Vis à Billes

SPECIFICATIONS TECHNIQUES

Description

Recirculation de billes: les écrous sont pourvus d'une recirculation de billes par pions ou par tube, pleinement intégrés dans le corps de l'écrou.

<u>Précision</u>: Les vis à billes sont fabriquées en série avec une précision de pas de \pm 0,052 mm / 300 mm (classe G7). Des précisions atteignant la classe G5 (\pm 0,023 mm / 300 mm) sont possibles sur demande.

<u>Jeu axial réduit</u>: un jeu axial réduit jusqu'à = 0,01 mm est possible en cas de besoin (uniquement pour unités de vis / écrous montées ou appariées).

<u>Températures d'utilisation</u>: dans le cas d'une application normale: -20° C à $+80^{\circ}$ C.

Rendement : par expérience, le rendement η se situe, pour les vis à billes à plus de 0,9.

Racleurs: des racleurs en matière plastique ou des racleurs à brosse sont utilisés suivant le type d'écrou.

Si l'écrou doit être séparé de la vis, les billes doivent être maintenues dans l'écrou par un manchon de diamètre extérieur d_0 - 0,1/0,2 mm.

Matériaux, traitement thermique et revêtement de protection

Vis: acier au carbone, trempé par induction CF 53 N. **Ecrou**: acier trempé suivant type et écrou: acier 100 C₆, trempé et phosphaté suivant type.

Billes: acier 100 C₆.

La dureté aux points de contact est de 56-60 HRc.

Lubrification

Un lubrifiant a pour rôle principal d'éviter le contact métallique entre les éléments en mouvement. Il protège également contre la corrosion et réduit l'usure.

D'une manière générale, le choix d'un lubrifiant pour une vis à billes est similaire à celui d'un palier à roulement. Pour la plupart des applications, une lubrification à la graisse convient, vis et palier supports pouvant utiliser le même lubrifiant.

En standard, une graisse au lithium (viscosité 30-140 cSt - 40°C -) ou une huile de turbine n°1 ou n°3 viscosité 32-68 grade ISO) sont conseillées.

Pour une utilisation à haute vitesse, nous recommandons une huile ou une graisse à basse viscosité. Pour un fonctionnement à basse vitesse, ou fonctionnement oscillant, nous conseillons d'employer une graisse de haute viscosité.

Conseil d'utilisation

Eviter les charges radiales

Pour une bonne utilisation d'une vis à roulement, il faut éviter toute composante radiale sur l'écrou. Les vis à billes sont conçues pour supporter des charges axiales. Toute charge radiale ou couple de renversement sur l'écrou, surchargeant certains éléments roulants, réduira sensiblement la durée de vie.

Dimension maximum des extrémités

Le diamètre des extrémités de vis ne doit pas dépasser le diamètre à fond de filet. Sinon des traces de filetage resteront apparentes sur les portées où l'extrémité doit être usinée en rapportant un embout sur la vis.

Température

La plage normale d'utilisation d'une vis à billes est : — 20°C / + 80°C.

Propreté

La propreté des vis est un facteur important pour leur bon fonctionnement. Avant montage, il est conseillé de les stocker dans leur gaine plastique.

Dans certains cas la protection des vis et du lubrifiant contre des impuretés peut être réalisée par des soufflets.

Ecrou séparé de la vis

L'écrou ne doit jamais être séparé de sa vis sans l'utilisation d'un manchon pour maintenir les billes en position.

- 1- Accoler le manchon contre le filetage de la vis (schéma a ou b).
- Si le manchon ne peut être monté sur la portée proche du filetage de la vis, utiliser du ruban adhésif (schéma c).
- 2- Visser l'écrou sur la vis sans effort.

Charge statique de base

Charge constante axiale et centrée pour laquelle la déformation permanente totale de l'un des chemins de roulement et de l'élément roulant la plus chargé atteint 0,0001 du diamètre de cet élément. Cette charge ne doit pas dépasser C₀.

Charge dynamique de base

Charge constante axiale et centrée pour laquelle 90 % de vis à roulement apparemment identiques, fonctionnant dans les mêmes conditions atteignent ou dépassent une durée de vie de 1 million de tours sans apparition de signes de fatigue (écaillage). Les chapitres suivants permettent le dimensionnement correct d'une vis en fonction de l'application :

- charge statique de base
- charge dynamique de base
- rendement, couple et puissance
- vitesse limite
- vitesse critique d'une vis en rotation
- flambage (vis en compression).

Vitesse critique d'une vis en rotation

Pour des applications avec vis tournante, on limite habituellement la vitesse de rotation maximum à

n = 80% de la première vitesse critique.

$$n = 1.2 \times 10^8 \times \frac{a \times d_o}{L^2} \text{ en (t/mn)}$$

 d_0 = diamètre à fond de filet de la vis (mm).

L = distance entre les centres des «paliers» support de vis (mm).

a = facteur caractérisant le montage.

a = facteur	de montage
	а
croquis 1	0,356
croquis 2	1
croquis 3	1,56
croquis 4	2,27

Vitesse limite du système vis-écrou

La vitesse limite admissible est définie par le nombre de tours minute multiplié par le diamètre nominal de la vis.

Valeur maximale de n x Dn = 80 000

Exemple de vitesse limite admissible d'une système vis-écrou RM 40 x 10 :

8000 = 2000 t/mn

FLAMBAGE

Si la vis supporte une charge en compression, elle doit être vérifiée au flambage.

La charge maximum de compression avec un facteur de sécurité de 20 % est :

$$F = \frac{1,017 \times 10^5 \times b \times d_0^4}{L^2} \text{ en (N)}$$

 d_0 = diamètre à fond de filet (mm).

L = distance entre le centre de l'écrou et le centre du palier à vis (mm).

b = facteur caractérisant le type de montage.

valeur de	eb:
	b
croquis 1	0,25
croquis 3	1
croquis 3	2
croquis 4	4

COUPLE ET PUISSANCE

Quand on conçoit une machine, un des facteurs importants est celui du couple moteur nécessaire à un entraînement correct des axes. Il faut connaître autant que possible toutes les valeurs de charge qui se reportent sur les vis pour pouvoir sélectionner le moteur qui convient. Il y a deux systèmes principaux d'entraînement, qui diffèrent dans la forme même d'entraînement de l'élément moteur :

a : Couple nécessaire pour déplacer l'autre élément (transformation de rotation en translation)

$$M_{a} = \frac{F_{\text{max}} \times P \times S}{2000 \times \pi \times \eta}$$

Puissance motrice nécessaire

$$P_a = \frac{M_a \times n}{9550}$$

b : Couple engendré en appliquant une force axiale (transformation de translation en rotation)

$$M_a = \frac{F_q \times P \times S \times \eta'}{2000 \times \pi}$$

Ma = Couple nécessaire (Nm)

 F_{max} = Charge maximum (N)

P = Pas de filetage (mm)

S = Facteur de sécurité (1,25 à 2)

η = Rendement mécanique (>0,9)

P_a = Puissance moteur (Kw)

n = Vitesse de rotation (tr/mn)

 $M_{a'}$ = Couple produit (Nm)

Fa = Force appliquée (N)

 η' = Rendement mécanique (<0,7)

