1. Прыг-скок. С некоторой высоты над горизонтальной поверхностью пола с нулевой начальной скоростью отпустили теннисный мяч. Известно, что при каждом ударе кинетическая энергия уменьшалась на 19 % (от значения до удара). Движение мяча прекратилось через время $\tau = 7$ с. Определите скорость v_2 мяча сразу после второго удара. Ускорение свободного падения g = 10 м/с². Сопротивлением воздуха можно пренебречь.

Возможное решение:

По условию после каждого удара энергия системы уменьшается: $W_{n+1}=0.81\cdot W_n$, а скорость $\upsilon_{n+1}=\sqrt{0.81}\cdot \upsilon_n=0.9\cdot \upsilon_n$. Значит относительная доля потери скорости равна $\alpha=0.1$. Если начальная высота мяча была равна h, то скорость после n-го удара будет равна: $\upsilon_n=\sqrt{2g\cdot h}\cdot (1-\alpha)^n$.

 $t_0 = \sqrt{\frac{2 \cdot h}{g}}$ Время до первого удара $t_n = \frac{2 \cdot \upsilon_n}{g} = 2 \cdot \sqrt{\frac{2 \cdot h}{g}} \cdot (1-\alpha)^n$

Тогда соударения шарика со столом прекратятся через время, равное:

$$\tau = t_0 + \sum_{n=1}^{\infty} t_n = \sqrt{\frac{2 \cdot h}{g}} \cdot \left(1 + 2 \cdot \sum_{n=1}^{\infty} (1 - \alpha)^n\right) = \sqrt{\frac{2 \cdot h}{g}} \cdot \left(\frac{2 - \alpha}{\alpha}\right).$$

С учётом этого искомая скорость мяча v_2 сразу после второго удара:

$$\upsilon_2 = \sqrt{2g \cdot h} \cdot (1 - \alpha)^2 = \frac{\alpha (1 - \alpha)^2}{2 - \alpha} g \tau \approx 3.0 \frac{M}{c}.$$

Ответ:

$$\upsilon_2 = \sqrt{2g \cdot h} \cdot (1 - \alpha)^2 = \frac{\alpha (1 - \alpha)^2}{2 - \alpha} g\tau \approx 3.0 \frac{M}{c}.$$

No	критерий	баллы
1.	Записан закон изменения полной энергии после удара	1
2.	Записан закон изменения максимальной скорости после удара	1
3.	Получено время первого падения	1
4.	Получено время <i>п</i> -го прыжка	1
5.	Установлена связь полного времени движения с начальной высотой или	3
	скоростью первого удара	
6.	Установлена связь скорости v_2 с начальной высотой или скоростью	1
	первого удара	
7.	Установлена связь скорости v_2 и полного времени движения	1
8.	Получен численный ответ	1
итого:		10

10 класс

2. Сквозь призму. Луч света распространяется параллельно поверхности, на которой установлена равносторонняя треугольная стеклянная призма, грань AC которой образует угол $\delta=18^\circ$ с нормалью к поверхности. Луч света преломившись, распространяется внутри призмы параллельно основанию AB. Определите:

- 1) угол φ между лучом, вышедшим из призмы, и поверхностью, на которой она установлена;
- 2) коэффициент преломления n стекла.

Возможное решение.

$$\gamma = 90^{\circ} - \delta - \beta = 12^{\circ}$$

$$\begin{cases} \gamma = \gamma_1 \\ \varphi = \varphi_1 \end{cases}$$
 как внутренние накрест лежащие (*EM* || *DA*)

 $\varphi = \gamma_1 + \gamma_2 = 2\gamma = 24^\circ$ по теореме о внешнем угле треугольника.

Угол падения луча EM на призму

$$\alpha_1 = 90^{\circ} - (60^{\circ} - \gamma) = 42^{\circ}$$

Угол преломления $\alpha_2 = 30^{\circ} (EF \parallel BA)$

$$n = \frac{\sin \alpha_1}{\sin \alpha_2} \approx 1{,}34$$

№	критерий	баллы
1.	Найден угол $\gamma = 12^{\circ}$	1
2.	Показано что $\begin{cases} \varphi = \varphi_1 \\ \gamma = \gamma_1 \end{cases}$ как внутренние накрест лежащие или	2
	использованы аналогичные соображения	
3.	Показано что $\varphi_1 = 2\gamma = 24^\circ$ по теореме о внешнем угле треугольника	2
4.	Найден угол падения $\alpha_1 = 42^\circ$	2
5.	Найден угол преломления $\alpha_2 = 30^\circ$	2
6.	Найден показатель преломления: $n \approx 1,34$	1
итого:		10

10 класс

3. В лунке. В бруске, находящемся на горизонтальной поверхности, сделано гладкое сферическое углубление радиусом R. В углублении лежит маленькая шайба массы m. К бруску прикладывают горизонтальную силу F, плавно увеличивая её значение от 0 до F_0 . Найдите максимальную высоту, на которую поднимется шайба, если масса бруска 2m. Ускорение свободного падения g. Трением в системе можно пренебречь.

