Complete proof for Precision clustering

Jiaxin Hu

July 15, 2021

1 Definitions

1.1 Model

Suppose we have K categories in R groups. Let $z(k) \in [R]^K$ denote the group assignment, and $X_{z(k)} \sim \mathcal{N}_p(0, \Sigma_{z(k)})$, where

$$\Sigma_{z(k)}^{-1} = \Omega_{z(k)} = \Theta_0 + u_k \Theta_{z(k)},$$

where Σ_r , Ω_r are the true covariance and precision matrices, respectively, Θ_0 is denoted as intercept matrix and Θ_r for $r \in [R]$ are denoted as factor matrices. For simplicity, we let $\Theta = \{\Theta_r\}_{r=0}^R$ denote the intercept and the sequence of factor matrices. Let $I_r = \{k \in [K] : z(k) = r\}$, and S_k denote the sample covariance matrix for k-th category with n independent sample $X_{z(k),1},...,X_{z(k),n}$.

1.2 Parameter space

Define the the parameter space for the assignment, \mathcal{P}_z as following

$$\mathcal{P}_z(R,\beta) = \left\{ z \in [R]^K : \frac{K}{\beta R} \le |I_r| \le \frac{K\beta}{R}, r \in [R] \right\}.$$

With given assignment $z \in \mathcal{P}(R, \beta)$, define the true parameter space $\mathcal{P}^*(z, \tau_1, \tau_2, \delta, m, M)$ and the estimator search space $\mathcal{P}(z, \tau_1, \tau_2, \delta, m, M)$ as following

$$\mathcal{P}^*(z,\tau_1,\tau_2,\delta,m,M) = \begin{cases} (u,\Theta): & \Theta_0,\Theta_r \text{ are positive definite for all } r \in [R]; \\ 0 < \tau_1 < \min_{r \in \{0\} \cup [R]} \varphi_{\min}(\Theta_r) \leq \max_{r \in \{0\} \cup [R]} \varphi_{\max}(\Theta_r) < \tau_2; \\ \max_{r,r' \in [R]} \cos(\Theta_r,\Theta_{r'}) < \delta < 1; \quad \langle \Theta_0^{-1},\Theta_r \rangle = 0, r \in [R]; \\ m < \min_{k \in [K]} |u_k| \leq \max_{k \in [K]} |u_k| < M; 0 < a < \frac{m^4 \tau_1^2}{M^4 \tau_2^2} - \delta, \\ \sum_{k \in I_r} u_k^2 = K, \sum_{k \in I_r} u_k = 0, \text{ for all } r \in [R] \end{cases},$$

and

$$\mathcal{P}(z,\tau_1,\tau_2,\delta,m,M) = \left\{ (u,\Theta): \quad \Theta_0, \Theta_r \text{ are positive definite for all } r \in [R]; \\ \max_{r,r' \in [R]} \cos(\Theta_r,\Theta_{r'}) < \delta < 1; \ \langle \Theta_0^{-1},\Theta_r \rangle = 0, r \in [R]; \\ m < \min_{k \in [K]} |u_k| \leq \max_{k \in [K]} |u_k| < M; 0 < a < \frac{m^4 \tau_1^2}{M^4 \tau_2^2} - \delta, \\ \sum_{k \in I_r} u_k^2 = K, \sum_{k \in I_r} u_k = 0, \text{ for all } r \in [R] \right\},$$

1.3 Estimators

Let (z^*, u^*, Θ^*) denote the true parameters. Let $\mathcal{Q}(z, u, \Theta)$ denote the negative log-likelihood function, where

$$\mathcal{Q}(z, u, \Theta) = \sum_{k \in [K]} \mathcal{Q}_k(z(k), u, \Theta) = \sum_{k \in [K]} \langle S_k, \Theta_0 + u_k \Theta_{z(k)} \rangle - \log \det(\Theta_0 + u_k \Theta_{z(k)}).$$

Then, we let $(\hat{z}, \hat{u}, \hat{\Theta})$ denote the MLE where,

$$(\hat{z}, \hat{u}, \hat{\Theta}) = \underset{z \in \mathcal{P}_z(R,\beta), \ (u,\Theta) \in \mathcal{P}(z,\delta,m,M)}{\arg \min} \mathcal{Q}(z, u, \Theta),$$

and let $(\tilde{u}, \tilde{\Theta})$ denote the oracle estimator with given z^* , where

$$(\tilde{u}, \tilde{\Theta}) = \underset{(u,\Theta) \in \mathcal{P}(z^*, \tau_1, \tau_2, \delta, m, M)}{\operatorname{arg min}} \mathcal{Q}(z, u, \Theta).$$

For simplicity, in the following proof, the notation $\hat{\theta}$ implies θ some parameter derived from the MLE, $\tilde{\theta}$ implies some parameters derived from the oracle estimator, and θ^* implies some parameters derived from the true parameters.

