

讲者: 顾乃杰 教授、黄章进 副教授

计算机科学与技术学院

对偶理论与灵敏度分析

Chap. 3 Duality theory & Sensitivity analysis

- 3.1 单纯形法的矩阵描述
- 3.2 单纯形法的矩阵计算(改进单纯形法)
- 3.3 对偶问题的提出
- 3.4 线性规划的对偶理论
- 3.5 影子价格
- 3.6 对偶单纯形法
- 3.7 灵敏度分析
- 3.9 利用计算机工具求解

3.7 灵敏度分析

2020/4/12

- 线性规划的灵敏度分析:
 - 也称为敏感性分析,它是研究和分析参数(c_j , b_i , a_{ij})的波动对最优解的影响程度,主要研究下面两个方面:
 - 参数在什么范围内变化时,原最优解或最优基不变;
 - 当参数已经变化时,最优解或最优基有何变化。
 - 当模型的参数发生变化后,可以不必对线性规划问题重新求解, 而用灵敏度分析方法直接在原线性规划取得的最优结果的基础上 进行分析或求解,既可减少计算量,又可事先知道参数的变化范 围,及时对原决策作出调整和修正。

原问题	对偶问题	结论或继续计算的步骤
可行解	可行解	表中的解仍为最优解
可行解	非可行解	用单纯形法继续迭代求最优解
非可行解	可行解	用对偶单纯形法继续迭代求最优解
非可行解	非可行解	引进人工变量,编制新的单纯形表,求最优解

了3.7.1 资源数量b;的变化分析

1)资源数量b;的变化分析

2020/4/12

资源数量变化是指系数 b_r 发生变化,即 $b'_r = b_r + \Delta b_r$ 。并假设其他系数都不变,这样原问题的解变为: $X'_B = B^{-1}(b + \Delta b)$,其中 $\Delta b = (0, \dots, \Delta b_r, 0, \dots, 0)^T$ 。只要 $X'_B \geq 0$,最终表中检验数不变,则最优基不变,但最优解的值发生变化,所以 X'_B 为新的最优解。

- 新的最优解的值可允许变化范围用以下方法确定:

	X_{B}	X	X_{s}	RHS	
Z	0	C-C _B B-1A	-C _B B ⁻¹	-C _B B ⁻¹ b	
	ı	B ⁻¹ A	B-1	B ⁻¹ b	B-1(b+∆b)

了3.7.1 资源数量b;的变化分析

2020/4/12

$$X_{B}' = B^{-1}b' = B^{-1}(b + \Delta b) = B^{-1}b + B^{-1}\Delta b = X_{B} + B^{-1}\Delta b$$

$$= X_{B} + B^{-1}\begin{bmatrix} 0 \\ \vdots \\ \Delta b_{r} \\ \vdots \\ 0 \end{bmatrix} = X_{B} + \begin{bmatrix} \overline{a}_{1r}\Delta b_{r} \\ \vdots \\ \overline{a}_{ir}\Delta b_{r} \end{bmatrix} = X_{B} + \Delta b_{r}\begin{bmatrix} \overline{a}_{1r} \\ \vdots \\ \overline{a}_{ir} \\ \vdots \\ \overline{a}_{mr} \end{bmatrix}$$

这时在最终表中求得的b列的所有元素有:

$$\overline{a}_{ir}\Delta b_r + \overline{b}_i \ge 0 \Rightarrow \overline{a}_{ir}\Delta b_r \ge -\overline{b}_i, \quad i = 1, 2, \dots, m$$

当
$$\overline{a}_{ir} > 0$$
时, $\Delta b_r \ge -\overline{b}_i / \overline{a}_{ir}$ $\Rightarrow \max\{-\overline{b}_i / \overline{a}_{ir} | \overline{a}_{ir} > 0\} \le \Delta b_r \le \min_i \{-\overline{b}_i / \overline{a}_{ir} | \overline{a}_{ir} < 0\}$

若资源变化范围符合上述范围,则最优基不变,重新计算后的 $B^{-1}(b+\Delta b)$ 即为最优解

了3.7.1 资源数量bi的变化分析

- 例如:求第二章例2.1中第二个约束条件 b₂,的变化范围 Δ b₂:

- 解:

