



利用 high resolution Radar sensors高分辨率雷达,detection 层能够感应现实targets的多次反射,从而提供丰富的测量vectors 矢量集(在某些情况下,每帧数千个矢量),称为点云 Point Cloud。每个测量向量代表一个reflection 反射点,具有Range范围,Azimuth方位角和Radial velocity径向速度。每个测量向量是可靠性信息。

Tracking 层将输入point cloud 点云数据,执行 target localization目标定位,并将结果(目标列表 a Target List)报告给classification 层。 因此,tracker 跟踪器的输出是一组具有某些属性(如 position, velocity, physical dimensions, point density, 位置,速度,物理尺寸,点密度和其他特征)的可跟踪对象,分类器可以使用这些属性来进行识别决策。

## 1.2. Radar Geometry

下图显示了,在时刻n时,的 single reflection 单个反射点。 现实生活中的雷达目标由多个反射点表示。 每个点都由 range, angle, and radial velocity (range rate) 范围,角度和径向速度(范围率)表示:

Range r, Rmin < r <

Azimuth angle  $arphi, -\phi_{max} < arphi < +\phi_{max}$  Radial velocity r

- Range r,  $R_{min} < r < R_{max}$
- Azimuth angle  $\varphi$ ,  $-\emptyset_{max} < \varphi < +\emptyset_{max}$
- Radial velocity  $\dot{r}$



Figure 2. Radar Geometry in 2D

## 1.3. Choice of Tracking Coordinate System

为了方便目标运动推测target motion extrapolation,我们选择在 Cartesian coordinates笛卡尔系中进行跟踪。 这允许简单的 Newtonian linear prediction 牛顿模型。

我们选择将测量输入保持在 polar 极坐标中以避免误差耦合coupling。 我们将使用EKF来跟踪状态和测量向量之间的相关性。

Tracking 可以在2D或3D笛卡尔空间中进行。 对于每个空间,我们使用CV恒定速度模型或CA恒定加速度模型。 (constant velocity model or constant acceleration model)

## 1.4 2D Space Geometry



Figure 3. Tracking in 2D

https://blog.csdn.net/djfjkj52

#### 角位置坐标转换为笛卡尔坐标使用

$$x = r \cos (\pi/2 - (\alpha + \varphi)) = r \sin (\alpha + \varphi)$$

$$y = r \sin (\pi/2 - (\alpha + \varphi)) = r \cos(\alpha + \varphi)$$

目的是使用距离,角度和多普勒(径向速度) range, angle, and Doppler (radial velocity) 的测量(带有噪声)来跟踪对象的位置

## 1.5. 2D Space, Constant Velocity Model

#### 我们使用卡尔曼滤波器来提取位置估计

卡尔曼滤波器在时刻n的状态定义为

$$s(n) = Fs(n-1) + w(n)$$

其中,状态向量s(n) 定义为笛卡尔坐标,匀速直线控制量为0无需控制矩阵

x(n)为点的横坐标

y(n)为点的纵坐标

*ẋ*(n)为点的横坐标速度分量

 $\dot{y}(n)$ 为点的纵坐标速度分量

 $\triangle t$ 为采样时间

$$s(n) \triangleq [x(n) \quad y(n) \quad \dot{x}(n) \quad \dot{y}(n)]^T$$

F预估转换矩阵为

$$\boldsymbol{F} = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

w(n) 是具有协方差矩阵Q(n) 的大小为 $4\times4$  的过程噪声的向量



## 观测:



Figure 3. Tracking in 2D

https://blog.csdn.net/djfjkj52

input 测量矢量u(n) 包括范围、角度和径向速度

$$\boldsymbol{u}(n) = [r(n) \quad \varphi(n) \quad \dot{r}(n)]^T$$

卡尔曼滤波器的状态与测量向量之间的关系表示为:

$$\boldsymbol{u}(n) = \boldsymbol{H}(\boldsymbol{s}(n)) + \boldsymbol{v}(n)$$

H预估转换矩阵为

$$\mathbf{H}(\mathbf{s}(n)) = \begin{bmatrix} \sqrt{x^2 + y^2} \\ \tan^{-1}(x, y) - \alpha \\ \frac{x\dot{x} + y\dot{y}}{\sqrt{x^2 + y^2}} \end{bmatrix},$$

