february 1st, 2025

exoplanet classification

Agenda

- single host star mass vs planet orbit graph
- single host sun-like G/K star mass vs planet orbit graph
- simple stellar system classes based on member planet types
- star mass vs planet orbit graphs per stellar system class G (0.8~1.2 solar mass)
- star mass vs planet orbit graphs per stellar system class K (0.6~0.8 solar mass)

single host star mass vs planet orbit semi-major axis

- single host stars only.
- added solar system planets for references.
- exponent types fetched from NASA Exoplanet Catalog
 - Terrestrial
 - Super-Earth
 - Neptune-Like
 - Gas-Giant
- HZ inner and outer boundaries are calculated according to our paper.

single host sun-like G star mass vs. exoplanet orbit

selection criteria:

- single host
- 0.8 solar_mass ≤ star_mass ≤1.2 solar_mass

in total 301 G stars.

single host sun-like K star mass vs. exoplanet orbit

selection criteria:

- single host
- 0.6 solar_mass ≤ star_mass ≤0.8 solar_mass

in total 108 K stars.

stellar system classes

- create simple stellar system classes based on member planet types:
 - o class 1: at least one Terrestrial + at least one Neptune-Like or Gas-Giant
 - class 2: at least one Super-Earth + at least one Neptune-Like or Gas-Giant
 - o class 3: only Terrestrial or Super-Earth
 - o class 4: only Neptune-Like or Gas-Giant

stellar system classes - G stars (0.8 ~ 1.2 solar mass)

simple stellar system classes:

- class 1: at least one Terrestrial + at least one Neptune-Like or Gas-Giant
- class 2: at least one Super-Earth + at least one Neptune-Like or Gas-Giant
- class 3: only Terrestrial or Super-Earth
- class 4: only Neptune-Like or Gas-Giant

star mass vs. exoplanet orbit: our solar system

HZ inner and outer boundaries are calculated according to our paper.

star mass vs. exoplanet orbit: G stellar systems - class 1

<u>The K2-138 System: A Near-Resonant Chain of Five</u> Sub-Neptune Planets Discovered by Citizen Scientists

K2-138 overview at NASA exponent archive

K2-138 at wikipedia

the above image comes from wikipedia

star mass vs. exoplanet orbit: G stellar systems - class 2

st mass value for "HD 164922 e" is 0.92 in NASA Exoplanet Archive, while other planets in the same system are 0.93

star mass vs. exoplanet orbit: G stellar systems - class 2 (cont.)

star mass vs. exoplanet orbit: G stellar systems - class 2 (cont.)

star mass vs. exoplanet orbit: G stellar systems - class 2 (cont.)

Neptune Like Planets

Super Earths

Habitable Zone

1.20

1.15

1.10

0.80

The HD 137496 system: A dense, hot super-Mercury and a cold Jupiter

Star Mass vs. Exoplanet Orbit Semi-Major Axis: HD 110113 System

Exoplanet Semi-Major Axis (AU in Log)

Star Mass vs. Exoplanet Orbit Semi-Major Axis: TOI-561 System

1.20

0.90

0.85

0.80

0.01

Exoplanet Semi-Major Axis (AU in Log)

Habitable Zone

star mass vs. exoplanet orbit: G stellar systems - class 3

star mass vs. exoplanet orbit: G stellar systems - class 3 (cont.)

stellar system classes - K stars (0.6 ~ 0.8 solar mass)

count

st_system_class		
	Class 1	1
	Class 2	17
	Class 3	15
	Class 4	75

simple stellar system classes:

- class 1: at least one Terrestrial + at least one Neptune-Like or Gas-Giant
- class 2: at least one Super-Earth + at least one Neptune-Like or Gas-Giant
- class 3: only Terrestrial or Super-Earth
- class 4: only Neptune-Like or Gas-Giant

star mass vs. exoplanet orbit: K stellar systems - class 1

Astronomers discover two water worlds orbiting star Kepler-62

Kepler-62 overview at NASA

Kepler-62 at wikipedia

the above image comes from NASA

star mass vs. exoplanet orbit: K stellar systems - class 2

star mass vs. exoplanet orbit: K stellar systems - class 2 (cont.)

star mass vs. exoplanet orbit: K stellar systems - class 2 (cont.)

star mass vs. exoplanet orbit: K stellar systems - class 3

star mass vs. exoplanet orbit: K stellar systems - class 3 (cont.)

star mass vs. exoplanet orbit: K stellar systems - class 3 (cont.)

future work

- try joining with <u>Habitable Worlds Catalog (HWC)</u>, <u>PHL @ UPR Arecibo data</u>.
- maybe try with K-mean ML model to cluster stellar systems based on similarities?