A GEOMETRICAL EXTENSION OF THE BRADLEY-TERRY MODEL

INFORMATION GEOMETRY OF RANKING PROBLEM

Noboru Murata September 19, 2021

Waseda University

1. Introduction

Bradley-Terry model conventional estimation algorithm

- 2. Problem Formulation geometrical overview
- 3. Illustrative Example
 reguralization property
 weight adaptation with local influence
 grouped ranking data
- 4. Concluding Remarks

INTRODUCTION

example: win-loss records of MLB (American East)

number of wins

	Υ	R	RS	ВЈ	0
Yankees	-	6	8	9	5
Rays	8	-	7	8	7
Red Sox	6	9	-	8	9
Blue Jays	5	4	4	-	?
Orioles	7	8	5	?	-

problem:

- estimate intrinsic strengths of teams
- predict results of unobserved matches

notations:

- i: a member of k individuals (e.g. baseball team)
- θ_i : skill of individual i (e.g. strength of team)
- probability model (binomial distribution):

$$\Pr\{i \text{ beats } j\} = \Pr(i \succ j) = \frac{\theta_i}{\theta_i + \theta_i},$$

(e.g. win-loss probability between teams i and j)

 \cdot n_{ij} : observation, i.e. the number of times that i beats j

(Bradley and Terry 1952)

compare binomial distributions:

· data:
$$\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$$

$$P_{\mathcal{D}_{ij}}^{(b)}(i \succ j) = \frac{n_{ij}}{n_{ij} + n_{ji}}$$
· model: $\theta_{ii} = \{\theta_i, \theta_i\}$

$$P_{\theta_{ij}}^{(b)}(i \succ j) = \frac{\theta_i}{\theta_i + \theta_i}$$

· discrepancy (KL divergence):

$$Dist(\{n_{ij}, n_{ji}\}, \{\theta_i, \theta_j\}) = D(P_{D_{ii}}^{(b)}, P_{\theta_{ij}}^{(b)})$$

conventional algorithm: (Hastie and Tibshirani 1998)

· objectives: likelihood of binomial distribution

$$L(\theta) = -\sum_{i < j} \left(n_{ij} \log \frac{\theta_i}{\theta_i + \theta_j} + n_{ji} \log \frac{\theta_j}{\theta_i + \theta_j} \right)$$
$$= \sum_{i < j} (n_{ij} + n_{ji}) D(P_{\mathcal{D}_{ij}}^{(b)}, P_{\theta_{ij}}^{(b)}) + \text{const.}$$

- · iterative updates:
 - calculate:

$$\theta_i \leftarrow \frac{\sum_{j \neq i} n_{ij}}{\sum_{j \neq i} \frac{n_{ij} + n_{ji}}{\theta_i + \theta_j}}$$

• re-normalize: $\|\theta\|_1 = 1$

PROBLEM FORMULATION

basic ideas: (Fujimoto, Hino, and Murata 2011)

- BT model parameter can be identified with a multinomial distribution
- pairwise comparison data can be regarded as incomplete data from multinomial distributions

basic ideas: (Fujimoto, Hino, and Murata 2011)

- BT model parameter can be identified with a multinomial distribution a point on the probability simplex
- pairwise comparison data can be regarded as incomplete data from multinomial distributions
 - an *m*-flat manifold in the probability simplex

basic ideas: (Fujimoto, Hino, and Murata 2011)

- BT model parameter can be identified with a multinomial distribution a point on the probability simplex
- pairwise comparison data can be regarded as incomplete data from multinomial distributions
 an m-flat manifold in the probability simplex

em algorithm (Amari, 1995)

optimal parameter can be obtained by means of iterative e and m-projections

example: k = 3

example: k = 3

- $\theta_i \ge 0$ (positivity)
- $\sum \theta_i = 1$ (normalized)

example: k = 3

- $\theta_i \ge 0$ (positivity)
- $\sum \theta_i = 1$ (normalized)
- estimate $\hat{\theta}$:
 a point in the simplex

CONVENTIONAL LOSS

 \cdot $\hat{\theta}$: current estimate

- $\hat{\theta}$: current estimate
- · construct $P_{\mathcal{D}_{ij}}^{(b)}$ from $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$

- \cdot $\hat{\theta}$: current estimate
- · construct $P_{\mathcal{D}_{ij}}^{(b)}$ from $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$
- · construct $P_{\theta_{ij}}^{(b)}$ from $\theta_{ij} = \{\theta_i, \theta_j\}$

