SUBJECT-SPECIFIC GENERALIZED LINEAR MODELS FOR LONGITUDINAL DATA

Outline:

- Overview of Subject-specific Models
- Generalized Linear Mixed Effects Model (GLMM)
 - ML method and numerical techniques
 - Measure of dependence for logistic-normal model
- Subject-specific versus Population Average Models
- Estimation of Random Effects
- Generalized Linear Fixed Effects Model

(Review) Linear Mixed Effects Model

- We have discussed how to use random effects to model the dependence among subjects in the linear model settings.
- This idea of random effects can be extended to generalized linear models (GLM) for describing discrete and non-Gaussian continuous responses.
- In (subject-specific) linear mixed effects model for longitudinal data: focus was on **mean response** of Y_{ij} as a function of covariates x_{ij} and d_{ij} and conditional on a set of **random effects** U_i :

$$E(Y_{ij}|\boldsymbol{U}_i,X_i,D_i) = \mu_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}U_i$$

 $(D_i \text{ is almost always contained in } X_i)$

• Example:

$$E(Y_{ij}|U_i, X_i) = (\beta_0 + U_{i1}) + (\beta_1 + U_{i2})x_{ij}$$

- $\beta_0 + U_{i1}$ is the **subject-specific** intercept (for the *i*th subject)
- β_0 is the mean of subject-specific intercepts
- β_1 is the mean of subject-specific slopes with respect to x_{ij}
- The β 's have a subject-specific interpretation
- Now, lets do the same thing for generalized linear models

Subject-specific Generalized Linear Model

- Key components of a **generalized linear mixed (or fixed) effects model** (conditional model) for longitudinal response Y_i :
 - Linear predictor conditional on subject-specific effects $oldsymbol{U}_i$:

$$\eta_{ij} = oldsymbol{x}_{ij}'oldsymbol{eta} + oldsymbol{d}_{ij}'oldsymbol{U}_i$$

same as for the linear mixed model

- **Link function:** Conditional mean is connected to conditional linear predictor via link function $h(\cdot)$:

$$h(\mu_{ij}) = h(E(Y_{ij}|\boldsymbol{U}_i, X_i, D_i)) = \eta_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}\boldsymbol{U}_i$$

- Conditional **distribution** of Y_{ij} given μ_{ij} (i.e., given (U_i, X_i))
 - * The distribution for mixed models replaces the variance function we used in the GEE models
 - st Given $oldsymbol{U}_i$, the Y_{ij} 's are **assumed independent** of one another
 - Analogous to linear mixed effects model $Y_{ij} = x'_{ij}\beta + d'_{ij}U_i + Z_{ij}$, where Z_{ij} are independent of each other
 - \Rightarrow Conditional on U_i of subject i, Y_{ij} 's are independent of one another

• Important note:

 μ_{ij} and η_{ij} are **not** the same here as in the marginal models (GEE)!

- Because here μ_{ij} and η_{ij} depend on U_i , are subject i's own **personal** linear predictor and mean
- Therefore, the coefficients $oldsymbol{eta}$ are not the same either
- In the **GEE/marginal** model case, μ_{ij} and η_{ij} were **population** average quantities

- ullet For a given subject i, all μ_{ij} 's and η_{ij} 's share random effect $oldsymbol{U}_i$:
 - $m{U}_i$ accounts for the **natural heterogeneity** between subjects due to unmeasured factors ($m{U}_i$ is not observed)
 - U_i accounts for the observed correlation (association) among the repeated measures Y_{ij} comprising $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{in_i})'$
 - $oldsymbol{U}_i$'s are independent across subjects
- ullet In a **generalized linear fixed effects model**, the $oldsymbol{U}_i$'s are treated as fixed quantities
 - $m{U}_i$'s can be used to control subject-level confounders (just as with linear fixed effects models)

- ullet In a **generalized linear mixed effects model**, the $oldsymbol{U}_i$'s are treated as random
 - $oldsymbol{U}_i$'s are independent across subjects and a distribution is assumed for $oldsymbol{U}_i$
 - generally, ${m U}_i \sim F$ (usually normal distribution) and ${m U}_i$ is independent of X_i
 - so $oldsymbol{U}_i$ cannot control subject-level confounders
 - usually,

$$\boldsymbol{U}_i \sim \mathsf{MVN}(0,G)$$

where G depends on a set of variance-covariance parameters γ just as with linear mixed models

ExampleLogistic Regression Model for Binary Data

- **Example:** Consider the data on 878 mothers in Georgia, each giving birth to five children. Define low birth weight (LBW) as being $\leq 2500~{\rm gm}$
- $Y_{ij} = I(\text{low birth weight}_{ij})$, a 0 or 1 variable, for child j of mother i
- Our model is

$$\mu_{ij} = E(Y_{ij}|U_i, X_i) = Pr(Y_{ij} = 1|U_i, X_i)$$

$$logit(\mu_{ij}) = \eta_{ij} = (\beta_0 + U_i) + \beta_1 mage_{ij}$$

where $mage_{ij}$ is the maternal age for child j of mother i

• $b_{0i} = \beta_0 + U_i$ is subject (mother)-specific intercept on logit scale

- β_1 is the subject-specific **log odds ratio** relating maternal age to the probability of LBW infants
 - A mother's odds of a LBW infant are multiplied by e^{β_1} when this mother's maternal age increases by 1.
 - Even though β_1 has a subject-specific interpretation, it is **assumed** that the effect of maternal age is constant across subjects
 - ie, the slope w.r.t. maternal age on logit scale is same for all subjects
 - No marginal interpretation for β_1 (details later)
- A more general model:

$$\eta_{ij} = (\beta_0 + U_{i1}) + (\beta_1 + U_{i2}) \text{mage}_{ij}$$

- β_1 is **average subject-specific** log odds ratio for LBW and maternal age
- $(\beta_1 + U_{i2})$ is subject *i*-specific log odds ratio relating LBW to maternal age

Random/Mixed Effects Model Estimation Maximum Likelihood

- ullet Recall Y_{ij} 's are **independent** of one another given $oldsymbol{U}_i, X_i$
- Suppose the density of Y_{ij} given U_i, X_i is $f_y(y_{ij}|U_i, X_i, \beta)$
- ullet Then the **likelihood** (conditional on $oldsymbol{U}_i$) for subject i is

$$L_i(\boldsymbol{eta}, \boldsymbol{U}_i) = f_{\boldsymbol{y}}(\boldsymbol{y}_i | \boldsymbol{U}_i, X_i, \boldsymbol{eta}) = \prod_{j=1}^{n_i} f_y(y_{ij} | \boldsymbol{U}_i, \boldsymbol{x}_{ij}, \boldsymbol{eta})$$

