FAMILY NAME:
OTHER NAME(S):
STUDENT NUMBER:
SIGNATURE:

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS

Semester 1, 2013

MATH2089 Numerical Methods and Statistics

- (1) TIME ALLOWED 3 Hours
- (2) TOTAL NUMBER OF QUESTIONS 6
- (3) ANSWER ALL QUESTIONS
- (4) THE QUESTIONS ARE OF EQUAL VALUE
- (5) THIS PAPER MAY **NOT** BE RETAINED BY THE CANDIDATE
- (6) **ONLY** CALCULATORS WITH AN AFFIXED "UNSW APPROVED" STICKER MAY BE USED
- (7) STATISTICAL FORMULAE ARE ATTACHED AT END OF PAPER STATISTICAL TABLES ARE ATTACHED AT END OF PAPER
 - Part A Numerical Methods consists of questions 1 3
 - Part B Statistics consists of questions 4 6

Both parts must be answered

All answers must be written in ink. Except where they are expressly required pencils may only be used for drawing, sketching or graphical work.

Part A – Numerical Methods

1. Answer in a separate book marked Question 1

a) What are the values produced by the following MATLAB expressions (pay attention to the semi-colon at the end of the expressions):

```
i) x = -1e+20;
ans1 = log(exp(x))
ii) v = [2:-2:-2]
ans2 = v.^(1/2)./v
iii) y = 0.01;
h = 1e-16;
ans3 = y+h == y
```

b) The computational complexity of some common operations with n by n matrices are given in Table 1.1

Operation	Flops
Matrix multiplication	$2n^3$
LU factorization	$\frac{2n^3}{3} + O(n^2)$
Cholesky factorization	$\frac{n^3}{3} + O(n^2)$
Back/forward substitution	$n^2 + O(n)$
Tridiagonal solve	8n + O(1)

Table 1.1: Flops for some operations with n by n matrices

- i) Estimate the size of the largest linear system that can be solved in one hour on a 2.5 GHz quad core computer, where each core can do two floating point operations per clock cycle. Assume that the coefficient matrix has no special structure.
- ii) If multiplying two $n \times n$ matrices takes 30 seconds, estimate how long it will take to solve an $n \times n$ symmetric positive definite linear system for 100 different right-hand-side vectors.

c) Consider a linear system Ax = b where you know A exactly, and you have the following output from some MATLAB code

```
nm = norm(A-A')
nm =
    9.8026e+01
rc = rcond(A)
rc =
    4.8677e-05
emin = min(eig(A))
emin =
    6.1427e-01
emax = max(eig(A))
emax =
    9.9990e+03
```

- i) Is A symmetric?
- ii) Obtain an estimate of the condition number $\kappa(A)$ using an appropriate norm. State which norm you used.
- iii) If you want to have 6 significant figures of accuracy in a computed solution to Ax = b, how accurate must the right-hand-side vector b be in terms of the relative error?
- d) Consider the function $f(x) = e^x \sin(x) 100$.
 - i) Formulate Newton's method for solving f(x) = 0.
 - ii) You are **given** that f(x) has a simple zero at $x^* \approx 6.443$. If you use a starting value x_1 near x^* , what is the expected order of convergence for Newton's method?
 - iii) If the initial error $e_1 = |x_1 x^*|$ is around 0.1, estimate the number of iterations k required to achieve the accuracy $e_{k+1} = |x_{k+1} x^*| \le 10^{-14}$.

2. Answer in a separate book marked Question 2

a) Let $f:[0,5] \to \mathbb{R}$ be defined by

$$f(x) = \frac{8}{25\pi} \sqrt{x(5-x)}.$$

The function f is a probability density function so

$$I(f) = \int_0^5 f(x) \, \mathrm{d}x = 1.$$

Approximations to I(f) were calculated using the Trapezoidal rule, Simpson's rule and the Gauss-Legendre rule, giving the following table of errors $E_N(f) = I(f) - Q_N(f)$:

N	${ t E_N}$ ${ t Trapezoidal}$	${ t E_N}$ Simpson	E_N Gauss-Legendre
32	5.8377e-03	2.2902e-03	-1.5288e-05
64	2.0659e-03	8.0865e-04	-1.9545e-06
128	7.3076e-04	2.8571e-04	-2.4714e-07
256	2.5842e-04	1.0098e-04	-3.1072e-08
512	9.1377e-05	3.5695e-05	-3.8953e-09
1024	3.2309e-05	1.2619e-05	-4.8762e-10

- i) Find a linear transformation $x = \alpha + \beta z$ that maps $z \in [-1, 1]$ to $x \in [0, 5]$.
- ii) Given the nodes $z_j, j = 1, ..., N$ and weights $w_j, j = 1, ..., N$ for the Gauss-Legendre rule for the interval [-1, 1], how can you approximate I(f)?
- iii) The error for Simpson's rule satisfies

$$E_N^{\text{Simp}}(f) = O(N^{-4}),$$
 (2.1)

provided that $f \in C^4([0,5])$. You do **not** need to prove this.

