Lecture 1 Probability calculus in a nutshell

Risk Management

Summer semester 2024/25

Probability calculus in a nutshell

- Basics
- Probability distributions
- Central limit theorems
- **Extreme** values

Basics: randomness

Randomness
\square results from our ignorance (incomplete knowledge of reality, lack of information)
is related to complexity (many "small agents" with non-linear interactions, small perturbations lead to large effects)
predictability is possible but on the basis of statistics (non-deterministic)
❖ Financial markets comply well with these ideas
☐ incomplete knowledge about the economy/sector/company/behaviour of market participants/ ☐ many small agents (investors) with different view of the market situation & behaviour ☐ external "news" / "events" happen unexpectedly both in time & "nature"
 ❖ Prediction (generalization) is based on past market data (statistics) □ but the "market" can change over time
predicting works as long as statistical properties don't change much ("stationarity)
☐ trade-off: larger data sets (better statistics) ⇔ ~stationarity (predictability)
☐ in practice one uses "medium-term" data (usually from ~ 1-2 yrs) but it may not work well in case of rare unexpected events ("black-swans"), where in fact risk estimation is crucial! ;-(

27.02.2025

Basics: PDF

- **\clubsuit** We will focus on continuous random variables*, i.e. $X \in \mathbb{R}$
- **Probability Density Function (PDF):** p(x)
 - $\Box p(x)dx$ is the probability of finding the random variable X in a small interval [x; x+dx]
 - \square Note that p(x) itself is a DENSITY $! \Rightarrow p(x) \ge 0$, but it is NOT limited to [0,1] !, it has a unit $[X]^{-1}$
- PDF properties:
 - \Box $\forall x: p(x) \geq 0$
 - \Box $\int_{-\infty}^{x_{max}} p(x) dx = 1$ (or in general: $\int_{-\infty}^{\infty} p(x) dx = 1$)
 - lacksquare probability to find rand. var. X in the interval $[a\ ;b]$ is: $P(a < X < b) = \int^{b} p(x) dx$
 - \square p(x) is invariant under: $x \to y(x)$ for any monotonic function y(x) in a sense: p(x)dx = p(y)dy(i.e., probability is conserved \Rightarrow computing PDF p(y) of the new rand. var. Y one must remember about jacobian of the transformation!)

^{*}Prices of financial instruments change (almost, i.e., up to minimal "tics") continuously

Basics: CDF

Cumulative Distribution Function (CDF):

$$F(x) \equiv P_{\leq}(x) \equiv P(X \leq x) = \int_{-\infty}^{x} p(x')dx'$$

CDF properties:

- $\square \forall x: 0 \leq F(x) \leq 1$
- \Box F(x) increases monotonically* with x
- $\Box F(-\infty) = 0$
- $\Box F(+\infty) = 1$
- \square If F(x) is differentiable \Rightarrow $p(x) = \frac{d}{dx}F(x)$

Sometimes one also defines: $P_{>}(x) \equiv 1 - P_{<}(x) \equiv 1 - F(x)$

^{*}In general: NOT strictly monotonic, as CDF can be piecewise constant, e.g. for discrete rand. var.

Basics: "typical" values

- riangle Mode (most probable value): x_{max}
 - $\square x_{max}$ is the maximum of the PDF p(x) (need NOT be unique: "multimodal")
- **Mean** ("expected" value): $E(X) \equiv \langle x \rangle \equiv \int_{-\infty}^{\infty} xp(x)dx$ Dexists only if PDF tails fall faster than $\sim x^{-2}$!
 - \Box has "good" properties (if exists): analytic, additive under convolution ($E(X_1+X_2)=E(X_1)+E(X_2)$), ...
- \bigstar Median ("middle" value): x_{med}

 - \Box if CDF F(x) is strictly monotonic*, and thus invertible, then: $x_{med} = F^{-1}(\frac{1}{2})$
- \diamond Quantile: x_a
 - \square Definition: $P_{<}(x_q) = q$ and $P_{>}(x_q) = 1-q$
 - \Box this is a generalization of the median ($x_{med} = x_{1/2}$)
 - \square if CDF F(x) is strictly monotonic*, and thus invertible, then: $x_q = F^{-1}(q)$
 - \square "important" quantiles: (so called) quartiles: $Q_1 \equiv x_{1/4}$, $Q_2 \equiv x_{1/2} \equiv x_{med}$, $Q_3 \equiv x_{3/4}$

PDF: p(x)

Basics: "typical" deviations

$$\forall \text{variance} \ \rightarrow \left(\sigma^2 \equiv E\left((X-E(X))^2\right)\right) \equiv \int_{-\infty}^{+\infty} (x-\langle x\rangle)^2 \, p(x) dx \right)$$

☐ variance has "good" properties (if exists): analytic, additive under convolution, ...

 \clubsuit MAE (mean absolute error, average absolute deviation): E_{abs}

$$E_{abs} \equiv E\left(|X-m|\right) \equiv \int_{-\infty}^{+\infty} |x-m| \, p(x) dx$$

 \square exists only if PDF tails fall faster than $\sim x^{-2}$!

