Лабораторная работа №4

Реализация приложения по распознаванию номеров домов

Набор изображений из *Google Street View* с изображениями номеров домов, содержащий 10 классов, соответствующих цифрам от 0 до 9.

- 73257 изображений цифр в обучающей выборке;
- 26032 изображения цифр в тестовой выборке;
- 531131 изображения, которые можно использовать как дополнение к обучающей выборке;
- В двух форматах:
 - Оригинальные изображения с выделенными цифрами;
 - Изображения размером 32×32, содержащие одну цифру;
- Данные первого формата можно скачать по ссылкам:
 - http://ufldl.stanford.edu/housenumbers/train.tar.gz (http://ufldl.stanford.edu/housenumbers/train.tar.gz)
 (обучающая выборка);
 - http://ufldl.stanford.edu/housenumbers/test.tar.gz (http://ufldl.stanford.edu/housenumbers/test.tar.gz)
 (тестовая выборка);
 - http://ufldl.stanford.edu/housenumbers/extra.tar.gz
 (http://ufldl.stanford.edu/housenumbers/extra.tar.gz) (дополнительные данные);
- Данные второго формата можно скачать по ссылкам:
 - http://ufldl.stanford.edu/housenumbers/train_32x32.mat
 (http://ufldl.stanford.edu/housenumbers/train_32x32.mat) (обучающая выборка);
 - http://ufldl.stanford.edu/housenumbers/test_32x32.mat
 (http://ufldl.stanford.edu/housenumbers/test_32x32.mat) (тестовая выборка);
 - http://ufldl.stanford.edu/housenumbers/extra_32x32.mat
 (http://ufldl.stanford.edu/housenumbers/extra_32x32.mat) (дополнительные данные);
- Описание данных на английском языке доступно по ссылке:
 - http://ufldl.stanford.edu/housenumbers/)

Задание 1

Реализуйте глубокую нейронную сеть (полносвязную или сверточную) и обучите ее на синтетических данных (например, наборы MNIST (http://yann.lecun.com/exdb/mnist/ (http://yann.lecun.com/exdb/mnist/)) или notMNIST).

Ознакомьтесь с имеющимися работами по данной тематике: англоязычная статья (
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42241.pdf (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42241.pdf), видео на YouTube (https://www.youtube.com/watch?v=vGPI_JvLoN0 (https://www.youtube.com/watch?v=vGPI_JvLoN0).

Используем архитектуру LeNet-5 и обучим сеть сначала на данных из набора MNIST.

```
In [0]:
import warnings
warnings.filterwarnings('ignore')
In [0]:
! pip install tensorflow-gpu --pre --quiet
In [0]:
import tensorflow as tf
from tensorflow import keras
In [0]:
import numpy as np
In [0]:
from tensorflow.keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
In [0]:
x_train = tf.keras.utils.normalize(x_train, axis = 1)
x_test = tf.keras.utils.normalize(x_test, axis = 1)
In [0]:
x_train = x_train[..., np.newaxis]
x_test = x_test[..., np.newaxis]
In [8]:
from tensorflow.keras.utils import to_categorical
y_train, y_test = to_categorical(y_train), to_categorical(y_test)
y_train.shape
Out[8]:
(60000, 10)
In [0]:
IMAGE_DIM_0, IMAGE_DIM_1 = x_train.shape[1], x_train.shape[2]
In [0]:
CLASSES_N = y_train.shape[1]
```

```
In [11]:
```

```
x_train.shape, x_test.shape

Out[11]:
((60000, 28, 28, 1), (10000, 28, 28, 1))
```

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import AveragePooling2D, Conv2D, Dense, Flatten
model = tf.keras.Sequential()
model.add(Conv2D(6, kernel_size = (5, 5), strides = (1, 1),
                 activation = 'tanh', padding = 'same',
                 input_shape = (IMAGE_DIM_0, IMAGE_DIM_1, 1)))
model.add(AveragePooling2D(pool_size = (2, 2), strides = (2, 2),
                           padding = 'valid'))
model.add(Conv2D(16, kernel_size = (5, 5), strides = (1, 1),
                 activation = 'tanh', padding = 'valid'))
model.add(AveragePooling2D(pool_size = (2, 2), strides = (2, 2),
                           padding = 'valid'))
model.add(Flatten())
model.add(Dense(120, activation = 'tanh'))
model.add(Dense(84, activation = 'tanh'))
model.add(Dense(CLASSES_N, activation = 'softmax'))
```

In [14]:

model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 6)	156
average_pooling2d (AveragePo	(None,	14, 14, 6)	0
conv2d_1 (Conv2D)	(None,	10, 10, 16)	2416
average_pooling2d_1 (Average	(None,	5, 5, 16)	0
flatten (Flatten)	(None,	400)	0
dense (Dense)	(None,	120)	48120
dense_1 (Dense)	(None,	84)	10164
dense_2 (Dense)	(None,	10)	850

Total params: 61,706 Trainable params: 61,706 Non-trainable params: 0

In [0]:

 $EPOCHS_N = 20$

