DEEP OPTION HEDGING USING RISK-AVERSE CONTEXTUAL BANDIT LEARNING

MSBA 7021 | Group 40 3035878248 | Li, Wenhao 3035886336 | Sun, Zhiting

Outline

Intro & Literature Review

What is Option Hedging; DL / ML in Option Hedging; Objective Function

Data Simulation & Model Design

Methodology & Experiments

Analysis

Empirical Results and Discussion

Conclusions

Key Findings and Limitations

Intro & Literature Review

What is Option Hedging; DL / ML in Option Hedging; Objective Function

What is Option Hedging I

Motivation

Protect against market volatility To reduce, or hedge, the directional risk associated with price movements in the underlying assets

Option Hedging:

- A strategy used to reduce the risk of an investment
- Involves the use of **derivatives** to offset potential losses

Two Problems of Continuous Replication

UNREALISTIC

Complete and frictionless markets do not exist

UNDESIRABLE

High transaction costs

Such as the Black, Scholes and Merton (BSM) Model that is widely used to price options contracts.

What is Option Hedging II

Formulation

- the cost of hedging is calculated period-byperiod as the change in the value of the hedged position (option plus stock) plus the trading costs associated with changing the position in the stock.
- requires a pricing model

Cash Flow

 the costs are the cash outflows and inflows from trading the stock and there is a potential final negative cash flow payoff on the option

Approach

Utility-Based

- where a portfolio's performance is measured by expected utility
- a multi-period planning problem, whose goal is the optimal trade-off between risk and global transaction costs

Risk-Averse

 Extending on the utility-based approach, add risk terms and choose a mean-variance reward function to minimize losses

Deep Learning / Machine Learning in Option Hedging I

Reinforcement Learning

Contextual Multi-armed Bandit (CMAB)

Main Model

Bayesian Neural Network Risk-Averse CMAB

Alternatives

- Neural Greedy Bandits
- Naïve Bandits
- Random Bandits
- Predict-Then-Optimize with SARIMAX
- Oracle (Best-Case Scenario)

DL/ ML in Option Hedging II

- Can incorporate prior knowledge into the model
- Can estimate uncertainty in the parameters
- Can handle missing data and outliers

Advantages of BLR

Bayesian Linear Regression

- Uses Bayesian inference to calculate the posterior distribution of the parameters
- Assumes a prior

Thompson Sampling

- A probabilistic algorithm used in reinforcement learning
- Uses Bayesian inference to select the best action
- Exploits the uncertainty of the environment

Comparison between Thompson Sampling and Epsilon-Greedy

Thompson Sampling	Epsilon-Greedy
Probabilistic	Deterministic
Exploits uncertainty	Exploits certainty
More efficient	

Objective Function, Cost & Portfolio Value

Hedging Portfolio Value

$$\Pi_t = n_t S_t + B_t$$
 (self-financing)

$$\Delta\Pi_{t+1} = n_{t+1}S_{t+1} + \Delta B_{t+1} - n_tS_t + Cost(n_t, n_{t+1}, S_t)$$

= $n_{t+1}\Delta S_{t+1} + Cost(n_t, n_{t+1}, S_t)$

Profit & Loss Utility - Based

Transaction Cost

$$Cost(n_t, n_{t+1}, S_t) = -\eta \cdot S_t \cdot |n_{t+1} - n_t|$$

Cash Flow Risk - Averse

Delta Wealth

$$k \cdot E[-\Delta C_{t+1} + n_{t+1}\Delta S_{t+1} + Cost(n_t, n_{t+1}, S_t) \mid F_t]$$

Risk Term

$$V[-\Delta C_{t+1} + n_{t+1}\Delta S_{t+1} + Cost(n_t, n_{t+1}, S_t) \mid F_t]$$

Utility / Reward

$$u_{t} = k \cdot E[-\Delta C_{t+1} + n_{t+1}\Delta S_{n+1} + Cost(n_{t}, n_{t+1}, S_{t}) \mid F_{t}] - V[-\Delta C_{t+1} + n_{t+1}\Delta S_{n+1} + Cost(n_{t}, n_{t+1}, S_{t}) \mid F_{t}]$$

