Institut Supérieur d'Electronique de Paris

CT.1104 : BE Robotique

Robot NAO assistant dans un magasin

Groupe ...:

NOM Prénom, NOM Prénom, NOM Prénom,

NOM Prénom NOM Prénom NOM Prénom

2021/2022

BE Robotique

Plan

1 Introduction

2 Présentation du robot

BE Robotique 2/9

Introduction

Le module CT.1104 : BE Robotique

- Objectif: projet de mise en œuvre du robot NAO.
- **Démarche**: spécifications, conception, développement, tests, intégration, etc.
- Curiosité : découvrir et comprendre les fonctionnalités du robot
- Attention: conserver son intégrité.

BE Robotique 3/9

Le robot NAO

- Robot humanoïde.
- 2006 : première version publique du robot NAO.
- Choregraphe: logiciel de programmation du robot.
- Quelques caractéristiques : Poids : 5 kg. Longueur : 58 cm. 25 articulations.

4 / 9

Le robot NAO

Fig – Le robot NAO.

BE Robotique 5/9

Paramètres de la convention DHM

Table – Paramètres de la convention DHM correspondant au robot Denso VP-6242G.

$i \parallel \alpha_i \mid d_i$	$\mid r_i \mid \theta_i$	$\parallel i \parallel \alpha_i$	$ d_i$	$ r_i $	θ_i
1 0 0	$ l_{1z} q_1$	$\parallel 4 \parallel -\frac{\pi}{2}$	$-l_{3x}$	$ l_{3z} + l_4 $	$ q_4 $
$\boxed{2\parallel\frac{\pi}{2}\mid 0}$	$ 0 q_2 + \frac{3}{2}$	$\frac{\pi}{2} \parallel 5 \parallel \frac{\pi}{2}$	0	0	$ q_5 $
$3 \parallel 0 \mid l_2$	$ 0 q_3 - \frac{7}{6}$	$\frac{\pi}{2} \parallel 6 \parallel -\frac{\pi}{2}$	0	l_5	q_6

6/9

Convention de Denavit-Hartenberg Modifiée z_i (R_i) z_{i-1} (R_{i-1}) x_{i-1} O_{i-1}

Paramètres de la convention DHM

$$\begin{cases}
\alpha_{i} = \widehat{z_{i-1}, z_{i}}/x_{i-1} \\
d_{i} = \overline{O_{i-1}, z_{i}}/x_{i-1} \\
r_{i} = \overline{x_{i-1}, O_{i}}/z_{i} \\
\theta_{i} = \widehat{x_{i-1}, x_{i}}/z_{i}
\end{cases} (1)$$

8/9

Merci pour votre attention