Hwa Chong Institution (College

2022 C1 Block Test Revision Package Solutions Chapter 1 Sequences and Series

Qn	Solution	Comments
1(i)	ACJC14/C1Mid-year/Q6	Identify improper fraction and do
	$\frac{9x^2 + 15x - 2}{9x^2 + 15x + 4} = 1 - \frac{6}{9x^2 + 15x + 4}.$ $\therefore A = 1.$	long division
	$\frac{6}{9x^2 + 15x + 4} = \frac{B}{3x + 1} + \frac{C}{3x + 4}.$	$9x^2 + 15x + 4)9x^2 + 15x - 2$
	By comparing numerators, $6 = B(3x+4) + C(3x+1)$	$-(9x^2+15x+4)$
		-6
	When $x = -\frac{4}{3}$, $C = 2$ When $x = -\frac{1}{3}$, $B = -2$ $\therefore \frac{9x^2 + 15x - 2}{9x^2 + 15x + 4} = 1 - \frac{2}{3x + 1} + \frac{2}{3x + 4}.$	Good Practice to check your answer before continuing the rest of the parts
(ii)	$\sum_{r=0}^{n} \frac{9r^2 + 15r + 4}{9r^2 + 15r + 4} = \sum_{r=0}^{n} \left(1 - \frac{2}{3r + 1} + \frac{2}{3r + 4}\right)$	Remember to put your brackets
	$= \left\{ 1 - \frac{2}{4} + \frac{2}{7} + \frac{2}{10} + 1 - \frac{2}{3n+1} + \frac{2}{3n+4} \right\}$	for $\sum_{r=1}^{n} \left(1 - \frac{2}{3r+1} + \frac{2}{3r+4} \right)$ Show the cancellations.
	: //0/	Alternatively use
	$+1-\frac{2}{3n+1}+\frac{2}{3n+4}$	$\sum_{r=1}^{n} \left(1 - \frac{2}{3r+1} + \frac{2}{3r+4} \right)$
	$= n - \frac{1}{2} + \frac{2}{3n+4}.$	$= \sum_{r=1}^{n} (1) + \sum_{r=1}^{n} \left(\frac{2}{3r+4} - \frac{2}{3r+1} \right)$
(iii)	As $n \to \infty$, $S_n = n - \frac{1}{2} + \frac{2}{3n+4} \to \infty$.	Note that sum of series is
	Therefore the series in not convergent.	$n - \frac{1}{2} + \frac{2}{3n+4}$

2022 C1 H2 Mathematics Revision Package (Solutions)

Qn	Solution	Comments
(iv)	"Replace r by $r-1$."	The approach for such question is
	$\sum_{r=0}^{n-2} \frac{9(r+1)^2 + 15r + 13}{9(r+1)^2 + 15r + 19}$ $= \sum_{r=1}^{r-1=n-2} \frac{9((r-1)+1)^2 + 15(r-1) + 13}{9((r-1)+1)^2 + 15(r-1) + 19}$ $= \sum_{r=1}^{n-1} \frac{9r^2 + 15r - 2}{9r^2 + 15r + 4}$ $= (n-1) - \frac{1}{2} + \frac{2}{3(n-1) + 4}$	to use to expression in (ii) $\sum_{r=1}^{n} \frac{9r^2 + 15r - 2}{9r^2 + 15r + 4} = n - \frac{1}{2} + \frac{2}{3n + 4}$
	$= n - \frac{3}{2} + \frac{2}{3n+1}$	
2(i)	AJC14/C1Mid-year/Q7	Since this is a show question, please show all steps or use
	$\frac{2}{x(x+2)}$	Partial Fractions.
	$=\frac{x+2-x}{x(x+2)}$	$\frac{2}{x(x+2)} = \frac{A}{x} + \frac{B}{x+2}$
	$=\frac{x+2}{x(x+2)}-\frac{x}{x(x+2)}$	2 = A(x+2) + Bx
	$=\frac{1}{x} - \frac{1}{x+2}$	When $x = 0$, $A = 1$
	$\frac{1}{x}$ $\frac{1}{x+2}$	When $x = -2$, $B = -1$
	(shown)	
(ii)	If N is even,	The question asks for N is even.
	$\sum_{n=1}^{N} f(n) = \sum_{n=1}^{N} \left[(-1)^{n} \left(\frac{1}{n} - \frac{1}{n+2} \right) \right]$	$\sum_{n=1}^{N} \left[\left(-1\right)^{n} \left(\frac{1}{n} - \frac{1}{n+2} \right) \right]$

Q	Solution	Comments
	$= \begin{pmatrix} -\frac{1}{1} + \frac{1}{3} \\ +\frac{1}{2} - \frac{1}{4} \\ -\frac{1}{3} + \frac{1}{5} \\ +\frac{1}{4} - \frac{1}{6} \\ -\frac{1}{5} + \frac{1}{7} \\ + \dots \\ -\frac{1}{N-1} + \frac{1}{N+1} \\ +\frac{1}{N} - \frac{1}{N+2} \end{pmatrix}$ $= \begin{pmatrix} -1 + \frac{1}{2} + \frac{1}{N+1} - \frac{1}{N+2} \end{pmatrix}$	$ \begin{bmatrix} (-1) & \left[\frac{1}{1} & -\frac{1}{3}\right] \\ + & \left[\frac{1}{2} & -\frac{1}{4}\right] \\ (-1) & \left[\frac{1}{8} & \frac{1}{5}\right] \\ + & \left[\frac{1}{4} & -\frac{1}{6}\right] \\ \vdots & \vdots & \vdots & \vdots \\ (-1)^{N-3} & \left[\frac{1}{N-3} & \frac{1}{N-1}\right] \\ (-1)^{N-2} & \left[\frac{1}{N-2} & -\frac{1}{N}\right] \\ (-1)^{N-1} & \left[\frac{1}{N-1} & -\frac{1}{N+1}\right] \\ = & \left(-1\right)^{N} & \left[\frac{1}{N} & -\frac{1}{N+2}\right] $
	$= \frac{1}{(N+1)(N+2)} - \frac{1}{2}$	$= -\frac{1}{2} + (-1)^{N-1} \left(\frac{-1}{N+1}\right) + (-1)^{N} \left(\frac{-1}{N+2}\right)$ $= -\frac{1}{2} + (-1)^{N} \left(\frac{1}{N+1}\right) - (-1)^{N} \left(\frac{1}{N+2}\right)$ $= -\frac{1}{2} + (-1)^{N} \left[\left(\frac{1}{N+1}\right) - \left(\frac{1}{N+2}\right)\right]$ $= -\frac{1}{2} + \frac{(-1)^{N}}{(N+1)(N+2)} \text{ for all } N \in \mathbb{Z}^{+}$ Then let $N \to \infty$, $-\frac{1}{2} + \frac{(-1)^{N}}{(n+1)(n+2)} \to -\frac{1}{2}$

