

Authenticated Encryption

Applied Cryptography - Spring 2024

Bart Mennink

February 19, 2024

Institute for Computing and Information Sciences Radboud University

Last Lectures

Encryption

• Security goal: confidentiality

• Examples: ECB, counter mode

Authentication

• Security goal: data integrity

• Examples: CBC-MAC, Poly1305

Authenticated encryption combines both

Authenticated Encryption

- Using key *K*:
 - Message *M* is encrypted in ciphertext *C*
 - Associated data A and message M are authenticated using T
- Nonce N randomizes the scheme

Authenticated Encryption

- Using key *K*:
 - Message *M* is encrypted in ciphertext *C*
 - Associated data A and message M are authenticated using T
- Nonce *N* randomizes the scheme
- ullet Authenticated decryption discloses M if and only if T is correct

Authenticated Encryption Security

- Two oracles: (AE_K, AE_K^{-1}) (for secret key K) and $(\$, \bot)$ (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these o unique nonce for each encryption query, and no trivial queries
- ullet ${\cal D}$ tries to determine which oracle it communicates with

Authenticated Encryption Security

- Two oracles: (AE_K, AE_K^{-1}) (for secret key K) and $(\$, \bot)$ (secret)
- Distinguisher D has query access to one of these
 → unique nonce for each encryption query, and no trivial queries
- \bullet \mathcal{D} tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathsf{Adv}^{\mathrm{ae}}_{\mathsf{AE}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{AE}_{\mathcal{K}}, \mathsf{AE}_{\mathcal{K}}^{-1} \; ; \; \$, \bot\right) = \left|\mathsf{Pr}\left(\mathcal{D}^{\mathsf{AE}_{\mathcal{K}}, \mathsf{AE}_{\mathcal{K}}^{-1}} = 1\right) - \mathsf{Pr}\left(\mathcal{D}^{\$, \bot} = 1\right)\right|$$

• $\mathsf{Adv}^{\mathrm{ae}}_{\mathsf{AE}}(q_e,q_v)$: supremal advantage over any $\mathcal D$ with query complexity q_e,q_v

Outline

Authenticated Encryption Design

Simple Example

Example: GCM Authenticated Encryption

Role of the Nonce, and GCM-SIV Authenticated Encryption

Tweakable Block Ciphers

Example: OCB Authenticated Encryption

Building Tweakable Block Ciphers

Application to Authenticated Encryption

Authenticated Encryption Design

Encryption

• Input: (*N*, *M*)

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$

Μ

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$
- Output:
 - $C = Z_1 \oplus M$

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$
- Output:
 - $C = Z_1 \oplus M$
 - $T = Z_2 \oplus (M \otimes L)$

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$
- Output:
 - $C = Z_1 \oplus M$
 - $T = Z_2 \oplus (M \otimes L)$

Decryption

• Input: (*N*, *C*, *T*)

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$
- Output:
 - $C = Z_1 \oplus M$
 - $T = Z_2 \oplus (M \otimes L)$

Decryption

- Input: (*N*, *C*, *T*)
- Compute keystream $Z_1 \parallel Z_2$
- Compute $M = Z_1 \oplus C$

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$
- Output:
 - $C = Z_1 \oplus M$
 - $T = Z_2 \oplus (M \otimes L)$

Decryption

- Input: (*N*, *C*, *T*)
- Compute keystream $Z_1 \parallel Z_2$
- Compute $M = Z_1 \oplus C$
- Compute $T^* = Z_2 \oplus (M \otimes L)$

Encryption

- Input: (*N*, *M*)
- Compute keystream $Z_1 \parallel Z_2$
- Output:
 - $C = Z_1 \oplus M$
 - $T = Z_2 \oplus (M \otimes L)$

Decryption

- Input: (*N*, *C*, *T*)
- Compute keystream $Z_1 \parallel Z_2$
- Compute $M = Z_1 \oplus C$
- Compute $T^* = Z_2 \oplus (M \otimes L)$
- Output: $\begin{cases} M \text{ if } T = T^* \\ \bot \text{ otherwise} \end{cases}$

