# **ELECTROPHORETIC DISPLAY DEVICE AND PRODUCTION THEREOF**

Patent Number:

JP2284125

Publication date:

1990-11-21

Inventor(s):

OSHIRO TATSUHIKO; others: 04

Applicant(s):

NIPPON MEKTRON LTD

Requested Patent:

JP2284125

Application Number: JP19890106806 19890426

Priority Number(s):

IPC Classification:

G02F1/167

EC Classification:

EC Classification:

Equivalents:

JP2777728B2

### **Abstract**

PURPOSE:To easily and surely inject a dispersion system into the respective pores of porous spacers by providing hot-melt adhesive layers which can be thermocompression bonded in the circumferential regions of the spacers and forming one of electrode plates flexible.

CONSTITUTION: The dispersion system 7 dispersed with electrophoresis particles 6 is excessively supplied to the porous spacers 8 packaged on an electrode pattern 2 side of the rigid electrode plate and thereafter, the flexible electrode is disposed on the spacers 8 in such a manner that the electrode patterns 4 thereof face the electrode patterns 2 of the rigid electrode plate. The hot-melt adhesive layers 9 provided around the spacers 8 and the flexible electrode plate 4 are thermocompression bonded while the excess dispersion system 7 is extruded out by pressing the front surface of the flexible electrode plate 4 under heating to seal the dispersion system 7 into the respective pores 8A of the spacers 8. The sure injecting treatment and sealing treatment of the dispersion system 7 are rapidly executed in this way.

Data supplied from the esp@cenet database - I2

Document4 7/9/03 3:39 PM ()

# ◎ 公開特許公報(A) 平2-284125

fint.Cl.5

識別記号

庁内整理番号

❸公開 平成2年(1990)11月21日

G 02 F 1/167

7428-2H

審査請求 未請求 請求項の数 10 (全5頁)

**公発明の名称** 電気泳動表示装置及びその製造法

②特 願 平1-106806

**20出 願 平1(1989)4月26日** 

@発明者 尾城 達彦

茨城県稲敷郡茎崎町天宝喜757 日本メクトロン株式会社

南茨城工場内

@発明者外山 二郎

茨城県稲敷郡茎崎町天宝喜757 日本メクトロン株式会社

南茨城工場内

⑩発 明 者 赤 塚 孝 寿

茨城県稲敷郡茎崎町天宝喜757 日本メクトロン株式会社

南茨城工場内

⑪出 願 人 日本メクトロン株式会

東京都港区芝大門 1 丁目12番15号

社

砂代 理 人 弁理士 鎌田 秋光

最終頁に続く

明 知 曹

1.発明の名称

電気泳動表示装置及びその製造法

- 2 , 特許請求の範囲
- (1) 少なくとも一方が透明質に構成された一組の対向配置した電極板間に多孔性スペーサを規模に多孔性スペーサを規模を分散させた分散を表示を対対して対対の電気が動きを可換性で構成の一方を可換性で構成といて、上記対向電極板の一方を可換性はするに構成と共に、これら両電極板間に介装される上記を配数はように構成したことを特徴とする電気が動表示装置。
- (2) 前記多孔性スペーサを弾性部材により構成した請求項(1) の電気泳動表示装置。
- (3) 前記多孔性スペーサを感光性フィルムで構成した請求項(1) の電気泳動表示装置。
- (4) 前記ホットメルト接着層がポリアミド系樹脂である請求項(1) ~ (3) の電気泳動表示装置。
- (6) 前記剛体電極板と上記多孔性スペーサとを干め接合する工程を確える請求項 (5) の電気泳動表示装置の製造法。
- (7) 前記多孔性スペーサを弾性体で形成した請求 項(5) 又は(5) の電気泳動表示装置の製造法。
- (8) 前記多孔性スペーサを感光性フィルムで形成

した請求項(5) 又は(6) の電気泳動表示装置の 製造法。

- (9) 前記ホットメルト接着層にポリアミド系樹脂を用いる請求項(5)~(8)のいずれかに記載の電気泳動表示装置の製造法。
- (10)前記可捷性電極板の上記多孔性スペーサに対する加熱接合工程を熱ローラで該可捷性電極板の一端から順次的に施す請求項(5) ~(9) のいずれかに記載の電気泳動表示装置の製造法。

