# 元素及其化合物·六·「氯 $\left(\mathrm{Cl}\right)$ 与卤族元素」

# 氯 Cl

#### 氯气

#### 物理性质

黄绿色 气体, 有刺激性气味, 可溶于水, 密度大于空气, 沸点比气体高, 易液化, 有毒

闻氯气气味的方法: 抽去盛氯气的集气瓶口处的毛玻璃片, 用手掌在瓶口上方轻轻扇动, 使少量氯气飘进鼻孔

#### 化学性质

氢气在氯气中安静地燃烧,发出苍白色的火焰,瓶口出现白雾

工业制 HCl 时采用点燃法,工业浓 HCl 常显黄色,是因为含  $Fe^{3+}$ 

- 2. 氯气与金属单质反应
  - 1.  $2 \operatorname{Fe} + 3 \operatorname{Cl}_2 \stackrel{\text{fill}}{=\!=\!=\!=} 2 \operatorname{FeCl}_3$

产生黄色火焰,棕褐色烟雾

与反应物的量无关( $Fe^{3+} \xrightarrow{Fe} Fe^{2+}$  只发生在氯化铁溶液中)

氧化性从高到低排列为:  $Cl_2 > O_2 > S$ 

- 1.  $\mathrm{Cl}_2$  与  $\mathrm{Fe}$  反应生成  $\mathrm{FeCl}_3$
- 2.  ${
  m O_2}$  与  ${
  m Fe}$  反应可以生成  ${
  m Fe_3O_4}$
- 3. S 与 Fe 反应生成 FeS
- 2. Cu + Cl<sub>2</sub> = 点燃 CuCl<sub>2</sub>

产生棕黄色固体

- $3. 2 \,\mathrm{Na} + \mathrm{Cl}_2 \,\stackrel{\text{fill}}{=\!=\!=\!=} \, 2 \,\mathrm{NaCl}$
- 3. 氯气与水反应:  $Cl_2 + H_2O \Longrightarrow HCl + HClO$

注意:该反应为可逆反应,且由于 HClO 为弱酸,离子反应中不可拆

- 4. 氯气与碱反应
  - 1.  $ext{Cl}_2$  与常温下的  $ext{NaOH}$  溶液 $ext{2 NaOH} + ext{Cl}_2 = ext{NaCl} + ext{NaClO} + ext{H}_2 ext{O}$

### 应用:

- 1. 实验室吸收多余的  $\mathrm{Cl}_2$
- 2. 工业制漂白液、84 消毒液,有效成分为 NaClO
- 2.  $\mathrm{Cl}_2$  与冷的石灰乳  $\mathrm{Ca}(\mathrm{OH})_2$   $2\,\mathrm{Ca}(\mathrm{OH})_2 + 2\,\mathrm{Cl}_2 \ = \ \mathrm{Ca}\mathrm{Cl}_2 + \mathrm{Ca}(\mathrm{ClO})_2 + 2\,\mathrm{H}_2\mathrm{O}$

如果书写离子方程式, $Ca(OH)_2$  不要拆开,其是以悬浊液存在的

 $Ca(ClO)_2$  是漂白粉、漂白精的有效成分

起效:  $Ca(ClO)_2 + CO_2 + H_2O = CaCO_3 + 2HClO$ 

失效:  $2 \, \text{HClO} \stackrel{\text{光照}}{=\!=\!=\!=} 2 \, \text{HCl} + \mathrm{O}_2 \uparrow$ 

#### 5. 氯气与还原性无机化合物反应

- 1.  $\mathrm{Cl}_2 + 2\,\mathrm{FeCl}_2 \,=\, 2\,\mathrm{FeCl}_3$ (除去  $\mathrm{FeCl}_3$  中的  $\mathrm{FeCl}_2$ )
- 2.  $Cl_2 + H_2S = 2HCl + S$  (氧化性:  $Cl_2 > S$ )
- $3. ext{ } ext{Cl}_2 + 2 ext{ NaBr} \ = \ 2 ext{ NaCl} + ext{Br}_2$  (用于海水提取溴)
- 4.  $Cl_2 + 2 \, KI = 2 \, KCl + I_2$  (用于用  $KI 淀粉试纸检验 \, Cl_2$ )
- $5. Cl_2 + SO_2 + 2H_2O = 2HCl + H_2SO_4$  (失去漂白作用)

