Analysis 2 Final Exam Cheat Sheet

Quan Nguyen

International University, VNU-HCM quannguyenuw@gmail.com

June 2021

Contents

- Introduction
- 2 Applications of Integrals
- Sequences
- Series
- Online Websites

1. Introduction

The final exam focuses on the following sections:

- Applications of Integrals: Area Between Curves, Volumes (Disk Shell Method), Length of Curves;
- Convergence of Sequences;
- Series Test of Convergence: Root Test, Ratio Test, Integral Test,...;
- Power Series: Radius & Interval of Convergence, Power Series Representation;
- Taylor & Maclaurin Series.

This Cheat Sheet will cover the formulas and calculation steps for each section. Several useful online websites are included in the last slide.

Area Between Curves:

- Area between f(x) and g(x) on $[a,b]: A = \int_a^b |f(x) g(x)| dx$;
- Area between f(y) and g(y) on $[a,b]: A = \int_a^b |f(y) g(y)| dy$;
- Special cases when both formulas can be applied: Choose the simpler one.

Disk Method Steps:

- Sketch the graph and a particular cross-section (disk);
- Determine the formula for the outer radius R and inner radius r;
- Determine the disk area: $D = \pi(R^2 r^2)$;
- Volume: $V = \int D$. Integrating with respect to the specifed variable.

If stuck, try applying Shell Method.

Shell Method Steps:

- Sketch the graph and a particular cross-section (shell);
- Determine the formula for the radius R and height h;
- Determine the shell area: $S = 2\pi Rh$;
- \bullet Volume: V = $\int S.$ Integrating with respect to the specifed variable.

If stuck, try applying **Disk Method**.

Parametric Curves: $(x, y) = (x(t), y(t)), t \in [a, b].$

- \bullet Formula of Tangent Line at $t=t_0: \frac{x-x(t_0)}{x'(t_0)}=\frac{y-y(t_0)}{y'(t_0)};$
- Length: $L = \int_{-\infty}^{b} \sqrt{x'(t)^2 + y'(t)^2} dt$. Special cases:

$$y=f(x), x\in [a,b]: L=\int_a^b \sqrt{1+f'(x)^2} dx;$$

$$x=f(y),y\in [a,b]: L=\int_a^b \sqrt{1+f'(y)^2}dy.$$

3. Sequences

To verify the **convergence** of a given sequence $\{x_n\}$:

- Show that $\{x_n\}$ is bounded;
- Show that $\{x_n\}$ is monotone (increasing/decreasing), or:
- $\bullet \text{ Show that } y_n \leq x_n \leq z_n, \text{ where } \lim_{n \to \infty} \! y_n = \lim_{n \to \infty} \! z_n = a \in \mathbb{R}.$

Otherwise, the sequence diverges.

4. Series

To verify the **convergence** of a given series $\sum a_n$:

- Check for special form: geometric series $(\sum ar^n)$ or p-series $(\sum \frac{1}{n^p})$.
- Apply Series Convergence Flowchart, available at: https://www.shorturl.at/apKOY

4. Series

Given a **power series** $\sum c_n(x-a)^n$:

• Find the Radius of Convergence R, by Root Test or Ratio Test:

If
$$\left|\frac{c_{n+1}}{c_n}\right| \to L$$
 or $\sqrt[n]{|c_n|} \to L$, then $R = \frac{1}{L}$.

- Find the Interval of Convergence I from R:
 - If R = 0, then $I = \{a\}$.
 - If $R = \infty$, then $I = \mathbb{R}$.
 - Otherwise, $(a-R,a+R) \subset I \subset [a-R,a+R]$.

Check if $a \pm R \in I$ by Series Tests at $x = a \pm R$.

4. Series

To find the **series representation** for a given function f:

- Power Series: differentiate/integrate/separate f into functions representable by geometric series: $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r};$
- Maclaurin/Taylor Series: look at the Maclaurin Series List.

https://www.shorturl.at/fq459

5. Online Websites

- Online Derivative Calculator; https://www.derivative-calculator.net
- Online Integral Calculator; https://www.integral-calculator.com
- Geogebra online graphing tool; https://www.geogebra.org/graphing
- Desmos online graphing tool; https://www.desmos.com/calculator
- Symbolab multi-functional online tool for calculus. https://www.symbolab.com