

# Pattern Mining Applications: Mining Quality Phrases from Text Data

- From Frequent Pattern Mining to Phrase Mining
- Previous Phrase Mining Methods
- ToPMine: Phrase Mining without Training Data
- SegPhrase: Phrase Mining with Tiny Training Sets

Thanks to Ahmed El-Kishky@UIUC, Jialu Liu@UIUC, Jingbo Shang@UIUC, Xiang Ren@UIUC, Chi Wang@MSR and Marina Danilevsky@IBM for their contributions



#### Why Phrase Mining?

- Unigrams vs. phrases
  - Unigrams (single words) are often ambiguous
    - Example: "United": United States? United Airline? United Parcel Service?
  - Phrase: A natural, meaningful, unambiguous semantic unit

Example: "United States" vs. "United Airline"

Unigrams are easy to get confused.

Phrases are easy to recognize the topic concepts.

- Mining semantically meaningful phrases
  - Transform text data from word granularity to phrase granularity
  - Enhance the power and efficiency at manipulating unstructured data

#### From Frequent Pattern Mining to Phrase Mining

- General principle
  - Exploit information redundancy and data-driven criteria to determine phrase boundaries and salience
- Methodology: Exploring three ideas
  - Frequent pattern mining and colocation analysis
  - Phrasal segmentation
  - Quality phrase assessment
- Recent developments of phrase mining methods
  - □ ToPMine: Mining quality phrase without training (A. El-Kishky, et al., 2015)
  - SegPhrase: Mining quality phrase with tiny training sets (J. Liu, et al., 2015)



#### Phrase Mining: Can We Reduce Annotation Cost?

- Phrase mining: Originated from the NLP community—"Chunking"
- Noun Phrase Chunk.

- Model it as a sequence labeling problem (B-NP, I-NP, O, ...)
- Need annotation and training
  - Annotate hundreds of documents as training data
  - Train a supervised model based on part-of-speech features
- Recent trend:
  - ☐ Use distributional features based on web n-grams (Bergsma et al., 2010)
  - □ State-of-the-art performance: ~95% accuracy, ~88% phrase-level F-score
- Limitations
  - ☐ High annotation cost, not scalable to a new language, a new domain/genre
  - May not fit domain-specific, dynamic, emerging applications
    - Scientific domains, query logs, or social media (e.g., Yelp and Twitter data)

## **Unsupervised** Phrase Mining and Topic Modeling

- Many studies of unsupervised phrase mining are linked with topic modeling
- Topic modeling
  - Represents documents by multiple topics in different proportions
    - Each topic is represented by a word distribution
  - Does not require any prior annotations or labeling of the documents
- Statistical topic modeling algorithms
  - □ The most common algorithm: LDA (Latent Dirichlet Allocation) [Blei, et al., 2003]
- Three strategies on phrase mining with topic modeling
  - $\square$  Strategy 1: Generate bag-of-words  $\rightarrow$  generate sequence of tokens



■ Strategy 2: Post bag-of-words model inference, visualize topics with n-grams



Strategy 3: Prior bag-of-words model inference, mine phrases and impose on the bag-of-words model phrase mining topic modeling.

# Strategy 1: Simultaneously Inferring Phrases and Topics

- Bigram Topic Model [Wallach'06]
  - Probabilistic generative model that conditions on previous word and topic when drawing next word
- Topical N-Grams (TNG) [Wang, et al.'07] (a generalization of Bigram Topic Model)
  - Probabilistic model that generates words in textual order
  - Create n-grams by concatenating successive bigrams
- □ Phrase-Discovering LDA (PDLDA) [Lindsey, et al.'12]
  - Viewing each sentence as a time-series of words, PDLDA posits that the generative parameter (topic) changes periodically
  - Each word is drawn based on previous m words (context) and current phrase topic
- Comments on this strategy
  - High model complexity: Tends to overfitting

It requires high model complexity to draw every subsequent word.

