Hadronic Physics III

Geant4 School at IFIN-HH, Bucharest

18 November 2016
Dennis Wright

Outline

- QCD string models
- Gamma- and lepto-nuclear models
- Capture, Stopping and Fission models

Radioactive decay

High Energy Nuclear Interaction

How the String Model Works (FTF Model)

- Lorentz contraction turns nucleus into pancake
- All nucleons within 1 fm of path of incident hadron are possible targets
- Excited nucleons along path collide with neighbors
 - $n + n \rightarrow n\Delta$, NN, $\Delta\Delta$, N Δ , ...
 - essentially a quark-level cascade in vicinity of path → Reggeon cascade
- All hadrons treated as QCD strings
 - projectile is quark-antiquark pair or quark-diquark pair
 - target nucleons are quark-diquark pairs

How the String Model Works (FTF Model)

- Hadron excitation is represented by stretched string
 - string is set of QCD color lines connecting the quarks
- When string is stretched beyond a certain point it breaks
 - replaced by two shorter strings with newly created quarks, antiquarks on each side of the break
- High energy strings then decay into hadrons according to fragmentation functions
 - fragmentation functions are theoretical distributions fitted to experiment
- Resulting hadrons can then interact with nucleus in a traditional cascade

Two QCD String Models Available

- Fritiof (FTF) valid for
 - p, n, π , K, Λ , Σ , Ω from 3 GeV to ~TeV
 - anti-proton, anti-neutron, anti-hyperons at all energies
 - anti-d, anti-t, anti- 3 He, anti- α with momenta between 150 MeV/nucleon and 2 GeV/nucleon
- Quark-Gluon String (QGS) valid for
 - p, n, π , K from 15 GeV to $^{\sim}$ TeV
- Both models handle:
 - building 3-D model of nucleus from individual nucleons
 - splitting nucleons into quarks and di-quarks
 - formation and excitation of QCD strings
 - string fragmentation and hadronization

QGS Validation

FTF Validation

Gamma- and Lepto-nuclear Processes

- Geant4 models which are neither exclusively electromagnetic nor hadronic
 - gamma-nuclear
 - electro-nuclear
 - muon-nuclear
- Geant4 processes available:
 - G4PhotoNuclearProcess (implemented by two models)
 - G4ElectronNuclearProcess (implemented by one model)
 - G4PositronNuclearProcess (implemented by one model)
 - G4MuonNuclearProcess (implemented by two models)

Gamma- and Lepto-nuclear Processes

- Gammas interact directly with the nucleus
 - at low energies they are absorbed and excite the nucleus as a whole
 - at high energies they act like hadrons (pion, rho, etc.) and form resonances with protons and neutrons
- Electrons and muons cannot interact hadronically, except through virtual photons
 - electron or muon passes by a nucleus and exchanges virtual photon
 - virtual photon then interacts directly with nucleus (or nucleons within nucleus)

Gamma- and Lepto-nuclear Models

Gamma-nuclear

Lepto-nuclear

 πs and nucleons

Gamma- and Lepto-nuclear Models

G4MuonVDNuclearModel

- Kokoulin model of EM cross section and virtual photon generation
- Weizsacker-Williams conversion of virtual to real gamma
- For E_{γ} < 10 GeV, direct interaction with nucleus using Bertini cascade
- For E $_{\gamma}$ > 10 GeV, conversion of γ to π^0 , then interaction with nucleus using FTFP model

G4ElectroVDNuclearModel

- Kossov model of EM cross section and virtual photon generation
- all else identical to that in G4MuonVDNuclearModel

For gamma-nuclear reaction

- Bertini cascade below 3.5 GeV
- QGSP from 3 GeV to 100 TeV

Capture and Stopping Models

Stopped Hadron Models

- G4PiMinusAbsorptionBertini, G4KaonMinusAbsorptionBertini, G4SigmaMinusAbsorptionBertini
 - at rest process implemented with Bertini cascade model
 - G4Precompound model used for de-excitation of nucleus
 - includes atomic cascade but not decay in orbit
- G4AntiProtonAbsorptionFritiof, G4AntiSigmaPlusAbsorptionFritiof
 - FTF model used because > 2 GeV available in reaction
 - G4Precompound model used for de-excitation of nucleus
 - includes atomic cascade but not decay in orbit

Stopped Muon Models

G4MuonMinusCapture

- atomic cascade, with decay in orbit enabled
- K-shell capture and nuclear de-excitation implemented with Bertini cascade model
- used in most physics lists

G4MuonMinusCaptureAtRest

- atomic cascade, with decay in orbit enabled
- K-shell capture uses simple particle-hole model
- nuclear de-excitation handled by G4ExcitationHandler

Muon Capture using Bertini Model (red), old model (black)

