

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2022-01-10
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE /

이 단원에서는 **삼각함수의 그래프에 대한 문제, 여러 가지 각의** 삼각함수의 성질에 대한 문제 등이 자주 출제되며 여러 가지 각의 삼각함수의 기본 공식을 이해하고, 이를 바탕으로 한 암기가 필요합니다.

평가문제

[스스로 확인하기]

1. 두 함수 $f(x) = 2\sin x + 1$, $g(x) = \cos 2x + 1$ 에 대한 설명에서 옳은 것을 모두 고른 것은?

<보기>

- ㄱ. 함수 f(x)의 최솟값은 -1, 최댓값은 3을 가진다.
- L. 함수 g(x)의 주기는 4π 이다.
- \Box . 함수 $y = \tan x + 2$ 의 최댓값은 함수 f(x)의 최댓값과 같다.
- (1) ¬
- ② ⊏
- ③ ¬,∟
- ④ ∟.⊏
- ⑤ 7.∟.⊏

[스스로 확인하기]

- **2.** 함수 $y = a \sin x + 1$ 의 치역은 $\{y | 0 \le y \le b\}$ 이고, 함수 $y = b \sin x + c$ 의 치역은 $\{y | -3 \le y \le d\}$ 일 때, a + b + c + d의 값을 구하면? (a > 0)
 - 1 1

② 2

3

4

⑤ 5

[스스로 확인하기]

- **3.** \tan 함수가 아닌 삼각함수 y=f(x)는 모든 실수 x에 대해 f(x+p)=f(x)을 만족하는 최소인 양의 실수 p가 2이고, f(0)=4, $f(-\frac{1}{2})=2$, $f(\frac{1}{2})=6$ 을 만족할 때, $f(\frac{1}{3})$ 을 구하면?
 - 1) 5

- ② $4+\sqrt{2}$
- $34 + \sqrt{3}$
- $46 \sqrt{2}$

⑤ 6

[스스로 확인하기]

4. $\cos^2 \frac{1}{20} \pi + \cos^2 \frac{2}{20} \pi + \dots + \cos^2 \frac{1}{2} \pi$ 의 값을 구하면?

$$\textcircled{1} \frac{7}{2}$$

2 4

$$3\frac{9}{2}$$

- 4 5

[스스로 마무리하기]

5. 다음 그림은 함수 $f(x) = a \sin \pi (x+b) + c$ 의 그래 프이다. a+b+c+d의 값은? (단, $a>0,\ 0<b<1$)

- 1) 4
- ② 5

3 6

(4) 7

⑤ 8

[스스로 마무리하기]

- **6.** 함수 $y = \cos(ax)$ 의 그래프를 x축 방향으로 p만 큼 이동시킨 함수를 y = f(x)라 하자. 함수 f(x)는 항상 $f(x-\frac{\pi}{2})=f(x+\frac{\pi}{2})$ 을 $f(0) = \frac{\sqrt{3}}{2}$ 를 만족할 때, ap의 값을 구하면? $(0 \le p \le \frac{\pi}{2})$
 - ① $\frac{1}{6}\pi$
- $\bigcirc \frac{1}{4}\pi$
- $3\frac{1}{3}\pi$
- $(4) \frac{1}{2}\pi$
- ⑤ $\frac{2}{3}\pi$

[스스로 마무리하기]

- 7. $y = -2\sin(x + \frac{1}{2}\pi)\sin(\frac{1}{2}\pi x) + 3\cos x + a$ $x = \theta$ 에서 최댓값 6을 가질 때, $\frac{a}{\cos \theta}$ 의 값을 구하 면?
 - ① $\frac{9}{2}$
- 2 5
- $3\frac{11}{2}$
- **4**) 6
- $\bigcirc \frac{13}{2}$

[스스로 확인하기]

