Criterio de implementación de un HMM usando LogProb

Jorge Luis Guevara Díaz Escuela de Informática

Introducción

- Introducción
 - Motivación
- Modelos Ocultos de Markov HMM
 - Definición
 - Algoritmo forward-backward
 - Algoritmo de Viterbi
 - Algoritmo Baum-Welch
- Criterio de implementación
 - Algoritmo f*
 - Algoritmo h*
 - Análisis y prueba de correctitud

Motivación

- Por que estudiar HMM?
 - Tiene un rango de aplicaciones muy interesantes como:
 - Reconocimiento automático del Habla
 - Reconocimiento de escritura a mano
 - Reconocimiento de gesturas
 - Reconocimiento de firmas
 - Procesamiento y etiquetado automático de secuencias musicales
 - Bioinformática para modelar secuencias DNA y proteinas
 - Es un ejercicio de programación divertido!!

Reconocimiento automático del habla

Reconocimiento de escritura a mano

Reconocimiento de gestura

Hand and Face Tracking

Finger tracking

Reconocimiento de firmas

Procesamiento y etiquetado automático de secuencias musicales

Adeste Fideles

Modelos Ocultos de Markov

En nuestro cerebro tenemos un "modelo" que nos permite identificar la palabra hola sea dicho por cualquier persona y de cualquier manera

Aprendimos a entender "hola" pues escuchamos esa palabra muchas veces

Entrenamiento

Reconocimiento

escoger el modelo con probabilidad mas alta

Parte oculta

Parte observable

Definición HMM discreto

- Un HMM es una quintupla (S, V, A,B,Π), donde:
- S = {Si,...SN} conjunto de N estados
- ► **V**= {V1,... VK} conjunto de K símbolos de observación,
- A= probabilidades de transición entre estados
- B = probabilidades de los símbolos de observación
- \blacksquare = distribución inicial de los estados

Ejemplo

- ► **S** = {1,2,3} conjunto de N estados
- V= {up,down,unchangend} conjunto de K símbolos de observación,
- A= probabilidades de transición entre estados
- B = probabilidades de los símbolos de observación
- ■ T = distribución inicial de los estados

- Problema 1 (evaluación)
- 2. Problema 2 (decodificación)
- 3. Problema 3 (aprendizaje)

1. Problema 1 (evaluación)

1. Calcular eficientemente **P(O/ λ) algoritmo forward**

2. Problema 2 (decodificación)

1. Escoger una correspondiente secuencia de estados Q = q1...qT que sea óptima, algoritmo de Viterbi

3. Problema 3 (aprendizaje-entrenamiento)

1. Ajustar los parámetros del modelo $\lambda = (A,B,\pi)$ para maximizar $P(O/\lambda)$? -algoritmo forward-backward (Baum-Welch)

Solución al problema I Algoritmo forward

Inicialización

$$\alpha_1(i) = \pi_i b_i(O_1), \quad 1 \leq i \leq N$$

Inducción

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1$$

$$1 \le j \le N.$$

3. Terminación

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

Solución al problema II Algoritmo Viterbi

1. Inicialización

$$\delta_1(i) = \pi_i b_i(O_1), \qquad 1 \le i \le N$$

$$\psi_1(i) = 0.$$

2. Inducción

$$\delta_{t}(j) = \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \qquad 2 \leq t \leq T$$

$$1 \leq j \leq N$$

$$\psi_{t}(j) = \operatorname*{argmax}_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}], \qquad 2 \leq t \leq T$$

$$1 \leq j \leq N.$$

3. Terminación

$$P^* = \max_{1 \le i \le N} [\delta_T(i)]$$

$$q_T^* = \underset{1 \le i \le N}{\operatorname{argmax}} [\delta_T(i)].$$

4. Path backtraking

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T-1, T-2, \cdots, 1.$$

Solución al problema III Algoritmo *Baum Welch*

- 1. Inicializar $\lambda = (A, B, \pi)$
- 2. Calcular α , β , ξ , γ
 - 1. Donde

$$\xi_{t}(i, j) = P(q_{t} = S_{i}, q_{t+1} = S_{j}|O, \lambda).$$

$$\xi_{t}(i, j) = \frac{\alpha_{t}(i) a_{ij}b_{j}(O_{t+1}) \beta_{t+1}(j)}{P(O|\lambda)}$$

$$= \frac{\alpha_{t}(i) a_{ij}b_{j}(O_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) a_{ij}b_{j}(O_{t+1}) \beta_{t+1}(j)}$$

$$\gamma_t(i) = P(q_t = S_i | O, \lambda) \quad \gamma_t(i) = \frac{\alpha_t(i) \beta_t(i)}{P(O|\lambda)} = \frac{\alpha_t(i) \beta_t(i)}{\sum_{i=1}^{N} \alpha_t(i) \beta_t(i)}$$