$$\sum_{n=1}^{N} f(n) = \sum_{n=1}^{N} \left[(-1)^n \left(\frac{1}{n} - \frac{1}{n+2} \right) \right]$$

$$= \begin{bmatrix} -\frac{1}{1} + \frac{1}{3} \\ +\frac{1}{2} - \frac{1}{4} \\ + \dots \\ +\frac{1}{N-1} - \frac{1}{N+1} \\ -\frac{1}{N} + \frac{1}{N+2} \end{bmatrix}$$

$$= \left(-1 + \frac{1}{2} - \frac{1}{N+1} + \frac{1}{N+2}\right)$$
$$= -\frac{1}{(N+1)(N+2)} - \frac{1}{2}$$

(iii) In general, we have

$$\sum_{n=1}^{M} f(n) = \frac{\left(-1\right)^{M}}{(M+1)(M+2)} - \frac{1}{2}, M \in \mathbb{Z}^{+}$$

When $M \to \infty$,

$$\sum_{n=1}^{\infty} f(n) = \lim_{M \to \infty} \left[\frac{\left(-1\right)^{M}}{(M+1)(M+2)} - \frac{1}{2} \right] = -\frac{1}{2}$$

3 (i) JJC13/C2Mid-year/Q4(b)

$$u_n - u_{n+1} = \frac{1}{n!} - \frac{1}{(n+1)!}$$

$$= \frac{(n+1)-1}{(n+1)!}$$

$$= \frac{n}{(n+1)!}$$
 (Shown)

$$(n+1)! = (n+1)n!$$

(ii)	$\sum_{n=1}^{N} \frac{n}{(n+1)!} = \sum_{n=1}^{N} (u_n - u_{n+1})$
	$= u_{1} - u_{2} + u_{2} - u_{3} + u_{3} - u_{4} + \dots + u_{N} - u_{N+1}$
	$= u_1 - u_{N+1}$
	$= 1 - \frac{1}{(N+1)!}$
(:::)	N 1

Need not write out the u_n terms for n = 1, ..., N. It is alright to just write u_1, u_2 , etc.

(iii)
$$\sum_{n=1}^{N} \frac{n}{(n+1)!} = 1 - \frac{1}{(N+1)!}$$

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{N}{(N+1)!} = 1 - \frac{1}{(N+1)!}$$

$$\frac{2}{3!} + \frac{3}{4!} + \dots + \frac{N}{(N+1)!} = 1 - \frac{1}{2} - \frac{1}{(N+1)!}$$

$$\frac{2}{3!} + \frac{3}{4!} + \dots + \frac{N}{(N+1)!} = \frac{1}{2} - \frac{1}{(N+1)!}$$
Since $\frac{1}{(N+1)!} > 0$, $-\frac{1}{(N+1)!} < 0$ and $\frac{1}{2} - \frac{1}{(N+1)!} < \frac{1}{2}$

$$\frac{2}{3!} + \frac{3}{4!} + \dots + \frac{N}{(N+1)!} = \frac{1}{2} - \frac{1}{(N+1)!} < \frac{1}{2}$$
(shown)

DO NOT use $\lim_{N \to \infty} \frac{1}{(N+1)!} = 0$

to explain

4(i)	CJC14/C1Mid-year/Q11	
	$u_r - u_{r+1} = \frac{1}{(r+1)!} - \frac{1}{(r+2)!} = \frac{r+2-1}{(r+2)!} = \frac{r+1}{(r+2)!}$	
	$\sum_{r=1}^{N} \frac{r+1}{2(r+2)!} = \frac{1}{2} \sum_{r=1}^{N} \frac{r+1}{(r+2)!}$	
	$= \frac{1}{2} \sum_{r=1}^{N} (u_r - u_{r+1})$	
	$= \frac{1}{2} [u_1 - u_2 + u_2 - u_3]$	
	$+u_{2}-u_{3}$ $+u_{N-1}-u_{N}$ $+u_{N}-u_{N+1}$]	
	$= \frac{1}{2} \left[u_1 - u_{N+1} \right] = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{(N+2)!} \right] = \frac{1}{4} - \frac{1}{2(N+2)!}$	
4(ii)	From (i) $\sum_{r=1}^{N} \frac{r+1}{2(r+2)!} = \frac{1}{4} - \frac{1}{2(N+2)!}$, we have	
	$\frac{1}{2(N+2)!} > 0 \Rightarrow -\frac{1}{2(N+2)!} < 0 \Rightarrow \frac{1}{4} - \frac{1}{2(N+2)!} < \frac{1}{4}$	
	For the lower bound, we have $N \ge 1 \Rightarrow N + 2 \ge 3 \Rightarrow 2(N+2)! \ge 12$	
	$\frac{1}{-2(N+2)!} \ge -\frac{1}{12} \Rightarrow \frac{1}{4} - \frac{1}{2(N+2)!} \ge \frac{1}{4} - \frac{1}{12} = \frac{1}{6}$	
	$\therefore \frac{1}{6} \le \frac{1}{4} - \frac{1}{2(N+2)!} < \frac{1}{4}$	
4(iii)	As $N \to \infty$, $\frac{-1}{2(N+2)!} \to 0$	Note the change in the lower limit from 1 to 0. When $r = 0$,
	$\therefore \sum_{r=0}^{\infty} \frac{r+1}{2(r+2)!} = \frac{1}{4} + \sum_{r=1}^{\infty} \frac{r+1}{2(r+2)!} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$	$\frac{r+1}{2(r+2)!} = \frac{1}{4} \ .$
	The series converges to $\frac{1}{2}$.	