#### 3. 発明の詳細な説明

#### 「産業上の利用分野」

本発明は電気泳動粒子を利用した表示装置に関連ないには、この種の電気泳なる間には、これがある。これがある。これがある。これがある。これでは、一つないのでは、多利性スペークのに構成といる。のでは、多利性スペークのに構成を分析である。といる。これでは、多利を表示装置及びその製造に関する。

電極パターン面と平行方向な移動を起こして電気 泳動粒子の濃度分布に偏りを生じ、その結果この 電気泳動表示装置を長時間繰返し使用すると電気 泳動粒子の濃度が場所的に不均一になったり表示 むらを発生するという問題がある。

そこで、このような不都合を解消する手段として、第4回に示すように、多数の選孔を穿設した多れ性スペーサ8を用いて各選孔に分散系を封入、することにより、分散系7を小区間に不連続相に分割封入するような構造も特開昭49- 32038号、特開昭59- 34518号或いは特開昭59- 171930号各公報等で知られている。

しかし、多孔性スペーサを用いて表示用分散系 を小区間に不連続相に分割する分散系分割方式の 電気泳動表示装置に於いて、両電極板と介装多孔 性スペーサとを予め接着したセル構造のものでは、 多孔性スペーサの各孔に分散系を一様に注入する ことは困難であり、分散系注入の不完全な部分が 発生して表示欠陥となる虞が多分にあり、信頼性 の高い表示装置を得る上での解決課題は多い。

## 「従来技術とその問題点」

電気泳動粒子を利用したこの種の電気泳動表示装置は、第3図に示す如く、対向面に夫々酸化インジウム・スズ等の適宜な透明導電部材を使用して所要の表示用電極パターン2、4を各別に形成した二枚の透明ガラス板1、3を設け、液体分散はに電気泳動粒子6を分散させた分散を発するの間隙間に封入すべくスペーサ機能を有する。封止部材5を外周部位に配装した構造を有する。

このような電気泳動表示装置は、電極バターン
2、4に表示駆動用電圧を印加して電気泳動粒子
6を電極バターン2、4に吸着・離反させ得るように分散系7に電界を作用させて電気泳動粒子6
の分布状態を変えるとこにより分散系7の光学的
特性に変化を与えて文字、記号又は図形等の所望
の表示動作を行わせるものである。

分散系 7 の封入態様として上記の如く塔部に設けた封止部村 5 によって連続相状に構成する場合には、両電極パターン 2 、 4 間の間隔むら等による電界強度の不均一に起因して電気泳動粒子 6 が

### 「課題を解決するための手段」

本発明は、多孔性スペーサを用いる分散系分割型の電気泳動表示装置に於いて、多孔性スペーサの所要部位に熱圧着可能なホットメルト接着層を具備させ、また、電極板の一方を可撓性に構成することにより、多孔性スペーサの各孔に分散系を容易確実に注入可能な電気泳動表示装置及びその製造法を提供するものである。

ここで、多孔性スペーサは、各種の弾性部材や 感光性フィルムを用いて種々の態様で構成できる。

このような電気泳動表示装置を製作するには、 先ず、フィルム部材及び透明ガラス板の各一方面 に所要の電極パターンを各々形成した可撓性電極 板と透明な剛体電極板とを用意し、該剛体電極板 の電極パターン側に配装した上記構成の多孔性ス ベーサに対し電気泳動粒子を分散させた分散系を 過剰に供給した後、上記可挽性電極板をその電極 バターンが上記解体電極板の電極バターンと対面 するように上記多孔性スペーサ上に配装し、次に 上記可提性電極板の上面に加熱押圧力を付与して 余分な分散系を押し出しながら該多孔性スペーサ の周囲に設けた好ましくはポリアミド系樹脂から なるホットメルト接着層と上記可撓性電極板とを 熱ローラ等を用いて順次的態様などで熱圧着させ て該多孔性スペーサの各孔に上記分散系を封入す る各工程を採用することが出来る。

