Bond Risk and Portfolios

Under Redevelopment

Interest Rate Risk

$$DP = \frac{dP}{dy}Dy + \frac{1}{2!}\frac{d^{2}P}{dy^{2}}(Dy)^{2} + \frac{1}{3!}\frac{d^{3}P}{dy^{3}}(Dy)^{3} + \dots$$

$$\frac{DP}{P} = \frac{1}{P} \cdot \frac{DP}{DV} \cdot Dy \mathbb{R} \cdot \mathbb{Z}..$$

$$D^* \equiv -\frac{1}{P} \cdot \frac{DP}{DV}$$
 'Modified' Duration

$$\frac{\Delta P}{P} = -D^* \cdot \Delta y$$

$$\Delta P = -P \cdot D^* \cdot \Delta y$$

Modified Duration

$$\frac{\Delta P}{P} = -D^* \cdot \Delta y$$

If a bond's modified duration, D^* , is equal to 4, and the yield decreases by 1% $(\Delta y = -1\%)$ then the first order estimate for the change in bond price is a 4% increase.

$$\frac{\Delta P}{P} = -4 \cdot -1\% = 4\%$$

Modified Duration Calculation

and as ∆y → dy

$$\frac{dP}{P} = \frac{1}{P} \cdot \frac{dP}{dy} dy + \frac{1}{2} \cdot \frac{1}{P} \cdot \frac{d^2P}{dy^2} (dy)^2 + \dots$$

$$P = \sum_{i=1}^{M} \frac{CF_i}{\left(1 + \frac{y}{m}\right)^i} = \sum_{i=1}^{M} CF_i \cdot \left(1 + \frac{y}{m}\right)^{-i}$$

$$\frac{dP}{dy} = - \mathop{a}^{M}_{i=1} CF_{i} \times \frac{i}{m} \mathop{e}^{i}_{e} \frac{y}{m} \mathop{e}^{i}_{e}^{i-i-1}$$

$$\frac{dP}{dy} = \frac{-1}{\left(1 + \frac{y}{m}\right)} \sum_{i=1}^{M} \frac{i}{m} \cdot \frac{CF_i}{\left(1 + \frac{y}{m}\right)^i}$$

Modified Duration Calculation

$$\frac{1}{P} \cdot \frac{dP}{dy} = \frac{-1}{\left(1 + \frac{y}{m}\right)} \sum_{i=1}^{M} \frac{i}{m} \cdot \frac{CF_i}{P \cdot \left(1 + \frac{y}{m}\right)^i}$$

$$\frac{1}{P} \cdot \frac{dP}{dy} = \frac{-1}{\left(1 + \frac{y}{m}\right)} \sum_{i=1}^{M} \frac{i}{m} \cdot w_{i}$$

$$w_{i} \equiv \frac{CF_{i}}{P \cdot \left(1 + \frac{y}{m}\right)^{i}}$$

$$D \equiv \sum_{i=1}^{M} \frac{i}{m} \cdot w_{i}$$
 Macaulay Duration

$$\frac{1}{P} \cdot \frac{dP}{dy} = \frac{-D}{\left(1 + \frac{y}{m}\right)}$$

Modified Duration Calculation

$$D^* \equiv -\frac{1}{P} \frac{dP}{dy} = \frac{D}{\left(1 + \frac{y}{m}\right)}$$

$$D^* \equiv \frac{D}{\left(1 + \frac{y}{m}\right)}$$

$$\frac{\Delta P}{P} = -D^* \cdot \Delta y = -\frac{D}{\left(1 + \frac{y}{m}\right)} \cdot \Delta y$$

The Macaulay duration is the weighted average time to maturity of all of the bonds cash flows

Bond Duration

Bond duration

From Wikipedia, the free encyclopedia

In finance, the **duration** of a financial asset that consists of fixed cash flows, for example a bond, is the weighted average of the times until those fixed cash flows are received. When an asset is considered as a function of yield, duration also measures the price sensitivity to yield, the rate of change of price with respect to yield or the percentage change in price for a parallel shift in yields. [1][2][3]

