

Taller #10 - Optimización de consultas

Base de Datos I

I. Álgebra relacional y árbol de consulta

- 1. Presente el código SQL y la sentencia de Algebra Relacional equivalente, para realizar las siguientes consultas, considerando las tablas que se presentan abajo.
 - a) Nombres y apellidos de los estudiantes que tienen resultados del ejercicio
 - A 1, con la cantidad de puntos que obtuvieron.
 - b) Correos de los estudiantes que tienen resultados para ejercicios del tópico SQL.

ESTUDIANTES					
CODIGO(NOMBR	APELLIDO			
PK)	ES	S	CORREO		
			pperez@ua		
101	Pedro	Perez	<u>o</u>		
			mmejia@u		
102	Monica	Mejia	<u>ao</u>		
			rgonza@ua		
103	Ramiro	Gonzalez	<u>o</u>		
			jmartin@ua		
104	Juan	Martinez	<u>o</u>		

RESULTADOS					
COD_E	CAT_EJ	NUM_EJ	PUNT		
ST	ER	ER	OS		
101	A	1	10		
101	A	2	8		
102	A	1	9		
102	A	2	9		
102	В	1	12		

EJERCICIOS						
CATEGORIA	NUMER		MAXPU			
(PK)	O (PK)	TOPICO	NT			
		Modelami				
Α	1	ento	10			
Α	2	SQL	10			
В	1	SQL	15			

Solución:

1.

a):

```
1 SELECT ESTUDIANTES.NOMBRES, ESTUDIANTES.APELLIDOS, RESULTADOS.PUNTOS
2 FROM ESTUDIANTES
3 JOIN RESULTADOS ON ESTUDIANTES.CODIGO = RESULTADOS.COD_EST
4 WHERE RESULTADOS.CAT_EJER = 'A' AND RESULTADOS.NUM_EJER = 1;
```

Álgebra Relacional:

```
NOMBRES, APELLIDOS, PUNTOS (♂CAT_EJER='A' AND NUM_EJER=1 (ESTUDIANTES COD_EST = CODIGO RESULTADOS))
```

b):

```
SELECT ESTUDIANTES.CORREO

1 FROM ESTUDIANTES

2 JOIN RESULTADOS ON ESTUDIANTES.CODIGO = RESULTADOS.COD_EST

3 JOIN EJERCICIOS ON RESULTADOS.CAT_EJ = EJERCICIOS.CATEGORIA AND

4 RESULTADOS.NUM_EJER = EJERCICIOS.NUMERO

WHERE EJERCICIOS.TOPICO = 'SQL';
```

Álgebra Relacional:

```
1 CORREO (▼TOPICO='SQL' (ESTUDIANTES COD_EST = CODIGO (RESULTADOS CAT_EJER = CATEGORIA AND NUM_EJER = NUMERO EJERCICIOS)))
```

2. Considerando la descripción de tablas que se presenta a continuación, describa la consulta (mostrada al final) como expresión de Algebra Relacional:

AEROPUERTOS (aerold, aeronombre, ciudad) VUELOS (vuelold, fecha, compañía, aeroorigen, aerodestino) RESERVAS (numtiquete, nombre, nacionalidad, numvuelor, silla) SILLAS (numsilla, numvuelo, clase)

Observación: los campos subrayados corresponden a las llaves primarias de cada tabla, los campos en negrilla corresponden a Llaves foráneas.

SELECT nombre, silla, vuelold

FROM SILLAS, VUELOS inner join AEROPUERTOS on aeroorigen = aerold, RESERVAS WHERE nacionalidad = 'Colombia' and compañia = 'Avianca' and ciduad = 'Miami' or ciudad = 'Los Angeles' and numvuelor = numvuelo and silla = numsilla and numvuelo = vuelold

Solución:

2.

Álgebra Relacional:

 π nombre, silla, vueloId

 $(\sigma nacionalidad='Colombia' \land compan \sim ia='Avianca' \land ciudad='Miami' \lor ciudad='Los Angeles' \land numvuelor=numvuelo \land silla=numsilla \land numvuelo=vueloId (SILLAS \bowtie numvuelo=vueloId (aeroId/ aeroorigen \land vuelo \land silla=numsilla \land \land silla=numsilla \land vuelo \land silla=numsilla \land silla=numsilla \land vuelo \land vuelo \land silla=numsilla \land vuelo \land silla=numsilla \land vuelo \land silla=numsilla \land vuelo \land vuelo$

(VUELOS) ⋈ aeroorigen=aeroId AEROPUERTOS) ⋈ numvuelor=numtiquete RESERVAS))

3. Para la siguiente consulta, presente el árbol de consulta equivalente:

PROVEEDOR (nit, nombre, dirección, teléfono, paginaweb) REPUESTOS (numero, descripción, nomRepuesto, precio) PROYECTO (código, titulo, duración, presupuesto) SUMINISTRO (Snit, Snumero, Scódigo, cantidad, fecha)

πnit, nombre, nomRepuesto, precio (σSnit = nit AND título = 'CRM' AND fecha > '01/06/2019' AND Snumero = número AND precio > 100.000 AND fecha < '31/10/2019' AND Scodigo = código (**PROVEEDOR X REPUESTOS X PROYECTO X SUMINISTRO**))

Solución:

3.

