## SimpleMC

Estimación de parámetros de modelos de energía oscura y otras curiosidades

Isidro Gómez Vargas<sup>1</sup>

<sup>1</sup>Instituto de Ciencias Físicas UNAM

CosmoMeeting III
Cuernavaca, Morelos, México
27 de noviembre de 2021

## Contenido de la Contenido de l

- 1 Introducción
- 2 Estructura
- 3 Ejemplos
- 4 Cómo contribuir

#### Motivación

#### SimpleMC: toolbox for cosmological data analysis

J. Alberto Vázquez <sup>1,a</sup> Isidro Gómez-Vargas <sup>1,b</sup> A. Slosar <sup>2,c</sup>

<sup>1</sup>Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, México.

<sup>2</sup>Brookhaven National Laboratory, NY, USA.

November 26, 2021

 $^a$ javazquez@icf.unam.mx ,  $^b$ igomez@icf.unam.mx ,  $^c$ aslosar@slosar.com

https://github.com/ja-vazquez/SimpleMC

■ Estimación del Máximo Likelihood (MLE):

$$\ln \mathcal{L}(D,\theta) = \sum_{i=1}^{n} \ln f(x_i;\theta),$$

$$\theta_{MLE} = arg \ max(\mathcal{L}(\theta, D))$$

Estimación del Máximo Likelihood (MLE):

$$\ln \mathcal{L}(D,\theta) = \sum_{i=1}^{n} \ln f(x_i;\theta),$$

$$\theta_{MLE} = arg \ max(\mathcal{L}(\theta, D))$$

$$\theta_{MAP} = arg \ max(\mathcal{L}(\theta, D)P(\theta))$$

Estimación del Máximo Likelihood (MLE):

$$\ln \mathcal{L}(D,\theta) = \sum_{i=1}^{n} \ln f(x_i;\theta),$$

$$\theta_{MLE} = arg \ max(\mathcal{L}(\theta, D))$$

 Estimación del A Posteriori (MAP) ó estimación de parámetros ó inferencia Bayesiana:

$$\theta_{MAP} = arg \ max(\mathcal{L}(\theta, D)P(\theta))$$

 Comparación de modelos (puede ser parte de la inferencia Bayesiana).

Estimación del Máximo Likelihood (MLE):

$$\ln \mathcal{L}(D,\theta) = \sum_{i=1}^n \ln f(x_i;\theta),$$

$$\theta_{MLE} = arg \ max(\mathcal{L}(\theta, D))$$

$$\theta_{MAP} = arg \ max(\mathcal{L}(\theta, D)P(\theta))$$

- Comparación de modelos (puede ser parte de la inferencia Bayesiana).
- Reconstrucciones no paramétricas.

Estimación del Máximo Likelihood (MLE):

$$\ln \mathcal{L}(D,\theta) = \sum_{i=1}^n \ln f(x_i;\theta),$$

$$\theta_{MLE} = arg \ max(\mathcal{L}(\theta, D))$$

$$\theta_{MAP} = arg \ max(\mathcal{L}(\theta, D)P(\theta))$$

- Comparación de modelos (puede ser parte de la inferencia Bayesiana).
- Reconstrucciones no paramétricas.
- Visualización

Estimación del Máximo Likelihood (MLE):

$$\ln \mathcal{L}(D,\theta) = \sum_{i=1}^n \ln f(x_i;\theta),$$

$$\theta_{MLE} = arg \ max(\mathcal{L}(\theta, D))$$

$$\theta_{MAP} = arg \ max(\mathcal{L}(\theta, D)P(\theta))$$

- Comparación de modelos (puede ser parte de la inferencia Bayesiana).
- Reconstrucciones no paramétricas.
- Visualización.
- Interpretación física.

