TUGAS 3 Exploratory Data

Nama:

- Almas Fauzia Wibawa (17/409427/PA/17734)
- Aulia Rahmah (16/394077/PA/17168)
- Sulkha Marfuah (17409457/PA/17754)

Dalam mengerjakan tugas ini, kami menggunakan data harga rumah di suatu area. Di dalamnya, terdapat beberapa informasi/atribut yang dapat mempengaruhi harga rumah tersebut. Akan kita lihat seberapa besar pengaruh setiap atribut lain terhadap atribut harga pada sebuah rumah.

1. Mengimpor data ke dalam data set

Yang perlu kita lakukan pertama kali adalah mengimpor data set yang ingin kita gunakan ke dalam data frame dengan library pandas. Hal ini kita lakukan agar kita dapat leluasa dalam mengolah data dengan library pandas.

In [1]:

```
import pandas as pd
import numpy as np
import re
```

Mengimport file ke dalam jupyter notebook

In [2]:

```
dataFrame = pd.read_excel("Real estate valuation data set.xlsx", encoding='latin1')
```

Melihat 5 data pertama dari dataFrame

In [3]:

dataFrame.head()

Out[3]:

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
0	1	2012.916667	32.0	84.87882	10	24.98298	121.54024	37.9
1	2	2012.916667	19.5	306.59470	9	24.98034	121.53951	42.2
2	3	2013.583333	13.3	561.98450	5	24.98746	121.54391	47.3
3	4	2013.500000	13.3	561.98450	5	24.98746	121.54391	54.8
4	5	2012.833333	5.0	390.56840	5	24.97937	121.54245	43.1

2. Melihat tipe data setiap atribut

Setelah data dimasukkan ke dalam data frame, kita dapat mulai perhatikan datanya. Pertama-tama, kita perlu ketahui dulu tipe data dari setiap atributnya. Dengan mengetahui tipe datanya, kita dapat mengetahui cara yang tepat untuk mengolah setiap atributnya. Kita dapat perkirakan juga apakah atribut tersebut merupakan variabel kategorikal atau kontinu.

In [4]:

%%capture
! pip install seaborn

@Import library seaborn. Library seaborn digunakan untuk memvisualisasikan data frame yang banyak digunakan untuk analisis data.

In [5]:

import seaborn as sns
%matplotlib inline

In [6]:

dataFrame.dtypes

Out[6]:

No	int64
X1 transaction date	float64
X2 house age	float64
X3 distance to the nearest MRT station	float64
X4 number of convenience stores	int64
X5 latitude	float64
X6 longitude	float64
Y house price of unit area	float64
dtype: object	

Ternyata, semua atribut yang terdapat pada data ini merupakan data numerik, baik itu bertipe data float

maupun integer. Semua atribut pada data ini juga merupakan variabel kontinu dan bukan kategorikal.

3. Melihat korelasi antar atribut.

Jika dilihat secara umum, berikut merupakan korelasi antar atributnya satu sama lain.

In [7]:

dataFrame.corr()

Out[7]:

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	, U
No	1.000000	-0.048634	-0.032808	-0.013573	-0.012699	-0.010110	-0.011059	-C
X1 transaction date	-0.048634	1.000000	0.017542	0.060880	0.009544	0.035016	-0.041065	С
X2 house age	-0.032808	0.017542	1.000000	0.025622	0.049593	0.054420	-0.048520	-C
X3 distance to the nearest MRT station	-0.013573	0.060880	0.025622	1.000000	-0.602519	-0.591067	-0.806317	-C
X4 number of convenience stores	-0.012699	0.009544	0.049593	-0.602519	1.000000	0.444143	0.449099	С
X5 latitude	-0.010110	0.035016	0.054420	-0.591067	0.444143	1.000000	0.412924	С
X6 longitude	-0.011059	-0.041065	-0.048520	-0.806317	0.449099	0.412924	1.000000	С
Y house price of unit area	-0.028587	0.087529	-0.210567	-0.673613	0.571005	0.546307	0.523287	1
4								•

Angka yang muncul di atas menunjukkan seberapa besar suatu atribut mempengaruhi atribut lainnya. Karena kami ingin fokus melihat korelasi harga rumah dengan atribut lainnya, kami lakukan plot dengan perbandingan satu per satu.

· Korelasi harga rumah dengan umur rumah

In [8]:

sns.regplot(x="X2 house age", y="Y house price of unit area", data=dataFrame)

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x18e0781c8c8>

Dapat dilihat bahwa beberapa data dengan umur rumah yang rendah memiliki harga yang tinggi. Namun, ada juga rumah yang sudah tua dengan harga tinggi.

In [9]:

dataFrame[["Y house price of unit area", "X2 house age"]].corr()

Out[9]:

	Y house price of unit area	X2 house age
Y house price of unit area	1.000000	-0.210567
X2 house age	-0.210567	1.000000

Jika dilihat nilai korelasinya, ternyata memang umur rumah tidak berpengaruh banyak pada harga rumah.

· Korelasi harga rumah dengan jarak rumah tersebut ke stasiun MRT

In [10]:

sns.regplot(x="X3 distance to the nearest MRT station", y="Y house price of unit area", dat

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x18e094b4448>

Dapat terlihat bahwa rata-rata data semakin dekat suatu rumah dengan stasiun, maka harganya semakin tinggi.