斯かる手法によって、表示用分散系の分割方式 に用いる多孔性スペーサの各孔に対して分散系の 確実な注入処理と封止処理とを迅速に施すことが 可能となる。

封入処理と構成部材間の封止処理とを容易迅速に 行なう手段として好適である。

多孔性スペーサ8は可換性電極板との間で上記 熱圧着処理を行う為に、第2図の如く、その周囲 の料線で示す領域に好ましくはポリアミド系樹脂 からなるホットメルト接着層9を設けてあるが、 このホットメルト接着層9は、例えばダイアポン ド工業財製のPA-50の如きシート状ホットメルト 接着部材を用いることが出来る。多孔性スペーサ 8は種々の手法を用いて構成可能であり、例えば シリコンゴム、ウレタンゴム、フッ素ゴム若しく はアクリルゴム等の合成ゴムや天然ゴム等の素材 からなる弾性質シート状物を用意し、これにパン チ又はレーザ等の適宜な手段で所要の透孔8Aを 多数穿設したものを剛体電極板の電極バターン2 側に接合するか、或いは斯かる弾性質部材の印刷 手段で該電極パターン2例に直接一体状に形成す ることも可能である他、感光性樹脂をその無痛パ ターン 2 側に所要厚さで放着形成した後、エッチ ング等の化学的溶解手段で透孔8Aを設け得る。

#### 「実施例」

以下、図示の実施例を参照しながら本発明を更 に詳述する。第1図中、1は透明な関体電極板を 構成する為の基材としての透明なガラス板であっ てその上面には酸化インジウム・スズ等の透明導 電材料を用いて所要の電極パターン2を適宜形成 してある。この解体電極板の上面には、分散系を 小区間に分割して封入する為の多孔性スペーサ8 を配装してあり、更に、多礼性スペーサ8の上面 には、上記剛体側電極バターン2と対向する面に 他の電極パターン4を形成したフィルム基材10 からなる可提性電極板を所要の間隔で配装してあ る。斯かる可換性電機板は、多孔性スペーサ8の 各孔に過剰に供給した分散系7を可撓性電極板の 上面から後述の加熱圧着力を作用させて該スペー サ8に密着させながら余分な分散系フを順次押し 出すと共に、可撓性電極板とスペーサ8の周囲と の熱圧着処理を行なうことにより、該多孔性スペ - サ8の各孔に空孔のない分散系7の完全な封入 を行なわせる為のものであって、分散系での分割

分散系でに用いるでは、種々のは、種々のは、種々のは、種々のは、種々のは、種々のは、種々のは、種類を動きなど、分別のは、一般ののは、一般ののでは、一般ののでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般のでは、一般の

上記の分散系分割型の電気泳動表示装置を製作するには、透明ガラス板1及び透明電極パターン2からなる剛体電極板の該電極パターン2の側に設けた上記構成の多孔性スペーサ8に、表示目的に最適な如く適宜な液体分散媒に酸化チタン等の

電気泳動粒子を分散させて予め調製した分散系7を該多孔性スペーサ8に所要量以上に過剰に供給し該スペーサ8を分散系7で完全に覆っておく。

分散系 7 は、分散媒として、ヘキシルベンゼン
100 ccを用意し、これにオイルブルーBAからなる
漁用の染料 1 g とシルバン 583 からなる界面活性
剤 0.5 g とを溶かし、この溶媒に電気泳動粒子と
して酸化チタン 5 g を分散させることにより所要
の表示用分散系を予め調製しておく。

次クーン4が開体で、カーン4が開体で、カーン4が開体で、カーン4が開体で、カーンカーの10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーンは10位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20位は、カーン20

との熱圧着処理を行いながら多孔性スペーサの 各孔に分散系を確実に封入できることとなり、 以って、空孔のない分散系の分割型封入処理を 能率よく短時間に容易確実に行える。

従って、本発明による電気泳動表示装置及びその製造法の採用により、表示欠陥のないコントラストの良好な表示信頼性の高い優れた分散系分割型の電気泳動表示装置を提供できる。

