Modellierung Sommersemester 2018

Aufgabenblatt 1

Name	Vorname	Matrikelnummer
Blosch	Yannis	3256958
Heiland	Lukas	3269754

Die Bearbeitung der Aufgabenblätter muss durch zwei in Ilias registrierte Mitglieder des Kurses "Modellierung (SS18)" erfolgen.

In der folgenden Tabelle werden die erzielten Punkte eingetragen.

Aufgabe	Erreichte Punkte	Bemerkungen zur Korrektur
1		
2		
3		
4		
5		
6		
7		
8		
Gesamt:		

Aufgabe 4.1

- **a.** $\pi_{Datum}(\rho_{(d_kredithoehe>5.000)}darlehen)$
- **b.** $Q_1 \leftarrow \rho_{a_ort='Berlin'}(mitarbeiter \bowtie_{m_adresse=a_id} adresse)$

$$Q_2 \leftarrow \pi_{b_id}(bankkonto \underset{b_kontaktperson=m_id}{\bowtie} Q_1)$$

$$\pi_{d_bankkonto}(\rho_{d_kredithoehe} > 20.000 (darlehen \bowtie_{d_bankkonto=b_id} Q_2))$$

c

 $\begin{array}{l} \textbf{SELECT} \ k_name, \ k_alter, \ k_kredite, \ adresse.a_plz \ as \ plz \\ \textbf{FROM} \ kunde, \ adresse \\ \textbf{WHERE} \ kunde.k_adresse = adresse.a_id \\ \textbf{SORT} \ \textbf{BY} \ k_alter \ \textbf{DESCENDING} \end{array}$

- d. TODO
- e. TODO
- f. TODO

Aufgabe 4.2

Aufgabe 4.3

```
union :
\alpha \to \beta, \ \alpha \to \gamma
                                                   (gegeben)
0. \alpha \to \alpha \alpha
                                                   (gilt)
1. \alpha\alpha \to \alpha\beta
                                                   (augmentation der ersten gegebenen)
2. \alpha\beta \rightarrow \alpha\gamma
                                                   (augmentation der zweiten gegebenen)
                                                   (transitivity von 0. und 1.)
3. \alpha \to \alpha \beta
4. \alpha \rightarrow \beta \gamma
                                                   (transitivity von 1. und 2.)
decomposition :
1. \alpha \rightarrow \beta \gamma
                                                   (gegeben)
2. \beta \gamma \rightarrow \beta
                                                  (reflexivity, \beta \subseteq \beta \gamma)
3. \alpha \rightarrow \beta
                                                   (transitivity der oberen zwei Zeilen)
analog für \alpha \to \gamma
pseudotransitivity :
\alpha \to \beta, \beta \gamma \to \delta
                                                    (gegeben)
                                                 (augmentation der ersten gegebenen mit \gamma) 2. \alpha \gamma \rightarrow \delta
1. \alpha \gamma \rightarrow \beta \gamma
                                                                                                                                                                      (tran-
sititvity der zweiten gegebenen und 1.)
```

Aufgabe 4.4

```
 \begin{split} \mathbf{CLOSURE}(\{F\}, Z \backslash \{F \longrightarrow G\} \ ) \\ \mathbf{result} &= \{F\} \\ & \{F, C, D\} \\ & \{F, C, D, A\} \\ & \{F, C, D, A, G, H\} \\ & \vdots \\ & G \in CLOSURE(\{F\}, Z \backslash \{F \longrightarrow G\}) \\ &\Rightarrow F \rightarrow G \text{ ist redundante funktionale Abhängigkeit} \\ & \mathbf{CLOSURE}(\{H\}, Z \backslash \{H \rightarrow B\} \ ) \\ & \text{H steht auf keiner linken Seite der funktionalen Abhängigkeiten in der Menge Z} \\ & \rightarrow B \notin CLOSURE(\{H\}, Z \backslash \{H \rightarrow B\}) \\ & \Rightarrow H \rightarrow B \text{ ist keine redundante funktionale Abhängigkeit} \\ \end{split}
```