Arbori de decizie: Privire de ansamblu

A. Noţiuni preliminare

```
- partiție a unei mulțimi;
```

- entropie (definiție: TM, pag. 57): pr. 2a, pr. 34a;
- entropie condițională specifică: pr. 14a;
- entropie condițională medie: pr. 2cd, ...;
- câştig de informație (definiție: TM, pag. 58): pr. 2cd, pr. 34c, pr. 36a;
- arbori de decizie, văzuţi ca structură de date: pr. 1, pr. 6b, pr. 28
 şi, respectiv, ca program în logica propoziţiilor: pr. 2e, pr. 33bc;
 expresivitatea arborilor de decizie cu privire la funcţii boolene: pr. 29;
- spaţiu de versiuni pentru un concept (de învăţat): pr. 1, pr. 28, pr. 32;
- zone de decizie şi graniţe de separare/decizie pentru arbori de decizie cu variabile continue: pr. 9.

B. Algoritmul ID3 și variante

B1. Algoritmul ID3

- pseudo-cod: TM, pag. 56;
- bias-ul inductiv: TM, pag. 63-64;
- exemple simple de aplicare: pr. 2, pr. 32, pr. 34;
 în prezenţa "zgomotelor": pr. 36;
- ID3 ca algoritm per se:
 - de tip divide-et-impera, recursiv,
 greedy => nu garantează obţinerea soluţiei optime:
 pr. 4, pr. 21a, pr. 33 (vs. pr. 32b);
 - 1-step look-ahead
 - complexitate de timp (vezi Weka book, 2011, pag. 199): la antrenare, în anumite condiții: $\mathcal{O}(d \, m \log m)$; la testare $\mathcal{O}(d)$, unde d este numărul de atribute, m este numărul de exemple
- ID3 ca algoritm ML:
 - consistent cu datele de antrenament (în absența "zgomotelor"): pr. 4
 - algoritm de învățare de tip "eager"

• overfitting: pr. 9, pr. 21bc, pr. 40, pr. 57b.

• analiza erorilor:

```
la antrenare: pr. 5, pr. 6a, pr. 9a, pr. 38; la validare la n-fold cross-validare la cross-validare leave-one-out (CVLOO): pr. 9b, pr. 40bc;
```

B2. Extensii / variante ale algoritmului ID3

- atribute cu valori continue: pr. 9, pr. 14c, pr. 40, pr. 41; ch. 4, pr. 11b;
 3-way splitting (sau: n-way splitting): pr. 12, pr. 42
 alte variante de partiţionare: pr. 43
- atribute discrete cu multe valori: pr. 13
- atribute cu valori nespecificate pentru unele instanțe;
- atribute cu diferite costuri asociate: pr. 14
- reducerea caracterului "eager" al învățării: pr. 16
- reducerea caracterului "greedy" al învăţării:
 IG cu "2-step look-ahead": pr. 17, pr. 18
 variante de tip "look-ahead" specifice atributelor continue: pr. 44
- folosirea altor măsuri de impuritate în locul câştigului de informație:
 Gini Impurity, Misclassification Impurity: pr. 15
- reducerea overfitting-ului: reduced-error pruning (folosind un set de date de validare): TM, pag. 69-71; A. Cornuéjols, L. Miclet, 2nd ed., pag. 418-421; rule post-pruning: TM, pag. 71-72; top-down vs. bottom-up pruning: pr. 19, pr. 45; pruning folosind testul statistic χ^2 : pr. 20, pr. 46

C. Proprietăți numerice / calitative ale arborelui ID3

- eroarea la antrenare produsă de algoritmul ID3 pe orice set de date consistente este 0;
- arborele ID3 nu este neapărat optimal (ca nr. de noduri/niveluri): pr. 4, pr. 33
- influenţa atributelor identice şi, respectiv, a instanţelor multiple asupra arborelui ID3: pr. 7;
- o margine superioară pentru numărul de noduri frunză din arborele ID3, în funcție de numărul de exemple și de numărul de atribute: pr. 8;
- o margine superioară pentru eroarea la antrenare, în funcție de numărul de valori ale variabilei de ieşire): pr. 6b;
- o margine superioară pentru adâncimea arborelui ID3 când atributele de intrare sunt continue, iar datele de antrenament sunt (ne)separabile liniar: pr. 10;
- o aproximare simplă a numărului de instanțe greșit clasificate din totalul de M instanțe care au fost asignate la un nod frunză, cu ajutorul entropei (H) nodului respectiv: pr. 37.

D. Alte metode de învățare automată bazate pe arbori

metode de învățare automată de tip ansamblist bazate pe arbori de decizie: boosting (AdaBoost): pr. 22 (convergența erorii de antrenare), pr. 23, 48, 49, 50, 51, 53 (aplicare), pr. 24 (AdaBoost ca algoritm de optimizare secvențială în raport cu funcția de cost / "pierdere" negativ-exponențială), pr. 25 (marginea

de votare), pr. 26 (o condiție suficientă pentru γ -slab învățabilitate, bazată pe marginea de votare), pr. 52 (selecțarea trăsăturilor folosind AdaBoost; aplicare la clasificarea de documente)), pr. 54 (o proprietate interesantă: orice mulțime de instanțe distincte [și etichetate] din $\mathbb R$ este γ -slab învățabilă cu ajutorul compașilor de decizie), pr. 55 (o variantă generalizată a algoritmului AdaBoost), pr. 22 și 23 (adevărat / fals); Bagging, Random Forests;

- arbori de regresie (CART).