• Under random effects model, we assume

$$\boldsymbol{U}_i \sim \mathsf{MVN}(0,G)$$

and U_i is independent of covariates X_i

- Estimation is then accomplished via maximum marginal likelihood:
 - Likelihood $L_i(\boldsymbol{\beta}, \boldsymbol{U}_i)$ contains \boldsymbol{U}_i , which is unobserved
 - Integrate over U_i based on the density $f_{\mathbf{u}}(\mathbf{u}_i;G)$ of U_i , we obtain the **marginal likelihood** for subject i

$$L_i^M(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \int_{\boldsymbol{u}_i} L_i(\boldsymbol{\beta}, \boldsymbol{u}_i) f_{\boldsymbol{u}}(\boldsymbol{u}_i; \boldsymbol{\gamma}) d\boldsymbol{u}_i$$
$$= \int_{\boldsymbol{u}_i} \left\{ \prod_{j=1}^{n_i} f_y(y_{ij} | \boldsymbol{u}_i, \boldsymbol{x}_{ij}, \boldsymbol{\beta}) \right\} f_{\boldsymbol{u}}(\boldsymbol{u}_i; \boldsymbol{\gamma}) d\boldsymbol{u}_i$$

where γ is the parameter for G (variance-covariance matrix of U_i)

– Then full marginal (over $oldsymbol{U}_i$) likelihood function for entire data set is

$$L^{M}(oldsymbol{eta},oldsymbol{\gamma})=\prod_{i}L_{i}^{M}(oldsymbol{eta},oldsymbol{\gamma})$$

which is then maximized jointly with respect to $(\boldsymbol{\beta}, \boldsymbol{\gamma})$

- Note: ReML is generally not available for non-linear models
- ullet In linear mixed models, the integral required to obtain L_i^M is available in **closed form**
- However, for most other generalized linear mixed models, the integral can only be obtained **numerically**.

Numerical Techniques in Estimation of GLMM

ullet Recall that the **marginal likelihood** for subject i is

$$L_i^M(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \int_{\boldsymbol{u}_i} L_i(\boldsymbol{\beta}, \boldsymbol{u}_i) f_{\boldsymbol{u}}(\boldsymbol{u}_i; G) d\boldsymbol{u}_i$$

- However, numerical integration is only practical when the number of random effects is small.
- Due to the difficulty of numerical integration, two basic approaches for making inference in GLMM have been proposed:
 - Approximate objective functions: Integral Approximation methods
 - Approximate model: Linearization methods

Integral Approximation: Gauss-Hermite Quadrature Methods

Numerical integration replaces this incomputable integral with the approximation

$$L_i^M(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \int_{\boldsymbol{u}_i} L_i(\boldsymbol{\beta}, \boldsymbol{u}_i) f_{\boldsymbol{u}}(\boldsymbol{u}_i; G) d\boldsymbol{u}_i \approx \sum_{q=1}^d L_i(\boldsymbol{\beta}, \boldsymbol{u}_q^*) w(\boldsymbol{u}_q^*)$$

- sums over the set of **nodes** $oldsymbol{u}_q^*$
- positive **weights** $w(\boldsymbol{u}_q^*)$ sum to 1
- -d= the number of quadrature points (nodes) in the numerical approximation

• Notes:

- the more nodes one uses, the better the approximation (but the longer the computation time)
- problem becomes **exponentially** more difficult with the **number** of random effects in the model
 - * two is usually the most that is practical
- **Adaptive** Gauss-Hermite quadrature improves on GH quadrature by trying to choose nodes to make approximation more accurate
 - centers quadrature points with respect to the mode of the function being integrated and scales them according to estimated curvature at the mode.

- can drastically reduce number of quadrature points needed to approximate the integrals and improve the speed of integration
- Adaptive GHQ is state-of-the-art
- ullet Laplace method is a special case with quadrature point $d{=}1$
- The approximated likelihood can then be maximized with standard algorithms (eg, Newton-Raphson) to estimate parameters of GLMM
- With integral approximation, the likelihood function can be approximated, and likelihood based inference procedures can be employed, eg
 - Estimate $var(\hat{\beta})$ by inverting the negative second derivative of the likelihood function
 - For complex models, second derivative may be computed numerically rather than analytically
 - LRT to compare nested models

Linearization Methods

- Linearization-based methods use a relatively simple form of the linearized model
- Recall matrix form of model

$$h(\boldsymbol{\mu}) = h(\mathrm{E}(\boldsymbol{Y}|\boldsymbol{U},\boldsymbol{X},D)) = \boldsymbol{\eta} = \boldsymbol{X}\boldsymbol{\beta} + D\boldsymbol{U}$$

where $h(\cdot)$ is applied to each element of μ

ullet A first order Taylor expansion of μ about $oldsymbol{eta}^0$ and $oldsymbol{U}^0$ yields

$$\mu = h^{-1}(\boldsymbol{\eta})$$

$$= h^{-1}(\boldsymbol{\eta}^{0}) + \left(\frac{\partial h^{-1}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}}\right)_{\boldsymbol{\beta}^{0}, \boldsymbol{U}^{0}} \times \boldsymbol{X}(\boldsymbol{\beta} - \boldsymbol{\beta}^{0})$$

$$+ \left(\frac{\partial h^{-1}(\boldsymbol{\eta})}{\partial \boldsymbol{\eta}}\right)_{\boldsymbol{\beta}^{0}, \boldsymbol{U}^{0}} \times D(\boldsymbol{U} - \boldsymbol{U}^{0})$$

- ullet Define $\Delta^0 = \left(rac{\partial h^{-1}(oldsymbol{\eta})}{\partial oldsymbol{\eta}}
 ight)_{oldsymbol{eta}^0,oldsymbol{U}^0}$
 - Recall vector-by-vector derivative

$$\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

- $-\Delta^0$ is a diagonal matrix
- Rearranging terms we get

$$(\Delta^{0})^{-1}\{\boldsymbol{\mu} - h^{-1}(\boldsymbol{\eta}^{0})\} + \boldsymbol{X}\boldsymbol{\beta}^{0} + D\boldsymbol{U}^{0} = \boldsymbol{X}\boldsymbol{\beta} + D\boldsymbol{U}$$

