Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

Hamid Rezatofighi^{1,2} Nathan Tsoi¹ JunYoung Gwak¹ Amir Sadeghian^{1,3} Ian Reid² Silvio Savarese¹

¹Computer Science Department, Stanford University, United states ²School of Computer Science, The University of Adelaide, Australia ³Aibee Inc, USA

hamidrt@stanford.edu

김성철

Contents

- 1. Introduction
- 2. Generalized Intersection over Union
- 3. Experimental Results
- 4. Conclusion

Introduction

- Loss function은 L_1, L_2 -norms / Metric은 IoU 사용
 - L_n -norms는 높여야 할 IoU와 strong correlation이 없음!
 - → IoU와 직접적인 관계가 있는 loss function을 제시

Introduction

- 두 물체가 겹치지 않는다면
 - $\rightarrow IoU = 0$
 - → 두 물체가 얼마나 떨어져 있는지 모름!
- → *IoU*의 약점을 보완하는 loss function 제시
 - 1. IoU와 같은 definition
 - 2. scale invariant property 유지
 - 3. 겹치는 물체간 strong correlation

Figure 1. Two sets of examples (a) and (b) with the bounding boxes represented by (a) two corners (x_1,y_1,x_2,y_2) and (b) center and size (x_c,y_c,w,h) . For all three cases in each set (a) ℓ_2 -norm distance, $||.||_2$, and (b) ℓ_1 -norm distance, $||.||_1$, between the representation of two rectangles are exactly same value, but their IoU and GIoU values are very different.

- Intersection over Union (IoU)
 - Loss $(\mathcal{L}_{IoU} = 1 IoU)$
 - Scale invariant (independent from the scale)
 - If $|A \cap B| = 0$, IoU(A, B) = 0
 - → 두 물체 간 거리가 반영되지 않음!

Generalized Intersection over Union (GIoU)

For two arbitrary convex shapes (volumes) $A, B \subseteq \mathbb{S} \in \mathbb{R}^n$

- 1. Find the smallest convex shapes $C \subseteq S \in \mathbb{R}^n$ enclosing both A, B
- 2. Calculate a ratio between the volume (area) occupied by C excluding A, B
- 3. Divide by the total volume (area) occupied by C
- 4. Subtract this ratio from the *IoU* value

Algorithm 1: Generalized Intersection over Union

input: Two arbitrary convex shapes: $A, B \subseteq \mathbb{S} \in \mathbb{R}^n$ **output:** GIoU

1 For A and B, find the smallest enclosing convex object C, where $C \subseteq \mathbb{S} \in \mathbb{R}^n$

$$2 IoU = \frac{|A \cap B|}{|A \cup B|}$$

$$3 \ GIoU = IoU - \frac{|C \setminus (A \cup B)|}{|C|}$$

• Generalized Intersection over Union (GIoU)

- Loss $\mathcal{L}_{GIoU} = 1 GIoU$
- Scale invariant

•
$$\forall A, B \subseteq \mathbb{S}$$
, $GIoU(A, B) \leq IoU(A, B) \rightarrow \lim_{A \to B} GIoU(A, B) = IoU(A, B)$

•
$$\forall A, B \subseteq \mathbb{S}, -1 \leq GIoU(A, B) \leq 1$$

$$\rightarrow$$
 if $|A \cup B| = |A \cap B|$, $GIoU = IoU = 1$

$$\Rightarrow \lim_{\substack{|A \cup B| \\ |C|} \to 0} GIoU(A, B) = -1$$

Algorithm 1: Generalized Intersection over Union

input : Two arbitrary convex shapes: $A, B \subseteq \mathbb{S} \in \mathbb{R}^n$ output: GIoU

1 For A and B, find the smallest enclosing convex object C, where $C \subseteq \mathbb{S} \in \mathbb{R}^n$

$$2 IoU = \frac{|A \cap B|}{|A \cup B|}$$

$$3 GIoU = IoU - \frac{|C \setminus (A \cup B)|}{|C|}$$

- GIoU as Loss for Bounding Box Regression
 - *IoU* or *GIoU* can be directly used as a loss
 - \rightarrow 두 물체가 겹치지 않으면, IoU has zero gradient

Algorithm 2: IoU and GIoU as bounding box losses

input: Predicted B^p and ground truth B^g bounding box coordinates:

$$B^p = (x_1^p, y_1^p, x_2^p, y_2^p), \quad B^g = (x_1^g, y_1^g, x_2^g, y_2^g).$$
 output: \mathcal{L}_{IoU} , \mathcal{L}_{GIoU} .

