Benford's Law

SING meeting 6.9.2010 Behram Mistree

Simple Question

What happens if we take first non-zero digits from a group of numbers?

Simple Question

What happens if we take first non-zero digits from a group of numbers?

0.323

1339.13

-553

22000

Simple Question

What happens if we take first non-zero digits from a group of numbers?

First digit NYSE stock prices

What if that's just an artifact of US currency?

First digit NYSE prices different currencies

Physical constants

- Physical constants
- Census data

- Physical constants
- Census data
- Numbers in The Farmer's Almanac

- Physical constants
- Census data
- Numbers in The Farmer's Almanac
- Lengths of the world's rivers

- Physical constants
- Census data
- Numbers in The Farmer's Almanac
- Lengths of the world's rivers

All have pronouncedly more first non-zero digit 1's than any other value. Specifically:

$$p(1) = .301$$

(even when multiplied by any constants)

Rest of this talk: Benfordian Scale invariance

- Computational test for scale invariance in Benford's Law
- Math-ish test for scale invariance in Benford's Law
- Explanation of what's actually happening

References

Talk heavily informed from the following 5 references:

- The Scientist and Engineer's Guide to Digital Signal Processing, by Steven W. Smith
- "Looking out for number one" in Plus Magazine, by Jon Walthoe, Robert Hunt and Mike Pearson
- "A statistical derivation of the significant-digit law" in Statistical Science, by Theodore Hill. 1996
- EE261 Course Notes.
- Wikipedia

References

Talk heavily informed from the following 5 references:

- The Scientist and Engineer's Guide to Digital Signal Processing, by Steven W. Smith
- "Looking out for number one" in Plus Magazine, by Jon Walthoe, Robert Hunt and Mike Pearson
- "A statistical derivation of the significant-digit law" in Statistical Science, by Theodore Hill. 1996
- EE261 Course Notes.
- Wikipedia

Test a distribution's first digit scale-invariance (Computational)

Computationally, what would you do?

Test a distribution's first digit scale-invariance (Computational)

- Draw from distribution 1000 times. Count how many leading-digit 1's.
- Multiply all numbers in distribution by a constant and draw again.

Computational algorithm

```
originalData = getData("filename.csv")
results= [];
for s = 1:.01:1000
    testData = originalData .* s;
    results.append(fracFirstDigitOnes(testData));
plot(results)
```

Benfordian!

Non-Benfordian!

Let's be more math-y

Let's be more math-y

Let's be more math-y

What's the probability of getting a 1 as first non-zero digit?

$$P(1 \text{ as first non-zero digit}) = \int_{1}^{2} pdf(x)dx$$

$$P(1 \text{ as first non-zero digit}) = \int_{1}^{2} pdf(x)dx + \int_{1}^{2} pdf(x)dx$$

$$P(1 \text{ as first non-zero digit}) = \int_{1}^{2} pdf(x) dx + \int_{1}^{$$

...

• Ugh!

- Ugh!Math!

Logs? Logs!

log ₁₀ (lower bound)	log ₁₀ (upper bound)	Δ
$\log_{10}(1) = 0$	$\log_{10}(2) = .301$.301

Logs? Logs!

log ₁₀ (lower bound)	log ₁₀ (upper bound)	Δ
$\log_{10}(1) = 0$	$\log_{10}(2) = .301$.301
$\log_{10}(.1) = -1$	$\log_{10}(.2) =699$.301

Logs? Logs!

log ₁₀ (lower bound)	log ₁₀ (upper bound)	Δ
$\log_{10}(1) = 0$	$\log_{10}(2) = .301$.301
$\log_{10}(.1) = -1$	$\log_{10}(.2) =699$.301
$\log_{10}(.01) = -2$	$\log_{10}(.02) = -1.699$.301
$\log_{10}(.001) = -3$	$\log_{10}(.002) = -2.699$.301

No deep mathematical fact

Start with:

$$\log(\frac{A}{B}) = \log(A) - \log(B)$$

$$\log(1)=0$$

•••

No deep mathematical fact

Start with:

$$\log(\frac{A}{B}) = \log(A) - \log(B)$$

$$\log(1)=0$$

Get:

$$\log(.1) = \log(\frac{1}{10}) = \log(1) - \log(10) = 0 - 1 = -1$$

$$\log(.01) = \log(\frac{1}{100}) = \log(1) - \log(100) = 0 - 2 = -2$$

• • •

Convert x axis to log

Convenience

That's a little inconvenient for now. Let's just assume that we have a log-normal function. So *after* taking log, it should look like this:

Benfordian-ness of 1's (pre-log)

Before:

$$P(1 \text{ as first non-zero digit}) = \int_{1}^{2} pdf(x) dx + \int_{1}^{2} pdf(x) dx + \int_{0}^{2} pdf(x) dx + \int_{0}^{$$

. . .

$$P(1 \text{ as first non-zero}) = \dots + \\ P(x \in [10^{-10}, 2 \cdot 10^{-10})) + \\ P(x \in [10^{-9}, 2 \cdot 10^{-9})) + \\ P(x \in [10^{-8}, 2 \cdot 10^{-8})) + \\ \dots$$

$$P(1 \text{ as first non-zero}) = \dots + \\ P(x \in [10^{-10}, 2 \cdot 10^{-10})) + \\ P(x \in [10^{-9}, 2 \cdot 10^{-9})) + \\ P(x \in [10^{-8}, 2 \cdot 10^{-8})) + \\$$

$$P(1 \text{ as first non-zero}) = \dots + \\ P(x \in [10^{-10}, 2 \cdot 10^{-10})) + \\ P(x \in [10^{-9}, 2 \cdot 10^{-9})) + \\ P(x \in [10^{-8}, 2 \cdot 10^{-8})) + \\$$

$$P(1 \text{ as first non-zero}) = \dots + \\ P(x \in [10^{-10}, 2 \cdot 10^{-10})) + \\ P(x \in [10^{-9}, 2 \cdot 10^{-9})) + \\ P(x \in [10^{-8}, 2 \cdot 10^{-8})) + \\ P$$

Another way to say all that is...

