Integración y Series

NOTAS DE CLASE

Septiembre 31 de 2023

Juan Camilo Lozano Suárez

1 El criterio de la integral

Teorema 1. (Criterio de la integral) Sea f una función positiva y decreciente definida en el intervalo $[1,\infty)$ tal que $\lim_{x\to\infty} f(x) = 0$. Para cualquier $n \in \mathbb{Z}^+$ definimos

$$S_n = \sum_{k=1}^n f(k),$$
 $t_n = \int_1^n f(x)dx,$ $d_n = s_n - t_n.$

Entonces tenemos:

- i) $0 < f(n+1) \le d_{n+1} \le d_n \le f(1)$, para cualquier $n \in \mathbb{Z}^+$.
- *ii*) $\lim_{n\to\infty} d_n$ existe.
- iii) $\sum_{n=1}^{\infty} f(n)$ converge, si y sólo si la sucesión $\{t_n\}$ converge.
- *iv*) $0 \le d_k \lim_{n \to \infty} d_n \le f(k)$, para cualquier $k \in \mathbb{Z}^+$.

Prueba. i) Ya que f es positiva en $[1, \infty)$, inmediatamente se tiene 0 < f(n+1) para todo $n \in \mathbb{Z}^+$. Como $f \searrow$ en $[1, \infty)$, para cada $k \in \mathbb{Z}^+$ tenemos $f(x) \leq f(k)$ para todo $x \in [k, k+1]$, de modo que $\int_k^{k+1} f(x) dx \leq \int_k^{k+1} f(k) dx$. Así, para cada $n \in \mathbb{Z}^+$ obtenemos:

$$t_{n+1} = \int_{1}^{n+1} f(x)dx$$

$$= \sum_{k=1}^{n} \int_{k}^{k+1} f(x)dx$$

$$\leq \sum_{k=1}^{n} \int_{k}^{k+1} f(k)dx$$

$$= \sum_{k=1}^{n} f(k) \int_{k}^{k+1} dx$$

$$= \sum_{k=1}^{n} f(k)$$

$$= S_{n}.$$

Así, se sigue $-S_n \le -t_{n+1}$ y $S_{n+1} - S_n \le S_{n+1} - t_{n+1} = d_{n+1}$, pero $S_{n+1} - S_n = \sum_{k=1}^{n+1} f(k) - \sum_{k=1}^{n} f(k) = f(n+1)$, luego $f(n+1) \le d_{n+1}$. Por otra parte, para cada $n \in \mathbb{Z}^+$ se tiene $f(x) \ge f(n+1)$ para todo $x \in [n, n+1]$ (nuevamente, porque $f \searrow en[1, \infty)$), por tanto

$$\int_{n}^{n+1} f(x)dx \ge \int_{n}^{n+1} f(n+1)dx = f(n+1) \int_{n}^{n+1} dx = f(n+1),$$

y $\int_{n}^{n+1} f(x)dx - f(n+1) \ge 0$. Así, se obtiene

$$d_n - d_{n+1} = (S_n - t_n) - (S_{n+1} - t_{n+1})$$

$$= (t_{n+1} - t_n) - (S_{n+1} - S_n)$$

$$= (\int_1^{n+1} f(x)dx - \int_1^n f(x)dx) - (\sum_{k=1}^{n+1} f(k) - \sum_{k=1}^n f(k))$$

$$= \int_n^{n+1} f(x)dx - f(n+1) \ge 0,$$

con lo cual $d_{n+1} \leq d_n$. Como lo anterior vale para cualquier $n \in \mathbb{Z}^+$, hemos probado que $\{d_n\}$ es una sucesión decreciente, y por tanto para cualquier $n \in \mathbb{Z}^+$ se tiene

$$d_n \le d_1 = S_2 - t_1 = \sum_{k=1}^{1} f(k) - \int_1^1 f(x) dx = f(1),$$

lo cual completa la prueba de i).

