

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

UNI-VLSI-V1

VLSI Development Board User Manual

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

CONTENT

Chapter No.	Name of the Chapter	Page No.
	List of figures	3
	List of tables	4
Chapter 1	Introduction	5
Chapter 2	LCD 16x2 Interface	6
Chapter 3	Multiplexed Seven Segment Interface	7
Chapter 4	LED's and DIP Switches Interface	9
Chapter 5	Pushbuttons Interface	11
Chapter 6	ADC Interface	12
Chapter 7	DAC interface	14
Chapter 8	PS/2 Mouse/Keyboard Port	16
Chapter 9	VGA Display Port	19
Chapter 10	RS-232 Serial Port	21
Chapter 11	USB Interface	23
Chapter 12	Clock Sources	24
Chapter 13	RTC Interface	25
Chapter 14	Buzzer Interface	26
Chapter 15	RGB LED Interface	27
Chapter 16	Expansion FRC Connectors (Free I/Os)	28
Chapter 17	Configuration Options	31
Appendix A	Consolidated Pin Assignment (UCF Location)	34

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

LIST OF FIGURES

Figure No.	Name of the Figure	Page No.
Figure 2.1	Interfacing of LCD with FPGA	6
Figure 3.1	Multiplexed six seven segment displays	7
Figure 3.2	Multiplexed 7-segment display LED section	8
Figure 4.1	LED's and DIP Switches (Bidirectional IOs) section	10
Figure 5.1	Pushbuttons section of the development board	11
Figure 6.1	Interfacing of ADC with FPGA	12
Figure 6.2	ADC section of the development board	12
Figure 7.1	Interfacing diagram of DAC with FPGA	14
Figure 7.2	DAC section of the development boar	14
Figure 8.1	re 8.1 PS/2 Connector	
Figure 8.2	ure 8.2 PS/2 Timing Diagram	
Figure 9.1	9.1 Interfacing diagram of VGA connector with FPGA	
Figure 10.1	re 10.1 Interfacing of DCE or DTE DB9 connector with FPGA	
Figure 10.2	ure 10.2 RS232 Serial Port section of the development board	
Figure 11.1	USB Interface Section	23
Figure 12.1	Clock sources for the FPGA	24
Figure 13.1	RTC Section of the development board	25
Figure 14.1	Interfacing of Buzzer with FPGA	26
Figure 15.1:	Buzzer and RGB LED section	27
Figure 16.1	Expansion Connectors of the development board	28
Figure 17.1	Configuration options of the FPGA	31
Figure 17.2	JTAG Connector Details	33

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

LIST OF TABLES

Table No.	Name of the Table	Page No.
Table 2.1	Pin Assignmnet (UCF) for LCD	6
Table 3.1	Pin Assignment (UCF) for 7-Segment LED Display	8
Table 4.1	Pin Assignment (UCF) for LED's and DIP switches	9
Table 5.1	Pin Assignment (UCF) for Pushbuttons	11
Table 6.1	Pin assignment (UCF) for ADC	13
Table 7.1	Pin Assignment (UCF) for DAC	15
Table 8.1	PS/2 Connector Details	16
Table 8.2	PS/2 Bus Timing	17
Table 8.3	Common PS/2 Keyboard Commands	18
Table 8.4	Pin Assignment (UCF) for PS/2 Connector	18
Table 9.1	3 bit Display Color Codes	20
Table 9.2	Pin Assignment (UCF) for VGA Display	20
Table 10.1	Pin Assignment (UCF) for Female DB9 DCE Conn.	22
Table 10.2	Pin Assignment (UCF) for Male DB9 DTE Conn.	22
Table 11.1	able 11.1 Pin Assignment (UCF) for USB	
Table 12.1	Table 12.1 Pin Assignment (UCF) for Clock sources	
Table 13.1	Pin Assignment (UCF) for RTC	25
Table 14.1	Pin Assignment (UCF) for Buzzer	26
Table 15.1	Pin Assignment (UCF) for RGB LED	27
Table 16.1	Pin Assignment (UCF) for FRC Connector J10	29
Table 16.2	Pin Assignment (UCF) for FRC Connector J12	29
Table 16.3	Pin Assignment (UCF) for FRC Connector J14	30
Table 16.4	Pin Assignment (UCF) for FRC Connector J15	30
Table 17.1	Mode Selection Jumper Settings	32
Table 17.2	Mode Selection Table	33

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 1: Introduction

Thank you for purchasing the Xilinx Spartan[™]-3E based VLSI Development Board (**UNI-VLSI-V1**). You will find it useful in developing your Spartan-3E FPGA application. The board provides easy to use development platform for implementing digital designs.

