This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Russian Agency for Patents and Trademarks

(11) Publication number: RU 2105128 C1

(46) Date of publication: 19980220

(21) Application number: 95120663

(22) Date of filing: 19951201

(51) Int. Cl: E21B29/00

(71) Applicant: Aktsionernoe obshchestvo otkrytogo tipa "Sibirskij nauchno-isaledovatel'skij institut neftjanoj promyshlennosti"

(72) Inventor: Kolotov A.V., Ogorodnova A.B., Sukhinin N.P., Kolotov A.V., Ogorodnova A.B., Sukhinin N.P.

(73)Proprietor: Aktstonernoe obshchestvo otkrytogo tipa "Sibirskij nauchno-issledovatel'skij institut neftjanoj promyshlennosti"

(54) METHOD FOR RESTORING TIGHTNESS OF CASING STRINGS

(57) Abstract:

FIELD: oil and gas production industry. SUBSTANCE: this relates to repair and maintenance of casing strings and improving its efficiency. According to method, zone of disturbed tightness of casing string is covered from inside of casing string by patch made of deformable pipe produced from thermoplastic material, for example polyethylene. Excess pressure is created due to expansion of self-heating and self-expanding material such as limestone mixture for mining and drilling operations. Pipe produced of thermoplastic material is filled with this mixture before covering zone of disturbed tightness of casing string. EFFECT: higher efficiency. 2 cl.

RU 2105128 CI

(21) Application number: 95120663

(22) Date of filing: 19951201

(51) Int. Cl: E21B29/00

(56) References cited:

1. Блажевич В.А. в др. Справочник мастера по капитальному ремонту скважин. - М.: Недра, 1985, с. 163. 2. SU, авторское свидетельство, 1601130, ил. Е 21 В 29/10, 1990.

(71) Applicant: Акционерное общество открытого типа "Сибирский научно-исследовательский институт нефтяной промышленности"

(72) Inventor: Колотов А.В., Огороднова А.Б., Сухинин Н.П., Колотов А.В., Огороднова А.Б., Сухинин Н.П.,

(73) Proprietor: Акционерное общество открытого типа "Сибирский научно-исследовательский институт нефтяной промышленности"

(54) СПОСОБ ВОССТАНОВЛЕНИЯ ГЕРМЕТИЧНОСТИ ОБСАДНЫХ КОЛОНН

(57) Abstract:

Изобретение относится в области ремонтно-изолящионных работ и направлено на повышение эффективности. Суть изобретения: способ заключается в перекрытии зоны негерметичности обсадной колонны изнутри пластырем из деформируемой трубы, изготовленной из термопластичного материала, например полиэтилена, а избыточное давление создают за счет распирения саморазогревающегося и самораспиряющегося материала, например, СИГБ - смеси известковой для горных и буровых работ, которым заполняют трубу из термопластичного материала перед перекрытием зоны негерметичности обсадной колонны. 2 э.п. ф-лы. 1 табл.

Description [Описание изобретения]:

Изобретение относится к области ремонтно-изоляционных работ (РИР), а именно к способам восстановления герметичности обсадных колонн.

Известен способ восстановления герметичности обсадных колонн, включающий спуск колонны насосно-компрессорных труб (НКТ) ниже интервала нарушения обсадной колонны, закачивание тампонирующего раствора в НКТ при открытом затрубном пространстве, подъем НКТ выше расчетного уровня тампонирующего раствора в скважине, продавливание тампонирующего раствора за обсадную колонну при закрытом затрубном пространстве [1].

Недостатки аналога заключаются в том, что, во-первых, продавка тампонирующего раствора в заколонное пространство возможна только под высоким избыточным давлением, что небезопасно для целостности остальной части обсадной колонны, во-вторых из-за усадочности тампонирующих материалов результативность операций не превышает 50%.

Наиболее близким к изобретению по технической сущности является способ установки пластыря в интервале негереметичности обсадной колонны путем перекрытия зоны негерметичности изнутри пластырем из металлической трубы с последующим ее распирением за счет создания избыточного давления [2].

Недостатов известного способа завлючается в том, что пластырь выполнен из металла, а это не позволяет материал пластыря задавливать в свищ или трещину в обсадной колоние.

Задача заключается в повышении эффективности ремонтно-изолящионных работ при одновременном снижении трудозатрат.

Поставленная задача достигается тем, что в способе, включающем перекрытие зоны негерметичности обсадных колони измутри пластырем, выполненным в виде деформируемой трубы, расширение пластыря по всей длине путем создания избыточного давления, в качестве деформируемой трубы используют трубу из термопластичного материала, а избыточное давление создают за счет расширения саморазогревающегося и расширяющегося материала, которым заполняют трубу из термопластичного материала перед перекрытием зоны негерметичности обсадной колонны. В качестве термопластичного материала используют полиэтилен, а в качестве саморазогревающегося и самораспиряющегося материала используют сигБ - смесь известковую для горных и буровых работ.

