

Report No.: ATE20190070

Page 1 of 76

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Consonance Technology Corporation

Bluetooth Headphone Cable

Model No.: XX, X1 Wireless, X2 Wireless, X3 Wireless, Storm Wireless, BTC-100, DUO Wireless, X1i/X1h, X2i/X2h, X3i/X3h, X4i/X4h, X5i/X5h, X6i/X6h, BT-WP1, BT-WP2, BT-WP3, BT-WP4, Wave Wireless, XX Extreme

FCC ID: 2AH9D-XX

Prepared for : Consonance Technology Corporation

Address : 4F, No.150, Nan-Jing East Rd., Sec 4, Taipei City 105, Taiwan

R.O.C.

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science & Industry

Park, Nanshan District, Shenzhen, Guangdong, P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20190070

Date of Test : January 21-January 25, 2019

Date of Report : January 28, 2019

TABLE OF CONTENTS

Descri	iption	Page
Test R	Report Certification	
	E OF CONTENTS	2
	ENERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2.	Accessory and Auxiliary Equipment	
1.3.	Description of Test Facility	
1.4.	Measurement Uncertainty	
2. M	EASURING DEVICE AND TEST EQUIPMENT	7
3. Ol	PERATION OF EUT DURING TESTING	8
3.1.	Operating Mode	8
3.2.	Configuration and peripherals	8
4. TI	EST PROCEDURES AND RESULTS	9
5. 20	DB BANDWIDTH TEST	10
5.1.	Block Diagram of Test Setup	
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Measurement	
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Test Result	11
6. C	ARRIER FREQUENCY SEPARATION TEST	16
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
7. N	UMBER OF HOPPING FREQUENCY TEST	23
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(a)(1)(iii)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	
8. D	WELL TIME TEST	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
	AXIMUM PEAK OUTPUT POWER TEST	
9.1.	Block Diagram of Test Setup	33

9.2.	The Requirement For Section 15.247(b)(1)	33
9.3.	EUT Configuration on Measurement	33
9.4.	Operating Condition of EUT	33
9.5.	Test Procedure	33
9.6.	Test Result	34
10. RA	ADIATED EMISSION TEST	40
10.1.	Block Diagram of Test Setup	40
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	42
10.5.	Operating Condition of EUT	43
10.6.	Test Procedure	
10.7.	Data Sample	44
10.8.	Tetst Results	44
11. BA	AND EDGE COMPLIANCE TEST	57
11.1.	Block Diagram of Test Setup	57
11.2.	The Requirement For Section 15.247(d)	57
11.3.	EUT Configuration on Measurement	57
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	58
11.6.	Test Result	
12. AC	C POWER LINE CONDUCTED EMISSION TEST	69
12.1.	Block Diagram of Test Setup	69
12.2.	Power Line Conducted Emission Measurement Limits	
12.3.	Configuration of EUT on Measurement	70
12.4.	Operating Condition of EUT	
12.5.	Test Procedure	70
12.6.	Data Sample	
12.7.	Test Results	71
13. AN	NTENNA REQUIREMENT	76
13.1.	The Requirement	
13.2.	Antenna Construction	

Report No.: ATE20190070

Page 4 of 76

Test Report Certification

Applicant : Consonance Technology Corporation

Manufacturer : Consonance Technology Corporation

EUT : Bluetooth Headphone Cable

Model No. : XX, X1 Wireless, X2 Wireless, X3 Wireless, Storm Wireless, BTC-100,

DUO Wireless, X1i/X1h, X2i/X2h, X3i/X3h, X4i/X4h, X5i/X5h, X6i/X6h, BT-WP1, BT-WP2, BT-WP3, BT-WP4, Wave Wireless,

XX Extreme

Measurement Procedure Used:

Data of Tact .

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

January 21 January 25, 2010

Date of Test.	January 21-January 23, 2017
Date of Report:	January 28, 2019
Test Engineer:	Frank
Tost Engineer.	(Frank Lü, Engineer)
Prepared by :	(St. Kang F. ne r)
Approved & Authorized Signer:	Montin Li Monogon
	(Martin Lü, Manager)

Report No.: ATE20190070

Page 5 of 76

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number : XX, X1 Wireless, X2 Wireless, X3 Wireless, Storm

Wireless, BTC-100, DUO Wireless, X1i/X1h, X2i/X2h, X3i/X3h, X4i/X4h, X5i/X5h, X6i/X6h, BT-WP1, BT-WP2,

BT-WP3, BT-WP4, Wave Wireless, XX Extreme

(Note: Above models are identical in schematic, structure and critical components except for model name different, So we prepare XX for

test.)

Bluetooth version : V4.2 (BR+EDR)

Frequency Range : 2402MHz-2480MHz

Number of Channels : 79

Antenna Gain(Max) : 2.12dBi

Antenna type : Ceramic antenna

Modulation mode : GFSK, $\pi / 4$ DQPSK, 8DPSK

Hardware version : V1.0

Software version : V4.2

Power Supply : DC 3.7V (Powered by Lithium battery) or

DC 5V (Powered by charging port)

Applicant : Consonance Technology Corporation

Address : 4F, No.150, Nan-Jing East Rd., Sec 4, Taipei City 105,

Taiwan R.O.C.

