VERIFICATION OF TRANSLATION

I, Melissa Stanford, a translator with Chillson Translating Service, 3530 Chas Drive, Hampstead, Maryland, 21074, hereby declare as follows:

That I am familiar with the German and English languages;

That I am capable of translating from German to English;

That the translation attached hereto is a true and accurate translation of German Application P 199 09 771.2 titled,

"Substance for Obtaining Highly Effective Tumor Medications as well as a Process" filed with the German Patent and Trademark

Office on March 5, 1999;

That all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true;

And further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any registration resulting therefrom.

By Malasa Haylor

Executed this 8 day of Aug 2001.

Witness Ame Allan

Translator's Note:

The name of the Director of the German Patent and Trademark
Office is illegible on the bottom right-hand corner of the German
cover page and is so noted in the translation.

FEDERAL REPUBLIC OF GERMANY

Certificate

Professor Dr. Heinz Peter Vollmers and Professor Dr. Hans
Konrad Müller-Hermelink, both in Würzburg/Germany, filed a patent
application under the designation

"Substance for Obtaining Highly Effective Tumor

with the German Patent and Trademark Office on March 5, 1999 and declared that they claim for it the internal priority of the application in the Federal Republic of Germany dated December 22,

Medications as well as a Process"

1998, file number 198 59 248.5.

The attached copy is a true and accurate rendition of the original documents of this patent application.

In the German Patent and Trademark Office, the application has provisionally received the symbols C 07 K and A 61 K of the International Patent Classification.

[Seal]

Munich, January 25, 2000

The German Patent and Trademark Office

The Director

/s/

[illegible]

File No.: P 199 09 771.2

PATENT ATTORNEYS

H. WEICKMANN, B.S. Eng. P.O. BOX 860 820

F. A. WEICKMANN, B.S. Eng. 81635 MUNICH

B. HUBER, B.S. Chem.

H. LISKA, Dr. Eng.

J. PRECHTEL, Dr. of Phys.

B. BÖHM, Dr. of Chem.

W. WEISS, Dr. of Chem.

J. TIESMEYER, Dr. of Phys. TELEPHONE (089)

M. HERZOG, Dr. of Phys.

B. RUTTENSPERGER,

B.S. Phys.

KOPERNIKUS-

STRASSE 9

81679 MUNICH

4 55 63-0

TELEX 5 22 621

TELEFAX (089)

4 70 50 68

E-MAIL: email@

weickmann.de

Our reference:

20047P DE/WWvo

Applicants:

Prof. Dr. Heinz Peter Vollmers Budapeststraße 23 97084 Würzburg

Prof. Dr. Hans Konrad Müller-Hermelink Heinrich-Zeuner-Straße 72 97082 Würzburg

Substance for Obtaining Highly Effective Tumor Medications as well as a Process

Substance for Obtaining Highly Effective Tumor Medications as w ll as a Process

Description

The invention relates to a substance as well as a process for obtaining anti-tumor agents.

Gastric carcinoma is one of the most common types of cancer worldwide. According to Lauren in "The Two Histological Main Types of Gastric Carcinoma, " Acta Path Microbiol Scand; 64: 331-49, they are histologically divided into diffuse adenocarcinomas and intestinal adenocarcinomas. Intestinal gastric carcinomas are often accompanied by chronic gastritis B and especially by intestinal metaplasias, which are considered to be precursors of dysplastic alterations and of gastric carcinomas. Differences between these two types are also indicated in that patients with carcinomas of diffuse type often belong to blood group A, from which it can be deduced that genetic factors influence the risk of cancer, while environmental factors, e.g., a Helicobacter pylori infection, are possibly of importance for the development of carcinomas of the intestinal type. It is noted that gastricadenocarcinomas are becoming less common in the West but are now on the rise in the East.

Up until now, therapy has been limited to gastrectomy and lymphadenectomy, but because of the still poor prognosis, there is a need for a new accompanying therapy. Immunological studies have shown that even in cases in which the immune system cannot

effectively control malignant cells, a cellular and humoral activity can be measured, which is not sufficient, however, to destroy the tumor cells. A more effective effort is now to isolate the antibodies that originate from the immune response of the patient, to reproduce them in a suitable manner and to use them therapeutically. Thus, for example, antibodies that originate from patients with lung, esophageal and colon cancer were isolated, and human monoclonal antibodies that influence, e.g., direct differentiation and the growth of the tumor cells, but which in most cases have the problem of interaction with other tumors or healthy cells, were derived from them.

It is known that human monoclonal SC-1 antibodies can trigger apoptosis in gastric carcinoma cells (Vollmers et al., "Apoptosis of Stomach Carcinoma Cells Induced by a Human Monoclonal Antibody, " Cancer 76 (1997), 550-58). Apoptosis is the programmed cell death, suicide of cells, by fragmentation of the DNA, plasmolysis and dilatation of the endoplasmatic reticulum, followed by cell fragmentation and the formation of membrane vesicles, the so-called apoptotic elements. Apoptosis, the physiological form of cell death, ensures a quick and smooth removal of unnecessary cells without triggering inflammatory processes or tissue damages as in the case of necrosis. pathological conditions, it is also used to remove malignant cells, such as, for example, cancer precursor cells. It can be triggered by the most varied stimuli, such as, for example, by cytotoxic T-lymphocytes or cytokines, such as tumor necrosis factors, glucocorticoids and antibodies. It is the most common

cause of death of eucaryotic cells and occurs in embryogeneses, metamorphoses and tissue atrophy. Apoptotic receptors on the cell surface, such as that of the NGF/TNF family, are predominantly expressed in lymphocytes, but are also found in various other cell types, and thus they are not suitable for cancer treatment. In in-vivo tests, ligands and antibodies for these receptors have led in particular to liver damage. Tumor-specific receptors with an apoptotic function are therefore especially important.

The cellular receptor of monoclonal antibody SC-1 was previously not known. Within the scope of the studies resulting in this invention, it was possible to identify this cellular receptor. This identification turned out to be difficult, however. On the one hand, monoclonal antibody SC-1 reacts with its receptor only under quite specific stringency conditions in the Western-blot analysis. On the other hand, unspecific reactions that are caused by denaturation artifacts are found with a number of other proteins.

The cellular receptor of antibody SC-1 is an isoform of the protein CD55/DAF that is specific for tumor cells, especially for gastric carcinoma cells (Medof et al., J. Exp. Med. 160 (1984), 1558-1578; Caras et al., Nature 325 (1987), 545-549; Bjorge et al., Int. J. Cancer 70 (1997), 14-25), which does not occur in normal tissue. The specific receptor properties of this isoform are based on a special glycostructure that is connected with the protein backbone via an N-linkage. The tumor-specific receptor can be used in a screening process for identifying specific

binding partners. Specific partners for binding to the receptor are those substances within the meaning of this invention that bind selectively to a tumor-specific glycostructure but not significantly to a glycostructure of CD55/DAF that occurs in normal cells and preferably have the ability to induce apoptosis. These specific binding partners can be used for the production of therapeutic agents for inducing apoptosis and/or for combatting tumors as well as for the production of diagnostic agents.

A first aspect of the invention relates to a glycoprotein that comprises at least one section of the amino acid primary structure of CD55/DAF, especially the membrane-bonded isoform DAF-B and a glycostructure that is specific for tumor cells, especially such a glycostructure that reacts with monoclonal antibody SC-1. In SDS-polyacrylamide-gel electrophoresis (under reducing conditions), such a glycoprotein that can be obtained from human adenocarcinoma cell line 23132 has an apparent molecular weight of about 82 kD. In addition to this 82 kD of protein, the invention also relates to variants with deletions, insertions and/or substitutions in the amino acid primary structure, which, however, have a glycostructure that is analogous to the natural protein, i.e. tumor-specific and preferably reactive with antibody SC-1.

The glycoprotein according to the invention can be obtained by membrane preparations being produced from cells that express a protein with the desired glycostructure, e.g., from cells of human adenocarcinoma cell line 23132, and the glycoprotein is obtained from this by chromatographic processes, e.g., by size-

exclusion and/or anion-exchange chromatography. The production of the membrane preparations is carried out preferably by lysis of cells in hypotonic buffer, ultrasound treatment and subsequent separation of the nuclei. The membrane preparations can be isolated from the remaining extract by centrifuging and further purified by chromatographic methods.

The tumor-specific CD55/DAF-glycoprotein can be used in a test process, in which the ability of a substance to bind to the tumor-specific glycoprotein, especially to its glycostructure, is The test process can be automated as a highdetermined. throughput-screening process. In this respect, the glycoprotein can be used in isolated form, as a cell extract, in particular as a membrane preparation or in the form of complete cells, in particular of human adenocarcinoma cell line 23132, or a heterologous eucaryotic cell that is transformed with the CD55 gene, e.g., a mammal cell, which is able to produce a protein with the correct glycostructure. As a control, the binding of the tested substance to a non-tumor CD55/DAF-glycoprotein can be Substances that bind selectively to the tumor-specific glycoprotein are suitable for the production of therapeutic and/or diagnostic agents.

In addition, the ability of the tested substance to induce apoptosis, especially in tumor cells and/or the ability to induce a phosphorylation cascade that is mediated by CD55/DAF is preferably specified. The induction of the apoptosis can be performed by morphological cell studies, by apoptosis test processes, e.g., by determining the DNA-fragmentation, or by

proliferation tests such as the MTT-proliferation test. As an alternative, a determination of caspase activities, for example activities of caspases 3 and/or 8 or a determination of the intracellular free calcium concentration can also be carried out. Substances that selectively induce an apoptosis of tumor cells can be used as anti-tumor-active substances. The induction of the phosphorylation cascade can be monitored by use of antibodies that are specific for phosphorus groups, e.g., phosphotyrosine and/or phosphoserine groups.

Pharmacologically compatible substances are suitably tested. These include low-molecular pharmacological active ingredients, but especially peptides, peptide mimetic agents, antibodies, e.g., polyclonal, monoclonal or recombinant antibodies, antibody fragments or antibody derivatives. Especially preferred, for example, are recombinant antibodies, such as, for example, single-chain scFv-antibodies, as they can be produced in, for example, bacteria cells such as, for example, E. coli (Plückthun, Bio/Technology 9 (1991), 545-551 and bibliographic references that are cited therein) or else in eucaryotic host cells (Reff, Curr. Opinion Biotech. 4 (1993), 573-576 and Trill et al., Curr. Opinion Biotech 6 (1995), 553-560 or bibliographic references that are cited therein). In addition, human antibodies, i.e., antibodies with human constant domains, are preferred, as they are produced in the human body, e.g., of carcinoma patients, or chimera and humanized antibodies, in which originally present non-human constant domains and/or framework regions were exchanged by corresponding human areas. Examples of antibody

fragments are Fab-, F(ab)₂- or Fab'-fragments, as they can be obtained by proteolytic cleavage of antibodies. The antibody derivatives include, for example, conjugates of antibodies with labeling groups and/or effector groups, for example toxic substances such as, for example, choleratoxin or pseudomonas Exotoxin A or radioactive substances.

Another aspect of the invention is the use of substances that bind specifically to the glycoprotein according to the invention (with the exception of already known monoclonal antibody SC-1) for the production of the apoptosis-inducing agents and/or for the production of anti-tumor agents and/or for the production of agents for tumor diagnosis.

Still another aspect of the invention is a process for the preparation of agents that induce apoptosis and/or anti-tumor agents and/or for the production of agents for tumor diagnosis, whereby a potentially active substance is tested on its ability for specific binding to a glycoprotein according to the invention, and in the case of a positive test result, the substance is converted into a form for dispensing that is suitable for pharmaceutical applications optionally together with commonly used adjuvants, additives and vehicles.

Suitable pharmaceutical forms for dispensing contain the active ingredient in a therapeutically effective quantity, especially in an anti-tumor-active quantity. The dose that is administered to a patient and the treatment time depend on the type and severity of the disease. Suitable dosages for the administration of antibodies are described in, for example,

Ledermann et al. (Int. J. Cancer 47 (1991), 659-664) and Bagshawe et al. (Antibody, Immunoconjugates and Radiopharmaceuticals 4 (1991), 915-922).

