448G/Lane Modulation & FEC

Halil CIRIT, Meta Sanjeev GUPTA, Meta May-29, 2025

OUTLINE

- 448G/Lane Simulations
 - Channel Models
 - Simulation Results with PAM
 - Bidirectional Signaling
- New FEC Proposal
 - 2D RS FEC Results (Under Burst Error)
 - Complexity and Latency Analysis
- Conclusion (Summary and Future Work)

448G/Lane Channel Model

MTIA Package Substrate + Interposer

meta package for mounting the chip

IEEE Channels standardized test channels

- shah_e4ai_02_250430_25dB_RO_85G_XT_50dB
- shah e4ai 02 250430 25dB RO 85G XT 55dB
- shah e4ai 02 250430 25dB RO 85G XT 60dB
- shah e4ai 02 250430 30dB RO 85G XT 50dB
- shah e4ai 02 250430 30dB RO 85G XT 55dB
- shah e4ai 02 250430 30dB RO 85G XT 60dB
- shah_e4ai_02_250430_35dB_RO_85G XT 50dB
- shah e4ai 02 250430 35dB RO 85G XT 55dB
- shah e4ai 02 250430 35dB RO 85G XT 60dB
- tracy efai 250430 DAC

green: acceptable | red: lossy

Package Substrate (~35 mm) + Interposer

Limiting Factors:

- Channel Insertion loss
 Signal gets weaker as it travels through cables and connectors.
- Resonance/Roll-off within pass band Certain frequencies get distorted or attenuated inside the passband (where signals are proceeds talk (MPXT and FEXT)

Signals from nearby wires interfere (like noise in a crowded room).

We acknowledge IEEE and connector vendor for kindly providing the channel models: https://www.ieee802.org/3/ad_hoc/E4AI/public/channel/index.html

S-Parameter Plots

Ask from Industry:

- Provide SERDES Interposer + Package models
- Find ways to reduce crosstalk and eliminate resonance around Nyquist frequency

Channel Model Response

Metric Type	Indicates	Importance		
SNRs (DAC, TX	(, ADC) Signal clarity	/ Fundamenta	l to quality	
Jitter 1	iming accuracy	Can cause eye clos		
CTLE Gain		mpensation Fights ch	annel loss	
AFE/Slicer SNR	RX chain effective	veness Determines	bit reliability	
SNR Margin	Link robustness	Indicates how "	safe" you are	
DFE/MLSE SEF	R Error performa	nce after RX Key for	meeting spec targe	ts

BWs (bandwidth)	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
DAC SNR (dB)	41	41	41	41
Transmit SNR (dB)	31	31	31.8	31.7
ADC/DAC Jitter(fs)	50	50	50	50
CTLE Gain(dB) @ 0.8*BW	18	18	18	18
ADC SNR (dB)	43	43	43	43
Equivalent AFE SNR (dB)	33.2	33.3	33.6	34.1
Slicer SNR	23.1	23.4	25.9	26.4
SNR Margin (@1e-3)	3.0	3.3	3.4	3.9
DFE SER	3.1e-4	2.0e-4	6.4e-5	2.1e-5
MLSE SER	5.9e-6	5.9e-6	5.2e-6	4.3e-6

Channel Model Response

	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
Slicer SNR	23.7	23.9	26.3	27.0
SNR Margin (@1e-3)	3.6	3.8	3.8	4.5
DFE SER	1.3e-4	8.1e-5	1.5e-5	3.3e-6
MLSE SER	3.0e-6	1.8e-6	3.6e-6	1.3e-6

Channel Model Response

	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
Slicer SNR	23.9	24.1	26.5	27.4
SNR Margin (@1e-3)	3.8	4.0	4.0	4.9
DFE SER	1.1e-4	7.1e-5	1.08e-5	< 1.0e-6
MLSE SER	1.8e-6	2.3e-6	2.20e-6	< 1.0e-6

Channel Model Response

	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
Slicer SNR	20.0	20.2	24.3	24.4
SNR Margin (@1e-3)	-0.1	0.1	1.8	1.9
DFE SER	6.9e-3	5.9e-3	1.6e-3	1.2e-3
MLSE SER	6.7e-4	4.8e-4	4.7e-5	3.4e-5

