Munkres §13

Ex. 13.1 (Morten Poulsen). Let (X, \mathcal{T}) be a topological space and $A \subset X$. The following are equivalent:

- (i) $A \in \mathcal{T}$.
- (ii) $\forall x \in A \exists U_x \in \mathcal{T} : x \in U_x \subset A$.

Proof. (i) \Rightarrow (ii): If $x \in A$ then $x \in A \subset A$ and $A \in \mathcal{T}$.

(ii)
$$\Rightarrow$$
 (i): $A = \bigcup_{x \in A} U_x$, hence $A \in \mathcal{T}$.

Ex. 13.4 (Morten Poulsen). Note that every collection of topologies on a set X is itself a set: A topologi is a subset of $\mathcal{P}(X)$, i.e. an element of $\mathcal{P}(\mathcal{P}(X))$, hence a collection of topologies is a subset of $\mathcal{P}(\mathcal{P}(X))$, i.e. a set.

Let $\{\mathcal{T}_{\alpha}\}$ be a nonempty set of topologies on the set X.

- (a). Since every \mathcal{T}_{α} is a topology on X it is clear that the intersection $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. The union $\bigcup \mathcal{T}_{\alpha}$ is in general not a topology on X: Let $X = \{a, b, c\}$. It is straightforward to check that $\mathcal{T}_1 = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\mathcal{T}_2 = \{X, \emptyset, \{c\}, \{b, c\}\}$ are topologies on X. But $\mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology on X, since $\{a, b\} \cap \{b, c\} = \{b\} \notin \mathcal{T}_1 \cup \mathcal{T}_2$.
- (b). The intersection of all topologies that are finer than all \mathcal{T}_{α} is clearly the smallest topology containing all \mathcal{T}_{α} .

The intersection of all \mathcal{T}_{α} is clearly the largest topology that is contained in all \mathcal{T}_{α} .

- (c). The topology $\mathcal{T}_3 = \mathcal{T}_1 \cap \mathcal{T}_2 = \{X, \emptyset, \{a\}\}$ is the largest topology on X contained in \mathcal{T}_1 and \mathcal{T}_2 . The topology $\mathcal{T}_4 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ is the smallest topology that contains \mathcal{T}_1 and \mathcal{T}_2 .
- **Ex. 13.5 (Morten Poulsen).** Let (X, \mathcal{T}) be a topological space, \mathcal{A} basis for \mathcal{T} and let $\{\mathcal{T}_{\alpha}\}$ be the set of topologies on X that contains \mathcal{A} .

Claim 1. $\mathcal{T} = \bigcap \mathcal{T}_{\alpha}$.

Proof. " \subset ": Let $U \in \mathcal{T}$. By lemma 13.1, U is an union of elements of \mathcal{A} . Since \mathcal{T}_{α} is a topology for all α , it follows that $U \in \mathcal{T}_{\alpha}$ for all α , i.e. $U \in \bigcap \mathcal{T}_{\alpha}$.

"\rightharpoonup": Clear since
$$\mathcal{A} \subset \bigcap \mathcal{T}_{\alpha} \subset \mathcal{T}$$
.

Now assume \mathcal{A} is a subbasis.

Claim 2. $\mathcal{T} = \bigcap \mathcal{T}_{\alpha}$.

Proof. " \subset ": Let $U \in \mathcal{T}$. By the definition of a subbasis and the remarks at the bottom on page 82, U is an union of finite intersections of elements of \mathcal{A} . Since \mathcal{T}_{α} is a topology for all α , it follows that $U \in \mathcal{T}_{\alpha}$ for all α , i.e. $U \in \bigcap \mathcal{T}_{\alpha}$.

"⊃": Clear since
$$A \subset \bigcap T_{\alpha} \subset T$$
.

Ex. 13.6 (Morten Poulsen). The topologies \mathbf{R}_l and \mathbf{R}_K on \mathbf{R} are not comparable:

 $\mathbf{R}_l \not\subset \mathbf{R}_K$: Consider $[-1,0) \in \mathbf{R}_l$. Clearly no basis element $B_K \in \mathbf{R}_K$ satisfy $-1 \in B_K \subset [-1,0)$, hence \mathbf{R}_K is not finer than \mathbf{R}_l , by lemma 13.3.

