Theorie der Abel'schen Functionen.

Bernhard Riemann

[Journal für die reine und angewandte Mathematik, Bd. 54. S. 101–155. 1857.]

Transcribed by D. R. Wilkins

Preliminary Version: December 1998 Corrected: April 2000

Theorie der Abel'schen Functionen.

Bernhard Riemann

[Journal für die reine und angewandte Mathematik, Bd. 54. S. 101–155. 1857.]

1. Allgemeine Voraussetzungen und Hülfsmittel für die Untersuchung von Functionen unbeschränkt veränderlicher Grössen.

Die Absicht den Lesern dieses Journals Untersuchungen über verschiedene Transcendenten, inbesondere auch über Abel'sche Functionen vorzulegen, macht es mir wünschenswerth, um Wiederholungen zu vermeiden, eine Zusammenstellung der allgemeinen Voraussetzungen, von denen ich bei ihrer Behandlung ausgehen werde, in einem besonderen Aufsatze voraufzuschicken.

Für die unabhängig veränderliche Grösse setze ich stets die jetzt allgemein bekannte Gauss'sche geometrische Repräsentation voraus, nach welcher eine complexe Grösse z=x+yi vertreten wird durch einen Punkt einer unendlichen Ebene, dessen rechtwinklige Coordinaten x, y sind; ich werde dabei die complexen Grössen und die sie repräsentirenden Punkte durch dieselben Buchstaben bezeichnen. Als Function von x+yi betrachte ich jede Grösse w, die sich mit ihr der Gleichung

$$i\frac{\partial w}{\partial x} = \frac{\partial w}{\partial y}$$

gemäss ändert, ohne einen Ausdruck von w durch x und y vorauszusetzen. Aus dieser Differentialgleichung folgt nach einem bekannten Satze, dass die Grösse w durch eine nach ganzen Potenzen von z-a fortschreitende Reihe von der Form $\sum\limits_{n=0}^{n=\infty}a_n(z-a)^n$ darstellbar ist, sobald sie in der Umgebung von a allenthalben einen bestimmten mit z stetig sich ändernden Werth hat, und dass diese Darstellbarkeit stattfindet bis zu einem Abstande von a oder Modul von z-a, für welchen eine Unstetigkeit eintritt. Es ergiebt sich aber aus den Betrachtungen, welche der Methode der unbestimmten Coefficienten zu Grunde liegen, dass die Coefficienten a_n völlig bestimmt sind, wenn w in

einer endlichen übrigens beliebig kleinen von a ausgehenden Linie gegeben ist

Beide Ueberlegungen verbindend, wird man sich leicht von der Richtigkeit des Satzes überzeugen:

Eine Function von x + yi, die in einem Theile der (x, y)-Ebene gegeben ist, kann darüber hinaus nur auf Eine Weise stetig fortgesetzt werden.

Man denke sich nun die zu untersuchende Function nicht durch irgend welche z enthaltende analytische Ausdrücke oder Gleichungen bestimmt, sondern dadurch, dass der Werth der Function in einem beliebig begrenzten Theile der z-Ebene gegeben ist und sie von dort aus stetig (der partiellen Differentialgleichung

$$i\frac{\partial w}{\partial x} = \frac{\partial w}{\partial y}$$

gemäss) fortgesetzt wird. Diese Fortsetzung ist nach den obigen Sätzen eine völlig bestimmte, vorausgesetzt, dass sie nicht in blossen Linien geschieht, wobei eine partielle Differentialgleichung nicht zur Anwendung kommen könnte, sondern durch Flächenstreifen von endlicher Breite. Je nach der Beschaffenheit der fortzusetzenden Function wird nun entweder die Function für denselben Werth von z immer wieder denselben Werth annehmen, auf welchem Wege auch die Fortsetzung geschehen sein möge, oder nicht. Im ersteren Falle nenne ich sie einwerthig, sie bildet dann eine für jeden Werth von z völlig bestimmte und nicht längs einer Linie unstetige Function. Im letzteren Falle, wo sie mehrwerthig heissen soll, hat man um ihren Verlauf aufzufassen vor Allem seine Aufmerksamkeit auf gewisse Punkte der z-Ebene zu richten, um welche herum sich die Function in eine andere fortsetzt. Ein solcher Punkt ist z. B. bei der Function $\log(z-a)$ der Punkt a. Denkt man sich von diesem Punkte a aus eine beliebige Linie gezogen, so wird man in der Umgebung von a den Werth der Function so wählen können, dass sie sich ausser dieser Linie überall stetig ändert; zu beiden Seiten dieser Linie nimmt sie aber dann verschiedene Werthe an, auf der negativen¹ einen um $2\pi i$ grösseren, als auf der positiven. Die Fortsetzung der Function von einer Seite dieser Linie aus, z. B. von der negativen, über sie hinüber in das jenseitige Gebiet giebt dann offenbar eine von der dort schon vorhandenen verschiedene Function und zwar im hier betrachteten Falle eine allenthalben um $2\pi i$ grössere.

Zur bequemeren Bezeichnung dieser Verhältnisse sollen die verschiedenen Fortsetzungen einer Function für denselben Theil der z-Ebene Zweige dieser Function genannt werden und ein Punkt, um welchen sich ein Zweig einer

 $^{^{1}}$ Im Anschlusse an die von Gauss vorgeschlagene Benennung positiv laterale Einheit für +i werde ich als positive Seitenrichtung zu einer gegebenen Richtung diejenige bezeichnen, welche zu ihr ebenso liegt, wie +i zu 1.

Function in einen andern fortsetzt, eine *Verzweigungsstelle* dieser Function; wo keine Verzweigung stattfindet, heisst die Function *einändrig* oder *monodrom*.

Ein Zweig einer Function von mehreren unabhängig veränderlichen Grössen, z, s, t, \ldots ist einändrig in der Umgebung eines bestimmten Werthensystems $z=a, s=b, t=c,\ldots$, wenn allen Werthencombinationen bis zu einem endlichen Abstande von demselben (oder bis zu einer bestimmten endlichen Grösse der Moduln von $z-a, s-b, t-c,\ldots$) ein bestimmter mit den veränderlichen Grössen stetig sich ändernder Werth dieses Zweiges der Function entspricht. Eine Verzweigungsstelle oder eine Stelle, um welche sich ein Zweig in einen andern fortsetzt, wird bei einer Function von mehreren Veränderlichen durch sämmtliche einer Gleichung zwischen ihnen genügende Werthe der unabhängig veränderlichen Grössen gebildet.

Nach einem oben angeführten bekannten Satze ist die Einändrigkeit einer Function identisch mit ihre Entwickelbarkeit, ihre Verzweigung mit ihrer Nichtentwickelbarkeit nach ganzen positiven oder negativen Potenzen der Aenderungen der veränderlichen Grössen. Es scheint aber nicht zweckmässig, jene von ihrer Darstellungsweise unabhängigen Eigenschaften durch diese an eine bestimmte Form ihres Ausdrucks geknüpften Merkmale auszudrücken.

Für manche Untersuchungen, namentlich für die Untersuchung algebraischer und Abel'scher Functionen ist es vortheilhaft, die Verzweigungsart einer mehrwerthigen Function in folgender Weise geometrisch darzustellen. Man denke sich in der (x,y)-Ebene eine andere mit ihr zusammenfallende Fläche (oder auf der Ebene einen unendlich dünnen Körper) ausgebreitet, welche sich so weit und nur so weit erstreckt, als die Function gegeben ist. Bei Fortsetzung dieser Function wird also diese Fläche ebenfalls weiter ausgedehnt werden. In einem Theile der Ebene, für welchem zwei oder mehrere Fortsetzungen der Function vorhanden sind, wird die Fläche doppelt oder mehrfach sein; sie wird dort aus zwei oder mehreren Blättern bestehen, deren jedes einen Zweig der Function vertritt. Um einen Verzweigungspunkt der Function herum wird sich ein Blatt der Fläche in ein anderes fortsetzen, so dass in der Umgebung eines solchen Punktes die Fläche als eine Schraubenfläche mit einer in diesem Punkte auf der (x, y)-Ebene senkrechten Axe und unendlich kleiner Höhe des Schraubenganges betrachtet werden kann. Wenn die Function nach mehreren Umläufen des z um den Verzweigungswerth ihren vorigen Werth wieder erhält (wie z. B. $(z-a)^{\frac{m}{n}}$, wenn m, n relative Primzahlen sind, nach n Umläufen von z um a), muss man dann freilich annehmen, das sich das oberste Blatt der Fläche durch die übrigen hindurch in das unterste fortsetzt.

Die mehrwerthige Function hat für jeden Punkt einer solchen ihre Verzweigungsart darstellenden Fläche nur einen bestimmten Werth und kann

daher als eine völlig bestimmte Function des Orts in dieser Fläche angesehen werden.

Göttingen, 1857.

2. Lehrsätze aus der analysis situs für die Theorie der Integrale von zweigliedrigen vollständigen Differentialien.

Bei der Untersuchung der Functionen, welche aus der Integration vollständiger Differentialien entstehen, sind einige der analysis situs angehörige Sätze fast unentbehrlich. Mit diesem von Leibnitz, wenn auch vielleicht nicht ganz in derselben Bedeutung, gebrauchten Namen darf wohl ein Theil der Lehre von den stetigen Grössen bezeichnet werden, welcher die Grössen nicht als unabhängig von der Lage existierend und durch einander messbar betrachtet, sondern von den Massverhältnissen ganz absehend, nur ihre Ortsund Gebietsverhältnisse der Untersuchung unterwirft. Indem ich eine von Massverhältnissen ganz abstrahirende Behandlung dieses Gegenstandes mir vorbehalte, werde ich hier nur die bei der Integration zweigliedriger vollständiger Differentialien nöthigen Sätze in einem geometrischen Gewande darstellen.

Es sei eine in der (x, y)-Ebene einfach oder mehrfach ausgebreitete Fläche T gegeben² und X, Y seien solche stetige Functionen des Orts in dieser Fläche, dass in ihr allenthalben X dx + Y dy ein vollständiges Differential, also

$$\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x} = 0$$

ist. Bekanntlich ist dann

$$\int (X\,dx + Y\,dy),$$

um einen Theil der Fläche T positiv oder negativ herum—d. h. durch die ganze Begrenzung entweder allenthalben nach der positiven oder allenthalben nach der negativen Seite gegen die Richtung von Innen nach Aussen (siehe die Anmerkung Seite 2 der vorhergehenden Abhandlung)—erstreckt, = 0, da dies Integral dem über diesen Theil ausgedehnten Flächenintegrale

$$\int \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right) dT$$

identisch im ersteren Falle gleich, im zweiten entgegengesetzt ist. Das Integral

$$\int (X\,dx + Y\,dy)$$

²Man sehe die vorhergehende Abhandlung S. 3

hat daher zwischen zwei festen Punkten auf zwei verschiedenen Wegen erstreckt denselben Werth, wenn diese beiden Wege zusammengenommen die ganze Begrenzung eines Theils der Fläche T bilden. Wenn also jede im Innern von T in sich zurücklaufende Curve die ganze Begrenzung eines Theils von Tbildet, so hat das Integral von einem festen Anfangspunkte bis zu einem und demselben Endpunkte erstreckt immer denselben Werth und ist eine von dem Wege der Integration unabhängige allenthalben in T stetige Function von der Lage des Endpunkts. Dies veranlasst zu einer Unterscheidung der Flächen in einfach zusammenhängende, in welchen jede geschlossene Curve einen Theil der Fläche vollständig begrenzt—wie z. B. ein Kreis—, und mehrfach zusammenhängende, für welche dies nicht stattfindet,—wie z. B. eine durch zwei concentrische Kreise begrenzte Ringfläche. Eine mehrfach zusammenhängende lässt sich durch Zerschneidung in eine einfach zusammenhängende verwandeln (s. die durch Zeichnungen erläuterten Beispiele am Schluss dieser Abhandlung). Da diese Operation wichtige Dienste bei der Untersuchung der Integrale algebraischer Functionen leistet, so sollen die darauf bezüglichen Sätze kurz zusammengestellt werden; sie gelten für beliebig im Raume liegende Flächen.

Wenn in einer Fläche F zwei Curvensysteme a und b zusammengenommen einen Theil dieser Fläche vollständig begrenzen, so bildet jedes andere Curvensystem, das mit a zusammen einen Theil von F vollständig begrenzt, auch mit b die ganze Begrenzung eines Flächentheils, der aus den beiden ersteren Flächentheilen längs a (durch Addition oder Subtraction, jenachdem sie auf entgegengesetzter oder auf gleicher Seite von a liegen) zusammengesetzt ist. Beide Curvensysteme leisten daher für vollige Begrenzung eines Theils von F dasselbe und können für die Erfüllung dieser Forderung einander ersetzen.

Wenn in einer Fläche sich n geschlossene Curven a_1, a_2, \ldots, a_n ziehen lassen, welche weder für sich noch mit einander einen Theil dieser Fläche F vollständig begrenzen, mit deren Zuziehung aber jede andere geschlossene Curve die vollständige Begrenzung eines Theils der Fläche F bilden kann, so heisst die Fläche eine (n+1) fach zusammenhängende.

Dieser Charakter der Fläche ist unabhängig von der Wahl des Curvensystems a_1, a_2, \ldots, a_n , da je n andere geschlossene Curven b_1, b_2, \ldots, b_n , welche zu völliger Begrenzung eines Theils dieser Fläche nicht ausreichen, ebenfalls mit jeder andern geschlossenen Curve zusammengenommen einen Theil von F völlig begrenzen.

In der That, da b_1 mit Linien a zusammengenommen einen Theil von F vollständig begrenzt, so kann eine dieser Curven a durch b_1 und die übrigen Curven a ersetzt werden. Es ist daher mit b_1 und diesen n-1 Curven a jede andere Curve, und folglich auch b_2 , zu völliger Begrenzung eines Theils von F ausreichend, und es kann eine dieser n-1 Curven a durch b_1 , b_2 und die

übrigen n-2 Curven a ersetzt werden. Dieses Verfahren kann offenbar, wenn wie vorausgesetzt die Curven b zu vollständiger Begrenzung eines Theils von F nicht ausreichen, so lange fortgesetzt werden, bis sämmtliche a durch die b ersetzt worden sind.

Eine (n+1) fach zusammenhängende Fläche F kann durch einen Querschnitt—d. h. eine von einem Begrenzungspunkte durch das Innere bis zu einem Begrenzungspunkte geführte Schnittlinie—in eine n fach zusammenhängende F' verwandelt werden. Es gelten dabei die durch die Zerschneidung entstehenden Begrenzungstheile schon während der weiteren Zerschneidung als Begrenzung, so dass ein Querschnitt keinen Punkt mehrfach durchschneiden, aber in einem seiner früheren Punkte enden kann.

Da die Linien a_1, a_2, \ldots, a_n zu völliger Begrenzung eines Theils von F nicht ausreichen, so muss, wenn man sich F durch diese Linien zerschnitten denkt, sowohl das auf der rechten, als das auf der linken Seite von a_n anliegende Flächenstück noch andere von den Linien a verschiedene und also zur Begrenzung von F gehörige Begrenzungstheile enthalten. Man kann daher von einem Punkte von a_n sowohl in dem einen, als in dem andern dieser Flächenstücke eine die Curven a nicht schneidende Linie bis zur Begrenzung von F ziehen. Diese beiden Linien q' und q'' zusammengenommen bilden alsdann einen Querschnitt q der Fläche F, welcher das Verlangte leistet.

In der That sind in der durch diesen Querschnitt aus F entstehenden Fläche F' die Linien $a_1, a_2, \ldots, a_{n-1}$ im Innern von F' verlaufende geschlossene Curven, welche zur Begrenzung eines Theils von F, also auch von F', nicht hinreichen. Jede andere im Innern von F' verlaufende geschlossene Curve l aber bildet mit ihnen die ganze Begrenzung eines Theils von F'. Denn die Linie l bildet mit einem Complex aus den Linien a_1, a_2, \ldots, a_n die ganze Begrenzung eines Theils f von F. Es lässt sich aber zeigen, dass in der Begrenzung desselben a_n nicht vorkommen kann; denn dann würde, je nachdem f auf der linken oder rechten Seite von a_n läge, q' oder q'' aus dem Innern von f nach einem Begrenzungspunkte von F, also nach einem ausserhalb f gelegenen Punkte, führen und also die Begrenzung von f schneiden müssen gegen die Voraussetzung, dass l sowohl als die Linien a, den Durchschnittspunkt von a_n und q ausgenommen, stets im Innern von F' bleiben.

Die Fläche F', in welche F durch den Querschnitt q zerfällt, ist demnach, wie verlangt, eine n fach zusammenhängende.

Es soll jetzt bewiesen werden, dass die Fläche F durch jeden Querschnitt p, welcher sie nicht in getrennte Stücke zerfällt, in eine n fach zusammenhängende F' verwandelt wird. Wenn die zu beiden Seiten des Querschnitts p angrenzenden Flächentheile zusammenhängen, so lässt sich eine Linie b von der einen Seite desselben durch das Innere von F' auf die andere Seite zum Anfangspunkte zurück ziehen. Diese Linie b bildet eine im

Innern von F in sich zurücklaufende Linie, welche, da der Querschnitt von ihr aus nach beiden Seiten zu einem Begrenzungspunkte führt, von keinem der beiden Flächenstücke, in welche sie F zerschneidet, die ganze Begrenzung bildet. Man kann daher eine der Curven a durch die Curve b und jede der übrigen n-1 Curven a durch eine im Innern von F' verlaufende Curve und wenn nöthig die Curve b ersetzen, worauf der Beweis, dass F' n fach zusammenhängend ist, durch dieselben Schlüsse, wie vorhin, geführt werden kann.

Eine (n+1) fach zusammenhängende Fläche wird daher durch jeden sie nicht in Stücke zerschneidenden Querschnitt in eine n fach zusammenhängende verwandelt.

Die durch einen Querschnitt entstandene Fläche kann durch einen neuen Querschnitt weiter zerlegt werden, und bei n maliger Wiederholung dieser Operation wird eine (n+1) fach zusammenhängende Fläche durch n nach einander gemachte sie nicht zerstückelnde Querschnitte in eine einfach zusammenhängende verwandelt.

Um diese Betrachtungen auf eine Fläche ohne Begrenzung, eine geschlossene Fläche, anwendbar zu machen, muss diese durch Ausscheidung eines beliebigen Punktes in eine begrenzte verwandelt werden, so dass die erste Zerlegung durch diesen Punkt und einen in ihm anfangenden und endenden Querschnitt, also durch eine geschlossene Curve, geschieht. Die Oberfläche eines Ringes z. B., welche eine dreifach zusammenhängende ist, wird durch eine geschlossene Curve und einen Querschnitt in eine einfach zusammenhängende verwandelt.

Auf das im Eingange betrachtete Integral des vollständigen Differentials X dx + Y dy wird nun die eben behandelte Zerschneidung der mehrfach zusammenhängenden Flächen in einfach zusammenhängende, wie folgt, angewandt. Ist die die (x, y)-Ebene bedeckende Fläche T, in welcher X, Y allenthalben stetige der Gleichung

$$\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x} = 0$$

genügende Functionen des Orts sind, n fach zusammenhängend, so wird sie durch n Querschnitte in eine einfach zusammenhängende T' zerschnitten. Die Integration von X dx + Y dy von einem festen Anfangspunkte aus durch Curven im Innern von T' liefert dann einen nur von der Lage des Endpunkts abhängigen Werth, welcher als Function von dessen Coordinaten betrachtet werden kann. Substituirt man für die Coordinaten die Grössen x, y, so erhält man eine Function

 $z = \int (X \, dx + Y \, dy)$

von x,y, welche für jeden Punkt von T' völlig bestimmt ist und sich innerhalb T' allenthalben stetig, beim Ueberschreiten eines Querschnitts aber allgemein zu reden um eine endliche von einem Knotenpunkte des Schnittnetzes zum andern constante Grösse ändert. Die Aenderungen beim Ueberschreiten der Querschnitte sind von einer der Zahl der Querschnitte gleichen Anzahl von einander unabhängiger Grössen abhängig; denn wenn man das Schnittsystem rückwärts,—die späteren Theile zuerst—, durchläuft, so ist diese Aenderung überall bestimmt, wenn ihr Werth beim Beginn jedes Querschnitts gegeben wird; letztere Werthe aber sind von einander unabhängig.

