Only questions LEC (5-1) / Discrete Mathematics

LEC 2

- EX 1: The set V of all vowels in the English alphabet can be written as $V = \{a, e, i, o, u\}$.
- EX 2: The set O of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.
- EX_ 3: Although sets are usually used to group together elements with common properties, there is nothing that prevents a set from having seemingly unrelated elements. For instance, {a, 2, Fred, New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey. Sometimes the roster method is used to describe a set without listing all its members. Some members of the set are listed, and then ellipses (. . .) are used when the general pattern of the elements is obvious.
- EX 4 The set of positive integers less than 100 can be denoted by $\{1, 2, 3, \ldots, 99\}$.
- EX_5: The set {N, Z, Q, R} is a set containing four elements, each of which is a set. The four elements of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers; and R, the set of real numbers.
- EX_6: The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.
- EX_7: Draw a Venn diagram that represents V, the set of vowels in the English alphabet.
- EX_10: Let A be the set of odd positive integers less than 10. Then |A| = ?
- EX_11: Let S be the set of letters in the English alphabet. Then |S| =?
- EX_12: Because the null set has no elements, it follows that $|\emptyset| = ?$

- EX_13: The set of positive integers is infinite.
- EX_14 : What is the power set of the set $\{0, 1, 2\}$?
- EX_15: What is the power set of the empty set? What is the power set of the set $\{\emptyset\}$?
- EX_16: Let A represent the set of all students at a university, and let B represent the set of all courses offered at the university. What is the Cartesian product $A \times B$ and how can it be used?
- EX_17: What is the Cartesian product of A = $\{1, 2\}$ and B = $\{a, b, c\}$?
- EX_18: Show that the Cartesian product $B \times A$ is not equal to the Cartesian product $A \times B$, where A and B sets are as in Example 17.
- EX 19: The union of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 2, 3, 5\}$; that is, $\{1, 3, 5\} \cup \{1, 2, 3\} =$
- EX_20: The intersection of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 3\}$; that is, $\{1, 3, 5\} \cap \{1, 2, 3\} =$
- EX_21: Let A = $\{1, 3, 5, 7, 9\}$ and B = $\{2, 4, 6, 8, 10\}$. Because A \cap B = \emptyset , A and B are disjoint.
- EX_22: The difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{5\}$; that is, $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$. This is different from the difference of $\{1, 2, 3\}$ and $\{1, 3, 5\}$, which is the set $\{2\}$.
- EX_23: Let A = $\{a, e, i, o, u\}$ (where the universal set is the set of letters of the English alphabet). Then A = ?
- EX_24: Let A be the set of positive integers greater than 10 (with universal set the set of all positive integers). Then A = ?
- EX_25: Let A = $\{0, 2, 4, 6, 8\}$, B = $\{0, 1, 2, 3, 4\}$, and C = $\{0, 3, 6, 9\}$. What are A \cup B \cup C and A \cap B \cap C?
- EX 26: For i = 1, 2, . . ., let Ai = {i, i + 1, i + 2, . . .}. Then,

$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \{i, i+1, i+2, \ldots\} = \{1, 2, 3, \ldots\},\$$

pg. 2

and

$$\bigcap_{i=1}^{n} A_{i} = \bigcap_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{n, n+1, n+2, \dots\} = A_{n}.$$

EX_27: Suppose that each student in a discrete mathematics class is assigned a letter grade from the set {A, B, C, D, F}. And suppose that the grades are A for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens. This assignment of grades is illustrated the Figure below:

Assignment of Grades in a Discrete Mathematics Class.

EX_28: What are the domain, codomain, and range of the function that assigns grades to students in EX_27?

EX_29: Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22), (Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student's age. Specify a function determined by this relation.

EX_30 Let f: Z \rightarrow Z assign the square of an integer to this integer. Then, f (x) = x2, where the domain of f is the set of all integers, the codomain off is the set of all integers, and the range of f is the set of all integers that are perfect squares, namely, $\{0, 1, 4, 9, \ldots\}$.

EX_1: Let f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) = x - x2. What are the functions f1 + f2 and f1f2?

EX_2: Determine whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f $\{a\}$ = 4, f(b) = 5, f $\{c\}$ = 1, and f $\{d\}$ = 3 is one-to-one.

EX_3: Determine whether the function $f(x) = X^2$ from the set of integers to the set of integers is oneto-one.

EX_4: Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

EX_5: Is the function f(x) = X2 from the set of integers to the set of integers onto?

EX_6: Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. is f invertible, and if it is, what is its inverse?

EX_7: Let f be the function from R to R with f (x) = X2. Is f invertible?

EX_9: Let A = $\{0, 1, 2\}$ and B = $\{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. This means, for instance, that 0 R a, but that 1 b.