VIS A BILLES ROULEE **CLASSE G7**

¥ECROUNORME DIN. 69051/5

					D	im e nsio ı	ns en mn	n				
RŽfŽre nc e	-	Pas	d ₁	d۰	D ₁	D ₄	D۶	D ₆	L±1	Lı	L₃	L ₇
					g6		H13	h13	±1	±2	± 0,5	h13
RM 1605 FK	16	5	15,6	12,7	28	38	5,5	48	48,5	10	5,5	10
RM 2005 FK	20	5	19,6	16,7	36	47	6,6	58	48,5	10	5,5	10
RM 2020 FH	20	20	19,6	16,7	36	47	6,6	58	59	20	14	10
RM 2505 FK	25	5	24,6	21,7	40	51	6,6	62	49	10	6	10
RM 2510 FH	25	10	24,6	21,7	40	51	6,6	62	51	9	16	10
RM 2525 FH	25	25	24,6	21,7	40	51	6,6	62	71	20	15,5	10
RM 3205 FK	32	5	31,6	28,7	50	65	9	80	57	10	6	12
RM 3210 FK	32	10	31,6	27,1	50	65	9	80	73	16	6	12
RM 3220 FH	32	20	31,6	27,1	50	71	9	86	83	25	19	12
RM 4005 FK	40	5	39,6	36,7	63	78	9	93	66	10	7	14
RM 4010 FK	40	10	39,6	34	63	78	9	93	88,5	16	7	14
RM 4020 FH	40	20	39,6	34,6	63	78	9	93	83	25	19,5	14
RM 4040 FH	40	40	39,6	34	70	85	9	100	104	25	21	14
RM 5010 FK	50	10	49,5	43,8	75	93	11	110	92	16	7	16
RM 5020 FH	50	20	49,5	43,2	75	93	11	110	85	25	22	16
RM 6310 FK	63	10	62,5	56,9	90	108	11	125	103,5	16	7	18
RM 6320 FH	63	20	62,5	56,9	95	115	13,5	135	86	18	24	20
RM 8010 FK	80	10	79,5	73,9	105	125	13,5	145	121	16	9	20

	_	_	Moment	C ha	rg e s	Po	o id s	Long.	
L ₈	Type d Øcrou	Je u a xia l	dÕiertie kg/mm²	Dyn	Sta t	Ec ro u	V is	max. des vis	RŽfŽre nc e s
h13			kg / mm	kN	kN	kg	kg/M	en M	
40	1	0,09	54	9,5	10,9	0,25	1,2	1,5	RM 1605 FK
44	1	0,09	125	11,5	15,5	0,35	2	2	RM 2005 FK
44	1	0,09	140	11,5	17,5	0,45	1,9	2	RM 2020 FH
48	1	0,09	165	13,1	20,2	0,37	3,3	2,5	RM 2505 FK
48	1	0,09	170	22,9	41,2	0,45	3,3	2,5	RM 2510 FH
48	1	0,09	200	13	22,6	0,55	3,3	2,5	RM 2525 FH
62	1	0,09	525	19,3	36,3	0,7	5,6	6	RM 3205 FK
62	1	0,15	565	26,4	39	0,8	5,3	6	RM 3210 FK
68	1	0,15	920	47,2	83,2	1,4	5,3	6	RM 3220 FH
70	2	0,09	1 260	26,3	59,2	1,2	9	6	RM 4005 FK
70	2	0,18	1 390	64,9	109	1,4	8,3	6	RM 4010 FK
70	2	0,15	1 390	52,2	103,6	1,6	7,6	6	RM 4020 FH
77	2	0,18	2 370	59,7	108,9	2,4	8,4	6	RM 4040 FH
85	2	0,18	2 920	66,4	134,3	2	13,5	6	RM 5010 FK
85	2	0,16	2 870	78,8	188,7	2,2	13,5	6	RM 5020 FH
95	2	0,18	5 840	93,8	229,7	3	22	6	RM 6310 FK
100	2	0,18	7 750	103,1	270,8	3,8	22	6	RM 6320 FH
110	2	0,18	11 000	121,9	374,9	3,9	36,4	7	RM 8010 FK
130	2	0,20	13 850	176,4	396,7	9,1	34,5	7	RM 8020 FK

125

145

70,4

165

160,5

13,5

25

25

RM 8020 FK

20

VIS A BILLES ROULEE CLASSE G7

• ECROU A NEZ FILETE

				Dim	ension	s en	mm					Cha	irges	Moment	Datala
Référence			D ₁			D13	L	L ₁₁	L ₁₂	L ₁₃	Jeu	Dyn.	Stat.	d'inertie	Poids
	Ø	Pas	h12	D11	D ₁₂	± 0,1	± 1	± 0,5	± 2	± 2	axial	(kN)	(kN)	kg mm²	kg
RM 2005ZG	20	5	38	M35x1,5	M6x1	4	57,5	16,5	10,5	22	0,09	14,8	20,7	73	0,3
RM 2505ZG	25	5	42	M40x1,5	M6x1	4	63,5	17	10,5	23	0,09	20,4	33,7	116	0,37
RM 2510ZG	25	10	42	M40x1,5	M6x1	4	61	17	10	21	0,09	19,9	31,8	120	0,38
RM 3205ZG	32	5	52	M48x1,5	M6x1	5	65,5	19	10,5	23	0,09	23,3	45,5	266	0,55
RM 3210ZG	32	10	52	M48x1,5	M6x1	5	85	19	12	43	0,15	33,8	52	326	0,65
RM 4005ZG	40	5	58	M56x1,5	M8x1	5	67,5	19	12	22,5	0,09	26,3	59,2	391	0,60
RM 4010ZG	40	10	65	M60x2	M8x1	6	105,5	27	13	43	0,18	78,6	136,2	973	1,25
RM 5010ZG	50	10	78	M72x2	M8x1	6	118	29	13	53	0,18	97,8	213,2	2 200	1,95
RM 6310ZG	63	10	92	M85x2	M8x1	6	118	29	13	53	0,18	109,7	275,6	3 940	2,4
RM 8010ZG	80	10	120	M110x2	M8x1	8	126	34	15,5	53	0,18	121,9	375	13 100	4,9
RM 8020ZG	80	20	120	M110x2	M8x1	8	187	39	18	83	0,26	213,7	496	17 600	6,3

 $d_{^{\scriptscriptstyle 0}}, d_{^{\scriptscriptstyle 1}}$: même valeur que dans le tableau de vis RM.

TÉL: 01 39 14 32 32

VIS A BILLES DE PRECISION, CLASSE 25 MICRONS (G5)

• AVEC ECROU PRÉCHARGÉ DIN 69051/5

					Dime	ens	ions	en mr	n				Lg de la vis (m)	Cha	rges	Moment	Poids	s kg
Référence			Dı	D ₄	D₅	Type	D ₆	L	L ₁	L ₃	L7	L ₈	Tenue	Dyn	Stat	d'inertie		Vis
	Ø	Pas	g6		H13	<u>_</u>	H13	±1	+2	± 0,5	h13	h13	stock*	kN	kN	kg/mm²	Ecrou	kg/m
RM1605 FL	16	5	28	38	5,5	1	48	48,5	10	5,5	10	40	1	9,5	10,9	54	0,25	1,2
RM2005 FL	20	5	36	47	6,6	1	58	48,5	10	5,5	10	44	1,2	11,5	15,5	125	0,35	2
RM2505 FL	25	5	40	51	6,6	1	62	49	10	6	10	48	1,5	13,1	20,2	165	0,37	3,3
RM3205 FL	32	5	50	65	9	1	80	57	10	6	12	62	2	19,3	36,3	525	0,7	5,6
RM3210 FL	32	10	50	65	9	1	80	73	16	6	12	62	2	26,4	39	565	0,8	5,3
RM4005 FL	40	5	63	78	9	2	93	66	10	7	14	70	2,5	26,3	59,2	1 260	1,2	9
RM4010 FL	40	10	63	78	9	2	93	88,5	16	7	14	70	2,5	64,9	109	1 390	1,4	8,3
RM5010 FL	50	10	75	93	11	2	110	92	16	7	16	85	3	66,4	134,3	2 920	2	13,5
RM6310 FL	63	10	90	108	11	2	125	103,5	16	7	18	95	3	93,8	229,7	5 840	3	22
RM8010 FL	80	10	105	125	13,5	2	145	121	16	9	20	110	4,4	121,9	375	11 000	3,9	36,4
RM8020 FL	80	20	125	145	13,5	2	165	160,5	25	9	25	130	4,4	176,4	396,7	13 850	9,1	34,5

^{*} Sur la longueur de la vis est monté 1 écrou

 d_{\circ} , d_{1} : même valeur que dans le tableau de vis classe G7.

