I don't need to learn 8 + 7: I'll remember 8 + 8 and subtract 1.

T. Cuyler Young, Jr.

EXERCISES

1. Real Vector Spaces

- 1. Which of the following subsets of the vector space of real $n \times n$ matrices is a subspace?
 - (a) symmetric matrices $(A = A^{t})$
 - (b) invertible matrices
 - (c) upper triangular matrices
- 2. Prove that the intersection of two subspaces is a subspace.
- 3. Prove the cancellation law in a vector space: If cv = cw and $c \ne 0$, then v = w.
- **4.** Prove that if w is an element of a subspace W, then $-w \in W$ too.
- **5.** Prove that the classification of subspaces of \mathbb{R}^3 stated after (1.2) is complete.
- **6.** Prove that every solution of the equation $2x_1 x_2 2x_3 = 0$ has the form (1.5).
- 7. What is the description analogous to (1.4) obtained from the particular solutions $u_1 = (2, 2, 1)$ and $u_2 = (0, 2, -1)$?

2. Abstract Fields

- 1. Prove that the set of numbers of the form $a + b\sqrt{2}$, where a, b are rational numbers, is a field.
- 2. Which subsets of \mathbb{C} are closed under +, -, \times , and \div but fail to contain 1?
- **3.** Let F be a subset of \mathbb{C} such that F^+ is a subgroup of \mathbb{C}^+ and F^\times is a subgroup of \mathbb{C}^\times . Prove that F is a subfield of \mathbb{C} .
- **4.** Let $V = F^n$ be the space of column vectors. Prove that every subspace W of V is the space of solutions of some system of homogeneous linear equations AX = 0.
- 5. Prove that a nonempty subset W of a vector space satisfies the conditions (2.12) for a subspace if and only if it is closed under addition and scalar multiplication.
- **6.** Show that in Definition (2.3), axiom (ii) can be replaced by the following axiom: F^{\times} is an abelian group, and $1 \neq 0$. What if the condition $1 \neq 0$ is omitted?
- 7. Define homomorphism of fields, and prove that every homomorphism of fields is injective.
- **8.** Find the inverse of 5 (modulo p) for p = 2, 3, 7, 11, 13.
- 9. Compute the polynomial $(x^2 + 3x + 1)(x^3 + 4x^2 + 2x + 2)$ when the coefficients are regarded as elements of the fields (a) \mathbb{F}_5 (b) \mathbb{F}_7 .
- **10.** Consider the system of linear equations $\begin{bmatrix} 8 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.
 - (a) Solve it in \mathbb{F}_p when p = 5, 11, 17.
 - (b) Determine the number of solutions when p = 7.

11. Find all primes p such that the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -1 \\ -2 & 0 & 2 \end{bmatrix}$$

is invertible, when its entries are considered to be in \mathbb{F}_p .

12. Solve completely the systems of linear equations AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

- (a) in \mathbb{Q} (b) in \mathbb{F}_2 (c) in \mathbb{F}_3 (d) in \mathbb{F}_7 .
- 13. Let p be a prime integer. The nonzero elements of \mathbb{F}_p form a group \mathbb{F}_p^{\times} of order p-1. It is a fact that this group is always cyclic. Verify this for all primes p < 20 by exhibiting a generator.
- 14. (a) Let p be a prime. Use the fact that \mathbb{F}_p^{\times} is a group to prove that $a^{p-1} \equiv 1 \pmod{p}$ for every integer a not congruent to zero.
 - **(b)** Prove Fermat's Theorem: For every integer a,

$$a^p \equiv a \pmod{p}$$
.

- 15. (a) By pairing elements with their inverses, prove that the product of all nonzero elements of \mathbb{F}_p is -1.
 - (b) Let p be a prime integer. Prove Wilson's Theorem:

$$(p-1)! \equiv -1 \pmod{p}$$
.

- 16. Consider a system AX = B of n linear equations in n unknowns, where A and B have integer entries. Prove or disprove: If the system has an integer solution, then it has a solution in \mathbb{F}_p for all p.
- 17. Interpreting matrix entries in the field \mathbb{F}_2 , prove that the four matrices $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ form a field.
- 18. The proof of Lemma (2.8) contains a more direct proof of (2.6). Extract it.

3. Bases and Dimension

- 1. Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors (1, 2, -1, 0), (4, 8, -4, -3), (0, 1, 3, 4), (2, 5, 1, 4).
- **2.** Let $W \subset \mathbb{R}^4$ be the space of solutions of the system of linear equations AX = 0, where $A = \begin{bmatrix} 2 & 1 & 2 & 3 \\ 1 & 1 & 3 & 0 \end{bmatrix}$. Find a basis for W.
- 3. (a) Show that a subset of a linearly independent set is linearly independent.
 - (b) Show that any reordering of a basis is also a basis.
- **4.** Let V be a vector space of dimension n over F, and let $0 \le r \le n$. Prove that V contains a subspace of dimension r.