其中,函数 $tan^{-1}(x,y)$ 被定义为

$$\tan^{-1}(x,y) \triangleq \begin{cases} \tan^{-1}\left(\frac{x}{y}\right), & y > 0, \\ \frac{\pi}{2}, & y = 0, \\ \tan^{-1}\left(\frac{x}{y}\right) + \pi, & y < 0. \end{cases}$$

#### v(n) 是具有协方差矩阵R(n) 的大小为 $3\times3$ 测量噪声的向量,

#### **EKF**

观测: (预估不用EKF)

在上述公式中,观测向量 $\mathbf{u}(n)$  通过非线性关系与估计状态向量 $\mathbf{s}(n)$  有非线性关系。因此,我们使用扩展卡尔曼滤波器(EKF),它通过只保留 $\mathbf{H}$ 的Taylor级数展开式中的第一项,简化了 $\mathbf{u}$  (n) 和 $\mathbf{s}$  (n) 之间的关系

$$oldsymbol{u}(n) = oldsymbol{H}(oldsymbol{s}_{apr}(n)) + oldsymbol{J}_{oldsymbol{H}}(oldsymbol{s}_{apr}(n)) * [oldsymbol{s}(n) - oldsymbol{s}_{apr}(n)] + oldsymbol{v}(n)$$

 $s_{apr}(n)$ 是先验估计(先验)基于n-1次测量的状态向量

$$J_{H}(s) = \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} & \frac{\partial r}{\partial \dot{x}} & \frac{\partial r}{\partial \dot{y}} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} & \frac{\partial \varphi}{\partial \dot{x}} & \frac{\partial \varphi}{\partial \dot{y}} \\ \frac{\partial \dot{r}}{\partial x} & \frac{\partial \dot{r}}{\partial y} & \frac{\partial \dot{r}}{\partial \dot{x}} & \frac{\partial \dot{r}}{\partial \dot{y}} \end{bmatrix}.$$

计算偏导数 (见下文附录)

$$J_{H}(s) = \begin{bmatrix} \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} & 0 & 0\\ \frac{y}{x^{2}+y^{2}} & -\frac{x}{x^{2}+y^{2}} & 0 & 0\\ \frac{y(\dot{x}y-\dot{y}x)}{(x^{2}+y^{2})^{3/2}} & \frac{x(\dot{y}x-\dot{x}y)}{(x^{2}+y^{2})^{3/2}} & \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \end{bmatrix}$$

## 1.6. 2D Space, Constant Acceleration Model

卡尔曼滤波器在时刻n的状态定义为

$$\boldsymbol{s}(n) = \boldsymbol{F}\boldsymbol{s}(n-1) + \boldsymbol{w}(n)$$

$$s(n) = [x(n) \quad y(n) \quad \dot{x}(n) \quad \dot{y}(n) \quad \ddot{x}(n) \quad \ddot{y}(n)],$$

F预估转换矩阵为

$$\boldsymbol{F} = \begin{bmatrix} 1 & 0 & T & 0 & 0.5T^2 & 0 \\ 0 & 1 & 0 & T & 0 & 0.5T^2 \\ 0 & 0 & 1 & 0 & T & 0 \\ 0 & 0 & 0 & 1 & 0 & T \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

w(n) 是具有协方差矩阵Q(n) 的大小为 $6\times6$  的过程噪声的向量

#### 观测:

input 测量矢量u(n) 包括范围、角度和径向速度

$$\boldsymbol{u}(n) = [r(n) \quad \varphi(n) \quad \dot{r}(n)]^T$$

卡尔曼滤波器的状态与测量向量之间的关系表示为:

$$\boldsymbol{u}(n) = \boldsymbol{H}(\boldsymbol{s}(n)) + \boldsymbol{v}(n)$$

H为预估的极坐标转换矩阵为

$$\mathbf{H}(\mathbf{s}(n)) = \begin{bmatrix} \sqrt{x^2 + y^2} \\ \tan^{-1}(x, y) - \alpha \\ \frac{x\dot{x} + y\dot{y}}{\sqrt{x^2 + y^2}} \end{bmatrix},$$