Clasificare bayesiană: Privire de ansamblu

A. Noțiuni preliminare (vezi [și] cap. Probabilități și statistică)

- probabilităţi şi probabilităţi condiţionate;
- formula lui Bayes: pr. 4b;
 cap. Probabilități și statistică, pr. 6-7, 43-44;
- independenţa [condiţională a] evenimentelor aleatoare:
 cap. Probabilităţi şi statistică, pr. 5, 40, 41;
- variabile aleatoare:
 estimare de parametri în sensul verosimilității maxime (MLE): pr. 4a;
 (vezi şi cap. Estimarea probabilităților, pr. 5, 20)
- distribuţii probabiliste corelate, marginale şi condiţionale: pr. 6, 8, 10, 27.
 (vezi şi cap. Probabilităţi şi statistică, pr. 14, 15)
- independenţa [condiţională a] variabilelor aleatoare: pr. 8, 10, 24, 27-33;
 (vezi şi cap. Probabilităţi şi statistică, pr. 16, 53, 19, 20, 62)
- ipoteze MAP vs. ipoteze ML:
 formulare [ca soluţii la] probleme de optimizare: TM, pag. 156-157 (vezi pr. 13);
 exemplificare: pr. 2, 3, 21, 1, 32;
 exemplificare în cazul arborilor de decizie: pr. 12;
- regresia logistică: vezi draftul capitolului suplimentar pentru cartea ML a lui T. Mitchell, Generative and discriminative classifiers: Naive Bayes and logistic regression (în special secțiunea 3);
- -regresia logistică, chestiuni introductive: pr. 10 de la capitolul Estimarea probabilitătilor.

B. Algoritmi

- Algoritmul Bayes Naiv şi algoritmul Bayes Corelat:³²⁷ formulare ca probleme de optimizare: TM, pag. 167; pseudo-cod: vezi slide-uri; aplicare: pr. 4, 6, 7, 22, 23, 24;
- aplicarea/adaptarea algoritmului Bayes Naiv pentru clasificare de texte: ³²⁸ pr. 5, 25
 folosirea regulii "add-one" [a lui Laplace] pentru "netezirea" parametrilor: pr. 5, 26;
- calculul ratei medii a erorilor pentru algoritmii Bayes Naiv şi Bayes Corelat:
 pr. 8, 9, 27, 28, 29, 33;
- zone de decizie şi graniţe de decizie (separatori):
 evidenţierea grafică a "erorilor" clasificatorului Bayes Naiv în raport cu clasificatorul Bayes Corelat: pr. 10.

³²⁷ La punctele B și C considerăm (implicit) că toate variabilele de intrare sunt de tip Bernoulli sau, mai general, de tip categorial. La punctul D vom considera și variabile de intrare de tip continuu, în genere de tip gaussian. Variabila de ieșire se consideră întotdeauna de tip Bernoulli/categorial.

³²⁸ Atenție: Noi am folosit aici versiunea de bază a algoritmului Bayes Naiv; varianta "bag of words" (vezi cartea Machine Learning a lui Tom Mitchell, pag. 183) diferă ușor de aceasta.

C. Proprietăți ale algoritmilor Bayes Naiv și Bayes Corelat

- dacă proprietatea de independență condițională a atributelor de intrare în raport cu variabila de ieşire se verifică, atunci rezultatele produse de către cei doi algoritmi (Bayes Naiv şi Bayes Corelat) în faza de testare coincid;
- numărul de parametri necesari de estimat din date: liniar pentru Bayes Naiv (2d+1) și exponențial pentru Bayes Corelat $(2^{d+1}-1)$: pr. 7e, 23ab, 28;
- complexitatea algoritmului Bayes Naiv:

```
complexitatea de spaţiu: \mathcal{O}(dn) complexitatea de timp:
la antrenare: \mathcal{O}(dn)
la testare: \mathcal{O}(d'),
```

unde n este numărul de exemple, iar d este numărul de atribute de intrare [LC: d' este numărul de atribute de intrare din instanța de test]

- complexitatea de eşantionare: de ordin logaritmic pentru Bayes Naiv şi de ordin exponenţial pentru Bayes Corelat: pr. 11.
- (P0) echivalenţa regulei de decizie a algoritmului Bayes Naiv (când toate variabilele de intrare sunt de tip Bernoulli) regulei de decizie a regresiei logistice şi, în consecinţă, liniaritatea graniţelor de decizie.

D. Algoritmii Bayes Naiv şi Bayes Corelat

cu variabile de intrare de tip gaussian

Proprietăți:

– (P1) presupunem că variabila de ieşire este booleană, i.e. ia valorile 0 sau 1; dacă pentru orice atribut de intrare, variabilele condiționale $X_i|Y=0$ şi $X_i|Y=1$ au distribuții gaussiene de varianțe egale $(\sigma_{i0}=\sigma_{i1})$, atunci regula de decizie GNB (Gaussian Naive Bayes) este echivalentă (ca formă) cu cea a regresiei logistice, deci separarea realizată de către algoritmul GNB este de formă liniară (vezi pr. 34a, 15);

Aplicare: G[N]B: 16, 38, G[J]B: 37, GNB vs G[J]B: 18.

E. Alte chestiuni

- comparaţii între algoritmul Bayes Naiv şi alţi algoritmi de clasificare automată: pr. 31, 33;
- calculul [intervalului] "erorii reale" pornind de la "eroarea de eşantionare" (eroarea de test) pentru un clasificator oarecare: cap. Probabilităţi şi statistică, pr. 27.

