Contraintes pour l'aide à la décision Propagation de contraintes

Thi-Bich-Hanh Dao

LIFO - Université d'Orléans

4 D > 4 P > 4 B > 4 B > B 9 Q P

Thi-Bich-Hanh Dao (LIFO)

Thi-Bich-Hanh Dao (LIFO)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ◆○○○

Contenu

- Propagation de contraintes et consistances
- Consistance de nœud
- Consistance d'arc
 - ▶ Algorithme AC-1
 - ▶ Algorithme AC-3
 - ▶ Algorithme AC-4
 - Consistance d'arc pour contraintes non binaires
- Consistance de borne

Ressources

- Handbook of Constraint Programming, Chapitre 3: Constraint Propagation, Christian Bessière
- Constraint Propagation and Backtracking-Based Search, Roman Barták
- Constraint Programming, notes de cours, Yves Deville

Problèmes NP-Difficile

• Exemple : Port maritime, associer navires aux quais pour le chargement/déchargement restrictions en temps/coût

• Pour 5 quais et 10 navires, calculer toutes les permutations possibles pour connaître leur temps/coût

 \implies 5¹⁰ alternatives sur un ordinateur qui teste 1000 alternatives par seconde, temps de résolution environ 3 heures

- Le port se développe, 10 quais et 20 navires, le même ordinateur résout en 3 milliards années!!!
- Plusieurs critères pour le choix de quai pour un navire : capacité de quai/pas de deux navires pour un quai en même temps/etc. ⇒ les contraintes permettent de réduire l'espace de recherche, problème plus traitable

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺·

∢ロト→西ト→田ト→田ト 田

CSP

- Un ensemble de variables X_1, \ldots, X_n de domaines D_1, \ldots, D_n
- Un ensemble de contraintes c_1, \ldots, c_m
 - ▶ chaque contrainte c; porte sur un sous-ensemble de variables
 - chaque contrainte c_i est un sous-ensemble de $D_i \times \cdots \times D_{i_0}$
- Une solution est un tuple $(d_1,\ldots,d_n)\in D_1 imes\cdots imes D_n$ tel que pour chaque contrainte c_i sur X_{i_1}, \ldots, X_{i_k} .

$$(d_{i_1},\ldots,d_{i_{k_i}})\in c_i$$

←□▶ ←□▶ ← □▶ □ ● り ○○

Thi-Bich-Hanh Dao (LIFO)

Propagation de contraintes

Thi-Bich-Hanh Dao (LIFO)

Contraintes

Propagation de contraintes

• Contraintes unaires et contraintes binaires (pour le moment)

• Contrainte binaire sur X_i et X_i (i < j) est représentée par c_{ii} et c_{ii}

 $c_{ij}(u,v) = \begin{cases} 1 & \text{si } (u,v) \in c_{ij} \\ 0 & \text{sinon} \end{cases}$

• Pour chaque contrainte c_{ii} et $u \in D_i$, $v \in D_i$, on a une valeur

• Au plus une contrainte binaire sur chaque couple X_i, X_i

• Contrainte unaire sur X; est représentée par c;

◆□ ト ◆□ ト ◆ 亘 ト ◆ 亘 ・ り Q ○

Graphe de contraintes

booléenne $c_{ii}(u, v)$

- Un CSP (contraintes unaires et binaires) peut se représenté par un graphe
 - Nœuds : X_1, \ldots, X_n
 - Les arcs :
 - ★ arc (i, i) pour chaque contrainte c_i
 - \star arcs (i, i) et (i, i) pour chaque contrainte c_{ii} et c_{ii}

Complexités

- Nombre de variables : n
- Taille du plus grand domaine : d
- Nombre de contraintes binaires : e
- Supposition : $c_{ii}(u, v)$ est vérifié en temps constant O(1)
- Nombre maximum de contraintes binaires : $O(n^2)$
- Complexité en espace des domaines : O(nd)

