Fontes principais

- 1. Cormem T. H.; Leiserson C. E.; Rivest R.: Stein C. Introduction to Algorithms, 3^a edição, MIT Press, 2009
- 2. Análise de algoritmo IME/USP (prof. Paulo Feofiloff) http://www.ime.usp.br/~pf/analise_de_algoritmos

Divisão e conquista

Mostre que T(n) = 2T(n/2) + n é $\Theta(n \lg n)$.

$$T(n) = 2T(n/2) + n$$

Mostre que T(n) = 2T(n/2) + n é $\Theta(n \lg n)$.

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(2T\left(\frac{n}{2^2}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

Mostre que $T(n) = 2T(n/2) + n \in \Theta(n \lg n)$.

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(2T\left(\frac{n}{2^2}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

$$= 2^2\left(2T\left(\frac{n}{2^3}\right) + \frac{n}{2^2}\right) + 2n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

Mostre que T(n) = 2T(n/2) + n é $\Theta(n \lg n)$.

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(2T\left(\frac{n}{2^2}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

$$= 2^2\left(2T\left(\frac{n}{2^3}\right) + \frac{n}{2^2}\right) + 2n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

$$= 2^3\left(2T\left(\frac{n}{2^4}\right) + \frac{n}{2^3}\right) + 3n = 2^4T\left(\frac{n}{2^4}\right) + 4n$$

$$= \cdots$$

Mostre que T(n) = 2T(n/2) + n é $\Theta(n \lg n)$.

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(2T\left(\frac{n}{2^2}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

$$= 2^2\left(2T\left(\frac{n}{2^3}\right) + \frac{n}{2^2}\right) + 2n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

$$= 2^3\left(2T\left(\frac{n}{2^4}\right) + \frac{n}{2^3}\right) + 3n = 2^4T\left(\frac{n}{2^4}\right) + 4n$$

$$= \cdots$$

$$= 2T\left(\frac{n}{2^k}\right) + kn$$

Mostre que T(n) = 2T(n/2) + n é $\Theta(n \lg n)$.

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(2T\left(\frac{n}{2^2}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

$$= 2^2\left(2T\left(\frac{n}{2^3}\right) + \frac{n}{2^2}\right) + 2n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

$$= 2^3\left(2T\left(\frac{n}{2^4}\right) + \frac{n}{2^3}\right) + 3n = 2^4T\left(\frac{n}{2^4}\right) + 4n$$

$$= \cdots$$

$$= 2T\left(\frac{n}{2^k}\right) + kn$$

$$= n + n \lg n = \Theta(n \lg n)$$

Mostre que $T(n) = T(\lfloor n/2 \rfloor) + \Theta(1)$ é $\Theta(\lg n)$.

Simplificando a recorrência acima:

$$T(1) = 1$$
 e $T(n) = T(n/2) + 1$ para $n \ge 2$ potência de 2, temos:

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$= \left(T\left(\frac{n}{2^2}\right) + 1\right) + 1 = T\left(\frac{n}{2^2}\right) + 2$$

$$= \left(T\left(\frac{n}{2^3}\right) + 1\right) + 2 = T\left(\frac{n}{2^3}\right) + 3$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$= \left(T\left(\frac{n}{2^2}\right) + 1\right) + 1 = T\left(\frac{n}{2^2}\right) + 2$$

$$= \left(T\left(\frac{n}{2^3}\right) + 1\right) + 2 = T\left(\frac{n}{2^3}\right) + 3$$

$$= \left(T\left(\frac{n}{2^4}\right) + 1\right) + 3 = T\left(\frac{n}{2^4}\right) + 4$$

$$= \cdots$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$= \left(T\left(\frac{n}{2^2}\right) + 1\right) + 1 = T\left(\frac{n}{2^2}\right) + 2$$

$$= \left(T\left(\frac{n}{2^3}\right) + 1\right) + 2 = T\left(\frac{n}{2^3}\right) + 3$$

$$= \left(T\left(\frac{n}{2^4}\right) + 1\right) + 3 = T\left(\frac{n}{2^4}\right) + 4$$

$$= \cdots$$

$$= T\left(\frac{n}{2^k}\right) + k \qquad \text{para } k = \lg n$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$= \left(T\left(\frac{n}{2^2}\right) + 1\right) + 1 = T\left(\frac{n}{2^2}\right) + 2$$

$$= \left(T\left(\frac{n}{2^3}\right) + 1\right) + 2 = T\left(\frac{n}{2^3}\right) + 3$$

$$= \left(T\left(\frac{n}{2^4}\right) + 1\right) + 3 = T\left(\frac{n}{2^4}\right) + 4$$

$$= \cdots$$

$$= T\left(\frac{n}{2^k}\right) + k \qquad \text{para } k = \lg n$$

$$= T(1) + \lg n = \Theta(\lg n)$$

Mostre que $T(n) = T(n-1) + \Theta(n)$ é $\Theta(n^2)$.