4(iv)	$\sum_{r=6}^{N} \frac{r}{2(r+1)!} = \sum_{s+1=6}^{s+1=N} \frac{s+1}{2(s+2)!} \text{ (replace } r \text{ with } s+1\text{)}$
	$=\sum_{s=5}^{N-1} \frac{s+1}{2(s+2)!}$
	$=\sum_{s=1}^{N-1} \frac{s+1}{2(s+2)!} - \sum_{s=1}^{4} \frac{s+1}{2(s+2)!}$
	$= \frac{1}{4} - \frac{1}{2(N+1)!} - \left[\frac{1}{4} - \frac{1}{2(6!)}\right] = \frac{1}{1440} - \frac{1}{2(N+1)!}$

Must remember to change the upper limit of the summation too

Note that the lower limit is now 5 and not 1

$$\frac{r^2 + 5r + 8}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r+2}$$

$$\therefore r^2 + 5r + 8 = A(r+1)(r+2) + Br(r+2) + Cr(r+1)$$
Sub $r = 0$, $8 = 2A \Rightarrow A = 4$
Sub $r = -1$, $4 = -B \Rightarrow B = -4$
Sub $r = -2$, $2 = 2C \Rightarrow C = 1$

$$\therefore \frac{r^2 + 5r + 8}{r(r+1)(r+2)} = \frac{4}{r} - \frac{4}{r+1} + \frac{1}{r+2}$$

Check that the numerators add up to zero

(ii)
$$\sum_{r=1}^{n} \frac{r^2 + 5r + 8}{r(r+1)(r+2)} \frac{1}{2^{r+2}} = \sum_{r=1}^{n} \left(\frac{4}{r} - \frac{4}{r+1} + \frac{1}{r+2}\right) \frac{1}{2^{r+2}}$$

$$= \sum_{r=1}^{n} \left(\frac{1}{2^r(r)} - \frac{2}{2^{r+1}(r+1)} + \frac{1}{2^{r+2}(r+2)}\right)$$

$$= \frac{1}{2^1(1)} - \frac{2}{2^2(2)} + \frac{1}{2^3(3)}$$

$$+ \frac{1}{2^2(2)} - \frac{2}{2^3(3)} + \frac{1}{2^4(4)}$$

$$+ \frac{1}{2^3(3)} - \frac{2}{2^4(4)} + \frac{1}{2^5(5)}$$

$$+ \dots$$

$$+ \frac{1}{2^{n-1}(n-1)} - \frac{2}{2^n(n)} + \frac{1}{2^{n+1}(n+1)}$$

$$+ \frac{1}{2^n(n)} - \frac{2}{2^{n+1}(n+1)} + \frac{1}{2^{n+2}(n+2)}$$

$=\frac{1}{2}$	$-\frac{2}{8} + \frac{1}{8} +$	$\frac{1}{2^{n+1}(n+1)}$	$-\frac{2}{2^{n+1}(n+1)}$	$\frac{1}{2^{n+2}(n+2)}$
$=\frac{3}{8}$	$\frac{1}{2^{n+1}(n)}$	$+\frac{1}{2^{n+2}(n)}$	+2)	

(iii) METHOD 1

For $r \in \mathbb{Z}^+$

$$\frac{r^2 + 5r + 8}{(r+1)(r+2)} = \frac{r^2 + 5r + 8}{r^2 + 3r + 2} = 1 + \frac{2r + 6}{(r+1)(r+2)} > 1$$

i.e.
$$1 < \frac{r^2 + 5r + 8}{(r+1)(r+2)}$$

we have
$$\frac{1}{r2^{r+2}} < \frac{r^2 + 5r + 8}{r(r+1)(r+2)} \frac{1}{2^{r+2}}$$
 for any $r > 0$

$$\therefore \sum_{r=1}^{n} \frac{1}{r2^{r+2}} < \sum_{r=1}^{n} \frac{r^2 + 5r + 8}{r(r+1)(r+2)} \frac{1}{2^{r+2}}$$
$$= \frac{3}{8} - \frac{n+3}{2^{n+2}(n+1)(n+2)} < \frac{3}{8}$$

Since
$$\frac{n+3}{2^{n+2}(n+1)(n+2)} > 0$$

METHOD 2

$$\sum_{r=1}^{n} \frac{1}{r2^{r+2}} = \sum_{r=1}^{n} \frac{(r+1)(r+2)}{r(r+1)(r+2)2^{r+2}}$$

$$= \sum_{r=1}^{n} \frac{r^2 + 3r + 2}{r(r+1)(r+2)2^{r+2}} < \sum_{r=1}^{n} \frac{r^2 + 5r + 8}{r(r+1)(r+2)2^{r+2}}$$

