Homework

Daniel Halmrast

March 18, 2018

Problem 1

Prove that $V^{**} \cong V$ for a finite dimensional vector space V.

Proof. The isomorphism is given by

$$\Phi: V \to V^{**}$$

$$\Phi(v) = ev_v = (\phi \mapsto \phi(v))$$

First, we observe that this map is linear. Indeed, for $v_1, v_2 \in V$ and α, β a scalar, we have

$$\Phi(\alpha v_1 + \beta v_2)(\phi) = \phi(\alpha v_1 + \beta v_2)$$

$$= \alpha \phi(v_1) + \beta \phi(v_2)$$

$$= \alpha \Phi(v_1)(\phi) + \beta \Phi(v_2)(\phi)$$

as desired.

We need to show this is surjective and injective. Injectivity of Φ is easily shown by examining the kernel of Φ . Suppose v is such that $ev_v(\phi) = \phi(v) = 0$ for all $\phi \in V^*$. Then, since V^* separates points of V, it follows that v = 0. Thus, the kernel is trivial, as desired.

Now, we need to show this map is surjective. To do so, we appeal to v being finite-dimensional, and let $\{e_i\}$ be a basis for V with dual basis $\{\omega^i\}$. Then, let $x \in V^{**}$. Define a corresponding vector $\tilde{x} = \sum_i x(\omega^i)e_i$. Then

$$\Phi(\tilde{x})(\phi) = \phi(\tilde{x})$$

$$= \sum_{i} x(\omega^{i})\phi(e_{i})$$

$$= \sum_{i} x(\omega^{i}\phi(e_{i}))$$

$$= x(\phi)$$

as desired. Thus, Φ is a linear isomorphism.

PROBLEM 2

Prove that for V a vector space with basis v_i and dual basis v^i , the set

$$\{v^i \otimes v^j \mid 1 \le i, j \le n\}$$

forms a basis for $V^* \otimes V^*$.

Proof. For this, we will show that the vector space

$$W = \operatorname{span}(\{v^i \otimes v^j \mid 1 \le i, j \le n\})$$

satisfies the universal property of tensor products. That is, we wish to show that for each bilinear map $h: V^* \times V^* \to U$ for some vector space U, there is a unique linear map $\tilde{h}: W \to U$ such that the diagram

$$V^* \times V^* \xrightarrow{h} U$$

$$\downarrow \otimes \qquad \stackrel{\tilde{h}}{\longrightarrow} \qquad U$$

$$W$$

commutes. We will guess that $\otimes: V^* \times V^* \to W$ is given as

$$\otimes (a_i v^i, b_j v^j) = a_i b_j v^i \otimes v^j$$

So, let $h: V^* \times V^* \to U$ be a bilinear map. Define $\tilde{h}: W \to U$ as

$$\tilde{h}(\sum_{i,j} a_{ij}v^i \otimes v^j) = a_{ij}h(v^i, v^j)$$

Then it is clear that the diagram

$$V^* \times V^* \xrightarrow{\tilde{h}} U$$

$$\downarrow \otimes \qquad \tilde{h} \qquad U$$

$$W$$

commutes, since

$$h(a_i v^i, b_j v^j) = a_i b_j h(v^i, v^j)$$
$$\tilde{h} \circ \otimes (a_i v^i, b_j v^j) = \tilde{h}(a_i b_j v^i \otimes v^j)$$
$$= a_i b_j h(v^i, v^j)$$

It should be clear from construction that \tilde{h} is unique.

Thus, since every bilinear map from $V^* \times v^*$ factors through W, W satisfies the universal property of tensor products, and is isomorphic to $V^* \otimes V^*$. Thus, the set $\{v^i \otimes v^j\}$ forms a basis for $V^* \otimes V^*$ as desired.

PROBLEM 3

Show that $dvol = \wedge_i \omega^i = \sqrt{|g|} dx^n$.

Proof. Recall that $dx^n = \bigwedge_{i=1}^n dx^i$, and our manifold is n-dimensional.

