Computational Methods

TAYLOR SERIES EXPANSION

QUOTE

Suppose we know that y is a function of x and we know the values of y and y' when x = a, that is y(a) and y'(a) are known. We can use y(a) and y'(a) to determine a linear polynomial which approximates to y(x). Let this polynomial be

$$p_1(x) = c_0 + c_1 x$$

We choose the constants c_0 and c_1 so that

$$p_1(a) = y(a)$$

$$p_1'(a) = y'(a)$$

that is, the values of p_1 and its first derivative evaluated at x = a match the values of y and its first derivative evaluated at x = a.

Then,

$$p_1(a) = y(a) = c_0 + c_1 a$$

$$p_1'(a) = y'(a) = c_1$$

Solving for c_0 and c_1 yields

$$c_0 = y(a) - ay'(a)$$
 $c_1 = y'(a)$

Thus,

$$p_1(x) = y(a) - ay'(a) + y'(a)x$$

$$p_1(x) = y(a) + y'(a)(x - a)$$

 $p_1(x)$ is the **first-order Taylor polynomial** generated by y at x = a.

A function, y, and its first derivative are evaluated at x = 2.

$$y(2) = 1$$
 $y'(2) = 3$

- (a) State the first-order Taylor polynomial generated by y at x = 2.
- (b) Estimate y(2.5).

(a)
$$p_1(x) = y(2) + y'(2)(x - 2) = 1 + 3(x - 2) = -5 + 3x$$

(b) We use the first-order Taylor polynomial to estimate y(2.5):

$$p_1(2.5) = -5 + 3(2.5) = 2.5$$

Hence, $y(2.5) \approx 2.5$.

Find a linear approximation to $y(t) = t^2$ near t = 3.

We require the equation of the tangent to $y = t^2$ at t = 3, that is the first-order Taylor polynomial about t = 3. Note that y(3) = 9 and y'(3) = 6.

$$p_1(t) = y(a) + y'(a)(t - a) = y(3) + y'(3)(t - 3)$$
$$= 9 + 6(t - 3)$$
$$= 6t - 9$$

At t = 3, $p_1(t)$ and y(t) have an identical value. Near to t = 3, $p_1(t)$ and y(t) have similar values, for example $p_1(2.8) = 7.8$, y(2.8) = 7.84.

Second-Order Taylor Polynomials

Suppose that in addition to y(a) and y'(a), we also have a value of y''(a). With this information a second-order Taylor polynomial can be found, which provides a quadratic approximation to y(x). Let

$$p_2(x) = c_0 + c_1 x + c_2 x^2$$

We require

$$p_2(a) = y(a)$$

$$p_2'(a) = y'(a)$$

$$p_2''(a) = y''(a)$$

that is, the polynomial and its first two derivatives evaluated at x = a match the function and its first two derivatives evaluated at x = a.

Second-Order Taylor Polynomials

Hence

$$p_2(a) = c_0 + c_1 a + c_2 a^2 = y(a)$$

$$p_2'(a) = c_1 + 2c_2 a = y'(a)$$

$$p_2''(a) = 2c_2 = y''(a)$$

Solving for c_0 , c_1 and c_2 yields

$$c_2 = \frac{y''(a)}{2}$$

$$c_1 = y'(a) - ay''(a)$$

$$c_1 = y'(a) - ay''(a)$$

$$c_1 = y'(a) - ay''(a)$$

$$c_0 = y(a) - ay'(a) + \frac{a^2}{2}y''(a)$$

Second-Order Taylor Polynomials

Hence,

$$p_2(x) = y(a) - ay'(a) + \frac{a^2}{2}y''(a) + \{y'(a) - ay''(a)\}x + \frac{y''(a)}{2}x^2$$

Finally,

$$p_2(x) = y(a) + y'(a)(x - a) + y''(a)\frac{(x - a)^2}{2}$$

 $p_2(x)$ is the **second-order Taylor polynomial** generated by y about x = a.

Second-Order Taylor Polynomials

Given y(1) = 0, y'(1) = 1, y''(1) = -2, estimate

(a)
$$y(1.5)$$
 (b) $y(2)$ (c) $y(0.5)$

using the second-order Taylor polynomial.

The second-order Taylor polynomial is $p_2(x)$:

$$p_2(x) = y(1) + y'(1)(x - 1) + y''(1)\frac{(x - 1)^2}{2}$$
$$= x - 1 - 2\frac{(x - 1)^2}{2} = x - 1 - (x - 1)^2 = -x^2 + 3x - 2$$

We use $p_2(x)$ as an approximation to y(x).

