Polynomials in one Variable.

Any linear algebra can be used as a ring of scalars; we are mostly concerned with a ring \mathbb{K} in general but the polynomial algebra \mathbb{K}_{θ} is also needed when the subject develops. We provide a discussion here. Recall that for any ring \mathbb{K} ' two algebras \mathbb{K}_{θ} of polynomials as polynomial arise: one in which we write polynomial as $a(\theta) = \theta^n a_n + \ldots + \theta a_1 + a_0, a_i \varepsilon \mathbb{K}, a_n$ and the other in which we write polynomial as $a(\theta) = a_n \theta^n + \ldots a_1 theta + a_0, a_i \varepsilon \mathbb{K}, a_n \neq 0$,

As modules, one of them is a right module and the other is a left modules and the development run in parallel. As rings they can be regarded as isomorphic via $f(a_n\theta^n) = \theta^n a_n$ the element $a_n\varepsilon\mathbb{K}$ is called the 'leading coefficient' of $a(\theta)$

- (i) We take a ring $\mathbb{K}[\theta]$ of polynomial writing its elements as $a = a(\theta) = a_0 + \ldots + a_n \theta^n$, $a_n \neq 0$ and recall that it obey the following relations:
 - (a) If $a(\theta) = a_0 + a_1 \theta + \ldots + a_n \theta^n, a_n \neq 0$ $b(\theta) = b_0 + b_1 \theta + \ldots + b_m \theta^m, b_m \neq 0 \text{ and }$ $c(\theta) = (a(\theta))(b(\theta)) = c_0 + c_1 \theta + \ldots +$

 $=(ab)_0+(ab)_1\theta+\ldots$ then while this multiplication in $\mathbb{K}[\theta]$ is in general noncommutative $[c_n=(ab)_n=\sum_{n=p+q}a_pb_q\neq\sum_{n=p+q}b_pa_q=(ba)_n$ in general] we have $deg[b(\theta)a(\theta)]=deg[a(\theta)b(\theta)]$ $[=deg(a(\theta))+deg(b(\theta))=n+m$ if "either a_n or b_n is not a zero divisor in $\mathbb{K}i.e.$ if we do not get $a_nb_m=0\varepsilon\mathbb{K}$ although $a_n\neq 0, b_m\neq 0$

note that this may happen if \mathbb{K} is a matrix ring $Mat_n(\mathbb{L})$ for some ring \mathbb{L}

- (b) $deg[a(\theta) + b(\theta)] \le max\{dega(\theta), degb(\theta)\} = max\{n, m\}$
- (c) $dega(\theta) = 0iffa(\theta) = a_0 \varepsilon \mathbb{K}$, we say that $a = a(\theta)$ is a constant.
- (d) We set $deg(0) = -\infty$ for the zero polynomial $o\varepsilon \mathbb{K}[\theta]$.

- (e) $\theta \in \mathbb{K}[\theta]$ [i.e. $\theta a(\theta) = a(\theta)\theta$ for all $a(\theta)\in \mathbb{K}[\theta]$] and thus each monomial $\{\theta^k \mid k \in \mathbb{N} \text{ is } en \mathbb{K}[\theta]\}$.
- (ii) (a) **Proposition** If $\mu(\theta)$ has an invertible leading coefficient and $dega(\theta) \ge deg\mu(\theta)$, we can find some $b(\theta)$ with $deg[a(\theta) \mu(\theta)b(\theta)] < dega(\theta)$.

Proof: Say
$$a(\theta) = a_0 + \ldots + a_{n+m}\theta^{n+m}$$
, $\mu(\theta) = \mu_0 + \ldots + \mu_m\theta^m$ then with $b(\theta) = \mu_m^{-1}a_{m+n}\theta^n$, we have $a(\theta) - \mu(\theta)b(\theta) = a_0 + \ldots + a_{n+m}\theta^{n+m} - \mu_m\mu_m^{-1}a_{n+m}\theta^{n+m} - \mu_{m-1}\mu_m^{-1}a_{n+m}\theta^{n+m-1} - \ldots - \mu_0\mu_m^{-1}a_{n+m}\theta^n$ which has degree $< n + m = dega(\theta)$ since the coefficient of θ^{n+m} is 0.

(b) We note that the same argument works to prove that we can find $c(\theta)$ with $deg[a(\theta)-c(\theta)\mu(\theta)] < dega(\theta)$

The left division algorithm:

Given $a(\theta)\varepsilon\mathbb{K}[\theta]$, and $\mu(\theta)\varepsilon\mathbb{K}[\theta]$ with an invertible leading coefficient, there exists exactly one $q(\theta)\varepsilon K[\theta]$ such that $a(\theta) = \mu(\theta) + r(\theta), \deg r(\theta) < \deg \mu(\theta)$ and then $r(\theta)$ is also uniquely determined we say q is the 'quotient' and r is the remainder.