Capture Models

- Neutrons, anti-neutrons never really stop, they just slow down from elastic scattering or are absorbed
 - kinetic energy must be taken into account
- G4HadronCaptureProcess
 - in-flight capture for neutrons
 - model implementations:
 - G4ParticleHPCapture (below 20 MeV)
 - G4NeutronRadCapture (all energies)
- G4AntiNeutronAnnihilationAtRest
 - implemented by GHEISHA parameterized model

Fission Processes and Models

- Many hadronic models already include fission implicitly
 - included in nuclear de-excitation code
 - in that case don't add fission process to physics list -> double counting
 - usually only needed in special cases
- G4HadronFissionProcess can use two models
 - G4ParticleHPFission
 - specifically for neutrons below 20 MeV
 - fission fragments produced if desired
 - G4FissLib: Livermore Spontaneous Fission
 - handles spontaneous fission as an inelastic process
 - no fission fragments produced, just neutron spectra

Fission Processes and Models

- Fission fragments can be produced with Wendt fission model
 - automatically available when ParticleHPFission is used
 - invoke by setting two environment variables:
 - G4NEUTRONHP_PRODUCE_FISSION_FRAGMENTS
 - G4NEUTRON_HP_USE_WENDT_FISSION_MODEL
 - see extended example geant4/examples/extended/hadronic/ FissionFragment
- Model developed by Geant4 user who needed fission fragments in addition to emitted neutrons for reactor studies
 - worked with Geant4 developer and contributed code

Radioactive Decay

- Process to simulate radioactive decay of nuclei
 - in flight
 - at rest
- α , β^+ , β^- , γ decay, electron capture (EC) implemented
- Empirical and data-driven
 - data files taken from Evaluated Nuclear Structure Data Files (ENSDF)
 - as of Geant4 10.2, these are in RadioactiveDecay4.3
 - half lives, nuclear level structure for parent and daughter nuclides, decay branching ratios, energy of decay process
 - currently 2792 nuclides, including all meta-stable states with lifetimes > 1 ns

Radioactive Decay Chain

EC: electron capture

IC: internal conversion

ARM: atomic relaxation model

Atomic Relaxation Model

electron shell configuration may change after decay

inner holes filled by atomic cascade

either photons or Auger electrons are emitted

fluorescence option also available

β Decay Spectrum Shapes

Gamma (or electron) Emission

- If daughter of nuclear decay is an isomer, prompt deexcitation is done by using G4PhotonEvaporation
 - uses ENSDF files with all known gamma levels for 2071 nuclides
 - as of Geant4 10.0, these are in PhotonEvaporation3.2
 - internal conversion is enabled as a competing process to gamma de-excitation
- Nuclides with LT < 1 ns decay immediately
- Option to enable atomic relaxation after decay
 - atomic cascade
 - Auger
 - fluorescence

Biased Mode

- G4RadioactiveDecay has several biasing options
 - amplify rare decay branches
 - set all decay branches equal
 - "splitting": perform nuclear decay N times for each event
 - activation: integrate decay chain over time windows using Bateman equations
 - collimation of decay products
 - enable/disable decay in various geometry volumes
- Options activated by UI commands

Using Radioactive Decay

- Can be accessed with messengers (biasing options, etc.)
- To put in your physics list:

```
G4RadioactiveDecay* rDecay = new G4RadioactiveDecay;
G4PhysicsListHelper* plh = G4PhysicsListHelper::GetPhysicsListHelper();
rDecay->SetICM(true); // internal conversion
rDecay->SetARM(true); // atomic relaxation
plh->RegisterProcess(rDecay, G4GenericIon::G4GenericIon());
```

- Set environment variables to point to:
 - RadioactiveDecay4.3
 - PhotonEvaporation3.2

Examples Using RDM

- /examples/extended/ radioactivedecay/rdecay01
 - 2 x 2 x 2 mm box of air
 - only radioactive decay and transportation enabled
 - default: decay of ²¹⁰Pb at origin of box
 - user-defined decay files
 - analysis options: energy,
 lifetime histograms
 - visualization

Examples Using RDM

- /examples/extended/ radioactivedecay/rdecay02
 - Csl cylindrical target at center of detector tube made of Ge
 - physics
 - induced radioactivity
 - radioactive decay + standard EM
 - option to use full physics list
 - Generalized Particle Source fires 1 GeV p
 - analysis options: energy histograms, pulse height spectra

Summary

- Two QCD string models available for high energy interactions
- Gamma-nuclear and lepto-nuclear processes are available
 - for γ, e⁻, e⁺, μ⁻, μ⁺ projectiles
- Several stopping processes and models available
 - for μ^- , π^- , K^- , Σ^- , anti-p, anti- Σ^+
- Capture process and models exist for n, anti-n
- Fission
 - be sure not to double-count
 - model now available to produce fission fragments
- The radioactive decay process is quite detailed and has many recent improvements