Manufacturer : Consonance Technology Corporation

Address : 4F, No.150, Nan-Jing East Rd., Sec 4, Taipei City 105,

Taiwan R.O.C.

1.2. Accessory and Auxiliary Equipment

AC/DC Power Adapter:		Model:TEKA006-0501000UKU
(provided by laboratory)		Input: 100-240V~50/60Hz 0.3A
		Output: DC 5V/1A

Page 6 of 76

1.3.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm . Shenzhen Accurate Technology Co., Ltd.

Site Location . 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42 dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Calibrated
		J F			until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	1 Year
EMI Test Receiver	Rohde& Schwarz	ESR	101817	Jan. 05, 2019	1 Year
Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan. 05, 2019	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU1183540-01	3791	Jan. 05, 2019	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 05, 2019	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-2 375/2510-60/11SS	N/A	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.3	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.4	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.5	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.6	Jan. 05, 2019	1 Year
Temporary antenna connector	NTGS	14AE	N/A	Jan. 21, 2019	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

Note: The equipment under test (EUT) was tested under fully-charged battery. The Bluetooth has been tested under continuous transmission mode.

EUT is connected to a computer through the usb-serial controller tool and Use test software to set the test mode.

Test software is (Airoha.AB152x_verC_LabTestTool)

3.2. Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emissions Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Page 11 of 76

5.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

Channel	Frequency (MHz)	GFSK 20dB Bandwidth (MHz)	∏/4-DQPSK 20dB Bandwidth (MHz)	8DPSK 20dB Bandwidth (MHz)	Result
Low	2402	1.104	1.464	1.458	Pass
Middle	2441	1.110	1.458	1.434	Pass
High	2480	1.122	1.446	1.410	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Date: 21.JAN.2019 16:33:58

Page 12 of 76

Middle channel

High channel

Date: 21.JAN.2019 16:35:14

Page 13 of 76

∏/4-DQPSK Mode

Low channel

Middle channel

Page 14 of 76

High channel

8DPSK Mode

Low channel

Date: 21.JAN.2019 16:37:41

Page 15 of 76

Middle channel

Date: 21.JAN.2019 16:38:11

High channel

Date: 21.JAN.2019 16:38:44

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2. Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3 MHz.
- 6.5.3.Set the adjacent channel of the EUT Maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

GFSK

Channel	Frequency	Channel	Limit	Result
Chamie	(MHz)	Separation(MHz)	(MHz)	Result
Low	2402	0.996	25KHz or 2/3*20dB	Dogg
Low	2403	0.996	bandwidth	Pass
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
	2441		bandwidth	
High	2479	1.002	25KHz or 2/3*20dB	Dogg
	2480		bandwidth	Pass

∏/4-DQPSK

117 . 2 212				
Channel	Frequency	Channel	Limit	Result
Chamie	(MHz)	Separation(MHz)	(MHz)	Result
Low	2402	1 002	25KHz or 2/3*20dB	Dogg
Low	2403	1.002	bandwidth	Pass
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
	2441		bandwidth	
High	2479	1.002	25KHz or 2/3*20dB	Dogg
	2480	1.002	bandwidth	Pass

8DPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.002	25KHz or 2/3*20dB	Dogg
Low	2403	1.002	bandwidth	Pass
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
	2441	1.002	bandwidth	rass
High	2479	1.002	25KHz or 2/3*20dB	Dogg
	2480	1.002	bandwidth	Pass

GFSK Mode

Low channel

Date: 21.JAN.2019 17:11:25

Middle channel

Date: 21.JAN.2019 17:12:00

Page 19 of 76

High channel

Date: 21.JAN.2019 17:12:28

Π /4-DQPSK Mode

Low channel

Date: 21.JAN.2019 17:14:03

Middle channel

Date: 21.JAN.2019 17:13:33

High channel

Date: 21.JAN.2019 17:13:00

8DPSK Mode

Low channel

Date: 21.JAN.2019 17:14:32

Middle channel

Date: 21.JAN.2019 17:15:03

Page 22 of 76

High channel

Date: 21.JAN.2019 17:15:32

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 7.5.3. Max hold, view and count how many channel in the band.

7.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	79	≥15	Pass

The spectrum analyzer plots are attached as below.

