Hands-on Activity 11.2 Classification using Logistic Regression

Name: Cuadra, Audrick Zander G.

Section: CPE22S3

Date: April 24, 2024

Objective(s):

· This activity aims to demonstrate how to apply simple linear regression analysis to solve regression problem

Intended Learning Outcomes (ILOs):

- Demonstrate how to solve classification problems using Logistic Regression
- Use the logistic regression model to perform classification

Resources:

- Jupyter Notebook
- Dataset: https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29

Submission Requirements:

- · PDF containing initial EDA and Data Wrangling
- · PDF showing demonstration of simple linear regression.
- · Submit a link to the colab file through the comment section.

```
1 # Install the ucimlrepo package
2 !pip install ucimlrepo
     Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-packages (0.0.6)
1 # Import the dataset into your code
2 from ucimlrepo import fetch_ucirepo
4 # fetch dataset
5 cervical_cancer_risk_factors = fetch_ucirepo(id=383)
6
7 # data (as pandas dataframes)
8 X = cervical_cancer_risk_factors.data.features
9 y = cervical_cancer_risk_factors.data.targets
11 # metadata
12 print(cervical_cancer_risk_factors.metadata)
14 # variable information
15 print(cervical_cancer_risk_factors.variables)
                             STDs:syphilis Feature Continuous
                                                                        None
          STDs:pelvic inflammatory disease Feature Continuous
     18
                                                                        None
     19
                       STDs:genital herpes Feature Continuous
                                                                        None
     20
                STDs:molluscum contagiosum
                                            Feature Continuous
                                                                        None
     21
                                 STDs:AIDS Feature Continuous
                                                                        None
     22
                                  STDs:HIV Feature Continuous
                                                                        None
```

STDs:Hepatitis B Feature Continuous

STDs:HPV Feature Continuous

None

None

6	None	None	yes
7	None	None	yes
8	None	None	yes
9	None	None	yes
10	None	None	yes
11	None	None	yes
12	None	None	yes
13	None	None	yes
14	None	None	yes
15	None	None	yes
16	None	None	yes
17	None	None	yes
18	None	None	yes
19	None	None	yes
20	None	None	yes
21	None	None	yes
22	None	None	yes
23	None	None	yes
24	None	None	yes
25	None	None	no
26	None	None	yes
27	None	None	yes
28	None	None	no
29	None	None	no
30	None	None	no
31	None	None	no
32	None	None	no
33	None	None	no
34	None	None	no
35	None	None	no

1 # display of the X dataframe

2 X.head()

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies		Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	•••	STDs: Time since first diagnosis	s diagn
0	18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0		NaN	
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0		NaN	
2	34	1.0	NaN	1.0	0.0	0.0	0.0	0.0	0.0	0.0		NaN	
3	52	5.0	16.0	4.0	1.0	37.0	37.0	1.0	3.0	0.0		NaN	
4	46	3.0	21.0	4.0	0.0	0.0	0.0	1.0	15.0	0.0		NaN	

5 rows × 36 columns

 $\ensuremath{\text{1}}\xspace$ # display of the y dataframe

2 у

1 # importing of necessary libraries

2 import pandas as pd

3 import numpy as np

4

5 # concatinating the two dataframes

6 cercan_df = pd.concat([X, y], axis=1)

1 cercan_df.head()

ı	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies		Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	•••	STDs: Time since first diagnosis	s diagn
0	18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0		NaN	
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0		NaN	
2	34	1.0	NaN	1.0	0.0	0.0	0.0	0.0	0.0	0.0		NaN	
3	52	5.0	16.0	4.0	1.0	37.0	37.0	1.0	3.0	0.0		NaN	
4	46	3.0	21.0	4.0	0.0	0.0	0.0	1.0	15.0	0.0		NaN	