◆□▶ ◆御≯ ◆草≯ ◆草≯ 「蓮」

Exemple

- CSP :
 - X_1, X_2, X_3 , avec $D_1 = D_2 = \{1, 2, 3, 4\}, D_3 = \{3\}$
 - ightharpoonup contraintes $X_1 < X_2, X_2 \neq X_3$
- Graphe de contraintes

Thi-Bich-Hanh Dao (LIFO)

←□ → ←□ → ← □ → □ → □ ← ○

Thi-Bich-Hanh Dao (LIFO)

<ロ > → □ > → □ > → □ > → □ ● ● の Q (で)

Consistance de nœud

- Un nœud X_i est nœud-consistant si toute contrainte unaire c_i est satisfaite sur toute valeur $v \in D_i$.
- Consistance de nœud assurée en O(nd)

Agorithme NC

pour chaque variable X, faire

Thi-Bich-Hanh Dao (LIFO)

pour chaque valeur $v \in D_i$ faire

si une contrainte unaire c_i n'est pas satisfaite sur v alors supprimer v de D_i

Propagation de contraintes

- Programmation par contraintes : combinaison de
 - Propagation de contraintes
 - Recherche de solution
- Propagation :
 - Réduire le domaine des variables, sans perdre de solution
 - Utiliser les techniques de consistance
 - ► Chaque contrainte est considérée individuellement

Consistance d'arc

- Une contrainte c_{ii} sur deux variables X_i, X_i est arc-consistante ssi
 - ▶ pour chaque valeur $u \in D_i$, il existe une valeur $v \in D_i$ telle que (u, v)satisfait cii
- Arc-consistance est directionnelle
 - ightharpoonup arc (X_i, X_i) consistance ne garantie pas la consistance de l'arc (X_i, X_i) $X_1, X_2 \in 1..4, X_1 < X_2, c_{12}$ arc-consistant mais pas c_{21} (gauche), c_{12} et c_{21} sont arc-consistants (droite)

$$X_1 \in 1..3 \xrightarrow[c_{21}]{c_{12}} X_2 \in 1..4$$
 $X_1 \in 1..3 \xrightarrow[c_{21}]{c_{12}} X_2 \in 2..4$

• Un CSP est arc-consistant ssi tous les arcs (dans les deux directions) sont arc-consistants

◆□▶ ◆圖▶ ◆團▶ ◆團▶ ■

Thi-Bich-Hanh Dao (LIFO)

Révision d'arc

- Assurer l'arc (X_i, X_i) consistant
- REVISE (X_i, X_i) supprime les valeurs inconsistantes du domaine D_i
- Complexité $O(d^2)$

```
Agorithme REVISE(X_i, X_i)
Deleted \leftarrow false
pour chaque u \in D_i faire
   si il n'existe pas de valeur v \in D_i telle que (u, v) \in c_{ii} alors
       supprimer v de D_i
        Deleted \leftarrow true
retourner Deleted
```

◆ロト ◆園 > ◆ 重 > ◆ 重 > り へ で Thi-Bich-Hanh Dao (LIFO)

Algorithme AC-3

- Amélioration : utiliser une queue pour mémoriser les arcs dont la consistance peut être mise en cause par une révision
- Complexité en temps $O(ed^3)$ ou $O(n^2d^3)$
- Complexité en espace O(e) ou $O(n^2)$

Agorithme AC-3

```
Q \leftarrow \emptyset
pour chaque arc c_{ii} faire Q \leftarrow Q \cup \{(i,j)\};
tant que Q \neq \emptyset faire
    choisir et supprime un arc (k, m) de Q
    si REVISE(X_k, X_m) alors
        Q \leftarrow Q \cup \{(i,k) \mid c_{ik} \text{ est une contrainte}, i \neq m\}
```

◆□▶ ◆圖▶ ◆團▶ ◆團▶ ■

Algorithme AC-1

Agorithme AC-1

répéter

```
Changed \leftarrow false
pour chaque contrainte c;; faire
   Changed \leftarrow \mathsf{REVISE}(X_i, X_i) ou Changed
```

jusqu'à Changed == false;

