

Data Analytics with MATLAB

Adam Filion
Application Engineer
MathWorks

Case Study: Day-Ahead Load Forecasting

Goal:

 Implement a tool for easy and accurate computation of dayahead system load forecast

Requirements:

- Acquire and clean data from multiple sources
- Accurate predictive model
- Easily deploy to production environment

Challenges with Data Analytics

Aggregating data from multiple sources

Cleaning data

Choosing a model

Moving to production

NYISO Energy Load Data

mis.nyiso.com/public/

NEW YORK INDEPENDENT SYSTEM OPERATOR Building The Energy Markets Of TomorrowToday OASIS (Open Ac	cess Same-Time Information S	ystem)	
NYISO Reference Bus LBMP P-28 NYISO Price Correction Logs P-29	Real-Time Actual Load		
Power Grid Data	CSV Files	Last Updated	
Outages	10-21-2014	10/21/14 23:02 EDT	
Real-Time Scheduled Outages P-54A Real-Time Actual Outages P-54B	10-20-2014	10/21/14 00:07 EDT	
Day-Ahead Scheduled Outages P-54C	10-19-2014	10/20/14 00:01 EDT	
Outage Schedules P-14 Outage Schedules CSV P-14B	10-18-2014	10/18/14 23:59 EDT	
Generation Maintenance Report P-15	10-17-2014	10/18/14 00:00 EDT	
Constraints	10-16-2014	10/16/14 23:59 EDT	
Day-Ahead Limiting Constraints P-511A	10-15-2014	10/15/14 23:59 EDT	
Limiting Constraints P-33	10-14-2014	10/14/14 23:59 EDT	
Interface Flows Internal & External Interface Limits & Flows P-32	10-13-2014	10/13/14 23:59 EDT	
Lake Erie Circulation - Day-Ahead P-53B	10-12-2014	10/12/14 23:59 EDT	
Lake Erie Circulation - Real-Time P-34A	10-12-2014	10/12/14 23:33 231	
PARs			
PAR Schedules P-53A PAR Flows P-34	Anabigad Fi	iles (zip format)	
ATC/TTC	CSV Files	Last Updated	
ATC/TTC P-8	10-2014	10/21/14 23:02 EDT	
Long Term ATC/TTC P-8A		09/30/14 23:59 EDT	
<u>Transfer Limitations</u>	<u>09-2014</u>	09/01/14 00:01 EDT	
Load Data	<u>08-2014</u>		
Load Forecast/Commitment	<u>07-2014</u>	08/01/14 00:00 EDT	
ISO Load Forecast P-7	<u>06-2014</u>	07/01/14 00:00 EDT	
Zonal Bid Load P-59	<u>05-2014</u>	06/01/14 00:00 EDT	
Weather Forecast P-7A	04-2014	04/30/14 23:59 EDT	
Actual Load Real-Time Actual Load P-58B	03-2014	03/31/14 23:59 EDT	
Integrated Real-Time Actual Load P-58C	02-2014	02/28/14 23:58 EST	
	01-2014	01/31/14 23:59 EST	

Techniques to Handle Missing Data

- List-wise deletion
 - Unbiased estimates
 - Reduces sample size
- Implementation options
 - Built in to many
 MATLAB functions
 - Manual filtering

