Program FLUX

Richard Fitzpatrick

August 9, 2021

1 Preliminarly Analysis

1.1 Coordinate Systems

- Cartesian coordinates: X, Y, Z.
- Cylindrical coordinates: $R \equiv (X^2 + Y^2)^{1/2}$, $\phi \equiv \tan^{-1}(Y/X)$, Z, so

$$|\nabla \phi| = \frac{1}{R}.\tag{1}$$

• Flux coordinates: r(R, Z), $\theta(R, Z)$, ϕ , where

$$(\nabla r \cdot \nabla \theta \times \nabla \phi)^{-1} = \mathcal{J},\tag{2}$$

$$\mathcal{J} = \frac{r R^2}{R_0},\tag{3}$$

where R_0 is a convenient scale major radius, flux-surface label r has units of length, and θ is a poloidal angle. $\theta = 0$ on inboard midplane. $\theta > 0$ above midplane.

1.2 Useful Identities

Easily demonstrated that:

$$\mathbf{A} = A^r \mathcal{J} \nabla \theta \times \nabla \phi + A^\theta \mathcal{J} \nabla \phi \times \nabla r + A^\phi \mathcal{J} \nabla r \times \nabla \theta, \tag{4}$$

$$\mathbf{A} = A_r \, \nabla r + A_\theta \, \nabla \theta + A_\phi \, \nabla \phi, \tag{5}$$

$$\mathbf{A} \cdot \mathbf{B} = A_r B^r + A_{\theta} B^{\theta} + A_{\phi} B^{\phi} = A^r B_r + A^{\theta} B_{\theta} + A^{\phi} B_{\phi}, \tag{6}$$

$$(\mathbf{A} \times \mathbf{B})_r = \mathcal{J} (A^{\theta} B^{\phi} - A^{\phi} B^{\theta}), \tag{7}$$

$$(\mathbf{A} \times \mathbf{B})_{\theta} = \mathcal{J} (A^{\phi} B^r - A^r B^{\phi}), \tag{8}$$

$$(\mathbf{A} \times \mathbf{B})_{\phi} = \mathcal{J} (A^r B^{\theta} - A^{\theta} B^r), \tag{9}$$

$$\mathcal{J}(\mathbf{A} \times \mathbf{B})^r = A_\theta B_\phi - A_\phi B_\theta, \tag{10}$$

$$\mathcal{J}(\mathbf{A} \times \mathbf{B})^{\theta} = A_{\phi} B_r - A_r B_{\phi}, \tag{11}$$

$$\mathcal{J}(\mathbf{A} \times \mathbf{B})^{\phi} = A_r B_{\theta} - A_{\theta} B_r, \tag{12}$$

$$\mathcal{J} \nabla \cdot \mathbf{A} = \frac{\partial (\mathcal{J} A^r)}{\partial r} + \frac{\partial (\mathcal{J} A^{\theta})}{\partial \theta} + \frac{\partial (\mathcal{J} A^{\phi})}{\partial \phi}, \tag{13}$$

$$\mathcal{J}(\nabla \times \mathbf{A})^r = \frac{\partial A_{\phi}}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \phi},\tag{14}$$

$$\mathcal{J}\left(\nabla \times \mathbf{A}\right)^{\theta} = \frac{\partial A_r}{\partial \phi} - \frac{\partial A_{\phi}}{\partial r},\tag{15}$$

$$\mathcal{J}\left(\nabla \times \mathbf{A}\right)^{\phi} = \frac{\partial A_{\theta}}{\partial r} - \frac{\partial A_{r}}{\partial \theta}.$$
(16)

1.3 Equilibrium Magnetic Field

Equilibrium magnetic field:

$$\mathbf{B} = B_0 R_0 [f(r) \nabla \phi \times \nabla r + g(r) \nabla \phi], \qquad (17)$$

$$q(r) = \frac{r g}{R_0 f},\tag{18}$$

where B_0 is a convenient scale magnetic field strength, and g and f are dimensionless. So,

$$B^r = 0, (19)$$

$$B^{\theta} = B_0 R_0^2 \frac{f}{r R^2},\tag{20}$$

$$B^{\phi} = B_0 R_0^2 \frac{q f}{r R^2} = B_0 B_0 \frac{g}{R^2}, \tag{21}$$

$$B_r = -B_0 r f \nabla r \cdot \nabla \theta, \tag{22}$$

$$B_{\theta} = B_0 r f |\nabla r|^2, \tag{23}$$

$$B_{\phi} = B_0 R_0^2 \frac{q f}{r} = B_0 R_0 g, \tag{24}$$

and

$$\mathbf{B} \cdot \nabla = B_0 R_0^2 \frac{f}{r R^2} \left(\frac{\partial}{\partial \theta} + q \frac{\partial}{\partial \phi} \right). \tag{25}$$

1.4 Equilibrium Plasma Current

The relation $\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$ yields

$$\mu_0 \mathcal{J} J^r = 0, \tag{26}$$

$$\mu_0 \mathcal{J} J^{\theta} = -B_0 R_0 \frac{dg}{dr}, \tag{27}$$

$$\mu_0 \mathcal{J} J^{\phi} = B_0 \frac{\partial}{\partial r} (r f |\nabla r|^2) + B_0 \frac{\partial}{\partial \theta} (r f \nabla r \cdot \nabla \theta).$$
 (28)

1.5 Grad-Shafranov Equation

The equilibrium force balance relation

$$\mathbf{J} \times \mathbf{B} = \nabla P \tag{29}$$

yields

$$\mathcal{J}(J^{\theta}B^{\phi} - J^{\phi}B^{\theta}) = \frac{dP}{dr},\tag{30}$$

which reduces to the Grad-Shafranov equation,

$$\frac{f}{r}\frac{\partial}{\partial r}(rf|\nabla r|^2) + \frac{f}{r}\frac{\partial}{\partial \theta}(rf\nabla r \cdot \nabla \theta) + g\frac{dg}{dr} + \frac{\mu_0}{B_0^2}\left(\frac{R}{R_0}\right)^2\frac{dP}{dr} = 0.$$
 (31)

1.6 Inhomogeneous Tearing Mode Dispersion Relation

1.7 High-q Limit

Now,

$$\nabla \cdot \delta \mathbf{B} = 0 \tag{32}$$

yields

$$\frac{\partial(\mathcal{J}\,\delta B^{\,r})}{\partial r} + \frac{\partial(\mathcal{J}\,\delta B^{\,\theta})}{\partial \theta} + \frac{\partial(\mathcal{J}\,\delta B^{\,\phi})}{\partial \phi} = 0. \tag{33}$$

Furthermore,

$$\delta \mathbf{B} = \delta B_r \, \nabla r + \delta B_\theta \, \nabla \theta + \delta B_\phi \, \nabla \phi. \tag{34}$$

So,

$$\delta B^r = \delta \mathbf{B} \cdot \nabla r = |\nabla r|^2 \delta B_r + (\nabla r \cdot \nabla \theta) \delta B_\theta, \tag{35}$$

$$\delta B^{\theta} = \delta \mathbf{B} \cdot \nabla \theta = (\nabla r \cdot \nabla \theta) \, \delta B_r + |\nabla \theta|^2 \, \delta B_{\theta}, \tag{36}$$

$$\delta B^{\phi} = \delta \mathbf{B} \cdot \nabla \phi = \frac{\delta B_{\phi}}{R^2}.$$
 (37)

