose coordinates y^1, \ldots, y^n near x such that $\xi_x = \frac{\partial}{\partial y^1}\Big|_x$. Define a map $U: \mathbb{R}^n \to X$ by

$$(2.13) x^1, \dots, x^n \longmapsto \varphi_{x^1}(0, x^2, \dots, x^n).$$

The right-hand side is expressed in y-coordinates. Now we need to check this is a coordinate chart, which follows from the inverse function theorem, because the differential of φ is invertible at 0 (in fact, it's the identity). The theorem then follows because x^1 is the time direction for flow along ξ in this coordinate system.

Lemma 2.14. With notation as above, let ξ_1, \ldots, ξ_k be vector fields which are linearly independent at x and suc that $[\xi_i, \xi_j] = 0$ for all $1 \le i, j \le k$. Then there exist local coordinates x^1, \ldots, x^n such that for $1 \le i \le k$, $\xi_i = \frac{\partial}{\partial x^i}$.

In fact, the converse is also true, but trivially so: it's the theorem in multivariable calculus that mixed partials commute.

Proof. Let $\varphi_1, \ldots, \varphi_k$ be the local flows for ξ_1, \ldots, ξ_k . Because the pairwise Lie brackets commute, $\varphi_i \varphi_j = \varphi_j \varphi_i$. Since these vector fields are linearly independent at x, we can choose local coordinates y^1, \ldots, y^n around x such that $\xi_i|_x = \frac{\partial}{\partial y^i}|_x$. Then, as above, define

(2.15)
$$x^1, \dots, x^n \longmapsto (\varphi_1)_{x_1} (\varphi_2)_{x_2} \cdots (\varphi_k)_{x_k} (0, \dots, 0, x^{k+1}, \dots, x^n).$$

You can check that $d\varphi$ is invertible, so this is a change of coordinates, and then, using the fact that the flows commute, you can see that the lemma follows.

These lemmas are important theorems in their own right.

Proof of Theorem 2.11. Since the theorem statement is local, we can work in affine space \mathbb{A}^n . Let $\pi \colon \mathbb{A}^n \to \mathbb{A}^k$ be an affine surjection such that $d\pi_0$ restricts to an isomorphism $E_0 \to \mathbb{R}^k$. Restrict to a neighborhood U of 0 in \mathbb{A}^n such that $d\pi_p|_{E_p} \colon E_p \to \mathbb{R}^n$ is an isomorphism for all $p \in U$, and choose $\xi_i|_p \in E_p$ such that $d\pi_p(\xi_p) = \frac{\partial}{\partial y^i}$. Then, $[\xi_i, \xi_j] = 0$: we know it's in E, and

(2.16)
$$d\pi[\xi_i, \xi_j] = [d\pi(\xi_i), d\pi(\xi_j)] = \left[\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right] = 0.$$

Now apply Lemma 2.14; then $\{y^{k+1} = \cdots = y^n = 0\}$ gives the desired integral submanifold.

The idea of the theorem is that it's a local normal form for an involutive distribution (one whose Frobenius tensor vanishes): locally it looks like the splitting of \mathbb{R}^n into the first k coordinates and the last (n-k) coordinates. And in that local model, we know what the integral manifolds are.

Consider a fiber bundle with a discrete fiber (i.e. the inverse image of every point has the discrete topology). This is also known as a covering space. On a "nearby fiber," whatever that means (without more data, we don't have a metric on the base space), we have some sort of parallel transport. The precise statement is that there's a neighborhood of any x on the base space such that any path in that neighborhood lifts to a path on the total space, unique if you specify a point in the fiber. More generally, you can lift families of paths, which illustrates a homotopy-theoretic generalization of a fiber bundle called a fibration. But globally, given an element of $\pi_1(X)$, it might lift to a nontrivial automorphism of the fiber.

We'd like to do this for more general fiber bundles $\pi \colon E \to X$, in which case we'll need more data. The kernel of $d\pi$ is a distribution, and consists of the "vertical" vectors (projection down to X kills them). A complement is "horizontal".

Without any choice, we get a short exact sequence at every $e \in E$:

$$(2.17) 0 \longrightarrow \ker(\mathrm{d}\pi_e) \longrightarrow T_e E \xrightarrow{\mathrm{d}\pi_e} T_x X \longrightarrow 0,$$

and a splitting is exactly the choice of a complement $H_e: T_xX \to T_eE$. We would like to do this over the whole base, which motivates the next definition.

Definition 2.18. Let $\pi: E \to X$ be a fiber bundle. A horizontal distribution is a subbundle $H \subset TE$ transverse to $\ker(d\pi)$, or equivalently a section of the (surjective) map $TE \to \pi^*TX$ of vector bundles on E.

We must address existence and uniqueness. At e the space of splittings is an affine space modeled on $\text{Hom}(T_xX, \text{ker}(d\pi_e))$, because TODOsomething with a short exact sequence.

Therefore existence and uniqueness of a horizontal distribution is a question about existence and uniqueness of a section of an affine bundle over X. Using partitions of unity, we can construct many of these: existence is good, but uniqueness fails.

What about path lifting? Suppose $\gamma: [0,1] \to X$ is a path in X beginning at x_0 and terminating at x_1 . We can pull back both E and H by γ , to obtain a rank-1 distribution γ^*H in γ^*TE , and the projection map to T[0,1] is a fiberwise isomorphism. Therefore given a vector at $x_0 = \gamma(0)$ we get a unique horizontal lift along [0,1] to a vector field, and therefore get a unique integral curve above γ .

Note that you cannot always lift higher-dimensional submanifolds, and again the obstruction is the Frobenius tensor, because that's the obstruction to the existence of an integral submanifold. In this context the Frobenius tensor is called *curvature* – right now it's on the total space, but in some settings we can descend it to the base.

Lecture 3.

Principal bundles, associated bundles, and the curvature 2-form: 1/29/19

"For whatever reason I'm being a little impressionistic..."

Last time, we discussed a way in which 2-forms appear in geometry: as the obstruction to integrability of a distribution $E \subset TX$. That is, a distribution contains vectors, and we can ask whether integral curves of those vectors have tangent vectors contained within E. Associated to E we defined a Frobenius tensor $\phi_E \colon \Lambda^2 E \to TX/E$ sending

(3.1)
$$\xi_1, \xi_2 \longmapsto [\widetilde{\xi}_1, \widetilde{\xi}_2] \bmod E,$$

where $\tilde{\xi}_i$ is a vector field extending ξ (and we showed this doesn't depend on the choice of extension). In Theorem 2.11, we saw that ϕ_E is exactly the local obstruction to integrability; we can then move to global questions.

More generally, suppose that $\pi \colon E \to X$ is a fiber bundle. Then TE fits into a short exact sequence (2.17), and we can ask for a horizontal lift from TX to TE, which is a section H of (2.17). Then, given a vector $e \in T_x X$ and a path $\gamma \colon [0,1] \to X$ with $\gamma(0) = x$, we can pull back³ π and H to obtain a distribution in $\gamma^* E$.

³In general, we can form the pullback of $[0,1] \to X \leftarrow E$ in the category of sets or spaces, but we want to put a smooth manifold structure on it. We can do it when these two maps are transverse – and since $\pi \colon E \to X$ is a submersion, this is always satisfied.

The Frobenius tensor vanishes, because [0,1] is one-dimensional, so we can extend to an integral curve and therefore parallel-transport along γ . However, if we choose different paths in a ball, there's no guarantee that parallel transport along nearby paths agree at all; the Frobenius tensor may still be nonzero on X.

Steenrod's elegant perspective on fiber bundles (see his book [Ste51]) considered in the spirit of Felix Klein symmetry groups associated to fiber bundles. This leads to the definition of a *principal G-bundle* as a fiber bundle of right *G*-torsors.

Definition 3.2. Let G be a Lie group and recall that a *right G-torsor* is a smooth manifold T and a smooth right G-action on T such that the action map $T \times G \to T \times T$ sending $(t, g) \mapsto (t, t \cdot g)$ is an isomorphism.

Example 3.3. The prime example of a torsor is to let V be a real vector space; then, the manifold $\mathcal{B}(V)$ of bases of V is a $GL_n(\mathbb{R})$ -torsor: $GL_n(\mathbb{R})$ acts by precomposition. This also works over \mathbb{C} and \mathbb{H} .

Example 3.4. Now let X be a smooth manifold. Our first example of a principal bundle spreads Example 3.3 over X: let $\mathcal{B}(X)$ be the smooth manifold⁴ of pairs (x,b) where $x \in X$ and b is a basis of T_xX , i.e. an isomorphism $b \colon \mathbb{R}^n \xrightarrow{\cong} T_xX$. There's a natural forgetful map $\pi \colon \mathcal{B}(X) \to X$ sending $(x,b) \mapsto x$.

This fiber bundle is a principal $GL_n(\mathbb{R})$ -bundle: given $g \in GL_n(\mathbb{R})$ and a basis $b \colon \mathbb{R}^n \to T_x X$, we let $b \cdot g \coloneqq b \circ g \colon \mathbb{R}^n \to T_x X$, using the standard action of $GL_n(\mathbb{R})$ on \mathbb{R}^n . This is called the *frame bundle* of X.

This principal bundle controls a lot of the geometry of X, via its associated fiber bundles.

Definition 3.5. Let $\pi: P \to X$ be a principal G-bundle and F be a smooth (left) G-manifold. The associated fiber bundle with fiber F is the quotient $P \times_G F := (P \times F)/G$, which is a fiber bundle over X with fiber F. Here, G acts on $P \times F$ on the right by $(p, f) \cdot g = (p \cdot g, g^{-1} \cdot f)$.

One has to check this is a fiber bundle, and in particular that the total space is a smooth manifold. Since G acts freely on P, it acts freely on $P \times F$, but for G noncompact there's more to say.

Example 3.6. $\mathrm{GL}_n(\mathbb{R})$ acts linearly on \mathbb{R}^n . Because \mathbb{R}^n carries the additional structure of a vector space, the associated bundle $\mathcal{B}(X) \times_{\mathrm{GL}_n(\mathbb{R})} \mathbb{R}^n$ has additional structure: it's a vector bundle. In general, additional structure on F manifests in additional structure on $P \times_G F$.

Anyways, what vector bundle do we get? (Can you guess?) An element of the fiber of $\mathcal{B}(X) \times_{\mathrm{GL}_n(\mathbb{R})} \mathbb{R}^n$ is an equivalence class of an element $v \in \mathbb{R}^n$ and a basis $p \colon \mathbb{R}^n \to T_x X$; let $\xi := p(v) \in T_x X$. Another representative of this equivalence class are represented by $g^{-1}v$ and $p \circ g$ for some $g \in \mathrm{GL}_n(\mathbb{R})$, so this pair defines the same tangent vector ξ . Therefore we recover the tangent bundle.

In general, a principal bundle is telling you some internal coordinates. You know these coordinates up to some symmetry G, and the principal bundle tracks that: you have to make a choice to get coordinates, and it tells you how different choices are related.

We want to show local triviality of a principal G-bundle $\pi\colon P\to X$, which will follow from local triviality as a fiber bundle. Consider a local section $s\colon U\to \pi^{-1}(U)$, where $U\subset X$; we would like to exhibit an isomorphism of fiber bundles $U\times G\to \pi^{-1}(U)$ over U. The map is exactly

$$(3.7) x, q \longmapsto s(x) \cdot q.$$

This exhibits $U \times G \cong \pi^{-1}(U)$ as principal G-bundles, so we have local trivialization. Then in every associated bundle to P, we also obtain local triviality, hence local coordinates. For example, if the bundle of frames is trivialized over U, we get local coordinates (i.e. a local trivialization of TU).

Definition 3.8. A connection on a principal G-bundle $\pi: P \to X$ is a G-invariant horizontal distribution.

Specifically, given $g \in G$, we have the right action map $R_g : P \to P$, and can therefore define $H_{p \cdot g} := (R_g)_*(H_p)$ for a distribution H.

In this setting, the Frobenius tensor is going to do something nice: it's a map

(3.9)
$$\phi_H \colon H \wedge H \to TP/H \cong \ker(\pi_*),$$

⁴You have to put a smooth manifold structure on this set! The way to do this is the only tool we have right now: work in an atlas $\mathfrak U$ of X which trivializes TX, do this locally, and check that the transition maps are smooth. This will also show that the map $\pi \colon \mathcal B(X) \to X$ is a fiber bundle.

so given two horizontal vectors, we get a vertical vector. Since H is G-invariant, the Frobenius tensor is also G-invariant, so we ought to be able to descend it to the base: there's only one piece of information on each fiber. That is, given vectors ξ_1, ξ_2 on X, we can lift them to P and compute the Frobenius tensor there, and G-invariance means it doesn't matter how we lift.

If \mathfrak{g} is the Lie algebra of the Lie group G, we have an isomorphism $\mathfrak{g} \xrightarrow{\cong} \ker(\pi_*)$ as vector bundles on P. Specifically, let $\xi \in \mathfrak{g}$, and consider the exponential map $\exp \colon \mathfrak{g} \to G$. Given $p \in P$ with $\pi(p) = x$, we get a curve in P given by $t \mapsto p \cdot \exp(t\xi)$ sending $0 \mapsto p$, and this curve is contained entirely within P_x . Therefore its tangent vector at p is in $\ker(\pi_*)$.

So the Frobenius tensor is a map $\phi_H \colon H \wedge H \to \underline{\mathfrak{g}}$. Now let's descend to the base. We'd like to claim that what we get in \mathfrak{g} is invariant, but that's just not true: if $g \in G$, the action of g on $p \cdot \exp(t\xi)$ is not the same as $p \cdot g \cdot \exp(t\xi)$: the issue is that $g \exp(t\xi)$ and $\exp(t\xi)g$ may not agree. This will make it slightly more interesting to descend to the base.

First, extend ϕ_H to a map

$$\widetilde{\phi}_H \colon TP \wedge TP \longrightarrow \mathfrak{g}$$

by projecting $p_H: TP \to H$, which has kernel $\ker(\pi_*)$. That is, $\widetilde{\phi}_H(\eta_1 \wedge \eta_2) := p_H \eta_1 \wedge p_H \eta_2$. Thus $\widetilde{\phi}_H \in \Omega^2_P(\mathfrak{g})$.

Lemma 3.11. Let
$$g \in G$$
. Then in $\Omega_P^2(\mathfrak{g})$, $R_g^* \widetilde{\phi}_H = \operatorname{Ad}_{g^{-1}} \widetilde{\phi}_H$.

So once we choose a basis for \mathfrak{g} , we can think of elements of $\Omega_P^2(\mathfrak{g})$ as matrix-valued differential forms.⁵ The proof of Lemma 3.11 comes from the observation above that to get from $p \cdot g \cdot \exp(t\xi)$ to

$$(3.12) p \cdot \exp(t\xi)g = p \cdot g \cdot (g^{-1}\exp(t\xi)g) = p \cdot g \cdot \operatorname{Ad}_{g^{-1}}(\xi).$$

So this is exactly an example of an associated bundle to P, where the G-manifold F is \mathfrak{g} with the adjoint G-bundle. So associated to P is the adjoint bundle $\mathfrak{g}_P \to X$ defined as $P \times_G \mathfrak{g}$. This is a vector bundle, in fact a bundle of Lie algebras because the adjoint action preserves the Lie bracket.

A section of \mathfrak{g}_P is a function upstairs valued in \mathfrak{g} , which is exactly what $\widetilde{\phi}_H$ is.

Corollary 3.13.
$$\widetilde{\phi}_H$$
 descends to a 2-form $-\Omega_H \in \Omega^2_X(\mathfrak{g}_P)$.

In this case Ω_H is called the *curvature* of H. In particular, if X is a 4-manifold with a conformal structure, we can ask for this to be self-dual or anti-self-dual.

In the short exact sequence

$$0 \longrightarrow \mathfrak{g} \longrightarrow TP \xrightarrow{\pi_*} \pi^* TX \longrightarrow 0,$$

a section $H: \pi^*TX \to TP$ is equivalent to a section $\Theta: TP \to \underline{\mathfrak{g}}$, i.e. a form $\Theta \in \Omega^1_P(\mathfrak{g})$. This is called the *connection form*, and $H = \ker(\Theta)$. It has to satisfy some properties.

- Θ must be G-invariant: $R_g^*\Theta = \operatorname{Ad}_{g^{-1}}\Theta$. This is a linear equation inside the infinite-dimensional vector space $\Omega_P^1(\mathfrak{g})$.
- The other constraint is affine: $\Theta|_{\text{vertical}} = \text{id}$.

So the space A_P of one-forms Θ satisfying these conditions is affine. This is the space of connections, and in particular tells us that there are lots of connections.

We can also interpret the Frobenius tensor in terms of Θ . Let ζ_1 and ζ_2 be horizontal vectors, and extend them to vector fields $\widetilde{\zeta}_1$ and $\widetilde{\zeta}$. Then $\zeta \cdot \Theta(\widetilde{\zeta}_{1-i}) = 0$, so

(3.15)
$$d\Theta(\zeta_1, \zeta_2) = \zeta_1 \Theta(\widetilde{\zeta}_2) - \zeta_2 \Theta(\widetilde{\zeta}_1) - \Theta([\widetilde{\zeta}_1, \widetilde{\zeta}_2]) \\ = -\Theta([\widetilde{\zeta}_1, \widetilde{\zeta}_2]) = -\phi_H(\zeta_1, \zeta_2).$$

Thus we have proved

Proposition 3.16.
$$\pi^*\Omega_H = -\widetilde{\phi}_H = d\Theta + (1/2)[\Theta \wedge \Theta].$$

The notation $[\Theta \wedge \Theta]$ means: $\Theta \wedge \Theta \in \Omega^2_P(\mathfrak{g} \otimes \mathfrak{g})$, and this has a Lie bracket map $[\cdot]: \Omega^2_P(\mathfrak{g} \otimes \mathfrak{g}) \to \Omega^2_P(\mathfrak{g})$.

Corollary 3.17 (Bianchi identity).
$$d\Omega + [\Theta \wedge \Omega] = 0$$
.

 $^{^{5}}$ Here I suppose we need to use a Lie group G that admits a faithful finite-dimensional representation, but all compact Lie groups, and most noncompact Lie groups that you'll encounter, have this property.

 \boxtimes

Proof.

(3.18)
$$d\Omega_{H} = [d\Theta \wedge \Theta]$$

$$= \left[\Omega - \frac{1}{2}[\Theta \wedge \Theta] \wedge \Theta\right]$$

$$= [\Omega \wedge \Theta]$$

by the Jacobi identity.

This has been more theory then examples of principal hundles but we will see planty of examples when

This has been more theory than examples of principal bundles, but we will see plenty of examples when we delve into gauge theory.

Now given a principal G-bundle $\pi: P \to X$ with a connection, and any associated bundle F_P with fiber F, we get a horizontal distribution. There's a hands-on way to construct this, or you could think of it in terms of path lifting: given an $x \in X$ and a lift $p \in P$, the connection lifts a path $\gamma: [0,1] \to X$ based at x to a path $\gamma: [0,1] \to P$ based at p, so given an p and p are connection lifts a path p based at p and p based at p are connection lifts a path p based at p based

Suppose V is a G-representation, so its associated vector bundle $V_P \to X$ is a vector bundle. Then the horizontal distribution we obtain on V_P is tangent to the zero section of V_P . Let $\psi \colon X \to V_P$ be a section and $\xi \in T_x X$; we would like to differentiate ψ in the direction ξ . If ψ were valued in a fixed vector space, we could do this as usual: extend ξ to a curve $\gamma \colon (-\varepsilon, \varepsilon) \to M$, and then define

(3.19)
$$\nabla_{\xi} \psi \coloneqq \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \psi(\gamma(t)).$$

This is precisely the directional derivative. In V_P , the fibers are different vector spaces, which seems like a problem except that the connection on P defines parallel transport τ_t along γ for the fibers of V_P , and therefore we can define the directional derivative of ψ as

(3.20)
$$\nabla_{\xi} \psi \coloneqq \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \tau_{-t} \psi(\gamma(t)).$$

This is called the *covariant derivative*.

Exercise 3.21. Show that this satisfies the Leibniz rule: if f is a function on X, then

(3.22)
$$\nabla_{\xi}(f \cdot \psi) = (\xi \cdot f)\psi + f(x)\nabla_{\xi}\psi.$$

In other words, the existence of the horizontal distribution is somehow telling us about the Leibniz rule, though this is a somewhat mysterious fact.

Lecture 4.

Harmonic forms and (anti)-self-dual connections: 1/31/19

"The key to humor is..... timing!"

Last time, we discussed connections on principal bundles, and what they induce on associated vector bundles. We also briefly saw the covariant derivative associated to a connection. We begin with more on covariant derivatives.

Definition 4.1. Let $E \to X$ be a vector bundle. A covariant derivative is a linear map $\nabla \colon \Omega^0_X(E) \to \Omega^1_X(E)$ satisfying the Leibniz rule

(4.2)
$$\nabla(fs) = \mathrm{d}f \cdot s + f\nabla s,$$

where f is a smooth function on X and s is a smooth section of E.

If E is a trivial bundle with constant fiber V, the usual directional derivative is a covariant derivative, but there can be others.

We can extend ∇ to a sequence of first-order differential operators

$$(4.3) 0 \longrightarrow \Omega_X^0(E) \xrightarrow{\mathrm{d}_{\nabla}} \Omega_X^1(E) \xrightarrow{\mathrm{d}_{\nabla}} \Omega_X^2(E) \xrightarrow{\mathrm{d}_{\nabla}} \cdots$$

defined by

(4.4)
$$d_{\nabla}(\omega \cdot s) := d\omega \cdot s + (-1)^k \omega \wedge \nabla s,$$

4

where $\omega \in \Omega_X^k$ and $s \in \Omega_X^0(E)$. Thus the first map $d_{\nabla} : \Omega_X^0(E) \to \Omega_X^1(E)$ is just ∇ .

Exercise 4.5. Show that $d^2_{\nabla}(fs) = f d^2_{\nabla}(s)$.

In other words, this says the symbol of d^2_{∇} vanishes; this second-order operator is really a first-order operator. Therefore there exists an $F_{\nabla} \in \Omega^2_X(\text{End } E)$, called the curvature, such that $d^2_{\nabla}(s) = F_{\nabla} \cdot s$.

