```
    # Import some helpful packages for loading and plotting data
    using CSV , Dates , DataFrames , Gadfly , GLM , Statistics
```

	Time	Replicate	OD	
1	11:17:00	1	0.025	
2	11:17:00	2	0.025	
3	11:17:00	3	0.026	
4	11:37:00	1	0.024	
5	11:37:00	2	0.021	
6	11:37:00	3	0.024	
7	11:57:00	1	0.021	
8	11:57:00	2	0.018	
9	11:57:00	3	0.029	
10	12:17:00	1	0.017	
more				
39	15:17:00	3	3.46	

```
begin

# Load CSV into a DataFrame

csvfile = "Growth Curve Data.csv"

df = DataFrame(CSV.File(csvfile))

end
```

	Time	Replicate	OD
1	0	1	0.025
2	0	2	0.025
3	0	3	0.026
4	20	1	0.024
5	20	2	0.021
6	20	3	0.024
7	40	1	0.021
8	40	2	0.018
9	40	3	0.029
10	60	1	0.017
n	nore		
39	240	3	3.46

```
begin
    # Normalise times and convert to minutes
    start = df[1, :Time]
    pdf = transform(df, :Time => ByRow(t -> Dates.value(Minute(t - start))) => :Time)
    end
```

Growth Curve Data

Given that OD is proportional to cell count (when properly diluted so that readings don't exceed 0.6), it can be used to track the growth of cells.

On a linear scale, this growth curve is an exponential, but be later made linear by applying a logarithmic transformation.

V. Natriegens Growth Curves Replicate 1 2 3 1 0 0 50 100 150 200 250 Minutes

```
    # Construct a line-scatter plot, grouping by biological replicate
    plot(pdf, x=:Time, y=:OD, color=:Replicate, Scale.color_discrete_hue,
    Guide.xlabel("Minutes"), Guide.ylabel("OD<sub>600</sub>"),
    Guide.title("<i>V. Natriegens</i> Growth Curves"))
```

A log transformation reveals that the region between 60 and 120 minutes can be safely said to be linear

V. Natriegens Growth Curves 22 20 Replicate **1** 2-2 **2 3** 2-4 2-6 50 100 200 250 150 Minutes

```
    # Replot, but on a log-scale so that we can pick out the exponential growth region
    plot(pdf, x=:Time, y=:OD, color=:Replicate,
    Scale.color_discrete_hue, Scale.y_log2,
    Guide.xlabel("Minutes"), Guide.ylabel("OD600"),
    Guide.title("<i>V. Natriegens</i> Growth Curves"))
```

loσdf	_

1 100 1 0.04 2 100 2 0.049 3 100 3 0.052 4 120 1 0.114 5 120 2 0.112		Time	Replicate	OD
3 100 3 0.052 4 120 1 0.114	1	100	1	0.04
4 120 1 0.114	2	100	2	0.049
	3	100	3	0.052
5 120 2 0.112	4	120	1	0.114
5	5	120	2	0.112
6 120 3 0.128	6	120	3	0.128
7 140 1 0.147	7	140	1	0.147
8 140 2 0.249	8	140	2	0.249
9 140 3 0.297	9	140	3	0.297
10 160 1 0.419	10	160	1	0.419
11 160 2 0.531	11	160	2	0.531
12 160 3 0.66	12	160	3	0.66

```
• # Trim the data to take a closer look at log-phase
```

[•] logdf = filter(:Time => t -> 100 <= t <= 160, pdf)</pre>

	Time	Replicate	OD
1	100	1	-4.64386
2	100	2	-4.35107
3	100	3	-4.26534
4	120	1	-3.13289
5	120	2	-3.15843
6	120	3	-2.96578
7	140	1	-2.76611
8	140	2	-2.00578
9	140	3	-1.75147
10	160	1	-1.25498
11	160	2	-0.913216
12	160	3	-0.599462

```
    # Log-transform the OD data
    transform!(logdf, :OD => ByRow(log2) => :OD)
```

ols = StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.DensePredCho OD ~ 1 + Time

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept)	-10.0632	0.5292	-19.02	<1e-08	-11.2423	-8.88408
Time	0.0570193	0.00401185	14.21	<1e-07	0.0480804	0.0659583

- # Perform and ordinary least-squares regression for a linear model
- ols = lm(@formula(OD ~ Time), logdf)

```
[-4.36128, -4.36128, -4.36128, -3.22089, -3.22089, -3.22089, -2.08051, -2.08051, -2.08051,
```

- # Insert a new column into our dataframe representing the model predictions
- logdf[!,:Model] = predict(ols)

Calculating Doubling-Time From Our Model

We can start with a fundamental equation that models the growth of microbes undergoing binary fission:

$$N=N_02^{rac{t}{g}}$$

Where N is the current number of cells, N_0 is the initial number of cells, t is time, and g is generation or doubling-time. We want to rearrange this equation to fit the model OD \sim Time after calculating the \log_2 of all ODs.

Let's start by applying the \log_2 to both sides of the equation:

$$\log_2 N = \log_2 N_0 + rac{t}{g}$$

Ignoring the intercept and separating terms, we get an expression that matches our model:

$$\log_2 N = rac{1}{g} t$$

Therefore we can conclude that g is equal to the reciprocal of our regression gradient.

The doubling time was ~17.5 minutes

```
    begin
    # Calculate doubling-time
    g = 1/coef(ols)[2]
    # Format it into a nice string
    md"The doubling time was ~$(round(g, sigdigits=3)) minutes"
    end
```