

SÍNTESIS DE REDES ACTIVAS

Trabajo Practico de Laboratorio N°2 AO Real: Errores.

Profesor Titular: Dr. Ing. Ferreyra Pablo

Profesor Adjunto: Ing. Reale Cesar

Ayudante alumno: Lucas Heraldo Duarte

Alumnos: Alaniz Franco

Ferraris Domingo

Año Académico: 2021

Repositorio de GitHub: https://github.com/DarioAlaniz/repoSistesisDeRedes

1. Circuito I: Amplificador sumador inversor.

Para el primer circuito se tiene un amplificador con realimentación negativa, con dos fuentes de señal en las entradas. Implementado con fuente de alimentación partida +/-10V y un amplificador operacional LM324.

Figura 1: Amplificador sumador inversor.

1.1. Análisis teórico general.

Se derivaron las expresiones teóricas generales para la tensión de salida, errores de DC, errores de AC y ancho de banda para luego aplicarlas a los 2 casos propuestos.

1.1.1. Tensión vo en función de v1 y v2.

Para el análisis se aplico superposición, y se considero al operacional ideal.

Anulando tanto a v1 como a v2 se tiene:

Figura 2: Pasivando v1 o v2.

Donde si se considera realimentación negativa y operación lineal, la tensión de la entrada inversora es de 0V, por tanto no circula corriente por la R a masa. Teniendo en cuenta lo anterior se reconoce una configuración inversora clásica con entrada v1 o v2 según corresponda:

$$v_o(1) = -\frac{R_f}{R}v_1$$
$$v_o(2) = -\frac{R_f}{R}v_2$$

Finalmente combinando ambas:

$$v_o = -\frac{R_f}{R} \left(v_1 + v_2 \right)$$

1.1.2. Errores en DC.

Figura 3: Abriendo el lazo y pasivando las entradas.

Partiendo de las ecuaciones generales para la ganancia de lazo y la ganancia diferencial:

$$T = -\frac{R//R}{R//R + R_f}$$
 Ad $= -\frac{R//R//R_f}{R_f}$ Ad $v_o = v_d Ad$

Se aplico Black para obtener las expresiones.

1.1.2.1 Error de tensión Vos:

Se modela como la tensión Vos en entrada no inversora y considerando Ad infinito. Como la tensión diferencial:

$$v_d = v^+ - v^- = v_{os}$$

Como la ganancia a lazo abierto resulta ser directamente Ad, aplicando Black:

$$\Delta v_{of}(Vos) = \lim_{Ad \to \infty} \frac{vosAd}{1 + \frac{R//R//R_f}{R_f}Ad}$$

Finalmente, tomando limite:

$$\Delta v_{of}(Vos) = \left(1 + \frac{R_f}{R//R}\right) v_{os} = \left(1 + 2\frac{R_f}{R}\right) v_{os}$$

1.1.2.2 Error de corriente Ios:

Como en este caso no hay una resistencia asociada a la entrada no inversora, no se tiene tensión en la misma y por tanto no se tiene error debido a I_p^+ . Entonces planteando la tensión diferencial:

$$v_d = 0 + (R//R//R_f)I_n^-$$

Aplicando Black teniendo en cuenta k y Ad:

$$\Delta v_{of}(Ios) = \lim_{Ad \to \infty} \frac{(R//R//Rf)I_p^- Ad}{1 + \frac{R//R//R_f}{R_f} Ad}$$

Finalmente tomando limite se tiene:

$$\Delta v_{of}(Ios) = I_p^- R_f$$

Se espera un error alto, que puede disminuirse colocando una resistencia de valor R//R//Rf en la entrada no inversora.

1.1.2.3 Error por Ad $<\infty$:

Ya que por definición:

$$\varepsilon_{dr} \equiv \left| \frac{1}{T} \right|$$

Y tomando el maximo error absoluto:

$$\Delta v_{of}(Ad) = \varepsilon_{dr} F S$$

1.1.2.4 Error por RRMC $<\infty$:

La configuración no tiene error por RRMC, ya que al estar aterrizada la entrada no inversora el modo comun es despreciable por lo que no se produce error por RRMC.

