RÉPUBLIQUE FRANÇAISE

₍₁₎ 2.009.527

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

Date de la mise à la disposition du public

DEMANDE DE BREVET D'INVENTION

	de la demande 6 février 1970.
51)	Classification internationale B 21 b 13/00//B 21 b 1/00.
21) 22) 71)	Numéro d'enregistrement national 69 00428. Date de dépôt
٠٠.	
54)	Mandataire : Cabinet Beau de Loménie, Ingénieurs-Conseils, 55, rue d'Amsterdam, Paris (8°). Procédé de laminage de barres réalisées par coulée continue.
72	Invention:
30)	Priorité conventionnelle :
32)	(33) Demande de brevet déposée en Autriche le 29 mai 1968, n° A 5.130/68 au nom de la demanderesse.

L'invention se rapporte à un procédé de laminage de barres produites par coulée continue.

Un procédé adopté récemment consiste à dégrossir les barres, dès leur sortie de l'installation de coulée continue, dans un train de laminage à plusieurs cages duo. Avant leur entrée dans le train de laminage, les barres ont encore en général un noyau liquide, appelé pointe du cratère liquide, que les cylindres de la première cage refoulent vers l'arrière. La barre pénètre d'abord entre les cylindres écartés afin que ceux-ci puissent la saisir avant d'être serrés. Ce mode opératoire offre divers avantages qualitatifs et permet notamment d'éviter pratiquement les défauts internes.

Les règles satisfaisant aux conditions dans lesquelles l'attaque doit se produire déterminent le diamètre des cylin5 dres de laminoirs ne comportant aucune cage supplémentaire motrice ou à traction. Les conditions d'attaque sont fonction du coefficient de frottement entre cylindres et laminé et des rapports géométriques déterminant l'angle de contact .

L'angle de contact . et la réduction d'épaisseur sont liés par 20 la relation suivante:

cos
$$= 1 - \frac{\Delta h}{d}$$
,

Ces relations bien connues, appliquées aux laminoirs normaux, ont été également adaptées jusqu'à présent pour le dimensionnement des laminoirs de réduction par étirage montés à la suite des installations de coulée continue. Il en résulte cependant l'inconvénient que la vitesse relativement faible de coulée impose de faibles vitesses aux rages de laminoir montées en aval de l'installation de coulée continue. La faible vitesse de laminage a également pour conséquence que la durée de contact entre cylindres et laminé et le temps s'écoulant entre les passes successives sont relativement longs, de sorte que les barres et notamment leurs arêtes subissent un refroidissement

BAD GHIGINAL

15

plus intense qu'il serait désirable. Une autre conséquence est que le nombre des passes possibles est limité et que les arêtés risquent de se criquer.

Selon une particularité essentielle du procédé 5 selon l'invention de laminage de barres réalisées par coulée continue, destiné à éviter ces difficultés et inconvénients, les rvlindres ont un diamètre inférieur à celui qui correspond aux conditions dans lesquelle. l'attaque doit se produire, mais égal ou supérieur à celui qui correspond à la condition permettant un passage continu. 10

La condition permettant un passage continu est que l'angle de contact cest inférieur au double de l'angle de frottement ", celui-ci étant une constante de la matière et fonction du coefficient de frottement ju correspondant à la relation.

,u ≖ tg β Le principe essentiel de l'invention consiste donc à utiliser des cylindres de diamètres notablement inférieurs à ceux des laminoirs classiques pour un même laminé et un même taux de déformation. Les exemples numériques suivants permettront 20 de bien comprendre l'invention:

Exemple 1: On calcule le diamètre minimal nécessaire des cylindres de la manière suivante, en admettant que le coefficient de frottement $\mu = 0.2$ et que la réduction d'épaisseur doit être $\Delta h = 20$ mm : l'angle de frottement tg f = u = 0.2 donne 25 °= 11,4°. L'angle de contact doit donc être ∠11,4° dans les laminoirs classiques. La formule

$$\cos \alpha = 1 - \frac{\Delta h}{d}$$

donne donc un diamètre minimal des cylindrés de 1000mm. Conformé-30 ment au procédé de l'invention, l'angle de contact peut être d 2 ?, et en conséquence, la formule ci-dessus donne un diamètre minimal de cylindres de 250mm.

Exemple 2: Si l'on admet que le coefficient de frottement u = 0,4 et que la réduction d'épaisseur doit être 35 Δ h = 40mm, 1'angle de frottement \hat{r} = 22°. La formule indiquée permet de calculer le diamètre minimal des cylindres qui est de 570mm pour les laminoirs classiques et de 140mm suivant le procédé de l'invention.

10

20

25

L'invention permet donc l'utilisation de cylindres dont le diamètre est réduit à environ 1/5 à 1/2 de celui des cylindres des laminoirs classiques. Des difficultés antérieures sont ainsi éliminées. La réduction du diamètre des cylindres diminue donc considérablement les longueurs et ainsi les durées de contact entre cylindres et laminé, le refroidissement de la barre étant ainsi notablement limité. De plus, le procédé de l'invention permet de sélectionner des laminoirs dont les cotes sont plus faibles que celles des laminoirs classiques; ce facteur permet donc de réduire la distance séparant les diverses cages.

L'invention est expliquée en regard du dessin schématique annexé sur lequel:

La figure 1 représente une cage de laminoirs 15 classique; et

La figure 2 illustre une cage de laminoir conforme au procédé de l'invention.

La figure l'illustre les conditions dans lesquelles l'attaque doit se produire pour des cylindres de diamètre d₁ et une réduction d'épaisseur de la barre de h₀ à h₁.

désigne l'angle de contact qui est égal ou inférieur à l'angle de frottement l'. La figure 2 montre que lorsque les cylindres ont un diamètre inférieur d₂, toutes conditions étant égales par ailleurs, les conditions dans lesquelles l'attaque doit se produire ne sont plus satisfaites mais cependant les conditions assurant un passage continu le sont. Dans ce cas, l'angle de contact est donc supérieur à l'mais égal ou inférieur à 2 l'.

Le procédé de l'invention est mis en oeuvre de la manière suivante: la fausse billette est introduite entre les cylindres écartés de la file des cages et ensuite les cylindres de chaque cage sont serrés, à commencer par la première. Le processus de laminage ne débute donc qu'après le passage de la tête de la fausse billette; la tête de la barre reste non déformée.

35 Il est ainsi possible de renoncer aux conditions dans lesquelles l'attaque doit se produire et de conserver les conditions permettant un passage continu avec des cylindres plus petits que les cylindres classiques. La durée de contact entre cylindres et

barre est ainsi abrégée et la courbe de température de cette dernière est plus favorable. Les pressions et couples nécessaires de laminage sont également réduits et en conséquence les cages peuvent être plus légères et plus petites. 5

REVENDICATION

Procédé de l'aminage de barres dans un train monté immédiatement à la suite d'une installation de coulée continue et comportant plusieurs cages duo, la barre étant introduite dans la file de cages dont les cylindres sont écartés et ceux-ci étant ensuite serrés sur la barre, caractérisé en ce que les cylindres ont un diamètre inférieur à celui qui correspond aux conditions dans lesquelles l'attaque doit se produire, mais égal ou supérieur à celui qui correspond aux conditions assurant un passage continu.

Pl. Unique

FIG. 2 $h_0 = \begin{pmatrix} d_2 \\ d_2 \\ d_3 \end{pmatrix}$ $h_1 = \begin{pmatrix} d_2 \\ d_4 \\ d_5 \end{pmatrix}$