Optimization, Auto-Differentiation, and Tomlab

May 9, 2017

Auto-Differentiation(AD)

Derivatives and Numerical Methods

There are two general types of algorithms for optimizers/solvers/etc.:

- Derivative-free:
 - e.g. Simplex and Nelder-Mead. This is Matlab's fminsearch
 - Also, "costly global function" optimization
 - Avoid at all costs (though sometimes don't have a choice)
- 2 Derivatives
 - Pretty much every other algorithm, especially for large number of variables/constraints
 - Including global optimization techniques (which use derivatives locally)

Key derivatives to calculate are:

- Gradient of objective
- Hessian of objective (nonlinear least squares and some algorithms only use gradient)
- lacobian of constraints

Calculating Derivatives

How to calculate derivatives for the objective and constraints?

- Calculate by hand
 - Sometimes, though not always, the most accurate and fastest option
 - But algebra is error prone for non-trivial setups
 (note: many optimizers have a way to check your analytical derivatives)
- Finite-differences:

$$\boldsymbol{\partial}_{x_i} f(x_1, \dots x_N) \approx \frac{f(x_1, \dots x_i + \Delta, \dots x_N) - f(x_1, \dots x_i, \dots x_N)}{\Delta}$$

- $\hfill\blacksquare$ Evaluates function at least N extra times to get a gradient
- lack # evaluations for Jacobians with M constraints even worse
- Large Δ is numerically stable but inaccurate, small Δ is unstable
- Avoid like the plague! (and is what matlab does out of the box)
- 3 Auto-differentiation
 - Not a form of finite-differences or numeric differentiation
 - Essentially analytical. Repeated use of the chain-rule
 - Does not work for every function, but only evaluates $f(\cdot)$ once if it works—i.e. O(1) not $O(N \times M)$ for $f: \mathbb{R}^N \to \mathbb{R}^M$

Auto-differentiation (adapted from Wikipedia)

- Remember the chain rule: $\frac{dy}{dx} = \frac{dy}{dw} \frac{dw}{dx}$
- Consider functions composed of calculations with fundamental operations (with known analytical derivatives)
- For example, consider function: $f(x_1, x_2) = x_1x_2 + \sin(x_1)$

Operations to compute value	Operations to compute $rac{df(x_1,x_2)}{dx_1}$
$w_1 = x_1$	$\frac{dw_1}{dx_1} = 1$ (seed)
$w_2 = x_2$	$\frac{dx_1}{dw_2} = 0 \text{ (seed)}$
$w_3 = w_1 \cdot w_2$	$\frac{dw_3}{dx_1} = w_2 \cdot \frac{dw_1}{dx_1} + w_1 \cdot \frac{dw_2}{dx_1}$
$w_4 = \sin w_1$	$\frac{dw_4}{dx_1} = \cos w_1 \cdot \frac{dw_1}{dx_1}$
$w_5 = w_3 + w_4$	$\begin{vmatrix} \frac{dx_1}{dw_5} = \frac{dw_3}{dx_1} + \frac{dw_4}{dx_1} \end{vmatrix}$

lacktriangle Generalizes to multiple variables. AD takes source code and generates the derivatives at the same time (i.e. doesn't increase with # variables)

Implementations of AD

- A field unto itself. Do not implement directly
- Implementation is language dependent. Two approaches:
 - Source code transformation: utility (outside of the language itself)
 reads in the code for your function, and generates a function which
 calculates value and derivative. Rerun if you change your code
 - Operator Overloading: Takes your existing functions, and passes variables that act like numbers, but are actually recording and tracing the chain rule steps/etc. Can be magical, or infuriating
- Implementation depends on the language:
 - Fortran: usually needs SCT. Many choices: e.g. http://tapenade.inria.fr:8080/tapenade/index.jsp
 - Python: https://github.com/LowinData/pyautodiff and https://pythonhosted.org/algopy/
 - C++: overloading http://www.fadbad.com/fadbad.html,...
 - R: https:
 - //cran.r-project.org/web/packages/madness/index.html
 - Matlab: open source SCT (e.g. AdiMat) not very good. Use Tomlab/MAD instead, coupled with the Tomlab optimizer.

