Ανάλυση Κοινωνικών Δικτύων (Social Network Analysis)

1η Εργαστηριακή Άσκηση

Συμεών Παπαβασιλείου (papavass@mail.ntua.gr) Βασίλειος Καρυώτης (vassilis@netmode.ntua.gr)

14 Νοεμβρίου, 2016

Outline

- Topology generation
- Degree analysis
- Strength analysis weighted graphs
- Path length analysis
- Clustering coefficient (CC) analysis
- Centrality analysis

Network Types

Πίνακας 1 – Σύνθετα δίκτυα και χαρακτηριστικές παράμετροι

Τύπος Δικτύου	Μοντέλο	Αναγνωριστικό	Παράμετροι
Πλέγμα	Πεπερασμένο	REG	Κόμβοι <i>n</i>
			βαθμός <i>d</i>
Τυχαίος γράφος	Erdos-Renyi	RG (ER)	Κόμβοι Ν
			Συνδέσεις Μ
Τυχαίος γράφος	Gilbert	RG (G)	Κόμβοι η,
			Πιθανότητα
			σύνδεσης <i>p</i>
Τυχαίος γεωμετρικός γράφος	Επίπεδος	RGG	Περιοχή L×L
			Κόμβοι <i>n</i>
			Ακτίνα R
Scale-free	Barabasi-Albert	SF (BA)	Κόμβοι <i>n</i>
			Βαθμός αρχικού
			πλέγματος <i>d</i>
Small-world	Watts-Strogatz	SW (WS)	Κόμβοι <i>n</i>
			Βαθμός αρχικού
			πλέγματος <i>d</i>
			Πιθανότητα
			ανασύνδεσης g_p

Network Parameters

Τοπολογία	Παράμετροι	Συνάρτηση
REG	Kόμβοι $n=1$ x 0	
	βαθμός $d=4$	
		smallw.m
RG (ER)	Κόμβοι <i>N</i> = 1 x 0	
	συνδέσεις $M=750$	
	-	erdrey.m
RGG	Περιοχή $L \times L = 1000^2$	
	Kόμβοι $n=1$ x 0	rgg.m
	Ακτίνα $R=250$	199
SF (BA)	Kόμβοι $n = 1$ x 0	
	Βαθμός αρχικού	
	πλέγματος $d=4$	pref.m
SW (WS)	Kόμβοι $n = 1$ x 0	
	Βαθμός αρχικού	
	πλέγματος $d=4$	smallw.m
	Πιθανότητα ανασύνδεσης	
	$g_p = 0.3$	

Pseudo-Randomization

- Use of function rand ('state', seed) of Matlab
- Pseudo-random number generator
 - Periodic recursive functions
 - Each state yields a number
 - The sequence of numbers looks random
 - Finite period
- Initialization via seed parameter
 - If different topologies seed should vary
 - If repetition of experiment required the same seed

Metrics Analysis

- Degree
- Strength (random) weight matrix
- Average path length
- Clustering coefficient (CC)
- Centrality
 - Degree
 - Closeness
 - Betweenness
 - Eigenvector

Connectivity Analysis

Percentage of connectivity:

```
# connected topologies

# totally generated topologies
```

Connectivity study process:

- 1. Generate topology
- 2. Check if connected
- 3. Repeat
- 4. Compute percentage of connected topologies

Connectivity check:

- function components=FindComponents(adjacencyMatrix,N)
- isconnected.m

Useful Functions

Ονομασία Συνάρτησης	Λειτουργία	Παράμετροι
closeness.m	Closeness Centrality	Adjacency Matrix
eigencentrality.m	Eigenvector Centrality	Adjacency Matrix
node_betweenness_faster.m	Betweenness Centrality	Adjacency Matrix
degrees.m	Βαθμός Κόμβου & Degree Centrality	Adjacency Matrix
cumulativedist.m	Συσσωρευτική κατανομή βαθμού κόμβου, κατανομή βαθμού κόμβου	vector with node degree values number of nodes in the network
ave_path_length.m	Μέσο μήκος μονοπατιού	Adjacency Matrix
FindComponents.m	Αριθμός συνδεδεμένων τμημάτων δικτύου	Adjacency Matrix, nodes
clust_coeff.m/ clustering_coefficients.m	Συντελεστής ομαδοποίησης	Adjacency Matrix
isconnected.m	Έλεγχος συνεκτικότητας δικτύου	Adjacency Matrix
all_shortest_paths.m	Συντομότερα μονοπάτια για όλα τα ζεύγη κόμβων	Sparse Adjacency Matrix
var	Μεταβλητότητα πίνακα ή διανύσματος	Για πίνακα Α, Α(:) Για διάνυσμα Α, Α
cumulativecentrality.m	Συσσωρευτική κατανομή κεντρικότητας	vector with local centrality values number of nodes in the network
plotGraphBasic.m	Οπτικοποίηση τοπολογίας δικτύου	Adjacency Matrix, node coordinates, nodes, edges

Cumulative Distribution Function - Examples