Göttingen, 1857.

Um das, was oben (S. 5) unter einer n fach zusammenhängenden Fläche verstanden wird, anschaulicher zu machen, folgen in den Zeichnungen auf nachstehenden Seiten Beispiele von einfach, zweifach und dreifach zusammenhängenden Flächen.

Einfach zusammenhängende Fläche.

Sie wird durch jeden Querschnitt in getrennte Stücke zerfällt, und es bildet in ihr jede geschlossene Curve die ganze Begrenzung eines Theils der Fläche.

Zweifach zusammenhängende Fläche.

Sie wird durch jeden sie nicht zerstückelnden Querschnitt q in eine einfach zusammenhängende zerschnitten. Mit Zuziehung der Curve a kann in ihr jede geschlossene Curve die ganze Begrenzung eines Theils der Fläche bilden.

Dreifach zusammenhängende Fläche.

In dieser Fläche kann jede geschlossene Curve mit Zuziehung der Curven a_1 und a_2 die ganze Begrenzung eines Theils der Fläche bilden. Sie zerfällt durch jeden sie nicht zerstückelnden Querschnitt in eine zweifach zusammenhängende und durch zwei solche Querschnitte, q_1 und q_2 , in eine einfach zusammenhängende.

In dem Theile α β γ δ der Ebene ist die Fläche doppelt. Der a_1 enthaltende Arm der Fläche ist als unter dem andern fortgehend betrachtet und daher durch punktirte Linien angedeutet.

3. Bestimmung einer Function einer veränderlichen complexen Grösse durch Grenz- und Unstetigkeitsbedingungen.

Wenn in einer Ebene, in welcher die rechtwinkligen Coordinaten eines Punkts x, y sind, der Werth einer Function von x+yi in einer endlichen Linie gegeben ist, so kann diese von dort aus nur auf eine Weise stetig fortgesetzt werden und ist also dadurch völlig bestimmt (siehe oben S. 1). Sie kann aber auch in dieser Linie nicht willkürlich angenommen werden, wenn sie von ihr aus einer stetigen Fortsetzung in die anstossenden Flächentheile nach beiden Seiten hin fähig sein soll, da sie durch ihren Verlauf in einem noch so kleinen endlichen Theile dieser Linie schon für den übrigen Theil bestimmt ist. Bei dieser Bestimmungsweise einer Function sind also die zu ihrer Bestimmung dienenden Bedingungen nicht von einander unabhängig.

Als Grundlage für die Untersuchung einer Transcendenten ist es vor allen Dingen nöthig, ein System zu ihrer Bestimmung hinreichender von einander unabhängiger Bedingungen aufzustellen. Hierzu kann in vielen Fällen, namentlich bei den Integralen algebraischer Functionen und ihren inversen Functionen, ein Princip dienen, welches Dirichlet zur Lösung dieser Aufgabe für eine der Laplace'schen partiellen Differentialgleichung genügende Function von drei Veränderlichen,—wohl durch einen ähnlichen Gedanken von Gauss veranlasst—in seinen Vorlesungen über die dem umgekehrten Quadrat der Entfernung proportional wirkenden Kräfte seit einer Reihe von Jahren zu geben pflegt. Für diese Anwendung auf die Theorie von Transcendenten ist jedoch gerade ein Fall besonders wichtig, auf welchen dies Princip in seiner dortigen einfachsten Form nicht anwendbar ist, und welcher dort als von ganz untergeordneter Bedeutung unberücksichtigt bleiben kann. Dieser Fall ist der, wenn die Function an gewissen Stellen des Gebiets, wo sie zu bestimmen ist, vorgeschriebene Unstetigkeiten annehmen soll; was so zu verstehen ist, dass sie an jeder solchen Stelle der Bedingung unterworfen ist, unstetig zu werden, wie eine dort gegebene unstetige Function, oder sich nur um eine dort stetige Function von ihr zu unterscheiden. Ich werde hier das Prinzip in der für die beabsichtigte Anwendung erforderlichen Form darstellen und erlaube mir dabei in Betreff einiger Nebenuntersuchungen auf die in meiner Doctordissertation (Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Göttingen 1851) gegebene Darstellung desselben zu verweisen.

Man nehme an, dass eine die (x,y)-Ebene einfach oder mehrfach bedeckende beliebig begrenzte Fläche T und in derselben zwei für jeden ihrer Punkte eindeuting bestimmte reelle Functionen von x, y, die Functionen α

und β gegeben seien, und bezeichne das durch die Fläche ausgedehnte Integral

$$\int \left(\left(\frac{\partial \alpha}{\partial x} - \frac{\partial \beta}{\partial y} \right)^2 + \left(\frac{\partial \alpha}{\partial y} + \frac{\partial \beta}{\partial x} \right)^2 \right) dT$$

durch $\Omega(\alpha)$, wobei die Functionen α und β beliebige Unstetigkeiten besitzen können, wenn nur das Integral dadurch nicht unendlich wird. Es bleibt dann auch $\Omega(\alpha-\lambda)$ endlich, wenn λ allenthalben stetig ist und endliche Differentialquotienten hat. Wird diese stetige Function λ der Bedingung unterworfen, nur in einem unendlich kleinen Theile der Fläche T von einer unstetigen Function γ verschieden zu sein, so wird $\Omega(\alpha-\lambda)$ unendlich gross, wenn γ längs einer Linie unstetig ist oder in einem Punkte so unstetig ist, dass

$$\int \left(\left(\frac{\partial \gamma}{\partial x} \right)^2 + \left(\frac{\partial \gamma}{\partial y} \right)^2 \right) dT$$

unendlich wird (Meine Inaug. Diss. Art. 17); es bleibt aber $\Omega(\alpha - \lambda)$ endlich, wenn γ nur in einzelnen Punkten und nur so unstetig ist, dass

$$\int \left(\left(\frac{\partial \gamma}{\partial x} \right)^2 + \left(\frac{\partial \gamma}{\partial y} \right)^2 \right) dT$$

durch die Fläche T erstreckt endlich bleibt, wie z. B. wenn γ in der Umgebung eines Punktes im Abstande r von demselben = $(-\log r)^{\varepsilon}$ und $0 < \varepsilon < \frac{1}{2}$ ist. Zur Abkürzung mögen hier die Functionen, in welche λ unbeschadet der Endlichkeit von $\Omega(\alpha - \lambda)$ übergehen kann, unstetig von der ersten Art, die Functionen, für welche dies nicht möglich ist, unstetig von der zweiten Art genannt werden. Denkt man sich nun in $\Omega(\alpha - \mu)$ für μ alle stetigen oder von der ersten Art unstetigen Functionen gesetzt, welche an der Grenze verschwinden, so erhält dies Integral immer einen endlichen, aber seiner Natur nach nie einen negativen Werth, und es muss daher wenigstens einmal, für $\alpha - \mu = u$, ein Minimumwerth eintreten, so dass Ω für jede Function $\alpha - \mu$, die unendlich wenig von u verschieden ist, grösser als $\Omega(u)$ wird.

Bezeichnet daher σ eine beliebige stetige oder von erster Art unstetige Function des Orts in der Fläche T, die an der Grenze allenthalben gleich 0 ist, und h eine von x, y unabhängige Grösse, so muss $\Omega(u + h\sigma)$ sowohl für ein positives, als für ein negatives hinreichend kleines h grösser als $\Omega(u)$ werden, und daher in der Entwicklung dieses Ausdrucks nach Potenzen von h der Coefficient von h verschwinden. Ist dieser 0, so ist

$$\Omega(u + h\sigma) = \Omega(u) + h^2 \int \left(\left(\frac{\partial \sigma}{\partial x} \right)^2 + \left(\frac{\partial \sigma}{\partial y} \right)^2 \right) dT$$

und folglich Ω immer ein Minimum. Das Minimum tritt nur für eine einzige Function u ein; denn fände auch ein Minimum für $u + \sigma$ statt, so könnte $\Omega(u + \sigma)$ nicht $> \Omega(u)$ sein, weil sonst

$$\Omega(u+h\sigma) < \Omega(u+\sigma)$$

für h < 1 würde; also könnte $\Omega(u + \sigma)$ nicht kleiner als die anliegenden Werthe sein. Ist aber $\Omega(u + \sigma) = \Omega(u)$, so muss σ constant, also da es in der Begrenzung 0 ist, überall 0 sein. Es wird daher nur für eine einzige Function u das Integral Ω ein Minimum und die Variation erster Ordnung oder das h proportionale Glied in $\Omega(u + h\sigma)$,

$$2h \int dT \left(\left(\frac{\partial u}{\partial x} - \frac{\partial \beta}{\partial y} \right) \frac{\partial \sigma}{\partial x} + \left(\frac{\partial u}{\partial y} + \frac{\partial \beta}{\partial x} \right) \frac{\partial \sigma}{\partial y} \right) = 0.$$

Aus dieser Gleichung folgt, dass das Integral

$$\int \left(\left(\frac{\partial \beta}{\partial x} + \frac{\partial u}{\partial y} \right) dx + \left(\frac{\partial \beta}{\partial y} - \frac{\partial u}{\partial x} \right) dy \right)$$

durch die ganze Begrenzung eines Theils der Fläche T erstreckt stets = 0 ist. Zerlegt man nun (nach der vorhergehenden Abhandlung) die Fläche T, wenn sie eine mehrfach zusammenhängende ist, in eine einfach zusammenhängende T', so liefert die Integration durch das Innere von T' von einem festen Anfangspunkte bis zum Punkte (x, y) eine Function von x, y,

$$\nu = \int \left(\left(\frac{\partial \beta}{\partial x} + \frac{\partial u}{\partial y} \right) dx + \left(\frac{\partial \beta}{\partial y} - \frac{\partial u}{\partial x} \right) dy \right) + \text{const.},$$

welche in T' überall stetig oder unstetig von der ersten Art ist und sich beim Ueberschreiten der Querschnitte um endliche von einem Knotenpunkte des Schnittnetzes zum andern constante Grössen ändert. Es genügt dann $v=\beta-\nu$ den Gleichungen

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x},$$

und folglich ist u + vi eine Lösung der Differentialgleichung

$$\frac{\partial (u+vi)}{\partial y} - i \frac{\partial (u+vi)}{\partial x} = 0$$

oder eine Function von x + yi.

Man erhält auf diesem Wege den in der erwähnten Abhandlung Art. 18 ausgesprochenen Satz:

Ist in einer zusammenhängenden durch Querschnitte in eine einfach zusammenhängende T' zerlegten Fläche T eine complexe Function $\alpha + \beta i$ von x und y gegeben, für welche

$$\int \left(\left(\frac{\partial \alpha}{\partial x} - \frac{\partial \beta}{\partial y} \right)^2 + \left(\frac{\partial \alpha}{\partial y} + \frac{\partial \beta}{\partial x} \right)^2 \right) dT$$

durch die ganze Fläche ausgedehnt einen endlichen Werth hat, so kann sie immer und nur auf Eine Art in eine Function von x+yi verwandelt werden durch Subtraction einer Function $\mu+\nu i$ von x,y, welche folgenden Bedingungen genügt:

- 1) μ ist am Rande = 0 oder doch nur in einzelnen Punkten davon verschieden, ν in Einem Punkte beliebig gegeben.
- 2) Die Aenderungen von μ sind in T, von ν in T' nur in einzelnen Punkten und nur so unstetig, dass

$$\int \left(\left(\frac{\partial \mu}{\partial x} \right)^2 + \left(\frac{\partial \mu}{\partial y} \right)^2 \right) dT$$

und

$$\int \left(\left(\frac{\partial \nu}{\partial x} \right)^2 + \left(\frac{\partial \nu}{\partial y} \right)^2 \right) dT,$$

durch die ganze Fläche erstreckt, endlich bleiben, und letztere längs der Querschnitte beiderseits gleich.

Wenn die Function $\alpha + \beta i$, wo ihre Differential quotienten unendlich werden, unstetig wird, wie eine gegebene dort unstetige Function von x+yi, und keine durch eine Abänderung ihres Werthes in einem einzelnen Punkte hebbare Unstetigkeit besitzt, so bleibt $\Omega(\alpha)$ endlich, und es wird $\mu + \nu i$ in T' allenthalben stetig. Denn da eine Function von x+yi gewisse Unstetigkeiten, wie z. B. Unstetigkeiten erster Art, gar nicht annehmen kann (Meine Diss. Art. 12), so muss die Differenz zweier solcher Functionen stetig sein, sobald sie nicht von der zweiten Art unstetig ist.

Nach den eben bewiesenen Satze lässt sich daher eine Function von x+yi so bestimmen, dass sie im Innern von T, von der Unstetigkeit des imaginären Theils in den Querschnitten abgesehen, gegebene Unstetigkeiten annimmt, und ihr reeller Theil and der Grenze einen dort allenthalben beliebig gegebenen Werth erhält; wenn nur für jeden Punkt, wo ihre Differentialquotienten unendlich werden sollen, die vorgeschriebene Unstetigkeit die einer gegebenen dort unstetigen Function von x+yi ist. Die Bedingung an der Grenze kann man, wie leicht zu sehen, ohne eine wesentliche Aenderung der gemachten Schlüsse durch manche andere ersetzen.

Göttingen, 1857.

4. Theorie der Abel'schen Functionen.

In der folgenden Abhandlung habe ich die Abel'schen Functionen nach einer Methode behandelt, deren Principien in meiner Inauguraldissertation³ aufgestellt und in einer etwas veränderten Form in den drei vorhergehenden Aufsätzen dargestellt worden sind. Zur Erleichterung der Uebersicht schicke ich eine kurze Inhaltsangabe vorauf.

Die erster Abtheilung enthält die Theorie eines Systems von gleichverzweigten algebraischen Functionen und ihren Integralen, soweit für dieselbe nicht die Betrachtung von ϑ -Reihen massgebend ist, und handelt im §. 1–5 von der Bestimmung dieser Functionen durch ihre Verzweigungsart und ihre Unstetigkeiten, im §. 6–10 von den rationalen Ausdrücken derselben in zwei durch eine algebraische Gleichung verknüpfte veränderliche Grössen; und im §. 11–13 von der Transformation dieser Ausdrücke durch rationale Substitutionen. Der bei dieser Untersuchung sich darbietende Begriff eine Klasse von algebraischen Gleichungen, welche sich durch rationale Substitutionen in einander transformiren lassen, dürfte auch für andere Untersuchungen wichtig und die Transformation einer solchen Gleichung in Gleichungen niedrigsten Grades ihrer Klasse (§. 13) auch bei anderen Gelegenheiten von Nutzen sein. Diese Abtheilung behandelt endlich im §. 14–16 zur Vorbereitung der folgenden die Anwendung des Abel'schen Additionstheorems für ein beliebiges System allenthalben endlicher Integrale von gleichverzweigten algebraischen Functionen zur Integration eines Systems von Differentialgleichungen.

In der zweiter Abtheilung werden für ein beliebiges System von immer endlichen Integralen gleichverzweigter, algebraischer, $\overline{2p+1}$ fach zusammenhängender Functionen die Jacobi'schen Umkehrungsfunctionen von p veränderlichen Grössen durch p fach unendliche ϑ -Reihen ausgedrückt, d. h. durch Reihen von der Form

$$\vartheta(v_1, v_2, \dots, v_p) = \left(\sum_{-\infty}^{\infty}\right)^p e^{\left(\sum_{1}^{p}\right)^2 a_{\mu, \mu'} m_{\mu} m'_{\mu} + 2\sum_{1}^{p} v_{\mu} m_{\mu}},$$

worin die Summationen im Exponenten sich auf μ und μ' , die äusseren Summationen auf m_1, m_2, \ldots, m_p beziehen. Es ergiebt sich, dass zur allgemeinen Lösung dieser Aufgabe eine—wenn p>3 specielle—Gattung von ϑ -Reihen ausreicht, in denen zwischen den $\frac{p(p+1)}{2}$ Grössen

$$a\frac{(p-2)(p-3)}{1\cdot 2}$$

 $^{^3{\}rm Grundlagen}$ für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Göttingen 1851.

Relationen stattfinden, so dass nur 3p-3 willkürlich bleiben. Dieser Theil der Abhandlung bildet zugleich eine Theorie dieser speciellen Gattung von ϑ -Functionen; die allgemeinen ϑ -Functionen bleiben hier ausgeschlossen, lassen sich jedoch nach einer ganz ähnlichen Methode behandeln.

Das hier erledigte Jacobi'sche Umkehrungsproblem ist für die hyperelliptischen Integrale schon auf mehreren Wegen durch die beharrlichen mit so schönem Erfolge gekrönten Arbeiten von Weierstrass gelöst worden, von denen eine Uebersicht in 47. Bande d. J. (S. 289) mitgetheilt worden ist. Es ist jedoch bis jetzt nur von dem Theile dieser Arbeiten, welcher in den §§. 1 und 2 und der ersten die elliptischen Functionen betreffenden Hälfte des § 3 der angeführten Abhandlung skizzirt wird, die wirkliche Ausführung veröffentlicht (Bd. 52, S. 285 d. J.); in wie weit zwischen den späteren Theilen dieser Arbeiten und meinen hier dargestellten eine Uebereinstimmung nicht bloss in Resultaten, sondern auch in den zu ihnen führenden Methoden stattfindet, wird grossentheils erst die versprochene ausführliche Darstellung derselben ergeben können.

Die gegenwärtige Abhandlung bildet mit Ausnahme der beiden letzten §§. 26 und 27, deren Gegenstand damals nur kurz angedeutet werden konnte, einen Auszug aus einem Theile meiner von Michaelis 1855 bis Michaelis 1856 zu Göttingen gehaltenen Vorlesungen. Was die Auffindung der einzelnen Resultate betrifft, so wurde ich auf das im §. 1–5, 9 und 12 Mitgetheilte und die dazu nöthigen vorbereitenden Sätze, welche später Behufs der Vorlesungen so, wie es in dieser Abhandlung geschehen ist, weiter ausgeführt wurden, im Herbste 1851 und zu Anfang 1852 durch Untersuchungen über die conforme Abbildung mehrfach zusammenhängender Flächen geführt, ward aber dann durch einen andern Gegenstand von dieser Untersuchung abgezogen. Erst um Ostern 1855 wurde sie wieder aufgenommen und in den Oster- und Michaelisferien jenes Jahres bis zu §. 21 incl. fortgeführt; das Uebrige wurde bis Michaelis 1856 hinzugefügt. Einzelne ergänzende Zusätze sind an manchen Stellen während der Ausarbeitung hinzugekommen.

Erste Abtheilung.

1.

Ist s die Wurzel einer irreductibeln Gleichung n ten Grades, deren Coefficienten ganze Functionen m ten Grades von z sind, so entsprechen jedem Werthe von z n Werthe von s, die sich mit z überall, wo sie nicht unendlich werden, stetig ändern. Stellt man daher (nach S. 3) die Verzweigungsart dieser Function durch eine in der z-Ebene ausgebreitete unbegrenzte Fläche T dar, so ist diese in jedem Theile der Ebene n fach, und s ist dann eine einwerthige Function des Orts in dieser Fläche. Eine unbegrenzte Fläche

kann entweder als eine Fläche mit unendlich weit entfernter Begrenzung oder als eine geschlossene angesehen werden, und Letzteres soll bei der Fläche T geschehen, so dass dem Werthe $z=\infty$ in jedem der n Blätter der Fläche ein Punkt entspricht, wenn nicht etwa für $z=\infty$ eine Verzweigung stattfindet.

Jede rationale Function von s und z ist offenbar ebenfalls eine einwerthige Function des Orts in der Fläche T und besitzt also dieselbe Verzweigungsart wie die Function s, und es wird sich unten ergeben, dass auch das Umgekehrte gilt.

Durch Integration einer solchen Function erhält man eine Function, deren verschiedene Fortsetzungen für denselben Theil der Fläche T sich nur um Constanten unterscheiden, da ihre Derivirte für denselben Punkt dieser Fläche immer denselben Werth wieder annimmt.

Ein solches System von gleichverzweigten algebraischen Functionen und Integralen dieser Functionen bildet zunächst den Gegenstand unserer Betrachtung; statt aber von diesen Ausdrücken dieser Functionen auszugehen, werden wir sie mit Anwendung des *Dirichlet*'schen Princips (S. 13) durch ihre Unstetigkeiten definiren.