The active ingredient can be administered alone or in combination with other active ingredients either simultaneously or sequentially. In addition to the active ingredient, the pharmaceutical composition can contain other pharmaceutically common substances. The composition can be administered, for example, orally, nasally, via a pulmonary pathway or by injection. Compositions that can be administered orally can be present in the form of tablets, capsules, powders or liquids. Compositions that can be administered by injection are usually in the form of a parenterally compatible aqueous solution or suspension.

In addition, the invention relates to a process for combatting tumors, whereby an anti-tumor-active quantity of a substance that can bind specifically to a glycoprotein according to the invention with the exception of monoclonal antibody SC-1 is administered to a patient, especially a human patient.

Binding partners for tumor-specific CD55/DAF proteins can also be used for diagnostic purposes, e.g., for tumor imaging. Suitable methods for tumor imaging are described in, e.g., Steinstraesser et al. (Clinical Diagnosis and Laboratory Medicine 2 ((1989), 1-11). In this respect, the binding partners are preferably used in the form of conjugates with labeling groups, e.g., radioactive or fluorescent labeling groups. As an alternative, the binding partners can also be reconjugated with

the sample that is to be tested, incubated and then stained with a secondary binding reagent.

A subject of the invention is thus a process for the diagnosis of tumors, whereby a sample that is to be tested, e.g., a bodily fluid or a tissue sample, or a patient can be brought into contact with a substance that can be bonded to a tumor-specific CD55/DAF glycoprotein, and the presence, the localization and/or the quantity of the glycoprotein in the sample or in the patient can be detected.

Substances that trigger a phosphorylation cascade that is mediated by specific binding to a glycoprotein CD55/DAF according to the invention, optionally as conjugates with labeling and/or effector groups, are also a subject of the invention.

Cell line 23132 can be obtained from the Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH [German Collection of Microorganisms and Cell Cultures Gmbh], Braunschweig [Brunswick], under file number DSM ACC 201.

In addition, the invention is explained by the examples and figures below. Here:

Figure 1 shows: the identification of antigens that are reactive with antibody SC-1.

- a. Purification of SC-1 antigens from membrane extracts of gastric carcinoma cell line 23132.
- b. Sequencing of an 82 kD protein that is identified as an SC-1 antigen by

nanoelectrospray-tandem-mass spectroscopy.

Figure 2 shows:

the influence of a cleavage of GPI anchors by phosphatidylinositol-specific phospholipase C (PI-PLC) on a staining with SC-1. Untreated gastric carcinoma cells of cell line 23132 stained with SC-1 (a) and anti-EMA (c); cells that are treated with PI-PLC and stained with SC-1 (b) and anti-EMA (d) (400 x magnification).

Figure 3 shows:

the result of an MTT test with antibody SC-1 in gastric carcinoma cells.

Control: untreated cells; SC-1: cells treated with SC-1; SC-1, PIPLC: cells treated with phospholipase and then with SC-1.

Figure 4 shows:

the result of an analysis of transient transfixed cells with a CD55-antisense vector. Cells that were transfixed with a control vector show a normal staining pattern with SC-1 (a) and anti-CEA (c). In cells that are transfixed with the antisense vector, the staining with SC-1 is reduced (b), while no change in the staining with anti-CEA (d) can be detected.

Figure 5 shows:

the result of a Klenow fragmentation test. Transfixed cells show no apoptosis without induction with SC-1 (e) in comparison to a positive control (f). After incubation with SC-1, the cells that are transfixed with the control vector indicate apoptosis (g), while the majority of the cells that are transfixed with the CD55 antisense vector are resistant to apoptosis (h).

Figure 6 shows:

vector are resistant to apoptosis (h).

a quantitative determination of the
apoptosis that is induced by SC-1.

Cells that were transfixed with the
control and the CD-55 antisense vector
were incubated with SC-1, and cytospins
of these cells were stained with the
Klenow DNA fragmentation kit. The
percentages of apoptotic cells were
determined by two different individuals
by counting apoptosis-positive and
negative cells in three different fields
with about 500 cells in each case.
the action of a deglycosylation on the

Figure 7 shows:

a: Tumor cells incubated with buffer and stained with SC-1;

binding of antibody SC-1.

b: cells incubated with N-glycosidase and with SC-1;

c: cells incubated with buffer and anti-CD55 and

d: tumor cells incubated with Nglycosidase and anti-CD55.

Figure 8 shows:

the result of an MTT test with SC-1 in gastric carcinoma cell line 23132.

a: Titration of SC-1;

b: Crosslinking of SC-1 with rabbitanti-human-IqM-antibodies.

Figure 9 shows:

the change in intracellular calcium concentration after induction of cell line 23132 with SC-1. At point 1, the addition of SC-1 or control antibodies was carried out. At point 2, the cells were washed with Ringer's solution.

Figure 10 shows:

the expression and activity patterns of caspases 3 and 8 after induction with SC-1.

- a. Western-blot analysis of caspases 3 and 8. The activation of caspase 3 based on proteolytic cleavage can be detected by the production of the p20 cleavage product.
- b. The result of an activitydetermination of caspase 8. A

four-fold increase of caspase 8 activity was found 20 hours after the apoptosis was induced.

Figure 11 shows:

the phosphorylation pattern of cell line 23132 after the apoptosis is induced.

- a: A quick phosphorylation of tyrosine radicals in proteins with molecular weights of about 110 kD and 60 kD as well as the dephosphorylation of a serine radical in a protein with about 35 kD was found after apoptosis was induced with SC-1.
- b: An increase of phosphorylation of a tyrosine radical in a 75 kD protein with a maximum after 10 minutes was found after the apoptosis was induced.

Figure 12 shows:

an expression and mutation analysis of p53.

- a: 5 minutes after the apoptosis was induced by SC-1, a significant increase of the mRNA concentration was found, while the high p53 protein concentrations remain unchanged.
- b: A sequential analysis of p53 showed a mutation in codon 273, which

results in an amino acid exchange from Arg to His.

Figure 13 shows: an expression analysis of p21.

After apoptosis is induced, an increase of the p21 mRNA concentration is found.

Examples

1. Material and Methods

1.1 Cell Culture

For all tests, the established gastric-adenocarcinoma cell line 23132 was used (Vollmers et al., Virchows Arch. B. Zell. Pathol. Incl. Mol. Pathol. 63 (1993), 335-343). The cells were cultivated in RPMI-1640 with 10% fetal calf serum and penicillin/streptomycin (both 1%) until a subconfluence occurred. For the described test process, cells were dissolved with trypsin/EDTA and washed twice with phosphate-buffered salt solution (PBS) before use. Human hybridoma cell line SC-1 was produced and cultivated as described in Vollmers et al. (Cancer Res. 49 (1989), 2471-2476).

1.2 Purification of Antibody SC-1

Human monoclonal antibody SC-1 was purified from mass cultures with use of cation-exchange chromatography followed by gel filtration, as described in Vollmers et al. (Oncology Reports 5 (1998), 35-40).

1.3 Purification of the SC-1 Receptor

For preparation of membrane proteins, harvested cells in hypotonic buffer (20 mmol of HEPES, 3 mmol of KCl, 3 mmol of MgCl₂) were resuspended, incubated for 15 minutes on ice and ensonified for 5 minutes. The nuclei were pelletized by centrifuging (10,000 g, 10 minutes). The membranes were pelletized by centrifuging (30 minutes, 100,000 g) and resuspended in membrane lysis buffer (50 mmol of HEPES, pH 7.4, 0.1 mmol of EDTA, 1 M of NaCl, 10% glycerol and 1% Triton X-100). Complete^(R) protease inhibitor (Boehringer Mannheim, Germany) was added to all solutions.

The purification of the antigens was carried out by column chromatography with use of an FPLC unit (Pharmacia, Freiburg, Germany). For size-exclusion chromatography, a Pharmacia Superdex 200 column (XK 16/60) was loaded with 5 mg of membrane protein preparation in buffer A (100 mmol of Tris HCl, pH 7.5, 2 mmol of EDTA, 40 mmol of NaCl, 1% Triton X-100). The column eluate was fractionated and studied in a Western-blot analysis in a reaction with antibody SC-1. Positive fractions were loaded on a monoQ-column with use of buffer A. The bonded proteins were fractionated with a linear gradient with use of buffer B (100 mmol of tris-HCl, pH 7.5, 1 M of NaCl, 2 mmol of EDTA, 1% Triton X100) and studied by SDS-polyacrylamide-gel electrophoresis and staining with Coomassie or Western-blot analysis. Positive strips were cut out from the gel and sequenced.

1.4 Preparation of Cell Lysates after Induction with SC-1

Cell line 23132 was cultivated in 100 mm cell culture dishes until a subconfluence occurred. Antibody SC-1 was added in a final concentration of 30 μ g/ml for the time period indicated in each case. Then, the culture plates were washed once with PBS, and the cells were lysed directly with SDS buffer (50 mmol of tris-HCl, pH 6.8, 10 mmol of dithiothreitol, 2% (w/v) SDS, 10% (v/v) glycerol). The cell residues were collected with a rubber scraper.

1.5 Gel Electrophoresis and Blots

The SDS-polyacrylamide-gel electrophoresis under reducing conditions and the Western-blotting of proteins were performed with use of standard protocols as described in Vollmers et al. (Cancer 79 (1997), 433-440). Nitrocellulose membranes were blocked with PBS with the addition of 0.1% Tween-20 and 2% skim milk powder or 3% bovine serum albumin (for determination of phosphorylation) and then incubated for one hour with the primary antibody. The antibodies were used in the following dilutions: SC-1 (human) 10 µg/ml; anti-caspase-3 or -8 (goat) (Santa Cruz, Heidelberg, Germany) 5 µg/ml, streptavidin anti-phosphotyrosine conjugate (clone PT-66) 1:20,000 and streptavidin antiphosphoserine conjugate (clone PSR-45) 1:30,000 (Sigma, Munich, Germany). The secondary antibody peroxidase-rabbit-anti-human-IgM conjugate or rabbit-anti-goat-antibody (Dianova, Hamburg, Germany) and peroxidase-conjugated extravidin (Sigma) were

detected with the SuperSignal Chemiluminescence kit of Pierce (KMF, St. Augustin, Germany).

1.6 Protein Sequencing

A protein strip with an apparent molecular weight of 82 kD was isolated by one-dimensional polyacrylamide gel electrophoreses and made visible by staining with Coomassie. The p82-strip was cleaved in the gel with trypsin (Boehringer Mannheim, non-modified, sequencing quality) as described in Shevchenko et al., (Anal. Chem. 68 (1996), 850-858). The non-separated pool of tryptic peptides was sequenced by nanoelectrospray-tandem-mass spectrometry as described by Wilm et al. (Nature 379 (1996), 466-469). The sequencing was carried out on an API III Triple Quadrupol Mass Spectrometer (PE Sciex, Ontario, Canada). The sequences of the peptide fragments were assembled with use of the tandem-mass spectrometric data and categorized in the respective proteins by data bank research.

1.7 RT-PCR

The cDNA synthesis of the entire RNA of tumor cells 23132 was carried out with 5 μ g of total RNA with use of M-MLV reverse transcriptase (Gibco BRL, Eggenstein, Germany) according to the information of the manufacturer. The PCR reactions were performed in a reaction volume of 25 μ l with 1.75 mmol of MgCl₂, 0.4 pM of primer, 200 μ M of each dNTP and 1 U of Taq polymerase (MBI Fermentas, St. Leon-Rot, Germany).

The following PCR products were produced:

CD55 (640 bp fragment from the sequence range of bp 382 to 1022), p53 fragment 1 (850 bp fragment of the sequence range of 91 to 940), p53-fragment 2 (800 bp of the sequence range of 492 to 1294).

1.8 Cloning Procedures

The PCR products were purified from an agarose gel with use of the Jetsorb gel-extraction kit (Genomed, Bad Oeynhausen, Germany). The cloning of the PCR fragments was carried out with the pCR script Amp SK (+) cloning kit (Stratagene, Heidelberg, Germany).