**EKF** 

观测: (TI本案例状态方程一般是线性的,不用展开,先转换成极坐标H)

在上述公式中,观测向量 $\mathbf{u}(n)$  通过非线性关系与估计状态向量 $\mathbf{s}(n)$  有非线性关系。因此,我们使用扩展卡尔曼滤波器(EKF),它通过只保留 $\mathbf{H}$ 的Taylor级数展开式中的第一项,简化了 $\mathbf{u}$  (n) 和 $\mathbf{s}$  (n) 之间的关系

$$\boldsymbol{u}(n) = \boldsymbol{H}(\boldsymbol{s}_{apr}(n)) + \boldsymbol{J}_{\boldsymbol{H}}(\boldsymbol{s}_{apr}(n)) * [\boldsymbol{s}(n) - \boldsymbol{s}_{apr}(n)] + \boldsymbol{v}(n)$$

 $s_{apr}(n)$ 是先验估计(先验)基于n-1次测量的状态向量

$$J_{H}(s) = \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} & \frac{\partial r}{\partial \dot{x}} & \frac{\partial r}{\partial \dot{y}} & \frac{\partial r}{\partial \ddot{x}} & \frac{\partial r}{\partial \ddot{y}} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} & \frac{\partial \varphi}{\partial \dot{x}} & \frac{\partial \varphi}{\partial \dot{y}} & \frac{\partial \varphi}{\partial \ddot{x}} & \frac{\partial \varphi}{\partial \ddot{y}} \\ \frac{\partial \dot{r}}{\partial x} & \frac{\partial \dot{r}}{\partial y} & \frac{\partial \dot{r}}{\partial \dot{x}} & \frac{\partial \dot{r}}{\partial \dot{y}} & \frac{\partial \dot{r}}{\partial \dot{x}} & \frac{\partial \dot{r}}{\partial \ddot{y}} \end{bmatrix}$$

$$J_{H}(s) = \begin{bmatrix} \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} & 0 & 0 & 0 & 0 \\ \frac{y}{x^{2}+y^{2}} & -\frac{x}{x^{2}+y^{2}} & 0 & 0 & 0 & 0 \\ \frac{y(\dot{x}y-\dot{y}x)}{(x^{2}+y^{2})^{3/2}} & \frac{x(\dot{y}x-\dot{x}y)}{(x^{2}+y^{2})^{3/2}} & \frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} & 0 & 0 \end{bmatrix}$$

## 1.7. 3D Space, Geometry



Figure 4. Tracking in 3D

https://blog.csdn.net/djfjkj52

传感器位于原点。 目标以速度向量移动。 测量矢量包括距离、方位角,俯仰角和径向速度

$$\mathbf{u}(n) = [r(n) \quad \varphi(n) \quad \theta(n) \quad \dot{r}(n)]^T$$

笛卡尔坐标中的状态向量将用于恒速模型,

$$\mathbf{s_{3DV}}(n) \triangleq \begin{bmatrix} x(n) & y(n) & z(n) & \dot{x}(n) & \dot{y}(n) & \dot{z}(n) \end{bmatrix}^{T}$$
 (1-20)

恒加速度模型,

$$\boldsymbol{s_{3DA}}(n) \triangleq [x(n) \quad y(n) \quad z(n) \quad \dot{x}(n) \quad \dot{y}(n) \quad \dot{z}(n) \quad \ddot{x}(n) \quad \ddot{y}(n) \quad \ddot{z}(n)]^T \quad (1-21)$$

