

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

FEBRUARY/MARCH/FEBRUARIE/MAART 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 15 pages. Hierdie nasienriglyne bestaan uit 15 bladsye.

QUESTION 1/VRAAG 1

1.10	D✓✓	(2) [20]
1.9	A✓✓	(2)
1.8	C✓✓	(2)
1.7	B✓✓	(2)
1.6	B✓✓	(2)
1.5	B✓✓	(2)
1.4	C✓✓	(2)
1.3	B✓✓	(2)
1.2	$D\checkmark\checkmark$	(2)
1.1	C✓✓	(2)

QUESTION 2/VRAAG 2

2.1 2.1.1 A✓ (1) 2.1.2 B√ (1) 2.1.3 D✓ (1) 2.1.4 D✓ (1) 2.2 2.2.1 Butanal/Butanaal ✓ (1)

2.2.2 5-ethyl-6,6-dimethyloctan-3-ol/5-etiel-6,6-dimetieloktan-3-ol

OR/OF

5-ethyl-6,6-dimethyl-3-octanol/5-etiel-6,6-dimetiel-3-oktanol

Marking criteria/Nasienriglyne:

- Stem, i.e. octan./Stam d.i. oktan. ✓
- Correct functional group, i.e. –ol./Korrekte funksionele groep d.i. –ol. ✓
- Two methyl groups and one ethyl group. Twee metielgroepe en een etielgroep. ✓
- Correct numbering of substituents and functional group ✓ Korrekte nommering van substituente en funksionele groep.

IF/INDIEN:

Any error e.g. hyphens omitted and/or incorrect sequence:

Enige fout bv. koppeltekens weggelaat en/of verkeerde volgorde:

Max./Maks. 3/

2.3 Compounds with the same molecular formula, ✓ but different positions of the side chain/substituents/functional groups on parent chain. Verbindings met dieselfde molekulêre formule, maar verskillende posisies van <u>die syketting/substituente/funksionele groepe</u> op die stamketting.

(2)

2.4 2.4.1

Marking criteria/Nasienriglyne:

 Whole structure correct: Hele struktuur korrek:

 $\frac{0}{2}$

 Only functional group correct:/Slegs funksionele groep korrek: Max/Maks.: 1/2

IF/INDIEN:

More than one functional group: Meer as een funksionele groep:

(2)

2.4.2

Marking criteria/Nasienriglyne:

 Whole structure correct: $\frac{2}{2}$ Hele struktuur korrek:

 Only functional group correct:/Slegs funksionele groep korrek: Max/Maks.: $\frac{1}{2}$

IF/INDIEN:

More than one functional group:

 $\frac{0}{2}$ Meer as een funksionele groep:

(2)

2.4.3

Marking criteria/Nasienriglyne:

Whole structure correct: Hele struktuur korrek:

 Only functional group correct:/Slegs funksionele groep korrek: Max/Maks.:

IF/INDIEN:

More than one functional group:

 $\frac{0}{2}$ Meer as een funksionele groep:

(2)[17]

QUESTION 3/VRAAG 3

3.1	150 kPa ✓	(1)
3.2 3.2.1	The temperature at which the vapour pressure equals atmospheric/external pressure. $\checkmark\checkmark$ (2 or 0) Die temperatuur waar die dampdruk gelyk is aan atmosferiese/eksterne druk.	(2)
3.2.2	55 °C √	(1)
3.3 3.3.1	Z√	(1)
3.3.2	 Carboxylic acids have, in addition to London forces and dipole-dipole forces, two sites for hydrogen bonding between molecules. ✓ Karboksielsure het, in toevoeging tot Londonkragte en dipooldipoolkragte, twee punte vir waterstofbinding tussen molekule. OR/OF Carboxylic acids can form dimers due to strong hydrogen bonding between molecules. Karboksielsure kan dimere vorm as gevolg van sterk waterstofbindings tussen molekule. Alcohols have, in addition to London forces and dipole-dipole forces, one site for hydrogen bonding between molecules. ✓ Alkohole het, in toevoeging tot Londonkragte en dipool-dipoolkragte, een punt vir waterstofbinding tussen molekule. Ketones has, in addition to London forces, dipole-dipole forces between molecules. ✓ Ketone het, in toevoeging tot Londonkragte, dipool-dipoolkragte tussen molekule. Intermolecular forces in carboxylic acids is the strongest./Most energy needed to overcome/break intermolecular forces in ethanoic acid. ✓ Intermolekulêre kragte in karboksielsure is die sterkste./Die meeste energie word benodig om intermolekulêre kragte in karboksielsure te oorkom/breek. 	(4)
3.3.3	Propanone/ <i>Propanoon</i> ✓	
	OR/OF Propan-2-one/ <i>Propan-2-oon</i>	
	OR/OF 2-propanone/2-p <i>ropanoon</i>	(1) [10]

