データ解析

サンプルサイズ設計1

東京理科大学 創域理工学部情報計算科学科 安藤宗司

2023年12月14日

Contents

- □ サンプルサイズ設計とは?
 - ■仮説検定の誤り
 - ■検出力
- ■母平均の差に関する2標本検定問題
 - ■分散が既知の場合
 - ■分散が未知の場合

- ■推定精度を保証する方法
 - ■母平均の推定

手元にあるコインはいかさまコインかどうか

- \square 表が出る確率 π は1/2かどうか
- □実際にコインをN回投げて、確かめる実験を考える

裏 裏 裏 裏 … 裏 N-n□

□表が出た割合 $p = \frac{n}{N}$

コイン投げの実験を仮説検定で検証

- ■仮説の設定
 - ■表が出る確率は1/2かどうか
- ■設定した仮説を評価するためのデータを収集
 - ■実際にコインをN回投げる
 - **▶** *N*を設定することをサンプルサイズ設計という
- ■事前に設定した判定基準に基づき判断
 - ■表がm回以下(または以上)のとき、いかさまコインと判断
 - →この判定基準を確率論的に設定する

仮説の設定

- □ 「表が出る確率 π は1/2かどうか」を検証するために 2つの仮説を設定する
 - 帰無仮説 H_0 : $\pi = 1/2$
 - ■対立仮説 H_1 : $\pi \neq 1/2$
- □帰無仮説が成り立つと仮定する
 - ■手元にあるコインはいかさまコインではないと仮定する
 - ■収集したデータに基づき帰無仮説が 成り立つかどうかを判断する

設定した仮説を評価するためのデータを収集

- □「帰無仮説」と「対立仮説」のどちらが正しいかを 判断するために、コインを N 回投げる
 - *N* (サンプルサイズ) はどう設定すればいいのだろうか?
- □検出力に基づいてサンプルサイズを設計する
 - ■検出力は検定の精度を表す指標
 - ■詳しくは後ほど紹介

事前に設定した判定基準に基づき判断

- ■判断基準の考え方
 - ■いかさまコインではないとき 10回コインを投げれば常に表が5回出るとは限らない
 - ■表が出る回数は確率的に変動する
 - ■偶然に出る可能性のある「表の回数」の範囲を考える

□この範囲を確率論的に設定する

偶然に出る可能性のある「表の回数」の範囲

 \square いかさまコインではない(帰無仮説 H_0 : $\pi = 1/2$)と仮定

確率の計算式
$$_{10}C_x\left(\frac{1}{2}\right)^x\left(1-\frac{1}{2}\right)^{10-x}$$

表の回数3から7である確率は85%以上

表の回数が1以下、または9回以上である確率は2.16% 表の回数が2以下、または8回以上である確率は10.94%

有意水準

□帰無仮説のもとで、5%(または1%)未満でしか 起きない事象は偶然ではないと考える

- ■10回コインを投げた結果
 - ■表の回数が1以下,または9回以上の場合 → 偶然ではない
 - ■表の回数が2以上、または8回以下の場合 → 偶然である

検定結果の解釈

- ■10回コインを投げた結果
 - ■表の回数が1以下,または9回以上の場合
 - ▶ 統計学的に有意と判定
 - ▶帰無仮説を棄却して、対立仮説を採択する
 - \triangleright 「表が出る確率 π は1/2ではない」と判断する
 - ■表の回数が2以上、または8回以下の場合
 - ▶統計学的に有意でないと判定
 - ▶帰無仮説を採択する
 - > 「表が出る確率 π は1/2 ではない」とはいえないと判断する

「表が出る確率πは1/2である」とは判断できないことに注意!

仮説検定には誤りが存在する

- □帰無仮説のもとで5%未満の確率でしか起きない事象は 偶然ではないと考えて有意水準を設定
- ■裏を返せば、帰無仮説のもとでも、5%未満の確率で生じる事象ということになる
- ■第1種の過誤
 - ■帰無仮説が正しいときに、誤って帰無仮説を棄却する誤り
 - ■第1種の誤りを起こす確率を第1種の過誤確率

		検定結果		
		帰無仮説が 正しいと判断	対立仮説が 正しいと判断	
真	帰無仮説が正しい	正しい	第1種の誤り	
実	対立仮説が正しい	第2種の誤り	正しい	

2種類の誤り確率

□仮説検定では、第1種の誤りと第2種の誤りが存在

■有意水準を設定することで第1種の過誤確率を 制御している

■第2種の過誤確率はどのように制御するのか?