- $oldsymbol{8}$. 어떤 대포를 $v\,m/s$ 의 속도를 가지고 탄을 쏜다 고 하자. 대포가 쏘는 방향과 지면이 이루는 각을 θ 라 할 때, 탄이 날아가는 동안 가장 높을 때의 높이 h(m) 사이에서 $h(\theta) = \frac{v^2}{2} \sin \theta$ 가 성립한다. 대포를 10m/s의 속도로 쏘았을 때, 탄이 최소 $25\sqrt{2}$ m이 상 최대 $25\sqrt{3}\,m$ 의 높이를 가지도록 하는 θ 의 범 위를 $a \le \theta \le b$ 라 하자. 이 때, a+b의 값을 구하 면? ($0 < \theta < \frac{\pi}{2}$)
 - ① $\frac{5}{12}\pi$
- ② $\frac{1}{2}\pi$
- $3\frac{7}{12}\pi$
 - $\bigcirc \frac{2}{3}\pi$

- 9. θ 가 $\log(\cos\theta) \log(2\sin\theta) \le \log\frac{1}{2}$ 을 만족할 때, θ 의 범위를 구하면? $(0 < \theta < \pi)$
 - ① $\frac{1}{4}\pi \le \theta < \frac{1}{2}\pi$ ② $\frac{1}{3}\pi < \theta < \pi$
 - $3 \frac{1}{2}\pi \le \theta < \frac{3}{4}\pi$ $4 \frac{1}{3}\pi < \theta < \frac{1}{2}\pi$
 - $5 \frac{1}{2}\pi \le \theta \le \frac{5}{6}\pi$

[스스로 마무리하기]

10. $\sqrt{2\cos^2 x - \sin^2 x + 2\cos x} = \frac{\sqrt{3}}{2}$ 를 만족하는 x의

값을 구하면? (단, $0 \le x < \pi$)

- ① $\frac{1}{6}\pi$
- $3 \frac{1}{3} \pi$
- $(4) \frac{1}{2}\pi$
- ⑤ $\frac{2}{3}\pi$

[스스로 마무리하기]

11. 모든 실수 x에 대하여 부등식

 $\sin^2 x + 6\cos x \le a$ 이 항상 성립할 때, a의 최솟값 을 구하면?

 \bigcirc 5

- ② 6
- 3 7
- **4**) 8
- (5) g

[스스로 마무리하기]

12. x에 대한 이차방정식

 $x^{2}+2x+\cos^{2}\theta+\sin\theta-1=0$ 이 서로 다른 부호의 실근을 가질 때, θ 의 범위는 $a < \theta < b$ 가 된다. 이 때, a+b의 값을 구하면? ($0 \le \theta < 2\pi$)

- (1) $\frac{4}{2}\pi$
- $3\frac{5}{2}\pi$
- $4) 3\pi$
- (5) 4π

실전문제

13. 함수 $y = 3\sin{\frac{\pi}{2}}x$ 의 그래프와 직선 y = 2가 제1 사분면에서 만나는 점의 x좌표를 작은 것부터 차례 로 a, b, c, d라고 할 때, a+b+c+d의 값은?

- 6
- 2 8
- 3 10
- (4) 12
- (5) 14
- **14.** 함수 f(x)가 다음 조건을 모두 만족한다. $-\frac{\pi}{2} \le x \le \frac{3}{2}\pi$ 의 범위에서 f(x)가 x축과 만나는 교점의 모든 x좌표 값의 합은?
- $\overline{(r)}$ 모든 실수 x에 대하여 f(x+p)=f(x)를 만족시키 는 최소의 양수 p는 π 이다.

$$(\Box) f(x) = \begin{cases} 2\sin 4x + 1 & \left(0 \le x \le \frac{\pi}{2}\right) \\ -2\cos 4x - 1 & \left(\frac{\pi}{2} < x < \pi\right) \end{cases}$$

$$\boxed{1} \frac{9\pi}{4} \qquad \boxed{2} \frac{15\pi}{4}$$

- $3\frac{9}{2}\pi$
- (4) 5π
- ⑤ $\frac{11\pi}{2}$
- **15.** x에 대한 이차방정식

 $2x^2 - x\sin\theta + 2\cos\theta + 1 = 0$ 이 서로 다른 부호의 두 실근을 갖고, 양수인 근이 음수인 근의 절댓값보다 클 때, θ 의 값의 범위를 구하면? (단, $0 \le x < 2\pi$)