Proof : If there are two polynomials $q(\theta), q'(\theta)$ satisfying the requirement so that $a(\theta) = \mu(\theta)q(\theta) + r(\theta) = \mu(\theta)q'(\theta) + r'(\theta)$, we have

$$\mu(\theta)[q(\theta) - q'(\theta)] = r(\theta) - r'(\theta) \tag{1}$$

Assume $deg[q(\theta) - q'(\theta)] = n$, $deg \ \mu(\theta) = m$ so that LHS of (1) has degree n + m [: $\mu(\theta)$] has invertible coefficient μ_m and thus if] λ is non zero we do not have $\mu_m \lambda = 0$ since $\lambda = \mu_m^{-1}(\mu_m \lambda)$

But $deg(r(\theta)) < deg\mu(\theta), deg(r'(\theta)) < deg\mu(\theta)$ and $deg[r'(\theta) - degr(\theta)] \le max\{degr'(\theta), degr(\theta)\} < deg\mu(\theta)$ and so we have n + m < m which forces $n = -\infty$ and thus $q(\theta) = q'(\theta)$ which then forces $r'(\theta) = r(\theta)$ and consequently uniqueness is established for $q(\theta)$ and then for $r(\theta) = a(\theta) - \mu(\theta)q(\theta)$. For existence, we note that the set $S = \{deg[a(\theta) - \mu(\theta)b(\theta)] | b(\theta) \in k[\theta]\}$ will have a least element; let $q(\theta)$ correspond to that i.e., let $q(\theta)$ be such that $deg[a(\theta) - \mu(\theta)q(\theta)]$. We record $r(\theta) = a(\theta) - \mu(\theta)q(\theta)$; thus $degr(\theta)$ is the least element of S. If $degr(\theta) \ge deg\mu(\theta)$ then [(iii)(a) on preceding page 11] we know there is some $b(\theta)$ with $deg[r(\theta) - \mu(\theta)b(\theta)] < degr(\theta)$ so that with $q_1 = q(\theta) + b(\theta)$, we have $deg[a(\theta) - \mu(\theta)q_1(\theta)] < degr(\theta)$ which contradicts the choice of $q(\theta)$ that had assumed $deg(a(\theta) - \mu(\theta)q_1(\theta))$ as the least element of S. Therefore, we must have $deg(r(\theta)) < deg(\mu(\theta))$ and we have found our $q(\theta)$ with $a(\theta) = \mu(\theta)q(\theta) + r(\theta), degr(\theta) < deg\mu(\theta)$ as required.

[this argument works for $dega(\theta\theta) \ge deg\mu(\theta)$; if $dega(\theta) < deg\mu(\theta)$ put $q(\theta) = 0, r(\theta) = a(\theta)$. Further, note

that if $dega(\theta) = 0$, then $deg\mu(\theta) = 0$ is forced since $deg\mu(\theta) = \infty$ is not permissible with invertible leading coefficient; then $a(\theta) = a_0, \mu(\theta) = \mu_0$ and μ_0 is invertible, take $q = \mu_0^{-1} a_0$.

(v) In this preceding, q is the left quotient and r is the left remainder on left division by $\mu(\theta)$; we say $\mu(\theta)$ is a left divisor of a iff r=0. we similarly have

The right division algorithm:

Given $a(\theta) \in \mathbb{K}[\theta]$, and $\mu(\theta) \in \mathbb{K}[\theta]$ with invertible leading coefficient, there is exactly one $q(\theta) \in \mathbb{K}[\theta]$ such that $a(\theta) = q(\theta)\mu(\theta) + r(\theta)$ with $degr(\theta) < deg\mu(\theta)$ and then $r(\theta)$ is also uniquely determined. Further, we say $q(\theta)$ is the right quotient, $r(\theta)$ is the right remainder on right division by $\mu(\theta)$.

[The proof will use (iii) b on pase 11 preceding].