QUESTION 4/VRAAG 4

4.1 The chemical process in which <u>longer chain hydrocarbon molecules are broken down</u> ✓ to <u>shorter more useful molecules</u>. ✓ Die chemiese proses waarin <u>langer ketting koolwaterstofmolekule</u> <u>afgebreek</u> word in korter meer bruikbare molekule.

(2)

4.2

4.3

4.3.2
$$P \text{ or/of } S \checkmark$$
 (1)

4.3.3 Ethene/Eteen
$$\checkmark$$
 (1)

4.3.4
$$C_8H_{18} \checkmark \checkmark$$
 (Correct Structural formula/Korrekte struktuurformule : $\frac{1}{2}$) (2)

Marking criteria/Nasienriglyne:

- Whole structure correct:

 Hele struktuur korrek:

 2/2
- 4 C atoms in chain:/4 C-atome in ketting: Max/Maks.: 1/2
- Correct condensed formula/Korrekte gekondenseerde formule: 1/2

4.3.6

Marking criteria/Nasienriglyne:

Whole structure of alkene/haloalkane correct:
 Hele struktuur van alkeen/haloalkaan korrek:

 $\frac{2}{2}$

• Only functional group correct/Slegs funksionele groep korrek:

1/2

Correct condensed structure/Korrekte gekondenseerde struktuur.
 CH₃CH=CHCH₃

1/2

(2)

(2) **[14]**

QUESTION 5/VRAAG 5

5.1 ONLY ANY ONE OF/SLEGS ENIGE EEN VAN:

- <u>Change in concentration</u> ✓ of a <u>reactant/product per unit time</u>. ✓ <u>Verandering in konsentrasie</u> van <u>reaktanse/produkte per eenheidtyd</u>.
- <u>Rate of change in concentration</u>. ✓ ✓
 <u>Tempo van verandering in konsentrasie</u>.
- Change in amount/number of moles/volume/mass of products/reactants per (unit) time./Verandering in hoeveelheid/getal mol/volume/massa van produkte/reaktanse per (eenheid)tyd.
- Amount/number of moles/volume/mass of products formed OR reactants used per (unit) time./Hoeveelheid/getal mol/volume/massa van produkte gevorm OF reaktanse gebruik per (eenheid)tyd.

5.2 More than/Groter as ✓

Accept/Aanvaar

Equal to/Gelyk aan

5.3 Graph of average reaction rate versus volume of Na₂S₂O₃(aq) Grafiek van gemiddelde reaksietempo teenoor volume Na₂S₂O₃(aq)

Marking criteria/Nasienriglyne:	
Any 3 points correctly plotted./Enige 3 punte korrek gestip.	√
All (5) points correctly plotted./Alle (5) punte korrek gestip.	√
Straight line drawn./Reguitlyn getrek.	√

(2)

(1)

5.4

Marking criteria/Nasienriglyne: 5.4.1

y axis/y-as: 2,5 x 10^{-2} s⁻¹ \checkmark

Dotted line drawn from the y-axis to the x-axis as shown. ✓ Stippellyn getrek van y-as na x-as soos getoon.

 $V = 28 \text{ to } 30 \text{ cm}^3 \checkmark$

(3)

5.4.2 Criteria for conclusion/Riglyne vir gevolgtrekking:

Dependent and independent variables correctly identified. Afhanklike en onafhanklike veranderlikes korrek geïdentifiseer.

Relationship between the independent and dependent variables correctly stated./Verwantskap tussen die afhanklike en onafhanklike veranderlikes korrek genoem.

✓

Examples/Voorbeelde:

- Reaction reaction with rate of increases an increase in concentration/volume of sodium thiosulphate. Reaksietempo neem toe met 'n toename in konsentrasie/volume van natriumtiosulfaat.
- Reaction rate decreases with a decrease in concentration/volume of sodium thiosulphate.