Channel Model Response IEEE Channel 2 Plus Package shah e4ai 02 250430 30dB RO 85G XT 55dB PS FEXT PS NEXT -20 Magnitude Response (dB) -70 -80 -90 20 30 70 80 90 100 Frequency (GHz)

	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
Slicer SNR	21.4	21.7	24.9	25.3
SNR Margin (@1e-3)	1.3	1.6	2.4	2.8
DFE SER	2.2e-3	1.7e-3	4.7e-4	1.8e-4
MLSE SER	9.6e-5	9.0e-5	1.6e-5	1.1e-5

Channel Model Response

	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
Slicer SNR	21.9	22.3	25.1	25.7
SNR Margin (@1e-3)	1.8	2.2	2.6	3.2
DFE SER	1.5e-3	8.6e-4	3.3e-4	4.8e-5
MLSE SER	5.7e-5	3.0e-5	1.4e-5	7.6e-6

	PAM-6	PAM-6	PAM-8	PAM-8
Component BWs (GHz)	90	100	75	100
Slicer SNR	22.1	22.2	25.1	25.8
SNR Margin (@1e-3)	2.0	2.1	2.6	3.3
DFE SER	1.1e-3	9.6e-4	2.8e-4	3.1e-5
MLSE SER	2.7e-5	2.3e-5	1.4e-5	8.7e-6

Bidirectional Signaling (2x224G PAM-4)

Ontimistic

Descimistic

Fynactad

• Due to high insertion loss, TX noises limits the performance, unlike RX-limited unidirectional systems

			Pessiiiistic	Lxpecteu	Optimistic
		Cancellation Level (dB)	10	20	30
		Bandwidth Mismatch (GHz)	10	5	3
		SNR Correlation Coeff	0.5	0.7	0.9
		Jitter Correlation Coeff	0.5	0.7	0.9
224G Channel		~ Slicer SNR Margin (dB)	-6.4	-3.3	2.1
tracy_efai_250430_DAC + Pack	age →	~ Slicer SNR Margin (dB)	-0.5	1.6	5.0
shah_e4ai_02_250430_25dB_F _XT_60dB+ Package	RO_85G	~ Slicer SNR Margin (dB)	-1.2	1.0	4.6

- 2D Codes are both simple and powerful, especially for constructing very long block codes from smaller, more manageable components
- Iterative Decoding
 - Each bit/symbol is encoded by two component codewords
 - Decode rows and columns alternatingly
- Example:
 - Assume a two-error correcting component code
 - A lot more than 2 errors in a row/ column can be corrected by iterative decoding
- Minimum undecodable pattern (t₁+1)x(t₂+1)

- Iterative Decoding
 - Each bit/symbol is encoded by two component codewords
 - Decode rows and columns alternatingly
- Example:
 - Assume a two-error correcting component code
 - A lot more than 2 errors in a row/ column can be corrected by iterative decoding
- Minimum undecodable pattern (t₁+1)x(t₂+1)

1st iteration →

	_		_		_	_			_			_			_
X	•	•	•	•	•	•	•	X	•	•	•	•	•	•	•
X	•	•	•	•	•	•	•	•	X	•	•	•	•	•	•
X	X	•	•	•	•	•	•	X	X	X	•	•	•	•	•
X	X	X	•	•	•	X	X	•	X	•	X	X	•	•	•
•	•	X	X	•	•	X	•	•	•	•	•	X	X	•	•
•	•	•	X	X	X	X	•	•	•	•	•	X	•	X	•
•	•	•	•	X	X	X	X	X	•	•	•	X	•	•	X
•	•	•	•	•	X	X	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	X	X	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	X	X	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	X	X	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	X	X	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	X	X	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	X	X	•	•	•
•	•	•	•	•	•	X	•	•	•	•	X	X	X	•	•
•	•	•	•	•	•	X	•	•	•	X	•	X	•	X	X

