Transformasi Linier Matriks Transformasi Kernel dan Jangkauan

SUKMAWATI NUR ENDAH - UNDIP

Transformasi Linier

Transformasi Linear

Misalkan V dan W adalah ruang vektor, $T: V \rightarrow W$ dinamakan transformasi linear, jika untuk setiap $\overline{a}, \overline{b} \in V$ dan $\alpha \in R$ berlaku:

1.
$$T\left(\overline{a} + \overline{b}\right) = T\left(\overline{a}\right) + T\left(\overline{b}\right)$$

2.
$$T(\alpha \overline{a}) = \alpha T(\overline{a})$$

Jika V = W maka T dinamakan operator linear

Contoh:

Tunjukkan bahwa $T: \mathbb{R}^2 \to \mathbb{R}^3$, dimana

T[
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
] = $\begin{pmatrix} x - y \\ -x \\ y \end{pmatrix}$ Rumus Transformasi

merupakan tranformasi linear.

Jawab:

Ambil unsur sembarang di \mathbb{R}^2 , Misalkan $\bar{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \quad \bar{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$

(i) Akan ditunjukan bahwa $T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v})$

$$T(\overline{u} + \overline{v}) = T \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$= \begin{pmatrix} (u_1 + v_1) - (u_2 + v_2) \\ -(u_1 + v_1) \\ u_2 + v_2 \end{pmatrix}$$

$$= \begin{pmatrix} (u_1 + v_1) - (u_2 + v_2) \\ -u_1 - v_1 \\ u_2 + v_2 \end{pmatrix}$$

$$= \begin{pmatrix} u_1 - u_2 \\ -u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 - v_2 \\ -v_1 \\ v_2 \end{pmatrix}$$

Terbukti bahwa
$$T(\overline{u} + \overline{v}) = T(\overline{u}) + T(\overline{v})$$

(ii) Ambil unsur sembarang $\overline{u} \in \mathbb{R}^2$ dan $\alpha \in \mathbb{R}$

$$\overline{u} \in R^2 \text{ dan } \alpha \in R$$

$$T(\alpha \overline{u}) = T \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \end{bmatrix}$$

$$= \begin{pmatrix} \alpha u_1 - \alpha u_2 \\ - \alpha u_1 \\ \alpha u_2 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha (u_1 - u_2) \\ \alpha (-u_1) \\ \alpha (u_2) \end{pmatrix}$$

$$= \alpha \begin{pmatrix} u_1 - u_2 \\ -u_1 \\ u_2 \end{pmatrix}$$

$$= \alpha T(\overline{u})$$

T merupakan transformasi linear. Jadi,

Contoh 2:

Misalkan T merupakan suatu transformasi dari M_{2x2} ke R yang didefinisikan oleh T(A) = det(A), untuk setiap $A \in M_{2x2}$, Apakah T merupakan Transformasi linier.

Jawab:

Misalkan
$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in M_{2x2}$$

maka untuk setiap $\alpha \in R$ berlaku

$$\det (\alpha A) = \det \begin{pmatrix} \alpha a_1 & \alpha a_2 \\ \alpha a_3 & \alpha a_4 \end{pmatrix}$$
$$= \alpha^2 (a_1 a_2 - a_3 a_4) = \alpha^2 \det(A)$$

Perhatikan bahwa $det(\alpha A) \neq \alpha det(A)$ Jadi T bukan transformasi linier.

Contoh 3:

ntoh 3:
Diketahui
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, dimana
$$T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-b \\ a-c \end{pmatrix}$$

- a. Apakah T merupakan transformasi linear
- b. Tentukan T(1, 1, 1)

Jawab:

a.(i) Ambil unsur sembarang R_3 ,

$$\overline{u} = (u_1, u_2, u_3) \qquad \overline{v} = (v_1, v_2, v_3)$$

Sehingga

$$\overline{u} + \overline{v} = ((u_1 + v_1), (u_2 + v_2), (u_3 + v_3))$$

Perhatikan bahwa

$$T(\overline{u} + \overline{v}) = T((u_1 + v_1), (u_2 + v_2), (u_3 + v_3))$$

$$= \begin{pmatrix} (u_1 + v_1) - (u_2 + v_2) \\ (u_1 + v_1) - (u_3 + v_3) \end{pmatrix}$$

$$= \begin{pmatrix} (u_1 - u_2) + (v_1 - v_2) \\ (u_1 - u_3) + (v_1 - v_3) \end{pmatrix}$$

$$= \begin{pmatrix} u_1 - u_2 \\ u_1 - u_3 \end{pmatrix} + \begin{pmatrix} v_1 - v_2 \\ v_1 - v_3 \end{pmatrix}$$