Возможное решение:

При плавном, без сильных рывков, увеличении внешней силы шайба будет постепенно подниматься в лунке, что бы горизонтальная компонента силы реакции со стороны бруска обеспечивала одинаковое с бруском ускорение. Значит максимальный подъём будет при достижении силой значения F_0 .

Применим 2й закон Ньютона (в проекции на горизонтальную ось) ко всей системе и найдём ускорение поступательного движения тел:

$$3ma = F_0 \Rightarrow a = \frac{F_0}{3m}$$

Запишем 2й закон Ньютона для шайбы в момент наивысшего подъёма:

$$m\vec{a} = \vec{N} + m\vec{g}$$

Далее можно либо через проекции, либо используя векторный треугольник сил связать угол α и F_0 :

$$tg\alpha = \frac{ma}{mg} = \frac{a}{g} = \frac{F_0}{3mg}$$

$$h = R(1 - \cos \alpha)$$

Осталось связать высоту и силу:

$$h = R(1 - \cos \alpha) = R\left(1 - \frac{1}{\sqrt{1 + \lg^2 \alpha}}\right) = R\left(1 - \frac{1}{\sqrt{1 + (\frac{F_0}{3mg})^2}}\right) = R\left(1 - \frac{3mg}{\sqrt{F_0^2 + (3mg)^2}}\right)$$

N₂	критерий	баллы
1.	Указано, что максимальный подъём соответствует F_0	1
2.	Указано, что у бруска и шайбы одинаковое ускорение (они неподвижны	1
	друг относительно друга)	
3.	Найдено ускорение а	1
4.	Угол отклонения (любая его тригонометрическая функция) выражен	2
	через F_0	
5.	Высота <i>h</i> связана с углом отклонения	2
6.	h выражен через F_0	3
итого:		10

4. Гидростатика. Сосуд представляет собой куб с длиной ребра a. Внутренняя полость сосуда также имеет форму куба с длиной ребра 4a/5. Толщина всех стенок сосуда одинакова. Плотность материала, из которого изготовлен сосуд, 3ρ . На уровне дна полости и в её потолке имеются сквозные отверстия малого диаметра. Сосуд заполнен водой (плотность воды ρ). Нижнее отверстие закрыто пробкой. Сосуд помещают в пустой цилиндр с площадью дна $3a^2$. Стык между сосудом и дном цилиндра герметизируют, чтобы вода под сосуд не подтекала.

При этом воздух между неровностями сосуда и дном цилиндра остаётся при атмосферном давлении. Затем вынимают пробку из отверстия куба. Во сколько раз отличаются силы давления сосуда на дно цилиндра до извлечения пробки и после прекращения вытекания жидкости?

Возможное решение:

Возможны два сценария развития событий. Либо вода полностью выльется из полости и ее уровень окажется ниже отверстия в стенке сосуда, либо уровень воды окажется выше уровня отверстия и, следовательно, в полости останется некоторое количество воды. Второй случай сложнее для вычислений. Проверим сначала первый вариант. Используем равенство начального объема воды и объема воды, вылившейся в стакан. $\frac{64}{125}a^3 = (3a^2 - a^2)h$, где h – искомая высота уровня воды. После вычислений получаем:

$$\frac{64}{125}a^3 = 2a^2h, \quad h = \frac{64}{250}a$$

Это больше толщины стенки сосуда d, которая в нашем случае равна $d = \frac{a - \frac{4}{5}a}{2} = \frac{1}{10}a$. Значит, реализуется второй вариант, когда часть воды останется в полости сосуда. Запишем условие равенства объемов воды для второго случая:

$$\frac{64}{125}a^3 = (3a^2 - a^2)h + \frac{16}{25}a^2(h - \frac{a - \frac{4}{5}a}{2})$$

$$\frac{64}{125}a^3 = 2a^2h + \frac{16}{25}a^2h - \frac{16}{250}a^3$$

$$\frac{144}{250}a^3 = \frac{66}{25}a^2h$$

$$h = \frac{12}{55}a$$

Таким образом, вода установится на высоте $h=\frac{12}{55}a$ от дна стакана, а в сосуде ее высота окажется равной $h_1=h-\frac{a-\frac{4}{5}a}{2}=\frac{12}{55}a-\frac{1}{10}a=\frac{13}{110}a$