- ② $0 < \theta < \pi$
- $3 \frac{2\pi}{3} < \theta < \frac{4\pi}{3}$ $4 \frac{5\pi}{6} < \theta < \frac{7\pi}{6}$
- (5) $\frac{2\pi}{2} < \theta < \frac{7\pi}{6}$

- 16. 모든 실수 대하여 $(1 - \cos\theta)x^2 + 2\sqrt{2}(\sin^2\theta)x + 1 + \cos\theta > 0$ 항상 θ 의 성립하는 범위가 $0 \le \theta < a, \ b < \theta < c, \ d < \theta \le 2\pi$ 이다. 상수 c+d-a-b의 값은?(단, $0 \le \theta \le 2\pi$)
 - (1) -2π
- $\bigcirc 2 2$
- ③ 0
- (4) 1
- ⑤ 2π
- **17.** 함수 $f(x) = a\cos(bx+c) + d$ 가 다음 조건을 모두 만족시킬 때, 상수 a, b, c, d의 값에 대하여 $a \times b \times c \times d$ 의 값은? (단, a > 0, b > 0, $0 < c < \pi$)
- (가) 함수 f의 최솟값은 -1이다.
- (나) 함수 f의 주기는 4π 이다.
- (다) 함수 $f = \frac{\pi}{4}$ 에서 최솟값을 갖는다.
- (라) $f\left(-\frac{3}{4}\pi\right) = \frac{1}{2}$
- $\bigcirc \frac{21}{64}\pi \qquad \bigcirc \frac{7}{64}\pi$
- $3 \frac{3}{64} \pi$
- $4 \frac{21}{16} \pi$
- **18.** 부등식 $\tan \frac{4}{5}\pi \le \tan x \le \tan \frac{2}{5}\pi$ 를 만족시키는 x 에서 $\cos \frac{5}{12} x$ 의 최댓값을 M, 최솟값을 m 이라 할 때, M+m 의 값은? (단, $0 \le x \le 2\pi$)
 - ① $-1 \frac{\sqrt{3}}{2}$ ② $-\sqrt{3}$
 - $3 1 + \frac{\sqrt{3}}{2}$ $4 \frac{\sqrt{3}}{2}$
 - (5) 1+ $\frac{\sqrt{3}}{2}$

19. 그림과 같이 함수 $y=-\sin x$ 와 $y=\cos(2x-\pi)$ 의 그래프로 둘러싸인 도형에 직사각형 ABCD가 내접한다. $\overline{BC}=\frac{\pi}{3}$ 일 때, 직사각형 ABCD의 넓이는?

- ① $\frac{\sqrt{3}-1}{6}\pi$

- **20.** 골프공이 날아가는 방향과 지면이 이루는 각의 크기를 θ 로 하여 초속 vm로 골프공을 쳤을 때, 골 프공의 수평 이동 거리를 Dm라 하면

$$D = \frac{v^2 \sin 2\theta}{10}$$

- 라고 한다. 초속 $20\sqrt{6}\,m$ 로 친 골프공의 수평 이동 거리가 $120\sqrt{3}\,m$ 일 때, 골프공이 날아가는 방향과 지면이 이루는 각의 크기는? (단, $0<\theta<\frac{\pi}{4}$)
- $\bigcirc \frac{\pi}{12}$
- $2\frac{\pi}{8}$
- $3\frac{\pi}{6}$
- $\bigcirc \frac{\pi}{3}$

4

정답 및 해설

1) [정답] ①

[해설] \neg . $-1 \le \sin x \le 1$ 에서 양변에 2를 곱하고 1을 더하면 $-1 \le 2\sin x + 1 \le 3$ 이 되어 f(x)의 최솟값은 -1, 최댓값은 3이 된다. (참)

ㄴ.
$$g(x) = \cos 2x + 1$$
 이므로 주기는 $\frac{2\pi}{2} = \pi$ 이다. (거짓)

C. 함수 $y = \tan x$ 의 최댓값과 최솟값은 존재하지 않으므로 함수 $y = \tan x + 2$ 의 최댓값은 존재하지 않는다. (거짓)

2) [정답] ③

[해설] 함수 $y=a\sin x+1$ 을 부등식으로 나타내면, $a>0 \ \ \text{이므로} \ -a+1 \le a\sin x+1 \le a+1 \text{가 된다}.$ 따라서 $\{y|\ 0\le y\le b\}=\{y|\ -a+1\le y\le a+1\}$ 이

므로 a=1,b=2 이다. 마찬가지로 $y=2\sin x+c$ 의

치역은 $\{y|-3\leq y\leq d\}=\{y|-2+c\leq y\leq 2+c\}$ 따라서 $c=-1,\ d=1$ 을 만족한다.

