TRIANGLES

Faire au préalable l'activité 4 p183 à la maison

I) LES DEUX PROPRIÉTÉS FONDAMENTALES

1) Somme des mesures des angles d'un triangle

Propriété:

Dans un triangle, la somme des mesures des angles est égale à 180°.

Ex: Déterminons l'angle \widehat{ABC} ci-dessus:

Dans le triangle ABC, on a par hypothèse : $\widehat{BAC} = 30^{\circ}$ et $\widehat{ACB} = 110^{\circ}$ or, dans un triangle, la somme des mesures des angles est égale à 180°

donc $\widehat{ABC} + \widehat{BAC} + \widehat{ACB} = 180$

donc $\widehat{ABC} + 30 + 110 = 180$

donc $\widehat{ABC} + 140 = 180$

donc $\widehat{ABC} = 40^{\circ}$

oral p192: 44, 45

constructions p193: 59, 60

démonstrations

p192: 48, 51

p193: 54, 57

2) Inégalité triangulaire

Le chemin le plus court entre deux points A et B est la ligne droite. Faire un détour par un 3ème point M ne peut qu'allonger le trajet.

Propriété:

Soient A, B et M trois points quelconques, on a : $AB \leq AM + MB$.

Remarques:

- Il y a égalité (AB = AM + MC) uniquement lorsque M appartient à [AB]
- Dans un triangle, le plus grand côté doit donc être plus petit que la somme des longueurs des deux autres.

oral p188: 15 constructions p186: 2

p188: 19, 20 p189: 21, 26 p196: 83, 87

II) CONSTRUIRE UN TRIANGLE

Dans les exemples ci-dessous, on précisera l'ordre de construction des points.

1) Connaissant les 3 côtés

Ex1: Hypothèses : AB = 5 cm; AC = 6 cm; BC = 3 cm

Ordre de construction:

- A
- C tel que : AC = 6cm
- B tel que : AB = 5cm et BC = 3cm

Ex2: Hypothèses : AB = 3 cm; BC = 4 cm; AC = 8 cm

Ordre de construction:

• On remarque que : AC > AB + BC. L'inégalité triangulaire n'est pas vérifiée : on ne peut donc pas construire le triangle ABC.

Bilan: L'inégalité triangulaire doit être vérifiée.

2) Connaissant 2 côtés et 1 angle

Ex3: Hypothèses : AB = 4cm ; AC = 6cm ; $\widehat{BAC} = 45$ °

Ordre de construction:

- \bullet A
- C tel que : AC = 6cm
- B tel que : $\widehat{BAC} = 45^{\circ}$

et AB = 4cm

Ex4: Hypothèses : AB = 3cm ; AC = 6cm ; $\widehat{ACB} = 20$ °

Ordre de construction:

- $\bullet A$
- C tel que : AC = 6cm
- *B* tel que :

$$\widehat{ACB} = 20^{\circ}$$

$$et AB = 4cm$$

Bilan : Si l'angle connu est compris entre les deux côtés connus, la construction ne pose pas de problème. Sinon, tout dépend des valeurs de l'énoncé (0, 1 ou 2 triangles possibles!)

3) Connaissant 1 côté et 2 angles

Ex5: Hypothèses : AC = 6 cm; $\widehat{BAC} = 45^{\circ}$; $\widehat{BCA} = 30^{\circ}$

Ordre de construction:

- \bullet A
- C tel que : AC = 6cm
- B tel que : $\widehat{BAC} = 45^{\circ}$ et $\widehat{BCA} = 30^{\circ}$

Ex6: Hypothèses : AC = 6 cm; $\widehat{BAC} = 45^{\circ}$; $\widehat{ABC} = 110^{\circ}$

Ordre de construction:

- \bullet A
- C tel que : AC = 6cm
- B tel que : $\widehat{BAC} = 45^{\circ}$ et $\widehat{BCA} = 180 - 45 - 110 = 25^{\circ}$

Bilan : Si le côté connu est compris entre les deux angles connus, la construction ne pose pas de problème. Sinon, on calcule le 3^{ème} angle.

p186: 5, 6

p187: 7, 8, 9, 11, 13

III) DROITES REMARQUABLES D'UN TRIANGLE

Figure	Définition	Point de concours
A C	Les hauteurs d'un triangle sont les droites passant par un sommet et coupant le côté opposé perpendiculairement.	Orthocentre
B A C	Les médianes d'un triangle sont les droites passant par un sommet et coupant le côté opposé en son milieu.	Centre de gravité
B A C	La médiatrice d'un <u>segment</u> est la droite qui coupe ce segment perpendiculairement et en son milieu.	Centre du cercle circonscrit
A C	La bissectrice d'un <u>angle</u> est la demi-droite qui le partage en deux angles égaux.	Centre du cercle inscrit

Vocabulaire:

- Les hauteurs et médianes sont issues d'un sommet et relatives à un côté.
- On parle de médiatrice <u>d'un</u> côté et de bissectrice <u>d'un</u> angle.
- Le cercle est circonscrit <u>au</u> triangle.
- ullet Dans la 1ère figure, H est appelé <u>pied de la hauteur</u> issue de A.

Remarques:

- La hauteur issue de A désigne selon le contexte soit la droite (AH), soit le segment [AH], soit la longueur AH.
- De même, la médiane issue de A désigne selon le contexte soit la droite (AA'), soit le segment [AA'].

oral

p190: 31, 34, 35 p195: 73, 74

constructions

p191: 36, 37, 43

p195: 77, 78

p197: 95

IV) TRIANGLES PARTICULIERS

1) Triangles rectangles

Propriété:

Dans un triangle rectangle, les angles aigus sont complémentaires.

Caractérisation:

Si un triangle a deux angles complémentaires alors il est rectangle.

2) Triangles isocèles

Propriété:

Dans un triangle isocèle, les deux angles à la base sont de même mesure.

Caractérisation:

Si un triangle a deux angles de même mesure, alors il est isocèle.

Propriété:

Dans un triangle isocèle, la hauteur, la médiane et la médiatrice passant par le sommet principal sont confondues.

3) Triangles équilatéraux

Caractérisation:

Si un triangle isocèle a un angle de 60°, alors il est équilatéral.

constructions

p187: 14

p194: 66, 67, 68

démonstrations

p192: 52, 53

p193: 55

p195: 80, 81, 82

p197: 90, 91, 92

défis

p199: 99, 100