

Lightning-Fast Modulation Classification with HardwareEfficient Neural Networks

10/27/2021

The A(MC) Team:

Jakob Krzyston

PhD Student @ GT, Research Engineer, GTRI jakobk@gatech.edu

Dr. Rajib Bhattacharjea

Principal Engineer, DeepSig Inc raj@deepsig.ai

Dr. Andrew Stark

Senior Research Engineer, GTRI andy.stark@gtri.gatech.edu

Possible Approaches

- Modify the provided architecture [Speed]
- Reduce the quantization with Brevitas [Speed]
 - Four bits for both weights and activations
- Prune weights [Speed]
 - L1 unstructured Iterative Magnitude Pruning (IMP)
 - Prune when accuracy threshold reached
- Adjust training paradigm [Accuracy]
 - Learning Rate Scheduler → Reduce LR on Plateau

Methods

Architecture

IMP (Simplified)

for num_prune_iterations:

for num_epochs:

train model

test model

if model_accuracy > 0.56:

save model weights prune 20% of weights

break

else:

Ir_scheduler.step

Compression Summary

Quantity	Original*	Final
Bit Ops	807,699,904	24,436,576
Weight Bits	1,244,936	68,072
Compression	1x	9.313x
Sparsity	0%	89.26%

^{*}Values from provided code

Notes

- Did not reset LR scheduler
 - May have reduced our end performance
- Sparsity $\% = 1 (0.8 \land 10)$
- Compression = 1 / (0.8 ^ 10)

Final Results

Inference Cost Score:

• 0.042467

Overall Test Accuracy:

• 0.5625