Follows that

$$\delta B_r = \left(\frac{1}{|\nabla r|^2}\right) \delta B^r - \left(\frac{\nabla r \cdot \nabla \theta}{|\nabla r|^2}\right) \delta B_\theta, \tag{38}$$

and

$$\delta B^{\theta} = \left(\frac{\nabla r \cdot \nabla \theta}{|\nabla r|^2}\right) \delta B^r + \left[|\nabla \theta|^2 - \frac{(\nabla r \cdot \nabla \theta)^2}{|\nabla r|^2}\right] \delta B_{\theta}. \tag{39}$$

But, Eqs. (2) and (3) imply that

$$|\nabla r|^{2} |\nabla \theta|^{2} - (\nabla r \cdot \nabla \theta)^{2} = \frac{R_{0}^{2}}{r^{2} R^{2}}.$$
 (40)

Hence,

$$\delta B^{\theta} = \left(\frac{\nabla r \cdot \nabla \theta}{|\nabla r|^2}\right) \delta B^r + \left(\frac{R_0^2}{r^2 R^2 |\nabla r|^2}\right) \delta B_{\theta}. \tag{41}$$

Assume that high-q limit is equivalent to $\delta \mathbf{B}$ being curl-free. Follows that

$$\frac{\partial \delta B_{\phi}}{\partial \theta} = \frac{\partial \delta B_{\theta}}{\partial \phi},\tag{42}$$

$$\frac{\partial \delta B_r}{\partial \phi} = \frac{\partial \delta B_\phi}{\partial r},\tag{43}$$

$$\frac{\partial \delta B_{\theta}}{\partial r} = \frac{\partial \delta B_r}{\partial \theta}.\tag{44}$$

Previous three equations imply that

$$\delta B_{\phi} \sim \frac{n}{m} \delta B_{\theta}, \, \frac{n}{m} r \, \delta B_{r}$$
 (45)

and, hence, that

$$\delta B^{\phi} \sim \frac{n}{m} \left(\frac{r}{R}\right)^2 \delta B^{\theta}, \, \frac{n}{m} \left(\frac{r}{R}\right)^2 \frac{\delta B^r}{r},$$
 (46)

Consequently, final term on right-hand side of (33) is of order $(n/m)^2 (r/R)^2$ smaller than other two terms, and, therefore, negligible. Thus, we get

$$\frac{\partial(\mathcal{J}\,\delta B^r)}{\partial r} + \frac{\partial(\mathcal{J}\,\delta B^\theta)}{\partial \theta} = 0. \tag{47}$$

Follows from (41) and previous equation that

$$r \frac{\partial}{\partial r} \left(\frac{r R^2 \delta B^r}{R_0^2} \right) = -\frac{\partial}{\partial \theta} \left[\left(\frac{r \nabla r \cdot \nabla \theta}{|\nabla r|^2} \right) \left(\frac{r R^2 \delta B^r}{R_0^2} \right) + \left(\frac{1}{|\nabla r|^2} \right) \delta B_{\theta} \right]. \tag{48}$$

Follows from (3), (38) and (44) that

$$r \frac{\partial \delta B_{\theta}}{\partial r} = \frac{\partial}{\partial \theta} \left[\left(\frac{R_0^2}{R^2 |\nabla r|^2} \right) \left(\frac{r R^2 \delta B^r}{R_0^2} \right) - \left(\frac{r \nabla r \cdot \nabla \theta}{|\nabla r|^2} \right) \delta B_{\theta} \right]. \tag{49}$$

Let

$$\frac{r R^2 \delta B^r(r, \theta, \phi)}{R_0^2} = \sum_j \delta \hat{B}_j^r(r) e^{i(m_j \theta - n\phi)}, \tag{50}$$

$$\delta B_{\theta}(r,\theta,\phi) = \sum_{j} \delta \hat{B}_{\theta j}(r) e^{i(m_{j}\theta - n\phi)}.$$
 (51)

Follows that

$$\sum_{j'} r \frac{d \,\delta \hat{B}_{j'}^r}{dr} e^{i \, m_{j'} \,\theta} = -\frac{\partial}{\partial \theta} \sum_{j'} \left[\left(\frac{r \, \nabla r \cdot \nabla \theta}{|\nabla r|^2} \right) e^{i \, m_{j'} \,\theta} \,\delta \hat{B}_{j'}^r + \left(\frac{1}{|\nabla r|^2} \right) e^{i \, m_{j'} \,\theta} \,\delta \hat{B}_{\theta \,j'} \right], \quad (52)$$

$$\sum_{j'} r \frac{d \,\delta \hat{B}_{\theta \, j'}}{dr} \,\mathrm{e}^{\mathrm{i} \, m_{j'} \,\theta} = \frac{\partial}{\partial \theta} \sum_{j'} \left[\left(\frac{R_0^2}{R^2 \, |\nabla r|^2} \right) \,\mathrm{e}^{\mathrm{i} \, m_{j'} \,\theta} \,\delta \hat{B}_{j'}^{\,r} - \left(\frac{r \, \nabla r \cdot \nabla \theta}{|\nabla r|^2} \right) \,\mathrm{e}^{\mathrm{i} \, m_{j'} \,\theta} \,\delta \hat{B}_{\theta \, j'} \right]. (53)$$

Operating with $\oint (\cdots) e^{-i m_j \theta} d\theta / (2\pi)$, we get

$$r\frac{d\delta\hat{B}_{j}^{r}}{dr} = -i m_{j} \sum_{j'} \left(-i c_{jj'} \delta\hat{B}_{j'}^{r} + a_{jj'} \delta\hat{B}_{\theta j'} \right), \tag{54}$$

$$r \frac{d \,\delta \hat{B}_{\theta j}}{dr} = -\mathrm{i} \, m_j \sum_{j'} \left(-\mathrm{i} \, c_{jj'} \,\delta \hat{B}_{\theta j'} - b_{jj'} \,\delta \hat{B}_{j'}^r \right), \tag{55}$$

where

$$a_{jj'} = \oint \frac{1}{|\nabla r|^2} e^{-i(m_j - m_{j'})\theta} \frac{d\theta}{2\pi}, \tag{56}$$

$$b_{jj'} = \oint \frac{R_0^2}{R^2 |\nabla r|^2} e^{-i(m_j - m_{j'})\theta} \frac{d\theta}{2\pi},$$
 (57)

$$c_{jj'} = \oint \frac{\mathrm{i} \, r \, \nabla r \cdot \nabla \theta}{|\nabla r|^2} \, \mathrm{e}^{-\mathrm{i} \, (m_j - m_{j'}) \, \theta} \, \frac{d\theta}{2\pi}. \tag{58}$$

Let

$$\delta \hat{B}_i^r(r) = i \,\psi_i(r),\tag{59}$$

$$\delta \hat{B}_{\theta j}(r) = -\chi_j(r). \tag{60}$$

It follows that

$$r \frac{d\psi_j}{dr} = m_j \sum_{j'} \left(-c_{jj'} \psi_{j'} + a_{jj'} \chi_{j'} \right), \tag{61}$$

$$r \frac{d\chi_j}{dr} = m_j \sum_{j'} \left(-c_{jj'} \chi_{j'} + b_{jj'} \psi_{j'} \right). \tag{62}$$