1.4 Misclassification loss

Define the function

$$\hat{\Omega}_k(a) = \hat{\Theta}_0 + \hat{u}_k \hat{\Theta}_a.$$

Similar definitions $\tilde{\Omega}_k(a)$ and $\Omega_k^*(a)$ are proposed with $(z^*, \tilde{u}, \tilde{\Theta})$ and (z^*, u^*, Θ^*) . Then, we define the misclassification loss

$$\begin{split} \ell(z,z^*) &= \sum_{k \in [K]} \left\| \Omega_k^*(z(k)) - \Omega_k^*(z^*(k)) \right\|_F^2 \\ &= \sum_{k \in [K]} \sum_{b \in [R]/z^*(k)} \left\| \Omega_k^*(b) - \Omega_k^*(z^*(k)) \right\|_F^2 \mathbf{1} \left\{ z(k) = b \right\}. \end{split}$$

Also define the minimal gap between different groups

$$\begin{split} \Delta_{\min}^{2}(p, m, \tau_{1}, \tau_{2}, \delta) &= \min_{k, k' \in [K]} \min_{a \neq b \in [R]} \|\Omega_{k}^{*}(a) - \Omega_{k'}^{*}(b)\|_{F}^{2} \\ &\geq \min_{a \neq b \in [R]} \|u_{k}^{*} \Theta_{a}^{*} - u_{k'}^{*} \Theta_{b}^{*}\|_{F}^{2} \\ &= \min_{a \neq b \in [R]} \left[(u_{k}^{*})^{2} \|\Theta_{a}^{*}\|_{F}^{2} + (u_{k'}^{*})^{2} \|\Theta_{a}^{*}\|_{F}^{2} - 2u_{k}^{*} u_{k'}^{*} \langle \Theta_{a}^{*}, \Theta_{b}^{*} \rangle \right] \\ &\geq 2p \left[m^{2} \tau_{1}^{2} - M^{2} \tau_{2}^{2} \delta \right] \end{split}$$

where the last inequality follow by the fact that

$$||A - B||_F^2 = ||A||_F^2 + ||B||_F^2 - 2\langle A, B \rangle \ge p \left[\varphi_{\min}^2(A) + \varphi_{\min}^2(B) \right] - 2 ||A||_F ||B||_F \cos(A, B),$$

for $A, B \in \mathbb{R}^{p \times p}$. Note that Δ_{\min} is a increasing function in p, m and a decreasing function in δ . For simplicity, we use Δ_{\min}^2 to denote the minimal gap.

Last, we consider the Hamming loss $h(z,z^*)=\sum_{k\in[K]}\mathbf{1}\,\{z(k)\neq z^*(k)\},$ where

$$\ell(z, z^*) \ge \Delta_{\min}^2 h(z, z^*).$$

1.5 Error decomposition

Suppose $z^*(k) = a$. We need to analyze the following event to study the misclassification of MLE \hat{z} where $\hat{z}(k) = b$.

$$Q_k(b, \hat{u}, \hat{\Theta}) \le Q_k(a, \hat{u}, \hat{\Theta}). \tag{1}$$

Define the errors

$$\hat{\Delta}(a,b) = \hat{\Omega}_k(a) - \Omega_k^*(b); \quad \tilde{\Delta}(a,b) = \tilde{\Omega}_k(a) - \Omega_k^*(b); \quad \Delta(a,b) = \hat{\Omega}_k(a) - \tilde{\Omega}_k(b).$$

By the Taylor Expansion, we have

$$Q_k(b, \hat{u}, \hat{\Theta}) - Q_k(a, u^*, \Theta^*) = \langle S_k - \Sigma_k, \hat{\Delta}(b, a) \rangle + T_2(b, a), \tag{2}$$

where

$$T_2(b, a) = \operatorname{vec}(\hat{\Delta}(b, a))^T \int_0^1 (1 - v) (\Omega_k^* + \hat{\Delta}(b, a))^{-1} \otimes (\Omega_k^* + \hat{\Delta}(b, a))^{-1} dv \operatorname{vec}(\hat{\Delta}(b, a))$$
$$= c \left\| \hat{\Delta}(b, a) \right\|_F^2,$$

with a constant c related to the τ_1, τ_2 and the second equation follows by the Lemma 3 that $\|\hat{\Delta}(b, a)\|_F$ is bounded for n large enough.