Digression 4.6. We recall what the symbol of an operator is. Let $E, F \to X$ be vector bundles and $D: \Omega_X^0(E) \to \Omega_X^0(F)$ be a differential operator. By definition, D is first-order if for every function f and section s,

$$(4.7) D(fs) = \sigma(df)s + fDs$$

for some $\sigma: T^*X \otimes E \to F$, which is called the *symbol* of D.

Exercise 4.8. Compute d^3_{∇} . (Answer: it's zero.)

Now we have two notions of curvature: the curvature associated to a covariant derivative as above, and the curvature associated to a principal bundle with connection and an associated vector bundle.

Exercise 4.9. Let G be a Lie group, $\pi: P \to X$ be a principal G-bundle with connection $\Theta \in \Omega^1_P(\mathfrak{g})$, and $\rho: G \to \operatorname{Aut}(\mathbb{E})$ be a linear representation of G. Let $E := \mathbb{E}_P = P \times_G \mathbb{E} \to X$ be the associated bundle, which carries a covariant derivative $\nabla: \Omega^0_X(E) \to \Omega^1_X(E)$. Compute $\operatorname{d}^2_{\nabla}$ in terms of $\Omega = \operatorname{d}\Theta + (1/2)[\Theta \wedge \Theta]$.

Example 4.10. Let's think about connections on a principal T-bundle.⁶ Consider \mathbb{C}^2 with coordinates z^0, z^1 and metric

$$\langle (z^0, z^1), (w^0, w^1) \rangle := \overline{z^0} w^0 + \overline{z^1} w^1.$$

The circle group \mathbb{T} acts on $S^3 \subset \mathbb{C}^2$ on the right by $(z^0, z^1) \cdot \lambda := (z^0 \lambda, z^1 \lambda)$. This is a free action, so its quotient is a smooth manifold, specifically $\mathbb{CP}^1 \cong S^2$, the manifold of complex lines through the origin in \mathbb{C}^2 . Thus we obtain a principal \mathbb{T} -bundle $\pi \colon S^3 \to \mathbb{CP}^1$, called the Hopf bundle.

Now let's put a connection on π . We want a horizontal distribution on the total space S^3 . Inside $T_{(z^0,z^1)}S^3$, there's a one-dimensional subspace of vectors in the direction of the fiber $\{(z^0,z^1)\cdot\lambda\}$. The standard Riemannian metric on $\mathbb{C}^2=\mathbb{R}^4$ allows us to choose a complementary line at each point, which is a horizontal distribution. Because \mathbb{T} acts by isometries, this is an invariant distribution, hence a connection.

This is all pretty and geometric, but we need to compute the connection form $\Theta \in \Omega^1_{S^3}(i\mathbb{R})$ (the Lie algebra of \mathbb{T} is a line with trivial bracket, and is more canonically $i\mathbb{R}$). Specifically,

(4.12)
$$\Theta = \operatorname{Im}\left(\overline{z^0} \, \mathrm{d}z^0 + \overline{z^1} \, \mathrm{d}z^1\right).$$

In the vertical direction, $\Theta = \mathrm{id}$, $(z^0 e^{it}, z^1 e^{it}) = (iz^0, iz^1)$. Looking inside the complexified tangent bundle (a four-dimensional complex vector bundle), which has basis $\{\partial_{z^0}, \partial_{z^0}, \partial_{z^1}, \partial_{z^1}\}$, we get

$$(4.13) iz^{0} \frac{\partial}{\partial z^{0}} - i\overline{z^{0}} \frac{\partial}{\partial \overline{z^{0}}} + iz^{1} \frac{\partial}{\partial z^{1}} - i\overline{z^{1}} \frac{\partial}{\partial \overline{z^{1}}}.$$

So on vertical vectors, this is the identity. One (you) can check that on a vector normal to S^3 , this vanishes – this is just linear algebra over the complex numbers, so nothing too intimidating.

Next we'd like to see

(4.14)
$$\Omega = d\Theta = \operatorname{Im} \left(\overline{dz^0} \wedge dz^0 + \overline{dz^1} \wedge dz^1 \right),$$

though this is already imaginary, so we can remove the 'Im' in front. You can check this descends to \mathbb{CP}^1 It's a 2-form on \mathbb{C}^2 , visibly of type (1,1), and we restrict it to S^3 ; the claim is that there's a form on \mathbb{CP}^1 whose pullback by π is $\Omega|_{S^3}$. This involves verifying two things: that Ω is \mathbb{T} -invariant, and that it's trivial in the vertical direction. This is a good practice computation.

Let Ω also denote the form on \mathbb{CP}^1 : $\Omega \in \Omega^2_{\mathbb{CP}^1}(i\mathbb{R})$. We claim

$$\int_{\mathbb{CP}^1} \frac{1}{2\pi} i\Omega = 1.$$

⁶Here $\mathbb{T} \subset \mathbb{C}^{\times}$ is the group of unit-magnitude complex numbers, sometimes also denoted U_1 or S^1 .

⁷Well, there's more than one Hopf bundle, and we'll see some others later, but this is the first example.

To compute this, we need some coordinates on \mathbb{CP}^1 . We'll construct a section s of π over $\mathbb{CP}^1 \setminus \infty \cong \mathbb{C}$. Specifically, given $z \in \mathbb{C}$, which we think of as $[z:1] \in \mathbb{CP}^1$, let

(4.16)
$$s(z) = \frac{(z,1)}{\sqrt{1+|z|^2}}.$$

The term in the denominator means that the function decays at infinity in \mathbb{C} , so we expect this integral to converge. (But you should still do it!)

Consider a more general principal \mathbb{T} -bundle $\pi\colon P\to X$, where X is a smooth manifold. Is it a pullback of the Hopf bundle by a map $X\to\mathbb{CP}^1$? This need not be true, but something weaker is. Consider the generalized Hopf bundle $S^{2N+1}\to\mathbb{CP}^N$, defined in the same way as the Hopf bundle.

Theorem 4.17. Every principal \mathbb{T} -bundle P over a smooth manifold X arises as a pullback of a Hopf bundle $S^{2N+1} \to \mathbb{CP}^N$ for some N.

We can choose N independent of P, but it will depend on X. So in general you can think of pulling back from \mathbb{CP}^{∞} .

Proof sketch. A pullback is a \mathbb{T} -equivariant map $\varphi \colon P \to S^{2N+1}$; the quotient by \mathbb{T} defines a map $X \to \mathbb{CP}^N$ satisfying the theorem. But this is equivalent data to a section of the associated bundle $S_P^{2N+1} \to X$. This is good: there are tools in topology for constructing sections. First, using an approximation theorem, one shows that it suffices to find a continuous section. Then, one uses obstruction theory: choose a CW structure on X and a q-cell $D \to X$. We'd like to extend a section over this cell; since D is contractible, it's equivalent to ask that the map $S^{q-1} = \partial D \to S_P^{2N+1}$ is trivial (up to homotopy). This is a question about homotopy groups, and for N large enough, the relevant homotopy group vanishes.

So the next question is: can we construct universal connections Θ^{univ} on these Hopf bundles such that every connection arises as a pullback? This is finickier. Supposing it exists, and $\varphi \colon (P,\Theta) \to (S^{2N+1},\Theta^{\text{univ}})$, then since connections form an affine space, there's an $\alpha \in \Omega^1_X(i\mathbb{R})$ such that

$$\varphi^* \Theta^{\text{univ}} - \Theta = \pi^* \alpha,$$

and hence

$$\overline{\varphi}^* \Omega^{\text{univ}} - \Omega = d\alpha.$$

This therefore implies $d\Omega = 0$, where $\Omega \in \Omega_X^2(i\mathbb{R})$, so it has a de Rham cohomology class $[i\Omega/2\pi] \in H^2_{\mathrm{dR}}(X)$. This is the pullback of a class $(c_1)_{\mathbb{R}} \in H^2_{\mathrm{dR}}(\mathbb{CP}^N)$. We can see this class explicitly; \mathbb{CP}^N has a very simple CW structure with one cell in each even dimension. Therefore the cochain complex for CW cohomology with \mathbb{Z} coefficients looks like $\mathbb{Z} \to 0 \to \mathbb{Z} \to 0 \to \mathbb{Z} \to \cdots$, and we claim c_1 is the generator⁸ of $H^2(\mathbb{CP}^N; \mathbb{Z})$. Then there's an argument for why these two agree, namely just calculate on \mathbb{CP}^N , and this is the beginning of Chern-Weil theory, relating curvature and characteristic classes.

Remark 4.20. There's a similar story for higher Chern classes, but it's sufficiently complicated enough that it's generally easier to calculate using the splitting principle to split a vector bundle as a direct sum of line bundles.

Let's come back to 4-manifolds and self-duality: we let X be an oriented 4-manifold with a conformal structure [g]. This is enough to define the Hodge star $\star\colon \Omega^2_X\to\Omega^2_X$, which squares to the identity. Tensoring with a vector bundle allows us to define $\star\colon \Omega^2_X(E)\to\Omega^2_X(E)$ for any vector bundle $E\to X$, which also squares to the identity; therefore we can also define self-dual and anti-self-dual forms valued in E in the same way.

Definition 4.21. Let $P \to X$ be a principal G-bundle with connection Θ and $\Omega \in \Omega^2_X(\mathfrak{g}_P)$ be the associated connection form. We say Θ is self-dual (resp. anti-self-dual) if $\star \Omega = \Omega$ (resp. $\star \Omega = -\Omega$).

As we discussed in the first lecture, this is the four-dimensional analogue of a two-dimensional question on oriented, conformal surfaces: whether a function (form, \dots) is holomorphic or antiholomorphic. The sign isn't all that intrinsic: changing the orientation on X changes it.

⁸We need to pick a sign, but this is determined by the canonical orientation of \mathbb{CP}^N coming from the complex structure.

Anti-self-dual connections are of interest to physicists, since the 1970s, beginning with work of Polyakov and others looking at flat space. Uhlenbeck produced a condition guaranteeing that solutions to $\star \Omega = -\Omega$ extend over S^4 , and later Atiyah, Bott, Hitchin, and Singer claimed there are more solutions, and used algebraic geometry to produce them. We will study more of this story in this class, but first some examples.

The simplest case is $G = \mathbb{T}$. Often this is called "the" abelian case, though there are certainly other abelian Lie groups, such as \mathbb{T}^2 . Anyways, in this case Ω lives in $\Omega^2_X(i\mathbb{R})$, $d\Omega = 0$, and if $\star\Omega = \pm\Omega$, then $d\star\Omega = 0$ iff $d^*\Omega = 0$. Together these imply that Ω is a harmonic form if X is closed.

Digression 4.22. Let M be a Riemannian manifold (though for just dimension 4, we're only going to need the conformal class of the metric.) For example, we could take $M = \mathbb{E}^n$, which denotes \mathbb{R}^n with the standard Riemannian metric. Then the *Laplacian* is

(4.23)
$$\Delta := -\left(\frac{\partial^2}{\partial (x^1)^2} + \dots + \frac{\partial^2}{\partial (x^n)^2}\right).$$

Why the minus sign? This has a discrete spectrum, and we'd like it to be nonnegative rather than nonpositive. The de Rham derivative has the form

$$d = \varepsilon(dx^i) \frac{\partial}{\partial x^i},$$

where ε denotes exterior multiplication (which is its symbol). Using the metric, the formal adjoint is

(4.25)
$$d^* = -\iota(dx^i)\frac{\partial}{\partial x^i}.$$

(whose symbol is $-\iota$; here ι is interior multiplication). Then you can check that $\Delta := dd^* + d^*d$.

Now we can bring this to any Riemannian manifold M: we know what d is, and can define d* by integrating by parts to construct the formal adjoint of d, or construct it locally. But, for the same reason that interior multiplication requires a metric, d* depends on the metric. And therefore we can define the Laplacian Δ on M to be dd* + d*d. This means the analogue of (4.23) on M in local coordinates (x^1, \ldots, x^n) is

$$\Delta = -\sum_{1 \le i \le j \le n} -g^{ij} \frac{\partial^2}{\partial x^i \partial x^j}.$$

Here $g_{ij} := \langle \partial_i, \partial_j \rangle$, and g^{ij} is the (components of the) inverse to the matrix $(g_{ij})_{i,j}$. If you haven't seen this before, it's good to work it out.

Now suppose M is closed and $\Delta \omega = 0$. Then

$$\begin{split} 0 &= \mathrm{d}\mathrm{d}^*\omega + \mathrm{d}^*\mathrm{d}\omega \\ &= \langle \mathrm{d}\mathrm{d}^*\omega, \omega \rangle + \langle \mathrm{d}^*\mathrm{d}\omega, \omega \rangle \\ &= \int_M (\langle \mathrm{d}\mathrm{d}^*\omega, \omega \rangle + \langle \mathrm{d}^*\mathrm{d}\omega, \omega \rangle) \, \mathrm{d}\mathrm{vol} \\ &= \int_M (\langle \mathrm{d}^*\omega, \mathrm{d}^*\omega \rangle + \langle \mathrm{d}\omega, \mathrm{d}\omega \rangle) \, \mathrm{d}\mathrm{vol}. \end{split}$$

In fact, the converse is true.

Theorem 4.27. On a closed Riemannian manifold, $d\omega = 0$ and $d^*\omega = 0$ iff $\Delta\omega = 0$.

Such a form ω is called *harmonic*. The space of harmonic k-forms is denoted $\mathcal{H}_M^k(g) \subset \Omega_M^k$. Elliptic theory shows this is finite-dimensional, 9 and in fact more is true.

Theorem 4.28 (Hodge decomposition). There is a splitting

$$\Omega_M^k \cong \mathcal{H}_M^k(g) \oplus \operatorname{Im}(d) \oplus \operatorname{Im}(d^*).$$

Since harmonic forms are closed, there's a projection $\mathcal{H}_{M}^{k}(g) \to H_{dR}^{k}(M)$, and in fact this is an isomorphism! So every cohomology class has a unique harmonic representative.

 $^{^{9}}$ We'll use some elliptic theory later this semester, and will therefore go over some of the ingredients that you'd use to prove this.

And now back to 4-manifolds. If X is an oriented Riemannian 4-manifold, we have $\mathcal{H}^2_X(g) \cong H^2(X;\mathbb{R})$, and $\mathcal{H}_X^2(g)$ has two distinguished subspaces: the self-dual forms $\mathcal{H}_+^2(g)$ and the anti-self-dual forms $\mathcal{H}_-^2(g)$. These are distinct subspaces, so every harmonic 2-form ω decomposes as a sum $\omega = \omega_+ + \omega_-$, where $\omega_{\pm} \in \mathcal{H}^2_+(g)$. Explicitly,

(4.29)
$$\omega_{\pm} = \frac{\omega \pm \star \omega}{2}.$$

All of this depended on the metric, so we can ask how this changes as the metric moves, which involves some Sard-Smale theory, as we discussed in Morse theory last semester. But Chern-Weil theory tells us that if Ω comes from a connection on a principal T-bundle, then $i\Omega/2\pi$ defines an integer-valued cohomology class. Therefore self-dual or anti-self-dual connections are the intersection of an integer lattice in H^2 with two lines $\mathcal{H}^2_{\pm}(g)$. Generically, this has no solutions, unless one of $\mathcal{H}^2_{\pm}(g)$ is zero (so all forms are self-dual, or are anti-self-dual). Perhaps that's a little disappointing.

To study this, we'll look at the intersection form, a symmetric bilinear 2-form on $H^2(X;\mathbb{Z})$ sending $c_1, c_2 \mapsto \langle c_1 \smile c_2, [X] \rangle$. Let b_+^2 (resp. b_-^2) denote the dimension of the largest subspace on which this form is positive (resp. negative). Then $b_+^2 + b_-^2 = b^2(M)$, and their difference is the signature. We'll put conditions on b_{+}^{2} which make it possible to find (anti)-self-dual connections.

Example 4.30.

- (1) On S^4 , $b^2 = 0$, so $b_{\pm}^2 = 0$. So no self-dual forms here.
- (2) On CP², b²+2 = 1 and b²-2 = 0. In this case, self-dual forms exist! Hooray.
 (3) But on a K3 surface, b²-2 = 19 and b²+2 = 3, so no self-dual forms generically.

This is a little annoying. Maybe we should work with a different Lie group.

The next simplest example is $SU_2 = Sp_1$. Associated to it is another Hopf bundle: Sp_1 acts on $S^7 \subset \mathbb{H}^2$. as (right) multiplication by unit quaternions, and the quotient is $\mathbb{HP}^1 \cong S^4$. We can use this to follow the same story as above, defining a connection geometrically and so on.

Lecture 5.

The Yang-Mills functional: 2/5/19

Let X be an oriented, conformal 4-manifold, $P \to X$ be a principal G-bundle, and $\Theta \in \Omega^1_P(\mathfrak{g})$ be a connection. We will study gauge theory in this situation; sometimes we will use a Riemannian metric in the conformal class for X.

In gauge theory, people typically use slightly different notation.

- The connection Θ is usually denoted A.
- Its curvature is denoted $F = F_A = dA + (1/2)[A \wedge A] \in \Omega^2_P(\mathfrak{g})$ but F_A is also used to denote the curvature form on $X, F_A \in \Omega^2_X(\mathfrak{g}_P)$.

Definition 5.1. We say that A is self-dual, resp. anti-self-dual, if $\star F_A = F_A$, resp. $\star F_A = -F_A$.

These are first-order nonlinear PDEs in A. Let's say something about where they come from.

Hodge theory and minimization. Let (M,g) be a closed, oriented Riemannian n-manifold. Of Given a cohomology class $c \in H^k(M;\mathbb{R})$, what's the "best" differential form representative for c? That is, what's the "best" $\omega \in \Omega_M^k$ with $[\omega] = c$?

Well, what does "best" mean? Maybe smallest-norm: let's ask for an ω which minimizes

(5.2)
$$f: \omega \longmapsto \int_{M} \|\omega\|^{2} \operatorname{dvol}_{g} = \int_{M} \omega \wedge \star \omega$$

such that $[\omega] = c$.

Remark 5.3. If M is not oriented, then we don't have a volume form, and $\omega \wedge \star \omega$ is a density. Asking to minimize this norm still makes sense.

¹⁰One can generalize to open manifolds, but then one needs some vanishing or growth conditions at infinity, or a boundary condition. We're not going to worry about this in this motivational section.

 \boxtimes

Fix an ω_0 such that $[\omega_0] = c$. On the affine line $\omega_0 + d\Omega_M^{k-1}$, consider the function

(5.4)
$$f(\omega_0 + d\eta) = \int_M (\omega_0 + d\eta) \wedge \star (\omega_0 + d\eta).$$

This is a quadratic function on a real affine line. We know what those look like – parabolas. So we can find the unique minimum where the derivative of f is zero. The derivative is

(5.5)
$$\mathrm{d}f_{\omega_0}(\mathrm{d}\eta) = 2 \int_M \mathrm{d}\eta \wedge \star \omega_0 = \pm 2 \int_M \eta \wedge \mathrm{d}\star \omega_0,$$

using Stokes' theorem, since M is closed. The output equations are

$$\begin{aligned}
d \star \omega_0 &= 0 \\
d\omega_0 &= 0.
\end{aligned}$$

These are the Euler-Lagrange equations for this problem. ¹¹ They're satisfied iff $\Delta\omega_0 = 0$, where $\Delta := dd^* + d^*d$ is the *Laplacian*. Solutions to $\Delta\omega_0 = 0$ are called *harmonic* forms.

Lemma 5.7. On a closed manifold M, ω is harmonic iff $d\omega = 0$ and $d\star\omega = 0$.

Proof sketch. Suppose ω is harmonic. Then

(5.8)
$$0 = \int_{M} \Delta\omega \wedge \star\omega$$

$$= \int_{M} (\mathrm{dd}^{*}\omega \wedge \star\omega + \mathrm{dd}^{*}\omega \wedge \star\omega)$$

$$= \int_{M} (\|\mathrm{d}^{*}\omega\|^{2} + \|\mathrm{d}\omega\|^{2}) \,\mathrm{d}\mathrm{vol}_{g}.$$

Since this is the integral of a nonnegative function, that function must be 0 everywhere, so we conclude that $d^*\omega = 0$ and $d\omega = 0$. To get from d^* to $d\star$, use the fact that the formal adjoint of d, namely d^* , is also $\pm \star d\star$, where the sign depends on the degree of ω and the dimension of M.

The other direction is up to you.

Now let's apply this to connections on 4-manifolds. Let \mathcal{A}_P denote the affine space of connections on the principal G-bundle $P \to X$.

Definition 5.11. The Yang-Mills functional $Y: \mathcal{A}_P \to \mathbb{R}$ is

$$(5.12) Y(A) := \int_X ||F_A||^2 \operatorname{dvol}_g.$$

This looks nice and all that, but we haven't yet defined everything: we need to make sense of the norm on $\Omega^2_P(\mathfrak{g})$. We'll come back to this.

Example 5.13. Suppose $G = \mathbb{T}$, so $\mathfrak{g} = i\mathbb{R}$. Then $F_A \in \Omega^2_X(i\mathbb{R})$, and we know how to take the norm of these kinds of differential forms: the Yang-Mills functional is

$$(5.14) Y(A) = -\int_{Y} F_A \wedge \star F_A.$$

We can decompose F_A into its self-dual and anti-self-dual pieces F_A^{\pm} : $F_A = F_A^+ + F_A^-$, and then $\star F_A = F_A^+ - F_A^-$. Thus we can rewrite the Yang-Mills functional as 12

(5.15)
$$Y(A) = \int_{X} \underbrace{F_{A}^{-} \wedge F_{A}^{-}}_{>0} - \underbrace{F_{A}^{+} \wedge F_{A}^{+}}_{<0}$$

$$(5.16) \geq \int_{Y} F_{A}^{-} \wedge F_{A}^{-} + F_{A}^{+} \wedge F_{A}^{+}$$

$$= \int_{X} F_A \wedge F_A$$

(5.18)
$$= 4\pi^2 \langle c_1(P)^2, [X] \rangle.$$

¹¹Well, this is a little silly in this setting, since all we did is take a derivative. But in general they're more involved.

 $^{^{12}}$ If the signs look weird, keep in mind F_A is imaginary. But there may yet be sign errors.

