

1	
Ay.	Since negative chase and
	them will always be gold het fore on
	in equilibrium
	Since negative charges are fixed net force on. Them will always be zero and they will be in equilibrium.
Ac	The olectes 1115.
143	field at O du to charges at A and B
	are cancel out ben because both charges are
	equal and same sign of at a A and B Thus
	only charge at C will contain to the side out of
	The electric field at O due to charges at A and B are cancel out ben because both charges are equal and same sign of at a A and B Thus only charge at C will contribute the field at O.
7	he filled 1) in En 1 (-2010)
	he filled O is E= 1 (-2913) = - a along negative x
	Γ
Pa	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	47160/ AB BC AC/
	$= 1 \left[(9,2/9) (-26,2)/9 \right] \cdot (-292/140)$
	476 20 201512 28(1/2)
	2K((3/2) 2K(12)
The	foru between to charges at B and C is F
	foru between to charges at B and C is F = 1 (9/13)(-24/13) = -1 292 476, BC ² 476, 9(2Rsin60) ²
	476 B12 476 9/2 Rings)2
	11160
	= 1 292
	4 TT 60 9(4R2X3/4)
	51 - A12
(
	SYTTER2
P	tential U at V= 1 (9/3) + (9/3) + (-24/3)
16	TENTIAL OB OC
	-1 $(9/3)$ $(9/3)$ $(-29/3)$ = 0
	R. R. R.
	477 Col

Now, for the equilibrium of 9/3 =) + $\frac{9}{12} + \frac{9}{12} + \frac{9}{12} + \frac{9}{12} + \frac{9}{12} + \frac{9}{12} = 0$ $\frac{\alpha_{1}}{|92-93|} = \frac{\alpha_{1}}{|92-93|} = \frac{\beta_{1}^{2} - \overline{\beta_{3}}}{|93-93|} = \frac{\beta_{1}^{2} - \overline{\beta_{3}}}{|33-93|} = \frac{\beta_{1}^{$ =) (q, (s, - sz) = \(\bar{q}, (s, - sz)) 993 = 19297 + 192972 191 + 192Also for the equilibrium of 91, $\frac{w_{3}(\bar{y}_{3}^{2}-\bar{y}_{1}^{2})}{(\bar{y}_{3}^{2}-\bar{y}_{1}^{2})} + \frac{w_{2}(\bar{y}_{2}^{2}-\bar{y}_{1}^{2})}{(\bar{y}_{2}^{2}-\bar{y}_{1}^{2})} = 0$ $\frac{(\bar{y}_{3}^{2}-\bar{y}_{1}^{2})}{(\bar{y}_{2}^{2}-\bar{y}_{1}^{2})} = 0$ $\frac{(\bar{y}_{3}^{2}-\bar{y}_{1}^{2})}{(\bar{y}_{2}^{2}-\bar{y}_{1}^{2})} = 0$ $\frac{(\bar{y}_{3}^{2}-\bar{y}_{1}^{2})}{(\bar{y}_{1}^{2}-\bar{y}_{1}^{2})} = 0$ $\frac{(\bar{y}_{3}^{2}-\bar{y}_{1}^{2})}{(\bar{y}_{1}^{2}-\bar{y}_{1}^{2})$ $q_{13} = \frac{-q_{1}q_{2}}{(q_{1} + q_{2})^{2}}$

A10. Since there are twelve 12 thought equal charges

Placed symmetrically on 12 side of a 12 sided

Palygon, the charges will cancel each other,

therefore, charge at the centre will be equal

to zero.