- Iterative Decoding
 - Each bit/symbol is encoded by two component codewords
 - Decode rows and columns alternatingly
- Example:
 - Assume a two-error correcting component code
 - A lot more than 2 errors in a row/ column can be corrected by iterative decoding
- Minimum undecodable pattern (t₁+1)x(t₂+1)

- Iterative Decoding
 - Each bit/symbol is encoded by two component codewords
 - Decode rows and columns alternatingly
- Example:
 - Assume a two-error correcting component code
 - A lot more than 2 errors in a row/ column can be corrected by iterative decoding
- Minimum undecodable pattern (t₁+1)x(t₂+1)

3rd iteration →

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	X	•	•	•	•	•	X	•	•	•
•	•	•	•	•	•	X	•	•	•	•	•	X	•	•	•
•	•	•	•	•	•	X	•	•	•	•	•	X	•	•	•
•	•	•	•	•	•	X	•	•	•	•	•	X	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	X	•	•	•	•	•	X	•	•	•
•	•	•	•	•	•	X	•	•	•	•	•	X	•	•	•

• 2D RS FEC : RS Component Codes with t=2 or t=3

• >1.5 dB gain with RS9(69,65) >2 dB gain with RS9(102,96) with respect to RS10(544,514)+Ham.(128,120) (KP4+Hamming)

Complexity and Latency Analysis

Total Complexity and Latency of some 2D-RS codes at 1.6T PCS wrt KP4

	RS9(6	9,65)	RS9(102,96)	RS10(544,514) –
	Lower Complexity	Lower Latency		KP4
	(8 iterations)	(6 iterations)		(+Hamming)
				%5.84
Overhead (OH)	%12	.68	%12.89	(%12.89)
Total LUT Utilization(FPGA)	100 K	181K	171K	171K ^(*)
Total Latency(ns)	339.8	201	673.3	83.2 ^(*)
SNR Gain wrt (KP4+Hamming) @10 ⁻¹⁵ BER	1.8	1.7	2.3	0

(*)Additional complexity & latency due to Hamming Code

- High latency due to iterations can be decreased with further optimizations such as:
 - Increase the complexity to a level equivalent to current KP4 for 2D-RS codes
 - Incremental computation of syndromes for subsequent iterations
 - Number of iterations can be decreased with marginal performance penalty

Conclusion

- With the current package and channel models PAM6, PAM8 or bidirectional are feasible options
 - Bidirectional need more analog models for hybrid subtractor
- Need more improvement on channel and xtalks
 - Need more package models
- FEC with more coding gain than KP4(+Hamming) => 2D RS Codes
 - Minimal additional latency: > 1.5 dB coding gain
 - Same complexity: >2 dB coding gain
- Working on alternative decoding strategies for 2D RS codes to lower complexity

Thank You!

Back-up Slides

Channels

Communication Topologies

Uni-Directional Transmission

- Higher Bandwidth
 - Higher Insertion Loss
 - Increased Crosstalk Interference
- Higher Modulation Order
 - Increased SNR Penalty
- One-Way Communication
 - Simple RX Design
 - More Signal Power

Simultaneous Bi-Directional Transmission

- Same Bandwidth
 - No Extra Loss
 - No Extra Crosstalk Interference
- Same Modulation Order
 - Same SNR Requirements
- Two-Way Communication
- Complex RX Design with additional components
 - Very high interference

Channel Model and Additional Components

Major Differences over Uni-Directional Channel

- Overlap of Desired Inbound Signal and Very Strong Outbound Signal: Figure
 (a)
 - Solution: Hybrid Circuitry for cancellation by subtraction of overlapped signal: Figure (b)
 - To utilize dynamic range of ADC better
 - Requires a Replica Driver
- Echoes of Outbound Signal: Figure (c)
 - Analog Echo Cancellation (AEC)
 - Strong Near-End Echo ($\propto S_{11}$ of Channel)
 - Digital Echo Cancellation (DEC)
 - Weak Far-End Echo ($\propto S_{12} \& S_{21}$ of Channel)

Simple Block Diagram of SBT (Single Side)

TX - Replica Imperfections