СИГБ применяют, главным образом, при разрушении прочных хрушких материалов (скальные породы), бетонных и железобетонных изделий, каменных кладок, для добычи природного камия. Он представляет собой порошкообразный негорючий и невзрывоопасный материал, дающий с водой пелочную реакцию (рН 12). При сменивании порошка СИГБ с водой образуется суспензия (рабочая смесь), которая, будучи залита в шпур, сделанный в объекте, подлежащем разрушению, с течением времени скватывается, твердеет, одновременно увеличиваясь в объеме. Увеличение объема - следствие гидратации компонентов, вкодящих в состав СИГБ, приводит к развитию в шпуре гидратационного давления (более 40 МПа). Под действием гидратационного давления в теле объекта развиваются напряжения, приводящие к его разрушению (3).

Если суспензию СИГБ залить в трубу из термопластичного материала, то есть из материала, размятчающегося при нагревании, загерметизировать концы, то через 1,5 ч начиется реакция с выделением тепла и расширением СИГБ. Тепла выделяется достаточно, чтобы разогреть трубу до 110-120°С, а это выше температуры, при которой, например, полиятилен размитчается и проявляет повышенную техучесть. Труба увеличивается диаметре без разрушения, и в случае ес предварительного спуска в скважину в зону негерметичности обсадной колонны с натягом принивается в обсадной колонны, термопластичный материал проникает в свящ или трещину и после обсадной колонны в предварительного повреждений в обсадной колонне.

Пример реализации. Предположим, что на глубине 400 м эксплуатационная колонна диаметром 146 мм с толщиной стенок 8 мм имеет трещину шириной 2 мм и длиной 2 м.

Берут полвэтиленовую трубу длиной 4 м с наружным диаметром на 2 мм меньше внутреннего диаметра обсадной колонны в интервале негерметичности (т.е. 128 мм) и толщиной стенок 6 - 8 мм. Заглушают нижний конец труб. Готовит суспензию СИГБ, для чего берут 100 кг порошка и 30 л технической воды. Суспензию заливают в полиэтиленовую трубу. Герметизируют верхний конец труб и на колонне НКТ или тросике трубу спускают в зону негерметичности обсадной колонны.

Через 1,5 ч начинается реакция и происходят разогрев и раздувание полиэтиленовой трубы вплоть для соприкосновения со стенками обсадной колонны. Более того, поскольку материал трубы размягчен, он проникает и в трещину, таким образом дополнительно ее герметизирует.

RU 2105128 C1

После окончания реакции, которая протекает 0,5 - 1,0 ч, скважину оставляют в покое на 4 - 5 ч для восстановления температуры и затвердевания полиэтиленовой трубы. Затем колонну НКТ или тросии, на которых пластырь был спущен в скважину, поднимают на поверхность. В скважину спускают колонну бурильных труб с малогабаритным турбобуром, долотом или фрезой и разбуривают герметизирующие узлы и содержимое полиэтиленовой трубы. Колонну бурильных труб поднимают. Производят опрессовку обсадной колонны согласно действующим инструкциям.

Превыущества предлагаемого способа основываются на том, что повреждение в обсадной колоние изолируется более надежно за счет проникновения материала пластыря в свящ или трещину. К тому же пластырь из синтетического материала долговечнее, так как не подвержен коррозии.

Источники информации: 1. Блажевич В.А., Уметбаев В.Г. Справочник мастера по капитальному ремонту скважин. М., Недра, 1985, с.163.

- 2. Авторское свящетельство N 1601330, СССР, кл. Е 21 В 29/10, 1990 прототяп.
- 3. Инструкция по применению смеси известковой для горных и буровых работ (СИГБ). Изд. АО "Стройматериалы", 7 с.

RU 2105128 C1

Сlaims [Формула изобретения]:

- 1. Способ восстановления герметичности обсадных колони, включающий перекрытие зоны негерметичности изнутри пластырем, выполненным в виде деформируемой трубы, и распирение пластыря по всей длине путем создания избыточного давления, отличающийся тем, что в качестве деформируемой трубы используют трубу из термопластичного материала, а избыточное давление созданот за счет распирения саморазогревающегося и самораспиряющегося материала, которым заполняют трубу из термопластичного материала перед перекрытием зоны негерметичности обсадной колониы.
- 2. Способ по п.1, отличающийся тем, что в качестве термопластичного материала вспользуют полиэтилен.
- 3. Способ по пп.1 и 2, отличающийся тем, что в качестве саморазогревающегося и саморасширяющегося материала используют СИГБ смесь известковую для горных и буровых работ.

RU 2105128 C1

Drawing(s) [Yepremm]:

Характеристика СИГБ

Характеристика	Значение
1. Водо-смесевое отношение суспензии	0,3
2. Расход порошка на 1 м ³ объема, т	1,8
3. Растекаемость по конусу АзНИИ, см	20,0
4. Плотность суспензии, г/см	1,8
5. Время начала реакции гидратации при температуре 20-25°C, мин	около 90
6. Температура саморазогревания, °С	более 100
7. Сцепление камня с трубой, МПа	5,0
8. Сопротивление камня фильтрации воды, МПа	более 60,0
9. Давление при расширении, МПа	до 45,0