• Define pseudo response

$$\widetilde{Y} = (\Delta^0)^{-1} \{ \mu - h^{-1}(\eta^0) \} + X \beta^0 + D U^0$$

⇒ We can consider a linear mixed effects model

$$\widetilde{m{Y}} = m{X}m{eta} + Dm{U} + m{Z}$$

where
$$\mathrm{var}(\boldsymbol{Z}) = \mathrm{var}(\widetilde{\boldsymbol{Y}}|\boldsymbol{X},\boldsymbol{U}) = (\Delta^0)^{-1}\mathrm{var}(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{U})(\Delta^0)^{-1}$$

- Double iteration scheme:
 - Estimate $oldsymbol{eta}$ and $oldsymbol{U}$ based on

$$\widetilde{\boldsymbol{Y}} = \boldsymbol{X}\boldsymbol{\beta} + D\boldsymbol{U} + \boldsymbol{Z}$$

where
$$\operatorname{var}(\boldsymbol{Z}) = (\Delta^0)^{-1} \operatorname{var}(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{U})(\Delta^0)^{-1}$$

- Pseudo-response and error variance of the linearized model are recomputed
- This process repeats until convergence.

- Advantages of Linearization method:
 - Typically can be fit based on only mean and variance in linearized form.
 - Best when
 - joint distribution is difficult to ascertain
 - errors are correlated
 - number of random effects is large
 - random effects are crossed

- Disadvantages of Linearization method:
 - Potentially biased estimates, especially for binary data.
 - The objective function to be optimized after each linearization update is dependent on the current pseudo-data.
 - True likelihood not known \rightarrow no likelihood ratio tests
 - The convergence is easy to fail

• Integral Approximation method:

Disadvantages:

- Limited random effects structures.
- Number of random effects should be relatively small.

Advantages:

- Adaptive methods can achieve any desired accuracy
- Likelihood ratio testing accessible

Software to fit GLMM:

(Different software will give you different answers because different numerical techniques are used)

– Stata:

- * Commands xtlogit, re and xtpoisson, re normal use adaptive GH quadrature by default, with GH quadrature as an option
- * Commands xtmelogit and xtmepoisson use adaptive GH
- SAS proc glimmix options:
 - * Pseudo-likelihood estimation based on linearization approximation: method=RSPL (default), and variation method=RMPL
 - * Integral approximation using Laplace method: method=Laplace
 - * Adaptive quadrature: method=QUAD

- SAS proc nlmixed is more general in model specification
 - * Provide options for adaptive GH quadrature and other methods to approximate integral
 - * Allow non-normal random effects
 - * Need to write out the model, link function, etc

- R:

- * glmer() (package lme4) uses adaptive Gauss-Hermite quadrature, currently implemented only for a single scalar random effect
- * Other package: nlme, etc.

Example Logistic Mixed Effects Model for Binary Data

- Consider the data on 878 mothers in Georgia, each giving birth to five children. Define LBW as being $\leq 2500~{\rm gm}$
- Consider the subject-specific model

$$logit(\mu_{ij}) = logit(Pr(Y_{ij} = 1 | U_i, X_i)) = (\beta_0 + U_i) + \beta_1 mage$$

- $-Y_{ij} = I(\mathsf{LBW}_{ij})$
- U_i is normally distributed with mean 0 and variance ν^2
- U_i is independent of X_i
- Given U_i , Y_{ij} are independent

• SAS code to load, examine data, and divide the mother's age by 10 (so it represent age in decades).

```
data birthwt;
infile 'birthwt.raw';
input id birthorder birthwt momage momage_avg momage_dev;
run;

data birthwt;
set birthwt;
if(birthwt ne .)then lbw=(birthwt<=2500);
mage=momage/10;
run;

proc freq data=birthwt;
table lbw;
run;</pre>
```

			Cumulative	Cumulative
lbw	Frequency	Percent	Frequency	Percent
0	3934	89.61	3934	89.61
1	456	10.39	4390	100.00

• Fit random effects logistic model using quadrature method in SAS:

```
Proc glimmix data=birthwt method=quad (qpoints=50);
  class id;
  model lbw =mage/dist=binomial link=logit s;
  random int/ subject=id;
  title1 'GLMM, quadrature method';
run;
```

• SAS Note:

- method=quad (qpoints=50) option indicates adaptive quadrature method with 50 nodes to fit GLMM.
- MODEL statement specifies fixed effects, distribution function for the response variable, and link function that links the conditional means with the linear predictors.
- s or SOLUTIONS option requests fixed-effects parameter estimates

• Note for Stata: you can fit the same model by xtlogit lbw mage, re

• SAS results:

-2 Log Likelihood

2789.18

Covariance Parameter Estimates

			Standard
Cov Parm	Subject	Estimate	Error
	J		
Intercept	id	1.7288	0.2675

Solutions for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	-2.0396	0.3254	877	-6.27	<.0001
mage	-0.3326	0.1448	3511	-2.30	0.0217

• Interpretation:

- $\widehat{\beta}_0 = -2.04$ is the **average** mother-specific intercept for the log odds of having a LBW baby as a function of maternal age
- $\widehat{\nu}^2=1.73$ is the between-subject variance of subject-specific intercepts; it reflects the variation in the propensity of mothers for LBW babies
- $\widehat{\beta}_1=-0.33$ is the subject-specific log odds ratio for LBW for a one-unit (ie, 10 years) difference in maternal age
- we can do LRT for whether the random effect is significant by testing

$$H_0: \nu^2 = 0$$
 vs. $H_A: \nu^2 > 0$

• SAS code:

• We have

$$\chi^2 = 2917.99 - 2789.18 = 128.81$$

- Note: Recall for hypothesis tests that $\nu^2=0$, the same one-sidedness applies
 - ightarrow test is conservative using DF=1
 - \rightarrow should divide p-value by 2

• R code:

```
> 1-pchisq(128.81,1)
[1] 0
> (1-pchisq(128.81,1))/2
[1] 0
```

• The P-value is very small even with conservative test \rightarrow we would reject the hypothesis that there is no across subject variation in intercepts in this model (ie, random intercept is necessary)

• Another way to fit model using SAS PROC NLMIXED (need specify the model yourself):

```
proc nlmixed data=birthwt;
  eta = b0 + b_mage*mage + u;
  p = exp(eta)/(1+exp(eta));
  model lbw~binary(p);
  random u~normal(0,s2u) subject=id;
run;
```