Key Components and Features:

The key features of the VLSI Development board are:

- Spartan-3E XC3S250E FPGA
 - ▶ Up to 172 user-I/O pins
 - > 208-pin FBGA package
 - > Over 5,000 logic cells
- 2-line, 16-character LCD screen
- Two 9-pin RS-232 ports (DTE- and DCE-style)
- 32 discrete LEDs and DIP switches
- PS/2 mouse or keyboard port
- Separate VGA display port
- Expansion connectors (32 free user I/O arranged in 10 pin FRC)
- Dual, 8 bit DAC
- 8 bit, 8 channel ADC
- USB interface(type B)
- 8 pushbuttons for trigger, input
- 6 common anode 7-segment LED display
- Xilinx 2 Mbit Platform Flash configuration PROM

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 2: LCD 16x2 Interface

The **UNI-VLSI-V1** board includes 2 lines by 16 characters LCD (liquid crystal display) Module. The dot matrix LCD displays alphanumeric characters, numbers and symbols. For displaying characters, numbers and symbol, user needs to send 8 bit ASCII value on data pins (Data0-Data8). The user can control the LCD display by controlling control lines (RS, EN) and sending command codes on data pins.

All the functions required for controlling LCD backlight are provided internally on board. Internal refresh is provided by the controller. The Interface details of the LCD display are as shown in figure 2.1.

Figure 2.1: Interfacing of LCD with FPGA

Pin Assignment (UCF Location) for LCD:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
LCD_RS	P48	P74
LCD_EN	P49	P72
LCD_Data0	P47	NC
LCD_Data1	P41	NC
LCD_Data2	P39	NC
LCD_Data3	P35	NC
LCD_Data4	P33	P66
LCD_Data5	P31	P61
LCD_Data6	P29	P59
LCD_Data7	P24	P58

Table 2.1: Pin Assignment (UCF) for LCD

- Development Boards
- PCB Designing
- Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 3: Multiplexed Seven Segment LED Interface

The **UNI-VLSI-V1** board has a six common anode seven segment LED display arranged in time multiplexed manner and controlled by FPGA user-I/O pins as shown in figure 3.1.

To display all six digits, each display is selected sequentially one after another in time division multiplexed manner above a minimum rate to get flicker free display. If each digit is scanned more than 30 times per second, a flicker free display is obtained.

Each display is selected by lowering its enable signal. All displays shares eight common control signals to turn ON the LED segments corresponding to enabled display. The display data inputs, A through G and DP, drive the individual segments that comprise the character. A Low value lights the individual segment, a High turns off the segment.

Figure 3.1: Multiplexed six seven segment displays

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin Assignment (UCF Location) for 7-Segment Display:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
Sel_DIS1	P23	P57
Sel_DIS2	P18	P50
Sel_DIS3	P15	P47
Sel_DIS4	P4	P35
Sel_DIS5	P9	P45
Sel_DIS6	P12	P43
Segment_a	P8	P56
Segment_b	P16	P51
Segment_c	P3	P44
Segment_d	P2	P33
Segment_e	P11	P34
Segment_f	P19	P48
Segment_g	P22	P41
Segment_dp	P5	P40

Table 3.1: Pin Assignment (UCF) for 7-Segment LED Display

- > Development Boards
- PCB Designing
- Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 4: LED's and DIP Switches Interface

The **UNI-VLSI-V1** board has 32 individual bidirectional I/O's. Each I/O is connected with a surface-mount LED and a DIP switch. A LED is assigned to each I/O to indicate its data status when I/O is configured as input. DIP switch is used to provide digital input (i.e. logic 0 and logic 1) to the FPGA.

The LED can display the output data value of I/O by configuring it as output and keeping its corresponding DIP switch at 0 positions.

The LEDs are divided in four groups of 8 LED based on 8-pin DIP switches I/O's are labeled as TL1 to TL32. (SW1:TL1-TL8, SW2:TL9-TL16, SW3:TL17-TL-24, SW4:TL25-TL32).

