

FUNDAMENTALS OF INFORMATION SCIENCE:

PART 3: CODING TECHNOLOGIES

Shandong University 2024 Spring

Lecture 2.1: Communication Channels

Communication System

Physical Communication Links are Inherently Analog

Analog = continuous-valued, continuous-time

Voltage waveform on a cable
Light on a fiber, or in free space
Radio (EM) waves through the atmosphere
Acoustic waves in air or water
Indentations on vinyl or plastic
Magnetization of a disc or tape

Single Link Communication

Digital Signaling: Map Bits to Signals

Key Idea: "Code" or map or modulate the desired bit sequence onto a (continuous-time) analog signal, communicating at some bit rate (in bits/sec).

To help us extract the intended bit sequence from the noisy received signals, we'll map bits to signals using a fixed set of discrete values. For example, in a *bi-level signaling* (or *bi-level mapping*) scheme we use two "voltages":

V0 is the binary value "0"

V1 is the binary value "1"

If V0 = -V1 (and often even otherwise) we refer to this as **bipolar** signaling.

At the receiver, process and sample to get a "voltage"

- Voltages near V0 would be interpreted as representing "0"
- Voltages near V1 would be interpreted as representing "1"
- If we space V0 and V1 far enough apart, we can tolerate some degree of noise --- but there will be occasional errors!

Digital Signaling: Receiving Signals

We can specify the behavior of the receiver with a graph that shows how incoming voltages are mapped to "0" and "1".

If received voltage between $V0 \& \frac{V1+V0}{2} \rightarrow "0"$, else "1"

Bit-In Bit-Out Model: Binary Symmetric Channel

Suppose that during transmission a "0" is turned into a "1" or a "1" is turned into a "0" with probability p, independently of transmissions at other times

This is a *binary symmetric channel* (BSC) --- a useful and widely used abstraction

Mutual Information

$$I(X;Y) = H(X) - H(X \mid Y)$$

How much is our uncertainty about X reduced by knowing Y?

Evidently a central question in communication or more generally, inference. Thank you, Shannon!

Conditional Entropy and Mutual Information

To compute conditional entropy:

$$H(X|Y = y_j) = \sum_{i=1}^{m} p(x_i|y_j) \log_2 \left(\frac{1}{p(x_i|y_j)}\right)$$

$$H(X|Y) = \sum_{i=1}^{m} H(X|Y = y_j) p(y_j)$$

$$H(X,Y) = H(X) + H(Y \mid X)$$

$$= H(Y) + H(X \mid Y)$$
because
$$p(x_i, y_j) = p(x_i)p(y_j \mid x_i)$$

$$= p(y_i)p(x_i \mid y_i)$$

$$I(X;Y) = I(Y;X)$$
 mutual information is symmetric

Mutual Information of Binary Symmetric Channel (BSC)

With probability p the input binary digit gets flipped before being presented at the output.

$$I(X;Y) = I(Y;X) = H(Y) - H(Y|X)$$

$$= 1 - H(Y|X = 0)p_X(0) - H(Y|X = 1)p_X(1)$$

$$= 1 - h(p)$$

Binary Entropy Function h(p)

Heads (or C=1) with probability p

Tails (or C=0) with probability 1-p

$$H(C) = -p \log_2 p - (1-p) \log_2 (1-p) = h(p)$$

Channel Capacity

To characterize the channel, rather than the input and output, define

$$C = \max I(X;Y) = \max \left\{ H(X) - H(X \mid Y) \right\}$$

where the maximization is over all possible distributions of X.

This is the most we can expect to reduce our uncertainty about X through knowledge of Y, and so must be the most information we can expect to send through the channel on average, per use of the channel. Thank you, Shannon!

Capacity of Binary Symmetric Channel (BSC)

Easiest to compute as $C = \max\{H(Y) - H(Y|X)\}$, still over all possible probability distributions for X. The second term doesn't depend on this distribution, and the first term is maximized when 0 and 1 are equally likely at the input. So invoking our mutual information example earlier:

What channel capacity tells us about how fast and how accurately we can communicate ...