- Complexité AC-1 est $O(end^3)$ ou $O(n^3d^3)$
- pas efficace car même un petit changement d'un domaine entraîne la révision de toutes les contraintes, même pour celles qui ne sont pas concernées

<ロ > → □ > → □ > → □ > → □ ● ● の Q (で)

Thi-Bich-Hanh Dao (LIFO)

Exemple (1/3)

- CSP :
 - X_1, X_2, X_3 , avec $D_1 = D_2 = \{1, 2, 3, 4\}, D_3 = \{3\}$
 - \blacktriangleright contraintes $X_1 < X_2, X_2 \neq X_3$
- Initialisation $Q = \{(1,2), (2,1), (2,3), (3,2)\}$
- REVISE(1,2): 1 test pour trouver le support de 1, 2 tests pour trouver le support de 2. etc.
 - nécessite au total 1+2+3+4=10 tests pour décider que toutes les valeurs de D_1 sont consistantes
- REVISE(2,1): nécessite 4 tests pour décider que toutes les valeurs de D_2 sont consistantes
- REVISE(2,3) : nécessite 4 tests et supprime la valeur 3 de D_2 \implies (1,2) est mis dans Q
- REVISE(3,2) : nécessite 1 test pour décider que la seule valeur de D₃ est consistante

Exemple (2/3)

- Avec REVISE(1,2), REVISE(2,1), REVISE(2,3), REVISE(3,2)
- flèche pleine (test succès), flèche pointillée (test échec)
- après ces 4 révisions, $Q = \{(1,2)\}$

〈□ ▷ 〈□ ▷ 〈臣 ▷ 〈臣 ▷ 〈臣 ▷ 〉 臣 ◆ 今 ② へ Thi-Bich-Hanh Dao(LIFO) Propagation de contraintes 17 / 31

AC-3 et AC-4

- AC-3
 - n'est pas optimal car REVISE ne se souvient pas de support pour chaque valeur
 - refait les tests même pour les valeurs à priori non concernées
- AC-4:
 - ▶ mémoriser les informations concernant les supports pour chaque valeurs
 - ► Algorithme optimal en temps
 - ► Nécessite de maintenir des structures de données pour réduire le nombre de tests à l'intérieur de REVISE

Exemple (3/3)

• REVISE(1,2) : refait 9 tests (dont un seul nouveau) pour décider que toutes les valeurs de D_1 sont consistantes

《ロトイラトイミト 注》を注 シ 注 シ へで Thi-Bich-Hanh Dao(LIFO) Propagation de contraintes 18 / 31

Structures de données de AC-4

Compter le nombre de supports $counter[X_i, u, X_j]$

• $counter[X_i, u, X_j]$: nombre de supports pour la valeur $u \in D_i$ dans le domaine D_i , pour une contrainte c_{ij}

$$counter[X_i, u, X_j] = \#\{v \in D_j \mid c_{ij}(u, v)\}$$

- Dès que $counter[X_i, u, X_j] = 0$, la valeur u est supprimée du domaine D_i
- Structure de données initialisée dans INITIALIZE et mise à jour dans AC-4
- Taille de structure O(ed) ou $O(n^2d)$

4□ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ ○ 필 · ♡

Structures de données de AC-4

L'ensemble des valeurs de supports $S[X_j, v]$

• $S[X_i, v]$: l'ensemble des valeurs de D_i supportées par la valeur $v \in D_i$

$$S[X_j,v] = \{u \in D_i \mid c_{ij}(u,v)\}$$

- Cet ensemble permet d'accéder à tous les valeurs supportées lorsque u est supprimée de D;
- Structure de données statique initialisée dans INITIALIZE et pas de mise à jour
- Taille de structure $O(ed^2)$ ou $O(n^2d^2)$

Thi-Bich-Hanh Dao (LIFO)