#### 实验室制备



- 1. 原理:  $\mathrm{MnO}_2 + 4\,\mathrm{HCl}(ar{x}) \stackrel{\Delta}{=\!=\!=} \mathrm{MnCl}_2 + \mathrm{Cl}_2 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$  (不浓不热不反应)
- 2. 装置:
  - 1. 分液漏斗: 固液加热生成气体所需, 用于调节浓盐酸滴入速率
  - 2. 饱和食盐水:降低  $Cl_2$  对水的溶解性,减少损耗( $Cl_2+H_2O \rightleftharpoons H^++Cl^-+HClO$ ,氯化钠促进平衡逆移);用于除 HCl 气体(氯化氢极易溶于水)
  - 3. 浓硫酸:用于除 $H_2O$ 蒸汽
  - 4. 向上排空气法: 氯气密度比空气大(或排饱和食盐水法)
  - 5. NaOH 水溶液:  $2 \text{ NaOH} + \text{Cl}_2 = \text{NaCl} + \text{NaClO} + \text{H}_2\text{O}$
- 3. 验满:将湿润的 KI 淀粉试纸靠近瓶口,若试纸立即变蓝,则证明氯气已经收集满

#### 其他制备方法:

- 1. 直接将酸性高锰酸钾溶液加入盐酸中制备,无需加热,无需浓盐酸 反应原理:  $2\,\mathrm{KMnO_4}+16\,\mathrm{HCl}\,=\,2\,\mathrm{KCl}+2\,\mathrm{MnCl_2}+5\,\mathrm{Cl_2}\uparrow\,+8\,\mathrm{H_2O}$
- 2.  $\mathrm{KClO}_3 + 6\,\mathrm{HCl} = \mathrm{KCl} + 3\,\mathrm{Cl}_2 \uparrow + 3\,\mathrm{H}_2\mathrm{O}$
- 3.84 消毒液与洁厕灵混用:  $ClO^- + Cl^- + 2H^+ = Cl_2 \uparrow + H_2O$

### 氯水

#### 新制氯水

- 1. 新制氯水的成分(由大到小)
  - 分子: H<sub>2</sub>O、Cl<sub>2</sub>、HClO
  - 离子: H<sup>+</sup>、Cl<sup>-</sup>、ClO<sup>-</sup>、OH<sup>-</sup>
- 2. 性质

| 成分              | 表现性质               | 实例                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathrm{Cl}_2$ | 黄绿色<br>强氧化性        | $ \begin{array}{c} (\overset{-2}{\mathrm{S}}) \mathrm{H}_2 \mathrm{S}, \ \mathrm{HS}^-, \ \mathrm{S}^{2-} \xrightarrow{\mathrm{Cl}_2} \mathrm{S} \downarrow \\ (\overset{+4}{\mathrm{S}}) \mathrm{SO}_2, \ \mathrm{H}_2 \mathrm{SO}_3, \ \mathrm{HSO}_3^-, \ \mathrm{SO}_3^{2-} \xrightarrow{\mathrm{Cl}_2} \mathrm{SO}_4^{2-} \downarrow \\ \mathrm{SO}_2 + \mathrm{Cl}_2 + 2  \mathrm{H}_2 \mathrm{O} = \mathrm{H}_2 \mathrm{SO}_4 + 2  \mathrm{HCl} \\ 2  \mathrm{I}^- + \mathrm{Cl}_2 = \mathrm{I}_2 + 2  \mathrm{Cl}^-  2  \mathrm{Br}^- + \mathrm{Cl}_2 = \mathrm{Br}_2 + 2  \mathrm{Cl}^- \\ 2  \mathrm{Fe}^{2+} + \mathrm{Cl}_2 = 2  \mathrm{Fe}^{3+} + 2  \mathrm{Cl}^- \end{array} $ |
| $\mathrm{H}^+$  | 弱酸性                | 与镁反应放出 $ m H_2$<br>与 $ m CaCO_3$ 反应放出 $ m CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HClO            | 弱酸性<br><b>强氧化性</b> | 1. 漂白、杀菌、消毒   2. $\mathrm{Cl}_2$ 使湿润的有色布条褪色,不能使干燥的有色布条褪色,说明 $\mathrm{Cl}_2$ 没有漂白性,而是 $\mathrm{HClO}$ 起漂白作用   3. 使紫色石蕊试剂先变红( $\mathrm{H}^+$ 酸性作用),后褪色( $\mathrm{HClO}$ 氧化性作用)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathrm{Cl}^-$ | 沉淀反应               | $ m Ag^+ + Cl^- \ = AgCl \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 旧置氯水

