

IN THE CLAIMS:

1 1. (Currently Amended) A gas discharge panel having a panel driving circuit based
2 on a field timesharing display method, and having (a) a plurality of cells arranged in a matrix,
3 each cell being filled with a discharge gas which is enclosed between a facing pair of substrates,
4 and a plurality of barrier ribs interposed between the pair of substrates, and (b) plural pairs of
5 display electrodes each formed from a scan electrode and a sustain electrode and arranged on an
6 inner surface of one of the substrates so as to extend in a row direction of the matrix across the
7 cells, wherein image display is generated by a discharge fired between the plural pairs of display
8 electrodes, each pair of display electrodes comprising:

9 two bus lines, being parallel to each other and extending in the row direction of
10 the matrix;

11 one or more inner protrusions, being arranged within each cell on an inner side of
12 one or both of the bus lines so as to protrude toward an inner side of an opposite bus line; and

13 one or more outer protrusions, being arranged within each cell so as to protrude
14 from an outer side of one or both of the bus lines, at least a section of each of the inner and outer
15 protrusions being positioned between two adjacent barrier ribs, wherein

16 in a write period when the gas discharge panel is driven by the panel driving
17 circuit, a write discharge is performed between the scan electrode and the sustain electrode
18 paired therewith in a (n+1)th display electrode pair, after the write discharge performed between
19 the scan electrode and the sustain electrode paired therewith in an nth display electrode pair,
20 where n is an arbitrary natural number.

1 2. (Original) The gas discharge panel of claim 1, wherein a relation $Pe = A \times Ps/n$ is
2 satisfied in relation to the two bus lines, Pe being a pitch of either the inner or outer protrusions,
3 Ps being a pitch of the cells along the row direction of the matrix, A being a positive value less
4 than 1; and n being a natural number.

1 3. (Original) The gas discharge panel of claim 1, wherein the bus lines are
2 composed of a metal and the inner and outer protrusions are composed of a transparent electrode
3 material.

1 4. (Original) The gas discharge panel of claim 1, wherein the outer protrusions
2 extend in a column direction of the matrix, a surface area of each of the outer protrusions being
3 greater than a surface area of each of the inner protrusions.

1 5. (Original) The gas discharge panel of claim 4, wherein a width of each of the
2 outer protrusions along the row direction of the matrix is wider as a distance from the bus line
3 increases.

1 6. (Original) The gas discharge panel of claim 1, wherein a width of an end section
2 of each of the inner protrusions along the row direction of the matrix is narrower than a base
3 section thereof.

1 7. (Original) The gas discharge panel of claim 1, wherein a shortest discharge gap
2 between the plural pairs of display electrodes corresponds to a minimum discharge firing voltage
3 or a voltage in a vicinity thereof as shown on a Paschen curve plotting a relationship between a

4 Pd product and a discharge firing voltage, P being a pressure of the discharge gas and d being a
5 discharge gap.

1 8. (Original) The gas discharge panel of claim 1, wherein the inner surface of the
2 substrate arranged with the plural pairs of display electrodes is covered with an insulating layer,
3 an area of the insulating layer that corresponds to a shortest discharge gap being composed of
4 magnesium oxide and a remaining area thereof being composed of a material having a lower
5 electron emission rate than magnesium oxide.

1 9. (Original) The gas discharge panel of claim 8, wherein the material having a
2 lower electron emission rate than magnesium oxide is aluminum oxide.

1 10. (Previously Presented) The gas discharge panel of claim 1, wherein the inner
2 protrusions are provided on each of the two bus lines, the ends of the inner protrusions arranged
3 on each of the bus lines being out of alignment along the row direction of the matrix, and the
4 outer protrusions being arranged so that the discharge fired between the plural pairs of display
5 electrodes expands from the inner protrusions to the outer protrusions.

1 11. (Original) The gas discharge panel of claim 10, wherein a relation $Pe = A \times Ps/n$
2 is satisfied in relation to the two bus lines, Pe being a pitch of either the inner or outer
3 protrusions, Ps being a pitch of the cells along the row direction of the matrix, A being a positive
4 value less than 1, and n being a natural number.

1 12. (Original) The gas discharge panel of claim 10, wherein the inner protrusions
2 have squared ends along the row direction of the matrix, the squared ends of any two closest

3 facing inner protrusions being out of alignment such that a width in the row direction of the
4 matrix of a section of the squared ends that face each other is 10 µm or less

1 13. (Original) The gas discharge panel of claim 10, wherein the inner protrusions
2 have tapered ends along the row direction of the matrix, the tapered ends of any two closest
3 facing inner protrusions being out of alignment by 10 µm or more along the row direction of the
4 matrix.