已知:
$$\boldsymbol{B}_3^{-1} = \begin{pmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1/2 & -1/8 & 0 \end{pmatrix}$$

$$\boldsymbol{B}^{-1}\boldsymbol{b} + \boldsymbol{B}^{-1} \begin{bmatrix} 0 \\ \Delta \boldsymbol{b}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \Delta \boldsymbol{b}_2 \begin{bmatrix} 0.25 \\ 0.5 \\ -0.125 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

可得:
$$\begin{cases} \Delta b_2 \ge -4 / 0.25 = -16 \\ \Delta b_2 \ge -4 / 0.5 = -8 \\ \Delta b_2 \le 2 / 0.125 = 16 \end{cases}$$

$$-8 \le \Delta b_2 \le 16$$

 $8 \le b_2 \le 32$

[3.7.1] 资源数量 b_i 的变化分析

2020/4/12 8 - 例3.7 由下表(例3.1的单纯形表最终表)可知每设备台时的影子价格 为1.5元。若该厂又从别处抽出4台用于生产产品I,II,求这时该 厂生产产品I,II的最优方案。

	$c_j \rightarrow$		2	3	0	0	0
C_B	$X_{\mathcal{B}}$	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	0.25	0
0	<i>x</i> ₅	4	0	0	-2	0.5	1
3	x_2	2	0	1	0.5	-0.125	0
	$c_j - z_j$		0	0	-1.5	-0.125	0

解:资源的变化是否会引起最优基发生改变?

$$B^{-1}b + B^{-1} \begin{bmatrix} \Delta b_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \\ 0.5 \end{bmatrix} \Delta b_1 \ge 0 \qquad B_3^{-1} = \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix}$$

 $-4 \le \Delta b_1 \le 2$ 时,最优基不变。

该项资源的变化将引起最优基变化,因此需要下一步计算。

2020/4/12

$$\boldsymbol{B}^{-1} \Delta \boldsymbol{b} = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -8 \\ 2 \end{bmatrix}$$

	$c_j \rightarrow$		2	3	0	0	0
C_{B}	$X_{\mathcal{B}}$	b	x_1	x_2	x_3	x_4	<i>x</i> ₅
2	<i>x</i> ₁	4+0	1	0	0	0.25	0
0	<i>x</i> ₅	4-8	0	0	-2	0.5	1
3	x ₂	2+2	0	1	0.5	-0.125	0
	$c_j - z_j$		0	0	-1.5	-0.125	0

b列中还有负数,故用对偶单纯形法求新的最优解,因为基变量 x_5 =-4<0,需要换出,根据 Θ 规则,min(-1.5/-2,-)=0.75,选择 x_3 作为换入变量,迭代一步后得下表:

	$c_j \rightarrow$		2	3	0	0	0
C_B	$X_{\scriptscriptstyle B}$	ь	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	0.25	0
o	x_3	2	o	o	1	-0.25	-0.5
3	x_2	3	0	1	0	0	0.25
c	$_{j}-z_{j}$		0	0	0	-0.5	-0.75

即该厂生产 I 产品 4 件, II 产品 3 件, 获利:

$$z*=4\times2+3\times3=17$$
元

可看出 $x_3=2$,即设备有 2 小时未利用。

2) 价值系数 C_i 的变化分析

2020/4/12 10

- 若 C_j是非基变量 X_j的系数,它在计算表中对检验数的影响:

$$\sigma_j = c_j - C_B B^{-1} P_j$$

 C_B 并不受到非基变量系数改变的影响,所以如果有:

$$\sigma_j' = c_j + \Delta c_j - C_B B^{-1} P_j \le 0 \Rightarrow c_j' \le C_B B^{-1} P_j$$

则仍满足最优解条件。

否则,其对应的非基变量必须换入,最优解将发生改变,需要重新计算。

SC

2020/4/12 11

• 若 Cr 是基变量 Xr 的系数,它在计算表中对检验数的影响:

 $c_r \in C_R$, 当 c_r 改变 Δc_r 时,就引起 C_R 的变化,此时新的非基变量检验数:

$$\sigma_{j}' = c_{j} - (C_{B} + \Delta C_{B})B^{-1}A = c_{j} - C_{B}B^{-1}A - \Delta C_{B}B^{-1}A$$

$$= \sigma_j - (0, \dots, \Delta c_r, \dots, 0)B^{-1}A$$

$$= \sigma_{j} - \Delta c_{r}(\overline{a}_{r1}, \overline{a}_{r2}, \cdots, \overline{a}_{rn})$$