Învățare bazată pe memorare: Privire de ansamblu

A. Noțiuni preliminare

- măsuri de distanță, măsuri de similaritate: pr. 2
- normă într-un spaţiu vectorial; [măsura de] distanţă indusă de către o normă:
 pr. 7

B. Algoritmul k-NN şi variante

B1. Algoritmul k-NN

- pseudo-cod: TM, pag. 232
- bias-ul inductiv: ... "Cine se aseamănă se adună" (sau: "Spune-mi cu cine te împrieteneşti, ca să-ţi spun cine eşti")
- exemple (simple) de aplicare: pr. 1, pr. 2
- complexitate de spaţiu: O(d n) complexitate de timp:

```
la antrenare: O(d n)
la testare: O(d n \log n)
```

[LC: $\mathcal{O}(dn k \log k)$ pt. k > 1 (worst case) şi $\mathcal{O}(dn)$ pt. k = 1],

unde d este numărul de atribute, iar n este numărul de exemple

- arbori kd (engl., kd-trees): Statistical Pattern Recognition, pag. 163-173
- k-NN ca algoritm ML "lazy" (vs. "eager"):
 suprafețe de decizie și granițe de decizie:
 diagrame Voronoi pentru 1-NN: pr. 4, pr. 11, pr. 17, pr. 18, pr. 19;
 Proprietate: suprafețele de decizie și granițele de decizie depind de măsura de distanță folosită: pr. 7
- analiza erorilor:
 - 1-NN pe date consistente: eroarea la antrenare: 0
 - variația numărului de erori (la testare și respectiv testare) în funcție de valorile lui k: pr. 20, pr. 21ab

k-NN ca metodă ne-parametrică; alegerea lui k: CV: pr. 21c

- CVLOO: pr. 3, pr. 12, pr. 15, pr. 19
- sensibilitatea / robustețea la "zgomote": pr. 5
- eroarea asimptotică: pr. 10, pr. 23
- efectul trăsăturilor redundante sau irelevante
- "blestemul marilor dimensiuni" (engl., the curse of dimensionality): pr. 9.

B2. Variante ale algoritmului k-NN

- $-\ \emph{k}\text{-NN}$ folosind alte măsuri de distanță (decât dist. euclidiană): pr. 7
- k-NN cu ponderarea distanțelor (engl., distance-weighted k-NN): TM, pag. 236-238 (form. 8.2, 8.3, 8.4)
- algoritmul lui Shepard: pr.8

C. Comparații cu alți algoritmi

- ID3: pr.11, pr. 13ab

- SVM: pr.12, pr. 13c

D. Alte metode de tip IBL

- regresie local-ponderată: TM, pag. 236-238

- rețele RBF: TM, pag. 238-240

 $-\,$ raționare bazată pe cazuri (engl., case-based reasoning): TM, pag. 240-244

Clusterizare: Privire de ansamblu

A. Noțiuni de bază

- instanţă neetichetată vs. instanţă etichetată (exemplu de antrenament)
- învățare nesupervizată (clusterizare) vs. învățare supervizată (clasificare)
- cluster / grup / grupare / bin (engl.) vs. clasă
- [funcție/măsură de] $extit{distanță}$ definită pe $\mathbb{R}^d{ imes}\mathbb{R}^d$
- tipuri de clusterizare: ierarhică vs. neierarhică
- tipuri de ierarhii: ierarhii (arbori de clusterizare, dendrograme) obișnuite vs. ierarhii plate (engl., flat hierarchies);
 exemple: pr. 1a și respectiv pr. 1b, pr. 6a
- tipuri de apartenență a unei instanțe la un cluster: hard vs. soft (ultima numai pt. clusterizare ne-ierarhică)

B. Clusterizare ierarhică

B1. Noțiuni specifice

– [funcție de] similaritate între clustere, definită pe baza [extinderii] noțiunii de distanță la $\mathcal{P}(X) \times \mathcal{P}(X)$, unde $X \subset \mathbb{R}^d$ este mulțimea de instanțe, iar $\mathcal{P}(X)$ este mulțimea părților lui X;

tipuri de [funcții de] similaritate:

"single-linkage": 329 $d(A,B) = \min\{d(x,y)|x \in A, y \in B\}$

"complete-linkage": 330 $d(A, B) = \max\{d(x, y) | x \in A, y \in B\}$

"average-linkage":
$$d(A,B) = \frac{1}{|A|\;|B|} \sum_{x \in A, y \in B} d(x,y)$$
.

În general, putem considera sim(A,B) = 1/(1+d(A,B)) sau chiar sim(A,B) = 1/d(A,B) când ne referim doar la clustere non-singleton;

proprietate/restricție: $sim(A \cup B, C) \leq min\{sim(A, C), sim(B, C)\}$ pentru orice clustere A, B selectate de algoritmul de clusterizare ierarhică la un pas oarecare și orice alt cluster C;

[funcţie de] coeziune [internă] a unui cluster (sau: între elementele / instanţele dintr-un cluster);

exemplu (pentru clustere non-singleton):

$$\cosh(A) = \left(\frac{1}{C_{|A|}^2} \sum_{x,y \in A} d(x,y)\right)^{-1} = \frac{C_{|A|}^2}{\sum_{x,y \in A} d(x,y)}$$

 $^{^{329}\}mathrm{Sau}\colon$ nearest-neighbour.

 $^{^{330}\}mathrm{Sau}\colon$ furthest-neighbour.

Privire de ansamblu CLUSTERIZARE

B2. Algoritmi de clusterizare ierarhică

• tipuri de algoritmi de clusterizare ierarhică:

bottom-up (clusterizare aglomerativă) vs. top-down (clusterizare divizivă); pseudo-cod: Manning & Schütze, Foundations of Statistical Natural Language Processing, 2002, pag. 502;

analiza (ca algoritmi per se): ambii algoritmi sunt iterativi şi "greedy"; rezultatele (ierarhiile) obţinute nu sunt determinate neapărat în mod unic (vezi pr. 3b);

exemple de aplicare: pr. 1-5, 25-29 (pentru bottom-up), respectiv pr. 6 (pentru top-down);

implementări: pr. 54, 31, 55.