The dual use of the word "duration", as both the weighted average time until repayment and as the percentage change in price, often causes confusion. Strictly speaking, Macaulay duration is the name given to the weighted average time until cash flows are received, and is measured in years. Modified duration is the name given to the price sensitivity and is the percentage change in price for a unit change in yield. When yields are continuously compounded Macaulay duration and modified duration will be numerically equal. When yields are periodically compounded Macaulay and modified duration will differ slightly, and there is a simple relation between the two. Modified duration is used more than Macaulay duration.

For bonds with fixed cash flows a price change can come from two sources:

- 1. The passage of time (convergence towards par). This is of course totally predictable, and hence not a risk.
- 2. A change in the yield. This can be due to a change in the benchmark yield, and/or change in the yield spread.

Duration Calculation

			Price)			Dura	tion
i	t		CF	DF		DCF	W	w∙i/m
1	1.0	\$	100.00	0.9009	\$	90.09	0.0957	0.0957
2	2.0	\$	100.00	0.8116	\$	81.16	0.0862	0.1725
3	3.0	\$	100.00	0.7312	\$	73.12	0.0777	0.2331
4	4.0	\$	100.00	0.6587	\$	65.87	0.0700	0.2800
5	5.0	\$	100.00	0.5935	\$	59.35	0.0631	0.3153
6	6.0	\$	100.00	0.5346	\$	53.46	0.0568	0.3409
7	7.0	\$	100.00	0.4817	\$	48.17	0.0512	0.3583
8	8.0	\$	100.00	0.4339	\$	43.39	0.0461	0.3689
9	9.0	\$	100.00	0.3909	\$	39.09	0.0415	0.3738
10	10.0	\$	1,100.00	0.3522	\$ 387.40		0.4116	4.1165
			D	6.6549				
Cl	osed f	orr	D [*]	5.9954				

$$D = \frac{1+y}{y} - \frac{(1+y) + N \cdot (c-y)}{c \cdot [(1+y)^N - 1] + y}$$

$$D = \frac{1+11\%}{11\%} - \frac{(1+11\%)+10\cdot(10\%-11\%)}{10\%\cdot[(1+11\%)^{10}-1]+11\%} = 6.6549 \text{ years}$$

\$1000 bond 10% annual coupon, 10 yrs to maturity, 11% yield

$$D^* = {D \over (1+y)} = {6.6549 \over (1+.11)} = 5.9954$$

$$\Delta P = -P \cdot D^* \cdot \Delta y$$

= -\$941.11 \cdot 5.9954 \cdot 0.01
= -\$56.42

$$\bar{P} = P - \Delta P$$
= \$941.11 - \$56.42
= \$884.68
(exact price at y = 11% is \$887.00)

Duration

When interest rates increase, bond price decreases, but coupons can get reinvested at the higher interest rate

The Macaulay duration is the time at which the two effects offset each other (first order accuracy)

The Macaulay duration is also an indicator of interest rate risk, but the modified duration is better

Duration Example

\$1000 bond with coupon rate of 10% paid annually. The yield was 11% until just after the t=0 coupon was paid, then the yield jumped to 11.1%. The duration at y=11% was 6.6549 years. Now with a change of yield, the change of total value is neutral at about 6.65 years.

Bond Portfolios

Portfolio Duration

- Exact if all bonds have the same yield to maturity
- □ Bond Funds
- □ Active v. Passive Portfolio Management
- □ Portfolio Immunization
- □ Cash Flow Matching / Bond Ladder