Data Simulation & Model Design

Methodology & Experiments

Data Simulation

Stock Price

Geometric Brownian Motion (GBM)

 a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion with drift.

$$f_{S_t}(s; \mu, \sigma, t) = \frac{1}{\sqrt{2\pi}} \frac{1}{s\sigma\sqrt{t}} \exp\left(-\frac{\left(\ln s - \ln S_0 - \left(\mu - \frac{1}{2}\sigma^2\right)t\right)^2}{2\sigma^2 t}\right)$$

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right), \quad W_t = W_t - W_0 \sim N(0, t)$$

Option Price)

Black-Scholes Model (BSM)

• a pricing model used to determine the fair price or theoretical value for a call or a put option.

$$C(S_t, t) = N(d_1)S_t - N(d_2)Ke^{-r(T-t)}$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left[\ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T-t) \right]$$

$$d_2 = d_1 - \sigma\sqrt{T-t}$$

Algorithms

Utility Function

$$u_{t} = k \cdot E[-\Delta C_{t+1} + n_{t+1}\Delta S_{n+1} + Cost(n_{t}, n_{t+1}, S_{t}) \mid F_{t}] - V[-\Delta C_{t+1} + n_{t+1}\Delta S_{n+1} + Cost(n_{t}, n_{t+1}, S_{t}) \mid F_{t}]$$

Predict-Then-Optimize

Algorithm: Predict-Then-Optimize Algorithm

Predict

for episode = 1: number of episodes do

for t = 1 : 5 **do**

 $S_{episode,t}$ += random.uniform(-1, 1)

for t = 5: length(episode) do

Fit SARIMA model on train data $S_{episode}[:t]$

Predict StockPrice at time t+1 and get $pred_S_{t+1}$

Optimize

for episode = 1 : number of episodes do

for t = 1: length(episode)-1 do

for $a_t = -1, -0.96, ..., 1$ **do**

Compute a_t on predicted *OptionPrice*

Observe predicted reward $pred_r_t$ and reward r_t

Select best a_t with highest $pred_r_t$

Random Bandits

Oracle

O Ba

Bayesian NN R-CMAB

Algorithm 1: Neural R-CMAB Algorithm

Input Init. action-value NN with random parameters; Set up prior distribution over models, $\pi_0: \theta \in \Theta \rightarrow [0,1]$. Init. replay memory to given capacity;

for episode = 1 : number Of Episodes do

for t = 1 : length(episode) do

Sample parameters $\theta_t \sim \pi_t$;

Get a context vector $x_t \in \mathbb{R}^d$;

Compute $a_t = \text{BestAction}(x_t, \theta_t)$ through NN followed by linear Bayesian model;

Perform action a_t on hedging environment and observe reward r_t Add (x_t, a_t, r_t) to memory buffer;

if updateModelFrequencyCriterium then

Update Bayesian estimate of the posterior distribution to π_{t+1} using most recent transitions;

end

if updateNNFrequencyCriterium then

Sample random batches from memory buffer to train NN;

end

end

end

) Naïve Bandits

Thompson Sampling & BLR

Algorithm 1 Thompson Sampling

- 1: *Input*: Prior distribution over models, $\pi_0: \theta \in \Theta \to [0,1]$.
- 2: **for** time t = 0, ..., N **do**
- 3: Observe context $X_t \in \mathbb{R}^d$.
- 4: Sample model $\theta_t \sim \pi_t$.
- 5: Compute $a_t = \text{BestAction}(X_t, \theta_t)$.
- 6: Select action a_t and observe reward r_t .
- 7: Update posterior distribution π_{t+1} with (X_t, a_t, r_t) .