- **AD** (median absolute deviation): $MAD = Median(|x-x_{med}|)$
- **!** IQR (interquartile range): $IQR \equiv Q_3 Q_1$
- *** FWHM (full width at half maximum):** $w_{\frac{1}{2}} \Rightarrow \text{def:} \ p\left(x_{max} \pm \frac{w_{1/2}}{2}\right) = \frac{p(x_{max})}{2}$
 - ☐ "good" only for symmetric PDFs

 $m=m_1\equiv E(x)$ or other

"typical" value (e.g. $m=x_{med}$)

Basics: moments & characteristic function

- - \square Exists only if PDF tails fall faster than $\sim x^{-(n+1)} \Rightarrow$ only up to some n for "heavy tail" PDFs!
 - \square Examples: $m_1 \equiv E(X)$ (mean), $m_2 = \sigma^2 + m_1^2$

□ In most cases (NOT always ! – see Exercises 1): knowledge of moments.
$$\Leftrightarrow$$
 knowledge of PDF
Characteristic function (CF): $\hat{p}(t) \equiv E(e^{itX}) = \int_{-\infty}^{+\infty} e^{itx} p(x) dx$ ← Fourier transform!
□ PDF normalization: $\hat{p}(0) \equiv \int_{-\infty}^{+\infty} p(x) dx = 1$

- \square alternative way to define PDF: define CF and invert it (e.g. Levy α -stable distributions)

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \hat{p}(t) dt \qquad \longleftarrow \text{ Inverse Fourier transform !}$$

 \Box but one must be careful to get real and positive PDF (doesn't work for arbitrary function $\hat{p}(t)$!)

Basics: moments & characteristic function

- CF is a "moment generating*" function
 - ☐ smart way to compute all moments "at once":

$$m_n = (-i)^n \frac{d^n}{dt^n} \hat{p}(t) \bigg|_{t=0}$$

$$m_n \equiv E(X^n) = \int_{-\infty}^{+\infty} x^n \ p(x) dx$$
$$\hat{p}(t) \equiv E(e^{itX}) = \int_{-\infty}^{+\infty} e^{itx} p(x) dx$$

$$\hat{p}(t) = \int_{-\infty}^{+\infty} e^{itx} p(x) dx = \int_{-\infty}^{+\infty} \sum_{n} \frac{(itx)^{n}}{n!} p(x) dx = \sum_{n} \frac{(it)^{n}}{n!} \int_{-\infty}^{+\infty} x^{n} p(x) dx = \sum_{n} \frac{(it)^{n}}{n!} m_{n}$$

 \square CF of a CONVOLUTION (sum of indep. rand. var. $X_1 \sim p_1(x_1) \& X_2 \sim p_2(x_2) \Rightarrow S = X_1 + X_2 \sim p_{1+2}(s)$)

Important for stable distributions (see later) !
$$\hat{p}_{1+2}(t) = \hat{p}_1(t) \cdot \hat{p}_2(t)$$

$$p_{1+2}(s) = \int_{-\infty}^{+\infty} dx_1 dx_2 \ p_1(x_1) p_2(x_2) \delta(s-x_1-x_2) = \int_{-\infty}^{+\infty} \Pr_1(x) p_2(s-x) dx$$

$$\hat{p}_{1+2}(t) = \int_{-\infty}^{+\infty} ds \ e^{its} p(s) ds = \int_{-\infty}^{+\infty} ds \iint_{-\infty}^{+\infty} dx_1 dx_2 \ p_1(x_1) p_2(x_2) \delta(s - x_1 - x_2) e^{its} =$$

$$\sum_{it} \frac{1}{(x_1 + x_2)} \int_{-\infty}^{+\infty} ds \ ds \int_{-\infty}^{+\infty} dx_1 dx_2 \ p_1(x_1) p_2(x_2) \delta(s - x_1 - x_2) e^{its} = \int_{-\infty}^{+\infty} ds \int_{-\infty}^{$$

$$= \int_{-\infty}^{+\infty} dx_1 dx_2 \ p_1(x_1) p_2(x_2) e^{it(x_1 + x_2)} = \int_{-\infty}^{+\infty} dx_1 p_1(x_1) e^{itx_1} \cdot \int_{-\infty}^{+\infty} dx_2 p_2(x_2) e^{itx_2} = \hat{p}_1(t) \cdot \hat{p}_2(t)$$

^{*}Formally one distinguishes between CF (Fourier transform of PDF) and MGF (Laplace transform of PDF)

Basics: cumulants

$\hat{p}(t) \equiv E(e^{itX}) = \int_{-\infty}^{+\infty} e^{itx} p(x) dx$

\diamond Cumulant: C_n

- \square Cumulants C_n are polynomials of moments m_k (k=1, ..., n), e.g. $\hat{p}_{1+2}(t) = \hat{p}_1(t) \cdot \hat{p}_2(t)$
 - \square $C_1 = m_1$
 - \Box C₂ = σ^2 = m₂-m₁²
 - \square C₃ = m₃-3m₂m₁+2m₁³
 - \square C₄ = m₄-4m₃m₁-3m₂²+12m₂m₁²-6m₁⁴
 - **...**
- ☐ They are generated by the log of CF:

$$C_n = (-i)^n \frac{d^n}{dt^n} \ln \hat{p}(t) \bigg|_{t=0}$$

☐ Cumulants are ADDITIVE UNDER CONVOLUTION (i.e. sum of indep. rand. var.)

$$\ln \hat{p}_{1+2}(t) = \ln \hat{p}_1(t) + \ln \hat{p}_2(t) \quad \Rightarrow \quad \forall_n : C_n^{(1+2)} = C_n^{(1)} + C_n^{(2)}$$

 \square Note: for a Gaussian distribution: $\forall n > 2$: $C_n = 0$

Basics: cumulants

***** "Normalized" cumulants: $\lambda_n \equiv \frac{C_n}{\sigma^n}$

$$\lambda_n \equiv \frac{C_n}{\sigma^n}$$

- □ For a Gaussian distribution: $\forall n > 2$: $\lambda_n = 0$
- Skewness: $\zeta \equiv \lambda_3 = \frac{\langle (x \langle x \rangle)^3 \rangle}{\zeta^3}$
 - \square λ =0 (symmetric)
 - \square λ >0 (positive skewness)
 - \square λ <0 (negative skewness)

