Prime Numbers

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Prime number is a special kind of number that is widely used in a lot of places, even our mother nature uses it! This question is simple, find the prime factor of a number, sum all of it, modulo it with the greatest prime factor and check whether the result is a prime number.

Input

The first line consists of an integer, $1 \le n \le 100$.

Every n lines consists of a number that is between $1 \le k leq 2 \times 10^7$.

Output

"YES" or "NO" as to determine whether the result is a prime number.

Examples

standard output
NO
YES
NO
NO
YES
YES

Note

For the first example, 11 has only one prime factor which is 11. Thus the result will be 11 modulo 11 = 0 and 0 is not a prime number. 1000 has a prime factor of $2 \times 2 \times 2 \times 5 \times 5 \times 5$ and 5 is the greatest prime factor. Thus, (2 + 2 + 2 + 5 + 5 + 5) modulo 5 = 1 and 1 is not a prime factor.

For the second example, the second case 7213189 has a prime factor of 61×118249 . Thus the result will be (61 + 118249) modulo 118249 = 61 and 61 is a prime number.