Section E.2

Activity E.2.1 (\sim 10 min)

- Go to http://www.cocalc.com and create an account.
- Create a project titled "Linear Algebra Team X" with your appropriate team number. Add all team members as collaborators.
- Open the project and click on "New"
- Give it an appropriate name such as "Class E2 workbook". Make a new Jupyter notebook.
- Click on "Kernel" and make sure "Octave" is selected.
- Type A=[1 3 4; 2 5 7] to store the matrix $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 7 \end{bmatrix}$ in the variable A; hold shift when you press enter.
- Type rref(A) to compute the reduced row echelon form of A.

Remark E.2.2 If you need to find the reduced row echelon form of a matrix during class, you should feel free to use CoCalc/Octave.

You can change a cell from "Code" to "Markdown" or "Raw" to put comments around your calculations such as Activity numbers.

Activity E.2.3 (~ 8 min) Consider the system of equations.

$$3x_1 - 2x_2 + 13x_3 = 6$$
$$2x_1 - 2x_2 + 10x_3 = 2$$
$$-x_1 + 3x_2 - 6x_3 = 11$$

Convert this to an augmented matrix, use CoCalc to compute the reduced row echelon form, and convert back to a simpler system of equations to solve this system. Write your solution on your whiteboard.

Activity E.2.4 (\sim 7 min) Consider our system of equations from above.

$$3x_1 - 2x_2 + 13x_3 = 6$$

$$2x_1 - 2x_2 + 10x_3 = 2$$

$$-x_1 - 3x_3 = 1$$

Convert this to an augmented matrix, use CoCalc to compute the reduced row echelon form, and convert back to a simpler system of equations to solve this system. Write your solution on your whiteboard.

Activity E.2.5 ($\sim 10 \text{ min}$) Consider the following matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 8 & 0 \end{bmatrix}$$

Part 1: Find RREF(A) (Use CoCalc).

Part 2: How many solutions does the corresponding linear system have?

Activity E.2.6 ($\sim 10 \text{ min}$) Consider the (simpler) system from the previous problem:

$$x_1 + 2x_2 = 4$$
$$x_3 = -1$$

Part 1: Let
$$x_1 = a$$
 and write the solution set in the form $\left\{ \begin{bmatrix} a \\ ? \\ ? \end{bmatrix} \middle| a \in \mathbb{R} \right\}$
Part 2: Let $x_2 = b$ and write the solution set in the form $\left\{ \begin{bmatrix} ? \\ b \\ ? \end{bmatrix} \middle| b \in \mathbb{R} \right\}$

$$\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

cause this?

Definition E.2.7 If a matrix is in reduced row echelon form, a pivot is an entry satisfying

- 1. It is 1
- 2. Everything else in the same row but to the left of it is zero
- 3. Everything else in the same column is zero.

For example, the pivots are circled in

$$\begin{bmatrix}
1 & 2 & 0 & | & 4 \\
0 & 0 & 1 & | & -1
\end{bmatrix}$$

Activity E.2.8 (~ 5 min) Circle the pivots in each matrix below.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Definition E.2.9 The pivots in a matrix correspond to **bound variables** in the system of equations. The remaining variables are called **free variables**.

To efficiently solve a system in RREF form, assign letters to free variables and solve for the bound variables.

Activity E.2.10 (\sim 10 min) Find the solution set for the system

$$2x_1 - 2x_2 - 6x_3 + x_4 - x_5 = 3$$

-x₁ + x₂ + 3x₃ - x₄ + 2x₅ = -3
x₁ - 2x₂ - x₃ + x₄ + x₅ = 2

by assigning letters to the free variables and solving for the bounded variables.

Observation E.2.11 The solution set to the system

$$2x_1 - 2x_2 - 6x_3 + x_4 - x_5 = 3$$

-x₁ + x₂ + 3x₃ - x₄ + 2x₅ = -3
 $x_1 - 2x_2 - x_3 + x_4 + x_5 = 2$

is

$$\left\{ \begin{bmatrix} 1+5a+2b\\1+2a+3b\\a\\3+3b\\b \end{bmatrix} \middle| a,b \in \mathbb{R} \right\}.$$

Remark E.2.12 You should always use set-builder notation to describe the solution set of a linear system.