Parameter Estimates

Parameter	Estimate	Standard Error	DF	t Value	Pr > t	95% Confidence Limits		Grae
b0	-1.9511	0.3155	877	-6.19	<.0001	-2.5702	-1.3320	-2.
b_mage	-0.3402	0.1416	877	-2.40	0.0165	-0.6182	-0.06225	1.3
s2u	1.4560	0.2175	877	6.69	<.0001	1.0290	1.8829	-6.3

• Results are a little bit different

• Fit the model using linearization method:

```
Proc glimmix data=birthwt method= RSPL NOCLPRINT NOITPRINT;
class id;
model lbw =mage/dist=binomial link=logit s;
random int/ subject=id;
title1 'GLMM, default method RSPL';
run;
```

Covariance Parameter Estimates

			Standard
Cov Parm	Subject	Estimate	Error
Intercept	id	0.9677	0.1258

Solutions for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	-1.6167	0.2805	877	-5.76	<.0001
mage	-0.3095	0.1292	3511	-2.40	0.0166

- When fitting GLMM for binary data:
 - Quadrature method and linearization method gave very different results
 - because linearization method tends to have large bias for binary data

Measure of dependence for the logistic-normal model

- Latent response formulation: Underlying the observed dichotomous response Y, there is an latent continuous response Y^* : $Y_{ij} = 1$ if $Y_{ij}^* > 0$ and $Y_{ij} = 0$ otherwise
- For latent response, we specify a linear model with a random intercept:

$$Y_{ij}^* = \boldsymbol{x}_{ij}'\boldsymbol{\beta} + U_i + Z_{ij}$$

where $U_i \sim N(0, \nu^2)$,

 Z_{ij} has a standard logistic distribution:

$$\Pr(Z_{ij} < a) = \frac{\exp(a)}{1 + \exp(a)}$$

which has mean zero and variance of $\pi^2/3$

• Thus

$$\Pr(Y_{ij} = 1 | \boldsymbol{x}_{ij}, U_i) = \Pr(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + U_i + Z_{ij} > 0)$$

$$= \Pr\{Z_{ij} > -(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + U_i)\}$$

$$= 1 - \frac{\exp\{-(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + U_i)\}}{1 + \exp\{-(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + U_i)\}}$$

$$= \frac{1}{1 + \exp\{-(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + U_i)\}}$$

 $\Rightarrow \operatorname{logit}\{\Pr(Y_{ij} = 1 | \boldsymbol{x}_{ij}, U_i)\} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + U_i$

• With latent response

$$Y_{ij}^* = \boldsymbol{x}_{ij}'\boldsymbol{\beta} + U_i + Z_{ij}$$

- $-\operatorname{var}(U_i) = \nu^2$ (between-subject variance)
- $-\operatorname{var}(Z_{ij}) = \pi^2/3$ (within-subject variance)
- Recall, (residual) intraclass correlation of latent responses is

$$\rho = \operatorname{corr}(Y_{ij}^*, Y_{ik}^* | X_i) = \frac{\nu^2}{\nu^2 + \pi^2/3}$$

• Example: the model we just fitted could be rewritten as:

$$Y_{ij}^* = (\beta_0 + U_i) + \beta_1 \operatorname{mage} + Z_{ij}$$

we have

$$\hat{\rho} = \frac{\hat{\nu}^2}{\hat{\nu}^2 + \pi^2/3} = \frac{1.73}{1.73 + 3.29} = 0.345$$

Generalized Linear Mixed Effects Models Example with Random Intercept and Slope Poisson Regression Model for Count Data

- Epileptic patients (m = 59) were enrolled in a clinical trial of a treatment to control seizures
- Each subject was randomized to treatment with either progabide or placebo
- Y_{ij} is the number of seizures at each of a series of eight-week (baseline) or two-week periods for two treatment groups of patients
- Conditional link function is the logarithm:

$$h(\mu_{ij}) = \log(\mu_{ij}) = \eta_{ij}, \quad E(Y_{ij}|X_i, \boldsymbol{U}_i) = \mu_{ij}$$

• The conditional distribution of Y_{ij} is

$$Y_{ij}|\boldsymbol{U}_i,X_i\sim\mathsf{Poisson}(\mu_{ij})$$

where "Poisson (μ_{ij}) " means "Poisson with mean μ_{ij} "

Note: No overdispersion here — these models require a fully-specified probability distribution (unless you use linearization method)

• The linear predictor in our example is

$$\eta_{ij} = \beta_0 + \beta_1 \mathsf{tx}_i + \beta_2 \mathsf{post}_{ij} + \beta_3 \mathsf{txpost}_{ij} + U_{i1} + U_{i2} \mathsf{post}_{ij} + \log(\mathsf{length})$$

$$= (\beta_0 + \beta_1 \mathsf{tx}_i + U_{i1}) + (\beta_2 + \beta_3 \mathsf{tx}_i + U_{i2}) \mathsf{post}_{ij} + \log(\mathsf{length})$$

- Random effects $\boldsymbol{U}_i = (U_{i1}, U_{i2})' \sim N(0, G)$
- $-\beta_0$ is the mean subject-specific pre-treatment log-seizure rate for subjects on placebo

- $-\beta_0 + \beta_1$ is the rate for those on treatment
- β_2 is the mean subject-specific post- versus pre-treatment log rate ratio of seizures for a subject on placebo (this is a **within-subject** comparison)
- $-\beta_3$ is the relative effect of post- versus pre-treatment for progabide subjects as compared to placebo subjects (it compares the mean **subject-specific** post- versus pre-treatment log rate ratio for treatment to that for placebo)
- $-\log(\text{length})$ is an **offset** term used to account for different lengths of exposure time for different observations

• SAS code to fit the model using default linearization method:

```
data seizure;
set seizure;
post = 1*(time >= 1);
txtime = tx*post;
loglength=log(length);
run;

proc glimmix data=seizure;
  class id;
  model seiz=tx post tx*post /dist=poisson offset=loglength link=log s;
  random int post/type=un subject=id;
  title1 'random intercept and slope, RSPL';
run;
```

Covariance Parameter Estimates

Cov			Standard
Parm	Subject	Estimate	Error
UN(1,1)	id	0.5067	0.1032
UN(2,1)	id	0.05359	0.05680
UN(2,2)	id	0.2364	0.06135

