

MODELING WITH DATA IN THE TIDYVERSE

Modeling with data in the tidyverse

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Course overview

- 1. Introduction to modeling: theory and terminology
- 2. Basic regression
- 3. Multiple regression
- 4. Model assessment

Background: General modeling framework formula

$$y = f(\vec{x}) + \epsilon$$

where

- y: outcome variable of interest
- \vec{x} : explanatory/predictor variables
- f(): function of the relationship between y and \vec{x} AKA the signal
- ϵ : unsystematic error component AKA the noise

Background: Two modeling scenarios

Modeling for either:

- Explanation: \vec{x} are explanatory variables
- Prediction: \vec{x} are predictor variables

Modeling for explanation example

A University of Texas in Austin study on teaching evaluation scores (available at openintro.org).

Question: Can we explain differences in teaching evaluation score based on various teacher attributes?

Variables:

- y: Average teaching score based on students evaluations
- \vec{x} : Attributes like rank, gender, age, and bty avg

Modeling for explanation example

From the moderndive package for ModernDive.com:

```
library(dplyr)
library (moderndive)
glimpse(evals)
Observations: 463
Variables: 13
 $ ID
                                                                                                  <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
 $ score
                                                                                            <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4.5,
                                                                                           <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, 40,
 $ age
                                                                                          <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, 3.3
 $ bty avq
                                                                                          <fct> female, female, female, male, 
 $ gender
 $ ethnicity
                                                                            <fct> minority, minority, minority, minority, not minority, not n
 $ language
                                                                                         <fct> english, english, english, english, english, english, english,
 $ rank
                                                                                          <fct> tenure track, tenure track, tenure track, tenure track, ter
 $ pic outfit
                                                                                   <fct> not formal, not formal, not formal, not formal,
$ pic color
                                                                                        <fct> color, col
 $ cls did eval <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14, 37
 $ cls students <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, 25,
                                                                                                   <fct> upper, upp
$ cls level
```


Three basic steps to exploratory data analysis (EDA):

- 1. Looking at your data
- 2. Creating visualizations
- 3. Computing summary statistics


```
library(ggplot2)
ggplot(evals, aes(x = score)) +
  geom_histogram(binwidth = 0.25) +
  labs(x = "teaching score", y = "count")
```


Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Background on modeling for prediction

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Modeling for prediction example

A dataset of house prices in King County, Washington State, near Seattle (available at Kaggle.com).

Question: Can we predict the sale price of houses based on their features?

Variables:

- y: House sale price is US dollars
- \vec{x} : Features like sqft_living, condition, bedrooms, yr_built, waterfront

Modeling for prediction example

From the moderndive package for ModernDive:


```
library(ggplot2)
ggplot(house_prices, aes(x = price)) +
   geom_histogram() +
   labs(x = "house price", y = "count")
```


Histogram of outcome variable

Gapminder data

Log10 rescaling of x-axis

Log10 transformation

```
# log10() transform price and size
house_prices <- house_prices %>%
 mutate(log10_price = log10(price))
# View effects of transformation
house prices %>%
  select(price, log10_price)
# A tibble: 21,613 x 2
     price log10 price
     <dbl>
             <dbl>
   221900 5.35
  538000 5.73

180000 5.26

604000 5.78

510000 5.71

1225000 6.09

257500 5.41

291850 5.47
 6 1225000
             5.47
   291850
             5.36
    229500
   323000
              5.51
10
# ... with 21,603 more rows
```


Histogram of new outcome variable

```
# Histogram of original outcome variable
ggplot(house_prices, aes(x = price)) +
    geom_histogram() +
    labs(x = "house price", y = "count")

# Histogram of new, log10-transformed outcome variable
ggplot(house_prices, aes(x = log10_price)) +
    geom_histogram() +
    labs(x = "log10 house price", y = "count")
```


Comparing before and after log10-transformation

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

The modeling problem for explanation

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Recall: General modeling framework formula

$$y = f(\vec{x}) + \epsilon$$

where

- y: outcome variable of interest
- \vec{x} : explanatory/predictor variables
- f(): function of the relationship between y and \vec{x} AKA the signal
- ϵ : unsystematic error component AKA the noise

The modeling problem

Consider $y = f(\vec{x}) + \epsilon$.

- 1. f() and ϵ are unknown
- 2. n observations of y and \vec{x} are known/given in the data
- 3. **Goal**: Fit a model $\hat{f}()$ that approximates f() while ignoring ϵ
- 4. Goal restated: Separate the signal from the noise
- 5. Can then generate *fitted/predicted* values $\hat{y} = \hat{f}(\vec{x})$

Modeling for explanation example

EDA of relationship

```
library(ggplot2)
library(dplyr)
library(moderndive)

ggplot(evals, aes(x = age, y = score)) +
    geom_point() +
    labs(x = "age", y = "score", title = "Teaching score over age")
```


EDA of relationship

Jittered scatterplot

```
library(ggplot2)
library(dplyr)
library(moderndive)

# Instead of geom_point() ...
ggplot(evals, aes(x = age, y = score)) +
    geom_point() +
    labs(x = "age", y = "score", title = "Teaching score over age")

# Use geom_jitter()
ggplot(evals, aes(x = age, y = score)) +
    geom_jitter() +
    labs(x = "age", y = "score", title = "Teaching score over age (jittered)")
```


Jittered scatterplot

Correlation coefficient

Computing the correlation coefficient

MODELING WITH DATA IN THE TIDYVERSE

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

The modeling problem for prediction

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Modeling problem

Consider $y = f(\vec{x}) + \epsilon$.

- 1. f() and ϵ are unknown
- 2. n observations of y and \vec{x} are known/given in the data
- 3. **Goal**: Fit a model $\hat{f}()$ that approximates f() while ignoring ϵ
- 4. **Goal restated**: Separate the *signal* from the *noise*
- 5. Can then generate *fitted/predicted* values $\hat{y} = \hat{f}(\vec{x})$

Difference between explanation and prediction

Key difference in modeling goals:

- 1. **Explanation**: We care about the form of $\hat{f}()$, in particular any values quantifying relationships between y and \vec{x}
- 2. **Prediction**: We don't care so much about the form of $\hat{f}()$, only that it yields "good" predictions \hat{y} of y based on \vec{x}

Condition of house

```
house_prices %>%
    select(log10_price, condition) %>%
    glimpse()

Observations: 21,613
Variables: 2
$ log10_price <dbl> 5.346157, 5.730782, 5.255273, 5.781037, 5.707570, 6.088136, $ condition <fct> 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4,
```


Exploratory data visualization: boxplot

```
library(ggplot2)
library(dplyr)
library(moderndive)

# Apply log10-transformation to outcome variable
house_prices <- house_prices %>%
   mutate(log10_price = log10(price))

# Boxplot
ggplot(house_prices, aes(x = condition, y = log10_price)) +
   geom_boxplot() +
   labs(x = "house condition", y = "log10 price",
        title = "log10 house price over condition")
```


Exploratory data visualization: boxplot

Exploratory data summaries

```
house prices %>%
 group by (condition) %>%
 summarize(mean = mean(log10_price), sd = sd(log10_price), n = n())
# A tibble: 5 x 4
 condition mean
                sd
 <fct> <dbl> <dbl> <int>
    5.42 0.293
   5.45 0.233
                      172
   5.67 0.224 14031
   5.65 0.228 5679
5 5
           5.71 0.244 1701
# Prediction for new house with condition 4 in dollars
10^(5.65)
446683.6
```


Let's practice!