Multiple Sequence Alignment with Genetic Algorithms

Andrew Francl
Introduction to Bioinformatics

Genetic Algorithms

Biological Evolution

Genetic Algorithm

Evolution Process

- Define initial parameters
- Encode Parameters into genome
- Create population of randomly created genomes

Evolution Process

- Need evaluation function
- Evaluate function and build "Roulette Wheel"

Roulette Wheel

store

Selection opration

Solection opration

Offspring chromosomes

Insert

Rescale all?

yes

Scaling operation

Slop criteria

Feached

End

 Select next parents using Roulette Wheel method

Evolution Process

- New population is mix of children and previous generation parents
 - Chosen by roulette selection method

GAs in Sequence alignment

Evaluation function

ALIGNMENT COST(A) =
$$\sum_{i=2}^{N} \sum_{j=1}^{i-l} W_{i,j} COST(A_i, A_j)$$

- Treat specific alignments as organisms in the population
- Recombine pieces of alignment to form new population

New Sequence Creation

Pseudocode

Initialisation 1. create G_0 Evaluation 2. evaluate the population of generation $n(G_n)$ 3. if the population is stabilised then END 4. select the individuals to replace 5. evaluate the expected offspring (EO) Breeding 6. select the parent(s) from G_n 7. select the operator 8. generate the new child 9. keep or discard the new child in G_{n+1} 10. goto 6 until all the children have been successfully put into G_{n+1} 11. n = n+112. goto EVALUATION End 13. end

Using Saga

- Search "SAGA multiple sequence alignment"
 - "tcoffee" webpage has a UNIX file
- Unzip/Install tar as ourlined in documentation
- Use

saga pep_file my_file.pep PARALLEL_GA 2 PARALLEL_EXCHANGE 10

Input

>2gbp

ADTRIGVTIYKYDDNFMSVVRKAIEQDAKAAPDVQLLMNDSQNDQSKQNDQIDVLLAKGVKALAINLVDPAAAGTVIEKARGQNVPVVFFNKEPSRKALDSYDKAYYVGTDSKESGIIQGDLIAKHWAANQGWDLNKDGQIQFVLLKGEPGHPDAEARTTYVIKELNDKGIKTEQLQLDTAMWDTAQAKDKMDAWLSGPNANKIEVVIANNDAMAMGAVEALKAHNKSSIPVFGVDALPEALALVKSGALAGTVLNDANNQAKATFDLAKNLADGKGAADGTNWKIDNKVVRVPYVGVDKDNLAEFSKK

>6abp

NLKLGFLVKQPEEPWFQTEWKFADKAGKDLGFEVIKIAVPDGEKTLNAID SLAASGAKGFVICTPDPKLGSAIVAKARGYDMKVIAVDDQFVNAKGKPMD TVPLVMLAATKIGERQGQELYKEMQKRGWDVKESAVMAITANELDTARRR TTGSMDALKAAGFPEKQIYQVPTKSNDIPGAFDAANSMLVQHPEVKHWLI VGMNDSTVLGGVRATEGQGFKAADIIGIGINGVDAVSELSKAQATGFYGS LLPSPDVHGYKSSEMLYNWVAKDVEPPKFTEVTDVVLITRDNFKEELEKK GLGGK

Results

alignment: binding.ref aln contains 7 sequences, length=500 2gbp ADTRIGVTIYK----YDDNFMSVVRKAIEQDAKAAPD-------VQLL 6abp -NLKLGFLVKQ----FEVI 21iv EDIKVAVVG--AMSGPVAQYGDQEFTGAEQAVADIN-AKGGIKGNKLQIA 2lbp DDIKVAVVG--AMSGPIAQWGIMEFNGAEQAIKDIN-AKGGIKGDKLVGV 1gcg ADTRIGVTIYK----YDDNFMSVVRKAIEKDGKSAPD-------VQLL 1glg ADTRIGVTIYK----YDDNFMSVVRKAIEQDAKAAPD-------VQLL 1dbp -KDTIALVVST----LNNPFFVSLKDGAQKEADKL-G------YNLV 2gbp MNDSQ-NDQSKQNDQIDVLLAKGVKALA--INLVDPAAAGTVIEKARGQN 6abp KIAV--PDGEKTLNAIDSLAASGAKGFV--ICTPDPKLGSAIVAKARGYD 21iv KYDD-ACDPKQAVAVANKVVNDGIKYVIGHLCSSSTQP---ASDIYEDEG 2lbp EYDD-ACDPKQAVAVANKIVNDGIKYVIGHLCSSSTQP---ASDIYEDEG 1gcg MNDSQ-NDQSKQNDQIDVLLAKGVKALA--INLVDPAAAGTVIEKARGQN 1glg MNDSQ-NDQSKQNDQIDVLLAKGVKALA--INLVDPAAAGTVIEKARGQN 1dbp VLDSO-NNPAKELANVODLTVRGTKILL--INPTDSDAVDNAVKMANOAN 2gbp VPVVFFNKEP------SRKALDSYDKA-----YYVGTD-SKESG 6abp MKVIAVDDQFVNAKGKPMDT------PLVMLA-ATKIG 21iv ILMITPAATAPELT------ARGYQLILRT-TGLDSDQG 2lbp ILMISPGATAPELT-----ORGYOHIMRT-AGLDSSOG 1gcg VPVVFFNKEP-----SRKALDSYDKA-----YYVGTD-SKESG 1glg VPVVFFNKEP-----SRKALDSYDKA-----YYVGTD-SKESG 1dbp IPVITLDRQA------T--KG-EV--V-----SHIASD-NVLGG