

DC BIKE SHARE DEMAND

A Kaggle Competition

THE CHALLENGE

- I. Forecast hourly Capitol Bikeshare demand given information about weather and features of time.
- 2. Fit the model on 'training data' (first 19 days of the month) and apply it to 'test' data (remaining days).
 - This is different than what we covered in class—the test data is actually what we called "new data" (it does not contain data on demand)
- 3. Submit data to Kaggle for a score:
 - Kaggle compares fitted data on the "test" dataset to actual demand, and calculates a RMSLE (Root Mean Squared Log Error)

THE DATA AS DOWNLOADED:

(ALREADY VERY CLEAN)

Time	Weather	Demand
Y/M/D/H	Season	Registered
Holiday?	Conditions	Casual
Workday?	Temperature (2)	
	Windspeed	
	Humidity	

THE DATA TRANSFORMED:

(A FEW MORE FEATURES)

Time	Weather	Demand
Y,M,D,H	Season	Registered
Holiday?	Conditions	Casual
Workday?	Temperature (2)	
	Windspeed	
	Humidity	

THE DATA IN GRAPHS:

GOING FORWARD

- I will use a **regression model** to predict demand in the "test" dataset
- People are ranking in the 15% of the competition by using just using the data available (randomForest).
 - But, the rules do not state other data can cannot be used to make predictions.
 - WMATA has an API on metro rail/bus disruptions.

RESERVE SLIDES