#### Estructura



## Modelos

| Modelo        | Ecuación de Friedmann $\left(H^2/H_0^2\right)$                                                    |
|---------------|---------------------------------------------------------------------------------------------------|
| ΛCDM          | $\Omega_{cb}a^{-3} + \Omega_{\Lambda} +  ho_{ u+r}(z)/ ho_{ m crit}$                              |
| $o\LambdaCDM$ | $\Omega_{cb}a^{-3} + \Omega_{\Lambda} +  ho_{ u+r}(z)/ ho_{ m crit} + \Omega_k a^{-2}$            |
| wCDM          | $\Omega_{cb}a^{-3} + \Omega_{\mathrm{de}}a^{-3(1+w)} + \rho_{\nu+r}(z)/\rho_{\mathrm{crit}}$      |
| owCDM         | $\Omega_{cb}a^{-3} + \Omega_{de}a^{-3(1+w)} + \rho_{\nu+r}(z)/\rho_{crit} + \Omega_k a^{-2}$      |
| $w_0 w_a CDM$ | $\Omega_{cb}a^{-3} + \Omega_{de}a^{-3(1+w_0+w_a)} \exp[-3w_a(1-a)] + \rho_{\nu+r}(z)/\rho_{crit}$ |

## Modelos

| Modelo                                 | Ecuación de Friedmann $(H^2/{\it H}_0^2)$                                                                                                    |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Slow Roll Dark Energy                  | $\Omega_{cb}a^{-3} + \rho_{\nu+r}(z)/\rho_{crit} + \Omega_{DE} \left[a^{-3}/(\Omega_m a^{-3} + \Omega_{DE})\right]^{\delta w_0/\Omega_{DE}}$ |
| ow <sub>0</sub> w <sub>a</sub> CDM     | $\Omega_{cb}a^{-3} + \Omega_{de}a^{-3(1+w_0+w_a)} \exp[-3w_a(1-a)] + \rho_{\nu+r}(z)/\rho_{crit} + \Omega_k a^{-2}$                          |
| PolyCDM                                | $\Omega_{cb}a^{-3} + (\Omega_1 + \Omega_k)a^{-2} + \Omega_2a^{-1} + (1 - \Omega_{cb} - \Omega_k - \Omega_1 - \Omega_2)$                      |
| Early Dark Energy                      | See relevant section.                                                                                                                        |
| Decaying Dark Matter                   | See relevant section.                                                                                                                        |
| $\nu$ CDM                              | free neutrino mass ( $\Sigma m_ u < 1\mathrm{eV}$ )                                                                                          |
| $\Delta N_{ m eff}$ $\Lambda { m CDM}$ | non-standard radiation component ( $2 < N_{ m eff} < 5)$                                                                                     |

#### **Datos**

- SNIa
- Cronómetros cósmicos.
- BAO.
- Planck 2015 y 2018.- Versiones comprimidas de Planck-15 y Planck-18 (tratadas como un BAO a z = 1090 )
- $\bullet$   $f\sigma_8$

# Analizadores

- Optimizadores.
- Algoritmo de inferencia Bayesiana.

## **Optimizadores**

- MaxLikeAnalyzer.
- Algoritmo genético simple.

# Inferencia Bayesiana

- Metropolis-Hastings .
- Muestreo anidado.
- Emcee.

#### **Extras**

- Métodos no paramétricos.
- MCEvidence.
- Redes neuronales.

# Salidas y gráficas

SimpleMC arroja como salida un .paramnames, un resumen y, para inferencia Bayesiana, un formato compatible con CosmoMC que se puede graficar con:

- Simple\_Plots (nativo) .
- corner.
- getdist.
- fgivenx.

## Otros

- CosmoCalc
- Archivo ini para configuración del usuario.
- MPI y multiprocessing

# maxlike ga\_deap [custom] [custom] model = waCDM model = waCDM datasets = SN+HD datasets = SN+HD analyzer = maxlike analyzer = ga\_deap population = 200

# MLE

|                       | maxlike | ga_deap |
|-----------------------|---------|---------|
| $\Omega_m$            | 0,2697  | 0,2683  |
| $\Omega_b h^2$        | 0,0220  | 0,02201 |
| h                     | 0,7221  | 0,7207  |
| w <sub>0</sub>        | -1,3668 | -1,3564 |
| Wa                    | 1,3103  | 1,3206  |
| $max log \mathcal{L}$ | 7,1334  | 7,1336  |

