ФПМИ, 3 курс, 9а группа Крагель Алина Олеговна ИСО

Исаченко Александр Николаевич

Лабораторная работа №7

Пабораторная работа
$$\stackrel{\text{No}}{\circ}$$
 $C = \begin{pmatrix} 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 3 & 2 & 3 & 7 & 6 \\ 3 & 3 & 2 & 3 & 4 & 3 \\ 8 & 7 & 2 & 9 & 6 & 7 \\ 9 & 8 & 2 & 5 & 6 & 7 \\ 3 & 8 & 2 & 3 & 5 & 8 \end{pmatrix}$

Начальный шаг. Приводим матрицу C сначала по строкам, затем — по столбцам. Приведенная матрица C имеет вид:

$$C' = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 5 & 4 \\ 1 & 1 & 0 & 1 & 2 & 1 \\ 6 & 5 & 0 & 7 & 4 & 5 \\ 7 & 6 & 0 & 3 & 4 & 5 \\ 1 & 6 & 0 & 1 & 3 & 6 \end{pmatrix}$$

Итерация 1. Строим для приведенной матрицы C сеть:

1.

На последней итерации алгоритма Форда-Фалкерсона получим:

S	s1	s2	s3	s4	s5	s6	tl	<i>t</i> 2	t3	<i>t</i> 4	<i>t</i> 5	<i>t</i> 6	t	v
(-, ∞)		$(s^+,1)$	$(t_3,1)$	$(s^+,1)$	$(s^+,1)$	$(s^+,1)$			$(s_3^+, 1)$					2

Значение максимального потока v = 2. Это меньше 6, поэтому необходимо преобразовать сеть. Имеем: S " = {2, 3, 4, 5, 6}, T "= {1, 2, 4, 5, 6}.

Находим $\bar{c} = \min_{i \in S^*, j \in T^*}(c_{ij}) = 1$. Преобразуем приведенную матрицу, вычитая элемент из всех элементов в строках с номерами из S" и добавляя к элементам столбцов с номерами, не вошедшими в T". Матрица C' примет вид:

$$C' = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 4 & 0 & 6 & 3 & 4 \\ 6 & 5 & 0 & 2 & 3 & 4 \\ 0 & 5 & 0 & 0 & 2 & 5 \end{pmatrix}$$

Итерация 2. Получим следующую сеть (пропускные способности всех дуг 1):

На последней итерации алгоритма Форда-Фалкерсона получим:

S	s1	<i>s</i> 2	<i>s3</i>	s4	s5	<i>s</i> 6	tl	<i>t</i> 2	t3	<i>t</i> 4	<i>t</i> 5	<i>t</i> 6	t	v
(-, ∞)				$(t_3^-, 1)$	$(s^+,1)$				$(s4^+,1)$					5

Значение максимального потока v = 5. Снова меньше 6, преобразуем сеть.

Имеем: S " =
$$\{4,5\}$$
, T "= $\{1,2,4,5,6\}$. Находим $\bar{c} = \min_{i \in S', j \in T} (c_{ij}) = 3$. Преобразуем приведенную матрицу:

$$C' = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 4 & 3 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 4 & 1 & 2 \\ 4 & 3 & 0 & 0 & 1 & 2 \\ 0 & 5 & 2 & 0 & 2 & 5 \end{pmatrix}$$

Итерация 3. Сеть (пропускные способности всех дуг все так же 1):

Значение максимального потока v = 6. Решение получено.

Имеем назначение: $x_{15} = x_{22} = x_{36} = x_{43} = x_{54} = x_{61} = 1$. Значение целевой функции равно 18.

$$A = \begin{pmatrix} 5 & 9 & 2 & 7 & 3 & 5 \\ 6 & 8 & 7 & 6 & 5 & 3 \\ 4 & 6 & 5 & 3 & 3 & 4 \\ 4 & 2 & 7 & 3 & 3 & 3 \\ 3 & 3 & 5 & 2 & 4 & 4 \\ 5 & 3 & 9 & 5 & 3 & 2 \end{pmatrix}$$

Возьмем назначение:
$$P_0 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$
 Имеем $F(P_0) = 3$. Строим двудольный граф:

Финальный вид таблицы алгоритма Кенига-Эгервари:

	1	2	3	4	5	6	1 6 p 2
1			*		*	1	-6
2	1					*	-1
3		1		*	*		-2
4		*	1	*	*	*	-3
5	*	*		*	1		-5
6		*		1	*	*	-4
	+6	+2	+6	+2	+2	+5	

Количество ребер в максимальном паросочетании равно 6. Возьмем новую подстановку:

$$P_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 2 & 3 & 5 & 1 \end{pmatrix}$$

Для нее имеем $F(P_1) = 4$. Строим двудольный граф:

Финальный вид таблицы алгоритма Кенига-Эгервари:

	1	2	3	4	5	6	
1			*		*	1	
2					1	*	
3	*	1		*	*	*	-2
4	*	*	1	*	*	*	-3
5	*	*		*	*	*	-
6	1	*			*	*	-1
	+1	+1	+6	+1			

Двудольный граф имеет максимальное паросочетание с 5 ребрами. Следовательно, назначение P_1 оптимально.