The cloning of the antisense vector pHOOK2-CD55-anti was carried out by smoothing of the CD55-PCR product with Pfupolymerase and cloning in the expression vector pHOOK2 that is cut with Smal (Invitrogen, Leek, The Netherlands). A clone with antisense direction of the insertion under control of the P_{CMV} promoter was selected for the antisense experiment.

1.9 DNA Sequencing

Eight positive clones were sequenced with use of the DyeDeoxy Termination Cycle Sequencing Kit (Applied BioSystems, Inc., Weiterstadt, Germany) and the automated DNA sequencer ABIPrism 373 was analyzed. Both strands were sequenced with use of T3 and T7 primers. The sequences were analyzed with use of the computer program DNASIS and BLAST.

1.10 Transfection

For transfection experiments, 2.5 x 10^7 dissolved cells in tris-buffered salt solution (TBS) were washed and resuspended in 400 μ l of TBS. After 10 μ g of plasmid DNA was added, the cells were pulsed with 240 V, 960 nF with use of an electroporation device of BioRad (Munich, Germany). 5 x 10^5 transfixed cells were saturated on a 60 mm cell culture dish and incubated for 24 hours as described above. The apoptosis was induced by adding 50 μ g/ml of purified SC-1 antibody to the growth medium. After 24 hours, the cells were treated with trypsin and used for the production of cytospins.

1.11 Phospholipase Test

Dissolved and deleted cells were resuspended in RPMI-1640 with additives and incubated for 90 minutes at 37°C. After this rest period, 20 mU/ml of PI-PLC (Boehringer Mannheim) was added, and the cells were incubated for another 60 minutes. Finally, the cells were washed and used for the production of cytospins.

1.12 Glycosidase Test

Dissolved and washed cells were resuspended in RPMI-1640 with 10% fetal calf serum, incubated for 1 hour in ice, then counted, and cytospins were produced. After air drying, the cytospin preparations were set with acetone (10 minutes), washed and incubated with 20 μ U/ml of O-glycosidase or 5 mU/ml of N-glycosidase (Boehringer Mannheim) for 4 hours at 37°C.

1.13 Immunohistochemical Staining

The following antibodies were used for the immunohistochemical staining: purified antibody SC-1, anti-CEA-antibody (DAKO, Hamburg, Germany), Anti-EMA-antibody (Loxo, Dossenheim, Germany) and anti-CD55-antibody (Biozol, Eiching, Germany). The acetone setting and staining of the cytospin preparations were carried out as described by Vollmers et al. (Hum. Antibodies Hybridomas 7 (1996), 37-41).

1.14 Apoptosis Tests

Cytospin preparations (5,000 cells/slides) were set in acetone and then washed with TBS. Then, they were stained with the FragE1-Klenow DNA-Fragmentation Kit (Calbiochem-Novabiochem, Bad Soden, Germany) according to manufacturer information.

1.15 MTT Test

The MTT proliferation test for determining the apoptosis activity of antibody SC-1 on gastric carcinoma cells was performed as described in Vollmers et al. (Cancer 76 (1995), 550-558). The determination of cell growth was carried out by the mitochondrial hydroxylase test (Mossmann, J. Immunol. Meth. 65 (1983), 55-63). The percentage proportion of apoptotic cells was determined from the absorption of the cells that were induced with SC-1 and the control that was not induced with SC-1 (Vercammen et al., J. Exp. Med. 188 (1998), 919-930).

1.16 Caspase-3 and Caspase-8 Tests

The activation of caspase 8 was determined with the ApoAlertTM Caspase Fluorescence Test Kit (Clontech, Heidelberg, Germany). In this connection, 1 x 10^6 cells with 40 μ g/ml of SC-1 were incubated for 7 or 20 hours. Then, the cells were collected, resuspended in cell-lysis buffer, and the caspase activity was determined according to manufacturer information.

1.17 Determination of Intracellular Free Calcium [Ca²⁺]

The determination of the intracellular free calcium concentration was determined with use of the calcium-sensitive dye Fura-2-AM as described by Grykiewicz et al. (J. Biol. Chem. 260 (1985), 3440-3450). In this connection, the cells were incubated for 15 minutes with a Fura-2-AM in Ringer's solution that contains a final concentration of 5 x 10^{-6} M. After flushing, the slides were examined with an Axiovert 100 TV microscope (400-fold magnification). The fluorescence signal was measured at 500 nm with excitation wavelengths that alternate between 334 and 380 nm with use of a 100-W xenon lamp and an automatic filter changing device (Zeiss, Germany). concentration of intracellular free calcium was calculated according to the method of Grynkiewicz et al. (supra) with the assumption of a dissociation constant of 225 nmol/1. The maximum and minimum fluorescence ratios $(R_{max}$ and $R_{min})$ were measured after calibrating solutions were added. R was determined after a Ringer's solution with 3 mmol Ca^{2+} and 10^{-6} M of ionomycin was

added. R_{min} was determined in the presence of a Ca^{2+} -free Ringer's solution with 3 mmol of EGTA and 10^{-6} M of ionomycin.

2. Results

2.1 Purification of the SC-1-Receptor CD55

In Western-blot analysis of extracts from total cell lysates of gastric carcinoma cell line 23132, which had been produced under low-salt conditions (100 mmol of NaCl), antibody SC-1 reacted with a protein with a relative molecular mass of about 50 kD. By altering the stringency (1 M of NaCl) and with use of membrane preparations, it was possible to detect other proteins with approximately 70 kD and approximately 82 kD (Figure 1a, trace 1). These proteins were isolated from the membrane fractions and purified by sequential size-exclusion and anion-exchange chromatography (Figure 1a, traces 2, 3). The molecules were cut out from SDS-polyacrylamide gels and sequenced.

The 50 kD protein was identified as a dihydrolipoamide-succinyltransferase (gene bank access no. L37418), and the 70 kD protein was identified as the human Lupus p70 auto-antigen protein (gene bank access no. J04611). These proteins are cytoplasmatic or nuclear antigens. Since antibody SC-1 in immunohistochemical studies binds only to cell surface antigens, the reactivity can presumably be attributed to unspecific binding based on the protein denaturation during the Western-blot analysis.

The 82 kD protein was identified as CD55 (DAF, gene bank access no. M31516, Figure 1b, sections 1 and 2). In humans, CD55

exists in two genetically specified isoforms (secreted DAF-A and membrane-bonded DAF-B), which are produced by differential splicing (Caras et al., Nature 325 (1987), 545-549). It was found by RT-PCR analysis that cell line 23132 expresses only the membrane-anchored DAF-B isoform.

2.2 Phospholipase Treatment

The influence of a cleavage of the glycosidphosphatidylinositol (GPI)-anchor on the bond of SC-1 was analyzed by immunohistochemical studies and in the MTT-proliferation tests. In this connection, the GPI-anchor was cleaved by incubation with phosphatidylinositol-specific phospholipase C (PI-PLC). Cytospins of cells that were treated with PI-PLC and untreated cells were stained immunohistochemically with SC-1, anti-CD55 and anti-EMA (epithelial-membrane-antigen). A comparison with untreated cells (Figure 2a) shows a loss in staining intensity in cells that are treated with PI-PLC and stained with SC-1 (Figure In the case of staining with anti-EMA (Figure 2c, d), no difference in staining was found, which indicates that the PI-PLC treatment has no effect on non-GPI-anchored membrane proteins. In the MTT test, a treatment of cells with phospholipase C resulted in a significant reduction ($p \le 0.05$) of the apoptotic cells (Figure 3).

2.3 Transfection with Antisense-CD55 RNA

Cell line 23132 was transiently transfixed with the CD55 antisense-vector pHOOK2-CD55anti and the control vector pHOOK2 by

electroporation. First, cytospins of transfixed cells were immunohistochemically stained with SC-1, anti-CD55 and anti-CEA (carcino-embryonal antigen). The cells that were transfixed with the control vector showed an intensive staining with SC-1 and CEA (Figure 4a, c). In cells that were stained with the CD55 antisense vector, almost no staining with SC-1 was found (Figure 4b). The staining with anti-CEA-antibodies showed that the expression pattern of the CEA (also GPI-anchored) is not affected by the transfection with the antisense vector. Consequently, the expression of CD55 was reduced specifically based on the expression of the antisense RNA.

To analyze whether the expression of antisense-CD55 RNA also inhibits the SC-1 induced apoptosis, the cells were incubated for one day after the transfection with and without 30 μ g/ml of SC-1 for a period of 24 hours. Cytospins of cells transfixed with the antisense vector and the control vector were stained with the FragE1 Klenow DNA Fragmentation Kit for the detection of a DNA-fragmentation induced by apoptosis. While untransfixed cells that are treated with two plasmids show almost no spontaneous apoptosis (Figure 5e), a considerable reduction in the apoptosis of cells that are transfixed with the CD55 antisense vector (Figure 5g) in comparison to cells that are transfixed with the control vector (Figure 5h) is found after incubation with SC-1.

A quantitative determination showed that spontaneous apoptosis in transfixed 23132 cells occurred with a frequency of 6% while 85% of the cells that were transfixed with the control vector showed an apoptosis after incubation with SC-1. This

apoptotic reaction was reduced to 21% by transfection with the CD55 antisense vector (Figure 6).

2.4 Glycosidase Treatment

The influence of a protein deglycosylation on the bond of SC-1 to cell line 23132 was studied by incubation of cytospin preparations with O- and N-glycosidases before the immunohistochemical staining. A treatment of cells with N-glycosidase resulted in a significant reduction of the SC-1 staining (Figure 7b), while a staining with anti-CD55, which detects the unglycosylated SCR3 region, was not influenced by protein deglycosylation (Figure 7d). An incubation with phosphate buffer and a treatment with O-glycosidase had no effect on the SC-1 bond. This shows that the specificity of SC-1 must be located in N-linked sugar radicals and not in the primary protein sequence.

2.5 Cross-linking of CD55/SC-1

The cells were incubated for 24 hours with increasing quantities of SC-1 to determine the optimum apoptopic activity of SC-1 (Figure 8a). Then, crosslinking was carried out at a concentration of 40 μ g/ml of SC-1 with rabbit-anti-human IgM. After incubation for 48 hours, a 47% higher proportion of dead cells than in the control cells that are incubated with SC-1 was found (Figure 8b).

2.6 Calcium Level

To examine whether the apoptosis that is induced by SC-1 is accompanied by changes of the calcium level, the intracellular calcium concentration of cell line 23132 was determined after induction with SC-1 and control antibodies (unspecific human IgM). In this case, a more significant increase of the intracellular calcium concentration was found approximately 1 minute after SC-1 antibody was added, while the control antibody had no effect (Figure 9).

2.7 Caspase Activity

It was found by Western-blot analysis that caspases 3 and 8 are regulated upward after the induction of cell line 23132 with SC-1 (Figure 10a). A proteolytic cleavage that causes the activation of caspases was detected for caspase 3 by identifying cleavage product p20 (Figure 10a). In caspase 8, a seven-fold increase of the activity was found 7 hours after induction with SC-1, which indicates a significant participation of this caspase in the apoptosis process (Figure 10b).

2.8 Protein Phosphorylation

After induction of cells with 40 μ g/ml of SC-1 antibodies, the phosphorylation pattern was examined by Western-blot analysis of cytoplasmatic and membrane extracts. In this case, an early tyrosine phosphorylation of 110 kD and 60 kD of proteins was found 30 to 60 seconds after the apoptosis was induced (Figure 11). The 60 kD protein was found only in the cytoplasma, while

the 110 kD protein could be detected both in the plasma and in the membrane extract. In addition, a slow tyrosine phosphorylation of a cytoplasmatic 75 kD protein with a maximum after 10 minutes as well as the complete disappearance of the serine phosphorylation of a 35 kD protein 10 minutes after induction were found.