Árbol de consulta equivalente:

4. Presente el árbol de consulta equivalente a la siguiente expresión de algebra relacional:

 σ nombre, numcurso, semestre, año (σ coest = codigo (ESTUDIANTES X (REPORTE Mecurso=numcurso (σ profesor='Perez' and nota > 3.8 (CURSO)))))

Solución:

4.

Árbol de consulta equivalente:

II. Optimización de consultas

Para las consultas que se plantean a continuación, presente:

- Árbol de consulta inicial
- Justificación de los cambios realizados en el orden de las tablas (hojas del árbol).
- Árbol de consulta optimizado

1. Considerando las siguientes tablas (los campos subrayados corresponden a llaves primarias):

Courses (ID, Name, Room, Time) Exercises (ID, C_ID, A_ID, Room, Time) Assistants (ID, Firstname, Lastname)

*En Excercises: C_ID es el ID de courses y A_ID es el Id de Assistants

Consulta:

SELECT C. Name, A. Firstname, A. Lastname, E. Room, E. Time FROM Courses C, Assistants A, Exercises E WHERE C.ID = E.C_ID AND A. ID=E.A_ID AND C. Room like '10%' AND E. Room not like 'CAB%'

 π C. Name, A. Firstname, A. Lastname, E. Room, E. Time (σ C.ID = E.C_ID AND A. ID=E.A_ID AND C.Room like '10%' AND E. Room not like 'CAB%' ((Courses C X Assistants A) X Exercises E))

Solución II. Optimización de consultas:

1.

Árbol de consulta inicial:

Justificación del orden de las tablas:

- Inicio con Courses: Se inicia con Courses ya que la condición 'C.ID = E.C_ID' involucra la tabla Courses.
- **Join con Assistants**: Se realiza el join con Assistants utilizando las llaves foráneas que conectan Courses con Assistants ('A. ID=E.A_ID').
- **Join final con Exercises:** Finalmente, se realiza el join con Exercises utilizando las llaves foráneas que conectan Courses con Exercises ('C.ID = E.C_ID').

Árbol de consulta optimizado: Courses X Assistants Exercises

Justificación de la optimización:

- Reordenamiento de las tablas: En la versión optimizada, se reordenaron las tablas para reflejar el orden lógico de las condiciones en la cláusula WHERE. Se inicia con Courses ya que es la tabla principal y luego se unen Assistants y Exercises según las condiciones de igualdad.
- **Eliminación de redundancias:** Se eliminaron redundancias innecesarias en el árbol para simplificar la estructura y mejorar la legibilidad.
- Uso de notación sigma (σ) y pi (π): La notación sigma (σ) y pi (π) se utiliza para indicar las operaciones de selección y proyección respectivamente, proporcionando una representación más clara de las operaciones realizadas en la consulta.

2. Considerando las siguientes tablas (los campos subrayados corresponden a llaves primarias):

Applicants (id, mid, name, city, sid) Schools (sid, sname, srank) Major (mid, mname, age)

Consulta:

T A.name (O A.sid = S.sid AND A.mid=M.mid AND A.city='Seattle' AND S.rank <10 AND mname='CSE' ((School x Major) x Applicants))

Solución II. Optimización de consultas: 2.

Árbol de consulta inicial:

Justificación del orden de las tablas:

- Inicio con Schools: Se inicia con Schools ya que la condición 'A.sid = S.sid' involucra la tabla Schools.
- Join con Major: Se realiza el join con Major utilizando las llaves foráneas que conectan Schools con Major ('A.mid=M.mid').
- **Join final con Applicants:** Finalmente, se realiza el join con Applicants utilizando las llaves foráneas que conectan Major con Applicants ('A.sid = S.sid').

Árbol de consulta optimizado:

Justificación de la optimización:

- Reordenamiento de las tablas: En la versión optimizada, se reordenaron las tablas para reflejar el orden lógico de las condiciones en la cláusula WHERE. Se inicia con Applicants, ya que es la tabla principal, y luego se unen Schools y Major según las condiciones de igualdad.
- Eliminación de redundancias: Se eliminaron redundancias innecesarias en el árbol para simplificar la estructura y mejorar la legibilidad.
- Uso de notación sigma (σ) y pi (π): La notación sigma (σ) y pi (π) se utilizan para indicar las operaciones de selección y proyección respectivamente, proporcionando una representación más clara de las operaciones realizadas en la consulta SQL.