In [11]:

dataFrame[["Y house price of unit area", "X3 distance to the nearest MRT station"]].corr()

Out[11]:

	Y house price of unit area	X3 distance to the nearest MRT station
Y house price of unit area	1.000000	-0.673613
X3 distance to the nearest MRT	-0.673613	1.000000

Jika dilihat nilai korelasinya, variabel jarak rumah ke stasiun MRT ternyata memang cukup berpengaruh dengan nilai -0.67.

• Korelasi harga rumah dengan jumlah toserba (toko serba ada)

In [12]:

sns.regplot(x="X4 number of convenience stores", y="Y house price of unit area", data=dataF

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x18e0954b488>

Bila dilihat dari grafik di atas, banyaknya toserba di sekitar area rumah sedikit berpengaruh dengah harga rumah.

In [13]:

dataFrame[["Y house price of unit area", "X4 number of convenience stores"]].corr()

Out[13]:

	Y house price of unit area	X4 number of convenience stores
Y house price of unit area	1.000000	0.571005
X4 number of convenience stores	0.571005	1.000000

Angka korelasinya sedikit lebih dari 0.5. Ini berarti banyaknya toserba memiliki sedikit korelasi dengan harga rumah meskipun pada datanya sebenarnya banyak yang overlap.

· Korelasi harga rumah dengan latitude

In [14]:

sns.regplot(x="X5 latitude", y="Y house price of unit area", data=dataFrame)

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x18e095b2408>

Dapat kita lihat pada grafik di atas, tinggi rendahnya harga rumah sedikit dipengaruhi oleh latitude, meskipun banyak yang overlap. Terlihat pada grafik di atas grafik titik-titik berkumpul di tengah menandakan data tidak terdistribusi dengan baik.

In [15]:

dataFrame[["Y house price of unit area", "X5 latitude"]].corr()

Out[15]:

	Y house price of unit area	X5 latitude	
Y house price of unit area	1.000000	0.546307	
X5 latitude	0.546307	1.000000	

Dilihat dari nilai korelasinya ternyata variabel latitude tidak terlalu besar korelasinya dengan harga rumah. Terdapat sedikit korelasi tetapi banyak yang overlap antar variabel.

· Korelasi harga rumah dengan longitude

In [16]:

sns.regplot(x="X6 longitude", y="Y house price of unit area", data=dataFrame)

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x18e0749d348>

Dilihat dari grafik tersebut latitude dengan house price memiliki sedikit korelasi, tinggi rendah harga ada yang dipengaruhi dengan nilai longitude dari lokasi pada suatu rumah,walaupun antar variabel banyak yang overlap. Terlihat pada grafik di atas grafik titik-titik berkumpul di tengah menandakan data tidak terdistribusi dengan baik.

In [17]:

dataFrame[["Y house price of unit area", "X6 longitude"]].corr()

Out[17]:

	Y house price of unit area	X6 longitude
Y house price of unit area	1.000000	0.523287
X6 longitude	0.523287	1.000000

Dari nilai korelasi tersebut, menunjukkan adanya sedikit korelasi antara variabel longitude dengan harga rumah, tetapi antar variabel banyak yang overlap.

4. Melihat deskripsi statistik data

In [18]:

dataFrame.describe()

Out[18]:

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude
count	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000
mean	207.500000	2013.148953	17.712560	1083.885689	4.094203	24.969030	121.533361
std	119.655756	0.281995	11.392485	1262.109595	2.945562	0.012410	0.015347
min	1.000000	2012.666667	0.000000	23.382840	0.000000	24.932070	121.473530
25%	104.250000	2012.916667	9.025000	289.324800	1.000000	24.963000	121.528085
50%	207.500000	2013.166667	16.100000	492.231300	4.000000	24.971100	121.538630
75%	310.750000	2013.416667	28.150000	1454.279000	6.000000	24.977455	121.543305
max	414.000000	2013.583333	43.800000	6488.021000	10.000000	25.014590	121.566270
4							•

Dengan command di atas, kita dapat mengetahui beberapa keterangan tambahan mengenai masing-masing variabel. Dapat dilihat bahwa data ini memiliki jumlah data rumah sebanyak 414. Kita juga dapat ketahui ratarata dari masing-masing variabel, nilai minimalnya, nilai maksimalnya, dan lain-lain.

Kesimpulan

Dengan menggunakan data "Real estate valuation data set.xlsx" yang merupakan kumpulan data harga dan data-data lain berkaitan dengan penjualan rumah, kami telah melakukan exploratory data analisis. Kami memfokuskan pada korelasi yang berkaitan dengan harga rumah(Y house price of unit area) yaitu dengan umur rumah(X2 house age),jarak dengan MRT(X3 distance to the nearest MRT station),jumlah toko terdekat(X4 number of convenience stores),lintang rumah pada peta(X5 latitude),dan bujur ruamah pada peta(X6 longitude)

secara keseluruhan,kami dapatkan bahwa harga kurang begitu berkorelasi dengan keenam data lain tersebut. Korelasi tertinggi harga rumah(Y house price of unit area) adalah dengan jarak rumah ke stasiun MRT(X3 distance to the nearest MRT station) yang memiliki nilai korelasi -0.67, sedangkan korelasi terkecil harga rumah adalah dengan umur rumah(X2 house age) yang memiliki nilai korelasi -0.210567.

Dengan hasil korelasi antar variabel data yang didapat tersebut, kami berkesimpulan bahwa dataset "Real estate valuation data set.xlsx" kurang baik untuk memprediksi harga rumaah.