

<u>Home</u> <u>Gameboard</u> Chemistry Physical Electrochemistry Electrochemistry Introduction

Electrochemistry Introduction

In electrochemistry, a potential difference between two half-cells is set up by having different redox couples and/or different concentrations of a given redox couple present.

Part A Introduction
The potential of the side half-cell is measured relative to the side one, so the cell
potential is given by subtracting the reduction potential of the side from the reduction potential of
the side. Standard reduction potentials can be tabulated, which correspond to values recorded
under standard conditions against the standard electrode. The conventional cell reaction consists
of the right-hand side and the left-hand side (which can be thought of as subtracting
the left-hand side (n) , making sure that the number of electrons (n) transferred is the same for both
sides.
Items:
right-hand left-hand platinum silver hydrogen oxygen oxidation reduction

Part B Linking equations

Working out cell potentials can be useful in itself, but as a result of connections to other thermodynamic quantities, tabulated standard reduction potentials allow us to calculate, for example, equilibrium constants even of non-redox reactions or processes such as a salt dissolving.

Given that $\Delta_{\mathbf{r}}G^{\circ}=-nFE^{\circ}=-RT\ln K$, rearrange the equation for K (the equilibrium constant) as a function of n (the number of electrons transferred), F (the Faraday constant), E° (the standard cell potential, for which you should use E^{o} in your expression), R (the universal gas constant) and T (the temperature).

The following symbols may be useful: E^o, F, K, R, T, e, ln(), log(), n

Created for isaacphysics.org by Andrea Chlebikova

Home Gameboard Chemistry Physical Electrochemistry Electrode Potential & Cell Potential 1

Electrode Potential & Cell Potential 1

Essential Pre-Uni Chemistry L1.1

Name the element whose reduction is used as a standard by which all electrode potentials are measured.
Hydrogen
☐ Iron
Helium
Lithium
Platinum
Oxygen
Silver
Fluorine
Gameboard: STEM SMART Chemistry Week 37

Home Gameboard Chemistry Physical Electrochemistry Electrode Potential & Cell Potential 3

Electrode Potential & Cell Potential 3

Essential Pre-Uni Chemistry L1.3

The standard electrode potential, E° , for the reduction, $Br_2(aq) + 2e^- \longrightarrow 2Br^-(aq)$ is $1.09\,V$. Give the E° value for the reduction, $\frac{1}{2}Br_2(aq) + e^- \longrightarrow Br^-(aq)$.

Gameboard:

STEM SMART Chemistry Week 37

Home Gameboard Chemistry Physical Electrochemistry Electrode Potential & Cell Potential 4

Electrode Potential & Cell Potential 4

Essential Pre-Uni Chemistry L1.4

 E° for the reaction, $\mathrm{Ce}^{4+}(\mathrm{aq}) + \mathrm{e}^{-} \longrightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$ is $1.70\,\mathrm{V}$. Give the E° value for the oxidation half-reaction, $\mathrm{Ce}^{3+}(\mathrm{aq}) \longrightarrow \mathrm{Ce}^{4+}(\mathrm{aq}) + \mathrm{e}^{-}$.

Gameboard:

STEM SMART Chemistry Week 37

Home Gameboard

<u>d</u> Chemistry

Physical Electrochemistry

Electrode Potential & Cell Potential 5

Electrode Potential & Cell Potential 5

Essential Pre-Uni Chemistry L1.5

Reduction	$E^{\scriptscriptstyle \oplus}$ / $ m V$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq}\right)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}^{+}\left(\mathrm{aq}\right)$	+0.16
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\mathrm{(aq)} + 6\mathrm{e^-} + 14\mathrm{H^+}\mathrm{(aq)} \mathop{\longrightarrow} 2\mathrm{Cr}^{3+}\mathrm{(aq)} + 7\mathrm{H_2O}\mathrm{(l)}$	+1.33

Use the standard electrode potentials tabulated above to calculate the standard cell potentials due to the following reactions, giving your answers to 2 decimal places throughout:

Part A (a)

$$\operatorname{Zn}\left(s\right) +\operatorname{Cu}^{2+}\left(\operatorname{aq}\right) \longrightarrow\operatorname{Zn}^{2+}\left(\operatorname{aq}\right) +\operatorname{Cu}\left(s\right)$$