Solutions for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
T	1 0005	0 1407	- 7	7 70	< 0001
${ t Intercept}$	1.0885	0.1407	57	7.73	<.0001
tx	0.04976	0.1939	177	0.26	0.7978
post	0.002198	0.1086	57	0.02	0.9839
tx*post	-0.3032	0.1512	177	-2.00	0.0465

• If fit by quadrature method in SAS:

```
Proc glimmix data=birthwt method=quad (qpoints=50);
  class id;
  model lbw =mage/dist=binomial link=logit s;
  random int/ subject=id;
  title1 'GLMM, quadrature method';
  run;
```

-2 Log Likelihood

1848.90

Covariance Parameter Estimates

Cov			Standard
Parm	Subject	Estimate	Error
UN(1,1)	id	0.5010	0.1010
UN(2,1)	id	0.05631	0.05590
UN(2,2)	id	0.2333	0.06070

Solutions for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	1.0711	0.1405	57	7.62	<.0001
tx	0.04959	0.1931	177	0.26	0.7976
post	-0.00230	0.1097	57	-0.02	0.9834
tx*post	-0.3075	0.1513	177	-2.03	0.0436

- Quadrature and linearization method provide very similar results.
 - In general the linearization method works better for count data when the estimated rate is high.
 - Quadrature method takes more time.

- **Key interpretation** (based on results using quadrature method):
 - $\hat{\beta}_2 = -.002$ is log-rate ratio ($\exp(\hat{\beta}_2) = .998$ is rate ratio) comparing post-treatment to pre-treatment for a **typical** subject on placebo
 - $\hat{\beta}_3 = -.308$ is the log-ratio of rate ratios $(\exp(\hat{\beta}_3) = .74)$ is the ratio of rate ratios) comparing the post- versus pre-treatment effects for **typical** subjects on treatment versus those on placebo
 - $var(U_{i1}) = 0.50$ is the between-subject variance in log-seizure rate at baseline for each treatment group
 - $var(U_{i1}) = 0.23$ is the between-subject variance in subject-specific log-rate ratios comparing post- to pre-treatment seizure in either the treatment or placebo groups

• Note: We can also use SAS PROC NLMIXED to fit this model:

		Standard				95% Co:	nfidence	
Parameter	Estimate	Error	DF	t Value	Pr > t	Li	mits	Gra
b0	1.0712	0.1404	57	7.63	<.0001	0.7901	1.3524	-0.
b_tx	0.04950	0.1929	57	0.26	0.7984	-0.3367	0.4357	-0.
b_post	-0.00238	0.1095	57	-0.02	0.9827	-0.2216	0.2168	-0.
b_txtime	-0.3072	0.1510	57	-2.04	0.0465	-0.6095	-0.00492	-0.
s21	0.4999	0.1007	57	4.96	<.0001	0.2982	0.7016	0.0
cov12	0.05656	0.05567	57	1.02	0.3139	-0.05491	0.1680	0.0
s22	0.2319	0.06028	57	3.85	0.0003	0.1112	0.3526	0.0

• Results are similar

• Note for Stata:

- you can fit the model with random intercept and random slope by xtmepoisson seiz tx post txpost || id: post, cov(uns) exposure(length)
- Random intercept-only models can be fitted with xtpoisson, re normal
- The advantages of xtmepoisson and xtmelogit over xtpoisson, re normal and xtlogit, re are:
 - Ability to include more than random intercepts
 - Empirical Bayes estimation of random effects $oldsymbol{U}_i$

- We can test whether the random post- versus pre- effects term is necessary
 - remove the "random slope" and doing a LRT
 - Need to use likelihoods from quadrature method

-2 Log Likelihood

• Fit a model with random intercept only in SAS:

```
proc glimmix data=seizure method=quad (qpoints=50);
  class id;
  model seiz=tx post tx*post /dist=poisson offset=loglength link=log s;
  random int/subject=id;
  title1 'random intercept only, quadrature method';
run;
```

2021.15

Solutions for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	1.0326	0.1527	57	6.76	<.0001
tx	-0.02385	0.2107	234	-0.11	0.9099
post	0.1108	0.04689	234	2.36	0.0189
tx*post	-0.1037	0.06505	234	-1.59	0.1123

•
$$\chi^2 = 2021.15 - 1848.90 = 172.25$$

• R code to obtain p-value:

```
> 1-pchisq(172.25,1)
[1] 0
> (1-pchisq(172.25,1))/2 #more accurate way
[1] 0
```

• Even with conservative test (p-value not divided by 2), it clearly indicates that the data support a random slope model

Subject-specific versus Population Average Models

- Subject-specific: random, mixed or fixed effects models
 Population average: marginal (GEE) models
- In a marginal model: we model $corr(Y_{ij}, Y_{ik})$ In a subject-specific model: correlation arises from U_i
- Recall that with the linear model, the **mixed model** is, generally

$$E(Y_{ij}|\boldsymbol{U}_i,X_i,D_i) = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}\boldsymbol{U}_i$$

and the induced marginal model version could then be written as

$$E(Y_{ij}|X_i) = \boldsymbol{x}'_{ij}\boldsymbol{\beta}$$
 because $E(\boldsymbol{d}'_{ij}\boldsymbol{U}_i|X_i) = 0$

giving $oldsymbol{eta}$ both a subject specific and a population average interpretation

• This dual interpretation does not hold in a non-linear models

Example: Random Intercept Logistic Model

Random intercept logistic model is

$$\Pr(Y_{ij} = 1 | U_i, X_i) = \frac{1}{1 + \exp\{-(U_i + \mathbf{x}'_{ij}\boldsymbol{\beta})\}}$$

where $\eta_{ij} = U_i + \boldsymbol{x}'_{ij}\boldsymbol{\beta}$ is the "subject-specific" or "conditional" linear predictor

• If we integrate out U_i , we obtain

$$\Pr(Y_{ij} = 1|X_i) = \int_u \frac{1}{1 + \exp\{-(u + x'_{ij}\beta)\}} f_u(u; G) du$$

where $f_u(\cdot;G)$ is the Gaussian density of U_i with variance-covariance G (here $G=\nu^2$)

• This can be approximated by marginal model (ignoring the difference among subjects)

$$\Pr(Y_{ij} = 1 | X_i) \approx \frac{1}{1 + \exp\{-(\boldsymbol{x}'_{ij}\boldsymbol{\beta}^*)\}},$$

but is **not** equal to

$$\frac{1}{1 + \exp\{-(\boldsymbol{x}'_{ij}\boldsymbol{\beta})\}},$$

- $-\beta^*$ is for marginal model: describes the ratio of populations odds
- $-\beta$ is for conditional model: describes the ratio of an individual's odds

• Zeger et al. (1988) showed that: For a logistic-normal model with only a random intercept

$$U_i \sim N(0, \nu^2)$$

then

$$\boldsymbol{\beta}^* \approx (c^2 \nu^2 + 1)^{-1/2} \boldsymbol{\beta}$$

where $c = 16\sqrt{3}/(15\pi)$

- ullet Therefore, eta from the subject-specific logistic model does not inherit the population average interpretation in a logistic model
- The marginalized version of the random intercept model is approximately logistic, but the β 's are **not** the same; rather they are **attenuated** toward zero
- The difference between β and β^* increases with ν^2 .

