机器人学基础

DX

2019年9月24日

目录

1	绪论			5
2	数学	基础		7
3	机器	人运动	学	9
	3.1	机器人	【运动方程的表示	. 9
	3.2	机器人	(运动方程的求解	. 9
		3.2.1	逆运动学求解的一般问题	. 9
		3.2.2	逆运动学的代数解法和几何解法	. 9
		3.2.3	逆运动学的其他解法	. 9

4 目录

Chapter 1

绪论

Chapter 2

数学基础

Chapter 3

机器人运动学

- 3.1 机器人运动方程的表示
- 3.2 机器人运动方程的求解
- 3.2.1 逆运动学求解的一般问题

解的存在性

多解性问题

机器人系统在执行操控时只能选择一组解

- 最短行程解 - 较长行程解

逆运动学的求解方法

3.2.2 逆运动学的代数解法和几何解法

代数解法

几何解法

3.2.3 逆运动学的其他解法

欧拉变换解法

欧拉方程表示运动姿态 P37

公式 (3.48)

公式 (3.49) - (3.57) 不可使用反三角函数直接求解 (未知数周期性)

P51

概括 如果已知一个表示任意旋转的齐次变换,那么就能确定其等价欧拉角:

$$\begin{cases}
\phi = atan2(a_y, a_x), \phi = \phi + 180^{\circ} \\
\theta = atan2(c\phi a_x + s\phi a_y, a_x) \\
\psi = atan2(-s\phi n_x + c\phi n_y, -s\phi o_x + c\phi o_y)
\end{cases}$$
(3.1)