若想要原最优解不变,则需满足 $\sigma_i' \leq 0$,即:

$$\sigma_{j} - \Delta c_{r} \overline{a}_{rj} \leq 0 \Rightarrow \begin{cases} \overline{a}_{rj} > 0, \Delta c_{r} \geq \sigma_{j} / \overline{a}_{rj} \\ \overline{a}_{rj} < 0, \Delta c_{r} \leq \sigma_{j} / \overline{a}_{rj} \end{cases}$$

$$\Rightarrow \max_{j} \left\{ \frac{\sigma_{j}}{\overline{a}_{rj}} \middle| \overline{a}_{rj} > 0 \right\} \leq \Delta c_{r} \leq \min_{j} \left\{ \frac{\sigma_{j}}{\overline{a}_{rj}} \middle| \overline{a}_{rj} < 0 \right\}$$

• 同样的,若不满足上述变化范围,则最优解发生改变,需要重新计算。

- 例3.8 仍由下表(例3.1的单纯形表最终表)为例,基变量x₂的系数C₂变化ΔC₂,求ΔC₂的变化范围。
 - 解:

c₂发生变化,变为右表所示。为 了保持原最优解不变,x₂的检验 数应当为0,经初等变换得右表。

	$c_j \rightarrow$		2	$3 + \Delta C_2$	0	0	0
$C_{\mathcal{B}}$	$X_{\scriptscriptstyle B}$	Ъ	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	0.25	0
0	x_5	4	0	0	4	0.5	1
3	x_2	2	0	1	0.5	-0.125	0
С	$j-z_j$	i	0	Δc_2	-1.5	-0.125	0

SC

2020/4/12

	c _j		2	3+ \(\Delta c_2 \)	0	0	0
C _B	X_B	ь	x_1	x_2	x_3	x_{i}	x_5
2	x_1	4	1	0	0	0, 25	0
0	x_5	4	0	0	-2	0.5	1
$3 + \Delta c_2$	x_2	2	0	1	0.5	-0.125	0
	$c_j - z_j$		0	0	-1.5 $-\Delta c_2/2$	$\Delta c_2 / 8$ $-1/8$	0

从上表可以看出:

$$\begin{vmatrix}
-1.5 - \Delta c_2 / 2 \le 0 \\
\Delta c_2 / 8 - 1 / 8 \le 0
\end{vmatrix} \Rightarrow -3 \le \Delta c_2 \le 1$$

$$c_2 = 3$$

$$\Rightarrow 0 \le c_2 + \Delta c_2 \le 4$$

可见 c2在 [0,4] 之间变化不会影响原最优解。

3) 增加一个新变量

2020/4/12 14

- 考虑计划中增加新的产品(变量)X_{n+1},其价值系数为C_{n+1},其约束条件系数为列向量P_{n+1},不必重解该问题,只需要计算C_{n+1} Z_{n+1},若出现对应该变量的检验数>0(最大值问题),则X_{n+1}被引进基作为换入编两,在原单纯形表最终表的基础上继续迭代即可;
 - 例3.9 在例3.1中的原计划内是否应该安排新产品Ⅲ,该产品Ⅲ每件需消耗A、B各6kg、3kg,使用设备2台时,每件可获利5元。
 - 解: 步骤1:

设生产产品 $IIIx_3'$ 台,

其技术系数 $P_3' = (2,6,3)^T$,

然后计算最终表中对应的检验数:

$$\sigma_3' = c_3' - C_B B^{-1} P_3' = 5 - (1.5, 0.125, 0)(2, 6, 3)^T = 1.25 \ge 0$$
 说明安排生产产品III是有利的。

2020/4/12 15

• 步骤2: 计算产品Ⅲ在最终表中对应的列向量并将结果填入最终计算表:

$$B^{-1}P_3' = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2 \\ 0.25 \end{bmatrix}$$

	c_{j}		2	3	0	0	0	5
- C _B	X_B	· b	x_1	x_2	x_3	. x4	<i>x</i> ₅	x_3'
2	x_1	4	1	0	0	0.25	0	1.5
0	x_5	4	0	0	-2	0.5	1	[2]
3	x2	2	0	1	0.5	-0.125	0	0.25
	$c_j - z_j$		0	0	-1.5	-0.125	0	1. 25

