Zurich University of Applied Sciences

Artificial Intelligence V03: Problem solving through search

Searching as a problem-solving strategy Uninformed search Heuristic (informed) search

Based on material by

- Stuart Russell, UC Berkeley
- Inês de Castro Dutra, Cooperating Intelligent Systems, U. Porto

Educational objectives

- Know classical search algorithms and selection criteria based on time and space complexity
- Understand how intelligent behavior evolves out of efficient algorithms
- Know how to inform search methods by heuristics
- Be able to model a real world problem to be solved by searching

"In which we see how an agent can look ahead to find a sequence of actions that will eventually achieve its goal."

→ Reading: AIMA, ch. 3

1. SEARCHING AS A PROBLEM-SOLVING STRATEGY

Example: On holiday in Romania

Task: Catch flight that leaves tomorrow from Bucharest

Initial state

Currently in Arad

Formulate goal

be in Bucharest

Formulate problem

- states: various cities
- actions: drive between cities

Find solution

sequence of cities
 e.g., Arad→Sibiu→Fagaras→Bucharest

Zurich University of Applied Sciences

zh

Problem formulation

For deterministic & fully observable environments

Problem is defined by four items

- initial state e.g., In (Arad)
- successor function S(x)
 set of action-state pairs, e.g.
 S(Arad) = {<Arad→Zerind; Zerind>, ...}
- goal test
 explicit or implicit, e.g.
 x = In (Bucharest) or NoDirt(x)
- path cost (additive)
 e.g., sum of distances, number of actions, etc.
 c (x, a, y) >=0 is the step cost

Selecting a proper state space

- Real world is very complex
 state & action space must be abstracted
- Abstract state: set of real states
- Abstract action: complex combination of real actions
 e.g., Arad→Zerind represents a complex set of possible routes, detours, rest stops, etc.
- Abstract solution: set of real paths that are solutions in the real world
- For guaranteed realizability, any real state In (Arad) must get to some real state In (Zerind)
- → See also appendix on modeling

→ Each abstract action **should be easier** than the original problem

Examples of problems solvable by searching

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle Note: Optimal solution of n-Puzzle family is NP-hard (→ see appendix)

• States? integer locations of tiles (ignoring intermediate positions)

Actions? move blank to left, right, up, down (ignoring unjamming etc.)

Goal test? equals given goal state

Path cost? 1 per move

1	2	3
4	5	6
7	8	
Goal State		

Real-world problem

Robotic assembly

States? real-valued coordinates of robot joint angles; parts to be assembled

Actions? continuous motions of robot joints

Goal test? complete assembly

Path cost? execution time

Other real-world problems

Protein design: find a sequence of amino acids that folds into a structure with certain properties

Route-finding (incl.

VLSI layout: place components and optimize wiring

All TSP-related problems of finding a shortest path

→ this lecture

→ next lecture

Diversity of search approaches

...solving increasingly complex problem types

Uninformed (blind) search

- All it can do: generate successors of tree-nodes, distinguish goal- from non-goal states
- Suitable environments: fully observable, deterministic, discrete (episodic, static, single agent)

Heuristic (informed) search

Extensions of today's methods exist to **non-deterministic** and **partially observable** as well as **(semi-)dynamic** environments (**online** search) (→ see AIMA, ch. 4.3-4.5)

- · Knows whether one non-goal state is "more promising" than another
- Suitable environments: as above, but larger

More informed search methods

Online search

• Environments are **dynamic** (i.e., not fully known from the beginning → percepts become important)

Local search

- Cares only to find a goal state rather then the optimal path
- Suitable environments: also continuous state/action spaces (hill climbing, simulated annealing)

Adversarial search

 Search in the face of an opponent (i.e., dynamic multi-agent environments; also stochastic and partially observable forms)

2. UNINFORMED SEARCH

Uninformed search

Approach

- Tree search: iteratively expand nodes until a goal node is hit
- Different strategies: order of node expansion