 $\therefore a+b+c+d=3$

3) [정답] ③

[해설] 삼각함수 f(x)의 주기는 2가 된다.

따라서 $f(x) = a\cos\pi(x-c) + b$ 또는

 $f(x) = a \sin \pi (x - c) + b$ 로 나타낼 수 있고, 두 식은 평행이동으로 겹쳐질 수 있으므로

 $f(x) = a\cos\pi(x-c) + b$ 라 할 수 있다.

(단, $0 \le c < 2$, $a \ne 0$)

 $f(0) = a\cos(-c)\pi + b = a\cos c\pi + b = 4 \cdots \bigcirc$

$$f\left(\frac{1}{2}\right) = a\cos\left(\frac{1}{2} - c\right)\pi + b = a\sin c\pi + b = 6 \quad \cdots \quad \bigcirc$$

$$f\left(-\frac{1}{2}\right) = a\cos\left(-\frac{1}{2} - c\right)\pi + b = -a\sin c\pi + b = 2 \dots$$

(E)

○, ○의 양변을 더하면 b=4이고,

이를 \bigcirc 에 대입하면 $c = \frac{1}{2}$ 이다.

또한, a=2이므로

$$f(x) = 2\cos(\pi \left(x - \frac{1}{2}\right) + 4 \circ |\Gamma|.$$

$$\therefore f\left(\frac{1}{3}\right) = 2\cos\frac{\pi}{6} + 4 = 4 + \sqrt{3}$$

4) [정답] ③

[해설]
$$\cos^2\frac{1}{20}\pi + \cos^2\frac{2}{20}\pi + \dots + \cos^2\frac{1}{2}\pi$$
에서
$$\cos\frac{9}{20}\pi = \cos\left(\frac{1}{2}\pi - \frac{1}{20}\pi\right) = \sin\frac{1}{20}\pi$$

$$\cos\frac{8}{20}\pi = \cos\left(\frac{1}{2}\pi - \frac{2}{20}\pi\right) = \sin\frac{2}{20}\pi$$
 :

$$\begin{split} \cos\frac{6}{20}\pi &= \cos(\frac{1}{2}\pi - \frac{4}{20}\pi) = \sin\frac{4}{20}\pi \\ \cos^2\frac{1}{20}\pi + \cos^2\frac{2}{20}\pi + \dots + \cos^2\frac{1}{2}\pi \\ &= \left(\cos^2\frac{1}{20}\pi + \sin^2\frac{1}{20}\pi\right) + \left(\cos^2\frac{2}{20}\pi + \sin^2\frac{2}{20}\pi\right) \\ &+ \left(\cos^2\frac{3}{20}\pi + \sin^2\frac{3}{20}\pi\right) + \left(\cos^2\frac{4}{20}\pi + \sin^2\frac{4}{20}\pi\right) \\ &+ \cos^2\frac{5}{20}\pi + \cos^2\frac{1}{2}\pi \\ &= 4 + \frac{1}{2} = \frac{9}{2}$$
가 된다.

5) [정답] ①

[해설] $f(x) = a \sin \pi (x+b) + c$

 $-a+c \le a \sin \pi (x+b)+c \le a+c$ 이므로 -a+c=-3, a+c=3을 만족하므로 c=0,a=3 이다. 그리고 $y=3\sin \pi (x+b)$ 의 주기는 2이고, 점 (0,3)을 지나므로 $3=3\sin b\pi$ 이고 $b=\frac{1}{2}+2n$ (n은 정수) 임을 알 수 있다. 0 < b < 1이므로 $b=\frac{1}{2}$ 가 된다. $f(x)=3\sin \pi \left(x+\frac{1}{2}\right)$ 이므로 $d=\frac{1}{2}$ 이다. a+b+c+d=4

