Intro to Synthesis Part 1 - the building blocks of sound & synthesis Dean Friedman

Published on YouTube Jan 4 2012

www.youtube.com/watch?v=atvtBE6t48M

```
05:12 Basic Terminology
```

```
08:00 3 Elements of Sound
```

- 08:20 Pitch
- 10:01 Timbre
- 10:45 Harmonics
- 14:57 *
- 16:40 Filter Cutoff/Timbre
- 18:08 Volume
- 21:53 5 most common Waveforms
- 22:11 Square Wave
- 23:21 Sawtooth Wave
- 23:56 Triangle Wave
- 24:59 Pulse Wave
- 27:21 Sine Wave
- 28:48 *Waveforms as Modulators
- 30:47 7 Components of Synth
- 32:11 Amplifier
- 32:43 Oscillator
- 34:18 Filter
- 18:53 36:37 Volume Envelope
- 39:06 Filter Envelope
- 39:56 Pitch envelope
- 40:42 *Corresponding Components*
- 41:54 LFO
- 44:41 DEMO
- 52:05 Review

Notes 2017-12-08

- 1. Sound all sound is vibration
- 2. 3 Elements of sound:

Pitch

Timbre

Volume

3. 5 most common waveforms:

Square

Sawtooth

Triangle

Pulse

Sine

4. 7 main components of a synthesizer:

Oscillator

Amplifier

Filter

Volume Envelope

Filter Envelope

Pitch Envelope

LFO

VIBRATIONS

Synth: controlling vibrations

Cycle = unit of vibration Frequency = speed of vibration HERTZ = cycles per second KILOHERTZ = 1,000 Hertz

Human audible frequency range: 20Hz - 20KHz

THREE ELEMENTS of SOUND

PITCH: musical term for frequency (Synth oscillator controls pitch)

TIMBRE: unique character, tone of a sound harmonic structure

HARMONICS:

most sounds are composite sounds fundamental + harmonics (overtones, partials) sound harmonic spectrum

pitched instruments vs. non-pitched instruments (e.g., saxophone vs. drums)

e.g., bell: short attack, long release
dissonant harmonics
Filters are how to add and subtract harmonics
Upper harmonics - brighter
Lower harmonics - darker

VOLUME: overall sound shape different sounds have different shapes volume envelope

FIVE MOST COMMON WAVEFORMS

SQUAREWAVE: instant on, instant off

SAWTOOTH: instant on, gradual off

TRIANGLE: gradual on, instant off

PULSE: instant on, instant off (Squarewave with a variable ratio)

SINE: single pure frequency

Modulation: applying one waveform to another

SEVEN MAIN COMPONENTS OF A SYNTHESIZER

AMPLIFIER (controls volume)

OSCILLATOR (OSC, VCO) (controls pitch)

FILTER (VCF, DCF) (controls harmonic content - timbre)

VOLUME ENVELOPE (instructions about rates and levels over time)
Attack, Decay, Sustain, Release

FILTER ENVELOPE (shape for brightness; harmonic envelope)

PITCH ENVELOPE (shape for pitch)

LFO (Low Frequency Oscillator) (make things wiggle)

- lower than audible range
- used as a modulator
- frequency modulation vibrato
- amplitude modulation tremolo
- filter modulation
- pulse modulation

DEMO

Choose waveform in oscillator

Designed a volume env - shape for sound Designed a filter env - brightness shape LFO - using a triangle wave as a modulator on the pulse wave Intro to synthesis part 2 - types of synthesis & programming Dean Friedman

Published Jan 4, 2012

www.youtube.com/watch?v=gJkxGvhOS-M

- 2:22 The Different Kinds of Synths
- 4:40 Additive
- 5:41 Subtractive
- 6:29 FM (Frequency Modulation)
- 7:38 Phase Distortion
- 7:47 Samplers
- 9:00 Hybrids
- 12:34 Amplifier (DCA)
- 16:51 Oscillator (OSC, Freq)
- 25:35 Filter
- 28:14 Resonance
- 30:10 Envelope Amount
- 31:39 Modulator
- 34:08 Volume Envelope
- 35:11 37:56 41:06 ADSR
- 46:27 29:01 Filter Envelope
- 48:50 Pitch Envelope
- 51:44 LFO
- 55:46 LFO Sync

DIFFERENT KINDS OF SYNTHS

all have volume envelope all have a way to change the shape of a sound all have LFO

ANALOG - prior to computer tech raw current vibrating oscillator directly to speaker

DIGITAL

sound generated via software or microprocessor

A or D: How is the sound originally generated?