• SERIE ZYI, ZYR

Ré	éférence				Dir	mensio	ns en mn	n				Capacité	de charge
	ð x pas	d_1	d_0	D_1	L _n	L_3	i	b	t	$SA^{1)}$	T	C_{dyn}	C_{stat}
	эл раз			g6				P9				N	N
ZYI	6 x 1	6,0	5,0	12	14	8	3 x 1	2	1,0	_	0,03	600	1 000
ZYI	8 x 1	8,0	7,0	14	14	8	3 x 1	2	1,2	_	0,03	700	1 200
ZYI	8 x 1,5	8,0	6,7	14	14	8	3 x 1	2	1,2	_	0,04	800	1 300
ZYI	8 x 3	8,0	6,7	14	12	8	2 x 1	2	1,2	_	0,05	950	1 500
ZYI	10 x 2	9,7	8,2	18	14	10	2 x 1	3	1,2	_	0,06	1 250	2 100
ZYI	12 x 2	12,0	10,6	20	15	10	2 x 1	3	1,2	_	0,06	1 380	2 500
ZYI	16 x 5 (2)	15,7	13	30	43	16	3 x 1	4	2,5	Κ	0,07	9 700	22 000
ZYI	20 x 5 (2)	19,5	16,5	33	45	20	3 x 1	4	2,5	Κ	0,07	10 800	25 000
ZYI	25 x 5	24,6	21,5	38	50	20	3 x 1	4	2,5	Κ	0,07	11 700	30 000
ZYI	35 x 5	29,6	26,6	48	48	20	4 x 1	5	3,0	K	0,07	19 000	54 000
ZYR	8 x 2	8,0	6,5	16	14	8	1 x 3,5	2	1,2	_	0,06	2 000	3 200
ZYR	8 x 2,5	8,0	6,6	18	16	10	1 x 3,5	3	2,0	_	0,06	2 000	3 200
ZYR	10 x 3 (2)	9,9	7,8	22	24	10	1 x 3,5	3	2,0	_	0,06	2 800	5 000
ZYR	10 x 3 K ⁽²⁾	9,9	7,8	22	24	10	1 x 3,5	3	2,0	Κ	0,06	2 800	5 000
ZYR	12 x 4	12,0	9,8	26	24	10	1 x 3,5	3	1,8	_	0,07	5 500	11 000
ZYR	12 x 4 K	12,0	9,8	26	32	10	1 x 3,5	3	1,8	Κ	0,07	5 500	11 000
ZYR	14 x 4 (2)	14,0	11,5	29	24	16	1 x 3,5	4	2,5	_	0,07	8 100	16 000
ZYR	14 x 4 K ⁽²⁾	14,0	11,5	29	32	16	1 x 3,5	4	2,5	K	0,07	8 100	16 000

<u>Légende :</u>

= nombre de circuits de billes

SA = racleur

K = matière plastiqueB = racleur à brosse

T = jeu axial standard

1) = les écrous avec racleurs sont munis d'un trou de lubrification ; position non-défini

²⁾ = type/dimension disponible avec filet à gauche aussi

TÉL: 01 39 14 32 32 FAX: 01 39 14 23 23

• SERIE FGR, FGI

RÁI	férence				Dimer	sions	en m	m				Capacité (de charge
	x pas	d ₁	d _o	D ₁	М	L _n	L ₂	i	B ³⁾	SA ¹⁾	T	C _{dyn}	C _{stat} N
FGR	8 x 2,5	8,0	6,6	17,5	M15 x 1	24	8	1 x 3,5	2,5	_	0,06	2 000	3 200
FGR	10 x 2	9,7	8,2	19,5	M17 x 1	22	7	1 x 2,5	2,5	_	0,06	1 700	2 800
FGR	10 x 3 ⁽²⁾	9,9	7,8	21	M18 x 1	29	9	1 x 3,5	3	_	0,06	2 800	5 000
FGR	10 x 3K ⁽²⁾	9,9	7,8	21	M18 x 1	29	9	1 x 3,5	3	K	0,06	2 800	5 000
FGR	12 x 4	12,0	9,8	26	M20 x 1	32	8	1 x 3,5	2,5	_	0,07	5 500	11 000
FGR	12 x 4K	12,0	9,8	26	M20 x 1	34	10	1 x 3,5	2,5	K	0,07	5 500	11 000
FGR	12 x 5	12,0	9,5	26	M20 x 1	37	8	1 x 3,5	2,5	_	0,07	6 600	12 000
FGR	12 x 5K	12,0	9,5	26	M20 x 1	37	8	1 x 3,5	2,5	K	0,07	6 600	12 000
FGR	12,7x12,7	13,1	10,3	29,5	M25 x 1,5	50	12	2 x 1,5	3	В	0,07	8 000	15 500
FGR	14 x 4 ⁽²⁾	14,0	11,5	29	M22 x 1,5	32	8	1 x 3,5	3	_	0,07	8 100	16 000
FGR	14 x4K ⁽²⁾	14,0	11,5	29	M22 x 1,5	38	10	1 x 3,5	3	K	0,07	8 100	16 000
FGR	16 x 2	16,0	14,5	30	M26 x 1,5	28	12	1 x 2,5	3,5	K	0,06	2 500	5 500
FGR	16 x 5	15,7	13,0	32	M26 x 1,5	42	12	1 x 3,5	4	_	0,07	12 000	25 000
FGR	16 x 5K	15,7	13,0	32	M26 x 1,5	47	12	1 x 3,5	4	K	0,07	12 000	25 000
FGR	16 x 10	15,7	13,0	32	M26 x 1,5	52	12	2 x 2,5	4	K	0,07	17 000	25 000
FGR	20 x 10	19,5	16,5	38	M35 x 1,5	58	19	2 x 2,5	4	В	0,07	21 000	51 000
FGR	25 x 10	24,8	21,8	43	M40 x 1,5	58	19	2 x 1,5	4	В	0,07	21 000	54 000
FGR	25 x 25	24,5	21,2	44	M40 x 1,5	72	20	4 x 1,5	4	В	0,08	20 000	48 000
FGI	8 x 1,5	8,0	6,7	16	M14 x 1	22	8	3 x 1	2,5	_	0,04	800	1 300
FGI	8 x 3	8,0	6,7	16	M14 x 1	22	8	2 x 1	2,5	_	0,05	950	1 500
FGI	10 x 2	9,7	8,2	18	M16 x 1	22	8	2 x 1	2,5	_	0,06	1 250	2 100
FGI	12 x 2	12,0	10,6	20	M18 x 1	23	8	2 x 1	2,5	_	0,06	1 380	2 500
FGI	16 x 5	15,7	13,0	30,2	M26 x 1,5	50	12	3 x 1	3,5	K	0,07	9 700	22 000