Techniques to Handle Missing Data

Substitution – replace missing data points with a reasonable approximation

Easy to model -

Too important to exclude

⊮ Var	🔏 Variables - nyiso								
ny	nyiso ×								
= 919	918x12 <u>table</u>								
	1	, 2	3 CENTRI	4 DUNIMOD	5 CENTEGE	6	7	8	9 NORTH
1	Date 01-Jan-2004 00:00:00	1015	1651	DUNWOD 618	GENESE 972	1120	мнкуL 645	MILLWD 223	NORTH 622
2	01-Jan-2004 01:00:00	927	1562	568	905	1019	602	201	628
3	01-Jan-2004 02:00:00	891	1507	541	858	977	571	195	604
4	01-Jan-2004 03:00:00	/ NaN	1440	517	821	927	525	183	618
5	01-Jan-2004 04:00:00	NaN	1434	499	798	905	525	179	614
6	01-Jan-2004 05.00.00	NaN	1449	496	805	915	534	180	617
7	01-Jan-2004 06:00:00	NaN	1490	524	832	931	556	18 4	630
8	01-Jan-2004 07:00:00	NaN	1525	526	861	940	580	199	640
9	01-Jan-2004 08:00.00	960	1529	518	878	962	602	207	668
10	01-Jan-2004 09:00:00	1946	1628	541	911	1027	647	219	651
11	01-Jan-2004 10:00:00	1111	1706	570	992	1079	702	215	670

Merge Different Sets of Data

- Join along a common axis
- Popular Joins:
 - Inner
 - Full Outer
 - Left Outer
 - Right Outer

Full Outer Join

Key	В	
1	1.1	
4	1.4	
7	1.7	
9	1.9	

First Data Set

Key	Υ	Z
1	0.1	0.2
3	0.3	0.4
5	0.5	0.6
7	0.7	0.8

Second Data Set

Key	В	Υ	Z
1	1.1	0.1	0.2
3	NaN	0.3	0.4
4	1.4	NaN	NaN
5	NaN	0.5	0.6
7	1.7	0.7	0.8
9	1.9	NaN	NaN

Joined Data Set

Learn More: Big Data with MATLAB

www.mathworks.com/discovery/big-data-matlab.html www.mathworks.com/discovery/matlab-mapreduce-hadoop.html

MapReduce on the Desktop

Creating algorithms using MapReduce: max, mean, mean by group, histograms, covariance and related quantities, summary statistics by group, logistic regression, tall skinny QR

- » Get started with MATLAB MapReduce
- » MapReduce design patterns
- » Use MATLAB MapReduce with relational databases

MapReduce on Hadoop

» Run MATLAB MapReduce on Hadoop

Distributed Computing Server.

Create applications and libraries based upon MATLAB MapReduce for deployment within production instances of Hadoop, using MATLAB Compiler.

» Deploy MATLAB MapReduce applications to Hadoop

Challenges with Data Analytics

✓ Aggregating data from multiple sources

- Cleaning data
 - Choosing a model

Moving to production

Machine Learning

Characteristics and Examples

Characteristics

- Lots of variables
- System too complex to know the governing equation (e.g., black-box modeling)

Examples

- Pattern recognition (speech, images)
- Financial algorithms (credit scoring, algo trading)
- Energy forecasting (load, price)
- Biology (tumor detection, drug discovery)

Overview – Machine Learning

Supervised Learning

Unsupervised Learning

Learn More: Machine Learning with MATLAB

mathworks.com/machine-learning

Classification Examples

Basket Selection Using Stepwise Regression

Classification in the Presence of Missing Data

Classification Probability

Digit Classification Using HOG Features

Handwriting Recognition Using Bagged
Classification Trees

Visualize Decision Surfaces for Different Classifiers

Regression Examples

Electricity Load Forecasting

Lasso Regularization

Regression with Boosted Decision
Trees

Clustering Examples

Cluster Evaluation Cluster Genes Using K-Means and Self-Organizing Maps

Color-Based Segmentation Using K-Means Clustering

Machine Learning with MATLAB Machine Learning with MATLAB Build predictive models and discover useful patterns from observed data. ■ Contact sales ■ Trial software ■ Share

Machine learning algorithms use computational methods to "learn" information directly from data without assuming a predetermined equation as a model. They can adaptively improve their performance as you increase the number of samples available for learning.

Machine learning algorithms are used in applications such as computational finance (credit scoring and algorithmic trading), computational biology (tumor detection, drug discovery, and DNA sequencing), energy production (price and load forecasting), natural language processing, speech and image recognition, and advertising and recommendation systems.

