# HW 4: Fairness and Classification

### **Details:**

Name : Siddhanth Kalyanpur Miner username : mb13

Miner Score: 0.86 Miner Rank: 33

### Part 1: Prediction

#### 1. Preprocessing

- Adult Data set doesn't have any Nan as those are replaced by "?". I checked for the later and replaced them with NaN and dropped the row with Nan.
- The data is skewed for "Capital-gain" and "Capital-loss" hence applying Log transformation to these columns so it doesn't affect our prediction.





- As a part of Feature Engineering I have used LabelEncoder class to normalise labels as they were categorical and thus transformed non-numerical labels to numerical labels.
- Dropped the last column (Income) as our target feature and user list traversal to convert labels above 50k as "1" else "0".
- Used StandardScaler for scaling all the features to a common scale.
- Maximum Accuracy achieved was 86% with the above feature engineering.

• Please find below in the table the performance of each classifier and it's hyper parameter tuning. The best classifiers are highlighted.

#### 2. Classification

| Classifier          | Accuracy | Hyper Parameter Tuning                                                                                                                                                             |
|---------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KNN                 | 0.84     | Default values used.                                                                                                                                                               |
| Logistic Regression | 0.85     | No Hyper Parameter Tuning. Tried Feature reduction(PCA) with this but reduced the accuracy.                                                                                        |
| Decision Tree       | 0.85     | Since the first 10 features contribute to 90% of the variance tuned in depth feature between 7-10.                                                                                 |
| Random Forest       | 0.86     | Since the Target variables are imbalanced used class weights of 1.5:1 for 1:0. Used an array of n_estimators and max_features and identified best parameters with trial and error. |
| SVM                 | 0.82     | Used the iteration variable from a list of iterators . Found best result for 1000.                                                                                                 |
| Ada Boost           | 0.83     | Used underlying Decision Tree as underlying estimator and 100 estimators.                                                                                                          |
| Cat Boost           | 0.86     | Use learning rate to reduce gradient step. learning rate = 0/04                                                                                                                    |

 The classification report for individual classifiers can be found in below. F-1 score, Accuracy and Recall can be found in the below snap shots of the classification report of each classifier.

KNN Ada Boost Random Forest

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.88      | 0.90   | 0.89     | 4918    |  |
| 1            | 0.67      | 0.61   | 0.63     | 1595    |  |
| accuracy     |           |        | 0.83     | 6513    |  |
| macro avg    | 0.77      | 0.75   | 0.76     | 6513    |  |
| veighted avg | 0.82      | 0.83   | 0.83     | 6513    |  |
|              |           |        |          |         |  |

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
|              |           |        |          |         |  |
| 0            | 0.87      | 0.90   | 0.88     | 4918    |  |
| 1            | 0.64      | 0.58   | 0.61     | 1595    |  |
|              |           |        |          |         |  |
| accuracy     |           |        | 0.82     | 6513    |  |
| macro avg    | 0.76      | 0.74   | 0.75     | 6513    |  |
| weighted avg | 0.81      | 0.82   | 0.82     | 6513    |  |
|              |           |        |          |         |  |

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.88      | 0.91   | 0.90     | 4918    |  |
| 1            | 0.70      | 0.63   | 0.66     | 1595    |  |
|              |           |        |          |         |  |
| accuracy     |           |        | 0.84     | 6513    |  |
| macro avg    | 0.79      | 0.77   | 0.78     | 6513    |  |
| weighted avg | 0.84      | 0.84   | 0.84     | 6513    |  |
|              |           |        |          |         |  |
|              |           |        |          |         |  |

Cat Boost Decision Tree

| accuracy     |      |      | 0.84 | 6513 |
|--------------|------|------|------|------|
| macro avg    | 0.79 | 0.77 | 0.78 | 6513 |
| veighted avg | 0.84 | 0.84 | 0.84 | 6513 |
|              |      |      |      |      |

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.86      | 0.94   | 0.90     | 4918    |  |
| 1            | 0.76      | 0.54   | 0.63     | 1595    |  |
| accuracy     |           |        | 0.85     | 6513    |  |
| macro avg    | 0.81      | 0.74   | 0.77     | 6513    |  |
| weighted avg | 0.84      | 0.85   | 0.84     | 6513    |  |

Conclusion: Random Forest and Cat Boost gave me the best accuracy of 86%.