Reaksietempo neem af met 'n afname in konsentrasie/volume van natriumtiosulfaat.

Reaction rate is (directly) proportional to concentration/volume of sodium thiosulphate.

Reaksietempo is (direk) eweredig aan konsentrasie/volume natriumtiosulfaat.

(2)

- 5.5 More($Na_2S_2O_3$) particles per unit volume. \checkmark Meer Na₂S₂O₃-deeltjies per eenheid volume.
 - More effective collisions per unit time./Higher frequency of effective collisions. ✓

Meer effektiewe botsings per eenheid tyd./Hoër frekwensie van effektiewe

Increase in reaction rate./Toename in reaksietempo. ✓

(3)

5.6 **OPTION 1/OPSIE 1**

$$n(S)_{produced/gevorm} = \frac{m}{M}$$

$$= \frac{1,62}{32} \checkmark$$

$$= 0,0506 \text{ mol}$$

$$n(Na_2S_2O_3) = n(S) = 0,0506 \text{ mol } \checkmark$$

$$n(Na_2S_2O_3) = \frac{m}{M}$$

$$0,0506 = \frac{m}{158}\checkmark$$

$$\therefore m(Na_2S_2O_3) = 7,99 \text{ g} \checkmark$$
[Range/Gebied: 7,90 to 8,06]

Marking criteria/Nasienriglyne:

- Substitute/Vervang 32 in n = $\frac{m}{M}$
- Use ratio/Gebruik verhouding: $Na_2S_2O_3$: S = 1 : 1 \checkmark
- Substitute/Vervang 158 in n = $\frac{m}{M}$ \checkmark
- Final answer/Finale antwoord: 7,90 to/tot 8,06 g ✓

OPTION 2/OPSIE 2

$$\begin{array}{c}
158 \text{ g} \checkmark \text{Na}_2\text{S}_2\text{O}_3 \longrightarrow 32 \text{ g} \checkmark \text{S} \\
\therefore x \longrightarrow 1,62 \text{ g} \text{ S} \checkmark \\
x = \frac{158 \times 1,62}{32} = 7,99 \text{ g} \checkmark
\end{array}$$

[Range/Gebied: 7,90 to 8,06]

(4) [18]

QUESTION 6/VRAAG 6

6.1

6.1.1 When the equilibrium in a closed system is disturbed, the system will reinstate a new equilibrium by favouring the reaction that will oppose the disturbance. ✓✓

> Wanneer die ewewig in 'n geslote sisteem versteur word, stel die sisteem 'n nuwe ewewig in deur die reaksie wat die versteuring teenwerk, te bevoordeel.

- 6.1.2 Percentage yield increases with an increase in temperature. ✓ Persentasie opbrengs verhoog met toename in temperatuur.
 - Forward reaction is favoured. ✓ Voorwaartse reaksie word bevoordeel.
 - Increase in temperature favours an endothermic reaction. ✓ Toename in temperatuur bevoordeel die endotermiese reaksie. (3)
- 6.1.3 When the pressure increases, the reaction that leads to a decrease in the number of moles will be favoured. <

Wanneer die druk verhoog, word die reaksie wat tot 'n afname in die aantal mol lei, bevoordeel.

Accept/Aanvaar

When the pressure increases, the yield increases ✓ because the equilibrium position shifts to the right. <

Wanneer die druk toeneem, neem die opbrengs toe omdat die ewewigsposisie na regs skuif.

(2)

(2)

(2)

6.1.4 I 🗸

6.2

Mark allocation/Puntetoekenning

- Substitution of/*Vervanging van 36,5 g·mol*¹ in $n = \frac{m}{M}$.
- Change/Verandering n(HCℓ) = initial/aanvanklik equilibrium/ewewig. ✓
- USING ratio/GEBRUIK verhouding: 4 : 1 : 2 : 2 ✓
- Equilibrium: n(O₂) & n(H₂O) & n(Cℓ₂) = initial ± change √ Ewewig: : $n(O_2)$ & $n(H_2O)$ & $n(C\ell_2)$ = aanvanklik \pm verandering
- Divide by volume/Gedeel deur volume (0,2 dm³) √
- Correct K_c expression (formulae in square brackets). √ Korrekte K_c -uitdrukking (<u>formules tussen vierkanthakies</u>).
- Substitution of reactant concentrations/Vervanging van reaktanskonsentrasies. ✓
- Substitution of product concentrations./Vervanging van produkkonsentrasies. ✓
- Final answer/Finale antwoord: 13,966 to/tot 18,72 ✓ Range/*Gebied*: 13,966 to/tot 18,72

