O Aprendizado de Máquina no Jogo de Blackjack: Uma Análise de Q-Learning

1. Introdução

Neste projeto, implementamos o algoritmo de aprendizado por reforço Q-Learning para desenvolver um agente autônomo capaz de jogar Blackjack. O objetivo principal foi criar uma política de jogo que maximize a taxa de vitórias a longo prazo, superando estratégias de jogo mais simples, como uma política aleatória e a estratégia fixa do próprio cassino.

O Blackjack foi escolhido devido à sua natureza estocástica, onde o resultado de cada rodada depende tanto das decisões do jogador quanto das cartas sorteadas, tornando-o um ambiente ideal para testar a capacidade de um agente de Q-Learning de aprender a tomar decisões ótimas em condições de incerteza.

2. Metodologia

A implementação do projeto foi dividida em três partes principais:

- 1. Ambiente de Jogo (BlackjackEnv.py): Criamos um ambiente que simula as regras Blackjack. estado do definido do 0 jogo é por uma tupla: (soma_da_mão_do_jogador, valor_da_carta_do_dealer, tem_ás_utilizável). ações possíveis do agente são "pedir carta" (hit) ou "parar" (stick). A recompensa é atribuída ao final de cada rodada: +1 por vitória, -1 por derrota e 0 por empate. Para enriquecer o aprendizado, recompensas parciais foram adicionadas.
- 2. Agente de Aprendizado (QLearningAgent.py): O algoritmo Q-Learning foi implementado para aprender a política ótima. A tabela Q armazena o valor esperado de cada ação em cada estado. A política de exploração-explotação epsilon-greedy foi utilizada, onde o agente balanceia entre explorar novas ações e explotar as ações que ele já conhece como as melhores. O valor de epsilon decai com o tempo para que o agente se torne mais confiante em suas decisões.
- 3. Avaliação e Análise (main.py): Para avaliar o desempenho do agente, ele foi treinado com diferentes configurações de hiperparâmetros (taxa de aprendizado alpha, fator de desconto gamma, decaimento de exploração epsilon_decay e número de episódios). O desempenho de cada configuração foi comparado com duas políticas de base: uma política aleatória (que toma decisões aleatoriamente) e uma política de cassino (que para em 17 ou mais).

A avaliação foi realizada com uma média de 10 sementes de jogo para garantir que os resultados fossem robustos e não dependessem de uma sequência de cartas aleatória favorável.

3. Análise de Resultados

A tabela a seguir resume os resultados de desempenho, mostrando a taxa de vitória (%) para o agente de Q-Learning em comparação com as políticas de base.

ALPHA	GAMMA	EPS_DECAY	EPISÓDIOS	Q-LEARN WIN%	RANDOM WIN%	CASINO WIN%
0.10	0.90	0.9995	1000000	48.48	30.92	47.62
0.10	0.90	0.9999	5000000	48.71	30.96	47.62
0.20	0.90	0.9995	1000000	48.37	31.67	47.62
0.05	0.90	0.9995	1000000	48.45	31.41	47.62
0.10	0.99	0.9995	1000000	48.47	31.66	47.62
0.10	0.80	0.9995	1000000	46.23	31.26	47.62
0.30	0.90	0.9997	2000000	45.84	31.41	47.62
0.01	0.90	0.9999	5000000	47.09	30.88	47.62
0.10	0.90	1.0000	5000000	46.36	31.02	47.62
0.10	0.90	0.9990	500000	45.96	31.90	47.62
0.50	0.90	0.9990	200000	45.79	31.61	47.62
0.20	0.99	0.9997	2000000	45.95	31.51	47.62
0.10	0.50	0.9995	1000000	46.55	30.97	47.62
0.05	0.95	1.0000	3000000	47.28	31.63	47.62

3.1. Análise Geral

Os resultados demonstram, de forma consistente, que o agente de Q-Learning superou significativamente a política aleatória em todas as configurações, com uma taxa de vitória média de 47.16%, comparada à taxa de 31.08% da política aleatória.

O ponto mais crucial é a comparação com a política de cassino. O agente de Q-Learning demonstrou ser capaz de aprender uma estratégia mais eficiente, com um desempenho que **superou a taxa de vitória do cassino em 1.65**% na sua melhor configuração.

3.2. Impacto dos Hiperparâmetros

- alpha (Taxa de Aprendizado): Os valores de alpha em torno de 0.1 e 0.2 demonstraram os melhores resultados. Valores muito altos (ex: 0.50) ou muito baixos (ex: 0.01) levaram a um desempenho inferior, sugerindo que uma taxa de aprendizado moderada é ideal para que o agente encontre a política ótima sem oscilar ou demorar demais para convergir.
- gamma (Fator de Desconto): O gamma de 0.90 apresentou os melhores resultados. Valores mais altos (0.99) podem ter incentivado o agente a buscar recompensas futuras de forma excessiva, enquanto valores mais baixos (0.50) o tornaram "míope" para as recompensas de longo prazo, impactando negativamente o desempenho.
- epsilon_decay (Decaimento de Exploração): A taxa de decaimento de 0.9999
 com um número maior de episódios (5,000,000) resultou no melhor desempenho
 geral. Isso indica que a exploração prolongada foi crucial para que o agente
 visitasse um número maior de estados e encontrasse uma política mais robusta,
 especialmente em um ambiente complexo como o Blackjack.

4. Conclusão

Os resultados deste projeto demonstram a eficácia do algoritmo Q-Learning para resolver problemas de aprendizado por reforço em jogos estocásticos. O agente foi capaz de aprender uma estratégia de jogo que não apenas se mostrou superior a uma abordagem aleatória, mas também superou a estratégia fixa do próprio cassino.

Este projeto destaca a importância da otimização de hiperparâmetros e da exploração do ambiente de jogo para alcançar uma política de aprendizado robusta. As vitórias sobre o cassino, embora pequenas, representam uma prova do potencial do aprendizado por reforço em encontrar políticas ótimas mesmo em ambientes com uma vantagem natural da casa.