- 3. Estimar nuevo $\lambda' = (A, B, \pi)$
- 4. Remplazar λ con λ'
- 5. Si no converge ir a etapa 2
- 6. Fin

Solución al problema III Algoritmo *Baum Welch*

- 1. Inicializar $\lambda = (A, B, \pi)$
- 2. Calcular α , β , ξ , γ
- 3. Estimar nuevo $\lambda' = (A, B, \pi)$

$$\overline{\mathbf{T}}_{j} = \gamma_{1}(i)$$

$$\overline{\mathbf{a}}_{ij} = \frac{\sum\limits_{t=1}^{T-1} \xi_{t}(i,j)}{\sum\limits_{T=1}^{T-1} \gamma_{t}(i)}$$

$$\sum\limits_{t=1}^{\sum} \gamma_{t}(j)$$

$$\overline{b}_{j}(k) = \frac{\sum\limits_{t=1}^{S.t. O_{t} = v_{k}} \gamma_{t}(j)}{\sum\limits_{t=1}^{T} \gamma_{t}(j)}.$$

- 4. Remplazar λ con λ'
- 5. Si no converge ir a etapa 2
- 6. Fin

Modelos continuos

Muchos problemas reales, los más interesantes no tienen símbolos discretos si no continuos, ejemplo el habla, para esto se utiliza en lugar de símbolos discretos una función de densidad de probabilidad gener μ anas GMM por es $b_i(\mathbf{0}) = \sum_{i=1}^{M} c_{im} \mathfrak{N}[\mathbf{0}, \mu_{im}, \mathbf{U}_{im}]$,

Gaussian Mixture Models

Cada gaussiana multidimesional se construye mediante la expresión

$$b_{j}(y) = \frac{1}{|\Sigma_{j}|^{1/2} (2\pi)^{K/2}} \exp \left(\frac{-(y - \mu_{j})^{T} \Sigma_{j}^{-1} (y - \mu_{j})}{2} \right),$$

donde

$$\hat{\boldsymbol{\mu}}_j = \frac{1}{T} \sum_{t=1}^T \boldsymbol{y}_t ,$$

$$\hat{\boldsymbol{\Sigma}}_j = \frac{1}{T} \sum_{t=1}^T (\boldsymbol{y}_t - \hat{\boldsymbol{\mu}}_j) (\boldsymbol{y}_t - \hat{\boldsymbol{\mu}}_j)^T.$$

Gaussian Mixture Models

Para todos los patrones de entrenamiento se tiene:

$$\overline{\mu}_{j} = \frac{\sum_{e=1}^{E} \sum_{t=1}^{e} \gamma_{j}(t, e) \mathbf{y}_{te}}{\sum_{e=1}^{E} \sum_{t=1}^{T_{e}} \gamma_{j}(t, e)},$$

$$\overline{\Sigma}_{j} = \frac{\sum_{e=1}^{E} \sum_{t=1}^{T_{e}} \gamma_{j}(t, e) (\boldsymbol{y}_{te} - \overline{\boldsymbol{\mu}}_{j}) (\boldsymbol{y}_{te} - \overline{\boldsymbol{\mu}}_{j})^{T}}{\sum_{e=1}^{E} \sum_{t=1}^{T_{e}} \gamma_{j}(t, e)},$$

Gaussian Mixture Models

Finalmente se construye un GMM (aca se tiene k=M)

$$b_j(y) = \sum_{m=1}^{M} c_{jm} b_{jm}(y),$$

donde
$$b_{jm}(y) = N(y; \mu_{jm}, \Sigma_{jm})$$
.

$$\sum_{m=1}^{M} c_{jm} = 1.$$

$$\overline{c}_{jm} = \frac{n_{jm}}{n_j},$$

HMM

A Gaussiana o er = /2/2/ Z= 10.5 0) C = 0.4 1 Gaussiana 1 el= \ 10 E = 100 00 C7 = 0-6

FIGURE 1. Some normal mixture densities for K = 2 (first row), K = 5 (second row), K = 25 (third row) and K = 50 (last row).