Hence,

$$\frac{r R^2 \delta B^r(r, \theta, \phi)}{R_0^2} = i \sum_j \psi_j(r) e^{i(m_j \theta - n\phi)}, \tag{63}$$

$$\frac{r R^2 \delta B^{\theta}(r, \theta, \phi)}{R_0^2} = -\sum_j \frac{1}{m_j} \frac{d\psi_j}{dr} e^{i(m_j \theta - n\phi)}, \tag{64}$$

$$R^2 \delta B^{\phi}(r,\theta,\phi) = n \sum_{i} \frac{\chi_j(r)}{m_j} e^{i(m_j \theta - n\phi)}.$$
 (65)

where use has been made of (42). Also have

$$\delta B_r(r,\theta,\phi) = i \sum_j \frac{1}{m_j} \frac{d\chi_j}{dr} e^{i(m_j \theta - n\phi)}, \tag{66}$$

$$\delta B_{\theta}(r,\theta,\phi) = -\sum_{j} \chi_{j}(r) e^{i(m_{j}\theta - n\phi)}, \tag{67}$$

$$\delta B_{\phi}(r,\theta,\phi) = n \sum_{j} \frac{\chi_{j}(r)}{m_{j}} e^{i(m_{j}\theta - n\phi)}, \tag{68}$$

We can write

$$\mathcal{J}\,\mu_0\,\delta J^r = \frac{\partial\,\delta B_\phi}{\partial\theta} - \frac{\partial\,\delta B_\theta}{\partial\phi},\tag{69}$$

$$\mathcal{J}\,\mu_0\,\delta J^{\theta} = \frac{\partial\,\delta B_r}{\partial\phi} - \frac{\partial\,\delta B_\phi}{\partial r},\tag{70}$$

$$\mathcal{J}\,\mu_0\,\delta J^{\phi} = \frac{\partial\,\delta B_{\theta}}{\partial r} - \frac{\partial\,\delta B_r}{\partial \theta}.\tag{71}$$

Normally, all three components are zero. However, at kth resonant surface (at which $r = r_k$, where $q(r_k) = m_k/n$) ψ_k , $\psi_{j\neq k}$, and $\chi_{j\neq k}$ are continuous, whereas χ_k is discontinuous. Hence,

$$\mathcal{J}\,\mu_0\,\delta J^r(r,\theta,\phi) = 0,\tag{72}$$

$$\mathcal{J}\,\mu_0\,\delta J^{\,\theta}(r,\theta,\phi) = -\sum_k \frac{n}{m_k} \left[\chi_k\right]_{r_{k-}}^{r_{k+}} \delta(r-r_k) \,\mathrm{e}^{\mathrm{i}\,(m_k\,\theta-n\,\phi)},\tag{73}$$

$$\mathcal{J}\,\mu_0\,\delta J^{\phi}(r,\theta,\phi) = -\sum_k \left[\chi_k\right]_{r_{k-}}^{r_{k+}}\,\delta(r-r_k)\,\mathrm{e}^{\,\mathrm{i}\,(m_k\,\theta-n\,\phi)}.\tag{74}$$

Now,

$$(\mu_0 \,\delta \mathbf{J} \times \delta \mathbf{B})_{\theta} = \frac{1}{4} \left(\mathcal{J} \,\mu_0 \,\delta J^{\phi} \,\delta B^{\,r\,*} + \text{c.c.} \right), \tag{75}$$

$$(\mu_0 \,\delta \mathbf{J} \times \delta \mathbf{B})_{\phi} = \frac{1}{4} \left(-\mathcal{J} \,\mu_0 \,\delta J^{\theta} \,\delta B^{\,r\,*} + \text{c.c.} \right), \tag{76}$$

which implies that

$$\mathcal{J}(\mu_0 \,\delta \mathbf{J} \times \delta \mathbf{B})_{\theta} = \frac{R_0}{2} \sum_{j} \sum_{k} \operatorname{Re} \left\{ i \left[\chi_k \right]_{r_{k-}}^{r_{k+}} \psi_j^*(r_k) \, e^{i \left(m_k - m_j \right) \, \theta} \right\} \delta(r - r_k), \tag{77}$$

$$\mathcal{J}(\mu_0 \,\delta \mathbf{J} \times \delta \mathbf{B})_{\phi} = -\frac{R_0}{2} \sum_{i} \sum_{k} \frac{n}{m_k} \operatorname{Re} \left\{ i \left[\chi_k \right]_{r_{k-}}^{r_{k+}} \psi_j^*(r_k) e^{i \left(m_k - m_j \right) \theta} \right\} \delta(r - r_k). \tag{78}$$

Let

$$\Psi_k = \frac{\psi_k(r_k)}{m_k},\tag{79}$$

$$\Delta \Psi_k = \left[\chi_k \right]_{r_{k-}}^{r_{k+}},\tag{80}$$

$$\delta T_{\theta k} \equiv \delta \mathbf{T} \cdot \mathbf{e}_{\theta} = \int_{r_{k-}}^{r_{k+}} \oint \oint (\delta \mathbf{J} \times \delta \mathbf{B})_{\theta} \, \mathcal{J} \, dr \, d\theta \, d\phi, \tag{81}$$

$$\delta T_{\phi k} \equiv \delta \mathbf{T} \cdot \mathbf{e}_{\phi} = \int_{r_{k-}}^{r_{k+}} \oint \oint (\delta \mathbf{J} \times \delta \mathbf{B})_{\phi} \mathcal{J} dr d\theta d\phi, \tag{82}$$

where $\delta \mathbf{T}(r) dr$ is the net electromagnetic torque acting on the plasma between r and r + dr. Here, $\mathbf{e}_{\theta} = (R^2/R_0) \nabla \phi \times \nabla r$ and $\mathbf{e}_{\phi} = R \nabla \phi$. Follows that

$$\delta T_{\theta k} = -\frac{2\pi^2 R_0 m_k}{\mu_0} \operatorname{Im} \left(\Psi_k^* \Delta \Psi_k \right), \tag{83}$$

$$\delta T_{\phi k} = \frac{2\pi^2 R_0 n}{\mu_0} \operatorname{Im} \left(\Psi_k^* \Delta \Psi_k \right). \tag{84}$$

1.8 Homogeneous Solution

We can write

$$\delta \mathbf{B} = \nabla \times \delta \mathbf{A}.\tag{85}$$

Suppose that $r \, \delta A_r$, δA_θ are negligible with respect to δA_ϕ . In fact, it is easily demonstrated from $\nabla \cdot \delta \mathbf{A} = 0$ that $r \, \delta A_r$, $\delta A_\theta \sim (n/m) \, (r/R)^2 \, \delta A_\phi$. It follows that

$$\mathcal{J}\,\delta B^{\,r} \simeq \frac{\partial\,\delta A_{\phi}}{\partial\theta},\tag{86}$$

$$\mathcal{J}\,\delta B^{\,\theta} \simeq -\frac{\partial\,\delta A_{\phi}}{\partial r},\tag{87}$$

$$\mathcal{J}\,\delta B^{\,\phi} \simeq 0. \tag{88}$$

The neglected terms in the previous three equations are $(n/m)^2 (r/R)^2$ smaller than the dominant terms. The previous three expressions are consistent with (63), (64), and (65) provided

$$\delta A_{\phi}(r,\theta,\phi) \simeq R_0 \sum_{j} \frac{\psi_{j}(r)}{m_{j}} e^{i(m_{j}\theta - n\phi)}.$$
 (89)

