Factor Analysis

Prof. Dr. H. H. Takada

Quantitative Research – Itaú Asset Management Institute of Mathematics and Statistics – University of São Paulo

Factor Analysis

FA is essentially a probabilistic extension of Principal Components Analysis. It is very widely used in practice and one of the central tools in statistical analysis. ${\bf v}$ is 'visible' data vector. The dataset is then given by a set of vectors,

$$\mathcal{V} = \left\{ \mathbf{v}^1, \dots, \mathbf{v}^N \right\}$$

where $\dim(\mathbf{v}) = D$. Our interest is to find a lower H-dimensional probabilistic description of this data.

$$\mathbf{v} = \mathbf{F}\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon}$$

where the noise ϵ is Gaussian distributed,

$$oldsymbol{\epsilon} \sim \mathcal{N}\left(oldsymbol{\epsilon} | oldsymbol{0}, oldsymbol{\Psi}
ight)$$

Probabilistic PCA

$$\Psi = \sigma^2 \mathbf{I}$$

Factor Analysis

$$\Psi = \operatorname{diag}(\psi_1, \ldots, \psi_D)$$

A probabilistic description

$$p\left(\mathbf{v}|\mathbf{h}\right) = \mathcal{N}\left(\mathbf{v}|\mathbf{F}\mathbf{h} + \mathbf{c}, \mathbf{\Psi}\right) \propto e^{-\frac{1}{2}\left(\mathbf{v} - \mathbf{F}\mathbf{h} - \mathbf{c}\right)^{\mathsf{T}}\mathbf{\Psi}^{-1}\left(\mathbf{v} - \mathbf{F}\mathbf{h} - \mathbf{c}\right)}$$

To complete the model, we need to specify the hidden distribution $p(\mathbf{h})$. A convenient choice is a Gaussian

$$p(\mathbf{h}) = \mathcal{N}(\mathbf{h}|\mathbf{0}, \mathbf{I}) \propto e^{-\mathbf{h}^{\mathsf{T}}\mathbf{h}/2}$$
$$p(\mathbf{v}) = \int p(\mathbf{v}|\mathbf{h}) p(\mathbf{h}) d\mathbf{h} = \mathcal{N}(\mathbf{v}|\mathbf{c}, \mathbf{F}\mathbf{F}^{\mathsf{T}} + \mathbf{\Psi})$$

The coordinates $\mathbf h$ will be preferentially concentrated around values close to $\mathbf 0$. If we sample a $\mathbf h$ from $p(\mathbf h)$ and then draw a value for $\mathbf v$ using $p(\mathbf v|\mathbf h)$, the sampled $\mathbf v$ vectors would produce a saucer or 'pancake' of points in the $\mathbf v$ space. Using a correlated Gaussian prior $p(\mathbf h) = \mathcal N\left(\mathbf h|\mathbf 0, \mathbf \Sigma_H\right)$ has no effect on the complexity of the model since $\mathbf \Sigma_H$ can be absorbed into $\mathbf F$.

Pancakes

Figure: Factor Analysis: 1000 points generated from the model. (a): 1000 latent two-dimensional points \mathbf{h}^n sampled from $\mathcal{N}\left(\mathbf{h}|\mathbf{0},\mathbf{I}\right)$. These are transformed to a point on the three-dimensional plane by $\mathbf{x}_0^n = \mathbf{c} + \mathbf{F}\mathbf{h}^n$. The covariance of \mathbf{x}_0 is degenerate, with covariance matrix $\mathbf{F}\mathbf{F}^\mathsf{T}$. (b): For each point \mathbf{x}_0^n on the plane a random noise vector is drawn from $\mathcal{N}\left(\boldsymbol{\epsilon}|\mathbf{0},\mathbf{\Psi}\right)$ and added to the in-plane vector to form a sample \mathbf{x}^n , plotted in red. The distribution of points forms a 'pancake' in space. Points 'underneath' the plane are not shown.

Maximum Likelihood

For a set of data ${\cal V}$ and using the usual i.i.d. assumption, the log likelihood is

$$\log p(\mathcal{V}) = \sum_{n=1}^{N} \log p(\mathbf{v}^n) = -\frac{1}{2} \sum_{n=1}^{N} (\mathbf{v}^n - \mathbf{c})^\mathsf{T} \mathbf{\Sigma}_D^{-1} (\mathbf{v}^n - \mathbf{c}) - \frac{N}{2} \log \det (2\pi \mathbf{\Sigma}_D)$$

where

$$\mathbf{\Sigma}_D \equiv \mathbf{F}\mathbf{F}^\mathsf{T} + \mathbf{\Psi}$$

Differentiating $\log p(\mathcal{V})$ with respect to \mathbf{c} and equating to zero,

$$\mathbf{c} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{v}^n \equiv \bar{\mathbf{v}}$$

