Curvas paramétricas

• Seja $I \subset \mathbb{R}$ um intervalo e $f, g: I \to \mathbb{R}$ duas funções contínuas. A função

$$(x,y)=(f(t),g(t)), \quad t\in I$$

diz-se curva paramétrica em \mathbb{R}^2 (ou no plano).

• Considerando três funções contínuas $f, g, h: I \to \mathbb{R}$, a função

$$(x, y, z) = (f(t), g(t), h(t)), t \in I$$

designa-se curva paramétrica em \mathbb{R}^3 (ou no espaço).

Curvas paramétricas - Exemplos

Exemplos

Represente geometricamente as curvas paramétricas em \mathbb{R}^2 .

(a)
$$(x, y) = (\cos t, \sin t), 0 \le t \le 2\pi$$
.

(b)
$$(x,y) = (\sin t, 2\cos t), 0 \le t \le \pi.$$

Resolução:

Curvas paramétricas - Exemplos

Exemplos

Represente geometricamente as curvas paramétricas em \mathbb{R}^3 :

(a)
$$(x, y, z) = (3t + 2, 8t - 1, t), -\infty < t < +\infty$$
;

(b)
$$(x, y, z) = (\cos t, \sin t, t), -\infty < t < +\infty.$$

Resolução:

Curvas paramétricas - Exemplos

Curvas paramétricas - Linhas ou curvas orientadas

Uma curva paramétrica ("regular") no espaço é representada geometricamente por uma linha ou curva orientada C traçada pelos pontos (x,y,z)=(f(t),g(t),h(t)) quando t varia (de forma crescente) no intervalo I.

Dizemos que C é uma curva orientada no sentido crescente do parâmetro t.

 Uma curva paramétrica no espaço pode ser considerada como uma trajetória de uma partícula que se move no espaço e que no instante t se encontra no ponto (x, y, z) = (f(t), g(t), h(t)).

$$(\lambda, y, z) = (I(t), g(t), II(t))$$

Curvas paramétricas -Funções vetoriais

- No estudo de curvas paramétricas no plano é conveniente identificar o ponto (x,y)=(f(t),g(t)) com o vetor $\vec{r}=f(t)\vec{i}+g(t)\vec{j}$ sendo $\{\vec{i},\vec{j}\}$ a base canónica de \mathbb{R}^2 .
- No espaço, o ponto (x, y, z) = (f(t), g(t), h(t)) identifica-se com o vetor $\vec{r} = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}$ sendo $\{\vec{i}, \vec{j}, \vec{k}\}$ a base canónica de de \mathbb{R}^3 .

Funções vetoriais

Uma função vetorial \vec{r} de uma variável com valores em \mathbb{R}^2 (ou em \mathbb{R}^3) é uma correspondência, que associa um único vetor de \mathbb{R}^2 (de \mathbb{R}^3) a cada número num determinado subconjunto $D \subset \mathbb{R}$ que se designa domínio.

 $\forall t \in D$, $\vec{r}(t)$ escreve-se como combinação linear dos elementos da base $\{\vec{i}, \vec{j}\}$ de \mathbb{R}^2 :

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j}, \qquad f,g:D \to \mathbb{R}.$$

No caso de \vec{r} ser uma função vetorial com valores em \mathbb{R}^3 , $\vec{r}(t)$ escreve-se como combinação linear dos elementos da base $\{\vec{i}, \vec{j}, \vec{k}\}$ de \mathbb{R}^3 :

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}, \qquad f, g, h: D \to \mathbb{R}.$$

As funções f, g, h designam-se componente e t designa-se parâmetro da função \vec{r} .

Funções vetoriais - Domínio

Dada uma função vetorial através de uma expressão analítica podemos ter duas situações: ou o domínio é dado explicitamente ou é considerado o domínio natural que consiste no conjunto dos pontos para os quais a expressão analítica tem sentido.

Exemplo

Considere a função vetorial em \mathbb{R}^3 definida por

$$\vec{r}(t) = \cos t \ \vec{i} + \log(4 - t) \ \vec{j} + \sqrt{t + 1} \ \vec{k}$$

e determine o seu domínio.

