

Deep Learning

3.2 Multi-layer Perceptron (MLP)

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati Aug-Dec 2021

Recap: Linear classifier

Recap: Linear classifier

- Seen a couple of simple examples: MP neuron and Perceptron

Linear Classifiers: Shortcomings

- Lower capacity: data has to be linearly separable
- Some times no hyper-plane can separate the data (e.g. XOR data)

Sometimes, data specific pre-processing makes the data linearly separable

- Sometimes, data specific pre-processing makes the data linearly separable
- ② Consider the xor case $\phi(\mathbf{x}) = \phi(x_u, x_v) = (x_u, x_v, x_u x_v)$

- Sometimes, data specific pre-processing makes the data linearly separable
- ② Consider the xor case $\phi(\mathbf{x}) = \phi(x_u, x_v) = (x_u, x_v, x_u x_v)$

 $\ \, \textcircled{1}$ Recap the polynomial regression, by increasing the degree D, we can increase the model capacity

- f Q Recap the polynomial regression, by increasing the degree D, we can increase the model capacity
- 2 Also, remember the Bias-Variance decomposition: for reducing the bias error, we increased the model capacity

- f Q Recap the polynomial regression, by increasing the degree D, we can increase the model capacity
- Also, remember the Bias-Variance decomposition: for reducing the bias error, we increased the model capacity
- 3 Feature design (or pre-processing) may also be another way to reduce the capacity without affecting (or improving) the bias

Extending Linear Classifier

① Linear classifier $f(\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + b)$ from $\mathcal{R}^D \to \mathcal{R}$ where \mathbf{w} and $\mathbf{x} \in \mathcal{R}^D$ can be extended to multi-dimension output $f(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ from $\mathcal{R}^D \to \mathcal{R}^C$ where $\mathbf{W} \in \mathcal{R}^{C \times D}$ and $\mathbf{b} \in \mathcal{R}^C$, and σ is applied element-wise

Single unit to a layer of Perceptrons

Formal Representation

Latter is known as an MLP: Multi-Layered Perceptron (i.e, Multi-Layered network of Perceptrons)

Formal Representation

- Latter is known as an MLP: Multi-Layered Perceptron (i.e, Multi-Layered network of Perceptrons)
- 2 can be represented as:

$$\mathbf{x}^{(0)} = \mathbf{x},$$

$$\forall l = 1, ..., L, \quad \mathbf{x}^{(l)} = \sigma(\mathbf{W}^{(l)}^T \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}), \text{ and}$$

MLP

Nonlinear Activation

f 1 Note that σ is nonlinear

Nonlinear Activation

- **1** Note that σ is nonlinear
- If it is an affine function, the full MLP becomes a complex affine transformation (composition of a series of affine mappings)

Nonlinear Activation

Familiar activation functions

Hyperbolic Tangent (Tanh) $x \to \frac{2}{1+e^{-2x}} - 1$ and Rectified Linear Unit (ReLU) $x \to \max(0,x)$ respectively

① We can approximate any function f from [a,b] to $\mathcal R$ with a linear combination of ReLU functions

Dr. Konda Reddy Mopuri dlc-3.2/MLP

13

- ① We can approximate any function f from [a,b] to $\mathcal R$ with a linear combination of ReLU functions
- 2 Let's approximate the following function using a bunch of ReLUs:

$$n_1 = ReLU(-5x - 7.7), n_2 = ReLU(-1.2x - 1.3), n_3 = ReLU(1.2x + 1), n_4 = ReLU(1.2x - 0.2), n_5 = ReLU(2x - 1.1), n_6 = ReLU(5x - 5)$$

① Appropriate combination of these ReLUs:

$$-n_1 - n_2 - n_3 + n_4 + n_5 + n_6$$

Appropriate combination of these ReLUs:

$$-n_1 - n_2 - n_3 + n_4 + n_5 + n_6$$

Note that this also holds in case of other activation functions with mild assumptions.

Universal Approximation Theorem

① We can approximate any continuous function $\psi: \mathcal{R}^D \to R$ with one hidden layer of perceptrons

Universal Approximation Theorem

- ① We can approximate any continuous function $\psi:\mathcal{R}^D \to R$ with one hidden layer of perceptrons
- $\begin{aligned} \mathbf{2} & \ \mathbf{x} \rightarrow \mathbf{w}^T \sigma(W\mathbf{x} + \mathbf{b}) \\ & \ \mathbf{b} \in \mathcal{R}^C, W \in \mathcal{R}^{C \times D}, \mathbf{w} \in \mathcal{R}^C, \ \text{and} \ \mathbf{x} \in \mathcal{R}^D \end{aligned}$

Universal Approximation Theorem

- ① We can approximate any continuous function $\psi: \mathcal{R}^D \to R$ with one hidden layer of perceptrons
- $\begin{aligned} \mathbf{2} & \ \mathbf{x} \rightarrow \mathbf{w}^T \sigma(W \mathbf{x} + \mathbf{b}) \\ & \ \mathbf{b} \in \mathcal{R}^C, W \in \mathcal{R}^{C \times D}, \mathbf{w} \in \mathcal{R}^C, \ \text{and} \ \mathbf{x} \in \mathcal{R}^D \end{aligned}$
- - Theorem doesn't discuss their relation

MLP for regression

- ① Output is a continuous variable in \mathcal{R}^D
 - Output layer has that many perceptrons (When D=1, regresses a scalar value)
 - Generally employs a squared error loss

MLP for regression

- ① Output is a continuous variable in \mathcal{R}^D
 - Output layer has that many perceptrons (When D=1, regresses a scalar value)
 - Generally employs a squared error loss
- 2 Can have an arbitrary depth (number of layers)

MLP for classification

 ${\bf 1}$ Categorical output in ${\cal R}^C$ where C is the number of categories

MLP for classification

- f 0 Categorical output in ${\cal R}^C$ where C is the number of categories
- ② Predicts the scores/confidences/probabilities towards each category
 - Then converts into a pmf
 - Employs loss that compares the probability distributions (e.g. cross-entropy)

MLP for classification

- ① Categorical output in \mathcal{R}^C where C is the number of categories
- ② Predicts the scores/confidences/probabilities towards each category
 - Then converts into a pmf
 - Employs loss that compares the probability distributions (e.g. cross-entropy)
- 3 Can have an arbitrary depth