Number of hopping channels (GFSK Mode)

Date: 21.JAN.2019 17:08:29

Page 25 of 76

Number of hopping channels (∏/4-DQPSK Mode)

Date: 21.JAN.2019 17:09:20

Number of hopping channels (8DPSK Mode)

Date: 21.JAN.2019 17:10:11

Report No.: ATE20190070

Page 26 of 76

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

Page 27 of 76

8.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

GFSK Mode (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2441	0.440	140.8	400
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pv	ulse time \times (1600/(2*)	79))×31.6
DH3	2441	1.720	275.2	400
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	ulse time \times (1600/(4*)	79))×31.6
DH5	2441	3.010	321.1	400
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	ilse time \times (1600/(6*)	79))×31.6

$\Pi/4$ -DQPSK (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
2DH1	2441	0.450	144.0	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				79))×31.6	
2DH3	2441	1.740	278.4	400	
A period t	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6	
2DH5	2441	3.020	322.1	400	
A period t	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$		

8DPSK Mode (Worse case)

oblibit wode (worse case)				
Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
2DII1	,	` ,	` ,	` '
3DH1	2441	0.450	144.0	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				79))×31.6
3DH3	2441	1.750	280.0	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				79))×31.6
3DH5	2441	2.970	316.8	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

Note: We tested GFSK mode and $\Pi/4$ -DQPSK & 8DPSK mode the low, middle and high channel and recorded the Worse case data for all test mode.

The spectrum analyzer plots are attached as below.

GFSK Mode

DH1 Middle channel

Date: 21.JAN.2019 17:20:09

DH3 Middle channel

Date: 21.JAN.2019 17:18:58

Page 29 of 76

DH5 Middle channel

Date: 21.JAN.2019 17:18:34

Π /4-DQPSK Mode

2DH1 Middle channel

Date: 21.JAN.2019 17:29:56

2DH3 Middle channel

Date: 21.JAN.2019 17:25:24

2DH5 Middle channel

Date: 21.JAN.2019 17:24:51

8DPSK Mode

3DH1 Middle channel

Date: 21.JAN.2019 17:34:50

3DH3 Middle channel

Date: 21.JAN.2019 17:34:23

Page 32 of 76

3DH5 Middle channel

Date: 21.JAN.2019 17:33:58

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz.
- 9.5.3. Measurement the maximum peak output power.

Page 34 of 76

9.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

GFSK Mode

Of DIL Mode			
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	-5.79/0.0003	21 / 0.125
Middle	2441	-6.86/0.0002	21 / 0.125
High	2480	-7.93/0.0002	21 / 0.125

Π /4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	-5.31/0.0003	21 / 0.125
Middle	2441	-6.43/0.0002	21 / 0.125
High	2480	-7.14/0.0002	21 / 0.125

8DPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	-5.06/0.0003	21 / 0.125
Middle	2441	-6.53/0.0002	21 / 0.125
High	2480	-7.41/0.0002	21 / 0.125

The spectrum analyzer plots are attached as below.

Page 35 of 76

GFSK Mode

Low channel

Date: 24.JAN.2019 09:50:44

Middle channel

Date: 24.JAN.2019 09:51:24

Page 36 of 76

Date: 24.JAN.2019 09:51:55

Π /4-DQPSK Mode

Low channel

Date: 24.JAN.2019 09:53:04

Middle channel

Date: 24.JAN.2019 09:52:44

High channel

Date: 24.JAN.2019 09:52:23

8DPSK Mode

Low channel

Date: 24.JAN.2019 09:53:25

Middle channel

Date: 24.JAN.2019 09:53:51

Page 39 of 76

High channel

Date: 24.JAN.2019 09:54:12

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up. Frequency 30MHz-1GHz

Page 41 of 76

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

10.5. Operating Condition of EUT

10.5.1. Setup the EUT and simulator as shown as Section 10.1.

10.5.2. Turn on the power of all equipment.

10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the Worse case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Page 44 of 76

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	28.66	-15.19	13.47	40.0	-26.53	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu\nu/m$) = Reading($dB\mu\nu$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8.Tetst Results

Pass.

Test Lab: 3m Anechoic chamber

Test Engineer: Frank

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8DPSK mode and recorded the Worse case data (8DPSK mode) for all test mode.

2. Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.

The spectrum analyzer plots are attached as below.

Page 45 of 76

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #275

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2402MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Horizontal

Time: 13/29/13 Engineer Signature: Distance: 3m

				1	-		limit1:	
60								-
50								
40								
30				<u> </u>	10 0 4	5	March on March	6
20						MANAMANA	1414 of the state	
10	ndelegila Aprilaterylegila	(Jacog Mywaddywati	More made and more above popular	war allow de alem parlitar de la				

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	296.5022	49.61	-21.36	28.25	46.00	-17.75	QP	200	201	
2	306.0282	50.48	-21.04	29.44	46.00	-16.56	QP	200	321	
3	334.1254	49.45	-19.94	29.51	46.00	-16.49	QP	200	66	
4	355.9397	47.63	-19.09	28.54	46.00	-17.46	QP	200	146	
5	381.8519	46.30	-18.60	27.70	46.00	-18.30	QP	200	52	
6	948.6608	36.69	-6.35	30.34	46.00	-15.66	QP	200	132	

Page 46 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #274

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2402MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Vertical

Polarization:

Time: 13/28/24
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	37.5647	35.90	-22.55	13.35	40.00	-26.65	QP	100	103	
2	87.6050	38.86	-27.44	11.42	40.00	-28.58	QP	100	212	
3	152.0902	41.49	-27.87	13.62	43.50	-29.88	QP	100	19	
4	413.9912	36.34	-18.06	18.28	46.00	-27.72	QP	100	221	
5	741.8155	34.69	-10.51	24.18	46.00	-21.82	QP	100	312	
6	948.6608	35.84	-6.35	29.49	46.00	-16.51	QP	100	210	

Page 47 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #276

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2441MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Horizontal

Power Source: DC 3.7V

Date: 19/01/25/ Time: 13/29/29 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	31.4021	35.45	-20.55	14.90	40.00	-25.10	QP	200	201		
2	70.7047	37.99	-27.52	10.47	40.00	-29.53	QP	200	331		
3	143.2717	44.41	-28.00	16.41	43.50	-27.09	QP	200	210		
4	287.2727	47.58	-21.79	25.79	46.00	-20.21	QP	200	63		
5	318.0874	51.58	-20.68	30.90	46.00	-15.10	QP	200	116		
6	334.1254	49.45	-19.94	29.51	46.00	-16.49	QP	200	302		

Page 48 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #277

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2441MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Date: 19/01/25/ Time: 13/29/51 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	37.8297	36.15	-22.67	13.48	40.00	-26.52	QP	100	302	
2	80.8041	38.78	-27.40	11.38	40.00	-28.62	QP	100	111	L =
3	167.8136	42.33	-26.23	16.10	43.50	-27.40	QP	100	62	
4	337.6659	37.68	-19.81	17.87	46.00	-28.13	QP	100	113	
5	502.2472	37.00	-16.26	20.74	46.00	-25.26	QP	100	301	
6	945.3336	35.38	-6.41	28.97	46.00	-17.03	QP	100	187	

Page 49 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #279

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2480MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Horizontal

Power Source: DC 3.7V

Date: 19/01/25/ Time: 13/31/01 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	144.2820	44.92	-28.03	16.89	43.50	-26.61	QP	200	322	
2	306.0282	50.92	-21.04	29.88	46.00	-16.12	QP	200	92	
3	315.8599	50.62	-20.76	29.86	46.00	-16.14	QP	200	191	
4	346.0740	47.89	-19.46	28.43	46.00	-17.57	QP	200	66	
5	368.6681	46.60	-18.80	27.80	46.00	-18.20	QP	200	316	
6	464.8867	43.94	-16.83	27.11	46.00	-18.89	QP	200	207	

Page 50 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #278

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Headphone Cable

Mode: TX2480MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Vertical

Power Source: DC 3.7V

Date: 19/01/25/ Time: 13/30/06 Engineer Signature:

Distance: 3m

										limit	1:	-
60												
50												
40												
30												6
20	1				Mmmhainhligh gundanna		Mahardi	Mary Johnson	Cyphallan	Muk	MIN-/*	UKW.
10	water the think production	obelooplass extend	my Mus	this little	years who will be to have the same	happy have millioned	M. A. Carrier					
0.0				1								

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	34.1649	35.23	-21.25	13.98	40.00	-26.02	QP	100	201	
2	80.8041	38.78	-27.40	11.38	40.00	-28.62	QP	100	110	
3	167.8136	42.33	-26.23	16.10	43.50	-27.40	QP	100	66	
4	332.9534	38.02	-19.99	18.03	46.00	-27.97	QP	100	92	
5	674.6766	35.66	-12.05	23.61	46.00	-22.39	QP	100	22	
6	945.3336	35.38	-6.41	28.97	46.00	-17.03	QP	100	103	

Page 51 of 76

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #303

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2402MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Horizontal Power Source: DC 3.7V

Date: 19/01/25/ Time: 14/26/21 Engineer Signature: Distance: 3m

Page 52 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #302

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2402MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Power Source: DC 3.7V Date: 19/01/25/ Time: 14/24/27 Engineer Signature:

Polarization: Vertical

Distance: 3m

		-		-		-	: :		F 14	
		1				1			limit1:	
100									limit2:	
90					l					
			×							
80										
70									1.70130313	1276474.151
				1						
60					h			ļ	*********	
				1	\$					
50	***********			1		****				profound out
40					hormosomel mojem to	Warming Apple	Harry Manner	humidan	AND AND AND AND	
	market bernever popular	market market and the state of	white method	and in the formation of the second	Academic and a series					
30	Lake Dallower Milhs							1	******	*******
20.0	0						1			
1	1000.000	200	00	3000	5000	6000	7000 8000	9000		18000.0 MHz
	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
T			(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	(MHz)	(dBuV/m)	(UD)							
Т		(dBuV/m) 93.54	-6.37	87.17	1	1	peak	150	201	

Page 53 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #300

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Headphone Cable

Mode: TX2441MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Report NO.:ATE20190070 Note:

Engineer Signature:

Horizontal

Polarization:

Distance: 3m

110.	.0 dBuV/m									
						-		1 1	limit1:	-
100					ļ				limit2:	
		1								
90			······						******	
30						1				
70										
60	100000000000000000000000000000000000000									C 24 37 5 - 1
,,,					2					
50					*					
				1			and	Marian	Manage of the last	www.
40	***************************************	i	made of the sale	My house the section	howard White	principal them	Albanya P. J. J.			
30	mantantipadhar topomorum	and any a househop of the county	Malar AMI chart alle							
20.0										
	000.000	20	000	3000	5000	6000	7000 8000	9000		18000.0 MHz
-	ı			T		1			1	
	Freq.	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	(MHz)	(aDaviiii)	()							
	2441.021	95.55	-6.20	89.35	1	1	peak	200	195	

Page 54 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Date: 19/01/25/

Time: 14/23/07

Distance: 3m

Engineer Signature:

Power Source: DC 3.7V

Vertical

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #301

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Headphone Cable

Mode: TX2441MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2441.121	92.67	-6.20	86.47	1	1	peak	150	154		
2	4882.024	51.47	1.07	52.54	74.00	-21.46	peak	150	32		

Page 55 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #299

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2480MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Horizontal

Polarization:

Page 56 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #298

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Headphone Cable

Mode: TX2480MHz

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Time: 14/19/30
Engineer Signature:
Distance: 3m

Page 57 of 76

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the

Worse case was recorded in the test report.

Conducted Band Edge Result

Non-hopping mode

Non-nopping mode			
Frequency	Result of Band Edge	Limit of Band Edge	Result
(MHz)	(dBc)	(dBc)	
	GFSK Mo	ode	
2400.00	24.12	> 20dBc	Pass
2483.50	34.24	> 20dBc	Pass
	Π/4-DQPSK	Mode	
2400.00	23.09	> 20dBc	Pass
2483.50	35.05	> 20dBc	Pass
	OP POVI A		
	8DPSK M	ode	1
2400.00	23.73	> 20dBc	Pass
2483.50	33.72	> 20dBc	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 21.JAN.2019 17:02:45

Date: 21.JAN.2019 17:06:23

Page 60 of 76

Π /4-DQPSK Mode

Date: 21.JAN.2019 17:03:34

Date: 21.JAN.2019 17:05:52

Page 61 of 76

8DPSK Mode

Date: 21.JAN.2019 17:04:26

Date: 21.JAN.2019 17:05:22

Page 62 of 76

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3.All modes of operation were investigated and the worse case (8DPSK Mode) emissions are reported.

Test Lab: 3m Anechoic chamber

Test Engineer: Frank

The spectrum analyzer plots are attached as below.

Page 63 of 76

Non-hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #308

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2402MHz(8DPSK)

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Horizontal

Power Source: DC 3.7V

Date: 19/01/25/ Time: 14/36/42 Engineer Signature: Distance: 3m

110.0 dBuV/m limit1: limit2: 100 90 80 70 60 50 40 water water broken by a straight and the straight and the straight and the straight and the straight and a straight 30 20.0 2300.000 2440.0 MHz Reading Factor Result Limit Margin Height Freq. Degree Detector No. Remark (cm) (deg.) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (MHz) 40.44 -6.32 250 1 2390.000 34.12 74.00 -39.88 62 peak 2 2390.000 31.45 -6.3225.13 54.00 -28.87AVG 250 229 3 2400.000 63.05 -6.2756.78 74.00 -17.22250 210 peak

54.00

-5.82

AVG

250

129

Note: Average measurement with peak detection at No.2&4

-6.27

48.18

54.45

4

2400.000

Page 64 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #309

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Headphone Cable

Mode: TX2402MHz(8DPSK)

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Power Source: DC 3.7V Date: 19/01/25/ Time: 14/39/08 Engineer Signature:

Polarization: Vertical

Distance: 3m

	dBuV/m									
									limit1:	
100						*****			limit2:	
90	*************					*********	ń		********	
80										
70										
70				************				*******		
60	*************				******		3			
50										
30			.,				/ 6			
40				and Alde M	1		f	-	1. 4. 1	
4	and the grand wanter	marin harponione	Mandhearmahamh	mountail hall hall and	helikanskanskansk	harlamandani	- July	- Comment	more	manarylinh
30	walned the ground wanter	who we have been and	Marcheneraturel	monenti della di della di	1 ghaldred met da not	hanhahaan damma	- Marine	A Maria	wolldwighthan	monarother
30 20.0	addynal way	milen militariones	department and a	mountaile filher files for	to his hours have	haplanesser	ng-shirld	A Johnson	wolkenthant	
30	00.000	anthorization and anti-	Maiothearradaich	www.hibitadhdadh	hophway meet had	Halamarkenn.	northed .	- Amount	under 19th and	2440.0 MI
20.0	00.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	
20.0	Freq.			La Service Annual Control		Margin (dB)	Detector		Degree	2440.0 MI
30 20.0 230	Freq. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	Degree (deg.)	2440.0 MI
20.0	Freq. (MHz) 2390.000	(dBuV/m) 41.03	(dB) -6.32	(dBuV/m) 34.71	(dBuV/m) 74.00	(dB) -39.29	peak AVG	(cm) 150	Degree (deg.)	2440.0 MI