Here $c_1(P) = (i/2\pi)[F_A] \in H^2_{dR}(M)$ is the first (well only) Chern class of the principal \mathbb{T} -bundle P. So we obtain a lower bound on the Yang-Mills functional in terms of characteristic classes. Equality is achieved exactly when $F_A^+ \wedge F_A^+ = 0$, i.e. A is anti-self-dual.

Next, what are the critical points of Y? The differential is

(5.19)
$$dY_A(\dot{A}) = -2 \int_X \dot{A} \wedge d\star F_A,$$

where $A \in \mathcal{A}_P$ and $\dot{A} \in \Omega^1_X(i\mathbb{R})$ (a variation of A), so the critical points are those such that $d \star F_A = 0$. The Bianchi identity says that, in addition, $dF_A = 0$, so the critical points have harmonic curvature forms. These two PDEs are second-order (curvature is a derivative, and then we take one more derivative), but linear.

Definition 5.20. The Yang-Mills equations are $d \star F_A = 0$ and $dF_A = 0$.

Suppose $b_2^+(M) > 0$. Then for generic g, the minimum of Y is *not* realized: we're trying to intersect a line and a lattice. But we can get arbitrarily close, producing a sequence of connections approaching the minimum.

What changes for G more general? First we need a G-invariant inner product $\langle -, - \rangle_{\mathfrak{g}}$ on \mathfrak{g} ; this will induce an inner product $\langle -, - \rangle_{\mathfrak{g}_P}$ on $\Omega^2_X(\mathfrak{g}_P)$: we think of $\omega, \eta \mapsto \omega \wedge \eta \in \Omega^4_X(\mathfrak{g} \otimes \mathfrak{g})$, then use $\langle -, - \rangle_{\mathfrak{g}}$ to get from $\mathfrak{g} \otimes \mathfrak{g}$ to \mathbb{R} , and then integrate to get a number.

G acts on \mathfrak{g} by the adjoint action, so we want something invariant under this action. Such a form always exists: you can take for example the Killing form. Then the Yang-Mills functional is

$$(5.21) Y(A) = \int_X \langle F_A \wedge \star F_A \rangle_{\mathfrak{g}_P},$$

and the above calculation generalizes to

(5.22)
$$Y(A) = \int_{X} \underbrace{\langle F_A^- \wedge F_A^- \rangle_{\mathfrak{g}_P}}_{>0} - \underbrace{\langle F_A^+ \wedge F_A^+ \rangle_{\mathfrak{g}_P}}_{<0}$$

$$(5.23) \geq \int_{X} \langle F_A^- \wedge F_A^- \rangle_{\mathfrak{g}_P} + \langle F_A^+ \wedge F_A^+ \rangle_{\mathfrak{g}_P}$$

$$= \int_{Y} \langle F_A \wedge F_A \rangle_{\mathfrak{g}_P}$$

$$(5.25) = 4\pi^2 \langle c(P), [X] \rangle,$$

where c(P) is some degree-4 characteristic class for principal G-bundles. In particular, this is constant, so we once again obtain a lower bound.

Exercise 5.26. Show that

$$dY_A(\dot{A}) = -2 \int_X \langle \dot{A} \wedge d_A \wedge \star F_A \rangle_{\mathfrak{g}_P},$$

where $\dot{A} \in \Omega^1_X(\mathfrak{g})$ is a variation of A.

Proof. First, let's differentiate the curvature operator $F: \mathcal{A}_P \to \Omega^2_X(\mathfrak{g}_P)$.

(5.27)
$$dF_A(\dot{A}) = \frac{d}{dt}\Big|_{t=0} F(A + t\dot{A})$$

(5.28)
$$= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathrm{d}(A + t\dot{A}) + \frac{1}{2}[(A + t\dot{A}) \wedge (A + t\dot{A})]$$

$$(5.29) \qquad \qquad = \mathrm{d}\dot{A} + [A \wedge \dot{A}] = \mathrm{d}_A A.$$

We'll use this to differentiate the Yang-Mills functional, starting with (5.21). Then

(5.30)
$$dY_A(\dot{A}) = 2 \int_X \langle d_A \dot{A} \wedge \star F_A \rangle$$

$$= -2 \int_{X} \langle \dot{A} \wedge d_{A} \star F_{A} \rangle,$$

using the Leibniz rule

(5.32)
$$d\langle \omega \wedge \eta \rangle = \langle d_A \omega \wedge \eta \rangle \pm \langle \omega \wedge d_A \eta \rangle$$

where $\omega, \eta \in \Omega_X^*(\mathfrak{g}_P)$.

Finding the critical points of the Yang-Mills functional is now a nonlinear second-order PDE. This is part of a very general story, including work of many people. One doesn't have to restrict to dimension 4; for example, Atiyah and Bott studied the Yang-Mills functional on Riemann surfaces and the topology of (certain equivalence classes of) the space of connections and its relationship with the algebraic geometry of the Riemann surface.

For the rest of today's lecture, we'll discuss some more classical geometric preliminaries, beginning with some cool facts about the conformal group. Let W be a finite-dimensional real vector space, ¹³ and suppose $\langle -, - \rangle \colon W \times W \to \mathbb{R}$ is a nondegenerate, symmetric bilinear form. We aren't assuming it's positive definite, e.g. it could be Lorentz. Inside W, we have the *null cone* N_W of vectors $\xi \in W$ with $\langle \xi, \xi \rangle = 0$. This is a cone because if $\xi \in N_W$, then $t\xi \in N_W$ too. If the form is definite, the null cone is just $\{0\}$.

Let Q_W denote the image of $N_W \setminus 0$ under the quotient $W \setminus 0 \twoheadrightarrow \mathbb{P}W$ by \mathbb{R}^{\times} . Then Q_W is a compact real manifold, a real quadric, and carries a natural conformal structure. Suppose $\ell \in Q_W$, meaning it's a line in the null cone. Then $T_{\ell}Q_W \subset T_{\ell}\mathbb{P}W = \operatorname{Hom}(\ell, W/\ell)$, and under this identification, $T_{\ell}Q_W = \operatorname{Hom}(\ell, \ell^{\perp}/\ell)$: since ℓ is null, $\ell \subset \ell^{\perp}$, and in fact ℓ^{\perp} is a codimension-one subspace of W: it's cut out by one equation.

The bilinear form $\langle -, - \rangle$ descends to $\ell^{\perp}/\ell \times \ell^{\perp}/\ell \to \mathbb{R}$, and therefore defines a conformal structure on $\operatorname{Hom}(\ell, \ell^{\perp}/\ell) \cong \ell^{\perp}/\ell \otimes \ell^*$. This obviously varies smoothly in ℓ , hence defines a conformal structure on Q_W .

Suppose, for example, $W = V \oplus H$ is an orthogonal direct sum, where $\langle -, - \rangle_V$ is an inner product and H is a hyperbolic plane, so it has signature (1,1) and exactly two lines. Then $\mathbb{P}H$ is a circle, and the null cone is two points inside it. The entire quadric cone splits as $Q_W = V \coprod N_V \coprod Q_V$. How does this work? Inside $\mathbb{P}W = \{[v:s:t]\}, V = \{[v:-||v||^2:1]\}, N_V = \{[v:1:0]\}, \text{ and } Q_V = \{[v]:0:0\}.$

If V is n-dimensional, then N_V is (n-1)-dimensional and Q_V is (n-2)-dimensional. Therefore Q_W is a compactification of V: we've added strata of codimensions one and two to it, and picked up a conformal structure.

Example 5.33. Suppose $\langle -, - \rangle$ is an inner product. Then N_V is a point and Q_V is the empty set, so Q_W is diffeomorphic to S^n with the conformal structure induced from the usual metric.¹⁴ In this case, the symmetry group is O(V), and with an orientation we can get SO(V).

Example 5.34. More generally, let $V = \mathbb{R}^{p,q}$, where p+q=n, with the indefinite-signature form

$$\langle \xi, \eta \rangle = \sum_{i=1}^{p} \xi^{i} \eta^{i} - \sum_{i=p+1}^{q} \xi^{i} \eta^{i}.$$

For example, $H = \mathbb{R}^{1,1}$. In this case, $W \cong \mathbb{R}^{p+1,q+1} = \mathbb{R}^{p+1} \oplus \mathbb{R}^{q+1}$ (though the inner product on the second has a minus sign put in front). If $\xi \in \mathbb{R}^{p+1}$ and $\eta \in \mathbb{R}^{q+1}$, then $(\xi, \eta) \in N_W$ iff $\|\xi\| = \|\eta\| = 1$, so Q_W is diffeomorphic to $(S^q \times S^q)/\{\pm 1\}$, and PO(W) acts via conformal transformations on Q_W . Inside this we have $O(V) \cong O_{p,q}$. So this says that the conformal symmetries in signature (p,q) are the orthogonal symmetries in signature (p+1,q+1).

For example, the group of conformal symmetries of \mathbb{R}^4 with positive-definite inner product is $O_{5,1}$, which acts on S^4 , the conformal compactification of \mathbb{R}^4 . The conformal group of \mathbb{R}^2 , sitting inside its compactification S^2 , is $O_{3,1}$; with an orientation we get $SO_{3,1} \cong PSL_2(\mathbb{C})$, one of the low-dimensional exceptional isomorphisms of Lie groups. These act by Möbius transformations. Analogously, there's a special isomorphism $SO_{5,1} \cong PSL_2(\mathbb{H})$, allowing us to get at conformal symmetries in dimension 4 via the quaternions. Next time we'll apply this to the self-duality equations in dimension 4.

Lecture 6.

Spinors in low dimensions and special isomorphisms of Lie groups: 2/7/19

"I'll tell a story for three minutes and then you can go."

¹³We could work with complex vector spaces, or infinite-dimensional vector spaces.

¹⁴TODO: I would like to double-check this.

Today we'll continue discussing preliminaries to the ADHM construction, sometimes using them to introduce interesting nearby ideas in their own right. Today we'll discuss exceptional isomorphisms of Lie groups in low dimensions, which are applicable in other cases. For example, if you care about fermions in, e.g. supersymmetric quantum field theories in dimensions 6 or below, these ideas appear.

Fix a 4-dimensional complex vector space \mathbb{S} , which could be \mathbb{C}^4 . We can take exterior powers $\Lambda^2\mathbb{S}$, $\Lambda^3\mathbb{S}$, and $\Lambda^4\mathbb{S} = \operatorname{Det}\mathbb{S}$, and similarly for \mathbb{S}^* . Choose a volume form $\mu \in \operatorname{Det}\mathbb{S}^* \setminus 0$; we want to consider the symmetries of (\mathbb{S}, μ) . A linear map $T: \mathbb{S} \to \mathbb{S}$ has an associated volume $\det T$, so we're essentially asking for automorphisms with determinant 1. This is literally true for $\mathbb{S} = \mathbb{C}^4$, in which case $\operatorname{Aut}(\mathbb{S}, \mu) = \operatorname{SL}_4(\mathbb{C})$.

Now given such an automorphism T, we obtain an automorphism $\Lambda^2T \colon \Lambda^2\mathbb{S} \to \Lambda^2\mathbb{S}$. The condition that T preserves the volume form is mapped to the bilinear pairing $B \colon \Lambda^2\mathbb{S} \times \Lambda^2\mathbb{S} \to \mathbb{C}$ sending

$$(6.1) x, y \longmapsto \langle \mu, x \wedge y \rangle_{\text{Det } \mathbb{S}^*, \text{Det } \mathbb{S}}.$$

This is symmetric and nondegenerate, hence an inner product, so $\Lambda^2 T$ preserves this inner product! Therefore the map $\phi = \Lambda^2$: Aut(S, μ) \to Aut(Λ^2 S, B) amounts to a homomorphism $SL_4(\mathbb{C}) \to O_6(\mathbb{C})$.

You can directly check that $\{\pm 1\} \subset \ker(\phi)$. Since $SL_4(\mathbb{C})$ is connected, the image of ϕ is contained in $SO_6(\mathbb{C})$.

Claim 6.2.
$$\phi \colon \mathrm{SL}_4(\mathbb{C}) \to \mathrm{SO}_6(\mathbb{C})$$
 is surjective.

The proof would amount to checking that it's an isomorphism on Lie algebras, so the image is open, and that the image is closed, hence all of $SO_6(\mathbb{C})$. One corollary is that we've identified the spinor representation as \mathbb{S} .

Moreover, since $SL_4(\mathbb{C})$ is simply connected, the map $\phi \colon SL_4(\mathbb{C}) \to SO_6(\mathbb{C})$ is the nontrivial double cover map. Therefore we have produced an isomorphism $SL_4(\mathbb{C}) \cong Spin_6(\mathbb{C})$.

Remark 6.3. We can define the complex spin groups in the same way as the real ones: for $n \geq 3$, $\pi_1 SO_n(\mathbb{C}) = \mathbb{Z}/2$, and for n = 2, $\pi_1 SO_2(\mathbb{C}) = \mathbb{Z}$, so we can ask for the connected double cover of $SO_n(\mathbb{C})$, which has a canonical Lie group structure, and define it to be $Spin_n(\mathbb{C})$.

There can be two different realizations of this double cover, but you can prove there's a unique Lie group homomorphism between them respecting the covering map, and it's an isomorphism.

There are several other exceptional isomorphisms, and they all follow from this one.

Example 6.4. Let $J: \mathbb{S} \to \mathbb{S}$ be a quaternionic structure, i.e. an antilinear map such that $J^2 = -\mathrm{id}_{\mathbb{S}}$. Then $\Lambda^k J: \Lambda^k \mathbb{S} \to \Lambda^k \mathbb{S}$ is also antilinear, and squares to $(-1)^k \mathrm{id}_{\mathbb{S}}$. So on $\Lambda^2 \mathbb{S}$ it defines a real structure, and on $\Lambda^3 \mathbb{S}$ it's quaternionic.

We can impose another constraint, that $(\det J)^*\mu = \mu$, i.e. μ is real. That is, it's in the subspace of Det \mathbb{S}^* fixed by $\det J$, which is a one-dimensional real vector space. Therefore we obtain a map

(6.5)
$$\phi \colon \operatorname{Aut}(\mathbb{S}, J, \mu) \longrightarrow \operatorname{Aut}(\Lambda^2 \mathbb{S}, B, \Lambda^2 J).$$

Now suppose $\mathbb{S} = \mathbb{C}^4$. Then the codomain is O_{p+q} for some p+q=6, but B might not be positive definite. The domain is $SL_2(\mathbb{H})$ – though you have to be careful with what this means. There's no determinant map $GL_n(\mathbb{H}) \to \mathbb{H}^{\times}$, but we can take the determinant to be a complex number (via regarding quaternionic matrices as complex matrices), and ask for it to be 1.

Working out the details, the kernel will once again be $\{\pm 1\}$, and this will be a double cover, so this will identify $SL_2(\mathbb{H}) \cong Spin_{p,q}$, an isomorphism of 15-dimensional real Lie groups. Then \mathbb{S} is the spinor representation again – but it's quaternionic, so we know we can't get $Spin_6$.¹⁵

To determine the signature, let $\{e_1, Je_1, e_2, Je_2\}$ be a basis for \mathbb{S} . Then we can write down a basis for $(\Lambda^{@}\mathbb{S})_{\mathbb{R}}$ as follows:

(6.6)
$$e_{1} \wedge Je_{1} \qquad e_{2} \wedge Je_{2}$$

$$e_{1} \wedge Je_{2} + e_{2} \wedge Je_{1} \qquad i(e_{1} \wedge Je_{2} - e_{2} \wedge Je_{1})$$

$$e_{1} \wedge e_{2} + Je_{1} \wedge Je_{2} \qquad i(e_{1} \wedge e_{2} - Je_{1} \wedge Je_{2}).$$

You can check these are orthogonal. The first two form a hyperbolic pair (signature (1,1)), and the last four all self-pair to -1. Therefore the signature is (1,5), and we conclude $SL_2(\mathbb{H}) \cong Spin_{1,5}$.

¹⁵You can also check that $Z(SL_2(\mathbb{H})) \cong \mathbb{Z}/2$ but $Z(Spin_6) \cong \mathbb{Z}/4$.

Taking the quotient, we also get $\mathrm{PSL}_2(\mathbb{H}) \cong \mathrm{SO}_{1,5}^{0}^{16}$ – in indefinite signature, special orthogonal groups aren't connected. Now, $\mathrm{SO}_{1,5}^{0}$ acts as the group of automorphisms of the conformal compactification of \mathbb{R}^4 with a definite metric, which gives you S^4 : $\mathrm{PSL}_2(\mathbb{H})$ is the conformal group of the 4-sphere. We can also identify $\mathrm{PSL}_2(\mathbb{H}) \cong \mathrm{PGL}_2(\mathbb{H})$ via the diffeomorphism $S^4 \cong \mathbb{HP}^1$.

So in summary, we have $SL_2(\mathbb{H}) \cong Spin_{1.5}$ and $PSL_2(\mathbb{H}) \cong PGL_2(\mathbb{H}) \cong SO_{1.5}^0$.

Remark 6.7. If you want to imitate the above story but get Spin_6 , you'll want to get the maximal compact in $\mathrm{SL}_4(\mathbb{C})$, which is SU_4 . So throw out J and instead ask that your automorphisms fix a Hermitian inner product.

Example 6.8. Now let's introduce a symplectic form $\omega \in \Lambda^2 \mathbb{S}^*$, and let's say that $\mu = (1/2)\omega \wedge \omega$. We'll ask about the automorphisms of \mathbb{S} that fix μ ; if $\mathbb{S} = \mathbb{C}^4$, this group is called $\mathrm{Sp}_4(\mathbb{C})$.

Passing up to $\Lambda^2\mathbb{S}$, such an automorphism must preserve $\ker(\omega)$, which has codimension 1, and the bilinear form B from before. The automorphisms of $\ker(\omega)$ and B form the group $O_5(\mathbb{C})$. As in the previous case, the map $\operatorname{Sp}_4(\mathbb{C}) \to O_5(\mathbb{C})$ has image the identity component $\operatorname{SO}_5(\mathbb{C}) \subset \operatorname{O}_5(\mathbb{C})$, and is a double cover onto it. Therefore we obtain an isomorphism $\operatorname{Spin}_5(\mathbb{C}) \cong \operatorname{Sp}_4(\mathbb{C})$.

Example 6.9. If you ask for automorphisms of \mathbb{S} which preserve both J and ω ? In this case we get a map $\operatorname{Aut}(\mathbb{S}, J, \omega) \to \operatorname{Aut}(\ker(\omega), \Lambda^2 J, B)$. The basis of $\ker(\omega)$ contains the last four vectors in (6.6), but instead of the first two we have the vector $e_1 \wedge Je_1 - e_2 \wedge Je_2$, which self-pairs to -1. Therefore we're in definite signature, so this map is identified with the map $\operatorname{Sp}_2 \to \operatorname{O}_5$. Here, Sp_2 is the symmetries of \mathbb{H}^2 with its standard inner product.

As usual, this only sees $SO_5 \subset O_5$, and is a double cover, providing for us an isomorphism $Spin_5 \cong Sp_2$.

Let's digress from the linear algebra a little bit and talk about quaternions. A general quaternion is of the form $x = x^0 + x^1i + x^2j + x^3k$.

Definition 6.10. The *conjugate* of a quaternion x as above is

$$\overline{x} \coloneqq x^0 - x^1 i - x^2 j - x^3 k.$$

The imaginary part of x is $Im(x) := x^1i + x^2j + x^3k$.

Therefore $x\overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2$; this is the norm squared of x. We have $dx = dx^0 + dx^1i + dx^2j + dx^3k$, and therefore

$$(6.11) dx \wedge d\overline{x} = -(dx^0 \wedge dx^1 + dx^2 \wedge dx^3)i - (dx^0 \wedge dx^2 - dx^1 \wedge dx^3)j - (dx^0 \wedge dx^3 + dx^1 \wedge dx^2)k.$$

You'll notice this is self-dual, and in fact the coeffcients are a basis for the space of self-dual 2-forms. Similarly, $d\overline{x} \wedge dx$ is anti-self-dual, and its coefficients are a basis for the space of anti-self-dual forms.

Example 6.12. Continuing Example 6.9, consider $S^7 \subset \mathbb{H}^2$, which is preserved by $\operatorname{Sp}_2 = \operatorname{Spin}_5$. Restricting to $\mathbb{H}^2 \setminus 0$, we have a projection down to $\mathbb{HP}^1 \cong S^4$, the quaternionic projective line. This restricts to a submersion $\pi \colon S^7 \to S^4$. Two points in S^7 have the same image iff the are acted on by a unit-norm quaternion. The group of unit-norm quaternions is $\operatorname{Sp}_1 = \operatorname{SU}_3 = \operatorname{Spin}_2$. Since $S^7 = \operatorname{Sp}_2/\operatorname{Sp}_1$, $S^4 \cong \operatorname{Sp}_2/\operatorname{Sp}_1 \times \operatorname{Sp}_1$. In other words, $\pi \colon S^7 \to S^4$ is a principal Sp_1 -bundle, and it is homogeneous for the left Sp_2 -action. This is another example of a Hopf fibration. The substituting the substitution of the left of the left

Now who acts on S^4 ? Well, SO_5 acts by isometries. The whole situation is invariant under the isometry group, so we can move the total space around by isometries of the base, and therefore SO_5 lifts to the $Spin_5$ -action we already identified on S^7 . Inside the isometries, there's a bigger group $SO_{1,5}^0$ of conformal transformations. We'd like to ask whether these lift to conformal isometries on S^7 . The identification $S^4 \cong \mathbb{HP}^1$ carries SO_5 to PSp_2 and $SO_{1,5}^0 \cong PSL_2(\mathbb{H})$, and this lifts to the $SL_2(\mathbb{H})$ -action on \mathbb{H}^2 .

Now we introduce connections, mimicking the basic story we already saw over \mathbb{C} in §4. We want to consider a connection Θ for $S^7 \to S^4$ regarded as an Sp₁-bundle, an Sp₁-invariant horizontal distribution. Specifically, you can check that

(6.13)
$$\Theta := -\operatorname{Im}\left(q^0 \,\overline{\mathrm{d}q^0} + q^1 \,\overline{\mathrm{d}q^1}\right)$$

 $^{^{16}\}mathrm{PSL}_2(\mathbb{H})$ is defined to be $\mathrm{SL}_2(\mathbb{H})$ modulo its center $\{\pm 1\}$.