Part B (b)

$$\mathrm{Cu}\left(\mathrm{s}\right)+2\,\mathrm{Ag}^{+}\left(\mathrm{aq}\right)\longrightarrow\mathrm{Cu}^{2+}\left(\mathrm{aq}\right)+2\,\mathrm{Ag}\left(\mathrm{s}\right)$$

Part C (c)

$$6\,\mathrm{Fe^{2+}\,(aq)} + \mathrm{Cr_2O_7}^{2-}\,(\mathrm{aq}) + 14\,\mathrm{H^+\,(aq)} \longrightarrow 6\,\mathrm{Fe^{3+}\,(aq)} + 2\,\mathrm{Cr^{3+}\,(aq)} + 7\,\mathrm{H_2O\,(l)}$$

Part D (d)

$$\mathrm{Fe}^{2+}\left(\mathrm{aq}\right)+\mathrm{Zn}\left(\mathrm{s}\right)\longrightarrow\mathrm{Fe}\left(\mathrm{s}\right)+\mathrm{Zn}^{2+}\left(\mathrm{aq}\right)$$

Gameboard:

STEM SMART Chemistry Week 37

Home Gameboard Chemistry Physical Entropy Free Energy Changes 9

Free Energy Changes 9

Essential Pre-Uni Chemistry H2.9

The displacement of hydrogen from acid by iron,

$$2\,\mathrm{H^{+}}\left(\mathrm{aq}
ight) + \mathrm{Fe}\left(\mathrm{s}
ight) \Longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq}
ight) + \mathrm{H}_{2}\left(\mathrm{g}
ight)$$

has a standard cell potential of $0.44\,V$. Find the associated standard Gibbs free energy change. (Faraday constant = $96\,485\,C\,\mathrm{mol^{-1}}$)

Gameboard:

STEM SMART Chemistry Week 37

Home Gameboard Chemistry Physical Electrochemistry Free Energy & Kc 1

Free Energy & Kc 1

Essential Pre-Uni Chemistry L2.1

Reduction	$E^{\scriptscriptstyle +}$ / ${ m V}$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\left(\mathrm{aq}\right) + 6\mathrm{e^-} + 14\mathrm{H^+}\left(\mathrm{aq}\right) \longrightarrow 2\mathrm{Cr}^{3+}\left(\mathrm{aq}\right) + 7\mathrm{H_2O}\left(\mathrm{l}\right)$	+1.33

Use the standard electrode potentials tabulated above to find ΔG° for the following reactions:

Part A (a)

$$\mathrm{Ag}^{+}\left(\mathrm{aq}\right)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s}\right)$$

Part B (b)

$$\operatorname{Zn}^{2+}\left(\operatorname{aq}\right)+2\operatorname{e}^{-}\longrightarrow\operatorname{Zn}\left(\operatorname{s}\right)$$

Part C (c)

$$\mathrm{Fe}^{3+}\left(\mathrm{aq}\right)+3\,\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s}\right)$$

Gameboard:

STEM SMART Chemistry Week 37

<u>Home</u> <u>Gameboard</u> Chemistry Physical Electrochemistry Free Energy & Kc 2

Free Energy & Kc 2

Essential Pre-Uni Chemistry L2.2

Reduction	$E^{\scriptscriptstyle \oplus}$ / ${ m V}$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\left(\mathrm{aq} ight) + 6\mathrm{e^-} + 14\mathrm{H^+}\left(\mathrm{aq} ight) \longrightarrow 2\mathrm{Cr}^{3+}\left(\mathrm{aq} ight) + 7\mathrm{H_2O}\left(\mathrm{l} ight)$	+1.33

Use the standard electrode potentials tabulated above to find ΔG° for the following reactions:

Part A (a)

$$Ag^{+}\left(aq\right)+Fe^{2+}\left(aq\right)\longrightarrow Fe^{3+}\left(aq\right)+Ag\left(s\right)$$
. Give your answer to 1 significant figure.

