Additive and Multiplicative Effects Model*

Seminar on Statistical Modeling of Social Networks

Daniel A. Seussler Becerra¹

¹ Department of Statistics, University of Munich, Germany

Abstract

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Keywords: Social Networks, AME Models, Bayesian estimation.

^{*}Replication files are available on Github (http://github.com/danielseussler). Current version: May 12, 2021; Corresponding author: daniel.seussler@gmail.com †

1 Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

2 Theory

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

2.1 Network Effects & Social Structure

• 1st-order: Sender (Receiver) Effects

• 2nd-order: Reciprocity

3rd-order: Homophily & Stochastic Equivalence

• System-level - changing actor composition

2.2 The Model

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt.

Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

2.3 The SRM Model: The Additive Part

$$y_{ij} = \mu + e_{ij}$$

$$e_{ij} = a_i + b_j + \epsilon_{ij}$$

$$\{(a_1, b_1), \dots, (a_n, b_n)\} \sim N(0, \Sigma_{ab})$$

$$\{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} \sim N(0, \Sigma_{\epsilon}), \text{ where}$$

$$\Sigma_{ab} = \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} = \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

2.4 The Latent Factor Model

$$\mathbf{u}_i, \mathbf{v}_j \in \mathbb{R}^k \ i, j \in \{1, \dots, n\}$$

$$\gamma(\mathbf{u}_i, \mathbf{v}_j) = \mathbf{u}_i^T D \mathbf{v}_j$$

$$= \sum_{k \in K} d_k u_{ik} v_{jk}$$

$$D \text{ is a } K \times K \text{ diagonal matrix}$$

2.5 Additive and Multiplicative Effects (AME) Model

$$y_{ij,t} = g(\theta_{ij,t})$$

$$\theta_{ij,t} = \beta^T \mathbf{X}_{ij,t} + e_{ij,t}$$

$$e_{ij,t} = a_i + b_j + \epsilon_{ij} + \alpha(\mathbf{u}_i, \mathbf{v}_j) \text{, where}$$

$$\alpha(\mathbf{u}_i, \mathbf{v}_j) = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j = \sum_{k \in K} d_k u_{ik} v_{jk}$$

2.6 Goodness of Fit

2.7 Parameter Estimation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

3 Application case: The Alliances Data Set 2000

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

The analysis was done with the R-Software (R Core Team (2021)) and the AMEN R-Package (P. Hoff, Fosdick, and Volfovsky (2020)).

3.1 Network Statistics

Table 1: Goodness of Fit Statistics for the Year 2000

sd.rowmean	sd.colmean	dyad.dep	cycle.dep	trans.dep
0.057	0.057	1	0.389	0.389

3.2 Modeling without network effects

We first fit the model without the SRM Terms. As illustrated in Fig, the model performs quite bad.

Figure 1: The Alliances Data Set in the Year 2000.

Figure 2: Goodness of Fit Statistics for the model without SRM Terms (above) and with SRM Terms (below). As indicated by the dependence structure, the second model performs better, taking sender and receiver effects into account.

3.3 Adding Covariates

3.4 Adding Time

3.5 Extension: Modeling longitudinal data

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc,

```
fit_AME_Rep_R3 <- readRDS(file = "models/fit_AME_Rep_R3.rds")
stargazer(cbind(fit_AME_Rep_R3$BETA,fit_AME_Rep_R3$VC), type = "latex", header = FALSE, summary</pre>
```

Statistic	N	Mean	St. Dev.
intercept	400	-6.461	0.796
cinc.node	400	105.681	10.316
polity.node	400	0.010	0.003
contigMat.dyad	400	1.086	0.052
lNet.dyad	400	0.457	0.237
LSP.dyad	400	0.062	0.016
warNet.dyad	400	-0.136	0.082
va	400	5.358	1.793
ve	400	1.000	0.000