2.

Zur Vereinfachung des Folgenden heisse eine Function für einen Punkt

der Fläche T unendlich klein von der ersten Ordnung, wenn ihr Logarithmus bei einem positiven Umlaufe um ein diesen Punkt umgebendes Flächenstück, in welchem sie endlich und von Null verschiedenen bleibt, um $2\pi i$ wächst. Es ist demnach für einen Punkt, um den die Fläche T sich μ mal windet, wenn dort z einen endlichen Werth a hat, $(z-a)^{\frac{1}{\mu}}$, also $(dz)^{\frac{1}{\mu}}$, wenn aber $z=\infty$, $\left(\frac{1}{z}\right)^{\frac{1}{\mu}}$ unendlich klein von der ersten Ordnung. Der Fall, wo eine Function in einem Punkte der Fläche T unendlich klein oder unendlich gross von der ν ten Ordnung wird, kann so betrachtet werden, als wenn die Function in ν dort zusammenfallenden (oder unendlich nahen) Punkten unendlich klein oder unendlich gross von der ersten Ordnung wird, wie in der Folge bisweilen geschehen soll.

Die Art und Weise, wie jene hier zu betrachtenden Functionen unstetig werden, kann so ausgedrückt werden. Wird eine von ihnen in einem Punkte der Fläche T unendlich, so kann sie, wenn r eine beliebige Function bezeichnet, die in diesem Punkte unendlich klein von der ersten Ordnung wird, stets durch Subtraction eines endlichen Ausdrucks von der Form

$$A \log r + Br^{-1} + Cr^{-2} + \cdots$$

in eine dort stetige verwandelt werden, wie sich aus den bekannten—nach Cauchy oder durch die Fourier'sche Reihe zu beweisenden—Sätzen über die

Man denke sich jetzt eine in der z-Ebene allenthalben n fach ausgebreitete unbegrenzte und nach dem Obigen als geschlossen zu betrachtende zusammenhängende Fläche T gegeben und diese in eine einfach zusammenhängenden Fläche aus einem Stücke besteht, eine geschlossene Fläche aber durch eine ungerade Anzahl von Schnitten eine gerade Zahl von Begrenzungsstücken, durch eine gerade eine ungerade erhält, so ist zu dieser Zerschneidung eine gerade Anzahl von Schnitten erforderlich. Die Anzahl dieser Querschnitte sei = 2p. Die Zerschneidung werde zur Vereinfachung des Folgenden so ausgeführt, dass jeder spätere Schnitt von einem Punkte eines früheren bis zu dem anstossenden Punkte auf der anderen Seite desselben geht: wenn sich dann eine Grösse längs der ganzen Begrenzung von T' stetig ändert und im ganzen Schnittsysteme zu beiden Seiten gleiche Aenderungen erleidet, so ist die Differenz der beiden Werthe, die sie in demselben Punkte des Schnittnetzes annimmt, in allen Theilen eines Querschnitts derselben Constanten gleich.

Man setze nun z = x + yi und nehme in T eine Function $\alpha + \beta i$ von x, y folgendermassen an:

In der Umgebung der Punkte $\varepsilon_1, \varepsilon_2, \ldots$ bestimmte man sie gleich gegebenen in diesen Punkten unendlich werdenden Functionen von x+yi, und zwar um ε_{ν} , indem man eine beliebige Function von z, die in ε_{ν} unendlich klein von der ersten Ordnung wird, durch r_{ν} bezeichnet, gleich einem endlichen Ausdrucke von der Form

$$A_{\nu} \log r_{\nu} + B_{\nu} r_{\nu}^{-1} + C_{\nu} r_{\nu}^{-2} + \dots = \varphi_{\nu}(r_{\nu}),$$

worin $A_{\nu}, B_{\nu}, C_{\nu}, \ldots$ willkürliche Constanten sind. Man ziehe ferner nach einem beliebigen Punkte von allen Punkten ε , für welche die Grösse A von Null verschieden ist, einander nicht schneidende Linien durch das Innere von T', von ε_{ν} die Linie l_{ν} . Man nehme endlich die Function in der ganzen noch übrigen Fläche T so an, dass sie ausser den Linien l und den Querschnitten überall stetig, auf der positiven (linken) Seite der Linie l_{ν} um $-2\pi i A_{\nu}$ und auf der positiven Seite des ν ten Querschnitts um die gegebene Constante $h^{(\nu)}$ grösser ist, als auf der andern, und dass das Integral

$$\int \left(\left(\frac{\partial \alpha}{\partial x} - \frac{\partial \beta}{\partial y} \right)^2 + \left(\frac{\partial \alpha}{\partial y} + \frac{\partial \beta}{\partial x} \right)^2 \right) dT$$

durch die Fläche T ausgedehnt einen endlichen Werth erhält. Dies ist wie leicht zu sehen immer möglich, wenn die Summe sämmtlicher Grössen A

gleich Null ist, aber auch nur unter dieser Bedingung, weil nur dann die Function nach einem Umlaufe um das System der Linien l den vorigen Werth wieder annehmen kann.

Die Constanten $h^{(1)}, h^{(2)}, \ldots, h^{(2p)}$, um welche eine solche Function auf der positiven Seite der Querschnitte grösser ist, als auf der andern, sollen die $Periodicit \ddot{a}tsmoduln$ dieser Function genannt werden.

Nach dem Dirichlet'schen Princip kann nun die Function $\alpha + \beta i$ in eine Function ω von x + yi verwandelt werden durch Subtraction einer ähnlichen in T' allenthalben stetigen Function von x, y mit rein imaginären Periodicitätsmoduln, und diese ist bis auf eine additive Constante völlig bestimmt. Die Function ω stimmt dann mit $\alpha + \beta i$ in den Unstetigkeiten im Innern von T' und in den reellen Theilen der Periodicitätsmoduln überein. Für ω können daher die Functionen φ_{ν} und die reellen Theile ihrer Periodicitätsmoduln willkürlich gegeben werden. Durch diese Bedingungen ist sie bis auf eine additive Constante völlig bestimmt, folglich auch der imaginäre Theil ihrer Periodicitätsmoduln.

Es wird sich zeigen, dass diese Function ω sämmtliche im §. 1 bezeichneten Functionen als specielle Fälle unter sich enthält.

4.

Allenthalben endliche Functionen ω . (Integrale erster Gattung.)

Wir wollen jetzt die einfachsten von ihnen betrachteten und zwar zuerst diejenigen, die immer endlich bleiben und also im Innern von T' allenthalben stetig sind. Sind w_1, w_2, \ldots, w_p solche Functionen, so ist auch

$$w = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p + \text{const.},$$

worin $\alpha_1, \alpha_2, \ldots, \alpha_p$ beliebige Constanten sind, eine solche Function. Es seien die Periodicitätsmoduln der Functionen w_1, w_2, \ldots, w_p für den ν ten Querschnitt $k_1^{(\nu)}, k_2^{(\nu)}, \ldots, k_p^{(\nu)}$. Der Periodicitätsmodul von w für diesen Querschnitt ist dann $\alpha_1 k_1^{(\nu)} + \alpha_2 k_2^{(\nu)} + \cdots + \alpha_p k_p^{(\nu)} = k^{(\nu)}$; und setzt man die Grössen α in die Form $\gamma + \delta i$, so sind die reellen Theile der 2p Grössen $k^{(1)}, k^{(2)}, \ldots, k^{(2p)}$ lineare Functionen der Grössen $\gamma_1, \gamma_2, \ldots, \gamma_p, \delta_1, \delta_2, \ldots, \delta_p$. Wenn nun zwischen den Grössen w_1, w_2, \ldots, w_p keine lineare Gleichung mit constanten Coefficienten stattfindet, so kann die Determinante dieser linearen Ausdrücke nicht verschwinden; denn es liessen sich sonst die Verhältnisse der Grössen α so bestimmen, dass die Periodicitätsmoduln des reellen Theils von w sämmtlich 0 würden, folglich der reelle Theil von w und also auch w selbst nach dem v Grössen v und v so bestimmt werden, dass die reellen Theile der Periodicitätsmoduln gegebene Werthe erhalten; und folglich kann

w jede immer endlich bleibende Function ω darstellen, wenn w_1, w_2, \ldots, w_p keiner linearen Gleichung mit constanten Coefficienten genügen. Diese Functionen lassen sich aber immer dieser Bedingung gemäss wählen; denn so lange $\mu < p$, finden zwischen den Periodicitätsmoduln des reellen Theils von

$$\alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_u w_u + \text{const.},$$

lineare Bedingungsgleichungen statt; es ist daher $w_{\mu+1}$ nicht in dieser Form enthalten, wenn man, was nach dem Obigen immer möglich ist, die Periodicitätsmoduln des reellen Theils dieser Function so bestimmt, dass sie diesen Bedingungsgleichungen nicht genügen.

Functionen ω , die für einen Punkt der Fläche T unendlich von der ersten Ordnung werden. (Integrale zweiter Gattung.)

Es sei ω nur für einen Punkt ε der Fläche T unendlich, und für diesen seien alle Coefficienten in φ ausser B gleich 0. Eine solche Function ist dann bis auf eine additive Constante bestimmt durch die Grösse B und die reellen Theile ihrer Periodicitätsmoduln. Bezeichnet $t^0(\varepsilon)$ irgend eine solche Function, so können in dem Ausdrucke

$$t(\varepsilon) = \beta t^0(\varepsilon) + \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p + \text{const.}$$

die Constanten $\beta, \alpha_1, \alpha_2, \dots, \alpha_p$ immer so bestimmt werden, dass für ihn die Grösse B und die reellen Theile der Periodicitätsmoduln beliebig gegebene Werthe erhalten. Dieser Ausdruck stellt also jede solche Function dar.

Functionen ω , welche für zwei Punkte der Fläche T logarithmisch unendlich werden. (Integrale dritte Gattung.)

Betrachten wir drittens den Fall, wo die Function ω nur logarithmisch unendlich wird, so muss dies, da die Summe der Grössen A gleich 0 sein muss, wenigstens für zwei Punkte der Fläche T, ε_1 und ε_2 , geschehen und $A_2 = -A_1$ sein. Ist von den Functionen, bei denen dies statt hat und die beiden letztern Grössen = 1 sind, irgend eine $\varpi^0(\varepsilon_1, \varepsilon_2)$, so sind nach ähnliche Schlüssen, wie oben, alle übrigen in der Form

$$\varpi(\varepsilon_1, \varepsilon_2) = \varpi^0(\varepsilon_1, \varepsilon_2) + \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p + \text{const.}$$

enthalten.

Für die folgenden Bemerkungen nehmen wir zur Vereinfachung an, dass die Punkte ε keine Verzweigungspunkte sind und nicht im Unendlichen liegen. Man kann dann $r_{\nu} = z - z_{\nu}$ setzen, indem man durch z_{ν} den Werth von z in ε_{ν} bezeichnet. Wenn man dann $\varpi(\varepsilon_1, \varepsilon_2)$ so nach z_1 differentiirt, dass die

reellen Theile der Periodicitätsmoduln (oder auch p von den Periodicitätsmoduln) und der Werth von $\varpi(\varepsilon_1, \varepsilon_2)$ für einen beliebigen Punkt der Fläche T constant bleiben, so erhält man eine Function $t(\varepsilon_1)$, die in ε_1 unstetig wie

$$\frac{1}{z-z_1}$$
 wird. Umgekehrt ist, wenn $t(\varepsilon_1)$ eine solche Function ist, $\int_{z_0}^{z_3} t(\varepsilon_1) \, \partial z_1$,

durch eine beliebige in T von ε_2 nach ε_3 führende Linie genommen, gleich einer Function $\varpi(\varepsilon_2, \varepsilon_3)$. Auf ähnliche Art erhält man durch n successive Differentiationen eines solchen $t(\varepsilon_1)$ nach z_1 Functionen ω , welche im Punkte ε_1 wie $n!(z-z_1)^{-n-1}$ unstetig werden und übrigens endlich bleiben.

Für die ausgeschlossenen Lagen der Punkte ε bedürfen diese Sätze einer leichten Modification.

Offenbar kann nun ein mit constanten Coefficienten aus Functionen w, aus Functionen ϖ und ihren Derivirten nach den Unstetigkeitswerthen gebildete linearer Ausdruck so bestimmt werden, dass er im Innern von T' beliebig gegebene Unstetigkeiten von der Form, wie ω , erhält, und die reellen Theile seiner Periodicitätsmoduln beliebig gegebene Werthe annehmen. Durch einen solchen Ausdruck kann also jede gegebene Function ω dargestellt werden.

5.

Der allgemeine Ausdruck einer Function ω , die für m Punkte der Fläche $T, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$ unendlich gross von der ersten Ordnung wird, ist nach dem Obigen

$$s = \beta_1 t_1 + \beta_2 t_2 + \dots + \beta_m t_m + \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p + \text{const.},$$

worin t_{ν} eine beliebige Function $t(\varepsilon_{\nu})$ und die Grössen α und β Constanten sind. Wenn von den m Punkten ε eine Anzahl ϱ in denselben Punkt η der Fläche T zusammenfallen, so sind die ϱ diesen Punkten zugehörigen Functionen t zu ersetzen durch eine Function $t(\eta)$ und deren $\varrho - 1$ erste Derivirte nach ihrem Unstetigkeitswerthe (§. 2).

Die 2p Periodicitätsmoduln dieser Function s sind lineare homogene Functionen der p+m Grössen α und β . Wenn $m \geq p+1$, lassen sich also 2p von den Grössen α und β als lineare homogene Functionen der übrigen so bestimmen, dass die Periodicitätsmoduln sämmtlich 0 werden. Die Function enthält dann noch m-p+1 willkürliche Constanten, von denen sie eine lineare homogene Function ist, und kann als ein linearer Ausdruck von m-p Functionen betrachtet werden, deren jede nur für p+1 Werthe unendlich von der ersten Ordnung wird.

Wenn m=p+1 ist, so sind die Verhältnisse der 2p+1 Grössen α und β bei jeder Lage der p+1 Punkte ε völlig bestimmt. Es können jedoch für besondere Lagen dieser Punkte einige der Grössen β gleich 0 werden. Die

Anzahl dieser Grössen sei $= m - \mu$, so dass die Function nur für μ Punkte unendlich von der ersten Ordnung wird. Diese μ Punkte müssen dann eine solche Lage haben, dass von den 2p Bedingungsgleichungen zwischen den $p + \mu$ übrigen Grössen β und α $p + 1 - \mu$ eine identische Folge der übrigen sind, und es können daher nur $2\mu - p - 1$ von ihnen beliebig gewählt werden. Ausserdem enthält die Function noch 2 willkürliche Constanten.

Es sei nun s so zu bestimmen, dass μ möglichst klein wird. Wenn s μ mal unendlich von der ersten Ordnung wird, so ist dies auch mit jeder rationalen Function ersten Grades von s der Fall; man kann daher für die Lösung dieser Aufgabe einen der μ Punkte beliebig wählen. Die Lage der übrigen muss dann so bestimmt werden, dass $p+1-\mu$ von den Bedingungsgleichungen zwischen den Grössen α und β eine identische Folge der übrigen sind; es muss also, wenn die Verzweigungswerthe der Fläche T nicht besondern Bedingungsgleichungen genügen, $p+1-\mu \leq \mu-1$ oder $\mu \geq \frac{1}{2}p+1$ sein.

Die Anzahl der in einer Function s, die nur für m Punkte der Fläche T unendlich von der ersten Ordnung wird und übrigens stetig bleibt, enthaltenen willkürlichen Constanten ist in allen Fällen = 2m - p + 1.

Eine solche Function ist die Wurzel einer Gleichung n^{ten} Grades, deren Coefficienten ganze Functionen m^{ten} Grades von z sind.

Sind s_1, s_2, \ldots, s_n die n Werthe der Function s für dasselbe z, und bezeichnet σ eine beliebige Grösse, so ist $(\sigma - s_1)(\sigma - s_2) \cdots (\sigma - s_n)$ eine einwerthige Function von z, die nur für einen Punkt der z-Ebene, der mit einem Punkte ε zusammenfällt, unendlich wird und unendlich von einer so hohen Ordnung, als Punkte ε auf ihn fallen. In der That wird für jeden auf ihn fallenden Punkt ε , der kein Verzweigungspunkt ist, nur ein Factor dieses Products von einer um 1 höheren Ordnung unendlich, für einen Punkt ε , um den die Fläche T sich μ mal windet, aber μ Factoren von einer um $\frac{1}{\pi}$ höheren Ordnung. Bezeichnet man nun die Werthe von z in den Punkten ε , wo znicht unendlich ist, durch $\zeta_1, \zeta_2, \ldots, \zeta_{\nu}$ und $(z - \zeta_1)(z - \zeta_2) \cdots (z - \zeta_{\nu})$ durch a_0 , so ist $a_0(\sigma - s_1)(\sigma - s_2) \cdots (\sigma - s_n)$ eine einwerthige Function von z, die für alle endlichen Werthe von z endlich ist, und für $z=\infty$ unendlich von der m^{ten} Ordnung wird, also eine ganze Function m^{ten} Grades von z. Sie ist zugleich eine ganze Function n^{ten} Grades von σ , dir für $\sigma = s$ verschwindet. Bezeichnet man sie durch F und, wie wir in der Folge thun wollen, $eine\ ganze$ Function F n^{ten} Grades von σ und m^{ten} Grades von z durch $F(\overset{n}{\sigma},\overset{m}{z})$, so ist s die Wurzel der Gleichung $F(\stackrel{n}{s},\stackrel{m}{z})=0.$

Die Function F ist eine Potenz einer unzerfällbaren—d. h. nicht als ein Product aus ganzen Functionen von σ und z darstellbaren—Function. Den jeder ganze rationale Factor von $F(\sigma, z)$ bildet, da er für einige der Wurzeln s_1, s_2, \ldots, s_n verschwinden muss, für $\sigma = s$ eine Function von z, die in einem

Theile der Fläche T verschwindet und folglich, da diese Fläche zusammenhängend ist, in der ganzen Fläche 0 sein muss. Zwei unzerfällbare Factoren von $F(\sigma,z)$ könnten aber nur für eine endliche Anzahl von Werthenpaaren zugleich verschwinden, wenn die eine nicht durch Multiplication mit einer Constanten aus der andern erhalten werden könnte. Folglich muss F eine Potenz einer unzerfällbaren Function sein.

Wenn der Exponent ν dieser Potenz > 1 ist, so wird die Verzweigungsart der Function s nicht dargestellt durch die Fläche T, sondern durch eine in der z-Ebene allenthalben $\frac{n}{\nu}$ fach ausgebreitete Fläche τ , in welche die Fläche T allenthalben ν fach ausgebreitet ist. Es kann dann zwar s als eine wie T verzweigte Function betrachtet werden, nicht aber umgekehrt T als verzweigt, wie s.

Eine solche nur in einzelnen Punkten von T unstetige Function, wie s, ist auch $\frac{\partial \omega}{\partial z}$. Denn diese Function nimmt zu beiden Seiten der Querschnitte und der Linien l denselben Werth an, da die Differenz der beiden Werthe von ω in diesen Linien längs denselben constant ist; sie kann nur unendlich werden, wo ω unendlich wird, und in den Verzweigungspunkten der Fläche und ist sonst allenthalben stetig, da die Derivirte einer einändrig und endlich bleibenden Function ebenfalls einändrig und endlich bleibt.

Es sind daher sämmtliche Functionen ω algebraische wie T verzweigte Functionen von z oder Integrale solcher Functionen. Dieses System von Functionen ist bestimmt, wenn die Fläche T gegeben ist und hängt nur von der Lage ihrer Verzweigungspunkte ab.

6.

Es sei jetzt die irreductible Gleichung $F(s,z)^m = 0$ gegeben und die Art der Verzweigung der Function s oder der die darstellenden Fläche T zu bestimmen. Wenn für einen Werth β von z μ Zweige der Function zusammenhängen, so dass einer dieser Zweige sich erst nach μ Umlaufen des z um β wieder in sich selbst fortsetzt, so können diese μ Zweige der Function (wie nach Cauchy oder durch die Fourier'sche Reihe leicht bewiesen werden kann) dargestellt werden durch eine Reihe nach steigenden rationalen Potenzen von $z - \beta$ mit Exponenten vom kleinsten gemeinschaftlichen Nenner μ , und umgekehrt.