ADDITIVE / SUBTRACTIVE

Additive synth: add individual sine ways to create a harmonic spectrum very precise - need a separate oscillator for each note

Subtractive synth: generate a single waveform rich in harmonics then filter - subtract harmonics

FM Frequency Modulation

modulate frequency of one sine wave with the frequency of another sine wave

yields a complex waveform rich in harmonics

Phase Distortion - related to FM

SAMPLERS: make digital recordings of real sounds play back from a keyboard all have volume envelope & LFO (& filter)

HYBRIDS

use complex digital stored wavetables (samples) as source material (other than simple waveforms)

Linear Algorithmic (LA) synthesis

7 COMPONENTS of a SYNTH

Amplifier - loudness

Oscillator - pitch

Filter - brightness / timbre

Volume Envelope - w/ the amplifier modifies shape of sound over time Filter Envelope - w/ the filter modifies shape of sound harmonic content over time

Pitch Envelope - w/ the oscillator modified shape of sound pitch over time LFO - wiggles the sound (vibrato or tremolo)

AMPLIFIER

controls loudness / volume / level

control relative levels between different oscillators

OSCILLATOR VCO, DCO, OSC, Frequency controls frequency or pitch

width of pulse wave (also called duty cycle)

Octave / Semitones / Fine tuning

D50 Master (Soundquest) Voice editing software - edit voice architecture (structure?)

chorusing / de-tuning: create more distinctive sound

intelligent choices made on source material prior to any other modifications

FILTER (VCF)

controls harmonic content of a sound; overall brightness

CUTOFF control: cut-off point (frequency) at which the filter cuts off harmonics (closed - dull; open - bright)

RESONANCE: exaggerate harmonic frequencies around cutoff point ENVELOPE AMOUNT: degree to which filter envelope affects the sound (cutoff point of the filter)

(Envelope Generator (EG) intensity; Envelope amount / depth / intensity)

Filters controls by removing or replacing the upper portions of harmonic spectrum (SUBTRACTIVE)

MODULATOR [FM Synths]

Controls the harmonic content of the sound; the timbre of the sound

ADDITIVE: changes harmonics by adding harmonics to a sound

Frequency Modulation (FM): one waveform modulates another waveform => complex waveform (like multiplication)

10

VOLUME ENVELOPE

ADSR - Attack Decay Sustain Release
(Peak - max volume; located between Attack and Decay)

Increase attack: sound begins gradually Decrease attack: sound begins suddenly

Attack: rate control; speed sound takes from 0 level to peak level (cannot be adjusted)

Decay: rate control: speed sound level travels from peak to sustain

Sustain: volume level the sound will remain at while key is held down (only

variable level)

Release: rate control: speed sound takes to travel from sustain to 0 level

ENVELOPE shape

ENVELOPE.png

ENVELOPE Rates and Levels

ENVELOPE-ratesLevels.png

FILTER ENVELOPE

(Harmonic Envelope)

ADSR Controls the shape of a sound's brightness (timbre) over time

Filter Envelope is superimposed over the Volume Envelope

PITCH ENVELOPE

Controls direction of the sound's pitch (usually easy to hear pitch level changes and rates) Slide up, down, up & down

LFO: LOW FREQUENCY OSCILLATOR "wiggles" the sound (modulates)

sends a continuously repeating vibration to some aspect of the sound (the volume, timbre, or pitch)

Control Level (amount / intensity)
Frequency (rate/speed)
Waveform (triangle, sawtooth, square, sine, noise(random))

route LFO to modulate the amplifier - amplitude modulation - "tremolo" route LFO to modulate the oscillator - frequency modulation - "vibrato" route LFO to modulate the filter - filter modulation possible to route LFO to modulate the width of the Pulse Wave

LFO SYNC: Off/On

Intro to Synthesis Part 3 - Additional Synth Features, Performance Controls, & Wrap Up

DEAN FRIEDMAN

https://www.youtube.com/watch?v=zK3m8sMkTE4

Published Jan 4, 2012

02:28 Noise

04:44 Sync

08:00 Amplitude (Cross) Modulation

Performance Controls / Controllers

11:25 Pitch Bend wheel

13:28 Modulation Wheel

16:20 Velocity Sensitivity

21:22 24:13 Aftertouch

26:53 28:24 Keyboard Tracking [key tracking / scaling / follow]

29:15 DEMO #1

32:18 * 32:57 34:24 DEMO #2 Attack Vol Env/Frequency LFO

34:45 39:13 DEMO #3 Rate & Sustain Vol Env/Frequency LFO

40:00 48:01 DEMO #4 Filter Env/Vol Env/LFO

48:55 DEMO #5

50:30 54:11 DEMO #6 LFO/Detune

55:27 DEMO #7

Synths used in demos

Roland D50

Casio CZ

Roland DX7

Korg M1

Ensonic SQ80

NOISE

SYNC

Modular Synth Basics #04: Simple synth voice patch Published 2 Mar 2014 https://youtu.be/lJ0M9b4mRNc

Our first patch! A simple synth voice, like in a non-modular synthesizer. EXPAND FOR MORE INFOS and subscribe for more videos: http://www.youtube.com/subscription_c...