Pin Assignment (UCF Location) for IOs:

DIP	Signal	XC3S250E-	XCS6LX9-	DIP	Signal	XC3S250E-	XCS6LX9-
Switch	Name	PQ208	TQG144	Switch	Name	PQ208	TQG144
	TL1	P205	P29		TL17	P179	NC
	TL2	P206	P30		TL18	P180	NC
	TL3	P203	P26		TL19	P177	NC
CW1	TL4	P200	P23	CW2	TL20	P178	NC
SW1	TL5	P202	P24	SW3	TL21	P152	NC
	TL6	P197	P21		TL22	P168	NC
	TL7	P199	P22		TL23	P171	NC
	TL8	P196	P17		TL24	P172	NC
	TL9	P192	P11		TL25	P165	NC
	TL10	P193	P12		TL26	P167	NC
	TL11	P189	P9		TL27	P163	NC
CMS	TL12	P190	P10	CWA	TL28	P164	NC
SW2	TL13	P186	P144	SW4	TL29	P161	NC
	TL14	P187	P2		TL30	P162	NC
	TL15	P185	P5		TL31	P160	NC
	TL16	P181	P6		TL32	P153	NC

Table 4.1: Pin Assignment (UCF) for LED's and DIP switches

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 5: Pushbuttons Interface

The **UNI-VLSI-V1** board has 8 individual pushbuttons for input purpose. The pushbuttons are read as 0 when pushed. They are read as 1 in normal (unpressed) condition. Pushbuttons are labeled as K0 to K7.

Pin Assignment (UCF Location) for Pushbuttons:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
K0	P204	P27
K1	P194	P16
K2	P184	P15
K3	P183	P14
K4	P174	P7
K5	P175	P8
K6	P169	NC
K7	P159	NC

Table 5.1: Pin Assignment (UCF) for Pushbuttons

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- > Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 6: ADC Interface

The **UNI-VLSI-V1** board includes a ADC 0808. The ADC has 8 analog input channels. The channels are selected by setting the address pins of ADC. Among the eight channels, input to channel 6 and 7 is given by molex connecter, another molex connector dedicated for the GND beside them. The analog input to channel 5 to 2 is given by external circuit through relimate pins. The variable analog input to channels 0 and channel 1 is given through 10k pot. The other controlling signals of ADC are interfaced with FPGA board as shown in figure 3.

Figure 6.1: Interfacing of ADC with FPGA

Pin assignment (UCF Location) for ADC 0808:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
ADC_DATA 0	P71	P87
ADC_DATA 1	P72	P88
ADC_DATA 2	P54	P79
ADC_DATA 3	P51	P78
ADC_DATA 4	P89	P95
ADC_DATA 5	P91	P97
ADC_DATA 6	P57	P80
ADC_DATA 7	P58	P81
ADC_EOC	P101	P98
ADC_ADD 0	P69	P85
ADC_ADD 1	P68	P84
ADC_ADD 2	P74	P92

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

ADC_SOC	P64	P82
ADC_ALE	P65	P83
ADC_CLK	P82	P94
ADC_OE	P76	P93

Table 6.1: Pin assignment (UCF) for ADC

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- > Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 7: DAC Interface

The **UNI-VLSI-V1** board includes a dual, 8-bit, digital-to-analog converter (DACs). TLC7528 has separate on-chip data latches. Data are transferred to either of the two DAC data latches through a common, 8-bit, input port. Control input DACA/B determines which DAC is to be loaded. Low on DACA/B selects ADC A. TLC7528 allows easy interface to most popular microprocessor buses and output ports. DAC works on 5V. The figure 4 shows the interfacing diagram of DAC with FPGA Board.

Figure 7.1: Interfacing diagram of DAC with FPGA

Pin Assignment (UCF Location) DAC TLC7528:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
DAC_DATA 0	P116	P114
DAC_DATA 1	P119	P116
DAC_DATA 2	P120	P115
DAC_DATA 3	P122	P117
DAC_DATA 4	P115	P111
DAC_DATA 5	P113	P112
DAC_DATA 6	P112	P105
DAC_DATA 7	P108	P104
DAC_WR	P109	P102
DAC_A_B	P107	P101

Table 7.1: Pin Assignment (UCF) for DAC

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 8: PS/2 Mouse/Keyboard Port

The **UNI-VLSI-V1** board includes a PS/2 interface for keyboard and mouse connection using a standard 6 pin PS/2 connector as shown in figure 8.1.

