Mathematic Analysis with Matlab

Lecture 3: Applications of Function Derivative

Lecturer: Dr. Lian-Sheng Wang
Fall Semester 2019

Outline

Lagrange Mean Value Theorem

Differences between Symbolic Expression and Equations

Monotonic Range

Lagrange Mean Value Theorem

- The definition
 - Given f(x) is continuous on the closed interval [a, b],
 - f(x) is differentiable on open interval (a, b),
 - there exists some c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$
 (1)

Figure: Demo of Lagrange Mean Value Theorem.

Lagrange Mean Value Theorem: an example (1)

- Given function $f(x) = 1/x^4$ is defined in the range [1, 2],
- it satisifies the conditions in Lagrange Mean Value Theorem,
- There must be ξ that makes $f'(\xi) = (f(2) f(1))/(2-1)$
- Stage 1:
 - 1 syms x
 - 2 diff('1/x^4')
- ans: -4/x⁵
- Stage 2:
 - 1 f=inline('-4/x 5 -1/16+1');
 - 2 c=fzero(f, [1,2])
- ans: 1.3367

Lagrange Mean Value Theorem: an example (2)

- Show $f(x)=1/x^4$ along with the line defined by $f'(\xi)$
- **1** g = (f(2)-f(1))*x+b
- 2 g = -0.9375*x+b
- **3 b** is unknown
- **4** plug x=1.3367 into f(x)
- **5** we have g(1.3367)=f(1.3367)=0.3132
- 6 0.3132=-0.9375*1.3367+b

Lagrange Mean Value Theorem: an example (3)

- **4** plug x=1.3367 into f(x)
- **5** we have g(1.3367)=f(1.3367)=0.3132
- **6** 0.3132=-0.9375*1.3367+b
- solve('0.3132=-0.9375*1.3367+b',b)
- **8** g=-0.9375*x+1.5664
- **9** Two points: (0, g(0)); $(g^{-1}(0), 0)$
- 0 u=1:0.1:2;
- ① $z=1./u.^4$;
- plot(u,z);hold on;
- plot([0, 1.6708],[1.5664, 0])
- plot([?, ?],[?, ?],'r')

Outline

Lagrange Mean Value Theorem

Differences between Symbolic Expression and Equations

Monotonic Range

Difference between Symbolic Expression, Equations and String Expression

$$f(x) = x^2 - 4x + 1 (2)$$

- Symbolic Expr.
 - 1 syms x;
 - 2 $f=x^2-4*x+1$
 - \bigcirc limit(f,x,1);
 - 4 diff(f)
 - **5** x=2
 - **6** val(f)
 - **7** ezplot(f,[0,10])

- String Expr.
 - clear:
 - 2 $f='x^2-4*x+1'$
 - $3 \lim_{x \to 0} \lim_{x \to 0} f(x,x,1);$
 - 4 syms x
 - 6 limit(f,x,1);
 - 6 clear;

 - 8 syms x;
 - diff(f,x);

- Equations
 - clear;
 - $2 \times = [-1:0.1:2]$
 - 3 $f=x.^2-4*x+1$
 - 4 Pay attention x is a matrix of numbers
 - syms x;
 - **6** $f=x.^2-4*x+1$
 - 7 It is symbolic expression

- Try 'whos' whenever you are uncertain
- Convert symbolic expression to string: $char(x^2+x)$
- Convert string to symbolic expression: sym('x^2+x')

Difference between inline function and anonymous function

$$f(x) = x^2 - 4x + 1 (3)$$

- Inline function
 - 1 f=inline('x^2-4*x+1','x')
 - 2 limit(f, x, 1);
 - 3 diff(f)
- Anonymous function (Matlab V9.0 or later)
 - 1 $g=0(x) x^2-4*x+1;$
 - 2 limit(g,x,1);
 - 3 diff(g,x)
 - 4 syms x:
 - **6** limit(g, x, 1);
 - 6 diff(g, x)
 - Try 'whos' whenever you are uncertain

- function
 - 1 function val=f(x)
 - 2 $val=x^2-4*x+1$
 - end
 - 4 whos: inline
- Anonymous function

 - 2 Comparable to '#define g(x) $x^2-4*x+1$ ' in C
 - 3 whos: function_handle

Outline

Lagrange Mean Value Theorem

Differences between Symbolic Expression and Equations

Monotonic Range

Commands for solving polynomial equations

Given equation:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

 $c = [a_n, a_{n-1}, \dots, a_1, a_0]$

- Given f(x)=0, solve it by 'fzero'
 - 1 $f='x^2+2*x+4'$
 - 2 r=fzero(f,[a,b]) returns roots in range [a,b]
 - 3 r=fzero(f, x_0) returns root close to x_0
- solve f(x)=0 by 'solve'
 - $\mathbf{1}$ f='x^2+2*x+4'
 - 2 r=solve(f);
- solve f(x)=0 by 'roots'
 - \bullet c=[$a_n, a_{n-1}, \dots, a_1, a_0$]
 - 2 r=roots(c);

(b) Niels Henrik Abel (1802-1829)

Figure: Scientists who found the solution for high order equations.

Commands for solving polynomial equations (example)

Given equation:

$$x^3 + 6x^2 + 29 = 0 (4)$$

$$e^x - 6x^2 + 9 = 0 (5)$$

- Solve it by 'fzero'
 - 1 fzero(??????)
 - 2 Attention: input range must be finite and real
 - 3 Applies to all types of equations
- solve it by 'solve'
 - 1 solve(?????)
 - 2 Applies to all types of equations
- solve it by 'roots'
 - 1 roots([????]);
 - Only polynomial

Commands for solving polynomial equations (example)

Given equation:

$$x^3 + 6x^2 + 29 = 0 (1)$$

$$e^x - 6x^2 + 9 = 0 (2)$$

- Solve it by 'fzero'
 - 1 Equation 1: $fzero('x^3+6*x^2+29',[-10,10])$
 - **2** Equation 2: $fzero('exp(x)-6*x^2+9',0)$
- solve it by 'solve'
 - **1** Equation 1: solve(' x^3+6*x^2+29 ')
 - 2 Equation 2: solve('exp(x)-6*x^2+9')
- solve it by 'roots'
 - **1** Equation 1: roots([1, 6, 0, 29]);
 - 2 Equation 2: INAPPLICABLE

Take derivative of higher order

$$f(x) = x^3 - 2x + 1 \tag{3}$$

- Step 1:
 - 1 syms x
 - 2 diff('x^3-2*x+1')
- Step 2:
 - $1 \times = -4:0.1:4;$
 - 2 $y1=x.^3-2*x+1$;
 - **3** y2=x.^2-2;
 - 4 plot(x,y1,'k-',x,y2,'b*')
- Step 3:
 - \bullet c=roots([3,0,-2])
 - 2 Output: c=0.8165,-0.8165
 - 3 Consider following ranges:

 $(-\infty, -0.8165],$

Exercise 1 (1)

- Plot figure for following function and its second order derivative in [-8, 7]
- Work out its concave and convex ranges and corresponding inflection point

$$f(x) = x^4 + 2x^3 - 72x^2 + 70x + 24$$
 (4)

Exercise 1 (2)

$$f(x) = x^4 + 2x^3 - 72x^2 + 70x + 24$$
 (5)

Exercise 2 (1)

Work out the roots for following function with fzero and roots

$$f(x) = x^5 + x^4 - 4x^3 + 2x^2 - 3x - 7$$
 (6)

Q & A

Thanks for your attention!