¹⁷Because ℍ isn't commutative, we have to specify that we're taking the quotient of the right action.

¹⁸There are also Hopf fibrations over the reals, including the double cover $\mathbb{Z}/2 \to S^1 \to \mathbb{RP}^1$. There's also one over the octonions.

is a connection, by checking it's orthogonal to orbits everywhere. Then $\Omega_{0,1}$, restricted to the horizontal distribution, is $-\operatorname{Im}(\operatorname{d}q^0 \wedge \overline{\operatorname{d}q^0})$. But from the calculation in (6.11), we already know this is imaginary, so $\Omega_{0,1}|_{\operatorname{horiz}} = -\operatorname{d}q^0 \wedge \overline{\operatorname{d}q^0}$; we also know it's self-dual.

So we've found one solution to the self-dual equations; we can discover others by transforming by conformal transformations. Therefore $SL_2(\mathbb{H}) = Spin_{1,5}$ acts on Θ to produce self-dual connections. This is an $SL_2(\mathbb{H})$ -orbit inside \mathcal{A}_P ; we know it's a homogeneous manifold, so if we want to know what it is, we should compute the stabilizer of Θ . This is precisely the isometries, which are $Spin_5$, so the orbit is $Spin_{1,5}/Spin_5 = SO_{1,5}/SO_5$, which is a hyperbolic 5-ball M, and Θ is actually the center. As you get closer to the "edge" S^4 , which we think of as the base S^4 , the curvature concentrates more and more at the boundary point, and we could think of the connections at infinity as having curvature in a δ -function (this doesn't actually work, of course). The only connection which has no priviledged concentration of curvature is Θ , at the center.

Theorem 6.14 (Atiyah-Drinfeld-Hitchin-Manin). $SO_{1,5}/SO_5$ is the moduli space of self-dual Sp_1 -instantons with Chern class $c_2 = 1$.

This is the only characteristic class data; for an $\operatorname{Sp}_1 = \operatorname{SU}_2$ -bundle, $c_1 = 0$, and there are no more Chern classes. On S^4 , $c_2 \in H^4(S^4)$, and the orientation identifies this cohomology group with \mathbb{Z} , so we can make sense of $c_4 = 1$. This is an instance of fixing discrete data in a moduli problem, which is common.

This is a basic case where we can picture what's going on, and illustrates a good part of the general story. But how do you prove Theorem 6.14? How do we know that every connection is one of these? Stay tuned; we'll prove this later. Then there are other questions involving other Chern classes, other manifolds, and so on.

This kind of question was first investigated by physicists, Polyakov and others. Atiyah and Singer then checked the dimension by linearizing the equations and found that the physicists had missed some. When Simon Donaldson was a graduate student, he had the brilliant idea of taking this example, but generalizing to 4-manifolds where the intersection form is positive definite. Once again, the moduli space is five-dimensional, and you can take connections with curvature concentrated near a point, and extend by zero. Taubes show you can wiggle this a little bit and actually get a solution – and therefore you again get a copy of the manifold at infinity. Through this (and of course, plenty more) Donaldson was able to prove his first theorem – this exhibits a bordism from this manifold to something else.

Lecture 7.

Some linear algebra underlying spinors in dimension 4: 2/12/19

"Is it clear that —" "Yes, it's clear."

Recall that we've been discussing connections on S^4 with Chern number 1. Fix the usual orientation and round metric (we only need a conformal structure in dimension 4, but we have a canonical metric so we might as well). The conformal symmetries $SO_{1,5} \cong PSL_2(\mathbb{H})$ act on S^4 , and hence also on the moduli space \mathcal{M} of self-dual Sp_1 -connections. This moduli space is diffeomorphic to a 5-ball.

Inside this space, there's a special point, as we discussed last time: the principal Sp₁-bundle $S^7 \to S^4$ realized as the Hopf fibration $\mathbb{H}^2 \setminus \{0\}/\mathbb{R}^{>0} \to \mathbb{HP}^1$, and $\mathbb{HP}^1 \cong S^4$. Then we can choose a Sp₁-invariant horizontal distribution on S^7 , as in (6.13).

Now for some more cool facts about spinors. Previously, we discussed how to obtain several exceptional isomorphisms of Lie groups by starting with a four-dimensional complex vector space $\mathbb S$ and considering various wedge powers of $\mathbb S$ and $\mathbb S^*$. Now, let's suppose $\mathbb S=\mathbb S'\oplus\mathbb S''$, where each summand is two-dimensional. Then

(7.1)
$$\Lambda^2 \mathbb{S}^* = \Lambda^2 (\mathbb{S}')^* \oplus \Lambda^2 (\mathbb{S}'')^* \oplus (\mathbb{S}')^* \otimes (\mathbb{S}'')^*.$$

The summands have dimensions 1, 1, and 4, respectively.

Suppose we fix a $\mu \in \text{Det } \mathbb{S}^*$, which splits as $\epsilon' \wedge \epsilon''$, where $\epsilon' \in \Lambda^2(\mathbb{S}')^*$ and $\epsilon'' \in \Lambda^2(\mathbb{S}'')^*$. Then $\mathbb{S}' \oplus \mathbb{S}''$ has a bilinear pairing

$$(7.2) B(s' \otimes s'', \widetilde{s}' \otimes \widetilde{s}'') := \epsilon'(s', \widetilde{s}') \epsilon''(s'', \widetilde{s}'').$$

 \boxtimes

Given an isometry of \mathbb{S}' (i.e. preserving ϵ') and an isometry of \mathbb{S}'' , their tensor product preserves B, so we obtain a map

(7.3a)
$$\operatorname{Aut}(\mathbb{S}', \epsilon') \times \operatorname{Aut}(\mathbb{S}'', \epsilon'') \longrightarrow \operatorname{Aut}(\mathbb{S}' \otimes \mathbb{S}'', B),$$

which if $\mathbb{S} = \mathbb{C}^4$ with the usual decomposition as $\mathbb{C}^2 \oplus \mathbb{C}^2$, is a map

(7.3b)
$$\operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C}) \longrightarrow \operatorname{O}_4(\mathbb{C}),$$

and as usual, this has image $SO_4(\mathbb{C})$, and is a double cover onto it. Hence $Spin_4(\mathbb{C}) \cong SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$.

We're also interested in the real spin group. Hence, fix a quaternionic structure $J = J' \oplus J''$, where $J' : \mathbb{S}' \to \mathbb{S}'$ is antilinear and squares to $-\mathrm{id}$, and similarly for J''. Then $\mathrm{Aut}(\mathbb{S}', \epsilon', J') \cong \mathrm{Sp}_1$, and similarly for \mathbb{S}'' , and $\Lambda^2 J$ restricts to a real structure on $\mathbb{S}' \otimes \mathbb{S}''$, so we obtain a map

$$\mathrm{Sp}_1 \times \mathrm{Sp}_1 \longrightarrow \mathrm{SO}_4,$$

and this is a double cover, so $\mathrm{Spin}_4 \cong \mathrm{Sp}_1 \times \mathrm{Sp}_1$.

We can produce a real basis of $\mathbb{S}' \otimes \mathbb{S}''$ with respect to this real structure. Let e', Je' be a basis of \mathbb{S}' , where we ask $\epsilon'(e', Je') = 1$, and define e'' and J'' similarly. Then our real basis is

(7.5)
$$e' \otimes e'' + Je' \otimes Je''$$

$$i(e' \otimes e'' - Je' \otimes Je'')$$

$$e' \otimes Je'' - Je' \otimes e''$$

$$i(e' \otimes Je'' + Je' \otimes e'').$$

Remark 7.6. You can also choose a real structure J on $\mathbb{S} = \mathbb{S}' \oplus \mathbb{S}''$, and stipulate that $J(\mathbb{S}') = \mathbb{S}''$, and can play a similar game as above.

Now consider the exterior product $\Lambda^2 \mathbb{S} \otimes \mathbb{S} \to \Lambda^3 \mathbb{S}$. Restricted to $V^* := \mathbb{S}' \otimes \mathbb{S}'' \subset \Lambda^2 \mathbb{S}$ we obtain a map

(7.7)
$$V^* \otimes (\mathbb{S}' \oplus \mathbb{S}'') \longrightarrow \mathbb{S}' \oplus \mathbb{S}'' \\ (s' \otimes s''), (\psi', \psi'') \longmapsto (\epsilon'(s', \psi')s'', \epsilon''(s'', \psi'')s').$$

In particular, if $v \in V^*$, $s' \in \mathbb{S}'$, and $s'' \in \mathbb{S}''$, then $v, s' \otimes 1$ lands in \mathbb{S}'' , and correspondingly $v, 1 \otimes s''$ lands in \mathbb{S}' . Therefore we obtain maps $\gamma \colon V^* \otimes \mathbb{S}' \to \mathbb{S}''$ and $V^* \otimes \mathbb{S}'' \to \mathbb{S}'$. These will be the Clifford multiplication maps when we pass to associated bundles on a spin 4-manifold. The notation is suggestive: V^* will be vectors and \mathbb{S}' and \mathbb{S}'' will be the spinors.

Proposition 7.8. If $\theta_1, \theta_2 \in V^*$, then

$$\gamma(\theta_1)\gamma(\theta_2) + \gamma(\theta_2)\gamma(\theta_1) = B(\theta_1, \theta_2).$$

But first we need a quick fact.

Lemma 7.9. Let W be a two-dimensional vector space and ϵ be an area form for W. For any $w_1, w_2, w_3 \in W$,

$$\epsilon(w_1, w_2)w_3 + \epsilon(w_2, w_3)w_1 + \epsilon(w_3, w_1)w_2 = 0.$$

Proof sketch. It suffices to check that the map

(7.10)
$$W \times W \times W \longrightarrow \Lambda^2 W \otimes W$$
$$w_1, w_2, w_3 \longmapsto (w_1 \wedge w_2) \otimes w_3 + (w_2 \wedge w_3) \otimes w_1 + (w_3 \wedge w_1) \otimes w_2$$

factors through $\Lambda^3 W$.

Proof of Proposition 7.8. Write $\theta_1 = s_1' \otimes s_1''$ and $\theta_2 = s_2' \otimes s_2''$. If $\psi' \in \mathbb{S}'$, then

(7.11a)
$$\gamma(s'_{1} \otimes s''_{1})\gamma(s'_{2} \otimes s''_{2})\psi' = \gamma(s'_{1} \otimes s''_{1})\epsilon'(s'_{2}, \psi')s''_{2}$$
$$= \epsilon'(s'_{2}, \psi')\epsilon''(s''_{1}, s''_{2})s'_{1}.$$

Similarly,

(7.11b)
$$\gamma(s_2' \otimes s_2'') \gamma(s_1' \otimes s_1'') = -\epsilon'(s_1', \psi') \epsilon''(s_1'', s_2'') s_2'.$$

Adding these together, you get

$$(7.12) \gamma(s_1' \otimes s_1'')\gamma(s_2' \otimes s_2'')\psi' + \gamma(s_2' \otimes s_2'')\gamma(s_1' \otimes s_1'') = -\epsilon_1'(s_1', s_2')\epsilon''(s_1'', s_2'')\psi'.$$

Proposition 7.13. If $\theta_1, \theta_2 \in V^*$, then the assignment

(7.14a)
$$\theta_1 \wedge \theta_2 \longmapsto \gamma(\theta_1)\gamma(\theta_2) - \gamma(\theta_2)\gamma(\theta_1)$$

defines a map

(7.14b)
$$\Lambda^2 V^* \longrightarrow \operatorname{Aut}(\mathbb{S}') \times \operatorname{Aut}(\mathbb{S}''),$$

such that $\Lambda^2 V_+^*$ acts by zero on \mathbb{S}'' and $\Lambda^2 V_-^*$ acts by zero on \mathbb{S}' .

Recall first that if W is a vector space, there's a canonical isomorphism

$$(7.15) W \otimes W \cong \operatorname{Sym}^2 W \otimes \Lambda^2 W.$$

The general theory of decomposing a tensor product involves a tool called Young diagrams. In our setting,

$$V^* \otimes V^* \cong \mathbb{S}' \otimes \mathbb{S}'' \otimes \mathbb{S}' \otimes \mathbb{S}''$$

$$(7.16) \cong \underbrace{\operatorname{Sym}^2 \mathbb{S}' \otimes \Lambda^2 \mathbb{S}''}_{\Lambda^2_+ V^*} \oplus \underbrace{\Lambda^2 \mathbb{S}' \otimes \operatorname{Sym}^2 \mathbb{S}''}_{\Lambda^2_- V^*} \oplus \cdots$$

Now choose a real subspace $L' \subset \mathbb{S}'$ such that $\mathbb{S}' = L' \oplus JL'$. Then V* splits as

$$(7.17) V^* = \mathbb{S}' \otimes \mathbb{S}'' = (L' \oplus JL') \otimes \mathbb{S}'' = L' \otimes \mathbb{S}'' \oplus JL' \otimes \mathbb{S}'',$$

and J interchanges the two factors, defining a complex structure on $V_{\mathbb{R}}^*$. Similarly,

$$\Lambda_{+}^{2}V^{*} \cong \operatorname{Sym}^{2}\mathbb{S}' \oplus \Lambda^{2}\mathbb{S}''$$

$$\cong (L')^{\otimes 2} \otimes \Lambda^{2}\mathbb{S}'' \oplus (JL')^{\otimes 2} \otimes \Lambda^{2}\mathbb{S}'' \oplus (L' \otimes JL') \otimes \Lambda^{@}\mathbb{S}''.$$

$$(2,0) \qquad (0,2) \qquad (1,1)$$

and

(7.18)

(7.19)
$$\Lambda_{-}^{2}V^{*} \cong \Lambda^{2}\mathbb{S}' \otimes \operatorname{Sym}^{2}\mathbb{S}'' = \underbrace{(L' \otimes JL') \otimes \operatorname{Sym}^{2}\mathbb{S}''}_{(1,1)}.$$

Here the annotations mean the *type* of a form in the complexificiation of a real vector space. Specifically, suppose V is a real vector space, so that $V \otimes \mathbb{C} = W \oplus \overline{W}$. Then $V^* \otimes \mathbb{C} = W^* \oplus \overline{W}^*$ too, and therefore there is a splitting

(7.20)
$$\Lambda^k(V^* \otimes \mathbb{C}) = \bigoplus_{p+q=k} \Lambda^p W^* \otimes \Lambda^q \overline{W}^*.$$

The forms in this summand are said to have type (p,q). Since dim V=4, then

(7.21)
$$\Lambda^2(V^* \otimes \mathbb{C}) = \Lambda^{2,0} \oplus \Lambda^{1,1} \oplus \Lambda^{0,2}$$

of dimensions 1, 4, and 1 respectively.

Theorem 7.22. The intersection over all subspaces L' of the (1,1)-forms with respect to L' is $\Lambda^2_-V^*$.

This follows directly from a symmetry argument: this is the only $SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$ -invariant subspace of $\Lambda^{1,1}$.

This is very useful, as it establishes a link between self-duality in dimension 4 and complex geometry. If you have some connection and want to know whether it's anti-self-dual, it suffices to show that it's type (1,1) in every complex structure.

∽ · *∼*

We're now in a position to discuss the Dirac operator, which we will do next time. In the last ten minutes of this lecture, we'll review some basics of complex geometry.

Let M be a manifold, and suppose $I \in \operatorname{End}(TM)$ squares to $-\operatorname{id}_{TM}$. This is what's called an almost complex structure on M, and just as above allows us to decompose

(7.23)
$$\Omega_M^k(\mathbb{C}) = \bigoplus_{p+q=k} \Omega_M^{p,q}.$$

In more detail, $TM \otimes \mathbb{C}$ splits as $W \oplus \overline{W}$, where W is the subspace where I acts by i (where we've chosen a square root i of -1) and \overline{W} is where I acts by -i. Thus $\Lambda^k T^*M$ splits as a sum of $\Lambda^p W^*$ and $\Lambda^q \overline{W}^*$ over all (p,q) with p+q=k, and hence sections do as well, giving (7.23).

In this setting, what happens to the de Rham differential? It looks like it gets complicated, but it turns out that $d_{\Omega^{1,0}}$ has no (0,2)-component, and more generally, $d|_{\Omega^{p,q}}$ lands only in (p+1,q) and (p,q+1). Therefore we can let ∂ denote the part of d valued in $\Omega^{p+1,q}$ and $\overline{\partial}$ the part of d valued in $\Omega^{p,q+1}$, and we get a diagram of maps

(7.24)
$$\begin{array}{c|c}
\Omega^{p,q} \\
\overline{\partial} & \partial \\
\Omega^{p,q+1} & \Omega^{p+1,q} \\
\overline{\partial} & \overline{\partial} & \overline{\partial} \\
\Omega^{p,q+2} & \Omega^{p+1,q+1} & \Omega^{p+2,q}
\end{array}$$

We know $d^2 = 0$ iff $\partial^2 = 0$, $\overline{\partial}^2 = 0$, and $\partial \overline{\partial} + \overline{\partial} \partial = 0$, so we would like this to be true.

Claim 7.25. This condition is exactly the vanishing of the complex Frobenius tensor of the complex distribution $\overline{W} \subset TM \otimes \mathbb{C}$.

This isn't too hard to see. But the crucial equivalent condition is harder:

Theorem 7.26 (Neulander-Nirenberg). This condition holds iff we can cover M by local coordinates in which the change-of-charts map is holomorphic.

Lecture 8.

Twistors and Dirac operators: 2/14/19

"Dimension 4 is, as always, the problem child, or the interesting child."

Last time, we discussed that if M is an almost complex manifold, meaning it comes equipped with a map $I: TM \to TM$ with $I^2 = -\mathrm{id}$, then the complex differential forms $\Omega^k_M(\mathbb{C})$ split into $\Omega^{p,q}_M$ indexed over p,q with p+q=k based on how I acts on them. We then mentioned Theorem 7.26, which says that if d restricted to a map $\Omega^{0,1}_M \to \Omega^{2,0}_M$ is zero (which is an integrability condition), then there is an atlas for M whose change-of-charts maps are holomorphic, i.e. M is a complex manifold. In particular, in these local coordinates $z_1, \ldots, z_n, \, \mathrm{d} z_1, \ldots \, \mathrm{d} z_n$ are of type (1,0) and pointwise form a basis of $\Omega^{1,0}_M$.

Assume now that M is a complex manifold, and let $E \to M$ be a C^{∞} complex vector bundle, i.e. a complex bundle in the usual sense, and not necessarily holomorphic. Suppose we have a linear operator $\overline{\partial}_E \colon \Omega_M^{0,0}(E) \to \Omega_M^{0,1}(E)$ such that

$$(8.1) \overline{\partial}_E(f \cdot s) = \overline{\partial}f \cdot s + f\overline{\partial}_E s,$$

where f is a function and s is a section of E. We can then extend this to a complex

$$(8.2) 0 \longrightarrow \Omega_M^{0,0}(E) \xrightarrow{\overline{\partial}_E} \Omega_M^{0,1}(E) \xrightarrow{\overline{\partial}_E} \Omega_M^{0,2}(E) \longrightarrow \cdots,$$

and $\overline{\partial}_E^2 \colon \Omega_M^{0,0}(E) \to \Omega_M^{0,2}(E)$ is multiplication by some tensor $\Phi_E \in \Omega_M^{0,2}(\operatorname{End} E)$.

Theorem 8.3. If $\Phi_E = 0$, then there exists a local basis of sections s_1, \ldots, s_n of sections such that $\overline{\partial}_E s_i = 0$.

This is easier than Theorem 7.26, though we'll defer the proof. In this case we can place the structure of a complex manifold on E, and E is what's called a *holomorphic vector bundle*.

The twistor approach to the anti-self-dual equations. Now we'll briefly take a peek at one approach to the anti-self-dual equations, as part of some great activity in the 1970s by researchers including the Oxford school. This involves some algebro-geometric techniques which show off the uses of the linear algebra we did last time, and is the original approach to this equation on S^4 .

Let X be an oriented Riemannian 4-manifold. If $\mathbb{S} = \mathbb{S}^+ \oplus \mathbb{S}^-$ is a 4-dimensional complex vector space (which we'll turn into the spinor bundle soon enough) and dim $\mathbb{S}^{\pm} = 2$, then $\mathrm{Sp}_1 \times \mathrm{Sp}_1$ acts on it as the spin group. If $V^+ := \mathbb{S}^+ \otimes \mathbb{S}^-$, then it's isomorphic to $(\mathbb{R}^4)^*$, and SO_4 acts on it. Choose a complex line $L \subset \mathbb{S}^+$,

which as we discussed last time defines a complex structure on V^* . The space of choices is $\mathbb{P}(\mathbb{S}^+)$, which is also acted on by SO_4 .

Bringing in the topology, let $\mathcal{B}_{SO}(X) \to X$ be the principal SO_4 -bundle of oriented orthonormal bases. The Riemannian metric defines the Levi-Civita connection Θ^{LC} on $\mathcal{B}_{SO}(X)$, which is a beautiful and still somewhat mysterious fact. Because SO_4 acts on $\mathbb{P}(\mathbb{S}^+)$, we obtain an associated bundle $\mathbb{P}(\mathbb{S}^+) \to X$, and the Levi-Civita connection induces a horizontal distribution on it.

Remark 8.4. We don't have an action of SO_4 on \mathbb{S}^+ – that's what we'd need the spin structure for. But we do have a projective action, so the action on the projective space is well-defined.

 $\mathbb{P}(\mathbb{S}^+)$ is a six-dimensional real manifold.

Exercise 8.5. Choose $S^4 = \mathbb{HP}^1$ with the round metric. Then $\mathbb{P}(\mathbb{S}^+)$ is diffeomorphic to \mathbb{CP}^3 , and the projection map $\mathbb{CP}^2 \to \mathbb{HP}^1$ is the map sending a complex line in $\mathbb{C}^2 \to \mathbb{H}^1$ to the unique quaternionic line containing it. The fiber is \mathbb{CP}^1 .

In this case, \mathbb{S}^+ is a complex manifold. In general, we will only have an almost complex manifold: given a point $x, L \in \mathbb{P}(\mathbb{S}^+)$, we have the two lines T_xX and the vertical line in $T_{x,L}\mathbb{P}(\mathbb{S}^+)$ (TODO: I might have this wrong), and so we can take the usual almost complex structure where T_xX is real and the vertical line is imaginary.