<u>Légende</u>:

- = nombre de circuits de billes
- = racleur
 - K = matière plastique
 - B = racleur à brosse

TÉL: 01 39 14 32 32

- T = jeu axial standard
- = les écrous avec racleurs sont munis d'un trou de lubrification ; position non-défini
- ²⁾ = type/dimension disponible avec filet à gauche aussi

• SERIE FBR, FSS

 D_4

Référence						С)imen:	sions	en	mm						Capacité	de charge
Ø x pas	d ₁	d_0	D_1	D_2	D_4	D_5	D_6	L _n	L ₁	L_7	L ₈	i	S	$SA^{1)}$	T	C_{dyn}	C_{stat}
2 x pas			g ₆			h ₁₃	h ₁₃				h ₁₃					N	Ν
FBR 8 x 2	8,0	6,5	16	15,5	22	3,4	28	25	4	6	19	1x3,5	Ø4	Κ	0,06	2 000	3 200
FBR 12 x 4	12,0	9,8	26	25,5	32	4,5	39,5	36	5	8	FA	1x3,5	M5	Κ	0,07	5 500	11 000
FBR 12 x 5	12,0	9,5	26	25,5	32	4,5	39,5	40	5	7	FA	1x3,5	M5	Κ	0,07	6 600	12 000
FBR 14 x 4 ²⁾	14,0	11,5	29	28,8	38	5,5	48	40	6	8	36	1x3,5	M5	Κ	0,07	8 100	16 000
FBR 16 x 2	16,0	14,5	30	29,5	38	5,5	48	45	6	10	40	2x2,5	M6	Κ	0,06	4 500	11 000
FBR 16 x 10	15,7	13,0	32	31,5	43	6,6	54	52	6	12	44	2x2,5	M6	Κ	0,07	17 000	25 000
FBR 20 x 10	19,5	16,5	38	37,5	50	6,6	62	55	7	10	48	2x2,5	M6	В	0,07	21 000	51 000
FSS 16 x 50	15,6	12,5	34	33,5	45	5,4	54	46	5	10	36	3x0,5	M6	K	0,07	3 9000	8 200

<u>Légende :</u>

i = nombre de circuits de billes

SA = racleur

— K = matière plastique

B = racleur à brosse

T = jeu axial standard

1) = les écrous avec racleurs sont munis d'un trou de lubrification ; position non-défini

 $^{\scriptscriptstyle 2)}$ = type/dimension disponible avec filet à gauche aussi

 $L_3 = 10 \text{ mm}$

0

o"

Usinage et Palier de Vis à Billes

USINAGE DES EXTREMITES DE VIS A BILLES

• PALIER BF, BK, FF, FK

								D	imensic	ns en m	nm						
Ø									Réféi	rence						Référ	ence
de									des p	aliers						des p	aliers
la	Α	В	F	G	Μ	О	Ν	Р	util	isés	С	D	Κ	1	J	utili	sés
vis	g6	h7					(/x p)		BKA	FKA	g6					BFA	FFA
									Ø	Ø						Ø	Ø
10	8	6	10	45	8 x 1	10	-	-	8	8	6	5,7	9	6,8	0,8	8	8
12	10	8	15	55	10 x 1	12	-	-	10	10	8	7,6	11	7,9	0,9	10	10
16	12	10	20	58	12 x 1	12	3 x 1,8	17	12	12	10	9,6	12	9,15	1,15	12	12
20	15	12	25	67	15 x 1	12	4 x 2,5	21	15	15	15	14,3	12	10,15	1,15	15	15
25	17	14	25	79	17 x 1	14	5 x 3	21	17	-	17	16,2	16	13,15	1,15	17	-
25	20	16	27	81	20 x 1	14	5 x 3	23	20	20	20	19	16*	13,35*	1,35	20	20
32	25	20	36	100	25 x 1,5	16	6 x 3,5	32	25	25	25	23,9	20	16,35	1,35	25	25
40	30	25	42	110	30 x 1,5	16	8 x 4	37	30	30	30	28,9	20	17,75	1,75	30	30
50	40	35	50	134	40 x 1,5	18	12 x 5	45	40	40	40	37,5	23	19,75	1,75	40	40

^{*}K = 16 et I = 13,35 pour palier BF20.

Pour palier FF20 : K = 18 et I = 15,35

F 13 TÉL: 01 39 14 32 32 C S R FAX: 01 39 14 23 23

PALIER DE VIS A BILLES

• PRÉCONISATION

A utiliser			Copro		Daulamant	С	harges (Ko	gf)
pour vis Ø	Taille		Genre de Palier	Réf.	Roulement utilisé	Dyn. axiale	Dyn. radiale	Stat. max.
		Fixe	A semelle	BK 8A	608ZZ	164	335	_
10	Ø 8	TIAC	En applique	FK 8A	00022	104	333	_
10		Libre	A semelle	BF 8A	606ZZ	_	231	_
		LIDIC	En applique	-	00022		201	
		Fixe	A semelle	BK 10A	7000ADF	670	_	278
12	Ø 10	TIXC	En applique	FK 10A	700071	070		270
14		Libre	A semelle	BF 10A	608ZZ	_	335	_
		LIDIO	En applique	FF 10A	00022		000	
14		Fixe	A semelle	BK 12A	7001ADF	725	_	310
15	Ø 12	11/10	En applique	FK 12A	70017121	720		010
16		Libre	A semelle	BF 12A	6000ZZ	_	465	_
		LIDIO	En applique	FF 12A	000022		100	
		Fixe	A semelle	BK 15A	7002ADF	775	_	407
20	Ø 15	- 17.0	En applique	FK 15A	, 002, 131	,,,		107
-		lihre –	A semelle	BF 15A	6002ZZ	-	570	-
		Libre	En applique	FF 15A				
		Fixe	A semelle	BK 17A	7203ADF	1 400	-	595
20	Ø 17		En applique	-				
25		Libre	A semelle	BF 17A	6203ZZ	-	975	-
			En applique	-	7004455	4.005		
25		Fixe	A semelle	BK 20A	7004ADF	1 295	-	970
28	Ø 20		En applique	FK 20A	7204BDF	1 830	٥٦٦	
32		Libre	A semelle	BF 20A	6004ZZ	-	955	-
			En applique	FF 20A	6204ZZ		1 300	
		Fixe	A semelle En applique	BK 25A FK 25A	7205ADF	2 060	-	1 170
36	Ø 25		A semelle	BF 25A				
		Libre	En applique	FF 25A	6205ZZ	-	1 430	-
			A semelle	BK 30A	700/:	0.615		
40	Ø 20	Fixe	En applique	FK 30A	7206ADF	2 860	-	1 660
45	Ø 30	1.95	A semelle	BF 30A	/00/77		1 000	
		Libre	En applique	FF 30A	6206ZZ	-	1 980	-
		Five	A semelle	BK 40A	7200 4 D.E	4 500		2.770
50	50 Ø 40	Fixe	En applique	FK 40A	7208ADF	4 500	-	2 770
50	£ 40	Libre	A semelle	BF 40A	6208ZZ	-	2 970	-