Ein Punkt der Fläche T, in welchem nur zwei Zweige einer Function zusammenhängen, so dass sich um diesen Punkt der erste in den zweiten und dieser in jenen fortsetzt, heisse ein einfacher Verzweigungspunkt.

Ein Punkt der Fläche, um welchen sie sich $(\mu+1)$ mal windet, kann dann angesehen werden als μ zusammengefallene (oder unendlich nahe) einfache Verzweigungspunkte.

Um dies zu zeigen, seien in einem diesen Punkt umgebenden Stücke der

z-Ebene $s_1, s_2, \ldots, s_{\mu+1}$ einändrige Zweige der Function s und in der Begrenzung desselben, bei positiver Umschreibung auf einander folgend, $a_1, a_2, \ldots, a_{\mu}$ einfache Verzweigungspunkte. Durch einen positiven Umlauf um a_1 werde s_1 mit s_2 , um a_2 s_1 mit s_3, \ldots , um a_{μ} s_1 mit $s_{\mu+1}$ vertauscht. Es gehen dann nach nach einem positiven Umlaufe um ein alle diese Punkte (und keinen andern Verzweigungspunkt) enthaltenes Gebiet

$$s_1, s_2, \ldots, s_{\mu}, s_{\mu+1}$$

in
$$s_2, s_3, \ldots, s_{\mu+1}, s_1$$
, über,

und es entsteht daher, wenn sie zusammenfallen, ein μ facher Windungspunkt.

Die Eigenschaften der Functionen ω hängen wesentlich davon ab, wie vielfach zusammenhängend die Fläche T ist. Um dies zu entscheiden, wollen wir zunächst die Anzahl der einfachen Verzweigungspunkte der Function s bestimmen.

In einem Verzweigungspunkte nehmen die dort zusammenhängenden Zweige der Function denselben Werth an, und es werden daher zwei oder mehrere Wurzeln der Gleichung

$$F(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_n = 0$$

einander gleich. Dies kann nur geschehen, wenn

$$F'(s) = a_0 n s^{n-1} + a_1 \overline{n-1} s^{n-2} + \dots + a_{n-1}$$

oder die einwerthige Function von z, $F'(s_1) F'(s_2) \dots F'(s_n)$, verschwindet. Diese Function wird für endliche Werthe von z nur unendlich, wenn $s = \infty$, also $a_0 = 0$ ist und muss, um endlich zu bleiben, mit a_0^{n-2} multiplicirt werden. Sie wird dann eine einwerthige, für eine endliches z endliche Function von z, welche für $z = \infty$ unendlich von der 2m(n-1) ten Ordnung wird, also eine ganze Function 2m(n-1) ten Grades. Die Werthe von z, für welche F'(s) und F(s) gleichzeitig verschwinden, sind also die Wurzeln der Gleichung 2m(n-1) ten Grades

$$Q(z) = a_0^{n-2} \prod_i F'(s_i) = 0$$
oder auch, da $F'(s_i) = a_0 \prod_{i'} (s_i - s_{i'}), (i \ge i'),$

$$= a_0^{2(n-1)} \prod_{i,i'} (s_i - s_{i'}) = 0, (i \ge i'),$$

welche durch Elimination von s aus F'(s) = 0 und F(s) = 0 gebildet werden kann.

Wird F(s,z) = 0 für $s = \alpha$, $z = \beta$, so ist

$$F(s,z) = \frac{\partial F}{\partial s}(s-\alpha) + \frac{\partial F}{\partial z}(z-\beta)$$

$$+ \frac{1}{2} \left\{ \frac{\partial^2 F}{\partial s^2}(s-\alpha)^2 + 2\frac{\partial^2 F}{\partial s \partial z}(s-\alpha)(z-\beta) + \frac{\partial^2 F}{\partial z^2}(z-\beta)^2 \right\}$$

$$+ \cdots,$$

$$F'(s) = \frac{\partial F}{\partial s} + \frac{\partial^2 F}{\partial s^2}(s-\alpha) + \frac{\partial^2 F}{\partial s \partial z}(z-\beta) + \cdots$$

Ist also für $(s = \alpha, z = \beta)$ $\frac{\partial F}{\partial s} = 0$ und verschwinden $\frac{\partial F}{\partial z}$, $\frac{\partial^2 F}{\partial s^2}$ dann nicht, so wird $s - \alpha$ unendlich klein, wie $(z - \beta)^{\frac{1}{2}}$, und findet also ein einfacher Verzweigungspunkt statt. Es werden zugleich in dem Producte $\prod_i F'(s_i)$ zwei Factoren unendlich klein wie $(z - \beta)^{\frac{1}{2}}$, und Q(z) erhält dadurch den Factor $(z - \beta)$. In dem Falle, dass $\frac{\partial F}{\partial z}$ und $\frac{\partial^2 F}{\partial s^2}$ nie verschwinden, wenn gleichzeitig F = 0 und $\frac{\partial F}{\partial s} = 0$ werden, entspricht demnach jedem linearen Factor von Q(z) ein einfacher Verzweigungspunkt, und die Anzahl dieser Punkte ist also = 2m(n-1).

Die Lage der Verzweigungspunkte hängt von den Coefficienten der Potenzen von z in den Functionen a ab und ändert sich stetig mit denselben.

Wenn diese Coefficienten solche Werthe annehmen, dass zwei demselben Zweigepaar angehörige einfache Verzweigungspunkte zusammenfallen, so heben diese sich auf, und es werden zwei Wurzeln von F(s) einander gleich, ohne dass eine Verzweigung stattfindet. Setzt sich um jeden von ihnen s_1 in s_2 und s_2 in s_1 fort, so geht durch einen Umlauf um ein beide enthaltendes Stück der z-Ebene s_1 in s_1 und s_2 in s_2 über, und beide Zweige werden einändrig, wenn sie zusammenfallen. Es bleibt dann also auch ihre Derivirte $\frac{\partial s}{\partial z}$ einändrig und endlich, und folglich wird $\frac{\partial F}{\partial z} = -\frac{\partial s}{\partial z}\frac{\partial F}{\partial s} = 0$.

Wird $F = \frac{\partial F}{\partial s} = \frac{\partial F}{\partial z} = 0$ für $s = \alpha$, $z = \beta$, so ergeben sich aus den drei folgenden Gliedern der Entwicklung von F(s,z) zwei Werthe für $\frac{s-\alpha}{s-\beta} = \frac{\partial s}{\partial z}$, $(s = \alpha, z = \beta)$. Sind diese Werthe ungleich und endlich, so können die beiden Zweige der Function s, denen sie angehören, dort nicht zusammenhängen und sich nicht verzweigen. Es wird dann $\frac{\partial F}{\partial s}$ für beide unendlich klein wie $z - \beta$, und Q(z) erhält dadurch den Factor $(z - \beta)^2$; es fallen also nur zwei einfache Verzweigungspunkte zusammen.

Um in jeden Falle, wenn für $z=\beta$ mehrere Wurzeln der Gleichung F(s)=0 gleich α werden, zu entscheiden, wie viele einfache Verzweigungspunkte für $(s=\alpha,\,z=\beta)$ zusammenfallen, und wie viele von diesen sich aufheben, muss man diese Wurzeln (nach dem Verfahren von Lagrange) soweit nach steigenden Potenzen von $z-\beta$ entwickeln, bis diese Entwicklungen sämmtlich von einander verschieden werden, wodurch sich die wirklich noch stattfindenen Verzweigungen ergeben. Und man muss dann untersuchen, von welcher Ordnung F'(s) für jede dieser Wurzeln unendlich klein wird, um die Anzahl der ihnen zugehörigen linearen Factoren von Q(z) oder der für $(s=\alpha,z=\beta)$ zusammengefallenen einfachen Verzweigungspunkte zu bestimmen.

Bezeichnet die Zahl ϱ , wie oft sich die Fläche T um den Punkt (s,z) windet, so wird im Punkte (z) F'(s) so oft unendlich klein von der ersten Ordnung, als dort einfache Verzweigungspunkte zusammenfallen, $dz^{1-\frac{1}{\varrho}}$ so oft, als deren wirklich stattfinden, folglich F'(s) $dz^{\frac{1}{\varrho}-1}$ so oft, als von ihnen sich aufheben.

Ist die Anzahl der wirklich stattfindenden einfachen Verzweigungen w
, die Anzahl der sich aufhebenden 2r, so ist

$$w + 2r = 2(n-1)m.$$

Nimmt man an, dass die Verzweigungspunkte nur paarweise und sich aufhebend zusammenfallen, so ist für r Werthenpaare $(s = \gamma_{\rho}, z = \delta_{\rho})$

$$F = \frac{\partial F}{\partial s} = \frac{\partial F}{\partial z} = 0$$
 und $\frac{\partial^2 F}{\partial z^2} \frac{\partial^2 F}{\partial s^2} - \left(\frac{\partial^2 F}{\partial s \partial z}\right)^2$

nicht Null und für w
 Werthenpaare von s und z $F=0, \frac{\partial F}{\partial s}=0, \frac{\partial F}{\partial z}$ nicht Null und $\frac{\partial^2 F}{\partial s^2}$ nicht Null.

Wir beschränken uns meistens auf die Behandlung dieses Falles, da sich die Resultate auf die übrigen als Grenzfälle desselben leicht ausdehnen lassen, und wir können dies hier um so mehr thun, da wir die Theorie dieser Functionen auf eine von der Ausdrucksform unabhängige, keinen Ausnahmefällen unterworfene Grundlage gestützt haben.

7

Es findet nun bei einer einfach zusammenhängenden, über einen endlichen Theil der z-Ebene ausgebreiteten Fläche zwischen der Anzahl ihrer einfachen Verzweigungspunkte und der Anzahl der Umdrehungen, welche die Richtung ihrer Begrenzlinie macht, die Relation statt, dass die letztere um eine Einheit grösser ist, als die erstere; und aus dieser ergiebt sich für eine mehrfach

zusammenhängende Fläche eine Relation zwischen diesen Anzahlen und der Anzahl der Querschnitte, welche sie in eine einfach zusammenhängende verwandeln. Wir können diese Relation, welche im Grunde von Massverhältnissen unabhängig ist und der analysis situs angehört, hier für die Fläche T so ableiten.

Nach dem Dirichlet'schen Princip lässt sich in der einfach zusammenhängenden Fläche T' die Function $\log \zeta$ von z so bestimmen, dass ζ für einen beliebigen Punkt im Innern derselben unendlich klein von der ersten Ordnung wird, und $\log \zeta$ längs einer beliebigen sich nicht schneidenden, von dort nach der Begrenzung führenden Linie auf der positiven Seite um $-2\pi i$ grösser, als auf der negativen, übrigens aber allenthalben stetig und längs der Begrenzung von T' rein imaginär ist. Es nimmt dann die Function ζ jeden Werth, dessen Modul < 1, einmal an; die Gesamtheit ihrer Werthe wird folglich durch eine über einen Kreis in der ζ -Ebene einfach ausgebreitete Fläche vertreten. Jedem Punkte von T' entspricht ein Punkt des Kreises, und umgekehrt. Es wird daher für einen beliebigen Punkt der Fläche, wo z=z', $\zeta=\zeta'$, die Function $\zeta-\zeta'$ unendlich klein von der ersten Ordnung, und folglich bleibt dort, wenn die Fläche T' sich $(\mu+1)$ mal um ihn windet, bei endlichem z'

$$(\mu+1)\frac{z-z'}{(\zeta-\zeta')^{\mu+1}} = \frac{dz}{d\zeta(\zeta-\zeta')^{\mu}},$$

bei unendlichem z' aber

$$(\mu+1)\frac{z^{-1}}{(\zeta-\zeta')^{\mu+1}} = -\frac{\partial z}{zz\partial\zeta(\zeta-\zeta')^{\mu}}$$

endlich. Das Integral $\int \partial \log \frac{\partial z}{\partial \zeta}$, um den ganzen Kreis positiv herumgenommen, ist gleich der Summe der Integrale um die Punkte, wo $\frac{\partial z}{\partial \zeta}$ unendlich oder Null wird, und also = $2\pi i (w-2n)$. Bezeichnet s ein Stück der Begrenzung von T' von einem und demselben bestimmten Punkte bis zu einem veränderlichen Punkte der Begrenzung, und σ das entsprechende Stück auf dem Kreisumfange, so ist

$$\log \frac{\partial z}{\partial \zeta} = \log \frac{\partial z}{\partial s} + \log \frac{\partial s}{\partial \sigma} - \log \frac{\partial \zeta}{\partial \sigma},$$

und, durch die ganze Begrenzung ausgedehnt,

$$\int \partial \log \frac{\partial z}{\partial s} = (2p - 1)2\pi i,$$
$$\int \partial \log \frac{\partial s}{\partial \sigma} = 0,$$

$$-\int \partial \log \frac{\partial \zeta}{\partial \sigma} = -2\pi i,$$

also

$$\int \partial \log \frac{\partial z}{\partial \zeta} = (2p - 2)2\pi i.$$

Es ergiebt sich demnach w -2n = 2(p-1). Da nun

$$w = 2((n-1)m - r),$$

so ist

$$p = (n-1)(m-1) - r.$$
8.

Der allgemeine Ausdruck der wie T verzweigten Functionen s' von z, die für m' beliebig gegebene Punkte von T endlich von der ersten Ordnung werden und übrigens stetig bleiben, enhält nach dem Obigen m'-p+1 willkürliche Constanten und ist eine lineare Function derselben (§. 5). Lassen sich also, wie jetzt gezeigt werden soll, rationale Ausdrücke von s und z bilden, die für m' beliebig gegebene, der Gleichung F=0 genügende Werthenpaare von s und z unendlich von der ersten Ordnung werden und lineare Functionen von m'-p+1 willkürlichen Constanten sind, so kann durch diese Ausdrücke jede Function s' dargestellt werden.

Damit der Quotient zweier ganzen Functionen $\chi(s,z)$ und $\psi(s,z)$ für $s=\infty$ und $z=\infty$ beliebige endliche Werthe annehmen kann, müssen beide von gleichem Grade sein; der Ausdruck, durch welchen s' dargestellt werden

soll, sei daher von der Form
$$\frac{\psi(\overset{\nu}{s},\overset{\mu}{z})}{\chi(\overset{\nu}{s},\overset{\mu}{z})}$$
, und überdies sei $\nu \geq n-1, \ \mu \geq m-1$.

Wenn zwei Zweige der Function s ohne zusammenzuhängen einander gleich werden, also für zwei verschiedene Punkte der Fläche T $z = \gamma$ und $s = \delta$ wird, so wird s' allgemein zu reden in diesen beiden Punkten verschiedene Werthe annehmen; soll also $\psi - s'\chi$ allenthalben = 0 sein, so muss für zwei verschiedene Werthe von s' $\psi(\gamma, \delta) - s'\chi(\gamma, \delta) = 0$ sein, folglich $\chi(\gamma, \delta) = 0$ und $\psi(\gamma, \delta) = 0$. Es müssen also die Functionen χ und ψ für die r Werthenpaare $s = \gamma_{\varrho}$, $z = \delta_{\varrho}$ (S. 26) verschwinden⁴.

⁴Es ist hier, wie gesagt, nur der Fall berücksichtigt, wo die Verzweigungspunkte der Function s nur paarweise und sich aufhebend zusammenfallen. Im Allgemeinen müssen in einem Punkte von T, wo nach der Auffassung im \S . 6 sich aufhebende Verzweigungspunkte zusammenfallen, χ und ψ , wenn T sich um diesen Punkt ϱ mal windet, unendlich klein werden, wie $F'(s) dz^{\frac{1}{\varrho}-1}$, damit die ersten Glieder in der Entwicklung der darzustellenden Function nach ganzen Potenzen von $(\Delta z)^{\frac{1}{\varrho}}$ beliebige Werthe annehmen können

Die Function χ verschwindet für einen Werth von z, für welchen die einwerthige und für ein endliches z endliche Function von z

$$K(z) = a_0^{\nu} \chi(s_1) \chi(s_2) \dots \chi(s_n) = 0$$

ist; diese Function wird für ein unendliches z unendlich von der Ordnung $m\nu+n\mu$ und ist also eine ganze Function $(m\nu+n\mu)$ ten Grades. Da für die Werthenpaare (γ,δ) zwei Factoren des Products $\prod_i \chi(s_i)$ unendlich klein von der ersten Ordnung werden, also K(z) unendlich klein von der zweiten Ordnung, so wird χ ausserdem noch unendlich klein von der ersten Ordnung für

$$i = m\nu + n\mu - 2r$$

Werthenpaare von s und z oder Punkte von T.

Ist $\nu > n-1,\, \mu > m-1,$ so bleibt der Werth der Function χ ungeändert, wenn man

$$\chi(\overset{\nu}{s},\overset{\mu}{z}) + \varrho(\overset{\nu-n}{s},\overset{\mu-m}{z})F(\overset{n}{s},\overset{m}{z}),$$

worin ρ beliebig ist, für $\chi(\overset{\nu}{s},\overset{\mu}{z})$ setzt; es können also

$$(\nu - n + 1)(\mu - m + 1)$$

von den Coefficienten dieses Ausdrucks willkürlich angenommen werden. Werden nun von den

$$(\mu+1)(\nu+1) - (\nu-n+1)(\mu-m+1)$$

noch übrigen r als lineare Functionen der übrigen so bestimmt, dass χ für die r Werthenpaare (γ, δ) verschwindet, so enthält die Function χ noch

$$\varepsilon = (\mu + 1)(\nu + 1) - (\nu - n + 1)(\mu - m + 1) - r$$
$$= n\mu + m\nu - (n - 1)(m - 1) - r + 1$$

willkürliche Constanten. Es ist also

$$i - \varepsilon = (n-1)(m-1) - r - 1 = p - 1.$$

Nimmt man μ und ν so an, dass $\varepsilon > m'$ ist, so kann man χ so bestimmen, dass es für m' beliebig gegebene Werthenpaare unendlich klein von der ersten Ordnung wird, und dann, wenn m' > p, ψ so einrichten, dass $\frac{\psi}{\chi}$ für alle übrigen Werthe endlich bleibt. In der That ist ψ ebenfalls eine lineare homogene Function von ε willkürlichen Constanten, und es lassen sich also, wenn $\varepsilon - i + m' > 1$ ist, i - m' von ihnen als lineare Functionen der übrigen

so bestimmen, dass ψ für die i-m' Werthenpaare von s und z, für welche χ noch unendlich klein von der ersten Ordnung wird, ebenfalls verschwindet. Die Function ψ enthält demnach $\varepsilon-i+m'=m'-p+1$ willkürliche Constanten, und $\frac{\psi}{\chi}$ kann also jede Function s' darstellen.

Q

Da die Functionen $\frac{\partial \omega}{\partial z}$ algebraische wie s verzweigte Functionen von z sind (§. 5), so lassen sie sich zufolge des eben bewiesenen Satzes rational in s und z ausdrücken, und sämmtliche Functionen ω als Integrale rationaler Functionen von s und z.

Ist w eine allenthalben endliche Function ω , so wird $\frac{\partial w}{\partial z}$ unendlich von der ersten Ordnung für jeden einfachen Verzweigungspunkt der Fläche T, da dw und $(dz)^{\frac{1}{2}}$ dort unendlich klein von der ersten Ordnung sind, bleibt aber sonst allenthalben stetig und wird für $z=\infty$ unendlich klein von der zweiten Ordnung. Umgekehrt bleibt das Integral einer Function, die sich so verhält, allenthalben endlich.