6) [정답] ①

[해설] 함수 $y = \cos{(ax)}$ 을 평행이동 해도 주기는 바뀌지 않는다. x축 방향으로 p만큼 이동시킨 함수 y = f(x)가 $f(x - \frac{\pi}{2}) = f(x + \frac{\pi}{2})$ 을 만족하므로 주기는 π 이고, a = 2가 된다. 따라서 $f(x) = \cos{2(x - p)}$ 가 된다. $f(0) = \frac{\sqrt{3}}{2}$ 이므로 $\cos{(-2p)} = \frac{\sqrt{3}}{2}$, $0 \le p \le \frac{\pi}{2}$ 이므로 $p = \frac{1}{12}\pi$ 를 만족한다.

7) [정답] ⑤

따라서 $ap = \frac{\pi}{c}$

[해설] $y = -2\sin\left(x + \frac{1}{2}\pi\right)\sin\left(\frac{1}{2}\pi - x\right) + 3\cos x + a$ $= -2\cos^2 x + 3\cos x + a = -2\left(\cos x - \frac{3}{4}\right)^2 + \frac{9}{8} + a$ $\cos x = \frac{3}{4}$ 일 때, 최댓값 $\frac{9}{8} + a = 6$ 이므로 $a = \frac{39}{8}$

 $x=\theta$ 일 때 최댓값을 가지므로 $\cos\theta=\frac{3}{4}$ 가 된다. $\frac{a}{\cos\theta}=\frac{39}{8}\times\frac{4}{3}=\frac{13}{2}$

8) [정답] ③

[해설]
$$v = 10$$
일 때

$$h(\theta) = \frac{10^2}{2} \sin \theta = 50 \sin \theta$$

$$25\sqrt{2} \le h(\theta) \le 25\sqrt{3}$$
 에서

$$25\sqrt{2} \le 50\sin\theta \le 25\sqrt{3}$$

$$\frac{\sqrt{2}}{2} \le \sin\theta \le \frac{\sqrt{3}}{2}$$

이 부등식의 해는 함수 $y = \sin \theta$ 의 그래프가

직선
$$y = \frac{\sqrt{3}}{2}$$
보다 아래쪽에 있거나 $y = \frac{\sqrt{2}}{2}$

보다 위쪽에 있는 θ 의 값의 범위와 같으므로

$$\frac{\pi}{4} \le \theta \le \frac{\pi}{3}$$
 이다. 따라서 $a+b=\frac{7}{12}\pi$

9) [정답] ①

[해설]
$$\log(\cos\theta) - \log(2\sin\theta) = \log\frac{\cos\theta}{2\sin\theta} \le \log\frac{1}{2}$$

이므로
$$\frac{\cos\theta}{2\sin\theta} \le \frac{1}{2}$$
이 되어 $1 \le \tan\theta$ 를 만족해야

하므로
$$\frac{\pi}{4} \le \theta < \frac{\pi}{2}$$
 이다. (로그가 정의될 조건)

10) [정답] ③

[해설]
$$\sqrt{2\cos^2 x - \sin^2 x + 2\cos x} = \frac{\sqrt{3}}{2}$$
에서 양변을

제곱하면
$$2\cos^2 x - \sin^2 x + 2\cos x = \frac{3}{4}$$
 가 되고,

$$\sin^2 x = 1 - \cos^2 x \circ | \Box \Box \Box$$

$$3\cos^2 x + 2\cos x - \frac{7}{4} = 0$$

$$12{\cos ^2}x + 8{\cos }x - 7 = ({\cos }x - \frac{1}{2})(12{\cos }x + 14) = 0$$

$$-1 \le \cos x \le 1$$
이므로 $\cos x = \frac{1}{2}$ 이다.

$$0 \le x < \pi$$
 이므로 $x = \frac{\pi}{3}$ 이다.

