	Page No.	
Q.5	$X = \{x_1, x_2, \dots, x_N\}$	
	e = first eigen vectors (highest eigenvalue)	
i d	f is perpendicular to e i.e fte=0	
	Abor l'f=1 [normalized]	
	C = Covaniance materix of	
	So, the of can be formulated as:	
	max f+Cf [objective function] S. t. f+f=1 } [constraints] and f+e=0	
	$E(1) = \{\xi \{-\lambda_1(\xi^{\dagger} \{-1)\} - \lambda_2 \}^{\dagger} e$	
	Differentiating wat (,	
	$\frac{\partial E}{\partial l} = Cl - \lambda_1 f - \lambda_2 e = 0$	
	$e^{\dagger}Cf - \lambda_1 e^{\dagger}f - \lambda_2 e^{\dagger}e = 0$	
	Now, $e^{\dagger}e = 1$ and $e^{\dagger}Cf = \lambda_1 e^{\dagger}f = 0$ because $Ce = \lambda_2 e \Rightarrow e^{\dagger}C = \lambda_3 e^{\dagger}$ $\Rightarrow e^{\dagger}Cf = \lambda_2 e^{\dagger}f = 0$	

Hence, $\lambda_2 = 0$ $\Rightarrow e^{\dagger} C f = \lambda_1 e^{\dagger} f$	}
\Rightarrow et $C_1 = \lambda_1 e^{+}$	
=> C(=), (=> f is also an eigenve ctor of C	
Since (te = 0, f and e have distinct eigenvalue	
it must correspond to second highest eigenvalue. 1, = f t Cf	*