$$= \frac{3}{8} - \frac{n+3}{2^{n+2}(n+1)(n+2)} < \frac{3}{8}$$

Since
$$\frac{n+3}{2^{n+2}(n+1)(n+2)} > 0$$

6(3)	NIC14/C1Mid year/O6	Apply Factor Formula with
6(i)	NJC14/C1Mid-year/Q6	Apply Factor Formula with the help of MF26
	$\cos\left[(n+1)\theta\right] - \cos\left[(n-1)\theta\right] = -2\sin\left(\frac{2n\theta}{2}\right)\sin\left(\frac{2\theta}{2}\right)$	the help of MF26
	$=-2\sin(n\theta)\sin\theta$	
(ii)	$\sum_{n=1}^{N} \sin(n\theta)$	
	$= -\frac{1}{2\sin\theta} \sum_{n=1}^{N} \left[\cos(n+1)\theta - \cos(n-1)\theta \right]$	
	$= -\frac{1}{2\sin\theta} \begin{pmatrix} \cos 2\theta & -\cos \theta \\ +\cos 3\theta & -\cos \theta \\ +\cos 4\theta & -\cos 2\theta \\ \vdots \\ +\cos(N-1)\theta - \cos(N-3)\theta \\ +\cos(N)\theta & -\cos(N-2)\theta \\ +\cos(N+1)\theta - \cos(N-1)\theta \end{pmatrix}$	
	$= -\frac{1}{2\sin\theta} \left(\cos\left[\left(N+1\right)\theta\right] + \cos\left[N\theta\right] - \cos\theta - 1\right)$	
(iii)	$\sin\frac{\pi}{6} + \sin\frac{\pi}{3} + \sin\frac{\pi}{2} + \dots + \sin\frac{29\pi}{6}$ $= \sum_{n=1}^{29} \sin\left(n\frac{\pi}{6}\right)$	
	$= -\frac{1}{2\sin\frac{\pi}{6}} \left(\cos\left[\left(29+1\right)\frac{\pi}{6}\right] + \cos\left[\frac{29\pi}{6}\right] - \cos\frac{\pi}{6} - 1\right)$	
	$= -\left(-1 - \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - 1\right)$ $= \sqrt{3} + 2$	
7(i)	$\frac{6r+18}{(r-1)r(r+2)} = \frac{A}{r-1} + \frac{B}{r} + \frac{C}{r+2}$	
	6r+18 = Ar(r+2) + B(r-1)(r+2) + C(r-1)r	

$$6r+18 = A(r^{2}+2r) + B(r^{2}+r-2) + C(r^{2}-r)$$

$$6r+18 = (A+B+C)r^{2} + (2A+B-C)r - 2B$$

$$A+B+C=0$$

$$2A+B-C=6$$

$$-2B=18$$

$$A=8, B=-9, C=1$$

$$\therefore \frac{6r+18}{(r-1)r(r+2)} = \frac{8}{r-1} - \frac{9}{r} + \frac{1}{r+2}$$

(ii)
$$\sum_{r=2}^{n} \frac{r+3}{(r-1)r(r+2)} = \frac{1}{6} \sum_{r=2}^{n} \frac{6r+18}{(r-1)r(r+2)}$$

$$= \frac{1}{6} \sum_{r=2}^{n} \left(\frac{8}{r-1} - \frac{9}{r} + \frac{1}{r+2}\right)$$

$$= \frac{1}{6} \left[\frac{8}{1} - \frac{9}{2} + \frac{1}{4} + \frac{8}{2} - \frac{9}{3} + \frac{1}{5} + \frac{8}{3} - \frac{9}{4} + \frac{1}{6} + \frac{8}{4} - \frac{9}{5} + \frac{1}{7} + \frac{1}{n-1} + \frac{8}{n-3} - \frac{9}{n-2} + \frac{1}{n} + \frac{8}{n-2} - \frac{9}{n-1} + \frac{1}{n+1} + \frac{8}{n-2} - \frac{9}{n-1} + \frac{1}{n+1} + \frac{8}{n-2} - \frac{9}{n} + \frac{1}{n+2} \right]$$

$$= \frac{1}{6} \left[8 - \frac{9}{2} + \frac{8}{2} - \frac{9}{3} + \frac{8}{3} + \frac{1}{n} - \frac{9}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right]$$

$$= \frac{1}{6} \left[\frac{43}{6} - \frac{8}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right]$$

$$= \frac{43}{36} - \frac{4}{3n} + \frac{1}{6(n+1)} + \frac{1}{6(n+2)}$$

(iii)	$\sum_{r=2}^{n} \frac{r+4}{r(r+1)(r+3)}$
	$= \sum_{k-1=2}^{k-1=n} \frac{(k-1)+4}{(k-1)(k-1+1)(k-1+3)}$ (substitute $r = k-1$)
	$=\sum_{k=3}^{n+1} \frac{k+3}{(k-1)(k)(k+2)}$
	$=\sum_{k=2}^{n+1} \frac{k+3}{(k-1)k(k+2)} - \frac{5}{(1)(2)(4)}$
	$= \frac{43}{36} - \frac{4}{3(n+1)} + \frac{1}{6(n+2)} + \frac{1}{6(n+3)} - \frac{5}{8}$
	$= \frac{41}{72} - \frac{4}{3(n+1)} + \frac{1}{6(n+2)} + \frac{1}{6(n+3)}$
(iv)	$\sum_{r=2}^{\infty} \frac{r+4}{r(r+1)(r+3)}$
	$= \lim_{n \to \infty} \left(\frac{41}{72} - \frac{4}{3n} + \frac{1}{6(n+1)} + \frac{1}{6(n+2)} \right)$
	$=\frac{41}{72}$
(v)	Since
	$(r+3)^3 > r(r+1)(r+3)$
	$\frac{1}{(r+3)^3} < \frac{1}{r(r+1)(r+3)}$
	$\frac{r+4}{(r+3)^3} < \frac{r+4}{r(r+1)(r+3)}$
	$\sum_{r=2}^{\infty} \frac{r+4}{(r+3)^3} < \sum_{r=2}^{\infty} \frac{r+4}{r(r+1)(r+3)}$
	$\sum_{r=2}^{\infty} \frac{r+4}{(r+3)^3} < \sum_{r=2}^{\infty} \frac{r+4}{r(r+1)(r+3)} = \frac{41}{72}$
	$\sum_{r=2}^{\infty} \frac{r+4}{(r+3)^3} < \frac{41}{72}$