PALIER DE VIS A BILLES

¥FIXE

fig. 2-1 FK (8, 10, 12, 15, 20) A

TfL: 01 39 14 32 32

fig. 2-2 FK (25, 30, 40) A

							Dime	n sio r	is en mn	n							
RŽf.	W	L	S -0.005 -0.015	K	Е	Х	₫ 1	P°	M	Α	٧	В	C	N	d 3	Roulemen	fig.
FK 8A	43	21	28	35	7	35	3.4	90	M8x1	30	5	7	5	6	8	608	
FK 10A	52	25	34	42	7	42	4.5	90	M10x1	38	6	8	7	8	10	7 000A	
FK 12A	54	25	36	44	8	44	4.5	90	M12x1	38	6	8	7	8	12	7 001A	2-1
FK 15A	63	27	40	52	10	50	5.5	90	M15x1	40	7	9	7	8	15	7 002A	
FK 20A	85	37	57	68	15	70	6.6	90	M 20x1	52	7	14	7	10	20	7 204B	
FK 25A	122	42	80	92	15	100	11	45	M25x1.5	62	11	15	10	12	25	7 205B	
FK 30A	138	45	90	106	16	116	11	45	M30x1.5	66	12	16	11	12	30	7 206B	2-2
FK 40A	176	61	120	128	19	150	14	45	M40x1.5	82	15	18	16	14	40	7 208B	

	Composants									
No		QtŽ								
	Pa lie r	1								
	Roulement	2								
	Brid e	1								
	Bague dĎpaisseur	2								
	Joint	2								
	Ec ro u	1								
	Vis de blocage	1								

FAX: 01 39 14 23 23

PALIER DE VIS A BILLES

¥FIXE

		Dimensions en mm																	
RŽf.								-											
	W	Н	S	R	T	Χ	K	C HC	М	L	Ε	F	٧	Α	В	C	N	d3	Roulement
BK 8A	52	32	17	18.5	26	38	25	6	M8x1	23	11.5		5	33	7	6	6	8	608
BK 10A	60	39	22	26	30	46	34	6	M10x1	25	6	13	6	38	8	7	8	10	7000A
BK 12A	60	43	25	30	30	46	34	6	M12x1	25	6	13	6	38	8	7	8	12	7001A
BK 15A	70	48	28	33	35	54	40	6	M15x1	27	6	15	7	40	9	7	8	15	7002A
BK 17A	86	64	39	46	43	68	50	8	M 17x1	35	8	19	9	52	12	9	10	17	7203A
BK 20A	88	60	34	42	44	70	52	8	M 20x1	35	8	19	9	52	12	9	10	20	7004A
BK 25A	106	80	48	59	53	85	64	10	M 25x1.5	42	10	22	11	62	15	10	12	25	7205B
BK 30A	128	89	51	63	64	102	76	12	M30x1.5	45	11	23	12	66	16	11	12	30	7206B
BK 40A	160	110	60	80	80	130	100	16	M40x1.5	61	14	33	15	82	18	16	14	40	7208B

No		QtŽ
	Pa lie r	1
	Roulement	2
	Brid e	1
	Bague dĎpaisseur	2
	Joint	2
	Ec ro u	1
	Vis de blocage	1

Composants

P ALIER DE VIS A BILLES

¥LIBRE

fig. 2-1 FF (8, 10, 12, 15, 20) A

fig. 2-2 FF (25, 30, 40) A

					Din	ne nsio	ns e n	mm				
RŽf.	W	L	S -0.005 -0.015	K	E	Х	- d1	P°	d3	В	Roulement	fig.
FF 8A	43	11	28	35	6	35	3,4	90	6	6	606	
FF 10A	52	12	34	42	7	42	4,5	90	8	7	608	
FF 12A	54	15	36	44	8	44	4,5	90	10	8	6 000	2-1
FF 15A	63	17	40	52	9	50	5,5	90	15	9	6 002	
FF 20A	85	20	57	68	14	70	6,6	90	20	14	6 204	
FF 25A	122	30	80	92	15	100	11	45	25	15	6 205	
FF 30A	138	32	90	106	15	116	11	45	30	16	6 206	2-2
FF 40A	176	36	120	128	18	150	14	45	40	18	6 208	

	Composants									
No		Q tŽ								
	Pa lie r	1								
	Roulement	1								
	C irc lips	1								

P ALIER DE VIS A BILLES

¥LIBRE

					Di	m e n si	ions e	n mm						Composar		
RŽf.								-						No		
	W	Н	S	R	Т	Х	K	C HC	L	E	dз	В	Roulement		Pa lie r	Q tž
BF 8A	52	32	17	18.5	26	38	25	6	20	10	6	6	606		Roulement	1
BF 10A	60	39	22	26	30	46	34	6	20	10	8	7	608		C irc lips	1
BF 12A	60	43	25	30	30	46	34	6	20	10	10	8	6 000			
BF 15A	70	48	28	33	35	54	40	6	20	10	15	9	6 002			
BF 17A	86	64	39	46	43	68	50	8	23	11.5	17	12	6 203			
BF 20A	88	60	34	42	44	70	52	8	26	13	20	12	6 004			
BF 25A	106	80	48	59	53	85	64	10	30	15	25	15	6 205			
BF 30A	128	89	51	63	64	102	76	12	32	16	30	16	6 206			
BF 40A	160	110	60	80	80	130	100	16	37	18.5	40	18	6 208			

J			•	
		No		
			Pa lie r	QtŽ
			Roulement	1
			C irc lips	1
1	ľ			

VIS ULTRA RAPIDE

Dans les pages suivantes vous trouverez ces vis à pas rapide. Cette vis ultra rapide à filet roulés est fabriquée en acier (inoxydable ou non) ou en aluminium. Elle est appariée à des écrous en matière plastique POM hautement résistante à l'usure ou à des charges plus élevées à des écrous en bronze dans une exécution préchargée ou non. Pour des applications spéciales, des matières plastiques de haute qualité sont également utilisées pour les écrous.

Tolérances:

La précision du pas est en standard de ± 0,2 mm/300mm Sur demande la précision: ± 0,1mm / 300mm

Température d'utilisation :

Ecrou en POM-C de - 40° à + 60°C. Matière : Delrin (noir) Ecrou bronze de - 40° à + 200° C. Matière : CuSn 12, N°21052

Graissage:

1 seul pour les écrous POM et périodique pour les bronzes.

Durée d'enclenchement :

Les charges,intervalles de graissage, ainsi que le calcul de base du facteur de charge fc sont basés sur une durée d'utilisation admise de 10 % pour une vis avec un à écrou POM non préchargé.

Rendement n:

De 0,5 à 0,75 en fonction de l'angle du pas.

Charge maximum autorisée en fonction de la vitesse :

 $F_{aut.} = C_O \cdot f_C [N]$

 C_O = charge statique [N]

f_C = facteur de charge pour des écrous en POM

Vitesse circonférentielle	facteur de
V _C [m/min]	charge f _C
5	0,95
10	0,75
20	0,45
30	0,37
40	0,12
50	0,08

Matières

Vis

- standard : acier X20Cr13, matière N°1.4021
- autres qualités d'acier comme par exemple.: GX2CrNIMoN18.10 (matière N°1.4404 / AISI 316 L) sur demande
- autres matériaux comme par ex. aluminium anodisé dur pour filetages à pas fin sur demande.