- 5. Find a basis for the space of symmetric $n \times n$ matrices.
- **6.** Prove that a square matrix A is invertible if and only if its columns are linearly independent.
- 7. Let V be the vector space of functions on the interval [0, 1]. Prove that the functions x^3 , $\sin x$, and $\cos x$ are linearly independent.
- 8. Let A be an $m \times n$ matrix, and let A' be the result of a sequence of elementary row operations on A. Prove that the rows of A span the same subspace as the rows of A'.
- 9. Let V be a complex vector space of dimension n. Prove that V has dimension 2n as real vector space.
- 10. A complex $n \times n$ matrix is called *hermitian* if $a_{ij} = \overline{a}_{ji}$ for all i, j. Show that the hermitian matrices form a real vector space, find a basis for that space, and determine its dimension.
- 11. How many elements are there in the vector space \mathbb{F}_p^n ?
- 12. Let $F = \mathbb{F}_2$. Find all bases of F^2 .

106

- 13. Let $F = \mathbb{F}_5$. How many subspaces of each dimension does the space F^3 contain?
- 14. (a) Let V be a vector space of dimension 3 over the field \mathbb{F}_p . How many subspaces of each dimension does V have?
 - (b) Answer the same question for a vector space of dimension 4.
- 15. (a) Let $F = \mathbb{F}_2$. Prove that the group $GL_2(F)$ is isomorphic to the symmetric group S_3 .
 - (b) Let $F = \mathbb{F}_3$. Determine the orders of $GL_2(F)$ and of $SL_2(F)$.
- **16.** Let W be a subspace of V.
 - (a) Prove that there is a subspace U of V such that U + W = V and $U \cap W = 0$.
 - (b) Prove that there is no subspace U such that $W \cap U = 0$ and that $\dim W + \dim U > \dim V$.

4. Computation with Bases

- 1. Compute the matrix P of change of basis in F^2 relating the standard basis E to $B' = (v_1, v_2)$, where $v_1 = (1, 3)^t$, $v_2 = (2, 2)^t$.
- 2. Determine the matrix of change of basis, when the old basis is the standard basis $(e_1, ..., e_n)$ and the new basis is $(e_n, e_{n-1}, ..., e_1)$.
- 3. Determine the matrix P of change of basis when the old basis is (e_1, e_2) and the new basis is $(e_1 + e_2, e_1 e_2)$.
- **4.** Consider the equilateral coordinate system for \mathbb{R}^2 , given by the basis B' in which $v_1 = e_1$ and v_2 is a vector of unit length making an angle of 120° with v_1 . Find the matrix relating the standard basis E to B'.
- **5.** (i) Prove that the set $\mathbf{B} = ((1, 2, 0)^t, (2, 1, 2)^t, (3, 1, 1)^t)$ is a basis of \mathbb{R}^3 .
 - (ii) Find the coordinate vector of the vector $v = (1, 2, 3)^t$ with respect to this basis.
 - (iii) Let $B' = ((0, 1, 0)^t, (1, 0, 1)^t, (2, 1, 0)^t)$. Find the matrix P relating B to B'.
 - (iv) For which primes p is B a basis of \mathbb{F}_{p}^{3} ?
- **6.** Let **B** and **B**' be two bases of the vector space F^n . Prove that the matrix of change of basis is $P = [B']^{-1}[B]$.
- 7. Let $B = (v_1, ..., v_n)$ be a basis of a vector space V. Prove that one can get from B to any other basis B' by a finite sequence of steps of the following types:

- (i) Replace v_i by $v_i + av_i$, $i \neq j$, for some $a \in F$.
- (ii) Replace v_i by cv_i for some $c \neq 0$.
- (iii) Interchange v_i and v_j .
- **8.** Rewrite the proof of Proposition (3.16) using the notation of Proposition (4.13).
- 9. Let $V = F^n$. Establish a bijective correspondence between the sets \mathcal{B} of bases of V and $GL_n(F)$.
- 10. Let F be a field containing 81 elements, and let V be a vector space of dimension 3 over F. Determine the number of one-dimensional subspaces of V.
- 11. Let $F = \mathbb{F}_p$.
 - (a) Compute the order of $SL_2(F)$.
 - (b) Compute the number of bases of F^n , and the orders of $GL_n(F)$ and $SL_n(F)$.
- 12. (a) Let A be an $m \times n$ matrix with m < n. Prove that A has no left inverse by comparing A to the square $n \times n$ matrix obtained by adding (n m) rows of zeros at the bottom.
 - (b) Let $\mathbf{B} = (v_1, \dots, v_m)$ and $\mathbf{B}' = (v_1', \dots, v_n')$ be two bases of a vector space V. Prove that m = n by defining matrices of change of basis and showing that they are invertible.