$$= T(u_1, u_2, u_3) + T(v_1, v_2, v_3)$$

18/05/2021 08.27 ⁹

Ambil unsur sembarang R_3 , dan $\alpha \in R$, sehingga

$$\overline{u} = (u_1, u_2, u_3)$$

$$T(\alpha \overline{u}) = T(\alpha (u_1, u_2, u_3))$$

$$= \begin{pmatrix} (\alpha u_1 - \alpha u_2) \\ (\alpha u_1 - \alpha u_3) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha (u_1 - u_2) \\ \alpha (u_1 - u_3) \end{pmatrix}$$

$$= \alpha \begin{pmatrix} u_1 - u_2 \\ u_1 - u_3 \end{pmatrix}$$

$$= \alpha T (u_1, u_2, u_3)$$

Jadi, T merupakan transformasi linear

b.
$$T(1, 1, 1) = \begin{pmatrix} 1-1 \\ 1-1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Latihan Soal Dulu Ya....

Latihan Soal 1

- 1. Misalkan T : $R^2 \rightarrow R^3$, adalah sebuah fungsi yang didefinisikan oleh :
- T(x,y) = (x, x+y, x-y)
- Buktikan bahwa T adalah transformasi linier

2. Misalkan L : $P_2 \rightarrow P_1$,

$$L(a_2x^2+a_1x+a_0) = (a_2+a_1)x+a_0,$$

dimana P_n adalah himpunan polinomial berderajat \leq n. Apakah L transformasi linier?

Latihan Soal 1

3. Misalkan L : $R^3 \rightarrow R^2$, didefinisikan oleh

$$L\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) = \begin{bmatrix} u_1 u_2 \\ u_3 \end{bmatrix}$$

Apakah L transformasi linier?

Matriks Transformasi

MATRIKS TRANSFORMASI

Suatu transformasi linear $T: \mathbb{R}^n \to \mathbb{R}^m$ dapat direpresentasikan dalam bentuk :

$$T(\bar{u}) = A\bar{u}$$
 untuk setiap $\bar{u} \in V$.

 \rightarrow A_{mxn} dinamakan matriks transformasi dari T.

Contoh:

Misalkan, suatu transformasi linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ didefinisikan oleh : (x-y)

Jawab:

Perhatikan bahwa

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} x - y \\ -x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Jadi matriks transformasi untuk $T: \mathbb{R}^2 \to \mathbb{R}^3$ adalah

$$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{array}\right)$$

Jika T : $R^n \rightarrow R^m$ merupakan transformasi linear maka ukuran matriks transformasi adalah **m x n**

Matriks Transformasi Linier

Misalkan $e_1,e_2,...e_n$ adalah basis baku untuk R^n dan misalkan A adalah sebuah matriks m x n yang dibentuk oleh $T(e_1)$, $T(e_2)$, ... $T(e_n)$ sebagai vektor kolom-kolomnya, maka A disebut matriks transformasi linier

Contoh

Misalkan T : $R^2 \rightarrow R^2$, diberikan oleh :

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + 2x_2 \\ x_1 - 2x_2 \end{bmatrix}$$

Maka

$$T([e_1]) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\1\end{bmatrix}$$

Dan

$$T([e_2]) = T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-2\end{bmatrix}$$

Jadi matriks transformasi adalah

$$A = \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix}$$

Latihan Soal 2

Berapa matriks transformasinya jika

• Misalkan T : $R^2 \rightarrow R^3$, diberikan oleh

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + 2x_2 \\ x_1 + 2x_2 \\ 2x_1 + x_2 \end{bmatrix}$$

• Misalkan T : $R^3 \rightarrow R^2$, diberikan oleh

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + 2x_3 \\ x_3 + 2x_2 \end{bmatrix}$$

Open Question

Bagaimana menentukan matriks transformasi linier dari

beberapa vektor yang merupakan basis ruang vektor V?

Misalkan

 $B = \{\overline{v}_1, \overline{v}_2\}$ basis bagi ruang vektor V dan

 $T: \mathbb{R}^2 \to \mathbb{R}^3$ merupakan transformasi linear dimana

$$T(\overline{v}_i) = (\overline{u}_i)$$
 untuk setiap $i = 1,2$.