Algorithm: Bayesian Linear Regression

The posterior at time t for action i, after observing X,Y, is $\pi_t(\beta,\sigma^2)=\pi_t(\beta\mid\sigma^2)$ $\pi_t(\sigma^2)$, where we assume $\sigma^2\sim \mathrm{IG}(a_t,b_t)$, and $\beta\mid\sigma^2\sim\mathcal{N}(\mu_t,\sigma^2\Sigma_t)$, an Inverse Gamma and Gaussian distribution, respectively. Their parameters are given by

$$\Sigma_t = \left(X^T X + \Lambda_0\right)^{-1}, \qquad \mu_t = \Sigma_t \left(\Lambda_0 \mu_0 + X^T Y\right), \tag{1}$$

$$a_t = a_0 + t/2,$$

$$b_t = b_0 + \frac{1}{2} \left(Y^T Y + \mu_0^T \Sigma_0 \mu_0 - \mu_t^T \Sigma_t^{-1} \mu_t \right). \tag{2}$$

We set the prior hyperparameters to $\mu_0=0$, and $\Lambda_0=\lambda$ Id, while $a_0=b_0=\eta>1$. It follows that initially, for $\sigma_0^2\sim IG(\eta,\eta)$, we have the prior $\beta\mid\sigma_0^2\sim \mathcal{N}(0,\sigma_0^2/\lambda\operatorname{Id})$, where $\mathbf{E}[\sigma_0^2]=\eta/(\eta-1)$. Note that we independently model and regress each action's parameters, β_i,σ_i^2 for $i=1,\ldots,k$.

Neural Greedy Bandits

Data Buffer

Able to:

- O Keep metadata, e.g., num_actions, buffer_size...
- add context-action-reward triplet at each step
- O Perform mean/std scaling on context (feature) data
- O sample minibatch for neural network training
- O return observations for an action to update BLR
- O fit intercept to BLR

Learning Agents

Bayesian Neural Bandit


```
MSBA7021Project.BayesianNeuralBandit
data h:
update_freq_bayesian:
latent_h:
net_times_trained:
precision:
mu:
update_freq_nn:
COV:
num_actions:
b0:
_lambda_prior:
_a0:
loss:
optimizer:
context dim:
net:
hparams:
latent_dim:
num_epochs:
max_grad_norm:
get_net:
 init (self, **kwargs):
predict(self, context):
action(self, context):
update(self, context, action, reward):
a0(self):
b0(self):
lambda_prior(self):
data(self):
```

Learning Agents

Bayesian Neural Bandit


```
Algorithm 1: Neural R-CMAB Algorithm
 Input Init. action-value NN with random parameters; Set up prior
  distribution over models, \pi_0: \theta \in \Theta \to [0,1]. Init. replay memory to
  given capacity;
 for episode = 1 : numberOfEpisodes do
    for t = 1 : length(episode) do
        Sample parameters \theta_t \sim \pi_t;
        Get a context vector x_t \in \mathbb{R}^d;
        Compute a_t = \text{BestAction}(x_t, \theta_t) through NN followed by linear
         Bayesian model;
        Perform action a_t on hedging environment and observe reward r_t;
        Add (x_t, a_t, r_t) to memory buffer;
        if updateModelFrequencyCriterium then
            Update Bayesian estimate of the posterior distribution to
             \pi_{t+1} using most recent transitions;
        \mathbf{e}\mathbf{n}\mathbf{d}
        if updateNNFrequencyCriterium then
            Sample random batches from memory buffer to train NN;
        end
    end
 end
```

Learning Agents

Bayesian Neural Bandit

The posterior at time t for action i, after observing X, Y, is $\pi_t(\beta, \sigma^2) = \pi_t(\beta \mid \sigma^2) \pi_t(\sigma^2)$, where we assume $\sigma^2 \sim \text{IG}(a_t, b_t)$, and $\beta \mid \sigma^2 \sim \mathcal{N}(\mu_t, \sigma^2 \Sigma_t)$, an Inverse Gamma and Gaussian distribution, respectively. Their parameters are given by

$$\Sigma_t = \left(X^T X + \Lambda_0\right)^{-1}, \qquad \mu_t = \Sigma_t \left(\Lambda_0 \mu_0 + X^T Y\right), \tag{1}$$

$$a_t = a_0 + t/2,$$

$$b_t = b_0 + \frac{1}{2} \left(Y^T Y + \mu_0^T \Sigma_0 \mu_0 - \mu_t^T \Sigma_t^{-1} \mu_t \right). \tag{2}$$

