HTTP Header Compression over QUIC

Alan Frindell Facebook

June 2017

Current Draft - Serialized HPACK

HPACK frames are sent on individual streams, with a sequence number

HPACK decoder must decode frames in order

Potential unnecessary HOL blocking

QPACK

• Encoder has explicit control of header table

• Table modifications happen on their own stream

HOL Blocking may occur if a reference arrives before an insert

• Some special reference counting for evictions

QCRAM

Very similar to HPACK

- Only encode a reference if
 - Encoder has received an ack for the insert
 - The insert is in the same QUIC packet
- Otherwise encode a literal

Evictions must be processed in order, may cause HOL blocking

Comparing Implementations

• I built all implementations of all three schemes, and a simulator

- Simulator has two knobs
 - RTT
 - Loss rate (loss treated as independent events)

 Input is a HAR file containing HTTP request headers and request start timing

Experiment Setup

- Load Facebook news feed with a forced 100ms RTT
- 227 requests to 5 domains
 - All facebook.com and fbcdn.net requests were coalesced
- Total elapsed time ~15 seconds
- Varied RTT from 10 500ms
- Varied Loss from 0 10%

HOL Delay

Compression Ratio

HOL Buffering

Observations

• Serialized HPACK is not great in the presence of loss

 QCRAM has 0 HOL blocking (if there are no evictions) at the expense of compression ratio

 QPACK has identical compression ratio to HPACK, with some HOL blocking

Implementation Notes

QCRAM

- Easier to start, because of its similarity to HPACK
- Full implementation requires deeper integration with transport
- How to know when to duplicate an un-acked index?

QPACK

- Mostly a rewrite of the header table
- Requires two-pass decoding to prevent buffering partially decoded header blocks
- Has some nice flexibility

Next Steps

- Run the simulation with more varied input
 - Third-party CDN, apps instead of browser

 More runs with lowish loss rates (0 - 2.5%) and also high rates (up to 20%)

- Consider hybrid implementations
 - QPACK + insert acks

Thanks to Mike Bishop and Buck Krasic for input

More discussion can be found on the IETF QUIC mailing list