HOUSE PRICES

강병욱, 김기훈, 김수정, 김태현, 임규리

INDEX

- 1. 데이터 전처리
 - 1. NA 처리
 - 2. Categoric to Numeric
 - 3. Categoric to Numeric Adding Custom Numeric Features
 - 4. Treating Outliers
- 2. Preprocessing
 - 1. Kolmogorov-Smirnov Test

KERNELS

Tanner Carbonati
Detailed Data Analysis & Ensemble Modeling

last run 9 months ago · R notebook · 25676 views using data from House Prices: Advanced Regression Techniques · ● Public

Stephanie Kirmer
Fun with Real Estate Data

last run 2 years ago · R notebook · 29271 views using data from House Prices: Advanced Regression Techniques · ● Public

Erik Bruin
House prices: Lasso, XGBoost, and a detailed EDA

last run a day ago · R notebook · 13112 views using data from House Prices: Advanced Regression Techniques · ● Public

1. 데이터 설명

Train set

- Row 1460
- Col 81

Test set

- Row 1459
- Col 80

1. NA(결측치)처리 - 다른 변수와의 관계를 이용


```
df.combined[2421,'PoolQC'] = 'Ex'
df.combined[2504,'PoolQC'] = 'Ex'
df.combined[2600,'PoolQC'] = 'Fa'

df.combined$PoolQC[is.na(df.combined$PoolQC)] = 'None'
```

House Prices: Advanced Regression Techniques

1. NA(결측치) 처리 - 최빈값으로 대체

1. KitchenQual, Electrical 등에서 1개의 NA

→최빈값으로 대체


```
for warning=FALSE, message=FALSE}
plot.categoric('KitchenQual', df.combined)
df.combined$KitchenQual[is.na(df.combined$KitchenQual)] = 'TA'

plot.categoric('Electrical', df.combined)
df.combined$Electrical[is.na(df.combined$Electrical)] = 'SBrkr'
```

1. NA(결측치) 처리 - 임의처리 및 변수삭제

- Exterior1st, 2nd는 한 집의 값만 비어 있으며, 이 변수는 유용한 변수로 판단되는 수준이 없기 때문에 NA를 "Other"로 처리함
- Utilities는 train셋에 1개의 NeSeWa값이 존재, test셋은 모두 AllPub이므로 변수의 의미가 없음 => Utilities 변수 제거

Exterior NA's

	Exterior1st	Exterior2nd
2152	NA	NA

1. NA(결측치) 처리 - 다른 변수와 관계 + 최빈값/중앙값

- SaleType 결측치 처리
- SaleCondition 과의 관계를 통해 처리(관련 변수)
- ① SaleType의 결측값이 있는 SaleCondition

ID	SaleType	SaleCondition	
2490	NA	Nominal	

② SaleType 과 SaleCondition 의 관계 테이블 → 최빈값 처리

	COD	Con	ConLD	ConLl	ConLw	CWD	New	Oth	WD
Abnorml	46	0	3	2	0	1	0	5	133
AdjLand	0	0	0	0	0	0	0	0	12
Alloca	0	0	0	0	0	0	0	0	24
Family	2	0	1	2	1	1	0	1	38
Normal	39	4	21	5	7	10	0	1	2314
Partial	0	1	1	0	0	0	239	0	4

③ SaleType 빈도수 plot

1. NA(결측치) 처리 - 결측치 NONE 혹은 o 으로 처리

MasVnrType & MasVnrArea

na.omit(MasVnrType) <chr></chr>	MedianArea <dbl></dbl>	counts <int></int>
None	0	1742
BrkCmn	161	25
Stone	200	249
BrkFace	203	879
4 rows		

```
fr warning=FALSE, message=FALSE}

df.combined$MasVnrType[is.na(df.combined$MasVnrType)] = 'None'

df.combined$MasVnrArea[is.na(df.combined$MasVnrArea)] = 0
```

변수 24개 중 하나를 제외하고 두 변수 모두 NA인 경우이므로, 해당사항이 없는 경우라고 가정하고, 면적이 198인 관측치에 대해 타입 별 중앙값을 구해 가까운 값으로 대체함

2. CATEGORIC TO NUMERIC

1. 데이터 분리

- 변수에 값이 없는 전처리 이후 데이터를 numeric set과 categoric set 으로 나눔
- One-hot encoding을 이용하여 categoric set을 2진수로 변경.
- 새로운 데이터 프레임에 numeric 데이터를 모두 합산하여 예측 모델 적용 시 활용.
- Numeric 으로 새로운 데이터 프레임 생성

```
num_features <- names(which(sapply(df.combined, is.numeric)))
cat_features <- names(which(sapply(df.combined, is.character)))
df.numeric <- df.combined[num_features]</pre>
```

