

Basics in Language Models

Kun Yuan

Center for Machine Learning Research @ Peking University

Feb. 29, 2024

Contents

Word embedding

Language models

Recurrent neural network

• Sequence-to-sequence model

Some of the materials are from a great course [1]

[1] The deep learning specialization

1-hot word representation

- Vocabulary set = {a, aaron, ..., zulu}; the size is typically on the order of 10,000
- 1-hot representation is the most natural idea to represent word

Mar (539	Voma (9853		King 4914)) (}) (Quee (7159	n A 9) (4pple (456)		range 6527)	
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} $			$\begin{bmatrix} 0 & 7 & 0 \\ 0 & 0 \\ \vdots & 1 & \vdots \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \vdots \\ 1 & \vdots & 0 \end{bmatrix}$				$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$	
L	 L ~ _	ı	L ~]	l l		ı l	L ~]	ı l	_ ~ _	

1-hot word representation

1-hot representation ignores semantic relationship

I like orange juice. I like apple _____.

- "Orange" and "apple" should be close to each other. Language model should fill in "juice"
- But in one-hot representation, apple and orange are not close to each other

Man (5391)	Woman (9853)	King (4914)	Queen (7159)	Apple (456)	Orange (6527)
			$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} $		
0		0		0	:
0	0	0	0	0	0

Each word is represented with vectors that involve semantics

	Man (5391)	Woman (9853)	King (4914)	Queen (7159)	Apple (456)	Orange (6527)
Gender	-1.00	1.00	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.51	0.47	0.7	0.69	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97

- "Man" is close to "Woman", "King" is close to "Queen", and "Apple" is close to "Orange"
- Semantic representation can be much shorter than 1-hot representation

Visualization in semantic representation

Sematic representation helps the down-stream tasks

I like orange juice. I like apple _____.

• Since "orange" and "orange" are close to each other, language model should fill in juice

• [Play semantic games in ChatGPT]

- Sematic representation helps find synonyms or antonyms
- Example: given "man" vs "women", fill in "king" vs "____"

$$e_{\rm man} - e_{\rm woman} \approx e_{\rm king} - e_w$$

$$e_w \approx e_{\rm king} - e_{\rm man} + e_{\rm woman}$$

$$w = \arg\max_{u} \{e_u, e_{\text{king}} - e_{\text{man}} - e_{\text{woman}}\}$$

1-hot representation to semantic representation

• Given the embedding matrix, we can easily achieve the semantic representation as follows

Embedding matrix

How to get the embedding matrix?

We first collect the dataset from the corpus. Many ways; we use the simplest one to highlight the idea

Given any word in a sentence, find a nearby (say, with window 2) word to construct the word pair

I want a glass of orange juice (orange, juice)

He likes watching TV (watching, TV)

(watching, likes)

dataset

Center of Machine Learning Research

corpus

Embedding matrix

Given the dataset, we use the first word to predict the second word