VIS A PAS FIN

• SERIE VSPF (sans bille)

Référence		Dimensions en mm												Capacité de charge
	d ₁	d ₀	р	i	D_1	D_2	D_3	D_4	D_5	L ₁	L ₂	L_3	L_4	C _{stat}
Ø x pas					± 0,05	h8				POM/B			POM/B	pour POM
														N
VSPF 5/5	5,4	3,6	5	4	20,5	21	38	29	4,2	38 / 31	3	5	25 / 18	300
VSPF 5/20 ²⁾	6,0	5,0	20	16	20,5	21	38	29	4,2	38 / 31	3	5	25 / 18	300
VSPF 6/25	7,4	6,3	25	20	20,5	21	38	29	4,2	38 / 31	3	5	25 / 18	400
VSPF 7,5/7,5	7,7	5,9	7,5	6	20,5	21	38	29	4,2	38 / 31	3	5	25 / 18	450
VSPF 8/30 ²⁾	8,6	7,5	30	24	20,5	21	38	29	4,2	38 / 31	3	5	25 / 18	500
VSPF 10/10	10,0	8,2	10	8	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	600
VSPF 11/35 ²⁾	10,1	8,9	35	28	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	600
VSPF 11/40	11,5	10,2	40	32	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	700
VSPF 12/45 ²⁾	12,8	11,4	45	36	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	800
VSPF 12,5/12,5 ³	12,3	10,4	12,5	10	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	750

<u>Légende :</u>

d₀ = diamètre de noyau [mm]

p = pas effectif [mm]

= nombre de pas

 C_{stat} = charge statique pour écrou en POM-C non-précharge [N] ; pour des charges plus élévées, prendre écrou en bronze ($C_{\text{stat bronze}}$ = 1,3 x $C_{\text{stat POM}}$)

- s = bronze CuSn12, matière N° 2.1052
- ²⁾ = disponible également avec filet à gauche ; autres dimensions, nous consulter
- ³⁾ = sur demande spécifique seulement

Da	éférence						Dime	nsions	s en m	nm					Capacité de charge
	Ø x pas	d ₁	d _o	р	i	D ₁ ± 0,05	D ₂ h8	D_3	D ₄	D ₅	L ₁ POM/B	L ₂	L ₃	L ₄ POM/B	C_{stat} pour POM
VSP	8 / 10	8,2	5,5	10	4	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	800
VSP	10 / 12 2)	10,0	7,1	12	4	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	1 200
VSP	12 / 15 ²⁾	12,2	9,2	15	5	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	1 400
VSP	12 / 25	11,9	8,0	25	5	23,5	24	42	32	4,2	38 / 31	3	5	25 / 18	1 500
VSP	10 / 50 ²⁾	10,0	7,4	50	10	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	1 250
VSP	11 / 60	11,7	9,1	60	12	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	1 500
VSP	13 / 20	13,3	8,8	20	4	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	1 300
VSP	13 / 70 ²⁾	13,5	10,9	70	14	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	1 750
VSP	14 / 8	14,0	9,8	8	2	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	900
VSP	14 / 18 ²⁾	14,3	11,4	18	6	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	1 600
VSP	14 / 30	13,9	10,1	30	6	25,5	26	46	36	5,1	58 / 46	3	7	42 / 30	1 750
VSP	15 / 20 ³⁾	15,2	12,5	20	8	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	1 600
VSP	15 / 80 ²⁾	15,2	12,6	80	16	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	2 000
VSP	16 / 21 ²⁾	16,5	13,6	21	7	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	1 800
VSP	16 / 25	16,0	11,5	25	5	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	1 550
VSP	16 / 35 ³⁾	15,9	12,1	35	7	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	2 000
VSP	16 / 90 ²⁾	17,0	14,3	90	18	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	2 250
VSP	18 / 16	18,0	14,3	16	4	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	1 100
VSP	18 / 24 ²⁾	18,7	15,7	24	8	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	2 000
VSP	18 / 40 ²⁾	17,9	14,1	40	8	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	2 250
VSP	18 / 100 ²⁾	18,8	16,2	100	20	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	2 500
VSP	19 / 30	18,8	14,2	30	6	29,5	30	49	39	5,1	58 / 46	3	7	42 / 30	1 800

<u>Légende :</u>

d₀ = diamètre de noyau [mm]

p = pas effectif [mm]

i = nombre de pas

21

Dá	férence	Dimensions en mm										Capacité de charge			
	x pas	d ₁	d _o	р	i	D ₁ ± 0,05	D ₂ h8	D_3	D_4	D ₅	L ₁ POM/B	L ₂	L ₃	L ₄ POM/B	C _{stat} pour POM N
VSP	20 / 12	20,0	15,8	12	3	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	1 200
VSP	20 / 45	20,0	16,1	45	9	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	2 500
VSP	21 / 27 3)	20,8	17,9	27	9	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	2 200
VSP	21 / 35 3)	21,5	17,0	35	7	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	2 050
VSP	22 / 20	22,0	18,3	20	5	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	1 400
VSP	22 / 50 3)	22,0	18,1	50	10	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	2 750
VSP	23 / 30 2)	23,0	20,0	30	10	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	2 400
VSP	24 / 40 3)	24,3	19,8	40	8	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	2 300
VSP	24 / 55	24,0	20,1	55	11	35,5	36	59	47	6,2	64 / 50	5	8	46 / 32	3 000
VSP	26 / 163)	26,0	21,8	16	4	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	1 400
VSP	26 / 24	26,0	22,3	24	6	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	2 000
VSP	26 / 60	26,0	22,2	60	12	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	3 250
VSP	27 / 45 3)	27,0	22,5	45	9	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	2 550
VSP	28 / 65 3)	28,0	24,2	65	13	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	3 500
VSP	30 / 28	30,0	26,5	28	7	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	2 000
VSP	30 / 50	29,8	25,3	50	10	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	2 800
VSP	30 / 70	30,0	26,2	70	14	41,5	42	64	53	6,2	71 / 56	5	8	50 / 35	3 750
VSP	32 / 20 3)	32,0	27,8	20	5	49,5	50	80	65	9,0	_/_	10	12	70 / 50	2 000
VSP	32 / 75 3)	32,0	28,2	75	15	49,5	50	80	65	9,0	_/_	10	12	70 / 50	4 000
VSP	34 / 32 3)	34,0	30,5	32	8	49,5	50	80	65	9,0	_/_	10	12	70 / 50	2 300
VSP	34 / 80	34,0	30,2	80	16	49,5	50	80	65	9,0	_/_	10	12	70 / 50	4 250
VSP	36 / 200	36,0	33,4	200	40	49,5	50	80	65	9,0	_/_	10	12	70 / 50	4 500

 $C_{\text{stat}} = \text{charge statique pour \'ecrou en POM-C non-pr\'echarge [N]}; pour des charges plus \'el\'ev\'ees, prendre \'ecrou en bronze (C_{\text{stat bronze}} = \textbf{1,3} \text{ x } C_{\text{stat POM}})$

F

B = bronze CuSn12, matière N° 2.1052

a = disponible également avec filet à gauche ; autres dimensions, nous consulter

³⁾ = sur demande spécifique seulement

Le SLIDE SCREW NB est constitué de 2 blocs en aluminium comportant 3 roulements qui sont fixés suivant un angle approprié aux extrémités de ces blocs.

Le déplacement rectiligne est obtenu par contact angulaire entre l'axe et les bagues extérieures des roulements, en faisant tourner l'axe après l'avoir inséré dans l'espace situé entre les deux 1/2 boitiers.

Suivant les charges, on ajustera le système grâce aux vis de réglage avec ressorts.

Le SLIDE SCREW NB est un système à friction qui patine en cas de surcharge. Il est donc possible de l'utiliser sans système additionnel de sécurité (accouplement).

Un système de réglage par étalonnage par boucle d'arrêt sera nécessaire pour obtenir le déplacement approprié, car ce déplacement varie en fonction de la charge.