• **b**列的数字没有变化,原问题的解是可行解。但检验数行中还有正数, 说明目标函数值还可以改善。

将x',作为换入变量, x₅作为换出变量进行迭代, 求出最优解。

2020/4/12 1

	c,		2	3	0	0	0	5
C _B	X _B	ь	x_1	x2	x_3	<i>x</i> ₄	x_5	x_3'
2	x_1	1	1	0	1,5	-0.125	-0.75	0
5	x_3'	2	0	o	-1	0, 25	0.5	1
3	x2	1.5	0	1	0.75	-0.1875	-0.125	0
	$c_j - z_j$		0	0	-0.25	-0.4375	-0.625	0

此时求得最优解:

$$x_1 = 1, x_2 = 1.5, x_3' = 2$$

总的利润为16.5元,

比原计划增加了2.5元。

4) 系数列向量发生变化

2020/4/12 17

- 第一种情况: 非基变量对应的列向量发生变化:

假设原非基列 p_{k} 变化为 p_{k} ',则变换后的检验数:

$$\sigma_j' = c_k - C_B B^{-1} p_k'$$

如果 $\sigma_j' \leq 0$,则原解仍为最优解,否则要将 x_k 作为换入变量,

继续进行单纯形法的运算。

则保证原最优解不改变的条件为:

设 w_r 为 C_BB^{-1} 的第r个分量,有

$$c_{k} - C_{B}B^{-1}p_{k}' \leq 0 \Rightarrow c_{k} - z_{k} - w_{r}\Delta a_{rk} \leq 0$$

$$\Rightarrow \begin{cases} w_{r} > 0, \Delta a_{rk} \geq \sigma_{k} / w_{r} \\ w_{r} < 0, \Delta a_{rk} \leq \sigma_{k} / w_{r} \end{cases}$$

- 第二种情况: 基列向量发生变化
 - 基列向量变化后, 当前一组基向量可能不再是基向量;
 - 即便基向量不变,也会改变当前的逆矩阵 B^{-1} ,从而引起每一列向量 B^{-1} p_i 与右边向量 B^{-1} b以及目标函数值 C_B B^{-1} 的变化。

令k是 p_k 在单纯形表中的列号,r为基变量 x_k 所在的行号以 $B^{-1}p_k$,取代基列中的 $B^{-1}p_k$ 后,存在两种可能:

(1) $B^{-1}p_{k}$ '的第r行元素=0,因而当前的基向量组不再构成一组基。此时可引入人工变量 x_{a} 来取代 x_{k} ,以形成一组新基,接着用大M法或两阶段法在阶段1消除人工变量,然后转入阶段2恢复正常的单纯形法运算。

 $(2)B^{-1}p_{k}$ '的第r行元素 $\neq 0$,为了使 x_{k} 继续为基变量,以该元素为中心变换单纯形表,变换后的结果也有可能:破坏原问题可行性: $B^{-1}b$ 列出现<0的元素,采用对偶单纯形法解决;破坏对偶可行性:对应的检验数行出现>0的元素,继续单纯形法;

- 例3.10 在例3.1中的原计划中,生产产品 l的工艺发生变化,生产一件产品 l需要台时2,原料A、B各5kg、2kg,每件利润为4元,试分析对原最优计划有什么影响。
 - •解:把改进的产品 |看作产品 | ',设x'1为其产量,计算在最终表中x'1 对应的列向量,并以x'1代替x1。

丁3.7.3 技术系数 a_{i.i} 的变化

2020/4/12 20

$$B^{-1}P_1' = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.25 \\ 0.5 \\ 0.375 \end{bmatrix}$$

同时计算出 x_1' 的检验数为: $c_1' - C_B B^{-1} P_1' = 4 - (1.5, 0.125, 0)(2, 5, 2)^T = 0.375$

• 将以上结果填入最终表得到:

	$c_j \to$		4	3	0	0	0	
C_{B}	$X_{\scriptscriptstyle B}$	Ъ	x_1'	x_2	<i>x</i> ₃	<i>x</i> ₄	x_5	
4	x_1	4	1.25	0	0	0.25	0	迭代
0	x_5	4	0.5	0	-2	0.5	1	
3	x_2	2	0.375	1	0.5	0.125	0	
С	$c_j - z_j$		0.375	0	-1.5	-0.125	0	

	$c_j \rightarrow$		4	3	0	0	0
C_{B}	$X_{\scriptscriptstyle B}$	ь	x_1'	x_2	x_3	x_4	x_5
4	x_1'	3.2	1	0	0	0.2	0
0	x_5	2.4	0	0	-2	0.4	1
3	x_2	0.8	0	1	0.5	-0.2	0
С	$j-z_j$	į	0	0	- 1.5	-0.2	0

可得:应生产产品 I' 3.2单位,产品 II 0.8单位,可获利 15.2元。

SC

- 2020/4/12 21
- 例3.11 假设上例中生产一件产品I'所需台时变为4,需要原料A、B 各为5kg、2kg,每件产品获利4元,则应如何安排最优方案。
 - 解:方法同上例,先计算新的检验数:

$$B^{-1}P_1' = \begin{bmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.25 \\ -3.5 \\ 1.375 \end{bmatrix}$$

同时计算出水的检验数为:

$$c_1' - C_B B^{-1} P_1' = 4 - (1.5, 0.125, 0) (4, 5, 2)^T$$

= -2.625

填入原最终表中可得:

	$c_j \rightarrow$		4	3	0	0	0
C_B	$X_{\scriptscriptstyle B}$	Ъ	x_1'	x_2	x_3	x_4	x_5
4	x_1	4	1.25	0	0	0.25	0
0	x_5	4	-3.75	0	-2	0.5	1
3	x_2	2	1.375	1	0.5	0.125	0
c	$_{j}-z_{j}$	- 2.625	0	-1.5	-0.125	0	

★ 3.7.3 技术系数 a_{i,i} 的变化

2020/4/12 22

以 x′1代替基变量中的x1可得表:

$c_j \to$			4	3	0	0	0
C_{B}	$X_{\scriptscriptstyle B}$	ь	x_1'	x_2	x_3	<i>x</i> ₄	x_5
4	x_1'	3.2	1	0	0	0.2	0
0	x_5	15.2	0	0	-2	1.2	1
3	x_2	-2.4	0	1	0.5	-0.4	0
	$c_j - z_j$			0	-1.5	0.4	0

从上表可以看出原问题和对偶问题都是非可行解,引入人工变量 x_6 ,因在表中 x_2 所在行,用方程表示时为:

$$0x_1' + x_2 + 0.5x_3 - 0.4x_4 + 0x_5 = -2.4$$

引入人工变量后变为:

$$-x_2 - 0.5x_3 + 0.4x_4 + 0x_6 = 2.4$$

2020/4/12 23

将X6作为基变量代替X2,填表得:

表 3-18

C _B	X_B	b	x_1'	<i>x</i> ₂	x_3	x4	x_5	<i>x</i> ₆
4	x_1'	3. 2	1	0	0	0, 2	0	0
0	$oldsymbol{x}_5$	15, 2	0	0	-2	1.2	1	0
-M	x_6	2.4	0	-1	-0.5	[0.4]	0	1
	$c_j - z_j$	N	0	3-M	-0.5M	-0.8 +0.4M	0	0

 x_4 为换入变量, x_6 为换出变量,进行基变换得到新表

2020/4/12

24

-	
-	3-10
-000	3 17

c_{j}			4	3	0	0	0	-M
C_B	X_B	ь	x_1'	x_2	<i>x</i> ₃	x4	. T 5	x_6
4	x' ₁	2	1	0.5	0, 25	0	0	-0.5
0	x_5	8	0	[3]	-0.5	0	1	-3
0	x_4	6	0	-2.5	-1.25	1	0	2.5
$c_j - z_j$		0	1	-1	0	0	-M+2	
4	x_1'	0.667	1	0	0.33	0	$-0.33 \times \frac{1}{2}$	0
3	x_3	2.667	0	1	-0,167	0	0, 33	-1
0	x_4	12.667	0	0	1.667	1	0.83	0
$c_j - z_j$			0	0	-0.83	0	-0.33	-M+3

