Réponses

Exercice 1: 6 points

Partie A:

1.
$$\lim_{\substack{x \to -\infty \\ \lim_{x \to -\infty}}} 4e^x = 0$$
 Par somme de limites
$$\lim_{\substack{x \to -\infty }} -2xe^x - 4 = -4$$

$$g(x) = e^x \left(4 - 2x - \frac{4}{e^x} \right)$$

$$\lim_{x \to +\infty} e^{x} = +\infty$$

$$\lim_{x \to +\infty} \left(4 - 2x - \frac{4}{e^{x}} \right) = -\infty$$
Par produit de limites
$$\lim_{x \to +\infty} g(x) = -\infty$$

2. $g'(x) = 2e^x(1-x)$, $2e^x$ est positif, donc g' est du même signe que 1- x d'où le tableau de variation :

x	$-\infty$	1	$+\infty$
g'(x)	+	þ	-
g(x)	_4	≠ ^{2e-4} `	\sim

$$g(1) = -4 + 2e \approx 1,43$$

3.

x	$-\infty$ () 1	a	$+\infty$
g'(x)	+	þ	-	-
g(x)	-4	2e-	4 6	^ _∞

D'après le tableau des variations complété, l'équation g(x) = 0 admet deux solutions 0 et α sur R.

4. L'encadrement de α est : 1,59 < α < 1,60

5. Le signe de
$$g(x)$$
 $x -\infty 0 \alpha +\infty$ $g(x) - + 0 -$

Partie B:

1. On pose pour
$$x \neq 0$$
; $f(x) = \frac{2 - \frac{2}{x}}{\frac{e^x}{x} - 2}$

$$\lim_{x \to +\infty} 2 - \frac{2}{x} = 2$$

$$\lim_{x \to +\infty} \frac{e^x}{x} - 2 = +\infty$$
Par quotient de limites
$$\lim_{x \to +\infty} f(x) = 0$$

$$\lim_{x \to -\infty} 2 - \frac{2}{x} = 2$$

$$\lim_{x \to -\infty} \frac{e^{x}}{x} - 2 = -2$$
Par quotient de limites
$$\lim_{x \to -\infty} f(x) = -1$$

La courbe C admet deux asymptotes horizontales d'équations y=-1 et y=0 au voisinage de $+\infty$ et $-\infty$.

2.a)
$$f'(x) = \frac{2(e^x - 2x) - (2x - 2)(e^x - 2)}{(e^x - 2x)^2} = \frac{4e^x - 2xe^x - 4}{(e^x - 2x)^2} = \frac{g(x)}{(e^x - 2x)^2}$$

b) f ' est du même signe que g d'où le tableau de variation de f.

x	$-\infty$	0		a	$+\infty$
f'(x)	_	0	+	0	-
f(x)	-1	\ _2^		$f^{(a)}$	 0

Partie C

1. Pour tout réel x, on a:
$$\frac{e^x - 2}{e^x - 2x} - 1 = \frac{e^x - 2 - e^x + 2x}{e^x - 2x} = \frac{2x - 2}{e^x - 2x} = f(x)$$

2. La primitive de la fonction f est : $F(x) = \ln(e^x - 2x) - x$

3.
$$I = \int_0^4 f(x) dx = \left[F(x) \right]_0^4 = \ln(e^4 - 8) - 4$$

Exercice 2: QCM (5 points)

- 1. Réponse b) 13
- 2. Réponse b) 0,75
- 3. Réponse c) 3999
- **4. Réponse a)** $-\infty$
- 5. Réponse c) Symétrique par rapport à l'axe des ordonnés.

Exercice 3: (5 points)

1.
$$f'(x) = \frac{9}{(x+2)^2}$$
 alors la fonction est croissante sur $]-2;+\infty[$

2. Démonstration par récurrence

Initialisation:

 $u_0 = 5$. Donc $u_0 = 5 \ge 1$ La proposition est vraie au rang n=0.

Hérédité:

Supposons que pour un rang n, $u_n \ge 1$ est vraie.

Montrons que pour un rang n+1, $u_{n+1} \ge 1$ est vraie.

 $u_n \ge 1$ et $f(u_n) \ge f(1)$ car la fonction f est croissante

donc $u_{n+1} \ge \frac{3}{3}$ **On a donc** $u_{n+1} \ge 1$

La proposition est donc héréditaire.

Conclusion:

La proposition étant vraie au rang initial n=0 et étant héréditaire, alors elle est vraie pour tout n entier naturel.

3.
$$u_{n+1} - u_n = \frac{-u_n^2 + 2u_n - 1}{u_n + 2}$$

Pour $u_n \ge 1$, on a $-u_n^2 + 2u_n - 1 \le 0$. $u_n + 2 \ge 0$. **Donc** $u_{n+1} - u_n \le 0$

Alors la suite est (u_n) décroissante.

4. Comme la suite (u_n) est décroissante et minorée par 1, alors la suite (u_n) est convergente vers un réel $\lambda \ge 1$.

5. a)
$$v_0 = \frac{1}{u_0 - 1} = \frac{1}{4}$$
.

b)
$$v_{n+1} = \frac{1}{u_{n+1} - 1} = \frac{1}{\frac{4u_n - 1}{u_n + 2} - 1} = \frac{u_n + 2}{3u_n - 3}$$
 et $v_{n+1} - v_n = \frac{u_n + 2}{3u_n - 3} - \frac{1}{u_n - 1} = \frac{1}{3}$

donc (v_n) est une suite arithmétique de raison $r = \frac{1}{3}$ et $v_0 = \frac{1}{4}$.

c)
$$v_n = v_0 + n \times r = \frac{1}{4} + \frac{1}{3}n$$

$$u_n = \frac{1}{v_n} + 1 = \frac{1}{\frac{1}{4} + \frac{1}{3}n} + 1$$

d)
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{\frac{1}{4} + \frac{1}{3}n} + 1 = 1.$$

Exercice 4: (4 points)

$$1. \quad \frac{z_{\rm B} - z_{\rm A}}{z_{\rm C} - z_{\rm A}} = i$$

2.
$$\left| \frac{z_{\rm B} - z_{\rm A}}{z_{\rm C} - z_{\rm A}} \right| = 1 \quad \arg \left(\frac{z_{\rm B} - z_{\rm A}}{z_{\rm C} - z_{\rm A}} \right) = \frac{\pi}{2} (2\pi)$$

Alors le triangle ABC est isocèle rectangle en A

3. a)
$$z_D = 4 - 2i$$
 et $z_E = 1 - i$

b)
$$\frac{z_{\rm D} - z_{\rm E}}{z_{\rm C} - z_{\rm B}} = \frac{1}{2}$$

c) Comme
$$\frac{z_{\rm D}-z_{\rm E}}{z_{\rm C}-z_{\rm B}}=\frac{1}{2}$$
 appartient à R et que $\arg\left(\frac{z_{\rm D}-z_{\rm E}}{z_{\rm C}-z_{\rm B}}\right)=0$ (2 π) alors les droites (ED) et (BC) sont parallèles.