Definition 8.6. If M is a Riemannian manifold of dimension at least 5, then its Riemann curvature tensor splits as a sum of three pieces: scalar curvature, Ricci curvature, and something called Weyl curvature, which is the piece that's invariant under conformal transformations.

In more detail, the Riemann curvature tensor has some symmetries that mean it's a section of $\operatorname{Sym}^2(\Lambda^2(T^*M))$ If V is an n-dimensional vector space with an orthogonal basis, the standard O_n -action induces an O_n -action on $\operatorname{Sym}^2(\Lambda^2V^*)$, and this decomposes into three irreducible components, giving us the scalar curvature (for the trivial subrepresentation), the Ricci curvature, and the Weyl curvature.

The Weyl curvature requires four antisymmetric indices, so the Weyl curvature vanishes in dimensions 2 and 3: in dimension 2, the Riemannian curvature tensor is just the scalar curvature, and is called the *Gauss curvature*. In dimension 3, we also have Ricci curvature, but that's it, and so Riemannian geometry in 3 dimensions is nice, e.g. when studying Ricci flow. In dimension 4, the Weyl curvature tensor splits into two pieces: its self-dual and anti-self-dual components. This makes life interesting, as always, in dimension 4.

Theorem 8.7 (Atiyah-Hitchin-Singer). This almost complex structure is integrable iff $W_+ = 0$, where W_+ is the self-dual Weyl curvature tensor on X.

In particular: we've passed from an integrability question on the fiber to one on the base.

Now suppose $E \to X$ is a complex vector bundle, ¹⁹ and let A be a connection on E, with curvature $F \in \Omega^2_X(\operatorname{End} E)$. Now pull back E and A to $\pi^*E \to \mathbb{P}(\mathbb{S}^+)$. Now, we're over an almost complex base, so we can decompose the curvature into its type components:

(8.8)
$$\pi^* F \in \Omega^2_{\mathbb{P}(\mathbb{S}^+)}(\operatorname{End} E) = \bigoplus_{p+q=2} \Omega^{p,q}(\operatorname{End} E).$$

A bit of linear algebra leads to the following lemma.

Lemma 8.9. The connection A is anti-self-dual iff π^*F has type (1,1).

Now let $P \to M$ be a principal G-bundle with a connection $\Theta \in \Omega_P^1(\mathfrak{g})$. This satisfies two equations: if $g \in G$, then $R_g^*\Theta = \operatorname{Ad}_g^{-1}\Theta$, and if $\xi \in \mathfrak{g}$, then $\iota_{\widehat{\xi}}\Theta = \xi$.

Now let \mathbb{E} be a vector space and $\rho \colon G \to \operatorname{Aut}(\mathbb{E})$ be a representation. It differentiates to a Lie algebra representation $\dot{\rho} \colon \mathfrak{g} \to \operatorname{End}(\mathbb{E})$. Let $E := \mathbb{E}_P$ be the associated bundle to the data of ρ , and let ψ be a section. We can think of ψ as a map $P \to \mathbb{E}$ or as an \mathbb{E} -valued function on P; then ψ descends to $\Omega^0_M(E)$ iff $R^*_g \psi = \rho(g^{-1}) \cdot \psi$ for all $g \in G$. More generally, if $\alpha \in \Omega^k_P(\mathbb{E})$, then it descends to $\Omega^k_M(E)$ iff

(8.10)
$$R_g^* \alpha = \rho(g^{-1})\alpha$$

$$\iota_{\widehat{\xi}} \alpha = 0,$$

 $^{^{19}}$ As X is not necessarily a complex manifold, we can't ask for E to be holomorphic.

where as before $g \in G$ and $\xi \in \mathfrak{g}$.

The covariant derivative of ψ is

(8.11)
$$\nabla_{\Theta}\psi = \mathrm{d}\psi + \dot{\rho}(\Theta)\psi,$$

which a priori lives in $\Omega_P^1(\mathbb{E})$, but you can directly check that it descends, which is a useful exercise. More generally, if α is a k-form as above,

$$d_{\Theta}\alpha = d\alpha + \dot{\rho}(\Theta) \wedge \alpha,$$

and this also descends, which you can check.

Exercise 8.13 (Bianchi identity). The curvature $F_{\Theta} = d\Theta + (1/2)[\Theta \wedge \Theta]$ satisfies $dF = 0 + [d\Theta \wedge \Theta]$, i.e.

$$d_{\Theta}F := dF + [\Theta \wedge F] = 0,$$

because F and $d\Theta$ differ by $[\Theta \wedge \Theta]$, and the Jacobi identity shows the triple bracket you get by substituting it in is zero.

Now let M be a Riemannian n-manifold with its principal O_n -bundle bundle of frames $\mathcal{B}(M) \to M$ and the Levi-Civita connection Θ^{LC} . This therefore gives us horizontal vector fields $\partial_1, \ldots, \partial_n$ on $\mathcal{B}(M)$ defined as follows: given an $x \in X$ and a basis $b \colon \mathbb{R}^n \xrightarrow{\cong} T_x M$, hence a point in $\mathcal{B}(M)$, we can take $b(e_1) \in T_x M \subset T_{(x,b)} \mathcal{B}(M)$, which is a horizontal vector, and this defines ∂_1 ; then $\partial_2, \ldots, \partial_n$ are analogous. Moreover,

$$[\partial_k, \partial_\ell] = -\frac{1}{2} T_{k\ell}^i \partial_i - \frac{1}{2} R_{jk\ell}^i E_i^j,$$

where E_i^j is some matrix (TODO: I did not parse the definition) which is 0 everywhere except for a 1 in column i and a -1 in column j. The first term vanishes because the Levi-Civita connection is torsion-free.

We can flow along these by geodesics by solving the geodesic equation, which frames the horizontal tangent bundle on $\mathcal{B}(M)$.

We can use this to write the covariant derivative: if O_n acts on a vector space \mathbb{S} and $\psi \colon \mathcal{B}(M) \to \mathbb{S}$ is an equivariant (TODO: ?) map, then

(8.15)
$$\nabla \psi = e^k \cdot \partial_k \psi \colon \mathcal{B}(M) \longrightarrow \mathbb{S} \otimes (\mathbb{R}^n)^*.$$

Now we can say something about the Dirac operator. Assume now that X is a 4-dimensional spin manifold with a Riemannian metric. All the linear algebra we did last time tells us that if $\widetilde{\mathcal{B}} \to X$ is the principal Spin₄-bundle of frames, we have Spin₄-equivariant maps $\psi^{\pm} \colon \widetilde{\mathcal{B}} \to \mathbb{S}^{\pm}$, where \mathbb{S}^{\pm} are as in the previous lecture, so we obtain Clifford multiplication $\gamma \colon (\mathbb{R}^4)^* \otimes \mathbb{S}^{\pm} \to \mathbb{S}^{\mp}$, and we proved a lemma that

(8.16)
$$\gamma(e^i)\gamma(e^j) + \gamma(e^j)\gamma(e^i) = -\delta^{ij}.$$

Definition 8.17. Let S^{\pm} denote the spinor bundles on X. The *Dirac operator* $D: \Omega_X^0(S^{\pm}) \to \Omega_X^0(S^{\mp})$ is defined by

$$D\psi := \gamma(e^k)\partial_k\psi.$$

It's easy to see this is a first-order differential operator: we differentiated once.

In the last ten minutes, ²⁰ we'll compute the square of the Dirac operator.

(8.18)
$$D^2 \psi = \gamma(e^k) \gamma(e^\ell) \partial_k \partial_\ell \psi$$

$$= -\sum_{k=1}^{n} \partial_k^2 \psi + \sum_{k < \ell} \gamma(e^k) \gamma(e^\ell) [\partial_k, \partial_\ell] \psi$$

$$= -\nabla^* \nabla \psi + \frac{1}{4} R_{\text{scal}}.$$

This is called the Weitzenböck formula.²¹ Here $\nabla^*\nabla$, meaning the composition of ∇ with its formal adjoint, is called the *covariant Laplacian*, and exists for any associated bundle for the bundle of frames on a Riemannian manifold.

 $^{^{20}}$ Measured in my local frame, we have -3 minutes.

 $^{^{21}}$ The beer is spelled differently: weizenbock.

Now lets choose a Hermitian vector bundle $E \to X$ of rank N with a connection A and curvature F_A , and let $P \to X$ denote the principal U_N -bundle of unitary bases for E; then A is a connection here, in the sense that $A \in \Omega^1_P(\mathfrak{u}_N)$. Cross with the spin bundle to obtain $\widetilde{\mathcal{B}} \times_X P \to X$, which is a principal $\operatorname{Spin}_4 \times U_N$ -bundle, and this has a connection which heuristically is $\Theta^{\operatorname{LC}} + A$, and in particular we still have the vector fields $\partial_1, \ldots, \partial_4$.

If $\mathbb{E} = \mathbb{C}^N$ is the model vector space for E, we can consider $\mathrm{Spin}_4 \times \mathrm{U}_N$ -equivariant maps $\psi \colon \widetilde{\mathcal{B}} \times_X P \to \mathbb{S}^{\pm} \otimes \mathbb{E}$, and hence obtain a Dirac operator

$$(8.21) D_A: \Omega_X^0(S^+ \otimes E) \longrightarrow \Omega_X^0(S^- \otimes E),$$

and this squares to TODO: I had to go.

Lecture 9.

The Nahm transform for anti-self-dual connections: 2/17/19

"That's why I wrote it that way, thinking you might try to pull that one on me."

Today, we're going to discuss a kind of Fourier transform for anti-self-dual forms on a Euclidean torus, mostly following Donaldson-Kronheimer [DK97].

Definition 9.1. A lattice Λ in a real vector space V is a finitely generated abelian subgroup of V, necessarily free. If its rank is equal to the dimension of V, it's called full.

Equivalently, a full lattice is the \mathbb{Z} -span of a basis of V.

Now let V be a 4-dimensional oriented inner product space and $\Lambda \subset V$ be a full lattice. The model example is $V = \mathbb{R}^4$ and $\Lambda = \mathbb{Z}^4$. Then $T := V/\Lambda$ is a torus with an orientation and Riemannian metric induced from V. It is also an abelian Lie group.

Let $\Lambda^* := \operatorname{Hom}(\Lambda, \mathbb{Z})$ denote the *dual lattice*, which sits inside $V^* = \operatorname{Hom}(V, \mathbb{R})$. There is an isomorphism $\Lambda^* \stackrel{\cong}{\to} \operatorname{Hom}(T, \mathbb{T})$ sending $\theta \colon \Lambda \to \mathbb{Z}$ to $v \mapsto e^{2\pi i \theta(v)}$.

Definition 9.2. The dual torus to T is $T^* := V^*/\Lambda^*$.

There is a universal cheracter $\chi \colon T \times \Lambda^* \to \mathbb{T}$: given $\theta \in \Lambda^*$ and $x \in T$, $\chi(x, \theta) \coloneqq \exp(2\pi i \theta(x))$ (essentially, "evaluate θ on x"). There are projection maps

(9.3)
$$T \times \Lambda^*$$

$$T \times \Lambda^*$$

$$T \times \Lambda^*$$

from which we can define a Fourier transform from (a certain class of) functions on T to (a certain class of) functions on Λ^* . Specifically, given a function f on T, we'd like to define

$$\widehat{f} := (p_2)_* \chi^{-1} p_1^* f,$$

or more explicitly,

(9.5)
$$\widehat{f}(e^v) = \int_T dt \, e^{-2\pi i \theta(v)} \cdot f(e^v).$$

Remark 9.6. This is an instance of a more general phenomenon for locally compact abelian groups called Pontrjagin duality. Another example is a finite analogue: letting $\mu_n \subset \mathbb{C}$ denote the n^{th} roots of unity, we have a pairing $\mathbb{Z}/n \times \mu_n \to \mathbb{T}$ sending $(k, \lambda) \mapsto \lambda^k$. These two groups are noncanonically isomorphic,, but each is canonically isomorphic to the character group of the other. In our setting, T and T are are it isomorphic, but are still each others' character groups.

We will discuss a categorified version of this, which in the algebro-geometric setting is called the Fourier-Mukai transform. We will use T^* instead of Λ^* , and push-pull along the diagram

$$(9.7) T \times T^*$$

$$T \times T^*$$

$$T \times T^*$$

$$T \times T^*$$

Instead of the universal character we will have a universal line bunde $\mathscr{L} \to T \times T^*$ with a Hermitian connection, allowing us to exchange vector bundles on T and on T^* . This \mathscr{L} will be called the *Poincaré line bundle*. Heuristically, the formula will look like (9.4): if $E \to T$ is a vector bundle, we let

$$(9.8) \qquad \widehat{E} = (p_2)_* (\mathscr{L} \otimes p_1^* E),$$

In order to make this precise, we have some details to figure out, namely

- (1) constructing \mathcal{L} and its Hermitian connection,
- (2) interpreting $(p_2)_*$, and
- (3) incorporating connections on E and \widehat{E} into the story.

Once we do this, though, we will be able to prove some nice theorems: generic anti-self-dual connections on \widehat{E} pass to anti-self-dual connections on \widehat{E} , and there will be an inversion formula.

Remark 9.9. If we give a complex structure on V, then T and T^* acquire the structure of complex manifolds, and we can do all of this with sheaves. This is what's called the Fourier-Mukai transform.

Instead of constructing the Poincaré line bundle, we'll construct a principal \mathbb{T} -bundle $P \to T \times T^*$ with connection; this is equivalent, via passing to the associated bundle $P \times_{\mathbb{T}} \mathbb{C} \to T \times T^*$. Begin with the trivial principal \mathbb{T} -bundle $V \times V^* \times \mathbb{T} \to V \times V^*$, with its trivial connection $\Theta \in \Omega^1_{V \times V^* \times \mathbb{T}}(i\mathbb{R})$; specifically,

(9.10)
$$\Theta_{(v,\theta,z)}(\dot{v},\dot{v}^*,\dot{z}) = 2\pi i\theta(\dot{v}) + z^{-1}z.$$

This is a universal family of flat connections; you can check that the holonomy vanishes.

Now $\Lambda \times \Lambda^*$ acts on this trivial principal T-bundle by

(9.11a)
$$\lambda \cdot (v, \theta, z) := (v + \lambda, \theta, z)$$

(9.11b)
$$\lambda^* \cdot (v, \theta, z) := (v, \theta + \lambda^*, \exp(-2\pi i \lambda^*(v))z),$$

and this covers the usual $\Lambda \times \Lambda^*$ -action on the base, so it descends to a principal \mathbb{T} -bundle $P \to T \times T^*$ with a flat connection $\overline{\Theta}$. You can think of this as a family of flat connections on T parameterized by T^* ; these bundles are trivializable, 22 but not canonically so. Similarly, you can view this as a family of flat connections on T^* parameterized by T, and these are also trivializable but not canonically trivialized. However, the total bundle is not trivial.

The connection form Ω is a translation-invariant (under the group operation) purely imaginary 2-form satisfying the formula

(9.12)
$$\Omega((\dot{v}_1, \dot{\theta}_1), (\dot{v}_2, \dot{\theta}_2)) = 2\pi i (\dot{\theta}_1(\dot{v}_1) - \dot{\theta}_2(\dot{v}_2)),$$

or, in other words,

(9.13)
$$\Omega = 2\pi i \langle d\theta \wedge dv \rangle.$$

Here $d\theta \in \Omega^1_{T^*}(V^*)$ and $dv \in \Omega^1_T(V)$ are precisely the Maurer-Cartan forms for these two tori.

Now let $E \to T$ be a Hermitian vector bundle with covariant derivative ∇_A . We can pull both of these back to $T \times T^*$ and tensor with \mathscr{L} , but how do we push forward? This will involve the Dirac operator! Let \mathbb{S}^+ and \mathbb{S}^- be the spinor spaces, so that $V^* = \mathbb{S}^+ \otimes \mathbb{S}^-$. The spinor bundles over V are the trivial bundles $\underline{\mathbb{S}}^\pm \to V$, which then descend to the torus as trivial bundles. Given $\theta \in T^*$, we have Dirac operators

$$(9.14) D_{A,\theta}^{\pm} \colon \Gamma_T(\underline{\mathbb{S}}^{\pm} \otimes E \otimes \mathscr{L}_{\theta}) \longrightarrow \Gamma_T(\underline{\mathbb{S}}^{\mp} \otimes E \otimes \mathscr{L}_{\theta}).$$

We will use this to define the pushforward $(p_2)_*$ – crucially, since T is compact, these are Fredholm operators, which play the role of sheaves in differential geometry: we have the kernel and cokernel of a Fredholm operator, but in a family these can jump. We would like to extract an honest vector bundle, so we'll ask for a hypothesis such that $\ker(D_{A,\theta}^+) = 0$. This is equivalent to saying that $D_{A,\theta}^- = (D_{A,\theta}^+)^*$ is surjective. Assuming this, $\ker(D_A^-) \to T^*$ (i.e. the fiber above θ is $\ker(D_{A,\theta}^-)$) is a vector bundle.

²²This is a flat connection on a torus; Chern-Weil theory implies the Chern class of P vanishes, so it's abstractly trivializable.

²³Though this is a simple linear-algebra exercise in finite dimensions, in the infinite-dimensional Fredholm setting it's a harder theorem known as the *Fredholm alternative*.

Example 9.15. Before we discuss that hypothesis, let's look at a toy model. Consider the matrix

$$(9.16) D_z := \begin{pmatrix} 1 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} : \mathbb{C}^3 \to \mathbb{C}^2,$$

where $z \in \mathbb{C}$; hence this is a family of linear operators parametrized by \mathbb{C} . This is surjective for $z \neq 0$, with kernel $\mathbb{C} \cdot (0,0,1)$. At 0, the kernel is $\mathbb{C} \cdot (0,0,1) \oplus \mathbb{C} \cdot (0,1,0)$. The dimension of the kernel minus the dimension of the cokernel is always 1, but the kernel isn't a vector bundle; it does define a sheaf, however.

Proposition 9.17. If A is anti-self-dual, then $\ker(D_{A,\theta}^+) = 0$, hence we can define the pushforward.

Proof. This is a vanishing theorem, and many vanishing theorems follow a similar proof. We will use the Weitzenböck formula

$$(9.18) D_A^- D_A^+ = \nabla_A^* \nabla_A - F_A^+,$$

and we know $F_A^+=0$. Suppose $\psi\in\Gamma_T(\underline{\mathbb{S}}^+\otimes E\otimes\mathscr{L}_\theta)$ and $D_A^+\psi=0$, but $\psi\neq0$. Then

(9.19)
$$0 = \int_T \langle \psi, \nabla_A^* \nabla_A \psi \rangle \, \mathrm{d}x = \int_T \|\nabla_A \psi\|^2.$$

Since $\|\nabla_A\psi\|^2$ is nonnegative, this means it's zero, so ψ is covariantly constant. This is a typical application of the Weitzenböck formula.

Spelling this out in more detail, let s_1, s_2 be a basis for \mathbb{S}^+ . We can write

$$(9.20) \psi(t) = \psi_1(t)s_1 + \psi_2(t)s_2$$

for $t \in T$, where $\psi_i \in \Gamma_T(E \otimes \mathscr{L}_\theta)$ and $\nabla_A \psi_i = 0$. This section ψ defines a subbundle of $E \otimes \mathscr{L}_\theta$ of rank 1, and the fact that it's covariantly constant means that it splits off! Therefore there is some other bundle $\widetilde{E} \subset E \otimes \mathscr{L}_\theta$ with $E \otimes \mathscr{L}_\theta = \widetilde{E} \oplus \underline{\mathbb{C}}$; the connection form is diagonal, and is the standard connection on $\underline{\mathbb{C}}$. Now, tensoring with \mathscr{L}_θ^* ,

$$(9.21) E = \widetilde{E} \otimes \mathcal{L}_{\theta}^* \oplus \mathcal{L}_{\theta}^* = E' \oplus \mathcal{L}_{\theta}^*.$$

Definition 9.22. We say E is without flat factors (WFF) if there is no decomposition $E = E' \oplus L$ where L is flat.

This is a generic condition.

Anyways, we have our Fourier-transformed bundle $\widehat{E} := \ker(D_A^-)$. The next step is to define the covariant derivative on \widehat{E} , via a more general definition.

Definition 9.23. of vector bundles $K, L \to M$, where M is a smooth manifold, and a map $R: K \to L$. We will assume K and L come with covariant derivatives ∇^K , resp. ∇^L , and that either R is Fredholm, or both K and L have finite rank. Assuming that R is fiberwise surjective, then $\ker R \to M$ is a vector bundle. Choose a projection $\pi: K \to \ker R$ such that $\pi \circ i = \operatorname{id}_{\ker R}$, where $i: \ker R \to K$ is inclusion. Then the compressed covariant derivative on $\ker R$ is

$$\pi \circ \nabla^K \circ i \colon \Omega^0_M(\ker R) \longrightarrow \Omega^1_M(\ker R).$$

This general construction applies to our situation, where $K = \underline{\mathbb{S}}^- \otimes E \otimes \mathscr{L}_{\theta}$, $L = \underline{\mathbb{S}}^+ \otimes E \otimes \mathscr{L}_{\theta}$, and $R = D_{A,\theta}^-$. (TODO: how did we get π ?) Therefore we pick up a connection \widehat{A} on $\widehat{E} \to T^*$.

Theorem 9.24. Assuming A is anti-self-dual and (E, ∇_A) is without flat factors, then \widehat{A} is anti-self-dual.

We want to prove that $F_{\widehat{A}} \in \Omega^{2,-}_{T^*}(\operatorname{End}\widehat{E})$, and will do so by proving that in every complex structure on T^* , $F_{\widehat{A}}$ is of type (1,1), which by Theorem 7.22 suffices. The complex structures on T^* are parameterized by $\mathbb{P}(\mathbb{S}^+)$. We will need some more ingredients to do this, which we will discuss next time:

- (1) the Chern connection on a holomorphic, Hermitian vector bundle;
- (2) how to express the Dirac operator in terms of $\overline{\partial}$; and
- (3) how to fit these vector bundles into a family of Dolbeault complexes.

This will allow us to identify the connection with the Chern connection, which always has type (1,1); we can avoid a calculation in favor of a geometric proof.

Lecture 10.