Um diese Function $\frac{\partial w}{\partial z}$ als Quotient zweier ganzen Functionen von s und z auszudrücken, muss man (nach \S . 8) zum Nenner eine Function nehmen, die verschwindet in den Verzweigungspunkten und für die r Werthenpaare (γ, δ) . Dieser Bedingung genügt man am einfachsten durch eine Function, die nur für diese Werthe 0 wird. Eine solche ist

$$\frac{\partial F}{\partial s} = a_0 n s^{n-1} + a_1 \overline{n-1} s^{n-2} + \dots + a_{n-1}.$$

Diese wird für ein unendliches s unendlich von der (n-2) ten Ordnung (da a_0 dann unendlich klein von der ersten Ordnung wird) und für ein unendliches z unendlich von der m ten Ordnung. Damit $\frac{\partial w}{\partial z}$ ausser den Verzweigungspunkten endlich und für ein unendliches z unendlich klein von der zweiten Ordnung ist, muss also der Zähler eine ganze Function $\varphi(s, z)^{n-2}$ sein, die für die z Werthenpaare z0 (S. 26) verschwindet. Demnach ist

$$w = \int \frac{\varphi(s^{n-2}, z^{m-2}) \partial z}{\frac{\partial F}{\partial s}} = -\int \frac{\varphi(s^{n-2}, z^{m-2}) \partial s}{\frac{\partial F}{\partial z}},$$

worin $\varphi = 0$ für $s = \gamma_{\varrho}, z = \delta_{\varrho}, \, \varrho = 1, 2, \dots, r.$

Die Function φ enhält (n-1)(m-1) constante Coefficienten, und wenn r von ihnen als lineare Functionen der übrigen so bestimmt werden, dass $\varphi = 0$

für die r Werthenpaare $s = \gamma$, $z = \delta$, so bleiben noch (m-1)(n-1) - r oder p willkürlich, und es erhält φ die Form

$$\alpha_1\varphi_1 + \alpha_2\varphi_2 + \cdots + \alpha_p\varphi_p$$

worin $\varphi_1, \varphi_2, \ldots, \varphi_p$ besondere Functionen φ , von denen keine eine lineare Function der übrigen ist, und $\alpha_1, \alpha_2, \ldots, \alpha_p$ beliebige Constanten sind. Als allgemeiner Ausdruck von w ergiebt sich, wie oben auf anderem Wege

$$\alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p + \text{const.}$$

Die nicht allenthalben endlich bleibenden Function ω und also die Integrale zweiter und dritter Gattung lassen sich nach denselben Principien rational in s und z ausdrücken, wobei wir indess hier nicht verweilen, da die allgemeinen Regeln des vorigen Paragraphen keiner weitern Erläuterung bedürfen und zur Betrachtung bestimmter Formen dieser Integrale erst die Theorie der ϑ -Functionen Anlass giebt.

10

Die Function φ wird ausser für die r Werthenpaare (γ, δ) noch für

$$m(n-2) + n(m-2) - 2r$$

oder 2(p-1) der Gleichung F=0 genügende Werthenpaare von s und z unendlich klein von der ersten Ordung. Sind nun

$$\varphi^{(1)} = \alpha_1^{(1)} \varphi_1 + \alpha_2^{(1)} \varphi_2 + \dots + \alpha_p^{(1)} \varphi_p$$

und

$$\varphi^{(2)} = \alpha_1^{(2)} \varphi_1 + \alpha_2^{(2)} \varphi_2 + \dots + \alpha_n^{(2)} \varphi_n$$

zwei beliebige Functionen φ , so kann man in dem Ausdrucke $\frac{\varphi^{(2)}}{\varphi^{(1)}}$ den Nenner so bestimmen, dass er für p-1 beliebig gegebene der Gleichung F=0 genügende Werthenpaare von s und z gleich Null wird, und dann den Zähler so, dass er für p-2 von den übrigen Werthenpaaren, für welche $\varphi^{(1)}$ noch gleich 0 wird, gleichfalls verschwindet. Er ist dann noch eine lineare Function von zwei willkürlichen Constanten und folglich ein allgemeiner Ausdruck einer Function, die nur für p Punkte der Fläche T unendlich von der ersten Ordnung wird. Eine Function, die für weniger als p Punkte unendlich wird, bildet einen speciellen Fall dieser Function; es lassen sich daher alle Functionen, die für weniger als p+1 Punkte der Fläche T unendlich von der ersten Ordnung werden, in der Form $\frac{\varphi^{(2)}}{\varphi^{(1)}}$ oder in der form $\frac{dw^{(2)}}{dw^{(1)}}$, wenn $w^{(1)}$ und $w^{(2)}$ zwei allenthalben endliche Integrale rationaler Functionen von s und z sind, darstellen.

Eine wie T verzweigte Function z_1 von z, die für n_1 Punkte dieser Fläche unendlich von der ersten Ordnung wird, ist nach dem Früheren (S. 22) die Wurzel einer Gleichung von der Form $G(z_1, z_1) = 0$ und nimmt daher jeden Werth für n_1 Punkte der Fläche T an. Wenn man sich also jeden Punkt von T durch einen den Werth von z_1 in diesem Punkte geometrisch repräsentirenden Punkt einer Ebene abgebildet denkt, so bildet die Gesammtheit dieser Punkte eine in der z_1 -Ebene allenthalben n_1 fach ausgebreitete und die Fläche T—bekanntlich in den kleinsten Theilen ähnlich—abbildende Fläche T_1 . Jedem Punkt in der einen Fläche entspricht dann ein Punkt in der andern. Die Functionen ω oder die Integrale wie T verzweigter Functionen von z gehen daher, wenn man für z als unabhängig veränderliche Grösse z_1 einführt, in Functionen über, welche in der Fläche T_1 allenthalben einen bestimmten Werth und dieselben Unstetigkeiten haben, wie die Functionen ω in den entsprechenden Punkten von T, und welche folglich Integrale wie T_1 verzweigter Functionen von z_1 sind.

Bezeichnet s_1 irgend eine andere wie T verzweigte Function von z, die für m_1 Punkte von T und also auch von T_1 unendlich von der ersten Ordnung wird, so findet (§. 5) zwischen s_1 und z_1 eine Gleichung von der Form

$$F_1({}^{n_1}_{s_1}, {}^{m_1}_{z_1}) = 0$$

statt, worin F_1 eine Potenz einer unzerfällbaren ganzen Function von s_1 und z_1 ist, und es lassen sich, wenn diese Potenz die erste ist, alle wie T_1 verzweigten Functionen von z_1 , folglich alle rationalen Functionen von s_1 und s_2 rational in s_1 und s_2 ausdrücken (§. 8).

Die Gleichung $F(\stackrel{n}{s},\stackrel{m}{z})=0$ kann also durch eine rationale Substitution in $F_1(\stackrel{n_1}{s}_1,\stackrel{m_1}{z}_1)=0$ und diese in jene transformirt werden.

Die Grössengebiete (s, z) und (s_1, z_1) sind gleichvielfach zusammenhängend, da jedem Punkte des einen ein Punkt des andern entspricht. Bezeichnet daher r_1 die Anzahl der Fälle, in welchen s_1 und z_1 für zwei verschiedene Punkte des Grössengebiets (s_1, z_1) beide denselben Werth annehmen und folglich gleichzeitig F_1 , $\frac{\partial F_1}{\partial s_1}$ und $\frac{\partial F_1}{\partial z_2}$ gleich 0 und

$$\frac{\partial^2 F_1}{\partial s_1^2} \frac{\partial^2 F_1}{\partial z_1^2} - \left(\frac{\partial^2 F_1}{\partial s_1 \, \partial z_1} \right)^2$$

nicht Null ist, so muss

$$(n_1-1)(m_1-1)-r_1=p=(n-1)(m-1)-r$$

sein.

Man betrachte nun als zu Einer Klasse gehörend alle irreductiblen algebraischen Gleichungen zwischen zwei veränderlichen Grössen, welche sich durch rationale Substitutionen in einander transformiren lassen, so dass

$$F(s,z) = 0$$
 und $F_1(s_1, z_1) = 0$

zu derselben Klasse gehören, wenn sich für s und z solche rationale Functionen von s_1 und z_1 setzen lassen, dass F(s,z) = 0 in $F_1(s_1,z_1) = 0$ übergeht und zugleich s_1 und z_1 rationale Functionen von s und z sind.

Die rationalen Functionen von s und z bilden, als Functionen von irgend einer von ihnen ζ betrachtet, ein System gleichverzweigter algebraischer Functionen. Auf diese Weise führt jede Gleichung offenbar zu einer Klasse von Systemen gleichverzweigter algebraischer Functionen, welche sich durch Einführung einer Function des Systems als unabhängig veränderlicher Grösse in einander transformiren lassen und zwar alle Gleichungen Einer Klasse zu derselben Klasse von Systemen algebraischer Functionen, und umgekehrt führt (§. 11) jede Klasse von solchen Systemen zu Einer Klasse von Gleichungen.

Ist das Grössengebiet (s, z) $\overline{2p+1}$ fach zusammenhängend und die Function ζ in μ Punkten desselben unendlich von der ersten Ordnung, so ist die Anzahl der Verzweigungswerthe der gleichverzweigten Functionen von ζ , welche durch die übrigen rationalen Functionen von s und z gebildet werden, $2(\mu + p - 1)$, und die Anzahl der willkürlichen Constanten in der Function $\zeta 2\mu - p + 1$ (§. 5). Diese lassen sich so bestimmen, dass $2\mu - p + 1$ Verzweigungswerthe gegebene Werthe annehmen, wenn diese Verzweigungswerthe von einander unabhängige Functionen von ihnen sind, und zwar nur auf eine endliche Anzahl Arten, da die Bedingungsgleichungen algebraisch sind. In jeder Klasse von Systemen gleichverzweigter $\overline{2p+1}$ fach zusammenhängender Functionen giebt es daher eine endliche Anzahl von Systemen μ werthiger Functionen, in welchen $2\mu - p + 1$ Verzweigungswerthe gegebene Werthe annehmen. Wenn andererseits die $2(\mu + p - 1)$ Verzweigungspunkte einer die ζ -Ebene allenthalben μ fach bedeckenden $\overline{2p+1}$ fach zusammenhängenden Fläche beliebig gegeben sind, so giebt es (§§. 3–5) immer ein System wie diese Fläche verzweigter algebraischer Functionen von ζ . Die 3p-3übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen können daher beliebige Werthe annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter 2p+1 fach zusammenhängender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von 3p-3 stetig veränderlichen Grössen ab, welche die Moduln dieser Klasse genannt werden sollen.

Diese Bestimmung der Anzahl der Moduln einer Klasse $\overline{2p+1}$ fach zusammenhängender algebraischer Functionen gilt jedoch nur unter der Voraussetzung, dass es $2\mu-p+1$ Verzweigungswerthe giebt, welche von einander unabhängige Functionen der willkürlichen Constanten in der Function ζ sind. Diese Voraussetzung trifft nur zu, wenn p>1, und die Anzahl der Moduln ist nur dann =3p-3, für p=1 aber =1. Die directe Untersuchung derselben wird indess schwierig durch die Art und Weise, wie die willkürlichen Constanten in ζ enthalten sind. Man führe deshalb in einem Systeme gleichverzweigter $\overline{2p+1}$ fach zusammenhängender Functionen, um die Anzahl der Moduln zu bestimmen, als unabhängig veränderliche Grösse nicht eine dieser Functionen, sondern ein allenthalben endliches Integral einer solchen Function ein.

Die Werthe, welche die Function w von z innerhalb der Fläche T' annimmt, werden geometrisch repräsentirt durch eine einen endlichen Theil der w-Ebene einfach oder mehrfach bedeckende und die Fläche T' (in den kleinsten Theilen ähnlich) abbildende Fläche, welche durch S bezeichnet werden soll. Da w auf der positiven Seite des ν ten Querschnitts um die Constante $k^{(\nu)}$ grösser ist, als auf der negativen, so besteht die Begrenzung von S aus Paaren von parallelen Curven, welche denselben Theil des T' begrenzenden Schnittsystems abbilden, und es wird die Ortsverschiedenheit der entsprechenden Punkte in den parallelen, den ν ten Querschnitt abbildenden Begrenzungstheilen von S durch die complexe Grösse $k^{(\nu)}$ ausgedrückt. Die Anzahl der einfachen Verzweigungspunkte der Fläche S ist 2p-2, da dw in 2p-2 Punkten der Fläche T unendlich klein von der zweiten Ordnung wird. Die rationalen Functionen von s und z sind dann Functionen von w, welche für jeden Punkt von S Einen bestimmten, wo sie nicht unendlich werden, stetig sich ändernden Werth haben und in den entsprechenden Punkten paralleler Begrenzungstheile denselben Werth annehmen. Sie bilden daher ein System gleichverzweigter und 2p fach periodischer Functionen von w. Es lässt sich nun (auf ähnlichem Wege, wie in den §§. 3–5) zeigen, dass, die 2p-2 Verzweigungspunkte und die 2p Ortsverschiedenheiten paralleler Begrenzungstheile der Fläche S als willkürlich gegeben vorausgesetzt, immer ein System wie diese Fläche verzweigter Functionen existirt, welche in den entsprechenden Punkten paralleler Begrenzungstheile denselben Werth annehmen und also 2p fach periodisch sind, und die, als Functionen von einer von ihnen betrachtet, ein System gleichverzweigter $\overline{2p+1}$ fach zusammenhängender algebraischer Functionen bilden, folglich zu einer Klasse von $\overline{2p+1}$ fach zusammenhängenden algebraischen Functionen führen. In der That ergiebt sich nach dem *Dirichlet*'schen Princip, dass in der Fläche S eine Function von w bis auf eine additive Constante bestimmt ist durch die Bedingungen, im Innern von S beliebig gegebene Unstetigkeiten von der Form wie ω in T' anzunehmen und in den entsprechenden Punkten paralleler Begrenzungstheile um Constanten, deren reeller Theil gegeben ist, verschiedene Werthe zu erhalten. Hieraus schliesst man, ähnlich wie im §. 5, die Möglichkeit von Functionen, welche nur in einzelnen Punkten von S unstetig werden und in den entsprechenden Punkten paralleler Begrenzungstheile denselben Werth annehmen. Wird eine solche Function z in n Punkten von S unendlich von der ersten Ordnung und sonst nicht unstetig, so nimmt sie jeden complexen Werth in n Punkten von S an; denn wenn a eine beliebige Constante ist, so ist $\int \partial \log(z-a)$, um S erstreckt, =0, da die Integration durch parallele Begrenzungstheile sich aufhebt, und es wird daher z-a in S ebenso oft unendlich klein, als unendlich von der ersten Ordnung. Die Werthe, welche z annimmt, werden folglich durch eine über die z-Ebene allenthalben n fach ausgebreitete Fläche repräsentirt, und die übrigen ebenso verzweigten und periodischen Functionen von w bilden daher ein System wie diese Fläche verzweigter $\overline{2p+1}$ fach zusammenhängender algebraischer Functionen von z, w. z. b. w.

Für eine beliebig gegebene Klasse $\overline{2p+1}$ fach zusammenhängender algebraischer Functionen kann man nun in dem als unabhängig veränderliche Grösse einzuführenden

$$w = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p + c$$

die Grössen α so bestimmen, dass p von den 2p Periodicitätsmoduln gegebene Werthe annehmen, und c wenn p>1 so, dass einer von den 2p-2 Verzeigungswerthen der periodischen Functionen von w einen gegebenen Werth erhält. Dadurch ist w völlig bestimmt, und also sind es auch die 3p-3 übrigen Grössen, von denen die Verzweigungsart und Periodicität jener Functionen von w abhängt; und da jedweden Werthen dieser 3p-3 Grössen eine Klasse von $\overline{2p+1}$ fach zusammenhängenden algebraischen Functionen entspricht, so hängt eine solche von 3p-3 unabhängig veränderlichen Grössen ab.

Wenn p=1 ist, so ist kein Verzweigungspunkt vorhanden, und es lässt sich in

$$w = \alpha_1 w_1 + c$$

die Grösse α_1 so bestimmen, dass *ein* Periodicitätsmodul einen gegebenen Werth erhält und dadurch ist der andere Periodicitätsmodul bestimmt. Die Anzahl der Moduln einer Klasse ist also dann = 1.

13.

Nach den obigen (im §. 11 entwickelten) Principien der Transformation muss man, um eine beliebig gegebene Gleichung F(s,z) = 0 durch eine rationale Substitution in eine Gleichung derselben Klasse $F_1({}^{n_1}_s, {}^{m_1}_z) = 0$ von

möglichst niedrigem Grade zu transformiren, zuerst für z_1 einen rationalen Ausdruck in s und z, r(s,z), so bestimmen, dass n_1 möglichst klein wird, und dann s_1 gleich einem andern rationalen Ausdrucke r'(s,z) so, dass m_1 möglichst klein wird und zugleich die zu einem beliebigen Werthe von z_1 gehörigen Werthe von s_1 nicht in Gruppen unter einander gleicher zerfallen, so dass $F_1(s_1^{n_1}, s_1^{m_1})$ nicht eine höhere Potenz einer unzerfällbaren Function sein kann.

Wenn das Grössengebiet (s, z) $\overline{2p+1}$ fach zusammenhängend ist, so ist der kleinste Werth, den n_1 annehmen kann, allgemein zu reden, $\geq \frac{p}{2} + 1$ (§. 5) und die Anzahl der Fälle, in denen s_1 und s_1 für zwei verschiedene Punkte des Grössengebiets beide denselben Werth annehmen,

$$=(n_1-1)(m_1-1)-p.$$

In einer Klasse von algebraischen Gleichungen zwischen zwei veränderlichen Grössen haben demnach, wenn ihre Moduln nicht besonderen Bedingungsgleichungen genügen, die Gleichungen niedrigsten Grades folgende Form:

für
$$p = 1$$
, $F(\overset{2}{s},\overset{2}{z}) = 0$, $r = 0$
 $p = 2$, $F(\overset{2}{s},\overset{3}{z}) = 0$, $r = 0$
 $p = 2\mu - 3$, $F(\overset{\mu}{s},\overset{\mu}{z}) = 0$, $r = (\mu - 2)^2$
 $p > 2$
 $p = 2\mu - 2$, $F(\overset{\mu}{s},\overset{\mu}{z}) = 0$, $r = (\mu - 1)(\mu - 3)$.

Von den Coefficienten der Potenzen von s und z in den ganzen Functionen F müssen r als lineare homogene Functionen der übrigen so bestimmt werden, dass $\frac{\partial F}{\partial s}$ und $\frac{\partial F}{\partial z}$ für r der Gleichung F=0 genügende Werthenpaare gleichzeitig verschwinden. Die rationalen Functionen von s und z, als Functionen von einer von ihnen betrachtet, stellen dann alle Systeme $\overline{2p+1}$ fach zusammenhängender algebraischer Functionen dar.

14.

Ich benutze nun nach *Jacobi* (dieses Journal Bd. 9 Nr. 32 §. 8) das *Abel*'sche Additionstheorem zur Integration eines Systems von Differential-gleichungen; ich werde mich dabei auf das beschränken, was in dieser Abhandlung später nöthig ist.

Führt man in einem allenthalben endlichen Integrale w einer rationalen Function von s und z als unabhängig veränderliche Grösse eine rationale Function von s und z, ζ , ein, die für m Werthenpaare von s und z unendlich

von der ersten Ordnung wird, so ist $\frac{\partial w}{\partial z}$ eine m werthige Function von ζ . Bezeichnet man die m Werthe von w für dasselbe ζ durch $w^{(1)}, w^{(2)}, \ldots, w^{(m)}$, so ist

$$\frac{\partial w^{(1)}}{\partial \zeta} + \frac{\partial w^{(2)}}{\partial \zeta} + \dots + \frac{\partial w^{(m)}}{\partial \zeta}$$

eine einwerthige Function von ζ , deren Integral allenthalben endlich bleibt, und folglich ist auch

$$\int \partial (w^{(1)} + w^{(2)} + \dots + w^{(m)})$$

allenthalben einwerthig und endlich, mithin constant. Auf ähnliche Weise findet sich, wenn $\omega^{(1)}, \omega^{(2)}, \ldots, \omega^{(m)}$ die demselben ζ entsprechenden Werthe eines beliebigen Integrals ω einer rationalen Function von s und z bezeichnen,

$$\int \partial(\omega^{(1)} + \omega^{(2)} + \dots + \omega^{(m)})$$

bis auf eine additive Constante aus den Unstetigkeiten von ω und zwar als Summe von einer rationalen Function und mit constanten Coefficienten versehenen Logarithmen rationaler Functionen von ζ .

