

AD-A164 145

US Army Corps of Engineers

Constitution of the second

EFFECTS OF WATER LEVEL CHANGES ON FISHES OF THE YAZOO RIVER BASIN, MISSISSIPPI

by

K. Jack Killgore, Andrew C. Miller Environmental Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

December 1985 Final Report

Approved For Public Release; Distribution Unlimited

GAIC FILE COPY

B

Prepared for

US Army Engineer District, Vicksburg Vicksburg, Mississippi 39180-0060

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO	
Miscellaneous Paper EL-85-10 $AD-A/64$	145
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
EFFECTS OF WATER LEVEL CHANGES ON FISHES OF THE YAZOO RIVER BASIN, MISSISSIPPI	Final report
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
K. Jack Killgore Andrew C. Miller	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Engineer Waterways Experiment Station Environmental Laboratory	ANEX S WOMEN SHIP INCIDENCE
PO Box 631, Vicksburg, Mississippi 39180-0631	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE December 1985
US Army Engineer District, Vicksburg	13. NUMBER OF PAGES
Vicksburg, Mississippi 39180-0060	46
14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15 SECURITY CLASS. (of this report)
	771(64-3
	Unclassified 15. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (af this Report)	
Approved for public release; distribution unlimited	d.
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different fro	om Report)
18. SUPPLEMENTARY NOTES	
Available from National Technical Information Servi	ice, 5285 Port Royal Road,
Springfield, Virginia 22161.	
19 KEY WORDS (Continue on reverse side if necessary and identify by block number,)
Surface water withdrawal	
Fishes	
Preferred flows	
20. ABSTRACT (Continue on reverse eids if necessary and identify by block number)	
The effects of surface water withdrawal on hab	bitat availability and qual-
ity were investigated in one lacustrine (Mossy Lake	
tats in the Yazoo River Basin during the summer and	
following fishes: bigmouth buffalo (Ictiobus cypri	
(Ictiobus bubalus), common carp (Cyprinus carpio), punctatus), white crappie (Pomoxis annularis), and	blacktail shiner (Notropis
punctatus), white crappie (romoxis annulalis), and	DIACKCALL SHIREL (MOCLOPIS

DD 1 FORM 1473 EDITION OF ! NOV 65 IS OBSOLETE

Unclassified

(Continued)

SECURITY CLASSIFICATION C THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

venustus). Water velocity, water depth, and instream cover types were determined at river sites where fishes were collected to develop utilization indexes for adult and juvenile life stages. Hydraulic models from the US Fish and Wildlife Service (USFWS) Instream Flow Incremental Methodology (IFIM) were coupled with the indexes to predict quantities of usable habitat for target species at various discharges. In large and medium-sized rivers it was determined that surface water removal would increase available habitat for species since current velocities would usually decrease and allow fish to utilize a greater percentage of the river. Small rivers would be adversely affected since diminished water levels would reduce cover availability and limit space for feeding and resting. It was determined that dissolved oxygen levels are adequate at normal flow but often decrease following heavy rain because of elevated biological oxygen demand. Based on regression equations developed from data collected on Mossy Lake, it was determined that withdrawing more than 3 to 4 feet of water from delta lakes would substantially reduce or completely eliminate the sport fishery.

Unclassified

Preface

This report describes a basinwide water needs study of fishes as part of an overall water demand study of the Yazoo River Basin being conducted by the US Army Engineer District, Vicksburg (LMK).

The study was completed by the Aquatic Habitat Group (AHG), Environmental Resources Division (ERD), Environmental Laboratory (EL), US Army Engineer Waterways Experiment Station (WES). The report was prepared by Mr. K. Jack Killgore and Dr. Andrew C. Miller, AHG. Dr. John Nestler and Ms. Toni Curtis, Environmental Research and Simulation Division, Dr. Barry Payne (AHG), and Mr. Scott Vowinkel (LMK) contributed to the conduct of this study. The report was prepared under the supervision of Dr. Thomas D. Wright, Chief, AHG; Dr. C. J. Kirby, Chief, ERD; and Dr. John Harrison, Chief, EL.

Director of WES was COL Allen F. Grum, USA. Technical Director was Dr. Robert W. Whalin.

This report should be cited as follows:

Killgore, K. J., and Miller, A. C. 1985. "Effects of Water Level Changes on Fishes of the Yazoo River Basin, Mississippi," Miscellaneous Paper EL-85-10, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Acces	sion For	1
NTIS	GRA&I	K
DITIC	TAB	
	ounced	
Justi	fioution	
Distr	inglano/	
Aval	libility C	စ္တီလိုမ
	Wash was	'ar
Dist	1 (p. 65/1)	
	Ì	
1		
<i>[</i>]		
	1	

Table of Contents

		Page
		1
Introduction .	• • • • • • • • • • • • • • • • • • • •	3
-	• • • • • • • • • • • • • • • • • • • •	3
-		
	Methods	3
	ization Studies	3
	lability Studies	5 6
	tudies	6
Results		6
	ization Studies of Rivers in the Yazoo Basin lability as a Function of Discharge	6 9
	sis of Surface Water Withdrawal in	9
	n Rivers	11
	y Preferences of Fishes in Yazoo Basin Rivers	12
	ecreasing Water Depths on Fishes in Mossy Lake	12
Discussion		13
Conclusions and	d Recommendations	14
Literature Cite	ed	17
Tables 1 - 7		
Appendix I:	Monthly Flow Duration Tables of the 18 Gages in the	
• •	Yazoo River Basin	1-1
Appendix II:	Regression Equations to Predict Discharge from	
	Stage or Stage from Discharge for 18 Gages in the	
	Yazoo Basin	II-1
Appendix III:	Utilization Index Curves for Depth, Velocity,	
	and Cover Determined from Field Observations	
	in the Yazoo River Basin	iII-1
Appendix IV:	Optimization Matrix Tables Used to Determine Pre-	
	ferred Flows	TV-1

EFFECTS OF WATER LEVEL CHANGES ON FISHES OF THE YAZOO RIVER BASIN, MISSISSIPPI

Introduction

Background

1. Decreasing groundwater levels in the Yazoo River Basin indicate that future water demands cannot be fully met by the Mississippi River alluvial aquifer (US Army Corps of Engineers 1983). Surface water withdrawal from the Yazoo River and its tributaries has been considered as an alternative source of water for agriculture and industry. The highest water demands occur during the irrigation season from May-August (US Army Corps of Engineers 1983), while secondary demands for catfish farming and municipal and industrial purposes occur year-round, but primarily in April, September, and October. The US Army Engineer District Vicksburg (LMK) has concern over the effects of surface water removal on existing fish habitat in the Yazoo River Basin.

Purpose

2. The purpose of this study was to determine the effects of surface water removal on fish habitat in the Yazoo Delta during April to October. In addition, recommendations were made on flows that would enhance fish productivity.

Materials and Methods

Habitat Utilization Studies

- 3. Five sites were selected for detailed studies of fish habitat utilization. One site, Mossy Lake (ML), was chosen to represent a typical lake in the Yazoo River Basin. Mossy Lake covers 225 acres, has an average depth of 8 ft, and is surrounded by agricultural land. Lakes such as ML may become alternative sources of irrigation water when river stages are low. The remaining four sites were selected to represent the continuum of hydrologic conditions found in the Yazoo Basin.
- 4. The first riverine site chosen was in the Yazoo River at Yazoo City (YRYC) and represents fish habitat in mainstem, navigable river reaches. By virtue of being downstream of a flood control structure,

discharge at the YRYC site is only moderately influenced by rainfall. The next site chosen was in the Big Sunflower River at Anguilla (BSRA) and represents mainstem habitats found upstream of control structures. Flowing-water tributaries are reasonably represented by the third site which is located in the Big Sunflower River at Cypress Bend (BSRC). The last site chosen was in Short Creek near Yazoo City (SCYC) and represents a virtually lentic but still permanent tributary. This last habitat type is uncommon in the Yazoo Basin, but provides a potentially valuable source of food and cover for fish. A summary of hydraulic as well as geomorphic and instream cover conditions at the four riverine sites is provided in Table 1 with a list of other river reaches in the Yazoo Basin which are generally represented by each selected site.