2.9 Expression and Sequencing of p53

To study the role of p53 in the case of SC-1-induced apoptosis, the frequency of the mRNA by RT-PCR and the gene product was determined by Western-blot analysis after induction. In this case, a considerable increase of the mRNA concentration was found. On the protein plane, however, a constant and not significantly altered high concentration of p53 gene product was found (Figure 12a).

The DNA-sequence of p53 in cell line 23132 was determined by amplification of two p53 fragments of cDNA with specific primers, cloning of the PCR-fragments and sequencing of eight clones. All clones with insertions spanning Exon 8 showed a mutation in codon 273, which resulted in an amino acid exchange of arginine to histidine (Figure 12b). This is a dominant negative mutation, which frequently occurs in gastric adenocarcinomas.

2.10 Expression of p21

Protein p21 is a molecule that is associated with the expression of p53. A test of the expression of p21 in gastric carcinoma cell line 23132 after treatment with SC-1 yielded an

increase after 5 minutes followed by a reduction after 60 minutes (Figure 13).

Claims

- 1. Glycoprotein that comprises at least one section of the amino acid primary structure of CD55 and a tumor-specific glycostructure.
- 2. Glycoprotein according to claim 1, characterized in that the glycostructure reacts with the monoclonal antibody SC-1.
- 3. Glycoprotein according to claim 1 or 2, wherein in SDS-polyacrylamide-gel electrophoresis, it has an apparent molecular weight of 82 kD.
- 4. Process for obtaining a glycoprotein according to one of claims 1 to 3, wherein membrane preparations are produced from cells of the human adenocarcinoma cell line 23132 and the glycoprotein is obtained therefrom by size-exclusion and/or anion-exchange chromatography.
- 5. Use of a glycoprotein according to one of claims 1 to 3 in a test process in which the ability of a substance to bind to the glycoprotein is determined.
- 6. Use according to claim 5, wherein the ability to bind to the glycostructure is determined.
- 7. Use according to claim 5 or 6, wherein the ability of the tested substance to induce apoptosis, especially in tumor cells, is determined.
- 8. Use according to one of claims 5 to 7, wherein the ability of the tested substance to induce a phosphorylation cascade that is mediated by glycoprotein CD55 is determined.

- 9. Use according to claims 5 to 8, wherein the glycoprotein is used in isolated form, as a cell extract, especially as a membrane preparation or in the form of complete cells, especially of human adenocarcinoma cell line 23132.
- 10. Use according to one of claims 5 to 9 for identifying substances that bind specifically to tumor cells.
- 11. Use according to claim 10 for identifying agents for tumor diagnosis and/or tumor therapy.
- 12. Use according to one of claims 5 to 11, wherein the pharmacologically compatible substances are tested.
- 13. Use according to claim 12, wherein the tested substances are selected from peptides, peptide mimetic agents, antibodies, antibody fragments and antibody derivatives.
- 14. Use of substances that bind specifically to a glycoprotein according to one of claims 1 to 3, with the exception of the monoclonal antibody SC-1, for the production of agents that induce apoptosis.
- 15. Use of substances that bind specifically to a glycoprotein according to one of claims 1 to 3, with the exception of the monoclonal antibody SC-1, for the production of anti-tumor agents.
- 16. Use of substances that bind specifically to a glycoprotein according to one of claims 1 to 3, with the exception of the monoclonal antibody SC-1, for the production of agents for tumor diagnosis.
- 17. Process for the preparation of the agents that induce apoptosis, wherein a potentially active substance is tested on

ے۔ اث

its ability for specific binding to a glycoprotein according to one of claims 1 to 3 and in the case of a positive test result, the substance is converted into a form for dispensing that is suitable for pharmaceutical applications optionally together with commonly used adjuvants, additives and vehicles.

- 18. Process for the preparation of anti-tumor agents, wherein a potentially active substance is tested on its ability for specific binding to a glycoprotein according to one of claims 1 to 3 and in the case of a positive test result, the substance is converted into a form for dispensing that is suitable for pharmaceutical applications optionally together with commonly used adjuvants, additives and vehicles.
- 19. Process for combatting tumors, wherein an anti-tumor-active quantity of a substance that can bind specifically to a glycoprotein according to one of claims 1 to 3 with the exception of monoclonal antibody SC-1 is administered to a patient.
- 20. Process for diagnosis of tumors, wherein a sample that is to be tested or a patient who is to be tested is brought into contact with a substance that can bind specifically to a glycoprotein according to one of claims 1 to 3, and the presence, the localization and/or the quantity of the glycoprotein in the sample or in the patient is detected.
- 21. Substances that trigger a phosphorylation cascade that is mediated by a specific binding to a glycoprotein according to one of claims 1 to 3.
- 22. Substances according to claim 21 in the form of conjugates with labeling or effector groups.

Abstract

The invention relates to a substance and a process for obtaining anti-tumor agents.

vo 2/22/1999

BUNDESREPUBLIK DEUTSCHLAND

Bescheinigung

DEC & 8 2001
TECH CENTER 1600/2900

Die Herren Professor Dr. Heinz Peter Vollmers und Professor Dr. Hans Konrad Müller-Hermelink, beide in Würzburg/Deutschland, haben eine Patentanmeldung unter der Bezeichnung

"Substanz zur Gewinnung hochwirksamer Tumorarzneien sowie Verfahren"

am 5. März 1999 beim Deutschen Patent- und Markenamt eingereicht und erklärt, daß sie dafür die Innere Priorität der Anmeldung in der Bundesrepublik Deutschland vom 22. Dezember 1998, Aktenzeichen 198 59 248.5, in Anspruch nehmen.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 K und A 61 K der Internationalen Patentklassifikation erhalten.

München, den 25. Januar 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Aktenzeichen: 199 09 771.2

Weihmayr

PATENTANWÄLTE

European Patent Attorneys
European Trade Mark Attorneys

DIPL.-ING. H. WEICKMANN
DIPL.-CHEM. B. HUBER
DR.-ING. H. LISKA
DIPL.-PHYS. DR. J. PRECHTEL
DIPL.-CHEM. DR. B. BÖHM
DIPL.-CHEM. DR. W. WEISS
DIPL.-PHYS. DR. J. TIESMEYER
DIPL.-PHYS. DR. M. HERZOG
DIPL.-PHYS. B. RUTTENSPERGER

POSTFACH 860 820 81635 MÜNCHEN

KOPERNIKUSSTRASSE 9 81679 MÜNCHEN

TELEFON (089) 4 55 63-0 TELEX 5 22 621 TELEFAX (089) 4 70 50 68 E-MAIL email@weickmann.de

Unser Zeichen: 20047P DE/WWvo

97084 Würzburg

Anmelder: Prof. Dr. Heinz Peter Vollmers Budapeststraße 23

Prof. Dr. Hans Konrad Müller-Hermelink Heinrich-Zeuner-Straße 72 97082 Würzburg

Substanz zur Gewinnung hochwirksamer Tumorarzneien sowie Verfahren

Substanz zur Gewinnung hochwirksamer Tumorarzneien sowie Verfahren

Beschreibung

5

10

15

20

25

30

Die Erfindung betrifft eine Substanz sowie ein Verfahren zur Gewinnung von Antitumormitteln.

Beim Magenkarzinom handelt es sich um eine der weltweit häufigsten Krebsarten. Nach Lauren "The two histological main types of gastric carcinoma", Acta Path Microbiol Scand; 64:331-49, werden sie histologisch eingeteilt in diffuse Adenokarzinome und intestinale Adenokarzinome. Intestinale Magenkarzinome sind oft von chronischer Gastritis B begleitet und insbesondere von intestinalen Metaplasien, die als Vorläufer dysplatischer Veränderungen und von Magenkarzinomen betrachtet werden. Unterschiede zwischen diesen beiden Arten zeigen sich auch darin, daß Patienten mit Karzinomen des diffusen Typs oft der Blutgruppe A angehören, woraus auf den Einfluß genetischer Faktoren beim Krebsrisiko geschlossen werden kann, während Umweltfaktoren, z.B. eine Helicobacterpylori-Infektion, möglicherweise für die Entstehung von Karzinomen des intestinalen Typs von Bedeutung sind. Zwar ist eine abnehmende Häufigkeit der Magenadenokarzinome im Westen festzustellen, dafür treten sie aber nun vermehrt im Osten auf.

Die Therapie war bislang auf Gastrektomie und Lymphadenektomie beschränkt, aufgrund der auch dann noch schlechten Prognose besteht jedoch der Bedarf nach einer neuen begleitenden Therapie. Immunologische Studien haben gezeigt, daß auch in Fällen, in denen das Immunsystem maligne Zellen nicht wirksam bekämpfen kann, eine zelluläre und humorale Aktivität meßbar ist, die aber nicht ausreicht um die Tumorzellen zu zerstören. Ein wirkungsvoller Ansatz ist nun der, von der Immunantwort des Patienten stammende Antikörper zu isolieren, geeignet zu vermehren und

therapheutisch einzusetzen. So wurden beispielsweise von Patienten mit Lungen-, Ösophagus- und Dickdarmkrebs stammende Antikörper isoliert und davon humane monoklonale Antikörper abgeleitet, die z.B. direkt Differentiation und das Wachstum der Tumorzellen beeinflussen, welche aber zumeist das Problem der Wechselwirkung mit anderen Tumoren oder gesunden Zellen haben.

Es ist bekannt, daß humane monoklonale SC-1-Antikörper Apoptose bei Magenkarzinomzellen auslösen können (Vollmers et al., "Apoptosis of stomach carcinoma cells induced by a human monoclonal antibody", Cancer 76 (1997), 550-58). Apoptose ist der programmierte Zelltod, Selbstmord von Zellen, durch Fragmentation der DNA, Zellschrumpfung und Dilatation des endoplasmatischen Reticulums, gefolgt von Zellfragmentation und der Bildung von Membranvesikeln, den sog. apoptotischen Körpern. Apoptose, die physiologische Form des Zelltods, garantiert eine schnelle und saubere Entfernung unnötiger Zellen, ohne Entzündungsvorgänge oder Gewebsverletzungen auszulösen wie im Falle der Nekrose. Unter pathologischen Bedingungen dient sie auch zum Entfernen maligner Zellen, wie etwa Krebsvorläuferzellen. Sie kann durch verschiedenste Stimuli ausgelöst werden, wie etwa durch zytotoxische T-Lymphozyten oder Zytokine, wie - Tumornekrosefaktor, Glukokortikoide und Antikörper. Sie ist die häufigste Todesursache eukaryontischer Zellen und kommt vor in der Embryogenese, Metamorphose und Gewebsatrophie. Apoptotische Rezeptoren an der Zelloberfläche, wie jene der NGF/TNF-Familie werden prädominant auf Lymphozyten exprimiert, befinden sich aber auch auf verschiedenen anderen Zelltypen, weshalb sie sich nicht für eine Krebstherapie eignen. Insbesondere haben bei in-vivo-Tests Liganden und Antikörper für diese Rezeptoren zu Leberschäden geführt. Deshalb sind tumorspezifische Rezeptoren mit apoptotischer Funktion besonders wichtig.

Der zelluläre Rezeptor des monoklonalen Antikörpers SC-1 war bisher nicht bekannt. Im Rahmen der zur vorliegenden Erfindung führenden Unter-

5

10

15

20

25

suchungen konnte dieser zelluläre Rezeptor identifiziert werden. Diese Identifizierung gestaltete sich jedoch als schwierig. Einerseits reagiert der monoklonale Antikörper SC-1 bei der Westernblot-Analyse mit seinem Rezeptor nur unter ganz bestimmten Stringenzbedingungen. Andererseits findet man eine durch Denaturierungsartefakte hervorgerufene unspezifische Reaktion mit einer Reihe weiterer Proteine.