- $\hat{\theta}$: current estimate
- · construct $P_{\mathcal{D}_{ij}}^{(b)}$ from $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$
- · construct $P_{\theta_{ij}}^{(b)}$ from $\theta_{ij} = \{\theta_i, \theta_j\}$
- compare all the possible pairs

- $\hat{\theta}$: current estimate
- · construct $P_{\mathcal{D}_{ij}}^{(b)}$ from $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$
- · construct $P_{\theta_{ij}}^{(b)}$ from $\theta_{ij} = \{\theta_i, \theta_j\}$
- compare all the possible pairs

CONVENTIONAL ALGORITHM

initialize parameter

CONVENTIONAL ALGORITHM

- · initialize parameter
- update parameter to reduce the total loss

CONVENTIONAL ALGORITHM

- · initialize parameter
- update parameter to reduce the total loss

• $\hat{\theta}$: current estimate

- $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$,

- $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

- $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

· choose the closest point $\tilde{\theta}_{ij}$ in D_{ij} from $\hat{\theta}$

- $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

· choose the closest point $\tilde{\theta}_{ij}$ in D_{ij} from $\hat{\theta}$

- $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

· choose the closest point $\tilde{\theta}_{ij}$ in D_{ij} from $\hat{\theta}$

- \cdot $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

· choose the closest point $\tilde{\theta}_{ii}$ in D_{ii} from $\hat{\theta}$

- \cdot $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

· choose the closest point $\tilde{\theta}_{ii}$ in D_{ii} from $\hat{\theta}$

- \cdot $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

· choose the closest point $\tilde{\theta}_{ii}$ in D_{ii} from $\hat{\theta}$

- $\hat{\theta}$: current estimate
- for $\mathcal{D}_{ij} = \{n_{ij}, n_{ji}\}$, consider a set of consistent θ

$$D_{ij} = \{\theta | \theta_i : \theta_j = n_{ij} : n_{ji}\}$$

- · choose the closest point $\tilde{\theta}_{ij}$ in D_{ij} from $\hat{\theta}$
- obtain new $\hat{\theta}$ by integrating all $\tilde{\theta}_{ij}$'s

GEOMETRICAL ALGORITHM

initialize parameter

GEOMETRICAL ALGORITHM

- initialize parameter
- e-projection:

$$\tilde{\theta}_{ij} = \arg\min_{\theta \in D_{ij}} D(P_{\theta}, P_{\hat{\theta}})$$

initialize parameter

• *m*-projection:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i,j} w_{ij} D(P_{\tilde{\theta}_{ij}}, P_{\theta})$$

where
$$w_{ij} = (n_{ij} + n_{ji})$$

GEOMETRICAL ALGORITHM

- initialize parameter
- e-projection:

$$\tilde{\theta}_{ij} = \arg\min_{\theta \in D_{ij}} D(P_{\theta}, P_{\hat{\theta}})$$

initialize parameter

• *m*-projection:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i,j} w_{ij} D(P_{\tilde{\theta}_{ij}}, P_{\theta})$$

where
$$w_{ij} = (n_{ij} + n_{ji})$$

GEOMETRICAL ALGORITHM

- initialize parameter
- e-projection:

$$\tilde{\theta}_{ij} = \arg\min_{\theta \in D_{ij}} D(P_{\theta}, P_{\hat{\theta}})$$

initialize parameter

• *m*-projection:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i,j} w_{ij} D(P_{\tilde{\theta}_{ij}}, P_{\theta})$$

where
$$w_{ij} = (n_{ij} + n_{ji})$$

DECOMPOSITION OF MULTINOMIAL DISTRIBUTION

$$P(\theta) = P_{\theta_{ij}}^{(b)} \times P_{\theta_{ij}}^{(r)}$$

• $P_{\theta_{ij}}^{(b)}$: binomial distribution on i and j• $P_{\theta_{ij}}^{(r)}$: multinomial distribution on $\{i,j\}$ and the rest

conventional method:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i < i} W_{ij} D(P_{\mathcal{D}_{ij}}^{(b)}, P_{\theta_{ij}}^{(b)})$$

geometrical method:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i < j} W_{ij} D(P_{\mathcal{D}_{ij}}^{(b)}, P_{\theta_{ij}}^{(b)}) + \sum_{i < j} W_{ij}' D(P_{\mathcal{D}_{ij}}^{(r)}, P_{\theta_{ij}}^{(r)})$$

- · this objective has a unique solution
- · the second term works as a regularization

example from Hastie & Tibshirani (1998)

