Devoir surveillé n°8: corrigé

Problème 1 — Equations fonctionnelles

Partie I – Equation fonctionnelle de Cauchy

- 1. f(0) = f(0+0) = f(0) + f(0) donc f(0) = 0.
- **2.** Pour tout $x \in \mathbb{R}$,

$$f(x) + f(-x) = f(x + (-x)) = f(0) = 0$$

donc f est impaire.

3. Soit $x \in \mathbb{R}$. Tout d'abord, f(0x) = f(0) = 0 = 0f(x). Supposons qu'il existe $n \in \mathbb{N}$ tel que f(nx) = nf(x). Alors

$$f((n+1)x) = f(nx+x) = f(nx) + f(x) = nf(x) + f(x) = (n+1)f(x)$$

Par récurrence, f(nx) = nf(x) pour tout $x \in \mathbb{R}$.

4. Soit $r \in \mathbb{Q}_+$. Il existe donc $(p,q) \in \mathbb{N} \times \mathbb{N}^*$ tel que $r = \frac{p}{q}$. D'une part,

$$f(p) = f(p \times 1) = pf(1)$$

D'autre part,

$$f(p) = f(qr) = qf(r)$$

On en déduit que $f(r) = \frac{p}{q}f(1) = rf(1)$. f étant impaire, cette égalité est vraie pour tout $r \in \mathbb{Q}$.

- 5. Soit $x \in \mathbb{R}$. Par densité de \mathbb{Q} dans \mathbb{R} , il existe $(r_n) \in \mathbb{Q}^{\mathbb{N}}$ convergeant vers x. On a alors $f(r_n) = r_n f(1)$ pour tout $n \in \mathbb{N}$. Puisque f est continue en x, $(f(r_n))$ converge vers f(x). Par passage à la limite, f(x) = x f(1).
- 6. Les questions précédentes montrent que les fonctions de F sont des fonctions linéaires. Réciproquement, toute fonction linéaire est clairement une fonction de F. Ainsi, F est l'ensemble des fonctions linéaires.
- 7. $F = \text{vect}(Id_{\mathbb{R}})$ donc F est un \mathbb{R} -espace vectoriel de dimension 1.

Partie II - Application à d'autres équations fonctionnelles

- 1. a. On a alors g(x) = g(x+0) = g(x)g(0) = 0 pour tout $x \in \mathbb{R}$ donc g est nulle.
 - **b.** Puisque $g(0) = g(0+0) = g(0)^2$ et $g(0) \neq 0$, on a donc g(0) = 1. Pour tout $x \in \mathbb{R}$, g(x)g(-x) = g(0) = 1 donc $g(x) \neq 0$. Puisque g est continue sur \mathbb{R} , elle y reste de signe constant d'après le théorème des valeurs intermédiaires. Puisque g(0) = 1 > 0, g est strictement positive sur \mathbb{R} . \mathbb{R} .
 - **c.** Pour tout $(x, y) \in \mathbb{R}^2$,

$$\ln \circ g(x+y) = \ln \circ g(x) + \ln \circ g(y)$$

doncc $\ln \circ g \in F$. Il existe donc $a \in \mathbb{R}$ tel que $\ln \circ g = a \operatorname{Id}_{\mathbb{R}}$. Donc $g(x) = e^{ax}$ pour tout $x \in \mathbb{R}$. Réciproquement, les fonctions $x \in \mathbb{R} \mapsto e^{ax}$ sont bien dans G ainsi que la fonction nulle. Finalement,

$$G = \{x \in \mathbb{R} \mapsto 0\} \cup \{x \in \mathbb{R} \mapsto e^{\alpha x}, \alpha \in \mathbb{R}\}\$$

d. G n'est pas un R-espace vectoriel. En effet, toutes les fonctions de G valent soit 0 soit 1 en 0, ce qui ne sera pas toujours le cas pour une combinaison linéaire de fonctions de G.

2. On prouve sans peine les équivalences suivantes.

$$h \in H \iff h \circ \exp \in F \iff h \circ \exp \in \operatorname{vect}(\operatorname{Id}_{\mathbb{R}}) \iff h \in \operatorname{vect}(\operatorname{ln})$$

Ainsi $H = \text{vect}(\ln)$. H est donc un \mathbb{R} -espace vectoriel de dimension 1.

