Written by: <u>Hyun Jong Kim</u>

Created: 2/2/2024

Last updated: 2/4/2024

These are notes for my fall 2022 GNTS presentation notes on Tuesday, 2/6/2023.

I would greatly appreciate comments and corrections to these notes; please send such suggestions to me at hyunjong<dot>kim<at>math<dot>wisc<dot>edu or to my latest email address.

Disclaimer

You might find it useful to use <u>Obsidian.md</u> if you are reading this as a Markdown file so that you can use the internal links in these notes. However, I may or may not make other notes that this note links to publicly available, so such links may be useless to you. Nevertheless, reading this as a Markdown file on Obsidian.md (alongside as a pdf file) could supplement your reading experience.

// Title

A Zoo of L-functions

Abstract ■

I will talk about some different kinds of L-functions (and zeta functions) and maybe some problems surrounding them

0. Riemann zeta function

Reference: Bump et al, "Introduction to the Langlands Program", Chapter 1

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Facts:

- 1. Converges absolutely for $\mathrm{Re}(s)>1$
- 2. We have Euler product

$$\zeta(s) = \prod_{p} rac{1}{1-p^{-s}}$$

3. We have functional equation: letting

$$\Lambda(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s),$$

 Λ is meromorphic (and therefore ζ is meromorphic) except for simple poles at s=0,1 and satisfies

$$\Lambda(1-s)=\Lambda(s)$$

1. Dirichlet L-functions

Reference: Bump et al, "Introduction to the Langlands Program", Chapter 1

- bump et al ilp 3.1 Theorem
- Generalize ζ

Definition

Let $\chi: \mathbf{Z} \to \mathbf{C}$ be a Dirichlet character modulo m. The **Dirichlet** L-series is defined by

$$L(s,\chi) = \sum_{n=1}^{\infty} rac{\chi(n)}{n^s} = \prod_p (1-\chi(p)p^{-s})^{-1}$$

]

for $\operatorname{Re} s > 1$

Note that this generalizes ζ because $L(s,1) = \zeta$.

Define $\Lambda(\chi,s)$ by

$$\Lambda(\chi,s) = egin{cases} \pi^{-s/2}\Gamma(s/2)L(\chi,s) & ext{if } \chi(-1) = 1 \ \pi^{-(s+1)/2}\Gamma((s+1)/2)L(\chi,s) & ext{if } \chi(-1) = -1 \end{cases}$$

We have the functional equation

$$\Lambda(\chi,s)=arepsilon(\chi)q^{1/2-s}\Lambda(\overline{\chi},1-s)$$

(arepsilon is definable with a "Gauss sum" and $\overline{\chi}: (\mathbf{Z}/m\mathbf{Z})^{ imes} o \mathbf{C}^{ imes}$ is the Dirichlet character mod m "inducing" χ)

Therefore, $L(\chi, s)$ is extendable to a meromorphic function on the complex plane.

2. Dedekind zeta functions

Reference: Wikipedia

Definition

Let K be an algebraic number field. The **Dedekind zeta function** is defined by

$$\zeta_K(s) = \sum_{I \subset \mathcal{O}_K ext{, nonzero}} rac{1}{(N_{K/\mathbb{Q}}(I))^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_K ext{ prime}} rac{1}{1 - N_{K/\mathbb{Q}}(\mathfrak{p})^{-s}}.$$

for Re(s) > 1.

 $N_{K/\mathbb{Q}}(\mathfrak{p})$ equals the size of the residue field of \mathfrak{p} .

For $K = \mathbb{Q}$, $\zeta_K(s) = \zeta(s)$.

We have a functional equation and hence an analytic continuation to a meromorphic function.

2' Partial Dedekind zeta function

Reference: Drew Sutherland's MIT 18.785 Notes, Lecture 21

Definition

Let K be an algebraic number field, and let S be a set of primes of K. The **partial Dedekind zeta** function associated to S is defined by

$$\zeta_{K,S}(s) = \prod_{\mathfrak{p} \in S} rac{1}{1 - N_{K/\mathbb{Q}}(\mathfrak{p})^{-s}}$$

for Re(s) > 1.

If S is the set of all primes of K, then $\zeta_{K,S} = \zeta_K$.