We set the prior hyperparameters to $\mu_0 = 0$, and $\Lambda_0 = \lambda$ Id, while $a_0 = b_0 = \eta > 1$. It follows that initially, for $\sigma_0^2 \sim IG(\eta, \eta)$, we have the prior $\beta \mid \sigma_0^2 \sim \mathcal{N}(0, \sigma_0^2/\lambda \text{ Id})$, where $\mathbf{E}[\sigma_0^2] = \eta/(\eta - 1)$. Note that we independently model and regress each action's parameters, β_i, σ_i^2 for $i = 1, \ldots, k$.

Algorithm 1: Neural R-CMAB Algorithm

Input Init. action-value NN with random parameters; Set up prior distribution over models, $\pi_0: \theta \in \Theta \to [0,1]$. Init. replay memory to given capacity;

 $\mathbf{for}\ episode = 1: numberOfEpisodes\ \mathbf{do}$

for t = 1 : length(episode) do

Sample parameters $\theta_t \sim \pi_t$;

Get a context vector $x_t \in \mathbb{R}^d$;

Compute $a_t = \text{BestAction}(x_t, \theta_t)$ through NN followed by linear Bayesian model;

Perform action a_t on hedging environment and observe reward r_t ; Add (x_t, a_t, r_t) to memory buffer;

 ${f if}\ update Model Frequency Criterium\ {f then}$

Update Bayesian estimate of the posterior distribution to π_{t+1} using most recent transitions;

 \mathbf{end}

riterium then

hes from memory buffer to train NN:

Learning Agents

Bayesian Neural Bandit

Neural Network Architectures All algorithms based on neural networks as function approximators share the same architecture. In particular, we fit a simple fully-connected feedforward network with 3 hidden layers with 20 units each and ReLu activations. The input of the network has dimension d (same as the contexts), and there are k outputs, one per action. Note that for each training point (X_t, a_t, r_t) only one action was observed (and algorithms usually only take into account the loss corresponding to the prediction for the observed action).

```
Signature:
ContextActionRewardDataset.get_batch_with_weights(
    self,
    batch_size,
    scaled=False,
)
Docstring: Return a random mini-batch with one-hot weights for actions
```



```
Algorithm 1: Neural R-CMAB Algorithm
 Input Init. action-value NN with random parameters; Set up prior
  distribution over models, \pi_0: \theta \in \Theta \to [0,1]. Init. replay memory to
  given capacity;
 for episode = 1 : numberOfEpisodes do
    for t = 1 : length(episode) do
        Sample parameters \theta_t \sim \pi_t;
        Get a context vector x_t \in \mathbb{R}^d;
        Compute a_t = \text{BestAction}(x_t, \theta_t) through NN followed by linear
         Bayesian model;
        Perform action a_t on hedging environment and observe reward r_t;
        Add (x_t, a_t, r_t) to memory buffer;
        if updateModelFrequencyCriterium then
            Update Bayesian estimate of the posterior distribution to
             \pi_{t+1} using most recent transitions;
        end
        if updateNNFrequencyCriterium then
            Sample random batches from memory buffer to train NN;
        end
```

```
array([[-0.00778823, 0. , 0. , ..., 0. , ..., 0. , 0. ],

[ 0. , 0. ],

[ 0. , -0.23062548, 0. , ..., 0. , ..., 0. , 0. ],

[ 0. , 0. ],

...,

[ 0.06482949, 0. , 0. , ..., 0. , ..., 0. , ..., 0. ],

[ -0.19679239, 0. , 0. , ..., 0. , ..., 0. , ..., 0. ],

[ -0.2201423 , 0. , 0. , ..., 0. , ..., 0. , ..., 0. , ..., 0. ]]
```