 $\mathbf{R}_K \not\subset \mathbf{R}_l$: Consider $(-1,1) - K \in \mathbf{R}_K$. Clearly no basis element $B_l \in \mathbf{R}_l$ satisfy $0 \in B_l \subset (-1,1) - K$, hence \mathbf{R}_l is not finer than \mathbf{R}_K , by lemma 13.3.

1

Ex. 13.7 (Morten Poulsen). We know that \mathcal{T}_1 and \mathcal{T}_2 are bases for topologies on R. Furthermore \mathcal{T}_3 is a topology on **R**. It is straightforward to check that the last two sets are bases for topologies on \mathbf{R} as well.

The following table show the relationship between the given topologies on \mathbf{R} .

	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_5
\mathcal{T}_1	=	C (1)	⊄ (2)	⊂ (3)	⊄ (4)
\mathcal{T}_2	⊄ (5)	=	⊄ (6)	⊂ (7)	⊄ (8)
\mathcal{T}_3	⊂ (9)	C (10)	=	C (11)	⊄ (12)
\mathcal{T}_4	⊄ (13)	⊄ (14)	⊄ (15)	=	⊄ (16)
\mathcal{T}_5	C (17)	⊂ (18)	⊄ (19)	C (20)	=

- (1) Lemma 13.3.
- (2) Since $\mathbf{R} (0, 1)$ not finite.
- (3) Given basis element $(a,b) \in \mathcal{T}_1$ and $x \in (a,b)$ then the basis element $(a,x] \in \mathcal{T}_4$ satisfy $x \in (a, x] \subset (a, b)$, hence \mathcal{T}_4 is finer than \mathcal{T}_1 , by lemma 13.3.
- (4) Given a basis element $(a,b) \in \mathcal{T}_1$ and $x \in (a,b)$ then there are clearly no basis element $(-\infty,c)\in\mathcal{T}_5$ such that $x\in(-\infty,c)\subset(a,b)$, hence \mathcal{T}_5 is not finer than \mathcal{T}_1 , by lemma 13.3.
- (5) Lemma 13.3.
- (6) Since $\mathbf{R} (0,1)$ not finite.
- (7) Given basis element $(a,b) K \in \mathcal{T}_2$ and $x \in (a,b) K$. If $x \in (0,1)$ then there exists $m \in \mathbf{Z}_+$ such that $\frac{1}{m} < x < \frac{1}{m-1}$, hence $x \in (\frac{1}{m}, x] \subset (a,b) K$. If $x \notin (0,1)$ then $x \in (a,x] \subset (a,b) K$. It follows from (4) and lemma 13.3 that \mathcal{T}_4 is finer than \mathcal{T}_2 .
- (8) Since $\mathcal{T}_1 \not\subset \mathcal{T}_5$ and $\mathcal{T}_1 \subset \mathcal{T}_2$.
- (9) Let $U \in \mathcal{T}_3$, U nonempty, i.e. $\mathbf{R} U = \{r_1, \dots, r_n\}, r_1 < \dots < r_n$. Since

$$U = \left(\bigcup_{i=1}^{\infty} (r_1 - i, r_1)\right) \cup \left(\bigcup_{j=1}^{n-1} (r_j, r_{j+1})\right) \cup \left(\bigcup_{k=1}^{\infty} (r_n, r_n + k)\right)$$

it follows that $U \in \mathcal{T}_1$.