- 此时所有检验数都为非正,得到最优解。
- 生产方案为: 生产I'产品 0.667单位;

生产II产品 2.667单位;

可得最大利润 10.67元。

- 3.9.1 使用编程语言
- 3.9.2 使用Matlab
- 3.9.3 使用Excel

- ·编程语言范围较广,这里以java为例。
- 以单纯形法矩阵计算为例。
- 1: 将所有的矩阵以类表示。
- 2: 在类的方法中定义矩阵的乘法,加法等运算。

T计算程序的主要部分:

```
2020/4/12
while (true) {
      on = cn.decrease(cb.multiply(binverse).multiply(nMatrix));
      //计算Cn-CbB^(-1)N
      max = on.maxi();//查找最大的检验数
      if (max == -1) {//所有的都小于等于0
             break:
      th = new P(binverse.multiplyp(b), binverse.multiplyp(new P(ma,
max)));//计算θ的值
      min = th.mini();
      //无界解判断
      if (min == -1) {//对应的系数矩阵是否全部小于等于0
             System.out.println("无界解");//返回无界解
             break:
      P nP = new P(ma, max);
      binverse.next(nP, min);//计算新的B^-1
```

2020/4/12 28

- 使用Matlab
 - 例1. 用改进单纯形法求解:

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases} x_1 + 2x_2 + x_3 &= 8 \\ 4x_1 &+ x_4 &= 16 \\ 4x_2 &+ x_5 = 12 \\ x_i \ge 0, i = 1, 2, \dots, 5 \end{cases}$$

- 解:
 - 初始基变量是 $X_{B_0} = (x_3, x_4, x_5)^T$,对应的系数为 $C_{B_0} = (0,0,0)$,非基变量及其对应系数为: $X_{N_0} = (x_1, x_2)^T$, $C_{N_0} = (2,3)$ 。 初始基 B_0 是单位矩阵,其逆矩阵也是单位阵

$$B_0=(P_3,P_4,P_5)=egin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}=B_0^{-1}$$
 School of Computer Science and Technology

LIT使用Matlab

(1)初始化:根据给出的线性规划问题,在加入松弛变量和人工变量后,得到初始基变量X_B,求初始基矩阵B的逆矩阵B⁻¹,及B⁻¹b

```
X=[1 2 3 4 5];

A=[ 1 2 1 0 0;

4 0 0 1 0;

0 4 0 0 1];

C=[2 3 0 0 0 ];

b=[8;16;12];

t=[3 4 5];

B0=A(:,t);
```

LIT使用Matlab

(2)最优性测试: 计算非基变量X_N的检验数 若σ_N≤0,已得到最优解 [X_B, X_N]^T = [B⁻¹b, 0]^T,停止计算; 若有σ_i > 0, 转下一步; for i=1:length(xiN0) if xiNO(i)>0z(j)=i;j=j+1; end end if length(z)+1==1; break; end

使用Matlab

```
    (3)确定换入变量:根据max(σ<sub>j</sub>>0) = σ<sub>k</sub>,确定换入变量x<sub>k</sub>,计算B-1 P<sub>k</sub>
    · 若 B-1 P<sub>k</sub>≤0,那么问题有无界解,停止计算。否则,进入下一步;
    for i=1:length(z)
        if z(i)>z(n)
        n=i;
        end
        end
        end
        end
        k=XN0(z(n));
```

上丁使用Matlab

(4) 确定换出变量:根据θ规则,计算

$$\theta = \min \left\{ \frac{(B^{-1}b)_i}{(B^{-1}P_k)_i} \middle| (B^{-1}P_k)_i > 0 \right\} = \frac{(B^{-1}b)_l}{(B^{-1}P_k)_l},$$

• X_B对应的第1个基变量为换出变量

```
for i=1:length(x)
    if B(x(y))/P(x(y))>B(x(i))/P(x(i))
       y=i;
    end
end
```

上丁使用Matlab

(5)确定新的基可行解: 计算新的基矩阵 B_1 的逆矩阵 B_1^{-1} ,及 B_1^{-1} b,重复(2)-(5)

```
t(m)=k; %得到新的基变量的下标
P2=B0*A(:,k);
q=P2(y1); %确定系数向量的主元素
P2(y1)=-1;
P2=-P2./q; %变换后的系数向量
E=[1 0 0;0 1 0;0 0 1];
E(:,m)=P2;
B0=E*B0;%得到新基的逆矩阵
```