11) [정답] ②

[해설]
$$f(x) = \sin^2 x + 6\cos x = -\cos^2 x + 6\cos x + 1$$

$$\cos x = t$$
로 놓으면 $-1 \le t \le 1$ 이고

$$f(t) = -t^2 + 6t + 1 = -(t-3)^2 + 10$$
 이므로

$$f(1) = 6, f(-1) = -6$$
 이고 $-6 \le f(t) \le 6$ 이다.

따라서 모든 실수 x에 대해 $f(t) \le a$ 를 만족하

는 a의 최솟값은 6이다.

12) [정답] ④

[해설] 이차방정식
$$x^2 + 2x + \cos^2\theta + \sin\theta - 1 = 0$$
을 변형하면 $x^2 + 2x - \sin^2\theta + \sin\theta = 0$ 이 된다. 이것이 서로 다른 부호의 실근을 가지기 위해선

$$D=1-(-\sin^2\theta+\sin\theta)>0$$
 이 성립해야한다.

$$\sin^2\theta - \sin\theta + 1 = (\sin\theta - \frac{1}{2})^2 + \frac{3}{4} > 0$$
 이므로

D > 0이 항상 성립한다.

또한 $f(x) = x^2 + 2x - \sin^2\theta + \sin\theta$ 라 하면

f(0) < 0을 만족해야한다.

따라서 $-\sin^2\theta + \sin\theta = -\sin\theta(\sin\theta - 1) < 0$ 으로

 $1 < \sin \theta$ 또는 $\sin \theta < 0$ 이어야 한다.

 $-1 \le \sin \theta \le 1$ 이므로 $-1 \le \sin \theta < 0$ 이고,

 $0 \le \theta < 2\pi$ 이므로 $\pi < \theta < 2\pi$ 이다.

따라서 $a+b=3\pi$

13) [정답] ④

[해설] 함수
$$y=3\sin\frac{\pi}{2}x$$
의 주기가 $\frac{2\pi}{\frac{\pi}{2}}=4$ 이므로

구하는 값은

$$a+b+c+d=a+(2-a)+(4+a)+(6-a)$$
 = 12이다.

14) [정답] ③

[해설] 조건 (Υ) 에서 주기가 π 임을 알 수 있다. 조건 (Υ) 에서

(i)
$$0 \le x \le \frac{\pi}{2}$$
일 때,

$$2\sin 4x + 1 = 0$$
, $\sin 4x = -\frac{1}{2}$ 를 풀면

$$4x = \frac{7}{6}\pi \quad \Xi \succeq 4x = \frac{11}{6}\pi \quad (\because 0 \le 4x \le 2\pi)$$

따라서
$$x = \frac{7}{24}\pi$$
 또는 $x = \frac{11}{24}\pi$

그러므로 주기
$$\pi$$
만큼 이동한 $\pi \leq x \leq \frac{3}{2}\pi$ 의

하하는
$$x = \frac{7}{24}\pi + \pi$$
 또는 $x = \frac{11}{24}\pi + \pi$

따라서 x의 값의 항은

$$\frac{7}{24}\pi + \frac{11}{24}\pi + \left(\frac{7}{24}\pi + \pi\right) + \left(\frac{11}{24}\pi + \pi\right) = \frac{7}{2}\pi$$

(ii)
$$\frac{\pi}{2} < x < \pi$$
일 때,

$$-2\cos 4x - 1 = 0$$
, $\cos 4x = -\frac{1}{2}$ 를 풀면

$$4x = \frac{8}{3}\pi \quad \underline{\pi} \quad \underline{\pi} \quad 4x = \frac{10}{3}\pi \quad (\because 2\pi \le 4x \le 4\pi)$$

따라서
$$x = \frac{8}{12}\pi$$
 또는 $x = \frac{10}{12}\pi$

그러므로 주기
$$-\pi$$
만큼 이동한 $-\frac{\pi}{2} < x < 0$ 의

해는
$$x = \frac{8}{12}\pi - \pi$$
 또는 $x = \frac{10}{12}\pi - \pi$

따라서 x의 값의 합은

$$\frac{8}{12}\pi + \frac{10}{12}\pi + \left(\frac{8}{12}\pi - \pi\right) + \left(\frac{10}{12}\pi - \pi\right) = \pi$$

따라서 (i), (ii)에서 모든 x의 값의 합은 $\frac{9}{2}\pi$

15) [정답] ①

[해설] 이차방정식
$$2x^2 - x\sin\theta + 2\cos\theta + 1 = 0$$
의 두 근을 α , β (단, $\alpha < \beta$)라 하면 근과 계수와의 관계에 의해
$$\alpha + \beta = \frac{\sin\theta}{2} \quad \alpha\beta = \frac{2\cos\theta + 1}{2\cos\theta}$$
이다

$$\alpha + \beta = \frac{\sin \theta}{2}$$
, $\alpha \beta = \frac{2\cos \theta + 1}{2}$ 이다.