Plugging the Taylor Expansion (2) into the event (1), the event is upper bounded by the event

$$\langle S_k - \Sigma_k, \hat{\Delta}(b, a) - \hat{\Delta}(a, a) \rangle \le c \left[\left\| \hat{\Delta}(a, a) \right\|_F^2 - \left\| \hat{\Delta}(b, a) \right\|_F^2 \right].$$

Rearranging the inequality, we have

$$\langle S_k - \Sigma_k, \tilde{\Omega}_k(b) - \tilde{\Omega}_k(a) \rangle \le -c\bar{\Delta}_k(a,b)^2 + cG_k(a,b,\hat{z}) + cH_k(a,b) + F_k(a,b,\hat{z}),$$

where

$$\bar{\Delta}_{k}(a,b)^{2} = \|\Omega_{k}^{*}(a) - \Omega_{k}^{*}(b)\|_{F}^{2}.$$

$$F_{k}(a,b,\hat{z}) = \langle S_{k} - \Sigma_{k}, \Delta(a,a) - \Delta(b,b) \rangle.$$

$$G_{k}(a,b,\hat{z}) = \left(\|\hat{\Delta}(a,a)\|_{F}^{2} - \|\tilde{\Delta}(a,a)\|_{F}^{2} \right) - \left(\|\hat{\Delta}(b,a)\|_{F}^{2} - \|\tilde{\Delta}(b,a)\|_{F}^{2} \right).$$

$$H_{k}(a,b) = \|\tilde{\Delta}(a,a)\|_{F}^{2} - \left(\|\tilde{\Delta}(b,a)\|_{F}^{2} - \bar{\Delta}_{k}(a,b)^{2} \right).$$

Last, we define oracle misclassification loss as

$$\xi_{\text{ideal}}(\epsilon) = \sum_{k \in [K]} \sum_{b \in [R]/z^*(k)} \|\Omega_k^*(z^*(k)) - \Omega_k^*(b)\|_F^2 \cdot \mathbf{1} \left\{ \langle S_k - \Sigma_k, \tilde{\Omega}_k(b) - \tilde{\Omega}_k(z^*(k)) \rangle \le -c(1 - \epsilon) \bar{\Delta}_k(a, b)^2 \right\}.$$

2 Useful Lemmas

Lemma 1 (Intercept estimation). The oracle estimator and MLE of the intercept are equivalent, i.e., $\hat{\Theta}_0 = \tilde{\Theta}_0$.

Lemma 2 (Oracle estimation error). The oracle estimator $(\tilde{u}, \tilde{\Theta})$ satisfy the following inequalities simultaneously with probability at least $1 - \mathcal{O}(1/n)$,

$$\left\|\tilde{\Theta}_0 - \Theta_0^*\right\|_F \le C_0 p \sqrt{\frac{\log p \log n}{nK}}, \quad \left\|\tilde{\Theta}_r - \Theta_r^*\right\|_F \le C_r p \sqrt{\frac{\log p \log n}{n|I_r^*|}}, \quad |\tilde{u}_k - u_k^*| \le C_k p \sqrt{\frac{\log p \log n}{n}},$$

for some large positive constants C_0, C_r, C_k and $\min_{r \in [R]} |I_r^*| \ge \frac{K}{\beta R}$.

Lemma 3 (MLE estimation error). The MLE $(\hat{z}, \hat{u}, \hat{\Theta})$ satisfy the following inequalities simultaneously with probability at least $1 - \mathcal{O}(1/n)$,

$$\sum_{k \in [K]} \left\| \hat{\Omega}_k(\hat{z}(k)) - \Omega_k^*(z^*(k)) \right\|_F \le CK \sqrt{\frac{\log n \log p}{n}},$$

and that $\hat{z} \to z^*$, i.e., $\ell(\hat{z}, z^*) \to 0$ as $n \to \infty$.