Part B (b)

 $3\,Zn\left(s\right)+Cr_2O_7^{\,2-}\left(aq\right)+14\,H^+\left(aq\right)\longrightarrow 3\,Zn^{2+}\left(aq\right)+2\,Cr^{3+}\left(aq\right)+7\,H_2O\left(l\right). \label{eq:sum}$ significant figures.

Part C (c)

 $2\,\mathrm{Cr}\,(\mathrm{s}) + 3\,\mathrm{Cu}^{2+}\,(\mathrm{aq}) \longrightarrow 2\,\mathrm{Cr}^{3+}\,(\mathrm{aq}) + 3\,\mathrm{Cu}\,(\mathrm{s}).$ Give your answer to 3 significant figures.

Gameboard:

STEM SMART Chemistry Week 37

Home Gameboard

Chemistry

Physical Electrochemistry

Electrode Potential & Cell Potential 7

Electrode Potential & Cell Potential 7

Essential Pre-Uni Chemistry L1.7

Reduction	$E^{\scriptscriptstyle \ominus}$ / ${ m V}$
$\mathrm{Zn}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Zn}\left(\mathrm{s} ight)$	-0.76
$\mathrm{Cr}^{3+}\left(\mathrm{aq} ight)+3\mathrm{e}^{-}\longrightarrow\mathrm{Cr}\left(\mathrm{s} ight)$	-0.74
$\mathrm{Fe}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Fe}\left(\mathrm{s} ight)$	-0.44
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}\left(\mathrm{aq} ight)$	+0.16
$\mathrm{Cu}^{2+}\left(\mathrm{aq} ight)+2\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.34
$\mathrm{Cu}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Cu}\left(\mathrm{s} ight)$	+0.52
$\mathrm{Fe}^{3+}\left(\mathrm{aq} ight) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}\left(\mathrm{aq} ight)$	+0.77
$\mathrm{Ag}^{+}\left(\mathrm{aq} ight)+\mathrm{e}^{-}\longrightarrow\mathrm{Ag}\left(\mathrm{s} ight)$	+0.80
$\mathrm{Cr_2O_7}^{2-}\mathrm{(aq)} + 6\mathrm{e^-} + 14\mathrm{H^+}\mathrm{(aq)} \longrightarrow 2\mathrm{Cr}^{3+}\mathrm{(aq)} + 7\mathrm{H_2O}\mathrm{(l)}$	+1.33

Using the data tabulated above, calculate the standard cell potential for:

Part A (a)

$$2\operatorname{Cu}^{+}\left(\operatorname{aq}\right)\longrightarrow\operatorname{Cu}\left(\operatorname{s}\right)+\operatorname{Cu}^{2+}\left(\operatorname{aq}\right)$$

Part B (b)

$$3\,\mathrm{Fe}^{2+}\,\mathrm{(aq)}\longrightarrow 2\,\mathrm{Fe}^{3+}\,\mathrm{(aq)}+\mathrm{Fe}\,\mathrm{(s)}$$

Part C (c)

$$\mathrm{Ag^{+}}\left(\mathrm{aq}\right)+\mathrm{Cu^{+}}\left(\mathrm{aq}\right)\longrightarrow\mathrm{Ag}\left(\mathrm{s}\right)+\mathrm{Cu^{2+}}\left(\mathrm{aq}\right)$$

Gameboard:

STEM SMART Chemistry Week 37

Home Gameboard Chemistry Physical Electrochemistry Combining Potentials

Combining Potentials

When half-cell potentials are combined to form a cell potential, the process is relatively straightforward: we balance the two half-equations to include the same number of electrons, and subtract the left-hand half-cell potential from the right-hand half-cell potential.

When two half-cell potentials need to be combined to instead form another half-cell potential, for a third half-reaction, the process is a little more complicated.

 $A^{(n_1+n_2)+} + n_1 e^- \longrightarrow A^{n_2+} \text{ has a half-cell potential of } x \text{ and } A^{n_2+} + n_2 e^- \longrightarrow A \text{ has a half-cell potential of } y.$

Derive an expression for the half-cell potential of the following reaction:

$$A^{(n_1+n_2)+}+(n_1+n_2)e^- {\longrightarrow} A$$

The following symbols may be useful: n_1, n_2, x, y

Created for isaacphysics.org by Andrea Chlebikova