Why Channel Capacity

- ullet Look at communication systems: Landline Phone, Radio o TV, Cellphone o Smartphone, WiFi
- Communication is very tied to specific source
- To break this tie, Shannon propose to focus on information, then computation
- First ask the question: what is the fundamental limit
- Then ask how to achieve this limit (took 60 years to get there! but huge success)
- All communication system are designed based on the principle of IT

Shannon's Secret of Success

• Start with simple model, then complicated

"Stylized" Models

- Let the code length goes to infinity, then back
- Study random coding, prove the feasibility

"Asymptotic is the first term in Taylor series expansion, and theory is the first term in the Taylor series of practice."

- Tom Cover, 1990

Shannon's Secret of Success

• Start with simple model, then complicated

"Stylized" Models

- Let the code length goes to infinity, then back
- Study random coding, prove the feasibility

"Asymptotic is the first term in Taylor series expansion, and theory is the first term in the Taylor series of practice."

- Tom Cover, 1990

Channel Capacity: Intuition

C

 $= \log \# \{$ of identifiable inputs by passing through the channel with low error $\}$

Shannon's second theorem:

"information" channel capacity = "operational" channel capacity

Binary Noiseless Channel

 $C = \log 2 = 1$ bit

Noisy Channel with Non-Overlapping Outputs

$$C = \log 2 = 1$$
 bit

Noisy Typewriter

 $C = \log 13$ bits

Binary Symmetric Channel

$$C = 1 - H(p)$$
 bits.

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum p(x)H(Y|X=x) = H(Y) - \sum p(x)H(p) \end{split}$$

CD-ROM read channel

More Channels

• Binary symmetric channel BSC(p)

• Binary erasure channel $BEC(\varepsilon)$

More Channels

• Additive white Gaussian noise channel AWGN

Channels and Capacities

• Binary symmetric channel BSC(*p*)

$$H_2(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

• Binary erasure channel BEC(ϵ)

$$C = 1 - \varepsilon$$

Channels and Capacities

• Additive white Gaussian noise channel AWGN

$$C = \frac{1}{2} \log_2 \left(1 + \frac{P}{\sigma^2} \right)$$

Discrete Memoryless Channel (DMC)

- Discrete channel:
 - input alphabet: ${\mathcal X}$
 - output alphabet: ${\cal Y}$
 - probability transition matrix p(y|x)
- Memoryless channel: the probability distribution of the output depends only on the inputs at that time

Communication System Model

- $\bullet \ X^n = [X_1, \dots, X_n]$
- $\bullet \ Y^n = [Y_1, \dots, Y_n]$
- ullet channel: p(y|x): probability of observing y given input symbol x

Communication System Model

- Symbols from some finite alphabet are mapped into some sequence of the channel symbols
- Output sequence is random but has a distribution that depends on the input sequences
- From output sequence, we try to recover the transmitted message
- Each possible input sequences induces several possible outputs, and hence inputs are confusable
- Can we choose a "non-confusable" subset of input sequences?

Duality

- Data compression: we remove all the redundancy in the data to form the most compressed version possible
- Data transmission: we add redundancy in a controlled manner to combat errors in the channel

Summary

• Channel capacity:

$$C = \max_{p(x)} I(X;Y)$$

intuition: $C = \log\{\#\text{of distinguishable inputs}\}$

• DMC (discrete memoryless channel)

Lecture 2.2: Channel Coding Theorem

Information Channel Capacity

For discrete memoryless channel (DMC)

$$C = \max_{p(x)} I(X;Y)$$

• $C \ge 0$ since $I(X;Y) \ge 0$, $C \le \log |\mathcal{X}|$, $C \le \log |\mathcal{Y}|$

Discrete: \mathcal{X} , \mathcal{Y} discrete

Memoryless: $p(Y^n|X^n) = \prod_{i=1}^n p(y_i|x_i)$

Communication System Model

- $W \in \{1, 2, \dots, M\}$: source message
- X^n : sequence of channel symbols
- Y^n : output sequence, $Y^n \sim p(y^n|x^n)$
- \hat{W} : recovered message, according to decoding function $\hat{W} = g(Y^n)$