Sparsity

Sparse Matrices and Methods

- Many algorithms are specialized for matrices (or Jacobians or Hessians) with many 0s—e.g. Gaussian elimination
- \blacksquare Only store non-zero values, but $0 \neq 0.0$ for optimizers
- Not (usually) for storage, but rather specialized algorithms
- For Jacobians and Hessians, can solve enormous (e.g. hundreds of thousands or millions) of variable systems
 - But the more non-zeros, the more likely dense methods are preferable.
- For example, $f: \mathbb{R}^N \to \mathbb{R}^N$ with $f(x) = \sqrt{x}$ point-wise
 - lacksquare Jacobian has N non-zeros, while dense has N^2
 - Optimizers/solvers can use this to step in the right direction
 - Auto-differentiation will figure out the sparsity pattern of derivatives—i.e., which values are always 0 for all inputs

Sparse Matrices in Matlab

```
%First, can convert dense matrix, and it drops the O's.
X = [1.0 \ 0]
    2.0 1.0 0];
S = sparse(X)
%S =
%(1,1) 1
%(2,1) 2
%(2,2)
%Or can take lists of indices and values,
x_{indices} = [1; 2; 2];
y_indices = [1; 1; 2];
values = [1; 2; 1];
S2 = sparse(x_indices, y_indices, values)
%Or can preallocate and just reference in loops/etc.
S3 = sparse(0,3);
S3(1,1) = 1;
S3(2,1) = 2;
S3(2,2) = 1;
```

Tomlab

What is in Tomlab?

- Sadly, the Operations Research community keeps the best implementations closed-source
- Collection of sparse/dense linear/nonlinear local/global constrained/unconstrained continuous/mixed-integer optimizers
- Nonlinear methods have built in auto-differentiation
- Repackages and resells state-of-the-art commercial products, and adds a few of its own which are high quality
- Several methods to solve the same type of problem, because you never know which one will work best. Easy to swap

What Types of Problems?

See http://tomopt.com/docs/TOMLAB_QUICKGUIDE.pdf.

- Programming = Optimizer in OR
- Linear Programming (LP) and Mixed-Integer LP (MILP)
- Constrained Nonlinear Programming (NLP)
- Unconstrained Global Optimization (glb)
- Linear Least Squares (LLS)
- Nonlinear Least Squares (NLLS)
- Solving systems of equations generally uses NLLS
- ... and many others (semi-definite, quadratic, etc.)

Most have sparse vs. dense algorithms, and constrained vs. unconstrained

- Read docs to find best fit for your particular problem
- Always use appropriate constraints (none, box-bounded, linear, etc.)
- For borderline sparse problems, sometimes dense works better

Purchased Packages

See http://tomopt.com/tomlab/products/

- Stanford Systems Optimization Laboratory (SOL): SNOPT, NPSOL, NLSSOL, LSSOL...
- Knitro. Good for big problems, and complementarity conditions
- MAD (auto-differentiation)
- LGO and CGO (global optimizers, costly and otherwise)
- For a given problem type, tomlab will list available algorithms

Linear Least Squares (i.e. Regression)

$$egin{aligned} \min_{x} & \frac{1}{2} \left\| Cx - d
ight\|_2 \ ext{s.t.} \ x_L \leq x \leq x_U \ & b_L \leq Ax \leq b_U \end{aligned}$$

- Little benefit over stata until problems get large or sparse
- Though if there are linear constraints, *A*, may be helpful
- lacktriangle Major benefit for large, sparse C
- See "Section 11. LLS Problem" in http://tomopt.com/docs/TOMLAB_QUICKGUIDE.pdf

%Preallocate a sparse matrix

Example: Two-way fixed Effect

• Use student, i, and instructor, j fixed effects with observables

```
\mathsf{grade}_{ij} = \mathsf{observables}_{ij} + \mathsf{student}_i + \mathsf{instuctor}_j + \epsilon_{ij}
```