1. 反应方程式:  $2\,\mathrm{HClO}\stackrel{\mathrm{\mathcal{H}M}}{=\!=\!=\!=}2\,\mathrm{HCl}+\mathrm{O}_2\uparrow$ 

2. 成分: HCl 水溶液

3. 性质:有酸性(比新制氯水强),无氧化性、无漂白性

4. 实验室中氯水需 现用现配,且避光、密封保存在 棕色试剂瓶 中

### 液氯、新制氯水、旧置氯水的比较

|      | 液氯              | 新制氯水                                                                                                                                 | 久置氯水                                         |
|------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 分类   | 纯净物             | 混合物                                                                                                                                  | 混合物                                          |
| 颜色   | 黄绿色             | 浅黄绿色                                                                                                                                 | 无色                                           |
| 性质   | 氧化性             | 酸性、氧化性、漂白性                                                                                                                           | 酸性                                           |
| 粒子种类 | $\mathrm{Cl}_2$ | $\mathrm{Cl}_2$ , $\mathrm{HClO}$ , $\mathrm{H}_2\mathrm{O}$ , $\mathrm{H}^+$ , $\mathrm{Cl}^-$ , $\mathrm{ClO}^-$ , $\mathrm{OH}^-$ | $ m H_2O$ 、 $ m H^+$ 、 $ m Cl^-$ 、 $ m OH^-$ |
| 保存   | 钢瓶              | 棕色试剂瓶                                                                                                                                |                                              |

# 氯离子的检验

借助 AgCl 沉淀来检验氯离子的存在,但需要排除碳酸根离子的干扰

- 1. 实验过程:在三支试管中分别加入 2~3mL 稀盐酸、NaCl 溶液、 $Na_2CO_3$  溶液,然后各滴入几滴  $AgNO_3$  溶液,观察现象。再分别加入少量稀硝酸,观察现象
- 2. 实验现象:

| 物质                                 | 加入 ${ m AgNO}_3$ 溶液后         | 加入稀硝酸后  | 解释或离子方程式                                                                                                                                                                                         |
|------------------------------------|------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 稀盐酸                                | 白色沉淀(AgCl)                   | 不溶解     | $\mathrm{Ag^+} + \mathrm{Cl^-} \ = \mathrm{AgCl} \downarrow$                                                                                                                                     |
| NaCl 溶液                            | 白色沉淀(AgCl)                   | 不溶解     | $ m Ag^+ + Cl^- \ = AgCl \downarrow$                                                                                                                                                             |
| Na <sub>2</sub> CO <sub>3</sub> 溶液 | 白色沉淀( ${ m Ag}_2{ m CO}_3$ ) | 溶解并产生气泡 | $egin{aligned} 2\mathrm{Ag^+} + \mathrm{CO_3^{2-}} &= \mathrm{Ag_2CO_3} \downarrow \ \mathrm{Ag_2CO_3} + 2\mathrm{H^+} &= 2\mathrm{Ag^+} + \mathrm{H_2O} + \mathrm{CO_2} \uparrow \end{aligned}$ |

3. 结论:

待测液 
$$\xrightarrow[\hspace{0.5em}]{\text{HNO}_3}$$
 (排除  $CO_3^{2-}$  的干扰)  $\xrightarrow{AgNO_3}$  白色沉淀  $AgCl$ 

# 卤族元素

# 相似性

1. 都能与大多数金属反应:  $Fe \xrightarrow{F_2/Cl_2/Br_2} Fe^{3+}; Fe \xrightarrow{I_2} Fe^{2+}$ 

2. 都能与  $H_2$  反应:  $H_2 + X_2 = 2HX$ 

3. 都能与水反应:  $H_2O + Cl_2/Br_2/I_2 \Longrightarrow HX + HXO; 2H_2O + 2F_2 \Longrightarrow 4HF + O_2$ 

4. 都能与碱液反应: $2\,\mathrm{NaOH}+\mathrm{Cl_2/Br_2/I_2}=\mathrm{NaX}+\mathrm{NaXO}+\mathrm{H_2O}; 2\,\mathrm{F_2}+4\,\mathrm{NaOH}=4\,\mathrm{NaF}+2\,\mathrm{H_2O}+\mathrm{O_2}$ 