いかさまコインであると仮定

- □ これまでは、帰無仮説(いかさまコインではない)が 成り立つと仮定して議論してきた
- ■いかさまコインである仮定して、表が出る回数の確率 を求める
- □検出力
 - ■対立仮説が正しいとき、対立が正しいと判断する確率
 - ■1-第2種の過誤確率

表が出る確率が70%のいかさまコイン

いかさまコインで	ではない場合
----------	--------

いかさまコインの場合

表の回数	確率	,,	表の回数	確率	
0	0.1%	第1種の	0	0.0006%	検出力
1	0.98%	過誤確率	1	0.01%	(無視可能)
2	4.39%		2	0.15%	
3	11.72%		3	0.90%	
4	20.51%		4	3.68%	第2種の
5	24.51%		5	10.29%	過誤確率
6	20.51%		6	20.01%	
7	11.72%		7	26.68%	
8	4.39%		8	23.35%	
9	0.98%	第1種の	9	12.11%	検出力
10	0.1%	過誤確率	10	2.82%	14

表が出る確率が80%のいかさまコイン

いかさまコインではない場合

いかさまコインの場合

表の回数	確率		表の回数	確率	
0	0.1%	第1種の	0	1.024e-05%	検出力
1	0.98%	過誤確率	1	0.0004%	(無視可能)
2	4.39%		2	0.007%	
3	11.72%		3	0.08%	
4	20.51%		4	0.55%	第2種の
5	24.51%		5	2.64%	カ 4 催り 過誤確率
6	20.51%		6	8.81%	
7	11.72%		7	20.13%	
8	4.39%		8	30.20%	
9	0.98%	第1種の	9	26.84%	—————— 検出力
10	0.1%	過誤確率	10	10.74%	15

表が出る確率が90%のいかさまコイン

いかさまコインではない場合

いかさまコインの場合

表の回数	確率		表の回数	確率	
0	0.1%	第1種の	0	1.024e-05%	検出力
1	0.98%	過誤確率	1	9e-07%	(無視可能)
2	4.39%		2	3.645e-05%	
3	11.72%		3	0.0009%	
4	20.51%		4	0.01%	第2種の
5	24.51%		5	0.15%	過誤確率
6	20.51%		6	1.12%	
7	11.72%		7	5.74%	
8	4.39%		8	19.37%	
9	0.98%	第1種の	9	38.74%	検出力
10	0.1%	過誤確率	10	34.87%	16

12回コインを投げた結果

いかさまコイン	ではない場合		表が出る確率が	が80%のいかさき	まコインの場合
表の回数	確率		表の回数	確率	
0	0.02%	第1種の	0	4.096e-07%	10 JJ - I
1	0.29%	過誤確率	1	1.96608e-05%	検出力
2	1.61%		2	0.0004%	(無視可能)
3	5.37%		3	0.006%	
4	12.08%		4	0.05%	
5	19.34%		5	0.33%	労っ 括 の
6	22.56%		6	1.55%	第2種の
7	19.34%		7	5.32%	過誤確率
8	12.08%		8	13.29%	
9	5.37%		9	23.62%	
10	1.61%	the 15th on	10	28.34%	
11	0.29%	第1種の	11	20.62%	検出力
12	0.02%	過誤確率	12	6.87%	17

検出力の特徴

- □帰無仮説からの乖離の程度に依存する
 - ■コインのいかさまの程度(表の出る確率)に依存する

表の出る確率	検出力
70%	14.93%
80%	37.58%
90%	73.61%

■サンプルサイズ N に依存する

コイン投げの回数	表の出る確率	検出力
10	80%	37.58%
12	80%	55.83%

諸前提

- □試験治療*T*と対照治療*C*の応答変数の母平均の差に 関する両側検定を考える
 - ■試験治療Tの応答変数 $X_i \sim N(\mu_1, \sigma^2)$ (i = 1, 2, ..., n)
 - ■対照治療Cの応答変数 $Y_j \sim N(\mu_2, \sigma^2)$ (j = 1, 2, ..., m)
- □母平均が大きいことが臨床的に望ましい状態とする
 - $\mathbf{\epsilon} = \mu_1 \mu_2 > 0$ が臨床的に望ましい

母平均の差に関する2標本検定

- □試験治療の対照治療に対する優越性を検証
- □仮説
 - 帰無仮説 H_0 : $\varepsilon = 0$
 - ■対立仮説 H_1 : $\varepsilon \neq 0$
- □応答変数の標本平均