- 5. Evaluation species were selected based on economic importance, trophic significance, and availability in the study areas. Suggestions on evaluation species were provided by the Mississippi Department of Wildlife Conservation and LMK. The riverine species used included the commercial fishes bigmouth buffalo (Ictiobus cyprinellus), smallmouth buffalo (Ictiobus bubalus) common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus). The white crappie (Pomoxis annularis) was selected because of its value as a sport fish. The blacktail shiner (Notropis venustus) represented a common riverine forage fish. Riverine species were grouped into juvenile and adult life stages using field determined length/weight relationships and from literature values for age and sexual maturity. The evaluation species used for Mossy Lake included largemouth bass (Micropterus salmoides), bluegill (Lepomis macroshirus), crappie (Pomoxis sp.), gar (Lepisosteus sp.), and shad (Dorosoma sp.). Habitat requirements for spawning were not considered in this study since water demands are low and water supply is high during the spring when spawning occurs for most fish species.
- 6. Site-specific habitat utilization was determined by measuring water depth, water velocity, and cover type at each location where an evaluation species was captured by electrofishing. Water depth was measured to the nearest 0.1 ft using either a metered rod or an electronic depth sounder. Water velocity was measured to the nearest 0.1 ft·sec⁻¹ using a Marsh-McBirney model 201 current meter and probe. If total depth (TD) was less than or equal to 3.0 ft, then velocity was measured at 0.6 TD. If TD exceeded 3.0, then velocity was measured at both 0.2 and 0.8 TD. Cover was classified into one of four categories: no cover, logs or branches less than 12 in. diam., logs

greater than 12 in. diam., and rootwads or undercut banks. Fish were collected with a boat-mounted electrofishing unit using pulse AC at 300-400 volts and 3-6 amperes. Length and weight were recorded for each evaluation species that was caught. At each site, an approximately equal amount of time was spent fishing in each of the following eight possible habitat types (when all eight occurred): deep, fast-flowing, and without cover; deep, fast, and with cover; deep, slow-flowing, and without cover; deep, slow, and with cover; shallow, fast, without cover; shallow, fast, and with cover; shallow, slow, and without cover; and shallow, slow, and with cover. All data were gathered between July and October.

Habitat Availability Studies

- 7. In approximate parallel to the fish habitat studies, studies were conducted to determine the relationship between river discharge or stage and the amount of available fish habitat. We analyzed historic data on monthly discharges for April through October over a period of 17 years (Appendix I) for 18 gage stations spread over the entire Yazoo River Basin. Six gage stations were selected from a cluster analysis to represent the continuum of hydrologic conditions existing in the Basin (Table 2). April through October data were analyzed because that is the season of possible water withdrawal demand. In order to allow discharges to be transformed into river stage (a transformation often necessary due to different preferences of hydrologists) we provide the necessary regression equations in Appendix II.
- 8. In order to relate discharge to the amount of fish habitat, 1 transect was established over typical river cross sections at each representative gage station. Depth, velocity, and cover were measured at regular intervals of 5-10 feet (depending on cross-section distance) along each transect using methods described in paragraph 6. This approach to data acquisition is specially tailored to the input requirements of the IFIM as detailed elsewhere (Bovee 1981). These data were entered into a spatially arranged computer model that weights habitat availability at various flows by each fish species habitat utilization of depth, velocity, and cover. The output is expressed in weighted usable area (WUA) of fish habitat in ft² per 1000/linear feet of stream for a given discharge.
- 9. The IFIM assumes a positive linear relationship between standing crop of fishes and the amount of usable fish habitat. To provide estimates of fish standing crop as a function of WUA in the study area we analyzed data from

rotenone studies conducted in the 1960's and 1970's by the Mississippi Department of Wildlife Conservation. Much of the rotenone sampling was not conducted exactly where gages were located, but extrapolations were made according to the hydrologic, geomorphic, and cover similarities of the separately sampled river reaches. These data only approximate the relative standing crop of fishes at various discharges and are not considered absolute estimates of standing crop.

Water Quality Studies

10. Qualitative estimates on the effects of increased water temperatures and reduced dissolved oxygen levels were made for each species. Temperature and dissolved oxygen were measured at fish capture locations with a Mark IV water quality analyzer. An analysis of variance was used to determine if the evaluation species were collected at specific conditions of dissolved oxygen and temperature. If a significant difference occurred (p < 0.05) Tukey's studenized range test was used to identify preferences for certain ranges of temperature and dissolved oxygen.

Mossy Lake Studies

11. Regression equations were developed for the Mossy Lake evaluation species that predicted standing crop (pounds per acre) for a given water depth. The data used in this analysis came from rotenone studies conducted by the Mississippi Department of Wildlife Conservation and the Soil Conservation Service in 1959, 1969, and 1979. Although three data points are usually not sufficient to develop a regression equation, these were the only data available for which a prediction could be made on the impact of surface water withdrawal on delta lake fishes.

Results

Habitat Utilization Studies of Rivers in the Yazoo Basin

12. Habitat utilization of each evaluation species were first considered on a site-by-site basis, but an analysis of variance of fish habitat utilization between sites showed that, for riverine sites, intersite differences in habitat utilization did not exist. Therefore, the four riverine sites are considered together. Data for the bigmouth and smallmouth buffalo were combined since these two species utilized similar habitat conditions. Data for

Mossy Lake is considered separately in a latter section. Point locations of depth and velocity do not perfectly coincide with a captured fish's location. However, the habitat variable measurements reflect the conditions in the immediate vicinity of where the fish was located prior to being shocked. Therefore, measured values of depth and velocity were grouped into class intervals that reflect vicinity rather than point location. The class intervals were chosen according to the following empirical rule:

$$K = (3.3 * Log N) + 1$$

where

K = Number of class intervals

N = Total number of fish observations

A histogram of the number of adults and juveniles for each species caught per class interval were plotted. The grouped values were normalized to 0-1 by dividing the frequency of each class interval into the class interval with the maximum number of observations. A line was then fitted to each histogram. Cover was also normalized using the four cover types previously mentioned with each cover type being a discrete class. This approach resulted in an utilization index for each of the six species by life stage, and each of three variables (Appendix III). The Y axis ranges from 0-1, 0 being habitat not utilized by the species, and 1 being the habitat most utilized by the species, and the X axis representing the range of habitat conditions measured during the study.

13. The relative abundance of fishes collected in the study sites is summarized in Figure 1. The blacktail shiner was caught only in flowing water whereas the majority of the other species were taken where flow was nonexistent (Short Creek). This suggests that these species seem to prefer nonflowing water and thus any nonflowing tributary should be considered important habitat. The fewest number of fishes were caught at YRYC due to high velocities and the relatively inefficiency of the electroshocker to capture fishes in deep, fast flowing rivers. The fishes caught in YRYC, and to a lesser extent at BSRA, were usually found near the bank or in side channels associated with cover where they could escape high velocity water. Conversely, fishes were usually caught throughout the entire cross section at BSCB. All large bigmouth buffalo (i.e. > 500 mm total length) were captured in the deep holes at

Figure 1: Number of Fish Captured per Hour of Electroshocking

LEGEND

1 · YAZOO RIVER

2 · BIG SUNELOWER AT DOWLING BAYOU

3 · BIG SUNELOWER AT CYPRESS BEND

4 · SHORT CREEK

bends in the Big Sunflower River between Anguilla and the Holly Bluff cutoff. These holes are uncommon and should be considered important habitat for adult bigmouth buffalo.

- 14. In general for riverine sites, high water velocities limited the microdistribution of all species. Blacktail Shiners were most tolerant and white crappie were least tolerant of high velocity. Instream cover was important to white crappie and channel catfish, but buffalo, carp, and blacktail shiners were relatively insensitive to cover. Adults usually exhibited greater tolerance for conditions of depth, velocity, and cover than did juveniles.
- 15. Condition factors were calculated for each species (except blacktail shiner) using the equation:

$$K = \frac{W * 10^6}{L^3}$$

where

W = Weight in grams

L = Total length

10° = Metric scaling constant

Fishes were separated into juveniles and adults based on total length and their K values compared with those in the literature (Table 3). The condition indices for fishes collected in the Yazoo Basin were similar to literature reported values of healthy fishes suggesting that an adequate food supply is available. Although the condition indices were relatively high for the white crappie when compared with values in the literature, many of these fish exhibited frayed fins and lesions indicating parasitic or bacterial stress.

Habitat Availability as a Function of Discharge

16. The quantity of habitat available (weighted usable area in ft²/1000 linear ft) and standing crop for target fishes at discharges representing dry to above normal water conditions was estimated for 18 gage sites in the Yazoo Basin (Table 4). Since juveniles and adults were not separated in most of earlier studies of the Yazoo River Basin, the WUA used in the habitat-discharge relationships was an average of these two life stages. Usable

habitat was always less than the total area available at all discharges since high velocities, deep water, or lack of cover made certain areas unacceptable for fish. White crappie habitat was in the least supply while that of the adult blacktail shiner was usually the most abundant.