If S has all but finitely many primes, then $\zeta_{K,S}$ and ζ_K differ by the product of finitely many factors, so $\zeta_{K,S}$ extends to a meromorphic function

3. Hecke L-function of a Hecke character of a number field

Reference: Bump, Chapter 1, Section 5

Definition

Let K be a number field and let $\chi:I_{\mathfrak{m}}\to \mathbf{C}^{\times[1]}$ be a Hecke character of weight ξ_{∞} for the modulus \mathfrak{m} of K, where $\xi_{\infty}:P_{\mathfrak{m}}\to \mathbf{C}^{\times}$ is a (unitary) character^[2].

The Hecke L-function of χ is

$$L(\chi,s) = \sum_{\mathfrak{a}} \chi(\mathfrak{a}) (N\mathfrak{a})^{-s} = \prod_{\mathfrak{p}} \left(1 - \chi(\mathfrak{p}) (N\mathfrak{p})^{-s}
ight)^{-1}$$

For the trivial character $\chi=\chi_0$, the Hecke *L*-function is the Dedekind zeta function, i.e. $L(\chi_0,s)=\zeta_K(s)$.

Hecke characters have a functional equation and an analytic continuation as entire functions.

4. L-function of an extension of number fields

Reference: Bump et al, Chapter 1, Section 5

bump et al ilp page 12

Let E/K be an abelian extension of number fields

Definition

Let E/K be an abelian extension of number fields with Galois group G. For $\rho \in \hat{G}$ (i.e. $\rho : G \to \mathbb{C}$) Define the L-function

$$L(
ho,s) = \prod_{\mathfrak{p} ext{ prime of } K} (1-
ho(\sigma_{\mathfrak{p}})(N_{\mathfrak{p}})^{-s})^{-1}$$

where $\rho(\sigma_{\mathfrak{p}})$ is the image of the Frobenius element by the Galois representation induced by ρ in $\mathbf{C}^{I_{\mathfrak{p}}}$.

bump et al ilp 5.9 Theorem

(Artin)

Let K be a number field, E/K a finite abelian extension with Galois group G, let $\rho: G \to C^{\times}$ be a Galois character and $L(\rho, s)$ the associated L-function.

Then there exists a unique primitive Hecke character χ of K, of modulus m such that

$$L(\rho, s) = L(\chi, s).$$

When $K = \mathbb{Q}$, we have a theorem that yields the Kronecker-Weber theorem (which states that all abelian extensions of K are subfields of cyclotomic fields).

5. Artin L-function of a global Galois representation (of a number field)

Reference: Gabor Wiese's notes "Galois Representations"

wiese gr 1.4.1 Definition

Definition

Let K be a number field, and let $\rho: G_K \to \mathrm{GL}_n(\mathbb{C})$ be a Galois representation (i.e. an Artin representation). Define the L-function

$$L(
ho,s) = \prod_{\mathfrak{p}} rac{1}{\operatorname{char}\operatorname{poly}(\operatorname{Frob}_{\mathfrak{p}})(
ho)(N(\mathfrak{p})^{-s})}$$

One can also more generally define a "partial L-function" for representations over topological fields, assuming that the characteristic polynomial of Frobenius are in $\overline{\mathbb{Q}}[X]$.

This is a generalization of 4, which only discussed Galois characters.

Conjecture

(Artin)

If ρ is a non-trivial Artin representation, then $L(\rho, s)$ has a holomorphic continuation to the whole complex plane.

We know that $L(\rho,s)$ has a functional equation and hence a meromorphic continuation.

See also Silverman's "Advanced Topics in the Arithmetic of Elliptic curves", Chapter II, Section 10 for a discussion on the special case of elliptic curves

6. Zeta function of a nice variety over a finite field

Reference: Poonen's notes "Lectures on Rational points on Curves",

Definition

Given a "nice" variety over a finite field \mathbb{F}_q , define

$$Z_X(T) = \prod_{ ext{closed points } P \in X} (1 - T^{\deg P})^{-1}$$

$$\zeta_X(s) = Z_X(q^{-s})$$

By the Weil-conjectures, $Z_X(T)$, which is a priori in $\mathbb{Q}[[T]]$, is in fact in $\mathbb{Q}(T)$. Moreover, Z_X has a functional equation.

More generally, we can define a zeta function for an arbitrary scheme of finite type over \mathbb{Z} .

For a nice genus g-curve X, we have

$$Z_X(T)=rac{P_1(T)}{(1-T)(1-qT)}$$

for some integer polynomial $P_1(T)$ of the form

$$1 + a_1T + a_2T^2 + \dots + a_gT^g + qa_{g-1}T^{g+1} + q^2a_{g-2}T^{g+2} + \dots + q^gT^{2g}.$$

For an elliptic curve E/\mathbb{F}_q , we have $Z_E(E,T)=(1-aT+pT^2)$, where a is the "trace of Frobenius" satisfying $a=q+1-\#E(\mathbb{F}_q)$.