- $\square \kappa = 0$ ("mesokurtic")
- \square $\kappa > 0$ (" leptokurtic", "fat tail")
- \square κ < 0 (" platykurtic", "thin tail")

Probability calculus in a nutshell

- Basics
- Probability distributions
- Central limit theorems
- **Extreme** values

Distributions: general remarks

- Here we again focus on continuous random variables
- Important subclasses of distributions
 - ☐ All moments finite ("narrow"/exponential tails) vs. some or all moments ∞ ("heavy"/power tails)
 - "Stable" r.v.: functional form of distribution doesn't change under convolution (sum of indep. r. v. coming from a stable distribution has the same distribution up to a rescaling / shift of parameters)
 - "Infinitely divisible" r.v.: $\forall n \in \mathbb{N}: X = X_1 + ... + X_n$, where independent & identically distributed ("iid") rand. vars. $X_1, ..., X_n$ have some distribution (not necessarily the same PDF as X)
- Important distributions:
 - ☐ Uniform
 - ☐ Gaussian (Normal)
 - ☐ Log-Normal
 - \Box (Levy) α -stable
 - ☐ (Distributions of extremes: Gumbel / Frechet / Weibull: see later!)
 - ☐ Examples of other distributions used in finance
 - **_**

Distributions: Uniform

- \bullet Uniform: U(a,b)
 - ☐ Support: [a,b]
 - \square 2 parameters: $a, b \in \mathbb{R}$ (a < b)
 - PDF and CDF:

$$oldsymbol{\Box}$$
 Typical deviations: $\sigma = \sqrt{rac{1}{12}}(b-a)$

$$\square \text{ CF:} \qquad \hat{p}(t) = \begin{cases} \frac{\exp(itb) - \exp(ita)}{it(b-a)} &, \text{ for } t \neq 0\\ 1 &, \text{ for } t = 0 \end{cases}$$

CDF of U(0,1)

Distributions: Uniform

***** "Standard" uniform distribution (U(0,1)) can be obtained from any other prob. distr. of X with a strictly monotonic CDF (i.e. F_X^{-1} exists), by a simple change of variables (so called: "probability integral transform")

$$X \sim p(x) \rightarrow Y = F_X(X) \sim \mathrm{U}[0,1]$$

- \square Proof: $Y \in [0,1]$ and: $F_Y(y) = P(Y \le y) = P(F_X(X) \le y) = P(X \le F_X^{-1}(y)) = F_X(F_X^{-1}(y)) = y$
- ❖ This is useful:
 - \square Basis for GENERATING rand. var. from arbitrary distribution (if one can easily compute F_X^{-1})
 - ☐ Generate Y ~ Uniform[0,1]
 - \square X = $F_X^{-1}(Y)$ ~ requested distribution
 - ☐ TESTING distributions based on random samples
 - ☐ P-P plot (see Lecture 3)
 - ☐ Kolmogorov-Smirnov test (see Lecture 3)
 - \Box Generating or testing correlated / coupled MULTIVARIATE rand. vars. \Rightarrow COPULAS (see Lecture 2)

Distributions: Gaussian / Normal

- \bullet Gaussian / Normal: N(m,s)
 - \square Support: \mathbb{R}
 - \square 2 parameters: $m \in \mathbb{R}$, s > 0

("standard": m=0, s=1)

$$figspace$$
 Typical deviations: $\sigma=s$

0.1

$$p(x) = \frac{1}{\sqrt{2\pi s^2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right) \qquad F(x) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x-m}{\sqrt{2}s}\right)\right)$$

"error f-ction"

Copyright © J. Gizbert-Studnicki, 2025 27.02.2025

Distributions: Gaussian / Normal

 \bullet Gaussian / Normal: N(m,s)

$$p(x) = \frac{1}{\sqrt{2\pi s^2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right)$$

$$\Box$$
 CF (also "Gaussian"): $\hat{p}(t) = \exp\left(imt - \frac{s^2t^2}{2}\right)$

$$\Box$$
 Quantiles: $x_q \equiv F^{-1}(q) = m + \sqrt{2} \sigma \operatorname{erf}^{-1}(2q - 1)$

P(X > c):	С	Standard Gauss. N[0,1]	Standard Cauchy	Standard Levy
	1	≃ 0.16	≃ 0.25	≃ 0.62
	2	≃ 0.02	≃ 0.15	≃ 0.52
	3	≃ 0.0013	≃ 0.10	≃ 0.44
	4	$\simeq 3 \cdot 10^{-5}$	≃ 0.08	≈ 0.38
	5	$\simeq 3 \cdot 10^{-7}$	≃ 0.06	≃ 0.35

Distributions: Log-Normal

- \bullet Log-Normal: LN(m,s)
 - \square Support: $x > \theta$!!!
 - \square 2 parameters: $m \in \mathbb{R}$, s > 0

("standard": m=0, s=1)

- \square if: $X \sim LN(m,s) \Rightarrow Y = \ln X \sim N(m,s)$ (Gaussian)
- \Box Typical values (assymetric !): $x_{max}=e^{m-s^2}$ < $x_{med}=e^m$ < $E(x)=e^{m+s^2/2}$
- \Box Typical deviations: $\sigma = \sqrt{e^{2m+s^2} \left(e^{s^2} 1\right)}$
- \square Skewness and kurtosis: $\lambda_3 > 0$ (positive skewness) & $\lambda_4 > 0$ (leptokurtic: tails "fatter" than Gauss.)
- \square Moments: $m_n = \exp\left(m \cdot n + \frac{s^2}{2}n^2\right)$ This is a "patological" example of "indeterminate" distr.: one cannot determine PDF based on knowledge of all moments (see Exercises 1)!