Figure 8.1: PS/2 Connector

Both a PC mouse and keyboard use the two-wire PS/2 serial bus to communicate with a host device, the SPARTAN -3E FPGA in this case. The PS/2 bus includes both clock and data. Both a mouse and keyboard drive the bus with identical signal timings and both use 11-bit words that include a start, stop and odd parity bit. However, the data packets are organized differently for a mouse and keyboard. Furthermore, the keyboard interface allows bidirectional data transfers.

PS/2 Connector Pin	Signal	
1	DATA(PS2D)	
2	Reserved	
3	GND	
4	Voltage Supply	
5	CLK(PS2C)	
6	Reserved	

Table 8.1: PS/2 Connector Details

The PS/2 bus timing appears in Table 8.2 and Figure 8.2. The clock and data signals are only driven when data transfers occur, and otherwise they are held at logic High - in the idle state. The timings define signal requirements for

- Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

mouse-to-host communications and bidirectional keyboard communications. As shown in Figure 11, the attached keyboard or mouse writes a bit on the data line when the clock signal is high, and the host reads the data line when the clock signal is low.

Symbol	Parameter	Min	Max
T _{CK}	Clock high or low time	30µs	50µs
T_{SU}	Data to clock setup time	5µs	25µs
T_HLD	Clock to data hold time	5µs	25µs

Table 8.2: PS/2 Bus Timing

Figure 8.2: PS/2 Timing Diagram

- Development Boards
- PCB Designing
- Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

PS/2 Keyboard Commands

The most commonly used commands for PS/2 keyboard are as follows

Command	Description
ED	Turn on/off Num Lock, Caps Lock, and Scroll Lock LEDs. The keyboard acknowledges receipt of an "ED" command by replying with an "FA", after which the host sends another byte to set LED status. The bit positions for the keyboard LEDs appear in Table 13. Write a '1' to the specific bit to illuminate the associated keyboard LED.
EE	Upon receiving an echo command, the keyboard replies with the same scan code "EE".
FE	Resend. Upon receiving a resend command, the keyboard resends the last scan code sent.
FF	Reset. Resets the keyboard.
F3	Set scan code repeat rate. The keyboard acknowledges receipt of an "F3" by returning an "FA" after which the host sends a second byte to set the repeat rate.

Table 8.3: Common PS/2 Keyboard Commands

The keyboard sends data to the host only when both the data and clock lines are High, the idle state.

Because the host is the "bus master", the keyboard checks whether the host is sending data before driving the bus. The clock line can be used as a "clear to send" signal. If the host pulls the clock line Low, the keyboard must not send any data until the clock is released. The keyboard sends data to the host in 11-bit words that contain a '0' start bit, followed by eight bits of scan code (LSB first), followed by an odd parity bit and terminated with a '1' stop bit. When the keyboard sends data, it generates 11 clock transitions at around 20 to 30 kHz, and data is valid on the falling edge of the clock as shown in Figure 8.2.

Pin Assignment (UCF Location) for PS/2 Connector

Only pin 1 and pin 5 of connector are connected to FPGA board.

Signal Name	XC3S250E-PQ208
PS2_CLK	P25
PS2_DATA	P26

Table 8.4: Pin Assignment (UCF) for PS/2 Connector

- > Development Boards
- PCB Designing
- Electronic Components
- Industrial Training
- > Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 9: VGA Display Port

The **UNI-VLSI-V1** board includes a VGA display port via a DB15 connector. Connect this port directly to most PC monitors or flat-panel LCDs using a standard monitor cable.

The Spartan-3E FPGA directly drives the five VGA signals via resistors. Each color line has a series resistor, with one bit each for VGA_RED, VGA_GREEN, and VGA_BLUE. The series resistor, in combination with the termination resistance built into the VGA cable, ensures that the color signals remain in the VGA-specified 0V to 0.7V range. The interfacing diagram of DB15 with FPGA board is shown in figure 9.1.

Figure 9.1: Interfacing diagram of VGA connector with FPGA

The VGA_HSYNC and VGA_VSYNC signals using LVTTL or LVCMOS33 I/O standard drive levels. Drive the VGA_RED, VGA_GREEN, and VGA_BLUE signals High or Low to generate the eight colors shown in table 9.1.

- Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

VGA_RED	VGA_GREEN	VGA_BLUE	Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

Table 9.1: 3 bit Display Color Codes

Pin Assignment (UCF location) for VGA Display Port:

Pin Description	XC3S250E-PQ208
VGA_RED	P40
VGA_GREEN	P34
VGA_BLUE	P36
VGA_HS	P45
VGA_VS	P42

Table 9.2: Pin Assignment (UCF) for VGA Display

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 10: RS232 Serial Port

The **UNI-VLSI-V1** board has two RS-232 serial ports:

- > A female DB9 DCE connector
- > A male DB9 DTE connector

The DCE-style port connects directly to the serial port connector available on most personal computers and Workstations via a standard straight-through serial cable.

The FPGA supplies serial output data using LVTTL or LVCMOS levels to the RS-232 voltage converter which converts the logic value provided by FPGA Board to the appropriate RS-232 voltage level and vice-versa. MAX 3232 is used as voltage converter which has as 3.3V as logic high.

The connection between the FPGA and the DB9 connectors is shown in figure 10.1. Hardware flow control is not supported on the connector. The port's DCD, DTR, and DSR signals connect together. Similarly, the port's RTS and CTS signals connect together.

Figure 10.1: Interfacing of DCE or DTE DB9 connector with FPGA

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- > Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin Assignment (UCF Location) for RS232 Serial Ports:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
TxD_F	P30	P67
RxD_F	P43	P62

Table 10.1: Pin Assignment (UCF) for Female DB9 DCE Connector

Signal Name	XC3S250E-PQ208
TxD_M	P28
RxD_M	P32

Table 10.2: Pin Assignment (UCF) for Male DB9 DTE Connector

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 11: USB Interface

The **UNI-VLSI-V1** board has USB interface using device FT232HL from FTDI. This act as USB to UART converter so that Communication with FPGA can accomplished by USB port. The Chip also generates the different clocks which can be used as the clock source for FPGA (See Chapter 12).

Pin Assignment (UCF Location) for USB interface:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
USB_Rx	P106	P99
USB_TX	P100	P100

Table 11.1: Pin Assignment (UCF) for USB

Chapter 12: Clock Sources

The **UNI-VLSI-V1** board supports multiple clock input sources which are listed below.

- The board includes an on-board 12 MHz clock oscillator
- Three Clock outputs form USB to UART IC FT232HL.
 - 7.5 MHz, 15 MHz, 30MHz
- 32 KHz Clock output from RTC IC3231.
- Variable Clock using IC555. The Clock is varied using potentiometer PR1.

Pin Assignment (UCF Location) for Clock Sources:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
RESET		P32
Clock_12MHz	P80	P55
Clock_7.5MHz	P78	NC
Clock_15MHz	P77	NC
Clock_30MHz	P83	NC
Clock_32kHz	P75	NC
Clock_555	P132	P120

Table 12.1: Pin Assignment (UCF) for Clock sources

- Development Boards
- PCB Designing
- Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 13: RTC Interface

The **UNI-VLSI-V1** board has a RTC for time keeping purpose. The RTC used is DS3231 which is an extremely accurate I2C real time clock (RTC) with an integrated temperature compensated crystal oscillator (TCXO) and crystal. RTC operates on a battery input of 3.3V, and maintains accurate timekeeping when main power to the device is interrupted.

The RTC maintains seconds, minutes, hours, day, date, month, and year information with Leap Year Compensation Valid Up to 2100. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with an AM/PM indicator. Address and data are transferred serially through an I2C bidirectional bus.

Pin Assignment (UCF Location) for RTC:

Signal Name	XC3S250E-PQ208
RTC_SDA	P61
RTC_SCL	P62

Table 13.1: Pin Assignment (UCF) for RTC

Chapter 14: Buzzer Interface

The **UNI-VLSI-V1** board has a buzzer for audio indication of a signal. The buzzer will turn ON by making high the buzzer pin on FPGA board, configuring it as output. The interfacing of buzzer with FPGA board is as shown in figure 14.1. Buzzer section the development board is shown in figure 15.1 (see Chapter 15).

Figure 14.1: Interfacing of Buzzer with FPGA

Pin Assignment (UCF Location) for Buzzer:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
Buzzer	P146	P139

Table 14.1: Pin Assignment (UCF) for Buzzer

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 15: RGB LED Interface

The **UNI-VLSI-V1** board has a RGB LED. The LED has 4 terminals - Red, Green, Blue and Ground. Logic high is applied to R/G/B terminals to generate a chromatic signal corresponding to R, G and B signals. The LED can be used to observe the PWM signal.