Resolução:

Limite de uma função vetorial

Seja $D \subset \mathbb{R}$ e $\vec{r}: D \to \mathbb{R}^3$ uma função vetorial. Seja t_0 um ponto de acumulação de D. Diz-se que o limite de \vec{r} no ponto t_0 é \vec{b} e escreve-se

$$\lim_{t\to t_0}\vec{r}(t)=\vec{b}$$

se

$$\left(\lim_{t\to t_0} f(t)\right)\vec{i} + \left(\lim_{t\to t_0} g(t)\right)\vec{j} + \left(\lim_{t\to t_0} h(t)\right)\vec{k} = \vec{b}.$$

Se $t_0 \in D$ e

$$\lim_{t\to t_0}\vec{r}(t)=\vec{r}(t_0)$$

a função \vec{r} diz-se contínua no ponto t_0 .

$Observaç\~ao$

Uma função vetorial é contínua num ponto do seu domínio se e só se cada uma das suas componentes for contínua nesse ponto.

Funções vetorial - Curvas paramétricas

Seja $I \subset \mathbb{R}$ um intervalo e $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ uma função vetorial contínua em I com valores em \mathbb{R}^3 .

Para cada $t \in I$ consideramos os vetores $\vec{r}(t)$ com o ponto inicial na origem do referencial ortonormado. Quando t varia no intervalo I, a ponta do vetor \vec{r} descreve uma linha orientada C no espaço. C diz-se gráfico da função vetorial

Derivada de uma função vetorial

$Observaç\~ao$

A linha C correspondente ao gráfico da função vetorial

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, \quad t \in I$$

coincide com a linha definida anteriormente pela curva paramétrica correspondente

$$(x,y,z)=(x(t),y(t),z(t)),\quad t\in I.$$

Derivada de uma função vetorial

Seja $I \subset \mathbb{R}$ um intervalo. Se $x(\cdot),\ y(\cdot),\ z(\cdot):I \to \mathbb{R}$, são funções diferenciáveis no ponto $t \in I$, então $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ diz-se diferenciável no ponto t e a derivada de \vec{r} no ponto t é definida por

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}.$$

Podemos escrever

$$\vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}.$$

Se \vec{r} é diferenciável em todos os pontos de I define-se a função derivada (derivada de 1^a ordem) $\vec{r}'(t)$, $t \in I$. As derivadas de ordem superior definem-se de forma análoga.

Observação

A função derivada de uma função vetorial é uma função vetorial.

Regras de Derivação

Sejam $\vec{r_1}$ e $\vec{r_2}$ funções vetoriais (em \mathbb{R}^2 ou em \mathbb{R}^3) diferenciáveis no intervalo I. Seja $f:I\to\mathbb{R}$ diferenciável em I. Seja J um intervalo e $\alpha:J\to I$ diferenciável em J. Então:

- (a) $\vec{r_1} + \vec{r_2}$ é diferenciável em l e $(\vec{r_1} + \vec{r_2})'(t) = \vec{r_1}'(t) + \vec{r_2}'(t)$;
- (b) $f\vec{r_1}$ é diferenciável em I e $(f\vec{r_1})\prime(t) = f(t)\vec{r_1}\prime(t) + f\prime(t)\vec{r_1}(t)$;
- (c) $\vec{r}_1 \cdot \vec{r}_2$ é diferenciável em / e

$$(\vec{r}_1 \cdot \vec{r}_2)'(t) = \vec{r}_1'(t) \cdot \vec{r}_2(t) + \vec{r}_1(t) \cdot \vec{r}_2(t);$$

(d) (se $\vec{r_1}$ e $\vec{r_1}$ são funções vetoriais em \mathbb{R}^3) $\vec{r_1} \times \vec{r_2}$ é diferenciável em I e

$$(\vec{r}_1 \times \vec{r}_2)\prime(t) = \vec{r}_1\prime(t) \times \vec{r}_2(t) + \vec{r}_1(t) \times \vec{r}_2(t);$$

(e) $\vec{r}_1 \circ \alpha$ é diferenciável em J e

$$(\vec{r_1} \circ \alpha)'(t) = \vec{r_1}'(\alpha(t)) \alpha'(t).$$

Derivada de uma função vetorial - interpretação geométrica

Vetor tangente a uma curva paramétrica

Seja C o gráfico de uma função vetorial \vec{r} diferenciável no ponto t_0 . Suponhamos que Se $\vec{r'}(t_0) \neq 0$ e tem o ponto inicial sobre a ponta do vetor $\vec{r}(t_0)$, então o vetor $\vec{r'}(t_0)$ é tangente ao gráfico de \vec{r} e aponta no sentido crescente do parâmetro t.

