

PATENT ABSTRACTS OF JAPAN

(11) Publication number. **06295209** A

(43) Date of publication of application: 21 . 10 . 94

(51) Int. CI

G05D 16/06 F16K 7/17 G05D 7/01

(21) Application number: 05106056

(22) Date of filing: **07** . **04** . **93**

(54) FLUID CONTROL VALVE

(57) Abstract:

PURPOSE: To provide the control valve which reacts instantaneously even to a quick change in primary pressure and keeps a secondary side flow rate and secondary pressure constant.

CONSTITUTION: A valve body 11 consists of a rod part 12 in which one end has a larger diameter than that of the other end and a flow rate control part is provided on the side face, and a diaphragm 22 provided in a large diameter side end part of the rod part. A valve main body 31 consists of a valve chest 53 for fixing a peripheral edge of the diaphragm 22 and containing the valve body 11, pressure chambers 34, 44 partitioned from the valve chest 53 by the end face of the diaphragm 22 or the rod part 12, a controlled fluid passage 56 which is formed between the outside periphery of the rod part 12 and the inside wall surface of the valve chest 53. and has a flow rate control passage part 58, a controlled fluid inflow port 59 for communicating with the controlled fluid passage 56 on a small diameter end part side of the rod part 12, a controlled fluid outflow port 60 for communicating with the controlled fluid passage 56 on a large diameter end part side of the rod part, and pressurized gas inflow lines 33, 43 leading to

(71) Applicant:

ADVANCE DENKI KOGYO KK

(72) Inventor:

MATSUZAWA HIRONOBU

the pressure chambers 34, 44

COPYRIGHT: (C)1994,JPO

* Result [Patent] ** Format(P801) 25.Jan.2001 1993-106056[1993/04/07] Application no/date: [1994/12/27] Date of request for examination: 1994-295209[1994/13/21] Public disclosure no/date: Examined publication no/date (old law): 2671133[1997/27/11] Registration no/date: [1997/13/29] Examined publication date (present law): PCT application no: PCT rublication no/date: Applicant: ADVANCE DENKI KOGYC MK Invertor: MATSUZAWA HIRONOBU IPC: G05D 16/00 Expanded classification: 223,741 Fixed keyword: Title of invention: FLUID CONTROL VALVE

Abstract:

PURPOSE: To provide the control valve which reacts instantaneously even to a quick change in primary pressure and keeps a secondary side flow rate and secondary pressure constant. CONSTITUTION: A valve body 11 consists of a rod part 12 in which one end has a larger diameter than that of the other end and a flow rate control part is provided on the side face, and a diaphragm 22 provided in a large diameter side end part of the rod part. A valve main body 31 consists of a valve chest 53 for fixing a peripheral edge of the diaphragm 22 and containing the valve body 11, pressure chambers 34, 44 partitioned from the valve chest 53 by the end face of the diaphragm 22 or the rod part 12, a controlled fluid passage 56 which is formed between the outside periphery of the rod part 12 and the inside wall surface of the valve chest $5\overline{3}$, and has a flow rate control passage part 58, a controlled fluid inflow port 59 for communicating with the controlled fluid passage 56 on a small diameter end part side of the rod part 12, a controlled fluid outflow port 60 for communicating with the controlled fluid passage 56 on a large diameter end part side of the rod part, and pressurized gas inflow lines 33, 43 leading to the pressure chambers 34, 44. COPYRIGHT: (C)1994, JPO

Other Drawings...

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-295209

(43)公開日 平成6年(1994)10月21日

(1001)10)121				
技術表示箇所	FI	庁内整理番号 8610-3H 7214-3H 9324-3H	C B	(51)Int.Cl. ⁵ G 0 5 D 16/06 F 1 6 K 7/17 G 0 5 D 7/01

		審査請求	未請求 請求項の数2 FD (全 6 頁)	
(21)出顧番号	特願平5-106056	(71)出願人	000101514	
(22)出顧日	平成5年(1993)4月7日		アドバンス電気工業株式会社 愛知県名古屋市千種区上野3丁目11番8号	
		(72)発明者	松沢 広宣 愛知県稲沢市木全町庄946番地	
		(74)代理人	弁理士 後藤 憲秋 (外1名)	