Duration Calculation: Semi Annual Coupon

\$1000 bond, 7% coupon yield w/ semi annual coupon, and 12% yield

		Price	<u>;</u>		Durat	tion
i	t	CF	DF	DCF	W	w∙i/m
1	0.5	\$ 35.00	0.9434	\$ 33.02	0.0398	0.0199
2	1.0	\$ 35.00	0.8900	\$ 31.15	0.0375	0.0375
3	1.5	\$ 35.00	0.8396	\$ 29.39	0.0354	0.0531
4	2.0	\$ 35.00	0.7921	\$ 27.72	0.0334	0.0668
5	2.5	\$ 35.00	0.7473	\$ 26.15	0.0315	0.0788
6	3.0	\$ 35.00	0.7050	\$ 24.67	0.0297	0.0892
7	3.5	\$ 35.00	0.6651	\$ 23.28	0.0280	0.0982
8	4.0	\$ 35.00	0.6274	\$ 21.96	0.0265	0.1058
9	4.5	\$ 1,035.00	0.5919	\$ 612.61	0.7381	3.3216
			Р	\$ 829.958	D	3.8709
					D^*	3.6518

Closed form: Periodic coupons

$$D = \frac{1 + \frac{y}{m}}{\frac{y}{m}} - \frac{\left(1 + \frac{y}{m}\right) + M \cdot \left(\frac{c}{m} - \frac{y}{m}\right)}{\frac{c}{m} \cdot \left[\left(1 + \frac{y}{m}\right)^{M} - 1\right] + \frac{y}{m}}$$

duration in periods, not years

$$D = \frac{1 + \frac{12\%}{2}}{\frac{12\%}{2}} - \frac{\left(1 + \frac{12\%}{2}\right) + 9 \cdot \left(\frac{7\%}{2} - \frac{12\%}{2}\right)}{\frac{7\%}{2} \cdot \left[\left(1 + \frac{12\%}{2}\right)^9 - 1\right] + \frac{12\%}{2}}$$

= 7.7418 semi annual periods

$$D = \frac{7.7414}{2} = 3.8709 \text{ years}$$

$$D^* = \frac{3.8709}{\left(1 + \frac{12\%}{2}\right)} = 3.6518$$

Duration Determinants

Higher coupon yield decreases duration and interest rate risk

Constant: F=\$1000, T=10 yrs, y=7%, m=1

Duration Determinants

Higher time to maturity increases duration and interest rate risk

Constant: F=\$1000, c=5%, y=6%, m=1

Duration Determinants

Higher yield to maturity decreases duration and interest rate risk

Constant: F=\$1000, T=10 yrs, c=5%, m=1

Convexity

$$\frac{\Delta P}{P} = -D^* \cdot \Delta y + \frac{1}{2} \frac{d^2 P}{dy^2} (\Delta y)^2 + \dots$$

$$C \equiv \frac{1}{P} \frac{d^2 P}{dv^2}$$
 Convexity

$$\Delta P = -P \cdot D^* \cdot \Delta y + \frac{1}{2} \cdot P \cdot C \cdot (\Delta y)^2 + \dots$$

$$\frac{dP}{dy} = -\sum_{i=1}^{M} CF_{i} \cdot \frac{i}{m} \cdot \left(1 + \frac{y}{m}\right)^{-i-1}$$

$$\frac{d^{2}P}{dy^{2}} = \sum_{i=1}^{M} CF_{i} \cdot \frac{i \cdot (i+1)}{m^{2}} \cdot \left(1 + \frac{y}{m}\right)^{-i-2}$$

$$\frac{d^{2}P}{dy^{2}} = \frac{1}{\left(1 + \frac{y}{m}\right)^{2}} \sum_{i=1}^{M} \frac{i \cdot (i+1)}{m^{2}} \cdot \frac{CF_{i}}{\left(1 + \frac{y}{m}\right)^{i}}$$

$$\frac{1}{P} \cdot \frac{d^2P}{dy^2} = \frac{1}{\left(1 + \frac{y}{m}\right)^2} \sum_{i=1}^{M} \frac{i \cdot (i+1)}{m^2} \cdot \frac{CF_i}{P \cdot \left(1 + \frac{y}{m}\right)^i}$$

$$C = \frac{1}{P} \cdot \frac{d^2P}{dy^2} = \frac{1}{\left(1 + \frac{y}{m}\right)^2} \sum_{i=1}^{M} \frac{i \cdot (i+1)}{m^2} \cdot w_i$$

Convexity Example

			Price)			Duration		Convexity	
i	t		CF	DF		DCF	W	w∙i/m	w·i·(i+1)/m²	\$1000 bond 10% annual coupon, 10 yrs to
1	1.0	\$	100.00	0.9009	\$	90.09	0.0957	0.0957	0.1915	, , , , , , , , , , , , , , , , , , ,
2	2.0	\$	100.00	0.8116	\$	81.16	0.0862	0.1725	0.5174	maturity, 11% yield
3	3.0	\$	100.00	0.7312	\$	73.12	0.0777	0.2331	0.9323	
4	4.0	\$	100.00	0.6587	\$	65.87	0.0700	0.2800	1.3999	
5	5.0	\$	100.00	0.5935	\$	59.35	0.0631	0.3153	1.8918	
6	6.0	\$	100.00	0.5346	\$	53.46	0.0568	0.3409	2.3860	
7	7.0	\$	100.00	0.4817	\$	48.17	0.0512	0.3583	2.8661	
8	8.0	\$	100.00	0.4339	\$	43.39	0.0461	0.3689	3.3198	
9	9.0	\$	100.00	0.3909	\$	39.09	0.0415	0.3738	3.7385	
10	10.0	\$	1,100.00	0.3522	\$	387.40	0.4116	4.1165	45.2810	
				Р	\$	941.11	D	6.6549	62.5243	
		*	$\Lambda v + \frac{1}{\cdot} P$)		D^*	5.9954	50.7461	C

 $\Delta P = -P \cdot D^* \cdot \Delta y + \frac{1}{2} \cdot P \cdot C \cdot (\Delta y)^2$

 $= -\$941.11 \cdot 5.9954 \cdot .01 + .5 \cdot 941.11 \cdot 50.7461 \cdot 0.0001$

= -\$56.42 + \$2.39 = -\$54.03

$$\stackrel{=}{P} = P + \Delta P$$

= \$941.11 - \$54.03 = \$887.07

Exact price: \$887.00

Convexity: Semi Annual Coupon

			Price	<u> </u>		Dura	tion	Convexity		¢4000 L = 70/			
i	t		CF	DF	DCF	W	w∙i/m	w·i·(i+1)/m ²		\$1000 bond, 7% coupon			
1	0.5	\$	35.00	0.9434	\$ 33.02	0.0398	0.0199	0.0199		yield w/ semi annual			
2	1.0	\$	35.00	0.8900	\$ 31.15	0.0375	0.0375	0.0563		coupons, and 12% yield			
3	1.5	\$	35.00	0.8396	\$ 29.39	0.0354	0.0531	0.1062		coupons, and 1270 yield			
4	2.0	\$	35.00	0.7921	\$ 27.72	0.0334	0.0668	0.1670					
5	2.5	\$	35.00	0.7473	\$ 26.15	0.0315	0.0788	0.2363					
6	3.0	\$	35.00	0.7050	\$ 24.67	0.0297	0.0892	0.3122					
7	3.5	\$	35.00	0.6651	\$ 23.28	0.0280	0.0982	0.3926					
8	4.0	\$	35.00	0.6274	\$ 21.96	0.0265	0.1058	0.4763					
9	4.5	\$	1,035.00	0.5919	\$ 612.61	0.7381	3.3216	16.6079					
				Р	\$ 829.958	D	3.8709	18.3747					
D* 3.6518 16.3534 C													
= -	$\mathbf{P} \cdot \mathbf{D}$	· /	ا · _ + کرا	P⋅C⋅(∆	λ y) ²								
	2 3 4 5 6 7 8 9	1 0.5 2 1.0 3 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0 9 4.5	1 0.5 \$ 2 1.0 \$ 3 1.5 \$ 4 2.0 \$ 5 2.5 \$ 6 3.0 \$ 7 3.5 \$ 8 4.0 \$ 9 4.5 \$	i t CF 1 0.5 \$ 35.00 2 1.0 \$ 35.00 3 1.5 \$ 35.00 4 2.0 \$ 35.00 5 2.5 \$ 35.00 6 3.0 \$ 35.00 7 3.5 \$ 35.00 8 4.0 \$ 35.00 9 4.5 \$ 1,035.00	i t CF DF 1 0.5 \$ 35.00 0.9434 2 1.0 \$ 35.00 0.8900 3 1.5 \$ 35.00 0.8396 4 2.0 \$ 35.00 0.7921 5 2.5 \$ 35.00 0.7473 6 3.0 \$ 35.00 0.7050 7 3.5 \$ 35.00 0.6651 8 4.0 \$ 35.00 0.6274 9 4.5 \$ 1,035.00 0.5919 P	i t CF DF DCF 1 0.5 \$ 35.00 0.9434 \$ 33.02 2 1.0 \$ 35.00 0.8900 \$ 31.15 3 1.5 \$ 35.00 0.8396 \$ 29.39 4 2.0 \$ 35.00 0.7921 \$ 27.72 5 2.5 \$ 35.00 0.7473 \$ 26.15 6 3.0 \$ 35.00 0.7050 \$ 24.67 7 3.5 \$ 35.00 0.6651 \$ 23.28 8 4.0 \$ 35.00 0.6274 \$ 21.96	i t CF DF DCF W 1 0.5 \$ 35.00 0.9434 \$ 33.02 0.0398 2 1.0 \$ 35.00 0.8900 \$ 31.15 0.0375 3 1.5 \$ 35.00 0.8396 \$ 29.39 0.0354 4 2.0 \$ 35.00 0.7921 \$ 27.72 0.0334 5 2.5 \$ 35.00 0.7473 \$ 26.15 0.0315 6 3.0 \$ 35.00 0.7050 \$ 24.67 0.0297 7 3.5 \$ 35.00 0.6651 \$ 23.28 0.0280 8 4.0 \$ 35.00 0.6274 \$ 21.96 0.0265 9 4.5 \$ 1,035.00 0.5919 \$ 612.61 0.7381 P \$ 829.958 D	i t CF DF DCF w w·i/m 1 0.5 \$ 35.00 0.9434 \$ 33.02 0.0398 0.0199 2 1.0 \$ 35.00 0.8900 \$ 31.15 0.0375 0.0375 3 1.5 \$ 35.00 0.8396 \$ 29.39 0.0354 0.0531 4 2.0 \$ 35.00 0.7921 \$ 27.72 0.0334 0.0668 5 2.5 \$ 35.00 0.7473 \$ 26.15 0.0315 0.0788 6 3.0 \$ 35.00 0.7050 \$ 24.67 0.0297 0.0892 7 3.5 \$ 35.00 0.6651 \$ 23.28 0.0280 0.0982 8 4.0 \$ 35.00 0.6274 \$ 21.96 0.0265 0.1058 9 4.5 \$ 1,035.00 0.5919 \$ 612.61 0.7381 3.3216 P \$ 829.958 D 3.8709	i t CF DF DCF W w·i/m w·i·(i+1)/m² 1 0.5 \$ 35.00 0.9434 \$ 33.02 0.0398 0.0199 0.0199 2 1.0 \$ 35.00 0.8900 \$ 31.15 0.0375 0.0375 0.0563 3 1.5 \$ 35.00 0.8396 \$ 29.39 0.0354 0.0531 0.1062 4 2.0 \$ 35.00 0.7921 \$ 27.72 0.0334 0.0668 0.1670 5 2.5 \$ 35.00 0.7473 \$ 26.15 0.0315 0.0788 0.2363 6 3.0 \$ 35.00 0.7050 \$ 24.67 0.0297 0.0892 0.3122 7 3.5 \$ 35.00 0.6651 \$ 23.28 0.0280 0.0982 0.3926 8 4.0 \$ 35.00 0.6274 \$ 21.96 0.0265 0.1058 0.4763 9 4.5 \$ 1,035.00 0.5919 \$ 612.61 0.7381 3.3216 16.6079 P \$ 829.958 D 3.8709 18.3747	i t CF DF DCF w w·i/m w·i·(i+1)/m² 1 0.5 \$ 35.00 0.9434 \$ 33.02 0.0398 0.0199 0.0199 2 1.0 \$ 35.00 0.8900 \$ 31.15 0.0375 0.0375 0.0563 3 1.5 \$ 35.00 0.8396 \$ 29.39 0.0354 0.0531 0.1062 4 2.0 \$ 35.00 0.7921 \$ 27.72 0.0334 0.0668 0.1670 5 2.5 \$ 35.00 0.7473 \$ 26.15 0.0315 0.0788 0.2363 6 3.0 \$ 35.00 0.7050 \$ 24.67 0.0297 0.0892 0.3122 7 3.5 \$ 35.00 0.6651 \$ 23.28 0.0280 0.0982 0.3926 8 4.0 \$ 35.00 0.6274 \$ 21.96 0.0265 0.1058 0.4763 9 4.5 \$ 1,035.00 0.5919 \$ 612.61 0.7381 3.3216 16.6079 P \$ 829.958 D 3.8709 18.3747			

$$= -\$829.96 \cdot 3.6518 \cdot .01 + .5 \cdot \$829.96 \cdot 16.3534 \cdot 0.0001$$

$$P = P + \Delta P$$

= \$829.96 - \$29.63 = \$800.33

$$= -\$30.31 + \$0.68 = -\$29.63$$

(exact price is \$800.32)

Convexity

- Note from previous slide
 - Convexity benefits the price increase when yields fall
 - Convexity minimizes the price decrease when yields rise
 - Thus convexity is a positive characteristic

Alternate Calculation of D and C

$$D^* \equiv \frac{1}{\left(1 + \frac{y_{nom}}{m}\right)} \sum_{i=1}^{M} \frac{i}{m} \cdot \frac{CF_i}{P \cdot \left(1 + \frac{y_{nom}}{m}\right)^i}$$

$$t_i = \frac{i}{m}$$
 $y_{EFF} = \left(1 + \frac{y_{NOM}}{m}\right)^m - 1$

$$D^* \equiv \frac{1}{\left(1 + \frac{y_{nom}}{m}\right)} \sum_{i=1}^{M} t_i \cdot \frac{CF_i}{P \cdot \left(1 + y_{eff}\right)^{t_i}}$$

$$D^* \equiv \frac{1}{\left(1 + \frac{y_{nom}}{m}\right)} \sum_{i=1}^{M} \frac{i}{m} \cdot \frac{CF_i}{P \cdot \left(1 + \frac{y_{nom}}{m}\right)^i} \qquad C = \frac{1}{\left(1 + \frac{y_{nom}}{m}\right)^2} \sum_{i=1}^{M} \frac{i \cdot (i+1)}{m^2} \cdot \frac{CF_i}{P \cdot \left(1 + \frac{y_{nom}}{m}\right)^i}$$

$$\frac{i}{m} = t_i \qquad \frac{i+1}{m} = t_i + \Delta t$$

$$C = \frac{1}{\left(1 + \frac{y_{nom}}{m}\right)^2} \sum_{i=1}^{M} t_i \cdot (t_i + \Delta t) \cdot \frac{CF_i}{P \cdot (1 + y_{eff})^{t_i}}$$

For semi-annual coupons m=2

$$C = \frac{1}{\left(1 + \gamma_{eff}\right)} \sum_{i=1}^{M} t_{i} \cdot (t_{i} + \Delta t) \cdot \frac{CF_{i}}{P \cdot \left(1 + \gamma_{eff}\right)^{t_{i}}}$$