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad \bar{Y} = \frac{1}{m} \sum_{j=1}^{m} Y_j$$

- □割付比
 - ■各群の参加者数の比をr = m/nとし、 $\kappa = r/(r+1)$ とする

相似検定

複合仮説

複合仮説

帰無仮説 H_0 : $\theta \in \Theta_0$

対立仮説 $H_1: \theta \in \Theta_1 = \Theta \cap \Theta_0^c$

 $\Theta = \Theta_0 \cup \Theta_0^c \ \text{thom} \ \Theta_0 \cap \Theta_0^c = \phi$

すべての $\theta_0 \in \Theta_0$ に対して,

$$\beta_W(\theta_0) = P_{\theta_0}((X_1, X_2, \dots, X_n) \in W) = \alpha$$

を満たす棄却域Wを用いた検定を相似検定 (similar test) という

相似検定の例

- □母集団1
 - ■平均 μ_1 (未知),分散 σ^2 (既知)の正規母集団
 - ■無作為標本 $X_1, X_2, ..., X_n$
- □母集団2
 - ■平均 μ_2 (未知),分散 σ^2 (既知)の正規母集団
 - ■無作為標本 $Y_1, Y_2, ..., Y_m$
- □仮説
 - $\blacksquare H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2$
 - この統計的仮説検定に対する相似検定を構成する

両側検定の相似検定の構成(1)

$$egin{aligned} X_i &\sim N(\mu_1,\sigma^2) \quad (i=1,\ldots,n) \\ &\stackrel{\text{find}}{ \ \, } N(\mu_1,\sigma^2) \quad (i=1,\ldots,n) \\ &\stackrel{\text{find}}{ \ \, } N(\mu_2,\sigma^2) \quad (i=1,\ldots,m) \end{aligned}$$

$$\bar{X} \perp \bar{Y}$$
であることから

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n} + \frac{1}{m}\right)\right)$$

両側検定の相似検定の構成(2)

$$H_0: \mu_1 = \mu_2$$
のもとで

$$\bar{X} - \bar{Y} \sim N\left(0, \sigma^2\left(\frac{1}{n} + \frac{1}{m}\right)\right), \qquad Z \equiv \frac{\bar{X} - \bar{Y}}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1)$$

$$H_1$$
: $\mu_1 \neq \mu_2$ のもとで

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n} + \frac{1}{m}\right)\right), \qquad Z \equiv \frac{\bar{X} - \bar{Y}}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N\left(\frac{\mu_1 - \mu_2}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}}, 1\right)$$

両側検定の相似検定の構成(3)

棄却域Wを次のようにする。

$$W = \left\{ (x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_m) \mid |Z| > z \left(\frac{\alpha}{2}\right) \right\}$$

$$H_0: \mu_1 = \mu_2$$
のもとで

$$\beta_W(\mu_1, \mu_2) = P_{\theta_0}((X_1, X_2, \dots, X_n; Y_1, Y_2, \dots, Y_m) \in W) = \alpha$$

第1種の過誤確率

$$\iff \int_{|Z|>z\left(\frac{\alpha}{2}\right)} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{Z^2}{2}\right) dZ = \alpha$$

この棄却域Wに基づく検定は相似検定である

両側検定の相似検定の構成(4)

$$H_1: \mu_1 \neq \mu_2$$
のもとで
$$\beta_W(\mu_1, \mu_2) = P_{\theta_1} \Big((X_1, X_2, \dots, X_n; Y_1, Y_2, \dots, Y_m) \in W \Big)$$
 検出力
$$\iff \int_{|Z| > z\left(\frac{\alpha}{2}\right)} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(Z - \frac{\mu_1 - \mu_2}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}\right)^2\right) dZ$$

分散が既知の場合

□次式が成立するときに帰無仮説 H₀を有意水準αで棄却

$$\left| \frac{\overline{X} - \overline{Y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \right| \ge z_{\alpha/2} \iff \left| \frac{\overline{X} - \overline{Y}}{\sigma} \right| \ge z_{\alpha/2} \qquad \sigma \sqrt{\frac{1}{n} + \frac{1}{m}} = \sigma \sqrt{\frac{1}{n} + \frac{1}{nr}}$$

