Image Denoising

Homework n°5 - Exercises

Exercise 1.2

Let X be an input grayscale image, of size $M \times N$. We consider a 4×4 patch of X, denoted by P. By definition, its DCT is given by

$$DCT(P)_{i,j} = \alpha_i \alpha_j' \sum_{k=0}^{3} \sum_{l=0}^{3} P_{k,l} \cos\left(\pi \left(k + \frac{1}{2}\right) \frac{i}{M}\right) \cos\left(\pi \left(l + \frac{1}{2}\right) \frac{j}{N}\right)$$

where

$$\alpha_i = \left\{ \begin{array}{ll} \sqrt{1/(4M)} & \text{if } i = 0 \\ \sqrt{1/(2M)} & \text{if } i = 1, 2, 3 \end{array} \right., \alpha_j' = \left\{ \begin{array}{ll} \sqrt{1/(4N)} & \text{if } j = 0 \\ \sqrt{1/(2N)} & \text{if } j = 1, 2, 3. \end{array} \right.$$

We consider a convolution of weights w (and without bias), and Q_w the output of P through w:

$$Q_w(i,j) = \sum_{s,t} P(i+s,j+t)w(s,t).$$

For each pair of frequencies $(i, j) \in \{0, 1, 2, 3\} \times \{0, 1, 2, 3\}$, we define a convolution by $w_{i,j}(s, t) = \alpha_i \alpha'_j \cos\left(\pi\left((i+s) + \frac{1}{2}\right) \frac{i}{M}\right) \cos\left(\pi\left((j+t) + \frac{1}{2}\right) \frac{j}{N}\right)$ so that $DCT(P)_{i,j} = Q_{w_{i,j}}(i, j)$.

We thus have $4 \times 4 = \boxed{16 \text{ convolution filters}}$

So to compute the DCT of a given patch P, for each frequency (i, j) we apply the convolution kernel $w_{i,j}$, and retrieve $Q_{w_{i,j}}(i,j)$.

The patch-wise DCT transform (with 4×4 patches) of a grayscale image can be implemented and represented using convolutions.

Exercise 1.4

$$\mathcal{F}(x) = f_3(y; \theta_3), \ y = f_2(f_1(x; \theta_1); \theta_2)$$

 $\mathcal{G}(x) = y + f_3(y; \theta_3)$

We also set $z = f_1(x; \theta_1)$, so $y = f_2(z; \theta_2)$. We then have:

$$\frac{\partial \mathcal{F}}{\partial \theta_{1}}(x) = \frac{\partial f_{3}(y; \theta_{3})}{\partial \theta_{1}}$$

$$= \frac{\partial f_{3}(y; \theta_{3})}{\partial y} \times \frac{\partial y}{\partial \theta_{1}} \text{ (chain rule)}$$

$$= \frac{\partial f_{3}(y; \theta_{3})}{\partial y} \times \frac{\partial f_{2}(z; \theta_{2})}{\partial \theta_{1}}$$

$$= \frac{\partial f_{3}(y; \theta_{3})}{\partial y} \times \frac{\partial f_{2}(z; \theta_{2})}{\partial \theta_{1}}$$

$$= \frac{\partial f_{3}(y; \theta_{3})}{\partial y} \times \frac{\partial f_{2}(z; \theta_{2})}{\partial z} \times \frac{\partial z}{\partial \theta_{1}} \text{ (chain rule)}$$

$$= \frac{\partial f_{3}(y; \theta_{3})}{\partial y} \times \frac{\partial f_{2}(z; \theta_{2})}{\partial z} \times \frac{\partial z}{\partial \theta_{1}} \text{ (chain rule)}$$

$$= \frac{\partial f_{3}(y; \theta_{3})}{\partial y} \times \frac{\partial f_{2}(z; \theta_{2})}{\partial z} \times \frac{\partial f_{1}(x; \theta_{1})}{\partial \theta_{1}}.$$

Similarly, we have

$$\frac{\partial \mathcal{F}}{\partial \theta_3}(x) = \frac{\partial f_3(y; \theta_3)}{\partial \theta_3}.$$

As for $\mathcal{G}(x) = y + \mathcal{F}(x)$, we have $\frac{\partial \mathcal{G}(x)}{\partial \theta_i} = \frac{\partial \mathcal{F}(x)}{\partial \theta_i} + \frac{\partial y}{\partial \theta_i}$. We then use the above results, and notice that we have already computed $\frac{\partial y}{\partial \theta_1}$ and $\frac{\partial y}{\partial \theta_2}$, and that $\frac{\partial y}{\partial \theta_3} = 0$ so:

$$\frac{\partial \mathcal{G}}{\partial \theta_1}(x) = \frac{\partial f_2(z; \theta_2)}{\partial z} \times \frac{\partial f_1(x; \theta_1)}{\partial \theta_1} \times \left(1 + \frac{\partial f_3(y; \theta_3)}{\partial y}\right),$$

$$\frac{\partial \mathcal{G}}{\partial \theta_2}(x) = \frac{\partial f_2(z; \theta_2)}{\partial \theta_2} \times \left(1 + \frac{\partial f_3(y; \theta_3)}{\partial y}\right),$$

$$\frac{\partial \mathcal{G}}{\partial \theta_3}(x) = \frac{\partial f_3(y; \theta_3)}{\partial y}.$$

We see that compared to \mathcal{F} , the derivatives of \mathcal{G} with respect to θ_1 and θ_2 have more terms. This may prevent **gradient vanishing**.