# 1.8. 3D Space, Constant Velocity Model (3DV) and Constant Acceleration (3DA) models

卡尔曼滤波器在时刻n的状态定义为

$$\boldsymbol{s}(n) = \boldsymbol{F}\boldsymbol{s}(n-1) + \boldsymbol{w}(n)$$

F预估转换矩阵为

$$\boldsymbol{F_{3DV}} = \begin{bmatrix} 1 & 0 & 0 & T & 0 & 0 \\ 0 & 1 & 0 & 0 & T & 0 \\ 0 & 0 & 1 & 0 & 0 & T \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

or

$$F_{3DA} = \begin{bmatrix} 1 & 0 & 0 & T & 0 & 0 & 0.5T^2 & 0 & 0 \\ 0 & 1 & 0 & 0 & T & 0 & 0 & 0.5T^2 & 0 \\ 0 & 0 & 1 & 0 & 0 & T & 0 & 0 & 0.5T^2 \\ 0 & 0 & 0 & 1 & 0 & 0 & T & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & T & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & T \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

观测:

input 测量矢量u(n) 包括范围、角度和径向速度

$$\boldsymbol{u}(n) = [r(n) \quad \varphi(n) \quad \theta(n) \quad \dot{r}(n)]^T$$

卡尔曼滤波器的状态与测量向量之间的关系表示为:

$$\boldsymbol{u}(n) = \boldsymbol{H}(\boldsymbol{s}(n)) + \boldsymbol{v}(n)$$

H为预估的极坐标转换矩阵为

$$\mathbf{H}(\mathbf{s}(n)) = \begin{bmatrix} \sqrt{x^2 + y^2 + z^2} \\ \tan^{-1}(x, y) \\ \tan^{-1}(z, \sqrt{x^2 + y^2}) \\ \frac{x\dot{x} + y\dot{y} + z\dot{z}}{\sqrt{x^2 + y^2 + z^2}} \end{bmatrix},$$

**EKF** 

观测: (TI本案例状态方程一般是线性的,不用展开,先转换成极坐标H)

在上述公式中,观测向量u(n) 通过非线性关系与估计状态向量s(n) 有非线性关系。因此,我们使用扩展卡尔曼滤波器(EKF),它通过只保留H的Taylor级数展开式中的第一项,简化了u(n) 和s(n) 之间的关系

$$oldsymbol{u}(n) = oldsymbol{H}(oldsymbol{s}_{apr}(n)) + oldsymbol{J}_{oldsymbol{H}}(oldsymbol{s}_{apr}(n)) * [oldsymbol{s}(n) - oldsymbol{s}_{apr}(n)] + oldsymbol{v}(n)$$

 $s_{apr}(n)$ 是先验估计(先验)基于n-1次测量的状态向量

$$J_{H}(s) = \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} & \frac{\partial r}{\partial z} & \frac{\partial r}{\partial \dot{x}} & \frac{\partial r}{\partial \dot{y}} & \frac{\partial r}{\partial \dot{z}} \\ \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} & \frac{\partial \varphi}{\partial z} & \frac{\partial \varphi}{\partial \dot{x}} & \frac{\partial \varphi}{\partial \dot{y}} & \frac{\partial \varphi}{\partial \dot{z}} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} & \frac{\partial \theta}{\partial z} & \frac{\partial \theta}{\partial \dot{x}} & \frac{\partial \theta}{\partial \dot{y}} & \frac{\partial \theta}{\partial \dot{z}} \\ \frac{\partial \dot{r}}{\partial x} & \frac{\partial \dot{r}}{\partial y} & \frac{\partial \dot{r}}{\partial z} & \frac{\partial \dot{r}}{\partial \dot{x}} & \frac{\partial \dot{r}}{\partial \dot{y}} & \frac{\partial \dot{r}}{\partial \dot{z}} & \frac{\partial \dot{r}}{\partial \dot{z}} \end{bmatrix}.$$