• The figure shows subject-specific curves for $Pr(Y_{ij} = 1|U_i)$ for several subjects, and the average of theses as the marginal mean.

Figure 13.1 Logistic random-intercept model, showing its subject-specific curves and the population-averaged marginal curve averaging over these.

ullet Illustrates why the marginal effect is smaller than the conditional effect, for a single explanatory variable X.

• **Example**: Compare results from a population average (PA) model fit to our random intercept model fit:

```
*PA exhangeable model;
proc genmod data=birthwt descending;
class id;
model lbw =mage/ dist=binomial link=logit;
repeated subject=id/type=exch;
title1 'GEE';
run;
```

Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates

		Standard	95% Con	fidence		
Parameter	Estimate	Error	Lim	its	Z I	Pr > Z
Intercept	-1.6368	0.2569	-2.1403	-1.1332	-6.37	<.0001
mage	-0.2426	0.1209	-0.4795	-0.0056	-2.01	0.0448

• Compared to our previous GLMM results:

Solutions for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	-2.0396	0.3254	877	-6.27	<.0001
mage	-0.3326	0.1448	3511	-2.30	0.0217

Notes:

- β coefficients are different; PA β^* is attenuated towards zero
- Z or t statistics are similar in two models

Example: Random Intercept Log-linear Model

• In random intercept log-linear models for count data

$$E(Y_{ij}|U_i,X_i) = \exp(U_i + \boldsymbol{x}'_{ij}\boldsymbol{\beta})$$

where $\eta_{ij}=U_i+m{x}_{ij}'m{eta}$ is the "subject-specific" or "conditional" linear predictor

• If we integrate out U_i , we obtain

$$E(Y_{ij}|X_i) = \int_u \exp(u + \boldsymbol{x}'_{ij}\boldsymbol{\beta}) f_u(u;G) du$$

$$= \int_u \exp(\boldsymbol{x}'_{ij}\boldsymbol{\beta}) \exp(u) f_u(u;G) du$$

$$= \exp(\boldsymbol{x}'_{ij}\boldsymbol{\beta}) \exp(\frac{\nu^2}{2}) = \exp(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + \frac{\nu^2}{2})$$

where $f_u(\cdot;G)$ is the Gaussian density of U_i with variance-covariance $G=\nu^2$

- Thus,
 - Intercept $\beta_0^* = \beta_0 + \frac{\nu^2}{2}$
 - Slope $\beta_k^* = \beta_k$ (if k > 0)
- **Conclusion**: For log-linear model with random intercepts, all parameters for marginal model except the intercept will have the same value and interpretation as in random intercept model.
- **Example**: Compare results from a population average (PA) model fit to our random intercept model fit:

```
*PA exhangeable model;
proc genmod data=seizure;
class id;
model seiz=tx post txtime /dist=poisson offset=loglength scale=Pearson;
repeated subject=id / type=exch covb corrb corrw modelse;
run;
```

Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates

		Standard	95% Con	fidence		
Parameter	Estimate	Error	Lim	its	Z 1	Pr > Z
Intercept	1.3476	0.1574	1.0392	1.6560	8.56	<.0001
tx	0.0265	0.2219	-0.4083	0.4613	0.12	0.9049
post	0.1108	0.1161	-0.1168	0.3383	0.95	0.3399
txtime	-0.1037	0.2136	-0.5223	0.3150	-0.49	0.6274

• Compared to our previous random intercept log-linear model:

Covariance Parameter Estimates

			Standard
Cov Parm	Subject	Estimate	Error
	J		
Intercept	id	0.6090	0.1170

Solutions for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	1.0326	0.1527	57	6.76	<.0001
tx	-0.02385	0.2107	234	-0.11	0.9099
post	0.1108	0.04689	234	2.36	0.0189
tx*post	-0.1037	0.06505	234	-1.59	0.1123

• Note:

– Predict β_0^* in marginal model by $\hat{\beta}_0$ in conditional model by theory:

$$\hat{\beta}_0^* = \hat{\beta}_0 + \frac{\nu^2}{2} = 1.0326 + 0.6090/2 = 1.3371$$

which is close to $\hat{\beta}_0^* = 1.3476$ estimated from marginal model

- Other β parameters are very close from two models (except coefficient for tx are close to 0 in both models)

Estimation of Random Effects

- Just as with LMM, estimation of random effects can be accomplished with GLMM via the **empirical Bayes** method
- ullet Recall, **Bayes** estimate of $oldsymbol{U}_i$ is

$$E(\boldsymbol{U}_{i}|\boldsymbol{Y}_{i},X_{i}) = \frac{\int_{\boldsymbol{u}_{i}} \boldsymbol{u}_{i}L_{i}(\boldsymbol{\beta},\boldsymbol{u}_{i})f_{\boldsymbol{u}}(\boldsymbol{u}_{i};G) d\boldsymbol{u}_{i}}{\int_{\boldsymbol{u}_{i}} L_{i}(\boldsymbol{\beta},\boldsymbol{u}_{i})f_{\boldsymbol{u}}(\boldsymbol{u}_{i};G) d\boldsymbol{u}_{i}}$$

where

- $-L_i(\boldsymbol{\beta}, \boldsymbol{U}_i)$ is the likelihood for \boldsymbol{U}_i
- $f_{\boldsymbol{u}}(\boldsymbol{u}_i;G)$ is the density of \boldsymbol{U}_i
- **Empirical Bayes** estimate is this same thing with estimates plugged in for β and γ (recall γ is the parameter governing G)
- These integrals can be computed in an approximate fashion such as Gaussian-Hermite quadrature

