# Miniproiecte - Funcții elementare și constante

#### 29 aprilie 2013

### 1 Funcții elementare

Implementați algoritmii următori și concepeți o procedură serioasă de verificare pentru fiecare.

- Problema 1 (exponențiala) (a) Scrieți o rutină ce calculează  $e^x$  însumând n termeni ai seriei Taylor până când al (n+1)-lea termen t verifică  $|t| < \varepsilon$ ,  $\varepsilon$  dat. Utilizați  $1/e^x$  pentru valori negative ale lui x. Testați pentru valorile: 0, +1, -1, 0.5, -0.123, -25.5, -1776, 3.14159. Calculați eroarea absolută, eroarea relativă și n pentru fiecare caz, utilizând funcția exponențială din sistem pentru valoarea exactă. Nu însumați mai mult de 25 de termeni.
  - (b) Calculul lui  $e^x$  se poate reduce la calculul lui  $e^u$  pentru  $|u| < (\ln 2)/2$ . Acest algoritm înlătură puterile lui 2 și calculează  $e^u$  într-un domeniu în care seria converge foarte repede. Se scrie

$$e^x = 2^m e^u$$
.

unde m și u se calculează prin

$$\begin{array}{ll} z \leftarrow x/\ln 2; & m \leftarrow integer\left(z \pm \frac{1}{2}\right) \\ w \leftarrow z - m; & u \leftarrow w \ln 2 \end{array}$$

Aici semnul minus se utilizează dacă x<0 deoarece z<0. Încorporați tehnica de reducere în cod.

(c) Scrieți o rutină care utilizează reducerea de rang  $e^x = 2^m e^u$  și calculează  $e^u$  din partea pară a fracției continue gaussiene, adică,

$$e^{u} = \frac{s+u}{s-u}$$
 unde  $s = 2 + u^{2} \left( \frac{2520 + 28u^{2}}{15120 + 420u^{2} + u^{4}} \right)$ .

Testați pe datele date la punctul (a).

**Problema 2 (exponențială)** Un mod de a calcula funcția exponențială  $e^x$  este de a considera dezvoltarea Taylor trunchiată în jurul lui x=0,

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Din nefericire pentru |x| mare, pentru a atinge o precizie dată este nevoie de un număr mare de termeni. O proprietate specială a exponențialei este  $e^{2x}=(e^x)^2$ . Aceasta conduce la o metodă numită scalare și ridicare la pătrat (scaling and squaring method): se împarte x la 2 repetat până când |x|<1/2, și se utilizează dezvoltarea Taylor (16 termeni sunt mai mult decât este necesar), și se ridică la pătrat repetat. Scrieți o funcție expss(x) care realizează acești trei pași. (Funcțiile expss(x) pot ajuta la implementarea dezvoltării Taylor.) Testați funcția dumneavoastră pentru x=-30,-3,3,30.

**Problema 3 (sinus)** Scrieți o rutină ce calculează sin x pentru x în radiani, după algoritmul următor. Întâi, utilizând proprietățile funcție sinus, reduceți rangul astfel încât  $-\pi/2 \le x \le \pi/2$ . Apoi, dacă  $|x| < 10^{-8}$ , punem  $\sin x \approx x$ ; dacă  $|x| > \pi/6$ , punem u = x/3, calculăm  $\sin u$  după formula (1) de mai jos și apoi punem  $\sin x \approx (3-4\sin^2 u)\sin u$ ; dacă  $|x| \le \pi/6$ , punem u = x și calculăm  $\sin u$  după cum urmează:

$$\sin u \approx u \left[ \frac{-\frac{479249}{11511339840} u^6 + \frac{34911}{7613320} u^4 - \frac{29593}{207636} u^2 + 1}{1 + \frac{1671}{69212} u^2 + \frac{97}{351384} u^4 + \frac{2623}{1644477120} u^6} \right]. \tag{1}$$

Testați dacă softul folosit de dumneavoastră utilizează acest algoritm. Notă: Aceasta este aproximarea rațională Padé pentru sinus.

