Алгебра и геометрия
 Лекция 1

Матрицы. Основные определения

Матрицей размеров $m \times n$ называется прямоугольная таблица

Матрицы. Основные определения

Числа, образующие матрицу, называются ее элементами

Мы будем обозначать матрицы заглавными латинскими буквами: A, B, C, ...

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Матрицы. Основные определения

Элемент матрицы A

Представления матриц

Развернутое представление матрицы

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Неразвернутое представление матрицы

$$(a_{ij})$$
 или A

Если важно указать размеры:

$$(a_{ij})_{i=\overline{1,m}}$$
 или A_{mn} $j=\overline{1,n}$

Квадратная матрица

Если n=m, то матрица называется квадратной порядка n. Все остальные матрицы называются прямоугольными.

Обозначения:
$$(a_{ij})_{i,j=\overline{1,n}}$$
 или A_n

$$A_{n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Столбцы и строки

Столбцом высоты m называется матрица m imes 1

Строкой длины n называется матрица $1 \times n$

Нулевая матрица

Матрица, все элементы которой равны нулю, называется нулевой

Обозначения: O или O_{mn} (если важны размеры)

$$O_{mn} = egin{pmatrix} 0 & 0 & \cdots & 0 \ 0 & 0 & \cdots & 0 \ \vdots & \ddots & \ddots & \vdots \ 0 & 0 & \cdots & 0 \end{pmatrix} \ m \ \text{строк}$$

Единичная матрица

Квадратная матрица вида

$$E_{n} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} n \\ \vdots \\ n \\ \vdots \\ n \end{pmatrix}$$

называется единичной матрицей порядка n

Обозначения: E_n (или E, если порядок не важен)

Единичная матрица

Это определение можно переписать поэлементно:

$$a_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases} \quad \forall i, j = \overline{1, n}$$

$$E_{n} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \uparrow n$$

Равенство матриц

Говорят, что A = B, если их размеры одинаковы и их соответствующие элементы равны

$$a_{ij} = b_{ij} \quad \forall i = \overline{1, m}; \quad \forall j = \overline{1, n}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}$$

Операции с матрицами

Матрица $C=(c_{ij})$ называется суммой матриц $A=(a_{ij})$ и $B=(b_{ij})$, если их размеры одинаковы и

$$c_{ij} = a_{ij} + b_{ij} \quad \forall i = \overline{1,m}; \quad \forall j = \overline{1,n}$$

Матрица $C=(c_{ij})$ называется произведением числа λ на матрицу $A=(a_{ij})_{i=\overline{1,m}}$, $j=\overline{1,n}$

если для всех i и j $c_{ij} = \lambda a_{ij}$

Операции с матрицами

Утверждение: \forall матриц A, B, C одинаковых размеров и \forall чисел α, β :

1.
$$A + B = B + A$$

2.
$$(A + B) + C = A + (B + C)$$

3.
$$\alpha(A+B) = \alpha A + \alpha B$$

4.
$$(\alpha + \beta)A = \alpha A + \beta A$$

5.
$$(\alpha\beta)A = \alpha(\beta A)$$

6.
$$A + O = A$$

Доказательство: очевидно

Операции с матрицами

Матрица (-1)A называется противоположной матрице A и обозначается -A

$$B-A$$
 есть $B+(-A)$

Операция транспонирования

Транспонированием матрицы называется операция, в результате которой получается матрица, в которой строками являются столбцы исходной матрицы, записанные с сохранением порядка их следования

Обозначение: A^T , где A — исходная матрица $(m \times n)$

$$a_{ij}^T = a_{ji} \quad \forall i = \overline{1, m}; \ \forall j = \overline{1, n}$$

Произведение матриц

Матрица \mathcal{C}_{mn} называется произведением матрицы A_{ml} на матрицу B_{ln} , если

$$c_{ij} = \sum_{k=1}^{l} a_{ik} \cdot b_{kj}$$

Обозначение: C = AB

$$C_{mn} = (c_{ij})_{i=\overline{1,m}}$$
$$j=\overline{1,n}$$

$$\begin{array}{c|c}
m \downarrow & A \\
\downarrow & \downarrow \\
l & \downarrow \\
l & \downarrow \\
\hline
 & n \\
\end{array}$$

$$\begin{array}{c}
A_{ml} = (a_{ik})_{i=\overline{1,m}} \\
k=\overline{1,l} \\
B_{ln} = (b_{kj})_{k=\overline{1,l}} \\
j=\overline{1,n}
\end{array}$$

$$A_{ml} = (a_{ik})_{i=\overline{1,m}}$$

$$B_{ln} = (b_{kj})_{\substack{k = \overline{1,l} \\ j = \overline{1,n}}}$$

Произведение матриц

Пример 1

$$(a_{11} \quad a_{12} \quad \cdots \quad a_{1l}) \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{l1} \end{pmatrix} =$$

$$= a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + \cdots + a_{1l} \cdot b_{l1}$$

Произведение матриц

Пример 2

$$m \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right) \left(\begin{array}{c} n \\ \end{array} \right)$$

$$= \left(\begin{array}{c} a_{11}x_1 \\ \end{array} \right) \left(\begin{array}{c} a_{11}$$

Свойство 1

Если определены AB и BA, то они не обязательно равны

Упражнение

Докажите, что если определены и равны друг другу AB и BA, то A и B — квадратные матрицы одного порядка

Пример

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Если AB = BA, то говорят, что A и B коммутируют

Свойство 2

Ассоциативность. Если определены AB и (AB)C, то определены BC и A(BC), причем (AB)C = A(BC)