According to the Biot-Savart law:

$$\delta A_{\phi}(\mathbf{x}) = \frac{1}{4\pi} \int \frac{R R' \,\mu_0 \,\delta \mathbf{J}(\mathbf{x}') \cdot \nabla \phi}{|\mathbf{x} - \mathbf{x}'|} \,d^3 \mathbf{x}'. \tag{90}$$

Assume that

$$\delta A_{\phi}(R,\phi,Z) = \delta A_{\phi}(R,0,Z) e^{-i n \phi}. \tag{91}$$

Hence, can evaluate integral at $\phi = 0$ without loss of generality. Follows that

$$\mathbf{x} = (R, 0, Z),\tag{92}$$

$$\mathbf{x}' = (R'\cos\phi', R'\sin\phi', Z'),\tag{93}$$

and

$$|\mathbf{x} - \mathbf{x}'| = \left[R^2 + R'^2 + (Z - Z')^2 - 2RR'\cos\phi' \right]^{1/2}.$$
 (94)

Now,

$$\delta \mathbf{J}(R', \phi', Z') \cdot \nabla \phi = \delta J^{\phi}(R', 0, Z') e^{-i n \phi'} \cos \phi', \tag{95}$$

SO

$$\delta A_{\phi}(R,0,Z) = \frac{1}{4\pi} \int_{0}^{\infty} \oint \oint \frac{R R' \mu_{0} \delta J^{\phi}(R',0,Z') e^{-i n \phi'} \cos \phi' \mathcal{J}' dr' d\theta' d\phi'}{\left[R^{2} + R'^{2} + (Z - Z')^{2} - 2RR' \cos \phi'\right]^{1/2}}, \tag{96}$$

which can be written

$$\delta A_{\phi}(R,0,Z) = \frac{1}{4\pi} \int_{0}^{\infty} \oint R R' \,\mu_{0} \,\delta J^{\phi}(R',0,Z') \,G(R,Z;R',Z') \,\mathcal{J}' \,dr' \,d\theta', \tag{97}$$

where

$$G(R, Z; R', Z') = \oint \frac{\cos \phi' \cos(n \phi') d\phi'}{\left[R^2 + R'^2 + (Z - Z')^2 - 2RR' \cos \phi'\right]^{1/2}},$$
(98)

or

$$G(R, Z; R', Z') = \frac{1}{2} \oint \frac{(\cos[(n-1)\phi'] + \cos[(n+1)\phi']) d\phi'}{[R^2 + R'^2 + (Z - Z')^2 - 2RR'\cos\phi']^{1/2}}.$$
 (99)

Now,

$$P_{-1/2}^{n}(\cosh \eta) = \frac{(-1)^{n}}{2\pi} \frac{\Gamma(1/2)}{\Gamma(1/2 - n)} \oint \frac{\cos(n\varphi) \, d\varphi}{(\cosh \eta + \sinh \eta \, \cos \varphi)^{1/2}}$$

$$= \frac{1}{2\pi} \frac{\Gamma(1/2)}{\Gamma(1/2 - n)} \oint \frac{\cos(n\varphi) \, d\varphi}{(\cosh \eta - \sinh \eta \, \cos \varphi)^{1/2}}$$

$$= \frac{(-1)^{n} \Gamma(1/2) \Gamma(1/2 + n)}{2\pi^{2}} \oint \frac{\cos(n\varphi) \, d\varphi}{(\cosh \eta - \sinh \eta \, \cos \varphi)^{1/2}}.$$
 (100)

Let

$$\alpha \cosh \eta = R^2 + R'^2 + (Z - Z')^2, \tag{101}$$

$$\alpha \sinh \eta = 2 R R'. \tag{102}$$

Hence,

$$\eta = \tanh^{-1} \left[\frac{2RR'}{R^2 + R'^2 + (Z - Z')^2} \right], \tag{103}$$

and

$$\alpha = \frac{R^2 + R'^2 + (Z - Z')^2}{\cosh \eta}.$$
 (104)

It follows that

$$G(R, Z; R', Z') = \pi \left[\frac{\cosh \eta}{R^2 + R'^2 + (Z - Z')^2} \right]^{1/2} \times \left[\frac{\Gamma(3/2 - n)}{\Gamma(1/2)} P_{-1/2}^{n-1}(\cosh \eta) + \frac{\Gamma(-1/2 - n)}{\Gamma(1/2)} P_{-1/2}^{n+1}(\cosh \eta) \right].$$
(105)

However,

$$\Gamma(3/2 - n) = \frac{(-1)^{n+1} \pi (n - 1/2)}{\Gamma(n + 1/2)},$$
(106)

$$\Gamma(-1/2 - n) = \frac{(-1)^{n+1} \pi}{\Gamma(n+1/2)(n+1/2)},$$
(107)

SO

$$G(R, Z; R', Z') = \frac{(-1)^{n+1} \pi^2}{\Gamma(1/2) \Gamma(n+1/2)} \left[\frac{\cosh \eta}{R^2 + R'^2 + (Z - Z')^2} \right]^{1/2} \times \left[(n - 1/2) P_{-1/2}^{n-1}(\cosh \eta) + \frac{P_{-1/2}^{n+1}(\cosh \eta)}{n+1/2} \right].$$
(108)

Now, from (74) and (80),

$$\mathcal{J}\,\mu_0\,\delta J^{\phi}(r,\theta,0) = -\sum_k \Delta\Psi_k\,\delta(r-r_k)\,\mathrm{e}^{\mathrm{i}\,m_k\,\theta}.\tag{109}$$

Furthermore, from (79) and (89),

$$\Psi_k = \frac{1}{R_0} \oint \delta A_\phi(r_k, \theta, 0) e^{-i m_k \theta} \frac{d\theta}{2\pi}.$$
 (110)

Hence, we obtain the homogeneous tearing mode dispersion relation,

$$\Psi_k = \sum_{k'} F_{kk'} \, \Delta \Psi_{k'},\tag{111}$$

where

$$F_{kk'} = \oint \oint \mathcal{G}(R_k, Z_k; R'_k, Z'_k) e^{-i(m_k \theta - m_{k'} \theta')} \frac{d\theta}{2\pi} \frac{d\theta'}{2\pi}, \tag{112}$$

and

$$\mathcal{G}(R, Z; R', Z') = \frac{(-1)^n \pi^2 R R' / R_0}{2 \Gamma(1/2) \Gamma(n+1/2)} \left[\frac{\cosh \eta}{R^2 + R'^2 + (Z - Z')^2} \right]^{1/2} \times \left[(n - 1/2) P_{-1/2}^{n-1} (\cosh \eta) + \frac{P_{-1/2}^{n+1} (\cosh \eta)}{n+1/2} \right].$$
(113)

Here, R_k , Z_k are the R. Z coordinates of the kth resonant surface in the plane $\phi = 0$. We can also write

$$F_{kk'} = \oint \oint \tilde{\mathcal{G}}(R_k, Z_k; R'_k, Z'_k) e^{-i(m_k \theta - m_{k'} \theta')} \frac{d\Theta}{2\pi} \frac{d\Theta'}{2\pi}, \tag{114}$$

where

$$\tilde{\mathcal{G}}(R, Z; R', Z') = \frac{g g'}{q q' \gamma \gamma' B B' R^2 R'^2} \frac{(-1)^n \pi^2 R R' / R_0}{2 \Gamma(1/2) \Gamma(n+1/2)} \left[\frac{\cosh \eta}{R^2 + R'^2 + (Z - Z')^2} \right]^{1/2} \times \left[(n - 1/2) P_{-1/2}^{n-1} (\cosh \eta) + \frac{P_{-1/2}^{n+1} (\cosh \eta)}{n+1/2} \right].$$
(115)

