

Logistique Industrielle

TD1

Exercice 1

Déterminer un découpage en îlots de production en utilisant la méthode de Kuziack.

Tableau de Flux:

Machines	M1	M2	M3	M4	M5	M6
Pièces						
Α	3		2		1	
В		1		3		2
С		3		2		1
D	1		3			2
E			1	2		
F	2					1

Exercice 2

On donne les gammes de fabrication suivantes :

Machines	M1	M2	M3	M4	M5
Pièces					
Α				2	1
В			1		2
С		3		2	1
D	1		2		
E	1		2		

- **1.** Appliquer la méthode de King pour déterminer les ilots de production ?
- 2. Qu'est-ce que vous remarquez ?

Exercice 3

On donne les gammes de fabrication suivantes :

Machines	M1	M2	M3	M4	M5
Pièces					
P1	1			2	
P2			2		1
P3		2	3	1	
P4	1			2	
P5			2		1

- 1. Déterminer un découpage en îlots de production en utilisant la méthode de Kuziack.
- **2.** Appliquer la méthode de King pour déterminer les ilots de production.

Exercice 4

Au sein d'un atelier, l'entreprise a décidé d'ajouter un autre îlot de production. Le service logistique a donné la possibilité de plusieurs schémas d'implantation dont deux sont retenus.

- Quel est le schéma le plus convenable ? Pourquoi ?

Exercice 5

Une usine X veut implanter un îlot de fabrication qui comporte sept postes de travail notés de A à G. Il est prévu pour produire une famille de cinq pièces notées de P1 à P5 dont les gammes opératoires sont décrites dans le tableau ci-dessous :

Repère pièce		Nombre de lots de transfert					
P1	A	D	В	E			25
P2	F	В	D	A	G	В	43
P3	F	В	D	Α			15
P4	Α	С	В				24
P5	A	В	С	D			90

- 1. Établir la matrice à double entrée (ou table des chaînons),
- 2. Inventorier les chaînons empruntés et déterminer les indices de flux (densité de circulation),
- 3. Déterminer le nombre de chaînons pour chaque poste de travail. Ensuite, classer les postes,
- 4. Déterminer l'implantation théorique optimale sur une maille triangulaire (Annexe).

Exercice 6

Un atelier de fabrication mécanique comporte 5 machines (A à E) et fabrique régulièrement 3 types de pièces (P1 à P3). Les gammes de fabrication de l'atelier de production de pièces mécaniques peuvent être résumées ainsi :

Repère		Nombre de lots				
pièce						de transfert
P1	A	D	С	В	Е	20
P2	С	Е				30
P3	A	С	В	Е		12

Question:

Établissez en utilisant la méthode des chaînons, au moins deux propositions d'implantation sur une trame de ce type :