- 17. Sites on the Yazoo River and the Tallahatchie River near Swan Lake were characterized by high velocities (usually greater than 2 fps), deep water, and little available cover which resulted in low WUA values for all species. White crappie habitat was extremely limited. For all species in the Yazoo River the quantity of habitat peaked at low flows (4,000 5,000 cfs) then steadily declined at higher discharges. Except for the blacktail shiner, available habitat increased again at flows greater than 10,000 cfs because riparian vegetation was flooded and provided additional cover. For all species except the blacktail shiner the quantity of available habitat was highest at 7,000-8,000 cfs at the Tallahatchie River near Swan Lake. River banks were lower in the Tallahatchie River near Swan Lake so overbank flows occurred at intermediate as well as high flows.
- 18. The Big Sunflower River near Anguilla, Tallahatchie River near Lambert, Hickahala Creek near Senatobia, Steele Bayou near Onward, Coldwater River near Sarah, Big Sunflower River at Sunflower, and the Little Tallahatchie River at Etta provided more usable habitat than sites on the Yazoo River because water velocities and depths were lower which allowed fish to utilize a higher percentage of the river. Both species of buffalo, carp, and blacktail shiners had the largest amount of available habitat followed by channel catfish and white crappie. Habitat was highest at low flows (80-90% exceedance)* and declined at median flows. At extreme high flows shallow water and cover became more available resulting in an increase in habitat for most species.
- 19. Sites represented by Deer Creek at Hollandale were characterized by abundant cover, shallow (1 5 ft) water and low to moderate water velocities. For all species, available habitat was greatest at intermediate discharges. Even though more cover was available at high flows, this did not provide adequate refugia to offset the high water velocities. At low flows total area declined along with available habitat.

^{*} Exceedance value is the probability of a certain flow being equalled or exceeded.

- 20. Preferred flows were determined from the WUA-discharge relationships for each species. Preferred flows should maximize the available area (with specific attributes of depth, velocity, and cover) for the species with the least amount of habitat, while ensuring an adequate amount of high quality habitat for other species (Bovee 1981). Preferred flows should maintain or increase fish productivity. A preferred flow was determined separately for white crappie since this species occurs primarily in backwater or non-flowing habitat. The WUA-discharge relationships of the evaluation species at each representative site were arrayed into optimization matrix tables. For each flow, the species with the minimum WUA is recorded. The highest minimum recorded over the range of flows is considered the preferred flow.
- 21. Appendix IV presents the optimization matrix tables used to obtain the preferred flows in Table 5. Except for the Big Sunflower near Anguilla and the Tallahatchie River near Lambert, preferred flows were the same for all species (Table 5). The preferred flow for the Yazoo River sites was 3,000 cfs (90% exceedance value) and 7000 cfs (30-70% exceedance value depending on the month) at the Tallahatchie River near Swan Lake. The preferred flow for the bigmouth and smallmouth buffalo, carp, channel catfish, and blacktail shiner at the Big Sunflower River near Anguilla, Tallahatchie River near Lambert, and Hickahala Creek near Senatobia was 500 cfs (70-90% exceedance value) while the preferred flow for white crappie was 2,000 cfs at the Big Sunflower near Anguilla and 5,000 cfs at the Tallahatchie River near Lambert and Hickahala Creek near Senatobia. The preferred flow at sites represented by the Steele Bayou near Onward was 50 cfs (70-90% exceedance value) and 200 cfs (10-70% exceedance value) at sites represented by Deer Creek near Hollandale.

Impact Analysis of Surface Water Withdrawal in Yazoo Basin Rivers

22. Since flows resulting from surface water withdrawal were not available, Table 4 (Population Estimates and Available Habitat at Various Discharges for each Representative Gage Site), Appendix I (Monthly Flow Duration Tables of the 18 Gages in the Yazoo River Basin) and Table 5 (Preferred Flows at the 18 Gage Locations in the Yazoo Basin) were prepared in a manner that allows the user to calculate changes in the amount of fish habitat and standing crop for any surface water withdrawal proposal. For example,

approximately 2000 cfs is required to meet irrigation demands near Greenville during September. The discharge is currently 8600 cfs (50% exceedance value, see Appendix I) and would decrease to 6600 cfs if surface water were taken from the river. According to Table 4, this scenario will increase habitat for the two species of buffalo from 2400 WUA (27 lbs per mile) to 5400 WUA (61 lbs per mile). Thus, removing water from the Yazoo River would have a positive affect on buffalo productivity. Since the preferred flow for buffalo is 4,000 cfs (Table 5) additional water could be withdrawn from this site resulting in further increases in available fish habitat. Using this approach the environmental impacts of surface water withdrawal can be documented throughout the basin.

Water Quality Preferences of Fishes in Yazoo Basin Rivers

23. Table 6 summarizes the temperature and dissolved oxygen requirements for each species determined during this study. Although warmwater fishes are found in a wide range of temperatures, these data indicate preferences for each species. The carp and blacktail shiner were captured in warmer water $(\bar{X} = 28.0^{\circ} \text{ C})$ than the other species indicating a tolerance for higher water temperatures. Both species of buffalo seemed to prefer relatively cooler water $(\bar{X} = 26.5^{\circ} - 26.6^{\circ}\text{C})$ whereas the channel catfish and white crappie were usually found in intermediate water temperatures $(\bar{X} = 27.5^{\circ} \text{ C})$. The dissolved oxygen levels were similar at all sites (Table 2) indicating no significant differences in dissolved oxygen requirements among species. An exception was the bigmouth buffalo which were found in areas exhibiting a mean dissolved oxygen level of 8.8 mg/ ℓ whereas the other species utilized areas with significantly lower dissolved oxygen (i.e., $\bar{X} = 6.2-7.1$ mg/ ℓ).

Effects of Decreasing Water Depths on Fishes in Mossy Lake

24. Table 7 summarizes changes in standing crop of largemouth bass (Micropterus salmoides), bluegill (Lepomis macrochirus), crappie (Pomoxis sp.), gar (Lepisosteus sp.), and shad (Dorosoma sp.) when water depth is decreased. For all species, standing crop decreased as water depth decreased. At 4-5 ft, standing crop dropped to 0 pounds/acre, indicating that drastic changes in depth resulting from surface water withdrawal would severely stress or eliminate most fish species from delta lakes.

Discussion

- 25. Withdrawing water from the Yazoo River and most other large to medium sized tributaries will increase usable fish habitat. For example, a decrease from 10,000 to 4,000 cfs in the Yazoo River at Yazoo City increases usable habitat by 282%. High velocities currently prevent fishes from utilizing the entire river. Resting habitat is limited and only consists of areas along banks and behind instream objects that are used for velocity shelters. Feeding habitat is also limited because the velocities exceed the fish's ability to maintain adequate swimming speeds while foraging. For example, carp and suckers can swim at speeds up to 1.4 fps for an extended period of time (Bell 1973); however, mean water velocity in the Yazoo River is usually in excess of their capability. As a result, the availability of nonflowing tributaries for resting and feeding habitat is important to survival. These areas are highly utilized, but drastic drops in the water level could prevent access into them or they would become dewatered.
- 26. The relatively large quantities of usable physical habitat at all discharges for small and bigmouth buffalo, carp, and blacktail shiner suggest that they can adapt to changing environmental conditions. Matthews and Hill (1980) hypothesized that successful species either have evolved wide limits of tolerance for potentially stressful factors or change locations frequently to find optimal habitat. As long as food and dissolved oxygen are not limiting, our data suggest that these four species will continue to adapt and successfully inhabit the Yazoo River and its tributaries regardless of changing water levels. A recent study on the Yazoo Basin indicates that food is not a limiting factor (Howard, Needles, Tammen, and Bergendoff (HNTB) 1980) but dissolved oxygen levels are often low and could stress certain species. However, fish have the ability to change locations if dissolved oxygen or water temperature becomes stressful. The carp, smallmouth buffalo, and bigmouth buffalo frequently inhabit warm streams with temperature above 30°C (Meuwis and Huets 1957, McCrimmon 1968, Becker 1983). Carp have been reported to inhabit areas with dissolved oxygen below 5 mg/l while the buffalo are less tolerant of dissolved oxygen concentrations below 5 mg/l (McCrimmon 1968, Becker 1983).
- 27. The physical habitat of the white crappie and channel catfish in the Yazoo Basin rivers is limited at normal flows. Through resource partitioning, the white crappie and channel catfish could avoid competitive exclusion from

the more abundant species at higher flows. However, at lower flows all species will experience habitat overlap which could cause reduced food availability and convergence to similar microhabitat (MacArthur 1972, Matthews and Hill 1980). If cover is less available, the white crappie and channel catfish will be forced into less desirable habitat making feeding and predator avoidance more difficult. In addition, these species are less tolerant of low dissolved oxygen levels than carp and other rough fishes (Andrews et al. 1973, Carlson et al. 1974, Randolph and Clemens 1976, Stroud 1967). As a result, rough fishes that are more abundant and flexible in their habitat utilization could exclude channel catfish and white crappie from desirable habitat at reduced flows resulting in higher mortality.