Note that

$$G(R', Z'; R, Z) = G(R, Z; R', Z'),$$
 (116)

which implies that

$$F_{k'k} = F_{kk'}^*. (117)$$

1.9 Inhomogeneous Solution

Suppose that there are currents flowing in a number of external poloidal field coils. Let I_l , R_l , and Z_l be the peak current, and coordinates of the lth field coil. The currents are assumed to modulate like $e^{-i n \phi}$. It follows that

$$\delta J_{\text{ext}}^{\phi}(R,0,Z) = \sum_{l} \frac{I_{l}}{R_{l}} \,\delta(R - R_{l}) \,\delta(Z - Z_{l}). \tag{118}$$

Hence,

$$\Psi_k = \sum_{k'} F_{kk'} \, \Delta \Psi_k - \sum_l g_{kl} \, \mu_0 \, I_l, \tag{119}$$

where

$$g_{kj} = \frac{1}{2\pi} \oint \mathcal{G}(r_k, \theta; R_j, Z_j) e^{-i m_k \theta} \frac{d\theta}{2\pi}.$$
 (120)

Thus, we obtain the inhomogeneous tearing mode dispersion relation,

$$\Delta \Psi_k = \sum_{k'} E_{kk'} \Psi_{k'} + |E_{kk}| \chi_k, \tag{121}$$

where $E_{kk'}$ is the inverse of the $F_{kk'}$ matrix, and

$$\chi_k = \frac{1}{|E_{kk}|} \sum_{i} h_{kl} \,\mu_0 \,I_l,\tag{122}$$

$$h_{kl} = \sum_{k'} E_{kk'} g_{k'l}. \tag{123}$$

1.10 Electromagnetic Torques in Presence of External Currents

Suppose that

$$\Psi_k = B_0 R_0 \hat{\Psi}_k e^{-i\varphi_k}, \tag{124}$$

$$\chi_k = B_0 R_0 \hat{\chi}_k e^{-i\zeta_k},$$
(125)

$$E_{kk'} = \hat{E}_{kk'} e^{-i\xi_{kk'}},$$
 (126)

where $\hat{\Psi}_k$, $\hat{\chi}_k$, and $\hat{E}_{kk'}$ are real and positive, whereas φ_k , ζ_k , and $\xi_{kk'}$ are real. (Note that all hatted quantities in this report are dimensionless.) It follows from Eqs. (83), (84), and (121) that

$$\delta T_{\theta k} = -\left(\frac{2\pi^2 B_0^2 R_0^3}{\mu_0}\right) m_k \,\delta \hat{T}_k,\tag{127}$$

$$\delta T_{\phi k} = \left(\frac{2\pi^2 B_0^2 R_0^3}{\mu_0}\right) n \,\delta \hat{T}_k,\tag{128}$$

where

$$\delta \hat{T}_k = \sum_{k'=1,K} \hat{E}_{kk'} \hat{\Psi}_k \hat{\Psi}_{k'} \sin(\varphi_k - \varphi_{k'} - \xi_{kk'}) + \hat{E}_{kk} \hat{\Psi}_k \hat{\chi}_k \sin(\varphi_k - \zeta_k). \tag{129}$$

1.11 GPEC Coupling

1.11.1 PRL Derivation

We have

$$\frac{d\psi_p}{dr} = B_0 R_0 f(r), \tag{130}$$

$$\mathbf{B} \cdot \nabla \phi = \frac{B_0 R_0}{R^2} g(r),\tag{131}$$

$$\delta B^r = \frac{\mathrm{i}}{r} \left(\frac{R_0}{R} \right)^2 \sum_j \psi_j \,\mathrm{e}^{\mathrm{i} (m_j \,\theta - n \,\phi)}. \tag{132}$$

According to PRL **99**, 195003 (2007),

$$\Delta_{j} e^{i(m_{j}\theta - n\phi)} = \left[\frac{\partial}{\partial \psi_{p}} \frac{\delta \mathbf{B} \cdot \nabla \psi_{p}}{\mathbf{B} \cdot \nabla \phi} \right]_{r_{j}} = \left[\frac{\partial}{\partial r} \frac{\delta \mathbf{B} \cdot \nabla r}{\mathbf{B} \cdot \nabla \phi} \right]_{r_{j}} = \left[\frac{\partial}{\partial r} \frac{\delta B^{r}}{\mathbf{B} \cdot \nabla \phi} \right]_{r_{j}}.$$
 (133)

It follows that

$$\Delta_j = \frac{\mathrm{i}}{r_j} \left(\frac{R_0}{R}\right)^2 \frac{R^2}{B_0 R_0 g_j} \left[\frac{d\psi_j}{dr}\right]_{r_j},\tag{134}$$

But,

$$\left[r\frac{d\psi_j}{dr}\right]_{r_j} = m_j \, a_{jj} \, [\chi_j]_{r_j} = m_j \, a_{jj} \, \Delta \Psi_j, \tag{135}$$

and

$$\chi_j = \frac{\Delta \Psi_j}{|E_{ij}|},\tag{136}$$

which implies that

$$\Delta_j = i \left(\frac{R_0}{r_j}\right)^2 \frac{m_j \, a_{jj}}{g_j} \, \frac{\Delta \Psi_j}{B_0 \, R_0},\tag{137}$$

or

$$\frac{\chi_j}{R_0 B_0} = -\mathrm{i} \left(\frac{r_j}{R_0}\right)^2 \frac{g_j}{m_j a_{jj}} \frac{\Delta_j}{|E_{jj}|}.$$
 (138)

Here, the Δ_j values can be determined from the GPEC code.

1.11.2 PoP Derivation

Now, $d\psi_p/dr = B_0 R_0 f$. It follows that

$$(\nabla \psi_p \times \nabla \theta \cdot \nabla \phi)^{-1} = \frac{R^2 q}{B_0 R_0 q}.$$
 (139)

Hence,

$$\mathbf{B} = \nabla \phi \times \nabla \psi_p + B_0 R_0 g \nabla \phi = \nabla \phi \times \nabla \psi_p + q \nabla \psi_p \times \nabla \theta. \tag{140}$$

Let $\Psi_p = 2\pi \, \psi_p$ and $d\Psi_p/d\Psi_t = 1/q$. Hence,

$$\frac{d\Psi_p}{dr} = 2\pi B_0 R_0 f, \tag{141}$$

$$\frac{d\Psi_t}{dr} = 2\pi B_0 r g, \tag{142}$$

and [cf. PoP 13, 102501 (2006), Eq. (41)]

$$2\pi \mathbf{B} = q^{-1} \nabla \phi \times \nabla \Psi_t + \nabla \Psi_t \times \nabla \theta. \tag{143}$$

We have

$$\delta J^r = 0, \tag{144}$$

$$\mathcal{J}\,\mu_0\,\delta J^{\theta} = -\sum_j \frac{\Delta \Psi_j}{q_j} \,\mathrm{e}^{\mathrm{i}\,(m_j\,\theta - n\,\phi)}\,\delta(r - r_j),\tag{145}$$

$$\mathcal{J}\,\mu_0\,\delta J^{\phi} = -\sum_j \Delta \Psi_k \,\mathrm{e}^{\mathrm{i}\,(m_j\,\theta - n\,\phi)}\,\delta(r - r_j),\tag{146}$$

which implies that

$$\mu_0 \,\delta \mathbf{J} = -2\pi \sum_j \Delta \Psi_j, \,\mathrm{e}^{\mathrm{i}\,(m_j\,\theta - n\,\phi)} \,\delta(\psi_t - \psi_{t\,j}) \,\mathbf{B}. \tag{147}$$

