ANSWERS TO SEMESTER ONE EXAMINATION DECEMBER 2008 (JUNE 2008 INTAKE)

1	PROVE
2	$\frac{n\left(13n^2+9n+2\right)}{6}$
3	$0.1^4 - 21.1^3 - 161.1^2 - 105.1 = 0$

$$9y^4 - 21y^3 - 161y^2 - 195u = 0$$

3
$$9y^4 - 21y^3 - 161y^2 - 195u = 0$$

4 i) $(4, -9, 3)$ ii) $\frac{a^2b^2c^2}{\sqrt{a^4b^4 + a^4c^4 + b^4c^4}}$
5 $\frac{dy}{dx} = \frac{3x^2(1-x^4)}{(1+3x^4)^2}$

$$\frac{5}{dx} = \frac{3x^2 (1 - x^4)}{(1 + 3x^4)^2}$$

$$\left(\frac{25}{7}, \frac{49}{78}\right)$$
 minimum point ; $\left(11, \frac{1}{78}\right)$ maximum point

Asymptotes :
$$y = 0$$
, $x = \frac{7}{3}$, $x = \frac{9}{2}$.

The curve crosses the axes at points : $\left(0, \frac{-17}{126}\right), \left(\frac{51}{7}, 0\right)$.