9

RI19/C1Promo/Q2

RI19/C1Promo/Q3	
$u_n = \tan(n+2)\tan(n+3)$	
$\tan((n+3)-(n+2)) = \frac{\tan(n+3)-\tan(n+2)}{1+\tan(n+3)\tan(n+2)}$	
$\tan\left(1\right) = \frac{\tan\left(n+3\right) - \tan\left(n+2\right)}{1 + u_n}$	
$(1+u_n)\tan(1)=\tan(n+3)-\tan(n+2)$	
$u_n = \frac{\tan(n+3) - \tan(n+2)}{\tan 1} - 1 \text{ (shown)}$	
$\sum_{r=2}^{n} u_r = \sum_{r=2}^{n} \left[\frac{\tan(r+3) - \tan(r+2)}{\tan 1} - 1 \right]$	
$= \frac{1}{\tan 1} \sum_{r=2}^{n} \left[\tan (r+3) - \tan (r+2) \right] - \sum_{r=2}^{n} 1$	
	$u_{n} = \tan(n+2)\tan(n+3)$ $\tan((n+3) - (n+2)) = \frac{\tan(n+3) - \tan(n+2)}{1 + \tan(n+3)\tan(n+2)}$ $\tan(1) = \frac{\tan(n+3) - \tan(n+2)}{1 + u_{n}}$ $(1 + u_{n})\tan(1) = \tan(n+3) - \tan(n+2)$ $u_{n} = \frac{\tan(n+3) - \tan(n+2)}{\tan 1} - 1 \text{ (shown)}$ $\sum_{r=2}^{n} u_{r} = \sum_{r=2}^{n} \left[\frac{\tan(r+3) - \tan(r+2)}{\tan 1} - 1 \right]$

$$= \frac{1}{\tan 1} \left[\begin{array}{c} \tan 5 - \tan 4 \\ + \tan 6 - \tan 5 \\ + \tan 7 - \tan 6 \\ + \dots \\ + \tan (n+2) - \tan (n+1) \\ + \tan (n+3) - \tan (n+2) \right] - (n-1)$$

$$= \frac{\tan (n+3) - \tan 4}{\tan 1} + 1 - n$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = 6600$$

$$n^2 d + 2an - nd - 13200 = 0 - (1)$$

$$a + 20d = 91 \qquad - (2)$$

$$a + 52d = 155 \qquad - (3)$$

Solving (2) and (3) using GC, a = 51 and d = 2.

Sub a and d into (1),

$$2n^2 + 2n(51) - 2n - 13200 = 0$$

$$n^2 + 50n - 6600 = 0$$

	FIX6 AU1 OR △Tb1	O REAL	RADIAN	MP	O
X	Yı				
55.000	*825.0				
56.000	-664.0				
57.000	-501.0				
58.000	-336.0				
59.000	-169.0				
69.888	0.0000				
61.000	171.00				
62.000	344.00				
63.000	519.00				
64.000	696.00				
65,000	875.00				
X=55					

Using GC, n = 60 (-110 not accepted as n > 0).

Can use GC table since *n* is a positive integer

10(i) NYJC19/C1Promo/Q1

Method 1

$$S_n = \ln(2^n 3^{n^2}) = n \ln 2 + n^2 \ln 3$$

$$u_n = S_n - S_{n-1}$$

$$= n \ln 2 + n^2 \ln 3 - \left[(n-1) \ln 2 + (n-1)^2 \ln 3 \right]$$

$$= \ln 2 + \left[n^2 - (n-1)^2 \right] \ln 3$$

$$= \ln 2 + (2n-1) \ln 3$$

Method 2

$$u_n = S_n - S_{n-1}$$

$$= \ln \left(2^n 3^{n^2} \right) - \ln \left(2^{n-1} 3^{(n-1)^2} \right)$$

$$= \ln \left(\frac{2^n 3^{n^2}}{2^{n-1} 3^{(n-1)^2}} \right)$$

$$= \ln \left(2 \times 3^{2n-1} \right)$$

$$= \ln 2 + \left(2n - 1 \right) \ln 3$$

Remember formula is

$$u_n = S_n - S_{n-1} \text{ and NOT}$$
$$u_n = S_{n+1} - S_n$$

2022 C1 H2 Mathematics Revision Package (Solutions)

(ii)	Since	
(11)	$u_n - u_{n-1} = \ln 2 + (2n-1)\ln 3 - \left[\ln 2 + (2(n-1)-1)\ln 3\right]$ $= (2n-1)\ln 3 - (2n-3)\ln 3$ $= 2\ln 3$ is a constant, the sequence is AP.	It is NOT enough to show that $u_2 - u_1 = \text{constant}$
11	AJC14/C1Mid-year/Q11	
(ai)	Since T_2 , T_6 and T_9 are consecutive terms of a geometric progression,	
	$\frac{T_9}{T_6} = \frac{T_6}{T_2}$	
	$\frac{a+8d}{a+5d} = \frac{a+5d}{a+d}$	
	$(a+8d)(a+d) = (a+5d)^2$	
	$a^2 + 9ad + 8d^2 = a^2 + 10ad + 25d^2$	
	d(a+17d)=0	
	$a = -17d$ (since $d \neq 0$)	

(aii)	$11+(n-1)(2) = 35 \Rightarrow n = 13$	
	$T_{11} + T_{13} + T_{15} + \dots + T_{35} = 455$	
	$\frac{13}{2} a + 10d + a + 34d = 455$	
	13(a+22d) = 455	
	-17d + 22d = 35	
	d = 7	
	$\therefore a = -17(7) = -119$	
(bi)	Amount at the end of 1st year	
	= 27000(1.04)	

Common ratio = $\frac{a+5d}{a+d} = \frac{-17d+5d}{-17d+d} = \frac{-12}{-16} = \frac{3}{4}$

	1.00.1	
	Amount at the end of 2nd year	
	= 1.04[27000(1.04)+200]	
	= 27000(1.04)2 + 200(1.04)	
	Amount at the end of 3rd year	
	= 1.04[27000(1.04)2 + 200(1.04) + 200]	
	= 27000(1.04)3 + 200(1.04 + 1.042)	
	:	
	Amount in account under plan B at the end of n years	
	$= 27000(1.04)^{n} + 200(1.04 + 1.04^{2} + + 1.04^{n-1})$	
	$=27000(1.04)^{n}+\frac{200\left[1.04(1.04^{n-1}-1)\right]}{1.04-1}$	
	$= 27000 (1.04)^n + 5000 (1.04^n - 1.04)$	
	$=32000(1.04)^n-5200$	
(bii)	Total amount of interest under plan B at the end of n years	Note that this part is asking for
	$= 32000(1.04)^n - 5200 - 27000 - 200(n-1)$	total amount of interest. Hence (i) minus total amount invested.
	$=32000(1.04)^n-200n-32000$	
(biii)	Total interest under plan A after n years = $1800n$	
	Total interest under plan B > Total interest under plan A	
	$32000(1.04)^n - 32000 - 200n > 1800n$	
	Let $f(n) = 32000(1.04)^n - 32000 - 2000n > 0$	
	From GC, $f(22) = -162.6 < 0$, $f(23) = 870.9 > 0$	
	Least number of years = 23	