2. CATEGORIC TO NUMERIC

- 등급으로 측정이 가능한 데이터들은 numeric 으로 변경.
- 변수 카테고리들을 1,2,3...n으로 정렬하여 예측해야 하는 SalePrice의 중앙 값과 OverallQual의 평균값으로 구함.
- 값이 높을수록 높은 점수를 부여
- (None' = 0, 'Po' = 1, 'Fa' = 2, 'TA' = 3, 'Gd' = 4, 'Ex' = 5)

2. CATEGORIC TO NUMERIC

- 변수 `BsmtFinType1` 과 `BsmtFineType2`는 1층,2층의 quality를 나타냄. 유사한 Quality의 따른 패턴이 있을 것으로 추정됨.
- Basement quality별 순서 *'None' < 'Unf' < 'LwQ' < 'BLQ' < 'Rec' < 'ALQ' < 'GLQ'*.
- bsmt.fin.list <- c('None' = 0, 'Unf' = 1, 'LwQ' = 2,'Rec'= 3, 'BLQ' = 4, 'ALQ' = 5, 'GLQ' = 6)

2. CATEGORIC TO NUMERIC

QUALITY 관련 변수 처리				
변수	처리			
ExterQual				
ExterCond				
GarageQual				
GarageCond	'None' =0 ,'Po' = 1, 'Fa' = 2, 'TA' = 3, 'Gd' = 4, 'Ex' = 5			
FirePlaceQu	(변수들이 위의 수준들을 항상 가짐)			
KitchenQual				
HeatingQC				
BsmtQual				

2. CATEGORIC TO NUMERIC

나머지 변수 처리			
변수	처리		
BsmtExposure	'None' = 0, 'No' = 1, 'Mn' = 2, 'Av' = 3, 'Gd' = 4		
BsmtFinType1	'None' = 0, 'Unf' = 1, 'LwQ' = 2,'Rec'= 3, 'BLQ' = 4, 'ALQ' = 5, 'GLQ' = 6		
BsmtFinType2	'None' = 0, 'Unf' = 1, 'LwQ' = 2,'Rec'= 3, 'BLQ' = 4, 'ALQ' = 5, 'GLQ' = 6		
Functional	'None' = 0, 'Sal' = 1, 'Sev' = 2, 'Maj2' = 3, 'Maj1' = 4, 'Mod' = 5, 'Min2' = 6, 'Min1' = 7, 'Typ'= 8		
GarageFinish	'None' = 0,'Unf' = 1, 'RFn' = 1, 'Fin' = 2		
Fence	'None' = 0, 'MnWw' = 1, 'GdWo' = 1, 'MnPrv' = 2, 'GdPrv' = 4		
NewerDwelling	'20', '60', 120' = 1, 나머지 0		

3. CATEGORIC TO NUMERIC – ADDING CUSTOM NUMERIC FEATURES

- 1. SALEPRICE와의 상관관계 TOP 10 분석
- 데이터를 numeric으로 변경 후 SalePrice와의 높은 상관관계 변수를 확인
- 상관관계 확인을 위해 2개의 변수의 상관계수를 비교
- 두개의 변수의 상관계수가 0인 경우 선형 관계가 없다고 해석
- 상관 계수가 0과 1사이면 positive linear relationship, 0과 -1사이면 negative linear relationship 으로 해석
- SalePrice 변수와의 상관 계수가 0.5보다 크거나 -0.5보다 작은 변수를 찾아야함.

3. CATEGORIC TO NUMERIC – ADDING CUSTOM NUMERIC FEATURES

1. SALEPRICE와의 상관관계 TOP 10 분석

- OverallQual & GrLivArea: 상관 계수가 가장 높음
- GarageCars & GarageArea: 주차장의 차와 주차장 넓이 변수 끼리의 상관계수도 높음
- TotalBsmtSF & 1stFlrSF: 집의 면적이 집 가격과의 관계가 있는 것으로 보임. Basement 또한 집의 1층 면적과 관계가 있기에 두개의 변수 끼리도 상관 계수가 높음
- FullBath & TotRmsAbvGrd: 집의 방 개수 또한 집 가격과 상관 계수가 높음. GrLivArea(집 면적) 변수와 TotRmsAbvGrd(방 개수) 변수 끼리 상관계수가 높음. 방이 많으나 집 면적이 적을 경우 집 가격에 어떠한 영향이 있는지 확인하는 것도 의미 있을 듯
- -0.8 YearBuilt & YearRemodAdd: 집 연도가 현재 시점과 가까울 수록집 가격이 높은 것으로 보임.

