UCSB ECE 594BB – Winter 2023

Assignment 1: Software Simulation of Leaky Integrate-and-Fire Model

Total Points: 100

Due at 5pm, Friday February 3rd (no late submission)

Submit your solutions in PDF via Gauchospace

1 Background

In this assignment, you will build a model of LIF (Leaky Integrated-and-Fire) using software simulation based on Python, MATLAB, C, or any programing language of your choice.

The LIF neuron model is based on simplified modeling of extra/intracellular membrane behavior, and can be represented mathematically as below:

$$\tau \frac{dV}{dt} = RI(t) - (V(t) - V_{rest})$$

where τ is the time-constant (which is equal to RC), V is the membrane potential, V_{rest} is the resting membrane potential.

The input current I(t) is generated by the pre-synaptic neurons and can be defined in several ways, e.g. the 0^{th} -order synaptic model, 1^{st} -order synaptic model, etc:

0th-order synaptic model:
$$I_i(t) = \sum_j w_{ji} \cdot s_j(t)$$
 (1)

1st-order synaptic model:
$$I_i(t) = \sum_j w_{ji} \sum_f \alpha(t - t_i^{(f)})$$
 (2)

In this assignment, we will only use the simple 0^{th} -order synaptic model as represented above. In (1), w_{ji} is the synaptic weight between neurons j (pre-synaptic neuron) and i (post-synaptic neuron), S_j (t) is the spike train of neuron j: S_j (t) = $\sum_f \delta(t-t_j^{(f)})$ where $t_j^{(f)}$ is a firing time of neuron j, and δ is the Dirac delta function. When $V(t) \geq V_{\theta}$ (threshold), V(t) becomes V_{rest} and there will be an output spike.

To be more specific, in a multi-layered spiking neural network, e.g., a two-layer model in Figure 3, the current received by neurons after the first layer can be modeled by the 0^{th} -order synaptic model specified in (1).

NOTE: For the rest of the homework, when modeling the output spike train $\delta(t - t^{(f)})$ for the calculation of equation(1), the unit of $\delta(\cdot)$ is mV.

2 Problem and Credit Breakdown

2.1 Problem 1 (50 points)

Suppose that there is only a single neuron as shown in Fig. 1 with the following settings:

$$V_{rest} = -65 \text{mV}, R = 10^6 \text{ (Ohms)}, \tau = 50 \text{ms};$$

time stepsize = 0.1ms, and total number of time steps = 20,000 (i.e. $t_n - t_{n-1} = 0.0001$, and $0 \le n \le 20,000$).

Fig. 1. A single LIF neuron with a current stimulus.

The total input current I(t) is given directly as:

$$I(t) (mA) = \begin{cases} 0 & (if timestep \le 5000 \text{ or timestep} > 15000) \\ 0.00005 & (if 5000 < timestep \le 15000) \end{cases}$$

Fig. 2. The specified current stimulus I(t).

Part 1) (25 points) with $V_{\theta} = -20 \text{mV}$:

- (1) Simulate the LIF neuron and plot the waveform of V(t).
- (2) How many times does the neuron fires?

Part 2) (25 points) with $V_{\theta} = -30 \text{mV}$:

- (1) Simulate the LIF neuron and plot the waveform of V(t).
- (2) How many times does the neuron fires?

2.2 Problem 2 (50 points)

Consider the spiking neural network of five interconnected LIF neurons as shown in Fig. 3.

Fig. 3. A small spiking neural network.

Neurons 1 to 3 each receive an external current input is I(t), which is same as we used for problem 1:

$$I(t) (mA) = \begin{cases} 0 & (if timestep \le 5000 \text{ or timestep} > 15000) \\ 0.00005 & (if 5000 < timestep \le 15000) \end{cases}$$

Again, we the following setting: time stepsize = 0.1ms, and total number of time steps = 20,000. Furthermore, we have:

Neurons 1~3,
$$V_{rest} = -65 \text{mV}$$
, R=10⁶ (Ohms), $\tau = 0.05(\text{s})$, $V_{\theta} = -35 \text{mV}$
Neurons 4 and 5, $V_{rest} = -65 \text{mV}$, R=10⁷ (Ohms), $\tau = 0.02(\text{s})$, $V_{\theta} = -60 \text{mV}$

and $w_{14} = -0.00001$, $w_{24} = 0.0001$, $w_{34} = 0.00001$, $w_{15} = 0.00003$, $w_{25} = -0.00004$, $w_{35} = 0.00005$, where the unit for the synaptic weights is mA/mV.

Part 1) (25 points)

- (1) Simulate the SNN and generate the waveform of V(t) for Neuron 1, Neuron 4, and Neuron 5.
- (2) Report the number of firing times for Neuron 1, 4 and 5.

Part 2) (25 points) Now change the synaptic weights to the following values and repeat part 1):

 $w_{14} = 0.00001$, $w_{24} = 0.00001$, $w_{34} = 0.00001$, $w_{15} = 0.000005$, $w_{25} = 0.000005$, $w_{35} = -0.00001$, where the unit for the synaptic weights is mA/mV.

- (1) Simulate the SNN and generate the waveform of V(t) for Neuron 1, Neuron 4, and Neuron 5.
- (2) Report the number of firing times for Neuron 1, 4 and 5.