A) Use (2.1) to estimate the ratio

$$\frac{E_N^{\text{Simp}}(f)}{E_{2N}^{\text{Simp}}(f)}. (2.2)$$

- B) Use the table of errors to estimate the ratio (2.2) when N = 512.
- C) Is the table of errors consistent with the theoretical error estimate in (2.1)?
- iv) You are **given** that for $x \in (0, 5)$,

$$f'(x) = \frac{4}{25\pi} \frac{5 - 2x}{\sqrt{x(5 - x)}}.$$

Explain why I(f) is difficult to approximate.

b) The motion of a damped mass-spring system is modelled by the initial value problem

$$my'' + cy' + ky = 0,$$
 $y(1) = 2,$ $y'(1) = -1,$

where y(t) is the displacement of the block at time t, m is the mass of the block, c is the damping coefficient, and k is the spring constant. Consider here the case

$$m = 2$$
, $c = 1$, and $k = 1$.

- i) What is the order of the differential equation?
- ii) Convert this ordinary differential equation into a system

$$x' = f(t, x), \text{ for } t > t_0,$$

of first order differential equations.

- iii) What is the initial condition $x_0 = x(t_0)$?
- iv) Write
 - EITHER a MATLAB anonymous function myode
 - OR a MATLAB function M-file myode.m

to evaluate the vector valued function f(t, x).

v) Use Euler's method with a step of h = 0.2 to estimate $\boldsymbol{x}(1.2)$.

3. Answer in a separate book marked Question 3

Fick's second law predicts how diffusion causes the concentration u(x,y) of a chemical to change with position $(x,y) \in \Omega$. The steady state version of Fick's second law (without interior sources of the chemical) is Laplace's equation

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0. \tag{3.1}$$

Consider the rectangular domain

$$\Omega = \{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le 1 \},\$$

and discretize it using h = 1/n and

$$\begin{cases} x_i = ih & \text{for } i = 0, 1, \dots, 2n, \\ y_j = jh & \text{for } j = 0, 1, \dots, n. \end{cases}$$

This is illustrated in Figure 3.1 for n = 5.

Figure 3.1: Discretization of domain for n = 5 and grid points for part d)

- a) What extra information is needed to completely specify this problem?
- b) You are **given** the following standard finite difference approximations for a function f of **one** variable:

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h),$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2),$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2).$$

Let $u_{i,j}$ denote the approximation to the value $u(x_i, y_j)$ of concentration at the grid point (x_i, y_j) . Give central difference approximations of accuracy $O(h^2)$ to the following derivatives at the point (x_i, y_j)

i)
$$\frac{\partial^2 u(x,y)}{\partial x^2}$$
 ii) $\frac{\partial^2 u(x,y)}{\partial y^2}$

c) Using the finite difference approximations from the previous part, show that the equation (3.1) can be written as

$$\beta u_{i,j} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1} = 0, \tag{3.2}$$

and determine the value of β .

d) Given that, in appropriate units,

$$\begin{cases} u(x,0) = u(x,1) = 10x & \text{for } 0 \le x \le 2, \\ u(0,y) = 0 & \text{for } 0 \le y \le 1, \\ u(2,y) = 20 & \text{for } 0 \le y \le 1, \end{cases}$$

write down the equation (3.2) for a discretization with n = 5 at the grid points (marked in Figure 3.1)

i)
$$(x_5, y_2)$$
 ii) (x_9, y_1)

e) Information about the coefficient matrix A using a row-ordering of the variables $u_{i,j}$ is given in Figure 3.2.

Figure 3.2: Spy plots of A, Cholesky factor R, inverse A^{-1} , and eigenvalues of A

- i) Calculate the sparsity of A.
- ii) Why is calculating A^{-1} not a good idea?
- iii) From Figure 3.2, give **two** reasons why A is positive definite?
- iv) Explain how to use the Cholesky factorization $A = R^{\mathsf{T}}R$ to solve the linear system $A\mathbf{u} = \mathbf{b}$?
- v) What other structure does A have that could make solving a linear system $A\mathbf{u} = \mathbf{b}$ more efficient?