PATCH NOTES:

VCO = Voltage Controlled Oscillator (creates audible waves)
VCF = Voltage Controlled Filter (removes frequencies from audio)
VCA = Voltage Controlled Amplifier (controls a signals volume/amplitude)
ADSR = Attack Decay Sustain Release Envelope Generator (creates a 4-stage CV envelope when triggered)

LFO = Low Frequency Oscillator (creates very slow inaudible waves, used as CV)

Audio Signal Routing:

VCO waveform output -to- VCF audio input VCF Low Pass output -to- VCA audio input VCA audio output -to- Mixer input Mixer output -to- Audio Recorder input

Control Voltage (CV) Signal Routing:
MIDI-CV Gate output -to- ADSR Gate input
ADSR Envelope output -to- VCA CV input
MIDI-CV Pitch CV output -to- VCO 1V/Oct input
LFO output -to- VCF Frequency CV input

VCO > Mixer VCO > VCF > Mixer VCO > VCF > VCA > Mixer

MIDI-CV Gate > VCA | MIDI-CV PitchCV > VCO

Mod Synth Basics #04

MIDI-CV Gate > ADSR > VCA | MIDI-CV PitchCV > VCO MIDI-CV Gate > ADSR > VCA | MIDI-CV PitchCV > VCO | LFO > VCF

Modular Synth Basics #02: CV, Gate, Trigger, MIDI https://youtu.be/7TcHzHhizs8

Terminology

- Gate = high voltage over time
- Trigger = short voltage spike
- Pitch CV = variable CV to control 1V/Octave Oscillators

Modular Synth Basics #03: How to start? https://youtu.be/Q0ltu37toDc

Software synth: Modular for iPad

modulargrid.net muffwiggler.com

Modular Synth Basics #08: Multiples

- Multiples create copies of a signal
- Passive multiples do not need electricity
- Buffered multiples need electricity and copy precisely (no voltage loss)
- Have enough multiples available (1 2x4 multiples per row)

Modular Synth Basics #09: Linear & Exponential https://youtu.be/QXS1v2CQLOY

Exponential modules for audio processing (human sense experience) Linear modules for CV processing (want CV mods to be linear)

- The human ear perceives volume increases logarithmically
- To be perceived linear (smooth changes), need to increase exponentially
- CV operations usually stay linear
- Modular Synth Basics #10: Clocks & Sequencers https://youtu.be/Zoeo8mK_zsE

Clock divider modules Sequencers

- Clock CV signals are repeating Gates or Triggers
- Clock CV can be generated from LFOs, Clock Modules, Expert Sleepers, etc.
- Clock Divider creates synced slower clocks from incoming clock CV signal
- Gate / Trigger Sequencers output pulses at fixed voltage levels (drum rhythm)
- CV Sequencers output continous variable voltage levels (melody)
- Reset inputs start sequencers from the beginning

Modular Synth Basics #11: Self-playing synth voice patch (with Sample & Hold)

Previous patch:

VCO > VCF > VCA > Mixer

MIDI-CV Gate > ADSR > VCA | MIDI-CV PitchCV > VCO | LFO > VCF

This patch:

LFO > ADSR > VCA | MIDI-CV PitchCV > VCO | LFO > VCF

Add Sample & Hold

LFO > ADSR > VCA | Noise > S&H > VCO | LFO > VCF

Use a Multiplier

LFO > Mult > ADSR > VCA | Noise > S&H > Attenuator > VCO | LFO > VCF -----> Clock Div >

- Modular Synth Basics #12: Envelopes & Function Generators https://youtu.be/SBTiaGG6T6A
 - Function generators create CV signals that change over time
 - Also called envelope generators (EG)
 - Have to be triggered to create CV
 - Many are based around ADSR concept

Modular Synth Basics #15: The cheap way into Eurorack (modular synths on a budget)

https://youtu.be/xvu1ZCR5ly8

Get:

 a semi-modular synth Arturia Microbrute

Modular Synth Basics (The Tuesday Night Machines) Mod Synth Basics #04

7-4

Doepfer Dark Energy

- a Eurorack case6 U Eurorack case with power (Doepfer DIY case)

1 or 2 Eurorack modules
 VCO
 LFO (cannot have too many)
 EFFECTS: VC delay, VC bitcrusher, VC Fuzz

Modular Synth Basics #16: Waveforms on an oscilloscope https://youtu.be/0nuxXM9QQPA