- 1. Utilisation d'un axe Worms pour un déplacement linéaire économique et précis
- 2. Possibilité d'utilisation sans lubrification
- 3. Grande facilité d'installation
- 4. Economie importante pour le remplacement (6 roulements et 1 axe)
- 5. Egalement possible en inox avec axe Worms inox ou chromé dur.
- 6. Jeu nul entre les roulements et l'axe.

METHODE DE CALCUL

1. Vitesse de l'arbre

Lorsque l'arbre tourne à grande vitesse, le nombre de tours approche la fréquence intrinsèque de l'axe, si il entre en résonance, le déplacement sera impossible (flambage).

Tenant compte de ce fait, il devra être utilisé en-dessous de cette vitesse soit 80 % de la vitesse critique. La plus grande vitesse possible sera appelée vitesse critique et pourra être obtenue par l'application de la formule suivante :

Vitesse critique:

$$NC = \frac{60 \times \lambda^{2}}{2 \times \pi \times L^{2}} \sqrt{\frac{E \times I \times g}{\gamma \times A}}$$

Nc = Vitesse critique (en tours par minute)

= Distance entre les fixations (en mm)

E = Module d'élasticité longitudinale (2,1 x 10⁴ kgf / mm²)

| = Moment quadratique de section (mm⁴) | = $\frac{\pi}{64}$ d⁴ (d = diamètre de l'arbre) g = Accélération de la pesanteur (9,8 x 10³ mm / sec²)

γ = Densité (7,85 x 10-6 kgf / mm³)

= Section de l'arbre (mm²) (A = $\frac{\pi}{4}$ d²)

 λ = Coefficient dû à la méthode de fixation :

= fixe-libre λ = 1,875 / support-support λ = 3,142 fixe-fixe λ = 4,730 / fixe-support λ = 3,927

2. Charge nominale admissible

Dans de nombreux cas se posera le problème de la charge admissible, car elle n'est pas très élevée avec ce système. La formule suivante peut être appliquée pour un long déplacement.

Charge à déplacer :

$$P = \frac{\lambda_1 \times \pi^2 \times E \times I}{L^2}$$

P = Charge kgf

L = Distance entre fixations

E = Module d'élasticité longitudinale (2,1 x 10⁴ kgf / mm²)

= Moment quadratique de section (mm⁴)

 λ_1 = Coefficient dû à la méthode de fixation : fixe-libre λ_1 = 0,25/ support-support λ_1 = 1 fixe-fixe λ_1 = 4 / fixe-support λ_1 = 2

3. Précharge

La poussée s'obtient par friction de l'axe sur les roulements et cette poussée varie suivant la précharge appliquée.

La puissance de poussée sera réglée en serrant ou relachant la vis de réglage.

La valeur de la précharge sera donnée par la fonction suivante :

$$Fa = \frac{2 \times \pi \times Ta}{P} \times n \times 0.6$$

Fa = Serrage kgf

P = Pas de vis (en cm)

Ta = Couple de serrage kgf x cm

n = Rendement de la vis de serrage (0,1)

En pratique, il est recommandé d'utiliser le SLIDE SCREW NB avec le couple de serrage minimum au-dessous duquel le système ne glisse plus dès que l'on ajoute une précharge avec les vis de réglage.

4. Couple d'entrainement.

Lorsque la charge a été calculée, le couple de rotation moteur peut être établi par la formule suivante :

$$T = \frac{F_a \times p}{2 \times \pi \times n}$$

T = Couple moteur kgf x cm

Fa = F + μ W (μ = coefficient de friction)

Fa = Charge à déplacer kgf F = Charge extérieure kgf

W = Poids de la table en kgf

P = Pas (cm)

n = Rendement (0,9)

5. Durée de vie en nombre de tours.

La durée de vie sera calculée comme suit :

$$L = \left(\frac{C}{Fa}\right)^3 \times 10^6 \text{ Tours (tr)}$$

L = Durée de vie (tr)

C = Charge nominale (kgf)

Fa = Charge à déplacer (Fa < poussée) (kgf)

Charge nominale:

Référence	C kgf
SS 6	10
SS 8	30
SS 10	45
SS 12	60
SS 13	60
SS 16	80
SS 20	110
SS 25	150
SS 30	220

6. Durée de vie en heures.

$$Lh = \frac{L}{60 \times n}$$

Lh = Durée de vie en heures (h)

n = Vitesse de rotation en tours par mn. (tr/mn)

L = Durée de vie (tr)

7. Durée de vie en kilomètres.

 $Ls = \frac{L \times p}{10^6}$

Ls = Durée de vie en longueur (km)

p = Pas en mm

8. Exemple de calcul.

1. Pour obtenir la vitesse maximum. mode de fixation : fixe-support (type B) distance entre supports : 2000 mm type de système : SS 16 - 16 (Ø 16 pas de16) nombre de tours nominal :

Nc =
$$\frac{60 \times \lambda^2}{2 \pi L^2} \sqrt{\frac{E \times I \times g}{\gamma \times A}} = 12.2 \times \frac{\lambda^2}{L^2} \times d \times 10^6$$

 λ = 3,927 , L = 2000 , d = 16 , Nc = 752 tr/mn La vitesse de déplacement sera : V = 752 x 16 (pas) = 12040 mm / mn = ± 12 m/mn Soit en appliquant un coefficient de sécurité = 0.8

V = 752 x 16 (pas) = 12040 mm / mn = \pm 12 m/mn Soit en appliquant un coefficient de sécurité = 0,8 V = \pm 10 m/mn

2. Choix du type de vis adapté

Mode de fixation : fixe-support (type B)

Force extérieure : 10 kgf

Distance entre fixations : 1500 mm

Poids de la table : 50 kgf

Longueur de déplacement : 1200 mm

Cœfficient de friction : 0,01

Vitesse maxi de déplacement : 12 m/mn

Nombre d'allers et retours par mn : 4

a) Couple moteur nécessaire
 Fa = 10 + (50 x 0,01) = 10,5 kgf
 ce qui implique d'utiliser le type SS 10 ou supérieur,

b) Vitesse de rotation nominale

Nc = 12,2
$$\frac{\lambda^2}{L^2}$$
 d x 10°, (λ = 3,927 / L = 1500)

$$Nc = 83.6 d$$

La vitesse de rotation nécessaire pour la vitesse de déplacement maximum sera donnée pour N = 12000/p (p = pas) à condition que N < Nc x 0,8.

SS 10 - 10	d - 10	Nc - 836	N - 1200
SS 10 - 15	d - 10	Nc - 836	N - 800
SS 13 - 13	d - 13	Nc - 1086	N - 923
SS 13 - 15	d - 13	Nc - 1086	N - 800

On choisira donc la référence SS 13-15

c) Calcul de la durée de vie. La durée de vie pour le SS 13 - 15 sera calculée ainsi :

$$L = \left(\frac{C}{Fa}\right)^3 \times 10^6 = 186 \times 10^6 \text{ (tr)}$$

$$n = \left(\frac{1200 \times 2 \times 4}{15}\right) = 640 \text{ (tr/mn)}$$

$$Lh = \frac{L}{60 \text{ x n}} = \frac{186 \text{ x } 10^6}{60 \text{ x } 640} = 4,84 \text{ x } 10^3 \text{ (h)}$$

Soit utilisé 8 heures par jour : durée de vie de 605 jours. Soit utilisé 16 heures par jour : durée de vie de 300 jours Au vu de ce résultat, il sera préférable de choisir le type SS 16 - 16 au lieu du type SS 13 - 15.