(54)【発明の名称】 流体コントロールバルブ

(57)【要約】

【目的】 1 次圧力の早い変化に対しても瞬時に反応して 2次側流量及び2次圧力を一定に保つコントロールバル ブを提供する。

【構成】弁体11は、一端が他端より大径になって側面 に流量制御部を有するロッド部12と、ロッド部の大径 側端部に設けられたダイヤフラム22とからなり、バル ブ本体31は、ダイヤフラム22の周縁を固定して弁体 11を収容する弁室53と、ダイヤフラム22またはロ ッド部12の端面により弁室53と仕切られた加圧室3 4、44と、ロッド部12外周と弁室53内壁面との間 に形成されて、流量制御通路部58を有する被制御流体 通路56と、ロッド部12の小径端部側で被制御流体通 路56に連通した被制御流体流入口59と、ロッド部の 大径端部側で被制御流体通路56に連通した被制御流体 流出口60と、加圧室34、44に通じる加圧気体流入 路33、43とからなる。

【特許請求の範囲】

【請求項1】 弁体とバルブ本体とよりなって、

前記弁体は、筒形状の一端が拡大して他端より大径にな って両端間の側面外周に突出した流量制御部を有するロ ッド部と、前記ロッド部両端の少なくとも大径側端部に 該端部外周へ鍔状に突出して設けられたダイヤフラムと からなり、

1

前記バルブ本体は、前記ダイヤフラムの外周縁を固定し てロッド部を軸方向にスライド可能に弁体を収容する弁 室と、前記弁室の外側にあってダイヤフラムまたはロッ 10 ド部の小径側端面により弁室と仕切られた加圧室と、前 記ロッド部外周と弁室内壁面との間に形成されて、前記 ロッド部が大径端部側へスライドするに従い前記流量制 御部と弁室内壁面間が狭くなる流量制御通路部を有する 被制御流体通路と、前記ロッド部の小径端部側で被制御 流体通路に連通しバルブ本体外面で開口する被制御流体 流入口と、前記ロッド部の大径端部側で被制御流体通路 に連通しバルブ本体外面で開口する被制御流体流出口 と、前記加圧室に通じバルブ本体外面で開口する加圧気 体流入路とからなることを特徴とする流体コントロール 20 バルブ。

【請求項2】 請求項1において、ダイヤフラムがロッ ド部の大径側端部に設けられた第1ダイヤフラムと、前 記第1ダイヤフラムより小径からなってロッド部の小径 側端部に設けられた第2ダイヤフラムとからなり、加圧 室が両ダイヤフラムにより弁室と仕切られたことを特徴 とする流体コントロールバルブ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、液体あるいは気体か 30 らなる流体の流量及び2次圧力(流出側圧力)をコント ロールするバルブに関する。

[0002]

【従来の技術】従来、1次圧力(流入側圧力)が変動す る流体の流量及び2次圧力をコントロールするに際して は、流路の一部に流量発信器あるいは圧力発信器を設け るとともに、流量制御バルブにはバルブの開閉を行う電 動モータあるいはエアーモータを設けて、前記流量発信 器あるいは圧力発信器で感知した流量または圧力値に関 ータまたはエアーモータをコントロールしバルブの開閉 を行っていた。

【0003】しかし、前記の方法にあっては1次圧力の 早い変化に対し、あるいは脈動のような変化に対しては バルブの開閉が追従せず、流量あるいは2次圧を所望の 値にコントロールできなかった。また、発信器及びモー 夕を使用するため装置が複雑、かつ大掛かりとなり、し かも保守も容易ではない等の問題もあった。

[0004]

記の点に鑑み、1次圧力の早い変化あるいは脈動変化に 対しても瞬時に反応して2次側流量及び2次圧力を一定 に保つことができ、しかも電動モータおよび発信器等の ような複雑かつ故障し易い装置を必要とせず簡単な構造 からなって、保守が容易で耐久性にも優れるコントロー ルバルブを提供しようとするものである。

[0005]

【課題を解決するための手段】この発明は、弁体とバル ブ本体とよりなって、前記弁体は、筒形状の一端が拡大 して他端より大径になって両端間の側面外周に突出した 流量制御部を有するロッド部と、前記ロッド部両端の少 なくとも大径側端部に該端部外周へ鍔状に突出して設け られたダイヤフラムとからなり、前記パルブ本体は、前 記ダイヤフラムの外周縁を固定してロッド部を軸方向に スライド可能に弁体を収容する弁室と、前記弁室の外側 にあってダイヤフラムまたはロッド部の小径側端面によ り弁室と仕切られた加圧室と、前記ロッド部外周と弁室 内壁面との間に形成されて、前記ロッド部が大径端部側 へスライドするに従い前記流量制御部と弁室内壁面間が 狭くなる流量制御通路部を有する被制御流体通路と、前 記ロッド部の小径端部側で被制御流体通路に連通しバル ブ本体外面で開口する被制御流体流入口と、前記ロッド 部の大径端部側で被制御流体通路に連通しバルブ本体外 面で開口する被制御流体流出口と、前記加圧室に通じバ ルブ本体外面で開口する加圧気体流入路とからなること を特徴とする流体コントロールバルブに係る。

【0006】なお、前記ダイヤフラムを、ロッド部の大 径側端部に設けられた第1ダイヤフラムと、前記第1ダ イヤフラムより小径からなってロッド部の小径側端部に 設けられた第2ダイヤフラムとから構成し、両ダイヤフ ラムにより加圧室を弁室と仕切ってもよい。

[0007]

【作用】加圧室には所定圧力の加圧気体が流入して弁体 を外面側から押す。一方、一次側の被制御流体流入口か ら被制御流体通路に入った被制御流体は、流量制御通路 部を通り、その後ロッド部の大径側端部を外方へ押した 後2次側の被制御流体流出口からバルブ本体外へ流出す

【0008】そして1次流量及び圧力が大になると、--する信号を電動モータ等に送り、その信号により電動モ 40 旦2次側流出量及び2次圧力が増大し、それと同時にロ ッド部の大径側端部に内側から外方へ向けて加わる圧力 も増大する。そのため、ロッド部の大径側端部に内側か ら加わる圧力が大径側端部外側にある加圧室の圧力に打 ち勝って、ロッド部が大径側端部方向に押される。そし てダイヤフラムが変形してロッド部が大径側端部方向へ スライドし、そのロット部のスライドにより、流量制御 通路部が狭くなって被制御流体通路を流れる流量が減少 する。それにより2次側の被制御流体流出口から流出す る流量が減少して2次圧力が低下し、1次側の流量及び 【発明が解決しようとする課題】そこで、この発明は前 50 圧力が増大しても2次側ではその変動が抑えられる。

【0009】逆に1次側の流量が減少して圧力が低下す ると、被制御流体通路を流れる流体の流量減少及び圧力 低下を生じて、ロッド部の大径側端部に内側から加わる 圧力が大径側端部外側の加圧室内の圧力よりも小さくな る。その結果、ロッド部が小径側端部方向へスライドし て、流量制御通路部を広げ、被制御流体通路を流れる流 量を増大させる。それにより、2次側の被制御流体流出 口からの流出量が増大し、2次圧力が増大するため、1 次側の流量及び圧力が低下しても2次側ではその変動が 抑えられる。

[0010]

【実施例】以下添付の図面に従ってこの発明を詳細に説 明する。図1はこの発明の一実施例に係るコントロール バルブの縦断面図、図2はその実施例に用いる弁体の斜 視図、図3はその実施例の作動を説明する部分拡大断面 図、図4は他の実施例の縦断面図、図5はその実施例に 用いる弁体の斜視図、図6はその実施例の作動を説明す る部分拡大断面図、図7はさらに他の実施例を示す要部 拡大断面図である。

【0011】図1ないし図3に示す実施例のコントロー 20 ルパルブ10は、弁体11と、その弁体が収容されるバ ルブ本体31とからなる。弁体11は、図1及び図2に 示されるように、ロッド部12とダイヤフラム22から なる。ロッド部12は、上端13側が下端14側よりも 大径となった縦断面形状がほぼ「T」字形からなる筒状 のもので、上下2つの半体15、16が螺合により一体 に組み合わされてなる。ロッド部12の下端14側に は、流量制御部17(図2及び図3に示す)が環状突出 形状に形成されている。