# Part 2 : Fairness Diagnosis

- We use the same pre processed data from part 1 and calculate the Demographic Disparity, inequality of odds and Equal opportunity for the sensitive features (gender ,race).
- You can find the Fairness diagnosis for each classifier in table as seen below :

| Sensitive<br>Feature | Fairness<br>Diagnosis | Logisti<br>c<br>Regres<br>sion | Cat<br>Boost | Ada Boost | KNN   | Random<br>Forest | Decision<br>Tree |
|----------------------|-----------------------|--------------------------------|--------------|-----------|-------|------------------|------------------|
| Race                 | Demographic Disparity | 0.096                          | 0.096        | 0.093     | 0.117 | 0.096            | 0.056            |
|                      | Equal<br>Opportunity  | 0.098                          | 0.098        | 0.015     | 0.191 | 0.098            | 0.015            |
|                      | Inequality of Odds    | 0.091                          | 0.098        | 0.015     | 0.191 | 0.098            | 0.015            |
| Sex                  | Demographic Disparity | 0.175                          | 0.175        | 0.165     | 0.185 | 0.175            | 0.098            |
|                      | Equal<br>Opportunity  | 0.073                          | 0.073        | 0.066     | 0.111 | 0.073            | 0.066            |
|                      | Inequality of Odds    | 0.071                          | 0.073        | 0.066     | 0.111 | 0.073            | 0.066            |

- The high Disparity metrics on the prediction shows that there is some gender bias. The
  male population have a higher chance of getting an income of >50000 than the female
  population.
- The opportunity results show that the model correctly predicts the male population having income greater than 50000 showing a bias. Logistic regression has the worst prediction. Logistic regression has the maximum difference in opportunity showing heavy bias in favour of the majority gender(male).
- Decision tree and Ada Boost have low bias than random forest but poor accuracy and f1score.
- Race also has some bias in favour of the majority class but, it is less compared to gender.

## Part 3: Fairness Mitigation

- Part 1:
- We remove the sensitive attributes (Sex, Race) and and find the Fairness measures on the best classifier(Random Forest)
- We find the below results for Disparity, odds and equality and we find that the bias has
  reduced slightly more so for sex than Race. The accuracy, F-1 and recall are similar to the
  prediction before removing the sensitive features.

```
Calculating disparity for sex
count of classes [0,1]: [2164, 4349]
count of 1's in classes [0,1]: [224, 1330]
probability for class 0 is: 0.10351201478743069
probability for class 1 is: 0.3058174292940906

Disparity for attribute sex: 0.20230541450665993
None
Calculating disparity for race
count of classes [0,1]: [56, 216]
count of 1's in classes [0,1]: [7, 53]
probability for class 0 is: 0.125
probability for class 1 is: 0.24537037037037038
```

```
equality of odds (true positive) for sex: 0.10489429628626867
equality of odds (false positive) for sex: 0.09250219470559012
equality of odds (true positive) for race: 0.025000000000000022
equality of odds (false positive) for race: 0.11516563146997931
```

equal opportunity for attribute sex: 0.10489429628626867

equal opportunity for attribute race: 0.025000000000000022

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.90      | 0.91   | 0.91     | 4918    |  |
| 1            | 0.72      | 0.70   | 0.71     | 1595    |  |
| accuracy     |           |        | 0.86     | 6513    |  |
| macro avg    | 0.81      | 0.81   | 0.81     | 6513    |  |
| weighted avg | 0.86      | 0.86   | 0.86     | 6513    |  |
|              |           |        |          |         |  |

- Part 2 :
- I find the correlation heat map for all the features to identify the attributes that correlate the most with the sensitive attribute.



- Based on the heat map we remove Race, Sex, Marital-Status, Occupation,
   Relationship as the correlated sensitive features.
- We find that the Demographic Disparity and Equal Opportunity reduced significantly.

Demographic parity (Sex): 0.09 Demographic parity (Race): 0.07

Race Average Equality of Opportunity: 0.11
Race Average Equality of Opportunity:

The Bias has reduced significantly after removing the correlated features.
 Accuracy of the classifier reduced to 84% from 86% hence displaying
 Fairness Accuracy tradeoff.