Distributions: Log-Normal

$$p(x) = \frac{1}{\sqrt{2\pi s^2} x} \exp\left(-\frac{(\ln x - m)^2}{2s^2}\right)$$

- **Log-Normal** distribution is "popular" in financial modelling:
 - □ E.g.: Black-Scholes option pricing model or modelling currency exchange rates (virtue: $\ln \epsilon / \$ = -\ln \$ / \epsilon$, so probability is symmetric)
 - Good: no negative prices $(x > 0 !) \Rightarrow$ but in practice it usually doesn't matter much if we use Gaussian or Log-Normal: e.g. for the share price S=100\$ and yearly volatility 30% (i.e. we assume E(S)=100 and $\sigma=30$) one has $P_G(S<0) \simeq 4\cdot10^{-4}$ which is negligible (of course $P_{LN}(S<0)=0$).
 - □ The difference is more on a positive side ⇒ in the above example $P_G(S>200) \simeq 4\cdot10^{-4}$ and $P_{LN}(S>200) \simeq 6\cdot10^{-3}$, i.e. one order of magnitude bigger for a Log-Normal than for a Gaussian

Distributions: "heavy tails"

- ❖Typical data observed on real markets are different ⇒ in finance large positive & negative jumps are much more frequent than in Gaussian or Log-Normal ("heavy tails")
- Empirical distributions often behave as:

$$p(x) \sim \frac{\alpha A^{\alpha}}{|x|^{\alpha+1}} \quad \text{for } |x| \gg x_0$$

- ☐ So called "Pareto" tails (fall-off as power law)
- \square Moments of order $n \ge \alpha$ are divergent! (for $\alpha \le 1$: no moments!)
- \square Such distributions are "self-similar" ("scale-free") for large $x \gg x_0$:

$$\frac{p(\lambda x)}{p(x)} = \lambda^{-(\alpha+1)}$$

- \square E.g. for λ =10 and α =2 (λ - $(\alpha+1)$ =10⁻³) one has: the number of people 10x richer is 1000x smaller (independent of initial value)
- ☐ Rate of growth of the economy or a company is independent of its size
- ☐ Size of cities
- ☐ Size of people's wealth, income, ...
- \clubsuit This leads to (a family of) the, so-called, (Levy) α -stable distributions

Copyright © J. Gizbert-Studnicki, 2025

Distributions: (Levy) α -stable

Note: $\forall \alpha$: $\sigma = \infty$; for $\forall \alpha > 1$: $E(x) < \infty$

- \bullet (Levy) α -stable: $L_{\alpha}(\beta,c,m)$
 - \square Support: \mathbb{R}
 - 4 Parameters:
 - $\square \alpha \in (0,2)$
 - \square $A_{+} > 0$ ("tail amplitudes") or alternatively:
 - \square m $\in \mathbb{R}$ ("location")

 $p(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \hat{p}(t) dt \sim \frac{\alpha A_{\pm}^{\alpha}}{|x|^{\alpha+1}} \quad \text{for } x \to \pm \infty$

$$P_{>}(x) \sim \left(\frac{A_{+}}{x}\right)^{\alpha} \quad \text{for } x \to +\infty$$

In the simplest case: $\beta = m = 0$ (symmetric, centered at zero)

$$A_{\pm}>0$$
 ("tail amplitudes") or alternatively:
$$c_{\alpha}>0$$
 ("scale par.") & $\beta\in(-1,1)$ ("skewness par.")
$$\beta=\frac{A_{+}^{\alpha}-A_{-}^{\alpha}}{A_{+}^{\alpha}+A_{-}^{\alpha}}$$

- □ PDF: in most cases NOT given by closed-end formula (in principle can be computed from CF)
- \square CF is simple (for $\alpha \neq 1$):

$$\hat{p}(t) = \exp\left(itm - |c_{\alpha}t|^{\alpha} \left(1 - i\beta \tan\left(\frac{\pi\alpha}{2}\right) \operatorname{sign}(t)\right)\right)$$

NOT analytic at t=0!

$$\hat{p}(t) = \exp(-|c_{\alpha} t|^{\alpha})$$

- \Box This distributions are manifestly stable (for given fixed α) as convolution (sum of indep. ran. vars.)
 - leads to a simple rescaling of parameters

$$\hat{p}_{1+2}(t) = \hat{p}_1(t) \cdot \hat{p}_2(t)$$

$$\hat{p}_{1+2}(t) = \hat{p}_1(t) \cdot \hat{p}_2(t)$$
 $\beta_{1+2} = \frac{m_1 + m_2}{|c_{1+2}|} = (|c_1|^{lpha} + |c_2|^{lpha})^{1/lpha}$ $\beta_{1+2} = \frac{\beta_1 |c_1|^{lpha} + \beta_2 |c_2|^{lpha}}{|c_1|^{lpha} + |c_2|^{lpha}}$

$$\beta_{1+2} = \frac{\beta_1 |c_1|^{\alpha} + \beta_2 |c_2|^{\alpha}}{|c_1|^{\alpha} + |c_2|^{\alpha}}$$