Fundamental Question

- How fast can we transmit information over a communication channel?
- ullet suppose a source sends r messages per second, and the entropy of a message is H bits per message, information rate is R=rH bits/second
- \bullet intuition: as R increases, error will increase
- surprisingly, error can be nearly zero, as long as

$$R < \underbrace{R_{ ext{max}}}_{ ext{"operational channel capacity"}}$$

• Shannon showed $R_{\text{max}} = C$

Basic Idea

- For large block length, every channel looks like the noisy type writer channel
- Channel has a subset of inputs that produce "disjoint" sequences at the output

Code Rate

• Rate of an (M, n) code is

$$R = \frac{\log M}{n} \text{ bit per transmission}$$

• On the other hand, we usually write

$$M = \lceil 2^{nR} \rceil$$

Assumption about the Channel

- ullet Transmit large block length: n over n transmissions
- DMC

$$p(y^n|x^n) = \prod_{i=1}^n p(y_i|x_i)$$

channel without feedback:

$$p(y_k|x^k, y^{k-1}) = p(y_k|x_k), k = 1, \dots, n$$

Error Probability

Conditional probability of error

$$\lambda_i = P\{g(Y^n) \neq i | X^n = x^n(i)\}$$

Maximal probability of error

$$\lambda^{(n)} = \max_{i=1}^{m} \lambda_i$$

Average probability of error

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i$$

- $\bullet \ P_e^{(n)} \le \lambda^{(n)}$
- If W uniform distributed,

$$P_e^{(n)} = P\{W \neq g(Y^n)\}$$

Achievable Rate

A rate R is achievable:

if exists a sequence of $\lceil 2^{nR}, n \rceil$ codes such that $\lambda^{(n)} \to 0$ as $n \to 0$.

Channel Coding Theorem

Theorem. (Shannon, 1948) For a DMC

- 1. all rates below capacity R < C are achievable.
- 2. Converse: any sequence of $(2^{nR}, n)$ codes with $\lambda^{(n)} \to 0$ must have $R \leq C$.

Reliable communication over noisy channel is possible!

Proof Idea

- ullet for each (typical) X^n , there are $pprox 2^{nH(Y|X)}$ possible Y^n
- ullet Total number of (typical) Y^n is $2^{nH(Y)}$
- \bullet Total number of disjoint inputs should be $2^{n(H(Y)-H(Y|X))}=2^{nI(X;Y)}$
- To formalize these ideas, we need "joint typical sequences"

Joint Typical Sequence

- ullet Associate a "fan" with each codeword X^n
- We decode Y^n as the ith index if the codeword $X^n(i)$ is "joint typical" with Y^n
- Set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x^n, y^n)\}$ is

$$\begin{split} A_{\epsilon}^{(n)} = & \{(x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \\ & | -\frac{1}{n} \log p(x^n) - H(X)| < \epsilon \\ & | -\frac{1}{n} \log p(y^n) - H(Y)| < \epsilon \\ & | -\frac{1}{n} \log p(x^n, y^n) - H(X, Y)| < \epsilon \} \end{split}$$

Joint Typical Sequence

 $2^{nH(X)}$ typical X^n , $2^{nH(Y)}$ typical Y, not all pairs of typical X^n and Y^n are also jointly typical. Any randomly chosen pair is jointly typical is $2^{-nI(X;Y)}$.

Joint AEP

- Let (X^n, Y^n) be sequences of length n drawn i.i.d. according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$. Then
 - 1. $P((X^n, Y^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty$
 - 2. $|A_{\epsilon}^{(n)}| \le 2^{n(H(X,Y)+\epsilon)}$
 - 3. If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$, then

$$P\{(\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}\} \le 2^{-n(I(X;Y)-3\epsilon)}$$

For sufficient large n,

$$(1 - \epsilon)2^{n(H(X,Y) - \epsilon)} \le |A_{\epsilon}^{(n)}|$$

$$P\{(\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}\} \ge (1 - \epsilon)2^{-n(I(X;Y) + 3\epsilon)}$$

Channel Coding Theorem

Theorem. (Shannon, 1948) For a DMC

- 1. all rates below capacity R < C are achievable.
- 2. Converse: any sequence of $(2^{nR}, n)$ codes with $\lambda^{(n)} \to 0$ must have $R \leq C$.