Lemma 4 (Conditions check). For n large enough such that $\ell(\hat{z}, z^*) \leq \tau = \frac{K}{2\beta R}$, we have

1.

$$\sum_{k \in [K]} \max_{b \in [K]/z^*(k)} \frac{F_k(z^*(k), b, \hat{z})^2 \|\Omega_k^*(z^*(k)) - \Omega_k^*(b)\|_F^2}{\bar{\Delta}_k(z^*(k), b)^4 \ell(\hat{z}, z^*)} \le C_1 \epsilon^2,$$

hols with probability at least $1 - \eta_1$ for small positive constant C_1 , and $\epsilon, \eta_1 > 0$;

2.

$$\max_{T \subset [K]} \frac{\tau}{4\Delta_{\min}^2 |T| + \tau} \sum_{k \in [K]} \max_{b \in [K]/z^*(k)} \frac{G_k(z^*(k), b, \hat{z})^2 \|\Omega_k(u^*, \Theta^*, z^*(k)) - \Omega_k(u^*, \Theta^*, b)\|_F^2}{\bar{\Delta}_k(z^*(k), b)^4 \ell(\hat{z}, z^*)} \le C_2 \epsilon^2,$$

holds with probability at least $1 - \eta_2$ for small positive constant C_2 , and $\epsilon, \eta_2 > 0$;

3.

$$\max_{k \in [K]} \max_{b \in [K]/z^*(k)} \frac{|H_k(z^*(k), b)|}{\bar{\Delta}_k(z^*(k), b)^2} \le C_3 \epsilon,$$

holds with probability at least $1 - \eta_3$ for small positive constant C_3 , and $\epsilon, \eta_3 > 0$.

3 Main theorems

Theorem 3.1 (Error decomposition). For n large enough such that $\ell(\hat{z}, z^*) \leq \tau = \frac{K}{2\beta R}$, the MLE \hat{z} satisfies following inequality

$$\ell(\hat{z}, z^*) \le C\xi_{ideal}(\epsilon),$$

with probability at least $1 - \eta_1 - \eta_2 - \eta_3$ for some positive constant C.

Remark 1. The parameter ϵ in $\xi_{ideal}(\epsilon)$ is the same as the ϵ in Lemma 4.

Theorem 3.2 (Oracle misclassification rate). Assume $\Delta_{\min} = \mathcal{O}(K^{\gamma})$ for some $\gamma > 0$, $n = C_n \exp(\Delta_{\min}^2)$ for C_n large enough, and the ϵ in Lemma 4 small enough. With probability $1 - \eta_1 - \eta_2 - \eta_3 - \exp(-\Delta_{\min})$ as $K \to \infty$

$$\xi_{ideal}(\epsilon) \le K \exp\left(-(1-c\epsilon)^2 C \Delta_{\min}^2\right),$$

where c, C are two positive constants.

Remark 2. In fact, if Lemma 4 holds for the decreasing sequence $\epsilon_K \to 0$ and $\eta_1, \eta_2, \eta_3 \to \mathcal{O}(\exp(-\Delta_{\min}))$ as $K \to 0$, we have

$$\xi_{\text{ideal}}(\epsilon) \leq K \exp\left(-(1+o(1))C\Delta_{\min}^2\right)$$

with $1 - \mathcal{O}(\exp(-\Delta_{\min}))$.

4 Proofs

Proof of Lemma 1. To show the equivalence $\hat{\Theta}_0 = \tilde{\Theta}_0$, we only need to show that

$$\frac{\partial \mathcal{Q}(\hat{z},u,\Theta)}{\partial \Theta_0} = \frac{\partial \mathcal{Q}(z^*,u,\Theta)}{\partial \Theta_0}.$$

For any $z \in \mathcal{P}_z(R,\beta)$ and $(u,\Theta) \in \mathcal{P}(z,\tau_1,\tau_2,\delta,m,M)$, we have

$$\begin{split} \frac{\partial \mathcal{Q}(z, u, \Theta)}{\partial \Theta_0} &= \frac{\partial}{\partial \Theta_0} \sum_{k \in [K]} \langle S_k, \Theta_0 \rangle + \frac{\partial}{\partial \Theta_0} \sum_{k \in [K]} \log \det(\Theta_0 + u_k \Theta_{z(k)}) \\ &= \frac{\partial}{\partial \Theta_0} \sum_{k \in [K]} \langle S_k, \Theta_0 \rangle + \sum_{k \in [K]} (\Theta_0 + u_k \Theta_{z(k)})^{-1}. \end{split}$$

