强化学习与博弈论 Reinforcement Learning and Game Theory

陈旭

计算机学院

Policy Function Approximation

Policy Function $\pi(a|s)$

- Policy function $\pi(a|s)$ is a probability density function (PDF).
- It takes state s as input.
- It output the probabilities for all the actions, e.g.,

$$\pi(\text{left}|s) = 0.2,$$
 $\pi(\text{right}|s) = 0.1,$
 $\pi(\text{up}|s) = 0.7.$

• Randomly sample action a random drawn from the distribution.

Can we directly learn a policy function $\pi(a|s)$?

- If there are only a few states and actions, then yes, we can.
- Draw a table (matrix) and learn the entries.

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
•					

Can we directly learn a policy function $\pi(a|s)$?

- If there are only a few states and actions, then yes, we can.
- Draw a table (matrix) and learn the entries.
- What if there are too many (or infinite) states or actions?

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
•					

Policy Network $\pi(a|s;\theta)$

Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s;\theta)$

Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s;\theta)$

- $\sum_{a \in \mathcal{A}} \pi(a|s; \theta) = 1.$
- Here, $\mathcal{A} = \{\text{"left", "right", "up"}\}\$ is the set all actions.
- That is why we use softmax activation.

State-Value Function Approximation

Action-Value Function

Definition: Discounted return.

```
• U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots
```

- The return depends on actions $A_t, A_{t+1}, A_{t+2}, \cdots$ and states $S_t, S_{t+1}, S_{t+2}, \cdots$
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.) States are random: $\mathbb{P}[S' = s' \mid S = s, A = a] = p(s' \mid s, a)$. (State transition.)

Action-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a}_t\right].$$

The expectation is taken w.r.t.

actions
$$A_{t+1}, A_{t+2}, A_{t+3}, \cdots$$

and states $S_{t+1}, S_{t+2}, S_{t+3}, \cdots$

State-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\stackrel{A}{t}}[Q_{\pi}(s_t, A)]$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

State-Value Function

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}\left[Q_{\pi}(s_t, \mathbf{A})\right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Definition: State-value function.

• $V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}\left[Q_{\pi}(s_t, \mathbf{A})\right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$

Approximate state-value function.

• Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t; \theta)$.

Definition: State-value function.

• $V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}\left[Q_{\pi}(s_t, \mathbf{A})\right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$

Approximate state-value function.

- Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t; \theta)$.
- Approximate value function $V_{\pi}(s_t)$ by:

$$V(s_t; \mathbf{\theta}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t; \mathbf{\theta}) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy-based learning: Learn θ that maximizes $J(\theta) = \mathbb{E}_S[V(S; \theta)]$.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy-based learning: Learn θ that maximizes $J(\theta) = \mathbb{E}_{S}[V(S; \theta)]$.

How to improve θ ? Policy gradient ascent!

• Observe state s.

• Update policy by:
$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}}$$

Policy gradient

Reference

• Sutton and others: Policy gradient methods for reinforcement learning with function approximation. In NIPS, 2000.

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

•
$$\frac{\partial V(s;\theta)}{\partial \theta}$$

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

$$\bullet \frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}} = \frac{\partial \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \mathbf{\theta}) \cdot Q_{\pi}(s, \mathbf{a})}{\partial \mathbf{\theta}}$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \frac{\partial \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta}$$

$$= \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta}$$
Push derivative inside the summation

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \frac{\partial \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} \\
= \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta} \\
= \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a) \\
\bullet \theta$$

Pretend Q_{π} is independent of θ . (It may not be true.)

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{\mathbf{a}} \frac{\partial \pi(\mathbf{a}|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

Policy Gradient

Definition: Approximate state-value function.

• $V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.

•
$$\rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.
• $\pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$.

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.
• $\Rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$.

•
$$\rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$

Definition: Approximate state-value function.

•
$$V(s; \boldsymbol{\theta}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot Q_{\pi}(s, \boldsymbol{a}).$$

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\bullet \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \underbrace{\frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)}_{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \mathbb{E}_{A} \left[\underbrace{\frac{\partial \log \pi(A|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A)}_{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

The expectation is taken w.r.t. the random variable $A \sim \pi(\cdot | s; \theta)$.

Policy gradient:

$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{\mathbf{A} \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(\mathbf{A}|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{A}) \right].$$

Policy Gradient:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot | s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Policy Gradient:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

1. Randomly sample an action \hat{a} according to $\pi(\cdot | s; \theta)$.

Policy Gradient:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot | s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

- 1. Randomly sample an action \hat{a} according to $\pi(\cdot | s; \theta)$.
- 2. Calculate $\mathbf{g}(\hat{\mathbf{a}}, \mathbf{\theta}) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s;\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \hat{\mathbf{a}}).$
- By the definition of \mathbf{g} , $\mathbb{E}_{\mathbf{A}}[\mathbf{g}(\mathbf{A}, \mathbf{\theta})] = \frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}}$.
- $\mathbf{g}(\hat{a}, \boldsymbol{\theta})$ is an unbiased estimate of $\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$.

Policy Gradient:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot | s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

- 1. Randomly sample an action \hat{a} according to $\pi(\cdot | s; \theta)$.
- 2. Calculate $\mathbf{g}(\hat{\mathbf{a}}, \mathbf{\theta}) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s;\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \hat{\mathbf{a}}).$
- 3. Use $\mathbf{g}(\hat{a}, \boldsymbol{\theta})$ as an approximation to the policy gradient $\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 5. (Approximate) policy gradient: $\mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t) = q_t \cdot \mathbf{d}_{\theta, t}$.
- 6. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t)$.

