Assessment 2 Context Free Grammars and Turing Machines

Norbert Logiewa $_{\rm nl253}$

December 2017

Context Free Grammars

1. Consider the language

(a) Give a word that is in the language and a word that is not in the language

Answer:

a word not in the language: kkk a word in the language: aabbbbcc

(b) Give a context-free grammar for the language above.

Answer:

$$S \to B \ | \ aSc$$

 $B \to \epsilon \mid bBc$

(c) Use the Cocke-Younger-Kasami algorithm to determine whether **abbaa** is a word of the language of the following grammar. Give the table. State in one sentence whether the word is a word of the language of the grammar and how you obtain this conclusion from the table.

$$S \Rightarrow AX \mid BY \mid SS \mid BA$$

$$X \Rightarrow AS$$

$$Y \Rightarrow BS$$

$$A \Rightarrow a$$

$$B \Rightarrow b$$

Answer:

5	_	_	_	_	_
4	_	_	_	_	_
3	_	Y	_	_	
2	_	_	S	_	_
1	A	В	В	A	A
_	a	b	b	a	a

Conclusion:

It's not, there is no way to parse it as S doesn't appear in the top row.

(d) Give a parse tree for the word abba with respect to the grammar above (for part c))

Answer:

_

(e) What is FIRST(SS) with respect to the grammar above (for part c))

Answer:

$$FIRST(SS) = \{a, b\}$$

2. Consider the following two context-free grammars

G2 G1

$$S \Rightarrow DAd$$

$$A \Rightarrow aS \mid \epsilon$$

$$B \Rightarrow bD \mid \epsilon$$

$$D \Rightarrow cB$$

(a) Draw two different parse trees for the word cacbc and the grammar G1

Answer:

(b) Give the LOOKAHEAD set for every rule of grammar G2

Answer:

rule	nullable	first set	lookahead set
$S \Rightarrow DAd$	0	$\{c\}$	{}
$A \Rightarrow aS \mid \epsilon$	1	$\{a,\epsilon\}$	{}
$B \Rightarrow bD \mid \epsilon$	1	$\{b,\epsilon\}$	{}
$D \Rightarrow cB$	0	{c}	{}

(c) Is the grammar G2 LL(1)?

Answer:

No it's not. It's ambiguous.

(d) Give the set of nullable nonterminals for the grammar G2

Answer:

 $\{A,B\}$

(e) Give the context-free grammar that you obtain from replacing all ϵ -rules in grammar G2 **Answer**:

a D

$$S \Rightarrow DAd$$

$$A \Rightarrow aS$$

$$B \Rightarrow bD$$

$$D \Rightarrow cB$$

Turing Machines

Consider the following Turing machine with input alphabet $\{a,\,b\}$ and tape alphabet $\{a,b,{}_-\}$

(a)	Give computations	for the we	ords ab and bb	. State for each	word whether	the machine accepts it,
	rejects it or loops.	If the mach	hine loops, ther	give the first fiv	e configuration	s of the computation.

Answer:

(b) Draw a Turing machine that decides the language of all words over the alphabet $\{a, b\}$ that have an odd number of as and an odd number of bs.

Answer: