

電子學一

林宗賢 September 23, 2021

Course Outline

Microelectronic Circuits

Part 1: Devices and Basic Circuits (Chapter 1~6)

- 1. Signals, Amplifiers, and Semiconductors
- 2. Operational Amplifiers
- 3. Diodes
- 4. Bipolar Junction Transistors (BJTs)
- MOS Field-Effect Transistors (MOSFETs)
- 6. Transistor Amplifiers

Part 2: Analog Integrated Circuits (Chapter 7~13)

7. Building Blocks of Integrated Circuit Amplifiers

Handwriting on blackboard for later lectures.

Week 1: Introduction

- Review
- Chapter1: Signals, Amplifiers, and Semiconductors
 - learn basic concepts and terminology
 - Signals
 - Frequency spectrum of signals
 - Analog and digital signals
 - Amplifiers
 - Circuit models for amplifiers
 - Frequency response of amplifiers
 - 1.7 ~ 1.12 (Semiconductor, pn junction); move to later part

Basic Device - Resistor

- For a linear resistor:
 - $V = I \times R \text{ (Ohm's Law)}$
 - R: resistance, unit: ohm (Ω)
- Conductance (G)
 - G = 1/R, unit: mho, siemen (Ω^{-1}, S)
- Power dissipation:
 - $-P = V \times I = I^2 \times R = V^2/R$
 - Power consumed by a resistor is dissipated in the form of heat (ohmic heating)
 - e.g. toaster, fuse

Resistivity

Resistivity (ρ) is a material property

Rubber (insulator) ρ = 10¹² Silicon (semiconductor) ρ = 2300 Copper (conductor) ρ = 1.7 ×10⁻⁸ Aluminum (conductor) ρ = 2.8 ×10⁻⁸

Sheet resistance (R_□)

$$R = \rho \frac{L}{WH} = \frac{\rho}{H} \frac{L}{W} = R_{\square} \times (number\ of\ squares); \quad R_{\square} = \frac{\rho}{H}$$

- Sheet resistance and resistivity are important parameters in integrated circuit (IC) designs.
- Resistance varied with temperature (temperature dependent)

Capacitor

- Passive elements: R, C, L
 - R: dissipate energy
 - C and L: store energy
- A capacitor consists of 2 conducting plates separated by an insulator (dielectric).
- For a linear capacitor:

$$C = \frac{Q}{V}$$

$$i = \frac{dQ}{dt} = \frac{d(CV)}{dt} = C\frac{dV}{dt}$$

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i dt + v(t_0)$$

$$C = \varepsilon \frac{A}{d}$$

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

 ϵ_0 : free space permittivity 8.854 ×10⁻¹² F/m

 ε_r : relative permittivity (dielectric constant)

Capacitor

Three cases:

$$i = C\frac{dV}{dt}$$

- A capacitor is an open circuit at DC.
- The voltage on a capacitor must be continuous.
- Power delivered to a capacitor:

$$P = vi = vC \frac{dv}{dt} \Rightarrow Pdt = Cvdv \Rightarrow W = \int Pdt = \int Cvdv$$

$$W = \frac{1}{2}Cv^2 = \frac{1}{2}\frac{Q^2}{C}$$
 (the energy stored in a capacitor)

Inductor

- Capacitors store energy in an electric field, while inductors store energy in a magnetic field.
- Magnetic field is induced by passing current through a coil of wire.
- Faraday's Law: time-varying current induces a voltage in the coil

$$v = L\frac{di}{dt} \qquad (i = C\frac{dv}{dt})$$

- An inductor is a short circuit at DC.
- The current through an inductor must be continuous.
- Power delivered to an inductor:

$$P = vi = L\frac{di}{dt}i \Rightarrow Pdt = Lidi \Rightarrow W = \int Pdt = \int Lidi$$
 $W = \frac{1}{2}Li^2$ (the energy stored in an inductor)

Sources

Independent (ideal) sources

Dependent (controlled) sources

(C

(current-controlled current source)

KCL & KVL

 Kirchhoff's Current Law (KCL): the sum of all currents at a circuit node is zero.

$$(-i_1)+i_2+i_3+i_4+(-i_5)=0$$

$$\sum (i_n) = 0$$

• Kirchhoff's Voltage Law (KVL): the sum of all voltages around a closed path (loop) is zero.

$$V_s + (-V_1) + (-V_2) + V_3 = 0$$

$$\sum (v_n) = 0$$

Conservation of energy!

An Electronic System

A generic electronic system (e.g. an <u>loT</u> device, or a <u>wearable</u> device)

analog digital

Sensors/
Transducers
Interface

ADC

Signal

Signal

Fransceiver
(Transmitter & Receiver)

- Electronics and microelectronics
 - From vacuum tubes to discrete transistors, to integrated circuits

Wearable Devices

Implanted Device

- Glaucoma is one of the common causes for blindness.
- Losing peripheral vision and developing tunnel vision.
- Caused by increased pressure in the eyeball, which impairs the blood supply to the retina.
- Require continuous monitoring of the eye pressure.
- Implanted pressure sensor

Glaucoma Contact Lens

 Wireless MEMS Sensor-Embedded Contact Lens for Glaucoma Treatment

 A two-part system that incorporates <u>a receiver worn by the patient</u> <u>around his neck</u> and <u>the smart contact lens</u>. Besides the strain gauge the lens incorporates an RF transmitter, a miniature processing circuit, and an antenna for conveying measured data to the receiver.

(Sensimed's Triggerfish Lens)

Tsung-Hsien Lin 6

Wearable – Contact Lens

• IEEE Spectrum, July 2017

(Verily Life Sciences)

The Greatest Wearable Device

Signals

- Physical signal vs. electrical signal
 - Transducers convert physical signals into electrical signals
- Electrical signals:
 - Voltage signal

Thévenin equivalent circuit

- Current signal

Norton equivalent circuit

- For an ideal voltage/current source, R_s =?
- What is the role of R_s ?

Signal Source Modeling

Practical sources

 Considering the load R_L, how to maximize the output voltage (V_L) or current (I_L)?

Signals

Time domain vs. Frequency domain

-
$$V(t) = V_a \times \sin(\omega t) = V_a \times \sin(2\pi f_a t)$$

$$\Rightarrow \omega = 2\pi f_a$$
; $f_a = 1/T$

For a "random" signal

Signals

- Conversion from time domain to frequency domain
 - Fourier transform and Fourier series (will be covered in "Signal and System")
 - For a square wave $\Rightarrow v(t) = \frac{4V}{\pi} (\sin \omega_0 t + \frac{1}{3} \sin 3\omega_0 t + \frac{1}{5} \sin 5\omega_0 t +)$

Analog and Digital Signals

- Analog signals: continuous
- Digital signals: signal represented by a sequence of numbers

Amplifiers

Amplification

$$v_o(t) = Av_i(t) + Bv_i(t)^2 + Cv_i(t)^3 + \dots$$

- Linear amplification: B=C= =0 (Linear Properties)
- Non-linear amplification ⇒ distortion
- Symbol:

(a)

Gain

Voltage, current, and power gains

- Current gain $(A_i) = i_o/i_i (I/I)$
- Power gain $(A_p) = v_o i_o / v_i i_i (W/W)$
- Decibels (dB)
 - $-20 \times log|A_v|$
 - $-20 \times log|A_i|$
 - $-10 \times log|A_p|$

Power Dissipation

Power consumption

Single power supply

$$P_{dc} = V_{dc} \times I_{dc}$$

$$P_{in} = V_{in} \times I_{in}$$

$$P_L = V_{out} \times I_{out}$$

Efficiency

$$\eta \equiv \frac{P_L}{P_{dc}} \times 100\%$$

Dual power supply

$$P_{dc} = V_{dc1} \times I_{dc1} + (-V_{dc2}) \times (-I_{dc2})$$

$$P_{in} = V_{in} \times I_{in}$$

$$P_L = V_{out} \times I_{out}$$

Amplifier Saturation

Amplify signals (with information)

- What if input amplitudes keep increasing?
 - Output waveform is limited by DC power supply voltages

Saturation (clipping)

Transfer Characteristics

- Transfer characteristic (transfer curve, v_i - v_o curve)
 - Ideal case

- practical case

Proper biasing and small-signal operation

Amplifier Model

- Model: represent a complex circuit with a simplified version
 - Can have many versions of models, depends on biasing
 - Simplify circuit analysis

Cascaded Amplifier

Allow more flexibility in amplifier design: gain, input/output impedance, etc.

$$v_{L} = A_{v3}v_{i3} \frac{R_{L}}{R_{o3} + R_{L}}; \quad v_{i3} = A_{v2}v_{i2} \frac{R_{i3}}{R_{o2} + R_{i3}}; \quad v_{i2} = A_{v1}v_{i1} \frac{R_{i2}}{R_{o1} + R_{i2}}; \quad v_{i1} = v_{s} \frac{R_{i1}}{R_{s} + R_{i1}}$$

$$v_{o} = v_{s}A_{v3}A_{v2}A_{v1} \frac{R_{L}}{R_{o3} + R_{L}} \frac{R_{i3}}{R_{o2} + R_{i3}} \frac{R_{i2}}{R_{o1} + R_{i2}} \frac{R_{i1}}{R_{s} + R_{i1}}$$

Four Amplifier Types

Ideal Case Model **Gain Expression Type** $A_{vo} \equiv \frac{v_o}{v_i} \Big|_{i=0} (V/V) \qquad R_i = \infty, R_o = 0$

Voltage Amplifier

$$A_{vo} \equiv \frac{v_o}{v_i} \bigg|_{i_o = 0} (V/V)$$

$$R_i = \infty, R_o = 0$$

Current Amplifier

$$A_{is} \equiv \frac{i_o}{i_i}\bigg|_{v_o=0} (A/A)$$

$$R_i = 0, R_o = \infty$$

Transconductance Amplifier

$$G_m \equiv \frac{i_o}{v_i}\bigg|_{v_o=0} (A/V)$$

$$R_i = \infty, R_o = \infty$$

Transresistance Amplifier

$$R_{m} \equiv \frac{v_{o}}{i_{i}} \bigg|_{i_{o}=0} (V/A)$$

$$R_i = 0, R_o = 0$$

Amplifier Type

These four types are equivalent

$$A_{vo} = \frac{v_o}{v_i} = \frac{i_o R_o}{i_i R_i} = A_{is} \left(\frac{R_o}{R_i}\right)$$
$$= \frac{v_o}{i_i R_i} = \frac{R_m}{R_i}$$
$$= \frac{i_o R_o}{v_i} = G_m R_o$$

- These models are two-port networks
- These models are unilateral

Example 1.4

• BJT (bipolar junction transistor)

Equivalent circuit

• Find \mathbf{v}_o and \mathbf{A}_v

$$v_o = (-g_m v_{be})(R_L || r_o)$$

$$v_{be} = v_s \frac{r_{\pi}}{R_s + r_{\pi}} \implies v_o = -g_m v_s \frac{r_{\pi}}{R_s + r_{\pi}} (R_L \| r_o) \implies A_v = \frac{v_o}{v_s} = -g_m \frac{r_{\pi}}{R_s + r_{\pi}} (R_L \| r_o)$$

Frequency Response

Different amplifications at different frequencies

 $\angle A_{v}(\omega) = \phi$

 Only frequency-dependent components cause frequency response

- R, L, C: ???

Frequency Dependence of Devices

Describing devices in time-domain can be quite complicated

$$i = C \frac{dv}{dt}$$
; if $v = v_A \sin(\omega t) \Rightarrow i = C \omega v_A \cos(\omega t)$ For a certain \mathbf{v} (amplitude v_A), \mathbf{i} grows as ω increases. $\Rightarrow \frac{v_A}{i} \propto \frac{1}{C \omega}$

$$v = L \frac{di}{dt}$$
; if $i = i_A \sin(\omega t) \Rightarrow v = L \omega i_A \cos(\omega t)$ For a certain i (amplitude i_A), v grows as ω increases. $\Rightarrow \frac{v}{i_A} \propto L \omega$

- Define "impedance" in the frequency domain
 - Why impedance? (recall basic circuit analysis techniques: KCL, KVL, and Ohm's Law)
 - $Z_L = j\omega L = sL$ (reactance or impedance); $s = j\omega$
 - $Z_C = 1/j\omega C = 1/sC$ (reactance or impedance)
 - $Z_R = R$ (resistance or impedance)

STC Network

- A STC network: a RC or RL circuit
 - Time constant τ=RC or L/R
- RC low pass (LP) network

$$T(s) = \frac{v_o}{v_c} = \frac{1/sC}{R+1/sC} = \frac{1}{1+sRC} = \frac{1}{1+s/\omega_0}$$
 $\omega_0 = 1/RC$

$$T(\omega) = \frac{1}{1 + j\omega/\omega_0} \Rightarrow |T(\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}$$
$$\angle T(\omega) = -\tan^{-1}(\omega/\omega_0)$$

RC high pass (HP) network

$$T(s) = \frac{v_o}{v_i} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC} = \frac{1}{1 + s/\omega_0} \quad \omega_0 = 1/RC \qquad T(s) = \frac{v_o}{v_i} = \frac{R}{R + 1/sC} = \frac{sRC}{1 + sRC} = \frac{s}{\omega_0 + s} \quad \omega_0 = 1/RC$$

$$T(\omega) = \frac{j\omega}{\omega_0 + j\omega} \Rightarrow |T(\omega)| = \frac{1}{\sqrt{(\omega_0 / \omega)^2 + 1}}$$

$$\angle T(\omega) = \tan^{-1}(\omega_0 / \omega)$$

STC Circuit Bode Plots

• LPF

$$T(\omega) = \frac{1}{1 + j\omega/\omega_0} \Rightarrow |T(\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}$$

$$\angle T(\omega) = -\tan^{-1}(\omega/\omega_0)$$

HPF

$$T(\omega) = \frac{j\omega}{\omega_0 + j\omega} \Rightarrow |T(\omega)| = \frac{1}{\sqrt{(\omega_0 / \omega)^2 + 1}}$$

$$\angle T(\omega) = \tan^{-1}(\omega_0/\omega)$$

Amplifier Classifications

Direct coupled amplifier **Tuned amplifier** Capacitively coupled amplifier (ac coupled) (bandpass) LC |T| (dB) |T| (dB) |T| (dB) Center frequency

Problem Solving and Analysis

- Understand the problem
 - Learn to ask questions
 - "Asking the right question is half the answer"
- Divide the problem into modules
- Represent each module with equivalent model
- Plug in the models to simplify the problem
- Solve the problem with reasonable approximation
 - Gain insight

武林高手

- · 劍招 vs. 劍意
- 張三豐 傳授 張無忌 太極劍
- 風清揚 傳授 令狐沖 獨孤九劍
- 劍招: equation, calculation ⇒ practice
- 劍意: intuition, insight ⇒ "feel" and "see" how circuits work