## 4. 図面の簡単な説明

第1図は本発明の一実施例に従って透明解体電極板と可撓性電極板との間に熱圧着自在な多孔性スペーサを介装するように構成した分散系分割型の電気泳動表示装置の概念的な拡大断面構成図、

第2図は本発明の手法に従って可接性電極板 と多孔性スペーサとの接合処理を容易化する為 に多孔性スペーサの周囲にホットメルト接着層 を設けた状態の部分平面説明図、

第3回は多孔性スペーサを使用しない従来の 構造による分散系連続相型の電気泳動表示装置 れにより、多礼性スペーサ8に空孔のない分割型 分散系の完全な封入処理と部材相互の接合処理と を容易迅速に施すことが出来る。

上記の如く製作した電気泳動表示装置の電極板間に直流70 Vの電圧を反復的に印加してスイッチング試験を行なったところ、100 万回のスイッチング経過後でも電気泳動粒子の偏りは認められず、コントラストの良好な表示動作を持続した。

## 「発明の効果」

#### の概念的断面構成図、そして、

第4図は多孔性スペーサを使用した従来構造に従った分散系連続相型の電気泳動表示装置の概念的断面構成図である。

1: 透明ガラス板

2: 電 復 パ タ ー ン

3: 透明ガラス板

4: 電 種 パ タ - ン

5: 端部スペーサ

6: 電気泳動粒子

7: 表示用分散系

8: 多孔性スペーサ

8 A: スペーサの通孔

9: ホットメルト接着層

10: フィルム基材









第1頁の続き

茨城県稲敷郡茎崎町天宝喜757 日本メクトロン株式会社

南茨城工場内

⑫発 志 茨城県稲敷郡茎崎町天宝喜757 日本メクトロン株式会社

南茨城工場内

ELECTROPHORESIS DISPLAY DEVICE AND ITS PRODUCTION [Den'ki eidohyoji sochi oyobi sono seizohoho]

Tatsuhiko Oshiro, et al.

UNITED STATES PATENT AND TRADEMARK OFFICE Washington, D.C. July 2002

Translated by: FLS, Inc.

| PUBLICATION COUNTRY          | (10):  | JP                                                                                           |
|------------------------------|--------|----------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER              | (11):  | 02-284125                                                                                    |
| DOCUMENT KIND                | (12):  | A                                                                                            |
|                              | (13):  | PUBLISHED UNEXAMINED PATENT APPLICATION (Kokai)                                              |
| PUBLICATION DATE             | (43):  | 02-284125 [WITHOUT GRANT]                                                                    |
| PUBLICATION DATE             | (45):  | [WITH GRANT]                                                                                 |
| APPLICATION NUMBER           | (21):  | 01-106806                                                                                    |
| APPLICATION DATE             | (22):  | 19890426                                                                                     |
| PRIORITY DATE                | (32):  |                                                                                              |
| ADDITION TO                  | (61):  |                                                                                              |
| INTERNATIONAL CLASSIFICATION | (51):  |                                                                                              |
| DOMESTIC CLASSIFICATION      | (52):  | x                                                                                            |
| PRIORITY COUNTRY             | (33):  |                                                                                              |
| PRIORITY NUMBER              | (31):  |                                                                                              |
| PRIORITY DATE                | (32):  |                                                                                              |
| INVENTOR                     | (72):  | OSHIRO, TATSUHIKO; SOTOYAMA,<br>JIRO; AKATSUKA, TAKAHISA;<br>TADAKUMA, AKIRA; MORI, TAKASHI. |
| APPLICANT                    | (71):  | Nihon Mectron Co. Ltd.                                                                       |
| TITLE                        | (54):  | ELECTROPHORESIS DISPLAY DEVICE<br>AND ITS PRODUCTION                                         |
| FOREIGN TITLE                | [54A]: | Den'ki eidohyoji sochi oyobi<br>sono seizohoho                                               |

# 1. Name of this invention

Electrophoresis Display Device and its Production

### 2. Claims

[1] Electrophoresis display device with the following characteristic:

With an electrophoresis display device prepared by dividing the system into non-continuous phases using a porous spacer while sealing a dispersion system consisting of dispersed electrophoresis particles between a pair of electrode plates positioned to face each other where at least one of electrodes is clear;

one of said electrodes is made of a calcifying material, while the other electrode plate is made of a durable material, and a hotmelt adhesion layer is placed around the porous spacer positioned between those electrode plate.