Mittelst dieses Satzes lassen sich, wie jetzt gezeigt werden soll, folgende p gleichzeitige Differentialgleichungen zwischen den p+1 der Gleichung F(s,z)=0 genügenden Werthenpaaren von s und z, (s_1,z_1) , (s_2,z_2) ,..., (s_{p+1},z_{p+1})

$$\frac{\varphi_{\pi}(s_1, z_1) \partial z_1}{\partial F(s_1, z_1)} + \frac{\varphi_{\pi}(s_2, z_2) \partial z_2}{\partial F(s_2, z_2)} + \frac{\varphi_{\pi}(s_{p+1}, z_{p+1}) \partial z_{p+1}}{\partial F(s_{p+1}, z_{p+1})} = 0$$

für $\pi = 1, 2, \dots, p$, allgemein oder vollständig (complete) integriren.

Durch diese Differentialgleichungen sind p von den Grössenpaaren (s_{μ}, z_{μ}) als Functionen des einen noch übrigen völlig bestimmt, wenn für einen beliebigen Werth des letzteren die Werthe der übrigen gegeben werden. Wenn man also diese p+1 Grössenpaare als Functionen einer veränderlichen Grösse ζ so bestimmt, dass sie für denselben Werth 0 dieser Grösse beliebig gegebene Anfangswerthe $(s_1^0, z_1^0), (s_2^0, z_2^0), \ldots, (s_{p+1}^0, z_{p+1}^0)$ annehmen und den Differentialgleichungen genügen, so hat man dadurch die Differentialgleichungen allgemein integrirt. Nun lässt sich die Grösse $\frac{1}{\zeta}$ als einwerthige und folglich rationale Function von (s, z) immer so bestimmen, dass sie nur für alle oder einige von den p+1 Werthenpaaren (s_{μ}^0, z_{μ}^0) unendlich und für diese nur

unendlich von der ersten Ordnung wird, da sich in dem Ausdrucke

$$\sum_{\mu=1}^{\mu=p+1} \beta_{\mu} t(s_{\mu}^{0}, z_{\mu}^{0}) + \sum_{\mu=1}^{\mu=p} \alpha_{\mu} w_{\mu} + \text{const.}$$

die Verhältnisse der Grössen α und β immer so bestimmen lassen, dass die Periodicitätsmoduln sämmtlich 0 werden. Es genügen dann, wenn kein $\beta=0$ ist, den zu lösenden Differentialgleichungen die p+1 Zweige der $\overline{p+1}$ -werthigen gleichverzweigten Functionen s und z von ζ ,

$$(s_1, z_1), (s_2, z_2), \ldots, (s_{p+1}, z_{p+1}),$$

welche für $\zeta = 0$ die Werthe

$$(s_1^0, z_1^0), (s_2^0, z_2^0), \dots, (s_{p+1}^0, z_{p+1}^0)$$

annehmen. Wenn aber von der Grössen β einige, etwa die p+1-m letzten gleich 0 werden, so werden die zu lösenden Differentialgleichungen befriedigt durch die m Zwiege der m werthigen Functionen s und z von ζ ,

$$(s_1, z_1), (s_2, z_2), \ldots, (s_m, z_m),$$

welche für $\zeta = 0$ gleich

$$(s_1^0, z_1^0), (s_2^0, z_2^0), \ldots, (s_m^0, z_m^0)$$

werden, und durch constante, also ihren Anfangswerthen $s_{m+1}^0, \ldots, z_{p+1}^0$ gleiche Werthe der Grössen $s_{m+1}, z_{m+1}; \ldots; s_{p+1}, z_{p+1}$. Im letzteren Falle sind von den p linearen homogenen Gleichungen

$$\sum_{\mu=1}^{\mu=m} \frac{\varphi_{\pi}(s_{\mu}, z_{\mu}) \, \partial z_{\mu}}{\frac{\partial F(s_{\mu}, z_{\mu})}{\partial s_{\mu}}} = 0$$

für $\pi=1,2,\ldots,p$ zwischen den Grössen

$$\frac{\partial z_{\mu}}{\partial F(s_{\mu}, z_{\mu})}$$

p+1-m eine Folge der übrigen; es ergeben sich hieraus p+1-m Bedingungsgleichungen, welche, damit dieser Fall eintritt, zwischen den Functionen $(s_1, z_1), (s_2, z_2), \ldots, (s_m, z_m)$, und also auch zwischen ihren Anfangswerthen $(s_1^0, z_1^0), (s_2^0, z_2^0), \ldots, (s_m^0, z_m^0)$ erfüllt sein müssen, und es können daher von diesen, wie oben $(\S.5)$ gefunden, nur 2m-p-1 beliebig gegeben werden.

Es sei nun

$$\int \frac{\varphi_{\pi}(s,z)\,\partial z}{\partial F(s,z)} + \text{const.},$$

$$\frac{\partial F(s,z)}{\partial s}$$

durch das Innere von T' integrirt, gleich w_{π} und der Periodicitätsmodul von w_{π} für den ν ten Querschnitt gleich $k_{\pi}^{(\nu)}$, so dass sich die Functionen w_1, w_2, \ldots, w_p des Grössenpaars (s, z) beim Uebertritt des Punkts (s, z) von der negativen auf die positive Seite des ν ten Querschnitts gleichzeitig um $k_1^{(\nu)}, k_2^{(\nu)}, \ldots k_p^{(\nu)}$ ändern. Zur Abkürzung mag ein System von p Grössen (b_1, b_2, \ldots, b_p) einem andern (a_1, a_2, \ldots, a_p) congruent nach 2p Systemen zusammengehöriger Moduln genannt werden, wenn es aus ihm durch gleichzeitige Aenderungen sämmtlicher Grössen um zusammengehörige Moduln erhalten werden kann. Ist der Modul der π ten Grösse im ν ten Systeme $= k_{\pi}^{(\nu)}$, so heisst demnach

$$(b_1, b_2, \dots, b_p) \equiv (a_1, a_2, \dots, a_p),$$

wenn

$$b_{\pi} = a_{\pi} + \sum_{\nu=1}^{\nu=2p} m_{\nu} k_{\pi}^{(\nu)}$$

für $\pi = 1, 2, ..., p$ und $m_1, m_2, ..., m_{2p}$ ganze Zahlen sind.

Da sich p beliebige Grössen a_1, a_2, \ldots, a_p immer und nur auf eine Weise in die Form $a_{\pi} = \sum_{\nu=1}^{\nu=2p} \xi_{\nu} k_{\pi}^{(\nu)}$ setzen lassen, so dass die 2p Grössen ξ reell sind, und durch Aenderung dieser Grössen ξ um ganze Zahlen alle congruenten Systeme und nur diese sich ergeben, so erhält man aus jeder Reihe congruenter Systeme eins und nur eins, wenn man in diesen Ausdrücken jede Grösse ξ alle Werthe von einem beliebigen Werthe bis zu einem um 1 grösseren, einen der beiden Grenzwerthe eingeschlossen, stetig durchlaufen lässt.

Dieses festgesetzt, folgt aus den obigen Differentialgleichungen oder aus den p Gleichungen

$$\sum_{\mu=1}^{\mu=p+1} dw_{\pi}^{(\mu)} = 0 \text{ für } \pi = 1, 2, \dots, p$$

durch Integration

$$\left(\sum w_1^{(\mu)}, \sum w_2^{(\mu)}, \dots, \sum w_p^{(\mu)}\right) \equiv (c_1, c_2, \dots, c_p),$$

worin c_1, c_2, \ldots, c_p constante von den Werthen (s^0, z^0) abhängige Grössen sind.

Drückt man ζ als Quotienten zweier ganzen Functionen von s und $z, \frac{\chi}{\psi}$, aus, so sind die Grössenpaare $(s_1, z_1), \ldots, (s_m, z_m)$ die gemeinschaftlichen Wurzeln der Gleichungen F = 0 und $\frac{\chi}{\psi} = \zeta$. Da die ganze Function

$$\chi - \zeta \psi = f(s, z)$$

für alle Werthenpaare, für welche χ und ψ gleichzeitig verschwinden ebenfalls, was auch ζ sei, verschwindet, so können die Grössenpaare $(s_1, z_1), \ldots, (s_m, z_m)$ auch definirt werden als gemeinschaftliche Wurzeln der Gleichung F=0 und einer Gleichung f(s,z)=0, deren Coefficienten so sich ändern, dass alle übrigen gemeinschaftlichen Wurzeln constant bleiben. Wenn m < p+1, kann ζ in der Form $\frac{\varphi^{(1)}}{\varphi^{(2)}}$ dargestellt werden (§. 10) und f in der Form

$$\varphi^{(1)} - \zeta \varphi^{(2)} = \varphi^{(3)}.$$

Die allgemeinsten Werthe der den p Gleichungen

$$\sum_{\mu=1}^{\mu=p} dw_{\pi}^{(\mu)} = 0 \text{ für } \pi = 1, 2, \dots, p$$

genügenden Functionenpaare $(s_1, z_1), \ldots, (s_p, z_p)$ werden daher gebildet durch p gemeinschaftliche Wurzeln der Gleichungen F=0 und $\varphi=0$, welche so sich ändern, dass die übrigen gemeinschaftlichen Wurzeln constant bleiben. Hieraus folgt leicht der später nöthige Satz, dass die Aufgabe, p-1 von den 2p-2 Grössenpaaren $(s_1, z_1), \ldots, (s_{2p-2}, z_{2p-2})$ als Functionen der p-1 übrigen so zu bestimmen, dass die p Gleichungen

$$\sum_{\mu=1}^{\mu=2p-2} dw_{\pi}^{(\mu)} = 0 \text{ für } \pi = 1, 2, \dots, p$$

erfüllt werden, völlig allgemein gelöst wird, wenn man für diese 2p-2 Grössenpaare die von den r Wurzeln $s=\gamma_{\varrho},\ z=\delta_{\varrho}$ (§. 6) verschiedenen gemeinschaftlichen Wurzeln der Gleichungen F=0 und $\varphi=0$ oder die 2p-2 Werthenpaare nimmt, für welche dw unendlich klein von der zweiten Ordnung wird, und dass diese Aufgabe daher nur eine Lösung zulässt. Solche Grössenpaare sollen durch die Gleichung $\varphi=0$ verknüpft heissen. In Folge der Gleichungen

$$\sum_{1}^{2p-2} dw_{\pi}^{(\mu)} = 0$$

wird

$$\left(\sum_{1}^{2p-2} w_1^{(\mu)}, \sum_{1}^{2p-2} w_2^{(\mu)}, \dots, \sum_{1}^{2p-2} w_p^{(\mu)}\right),\,$$

die Summe über solche Grössenpaare ausgedehnt, congruent einem constanten Grössensysteme (c_1, c_2, \ldots, c_p) , worin c_{π} nur von der additiven Constante in der Function w_{π} oder dem Anfangswerthe des sie ausdrückenden Integrals abhängt.

Zweite Abteilung.

17.

Für die ferneren Untersuchungen über Integrale von algebraischen, $\overline{2p+1}$ fach zusammenhängenden Functionen ist die Betrachtung einer p fach unendlichen ϑ -Reihe von grossem Nutzen, d. h. einer p fach unendlichen Reihe, in welcher der Logarithmus des allgemeinen Gliedes eine ganze Function zweiten Grades der Stellenzeiger ist. Es sei in dieser Function für ein Glied, dessen Stellenzeiger m_1, m_2, \ldots, m_p sind, der Coefficient des Quadrats m_μ^2 gleich $a_{\mu,\mu}$, des doppelten Products $m_\mu m_{\mu'}$ gleich $a_{\mu,\mu'} = a_{\mu',\mu}$, der doppelten Grösse m_μ gleich v_μ , und das constante Glied = 0. Die Summe der Reihe, über alle ganzen positiven oder negativen Werthe der Grössen m ausgedehnt, werde als Function der p Grössen v betrachtet und durch $\vartheta(v_1, v_2, \ldots, v_p)$ bezeichnet, so dass

(1.)
$$\vartheta(v_1, v_2, \dots, v_p) = \left(\sum_{-\infty}^{\infty}\right)^p e^{\left(\sum_{1}^{p}\right)^2 a_{\mu, \mu'} m_{\mu} m_{\mu'} + 2\sum_{1}^{p} v_{\mu} m_{\mu}},$$

worin die Summationen im Exponenten sich auf μ und μ' , die äusseren Summationen auf m_1, m_2, \ldots, m_p beziehen. Damit diese Reihe convergirt, muss der reelle Theil von $\left(\sum_{1}^{p}\right)^2 a_{\mu,\mu'} m_{\mu} m_{\mu'}$ wesentlich negativ sein oder, als eine Summe von positiven oder negativen Quadraten reeller linearer von einander unabhängiger Functionen der Grössen m dargestellt, aus p negativen Quadraten zusammengesetzt sein.

Die Function ϑ hat die Eigenschaft, dass es Systeme von gleichzeitigen Aenderungen der p Grössen v giebt, durch welche $\log \vartheta$ nur um eine lineare Function der Grössen v geändert wird, und zwar 2p von einander unabhängige Systeme (d. h. von denen keins eine Folge der übrigen ist). Denn man hat, die ungeändert bleibenden Grössen v unter dem Functionszeichen ϑ weglassend, für $\mu = 1, 2, \ldots, p$

(2.)
$$\vartheta = \vartheta(v_{\mu} + \pi i) \quad \text{und}$$

(3.)
$$\vartheta = e^{2v_{\mu} + a_{\mu,\mu}} \vartheta(v_1 + a_{1,\mu}, v_2 + a_{2,\mu}, \dots, v_p + a_{p,\mu}),$$

wie sich sofort ergiebt, wenn man in der Reihe für ϑ den Stellenzeiger m_{μ} in $m_{\mu} + 1$ verwandelt, wodurch sie, während ihr Werth ungeändert bleibt, in den Ausdruck zur Rechten übergeht.

Die Function ϑ ist durch diese Relationen und durch die Eigenschaft, allenthalben endlich zu bleiben, bis auf einen constanten Factor bestimmt. Denn in Folge der letzteren Eigenschaft und der Relationen (2.) ist sie eine einwerthige, für endliche v endliche Function von $e^{2v_1}, e^{2v_2}, \ldots, e^{2v_p}$ und folglich in eine p fach unendliche Reihe von der Form

$$\left(\sum_{-\infty}^{\infty}\right)^p A_{m_1, m_2, \dots, m_p} e^{2\sum_{1}^{p} v_{\mu} m_{\mu}}$$

mit den constanten Coefficienten A entwickelbar. Aus den Relationen (3.) ergiebt sich aber

$$A_{m_1,\dots,m_{\nu}+1,\dots,m_p} = A_{m_1,\dots,m_{\nu},\dots,m_p} e^{2\sum_{1}^{p} a_{\mu,\nu} m_{\mu} + a_{\nu,\nu}}$$

folglich

$$A_{m_1,\dots,m_p} = \text{const.}e^{\left(\sum_{1}^{p}\right)^2 a_{\mu,\mu'} m_{\mu} m_{\mu'}}, \quad \text{w. z. b. w.}$$

Man kann daher diese Eigenschaften der Function zu ihrer Definition verwenden. Die Systeme gleichzeitiger Aenderungen der Grössen v, durch welche sich $\log \vartheta$ nur um eine lineare Function von ihnen ändert, sollen $Systeme\ zusammengehöriger\ Periodicitätsmoduln\ der\ unabhängig\ veränderlichen\ Grössen\ in dieser\ \vartheta$ -Function genannt werden.

18.

Ich substituire nun für die p Grössen v_1, v_2, \ldots, v_p, p immer endlich bleibende Integrale u_1, u_2, \ldots, u_p rationaler Functionen einer veränderlichen Grösse z und einer $\overline{2p+1}$ fach zusammenhängenden algebraischen Function s dieser Grösse, und für die zusammengehörigen Periodicitätsmoduln der Grössen v zusammengehörige (d. h. an demselben Querschnitte stattfindende) Periodicitätsmoduln dieser Integrale, so dass $\log \vartheta$ in einer Function einer Veränderlichen z übergeht, welche sich, wenn s und z nach beliebiger stetiger Aenderung von z den vorigen Werth wieder annehmen, um lineare Functionen der Grössen u ändert.

Es soll zunächst gezeigt werden, dass eine solche Substitution für jede $\overline{2p+1}$ fach zusammenhängende Function s möglich ist. Die Zerschneidung der Fläche T muss zu diesem Zwecke so durch 2p in sich zurücklaufende

Schnitte $a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_p$ geschehen, dass folgende Bedingungen erfüllt werden. Wenn man u_1, u_2, \ldots, u_p so wählt, dass der Periodicitätsmodul von u_{μ} an dem Schnitte a_{μ} gleich πi , an den übrigen Schnitten a gleich 0 ist, und man den Periodicitätsmodul von u_{μ} an dem Schnitte b_{ν} durch $a_{\mu,\nu}$ bezeichnet, so muss $a_{\mu,\nu} = a_{\nu,\mu}$ und der reelle Theil von $\sum_{\mu,\mu'} a_{\mu,\mu'} m_{\mu} m_{\mu'}$ für alle reellen (ganzen) Werthe der p Grössen m negativ sein.

19.

Die Zerlegung der Fläche T werde nicht wie bisher nur durch in sich zurücklaufende Querschnitte, sondern folgendermassen ausgeführt. Man mache zuerst einen in sich zurücklaufenden die Fläche nicht zerstückelnden Schnitt a_1 und führe dann einen Querschnitt b_1 von der positiven Seite von a_1 auf die negative zum Anfangspunkte zurück, worauf die Begrenzung aus einem Stücke bestehen wird. Einen dritten die Fläche nicht zerstückelnden Querschnitt kann man demzufolge (wenn die Fläche noch nicht einfach zusammenhängend ist) von einem beliebigen Punkte dieser Begrenzung bis zu einem beliebigen Begreunzungspunkte, also auch zu einem früheren Punkte dieses Querschnitts führen. Man thue das Letztere, so dass dieser Querschnitt aus einer in sich zurücklaufenden Linie a_2 und einem dieser Linie voraufgehenden Theile c_1 besteht, welche das frühere Schnittsystem mit ihr verbindet. Den folgenden Querschnitt b_2 ziehe man von der positiven Seite von a_2 auf die negative zum Anfangspunkte zurück, worauf die Begrenzung wieder aus einem Stücke besteht. Die weitere Zerschneidung kann daher, wenn nöthig, wieder durch zwei in demselben Punkte anfangende und endende Schnitte a_3 und b_3 und eine das System der Linien a_2 und b_2 mit ihnen verbindende Linie c_2 geschehen. Wird dieser Verfahren fortgesetzt, bis die Fläche einfach zusammenhängend ist, so erhält man ein Schnittnetz, welches aus p Paaren von zwei in einem und demselben Punkte anfangenden und endenden Linien a_1 und b_1 , a_2 und b_2 ,..., a_p und b_p besteht und aus p-1Linien $c_1, c_2, \ldots, c_{p-1}$, welche jedes Paar mit dem folgenden verbinden. Es möge c_{ν} von einem Punkte von b_{ν} nach einem Punkte von $a_{\nu+1}$ gehen. Das Schnittnetz wird als so entstanden betrachtet, dass der $2\nu - 1$ te Querschnitt aus $c_{\nu-1}$ und der von dem Endpunkte von $c_{\nu-1}$ zu diesem zurückgezogenen Linie a_{ν} besteht, und der 2ν te durch die von der positiven auf die negative Seite von a_{ν} gezogene Linie b_{ν} gebildet wird. Die Begrenzung der Fläche besteht bei dieser Zerschneidung nach einer geraden Anzahl von Schnitten aus einem, nach einer ungeraden aus zwei Stücken.

Ein allenthalben endliches Integral w einer rationalen Function von s und z nimmt dann zu beiden Seiten einer Linie c denselben Werth an. Denn die ganze früher entstandene Begrenzung besteht, wie bemerkt, aus einem

Stücke und bei der Integration längs derselben von der einen Seite der Linie c bis auf die andere wird $\int \partial w$ durch jedes früher entstandene Schnittelement zweimal, in entgegengesetzter Richtung, erstreckt. Eine solche Function ist daher in T allenthalben ausser der Linien a und b stetig. Die durch diese Linien zerschnittene Fläche T möge durch T'' bezeichnet werden.

20.

