Analysis I

Organisation, Tipps & Tricks und Literaturhinweise

Mathe...

- ist intellektuell extrem herausfordernd
- kommt mit einem hohen Arbeitsaufwand
- oft falschen Erwartungen und
- ist wie Ausdauersport

aber dafür ist Mathe eines der schönsten Studien c:

Generelles Zeitmanagement:

- \bullet Vor- und Nachbereitung wahrscheinlich mehr als die gesetzten $14 \times 3 \, h = 42 \, h$
- Klausurvorbereitung auch mehr als 39 h
- Pro Woche $2 \times 1.5 \, h$, $2 \times 2 \, h$, $1.5 \, h$, $10 \, h$
- Es gibt immer eine Aufgabe die man nicht lösen kann
- In die Vorlesungen kommen

Vorlesung:

- normal nicht alles zu verstehen
- Notizen was man nicht versteht
- Punkte konzise angehen
- Mathe muss sich gedanklich setzen genügend Zeit zu verarbeiten

Übungen:

- zeitintensiv
- Ergebnisse vernünftig aufschreiben

- Weg zu einer korrekter Lösung ist sehr langwierig
- nicht 10 Blätter Papier ab, von denen 9.5 inkonklusiv sind
- also schön Aufschreiben

Wenn wir einen Satz gezeigt bekommen, dann bekommen wir nicht die gescheiterten Jahrelangen Versuche zur Schau, sondern nur die Ausgearbeitete Lösung \rightarrow also bei uns auch langer weg, aber Aufschreiben nur klein

Übungszettel:

- 50% muss richtig sein
- bis Freitag 10:00 Uhr
- in F4
- diese Woche nicht so umfangreich, weil weniger Zeit
- auf ILIAS Terminfindung Abstimmung
- Donnerstag Einteilung in Tutorien
- Blätter tackern :c
- alle zwei Wochen Beweismechanik Aufgaben, nur digital nicht in Papier (ist dann die letzte Aufgabe)

Literaturempfehlung:

- Otto Forster: Analysis 1
 - kurz und knapp aber konzise, udn das hilft
 - ähnliche Struktur wie Vorlesung
 - weig motivation und wenige Querverbindungen
- Königsberger: Analysis 1
 - kurz aber konzise
 - alle themen der Vorlesung, andere Struktur
 - mehr motivation und Querverbindungen
- Klaus Fritsche: Grundkurs Analysis 1
 - ausführlich

- Daniel Grieser: Analysis I
 - Ausfühlich, aber mit Fokus auf das Wesentliche
 - alle Themen der Volesung enthalten, ähnliche Struktur
 - bunt??
- Harro Huser: Lehrbuch der Analysis Teil 1
 - extrem ausfühlich,dick, an einigen stellen sehr extensiv
 - alle und mehr Themen als Vorlesung
 - Querverbindungen
- Walter Rudin: Analysis
 - sehr knapp und elegant
 - klassiker
 - alle themen der Volesung, leicht andere Struktur
 - empfehlenswertes Buch fortgeschrittene Leser*innen
 - nicht für Anfänger*innen
- Herber amann, Joachim Escher: Analysis I
 - strkt logischer Aufbau, damit teils länglich. Großes Bild
 - alle Themen, andere Struktur
 - auch nicht für anfänger*innen
- Terence Tao: Analysis (englisch, aber gut)
- Rober Denk, Reinhard Racke: Kompendium der ANalysis
 - kurz und knapp, teils wie Nachschlagewerk
 - alle themen
- Florian Modler, Martin Kreh: Tutorium Analysis 1 und Lineare Algebra 1
 - kurz und knapp, teils wie nachschalgewerk
 - von studierende für studierende
 - aber enthält ein paar Fehler

1. Natürliche Zahlen und elemntare Begriffe

1.1. Zahlbereiche

$$\begin{split} \mathbb{N} &\coloneqq \{1,2,3,\dots\} \\ \mathbb{N}_0 &\coloneqq \{0,1,2,3,\dots\} \\ \mathbb{Z} &\coloneqq \{\dots,-3,-2,-1,0,1,2,3,\dots\} \\ \mathbb{Q} &\coloneqq \{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\} \\ \mathbb{R} &\coloneqq \{ \text{ reelle Zahlen } \} \end{split}$$

Wir besprechen gar nicht was eine Menge ist, das ist zu philosophisch Es ist schwierig Mengen zu Definieren, man kommt schnell auf logische Wiedersprüche

- Notation: für x schreiben wir für eine Eigenschaft A "A(x)", falls x A erfüllt.
- \rightarrow Menge aller Objekte x mit A(x)

$$\{x:A(x)\}$$

- \rightarrow gibt es kein x mit A(x), so nennen wir die Menge leer, " \emptyset "
- ∃≜ Existenzquantor, "es existiert"
- A, B, Eig., $M := \{x : x \text{ erf. } A\}$ $N := \{x : \text{ erf. } B\}$ $M \subset N$, falls $\forall x \in M : x \in N$
- M = N, falls $M \subset N \vee N \subset M$
- "Echte Tielmenge": $M \nsubseteq N$, falls $M \subset N, N \neq N$.