On prouve à nouveau sans peine que

$$k \in K \iff k \circ \exp \in G$$

Ainsi

$$K = \{x \in \mathbb{R}_+^* \mapsto 0\} \cup \left\{x \in \mathbb{R}_+^* \mapsto x^{\alpha}, \ \alpha \in \mathbb{R}\right\}$$

Les fonctions de K valent toutes 0 ou 1 en 1, ce qui ne sera pas le cas de toute combinaison linéaire de fonctions de K. Ainsi K n'est-il pas un \mathbb{R} -espace vectoriel.

Problème 2 — ENSI 1979

Partie I – Etude de cas particuliers

1. On trouve

$$\begin{array}{lll} P_1 = X & & P_2 = 2X & & P_3 = 3X - X^3 & & P_4 = 4X - 4X^3 \\ Q_1 = 1 & & Q_2 = 1 - X^2 & & Q_3 = 1 - 3X^2 & & Q_4 = 1 - 6X^2 + X^4 \end{array}$$

2. Les décompositions en facteurs irréductibles de $P_2,\ Q_2,\ P_3,\ Q_3$ ne posent pas de problèmes.

$$P_2 = 2X$$
 $Q_2 = (1 - X)(1 + X)$ $P_3 = X(\sqrt{3} - X)(\sqrt{3} + X)$ $Q_3 = (1 - X\sqrt{3})(1 + X\sqrt{3})$

La factorisation de P₄ est évidente. Les racines de $1-6X+X^2$ sont $3-2\sqrt{2}$ et $3+2\sqrt{2}$. Les racines de Q₄ sont donc les racines carrées de ces derniers réels. Puisque $3-2\sqrt{2}=(1-\sqrt{2})^2$ et $3+2\sqrt{2}=(1+\sqrt{2})^2$, les racines de Q₄ sont $1-\sqrt{2}$, $-1+\sqrt{2}$, $1+\sqrt{2}$, $-1-\sqrt{2}$. Finalement,

$$P_4 = 4X(1-X)(1+X) \qquad \qquad Q_4 = (X+1+\sqrt{2})(X-1+\sqrt{2})(X+1-\sqrt{2})(X-1-\sqrt{2})$$

3. La décomposition en éléments simples de R_2 est directe :

$$R_2 = \frac{2X}{(1-X)(1+X)} = \frac{(X+1) - (1-X)}{(1-X)(1+X)} = \frac{1}{1-X} - \frac{1}{1+X}$$

Une division euclidienne montre que la partie entière de R_3 est $\frac{1}{3}X$. La méthode usuelle montre que

$$R_{3} = \frac{1}{3}X - \frac{4}{9\left(X - \frac{1}{\sqrt{3}}\right)} - \frac{4}{9\left(X + \frac{1}{\sqrt{3}}\right)}$$

La décomposition en éléments simples de R_4 est de la forme

$$R_4 = \frac{\alpha}{X - 1 - \sqrt{2}} + \frac{\beta}{X - 1 + \sqrt{2}} + \frac{\gamma}{X + 1 - \sqrt{2}} + \frac{\delta}{X + 1 + \sqrt{2}}$$

avec

$$\alpha = \frac{P_4(1+\sqrt{2})}{Q_4'(1+\sqrt{2})} \qquad \qquad \beta = \frac{P_4(1-\sqrt{2})}{Q_4'(1-\sqrt{2})} \qquad \qquad \gamma = \frac{P_4(-1+\sqrt{2})}{Q_4'(-1+\sqrt{2})} \qquad \qquad \delta = \frac{P_4(-1-\sqrt{2})}{Q_4'(-1-\sqrt{2})}$$

On remarquera pour simplifier les calculs que $\frac{P_4}{Q_4'} = \frac{X^2-1}{X^2-3}$ et on tirera profit du fait que R_4 est impaire. On trouve alors

$$R_4 = \frac{-1 - \frac{1}{\sqrt{2}}}{X - 1 - \sqrt{2}} + \frac{-1 + \frac{1}{\sqrt{2}}}{X - 1 + \sqrt{2}} + \frac{-1 + \frac{1}{\sqrt{2}}}{X + 1 - \sqrt{2}} + \frac{-1 - \frac{1}{\sqrt{2}}}{X + 1 + \sqrt{2}}$$

Partie II - Etude du cas général

1. Remarquons que pour tout $n \in \mathbb{N}$,

$$Z_{n+1} = Q_{n+1} + iP_{n+1} = -XP_n + Q_n + iP_n + iXQ_n = (1+iX)(Q_n + iP_n) = (1+iX)Z_n$$

