Regression Models - Course Project

dillonchewwx

17/02/2021

Executive Summary

In this report, the mtcars dataset would be used to answer the following two questions:

- 1. Is an automatic or manual transmission better for MPG (miles per gallon)?
- 2. Quantify the MPG difference between automatic and manual transmissions.

Through a t-test, we have sufficient evidence (p=0.0014) to conclude that cars with manual transmissions provide better gas mileage than automatic transmission. Using regression models, a linear model shows that manual transmission provide 7.25 mpg more than automatic transmissions, but this single variable only accounts for 36% of the variation. By fitting additional variables to the model such as disp, cyl, hp and wt, the improvement was only 1.55 mpg, but this model accounts for 82.7% of the variation.

Exploratory Data Analysis

We will begin by loading the mtcars dataset and examining it.

```
library(datasets)
data(mtcars)
head(mtcars)
```

```
##
                                                    qsec vs am gear carb
                      mpg cyl disp hp drat
                                                 wt
## Mazda RX4
                                160 110 3.90 2.620 16.46
                                                                         4
## Mazda RX4 Wag
                     21.0
                               160 110 3.90 2.875 17.02
## Datsun 710
                     22.8
                             4
                               108
                                     93 3.85 2.320 18.61
                                                                         1
                                                                   3
## Hornet 4 Drive
                     21.4
                             6
                                258 110 3.08 3.215 19.44
                                                                         1
                                                                   3
                                                                         2
## Hornet Sportabout 18.7
                             8
                                360 175 3.15 3.440 17.02
## Valiant
                     18.1
                                225 105 2.76 3.460 20.22
                                                                   3
                                                                         1
```

str(mtcars)

```
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
```

```
## $ wt : num  2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num  16.5 17 18.6 19.4 17 ...
## $ vs : num  0 0 1 1 0 1 0 1 1 1 ...
## $ am : num  1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num  4 4 4 3 3 3 3 3 4 4 4 ...
## $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars$mpg)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.40 15.43 19.20 20.09 22.80 33.90
```

It is noted that the transmission variable is stored in the column named \mathtt{am} with $0 = \mathtt{automatic}$ and $1 = \mathtt{manual}$ - let's change the values for plotting.

```
library(tidyverse)
```

```
## [1] "Manual" "Manual" "Automatic" "Automatic" "Automatic"
## [7] "Automatic" "Automatic" "Automatic" "Automatic" "Automatic"
## [13] "Automatic" "Automatic" "Automatic" "Automatic" "Automatic" "Automatic"
## [19] "Manual" "Manual" "Automatic" "Manual" "Manual" "Manual" "Manual" "Manual" "Manual" "Manual" "Manual"
```

Let's check the normality of the data.

```
library(rstatix)
```

```
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
```

```
mtcars2 %>%
  group_by(am) %>%
  shapiro_test(mpg)
```

Since p > 0.05 for both Automatic and Manual transmission groups, we fail to reject the null hypothesis of the distributions being normal. We can proceed to use t-tests for the comparison of the mean MPG.

Let's see the boxplot of mpg with am.

```
library(ggpubr)
ggplot(mtcars2, aes(x=am, y=mpg, fill=am)) +
    geom_boxplot(outlier.shape=NA) +
    geom_jitter(height=0, width=0.1) +
    theme_bw() +
    theme(legend.position="none", plot.title = element_text(hjust = 0.5)) +
    labs(x="Transmission", y="mpg (Miles/(US) gallon", title="Type of Transmission vs mpg") +
    stat_compare_means(method="t.test", label.x=1, label.y.npc=0.9)
```


From the boxplots and subsequent t-test (p=0.0014), we have sufficient evidence to conclude that cars with manual transmissions provide better gas mileage than automatic transmission.

Regression Models

In this section, we will attempt to use regression models to quantify the MPG difference between automatic and manual transmissions. To start, we can try a linear model to fit the variable am to the outcome mpg.

```
fit1<-lm(mpg~am, mtcars)
summary(fit1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
## Residuals:
##
               1Q Median
      Min
                                3Q
                                      Max
  -9.3923 -3.0923 -0.2974 3.2439
                                   9.5077
##
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                            1.125 15.247 1.13e-15 ***
## (Intercept)
                17.147
## am
                 7.245
                            1.764
                                    4.106 0.000285 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

Here, we see that the mean MPG for automatic cars is 17.1, while manual transmission provides 7.25 mpg more. However, the R^2 value suggests that transmission only accounts for 33.8% of the total variance, and thus a multivariate model might be a better fit to the data. Nonetheless, the p-value of < 0.05 for am suggests that there is a linear correlation with mpg.

Lets check the correlation of the other variables to mpg.