Pin Assignment (UCF Location) for RGB LED:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
LED_Red	P151	P140
LED_Green	P150	P142
LED_Blue	P147	P143

Table 15.1: Pin Assignment (UCF) for RGB LED

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- > Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 16: Expansion Connectors

The **UNI-VLSI-V1** board provides expansion connectors for easy interface flexibility to other off-board components. Total 32 bidirectional I/O's (Some are dedicated input pins, see pin assignment) are available to the user through FRC expansion headers. The bidirectional I/O can be configured as input or output. The board includes the four 10-pin FRC I/O expansion headers. Each 10-pin FRC consists 8 I/Os along with VCC and GND.

The expansion I/O's can be interfaced with external circuitry for data input/output purpose such as controlling ON/OFF of relay, motors, square wave of various frequency, etc.

Pin Assignment (UCF Location) for Expansion Connectors:

Pin number (FRC J10)	FPGA Pin/ Location	Direction/ Purpose
1	102	inout
2	98	Inout
3	99	Inout
4	96	Inout
5	97	Inout
6	93	Inout
7	94	Inout
8	90	Inout
9	+3.3v	Supply
10	Gnd	Gnd

Table 16.1: Pin Assignment (UCF) for FRC Connector J10

Pin number	FPGA Pin/	Direction/
(FRC J12)	Location	Purpose
1	118	input
2	110	input
3	123	Inout
4	NC	NC
5	124	Input

- > Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

6	126	Inout
7	127	Inout
8	128	Inout
9	+3.3v	Supply
10	Gnd	Gnd

Table 16.2: Pin Assignment (UCF) for FRC Connector J12

Pin number (FRC J14)	XC3S250E- PQ208	Direction/ Purpose	XC6SLX9- TQG144	Direction/ Purpose
1	138	Inout	P119	I/O
2	142	input	P118	I/O
3	140	Inout	P123	I/O
4	145	Inout	P121	I/O
5	144	Input	P126	I/O
6	148	input	P124	I/O
7	154	input	P132	I/O
8	14	input	P127	I/O
9	+3.3v	Supply	+3.3v	Supply
10	Gnd	Gnd	Gnd	Gnd

Table 16.3: Pin Assignment (UCF) for FRC Connector J14

Pin number	XC3S250E-	Direction/	XC6SLX9-	Direction/
(FRC J15)	PQ208	Purpose	TQG144	Purpose
1	130	input	P131	I/O
2	129	Inout	P134	I/O
3	134	Inout	P133	I/O
4	133	Inout	P138	I/O
5	136	Input	P137	I/O
6	135	Inout	P141	I/O

- Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

7	139	Inout	P1	I/O
8	137	Inout	P46	I/O
9	+3.3v	Supply	+3.3v	Supply
10	Gnd	Gnd	Gnd	Gnd

Table 16.4: Pin Assignment (UCF) for FRC Connector J15

- Development Boards
- PCB Designing
- Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Chapter 17: Configuration Options

The **UNI-VLSI-V1** board supports a two FPGA configuration options:

- 1. Boundary Scan Mode
- 2. Master Serial Mode

The configuration mode jumpers determine which configuration mode the FPGA uses when power is first applied, or whenever the **CONFIG RST** button is pressed. The DONE pin LED lights when the FPGA successfully finishes configuration. Pressing the CONFIG RST button forces the FPGA to restart its configuration process.

Boundary Scan Mode

In boundary scan mode of configuration the SPARTAN-3 FPGA is directly configured via a on board JTAG port using the dedicated configuration pins TCK, TMS, TDI and TDO. The on-board JTAG port also provides in-system programming for the on-board Platform Flash PROM.

The jumper setting for selection of boundary scan mode is discussed in configuration jumper settings section.

Master Serial Mode

In master serial mode first Program the on-board 2 Mbit Xilinx XCF02S serial Platform Flash PROM, then PROM will configure the FPGA from the image stored in the Platform Flash PROM.

In Master Serial mode, the FPGA automatically loads the configuration bit stream in bit-serial form from configuration flash synchronized by the configuration clock (CCLK) generatedby the FPGA. Upon power-up or reconfiguration, the FPGA's mode select pins are used to select the Master Serial configuration mode. Master Serial Mode provides a simple configuration interface. Only a serial data line, a clock line, and two control lines (INIT and DONE) are required to configure an FPGA. Data from the PROM is read out sequentially on a single data line (DIN). The serial Bit stream data must be set up at the FPGA's DIN input pin a short time before each rising edge of the FPGA's internally generated CCLK signal.

