Network Biology

Bioinformatics Project - Part 1.2

Silvia Basile, Tommaso Lanciano, group N. 11

Abstract

The aim of this work is to deeper analyze through some specific network measures the structure of seed genes interactomes (SGI), intersection (I) and union (U) interactomes, remembering that:

- Seed Genes Interactome contains only interactions among seed genes;
- Union Interactome contains interactions that involve at least one seed gene, belonging to Biogrid and IID datasets;
- Intersection Interactome contains interactions that involve at least one seed gene, and that are present in both belonging to Biogrid and IID datasets.

Since we are talking about interactions among genes, we can represent the interactomes with graphs, analyze their properties and try to find clusters to underline possible disease modules. Finally we also exploited DIAMonD tool to find putative disease proteins. All the files and codes involved in this work are available in the attached folder or at https://github.com/tlancian/BI_Homeworks.

Part 1. Calculate the main network measures for SGI, I and U

In this section we want to focus on graph indices, either global and local measures. In order to compute all the indices, we used the library networkx in Python, created to efficiently deal with graphs. We developed those analysis only on graphs with more than 20 nodes, condition respected only by U and I interactomes. Even if the SGI graph will not be considered, we provided a graphical representation in Figure 1. As we can see in Table 1 some measures (as the average path length or network diameter) can not be evaluated since we are dealing with more than one component per graph. This is why we focused on the largest connected component (LCC) for union and intersection interactomes (Figure 2) and we evaluates some global inidices (results in Table 2). Local results as the node degree and centrality measures have been stored in a table in the attached folder. We just report in Table 3 (for I-LCC) and in Table 4 (for U-LCC) the local results for the 20 highest ranking genes for betweenness.

INTERPRETAZIONE

Part 2. Apply clustering methods for disease modules discovery

Once we obtained the largest connected component for both I and U graphs, we can use two different clustering algorithms to get modules from them:

• Louvain: it is a method to extract communities from large networks. Basically, first small communities are found by optimizing modularity locally on all nodes, then each small community is grouped into one node and the first step is repeated.

• Markov Clustering (MCL): the main idea of this algorithm is that, starting from a node and then randomly travel to a connected node, it is more likely to stay within a cluster than travel between. The MCL algorithm is based on random walks evaluated through Markov Chains.

The results are shown in **Figure 3** and **Figure 4**.

INTERPRETAZIONE

Now, applying an hypergeometric test we can explore the modules in each configuration, looking for the one statistically enriched. For each cluster belonging to each algorithm, we will evaluate an hypergeometric test with the following parameters:

- M, the total number of genes;
- N, the number of genes in the module;
- *n*, the total number of seed genes;
- x, the number of seed genes in the module.

Assuming the null hypothesis as "seed genes are not statistically overrepresented in a specific cluster", if the p-value will be ≤ 0.05 then we can reject the null hypothesis. We selected modules with more than 10 nodes and with a p-value ≤ 0.05 and we consider those modules as putative disease modules: the results are in **Table 5**.

- Part 3. Carry on an enrichment analysis on the disease modules
- Part 4. Find putative disease proteins using the DIAMOnD tool

Tables

Table 1: global measures for Intersection and Union interactomes $\,$

Measures	Intersection Interactome	Union Interactome	
# of Nodes	199	288	
# of Edges	204	302	
# of Connected Components	12	11	
# of Isolated Nodes	0	0	
Average Path Length	-	-	
Average Degree	2.05	2.1	
Average Clustering Coefficient	0.0068	0.0046	
Network Diameter	-	-	
Network Radius	-	-	
Centralization	None	None	

Table 2: global measures for Intersection and Union LCC

Measures	I - LCC	U - LCC
# of Nodes	104	163
# of Edges	119	182
Average Path Length	5.98	5.93
Average Degree	2.288	2.23
Average Clustering Coefficient	0.013	0.008
Network Diameter	12	12
Network Radius	6	7
Centralization	None	None