Propagation de contraintes

21 / 31

Algorithme AC-4

```
Agorithme AC-4
Q \leftarrow INITIALIZE()
tant que Q \neq \emptyset faire
\begin{array}{c} \text{choisir et supprime un couple } (X_j, v) \text{ de } Q \\ \text{pour chaque } (X_i, u) \in S[X_j, v] \text{ faire} \\ \text{si } u \in D_i \text{ alors} \\ \text{counter}[X_i, u, X_j] \leftarrow counter[X_i, u, X_j] - 1 \\ \text{si } counter[X_i, u, X_j] = 0 \text{ alors} \\ \text{supprimer } u \text{ de } D_i \\ \text{Q} \leftarrow Q \cup \{(X_i, u)\} \end{array}
```

Algorithme INITIALIZE

```
Agorithme INITIALIZE
Q \leftarrow \emptyset
pour chaque X_i faire
     pour chaque v \in D_i faire
       |S[X_j, v] \leftarrow \emptyset
pour chaque contrainte cii faire
     pour chaque u \in D_i faire
           total \leftarrow 0
           pour chaque v \in D_i faire
                \operatorname{si} c_{ii}(u, v) alors
                      total \leftarrow total + 1
                     S[X_i, v] \leftarrow S[X_i, v] \cup \{(X_i, u)\}
           counter[X_i, u, X_i] \leftarrow total
           si counter[X_i, u, X_i] = 0 alors
                supprimer u du domaine D_i
                Q \leftarrow Q \cup \{(X_i, u)\}
retourner Q
  Thi-Bich-Hanh Dao (LIFO)
```

Exemple (1/2)

```
● CSP:

▶ X_1, X_2, X_3, avec D_1 = D_2 = \{1, 2, 3, 4\}, D_3 = \{3\}

▶ contraintes X_1 \le X_2, X_2 \ne X_3

● INITIALIZE:

\begin{array}{c} \text{counter}[X_1, 1, X_2] = 4 \\ \text{counter}[X_1, 2, X_2] = 3 \\ \text{counter}[X_1, 3, X_2] = 2 \\ \text{counter}[X_1, 3, X_2] = 2 \\ \text{counter}[X_2, 2, X_3] = 3 \\ \text{counter}[X_2, 2, X_3] = 3 \\ \text{counter}[X_2, 3, X_3] = 3 \\ \text{counter}[X_2, 4, X_3] = 1
\end{array}

\begin{array}{c} \text{counter}[X_2, 1, X_3] = 1 \\ \text{counter}[X_2, 2, X_3] = 2 \\ \text{counter}[X_2, 2, X_3] = 3 \\ \text{counter}[X_2, 3, X_3] = 3 \\ \text{counter}[X_2, 4, X_3] = 1 \\ \text{counter}[X_2, 4, X_3] = 1
\end{array}

\begin{array}{c} \text{counter}[X_3, 3, X_2] = 3 \\ \text{S}[X_1, 1] = \{(X_2, 1), (X_2_2), (X_2, 3), (X_2, 4)\} \\ \text{S}[X_1, 2] = \{(X_2, 2), (X_2_3), (X_2, 4)\} \\ \text{S}[X_1, 3] = \{(X_2, 3), (X_2, 4)\} \\ \text{S}[X_1, 4] = \{(X_2, 4)\} \\ \text{S}[X_2, 4] = \{(X_1, 1), (X_1, 2), (X_3, 3)\} \\ \text{S}[X_2, 4] = \{(X_1, 1), (X_1, 2), (X_1, 3), (X_1, 4), (X_3, 3)\} \\ \text{S}[X_3, 3] = \{(X_2, 1), (X_2_2), (X_2, 4)\} \\ \text{Q} = \{(X_2, 3)\} \\ \end{array}
```

Thi-Bich-Hanh Dao (LIFO)

Exemple (2/2)

- AC-4
 - $(X_2,3)$ sorti de Q, réduire le nombre de supports de chaque couple dans $S[X_2,3] = \{(X_1,1), (X_1,2), (X_1,3)\}$

counter
$$[X_1, 1, X_2] = 3$$

counter $[X_1, 2, X_2] = 2$
counter $[X_1, 3, X_2] = 1$

▶ aucun counter devient 0, algorithme s'arrête

←□▶ ←□▶ ← □▶ □ ● り ○○

Thi-Bich-Hanh Dao (LIFO)

Thi-Bich-Hanh Dao (LIFO)

L'arc-consistance est-elle suffisante?

