

Text Data Visualisations

CorrelAid X Austria
Tilman Kerl

Who Am I?

- Tilman Kerl
- Master Data Science @ TU Wien
- Computer Science @ Uni Konstanz
- CorrelAid since 2019
- Thesis on Visual Analytics for Transformer models
- I own very fashionable hats
- (and I don't know where to put my hands during photos)

Scope & Agenda for today

Text & Language

- Why is it important?
- What is it?
- Why is it difficult to work with?

Visualizing Text

- What is possible
- Feature Extraction

Code Examples

Who are you?

Slido: What is your background?

http://bit.ly/3Fanvjl

What is Language and Text?

Why is text data important?

- Text data is everywhere: Reviews, Social Media, Newspaper, Chats, Political documents
- We communicate with text
- There is (most of the times) a lot of information in text data about
 - what we want
 - how we feel
 - how we think
 - potential plagiasm
 -

Example Use Case: Literature Fingerprinting

- characterize a text and a writing style
- assign and obtain "fingerprints" of an author
- Authorship Attribution
- Plagiarism Checks
- We can spot differences between the two authors
- Something special about "The Adventures of Huckleberry Finn"
 - → Reason unclear, maybe Ghost Writer?

What is text?

What is language?

Language	
Sound	1. Phonetics
Grammar	2. Phonology3. Morphology4. Syntax
Meaning	5. Semantics

Morphology

■The study of the way words are built up from smaller meaning units

Morphemes

- ■The smallest meaningful unit in the grammar of a language
- ■Root, Stem, Lemma

Stemming & lemmatization

- ■Different Approaches to the problem
- •morphy() vs. Porter Stemmer

morphy() vs Porter Stemmer

Input

leaves

acceptable

morphy()

leaf

leave acceptable

Lemmatizer

Porter

leav

accept

Stemmer

Computational Methods for Document Analysis

20

Why is text so difficult to work with?

- Language has multiple layers which are difficult to understand for machienes
- Working, worked, works refer to the same action but are different words (stemming)
- Human concepts as sarcasm and irony are hard to grasp, even for humans sometimes
- How we percive text and spoken language is also influenced by our mood ("Just relax")
 --> the same sentence or word can have multiple meanings
- Punctuation matters (Let's eat (,) grandpa)
- Context matters
- We have 100+ languages

Part 2 Visualizing Text

How can we visualize text data?

- Text itself has limits on how we can visulize it
- Some basic visualizations include:
 - Keywords over time
 - Wordclouds
 - Newsmaps (Treemap)
- Most visualisations need extracted features

What features can be extracted?

Basics informations

■ Term frequency (see Zipfs-Law)

Token-relationships

- POS-Tags
- Dependencies
- Co-occurence

Token/Phrase simililarity

- Levenstein distance
- Embedding distance

Word Embeddings

- Word2vec (Context independent model)
- Context dependent models via Language Models (esp. transformer models like BERT)

Advanced Features

■ Sentiment, Topic, Entities, ...

Text Analysis Pipeline

Text Analysis Pipeline

Raw Data Selection Preprocessing Feature Extraction Visualization

Common Preprocessing Steps

- Basic cleaning like: new-line and whitespace removal
- Stop-word removal
- Stemming
- Sentence detection
- Tokenization
- POS-Tagging
- ...

(Contextualized) Language Models - Transformer

- Recent (2017) developments: transformer and attention
 - STAR choice for NLP task over RNNs
 - strong models like BERT & GPT-3
- Statistical representation of language
- Somewhat understaning of Language & Context
- Applicable for all common text analysis tasks like Text Classification (e.g. Sentiment Analysis), Text Generation, Question Answering,

Text Visualizations in Research (XAI)

Part 3 Examples

https://textvis.lnu.se/ https://lingvis.io

Refferences and further reading

- Phonetics vs. Phonology http://www.phon.ox.ac.uk/jcoleman/PHONOLOGY1.htm
- Computational Methods for Document Analysis Lecture 2019, University Konstanz, Prof. Dr. Daniel A. Keim
- Natural Language Processing Library, https://spacy.io/
- Various Deep Learning Language Models: Huggingface, https://huggingface.co/
- D. A. Keim and D. Oelke, "Literature Fingerprinting: A New Method for Visual Literary Analysis," 2007 IEEE Symposium on Visual Analytics Science and Technology, 2007, pp. 115-122, doi: 10.1109/VAST.2007.4389004.
- https://lingvis.io
 - For related publications see: https://www.researchgate.net/project/LingVISio
- https://textvis.lnu.se/
 - Kucher, Kostiantyn; Kerren, Andreas (2015). [IEEE 2015 IEEE Pacific Visualization Symposium (PacificVis) Hangzhou, China (2015.4.14-2015.4.17)] 2015 IEEE Pacific Visualization Symposium (PacificVis) Text visualization techniques: Taxonomy, visual survey, and community insights., (), 117–121.
- https://www.sbert.net/
 - Reimers, N., & Gurevych, I. (2020). Making monolingual sentence embeddings multilingual using knowledge distillation. arXiv preprint arXiv:2004.09813.,
 - Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084
- Stanford CS224N: NLP with Deep Learning | Winter 2021
 - https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ
- Joseph F. DeRose, Jiayao Wang, and Matthew Berger. 2020. Attention Flows: Analyzing and Comparing Attention Mechanisms in Language Models. abs/2009.07053 (2020). arXiv:2009.07053 https://arxiv.org/abs/2009.07053
- Cheonbok Park, Jaegul Choo, Inyoup Na, Yongjang Jo, Sungbok Shin, Jaehyo Yoo, Bum Chul Kwon, Jian Zhao, Hyungjong Noh, and Yeonsoo Lee. 2019. SANVis: Visual Analytics for Understanding Self-Attention Networks. In 30th IEEE Visualization Conf., IEEE VIS 2019 Short Papers, 2019. IEEE, 146–150. https://doi.org/10.1109/VISUAL.2019.8933677

