ChumakovNV 26012025-091803

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Источник колебаний с частотой 580 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 173 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1455 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 5 Гц, если с доступная мощность на выходе усилителя равна 3.3 дБм? Варианты ОТВЕТА:

- 1) -170.1 дБн/ Γ ц
- 2) -170.6 дБн/ Γ ц
- 3) -171.1 дБн/Гц
- 4) -171.6 дБн/ Γ ц
- 5) -172.1 дБн/Гц
- 6) -172.6 дБн/Гц
- 7) -173.1 дБн/Гц
- 8) -173.6 дБн/Гц
- 9) -174.1 дБн/Гц

Источник колебаний с доступной мощностью 3.8 дБм и частотой 2920 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 145 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 2920.0006 МГц, если спектральная плотность мощности его собственных шумов равна минус 145 дБм/Гц, а полоса пропускания ПЧ установлена в положение 100 Гц?

- 1) -107.8 дБм
- 2) -109.5 дБм
- 3) -111.2 дБм
- 4) -112.9 дБм
- 5) -114.6 дБм
- 6) -116.3 дБм
- 7) -118 дБм
- 8) -119.7 дБм
- 9) -121.4 дБм

Колебание синтезировано с помошью кольпа ФАПЧ (Рисунок 2). Коэффициент передачи цепи обратной связи частотно независим и равен 10^{-1} , а крутизна характеристики управления частотой ГУН равна 0.3 МГц/В. Частота колебаний опорного генератора (ОГ) 230 МГц. Частота колебаний ГУН 3050 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 3.4 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 41 кГц на 4.6 дБ меньше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 1 – Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 3.68 В/рад
- 2) 4.41 В/рад
- 3) 5.14 В/рад
- 4) 5.87 В/рад
- 5) 6.60 В/рад
- 6) 7.33 В/рад
- 7) 8.06 В/рад
- 8) 8.79 В/рад
- 9) 9.52 В/рад

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 3330 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 81 дBн/ Γ ц. Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц синтезированного колебания равна минус 75 дBн/ Γ ц, а частота его равна 6640 М Γ ц. Чему равна спектральная плотность мощности фазового шума второго колебания на отстройке 100 к Γ ц при описанном выше некогерентном синтезе?

- 1) -84.1 дБн/Гц
- 2) -81.1 дБн/Гц
- 3) -79.3 дБн/Гц
- 4) -78 дБн/Гц
- 5) -77 дБн/Гц
- 6) -76.3 дБн/Гц
- 7) -74.5 дБн/Гц
- 8) -74 дБн/Гц
- 9) -73.2 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Частота колебаний опорного генератора (ОГ) 20 МГц. Частота колебаний ГУН 5490 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 148.7 дБн/Гц для ОГ и минус 1.3 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=326.2452,~\tau=66.1292$ мкс.

Крутизна характеристики управления частотой ГУН равна $0.3~\mathrm{M}\Gamma\mathrm{ц}/\mathrm{B}$. Крутизна характеристики фазового детектора $0.3~\mathrm{B}/\mathrm{pag}$.

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 168 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на плюс 5.2 дБ
- на плюс 4.8 дБ
- 3) на плюс 4.4 дБ
- 4) на плюс 4 дБ
- на плюс 3.6 дБ
- на плюс 3.2 дБ
- та плюс 2.8 дБ
- на плюс 2.4 дБ
- 9) на плюс 2дБ

Если цепь на рисунке 3 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 3.242 кГц больше на 4.5 дБ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ больше на 2.9 дБ, чем вклад ГУН. Известно, что C=10.54 нФ, а $R_2=3223$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 3 – Электрическая схема цепи обратной связи

- 1) 2423 O_M
- 2) 2881 O_M
- 3) 3339 O_M
- 4) 3797 O_M
- 5) 4255 Ом
- 6) 4713 Ом
- 7) 5171 O_M
- 8) 5629 Ом
- 9) 6087 O_M