OPTION 1/OPSIE 1

	HCℓ	O ₂	Cl ₂	H ₂ O
Initial quantity/Aanvangs- hoeveelheid (mol)	0,2	0,11	0	0
Change/Verandering (mol)	0,15 ✓	0,0375	0,075	0,075
Quantity at equilibrium Hoeveelheid by ewewig (mol)	$\frac{1,825}{36,5} = 0.05 \checkmark$	0,0725	0,075	0,075
Equilibrium concentration/Ewewigskon sentrasie (mol·dm ⁻³)	0,25	0,3625	0,375	0,375

ratio √ verhouding

Divide by 0,2√ Deel deur 0,2

$$K_{c} = \frac{[C\ell_{2}]^{2}[H_{2}O]^{2}}{[HC\ell]^{4}[O_{2}]} \checkmark = \frac{(0,375)^{2}(0,375)^{2}}{(0,25)^{4}(0,3625)} = 13,97 \checkmark$$

No K_c expression, correct substitution/*Geen K_c-uitdrukking*, *korrekte vervanging*: Max./*Maks*. $\frac{8}{9}$

Wrong K_C expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{5}{9}$

(9)

OPTION 2/OPSIE 2:

$$\frac{1}{\text{n(HCl)}_{\text{equilibrium/ewewig}}} = \frac{\text{m}}{\text{M}} = \frac{1,825}{36.5} = 0,05 \text{ mol}$$

$$n(HC\ell)_{reacted/reageer} = 0.2 - 0.05 = 0.15 \text{ mol } \checkmark$$

$$\begin{array}{l} n(O_2)_{reacted/reageer} = \frac{1}{4}n(HC\ell)_{reacted/reageer} = \frac{1}{4}\times0,15 = 0,0375 \text{ mol} \\ n(C\ell_2)_{formed/gevorm} = \frac{1}{2}n(HC\ell)_{reacted/reageer} = \frac{1}{2}\times0,15 = 0,075 \text{ mol} \\ n(H_2O)_{formed/gevorm} = \frac{1}{2}n(HC\ell)_{reacted/reageer} = \frac{1}{2}\times0,15 = 0,075 \text{ mol} \end{array} \right\} \\ Using ratio \checkmark$$

$$\begin{array}{l} n(O_2)_{equilibrium/ewewig} = 0.11 - 0.0375 = 0.0725 \ mol \\ n(C\ell_2)_{equilibrium/ewewig} = n(H_2O)_{equilibrium/ewewig} = 0.075 \ mol \\ \end{array} \right\} \checkmark$$

$$c(O_2)_{equilibrium/ewewig} = \frac{n}{V} = \frac{0,0375}{0,2} = 0,3625 \text{ mol·dm}^{-3}$$

c(C ℓ_2)_{equilibrium/ewewig} = c(H₂O)_{equilibrium/ewewig} = $\frac{n}{V}$ $= \frac{0.075}{0.2} = 0.375 \text{ mol} \cdot \text{dm}^{-3}$ Divide by/deel deur $0.2\sqrt{2}$

$$K_c = \frac{[H_2O]^2[C\ell_2]^2}{[HC\ell]^4[O_2]} \checkmark = \frac{(0,375)^2(0,375)^2}{(0,25)^4(0,3625)} \checkmark = 13,97 \checkmark$$

No K_{C} expression, correct substitution/Geen K_{c} -uitdrukking, korrekte substitusie: Max./Maks. $\frac{8}{9}$

Wrong K_c expression/Verkeerde K_c-uitdrukking: Max./Maks. $\frac{5}{9}$

(9)