Evaluation criteria for strategies

- completeness: does it always find a solution if one exists?
- optimality: does it always find a least-cost solution?
- time complexity: number of nodes generated/expanded
- space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of

- *b*: maximum **branching factor** of the search tree
- *d*: depth of the least-cost solution
- m: maximum **depth of** the **state space** (may be ∞)

Example

Growth of time and memory requirements

• Algorithm: breadth-first search (\rightarrow ADS: exponential time & space complexity $O(b^d)$)
Assumptions: b=10, 1 mio nodes/sec, 1 kB/node
Question: what d is easily manageable?

Depth	Nodes	Time	Memory
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

- → Practical advice: Exponential-complexity search problems cannot be solved by uninformed methods for any but the smallest instances
- → See appendix for some recap on complexity theory

Uninformed search strategies

→ Details: ADS or AIMA ch. 3.4

Expand the shallowest unexpanded node Expand node with lowest path cost g(n) Expand DFS only up to level l Try DLS with $l=1, l=2, \dots$ until goal is reached up to level l

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Optimal cost? Time Space	Yes^1 Yes^3 $O(b^d)$ $O(b^d)$	$Yes^{1,2}$ Yes $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$	No No $O(b^m)$ $O(bm)$	No No $O(b^\ell)$ $O(b\ell)$	Yes ¹ Yes ³ $O(b^d)$ $O(bd)$	${ m Yes^{1,4}} \ { m Yes^{3,4}} \ O(b^{d/2}) \ O(b^{d/2})$

Practical advice

- Depth-first tree search is a major work horse for many Al tasks (due to linear space complexity)
- Iterative deepening is not wasteful (a tree with nearly the same b at each level has most nodes in the bottom level → generating higher-level states multiple times doesn't matter)
- Iterative deepening is preferred uninformed search method (for large search space and d is unknown)
- Bi-directional search can help a lot, but $O(b^{d/2})$ space complexity is major drawback

3. HEURISTIC (INFORMED) SEARCH

Tree-/graph search using additional knowledge ...beyond the definition of the problem

Best-first search

- Select the node to be expanded next based on some evaluation function f(node)
- Typically, f is implemented by a **heuristic** h(node) (measure of "desirability")
- h(node) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

366	Mehadia	241
0	Neamt	234
160	Oradea	380
242	Pitesti	100
161	Rimnicu Vilcea	193
176	Sibiu	253
77	Timisoara	329
151	Urziceni	80
226	Vaslui	199
244	Zerind	374
	0 160 242 161 176 77 151 226	0 Neamt 160 Oradea 242 Pitesti 161 Rimnicu Vilcea 176 Sibiu 77 Timisoara 151 Urziceni 226 Vaslui

Values of h_{SLD}—straight-line distances to Bucharest.

Zurich University of Applied Sciences

Typical implementations

Greedy search

- Expand node with lowest *subsequent* cost estimate according to some h, i.e. f(n) = h(n)
- n may only appear to be closest to the goal

A*

- Obvious improvement: **consider full path cost**, i.e. f(n) = g(n) + h(n) (g(n) cost so far to reach n, h(n) estimated cost to goal from n, f(n) estimated total path cost)
- h(n) needs to be admissible: $\leq true \ cost$ and ≥ 0 (e.g., $h_{straight \ line \ distance}$)
- A* search is optimal, complete
- A* has time complexity $O(2^{(error \ of \ h) \cdot d})$ and keeps all nodes in memory

SMA* - simplified memory-bounded A*

- A* usually runs out of space first → SMA* overcomes this by
- ...filling the memory up, then **starting to forget** the worst expanded nodes
- ...ancestors of forgotten subtrees remember the value of the best path within them
- ...thus, subtrees are only regenerated if no better solution exists

