Power Supply: Design Considerations

Joseph John

Power Supply

- One of the most basic and crucial blocks in any gadjet/product
- Possibilities
 - Battery
 - Regulated power supply

Battery based Power Supply

- Which battery to use?
- Solutions (Rechargeable batteries)
 - Lead Acid battery (6 V, 12 V, 24 V)
 - Ni-Cd (now obsolete)
 - Ni-MH (Nickel-Metal Hydride) Single cell voltage: 1.2 V
 - Li-ion: Single cell voltage: 3.7 V

Charging circuit

- You can use rectifier circuits with adequate protection to prevent over charging
- Need to monitor charging
- Slow charging always better for long battery life
- Battery operating voltages should be within +/- 10% of the rated voltage

DC Power Supply

Full wave rectifier

 Full wave rectifier using a centertapped transformer

Full wave rectifier

 Bridge rectifier circuit
(no need for a center-tap)

The Rectifier
 with a Filter
 Capacitor—The
 Peak Rectifier

- Rectifier circuit with Capacitor filter and load, when RC >> T
- Ripple voltage

 Full wave rectifier voltage waveform (Capacitor filter and load)

 Ripple voltage less than that for a half wave rectifier

Strategies to reduce Ripple Voltage

- Increasing C
- Associated problems:
 - Δt will becomes smaller with increasing C;
 - Peak current will increase with C
 - Problems?
- Right solution?
 - Use moderate values of C and follow it with a regulator circuit

Fixed Voltage regulators

- 78xx series: Positive voltages; Eg. 7805, 7806, 7812, 7815
- 79xx series: Negative voltages; Eg.7905, 7906, 7912, 7915
- Up to 1A capability
- Higher currents with extra circuitry

Adjustable voltage regulator

 LM 317: Adjustable Positive voltage regulator for voltages from 1.2 V to 37 V

 LM 337: Adjustable negative voltage regulator for voltages from -1.2 V to -37 V

Dual Power Supply

v-i Characteristic of a 3.6 V Zener diode (measured results)

Observation

- Resistance in the forward region is very low
- Resistance in the Zener region is fairly large
- Inference: Zener voltage can vary with Zener current

Demonstration of Zener resistances (in the forward and reverse regions)

Measured V_{out} waveform for $V_{in} = 10 \sin \omega t$; $R_s = 10 k\Omega$

Zener Regulator

- Need to consider the effect of Zener resistance while calculating the Zener voltage
- $\bullet \ \mathbf{I}_{S} = \mathbf{I}_{Z} + \mathbf{I}_{L}$
- $V_{out} = V_{Z}$
- When $R_L = \infty$, $I_L = 0$ and current I_Z reaches its maximum value
- As R_L is reduced, I_L increases and at one point I_Z = 0
- For the Zener to operate,

$$V_{out} = [V_{in} \times R_I / (R_S + R_I)] > V_7$$

Zener Regulator Circuit

- Zener Regulator useful for applications where I_L is low
- Challenge: Zener diode has fairly resistance in the Zener region
- Vin = 15 volts. A 6 volt Zener diode is used in the circuit which has a resistance of 100 Ω in the Zener region.
- Find V_{out} and I_L for: i) $R_L = 500 \Omega$ and ii) $R_L = 1200 \Omega$

Answers: (One of the best ways of solving the above is by finding Thevenin equivalent across AB. Model the Zener as a voltage source of Vz volts in series with the Zener region resistance)

Ans: $V_{th} = 7.8 \text{ V}$, $R_{th} = 80 \Omega$; i) $V_{out} = 6.72 \text{ V}$, $I_L = 13.44 \text{ mA}$; ii) $V_{out} = 7.31 \text{ V}$, $I_L = 6.09 \text{ mA}$

Answers: (Using Thevenin equivalent across R_L)

Ans:

- a) $V_{in} = 15 \text{ V: } V_{th} = 11 \text{ V, } R_{th} = 100 \Omega; V_{out} = 10.31 \text{ V;}$
- $V_{in} = 25 \text{ V: } V_{th} = 13 \text{ V, } R_{th} = 100 \Omega; V_{out} = 12.19 \text{ V;}$
- b) $V_{th} = 12.4 \text{ V}$, $R_{th} = 100 \Omega$; $V_{out} = 11.02 \text{ V}$, $I_Z = 8.18 \text{ mA}$, $I_L = 13.78 \text{ mA}$

- A zener regulator circuit is shown, where a 10 volt Zener diode is used which has a resistance of 125 Ω in the Zener region.
- a) If the input voltage V_{in} varies from 15 to 25 volts, and R_L = 1500 Ω , what will be the corresponding V_{out} values?
- b) Assuming $V_{in} = 22 \text{ V}$, and $R_L = 800 \Omega$ what will be V_{out} , I_Z and I_L ? Give your answers for I_Z and I_L in mA.