CALCULATIONS USING CONCENTRATIONS BEREKENINGE WAT KONSENTRASIES GEBRUIK

Mark allocation/Puntetoekenning

- Substitution of/*Vervanging van 36,5 g·mol*¹ $n = \frac{m}{M}$. \checkmark
- Initial concentration of reactants/Aanvanklike konsentrasie van reaktanse: c(HCℓ) = 1,0 & c(O₂) = 0,55 mol·dm⁻³ √
- Change: c(HCℓ) = 0,75 mol·dm⁻³ (initial equilibrium) √ Verandering: c(HCℓ) = 0,75 mol·dm⁻³ (aanvanklik – ewewig)
- <u>USING</u> ratio/<u>GEBRUIK</u> verhouding: 4 : 1 : 2 : 2 ✓
- Equilibrium/Ewewig: c(H₂O) = c(Cl₂) = 0,3625 mol·dm⁻³ (initial+change) and c(O₂) = 0,3625 mol·dm⁻³ (initial change) √
 Ewewig: c(H₂O) = c(Cl₂) = 0,3625 mol·dm⁻³ (aanvanklik + verandering) en c(O₂) = 0,0,3625 mol·dm⁻³ (aanvanklik verandering)
- Correct K_c expression (<u>formulae in square brackets</u>). √
 Korrekte K_c -uitdrukking (<u>formules tussen vierkanthakies</u>).
- Substitution of reactant concentrations./Vervanging van reaktanskonsentrasies. ✓
- Substitution of product concentrations./Vervanging van produkkonsentrasies. ✓
- Final answer/Finale antwoord: 13,97 ✓ Range/Gebied: 13,966 to/tot 18,72

OPTION 3/OPSIE 3

$$n(HC\ell)_{equilibrium/ewewig} = \frac{m}{M}$$

$$= \frac{1,825}{36,5} \checkmark$$

$$= 0,05 \text{ mol}$$

	1100				7	
	HCℓ	O_2	H ₂ O	Cl_2		
Initial concentration/ Aanvangskonsentrasie (mol·dm ⁻³)	1,0 ✓	0,55	0	0	Divide by 0,2 ✓ Deel deur 0,2	
Change in concentration Verandering in konsentrasie (mol·dm ⁻³)	0,75 ✓	0,1875	0,375	0,375	ratio √ verhouding	
Equilibrium concentration Ewewigskonsentrasie (mol·dm ⁻³)	0,25 (0,3625	0,375	0,375	✓	
$K_{c} = \frac{[C\ell_{2}]^{2}[H_{2}O]^{2}}{[HC\ell]^{4}[O_{2}]} \checkmark = \frac{(0,375)^{2}(0,375)^{2}}{(0,25)^{4}(0,3625)} \checkmark = 13,97 \checkmark$						

No K_C expression, correct substitution/ $Geen\ K_c$ -uitdrukking, korrekte substitusie: Max./ $Maks.\ \frac{8}{9}$

Wrong K_c expression/*Verkeerde K_c-uitdrukking*: Max./*Maks.* $\frac{5}{9}$

QUESTION 7/VRAAG 7

7.1

7.1.1
$$H_2O^{\checkmark}$$
 $HSO_4^{-\checkmark}$ (2)

7.1.2 Strong/Sterk ✓ Completely ionised (in water)./Volledig geïoniseer (in water). ✓ (2)

7.2

7.2.1 Marking Criteria/Nasienriglyne

- Formula/Formule: $\frac{c_a \times V_a}{c_a \times V_b} = \frac{n_a}{n_b}/c = \frac{n}{V}$
- Substitute/Vervang 0,15 x 24 **OR/OF** 0,15 x 0,024 ✓
- Use/Gebruik 26 cm³ **OR/OF** 0,026 dm³ ✓
- Use mole ratio/Gebruik molverhouding: 1:2 ✓
- Final answer/Finale antwoord: 0,28 mol·dm⁻³
 √ (0.2769... mol·dm⁻³)

$$\frac{c_a \times V_a}{c_a \times V_b} = \frac{n_a}{n_b} \checkmark$$

$$\frac{0.15 \times 24}{c_b \times 26} = \frac{1}{2} \checkmark$$

 $c(NaOH) = 0.28 \text{ mol} \cdot dm^{-3} \checkmark$

OPTION 2/OPSIE 2

(5)