12(a)	DHS14/C1Mid-year/Q13 Method 1
	$\frac{a}{1-r} = 64$ (1)
	$\frac{a(1-r^5)}{1-r} = 64-2=62$ (2)
	Substitute (1) into (2):
	$64(1-r^5)=62$
	$r^5 = \frac{1}{32} \Rightarrow r = \frac{1}{2}$
	Substitute into (1): $a = 32$
	Method 2
	$\frac{a}{1-r} = 64 (1)$
	$\frac{ar^5}{1-r} = 2$ (2)
	Substitute (1) into (2):
	$64r^5 = 2$
	$r^5 = \frac{1}{32} \Rightarrow r = \frac{1}{2}$
	Substitute into (1): $a = 32$
(b)	Maximum distance travelled = $S_{\infty} = \frac{10}{1-0.7} = 33.333 < 34$
	∴ the motorcyle will not hit the obstacle.
(ci)	Distance, in m, travelled in 25th second
	=5+(25-1)0.5=17
c(ii)	Total distance travelled by car in first n seconds
	$= \frac{n}{2} (2(5) + (n-1)0.5)$
	$=\frac{n}{2}(9.5+0.5n)$

For t	he	van	to	overta	ke t	he	car,
-------	----	-----	----	--------	------	----	------

$$e^{0.2n} - 1 > \frac{n}{2} (9.5 + 0.5n)$$

Using the GC,

 $\therefore n > 29.379$

the van will overtake the car after 30 seconds.

It is difficult to solve this inequality algebraically, hence we use GC graph to help us.

Take note that the question asks for COMPLETE seconds, so your answer must be rounded up to integer.

13(a) RI14/C1Mid-year/Q8

Let a and d be the first term and common difference of the arithmetic series.

$$u_{17} = a + 16d = 73;$$
 $u_{33} = a + 32d = 71$

Solving, a = 75, d = -0.125

Method 1

$$S_n = S_{n+1} \implies u_{n+1} = 0$$

Thus,
$$a + nd = 0 \Rightarrow 75 - 0.125n = 0 \Rightarrow n = 600$$

Method 2

$$S_n = S_{n+1} \implies \frac{n}{2} [2a + (n-1)d] = \frac{n+1}{2} (2a + nd)$$

$$\frac{n}{2} \left[150 - 0.125 (n-1) \right] = \frac{n+1}{2} (150 - 0.125 n)$$

$$0.125n = 75$$

$$n = 600$$

(b)	Let r be the common ratio of the GP.
	$u_6 - u_5 = u_5 - u_1$
	$ar^5 - ar^4 = ar^4 - a$
	$r^5 - 2r^4 + 1 = 0$
	$r \approx -0.77480, 1, 1.9276$
	Since the series is convergent (i.e. $ r < 1$), $r \approx -0.77480 = -0.775$ (3 s.f.)
	$S = \frac{a}{1-r} = 10$ Given:
	$ S_m - S < 0.001$
	$\left \frac{a(1-r^m)}{1-r} - \frac{a}{1-r} \right < 0.001$
	$ 10(1-r^m)-10 < 0.001$
	$(0.77480)^m < 0.0001$
	$m > \frac{\ln 0.0001}{\ln 0.7748} \approx 36.098$
	ln 0.7748 Least value of m is 37.
	Least value of hi is 57.
14(a)	SAJC14/C2Mid-yearP2/Q1
14(a)	SAJC14/C2Mid-yearP2/Q1
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$ $= \frac{5^{n-1}}{3^{n-3}} \left(1 - \frac{5}{3}\right)$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$ $= \frac{5^{n-1}}{3^{n-3}} \left(1 - \frac{5}{3}\right)$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$ $= \frac{5^{n-1}}{3^{n-3}} \left(1 - \frac{5}{3}\right)$ $= -\frac{2(5^{n-1})}{3^{n-2}}$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$ $= \frac{5^{n-1}}{3^{n-3}} \left(1 - \frac{5}{3}\right)$ $= -\frac{2(5^{n-1})}{3^{n-2}}$
14(a)	SAJC14/C2Mid-yearP2/Q1 $S_n = 9 - \frac{5^n}{3^{n-2}}$ $u_n = S_n - S_{n-1}$ $= 9 - \frac{5^n}{3^{n-2}} - \left(9 - \frac{5^{n-1}}{3^{n-3}}\right)$ $= \frac{5^{n-1}}{3^{n-3}} \left(1 - \frac{5}{3}\right)$ $= -\frac{2(5^{n-1})}{3^{n-2}}$

	$\frac{u_n}{u_{n-1}} = \frac{-2\left(\frac{5^{n-1}}{3^{n-2}}\right)}{-2\left(\frac{5^{n-2}}{3^{n-3}}\right)} = \frac{5}{3}$	
	The ratio $\frac{u_n}{u_{n-1}}$ is a constant, therefore the sequence is a geometric progression with common ratio $\frac{5}{3}$.	Note that it is NOT enough to show that $\frac{u_2}{u_1}$ is a constant.
(bi)	Total number of elements in first n sets $= \underbrace{2+3+4++(n+1)}_{\text{A.P.: } a=2, d=1, l=(n+1), \text{ no. of terms}=n}$ $= \frac{n}{2} \Big[2+(n+1) \Big]$ $= \frac{n}{2} (n+3) \qquad \text{(shown)}$	
(bii)	Consider the sequence without grouping: 1, 3, 5, 7, 9, 11, 13, 15, 17, The first element of the set A_{n+1} is the $\left[\frac{n}{2}(n+3)+1\right]^{th}$ term in this sequence, which is an A.P. with first term 1 and common difference 2. First element of the set A_{n+1} $=1+\left[\frac{n}{2}(n+3)+1-1\right]2$	
	$= 1 + n(n+3)$ $= n^2 + 3n + 1$	