• Proprietăți:

o clusterizarea folosind similaritate de tip "single-linkage" are tendinţa să creeze clustere alungite; invers, folosind similaritate "complete-linkage" sau "average-linkage", se formează clustere de formă mai degrabă sferică (vezi pr. 5 şi 28);

- o numărul maxim de niveluri dintr-o dendrogramă (văzută ca arbore în sensul teoriei grafurilor) este n-1, unde n este numărul de instanțe de clusterizat (vezi pr. 4a); numărul minim de niveluri: $\lceil \log_2 n \rceil$ (vezi pr. 4b).
- o există o anumită corespondență între clusterizare ierarhică cu similaritate de tip
- "single-linkage" şi aflarea arborelui [de acoperire] de cost minim dintr-un graf; vezi pr. 6;
- "complete-linkage" şi aflarea unei clici (subgraf maximal complet) dintr-un graf; (vezi Manning & Schütze, op. cit., pag. 506-507)
- o algoritmul de clusterizare aglomerativă la al cărui pseudo-cod am făcut referire mai sus are complexitate $\mathcal{O}(n^3)$ (vezi pr. 25); atunci când se folosește single-linkage sau complete-linkage, există însă versiuni/algoritmi de complexitate $\mathcal{O}(n^2)$: SLINK (1973) și respectiv CLINK (1976);
- o la clusterizare ierarhică aglomerativă cu similaritate "average-linkage": dacă se folosește ca măsură de similaritate între 2 instanțe cosinusul unghiului dintre vectorii care instanțele și se "normalizează" acești vectori (i.e., se lucrează cu 2 vectori coliniari cu ei, dar de normă egală cu 1), atunci calculul coeziunii [interne a] unui cluster nou format, precum și calculul "distanței" dintre două clustere se pot face în timp constant 32.

• Alte tipuri de măsuri de similaritate:

metrica lui Ward: pr. 30

CLUSTERIZARE Privire de ansamblu

C. Clusterizare neierarhică...

C1. ...folosind asignare "hard" a instantelor la clustere

Noțiuni specifice

- centroid (centru de greutate) al unui cluster,
 K-partiție, K-configurație [inițială] a centroizilor (pr. 11);
- o funcție de evaluare a "calității" clusterelor (sau: funcție de "coeziune" / "distorsiune" / "eroare" totală): "suma celor mai mici pătrate": $J_K(C,\mu) = \sum ||x_i \mu_{C(x_i)}||^2$, unde C este K-partiție, μ este K-configurație de centroizi, iar $\mu_{C(x_i)}$ este centroidul cel mai apropiat de x_i (pr. 12).

Algoritmul K-means

- pseudo-cod (o versiune [mai] generală): Manning & Schütze, op. cit., pag. 516; alternativ, vezi enunțul pr. 12 (sau, echivalent, volosind variabile-indicator: pr. 37);
 - exemple de aplicare: pr. 7-11, 15a, 19a, 20a, 33, 34;
- exemple de euristici pentru inițializarea centroizilor: inițializare arbitrară/random în \mathbb{R}^d sau în $\{x_1, x_2, \dots, x_n\} \in \mathbb{R}^d$ (setul de date de clusterizat);
 - aplicare în prealabil a unui algoritm de clusterizare ierarhică; K-means++ (David Arthur, Sergei Vassilvitskii, 2007).
- exemple de criterii de oprire: după efectuarea unui număr maxim de iterații (fixat inițial); când componența clusterelor nu se mai modifică de la o iterație la alta; când pozițiile centroizilor nu se mai modifică de la o iterație la alta; când descreșterea valorii criteriului J_K de la o iterație la alta nu mai este strictă sau nu mai este peste un anumit prag ε fixat în prealabil.
- ca algoritm per se:

 algoritm iterativ: pleacă de la o solutie (K-partit
 - algoritm iterativ: pleacă de la o soluție (K-partiție) aleasă eventual în mod arbitrar/aleatoriu și o "îmbunătățește" la fiecare iterație;
 - soluția găsită este dependentă de inițializarea centroizilor (vezi pr. 10); mai mult, chiar la o aceeași inițializare, rezultatele pot diferi(!) dacă avem instanțe multiple/redundante, situate la egală distanță de 2 centroizi la o iterație oarecare (vezi pr. 12b);
 - K-means poate fi văzut și ca algoritm de optimizare vezi criteriul J_K de mai sus;
 - explorează doar parțial spațiul de căutare [a minimului criteriului J_K]; algoritmul K-means nu garantează atingerea optimului global (i.e., minimul) criteriului J_K (vezi pr. 12b, 38b);
 - strategia de căutare/optimizare folosită de K-means este de tipul descreștere pe coordonate (engl., coordinate descent), i.e. descreștere iterativă, mergând alternativ pe fiecare din cele două coordonate ale criteriului $J_K(C^t, \mu^t)$ (vezi pr. 12a).

Privire de ansamblu CLUSTERIZARE

- ca algoritm de învățare automată:
 - [urmat de] "generalizare": o instanță nouă x se asociază clusterului având centroidul cel mai apropiat de x;
 - "graniţele" de separare dintre [perechile de] clustere produse de K-means sunt [doar] liniare, [cel puţin] atunci când se foloseşte distanţa euclidiană (vezi pr. 12.b);
 - este însă posibil să se obțină separatori neliniari dacă se folosește o versiune "kernelizată" a algoritmului K-means (vezi pr. 39);
 - ca euristică pentru alegerea unei valori convenabile pentru K, vezi CMU, 2012 fall, E. Xing, A. Singh, HW3, pr. 1.
- implementare: pr. 56.