7.2.2 Marking Criteria/Nasienriglyne

- Calculate/Bereken n(NaOH): 0,02 x 0,28√
- Calculate/Bereken n(H₂SO₄): 0,03 x 0,15 √
- Use ratios/Gebruik molverhouding: n(H₂SO₄) = ½n(NaOH) √
- $n(H_2SO_4)_{excess} = n(H_2SO_4)_{initial} n(H_2SO_4)_{used} = 0.0045 0.0028 \checkmark$
- Substitute/Vervang 0,05 dm³ in $c = \frac{n}{V} \checkmark$
- Substitution/Vervang 2 x 0,034 in 2[H₂SO₄] ✓
- Formula/Formule: -log[H₃O⁺] **OR/OF** Substitute/Vervang: -log(0,068) ✓
- Final answer: 1,10 to/tot 1,167 ✓

OPTION 1/OPTION 1

$$n(NaOH) = cV$$
= 0,02 x 0,28 \checkmark
= 0,0056 mol
$$n(H_2SO_4) = 0,03 x 0,15 \checkmark$$
= 0,0045 mol

$$n(H_2SO_4)_{used} = \frac{1}{2}n(NaOH)$$
 = 0,0028
 $n(H_2SO_4)_{excess} = 0,0045-0,0028$ = 0,0017 mol

$$[H_2SO_4] = \frac{n}{V} = \frac{0,0017}{0,05}$$
$$= 0,034 \text{mol} \cdot \text{dm}^{-3}$$

$$[H_3O^+] = 2[H_2SO_4]$$

= 2 x 0,034 \checkmark
= 0,068mol·dm⁻³

pH =
$$-\log[H_3O^+]$$
 OR/OF $-\log(0.068)$ \checkmark
= 1,17 \checkmark (1,167)

OPTION 2/OPTION 2

$$n(NaOH) = cV$$

$$= 0.02 \times 0.28 \checkmark$$

$$= 0.0056 \text{ mol}$$

$$n(H_2SO_4) = 0.03 \times 0.15 \checkmark$$

$$= 0.0045 \text{ mol}$$

$$n(H_3O^+) = 2n(H_2SO_4) \checkmark$$

$$= 2 \times 0.0045$$

$$= 0.009 \text{ mol}$$

$$n(H_3O^+)_{\text{excess}} = 0.009 - 0.0045 \checkmark$$

$$= 0.0034 \text{ mol}$$

$$c(H_3O^+) = \frac{n}{V}$$

$$= \frac{0,0034}{0,05}$$

$$= 0,068 \text{ mol·dm}^{-3}$$

pH =
$$-\log[H_3O^+]$$
 OR/OF $-\log(0,068)$ \checkmark
= 1,17 \checkmark (1,167)

(8) **[17]**

QUESTION 8/VRAAG 8

8.1

- 8.1.1 A substance that loses/donates electrons./'n Stof wat elektrone verloor/skenk. √√ (2 or 0) (2)
- Platinum/Pt ✓ 8.1.2 (1)
- 8.1.3 Sn²⁺(aq)/tin(II) ions/tin(II)-ione ✓ (1)
- Pt | $Sn^{2+}(aq)$, $Sn^{4+}(aq)$ | $Ag^{+}(aq)$ | $Ag^{+}(aq)$ | Ag(s)8.1.4

OR/OF

Pt| Sn²⁺(1 mol·dm⁻³), Sn ⁴⁺ (1 mol·dm⁻³) || Ag⁺ (1 mol·dm⁻³) | Ag(s)

<u>ACCEPT/AANVAAR</u> Pt| Sn²⁺ | Sn⁴⁺ || Ag⁺ | Ag

(3)

8.1.5 **OPTION 1/OPSIE 1**

$$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} \checkmark$$

$$= +0.80 \checkmark - (+0.15) \checkmark$$

$$= 0.65 V \checkmark$$

Notes/Aantekeninge

- · Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. $E^{\circ}_{cell} = E^{\circ}_{OA} - E^{\circ}_{RA}$ followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv. $E^{\circ}_{sel} = E^{\circ}_{OM} - E^{\circ}_{RM}$ gevolg deur korrekte vervangings: Max/Maks: $\frac{3}{4}$

OPTION 2/OPSIE 2

$$\begin{cases} Ag^{+}(aq) + e^{-} \rightarrow Ag(s) & 0.80 \text{ V} \checkmark \\ \underline{Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-}} & -0.15 \text{ V} \checkmark \\ 2Ag^{+}(aq) + Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2Ag(s) & 0.65 \text{ V} \checkmark \end{cases}$$