28. The relationship between usable fish habitat (WUA) and discharge is based on the assumption that there is a positive linear relation between WUA and standing crop. As discussed earlier, warmwater fishes are highly adaptable to changing microhabitat and these relations may not be valid in all situations. Recent studies have shown that coldwater species are limited by usable habitat (Lewis 1969, White et al. 1976, Binns and Eiserman 1979); however, few studies have addressed this relationship for warmwater fishes. Orth and Maughan (1982) demonstrated that correlations between WUA and standing crop for several warmwater fishes occur during low flows, if they occur at all. During low flows habitat is limited in small rivers in the Yazoo Basin and thus this relationship may hold true for specialists such as the white crappie and channel catfish which have minimum space requirements for feeding and resting. At low flows reduced habitat availability could regulate fish density by limiting food availability and shelter from predators.

Conclusions and Recommendations

29. Large and medium sized rivers in the Yazoo Basin, including the Yazoo River at Yazoo City, Greenwood, and Belzoni, Tallahatchie River near Swan Lake and Lambert, Big Sunflower River near Anguilla, and those rivers represented by Steele Bayou near Onward, are characterized by a lack of cover with relatively deep, high velocity water. Surface water removal for purposes of irrigation at these sites will not have significant detrimental effects on bigmouth buffalo, smallmenth buffalo, common carp, channel catfish, white crappie, and blacktail shiner. At these rivers high discharge accompanied by

elevated water velocities and no substantial increase in amount of cover (i.e. no overbank flows) has negative effects on the quantity and quality of physical habitat.

- 30. At small tributaries to main stem rivers, represented by Deer Creek near Onward, optimum fish habitat is provided by intermediate discharge (200 cfs). Thus, withdrawing water from these areas will have detrimental effects to the fishery. At low discharge cover is limiting; at high discharge instream cover does not provide adequate refugia from high water velocities.
- 31. At low flows unobstructed access to nonflowing tributaries will be reduced or lost completely. This will have detrimental effects on fish populations since these tributaries provided valuable resting and feeding habitat for most fishes.
- 32. Condition or K-factors, a measure of robustness, was calculated for adult fishes captured during the study. These values were within the range of values reported in the literature for healthy fishes which indicates that fishes in the basin are not unduly stressed by lack of food, poor water quality conditions, or adverse physical habitat conditions.
- 33. There is little available habitat for white crappie in the Yazoo Delta Basin even though this is the most abundant sport fish (except for channel catfish). Lack of cover and high water velocities confine white crappie to isolated areas and management would probably do little to improve abundance. Although K-factors indicated that crappie were in good condition when compared with data in the literature, many that were collected during the summer of 1984 exhibited lesions and damaged fins indicating bacterial or parasite infections.
- 34. The preferred flows that appear in Table 5 should be used as a guideline to increase the quality and quantity of physical habitat for fishes in the Yazoo Basin.
- 35. It is recommended that water be withdrawn from the large and intermediate rivers as long as access is not prevented into the nonflowing tributaries (represented by Short Creek). Conversely, water should not be withdrawn from the small tributaries with flow, (represented by Deer Creek near Onward) since at low flows physical habitat is substantially reduced resulting in lower standing crops due to mortality or emigration.
- 36. Dissolved oxygen levels are presently adequate for existing fish species in the Yazoo Basin. It is postulated that at decreased flows dissolved

oxygen will not decline to stressful levels (i.e. below 4-5 mg/l) because of aeration from water movement. However, increases in biological oxygen demand caused a major fish kill in the Big Sunflower and Yazoo Rivers and was probably caused by runoff of herbicides from adjacent cropland (Personal Communication, Mississippi Department of Natural Resources). Thus, allochthonous input from surrounding agricultural land could have a more pronounced effect on the dissolved oxygen levels than surface water withdrawal.

37. Withdrawing more than 3-4 ft of water from delta lakes would substantially reduce or completely eliminate the sport fishery.

Literature Cited

- Andrews, J. W., T. Murai, and G. Gibbons. 1973. The influence of dissolved oxygen on the growth of channel catfish. Trans. Am. Fish. Soc. 102(4): 835-838.
- Baldridge, J. E. and D. Amos. 1981. A technique for determining fish habitat suitability criteria: A comparison between utilization and availability.

 In Symposium on Acquisition and Utilization of Aquatic Habitat Inventory Information, American Fisheries Society, Portland, Oregon.
- Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, Wisconsin. 1052 pp.
- Bell, M. C. 1973. Fisheries handbook of engineering requirements and biological criteria. Corps of Engineers, North Pacific Division, Portland, Oregon.
- Binns, N. A. and F. M. Eiserman. 1979. Quantification of fluvial trout habitat in Wyoming. Tran. Am. Fish. Soc. 108:215-228.
- Bovee, K. D. 1981. A users guide to the instream flow incremental methodology. United States Fish and Wildlife Service Biological Services Program. FWS/OBS-80/52.
- Carlander, K. D. 1969. Handbook of freshwater fishery biology, Volume 1. Iowa State University Press, Ames, Iowa. 752 pp.
- Carlander, K. D. 1977. Handbook of freshwater fishery biology, Volume 2. Iowa State University Press, Ames, Iowa. 431 pp.
- Carlson, A. R., R. E. Siefert, and L. J. Herman. 1974. Effects of lowered dissolved oxygen concentrations on channel catfish (Ictalurus punctatus) embryos and larvae. Trans. Am. Fish. Soc. 103(3):623-626.
- Howard, Needles, Tammen, and Bergendoff (HNTB). 1980. Environmental Inventory and Assessment, Yazoo River Basin, Mississippi, Phase II Report.

 Prepared for Corps of Engineers, Vicksburg District.
- Lewis, S. L. 1969. Physical factors influencing fish populations in pools of a trout stream. Trans. Am. Fish. Soc. 98:14-19.
- MacArthur, R. H. 1972. Geographical Ecology. Harper and Row Press. New York.
- Matthews, W. J. and L. G. Hill. 1980. Habitat partitioning in the fish community of a southwestern river. The Southwest Naturalist 25(1):51-56.
- McCrimmon, H. R. 1968. Carp in Canada. Fish Res. Board. Can. Bull. 165. 93 pp.
- Meuwis, A. L. and M. J. Huets. 1957. Temperature dependence of breathing rate in Carp. Biol. Bull. 112(1):97-107.
- Orth, D. J. and O. E. Maughan. 1982. Evaluation of the incremental methodology for recommending instream flows for fishes. Trans. Am. Fish. Soc. 111(4):413-445.
- Randolph, K. N. and H. P. Clemens. 1976. Some factors influencing the feeding behavior of channel catfish in culture ponds. Trans. Am. Fish. Soc. 105(6):718-724.

- Stroud, R. H. 1967. Water quality criteria to protect aquatic life: a summary. Am. Fish. Soc. Spec. Publ. 4:33-37.
- US Army Corps of Engineers. 1983. Water demand, Yazoo River Basin, Mississippi. Vicksburg District, Vicksburg, Mississippi. 299 pp.
- White, R. J., E. A. Hansen, and G. R. Alexander. 1976. Relationship of trout abundance to stream flow in midwestern streams. Pages 597-615 in Instream Flow Needs, Volume 2. Western Division, American Fisheries Society, Bethesda, Maryland, Osborne and Allman editors.

Table 1. Hydrologic, Geomorphic, and Instream Cover Conditions at the Four Riverine Sites Where Fish Utilization Studies Were Conducted in Relation to Other Rivers in the Yazoo Basin

		Habitat Conditions		
Study Site	Hydrologic	Geomorphic	Instream Cover	Similar River Reaches
Yazoo River at Yazoo City (YRYC)	High velocity (2-4 fps) that does not rapidly fluc- tuate due to rainfall,	Deep, wide, and straight- ened channel. Sloughing banks.	Isolated, semi-permanent willow stumps and overhanging willow branches.	Yazoo River and Tallahat- chie River below flood control structure.
Big Sunflower River at Anguilla (BSRA)	High (1-2 fps) main but low (fps) side channel velocities. Rapid fluctuation due to rainfall.	Meandering channel. Poolrriffle sequence. Distinct main versus side channel areas.	Uncommon. Fallen timber and willow trees.	All wide river reaches upstream of flood control structures.
Big Sunflower River at Cypress Bend (BSRC)	Velocities range from 0-1 fps throughout cross section. Fluctuating discharge.	Small tributaries with meandering channels and little bank erosion.	Transient and permanent log jams. Overhanging riparian vegetation.	Small tributary of the Big Sunflower, Tallahatchie, and Yazoo Rivers.
Short Creek near Yazoo City (SCYC)	Velocities zero, except after rainfalls.	Steep sloughing banks, meandering channel.	Fallen trees and undercut banks,	Small, usually nonflowing tributaries of the Big Sunflower and Yazoo Rivers.