1 14. (Original) The gas discharge panel of claim 10, wherein a plurality of barrier ribs
2 are formed between the pair of substrates along a column direction of the matrix, at least a
3 section of the inner protrusions overlapping with the barrier ribs.

1 15. (Original) The gas discharge panel of claim 10, wherein the outer protrusions
2 extend in a column direction of the matrix, a surface area of each of the outer protrusions being
3 greater than a surface area of each of the inner protrusions.

1 16. (Original) The gas discharge panel of claim 10, wherein a width of each of the
2 outer protrusions along the row direction of the matrix is wider as the distance from the bus line
3 increases.

1 17. (Original) The gas discharge panel of claim 10, wherein a shape of the inner
2 protrusions arranged on each of the bus lines is different.

1 18. (Original) The gas discharge panel of claim 10, wherein a shortest discharge gap
2 between the plural pairs of display electrodes corresponds to a minimum discharge firing voltage
3 or a voltage in a vicinity thereof as shown on a Paschen curve plotting a relationship between a

4 Pd product and a discharge firing voltage, P being a pressure of the discharge gas and d being a
5 discharge gap.

1 19. (Original) The gas discharge panel of claim 10, wherein the inner surface of the
2 substrate arranged with the plural pairs of display electrodes is covered with an insulating layer,
3 an area of the insulating layer that corresponds to a shortest discharge gap being composed of
4 magnesium oxide and a remaining area thereof being composed of a material having a lower
5 electron emission rate than magnesium oxide.

1 20. (Original) The gas discharge panel of claim 19, wherein the material having a
2 lower electron emission rate than magnesium oxide is aluminum oxide.

1 21. (Previously Presented) A gas discharge panel having (a) a plurality of cells
2 arranged in a matrix, each cell being filled with a discharge gas which is enclosed between a
3 facing pair of substrates and a plurality of barrier ribs interposed between the pair of substrates,
4 and (b) plural pairs of display electrodes composed of a metal and arranged on an inner surface
5 of one of the substrates so as to extend in a row direction of the matrix, wherein image display is
6 generated by a discharge fired between the plural pairs of display electrodes, each pair of display
7 electrodes comprising:

8 two bases, being parallel to each other and extending in the row direction of the
9 matrix; and

10 one or more inner protrusions, being arranged within each cell on an inner side of
11 each of the bases so as to protrude toward an inner side of an opposite base, the ends of the inner
12 protrusions arranged on each of the bases being out of alignment along the row direction of the
13 matrix.

1 22. (Original) The gas discharge panel of claim 21, wherein a relation $Pe = A \times Ps/n$
2 is satisfied in relation to the two bus lines, Pe being a pitch of either the inner or outer
3 protrusions, PS being a pitch of the cells along the row direction of the matrix, A being a positive
4 value less than 1, and n being a natural number.

1 23. (Original) The gas discharge panel of claim 21, wherein the inner protrusions
2 have squared ends along the row direction of the matrix, the squared ends of any two closest
3 facing inner protrusions being out of alignment such that a width in the row direction of the
4 matrix of a section of the squared ends that face each other is 10 μm or less.

1 24. (Original) The gas discharge panel of claim 21, wherein the inner protrusions
2 have tapered ends along the row direction of the matrix, the tapered ends of any two closest
3 facing inner protrusions being out of alignment by 10 μm or more along the row direction of the
4 matrix.

1 25. (Original) The gas discharge panel of claim 21, wherein a plurality of barrier ribs
2 are formed between the pair of substrates along a column direction of the matrix, at least a
3 section of the inner protrusions overlapping with the barrier ribs.

1 26. (Original) The gas discharge panel of claim 21, wherein a shape of the inner
2 protrusions arranged on each of the bases is different.

1 27. (Original) The gas discharge panel of claim 21, wherein a shortest discharge gap
2 between the plural pairs of display electrodes corresponds to a minimum discharge firing voltage
3 or a voltage in a vicinity thereof as shown on a Paschen curve plotting a relationship between a

4 Pd product and a discharge firing voltage, P being a pressure of the discharge gas and d being a
5 discharge gap.

1 28. (Previously Presented) A gas discharge panel having (a) a plurality of cells
2 arranged in a matrix, each cell being filled with a discharge gas which is enclosed between a
3 facing pair of substrates and a plurality of barrier ribs interposed between the pair of substrates,
4 and (b) plural pairs of display electrodes arranged on an inner surface of one of the substrates so
5 as to extend in a row direction of the matrix, each pair of display electrodes comprising:
6 two bases, being extended in a row direction of the matrix and having a snaky
7 configuration along the plural pairs of display electrodes.