(Levy) α -stable distributions

Copyright © J. Gizbert-Studnicki, 2025

Distributions: (Levy) α -stable

- \clubsuit (Levy) α -stable: $L_{\alpha}(\beta,c,m)$ special cases
 - \Box (Limiting case) for α =2: Gaussian $N[m, \sqrt{2}c]$: $\hat{p}(t) = \exp(itm c^2t^2)$

$$\hat{p}(t) = \exp\left(itm - c|t|\right)$$

 \square For $\alpha=1$ & $\beta=0$: "Cauchy" distribution:

$$p(x) = \frac{1}{\pi c \left(1 + \left(\frac{x-m}{c}\right)^2\right)}$$

□ For $\alpha = \frac{1}{2}$: "Levy" distribution: (here one assumes: x ≥ m!)

$$p(x) = \sqrt{\frac{c}{2\pi}} \frac{\exp\left(-\frac{c}{2(x-m)}\right)}{(x-m)^2}$$

❖ Stable distributions are important as they are attractors for a SUM: $S_N = X_I + ... + X_N$ of N iid rand. vars. when $N \rightarrow \infty$ (see: CLTs)

Distributions: Other

Other distributions used in financial modelling
(see handwritten notes + Bouchaud's book + wiki)
Distributions of extremes (see later)
☐ Gumbel
☐ Frechet
☐ Weibull
☐ Poisson (discrete!)
☐ Truncated Levy
☐ Exponential
Exponential Power (Generalized Normal)
Pareto (Log-exponential)
☐ Hyperbolic
☐ Student's t
☐ Inverse Gamma

- **❖** Basics
- Probability distributions
- Central limit theorems
- **Extreme** values

CLTs

 \clubsuit We are interested in the probability distribution of the SUM of N independent & identically distributed (iid) random variables for $N \rightarrow \infty$

$$S_N = X_1 + ... + X_N$$
 where: $X_i \sim iid$

- \Box This is a common situation in "Nature" & in finance \Rightarrow many "small" factors "add" into large effects
- \square Of course if $X_i \sim stable \ distribution$ (i.e. a Gaussian: N(m,s) or (Levy) α -stable: $L_{\alpha}(\beta,c,m)$) then (by definition) $\forall N: S_N \sim \underline{the\ same\ (type\ of)\ stable\ distribution}}$ (but with $\underline{rescaled/shifted\ parameters}$)
 - \square E.g. for $Xi \sim N(m,s)$ one has $\forall N$:

"Standardization"
$$u_N = \frac{S_N - Nm}{(s\sqrt{N})}$$
 \(\sim N(0, 1) \)

In general: $a_N \& b_N$ are some (N-dependent) constants

- \square In general S_N (for a non-stable X_i) will have a different (type of) distribution than X_i
- \square But for $N \rightarrow \infty$: S_N will converge to a stable distribution

Copyright © J. Gizbert-Studnicki, 2025 27.02.20

CLTs: Gaussian CLT

$$S_N = \sum_{i=1}^N X_i \ , \ X_i \sim iid$$

 \diamondsuit If X_i has two first moments finite (i.e. mean: $\langle x \rangle$ and variance: σ^2 exist) then for $N \to \infty$

$$u_N = \frac{S_N - N\langle x \rangle}{\sigma \sqrt{N}} \xrightarrow[b_N]{a_N} N(0, 1)$$

- i.e. S_N converges to a Gaussian distribution with mean: $a_N = N\langle x \rangle$ and variance: $b_N^2 = N\sigma^2$
- \clubsuit More formally the convergence means that for any finite interval [u1,u2]:

$$\lim_{N\to\infty} P(u_1 \le u_N \le u_2) = \int_{u_1}^{u_2} du \left(\frac{1}{2\pi} e^{-u^2/2}\right) \longrightarrow \text{ "Standard" Gaussian PDF}$$

CLTs: Gaussian CLT

$$S_N = \sum_{i=1}^N X_i \ , \ X_i \sim iid$$

- * Note that only two first moments must be finite (higher_moments_may not_exist) _ _ _
- **�** But it is quite easy to "prove" CLT in the case of a "narrow" distribution (where all moments exist): $u_N = \frac{S_N N\langle x \rangle}{\sigma \sqrt{N}} \xrightarrow[N \to \infty]{} N(0,1)$

$$u_N = \frac{S_N - N\langle x \rangle}{\sigma \sqrt{N}} \xrightarrow[N \to \infty]{} N(0, 1)$$

- $oldsymbol{\Box}$ For all Cumulants of a convolution one has: $C_n^{(1+..+N)} = C_n^{(1)} + ... + C_n^{(N)}$

- \square As all normalized cumulants of order $n \ge 2$ vanish for $N \to \infty$ (only $\lambda_1 \& \lambda_2$ survive) \Rightarrow one gets a Gaussian
- Gaussian CLT can be generalized:
 - \square X_i may be NOT independent, i.e. "slightly" correlated (correlator C_{ij} must fall fast enough with |i-j|
 - $\square X_i$ may be NOT identical, but no one variance can "dominate"

ADDITIONAL CONDITIONS!

CLTs: Large deviations

- **\Leftrightarrow Formally** Gaussian CLT works for $N \rightarrow \infty$
- Question: how large N should be "in practice" and what is the "region" of CLT applicability?

 $u_N = \frac{S_N - N\langle x \rangle}{\sigma \sqrt{N}} \xrightarrow[N \to \infty]{} N(0, 1)$

☐ The problem is that the convergence: is NOT "uniform"

$$\lim_{N \to \infty} P(u_1 \le u_N \le u_2) = \int_{u_1}^{u_2} du \, \frac{1}{2\pi} e^{-u^2/2}$$

PDF: p(x)

N(x)

- \square It is different in the "tails" where (for finite N) S_N can be very different from the Gaussian: tails of S_N "remember" the tails of original X_i distributions (important when these are "fat" tails!)
- \square And different in the "middle", and what is the "middle" depends on the tails of X_i
 - \square If X_i has a "narrow" distribution (all moments exist): "middle" range $\propto N^{2/3} \sigma$ or $\propto N^{3/4} \sigma$
 - \square If X_i has "heavy" (power-like) tails: "middle" range $\propto \sqrt{N \ln N} \sigma$ (it grows very slowly with N!)