最终:目标函数的最优值为:

14

SC

2020/4/12

34

(1) 算法初始化,构造单纯形表

```
A = -A;
b = -b(:);
c = -c(:)';
[m, n] = size(A);
A = [A eye(m) b];
A = [A;[c zeros(1,m+1)]]; % construct the simplex table
```

(2) 确定换出变量的下标

```
subs = n+1:n+m; %基变量索引
[bmin, row] = Br(b); % min {(B-1b)<sub>i</sub> | (B-1b)<sub>i</sub> < 0}=(B-1b)<sub>l</sub>, 返回
换出变量的值和索引
function [m_dim2, j_dim] = Br(d_dim)
        [m_dim2, j_dim] = min(d_dim);
        if m_dim2 >= 0
            m_dim2 = [];
        j_dim = [];
        end
end
```

(3) 判断换出变量的有效性和检测单纯形表中第row行系数是否都大于等于0

```
while ~isempty(bmin) & bmin < 0 & abs(bmin) > eps
    if A(row,1:m+n) >= 0
       disp(sprintf('\n\n Empty feasible region\n'))
       varargout(1)={subs(:)};
       varargout(2)={A};
       varargout(3) = {zeros(n,1)};
       varargout(4) = \{0\};
       return
    end
end
```

了对偶单纯形法例子(Matlab)

37 2020/4/12 (4) 确定换入变量的下标 $\theta = \min_{j} \left(\frac{c_{j} - z_{j}}{a_{lj}} | a_{lj} < 0 \right) = \frac{c_{k} - z_{k}}{a_{lk}}$ col = MRTD(A(m+1,1:m+n),A(row,1:m+n));function col = MRTD(a_dim, b_dim) m_dim3 = length(a_dim); c dim = 1:m dim3; $a \dim = a \dim(:);$ $b_dim = b_dim(:);$ $I_dim = c_dim(b_dim < 0);$ $[\sim, col_dim] = min(a_dim(l_dim) ./ b_dim(l_dim));$ col = I dim(col dim); end

2020/4/12 38

(5)以A(row, col)为主元素,按原单纯形法在表中进行迭代运算,重新计算换出变量,返回步骤3

```
subs(row) = col;
    A(row,:)=A(row,:)/A(row,col);
            for i = 1:m+1
        if i ~= row
           A(i,:)=A(i,:)-A(i,col)*A(row,:);
        end
      end
      [bmin, row] = Br(A(1:m,m+n+1));
(6)导出结果
 x = zeros(m+n,1);
  x(subs) = A(1:m,m+n+1);
  x = x(1:n);
  z = -A(m+1,m+n+1);
```

SC

2020/4/12

39

例6用对偶单纯形法求解

$$\min \omega = 2x_1 + 3x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 \ge 3$$

$$2x_1 - x_2 + 3x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0$$

```
>> A = [1 2 1;2 -1 3]
A =

1 2 1
2 -1 3
>> b = [3;4]
b =
3
4
>> c = [2 3 4]
c =
2 3 4
```

SC

2020/4/12

>> varargout = dsimplex(c, A, b)

Initial tableau

pivot row-> 2 pivot column-> 1

Tableau 1

pivot row-> 1 pivot column-> 2

SC

2020/4/12 41

Tableau 2

Values of the legitimate variables:

$$x(1)=2.200000$$

$$x(2) = 0.400000$$

$$x(3) = 0.000000$$

Objective value at the optimal point:

$$z = -5.600000$$

Indices of basic variables in the final tableau:

2

1

- 参考《实用运筹学:运用Excel 2010建模和求解》
- 北京:中国人民大学出版社,2013叶向编著

-24	Α	В	C	D	
1					
2	产品资源	产品I (x1)	产品II (x2)	现有条件	
3	设备(台时/件)	1	2	8	
4	原材料A(kg/件)	4	0	16	
5	原材料B(kg/件)	0	4	12	
6	产量(件)	4	2		
7	利润(元)	2	3		
8					
9	式子含义	参与计算的式子左边	值		
10	需要的设备有效台时数	$x_1 + 2x_2$	8		
11	原料A需求量	$4x_1$	16		
12	原料B需求量	$4x_2$	8		
13	利润	$2x_1 + 3x_2$	14		