Alternate Calculation of D and C

			Price	!			Dura	tion	Convexity
i	t		CF	DF		DCF	W	w∙t	w·t·(t+∆t)
1	0.5	\$	35.00	0.9434	\$	33.02	0.0398	0.0199	0.0199
2	1.0	\$	35.00	0.8900	\$	31.15	0.0375	0.0375	0.0563
3	1.5	\$	35.00	0.8396	\$	29.39	0.0354	0.0531	0.1062
4	2.0	\$	35.00	0.7921	\$	27.72	0.0334	0.0668	0.1670
5	2.5	\$	35.00	0.7473	473 \$ 26.		0.0315	0.0788	0.2363
6	3.0	\$	35.00	0.7050	\$	24.67	0.0297	0.0892	0.3122
7	3.5	\$	35.00	0.6651	\$	23.28	0.0280	0.0982	0.3926
8	4.0	\$	35.00	0.6274	\$	21.96	0.0265	0.1058	0.4763
9	4.5	\$ 1	,035.00	0.5919	\$	612.61	0.7381	3.3216	16.6079
				Р	\$	829.96	D	3.8709	18.3747
							D [*]	3.6518	16.3534

F=\$1000

c=7% with semi-annual coupons, m=2

C=\$35

 $y_{NOM} = 12\%$

 Δt =0.5 yrs

T=4.5 yrs

$$y_{EFF} = \left(1 + \frac{12\%}{2}\right)^2 - 1 = 12.36\%$$

Active v. Passive Portfolio Management

Passive

- Match a bond portfolio index such as those maintained by Lehman Brothers
 - http://www.lehman.com/fi/indices /factsheets.htm#
 - Example Fund

Active

- Interest rate forecasting or anticipation
- Credit spread forecasting or anticipation

Portfolio Immunization

A bond fund manager must have a portfolio valued at \$1M after two years and can buy any number of

- •Bond A: \$1000 par value zero coupon bond with 1 year to maturity
- •Bond B: \$1000 par value 4.5% annual coupon bond with 3 years to maturity

The yield-to-maturity, y, is 4% for both bonds.

	<u>E</u>	Bond A	Bond B				
С				4.5%			
У		4%		4%			
N		1		3			
F	\$	1,000	\$	1,000			
С	\$	-	\$	45.00			
Р	\$	961.54	\$	1,013.88			
D		1.0000		2.8736			

$$\pi_0 = \frac{\$1,000,000}{(1+4\%)^2} = \$924,556.21$$

$$D_p = \sum_{i=1}^M w_i \cdot D_i$$

$$W_A + W_B = 1$$

$$W_A \cdot D_A + W_B \cdot D_B = 2.0$$

$$W_A \cdot 1.0000 + W_B \cdot 2.8736 = 2.0$$

$$W_A \cdot 1.0000 + (1 - W_A) \cdot 2.8736 = 2.0$$

$$W_A = 46.6271\%$$

$$W_{R} = 53.3729\%$$

Portfolio Immunization

$$\pi_{A0} = 46.6271\% \cdot \$924,556.21 = \$431,093.81$$

$$\pi_{BO} = 53.3729\% \cdot \$924,556.21 = \$493,462.41$$

$$n_A = \frac{$431,093.81}{$961.54} = 448$$
 type A bonds

$$n_B = \frac{$493,462.41}{$1,013.88} = 487$$
 type B bonds

Portfolio Immunization

$$\pi_{A2} = n_A \cdot F_A \cdot (1 + y)$$

= 448 \cdot \$1000 \cdot (1 + 5%) = \$470,574

$$\pi_{BO} = n_B \cdot C_B \cdot (1+y) + n_B \cdot C_B + n_B \cdot (F_B + C_B)/(1+y)$$