Learning Agents

Neural Greedy Bandit

end

Algorithm: Neural Greedy Bandit Algorithm

Input Init. action-value NN with random parameters. Init. replay memory to given capacity;

```
for episode = 1: number of episodes do

for t = 1: length(episode) do

Get a context vector x_t

Compute a_t = \text{BestAction}(x_t, \theta_t) through NN

Perform action a_t on hedging environment and observe reward r_t;

Add (x_t, a_t, r_t) to memory buffer;

if updateNNFrequencyCriteron then

Sample random batches from memory buffer to train NN;

end

end
```

MSBA7021Project.NeuralGreedyBandit data h: net times trained: update freq nn: num actions: epsilon: loss: optimizer: context_dim: net: hparams: num epochs: max_grad_norm: get_net:

__init__(self, **kwargs):
predict(self, context):
action(self, context):
update(self, context, action, reward):
data(self):

Learning Agents

Naïve Bandit

```
MSBA7021Project.NaiveBandit
epsilon:
data h:
context dim:
num actions:
hparams:
  _init__(self, **kwargs):
predict(self, context):
action(self, context):
update(self, context, action, reward):
data(self):
```

O Vanilla ε-greedy MAB

Random Bandit

```
MSBA7021Project.RandomBandit
data h:
context dim:
num actions:
hparams:
  _init__(self, **kwargs):
action(self, context):
update(self, context, action, reward):
predict(self, context):
data(self):
```

O Random pulls, i.e., pure exploration

Learning Agents

Predict-Then-Optimize SARIMAX

```
Predict
for episode = 1: number of episodes do
        for t = 1 : 5 do
                S_{enisode,t} += random.uniform(-1, 1)
        for t = 5: length(episode) do
                Fit SARIMA model on train data S_{episode}[:t]
                Predict StockPrice at time t+1 and get pred_S_{t+1}, pred_C_{t+1},
Optimize
for episode = 1 : number of episodes do
        for t = 1: length(episode) do
                for a_t = -1, -0.96, ..., 1 do
                        Compute a_t on predicted OptionPrice
                        Observe predicted reward pred_r_t
                Select best a_t with highest pred_r_t
                Use a_t and observe reward r_t
```

Algorithm: Predict-Then-Optimize Algorithm

Trainer Function

Signature: trainBandit(model_cls, num_episodes, T, S, C, test_func, **kwargs)
Docstring: Construct-trains a bandit with model-specific input arguments, and retu

```
hedgeBandit bayesianNeural, \
   train episodic cumRewards bayesianNeural, \
   test episodic cumRewards bayesianNeural, \
   oracle_episodic_cumRewards_bayesianNeural, \
   oracle actions bayesianNeural = trainBandit(
                                BayesianNeuralBandit,
                                num_episodes,
                                T=T,
 9
                                S=S,
                                C=C,
10
                                test func=testBandit,
11
12
                                num actions=51,
                                context_dim=2,
13
14
                                latent dim=20,
15
                                get net=get net,
                                learning_rate=0.1,
16
17
                                max grad norm=10.0,
18
                                lr decay=1,
                                batch_size=512,
19
20
                                weight decay=0,
                                show training=False,
21
                                buffer size=-1,
22
                                initial pulls=10,
23
24
                                training freq baysian=1,
                                training_freq_network=50,
25
                                training epochs=100,
26
27
                                do scaling=False,
                                a0=6,
28
29
                                b0=6,
30
                                lambda prior=0.25,
                                exploration rate=0.3,
31
32
                                verbose=False,
                                summary per epoch=50)
33
```

^ %

Bayesian Optimization Hyperparams Tuning

def objectiveFuncBO(params):

declare training variables

simulate data

trainBandit(simulatedData, params)

return meanEpisodicCumReward

Iteration	Υ	var_1	var_2	
1.0	158.64480596634627	1e-05	5.0	
2.0	72.81709722930584	0.1	50.0	
3.0	42.738181855964484	10.0	50.0	
4.0	35.529717832797544	10.0	10.0	
5.0	254.39865395791574	0.001	10.0	
6.0	133.19784284668012	1e-05	10.0	
7.0	73.69479617706655	0.001	10.0	
8.0	32.48165280446281	10.0	5.0	
9.0	52.481452647299456	10.0	5.0	
	:			