Table 2. Summary of Representative Gage Stations

Branco Constitute Branco Branco Branco Constitute Const

Site	Representative Gage Site	Mean Flow From April- October (cfs)	Represented Gage Stations	Mean Flow From April- October (cfs)	Represented Fish Study Sites	Mean Flow From April- October (cfs)
_	Yazoo River Near Yazoo City	10,113	Yazoo River At Greenwood Yazoo River At Belzoni	11,340	Yazoo River Near Yazoo City	10,113
2	Tallahatchie River Near Swan Lake	7,459	None	1	Yazoo River Near Yazoo City	10,113
	Big Sunflower River Near Anguilla	4,552	None	;	Big Sunflower River Near Anguilla	4,552
4	Tallahatchie River Near Lambert	2,396	Hickahala Creek Near Senatobia	2,572	Big Sunflower River Near Anguilla	4,552
~	Steele Bayou Near Onward	1,195	Coldwater River Near Sarah Big Sunflower River At Sunflower Little Tallahatchie	1,352 845 582	Big Sunflower River at Cypress Bend	876
•	Deer Creek Near Hollandale	122	Yalobusha River At Calhoun City Yocona River Near Oxford Shuna River At Bruce Coldwater River Near Levisburg Big Sunflower River At Clarksdale Clear Creek Near Oxford	263 260 211 127 143	Big Sunflower River at Cypress Bend	876

Table 3. Coefficient of Condition for Fishes of the Yazoo Basin

THE PARTY OF THE P

			Coeffic	Coefficient of Condition (K)	n (K)	
					ported	in Literature*
		•	◆ Yazoo Basin			Range of
			Standard		Range	Individual
Species	×	Mean	Deviation	Range	of Means	Values
Bigmouth buffalo-all stages					1.39-1.66	1.08-2.80
Juveniles	12	1.58	0.15	1.26-1.81		
Adults	47	1.63	0.18	1.00-2.10		
Smallmouth buffalo-all stages					1.29-1.53	1
Juveniles	22	1.53	0.27	1.01-2.13		
Adults	33	1.51	0.13	1.25-1.81		
Carp-ail stages					1.41-1.8	0.9-2.6
Juveniles	20	1.38	0.21	1.01-1.86		
Adults	82	1.38	0.16	0.93-1.79		
Channel catfish-all stages					0.75-1.12	0.5-1.33
Juveniles	24	1.04	0.26	0.60-1.60		
Adults	23	0.89	0.15	0.68-0.97		
White crappie-all stages					0.82-1.99	0.55-2.31
Juveniles	6	1.93	0.55	1.15-2.77		
Adults	87	1.51	0.31	0.73-2.33		

Values are inclusive of all life stages. Data from Carlander (1969 and 1977).

Table 4. Population Estimates (1bs/mile) and Available Habitat at Various Discharges For Each Representative Gage Site

		-				,					
Site	(cfs)	WUA* 1bs	alo lbs/mile	WUA	lbs/mile	WUA	lbs/mile	WUA	lbs/mile	WUA	WUA lbs/mile
Yazoo River At Yazoo City	3000	6754	9.92	707	6.1	3653	1.0	363	0.004	10790	0.3
Site Represents:	4000	7344	83.3	8964	11.5	309	2.0	739	0.009	14874	7.0
1) V.roo River At Greenwood	2000	0599	75.5	7050	9.1	97	1.8	370	0.004	12665	4.0
2) Yazoo River At Belzoni	0009	5791	65.7	5111	9.9	5208	1.4	143	0.002	10944	0.3
	7000	5300	60.1	7650	0.9	5250	1.5	130	0.001	10400	0.3
	8000	2224	25.2	3763	8.4	5223	1.4	78	0.001	9795	0.3
	0006	2450	27.8	2750	3.5	2975	8.0	80	0.001	8950	0.3
	10000	2393	27.2	2315	3.0	2419	7.0	228	0.003	8864	0.3
	15000	0997	52.9	6207	5.2	7366	1.2	197	900.0	7544	0.2
	20000	4204	47.7	789	6.0	267	0.07	9	0	1207	0.07
Tallahatchie River Near Swan Lake	3000	4045	45.9	4807	6.2	5551	1.5	231	0.003	11988	7.0
	7000	4071	46.2	4635	0.9	5230	1.5	276	0.003	12183	0.4
	2000	5155	58.5	7162	9.2	8630	2.4	788	0.01	10632	0.3
	0009	5536	62.8	6754	8.7	9176	2.6	870	0.01	7080	0.2
	7000	8181	95.8	13581	17.5	13860	3.9	1573	0.02	6769	0.2
	8000	7185	81.5	12424	16.0	14084	3.9	624	0.008	1965	0.2
	0006	7250	82.3	0086	12.6	12505	3.5	200	900.0	5100	0.2
	10000	7262	82.4	6025	7.7	6677	1.2	215	0.003	2420	0.07
	15000	2152	24.4	1246	1.6	1264	0.3	12	0	1041	0.03
	20000	931	9.01	349	7.0	300	80.0	6.2	0	667	10.0
Big Sunflower River Near Anguilla	200	99275	1897.0	49933	7.79	20045	9.5	6209	2.1	51560	1.9
	1000	96/09	1162.0	26707	34.0	13451	4.9	4593	1.6	37075	1.3
)	(Continued)							

^{*} Average weighted usable area for all specles in ft 2/1000 ft.

Table 4. (Continued)

ACTIVITIES MANAGED SPECIAL SECURIOR OF THE SPECIAL SPE

	Discharge	Buf	Buffalo	J	Carp	Channe	Channel Catfish	White	White Crappie	Blackt	Blacktail Shiner
Site	(cfs)	VQ.	lbs/mile	MUA	lbs/mile	MUA	lbs/mile	WUA	lbs/mile	WUA	lbs/mile
Big Sunflower River Near Anguilla	2000	20095	384.0	16950	21.8	10212	8.4	7057	2.4	14403	0.5
	3000	16557	316.0	13804	17.7	8384	4.0	4619	1.6	6301	0.2
	4000	17633	337.0	17857	23.0	7104	3.4	4768	1.7	8140	0.3
	2000	17105	327.0	22931	29.5	18110	9.8	1915	1.4	10320	0.4
	8000	18834	360.0	18521	23.8	11888	5.6	3386	1.2	5719	0.2
	10000	17150	328.0	15053	19.4	12496	5.9	2651	6.0	6262	0.2
Tallahatchie River Near Lambert	400	6688	127.8	7263	9.3	8650	4.1	704	0.07	30823	1.1
Site Represents:	009	2688	108.7	6107	7.8	7131	3.4	407	0.1	20885	9.0
 Hickahala Creek Near Senatobia 	800	4891	93.5	6735	8.7	8437	4.0	431	0.1	16536	9.0
	1000	5386	103.0	8180	10.5	9838	4.6	936	0.3	13310	0.5
	2000	10450	199.7	11646	15.0	6708	3.2	2555	6.0	3349	0.1
	10000	7427	142.0	2095	7.2	3853	1.8	961	0.3	2149	0.1
Steele Bayou Near Onward	20	82261	204.6	54729	75.7	20815	23.2	54773	14.2	39643	1.9
Site Represents:	100	82874	206.2	50737	70.2	19174	21.4	34479	8.9	40879	2.0
1) Coldwater River Near Sarah	200	77582	193.0	43827	60.7	18291	20.4	10166	5.6	47688	2.3
2) Big Sunflower River At Sunflower	400	67568	168.1	36290	50.2	15443	17.2	8188	2.12	26395	1.3
3) Little Tallahatchie River At Etta	009	26899	141.5	25685	35.5	12339	13.8	1957	0.5	16844	8.0
	800	44263	110.1	18136	25.1	9174	10.2	1076	0.3	11772	9.0
	0001	33497	83.3	12715	17.6	6809	8.9	929	0.2	7680	7.0
	2000	7769	17.3	4995	6.9	3782	4.2	332	0.1	2034	0.1
	3000	3535	8.7	3419	4.7	1709	6.1	124	0.03	710	0.03
	2000	2814	7.0	1107	1.5	433	0.5	0	0	470	0.02
				(Continued)							

Table 4. (Concluded)

	Discharge	Buffalo	falo		arp	Channe	Channel Carfish	Shire	Crannia	Rlackt	adl Chines
Site	(cf8)	MU.	1	MUA	lbs/mile	W U A	lbs/mile	YO.M	lbs/mile	MUA	ile WUA lbs/mile
Deer Creek Near Hollandale	10	5230	9.7	3554	8.6	4429	8.9	707	0.1	12095	1.0
Site Represents:	20	8929		11615	28.2	14016	28.1	881	0.2	23326	2.0
1) Yalobusha River At Calhoun City	100	13537	25.1	16836	40.9	18857	37.8	1997	9.0	32303	2.7
2) Yocona River Near Oxford	200	30239	56.1	30265	73.5	26377	52.8	9205	2.6	27644	, ,
3) Skuna River At Bruce	700	30335	56.3	19484	47.3	9634	13.3	1902		7769	;
4) Coldwater River Near Lewisburg	909	20516	38.1	7472	18.1	1976	3.6	1940		0 0 0	
5) Big Sunflower River At Clarksdale	800	13314	24.7	4111	4111 10.0	1124	2.2	955	955 0.3	771	7.0
6) Clear Creek Near Oxford	1000	9920	18.4	2837	6.9	524	1.0	603	2	7/1	