$$J_{H}(s_{3DA}) = \begin{bmatrix} \frac{x}{r} & \frac{y}{r} & \frac{z}{r} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{y}{x^{2}+y^{2}} & -\frac{x}{x^{2}+y^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{x}{r^{2}} \frac{z}{\sqrt{x^{2}+y^{2}}} & -\frac{y}{r^{2}} \frac{z}{\sqrt{x^{2}+y^{2}}} & \frac{\sqrt{x^{2}+y^{2}}}{r^{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{y(\dot{x}y-\dot{y}x)+z(\dot{x}z-\dot{z}x)}{r^{3}} & \frac{x(\dot{y}x-\dot{x}y)+z(\dot{y}z-\dot{z}y)}{r^{3}} & \frac{x(\dot{z}x-\dot{x}z)+y(\dot{z}y-\dot{y}z)}{r^{3}} & \frac{x}{r} & \frac{y}{r} & \frac{z}{r} & 0 & 0 & 0 \end{bmatrix}$$

$$J_{H}(s_{3DA}) = \begin{bmatrix} \frac{x}{r} & \frac{y}{r} & \frac{z}{r} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{y}{x^{2}+y^{2}} & -\frac{x}{x^{2}+y^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{x}{r^{2}} \frac{z}{\sqrt{x^{2}+y^{2}}} & -\frac{y}{r^{2}} \frac{z}{\sqrt{x^{2}+y^{2}}} & \frac{\sqrt{x^{2}+y^{2}}}{r^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{y(\dot{x}y-\dot{y}x)+z(\dot{x}z-\dot{z}x)}{r^{3}} & \frac{x(\dot{y}x-\dot{x}y)+z(\dot{y}z-\dot{z}y)}{r^{3}} & \frac{x(\dot{z}x-\dot{x}z)+y(\dot{z}y-\dot{y}z)}{r^{3}} & \frac{x}{r} & \frac{y}{r} & \frac{z}{r} & 0 & 0 & 0 & 0 \end{bmatrix}$$

## 2. Kalman Filter Operations

#### 2.1. Prediction Step

## 2.2. Update Step

## 2.3. Design of Process Noise Matrix

Q(n) 的选择对于卡尔曼滤波器的行为很重要。 如果太小,则滤波器在其预测模型中会过分自信,并且会偏离实际解。 如果太大,则滤波器会受到测量噪声的太大影响,并且表现欠佳。

运动系统(可以使用牛顿运动方程式建模的系统)是连续的,即它们的输入和输出可以在任意时间点变化。但是,此处使用的卡尔曼滤波器是离散的。我们定期对系统进行采样。因此,我们必须在上式中找到噪声项的离散表示。这取决于我们对噪声行为做出的假设。我们将考虑两种不同的噪声模型。

## 2.3.1. Continuous White Noise Model 连续白噪声模型

假设我们需要对position, velocity, and acceleration位置,速度和加速度进行建模。然后我们可以假设每个离散时间步长的加速度都是恒定的(CA)。 当然,系统中存在过程噪声,因此加速度实际上不是恒定的。 跟踪的物体会由于外部未建模的力而随着时间改变加速度。 在本节中,我们将假设加速度以连续时间零均值白噪声变化(CV)。

由于噪声不断变化,我们将需要integrate 结合以获得针对所选discretization interval 离散化间隔的 discrete noise 离散噪声。 我们在这里不做证明,但是噪声离散化的方程是

$$Q = \int_0^{\Delta t} F(t) Q_c F^T(t) dt,$$

Q是连续噪声。

 $F(t)Q_cF^T(t)$ 是在t时刻基于F的连续噪声的投影

我们想知道在离散间隔Δt中向系统添加了多少噪声,因此我们在间隔[0, Δt]上对该表达式进行积分。

对于二阶牛顿系统,基本矩阵是

$$\boldsymbol{F} = \begin{bmatrix} 1 & \Delta t & \Delta t^2/2 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}.$$

