Simulation and Analysis of 1D Wave Propagation under Various Physical Models

Dario Liotta

Dipartimento di Fisica e Astronomia Galileo Galilei

September 6th 2025 Course of **Quantum Information and Computing** Academic Year 2024/2025

Numerical methods for differential equations

2/23

Numerical methods for differential equations

2/23

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing boundary conditions on $\partial\Omega$.

In most physical applications
$$\mathcal{L}$$
 is a second-order operator $\mathcal{L} = -\Delta$

Wave equation: $\mathcal{L} = -\Delta$

Wave equation: $\mathcal{L} = \frac{\partial}{\partial t} - \Delta$

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing boundary conditions on $\partial\Omega$.

In most physical applications
$$\mathcal{L}$$
 is a second-order operator

Poisson equation: $\mathcal{L} = -\Delta$

Heat equation: $\mathcal{L} = \frac{\partial}{\partial t} - \Delta$

Wave equation: $\mathcal{L} = \frac{\partial^2}{\partial t^2} - c^2 \Delta$

Galerkin methods rely on a weak formulation

ullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• Substitute and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

ullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• Substitute and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• Substitute and get the new expression

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

ullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

• <u>Substitute</u> and get the new expression

$$\int_{\Omega}\nabla u\cdot\nabla vd\Omega=\int_{\Omega}fvd\Omega+\int_{\partial\Omega}\frac{\partial u}{\partial n}vds$$

About the test function

The test function v is introduced to check whether the PDE is satisfied on average throughout the domain.

The problem becomes to find u such that

$$a(u,v) = F(v) \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega$$
 is a bilinear form

$$F(v) = \int_{\Omega} fv d\Omega + \int_{\partial\Omega} \frac{\partial u}{\partial n} v ds$$
 is a linear function

About the test function

The test function v is introduced to check whether the PDE is satisfied on average throughout the domain.

The problem becomes to find u such that

$$a(u, v) = F(v) \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega \qquad \text{is a bilinear form}$$
$$F(v) = \int_{\Omega} f v d\Omega + \int_{\partial\Omega} \frac{\partial u}{\partial n} v ds \qquad \text{is a linear functional}$$

Benefits of the weak formulation

Strong formulation

Weak formulation

$$u \in C^2(\Omega)$$

$$u, v \in H^1(\Omega)^*$$

Holds pointwise in Ω

Holds on average on Ω

Derivatives exist classically

Derivatives exist in the distributional sense

In short: weak formulation requires less regularity

$$w \in H^1(\Omega) = \left\{ w \in L^2(\Omega) \mid \nabla w \in L^2(\Omega)^d \right\}$$

 $^{^*}H^1(\Omega)$ is a **Sobolev space** of functions with square-integrable first derivatives:

Benefits of the weak formulation

Strong formulation

Weak formulation

$$u \in C^2(\Omega)$$

$$u, v \in H^1(\Omega)^*$$

Holds pointwise in Ω

Holds on average on Ω

Derivatives exist classically

Derivatives exist in the distributional sense

In short: weak formulation requires less regularity

$$w \in H^1(\Omega) = \left\{ w \in L^2(\Omega) \mid \nabla w \in L^2(\Omega)^d \right\}$$

 $^{^*}H^1(\Omega)$ is a **Sobolev space** of functions with square-integrable first derivatives:

On boundary conditions

Another difference lies in the boundary condition prescription.

v = 0 on $\partial \Omega \Rightarrow$ cancels boundary term (no information available on $\frac{\partial u}{\partial z}$)

u = g enforced on $\partial \Omega$ (final solution)

natural condition

v free on $\partial\Omega$

 $\frac{\partial u}{\partial n} = h$ naturally enters weak form

On boundary conditions

Another difference lies in the boundary condition prescription.

$$v = 0$$
 on $\partial \Omega \Rightarrow$ cancels boundary term (no information available on $\frac{\partial u}{\partial n}$)

$$u = q$$
 enforced on $\partial \Omega$ (final solution)

$$v$$
 free on $\partial\Omega$

$$\frac{\partial u}{\partial n} = h$$
 naturally enters weak form

On boundary conditions

Another difference lies in the boundary condition prescription.

u=g enforced on $\partial\Omega$ (final solution)