Table 5. Preferred Flows* at the 18 Gage Locations in the Yazoo Basin

Site	Species	Flow (cfs)	Stand- ing Crop (1bs/mile)
Yazoo River at Greenwood Yazoo River at Belzoni Yazoo River at Yazoo City	All Species**	4,000	97.2
Tallahatchie River near Swan Lake	All Species	7,000	114.4
Big Sunflower River near Anguilla	Buffalo, Carp, Channel Catfish, Blacktail Shiner	500	1972.8
	White Crappie	5,000	0.9
Tallahatchie River near Lambert Hickahala Creek near Senatobia	Buffalo, Carp, Channel Catfish, Blacktail Shiner	400	142.3
	White Crappie	5,000	0.9
Coldwater River near Sarah Steele Bayou near Onward Big Sunflower River at Sunflower Little Tallahatchie River at Etta	All Species	50	319.6
Yalobusha River at Calhoun City Yocona River near Oxford Skuna River at Bruce Coldwater River near Lewisburg Big Sunflower at Clarksdale Deer Creek near Hollandale Clear Creek near Oxford	All Species	200	187.3

^{*} Preferred flows determined from optimization matrix tables shown in Appendix IV and defined in paragraph 20.

^{**} All species include Buffalo, Carp, Channel Catfish, Blacktail Shiner, and White Crappie.

Table 6. Comparison of Preferred Temperature and Dissolved Oxygen Values Between Species in the Yazoo Basin

			Tempera	Temperature (°C)		Dissol	Dissolved Oxygen (mg/l)
			£ 1 40	Species Whose Means			Species Whose Means
Species	Z	Mean	Standard Deviation	are Significantly Different (P < 0.05)	Mean	Standard Deviation	are Significantly Different (P < 0.05)
Bigmouth buffalo	51	26.6	1.2	Blacktall shiner	8.8	1.9	All species
				Carp			
Smallmouth buffalo	51	26.5	1.4	Blacktail shiner	7.1	1.8	Bigmouth buffalo
				Carp			
Carp	106	28.0	2.5	Bigmouth buffalo	9.9	1.5	Bigmouth buffalo
				Smallmouth buffalo			
Channel catfish	57	27.5	2.2	None	6.2	1.1	Bigmouth buffalo
White crappie	51	27.5	2.2	None	9.9	1.3	Bigmouth buffalo
Blacktail shiner	59	28.0	2.4	Bigmouth buffalo	6.5	1.3	Bigmouth buffalo
				Smallmouth buffalo			

Table 7. Predicted Standing Crop For Selected Species at Seven Water Depths for Mossy Lake

			Stand	Standing Grop (lbs/acre) at Indicated	(1bs/a	cre) a	t Ind	cate	
6 6 6		-2	(Ave	Average Depth (it)	th (It	•		
Sallado	regression Equation	×	2		9	5	4	~	7
Micropterus salmoides	1bs/acre = depth (6.32) - 26.2	0.61	24.4	18.1	11.8	11.8 5.4 0 0	0	0	0
Lepomis macrochirus	lbs/acre = depth $(29.6) - 108.7 0.41$	0.41	127.9	98.3	68.7	68.7 39.2 9.6	9.6	0	0
Pomoxis sp.	lbs/acre = depth (10.1) - 47.6	0.84	33.6	23.4	13.3	13.3 3.2	0	0	0
Lepisosteus sp.	lbs/acre = depth (9.32) - 49.5	0.99	25.0	15.7	6.4	0	0	0	0
Dorosoma sp.	lbs/acre = depth (91.6) - 445.7 0.85	0.85	286.9	195.3	103.7 12.2	12.2	0	0	0

Appendix I: Monthly Flow Duration Tables of the 18 Gages in the Yazoo River Basin

Historic Flows at 18 Gages in the Yazoo River Basin Presented as Flow Duration Values

Yazoo River At Greenwood April Amount At Greenwood April Amount At Greenwood April Amount				Dis	Discharge (cfs)			
26600 23700 21100 16100 15300 13700 18700 18400 16600 11800 12300 10900 17100 17500 14500 9900 9300 8600 11800 12100 9900 9300 8600 6800 6200 7800 8500 7400 5100 15284 14675 11900 11380 13200 13100 24500 23000 22100 15300 13200 13100 24500 18100 16500 11800 10900 11400 10100 9500 8900 7700 7700 6200 8500 6300 650 4700 5800 15637 14666 11867 1001 9400 15630 15800 12600 11200 9400 15500 14100 9500 8100 9400 5100 15500 9600 6200 6100 4700 5100 6900 9600 6200 6100 4700 5100		Apr11	Мау	June	July	August	September	October
26600 23700 21100 16100 15300 13700 18700 18400 16600 11800 12300 10900 17100 17500 14500 9900 9000 8600 11800 12100 9900 8100 8600 7400 6800 6200 7800 5600 4700 5100 15284 14675 11900 10186 9641 8840 20400 18100 16000 15300 1300 1300 20400 18100 16000 15300 1300 1300 11400 10100 9500 8900 7700 7700 6200 8500 6300 6500 7700 7700 1553 14666 11867 10071 9398 8726 1550 14100 9500 10100 9400 10500 1550 1460 7700 7700 7700 7700 1550 1	Yazoo River At Greenwood							
18700 18400 16600 11800 12300 10900 17100 17500 14500 9900 9300 8600 1800 6200 7800 5600 7400 5100 15284 14675 11900 10186 9641 8840 224500 23000 22100 12300 13200 13100 17300 14700 16000 12100 19800 8300 17300 8500 6500 9500 8800 8300 17587 14666 11867 10071 9398 8726 15637 1460 13200 12600 10100 9500 10100 9400 15500 16800 13200 8100 6400 6300 15500 16800 13200 8100 8400 7100 15500 16800 13200 8100 6400 6300 6900 9600 6200 6100 7700 7700 1454 1455 10430 8701 7975 7440	*P10	26600	23700	21100	16100	15300	13700	13600
17100 17500 14500 9900 9300 8600 11800 12100 9900 8100 8500 7400 6800 6200 7800 5600 4700 5100 15284 14675 11900 10186 9641 8840 24500 23000 22100 15300 13200 13100 20400 18100 16000 12100 13800 13100 11400 10100 9500 9800 8300 6200 8500 6300 6500 4700 5800 115637 14666 11867 10071 9398 8726 15537 14666 11867 10071 9398 8726 15500 16800 12500 12600 10500 9400 15500 14100 9500 8100 6400 6300 6900 9600 6200 4700 5100 6900 9600 6100 <td< td=""><td>P30</td><td>18700</td><td>18400</td><td>16600</td><td>11800</td><td>12300</td><td>10900</td><td>10600</td></td<>	P30	18700	18400	16600	11800	12300	10900	10600
11800 12100 9900 8100 8500 7400 6800 6200 7800 5600 4700 5100 15284 14675 11900 10186 9641 8840 20450 23000 22100 15300 13200 13100 20400 18100 16600 12100 18800 10900 17300 14700 9500 8900 8300 6200 8500 6300 6500 7700 7700 15637 14666 11867 10071 9398 8726 18000 21500 13200 9900 11000 9400 15500 14100 9500 8100 6400 6300 6900 9600 6200 6100 7700 7100 14454 14253 10430 8701 7975 7440	P50	17100	17500	14500	0066	9300	8600	8400
6800 6200 7800 5600 4700 5100 15284 14675 11900 10186 9641 8840 24500 23000 22100 15300 13200 13100 20400 18100 16000 12100 19800 8300 17300 14700 10500 9500 9800 8300 16200 8500 6300 6500 7700 7700 15620 8500 8900 1000 9500 15637 14666 11867 10071 9398 8726 18900 12600 12600 10100 9400 15500 14100 9500 8100 6400 6300 15500 9600 6200 6100 6400 5100 14454 14253 10430 8701 7975 7440	P70	11800	12100	0066	8100	8500	7400	7100
15284 14675 11900 10186 9641 8840 24500 23000 22100 15300 13200 13100 20400 18100 16000 12100 11800 10900 17300 14700 10500 9500 9800 7700 7700 6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 1800 21500 18900 12600 10100 9400 15500 14100 9500 8100 6400 6300 11500 10700 7700 7700 7700 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 7975 7440	P90	9890	6200	7800	2600	4700	5100	5700
24500 23000 22100 15300 13200 13100 20400 18100 16000 12100 11800 10900 17300 14700 10500 9500 9800 8300 11400 10100 9500 8900 7700 7700 6200 8500 6500 4700 5800 15637 14666 11867 10071 9398 8726 15537 14666 11867 10071 9398 8726 18000 16800 13200 9900 10100 9400 11500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	Mean	15284	14675	11900	10186	1996	8840	8809
14500 23000 22100 15300 13100 20400 18100 16000 12100 11800 10900 17300 14700 10500 9500 9800 8300 11400 10100 9500 8900 7700 7700 6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 15537 14666 11867 10071 9398 8726 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 15500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440								
24500 23000 22100 15300 13200 13100 20400 18100 16000 12100 11800 10900 17300 14700 10500 9500 9800 8300 11400 10100 9500 4700 5800 6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 18000 15800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	Yazoo River At Belzoni							
20400 18100 16000 12100 11800 10900 17300 14700 10500 9500 9800 8300 11400 10100 9500 8900 7700 7700 6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 21800 21500 18900 12600 10500 9400 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	P10	24500	23000	22100	15300	13200	13100	12900
17300 14700 10500 9500 9800 8300 11400 10100 9500 8900 7700 7700 6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 21800 21500 18900 12600 11200 9400 18000 16800 13200 9900 10100 9400 11500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	P30	20400	18100	16000	12100	11800	10900	11000
11400 10100 9500 8900 7700 7700 6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 21800 21500 18900 12600 11200 10500 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	P50	17300	14700	10500	9500	0086	8300	8900
6200 8500 6300 6500 4700 5800 15637 14666 11867 10071 9398 8726 21800 21500 18900 12600 11200 10500 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7440	P70	11400	10100	9500	8900	7700	7700	7700
15637 14666 11867 10071 9398 8726 21800 21500 18900 12600 11200 10500 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	P90	6200	8500	6300	9200	4700	5800	6300
21800 21500 18900 12600 11200 10500 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	Mean	15637	14666	11867	10071	9398	8726	9104
21800 21500 18900 12600 11200 10500 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440								
21800 21500 18900 12600 11200 10500 18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	Yazoo River At Yazoo City							
18000 16800 13200 9900 10100 9400 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	P10	21800	21500	18900	12600	11200	10500	10600
n 15500 14100 9500 8100 8400 7100 11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 n 14454 14253 10430 8701 7975 7440	P30	18000	16800	13200	0066	10100	9400	9500
11500 10700 7700 7300 6400 6300 6900 9600 6200 6100 4700 5100 n 14454 14253 10430 8701 7975 7440	P50	15500	14100	9500	8100	8400	7100	8100
6900 9600 6200 6100 4700 5100 14454 14253 10430 8701 7975 7440	P70	11500	10700	7700	7300	6400	6300	9079
14454 14253 10430 8701 7975 7440	P90	0069	0096	6200	6100	4700	5100	5700
	Mean	14454	14253	10430	8701	7975	1440	7780

