Strona: 1 z 10 Imię i nazwisko: Wersja: 0

Programowanie L

Egzamin zasadniczy

17 czerwca 2013

Liczba punktów	Ocena
0 - 14	2.0
15 – 17	3.0
18 – 20	3.5
21 – 23	4.0
24 – 26	4.5
27 – 30	5.0

W każdym pytaniu proszę wyraźnie zaznaczyć dokładnie jedną odpowiedź. Jeśli zostanie zaznaczona więcej niż jedna odpowiedź, to za wybraną zostanie uznana ta, która *nie jest* otoczona kółkiem. Czas trwania egzaminu: 120 minut.

Pytanie 1. Rozważmy następujący program prologowy:

p(a,b).
p(b,c).
p(c,a).
q(X,X).
q(X,Y):p(X,Z),

i zapytanie

q(Z,Y).

?-q(X,X).

- ☐ a. Powyższy cel zapętli się.
- ☐ b. Obliczenie tego celu zakończy się niepowodzeniem.
- ☐ c. Powyższy cel jest spełniony na nieskończenie wiele sposobów, a pierwszym z nich jest podstawienie X = a.
- d. Powyższy cel jest spełniony na nieskończenie wiele sposobów, ale żadnym z nich nie jest postawienie X = b.

Pytanie 2. Rozważmy następujący program prologowy:

p(a).

p(b).

q(c).

i zapytanie

$$?- \ + \ p(X), q(X).$$

- ☐ a. Powyższy cel zawiedzie.
- b. Powyższy cel jest spełniony na jeden sposób.
- ☐ c. Powyższy cel jest spełniony na dwa sposoby.
- ☐ d. Powyższy cel jest spełniony na nieskończenie wiele sposobów.

Pytanie 3. Rozważmy następujący cel w Prologu:

- ☐ a. Powyższy cel zakończy się niepowodzeniem.
- ☐ b. Powyższy cel zakończy się sukcesem, w którym X=1 i Y=2.
- ☐ c. Powyższy cel zapętli się.
- d. Powyższy cel zakończy się błędem wykonania.

Pytanie 4. Ktoś twierdzi, że:

- Jeśli coś się porusza, to jest zwierzęciem.
- Człowiek się porusza.
- Jeśli coś się porusza i nie jest ani człowiekiem, ani zwierzęciem, to jest UFO.
- Wierzbicki jest człowiekiem.

Powyższe informacje możemy zapisać w postaci klauzul prologowych:

```
zwierze(X) :- rusza_sie(X).
rusza_sie(X) :- czlowiek(X).
ufo(X) :- rusza_sie(X), \+ czlowiek(X), \+ zwierze(X).
czlowiek(wierzbicki).
```

Jaki będzie efekt obliczenia celu:

```
?- ufo(X).
```

- a. Powyższy cel zawiedzie (znaczy: UFO nie istnieje).
- □ b. Powyższy cel zakończy się sukcesem, w którym X pozostanie nieukonkretnioną zmienną (znaczy: UFO jest wszędzie).
- □ c. Powyższy cel zakończy się sukcesem, w którym X = wierzbicki (znaczy: Wierzbicki to UFO).
- ☐ d. Powyższy cel zapętli się (znaczy: nie należy zadawać głupich pytań).

Strona: 3 z 10 Imię i nazwisko: Wersja: 0

```
Pytanie 5. Przypuśćmy, że predykat p/1 nie powoduje żadnych skutków ubocznych i że cel
p(X) jest spełniony na nieskończenie wiele sposobów. Wtedy cel p(X), p(X)
☐ a. jest spełniony na nieskończenie wiele sposobów,
■ b. jest spełniony na co najmniej jeden sposób, ale po nawrocie z pierwszego sukcesu może
     się zapętlić,
□ c. może zawieść,
\square d. działa tak samo, jak cel p(X).
Pytanie 6. Niech
q(X) :=
   !,
   X=1.
Cel
?- q(Y), fail.
a. zawiedzie,
☐ b. zakończy się sukcesem, w którym Y pozostanie nieukonkretnioną zmienną,
☐ c. zakończy się sukcesem, w którym Y=1,
☐ d. zapętli się.
Pytanie 7. Niech
append([],X,X).
append([H|T],X,[H|S]) :-
   append(T,X,S).
Cel
?-append(X,[],X).
☐ a. zawiedzie,
☐ b. zapętli się,
☐ c. będzie spełniony na jeden sposób,
d. będzie spełniony na nieskończenie wiele sposobów.
Pytanie 8. Niech
len([],0).
len([_|T],N+1) :-
   len(T,N).
Cel
?- len([adam,jan|piotr],N).
```