 $\frac{\partial u}{\partial n} = h$ naturally enters weak form

Shape functions

Galerkin methods allow to find an approximate solution

$$u_h \in V_h \subset H^1(\Omega)$$
 where V_h is a **finite-dimensional** space

In this framework, the goal is to find u_h such that

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

A basis of function $\{\phi_i\}$ is chosen to express u_h and to use it as <u>test</u>:

$$u_h = \sum_{j=1}^{N} u_j \phi_j \implies a \left(\sum_{j=1}^{N} u_j \phi_j, \phi_i \right) = F(\phi_i) \qquad \forall i = 1, \dots, N$$

Functions ϕ_i model the solution \longrightarrow shape functions

Shape functions

Galerkin methods allow to find an approximate solution

$$u_h \in V_h \subset H^1(\Omega)$$
 where V_h is a **finite-dimensional** space

In this framework, the goal is to find u_h such that

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

A basis of function $\{\phi_i\}$ is chosen to express u_h and to use it as <u>test</u>:

$$u_h = \sum_{j=1}^{N} u_j \phi_j \implies a \left(\sum_{j=1}^{N} u_j \phi_j, \phi_i \right) = F(\phi_i) \qquad \forall i = 1, \dots, N$$

Functions ϕ_i model the solution \longrightarrow shape functions

Shape functions

Galerkin methods allow to find an approximate solution

$$u_h \in V_h \subset H^1(\Omega)$$
 where V_h is a finite-dimensional space

In this framework, the goal is to find u_h such that

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

A basis of function $\{\phi_i\}$ is chosen to express u_h and to use it as <u>test</u>:

$$u_h = \sum_{j=1}^{N} u_j \phi_j \implies a \left(\sum_{j=1}^{N} u_j \phi_j, \phi_i \right) = F(\phi_i) \qquad \forall i = 1, \dots, N$$

Functions ϕ_i model the solution \longrightarrow shape functions

Final expression

By linearity of $a(\cdot, \cdot)$, the problem reduces to a **finite linear system**:

$$\sum_{j=1}^{N} u_{j} a\left(\phi_{j}, \phi_{i}\right) = F\left(\phi_{i}\right) \qquad \forall i = 1, \dots, N$$

$$\downarrow \downarrow$$

$$Au = F$$

where

$$A_{i,j} = a(\phi_j, \phi_i)$$

$$\mathbf{u} = (u_1, \dots, u_N)^T$$

$$\mathbf{F} = (F(\phi_1), \dots, F(\phi_N))^T$$

form the stiffness matrix
is the vector of unknowns
is the load vector

Final expression

By linearity of $a(\cdot, \cdot)$, the problem reduces to a **finite linear system**:

$$\sum_{j=1}^{N} u_{j} a\left(\phi_{j}, \phi_{i}\right) = F\left(\phi_{i}\right) \qquad \forall i = 1, \dots, N$$

$$\downarrow \downarrow$$

$$Au = F$$

where

$$A_{i,j} = a (\phi_j, \phi_i)$$

$$\mathbf{u} = (u_1, \dots, u_N)^T$$

$$\mathbf{F} = (F (\phi_1), \dots, F (\phi_N))^T$$

form the stiffness matrix is the vector of unknowns is the load vector

Mesh discretization

FEM approach consists in the subdivision of the domain in a so-called **mesh**

This choice brings several advantages:

- Good approximation of complex geometries
- Better capture of local effects
- Possibility of adaptive refinement
- Natural construction of a global solution

Mesh discretization

FEM approach consists in the subdivision of the domain in a so-called **mesh**

This choice brings several advantages:

- Good approximation of **complex geometries**
- Better capture of local effects
- Possibility of adaptive refinement
- Natural construction of a **global solution**

Elements

Elements

Elements

Finite Element Method

Application examples

Manual mesh refinement of a wrench using different element types

Image from COMSOL Multiplysics Cyclopedia, "Finite Element Mesh Refinement", 21st of February 2017

Mesh of a wheel rim composed of tetrahedrons in green, bricks in blue and prisms in pink

Image from COMSOL Multiplysics Blog, "Meshing Your Geometry: When to Use the Various Element Types", Walter Frei, 4th of November 2013

- Leads to sparse matrices
- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

- Enhances numerical stability
- Enables efficient parallelization

Choice of a local basis functions

Exploitation of **compact support**

- Leads to sparse matrices
- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

FEniCS library

A leading software platform for finite element computations is **FEniCS**.