Доказательство

$$A-m_A imes n_A \qquad B-m_B imes n_B \qquad C-m_C imes n_C$$
 $\exists AB \Rightarrow n_A = m_B, \ \exists (AB)C \Rightarrow n_B = m_C \Rightarrow$ \Rightarrow Элементы $(AB)C$:

$$\sum_{l=1}^{n_B} \left(\sum_{k=1}^{n_A} a_{ik} b_{kl} \right) c_{ls} \quad (i = \overline{1, m_A}; s = \overline{1, n_C})$$

Доказательство (продолжение)

$$n_B = m_C \Rightarrow \exists BC \qquad n_A = m_B \Rightarrow \exists A(BC)$$

Элементы A(BC):

Элементы (AB)C:

$$\sum_{k=1}^{n_A} a_{ik} \left(\sum_{l=1}^{n_B} b_{kl} c_{ls} \right) \qquad \sum_{l=1}^{n_B} \left(\sum_{k=1}^{n_A} a_{ik} b_{kl} \right) c_{ls}$$

Осталось переставить знаки сумм

Свойство 3

Дистрибутивность по отношению к сложению

Если определено
$$(A + B)C$$
, то $(A + B)C = AC + BC$

Если определено
$$A(B+C)$$
, то $A(B+C)=AB+AC$

Свойство 4

Если определено AB, то $\forall \alpha$: $\alpha(AB) = (\alpha A)B = A(\alpha B)$

Свойство 5

Если определено AB, то определено и B^TA^T , причем $(AB)^T = B^TA^T$

Доказательство свойства 5

$$A_{mn}$$
, B_{np} $\exists AB \Rightarrow$ в ней

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad (i = \overline{1, m}; j = \overline{1, p})$$

$$j$$
-ая строка B^T : (b_{1j},\dots,b_{nj}) i -ый столбец A^T : $\begin{pmatrix} a_{i1} \\ \vdots \\ a_{in} \end{pmatrix}$

$$\Rightarrow \exists B^T A^T \text{ и в нем}$$

$$d_{ij} = \sum_{k=1}^{n} b_{ik}^{T} a_{kj}^{T} = \sum_{k=1}^{n} b_{ki} a_{jk} \ (j = \overline{1, p}; i = \overline{1, m})$$

Определитель второго порядка

Определителем (или детерминантом) матрицы

$$A_2 = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}$$
 называется число $a_{11}a_{22} - a_{21}a_{12}$

Обозначение:
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
; $\det A_2$

Определитель третьего порядка

Определителем матрицы
$$A_3=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 называется число

$$\begin{vmatrix} a_{11} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Обозначение:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
; $\det A_3$

Упражнение: Докажите, что при n=2 и n=3 $\det A^T = \det A$

Рассмотрим СЛАУ
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} (*)$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 главный определитель $(*)$

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}$$
 первый вспомогательный определитель (*)

$$\Delta_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}$$
 второй вспомогательный определитель (*)

Теорема (Правило Крамера для n=2)

Для того, чтобы система (*) имела единственное решение необходимо и достаточно, чтобы $\Delta \neq 0$.

При этом
$$x_1 = \frac{\Delta_1}{\Delta}$$
, $x_2 = \frac{\Delta_2}{\Delta}$.

(формулы Крамера при n=2)

Доказательство

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$
 (*)

Умножим первое уравнение системы (*) на a_{22} , а второе на $(-a_{12})$.

Сложим полученные уравнения:

$$(a_{11}a_{22} - a_{21}a_{12})x_1 = b_1a_{22} - b_2a_{12}$$

то есть
$$\Delta \cdot x_1 = \Delta_1$$

Аналогично,
$$\Delta \cdot x_2 = \Delta_2$$

Доказательство

Пусть
$$\Delta \neq 0$$
, тогда $x_1 = \frac{\Delta_1}{\Delta}$, $x_2 = \frac{\Delta_2}{\Delta}$.

Эти формулы доказывают единственность решения, если оно существует.

Доказательство

В самом деле, система

$$\begin{cases} \Delta \cdot x_1 = \Delta_1 \\ \Delta \cdot x_2 = \Delta_2 \end{cases} (**)$$

является следствием системы (*), поэтому всякое решение системы (*) (если оно З) должно быть решением системы (**), а оно одно.

Доказательство

Существование решения при $\Delta \neq 0$ следует из простой подстановки $x_1 = \frac{\Delta_1}{\Delta}$, $x_2 = \frac{\Delta_2}{\Delta}$ в исходную систему

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} (*)$$

Каждое уравнение обратится в тождество.

Доказательство

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} (*)$$

Пусть система (*) имеет единственное решение. Докажем, что $\Delta \neq 0$

Доказательство

Предположим, что $\Delta=0$.

Возможны два случая.

1. Хотя бы одно из чисел Δ_1, Δ_2 отлично от нуля.

В этом случае система (**) не имеет решений.

$$\begin{cases} \Delta \cdot x_1 = \Delta_1 \\ \Delta \cdot x_2 = \Delta_2 \end{cases} \tag{**}$$

Не имеет решений и система (*).

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} (*)$$

Противоречие.

Доказательство

$$\begin{cases} \Delta \cdot x_1 = \Delta_1 \\ \Delta \cdot x_2 = \Delta_2 \end{cases} (**) \qquad \begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} (*)$$

2.
$$\Delta_1 = 0$$
, $\Delta_2 = 0$.

В этом случае второе уравнение системы (*) является следствием первого её уравнения, поэтому его можно отбросить.

Но уравнение $a_{11}x_1 + a_{12}x_2 = b_1$ при $\Delta_1 = \Delta_2 = \Delta = 0$ имеет бесконечно много решений. Противоречие.

Замечание

Аналогичная теорема справедлива для $\forall n \in \mathbb{N}$, n > 2.

Мы докажем это позже лишь в случае $\Delta \neq 0$