The Chern connection: 2/19/19

Today, we'll prove Theorem 9.24, that the Fourier transform of an anti-self-dual connection on a 4-torus is anti-self-dual. To do this, we'll fill in some facts about geometry, as promised last time.

Definition 10.1. Let $\pi: E \to M$ be a complex vector bundle, and suppose that both E and M are complex manifolds and π is holomorphic. Then $E \to M$ is called a *holomorphic* vector bundle.

This implies in particular that locally on M, there is a basis s_1, \ldots, s_N of holomorphic sections of E. Thus any section locally has the form $f^i s_i$ for \mathbb{C} -valued f^i , allowing us to define the $\overline{\partial}_E$ operator by $\overline{\partial}_E(f^i s_i) := \overline{\partial} f^i s_i$. Of course, one must check that this is independent of coordinates.

Remark 10.2. Conversely, suppose $\pi \colon E \to M$ is a C^{∞} complex vector bundle, M is a complex manifold, and we have an operator $\overline{\partial}_E \colon \Omega_M^{0,0}(E) \to \Omega_M^{0,1}(E)$ satisfying a Leibniz rule and $\overline{\partial}_E^2 = 0$. Then $\pi \colon E \to M$ admits the structure of a holomorphic vector bundle for which $\overline{\partial}_E$ is the operator defined above.²⁴

Theorem 10.3. Let $\pi: E \to M$ be a holomorphic vector bundle over a complex manifold, and endow E with a Hermitian metric $\langle -, - \rangle: \overline{E} \otimes E \to \underline{\mathbb{C}}$. Then there exists a unique connection ∇ on $E \to M$ such that

- (1) if $\nabla = \nabla' + \nabla''$ is the decomposition induced by $\nabla \colon \Omega_M^{0,0}(E) \to \Omega_M^{1,0}(E) \oplus \Omega_M^{0,1}(E)$, then $\nabla'' = \overline{\partial}_E$;
- (2) ∇ is compatible with the metric, in the sense that

(10.4)
$$d\langle \overline{s}_1, s_2 \rangle = \langle \nabla \overline{s}_1, s_2 \rangle + \langle \overline{s}_1, \nabla s_2 \rangle;$$

(3) and the curvature of ∇ is type (1,1).

In this setting, ∇ is called the *Chern connection*.

Proof. We work locally in a holomorphic chart U, allowing us to choose a basis s_1, \ldots, s_N of holomorphic sections of E. Define $h_{ij} := \langle \overline{s}_i, s_j \rangle$ and write $\nabla s_j = \alpha_j^i s_i$, so $\alpha_j^i \in \Omega_U^{1,0}$. Using (10.4), we have

$$dh_{\bar{i}j} = \bar{\alpha}_i^k h_{\bar{k}j} + h_{\bar{i}k} \alpha_j^k$$

$$\partial h_{\bar{\imath}j} = h_{\bar{\imath}k} \alpha_j^k$$

$$\alpha_j^i = h^{i\bar{\ell}} \partial h_{\bar{\ell}j}.$$

Here $h^{i\ell}$ denotes the components of the inverse matrix. Now (10.7) completely characterizes ∇ , forcing uniqueness, and we can take it as a definition and check that it's consistent, guaranteeing existence.

Another proof. Let t_1, \ldots, t_N be a local unitary basis of C^{∞} sections, which means that $\langle \overline{t}_i, t_j \rangle = \delta_{ij}$, and write $\nabla t_j = \beta_j^i t_i$. Then $\beta = (\beta_j^i)$ is skew-Hermitian, so we can write $\beta = \beta' + \beta''$, where $\beta' \in \Omega_M^{1,0}$ and $\beta'' \in \Omega_M^{0,1}$. Since β is skew-Hermitian, $\beta' = -(\beta'')^*$, but β'' is given by $\overline{\partial}_E$, so we've again completely determined ∇ .

Remark 10.8. The fact that the curvature is type (1,1) is saying something about invariance under scalars: a $\lambda \in \mathbb{C}^{\times}$ acts on a form of type (p,q) by λ^{p-q} , so it acts by the identity on (p,p)-forms.

A third proof sketch of Theorem 10.3. Let $P \to M$ be the principal $GL_N(\mathbb{C})$ -bundle of frames of E. This is a holomorphic principal bundle, meaning the total space and the projection map are both holomorphic. Inside it is the principal U_N -bundle of unitary frames with respect to $\langle -, - \rangle$. We would like to produce a connection on P, namely a $GL_N(\mathbb{C})$ -invariant horizontal distribution $H \subset TP$.

Define $H := TQ \cap I(TQ)$, where $I \in \operatorname{End}(TP)$ is the action of i. Then one can check (TODO) that the induced covariant derivative satisfies the conditions in the theorem statement.

This proof is due to Is Singer.

²⁴This is less difficult to prove that you might expect: you can certainly lean on the Neulander-Nirenberg theorem, but there's a more elementary proof you can find in Donaldson-Kronheimer [DK97].

Remark 10.9. Suppose E = TM and M has a Riemannian metric; then in the last proof, $P = \mathcal{B}_{GL}(M)$ and $Q = \mathcal{B}_{U}(M)$. The proof above tells us that $\mathcal{B}_{U}(M)$ picks up the Chern connection Θ^{c} . There's another connection on $\mathcal{B}_{U}(M)$ induced from the Levi-Civita connection $\Theta^{\ell c}$ on $\mathcal{B}_{O}(M)$, using the inclusion $\mathcal{B}_{U}(M) \hookrightarrow \mathcal{B}_{O}(M)$ induced from the inclusion $U_{N} \hookrightarrow O_{2N}$.

Are these connections equal? This is expressing that the complex structure and Riemannian metric are compatible, so of course what we get is that this is equivalent to M being Kähler. This is perhaps the most beautiful definition of Kähler manifolds.

More generally, given any kind of tangential structure (e.g. spin structure, almost symplectic structure) on a manifold, and a Riemannian metric, you can ask whether there's a canonical torsion-free connection on the bundle of frames.

Recall that on a complex manifold M, the canonical bundle is the complex line bundle $K_M := \text{Det}_{\mathbb{C}}(T^*M)$.

Theorem 10.10 (Atiyah-Bott-Shapiro [ABS64], Hitchin [Hit74]). Let M be a Kähler spin manifold. Then the spin structure induces a holomorphic Hermitian line bundle $L \to M$ together with an isomorphism $L^{\otimes 2} \to K_M$, and the Dirac operator is

$$\overline{\partial}_L + \overline{\partial}_L^* \colon \Omega_N^{0, \mathrm{even/odd}} \longrightarrow \Omega_M^{0, \mathrm{odd/even}}(L).$$

To elaborate on the "even/odd" and "odd/even" pieces, recall that $\overline{\partial}_L$ maps from (p,q)-forms to (p,q+1)-forms, and therefore $\overline{\partial}_L^*$, its adjoint with respect to the Riemannian metric on M, sends (p,q+1)-forms to (p,q)-forms.

Remark 10.11. Not every Kähler manifold is spin, e.g. \mathbb{CP}^2 . And a spin structure is extra data, which in the holomorphic world is given by a square root of the canonical bundle.

We're not going to prove Theorem 10.10 in full generality, but we've developed enough of the theory of spin geometry in dimension 4 to do it, using the linear algebra of the spin representations that we've worked through. The details are worked out in Donaldson-Kronheimer [DK97].

Now let K^0, K^1, K^2 be complex vector spaces, so the trivial bundles $\underline{K}^i \to M$ over a complex manifold M are holomorphic. Suppose we have maps $\alpha \colon \underline{K}^0 \to \underline{K}^1$ and $\beta \colon \underline{K}^1 \to \underline{K}^2$, and suppose $\beta \circ \alpha = 0$, so that we have a complex. The cohomology groups might not be vector bundles: the dimension could jump. But if we assume α is injective and β is surjective, then the zeroth and second cohomology vanish, so as long as α and β are Fredholm (automatic if these spaces are finite-dimensional) the Euler characteristic of the complex is equal to dim H^1 , and therefore the dimension can't jump, and H^1 is a vector bundle.²⁵

Theorem 10.12. The cohomology $H^1 \to M$ has a holomorphic structure. Moreover, given Hermitian metrics on $K^i \to M$, the compressed connection on $H^1 \to M$ is its Chern connection.

Proof. For the first part, define a section of $H^1 \to M$ to be holomorphic if locally it has a lift to a holomorphic section $\ker(\beta) \to M$. Then we need to show that there's locally a basis of holomorphic sections. Fix an $m_0 \in M$ and $\bar{s}_0 \in H^1_{m_0}$ which has a holomorphic lift to $e \in K^1_{m_0}$ with $\beta_{m_0}e = 0$. Choose a $P \colon K^2_{m_0} \to K^1_{m_0}$ such that $\beta_{m_0}P = \mathrm{id}$, and trivialize each $\underline{K}^i \to M$ near m_0 . Then in a neighborhood U of m_0 , we can write $s_m = e + j_m$, where $m_{m_0} = 0$ and $m_j \in \mathrm{Im}(P)$, and we can write $\beta_m = \beta_{m_0} + \eta_m$, where of course $\eta_{m_0} = 0$. So we now have the equation

(10.13)
$$0 = \beta s = P(\beta_{m_0} + \eta_m)(e + j_m) = P\eta_m e + P\beta_{m_0} j_m + P\eta_m j_m,$$

i.e. we want to solve

$$(10.14) (1 + P\eta_m)j_m = -P\eta_m e.$$

That is, a solution to this equation allows us to extend \bar{s}_0 to a holomorphic section of H^1 . We can just write down the solution: let

$$(10.15) j_m := -\sum_{i=0}^{\infty} (-P\eta_m)^i P\eta_m e.$$

²⁵Implicit in this paragraph is the definition of a holomorphic vector bundle of possibly infinite rank. One can make sense of this by determining the right notion of a holomorphic function on a complex Banach space, and then using the same words as in Definition 10.1.

 \boxtimes

This converges (roughly because 1 + small is invertible), and is holomorphic. In particular, we can lift a basis of $K_{m_0}^1$ to some sections that we hope are a local basis. It will be left as an exercise to show that every holomorphic section can be written as a linear combination of these.

holomorphic section can be written as a linear combination of these. For the second part, let $\pi \colon \underline{K}^1 \to \ker \alpha^* = (\operatorname{Im} \alpha)^{\perp}$, where $\alpha^* \colon \underline{K}^1 \to \underline{K}^0$ is the adjoint in the Hermitian metrics. Then π is given by

$$(10.16) k \mapsto k - \alpha(\alpha^*\alpha)^{-1}\alpha^*k.$$

Since $[\overline{\partial}, \alpha] = 0$, then $[\overline{\partial}, \pi] \subset \operatorname{Im}(\alpha)$, and therefore $\pi[\overline{\partial}, \pi] = 0$. Suppose k is a local holomorphic section of $\ker \beta \to U$; then, $\pi(k)$ is a section of $(\ker \alpha^*) \cap (\ker \beta) \to U$ and

(10.17)
$$\pi \overline{\partial}_{K^1}(\pi(k)) = \pi [\overline{\partial}_{K^1}, \pi]k + \pi^2(\overline{\partial}_{K^1}, k) = 0.$$

There's a little more to do, but we're out of time.

This is an instance of something general, that holomorphy and unitarity are often in tension. For example, even just in complex analysis, a norm-1 holomorphic function is constant.

Lecture 11.

Proof of the Nahm transform, part 1: 2/26/19

"We're not spinning our wheels here. I mean, we are, but..."

We're still discussing the Nahm transform (the analogue of the Fourier transform for anti-self-dual connections on tori). This story is nice because tori are quotients of vector spaces; but there are also more quotients of vector spaces we could study.

As usual, let V be a four-dimensional real oriented inner product space, $\Lambda \subset V$ be a full lattice, V^* be the dual, and $\Lambda^* := \operatorname{Hom}(\Lambda, \mathbb{Z})$. We formed the torus $T = V/\Lambda$ and its dual torus $T^* = V^*/\Lambda^*$. Then there is a correspondence $T \leftarrow T \times T^* \to T^*$, and as we usually do with correspondences, we'd like to do a pullback-and-pushforward weighted by an integral kernel. On functions, this looks like the usual kernel transform,

(11.1)
$$\widehat{f}(x) = \int dy K(x, y) f(y).$$

But we're interesting in vector bundles (and connections), not functions, so the kernel is the Poincaré bundle. Well, there are two Poincaré bundles, just as how the Fourier transform uses $e^{-i\pi x \cdot \xi}$ and its inverse uses $e^{i\pi x \cdot \xi}$. The two Poincaré bundles $\mathbb{P}, \widetilde{\mathbb{P}} \to T \times T^*$ are Hermitian line bundles with connection. Recall that a point $v \in T$ defines a flat line bundle over T^* , and vice versa; therefore we say that $\mathbb{P}|_{T \times \{\theta\}} \to T$ is the flat line bundle on T with holonomy θ , and analogously for the bundle over $\{v\} \times T^*$. For $\widetilde{\mathbb{P}}$, one of the holonomies switches to -v. However, there is curvature on $T \times T^*$, given by $\pm i \langle dv \wedge d\theta \rangle$ (here $v \in T$ and $\theta \in T^*$; dv is a translation-invariant one-form on V, and hence descends to T, and similarly for $d\theta$).

On to the Nahm transform: given a Hermitian vector bundle $E \to T$ with connection A, we would like to define a Hermitian vector bundle $\hat{E} \to T^*$ with connection \hat{A} . Fix spin spaces \mathbb{S}^{\pm} with $V = \mathbb{S}^+ \otimes \mathbb{S}^-$, so the spinors on T are functions $T \to \mathbb{S}^{\pm}$ (in other words, on T, the spinor bundles are trivial bundles with fiber \mathbb{S}^{\pm} , so sections of them are functions to \mathbb{S}). We have a Dirac operator

(11.2)
$$D_A^-|_{\theta} \colon \Gamma(\underline{\mathbb{S}}^- \otimes E \otimes \mathbb{P}_{\theta}) \longrightarrow \Gamma(\underline{\mathbb{S}}^+ \otimes E \otimes \mathbb{P}_{\theta}).$$

If A is anti-self-dual and without flat factors, then $D_A^-|_{\theta}$ is surjective, and we define $\widehat{E}_{\theta} := \ker(D_A^-|_{\theta})$; because the Dirac operator is Fredholm, this is finite-dimensional. We also want a covariant derivative \widehat{A} , which we define to the compressed covariant derivative associated to the Fredholm map $D_A^-|_{\theta}$. We want to prove Theorem 9.24, that \widehat{A} is anti-self-dual; we will prove this by showing it's type (1,1) in every complex structure on T^* .

Proof of Theorem 9.24. A line $L \in \mathbb{P}(\mathbb{S}^+)$ defines a complex structure (V, I), as we discussed; call this two-dimensional complex vector space U. The dual space $U^* = (V^*, -I^*)$ – the reason we use $-I^*$ is so that the duality pairing works nicely. Specifically, if $v \in V$ and $\theta^* \in V^*$, we want $\langle \theta, v \rangle = \langle I_{V^*}\theta, I_{V}v \rangle$; since $I^2 = -1$, if we took I^* instead of $-I^*$, there would be an extra minus sign.

Now split $\nabla_A = \nabla_A' + \nabla_A''$, by types, so $\nabla_A'' : \Omega_T^{0,0}(E) \to \Omega_T^{0,1}(E)$. Since A is anti-self-dual, its curvature has type (1,1), and therefore $(\nabla_A'')^2 = 0$. Therefore $\overline{\partial}_A := \nabla_A''$ defines a holomorphic structure on E; we will call this holomorphic vector bundle $\mathcal{E} \to T$.

Remark 11.3. Since the curvatures of $\mathbb{P}, \widetilde{P} \to T \times T^*$ also have type (1,1), they also pick up holomorphic structures in this way; we denote these holomorphic bundles $\mathcal{P}, \widetilde{\mathcal{P}} \to T \times T^*$.

Lemma 11.4. Let (M,I) be an almost complex manifold and $\omega \in \Omega^2_M(\mathbb{C})$. Then ω has type (1,1) iff $\omega(I\xi_1,I\xi_2) = \omega(\xi_1,\xi_2)$ for all $\xi_1,\xi_2 \in TM$.

Proof. Split ω by type:

(11.5)
$$\omega = \underbrace{\omega_{ij} \, \mathrm{d}z^i \wedge \mathrm{d}z^j}_{(2,0)} + \underbrace{\omega_{i\bar{\jmath}} \, \mathrm{d}z^i \wedge \overline{\mathrm{d}z^j}}_{(1,1)} + \underbrace{\omega_{i\bar{\jmath}} \, \overline{\mathrm{d}z^i} \wedge \overline{\mathrm{d}z^j}}_{(0,2)}.$$

Now \mathbb{C}^{\times} acts on $\Omega_{M}^{2}(\mathbb{C})$ by scalar multiplication, and a $\lambda \in \mathbb{C}^{\times}$ acts by λ^{2} on $\Omega_{M}^{2,0}(\mathbb{C})$, by 1 on $\Omega_{M}^{1,1}(\mathbb{C})$, and by λ^{-2} on $\Omega_{M}^{0,2}(\mathbb{C})$. Since I acts by multiplication by i, ω can only be fixed by I if it's of type (1,1).

Now that everything is holomorphic, we have the Dolbeault complex

(11.6)
$$\Omega_T^{0,0}(\mathcal{E}\otimes\mathcal{P}_\theta) \xrightarrow{\overline{\partial}_A} \Omega_T^{0,1}(\mathcal{E}\otimes\mathcal{P}_\theta) \xrightarrow{\overline{\partial}_A} \Omega_T^{0,2}(\mathcal{E}\otimes\mathcal{P}_\theta),$$

and the Dirac operator is

$$(11.7) D_A = \overline{\partial}_A + \overline{\partial}_A^* : \Omega_T^{0,1}(\mathcal{E} \otimes \mathcal{P}_\theta) \longrightarrow$$

Hence, by the usual Hodge theory story,

(11.8a)
$$\ker(D_A^-|_{\theta}) \cong H^1(T, \mathcal{E} \otimes \mathcal{P}_{\theta})$$

(11.8b)
$$\operatorname{coker}(D_A^-|_{\theta}) \cong H^0(T, \mathcal{E} \otimes \mathcal{P}_{\theta}) \oplus H^2(T, \mathcal{E} \otimes \mathcal{P}_{\theta}).$$

Since E is without flat factors, though, $H^0 \oplus H^2$ vanishes. Therefore the fiber of $\widehat{\mathcal{E}}$ at θ is exactly $H^1(T, \mathcal{E} \otimes \mathcal{P}_{\theta})$. This is exactly what the $Mukai\ transform$ in algebraic (or complex) geometry does: given the correspondence, pull back from T to $T \times T^*$, then push forward to T^* . Here, though "push forward" means something different: we have to generalize from vector bundles to sheaves. Given a sheaf $\mathscr{F} \to X$ and a map $f: X \to Y$, we obtain a pushforward sheaf $f_*\mathscr{F} \to Y$ whose space of sections on an open $U \subset Y$ is defined to be $\mathscr{F}(f^{-1}(U))$. However, the pushforward isn't exact, so we have to take its derived functors, which amounts to cohomology. Here, we only can have H^0 through H^2 , and H^0 and H^2 vanish, leaving just H^1 . Moreover, the fact that E is without flat factors implies that what we get is a vector bundle, rather than just a sheaf. In particular, as C^{∞} vector bundles, $\widehat{\mathcal{E}}$ is identified with what we got from the Nahm transform.

The point is (TODO details) that, just as we proved last time, the compressed connection is the Chern connection, and therefore it has type (1,1). Since the complex structure was arbitrary, this implies \widehat{A} is anti-self-dual.

Now we want to study the moduli space of such $E \to T$. Generally one fixes discrete invariants to make the problem simpler.

Proposition 11.9. The discrete invariants of a complex (i.e. just C^{∞}) vector bundle $E \to T$ are: the rank in $\mathbb{Z}^{\geq 0}$ and its Chern classes $c_1(E) \in H^2(T)$ and $c_2(E) \in H^4(T) \cong \mathbb{Z}$. That is, these determine the C^{∞} isomorphism class of E.

This is a good exercise in algebraic geometry.

Theorem 11.10. The discrete invariants of $\widehat{E} \to T^*$ can be given in terms of those of E:

- rank(\widehat{E}) = $c_2(E) (1/2)c_1(E)^2$,
- $c_1(\widehat{E}) = \sigma(c_1(E))$, and
- $c_2(\widehat{E}) = \operatorname{rank} E + (1/2)c_1(E)^2$.

These follow from the Atiyah-Singer index theorem, though mind that the formulas in the book have a few mistakes. Here $\sigma \colon H^2(T) \to H^2(T^*)$ is a map induced from Poincaré duality. Specifically, there is a canonical class $\kappa \in H^1(T) \otimes H^1(T) \hookrightarrow H^2(T \times T^*)$. Then we define

(11.11)
$$\sigma(x) := (p_2)_* (\kappa^2 p_1^* x).$$

The pushforward $(p_2)_*$ is the Gysin map, which comes from Poincaré duality.

Corollary 11.12. There cannot exist an anti-self-dual connection on a bundle with $c_1 = 0$ and $c_2 = 1$.

Proof. Suppose such a connection exists, and choose one of minimal rank. Then there exists an anti-self-dual connection on \widehat{E} with rank 1 and $c_2 \neq 0$, but this is a contradiction: the second Chern class of any line bundle vanishes.

Now we want to prove an analogue of Fourier inversion.

Definition 11.13. Let $\mathcal{F} \to T^*$ be a holomorphic vector bundle without flat factors, and define $\check{\mathcal{F}} \to T$ to be the holomorphic vector bundle whose fiber at $v \in T$ is $H^1(T^*, \mathcal{F} \otimes \widetilde{\mathcal{P}}_v)$.

Given a Hermitian structure on \mathcal{F} , we also get one on $\check{\mathcal{F}}$ as before.

Theorem 11.14 (Mukai inversion). Let $\mathcal{E} \to T$ be a Hermitian holomorphic vector bundle without flat factors. Then $\hat{\mathcal{E}} \to T^*$ is without flat factors, and there is a natural isomorphism $\omega \colon \check{\mathcal{E}} \to \mathcal{E}$ of Hermitian holomorphic vector bundles on T.