Hasse-Weil zeta function for nice varieties over number fields (5 mixed with 6ish for elliptic curves)

Reference: Silverman's "Advanced Topics in the Arithmetic of Elliptic curves", Chapter II, Section 10

Now given K/\mathbb{Q} a number field and let E/L be an elliptic curve. For each prime \mathfrak{p} of K, define the **local** L-series of E at \mathfrak{p} by

$$L_{\mathfrak{p}}(E/K,T) = egin{cases} Z_{E/\mathbb{F}_{\mathfrak{p}}}(T) & ext{if E has good reduction at \mathfrak{p}} \ 1-T & ext{if E has split multiplicative reduction at \mathfrak{p}} \ 1+T & ext{if E has nonsplit multiplicative reduction at \mathfrak{p}} \ 1 & ext{if E has additive reduction at \mathfrak{p}} \end{cases}$$

where $\mathbb{F}_{\mathfrak{p}}$ is the residue field of \mathfrak{p} and define the **global** *L*-series of *E* by

$$L(E/K,s) = \prod_{\mathfrak{p}} L_{\mathfrak{p}}(E/K,\#\mathbb{F}_{\mathfrak{p}}^{-s})^{-1}$$

This is an example of Artin L-function of a global Galois representation. Also, these ideas can be generalized to algebraic varieties V over number fields K.

Whether L(E/K,s) has a functional equation^[4] is generally not known. However, by the modularity theorem, which shows that $L(E/\mathbb{Q},s)=L(f,s)$ for some newform f, we can conclude that $L(E/\mathbb{Q},s)$ has a functional equation because L(f,s) does. Deuring also showed that a CM elliptic curve E/K has an L-function that is expressible either as the L-function of a Grössencharacter or the product of two such characters. A Grössencharacter has a functional equation, so L(E/K,s) has a functional equation if E has CM.

- 1. whether the L-function of a nice variety over a number field has a functional equation
- 2. whether the zeta function of a nice variety over a finite field has a functional equation

So the following type of question is still quite open:

⊘ Conjecture

L(E/K,s) has a functional equation when K is a general number field (and E/K is not a CM elliptic curve)

Moreover, Artin's holomorphy conjecture, which is stated above, states that L(E/K, s) has a holomorphic continuation to the whole complex plane.

6'. A¹-enriched logarithmic zeta function

Reference: Bilu, Ho, Srinivasan, Vogt, and Wickelgren's paper "Quadratic enrichment of the logarithmic derivative of the zeta function"

Let X be a smooth, proper variety over a field k. Let $\varphi: X \to X$ be an endomorphism. The $\boxed{\mathbb{A}^1}$ logarithmic zeta function of (X, φ) is defined by

$$\operatorname{dlog}\zeta_{X,arphi}^{\mathbb{A}^1}:=\sum\operatorname{Tr}(arphi^m)t^{m-1}\in\operatorname{GW}(k)[[t]]$$

The motivation for this definition^[5] is to generalize the classical zeta function $\zeta_X(T)$ towards \mathbb{A}^1 enumerative geometry: when $k = \mathbb{F}_q$ and φ is the (geometric) Frobenius endomorphism on X, we have

$$\zeta_X(T) = \exp{\left(\sum_{m\geq 1}rac{|X(\mathbb{F}_{q^m})|}{m}T^m
ight)},$$

so

$$\mathrm{dlog}\,\zeta_X(T):=rac{d}{dT}\mathrm{log}\,\zeta_X(T)=\sum_{m\geq 1}|X(\mathbb{F}_{q^m})|T^{m-1}.$$

Moreover, when φ is the Frobenius endomorphism, $\operatorname{Tr}(\varphi^m)$ is an " \mathbb{A}^1 -enriched version of $|X(\mathbb{F}_{q^m})|$ ", where counting is done not with integers, but with elements of the Grothndieck-Witt ring $\operatorname{GW}(k)$ whose elements of generated by nondegenerate symmetric bilinear forms on finite dimension k-vector spaces^[6].