☐ High inference cost: Slow

# Strategy 2: Post Topic-Modeling Phrase Construction (I): TurboTopics

- **TurboTopics** [Blei & Lafferty'09] Phrase construction as a post-processing step to Latent Dirichlet Allocation topic modeling -> phrase construction.
  - Perform Latent Dirichlet Allocation on corpus to assign each token a topic label
  - Merge adjacent unigrams with the same topic label by a distribution-free permutation test on arbitrary-length back-off model
  - End recursive merging when all significant adjacent unigrams have been merged

#### **Annotated documents**

What is  $phase_{11}$  transition<sub>11</sub>? Why is there  $phase_{11}$  transitions<sub>11</sub>? These is are  $old_{127}$  questions<sub>127</sub> people<sub>170</sub> have been  $asking_{195}$  for many  $years_{127}$  but  $get_{153}$  few  $answers_{127}$  We  $established_{127}$  one  $general_{11}$  theory<sub>127</sub>  $based_{153}$  on  $game_{153}$  theory<sub>127</sub> and  $topology_{85}$  it  $provides_{11}$  a  $basic_{127}$  understanding<sub>127</sub> to  $phase_{11}$  transitions<sub>11</sub> We  $proposed_{11}$  a  $modern_{127}$  definition<sub>117</sub> of  $phase_{11}$  transition<sub>11</sub>  $based_{153}$  on  $game_{153}$  theory<sub>127</sub> and  $topology_{85}$  of  $symmetry_{11}$   $group_{184}$  which  $unified_{135}$  Ehrenfests definition<sub>117</sub> A  $spontaneous_{11}$  result<sub>68</sub> of this  $topological_{85}$   $phase_{11}$  transition<sub>11</sub> theory<sub>127</sub> is the  $universal_{14}$  equation<sub>117</sub> of  $coexistence_{195}$   $curve_{195}$  in  $phase_{11}$   $diagram_{11}$  it  $holds_{153}$  both for  $classical_{122}$  and  $quantum_{11}$   $phase_{11}$  transition<sub>11</sub> This

#### LDA topic #11

phase, transitions, phases, transition, quantum, critical, symmetry, field, point, model, order, diagram, systems, two, theory, system, study, breaking, spin, first

#### Turbo topic #11

phase transitions, model, symmetry, point, quantum, systems, phase transition, phase diagram, system, order, field, order, parameter, critical, two, transitions in, models, different, symmetry breaking, first order, phenomena

quantum 11 , Test , phase transition merge .

## Post Topic-Modeling Phrase Construction (II): KERT

- **KERT** [Danilevsky et al.'14] Phrase construction as a post-processing step to LDA
  - Run bag-of-words model inference and assign topic label to each token
  - Perform frequent pattern mining to extract candidate phrases within each topic
- Perform phrase ranking based on four different criteria
  - **Popularity:** e.g., "information retrieval" vs. "cross-language information retrieval" ■
  - Concordance
    - "powerful tea" vs. "strong tea"
    - "active learning" vs. "learning classification"
  - ☐ Informativeness: e.g., "this paper" (frequent but not discriminative, not informative) Stopword 가 ... Stopword Stopphrase가 .
  - □ Completeness: e.g., "vector machine" vs. "support vector machine"

Comparability property: directly compare phrases of mixed lengths



### Strategy 3: First Phrase Mining then Topic Modeling

- Why first Phrase Mining then Topic Modeling?
  - □ With Strategy 2, tokens in the same phrase may be assigned to different topics
    - Ex. knowledge discovery using least squares support vector machine classifiers...
      - ☐ Knowledge discovery and support vector machine should have coherent topic labels
- Solution: switch the order of phrase mining and topic model inference

[knowledge discovery] using [least squares] [support vector machine] [classifiers] ...



[knowledge discovery] using [least squares] [support vector machine] [classifiers] ...

Techniques for this strategy



- Phrase mining, document segmentation, and phrase ranking
- Topic model inference with phrase constraint

phrase
High quality phrase mining
high quality topic model

### **ToPMine: Phrase Mining before Topic Modeling**

- □ **ToPMine** [El-Kishky et al. VLDB'15]: Phrase mining, then phrase-based topic modeling
- Phrase mining = frequent contiquous pattern mining + phrase ranking
  - Frequent contiguous pattern mining: Extract candidate phrases and their counts
  - Agglomerative merging of adjacent unigrams as guided by a significance score
  - Document segmentation to count phrase occurrence
    - □ Calculate rectified (i.e., true) phrase frequency
  - Phrase ranking (using the criteria proposed in KERT)
    - Popularity, concordance, informativeness, completeness
- Phrase-based topic modeling
  - The mined bag-of-phrases are passed as input to PhraseLDA, an extension of LDA, that constrains all words in a phrase to each sharing the same latent topic

|                          | expected one observ |                     | ation |  |
|--------------------------|---------------------|---------------------|-------|--|
| Phrase                   | Raw<br>frequency    | Rectified frequency |       |  |
| [support vector machine] | 90                  | 80                  |       |  |
| [vector machine]         | 95                  | 0                   |       |  |
| [support vector]         | 100                 | 20                  |       |  |



## **Collocation Mining**

Phrase mining collocation mining .