또한, $f(x) = 2x^2 - x\sin\theta + 2\cos\theta + 1$ 라 할 때, 함수 y = f(x)의 그래프와

직선 y=0의 교점의 x좌표가 α , β 이므로

이차방정식 $2x^2 - x \sin\theta + 2\cos\theta + 1 = 0$ 이

서로 다른 부호의 두 실근을 갖고,

양수인 근이 음수인 근의 절댓값보다 크려면 $\alpha + \beta > 0$, $\alpha \beta < 0$, f(0) < 0이어야 한다.

$$\therefore \frac{\sin\theta}{2} > 0, \cos\theta + \frac{1}{2} < 0, 2\cos\theta + 1 < 0$$

 $0 < \theta < 2\pi$ 에서

- (i) 부등식 $\sin \theta > 0$ 의 해는 $0 < \theta < \pi$ 이다.
- (ii) 부등식 $\cos\theta < -\frac{1}{2}$ 의 해는

$$\frac{2}{3}\pi < \theta < \frac{4}{3}\pi$$
이다.

- (iii) 부등식 2cosθ+1<0의 해는
- (ii)의 경우와 같으므로 $\frac{2}{3}\pi < \theta < \frac{4}{3}\pi$ 이다.

따라서 (i)~(iii)에 의하여

구하고자 하는 θ 의 값의 범위는

$$\frac{2}{3}\pi < \theta < \pi$$
이다.

16) [정답] ⑤

[해설] (i)
$$1-\cos\theta=0$$
일 때, 주어진 부등식은 항상 성립한다. $\therefore \theta=0$, 2π

(ii) $1 - \cos \theta > 0$ 일 때, $0 < \theta < 2\pi$

주어진 부등식이 모든 실수 x에 대하여

$$D/4 = (\sqrt{2}\sin^2\!\theta)^2 - (1-\cos\!\theta)(1+\cos\!\theta) < 0$$

$$2\sin^4\theta - (1-\cos^2\theta) < 0$$
, $2\sin^4\theta - \sin^2\theta < 0$

 $\sin^2\theta(2\sin^2\theta-1)<0$

$$\sin^2\theta \ge 0$$
이므로 $2\sin^2\theta - 1 < 0$

$$-\frac{\sqrt{2}}{2} < \sin\theta < \frac{\sqrt{2}}{2}$$

$$\therefore \ 0 < \theta < \frac{\pi}{4} \, , \ \frac{3}{4} \pi < \theta < \frac{5}{4} \pi \, , \ \frac{7}{4} \pi < \theta < 2 \pi$$

(i)과 (ii)에 의하여

$$0 \leq \theta < \frac{\pi}{4}, \ \frac{3}{4}\pi < \theta < \frac{5}{4}\pi, \ \frac{7}{4}\pi < \theta \leq 2\pi$$
이다.

$$\therefore a = \frac{\pi}{4}, b = \frac{3}{4}\pi, c = \frac{5}{4}\pi, d = \frac{7}{4}\pi$$

따라서
$$c+d-a-b=\frac{5}{4}\pi+\frac{7}{4}\pi-\frac{\pi}{4}-\frac{3}{4}\pi=2\pi$$

17) [정답] ①

[해설] 함수 f의 주기가 4π 이므로

$$\frac{2\pi}{b} = 4\pi$$
에서 $b = \frac{1}{2}$ 이다.