Letting $p_1: T \times T^* \to T$ be projection onto the first factor, the complex $\Omega^{0,\bullet}_{T \times T^*}(p_1^* \mathcal{E} \otimes \mathcal{P})$ is actually a double complex $C^{\bullet,\bullet}$. The bigrading (p,q) exists on forms on any Cartesian product: given a k-form, how many of its factors are from T and how many are from T^* ? We also have that the differential splits as $\overline{\partial}_1 + \overline{\partial}_2$, the former of which sends (p,q)-forms to (p+1,q)-forms, and the latter of which sends (p,q)-forms to (p,q+1)-forms.

Given a double complex we obtain a spectral sequence: consider the bigraded vector space $E_1^{\bullet,\bullet} := H^{\bullet}(C^{\bullet,\bullet}; \overline{\partial}_1)$. Since $\overline{\partial}_1$ and $\overline{\partial}_2$ commute, $\overline{\partial}_2$ is a differential on $E_1^{\bullet,\bullet}$, so we can take the cohomology of this complex, and obtain another bigraded vector space $E_2^{\bullet,\bullet}$ often called the E_2 -page of the spectral sequence. One can in general continue on in this way, finding more differentials using homological algebra, but in this case they all vanish, and this approximates the cohomology of $\Omega_{T\times T^*}^{0,\bullet}(p_1^*\mathcal{E}\otimes\mathcal{P})$, in the sense that it's the associated graded for some filtration of it.

Remark 11.15. We could have also defined $E_1^{\bullet,\bullet}$ and $E_2^{\bullet,\bullet}$ by first taking cohomology with respect to $\overline{\partial}_2$, then using $\overline{\partial}_1$. Then $E_1^{\bullet,\bullet}$ may be different, but $E_2^{\bullet,\bullet}$ will not change.

Theorem 11.16. The E_2 -page of this spectral sequence is as follows.

The total cohomology of the double complex vanishes except in (total) degree 2, and $H^2(T \times T^*, p_1^* \mathcal{E} \otimes \mathcal{P}) \cong E_0$.

We will delve into the proof next time.

²⁶The fact that we can decompose $H^2(T \times T^*)$ as a sum of $(H^0(T) \otimes H^2(T^*)) \oplus (H^1(T) \otimes H^1(T^*)) \oplus (H^2(T) \otimes H^0(T^*))$ relies on the fact that the homology of T is torsion-free, and is not true in general.

Lecture 12.

Proof of the Nahm transform, part 2: 2/28/19

"I have two things to do and ten minutes to do them, and no time for either."

As before, let V be an oriented real four-dimensional inner product space, and choose a complex structure I on V. Let U := (V, I) and $U^* := (V^*, -I^*)$. Let $\Lambda \subset T$ be a full lattice and $T := V/\Lambda$, which acquires a flat Kähler structure from the inner product and complex structure on V. The same is true for the dual torus $T^* := V^*/\Lambda^*$. We also defined the Poincaré bundle $\mathcal{P} \to T \times T^*$, which we have made into a holomorphic line bundle.

With this structure in place, suppose $\mathcal{E} \to T$ is a holomorphic vector bundle without flat factors. Then we can define $\widehat{\mathcal{E}} := p_{2_*}(p_1^*\mathcal{E} \otimes \mathcal{P})$, where $p_1 : T \times T^* \to T$ and $p_2 : T \times T^* \to T^*$ are the projections onto the two factors. Here, "pushforward" means sheaf cohomology, but the assumption that \mathcal{E} is without flat factors means that $H^0(T,\mathcal{E}) = 0$ and $H^2(T,\mathcal{E}) = 0$, so we can just take H^1 . We would like to prove a Fourier inversion formula for this transform.

We then defined a double Dolbeault complex

$$(12.1) C := (\Omega_{T \times T^*}^{0, \bullet}(p_1^* \mathcal{E} \otimes \mathcal{P}), \overline{\partial}_1 + \overline{\partial}_2).$$

The second grading comes from the fact that we're over a product manifold. Associated to this double complex is a spectral sequence whose E_2 -page is $H^*_{\overline{\partial}_2}(H^*_{\overline{\partial}_1}(C))$. Our first task today is to prove Theorem 11.16, first verifying that the E_2 page looks like (11.17) and then that the spectral sequence collapses because the total cohomology vanishes except in degree 2, where it's \mathcal{E}_0 .

Corollary 12.2.

- (1) $H^0(T^*, \widehat{\mathcal{E}}) = 0$ and $H^2(T^*, \widehat{\mathcal{E}}) = 0$, and
- (2) we obtain an isomorphism $\omega_I : H^1(T^*, \widehat{\mathcal{E}}) \stackrel{\cong}{\to} \mathcal{E}_0$.

The second point is a piece of the inversion formula: $\dot{\widehat{\mathcal{E}}}_0$ is $H^1(T^*,\widehat{\mathcal{E}})$, and this shows us it's \mathcal{E}_0 as it should be. We'll be able to buoy this up into the full inversion theorem.

Proof of Theorem 11.16. Introduce coordinates z_1, z_2 for T and ζ_1, ζ_2 for T^* . Now, we can view C as a bundle of complexes over T^* :

(12.3)
$$\mathcal{V}^0 \xrightarrow{\overline{\partial}_1} \mathcal{V}^1 \xrightarrow{\overline{\partial}_2} \mathcal{V}^2.$$

A point in \mathcal{V}^0 in the fiber at $\theta \in T^*$ is an element of $\Gamma(\mathcal{E} \otimes \mathcal{P}_{\theta})$, hence a section of \mathcal{V}^0 looks sort of like a function $\lambda(z,\zeta)$, with the caveat that \mathcal{E} is nontrivial. In the same way, a section of \mathcal{V}^1 looks like a 2-form $\lambda_i(z,\zeta)$ $\overline{\mathrm{d}z^i}$; and a section of \mathcal{V}^2 looks like a 2-form $\lambda_{12}(z,\zeta)$ $\overline{\mathrm{d}z^1} \wedge \overline{\mathrm{d}z^2}$.

Since $C^{p,0} = \Gamma_{T^*}(\mathcal{V}^p)$, then the cohomology of the global sections of (12.3) is what we're after. We claim this is the same as the global sections of the cohomology of (12.3). That these two functors commute is a statement about the vanishing of derived functors. In this case, the sheaves associated to these vector bundles are flabby, which follows from elliptic theory, and therefore higher cohomology vanishes. These are infinite-rank vector bundles, so we can't lean on the usual vanishing results.

The upshot is that on the E_1 -page, $E_1^{p,q}$ is 0 if $p \neq 1$, and if p = 1, is $\Omega_{T^*}^{0,q}(\widehat{\mathcal{E}})$:

The differential is $\overline{\partial}_2: E_1^{p,q} \to E_1^{p,q+1}$: it increases vertical degree by 1. The cohomology is clearly $H^*(T^*, \widehat{\mathcal{E}})$, proving the first part of the theorem.

 \boxtimes

To get at the second part, we're going to compute the E_2 -page in a different way. Fixing $v \in T$, we get a bundle $\mathcal{E}_v \otimes \mathcal{P}_v$ over T^* , a slice of $\mathcal{E} \otimes \mathcal{P}_\theta$. We care about this because $\widehat{\mathcal{E}}_\theta = H^1(T, \mathcal{E} \otimes \mathcal{P}_\theta)$.

We need a quick lemma about the cohomology with coefficients in a flat line bundle.

Lemma 12.5. If
$$v \neq 0$$
, then $H^*(T^*, \mathcal{P}_v) = 0$; at $v = 0$, $H^q(T^*, \mathcal{P}_0) \cong \Lambda^q U$.

Recall that U is the complex vector space (V, I).

Proof. For v = 0, consider the Dolbeault complex

$$\Omega_{T^*}^{0,0} \xrightarrow{\overline{\partial}_2} \Omega_{T^*}^{0,1} \xrightarrow{\overline{\partial}_2} \Omega_{T^*}^{0,2}.$$

The tangent space to T^* is, as a complex vector space, \overline{U}^* , and therefore the (0,1) part of the cotangent bundle to T^* is $\overline{\overline{U}^{**}} = U$.

Now suppose $v \neq 0$. Given a $\lambda \in \Lambda$, we obtain a function $e_{\lambda} : T^* \to \mathbb{C}$ by

(12.7a)
$$e_{\lambda}(\theta) \coloneqq e^{2\pi i \langle \theta, \lambda \rangle}.$$

Explicitly, in local coordinates ζ_1, ζ_2 coming from V^* , this is

(12.7b)
$$e_{\lambda}(\zeta_1, \zeta_2) := e^{2\pi i \operatorname{Re}(\lambda^1 \zeta_1 + \lambda^2 \zeta_2)}.$$

These give us examples of Dolbeault forms for the complex

(12.8)
$$\Omega_{T^*}^{0,0}(\mathcal{P}_v) \xrightarrow{\overline{\partial}_2} \Omega_{T^*}^{0,1}(\mathcal{P}_v) \xrightarrow{\overline{\partial}_2} \Omega_{T^*}^{0,2}(\mathcal{P}_v) :$$

 e_{λ} in degree zero, $e_{\lambda} \overline{\mathrm{d}\zeta_{1}}$ and $e_{\lambda} \overline{\mathrm{d}\zeta_{2}}$ in degree one, and $e_{\lambda} \overline{\mathrm{d}\zeta_{1}} \wedge \overline{\mathrm{d}\zeta_{2}}$ in degree two. Moreover, the theory of Fourier series says that, as long as we consider forms which rapidly decay in (TODO: I think) the fiber, these are a Hilbert space basis for $\Omega_{T^{*}}^{0,\bullet}(\mathcal{P}_{v})$.²⁷

Let $v := (z^1, z^2)$. We can choose $z^i \, \overline{\mathrm{d}\zeta_i}$ as a connection form of $P_\theta \to T^*$. Then, you can just compute that

(12.9a)
$$\overline{\partial}_v(e_\lambda) = (\lambda^i + z^i)e_\lambda \, \overline{\mathrm{d}\zeta_i}$$

(12.9b)
$$\overline{\partial}_{v}(e_{\lambda} \, \overline{\mathrm{d}\zeta_{1}}) = -(\lambda^{2} + \zeta^{2})e_{\lambda} \, \overline{\mathrm{d}\zeta_{1}} \wedge \overline{\mathrm{d}\zeta_{2}}$$

(12.9c)
$$\overline{\partial}_v(e_\lambda \, \overline{\mathrm{d}\zeta_2}) = (\lambda^1 + z^1)e_\lambda \, \overline{\mathrm{d}\zeta_1} \wedge \overline{\mathrm{d}\zeta_2}.$$

and this is manifestly acyclic away from v = 0.

So λ defines a subcomplex A_{λ} generated by e_{λ} , $e_{\lambda} \, \overline{\mathrm{d}\zeta_i}$, and $\varepsilon_{\lambda} \, \overline{\mathrm{d}\zeta_1} \wedge \overline{\mathrm{d}\zeta_2}$, and the total complex is a completed direct sum of these over $\lambda \in \Lambda$, via the Fourier decomposition.

Now let $FD^{\bullet,\bullet}$ denote the germs of forms in a neighborhood of T_0^* , i.e. equivalence classes of differential forms on open neighborhoods of $(0,\theta) \in T \times T^*$, where two forms are equivalent if they agree on some (possibly smaller) open neighborhood. The map sending a form to its germ defines a map of complexes $\phi \colon C^{\bullet,\bullet} \to D^{\bullet,\bullet}$, which induces a map of spectral sequences for these two double complexes.

Lemma 12.5 implies that ϕ induces an isomorphism of all groups on the E_1 -page, and a general theorem on spectral sequences implies the induced maps on all later pages are also isomorphisms (though here everything stabilizes at E_2).

Let N denote a formal neighborhood of zero on T, in the sense that $\Omega_N^{0,\bullet}$ denotes germs of $(0,\bullet)$ -forms at zero. We again have a Fourier-theoretic decomposition

(12.10a)
$$D^{\bullet,\bullet} = \widehat{\bigoplus_{\lambda \in \Lambda}} D_{\lambda}^{\bullet,\bullet},$$

where

(12.10b)
$$D_{\lambda}^{\bullet,\bullet} := \Omega_{N}^{0,\bullet} \otimes A_{\lambda} \otimes \mathcal{E}_{0}.$$

The double grading here arises from $\overline{\partial}_1$ acting on $\Omega_N^{0,\bullet}$ and from $\overline{\partial}_2$ acting on A_{λ} .

 $^{^{27}}$ A little more work has to be done to remove the "rapidly decaying" hypothesis.

Now run the spectral sequence for $D_{\lambda}^{\bullet,\bullet}$: the E_1 -page is

where \tilde{A}^q_{λ} is the space of holomorphic functions from N to A^q_{λ} (i.e. germs of these functions). Hence the homology of thr E_1 -page, which is the E_2 -page for $D^{\bullet,\bullet}$ and hence also for $C^{\bullet,\bullet}$, is

Remark 12.13. There's a picture of this in terms of something called a Koszul complex. Fixing $\lambda = 0$, let $v \in T_0U$, which defines a complex

(12.14)
$$\underline{\Lambda^0 U} \xrightarrow{\epsilon(v)} \underline{\Lambda^1 U} \xrightarrow{\epsilon(v)} \underline{\Lambda^2 U},$$

where ϵ denotes exterior product. The homology of this complex vanishes except in the top degree (2), where we get the determinant line Det U.

Or, more algebraically, consider the complex

(12.15)
$$K^{\bullet} := (\operatorname{Sym}^{\bullet}(U^*) \otimes \Lambda^{\bullet}(U), d_K),$$

where d_K is multiplication by $u^i \otimes u_i$. This complex can be thought of as $\Lambda^{\bullet}(U)$ -valued polynomials on U. Then one can prove that the cohomology of this complex is 0 except in degree 2, where it's Det U. There's a similar story for $\lambda \neq 0$.

So we have an abstract isomorphism $H^1(T^*,\widehat{\mathcal{E}}) \cong \mathcal{E}_0$ coming from the spectral sequence argument. Can we get our hands on precisely what this isomorphism is? TODO: I didn't follow this part as well, so the logic might be wonky.

In (12.12), \mathcal{E}_0 lives in bidgree (0, 2), but in (11.17), $H^1(T^*, \widehat{\mathcal{E}})$ lives in bidegree (1, 1). The way to understand this is: consider $\alpha \in E_1^{1,1}$ and $\beta \in E_1^{0,2}$. If we can get that

(12.16)
$$0 = (\overline{\partial}_1 + \overline{\partial}_2)(-\alpha + \beta) = \overline{\partial}_1 \beta - \overline{\partial}_2 \alpha,$$

then we have an identification. Knowing that $\overline{\partial}_1 \alpha = 0$ and $\overline{\partial}_2 \alpha = 0$ mod $\operatorname{Im}(\overline{\partial}_1)$, we want to find a β such that $\overline{\partial}_1 \beta = \overline{\partial}_2 \alpha$.

Let $r_0: \Omega_{T \times T^*}^{*,*} \to \Omega_{\{0\} \times T^*}^{0,0}$ be restriction to $\{0\} \times T^* \subset T \times T^*$. Let ε^- denote a constant in $\Omega_{T^*}^{2,0}$. Then we need β to satisfy

(12.17)
$$\omega_I([\alpha]) = \int_{T^*} r_0(\beta) \wedge \varepsilon^-,$$

which leads to an explicit answer, and in particular ω_I is the isomorphism we want.

Now we want to finish out the proof of Mukai's theorem, passing back to the C^{∞} world and asking about the relationship between \check{A} and A. We know that $(\widehat{E}, \widehat{A})$ is without flat factors: if it weren't, then it would

have H^0 and H^2 , which we just saw is not true. We want to show that ω_I not only induces an isomorphism of \mathring{A} and A, but also that it doesn't depend on I. The argument goes by trying to rewrite (12.17) in purely C^{∞} terms. After that, we know it suffices to understand this for I and -I; I takes care of the (1,0) part and -I takes care of the (0,1) part. The details can be found in Donaldson-Kronheimer [DK97].

Lecture 13.

Fredholm theory: 3/7/19

"We don't know that, except that I told you so."

In the next few lectures, we'll do something different: explaining how in a differential-geometric context, one constructs moduli spaces of solutions to nonlinear equations. Today, we'll mostly discuss the underlying linear theory, the theory of Fredholm operators between (usually) infinite-dimensional spaces. A linear operator between two finite-dimensional vector spaces is always Fredholm, and theorems about operators on finite-dimensional vector spaces often generaize to the Fredholm setting.

Lemma 13.1. Let $0 \to V^0 \to V^1 \to \cdots \to V^n \to 0$ be an exact sequence of finite-dimensional vector spaces (over any field). Then

(13.2)
$$\sum_{q=0}^{n} (-1)^q \dim V^q = 0.$$

Proof. Let T_q denote the map $V^q \to V^{q+1}$. If $C_q \subset V^q$ is a complement to $\operatorname{Im}(T^q)$, then $T^{q+1}|_{C_q}$ is injective, hence an isomorphism onto its image. But in (13.2), C_q and $\operatorname{Im}(C_q)$ are counted with opposite signs, so the total contribution is zero.

Corollary 13.3 (Rank-nullity theorem). Let $T: V \to W$ be a linear map. Then the sequence

$$(13.4a) 0 \longrightarrow \ker T \longrightarrow V \xrightarrow{T} W \longrightarrow \operatorname{coker} T \longrightarrow 0$$

is exact, and in particular

(13.4b)
$$\dim V - \dim W = \dim \ker T - \dim \operatorname{coker} T.$$

If we try to consider a families version of Corollary 13.3 over some curve in Hom(V, W), we might ask whether (13.4a) becomes a short exact sequence of vector bundles. This is not true in general: the kernel of a map of vector bundles need not be a vector bundle, because the dimension can jump. A simple example is

(13.5)
$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 0 \end{pmatrix} : \mathbb{R}^3 \to \mathbb{R}^2,$$

as $t \to 0$. However, the dimension of the cokernel also jumps, so the expression "dim(V - W)" (as dim ker T – dim coker T) is constant, even if the expression is a little weird.

We would like to generalize this to the infinite-dimensional setting (where "dimension" doesn't play as well). There are different kinds of topology one considers for infinite-dimensional vector spaces; we will mostly work with Banach spaces, which are vector spaces complete with respect to a given norm. Sometimes we'll have to restrict to Hilbert spaces. We will always work over \mathbb{C} .

Definition 13.6. Let X and Y be Banach spaces. A continuous linear map $T: X \to Y$ is Fredholm if

- (1) $\operatorname{Im}(T) \subset Y$ is closed,
- (2) ker(T) is finite-dimensional, and
- (3) $\operatorname{coker}(T)$ is finite-dimensional.

In this case the *index* of T is defined to be ind $T := \dim \ker T - \dim \operatorname{coker} T$.

The first condition is redundant.

Remark 13.7. There is a sense in which the definition of the index is "the wrong way around": an element of Hom(X,Y) defines an element of $Y \otimes X^*$, not $X \otimes Y^*$, so we should do cokernel minus kernel. We'll stick with the standard definition, though, and sometimes this sign will come back and surprise us.

Let Hom(X,Y) denote the space of continuous linear maps, equipped with the operator norm. This makes it a Banach space, and induces the strong topology. Let Fred(X,Y) denote the subspace of Fredholm operators, which is not a vector space.

Theorem 13.8. Suppose X and Y are Hilbert spaces. Then the index ind: Fred $(X,Y) \to \mathbb{Z}$ is an isomorphism on π_0 .

This is not in general true for X and Y Banach spaces: consider X infinite-dimensional and Y finite-dimensional. However, it should be true if there's an isomorphism $X \cong Y$.

Remark 13.9. The higher topology of Fred(X,Y) is very interesting; each connected component has the topology of the classifying space of the infinite unitary group.

Definition 13.10. Let $T: X \to Y$ be Fredholm and W be a subspace of Y. We say T is transverse to W, denoted $T \cap W$, if T(X) + W = Y.

For each finite-dimensional $W \subset Y$, let

(13.11)
$$\mathcal{O}_W := \{ T \in \operatorname{Fred}(X, Y) \mid T \cap W \}.$$

In this case we have (13.4a) again: the sequence

$$(13.12) 0 \longrightarrow \ker T \longrightarrow T^{-1}(W) \xrightarrow{T} W \longrightarrow \operatorname{coker} T \longrightarrow 0$$

is exact, and all of its terms are finite-dimensional. In particular, using Lemma 13.1,

(13.13)
$$\operatorname{ind} T = \dim T^{-1}(W) - \dim W.$$

There is a vector bundle $V \to \mathcal{O}_W$ whose fiber at T is $T^{-1}(W)$, and there's a map of vector bundles $V \to \underline{W}$ which at T is just T.

Lemma 13.14. $\mathcal{O}_W \subset \operatorname{Hom}(X,Y)$ is open.

Therefore we have a canonical open cover of Fred(X,Y). It's uncountable, yes, but it's still nice to have.

Proof. Let $T_0 \in \mathcal{O}_W$, and choose a closed complement X' to $T_0^{-1}(W)$.²⁸ Then $X = T_0^{-1}(W) \oplus X'$.

There is also a splitting $Y = W \oplus T_0(X')$. Why is this?

- First, we have to show that these don't intersect except at zero. If $y \in W \cap T_0(X')$, then $y = T_0 x$ for some $x \in X$, and $x \in T_0^{-1}(W) \cap X'$, so x = 0.
- Second, we want to write $y \in Y$ as a sum of a $w \in W$ and $y' \in T_0(X')$. TODO...

Now, consider the composition

$$(13.15) \qquad \operatorname{Hom}(X,Y) \longrightarrow \operatorname{Hom}(X',Y) \longrightarrow \operatorname{Hom}(X',T_0(X'))$$

where the first map is restriction and the second is projection. Each map is continuous and linear. Invertibility is an open condition, so the space of isomorphisms $X' \stackrel{\cong}{\to} T_0(X')$ is open in $\text{Hom}(X', T_0(X'))$. Thus its preimage in Hom(X, Y), which is \mathcal{O}_W , is also open.

Corollary 13.16. The index map ind: $\operatorname{Fred}(X,Y) \to \mathbb{Z}$ is locally constant.

This follows from $V \to \mathcal{O}_W$ being a vector bundle.