Multiply this with that and integrate result.

Another way to say all that is...

Multiply this with that and integrate result.

$$P(1 \text{ as first non-zero digit}) = \int_{-\infty}^{\infty} pulse(x) \cdot pdf(x) dx$$

What did we do?

What did we do?

```
originalData = getData("filename.csv")
results= [];
for s = 1:.01:1000
    testData = originalData .* s;
    results.append(fracFirstDigitOnes(testData));
plot(results)
```

What did we do?

```
originalData = getData("filename.csv")
results= [];
for s = 1:.01:1000
   testData = originalData .* s;
   results.append(fracFirstDigitOnes(testData));
plot(results)
              P(1 \text{ as first non-zero digit}) = \int pulse(x) \cdot pdf(x) dx
```

What do we need to do?

But that's only one part of the scaling test. We need to repeat this integral over a range of scaling constants functions.

Scaling with logs

```
x \longrightarrow \log(x)
cx \longrightarrow \log(cx) = \log(c) + \log(x)
```

Scaling with logs

```
x \longrightarrow \log(x)
cx \longrightarrow \log(cx) = \log(c) + \log(x)
```

Scaling by c corresponds to shifting the log distribution left or right by log(c).

 Sampling function remains unchanged in all of this (we never said that the sampling had to be scale invariant):

 Sampling function remains unchanged in all of this (we never said that the sampling had to be scale invariant):

- Sampling function remains unchanged in all of this (we never said that the sampling had to be scale invariant):
- Now, we're shifting pdf one way or another and integrating from -∞ to ∞ depending on how much we scale.

- Sampling function remains unchanged in all of this (we never said that the sampling had to be scale invariant):
- Now, we're shifting pdf one way or another and integrating from -∞ to ∞ depending on how much we scale.

$$P(1 \text{ as first non-zero digit after scaling s}) = \int_{-\infty}^{\infty} pulse(x) \cdot pdf(x-s') dx$$

where $s' = f(s)$

Convolution!

 $P(1 \text{ as first non-zero digit after scaling s}) = \int_{-\infty}^{\infty} pulse(x) \cdot pdf(x-s')dx$ where s' = f(s)

P(1 as first non-zero digit after scaling s) = pulse * pdf

Convolution!

 $P(1 \text{ as first non-zero digit after scaling s}) = \int_{-\infty}^{\infty} pulse(x) \cdot pdf(x-s')dx$ where s' = f(s)

 $P(1 \text{ as first non-zero digit after scaling s}) = pulse * pdf^-$

Easier to solve in frequency domain.

Got to do a *little* bit of Fourier stuff

If I have a vector in 2D space, that looks like this, how could you describe it?

If I have a vector in 2D space, that looks like this, how could you describe it?

If I have a vector in 2D space, that looks like this, how could you describe it?

$$\vec{v} = 1 \cdot \hat{x} + 1 \cdot \hat{y}$$

To find the frequency components of a function, you do the same thing:

Take the inner product of the function with \hat{f}_1 , \hat{f}_2 , \hat{f}_3 , etc.

All you need to know

- Convolution in time is multiplication in frequency.
- For a periodic function, p, average value of function is P(0).
- For a non-periodic function, n, integral over all values is N(0)

What the multiplication in frequency actually looks

like:

- 0 in frequency corresponds to the dc bias of our function in time.
- $P(0) = PDF(0) \times PULSE(0)$

0 in frequency corresponds to the dc bias of our function in time.

 $P(0) = PDF(0) \times PULSE(0)$

PULSE(0) = Time average over one cycle

0 in frequency corresponds to the dc bias of our function in time.

 $P(0) = PDF(0) \times PULSE(0)$

PULSE(0) = .301

 $PDF(0) = Integral of pdf from -\infty to \infty$

0 in frequency corresponds to the dc bias of our function in time.

$$P(0) = PDF(0) \times PULSE(0)$$

 $PULSE(0) = .301$
 $PDF(0) = 1$

$$P(0) = .301$$

0 in frequency corresponds to the dc bias of our function in time.

$$P(0) = PDF(0) \times PULSE(0)$$

$$PULSE(0) = .301$$

$$PDF(0) = 1$$

If we average over all scalings for a distribution, we'd expect to see first digit 1's 30% of the time.

$$P(0) = .301$$

Slight lie from before: one more fact

- One last fact, if you stretch a function in time, you shrink it in frequency.
- If you shrink a function in time, you stretch it in frequency. (More's going on in a shorter duration, implies has to be higher frequency.)

Benford in general

- So, in general, if the distribution that we start with is "very spread out" initially, it's going to be more likely to show first-digit scale-invariance.
- Spread out (because we took the log) means that it should range over several orders of magnitude. Lots of data that we see does range over orders of magnitude.

Couple of other ways to think about it

- Taking lots of anti-logarithms
- Nature counts by e's
- Growth processes abound
- Show that the only distributions that behave this law need to be logarithmic.