## MLE



## MAP

```
[custom]
model = waCDM
datasets = SN+HD
analyzer = mcmc
mcevidence = False
[mcmc]
GRstop = 0.01
nsamp = 10000
```

## **MAP**



# MAP

|                | SN+HD                | SN+BBAO              | SN+HD                | SN+BBAO+HD           |
|----------------|----------------------|----------------------|----------------------|----------------------|
| $\Omega_m$     | $0,3050 \pm 0,0775$  | $0,2399 \pm 0,0472$  | $0,2993 \pm 0,0180$  | $0,3058 \pm 0,0103$  |
| $\Omega_b h^2$ | $0,0220 \pm 0,0005$  | $0,0220 \pm 0,0004$  | $0,0221 \pm 0,0005$  | $0,0224 \pm 0,0003$  |
| h              | $0,6850 \pm 0,0324$  | $0,5865 \pm 0,0673$  | $0,6651 \pm 0,0206$  | $0,6769 \pm 0,0111$  |
| w <sub>0</sub> | $-1,0202 \pm 0,1624$ | $-0,8932 \pm 0,0934$ | $-0,9420 \pm 0,0978$ | $-0,9592 \pm 0,0966$ |
| w <sub>a</sub> | $-0,1983 \pm 0,9194$ | $0,4076 \pm 0,3272$  | $-0,1199 \pm 0,4291$ | $-0,0765 \pm 0,3715$ |
| max log L      | 27,6746              | 23,5360              | 31,7931              | 30,7215              |

```
[custom]
model = LCDM
datasets = SN+HD
analyzer = nested
mcevidence = False
```

```
[custom]
model = LCDM
datasets = SN+HD
analyzer = mcmc
mcevidence = True
```

| Método           | LCDM (Modelo 1)       | CPL (Modelo 2)        |  |
|------------------|-----------------------|-----------------------|--|
| muestreo anidado | $-28,9465 \pm 0,1899$ | $-30,8858 \pm 0,2246$ |  |
| mcmc+mcevidence  | -35,8112              | -35,8611              |  |

Calculando el factor de Bayes:

Calculando el factor de Bayes:

$$B_{12[nested]} = -28,947 \pm 0,19 - (-30,886 \pm 0,225)$$
 = 1,939  $\pm$  0,035  $\Longrightarrow$  Ventaja significativa para el modelo 1

Calculando el factor de Bayes:

$$B_{12[nested]} = -28,947 \pm 0,19 - (-30,886 \pm 0,225)$$
 = 1,939  $\pm$  0,035  $\Longrightarrow$  Ventaja significativa para el modelo 1

$$B_{12[mcevidence]} = -35,811 - (-35,861)$$
  
= 0,05  $\Longrightarrow$  Ventaja poco convincente para el modelo 1

#### CosmoCalc

```
from simplemc.CosmoCalc import CosmoCalc

C_1 = CosmoCalc('LCDM', 'Hubble', plot_data=True, zmax=2.1)

C_2 = CosmoCalc('LCDM', 'DaDverrd', 'h', 0.4, 0.9, plot_data=True)

C_3 = CosmoCalc('LCDM', 'SNIa', plot_data=True, zmax=2.3)

C_4 = CosmoCalc('ovaCDM', 'fs8', 'wa', -0.5, 0.5, zmax=3.1, plot_data=True)
```









# 1. Fork al repositorio original



## 2. Clone a la copia



# 3. Commit y push a los cambios realizados en la copia

(base) isidro@ubik:-/Documents/gitHub/SimpleMC\$ git commit -m "add X parameterization in a new DE model" simplemc/runbase.py simplemc/models/new\_model.py baseConfig.ini

# 4. Pull request al repo original



# 4. Pull request al repo original



#### Bonus

Explorar documentación si da tiempo. https://igomezv.github.io/SimpleMC/



Gracias.