Bei dem zellulären Rezeptor des Antikörpers SC-1 handelt es sich um eine für Tumorzellen, insbesondere für Magenkarzinomzellen spezifische Isoform des Proteins CD55/DAF (Medof et al., J. Exp. Med. 160 (1984), 1558-1578; Caras et al., Nature 325 (1987), 545-549; Bjorge et al., Int. J. Cancer 70 (1997), 14-25), die in normalem Gewebe nicht auftritt. Die spezifischen Rezeptoreigenschaften dieser Isoform beruhen auf einer besonderen mit dem Proteinrückgrat über eine N-Verknüpfung verbundenen Glykostruktur. Der tumorspezifische Rezeptor kann in einem Screeningverfahren zur Identifizierung von spezifischen Bindepartnern eingesetzt werden. Spezifische Bindepartner an den Rezeptor sind im Sinne der vorliegenden Erfindung solche Substanzen, die selektiv an eine tumorspezifische Glykostruktur, aber nicht signifikant an eine in normalen Zellen vorkommenden Glykostrukturen von CD55/DAF binden und vorzugsweise die Fähigkeit zur Apoptoseinduzierung besitzen. Diese spezifischen Bindepartner können für die Herstellung von therapeutischen Mitteln zur Apoptoseinduzierung oder/und zur Tumorbekämpfung sowie zur Herstellung von diagnostischen Mitteln eingesetzt werden.

25

30

5

10

15

20

Ein erster Aspekt der Erfindung betrifft ein Glykoprotein umfassend mindestens einen Abschnitt der Aminosäureprimärstruktur von CD55/DAF, insbesondere der membrangebundenen Isoform DAF-B und eine für Tumorzellen spezifische Glykostruktur, insbesondere eine solche Glykostruktur, die mit dem monoklonalen Antikörper SC-1 reagiert. Ein derartiges aus der humanen Adenokarzinomzellinie 23132 erhältliches Glykoprotein weist bei SDS-Polyacrylamid-Gelelektrophorese (unter reduzierenden Bedingungen)

ein scheinbares Molekulargewicht von etwa 82 kD auf. Neben diesem 82 kD Protein betrifft die Erfindung auch Varianten mit Deletionen, Insertionen oder/und Substitutionen in der Aminosäureprimärstruktur, die jedoch eine dem natürlichen Protein analoge, d.h. tumorspezifische und vorzugsweise mit dem Antikörper SC-1 reaktive Glykostruktur besitzen.

5

10

15

20

25

30

Das erfindungsgemäße Glykoprotein kann erhalten werden, indem man Membranpräparationen aus Zellen, die ein Protein mit der gewünschten Glykostruktur exprimieren, z.B. aus Zellen der humanen Adenokarzinom-Zellinie 23132 herstellt und daraus das Glykoprotein durch chromatographische Verfahren z.B. durch Größenausschluß- oder/und Anionenaustauschchromatographie gewinnt. Die Herstellung der Membranpräparationen erfolgt vorzugsweise durch Lyse der Zellen in hypotonischem Puffer, Ultraschallbehandlung und anschließende Abtrennung der Zellkerne. Die Membranpräparationen können durch Zentrifugation aus dem verbleibenden Extrakt isoliert und durch chromatographische Methoden weiter aufgereinigt werden.

Das tumorspezifische CD55/DAF-Glykoprotein kann in einem Testverfahren eingesetzt werden, bei dem die Bindefähigkeit einer Substanz an das tumorspezifische Glykoprotein, insbesondere an dessen Glykostruktur bestimmt wird. Das Testverfahren kann als Hochdurchsatz-Screeningverfahren automatisiert werden. Hierzu kann das Glykoprotein in isolierter Form, als Zellextrakt, insbesondere als Membranpräparation oder in Form vollständiger Zellen, insbesondere der humanen Adenokarzinomzellinie 23132, oder einer mit dem CD55-Gen transformierten heterologen eukaryontischen Zelle, z.B. einer Säugerzelle, die in der Lage ist, ein Protein mit der richtigen Glykostruktur zu erzeugen, eingesetzt werden. Als Kontrolle kann die Bindung der getesteten Substanz an ein Nichttumor-CD55/DAF-Glykoprotein untersucht werden. Substanzen, die selektiv an das tumorspezifische Glykoprotein binden, sind zur Herstellung von therapeutischen oder/und diagnostischen Mitteln geeignet.

Vorzugsweise bestimmt man weiterhin die Fähigkeit der getesteten Substanz zur Apoptoseinduzierung, insbesondere bei Tumorzellen oder/und die Fähigkeit zur Induzierung einer über CD55/DAF vermittelten Phosphory-lierungskaskade. Die Induzierung der Apoptose kann durch morphologische Zelluntersuchungen, durch Apoptosetestverfahren, z.B. durch Bestimmung der DNA-Fragmentierung, oder durch Proliferationstests wie dem MTT-Proliferationstest durchgeführt werden. Alternativ kann auch eine Bestimmung von Caspase-Aktivitäten, beispielsweise von Aktivitäten der Caspasen 3 und/oder 8 oder eine Bestimmung der intrazellulären freien Calciumkonzentration erfolgen. Substanzen, die selektiv eine Apoptose von Tumorzellen induzieren, können als antitumorwirksame Substanzen eingesetzt werden. Die Induzierung der Phosphorylierungskaskade kann durch Verwendung von für Phosphorgruppen, z.B. Phosphotyrosin- oder/und Phosphoseringruppen spezifischen Antikörpern verfolgt werden.

15

20

25

30

5

Zweckmäßigerweise werden pharmakologisch verträgliche Substanzen getestet. Hierzu zählen niedermolekulare pharmakologische Wirkstoffe, insbesondere jedoch Peptide, Peptidmimetika, Antikörper, z.B. polyklonale, monoklonale, oder rekombinante Antikörper, Antikörperfragmente oder Antikörperderivate. Besonders bevorzugt sind beispielsweise rekombinante Antikörper wie etwa einzelkettige scFv-Antikörper, wie sie beispielsweise in Bakterienzellen wie etwa E.coli (Plückthun, Bio/Technologiy 9 (1991), 545-551 und darin zitierte Literaturstellen) oder auch in eukaryontischen Wirtszellen (Reff, Curr. Opinion Biotech. 4 (1993), 573-576 und Trill et al., Curr. Opinion Biotech 6 (1995), 553-560 oder darin zitierte Literaturstellen) erzeugt werden können. Weiterhin bevorzugt sind humane Antikörper, d.h. Antikörper mit humanen konstanten Domänen, wie sie im menschlichen Körper, z.B. von Karzinompatienten, erzeugt werden, oder chimäre und humanisierte Antikörper, bei denen ursprünglich vorhandene nichthumane konstante Domänen oder/und Frameworkregionen durch entsprechende humane Bereiche ausgetauscht wurden. Beispiele für Antikörperfragmente sind Fab-, F(ab)2- oder Fab'-Fragmente, wie sie durch proteolytische

Spaltung von Antikörpern erhalten werden können. Zu den Antikörperderivaten zählen beispielsweise Konjugate von Antikörpern mit Markierungsgruppen oder/und Effektorgruppen, beispielsweise toxischen Substanzen wie etwa Choleratoxin oder Pseudomonas Exotxin A oder radioaktiven Substanzen.

Ein weiterer Aspekt der Erfindung ist die Verwendung von Substanzen, die spezifisch an das erfindungsgemäße Glykoprotein binden (mit Ausnahme des bereits bekannten monoklonalen Antikörpers SC-1) zur Herstellung von die Apoptose-induzierenden Mitteln oder/und zur Herstellung von Antitumormitteln oder/und zur Herstellung von Mitteln zur Tumordiagnostik.

Noch ein weiterer Aspekt der Erfindung ist ein Verfahren zur Bereitstellung von die Apoptose induzierenden Mitteln oder/und Antitumormitteln oder/und zur Herstellung von Mitteln zur Tumordiagnostik, wobei man eine potentiell wirksame Substanz auf ihre Fähigkeit zur spezifischen Bindung an ein erfindungsgemäßes Glykoprotein testet und bei einem positiven Testergebnis die Substanz in eine für pharmazeutischen Anwendungen geeignete Darreichungsform gegebenenfalls zusammen mit üblichen Hilfs-, Zusatz- und Trägerstoffen überführt.

Geeignete pharmazeutische Darreichungsformen enthalten den Wirkstoff in einer therapeutisch wirksamen Menge, insbesondere in einer antitumorwirksamen Menge. Die einem Patienten verabreichte Dosis und die Behandlungsdauer hängen von der Art und Schwere der Erkrankung ab. Geeignete Dosierungen für die Verabreichung von Antikörpern sind beispielsweise bei Ledermann et al. (Int. J. Cancer 47 (1991), 659-664) und Bagshawe et al. (Antibody, Immunoconjugates and Radiopharmaceuticals 4 (1991), 915-922) beschrieben.

Der Wirkstoff kann alleine oder in Kombination mit anderen Wirkstoffen entweder gleichzeitig oder sequenziell verabreicht werden. Die pharmazeu-

10

15

5

(P.)

20

25

30

tische Zusammensetzung kann neben dem Wirkstoff weitere pharmazeutisch übliche Substanzen enthalten. Die Zusammensetzung kann beispielsweise oral, nasal, pulmonal oder durch Injektion verabreicht werden. Oral verabreichbare Zusammensetzungen können in Form von Tabletten, Kapseln, Pulvern oder Flüssigkeiten vorliegen. Durch Injektion verabreichbare Zusammensetzungen sind üblicherweise in Form einer parenteral verträglichen wässrigen Lösung oder Suspension.

5

10

15

20

Außerdem betrifft die Erfindung ein Verfahren zur Bekämpfung von Tumoren, wobei man einem Patienten, insbesondere einem humanen Patienten, eine antitumorwirksame Menge einer an ein erfindungsgemäßen Glykoprotein spezifisch bindefähigen Substanz mit Ausnahme des monoklonalen Antikörpers SC-1 verabreicht.

Bindepartner für tumorspezifische CD55/DAF-Proteine können auch für diagnostische Zwecke, z.B. zum Tumorimaging, eingesetzt werden. Geeignete Methoden für das Tumorimaging sind z.B. bei Steinstraesser et al. (Clinical Diagnosis and Laboratory Medicine 2 ((1989), 1-11) beschrieben. Hierzu werden die Bindepartner vorzugsweise in Form von Konjugaten mit Markierungsgruppen, z.B. radioaktiven oder fluoreszierenden Markierungsgruppen eingesetzt. Alternativ können die Bindepartner auch umkonjugiert mit der zu testenden Probe inkubiert und anschließend mit einem sekundären Bindungsreagenz angefärbt werden.

Ein Gegenstand der Erfindung ist somit ein Verfahren zur Diagnose von Tumoren, wobei man eine zu testende Probe, z.B. eine Körperflüssigkeit oder eine Gewebeprobe, oder einen Patienten mit einer an ein tumorspezifisches CD55/DAF Glykoprotein bindefähigen Substanz in Kontakt bringt und das Vorhandensein, die Lokalisierung oder/und die Menge des Glykoproteins in der Probe oder im Patienten nachweist.

Noch ein Gegenstand der Erfindung sind Substanzen, welche eine durch spezifische Bindung an ein erfindungsgemäßes Glykoprotein CD55/DAF vermittelte Phosphorylierungskaskade auslösen, gegebenenfalls als Konjugate mit Markierungs- oder/und Effektorgruppen.

5

Die Zellinie 23132 ist von der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH, Braunschweig, unter dem Aktenzeichen DSM ACC 201 erhältlich.

Weiterhin wird die Erfindung durch die nachfolgenden Beispiele und Figuren erläutert. Es zeigen:

Figur 1: die Identifizierung von mit dem Antikörper SC-1 reaktiven Antigenen.

15

a: Aufreinigung von SC-1 Antigenen aus Membranextrakten der Magenkarzinomzellinie 23132.

20

b: Sequenzierung eines als SC-1 Antigen identifizierten 82 kD Proteins durch Nanoelektrospray-Tandem-Massenpektroskopie.

20

25

Figur 2: der Einfluß einer Spaltung von GPI-Ankern durch Phosphatidylinositol-spezifische Phospholipase C (PI-PLC) auf eine Anfärbung mit SC-1. Unbehandelte Magenkarzinomzellen der Zellinie 23132 angefärbt mit SC-1 (a) und Anti-EMA (c); mit PI-PLC behandelte Zellen angefärbt mit SC-1 (b) und Anti-EMA (d) (400 x Vergrößerung).