1 29. (Original) The gas discharge panel of claim 28, wherein a wavelength of each of
2 the bases is out of alignment by half a wavelength.

1 30. (Original) The gas discharge panel of claim 28, wherein the plural pairs of
2 display electrodes are arranged so that a bus line part composed of metal and extending in a row
3 direction of the matrix is connected electrically to each of the bases.

1 31. (Original) The gas discharge panel of claim 30, wherein the bases are composed
2 of a transparent electrode material.

1 32. (Original) The gas discharge panel of claim 28, wherein the bases are composed
2 of a metal.

1 33. (Previously Presented) A gas discharge panel having (a) a plurality of cells
2 arranged in a matrix, each cell being filled with a discharge gas which is enclosed between a

3 facing pair of substrates and a plurality of barrier ribs interposed between the pair of substrates,
4 and (b) plural pairs of display electrodes arranged on an inner surface of one of the substrates so
5 as to extend in a row direction of the matrix, each pair of display electrodes comprising:

6 two bus lines, being extended in a row direction of the matrix; and
7 two bases, being connected electrically to and having a snaky configuration along
8 the bus lines, at least a section of the bases being arranged so as to be separate between two
9 adjacent barrier ribs.

1 34-37. (Cancelled)

1 38. (Currently Amended) A gas discharge device having one or more plural pairs of
2 electrodes arranged to face a discharge space filled with a discharge gas and a panel driving
3 circuit, wherein a voltage is applied to each of the electrodes so as to fire a discharge between the
4 one or more plural pairs of electrodes and generate illumination, each pair of electrodes
5 comprising:

6 two electrode bases, being extended in a same direction;
7 one or more inner protrusions, being arranged on an inner side of one or both of
8 the electrode bases so as to protrude toward an inner side of an opposite electrode base; and
9 one or more outer protrusions, being arranged so as to protrude from an outer side
10 of one or both of the electrode bases to enable a discharge between the inner protrusions to
11 expand outward to the outer protrusions to provide increased illumination, wherein
12 when the gas discharge device is driven by the panel driving circuit, a write
13 discharge is performed between an nth electrode pair after the write discharge performed
14 between an (n+1)th electrode pair, where n is an arbitrary natural number.

1 39. (Original) The gas discharge panel of claim 38, wherein each pair of electrodes
2 has two electrode bases that extend in a same direction and snake along the one or more pairs of
3 electrodes.

1 40. (Original) The gas discharge panel of claim 38, wherein the ends of the inner
2 protrusions arranged on each of the electrode bases are out of alignment.

1 41. (Original) The gas discharge panel of claim 40, wherein each pair of electrodes
2 has two electrode bases that extend in a same direction and snake along the one or more pairs of
3 electrodes, a wavelength of each of the electrode bases being out of alignment.

1 42. (Previously Presented) The gas discharge panel of claim 3, wherein the bus lines
2 are composed of silver.

1 43. (Previously Presented) The gas discharge panel of Claim 10, wherein the outer
2 protrusions are formed unitarily with the bus line and the inner protrusions.

1 44. (New) A gas discharge panel having (a) a plurality of cells arranged in a matrix,
2 each cell being filled with a discharge gas which is enclosed between a facing pair of substrates,
3 and a plurality of barrier ribs interposed between the pair of substrates, and (b) plural pairs of
4 display electrodes arranged on an inner surface of one of the substrates so as to extend in a row
5 direction of the matrix, wherein image display is generated by a discharge fired between the
6 plural pairs of display electrodes, each pair of display electrodes comprising:

7 two bus lines, being parallel to each other and extending in the row direction of
8 the matrix;

9 one or more inner protrusions, being arranged within each cell on an inner side of
10 one or both of the bus lines so as to protrude toward an inner side of an opposite bus line; and

11 one or more outer protrusions, being arranged within each cell so as to protrude
12 from an outer side of one or both of the bus lines, at least a section of each of the inner and outer
13 protrusions being positioned between two adjacent barrier ribs, wherein the inner surface of the
14 substrate arranged with the plural pairs of display electrodes is covered with an insulating layer,
15 an area of the insulating layer that corresponds to a shortest discharge gap being composed of
16 magnesium oxide and a remaining area thereof being composed of a material having a lower
17 electron emission rate than magnesium oxide.