 $z_{lpha/2}$:標準正規分布の上側lpha/2%点

$$\sigma \sqrt{\frac{1}{n} + \frac{1}{m}} = \sigma \sqrt{\frac{1}{n} + \frac{1}{nr}}$$

$$= \sigma \sqrt{\frac{1}{n} \left(1 + \frac{1}{r}\right)} = \sigma \sqrt{\frac{1}{n} \frac{r+1}{r}}$$

$$= \sigma \sqrt{\frac{1}{n} \frac{1}{\kappa}} = \frac{\sigma}{\sqrt{n\kappa}}$$

- サンプルサイズ設計 (検出力の計算)
 - $\blacksquare \alpha, r, \varepsilon, \sigma^2$ はある値に固定する

□対立仮説 H_1 : $\varepsilon \neq 0$ のもとで、検出力はnの関数になる

$$\begin{split} \phi(n) &= P\left(\left|\frac{\overline{X} - \overline{Y}}{\sigma/\sqrt{n\kappa}}\right| \geq z_{\alpha/2}\right) = P\left(\frac{\overline{X} - \overline{Y}}{\sigma/\sqrt{n\kappa}} \geq z_{\alpha/2}\right) + P\left(\frac{\overline{X} - \overline{Y}}{\sigma/\sqrt{n\kappa}} \leq -z_{\alpha/2}\right) \\ &= P\left(\frac{\overline{X} - \overline{Y} - \varepsilon}{\sigma/\sqrt{n\kappa}} \geq z_{\alpha/2} - \frac{\varepsilon}{\sigma/\sqrt{n\kappa}}\right) + P\left(\frac{\overline{X} - \overline{Y} - \varepsilon}{\sigma/\sqrt{n\kappa}} \leq -z_{\alpha/2} - \frac{\varepsilon}{\sigma/\sqrt{n\kappa}}\right) \\ &= \left(1 - \Phi\left(z_{\alpha/2} - \frac{\varepsilon}{\sigma/\sqrt{n\kappa}}\right)\right) + \Phi\left(-z_{\alpha/2} - \frac{\varepsilon}{\sigma/\sqrt{n\kappa}}\right) \\ &= \Phi\left(\frac{\varepsilon}{\sigma/\sqrt{n\kappa}} - z_{\alpha/2}\right) + \Phi\left(-z_{\alpha/2} - \frac{\varepsilon}{\sigma/\sqrt{n\kappa}}\right) \\ &\approx \Phi\left(\frac{\varepsilon}{\sigma/\sqrt{n\kappa}} - z_{\alpha/2}\right) \qquad \left(\because \frac{\varepsilon}{\sigma/\sqrt{n\kappa}} \gg 0\right) \end{split}$$

サンプルサイズ設計

- ■標準正規分布の上側β%点をz_βとする
 - $\blacksquare 1 \beta = \Phi(z_{\beta})$
- □検出力 $1-\beta$ を満たすnは、次式の解として与えられる

$$\frac{\varepsilon}{\sigma/\sqrt{n\kappa}} - z_{\alpha/2} = z_{\beta} \Leftrightarrow n = \frac{\left(z_{\alpha/2} + z_{\beta}\right)^{2}}{\kappa \left(\frac{\varepsilon}{\sigma}\right)^{2}} \qquad m = rn$$

nに小数点以下の単数が含まれるので、切り上げることで試験に必要な参加者数を得る。

検出力が $1-\beta$ 以上となる最小の自然数として得られる。

分散が未知の場合

□次式が成立するときに帰無仮説 H₀を有意水準αで棄却

$$\left| \frac{\bar{X} - \bar{Y}}{\frac{1}{s} \sqrt{\frac{1}{n} + \frac{1}{m}}} \right| \ge t_{\alpha/2, \nu} \Leftrightarrow \left| \frac{\bar{X} - \bar{Y}}{\frac{s}{\sqrt{n\kappa}}} \right| \ge t_{\alpha/2, \nu}$$

分散 σ^2 の不偏推定量

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{m} (Y_{j} - \bar{Y})^{2}}{n + m - 2}$$