15(i)	HCI14/C1Mid-year/Q8
	Amount at the end of <i>n</i> months
	$= 1000 + \frac{n}{2} \left[2 \times 10 + 10(n-1) \right] = 1000 + 5n^2 + 5n$
(ii)	$1000 + 5n^2 + 5n > 2000$
	METHOD 1
	$\Rightarrow n^2 + n - 200 > 0$
	$\Rightarrow n < -14.7 \text{(rej)} \text{ or } n > 13.65$
	Since $n > 0$, least $n = 14$ So by the end of the 14 th month.
	METHOD 2 (Hardella form CC)
	METHOD 2 (Use table from GC) When $n = 13$, LHS = 1910 When $n = 14$, LHS = 2050
	Hence least $n = 14$
	So by the end of the 14th month.
(iii)	1st month, 1000×1.06 – 10
(111)	2 nd month, (1000×1.06-10)1.06-10
	$=1000\times1.06^2-(1.06+1)10$
	3^{rd} month, $[1000 \times 1.06^2 - (1.06 + 1)10]1.06 - 10$
	$=1000\times1.06^{3}-(1.06^{2}+1.06+1)10$
	\therefore the amount by the end of the n^{th} month
	$=1000\times1.06^{n}-(1.06^{n-1}++1.06+1)10$
	$=1000\times1.06^{n}-\frac{1.06^{n}-1}{1.06-1}10$
	$= \left(\frac{2500}{3}\right) 1.06^n + \frac{500}{3} \text{ (Shown)}$
(iv)	When Account A exceeds Account B,
	$1000 + 5k^2 + 5k > \left(\frac{2500}{3}\right)1.06^k + \frac{500}{3}$
	$5k^2 + 5k - \left(\frac{2500}{3}\right)1.06^k + \frac{2500}{3} > 0$
	From GC,
	When $k = 14$, LHS = $-0.75 < 0$
	When $k = 15$, LHS = $36.2 > 0$ k = 15

16(a)	(IB May12/MathSLP2/TZ1/Q4 modified)
16(a)	$u_1 + 5d = 100$ (1)
	$u_1 + 9d = 124 (2)$
	Solve (1) and (2) simultaneously,
	$u_1 = 70, d = 6$
	$S_{20} = \frac{20}{2} (2 \times 70 + 6(20 - 1))$ $= 2540$
(b)	$\frac{n}{2}(2\times70+4(n-1))=1600$
(c)	$4n^{2} + 136n - 3200 = 0$ NORMAL FIXE AUTO REAL RADIAN MP PRESS + FOR \triangle Tb1 $X $
(c)	Total number of people = $\frac{3^7 - 1}{3 - 1} = 1093$
	$\frac{3^n - 1}{3 - 1} = 29524$
	$3^n = 59049$
	ln 59049
	$n = \frac{1}{\ln 3}$
	=10
	Therefore the exact time is 12:45

17	EJC 2018/BT/2
(i)	Duration of each session in third week = $100 \times (1.1)^2 = 121$
	minutes
	Distance run = $(121 \times 60) \times 3 = 21780$ metres
(ii)	Let <i>n</i> be the number of weeks that Mr. Daya trains for.
(11)	Then $100 \times (1.1)^{n-1} \times 60 \times 3 \ge 42195$
	1100 100 A(1.1) A00 A3 E 12133
	Method 1
	$n-1 \ge \log_{1.1}\left(\frac{42195}{18000}\right)$
	" 12 log _{1,1} (18000)
	<i>n</i> −1≥8.938
	n≥9.938
	Method 2
	From GC,
	n 18000(1.1) ⁿ⁻¹
	9 38585
	Hence, Mr. Daya trains for 10 weeks.
	Total distance run during training
	$=2\times\frac{(100\times60\times3)\times(1.1^{10}-1)}{1.1-1}$
	1.1-1
	= 573747 m (to the nearest metre)
18	EJC 2018/BT/3
(i)	$u_2 = t_3 + t_4$
	=(a+2d)+(a+3d)
	=2a+5d

	23	
(ii)	$u_n = t_{2n-1} + t_{2n}$	
	=(a+(2n-2)d)+(a+(2n-1)d)	
	=2a+(4n-3)d	
(iii)	$u_n - u_{n-1} = (2a + (4n-3)d) - (2a + (4n-7)d)$	Note the 2 different methods to show a sequence being
	= $4d$ which is a <u>constant</u> independent of n ,	arithmetic.
	so the sequence is an arithmetic progression.	
	OR:	
	$u_n = 2a + (4n - 3)d$	
	=(2a+d)+(n-1)(4d)	
	which forms an arithmetic progression with first term	
	(2a+d) and common difference $4d$.	
19(a)	SAJC 2018/BT/8	
	Total amount of drug, $S_n = \frac{n}{2} (2(3) + 2(n-1)) \le 50$	
	Either	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	7 63 (>50)	
	Or	

<u>Or</u>

$$\frac{n}{2} \left(4 + 2n\right) \leq 50$$

$$n^2 + 2n - 50 \le 0$$

 $-8.14 \le n \le 6.14$

Hence John can continue taking his medication until Day 6.