⁽Continued)
* PIO - P90 indicates the discharge that is equalled or exceeded a given percentage of the time.

Historic Flows (Continued)

			Dis	Discharge (cfs)			
	April	Мау	June	July	August	September	October
Tallahatchie River Near Swan Lake							
P10	19500	17600	16900	10300	0066	8670	0006
P30	14000	13000	11500	7900	7700	6700	0069
P50	12100	10700	10200	6700	0069	5300	2900
P70	8200	5400	7500	5200	4900	4800	7800
P90	9400	3800	4900	3600	3200	3800	4 300
Mean	10050	9638	9222	9659	6291	5643	5922
Big Sunflower River Near Anguilla							
P10	29000	28500	22000	3700	2900	1600	1500
P30	15600	13100	4000	1600	1290	006	850
P50	10200	6100	2100	1290	942	790	740
P70	3100	4700	086	096	880	720	069
P90	1450	1900	830	730	730	700	009
Mean	11607	10462	4878	1619	1250	616	978
Hickahala Creek Near Senatobla							
P10	11000	11500	13000	11500	9050	0006	8700
P30	9500	3100	3600	066	2500	2200	1100
P50	1500	1700	1050	069	540	540	570
P70	069	630	650	290	290	310	200
P90	250	350	190	100	150	120	110
Mean	3206	3088	2188	2531	2515	2331	2119

(Continued)

I-4

Historic Flows (Continued)

STATE STATES STATES OF STA

			Disc	Discharge (cfs)		:	
	April	Мау	June	July	August	September	October
Tallahatchie River Near Lambert							
P10	8600	8500	5100	2900	2600	2200	2000
P30	0099	2600	2900	2100	1900	1190	1350
P50	4700	4800	1950	1700	1700	1050	1150
P70	2700	3250	1650	950	1100	950	1070
P90	1300	1300	1100	260	760	575	670
Mean	4563	4358	2476	1566	1476	1153	1179
Coldwater River Near Sarah							
P10	3900	3500	2200	1975	1850	2200	1200
P30	3350	2850	1600	1675	1600	1000	880
P50	2700	2350	1250	870	1150	750	780
P70	1300	1600	1020	570	770	200	650
P90	800	550	350	350	260	350	400
Mean	2296	2128	1244	1019	1084	869	164
Steele Bayou Near Onward							
P10	7200	7500	8000	650	750	006	200
P30	3700	3800	2100	300	170	100	170
P50	1700	2100	1900	170	110	07	07
P70	1150	006	1350	110	09	30	20
P90	725	300	1150	45	07	22	10
Mean	3034	2920	834	217	180	175	82

(Continued)

Historic Flows (Continued)

			Dis	Discharge (cfs)			
	April	May	June	July	August	September	October
Big Sunflower River at Sunflower							
P10	4300	3000	1900	1300	1300	1100	425
P30	2700	2500	1050	700	470	350	300
P50	1450	1500	575	475	380	220	140
P70	979	1100	300	210	260	160	115
P90	400	300	200	140	180	130	100
Mean	1824	1566	946	535	487	358	196
Littie Tallahatchie River At Etta							
P10	3900	2300	1300	750	009	700	300
P30	2900	1800	450	330	210	260	200
P50	1200	1500	250	150	80	75	140
P70	009	320	145	95	55	45	50
P90	325	240	95	09	45	30	25
Mean	1668	1187	420	263	199	197	137
Yalobusha River At Calhoun City							
P10	2300	1000	350	300	175	250	007
P30	1500	099	170	80	20	80	70
P50	870	375	09	47	25	35	12
P70	350	100	20	20	14	80	5
P90	125	20	10	10	9	2	e
Mean	942	436	139	110	51	06	77

(Continued)

Historic Flows (Continued)

			Dis	Discharge (cfs)			
	April	May	June	July	August	September	October
Yocona River Near Oxford					0	100000	october
P10	1690	1225	650	315	225	300	371
P30	1340	860	220	125	02	8	(a)
P50	650	527	001	63.) }	00 :	<u> </u>
OLG				99	cc	/ 4	09
	320	150	55	40	30	70	25
P90	175	85	05	25	22	20	17
Mean	764	513	192	105	79	103	62
Skuna River Near Bruce							
P10	1560	1050	650	200	230	200	125
P30	1360	700	130	95	50	75	35
P50	009	300	55	45	20) (Y	ר ל
P70	230	95	27	. ec	} }	} - -	7 :
P90	100	50	12	2 2	j °	7 0	70
Mean	723	37.5	15.0	0 6	h ;	.	`
	637	040	701	/2	55	81	77
Coldwater River Near Lewisburg							
P10	450	400	200	350	260	260	000
P30	290	170	160	165	170	207	020
P50	180	7.5	100	125	140	150	0.71
P70	09	25	07	35	205	02	21.
P90	16	10	30	10) ec	30	20
Mean	179	118	96	114	111	111	0. 141
						! !	1

(Continued)

Historic Flows (Concluded)

· Reserved Properties and Market Properties (Properties

Representation of the second contraction of the second of

	441	ž		Discharge (cfs)			
	APELL	мау	June	July	August	September	October
Big Sunflower River At Clarksdale							
P10	550	480	350	130	150	140	081
P30	250	280	150	105	100	100	001
P50	190	190	105	92	87	87	87
P70	160	135	95	87	84	75	75
P90	110	87	06	85	75	7.1	20
Mean	239	224	159	66	66	93	93
Deer Creek Near Hollandale							
P10	675	200	350	175	120	130	30
P30	290	220	175	95	06	80	, g
P50	175	160	90	70	202	93	3
P70	110	95	65	20	40	50	57
P90	75	09	35	10	15	25	. 5
Mean	239	208	133	92	79	65	58
Clear Creek Near Oxford							
P10	07	55	25	30	11	20	10
P30	30	15	11	13	6	6	9
P50	20	13	80	10	7	· 00	~ ~
P 70	11	10	7	œ	7	. ~	, r
P90	6	80	7	7	9	. ~	- 10
Mean	21	20	11	12	&	11	· •

Appendix II: Regression Equations to Predict Discharge from Stage or Stage from Discharge for 18 Gages in the Yazoo Basin

Regression Equations to Predict Discharge from Stage and Stage from Discharge for Gages in the Yazoo Basin