5 rows × 36 columns

```
1 # creating a function that checks for duplicates
2 def cdup(data):
3
      if data.duplicated().any():
4
         return data.duplicated().sum()
6
         return "No Duplicates Found!"
1 # checking for duplicates
2 cdup(cercan_df)
     23
1 # dropping all the duplicates in the dataframe
2 cercan_df = cercan_df.drop_duplicates()
1 # confirming if all the duplicates have been dropped
2 cdup(cercan_df)
     'No Duplicates Found!'
1 # checking the nulls
2 cercan_df.isnull().sum()
     Number of sexual partners
                                            25
     First sexual intercourse
    Num of pregnancies
                                            56
     Smokes
                                            13
     Smokes (years)
     Smokes (packs/year)
                                            13
    Hormonal Contraceptives
                                           103
    Hormonal Contraceptives (years)
                                           103
    IUD
                                           112
     IUD (years)
                                           112
    STDs
                                           100
    STDs (number)
                                           100
     STDs:condylomatosis
                                           100
     STDs:cervical condylomatosis
                                           100
     STDs:vaginal condylomatosis
                                           100
     STDs:vulvo-perineal condylomatosis
     STDs:syphilis
                                           100
    STDs:pelvic inflammatory disease
                                           100
     STDs:genital herpes
                                           100
     STDs:molluscum contagiosum
                                           100
     STDs:AIDS
                                           100
                                           100
    STDs:HIV
     STDs:Hepatitis B
                                           100
     STDs:HPV
                                           100
     STDs: Number of diagnosis
     STDs: Time since first diagnosis
     STDs: Time since last diagnosis
    Dx:Cancer
    Dx:CIN
    Dx:HPV
                                             0
    Dx
                                            0
    Hinselmann
                                             0
    Schiller
                                             0
     Citology
                                             0
                                             0
     Biopsy
    dtype: int64
1 # creating a function that detects if the column contains an outlier
2 def col_outliers(data):
3
      col_outliers=[]
4
      for i in data.columns:
          if data[i].isnull().any():
5
6
              low\_bound = data[i].quantile(0.25) - (1.5 * (data[i].quantile(0.75) - data[i].quantile(0.25)))
              upper_bound = data[i].quantile(0.75) + (1.5 * (data[i].quantile(0.75) - data[i].quantile(0.25)))
8
               if ((data[i] < low_bound) | (data[i] > upper_bound)).any():
                  col_outliers.append(i)
10
      return col outliers
1 col_outliers(cercan_df)
     ['Number of sexual partners',
      'First sexual intercourse',
      'Num of pregnancies',
      'Smokes',
      'Smokes (years)',
      'Smokes (packs/year)',
      'Hormonal Contraceptives (years)',
      'IUD',
```

```
'IUD (years)',
     'STDs',
     'STDs (number)',
     'STDs:condylomatosis',
     'STDs:vaginal condylomatosis',
     'STDs:vulvo-perineal condylomatosis',
     'STDs:syphilis',
     'STDs:pelvic inflammatory disease',
     'STDs:genital herpes',
     'STDs:molluscum contagiosum',
     'STDs:HIV',
     'STDs:Hepatitis B',
     'STDs:HPV',
     'STDs: Time since first diagnosis',
     'STDs: Time since last diagnosis']
1 # creating a function that would fill in all the nulls
2 def fnullsmedian(data):
     for i in data.columns:
3
4
         if data[i].isnull().any():
             low bound = data[i].quantile(0.25) - (1.5 * (data[i].quantile(0.75) - data[i].quantile(0.25)))
             upper\_bound = data[i].quantile(0.75) + (1.5 * (data[i].quantile(0.75) - data[i].quantile(0.25)))
6
7
             if ((data[i] < low_bound) | (data[i] > upper_bound)).any():
                 data[i].fillna(data[i].median(), inplace=True)
8
1 # filling the nulls
2 fnullsmedian(cercan_df)
1 # checking if all the nulls have been dropped
2 cercan df.isnull().sum()
                                            0
    Number of sexual partners
                                            0
    First sexual intercourse
    Num of pregnancies
                                           0
    Smokes
    Smokes (years)
    Smokes (packs/year)
                                         103
