CEL459: River Mechanics Major

Marks: 40

Time: 2 Hours
Assume missing data suitably. Equation hints are given at end.
Solve the following:

Q.1 Derive the correlation for concentration profile in the flow of multisized particles through pipeline with all the intermediate steps.

[6]

Q.2 Derive the following expression for multisized particulate flow through open channel:

$$G_{j} = \frac{v_{j}}{\left[1 - e^{-K_{j}N}\right]} HK_{j}$$

The notations have their usual meaning.

14

Q.3 Find out the concentration of solids at 20cm above bottom in an open channel using the following data: Flow depth = 25 cm; Flow velocity = 2.5 m/s; Bed slope = 0.001; Channel width = 20 cm; Solids specific gravity = 2.65 (sand). Carrier fluid is water. Solids size consist:

Mean diameter (cm)	Percent by weight	Fall velocity w _{jo} (m/s)	
0.00300	40	0.0055	
0.00100	20	0.0025	
0.00025	40	0.0015	

Slurry concentration = 12 % by volume. Static settled concentration = 55% by volume.

Q.4 (a) Explain the experimental method with equations involved in the determination of static settled

(b) Plot shear stress vs. shear rate curves for thixotropic and rheopectic fluids. [3]

Q.5 (a) Derive the expression for friction factor in laminar flow of Newtonian and Power-law fluid through

(b) Derive the expression for discharge in laminar flow of Bingham-Plastic and Herschel-Bulkley fluid through pipeline.

Q.6 Determine the type of flow (laminar or turbulent) for the following data:

[6]
Flow Rate (O)

Flow Rate (Q)	data.	
Pipe Inside Diameter (D)	m /hr	600
Herschel-Bulkley Yield Stress (typ)	mm Pa	250
X YH'		
n	Pa.s	6.0
Slurry Density (p)	-	0.035
Wall Shear Stress (t)	kg/m³	0.95
	Pa	1160
$\epsilon_0 = 0.1 \text{Hy}.$ $\beta = 1.0 + 0.125 \text{e}^{4 \text{mc}_{\text{m}} \text{cm}}$	10	9.2

$$\frac{r_{NN} + K \left(\frac{8V_{mn}}{D_{max}} \right)^{2}}{r_{NN} + K \left(\frac{8V_{mn}}{D_{max}} \right)^{2}}; \qquad \pi R^{3} n \left(\frac{\tau_{n}}{K} \right)^{1-n} (1-\phi)^{n-1/2} \times \left\{ \frac{(1-\phi)^{2}}{3n+1} + \frac{2\phi(1-\phi)}{2n+1} + \frac{\phi^{2}}{n+1} \right\}$$

$$\frac{nR}{(n+1)} \left(\frac{\tau_{n}}{K} \right)^{1-n} (1-\phi)^{n-1/2} \times \left\{ \frac{(1-\phi)^{2}}{3n+1} + \frac{2\phi(1-\phi)}{2n+1} + \frac{\phi^{2}}{n+1} \right\}$$