Сила давления сосуда в первом случае F_1 определяется массой самого сосуда и массой заполняющей его воды

$$F_1 = \left(a^3 - \frac{64}{125}a^3\right)3\rho g + \frac{64}{125}a^3\rho g = \frac{247}{125}a^3\rho g$$

После вынимания пробки часть воды выльется в стакан. Сила Архимеда в данной задаче не возникает, так вода под сосуд не подтекает. Следовательно, сила давления сосуда во втором случае F_2 определяется массой самого сосуда и массой, оставшейся в нем воды (силой давления оставшейся в полости воды на ее дно)

$$F_2 = \left(a^3 - \frac{64}{125}a^3\right)3\rho g + \frac{13}{110}a\frac{16}{25}a^2\rho g = \frac{2117}{1375}a^3\rho g$$

Найдем отношение $\frac{F_1}{F_2} = \frac{247}{125} \cdot \frac{1375}{2117} = \frac{2717}{2117} \approx 1,3$

No	критерий	баллы
1.	Проверка реализации второго сценария (в сосуде остается вода)	0,5
2.	Правильно записан объем воды до выливания	0,5
3.	Правильно записан объем воды после выливания	1
4.	Получен уровень воды в сосуде после вынимания пробки	2
5.	Вычисление силы давления F_1 (до открытия отверстия)	2
	(Если использована правильная формула для вычисления, но из-за	
	арифметических ошибок, результат не верный, то 1 балл)	
6.	Вычисление силы давления F_2 (после открытия отверстия)	3
	(Если использована правильная формула для вычисления, но из-за	
	арифметических ошибок, результат не верный, то 1 балл)	
7.	Получено правильное отношение $\frac{F_1}{F_2}$	1
итого:		10

10 класс

5. **Почти идеально.** Участок цепи, показанный на рисунке, подключён к идеальному источнику постоянного напряжения. Идеальные приборы показывают 2 А и 6 В. Все резисторы в цепи одинаковые. Определите:

- 1) сопротивление одного резистора R;
- 2) напряжение источника U_0 ;
- 3) показания приборов, если их поменять местами;
- 4) тепловую мощность, выделяющуюся на крайнем левом резисторе, если приборы в цепи поменяют местами.

Возможное решение:

Перерисуем для удобства схему:

Так как идеальный вольтметр эквивалентен разрыву цепи, а падение напряжения на идеальном амперметре равно 0, то резисторы 2 и 3 параллельны резисторам 4 и 5. Из равенства сопротивлений резисторов следует, что амперметр показывает половину общего тока. Такой же ток бежит через резистор 2, напряжение на котором показывает вольтметр. Значит сопротивление резистора R = 3 Ом.

Напряжение источника падает на резисторах 2 и 3 (по 6 B) и на резисторе 1 (12 B, так как сила тока через него в два раза больше).

$$U_0 = 24 \text{ B}.$$

Если поменять приборы местами распределение токов изменится:

Теперь резисторы 4 и 5 параллельны одному резистору 3, значит ток через них в 2 раза меньший. Через резисторы 1 и 2 бежит общий неразветвленный ток (в 3 раза больший чем через резистор 4), через амперметр ток отводится на ветку 4-5. Общее напряжение не изменилось. Запишем его как сумму падений напряжения на резисторах 1,2 и 3:

$$U_0 = 3I_1R + 3I_1R + 2I_1R$$

$$I_1 = \frac{U_0}{8R} = 1 \,\mathrm{A}$$

Это и покажет амперметр.

Показания вольтметра равны падению напряжения на резисторе 2:

$$U = 3I_1R = 9 B$$

Тепловую мощность, выделяющуюся на резисторе 1 найдём из закона Джоуля-Ленца:

$$N = (3I_1)^2 R = 27 \text{ BT}$$

№	критерий	баллы
1.	Получен ответ: 3 Ом	2
	Если верного ответа нет, то можно ставить 1 балл за любые правильные	
	действия, ведущие к ответу (например, верно перерисована схема, или	
	верно расставлены токи в схеме, или есть верно записанный закон Ома)	
2.	Получен ответ: 24 В	2
	Если верного ответа нет, то можно ставить 1 балл за правильные	
	действия, ведущие к ответу (например, первый ответ неверен, а верное	
	решение на него опирается)	
3.	Получен ответ для амперметра: 1 А	2
4.	Получен ответ для вольтметра: 9 В	2
	Если верного ответа нет, то можно ставить 1 балл за любые правильные	
	действия, ведущие к ответу (например, верно перерисована схема, или	
	верно расставлены токи в схеме)	
5.	Получен ответ: мощность 27 Вт	2
	Если верного ответа нет, то можно ставить 1 балл за правильную запись	
	формулы мощности постоянного тока	
итого:		10