Matriks transformasinya dapat ditentukan dengan cara, ditulis:

$$T(\overline{v}_1) = A\overline{v}_1 = \overline{u}_1$$
$$T(\overline{v}_2) = A\overline{v}_2 = \overline{u}_2$$

Sehingga

$$A_{3x2} \begin{bmatrix} \overline{v}_1 & \overline{v}_2 \end{bmatrix}_{2x2} = \begin{bmatrix} \overline{u}_1 & \overline{u}_2 \end{bmatrix}_{3x2}$$

$$\begin{bmatrix} \overline{v}_1 & \overline{v}_2 \end{bmatrix} \text{ basis bagi } V$$

$$\text{maka ia punya inverse}$$

$$A = \begin{bmatrix} \overline{u}_1 & \overline{u}_2 \end{bmatrix} \begin{bmatrix} \overline{v}_1 & \overline{v}_2 \end{bmatrix}^{-1}$$

maka ia punya invers

Contoh:

Misalkan

$$\left\{ \overline{v}_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \overline{v}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \overline{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ adalah basis bagi } \mathbb{R}^3$$

 $T: \mathbb{R}^3 \to \mathbb{R}^2$ Transformasi linear didefinisikan

$$T(\overline{v}_i) = A\overline{v}_i = \overline{p}_i$$
 untuk setiap $i = 1,2,3$.

Jika

$$\overline{p}_1 = (1,-1); \quad \overline{p}_2 = (1,0); \quad \overline{p}_3 = (0,2)$$

Tentukan:
Matrix transformasi dan $T \begin{vmatrix} 1 \\ -1 \\ 2 \end{vmatrix}$

Karena

$$A\overline{v}_i = \overline{p}_i, \quad \forall_i = 1,2,3$$

Maka

$$A \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

atau

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}^{-1}$$

invers matriks dicari dengan OBE:

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
1 & 1 & 0 & | & 0 & 1 & 0 \\
-1 & -1 & 1 & | & 0 & 0 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & -1 & 1 & 0 \\
0 & -1 & 1 & | & 1 & 0 & 1
\end{pmatrix}$$

$$\sim \begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}$$

Sehingga
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix}$$

Jadi matriks transformasi T adalah $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix}$

Sehingga

$$T\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = A \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{bmatrix}
1 \\
-1 \\
2
\end{bmatrix} = (-1, 1)$$

LATIHAN SOAL 3

Suatu transformasi linear, $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$

Yang diilustrasikan sebagai berikut:

$$T\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \quad \text{dan} \quad T\begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

- 1. Tentukan matriks transformasi dari T!
- 2. Tentukan hasil transformasi, $T\begin{bmatrix} 1\\3 \end{bmatrix}$

Kernel dan Jangkauan

Kernel dan Jangkauan

Misalkan T : V → W merupakan transformasi linear Semua unsur di V yang dipetakan ke vektor nol di W dinamakan kernel T

notasi ker(T).

atau

$$Ker(T) = \{ \overline{u} \in V \mid T(\overline{u}) = \overline{0} \}$$

Contoh:
Trans. Linear T: R³
$$\rightarrow$$
 R² $T(a,b,c) = \begin{pmatrix} a-b \\ a-c \end{pmatrix}$

Perhatikan bahwa
$$T(1, 1, 1) = \begin{pmatrix} 1-1 \\ 1-1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

maka $(1, 1, 1) \in Ker(T)$

Sementara itu,
$$(1,2,1) \notin Ker(T)$$

karena
$$T(1,2,1) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \neq \overline{0}$$

Jelas bahwa vektor nol pada daerah asal transformasi merupakan unsur kernel T. Tetapi, tak semua transformasi linear mempunyai vektor tak nol sebagai unsur kernel T.

Teorema:

Jika $T: V \rightarrow W$ adalah transformasi linear maka Ker(T) merupakan subruang dari V

Bukti:

Ambil $\bar{a}, \bar{b} \in Ker(T)$ sembarang dan $\alpha \in Riil$

- 1. Karena setiap $\overline{a} \in Ker(T)$ artinya setiap $\overline{a} \in V$ sehingga $T(\overline{a}) = \overline{0}$ maka $Ker(T) \subseteq V$
- 2. Perhatikan bahwa $\overline{0} \in Ker(T)$ artinya setiap $T(\overline{0}) = A\overline{0} = \overline{0}$ oleh karena itu $Ker(T) \neq \{\}$
- 3. Karena $\overline{a}, \overline{b} \in Ker(T)$ dan $Ker(T) \subseteq V$ Ingat bahwa V mrp ruang vektor, sehingga berlaku $\overline{a} + \overline{b} \in V$ akibatnya $T(\overline{a} + \overline{b}) = T\overline{a} + T\overline{b} = \overline{0} + \overline{0} = \overline{0}$ Jadi $\overline{a} + \overline{b} \in \ker(T)$

4. Karena $a \in Ker(T)$ maka $a \in V$

karena V adalah ruang vektor maka untuk setiap $\alpha \in \text{Riil berlaku}$:

$$T(\alpha \overline{a}) = \alpha T(\overline{a}) = \alpha \overline{0} = \overline{0}$$

Jadi, $\alpha a \in Ker(T)$

- Dengan demikian, terbukti bahwa
 Jika T : V → W adalah transformasi linear maka
 Ker(*T*) merupakan **subruang** dari ruang vektor V
- \triangleright Karena Ker(T) merupakan subruang
- → T mempunyai Basis Ker(T).

