1 Definitions

incident light: light hitting surface of object

directional light: light with a uniform direction and intensity

point light: light with a location, direction and intensity depend on relative location and distance

2 Light Sources

 $oldsymbol{l_s}$: intensity (RGB) of specular component of light from particular source l

 $\boldsymbol{l_d}$: intensity (RGB) of diffuse component of light from particular source l

 l_a : intensity (RGB) of ambient light; uniform for entire scene

 l_r : "radius"; distance from light source to fragment, only applicable to point point lights

3 Materials

 m_s : specular reflection constant (ratio of incident light reflected specularly)

 m_d : diffuse reflection constant (ratio of incident light reflected diffusely)

 m_a : proportion of ambient light reflected

 α : shininess constant; high for smoother, more mirror-like surfaces.

High α means small, bright specular reflection; lower α means larger, dimmer specular reflection

4 Other Factors

D: set of all directional light sources

P: set of all point light sources

 S_l : normalized vector pointing toward light source l from surface

 ${m N}$: surface normal

 \mathbf{R}_{l} : direction perfectly reflected ray would take; $2(S_{l} \cdot N)N - S_{l}$

 $oldsymbol{V}$: direction from surface to viewer / camera

I: illumination (RGB) on surface

C: color (RGB) of surface

FragColor: color displayed from illiumination I on surface with color C

5 Formulas

$$I = m_a l_a + \sum_{l \in D} \left(m_d (S_l \cdot N) l_d + m_s (R_l \cdot V)^{\alpha} l_s \right) + \sum_{l \in P} \frac{\left(m_d (S_l \cdot N) l_d + m_s (R_l \cdot V)^{\alpha} l_s \right)}{l_r^2}$$

 $FragColor = (I_rC_r, I_qC_q, I_bC_b)$