```
history = model.fit(x = x_train, y = y_train, validation_split = 0.15,
epochs = EPOCHS_N, verbose = 0)
```

```
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams
rcParams['figure.figsize'] = 8, 6
sns.set()
sns.set_palette(sns.color_palette('hls'))
def plot_accuracy(_history,
                  _train_acc_name = 'accuracy',
                  _val_acc_name = 'val_accuracy'):
    plt.plot(_history.history[_train_acc_name])
    plt.plot(_history.history[_val_acc_name])
    plt.title('Model accuracy')
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['Train', 'Validation'], loc = 'right')
    plt.show()
def plot_loss(_history):
    plt.plot(_history.history['loss'])
    plt.plot(_history.history['val_loss'])
    plt.title('Model loss')
    plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend(['Train', 'Validation'], loc = 'right')
    plt.show()
```

In [18]:

plot_accuracy(history, 'categorical_accuracy', 'val_categorical_accuracy')

In [19]:

plot_loss(history)

In [20]:

```
results = model.evaluate(x_test, y_test)
print('Test loss, test accuracy:', results)
```

Удалось достичь отличного результата — точность распознавания на тестовой выборке составила 98%.

Задание 2

После уточнения модели на синтетических данных попробуйте обучить ее на реальных данных (набор *Google Street View*). Что изменилось в модели?

Одна цифра

In [0]:

```
DS_URL_FOLDER = 'http://ufldl.stanford.edu/housenumbers/'
FIRST_DS_EXT = '.tar.gz'
SECOND_DS_EXT = '_32x32.mat'

TRAIN_DS_NAME = 'train'
TEST_DS_NAME = 'test'
EXTRA_DS_NAME = 'extra'
```

In [0]:

```
from urllib.request import urlretrieve
import tarfile
import os

def load_file(_url_folder, _name, _ext, _key, _local_ext = ''):
    file_url_ = _url_folder + _name + _ext
    local_file_name_ = _name + '_' + _key + _local_ext
    urlretrieve(file_url_, local_file_name_)
    return local_file_name_

def tar_gz_to_dir(_url_folder, _name, _ext, _key):
    local_file_name_ = load_file(_url_folder, _name, _ext, _key, _ext)
    dir_name_ = _name + '_' + _key
    with tarfile.open(local_file_name_, 'r:gz') as tar_:
        tar_.extractall(dir_name_)
    os.remove(local_file_name_)
    return dir_name_
```

```
from scipy import io

second_ds_train = io.loadmat(second_ds_train_file)
second_ds_test = io.loadmat(second_ds_test_file)
second_ds_extra = io.loadmat(second_ds_extra_file)
```

In [25]:

```
X_second_ds_train = np.moveaxis(second_ds_train['X'], -1, 0)
X_second_ds_test = np.moveaxis(second_ds_test['X'], -1, 0)
X_second_ds_extra = np.moveaxis(second_ds_extra['X'], -1, 0)

y_second_ds_train = second_ds_train['y']
y_second_ds_test = second_ds_test['y']
y_second_ds_extra = second_ds_extra['y']

print(X_second_ds_train.shape, y_second_ds_train.shape)
print(X_second_ds_test.shape, y_second_ds_test.shape)
print(X_second_ds_extra.shape, y_second_ds_extra.shape)
```

```
(73257, 32, 32, 3) (73257, 1) (26032, 32, 32, 3) (26032, 1) (531131, 32, 32, 3) (531131, 1)
```

In [0]:

```
%matplotlib inline
import matplotlib.pyplot as plt
```

```
import seaborn as sns
from matplotlib import rcParams
rcParams['figure.figsize'] = 8, 6
sns.set()
sns.set_palette(sns.color_palette('hls'))
```

In [28]:

```
plt.imshow(X_second_ds_train[0])
plt.show()
```


In [0]:

```
IMAGE_DIM_0_2 = X_second_ds_train.shape[-3]
IMAGE_DIM_1_2 = X_second_ds_train.shape[-3], X_second_ds_train.shape[-2], X_second_ds_train
IMAGE_DIM_0_2, IMAGE_DIM_1_2, IMAGE_DIM_2_2 = X_second_ds_train.shape[-3], X_second_ds_train
```

In [0]:

```
y_second_ds_train_cat = to_categorical(y_second_ds_train)
y_second_ds_test_cat = to_categorical(y_second_ds_test)
```

```
CLASSES_N_2 = y_second_ds_train_cat.shape[1]
```

In [0]:

In [34]:

