

## Decomposição de Problemas Multi-classe

## Introdução

- Diversas técnicas de AM foram originalmente formuladas para problemas binários
  - SVMs, RNAs Perceptron
- A generalização para problemas multiclasse pode ser realizada, basicamente, por meio de duas estratégias:
  - Combinando preditores gerados em subproblemas binários (estratégia decomposicional) (em geral, a utilizada)
  - Realizando-se adaptações nos algoritmos originais das técnicas consideradas

## Introdução

- Demais motivações:
  - Alguns algoritmos não são adequados a problemas com um número elevado de classes
  - Existem algoritmos que operam com múltiplas classes mas que contêm procedimentos internos restritos a problemas de duas classes
    - Divisão do subconjunto de atributos nominais no CART
  - Mesmo que o algoritmo opere com múltiplas classes, o uso de um procedimento decomposicional pode reduzir a complexidade computacional envolvida na solução do problema total, uma vez que dividi-se o problema em subtarefas mais simples

# Técnicas Decomposicionais

- Empregam dois passos
  - Fase de Decomposição
    - Ocorre antes do aprendizado
    - Consiste em obter múltiplos subproblemas binários, os quais são considerados na obtenção de um conjunto de modelos
  - Fase de Reconstrução (comentada em conjunto com a anterior)
    - Ocorre depois da predição
    - Refere-se à forma como as saídas dos classificadores binários são combinadas na determinação da classe de um exemplo



## Fase de Decomposição

- Um-contra-todos (OAA one-against-all)
- Todos-contra-todos (um-contra-um) (OAO one-againstone)
- Códigos de Correção de Erros de Saída (ECOC errorcorrecting output codes)
- Decomposições Hierárquicas

https://scikit-learn.org/stable/modules/svm.html#svm

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

https://scikit-learn.org/stable/api/sklearn.multiclass.html

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/

## Fase de Decomposição

## Matriz de códigos



Matrizes de um problema com quatro classes

$$\begin{pmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{pmatrix}$$

$$\begin{pmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{pmatrix} \qquad \begin{pmatrix} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{pmatrix}$$





- Dado um problema com k classes, k classificadores binários são gerados
- Cada um desses classificadores é treinado de maneira a distinguir uma classe c das demais
- Apresenta desvantagens quando a proporção de exemplos de uma classe é muito pequena em relação à do conjunto formado pelos dados das outras classes
  - Esse tipo de desbalanceamento pode dificultar a indução de um classificador que apresente bom desempenho no reconhecimento da classe considerada

## **Um-contra-todos**

- A test instance is classified by combining the predictions made by the binary classifiers
- A voting scheme is typically employed to combine the predictions, where the class that receives the highest number of votes is assigned to the test instance
  - If an instance is classified as negative, then all classes except for the positive class receive a vote
    - This may lead to ties among the different classes
    - Another possibility is to transform the outputs of the binary classifiers into probability estimates and then assign the test instance to the class that has the highest probability



$$\begin{pmatrix} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{pmatrix}$$

$$(d) OAO$$

- Dadas k classes,  $\frac{k(k-1)}{2}$  classificadores binários são gerados
  - Realiza-se uma combinação par-a-par
  - Cada classificador é responsável por diferenciar um par de classes (i, j), em que i ≠ j
  - Embora o número de classificadores gerados seja da ordem de k², o treinamento de cada um deles envolve dados de apenas duas classes
    - Mesmo com um número elevado de classes, o tempo total despendido na geração dos classificadores geralmente não é grande



$$\begin{pmatrix} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{pmatrix}$$
(d) OAO

- Dadas k classes,  $\frac{k(k-1)}{2}$  classificadores binários são gerados
  - Um problema é que a resposta de um classificador, para um par de classes (i, j), não fornece informação quando o exemplo não pertence às classes i ou j
  - Suponha um problema com 10 classes
    - Dos 45 problemas de decisão binária, somente 9 podem classificar corretamente o exemplo teste
    - Todos os outros 36 irão classificar o exemplo de maneira errada
    - Portanto, neste caso, (k − 1)(k −2)/2 irão classificar incorretamente qualquer exemplo, e somente k − 1 podem prover a classificação correta



- A test instance is classified by combining the predictions made by the binary classifiers
- A voting scheme is typically employed to combine the predictions, where the class that receives the highest number of votes is assigned to the test instance



- A potential problem with the previous two approaches is that they may be sensitive to binary classification errors
  - If at least of one of the binary classifiers makes a mistake in its prediction, then the classifier may end up declaring a tie between classes or making a wrong prediction