Simplificando a recorrência:

$$T(1) = 1$$
 e $T(n) = T(n-1) + n$ para $n \ge 2$

$$T(n) = T(n-1) + n$$

$$T(n) = T(n-1) + n$$

= $T(n-2) + (n-1) + n$

$$T(n) = T(n-1) + n$$

= $T(n-2) + (n-1) + n$
= $T(n-3) + (n-2) + (n-1) + n$

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= \cdots$$

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= \cdots$$

$$= T(1) + 2 + 3 + \cdots + (n-2) + (n-1) + n$$

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= \cdots$$

$$= T(1) + 2 + 3 + \cdots + (n-2) + (n-1) + n$$

$$= 1 + 2 + 3 + \cdots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}$$

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= \cdots$$

$$= T(1) + 2 + 3 + \cdots + (n-2) + (n-1) + n$$

$$= 1 + 2 + 3 + \cdots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}$$

$$= \Theta(n^2)$$

Método de substituição

Mostre que T(n) = T(n-1) + n é $O(n^2)$.

Mostre que T(n) = T(n-1) + n é $O(n^2)$.

Palpite: $T(n) = O(n^2) \Rightarrow T(n) \le cn^2$

Mostre que T(n) = T(n-1) + n é $O(n^2)$.

Palpite: $T(n) = O(n^2) \Rightarrow T(n) \le cn^2$

Base: $T(2) = T(1) + 2 = 1 + 2 = 3 \le c2^2$ é verdade para c = 3/4

Hipótese: $T(n) \le cn^2$, para todo m < n

Passo indutivo: T(n) = T(n-1) + n

Mostre que T(n) = T(n-1) + n é $O(n^2)$.

Passo indutivo: T(n) = T(n-1) + n

$$\leq c(n-1)^2 + n$$

$$\leq cn^2 - 2nc + c + n$$

$$\leq cn^2 + n(1-2c) + c$$

$$\leq cn^2$$

O último passo é valido para $c > \frac{1}{2}$.

Mostre que $T(n) = 2T(\lceil n/2 \rceil) + n$ é $O(n \lg n)$.

Mostre que T(n) = 2T(|n/2|) + n, T(1) = 1 é $O(n \lg n)$.

Palpite: $T(n) = O(n \lg n) \Rightarrow T(n) \le cn \lg n$

Mostre que $T(n) = 2T(\lfloor n/2 \rfloor) + n$, T(1) = 1 é $O(n \lg n)$.

Palpite: $T(n) = O(n \lg n) \Rightarrow T(n) \le cn \lg n$

Base: T(2) = 4 e T(3) = 5. Queremos $T(n) \le cn \lg n$, então para c = 2, T(2) e T(3) é válido.

Hipótese de Indução: Assuma que $T(m) \le cm \lg m$ para todo m < n.

Passo indutivo: provar que $T(n) \le cn \lg n$.

Mostre que $T(n) = 2T(\lfloor n/2 \rfloor) + n$, T(1) = 1 é $O(n \lg n)$.

Passo indutivo: provar que $T(n) \le cn \lg n$.

```
T(n) = 2T(n/2) + n
\leq 2cn/2 \lg n/2 + n
= cn \lg n/2 + n
= cn \lg n - cn \lg 2 + n
= cn \lg n - cn + n
\leq cn \lg n \qquad \text{quando } c \geq 1
```

Mostre que T(n) é $O(n^3)$.

$$T(n) = \begin{cases} O(1) & \text{se } n = 1\\ 4T(n/2) + O(n) & \text{se } n \ge 2 \end{cases}$$

Mostre que T(n) = 4T(n/2) + O(n) é $O(n^3)$.

Prova:

Palpite: $T(n) = O(n^3) \Rightarrow T(n) \le cn^3$.

- Existem constantes positivas n_0 e c tal que para todo $n \ge n_0$, $T(n) \le cn^3$.
- Use indução para encontrar as constantes n_{0} e c

Método de substituição (Ex 3)

Mostre que T(n) = 4T(n/2) + O(n) é $O(n^3)$.

Prova:

Palpite: $T(n) = O(n^3) \Rightarrow T(n) \le cn^3$.

Base: n = 1, trivial

Hipótese de indução: Assuma que $T(m) \le cm^3$ para todo m < n

Passo de indução: Temos que provar que $T(n) \le cn^3$.