THE PROBLEM AND SECTOR OF THE PROPERTY OF THE

Gage Site		Regression Equations	9ue
Yazoo River At Greenwood	Discharge* = Stage** (1124.7) - 11508.4	$R^2 = 0.98$	Stage = Discharge (0.001) + 10.47
Yazoo River At Belzon!	Discharge = Stage (889.6) - 4570.6	$R^2 = 0.99$	Stage = Discharge (0.001) + 5.28
Yazoo River At Yazoo City	Discharge = Stage (646.7) - 421.5	$R^2 = 0.99$	Stage = Discharge (0.001) + 0.67
Tallahatchie River Near Swan Lake	Discharge = Stage (737.5) - 4618.8	$R^2 = 0.94$	Stage = Discharge (0.001) + 6.86
Big Sunflower River Near Anguilla	Discharge = Stage (883.2) - 21369.3	$R^2 = 0.94$	Stage = Discharge (0.001) + 24.74
Hickahala Creek Near Senatobia	Discharge = Stage (1854.9) - 13219.4	$R^2 = 0.86$	Stage - Discharge (0.0005) + 7.43
Tallahatchie River Near Lambert	Discharge - Stage (462.3) - 5050.5	$R^2 = 0.90$	Stage = Discharge (0.002) + 11.83
Coldwater River Near Sarah	Discharge = Stage (381.3) - 514.3	$R^2 = 0.97$	Stage = Discharge (0.003) + 1.47
Steele Bayou Near Onward	Discharge = Stage (344.9) - 732.7	$R^2 = 0.96$	Stage = Discharge (0.003) + 2.37
Big Sunflower River At Sunflower	Discharge = Stage (233.3) - 921.5	$R^2 = 0.95$	Stage = Discharge (0.0041) + 4.47
Little Tallahatchie River At Etta	Discharge - Stage (375.5) - 3656.4	$R^2 = 0.98$	Stage = Discharge (0.003) + 9.83
Yalobusha River At Calhoun City	Discharge - Stage (292.2) - 2316.3	$R^2 = 0.99$	Stage = Discharge (0.003) + 7.95
Yocona River Near Oxford	Discharge - Stage (216.9) - 560.4	$R^2 = 0.97$	Stage = Discharge (0.004) + 2.68
Skuna River At Bruce	Discharge = Stage (239.1) - 1157.9	$R^2 = 0.94$	Stage = Discharge (0.004) + 4.98
Coldwater River Near Lewisburg	Discharge = Stage (73.5) - 120.6	$R^2 = 0.96$	Stage = Discharge (0.013) + 1.75
Big Sunflower River At Clarksdale	Discharge - Stage (96.1) - 297.1	$R^2 = 0.99$	Stage = Discharge (0.010) + 3.13
Deer Creek Near Hollandale	Discharge = Stage (64.6) - 291.2	$R^2 = 0.96$	Stage = Discharge (0.015) + 4.72
Clear Creek Near Oxford	Discharge = Stage (174.5) - 435.5	$R^2 = 0.95$	Stage = Discharge (0.005) + 2.54

^{*} Discharge (cfs).

THE STREET OF THE PROPERTY OF THE STREET STREET, THE STREET STREET, ST

^{**} Stage (ft).

Appendix III: Utilization Index Curves for Depth, Velocity, and Cover Determined from Field Observations in the Yazoo River Basin

ACCORDED DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA

Q- / .						
<u> </u>						
L •						
93						
(3)						
8 2						
C }						
È.						
K.						
$\mathcal{S}_{\mathcal{F}}$						
EG.						
1 8						
	A = = = = 3 d = = T\$V =	0=+4=4=0+40=	Motody Tables	Head to Date	rmine Preferred	Flowe
	Appendix IV:	Optimization	Matrix labies	osed to Dete	tmine treferred	I FIOWS
₩.						
8						
Ø.						
Q						
ly o						
()						
RQ						
C.						
N						
~						
M.						
R ⊅						
(°;						
P2						
H						
1 8						
F:						
Fi						
E						
K.						
()						
3 ,						
Fa						
E.						
50						
E						
Ti .						
K						
5 }						
ANN AND AND AND AND AND AND AND AND AND	ĸ <mark>Ŀĸ</mark> ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ing milinan ing salatan in	ċ ŗċġ <u>Ċ</u> ŗċĸċĸċĸċĸ		
	*************		- коминенти в в в в да Да	三角三角三角巨角巨角巨角巨角	ократ вов запрат в до Виг	THE REPORT OF THE PARTY OF THE

Yazoo River At Greenwood Yazoo River At Belzoni Yazoo River At Yazoo City

And Address sections - sections

				Disch	Discharge (cfs)				
Species	3000	4000	2000	0009	7000	8000	0006	10000	15000
				M	WUA				
Buffalo	6754	7344	6650	5791	5300	2224	2450	2393	7660
Carp	4104	8964	7050	5111	4650	3763	2750	2315	4019
Channel Catfish	3653	7309	9400	5208	5250	5223	2975	2419	4366
Blacktail Shiner	10790	14874	12665	10944	10400	9795	8950	8864	7544
Minimum WUA Value in Column	3653	7309*	9400	5111	4650	2224	2450	2315	6205
White Crappie	363	739*	370	143	130	78	80	228	461

* Highest WUA in row that corresponds to the preferred flow.

Tallahatchie River Near Swan Lake

				Discha	rge (cfs)				
2000	3000	4000	2000	0009	0002 0009	8000	0006	10000	15000
Sherres				M	WUA				
Buffalo	4045	4071	5155	5536	8181	7185	7250	7262	2152
	4807	4635	7162	6754	13581	12424	9800	6025	1246
Channel Caffich	5551	5230	8630	9416	13860	14084	12505	6677	1264
Mischest Chiner	11988	12183	10632	7080	6769	5961	5100	2420	1041
Minimum MIA In Column	4045	4071	5155	5536	6769	5961	5100	2420	1041
White Crappie	231	276	788	870	1573	624	200	215	12

Big Sunflower River Near Anguilla

				Discharge (cfs)	(cfs)		
Species	200	1000	2000	3000	4000	2000	8000
				MUA			
Buffalo	. 99275	96209	20095	16557	17633	17105	18834
Carp	49933	26707	16950	13804	17857	22931	18521
Channel Catfish	20045	13451	10212	8384	7104	18110	11888
Blacktail Shiner	51560	37075	14403	6301	8140	10320	5719
Minimum WUA In Column	20045	13451	10212	6301	7104	10320	5719
White Crappie	6209	4593	7057	4619	4768	4161	3386

Tallahatchie River Near Lambert Hickahala Creek Near Senatobia

		Q	Discharge (cfs)			
Species	400	009	800 WUA	1000	2000	10000
Buffalo	9899	5688	1687	5386	10450	7427
Carp	7263	6107	6735	8180	11646	2095
Channel Catfish	8650	7131	8437	9838	6708	3853
Blacktail Shiner	30823	20885	16536	13310	3349	2149
Minimum WUA In Column	8899	5688	4891	5386	3349	2149
White Crappie	204	407	431	936	2555	961

Steele Bayou Near Onward Coldwater River Near Sarah Big Sunflower River At Sunflower Little Tallahatchie River At Etta

BEACH TO THE PARTY OF THE PARTY

			Disc	Discharge (cfs)	(8)					
Species	50	100	200	400	009	800	1000	2000	3000	2002
				WUA						3
Buffalo	82261	82874	77587	67568	26900	67077	10,00			
Ç	• • •		100	99779	20073	64703	33497	6944	3535	2814
Carp	54729	50737	43927	36290	25685	18136	12715	4995	3419	1107
Channel Catfish	20815	19174	18291	15443	12339	9174	6809	3782	1709	667
Blacktail Shiner	39643	40879	47688	26395	16844	11772	7680	2037	7077	ין די
Minimum WUA In Column	20815	19174	18291	15443	12339	9174	0007	2034	710	0/4
White Crappie	54773	34479	99101	8188	1957	1076	626	332	124	433
							•	1	171	>

		Q X X	Deer Creek Near Hollandale Yalobusha River At Calhoun City Yocona River Near Oxford	ear Hollanda /er At Calho Near Oxford	le un Cíty	Skuna River At Bruce Coldwater River Near Lewisburg Big Sunflower At Clarksdale	At Bruce ver Near Lev r At Clarkso	visburg lale
Spectes	10	50	100	Discharge (cfs) 200	s) 400	009	800	1000
				WUA				
Buffalo	5230	8929	13537	30239	30335	20516	13314	9920
irp	3554	11615	16836	30265	19484	7472	4111	2837
Channel Catfish	4429	14016	18857	26377	6634	1976	1124	524
Blacktail Shiner	12095	23326	32303	27644	7748	1988	171	374
Minimum WUA In Column	3554	8929	13537	26377	6634	1976	171	374
White Crappie	707	881	1997	9205	3091	1940	955	603

TATABLES DODGESTON LIBERATION NAMES OF THE

FILMED 3 -86 DTIC