EX_10: Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) \mid a \text{ divides b}\}$?

EX_11: Consider these relations on the set of integers:

R1 =
$$\{(a, b) \mid a \le b\},\$$

$$R2 = \{(a, b) \mid a > b\},\$$

R3 =
$$\{(a, b) \mid a = b \text{ or } a = -b\},\$$

$$R4 = \{(a, b) \mid a = b\},\$$

$$R5 = \{(a, b) \mid a = b + 1\},\$$

R6 =
$$\{(a, b) \mid a + b \le 3\}.$$

EX 12: Consider the following relations on {1, 2, 3, 4}:

$$R1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$$

$$R2 = \{(1, 1), (1, 2), (2, 1)\},\$$

$$R3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$$

$$R4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$$

$$R5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$$

$$R6 = \{(3, 4)\}.$$

Which of these relations are reflexive?

EX_13: Which of the relations from Ex_11 are reflexive?

$$R1 = \{(a, b) \mid a \le b\},\$$

$$R2 = \{(a, b) \mid a > b\},\$$

R3 =
$$\{(a, b) \mid a = b \text{ or } a = -b\},\$$

$$R4 = \{(a, b) \mid a = b\},\$$

$$R5 = \{(a, b) \mid a = b + 1\},\$$

R6 =
$$\{(a, b) \mid a + b \le 3\}.$$

EX_14: Let A = $\{1, 2, 3\}$ and B = $\{1, 2, 3, 4\}$. The relations R1 = $\{(1, 1), (2, 2), (3, 3)\}$ and R2 = $\{(1, 1), (1, 2), (1, 3), (1, 4)\}$ can be combined to obtain:

$$R1 - R2 =$$

$$R2 - R1 =$$

- EX 1: Consider the following four statements:
- (i) Ice floats in water and 2 + 2 = 4. (iii) China is in Europe and 2 + 2 = 4.
- (ii) Ice floats in water and 2 + 2 = 5. (iv) China is in Europe and 2 + 2 = 5.
- EX 2: Consider the following four statements
- (i) Ice floats in water or 2 + 2 = 4. (ii) Ice floats in water or 2 + 2 = 5.
- (iii) China is in Europe or 2 + 2 = 4. (iv) China is in Europe or 2 + 2 = 5.
- EX_3 Consider the following six statements: (a1) Ice floats in water. (a2) It is false that ice floats in water. (a3) Ice does not float in water. (b1) 2 + 2 = 5 (b2) It is false that 2 + 2 = 5. (b3) $2 + 2 \neq 5$
- P_1: Let p be "It is cold" and let q be "It is raining". Give a simple verbal sentence which describes each of the following statements: (a) $\neg p$; (b) $p \land q$; (c) $p \lor q$; (d) $q \lor \neg p$.
- P_2: Find the truth table of ¬p∧q.
- P_3: Show that the propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.
- EX_5: Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent
- EX_4: Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.
- EX_6: What is the value of the variable x after the statement if 2 + 2 = 4 then x := x + 1 if x = 0 before this statement is encountered? (The symbol: = stands for assignment. The statement x := x + 1 means the assignment of the value of x + 1 to x.)

EX_1: Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

EX_2: A. the statement, "If Juan has a smartphone, then 2 + 3 = 5" is true from the definition of a conditional statement, because its conclusion is true. B. "If Juan has a smartphone, then 2 + 3 = 6" is False C. "If Juan has a smartphone, then 2 + 3 = 6" is true if Juan does not have a smartphone, even though 2 + 3 = 6 is false.

EX_3: What is the value of the variable x after the statement if 2 + 2 = 4 then x := x + 1 if x = 0 before this statement is encountered? (The symbol := stands for assignment. The statement x := x + 1 means the assignment of the value of x + 1 to x.)

EX_4: State the converse, contrapositive, and inverse of each of these conditional statements. a) If it snows tonight, then I will stay at home. b) I go to the beach whenever it is a sunny summer day. c) When I stay up late, it is necessary that I sleep until noon.

EX_5: Consider the conditional proposition $p \to q$. The simple propositions $q \to p$, $\neg p \to \neg q$ and $\neg q \to \neg p$ are called, respectively, the converse, inverse, and contrapositive of the conditional $p \to q$. Which if any of these propositions are logically equivalent to $p \to q$?

EX_6: Let p be the statement "You can take the flight," and let q be the statement "You buy a ticket." Then p \leftrightarrow q is the statement: "You can take the flight if and only if you buy a ticket."

EX_7: Construct the truth table of the compound proposition: (p $\lor \neg q$) \rightarrow (p \land q).

The slide is a personal)* effort and not from any