Doble Grado en Informática y Matemáticas

Ejercicios de Cálculo I – Relación 3 - Racionales e irracionales. Principio de Inducción (para hacer en clase)

- 1. Indica de forma razonada si los siguientes números son racionales o irracionales:
 - a) La suma o el producto de un número irracional con un número racional distinto de cero.
 - b) La suma o el producto de dos números irracionales.

c)
$$\sqrt{2} + \sqrt{3}$$
, $\sqrt{6} - \sqrt{2} - \sqrt{3}$, $\frac{\sqrt{5} + 2}{3\sqrt{5} + 4}$.

- 2. Sean $a,b,c,d \in \mathbb{Q}$ con $c^2+d^2>0$ y $x \in \mathbb{R}\setminus \mathbb{Q}$. ¿Qué condiciones deben cumplir a,b,c,d para que el número $\frac{ax+b}{cx+d}$ sea racional?
- 3. Sea $x \in \mathbb{R}$. Prueba que $\sup\{r \in \mathbb{Q} : r < x\} = x = \inf\{s \in \mathbb{Q} : x < s\}$. ¿Permanece válido este resultado si se sustituye \mathbb{Q} por un conjunto denso en \mathbb{R} ?
- 4. Sea $\varphi:\mathbb{R}\to\mathbb{R}$ una función monótona y supongamos que $\varphi(z)=z$ para todo $z\in\mathbb{Q}$. Prueba que para todo $x\in\mathbb{R}$ es $\varphi(x)=x$.

Sugerencia: la suposición de que $\varphi(x) \neq x$ para algún $x \in \mathbb{R}$ lleva a una contradicción.

5. Sea $f: \mathbb{R} \to \mathbb{R}$ una función no idénticamente nula verificando, para todos x, y en \mathbb{R} que f(x+y) = f(x) + f(y) (f es aditiva) y f(xy) = f(x)f(y) (f es multiplicativa). Prueba que f(x) = x para todo $x \in \mathbb{R}$.

Sugerencia: la existencia en \mathbb{R}^+ de la raíz cuadrada permite probar que f es monótona.

6. Prueba, usando el principio de inducción, que para todo $n \in \mathbb{N}$ se verifican las siguientes relaciones.

a)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

b)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
.

c)
$$\sqrt{n} \le 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n}$$

d)
$$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \geqslant \frac{1}{2\sqrt{n}}$$

- 7. Prueba que para todo número natural $n \in \mathbb{N}$ se verifica que $n^5 n$ es divisible por 5.
- 8. Prueba que la suma de los cubos de tres números naturales consecutivos es múltiplo de 9.
- 9. Prueba que todo número natural $n \ge 8$ puede escribirse en la forma n = 3p + 5q donde $p, q \in \mathbb{N} \cup \{0\}$.
- Prueba que el triángulo equilátero es el triángulo que tiene máxima área para un perímetro dado y de mínimo perímetro para un área dada.

Sugerencia. Si a,b,c son las longitudes de los lados de un triángulo y p=(a+b+c)/2 es el semiperímetro, entonces, según la fórmula de Heron de Alejandría, el área del triángulo viene dada por $A=\sqrt{p(p-a)(p-b)(p-c)}$.

11. Calcula el rectángulo de mayor área inscrito en la elipse de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, donde a > 0, b > 0.