Proprietăți

- în legătură cu criteriul definit mai sus, $J_K: \mathcal{P}_K \times (\mathbb{R}^d)^K \leftarrow [0, +\infty)$, unde \mathcal{P}_K este mulțimea tuturor K-partițiilor peste mulțimea de instanțe, $X = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^d$:
 - o valoarea 0 este atinsă, și anume atunci când K = n, C este K-partiția de clustere singleton $C_i = \{x_i\}$, iar $\mu_i = x_i$, pentru i = 1, ..., n (pr. 36);
 - o pentru K>0 fixat, $|\mathcal{P}_K|=K^n$, deci este finit, și există $\underline{J}_K\stackrel{not.}{=}\min_C J_K(C,\mu_C)$; acest minimum (\underline{J}_K) se poate obține prin explorarea exhaustivă a spațiului \mathcal{P}_K , însă consumul de timp este prohibitiv în practică (vezi pr. 12a);
 - $\circ \underline{J}_1 \geq \underline{J}_2 \geq \ldots \geq \underline{J}_{n-1} \geq \underline{J}_n = 0$ (vezi pr. 13).
- \bullet în legătură cu J_K și algoritmul K-means:
 - o $J_K(C^{t-1},\mu^{t-1}) \geq J_K(C^t,\mu^t)$ la orice iterație (t>0) a algoritmului K-means (vezi pr. 12a);
 - \circ în consecință, dacă se impune restricția ca la fiecare iterație inegalitatea de mai sus să fie satisfăcută în varianta strictă $(J_K(C^{t-1},\mu^{t-1})>J_K(C^t,\mu^t))$, atunci algoritmul K-means termină într-un număr finit de paşi;
 - o în vreme ce minimizează coeziunea intra-clustere, i.e. o sumă ponderată a "sumelor celor mai mici pătrate" calculate pe clustere,

$$\sum_{k=1}^{K} \frac{\sum_{i=1}^{n} \gamma_{ik} ||x_i - \mu_k||^2}{\sum_{i=1}^{n} \gamma_{ik}}$$

unde $\gamma_{ik}=1$ dacă x_i aparține clusterului de centroid μ_k și $\gamma_{ik}=0$ în caz contrar, algoritmul K-means maximizează (în mod aproximativ!) o măsură de distanță între clustere

$$\sum_{k=1}^{K} \left(\frac{\sum_{i=1}^{n} \gamma_{ik}}{n} \right) \|\mu_k - \bar{x}\|^2$$

unde \bar{x} este media instanțelor x_1, x_2, \ldots, x_n (pr. 37).

- dacă d=1, deci $x_1,x_2,\ldots,x_n\in\mathbb{R}$,
 - o orice K-partiție (C_1, \ldots, C_K) pentru care se atinge \underline{J}_K este de forma unei colecții de "intervale": $C_1 = \{x_1, \ldots, x_{i_1}\}, \ C_2 = \{x_{i_1+1}, \ldots, x_{i_2}\}, \ \ldots, \ C_{K-1} = \{x_{i_{K-1}+1}, \ldots, x_n\},$ cu $i_1 < i_2 < \ldots < i_{K-1} < i_K = n;$
 - \circ există un algoritm de complexitate $\mathcal{O}(Kn^2)$ care calculează \underline{J}_K (vezi pr. 38).

CLUSTERIZARE Privire de ansamblu

• algoritmul K-means poate fi "kernelizat" (vezi pr. 39); în consecință, putem obține drept granițe de separare între clustere [şi] suprafețe non-liniare (spre deosebire de versiunea ne-kernelizată a algoritmului K-means, unde granițele sunt doar liniare).

C2. ...folosind asignare "soft" a instanțelor la clustere

Noțiuni preliminare

- variabile aleatoare (discrete, resp. continue);
 media, varianța și co-varianța variabilelor aleatoare;
- vector de variabile aleatoare; matrice de covarianţă pentru un astfel de vector;
 proprietăţi: matricea de covarianţă trebuie să fie în mod necesar simetrică şi
 pozitiv definită (vezi pr. 24 de la capitolul de Probabilităţi şi statistică);
- distribuţie (funcţie de densitate) de probabilitate (p.d.f.);
 parametri ai unei distribuţii;
 distribuţia gaussiană: cazurile uni- şi multi-variat;
- mixtură de distribuţii probabiliste:
 - văzută ca o formă particulară de combinație liniară de distribuții de probabilitate $\pi_1\Psi_1+\pi_2\Psi_2+\ldots+\pi_k\Psi_k$ (cu $\pi_i\geq 0$ și $\sum_{i=1}^k\pi_i=1$),
 - definită [și mai specific] scriind distribuția P(X) ca o sumă ponderată de probabilități condiționate: $\sum_z P(X|Z)P(Z)$, unde X sunt variabilele "observabile", iar variabila Z (eventual multiplă) poate fi "neobservabilă" / "latentă" / "ascunsă";
 - exemple: o mixtură de distribuții categoriale: pr. 56 de la capitolul *Probabiltăți și statistică*; o mixtură de distribuții gaussiene: pr 16 de la capitolul *Clasificare bayesiană*.
- funcție de verosimiliate a unui set de date (D), în raport cu o distribuție probabilistă dată: $L(\theta) = P(D|\theta)$, unde prin θ se notează parametrii respectivei distribuții. Exemplificare: pr. 16c; pr. 1 de la cap. Estimarea probabiltăților
- MLE (Maximum Likelihood Estimation): estimarea [valorilor] parametrilor unei distribuţii probabiliste în sensul maximizării verosimilităţii datelor disponibile. Exemplificare: cap. Estimarea probabilităţilor, pr. 1-7, 11-21.
- Observaţie: Algoritmul EM este o metodă de estimare a parametrilor unei mixturi de distribuţii probabiliste. Alternativ, pentru acelaşi obiectiv pot fi folosite alte metode, de exemplu metoda gradientului ascendent.