- Posterior distribution of $(\boldsymbol{U}_i|\boldsymbol{Y}_i,X_i)$ is **not normal**:
 - Mean is not the only central value that could be used as an estimate
 - Often estimate \boldsymbol{U}_i using empirical posterior \mathbf{mode} of the posterior distribution of $(\boldsymbol{U}_i|\boldsymbol{Y}_i,X_i)$
 - Then compute predicted values as

$$\hat{\eta}_{ij} = oldsymbol{x}_{ij}' \hat{oldsymbol{eta}} + oldsymbol{d}_{ij}' \hat{oldsymbol{U}}_i$$

and

$$\hat{E}(Y_{ij}|\boldsymbol{x}_{ij},\boldsymbol{U}_i) = \hat{\mu}_{ij} = h^{-1}(\hat{\eta}_{ij})$$

• SAS code for seizure example:

```
proc glimmix data=seizure method=quad (qpoints=50);
  class id;
  model seiz=tx post tx*post /dist=poisson offset=loglength link=log s;
  random int post/type=un subject=id;
  title1 'random intercept and slope, quadrature method';
  output out=out1 pred(ilink)=predicted;
run;

proc print data=out1(where=(id=201) keep=id seiz predicted) noobs;run;
proc print data=out1(where=(id=207) keep=id seiz predicted) noobs;run;
```

• SAS note:

- output out=out1 pred(ilink)=predicted: creates a dataset
 out1 with predicted values
- pred(ilink)=: predict $\mathrm{E}(Y_{ij}|m{x}_{ij},m{U}_i)=\mu_{ij}=h^{-1}(\eta_{ij})$
- If use pred= without ilink option: predict $\eta_{ij} = m{x}'_{ij}m{eta} + m{d}'_{ij}m{U}_i$

• Results:

id	seiz	predicted
201	18	18.1388
201	4	4.0821
201	4	4.0821
201	6	4.0821
201	2	4.0821
id	seiz	predicted
207	151	151.220
207	102	74.635
207	65	74.635
207	72	74.635
207	63	74.635

• It appears as if GLMM is doing an excellent job of capturing the variability in the data, even for the outlier subject number 207

• Note for Stata:

Posterior estimates are available after estimation with xtmepoisson and xtmelogit:

```
xtmepoisson seiz tx post txpost || id: post , cov(uns) exposure(length)
predict muhat , mu nooffset
```

- mu option: request predicted values of μ_{ij}
- nooffset option: do not include offset term in prediction

Fixed Effect Model Estimation

- ullet Purpose: avoid following assumptions for $oldsymbol{U}_i$ (analogous to linear fixed effects model)
 - distribution (eg, normality)
 - independence of X_i

• Application:

- only interested in the effects of covariates varying within subjects
- are not interested in estimating $oldsymbol{U}_i$
- model only has a random intercept U_i (in most common applications)
- Often used for matched data in observational studies.
 - * stratification or matching (ie, cluster) is used to control for confounding

- model is from the **canonical** exponential family, e.g.:
 - normal Y_{ij} with linear link
 - binomial with logit link (logistic regression)
 - Poisson with log link (Poisson regression)

But not (for simplicity in estimation):

- probit regression
- Poisson with square-root link
- Idea: Treat U_i as a **fixed quantity**, a nuisance parameter, and try to eliminate it from the problem (estimate $oldsymbol{eta}$ using conditional likelihood given sufficient statistics for U_i)
 - suppose the density of Y_{ij} given U_i, X_i is $f_y(y_{ij}|U_i, X_i, \beta)$
 - recall Y_{ij} 's are **independent** of one another given \boldsymbol{U}_i, X_i

- then the **likelihood** (conditional on U_i) from subject i data is

$$L_i = f_{\boldsymbol{y}}(\boldsymbol{y}_i|\boldsymbol{U}_i, X_i, \boldsymbol{\beta}) = \prod_{j=1}^{n_i} f_y(y_{ij}|\boldsymbol{U}_i, \boldsymbol{x}_{ij}, \boldsymbol{\beta})$$

• Recall density function of Y from a scaled exponential distribution:

$$f(y; \theta, \phi) = exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

and we have

$$E(Y_{ij}|\boldsymbol{x}_{ij},\boldsymbol{U}_i) = b'(\theta_{ij}) = \mu_{ij} = h^{-1}(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}\boldsymbol{U}_i)$$

• Likelihood function for subject i is (consider β and U_i as parameters):

$$L_i(oldsymbol{eta}, oldsymbol{U}_i) = \operatorname{constant} imes \exp \left[\sum_j \left\{ y_{ij} heta_{ij} - b(heta_{ij})
ight\}
ight] + \operatorname{constant}$$

- If h() is canonical link function $\Rightarrow \theta_{ij} = x'_{ij} \boldsymbol{\beta} + d'_{ij} \boldsymbol{U}_i$
- Thus, we have (ignore constant)

$$L(\boldsymbol{\beta}, \boldsymbol{U}_i) = \prod_{i} \exp \left[\sum_{j} \left\{ y_{ij}(\boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}\boldsymbol{U}_i) - b(\theta_{ij}) \right\} \right]$$
$$= \prod_{i} \exp \left[\boldsymbol{\beta}' \sum_{j} \boldsymbol{x}_{ij} y_{ij} + \boldsymbol{U}'_{i} \sum_{j} \boldsymbol{d}_{ij} y_{ij} - \sum_{j} b(\theta_{ij}) \right]$$

- ullet By factorization theorem, $\sum_j m{d}_{ij} y_{ij}$ is a **sufficient statistic** for $m{U}_i$ given fixed $m{eta}$
- In the simple case of a random intercept $b_{0i} = (\beta_0 + U_i)$, the sufficient statistic for b_{0i} is just $\sum_j y_{ij}$
 - $\sum_j y_{ij}$ contains **all** of the information in the data $oldsymbol{Y}_i$ about b_{0i}

- Hence, we use the likelihood conditioning on $\sum_{j} y_{ij}$:
 - discard data information about b_{0i} (nuisance)
 - only use data which does not contain information about b_{0i}
- This is called the **conditional likelihood**:

$$L_i^C = f \boldsymbol{y}(\boldsymbol{y}_i | \sum_j y_{ij}, \boldsymbol{\beta}, U_i, X_i) = f \boldsymbol{y}(\boldsymbol{y}_i | \sum_j y_{ij}, \boldsymbol{\beta}, X_i)$$

and it does not contain $oldsymbol{U}_i$

- For simple cases such as the random intercept model, the conditional likelihood is reasonably easy to maximize
- FE estimator can be viewed as a conditional version of RE estimator

Example: Conditional logistic regression

• Example: We are interested in the mother-specific effect of maternal age on baby's probability of low birth weight. Our model is

$$\operatorname{logit}(\mu_{ij}) = \operatorname{logit} \left\{ \Pr(Y_{ij} = 1 | U_i, X_i) \right\} = \underbrace{(\beta_0 + U_i)} + \beta_1 \operatorname{mage}$$

where U_i is considered as fixed.