30 Figur 3:

das Ergebnis eines MTT Test mit dem Antikörper SC-1 bei Magenkarzinomzellen. Kontrolle: unbehandelte Zellen; SC-1:

mit SC-1 behandelte Zellen; SC-1, PIPLC: mit Phospholipase und anschließend mit SC-1 behandelte Zellen.

Figur 4:

das Ergebnis einer Analyse von mit einem CD55-Antisense-Vektor transient transfizierten Zellen. Zellen, die mit einem Kontrollvektor transfiziert wurden, zeigen ein normales Anfärbungsmuster mit SC-1 (a) und Anti-CEA (c). In mit dem Antisense-Vektor transfizierten Zellen ist die Anfärbung mit SC-1 verringert (b), während keine Änderung bei Anfärbung mit Anti-CEA (d) zu erkennen ist.

10

15

5

Figur 5:

das Ergebnis eines Klenow-Fragmentierungstests. Transfizierte Zellen zeigen keine Apoptose ohne Induzierung mit SC-1 (e) im Vergleich zu einer positiven Kontrolle (f). Nach Inkubation mit SC-1 zeigen die mit dem Kontrollvektor transfizierten Zellen Apoptose (g), während die Mehrzahl der mit dem CD55 Antisense-Vektor transfizierten Zellen resistent gegenüber Apoptose ist (h).

20 Figur 6:

eine quantitative Bestimmung der durch SC-1 induzierten Apoptose. Mit dem Kontroll- und dem CD-55 Antisense-Vektor transfizierte Zellen wurden mit SC-1 inkubiert und Cytospins dieser Zellen mit dem Klenow DNA Fragmentierungskit angefärbt. Die Prozentzahlen apoptotischer Zellen wurden von zwei verschiedenen Personen durch Zählung Apoptose-positiver und negativer Zellen in drei verschiedenen Feldern mit jeweils etwa 500 Zellen bestimmt.

25

30

Figur 7:

die Wirkung eine Deglykosilierung auf die Bindung des Antikörpers SC-1.

a: Tumorzellen mit Puffer inkubiert und mit SC-1 angefärbt;

b: mit N-Glykosidase und mit SC-1 inkubierte Zellen;

c: mit Puffer und Anti-CD55 inkubierte Zellen und

d: mit N-Glykosidase und Anti-CD55 inkubierte Tumorzellen.

Figur 8: Das Ergebnis eines MTT-Tests mit SC-1 bei der Magenkarzinom-Zellinie 23132.

a: Titration von SC-1;

b: Quervernetzung von SC-1 mit Kaninchen-Anti-human IgM-Antikörpern;

Figur 9: die Änderung der intrazellulären Calciumkonzentration nach Induzierung der Zellinie 23132 mit SC-1. An Punkt 1 erfolgte die Zugabe von SC-1 bzw. Kontrollantikörper. An Punkt 2 wurden die Zellen mit Ringerlösung gewaschen.

Figur 10: das Expressions- und Aktivitätsmuster der Caspasen 3 und 8 nach Induzierung mit SC-1.

a: Westernblot-Analyse der Caspasen 3 und 8. Die Aktivierung von Caspase 3 aufgrund proteolytische Spaltung ist durch Auftreten des p20 Spaltprodukts zu erkennen.

b: das Ergebnis einer Aktivitätsbestimmung von Caspase
8. Ein vierfacher Anstieg der Caspase 8 Aktivität wurde
20 Stunden nach Induzierung der Apoptose gefunden.

Figur 11: die Phosphorylierungsmuster der Zell-Linie 23132 nach Induzierung der Apoptose.

a: Eine rasche Phosphorylierung von Tyrosinresten in Proteinen mit Molekulargewichten von etwa 110 kD und 60 kD sowie die Dephosphorylierung eines Serin-

10

5

15

20

25

30

rests in einem Protein mit etwa 35 kD wurde nach Induzierung der Apoptose mit SC-1 gefunden.

b: Eine Zunahme der Phosphorylierung eines Thyrosinrestes in einem 75 kD Protein mit einem Maximum nach 10 min wurde nach Induzierung der Apoptose gefunden.

Figur 12: eine Expressions- und Mutationsanalyse von p53.

a: 5 min nach Induzierung der Apoptose durch SC-1 wurde eine starke Zunahme der mRNA Konzentration gefunden, während die hohen p53 Proteinkonzentrationen unverändert bleiben.

b: eine Sequenzanalyse von p53 zeigte eine Mutation in Codon 273, die zu einem Aminosäureaustausch von Arg zu His führt.

Figur 13: eine Expressionsanalyse von p21.

Nach Induzierung der Apoptose wird eine Zunahme der p21

mRNA Konzentration gefunden.

Beispiele

5

10

15

20

25

30

1. Material und Methoden

1.1 Zellkultur

Für alle Tests wurde die etablierte Magenadenokarzinomzellinie 23132 (Vollmers et al., Virchows Arch. B. Zell. Pathol. Incl. Mol. Pathol. 63 (1993), 335-343) verwendet. Die Zellen wurden in RPMI-1640 mit 10% fötalem Kälberserum und Penicillin/Streptomycin (beide 1%) bis zur Subkonfluenz kultiviert. Für die beschriebenen Testverfahren wurden Zellen mit Trypsin/EDTA abgelöst und zweimal mit phosphatgepufferter Salzlösung

(PBS) vor der Anwendung gewaschen. Die humane Hybridomzellinie SC-1 wurde wie bei Vollmers et al. (Cancer Res. 49 (1989), 2471-2476) beschrieben hergestellt und kultiviert.

5 1.2 Aufreinigung des Antikörers SC-1

Der humane monoklonale Antikörper SC-1 wurde aus Massenkulturen unter Verwendung von Kationenaustauschchromatographie gefolgt von Gelfiltration wie bei Vollmers et. al. (Oncology Reports 5 (1998), 35-40) beschrieben aufgereinigt.

1.3 Aufreinigung des SC-1-Rezeptors

10

15

20

25

30

Zur Präparation von Membranproteinen wurden geerntete Zellen in hypotonischem Puffer (20 mM HEPES, 3 mM KCl, 3 mM MgCl₂) resuspendiert, 15 min auf Eis inkubiert und 5 min sonifiziert. Die Zellkerne wurden durch Zentrifugation (10.000 g, 10 min) pelletiert. Die Membranen wurden durch Zentrifugation (30 min, 100.000 g) pelletiert und in Membranlysepuffer (50 mM HEPES, pH 7,4, 0,1 mM EDTA, 1 M NaCl, 10% Glycerin und und 1 % Triton X-100) resuspendiert. Allen Lösungen wurde Complete® Proteaseinhibitor (Boehringer Mannheim, Deutschland) zugesetzt.

Die Aufreinigung der Antigene erfolgte durch Säulenchromatographie unter Verwendung einer FPLC-Einheit (Pharmacia, Freiburg, Deutschland). Für die Größenausschlußchromatographie wurde eine Pharmacia Superdex 200 Säule (XK16/60) mit 5 mg Membranproteinpräparation in Puffer A (100 mM Tris HCl pH 7,5, 2 mM EDTA, 40 mM NaCl, 1% Triton X-100) beladen. Das Säuleneluat wurde fraktioniert und in einer Westernblot-Analyse auf Reaktion mit dem Antikörper SC-1 untersucht. Positive Fraktionen wurden unter Verwendung von Puffer A auf eine MonoQ-Säule geladen. Die gebundenen Proteine wurden mit einem linearen Gradienten unter Verwendung von Puffer B (100 mM Tris-HCl pH 7,5, 1 M NaCl, 2 mM EDTA,

1% Triton X100) fraktioniert und durch SDS-Polyacrylamid-Gelelektrophorese und Anfärbung mit Coomassie bzw. Westernblot-Analyse untersucht. Positive Banden wurden aus dem Gel ausgeschnitten und sequenziert.

5

1.4 Präparation von Zell-Lysaten nach Induktion mit SC-1

Die Zelline 23132 wurde auf 100 mm Zellkulturschalen bis zur Subkonfluenz kultiviert. Der Antköper SC-1 wurde in einer Endkonzentration von 30 μ g/ml für die jeweils angegebene Zeitdauer zugegeben. Dann wurden die Kulturplatten einmal mit PBS gewaschen und die Zellen wurden mit SDS-Puffer (50 mM Tris-HCl pH 6,8, 10 mM Dithiothreitol, 2% (w/v) SDS, 10% (v/v) Glycerin) direkt lysiert. Die Zellrückstände wurden mit einem Gummischaber gesammelt.

15

20

25

30

10

1.5 Gelelektrophorese und Blots

Die SDS-Polyacrylamid-Gelelektrophorese unterreduzierenden Bedingungen und das Western-Blotting von Proteinen wurde unter Verwendung von Standardprotokollen wie bei Vollmers et al. (Cancer 79 (1997), 433-440) beschrieben durchgeführt. Nitrozellulosemembranen wurden mit PBS unter Zusatz von 0,1% Tween-20 und 2% Magermilchpulver oder 3% Rinderserumalbumin (zur Bestimmung der Phosphorylierung) blockiert und anschließend eine Stunde lang mit dem Primärantikörper inkubiert. Die Antikörper wurden in folgenden Verdünnungen eingesetzt. SC-1 (human) 10 μg/ml; Anti-Caspase-3 bzw. -8 (Ziege) (SantaCruz, Heidelberg, Deutschland) 5 μg/ml, Streptavidin Anti-Phosphotyrosin-Konjugat (Klon PT-66) 1:20.000 und Streptavidin Anti-Phosphoserin-Konjugat (Klon PSR-45) 1:30.000 (Sigma, München, Deutschland). Die Sekundärantikörper Peroxidase-Kaninchen-Anti-Human-lgM-Konjugat oder Kaninchen-Anti-Ziegen-Antikörper (Dianova, Hamburg, Deutschland) und Peroxidase-konjugiertes Extravidin

(Sigma) wurden mit dem SuperSignal Chemilumineszenzkit von Pierce (KMF, St. Augustin, Deutschland) nachgewiesen.

1.6 Proteinsequenzierung

5

10

15

Eine Proteinbande mit einem scheinbaren Molekulargewicht von 82 kD wurde durch eindimensionale Polyacrylamidgelelektrophorese isoliert und durch Anfärbung mit Coomersie sichtbar gemacht. Die p82-Bande wurde im Gel mit Trypsin (Boehringer Mannheim, nichtmodifiziert, Sequenzierungsqualität) wie bei Shevchenko et al., (Anal. Chem. 68 (1996), 850-858) beschrieben gespalten. Der nicht aufgetrennte Pool von tryptischen Peptiden wurde durch Nanoelektrospray-Tandem-Massenspektrometrie wie von Wilm et al. (Nature 379 (1996), 466-469) beschrieben sequenziert. Die Sequenzierung erfolgte auf einem API III Triple Quadrupol Massenspektrometer (PE Sciex, Ontario, Kanada). Die Sequenzen der Peptidfragmente wurden unter Verwendung der Tandem-Massenspektrometriedaten assembliert und durch Datenbankrecherchen den jeweiligen Proteinen zugeordnet.

1.7 RT-PCR

20

25

Die cDNA-Synthese aus Gesamt RNA der Tumorzellen 23132 erfolgte mit 5 μ g Gesamt RNA unter Verwendung von M-MLV Reverser Transkriptase (Gibco BRL, Eggenstein, Deutschland) gemäß den Angaben des Herstellers. Die PCR-Reaktionen wurden in einem Reaktionsvolumen von 25 μ l mit 1,75 mM MgCl₂, 0,4 pM Primer, 200 μ M von jedem dNTP und 1 U Taq Polymerase (MBI Fermentas, St. Leon-Rot, Deutschland) durchgeführt.