Algoritmul EM pentru clusterizare

prin estimarea parametrilor unui model de mixturi de distribuții gaussiene (GMM)

- pseudo-cod:
 - cazul uni-dimensional, varianta când doar parametrul μ este lăsat liber: $Ma-chine\ Learning$, Tom Mitchell, 1997, pag. 193; aplicare: pr. 16;
 - cazul uni-dimensional, varianta când toți parametrii $(\pi, \mu \text{ şi } \sigma)$ sunt lăsați liberi: pr. 17; alte variante: pr. 43, 44;
 - cazul multi-dimensional, varianta când toţi parametrii $(\pi, \mu \ \text{şi} \ \Sigma)$ sunt lăsaţi liberi: pr. 23;

Privire de ansamblu CLUSTERIZARE

- schema algoritmică EM: ML book, pag. 195;
- ca algoritm per se:

o algoritm iterativ: pleacă de la o soluție (instanțiere pentru parametri) aleasă eventual în mod arbitrar/aleatoriu și o "îmbunătățește" la fiecare iterație. Soluția găsită este dependentă de valorile inițiale ale parametrilor;

o algoritm de optimizare:

la fiecare iterație t se calculează o funcție "auxiliară" $Q_t(\theta|\theta^{(t)})$, care reprezintă media funcției de log-verosimilitate a datelor "complete" (cele "observabile" plus cele "neobservabile"), unde $\theta^{(0)}$, constând din valorile inițiale ale parametrilor mixturii (θ) se alege în mod arbitrar, iar apoi $\theta^{(t+1)} = \operatorname{argmax}_{\theta} Q_t(\theta|\theta^{(t)})$; media reprezentată de Q_t se calculează în funcție de distribuțiile condiționale ale variabilelor "neobservabile" în raport cu datele observabile și cu $\theta^{(t)}$;

se poate demonstra că funcția Q_t constituie o margine inferioară pentru funcția de log-verosimilitate a variabilelor "observabile", $\log P(X|\theta)$ (vezi pr. 1 de la capitolul $Algoritmul\ EM$);

teorema de corectitudine / convergență (vezi problemele 1 și în special 2 de la capitolul Algoritmul~EM) pe de o parte garantează faptul că la fiecare iterație a algoritmului EM, log-verosimilitatea datelor "observabile", $\log P(X|\theta^{(t)})$ nu descrește (ci fie crește, fie rămâne neschimbată),

dar pe de altă parte nu garantează găsirea optimului global al funcției de log-verosimilitate a datelor "observabile", $\log P(X|\theta)$, ci eventual a unui optim local;

metoda de căutare a optimului / maximului funcției $\log P(X|\theta)$ este "coordinate ascent" (căutare pe coordonate, în mod alternant);

- ca algoritm de învățare statistică:
 algoritmul EM poate fi văzut ca o metodă de estimare a parmetrilor (engl., parameter fitting);
- ca algoritm de $\hat{i}nv\check{a}tare$ automată: algoritmul EM este o metodă de identificare/învățare de ipoteze ML (Maximum Likelihood); vezi capitolul/secțiunea 6.4 din cartea Machine Learning; învățare în prezența unor variabile aleatoare ne-observabile(!); [urmată eventual de] "generalizare": o instanță nouă x se asociază clusterului (i.e., distribuției) j pentru care se atinge $\max_{j'} P(X = x|h_{j'})P(h_{j'})$; spre deosebire de cazul algoritmului K-means, suprafețele / granițele de separare create de algoritmul EM/GMM nu sunt în mod neapărat liniare (vezi de exemplu o situație întâlnită la rezolvarea pr. 15.c, pag. 358, sau pr. 51.c).
- comparativ cu algoritmul K-means: algoritmul EM/GMM este în general mai lent mişcarea centroizilor poate explora într-o manieră mai fină spaţiul (vezi de exemplu pr. 19) —, iar din acest motiv poate să obţină uneori rezultate mai bune / convenabile (vezi spre exemplu pr. 20), şi este mai robust la influenţa outlier-elor; apare un fenomen de "atracţie" reciprocă a mediilor gaussienelor (aceste medii fiind echivalentul centroizilor din algoritmul K-means), dotorită faptului că fiecare instanţă aparţine (cu o anumită probabilitate) la fiecare cluster (vezi spre exemplu pr. 15.b).
- schema algoritmică EM (vezi Tom Mitchell, Machine Learning book, 1997, pag. 195) are diverse variante/aplicaţii:
 - calculul parametrilor pentru mixturi de diverse distribuţii [nu doar gaussiene]: vezi capitolul Algoritmul EM;

CLUSTERIZARE Privire de ansamblu

• calculul parametrilor pentru gramatici probabiliste independente de context (engl., probabilistic context-free grammars, PCFG);

- calculul parametrilor modelelor Markov ascunse (engl., hidden Markov models, HMM);
- calculul parametrilor rețelelor bayesiene (engl., Bayes nets);
- calculul parametrilor rețelelor de funcții cu baza radială (engl., radial basis functions, RBF) o familie de rețele neuronale artificiale; etc.

Proprietăți

- Pentru distribuţii gaussiene multi-variate:
 - o dacă matricea de covarianță Σ este diagonală, atunci distribuția gaussiană respectivă este echivalentă cu un set/vector de variabile gaussiene uni-variate independente (vezi pr. 25 de la capitolul *Probabilități și statistică*);
 - o dacă matricea Σ este de forma $\sigma^2 I$, unde I este matricea identitate, datele generate de respectiva distribuţie tind să se grupeze în sfere;
 - o dacă matricea Σ este diagonală (fără nicio altă restricție), datele generate se grupează în elipse (sau: corpuri elipsoidale) având axele de simetrie paralele cu axele sistemului de coordonate;
 - \circ în cazul cel mai general (deci când matricea Σ nu este neapărat diagonală), datele generate de acest tip de distribuție se grupează în elipse (corpuri elipsoidale) cu axele de simetrie [desigur, perpendiculare, dar altfel] nerestricționate.
- Pentru schema algoritmică EM:
 vezi cele menționate mai sus în legătură cu algoritmul EM văzut ca algoritm
 de optimizare.
- Legătura dintre algoritmul K-means şi algoritmul EM/GMM (cazul multivariat): atunci când $\Sigma = \sigma^2 I$, iar $\sigma^2 \to 0$ (şi sunt satisfăcute încă două restricții), algoritmul EM/GMM tinde să se comporte ca şi algoritmul K-means (vezi pr. 47);
- O legătură interesantă între clasificatorul Bayes Naiv gaussian şi algoritmul EM/GMM când matricele de covarianță sunt diagonale:
 o variantă semi-supervizată a algoritmului EM/GMM. (pr. 53).

