

Features

- Uses CRM(CQ) advanced SkyMOS1 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	100V
R _{DS(on)}	2mΩ
I_D	240A

100% DVDS Tested

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRSZ025N10NZ	CRSZ025N10NZ	TOLL	Tape&Reel	N/A	N/A	2000pcs 1200pcs 1800pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V _{DS}	100	V
Continuous drain current			
$T_C = 25$ °C (Silicon limit)	I_D	264	Α
T _C = 25°C (Package limit)	T _D	240	_ A
T _C = 100°C (Silicon limit)		155	
Pulsed drain current ($T_C = 25^{\circ}C$, t_p limited by T_{jmax})	${ m I}_{ m D\ pulse}$	960	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω) ^[1]	E _{AS}	529	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	272	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

Notes:1.EAS was tested at $Tj = 25^{\circ}C$, ID = 46A.

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.46	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	46	- C/ VV

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Parameter	Symbol	Value			Unit	Test Condition	
	Symbol	min.	typ.	max.	Unit	rest Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	100	-	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	2	3	4	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
						V_{DS} =100V, V_{GS} =0V	
Zero gate voltage drain current	I_{DSS}	-	0.05	1	μΑ	T _j =25°C	
		-	-	100		T _j =150°C	
Gate-source leakage current	I _{GSS}	-	±10	±100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$	
Drain-source on-state resistance	R _{DS(on)}	-	2.0	2.5	mΩ	V _{GS} =10V, I _D =100A	
Transconductance	g _{fs}	-	197.2	-	S	V_{DS} =5V, I_{D} =100A	

Dynamic Characteristic

Dynamic Characteristic						
Input Capacitance	C _{iss}	7570	11355	17032.5		
Output Capacitance	C _{oss}	964	1446	2169	pF	V_{GS} =0V, V_{DS} =50V, f =1MHz
Reverse Transfer Capacitance	C _{rss}	36	54	81		
Gate Total Charge	Q_{G}	113	169	254		
Gate-Source charge	Q_{gs}	45	67	101	nC	$V_{GS} = 10V, V_{DS} = 50V,$ $I_{D} = 100A$
Gate-Drain charge	Q_{gd}	20	30	45		
Turn-on delay time	t _{d(on)}	23	35	53		$V_{GS}=10V$, $V_{DD}=50V$, $R_{G_ext}=3.0\Omega$
Rise time	t _r	74	111	167	ne	
Turn-off delay time	$t_{d(off)}$	56	84	126	ns	
Fall time	t_f	75	112	168		
Gate resistance	R_G	1	1.7	3	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

SkyMOS1 N-MOSFET 100V, $2m\Omega$, 240A

Body Diode Characteristic

Parameter	Symbol	Value			Unit	Test Condition
	Syllibol	min.	typ.	max.	Oilit	rest condition
Body Diode Forward Voltage	V_{SD}	0.5	0.9	1.4	V	V _{GS} =0V,I _{SD} =100A
Body Diode Reverse Recovery Time	t _{rr}	51	101	202	ns	I _F =100A, dI/dt=100A/μ
Body Diode Reverse Recovery Charge	Q _{rr}	169	338	676	nC	S

Typical Performance Characteristics

Fig 5: Rds(on) vs. Temperature 2.0 I_D=100A 1.8 R_{DS(on)}_Normalized 1.6 $\dot{V}_{GS} = 10V$ 1.4 1.2 1.0 0.8 25 50 75 100 125 150 Tj - Junction Temperature (°C)

Fig 7: Gate Charge Characteristics

Fig 8: Body-diode Forward
Characteristics

125°C

125°C

25°C

V_{Sp} - Diode Forward Voltage(V)

Fig 9: Power Dissipation

Fig 10: Drain Current Derating 300 250 200 **(**∀) o 150 100 50 V_{GS}≥10V 0 25 75 100 125 150 0 50 Tc - Case Temperature (°C)

Fig 11: Safe Operating Area

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TOLL

SIDE VIEW

Sumb al	Dimensions I	n Millimeters	Dimensions	In Inches	
Symbol	Min.	Max.	Min.	Max.	
А	2.15	2.45	0.085	0.096	
b	0.60	0.90	0.024	0.035	
b1	9.65	9.95	0.380	0.392	
С	0.35	0.65	0.014	0.026	
D	10.18	10.70	0.401	0.421	
D1	3.15	3.45	0.124	0.136	
E	9.70	10.10	0.382	0.398	
E1	7.35	8.45	0.289	0.333	
е	1.10	1.30	0.043	0.051	
Н	11.45	11.95	0.451	0.470	
H1	6.55	7.50	0.258	0.295	
L	1.35	2.10	0.053	0.083	
L1	0.50	0.90	0.020	0.035	
L2	0.40	0.80	0.016	0.031	
L3	0.95	1.35	0.037	0.053	

SkyMOS1 N-MOSFET 100V, 2mΩ, 240A

Revision History

Revison	Date	Major changes
1.0	2021/5/10	Release of Formal version.
2.0	2022/7/5	Update Package Outline Info.
3.0	2023/10/12	Update package information∏ name.
4.0	2023/10/26	Update Package Schematic Diagram

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qualified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semiconductor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.