Proposal Project

Smart Car Parking

รายชื่อสมาชิก

- 1. 64010035 กัญญาภัค บุญยะภาส (sec 18)
- 2. 64010605 พิมลณัฐ ศรีเผด็จกุลชา (sec 19)
- 3. 64010670 ภาพพิชญ์ พงศ์พัฒนาวุฒิ (sec 19)
- 4. 64010876 สรวิชญ์ เลยวานิชย์เจริญ (sec 20)

<u>ที่มาและความสำคัญของโครงงาน</u>

ในปัจจุบันปัญหาของการจราจรที่ติดขัดโดยเฉพาะบริเวณของสถานที่จอดรถซึ่งพบได้ค่อนข้างมาก ทำ ให้เราสูญเสียเวลากับวนการหาที่จอดรถไปโดยเปล่าประโยชน์อีกทั้งยังนับได้ว่าปัญหาการจราจรที่แออัดนี้เป็น ส่วนหนึ่งของการก่อให้เกิดปัญหามลพิษทางอากาศ เนื่องจากควันพิษที่เกิดจากการเผาผลาญเชื้อเพลิงน้ำมัน และยังทำให้เป็นการสูญเสียน้ำมันหรือเชื้อเพลิงไปโดยสูญเปล่าจากการที่รถหยุดนิ่งเป็นเวลานาน ซึ่งจากจุด ปัญหาเล็กๆนี้หากไม่ได้รับการแก้ไขก็อาจจะกลายเป็นปัญหาในวงกว้างได้ เช่น กลายเป็นแหล่งสะสมมลพิษทำ ให้ผู้ที่เข้าใช้งานได้รับผลกระทบต่อร่างกาย

จากแนวคิดที่กล่าวมาข้างต้น ทำให้ทางเราได้เล็งเห็นถึงความสำคัญของปัญหาการจราจรที่ติดขัดใน ระหว่างการเข้าจอดรถในสถานที่ต่างๆ ซึ่งทำให้เป็นแหล่งสะสมของมลพิษเป็นอย่างมาก ทางเราจึงได้ทำการ คิดค้นวิธีที่จะสามารถช่วยประหยัดเวลาในการเลือกที่จอดรถที่มีปัญหาใช้เวลานานให้รวดเร็วมากยิ่งขึ้น ซึ่งทำ ให้ใช้ระยะเวลาในการวนหาที่จอดรถน้อยลงส่งผลให้เป็นการลดโอกาสการเกิดปัญหามลพิษอีกด้วย

<u>วัตถุประสงค์</u>

- 1. เพื่อจำลองการทำงานของพื้นที่ลานจอดรถ
- 2. เพื่อใช้เลือกตำแหน่งและแสดงผลที่จอดรถที่ยังว่างอยู่
- 3. เพื่อลดอัตราการวนรถในพื้นที่จอดรถ

ประโยชน์ที่คาดว่าจะได้รับ

- 1. ลดระยะเวลาที่ใช้ในการจอดรถทำให้รวดเร็วขึ้น
- 2. ทำให้สะดวกสบายต่อการเข้าจอดรถ
- 3. ช่วยผู้ขับขี่ในการตัดสินใจเลือกที่จอดรถ
- 4. ลดความแออัดของจำนวนรถที่ต้องการหาที่จอดในสถานที่จอดรถ
- 5. ช่วยประหยัดน้ำมันและลดค่าใช้จ่ายในการเติมน้ำมัน

ขอบเขตของโครงงาน

ภาพแบบจำลองชิ้นงาน

โครงงานเกี่ยวกับการจำลองโมเดลที่จอดรถ เมื่อรถมาถึงไม้กั้นประตูฝั่งทางเข้า หากที่จอดรถว่างไม้กั้น ประตูฝั่งทางเข้าจะยกขึ้น และมี LED คอยแสดงตำแหน่งจุดจอดรถ หากที่จอดรถว่าง ให้ไฟ LED ติด ให้นำรถ เข้าไปจอด ณ ตำแหน่งที่ว่าง จากนั้น ไฟ LED จึงดับ หากที่จอดรถไม่ว่างไม้กั้นประตูฝั่งทางเข้าก็จะไม่ยกขึ้นและ buzzer จะส่งเสียงเตือน เมื่อต้องการจะออกจากที่จอดรถ สามารถขับไปยังไม้กั้นประตูฝั่งทางออก แล้วไม้กั้น ประตูจะยกออกเพื่อให้ขับรถออกได้ตามปกติ

วิธีการเข้าใช้งาน Smart Car Parking

1. เลี้ยวรถเข้ามาหยุดอยู่ตรงหน้าไม้กั้นประตูฝั่งทางเข้า (เช็คว่าที่จออดรถเต็มหรือไม่จากแถบ 7 segment)