Puisque $Z_0=0$, on montre alors aisément que $Z_{n+1}=(1+iX)^n$ pour tout $n\in\mathbb{N}.$

2. Tout d'abord, $1 + i \tan \alpha = \frac{e^{i\alpha}}{\cos \alpha}$ donc $(1 + i \tan \alpha)^n = \frac{e^{in\alpha}}{\cos^n \alpha}$. Puisque P_n et Q_n sont à coefficients réels, il s'ensuit que

$$P_n(\tan\alpha) = \operatorname{Im}((1+i\tan\alpha)^n) = \frac{\sin n\alpha}{\cos^n\alpha} \qquad \qquad Q_n(\tan\alpha) = \operatorname{Re}((1+i\tan\alpha)^n) = \frac{\cos n\alpha}{\cos^n\alpha}$$

3. D'après la formule du binôme,

$$Z_n = (1 + iX)^n = \sum_{k=0}^n \binom{n}{k} i^k X^k = \sum_{0 \leqslant 2k \leqslant n} \binom{n}{2k} (-1)^k X^{2k} + i \sum_{0 \leqslant 2k+1 \leqslant n} \binom{n}{2k+1} (-1)^k X^{2k+1}$$

donc

$$P_n = \sum_{0 \leqslant 2k+1 \leqslant n} \binom{n}{2k+1} (-1)^k X^{2k+1} \qquad \qquad Q_n = \sum_{0 \leqslant 2k \leqslant n} \binom{n}{2k} (-1)^k X^{2k}$$

4. D'après la question II.3, P_n est impair et Q_n est pair.

Remarque. On peut également déterminer la parité de P_n et Q_n sans leurs formes développées. D'une part,

$$\overline{Z}_n = (1 - iX)^n = Z_n(-X) = Q_n(-X) + iP_n(-X)$$

D'autre part, puisque P_n et Q_n sont à coefficients réels,

$$\overline{Z}_n = Q_n - iP_n$$

Puisque P_n , Q_n , $P_n(-X)$, $Q_n(-X)$ sont à coefficients réels, $P_n(-X) = -P_n(X)$ et $Q_n(-X) = Q_n(X)$. Autrement dit, P_n est impair et Q_n est pair.

La question II.3 montre également que

- ▶ si n est pair, deg $P_n = n 1$, deg $Q_n = n$, le coefficient dominant de P_n est $-(-1)^{\frac{n}{2}}n$ et le coefficient dominant de Q_n est $(-1)^{\frac{n}{2}}$;
- ▶ si n est impair, deg $P_n = n$, deg $Q_n = n-1$, le coefficient dominant de P_n est $(-1)^{\frac{n-1}{2}}$ et le coefficient dominant de Q_n est $(-1)^{\frac{n-1}{2}}n$.
- **5.** ► Supposons n pair.

La question II.2 montre que les réels tan $\frac{k\pi}{n}$ pour $k \in \left[\!\left[-\frac{n}{2}+1,\frac{n}{2}-1\right]\!\right]$ sont racines de P_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, ces n-1 réels sont distincts. Puisque deg $P_n=n-1$, ce sont exactement les racines de P_n et elles sont simples.

La question II.2 montre que les réels tan $\frac{(2k+1)\pi}{2n}$ pour $k \in \left[-\frac{n}{2}, \frac{n}{2} - 1\right]$ sont racines de Q_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, ces n réels sont distincts. Puisque deg $Q_n = n$, ce sont exactement les racines de P_n et elles sont simples.

► Supposons n impair.

La question II.2 montre que les réels $\tan\frac{k\pi}{n}$ pour $k\in\left[-\frac{n-1}{2},\frac{n-1}{2}\right]$ sont racines de P_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, ces n réels sont distincts. Puisque deg $P_n=n$, ce sont exactement les racines de P_n et elles sont simples.

La question **II.2** montre que les réels tan $\frac{(2k+1)\pi}{2^n}$ pour $k \in \left[-\frac{n-1}{2}, \frac{n-1}{2} - 1\right]$ sont racines de Q_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, ces n-1 réels sont distincts. Puisque deg $Q_n=n-1$, ce sont exactement les racines de P_n et elles sont simples.

