PHYS-F432 – Théorie de la Gravitation

- Cinquième séance d'exercices -

vecteurs de Killing & métrique de Schwarzschild

*Exercice 0 : quantités conservées et géodésiques. Montrer que la quantité

$$Q_{\xi} \equiv \xi_{\mu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}$$

est conservée le long d'une géodésique quelconque $x^{\mu}(\lambda)$ si et seulement si ξ_{μ} est un vecteur de Killing.

Exercice 1 : vecteurs de Killing de l'espace-temps plat. Calculer les vecteurs de Killing de l'espace-temps de Minkowski et (*) déterminer l'algèbre qu'ils génèrent.

*Exercice 2 : vecteurs de Killing de S^2 . La métrique de la sphère bi-dimensionnelle de rayon a est

$$\mathrm{d} s^2 = a^2 (\mathrm{d} \theta^2 + \sin^2 \theta \mathrm{d} \phi^2), \quad \theta \in [0, \pi], \phi \in [0, 2\pi] \,.$$

Calculer les trois vecteurs de Killing indépendants de cette sphère et déterminer l'algèbre qu'ils génèrent.

Exercice 3 : géodésiques de Schwarzschild – conservation du moment angulaire. De par sa symétrie sphérique, la métrique de Schwarzschild possède trois vecteurs de Killing de type espace :

$$\begin{split} R = & \partial_{\varphi} \,, \\ S = & \cos \varphi \, \partial_{\theta} - \cot \theta \sin \varphi \, \partial_{\varphi} \,, \\ T = & -\sin \varphi \, \partial_{\theta} - \cot \theta \cos \varphi \, \partial_{\varphi} \,. \end{split}$$

a. Utiliser ces vecteurs de Killing pour montrer que

$$\ell^2 = p_\theta^2 + \frac{p_\varphi^2}{\sin^2 \theta}$$
 où $p_\mu = m \frac{dx_\mu}{d\tau}$

est une constante du mouvement le long des géodésiques.

b. En déduire que les géodésiques de la métrique de Schwarzschild sont planaires.

Exercice 4 : géodésiques de Schwarzschild – équations du mouvement. Montrer que les équations des géodésiques dans la métrique de Schwarzschild sont

$$\ddot{r} - \frac{1}{2}\nu'\dot{r}^2 - re^{\nu}\dot{\phi}^2 + \frac{1}{2}e^{2\nu}\nu'\dot{t}^2 = 0,$$
 $\ddot{\phi} + \frac{2}{r}\dot{r}\dot{\phi} = 0,$ $\ddot{t} + \nu'\dot{r}\dot{t} = 0,$

où 'désigne une dérivation par rapport à λ et ' une dérivation par rapport à r. Les équations du mouvement obtenues à partir des symétries du problème sont

$$-e^{\nu}\dot{t}^{2} + e^{-\nu}\dot{r}^{2} + r^{2}\dot{\phi}^{2} = \eta,$$

$$r^{2}\dot{\phi} = a,$$

$$e^{\nu}\dot{t} = b$$

avec $\eta=-1$ (respectivement $\eta=0$) pour une géodésique de genre temps (resp. de genre lumière). Montrez-le! Vérifier que ces équations impliquent bien les équations des géodésiques si $\dot{r}\neq0$.