Machine learning is often used in big data applications, which have large datasets with many predictors (features) and are too complex for a simple parametric model. Examples of big data applications include forecasting electricity load with a neural network, or bond rating classification for credit risk using an ensemble of decision trees.

Classification

Build models to classify data into different categories.

Regression

Build models to predict continuous data.

Clustering

Find natural groupings and patterns in data.

Challenges with Data Analytics

✓ Aggregating data from multiple sources

- Cleaning data
- Choosing a model
 - Moving to production

Deployment Highlights

- Share with others who may not have MATLAB
- Royalty-free deployment
- Encryption to protect your intellectual property

Deploying Applications with MATLAB

MATLAB Compiler for sharing MATLAB programs without integration programming

MATLAB Compiler SDK provides implementation and platform flexibility for software developers

MATLAB Production Server provides the most efficient development path for secure and scalable web and enterprise applications

Sharing Standalone Applications

Integrating MATLAB-based Components

MATLAB Production Server

- Directly deploy MATLAB analytic programs into production
 - Centrally manage multiple MATLAB programs & MCR versions
 - Automatically deploy updates without server restarts
- Scalable & reliable
 - Service large numbers of concurrent requests
 - Add capacity or redundancy with additional servers
- Use with web, database & application servers
 - Lightweight client library isolates MATLAB processing
 - Access MATLAB programs using native data types
 - Integrates with Java, .NET, C and Python

Deployed Analytics

MATLAB Production Server

Learn More: Application Deployment with MATLAB

www.mathworks.com/solutions/desktop-web-deployment/

Deploying MATLAB Code as an Executable or Software Component

Using MathWorks application deployment products, you can eliminate the costly and errorprone work of recoding your MATLAB algorithms in another programming language. Because you maintain your source code in MATLAB, you can easily develop and update your algorithms and automatically package them as standalone executables or software components for integration in environments such as C, C++, Java™, .NET, and Excel®.

MATLAB Compiler packages your MATLAB applications as encrypted standalone executables or C/C++ shared libraries. MATLAB builder products work in conjunction with MATLAB Compiler to create standard components for use with Java, .NET, or Excel. These executables and components can be deployed royalty-free on operating systems supported by MATLAB.

http://www.marra

Robeco Develops Quantitative Stock Selection and Portfolio Optimization Models (User Story)

Extend your Java math capabilities with MATLAB

Deploying MATLAB Code as a Web Application

Using MathWorks application deployment products, you can develop MATLAB based components for the Web that execute mathematical computations and generate interactive graphics. After developing an algorithm in MATLAB, you can automatically create a standard component designed to integrate in a Web application using MATLAB builder products for either Java or .NET.

Once you place the component on a Web server, your users access the application through a Web browser and do not need to install additional software on their desktop computers.

The Java and .NET components created by the deployment tools can be used in conjunction with standard Web technologies such as ASP.NET, SOA, SaaS, JavaScript, and HTML.

Application
Deployment with
MATLAB 22:58

(Article)

Learn More: MATLAB Application Deployment

Also ... www.mathworks.com/solutions/desktop-web-deployment/

Data Analytics Products

Access and Explore Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

MATLAB

Parallel Computing Toolbox, MATLAB Distributed Computing Server

MATLAB Production Server

Database Toolbox

Statistics and Machine Learning Toolbox

MATLAB Compiler

Data Acquisition Toolbox

Curve Fitting Toolbox

Neural Network Toolbox

MATLAB Compiler SDK

Mapping Toolbox

Signal Processing Toolbox

Computer Vision System Toolbox

Image Acquisition Toolbox

Image Processing Toolbox

Econometrics Toolbox

Used in today's demo

Additional Data Analytics products

OPC Toolbox

26

Key Takeaways

- Data preparation can be a big job; leverage built-in MATLAB tools and spend more time on the analysis
- Rapidly iterate through different predictive models, and find the one that's best for your application

- Leverage parallel computing to scale-up your analysis to large datasets
- Eliminate the need to recode by deploying your MATLAB algorithms into production

