Problem 1 (4.14). Some sequence and integral convergence problems.

(a) Show that under the hypotheses of Theorem 4.17 we have

$$\int |f_n - f| \to 0.$$

Proof. Let $\{g_n\}$ be a sequence of integrable functions such that $g_n \to g$ pointwise with g integrable. Let $\{f_n\}$ be a sequence of measurable functions such that $|f_n| \leq g$ and $f_n \to f$ pointwise almost everywhere. Suppose that

$$\int g = \lim_{n \to \infty} \int g_n.$$

For any $n \in \mathbb{N}$ we have $|f_n| \leq g$ and so because $f_n \to f$ and $g_n \to g$, $|f| \leq g$. Thus, we have that

$$|f_n| - |f| \le |f_n - f| \le |f_n + f|$$

$$\le |f_n| + |f|$$

$$< q_n + q.$$

This means that the sequence defined by $\{(g_n + g) - |f_n - f|\}$ is a nonnegative sequence. So by Fatou's lemma and properties of \liminf and \limsup ,

$$0 \le \int (g_n + g) - |f_n - f| \le \lim_{n \to \infty} \int (g_n + g) - |f_n - f|$$
$$\le \int (g_n + g) + \lim_{n \to \infty} \int -|f_n - f|$$
$$= \int (g_n + g) - \overline{\lim}_{n \to \infty} \int |f_n - f|.$$

But then this implies that

$$\overline{\lim}_{n \to \infty} \int |f_n - f| \le 0 \le \underline{\lim}_{n \to \infty} \int |f_n - f|$$

and so we have

$$\lim_{n \to \infty} \int |f_n - f| = 0.$$

(b) Let $\{f_n\}$ be a sequence of integrable functions such that $f_n \to f$ almost everywhere with f integrable. Then $\int |f - f_n| \to 0$ if and only if $\int |f_n| \to \int |f|$.

Proof. We will show two directions to complete this proof.

 (\Rightarrow) First, suppose that

$$\lim_{n \to \infty} \int |f_n - f| = 0.$$

Then, by using the reverse triangle inequality, can show that

$$\left| \lim_{n \to \infty} \int |f_n| - \int |f| \right| \le \lim_{n \to \infty} \int |f_n| - \int |f|$$

$$\le \lim_{n \to \infty} \int |f_n - f|$$

$$= 0$$

Page 1

Because $|\cdot| \ge 0$ always, we know that

$$0 \le \lim_{n \to \infty} |f_n| \le \int |f| \le 0$$

and so

$$\lim_{n \to \infty} \int |f_n| = \int |f|.$$

 (\Leftarrow) Conversely, suppose that

$$\lim_{n \to \infty} \int |f_n| = \int |f|.$$

Because $f_n \to f$ a.e, $|f_n| \le f$ for all $n \in \mathbb{N}$. By a similar argument to part (a),

$$|f_n| - |f| \le |f_n - f| \le |f_n + f|$$

 $\le |f_n| + |f|$

Then the sequence $\{(|f_n| + |f|) - |f_n - |\}$ is a nonnegative sequence. Again, similar to part (a), using Fatou's lemma we have

$$0 \le \int (|f_n| + |f|) - |f_n - f| \le \lim_{n \to \infty} \int (|f_n| + |f|) - |f_n - f|$$

$$\le \int (|f_n| + |f|) + \lim_{n \to \infty} \int -|f_n - f|$$

$$= \int (|f_n| + |f|) - \overline{\lim}_{n \to \infty} \int |f_n - f|.$$

So we again that

$$\overline{\lim}_{n \to \infty} \int |f_n - f| \le 0 \le \underline{\lim}_{n \to \infty} \int |f_n - f|$$

and so we have

$$\lim_{n \to \infty} \int |f_n - f| = 0.$$

finishing the proof.

Thus, having showed both directions, $\int |f - f_n| \to 0$ if and only if $\int |f_n| \to \int |f|$.

Problem 2 (4.16). Establish the *Riemann-Lebesgue Theorem*: If f is an integrable function on $(-\infty,\infty)$, then $\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos(nx)\,\mathrm{d}x=0$. [Hint: The theorem is easy if f is a step function. Use Problem 15.]

Proof. Let f be an integrable function $(-\infty, \infty)$. Let $\varepsilon > 0$ be chosen. By Problem 15 part (b), there exists a step function ψ such that

$$\int |f - \psi| < \frac{\varepsilon}{2}.$$

Turning to $\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos(nx)\,\mathrm{d}x$, we can note that following:

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, \mathrm{d}x = \left| \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, \mathrm{d}x \right|$$

$$\leq \lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) \cos(nx)| \, \mathrm{d}x$$

$$\leq \lim_{n \to \infty} \int_{-\infty}^{\infty} |f(x) \cos(nx)| \, \mathrm{d}x$$

$$\leq \lim_{n \to \infty} \int_{-\infty}^{\infty} |(f(x) - \psi(x)) \cos(nx)| \, \mathrm{d}x + \lim_{n \to \infty} \int_{-\infty}^{\infty} |\psi(x) \cos(nx)| \, \mathrm{d}x$$

$$\leq \frac{\varepsilon}{2} + \lim_{n \to \infty} \int_{-\infty}^{\infty} |\psi(x) \cos(nx)| \, \mathrm{d}x.$$

Because $\psi(x)$ is a step function, we can integrate the right-hand side integral in the last inequality over $(-\infty, \infty)$ in each interval which $\psi(x)$ is constant. So then because $\phi(x)$ is fixed over these intervals, as $n \to \infty$, the antiderivative of $|\cos(nx)|$ goes to zero i.e.,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |\psi(x) \cos(nx)| \, dx = 0.$$

Since this integral converges to 0, there exists $N \in \mathbb{N}$ such for all n > N, we have

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |\psi(x) \cos(nx)| < \frac{\varepsilon}{2}.$$

Thus, we have that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx < \frac{\varepsilon}{2} + \lim_{n \to \infty} \int_{-\infty}^{\infty} |\psi(x) \cos(nx)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon.$$

Since ε was chosen arbitrarily,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, \mathrm{d}x = 0$$

which was our desired result.