- Collocation: A sequence of words that occur more frequently than expected
  - Often "interesting", relay information not portrayed by their constituent terms
    - Ex. "made an exception", "strong tea"

가 -> collocation mining.

- Many different measures used to extract collocations from a corpus [Dunning 93, Pederson 96]
  - E.g., mutual information, t-test, z-test, chi-squared test, likelihood ratio

$$\mathrm{PMI}(x,y) = \log \frac{p(x,y)}{p(x)p(y)} \quad sig = \frac{count(phr_{x+y}) - E[count(phr_{x+y})])}{\sqrt{count(phr_{x+y})}} \quad \chi^2 = \sum \frac{(O-E)^2}{E}$$

Many of these measures can be used to guide the agglomerative phrasesegmentation algorithm

# Phrase Candidate Generation: Frequent Pattern Mining + Statistical Analysis





[knowledge discovery] using [least squares] [support vector machine] [classifiers]

...[support vector] for [machine learning]...



Based on significance score [Church et al.'91]: z - scor

$$\alpha(P_1, P_2) \approx (f(P_1 \bullet P_2) - \mu_0(P_1, P_2))/\sqrt{f(P_1 \bullet P_2)}$$
real observation. expected case for norm.

Note for the first title:

- [feature selection] forms phrase but not [selection for] based on the significant scores computed
- [support vector machine] does not contribute to the counts of [support], [vector], [support vector], [vector machine]



#### **ToPMine: Experiments on DBLP Abstracts**

|          | Topic 1                    | Topic 2                     | Topic 3                | Topic 4                     | Topic 5              |
|----------|----------------------------|-----------------------------|------------------------|-----------------------------|----------------------|
| unigrams | problem                    | word                        | data                   | programming                 | data                 |
|          | $\operatorname{algorithm}$ | language                    | method                 | language                    | patterns             |
|          | optimal                    | text                        | algorithm              | code                        | mining               |
|          | solution                   | speech                      | learning               | type                        | rules                |
|          | search                     | system                      | clustering             | object                      | $\operatorname{set}$ |
|          | solve                      | recognition                 | classification         | implementation              | event                |
|          | constraints                | character                   | based                  | system                      | time                 |
|          | programming                | translation                 | features               | compiler                    | association          |
|          | heuristic                  | sentences                   | proposed               | java                        | stream               |
|          | genetic                    | grammar                     | classifier             | data                        | large                |
| n-grams  | genetic algorithm          | natural language            | data sets              | programming language        | data mining          |
|          | optimization problem       | speech recognition          | support vector machine | source code                 | data sets            |
|          | solve this problem         | language model              | learning algorithm     | object oriented             | data streams         |
|          | optimal solution           | natural language processing | machine learning       | type system                 | association rules    |
|          | evolutionary algorithm     | machine translation         | feature selection      | data structure              | data collection      |
|          | local search               | recognition system          | paper we propose       | program execution           | time series          |
|          | search space               | context free grammars       | clustering algorithm   | run time                    | data analysis        |
|          | optimization algorithm     | sign language               | decision tree          | code generation             | mining algorithms    |
|          | search algorithm           | recognition rate            | proposed method        | object oriented programming | spatio temporal      |
|          | objective function         | character recognition       | training data          | java programs               | frequent itemsets    |

ToPMine is efficient and generates high-quality topics and phrases without any training data



#### **ToPMine: Experiments on Yelp Reviews**

|          | Topic 1               | Topic 2                   | Topic 3               | Topic 4                    | Topic 5            |
|----------|-----------------------|---------------------------|-----------------------|----------------------------|--------------------|
| unigrams | coffee                | food                      | room                  | store                      | good               |
|          | ice                   | $\operatorname{good}$     | parking               | shop                       | food               |
|          | cream                 | place                     | hotel                 | prices                     | place              |
|          | flavor                | ordered                   | $\operatorname{stay}$ | $\operatorname{find}$      | burger             |
|          | $\operatorname{egg}$  | chicken                   | $\operatorname{time}$ | place                      | ordered            |
|          | chocolate             | roll                      | nice                  | buy                        | fries              |
|          | breakfast             | sushi                     | place                 | $\operatorname{selection}$ | chicken            |
|          | $	ext{tea}$           | restaurant                | great                 | items                      | tacos              |
|          | $\operatorname{cake}$ | $\operatorname{dish}$     | area                  | love                       | cheese             |
|          | sweet                 | rice                      | pool                  | great                      | $_{ m time}$       |
| n-grams  | ice cream             | spring rolls              | parking lot           | grocery store              | mexican food       |
|          | iced tea              | food was good             | front desk            | great selection            | chips and salsa    |
|          | french toast          | fried rice                | spring training       | farmer's market            | food was good      |
|          | hash browns           | egg rolls                 | staying at the hotel  | great prices               | hot dog            |
|          | frozen yogurt         | chinese food              | dog park              | parking lot                | rice and beans     |
|          | eggs benedict         | pad thai                  | room was clean        | wal mart                   | sweet potato fries |
|          | peanut butter         | $\dim \operatorname{sum}$ | pool area             | shopping center            | pretty good        |
|          | cup of coffee         | thai food                 | great place           | great place                | carne asada        |
|          | iced coffee           | pretty good               | staff is friendly     | prices are reasonable      | mac and cheese     |
|          |                       | 1 0                       | · ·                   | -                          |                    |