```
model_2.summary()
```

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
conv2d_2 (Conv2D)	(None,	32, 32, 6)	456
average_pooling2d_2 (Average	(None,	16, 16, 6)	0
conv2d_3 (Conv2D)	(None,	12, 12, 16)	2416
average_pooling2d_3 (Average	(None,	6, 6, 16)	0
flatten_1 (Flatten)	(None,	576)	0
dense_3 (Dense)	(None,	120)	69240
dense_4 (Dense)	(None,	84)	10164
dense_5 (Dense)	(None,	11)	935
Total params: 83,211 Trainable params: 83,211			

In [0]:

Non-trainable params: 0

```
history_2 = model_2.fit(x = X_second_ds_train, y = y_second_ds_train_cat, validation_split = 0.15, epochs = EPOCHS_N, verbose = 0)
```

In [36]:

plot_accuracy(history_2, 'categorical_accuracy', 'val_categorical_accuracy')

In [37]:

plot_loss(history_2)

In [38]:

```
results = model_2.evaluate(X_second_ds_test, y_second_ds_test_cat)
print('Test loss, test accuracy:', results)
```

Здесь в модели изменилось то, что добавился ещё один класс — не распознано.

Эти данные более сложны для распознавания, что повлияло на результат — точность распознавания на тестовой выборке составила 83%.

Несколько цифр

Загрузим первый датасет — реальные изображения с несколькими цифрами и рамками границ.

```
from imageio import imread
import pandas as pd
def image_to_array(_image):
    try:
        array_ = imread(_image)
        return True, array_
    except:
        return False, None
def dir_to_dataframe(_dir_path):
    data_ = []
    files = sorted(os.listdir( dir path))
    for f in files_:
        file_path_ = os.path.join(_dir_path, f)
        can_read_, im = image_to_array(file_path_)
        if can read :
            data_.append(im)
    dataframe = pd.DataFrame()
    dataframe_['data'] = np.array(data_)
    return dataframe_
```

In [0]:

```
first_ds_train_subdir = os.path.join(first_ds_train_dir, 'train')
first_ds_test_subdir = os.path.join(first_ds_test_dir, 'test')
```

In [0]:

```
first_ds_train_images_df = dir_to_dataframe(first_ds_train_subdir)
first_ds_test_images_df = dir_to_dataframe(first_ds_test_subdir)
```

```
import h5py

first_ds_train_boxes_mat = h5py.File(
    os.path.join(first_ds_train_subdir, 'digitStruct.mat'), 'r')
first_ds_test_boxes_mat = h5py.File(
    os.path.join(first_ds_test_subdir, 'digitStruct.mat'), 'r')
```

```
import numpy as np
import pickle
import h5py
def mat_to_pickle(_mat_path, _key):
    f = h5py.File(_mat_path, 'r')
    metadata = {}
    metadata['height'] = []
    metadata['label'] = []
    metadata['left'] = []
    metadata['top'] = []
    metadata['width'] = []
    def print_attrs(name, obj):
        vals = []
        if obj.shape[0] == 1:
            vals.append(int(obj[0][0]))
        else:
            for k in range(obj.shape[0]):
                vals.append(int(f[obj[k][0]][0][0]))
        metadata[name].append(vals)
    for item in f['/digitStruct/bbox']:
        f[item[0]].visititems(print_attrs)
    with open('{}.pickle'.format((_key)),'wb') as pf:
        pickle.dump(metadata, pf, pickle.HIGHEST_PROTOCOL)
```

In [0]:

```
mat_to_pickle(
    os.path.join(first_ds_train_subdir, 'digitStruct.mat'), 'train_bbox')
mat_to_pickle(
    os.path.join(first_ds_test_subdir, 'digitStruct.mat'), 'test_bbox')
```

```
train_bbox_data = np.load('train_bbox.pickle', allow_pickle = True)
test_bbox_data = np.load('test_bbox.pickle', allow_pickle = True)
```

In [47]:

```
plt.imshow(first_ds_train_images_df['data'][0])
plt.show()
```


In [48]:

```
train_bbox_data['label'][0]
```

Out[48]:

[1, 9]

Задание 3

Сделайте множество снимков изображений номеров домов с помощью смартфона на ОС *Android*. Также можно использовать библиотеки *OpenCV*, *Simple CV* или *Pygame* для обработки изображений с общедоступных камер видеонаблюдения (например, https://www.earthcam.com/).

(https://www.earthcam.com/).

В качестве примера использования библиотеки *TensorFlow* на смартфоне можете воспользоваться демонстрационным приложением от *Google*

(https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android) (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android)).

Задание 4

Реализуйте приложение для ОС *Android*, которое может распознавать цифры в номерах домов, используя разработанный ранее классификатор. Какова доля правильных классификаций?