**Problema 4 (logaritm natural)** Scrieți o rutină pentru lui calculul lui  $\ln x$  cu ajutorul algoritmului descris în continuare și bazat pe "raționale telescopate" și fracții continue gaussiene și testați pentru câteva valori ale lui x. Verificați dacă x=1 și returnați zero în caz afirmativ. Reduceți rangul lui x determinând n și r astfel încât  $x=r\times 2^n$  cu  $\frac{1}{2}\leq r<1$ . Apoi, puneți  $u=(r-\sqrt{2}/2)/(r+\sqrt{2}/2)$  și calculați  $\ln[(1+u)/(1-u)]$  cu aproximarea

$$\ln \frac{1+u}{1-u} \approx u \left( \frac{20790 - 21545.27u^2 + 4223.9187u^4}{10395 - 14237.635u^2 + 4778.8377u^4 - 230.41913u^6} \right)$$

valabilă pentru  $|u| < 3 - 2\sqrt{2}$ . În final, se pune

$$\ln x \approx \left(n - \frac{1}{2}\right) \ln 2 + \ln \frac{1 + u}{1 - u}.$$

**Problema 5 (tangentă)** Scrieți o rutină ce calculează tangenta lui x în radiani, utilizând algoritmul de mai jos. Testați rutina obținută pentru mai multe valori ale lui x. Întâi, argumentul x se reduce la  $|x| \le \pi/2$  adăugând sau scăzând multiplii de  $\pi$ . Dacă  $0 \le |x| \le 1.7 \times 10^{-9}$ , punem tan  $x \approx x$ . Dacă  $|x| > \pi/4$ , facem  $u = \pi/2 - x$ ; altfel, setăm u = x. Calculăm acum aproximația

$$\tan u \approx u \left( \frac{135135 - 17336.106u^2 + 379.23564u^4 - 1.0118625u^6}{135135 - 62381.106u^2 + 3154.9377u^4 + 28.17694u^6} \right)$$

În final, dacă  $|x| > \pi/4$ , punem  $\tan x \approx 1/\tan u$ ; dacă  $|x| \leq \pi/4$ , facem  $\tan x \approx \tan u$ . Notă: Acest algoritm se obține din "raționale telescopate" și fracții continue gaussiene pentru funcția tangentă.

Problema 6 (Arcsin) Scrieți o rutină ce calculează arcsin x, bazată pe algoritmul de mai jos, ce utilizează raționale telescopate pentru arcsinus. Dacă  $|x|<10^{-8}$ , setați arcsin  $x\approx x$ . Altfel, dacă  $0\le x\le \frac{1}{2}$ , punem  $u=x,\ a=0$  și b=1; dacă  $\frac{1}{2}< x\le \frac{1}{2}\sqrt{3}$  puneți  $u=2x^2-1,\ a=\pi/4,\$ și  $b=1/2;\$ dacă  $\frac{1}{2}\sqrt{3}< x\le \frac{1}{2}\sqrt{2+\sqrt{3}}$  setați  $u=8x^4-8x^2+1,\ a=3\pi/8,\$ și  $b=1/4;\$ dacă  $\frac{1}{2}\sqrt{2+\sqrt{3}}< x\le 1,\$ setați  $u=\sqrt{\frac{1}{2}(1-x)},\ a=\pi/2,\$ și b=-2. Apoi calculați aproximanta

$$\arcsin u \approx u \left( 1.0 + \frac{1}{6}u^2 + 0.075u^4 + 0.04464286u^6 + 0.03038182u^8 + 0.022375u^{10} + 0.01731276u^{12} + 0.01433124u^{14} + 0.009342806u^{16} + 0.01835667u^{18} - 0.01186224u^{20} + 0.03162712u^{22} \right)$$

În final, se pune  $\arcsin x \approx a + b \arcsin u$ . Testați rutina pentru divese valori ale lui x.

