Teoría de números algebraicos Tarea 7

Alexey Beshenov (alexey.beshenov@cimat.mx)

14 de octubre de 2020

Ejercicio 7.1. Demuestre que para una extensión de Galois L/K, primos $\mathfrak{q} \subset \mathcal{O}_L$, $\mathfrak{p} \subset \mathcal{O}_K$, tales que $\mathfrak{q} \mid \mathfrak{p}$, y $\sigma \in \operatorname{Gal}(L/K)$ se tiene

$$D(\sigma(\mathfrak{q})|\mathfrak{p}) = \sigma \, D(\mathfrak{q}|\mathfrak{p}) \, \sigma^{-1}, \quad I(\sigma(\mathfrak{q})|\mathfrak{p}) = \sigma \, I(\mathfrak{q}|\mathfrak{p}) \, \sigma^{-1}.$$

Además, si p no se ramifica, entonces el Frobenius cumple

$$\operatorname{Frob}_{\sigma(\mathfrak{q})|\mathfrak{p}} = \sigma \operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}} \sigma^{-1}.$$

Ejercicio 7.2. Sea F un campo de números, y L/K/F una torre de extensiones tal que L/K es una extensión normal. Sean $\mathfrak{p} \subset \mathcal{O}_F$, $\mathfrak{q} \in \mathcal{O}_K$, $\mathfrak{Q} \subset \mathcal{O}_L$ ideales primos tales que $\mathfrak{Q} \mid \mathfrak{q} \ \mathfrak{q} \mid \mathfrak{p}$.

- 1) Demuestre que $D(\mathfrak{Q}|\mathfrak{q})$ se identifica con un subgrupo de $D(\mathfrak{Q}|\mathfrak{p})$ e $I(\mathfrak{Q}|\mathfrak{q})$ con un subgrupo de $I(\mathfrak{Q}|\mathfrak{p})$.
- 2) Si p no se ramifica en L, demuestre que $\operatorname{Frob}_{\mathfrak{Q}|\mathfrak{q}} = (\operatorname{Frob}_{\mathfrak{Q}|\mathfrak{p}})^{f(\mathfrak{q}|\mathfrak{p})}$.
- 3) Si la extensión K/F es normal, demuestre que $\operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}}$ es la restricción de $\operatorname{Frob}_{\mathfrak{Q}|\mathfrak{p}}$.

Ejercicio 7.3. Sea *K* el campo de descomposición del polinomio

$$f = x^4 + 8x + 12.$$

Calcule $\operatorname{Gal}(K/\mathbb{Q})$, las clases de conjugación, los tipos de descomposición que corresponden a cada $\operatorname{Frob}_{\mathfrak{p}|p}$, y las densidades que nos da el teorema de Chebotarëv

Ejercicio 7.4. Para $K=\mathbb{Q}(\sqrt[4]{2})$ consideremos la cerradura de Galois $L=\mathbb{Q}(\sqrt[4]{2},i).$

- 1) Demuestre que el único primo racional p que se ramifica en L es p=2.
- 2) Para p impar sea $\mathfrak{p} \subset \mathcal{O}_L$ un primo tal que $\mathfrak{p} \mid p$. Determine cómo el tipo de factorización de p en \mathcal{O}_K para toda posibilidad para $\operatorname{Frob}_{\mathfrak{p}\mid p}$.

Ejercicio 7.5. Para la extensión ciclotómica $L = \mathbb{Q}(\zeta_n)$ determine cómo los primos no ramificados $p \nmid n$ se descomponen en el subcampo $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$.