1.1.3. Errores en AC.

1.1.3.1 Ancho de banda a plena potencia:

Se define como la máxima frecuencia de una señal senoidal que puede ser reproducida sin distorsión para excursiones de salida elevada.

$$\omega_{hp} = \frac{SR}{V_{pp}}$$

1.1.4. Ancho de banda de pequeña señal:

Considerando producto ganancia ancho de banda constante, podemos aproximar el punto de -3dB como:

$$\omega_h = kGBW = \frac{GBW}{Afi}$$

1.1.5. Error vectorial:

Como la ganancia normalizada es:

$$avf = \frac{Avf}{Avfi} = \frac{1}{1 + \frac{s}{\omega_h}}$$

Tenemos para su modulo y fase:

$$|avf| = \frac{1}{\sqrt{\frac{\omega^2}{\omega_h^2} + 1}}$$
 $\phi = -\arctan\left(\frac{\omega}{\omega_h}\right)$

Y usando las definiciones dadas para el error vectorial, su modulo y fase tenemos:

$$\epsilon_v \equiv \left| \frac{Avf}{Avfi} - 1 \right|$$

$$|\epsilon_v| \equiv 1 - \frac{1}{\sqrt{\frac{\omega^2}{\omega_h^2} + 1}} \qquad \phi_v \equiv -\operatorname{atan}\left(\frac{\omega}{\omega_h}\right) + \frac{\pi}{2}$$

1.2. Resumen de los análisis.

Salida:

$$v_o = -\frac{R_f}{R} (v_1 + v_2) \tag{1}$$

Errores DC:

$$\Delta v_{of}(Vos) = \left(1 + 2\frac{R_f}{R}\right) v_{os}$$

$$\Delta v_{of}(Ios) = I_p^- R_f$$

$$\Delta v_{of}(Ad) = \frac{1}{|T|} FS$$

$$\Delta v_{of}(RRMC) = 0$$
(2)

Ancho de banda:

$$f_h = kGBW$$

$$\omega_{hp} = \frac{SR}{V_{pp}} \tag{3}$$

Errores AC:

$$|avf| = \frac{1}{\sqrt{\frac{\omega^2}{\omega_h^2} + 1}} \qquad \phi = -\operatorname{atan}\left(\frac{\omega}{\omega_h}\right)$$

$$|\epsilon_v| = 1 - \frac{1}{\sqrt{\frac{\omega^2}{\omega_h^2} + 1}} \qquad \phi_v = -\operatorname{atan}\left(\frac{\omega}{\omega_h}\right) + \frac{\pi}{2}$$
(4)

2. Caso de estudio 1.A: $Ri = 50\Omega$

Para el primer caso la ganancia vo a cada fuente de señal debe ser -30, como no debe cargar la fuente de señal la impedancia de entrada debe ser mayor o igual a 500Ω .

2.1. Diseño de la etapa.

Figura 4: Sumador realimentado.

$$Si: R_i = 50\Omega \implies R = 10R_i = 500\Omega$$

$$Como: \frac{vo}{v1,2} = -\frac{R_f}{R} = -30$$

$$Entonces: R_f = 15k\Omega$$

Finalmente: $R = 500\Omega$, $R_f = 15k\Omega$

Cumpliendo con las especificaciones de ganancia, impedancia de entrada y valor maximo de resistencias.

2.2. Parámetros.

$$v_o = -\frac{R_f}{R}(v_1 + v_2) = -30(\mathbf{v_1} + \mathbf{v_2})$$
 (5)

$$Z_{i1,2} = R = \mathbf{500}\Omega \tag{6}$$

2.3. Errores en DC.

En este caso tenemos que:

$$T = -\frac{R//R}{R//R + R_f} Ad \implies \varepsilon_{dr} \equiv \frac{1}{|T|} = \frac{1}{Ad} \left(1 + \frac{R_f}{R//R} \right)$$

Con los resultados teóricos y las características del LM324:

6.5 Electrical Characteristics: LM124A/224A/324A

V+ = 5.0 V, (1), unless otherwise stated

PARAMETER	TEST CONDITIONS	LM124A		LM224A		LM324A		UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Input Offset Voltage	T _A = 25°C ⁽²⁾		1	2		1	3		2	3	mV
nput Bias Current ⁽³⁾	$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0$ V, $T_A = 25$ °C		20	50		40	80		45	100	nA
nput Offset Current	$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0$ V, $T_A = 25$ °C		2	10		2	15		5	30	nA
nput Common-Mode /oltage Range ⁽⁴⁾	V ⁺ = 30 V, (LM2902-N, V ⁺ = 26 V), T _A = 25°C	0		V+-1.5	0		V+-1.5	0		V⁺−1.5	V
Supply Current	Over Full Temperature Range, $R_L = \infty$ On All Op Amps V ⁺ = 30 V (LM2902-N V ⁺ = 26 V)		1.5	3		1.5	3		1.5	3	mA
	V+ = 5 V		0.7	1.2		0.7	1.2		0.7	1.2	
Large Signal Voltage Gain	$V^{+} = 15 \text{ V}, R_{L} \ge 2 \text{ k}\Omega,$ $(V_{O} = 1 \text{ V to } 11 \text{ V}), T_{A} = 25^{\circ}\text{C}$	50	100		50	100		25	100		V/m\
Common-Mode Rejection Ratio	DC, V _{CM} = 0 V to V ⁺ - 1.5 V, T _A = 25°C	70	85		70	85		65	85		dB

Figura 5: Características DC del LM324.

Reemplazando en las expresiones tenemos que:

$$\Delta v_{of}(Vos) = \left(1 + 2\frac{R_f}{R}\right) v_{os} = 61v_{os} = \mathbf{122mV}.$$

$$\Delta v_{of}(Ios) = R_f I_p^- = 15k\Omega I_p^- = \mathbf{675}\mu\mathbf{V}.$$

$$\Delta v_{of}(Ad) = \frac{1}{Ad}\left(1 + \frac{R_f}{R//R}\right) = \mathbf{610}\mu\mathbf{V}.$$

$$\Delta v_{of}(RRMC) = \mathbf{0V}.$$

2.4. Errores en AC.

2.4.1. Ancho de banda de potencia:

Con los resultados teóricos y tomando los datos del fabricante:

Figura 6: Características AC de LM324.

Para excursión en señal fuerte de 10 Vpp se tiene:

$$f_{hp} = rac{SR}{2\pi V_{pp}} = \mathbf{7.96kHz}.$$

2.4.2. Ancho de banda de pequeña señal:

Como para este caso:

$$k = \frac{R//R}{R//R + R_f}$$

$$f_h = kGBW = \frac{R//R}{R//R + R_f}GBW = \mathbf{16.39kHz}.$$

2.4.3. Ganancia normalizada y error vectorial:

Se analizaron y tabularon los valores de modulo y fase tanto para la ganancia normalizada como para el error vectorial.

	avf		Error Vectorial			
ω_h	Mod	Fase (°)	Mod	Fase (°)		
10 %	0.998	-5.7	4.9E-3	84.3		
20 %	0.980	-11.3	19.4E-3	78.7		
30 %	0.960	-16.7	42.1E-3	73.3		
40 %	0.928	-21.8	71.5E-3	68.2		
50 %	0.894	-26.7	105.5E-3	63.4		
60 %	0.857	-30.9	142.5E-3	59.0		
70 %	0.819	-35.0	180.7E-3	55.0		
80 %	0.781	-38.6	219.1E-3	51.3		
90 %	0.743	-42.0	256.7E-3	48.0		
100 %	0.707	-45.0	292.8E-3	45		

2.5. Simulaciones.

2.5.1. Parámetros.

Se realizaron simulaciones para contrastar los parámetros calculados de la etapa.

2.5.1.1 Gráfica entrada/salida:

Se realizo un barrido en continua desde -10 a 10V para v1, y se grafico vo.

Figura 7: Barrido en DC para v1, se observa vo(v1).

Se verifico una ganancia cercana a 30, y como al no ser rail to rail el

amplificador excursiona la salida hasta los 8V como máximo.

2.5.1.2 Ganancia de la etapa:

También se realizo un barrido de frecuencia conectando v1, v2 o ambas para estudiar la respuesta en frecuencia de la etapa.

Figura 8: Impedancia de entrada de la etapa.

1.00ΚΩ 0.95KΩ 0.90KΩ 0.85KΩ 0.80ΚΩc1ASumador.asc Cursor 1 v(v1)/i(v3) 0.75KΩ Freq: 1.0379059KHz Mag: 500.89145 Phase: -178.21268° -4.7612706µs 0.70KΩ· Group Delay: 0.65KΩ -- N/A--Mag: -- N/A--- N/A-Phase: -- N/A--0.60KΩ Mag: -- N/A-0.55KΩ· 100KHz

2.5.1.3 Impedancia de entrada:

Figura 9: Impedancia de entrada de la etapa.

