Introduction to Digital Logic

CS 64: Computer Organization and Design Logic
Lecture #11
Fall 2018

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

Lab #6 released today, due on Friday

Next week:

- **REMINDER**: WE HAVE CLASS ON WEDNESDAY!

How will lab work next week and beyond?

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

Digital i.e. Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

Same as the bitwise operators:

NOT

AND

OR

XOR

etc...

 We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

11/14/2018

Graphical Symbols and Truth Tables *NOT*

A	A or !A
0	1
1	0

Graphical Symbols and Truth Tables *AND* and *NAND*

Practice Drawing the Symbol!

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

<u>A</u>	7.0	
В	AND NOTO	=
L		

A	В	A . B or !(A.B)
0	0	1
0	1	1
1	0	1
1	1	0

11/14/2018

Matni, CS64, Fa18

Graphical Symbols and Truth Tables OR and NOR

Practice Drawing the Symbol!

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

|--|

Α	В	A + B or !(A + B)
0	0	1
0	1	0
1	0	0
1	1	0

11/14/2018 Matni, CS64, Fa18

Graphical Symbols and Truth Tables XOR and XNOR

Practice Drawing the Symbol!

A	В	A(+)B	A+B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.
 - = 2^N, where N is the number of inputs

Example: Constructing the T.T. of a 1-bit Adder

- Recall the 1-bit adder:
- 3 inputs: I₁ and I₂ and C₁
 - Input1, Input2, and Carry-In
 - How many entries in the T.T. is that?
- 2 outputs: R and C₀
 - Result, and Carry-Out
 - You can have multiple outputs: each will still depend on some combination of the inputs

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

Note the order of the inputs!!!

INPUTS			OUT	PUTS	
#	l1	12	CI	СО	R
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

Logic Functions

- An output function F can be seen as a combination of 1 or more inputs
- Example:

```
F = A \cdot B + C (all single bits)
```

This is called combinatorial logic

Equivalent in C/C++:

```
boolean f (boolean a, boolean b, boolean c) {
   return ( (a & b) | c )
}
```

OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
 - Partly why it's symbolized as "+"
 - BUT IT'S NOT THE SAME AS NUMERICAL ADDITION!!!!!!
- AND as "logical product" or "logical disjunction"
 - Partly why it's symbolized as "."
 - BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!

Example

- A XOR B takes the value "1"
 (i.e. is TRUE) if and only if
 - -A = 0, B = 1 i.e. **!A.B** is TRUE, <u>or</u>
 - A = 1, B = 0 i.e. **A.!B** is TRUE
- In other words, A XOR B is TRUE
 iff (if and only if) A!B + !AB is TRUE

$$A + B = !A.B + A.!B$$

Which can also be written as: $\overline{A}.B + A.\overline{B}$

Representing the Circuit Graphically

Matni, CS64, Fa18

What is The Logical Function for The **Half Adder**?

	INPUTS		OUT	PUTS
#	l1	12	СО	R
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

Our attempt to describe the outputs as functions of the inputs:

$$CO = I_1 . I_2$$

 $R = I_1 + I_2$

Half Adder

1-bit adder that does not have a Carry-In (Ci) bit.

This logic block has only 2 1-bit inputs and 2 1-bit outputs

What is The Logical Function for

A Full 1-bit adder	

		INPUIS			OUTPUIS 🚃	
#	l1	12	CI	CO	R	
0	0	0	0	0	0	
1	0	0	1	0	1	
2	0	1	0	0	1	
3	0	1	1	1	0	
4	1	0	0	0	1	
5	1	0	1	1	0	
6	1	1	0	1	0	
7	1	1	1	1	1	

Ans.:

CO = !I1.I2.CI + I1.!I2.CI + I1.I2.!CI + I1.I2.CI R = !I1.!I2.CI + !I1.I2.!CI + I1.!I2.!CI + I1.I2.CI

Minimization of Binary Logic

- Why?
 - It's MUCH easier to read and understand...
 - Saves memory (software) and/or physical space (hardware)
 - Runs faster / performs better
 - Why?... remember *latency*?
- For example, when we do the T.T. for (see demo on board):

$$X = A.B + A.!B + B.!A$$
, we find that it is the same as

$$A + B$$

(saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

 In an effort to simplify a logic function, we don't always have to use T.Ts – we can use logic rules instead

Example: What are the following logic outcomes?

A.A A

A + A

A.1 A

A+1 1

A.0 0

A + 0

Using T.Ts vs. Using Logic Rules

- Binary Logic works in Associative ways
 - (A.B).C is the same as A.(B.C)
 - (A+B)+C is the same as A+(B+C)
- It also works in **Distributive** ways
 - (A + B).C is the same as: A.C + B.C
 - -(A+B).(A+C) is the same as:

$$A.A + A.C + B.A + B.C$$

$$= A + A.C + A.B + B.C$$

$$= A + B.C$$

More Examples of Minimization a.k.a Simplification

$$R = A.B + !A.B$$

$$= (A + !A).B$$

$$= B$$

Let's verify it with a truth-table

Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

$$R = |ABCD + ABCD + |AB|CD + AB|CD$$

$$= BCD(A + !A) + !AB!CD + AB!CD$$

$$= BCD + B!CD(!A + A)$$

$$= BD(C + !C)$$

$$= BD$$

Let's verify it with a truth-table

More Simplification Exercises

Reformulate using only AND and NOT logic:

Important: Laws of Binary Logic

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	AND form	OR form	
Identity law	1A = A	0 + A = A	
Null law	0A = 0	1 + A = 1	
Idempotent law	AA = A	A + A = A	
Inverse law	$A\overline{A} = 0$	A + A = 1	
Commutative law	AB = BA	A + B = B + A	
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC	
Absorption law	A(A + B) = A	A + AB = A	
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$	

Digital Circuit Design Process

More Simplification Examples

Simplify the Boolean expression:

• (A+B+C)(D+E)' + (A+B+C)(D+E)

Simplify the Boolean expression and write it out on a truth table as proof

XZ + Z(X'+ XY)

Use DeMorgan's Theorm to re-write the expression below using at least one OR operation

NOT(X + YZ)

Scaling Up Simplification

 When we get to more than 3 variables, it becomes challenging to use truth tables

 We can instead use *Karnaugh Maps* to make it immediately apparent as to what can be simplified

29

Example of a K-Map

	A	В	f(A,B)
0	0	0	а
1	0	1	р
2	1	0	С
3	1	1	d

\mathbf{B}	A 0	1
0	а	c
1	b	d

B^A	0	1	
0	0	2	
1	1	3	

Α	В	f(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

B	A 0	1
0	0	1
1	1	1

K-Maps with 3 or 4 Variables

Note the adjacent placement of: **00 01 11 10**

It's NOT: **00 01 10 11**

Your To-Dos

Review this material!

Turn in Lab #6 by Friday