Example 0.1. If
$$a_3 = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} -1 & 0 \\ 1 & 3 \end{pmatrix}$ $a_1 = \begin{pmatrix} 2 & 3 \\ -2 & 0 \end{pmatrix}$, $a_0 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ and $\mu_1 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $\mu_0 = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$ where $a(\theta) = a_0 + a_1\theta + a_2\theta^2 + a_3\theta^3$
$$\mu(\theta) = \mu_0 + \mu_1\theta$$
. The right quotient and remainder are $q(\theta) = q_0 + q_1\theta + q_2\theta^2$, $r(\theta) = r_0$ with $q_2 = \begin{pmatrix} -1 & 3 \\ 0 & 0 \end{pmatrix}$, $q_1 = \begin{pmatrix} 7 & -14 \\ -2 & 5 \end{pmatrix}$, $q_0 = \begin{pmatrix} -43 & 81 \\ 12 & -24 \end{pmatrix}$ and $r_0 = \begin{pmatrix} 43 & -206 \\ -11 & 62 \end{pmatrix}$ while the left quotient is $q(\theta) = q_0 + q_1\theta + q_2\theta^2$ and the left remainder is $r_0 = \begin{pmatrix} -94 & -169 \\ 115 & 206 \end{pmatrix}$ on left and right division of $a(\theta)$ by $\mu(\theta)$ respectively. [Please verify this].

Proposition For a ring \mathbb{K} and $\alpha, \beta \in \mathbb{K}$, the following are equivalent:

- 1. There is an invertible $y \in \mathbb{K}$ such that $\beta = \gamma \alpha \gamma^{-1}$
- 2. There are invertibles $p(\theta), q(\theta) \in \mathbb{K}[\theta]$ with $\theta \beta = p(\theta)(\theta \alpha)q(\theta)$

Proof: (1) \Rightarrow (2) Since $\theta \varepsilon cen \mathbb{K}[\theta]$ and the constants $\gamma, \gamma^{-1} \varepsilon \mathbb{K}[\theta]$, we find $\theta - \beta = \theta \gamma \gamma^{-1} - \gamma \alpha \gamma^{-1} = \gamma \theta \gamma^{-1} - \gamma \alpha \gamma^{-1} = \gamma (\theta - \alpha) \gamma^{-1}$ which prove (2).

(2) \Rightarrow (1)Let invertibles $p(\theta), q(\theta) \in \mathbb{K}[\theta]$ be given with $\theta - \beta = p(\theta)(\theta - \alpha)q(\theta)$. Since $\theta - \alpha$ has leading coefficient $1 \neq 0$ the division algorithm assume the existence of uniquely given $a(\theta)$ and $u(\theta)$ such that

 $\overline{(p(\theta)^{-1})\varepsilon\mathbb{K}[\theta]} \text{ can be written as } (p(\theta)^{-1}) = (\theta - \alpha)a(\theta) + u(\theta), degu(\theta) < deg(\theta - \alpha) = 1 \text{ which forces}$ $u = u(\theta)\varepsilon\mathbb{K}. \text{ then } u(\theta - \beta) = [p(\theta)^{-1} - (\theta - \alpha)a(\theta)](\theta - \beta) = (p(\theta))^{-1}(\theta - \beta) - (\theta - \alpha)a(\theta)(\theta - \beta) = (p(\theta))p(\theta)(\theta - \alpha)q(\theta) - (\theta - \alpha)a(\theta)(\theta - \beta) = (\theta - \alpha)[q(\theta) - a(\theta)(\theta - \beta)]$

comparing the highest degree terms on both sides, we get $q(\theta) - a(\theta)(\theta - \beta)u$ The equation is thus $u(\theta - \beta) = (\theta - \alpha)u$ which has forces $u\beta = \alpha u$. Dividing $p(\theta)$ by $(\theta - \beta)$ [which has leading coefficient $1 \neq 0$] we get $p(\theta) = (\theta - \beta)b(\theta) + r(\theta)$, with $degr(\theta) < deg(\theta - \alpha) = 1$ forcing $r(\theta) = r\varepsilon \mathbb{K}$.

We have $1 = p(\theta)[p(\theta)]^{-1} = p(\theta)[(\theta - \alpha)a(\theta) + u] = p(\theta)(\theta - \alpha)a(\theta) + p(\theta)u = (\theta - \beta)[q(\theta)]^{-1}a(\theta) + [(\theta - \beta)p(\theta + r)]u = (\theta - \beta)[q(\theta)a(\theta) + b(\theta)u] + ru$ so that $1 - ru = (\theta - \beta)[q(\theta)a(\theta) + b(\theta)u]$ comparing the coefficient if on both sides,we get RHS=0 hence 1 - ru = 0 which forces ru = 1. Further,we have $1 = [p(\theta)]^{-1}p(\theta) = [(\theta - \alpha)a(\theta) + u]p(\theta) = [(\theta - \alpha)a(\theta) + u][(\theta - \beta)b(\theta) + r] = (\theta - \alpha)a(\theta)(\theta - \beta)b(\theta) + (\theta - \alpha)a(\theta)r + u(\theta - \beta)b(\theta) + ur$ so that $1 - ur = (\theta - \alpha)a(\theta)(\theta - \beta)b(\theta) + (\theta - \alpha)a(\theta)r + u(\theta - \beta)b(\theta)$ Comparing the coefficients of θ on both sides, we get RHS=0 which forces 1 - ur = 0. Therefore, u is invertible with inverse r.