Se ve como se mantiene una impedancia de 500Ω y va aumentando hasta hasta casi el doble a 1MHz.

2.5.2. Errores en DC.

En este caso se simularon los distintos errores variando de a uno los parámetros de universalOpAmp2, pero no se consiguió contrastar el valor del error debido a la ganancia Ad finita.

2.5.2.1 Error debido a Vos:

En este caso se puso el parámetro Vos en 2mV manteniendo altas la impedancia de entrada y ganancia diferencial.

Figura 10: Error de tension de offset.

2.5.2.2 Error debido a Ios:

Figura 11: Impedancia de entrada Zi1.

En este caso se esperaba un alto error por corriente de offset debido a la diferencia de impedancias vistas por las entradas del operacional, puede mejorarse conectando una resistencia de valor (R//R//Rf) en la entrada no inversora.

3. Caso de estudio 2.B: $Ri = 100k\Omega$.

En este caso para la misma ganancia a cada fuente de señal y resistencias como máximo un $1 \text{M}\Omega$.

3.1. Diseño de la etapa.

$$Si: R_i = 100k\Omega \implies R = 10R_i = 1M\Omega$$

$$Como: \frac{vo}{v1,2} = -\frac{R_f}{R} = -30$$

$$Entonces: \mathbf{R_f} = \mathbf{30M\Omega}$$

Pero esto no cumple con la especificación de resistencia máxima, por lo que se propone el uso de una red T como la impedancia de realimentación:

Figura 12: Sumador con red T de impedancia de realimentación.

Para el análisis de la red T se toma en cuenta la relación entre la tensión vo y la corriente de realimentación que pasa por Ra. Si consideramos que la entrada inversora esta a 0V, entonces sobre Ra cae la tensión vx del nodo entre Ra,Rb,Rc.

$$v_x = \frac{\frac{RaRc}{(Ra+Rc)}v_o}{\left(\frac{RaRc}{Ra+Rc} + Rb\right)} = \frac{Ra//Rc}{Ra//Rc + Rb}v_o$$

Entonces la corriente de realimentación por Ra sera:

$$i_f = \frac{v_x}{Ra} = \frac{\frac{Ra//Rc}{Ra}}{Ra//Rc + Rb}v_o$$

Llamando a Rf como la relación entre vo y la corriente de realimentación:

$$R_f = \frac{v_o}{i_f} = R_f = \frac{RaRb + RaRc + RbRc}{Rc} = \frac{RaRb}{Rc} + Ra + Rb$$

Seleccionando a Ra = $150k\Omega$ y Rb = $200k\Omega$:

$$Si: R_f = 30M\Omega, Ra = 150k\Omega, Rb = 200k\Omega \implies \mathbf{Rc} = \mathbf{1012}\Omega \simeq \mathbf{1k}\Omega$$

Valores que cumplen con las especificaciones de ganancia, impedancia de entrada y valor máximo de resistencias.

3.2. Parametros.

$$v_o = -\frac{R_f}{R}(v_1 + v_2) = -30(\mathbf{v_1} + \mathbf{v_2})$$
 (7)

$$Z_{i1,2} = R = \mathbf{1}\mathbf{M}\mathbf{\Omega} \tag{8}$$

3.3. Errores en DC.

Como para este caso la ganancia de lazo cambia a:

$$T = \frac{1}{2} \frac{AdRRc}{\left(\frac{R}{2} + Ra\right)(Rb + Rc)}$$

Reemplazando en las expresiones obtenidas:

$$\Delta v_{of}(Vos) = \frac{V_{os}(R + 2Ra)(Rb + Rc)}{RRc} = 260,62 \cdot V_{os} = \mathbf{521mV}.$$

$$\Delta v_{of}(Ios) = \frac{I_{pol-}(R + 2Ra)(Rb + Rc)(Ra(Rb + Rc) + RbRc)}{Rc(R(Rb + Rc) + 2Ra(Rb + Rc) + 2RbRc)} = 30,30E6 \cdot I_{pol-} = \mathbf{1,36V}.$$