Example 1.1.1 (gerade Zahlen)

$$n \in \mathbb{N}_0 \text{ gerade } : \iff (\exists k \in \mathbb{N}_0 : n = 2k)$$

$$M := \{ n \in \mathbb{N}_0 : \exists k \in \mathbb{N}_0 : n = 2k \}$$
 (1)

$$= \{2k : k \in \mathbb{N}_0 \tag{2}$$

Example 1.1 $\mathbb{N} \subsetneq \mathbb{N}_0 \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$

Zu $\mathbb{Q} \subsetneq \mathbb{R} : \sqrt{2} \notin \mathbb{Q}$. Widerspruchsbeweis: Ang., $\sqrt{2} \in \mathbb{Q}$, so $\sqrt{2} = \frac{p}{q}$, mit $p \in \mathbb{N}_0, q \in \mathbb{N}$. $\times p$, $\neq p$ teilerfremd (d.h. Bruch ist vollständig gekürzt)... Also $p^2 = 2q^2$

- $\implies p$ ist gerade. Also p = 2l mit $l \in N_0$.
- $\implies 4l^2 = p^2 = 2q^2 \implies 2l^2 = q^2 \implies q \text{ gerade.}$
- $\implies p, q \text{ gerade.} \implies p, q \text{ nicht teilerfremd.}$

1.2. Vollständige Induktion

 \bullet Ziel: Beweis von Aussagen für alle $n\in\mathbb{N}_0$

Dominoprinzip: Wenn alle Steine umfallen sollen,

- müssen wir den 1. Stein umwerfen,
- muss stehts der n-te Stein den (n+1)-ten umwerfen.

Prinzip (vollst. Ind.) Wollen wir eine Aussage $A(n) \forall n \in \mathbb{N}$ zeigen; so zeigen wir

- (i) A(1) gilt (Induktionsanfang)
- (ii) Aus A(n) für $n \in \mathbb{N}$ stets A(n+1) folgt. (Induktionsschritt)

Definition 1.2 Summen

Für $x_{-1}, \ldots, x_n \in \mathbb{R}$ definieren wir

$$\sum_{k=1}^{n} x_k \coloneqq x_1 + \ldots + x_n$$

Example 1.3 Geometrische Summe

 $\forall n \in \mathbb{N}:$

$$\sum_{k=0}^{n} x^{k} x^{0} + x^{1} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$
(3)

I.A. n = 1

$$\sum_{k=0}^{1} x^{k} = x^{0} + x^{1} = 1 + x = \frac{(1-x)(1+x)}{1-x} = \frac{1-x^{2}}{1-x}$$

I.S.

$$n \rightarrow n+1$$

Angenommen, (equation) gilt für ein $n \in \mathbb{N}$. z.z. (equation) gilt für n+1

$$\sum_{k=0}^{n+1} x^k = \left(\sum_{k=0}^n x^k\right) + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1}$$

...

Example 1.4 Für welche $n \in \mathbb{N}$ gilt $n^2 < 2^n$?

•
$$n = 1 \rightarrow 1 < 2$$

 $n = 2 \rightarrow n^2 = 4 \not< 4 = 2^2$
 $n = 3 \rightarrow n^2 = 9 \not< < 2^3$

$$n = 4 \rightarrow n^2 = 16 \nleq 16 = 2^4$$

 $n = 5 \rightarrow n^2 25 < 32 = 2^5$

Wir versuchen die Aussage $\forall n \leq 5$ zu zeigen.

I.A.:
$$n = 5 : n^2 = 25 < 32 = 2^5$$

I.S.: Ang., Aussage gilt für $n \ge 5$. Wir müssen zeigen:

$$(n+1)^2 < 2^{n+1}$$

$$(n+1)^2 = \underbrace{n^2}_{<2^n} + 2n + 1 < 2^n + 2n + 1 \mid^? < 2^{n+1}$$
 Angenommen, es gilt

$$\forall n \ge 5: 2n+1 < 2^n \tag{4}$$

Dann: $(n+1)^2 < \dots < 2^n + 2n + 1 = 2 * 2^n = 2^{n+1}$

• Wir zeigen (4) wiederum mit voll. Ind.

I.A.:
$$n = 52n + 1 = 11 < 32 = 2^5$$

I.S.: Ang., (4) gilt für $n \in \mathbb{N}$. Dann gilt: $2(n+1)+1=2n+3=(2n+1)+2<2^n+2<2^n+2^n=2*2^n=2^{n+1}$.

