МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

1. Цель работы.

Изучение вольт-амерной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

2. В работе используются.

Стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели

3. Теоретические сведения.

Схема установки для исследования плазмы газового разряда в неоне представлена на рис. 1. Стеклянная газоразрядная трубка имеет холодный (не нагреваемый) полый катод, три анода и *геттерный узел* — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (*геттер*). Трубка наполнена изотопом неона ²²Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключаются через балластный резистор R_6 (~ 500 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до нескольких киловольт

Рис.1. Схема установки для исследования газового разряда

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке —

вольтметром V_1 , подключённым к трубке через высокоомный (несколько десятков МОм) делитель напряжения с коэффициентом (R1 + R2)/R2.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d и имеют длину l. Они подключены к источнику питания через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется вольтметром V_2 . Для измерения зондового тока используется микроамперметр A_2 . Анод-III в нашей работе не используется.

4. Ход работы.

C помощью вольтметра V_1 и амперметра A_1 измерим вольт-амперную характеристику разряда I(U), данные занесем в Таблицу 1:

Таблица 1

U, B	35,27	34,38	33,78	32,55	31,75	31,4	31,07	30,84	30,77	30,62
І, мкА	0,48	0,72	0,96	1,24	1,52	1,76	2,08	2,28	2,44	2,72
30,43	30,38	30,34	30,46	30,55	30,55	30,6	30,6	30,57	30,52	30,5
5,84	3,0	3,28	3,48	3,8	4,12	4,44	4,88	5,12	5,36	5,6

По данным таблицы 1 построим график U(I):

Рис. 2. Вольт-амперная характеристика разряда в неоне

Оценим максимальное дифференциальное сопротивление заряда:

$$R_{\partial u\phi} = \frac{dU}{dI} \tag{1}$$

Очевидно, из геометрического смысла производной, что $R_{\text{диф}}$ максимально в точке, где $I=3,28~A,\,U=30,34~B$ и его значение:

$$R_{\partial u \phi} \simeq 6 * 10^5 \, \mathit{OM}$$

Измерим вольт-амперную характеристику двойного зонда $I_3(U_3)$ при фиксированных токах разряда І. Для каждого из токов разряда данные занесем в Таблицы 2 — 4:

Таблица 2: I = 5 мА

U, B	22,265	19,173	15,993	13,1	9,992	7,97	6,189	3,964	2,088	0,659
І, мкА	141,03	137,35	131,96	124,07	110,5	97,1	81,25	55,24	28,05	4,9
U, B	-2,1245	-4,1	-6,049	-8,3	-10,105	-12,93	-15,918	-19,025	-22,234	-25,066
І, мкА	-14,11	-43,5	-66,4	-84,3	-97,94	-110,3	-118,18	-123,3	-127	-129,94

Таблица 3: I = 3 мA

U, B	24,818	22,025	19,084	16,038	12,946	9,97	8,115	5,982	3,007	0,987
І, мкА	85,18	82,86	80,52	77,77	73,41	66,33	59,45	48,66	28,01	11,15
U, B	-2,004	-4,159	-6,075	-8,142	-10,019	-13,002	-15,91	-18,97	-21,005	-23,022
І, мкА	-11,12	-27,89	-40,15	-50,33	-56,99	-63,44	-67,08	-69,45	-70,88	-72,34

Таблица 4: I = 1,5 мA

U, B	25,055	21,988	18,957	16,1	12,897	10,132	8,1	5,865	3,896	2,130
І, мкА	45,62	44,12	42,6	41,18	39,15	36	32,44	26,66	19,77	12,25
U, B	0,4314	-1,899	-3,883	-6,011	-8,147	-10,23	-13,163	-16,183	-18,82	-22,265
І, мкА	4,27	-6,07	-14,45	-21,64	-26,88	-30,3	-33,19	-34,87	-36,04	-37,47

По данным Таблиц 2 — 4 построим зондовые характеристики I(U) на одном графике:

Рис.3.Зондовые характеристики

По каждой из зондовых характеристик определим ионный ток насыщения $I_{\mbox{\tiny iн}},$ по пересечению асимптот к графику с осью ординат

Рис.4. Асимптотика зондовых характеристик

По МНК рассчитаем погрешности токов насыщения, результаты занесем в Таблицу 5:

Таблица 5

$I_{iH}(I=5\text{MA})$	$114,5 \pm 2,8$ мкА
$I_{iH}(I=3MA)$	$64,5 \pm 0,2$ мкА
$I_{iH}(I=1,5\text{MA})$	$33,3 \pm 0,1$ мкА

По каждой из зондовых характеристик определим наклон характеристики dI0/dU в начале координат:

Рис.5. Вычисление dI/dU для I=5 мА

Рис.6.Вычисление dI/dU для I=3~мA

Рис.7.Вычисление dI/dU для I=1,5 мА

По МНК рассчитаем погрешности dI/dU в начале координат, результаты занесем в Таблицу 6:

Таблица 6

dI/dU(I = 5 MA)	$13,88 \pm 2,09$ мкА/В
dI/dU(I = 3MA)	7,17 ± 1,41 мкА/В
dI/dU(I=1,5MA)	$4,06 \pm 1,03$ мкА/В