CLTs: Large deviations

- ***** Formally Gaussian CLT works for $N \rightarrow \infty$
- Question: how large N should be "in practice" and what is the "region" of CLT applicability?

$$u_N = \frac{S_N - N\langle x \rangle}{\sigma \sqrt{N}} \xrightarrow[N \to \infty]{} N(0, 1)$$

- "Proof" for a "narrow" distribution (all moments exist)
 - \square assume that u_N is well described by a Gaussian for $|u_N| \ll u^*(N)$
 - \Box for a "narrow" distribution one has expansion in polynomials of u_n (\propto normalized cumulants):

$$\Delta P_{>}(u_{N}) \equiv P_{>}(u_{N}) - P_{>}^{(G)}(u_{N}) \approx \frac{e^{-u_{N}^{2}/2}}{\sqrt{2\pi}} \left(\frac{Q_{1}(u_{N})}{N^{1/2}} + \frac{Q_{2}(u_{N})}{N} + \dots\right)$$

$$P_{>}^{(G)}(u_{N}) \approx \frac{e^{-u_{N}^{2}/2}}{\sqrt{2\pi}} u_{N}^{-1} \qquad Q_{1}(u_{N}) = \frac{1}{6}\lambda_{3}(u_{N}^{2} - 1) \qquad Q_{2}(u_{N}) = \frac{1}{8}\lambda_{4} \left(\frac{1}{3}u_{N}^{3} - u_{N}\right) + \text{terms dependent on } \lambda_{3}$$

 \square if skeness $\lambda_3 \neq 0$ then the leading term of the expansion is $\frac{Q_1(uN)}{N^{1/2}}$ and for small $u_N \sim 1$ (the "middle")

PDF: p(x)

N(x)

$$\frac{\lambda_3}{\sqrt{1/2}} \ll 1$$
 $N \gg \lambda_3^2 \equiv N^*$
 $\Delta P_>(u_N)$
 $\lambda_3 = N^*$

- \square Similarly, if $\lambda_3=0$ & kurtosis $\lambda_4\neq 0$: $N^*=\lambda_4$ & $|S_N-N\langle x\rangle|\ll N^{3/4}\sigma$

CLTs: Large deviations

- ***** Formally Gaussian CLT works for $N \rightarrow \infty$
- Question: how large N should be "in practice" and what is the "region" of CLT applicability?

- $u_N = \frac{S_N N\langle x \rangle}{\sigma \sqrt{N}} \xrightarrow[N \to \infty]{} N(0, 1)$
- **Example for a "heavy" tail:** $p(x) \sim \frac{\alpha A^{\alpha}}{|x|^{\alpha+1}}$ for $|x| \gg x_0$ (but $\alpha > 2$, so $\langle x \rangle$ and σ^2 exist)

PDF: p(x)

middle

 $\square X_i \sim$ "t-student" distribution ($\alpha = 3$)

$$p(x) = \frac{2a^3}{\pi (x^2 + a^2)^2}$$
 , $\langle x \rangle = 0$, $\sigma^2 = a^2$

- \square assume again that u_N is well described by a Gaussian for $|u_N| \ll u^*(N)$
- \square from Gaussian CLT: in the "middle": $p(S_N) \approx \frac{1}{\sqrt{2\pi N a^2}} \exp\left(-\frac{S_N^2}{2Na^2}\right)$
- $oxed{\Box}$ but the "heavy" tails "survive": $p(S_N) pprox rac{2a^3N}{\pi S_N^4}$ for $S_N \gg x_o \equiv u^*(N)a\sqrt{N}$
- \square both regions "meet" for $S_N \simeq x_0$: $\frac{1}{\sqrt{2\pi N a^2}} \exp\left(-\frac{x_0^2}{2Na^2}\right) \approx \frac{2a^3N}{\pi x_0^4}$

CLTs: Non-Gaussian CLT

$$S_N = \sum_{i=1}^N X_i \ , \ X_i \sim iid$$

- Gaussian CLT requires that at least two first moments exist
- This is NOT the case for "heavy" power-law tails $p(x) \sim \frac{\alpha A_{\pm}^{\alpha}}{|x|^{\alpha+1}} \quad \text{for } |x| \to \pm \infty$

$$p(x) \sim \frac{\alpha A_{\pm}^{\alpha}}{|x|^{\alpha+1}} \quad \text{for } |x| \to \pm \infty$$

 \clubsuit In this case S_N converges to the (Levy) α -stable: $L_{\alpha}(\beta,c,m)$ with the same α as $X_i \sim p(x)$:

$$\square \alpha^{(N)} = \alpha$$

$$A_{\pm}^{(N)} = NA_{\pm}$$

$$\beta^{(N)} = \frac{A_+^{\alpha} - A_-^{\alpha}}{A_+^{\alpha} + A_-^{\alpha}} = \beta$$

- \square If left & right tails have different exponents (i.e. $\alpha_+ \neq \alpha_-$) \Longrightarrow smaller α "wins"! And then: S_N has totally assymetric (β = -1 or β = +1) (Levy) α -stable distribution with α =min(α_+ ; α_-)
- \square All comments concerning Gaussian CLT apply, i.e. X_i do not have to be exactly iid, convergence is faster in the "middle" than in the "tails", ...

