1. Consider estimating the linear regression model $y_i = x_i'\beta_0 + u_i$, where x_i is a $K \times 1$ vector, using J instrumental variables, z_i , which is a $J \times 1$ vector, $J \geq K$. Sampling is i.i.d. Consider the GMM estimation of β_0 using

$$\hat{g}(b)'W\hat{g}(b)$$
.

where $\hat{g}(b) = N^{-1} \sum_{i=1}^{N} g_i(b)$, where $g_i(b) = z_i(y_i - x_i'b)$, as the objective function. The first order condition is

$$0 = \frac{\partial \hat{g}(b)'}{\partial b} W \hat{g}(b) = \hat{G}' W \hat{g}(b),$$

where $\hat{G} = N^{-1} \sum_{i=1}^{N} z_i x_i'$.

- (a) Using the probability limit of \hat{G} , denoted G and W, explain which K linear combinations of z_i vector is used as the K IV in the GMM estimation.
- 2. We claimed that using $W = \Omega^{-1}$, where $\Omega = E[g_i(\beta)g'_i(\beta)]$ yields the optimal GMM estimator. The following sequence of questions meant to demonstrate this.
 - (a) Show that the asymptotic variance-covariance matrix of the GMM estimator using general weight matrix W is

$$(G'WG)^{-1}G'W\Omega WG(G'WG)^{-1},$$

where $G = E(z_i x_i)$.

(b) Show that the variance-covariance matrix of the optimal GMM estimator is

$$(G'\Omega^{-1}G)^{-1}.$$

(c) Show that

$$\begin{split} (G'WG)^{-1}G'W\Omega WG(G'WG)^{-1} - (G'\Omega^{-1}G)^{-1} \\ &= (G'WG)^{-1}[G'W\Omega WG - (G'WG)(G'\Omega^{-1}G)^{-1}(G'WG)](G'WG)^{-1} \\ &= (G'WG)^{-1}G'W[\Omega - G(G'\Omega^{-1}G)^{-1}G')]WG(G'WG)^{-1}. \end{split}$$

(d) Let T be such that $\Omega = T'T$. Recall that $\Omega^{-1} = T^{-1}(T')^{-1}$ and that $(T')^{-1} = (T^{-1})'$. Using these results from earlier problem sets and denoting Let $C = (T^{-1})'G$, show that the last expression equals

$$(G'WG)^{-1}G'WT'[I_J - (T')^{-1}G(G'T^{-1}(T')^{-1}G)^{-1}G'T^{-1}]TWG(G'WG)^{-1}$$

$$= (G'WG)^{-1}G'WT'[I_J - C(C'C)^{-1}C']TWG(G'WG)^{-1}.$$

- (e) Show that the last expression is positive semi-definite.
- 3. Consider the following simultaneous equations model

$$y_i^S = \beta_1^S + \beta_2^S p_i + \beta_3^S x_i + u_i^S$$

$$y_i^D = \beta_1^D + \beta_2^D p_i + \beta_3^D z_i + u_i^D$$

where p_i is determined by $y_i^S = y_i^D$ and that we observe, for each i, the equilibrium quantity y_i that satisfies the equality. The first equation is meant to be a supply function and the second equation is meant to be a demand function. In this model we assume that (u_i^S, u_i^D) given (x_i, z_i) has conditional mean zero.

- (a) Write down the reduced form equations for p_i and y_i .
- (b) What is the order condition for the supply parameters?
- (c) What is the rank condition for the demand parameters?
- (d) Discuss how you will estimate the demand parameters efficiently by GMM under heteroskedasticity.
- 4. Use the data set at http://economics.mit.edu/faculty/angrist/data1/data/anglavy99 to
 - (a) reproduce Angrist and Lavy full sample and discontinuity sample in Table III using R.
 - (b) Construct a 95% confidence interval for the class-size effect for both samples using heterskedasticity robust standard error.