1 45. (New) A gas discharge panel having (a) a plurality of cells arranged in a matrix,
2 each cell being filled with a discharge gas which is enclosed between a facing pair of substrates,
3 and a plurality of barrier ribs interposed between the pair of substrates, and (b) plural pairs of
4 display electrodes arranged on an inner surface of one of the substrates so as to extend in a row
5 direction of the matrix, wherein image display is generated by a discharge fired between the
6 plural pairs of display electrodes, each pair of display electrodes comprising:

7 two bus lines, being parallel to each other and extending in the row direction of
8 the matrix;

9 one or more inner protrusions, being arranged within each cell on an inner side of
10 one or both of the bus lines so as to protrude toward an inner side of an opposite bus line; and

11 one or more outer protrusions, being arranged within each cell so as to protrude
12 from an outer side of one or both of the bus lines, at least a section of each of the inner and outer
13 protrusions being positioned between two adjacent barrier ribs, wherein the inner protrusions are
14 provided on each of the two bus lines, the ends of the inner protrusions arranged on each of the
15 bus lines being out of alignment along the row direction of the matrix, and the outer protrusions
16 being arranged so that the discharge fired between the plural pairs of display electrodes expands
17 from the inner protrusions to the outer protrusions.

1 46. (New) A gas discharge device having one or more pairs of electrodes arranged to
2 face a discharge space filled with a discharge gas, wherein a voltage is applied to each of the
3 electrodes so as to fire a discharge between the one or more pairs of electrodes and generate
4 illumination, each pair of electrodes comprising:
5 two electrode bases, being extended in a same direction;
6 one or more inner protrusions, being arranged on an inner side of one or both of
7 the electrode bases so as to protrude toward an inner side of an opposite electrode base; and
8 one or more outer protrusions, being arranged so as to protrude from an outer side
9 of one or both of the electrode bases to enable a discharge between the inner protrusions to
10 expand outward to the outer protrusions to provide increased illumination, wherein each pair of
11 electrodes has two electrode bases that extend in a same direction and snake along the one or
12 more pairs of electrodes.

1 47. (New) A gas discharge device having one or more pairs of electrodes arranged to
2 face a discharge space filled with a discharge gas, wherein a voltage is applied to each of the
3 electrodes so as to fire a discharge between the one or more pairs of electrodes and generate
4 illumination, each pair of electrodes comprising:

5 two electrode bases, being extended in a same direction;
6 one or more inner protrusions, being arranged on an inner side of one or both of
7 the electrode bases so as to protrude toward an inner side of an opposite electrode base; and
8 one or more outer protrusions, being arranged so as to protrude from an outer side
9 of one or both of the electrode bases to enable a discharge between the inner protrusions to
10 expand outward to the outer protrusions to provide increased illumination, wherein the ends of
11 the inner protrusions arranged on each of the electrode bases are out of alignment.

1 48. (New) The gas discharge panel of claim 47, wherein each pair of electrodes has
2 two electrode bases that extend in a same direction and snake along the one or more pairs of
3 electrodes, a wavelength of each of the electrode bases being out of alignment.

1 49. (New) A gas discharge panel driven based on a field timesharing display method,
2 and having (a) a plurality of cells arranged in a matrix, each cell being filled with a discharge gas
3 which is enclosed between a facing pair of substrates, and a plurality of barrier ribs interposed
4 between the pair of substrates, and (b) plural pairs of display electrodes each formed from a scan
5 electrode and a sustain electrode and arranged on an inner surface of one of the substrates so as
6 to extend in a row direction of the matrix across the cells, wherein the image display is generated
7 by a discharge fired between the plural pairs of display electrodes, each pair of display electrodes
8 comprising:

9 two bus lines, being parallel to each other and extending in the row direction of
10 the matrix;

11 one or more inner protrusions, being arranged within each cell on an inner side of
12 one or both of the bus lines so as to protrude toward an inner side of an opposite bus line; and

13 one or more outer protrusions, being arranged within each cell so as to protrude
14 from an outer side of one or both of the bus lines, at least a section of each of the inner and outer
15 protrusions being positioned between two adjacent barrier ribs, wherein

16 a gap between the scan electrode and the sustain electrode in each display
17 electrode pair is narrower than a gap between adjacent display electrode pairs.