- Si le CSP est arc-consistant :
 - ▶ arrive-t-on à une solution? Non
 - sait-on si une solution existe? Non
- L'arc-consistance est utile car :
 - on peut arriver à un cas d'arrêt
 - ★ un domaine devient vide : pas de solution
 - ★ tous les domaines deviennent singleton : on arrive à une solution
 - et en général l'espace de recherche est réduit

Complexité AC-4

- Complexité en temps $O(ed^2)$ ou $O(n^2d^2)$
- Complexité en espace $O(ed^2)$ ou $O(n^2d^2)$
- Complexité optimale en temps
- Complexité en espace importante, un autre algorithme AC-6 avec même complexité en temps et une meilleur complexité en espace O(ed) ou $O(n^2d)$

Consistance d'arc pour contraintes non binaire

- Contrainte $c(X_1, \ldots, X_k)$
- c est hyper-arc consistante ssi

$$\forall i \in [1, k], \ \forall v_i \in D_i$$

$$\exists v_1 \in D_1 \dots \exists v_{i-1} \in D_{i-1} \exists v_{i-1} \in D_{i-1} \dots \exists v_k \in D_k$$

$$c(v_1, \dots, v_k)$$

• Chaque valeur pour chaque variable participe à une solution de la contrainte

《□》《圖》《意》《意》。 意。

Algorithmes AC pour contraintes non binaire

- Algoirthmes AC existants peuvent être étendus pour gérer contraintes non binaire : coût important!
- Consistance d'arc généralisée (GAC) trop couteuse
- GAC-4 : complexité $O(ed^k)$, où k est l'arité maximale des contraintes
- Classes de contraintes spécifiques pour lesquelles il existe des algorithmes de consistance efficaces : contraintes globales (à suivre ...)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣۹@

Thi-Bich-Hanh Dao (LIFO)

Propagation de contrainte

29 / 3

Consistances

Règles de propagation

- Les règles de propagation sont générées des contraintes pour modifier les bornes
- Exemples : X = Y + Z équivalent à Y = X Z et Z = X Y, règles
 - $ightharpoonup min(X) \ge min(Y) + min(Z), \ max(X) \le max(Y) + max(Z)$
 - $ightharpoonup min(Y) \ge min(X) max(Z), max(Y) \le max(X) min(Z)$
 - $ightharpoonup min(Z) \ge min(X) max(Y), max(Z) \le max(X) min(Y)$
 - si $X \in 1..10$, $Y \in 2..6$, $Z \in 1..10$, la consistance de borne réduit les domaines à

$$X \in 3..10, Y \in 2..6, Z \in 1..8$$

Thi-Bich-Hanh Dao (LIFO)

Propagation de contrainte

31 / 31

Consistance de borne

- Le domaine d'une variable est représenté par des bornes (valeurs minimale et maximale) : X ∈ min(X)..max(X)
- Une contrainte c est borne-consistante si pour chaque variable X de c
 - ▶ il existe d_1, \ldots, d_k pour les autres variables X_1, \ldots, X_k tels que
 - \star min(X_i) ≤ d_i ≤ max(X_i) pour tout i
 - **★** $\{X \leftarrow min(X), X_1 \leftarrow d_1, \dots, X_k \leftarrow d_k\}$ est une solution de c
 - ▶ il existe d'_1, \ldots, d'_k pour les autres variables X_1, \ldots, X_k tels que
 - ★ $min(X_i) \le d_i \le max(X_i)$ pour tout i
 - * $\{X \leftarrow max(X), X_1 \leftarrow d_1', \dots, X_k \leftarrow d_k'\}$ est une solution de c
- Un CSP arithmétique est borne-consistant si toutes ses contraintes le sont.

Thi-Bich-Hanh Dao (LIFO)

opagation de contrainte

30 / 3