8.2

- 8.2.1 Magnesium becomes smaller./Brown solid forms/Mg disappears/eaten away/Mg changes colour. ✓ Magnesium word kleiner./Bruin vaste stof vorm/Mg verdwyn/weggevreet/Mg verander van kleur.
- Cu²⁺ is a stronger oxidising agent √ (than Mg²⁺) and will be reduced to √ 8.22 Cu. ✓ Cu²⁺ is 'n sterker oksideermiddel (as Mg²⁺) en sal na Cu gereduseer word.

OR/OF

Mg is a stronger reducing agent √ (than Cu) and will reduce Cu²⁺ to Cu. Mg is 'n sterker reduseermiddel (as Cu) en sal Cu²⁺ na Cu reduseer.

(3)[15]

(4)

(1)

QUESTION 9/VRAAG 9

9.1 The chemical process in which electrical energy is converted to chemical energy. ✓ ✓

'n Chemiese proses waarin elektriese energie omgeskakel word na chemiese energie.

OR/OF

The use of electrical energy to produce a chemical change.

Die gebruik van elektriese energie om 'n chemiese verandering te weeg te bring.

9.3
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu \checkmark\checkmark$$
 (2)

•
$$Cu \leftarrow Cu^{2+}(aq) + 2e^{-} (\frac{2}{2})$$
 $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu (\frac{1}{2})$
 $Cu \rightleftharpoons Cu^{2+}(aq) + 2e^{-} (\frac{0}{2})$ $Cu^{2+}(aq) + 2e^{-} \leftarrow Cu (\frac{0}{2})$

- Ignore if charge omitted on electron./Ignoreer indien lading op elektron weggelaat word.
- If charge (+) omitted on Cu²⁺/Indien lading (+) weggelaat op Cu²⁺.
 Max./Maks: 1/2

9.4 % purity/suiwerheid =
$$\frac{m(Cu)}{m(Cu)_{impure/onsuiwer}} \times 100$$

= $\frac{4,4}{5} \times 100$ \(= 88% \(\sqrt{} \)

Marking criteria/Nasienriglyne:

- Substitute/Vervang 4,4 √
- Substitute/Vervang 5 ✓
- x 100 ✓
- Final answer/Finale antwoord: 88% ✓

(2)

QUESTION 10/VRAAG 10

10.1

10.1.1 $N_2(g) + 3H_2(g) \checkmark \rightarrow 2NH_3(g) \checkmark$ bal \checkmark

Notes/Aantekeninge:

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse ✓ Produkte ✓ Balansering ✓
- Ignore if phases are omitted/Ignoreer indien fases uitgelaat word
- Ignore/Ignoreer ⇌
- Marking rule/Nasienreël 3.9

10.1.2 $(NH_4)_2SO_4 \checkmark$ (1)

- 10.1.3 Ostwald process/Ostwaldproses ✓ (1)
- 10.1.4 Ammonium nitrate/*Ammoniumnitraat* √ (1)

10.2

10.2.1 The <u>ratio of nitrogen (N), phosphorous (P) and potassium (K)</u> in a certain fertiliser.✓

Die <u>verhouding van stikstof (N), fosfor (P) en kalium (K)</u> in 'n sekere kunsmis.

Accept/Aanvaar:

nitrogen, phosphorous and potassium/stikstof, fosfor en kalium.

(1)

(1)

(3)

10.2.2 Percentage fertiliser in the bag./Persentasie kunsmis in die sak. ✓

10.2.3 **OPTION 1/OPSIE 1:**

% K =
$$\frac{5}{12}$$
 ✓ x 22% ✓
= 9,17%
∴ m(N) = $\frac{9,17}{100}$ × 10 kg ✓
= 0,92 kg ✓

OPTION 2/OPSIE 2:

m(nutrients/voedingstowwe):

 $\frac{22}{100}$ \(\times 10 = 2.2 \text{ kg}

$$\therefore m(K) = \frac{5}{12} \checkmark (2,2) \checkmark$$
$$= 0.92 \text{ kg} \checkmark$$

TOTAL/*TOTAAL*:

Copyright reserved/Kopiereg voorbehou

(4) **[12]**

150