

**Amendments to the Claims:**

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A gap fill material forming composition comprising:

a crosslinking agent having at least two crosslink-forming functional

substituents;

a solvent selected from the group consisting of butyl lactate, propylene glycol monobutyl ether, propylene glycol monomethyl ether, ~~propylene glycol, monomethyl ether acetate~~ propylene glycol monomethyl ether acetate, and cyclohexanone; and

a polymer having a weight average molecular weight of 5,000 to 20,000 and containing components having a molecular weight of 3,000 or less in a rate of 20% or less, the polymer consisting of a structural unit of formula (1)

(1)



where R<sub>1</sub> is a hydrogen atom, a methyl group, a chlorine atom or a bromine atom;

R<sub>2</sub> is a hydrogen atom or a hydroxy group;

p is a number of 1, 2, 3 or 4;

q is a number of 0, 1, 2 or 3;

wherein the composition is used in manufacture of a semiconductor device by a method comprising coating a photoresist on a semiconductor substrate having a hole with aspect ratio shown in height/diameter of 1 or more, and transferring an image to the semiconductor substrate by use of a lithography process.

2. (Currently Amended) A gap fill material forming composition comprising:

a crosslinking agent having at least two crosslink-forming functional substituents;

a solvent selected from the group consisting of butyl lactate, propylene glycol monobutyl ether, propylene glycol monomethyl ether, ~~propylene glycol, monomethyl ether acetate~~ propylene glycol monomethyl ether acetate, and cyclohexanone; and

a polymer having a weight average molecular weight of 5,000 to 20,000 and containing components having a molecular weight of 3,000 or less in a rate of 20% or less, the polymer consisting of a structural unit of formula (1) and a structural unit of formula (2)

(1)



where  $R_1$  is a hydrogen atom, a methyl group, a chlorine atom or a bromine atom;

$R_2$  is a hydrogen atom or an hydroxy group;

$p$  is a number of 1, 2, 3 or 4; and

$q$  is a number of 0, 1, 2 or 3;

(2)



(2)

where  $R_1$  is as defined above; and

$R_3$  is a  $C_{1-8}$  alkyl group, a benzyl group, a  $C_{1-6}$  alkyl group substituted by at least one fluorine atom, a chlorine atom, a bromine atom, or a  $C_{1-6}$  alkyl group substituted by at least one  $C_{1-6}$  alkoxy group,

wherein:

the polymer containing the structural unit of formula (1) and the structural unit of formula (2) in a ratio of 0.40 to 0.95;

wherein the composition is used in manufacture of a semiconductor device by a method comprising coating a photoresist on a semiconductor substrate having a hole with aspect ratio shown in height/diameter of 1 or more, and transferring an image to the semiconductor substrate by use of a lithography process; and

wherein a sum of the molar ratio of structural unit of formula (1) and the molar ratio of structural unit of formula (2) is 1.

3–6. (Canceled)

7. (Previously Presented) The gap fill material forming composition according to claim 1, further containing an acid or an acid generator.

8. (Previously Presented) A method for forming a gap fill material for use in lithography process of manufacture of a semiconductor device, comprising  
coating the gap fill material forming composition according to claim 1 on the semiconductor substrate having a hole with aspect ratio shown in height/diameter of 1 or more and

baking the semiconductor substrate.

9. (Previously Presented) A method for forming photoresist pattern for use in manufacture of a semiconductor device, comprising:

coating the gap fill material forming composition according to claim 1 on the semiconductor substrate,

baking the semiconductor substrate to form a gap fill material,

forming a photoresist layer on the gap fill material,

exposing the semiconductor substrate covered with the gap fill material and the photoresist layer to light, and

developing the photoresist layer after the exposure to the light.

10. (Original) The method for forming photoresist pattern according to claim 9, further comprising a step of forming an anti-reflective coating before or after the step of forming the gap fill material on the semiconductor substrate.