Inicialización de un HMM

 Generalmente se usa K-means, algoritmo EM, o una red neuronal para inicializar los valores

Criterio de Implementación

Criterios de implementación

 Los modelos ocultos de Markov no se puede implementar directamente como dice la teoría, a menos que sean modelos con muy pocos estados

Problema

Los valores del modelo son valores menores a 1 y las formulas anteriores involucran muchas multiplicaciones y usualmente los valores resultantes son mas pequeños que el número en punto flotante mas pequeño representable en la computadora

Criterios

- Escalamiento
- Usando Logaritmos

 Todas las formulas anteriores tienen que expresarse de manera logarítmica, por ejemplo

► En Vit
$$(\hat{\alpha}_j(t) = \max_{\text{over } i} (\hat{\alpha}_i(t-1)a_{ij})b_j(\mathbf{y}_t)$$
 for $1 < t \le T$.

$$\hat{\alpha}_{j}^{L}(t) = \max_{\text{over } i} \left(\hat{\alpha}_{i}^{L}(t-1) + \alpha_{ij}^{L} \right) + b_{j}^{L}(\mathbf{y}_{t}) ,$$

- Todas las formulas anteriores tienen que expresarse de manera logarítmica, por ejemplo
- Cada gaussiana multidimensional pasa de:

$$b_{j}(y) = \frac{1}{|\Sigma_{j}|^{1/2} (2\pi)^{K/2}} \exp \left(\frac{-(y - \mu_{j})^{T} \Sigma_{j}^{-1} (y - \mu_{j})}{2} \right),$$

$$b_{j}^{L}(y_{t}) = \log(b_{j}(y_{t})) = -\frac{K}{2}\log(2\pi) - \sum_{k=1}^{K}\log(\sigma_{jk}) - \frac{1}{2}\sum_{k=1}^{K} \left(\frac{y_{kt} - \mu_{jk}}{\sigma_{jk}}\right)^{2}$$

 Todo lo anterior es sencillo, pero como hacemos si tenemos que calcular

recordar que todos los datos lo tenemos en forma logarítmica, se necesita una función donde

$$log(A + B + ... + N) = F^* (Log(A) + Log(B) + ... + log(N))$$

Por ejemplo el algoritmo forward requiere una operación de este tipo, así c

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right]b_j(O_{t+1}), \qquad 1 \leq t \leq T-1$$

$$1 \le j \le N$$
.

- Solución para log(A+B)
 - Ordenar de tal manera que A>B
 - Reescribir

$$\log(A + B) = \log(A(1 + B/A)) = \log(A) + \log(1 + B/A).$$

Si la diferencia entre B y A es mas grande que el numero mas pequeño representable enl a computadora, entonces

$$\log(A+B) = \log(A)$$


```
// calcula log(A+B)
                     \log(A + B) = \log(A(1 + B/A)) = \log(A) + \log(1 + B/A).
Algoritmo f^*(log(A), log(B))
   if log(B) > log(A)
         then exchange log(A) \leftrightarrow log(B)
   C \leftarrow log(B) - log(A) //calcula log(B/A)
   if C \leq numero mas pequeño representable en la computadora
         then C \leftarrow 0
11 else
      C \leftarrow \log(1 + eC)
13
15 return log(A) + C
```



```
Y como calculamos log(A+B+...+N)?
Algoritmo sumLog(log(A),log(B),..., log(N))
   A \leftarrow \mathbf{Quicksort}(\log(A), \log(B), ..., \log(N))
   return h*(A , A.length)
Algoritmo h^*(A, n)
   if A.length == 2
         then return f^*(A[0], A[1])
   else
         C \leftarrow h^*(A, n-1)
8
         return C+log(1+e(A[A.length-1] - C)
```


- Análisis del algoritmo
- El método de ordenación Quicksort Θ(n log n)
- El procedimiento h*

$$T(n)=T(n-1)+\Theta(1)$$
 $es\ \Theta(n)$

El procedimiento completo

$$\Theta(n \log n) + \Theta(n)$$

La complejidad final es Θ(n log n)

Correctitud

Para probar la correctitud (h*)se define el siguiente invariante del bucle teniendo en cuenta la variable C que contiene log(A+B+...+N-1)

Inicializacion

C al llegar antes de tomar el primer valor de caso base tiene log(Θ)

Mantenimiento

 C luego de devolver los valores tendrá log(A+B) y en cada sucesiva llamada tendrá log(A+B+C) , log(A+B+C+D), y así sucesivamente

Terminación

► Al final del procedimiento C tiene log(A+B+C+D+...+N-1),

Referencias

- Por donde empezar?
 - Capitulo 15

Referencias

Por donde empezar?