Simple Example: Confidentiality

Confidentiality

- Consider new query (N, M)
- *N* should be fresh

Simple Example: Confidentiality

Confidentiality

- Consider new query (N, M)
- N should be fresh
- Random $Z_1 \parallel Z_2$ (if F is a good stream cipher)

Simple Example: Confidentiality

Confidentiality

- Consider new query (N, M)
- N should be fresh
- Random $Z_1 \parallel Z_2$ (if F is a good stream cipher)
- Random (*C*, *T*)

Authenticity

• Consider forgery attempt (N, C, T)

- Consider forgery attempt (N, C, T)
- *N* could be repeated nonce

- Consider forgery attempt (N, C, T)
- N could be repeated nonce
- N fresh:
 - T* is random, unpredictable

- Consider forgery attempt (N, C, T)
- *N* could be repeated nonce
- N fresh:
 - T* is random, unpredictable
- N repeated:
 - Let (N, M', C', T') be old

- Consider forgery attempt (N, C, T)
- N could be repeated nonce
- N fresh:
 - T^* is random, unpredictable
- *N* repeated:
 - Let (N, M', C', T') be old
 - $\bullet \ M=Z_1\oplus C=M'\oplus C'\oplus C$

- Consider forgery attempt (N, C, T)
- N could be repeated nonce
- N fresh:
 - T* is random, unpredictable
- *N* repeated:
 - Let (*N*, *M'*, *C'*, *T'*) be old
 - $M = Z_1 \oplus C = M' \oplus C' \oplus C$

•
$$T^* = Z_2 \oplus (M \otimes L)$$

= $T' \oplus ((M \oplus M') \otimes L)$
= $T' \oplus ((C \oplus C') \otimes L)$

- Consider forgery attempt (N, C, T)
- N could be repeated nonce
- N fresh:
 - T* is random, unpredictable
- *N* repeated:
 - Let (N, M', C', T') be old
 - $M = Z_1 \oplus C = M' \oplus C' \oplus C$
 - $T^* = Z_2 \oplus (M \otimes L)$ = $T' \oplus ((M \oplus M') \otimes L)$ = $T' \oplus ((C \oplus C') \otimes L)$
 - Forgery successful if $T \oplus T' = (C \oplus C') \otimes L$

- Consider forgery attempt (N, C, T)
- N could be repeated nonce
- N fresh:
 - T^* is random, unpredictable
- N repeated:
 - Let (N, M', C', T') be old
 - $\bullet \ M = Z_1 \oplus C = M' \oplus C' \oplus C$

•
$$T^* = Z_2 \oplus (M \otimes L)$$

= $T' \oplus ((M \oplus M') \otimes L)$
= $T' \oplus ((C \oplus C') \otimes L)$

- Forgery successful if $T \oplus T' = (C \oplus C') \otimes L$
- Requires guessing L

Suppose *M* is Variable-Length?

Suppose *M* is Variable-Length?

- Output *F* should be twice as large?
- \otimes over arbitrary # of bits?

Suppose *M* is Variable-Length?

- Output *F* should be twice as large?
- |M| + n bits turns out to suffice:
 - Use streaming mode for *F*
 - Replace $M \otimes L$ by $H_L(M)$

Suppose *M* is Variable-Length?

- Output *F* should be twice as large?
- ⊗ over arbitrary # of bits?
- |M| + n bits turns out to suffice:
 - ullet Use streaming mode for F
 - Replace $M \otimes L$ by $H_L(M)$

What about AD A?

Suppose *M* is Variable-Length?

- Output *F* should be twice as large?
- ⊗ over arbitrary # of bits?
- |M| + n bits turns out to suffice:
 - Use streaming mode for *F*
 - Replace $M \otimes L$ by $H_L(M)$

What about AD A?

- Can be processed by H_L as well:
 - $H_L(A, M)$

Suppose *M* is Variable-Length?

- Output *F* should be twice as large?
- ⊗ over arbitrary # of bits?
- |M| + n bits turns out to suffice:
 - Use streaming mode for *F*
 - Replace $M \otimes L$ by $H_L(M)$

What about AD A?

- Can be processed by H_L as well:
 - $H_L(A, M)$

This is almost exactly GCM!

Suppose *M* is Variable-Length?