- 300K observations for 36K students and 945 instructors
 - ightharpoonup pprox 37 K variables, **but only** 2 **non-zero** (plus observables)
- Took about a day to solve in Stata
- See teacher_student_fixed_effect.m example for generating sparse matrix. Given id1 student id, and id1 instructor id. Key code:

```
%Total number of observables with indicators for the two types.
X = sparse(N_observations, N_observables + N_students + N_teachers);

%Filling in indicators for the matches
for i=1:N_observations
X(i, N_observables + id1(i)) = 1; %set student indicator
X(i, N_observables + N_students + id2(i)) = 1; %sets instructor indicator
end
```

Solving LLS in Tomlab

■ Given X and y such that $\min_{\beta} \|X\beta - y\|_2$

%Tried alternative methods. Easy to swap

■ Ensure X loaded sparse, with each row having 2 indicators %linear least squares, can pass in sparse matrices or use dense

help llsAssign %Can see options, if you wish. Or use manual

```
% call XXXAssign for problem type XXX
Prob = llsAssign(X, y, [], [], 'LLS Example');

%Can change settings. See tomlab documentation
Prob.optParam.MaxIter = 5000; %optional, increase iterations
Prob.PriLevOpt = 1; %optional, gives more information if higher

%Run, passing in the algorithm type
%Takes about 10-20 seconds to run, instead of a day. Not even tweaked
Result = tomRun('Tlsqr', Prob); %intended for sparse unconstrained LLS
beta = Result.x k;
```

"Result = tomRun('snopt', Prob); "Tlsgr works much better here

AD with Tomlab

Using AD Directly in Tomlab

- Keep in mind that optimizers/solvers in Tomlab do this automatically
- But if having trouble with optimizer calls, can test function separately

```
Example function. Also works fine with separate files/function defs
f = Q(x) 3*x + exp(x);
%Evaluating function
x_val = 2.1;
f(x val)
%Evaluating with derivative at x val
x = fmad(x_val, 1); %Seed, since <math>dx/dx = 1
f val = f(x)
%Extract (both calculated at same time)
getvalue(f_val)
getderivs(f val)
```

Black Magic? Is it Always so Easy?

- Auto-differentiation works seamlessly for functions composed of an arbitrarily complicated graph of simple functions
 - Just need analytical derivatives for the lowest-level functions
 - Functions of vector and matrices are no problem at all. In fact, the field was designed for large numbers of variables/constraints and sparsity
- Can you call other functions (with operator overloading)?
 - Depends on how they were written. Often no problem at all
 - If the functions assume arguments are numbers, there can be problems
 - Sometimes can fix the underlying code to make more generic (example)
- Verboten: Iterations and fixed-points within a function
 - e.g. it can't differentiate an optimization step within a function
 - However, many algorithms can be re-written without nesting (e.g. nested fixed-point vs. MPEC for discrete-choice estimation)
 - Possible that simulation could be embedded (e.g. mixed-logit)...

Keep Functions Generic

- Remember, MAD replaces arguments with things that look like variables. Keep everything generic, don't overwrite with other types
- Some internal matlab functions do this sort of thing
- Sometimes can copy/paste others sourcecode and tweak

```
madinitglobals; "Need to run for auto-differentiation to work
x_val = [2.1;3.0];
x = fmad(x_val, eye(2,2)); %Seeds with derivatives
%Extract (both calculated at same time)
f_val = f_func(x)
function y = f_{inc}(x)
  y = x.^2; %This leaves x, y generic
  %x = 1; %Don't do this!!!!!!
  %y = zeros(1,1) %Don't do this!!!!!
  %y(1) = x. ~2; %indexing is fine (as long as you do not preallocate)
  %One \ trick \ is \ to \ allocate \ as \ something \ like: \ y = x, \ then \ index
end
```

Missing Function (with Analytical Derivative)

- See MAD manual, http://tomopt.com/docs/TOMLAB_MAD.pdf
- Section: "Adding Functions to the fmad Class"
- Example, normcdf isn't there, could add something like (untested):