- ii) De i) se tiene que $\{d_n\}$ es una sucesión decreciente y acotada inferiormente por 0, y por lo tanto $\{d_n\}$ converge, es decir, $\lim_{n\to\infty} d_n$ existe.
- iii) Se tiene que la serie $\sum_{n=1}^{\infty} f(n)$ converge, si y sólo si su sucesión de sumas parciales $\{S_n\}$ converge. Como $\lim_{n\to\infty} d_n = \lim_{n\to\infty} (S_n t_n)$ existe, si $\lim_{n\to\infty} S_n$ existe, también lo hace $\lim_{n\to\infty} (S_n (S_n t_n)) = \lim_{n\to\infty} t_n$, y recíprocamente, si $\lim_{n\to\infty} t_n$ existe, también lo hace $\lim_{n\to\infty} ((S_n t_n) + t_n) = \lim_{n\to\infty} S_n$. Así, $\{t_n\}$ converge, si y sólo si $\{S_n\}$ converge, es decir, si y sólo si $\sum_{n=1}^{\infty} f(n)$ converge.
- iv) Sea $n \in \mathbb{Z}^+$ cualquiera. En la prueba de i) se dedujo $d_n d_{n+1} = \int_n^{n+1} f(x) dx f(n+1)$. Como además tenemos

$$\int_{n}^{n+1} f(x)dx \le \int_{n}^{n+1} f(n)dx = f(n) \int_{n}^{n+1} dx = f(n),$$

tenemos

$$0 \le d_n - d_{n+1} = \int_n^{n+1} f(x)dx - f(n+1) \le f(n) - f(n+1).$$

Como esto vale para $n \in \mathbb{Z}^+$ arbitrario, para cualesquiera $k, \omega \in \mathbb{Z}^+$ con $\omega \geq k$, tendremos

$$0 \le \sum_{n=k}^{\omega} (d_n - d_n + 1) \le \sum_{n=k}^{\omega} (f(n) - f(n+1)),$$

y por lo tanto

$$0 \le \sum_{n=k}^{\infty} (d_n - d_{n+1}) \le \sum_{n=k}^{\infty} (f(n) - f(n+1)).$$

Notemos además que las series $\sum_{n=k}^{\infty} (d_n - d_{n+1})$ y $\sum_{n=k}^{\infty} (f(n) - f(n+1))$ son telescópicas, de modo que

$$\sum_{n=k}^{\infty} (d_n - d_{n+1}) = d_k - \lim_{n \to \infty} d_{n+1} = d_k - \lim_{n \to \infty} d_n,$$

y,

$$\sum_{n=k}^{\infty} (f(n) - f(n+1)) = f(k) - \lim_{n \to \infty} f(n+1) = f(k),$$

pues por hipótesis $\lim_{x\to\infty} f(x) = 0$. Así, obtenemos

$$0 \le d_k - \lim_{n \to \infty} d_n \le f(k),$$

para $k \in \mathbb{Z}^+$ cualquiera.

- Observación 2. Que la sucesión $\{t_n\}$ converja quiere decir que $\lim_{n\to\infty} t_n = \lim_{n\to\infty} \int_1^n f(x)dx$ exista, es decir, que la integral impropia $\int_1^\infty f(x)dx$ converge. Así, iii) nos dice que $\sum_{k=1}^\infty f(n)$ converge, si y sólo si $\int_1^\infty f(x)dx$ converge; en la práctica, esta es la forma de usar el criterio de la integral para estudiar la convergencia de series.
 - Si llamamos $D = \lim_{n \to \infty} d_n$, entonces i) implica $0 \le D \le f(1)$, y de iv) se tiene

$$0 \le \sum_{l=1}^{k} f(l) - \int_{1}^{k} f(x)dx - D \le f(k)$$

para cualquier $k \in \mathbb{Z}^+$. Esta desigualdad es extremadamente útil para calcular ciertas sumas finitas mediante integrales.