Práctico 3

- 1. Considerar la sucesión $\{a_n\}_n$ donde $a_n = \frac{(-1)^n}{n}$.
 - (a) Determinar si lím $_{n \to \infty} a_n$ existe y calcular su valor L.
 - (b) Encontrar los a_n que se encuentran a una distancia de L mayor que ε , para cada uno de los siguientes valores de ε : $\varepsilon = 0.2$; $\varepsilon = 0.1$ y $\varepsilon = 0.05$.
 - (c) Dibujar en la recta real los a_n que distan de L más que $\varepsilon = 0,1$.
- 2. Demostrar usando la definición los siguientes límites.

(a)
$$\lim_{n \to \infty} \frac{n+1}{n} = 1$$
. (b) $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$. (c) $\lim_{n \to \infty} (\sqrt{n^2 + 1} - n) = 0$.

3. Calcular los siguientes límites.

(a)
$$\lim_{n \to \infty} \frac{5 - 2n}{3n - 7}$$
. (c) $\lim_{n \to \infty} \frac{(n+1)^2}{n} - \frac{n^3}{(n-1)^2}$. (e) $\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}}$. (b) $\lim_{n \to \infty} \frac{n^3 + 7n}{n - 2}$. (d) $\lim_{n \to \infty} (\sqrt{n^2 + 1} - n)$. (f) $\lim_{n \to \infty} \sqrt[n]{n^3 + 1}$.

4. Demostrar usando la definición los siguientes límites.

(a)
$$\lim_{n \to \infty} \frac{n^2 - 100}{n} = +\infty.$$
 (b)
$$\lim_{n \to \infty} 2^n = +\infty.$$

- **5.** Probar que para todo número real $\ell \in (0,1)$, existe una sucesión $\{q_n\}_n$ de números racionales tal que $q_n \in (0,1)$ y $\lim_{n \to \infty} q_n = \ell$.
- **6.** Sea $\{a_n\}_n$ la sucesión dada por $a_n = (-1)^n$.
 - (a) Dar tres subsucesiones convergentes de $\{a_n\}_n$ distintas.
 - (b) Probar que si $\{a_{n_j}\}_j$ es una subsucesión convergente, entonces $\lim_{j \to \infty} a_{n_j} = 1$ ó -1.
- 7. (a) Sea $\{a_n\}_n$ una sucesión de números reales tal que $a_n \in \mathbb{Z}$ para todo $n \in \mathbb{N}$. Probar que si $\lim_{n \to \infty} a_n = \ell$ entonces existe $n_0 \in \mathbb{N}$ tal que $a_n = \ell$ para todo $n \geq n_0$.
 - (b) Determinar todas las subsucesiones convergentes (con su límite) de la sucesión

$$1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, \dots$$

- **8.** (a) Demostrar que si 0 < a < 2 entonces $a < \sqrt{2a} < 2$.
 - (b) Demostrar la convergencia de la sucesión

$$\sqrt{2}$$
, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2\sqrt{2}}}$, $\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}$, ...

- (c) Hallar el límite de la sucesión del ítem anterior. (Sugerencia: notar que si a_n denota al n-ésimo término de la sucesión, entonces $(a_{n+1})^2 = 2a_n$).
- 9. Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si $\{a_n\}_n$ converge a ℓ , entonces $\{a_{n_i}\}_j$ con $n_j = j + 5$ también converge a ℓ .
 - (b) Si $\{a_n\}_n$ tiene dos subsucesiones que convergen a límites distintos, entonces $\{a_n\}$ no converge.
 - (c) Si $\lim_{n \to \infty} |a_n| = +\infty$, entonces $\lim_{n \to \infty} a_n = +\infty$ ó $\lim_{n \to \infty} a_n = -\infty$.
- 10. (a) Demostrar que si una subsucesión de una sucesión de Cauchy converge, entonces también converge la sucesión de Cauchy original.
 - (b) Demostrar que cualquier subsucesión de una sucesión convergente es convergente.