	<u></u>	
(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -4 x_1 - 7 x_2 \\ -x_1 + 7 x_2 \le 7 \\ -x_1 - 4 x_2 \le 7 \\ x_1 + 5 x_2 \le 5 \\ x_1 - x_2 \le 5 \\ -x_2 \le 1 \\ x_1 + 4 x_2 \le 6 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x =		
{2, 3}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{4,5}					
2° iterazione						

Esercizio 3. Un'industria di lavorazione del marmo ha due stabilimenti dove produce lastre di marmo di tre diverse qualità: bassa, media e alta. Per contratto, l'industria deve fornire a una ditta esterna almeno 45, 35 e 50 tonnellate di marmo di bassa, media e alta qualità, rispettivamente. La seguente tabella riporta le caratteristiche di produzione nei due diversi stabilimenti:

Stabilimento	costo giornaliero (euro)	produz	zione (tor	nnellate/giorno)
		bassa	media	alta
1	350	5	3	2
2	450	1	2	4

Determinare quanti giorni di lavoro sono necessari nei due stabilimenti per minimizzare i costi.

variabili decisionali e modello:	
COMANDI DI MADI AD	
COMANDI DI MATLAB	\neg
C=	

C=		
A=	b=	
Aeq=	beq=	
lb=	ub=	

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3)(1,4)(2	2,5)			
(3,5)(3,7)(4	(2,3)	x =		
(1,2)(1,3)(1	.,4)			
(3,5)(3,7)(4	(4,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,7) (4,3) (4,6) (5,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min \ 13 \ x_1 + 14 \ x_2 \\ 14 \ x_1 + 11 \ x_2 \ge 42 \\ 8 \ x_1 + 15 \ x_2 \ge 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 548 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	19	5	9	14	15	23	20
Volumi	105	10	163	333	369	34	30

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + (x_2 - 6)^2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 - x_2^2 \le 0, \quad x_1 - 5 \le 0\}.$$

Soluzioni del sis	Soluzioni del sistema LKT			imo	Mini	mo	Sella
x	λ	μ	globale	locale	globale	locale	
	(0,0)						
	(0,)						
	(0,-10)						
$(5,\sqrt{5})$							
$\left(5,-\sqrt{5}\right)$							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 - 4 x_2^2 + 4 x_1 - x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,4) , (-2,-5) , (3,3) e (-4,-2). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{5}{3}, \frac{11}{3}\right)$						

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -4 x_1 - 7 x_2 \\ -x_1 + 7 x_2 \le 7 \\ -x_1 - 4 x_2 \le 7 \\ x_1 + 5 x_2 \le 5 \\ x_1 - x_2 \le 5 \\ -x_2 \le 1 \\ x_1 + 4 x_2 \le 6 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-7, 0)	SI	NO
{2, 3}	y = (0, 13, 9, 0, 0, 0)	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{4, 5\}$	(4, -1)	(0, 0, 0, -4, 11, 0)	4	18, 7	2
2° iterazione	$\{2, 5\}$	(-3, -1)	(0, 4, 0, 0, -9, 0)	5	1, 13	1

Esercizio 3.

variabili decisionali:

c=[350 ; 450]

 $x_1 = \text{giorni di lavoro nello stabilimento } 1$

 $x_2 = \text{giorni di lavoro nello stabilimento } 2$

modello:
$$\begin{cases} \min 350 x_1 + 450 x_2 \\ 5 x_1 + x_2 \ge 45 \\ 3 x_1 + 2 x_2 \ge 35 \\ 2 x_1 + 4 x_2 \ge 50 \\ x_1, x_2 \ge 0. \end{cases}$$

COMANDI DI MATLAB

A=[-5-1;-3-2;-2-4] b=[-45;-35;-50]
Aeq=[] beq=[]

lb=[0; 0] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) (3,7) (4,6)	(2,3)	x = (0, 0, 5, 12, -5, 8, 10, 0, 2, 0, 0)	NO	$_{ m SI}$
(1,2) (1,3) (1,4)				
(3,5) (3,7) (4,6)	(4,3)	$\pi = (0, 9, 8, 5, 15, 14, 12)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,7) (4,3) (4,6) (5,7)	(1,3) (1,4) (2,3) (3,7) (4,6) (5,7)
Archi di U	(3,5)	(3,5)
x	(0, 0, 5, 7, 0, 6, 7, 0, 2, 3, 0)	(0, 0, 5, 7, 0, 6, 7, 0, 2, 3, 0)
π	(0, 3, 11, 5, 7, 14, 15)	(0, 0, 8, 5, 4, 14, 12)
Arco entrante	(1,3)	(3,5)
ϑ^+,ϑ^-	9 , 0	0,3
Arco uscente	(4,3)	(3,7)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		3		۷ِ	1	Ę	Ď		7	(5
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 3	9	1	9	1	9	1	9	1	9	1	9	1	9	1
nodo 4	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 5	$+\infty$	-1	18	2	12	3	12	3	12	3	12	3	12	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	24	4	24	4	24	4	24	4
nodo 7	$+\infty$	-1	$+\infty$	-1	23	3	23	3	18	5	18	5	18	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	4, 5	, 7	5, 6	5, 7	6,	7	(3	(Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	5	(0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 2 - 5 - 7	6	(6, 5, 0, 0, 6, 0, 5, 0, 0, 6, 0)	11
1 - 3 - 5 - 7	6	(6, 11, 0, 0, 6, 6, 5, 0, 0, 12, 0)	17
1 - 4 - 6 - 7	10	(6, 11, 10, 0, 6, 6, 5, 0, 10, 12, 10)	27

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 13 \ x_1 + 14 \ x_2 \\ 14 \ x_1 + 11 \ x_2 \ge 42 \\ 8 \ x_1 + 15 \ x_2 \ge 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{95}{61}, \frac{112}{61}\right)$$
 $v_I(P) = 46$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(2,2)$$
 $v_S(P) = 54$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 548 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	19	5	9	14	15	23	20
Volumi	105	10	163	333	369	34	30

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 1, 1, 0, 0, 1, 1)$$
 $v_I(P) = 76$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, 1, 1, \frac{206}{333}, 0, 1, 1\right)$$
 $v_S(P) = 84$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + (x_2 - 6)^2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1 - x_2^2 \le 0, x_1 - 5 \le 0}.$$

Soluzion	Soluzioni del sistema LKT						Sella
x	λ	λ μ ξ			globale	locale	
(0, 6)	(0,0)		NO	NO	SI	SI	NO
(1.76, 1.32)	(-3.52,0)		NO	NO	NO	NO	SI
(5, 6)	(0, -10)		NO	NO	NO	NO	SI
$\left(5, \sqrt{5}\right)$	$\left(1 - \frac{6\sqrt{5}}{5}, -11 + \frac{6\sqrt{5}}{5}\right)$		NO	SI	NO	NO	NO
$\left(5, -\sqrt{5}\right)$	$\left(1+\frac{6\sqrt{5}}{5},-11-\frac{6\sqrt{5}}{5}\right)$		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 - 4 x_2^2 + 4 x_1 - x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (1,4), (-2,-5), (3,3) e (-4,-2). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{5}{3}, \frac{11}{3}\right)$	(1, 2)	$\begin{pmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{pmatrix}$	$\left(-\frac{62}{3}, \frac{31}{3}\right)$	$\frac{1}{31}$	$\frac{1}{31}$	(1,4)