Task 1

Defines the file path

```
addpath('classes');
```

Task a

Task description

Implementer eksponentfunksjonen i likning (21). Input skal være en matrise på formen (18). Funksjonen bør ta inn både h og Ω som input. Lag et testprogram som sjekker om output X er en matrise som oppfyller kravet $X^TX = I$

Parameter initialization

Tests the Exp-function

```
TOL = 1e-12;
Exp.test(X, TOL)
ans = logical
```

Answer is 1, which is equal to true. In other words, the matrix X fulfills the requirement of $X^TX = I$ within a tolerance of 1e-12.

Task b

Task description

Implementer en funksjon som regner ut energien til et roterende legeme som har treghetsmoment*I*og rotasjonsvektor $\overrightarrow{\omega}$. Denne vil dere trenge til å sjekke om simuleringene bevarer energien til T-nøkkelen.

Parameter initialization

```
w = [1, 0, 0]'; % Rotation vector
L = [1, 0, 0]'; % Torque vector
```

Calculates the energy

```
K = Energy.calculate(L, w)
K = 0.5000
```

Total energy for this system is 0.5.

Task c

Task description

Regn ut treghetsmomentet til T-nøkkelen ved å bruke formelen i forrige avsnitt.

Parameter initialization

```
R1 = 1; R2 = 1; % Radius
L1 = 8; L2 = 4; % Length
p = 6.7; % Mass density
M = 12*pi * p; % Mass
```

Calculates the moment of inertia

The moment of inertia for the T-Handle is given above.