- 1 For the predicted box B^p , ensuring $x_2^p > x_1^p$ and $y_2^p > y_1^p$: $\hat{x}_1^p = \min(x_1^p, x_2^p), \quad \hat{x}_2^p = \max(x_1^p, x_2^p), \quad \hat{y}_1^p = \min(y_1^p, y_2^p), \quad \hat{y}_2^p = \max(y_1^p, y_2^p).$
- 2 Calculating area of B^g : $A^g = (x_2^g x_1^g) \times (y_2^g y_1^g)$.
- 3 Calculating area of B^p : $A^p = (\hat{x}_2^p \hat{x}_1^p) \times (\hat{y}_2^p \hat{y}_1^p)$.
- 4 Calculating intersection \mathcal{I} between B^p and B^g :

$$\begin{aligned} x_1^{\mathcal{I}} &= \max(\hat{x}_1^p, x_1^g), & x_2^{\mathcal{I}} &= \min(\hat{x}_2^p, x_2^g), \\ y_1^{\mathcal{I}} &= \max(\hat{y}_1^p, y_1^g), & y_2^{\mathcal{I}} &= \min(\hat{y}_2^p, y_2^g), \\ \mathcal{I} &= \begin{cases} (x_2^{\mathcal{I}} - x_1^{\mathcal{I}}) \times (y_2^{\mathcal{I}} - y_1^{\mathcal{I}}) & \text{if} \quad x_2^{\mathcal{I}} > x_1^{\mathcal{I}}, y_2^{\mathcal{I}} > y_1^{\mathcal{I}} \\ 0 & \text{otherwise.} \end{aligned}$$

5 Finding the coordinate of smallest enclosing box B^c :

$$x_1^c = \min(\hat{x}_1^p, x_1^g), \quad x_2^c = \max(\hat{x}_2^p, x_2^g), y_1^c = \min(\hat{y}_1^p, y_1^g), \quad y_2^c = \max(\hat{y}_2^p, y_2^g).$$

- 6 Calculating area of B^c : $A^c = (x_2^c x_1^c) \times (y_2^c y_1^c)$.
- 7 $IoU = \frac{\mathcal{I}}{\mathcal{U}}$, where $\mathcal{U} = A^p + A^g \mathcal{I}$.
- 8 $GIoU = IoU \frac{A^c \mathcal{U}}{A^c}$.
- 9 $\mathcal{L}_{IoU} = 1 IoU$, $\mathcal{L}_{GIoU} = 1 GIoU$.

- GIoU as Loss for Bounding Box Regression
 - Strong correlation with *IoU*

i.e. $IoU \leq 0.2$ and $GIoU \leq 0.2$

→ 끝에서는 GIoU가 더 가파른 gradient를 가짐

Figure 2. Correlation between GIoU and IOU for overlapping and non-overlapping samples.

- GIoU as Loss for Bounding Box Regression
 - Loss Stability

Always
$$B^c \ge B^g \Rightarrow \frac{A^c - u}{A^c} > 0 \ (A^c \ge A^g, \forall B^p \in \mathbb{R}^4 \text{ and } A^g \ge 0)$$

 $A^c \ge u, \forall B^p \in \mathbb{R}^4 \Rightarrow 0 \le \mathcal{L}_{GloU} \le 2, \forall B^p \in \mathbb{R}^4$

• \mathcal{L}_{GIoU} behavior when IoU = 0

$$\mathcal{L}_{GIoU} = 1 - GIoU = 1 + \frac{A^{c} - U}{A^{c}} - IoU = 2 - \frac{U}{A^{c}}$$

To minimize \mathcal{L}_{GIoU} , maximize $\frac{u}{A^c} \to 0 \le \frac{u}{A^c} \le 1 \to \text{minimize } A^c \text{ or maximize } u \ (A^p)$

YOLO v3

Table 1. Comparison between the performance of YOLO v3 [21] trained using its own loss (MSE) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the test set of PASCAL VOC 2007.

Loss / Evaluation	AP		AP75		
	IoU	GIoU	IoU	GIoU	
MSE [21]	.461	.451	.486	.467	
\mathcal{L}_{IoU}	.466	.460	.504	.498	
Relative improv %	1.08%	2.02%	3.70%	6.64%	
\mathcal{L}_{GIoU}	.477	.469	.513	.499	
Relative improv %	3.45%	4.08%	5.56%	6.85%	

Table 2. Comparison between the performance of YOLO v3 [21] trained using its own loss (MSE) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on 5K of the 2014 validation set of MS COCO.

