Introduction to SYS/BIOS

TEXAS INSTRUMENTS

Multicore Training

Outline

Intro to SYS/BIOS

- Overview
- Threads and Scheduling
- Creating a BIOS Thread
- System Timeline
- ◆ Real-Time Analysis Tools
- ◆ Create A New Project
- BIOS Configuration (.CFG)
- Platforms
- For More Info.....
- BIOS Threads

* Texas Instruments

Outline

- Intro to SYS/BIOS
 - Overview
 - Threads and Scheduling
 - Creating a BIOS Thread
 - System Timeline
 - ◆ Real-Time Analysis Tools
 - Create A New Project
 - BIOS Configuration (.CFG)
 - Platforms
 - For More Info.....
- BIOS Threads

TEXAS INSTRUMENTS

Definitions / Vocabulary

◆ In this workshop, we'll be using these terms often:

Real-time System

> Where processing must keep up with the rate of I/O

Function

> Sequence of program instructions that produce a given result

> Function that executes within a specific context (regs, stack, PRIORITY)

API

Application Programming Interface – "methods" for interacting with library routines and data objects

♦ TEXAS INSTRUMENTS Multicore Training

RTOS vs GP/OS

	GP/OS (e.g. Linux)	RTOS (e.g. SYS/BIOS)
Scope	General	Specific
Size	Large: 5M-50M	Small: 5K-50K
Event response	1ms to .1ms	100 – 10 ns
File management	FAT, etc	FatFS
Dynamic Memory	Yes	Yes
Threads	Processes, pThreads, Ints	Hwi, Swi, Task, Idle
Scheduler	Time Slicing	Preemption
Host Processor	ARM, x86, Power PC	ARM, MSP430, M3, C28x, DSP

TEXAS INSTRUMENTS

Multicore Training

Outline

- ◆ Intro to SYS/BIOS
 - Overview
 - Threads and Scheduling
 - Creating a BIOS Thread
 - ◆ System Timeline
 - ◆ Real-Time Analysis Tools
 - ◆ Create A New Project
 - BIOS Configuration (.CFG)
 - Platforms
 - For More Info.....
- BIOS Threads

* Texas Instruments

System Timeline Hardware Software Reset **BOOT Provided** main.c Provided by TI H/W MODE by TI Device Boot System BIOS_start() SYS/BIOS BIOS_init() Reset Loader (_c_int00) Init Code (Provided by TI) Scheduler

- RESET Device is reset, then jumps to bootloader or code entry point (c_int00)
- ◆ BOOT MODE runs bootloader (if applicable)
- BIOS_init() configs static BIOS objects, jumps to c_int00 to init Stack Pointer (SP), globals/statics, then calls main()
- main()
 - User initialization
 - Must execute BIOS start() to enable BIOS Scheduler & INTs

TEXAS INSTRUMENTS

Multicore Training

Outline

- Intro to SYS/BIOS
 - Overview
 - Threads and Scheduling
 - Creating a BIOS Thread
 - System Timeline
 - ◆ Real-Time Analysis Tools
 - Create A New Project
 - BIOS Configuration (.CFG)
 - Platforms
 - For More Info.....
- BIOS Threads

* Texas Instruments

Built-in Real-Time Analysis Tools Gather data on target (30-40 CPU cycles) Format data on host (1000s of host PC cycles) Data gathering does NOT stop target CPU Halt CPU to see results (stop-time debug) RunTime Obj View (ROV) Instances □ / # ti handle state priority timeout Halt to see results 0x1181132c Running 0 TSK_idle □ 🖶 rov Displays stats about ● LOG all threads in system MBX MFM K - M + M + 4 A - 4 A - 4 M D W W **CPU/Thread Load Graph Analyze time NOT** spent in Idle Multicore Training TEXAS

SYS/BIOS Hwi APIs Other useful Hwi APIs:

Hwi_disableInterrupt()
Hwi_enableInterrupt()
Hwi_clearInterrupt()

Hwi_post()

New in SYS/BIOS

Post INT # (in code)

Hwi_disable()
Hwi_enable()
Hwi_enable()
Hwi_restore()

Global INTs enable
Global INTs restore

Let's move on to SWIs...

* Texas Instruments

Multicore Training

Outline

- Intro to SYS/BIOS
- BIOS Threads
 - Hardware Interrupts (HWI)
 - Software Interrupts (SWI)
 - ◆ Tasks (TSK)
 - Semaphores (SEM)

* Texas Instruments

Outline Intro to SYS/BIOS BIOS Threads Hardware Interrupts (HWI) Software Interrupts (SWI) Tasks (TSK) Semaphores (SEM) Prox betremens Multicore Training