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(a_t|s_t,\theta)}{\partial \theta} |_{\theta=\theta_t}$.
- 5. (Approximate) policy gradient: $\mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t) = q_t \cdot \mathbf{d}_{\theta, t}$.
- 6. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot \mathbf{g}(a_t, \mathbf{\theta}_t)$.

- Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 1: REINFORCE.

Play the game to the end and generate the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T.$$

- Compute the discounted return $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$, for all t.
- Since $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t]$, we can use u_t to approximate $Q_{\pi}(s_t, a_t)$.
- \rightarrow Use $q_t = u_t$.

- 1. Observe the state s
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$
 - Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 2: Approximate Q_{π} using a neural network.

• This leads to the actor-critic method.

Value-Based Methods Actor-Critic Methods

Policy-Based Methods

Value Network and Policy Network

Definition: State-value function.

•
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$$
.

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$.

Policy network (actor):

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$.

Policy network (actor):

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic):

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a) \approx \sum_{a} \pi(a|s;\theta) \cdot q(s,a;\mathbf{w}).$

Policy network (actor):

- Use neural net $\pi(a|s; \theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic):

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

Policy Network (Actor): $\pi(a|s;\theta)$

- Input: state s, e.g., a screenshot of Super Mario.
- Output: probability distribution over the actions.
- Let \mathcal{A} be the set all actions, e.g., $\mathcal{A} = \{\text{"left", "right", "up"}\}$.
- $\sum_{a \in \mathcal{A}} \pi(a|s; \theta) = 1$. (That is why we use softmax activation.)

Value Network (Critic): q(s, a; w)

- Inputs: state s.
- Output: action-values of all the actions.

policy network (actor)

value network (critic)

Train the Neural Networks

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

- Update policy network $\pi(a|s; \theta)$ to increase the state-value $V(s; \theta, \mathbf{w})$.
 - Actor gradually performs better.
 - Supervision is purely from the value network (critic).

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{\mathbf{a}} \pi(\mathbf{a}|s; \theta) \cdot q(s, \mathbf{a}; \mathbf{w}).$

- Update policy network $\pi(a|s; \theta)$ to increase the state-value $V(s; \theta, \mathbf{w})$.
 - Actor gradually performs better.
 - Supervision is purely from the value network (critic).
- Update value network $q(s, \mathbf{a}; \mathbf{w})$ to better estimate the return.
 - Critic's judgement becomes more accurate.
 - Supervision is purely from the rewards.

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Perform a_t and observe new state s_{t+1} and reward r_t .
- 4. Update w (in value network) using temporal difference (TD).
- 5. Update θ (in policy network) using policy gradient.

Update value network q using TD

- Compute $q(s_t, a_t; \mathbf{w}_t)$ and $q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.

Update value network q using TD

- Compute $q(s_t, a_t; \mathbf{w}_t)$ and $q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- Loss: $L(\mathbf{w}) = \frac{1}{2} [q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \mid_{\mathbf{w} = \mathbf{w}_t}$.

Update policy network π using policy gradient

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\mathbf{g}(\mathbf{a}, \mathbf{\theta}) = \frac{\partial \log \pi(\mathbf{a}|s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s; \boldsymbol{\theta}, \mathbf{w}_t)}{\partial \boldsymbol{\theta}} = \mathbb{E}_{\boldsymbol{A}}[\mathbf{g}(\boldsymbol{A}, \boldsymbol{\theta})].$

Update policy network π using policy gradient

Definition: State-value function approximated using neural networks.

• $V(s; \boldsymbol{\theta}, \mathbf{w}) = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s; \boldsymbol{\theta}) \cdot q(s, \boldsymbol{a}; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\mathbf{g}(\mathbf{a}, \mathbf{\theta}) = \frac{\partial \log \pi(\mathbf{a}|s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s;\theta,\mathbf{w}_t)}{\partial \theta} = \mathbb{E}_{\mathbf{A}}[\mathbf{g}(\mathbf{A},\mathbf{\theta})].$

Algorithm: Update policy network using stochastic policy gradient.

- Random sampling: $a \sim \pi(\cdot | s_t; \theta_t)$. (Thus $g(a, \theta)$ is unbiased.)
- Stochastic gradient ascent: $\theta_{t+1} = \theta_t + \beta \cdot \mathbf{g}(\mathbf{a}, \theta_t)$.

policy network (actor)

value network (critic)

Actor-Critic Method: Update Actor

Actor-Critic Method: Update Critic

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.

 TD Target

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, a_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{a}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, \mathbf{a}_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{\mathbf{a}}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a}_t|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot q_t \cdot \mathbf{d}_{\theta,t}$.

Summary

Policy Network and Value Network

Definition: State-value function.

•
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$$
.

Definition: function approximation using neural networks.

- Approximate policy function $\pi(a|s)$ by $\pi(a|s;\theta)$ (actor).
- Approximate value function $Q_{\pi}(s, \mathbf{a})$ by $q(s, \mathbf{a}; \mathbf{w})$ (critic).

Roles of Actor and Critic

During training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) provides the actor with supervision.

Roles of Actor and Critic

During training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) provides the actor with supervision.

After training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) will not be used.

Training

Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot q(s,A;\mathbf{w}) \right].$
- Perform gradient ascent.

Training

Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot q(s,A;\mathbf{w}) \right].$
- Perform gradient ascent.

Update the value network (critic) by TD learning.

- Predicted action-value: $q_t = q(s_t, a_t; \mathbf{w})$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w})$
- Gradient: $\frac{\partial (q_t y_t)^2/2}{\partial \mathbf{w}} = (q_t y_t) \cdot \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$.
- Perform gradient descent.