Loss / Evaluation	AP		AP75		
	IoU	GIoU	IoU	GIoU	
MSE [21]	0.314	0.302	0.329	0.317	
\mathcal{L}_{IoU}	0.322	0.313	0.345	0.335	
Relative improv %	2.55%	3.64%	4.86%	5.68%	
\mathcal{L}_{GIoU}	0.335	0.325	0.359	0.348	
Relative improv %	6.69%	7.62%	9.12%	9.78%	

Table 3. Comparison between the performance of YOLO v3 [21] trained using its own loss (MSE) as well as using \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the test set of MS COCO 2018.

Loss / Evaluation	AP	AP75
MSE [21]	.314	.333
\mathcal{L}_{IoU}	.321	.348
Relative improv %	2.18%	4.31%
\mathcal{L}_{GIoU}	.333	.362
Relative improv %	5.71%	8.01%

Faster R-CNN

Table 4. Comparison between the performance of Faster R-CNN [22] trained using its own loss (ℓ_1 -smooth) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the test set of PASCAL VOC 2007.

Loss / Evaluation	AP		AF	AP75		
,	IoU	GIoU	IoU	GIoU		
ℓ_1 -smooth [22]	.370	.361	.358	.346		
\mathcal{L}_{IoU}	.384	.375	.395	.382		
Relative improv. %	3.78%	3.88%	10.34%	10.40%		
\mathcal{L}_{GIoU} Relative improv. %	.392 5.95%	.382 5.82%	.404 12.85%	.395 14.16%		

Table 5. Comparison between the performance of Faster R-CNN [22] trained using its own loss (ℓ_1 -smooth) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the validation set of MS COCO 2018.

Loss / Evaluation	AP		AP75		
	IoU	GIoU	IoU	GIoU	
ℓ_1 -smooth [22]	.360	.351	.390	.379	
\mathcal{L}_{IoU}	.368	.358	.396	.385	
Relative improv.%	2.22%	1.99%	1.54%	1.58%	
\mathcal{L}_{GIoU}	.369	.360	.398	.388	
Relative improv. %	2.50%	2.56%	2.05%	2.37%	

Table 6. Comparison between the performance of Faster R-CNN [22] trained using its own loss (ℓ_1 -smooth) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the **test set of MS COCO 2018**.

Loss / Metric	AP	AP75
ℓ_1 -smooth [22]	.364	.392
\mathcal{L}_{IoU} Relative improv.%	.373 2.47%	.403 2.81%
\mathcal{L}_{GIoU}	.373	.404
Relative improv.%	2.47 %	3.06%

Mask R-CNN

Table 7. Comparison between the performance of Mask R-CNN [6] trained using its own loss (ℓ_1 -smooth) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the validation set of MS COCO 2018.

Loss / Evaluation	AP		AP75	
	IoU	GIoU	IoU	GIoU
ℓ_1 -smooth [6]	.366	.356	.397	.385
\mathcal{L}_{IoU}	.374	.364	.404	.393
Relative improv.%	2.19%	2.25%	1.76%	2.08%
\mathcal{L}_{GIoU}	.376	.366	.405	.395
Relative improv. %	2.73%	2.81%	2.02%	2.60%

Table 8. Comparison between the performance of Mask R-CNN [6] trained using its own loss (ℓ_1 -smooth) as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses. The results are reported on the **test set of MS COCO 2018**.

Loss / Metric	AP	AP75
ℓ_1 -smooth [6]	.368	.399
\mathcal{L}_{IoU}	.377	.408
Relative improv.%	2.45%	2.26%
\mathcal{L}_{GIoU}	.377	.409
Relative improv.%	2.45%	2.51%

Figure 3. The classification loss and accuracy (average IoU) against training iterations when YOLO v3 [21] was trained using its standard (MSE) loss as well as \mathcal{L}_{IoU} and \mathcal{L}_{GIoU} losses.

Figure 4. mAP value against different IoU thresholds, i.e. $.5 \le IoU \le .95$, for Faster R-CNN trained using ℓ_1 -smooth (green), \mathcal{L}_{IoU} (blue) and \mathcal{L}_{GIoU} (red) losses.

Figure 5. Example results from COCO validation using YOLO v3 [21] trained using (left to right) \mathcal{L}_{GIoU} , \mathcal{L}_{IoU} , and MSE losses. Ground truth is shown by a solid line and predictions are represented with dashed lines.

Figure 6. Two example results from COCO validation using Mask R-CNN [6] trained using (left to right) \mathcal{L}_{GIoU} , \mathcal{L}_{IoU} , ℓ_1 -smooth losses. Ground truth is shown by a solid line and predictions are represented with dashed lines.

Conclusions

- IoU의 약점을 보안한 GIoU 제안
- GIoU를 bounding box regression loss로써 사용
- 회전 도형과 3D object detection에도 적용 예정

감 사 합 니 다