我们现在将连续噪声定义为

$$\boldsymbol{Q}_c = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{\varPhi}_s$$

 $\Phi_s$ 是白噪声的频谱密度。

这可以导出,但超出了当前的任务范围。

在实践中,我们通常不知道噪声的频谱密度 spectral density of the noise,因此这变成了"工程"因素-我们通过实验调整这个数字,直到滤波器达到预期效果为止。

我们可以看到,将乘以的矩阵有效地将功率谱密度分配给了加速度项。

这很有道理: 我们假设系统具有恒定的加速度,但噪声引起的变化除外。噪音会改变加速度。

计算积分, 我们得到

$$oldsymbol{Q} = egin{bmatrix} rac{\Delta t^5}{20} & rac{\Delta t^4}{8} & rac{\Delta t^3}{6} \ rac{\Delta t^4}{8} & rac{\Delta t^3}{3} & rac{\Delta t^2}{2} \ rac{\Delta t^3}{6} & rac{\Delta t^2}{2} & \Delta t \end{bmatrix} \Phi_S$$

外推回到6个状态

## 2.3.2. Piecewise White Noise Model 分段白噪声模型

噪声的另一种模型假设最高阶项(例如,加速度)在每个时间段的持续时间内是恒定的,但在每个时间段都不同,并且每个时间段之间都是不相关的。换句话说,每个时间步长的加速度都有不连续的跳跃。这与上面的模型有细微的差别,在上面的模型中,我们假定最后一项施加了一个连续变化的噪声信号。

我们将此建模为

$$f(x) = \mathbf{F}x + \mathbf{\Gamma}w$$

其中 $\Gamma$  是系统的噪声增益gain of the system,而w是恒定的分段加速度(或速度或加速度,等)。

For the second order system 二阶系统

$$m{F} = egin{bmatrix} 1 & \Delta t & rac{\Delta t^2}{2} \ 0 & 1 & \Delta t \ 0 & 0 & 1 \end{bmatrix}$$

$$\Gamma = \begin{bmatrix} \Delta t^2/2 \\ \Delta t \\ 1 \end{bmatrix}$$

The covariance of the process noise is 过程噪声的协方差为

$$\mathbf{Q} = E[\mathbf{\Gamma} w(t)w(t)\mathbf{\Gamma}^T] = \mathbf{\Gamma} \sigma_v^2 \mathbf{\Gamma}^T$$

$$\boldsymbol{Q} = \begin{bmatrix} \frac{\Delta t^4}{4} & \frac{\Delta t^3}{2} & \frac{\Delta t^2}{2} \\ \frac{\Delta t^3}{2} & \Delta t^2 & \Delta t \end{bmatrix} \sigma_v^2$$

$$\begin{bmatrix} \frac{\Delta t^2}{2} & \Delta t & 1 \end{bmatrix}$$

目前尚不清楚该模型是否比连续模型更正确-两者都近似于实际物体所发生的情况。 只有经验和实验才能指导适当的模型。 可以预期,任何一个模型都能提供合理的结果,但通常一个模型的性能会优于另一个模型。

第二个模型的优点是我们可以用σ²建模噪声,可以用运动和期望的误差量来描述噪声。 第一个模型要求我们指定频谱密度,这不是很直观,但是由于噪声是在整个时间段内积分的,因此它更容易处理变化的时间样本。 但是,这些不是固定的规则-根据测试过滤器的性能和/或您对物理模型行为的了解,使用任何模型(或您自己设计的模型)。

一个好的经验法则是将  $\sigma$  设置为:0.5\* $\Delta a$ 至 $\Delta a$ ,

其中Δα是加速度在采样周期之间变化的最大值。

实际上,我们选择一个数字,对数据进行模拟,然后选择一个合适的值。