Problem Set 5 Due Date 04/27/25

Shuddhodan Kadattur Vasudevan

April 23, 2025

(1) In this exercise you shall prove the following result.

Theorem 0.0.1. Let $X \subseteq \mathbb{P}_A^n$ be a closed subscheme and \mathscr{F} a coherent sheaf on X with A a **reduced** Noetherian ring. Then \mathscr{F} is flat over $\operatorname{Spec}(A)$ iff the function taking $s \in \operatorname{Spec}(A) \to P_{\mathscr{F}_s}(X_s)$, the Hilbert polynomial of \mathscr{F} restricted to the fiber $X_s = X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(k(s))$ is locally constant on $\operatorname{Spec}(A)$.

In class we have already shown the only if direction (even for proper morphisms, using the Mumford complex). We shall prove the theorem in steps.

(i) Let $\pi_S: \mathbb{P}^n_S \to S$, with S a Noetherian scheme. Let $\phi: T \to S$ be an arbitrary morphism from a Noetherian scheme T. Thus we have a Cartesian diagram

$$\mathbb{P}_{T}^{n} \xrightarrow{\phi'} \mathbb{P}_{S}^{n} \\
\downarrow^{\pi_{T}} \qquad \downarrow^{\pi_{S}} \\
T \xrightarrow{\phi} S.$$

Show that for any coherent sheaf \mathscr{F} on \mathbb{P}^n_S and all r>>0, the base change map 1

$$\phi^*\pi_{S*}(\mathscr{F}(r)) \to \pi_{T*}\phi'^*\mathscr{F}(r),$$

is an isomorphism.

HINT: First by covering S and then T by open affines, reduce to the case where S and T are affine. Next note that when $\mathscr{F}=\mathscr{O}_X$, the isomorphism follows from explicit computation of the global sections of the Serre twists. Finally resolve \mathscr{F} by direct sum of Serre twists, conclude using Serre vanishing.

¹The selling point here is that ϕ need not be *flat*.

- (ii) Let $\pi: \mathbb{P}^n_A \to \operatorname{Spec}(A)$, with A a Noetherian ring. Let \mathscr{F} be a coherent sheaf on \mathbb{P}^n_A . Suppose $H^0(\mathbb{P}^n_A, \mathscr{F}(r))$ is a flat A-module for all $r \geqslant r_0$. Then \mathscr{F} is flat over $\operatorname{Spec}(A)$.
 - **HINT**: Note that $\mathscr{F} = \widetilde{M}$, where M is the graded module, $\bigoplus_{r \geqslant r_0} H^0(\mathbb{P}^n_A, \mathscr{F}(r))$. Show that M is flat and conclude that \mathscr{F} restricted to each basic affine open set of the form $D_+(X_i)$ is flat and hence is flat over $\operatorname{Spec}(A)$.
- (iii) Let M be a finitely generated A-module, with A a reduced Noetherian local ring. Show that M is flat iff the rank function $s \in \operatorname{Spec}(A) \to \dim_{k(s)}(M \otimes_A k(s))$ is constant.
- (iv) Finally to prove Theorem 0.0.1, reduce to the case $X=\mathbb{P}^n_A$ and A a reduced Noetherian local ring. By (ii) it suffices to show that $H^0(\mathbb{P}^n_A,\mathscr{F}(r))$ is a flat A-module. Use (iii) together with the base change result (i) to conclude the proof of the Theorem.
- (2) In this exercise you shall prove the following result.

Theorem 0.0.2. Let X/k be a reduced, connected and proper scheme over an algebraically closed field k with $H^1(X, \mathcal{O}_X) = 0^2$. Let T/k be any connected scheme of finite type. Then there exists a natural isomorphism of abelian groups.

$$\phi: Pic(X) \times Pic(T) \rightarrow Pic(X \times_k T),$$

induced by the pullback map.

We shall do this in steps as follows.

- (i) First show that ϕ is always injective (by giving a section to ϕ). Hence we are reduced to showing that ϕ is surjective.
- (ii) Now let $\mathscr L$ be any line bundle on $X\times_k T$ and denote by p_2 , the projection to T. Note that p_2 is a proper and flat morphism. Use the vanishing of $H^1(X,\mathscr O_X)$ to conclude that $R^0p_{2*}\mathscr L$ commute with arbitrary base change (Use Corollary 7.4.0.3 from the notes). Combine this with Theorem 7.4.0.2 to conclude that $R^0p_{2*}\mathscr L=p_{2*}\mathscr L$ must be locally free on T.
- (iii) Let $\mathscr L$ be a line bundle on any connected reduced scheme S which is proper over a field k. Show that $\mathscr L$ is trivial iff both $\mathscr L$ and $\mathscr L^{-1}$ have non-zero sections.

 $^{^2}$ Examples of such schemes are products of projective spaces, over $\mathbb C$ any smooth projective variety whose first Betti number is 0....

(iv) Now suppose $\mathscr L$ is a line bundle on $X\times_k T$ such that there exists a closed point $t_0\in T$ such that $\mathscr L|_{X_{t_0}}$ is trivial. Show that $\mathscr L|_{X_t}$ is trivial for any closed point t.

Hint: Use (ii) to conclude that both $p_{2*}\mathcal{L}$ and $p_{2*}\mathcal{L}^{-1}$ are line bundles on T^3 , whose formation commutes with arbitrary base change. Now use (iii).

(v) With $\mathscr L$ as in (iv) conclude that the natural map

$$\psi_{\mathscr{L}}: p_2^* p_{2*} \mathscr{L} \to \mathscr{L},$$

is an isomorphism.

Hint: Since $\psi_{\mathscr{L}}$ is a morphism of line bundles, it suffices to show that $\psi_{\mathscr{L}}$ is a surjection or equivalently $\mathscr{M} = \operatorname{coker}(\psi_{\mathscr{L}})$ is trivial. Since \mathscr{M} is coherent and closed points are dense, it suffices to show that $\mathscr{M}_{(x,t)} = 0$ for all closed points $x \in X$ and $t \in T$. This follows from (iv).

- (vi) Finally let \mathscr{F} be any line bundle on $X\times_k T$. Choose a closed point $t_0\in T$ and apply (v) to the line bundle $\mathscr{F}\otimes p_1^*\mathscr{F}^{-1}|_{X_{t_0}}$. Here p_1 is the projection from $X\times T$ to X and we identify X_{t_0} with X.
- (vii) As an application (of the technique!) conclude that $\operatorname{Pic}(\mathbb{P}(\mathscr{E})) \simeq \operatorname{Pic}(T) \oplus \mathbb{Z}$, for any vector bundle \mathscr{E} on a connected scheme T of finite type over an algebraically closed field k.

³Note all the assumptions about T and X one needs to conclude that $p_{2*}\mathscr{L}$ is indeed a *line bundle*.