However, according to PoP 13, 102501 (2006),

$$\Delta \Psi_j = -i \frac{\mu_0 J_c \Delta_j}{2\pi m_j},\tag{148}$$

where

$$\frac{1}{\mu_0 J_c} = \left(\oint \frac{B^2}{|\nabla \psi_t|^2} \frac{d\theta \, d\phi}{2\pi \, \mathbf{B} \cdot \nabla \phi} \right)_{r_i}. \tag{149}$$

It is easily demonstrated that

$$\frac{1}{\mu_0 J_c} = \left(\frac{R_0}{r_j}\right)^2 \frac{1}{2\pi B_0 R_0 g_j} \left[a_{jj} + \left(\frac{r_k}{R_0 q_j}\right)^2 \right]. \tag{150}$$

Hence,

$$\frac{\Delta \Psi_j}{B_0 R_0} = -i \Delta_j \left(\frac{r_j}{R_0}\right)^2 \frac{g_j}{m_j \left[a_{jj} + (r_k/R_0 q_j)^2\right]},\tag{151}$$

which implies that

$$\frac{\chi_j}{B_0 R_0} = -i \frac{\Delta_j}{|E_{jj}|} \left(\frac{r_j}{R_0}\right)^2 \frac{g_j}{m_j \left[a_{jj} + (r_k/R_0 q_j)^2\right]}.$$
 (152)

(Note: This is what is actually implemented in EPEC.) As before, the Δ_j values can be determined from the GPEC code.

1.12 Magnetic Island Width

1.12.1 Island Width in r

We have

$$\mathcal{J}\,\delta B^{\,r} \simeq \frac{\partial\,\delta A_{\phi}}{\partial\theta},\tag{153}$$

$$\mathcal{J}\,\delta B^{\,\theta} \simeq -\frac{\partial\,\delta A_{\phi}}{\partial r},\tag{154}$$

$$\mathcal{J}\,\delta B^{\,\phi} \simeq 0. \tag{155}$$

It follows that

$$\delta \mathbf{B} \cdot \nabla \delta A_{\phi} = \delta B^{r} \frac{\partial \delta A_{\phi}}{\partial r} + \delta B^{\theta} \frac{\partial \delta A_{\phi}}{\partial \theta} + \delta B^{\phi} \frac{\partial \delta A_{\phi}}{\partial \phi} \simeq 0.$$
 (156)

We have

$$\delta A_{\phi}(r,\theta,\phi) \simeq R_0 \Psi_k \,\mathrm{e}^{\mathrm{i}\,(m_k\,\theta - n\,\phi)} \tag{157}$$

in the vicinity of the kth resonant surface. It follows that

$$\mathbf{B} \cdot \nabla \delta A_{\phi} = i B_0 R_0^2 \frac{f}{r R^2} (m_k - n q) R_0 \Psi_k e^{i (m_k \theta - n \phi)}.$$
 (158)

Let us search for a function,

$$F(r,\theta,\phi) = F_0(r) + \delta A_{\phi},\tag{159}$$

which is such that

$$(\mathbf{B} + \delta \mathbf{B}) \cdot \nabla F = 0. \tag{160}$$

It follows that

$$\delta B^{r} \frac{dF_{0}}{dr} + i B_{0} R_{0}^{2} \frac{f}{r R^{2}} (m_{k} - n q) R_{0} \Psi_{k} e^{i (m_{k} \theta - n \phi)} = 0.$$
 (161)

However,

$$\delta B^{r} = \frac{R_0^2}{r R^2} i \, m_k \, \Psi_k \, e^{i \, (m_k \, \theta - n \, \phi)}, \tag{162}$$

SO

$$i m_k \frac{R_0}{r R^2} R_0 \Psi_k \frac{dF_0}{dr} + i B_0 R_0^2 \frac{f}{r R^2} (m_k - n q) R_0 \Psi_k = 0,$$
(163)

which implies that

$$\frac{dF_0}{dr} = -\frac{B_0 R_0 f}{m_k} (m_k - n q), \tag{164}$$

or

$$F_0(r) \simeq \frac{B_0}{2} \left(\frac{g \, s}{q}\right)_{r_k} (r - r_k)^2,$$
 (165)

where s = r q'/q. Hence,

$$F(r,\theta,\phi) = \frac{B_0}{2} \left(\frac{g\,s}{q}\right)_{r_k} (r-r_k)^2 + R_0 \Psi_k \cos(m_k\,\theta - n\,\phi)$$
(166)

is a flux surface function in the island region. Thus,

$$\frac{F}{R_0 |\Psi_k|} = 2 X^2 + \cos(m_k \theta - n \phi), \tag{167}$$

where

$$X = \frac{2\left(r - r_k\right)}{W_k},\tag{168}$$

and

$$\frac{W_k}{4R_0} = \left[\left(\frac{q}{gs} \right)_{r_k} \frac{|\Psi_k|}{B_0 R_0} \right]^{1/2}.$$
 (169)

It follows that W_k is the full radial island width in r. Moreover, W_k has no dependence on θ .

1.12.2 Island Width in Ψ_N

We have

$$\frac{d\Psi_N}{dr} = \frac{f}{R_0 |\psi_c|},\tag{170}$$

$$\frac{dF_0}{dr} = -\frac{B_0 R_0}{m_k} f(m_k - n q). \tag{171}$$

Hence,

$$\frac{dF_0}{d\Psi_N} = -B_0 R_0^2 |\psi_c| (1 - q/q_k).$$
(172)

Let

$$q = q_k + q'_k (\Psi_N - \Psi_{Nk}) + \frac{1}{2} q''_k (\Psi_N - \Psi_{Nk})^2 + \frac{1}{6} q'''_k (\Psi_N - \Psi_{Nk})^3, \tag{173}$$

where $' \equiv d/d\Psi_N$. Follows that

$$F_0(\Psi_N) = B_0 R_0^2 |\psi_c| \left\{ \frac{1}{2} \frac{q_k'}{q_k} (\Psi_N - \Psi_{Nk})^2 + \frac{1}{6} \frac{q_k''}{q_k} (\Psi_N - \Psi_{Nk})^3 + \frac{1}{24} \frac{q_k'''}{q_k} (\Psi_N - \Psi_{Nk})^4 \right\}. \tag{174}$$

Hence, the island extends from $\Psi_{Nk} + X_{k-}$ to $\Psi_{Nk} + X_{k+}$, where X_{k-} and X_{k+} are the positive and negative roots, respectively, of

$$X_k^2 + A_k^{(2)} X_k^3 = \frac{\overline{W}_k^2}{4},\tag{175}$$

where

$$\overline{W}_k = 4 \left(A_k^{(1)} \frac{|\Psi_k|}{R_0 B_0} \right)^{1/2}, \tag{176}$$

and

$$A_k^{(1)} = \frac{q_k}{q_k' |\psi_c|},\tag{177}$$

$$A_k^{(2)} = \frac{1}{3} \frac{q_k''}{q_k'}. (178)$$

It follows that

$$X_{k\pm} \simeq \pm \frac{\overline{W}_k}{2} - A_k^{(2)} \frac{\overline{W}_k^2}{8}.$$
 (179)