• SS TYPE

D. (S.)	Ø						Choix		de sellade Doio	Poids										
Référence	axe d	Н	W	L	h	H1	L1	W1	/1	/2	а	b	М	С	N	H1	du pas	max. N	max. N-m	ka
SS 6	6	20.5	20	25	10	28	36	12	10	-	-	-	М3	6.5	-	-	6.9	24.5	0.03	0.03
SS 8	8	28.5	28	40	14	40	56	18	18	-	-	-	M4	9	-	-	8.12	73.5	0.14	0.09
SS 10	10	36.5	36	45	18	51	62	24	20	-	20	24	M4	12	M4	8	10.15	118	0.25	0.17
SS 12	12	40.5	40	50	20	54	72	25	25	-	20	25	M5	12.5	M4	10	12.18	147	0.31	0.22
SS 13	13	40.5	40	50	20	54	72	25	25	-	20	25	M5	12.5	M4	10	13.15	147	0.31	0.22
SS 16	16	50.5	50	60	25	62	86	32	30	-	25	32	M5	16	M5	10	16.24	196	0.41	0.39
SS 20	20	60.5	60	70	30	71	97	40	50	40	30	40	M6	12	M6	10	20.30	265	0.56	0.57
SS 25	25	76.5	76	80	38	87	110	50	60	50	32	50	M8	12	M8	15	25	392	1.1	1.05
SS 30	30	89	90	88	44	92	127	60	60	70	36	60	M8	15	M8	15	30.45	539	1.4	1.65

1N = 0.102 kgf $1N \cdot m = 0.102 \text{ kgf} \cdot m$

VIS ET ECROU A PAS TRAPEZODAL

Les vis et Žcrous îf ilets tra pŽzoda ux sont destinŽs îdes a pplications ne demandant pas beaucoup de prŽcision, ni de mouvements rŽpŽtitifs rapides. Cette sŽrie est destinŽe pour des commandes manuelles, des fonctions de serra ge et pour recevoir des charges statiques. Les vis tra pŽzoda les sont irrŽv ersibles.

LS: 28 LS = 1 ou 3 M 30 LS = 1 ou 3 ou 6 M

FAX: 01 39 14 23 23

d	pas		d	d 1	prŽcision du pas	re c titud e	Angle	Poids
(nominal)	P 3. 3	RŽfŽre nc e s	mini	mini	/ 300	/ 300	d ỗ Ž lic e	
mm	mm	(pas ^droite)	mm	mm	mm	mm		Kg/m
10	2	VTR 10 x 2	9,98	6,89	0,2	0,5	4 _i 07	0,48
12	3	VTR 12 x 3	11,76	7,68	0,2	0,5	5; 17	0,65
14	3	VTR 14 x 3	13,76	9,68	0,2	0,5	4 _i 26	0,93
16	4	VTR 16 x 4	15,70	10,47	0,05	0,5	5 _i 16	1,17
18	4	VTR 18 x 4	17,70	12,47	0,05	0,5	4 _i 36	1,53
20	4	VTR 20 x 4	19,70	14,47	0,05	0,2	4 _i 05	1,94
22	5	VTR 22 x 5	21,66	15,29	0,05	0,2	4; 43	2,30
24	5	VTR 24 x 5	23,66	17,26	0,05	0,2	4 _i 17	2,80
26	5	VTR 26 x 5	25,66	19,26	0,05	0,2	3 _i 55	3,33
28	5	VTR 28 x 5	27,66	21,26	0,05	0,2	3 _i 36	3,90
30	6	VTR 30 x 6	29,62	21,56	0,07	0,2	4 _i 05	4,35
32	6	VTR 32 x 6	31,62	23,56	0,07	0,2	3; 48	5,03
36	6	VTR 36 x 6	35,62	27,56	0,07	0,2	3 _i 20	6,54
40	7	VTR 40 x 7	39,57	30,38	0,08	0,2	3; 31	7,98
44	7	VTR 44 x 7	43,57	34,38	0,08	0,2	3 _i 10	9,85
50	8	VTR 50 x 8	49,55	39,16	0,1	0,2	3 _i 11	12,70
60	9	VTR 60 x 9	59,50	47,97	0,1	0,2	2 _i 58	18,50

<u>Matire:</u>

Vis en a cier: C 35E RoulŽe ^fr oid Vis inox: X2C rNiMo17.12.2 Sur de mande Ec rou: Bronze C uSn8P

Ecrou cylindrique ETR

	D	L	Po id s
RŽfŽre nc e s	h10		
(pas ^dr oite)	mm	mm	Kg
ETR 10 x 2	22	20	0,053
ETR 12 x 3	26	24	0,083
ETR 14 x 3	30	28	0,135
ETR 16 x 4	36	32	0,232
ETR 18 x 4	40	36	0,320
ETR 20 x 4	45	40	0,455
ETR 22 x 5	45	44	0,480
ETR 24 x 5	50	48	0,656
ETR 26 x 5	50	52	0,670
ETR 28 x 5	60	56	1,102
ETR 30 x 6	60	60	1,140
ETR 32 x 6	60	64	1,177
ETR 36 x 6	75	72	2,189
ETR 40 x 7	80	80	2,725
ETR 44 x 7	80	88	2,815
ETR 50 x 8	90	100	4,014
ETR 60 x 9	100	120	5,150

Ec rou ^c o le rette ETRC

	D1	D4	D5	D6	L1	L2	L3	Po id s
RŽfŽre nc e s	h9	h11						
(pas ^dr oite)	mm	mm	mm	mm	mm	mm	mm	Kg
ETRC 10 x 2	25	42	34	5	25	10	6	0,160
ETRC 12 x 3	28	48	38	6	35	12	8	0,266
ETRC 14 x 3	28	48	38	6	35	12	8	0,258
ETRC 16 x 4	28	48	38	6	35	12	8	0,244
ETRC 18 x 4	28	48	38	6	35	12	8	0,228
ETRC 20 x 4	32	55	45	7	44	12	8	0,346
ETRC 22 x 5	32	55	45	7	44	12	8	0,322
ETRC 24 x 5	32	55	45	7	44	12	8	0,304
ETRC 26 x 5	38	62	50	7	46	14	8	0,474
ETRC 28 x 5	38	62	50	7	46	14	8	0,442
ETRC 30 x 6	38	62	50	7	46	14	8	0,408
ETRC 32 x 6	45	70	58	7	54	16	10	0,706
ETRC 36 x 6	45	70	58	7	54	16	10	0,606
ETRC 40 x 7	63	95	78	9	66	16	12	1,700
ETRC 44 x 7	63	95	78	9	66	16	12	1,524
ETRC 50 x 8	72	110	90	11	75	18	14	2,324
ETRC 60 x 9	88	130	110	11	90	20	16	3,942

Pour pas ^g auche, a jouter G ^la rŽfŽrence. Exemple: ETRC 28x5G + TR28x5G longueur 1000 mm Pour vis en acier inoxydable, nous consulter

Qui sommes nous?

FABRICANT, IMPORTATEUR, DISTRIBUTEUR

Bille porteuse en tôle et massive, en acier 100 c6 ou inoxydable

Circlips acier, bronze et inoxydable

Glissière télescopique en acier ou en tôle

Galet de came en standard et acier inoxydable

Palier auto-aligneur en fonte, en inox et en résine alimentaire

Rotule, Embout à rotule dans toutes les versions

Roue libre, à billes, rouleaux et à aiguilles

Roulement : Miniature, Inox, Annulaire, Plastique, à Aiguilles, pour broche de M.O

Sur demande, nous vous expédierons la documentation que vous souhaitez