ToPMine works well for phrase and topic mining in social media data



## SagPhrase: Phrase Mining with Tiny Training Sets

A small set of training data may enhance the quality of phrase mining

J. Liu et al., Mining Quality Phrases from Massive Text Corpora. In SIGMOD'15

# Raw Corpus data streamfrequent itemset knowledge based system time series knowledge base real world association rule web page knowledge discovery query processing data set clustering algorithm decision tree high dimensional data + A small set of labels by

#### **Segmented Corpus**

#### **Document 1**

Citation recommendation is an interesting but challenging research problem in data mining area.

#### **Document 2**

In this study, we investigate the problem in the context of heterogeneous information networks using data mining technique.

#### **Document 3**

Principal Component Analysis is a linear dimensionality reduction technique commonly used in machine learning applications.

**Input Raw Corpus** 

human or a general KB



**Quality Phrases** 



**Segmented Corpus** 

**Phrase Mining** 

**Phrasal Segmentation** 

Integrating phrase mining with phrasal segmentation and classification

#### **SegPhrase+: The Overall Framework**

- ClassPhrase: Frequent pattern mining, feature extraction, classification
- SegPhrase: Phrasal segmentation and phrase quality estimation
- □ SegPhrase+: One more round to enhance mined phrase quality

SegPhrase (a classifier is used)

Small labeled dataset provided by experts or a distant supervised KB (e.g., Wikipedia / DBPedia)



#### SegPhrase: Pattern Mining and Feature Extraction

- Pattern Mining for Candidate Set
  - Build a candidate phrases set by frequent pattern mining
    - $\square$  Mining frequent k-grams (k is typically small, e.g., 6 in the experiments)
    - Popularity measured by raw frequent words and phrases mined from the corpus
- Feature Extraction: Concordance
  - Partition a phrase into two parts to check whether the co-occurrence is significantly higher than pure random
- Feature Extraction: Informativeness
  - Quality phrases typically start and end with a non-stopword
    - "machine learning is" vs. "machine learning"
  - Use average IDF over words in the phrase to measure the semantics
  - Usually, the probabilities of a quality phrase in quotes, brackets, or connected by hyphen should be higher (punctuations information)
    - e.g., "state-of-the-art"

"co - occurrence"
when terms occur in the same document.
"collocation"

two words that frequently appear together

## SegPhrase: Classification Using Tiny Training Sets

- Use tiny training sets (300 labels for 1GB corpus; can also use phrases extracted from KBs)
  - Label: indicating whether a phrase is a high quality one
    - E.g., "support vector machine": 1; "the experiment shows": 0
- Classification: Construct models to distinguish quality phrases from poor ones
  - Use Random Forest algorithm to bootstrap different datasets with limited labels
- Phrasal segmentation can tell which phrase is more appropriate
  - Ex: "A standard [feature vector] [machine learning] setup is used to describe ....."

Not counted towards the rectified frequency

- Partition a sequence of words by maximizing the likelihood
- Consider length penalty and filter out phrases with low rectified frequency
- □ Process: Classification → Phrasal segmentation // SegPhrase
  - → Classification → Phrasal segmentation // SegPhrase+



#### **Performance: Precision Recall Curves on DBLP**

Datasets:



- Evaluation
  - Wiki Phrases (based on internal links, ~7K high quality phrases)
  - Sampled 500\*7 Wikiuncovered phrases: Results evaluated by 3 reviewers
- Compared with other phrasemining methods
  - TF-IDF, C-Value, ConExtr, KEA, and ToPMine
- Also, Segphrase+ is efficient, linearly scalable

| Dataset | #docs | #words | #labels |
|---------|-------|--------|---------|
| DBLP    | 2.77M | 91.6M  | 300     |
| Yelp    | 4.75M | 145.1M | 300     |

Precision-Recall Curves on DBLP Data (Wiki Phrases)



