

ESCUELA UNIVERSITARIA POLITÉCNICA Departamento de Ciencias Politécnicas Grado en Ingeniería Informática

Prácticas Algoritmia Boletín 3. Algoritmos de clasificación

Curso 2018/2019

Profesor: Andrés Muñoz

Boletín 3. Algoritmos de clasificación

1. Objetivo

El objetivo de este boletín es que los alumnos analicen, codifiquen y comparen algoritmos de clasificación en C.

2. Ejercicios

Se desea comparar los algoritmos de clasificación vistos en clase para medir experimentalmente su eficiencia. Para ello se pide implementar los algoritmos indicados en los puntos 1-4 y a continuación realizar las pruebas indicadas en el punto 5.

Algoritmos de clasificación a implementar:

1. (0,5 puntos) Burbuja:

- a. Código original (diapositiva 8 del Tema 3)
- b. Código mejorado (mejora a decidir por el alumno, explicar en memoria)

2. (0,5 puntos) Selección directa:

- a. Código original (diapositiva 14 del Tema 3)
- b. Mejorado para evitar que el pivote se intercambie por él mismo (<u>explicar en memoria</u>).
- 3. **(1,5 puntos) Método Shell** (secuencia de saltos a elegir por el alumno, <u>explicar en memoria</u>)
- 4. (2,5 puntos) QuickSort, en las siguientes tres variantes:
 - a. Pivote: Valor en la posición del medio (proporcionado por el profesor en el fichero "Quick-Sort-Medio.txt" colgado junto a este enunciado).
 - b. Pivote: Aleatorio (explicar en memoria)
 - c. Pivote: Mediana utilizando el primer, último y medio elemento (<u>explicar en</u> memoria).
- 5. **(5 puntos)** Tras implementar los algoritmos, se deben ejecutar con los siguientes tres ficheros de números enteros generados aleatoriamente, con rango [0-999.999] y que pueden contener números repetidos:
 - a. numeros50000.txt → Contiene 50.000 números
 - b. numeros100000.txt → Contiene 100.000 números
 - c. numeros200000.txt → Contiene 200.000 números

Se debe comprobar <u>obligatoriamente</u> que los algoritmos ordenan correctamente de menor a mayor los ficheros utilizados. <u>Se recomienda guardar los números ordenados en un nuevo fichero, ya que se necesitarán a continuación.</u>

Para cada algoritmo se debe medir:

- i. Número de comparaciones realizadas
- ii. Número de intercambios realizados
- iii. Tiempo empleado en la ordenación (<u>sin contar el tiempo de abrir y leer el fichero</u>)

Responder a las siguientes cuestiones:

- Indicar en la memoria cómo se han declarado y dónde se han utilizado las variables para contar el número de comparaciones y número de intercambios de cada algoritmo.
- Comentar los resultados obtenidos, comparándolos entre ellos mediante tablas o
 gráficas. Indicar de manera justificada cuál es el mejor algoritmo y cuál es el
 peor, y si los resultados experimentales coinciden con los estudios teóricos vistos en
 clase.
- A continuación, repetir las comparaciones usando ahora los tres ficheros, pero con los números ya ordenados de menor a mayor ¿Qué ocurre ahora? Compara los resultados con los obtenidos anteriormente usando los ficheros aleatorios originales.

<u>Ejercicios opcionales (Cada ejercicio correcto suma 0,5 directamente a la nota final de prácticas):</u>

- Opción a) → Ordenación Bucket (incluir su estudio experimental en el apartado 5)
- Opción b) → Mezcla directa o natural utilizando el fichero "numeros200000.txt" (incluir su estudio experimental en el apartado 5)

3. Entregables y puntuación

- Memoria que contenga las respuestas e información pedida en los ejercicios del boletín (NO INCLUIR EL CÓDIGO DE LOS PROGRAMAS). Es especialmente importante realizar correctamente el estudio comparativo pedido en el ejercicio 5 para una buena valoración del boletín.
- Un proyecto de Dev-C++ que incluya los ficheros .c con el código de los programas y que esté listo para ser compilado y ejecutado (NO ENTREGAD LOS FICHEROS DE CADA EJERCICIO POR SEPARADO O NO SE CORREGIRÁN LAS PRÁCTICAS).
- Fecha de entrega: 7 de Enero 2019
- Nota del boletín: 10 puntos