红色为已知量,紫色为可变量,黄色为推导量,蓝色为最优值(m

TExcel灵敏度分析

选择生成敏感性报告,并点击保存方案...将生成一个名为"敏感性报告"的工作表注意:当模型中含有整数约束条件时,不能生成"敏感性报告"

Excel灵敏度分析

D A В C Ε G Н Microsoft Excel 16.0 敏感性报告 工作表: [线性规划求解.xlsx]Sheet1 报告的建立: 2019/3/12 19:01:10 4 5 6 可变单元格 终 递减 目标式 允许的 允许的 7 8 单元格 名称 成本 系数 增量 减量 产量(件)产品I(x1) 9 \$B\$6 4 1E+30 0.5 产量(件) 产品II (x2) 10 \$C\$6 0 3 3 11 12 约束 13 终 阴影 约束 允许的 允许的 14 单元格 名称 值 价格 限制值 增量 减量 需要的设备有效台时数 值 15 \$C\$10 8 1.5 4 16 \$C\$11 原料A需求量 值 16 16 16 8 0.125 17 \$C\$12 原料B需求量 值 8 0 12 1E+30 4

上半部分可变单元格:反映了目标函数系数变化对最优解的影响。 下半部分约束:反映了约束右端值变化对目标函数值的影响。

1.目标函数系数变化灵敏度分析

可变单元格

		终	递减	目标式	允许的	允许的
单元格	名称	值	成本	系数	增量	减量
\$B\$6	产量(件) 产品I (x1)	4	0	2	1E+30	0.5
\$C\$6	产量(件) 产品Ⅱ (x2)	2	0	3	1	3

• 单元格: 决策变量所在的单元格

• 名称: 决策变量的名称

• 终值: 决策变量的终值,即通过"规划求解"后得到的最优解

• **递减成本**: 它的绝对值表示目标函数中决策变量的系数必须"改进"多少,才能得到该决策变量的正数解。这里的"改进",在最大化问题中是指增加,在最小化问题中是减少。在本例中两个决策变量都已得到正数解,所以它们的递减成本为0.

• 目标式系数: 指目标函数的系数,它在题目中是已知的常数

• 允许的增量: 目标函数的系数能增加的值, 使得原问题的最优解不变

• 允许的减量: 目标函数的系数能减少的值, 使得原问题的最优解不变

LITExcel灵敏度分析 SIC

当有多个目标函数系数同时变化时,应用百分百法则判断是否会影响最优解。百分百法则——计算每一个系数变化量占该系数允许变化量的百分比,然后将这些百分比相加,不超过(<=)100%时最优解不变。超过100%则不确定会不会影响最优解,需要调整单元格重新计算才能得到结果。

上例中系数初值分别为2,3,从"可变单元格"表格中可以得到允许的变化范围为[1.5,1E+30]和[0,4]

假设x1的系数c1从2变化为1.8: 占允许减量的百分比=(2-

1.8)/0.5*100%=40%

假设x2的系数c2从3变化为3.5: 占允许减量的百分比=(3.5-

3)/1.0*100%=50%

百分比之和为40%+50%=90%=100%,所以最优值不会发生变化,最优解还是(4,2)

1.约束右端值变化灵敏度分析

约束

		终	阴影	约束	允许的	允许的
单元格	名称	值	价格	限制值	增量	减量
\$C\$10	需要的设备有效台时数 值	8	1.5	8	2	4
\$C\$11	原料A需求量 值	16	0.125	16	16	8
\$C\$12	原料B需求量 值	8	0	12	1E+30	4

• 单元格: 决策变量所在的单元格

• 名称: 决策变量的名称

• 终值:决策变量的终值,即通过"规划求解"后得到的最优解

• **影子价格:** 约束右端的值每增加/减少一个单位,目标函数值(最优值)增加/减少的数量

• 约束限制值: 指约束条件右端值, 它在题目中是已知的常数

• 允许的增量: 约束条件右端能增加的值, 使得原问题的影子价格不变

• 允许的减量: 约束条件右端能减少的值, 使得原问题的影子价格不变

约束右端值变化规则同样符合百分百法则!

本章完 The end