A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition

LAWRENCE R. RABINER, FELLOW, IEEE

Referencias

Por donde empezar?

alumnos 2007

- Proyectos realizados
 - <u>Extracción de características de la señal de voz utilizando</u>
 <u>LPC-Cepstrum Jorge Velarde, Jhon Franko, Pretel Jesús, Alicia Isolina</u>
 - <u>Prediccion Lineal Perceptual PLP Alan Alfredo Collantes Arana Dany</u> <u>Richard Sari Bustos</u>
 - Audio files compression through wavelets Fredy Carranza-Athó_
 - <u>Máquinas de Sopoerte Vectorial en el Reconocimiento Automático</u> <u>del Habla - Juan Carlos Federico Roeder Moreno</u>
 - ► <u>Efectos de las diferentes transformadas del coseno en RAH Márquez</u> Fernández, Luz Victoria

alumnos 2008

Proyectos realizados

- Extracción de características de palabras aisladas usando MFCC y MFCC con pesos, Nils Murrugarra Llerena
- Reconocimiento automático de palabras aisladas mediante el uso de los extractores de características: MFCC y MODGDF, Jorge Valverde Rebaza
- Uso del método de extracción de características MFCC con formas arbitrarias a nivel de filtros para el reconocimiento de palabras aisladas, Pedro Shiguihara Juárez
- Algoritmo N-Best: Eficiente procedimiento para la búsqueda de las N hipotesis de frases más probables, Luis Mostacero Zárate
- Predicción y Entropia de Textos en Inglés, Juan Grados Vásquez
- Aplicación del algoritmo MFCC-DTW en el reconocimiento de comandos activados por voz, Pedro Linares Kcomt

SRAA 2009 Trujillo

I Evento de Speech Recognition: Algoritmos y Aplicaciones - Junio 29

search.

MoviStar:::..

Menú Principal

- Presentación
- Objetivos
- Conferencistas
- Conferencias
- Organización
- Inscripciones
- Enlazar
- Exposiciones

Presentación SRAA 2009

I Evento de Reconocimiento del Habla 2009

El 29 de Junio del 2009 se realizará el **I Evento en Speech Recognition** en el norte del país, una multiconferencia llevada a cabo en la *Sala de Conferencias de la Universidad Privada del Norte*, Trujillo, Perú. El evento presentará investigaciones realizadas en esta área y la necesidad de mostrar cuál es su importancia e influencia sobre nuestra sociedad actual. La Sociedad de Estudiantes de Ciencia de la Computación hace presente esta invitación a todos los universitarios, profesionales, y comunidad estudiantil en general.

El I Evento en Speech Recognition se realizará en la Sala de Conferencias de la Universidad Privada del Norte, sito en Pabellón A - 1º Piso, Av. Del Ejército 920 - Urb. El Molino - Trujillo. El ingreso es totalmente libre. El pago por solicitud de certificado es de S/10.00 recaudados al inicio del evento.

RAH según Wikipedia

El Reconocimiento Automático del Habla (RAH) o Reconocimiento Automático de voz es una parte de la Inteligencia Artificial que tiene como objetivo permitir la comunicación hablada entre seres humanos y computadoras electrónicas. El problema que se plantea en un sistema de RAH es el de hacer cooperar un conjunto de informaciones que provienen de diversas fuentes de conocimiento (acústica, fonética, fonológica, léxica, sintáctica, semántica y pragmática), en presencia de ambigüedades, incertidumbres y errores inevitables para llegar a obtener una interpretación aceptable del mensaje acústico recibido.

Conferencistas del SRAA 2009

Jorge Guevara Diaz

- Mg. Ciencias de la Computacion
- Universidad Nacional de Trujillo

Luis Miguel Mostacero Zárate

- BSc. Ciencias de la Computacion
- Universidad Nacional de Trujillo

Jorge Valverde Rebaza

- · BSc. Ciencias de la Computacion
- Universidad Nacional de Trujillo

Nils Murrugara Llerena

- BSc. Ciencias de la Computacion
- Universidad Nacional de Trujillo

Pedro Shiguihara Juárez

- BSc. Ciencias de la Computación
- Universidad Nacional de Trujillo

Juan Grados Vasquez

- BSc. Ciencias de la Computación
- · Universidad Nacional de Trujillo

Pedro Linares Kcomt

- BSc. Ciencias de la Computación
- Universidad Nacional de Trujillo

Clusterización para la inicialización de HMM en un ASR	Mg. Jorge Guevara Diaz
Extracción de características de palabras aisladas usando MFCC y MFCC con pesos	BSc. Nils Murrugarr Llerena
Reconocimiento automático de palabras aisladas mediante el uso de los extractores de características: MFCC y MODGDF	BSc. Jorge Valverde Rebaza
Uso del método de extracción de características MFCC con formas arbitrarias a nivel de filtros para el reconocimiento de palabras aisladas	BSc. Pedro Shiguihara Juárez
Algoritmo N-Best: Eficiente procedimiento para la búsqueda de las N hipotesis de frases más probables	BSc. Luis Mostacero Zárate
Predicción y Entropia de Textos en Inglés	BSc. Juan Grados Vásquez
Aplicación del algoritmo MFCC-DTW en el reconocimiento de comandos activados por voz	BSc. Pedro Linares Kcomt
Domótica con Speech Recognition	Roger Castañeda y Diego Castañeda

GRACIAS!!!