	1	2	3	4
1	-	0.56	0.51	0.60
2	0.44	-	0.96	0.44
3	0.49	0.04	-	0.59
4	0.40	0.56	0.41	-

· conventional estimate:

$$\{\theta_i\} = \{0.29, 0.34, 0.16, 0.21\}$$

• geometrical estimate:

$$\{\theta_i\} = \{0.32, 0.29, 0.15, 0.23\}$$

EFFECT OF REGULARIZATION

 \cdot conv. est.: $\{0.29, 0.34, 0.16, 0.21\}$

• geom. est.: $\{0.32, 0.29, 0.15, 0.23\}$

i	j	$P(i \succ j)$	$P(j \succ i)$	majority rule	conv.	geom.
1	2	0.56	0.44	$1 \succ 2$	×	$\sqrt{}$
1	3	0.51	0.49	$1 \succ 3$	$\sqrt{}$	\checkmark
1	4	0.60	0.40	$1 \succ 4$	$\sqrt{}$	\checkmark
2	3	0.96	0.04	$2 \succ 3$	$\sqrt{}$	\checkmark
2	4	0.44	0.56	$2 \prec 4$	×	×
3	4	0.59	0.41	$3 \succ 4$	×	×

weights in objective:

· generic form of objective:

$$L(\theta) = \sum_{i < i} w_{ij} D(P_{\mathcal{D}_{ij}}, P_{\theta})$$

- · weight w_{ii} reflects confidence of data \mathcal{D}_{ii}
- · possible weights:
 - data size of pairwise comparison
 - empirical influence of data

a proposal in Hastie & Tibshirani (1998)

binomial influence

$$W_{ij} \to \frac{W_{ij}}{\alpha(1 - c)}$$
$$\alpha = \frac{n_{ij}}{n_{ij} + n_{ji}}$$

a proposal in Hastie & Tibshirani (1998)

· binomial influence

$$W_{ij} \to \frac{W_{ij}}{\alpha(1 - \epsilon)}$$
$$\alpha = \frac{n_{ij}}{n_{ij} + n_{ji}}$$

 weights are renormalized so as to equalize influences from variances of pairwise comparisons

· influence around $\hat{\theta}$ should be considered

- · influence around $\hat{\theta}$ should be considered
- · fluctuation of data manifold

- · influence around $\hat{\theta}$ should be considered
- · fluctuation of data manifold
- fluctuation along e-geodesic is regarded as essential influence

- · influence around $\hat{\theta}$ should be considered
- · fluctuation of data manifold
- fluctuation along e-geodesic is regarded as essential influence
- weights are determined so as to equalize those influences with iterative manner

synthetic data in Hastie & Tibshirani (1998)

$$P_{A}^{*} = \left\{ \pi_{i}^{*} \middle| \pi_{1}^{*} = \frac{1.5}{k}, \pi_{j}^{*} = \frac{1 - \pi_{1}^{*}}{k - 1} (j = 2, \dots, k) \right\}$$

$$P_{B}^{*} = \left\{ \pi_{i}^{*} \middle| \pi_{1}^{*} = \frac{2.85}{k}, \pi_{j}^{*} = \frac{0.95 - \pi_{1}^{*}}{k/2 - 1} \left(j = 2, \dots, \frac{k}{2} \right) \right.$$

$$\pi_{j}^{*} = \frac{0.05}{k/2} \left(j = \frac{k}{2} + 1, \dots, k \right) \right\}$$

$$P_{C}^{*} = \left\{ \pi_{i}^{*} \middle| \pi_{1}^{*} = 0.7125, \pi_{2}^{*} = 0.2375, \right.$$

$$\pi_{j}^{*} = \frac{0.05}{k - 2} (j = 3, \dots, k) \right\}$$

plots of the number of individuals vs. $D(P^*, P_{\hat{\theta}})$ for 500 trials. (solid:proposed, dashed:unit, dotted:# of data, dotdash:H&T)

example: movie rating data

	Toy Story	Star Wars	Braveheart	The Saint	
Anne	4	5		3	
Bob		5	4	2	
Cathy	5			3	
David	3	4	3	3	

characteristics of data:

- each user gives a rate to each item
- · some rates are not available
- · rates are relative values, not absolute evaluation

problem:

- estimate preference levels of items quantitatively
- predict preference levels of unrated items

marginalize with respect to hidden ordering:

observed ranking

$$\{i = j \succ \cdots \succ k\}$$

possible hidden ordering (unobserved)

$$\{i \succ j \succ \cdots \succ k\}$$
 or $\{j \succ i \succ \cdots \succ k\}$

marginalize with possible ordering

$$P(i = j \succ \cdots \succ k) = P(i \succ j \succ \cdots \succ k) + P(j \succ i \succ \cdots \succ k)$$