Note: Average measurement with peak detection at No.2&4

Page 65 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #311

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Headphone Cable

Mode: TX2480MHz(8DPSK)

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Power Source: DC 3.7V Date: 19/01/25/

Polarization: Horizontal

Time: 14/43/21 Engineer Signature: Distance: 3m

									limit1:		1
100									limit2:		
90		1							********	*********	
80						*********			********		
70											
		1									
60				*********	**********	******		*******	********	*********	
50										manio	
		,	21								1
40			d l								
	without the and all all all all all all all all all al	on the second state of the	A Marrian	dro Shahanphane	encontrapalateral tarb	donation depends	roughly	to have apply about	how	wherether stays	
40 30	white of the or shape for his had to	rubraseth	Name of the second	doministration of the state of	environmenterettend	olandiran disputera	and the same	topicopastyptiq-dost	handhaush	anther with my who was	
30 20.0		rydine world	Mountain	den Edwardsweine	errorepopulation (to bet	do folia disputes	rander by hours	topouropity-book	hom/Mound	antherworking solvense	
30 20.0	**************************************	e golden was all the	- American	den Shaharapharan	energy-waters the fel	ila faliki sihaniya	ready life was	topouropity-book	hand Marena	w/w//w//www. 2600.0	MHz
30 20.0 2	440.000 Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height (cm)	Degree (deg.)	2600.1) MHz
30 20.0	Freq. (MHz)	(dBuV/m)	Factor (dB)	Result (dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)) MHz
30 20.0 2	Freq. (MHz) 2483.500		Factor (dB) -5.89	Result	(dBuV/m) 74.00	(dB) -21.10	peak	(cm) 250	(deg.) 94) MHz
30 20.0 2	Freq. (MHz)	(dBuV/m)	Factor (dB)	Result (dBuV/m)	(dBuV/m)	(dB)	peak	(cm)	(deg.)) MHz

54.00

-27.56

AVG

Note: Average measurement with peak detection at No.2&4

-5.81

26.44

32.25

4

2500.000

250

11

Page 66 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #310

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %
EUT: Bluetooth Headphone Cable

Mode: TX2480MHz(8DPSK)

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Polarization: Vertical
Power Source: DC 3.7V

Date: 19/01/25/ Time: 14/41/28 Engineer Signature: Distance: 3m

									limit1:	
									limit2:	
100				*********						
90									********	
80					*********					
70						********				
60			<u> </u>							
		1	*							
50			2							*********
	k holds.		2	131. 14		1.4				
40	almost the first special markets	erwhydholyd		und Jahrandadhaa	dollar de la companya	Mitalkansalay	oon principles	handware	anal Vanash	wagnaghang
40	Marchidelphroperaces	e major de en		mlighanahillan	dollar the markets	Mitalannan	on many in the	hambanaha	mallana.	Washandhadh
40 30	Mondifichiliptensisconsisco	enganderal		nd karpadullan	addustlythan and byte	distribution	on minimized the	hanhager	mad Varman	whopenopleus
40 30 20.0	Moodhahladadoococash 440.000	en and help		mikilmindudhu.	dalkerithet the secondary	da produnção	est, 19th roll of th	han Aware	ing and Personal	2600.0 MHz
40 30 20.0 2		Reading (dBuV/m)		Result	Limit	Margin (dB)	Detector	Height (cm)	Degree (deg.)	2600.0 MHz Remark
40 30 20.0	440.000 Freq.		Factor				Detector peak			
40 30 20.0 2	Freq. (MHz)	(dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	(dB)	Detector	(cm)	(deg.)	
50 40 30 20.0 2	Freq. (MHz) 2483.500	(dBuV/m) 58.33	Factor (dB) -5.89	Result (dBuV/m) 52.44	Limit (dBuV/m) 74.00	(dB) -21.56	peak	(cm) 150	(deg.) 213	

Note: Average measurement with peak detection at No.2&4

Page 67 of 76

Hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Date: 19/01/25/

Time: 15/14/36

Distance: 3m

Engineer Signature:

Power Source: DC 3.7V

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Horizontal

Job No.: FRANK2019 #321

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Headphone Cable

Mode: HOPPING(D8PSK)

Model: XX

Manufacturer: Consonance Technology Corporation

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	41.59	-6.32	35.27	74.00	-38.73	peak	200	264	
2	2390.000	32.62	-6.32	26.30	54.00	-27.70	AVG	200	112	
3	2400.000	48.03	-6.27	41.76	74.00	-32.24	peak	200	92	
4	2400.000	39.16	-6.27	32.89	54.00	-21.11	AVG	200	102	
5	2483.500	43.19	-5.89	37.30	74.00	-36.70	peak	200	45	
6	2483.500	34.26	-5.89	28.37	54.00	-25.63	AVG	200	96	
7	2500.000	40.47	-5.81	34.66	74.00	-39.34	peak	200	116	
8	2500.000	31.66	-5.81	25.85	54.00	-28.15	AVG	200	302	