Note that by the matrix inverse lemma and the fact that $(u,\Theta) \in \mathcal{P}(z,\tau_1,\tau_2,\delta,m,M)$, we have

$$(\Theta_0 + u_k \Theta_{z(k)})^{-1} = \Theta_0^{-1} + \frac{u_k}{1 + u_k \langle \Theta_0^{-1}, \Theta_{z(k)} \rangle} \Theta_0^{-1} \Theta_{z(k)} \Theta_0^{-1}$$
$$= \Theta_0^{-1} + u_k \Theta_0^{-1} \Theta_{z(k)} \Theta_0^{-1},$$

and

$$\sum_{k \in [K]} (\Theta_0 + u_k \Theta_{z(k)})^{-1} = K \Theta_0^{-1}.$$

Hence, the partial derivative with respect to Θ_0 is independent with the assignment z, and thus $\hat{\Theta}_0 = \tilde{\Theta}_0$.

Proof of Lemma 2. Very similar to Note 0626.

Proof of Lemma 3. First part is very similar to Note 0411.

For the second part, suppose we already have

$$\sum_{k \in [K]} \left\| \hat{\Omega}_k(\hat{z}(k)) - \Omega_k^*(z^*(k)) \right\|_F \le CK \sqrt{\frac{\log n \log p}{n}},$$

with high probability. We show $\ell(\hat{z}, z^*) \to 0$ as $n \to \infty$ by contradiction.

If $\ell(\hat{z}, z^*) \to c$, then there exist $k, k' \in [K]$ such that $\hat{z}(k) = \hat{z}(k') = a, a \in [R]$ and $z^*(k) = b, z^*(k') = c, b \neq c \in [R]$. Then, we have

$$\begin{split} \sum_{k \in [K]} \left\| \hat{\Omega}_k(\hat{z}(k)) - \Omega_k^*(z^*(k)) \right\|_F &\geq \left\| \hat{\Omega}_k(a) - \Omega_k^*(b) \right\|_F + \left\| \hat{\Omega}_{k'}(a) - \Omega_{k'}^*(c) \right\|_F \\ &\geq \left\| \hat{u}_k \hat{\Theta}_a - u_k^* \Theta_b^* \right\|_F + \left\| \hat{u}_{k'} \hat{\Theta}_a - u_{k'}^* \Theta_c^* \right\|_F - 2 \left\| \tilde{\Theta}_0 - \Theta^* \right\|_F \\ &\geq m \left\| \frac{u_k^*}{\hat{u}_k} \Theta_b^* - \frac{u_{k'}^*}{\hat{u}_{k'}} \Theta_c^* \right\|_F - 2 \left\| \tilde{\Theta}_0 - \Theta^* \right\|_F. \end{split}$$

Note that by Lemma 2, we have $\|\tilde{\Theta}_0 - \Theta_0^*\|_F \leq C_0 p \sqrt{\frac{\log p \log n}{nK}}$ with probability $1 - \mathcal{O}(1/n)$, and

$$\left\| \frac{u_k^*}{\hat{u}_k} \Theta_b^* - \frac{u_{k'}^*}{\hat{u}_{k'}} \Theta_c^* \right\|_F^2 \ge 2p \left[\frac{m^2}{M^2} \tau_1^2 - \frac{M^2}{m^2} \tau_2^2 \delta \right] > 2p \frac{M^2}{m^2} \tau_2^2 a > 0,$$

by the fact that $(u^*, \Theta^*) \in \mathcal{P}^*(z^*, \tau_1, \tau_2, \delta, m, M)$. This contradicts to the conclusion in Lemma 3.

Proof of Lemma 4. For first and second parts,	
Proof of Lemma 3.1. Very similar to the Proof of Theorem 3.1 in (Gao and Zhang, 2019).	

References

Gao, C. and Zhang, A. Y. (2019). Iterative algorithm for discrete structure recovery. $\underline{\text{arXiv preprint}}$ arXiv:1911.01018.