Use only 300 human labeled phrases for training



Precision-Recall Curves on DBLP Data (Non Wiki-phrases)

# Experimental Results: Interesting Phrases Generated (From Titles & Abstracts of SIGKDD)

| Query  | SIGKDD                      |                             |  |
|--------|-----------------------------|-----------------------------|--|
| Method | SegPhrase+                  | Chunking (TF-IDF & C-Value) |  |
| 1      | data mining                 | data mining                 |  |
| 2      | data set                    | association rule            |  |
| 3      | association rule            | knowledge discovery         |  |
| 4      | knowledge discovery         | frequent itemset            |  |
| 5      | time series                 | decision tree               |  |
|        |                             | ··· Only in Chunking        |  |
| 51     | association rule mining     | search space                |  |
| 52     | rule set Only in SegPhrase+ | domain knowledge            |  |
| 53     | concept drift               | important problem           |  |
| 54     | knowledge acquisition       | concurrency control         |  |
| 55     | gene expression data        | conceptual graph            |  |
|        |                             |                             |  |
| 201    | web content                 | optimal solution            |  |
| 202    | frequent subgraph           | semantic relationship       |  |
| 203    | intrusion detection         | effective way               |  |
| 204    | categorical attribute       | space complexity            |  |
| 205    | user preference             | small set                   |  |
| ,      |                             |                             |  |

chunking phrase phrase high quality phrase

## Mining Quality Phrases in Multiple Languages

- Both ToPMine and SegPhrase+ are extensible to mining quality phrases in multiple languages
- SegPhrase+ on Chinese (From Chinese Wikipedia)



- ToPMine on Arabic (From Quran (Fus7a Arabic)(no preprocessing)
  - Experimental results of Arabic phrases:

Those who disbelieve 

کفروا

بسم الله الرحين الرحيم In the name of God the Gracious and Merciful

| Rank | Phrase           | In English                               |
|------|------------------|------------------------------------------|
|      |                  |                                          |
| 62   | 首席_执行官           | CEO                                      |
| 63   | 中间_偏右            | Middle-right                             |
|      |                  |                                          |
| 84   | 百度_百科            | Baidu Pedia                              |
| 85   | 热带_气旋            | Tropical cyclone                         |
| 86   | 中国科学院_院士         | Fellow of Chinese<br>Academy of Sciences |
|      |                  |                                          |
| 1001 | 十大_中文_金曲         | Top-10 Chinese Songs                     |
| 1002 | 全球_资讯网           | Global News Website                      |
| 1003 | 天一阁_藏_明代_科举_录_选刊 | A Chinese book name                      |
|      |                  |                                          |
| 9934 | 国家_戏剧_院          | National Theater                         |
| 9935 | 谢谢_你             | Thank you                                |
|      |                  |                                          |



# Summary: Pattern Mining Applications: Mining Quality Phrases from Text Data

- From Frequent Pattern Mining to Phrase Mining
- Previous Phrase Mining Methods
- New Methods that Integrate Pattern Mining with Phrase Mining
  - ToPMine: Phrase Mining without Training Data
  - SegPhrase: Phrase Mining with Tiny Training Sets

#### **Recommended Readings**

- S. Bergsma, E. Pitler, D. Lin, Creating robust supervised classifiers via web-scale n-gram data, ACL'2010
- D. M. Blei and J. D. Lafferty. Visualizing Topics with Multi-Word Expressions. arXiv:0907.1013, 2009
- D.M. Blei, A. Y. Ng, M. I. Jordan, J. D. Lafferty, Latent Dirichlet allocation. JMLR 2003
- K. Church, W. Gale, P. Hanks, D. Hindle. Using Statistics in Lexical Analysis. In U. Zernik (ed.), Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon. Lawrence Erlbaum, 1991
- M. Danilevsky, C. Wang, N. Desai, X. Ren, J. Guo, J. Han. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents. SDM'14
- A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and J. Han. Scalable Topical Phrase Mining from Text Corpora. VLDB'15
- R. V. Lindsey, W. P. Headden, III, M. J. Stipicevic. A Phrase-Discovering Topic Model Using Hierarchical Pitman-Yor Processes. EMNLP-CoNLL'12.
- □ J. Liu, J. Shang, C. Wang, X. Ren, J. Han, Mining Quality Phrases from Massive Text Corpora. SIGMOD'15
- □ A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. Towards the Web of Concepts: Extracting Concepts from Large Datasets. VLDB'10
- X. Wang, A. McCallum, X. Wei. Topical n-grams: Phrase and topic discovery, with an application to information retrieval. ICDM'07