**Problema 7 (arctangentă)** Scrieți o rutină care calculează arctan x pentru x în radiani după cum urmează. Dacă  $0 \le x \le 1.7 \times 10^{-9}$ , punem arctan  $x \approx x$ . Dacă  $1.7 \times 10^{-9} < x \le 2 \times 10^{-2}$ , se utilizează seria trunchiată

$$\arctan x \approx x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7.$$

Altfel, se pune  $y=x,\ a=0$  şi b=1 dacă  $0\leq x\leq 1$ ; se pune  $y=1/x,\ a=\pi/2$  şi b=-1 dacă 1< x. Apoi punem  $c=\pi/16$  şi  $d=\tan c$  dacă  $0\leq y\leq \sqrt{2}-1$  şi  $c=3\pi/16$  şi  $d=\tan c$  dacă  $\sqrt{2}-1< y\leq 1$ . Calculăm u=(y-d)/(1+dy) și aproximarea

$$\arctan u \approx u \left( \frac{135135 + 171962.46u^2 + 52490.4832u^4 + 2218.1u^6}{135135 + 217007.46u^2 + 97799.3033u^4 + 10721.3745u^6} \right)$$

În final, punem  $\arctan x \approx a + b(c + \arctan u)$ . Notă: Acest algoritm utilizează "raționale telescopate" și fracții continue gaussiene.

**Problema 8 (Arctan)** Un algoritm rapid pentru calculul arctan x cu o precizie de n biţi pentru  $x \in (0,1]$  este următorul: punem  $a=2^{-n/2},\ b=x/(1+\sqrt{1+x^2}),\ c=1,\$ şi d=1. Apoi actualizăm repetat următoarele variabile, date de formulele de mai jos (ordinea este de la stânga la dreapta şi de sus în jos):

$$\begin{array}{ll} c \leftarrow \frac{2c}{1+a}; & d \leftarrow \frac{2ab}{1+b^2}; & d \leftarrow \frac{d}{1+\sqrt{1-d^2}} \\ d \leftarrow \frac{b+d}{1-bd}; & b \leftarrow \frac{d}{1+\sqrt{1+d^2}}; & a \leftarrow \frac{2\sqrt{a}}{1+a}. \end{array}$$

La fiecare pas, afișați  $f = c \ln[(1+b)/(1-b)]$ . Opriți când  $1-a \le 2^{-n}$ . Scrieți o rutină pentru implementarea acestui algoritm în dublă precizie și testați pentru diverse valori ale lui x. Comparați rezultatele cu cele obținute cu funcția

arctangentă din softul utilizat. Notă: acest algoritm cu precizie multiplă este legat de teoria integralelor eliptice, și utilizează media aritmetico-geometrică și transformarea Landen ascendentă.

#### 2 Calculul lui $\pi$

Problema 9 Lungimea semicercului unitate este  $\pi$ . Putem aproxima  $\pi$  utilizând triunghiuri şi matematică elementară. Considerăm semicercul cu arcul înjumătățit ca în figura 1(a). Ipotenuza triunghiului dreptunghic este  $\sqrt{2}$ . Deci, o aproximare grosieră a lui  $\pi$  este  $2\sqrt{2}\approx 2.8284$ . În figura 1(b), considerăm un unghi  $\theta$  care este 1/k din semicerc. Coarda din figură are lungimea  $2\sin(\theta/2)$ , deci  $2k\sin(\theta/2)$  este o aproximare a lui  $\pi$ . Folosind formule trigonometrice obținem

$$\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2} = \frac{1 - \sqrt{1 - \sin^2 \theta}}{2} = \frac{\sin^2 \theta}{2 + 2\sqrt{1 - \sin^2 \theta}}$$

Fie  $\theta_n$  unghiul rezultat din divizarea arcului semicircular în  $2^{n-1}$  părți. Fie



Figura 1: Calculul lui  $\pi$ 

 $S_n=\sin^2\theta_n$  și  $P_n=2^n\sqrt{S_{n+1}}$ . Arătați că  $S_{n+1}=S_n/(2+2\sqrt{1-S_n})$  și  $P_n$  este o aproximare a lui  $\pi$ . Pornind cu  $S_2=1$  și  $P_1=2$ , calculați  $S_{n+1}$  ș $P_n$  recursiv pentru  $2\leq n\leq 20$ .