【0012】ダイヤフラム22は前記ロッド部12の上 30 端部にロッド部12と一体に形成されたものである。こ のダイヤフラム22はロッド部12の上端部外周に鍔状 に突出して、その外周縁23が厚肉となっている。ダイ ヤフラム22及びロッド部12は、各種のゴムあるいは 樹脂から構成されるが、なかでも耐薬品性、耐腐蝕性の 高いフッ素ゴムあるいはフッ素樹脂からなるものが好ま LUL

【0013】バルブ本体31は、第1ブロック32と第 2 ブロック42間に第3ブロック52を挟んだ3層構造 の円筒状からなり、フッ素樹脂等耐腐蝕性及び耐薬品性 40 の高い樹脂から構成される。第1プロック32及び第2 プロック42内には、加圧気体流入路33,43と加圧 室34、44が形成されている。加圧気体流入路33、 43は一端がバルブ本体外面で開口し、他端が加圧室3 4. 44に通じている。一方加圧室34. 44は、第3 ブロック52との合わせ面40、30で開口している。 第1プロックの加圧室34は、ダイヤフラム22の外周 縁23を除いた部分とほぼ等しい径からなり、第2プロ ックの加圧室44は、前記ロッド部12下端14外径と

の外周には第3ブロック52との合わせ面30にシール 用リング57が嵌着されている。

【0014】第3ブロック52は、パルブ本体31の中 間部を構成するもので、中央には内部を貫通する弁室 5 3が形成されている。弁室53は、中間部が細くなって ほぼ「工」字形の縦断面形状をした貫通穴からなるもの で、ロッド部12の外径より大となっている。弁室53 両端の内径は、第1プロック32の加圧室34内径とほ ぼ等しくされ、また第1ブロック32との合わせ面には 10 弁室53外周に凹溝55が形成されている。

【0015】前記凹溝55にダイヤフラム22の外周縁 23が嵌着されて弁体11が弁室53内に収容され、そ の後各ブロック32、42、52が組み合わされて一体 にされる。バルブ本体31内に収容された弁体11の口 ッド部12外周面と、弁室53内壁面間には被制御流体 通路56が形成される。その被制御流体通路56におい て、前記弁体ロッド部12の流量制御部17に対向する 弁室内壁面54(図3に示す)との間が流量制御通路部 58になる。また、被制御流体通路56は、ロッド部1 2の小径端部側において被制御流体流入口59に通じ、 他方ロッド部12の大径側端部において被制御流体流出 口60に通じている。

【0016】このようにしてなるコントロールバルブ1 0 は、流量及び圧力を制御したい気体あるいは液体から なる被制御流体の供給源に、パイプを介して被制御流体 流入口59が接続され、その被制御流体流入口59から 内部に被制御流体が送り込まれる。また、加圧気体流入 路33,43からは、一定圧力に加圧された気体、たと えば圧縮空気が吹き込まれる。この加圧気体の圧力は、 被制御流体の2次側流量及び圧力等により定められる。

【0017】前記加圧気体は、加圧室34,44内に到 りダイヤフラム22及びロッド部12の小径側端面を外 側から押す。また、被制御流体は、被制御流体通路56 内の流体制御通路部58を通り、ロッド部12の大径側 端部を外側へ押した後被制御流体流出口60からコント ロールバルブ10外へ流出する。

【0018】そして、被制御流体の1次側流量あるいは 圧力が変動した場合には次のように作動する。まず流量 あるいは1次圧力が増大した場合について説明する。そ の場合には、初めに被制御流体流出口60から流出する 流量および2次圧力が増大する。

【0019】しかし、それと同時に前記ロッド部12端 部の大径側端部に内側から加わる圧力も増大するため、 その内圧がロッド部の大径側端部外側にある加圧室34 の圧力に打ち勝ってロッド部12が大径側端部方向に押 される。そして鎖線のようにダイヤフラム22が変形し てロッド部12が大径側端部方向へスライドし、それに より流量制御通路部58が狭くなって被制御流体通路5 6を流れる流量が減少する。その結果、2次側の被制御 ほぼ等しい径からなる。また第2プロックの加圧室44 50 流体流出口60から流出する流量が減少して2次圧力が