(Hino, Fujimoto, and Murata 2010)

notations:

- R_i^n : a rate of item i evaluated by user n
- $\mathcal{D}^n = \{R_1^n, R_2^n, \dots\}$: a set of rates given by user n
- $\cdot \mathcal{D} = \{\mathcal{D}^1, \mathcal{D}^2, \dots\}$: all data
- θ_i : preference parameter for item i
 - $\theta_i \ge 0$ (positivity)
 - $\sum \theta_i = 1$ (normalized)
- \cdot $\mathcal{S}(\mathcal{D}^n)$: a set of possible permutations for \mathcal{D}^n

· likelihood:

$$P(\mathcal{D}) = \sum_{n} \sum_{\pi \in \mathcal{S}(\mathcal{D}^{n})} P(\pi) P(\mathcal{D}^{n} | \pi)$$
$$= \sum_{n} \sum_{\pi \in \mathcal{S}(\mathcal{D}^{n})} P(\pi) \prod_{i \in \pi} \frac{\theta_{i}}{\sum_{j \leq i \in \pi} \theta_{j}}$$

where $P(\pi)$ is a prior of permutations (marginalized with respect to all the possible ranking in equivalently rated items)

 the number of permutations increases with the number of items exponentially

basic idea:

- · bound below with tractable calculation
- exclude marginalization of permutation

lower bound of likelihood:

- $\Lambda_r^n = \{i | R_i^n = r\}$: an index set of items with rate r by user n
- $\Theta_r^n = \sum_{i \in \Lambda_r^n} \theta_i$: group preference parameter (total preference of the equivalently rated items)

$$\underline{P}(\mathcal{D}) = \sum_{n} \prod_{r} \prod_{i \in \Lambda^{n}_{r}} \frac{\theta_{i}}{\sum_{s \leq r} \Theta_{s}^{n}}$$

maximizing lower bound is still computationally tedious

decompose the objective into small optimization problems:

$$\begin{array}{ll} \text{minimize} & \sum_r |\Lambda_r^n| \log \sum_{s \geq r} \Theta_s^n \quad \text{subject to} \ \sum_r \Theta_r^n = 1 \\ \\ \text{maximize} & \sum_i \log \theta_i \quad \text{subject to} \ \sum_i \theta_i = 1 \end{array}$$

algorithm:

- find solutions of the minimization problems
- find a parameter of the maximization problem which is as consistent with those solutions as possible

solutions of minimization problems

$$\mathcal{D}^n = \{\theta | \sum_{i \in \Lambda_r^n} \theta_i = const.\}$$

solutions of minimization problems

$$\mathcal{D}^n = \{\theta | \sum_{i \in \Lambda_r^n} \theta_i = const.\}$$

solutions of minimization problems

$$\mathcal{D}^n = \{\theta | \sum_{i \in \Lambda_r^n} \theta_i = const.\}$$

find a estimate with geometrical BT method

application of mixture model:

item mapping:

typical two axes are used

movies

item-user mapping:

- o rated by user 114
- not rated

CONCLUDING REMARKS

we presented the following:

- a geometrical reformulation of the estimation procedure for the Bradley-Terry model
- · a robust weight adaptation method
- · an approximate estimation for grouped ranking data

in addition, possible application would be:

• utilizing *U*-divergence based on *m*-flat nature of data manifolds

Bradley, Ralph Allan and Milton E. Terry (Dec. 1952). "Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons." In: Biometrika 39.3/4, pp. 324–345. DOI: 10.2307/2334029. ISTOR: 2334029.

Fujimoto. Yu. Hideitsu Hino, and Noboru Murata (June 2011). "An Estimation of Generalized Bradley-Terry Models Based on the em Algorithm." In: Neural Computation 23.6, pp. 1623-1659. DOI: 10.1162/NECO a 00129.

Hastie, Trevor and Robert Tibshirani (Apr. 1998). "Classification by Pairwise Coupling." In: The Annals of Statistics 26.2, pp. 451-471. DOI: 10.1214/aos/1028144844. JSTOR: 120036.

Hino, Hideitsu, Yu Fujimoto, and Noboru Murata (Sept. 2010). "A Grouped Ranking Model for Item Preference Parameter." In: Neural Computation 22.9, pp. 2417–2451. DOI: 10.1162/NECO a 00008.