One can define appropriately a notion of "dlog-rationality" for the power series $\operatorname{dlog}\zeta_{X,\varphi}^{\mathbb{A}^1}$. It turns out that there is a class of schemes (smooth projective schemes over k with "cellular structure") for which $\operatorname{dlog}\zeta_{X,\varphi}^{\mathbb{A}^1}$ is dlog-rational. There are also schemes, such as some elliptic curves, for which $\operatorname{dlog}\zeta_{X,\varphi}^{\mathbb{A}^1}$ is not dlog-rational.

The functional equation has been verified for $d\log_{\mathbb{P}^n}^{\mathbb{A}^1}(T)$ with the Frobenius endomorphism.

7. L-function of a modular form

Reference: Diamond, Shurman, Chapter 5 Section 9

Definition

Given a weight k-modular form f for $\Gamma_1(N)$, i.e. $f \in \mathcal{M}_k(\Gamma_1(N))$, write its fourier expansion by

$$f(au) = \sum_{n=0}^{\infty} a_n q^n.$$

where $q=e^{2\pi i au}$.

Its $\overline{L$ -function is defined by the Dirichlet series

$$L(s,f) = \sum_{n=1}^{\infty} a_n n^{-s}.$$

Whenever $f \in \mathcal{S}_k(\Gamma_1(N))^{\pm}$, there is a functional equation for L(s,f) and hence L(s,f) has an analytic continuation to the complex plane.

The following fact addresses whether L(s, f) has an Euler product expansion

Theorem

The following are equivalent for $f \in \mathcal{M}_k(\Gamma_1(N))$:

- f is a normalized eigenform, i.e. it is a eigenvector for all Hecke operators T_n and $\langle n \rangle$ such that $a_1 = 1$.
- L(s, f) has an Euler product expansion

$$L(s,f) = \prod_p \left(1 - a_p p^{-s} + \chi(p) p^{k-1-2s}
ight)^{-1}$$

Also, given $f \in \mathcal{M}_k(N,\chi)^{[7]}$ for a Dirichlet character χ modulo N, f is a normalized eigenform if and only if we have the recursive relations:

- 1. $a_1(f) = 1$,
- 2. $a_{p^r}(f)=a_p(f)a_{p^{r-1}}(f)-\chi(p)p^{k-1}a_{p^{r-2}}(f)$ for all p prime and $r\geq 2$,
- 3. $a_{mn}(f) = a_m(f)a_n(f)$ when (m, n) = 1.

For elliptic curves over E/\mathbb{Q} , we have the very same recursive relations for the traces a_{p^r} of Frobenius for E/\mathbb{F}_{p^r} when p is a prime of good reduction.

In fact, one can say more:

Theorem

(Modularity theorem, "version L")

Let E/\mathbb{Q} be an elliptic curve with conductor N_E . Then for some newform [8] $f\in\mathcal{S}_2(\Gamma_0(N_E))$,

$$L(s,f) = L(s,E)^{[9]}$$

<u>As mentioned above</u>, this modularity theorem allows us to conclude that L(s, E) has a functional equation and thus has an analytic continuation.

7'. L-function of a newform by getting an Artin L-function from an abelian variety constructed from the newform

Given a newform $f \in \mathcal{S}_2(\Gamma_1(M_f))$ at a level M_f , one can construct an abelian variety

$$A_f = J_1(M_f)/I_fJ_1(M_f)$$

Here,

- $J_1(M_f)$ is the Jacobian of $X_1(M_f)$,
- there is an action of the (level M_f) "Hecke algebra" $\mathbb{T}_{\mathbb{Z}}^{[11]}$ on $J_1(M_f)$
- I_f denotes the kernel of the homomorphism $\mathbb{T}_{\mathbb{Z}} \to \mathbb{C}$ given by sending $T \in \mathbb{T}_{\mathbb{Z}}$ to the eigenvalue $\lambda_f(T)$ of T on f, i.e.

$$T_f = \lambda_f(T) f$$

and

$$I_f=\{T\in\mathbb{T}_\mathbb{Z}:\lambda_f(T)=0\}.$$

(See Diamond, Shurman Lemma 9.5.3)

Let χ be a Dirichlet character modulo N. Let $f \in \mathcal{S}_2(N,\chi)$ be a normalized eigenform. Then $V_\ell(A_f) := T_\ell(A_f) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$ is a free module of rank 2 over $\mathbb{K}_f \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$ where \mathbb{K}_f is the number field generated over \mathbb{Q} by the Fourier coefficients a_n of $f^{[12]}$.