- [2] In Claim 1, said porous spacer is made of an elastic material.
- [3] In Claim 1, said porous spacer is made of a photosensitive film.
- [4] In Claims 1 3, said hot-melt adhesive layer is a polyamide resin.

<sup>\*</sup> Numbers in the margin indicate pagination in the foreign text.

[5] Electrophoresis display device production method comprised of the following processes:

After a calcifying electrode plate and transparent durable electrode plate are prepared by forming specific electrode patterns on one surface of each electrode plate, and an excessive amount of dispersion system containing dispersed electrophoresis particles is supplied to the porous spacer placed at the electrode pattern side of the durable electrode plate, said calcifying electrode plate is placed on said porous spacer so that the electrode pattern can face to the electrode pattern of said durable electrode plate; then, said dispersion system is sealed into each hole of the porous spacer by heat-pressing the hot-melt adhesive layer with a calcifying electrode plate positioned around the porous spacer while excessive dispersion system is pushed out by providing hot pushing pressure onto the upper surface of the calcifying electrode plate.

- [6] In Claim 5, said durable electrode plate and porous spacer are pre-adhered.
- [7] In Claim 5 or 6, said porous spacer is made of an elastic material.
- [8] In Claim 5 or 6, said porous spacer is made of a photosensitive material.

- [9] In Claim 5 8, a polyamide type resin is used as the hotmelt adhesive layer.
- [10] In Claims 5 9, the heat-bonding process performed to the porous spacer of the calcifying electrode plate is sequentially performed from one end of the calcifying electrode plate using a heat roller.
- 3. Detailed Explanation of this Invention

# [Industrial Field]

This invention pertains to a display device utilizing electrophoresis particles and is particularly associated with a dispersion/division type electrophoresis display device easily and assuredly sealing the dispersion system into each hole of the porous spacer using a calcifying electrode plate made of resin film and a porous spacer dividing the display dispersion system into irregular small phases.

[Conventional technology and its problems]

As shown in Fig. 3, this type of electrophoresis display device utilizing electrophoresis particles is conventionally produced by preparing two clear glass plates 1, 3 separately containing display electrode patterns 2, 4 on the electrode surface facing with each other using a clear conductive material (e.g., tin, indium oxide), and a sealing part 5 which is also used as a spacer is formed around the outer circumference area so as to seal

the dispersion system 7 containing electrophoresis particles 6 in a liquid dispersion medium between the opposing two electrodes.

This type of electrophoresis display device can be used for screen display (e.g., characters, symbols, and figures) by applying electric fields to the dispersion system 7 to vary the optical characteristic of the dispersion system 7 in order to change the distribution of electrophoresis particles 6 so that electrophoresis particles 6 can be attached to or separated from the electrode patterns 2, 4 by impressing a voltage to electrode patterns 2, 4.

When the dispersion system 7 is sealed using continuous phases of sealing part 5 as described above, electrophoresis particles 6 cause movements parallel to the electrode pattern surfaces due to uneven electric field strength caused by spacial unevenness between electrode patterns 2, 4. As a result, since density distribution of electrophoresis particles becomes uneven, long duration of repeated use of such electrophoresis display device causes locally uneven density of electrophoresis particles and display surface irregularity.

To solve those problems, by sealing the dispersion system into each hole of porous spacer having numerous penetrated holes, the dispersion system was divided and sealed as non-continuous small phases (see Fig. 4; refer to Patent No. 49-32038, 59-34518, 59-171938).

However, with those methods which form cells prepared by preadhering both electrodes and porous spacer in the purpose of
forming such non-continuous small divided particle phases, it is
difficult to evenly inject the dispersion system into each hole of
porous spacer, resulting in insufficiently filled areas, which
consequently causes display defects. Therefore, the method is
difficult to produce highly reliable display devices.