ในกรณีที่ที่จอดรถเต็มไม้กั้นประตูฝั่งทางเข้าจะไม่ยกและมีเสียงเตือนจาก Buzzer

2. เสร็จแล้วไม้กั้นประตูฝั่งทางเข้าจะยกออกแล้วนำรถเข้ามา

3. เมื่อขับรถเข้ามาจะเจอจอแสดงสถานะไฟ LED บอกตำแหน่งจุดจอดรถตามหมายเลขต่างๆ

4. สามารถเลือกที่จอดรถที่ยังว่างอยู่ (สถานะไฟ LED ติด) ได้ตามใจชอบ

- 5. หากต้องการจะออกรถก็สามารถ นำรถออกได้ตามปกติ และขับไปตามทางสู่ไม้กั้นประตูฝั่ง ทางออกได้เลย
- 6. เมื่อถึงประตูฝั่งทางออกไม้กั้นก็จะยกขึ้นแล้วเลี้ยวรถออกได้ตามปกติ

หลักการทำงาน

- 1. ใช้ LDR (Light Dependent Resistor)
- 1.1 นำ LDR (Light Dependent Resistor) ต่อกับ LED ในการแสดงผล ใช้ในการ ตรวจสอบว่ามีรถมาจอดยังที่จอดรถหรือไม่ หากมีรถเข้ามาจอดยังที่จอดรถจะทำให้ค่าแสง สว่างน้อยลงส่งผลให้ค่าความต้านทานมากขึ้น ทำให้เมื่อค่าความต้านทานมากขึ้น LED ที่ เชื่อมต่อยังวงจรจะดับ ทำให้ทราบว่าตำแหน่งนั้นมีรถเข้ามาจอด
- 1.2 นำ IR sensor (Light Dependent Resistor) มาต่อกับวงจรเพื่อทำการ ตรวจสอบว่ามีรถมาถึงไม้กั้นประตูหรือไม่ หากมีที่ว่างสำหรับการจอดรถจะทำให้ไม้กั้นยกขึ้น และรถสามารถที่จะผ่านไปได้ แต่ถ้าที่จอดรถเต็มไม้กั้นจะไม่ยกขึ้นและส่งเสียงร้องเตือน ทำ ให้รถไม่สามารถเข้าไปจอดได้
- 2. ใช้ 7-segment ในการแสดงผลจำนวนของที่จอดรถที่ว่างสามารถเข้าจอดได้

3. ใช้บอร์ด FPGA

3.1 นำบอร์ด FPGA บอร์ดที่ 1 มาแสดงผลบริเวณประตูฝั่งทางเข้าในการส่งเสียง จาก Buzzer กรณีหากที่จอดรถเต็ม แล้วรถพยายามที่จะเข้าไปจอด(หยุดรถอยู่หน้าไม้กั้น ทางเข้า) และแสดงผล 7 segment ในการแสดงผลจำนวนของที่จอดรถที่ว่างที่สามารถนำรถ เข้าจอดได้ หากมีรถจอดครบจุดจอดทั้งหมดแล้วให้แสดงผลขึ้นว่า FULL

3.2 นำบอร์ด FPGA บอร์ดที่ 2 มาแสดงผลจำนวนที่จอดรถผ่าน LED ของบอร์ด เมื่อมีรถจอดไฟจะดับ และ เมื่อไม่มีรถจอด(ช่องที่ว่าง)ไฟจะติด โดยที่จำนวนของ LED จะ เท่ากับจำนวนของที่จอดรถ

ภาพรวมแบบจำลองการเชื่อมต่อของชิ้นงาน

ขั้นตอนในการดำเนินงาน และแผนการดำเนินโครงการ

ระยะเวลาดำเนินการ

4 ตุลาคม 2565 - 14 ธันวาคม 2565

ลำดับที่	แผนการดำเนินโครงงาน		ระยะเวลาในการดำเนินโครงงาน						ผู้รับผิดชอบ
		พเ	พฤศจิกายน 2565				าคม 2	565	
		1	2	3	4	1	2	3	
1.	ปรึกษาและเลือกหัวข้อในการทำโครงงาน	√	√						สมาชิกกลุ่ม
2.	ทำ Proposal โครงงาน		√	√	√				สมาชิกกลุ่ม
3.	ทำ Brochure					√			สมาชิกกลุ่ม
4.	ทำ Design Document					√			สมาชิกกลุ่ม
5.	ทำชิ้นงาน						√		สมาชิกกลุ่ม
6.	อัดวีดีทัศน์แนะนำชิ้นงาน						√		สมาชิกกลุ่ม
7.	ตรวจตัวชิ้นงาน							/	สมาชิกกลุ่ม

<u>อุปกรณ์ที่ใช้ในการทำโครงงาน</u>

ลำดับ	อุปกรณ์	จำนวน	หมายเหตุ		
1	Board FPGA	2	ควบคุมการทำงานและแสดงผล		
2	LDR (Light Dependent Resistor)	7	แสดงสถานะการจอดรถ		
3	Arduino Uno R3 + สาย USB	1	ควบคุมการทำงานจากคำสั่งของโปรแกรม		
4	Servo	2	ใช้ในการควบคุมไม้กั้น		
5	Breadboard	1			
6	สายจัมป์	~14 เส้น			
7	โมเดลรถของเล่น	7	ใช้ในการจำลองเป็นรถ		
8	IR Sensor	4	ใช้ในการควบคุมไม้กั้นประตูเข้า-ออก		