■ a. zawiedzie,
□ b. zakończy się sukcesem, w którym N=3,
☐ c. zakończy się sukcesem, w którym N=((0+1)+1)+1,
□ d. zapętli się.
Pytanie 9. Obliczenie celu
?- X is 1, X is 2.
■ a. będzie miało taki sam efekt, jak obliczenie celu
?- X = 1, X = 2.
\square b. zakończy się pojedynczym sukcesem,
\square c. zakończy się dwoma sukcesami,
\square d. zakończy się błędem arytmetycznym.
Pytanie 10. Rozważmy taki predykat p/0, że obliczenie celu p daje dokładnie dwa sukcesy. Wówczas obliczenie celu
?- p, p.
☐ a. da dokładnie dwa sukcesy,
■ b. da co najwyżej cztery sukcesy,
□ c. zawiedzie,
☐ d. zapętli się.
Pytanie 11. Obliczenie celu
?- [H _] = .(jan,adam).
\square a. kończy się niepowodzeniem, ponieważ term po prawej stronie nie jest listą,
\square b. kończy się dwoma sukcesami, w których, kolejno, $\mathtt{H} ext{=jan}$ i $\mathtt{H} ext{=adam}$,
■ c. kończy się pojedynczym sukcesem,
□ d. zapętla się.
Pytanie 12. Niech
p :- p. p.
Cel
?- p.
\square a. zawiedzie,
☐ b. będzie spełniony na jeden sposób,
□ c. będzie spełniony na nieskończenie wiele sposobów,

Strona: 5 z 10 Imię i nazwisko: Wersja: 0

d. zapętli się.

Pytanie 13. Niech

p :-!, p.

Cel

?- p.

- ☐ a. zawiedzie,
- ☐ b. będzie spełniony na jeden sposób,
- ☐ c. będzie spełniony na nieskończenie wiele sposobów,
- d. zapętli się.

Pytanie 14. Rozważmy predykat

$$x(0) \longrightarrow "".$$

 $x(N+1) \longrightarrow "a", x(N), "a".$

Obliczenie celu

$$?-x(X,Y,Z)$$
.

- \square a. kończy się błędem "Undefined procedure x/3. However, there are definitions for x/1".
- ☐ b. kończy się niepowodzeniem.
- ☐ c. kończy się pojedynczym sukcesem.
- d. ma nieskończenie wiele sukcesów.

Pytanie 15. Rozważmy predykat

$$eq(f(X),f(Y)) := !, eq(X,Y).$$

 $eq(X,X).$

- \square a. Predykat eq/2 działa tak samo, jak predykat =/2.
- \blacksquare b. Istnieją termy t_1 i t_2 , dla których cel eq (t_1, t_2) zapętla się.
- \square c. Istnieją termy t_1 i t_2 , dla których obliczenie celu eq (t_1,t_2) kończy się więcej niż jednym sukcesem.
- \square d. Obliczenie celu eq(f(a),f(b)) kończy się sukcesem.

Pytanie 16. Niech

f, g :: ()
$$\rightarrow$$
 ()
f () = ()
g _ = ()

i, jak zwykle, $(f \cdot g)x = f(g x)$. Wtedy:

- \square a. g f = (),
- \Box b. $f \cdot g = f$,

```
\blacksquare c. g \cdot f = f \cdot g,
```

☐ d. żadna z powyższych równości nie zachodzi.

Pytanie 17. Niech

times :: Integer → Integer
0 'times' _ = 0
n 'times' m = n*m

Wtedy:

- \square a. foldl times 1 = foldr times 1,
- \square b. foldl (flip times) 1 = foldr times 1,
- \square c. foldl times 1 = foldr (flip times) 1,
- d. żadna z powyższych równości nie zachodzi.

Pytanie 18. Równość tail xs = xs zachodzi:

- \square a. dla pewnej listy skończonej xs,
- \square b. dla pewnej listy częściowej xs,
- \blacksquare c. dla pewnej listy nieskończonej xs,
- ☐ d. nie zachodzi dla żadnej listy.

Pytanie 19. Funkcja *f* jest *strict*, jeśli

- \square a. $f \perp \neq f x$ dla pewnego $x \neq \bot$,
- \square b. $f \perp \neq f x$ dla każdego $x \neq \perp$,
- \Box c. $f \perp \neq \perp$,
- \blacksquare d. $f \perp = \perp$.