Table 2: Estimated Effects for AME Replicated Data

3.6 Things that may be included:

Table 3: Estimated Effects for AME Replicated Data

Statistic	N	Mean	St. Dev.
intercept	400	-6.461	0.796
cinc.node	400	105.681	10.316
polity.node	400	0.010	0.003
contigMat.dyad	400	1.086	0.052
lNet.dyad	400	0.457	0.237
LSP.dyad	400	0.062	0.016
warNet.dyad	400	-0.136	0.082
va	400	5.358	1.793
ve	400	1.000	0.000

Table 4: Estimated Effects for AME Replicated Data

	pmean	psd	z-stat	p-val
intercept	-6.4606	0.7957	-8.1197	0
$\overline{\mathrm{cinc.node}}$	105.6805	10.3157	10.2446	0
polity.node	0.0099	0.003	3.2562	0.0011
${\rm contigMat.dyad}$	1.0858	0.0518	20.9772	0
lNet.dyad	0.4569	0.2369	1.9284	0.0538
LSP.dyad	0.0624	0.0165	3.7894	2e-04
warNet.dyad	-0.1361	0.0823	-1.6533	0.0983
va	5.3579	1.7935	-	-
ve	1	0	-	-

MCMC Estimates of 500 Burn-In and 10000 Draws.

Table 5: Network Statistics x of the Alliances Network 2000

	X
Size	164.00
Edgecount	767.00
Dyadcount	13366.00
Density	0.06

Figure 3: The Degree Distribution.

References

- Cranmer, Skyler J., Bruce A. Desmarais, and Elizabeth J. Menninga. 2012. "Complex Dependencies in the Alliance Network." *Conflict Management and Peace Science* 29 (3): 279–313. https://doi.org/10.1177/0738894212443446.
- Cranmer, Skyler, Bruce Desmarais, and Justin Kirkland. 2012. "Toward a Network Theory of Alliance Formation." *International Interactions INT INTERACT* 38 (July): 295–324. https://doi.org/10.1080/03050629.2012.677741.
- Hoff, Peter D. 2005. "Bilinear Mixed-Effects Models for Dyadic Data." *Journal of the American Statistical Association* 100 (469): 286–95. https://doi.org/10.1198/016214504000001015.
- ———. 2007. "Modeling Homophily and Stochastic Equivalence in Symmetric Relational Data." In *Proceedings of the 20th International Conference on Neural Information Processing Systems*, 657–64. NIPS'07. Red Hook, NY, USA: Curran Associates Inc.
- ——. 2015. "Dyadic Data Analysis with Amen." https://arxiv.org/abs/1506.08237.
- ——. 2021. "Additive and Multiplicative Effects Network Models." *Statistical Science* 36 (1): 34–50. https://doi.org/10.1214/19-STS757.
- Hoff, Peter, Bailey Fosdick, and Alex Volfovsky. 2020. Amen: Additive and Multiplicative Effects Models for Networks and Relational Data. https://CRAN.R-project.org/package=amen.
- Leeds, Brett, Jeffrey Ritter, Sara Mitchell, and Andrew Long. 2002. "Alliance Treaty Obligations and Provisions, 1815-1944." *International Interactions* 28 (3): 237–60. https://doi.org/10.1080/03050620213653.
- Minhas, Shahryar, Peter D. Hoff, and Michael D. Ward. 2016. "A New Approach to Analyzing Coevolving Longitudinal Networks in International Relations." *Journal of Peace Research* 53 (3): 491–505. https://doi.org/10.1177/0022343316630783.
- ——. 2019. "Inferential Approaches for Network Analysis: AMEN for Latent Factor Models." Political Analysis 27 (2): 208–22. https://doi.org/10.1017/pan.2018.50.
- Pavel N. Krivitsky, Mark S. Handcock, David R. Hunter, Carter T. Butts, Chad Klumb, Steven M. Goodreau, and Martina Morris. 2003-2020. *Statnet: Software Tools for the Statistical Modeling of Network Data*. Statnet Development Team. http://statnet.org.
- R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.