Método de substituição (Ex 3)

Mostre que T(n) = 4T(n/2) + O(n) é $O(n^3)$.

Prova:

Passo de indução: Temos que provar que $T(n) \le cn^3$.

$$T(n) = 4T(n/2) + O(n)$$

 $\leq 4c(n/2)^3 + bn$
 $= cn^3/2 + bn$
 $= cn^3 - (cn^3/2 - bn)$
 $\leq cn^3$

A última inequação é valida quando $cn^3/2-bn\geq 0$, por exemplo c=2b e $n_0=1$

Método de árvore de recursão

Método de árvore de recursão

Mostre que T(n) = 2T(n/2) + O(n) é $O(n \lg n)$.

Mostre que T(n) = 2T(n/2) + O(n) é $O(n \lg n)$.

Mostre que $T(n) = T(\lceil n/2 \rceil) + 1$ é $O(\lg n)$.

Palpite: $T(n) \le c \lg n$

Mostre que $T(n) = T(\lceil n/2 \rceil) + 1$ é $O(\lg n)$.

Palpite: $T(n) \le c \lg n$

Base: $T(2) = T(1) + 2 = 3 \le c \lg 2$ para c = 3

Mostre que $T(n) = T(\lceil n/2 \rceil) + 1$ é $O(\lg n)$.

Palpite: $T(n) \le c \lg n$

Base: $T(2) = T(1) + 2 = 3 \le c \lg 2$ para c = 3

Hipótese: $T(n) \le c \lg n$, para todo m < n

Mostre que $T(n) = T(\lceil n/2 \rceil) + 1$ é $O(\lg n)$.

Palpite: $T(n) \le c \lg n$

Base: $T(2) = T(1) + 2 = 3 \le c \lg 2$ para c = 3

Hipótese: $T(n) \le c \lg n$, para todo m < n

Passo indutivo: $T(n) = T(\lceil n/2 \rceil) + 1$

Mostre que $T(n) = T(\lceil n/2 \rceil) + 1$ é $O(\lg n)$.

Passo indutivo: $T(n) = T(\lceil n/2 \rceil) + 1$

$$\leq c \lg \left\lceil \frac{n}{2} \right\rceil + 1$$

$$< c \lg \left(\frac{n}{2} + 1 \right) + 1$$

$$< c \lg \left(\frac{n+2}{2} \right) + 1$$

$$= c \lg (n+2) - c \lg 2 + 1$$

$$= c \lg (n+2) - c + 1$$

Dê o limitante assintótico superior e inferior para

$$T(n) = 4T(n/4) + 5n$$

$$a = 4$$
, $b = 4$, $f(n) = 5n$
 $n^{\log_b a} = n^{\log_4 4} = n$

caso 2:
$$f(n) = \Theta(n^{\log_b a})$$
, ou seja $5n = \Theta(n)$

Então

$$T(n) = \Theta(n^{\log_b a} \log n)$$
$$T(n) = \Theta(n \log n)$$

Dê o limitante assintótico superior e inferior para

$$T(n) = 4T(n/5) + 5n$$

$$a = 4$$
, $b = 5$, $f(n) = 5n$
 $n^{\log_b a} = n^{\log_5 4} = n^{0.86135}$

caso 3:
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
, ou seja, $5n = \Omega(n^{0.86135 + \varepsilon})$. Para $\varepsilon = 0.249$

Ainda temos verificar se $af(n/b) \le cf(n)$ para alguma constante c < 1.

```
a = 4, b = 5, f(n) = 5n
4f(n/5) = 4(5n/5) \le 4/5.5n \le cf(n), \text{ para } c = 4/5
Então T(n) = \Theta(f(n)), \text{ ou seja } T(n) = \Theta(n).
```

Dê o limitante assintótico superior e inferior para

$$T(n) = 5T(n/4) + 4n$$

$$a = 5$$
, $b = 4$, $f(n) = 4n$
 $n^{\log_b a} = n^{\log_4 5} = n^{1.1609}$

caso 1:
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, ou seja $4n = O(n^{1.1609})$ para $\varepsilon = 0.1609$

Então

$$T(n) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_4 5})$$

$$T(n) = \Theta(n^{\frac{\log_2 5}{\log_2 4}})$$

$$T(n) = \Theta(n^{\frac{\log_2 5}{2}})$$

$$T(n) = \Theta(n^{\frac{1}{2}\log_2 5})$$

$$T(n) = \Theta(n^{\sqrt{\log_2 5}})$$

$$T(n) = \Theta(n^{\sqrt{\lg 5}})$$

Obrigado