With this setting

$$\log p(\mathcal{V}) = -\frac{N}{2} \left(\operatorname{trace} \left(\mathbf{\Sigma}_D^{-1} \mathbf{S} \right) + \log \det \left(2\pi \mathbf{\Sigma}_D \right) \right)$$

where ${f S}$ is the sample covariance matrix

$$\mathbf{S} = \frac{1}{N} \sum_{\mathbf{v}}^{N} (\mathbf{v} - \bar{\mathbf{v}}) (\mathbf{v} - \bar{\mathbf{v}})^{\mathsf{T}}$$

Maximum Likelihood

First, let's fix Ψ and try to find the optimal F. Define

$$\tilde{\mathbf{S}} = \mathbf{\Psi}^{-\frac{1}{2}} \mathbf{S} \mathbf{\Psi}^{-\frac{1}{2}}$$

and consider the eigen-decomposition of $\tilde{\mathbf{S}}$

$$\tilde{\mathbf{S}} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\mathsf{T}$$

Then take the eigenvectors corresponding to the largest eigenvalues, to give the non-square matrix \mathbf{U}_H . Then one may show that, optimally

$$\mathbf{F} = \mathbf{\Psi}^{rac{1}{2}} \mathbf{U}_H \left(\mathbf{\Lambda}_H - \mathbf{I}_H
ight)^{rac{1}{2}} \mathbf{R}$$

where

$$\Lambda_H \equiv \operatorname{diag}(\lambda_1, \ldots, \lambda_H)$$

are the H largest eigenvalues of $\tilde{\mathbf{S}}$, and \mathbf{R} is an arbitrary orthogonal matrix.

Maximum Likelihood

Now, let's fix F and find the optimal $\Psi.$ One can show that this is given by

$$\boldsymbol{\Psi} = \operatorname{diag}\left(\mathbf{S} - \mathbf{F}\mathbf{F}^{\mathsf{T}}\right)$$

Optimising F and Ψ

A simple procedure to find the optimal F and Ψ is:

- 1. Update \mathbf{F} for fixed $\mathbf{\Psi}$.
- 2. Update Ψ for fixed F.

and iterate these steps until convergence.

Probabilistic PCA

In the special case that

$$\mathbf{\Psi} = \sigma^2 \mathbf{I}$$

one may equivalently write

$$\mathbf{F} = \mathbf{U}_H \left(\mathbf{\Lambda}_H - \sigma^2 \mathbf{I}_H \right)^{\frac{1}{2}} \mathbf{R}$$

where ${\bf R}$ is an arbitrary orthogonal matrix with ${\bf R}^{\sf T}{\bf R}={\bf I}$ and ${\bf U}_H$, ${\bf \Lambda}_H$ are the eigenvectors and corresponding eigenvalues of the sample covariance ${\bf S}$. Classical PCA is recovered in the limit $\sigma^2 \to 0$. Note that for a full correspondence with PCA, one needs to set ${\bf R}={\bf I}$, which points ${\bf F}$ along the principal directions.

Optimal σ^2

The Maximum Likelihood optimal setting for σ^2 is

$$\sigma^2 = \frac{1}{D-H} \sum_{j=H+1}^{D} \lambda_j$$

The single-shot training nature of PPCA makes it an attractive algorithm and also gives a useful initialisation for Factor Analysis.

pPCA versus FA

Figure: (a): 25 samples from the learned FA model of a dataset of handwritten '7s'. Note how the noise variance depends on the pixel, being zero for pixels on the boundary of the image. (b): 25 samples from the learned PPCA model.

Canonical Correlation Analysis

CCA is a classical method to associate data from two different spaces x and y (x might be a speech signal and y the corresponding video). It is straightforward to show that CCA is a limiting zero-noise case of a constrained FA model:

$$p(\mathbf{x}, \mathbf{y}) = \int p(\mathbf{x}|h)p(\mathbf{y}|h)p(h)dh$$

where

$$p(\mathbf{x}|h) = \mathcal{N}\left(\mathbf{x}|h\mathbf{a}, \boldsymbol{\Psi}_{x}\right), \quad p(\mathbf{y}|h) = \mathcal{N}\left(\mathbf{y}|h\mathbf{b}, \boldsymbol{\Psi}_{y}\right), \quad p(h) = \mathcal{N}\left(h|0,1\right)$$

a, b can be set by Maximum Likelihood.

Canonical Correlation Analysis. CCA corresponds to the latent variable model in which a common latent variable generates both the observed \boldsymbol{x} and \boldsymbol{y} variables. This is therefore a formed of constrained Factor Analysis.

The extension to vector \mathbf{h} is clear.