Problema 10 Numărul irațional  $\pi$  poate fi calculat aproximând aria cercului unitate ca limită a șirului  $p_1, p_2, \ldots$  dat în continuare. Împărțim cercul unitate în  $2^n$  sectoare. (Figura 2 ilustrează cazul n=3.) Aproximați aria sectorului prin aria triunghiului isoscel. Unghiul  $\theta_n$  este  $2\pi/2^n$ . Aria triunghiului este  $1/2\sin\theta_n$ . (Verificați.) Cea de-a n-a aproximare a lui  $\pi$  este  $p_n=2^{n-1}\sin\theta_n$ . Arătați că

$$\sin \theta_n = \frac{\sin \theta_{n-1}}{\left[2\left(1 + \sqrt{1 - \sin^2 \theta_{n-1}}\right)\right]^{\frac{1}{2}}}$$

folosind formule trigonometrice cunoscute. Utilizați aceste relații de recurență pentru a genera șirurile  $\sin\theta_n$  și  $p_n$  (3  $\leq n \leq$  20) începând cu  $\sin\theta_2 = 1$ . Comparați cu calculul lui 4.0 arctan(1.0).



Figura 2: Calculul lui $\pi$ 



Figura 3: Calculul lui  $\pi$  prin arii de trapeze

**Problema 11** Calculați  $\pi$  cu o metodă similară celei din problema precedentă, aproximând de această dată aria cercului unitate printr-un șir de arii de trapeze, asa cum se arată în figura 3.

**Problema 12** Scrieți o rutină în precizie dublă sau extinsă pentru a implementa algoritmul 1 pentru calculul lui  $\pi$ . Cine converge mai repede, f ori g? Cât de precise sunt valorile finale? Comparați cu calculul în precizie dublă sau extinsă al lui  $4.0 \arctan(1.0)$ . Indicație: Valoare lui  $\pi$  cu 36 de cifre corecte

#### Algorithm 1 Calculul lui $\pi$

```
integer k; real a, b, c, d, e, f, g;
a \leftarrow 0;
b \leftarrow 1:
c \leftarrow 1/\sqrt{2};
d \leftarrow 0.25;
e \leftarrow 1;
for k = 1 to 5 do
   a \leftarrow b;
   b \leftarrow (b+c)/2;
   c \leftarrow \sqrt{ca};
   d \leftarrow d - e(b - a)^2;
   e \leftarrow 2e;
    f \leftarrow b^2/d;
   g \leftarrow (b+c)^2/(4d);
   output k, f, |f - \pi|, g, |g - \pi|;
end for
```

este

#### 3.14159265358979323846264338327950288

 $Not\Bar{a}$ : La începutul anilor 70 s-a descoprerit o nouă formulă pentru calculul lui  $\pi$ . Acest algoritm se bazează pe acea formulă, care este o consecință directă a metodei dezvoltate de Gauss pentru calculul integralelor eliptice și a relației integrale eliptice a lui Legendre, ambele cunoscute de peste 150 de ani! Analiza erorilor ne arată că apare o convergență rapidă la calculul lui  $\pi$  și că numărul de cifre semnificative se dubleză la fiecare pas. (Cititorul interesat poate consulta [3], [2] și [4].)

**Problema 13** O altă schemă cu convergență pătratică pentru calculul lui  $\pi$ , descoperită de Borwein și Borwein în 1984 [1], este dată în algoritmul 2

Verificați numeric că  $|x-\pi| \leq 10^{-2k}$ . Notă: Ludolf van Ceulen (1540–1610) a calculat  $\pi$  cu 36 de cifre. Pachetele matematice moderne ca Matlab, Maple și Mathematica pot calcula  $\pi$  cu zeci de mii de cifre în câteva secunde!

#### **Algorithm 2** Computing $\pi$

```
integer k; real a, b, t, x;

a \leftarrow \sqrt{2};

b \leftarrow 0;

x \leftarrow 2 + \sqrt{2};

for k = 1 to 5 do

t \leftarrow \sqrt{a};

b \leftarrow t(1+b)/(a+b);

a \leftarrow \frac{1}{2}(t+\frac{1}{t});

x \leftarrow xb(1+a)/(1+b);

output k, x, |x-\pi|;

end for
```

## Bibliografie

- [1] J. M. Borwein, P. B. Borwein, The arithmetic-geometric mean and fast computation of elementary functions, *SIAM Review*, **26**, 351–366, 1984
- [2] J. M. Borwein, P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987
- [3] R. P. Brent, Fast multiple precision evaluation of elementary functions, JACM **23**, 242–251, 1976
- [4] E. Salamin, Computation of  $\pi$  using arithmetic-geometric mean, Mathematics of computation **30**, 565–570, 1976