- Output *F* should be twice as large?
- ⊗ over arbitrary # of bits?
- |M| + n bits turns out to suffice:
 - Use streaming mode for F
 - Replace $M \otimes L$ by $H_L(M)$

What about AD A?

- Can be processed by H_L as well:
 - $H_L(A, M)$

This is almost exactly GCM!

- Encrypt-then-MAC: $H_L(A, C)$
- Take CTR mode for F

GCM for 96-bit Nonce N

- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free

GCM for 96-bit Nonce N

- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free
- Parallelizable
- Evaluates E only (no E^{-1})
- Provably secure (if E is PRP)
- Very efficient in HW
- Reasonably efficient in SW

GCM for 96-bit Nonce N

- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free
- Parallelizable
- Evaluates E only (no E^{-1})
- Provably secure (if E is PRP)
- Very efficient in HW
- Reasonably efficient in SW
- Note: equally popular is ChaCha20-Poly1305!

GCM for 96-bit Nonce N

- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free
- Parallelizable
- Evaluates E only (no E^{-1})
- Provably secure (if E is PRP)
- Very efficient in HW
- Reasonably efficient in SW
- Note: equally popular is ChaCha20-Poly1305!

What happens if nonce is re-used?

Nonce = "Number Used Once"

• Nonces N and N' should be distinct for two different evaluations

Nonce = "Number Used Once"

- Nonces N and N' should be distinct for two different evaluations
- What happens if a nonce would be repeated?

ullet Consider evaluations for identical nonce but distinct M,M'

- Consider evaluations for identical nonce but distinct M, M'
- Key streams will be identical

- Consider evaluations for identical nonce but distinct M, M'
- Key streams will be identical
- Ciphertexts satisfy $C \oplus C' = M \oplus M' \longrightarrow$ attacker knew C' in advance

- Consider evaluations for identical nonce but distinct M, M'
- Key streams will be identical
- Ciphertexts satisfy $C \oplus C' = M \oplus M' \longrightarrow$ attacker knew C' in advance
- Tags satisfy $T \oplus T' = M \otimes L \oplus M' \otimes L = (M \oplus M') \otimes L \longrightarrow \text{key recovery}$

Guaranteeing Uniqueness of Nonce

Guaranteeing Uniqueness of Nonce

- Issues with nonce generation:
 - Counter needs storage
 - Need synchronization or transmission
 - Efficiency cost
 - Laziness or mistake of implementor
 - . . .

Guaranteeing Uniqueness of Nonce

- Issues with nonce generation:
 - Counter needs storage
 - Need synchronization or transmission
 - Efficiency cost
 - Laziness or mistake of implementor
 - ...
- Sometimes, attacker can use same nonce multiple times

Nonce-Reuse in Practice

Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS

Böck et al., USENIX WOOT 2016

- GCM is widely used authenticated encryption scheme
- Used in TLS ("https")
- Internet-wide scan for GCM implementations
- 184 devices with duplicated nonces
 - VISA, Polish bank, German stock exchange, . . .
- ≈ 70.000 devices with random nonce

Resistance Against Nonce-Reuse

Intuition

- All input should be cryptographically transformed
- Any change in $(N, A, M) \longrightarrow \text{unpredictable } (C, T)$
- Often comes at a price:
 - Efficiency
 - Security
 - Parallelizability
 - ...

GCM-SIV

- Gueron and Lindell (2015)
- MtE design
- Ongoing standardization (IETF RFC)
- Patent-free

GCM-SIV

- Gueron and Lindell (2015)
- MtE design
- Ongoing standardization (IETF RFC)
- Patent-free
- Inherits GCM features
- Secure against nonce-reuse
- Proof: Iwata and Seurin (2017)

ullet Using key K, message M is bijectively transformed to ciphertext C

- Using key K, message M is bijectively transformed to ciphertext C
- ullet Tweak T: flexibility to the cipher
- Each tweak gives different permutation

- Using key K, message M is bijectively transformed to ciphertext C
- Tweak *T*: flexibility to the cipher
- Each tweak gives different permutation
- A good tweakable block cipher should behave like a random tweakable permutation

• Two oracles: \widetilde{E}_K (for secret key K) and \widetilde{p} (secret)