Recall that for an *n*-fold wedge product $\wedge_{i=1}^n v^i$, we have (for $v^i = a^i_j \omega^j$ in an orthonormal frame)

$$\wedge_{i=1}^n v^i = |\det(a_i^1, \dots, a_i^n)| \wedge_{i=1}^n \omega^i = \sqrt{\det(A^t A)} \wedge_{i=1}^n \omega^i$$

for A the matrix with columns a^i . We can apply this to $v^i = dx^i$ to get the desired result. \Box

Problem 4

Show that the definition of the integral of a top degree form on a single chart is independent of choice of coordinates.

Proof. Recall the definition of the integral of a top degree differential form on a compact set K in a single coordinate frame is

$$\int_{K} \omega = \int_{\phi(K)} f \circ \phi^{-1} dx^{n}$$

for $\omega = f dx^1 \wedge \cdots \wedge dx^n$.

We also have the change-of-coordinates formula for a diffeomorphism $F:\Omega_1\to\Omega_2$ as

$$\int_{\Omega_2} f dy^n = \int_{\Omega_1} f \circ F|J_F| dx^n$$

where J_F is the jacobian of F.

So, let $\phi: M \to \mathbb{R}^n$ be the original coordinate system, and let $\psi: M \to \mathbb{R}^n$ be another coordinate system covering K. Then, we have the diffeomorphism $F = \psi \circ \phi^{-1}$ and we can apply this to get

$$\int_{\psi(K)} g \circ psi^{-1} dy^n = \int_{\phi(K)} g \circ \psi^{-1} \circ F|J_F| dx^n$$

which is just

$$\int_{\phi(K)} g \circ \psi^{-1} \circ F|J_F| dx^n = \int_{\phi(K)} g \circ \psi^{-1} \circ \psi \circ \phi^{-1} |J_F| dx^n$$

$$= \int_{\phi(K)} g \circ \phi^{-1} |J_F| dx^n$$

$$= \int_K g|J_F| dx^n$$

$$= \int_K \omega$$

where we used the fact that $\omega = g dy^1 \wedge \cdots \wedge dy^n = g|J_F|dx^1 \wedge \cdots \wedge dx^n$ since $|J_F| = \det(J_F)$ on a two positively oriented charts.

Thus, the two integrals agree.

Problem 5

Prove that a manifold is orientable if and only if it admits a nowhere vanishing top degree form.

Proof. Suppose M is an orientable manifold. That is, there exists an atlas $\{U_{\alpha}, \phi_{\alpha}\}$ of M for which the Jacobian of each transition map has positive determinant. Let $\{\psi_{\alpha}\}$ be a partition of unity subordinate to the atlas U_{α} . Then, define

$$\omega = \sum_{\alpha} \psi_{\alpha} dx_{\alpha}^{i} \wedge \dots \wedge dx_{\alpha}^{n}$$

where x_{α}^{i} are the coordinate functions on U_{α} . We claim that ω is a nowhere-vanishing form. Clearly, if p is a point in M contained in only one chart, then $\omega_{p} = dx_{p}^{1} \wedge \cdots \wedge dx_{p}^{n}$ and does not vanish. If p is such that it is contained in more than one chart, then ω at p is the sum of

positive terms (since each coordinate system is positive, we have $dx^n = \det(J)dy^n$ and $\det(J)$ is always positive) and does not vanish.

Suppose instead that M admits a nowhere-vanishing top degree form ω . Then, let $\{U_{\alpha}, \phi_{\alpha}\}$ be an atlas of M. For x_{α}^{i} the coordinate functions for ϕ_{α} , define a new coordinate system to be such that if ω is expressed as

$$\omega = f dx_{\alpha}^{1} \wedge \cdots \wedge dx_{\alpha}^{n}$$

then f is positive. This is done by setting x_{α}^{1} to its negative if f is negative on that chart. Note that since ω never vanishes, we know that f will be either entirely positive or entirely negative on a chart. Thus, such a choice can be made consistently.

Then, the modified atlas is a positive coordinate chart for M, which is easily verified, since

$$\omega = f dx^n = f \det(J) dy^n$$

and ω always has positive coefficient, so $\det(J)$ is positive.

<++>