Proof of Theorem 13.8. Suppose $T_0, T_1 \in \text{Fred}(X, Y)$ have the same index. Choose a finite-dimensional subspace of Y transverse to both T_0 and T_1 , and let $X' \subset X$ be a closed complement of both $T_0^{-1}(W)$ and $T_1^{-1}(W)$. Why can you do this? Well, you can take the sum $T_0^{-1}(W) + T_1^{-1}(W)$ and ask for a complement to that, then work within that sum, which is finite-dimensional.

Therefore we can write T_0 and T_1 as maps $T_0^{-1}(W) \oplus X' \to W \oplus T_0(X')$. Then T_0 and T_1 have the block decompositions

(13.17)
$$T_0 = \begin{pmatrix} T_0|_{T_0^{-1}(W)} & 0\\ 0 & T_0|_{X'} \end{pmatrix} \qquad T_1 = \begin{pmatrix} B & *\\ * & A \end{pmatrix},$$

 $^{^{28}}$ The existence of such a closed complement follows from the Hahn-Banach theorem. If X and Y are Hilbert spaces, then it's easier – you can just take the orthogonal complement.

where A is invertible. By considering the family

$$(13.18) t \longmapsto \begin{pmatrix} B & t* \\ t* & A \end{pmatrix}$$

and letting $t \to 0$, we just have to think about B and A. Since B has the same rank as $T_0|_{T_0^{-1}(W)}$, then it suffices to show that the space of invertible operators $X' \to X'$ is connected.

Lemma 13.19. Let H be a Hilbert space; then $GL(H) \subset Hom(H, H)$ is connected.

Proof. If $A \in GL(H)$, then A^*A is positive, so it has a square root P, i.e. $P^2 = A^*A$, and P is also invertible. Define U by A = UP; then

(13.20)
$$U^*U = (AP^{-1})^*(AP^{-1}) = P^{-1}A^*AP^{-1} = A^*AP^{-2} = id.$$

We can write $P = e^B$ for some unique self-adjoint B, using the spectral theorem for self-adjoint operators, and can write $U = e^{iC}$ for some self-adjoint C. This follows because the eigenvalues of U are contained in the unit complex numbers, and the logarithm map from the circle to $[0, 2\pi)$ is measurable, which suffices for the spectral theorem.

Anyways, now we have the paths $t \mapsto e^{tB}$ and $t \mapsto e^{tC}$.

In fact, it is a (harder) theorem of Kuiper that GL(H) is contractible when H is infinite-dimensional. Now one has to argue that π_0 is surjective; this first involves producing a Fredholm operator

Exercise 13.21. Using the local models \mathcal{O}_W , show that the composition of two Fredholm maps is Fredholm, and the indices add.

This in particular means that if X = Y, Fred(X, X) has a composition structure, meaning π_0 is a monoid (in fact, it's a group), and the map to \mathbb{Z} is in fact a group isomorphism.

We will occasionally consider a variant.

Definition 13.22. Consider a complex of Banach spaces

$$0 \longrightarrow X^0 \xrightarrow{T_1} X^1 \xrightarrow{T_2} \cdots \xrightarrow{T_n} X^n \longrightarrow 0,$$

so $T_q \circ T_{q-1} = 0$. This is a Fredholm complex if each T_q has closed image and the cohomology groups are all finite-dimensional.

If n = 1, this is equivalent to $T_1 \colon X^0 \to X^1$ being a Fredholm map. Some of the notions we've considered above generalize to Fredholm complexes.

Remark 13.23. Peering into the proof of Lemma 13.14, $T_0: X' \to T_0(X')$ is an isomorphism, so we can let S be an inverse. Then $T \circ S$ is not quite equal to the identity, but its image is finite-dimensional; one says it has *finite rank*. The same applies to $S \circ T$.²⁹ Therefore we've shown any Fredholm operator is invertible up to a finite-rank operator, and in fact the converse is true.

The more common version of that result is that T is Fredholm iff it's invertible up to a *compact* operator (i.e. an operator under which the image of the unit ball is compact). The compact operators are precisely the closure of the finite-rank ones in the strong topology, so what we just said is a little bit stronger.

Next we discuss determinants, first in the finite-dimensional setting, then in the Fredholm setting.

Recall that over any field k, the determinant line of a finite-dimensional vector space V is Det $V := \Lambda^{\dim V} V$. The determinant line of the zero vector space is therefore canonically k.

If L is a line over $k = \mathbb{R}$ or \mathbb{C} (i.e. a one-dimensional k-vector space), there's a notion of an "inverse" for L: over \mathbb{R} , $L^{-1} = L^*$, because given any $v \in L$, there's a unique $\ell \in L^*$ with $\ell(v) = 1$. Over \mathbb{C} , $L^{-1} = \overline{L}^*$ for a similar reason.

Definition 13.24. Consider a complex of finite-dimensional vector spaces over \mathbb{R} or \mathbb{C} :

$$(13.25a) 0 \longrightarrow V^0 \xrightarrow{T_1} V^1 \xrightarrow{T_2} \cdots \xrightarrow{T_n} V^n \longrightarrow 0,$$

²⁹TODO: I think.

 \boxtimes

so in particular $T_q \circ T_{q-1} = 0$. Define the determinant of this compelex to be

(13.25b)
$$\operatorname{Det} V^{\bullet} := \bigotimes_{q=0}^{n} (\operatorname{Det} V^{q})^{(-1)^{q}},$$

and similarly define the determinant of its cohomology to be

(13.25c)
$$\operatorname{Det} H^*(V^{\bullet}) := \bigotimes_{q=0}^{n} (\operatorname{Det} H^{q}(V^{\bullet}))^{(-1)^{q}}.$$

Lemma 13.26. The maps T define an isomorphism $\det T$: $\det H^*(V^{\bullet}) \stackrel{\cong}{\to} \det V^{\bullet}$.

Corollary 13.27. Letting n = 1, given a linear map $T: V^0 \to V^1$, there is a canonical element $\det T \in \text{Det}(V^0 \otimes (V^1)^*)$.

This is called the *determinant* of T, and generalizes the determinant of an endomorphism (the case $V^0 = V^1$).

Proof sketch of Lemma 13.26. Let C^q be a complement to $T_q(V^{q-1})$ in $\ker(T_{q+1})$ and let $r_q := \operatorname{rank} T_q = \dim T_q(V^{q-1})$ and $b_q := \dim H^q(V^{\bullet})$. Now choose:

- $v_q \in \Lambda^r T(V^{q-1}) \setminus 0$,
- $c_q \in \operatorname{Det} C^q$,
- $h_q \in \text{Det } H^q(V^{\bullet})$, and
- h_q a lift of h_q to $\Lambda^{b_q}V^q$,

and define

(13.28)
$$\det\left(\prod_{q=0}^{n} h_q^{(-1)^q}\right) := \prod_{q=0}^{n} \left(\widetilde{h}_q \wedge c_q \wedge v_q\right)^{(-1)^q}.$$

It therefore suffices to show this doesn't depend on choices.

Exercise 13.29. Check that the construction in (13.28) does not depend on the choices of v_q , c_q , h_q , and \tilde{h}_q .

One might hope for a slicker construction, but this seems to be the most straightforward way to do it. Given a short exact sequence of complexes $0 \to V_0^{\bullet} \to V_1^{\bullet} \to V_2^{\bullet} \to 0$, the determinants add.

Now let X and Y be Banach spaces as before. We would like to construct a vector bundle $\text{Det} \to \text{Fred}(X, Y)$. Fixing a finite-dimensional subspace $W \subset Y$, let $\text{Det}_W \to \mathcal{O}_W$ be $\text{Det}(T: V \to \underline{W})$, i.e. $\text{Det} V \otimes \text{Det} W^*$, where $V \to \mathcal{O}_W$ is the vector bundle with $V_T := T^{-1}(W)$.

Now we want to patch for subspaces $W, W' \subset Y$ with $\mathcal{O}_W \cap \mathcal{O}_{W'} \neq \emptyset$. It suffices to assume $W' \subset W$, since any two finite-dimensional subspaces of Y are contained within their sum, which is also finite-dimensional. We then have a diagram of short exact sequences

$$0 \longrightarrow T^{-1}(W') \longrightarrow T^{-1}(W) \longrightarrow T^{-1}(W)/T^{-1}(W')) \longrightarrow 0$$

$$\downarrow_{T'} \qquad \qquad \downarrow_{T} \qquad \qquad \downarrow_{\overline{T}}$$

$$0 \longrightarrow W' \longrightarrow W \longrightarrow W/W' \longrightarrow 0.$$

Then \overline{T} is an isomorphism (TODO: why?), so its determinant

$$(13.31) \det \overline{T} \in \operatorname{Det}(T^{-1}(W)/T^{-1}(W')) \otimes (\operatorname{Det} W/W')^{-1}$$

is nonzero. So we can write this as $T\overline{v} \otimes (\overline{w})^{-1}$ for some $\overline{v} \in T^{-1}(W)/T^{-1}(W')$ and $\overline{w} \in W/W'$. Lift \overline{v} to some $v \in T^{-1}(W)$ and \overline{w} to some $w \in W$. There are $v' \in T^{-1}(W')$ and $w' \in W'$ such that

(13.32)
$$\det T' = T'v' \otimes (w')^{-1} \in \text{Det } T;^{-1}(W) \otimes (\text{Det } W')^{-1}.$$

and therefore

(13.33)
$$\det T = \frac{Tv \wedge Tv'}{w \wedge w'} \in \operatorname{Det} T^{-1}(W) \otimes (\operatorname{Det} W)^{-1}.$$

Lecture 14.

Transversality and the obstruction bundle: 3/12/19

"Did I use the word 'like?'... Then I used it as a millenial."

Let X and Y be smooth manifolds and $f: X \to Y$ be smooth. Recall that a $y \in Y$ is a regular value if df_x is surjective for all $x \in N := f^{-1}(y)$. In this case N is a submanifold of X.

In general, df defines a map of vector bundles $TX \to f^*TY$ over X; asking for y to be a regular value means that the cokernel of the restriction

$$(14.1) df: TX|_{N} \longrightarrow f^{*}TY|_{N}$$

is zero. Suppose this is true; then, thinking of (14.1) as a cochain complex, its cohomology is TN in degree 0 and 0 in degree 1.

Example 14.2. Let $X = \mathbb{R}^3$, $Y = \mathbb{R}$, and $f(x^1, x^2, x^3) = (x^1)^2 + (x^2)^2 + (x^3)^2$. Then y = 1 is a regular value, which you can see by computing the derivative of f. The preimage is S^2 . Since all vector bundles on \mathbb{R}^3 are trivializable but TS^2 isn't (the nonzero Euler characteristic of S^2 provides an obstruction), $TS^2 \to S^2$ does not extend to a vector bundle on \mathbb{R}^3 .

So $TN \to N$ doesn't always extend to X, but it *does* extend as a *virtual bundle*, meaning a formal difference of two vector bundles. Concretely, this means there are vector bundles $\xi, \eta \to X$ such that $TN \oplus \xi|_N \cong \eta|_N$, so we say heuristically that "TN is the restriction of η minus ξ ."

First, using the exact sequence

$$(14.3) 0 \longrightarrow TN \longrightarrow TX|_{N} \xrightarrow{\mathrm{d}f} f^{*}TY|_{N} \longrightarrow 0$$

of vector bundles over N, then taking determinants, $\operatorname{Det} TN \to N$ is the restriction to N of

$$(14.4) (Det TX) \otimes (Det f^*TY)^{-1} \longrightarrow X.$$

In Example 14.2, Det TS^2 is trivializable, because S^2 is orientable, but this of course isn't always the case.

Example 14.5. We can generalize from functions to sections of vector bundles.

Let V be a four-dimensional vector space and $H \to \mathbb{P}(V) \cong \mathbb{RP}^3$ be the Hopf line bundle: a point in $\mathbb{P}(V)$ is a line $L \subset V$ through the origin, and we declare the fiber of H at L to be L^* .

There's a map $\varphi \colon V^* \to \Gamma(\mathbb{P}(V), H)$ sending $\theta \mapsto (L \mapsto \theta|_L)$. Therefore, the assignment $f_{\theta}(L) \coloneqq \theta|_L$ defines a section s of $H \to \mathbb{P}(V)$. If Z denotes the zero section and $N \coloneqq f_{\theta}^{-1}(Z)$, then Z and s are transverse and so N is a submanifold, diffeomorphic to $\mathbb{RP}^2 \subset \mathbb{RP}^3$. Then $\text{Det } TN \to N$ is the restriction of $\text{Det } T\mathbb{P}(V) \otimes H^{-1} \to \mathbb{P}(V)$, and it's nontrivial: \mathbb{RP}^2 is nonorientable, and Det TN has nonzero first Stiefel-Whitney class.

This approach describes finite-dimensional manifolds as cut out by finitely many equations satisfying transversality. In the infinite-dimensional setting, things will look similar, though we may cut out the solutions to infinitely many equations.

Remark 14.6. Another common generalization is to consider two maps $f: X \to Y$ and $f': X' \to Y$. We want to take the fiber product of those two maps, the subset of $(x, x') \in X \times X'$ such that f(x) = f'(x'), and we want it to be a submanifold. A sufficient, but not necessary, condition, is for $f \pitchfork f'$, and then the formulas about tangent bundles generalize. When $X' = \operatorname{pt}$ and $f': \operatorname{pt} \mapsto y$, transversality is equivalent to asking for y to be a regular value of f.

Remark 14.7 (The non-transverse setting). If $a := \dim X$ and $b := \dim Y$, then in the transverse setting we expect $\dim N = a - b$. Sometimes Y isn't a regular value, but N is nonetheless still a manifold; in this case $\dim N$ might be larger than expected.

Let's assume N is a submanifold of X but that y isn't necessarily a regular value. We have $\ker df_x = T_x N$, and hence $E := \operatorname{coker} df \to N$ is also a vector bundle, called the *obstruction bundle*.

For example, let $\phi \colon S^2 \to S^2$ be a diffeomorphism and consider the map $f \colon S^2 \to S^2 \times S^2$ sending $p \mapsto (p, \phi(p))$. The intersection with the diagonal would have expected dimension zero, tracking the fixed points of ϕ , but of course if $\phi = \operatorname{id}$ then we get all of S^2 , which has positive dimension. As an exercise, show that in this case, the obstruction bundle is identified with TS^2 .

In this case, the way to study the intersection is to also keep track of the obstruction bundle. But this doesn't work for all non-transverse intersections – consider the map $f_a := x^2 - a$ from $\mathbb{R} \to \mathbb{R}$. For a > 0, this is fine, and we get two points as expected, but at a = 0, we only get a single point. Differential geometry can't really tell that you were supposed to get two points there, but algebraic methods can: consider the graph of f_a in $\mathbb{R} \times \mathbb{R}$, and intersect it with the graph y = 0.

In algebraic geometry, we do this by considering rings of functions. The functions on $\mathbb{R} \times \mathbb{R}$ are $R := \mathbb{R}[x, y]$; the algebra of functions on $Z := \{y = 0\}$ is $M_Z := \mathbb{R}[x, y]/(y)$, and the algebra of functions on $P := \{y = x^2\}$ is $M_P := \mathbb{R}[x, y]/(y - x^2)$.

The intersection is a pullback, so its algebra of functions is a pushout, which is given by the tensor product

$$(14.8) M_P \otimes_R M_Z.$$

(In more elaborate settings it can be better to consider derived terms as well, which here are factors of Tor.) To compute this, let's take a resolution of R:

$$(14.9) 0 \longleftarrow \mathbb{R}[x,y] \stackrel{y}{\longleftarrow} \mathbb{R}[x,y] \longleftarrow 0$$

Multiplication by y is injective, so this is fine, and the cohomology of this complex has M_Z in degree 0 and vanishes elsewhere. Now, tensor with M_P :

$$(14.10) 0 \longleftarrow \mathbb{R}[x,y]/(y-x^2) \stackrel{y}{\longleftarrow} \mathbb{R}[x,y]/(y-x^2) \longleftarrow 0$$

Now, the zeroth cohomology is a two-dimensional vector space, and in this sense we've remembered that the intersection is of multiplicity 2.

We can also consider this story in families. A "family of equations" is a smooth manifold S and a map $f: S \times X \to Y$; we think of fixing the parameter $s \in S$ to obtain an equation $x \mapsto f_s(x) := f(s, x)$.

Lemma 14.11. Let $y \in Y$ and $N := f^{-1}(y) \subset S \times X$. Let $\pi \colon N \to S$ be the restriction of projection onto the first factor $S \times X \to S$. Then s is a regular value of π iff y is a regular value of f_s .

Sard's theorem tells us that regular values in Y form a subset of the second category, meaning in particular that it's dense, and therefore nonempty. So there are regular values. The takeaway is that if we start with a nontransverse map and add enough parameters, we can adjust the parameters a little bit and obtain a transverse map. Though algebraic methods are better at directly dealing with nontransverse situations, they don't allow this kind of argument; each perspective is useful in a different way.

Now we throw in symmetries. Suppose G is a Lie group acting on X and Y and that $f: X \to Y$ is G-equivariant. If $y \in Y$ is a fixed point of G, then G acts on TX and f^*TY , and $\mathrm{d} f: TX \to f^*TY$ is G-equivariant. There's also a Lie algebra action here: at each $x \in X$, there's a map $\mathfrak{g} \to T_x X$: a $\xi \in \mathfrak{g}$ defines a left-invariant vector field on G, and hence a curve $t \mapsto e^{t\xi}$ in G through the identity. Acting by these elements defines a curve in X, and we can differentiate at t = 0 to obtain a tangent vector at x. As x varies, this stitches into a vector bundle map, and so altogether we have a complex

$$\mathfrak{g} \xrightarrow{\alpha} TX \xrightarrow{\mathrm{d}f} f^*TY.$$

in degrees -1, 0, and 1, and its cohomology is $H^{-1} = \ker \alpha$, $H^0 = TN/\operatorname{Im} \alpha$, and $H^1 = E$, the obstruction bundle. However, $\ker \alpha$ isn't always a vector bundle – it tells us the Lie algebra of the isotropy groups at each point, but we don't yet know that these are always the same dimension. If they are, then N/G is a smooth orbifold, and $TN/\operatorname{Im}(\alpha) = T(N/G)$. One way to force this would be to ask for all isotropy groups to be discrete, in which case $\ker \alpha = 0$. So H^1 is non-transversality, H^{-1} is isotropy groups, and H^0 is the tangent space.

 $\sim \cdot \sim$

We would like to generalize all of this to infinite dimensions. Recall that if V and W are Banach spaces and $T: V \to W$ is a continuous linear map, then T is Fredholm if its kernel and cokernel are finite-dimensional.

Definition 14.13. Let A and B be affine spaces modeled on the Banach spaces V and W, respectively, and let $U \subset A$ be open. A C^1 map (not necessarily linear) $f: U \to B$ is Fredholm if $df_p: V \to W$ is Fredholm for all $p \in U$.

In this case, df defines a map $U \to \text{Fred}(V, W)$: it's a family of linear Fredholm operators parameterized by U, and this is the infinitesimal information contained in f.

Remark 14.14. One can generalize to C^1 maps between Banach manifolds. The basic theory of Banach manifolds is set up similarly to the finite-dimensional setting that may be more familiar, at least once you have the inverse function theorem.

Theorem 14.15. Let $y \in B$ be a regular value of a Fredholm map $f: U \to B$. Then $f^{-1}(y) \subset U$ is a finite-dimensional submanifold, with dimension ind df_x .

Now U might not be connected, so the index of df_x need only be locally constant, since it's a surjective map $Fred(V, W) \to \mathbb{Z}^{\geq 0}$, at least of V and W are infinite-dimensional. So $f^{-1}(y)$ may have components of different dimensions.

Proof. Let $x_0 \in f^{-1}(y)$ and $T_0 = \mathrm{d} f_{x_0} \colon V \to W$. If $V' \subset V$ is a complementary subspace to $\ker(T_0)$, then as we discussed last time, $T_0|_{V'} \colon V' \to T_0(V')$ is invertible. Let W' be a complement to $T_0(V')$.

Let's introduce a local change of coordinates φ around x_0 such that

$$(14.16) (f \circ \varphi)(x_0 + \xi' + \eta) = y + T_0(\xi') + \phi(\xi', \eta),$$

where $\xi' \in V'$, $\eta \in \ker(T_0)$, and ϕ is a map $V \to W'$. (To do this, we need to know the inverse function theorem.) The point is, in the direction corresponding to V', $f \circ \varphi$ is just T_0 , and in the complementary direction, it's something else, which might be nonlinear. Define $g: \ker(T_0) \to W'$ to send $\eta \mapsto \phi(0, \eta)$; we've just shown a bijection between $f^{-1}(y)$ and $g^{-1}(0)$.

We haven't yet used that y is a regular value, so as a bonus we learn that we can locally model the inverse image of a Fredholm map as a map between finite-dimensional vector spaces. Since y is a regular value of f, then 0 is a regular value of g, and therefore the component of $f^{-1}(y)$ containing x_0 is a manifold of the expected dimension, which is ind $T_0 = \dim \ker(T_0)$, since the cokernel vanishes.

This is an echo of the techniques we used last time: we used the inverse function theorem to write a nonlinear Fredholm map locally as a nonlinear finite-dimensional map and a linear invertible map.

There's also an analogue of Sard's theorem in this setting, called the Sard-Smale theorem; next time, we'll see how to use this to construct moduli spaces.

References

- [ABS64] M.F. Atiyah, R. Bott, and A. Shapiro. Clifford modules. *Topology*, 3(Supplement 1):3-38, 1964. https://ac.els-cdn.com/0040938364900035/1-s2.0-0040938364900035-main.pdf?_tid=4564ce36-f342-11e7-b652-00000aab0f27&acdnat=1515285341_9261e93c966630f1828dd0c2caa00f14.30
- [DK97] S. K. Donaldson and P. B. Kronheimer. The Geometry of Four-Manifolds. Oxford Mathematical Monographs. Oxford University Press, 1997. 26, 29, 30, 37
- [Hit74] Nigel Hitchin. Harmonic spinors. Advances in Mathematics, 14(1):1–55, 1974. 30
- [Ste51] Norman Steenrod. The Topology of Fibre Bundles. Princeton University Press, 1951. 5, 8