Now take a look at its \mathbb{Q}_{ℓ} -Galois representation of $G_{\mathbb{Q}}$ acting on $V_{\ell}(A_f) \cong (K_f \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell})^2$. Note that $K_f \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ decomposes in the form $\prod_{\lambda | \ell} \mathbb{K}_{f,\lambda}$ where the product is over primes λ of \mathbb{K}_f lying over ℓ , so by projective, for each λ we get a 2-dimensional representation

$$ho_{f,\lambda}:G_{\mathbb{Q}}\longrightarrow \mathrm{GL}_{2}\left(\mathbb{K}_{f,\lambda}
ight)$$

such a representation is called a **modular representation** and it has its own Artin \$L\$-function

Many forms of the modularity theorem

Above, we say the following modularity theorem:

(Modularity theorem, "version L") Let E/\mathbb{Q} be an elliptic curve with conductor N_E . Then for some newform7 $f \in \mathcal{S}_2(\Gamma_0(N_E))$, L(s,f)=L(s,E)9

There are also many other formulations of the modularity theorem, all taken from Diamond and Shurman:

Ther following is a formulation that says that the ℓ -adic Galois representation of an elliptic curve over \mathbb{Q} equals a representation of some newform:

(Modularity theorem, "version R")

Let E be an elliptic curve over \mathbb{Q} . Then $\rho_{E,\ell}$ is a modular representation for some ℓ , i.e. there is some newform $f \in \mathcal{S}_2(\Gamma_0(M_f))$ such that $\mathbb{K}_{f,\lambda} = \mathbb{Q}_\ell$ for some maximal ideal λ of $\mathcal{O}_{\mathbb{K}_f}$ lying over ℓ such that $\rho_{f,\lambda}$ is equivalent to $\rho_{E,\ell}$.

Here is a stronger formulation of the above:

(Modularity theorem, "strong version R")

Let E be an elliptic curve over $\mathbb Q$ with conductor N. Then for some newform $f\in\mathcal S_2\left(\Gamma_0(N)\right)$ with number field $\mathbb K_f=\mathbb Q$, $\rho_{f,\lambda}\sim\rho_{E,\ell}$ for all ℓ

Here is a statement concerning how the traces of Frobenii/Hasse invariants of an elliptic curve over \mathbb{Q} are equal to the Fourier coefficients of some newform:

(Modularity Theorem, Version a_p). Let E be an elliptic curve over $\mathbb Q$ with conductor N_E . Then for some newform $f \in \mathcal S_2\left(\Gamma_0\left(N_E\right)\right)$,

$$a_p(f) = a_p(E)$$
 for all primes p

Here are some modularity theorem statements for elliptic curves over \mathbb{Q} about how elliptic curves are covered by modular curves.

⊘ Theorem

(Modularity theorem, "version $X_{\mathbb{Q}}$ ")

Let E be an <u>elliptic curve</u> over \mathbb{Q} . Then for some positive integer N there exists a surjective morphism over \mathbb{Q} of curves over \mathbb{Q} from the modular curve $X_0(N)_{alg}$ to the elliptic curve E,

$$X_0(N)_{\mathrm{alg}} \longrightarrow E$$

(Modularity Theorem, "version $A_{\mathbb{Q}}$ ") Let E be an elliptic curve over \mathbb{Q} . Then for some positive integer N and some newform $f \in \mathcal{S}_2$ ($\Gamma_0(N)$) there exists a surjective morphism over \mathbb{Q} of varieties over \mathbb{Q}

$$A'_{f,\mathrm{alg}} \longrightarrow E$$

(Modularity Theorem, Version $J_{\mathbb{Q}}$). Let E be an elliptic curve over \mathbb{Q} . Then for some positive integer N there exists a surjective morphism over \mathbb{Q} of varieties over \mathbb{Q}

$$\mathrm{J}_0(N)_{\mathrm{alg}} \longrightarrow E$$

And here are some modularity statements for complex elliptic curves with j-invariants over \mathbb{Q} :

(Modularity Theorem, Version $X_{\mathbb{C}}$)

Let E be a complex elliptic curve with $j(E) \in \mathbb{Q}$. Then for some positive integer N there exists a surjective holomorphic homomorphism of compact Riemann surfaces from the modular curve $X_0(N)$ to the elliptic curve E,

$$X_0(N) \longrightarrow E$$

(Modularity Theorem, Version $A_{\mathbb{C}}$)

Let E be a complex elliptic curve with $j(E) \in \mathbb{Q}$.