3. CATEGORIC TO NUMERIC - ADDING CUSTOM NUMERIC FEATURES

1. SALEPRICE와의 상관관계 TOP 10 분석

- 그래프의 파란색 선은 단순 선형 회귀를 나타내며,
 빨간 선은 다항 회귀를 나타냄.
- OverallQual, GrLivArea 변수에 선형 모델 선을 볼 수 있으나 아웃라이어가 있어 들여다 볼 필요가 있음.
- 몇몇 집들 중 overall Quality가 10이지만, 집 가격이 특이하게 낮게 보임.
- GrLivArea, TotalBsmtSF, GarageCars,
 GarageArea 변수에도 이러한 현상이 보임.
- 집 면적이 넓거나 집의 주차 가능한 4개 차량의 주차장이 있어도 집 가격이 높아 보이지 않은 것으로 보임.

3. CATEGORIC TO NUMERIC - ADDING CUSTOM NUMERIC FEATURES

2. ONE HOT ENCODING FOR SOME NOMINAL VALUES

3. CATEGORIC TO NUMERIC – ADDING CUSTOM NUMERIC FEATURES

2. ONE HOT ENCODING FOR SOME NOMINAL VALUES

변수	새로운 변수명	처리
LotShape	RegularLotShape	Reg = 1 , 나머지 0
LandContour	LandLeveled	LvI= 1 , 나머지 0
LandSlope	LandSlopeGentle	Gtl= 1 , 나머지 0
Electrical	ElectricalSB	SBrkr = 1 , 나머지 0
GarageType	GarageDetchd	Detchd = 1 , 나머지 0
PavedDrive	HasPavedDrive	Y=1,나머지 0
WoodDeckSF	HasWoodDeck	0이상 = 1, 나머지 0
2ndFlrSF	Has2ndFlrSF	0이상 = 1, 나머지 0
MasVnrArea	HasMasVnr	0이상 = 1, 나머지 0

3. CATEGORIC TO NUMERIC – ADDING CUSTOM NUMERIC FEATURES

2. ONE HOT ENCODING FOR SOME NOMINAL VALUES

변수	새로운 변수명	처리
MiscFeature	HasShed	Shed = 1 , 나머지 0
YearBuilt!= YearRemodAdd	Remodeled	1, 나머지 0
YearRemodAdd >= YrSold	RecentRemodel	1, 나머지 0
YearBuilt == YrSold	NewHouse	1, 나머지 0
SaleCondition	PartialPlan	Partial
HeatingQC	HeatingScale	'Po' = 0, 'Fa' = 1, 'TA' = 2, 'Gd' = 3, 'Ex' = 4

3. ADDING DUMMY VARIABLES

- 아래에 있는 면적과 관련된 변수는 값이 0이면 0, 0보다 크면 1이란 Dummy Variable을 생성
- 'X2ndFlrSF', 'MasVnrArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', 'X3SsnPorch', 'ScreenPorch'
- 새로운 변수명 앞에 'Has'를 붙여 구분

3. CATEGORIC TO NUMERIC – ADDING CUSTOM NUMERIC FEATURES

3. ADDING DUMMY VARIABLES

변수	새로운 변수명	처리
MoSold	HighSeason	5,6,7월 = 1., 나머지 0

• 팔린 월의 경우 주로 여름철에 집값이 높음으로 5,6,7 월에 대한 더미 변수를 생성

3. CATEGORIC TO NUMERIC - ADDING CUSTOM NUMERIC FEATURES

4. NEIGHBORHOOD

- 'Crawfor', 'Somerst, Timber', 'StoneBr', 'NoRidge', 'NridgeHt 의 값들을 rich 더미로 코딩
- Neighbor를 plot에 따라 0-4의 수치형 변수로 변경

3. CATEGORIC TO NUMERIC – ADDING CUSTOM NUMERIC FEATURES

5. OTHER NEW NUMERICAL VARIABLES

• TotalArea:

LotFrontage+LotArea+MasVnrArea+BsmtFinSF1+BsmtFinSF2+BsmtUnfSF+TotalBsmtSF+X1stFlrSF+X2ndFlrSF+GrLivArea+GarageArea+WoodDeckSF+OpenPorchSF+EnclosedPorch+X3SsnPorch+ScreenPorch+LowQualFinSF+PoolArea

AreaInside: 1stFlrSF + 2ndFlrSF

Age: 2010 – YearBuilt

• (최근에 지어수록 SalePrice가 높다)

TimeSinceSold: 2010 - YrSold

3. CATEGORIC TO NUMERIC - ADDING CUSTOM NUMERIC FEATURES

6. 새로운 상관관계 분석

(새로운 상관계수)

4. TREATING OUTLIERS

- Training에 GrLivArea > 4000인 데이터 4개, test에 한 개.
- SalePrice and GrLivArea에 skewness 를 야기

4. TREATING OUTLIERS

- 이들 중 특히 GrLivArea > 4000 &집값이 낮은 두 관측치는 두 변수의 상관관계에 제한
- 아웃라이어를 제거

2. PREPROCESSING

1. 콜모고로프-스미노프 검정(KOLMOGOROV-SMIRNOV TEST)

감사합니다

질문은..또르륵..