Session 11: Optimality conditions

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Unconstrained optimization
- 2. Constrained optimization and Lagrange multipliers
- 3. Convex constrained optimization problems

Questions about the video?

- **Proof** Global minimizer ⇒ local minimizer ⇒ critical point.
- **♪** Critical point + positive definite Hessian ⇒ local minimizer.

Hessian at a critical point

The eigenvalues of the Hessian at xare

1.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = -1 \end{cases}$$

2.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 1 \end{cases}$$

3.
$$\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 1 \end{cases}$$
4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

Hessian at a critical point

The eigenvalues of the Hessian at xare

$$\lambda_1 = 1$$

$$\lambda_2 = -3$$

$$\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 2 \end{cases}$$

1.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = -3 \end{cases}$$
2.
$$\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 2 \end{cases}$$
3.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 3 \end{cases}$$
4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

Hessian at a critical point

The eigenvalues of the Hessian at \boldsymbol{x} are

1.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = -3 \end{cases}$$

2.
$$\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 2 \end{cases}$$

3.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 3 \end{cases}$$

4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

General formulation

Constrained optimization problems take the form:

```
minimize f(x) subject to g_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p,
```

with variable $x \in \mathbb{R}^n$.

Feasible points

Definition

A point $x \in \mathbb{R}^n$ is *feasible* if it satisfies all the constraints: $g_1(x) \leq 0, \dots, g_m(x) \leq 0$ and $h_1(x) = 0, \dots, h_p(x) = 0$.

Question

If x is a solution to

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p,$

do we have $\nabla f(x) = 0$?

Theorem

If x is a solution and if $\nabla h_1(x),\ldots,\nabla h_p(x),\{\nabla g_i(x)\,|\,g_i(x)=0\}$ are linearly independent, then there exists $\lambda_1,\ldots,\lambda_m\geq 0$ and $\nu_1,\ldots,\nu_p\in\mathbb{R}$ such that:

$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0.$$

Moreover, for all $i \in \{1, ..., m\}$, if $g_i(x) < 0$ then $\lambda_i = 0$.

Constrained optimization

Example	
Let $u \in \mathbb{R}^n$ be a non-zero vector.	Minimize $\langle x, u \rangle$ subject to $ x ^2 = 1$.

13/18

Constrained optimization

Example	
Let $u \in \mathbb{R}^n$ be a non-zero vector.	Minimize $\langle x, u \rangle$ subject to $ x ^2 = 1$.

13/18

Convex constrained optimization

General formulation

We say that the constrained optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p,$

is convex when f, g_1, \ldots, g_m are convex and h_1, \ldots, h_p are affine.

Karush-Kuhn-Tucker Theorem

Theorem (KKT)

Assume that the problem is convex and that there exists a feasible point x_0 such that $g_i(x_0) < 0$ for all i.

Then x is a solution if and only if x is feasible and there exists $\lambda_1, \ldots, \lambda_m \geq 0, \nu_1, \ldots, \nu_p \in \mathbb{R}$ such that:

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0. \\ \lambda_i g_i(x) = 0, \text{ for all } i \in \{1, \dots, p\}. \end{cases}$$

Example: Ridge regression

	mi su	inimize $-\ Ax\ $ bject to $-\ x\ $	$ x - y ^2$ $ x - y ^2 \le r^2.$										

Example: Ridge regression

	mi su	inimize $-\ Ax\ $ bject to $-\ x\ $	$ x - y ^2$ $ x - y ^2 \le r^2.$										

Example

Convex constrained optimization

minimize $||x - u||^2$

subject to $x \perp v$.

Let $u, v \in \mathbb{R}^n$ such that ||v|| = 1. Solve:

18/18

Example

Questions?

Questions?