## 递变性

颜色:  $F_2($ 浅黄绿色)  $\longrightarrow Cl_2($ 黄绿色)  $\longrightarrow Br_2($ 深红棕色)  $\longrightarrow I_2($ 紫黑色) 颜色加深

熔沸点:  $F_2($ 气体 $)\longrightarrow Cl_2($ 气体 $)\longrightarrow Br_2($ 液体 $)\longrightarrow I_2($ 固体) 逐渐升高

密度:  $F_2 \longrightarrow Cl_2 \longrightarrow Br_2 \longrightarrow I_2$  逐渐升高

水溶性:  $F_2(反应) \longrightarrow Cl_2(溶解) \longrightarrow Br_2(溶解) \longrightarrow I_2(微溶)$ 逐渐降低

氧化性:  $\frac{F_2 \times Cl_2 \times Br_2 \times I_2}{\text{与氢化合由易到难}}$  逐渐减小

还原性:  $\xrightarrow{F^-, Cl^-, Br^-, I^-}$  逐渐增强

# 比较氧化性的方法:

①与氢气化合难易程度;②氢化物的稳定性;③最高价氧化物对应水化物的酸性;④置换反应

### 特殊性

1. 氟 F<sub>2</sub>

1. 氟没有正价,是非金属性最强, $F^-$  的还原性最弱

2.  $F_2$  与  $H_2O$  反应生成 HF 和  $O_2$ ,  $F_2$  与  $H_2$  在暗处即可爆炸反应

3. HF 是弱酸,能腐蚀玻璃,应保存在铅制器皿或塑料瓶中;有毒;在卤素氢化物中,HF 的沸点最高(分子间存在氢键)

2. 溴 Br<sub>2</sub>

 $1. \, \mathrm{Br}_2$  是深红棕色液体,易挥发

2.  ${
m Br}_2$  易溶于有机溶剂

3. 盛放液态溴时,试剂瓶需加水封,保存时不能用橡胶塞封口

3. 碘 I<sub>2</sub>

 $1. I_2$  遇淀粉变蓝色

2.  $I_2$  加热时易升华(用于分离提纯  $I_2$ )

3.  $I_2$  易溶于有机溶剂

4. 食盐中添加  ${
m KIO_3}$  可预防和治疗甲状腺肿大

#### 卤素离子的检验

1. AgNO<sub>3</sub> 溶液——沉淀法

未知液 
$$\xrightarrow{\text{$^{ ext{AgNO}_3}}$$
 $\stackrel{\text{$^{ ext{AgNO}_3}}}{\longrightarrow}$   $\left\{ egin{array}{ll} \begin{array}{ll} \begin$ 

2. 置换——萃取法

未知液 
$$\xrightarrow[\bar{k}\bar{k}]{\text{Edathlenn}}$$
  $\xrightarrow[\bar{k}\bar{k}\bar{k}]{\text{ECl}_4$ 或汽油  $}$  有机层  $\left\{ \begin{array}{ll} \text{橙色或橙红色} & \mathbf{Br}^- \\ \text{紫色、浅紫色或紫红色} & \mathbf{I}^- \end{array} \right.$ 

**3.** 氧化——淀粉法检验 I<sup>—</sup>

未知液(无色) 
$$\xrightarrow{\text{适量新制饱和氯水}}$$
  $\xrightarrow{\text{淀粉溶液}}$  蓝色溶液  $I^-$ 

# 海水资源的开发和利用

- 1. 海水淡化:蒸馏法、电渗析法、离子交换法
- 2. 海水制盐: 氯碱工业

$$2 \, \mathrm{NaCl} + 2 \, \mathrm{H}_2\mathrm{O} \stackrel{\mathrm{leff}}{=\!\!\!=\!\!\!=} 2 \, \mathrm{NaOH} + \mathrm{H}_2 \, \uparrow \, + \, \mathrm{Cl}_2 \, \uparrow$$
 海水  $\longrightarrow$  粗盐  $\stackrel{\mathrm{llp}}{\longrightarrow}$  饱和食盐水  $\stackrel{\mathrm{leff}}{\longrightarrow}$   $\begin{cases} \mathrm{RKPh} & \mathrm{Cl}_2 \\ \mathrm{RKPh} & \mathrm{H}_2 \, , \, \mathrm{NaOH} \end{cases}$ 

3. 海水提溴



4. 海水提碘