Es wurden folgende PCR-Produkte erzeugt:

CD55 (640 bp Fragment aus dem Sequenzbereich von bp 382 bis 1022) p53-Fragment 1 (850 bp Fragment aus dem Sequenzbereich von 91 bis 940) p53-Fragment 2 (800 bp aus dem Sequenzbereich von 492 bis 1294)

1.8 Klonierungsprozeduren

5

10

15

20

25

30

Die PCR-Produkte wurden aus einem Agarosegel unter Verwendung des Jetsorb Gelextraktionskits (Genomed, Bad Oeynhausen, Deutschland) aufgereinigt. Die Klonierung der PCR-Fragmente erfolgte mit dem pCR-Script Amp SK (+) Klonierungskit (Stratagene, Heidelberg, Deutschland).

Die Klonierung des Antisense-Vektors pHOOK2-CD55-anti erfolgte durch Glätten des CD55-PCR-Produkts mit Pfu-Polymerase und Klonierung in den mit Smal geschnittenen Expressionsvektor pHOOK2 (Invitrogen, Leek, Niederlande). Ein Klon mit Antisense Richtung der Insertion unter Kontrolle des P_{CMV}-Promotors wurde für die Antisense-Experimente ausgewählt.

1.9 DNA-Sequenzierung

Acht positive Klone wurden unter Verwendung des DyeDeoxy Termination Cycle Sequencing Kit (Applied BioSystems Inc., Weiterstadt, Deutschland) sequenziert und dem automatisierten DNA Sequenzer ABIPrism 373 analysiert. Beide Stränge wurden unter Verwendung von T3 und T7 Primern sequenziert. Die Sequenzen wurden unter Verwendung der Computerprogramme DNASIS und BLAST analysiert.

1.10 Transfektion

Für Transfektionsexperimente wurden $2-5 \times 10^7$ abgelöste Zellen in Trisgepufferter Salzlösung (TBS) gewaschen und in $400 \, \mu l$ TBS resuspendiert. Nach Zugabe von $10 \, \mu g$ Plasmid DNA wurden die Zellen mit $240 \, V$, $960 \, nF$ unter Verwendung eines Elektroporationsgeräts von BioRad (München, Deutschland) gepulst. 5×10^5 transfizierte Zellen wurden auf einer $60 \, mm$ Zellkulturschale ausgesät und für $24 \, h$ wie zuvor beschrieben inkubiert. Die Apoptose wurde durch Zugabe von $50 \, \mu g/ml$ gereinigtem SC-1 Antikörper

zum Wachstumsmedium induziert. Nach 24 h wurden die Zellen mit Trypsin behandelt und zur Herstellung von Cytospins verwendet.

1.11 Phospholipasetest

5

Abgelöste und deletierte Zellen wurden RPMI-1640 mit Zusätzen resuspendiert und für 90 min bei 37°C inkubiert. Nach dieser Erholungsperiode wurden 20 mU/ml PI-PLC (Boehringer Mannheim) zugegeben, und die Zellen für weitere 60 min inkubiert. Schließlich wurden die Zellen gewaschen und zur Herstellung von Cytospins verwendet.

10

15

1.12 Glycosidase-Test

Abgelöste und gewaschene Zellen wurden in RPMI-1640 mit 10% fötalem Kälberserum resuspendiert, 1 h auf Eis inkubiert, dann gezählt und Cytospins hergestellt. Nach Lufttrocknung wurden die Cytospinpräparationen mit Aceton fixiert (10 min), gewaschen und mit 20 μ U/ml O-Glykosidase oder 5 mU/ml N-Glycosidase (Boehringer Mannheim) für 4 h bei 37°C inkubiert.

20

25

1.13 Immunhistochemische Anfärbung

Folgende Antikörper wurden für die immunhistochemische Anfärbung verwendet: Gereinigter Antikörper SC-1, Anti-CEA-Antikörper (DAKO, Hamburg, Deutschland) Anti-EMA-Antikörper (Loxo, Dossenheim, Deutschland) und Anti-CD55-Antikörper (Biozol, Eiching, Deutschland). Die Acetonfixierung und Anfärbung der Cytospinpräparationen erfolgte wie von Vollmers et al. (Hum. Antibodies Hybridomas 7 (1996), 37-41) beschrieben.

1.14 Apoptosetests

Cytospinpräparationen (5000 Zellen/Objektträger) wurden in Aceton fixiert und dann mit TBS gewaschen. Anschließend wurden sie mit dem FragE1-Klenow DNA-Fragmentierungskit (Calbiochem-Novabiochem, Bad Soden, Deutschland) nach Angaben des Herstellers angefärbt.

1.15 MTT-Test

5

10

15

20

25

30

Der MTT-Proliferationstest zur Bestimmung der Apoptoseaktivität des Antikörpers SC-1 auf Magenkarzinomzellen wurde wie bei Vollmers et al. (Cancer 76 (1995), 550-558) beschrieben durchgeführt. Die Bestimmung des Zellwachstums erfolgte durch den mitochondrialen Hydroxylase-Test (Mossmann, J. Immunol. Meth. 65 (1983), 55-63). Aus der Absorption der mit SC-1 induzierten Zellen und der nicht mit SC-1 induzierten Kontrolle wurde der prozentuale Anteil von apoptotischen Zellen bestimmt (Vercammen et al., J. Exp. Med. 188 (1998), 919-930).

1.16 Caspase-3 und -8 Tests

Die Aktivierung von Caspase-8 wurde mit dem ApoAlertTM Caspase Fluoreszenz-Testkit (Clontech, Heidelberg, Deutschland) bestimmt. Hierzu wurden 1 x 10⁶ Zellen mit 40 μg/ml SC-1 für 7 bzw. 20 h inkubiert. Dann wurden die Zellen gesammelt, in Zell-Lysepuffer resuspendiert und die Caspaseaktivität nach Angaben des Herstellers bestimmt.

1.17 Bestimmung von intrazellulärem freien Calcium [Ca²⁺].

Die Bestimmung der intrazellulären freien Calciumkonzentration wurde unter Verwendung des Calcium-sensitiven Farbstoffs Fura-2-AM wie von Grykiewicz et al. (J. Biol. Chem. 260 (1985), 3440-3450) beschrieben bestimmt. Hierzu wurden die Zellen mit einer Fura-2-AM in einer Endkonzen-

tration von 5 x 10^{-6} M enthaltenden Ringerlösung für 15 min inkubiert. Nach Spülen wurden die Objektträger mit einem Axiovert 100 TV Mikroskop (400-fache Vergrößerung) untersucht. Das Fluoreszenzsignal wurde bei 500 nm mit zwischen 334 und 380 nm alternierenden Anregungswellenlängen unter Verwendung einer 100-W Xenon-Lampe und einer automatischen Filterwechselvorrichtung (Zeiss, Deutschland) gemessen. Die Konzentration von intrazellulärem freiem Calcium wurde nach der Methode von Grynkiewicz et al. (supra) unter Annahme einer Dissoziationskonstante von 225 nmol/l berechnet. Die maximalen und minimalen Fluoreszenzverhältnisse (R_{max} und R_{min}) wurden nach Zugabe von Kalibrierungslösungen gemessen. R_{max} wurde nach Zugabe einer Ringerlösung mit 3 mM Ca²+ und 10^{-6} M lonomycin bestimmt. R_{min} wurde in Gegenwart einer Ca²+ freien Ringerlösung mit 3 mM EGTA und 10^{-6} M lonomycin bestimmt.

2. Ergebnisse

2.1 Aufreinigung des SC-1-Rezeptors CD55

Bei Westernblot-Analyse von Extrakten aus Gesamtzell-Lysaten der Magenkarzinomzellinie 23132, die unter Niedrigsalzbedingungen (100 mM NaCl) hergestellt worden waren, reagierte der Antikörper SC-1 mit einem Protein mit einer relativen Molekularmasse von etwa 50 kD. Durch Änderung der Stringenz (1 M NaCl) und unter Verwendung von Membranpräparationen konnten weitere Proteine mit etwa 70 kD und etwa 82 kD nachgewiesen werden (Figur 1a, Spur 1). Diese Proteine wurden aus Membranfraktionen isoliert und durch sequenzielle Größenausschluß- und Anionenaustauschchromatorgraphie gereinigt (Figur 1a, Spuren 2, 3). Die Moleküle wurden aus SDS-Polyacrylamidgelen ausgeschnitten und sequenziert.

30

5

15

20

25

Das 50 kD Protein wurde als Dihydrolipoamidsuccinyltransferase (Genbank-Zugriffsnr. L37418) und das 70 kD Protein als das humane Lupus p70

Autoantigenprotein (Genbank-Zugriffsnr. J04611) identifiziert. Bei diesen Proteinen handelt es sich um zytoplasmatische bzw. nukleäre Antigene. Da der Antikörper SC-1 in immunhistochemischen Untersuchungen nur an Zelloberflächenantigene bindet, ist die Reaktivität vermutlich auf unspezifische Bindung aufgrund der Proteindenaturierung während der Westernblot-Analyse zurückzuführen.

Das 82 kD Protein wurde als CD55 (DAF, Genbank-Zugriffsnr. M31516, Figur 1b, Abschnitte 1 und 2) identifiziert. CD55 existiert beim Menschen in zwei genetisch bestimmten Isoformen (sekretiertes DAF-A und membrangebundenes DAF-B) die durch differentielles Spleißen erzeugt werden (Caras et al., Nature 325 (1987), 545-549). Durch RT-PCR-Analyse wurde festgestellt, daß die Zellinie 23132 nur die membranverankerte DAF-B Isoform exprimiert.

2.2 Phospholipase-Behandlung

10

15

20

25

30

Durch immunhistochemische Untersuchungen und im MTT-Proliferationstest wurde der Einfluß einer Abspaltung des Glykosidphosphatidylinositol (GPI)-Ankers auf die Bindung von SC-1 analysiert. Hierzu wurde der GPI-Anker durch Inkubation mit Phosphatidylinositol-spezifischer Phospholipase C (PI-PLC) abgespalten. Cytospins von mit PI-PLC behandelten und unbehandelten Zellen wurden immunhistochemisch mit SC-1, Anti-CD55 und Anti-EMA (Epithelialmembran-Antigen) angefärbt. Ein Vergleich mit unbehandelten Zellen (Figur 2a) zeigt einen Verlust der Anfärbungsintensität bei mit PI-PLC-behandelten und SC-1 angefärbten Zellen (Figur 2b). Bei Anfärbung mit Anti-EMA (Figur 2c, d) wurde kein Unterschied in der Anfärbung gefunden, was darauf hinweist, daß die PI-PLC-Behandlung keine Wirkung auf nicht GPI-verankerte Membranproteine hat. Beim MTT-Test führte eine Behandlung von Zellen mit Phospholipase C zu einer signifikanten Abnahme (p ≤ 0,05) der apoptotischen Zellen (Figur 3).

2.3 Transfektion mit Antisense-CD55 RNA

Die Zellinie 23132 wurde mit dem CD55 Antisense-Vektor pHOOK2-CD55anti und dem Kontrollvektor pHOOK2 durch Elektroporation transient transfiziert. Zuerst wurden Cytospins von transfizierten Zellen immunhistochemisch mit SC-1, Anti-CD55 und Anti-CEA (Carcino-embryonales Antigen) angefärbt. Die mit dem Kontrollvektor transfizierten Zellen zeigten eine intensive Anfärbung mit SC-1 und CEA (Figur 4a, c). Bei mit dem CD55 Antisense-Vektor angefärbten Zellen wurde fast keine Anfärbung mit SC-1 gefunden (Figur 4b). Die Anfärbung mit Anti-CEA-Antikörper zeigte, daß das Expressionsmuster des (auch GPI-verankerten) CEA nicht durch die Transfektion mit dem Antisense-Vektor beeinflußt wird. Folglich wurde die Expression von CD55 spezifisch aufgrund der Expression der Antisense RNA reduziert.