Pytanie 20. Typem wyrażenia head [] jest

- **a**. a
- ☐ b. [a]
- \square c. undefined
- \square d. [a] => a

Pytanie 21. Niech $e :: Monad m \Rightarrow m$ Integer. Wyrażenie

$$e \gg (\lambda x \rightarrow \text{return } (2 * x))$$

jest równe

- \square a. e >>= (return \$ (2*))
- b. $e >>= (return \cdot (2*))$
- \Box c. e >>= (2*)
- \Box d. e >>= (return (2*))

Strona: 7 z 10 Imię i nazwisko: Wersja: 0

Pytanie 22. Niech

data Kolor = Czerwony | Zielony

Wtedy jeśli dla pewnej funkcji $f:: Kolor \rightarrow Kolor$ jest:

- \square a. f Czerwony $\neq \bot$ i f Zielony $\neq \bot$, to f jest strict.
- \blacksquare b. f Czerwony $\neq f$ Zielony, to f jest strict.
- \square c. $f \perp \neq \perp$, to f jest *strict*.
- \square d. $f \perp \neq \texttt{Czerwony lub} \ f \perp \neq \texttt{Zielony}$, to f jest strict.

Pytanie 23. Niech

$$f x y = y (f x)$$

Najogólniejszym typem funkcji f jest:

- \square a. a o b o a,
- \Box b. $a \to (a \to b) \to b$,
- \Box c. $a \to (b \to a) \to a$,
- d. Funkcja f nie posiada typu.

Pytanie 24. Niech $e, f :: Monad <math>m \Rightarrow m$ Integer. Wyrażenie

do {
$$x \leftarrow e$$
; f ; return x }

jest równe:

- \square a. e >>= f
- \square b. do $\{e; f\}$
- \blacksquare c. $e >>= (\lambda x \rightarrow do \{ f; return x \})$
- \Box d. $e >>= (\lambda x \rightarrow f >>= return x)$

Pytanie 25.

- \square a. Istnieją 4 różne wartości typu Bool \to Bool, spośród których 3 daje się zdefiniować w Haskellu.
- \square b. Istnieje 16 różnych wartości typu Bool \to Bool, spośród których 9 daje się zdefiniować w Haskellu.
- c. Istnieje 27 różnych wartości typu Bool → Bool, spośród których 11 daje się zdefiniować w Haskellu.
- \square d. Istnieje 27 różnych wartości typu Bool \to Bool, spośród których 16 daje się zdefiniować w Haskellu.

Pytanie 26. Niech

```
or1, or2 :: Bool → Bool → Bool
True 'or1' True = True
True 'or1' False = True
False 'or1' True = True
False 'or1' False = False
True 'or2' _ = True
_ 'or2' True = True
False 'or2' False = False
```

Wtedy

- \square a. or 1 = or 2
- \square b. (or1) = (or2)
- \square c. foldl or1 True = foldl or2 True
- \square d. foldr or1 True = foldr or2 True
- e. wszystkie powyższe odpowiedzi są fałszywe

Pytanie 27. Niech

```
data Tree a = Node a [Tree a] inftree :: Tree Integer inftree = head ts where ts = map (\lambda (Node n rs) -> Node (n+1) (tail rs)) (Node 0 ts : ts) firstSons, sonsOfRoot :: Tree a \rightarrow [a] firstSons (Node x xs) = x : firstSons (head xs) sonsOfRoot (Node x xs) = map (\lambda (Node y _) \rightarrow y) xs zeros :: [Integer] zeros = 0 : zeros
```

Wtedy:

- a. firstSons inftree = sonsOfRoot inftree
- \Box b. firstSons inftree = [1..]
- \square c. firstSons inftree = zeros
- \square d. sonsOfRoot inftree = [1..]

Pytanie 28. Wartością wyrażenia

```
[(m,n) \mid m \leftarrow [1,2], n \leftarrow [3,4]]
```

jest

- \Box a. [(1,3), (2,4)],
- \Box b. ([1,2], [3,4]),
- \blacksquare c. [(1,3), (1,4), (2,3), (2,4)],
- \Box d. [(1,3), (2,3), (1,4), (2,4)].

Strona: 9 z 10 Imię i nazwisko: Wersja: 0

Pytanie 29. Niech

☐ d. Wyrażenie nie posiada typu.

```
xs :: [Integer]
xs = 1 : map (2*) xs

Wówczas xs

a. zawiera błąd typowy,
b. nie posiada wartości (próba jego obliczenia kończy się zapętleniem),
c. ma taką samą wartość, jak wyrażenie map (2*) [1..], ale jest mniej efektywne,
d. ma taką samą wartość, jak wyrażenie map (2^) [0..], ale jest bardziej efektywne.

Pytanie 30. Dla żadnego typu instancja wyrażenia return 'a' >>= return

a. nie jest równa 'a',
b. nie jest równa "a",
c. nie jest równa return 'a',
```

Programowanie L Egzamin zasadniczy 17 czerwca 2013 Strona: 10 z 10