

Machine Learning for Data Mining

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

- What is Machine Learning?
- What are the paradigms?
- Unsupervised Learning
- Supervised Learning
- Reinforcement Learning

What is Machine Learning?

- "The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience." Tom Mitchell (1997)
- □ A program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- ☐ A well-defined learning task is defined by P, T, and E.

- Task T: playing checkers
- Artificial Intelligence
 - Design and implement a computer-based system that exhibit intelligent action
- Machine Learning
 - Write a program that can learn how to play
 - ▶ It can learn from examples of previous games, by playing against another opponent, by playing against itself

- A handwriting recognition learning problem
 - ► Task T: recognizing and classifying handwritten words within images
 - Performance P: percent of words correctly classified
 - Training experience E: a database of handwritten words with given classification
- A robot driving learning problem
 - ► Task T: driving on public four-lane highways using vision
 - ▶ Performance P: average distance traveled before an error
 - Training experience E: a sequence of images and steering commands recorded while observing a human driver

Unsupervised Learning

- □ Task T: finding interesting groups into data, learning "what normally happens"
- Performance P: how good, how interesting the groups are
- Training experience E: raw data
- Example applications
 - Customer segmentation in CRM
 - Color quantization for image compression,
 - Bioinformatics

Supervised Learning

- ☐ Training experience E: examples labeled by a supervisor
- ☐ Task T: to extract a description of a concept from the data.

 Use the description to predict the output for future examples
- □ Performance P: how accurate the description is
- Example applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection

Reinforcement Learning

- The agent learn through trial-and-error interactions
- The goal is to maximize the amount of reward received from the environment
- Compute a value function Q(s_t,a_t) mapping state-action pairs into expected future payoffs

- □ Training experience E: online interactions with the environment
- Task T: collect as much reward as possible
- Performance P: the amount of reward
- Example applications
 - Robot learning
 - Games
 - Multiagent learning

Data Mining & Machine Learning

Applications

- Agents
- Data Mining
- Robotics
- **...**

- ■Paradigms
 - Unsupervised Learning
 - Supervised Learning
 - Reinforcement Learning
 - **>** ...

■Algorithms

- Clustering
- Association Rules
- Decision trees
- **>** ...

- Machine learning algorithms acquire structural descriptions from examples
- Structural descriptions represent patterns explicitly
 - ▶ They can be used to predict outcomes in new situations
 - They can be used to understand and explain how predictions are derived
- Unsupervised learning
 - Clustering
 - Association rules
- Supervised learning
 - Decision trees
 - Decision rules
 - Bayesian classifiers