Работа 2 **Моделирование работы многоканальной системы пе**редачи с частотным разделением каналов (МСП с ЧРК)

Порядок выполнения работы

1. Установите амплитуды частотных составляющих первичного сигнала, частоту первой частотной составляющей первичного сигнала F1 и шаг приращения частоты df в соответствии с заданием (табл. 1).

Таблица 1.

№ варианта	A_1	A_2	A_3	A_4	A_5	A_6	A_7	F1, кГц	df, кГц
0	0,05	0,10	0,15	0,20	0,25	0,30	0	1	1
1	0,10	0,15	0,20	0,25	0,05	0,30	0	2	1
2	0,15	0,20	0,25	0,05	0,10	0,30	0	3	1
3	0,20	0,25	0,05	0,10	0,15	0,30	0	1	2
4	0,25	0,05	0,10	0,15	0,20	0,30	0	2	2
5	0,15	0,25	0,10	0,20	0,05	0,30	0	3	2
6	0,05	0,15	0,25	0,10	0,20	0,30	0	1	3
7	0,20	0,05	0,15	0,25	0,10	0,30	0	2	3
8	0,10	0,20	0,05	0,15	0,25	0,30	0	3	3

Рассчитайте частоты всех составляющих первичного сигнала, заполните табл. 2 и зафиксируйте форму первичного сигнала и его спектр.

Таблица 2.

№ варианта							
i	1	2	3	4	5	6	7
$F_{ m i}$, к Γ ц							
A_{i}							

2. Установите вид модуляции **АМ-ДБП** и частоту сигнала-переносчика (несущего колебания) первого канала в соответствии с заданием (табл. 3).

Таблица 3.

№ варианта	0	1	2	3	4	5	6	7	8
f _c 1, кГц	32	16	20	26	28	30	36	38	40

Рассчитайте частоты несущих колебаний во 2-м и 3-м канале. Расстояние между несущими соседних каналов $\Delta F_{\rm H}$ принять равными ширине спектра канального сигнала $\Delta F_{\rm K}+1$ к Γ ц. Максимальной частотой первичного сигнала считать частоту F_6 . Определите диапазоны частот, занимаемые каждым канальным сигналом ($F_{\rm k}i_{\rm min}\div F_{\rm k}i_{\rm max}$). Заполните табл. 4.

Таблица 4 АМ-ДБП.

№ варианта	$\Delta F_{\scriptscriptstyle m K}$	$\Delta F_{\scriptscriptstyle m H}$	f _c 1	f _c 2	f_c3	$F_{\kappa}1_{\min}\div F_{\kappa}1_{\max}$	$F_{\kappa}2_{\min}\div F_{\kappa}2_{\max}$	$F_{\kappa}2_{\min}\div F_{\kappa}2_{\max}$

Установите частоты несущих колебаний второго и третьего каналов в соответствии с расчётами (табл. 4).

Установите одинаковую длину оси частот на спектрограммах сигналапереносчика, модулированного и канального сигналов такой, чтобы модулированный сигнал на спектрограмме **третьего** канала отображался полностью¹.

¹ Спектр сигнала должен занимать не менее 2/3 поля.

Зафиксируйте форму и спектр сигнала-переносчика, модулированного и канального сигналов всех трёх каналов.

3. Подключите источники всех трёх первичных сигналов.

Установите одинаковую длину оси частот на спектрограммах группового сигнала, демодулированного и принимаемого сигналов такой, чтобы демодулированный сигнал на спектрограмме **первого** канала отображался полностью.

Зафиксируйте форму и спектр группового сигнала, а также форму и спектр демодулированных и принимаемых сигналов всех трёх каналов².

Оцените искажения принимаемых сигналов.

4. Отключите источник второго первичного сигнала.

Зафиксируйте спектр группового сигнала и демодулированного сигнала второго канала, убедитесь, что на выходе второго канала сигнал отсутствует.

Установите амплитуду $A_7 = 0.5$. Зафиксируйте:

- а) форму и спектр первичного сигнала;
- б) спектры группового сигнала и демодулированного сигнала второго канала;
- в) спектр и форму принимаемого сигнала второго канала.

Объясните появление помех на выходе второго канала и рассчитайте их частоты. Результаты занесите в табл. 5

Таблица 5.

$N_{\underline{0}}$	$N_{\underline{0}}$	№ влияющего	Механизм образования помехи	Частота
варианта	Π/Π	канала	мсханизм образования помсхи	помехи, кГц
	1			
	2			

5. Установите амплитуду $A_7 = 0$. Установите вид модуляции **АМ-ОБП**.

Рассчитайте частоты несущих колебаний во 2-м и 3-м канале. Расстояние между несущими соседних каналов $\Delta F_{\rm H}$ принять равными ширине спектра канального сигнала $\Delta F_{\rm K}+1$ к Γ ц. Максимальной частотой первичного сигнала считать частоту F_6 . Определите диапазоны частот, занимаемые каждым канальным сигналом ($F_{\rm k}i_{\rm min}\div F_{\rm k}i_{\rm max}$) при использовании нижней боковой полосы частот. Заполните табл. 6.

Таблица 6 АМ-ОБП.

№ варианта	$\Delta F_{\scriptscriptstyle m K}$	$\Delta F_{\scriptscriptstyle m H}$	$f_c 1$	$f_c 2$	f_c3	$F_{\kappa}1_{\min}\div F_{\kappa}1_{\max}$	$F_{\kappa}2_{\min}\div F_{\kappa}2_{\max}$	$F_{\kappa}2_{\min}\div F_{\kappa}2_{\max}$

Установите частоты несущих колебаний второго и третьего каналов в соответствии с расчётами (табл. 5).

На спектрограмме модулированного сигнала включите отображение характеристики канального фильтра Fk, заменив множитель 0 на 1.

Установите одинаковую длину оси частот на спектрограммах сигналапереносчика, модулированного и канального сигналов такой, чтобы модулированный сигнал на спектрограмме **третьего** канала отображался полностью.

 $^{^2}$ Форму и спектр принимаемых сигналов следует фиксировать вместе с таблицей $SpoF^T$ и значениями A^T , расположенными ниже их.

Зафиксируйте форму и спектр сигнала-переносчика, модулированного и канального сигналов всех трёх каналов.

6. Подключите источники всех трёх первичных сигналов. На спектрограмме группового сигнала включите отображение характеристики канального фильтра Fk, заменив множитель 0 на 1.

Установите одинаковую длину оси частот на спектрограммах группового сигнала, демодулированного и принимаемого сигналов такой, чтобы демодулированный сигнал на спектрограмме **второго** канала отображался полностью.

Зафиксируйте форму и спектр группового сигнала. Зафиксируйте спектр демодулированного, а также форму и спектр принимаемых сигналов всех трёх каналов.

Оцените искажения принимаемых сигналов.

7. Отключите источник второго первичного сигнала. Зафиксируйте спектр группового сигнала и демодулированного сигнала второго канала, убедитесь, что на выходе второго канала сигнал отсутствует.

Установите амплитуду $A_7 = 0.5$.

Зафиксируйте спектры группового сигнала и демодулированного сигнала второго канала, убедитесь, что на выходе второго канала сигнал отсутствует.

Объясните отсутствие помех на выходе второго канала.

8. Подключите источник второго первичного сигнала.

Установите амплитуду $A_7 = 0$, остальные амплитуды равными 0,5 и зафиксируйте форму первичного сигнала и его спектр.

Выберите вид искажений «Линейные искажения».

Установите одинаковую длину оси частот на спектрограммах группового сигнала, демодулированного и принимаемого сигналов такой, чтобы групповой сигнал на спектрограмме отображался полностью.

Зафиксируйте форму и спектр группового сигнала. Зафиксируйте спектр демодулированного, а также форму и спектр принимаемых сигналов всех трёх каналов.

Сравните уровень искажений принимаемых сигналов во всех трёх каналах, рассчитав отношение $SpF(F_6)$ к $SpF(F_i)$.

Таблица 7.

№ варианта							
№ канала	1 канал		2 ка	анал	3 канал		
i	1	6	1	6	1	6	
F_i (к Γ ц)							
$SpF(F_i)$							
$\frac{\operatorname{SpF}(F_6)}{\operatorname{SpF}(F_i)}$							
$SpF(F_{\underline{i}})$							

9. Отключите источник первого первичного сигнала (два других источника остаются подключёнными) и зафиксируйте спектр группового сигнала. Сделайте вывод о наличии или отсутствии переходных помех в канале.

