The group G is isomorphic to the group labelled by [72, 45] in the Small Groups library. Ordinary character table of $G \cong C2 \times ((C3 \times C3) : C4)$:

	1a	2a	3a	4a	4b	3b	2b	2c	6a	4c	4d	6b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	-1	1	-1	-1	-1	1	1	-1
χ_3	1	1	1	-1	-1	1	1	1	1	-1	-1	1
χ_4	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_5	1	-1	1	-E(4)	E(4)	1	-1	1	-1	E(4)	-E(4)	-1
χ_6	1	-1	1	E(4)	-E(4)	1	-1	1	-1	-E(4)	E(4)	-1
χ_7	1	-1	1	-E(4)	E(4)	1	1	-1	1	-E(4)	E(4)	1
χ_8	1	-1	1	E(4)	-E(4)	1	1	-1	1	E(4)	-E(4)	1
χ_9	4	0	-2	0	0	1	-4	0	2	0	0	-1
χ_{10}	4	0	-2	0	0	1	4	0	-2	0	0	1
χ_{11}	4	0	1	0	0	-2	-4	0	-1	0	0	2
χ_{12}	4	0	1	0	0	-2	4	0	1	0	0	-2

Trivial source character table of $G \cong C2 \times ((C3 \times C3) : C4)$ at p = 2:

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(5,6)(7,8)]) \cong C2$ $P_3 = Group([(1,2)]) \cong C2$

 $N_7 = Group([(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2$ $N_8 = Group([(1,2)(3,4)(5,8,6,7),(1,2),(5,6)(7,8)]) \cong C4 \times C2$

Normalisers N_i		N_1		N_2		N_3		N_4	N_5	N_6	N_7	N_8
p-subgroups of G up to conjugacy in G			P_1		P_2		P_3		P_5	P_6	P_7	P_8
Representatives $n_j \in N_i$				1a	1a	3a	3b	1a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	8	8	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	8	2	-4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	-4	2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	0	4	4	4	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	4	1	-2	0	4	1	-2	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	1	0	4	-2	1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	0	0	0	0	4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	2	2	2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1

```
\begin{array}{l} P_4 = Group([(1,2)(5,6)(7,8)]) \cong C2 \\ P_5 = Group([(5,6)(7,8),(1,2)]) \cong C2 \times C2 \\ P_6 = Group([(5,6)(7,8),(1,2)(3,4)(5,8,6,7)]) \cong C4 \\ P_7 = Group([(5,6)(7,8),(3,4)(5,8,6,7)]) \cong C4 \\ P_8 = Group([(5,6)(7,8),(1,2),(1,2)(3,4)(5,8,6,7)]) \cong C4 \times C2 \\ \\ N_1 = Group([(1,2)(3,4)(5,8,6,7),(1,2),(5,6)(7,8),(4,8,7),(3,5,6)(4,8,7)]) \cong C2 \times ((C3 \times C3) : C4) \\ N_2 = Group([(5,6)(7,8),(1,2),(1,2)(3,4)(5,8,6,7)]) \cong C4 \times C2 \\ \\ N_3 = Group([(1,2)(3,4)(5,8,6,7),(1,2),(5,6)(7,8),(4,8,7),(3,5,6)(4,8,7)]) \cong C2 \times ((C3 \times C3) : C4) \\ N_4 = Group([(1,2)(5,6)(7,8),(5,6)(7,8),(1,2),(1,2)(3,4)(5,8,6,7)]) \cong C4 \times C2 \\ \\ N_5 = Group([(1,2),(5,6)(7,8),(3,4)(5,7,6,8)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_6 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_7 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times C2 \\ \\ N_8 = Group([(1,2)(3,4)(5,8,6,7),(5,6)(7,8),(1,2)]) \cong C4 \times
```