Algoritmul EM: Privire de ansamblu

Noțiuni preliminare

- estimarea parametrilor unei distribuţii probabiliste în sensul verosimilităţii maxime (MLE) respectiv în sensul probabilităţii maxime a posteriori (MAP): vezi cap. Probabilităţi şi statistică;
- tipuri/clase de distribuții probabiliste vezi cap. Probabilități și statistică;
- mixturi de distribuţii probabiliste vezi cap. Probabilităţi şi statistică şi cap. Clusterizare;
- metoda "coordinate ascent" pentru rezolvarea problemelor de optimizare: pr. 1;
- metoda multiplicatorilor lui Lagrange pentru rezolvarea problemelor de optimizare cu restricţii: pr. 5, 7 şi 15.

Schema algoritmică EM

- pseudo-cod: Machine Learning, Tom Mitchell, 1997, pag. 194-195;
- fundamentare teoretică: pr. 1 și 2;
- chestiuni metodologice (relativ la inițializarea parametrilor): pr. 22.

EM pentru modelarea de mixturi de distribuții probabiliste

- varianta generală: An Introduction to Expectation-Maximization, Dahua Lin;
- diverse instanţe ale acestei "variante": mixturi [de distribuţii] Bernoulli (pr. 14, 4),
 mixturi [de distribuţii] categoriale (pr. 5, 15)mixturi [de distribuţii] Poisson (pr. 18), mixturi [de distribuţii] Gamma (pr. 19).

Alte instanțe/aplicații ale schemei algoritmice EM

- EM pentru estimarea unui parametru [de tip probabilitate] pentru o distribuţie discretă [în ocurenţă, o distribuţie categorială], în condiţiile existenţei unei variabile "neobservabile": pr. 3. Similar pentru distribuţia multinomială: pr. 13;
- EM pentru estimarea tuturor parametrilor unei distribuții categoriale: pr. 12;
- EM pentru estimarea parametrului unei distribuții Poisson în condițiile în care o parte din valorile date lipsesc (pr. 10);
- EM pentru estimarea parametrilor a doă distribuţii probabiliste atunci când se dau instanţe care sunt generate de suma celor două distribuţii: distribuţii exponenţiale (pr. 8), sau distribuţii gaussiene (pr. 20);
- algoritmul Bayes Naiv ne-supervizat, i.e. algoritmul EM pentru [modelare] de mixturi de distribuţii categoriale multi-variate, cu presupunerea de independenţă condiţională a atributelor de intrare în raport cu atributul de ieşire (eticheta): pr. 7 (varianta de asignare "soft" a instanţelor la cluster) şi pr. 17 (varianta "hard");

ALGORITMUL EM Privire de ansamblu

 EM pentru estimarea probabilității de selecție a unei componente din cadrul unei mixturi [i.e. combinație liniară] de două distribuții probabiliste oarecare: pr. 9;

- EM pentru modelul [mixturii] domeniilor semantice (engl., topic model) pentru clusterizare de documente: pr. [6 și] 16.
- EM pentru estimarea [nu în sens MLE, cum a fost cazul până aici, ci] în sens MAP: pr. 20.

Rețele neuronale artificiale: Privire de ansamblu

A1. Noțiuni preliminare

- funcţie matematică; compunere de funcţii reale;
 calculul valorii unei funcţii pentru anumite valori specificate pentru argumentele/variabilele ei;
- funcție prag (sau, treaptă), funcție liniară, funcție sigmoidală (sau, logistică), funcție sigmoidală generalizată; separabilitate liniară pentru o mulțime de puncte din \mathbb{R}^d ;
- ecuații asociate dreptelor în plan / planelor în spațiu / hiper-planelor în spațiul \mathbb{R}^d ; ecuația dreptei în plan care trece prin două puncte date; semnele asociate punctelor din semi-planele determinate de o dreaptă dată în plan;
- derivate ale funcțiilor elementare de variabilă reală; derivate parțiale
- vectori; operații cu vectori, în particular produsul scalar al vectorilor (·);
- metoda gradientului descendent (ca metoda de optimizare); avantaje şi dezavantaje; pr. 10, 23, 35, 36.

A2. [Câteva] noțiuni specifice

- unități neuronale artificiale (sau, neuroni artificiali, perceptroni);
 tipuri de neuroni artificiali: neuroni-prag, liniari, sigmoidali;
 componente ale unui neuron artificial: input, componenta de sumare, componenta / funcția de activare, output;
 funcția matematică reprezentată / calculată de un neuron artificial;
- reţea neuronală artificială; reţele de tip feed-forward;
 niveluri / straturi de neuroni, niveluri ascunse, niveluri de ieşire;
 ponderi asociate conxiunilor dintr-o reţea neuronală artificială;
 funcţia matematică reprezentată / calculată de o reţea neuronală artificială;
 graniţe şi zone de decizie determinate de o reţea neuronală artificială;
 funcţia de eroare / cost (engl., loss function).

