EJEMPLO 8.6.2 Matrices de Jordan de 2 × 2

Las únicas matrices de Jordan de 2×2 son $\begin{pmatrix} \lambda_1 & 1 \\ 0 & \lambda_2 \end{pmatrix}$ y $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. En la primera matriz los números λ_1 y λ_2 pueden ser iguales.

EJEMPLO 8.6.3 Matrices de Jordan de 3 × 3

Las únicas matrices de Jordan de 3×3 son

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \quad \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_3 \end{pmatrix} \quad \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \quad \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

donde no es necesario que λ_1 , λ_2 y λ_3 sean distintos.

El siguiente resultado es uno de los teoremas más importantes en la teoría de matrices. Aunque su prueba queda fuera del alcance de este libro,* se demostrará para el caso de 2×2 (vea el teorema 8.6.3) y se sugiere una demostración para el caso de 3×3 en el problema 8.6.22.

Teorema 8.6.1

Sea A una matriz real o compleja de $n \times n$. Entonces existe una matriz C compleja invertible de $n \times n$ tal que

$$C^{-1}AC = J ag{8.6.3}$$

donde J es una matriz de Jordan cuyos elementos en la diagonal son los valores característicos de A. Más aún, la matriz de Jordan J es única, excepto por el orden en el que aparecen los bloques de Jordan.

Nota 1. La matriz C en el teorema 8.6.1 no necesita ser única.

Nota 2. La última afirmación del teorema significa, por ejemplo, que si A es similar a

$$J_1 = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

^{*} Vea la demostración en G. Birkhoff y S. Mac Lane, A Survey of Modern Algebra, 3a. ed., Nueva York, Macmillan, 1965, p. 311.