    Hormonal Contraceptives
   Hormonal Contraceptives (years)
                                           0
    TUD
    IUD (years)
                                           0
    STDs
    STDs (number)
                                           0
    STDs:condylomatosis
                                            0
    STDs:cervical condylomatosis
                                         100
    STDs:vaginal condylomatosis
    STDs:vulvo-perineal condylomatosis
    STDs:syphilis
    STDs:pelvic inflammatory disease
                                           0
    STDs:genital herpes
                                           0
    STDs:molluscum contagiosum
                                           a
    STDs:AIDS
                                          100
    STDs:HIV
                                           0
    STDs:Hepatitis B
                                           0
    STDs:HPV
    STDs: Number of diagnosis
    STDs: Time since first diagnosis
    STDs: Time since last diagnosis
   Dx:Cancer
   Dx:CIN
                                            0
   Dx:HPV
                                           0
   Dγ
                                            a
   Hinselmann
                                            а
    Schiller
                                            0
    Citology
                                            0
    Biopsy
    dtype: int64
1 # creating a function that fills the rest of columns with nulls with mean
2 def fnullsmean(data):
3
     for i in data.columns:
4
          if data[i].isnull().any():
                 data[i].fillna(data[i].mean(), inplace=True)
5
1 fnullsmean(cercan_df)
1 # checking if all nulls have been dropped
2 cercan_df.isnull().sum()
                                          a
    Number of sexual partners
                                          0
    First sexual intercourse
```

```
Num of pregnancies
     Smokes
     Smokes (years)
                                                     0
     Smokes (packs/year)
     Hormonal Contraceptives
                                                     0
     Hormonal Contraceptives (years)
     IUD (years)
     STDs
     STDs (number)
     STDs:condylomatosis
     STDs:cervical condylomatosis
     STDs:vaginal condylomatosis
                                                     0
     STDs:vulvo-perineal condylomatosis
                                                     0
     STDs:syphilis
     STDs:pelvic inflammatory disease
                                                     0
     STDs:genital herpes
     STDs:molluscum contagiosum
     STDs:AIDS
     STDs:HIV
     STDs:Hepatitis B
     STDs:HPV
     STDs: Number of diagnosis
     STDs: Time since first diagnosis
     STDs: Time since last diagnosis
                                                     0
    Dx:Cancer
    Dx:CIN
     Dx:HPV
     Hinselmann
     Schiller
     Citology
                                                     0
     Biopsy
                                                     0
    dtype: int64
1 def undscore(data):
2
       for i in data.columns:
            data.columns = [i.replace(' ', '_') for i in data.columns]
3
            data.columns = [i.strip('_') for i in data.columns]
4
       return data.columns
1 undscore(cercan_df)
     Index(['Age', 'Number_of_sexual_partners', 'First_sexual_intercourse',
              'Num_of_pregnancies', 'Smokes', 'Smokes_(years)', 'Smokes_(packs/year)', 'Hormonal_Contraceptives', 'Hormonal_Contraceptives_(years)', 'IUD', 'IUD_(years)', 'STDs', 'STDs_(number)', 'STDs:condylomatosis',
              'STDs:cervical_condylomatosis', 'STDs:vaginal_condylomatosis',
              'STDs:vulvo-perineal_condylomatosis', 'STDs:syphilis', 'STDs:pelvic_inflammatory_disease', 'STDs:genital_herpes',
              'STDs:molluscum_contagiosum', 'STDs:AIDS', 'STDs:HIV',
'STDs:Hepatitis_B', 'STDs:HPV', 'STDs:_Number_of_diagnosis',
'STDs:_Time_since_first_diagnosis', 'STDs:_Time_since_last_diagnosis',
              'Dx:Cancer', 'Dx:CIN', 'Dx:HPV', 'Dx', 'Hinselmann', 'Schiller', 'Citology', 'Biopsy'],
            dtype='object')
1 # checking the dataframe
```

2 cercan_df.head()

	Age	Number_of_sexual_partners	First_sexual_intercourse	Num_of_pregnancies	Smok
0	18	4.0	15.0	1.0	
1	15	1.0	14.0	1.0	1
2	34	1.0	17.0	1.0	1
3	52	5.0	16.0	4.0	
4	46	3.0	21.0	4.0	(

5 rows × 36 columns

```
1 # creating a heatmap
2 import pandas as pd
3 import numpy as np
4 import seaborn as sns
5 import matplotlib.pyplot as plt
6 %matplotlib inline
8 plt.figure(figsize=(25,25))
10 sns.heatmap(cercan_df.corr(), annot=True, cmap='magma')
```


Logistic Regresson

- 1 import pandas as pd
- 2 import numpy as np
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 %matplotlib inline