Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Beam	Coverplate Weld Connection	
MainMo	MainModule			Moment Connection	
Moment(l	Moment(kNm)*			100.0	
Shear(k	:N)*			10.0	
Axial (k	N) *			10.0	
	,	Section			
	Beam S	ection *		MB 600	
	Mate	rial *		E 250 (Fe 410 W)A	
т Ү	Ultimate stren	igth, fu (MPa)		410	
	Yield Strengt	th , fy (MPa)		250	
$(B-t)$ α	Mass	121.0	Iz(mm4)	902480000.0	
4 t	Area(mm2) -	15419.9999999	9 99% m4)	24790000.0	
ZZ D	A				
	D(mm)	600.0	rz(mm)	242.0	
R ₁	B(mm)	210.0	ry(mm)	40.0999999999994	
В	t(mm)	12.0	Zz(mm3)	3008300.0	
P V	T(mm)	20.3	Zy(mm3)	236000.0	
	FlangeSlope	98	Zpz(mm3)	3454600.0	
	R1(mm)	20.0	Zpy(mm3)	236000.0	
	R2(mm)	10.0			
		Weld Details			
Weld T	ype			Fillet	
Type of weld	fabrication			Shop Weld	
Material grade over	write (MPa) Fu			410.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Ac (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{15419.99999999998 * 250}{1.1 * 1000}$ $= 3504.55$	
Shear Capacity Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{559.4 * 12.0 * 250}{\sqrt{3} * 1.1 * 1000}$ $= 880.82657$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 938785 * 250}{1.1 * 1000000}$ $= 213.36$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1}$ $= \frac{1.5 * 3008300.0 * 250}{1.1}$ $= 1025.56$	
Moment Capacity Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(213.36, 1025.56)$ = 213.36	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
	$Ac_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Axial Load Au (kN)	= 0.3 * 3504.55	= max(10.0, 1051.36)	Pass
	= 1051.36	= 1051.36	
	$Sc_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Shear Load Vu (kN)	= 0.6 * 880.83	= max(10.0, 528.5)	Pass
	= 528.5	= 528.5	
	$Mc_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Moment Load Mu (kNm)	= 0.5 * 213.36	= max(100.0, 106.68)	Pass
	= 106.68	= 106.68	
		$A_w = Axial \ force \ in \ web$	
		$= \frac{(D-2*T)*t*Au}{\Delta}$	
			100
		$= \frac{(600.0 - 2 * 20.3) * 12.0 * 105}{15410.0000000000000000000000000000000000$	1.36
		$ \begin{array}{r} - \\ 15419.9999999999999999999999999999999999$	
Forces Carried by Web		$M_w = Moment \ in \ web$	
		$=\frac{Z_w*Mu}{Z}$	
		$= \frac{938785 * 106.68}{3454600.0}$	
		= 28.99	
		$A_f = Axial \ force \ in \ flange$	
		$= \frac{Au * B * T}{A}$	
		$= \frac{1051.36 * 210.0 * 20.3}{15419.999999999998}$	
		= 290.66	
		$M_f = Moment \ in \ flange$	
		$= Mu - M_w$	
Forces Carried by Flange		= 106.68 - 28.99	
		= 77.69	
		$F_f = flange\ force$	
		$= \frac{M_f * 1000}{D - T} + A_f$	
		$=\frac{77.69}{600.0-20.3}+290.66$	
		=424.68	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Design Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = max(20.3, 0) \\ = 20.3 \\ IS800: 2007 \ cl.10.5.2.3 \ Table 21, \\ t_{w_{min}} = 0$	0.0	N/A
Max Weld Size (mm)	Thickness of Thinner part $= Min(20.3, 0) = 0$ $t_{w_{max}} = 8.7$	0.0	N/A
Flange Weld Strength (N/mm)	$Stress = \frac{F_f * 1000}{F_{rl}}$ $= \frac{424.68 * 1000}{391}$ $= 0.0$	0.0	N/A

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.4 Flange Plate Check-Outside/Inside

Check	Required	Provided	Remarks
Min. Plate Height (mm)	50	$b_{fp} = B - 2 * sp$ $= 210.0 - 2 * 15$ $= 0.0$	N/A
Min. Plate Length (mm)	0.0	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (0.02 * 0.0) + 10.0]$ $= 0.0$	N/A
Min. Inner Plate Height (mm)	50	$b_{ifp} = \frac{B - 4 * sp - t_w - 2 * r_1}{2}$ $= \frac{210.0 - 4 * 15 - 12.0 - 2 * 20.0}{2}$ $= 0.0$) N/A
Max. Inner Plate Height (mm)	$b_{ifp} = \frac{B - 4 * sp - t_w - 2 * r_1}{2}$ $= \frac{210.0 - 4 * 15 - 12.0 - 2 * 20.0}{2}$ $= 0.0$	0.0	N/A
Min. Inner Plate Length (mm)	0.0	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (0.02 * 0.0) + 10.0]$ $= 0.0$	N/A

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View