低下し、2次側の流量及び圧力変動が抑えられる。

【0020】一方、1次側流量及び圧力が減少した場合 には、被制御流体流出口60から流出する流量及び2次 圧力が一旦減少する。しかし、それと同時に前記ロッド 部12端部の大径側端部に内側から加わる圧力が低下し て加圧室34の圧力よりも低下するため、ロッド部12 が小径側端部方向に押されてスライドする。それにより 流量制御通路部58が広くなって被制御流体通路56を 流れる流量が増大する。その結果、2次側の被制御流体 流出口60から流出する流量が増大して2次圧力が増大 10 し、2次側の流量及び圧力変動が抑えられる。

【0021】図4ないし図6に他の実施例を示す。この 実施例のコントロールバルブ70は、弁体71がロッド 部72の大径側端部に第1のダイヤフラム74、小径側 端部に第2のダイヤフラム76を有するものである。図 中78はバルブ本体、79,80は加圧室、81は弁 室、82は流量制御部、83は流量制御通路部、84は 被制御流体通路、85、86は加圧気体流入路、87は 被制御流体流入口、88は被制御流体流出口である。こ の実施例においては、弁室81と加圧室79、80と は、第1ダイヤフラム74、第2ダイヤフラム76によ り仕切られている。

【0022】前記各実施例において、ロッド部の小径端 部側加圧室44,80に通じる加圧気体流入路43.8 6を開放状態にして、加圧室44、80の圧力を大気圧 と等しくして用いてもよい。しかし、前記のように弁体 両外側の加圧室34、79、44、80を加圧気体で加 圧するようにすれば、より効率良く被制御流体をコント ロールすることができ、より好ましい。

【0023】また、図7にはさらに他の実施例の要部を 30 11 弁体 示す。この実施例は、弁体89両外側の2つの加圧室9 2、93を、弁体89のロッド部90を貫通させた連通 孔91で連結して、1個の加圧気体流入路94から2個 の加圧室92.93に加圧気体が流入するようにしたも ので、他の部分は前記図4ないし図6に示した実施例の コントロールバルブ70と同様である。

【0024】なお、前記各実施例において、ロッド部の 小径端部側加圧室44、80、93にスプリング(図示 せず)を配置して、弁体11、71、89をロッド部の 大径端部側へ付勢するようにしてもよい。そのスプリン 40 59 被制御流体流入口 グにより、微小圧の変動に対してもより確実にコントロ ールできるようになる。

[0025]

【発明の効果】以上図示し説明したように、この発明に よれば、きわめて簡単な構造により流体の2次側流量及 び2次圧力をコントロールすることができ、耐久性及び 保守性に優れる。しかも、耐腐蝕性あるいは耐薬品性の 高い材質からコントロールバルブを構成することもでき るため、極めて有用である。さらに、コントロールバル ブに作動用の加圧気体を供給するだけで作動し、また供 給する加圧気体の圧力をコントロールすることにより、 2 次側の流量及び圧力を容易にコントロールできる。そ のため、コントロールバルブとパイブで連結されてコン トロールバルブから離れた位置にある加圧気体供給源の 位置で、あるいはコントロールバルブと加圧気体供給源 間の所望位置で加圧気体の圧力をコントロールするだけ で2次側の流量及び圧力をコントロールでき、遠隔操作 も極めて容易である。

【図面の簡単な説明】

【図1】この発明の一実施例に係るコントロールバルブ の縦断面図である。

【図2】その実施例に用いる弁体の斜視図である。

【図3】その実施例の作動を説明する部分拡大断面図で ある。

【図4】他の実施例の縦断面図である。

【図5】その実施例に用いる弁体の斜視図である。

【図6】その実施例の作動を説明する部分拡大断面図で

【図7】さらに他の実施例を示す要部拡大断面図であ る。

【符号の説明】

- 12 ロッド部
- 17 流量制御部
- 22 ダイヤフラム
- 31 バルブ本体
- 33,34 加圧気体流入路
- 34.44 加圧室
- 53 弁室
- 5 6 被制御流体通路
- 58 流量制御通路部
- - 60 被制御流体流出口

[図7]