Note: Average measurement with peak detection at No.2&4&6&8

Page 68 of 76

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019 #322

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: Bluetooth Headphone Cable

Mode: HOPPING(D8PSK)

Model: XX

Manufacturer: Consonance Technology Corporation

Note: Report NO.:ATE20190070

Power Source: DC 3.7V Date: 19/01/25/

Vertical

Polarization:

Time: 15/22/40
Engineer Signature:
Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	44.09	-6.32	37.77	74.00	-36.23	peak	150	302	
2	2390.000	35.41	-6.32	29.09	54.00	-24.91	AVG	150	119	
3	2400.000	58.72	-6.27	52.45	74.00	-21.55	peak	150	93	
4	2400.000	49.45	-6.27	43.18	54.00	-10.82	AVG	150	120	
5	2483.500	47.87	-5.89	41.98	74.00	-32.02	peak	150	332	
6	2483.500	39.45	-5.89	33.56	54.00	-20.44	AVG	150	201	
7	2500.000	42.04	-5.81	36.23	74.00	-37.77	peak	150	56	
8	2500.000	33.45	-5.81	27.64	54.00	-26.36	AVG	150	156	

Note: Average measurement with peak detection at No.2&4&6&8

12.AC POWER LINE CONDUCTED EMISSION TEST

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators

12.1.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 70 of 76

12.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

12.3. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2. Turn on the power of all equipment.
- 12.4.3.Let the EUT work in test mode and measure it.

12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 71 of 76

12.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	$(dB\mu V)$	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.6	25.3	17.0	59.0	49.0	33.4	31.7	Pass

$$\begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \\ & Margin = Limit \ (dB\mu V) - Level \ (dB\mu V) \end{split}$$

Calculation Formula:

Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

12.7.Test Results

Pass.

Test Lab: 3m Anechoic chamber

Test Engineer: Frank

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

Page 72 of 76

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

Bluetooth Headphone Cable M/N:XX Manufacturer: Consonance Technology Corporation

Operating Condition: BT Communication Test Site: 1#Shielding Room Frank

Operator: Test Specification: N 240V/60Hz

Report NO.:ATE20190070 2019-1-24 / 9:59:24 Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SU _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "F-1198-3 fin"

2019-1-24 10:	01						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.345491	38.10	10.6	59	21.0	QP	N	GND
0.675618	41.90	10.8	56	14.1	QP	N	GND
1.086458	40.60	10.9	56	15.4	QP	N	GND
4.874037	41.30	11.1	56	14.7	QP	N	GND
5.300255	43.80	11.2	60	16.2	QP	N	GND
15.887948	42.60	11.4	60	17.4	OP	N	GND

MEASUREMENT RESULT: "F-1198-3 fin2"

19-1-24 10:	01							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.340018	31.70	10.6	49	17.5	AV	N	GND	
0.670245	34.20	10.8	46	11.8	AV	N	GND	
0.983264	32.60	10.8	46	13.4	AV	N	GND	
4.932760	33.00	11.2	46	13.0	AV	N	GND	
5.300255	35.70	11.2	50	14.3	AV	N	GND	
16.403538	35.50	11.4	50	14.5	AV	N	GND	
	Frequency MHz 0.340018 0.670245 0.983264 4.932760 5.300255	MHz dBμV 0.340018 31.70 0.670245 34.20 0.983264 32.60 4.932760 33.00 5.300255 35.70	Frequency MHz dBμV dB 0.340018 31.70 10.6 0.670245 34.20 10.8 0.983264 32.60 10.8 4.932760 33.00 11.2 5.300255 35.70 11.2	Frequency MHz dBμV dB dBμV 0.340018 31.70 10.6 49 0.670245 34.20 10.8 46 0.983264 32.60 10.8 46 4.932760 33.00 11.2 46 5.300255 35.70 11.2 50	Frequency MHz dBμV dB Limit Margin dB dBμV dBμV	Frequency MHz dBμV dB dBμV dB dBμV dB 0.340018 31.70 10.6 49 17.5 AV 0.670245 34.20 10.8 46 11.8 AV 0.983264 32.60 10.8 46 13.4 AV 4.932760 33.00 11.2 46 13.0 AV 5.300255 35.70 11.2 50 14.3 AV	Frequency MHz dBμV dB dBμV dB dBμV dB 0.340018 31.70 10.6 49 17.5 AV N 0.670245 34.20 10.8 46 11.8 AV N 0.983264 32.60 10.8 46 13.4 AV N 4.932760 33.00 11.2 46 13.0 AV N 5.300255 35.70 11.2 50 14.3 AV N	Frequency MHz dBμV dB dBμV dB Detector Line PE dBμV dB dBμV dB Detector Line PE dBμV dB dBμV dB Detector Line PE 10.340018 31.70 10.6 49 17.5 AV N GND 0.670245 34.20 10.8 46 11.8 AV N GND 0.983264 32.60 10.8 46 13.4 AV N GND 4.932760 33.00 11.2 46 13.0 AV N GND 5.300255 35.70 11.2 50 14.3 AV N GND