- Two oracles: \widetilde{E}_K (for secret key K) and \widetilde{p} (secret)
- \bullet Distinguisher ${\mathcal D}$ has query access to one of these

- Two oracles: \widetilde{E}_K (for secret key K) and \widetilde{p} (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet ${\cal D}$ tries to determine which oracle it communicates with

- Two oracles: \widetilde{E}_K (for secret key K) and \widetilde{p} (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet $\mathcal D$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathsf{Adv}^{\mathrm{tprp}}_{\widetilde{\mathcal{E}}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\widetilde{\mathcal{E}}_{\mathcal{K}}\;;\;\widetilde{\rho}\right) = \left|\mathsf{Pr}\left(\mathcal{D}^{\widetilde{\mathcal{E}}_{\mathcal{K}}} = 1\right) - \mathsf{Pr}\left(\mathcal{D}^{\widetilde{\rho}} = 1\right)\right|$$

- Two oracles: \widetilde{E}_K (for secret key K) and \widetilde{p} (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet ${\cal D}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathsf{Adv}^{\mathrm{tprp}}_{\widetilde{\mathcal{E}}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\widetilde{\mathcal{E}}_{\mathcal{K}}\;;\;\widetilde{\rho}\right) = \left|\mathsf{Pr}\left(\mathcal{D}^{\widetilde{\mathcal{E}}_{\mathcal{K}}} = 1\right) - \mathsf{Pr}\left(\mathcal{D}^{\widetilde{\rho}} = 1\right)\right|$$

• $\mathsf{Adv}^{\mathrm{tprp}}_{\widetilde{\mathcal{F}}}(q)$: supremal advantage over any $\mathcal D$ with query complexity q

 $\bullet \ \, \mathsf{Two} \,\, \mathsf{oracles:} \,\, (\widetilde{E}_{\mathcal{K}}, \widetilde{E}_{\mathcal{K}}^{-1}) \,\, (\mathsf{for} \,\, \mathsf{secret} \,\, \mathsf{key} \,\, \mathcal{K}) \,\, \mathsf{and} \,\, (\widetilde{\rho}, \widetilde{\rho}^{-1}) \,\, (\mathsf{secret})$

- Two oracles: $(\widetilde{E}_K,\widetilde{E}_K^{-1})$ (for secret key K) and $(\widetilde{\rho},\widetilde{\rho}^{-1})$ (secret)
- \bullet Distinguisher ${\mathcal D}$ has query access to one of these

- Two oracles: $(\widetilde{E}_K, \widetilde{E}_K^{-1})$ (for secret key K) and $(\widetilde{\rho}, \widetilde{\rho}^{-1})$ (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet ${\cal D}$ tries to determine which oracle it communicates with

- Two oracles: $(\widetilde{E}_K, \widetilde{E}_K^{-1})$ (for secret key K) and $(\widetilde{\rho}, \widetilde{\rho}^{-1})$ (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\text{Adv}_{\widetilde{\mathcal{E}}}^{\mathrm{stprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\widetilde{\mathcal{E}}_{K}, \widetilde{\mathcal{E}}_{K}^{-1} \; ; \; \widetilde{\boldsymbol{p}}, \widetilde{\boldsymbol{p}}^{-1}\right) = \left|\text{Pr}\left(\mathcal{D}^{\widetilde{\mathcal{E}}_{K}, \widetilde{\mathcal{E}}_{K}^{-1}} = 1\right) - \text{Pr}\left(\mathcal{D}^{\widetilde{\boldsymbol{p}}, \widetilde{\boldsymbol{p}}^{-1}} = 1\right)\right|$$

- Two oracles: $(\widetilde{E}_K, \widetilde{E}_K^{-1})$ (for secret key K) and $(\widetilde{p}, \widetilde{p}^{-1})$ (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\text{Adv}_{\widetilde{\mathcal{E}}}^{\mathrm{stprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\widetilde{\mathcal{E}}_{\mathcal{K}}, \widetilde{\mathcal{E}}_{\mathcal{K}}^{-1} \; ; \; \widetilde{\boldsymbol{p}}, \widetilde{\boldsymbol{p}}^{-1}\right) = \left|\text{Pr}\left(\mathcal{D}^{\widetilde{\mathcal{E}}_{\mathcal{K}}, \widetilde{\mathcal{E}}_{\mathcal{K}}^{-1}} = 1\right) - \text{Pr}\left(\mathcal{D}^{\widetilde{\boldsymbol{p}}, \widetilde{\boldsymbol{p}}^{-1}} = 1\right)\right|$$

ullet Adv $^{\mathrm{stprp}}_{\widetilde{\mathcal{F}}}(q)$: supremal advantage over any $\mathcal D$ with query complexity q

• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable block cipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
 - Different blocks always transformed under different tweak

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable block cipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
 - Different blocks always transformed under different tweak

$$\mathsf{Adv}^{\mathrm{ae}}_{\mathsf{AE}[\widetilde{\boldsymbol{E}_k}]}(q)$$

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ullet Internally based on tweakable block cipher \widetilde{E}
 - Tweak (N, tweak) is unique for every evaluation
 - Different blocks always transformed under different tweak
- Triangle inequality:

$$\mathsf{Adv}^{\mathrm{ae}}_{\mathsf{AE}[\widetilde{\mathcal{E}}_k]}(q) \leq \mathsf{Adv}^{\mathrm{ae}}_{\mathsf{AE}[\widetilde{\rho}]}(q) + \mathsf{Adv}^{\mathrm{stprp}}_{\widetilde{\mathcal{E}}}(q)$$

 $\bullet \ \ \mathsf{Nonce} \ \mathsf{uniqueness} \Rightarrow \mathsf{tweak} \ \mathsf{uniqueness}$

- $\bullet \ \ \mathsf{Nonce} \ \mathsf{uniqueness} \Rightarrow \mathsf{tweak} \ \mathsf{uniqueness} \\$
- Encryption calls behave like random functions: $AE[\tilde{p}] =$ \$

Example Use in Θ CB (2/2)

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{p}] =$ \$
- Authentication almost behaves like random function (but nonces may repeat)

Example Use in Θ CB (2/2)

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{p}] = \$$
- Authentication almost behaves like random function (but nonces may repeat)
 - Tag forged with probability at most $1/(2^n 1)$

Example Use in Θ CB (2/2)

- Nonce uniqueness ⇒ tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{p}] = \$$
- Authentication almost behaves like random function (but nonces may repeat)
 - Tag forged with probability at most $1/(2^n 1)$

$$\mathsf{Adv}^{\mathrm{ae}}_{\mathsf{AE}[\widetilde{m{
ho}}]}(q) \leq 1/(2^n-1)$$

Building Tweakable Block Ciphers

TWEAKEY Framework

• TWEAKEY by Jean et al. [JNP14]:

- *f*: round function
- g: subkey computation
- h: transformation of (K, T)

TWEAKEY Framework

• TWEAKEY by Jean et al. [JNP14]:

- *f*: round function
- g: subkey computation
- h: transformation of (K, T)
- Security measured through cryptanalysis
- Our focus: modular design

Original Constructions

• LRW₁ and LRW₂ by Liskov et al. [LRW02]:

- h is XOR-universal hash
 - E.g., $h(T) = h \otimes T$ for *n*-bit "key" h

• XEX by Rogaway [Rog04]:

• $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- ullet Used in OCB2 and ± 14 CAESAR candidates

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and ± 14 CAESAR candidates
- Permutation-based variants in Minalpher and Prøst (generalized by Cogliati et al. [CLS15])

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- ullet Used in OCB2 and ± 14 CAESAR candidates
- Permutation-based variants in Minalpher and Prøst (generalized by Cogliati et al. [CLS15])
- STPRP up to $2^{n/2}$ queries provided masks are all distinct

- Update of mask:
 - Shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

- Update of mask:
 - Shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

• Suppose we would mask with $E_K(N)$:

• Suppose we would mask with $E_K(N)$:

• Distinguisher can make inverse queries

• Suppose we would mask with $E_K(N)$:

- Distinguisher can make inverse queries
- Putting C = 0 gives $M = N \oplus E_K(N)$

• Suppose we would mask with $E_K(N)$:

- Distinguisher can make inverse queries
- Putting C = 0 gives $M = N \oplus E_K(N)$
- Distinguisher knows N so learns "subkey" $E_K(N)$