Then for some positive integer N and some newform $f \in \mathcal{S}_2\left(\Gamma_0(N)\right)$ there exists a surjective holomorphic homomorphism of complex tori

$$A_f' \longrightarrow E$$

(Modularity Theorem, Version $J_{\mathbb{C}}$) Let E be a complex elliptic curve with $j(E) \in \mathbb{Q}$. Let $J_0(N)$ denotes the Jacobian of $X_0(N)$. Then for some positive integer N there exists a surjective holomorphic homomorphism of complex tori

$$J_0(N)\longrightarrow E$$

See Also

https://en.wikipedia.org/wiki/Category:Zeta and L-functions - Lists many Wikipedia articles that have to do with Zeta and L-functions.

Meta

References

Citations and Footnotes

1. $I_{
m m}$ denotes the subgroup of the group I of fractional ideals in K defined by

$$I_{\mathrm{m}} = \{a \in I \mid (a,m) = 1\}$$

where $\mathfrak m$ is a nonzero integral ideal of the number field K.

- 2. Of more technically speaking, induced from a unitary character $K^{\times}/\mathbf{Q}^{\times} \to \mathbf{C}^{\times}$ such that $U_{\mathfrak{m}} \subset \ker \xi_{\infty}^{[3]}$
- 3. $U_{\mathfrak{m}}$ denotes the group of units in $P_{\mathfrak{m}}$ where \mathfrak{m} is a modulus of the number field K.
 - *P*_m

 \hookrightarrow

- 4. Do not confuse the following questions: ←
- 5. The logarithmic derivative of the zeta function is used instead of the zeta function itself because the question of rationality for the A¹-logarithmic zeta function becomes difficult to ask because the Grothendieck-Witt ring in general has torsion elements. ←
- 6. Moreover, taking the ranks of these vector spaces should in principle return any "classical" count, i.e. counts with familiar numbers. ←
- 7. $\mathcal{M}_k(N,\chi)$ denotes the χ -eigenspace of $\mathcal{M}_k(\Gamma_1(N))$ where χ is a Dirichlet character modulo N.

In other words, it is the space of $f \in \mathcal{M}_k(\Gamma_1(N))$ such that

$$f[\gamma]_k = \chi(d_\gamma)f$$

for all $\gamma \in \Gamma_1(N)$.

#_meta/TODO/notation d_{γ}

- $\mathcal{M}_k(\Gamma)$
- $\Gamma_1(N)$
- \bullet $|\gamma_k|$

; d_{γ} is denotes the lower right entry of $\gamma \in \Gamma_0(N)$. \hookleftarrow

- 8. A newform is a normalized eigenform in $\mathcal{S}_k(\Gamma_1(N))^{\text{new}}$ [10] \leftarrow
- 9. Here L(s,E) is the global L-series $L(E/\mathbb{Q},s)$ as defined in $\underline{\mathsf{5}}$ mixed with $\mathsf{6}$ ish for elliptic curves $\mathrel{\hookleftarrow}$
- 10. $S_k(\Gamma_1(N))^{\text{new}}$ denotes the space of <u>newforms</u> at level N of weight k.

It is the <u>orthogonal complement</u> of $\mathcal{S}_k(\Gamma_1(N))^{\mathrm{old}}$ with respect to the <u>Petersson inner product</u>, i.e.

$${\mathcal S}_k(\Gamma_1(N))^{
m new} = ({\mathcal S}_k(\Gamma_1(N))^{
m old})^\perp.$$

11. $\mathbb{T}_{\mathbb{Z}}$ denotes the <u>Hecke algebra</u> (of level N; N is omitted from the notation). It is the algebra of endomorphisms of $\mathcal{S}_2(\Gamma_1(N))$ generated over \mathbb{Z} by Hecke operators

$$\mathbb{T}_{\mathbb{Z}}=\mathbb{Z}\left[\left\{T_{n},\left\langle n
ight
angle :n\in\mathbb{Z}^{+}
ight\}
ight]$$

- \bullet \mathcal{S}_2
- $\Gamma_1(N)$
- T_n
- \bullet $\langle n \rangle$

 \leftarrow

12. There turns out to be an isomorphism $\mathbb{T}_{\mathbb{Z}}/I_f \xrightarrow{\sim} \mathcal{O}_f = \mathbb{Z}[\{a_n : n \in \mathbb{Z}^+\}]$. Moreover, as <u>noted above</u>, $\mathbb{T}_{\mathbb{Z}}/I_f$ acts on A_f , and hence \mathcal{O}_f acts on $T_\ell(A_f)$ as well. \hookrightarrow