Euclidean domain:

We say a ring is an entire ring $iff \ \lambda \mu = 0 \Rightarrow$ either $\lambda = 0$ or $\mu = 0$; a commutative entire ring is also called integral domain. [Some text books use 'integral domain' for 'entire ring' also]. An integral domain \mathbb{K} is called a Euclidean domain iff there is an 'Euclidean function' $\mathbb{K}|\{0\} \to g \mathbb{N}$ satisfying

 E_1 if λ divides $\mu \neq 0$ then $g(\lambda) \leq g(\mu)$

 E_2 For every pair of elements α, β of $\mathbb{K}, \alpha \neq 0$

there exists elements $\gamma, \delta \varepsilon \mathbb{K}$ with $\beta = \alpha \gamma + \delta$ with $\delta = 0$ or $g(\delta) < g(\alpha)$.[thus in a domain, it is called 'Euclidean algorithm']. In the preceding section, we proved that if \mathbb{F} is a field, $\mathbb{F}[\theta]$ is a Euclidean domain $[g(a(\theta)) = dega(\theta)]$ The ring of integers \mathbb{Z} is also an integral domain [This is the reason for 'integral' domain'] with $g(a) = |a|, a\varepsilon \mathbb{Z}$. Indeed, if $b = ac \neq 0$ then $|c| \geq 1$ and hence $|b| = |c||a| \geq |a|$. Further, for any two integers $a, b, a \neq 0$ the division algorithm in \mathbb{Z} ensures $b = |a|q + r = a(\pm q) + r$ with r = 0 or 0 < r < |a|. These two examples of Euclidean domains are the ones we shall use in this course .However, there are other Euclidean domains: let $d \neq 1$ be a square free integer [in the sense that its prime factorization has no square] and let $\theta = \{\frac{1+\sqrt{d}}{\sqrt{d}} \text{ if } d\equiv 1 \mod 4 \\ \text{otherwise} \}$

Consider $\mathbb{Q}[\sqrt{d}]$ [we met this on pase 8 preceding] which is a field; for $\alpha = p + q\sqrt{d}$ we write $p^2 - q^2d$ as $N(\alpha)$. Then for d = -1, -2, -3, -7, -11, 2, 3, 5, 6, 7, 13, 17, 21, 29, the function $g(\alpha) = |N(\alpha)|$ is a

Euclidean function; we shall not prove this here.

Proposition The gcd of any two elements α, β not both zero, of Euclidean domain \mathbb{E} exists and can be expressed as $\alpha\lambda + \beta\mu$ with $\lambda, \mu\varepsilon\mathbb{E}$.

Proof : Suppose g is the Euclidean function, $g(\alpha) \geq g(\beta)$. Then by the property of g [the 'Euclidean algorithm', also called 'division algorithm'] we have $\alpha = \beta \gamma_1 + \delta_1$, $g(\delta_1) < g(\beta)$; $\beta = \delta_1 \gamma_2 + \delta_2$, $g(\delta_2) < g(\delta_1)$

•••

so that δ_n divides α .

Thus $g(\beta) > g(\delta_1) > g(\delta_2) \dots$ is a decreasing sequence of nonnegative integers which must stop and after some time, we have $\delta_{n-2} = \delta_{n-1}\gamma_n + \delta_n$, $\delta_{n-1} = \delta_n\gamma_{n+1} + \delta_{n+1}$ with $\delta_{n+1} = 0 = \delta_k$ for any k > n+1 now $\delta_1 = \alpha - \beta\gamma_1$ so δ_1 has the form $\alpha\lambda + \beta\mu$ with $\lambda = 1, \mu = -\gamma_1$. In general, if $\delta_{i-1} = \alpha\lambda_{i-1} + \beta\mu_{i-1}$ and $\delta_{i-2} = \alpha\lambda_{i-2} + \beta\mu_{i-2}$