$$= 487 \cdot \$45 \cdot (1+5\%) + 487 \cdot \$45 + 487 \cdot \$1045/(1+5\%)$$

$$= \$22,997 + \$21,902 + \$484,391 = \$529,290$$

$$\Pi_2 = \Pi_{A2} + \Pi_{B2} = \$470,754 + \$529,290$$

= \\$1,000,045

	P_{A2}	P_{B2}	<u>P</u> ₂			
3.00%	\$ 461,788	\$ 538,258	\$	1,000,046		
3.25%	\$ 462,909	\$ 537,117	\$	1,000,026		
3.50%	\$ 464,029	\$ 535,982	\$	1,000,011		
3.75%	\$ 465,150	\$ 534,853	\$	1,000,003		
4.00%	\$ 466,271	\$ 533,729	\$	1,000,000		
4.25%	\$ 467,392	\$ 532,611	\$	1,000,003		
4.50%	\$ 468,513	\$ 531,499	\$	1,000,011		
4.75%	\$ 469,634	\$ 530,392	\$	1,000,025		
5.00%	\$ 470,754	\$ 529,290	\$	1,000,045		

Cash Flow Matching

A bond portfolio manager has required minimum payouts for the next six years. She may choose any number of the 10 bonds labeled A-J. To maximize return she should create the portfolio at the lowest cost possible. Each bond has annual coupons.

<u>Year</u>		keqd ayout
1	\$ 2	15,000
2	\$ 2	17,000
3	\$ 2	19,000
4	\$ 2	20,000
5	\$ 2	23,000
6	\$ 2	27,000

<u>T</u>	<u>C</u>	У
6	10%	9%
6	7%	8%
5	8%	8%
5	6%	7%
4	7%	8%
4	5%	6%
3	4%	5%
3	3%	4%
2	3%	3%
1	0%	3%
	6 6 5 5 4 4 3 3	6 10% 6 7% 5 8% 5 6% 4 7% 4 5% 3 4% 3 3% 2 3%

Cash Flow Matching

$$\pi_0 = \text{minimize } \sum_{i=1}^{M} P_i \cdot n_i$$

where

 P_i , Π price of each bond i and the bond portfolio

n_i number of bond i in portfolio

M number of available bonds from which to choose (10 in this example)

subject to these constraints:

 $CF_j \ge CF_j^{reqa}$ for each year j from 1 to 6 in this example

 $n_i \ge 0$ no shorting of bond

n_i is an integer no fractional bonds allowed

Cash Flow Matching

Payout of each type of bond over six years

Bond	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>	<u>H</u>	<u> 1</u>	<u>J</u>
1	\$ 100	\$ 70	\$ 80	\$ 60	\$ 70	\$ 50	\$ 40	\$ 30	\$ 30	\$ 1,000
2	\$ 100	\$ 70	\$ 80	\$ 60	\$ 70	\$ 50	\$ 40	\$ 30	\$ 1,030	
3	\$ 100	\$ 70	\$ 80	\$ 60	\$ 70	\$ 50	\$ 1,040	\$ 1,030		
4	\$ 100	\$ 70	\$ 80	\$ 60	\$ 1,070	\$ 1,050				
5	\$ 100	\$ 70	\$ 1,080	\$ 1,060						
6	\$ 1,100	\$ 1,070								

Solution from linear	programming and	integer	programming	in
Excel				

Flt and	Int Solu	ıtions										
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>	<u>H</u>	<u>l</u>	<u>J</u>	<u>C</u>	ost_
	24.55	0.00	19.02	0.00	14.98	0.00	13.44	0.00	11.10	9.10	\$ 9	2,165
	25.00	0.00	18.00	2.00	15.00	0.00	14.00	0.00	11.00	9.00	\$ 9	3,899

<u>Year</u>	<u>Portfolio</u>	<u>Reqd</u>
	<u>Payout</u>	<u>Payout</u>
1	\$ 15,000	\$15,000
2	\$ 17,000	\$17,000
3	\$ 19,670	\$19,000
4	\$ 20,110	\$ 20,000
5	\$ 24,060	\$ 23,000
6	\$ 27,500	\$ 27,000
Portfolio Cost		\$ 93,899

Essential Points