Alternatively, can say that island extends from $\Psi_{N\,k} + X_{k-} + \Delta\Psi_{N\,k}$ to $\Psi_{N\,k} + X_{k+} + \Delta\Psi_{N\,k}$, where $X_{k\pm} = \pm \Delta_{k\pm} \, x_{k\pm}$, and

$$\Delta_{k+} = \chi_{\max}(\Psi_{N\,k+1} - \Psi_{N\,k}),\tag{180}$$

$$\Delta_{k-} = \chi_{\max}(\Psi_{N\,k} - \Psi_{N\,k-1}),\tag{181}$$

$$F_{k\pm}(x_{k\pm}) = \frac{2A_k^{(1)}}{\Delta_{k+}^2} \frac{|\Psi_k|}{R_0 B_0},\tag{182}$$

$$F_{k\pm}(x) \equiv -x - \ln(1-x).$$
 (183)

Here, χ_{max} is the maximum allowable Chirikov parameter. Moreover,

$$\Delta \Psi_{Nk} = -\frac{A_k^{(2)}}{8} (X_{k+} - X_{k-})^2. \tag{184}$$

2 Technical Details

2.1 Flux Coordinate System

Let all lengths be normalized to R_0 , and all magnetic field-strengths to B_0 . We have

$$\mathbf{B} = \nabla \phi \times \nabla \psi_p + g(\psi_p) \, \nabla \phi, \tag{185}$$

and

$$\nabla \psi_p \times \nabla \theta \cdot \nabla \phi = \frac{g}{q R^2},\tag{186}$$

where $q = q(\psi_p)$.

Let $\Psi = \psi_p/\psi_c = 1 - \Psi_N$, where ψ_c is the value of ψ_p on the magnetic axis. (It is assumed that $\psi_p = 0$ on the plasma boundary.) The previous equation implies that

$$\frac{d\theta}{dl} = \frac{g}{q} \frac{1}{|\psi_c| R \sqrt{\Psi_R^2 + \Psi_Z^2}},\tag{187}$$

where dl is an element of poloidal path length on a magnetic flux-surface, and $\Psi_R \equiv \partial \Psi / \partial R$, etc. Furthermore,

$$dR = -\frac{\Psi_Z dl}{\sqrt{\Psi_R^2 + \Psi_Z^2}},\tag{188}$$

$$dZ = \frac{\Psi_R \, dl}{\sqrt{\Psi_R^2 + \Psi_Z^2}}.\tag{189}$$

It follows that

$$\frac{q(\Psi)}{g(\Psi)} = \frac{1}{2\pi |\psi_c|} \oint \frac{dl}{R\sqrt{\Psi_R^2 + \Psi_Z^2}}.$$
(190)

If we define

$$\tan \zeta = \frac{Z - Z_{\text{axis}}}{R_{\text{axis}} - R} \tag{191}$$

then

$$\frac{dR}{d\zeta} = -\Psi_Z F,\tag{192}$$

$$\frac{dZ}{d\zeta} = \Psi_R F, \tag{193}$$

$$\frac{q(\Psi)}{g(\Psi)} = \frac{1}{2\pi |\psi_c|} \oint \frac{F}{R} d\zeta, \tag{194}$$

where

$$F = \frac{(R_{\text{axis}} - R)^2 + (Z - Z_{\text{axis}})^2}{-(Z - Z_{\text{axis}})\Psi_Z + (R_{\text{axis}} - R)\Psi_R}.$$
(195)

It is helpful to define the length-like flux-surface coordinate r, according to

$$\nabla r \times \nabla \theta \cdot \nabla \phi = \frac{1}{r R^2}.$$
 (196)

It follows that

$$r(\Psi) = \left[2|\psi_c| \int_{\Psi}^1 \frac{q(\Psi')}{g(\Psi')} d\Psi'\right]^{1/2}.$$
 (197)

Let

$$a = r(0). (198)$$

We can calculate $R(r, \theta)$ and $Z(r, \theta)$ from

$$\frac{dR}{d\theta} = -|\psi_c| \frac{q}{g} R \Psi_Z, \tag{199}$$

$$\frac{dZ}{d\theta} = |\psi_c| \frac{q}{q} R \Psi_R. \tag{200}$$

Now,

$$r\frac{dr}{d\Psi} = -|\psi_c|\frac{q(r)}{g(r)}. (201)$$

So

$$\nabla r = \frac{dr}{d\Psi} \nabla \Psi = -|\psi_c| \frac{q(r)}{r \, q(r)} \nabla \Psi. \tag{202}$$

Hence,

$$a_{jj} = \left(\oint \frac{1}{|\nabla r|^2} \frac{d\theta}{2\pi} \right)_{r_j} = \left(\frac{r g}{|\psi_c| q} \right)_{r_j}^2 \oint \frac{1}{\Psi_R^2 + \Psi_Z^2} \frac{d\theta}{2\pi}.$$
 (203)

Note that

$$\frac{d\Psi_N}{dr} = \frac{r g(r)}{|\psi_c| q(r)}. (204)$$

Hence, if \overline{W}_k is the full magnetic island width in Ψ_N at the kth resonant surface then

$$\overline{W}_k = \frac{W_k}{R_0} \frac{d\Psi_N(r_k)}{dr},\tag{205}$$

where W_k is the full island width in r.

2.2 Neoclassical Coordinate System

It is also helpful to define the geometric poloidal angle

$$\mathbf{b} \cdot \nabla \Theta = \gamma(r). \tag{206}$$

It follows that

$$\frac{d\Theta}{dl} = \frac{\gamma B R}{|\psi_c| \sqrt{\Psi_R^2 + \Psi_Z^2}},\tag{207}$$

where

$$BR = \left[g^2 + |\psi_c|^2 \left(\Psi_R^2 + \Psi_Z^2\right)\right]^{1/2}.$$
 (208)

Hence,

$$\frac{1}{\gamma(r)} = \frac{1}{2\pi |\psi_c|} \oint \frac{B R dl}{\sqrt{\Psi_R^2 + \Psi_Z^2}} = \frac{1}{2\pi |\psi_c|} \oint B R F d\zeta. \tag{209}$$

We can calculate $R(r, \Theta)$ and $Z(r, \Theta)$ from

$$\frac{dR}{d\Theta} = -|\psi_c| \frac{\Psi_Z}{\gamma B R},\tag{210}$$

$$\frac{dZ}{d\Theta} = |\psi_c| \frac{\Psi_R}{\gamma B R}.$$
 (211)

Note that

$$\frac{d\Theta}{d\theta} = \left(\frac{\gamma \, q}{g}\right) B \, R^2. \tag{212}$$

Thus,

$$\frac{1}{\gamma} = \frac{q}{q} \oint B R^2 \frac{d\theta}{2\pi}.$$
 (213)

Also,

$$\frac{\partial B}{\partial \Theta} = -\frac{B}{R} \frac{\partial R}{\partial \Theta} + \frac{|\psi_c|^2}{B R^2} \left[(\Psi_R \Psi_{RR} + \Psi_Z \Psi_{RZ}) \frac{\partial R}{\partial \Theta} + (\Psi_R \Psi_{RZ} + \Psi_Z \Psi_{ZZ}) \frac{\partial Z}{\partial \Theta} \right]. \tag{214}$$