Interest is on β_1 , the **mother-specific log odds ratio** relating maternal age to low birth weight

- Note: $b_{0i} = (\beta_0 + U_i)$ could also contain **between-subject** (i.e., between-mother) effects
 - mother's literacy level, her socio-economic status, etc.
 - get folded into U_i

• In SAS, we can use PROC LOGISTIC to fit this conditional logistic regression:

```
PROC LOGISTIC DATA=birthwt DESC;
MODEL lbw = mage;
STRATA id;
RUN;
```

Response Variable	lbw
Number of Response Levels	2
Number of Strata	878
Number of Uninformative Strata	580
Frequency Uninformative	2900

Analysis of Conditional Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
mage	1	0.0627	0.1956	0.1028	0.7485

Odds Ratio Estimates

	Point	95% Wald		
Effect	Estimate	Confidence	Limits	
mage	1.065	0.726	1.562	

- Interpretation: For a given mother
 - Estimated decrease in log odds of LBW 0.063 per 1-unit of maternal age (ie, 10 years).
 - Odds ratio for LBW for two babies born 10 years about to the same mother is

$$\widehat{\mathsf{OR}} = e^{0.063} = 1.065$$

- However, this is not at all significant and stands in sharp contrast to the results from the random intercept model
 - This is a "subject-specific" odds ratio
 - Adjusted for all subject-level variables, observed or unobserved
- Note for software:
 - In Stata, you can fit this model by xtlogit lbw mage, fe
 In R, you can fit conditional logistic regression by clogit(lbw ~ mage + strata(id))
 (in package survival)
- There are 580 subjects "dropped" (ie, 580 Uninformative Strata)
 - suppose a subject (mother) has 5 observations
 - suppose that $\sum_{j} y_{ij} = 5$
 - then $y_{ij} = 1$ for each j

- therefore, for these subjects, conditioning on $\sum_j y_{ij}$ eliminates all information in the data, and these subjects are uninformative for β_1
- intuitively: no within-subject variation in y_{ij}
- Conditional likelihood is likelihood-based method, so that all the usual likelihood-based inferential tools are available, eg
 - likelihood ratio tests
 - Wald-tests and Wald-based confidence intervals

Generalized Linear Mixed Models (GLMM) Summary

- Four components of GLMM:
 - linear predictor (same as in LMM)
 - link function
 - distribution of Y_{ij} conditional on $oldsymbol{U}_i$
 - distribution of $oldsymbol{U}_i$ (same as in LMM)
- Hierarchical model formulation and interpretation:

Example: For subject i, the probability of breastfeeding as a function of age is given by a **subject-specific** logistic model:

$$logit(\mu_{ij}) = \eta_{ij} = b_{0i} + b_{1i}age$$

- subject-specific intercept: $b_{0i} = \beta_0 + U_{i1}$ (or, perhaps, $b_{0i} = \beta_0 + \beta_2 \text{sex}_i + U_{i1}$)

- subject-specific slope: $b_{1i} = \beta_1 + U_{i2}$

Note: Because this is a logistic regression model,

- "subject-specific intercept" is really the subject-specific log odds of breastfeeding at age 0 years (or at whatever value of age has been chosen as the center)
- "subject-specific slope" really means the subject-specific log
 odds ratio of breastfeeding for a unit difference in one-year of age

And:

- β_0 is the average subject-specific intercept for boys (sex_i = 0)
- $\beta_0 + \beta_2$ is the average subject-specific intercept for girls $(sex_i = 1)$
- β_1 is the average subject-specific slope

- Often, models are fitted with only a random intercept:
 - this sets $var(U_{i2}) = 0$, which sets $U_{i2} = 0$ for all i
 - β_1 still has the interpretation as a "**subject-specific** slope with respect to age", assuming this slope is constant across subjects
 - U_{i1} captures unobserved heterogeneity due to differences across subjects
 - Heterogeneity could be due to unobserved confounding factors →
 use fixed effects model estimation
 (only works for covariates that vary within-subject)
- Mixed effects models have a **subject-specific** interpretation
 - approximate formulae exist for re-expressing subject-specific models as population-average models
 - these approximations can be very useful for model checking, as fitted (approximate) marginal model means (proportions) can be compared to observed means (proportions) in the data

- Choice between a subject-specific (random effects) and a population average (marginal) model
 - Often depends on the question being asked than the data
 - both types of models can fit the data equally well
- With missing data (more details later):
 - GEE and GLMM methods will use all observations.
 - * Subjects with some missing observations also contribute.
 - If the model is correctly specified
 - * GEE are consistent when the responses are missing completely at random (MCAR)
 - * GLMM are consistent when the responses are missing at random (MAR)

- ullet Fitting of models with random $oldsymbol{U}_i$'s requires numerical integration via Gauss-Hermit quadrature or linearization approximation.
- ullet How to model U_i ?
 - As a fixed effect:
 - do not have assume U_i independent of X_i
 - do not get between-subject effects

Uses longitudinal data to **control unmeasured between-subject confounders**

- As a random effect:
 - must assume \boldsymbol{U}_i independent of X_i
 - can estimate between-subject effects
 - can do empirical bayes estimation of $oldsymbol{U}_i$'s

Uses longitudinal data to model individual trajectories

- Motivations and justifications for using random effect model estimation (in contrast to the case of fixed effects)
 Suppose:
 - we are interested in both within- and between-subject effects (e.g., the effects of age and of sex of child)
 - it is not unreasonable to assume that $oldsymbol{U}_i$ is independent of X_i
 - it is reasonable to assume that $oldsymbol{U}_i$ is (at least approximately) normally distributed
 - we are interested in more than just a random intercept
 - we would like to estimate the subject-level random effects $oldsymbol{U}_i$
- Some resources for R:
 - About GLMM
 - About conditional logistic regression and GLMM for binary data