Berechenbarkeit und formale Sprachen

Felix Leitl

26. März 2024

Inhaltsverzeichnis

Turingmaschine	2
1-Band TM	2
Deltatabelle	2
Konfiguration	2
Begriffe	3
Programmiertechniken	3
Endlicher Speicher	3
Unterprogramme	3
Spurtechnik	3
Gödelnummer	3
Universelle TM	3
Halteproblem	4
Allgemeines Halteproblem	4
Initiales Halteproblem	4
Reduktion	4
$L_1 \leq L_2$	4

Turingmaschine

1-Band TM

Turingmaschine $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$:

- \bullet Q: endliche Zustandsmenge
- Σ : endliches Eingabealphabet
- Γ : endliches Bandalphabet $\Sigma \subsetneq \Gamma$
- B: Blank, $B \in \Gamma, B \notin \Sigma$
- $q_0: q_0 \in Q$ Startzustand
- F: akzeptierende Endzustände, $F \subseteq Q$
- das Programm $\delta: Q \times \Gamma \to Q \times \Gamma \times \{R, L, N\}$ eine partielle Funktion, wobei es für Endzustände keine Übergänge geben soll
- Zu Beginn steht der Lese-/Schreibkopf auf dem ersten Zeichen der Eingabe
- Eingabe: $w = w_1 w_2 \dots w_n \in \Sigma^*$
- ϵ : leeres Wort
- $L \subseteq \Sigma^*$ ist Sprache über dem Alphabet Σ

Deltatabelle

$$Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma\{0, 1, B\}, F = \{q_1\}$$

Konfiguration

TM M ist in Konfiguration $K = \alpha q \beta$ ($\Gamma^* \times Q \times \Gamma^*$), wobei der Schreib-/Lesekopf auf dem ersten Zeichen von β steht.

Eine direkte Nachfolgekonfiguration von $\alpha q\beta$ ist: $\alpha q\beta \vdash \alpha' q'\beta'$

i—te Nachfolgekonfiguration $\alpha q \beta \vdash K_1 \vdash \cdots \vdash K_{i-1} \vdash \alpha' q' \beta' = \alpha q \beta \vdash^i \alpha q \beta$

Nachfolgekonfiguration: $\alpha q \beta \vdash^* \alpha' q' \beta'$

Begriffe

- akzeptieren: Falls es $\alpha, \beta \in \Gamma^*$ und $q \in F$ gibt mit $q_0x \vdash^* \alpha q\beta$
- L(M): Menge aller von M
 akzeptierter Eingaben $x \in \Sigma^*$
- entscheidet: M hält mit Eingabe $x \in \Sigma^*$ nach endlich vielen Schritten
- rekursiv aufzählbar:
 - $L\subseteq \Sigma^*$ ist rekursiv aufzählbar, wenn es eine TM M gibt mit L(M)=L
 - es gibt eine surjektive Funktion $g:0,1^*\to L$
- entscheidbar/rekursiv:
 - -wenn es eine deterministische 1-Band-TM M gibt, die L entscheidet
 - Lund \overline{L} sind rekursiv aufzählbar

Programmiertechniken

Endlicher Speicher

Man merkt sich die Zeichen im Zustand $\Gamma = \Sigma \cup \{B\}, Q = (\{q_0\} \times \Sigma) \cup \{q_0, q_1\}, \text{ Startzustand } q_0, F = \{q_1\}$

Unterprogramme

Wenn man eine TM "programmiert", kann man sagen: Man benutzt ein Unterprogramm um eine bestimmte Aufgabe zu lösen

Spurtechnik

	_	- '	_			
	Е	R	L			
	N	В	G			
Dag orgto Zojehon wäre						

UNI

Das erste Zeichen wäre $\begin{pmatrix} U \\ E \\ N \end{pmatrix}$

Gödelnummer

 $\langle M \rangle$ ist die Gödelnummer (Bauplan von M). Sie ist die Repräsentation der TM Mals natürliche Zahl

Universelle TM

Eine TM \tilde{M} hießt universell, wenn sie sich mit der Eingabe $\langle M \rangle x, x \in \{0,1\}^*$ so verhält, wie M gestartet mit x

Halteproblem

Allgemeines Halteproblem

 $H = \{\langle M \rangle | M \text{ ist deterministische 1-Band-TM, die, gestartet mit Eingabe } w, \text{ hält} \}$

Initiales Halteproblem

 $H_{\epsilon} = \{\langle M \rangle | M$ ist deterministische 1-Band-TM, die, gestartet mit Eingabe $\epsilon, \text{hält} \}$

Reduktion

- Eine Funktion ist berechenbar, wenn es eine TM M_f gibt, für die mit $x \in \{0,1\}^*$ gilt:
 - Ist f(x) definiert, so hält M_f mit der Eingabe x und f(x) steht auf dem Band
 - Ist f(x) undefiniert, so hält M_f gestartet mit x nicht
- Eine Funktion ist total, wenn alle $x \in \{0,1\}^*$ definiert und berechenbar sind

Eine Reduktion ist eine total berechenbare Funktion $f:\{0,1\}^* \to \{0,1^*\}$, für die gilt:

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

Wir schreiben $L_1 \leq L_2$ und sagen L_1 wird auf L_2 reduziert,

 $L_1 \leq L_2$

- L_2 entscheidbar $\Rightarrow L_1$ entscheidbar
- L_2 rekursiv aufzählbar $\Rightarrow L_1$ rekursiv aufzählbar
- L_1 unentscheidbar $\Rightarrow L_2$ unentscheidbar
- L_1 nicht rekursiv aufzählbar $\Rightarrow L_2$ nicht rekursiv aufzählbar