Jangkauan

- ightharpoonup Himpunan dari \bar{b} sedemikian hingga $T(\bar{u}) = \bar{b}$ disebut Jangkauan dari T atau disingkat R(T).
- > R(T) disebut juga dengan bayangan ū oleh T(ū)

 $R(T) = \{ \bar{b} \in W \mid \text{ada } \bar{u} \in V \text{ sehingga } T(\bar{u}) = \bar{b} \}$ Dengan cara yang sama dapat dibuktikan bahwa R(T)merupakan subruang dari ruang vektor W. Karena Ker(T) dan R(T) merupakan subruang maka Ker(T) dan R(T) masing-masing memiliki basis.

Perhatikan bahwa, misal $\bar{u} \in V$ maka $T(\bar{u}) = A\bar{u}$ sehingga

$$Ker(T) = \{ \overline{u} \in V \mid T(\overline{u}) = A\overline{u} = \overline{0} \}$$

Dengan demikian, basis Ker(T) berkorespondensi dengan basis ruang solusi (ingat SPL homogen), sedangkan basis R(T) merupakan basis bagi ruang kolom dari A.

- Jumlah vektor pada basis ker(T) dinamakan nullitas
- Jumlah vektor pada basis R(T) dinamakan Rank

Contoh:

Diketahui Transformasi linear T: R³ → R³ dengan

$$T\begin{bmatrix} a \\ b \\ c \end{bmatrix} = ((a+b), (2a-c), (2a+b+c))$$

Tentukan basis dan dimensi Ker(T) dan R(T)

Jawab:

Perhatikan bahwa:

$$T\begin{bmatrix} a \\ b \\ c \end{bmatrix} = ((a+b), (2a-c), (2a+b+c)) = \overline{0}$$

Ini memberikan

$$\begin{pmatrix} a+b \\ 2b-c \\ 2a+b+c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

sehingga

$$T\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{pmatrix} a+b \\ 2b-c \\ 2a+b+c \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Jadi, matriks transformasi bagi T adalah

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$

Dengan melakukan OBE pada matriks tersebut:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1/2 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & 1/2 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Dengan demikian, Basis ker(T) = { } dan nulitasnya adalah nol.

Perhatikan hasil OBE maka basis ruang kolom dari matriks A adalah :

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$

Sekaligus ini merupakan basis jangkauan dari T sehingga *rank* (dimensi basis R(T)) = 3 Contoh:

Diketahui transformasi linear $T: \mathbb{R}^4 \to \mathbb{R}^3$ didefinisikan oleh :

$$T \begin{bmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \end{bmatrix} = \begin{pmatrix} a+b \\ c-2d \\ -a-b+c-2d \end{pmatrix}$$

Tentukan basis kernel dari T dan nulitasnya

Jawab:

$$T \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{pmatrix} a+b \\ c-2d \\ -a-b+c-2d \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ -1 & -1 & 1 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

Jadi

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ -1 & -1 & 1 & -2 \end{pmatrix}$$

Basis Ker(T) dan Nulitasnya?

Ker(T) adalah ruang solusi dari

$$T(\overline{v}) = A(\overline{v}) = \overline{0}, \ \forall \overline{v} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in R^4$$

Dengan OBE

$$A \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ -1 & -1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Lanjutan

Dari OBE:

$$a + b = 0$$

$$c - 2d = 0$$

Dengan menggunakan parameter a = s, maka b = -a = - s

Dengan menggunakan parameter c = t, maka 2d = c = t sehingga $d = \frac{1}{2}t$

Ker(T) = ruang solusi dari $A\overline{v} = 0$

yaitu
$$\begin{cases}
\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} s + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1/2 \end{pmatrix} t, s, t \neq 0
\end{cases}$$

Jadi Basis Ker(T) adalah

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1/2 \end{pmatrix} \right\}$$

Nulitas = Dimensi dari Ker(T) = 2

Latihan Soal 4

Misalkan T : $\Re^3 \rightarrow \Re^2$ didefinisikan oleh

$$T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a - 2b \\ a + c \end{pmatrix}$$

Tentukan basis Ker(T) dan basis R(T) beserta dimensinya!

Ada Pertanyaan?