- The error-correcting output coding (ECOC) method provides a more robust way for handling multiclass problems
- The method is inspired by an information-theoretic approach for sending messages across noisy channels
  - The idea is to add redundancy into the transmitted message by means of a codeword, so that the receiver may detect errors in the received message and perhaps recover the original message if the number of errors is small

# Códigos de Correção de Erros de Saída

| Class | Codeword |   |   |   |   |   |   |
|-------|----------|---|---|---|---|---|---|
| $y_1$ | 1        | 1 | 1 | 1 | 1 | 1 | 1 |
| $y_2$ | 0        | 0 | 0 | 0 | 1 | 1 | 1 |
| $y_3$ | 0        | 0 | 1 | 1 | 0 | 0 | 1 |
| $y_4$ | 0        | 1 | 0 | 1 | 0 | 1 | 0 |

- Each class is represented by a unique bit string of length n known as its codeword
- We then train n binary classifiers to predict each bit of the codeword string
- The predicted class of a test instance is given by the codeword whose Hamming distance is closest to the codeword produced by the binary classifiers
  - The Hamming distance between a pair of bit strings is given by the number of bits that differ



| Class | Codeword |   |   |   |   |   |   |
|-------|----------|---|---|---|---|---|---|
| $y_1$ | 1        | 1 | 1 | 1 | 1 | 1 | 1 |
| $y_2$ | 0        | 0 | 0 | 0 | 1 | 1 | 1 |
| $y_3$ | 0        | 0 | 1 | 1 | 0 | 0 | 1 |
| $y_4$ | 0        | 1 | 0 | 1 | 0 | 1 | 0 |

- Consider a multiclass problem where the 4 classes were encoded using seven bit codewords (see table)
- Each bit of the codeword is used to train a binary classifier
- If a test instance is classified as (0,1,1,1,1,1,1) by the binary classifiers, then the Hamming distance between the codeword and y<sub>1</sub> is 1, while the Hamming distance to the remaining classes is 3
- The test instance is therefore classified as y<sub>1</sub>

https://scikitlearn.org/stable/modules/generated/sklearn. multiclass.OutputCodeClassifier.html

https://scikitlearn.org/stable/api/sklearn.multicl ass.html

## Códigos de Correção de Erros de Saída

- An interesting property of ECOC is that if the minimum Hamming distance between any pair of codewords is d, then any \(\( (d-1)/2 \) errors in the output code can be corrected using its nearest codeword
  - In the example, the classifier may tolerate errors made by one of the seven binary classifiers
  - If there is more than one classifier that makes a mistake, then the classifier may not be able to compensate for the error
- An important issue is how to design the appropriate set of codewords for different classes



## Decomposições Hierárquicas

- A introdução de uma hierarquia em uma aplicação multiclasse pode reduzir a complexidade de sua solução
- A ideia é realizar, inicialmente, discriminações mais gerais, as quais são refinadas sucessivamente até a obtenção da classificação final

## Árvore direcionada binária

# Decomposições Hierárquicas

- Veja os exemplos
- Em ambas as estruturas, cada nó interno corresponde a um classificador binário que distingue dois subconjuntos de classes, enquanto os nós terminais, denominados folhas, representam as classes individuais



### **Grafo direcionado acíclico**





- As árvores possuem k-1 classificadores binários e, portanto, envolvem o treinamento de k-1 preditores
- Os nós de níveis inferiores envolvem menos classes e, portanto, menos dados de treinamento para os classificadores binários correspondentes

# Árvores Direcionadas Binárias

- Para um problema com k ≥ 3 classes, existem  $\prod_{i=3}^{k} 2i 3$  estruturas de árvores distintas
- Assim, a estrutura da árvore, ou seja, a maneira que os classificadores são dispostos na árvore e onde eles se encontram, influencia o seu resultado





## Árvores Direcionadas Binárias

- Os trabalhos se diferenciam então no processo de obtenção das partições binárias das classes em cada nó da árvore e, consequentemente, na determinação de sua estrutura
- Algumas soluções:
  - Agrupar as classes com centros mais similares em cada nível da hierarquia com o algoritmo k-médias, com k = 2
  - Realizar um agrupamento hierárquico das classes de acordo com sua similaridade
    - Diferentes critérios podem ser utilizados para medir a similaridade das classes, tal como a distância entre seus centroides, a sua separabilidade, entre outros



|                                       | Number of targets | Target cardinality | Valid                    |
|---------------------------------------|-------------------|--------------------|--------------------------|
| Multiclass<br>classification          | 1                 | >2                 | 'multiclass'             |
| Multilabel<br>classification          | >1                | 2 (0 or 1)         | 'multilabel-indicator'   |
| Multiclass-multioutput classification | >1                | >2                 | 'multiclass-multioutput' |
| Multioutput regression                | >1                | Continuous         | 'continuous-multioutput' |