Problem 3 (4.25). A sequence $\{f_n\}$ of measurable functions is said to be a Cauchy sequence in measure if given $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \geq N$ we have

$$m\left\{x: |f_n(x) - f_m(x)| \ge \varepsilon\right\} < \varepsilon.$$

Show that if $\{f_n\}$ is a Cauchy sequence in measure, then there is a function f to which the sequence $\{f_n\}$ converges in measure.

Proof. Let $\{f_n\}$ be a sequence of measurable functions which is Cauchy in measure. Fix $\nu \in \mathbb{N}$. Choose $n_{\nu+1} > v_{\nu}$ such that

$$m\left\{x: \left|f_{n_{\nu+1}}(x) - f_{n_{\nu}}(x)\right| \ge \frac{1}{2^{\nu}}\right\} < \frac{1}{2^{\nu}}.$$

We claim that the series

$$S_n(x) = \sum_{\nu=1}^{\infty} (f_{n_{\nu+1}}(x) - f_{n_{\nu}}(x))$$

converges almost everywhere to a function g. Define the set

$$E_{\nu} = \left\{ x : \left| f_{n_{\nu+1}}(x) - f_{n_{\nu}}(x) \right| \ge \frac{1}{2^{\nu}} \right\}.$$

If
$$x \notin A_k = \bigcup_{\nu=k}^{\infty} E_{\nu}$$
, then

$$|f_{n_{\nu+1}}(x) - f_{n_{\nu}}(x)| < \frac{1}{2^{\nu}} \text{ for all } \nu > k.$$

Taking the intersection over all k for A would mean that this set would be contained in A i.e.,

$$\bigcap_{k=1}^{\infty} A_k \subset A_k$$

and so

$$m\left(\bigcap_{k=1}^{\infty} A_k\right) \le m\left(A_k\right) \le \sum_{k=1}^{\infty} m(A_k) < \frac{1}{2^{\nu-1}}.$$

Because ν is fixed, $m\left(\bigcap_{k=1}^{\infty}A_k\right)=0$. Thus $S_n(x)\to g(x)$ almost everywhere.

Let $f = g + f_{n_1}$ be a sequence. By construction, the partial sums of this sequence are telescoping i.e., for any $\nu \in \mathbb{N}$, the partials sums of f are of the form $f_{n_{\nu}} - f_{n_1}$. Thus $f_{n_{\nu}} \stackrel{m}{\to} f$. Now let $\varepsilon > 0$ be chosen. Because the sequence $\{f_n\}$ is Cauchy in measure, there exists $N_1 \in \mathbb{N}$ such for all $m, n \geq N_1$,

$$m\left\{x: |f_n(x) - f_m(x)| \ge \frac{\varepsilon}{2}\right\} < \frac{\varepsilon}{2}.$$

Since $f_{n_{\nu}} \stackrel{m}{\to} f$, there exists $N_2 \in \mathbb{N}$ such that for all $k > N_2$

$$m\left\{x:|f_{n_k}-f(x)|\geq \frac{\varepsilon}{2}\right\}<\frac{\varepsilon}{2}.$$

Set $N = \max\{N_1, N_2\}$. So for any n, k > N, we know

$$m\left\{x:|f_{n}(x)-f(x)|\geq\varepsilon\right\}\leq m\left\{x:|f_{n_{k}}-f_{n}(x)|\geq\frac{\varepsilon}{2}\right\}+m\left\{x:|f(x)-f_{n_{k}}(x)|\geq\frac{\varepsilon}{2}\right\}$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$$

$$=\varepsilon$$

Having satisfied the definition of convergence of measure, $f_n \stackrel{m}{\to} f$ which completes the proof.

Problem 4. Compute $\lim_{n\to\infty}\int_0^1 (1+nx^2)(1+x^2)^{-n} dx$. Justify your answer.

Proof. Note that we can rewrite this integral as

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} \, \mathrm{d}x$$

We can interchange the limit operation and the integral because the sequence of functions $f_n(x) = \left\{ \frac{1 + nx^2}{(1 + x^2)^n} \right\}$ is uniformly convergent and, in fact, this sequence is uniformly convergent to 0. To that end fix $\varepsilon > 0$. Take the derivative of $f(x) = \frac{1 + nx^2}{(1 + x^2)^n}$ with respect to x as we want to find where this function is maximized over [0, 1]. It can be shown that (saving showing all of the algebra),

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1 + nx^2}{(1 + x^2)^n} \right) = -2(n - 1)nx^3(x^2 + 1)^{-n-1}.$$

For any $x \in [0,1]$, as $n \to \infty$, this quantity goes to 0 i.e., f(x) is maximized when x=0. So then $f(0)=\frac{1}{1^n}=1$ for all $n \in \mathbb{N}$. Thus choose $N \in \mathbb{N}$ large enough so that $\frac{1}{N} < \varepsilon$. So for any n > N,

$$\left| \frac{1 + nx^2}{(1 + x^2)^n} \right| \le \frac{1}{n} < \varepsilon.$$

Thus $f_n(x) \to 0$ uniformly and so

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} \, \mathrm{d}x = \int_0^1 \lim_{n \to \infty} \frac{1 + nx^2}{(1 + x^2)^n} = \int_0^1 0 \, \mathrm{d}x = 0.$$