```
library(ggcorrplot)
```

```
##
## Attaching package: 'ggcorrplot'
## The following object is masked from 'package:rstatix':
##
## cor_pmat

corr<-cor(mtcars)
p.mat<-cor_pmat(mtcars)
ggcorrplot(corr, hc.order = TRUE, type = "lower", lab = TRUE, p.mat=p.mat, insig="blank")</pre>
```


From the correlation data, we observe that the variables drat and vs has moderately strong positive correlations with mpg (\sim 0.6), while disp, cyl, hp and wt has strong negative correlations with mpg (\sim -0.8). Furthermore, we also note that all the abovementioned variables are significantly correlated with mpg. We shall move forward with multivariate models and begin by doing a nested model testing.

```
fit<-lm(mpg~., data=mtcars)</pre>
fit2<-update(fit, mpg~am+drat)</pre>
fit3<-update(fit, mpg~am+drat+vs)</pre>
fit4<-update(fit, mpg~am+disp)</pre>
fit5<-update(fit, mpg~am+disp+cyl)</pre>
fit6<-update(fit, mpg~am+disp+cyl+hp)</pre>
fit7<-update(fit, mpg~am+disp+cyl+hp+wt)</pre>
fit8<-update(fit, mpg~am+drat+vs+disp+cyl+hp+wt)</pre>
fit9<-update(fit, mpg~am+cyl)</pre>
fit10<-update(fit, mpg~am+cyl+hp)</pre>
fit11<-update(fit, mpg~am+cyl+hp+wt)</pre>
fit12<-update(fit, mpg~am+hp)</pre>
fit13<-update(fit, mpg~am+hp+wt)</pre>
fit14<-update(fit, mpg~am+wt)</pre>
anova(fit, fit1, fit2, fit3, fit4, fit5, fit6, fit7, fit8, fit9, fit10, fit11, fit12, fit13, fit14)
## Analysis of Variance Table
##
          1: mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
## Model
## Model
          2: mpg ~ am
## Model
          3: mpg ~ am + drat
## Model
          4: mpg ~ am + drat + vs
## Model
         5: mpg ~ am + disp
          6: mpg ~ am + disp + cyl
## Model
          7: mpg ~ am + disp + cyl + hp
## Model
## Model 8: mpg \sim am + disp + cyl + hp + wt
## Model 9: mpg ~ am + drat + vs + disp + cyl + hp + wt
## Model 10: mpg ~ am + cyl
## Model 11: mpg ~ am + cyl + hp
```

```
## Model 12: mpg ~ am + cyl + hp + wt
## Model 13: mpg ~ am + hp
## Model 14: mpg ~ am + hp + wt
## Model 15: mpg ~ am + wt
##
      Res.Df
                RSS Df Sum of Sq
                                        F
                                             Pr(>F)
## 1
          21 147.49
## 2
          30 720.90 -9
                         -573.40 9.0711 1.779e-05 ***
## 3
          29 573.64
                     1
                           147.26 20.9661 0.0001629 ***
## 4
          28 339.99
                           233.65 33.2668 1.003e-05 ***
                     1
## 5
          29 300.28 -1
                            39.71
## 6
          28 252.08
                            48.20
                                   6.8627 0.0160104 *
                     1
                            35.71
## 7
          27 216.37
                     1
                                   5.0849 0.0349350 *
## 8
          26 163.12
                            53.25
                                  7.5813 0.0119079 *
                     1
                             4.47
                                  0.3179 0.7311188
## 9
          24 158.65
                     2
          29 271.36 -5
                         -112.71
## 10
                                   3.2094 0.0262495 *
## 11
          28 220.55
                     1
                            50.81
                                   7.2341 0.0137216 *
## 12
          27 170.00
                            50.56 7.1980 0.0139274 *
                     1
## 13
          29 245.44 -2
                           -75.44
                                  5.3706 0.0130693 *
                            65.15 9.2757 0.0061455 **
## 14
          28 180.29
                     1
## 15
          29 278.32 -1
                           -98.03 13.9571 0.0012194 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

From the nested model fit, we observe that the model with Df=1, lowest RSS, and significant p-value is model 8 with mpg \sim am + disp + cyl + hp + wt.

summary(fit7)

```
##
## Call:
## lm(formula = mpg ~ am + disp + cyl + hp + wt, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                30
                                       Max
  -3.5952 -1.5864 -0.7157
                            1.2821
                                    5.5725
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.20280
                           3.66910
                                    10.412 9.08e-11 ***
                1.55649
                           1.44054
                                      1.080
                                            0.28984
## disp
                0.01226
                           0.01171
                                      1.047
                                             0.30472
## cyl
               -1.10638
                           0.67636
                                    -1.636
                                            0.11393
## hp
               -0.02796
                           0.01392
                                     -2.008
                                            0.05510 .
               -3.30262
                           1.13364
                                    -2.913 0.00726 **
## wt
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.505 on 26 degrees of freedom
## Multiple R-squared: 0.8551, Adjusted R-squared: 0.8273
## F-statistic: 30.7 on 5 and 26 DF, p-value: 4.029e-10
```

From the summary, we see that the model explains 82.7% of the variation as given by the R^2 value, and manual transmissions result in a 1.55 mpg increase over automatic transmissions.

Appendix - Residual plots

```
par(mfrow = c(2,2))
plot(fit7)
```