Probability calculus in a nutshell

- **❖** Basics
- Probability distributions
- Central limit theorems
- **Extreme values**

Extreme values

 \clubsuit We are now interested in the probability distribution of the MAX. of N independent & identically distributed (iid) random variables for fixed N (and for $N \rightarrow \infty$)

$$X_{max} = max(X_1, ..., X_N)$$
 where: $X_i \sim iid$

- \Box This is important situation in risk menagement, e.g. if X_i represents daily losses from some portfolio (investment) then X_{max} is the maximum daily loss (in N days investment horizon)
- \square If $X_{max} \leq \Lambda$ then of course also $X_1 \leq \Lambda \& \& X_N \leq \Lambda$, therefore:

$$P(X_{max} \leq \Lambda) = P(X_1 \leq \Lambda) \cdot \ldots \cdot P(X_N \leq \Lambda) = P(X_i \leq \Lambda)^N$$

$$F_{max}(\Lambda) = F_{max}(\Lambda) = F_{max$$

- $(for N \rightarrow \infty)$
- \square PDF of X_{max} :

$$ax(\Lambda)=(1-P_>(\Lambda))^N pprox \exp{(-NP_>(\Lambda))}$$
 — This works when $N\!\! o\!\!\infty$

$$p_{max}(\Lambda) = \frac{d}{d\Lambda} F_{max}(\Lambda)$$

Extreme values: "narrow" X_i

□ Typical deviations: $\sigma = \pi/\sqrt{6}$

 $F_{max}(\Lambda) pprox \exp\left(-NP_{>}(\Lambda)
ight)$ This works when $N
ightarrow \infty$

Example 1: X_i has a "narrow" distribution (tails fall faster than any power-law), e.g. $X_i \sim exponential\ distribution$:

$$p(x_i) = \lambda e^{-\lambda x_i} \quad , \quad x_i \geq 0 \qquad F(x_i) = 1 - e^{-\lambda x_i} \qquad P_{>}(x_i) = e^{-\lambda x_i} \qquad F^{-1}(x_i) = -\frac{\ln(1-x_i)}{\lambda}$$

$$\left(F_{max}(\Lambda)\right) \approx \exp\left(-Ne^{-\lambda\Lambda}\right) = \exp\left(-e^{-\lambda\Lambda-\ln N}\right)$$

$$U \equiv \frac{X_{max} - |a_N|}{|b_N|} \qquad \left(a_N\right| = \frac{\ln N}{\lambda} = F^{-1}\left(1 - \frac{1}{N}\right)\right) \qquad \left(b_N\right) = \frac{1}{\lambda} = F^{-1}\left(1 - \frac{1}{Ne}\right) - a_N$$

$$\Leftrightarrow \text{For } N \rightarrow \infty : U \sim \text{Gumbel distribution:}$$

$$\square \text{Support: } \mathbf{u} \in \mathbb{R}$$

$$\square \text{ PDF and CDF:}$$

$$\square \text{ Typical values:} \qquad u_{max} = 0 \qquad < \qquad u_{med} = -\ln(\ln 2) \approx 0.367 \qquad < E(u) = \gamma \approx 0.577$$

 \square Skewness and kurtosis: $\lambda_3 > 0$ (positive skewness) & $\lambda_4 > 0$ (leptokurtic: tails "fatter" than Gauss.)₃₅

Extreme values: "heavy" X_i

 $F_{max}(\Lambda) \approx \exp\left(-NP_{>}(\Lambda)\right)$ This works when $N \rightarrow \infty$

27.02.2025

Example 2: X_i has a "heavy" tail distribution (power-law tails with exponent α),

e.g. $X_i \sim Pareto\ distribution\ (with\ \alpha = \frac{1}{2})$:

$$p(x_i) = \frac{1}{2x_i^{3/2}} , \quad x_i \ge 1 \qquad F(x_i) = 1 - \frac{1}{x_i^{1/2}} \qquad P_{>}(x_i) = \frac{1}{x_i^{1/2}} \qquad F^{-1}(x_i) = \frac{1}{(1 - x_i)^2}$$

$$F_{max}(\Lambda) \approx \exp\left(-N\frac{1}{\Lambda^{1/2}}\right) = \exp\left(-\left(\frac{\Lambda}{N^2}\right)^{-1/2}\right)$$

$$X_{max} = a_N$$

$$U \equiv \frac{X_{max} - a_N}{b_N}$$

$$a_N = 0$$

***** For $N \rightarrow \infty$: $U \sim$ Frechet distribution:

- \square Support: $u \ge 0$

- Typical deviations: $\sigma = \sqrt{\Gamma\left(1-\frac{2}{\alpha}\right) \left(\Gamma\left(1-\frac{1}{\alpha}\right)\right)^2}$ σ finite only for $\alpha > 2$

 \square Skewness and kurtosis: $\lambda_3 > 0$ (positive skewness) & $\lambda_4 > 0$ (leptokurtic: tails "fatter" than Gauss.)