Damit folgt (4 und damit die eigentliche Aussage

Definition 1.5

für $n \in \mathbb{N}_0$ definieren wir die Fakultät via $n! := n \times (n-1) \times \cdots \times 2 \times 1$, falls $n \ge 1$, und 0! := 1. Für $k \in \{0, \dots, n\}$ definieren wir den Binomialkoeffizienten

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}.$$

Lemma 1.6

Für alle $n \in \mathbb{N}$ und alle $k \in \{1, \dots, n\}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Proof 1.7

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!(n-k+1)}{k!(n-k)!(n-k+1)} + \frac{n!(k)}{(k-1)!(n-(k-1)k)!(k)}$$
$$= \frac{n!n+n!}{k!(n-k+1)!} = \frac{n!(n+1)}{k!(n-k+1)!}$$

Example 1.8 (Binomische Formel)

Für $x, y \in \mathbb{R}$ und $n \in \mathbb{N}_0$:

$$(x+y)^n? \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Sei also $x, y \in \mathbb{R}$.

I.A.: n = 0. $(x + y)^0 = 1 = \binom{0}{0} x^0 y^0$

I.S.: Gelte die Aussage für $n \in \mathbb{N}_0$

$$(x+y)^{n-1} = (x+y)(x+y)^n = (x+y)\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (5)

$$= x \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} + y \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$
 (6)

$$= \sum_{k=0}^{n} \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+1-k}$$
 (7)

Indexverschiebung: l = k + 1. $l \in \{1, ..., n + 1\}$

$$(7) = \sum_{l=1}^{n} \binom{n}{l-i} x^{l} y^{n+1-l} + \sum_{l=0}^{n} \binom{n}{l} x^{l} y^{n+1-l}$$
Hier Indexverschiebung
$$= \binom{n}{n} x^{n+1} y^{0} + \left(\sum_{k=0}^{n} \binom{n}{l-1} + \binom{n}{l} x^{l} y^{n+1-l}\right) + \binom{n}{0} x^{0} y^{n+1}$$

$$= \binom{n+1}{n+1} x^{n+1} 0 + \left(\sum_{l=1}^{n} \binom{n+1}{l} x^{l} y^{(n+1)-l}\right) + \binom{n+1}{0} x^{0} y^{n+1}$$

$$= \sum_{l=0}^{n+1} \binom{n+1}{l} x^{l} y^{(n+1)-l}$$

1.2.1 Characterisierung der natürlichen Zahlen

Definition 1.2.1

Eine Teilmenge $M \subset \mathbb{R}$ heißt induktiv, falls

- (i) $1 \in M$
- (ii) $\forall x \in M : x + 1 \in M$

Example 1.2.2

- (a) \mathbb{N} sind ind. Menge.
- (b) $A := \{2n : n \in \mathbb{N}_0\}$ nicht ind. Menge, da (i) $1 \neq A$, (ii) 2n + 1 ist immer ungerade
- (c) $B := \{2n+1 : n \in \mathbb{N}_0\}$ nicht ind.: (i), aber 2n+1+1=2(n+1)
- (d) $\mathbb{Q}^+ := \{x \in \mathbb{Q} : q > 0\}$ ist ind. Teilmenge
- Sei $(A_i)_{i\in I}$ mit I Indexmenge eine Familie von Mengen. setze

$$Schnitt_{i \in I} := \{x : (\forall i \in I : x \in A_i)\}\$$

$$Vereinigung_{i \in I} := \{x : (\exists i \in I : x \in A_i)\}$$

prop

Für eine Menge $M \subset \mathbb{R}$ sind äquivalent

- (i) $M = \mathbb{N}$
- (ii) Ist $N \subset \mathbb{R}$ induktiv, so $M \subset N$
- (iii) $M = \text{Schnitt}_{N \subset \mathbb{R}} N \text{induktiv}$
 - $(i) \iff (ii) \iff (iii)$

Proof 1.2.3

- '(i) \Longrightarrow (ii)': Sei $N \subset \mathbb{R}$ beliebige ind. Teilmengen von \mathbb{R} . Zu zeigen: $M(i)\mathbb{N} \subset N$ Aber $I \in \mathbb{N}$, und $I \in N$ (da N ind.), Da N ind. ist, ist mit jeder nat. $x \in \mathbb{N}$ also auch $x \in N$. Damit $\mathbb{N} \subset N$.
- '(ii) \Longrightarrow (iii)' Wir zeigen: Schnitt_{N ind. Menge}N ist ind. Menge $\stackrel{(ii)}{\Longrightarrow} M \stackrel{(ii)}{\subset} N \subset M$. Also $M = \text{Schnitt}_{N \text{ ind.}} N$. Schnitt_{N ind}N induktiv: (i) $(\forall N \text{ ind: } I \in N) \Longrightarrow I \in \text{Schnitt}_{N \text{ ind.}} N$