 $\delta_i = -\delta_{i-1}\gamma_i + \delta_{i-2} = -(\alpha\lambda_{i-1} + \beta\mu_{i-1})\gamma_i + \alpha\lambda_{i-2} + \beta\mu_{i-2} = \alpha[\lambda_{i-2} - \lambda_{i-1}] + \beta[\mu_{i-2} - \mu_{i-1}\gamma_i] \text{ also has this form } \alpha\lambda + \beta\mu \text{ [with } \lambda = \lambda_{i-2} - \lambda_{i-1}, \mu = \mu_{i-2} - \mu_{i-1}\gamma_i \text{]}. \text{ Thus } \delta_n = \alpha\lambda_n + \beta\mu_n \text{ for some } \lambda_n, \mu_n \varepsilon \mathbb{E}.$ $\text{Now } \delta_n = \delta_n.1 + 0 \text{ so } \delta_n \text{ divides } \delta_n \text{ and } \delta_{n-1} = \delta_n\gamma_{n+1} + 0 \text{ so } \delta_n \text{ divides } \delta_{n-1}. \text{ But we have } \delta_{n-2} = \delta_{n-1}\gamma_n + \delta_n = \delta_n\gamma_{n+1}\gamma_n + \delta_n = \delta_n[\gamma_{n+1}\gamma_n + 1] \text{ so } \delta_n \text{ divides } \delta_{n-2}. \text{ Similarly, } \delta_n \text{ divides all the 'remainders'} \delta_i. \text{Let } \delta_i = \delta_n p_i, p_i \varepsilon \mathbb{E}. \text{ Then } \beta = \delta_1 \gamma_2 + \delta_2 = \delta_n p_1 \gamma_2 + \delta_n p_2 = \delta_n[p_1 \gamma_2 + \beta_2] \text{ so that } \delta_n \text{ divides } \beta \text{ and } \alpha = \beta\gamma_1 + \delta_1 = \delta_n[p_1 \gamma_2 + \beta_2] \gamma_1 + \delta_n p_1 = \delta_n[p_1 \gamma_2 \gamma_1 + p_1]$

Thus is a common divisor of α and β . If γ is any other divisor of α and β say $\alpha = \gamma p, \beta = \gamma q, p, q \in \mathbb{E}$ then $\delta_n = \alpha \lambda_n + \beta \mu_n = \gamma p \lambda_n + \gamma q \mu_n = \gamma [p \lambda_n + q \mu_n]$ so that γ divides δ_n . Thus δ_n is the greatest common divisor of α and β , and is of the form $\alpha \lambda + \beta \mu$ [with $\lambda = \lambda_n, \mu = \mu_n$]. This proves that advertized result. But there is a further piece of information. Suppose $\alpha = \delta_n a, \beta = \delta_n b$ then writing $\delta_n m = \alpha \beta$, we have $\delta_n m = \delta_n a \delta_n b = a \delta_n^2 b = \delta_n^2 a b$ [because of commutativity] i.e. $m = a \beta$ and $m = b \alpha$ [: \mathbb{E} is a integral domain $\delta_n \neq 0$] so that m is a common multiple. If m is another common multiple, then $m' = \alpha c_1, m' = \beta c_2$ hence $\delta_n m' = (\alpha \lambda_n + \beta \mu_n) m' = \alpha m' \lambda_n + \beta m' \mu_n = \alpha \beta c_2 \lambda_n + \beta \alpha c_1 \mu_n = \alpha \beta [c_2 \lambda_n + c_1 \mu_n] = \delta_n m [c_2 \lambda_n + c_1 \mu_n]$ But then $\delta_n [m' - m(c_2 \lambda_n + c_1 \mu_n)] = 0$ and since $\delta_n \neq 0$, and \mathbb{E} is an integral domain, we get $m' - m(c_2 \lambda_n + c_1 \mu_n) = 0$ which means $m' = m(c_2 \lambda_n + c_1 \mu_n)$ so that m is a divisor of m. Thus m is the least common multiple of α, β .

To sum up: In a Euclidean domain, both the LCM and GCD exists.

There are rings in which the LCM exists and the GCD dose not and vice versa; this is not the place

to go in more detail] Now suppose A is an ideal in a Euclidean domain \mathbb{E} [For 'ideal' see Modules, pase 14]. Pick $a \in A$ with a = bq + r where g(b) has the least value for element of A.Then since $a, b \in A$, we have $r = a - bq \in A$ with g(r) < g(b) which is not possible since b has the least value g(b) for elements of A.Thus r = 0 and we have ' $A = (a) = \{a\lambda | \lambda \in \mathbb{E}\}$ '. Such an ideal which is generated by a single element is called a principal ideal. To sum up: Every Euclidean domain \mathbb{E} is a principal ideal domain in the sense that every ideal in \mathbb{E} is a principal ideal.