[Method to Solve the Problems]

To solve said problems, this invention provides a dispersion/division type electrophoresis display device with the following characteristic: A hot-melt adhesive layer is prepared to the required areas of porous spacer for providing adhesiveness using heat and pressure, and one of electrodes is made of a calcifying material. With this method, the dispersion system can be easily and assuredly injected into each hole of the porous spacer.

In practice, this invention provides a method of producing an electrophoresis display device with the following characteristic:

With an electrophoresis display device prepared by dividing the system into non-continuous phases using a porous spacer while sealing a dispersion system consisting of dispersed electrophoresis particles between a pair of electrode plates positioned to face each other where at least one of electrodes is clear; one of said electrodes is made of a calcifying material, while the other electrode plate is made of a durable material, and a hot-melt adhesion layer is placed around the porous spacer positioned between those electrode plate.

The porous spacer can be prepared by an applicable method using various kinds of elastic materials or photosensitive films.

To prepare this type of electrophoresis display device, /155
first, after a calcifying electrode plate and transparent durable
electrode plate are prepared by forming specific electrode patterns
on one surface of each electrode plate, and an excessive amount of
dispersion system containing dispersed electrophoresis particles is
supplied to the porous spacer placed at the electrode pattern side
of the durable electrode plate, said calcifying electrode plate is
placed on said porous spacer so that the electrode pattern can face
to the electrode pattern of said durable electrode plate; then,
said dispersion system is sealed into each hole of the porous
spacer by heat-pressing the hot-melt adhesive layer and calcifying
electrode plate positioned around the porous spacer while excessive
dispersion system is pushed out by providing hot pushing pressure
onto the upper surface of the calcifying electrode plate.

This method can speedily and assuredly inject/seal a dispersion system into each hole of porous spacer used for the division type display dispersion system.

# [Operational Example]

The following explains the operational example of this In Fig. 1, item 1 is a clear glass plate used as a base material for forming a transparent durable electrode plate, and a clear conductive material (e.g., indium oxide/tin) is used to from a necessary electrode pattern 2 over the upper surface of the electrode. A porous spacer 8 is applied on the upper surface of this durable electrode plate so as to divide the dispersion system into small sections to be sealed. Furthermore, a calcifying electrode having a film material 10 forming another electrode pattern 4 is placed facing against the clear electrode at a specific distance from the clear electrode. This calcifying electrode plate can consecutively push out excessive dispersion system 7 while being adhered to the spacer 8 with a heated-pressure force (described later) applied from the upper surface of the calcifying electrode plate, thereby completely sealing the dispersion system 7 not containing any air hole into each opening of the porous spacer 8. As a result, the calcifying electrode can effectively perform the division/sealing of dispersion system 7 and sealing among related parts.

The porous spacer 8 performing the heat-pressuring process with the calcifying electrode plate has a hot-melt adhesive layer 9 (preferably polyamide resin) as shown in the surrounding area

filled with lines in Fig. 2. This hot-melt adhesive layer 9 may be a sheet-like hot-melt adhesive material (e.g., PA-50, product of Diabond). The porous spacer 8 can be prepared by various methods. For example, first, an elastic sheet made of synthetic rubber, such as silicone rubber, urethane rubber, fluorine rubber, acryl rubber, or natural rubber, is prepared, to which numerous penetrated holes 8A are formed using an appropriate method, such as punching or laser. The prepared sheet may be bonded to the electrode pattern side of durable electrode plate, or it may be directly formed onto the electrode pattern side by printing an elastic material.

Another method is that, after a photosensitive resin with specific thickness is adhered and formed on the electrode pattern side, penetrated holes 8A are formed using a chemical melting method (e.g., etching).