- Open-source and freely available
- Multi-language support (C++ and Python APIs)
- Parallel computing with MPI support

```
FEniCS package: 

DOLFIN (backend core engine and PETSc interface)
UFL (symbolic language)
FIAT (shape functions tabulator)
FFC (C++ compiler for efficient local assembly)
MSHR (mesh generator)
```

FEniCS library

A leading software platform for finite element computations is **FEniCS**.

- Open-source and freely available
- Multi-language support (C++ and Python APIs)
- Parallel computing with MPI support

	DOLFIN	(backend core engine and PETSc interface)
	UFL	
FEniCS package:	FIAT	(shape functions tabulator)
	FFC	(C++ compiler for efficient local assembly)
	MSHR	(mesh generator)

FEniCS library

A leading software platform for finite element computations is **FEniCS**.

- Open-source and freely available
- Multi-language support (C++ and Python APIs)
- Parallel computing with MPI support

	DOLFIN	(backend core engine and PETSc interface)
FEniCS package: <	UFL	(symbolic language)
	FIAT	(shape functions tabulator)
	FFC	(C++ compiler for efficient local assembly)
	MSHR	(mesh generator)

A minimal FEniCS example: setup

Setup of a Poisson equation with Neumann boundary conditions in FEnicS:

• Generation of the mesh

```
domain = mesh.create_interval(MPI.COMM_WORLD, nx, [0.0, L])
```

• Definition of the finite element function space

```
V = functionspace(domain, ("Lagrange", 1))
```

• Definition of trial function and test function

```
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
```

Definition of the source term

```
f = fem.Constant(domain, default_scalar_type(-6))
```

A minimal FEniCS example: solution

Solving Poisson equation with Neumann boundary conditions in FEniCS:

Weak formulation

```
a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
F = f * v * ufl.dx
```

Solution of the linear system

Approach to the classical wave equation

Our first goal is to approximate the solution of

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \quad \longleftarrow \quad \mathbf{d'Alembert \ equation}$$

Finite Element Method

$$\int_{0}^{L} \frac{\partial^{2} u}{\partial x^{2}} v dx = \frac{\partial u}{\partial x} v \Big|_{0}^{L} - \int_{0}^{L} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx$$

Finite Difference Method

$$\frac{\partial^2 u}{\partial t^2} \simeq \frac{u^{(n+1)} - 2u^{(n)} + u^{(n-1)}}{\Delta t^2}$$

Approach to the classical wave equation

Our first goal is to approximate the solution of

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \quad \longleftarrow \quad \mathbf{d'Alembert \ equation}$$

Finite Element Method

$$\int_0^L \frac{\partial^2 u}{\partial x^2} v dx = \left. \frac{\partial u}{\partial x} v \right|_0^L - \int_0^L \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx$$

Finite Difference Method

$$\frac{\partial^2 u}{\partial t^2} \simeq \frac{u^{(n+1)} - 2u^{(n)} + u^{(n-1)}}{\Delta t^2}$$

From PDE to ODEs

To do so, a **separable base** must be chosen:

$$u_h(x,t) = \sum_{j=1}^{N} u_j(t)\phi_j(x)$$

Managing the boundary term separately, the weak formulation goes as

$$\int_{0}^{L} \frac{\partial^{2} u}{\partial t^{2}} v dx + c^{2} \int_{0}^{L} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = 0 \qquad \forall v \in H^{1}([0, L])$$

$$\downarrow \downarrow$$

$$\sum_{j=1}^{N} \frac{d^2 u_j}{dt^2} \int_0^L \phi_j \phi_i dx + c^2 \sum_{j=1}^{N} u_j \int_0^L \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} dx = 0 \qquad \forall i = 1, \dots, N$$

From PDE to ODEs

To do so, a **separable base** must be chosen:

$$u_h(x,t) = \sum_{j=1}^{N} u_j(t)\phi_j(x)$$

Managing the boundary term separately, the weak formulation goes as

$$\int_{0}^{L} \frac{\partial^{2} u}{\partial t^{2}} v dx + c^{2} \int_{0}^{L} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = 0 \qquad \forall v \in H^{1}([0, L])$$

$$\sum_{j=1}^{N} \frac{d^{2} u_{j}}{dt^{2}} \int_{0}^{L} \phi_{j} \phi_{i} dx + c^{2} \sum_{j=1}^{N} u_{j} \int_{0}^{L} \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx = 0 \qquad \forall i = 1, \dots, N$$