 $t_{\alpha/2,\nu}$:自由度 $\nu = n + m - 2$ (= n + nr - 2)の t 分布の上側 $\alpha/2\%$ 点

$$\left| \frac{\overline{X} - \overline{Y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \right| \ge z_{\alpha/2} \Leftrightarrow \left| \frac{\overline{X} - \overline{Y}}{\sigma} \right| \ge z_{\alpha/2} \qquad \frac{(\overline{X} - \overline{Y})}{\sigma} \sim N(0,1) \qquad \frac{s^2 \nu}{\sigma^2} \sim \chi_{\nu}^2 + \frac{1}{\sigma} \approx N(0,1) \qquad \frac{s^2 \nu}{\sigma^2} \sim \chi_{\nu}^2 + \frac{1}{\sigma} \approx N(0,1)$$

$$\frac{(\bar{X} - \bar{Y})}{\frac{\sigma}{\sqrt{n\kappa}}} \sim N(0,1)$$

$$\frac{S^2 v}{\sigma^2} \sim \chi_v^2$$

自由度νのカイ二乗分布

分散 σ^2 が未知のため使用

- サンプルサイズ設計 (検出力の計算)
 - $\blacksquare \alpha, r, \varepsilon, s^2$ はある値に固定する

$$\frac{\frac{\bar{X} - \bar{Y}}{\sigma / \sqrt{n\kappa}}}{\sqrt{\frac{s^2 \nu}{\sigma^2} \frac{1}{\nu}}} = \frac{\bar{X} - \bar{Y}}{\frac{s}{\sqrt{n\kappa}}} \sim t_{\nu}$$

自由度vのt分布 30

検出力の計算(1)

□対立仮説 $H_1: \varepsilon \neq 0$ のもとで、検出力はnの関数になる

$$\phi(n) = P\left(\left|\frac{X - Y}{s/\sqrt{n\kappa}}\right| \ge t_{\alpha/2,\nu}\right) = P\left(\left|\frac{(X - Y)\sqrt{n\kappa}/\sigma}{s/\sigma}\right| \ge t_{\alpha/2,\nu}\right)$$

$$= P\left(\left|\frac{(\bar{X} - \bar{Y})}{\frac{\sigma}{\sqrt{n\kappa}}}\right| \ge t_{\alpha/2,\nu}\right) = P(|T'| \ge t_{\alpha/2,\nu}) = P(T' \ge t_{\alpha/2,\nu}) + P(T' \le -t_{\alpha/2,\nu})$$

$$\frac{(\bar{X} - \bar{Y})}{\frac{\sigma}{\sqrt{n\kappa}}} \sim N(\theta, 1) \qquad \qquad \frac{s^2 \nu}{\sigma^2} \sim \chi_{\nu}^2 \qquad \qquad T$$

自由度 ν のカイニ乗分布

$$\frac{s^2\nu}{\sigma^2} \sim \chi_{\nu}^2$$

 $T' \sim t(\nu; \theta)$

自由度 ν , 非心度 θ の非心 t 分布

検出力の計算(2)

 $T_{\nu;\theta}(\cdot)$: $t(\nu;\theta)$ の累積分布関数

□対立仮説 H_1 : $\varepsilon \neq 0$ のもとで、検出力はnの関数になる

$$\phi(n) = P(T' \ge t_{\alpha/2,\nu}) + P(T' \le -t_{\alpha/2,\nu})$$

$$= (1 - T_{\nu;\theta}(t_{\alpha/2,\nu})) + (T_{\nu;\theta}(-t_{\alpha/2,\nu}))$$

$$\approx (1 - T_{\nu;\theta}(t_{\alpha/2,\nu})) \qquad \left(\because \theta = \frac{\varepsilon}{\sigma/\sqrt{n\kappa}} \gg 0\right)$$

サンプルサイズ設計

- □検出力 $1-\beta$ を満たすnは、次式の解として与えられる $1-\beta=1-T_{\nu:\theta}(t_{\alpha/2,\nu})$
- □計算法 (反復計算)
 - ■実際に試験に必要な参加者数を求めるには、nを逐次的に変化させて、与えられたnのもとで検出力を計算
 - ■検出力が1-β以上となる最小の自然数まで反復計算

推定精度を保証する方法(1)

- ■母平均の推定
 - 応答変数 $X_i \sim N(\mu, \sigma^2)$ (i = 1, 2, ..., n)
 - ■応答変数の標本平均

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

■分散 σ^2 が既知の場合の母平均 μ の信頼区間

$$(L,U) = \left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

推定精度を保証する方法 (2)

□ 信頼区間幅が一定値γ以下になるnを求める

$$\left(\bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) - \left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 2z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \gamma$$

$$\Leftrightarrow \sqrt{n} \ge \frac{2z_{\alpha/2} \sigma}{\gamma}$$

$$\Leftrightarrow n \ge \left(\frac{2z_{\alpha/2} \sigma}{\gamma}\right)^2$$

この不等式を満たす最小のnが試験に必要な参加者数