По результатам предыдущих вычислений рассчитаем температуру электронов Те:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}} \tag{2}$$

Погрешность для Те найдем по формуле:

$$\sigma(T_e) = T_e \sqrt{\frac{\sigma(I_{iH})^2}{I_{iH}^2} + \frac{\sigma(\frac{dI}{dU})^2}{(\frac{dI}{dU})^2}}$$
(3)

Результаты занесем в Таблицу 7:

Таблица 7

$T_e(I = 5 \text{ mA})$	$4,12 \pm 0,63 \text{3B}$
$T_e(I=3 \text{ MA})$	$4,50 \pm 0,88 \; \mathrm{9B}$
$T_e(I=1,5 \text{ mA})$	$4,10 \pm 1,04 \text{ 3B}$

Рассчитаем концентрацию электронов n_e в плазме:

$$n_e = \frac{I_{iH}}{0.4 \, eS} \sqrt{\frac{m_e}{2 \, kT_e}} = \frac{I_{iH}}{0.4 \, e \, \pi \, dl} \sqrt{\frac{m_e}{2 \, kT_e}}$$
(4)

, где d = 0.2 мм, l = 5.2 мм.

Считая ионы однозарядными, получаем что их концентрация n_i равна концентрации электронов.

Погрешность для n_e найдем по формуле:

$$\sigma(n_e) = n_e \sqrt{\frac{\sigma(I_{iH})^2}{I_{iH}^2} + \frac{1}{4} \frac{\sigma(T_e)^2}{T_e^2}}$$
 (5)

Результаты занесем в Таблицу 8:

Таблица 8

$n_e * 10^{14} (I = 5 \text{ MA})$	$4,55 \pm 0,36 \text{ m}^{-3}$
$n_e * 10^{14} (I = 3 \text{ mA})$	$2,45 \pm 0,24 \text{ m}^{-3}$
$n_e * 10^{14} (I = 1,5 \text{ mA})$	$1,33 \pm 0,17 \text{ m}^{-3}$

Рассчитаем плазменную частоту колебаний электронов ω_p :

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{6}$$

Погрешность для ω_p найдем по формуле:

$$\sigma(\omega_p) = \frac{\omega_p}{2} \frac{\sigma(n_e)}{n_e} \tag{7}$$

Результаты занесем в Таблицу 9:

Таблица 9

$\omega_p * 10^3 \ (I = 5 \text{ MA})$	$12,7 \pm 0,5 \text{ c}^{-1}$
$\omega_p * 10^3 (I = 3 \text{ MA})$	$9,3 \pm 0,5 \text{ c}^{-1}$
$\omega_p * 10^3 (I = 1,5 \text{ MA})$	$6.8 \pm 0.4 \text{ c}^{-1}$

Рассчитаем электронную поляризационную длину r_{De} :

$$r_{De} = \sqrt{\frac{kT_e \varepsilon_0}{n_e e^2}} \tag{8}$$

, где $\varepsilon_0 = 8.85 * 10^{-12}$.

Погрешность для r_{De} найдем по формуле:

$$\sigma(r_{De}) = \frac{r_{De}}{2} \sqrt{\frac{\sigma(T_e)^2}{T_e^2} + \frac{\sigma(n_e)^2}{n_e^2}}$$
(9)

Результаты занесем в Таблицу 10:

Таблица 10

$r_{De} * 10^{-4} (I = 5 \text{ mA})$	$7,1\pm0,6$ м
$r_{De} * 10^{-4} (I = 3 \text{ mA})$	$10,1\pm1,1$ м
$r_{De} * 10^{-4} (I = 1,5 \text{ mA})$	$13,1 \pm 1,9$ м

Найдем дебаевский радиус экранирования r_D , с учетом того что $T_i \approx 300 \text{K} < T_e$:

$$r_D \approx \sqrt{\frac{\varepsilon_0 k T_i}{n_i e^2}} \tag{10}$$

Погрешность для r_D найдем по формуле:

$$\sigma(r_D) = \frac{r_D}{2} \frac{\sigma(n_e)}{n_e} \tag{11}$$

Результаты занесем в Таблицу 11:

Таблица 11

$r_D * 10^{-5} (I = 5 \text{ mA})$	5 , 6 ± 0 , 2 м
$r_D * 10^{-5} (I = 3 \text{ MA})$	$7,6\pm0,4$ м
$r_D * 10^{-5} (I = 1,5 \text{ MA})$	$10,3\pm0,7$ м

Оценим среднее число ионов в дебаевской сфере $N_{\rm D}$:

$$N_D = \frac{4}{3}\pi \, n_e r_D^3 \tag{12}$$

Получим:

$$N_D \sim 10^3$$

Построим графики зависимостей $T_e(I)$, $n_e(I)$:

Рис.11. Зависимость $n_e(I)$

Рис.12. Зависимость $T_e(I)$

5. Выводы.

- 1. Изучили вольт-амперную характеристику тлеющего заряда, изучили свойства плазмы методом зондовых характеристик.
- 2. Рассчитали важные характеристики плазмы: плазменную частоту электронов ω_p , электронную поляризационную длину r_{De} и дебаевский радиус экранирования r_D .
 - 3. Получили зависимости $T_e(I)$ и $n_e(I)$.