(b)(i)	Either

Amount of drug after 3 complete days

$$=(30+[30+30(0.4)]0.4)0.4$$

$$=30(0.4)+30(0.4)^2+30(0.4)^3$$

=18.72 mg

Or

Amount of drug after

1 day: (30)0.4 = 12

2 days: (30+12)0.4=16.8

3 days: $(30+16.8)0.4 = 18.72 \,\mathrm{mg}$

(ii)

n	Start	End
1	30	30(0.4)
2	30+30(0.4)	$30(0.4) + 30(0.4)^2$
3	$30+30(0.4)+30(0.4)^2$	$30(0.4) + 30(0.4)^2 + 30(0.4)^3$
:		
n	$30+30(0.4)++30(0.4)^{n-1}$	$30(0.4) + 30(0.4)^2 + + 30(0.4)^n$

Total amount of drug after n days

$$=30(0.4)+30(0.4)^2+...+30(0.4)^n$$

$$= \frac{30(0.4)(1-(0.4)^n)}{1-0.4}$$
$$= 20(1-(0.4)^n)$$

(iii) The drug levels at the end of each day form an increasing sequence.

In the long run (as $n \to \infty$), $20(1-(0.4)^n) \to 20$.

The drug level is highest at the start of the day, but still < 20 + 30 i.e. < 50.

Hence David can take the drug indefinitely.

(iv)	Let r be the proportion of drug left in the body at the end	
	of the day.	
	Total amount of drug after 20 days	
	$=30r+30r^2++30r^{20}$	
	$=\frac{30r(1-r^{20})}{1-r}$	
	1-r	
	If 53 mg was found in the body	
	$\frac{30r(1-r^{20})}{1-r} = 53$	
	Using GC, $r = 0.6385$.	
	Hence the percentage is left in his body at the end of each day is 63.9%	

20(i) VJC 2018/BT/7

$$u_k = 3r^{k-1}$$

 $\ln u_k = \ln(3r^{k-1}) = \ln 3 + (k-1)\ln r$

Consider $\ln u_k - \ln u_{k-1} = \left[\ln 3 + (k-1) \ln r \right] - \left[\ln 3 + (k-2) \ln r \right]$ = $(k-1-(k-2)) \ln r$ = $\ln r$

Since, r is a constant, $\ln r$ is also a constant. Hence, $\ln u_1, \ln u_2, \ln u_3, \dots$ is an AP.

Using the difference of the first few consecutive terms to show that sequence is arithmetic is wrong, i.e. $u_2 - u_1 = \ln r$

 $u_3 - u_2 = \ln r$

You are merely showing that the first 3 terms form an AP! Using $\ln u_k = \ln 3 + (k-1) \ln r$ and stating that $a = \ln 3$ and $d = \ln r$ is not accepted as well as we are looking for the distinct nature of arithmetic sequences — any two consecutive terms have a common difference.

(ii)
$$\sum_{k=1}^{30} \ln u_k = 45$$
Algebraic errors such as
$$\ln (3r^{29}) = 29 \ln (3r) \text{ could be costly.}$$

$$\frac{30}{2} (\ln 3 + \ln (3r^{29})) = 45$$

$$\ln (9r^{29}) = 3$$

$$9r^{29} = e^3$$

$$r = \sqrt[29]{\frac{e^3}{9}} = 1.03 \text{ (3 s.f.)}$$

2022 C1 H2 Mathematics Revision Package (Solutions)

(iii)	Since $\frac{1}{r}$ $\frac{1}{r} = \frac{1}{\sqrt[29]{\frac{e}{g}}}$ Since -1	er $\frac{\frac{1}{u_n}}{\frac{1}{u_{n-1}}} = \frac{u_{n-1}}{u_n} = \frac{3r^{n-2}}{3r^{n-1}} = \frac{1}{r}$. is a constant, the sequence is geometric. $\frac{1}{3} = 0.973$ $\frac{1}{3} < 1, \text{ hence, this geometric progression}$ ent, and $S_{\infty} = \frac{1/3}{1 - 0.97270} = 12.2 \text{ (3 s.f.)}$		When applying the formula to find the sum to infinity of a geometric series, ensure you are substituting the correct first term and common ratio. Always use a 5 s.f. or a more accurate answer in your intermediate working.
21(i)		at the end of June 2010 $0\left(1 + \frac{0.2}{100}\right)^6 = \151809.02		
(ii)	Amount at the end of January 2010			
	=(150000-1000)(1.002)=\$149 298			
(iii)	Taking J	Taking Jan 2010 as the first month		
	Month	Beginning of month after withdrawal	Amount at en	d of month
	1 (150000 – 1000) (150000 – 1000)(1.002)		000)(1.002)	

Beginning of month after withdrawal	Amount at end of month
(150000-1000)	(150000-1000)(1.002)
(150000-1000)(1.002)-1000	[(150000-1000)(1.002)-1000](1.002) =150000(1.002) ² -1000(1.002 ² +1.002)
150000(1.002) ² -1000(1.002 ² +1.002) -1000	$\begin{bmatrix} 150000(1.002)^2 - 1000(1.002^2 + 1.002) \\ -1000 \end{bmatrix} (1.002)$ $= 150000(1.002)^3 - 1000(1.002^3 + 1.002^2 + 1.002)$
	-150000(1.002) -1000(1.002 +1.002 +1.002)
	$150000(1.002)^n - 1000(1.002^n + \dots + 1.002^2 + 1.002)$
	(150000-1000) (150000-1000)(1.002)-1000 $150000(1.002)^2-1000(1.002^2+1.002)$

	Amount at the end of the <i>n</i> -th month
	$=150000(1.002)^{n}-1000\Big[\big(1.002\big)^{n}+\ldots+\big(1.002\big)^{2}+1.002\Big]$
	$=150000(1.002)^{n}-1000\left[\frac{1.002(1.002^{n}-1)}{1.002-1}\right]$
	$=150000(1.002)^n - 501000(1.002^n - 1)$
	$=501000-351000(1.002)^n$
(iv)	$501000 - 351000(1.002)^n \le 0$
	501000
	$(1.002)^n \ge \frac{501000}{351000}$
	351000
	$\ln(501/_{-1})$
	$n \ge \frac{\ln\left(\frac{501}{351}\right)}{\ln(1.002)}$
	$\ln(1.002)$
	$n \ge 178.09$
	# £170.07
	Therefore account is depleted in 179 th month which is
	November 2024.
(v)	Amount for last withdrawal
` ′	170
	$= 501000 - 351000(1.002)^{178} = \87.87