 λ_3 finite only for $\alpha > 3$

 λ_{4} finite only for $\alpha > 4$

Extreme values: "limited" X_i

 $F_{max}(\Lambda) \approx \exp\left(-NP_{>}(\Lambda)\right)$ This works when $N \rightarrow \infty$

Example 3: X_i has limited support $(X_i \le x_+)$, right tail of $1-F(x_i)$ grows with exponent α around x_+ when moving away form x_+ , e.g. $X_i \sim Uniform\ distribution\ (x_+=1,\ \alpha=1)$:

$$p(x_i) = 1 \quad , \quad 0 \le x_i \le 1$$

$$F(x_i) = x_i$$

$$P_{>}(x_i) = 1 - x_i$$

$$F^{-1}(x_i) = x_i$$

$$F_{max}(\Lambda) = \exp(-N(1-\Lambda)) = \exp(-(-(\Lambda-1)N))$$

$$U \equiv \frac{X_{max} - a_N}{b_N}$$

$$(a_N \models 1 = x_+)$$

- **\rightharpoonup** For $N \rightarrow \infty$: $-U \sim Weibull distribution$:
 - \Box Support: u ≤ 0

- **Typical deviations:** $\sigma = \sqrt{\Gamma\left(1 + \frac{2}{\alpha}\right) \left(\Gamma\left(1 + \frac{1}{\alpha}\right)\right)^2}$
- \square Skewness and kurtosis: λ_3 (can be any sign, depend. on α) & λ_4 (can be any sign, depend. on α) α

Copyright © J. Gizbert-Studnicki, 2025

Extreme values: summary

 $F_{max}(\Lambda) \approx \exp\left(-NP_{>}(\Lambda)\right)$ This works when $N \to \infty$

- ❖ Depending on the type of (tails of) distribution X_i the MAX. of N independent & identically distributed (iid) random variables: $X_{max} = max(X_1, ..., X_N)$ will converge (for $N \rightarrow \infty$) to one of three universal (families of) distributions
- One can "standardize":

$$U \equiv \frac{X_{max} - a_N}{b_N}$$

X_i distribution	Limiting distribution of X_{max}	PDF & CDF
Exponential ("narrow") tails *	$oldsymbol{U} \sim oldsymbol{Gumbel} (u \in \mathbb{R})$	$p(u) = e^{-(u+e^{-u})}$
(all moments exist) * Formally: more technical conditions apply	$a_N = F^{-1} \left(1 - \frac{1}{N} \right) b_N = F^{-1} \left(1 - \frac{1}{Ne} \right) - a_N$	$F(u) = e^{-e^{-u}}$
Power-law tails with exponent $lpha$	$U \sim Frechet (u \ge 0)$	$p(u) = \alpha u^{-(\alpha+1)} e^{-u^{-\alpha}}$
$\frac{P_{>}(t \ x_i)}{P_{>}(t)} \xrightarrow[t \to \infty]{} x_i^{-\alpha}$	$a_N = 0 b_N = F^{-1} \left(1 - \frac{1}{N} \right)$	$F(u) = e^{-u^{-\alpha}}$
Limited suport ($p(x_i) = 0$ for $x_i > x_+$) (tail near x_+ with exponent α)	<i>-U</i> ~ Weibull (u ≤ 0)	$p(u) = \alpha(-u)^{\alpha - 1}e^{-(-u)^{\alpha}}$
$\frac{1 - F(x_+ + t \ x_i)}{1 - F(x_+ - t)} \xrightarrow[t \to 0]{} (-x_i)^{\alpha} , \ x_i < 0$	$a_N = x_+$ $b_N = a_N - F^{-1} \left(1 - \frac{1}{N} \right)$	$F(u) = e^{-(-u)^{\alpha}}$

Extreme values: summary

 $F_{max}(\Lambda) pprox \exp\left(-NP_{>}(\Lambda)
ight)$ This works when $N
ightarrow \infty$

- ❖ Depending on the type of (tails of) distribution X_i the MAX. of N independent & identically distributed (iid) random variables: $X_{max} = max(X_1, ..., X_N)$ will converge (for $N \rightarrow \infty$) to one of three universal (families of) distributions
- One can "standardize":

$$U \equiv \frac{X_{max} - a_N}{b_N}$$

Summary

$$m_{n} \equiv E(X^{n}) = \int_{-\infty}^{+\infty} x^{n} p(x) dx$$

$$m_{n} = (-i)^{n} \frac{d^{n}}{dt^{n}} \hat{p}(t) \Big|_{t=0}$$

$$\hat{p}_{1+2}(t) = \hat{p}_{1}(t) \cdot \hat{p}_{2}(t)$$
convolution

$$m_n \equiv E(X^n) = \int_{-\infty}^{+\infty} x^n \ p(x) dx \quad \hat{p}(t) \equiv E(e^{itX}) = \int_{-\infty}^{+\infty} e^{itx} p(x) dx$$

$$\hat{p}_{1+2}(t) = \hat{p}_1(t) \cdot \hat{p}_2(t)$$

$$C_n = (-i)^n \frac{d^n}{dt^n} \ln \hat{p}(t) \bigg|_{t=0}$$

Basics: PDF, CDF, typical values / deviations

Moments, Characteristic Function

Cumulants, Skewness, Kurtosis

Basic Distributions: Uniform, Normal, α -stable

Central Limit Theorems (Gaussian & general)

Extreme values – 3 classes

(Gumbel, Frechet, Weibull)

$$p(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

$$X \sim p(x) \rightarrow Y = F_X(X) \sim U[0, 1]$$

$$p(x) = \frac{1}{\sqrt{2\pi s^2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right)$$

$$F_{max}(\Lambda) = (F(\Lambda))^N$$

$$F_{max}(\Lambda) \approx \exp\left(-NP_{>}(\Lambda)\right)$$

$$\hat{p}(t) = \exp(-|c_{\alpha} t|^{\alpha})$$

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \hat{p}(t) dt \sim \frac{\alpha A_{\pm}^{\alpha}}{|x|^{\alpha+1}} \quad \text{for } x \to \pm \infty$$