6. Les questions précédentes montrent que si n est pair

$$\begin{split} P_n &= -(-1)^{\frac{n}{2}} n \prod_{k=-\frac{n}{2}+1}^{\frac{n}{2}-1} \left(X - \tan \frac{k\pi}{n} \right) \\ &= -(-1)^{\frac{n}{2}} n X \prod_{k=1}^{\frac{n}{2}-1} \left(X - \tan \frac{k\pi}{n} \right) \left(X + \tan \frac{k\pi}{n} \right) \\ Q_n &= (-1)^{\frac{n}{2}} \prod_{k=-\frac{n}{2}}^{\frac{n}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \\ &= (-1)^{\frac{n}{2}} \prod_{k=0}^{\frac{n}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \left(X + \tan \frac{(2k+1)\pi}{2n} \right) \end{split}$$

et que si n est impair

$$\begin{split} P_n &= (-1)^{\frac{n-1}{2}} \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \left(X - \tan \frac{k\pi}{n} \right) \\ &= (-1)^{\frac{n-1}{2}} X \prod_{k=1}^{\frac{n-1}{2}} \left(X - \tan \frac{k\pi}{n} \right) \left(X + \tan \frac{k\pi}{n} \right) \\ Q_n &= (-1)^{\frac{n-1}{2}} n \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \\ &= (-1)^{\frac{n-1}{2}} n \prod_{k=0}^{\frac{n-1}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \left(X + \tan \frac{(2k+1)\pi}{2n} \right) \end{split}$$

- 7. Lorsque n est pair, $\deg P_n < \deg Q_n$ donc la partie entière de R_n est nulle. Lorsque n est impair, $\deg P_n = \deg Q_n + 1$ donc la partie entière de R_n est de degré 1. Puisque P_n et Q_n sont respectivement impair et pair, R_n est impaire. L'unicité de la décomposition en éléments simples nous apprend donc que la partie entière de R_n est également impaire. Elle est donc de la forme αX où α est le quotient du coefficient de P_n par le coefficient dominant de Q_n . Ainsi $\alpha = \frac{1}{n}$. La partie entière de la fraction rationnelle R_n est donc $\frac{1}{n}X$.
- 8. D'une part,

$$Z_n'=\mathfrak{ni}(1+iX)^{n-1}=\mathfrak{ni}Z_{n-1}=-nP_{n-1}+\mathfrak{ni}Q_{n-1}$$

D'autre part,

$$Z'_n = Q'_n + iP'_n$$

Puisque $P_{n-1},\ Q_{n-1},\ P'_n,\ Q'_n$ sont à coefficients réels, on en déduit que $Q'_n=-nP_{n-1}$ et $P'_n=nQ_{n-1}$.

9. Supposons n pair. Puisque R_n est impaire, la décomposition en éléments simples de R_n est de la forme

$$R_n = \sum_{k=0}^{\frac{n}{2}-1} \frac{\lambda_k}{X - \tan\frac{(2k+1)\pi}{2n}} + \frac{\lambda_k}{X + \tan\frac{(2k+1)\pi}{2n}}$$

avec

$$\lambda_k = \frac{P_n\left(\tan\frac{(2k+1)\pi}{2n}\right)}{Q_n'\left(\tan\frac{(2k+1)\pi}{2n}\right)} = -\frac{1}{n} \cdot \frac{P_n\left(\tan\frac{(2k+1)\pi}{2n}\right)}{P_{n-1}\left(\tan\frac{(2k+1)\pi}{2n}\right)}$$

D'après la question II.2, on obtient après simplification

$$\lambda_k = -\frac{1}{n\cos^2\frac{(2k+1)\pi}{2n}}$$

Supposons n impair. Puisque R_n est impaire, la décomposition en éléments simples de R_n est de la forme

$$R_n = \frac{1}{n}X + \sum_{k=0}^{\frac{n-1}{2}-1} \frac{\lambda_k}{X - \tan\frac{(2k+1)\pi}{2n}} + \frac{\lambda_k}{X + \tan\frac{(2k+1)\pi}{2n}}$$

avec

$$\lambda_k = -\frac{1}{n\cos^2\frac{(2k+1)\pi}{2n}}$$

10. Supposons n pair.

Les racines non nulles de P_n autrement dit de $\frac{P_n}{X}$ sont les $\tan \frac{k\pi}{n}$ et les $-\tan \frac{k\pi}{n}$ pour $k \in [1, \frac{n}{2} - 1]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n}{2}-1} \prod_{k=1}^{\frac{n}{2}-1} \tan^2 \frac{k\pi}{n} = (-1)^{\frac{n}{2}-1} A_n^2$$