Reliable communication over noisy channel is possible!

Joint Typical Decoding

- ullet Decoder find \hat{W} if $(X^n(\hat{W}),Y^n)$ is jointly typical
- $\bullet\,$ No confusion: no more than $X^n(\hat{W})$ jointly typical with Y^n

Proof for Achievability

- ullet calculate the probability of error averaged over all codes randomly generated according to p(x)
- ullet Average P_e does not depend on which index was sent
- For typical X^n , two type of errors
- (a) (X^n, Y^n) not jointly typical
- (b) (\tilde{X}^n, Y^n) is typical, but $\tilde{X}^n \neq X^n$
- Use AEP to bound (a) and (b)
- Conditional probability of error

$$\lambda_i = P\{g(Y^n) \neq i | X^n = x^n(i)\}$$

Proof for Achievability

Define the following events:

$$E_i = \{ (X^n(i), Y^n) \text{ is in } A_{\epsilon}^{(n)} \}, \quad i \in \{1, 2, \dots, 2^{nR}\},$$

$$\Pr(\mathcal{E}|W = 1) = P\left(E_1^c \cup E_2 \cup E_3 \cup \dots \cup E_{2^{nR}}|W = 1\right)$$

$$\leq P(E_1^c|W = 1) + \sum_{i=2}^{2^{nR}} P(E_i|W = 1),$$

$$\leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y) - 3\epsilon)}$$

Proof for Converse

ullet Use Fano's inequality to lower bound P_e

Proof for Converse

Lemma 7.9.1 (Fano's inequality) For a discrete memoryless channel with a codebook C and the input message W uniformly distributed over 2^{nR} , we have

$$H(W|\hat{W}) \le 1 + P_e^{(n)} nR. \tag{7.89}$$

Proof: Converse to Theorem 7.7.1 (Channel coding theorem).

$$nR \stackrel{\text{(a)}}{=} H(W)$$

$$\stackrel{\text{(b)}}{=} H(W|\hat{W}) + I(W; \hat{W})$$

$$\stackrel{\text{(c)}}{\leq} 1 + P_e^{(n)} nR + I(W; \hat{W})$$

$$\stackrel{\text{(d)}}{\leq} 1 + P_e^{(n)} nR + I(X^n; Y^n)$$

$$\stackrel{\text{(e)}}{\leq} 1 + P_e^{(n)} nR + nC,$$

Implication of the Theorem

- It shows that there exist good codes with exponentially small probability of error for long block length
- it does not provide a way to construct the best codes
- random code, without structure, very difficult to code (look-up table)
- property of capacity achieving codes
- example of capacity achieving: noisy typewriter
- new capacity achieving code: polar codes (2009)

Asymptotically Error-free at R < C

Shannon showed that one can theoretically transmit information (i.e., message bits) at an average rate R < C per use of the channel, with arbitrarily low error.

(He also showed the converse, that transmission at an average rate $R \ge C$ incurs an error probability that is lower-bounded by some positive number.)

The secret: Encode blocks of k message bits into n-bit codewords, so R = k/n, with k and n very large.

Encoding blocks of *k* message bits into *n*-bit codewords to protect against channel errors is an example of *channel coding*

Achievability

Error 1: $x^n(0) y^n$ Not Typical $< \epsilon$

Error 2: $\mathbf{x}^{\mathbf{n}}(\mathbf{1}) \, \mathbf{y}^{\mathbf{n}}$ Typical $\leq 2^{-n(I(X;Y)-3\epsilon)}$

Total Error
$$\leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y)-3\epsilon)}$$

Channel Coding

We use a **code** to communicate over the noisy channel.

Code rate: $R = \frac{k}{n}$