$$\Delta v_{of}(Ad) = \varepsilon_{dr}FS = \frac{2FS}{\left|\frac{AdRRc}{\left(\frac{R}{2} + Ra\right)(Rb + Rc)}\right|} = 2,613E - 3 \cdot FS = \mathbf{26,13mV}.$$

$$\Delta v_{of}(RRMC) = \mathbf{0V}.$$

Y finalmente la suma de los errores totales:

$$\Delta \mathbf{v_{of}}(\mathbf{Vos}) = 1.9103V$$

3.4. Errores en AC.

Para el ancho de banda de señal fuerte se tiene:

$$\omega_{hp} = \frac{SR}{V_{pp}} = \frac{500E3[V/s]}{10[V]} = 50[Krps] \implies \mathbf{f_{hp}} = \mathbf{7.96[KHz]}.$$

Y para el de pequeña señal:

$$\omega_h = kGBW = \frac{GBW}{Afi} = 209.4[Krps] \implies \mathbf{f_h} = \mathbf{33.3[KHz]}.$$

Para el calculo anteriores de ω_h se uso GWB = 1 [MHz] pero en la simulación no llegamos a este valor, sino que se llega a 100 [KHz] ya que el universalOpAmp2 es de orden 2 por lo que el segundo polo no permite que se llegue a 1[MHz]. Recalculando para GWB = 100 [KHz]:

$$f_h = 3.33[KHz]$$

Luego para la tabla siguiente se uso 100 [KHz] en vez de 1 [MHz].

	Ganancia	a Normalizada	Errores Vectorial			
	Modulo	Fase	Modulo	Fase		
0.1 f_h	0.995	-5.711	0.005	84.289		
0.2 f_h	0.981	-11.310	0.019	78.690		
0.3 f_h	0.958	-16.699	0.042	73.301		
0.4 f_h	0.928	-21.801	0.072	68.199		
0.5 f_h	0.894	-26.565	0.106	63.435		
0.6 f_h	0.857	-30.964	0.143	59.036		
0.7 f_h	0.819	-34.992	0.181	55.008		
0.8 f_h	0.781	-38.660	0.219	51.340		
0.9 f_h	0.743	-41.987	0.257	48.013		
1 f_h	0.707	-45.000	0.293	45.000		

3.5. Simulaciones.

3.5.1. Impedancia Rf.

Se simulo la impedancia equivalente de realimentación realizando un barrido en frecuencia con la relación entre tensión y corriente de la red:

Figura 13: Red T

Figura 14: Impedancia equivalente Rf.

Como se observa el resultado fue el esperado, con un error aproximado del $1\,\%.$

3.5.2. Ganancia.

Figura 15: Esquema de simulación

Figura 16: vo(vin1, vin2)

Se cumple lo esperado por diseño el obtener una ganancia de 30.

3.5.3. Error por Tensión Vos.

Se conecto una fuente de tensión de 2mV a la entrada no inversora del operacional y se analizo la tensión de salida:

Figura 17

Figura 18

3.5.4. Error por Corriente de polarización.

Se conecto una fuente de corriente de 45nA polarizando la entrada inversora del operacional y se analizo la tension de salida debida a esta corriente:

Figura 19

Figura 20

3.5.5. Suma de todos los errores.

Finalmente se simularon todos los errores juntos en continua.

Figura 21

Aclaración: Para los errores por ganancia finita, no se encontró una forma de probarlo por medio de LTSPICE pero se simularon errores totales y se modifico la impedancia de entrada del ideal, de $500[\text{M}\Omega]$ a $1[\text{M}\Omega]$ para que sea lo mas real posible y obtener resultados mas cerca de los calculados.

3.5.6. Errores en AC.

Figura 22

Se observa que el GWB no es 1[MHz] como se espero sino de 100[KHz].

3.5.6.1 Ancho de banda pequeña señal

Figura 23

3.5.7. Comparación con operacional real.

3.5.7.1 Ganancia

Figura 24

Se observa una diferencia en cuanto a la frecuencia de corte pero en la banda de paso responde bastante bien a lo calculado.

3.5.7.2 Errores DC.

Figura 25

En este caso se tiene gran diferencia, pueden ser factores como los que el modelo no responde a los datos obtenidos de datasheet o algún error de simulación que pasamos por alto.