Es seien nun w_1, w_2, \ldots, w_p von einander unabhängige solche Functionen, und der Periodicitätsmodul von w_μ an dem Querschnitte a_ν gleich $A_\mu^{(\nu)}$ und an dem Querschnitte b_ν gleich $B_\mu^{(\nu)}$. Es ist dann das Integral $\int w_\mu \, dw_{\mu'}$, um die Fläche T'' positiv herum ausgedehnt, =0, da die Function unter dem Integralzeichen allenthalben endlich ist. Bei dieser Integration wird jede der Linien a und b zweimal, einmal in positiver und einmal in negativer Richtung durchlaufen, und es muss während jener Integration, wo sie als Begrenzung des positiverseits gelegenen Gebiets dient, für w_μ der Werth auf der positiven Seite oder w_μ^+ , während dieser der Werth auf der negativen oder w_μ^- genommen werden. Es ist also dies Integral gleich der Summe aller Integrale $\int (w_\mu^+ - w_\mu^-) \, dw_{\mu'}$ durch die Linien a und b. Die Linien b führen von der positiven zur negativen Seite der Linien a, und folglich die Linien a von der negativen zur positiven Seite der Linien b. Das Integral durch die Linie a_ν ist daher

$$= \int A_{\mu}^{(\nu)} dw_{\mu'} = A_{\mu}^{(\nu)} \int dw_{\mu'} = A_{\mu}^{(\nu)} B_{\mu'}^{(\nu)},$$

und das Integral durch die Linie b_{ν}

$$= \int B_{\mu}^{(\nu)} dw_{\mu'} = -B_{\mu}^{(\nu)} A_{\mu'}^{(\nu)}.$$

Das Integral $\int w_{\mu} dw_{\mu'}$, um die Fläche T'' positive herum erstreckt, ist also

$$= \sum_{\nu} (A_{\mu}^{(\nu)} B_{\mu'}^{(\nu)} - B_{\mu}^{(\nu)} A_{\mu'}^{(\nu)}),$$

und diese Summe folglich = 0. Diese Gleichung gilt für je zwei von den Functionen w_1, w_2, \ldots, w_p und liefert also $\frac{p(p-1)}{1\cdot 2}$ Relationen zwischen deren Periodicitätsmoduln.

Nimmt man für die Functionen w die Functionen u oder wählt man sie so, dass $A_{\mu}^{(\nu)}$ für ein von μ verschiedenes ν gleich 0 und $A_{\nu}^{(\nu)} = \pi i$ ist, so gehen diese Relationen über in $B_{\mu'}^{(\mu)}\pi i - B_{\mu}^{(\mu')}\pi i = 0$ oder in $a_{\mu,\mu'} = a_{\mu',\mu}$.

21

Es bleibt noch zu zeigen, dass die Grössen a die zweite oben nöthig gefundene Eigenschaft besitzen.

Man setze $w = \mu + \nu i$ und den Periodicitätsmodul dieser Function an dem Schnitte a_{ν} gleich $A^{(\nu)} = \alpha_{\nu} + \gamma_{\nu} i$ und an dem Schnitte b_{ν} gleich $B^{(\nu)} = \beta_{\nu} + \delta_{\nu} i$. Es ist dann das Integral

$$\int \left(\left(\frac{\partial \mu}{\partial x} \right)^2 + \left(\frac{\partial \mu}{\partial y} \right)^2 \right) dT$$

 $oder^5$

$$\int \left(\frac{\partial \mu}{\partial x} \frac{\partial \nu}{\partial y} - \frac{\partial \mu}{\partial y} \frac{\partial \nu}{\partial x} \right) dT$$

durch die Fläche T'' gleich dem Begrenzungsintegral $\int \mu \, d\nu$ um T'' positiv herum erstreckt, also gleich der Summe der Integrale $\int (\mu^+ - \mu^-) \, d\nu$ durch die Linien a und b. Das Integral durch die Linie a_{ν} ist $= \alpha_{\nu} \int d\nu = \alpha_{\nu} \delta_{\nu}$, das Integral durch die Linie b_{ν} gleich $\beta_{\nu} \int d\nu = -\beta_{\nu} \gamma_{\nu}$, und folglich

$$\int \left(\left(\frac{\partial \mu}{\partial x} \right)^2 + \left(\frac{\partial \mu}{\partial y} \right)^2 \right) dT = \sum_{\nu=1}^{\nu=p} (\alpha_{\nu} \delta_{\nu} - \beta_{\nu} \gamma_{\nu}).$$

Diese Summe ist daher stets positiv.

Hieraus ergiebt sich die zu beweisende Eigenschaft der Grössen α , wenn man für w setzt $u_1m_1 + u_2m_2 + \cdots + u_pm_p$. Denn es ist dann $A^{(\nu)} = m_{\nu}\pi i$, $B^{(\nu)} = \sum_{\mu} a_{\mu,\nu} m_{\mu}$, folglich a_{ν} stets = 0 und

$$\int \left(\left(\frac{\partial \mu}{\partial x} \right)^2 + \left(\frac{\partial \mu}{\partial y} \right)^2 \right) dT = -\sum \beta_{\nu} \gamma_{\nu} = -\pi \sum m_{\nu} \beta_{\nu}$$

oder gleich dem reellen Theile von $-\pi \sum_{\mu,\nu} a_{\mu,\nu} m_{\mu} m_{\nu}$, welche also für alle reellen Werthe der Grössen m positiv ist.

22.

Setzt man nun in der ϑ -Reihe (1) §. 17 für $a_{\mu,\mu'}$ den Periodicitätsmodul der Function u_{μ} an dem Schnitt $b_{\mu'}$ und, durch e_1, e_2, \ldots, e_p beliebige Constanten bezeichnend, $u_{\mu} - e_{\mu}$ für v_{μ} , so erhält man eine in jedem Punkte von T eindeutig bestimmte Function von z,

$$\vartheta(u_1 - e_1, u_2 - e_2, \dots, u_p - e_p),$$

welche ausser den Linien b stetig und endlich und auf der positiven Seite der Linie b_{ν} $\left(e^{-2(u_{\nu}-e_{\nu})}\right)$ mal so gross als auf der negativen ist, wenn man den

 $^{^5 {\}rm Dies}$ Integral drückt den Inhalt der Fläche aus, welche die Gesammtheit der Werthe, die winnerhalb T''annimmt, auf der $w{\rm -Ebene}$ repräsentirt.

Functionen u in den Linien b selbst den Mittelwerth von den Werthen zu beiden Seiten beilegt. Für wie viele Punkte von T' oder Werthepaare von s und z diese Function unendlich klein von der ersten Ordung wird, kann durch Betrachtung des Begrenzungsintegrals $\int d \log \vartheta$, um T' positiv herum erstreckt, gefunden werden; denn dieses Integral ist gleich der Anzahl dieser Punkte multiplicirt mit $2\pi i$. Andererseits ist dies Integral gleich der Summe der Integrale $\int (d \log \vartheta^+ - d \log \vartheta^-)$ durch sämmtliche Schnittlinien a, b und c. Die Integrale durch die Linien a und c sind e0, das Integral durch e0 wird daher unendlich klein von der ersten Ordnung in e1 Punkten der Fläche e1, welche durch e2, e3, e4 bezeichnet werden mögen.

Durch einen positiven Umlauf des Punktes (s, z) um einen dieser Punkte wächst $\log \vartheta$ um $2\pi i$, durch einen positiven Umlauf um das Schnittepaar a_{ν} und b_{ν} um $-2\pi i$. Um daher die Function $\log \vartheta$ allenthalben eindeutig zu bestimmen, führe man von jedem Punkte η einen Schnitt durch das Innere nach je einem Linienpaar, von η_{ν} den Schnitt l_{ν} nach a_{ν} und b_{ν} , und zwar nach ihrem gemeinschaftlichen Anfangs- und Endpunkte, und nehme in der dadurch enstanden Fläche T^* die Function allenthalben stetig an. Sie ist dann auf der positiven Seite der Linien l um $-2\pi i$, auf der positiven Seite der Linie b_{ν} um

$$-2(u_{\nu}-e_{\nu})-h_{\nu}\,2\pi i$$

grösser, als auf der negativen, wenn g_{ν} und h_{ν} ganze Zahlen bezeichnen.

Die Lage der Punkte η und die Werthe der Zahlen g und h hängen von den Grössen e ab, und diese Abhängigkeit lässt sich auf folgendem Wege näher bestimmen. Das Integral $\int \log \vartheta \, du_{\mu}$, um T^* positiv herum erstreckt, ist =0, da die Function $\log \vartheta$ in T^* stetig bleibt. Dieses Integral ist aber auch gleich der Summe der Integrale $\int (\log \vartheta^+ - \log \vartheta^-) \, du_{\mu}$ durch sämmtliche Schnittlinien l, a, b und c und findet sich, wenn man den Werth von u_{μ} im Punkte η_{ν} durch $\alpha_{\mu}^{(\nu)}$ bezeichnet,

$$= 2\pi i \left(\sum_{\nu} \alpha_{\mu}^{(\nu)} + h_{\mu} \pi i + \sum_{\nu} g_{\nu} a_{\nu,\mu} - e_{\mu} + k_{\mu} \right),$$

worin k_{μ} von den Grössen e, g, h und der Lage der Punkte η unabhängig ist. Dieser Ausdruck ist also = 0.

Die Grösse k_{μ} hängt von der Wahl der Function u_{μ} ab, welche durch die Bedingung, an dem Schnitte a_{μ} den Periodicitätsmodul πi , an den übrigen Schnitten a den Periodicitätmodul 0 anzunehmen, nur bis auf eine additive Constante bestimmt ist. Nimmt man für u_{μ} eine um die Constante c_{μ} grössere Function und zugleich e_{μ} um c_{μ} grösser, so bleiben die Function ϑ und folglich

die Punkte η und die Grössen g, h ungeändert, der Werth von u_{μ} im Punkte η_{ν} aber wird $\alpha_{\mu}^{(\nu)} + c_{\mu}$. Es geht daher k_{μ} in $k_{\mu} - (p-1)c_{\mu}$ über und verschwindet, wenn $c_{\mu} = \frac{k_{\mu}}{p-1}$ genommen wird.

Man kann folglich, wie für die Folge geschehen soll, die additiven Constanten in den Functionen u oder die Anfangswerthe in den sie ausdrückenden Integralen so bestimmen, dass man durch die Substitution von $u_{\mu} - \sum \alpha_{\mu}^{(\nu)}$ für v_{μ} in $\log \vartheta(v_1, \ldots, v_p)$ eine Function erhält, welche in den Punkten η logarithmisch unendlich wird und, durch T^* stetig fortgesetzt, auf der positiven Seite der Linien l um $-2\pi i$, der Linien a um 0 und der Linie b_{ν} um $-2(u_{\nu} - \sum_{1}^{p} \alpha_{\nu}^{(\mu)})$ grösser wird, als auf der negativen. Zur Bestimmung dieser Anfangswerthe werden sich später leichtere Mittel darbieten, als der obige Integralausdruck für k_{μ} .

Setzt man $(u_1, u_2, \ldots, u_p) \equiv (\alpha_1^{(p)}, \alpha_2^{(p)}, \ldots, \alpha_p^{(p)})$ nach den 2p Modulsystemen der Functionen u (§. 15), also

$$(v_1, v_2, \dots, v_p) \equiv \left(-\sum_{1}^{p-1} \alpha_1^{(\nu)}, -\sum_{1}^{p-1} \alpha_2^{(\nu)}, \dots, -\sum_{1}^{p-1} \alpha_p^{(\nu)}\right),$$

so wird $\vartheta = 0$. Wird umgekehrt $\vartheta = 0$ für $v_{\mu} = r_{\mu}$, so ist (r_1, r_2, \dots, r_p) einen Grössensysteme von der Form

$$\left(-\sum_{1}^{p-1}\alpha_{1}^{(\nu)}, -\sum_{1}^{p-1}\alpha_{2}^{(\nu)}, \dots, -\sum_{1}^{p-1}\alpha_{p}^{(\nu)}\right)$$

congruent. Denn setzt man $v_{\mu} = u_{\mu} - \alpha_{\mu}^{(p)} + r_{\mu}$, indem man η_p beliebig wählt, so wird die Function ϑ ausser in η_p noch in p-1 andern Punkten unendlich klein von der ersten Ordnung, und bezeichnet man diese durch $\eta_1, \eta_2, \ldots, \eta_{p-1}$, so ist

$$\left(-\sum_{1}^{p-1}\alpha_{1}^{(\nu)}, -\sum_{1}^{p-1}\alpha_{2}^{(\nu)}, \dots, -\sum_{1}^{p-1}\alpha_{p}^{(\nu)}\right) \equiv (r_{1}, r_{2}, \dots, r_{p}).$$

Die Function ϑ bleibt ungeändert, wenn man sämmtliche Grössen v in's Entgegengesetzte verwandelt; denn verwandelt man in der Reihe für

$$\vartheta(v_1, v_2, \ldots, v_p)$$

sämmtliche Indices m in's Entgegengesetze, wodurch der Werth der Reihe ungeändert bleibt, da $-m_{\nu}$ dieselben Werthe wie m_{ν} durchläuft, so geht $\vartheta(v_1, v_2, \ldots, v_p)$ über in $\vartheta(-v_1, -v_2, \ldots, -v_p)$.

Nimmt man nun die Punkte $\eta_1, \eta_2, \dots, \eta_{p-1}$ beliebig an, so wird

$$\vartheta\left(-\sum_{1}^{p-1}\alpha_{1}^{(\nu)},\dots,-\sum_{1}^{p-1}\alpha_{p}^{(\nu)}\right)=0$$

und folglich, da die Function ϑ wie eben bemerkt gerade ist, auch

$$\vartheta\left(\sum_{1}^{p-1}\alpha_{1}^{(\nu)},\ldots,\sum_{1}^{p-1}\alpha_{p}^{(\nu)}\right)=0.$$

Es lassen sich also die p-1 Punkte $\eta_p, \eta_{p-1}, \dots, \eta_{2p-2}$ so bestimmen, dass

$$\left(\sum_{1}^{p-1} \alpha_{1}^{(\nu)}, \dots, \sum_{1}^{p-1} \alpha_{p}^{(\nu)}\right) \equiv \left(-\sum_{p}^{2p-2} \alpha_{1}^{(\nu)}, \dots, -\sum_{p}^{2p-2} \alpha_{p}^{(\nu)}\right)$$

und folglich

$$\left(\sum_{1}^{2p-2} \alpha_{1}^{(\nu)}, \dots, \sum_{1}^{2p-2} \alpha_{p}^{(\nu)}\right) \equiv (0, \dots, 0)$$

ist. Die Lage der p-1 letzten Punkte hängt dann von der Lage der p-1 ersten so ab, dass bei beliebiger stetiger Aenderung derselben $\sum_{1}^{2p-2} d\alpha_{\pi}^{(\nu)} = 0$ für $\pi = 1, 2, \ldots, p$, und folglich sind (§. 16) die Punkte η solche 2p-2 Punkte, für welche ein dw unendlich klein von der zweiten Ordnung wird, oder wenn man den Werth des Grössenpaars (s, z) im Punkte η_{ν} durch $(\sigma_{\nu}, \zeta_{\nu})$ bezeichnet, so sind $(\sigma_{1}, \zeta_{1}), \ldots, (\sigma_{2p-2}, \zeta_{2p-2})$ durch die Gleichung $\varphi = 0$ verknüpfte Werthenpaare (§. 16).

Bei den hier gewählten Anfangswerthen der Integrale u wird also

$$\left(\sum_{1}^{2p-2} u_1^{(\nu)}, \dots, \sum_{1}^{2p-2} u_p^{(\nu)}\right) \equiv (0, \dots, 0),$$

wenn die Summationen über sämmtliche von den Grössenpaaren $(\gamma_{\varrho}, \delta_{\varrho})$ (§. 6) verschiedene gemeinschaftliche Wurzeln der Gleichung F = 0 und der Gleichung $c_1\varphi_1 + c_2\varphi_2 + \cdots + c_p\varphi_p = 0$ erstreckt werden, wobei die constanten Grössen c beliebig sind.

Sind $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$ m Punkte, für welche eine rationale Function ξ von s und z, die m mal unendlich von der ersten Ordnung wird, denselben Werth annimmt, und $u_{\pi}^{(\mu)}$, s_{μ} , z_{μ} die Werthe von u_{π} , s, z im Punkte ε_{μ} , so ist (§. 15) $(\sum_{1}^{m} u_{1}^{(\mu)}, \sum_{1}^{m} u_{2}^{(\mu)}, \ldots, \sum_{1}^{m} u_{p}^{(\mu)})$ congruent einem constanten, d. h. vom Werthe der Grösse ξ unabhängigen Grössensysteme $(b_{1}, b_{2}, \ldots, b_{p})$, und es

kann dann für jede beliebige Lage eines Punktes ε die Lage der übrigen so bestimmt werden, dass

$$\left(\sum_{1}^{m} u_{1}^{(\mu)}, \dots, \sum_{1}^{m} u_{p}^{(\mu)}\right) \equiv (b_{1}, \dots, b_{p}).$$

Man kann daher, wenn m = p, $(u_1 - b_1, \dots, u_p - b_p)$ und, wenn m < p,

$$\left(u_1 - \sum_{1}^{p-m} \alpha_1^{(\nu)} - b_1, \dots, u_p - \sum_{1}^{p-m} \alpha_p^{(\nu)} - b_p\right)$$

für jede beliebige Lage des Punktes (s,z) und der p-m Punkte η auf die Form $(-\sum\limits_{1}^{p-1}\alpha_{1}^{(\nu)},\ldots,-\sum\limits_{1}^{p-1}\alpha_{p}^{(\nu)})$ bringen, indem man einen der Punkte ε mit (s,z) zusammenfallen lässt, und folglich ist

$$\vartheta\left(u_1 - \sum_{1}^{p-m} \alpha_1^{(\nu)} - b_1, \dots, u_p - \sum_{1}^{p-m} \alpha_p^{(\nu)} - b_p\right)$$

für jedwede Werthe des Grössenpaars (s, z) und der p-m Grössenpaare $(\sigma_{\nu}, \zeta_{\nu})$ gleich 0.

24.

Aus der Untersuchung des §. 22 folgt als Corollar, dass ein beliebig gegebenes Grössensystem (e_1,\ldots,e_p) immer einem und nur einem Grössensysteme von der Form $(\sum_{1}^{p}\alpha_{1}^{(\nu)},\ldots,\sum_{1}^{p}\alpha_{p}^{(\nu)})$ congruent ist, wenn die Function $\vartheta(u_1-e_1,\ldots,u_p-e_p)$ nicht identisch verschwindet; denn es müssen dann die Punkte η die p Punkte sein, für welche diese Function 0 wird. Wenn aber $\vartheta(u_1^{(p)}-e_1,\ldots,u_p^{(p)}-e_p)$ für jeden Werth von (s_p,z_p) verschwindet, so lässt sich

$$(u_1^{(p)} - e_1, \dots, u_p^{(p)} - e_p) \equiv \left(-\sum_{1}^{p-1} u_1^{(\nu)}, \dots, -\sum_{1}^{p-1} u_p^{(\nu)}\right)$$

setzen (§. 23), und es lassen sich also für jeden Werth des Grössenpaars (s_p, z_p) die Grössenpaare $(s_1, z_1), \ldots, (s_{p-1}, z_{p-1})$ so bestimmen, dass

$$\left(\sum_{1}^{p} u_{1}^{(\nu)}, \dots, \sum_{1}^{p} u_{p}^{(\nu)}\right) \equiv (e_{1}, \dots, e_{p}),$$

und folglich, bei stetiger Aenderung von (s_p, z_p) , $\sum_{1}^{p} du_{\pi}^{(\nu)} = 0$ ist für $\pi = 1, 2, \ldots, p$. Die p Grössenpaare (s_{ν}, z_{ν}) sind daher p von den Grössenpaaren

 $(\gamma_{\varrho}, \delta_{\varrho})$ verschiedene Wurzeln einer Gleichung $\varphi = 0$, deren Coefficienten so sich ändern, dass die übrigen p-2 Wurzeln constant bleiben. Bezeichnet man die Werthe von u_{π} für diese p-2 Werthenpaare von s und z durch $u_{\pi}^{(p+1)}, u_{\pi}^{(p+2)}, \ldots, u_{\pi}^{(2p-2)}$, so ist

$$\left(\sum_{1}^{2p-2} u_1^{(\nu)}, \dots, \sum_{1}^{2p-2} u_p^{(\nu)}\right) \equiv (0, \dots, 0),$$

und folglich

$$(e_1, \dots, e_p) \equiv \left(-\sum_{p+1}^{2p-2} u_1^{(\nu)}, \dots, -\sum_{p+1}^{2p-2} u_p^{(\nu)}\right).$$

Umgekehrt ist, wenn diese Congruenz stattfindet,

$$\vartheta(u_1^{(p)} - e_1, \dots, u_p^{(p)} - e_p) = \vartheta\left(\sum_{p=2}^{2p-2} u_1^{(\nu)}, \dots, \sum_{p=2}^{2p-2} u_p^{(\nu)}\right) = 0.$$

Ein beliebig gegebenes Grössensystem (e_1, \ldots, e_p) ist also nur einem Grössensystem von der Form $(\sum_{1}^{p} \alpha_1^{(\nu)}, \ldots, \sum_{1}^{p} \alpha_p^{(\nu)})$ congruent, wenn es nicht einem Grössensysteme von der Form $(-\sum_{1}^{p-2} \alpha_1^{(\nu)}, \ldots, -\sum_{1}^{p-2} \alpha_p^{(\nu)})$ congruent ist, und unendlich vielen, wenn dieses stattfindet.