15

20

25

30

5

Um zu analysieren, ob die Expression von Antisense-CD55 RNA auch die SC-1 induzierte Apoptose hemmt, wurden die Zellen einen Tag nach der Transfektion mit und ohne 30 µg/ml SC-1 für eine Dauer von 24 h inkubiert. Cytospins von mit dem Antisense-Vektor und dem Kontrollvektor transfizierten Zellen wurden mit dem FragE1 Klenow DNA Fragmentierungskit zum Nachweis einer durch Apoptose induzierten DNA-Fragmentierung angefärbt. Während mit beiden Plasmiden behandelte untransfizierte Zellen nahezu keine spontante Apoptose zeigen (Figur 5e), findet man nach Inkubation mit SC-1 eine deutliche Abnahme bei der Apoptose von mit dem CD55 Antisense-Vektor transfizierten Zellen (Figur 5g) im Vergleich zu mit dem Kontrollvektor transfizierten Zellen (Figur 5h).

Eine quantitative Bestimmung zeigte, daß spontane Apoptose in transfizierten 23132 Zellen mit einer Häufigkeit von 6% auftrat, während nach Inkubation mit SC-1 85% der mit dem Kontrollvektor transfizierten Zellen eine Apoptose zeigten. Diese apoptotische Reaktion wurde durch Transfektion mit dem CD55 Antisense-Vektor auf 21% verringert (Figur 6).

2.4 Glykosidasebehandlung

5

10

15

20

25

30

Der Einfluß einer Proteindeglykosilierung auf die Bindung von SC-1 an die Zell-Linie 23132 wurde durch Inkubation von Cytospin-Präparaten mit O- und N-Glykosidasen vor der immunhistochemischen Anfärbung untersucht. Eine Behandlung von Zellen mit N-Glykosidase führte zu einer signifikanten Abnahme der SC-1 Anfärbung (Figur 7b), während eine Anfärbung mit Anti-CD55, der die unglykosilierte SCR3 Region erkennt, nicht durch Proteindeglycosilierung beeinflußt wurde (Figur 7d). Eine Inkubation mit Phosphatpuffer und eine Behandlung mit O-Glycosidase hatte keine Wirkung auf die SC-1 Bindung. Dies zeigt, daß die Spezifität von SC-1 in N-verknüpften Zuckerresten und nicht in der Primärproteinsequenz lokalisiert sein muß.

2.5 Quervernetzung von CD55/SC-1

Die Zellen wurden 24 h mit zunehmenden Mengen an SC-1 inkubiert um die optimale apoptopische Aktivität von SC-1 zu bestimmen (Figur 8a). Dann erfolgte Quervernetzung bei einer Konzentration von 40 μ g/ml SC-1 mit Kaninchen-Anti-Human IgM. Nach Inkubation für 48 h wurde ein 47% höherer Anteil an toten Zellen als bei mit SC-1 inkubierten Kontrollzellen gefunden (Figur 8b).

2.6 Calciumspiegel

Um zu untersuchen, ob die durch SC-1 induzierte Apoptose mit Änderungen des Calciumspiegels einhergeht, wurde die intrazelluläre Calciumkonzentration der Zellinie 23132 nach Induktion mit SC-1 und Kontrollantikörper (unspezifisches humanes IgM) bestimmt. Dabei konnte ein signifikanter Anstieg der intrazellulären Calciumkonzentration etwa 1 min nach Zugabe des SC-1 Antikörpers gefunden werden, während der Kontrollantikörper keinen Einfluß hatte (Figur 9).

2.7 Caspase-Aktivität

5

10

15

20

25

30

Durch Westerblot-Analyse wurde gefunden, daß die Caspasen 3 und 8 nach Induzierung der Zellinie 23132 mit SC-1 nach oben reguliert werden (Figur 10a). Eine die Aktivierung von Caspasen hervorrufende proteolytische Spaltung wurde für Caspase 3 durch Identifzierung des Spaltprodukts p20 nachgewiesen (Figur 10a). Bei der Caspase 8 wurde ein siebenfacher Anstieg der Aktivität 7 h nach der Induzierung mit SC-1 gefunden, was auf eine wesentliche Beteiligung dieser Caspase beim Apoptose-Prozess hinweist (Figur 10b).

2.8 Proteinphosphorylierung

Das Phosphorylierungsmuster nach Induzierung der Zellen mit 40 µg/ml SC-1 Antikörper wurde durch Westernblot-Analyse von cytoplasmatischen und Membranextrakten untersucht. Dabei wurde eine frühe Tyrosinphosphorylierung von 110 kD und 60 kD Proteinen 30 bis 60 sec nach Induzierung der Apoptose gefunden (Figur 11). Das 60 kD Protein wurde nur im Cytoplasma gefunden, während das 110 kD Protein sowohl im Plasma als auch im Membranextrakt nachweisbar war. Weiterhin wurde eine langsame Tyrosinphosphorylierung eines cytoplasmatischen 75 kD Protein mit einem Maximum nach 10 min sowie das vollständige Verschwinden der Serinphosphorylierung eines 35 kD Proteins 10 min nach Induzierung gefunden.

2.9 Expression und Sequenzierung von p53

Um die Rolle von p53 bei SC-1 induzierter Apoptose zu untersuchen, wurde die Häufigkeit der mRNA durch RT-PCR und des Genprodukts durch Westernblot-Analyse nach Induzierung bestimmt. Dabei wurde ein deutlicher Anstieg der mRNA-Konzentration gefunden. Auf Proteinebene wurde jedoch eine konstante und nicht signifikant geänderte hohe Konzentration des p53 Genprodukts gefunden (Figur 12a).

Durch Amplifizierung von zwei p53 Fragmenten aus cDNA mit spezifischen Primern, Klonierung der PCR-Fragmente und Sequenzierung von acht Klonen wurde die DNA-Sequenz von p53 in der Zellinie 23132 bestimmt. Alle Klone mit das Exon 8 überspannenden Insertionen zeigten eine Mutation in Kodon 273, die zu einem Aminosäurenaustausch von Arginin zu Histidin führte (Figur 12b). Dies ist eine dominant negative Mutation, die häufig in Magenadenokarzinomen auftritt.

2.10 Expression von p21

10

15

Das Protein p21 ist ein mit der Expression von p53 assoziiertes Molekül. Ein Test der Expression von p21 in der Magenkarzinomzellinie 23132 nach Behandlung mit SC-1 ergab einen Anstieg nach 5 min gefolgt von einer Verringerung nach 60 min (Figur 13).

Ansprüche

- 1. Glykoprotein umfassend mindestens einen Abschnitt der Aminosäureprimärstruktur von CD55 und eine tumorspezifische Glykostruktur.
 - Glykoprotein nach Anspruch 1, dadurch gekennzeichnet, daß die Glykostruktur mit dem monoklonalen Antikörper SC-1 reagiert.

10

15

20

4.

Glykoprotein nach Anspruch 1 oder 2,
 dadurch gekennzeichnet,
 daß es bei SDS-Polyacrylamid-Gelelektrophorese ein scheinbares
 Molekulargewicht von 82 kD aufweist.

Verfahren zur Gewinnung eines Glykoproteins nach einem der

- Ansprüche 1 bis 3,

 dadurch gekennzeichnet,

 daß man Membranpräparationen aus Zellen der humanen Adenokarzinomzellinie 23132 herstellt und daraus das Glykoprotein durch Größenausschluß- und/oder Anionenaustauschchromatographie gewinnt.
- Verwendung eines Glykoproteins nach einem der Ansprüche 1 bis 3 in einem Testverfahren, bei dem die Bindefähigkeit einer Substanz an das Glykoprotein bestimmt wird.
- Verwendung nach Anspruch 5,
 dadurch gekennzeichnet,
 daß die Bindefähigkeit an die Glykostruktur bestimmt wird.

Verwendung nach Anspruch 5 oder 6,
 dadurch gekennzeichnet,
 daß die Fähigkeit der getesteten Substanz zur Apoptose-induzierung,
 insbesondere bei Tumorzellen bestimmt wird.

5

8. Verwendung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Fähigkeit der getesteten Substanz zur Induzierung einer über das Glykoprotein CD55 vermittelten Phosphorylierungskaskade bestimmt wird.

Á

10

15

Verwendung nach Anspruch 5 bis 8,
 dadurch gekennzeichnet,

daß das Glykoprotein in isolierter Form, als Zellextrakt, insbesondere als Membranpräparation oder in Form vollständiger Zellen, insbesondere der humanen Adenokarzinomzellinie 23132 eingesetzt wird.

10. Verwendung nach einem der Ansprüche 5 bis 9 zur Identifizierung von spezifisch an Tumorzellen bindefähige Substanzen.

- 11. Verwendung nach Anspruch 10 zur Identifizierung von Mitteln zur Tumordiagnostik oder/und Tumortherapie.
- 12. Verwendung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß pharmakologisch verträgliche Substanzen getestet werden.

Verwendung nach Anspruch 12,
 dadurch gekennzeichnet,

daß die getesteten Substanzen aus Peptiden, Peptidmimetika, Antikörpern, Antikörperfragmenten und Antikörperderivaten ausgewählt werden.

- 14. Verwendung von Substanzen, die spezifisch an ein Glykoprotein nach einem der Ansprüche 1 bis 3 binden, mit Ausnahme des monoklonalen Antikörpers SC-1, zur Herstellung von die Apoptose induzierenden Mitteln.
- 15. Verwendung von Substanzen, die spezifisch an ein Glykoprotein nach einem der Ansprüche 1 bis 3 binden, mit Ausnahme des monoklonalen Antikörpers SC-1, zur Herstellung von Antitumormitteln.
- 16. Verwendung von Substanzen, die spezifisch an ein Glykoprotein nach einem der Ansprüche 1 bis 3 binden, mit Ausnahme des monoklonalen Antikörpers SC-1, zur Herstellung von Mitteln zur Tumordiagnostik.
- 17. Verfahren zur Bereitstellung von die Apoptose induzierenden Mitteln, dadurch gekennzeichnet,

daß man eine potentiell wirksame Substanz auf ihre Fähigkeit zur spezifischen Bindung an ein Glykoprotein nach einem der Ansprüche 1 bis 3 testet und bei einem positiven Testergebnis die Substanz in eine für pharmazeutische Anwendungen geeignete Darreichungsform gegebenenfalls zusammen mit üblichen Hilfs-, Zusatz- und Trägerstoffen überführt.

5

10

15

20

25

18. Verfahren zur Bereitstellung von Antitumormitteln, dadurch gekennzeichnet,

daß man eine potentiell wirksame Substanz auf ihre Fähigkeit zur spezifischen Bindung an ein Glykoprotein nach einem der Ansprüche 1 bis 3 testet und bei einem positiven Testergebnis die Substanz in eine für pharmazeutische Anwendungen geeignete Darreichungsform gegebenenfalls zusammen mit üblichen Hilfs-, Zusatz- und Trägerstoffen überführt.

Verfahren zur Bekämpfung von Tumoren,
 dadurch gekennzeichnet,

5

10

15

20

25

30

daß man einem Patienten eine antitumorwirksame Menge einer an ein Glykoprotein nach einem der Ansprüche 1 bis 3 spezifisch bindefähigen Substanz mit Ausnahme des monoklonalen Antikörpers SC-1 verabreicht.

Verfahren zur Diagnose von Tumoren,
 dadurch gekennzeichnet,

daß man eine zu testende Probe oder einen zu testenden Patienten mit einer an ein Glykoprotein nach einem der Ansprüche 1 bis 3 spezifisch bindefähigen Substanz in Kontakt bringt und das Vorhandensein, die Lokalisierung oder/und die Menge des Glykoproteins in der Probe oder im Patienten nachweist.

- 21. Substanzen, welche eine durch spezifische Bindung an ein Glykoprotein nach einem der Ansprüche 1 bis 3 vermittelte Phosphorylierungskaskade auslösen.
- 22. Substanzen nach Anspruch 21 in Form von Konjugaten mit Markierungs- oder Effektorgruppen.

Zusammenfassung

Die Erfindung betrifft eine Substanz sowie ein Verfahren zur Gewinnung von Antitumormitteln.

10

5

vo 22.02.1999

Figur 1

Figur 2

Figur 3

Phospholipase

Figur 4

Figur 5

Figur 6

Figur 7

Figur 8

Figur 9

Figur 10

Figur 13