- (10) Since $\mathcal{T}_3 \subset \mathcal{T}_1 \subset \mathcal{T}_2$.
- (11) Let $U \in \mathcal{T}_3$, U nonempty, i.e. $\mathbf{R} U = \{r_1, \dots, r_n\}, r_1 < \dots < r_n$, and let $x \in U$. If $d = \min\{|x-r_i| \mid i \in \{1,\ldots,n\}\} > 0 \text{ then } x \in (x-\frac{d}{2},x+\frac{d}{2}] \subset U.$ It follows from lemma 13.3 that \mathcal{T}_4 is finer than \mathcal{T}_3 .
- (12) Consider $U = \mathbf{R} \{0\} \in \mathcal{T}_3$. There are no basis element $(-\infty, a) \in \mathcal{T}_5$ such that $1 \in$ $(-\infty, a) \subset U$, hence \mathcal{T}_5 is not finer than \mathcal{T}_4 , by lemma 13.3.
- (13) Given basis element $(c,x] \in \mathcal{T}_4$ there is clearly no basis element $(a,b) \in \mathcal{T}_1$ such that $x \in (a, b) \subset (c, x]$, hence \mathcal{T}_1 is not finer than \mathcal{T}_4 , by lemma 13.3.
- (14) Given basis element $(c,x] \in \mathcal{T}_4$ there is clearly no basis element $B_K \in \mathcal{T}_2$ such that $x \in B_K \subset (c, x]$, hence \mathcal{T}_2 is not finer than \mathcal{T}_4 , by lemma 13.3.
- (15) Since $\mathbf{R} (0, 1]$ not finite.
- (16) Given basis element $(c, x] \in \mathcal{T}_4$ there is clearly no basis element $(-\infty, a) \in \mathcal{T}_5$ such that $x \in (-\infty, a) \subset (c, x]$, hence \mathcal{T}_5 is not finer than \mathcal{T}_4 , by lemma 13.3.
- (17) Since $(-\infty, a) = \bigcup_{i=1}^{\infty} (a i, a) \in \mathcal{T}_1$ for all $a \in \mathbf{R}$. (18) Since $\mathcal{T}_5 \subset \mathcal{T}_1 \subset \mathcal{T}_2$.
- (19) Since $\mathbf{R} (-\infty, 0)$ not finite.
- (20) Given basis element $(-\infty, a) \in \mathcal{T}_5$ and $x \in (-\infty, a)$ then clearly $x \in (x-|x-a|, x+\frac{|x-a|}{2}] \subset$ $(-\infty, a)$, hence \mathcal{T}_4 is finer than \mathcal{T}_5 , by lemma 13.3.

Ex. 13.8 (Morten Poulsen).

(a). Let

$$\mathcal{B} = \{ (a, b) \, | \, a, b \in \mathbf{Q}, a < b \, \}.$$

It is straightforward to check that \mathcal{B} is a basis. Let \mathcal{T} be the standard topology on \mathbf{R} generated by the basis:

$$\{ (r, s) | r, s \in \mathbf{R} \}.$$

Let $U \in \mathcal{T}$ and let $x \in U$. Then (by definition of an open set in a topology generated by a basis) there exists a basis element (r,s), $r,s \in \mathbf{R}$, such that $x \in (r,s)$. Furthermore there exists $a,b \in \mathbf{Q}$ such that $r \leq a < x < b \leq s$, hence $x \in (a,b) \subset (r,s)$. It follows, by lemma 13.2, that \mathcal{B} is a basis for \mathcal{T} .

(b). Let

$$\mathcal{C} = \{ [a, b) \, | \, a, b \in \mathbf{Q}, a < b \, \}.$$

It is straightforward to check that \mathcal{C} is a basis. Let $\mathcal{T}_{\mathcal{C}}$ be the topology on \mathbf{R} generated by \mathcal{C} . Consider $[\sqrt{2},2) \in \mathbf{R}_l$. There are clearly no basis element $[a,b) \in \mathcal{C}$ such that $\sqrt{2} \in [a,b) \subset [\sqrt{2},2)$, hence $\mathcal{T}_{\mathcal{C}}$ is not finer than \mathbf{R}_l , by lemma 13.3.

Since \mathbf{R}_l is clearly finer than $\mathcal{T}_{\mathcal{C}}$, it follows that \mathbf{R}_l is strictly finer than $\mathcal{T}_{\mathcal{C}}$.

References