The jumper setting for selection of Master Serial Mode is discussed in configuration jumper setting section.

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Configuration Jumper Settings

• **Mode Selection Jumpers:** M0, M1, M2 are the mode selection jumpers used to select the configuration mode either Boundary Scan or Master Serial Mode.

Configuration Mode	1	2	
MODE0 (M0)	•	•	• Connecting 1-2 selects Logic -0,
MODE1 (M1)	•	•	Disconnecting 1-2 selects Logic- 1
MODE2 (M2)	•	•	

Table 17.1: Mode Selection Jumper Settings

Configuration Mode	MODE0	MODE1	MODE2
Boundary Scan Mode	1	0	1
Master Serial Mode	0	0	0

Table 17.2: Mode Selection Table

JTAG Header:

An on board JTAG connector (6 pin male - **JTAG**) is provided for configuring the FPGA through parallel port of PC via a parallel III cable. The details of this connector are as shown in figure 17.1.

Pin number (JTAG)	FPGA Pin/ Location
1	+3.3V
2	GND
3	TCK
4	TDO
5	TDI
6	TMS

Figure 17.2: JTAG Connector Details

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Appendix A: Consolidated Pin Assignment (UCF Location)

Pin Assignment (UCF Location) for LCD:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
LCD_RS	P48	P74
LCD_EN	P49	P72
LCD_Data0	P47	NC
LCD_Data1	P41	NC
LCD_Data2	P39	NC
LCD_Data3	P35	NC
LCD_Data4	P33	P66
LCD_Data5	P31	P61
LCD_Data6	P29	P59
LCD_Data7	P24	P58

Pin Assignment (UCF Location) for 7-Segment Display:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
Sel_DIS1	P23	P57
Sel_DIS2	P18	P50
Sel_DIS3	P15	P47
Sel_DIS4	P4	P35
Sel_DIS5	P9	P45
Sel_DIS6	P12	P43
Segment_a	P8	P56
Segment_b	P16	P51
Segment_c	Р3	P44
Segment_d	P2	P33
Segment_e	P11	P34
Segment_f	P19	P48
Segment_g	P22	P41
Segment_dp	P5	P40

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin Assignment (UCF Location) for IOs:

DIP	Signal	XC3S250E-	XCS6LX9-	DIP	Signal	XC3S250E-	XCS6LX9-
Switch	Name	PQ208	TQG144	Switch	Name	PQ208	TQG144
	TL1	P205	P29		TL17	P179	NC
	TL2	P206	P30		TL18	P180	NC
	TL3	P203	P26		TL19	P177	NC
CW1	TL4	P200	P23	CW2	TL20	P178	NC
SW1	TL5	P202	P24	SW3	TL21	P152	NC
	TL6	P197	P21		TL22	P168	NC
	TL7	P199	P22		TL23	P171	NC
	TL8	P196	P17		TL24	P172	NC
	TL9	P192	P11		TL25	P165	NC
	TL10	P193	P12		TL26	P167	NC
	TL11	P189	P9		TL27	P163	NC
SW2	TL12	P190	P10	SW4	TL28	P164	NC
SWZ	TL13	P186	P144	3W4	TL29	P161	NC
	TL14	P187	P2		TL30	P162	NC
	TL15	P185	P5		TL31	P160	NC
	TL16	P181	P6		TL32	P153	NC

Pin Assignment (UCF Location) for Pushbuttons:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
K0	P204	P27
K1	P194	P16
K2	P184	P15
K3	P183	P14
K4	P174	P7
K5	P175	P8
K6	P169	NC
K7	P159	NC

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin assignment (UCF Location) for ADC 0808:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
ADC_DATA 0	P71	P87
ADC_DATA 1	P72	P88
ADC_DATA 2	P54	P79
ADC_DATA 3	P51	P78
ADC_DATA 4	P89	P95
ADC_DATA 5	P91	P97
ADC_DATA 6	P57	P80
ADC_DATA 7	P58	P81
ADC_EOC	P101	P98
ADC_ADD 0	P69	P85
ADC_ADD 1	P68	P84
ADC_ADD 2	P74	P92
ADC_SOC	P64	P82
ADC_ALE	P65	P83
ADC_CLK	P82	P94
ADC_OE	P76	P93

Pin Assignment (UCF Location) DAC TLC7528:

Signal Name	XC3S250E-PQ208	XCS6LX9-TQG144
DAC_DATA 0	P116	P114
DAC_DATA 1	P119	P116
DAC_DATA 2	P120	P115
DAC_DATA 3	P122	P117
DAC_DATA 4	P115	P111
DAC_DATA 5	P113	P112
DAC_DATA 6	P112	P105
DAC_DATA 7	P108	P104
DAC_WR	P109	P102
DAC_A_B	P107	P101

Pin Assignment (UCF Location) for PS/2 Connector

Signal Name	FPGA Pin
PS2_CLK	P25
PS2_DATA	P26

- > Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin Assignment (UCF location) for VGA Display Port:

Pin Description	Location
VGA_RED	P40
VGA_GREEN	P34
VGA_BLUE	P36
VGA_HS	P45
VGA_VS	P42

Pin Assignment (UCF Location) for RS232 Serial Ports:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
TxD_F	P30	P67
RxD_F	P43	P62

Pin Assignment (UCF) for Female DB9 DCE Connector

Pin Description	Location
TxD_M	P28
RxD_M	P32

Pin Assignment (UCF) for Male DB9 DTE Connector

Pin Assignment (UCF Location) for USB interface:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
USB_Rx	P106	P99
USB_TX	P100	P100

Pin Assignment (UCF Location) for Clock Sources:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
RESET		P32
Clock_12MHz	P80	P55
Clock_7.5MHz	P78	NC
Clock_15MHz	P77	NC
Clock_30MHz	P83	NC
Clock_32kHz	P75	NC
Clock_555	P132	P120

- Development Boards
- PCB Designing
- > Electronic Components
- Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin Assignment (UCF Location) for RTC:

Signal Name	FPGA Pin
RTC_SDA	P61
RTC_SCL	P62

Pin Assignment (UCF Location) for Buzzer:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
Buzzer	P146	P139

Pin Assignment (UCF Location) for RGB LED:

Signal Name	XC3S250E-PQ208	XC6SLX9-TQG144
LED_Red	P151	P140
LED_Green	P150	P142
LED_Blue	P147	P143

Pin Assignment (UCF Location) for Expansion Connectors:

Pin number (FRC J10)	FPGA Pin/ Location	Direction/ Purpose
1	102	inout
2	98	Inout
3	99	Inout
4	96	Inout
5	97	Inout
6	93	Inout
7	94	Inout
8	90	Inout
9	+3.3v	Supply
10	Gnd	Gnd

Pin Assignment (UCF) for FRC Connector J10

- Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin number	FPGA Pin/	Direction/	
(FRC J12)	Location	Purpose	
1	118	input	
2	110	input	
3	123	Inout	
4	NC	NC	
5	124	Input	
6	126	Inout	
7	127	Inout	
8	128	Inout	
9	+3.3v	Supply	
10	Gnd	Gnd	

Pin Assignment (UCF) for FRC Connector **J12**

Pin number	XC3S250E-	Direction/	XC6SLX9-	Direction/
(FRC J14)	PQ208	Purpose	TQG144	Purpose
1	138	Inout	P119	I/O
2	142	input	P118	I/O
3	140	Inout	P123	I/O
4	145	Inout	P121	I/O
5	144	Input	P126	I/O
6	148	input	P124	I/O
7	154	input	P132	I/O
8	14	input	P127	I/O
9	+3.3v	Supply	+3.3v	Supply
10	Gnd	Gnd	Gnd	Gnd

Pin Assignment (UCF) for FRC Connector **J14**

- Development Boards
- PCB Designing
- > Electronic Components
- > Industrial Training
- Industrial Projects

Office No.-3, S.No.-107, Karan Plaza I, Near Rosary International School, Mumbai Bangalore Highway, Warje Pune-52. Phone: 020 - 25218371 / 72, Fax.: 020 - 25218370 Email: siliconsys@vsnl.net, siliconsys@dataone.in

Pin number (FRC J15)	XC3S250E- PQ208	Direction/ Purpose	XC6SLX9- TQG144	Direction/ Purpose
1	130	input	P131	I/O
2	129	Inout	P134	I/O
3	134	Inout	P133	I/O
4	133	Inout	P138	I/O
5	136	Input	P137	I/O
6	135	Inout	P141	I/O
7	139	Inout	P1	I/O
8	137	Inout	P46	I/O
9	+3.3v	Supply	+3.3v	Supply
10	Gnd	Gnd	Gnd	Gnd

Pin Assignment (UCF) for FRC Connector **J15**