From PDE to ODEs

To do so, a **separable base** must be chosen:

$$u_h(x,t) = \sum_{j=1}^{N} u_j(t)\phi_j(x)$$

Managing the boundary term separately, the weak formulation goes as

$$\int_{0}^{L} \frac{\partial^{2} u}{\partial t^{2}} v dx + c^{2} \int_{0}^{L} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = 0 \qquad \forall v \in H^{1}([0, L])$$

$$\downarrow \downarrow$$

$$\sum_{i=1}^{N} \frac{d^2 u_j}{dt^2} \int_0^L \phi_j \phi_i dx + c^2 \sum_{i=1}^{N} u_j \int_0^L \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} dx = 0 \qquad \forall i = 1, \dots, N$$

Matrix formulation

Let's define

$$\begin{split} M: M_{i,j} &= \int_0^L \phi_j \phi_i dx &\longleftarrow \quad \mathbf{Mass \ matrix} \\ A: A_{i,j} &= \int_0^L \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} dx &\longleftarrow \quad \mathbf{Stiffness \ matrix} \end{split}$$

$$M\frac{d^2\mathbf{u}}{dt^2} + c^2A\mathbf{u} = 0$$

Matrix formulation

Let's define

$$M\frac{d^2\boldsymbol{u}}{dt^2} + c^2 A\boldsymbol{u} = 0$$

Time discretization

Let's apply implicit central difference scheme:

$$M\frac{u^{(n+1)} - 2u^{(n)} + u^{(n-1)}}{\Delta t^2} + c^2 A u^{(n+1)} = 0$$

$$\left(\frac{1}{\Delta t^2}M + c^2 A\right) \boldsymbol{u}^{(n+1)} = \frac{2}{\Delta t^2} M \boldsymbol{u}^{(n)} - \frac{1}{\Delta t^2} M \boldsymbol{u}^{(n-1)}$$

Time discretization

Let's apply implicit central difference scheme:

$$M\frac{u^{(n+1)} - 2u^{(n)} + u^{(n-1)}}{\Delta t^2} + c^2 A u^{(n+1)} = 0$$

$$\left(\frac{1}{\Delta t^2}M + c^2 A\right) \boldsymbol{u}^{(n+1)} = \frac{2}{\Delta t^2} M \boldsymbol{u}^{(n)} - \frac{1}{\Delta t^2} M \boldsymbol{u}^{(n-1)}$$

Analytical solutions

Solutions are known since 1747 due to d'Alembert himself.

• **Dirichlet** boundary conditions: u(0,t) = u(L,t) = 0

$$u(x,t) = \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{L}ct\right) \sin\left(\frac{n\pi}{L}x\right)$$

with $A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx$.

Analytical solutions

Solutions are known since 1747 due to d'Alembert himself.

• Neumann boundary conditions: $\frac{\partial u}{\partial x}\Big|_{x=0} = \frac{\partial u}{\partial x}\Big|_{x=L} = 0$

$$u(x,t) = A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{L}ct\right) \cos\left(\frac{n\pi}{L}x\right)$$

with
$$A_0 = \frac{1}{L} \int_0^L f(x) dx$$
, $A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi}{L}x\right) dx$.

Approximate solutions

The selection of discretization steps should* take into account

CFL stability condition:
$$\frac{c\Delta t}{\Delta x} \lesssim 1$$

Choosing first-order Lagrange polynomials as $\{\phi_i\}$:

^{*}While for implicit schemes it is only a recommendation, for explicit ones it is mandatory.

Approximate solutions

The selection of discretization steps should* take into account

CFL stability condition:
$$\frac{c\Delta t}{\Delta x} \lesssim 1$$

Choosing first-order Lagrange polynomials as $\{\phi_i\}$:

^{*}While for implicit schemes it is only a recommendation, for explicit ones it is mandatory.

Energy loss

A strong indicator of numerical correctness is **energy conservation**.

Energy:
$$E = \underbrace{\frac{T}{2c^2} \int_0^L \left(\frac{\partial u}{\partial t}\right)^2 dx}_{\text{Kinetic}} + \underbrace{\frac{T}{2} \int_0^L \left(\frac{\partial u}{\partial x}\right)^2 dx}_{\text{Potential}}$$

T is the *tension* that can be arbitrarly set to 1.