Mu A Individual 2018

Louisiana State Competition

1. Find
$$\lim_{x\to 0} \left(\frac{2e^x-2}{x}\right)$$
.

2. Find
$$\lim_{x \to \infty} \left(\frac{ax^2 - bx + c}{(ax - b)(bx - c)} \right)$$
.

3. Find
$$\frac{d}{dx}(\sin^3(4x))$$
.

4. Values of f(x) and f'(x) are represented in the table below. If $k(x) = e^x f(x)$, find k'(5).

x	f(x)	f'(x)
5	7	-3

5. If f(x) and g(x) are the functions whose graphs are shown and $k(x) = \frac{f(x)}{g(x)}$, find k'(5).

- 6. Find the slope of the tangent line to $f(x) = A \frac{B}{x} + \frac{C}{\sqrt{x}}$ when x = 4.
- 7. Find the point(s) where $y = x + \sin x$ has a horizontal tangent on $[0, 2\pi)$ (answer as an exact ordered pair).
- 8. If $y^3 + y^2 5y x^2 = -4$, find $\frac{dy}{dx}$.
- 9. Estimate the value of $f(x) = \int_0^6 x^2 dx$ using a midpoint sum with 3 subintervals.
- 10. If $\int_{-1}^{1} f(x) dx = 3$, $\int_{2}^{3} f(x) dx = -2$, and $\int_{1}^{3} f(x) dx = 5$, evaluate $\int_{-1}^{2} f(x) dx$.
- 11. Find $\int \left(\frac{(\ln x)^2}{x}\right) dx$.
- 12. Find the average value of $f(x) = \frac{1}{3}$ on [1, 3] (answer exactly).
- 13. Find f''(x) if $f(x) = \int_6^x (4t 3)^{3/2} dt$.
- 14. Find the area of the region bounded by $y = e^x$, y = 0, x = 0, and x = 5 (answer exactly).
- 15. If the curve $y = x^2 + c$ is tangent to the line y = x, find the value of c.
- 16. Find an equation of the parabola $y = ax^2 + bx + c$ that passes through (0,1) and is tangent to the line y = x 1 at (1,0).

- 17. The marginal cost of producing x units of a product is given by $\frac{2}{x^{1/3}}$. The cost of producing 8 units is \$20. Find the cost of producing 64 units.
- 18. The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$. If h = 3r and the radius is increasing at 2 inches per minute when the radius is 6 inches, find the rate of change of volume at that time. Answer exactly including units.
- 19. The measurement of the side of a square is found to be 12 inches, with a possible error of $\frac{1}{64}$ inches. Use differentials to approximate the possible propagated error in computing the area of the square (include units).
- 20. Suppose the distance d in kilometers that a certain car can travel on one tank of gasoline at a speed of v kilometers per hour is given by $d(v) = 8v (\frac{v}{4})^2$. What speed maximizes the distance and therefore minimizes the fuel consumption?

Answers

- 1. 2
- $2. \ \ \frac{1}{b}$
- 3. $12[\sin^2(4x)] \cdot \cos(4x)$
- 4. $4e^5$
- 5. $-\frac{2}{3}$
- 6. $\frac{B}{16} \frac{C}{16}$
- 7. (π, π)
- 8. $\frac{dy}{dx} = \frac{2x}{3y^2 + 2y 5}$
- 9. 70
- 10. 10
- 11. $\frac{1}{3}(\ln x)^3 + c$
- 12. $\frac{\ln 3}{2}$
- 13. $6(4x-3)^{1/2}$
- 14. $e^5 1$
- 15. $c = \frac{1}{4}$
- 16. $y = 2x^3 3x + 1$
- 17. \$56
- 18. $216\pi \text{ in.}^3/\text{min}$
- 19. $\pm \frac{3}{8}$ in.²
- 20. v = 64 kilometers per hour