Succeeding with search

Learning to search

- Learn a heuristic function: use inductive supervised learning on features of a state
- **Alternative: construct** a **metalevel state space**, consisting of all internal states of search program Example: For A* searching for a route in Romania, the search tree is its internal state
- Actions in metalevel space: computations that alter the metalevel state.
 In the example: Expanding a node.
- Solution in metalevel space: a path as depicted on the last slide
 - → can be input to machine learning algorithms to avoid unnecessary expansions

Practical advice

- A* is impractical for large scale problems
- Practical, robust choice: SMA*
- Have good heuristic functions! A well-designed heuristic would have $b^* \approx 1$ (b^* is the effective branching factor)

zh aw

A closer look on heuristic functions

Example: 8-puzzle

Two proposals – which is better?

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) = \text{total Manhattan distance}$ (i.e., no. of horizontal/vertical squares from desired location of each tile)

$$h_1(S) = 6$$

 $h_2(S) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

DominanceThe 8-puzzle example continues

If $h_2(n) \ge h_1(n) \ \forall n \rightarrow h_2 \ dominates \ h_1$ and is better for search

Typical search costs

Algorithm	#nodes expanded with $d=14$	#nodes expanded with $d = 24$
Iterative deepening	3'473'941	~54'000'000'000
$A^{\star}\left(h_{1}\right)$	539	39'135
$A^*(h_2)$	113	1'641

Simple improvement

- Given any admissible heuristics h_a , h_b :
- $h(n) = \max(h_a(n), h_b(n))$ is also admissible and dominates h_a, h_b

Relaxed problems Improving heuristics intelligently

Relaxation as a key

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
- A relaxed problem has fewer constraints on the actions
- Relaxation can be automatized! E.g., «Absolver» by (Prieditis, 1993) found best heuristic for 8-puzzle, first heuristic for Rubik's cube

Examples of relaxed 8-puzzle rules

- If each tile can move anywhere (in 1 step), then $h_1(n)$ gives the shortest solution
- If each tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Intuition

- Removing constraints adds edges to the state graph
- Additional edges might provide "short cuts"
- The optimal solution cost of a relaxed problem ("short cut") can be no greater than the optimal solution cost of the real problem

Where's the intelligence? Man vs. machine

Uninformed search

- In the abstraction of the problem
- In the choice of algorithm that is optimal for the problem at hand
- In the **systematic exploration** of the state space graph

Heuristic search

Additionally, in the heuristic function

Originally written in German during his research stay at ETH

→ see also: Polya, «How to solve it - a new aspect of mathematical method», 1945

Exercise: Missionaries & cannibals

https://aimacode.github.io/aima-exercises/search-exercises/

Three missionaries and 3 cannibals are on one side of a river, along with a boat that can hold one or two people. Find a way to get everyone to the other side, without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place.

- Formulate the problem precisely:
 Make only those distinctions necessary to ensure a valid solution. Draw a diagram of the complete state space.
- Implement and solve the problem optimally:
 Use an appropriate search algorithm. Is it a good idea to check for repeated states?
- Why do you think people have a hard time solving this puzzle, given that the state space is so simple?

Review

- Search as an approach to Al exists in its current form more or less since Al's inception
- Extensions of search algorithms exist to non-deterministic and partially observable environments as well as online search
- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search
- Good heuristics can dramatically reduce search cost
- A* search expands lowest g + h
 - → complete and optimal, also optimally efficient (up to tie-breaks, for forward search)
- Admissible heuristics can be derived from exact solution of relaxed problems

APPENDIX

Fun fact: implement depth-first search in a maze by keeping your left hand on the wall.

