

Distributed Deep Learning with Apache Spark and Keras

Joeri Hermans (Technical Student)
Departement of Knowledge Engineering
Maastricht University

IT-DB-SAS CERN

Distributed Deep Learning

Problem: How do we reduce the training time of our (large) models, while training them on very large datasets? (like use-cases in CMS and ATLAS)

- Jeff Dean et al. (Google) proposes 2 different paradigms:
 - Model parallelism
 - Data parallelism

Our focus: Data parallelism

Data Parallelism

- n compute nodes (or processes)
- Data is split into *n* data shards.
- Model is copied to compute nodes.
- **Objective**: optimize center model.

Ideally: time is reduced by factor *n*

However:

- Communication constraints
- Computational overhead

Approaches and techniques

- How to optimize the center model (or center variable) using data parallelism?
 - Synchronous Data Parallelism
 - Model Averaging
 - Elastic Averaging SGD (Zhang et al.)
 - Asynchronous Data Parallelism
 - Asynchronous Elastic Averaging SGD (Zhang et al.)
 - DOWNPOUR (Dean et al.)
 - ADAG

Methods are available in our framework.

Synchronous Data Parallelism

Problem: As fast as the slowest compute node due to blocking.

Asynchronous Data Parallelism

- Solves the blocking issue of synchronous data parallelism.
- Problems:
 - Gradient updates can be based on older values of the center variable (staleness)
 - Introduces a simple queuing model of gradient updates (implicit momentum, see next slide)

Asynchrony induces momentum

Or rather, something that behaves like momentum.

- Too many workers causes decay in performance or even *divergence*! (unless

optimizer is able to handle this)

Simulation of DOWNPOUR (right)

Green Regular Gradient Descent

Blue Parallel worker

Red Center variable

Model Averaging (inherently synchronous)

Note: gradients are pointing in the opposite direction to make the figure more intuitive.

Elastic Averaging SGD

- What to do under communication constraints (e.g., heavily used networks)?
 - Let workers do more iterations before communicating with the PS (exploration).
 - Too much exploration, workers do not "agree on neighbourhood" anymore.
 - **Answer:** "elasticity".

However, EASGD requires some fine-tuning (rho). And has difficulties converging when communication window is small (why?). But scales very well (almost ideally)!

dist-keras: architecture

Why Apache Spark?

- We use Apache Spark mainly as a distribution mechanism for the training.
- Strong data preprocessing framework and libraries.
- Bigger than memory datasets.
- Large community and active development.
- CERN Hadoop Service has several clusters available.
- Integration with Spark Streaming to do on-line predictions.

Experiments

- 2 networks: a multilayer perceptron and convolutional network.
- Both have ~1 000 000 trainable parameters (~32 MB per model).
- 4 sample mini-batches, 1 epoch.
- Dataset: MNIST.
- **Optimizers**: Adam (sequential), EASGD, DOWNPOUR, ADAG (distributed)
- 20 parallel workers:
 - 10 compute nodes with 10 Gbps network cards
 - 2 processes per node (32 cores per node)

Experiments (1)

- 30 experiments for every optimization scheme (multilayer perceptron).

Experiments (2)

Optimization algorithm: DOWNPOUR

Divergence due to the number of parallel workers

20 parallel workers (convergence)

40 parallel workers (divergence)

Experiments (3)

Optimization algorithm: Asynchronous EASGD (rho = 5.0)

Experiments (4)

Optimization algorithm: ADAG

Problems we encountered

- Convolutional layers expect matrices to be in a specific format (reshape).

```
reshape_transformer = ReshapeTransformer("features_normalized", "matrix", (28, 28, 1)) dataset = reshape_transformer.transform(dataset)
```

 Adding a column to a distributed DataFrame based on other columns proved be non-trivial to do efficiently.

```
def new_dataframe_row(old_row, column_name, column_value):
    """Constructs a new Spark Row based on the old row, and a new column name and value."""
    row = Row(*(old_row.__fields__ + [column_name]))(*(old_row + (column_value, )))
    return row
```

- **Strugglers**. Some workers are idle because they completed their data shard way faster.
 - Parallelism factor: a data-shard is segmented in "tasks" w.r.t. this factor. If a w then it will take tasks from other workers in order to get the job done faster.

Future Work

- Further theoretical understanding.
- Steps have been / will be made to build an optimizer (ADAG).
 - Combine EASGD like communication windows (to ensure scaling).
 - Staleness compensation.
 - ...
- In-depth performance tests (including CIFAR-10(0)).
- Some work needs to be done to improve throughput of parameter server.
 - PS doesn't scale that well when using models with a -very- high number of parameters.
 - Initially, weight sharing was done using a REST API, now custom protocol.
 - Random communication windows to lower "spiking" load of PS?

Questions?

https://github.com/cerndb/dist-keras

https://github.com/cerndb/dist-keras/blob/master/examples/mnist.ipynb

Appendices

Code example

```
trainer = DOWNPOUR(keras model=convnet, worker optimizer=optimizer convnet, loss=loss convnet,
                      num workers=num workers, batch size=8, communication window=5, learning rate=0.1,
                      num epoch=1, features col="matrix", label col="label encoded")
trainer.set parallelism factor(1) # default value (more on this later)
trained model = trainer.train(training set)
print("Training time: " + str(trainer.get training time()))
print("Accuracy: " + str(evaluate accuracy(trained model, test set, "matrix")))
def evaluate accuracy(model, test set, features="features normalized dense"):
  evaluator = AccuracyEvaluator(prediction col="prediction index", label col="label")
  predictor = ModelPredictor(keras model=model, features col=features)
  transformer = LabelIndexTransformer(output dim=nb classes)
  test_set = test_set.select(features, "label")
  test set = predictor.predict(test set)
  test set = transformer.transform(test set)
  score = evaluator.evaluate(test_set)
```

ADAG (research idea)

- Our 10 Gbps network allows for fast parameter transfers.
- As a result, no communication constraints (assumption).
- In order to reduce communication overhead ever further:
 - Random communication windows in specific range. E.g., [2-6]
- This reduces computational overhead introduced by EASGD.
- Instead of averaging the gradients, divide the gradient residual by the communication window. -> Empirically proved to be better than DOWNPOUR