BTech II (CSE) Semester IV - Mid Semester Examination March 2021 Subject: MA 212 Linear Algebra and Statistical Analysis, Time: 9:00 - 9:45 am

* Required

A dice is tossed. If X is a random variable denoting the outcome on the dice, the expected value of X is $___$ *

- 7/6
- 6/6
- 7/2
- **1/6**

.

The density function of X is $f(x) = \begin{cases} 2x, & \text{if } 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$, then $E[X^2] = \underline{\hspace{1cm}}$

- 1/18
- O 2
- 1/2
- 2/3

In \mathbb{R}^3 , $\alpha=(4,3,5)$, $\beta=(0,1,3)$, $\gamma=(2,1,1)$, $\delta=(4,2,2)$. Which of the following is true?

 α is not a linear combination of β and γ

 β is a linear combination of γ and δ

Option 1

Option 2

 α is a linear combination of β and γ

None

*

The integer solution of the system of equation

$$x + 2y + z = 1$$

 $3x + y + 2z = 3$
 $x + 7y + 2z = 1$ is

(1-3k, -k, 5k)

(-3k, -3k, 5k)

Option 1

Option 2

(1+3k, -k, 5k)

None

If X and Y are independent discrete random variables with variances 9 and 3 respectively, then Variance of [4X-2Y+6]=___* 150 160 156 144 None

An eigen vector corresponding to eigen value i of the matrix $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is

 $\binom{i}{-i}$

 $\binom{1}{i}$

Option 1

Option 2

 $\binom{i}{1}$

None

What is a clique? *

the set of all nodes of a graph

a set of mutually-neighboring nodes on a graph

a particular case of Markov chain

the set of all neighboring nodes

*

- . The rank of $\begin{pmatrix} 1 & 0 & 3 \\ 4 & -1 & 5 \\ 2 & 0 & 6 \end{pmatrix}$ is
- \bigcirc 4
- \bigcirc 3
- 2
- O^{-}

For a continuous probability density function f which of the following holds true?

*

- f(0.1)= c, 1≥c≥0
- ✓ Total area under the curve f(x)=1
- \checkmark f(x) is bounded function
- $\int f(0.1) = 0$
- Total area under the curve $f(x) \ge 1$

The Bayesian network graph does not contain any cyclic graph. Hence, it is known as a *
DAG
O DCG
SAG
○ CAG
Bayesian networks are a factorized representation of the full joint. *
O False
oan be true or false
one of these
True
Truc

The condition for which the system of equations x + y + z = 1x + 2y - z = b $5x + 7y + az = b^2$ admits a unique solution is a ≠ -1 a=1Option 1 Option 2 a ≠ 1 None

*

Let the subset $S = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 = z^2\}$ and subset $T = \{(x, y, z) \in \mathbb{R}^3 \colon x = z = 0\}$. Which of the following is true?

- S is a subspace but T is not a subspace
- S is not a subspace but T is a subspace
- O Both S and T are subspaces
- Both S and T are not subspaces

In a Bayesian network variable is? *

- both continuous and discrete
- continuous
- none of these
- discrete

In the ring of 2×2 matrices over the field of real numbers, the zero element of the ring is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Option 2 Option 1 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Option 4 Option 3

A linear mapping $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ is defined by $T(x_1,x_2,x_3)=(x_2+x_3,\,x_3+x_1,x_1+x_2,x_1+x_2+x_3),\;(x_1,x_2,x_3)\in\mathbb{R}^3.$ Find Ker T? Ker T={1} Ker T={0} Option 2 Option 1 Ker T={2} None Option 3 The Markov property for random field states that the conditional distribution of a pixel given all other pixels: * depends only on neighboring pixels is a multivariate Gaussian distribution depends only on previous pixels none of these

Where does the bayes rule can be used? *
answering the query more accurately
o solving queries
reducing complexity
all of the above
*
The exponential distribution $f(x)$ is defined by $f(x) = ae^{-2x}$, $0 < x < \infty$, then $a = $
2
① 1/2
O 0
What does the Bayesian network provides? *
partical description of the domain
o complete description of the problem
one of these
complete description of the domain

*
The singleton {0} is a ring with respect to
Addition
Multiplication
Both Option 1 and Option 2
None
If E[X] denotes the expected value of random variable X, then following statements are always true. *
✓ E[X] is theoretical average value.
E[X] is a non-negative number.
E[X] is expressed in units of original data. E[X] is a location parameter.

*

If
$$A = \begin{pmatrix} i & 0 \\ 0 & i/2 \end{pmatrix}$$
, $(i = \sqrt{-1})$, then $A^{-1} = ?$

 $\begin{pmatrix} i & 0 \\ 0 & i/2 \end{pmatrix}$

 $\begin{pmatrix} -i & 0 \\ 0 & -2i \end{pmatrix}$

Option 1

Option 2

 $\begin{pmatrix} i & 0 \\ 0 & 2i \end{pmatrix}$

 $\begin{pmatrix} 0 & i \\ 2i & 0 \end{pmatrix}$

Option 3

Option 4

What is a Markov Random Field?*

- a random process on undirected graphs
- a Bayesian model
- a particular case of Markov chain
- all options correct

Page 2 of 3

Back

Next

Google Forms