Table 3: Local indices for 20 highest ranking genes for betweenness, I-LCC $\,$

	degree	betweenness	eigenvector	closeness	ratio
DDX3Y	19	0,6473	0,0013	0,2512	0,0341
SRY	7	$0,\!4683$	0,0001	$0,\!2146$	0,0669
SMAD3	2	$0,\!4466$	0,0002	$0,\!2320$	0,2233
TBL1Y	27	$0,\!4430$	0,0002	$0,\!1782$	0,0164
HDAC3	2	0,3906	0,0000	$0,\!1951$	0,1953
RPS4Y1	9	0,3185	0,0005	0,2124	0,0354
RBMY1A1	18	$0,\!2904$	0,5221	$0,\!1897$	0,0161
TMSB4Y	5	$0,\!2857$	0,0181	$0,\!2141$	0,0571
POT1	2	$0,\!2722$	0,0033	$0,\!2289$	0,1361
TERF1	2	$0,\!2399$	0,0927	$0,\!1988$	0,1199
USP9Y	11	$0,\!2274$	0,0456	$0,\!1758$	0,0207

	degree	betweenness	eigenvector	closeness	ratio
RPS4Y2	3	0,1866	0,0015	0,1977	0,0622
CSNK1E	2	$0,\!1802$	0,0081	$0,\!1856$	0,0901
CD81	2	$0,\!1239$	0,0003	$0,\!2249$	0,0619
IGSF8	2	$0,\!1239$	0,0003	$0,\!2249$	0,0619
CLK3	3	$0,\!1107$	$0,\!1869$	$0,\!1761$	0,0369
RBMY1F	18	$0,\!1079$	$0,\!5213$	$0,\!1568$	0,0060
RNF2	2	0,0933	0,0001	$0,\!1785$	0,0466
ZFY	5	$0,\!0765$	0,0000	$0,\!1535$	0,0153
CIRBP	2	0,0048	0,1791	$0,\!1622$	0,0024

Table 4: Local indices for 20 highest ranking genes for betweenness, U-LCC $\,$

	degree	betweenness	eigenvector	closeness	ratio
SRY	21	0,5359	0,0002	0,2324	0,0255
DDX3Y	28	$0,\!5249$	0,0029	$0,\!2485$	0,0187
SMAD3	2	$0,\!3656$	0,0005	$0,\!2379$	0,1828
TBL1Y	31	$0,\!3370$	0,0001	$0,\!1806$	0,0109
HDAC3	2	0,3114	0,0000	$0,\!2035$	$0,\!1557$
RBMY1A1	24	$0,\!2659$	$0,\!5517$	$0,\!1858$	0,0111
USP9Y	15	0,2467	0,0436	$0,\!1901$	0,0164
RPS4Y1	14	$0,\!2381$	0,0006	$0,\!2088$	0,0170
TMSB4Y	6	$0,\!2351$	0,0168	0,2077	0,0392
POT1	2	$0,\!2234$	0,0032	$0,\!2231$	0,1117
TERF1	2	$0,\!1973$	0,0911	$0,\!1929$	0,0986
AR	3	$0,\!1740$	0,0000	$0,\!2069$	0,0580
TSPY1	8	$0,\!1515$	0,0001	0,1940	0,0189
CDY1	6	$0,\!1257$	0,0016	$0,\!1824$	0,0209
CLK3	3	$0,\!1243$	$0,\!1734$	$0,\!1767$	0,0414
UBC	3	$0,\!1202$	0,0074	$0,\!1841$	0,0401
HIST2H2AC	2	$0,\!1155$	0,0003	$0,\!1851$	0,0577
RBMY1F	21	0,1073	0,4866	$0,\!1555$	0,0051
RPS4Y2	3	$0,\!1067$	0,0013	$0,\!1952$	0,0356
CSNK1E	2	0,1036	0,0072	0,1860	0,0518

Figures

Figure 1: Seed genes interactome $\,$

Figure 2: Intersection and Union LCC

Figure 3: Louvain clustering