5. Infinite-Dimensional Spaces

- 1. Prove that the set $(w; e_1, e_2,...)$ introduced in the text is linearly independent, and describe its span.
- 2. We could also consider the space of doubly infinite sequences $(a) = (..., a_{-1}, a_0, a_1, ...)$, with $a_i \in \mathbb{R}$. Prove that this space is isomorphic to \mathbb{R}^{∞} .
- 3. Prove that the space Z is isomorphic to the space of real polynomials.
- **4.** Describe five more infinite-dimensional subspaces of the space \mathbb{R}^{∞} .
- 5. For every positive integer, we can define the space ℓ^p to be the space of sequences such that $\sum |a_i|^p < \infty$.
 - (a) Prove that ℓ^p is a subspace of \mathbb{R}^{∞} .
 - **(b)** Prove that $\ell^p < \ell^{p+1}$.
- **6.** Let V be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of V is finite or countably infinite.
- 7. Prove Proposition (5.7).

6. Direct Sums

- 1. Prove that the space $\mathbb{R}^{n \times n}$ of all $n \times n$ real matrices is the direct sum of the spaces of symmetric matrices $(A = A^{t})$ and of skew-symmetric matrices $(A = -A^{t})$.
- 2. Let W be the space of $n \times n$ matrices whose trace is zero. Find a subspace W' so that $\mathbb{R}^{n \times n} = W \oplus W'$.
- 3. Prove that the sum of subspaces is a subspace.
- 4. Prove Proposition (6.5).
- **5.** Prove Proposition (6.6).

Miscellaneous Problems

- 1. (a) Prove that the set of symbols $\{a + bi \mid a, b \in \mathbb{F}_3\}$ forms a field with nine elements, if the laws of composition are made to mimic addition and multiplication of complex numbers.
 - **(b)** Will the same method work for \mathbb{F}_5 ? For \mathbb{F}_7 ? Explain.
- *2. Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.
- *3. Let W_1, W_2 be subspaces of a vector space V. The formula $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$ is analogous to the formula $|S_1 \cup S_2| = |S_1| + |S_2| |S_1 \cap S_2|$, which holds for sets. If three sets are given, then

$$|S_1 \cup S_2 \cup S_3| = |S_1| + |S_2| + |S_3| - |S_1 \cap S_2| - |S_1 \cap S_3| - |S_2 \cap S_3| + |S_1 \cap S_2 \cap S_3|.$$

Does the corresponding formula for dimensions of subspaces hold?

- 4. Let F be a field which is not of characteristic 2, and let $x^2 + bx + c = 0$ be a quadratic equation with coefficients in F. Assume that the discriminant $b^2 4c$ is a square in F, that is, that there is an element $\delta \in F$ such that $\delta^2 = b^2 4c$. Prove that the quadratic formula $x = (-b + \delta)/2a$ solves the quadratic equation in F, and that if the discriminant is not a square the polynomial has no root in F.
- **5.** (a) What are the orders of the elements $\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & \\ & 1 \end{bmatrix}$ of $GL_2(\mathbb{R})$?
 - (b) Interpret the entries of these matrices as elements of \mathbb{F}_7 , and compute their orders in the group $GL_2(\mathbb{F}_7)$.
- **6.** Consider the function det: $F^{n \times n} \longrightarrow F$, where $F = \mathbb{F}_p$ is a finite field with p elements and $F^{n \times n}$ is the set of 2×2 matrices.
 - (a) Show that this map is surjective.
 - (b) Prove that all nonzero values of the determinant are taken on the same number of times.
- 7. Let A be an $n \times n$ real matrix. Prove that there is a polynomial $f(t) = a_r t^r + a_{r-1} t^{r-1} + \cdots + a_1 t + a_0$ which has A as root, that is, such that $a_r A^r + a_{r-1} A^{r-1} + \cdots + a_1 A + a_0 I = 0$. Do this by showing that the matrices I, A, A^2, \ldots are linearly dependent.
- *8. An algebraic curve in \mathbb{R}^2 is the locus of zeros of a polynomial f(x, y) in two variables. By a polynomial path in \mathbb{R}^2 , we mean a parametrized path x = x(t), y = y(t), where x(t), y(t) are polynomials in t.
 - (a) Prove that every polynomial path lies on a real algebraic curve by showing that, for sufficiently large n, the functions $x(t)^{i}y(t)^{j}$, $0 \le i, j \le n$, are linearly dependent.
 - (b) Determine the algebraic curve which is the image of the path $x = t^2 + t$, $y = t^3$ explicitly, and draw it.