

Inhaltsverzeichnis

1	Den	se Neural Net																	1
	1.1	Activation fu	nction .																1
		1.1.1 Sigm	oid activa	tion fur	nction	١													1
			bolic tang																2
		1.1.3 rectif	ier linear	unit(Re	eLU .													•	3
		1.1.4 Softn	nax activa	toin fur	nction	(classif	ficatio	on prob	olem)										3
	1.2	Special case	c=2, bina₁	ry class	sificati	on prob	blem											•	4
A	Abbildungsverzeichnis																		
1	1 Dense Neural Networks														1				
L	List of Equations																		
1	Den	se Neural Net	works																1

Lecture 4: Dense Neural Networks

Date: 15/05/2020

Lecturer: David Silver By: Nithish Moudhgalya

1.1. Activation function

Mild requirements on $\phi()$:

- •nonlinear in general \rightarrow fundamental
- •smooth, differentiable \rightarrow for training
- •simple calculation \rightarrow low complexity
- •Slides 4-6; 4-7 activation function types

1.1.1. Sigmoid activation function

$$\phi(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

- •0 < ϕ < 1 = prob.
- •symmetry: $\phi(-a) = 1 \phi(a)$ •derivative: $\frac{d\phi(a)}{da} = \dots = \frac{e^{-a}}{(1 + e^{-a})^2} = \phi(a) \cdot \phi(-a) = \phi(a)(1 \phi(a)), \in (0, 1)$

easy calculative

•widely used in conventional NN (shallow)

1.1.2. hyperbolic tangent activation function

like sigmoid but another output range

1.1.3. rectifier linear unit(ReLU

$$\phi(a) = ReLU(a) = max(a, 0) = \begin{cases} a & a \ge 0 \\ 0 & a < 0 \end{cases}$$

•≡ diode

simple calculation

$$\bullet \frac{d\phi}{da} = \left\{ \begin{array}{ll} 1 & a > 0 \\ 0 & a < 0 \end{array} \right. = u(a), u(0) = 0 \text{ typically used}$$

- •most popular in DNN
- •Details on 4-7

1.1.4. Softmax activatoin function(classification problem)

$$\begin{split} \phi(\underline{a}:\underline{a} &= [a_i] \in \Re^c \to \Re^c \\ \phi(\underline{a}) &= softmax(\underline{a}) = \begin{bmatrix} \phi_1(\underline{a}) \\ \vdots \\ \phi_c(\underline{a}) \end{bmatrix} \\ \phi(\underline{a}) &= \frac{a^{a_i}}{\sum_{j=1}^c e^{a_i}}, \in (0,1), \sum_{i=1}^c \phi_i(\underline{a}) = 1 \\ \bullet \text{maps } \underline{a} &\in \Re^c \text{ to a categorical PMF with } c \text{ classes} \end{split}$$

$$\phi(\underline{a}) = \frac{a^{a_i}}{\sum_{i=1}^c e^{a_i}}, \in (0,1), \sum_{i=1}^c \phi_i(\underline{a}) = 1$$

- • $a_i \text{ large} \rightarrow \phi_i(\underline{a}) \text{ close to } 1$
- • $a_i \text{ small} \rightarrow \phi_i(\underline{a}) \text{ close to } 0$
- •used in the output layer for classification problems

1.2. Special case c=2, binary classification problem

$$: \phi_1(\underline{a}) = \frac{e^{a_i}}{e^{a_1} + e^{a_2}} = \frac{1}{1 + e^{-(a_1 - a_2)}} = \sigma(a_1 - a_2)$$

$$\phi_2(\underline{a} = \frac{e^{a_2}}{e^{a_1} + e^{a_2}} = 1 - \phi_1(\underline{a}) = \sigma(a_2 - a_1)$$
i.e. softmax

one sigmoid output is sufficient for binary classification instead of 2 output softmax!

Derivative of softmax:

$$\frac{\partial \phi_i(\underline{a})}{\partial a_j} = \dots = \begin{cases} \phi : i(\underline{a})(1 - \phi_i(\underline{a}) & i = j \\ -phi_i(\underline{a})\phi_j(\underline{a}) & i \neq j \end{cases}$$