Unsupervised Learning: Principle Component Analysis

Unsupervised Learning

• Dimension Reduction (化繁為簡)

• Generation (無中生有)

Dimension Reduction

Dimension Reduction

- In MNIST, a digit is 28 x 28 dims.
 - Most 28 x 28 dim vectors are not digits

Clustering

Cluster 3 0

 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

need?

1
0
1
0
Cluster 2

- K-means
 - Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
 - Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
 - Repeat
 - For all x^n in X: $b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$
 - Updating all c^i : $c^i = \sum_{x^n} b_i^n x^n / \sum_{x^n} b_i^n$

Clustering

Hierarchical Agglomerative Clustering (HAC)

Distributed Representation

 Clustering: an object must belong to one cluster

小傑是強化系

Distributed representation

強化系	0.70
放出系	0.25
變化系	0.05
操作系	0.00
具現化系	0.00
特質系	0.00

特質系

小傑是

Distributed Representation

Feature selection

Principle component analysis (PCA)
 [Bishop, Chapter 12]

linear transform

$$z = Wx$$

PCA

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

z1為x投影在w1上的距離

Project all the data points x onto w^1 , and obtain a set of Z_1 選擇project後投影範圍越大的方向越好

We want the variance of z_1 as large as possible

$$Var(z_1) = \sum_{z_1} (z_1 - \overline{z_1})^2 \quad ||w^1||_2 = 1$$
Constrain

PCA

$$z = Wx$$

Reduce to 1-D:

固定w的長度,找出最大Var

$$z_1 = w^1 \cdot x$$

$$z_2 = w^2 \cdot x$$

$$W = \begin{bmatrix} (w^1)^T \\ (w^2)^T \\ \vdots \end{bmatrix}$$

Orthogonal matrix

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \sum_{z_1} (z_1 - \overline{z_1})^2 \quad ||w^1||_2 = 1$$

We want the variance of z_2 as large as possible

$$Var(z_2) = \sum_{z_2} (z_2 - \bar{z_2})^2 \quad \|w^2\|_2 = 1$$

$$w^1 \cdot w^2 = 0$$
 orthogonal,否則會找到與w1相同

Warning of Math

$$z_1 = w^1 \cdot x$$

$$\bar{z_1} = \frac{1}{N} \sum z_1 = \frac{1}{N} \sum w^1 \cdot x = w^1 \cdot \frac{1}{N} \sum x = w^1 \cdot \bar{x}$$

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2$$

$$=\frac{1}{N}\sum_{}^{}(w^1\cdot x-w^1\cdot \bar{x})^2$$

$$=\frac{1}{N}\sum \left(w^1\cdot (x-\bar{x})\right)^2$$

$$= \frac{1}{N} \sum_{i} (w^{1})^{T} (x - \bar{x}) (x - \bar{x})^{T} w^{1}$$

$$= (w^{1})^{T} \frac{1}{N} \sum_{i} (x - \bar{x})(x - \bar{x})^{T} w^{1}$$

$$= (w^1)^T Cov(x) w^1 \quad S = Cov(x)$$

$$S = Cov(x)$$

$$(a \cdot b)^2 = (a^T b)^2 = a^T b a^T b$$

無量可做transpose
=
$$a^Tb(a^Tb)^T$$
 = a^Tbb^Ta

Find w^1 maximizing

$$(w^1)^T S w^1$$

$$||w^1||_2 = (w^1)^T w^1 = 1$$

Find
$$w^1$$
 maximizing $(w^1)^T S w^1$ $(w^1)^T w^1 = 1$

$$S = Cov(x)$$
 Symmetric positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier [Bishop, Appendix E]

$$g(w^1) = (w^1)^T S w^1 - \alpha ((w^1)^T w^1 - 1)$$

其gradient必為0,找極值

$$\partial g(w^1)/\partial w_1^1 = 0$$

$$\partial g(w^1)/\partial w_2^1 = 0$$

:

其實兩邊應該還有一個*2,但是同除2消掉了

$$Sw^1 - \alpha w^1 = 0$$

$$Sw^1 = \alpha w^1$$
 w^1 : eigenvector

$$(w^1)^T S w^1 = \alpha (w^1)^T w^1$$

$$= \alpha$$

Choose the maximum one

 w^1 is the eigenvector of the covariance matrix S Corresponding to the largest eigenvalue λ_1

 $Sw^1 = \lambda_1 w^1$

$$\beta = 0$$
: $Sw^2 - \alpha w^2 = 0$ $Sw^2 = \alpha w^2$

 w^2 is the eigenvector of the covariance matrix S Corresponding to the 2nd largest eigenvalue λ_2 做完PCA降維後可使dimension之間沒有corelation

PCA - decorrelation

$$z = Wx$$
 transpose(w1)⁵ transpose(w2)
 $W = \text{transpose(w3)}$

Cov(z) = Ddimension間沒有corelation

Diagonal matrix

做完PCA後丟給其他的model,其他的model可以假設dimension間沒有corelation,因此可以選擇比較簡單的model避免overfitting

$$Cov(z) = \frac{1}{N} \sum_{z=wx} (z - \bar{z})(z - \bar{z})^T = WSW^T \qquad S = Cov(x)$$

$$= WS[w^1 \quad \cdots \quad w^K] = W[Sw^1 \quad \cdots \quad Sw^K]$$

$$= W[\lambda_1 w^1 \quad \cdots \quad \lambda_K w^K] \quad = [\lambda_1 W w^1 \quad \cdots \quad \lambda_K W w^K]$$