Powering-Up Masking (XEX): Setting Admissible Domain

• XEX by Rogaway [Rog04]:

• $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Powering-Up Masking (XEX): Setting Admissible Domain

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- (α, β, γ) must be from a certain admissible domain
- We need that $2^{\alpha}3^{\beta}7^{\gamma} \neq 2^{\alpha'}3^{\beta'}7^{\gamma'}$ for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$
 - Otherwise, attacker can obviously break the scheme

Powering-Up Masking (XEX): Setting Admissible Domain

- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- (α, β, γ) must be from a certain admissible domain
- We need that $2^{\alpha}3^{\beta}7^{\gamma} \neq 2^{\alpha'}3^{\beta'}7^{\gamma'}$ for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$
 - Otherwise, attacker can obviously break the scheme
- Typical: $\alpha \in \{1, \dots, large\}$, and $\beta, \gamma \in \{0, 1, 2\}$

 $\bullet \ \mathsf{XTS} = \mathsf{XEX}\text{-based Tweaked-codebook mode with ciphertext Stealing}$

- XTS = XEX-based Tweaked-codebook mode with ciphertext Stealing
 - Electronic CodeBook (ECB) ...

- XTS = XEX-based Tweaked-codebook mode with ciphertext Stealing
 - Electronic CodeBook (ECB) ...
 - ullet ...with XEX as primitive (i is sector, j is block within sector) ...

- XTS = XEX-based Tweaked-codebook mode with ciphertext Stealing
 - Electronic CodeBook (ECB) ...
 - ... with XEX as primitive (i is sector, j is block within sector) ...
 - ...and doing a fancy thing called "ciphertext stealing"

- XTS = XEX-based Tweaked-codebook mode with ciphertext Stealing
 - Electronic CodeBook (ECB) ...
 - ... with XEX as primitive (i is sector, j is block within sector) ...
 - ...and doing a fancy thing called "ciphertext stealing"

- XTS = XEX-based Tweaked-codebook mode with ciphertext Stealing
 - Electronic CodeBook (ECB) ...
 - ... with XEX as primitive (i is sector, j is block within sector) ...
 - ...and doing a fancy thing called "ciphertext stealing"
- One sector consists of 512 bytes, or 32 blocks

- Features:
 - Tweak unique for every block, changing tweak is efficient
 - Incrementality: change in one (or few) blocks

- Features:
 - Tweak unique for every block, changing tweak is efficient
 - Incrementality: change in one (or few) blocks
- XTS-AES is standardized as IEEE P1619
- Supported by myriad disk encryption tools: BestCrypt, dm-crypt, TrueCrypt, VeraCrypt, DiskCryptor, FileVault 2 (MacOS), BitLocker (Windows 10)

Gray Code Masking

• OCB1 and OCB3 use Gray Codes:

- (α, N) is tweak
- Updating: $G(\alpha) = G(\alpha 1) \oplus 2^{\mathsf{ntz}(\alpha)}$

Gray Code Masking

• OCB1 and OCB3 use Gray Codes:

- (α, N) is tweak
- Updating: $G(\alpha) = G(\alpha 1) \oplus 2^{\mathsf{ntz}(\alpha)}$
 - Single XOR
 - Logarithmic amount of field doublings (precomputed)
- More efficient than powering-up [KR11]

Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:

• φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs

Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:

- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs
- Simpler, constant-time (by default), more efficient

Application to AE: OPP

- Offset Public Permutation (OPP)
- Generalization of OCB3:
 - Permutation-based
 - More efficient MEM masking
- Security against nonce-respecting adversaries

NIST Competition

- US NIST recently currently ran competition for lightweight cryptography
- Round 1: 56 submissions in February 2019
- Round 2: 32 submissions in August 2019
- Final round: 10 submissions in March 2021
- Winner Ascon announced February 2023

NIST Competition

- US NIST recently currently ran competition for lightweight cryptography
- Round 1: 56 submissions in February 2019
- Round 2: 32 submissions in August 2019
- Final round: 10 submissions in March 2021
- Winner Ascon announced February 2023
- Some submissions were sponge-based (like Ascon)
- Some submissions used techniques from this lecture