Par ailleurs.

$$\frac{P_n}{X} = \sum_{k=0}^{\frac{n}{2}-1} {n \choose 2k+1} (-1)^k X^{2k}$$

donc le produit des racines de $\frac{P_n}{X}$ est aussi

$$(-1)^{n-2} \frac{\binom{n}{1}(-1)^0}{\binom{n}{n-1}(-1)^{\frac{n}{2}-1}} = (-1)^{\frac{n}{2}-1}$$

Ainsi $A_n^2=1$. Puisque $\tan\frac{k\pi}{n}>0$ pour $k\in\left[\!\left[1,\frac{n}{2}-1\right]\!\right]$, on a donc $A_n>0$ de sorte que $A_n=1$. Les racines de Q_n sont les $\tan\frac{(2k+1)\pi}{2n}$ et les $-\tan\frac{(2k+1)\pi}{2n}$ pour $k\in\left[\!\left[0,\frac{n}{2}-1\right]\!\right]$. Le produit de ces racines vaut

$$(-1)^{\frac{n}{2}} \prod_{k=0}^{\frac{n}{2}-1} \tan^2 \frac{(2k+1)\pi}{2n} = (-1)^{\frac{n}{2}} B_n^2$$

Par ailleurs.

$$Q_{n} = \sum_{k=0}^{\frac{n}{2}} \binom{n}{2k} (-1)^{k} X^{2k}$$

donc le produit des racines de Q_n est aussi

$$(-1)^{n} \frac{\binom{n}{0}(-1)^{0}}{\binom{n}{n}(-1)^{\frac{n}{2}}} = (-1)^{\frac{n}{2}}$$

Ainsi $B_n^2=1$. Puisque $\tan\frac{(2k+1)\pi}{2n}>0$ pour $k\in\left[\!\left[0,\frac{n}{2}-1\right]\!\right],$ on a donc $B_n>0$ de sorte que $B_n=1$.

Remarque. On peut aussi remarquer que les tangentes intervenant dans chacun des produits A_n et B_n sont inverses l'une de l'autre deux à deux en vertu de la relation trigonométrique $\tan\left(\frac{\pi}{2}-\theta\right)=\frac{1}{\tan(\theta)}$.

\triangleright Supposons \mathfrak{n} impair.

Les racines non nulles de P_n autrement dit de $\frac{P_n}{X}$ sont les tan $\frac{k\pi}{n}$ et les $-\tan\frac{k\pi}{n}$ pour $k\in \left[\!\left[1,\frac{n-1}{2}\right]\!\right]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n-1}{2}} \prod_{k=1}^{\frac{n-1}{2}} \tan^2 \frac{k\pi}{n} = (-1)^{\frac{n-1}{2}} A_n^2$$

Par ailleurs.

$$\frac{P_n}{X} = \sum_{k=0}^{\frac{n-1}{2}} \binom{n}{2k+1} (-1)^k X^{2k}$$

donc le produit des racines de $\frac{P_n}{X}$ est aussi

$$(-1)^{n-1} \frac{\binom{n}{1}(-1)^0}{\binom{n}{n}(-1)^{\frac{n-1}{2}}} = (-1)^{\frac{n-1}{2}} n$$

Ainsi $A_n^2=n$. Puisque $\tan\frac{k\pi}{n}>0$ pour $k\in [\![1,\frac{n-1}{2}]\!]$, on a donc $A_n>0$ de sorte que $A_n=\sqrt{n}$. Les racines de Q_n sont les $\tan\frac{(2k+1)\pi}{2n}$ et les $-\tan\frac{(2k+1)\pi}{2n}$ pour $k\in [\![0,\frac{n-1}{2}-1]\!]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n-1}{2}} \prod_{k=0}^{\frac{n-1}{2}-1} \tan^2 \frac{(2k+1)\pi}{2n} = (-1)^{\frac{n-1}{2}} B_n^2$$

Par ailleurs,

$$Q_n = \sum_{k=0}^{\frac{n-1}{2}} \binom{n}{2k} (-1)^k X^{2k}$$

donc le produit des racines de Q_n est aussi

$$(-1)^{n-1} \frac{\binom{n}{0}(-1)^0}{\binom{n}{n-1}(-1)^{\frac{n-1}{2}}} = (-1)^{\frac{n-1}{2}} \frac{1}{n}$$