A3. Câteva proprietăți de expresivitate ale rețelelor neuronale artificiale

- (P0) Toate cele trei tipuri de neuroni artificiali (prag, liniar, sigmoidal) produc separatori liniari.
 - Consecință: Conceptul XOR nu poate fi reprezentat / învățat cu astfel de "dispozitive" simple de clasificare.
- (P0') Rețelele neuronale artificiale pot determina granițe de decizie neliniare (și, în consecință, pot reprezenta concepte precum XOR).
 - Observaţie: Reţele de unităţi sigmoidale pot determina graniţe de decizie curbilinii (vezi pr. 8).

- (P1) Reţele de neuroni diferite (ca structură şi / sau tipuri de unități) pot să calculeze o aceeași funcție. (Vezi pr. 3 și pr. 1.c vs. pr. 2).
 - (P1') Dată o topologie de rețea neuronală (i.e., graf de unități neuronale al căror tip este lăsat nespecificat), este posibil ca plasând în noduri unități de un anumit tip să putem reprezenta / calcula o anumită funcție, iar schimbând tipul unora dintre unități (sau al tuturor unităților), funcția respectivă să nu mai potă fi calculată. (Vezi pr. 4 vs. pr. 34.³³¹)
- (P2) Orice unitate liniară situată pe un nivel ascuns poate fi "absorbită" pe nivelul următor (pr. 33).
- (P3) Orice funcție booleană poate fi reprezentată cu ajutorul unei rețele neuronale artificiale având doar două niveluri de perceptroni-prag (pr. 5).
- (P4) Orice funcție definită pe un interval mărginit din \mathbb{R} , care este continuă în sens Lipschitz, poate fi aproximată oricât de bine cu ajutorul unei rețele neuronale care are un singur nivel ascuns (pr. 7).

B. Algoritmi de antrenare a neuronilor artificiali

folosind metoda gradientului descendent

- algoritmul de antrenare a unității liniare: pr. 37
 vezi T. Mitchell, *Machine Learning*, p. 93, justificare: p. 91-92; convergența: p. 95; exemplu de aplicare: pr. 11
 varianta incrementală a algoritmului de antrenare a unității liniare: TM, ML book, p. 93-94; despre convergența acestei variante (ca aproximare a variantei precedente ("batch"): TM, ML book, p. 93 jos;
- algoritmul de antrenare a perceptronului-prag şi convergenţa: TM, ML book,
 p. 88-89; exemplu de aplicare: pr. 12;
- algoritmul de antrenare a perceptronului sigmoidal şi justificarea sa teoretică:
 TM, ML book, p. 95-97;
- algoritmul Perceptron (!) al lui Rosenblatt; exemplu de aplicare: 17, 39;
- deducerea regulii de actualizare a ponderilor pentru tipuri particulare de perceptroni: pr. 13, 25.a, 38, 14.a;
- o justificare probabilistă (gen ipoteză de tip maximum likelihood) pentru minimizarea sumei pătratelor erorilor [la deducerea regulii de antrenare] pentru perceptronul liniar: pr 14.b;
- exemple de [folosire a unei] alte funcții de cost/pierdere/penalizare (engl., loss function) decât semi-suma pătratelor erorilor: suma costurilor de tip log-sigmoidal, pr. 15 (pentru perceptronul liniar), o funcție de tip cross-entropie, pr. 16 (pentru perceptronul sigmoidal).

B'. Perceptronul Rosenblatt și rezultate de convergență

- exemplu de aplicare [adică, învăţare cu perceptronul Rosenblatt]: pr. 17.

³³¹ Problemele 1.d şi pr. 32 au în vedere o chestiune similară, însă pentru rețele cu topologii diferite: o anumită extensie a funcției xor nu poate fi reprezentată pe rețele de neuroni-prag care au un singur nivel ascuns.

- câteva proprietăți simple ale perceptronului Rosenblatt: pr. 18.
- rezultate de convergență de tip "mistake bound" pentru [algoritmul de antrenare pentru] perceptronul-prag [în varianta] Rosenblatt: pr. 19, 40;
 pentru perceptronul-prag (clasic): pr. 42;
 învățare online cu perceptronul-prag de tip Rosenblatt: pr. 41;
- Perceptronul kernelizat [dual]: pr. 24; particularizare pentru cazul nucleului RBF: pr. 50.

C. Antrenarea rețelelor neuronale artificiale:

algoritmul de retro-propagare pentru rețelel feed-forward

- T. Mitchell, Machine Learning, p. 98: pseudo-cod pentru reţele cu unităţi de tip sigmoidal, cu 2 niveluri, dintre care unul ascuns; pentru deducerea regulilor de actualizare a ponderilor (în cazul mai general reţelelor al feedforward (de unităţi sigmoidale) cu oricâte niveluri, vezi p. 101-103); pr. 20: deducerea regulilor de actualizare a ponderilor în cazul reţelelor cu 2 niveluri, având însă unităţi cu funcţie de activare oarecare (derivabilă);
- aplicare: pr. 21, 43, 44;
- prevenirea overfitting-ului:
 folosirea unei componente de tip "moment" în expresia regulilor de actualizare
 a ponderilor: pr. 46;
 regularizare: introducerea unei componente suplimentare în funția de optimizat: pr. 22;
- cazul folosirii unei funcții de activare de tip tangentă hiperbolică: pr. 45;
- cazul folosirii unei funcții de cost/penalizare/eroare de tip cross-entropie: pr. 48;
- fenomenul de "dispariţie" a gradientului [în cazul aplicării algoritmului de retro-propagare] pentru reţele neuronale profunde (engl., deep neural networks) care folosesc funcţia de activare sigmoidală: pr. 27; execuţia manuală a unei iteraţii a algoritmului de retro-propagare în cazul unei reţele neuronale simple, având un singur nivel ascuns, cu unităţi ce folosesc funcţia de activare ReL: pr. 49.

D. Retele neuronale profunde:

chestiuni introductive: pr. 28 și pr. 55.