In addition to titanium oxide or conventional various colloid particles, dispersion system 7 may be made of various organic/inorganic pigments, dye, ceramics, or resin fine powder. Also, as a dispersion medium for the dispersion system 7, in addition to hydrocarbon, other materials, such as hydrocarbon halide, aromatic hydrocarbon, various natural or synthetic oils, may be used. If necessary, in addition to electrolyte, a surface activator, metallic soap, charge control agent consisting of resin, rubber, oil, varnish, or compound particles, dispersion agent,

lubricant, or stabilizer may be added. Furthermore, other adjustments may be provided to the system. For example, the electric charge of electrophoresis particles may be adjusted to positive or negative; Zeta potential is increased; or, adhesiveness of electrophoresis particles to the electrode patterns 2, 4 as well as the viscosity of dispersion medium may be arranged.

To produce said dispersion/division type electrophoresis display device, first, a dispersion system 7 is pre-prepared by dispersing electrophoresis particles (e.g., titanium oxide) in an appropriate liquid dispersion medium most suited for display purpose; after this dispersion system 7 is excessively supplied /156 to the porous spacer 8, this spacer 8 is completely covered with the dispersion system 7.

For the dispersion system 7, 100 cc of hexyl benzene is used as a dispersion medium, to which 0.5 g of surface activator consisting of 1 g of dark blue dye made of oil blue BA and Silvan S83 is melted. By dispersing 5 g of titanium oxide in this solvent, the dispersion system is pre-prepared.

Next, as shown in Fig. 1, heated pressure force is applied to the upper surface of the calcifying electrode plate using a heated roller or other similar device, continuously sealing the surface from one end, while the electrode pattern 4 of the calcifying electrode plate is arranged to face the electrode pattern 2 of the

durable electrode plate. As a result, calcifying electrode plate is sufficiently pressed against the porous spacer 8 to heat-adhere with the surrounding hot-melt adhesive layer. During this process, the dispersion system excessively supplied into holes 8A of the porous spacer 8 is pushed out from each hole of the spacer 8, properly sealing the dispersion system 7. As a result, complete sealing of division/dispersion type porous spacer 8 with no empty hole with thorough adhesion of each part can be easily and quickly provided.

When a switching test is performed to the electrode plates of the electrophoresis display device prepared as described above by repeatedly impressing 70 DC current, electrophoresis particles were uniformly distributed after 1,000,000 times of switching, being able to provide display with excellent contrast.

# [Effectiveness of this Invention]

With this invention, using an electrophoresis display device prepared by dividing the dispersion system into small non-continuous phases using a porous spacer for sealing the dispersion system between electrodes, one of said electrodes is made calcifying, while the other electrode plate is made of a durable material. Then, a spacer with a heat-pressure adhesive characteristic is placed between those electrodes. Excessive dispersion system can be pushed out by consecutively applying heat-

pressure to the calcifying electrode plate around which a said adhesive porous spacer containing an excessive dispersion system is formed. At the same time, heat-pressure can adhere the porous spacer and calcifying electrode. As a result, the adhesion between the spacer and electrode can be assured without forming any air hole in the dispersion system, thereby providing an efficient, quick, and simple division-type sealing process for the spacer.

Therefore, this invention can provide a highly reliable dispersion/division type electrophoresis display device capable of producing excellent image contrast with no display defect.

# 4. Simple Explanation of the Figures

Figure 1 is a cross-sectional diagram of the operational example showing the concept of the dispersion/division type electrophoresis display device having a heat-pressed porous spacer between clear durable electrode and calcifying electrode.

Figure 2 is a diagram showing the condition of the adhesion process when a hot-melt adhesive layer is placed around the porous spacer for simplifying the bonding process of the calcifying electrode and porous spacer according to the method based on this invention.

Figure 3 is a conceptual cross-sectional diagram of a conventional electrophoresis display device prepared by dispersion type continuous phases.

Figure 4 is a conceptual cross-sectional diagram of a conventional electrophoresis display device prepared by dispersion type continuous phases using a porous spacer.

- 1...Clear glass plate;
- 2...Electrode pattern;
- 3...Clear glass plate;
- 4...Electrode pattern;
- 5...End spacer;
- 6...Electrophoresis particles;
- 7...Dispersion system for display;
- 8...Porous spacer;
- 8A...Penetrated hole in spacer;
- 9...Hot-melt adhesive layer;
- 10...Film base material





Figure 3