Analysis

Empirical Results and Discussion

Training Process and Test Performance

--- Agent

Bayesian Neural Bandit

w. short-selling

w.o. short-selling

<u>i</u> −1500

Training Process and Test Performance

Bayesian Neural Bandit with Tuned Hyperparams

Training Process and Test Performance

Neural Greedy Bandit

w. short-selling

Training Process and Test Performance

Naïve Bandit

w. short-selling

Training Process and Test Performance

Random Bandit

Training Process and Test Performance SARIMAX

Training Process and Mean Stepwise Rewards

All Learning Agents

Training Process and Decision Distributions

All Learning Agents

Training Process and Decision Distributions 1st Half

All Learning Agents

w. short-selling

Decision Dist. of Learning Agents against Oracle's in the First Half of Training Process

Oracle
BayesianNeuralBandit
NeuralGreedyBandit
NaiveBandit
PandomBandit

1750 - Neuralsfeedybandit
NaiveBandit
RandomBandit
SARIMAX

1500 - 1000

30

40

50

20

w.o. short-selling

10

Training Process and Decision Distributions 2nd Half

All Learning Agents

w. short-selling

Decision Dist. of Learning Agents against Oracle's in the Second Half of Training Process 3000 BayesianNeuralBandit NeuralGreedyBandit NaiveBandit 2500 RandomBandit SARIMAX 2000 1500 1000 10 20 30 40 50

w.o. short-selling

Conclusion

Key Findings and Limitations

Conclusion

Key Findings

- O Replication strategies (both w./w.o. short-selling) in the presence of risk and market friction fall within the modeling capabilities of Contextual Multi-Armed Bandits
- O Deep Neural Networks representation learning and Bayesian Linear Regression with Thompson Sampling technique can significantly improve bandit performance, balancing exploration and exploitation, but are sensitive to outliers and not desirably robust w.r.t. hyperparameters
- O Times Series models do well in modeling the variance in market simulation, successfully mitigating losses in face of outliers, and are more robust in terms of hyperparameter settings
- O Approximation of objective function greatly varies model convergence
- Bandits typically pay great attention to time-to-maturity and converge to Oracle's behavior as the hedging process comes to the end
- O Bandits are prone to short-selling to maximize rewards when stock/option prices are declining, while largely missing out the opportunities to hedge as stock/option prices go up

Conclusion

Limitations

- O Our agents are trained and tested on simulated data generated from standard methods, the simulation strategy can have great impacts on model performance
- O Some approximations of the objective function may not have guaranteed global convergence
- O Agents warrant further hyperparams tuning, given limited time and computation resources
- O It's worthy of continuing research and more experiments to fully investigate the scope of the agents' modeling capabilities and reasons behind variant agent behaviors under different formulations of the problem and combinations of hyperparameters

Contributions

References

- Buehler, H., Gonon, L., Teichmann, J., Wood, B., Mohan, B., & Kochems, J. (2019). Deep hedging: hedging derivatives under generic market frictions using reinforcement learning. Swiss Finance Institute.
- Cannelli, L., Nuti, G., Sala, M., & Szehr, O. (2020). Hedging using reinforcement learning: Contextual k-Armed Bandit versus Q-learning. arXiv:2007.01623.
- Cao, J., Chen, J., Hull, J., & Poulos, Z. (2021). Deep hedging of derivatives using reinforcement learning. *The Journal of Financial Data Science*, 3(1), 10-27.
- Kolm, P. N., & Ritter, G. (2019) Dynamic replication and hedging: A reinforcement learning approach. *The Journal of Financial Data Science*, 1(1), 159–171.
- Riquelme, C., Tucker, G., & Snoek, J. (2018). Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling. arXiv:1802.09127.
- Russo, D. J., Van Roy, B., Kazerouno, A., Osband, I., & Zheng, W. (2017). A tutorial on Thompson Sampling.
 arXiv:1707.02038
- Sattar, V., & Qing, Z. (2016). Risk-averse multi-armed bandit problems under mean-variance measure. *IEEE Journal of Selected Topics in Signal Processing*, 10(6), 1093–1111.
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.