2.3 Neoclassical Parameters

The flux-surface average operator has the following properties:

$$\langle 1 \rangle = 1, \tag{215}$$

$$\langle \mathbf{B} \cdot \nabla A \rangle = 0. \tag{216}$$

It follows that

$$\langle A \rangle = \oint R^2 A \frac{d\theta}{2\pi} / \oint R^2 \frac{d\theta}{2\pi} = \oint \frac{A}{B} \frac{d\Theta}{2\pi} / \oint \frac{1}{B} \frac{d\Theta}{2\pi}. \tag{217}$$

Let

$$I_0 = \oint \frac{1}{BR^2} \frac{d\Theta}{2\pi} = \frac{\gamma q}{g},\tag{218}$$

$$I_1 = \oint \frac{1}{B} \frac{d\Theta}{2\pi},\tag{219}$$

$$I_2 = \oint B \frac{d\Theta}{2\pi},\tag{220}$$

$$I_3 = \oint \left(\frac{\partial B}{\partial \Theta}\right)^2 \frac{1}{B} \frac{d\Theta}{2\pi},\tag{221}$$

$$I_{4,k} = \sqrt{\frac{2}{k}} \oint \frac{\sin(k\Theta)}{B^2} \frac{\partial B}{\partial \Theta} \frac{d\Theta}{2\pi} = \oint \frac{\sqrt{2k} \cos(k\Theta)}{B} \frac{d\Theta}{2\pi}, \tag{222}$$

$$I_{5,k} = \sqrt{\frac{2}{k}} \oint \frac{\sin(k\Theta)}{B^3} \frac{\partial B}{\partial \Theta} \frac{d\Theta}{2\pi} = \oint \frac{\sqrt{2k} \cos(k\Theta)}{2B^2} \frac{d\Theta}{2\pi}, \tag{223}$$

$$I_6(\lambda) = \oint \frac{\sqrt{1 - \lambda B/B_{\text{max}}}}{B} \frac{d\Theta}{2\pi}, \tag{224}$$

$$I_7 = \oint \frac{R^2}{B} \frac{d\Theta}{2\pi},\tag{225}$$

$$I_8 = \oint \frac{1}{B^3 R^2} \frac{d\Theta}{2\pi}.\tag{226}$$

It follows that

$$\langle B \rangle = \frac{1}{I_1},\tag{227}$$

$$C_1 = \left\langle \frac{1}{R^2} \right\rangle = \frac{\gamma \, q}{I_1 \, g},\tag{228}$$

$$\langle R^2 \rangle = \frac{I_7}{I_1},\tag{229}$$

$$\langle B^2 \rangle = \frac{I_2}{I_1},\tag{230}$$

$$C_2 = g^2 \left\langle \frac{1}{B^2 R^2} \right\rangle = \frac{g^2 I_8}{I_1},$$
 (231)

$$\left\langle \frac{|\nabla r|^2}{R^2} \right\rangle = \frac{\gamma \, q \, a_{jj}}{I_1 \, g},\tag{232}$$

$$\langle (\mathbf{b} \cdot \nabla B)^2 \rangle = \gamma^2 \frac{I_3}{I_1},$$
 (233)

$$|\langle \mathbf{B} \cdot \nabla \theta \rangle| = \frac{g}{|q|} \frac{I_0}{I_1} = \frac{|\gamma|}{I_1},\tag{234}$$

$$\left\langle \sqrt{\frac{2}{k}} \sin(k\Theta) \left(\mathbf{b} \cdot \nabla \ln B \right) \right\rangle = \gamma \frac{I_{4,k}}{I_1},$$
 (235)

$$\left\langle \sqrt{\frac{2}{k}} \sin(k\Theta) \frac{(\mathbf{b} \cdot \nabla \ln B)}{B} \right\rangle = \gamma \frac{I_{5,k}}{I_1}.$$
 (236)

Hence,

$$L_c = \frac{1}{|\gamma|} \frac{I_2^2}{I_1^2 I_3} \sum_{k>0} I_{4,k} I_{5,k}, \tag{237}$$

$$\omega_{t\,a} \equiv \frac{v_{T\,a}}{L_c} = K_t |\gamma| v_{T\,a},\tag{238}$$

$$\nu_{*a} \equiv \frac{8}{3\pi} \frac{\langle B^2 \rangle}{\langle (\mathbf{b} \cdot \nabla B)^2 \rangle} \frac{g_t \,\omega_{ta}}{v_{Ta}^2 \,\tau_{aa}} = K_* \frac{g_t}{\omega_{ta} \,\tau_{aa}},\tag{239}$$

$$f_c = \frac{3}{4} \frac{I_2}{B_{\text{max}}^2} \int_0^1 \frac{\lambda \, d\lambda}{I_6(\lambda)},\tag{240}$$

where

$$K_t = \frac{I_1^2 I_3}{I_2^2 \sum_{k>0} I_{4,k} I_{5,k}},\tag{241}$$

$$K_* = \frac{8}{3\pi} \frac{I_2}{I_3} K_t^2. \tag{242}$$

Also,

$$\hat{q}^{2} = \frac{q^{2}}{2r^{2}} \left(\left\langle \frac{1}{R^{2}} \right\rangle - \frac{1}{\langle R^{2} \rangle} \right) / \left\langle \frac{|\nabla r|^{2}}{R^{2}} \right\rangle = \frac{q^{2}}{2r^{2}a_{ij}} \left(1 - \frac{I_{1}^{2}}{I_{7}} \frac{g}{\gamma q} \right), \tag{243}$$

$$\frac{\langle B_T^2 \rangle}{\langle B_p^2 \rangle} = \frac{q^2}{r^2 a_{jj}}.$$
 (244)

2.4 Glasser-Greene-Johnson Parameters

Let

$$J_1 = \frac{1}{2\pi |\psi_c|} \oint R F \, d\zeta,\tag{245}$$

$$J_2 = \frac{1}{2\pi |\psi_c|} \oint R B^2 F d\zeta, \tag{246}$$

$$J_3 = \frac{1}{2\pi |\psi_c|} \oint \frac{RF}{B^2} d\zeta, \tag{247}$$

$$J_4 = \frac{1}{2\pi |\psi_c|^3} \oint \frac{R F}{\Psi_R^2 + \Psi_Z^2} d\zeta, \tag{248}$$

$$J_5 = \frac{1}{2\pi |\psi_c|^3} \oint \frac{R B^2 F}{\Psi_R^2 + \Psi_Z^2} d\zeta, \tag{249}$$

$$J_6 = \frac{1}{2\pi |\psi_c|^3} \oint \frac{RF}{B^2 (\Psi_R^2 + \Psi_Z^2)} d\zeta, \tag{250}$$

where

$$B^{2} = \frac{g^{2} + \psi_{c}^{2} (\Psi_{R}^{2} + \Psi_{Z}^{2})}{R^{2}}.$$
 (251)

It follows that

$$E = -\frac{dp/dr}{(dq/dr)^2} \left(\frac{dJ_0}{dr} - g \frac{dq}{dr} \frac{J_1}{J_2} \right) J_5, \tag{252}$$

$$F = \frac{(dp/dr)^2}{(dq/dr)^2} \left[g^2 \left(J_5 J_6 - J_4^2 \right) + J_3 J_5 \right], \tag{253}$$

$$H = \frac{dp/dr}{dq/dr} \left(J_4 - \frac{J_1 J_5}{J_2} \right) g. \tag{254}$$