MAT216: Linear Algebra and Fourier Transformation

Emon Hossain¹

¹Lecturer MNS department Brac University

Lecture-05

(University of Dhaka) 1/11

Vector Space

Physicist: Arrow

CSE: Array

Mathematician: 10 Axioms

What we need before we talk about vector space: A set, V, where we define an operator \oplus which operates on set elements and another operator \odot which operates on the field and set elements

Example:

$$\begin{pmatrix}1\\2\end{pmatrix}\oplus\begin{pmatrix}2\\3\end{pmatrix}=\begin{pmatrix}3\\5\end{pmatrix}$$

$$2\odot \begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 2\\4 \end{pmatrix}$$

(University of Dhaka) 2/11

Axioms

Operations on vector addition:

Closure law (A1): $\forall u, v \in V \implies u \oplus v \in V$.

Commutative law (A2): $u \oplus v = v \oplus u$

Associative law (A3): $u \oplus (v \oplus w) = (u \oplus v) \oplus w$.

Existence of Additive identity (A4): There exists an element $\mathbf{0}_V \in V$, called the zero vector, such that $\mathbf{v} \oplus \mathbf{0}_V = \mathbf{v}$ for all $\mathbf{v} \in V$.

Existence of Additive inverse (A5): For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the additive inverse of \mathbf{v} , such that $\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{0}$.

(University of Dhaka) 3/11

Axioms

Operations on scalar multiplication:

Closure law (M1): $\forall \alpha \in \mathbb{F}$ and $\mathbf{v} \in V \implies \alpha \odot \mathbf{v} \in V$.

Distributive law respect to vector addition (M2):

$$\alpha\odot(\mathbf{u}\oplus\mathbf{v})=\alpha\odot\mathbf{u}\oplus\alpha\odot\mathbf{v}$$

Distributive law respect to field addition (M3):

$$(lpha \widetilde{\oplus} eta) \odot \mathsf{v} = lpha \odot \mathsf{v} \oplus eta \odot \mathsf{v}$$

Compatibility of scalar multiplication with field multiplication (M4): $\alpha \odot (\beta \odot v) = (\alpha \star \beta) \odot v$.

Existence of multiplicative identity (M5): $1_{\mathbb{F}}v = v$, where $1_{\mathbb{F}}$ denotes the multiplicative identity in \mathbb{F} .

(University of Dhaka) 4/11

Consider the set $V=\mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y\in\mathbb{R}$ and $k\in\mathbb{R}$. The operations of addition and scalar multiplication are defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 y_2)$$

 $k(x_1, y_1) = (kx_1, ky_1)$

(University of Dhaka) 5/11

Consider the set $V=\mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y\in\mathbb{R}$ and $k\in\mathbb{R}$. The operations of addition and scalar multiplication are defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 y_2)$$

 $k(x_1, y_1) = (kx_1, ky_1)$

Check Axiom M5.

(University of Dhaka) 5/11

Consider the set $V=\mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y\in\mathbb{R}$ and $k\in\mathbb{R}$. The operations of addition and scalar multiplication are defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (kx_1, y_1)$

(University of Dhaka) 6/11

Consider the set $V=\mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y\in\mathbb{R}$ and $k\in\mathbb{R}$. The operations of addition and scalar multiplication are defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (kx_1, y_1)$

Check Axiom M3.

(University of Dhaka) 6/11

Consider the set $V = \mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y \in \mathbb{R}$ and $k \in \mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$$

 $k(x_1, y_1) = (kx_1, ky_1)$

(University of Dhaka) 7/11

Consider the set $V=\mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y\in\mathbb{R}$ and $k\in\mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$$

 $k(x_1, y_1) = (kx_1, ky_1)$

Check Axiom M3.

(University of Dhaka) 7/11

Consider the set $V = \mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y \in \mathbb{R}$ and $k \in \mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (k^2 x_1, k^2 y_1)$

(University of Dhaka) 8/11

Consider the set $V=\mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y\in\mathbb{R}$ and $k\in\mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (k^2 x_1, k^2 y_1)$

Check Axiom M3.

(University of Dhaka) 8/11

Consider the set $V = \mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y \in \mathbb{R}$ and $k \in \mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (0, 0)$

(University of Dhaka) 9/11

Consider the set $V = \mathbb{R}^2$. A generic element of \mathbb{R}^2 is given by the pair (x,y) where $x,y \in \mathbb{R}$ and $k \in \mathbb{R}$. The operations addition and scalar multiplication is defined on \mathbb{R}^2 by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $k(x_1, y_1) = (0, 0)$

Check Axiom M5.

(University of Dhaka) 9/11

Let $V = \{(0,0,0)\}$. Is V a vector space over $\mathbb R$ with respect to the usual operations? Justify your answer.

(University of Dhaka)

Let $V = \{(1,1,1)\}$. Is V a vector space over $\mathbb R$ with respect to the usual operations? Justify your answer.

(University of Dhaka) 11/11