Da

$$\vartheta\left(u_{1}-\sum_{1}^{p}\alpha_{1}^{(\mu)},\ldots,u_{p}-\sum_{1}^{p}\alpha_{p}^{(\mu)}\right)=\vartheta\left(\sum_{1}^{p}\alpha_{1}^{(\mu)}-u_{1},\ldots,\sum_{1}^{p}\alpha_{p}^{(\mu)}-u_{p}\right),$$

so ist ϑ eine ganz ähnliche Function wie von (s,z) auch von jedem der p Grössenpaare $(\sigma_{\mu}, \zeta_{\mu})$. Diese Function von $(\sigma_{\mu}, \zeta_{\mu})$ wird = 0 für das Werthenpaar (s,z) und für die den übrigen p-1 Grössenpaaren (σ,ζ) durch die Gleichung $\varphi=0$ verknüpften p-1 Punkte. Denn bezeichnet man den Werth von u_{π} in diesen Punkten mit $\beta_{\pi}^{(1)}, \beta_{\pi}^{(2)}, \ldots, \beta_{\pi}^{(p-1)}$, so ist

$$\left(\sum_{1}^{p} \alpha_{1}^{(\mu)}, \dots, \sum_{1}^{p} \alpha_{p}^{(\mu)}\right) \equiv \left(\alpha_{1}^{(\mu)} - \sum_{1}^{p-1} \beta_{1}^{(\nu)}, \dots, \alpha_{p}^{(\mu)} - \sum_{1}^{p-1} \beta_{p}^{(\nu)}\right)$$

und folglich $\vartheta=0$, wenn η_{μ} mit einem dieser Punkte oder mit dem Punkte (s,z) zusammenfällt.

Aus den bisher entwickelten Eigenschaften der Function ϑ ergiebt sich der Ausdruck von $\log \vartheta$ durch Integrale algebraischer Functionen von (s, z), $(\sigma_1, \zeta_1), \ldots, (\sigma_p, \zeta_p)$.

Die Grösse

$$\log \vartheta \left(u_1^{(2)} - \sum_{1}^{p} \alpha_1^{(\mu)}, \ldots \right) - \log \vartheta \left(u_1^{(1)} - \sum_{1}^{p} \alpha_1^{(\mu)}, \ldots \right)$$

ist, als Function von $(\sigma_{\mu}, \zeta_{\mu})$ betrachtet, eine Function von der Lage des Punkts η_{μ} , welche im Punkte ε_1 , wie $-\log(\zeta_{\mu}-z_1)$, im Punkte ε_2 , wie $\log(\zeta_{\mu}-z_1)$ z_2) unstetig wird und auf der positiven Seite einer von ε_1 nach ε_2 zu ziehenden Linie um $2\pi i$, auf der positiven Seite der Linie b_{ν} um $2(u_{\nu}^{(1)}-u_{\nu}^{(2)})$ grösser ist, als auf der negativen, ausser den Linien b und der Verbindungslinie von ε_1 und ε_2 aber allenthalben stetig bleibt. Bezeichnet nun $\varpi^{(\mu)}(\varepsilon_1, \varepsilon_2)$ irgend eine Function von $(\sigma_{\mu}, \zeta_{\mu})$, welche ausser den Linien b ebenso unstetig ist und auf der einen Seite einer solchen Linie ebenfalls um eine Constante grösser ist, als auf der andern, so unterscheidet sie sich (§. 3) von dieser nur um eine von $(\sigma_{\mu}, \zeta_{\mu})$ unabhängige Grösse, und folglich ist sie von $\sum_{1}^{p} \varpi^{(\mu)}(\varepsilon_{1}, \varepsilon_{2})$ nur um eine von sämmtlichen Grössen (σ, ζ) unabhängige und also bloss von (s_1, z_1) und (s_2, z_2) abhängende Grösse verschieden. $\varpi^{(\mu)}(\varepsilon_1, \varepsilon_2)$ drückt den Werth einer Function $\varpi(\varepsilon_1, \varepsilon_2)$ des §. 4 für $(s, z) = (\sigma_\mu, \zeta_\mu)$ aus, deren Periodicitätsmoduln an den Schnitten a gleich 0 sind. Aendert man diese Function um die Constante c, so ändert sich $\sum_{n=0}^{\infty} \varpi^{(\mu)}(\varepsilon_1, \varepsilon_2)$ um pc; man kann daher, wie für die Folge geschehen soll, die additive Constante in der Function $\varpi(\varepsilon_1, \varepsilon_2)$ oder den Anfangswerth in dem sie darstellenden Integrale dritter Gattung so bestimmen, dass

$$\log \vartheta^{(2)} - \log \vartheta^{(1)} = \sum_{1}^{p} \varpi^{(\mu)}(\varepsilon_1, \varepsilon_2).$$

Da ϑ von jedem der Grössenpaare (σ, ζ) auf ähnliche Art, wie von (s, z) abhängt, so kann die Aenderung von $\log \vartheta$, wenn irgend eins der Grössenpaare $(s, z), (\sigma_1, \zeta_1), \ldots, (\sigma_p, \zeta_p)$ eine endliche Aenderung erleidet, während die übrigen constant bleiben, durch eine Summe von Functionen ϖ ausgedrückt werden. Offenbar kann man also, indem man nach und nach die einzelnen Grössenpaare $(s, z), (\sigma_1, \zeta_1), \ldots, (\sigma_p, \zeta_p)$ ändert, $\log \vartheta$ ausdrücken durch eine Summe von Functionen ϖ und $\log \vartheta(0, 0, \ldots, 0)$ oder den Werth von $\log \vartheta$ für ein beliebiges anderes Werthensystem. Die Bestimmung von $\log \vartheta(0, 0, \ldots, 0)$ als Function der 3p-3 Moduln des System rationaler Function von s und z

(§. 12) erfordert ähnliche Betrachtungen, wie sie von Jacobi in seinen Arbeiten über elliptische Functionen zur Bestimmung von $\Theta(0)$ angewandt worden sind. Man kann dazu gelangen, indem man mit Hülfe der Gleichungen

$$4\frac{\partial \vartheta}{\partial a_{\mu,\mu}} = \frac{\partial^2 \vartheta}{\partial v_{\mu}^2} \quad \text{ und } \quad 2\frac{\partial \vartheta}{\partial a_{\mu,\mu'}} = \frac{\partial^2 \vartheta}{\partial v_{\mu} \, \partial v_{\mu'}},$$

wenn μ von μ' verschieden ist, die Differentialquotienten von $\log \vartheta$ nach den Grössen a in

 $d\log\vartheta = \sum \frac{\partial \log\vartheta}{\partial a_{\mu,\mu'}} da_{\mu,\mu'}$

durch Integrale algebraischer Functionen ausdrückt. Für die Ausführung dieser Rechnung scheint jedoch eine ausführlichere Theorie der Functionen, welche einer linearen Differentialgleichung mit algebraischen Coefficienten genügen, nöthig, die ich nach den hier angewandten Principien nächstens zu liefern beabsichtige.

Ist (s_2, z_2) unendlich wenig von (s_1, z_1) verschieden, so geht $\varpi(\varepsilon_1, \varepsilon_2)$ über in $\partial z_1 t(\varepsilon_1)$, worin $t(\varepsilon_1)$ ein Integral zweiter Gattung einer rationaler Function von s und z ist, welches in ε_1 wie $\frac{1}{z-z_1}$ unstetig wird und an den Schnitten a den Periodicitätmodul 0 hat; und es ergiebt sich, dass der Periodicitätsmodul eines solchen Integrals an dem Schnitte b_{ν} gleich $2\frac{\partial u_{\nu}^{(1)}}{\partial z_1}$ ist und die Integrationsconstante sich so bestimmen lässt, dass die Summe der Werthe von $t(\varepsilon_1)$ für die p Werthenpaare $(\sigma_1, \zeta_1), \ldots, (\sigma_p, \zeta_p)$ gleich $\frac{\partial \log \vartheta^{(1)}}{\partial z_1}$

wird. Es ist dann $\frac{\partial \log \vartheta^{(1)}}{\partial \zeta_{\mu}}$ gleich der Summe der Werthe von $t(\eta_{\nu})$ für die den p-1 von $(\sigma_{\mu}, \zeta_{\mu})$ verschiedenen Grössenpaaren (σ, ζ) durch die Gleichung $\varphi = 0$ verknüpften p-1 Werthenpaare und für das Werthenpaar (s, z), und man erhält für

$$\frac{\partial \log \vartheta^{(1)}}{\partial z_1} dz_1 + \sum_{1}^{p} \frac{\partial \log \vartheta^{(1)}}{\partial \zeta_{\mu}} d\zeta_{\mu} = d \log \vartheta^{(1)},$$

einen Ausdruck, welchen Weierstrass für den Fall, wenn s nur eine zweiwerthige Function von z ist, gegeben hat (d. J. Bd. 47 S. 300 Form. 35).

Die Eigenschaften von $\varpi(\varepsilon_1, \varepsilon_2)$ und $t(\varepsilon_1)$ als Functionen von (s_1, z_1) und (s_2, z_2) ergeben sich aus den Gleichungen

$$\varpi(\varepsilon_1, \varepsilon_2) = \frac{1}{p} \left(\log \vartheta(u_1^{(2)} - pu_1, \ldots) - \log \vartheta(u_1^{(1)} - pu_1, \ldots) \right)$$

und

$$t(\varepsilon_1) = \frac{1}{p} \frac{\partial \log \vartheta(u_1^{(1)} - pu_1, \ldots)}{\partial z_1},$$

welche in den obigen Ausdrücken für $\log \vartheta^{(2)} - \log \vartheta^{(1)}$ und $\frac{\partial \log \vartheta^{(1)}}{\partial z_1}$ als specielle Fälle enthalten sind.

26.

Es soll jetzt die Aufgabe behandelt werden, algebraische Functionen von z als Quotienten zweier Producte von gleichvielen Functionen $\vartheta(u_1 - e_1, \ldots,)$ und Potenzen der Grössen e^u darzustellen.

Ein solcher Ausdruck erlangt bei den Uebergängen von (s,z) über die Querschnitte constante Factoren, und diese müssen Wurzeln der Einheit sein, wenn er algebraisch von z abhängen und also bei stetiger Fortsetzung für dasselbe z nur eine endliche Anzahl von Werthen annehmen soll. Sind alle diese Factoren μ te Wurzeln der Einheit, so ist die μ te Potenz des Ausdrucks eine einwerthige und folglich rationale Function von s und z.

Umgekehrt lässt sich leicht zeigen, dass jede algebraische Function r von z, die innerhalb der ganzen Fläche T' stetig fortgesetzt, allenthalben nur einen bestimmten Werth annimmt und beim Ueberschreiten eines Querschnitts einen constanten Factor erlangt, sich auf mannigfaltige Art als Quotient zweier Producte von ϑ -Functionen und Potenzen der Grössen e^u ausdrücken lässt. Man bezeichne einen Werth von u_μ für $r=\infty$ durch β_μ und für r=0 durch γ_μ und nehme $\log r$, indem man von jedem Punkte, wo r unendlich von der ersten Ordnung wird, nach je einem Punkte, wo r unendlich klein von der ersten Ordnung wird, eine Linie durch das Innere von T' zieht, ausser diesen Linien in T' allenthalben stetig an. Ist dann $\log r$ auf der positiven Seite der Linie a_ν um $-h_\nu$ $2\pi i$ grösser, als auf der negativen, so ergiebt sich durch die Betrachtung des Begrenzungsintegrals $\int \log r \, du_\mu$

$$\sum \gamma_{\mu} - \sum \beta_{\mu} = g_{\mu} \pi i + \sum_{\nu} h_{\nu} a_{\mu,\nu}$$

für $\mu = 1, 2, ..., p$, worin g_{ν} und h_{ν} nach dem oben Bemerkten rationale Zahlen sein müssen und die Summen auf der linken Seite der Gleichung über sämmtliche Punkte, wo r unendlich klein oder unendlich gross von der ersten Ordnung wird, auszudehnen sind, indem man einen Punkt, wo r unendlich klein oder unendlich gross von einer höheren Ordnung wird, als aus mehreren solchen Punkten bestehend betrachtet (§. 2). Wenn diese Punkte bis auf p gegeben sind, so lassen sich diese p immer und, allgemein zu reden, nur

auf eine Weise so bestimmen, dass die 2p Factoren $e^{g_{\nu} 2\pi i}$, $e^{-h_{\nu} 2\pi i}$, gegebene Werthe annehmen (§§. 15, 24).

Wenn man nun in dem Ausdrucke

$$\frac{P}{Q}e^{-2\sum h_{\nu}u_{\nu}},$$

worin P und Q Producte von gleichvielen Functionen $\vartheta(u_1 - \sum \alpha_1^{(\pi)}, \ldots)$ mit demselben (s, z) und verschiedenen (σ, ζ) sind, die Werthenpaare von s und z für welche r unendlich wird, für Grössenpaare (σ,ζ) in den ϑ -Functionen des Nenners und die Werthenpaare, für welche r verschwindet, für Grössenpaare (σ, ζ) in den ϑ -Functionen des Zählers substituirt und die übrigen Grössenpaare (σ, ζ) im Nenner und im Zähler gleich annimmt, so stimmt der Logarithme dieses Ausdrucks in Bezug auf die Unstetigkeiten im Innern von T' mit $\log r$ überein, und ändert sich beim Ueberschreiten der Linien a und b, wie $\log r$, nur um rein imaginäre längs diesen Linien constante Grössen; er unterscheidet sich also von log r nach dem Dirichlet'schen Princip nur um eine Constante und der Ausdruck selbst von r nur durch einen constanten Factor. Bei dieser Substitution darf selbstredend keine der ϑ -Functionen identisch, für jeden Werth von z, verschwinden. Dieses würde geschehen (§. 23), wenn sämmtliche Werthenpaare, für welche eine einwerthige Function von (s,z) verschwindet, für Grössenpaare (σ,ζ) in einer und derselben ϑ -Function substituirt würden.

27.

Als Quotient zweier ϑ -Functionen, multiplicirt mit Potenzen der Grössen e^u , lässt sich demnach eine einwerthige oder rationale Function von (s,z) nicht darstellen. Alle Functionen r aber, die für dasselbe Werthenpaar von s und z mehrere Werthe annehmen und nur für p oder weniger Werthenpaare unendlich von der ersten Ordnung werden, sind in dieser Form darstellbar und umfassen alle in dieser Form darstellbaren algebraischen Functionen von z. Man erhält, abgesehen von einem constanten Factor, jede und jede nur einmal, wenn man in

$$\frac{\vartheta(v_1 - g_1\pi i - \sum_{\nu} h_{\nu} a_{1,\nu}, \ldots)}{\vartheta(v_1, \ldots, v_p)} e^{-2\sum_{\nu} v_{\nu} h_{\nu}}$$

für h_{ν} und g_{ν} rationale ächte Brüche und $u_{\nu} - \sum_{1}^{p} \alpha_{\nu}^{(\mu)}$ für v_{ν} setzt.

Diese Grösse ist zugleich eine algebraische Function von jeder der Grössen ζ und die (im vor. §.) entwickelten Principien reichen völlig hin, um sie durch die Grössen $z, \zeta_1, \ldots, \zeta_p$ algebraisch auszudrücken.

In der That: Als Function von (s, z) nimmt sie, durch die ganze Fläche T' stetig fortgesetzt, allenthalben einen bestimmten Werth an, wird unendlich von der ersten Ordnung für die Werthenpaare $(\sigma_1, \zeta_1), \ldots, (\sigma_p, \zeta_p)$ und erlangt an dem Schnitte a_{ν} beim Uebergange von der positiven zur negativen Seite den Factor $e^{h_{\nu} 2\pi i}$, an dem Schnitte b_{ν} den Factor $e^{-g_{\nu} 2\pi i}$; und jede andere dieselben Bedingungen erfüllende Function von (s, z) unterscheidet sich von ihr nur durch einen von (s, z) unabhängigen Factor. Als Function von $(\sigma_{\mu}, \zeta_{\mu})$ nimmt sie, durch die ganze Fläche T' stetig fortgesetzt, allenthalben einen bestimmten Werth an, wird unendlich von der ersten Ordnung für das Werthenpaar (s, z) und für die den übrigen p-1 Grössenpaaren (σ, ζ) durch die Gleichung $\varphi=0$ verknüpften p-1 Werthenpaare $(\sigma_1^{(\mu)}, \zeta_1^{(\mu)}), \ldots (\sigma_{p-1}^{(\mu)}, \zeta_{p-1}^{(\mu)})$ und erlangt an dem Schnitte a_{ν} den Factor $e^{g_{\nu} 2\pi i}$; und jede andere dieselben Bedingungen erfüllende Function von $(\sigma_{\mu}, \zeta_{\mu})$ unterscheidet sich von ihr nur durch einen von $(\sigma_{\mu}, \zeta_{\mu})$ unabhängigen Factor. Bestimmt man also eine algebraische Function von $z, \zeta_1, \ldots, \zeta_p$

$$f((s,z); (\sigma_1,\zeta_1),\ldots, (\sigma_p,\zeta_p))$$

so, dass sie als Function von jeder dieser Grössen dieselben Eigenschaften besitzt, so unterscheidet sie sich von dieser nur durch einen von sämmtlichen Grössen $z, \zeta_1, \ldots, \zeta_p$ unabhängigen Factor und wird also = Af, wenn A diesen Factor bezeichnet. Um diesen Factor zu bestimmen, drücke man in f die von $(\sigma_{\mu}, \zeta_{\mu})$ verschiedenen Grössenpaare (σ, ζ) durch $(\sigma_1^{(\mu)}, \zeta_1^{(\mu)}), \ldots, (\sigma_{p-1}^{(\mu)}, \zeta_{p-1}^{(\mu)})$ aus, wodurch er in

$$g((\sigma_{\mu}, \zeta_{\mu}); (s, z), (\sigma_{1}^{(\mu)}, \zeta_{1}^{(\mu)}), \dots, (\sigma_{p-1}^{(\mu)}, \zeta_{p-1}^{(\mu)}))$$

übergehe; offenbar erhält man dann den inversen Werth der dazustellenden Function und also einen Ausdruck, welcher $=\frac{1}{Af}$ sein muss, wenn man in Ag für $(\sigma_{\mu},\zeta_{\mu})$ das Grossenpaar (s,z) und für die Grössenpaare (s,z), $(\sigma_{1}^{(\mu)},\zeta_{1}^{(\mu)}),\ldots,(\sigma_{p-1}^{(\mu)},\zeta_{p-1}^{(\mu)})$ die Werthenpaare von (s,z) substituirt, für welche die darzustellende Function und also f=0 wird. Hieraus ergiebt sich A^{2} und also A bis auf das Vorzeichen, welches durch directe Betrachtung der ϑ -Reihen in dem darzustellenden Ausdrucke gefunden werden kann.

Göttingen, 1857.