Повторите эти действия с остальными каналами.

По окончании подключите все источники первичных сигналов.

10. Измерьте амплитуды сигналов с частотой F_4 на выходах всех трёх каналов и рассчитайте снижение помехозащищённости во втором и третьем каналах по сравнению с помехозащищённостью в первом³. Результаты занесите в табл. 8

 $\Delta A_{3k} = A_{31} - A_{3k}$ $A_{3i} = 20 \text{Lg}(U_{\text{c}i}/U_{\Pi})$, где

 $U_{\rm c}$ *i*, $U_{\rm п}$ — действующие (эффективные) напряжения сигнала и помехи;

			таолица в.
№ варианта		$F_4=$	(кГц)
i	1 канал	2 канал	3 канал
$F_{\kappa i}$ (к Γ ц)			
$SpF(F_4)$			
ΔA_3 (дБ)	0		

 $F_{\kappa i}$ – частота канального сигнала.

Дайте оценку полученным результатам.

11. Отключите вид искажений «Линейные искажения» и выберите «Нелинейные искажения». Установите амплитуды с A_2 по A_5 равными нулю, оставив $A_1 = A_6 = 0,5$. Зафиксируйте спектры, частоты и амплитуды составляющих сигналов на выходах каналов.

Оцените полученные результаты.

12. Для количественной оценки влияния нелинейных искажений на качество передачи проведите измерение защищённости принимаемого сигнала от помех нелинейного происхождения в канале, подверженном влиянию. Номер подверженного влиянию канала указан в табл. 9. Оставшиеся каналы — влияющие.

Таблица 9.

№ варианта	0	1	2	3	4	5	6	7	8
№ подверженного	1	2	3	1	2	3	1	2	3
влиянию канала									_

Оставьте подключённым только источник первичного сигнала канала, подверженного влиянию.

Зафиксируйте спектры группового сигнала и принимаемого сигнала в канале, подверженном влиянию. Зафиксируйте частоты и амплитуды составляющих сигналов на выходе канала, подверженного влиянию.

Занесите в табл. 10 значения частот и амплитуд составляющих принимаемого сигнала в канале, подверженном влиянию.

Отключите источник первичного сигнала канала, подверженного влиянию, и подключите источники во влияющих каналах.

Зафиксируйте спектры группового сигнала и принимаемого сигнала в канале, подверженном влиянию. Зафиксируйте частоты и амплитуды составляющих сигналов на выходе канала, подверженного влиянию.

Занесите в табл. 10 значения частот и амплитуд помех в канале, подверженном влиянию.

³ Все выполняемые расчёты следует привести в отчёте.

Значения действующих напряжений сигнала и помех рассчитываются по формуле:

$$U_{9\phi\phi} = \sqrt{\frac{\sum_{n} U_{n}^{2}}{2}}$$

Таблица 10.

№ варианта										
	Составл	іяющие	Полему ченичения							
	принимаем	ого сигнала	Помехи нелинейности							
n	1	2	1	2	3	•••	N			
F , к Γ ц										
SpF(F)										
$U_{ m o \phi \phi}$										
$A_{\scriptscriptstyle \mathrm{3H}}$, д F						_				

Рассчитайте защищённость сигнала от помех нелинейного происхождения $A_{\scriptscriptstyle 3\mathrm{H}}.$

По результатам выполнения п.п. 8-12 сделайте вывод о влиянии линейных и нелинейных искажений на качество передачи сигналов в МСП с ЧРК.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чём заключается принцип частотного разделения каналов?
- 2. Назовите основные достоинства и недостатки использования метода амплитудной модуляции по сравнению с методами угловой модуляции при формировании канальных сигналов в аппаратуре МСП с ЧРК.
- 3. Сравните ДБП и ОБП методы передачи сигналов с амплитудной модуляцией. Назовите их достоинства и недостатки.
- 4. Как влияют линейные искажения, возникающие в групповом линейном тракте, на качество связи?
- 5. Как влияют нелинейные искажения, возникающие в групповом линейном тракте, на качество связи?
- 6. Как влияет на качество связи сдвиг частот сигнала при передаче по каналам из-за асинхронности генераторов несущих частот мультиплексора и демультиплексора?