

INFORMATION SENSORS LAB WORK REPORT

For Lab Work №1

"Introduction to Sensors. Optical Sensors I"

Student Name: Zhu Chenhao

Student ID: 375462

HDU-ITMO joint institute, 2025

Part 1. Introduction to Sensors.

I. The circuit

Figure 1.1. Potentiometer data acquisition circuit

II. The program code

```
1 // C++ code
 2 //
 3
   int state = 0;
 4 int potentiometer = 0;
 5 int voltage_mV = 0;
 6
 7
   void setup() {
 8
     Serial.begin(9600);
9
10
11 void loop(){
    state = analogRead(potentiometer);
12
     voltage mV = map(state, 0, 1023, 0, 5000);
13
14
     Serial.println(voltage mV);
15
     delay(100);
16 }
```

Figure 1.2. Program code.

III. Table 1. Research data for Potentiometer

Experi	ment	Program		
Angular	Voltage,	Angular	Error	
position, °	mV	position, °		
α	Vout	αр	E	
0	0	0	0.00%	
45	801	43	4.44%	
90	1700	91	-1.11%	
135	2497	134	0.74%	
180	3299	177	1.67%	
225	4198	226	-0.44%	
270	5000	269	0.37%	

IV. Sensor's characteristic plot

Figure 1.3. Sensor's linear characteristic with a trendline

V. Link to a TinkerCAD project:

https://www.tinkercad.com/things/dOnubsRqntv-375462?sharecode=VQ6taOMwYAXxY0O8EJyn-v52rLDaCCvm3kpQKPuAqXo

Part 2. Optical Sensors I.

I. The circuit

Figure 2.2. LDR data acquisition circuit

II. The program code

```
1 // C++ code
2 //
   int ldrValue = 0;
4 int ldrPin = A0;
5 int voltage_mV = 0;
6
7
   void setup() {
8
     Serial.begin(9600);
9 }
10
11 void loop(){
    ldrValue = analogRead(ldrPin);
    voltage_mV = map(ldrValue, 0, 1023, 0, 5000);
13
14
   Serial.println(voltage mV);
15
     delay(100);
16 }
```

Figure 2.2. Program code.

III. Table 2. Research data for Photocell (LDR)

		Vout, mV	RLDR, Ohm	RLDRm, Ohm	Error, %	R2, Ohm	Vin, mV
Illumination, dark, Lm	0.1	29	171413.7931	180000	4.77%	1000	5000
Illumination, light, Lm	1000	3318	506.9318867	506	-0.18%		

IV. Calculations for light and dark resistance:

$$R_{LDR} = R_2 \cdot \left(\frac{V_{in}}{V_{out}} - 1\right)$$

V. Sensor's characteristic plot

Figure 2.3. Resistance as a function of illumination

VI. Link to a TinkerCAD project:

https://www.tinkercad.com/things/dOnubsRqntv-375462?sharecode=VQ6taOMwYAXxY0O8EJyn-v52rLDaCCvm3kpQKPuAqXo