

Computer Graphics - SET08116

EDINBURGH NAPIER UNIVERSITY

Outline

Review

What is Terrain Rendering?

3 Summary

Review

- Texturing is the process of applying image data to a surface
 - Wall can be defined using simple geometry
 - Image of a brick wall can be added to make it a brick wall
 - Image of wooden wall can be added to make it a wooden wall
- Texturing is the third part of what can be considered core 3D rendering
 - Geometry, Lighting, Texturing

Review

- Shaders are small programs that run on the GPU
- Shaders allow us to implement effects that we may wish for in our rendered scene
 - Lighting, texturing being the most basic
- Three types of shader
 - Vertex
 - Geometry
 - Fragment (or pixel)

What is Terrain Rendering?

- Terrain rendering is the process of rendering realistic world surfaces
 - Can be real-world or alien world
- The goal of terrain rendering is to provide an outdoor environment for your game
 - Even cityscapes can have underlying terrain
- Terrain rendering generally focuses on the development of hills, valleys, mountains, etc.
 - These can be procedurally generated

Example

How Terrain Rendering Works

- Terrain rendering utilises base triangle meshes, manipulated by a height map, with relevant lighting and texturing added
- Four key concepts
 - Generation of a triangle grid
 - Reading of texture data to set vertex heights
 - Generation of normals for each vertex
 - Texturing / colouring of vertices based on height / change in height

Triangle Grid

Summarv

- The basic part of a terrain is a large, flat grid of triangles
 - A 2D array of 3D vertices
 - Each vertex initially has a height of 0
- The heights of each vertex are manipulated, leading to a terrain like effect

Height Map

- To get the heights of an individual vertex, we use a height ma
- Each pixel of the texture represents a height value of the terrain
 - Dark low, light high

Texturing and Lighting

- Finally, we add texturing and lighting to the terrain to get the effect we want
 - Normals have to be generated (or read from an image)
 - Textures can be blended

Height Map Examples

Terrain Mesh

- The goal is to create a triangle mesh that represents the terr rendered
- Each vertex has a height based on the colour of the height map
 - Some smoothing may be required

Texture Data

- As you know, a texture is just a 2D array of pixels
- Each pixel has an RGB(A) value associated with it when it is read in
- These pixels can be analysed to determine there colour
 - We can use the intensity calculation from last week
- This value can then be used to set the individual y components of our vertices

Creating a Height Map

- Sometimes you will want to create a height map from real world data
 - You can normally acquire height data from somewhere
- Sometimes you may want your artist to generate your height map
 - Think Sim City or similar
- You can also generate this map yourself
 - Procedural

Filtering and Smoothing

- Depending on how you get your height data, you might have a limited range
 - For example, if you used the red component, you only have 255 unique values
- Technique is to take these values as large steps, and then filter based on the neighbouring vertex heights
 - Take the average of the vertex and its eight neighbours

Generating Normals

- For each vertex, we have to also generate the normals
- Generally, we calculate based on the neighbouring vertices
 - Use cross product to generate
- Can also use normal maps

Lighting a Terrain

- Once we have a terrain and the normals, we can go about lighting it
- Use the same techniques as before
 - Ambient light
 - Diffuse light
 - Specular light (depends on the terrain)
- We can also use occlusion maps and other light maps to help provide more realistic lighting
 - Longer to generate

Example

Colouring by Height

- Simplest method to increase believability of the terrain is to convertices based on height
 - Easily done in the shader
- Choose a number of colours and based on height use that colour

Colouring by Height Change

- We can also colour based on the change of height
 - Steeper slopes have different colours
- Usually we want to combine this with colouring by height to provide a more realistic terrain
 - Height used to determine base colour
 - Steepness used to determine colour to blend with

Texturing by Height

- We can perform the same operation as colouring using textures
- Normally we want to blend textures between heights
 - Looks too artificial otherwise

Texturing by Height Change

- We can also take into account the change in height as a blend factor for the terrain
 - Provide cliff faces
- This will provide the most realistic terrain using standard techniques

Using Multiple Terrain Maps

- Sometimes we want to use multiple terrain maps to provide other features
 - For example a road
- Blending textures allows us to create realistic features in our terrain

Using Multiple Terrain Maps

- One final step in generating terrain is adding vegetation
 - Trees
 - Grass
- Common technique for adding grass is billboarding
- Common technique for adding trees is instancing

Billboarding

- Terrain

25/29

- Billboarding involves rendering sprites in world space
- As sprites are 2D, they always face the camera
 - Gives a weird effect when moving
- Billboarding is often used in particle effects

Billboarding Example

Summary

- Terrain rendering is one of the commonest techniques used in 3D games
 - Realistic outdoor environments being the goal
- Generating terrain is actually quite easy
 - Height map
 - Triangle mesh
 - Terrain textures
- You normally want to optimise as well
 - Sub grids of the terrain for culling