$$= [\lambda_1 e_1 \quad \cdots \quad \lambda_K e_K] = D$$
 Diagonal matrix

因為orthogonal,所以只有對角線有值(lambda),其餘為零

End of Warning

PCA – Another Point of View

Basic Component: 把pixel-wise降維至component-wise

PCA — Another Point of View

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:

$$\|(x-\bar{x})-\hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

$$L = \min_{\{u^1, \dots, u^K\}} \sum_{k=1}^{K} \left\| (x - \bar{x}) - \left(\sum_{k=1}^K c_k u^k \right) \right\|_{2}$$

z = WxPCA:

$$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} (w_1)^{\mathrm{T}} \\ (w_2)^{\mathrm{T}} \\ \vdots \end{bmatrix} x$$

from PCA(w1...wk are Eigen vector)

$$\begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_K \end{bmatrix} = \begin{bmatrix} (w_1)^T \\ (w_2)^T \\ \vdots \\ (w_N)^T \end{bmatrix} x \begin{cases} \text{from PCA(w1...wk are Eigen vector)} \\ \{w^1, w^2, ... w^K\} \text{ is the component} \\ \{u^1, u^2, ... u^K\} \text{ minimizing L} \end{cases}$$

$$\text{Proof in [Bishop, Chapter 12.1.2]}$$

$$x - \bar{x} \approx c_1 u^1 + c_2 u^2 + \dots + c_K u^K = \hat{x}$$

Reconstruction error:

$$\|(x-\bar{x})-\hat{x}\|_2$$

Find $\{u^1, \dots, u^K\}$ minimizing the error

K columns of U: a set of orthonormal eigen vectors corresponding to the k largest eigenvalues of XX^T

U 的解即為PCA的解: X*transpose(X)的eigenvalue

This is the solution of PCA

SVD:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/LA_2016/Lecture/SVD.pdf

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

$$K = 2$$
:

$$c_k = (x - \bar{x}) \cdot w^k$$

因為w1...wk為orthonormal

Autoencoder

If $\{w^1, w^2, \dots w^K\}$ is the component $\{u^1, u^2, \dots u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

To minimize reconstruction error:

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

Autoencoder

If $\{w^1, w^2, ... w^K\}$ is the component $\{u^1, u^2, ... u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

To minimize reconstruction error:

$$c_k = (x - \bar{x}) \cdot w^k$$

$$K = 2$$
:

Autoencoder

If $\{w^1, w^2, \dots w^K\}$ is the component $\{u^1, u^2, \dots u^K\}$

$$\hat{x} = \sum_{k=1}^{K} c_k w^k \longrightarrow x - \bar{x}$$

To minimize reconstruction error:

$$c_k = (x - \bar{x}) \cdot w^k$$

Train DNN,其結果與PCA會不同,因為PCA有些限制例如其不同dimension間必須是orthogonal

- Inspired from: https://www.kaggle.com/strakul5/d/abcsds/pokemon/principal-component-analysis-of-pokemon-data
- 800 Pokemons, 6 features for each (HP, Atk, Def, Sp Atk, Sp Def, Speed)
- How many principle components? $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6}$

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
ratio	0.45	0.18	0.13	0.12	0.07	0.04

Using 4 components is good enough

PC1

每隻pokemon的素質都是由PC1~PC4四 個component做linear combination

四化

l個component							
	HP	Atk	Def	Sp Atk	Sp Def	Speed	
PC1	0.4	0.4	0.4	0.5	0.4	0.3	強度
PC2	0.1	0.0	0.6	-0.3	0.2	-0.7	
PC3	-0.5	-0.6	0.1	0.3	25	防禦(犧	性速度)
PC4	0.7	-0.4	-0.4	0.1	7	-0.3	
8 6 - 4 - 2 - 2 - 0 -							
-2 - -4 - 不會是	└橢圓分布的 [,]	因為不同				63	

	HP	Atk	Def	Sp Atk	Sp Def	Speed	
PC1	0.4	0.4	0.4	0.5	0.4	0.3	
PC2	0.1	0.0	0.6	-0.3	0.2	-0.7	
PC3	-0.5	-0.6	0.1	0.3	0.6	特殊防禦(犧	
生命力強	0.7	-0.4	-0.4	0.1	0.2	攻擊和生	命)

- http://140.112.21.35:2880/~tlkagk/pokemon/pca.html
- The code is modified from
 - http://jkunst.com/r/pokemon-visualize-em-all/

PCA - MNIST

9

每個weight可以是正的或是負的實數

$$= a_1 \underline{w}^1 + a_2 \underline{w}^2 + \cdots$$

images

針對image做PCA

30 components:

Non-negative matrix factorization(NMF)使所有wight變成正的,因此所有component會變成類似筆畫的樣子

Eigen-digits

PCA是linear transform的,因此做完 reduction會直接打平在平面,無法拉直

Weakness of PCA

靠variance決定distribution

Unsupervised

如果資料本身已經有label,做PCA反而會混在一起

LDA考慮label data的降維,但是事supervis

• Linear

http://www.astroml.org/book_figures/chapter7/fig_S_manifold_PCA.html

Weakness of PCA

Non-linear dimension reduction in the following lectures

Acknowledgement

- 感謝 彭冲 同學發現引用資料的錯誤
- 感謝 Hsiang-Chih Cheng 同學發現投影片上的錯誤

Matrix Factorization可以用在推薦系統,去計算每個人會購買的東西的矩陣的SVD,找出兩個矩陣相乘。

找出兩個矩陣後其對應的row/column做inner product後即為預測這個人購買這個東西的可能度

Appendix

- http://4.bp.blogspot.com/_sHcZHRnxlLE/S9EpFXYjfvI/AAAAAAAABZ0/_oEQiaR3 WVM/s640/dimensionality+reduction.jpg
- https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction _Review_2009.pdf