함수 f의 최솟값이 -1이므로 -a+d=-1이다.

$$x = \frac{\pi}{4}$$
에서 최솟값 -1 을 가지므로

$$f\left(\frac{\pi}{4}\right) = -1$$
이다.

$$a\cos\left(\frac{1}{2}\cdot\frac{\pi}{4}+c\right)+d=-1$$

$$-a+d=-1$$
에서 $d=a-1$ 이므로

위 식에 대입하여 정리하면

$$a\cos\left(\frac{\pi}{8}+c\right)=-a$$
, $\cos\left(\frac{\pi}{8}+c\right)=-1$ 이다.

$$\frac{\pi}{8} + c = \pi$$
이므로 $c = \frac{7}{8}\pi$ 이다.

$$f\left(-\frac{3}{4}\pi\right) = \frac{1}{2}$$
이므로

$$a\cos\frac{\pi}{2} + d = \frac{1}{2}, \ d = \frac{1}{2}$$

$$-a+d=-1$$
에서 $-a+\frac{1}{2}=-1$ 에서 $a=\frac{3}{2}$ 이다.

$$\therefore a \times b \times c \times d = \frac{3}{2} \times \frac{1}{2} \times \frac{7}{8} \pi \times \frac{1}{2} = \frac{21}{64} \pi$$

18) [정답] ④

[해설] $0 \le x \le 2\pi$ 에서

부등식 $\tan\frac{4}{5}\pi = \tan\left(-\frac{\pi}{5}\right) \le \tan x \le \tan\frac{2}{5}\pi$ 를 만족시키는 *x*의 범위는

$$0 \le x \le \frac{2}{5}\pi \quad \text{EL} \quad \frac{4\pi}{5} \le x \le \frac{7\pi}{5} \quad \text{EL}$$

$$\frac{9\pi}{5} \le x \le 2\pi$$
이다.

즉,
$$0 \le \frac{5}{12}x \le \frac{\pi}{6}$$
 또는 $\frac{\pi}{3} \le \frac{5}{12}x \le \frac{7}{12}\pi$ 또는

$$\frac{3}{4}\pi \le \frac{5}{12}x \le \frac{5}{6}\pi$$
에서 $\cos \frac{5}{12}x$ 는

$$\frac{5}{12}x = 0$$
일 때, 최댓값 $M = \cos 0 = 1$ 을 갖고.

$$\frac{5}{12}x=\frac{5}{6}\pi$$
일 때, 최솟값 $m=\cos\frac{5}{6}\pi=-\frac{\sqrt{3}}{2}$

$$\therefore M+m=1-\frac{\sqrt{3}}{2}$$

19) [정답] ②

[해설] 두 점 A, D의 중점의 x좌표는 $\frac{\pi}{2}$ 이므로

A,~D의 x좌표는 각각 $\dfrac{\pi}{2}-a,~\dfrac{\pi}{2}+a$ 라 하면

$$\overline{BC} = \overline{AD} = \frac{\pi}{3}$$
에서 $a = \frac{\pi}{6}$ 이다.

따라서 두 점 A, B의 좌표는 $\left(\frac{\pi}{3}, \frac{1}{2}\right)$,

 $\left(rac{\pi}{3},\ -rac{\sqrt{3}}{2}
ight)$ 이므로 직사각형 ABCD의 넓이는

$$\overline{AD} \times \overline{AB} {=} \frac{\pi}{3} {\times} \left(\frac{1}{2} {+} \frac{\sqrt{3}}{2} \right) {=} \frac{\sqrt{3} {+} 1}{6} \pi$$

20) [정답] ③

[해설] 초속이 $v = 20\sqrt{6} m$,

골프공의 수평 이동거리가 $D=120\sqrt{3}\ m$, 골프공이 날아가는 방향과 지면이 이루는 각의 크기가 θ 일 때,

$$120\sqrt{3} = \frac{(20\sqrt{6})^2 \sin 2\theta}{10},$$

$$120\sqrt{3} = \frac{400 \times 6 \times \sin 2\theta}{10}, \sin 2\theta = \frac{\sqrt{3}}{2}$$

$$0<\theta<\frac{\pi}{4}$$
일 때, $0<2\theta<\frac{\pi}{2}$ 이므로

$$2\theta = \frac{\pi}{3} \qquad \therefore \ \theta = \frac{\pi}{6}$$