On modeling and abstraction

After AIMA, sec. 3.1.2

- A model [is] an abstract mathematical description [...] and not the real thing
- The process of removing detail from a representation is called abstraction
- The abstraction is valid if we can expand any abstract solution into a solution in the more detailed world
- The abstraction is useful if carrying out each of the actions in the abstraction is easier than the original problem
- The choice of a good abstraction thus involves removing as much detail as possible while retaining validity and ensuring that the abstract actions are easy to carry out
- → Were it not for the ability to construct useful abstractions, intelligent agents would be completely swamped by the real world

Recap on complexity theory

Problems are classified to be part of (attention: only intuitive "definitions")

- P can be solved in polynomial time by a deterministic algorithm
 → deemed to be solvable «efficiently»
- **NP** can only be solved <u>efficiently (i.e., in polynomial time)</u> by guessing the solution (i.e., by a non-deterministic algorithm)

When people talk about **efficient computation**, this **always means** (at most) **polynomial time**: *efficient~polynomial time*.

More terminology

- **NP-hard** a problem x is said to be NP-hard if **all problems in NP can be reduced** to (i.e., converted into / stated as) x (i.e., can be solved by an algorithm for x) efficiently
 - \rightarrow Example: Traveling salesman problem (i.e., any problem in NP is at most as hard as x)
- **NP-complete** a problem x is said to be NP-complete if it is NP-hard and in NP
 - → Example: The satisfiability problem (SAT) is there an assignment of truth values to make a given formula of propositional logic true? (→ see V06 and AIMA ch. 7.5)
- ...which is all good (i.e., we don't have to care for efficiency) if P = NP (tremendously unlikely!)

Further reading

- AIMA appendix A.1 (< 3 pages!)
- J. Koehler's lecture slides on complexity and AI: https://user.enterpriselab.ch/~takoehle/teaching/ai/ProblemComplexity.pdf
- Some more intuition: http://stackoverflow.com/guestions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard

Pseudocode for general tree- and graph search

```
function Tree-Search (problem, frontier) returns a solution, or failure
   frontier ← Insert (Make-Node (Initial-State (problem)), frontier)
   loop do
      if frontier is empty then return failure
       node ← Remove-Front(frontier) #choice of picked node defined by strategy
       if Goal-Test(problem) applied to State(node) succeeds return node
       frontier \(\bigcup \) InsertAll(Expand(node, problem), frontier)
function Graph-Search (problem, frontier) returns a solution, or failure
   frontier ← Insert (Make-Node (Initial-State (problem)), frontier)
   explored ← empty
   loop do
       if frontier is empty then return failure
       node ←Remove-Front(frontier) #choice of picked node defined by strategy
       if Goal-Test(problem) applied to State(node) succeeds return node
```

→ **Bold italic** font shows the additions that handle repeated states in graph search

Missionaries & cannibals (contd.)

States

- $\theta = (M, C, B)$ signifies the number of missionaries, cannibals, and boats on the left bank
- The start state is (3.3.1) and the goal state is (0.0.0)

Actions (successor function)

- 10 possible, but only 5 available each move due to boat
- One cannibal/missionary crossing $L \rightarrow R$: subtract (0,1,1) or (1,0,1) Two cannibals/missionaries crossing $L \rightarrow R$: subtract (0,2,1) or (2,0,1) One cannibal/missionary crossing $R \rightarrow L$: add (1,0,1) or (0,1,1) Two cannibals/missionaries crossing $R \rightarrow L$: add (2,0,1) or (0,2,1)

- One cannibal and one missionary crossing: add/subtract (1,1,1)

Source: http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

Missionaries & cannibals states

- Assumes that passengers have to get out of the boat after the trip
- Red states = missionaries get eaten

Breadth-first search (4 iterations) on missionaries & cannibals

States are generated by applying

- +/- (1,0,1)
- +/- (0,1,1)
- +/- (2,0,1)
- +/- (0,2,1)
- +/- (1,1,1)

Red states = missionaries get eaten Yellow states = repeated states

Breadth-first search (final state) on missionaries & cannibals

- Breadth first search expanded 48 nodes
- This is an optimal solution (minimum number of crossings)
- Depth-first search expanded 30 nodes
- ...if repeated states are checked, otherwise we end up in an endless loop