 $\text{Ainsi } B_n^2 = \tfrac{1}{n}. \text{ Puisque } \tan \tfrac{(2k+1)\pi}{2n} > 0 \text{ pour } k \in \left[\!\left[0, \tfrac{n-1}{2} - 1\right]\!\right], \text{ on a donc } B_n > 0 \text{ de sorte que } B_n = \tfrac{1}{\sqrt{n}}.$

Remarque. A nouveau, en utilisant la relation trigonométrique $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$, on peut montrer que $B_n = \frac{1}{A_n}$.

Solution 1.

- 1. En considérant sa dérivée, on montre que l'application $\varphi: x \in \mathbb{R} \mapsto e^x x$ est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ . Elle admet donc un minimum en 0. Puisque $\varphi(0) = 1$, φ est strictement positive sur \mathbb{R} et en particulier, ne s'annule pas sur \mathbb{R} . L'exponentielle n'admet donc pas de point fixe sur \mathbb{R} .
- $\textbf{2. On sait que } \tan x \underset{x \rightarrow 0}{\sim} x \ donc \ \lim_{x \rightarrow 0} \frac{x}{\tan x} = 1 \ puis \ \lim_{x \rightarrow 0} \exp \left(\frac{x}{\tan x} \right) = e. \ De \ \text{même}, \\ \sin x \underset{x \rightarrow 0}{\sim} x \ donc \ \lim_{x \rightarrow 0} \frac{x}{\sin x} = 1.$ Ainsi $\lim_{x\to 0} f(x) = e - 1$. On sait que $\lim_{x \to \frac{\pi}{2}} \tan x = \pm \infty$ donc $\lim_{x \to \frac{\pi}{2}} \frac{x}{\tan x} = 0$ puis $\lim_{x \to \frac{\pi}{2}} e^{\frac{x}{\tan x}} = 1$. Puisque $x \mapsto \frac{x}{\sin x}$ est continue en $\frac{\pi}{2}$, $\lim_{x \to \frac{\pi}{2}} \frac{x}{\sin x} = \frac{\pi}{2}$. Ainsi $\lim_{x \to \frac{\pi}{2}} f(x) = 1 - \frac{\pi}{2}$.

3. Tout d'abord, e - 1 > 0 car $e \ge 2$ et $1 - \frac{\pi}{2} < 0$ car $\pi \ge 3$. Puisque tan ne s'annule pas sur $]0,\frac{\pi}{2}[,x\mapsto\frac{x}{\tan x}]$ est continue sur $]0,\frac{\pi}{2}[$. Puisque $x\mapsto e^x$ est continue sur $]0,\frac{\pi}{2}[$.

Comme sin ne s'annule pas sur $]0, \frac{\pi}{2}[, x \mapsto \frac{x}{\sin x} \text{ est continue sur }]0, \frac{\pi}{2}[.$ Ainsi f est continue sur $\left[0,\frac{\pi}{2}\right[$ comme différence de deux fonctions continues sur $\left[0,\frac{\pi}{2}\right[$.

Puisque $\lim_0 f > 0$ et $\lim_{\frac{\pi}{2}} f < 0$, f s'annule sur $\left[0, \frac{\pi}{2}\right]$ en vertu du théorème des valeurs intermédiaires. Il existe donc $b \in \left[0, \frac{\pi}{2}\right]$ tel que f(b) = 0.

4. Tout d'abord,

$$e^z = e^\alpha e^{\mathfrak{i} \, b} = e^\alpha (\cos b + \mathfrak{i} \sin b) = e^\alpha \cos b (1 + \mathfrak{i} \tan b) = e^\alpha \cos b \left(1 + \mathfrak{i} \frac{b}{a} \right) = \frac{e^\alpha \cos b}{a} (a + \mathfrak{i} b) = \frac{e^\alpha \cos b}{a} z$$

Ainsi $\frac{e^z}{z} = \frac{e^a \cos b}{a}$.

5. Puisque f(b) = 0, $e^{\alpha} = \frac{b}{\sin b}$. Ainsi

$$\frac{e^{a}\cos b}{a} = \frac{b}{a\tan b} = 1$$

D'où $e^z = z$.