Relational Neighbor Classifier

- Relational neighbor (RN) classifier: Simple relational probabilistic model that makes predictions for a given node based on class labels of neighbors
- Weighted-vote relational neighbor classifier (wvRN)
- Case study at Facebook: Inferring missing node attributes

10 of 46

Facebook: Profile Inference

Profile:

- Hometown: Palo Alto - High school: ?
- College: ?
- Employer: Microsoft
- Current city: ?
- Hobbies, politics, music

- Use the social network.
- Assume homophily.
 - Friendships form between "similar" people.
 - Infer missing labels to maximize similarity.

14 of 46

Markov Assumption

- The label of one node depends on that of its immediate neighbors in the graph.
- Relational models are built based on the labels of neighbors.
- Predictions are made using collective inference.

A Relational Neighbor Classifier

Definition. The relational-neighbor classifier estimates P(c|e), the class-membership probability of an entity e belonging to class c, as the (weighted) proportion of entities in D_e that belong to class c. We define D_e as the set of entities that are linked to e. Thus,

$$P(c|e) = \frac{1}{Z} \sum_{\{e_j \in D_e | \text{label}(e_j) = c\}} w(e, e_j), \tag{1}$$

where $Z=\sum_{e_i\in D_e}w(e,e_i)$, and $w(e,e_i)$ is the weight of the link² between entities e and e_i . Entities in D_e that are not of the same type as e are ignored. If D_e is empty or has no entities with known class labels, then the RN will estimate e based on the class prior (of the known labels).

26 of 46

Iterative Relational-Neighbor Classifier (RN�)

- The relational neighbor (RN) classifier proposed by Macskassy and Provost (2003) is a simple relational probabilistic model that makes predictions for a given node based solely on the class labels of its neighbors.
- E.g., hometown (multinomial)

Weighted-Vote Relational Neighbor Classifier (wvRN)

Weighted-vote relational neighbor classifier estimates prediction probability as:

 $P(Li=c|vi)=1z\Sigma vj\in Ni w(vi,vj)\times P(Lj=c|Nj)$

†

1

Networks studied use {0,1} Class

to represent connections probability of

between actors its neighbors

Here z is the usual normalization factor, and w(vi,vj) is the weight of the link between node vi and vj.

42 of 46

Mappers-Reducers: Join

NODE: Attributes; graph neighbors

V1: Hometown? Links: 3 and u (you) H = Palo Alto

V4: H= Atlanta; Links: v5 and you

Etc.

- Mapper
 - Send Hometown label and probability to its neighbors.
 - Send graph also.

Mappers-Reducers: Join

NODE: Attributes; graph neighbors

V1: Hometown? Links: 3 and u (you) H = Palo Alto

V4: H= Atlanta; Links: v5 and you

Etc.

Reducer

- If a node (person) provided a label, keep as it is and yield original node.
- Otherwise combine all neighbor candidate hometowns and select label with highest probability.
 - Yield a node with the same neighbors but with an updated hometown.