Page 73 of 76

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Bluetooth Headphone Cable M/N:XX Consonance Technology Corporation Manufacturer:

Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: Frank Test Specification: L 240V/60Hz

Report NO.:ATE20190070 2019-1-24 / 10:02:15 Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SU
Start Stop Step SUB_STD_VTERM2 1.70

IF Detector Meas. Transducer

Frequency Frequency Width Time Bandw. 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "F-1198-4 fin"

2019-1-24 10:	0.5						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.340018	39.20	10.6	59	20.0	QP	L1	GND
0.670245	41.90	10.8	56	14.1	QP	L1	GND
0.941021	41.00	10.8	56	15.0	QP	L1	GND
4.932760	41.50	11.2	56	14.5	QP	L1	GND
5.300255	43.30	11.2	60	16.7	QP	L1	GND
17.766905	45.20	11.4	60	14.8	OP	1.1	GND

MEASUREMENT RESULT: "F-1198-4 fin2"

2	019-1-24 10:	05						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.341378	31.70	10.6	49	17.5	AV	L1	GND
	0.654382	33.60	10.8	46	12.4	AV	L1	GND
	1.015172	32.60	10.8	46	13.4	AV	L1	GND
	4.992190	33.20	11.2	46	12.8	AV	L1	GND
	5.300255	34.80	11.2	50	15.2	AV	L1	GND
	17.766905	39.60	11.4	50	10.4	AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Bluetooth Headphone Cable M/N:XX Manufacturer: Consonance Technology Corporation

Operating Condition: BT Communication 1#Shielding Room Test Site:

Operator: Frank

Test Specification: L 120V/60Hz

Report NO.:ATE20190070 2019-1-24 / 9:28:58 Comment: Start of Test:

SCAN TABLE: "V 150K-30MHz fin" Short Description: _SUB_S SUB_STD_VTERM2 1.70

Detector Meas. Time Stop Step IF Start Transducer

Bandw. Frequency Frequency Width QuasiPeak 1.0 s 9 kHz NSLK8126 2008 150.0 kHz 30.0 MHz 4.5 kHz

Average

MEASUREMENT RESULT: "F-0070-1 fin"

2	019-1-24 9:32							
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.357000	25.50	10.9	59	33.3	QP	L1	GND
	0.492000	32.90	11.0	56	23.2	QP	Ll	GND
	1.086000	26.20	11.1	56	29.8	QP	L1	GND
	2.989500	22.90	11.3	56	33.1	QP	L1	GND
	5.640000	18.10	11.5	60	41.9	QP	L1	GND
	19.905000	19.50	11.7	60	40.5	QP	L1	GND

MEASUREMENT RESULT: "F-0070-1 fin2"

201	9-1-24 9:33	2						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBµV	dB	dΒμV	dB			
	0.361500	18.40	10.9	49	30.3	AV	L1	GND
	0.492000	26.50	11.0	46	19.6	AV	L1	GND
	1.518000	19.90	11.2	46	26.1	AV	L1	GND
	2.454000	14.90	11.3	46	31.1	AV	Ll	GND
	5.680500	9.90	11.5	50	40.1	AV	L1	GND
	13.168500	12.60	11.6	50	37.4	AV	L1	GND

Page 75 of 76

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Bluetooth Headphone Cable M/N:XX Manufacturer: Consonance Technology Corporation

Operating Condition: BT Communication 1#Shielding Room Test Site:

Frank Operator: Test Specification: N 120V/60Hz

Report NO.:ATE20190070 Comment: 2019-1-24 / 9:32:54 Start of Test:

SCAN TABLE: "V 150K-30MHz fin" Short Description: _SUB_S SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz Bandw. Time 9 kHz NSLK8126 2008 QuasiPeak 1.0 s

Average

MEASUREMENT RESULT: "F-0070-2 fin"

2019-1-24 9:3	5						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.361500	26.50	10.9	59	32.2	QP	N	GND
0.487500	30.90	11.0	56	25.3	QP	N	GND
0.982500	23.80	11.1	56	32.2	QP	N	GND
2.175000	23.90	11.3	56	32.1	QP	N	GND
5.437500	18.50	11.5	60	41.5	QP	N	GND
19.540500	13.80	11.7	60	46.2	QP	N	GND

MEASUREMENT RESULT: "F-0070-2 fin2"

20	019-1-24 9:35 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.352500	22.60	10.9	49	26.3	AV	N	GND
	0.505500	27.10	11.0	46	18.9	AV	N	GND
	1.666500	20.70	11.2	46	25.3	AV	N	GND
	2.134500	18.90	11.3	46	27.1	AV	N	GND
	5.460000	13.50	11.5	50	36.5	AV	N	GND
	20.625000	9.40	11.7	50	40.6	AV	N	GND

Page 76 of 76

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 2.12dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****