- (a) The value of y(1.5) is approximated by $p_2(1.5)$: $y(1.5) \approx p_2(1.5) = 0.25$
- (b) The value of y(2) is approximated by $p_2(2)$: $y(2) \approx p_2(2) = 0$
- (c) The value of y(0.5) is approximated by $p_2(0.5)$: $y(0.5) \approx p_2(0.5) = -0.75$

11

Second-Order Taylor Polynomials

- (a) Calculate the second-order Taylor polynomial, $p_2(x)$, generated by $y(x) = x^3 + x^2 6$ about x = 2.
- (b) Verify that $y(2) = p_2(2)$, $y'(2) = p'_2(2)$ and $y''(2) = p''_2(2)$.
- (c) Compare y(2.1) and $p_2(2.1)$.
- (a) We need to calculate y(2), y'(2) and y''(2). Now

$$y(x) = x^3 + x^2 - 6$$
, $y'(x) = 3x^2 + 2x$, $y''(x) = 6x + 2$
and so $y(2) = 6$, $y'(2) = 16$, $y''(2) = 14$

The required second-order Taylor polynomial, $p_2(x)$, is thus given by

$$p_2(x) = y(2) + y'(2)(x - 2) + y''(2)\frac{(x - 2)^2}{2} = 6 + 16(x - 2) + 14\frac{(x - 2)^2}{2}$$
$$= 6 + 16x - 32 + 7(x^2 - 4x + 4) = 7x^2 - 12x + 2$$

12

Second-Order Taylor Polynomials

(b) Using (a) we can see that

$$p_2(x) = 7x^2 - 12x + 2$$
, $p'_2(x) = 14x - 12$, $p''_2(x) = 14$

and so

$$p_2(2) = 6, p'_2(2) = 16, p''_2(2) = 14$$

Hence

$$y(2) = p_2(2), y'(2) = p'_2(2), y''(2) = p''_2(2)$$

(c) We have

$$y(2.1) = (2.1)^3 + (2.1)^2 - 6 = 7.671$$

$$p_2(2.1) = 7(2.1)^2 - 12(2.1) + 2 = 7.67$$

Clearly there is a very close agreement between values of y(x) and $p_2(x)$ near to x = 2.

Taylor Polynomials of the nth Order

If we know y and its first n derivatives evaluated at x = a, that is y(a), y'(a), y''(a), ..., $y^{(n)}(a)$, then the **nth-order Taylor polynomial**, $p_n(x)$, may be written as

$$p_n(x) = y(a) + y'(a)(x - a) + y''(a)\frac{(x - a)^2}{2!} + y^{(3)}(a)\frac{(x - a)^3}{3!} + \dots + y^{(n)}(a)\frac{(x - a)^n}{n!}$$

This provides an approximation to y(x). The polynomial and its first n derivatives evaluated at x = a match the values of y(x) and its first n derivatives evaluated at x = a, that is

$$p_n(a) = y(a)$$
 $p'_n(a) = y'(a)$ $p''_n(a) = y''(a)$... $p_n^{(n)}(a) = y^{(n)}(a)$

14

Taylor Polynomials of the nth Order

Given y(0) = 1, y'(0) = 1, y''(0) = 1, $y^{(3)}(0) = -1$, $y^{(4)}(0) = 2$, obtain a fourth-order Taylor polynomial generated by y about x = 0. Estimate y(0.2).

In this example a = 0 and hence

$$p_4(x) = y(0) + y'(0)x + y''(0)\frac{x^2}{2!} + y^{(3)}(0)\frac{x^3}{3!} + y^{(4)}(0)\frac{x^4}{4!}$$
$$= 1 + x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{12}$$

The Taylor polynomial can be used to estimate y(0.2):

$$p_4(0.2) = 1 + 0.2 + \frac{(0.2)^2}{2} - \frac{(0.2)^3}{6} + \frac{(0.2)^4}{12} = 1.2188$$

 $y(0.2) \approx 1.2188$

Taylor's Formula and the Remainder Term

Suppose $p_n(x)$ is an *n*th-order Taylor polynomial generated by y(x) about x = a.

Then Taylor's formula states:

$$y(x) = p_n(x) + R_n(x)$$

where $R_n(x)$ is called the **remainder of order** n and is given by

remainder of order
$$n = R_n(x) = \frac{y^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$$

for some number c between a and x.

The remainder of order n is also called the **error term**. The error term in effect gives the difference between the function, y(x), and the Taylor polynomial generated by y(x).

Taylor's Formula and the Remainder Term

Calculate the error term of order 5 due to $y(x) = e^x$ generating a Taylor polynomial about x = 0.

Here n = 5 and so n + 1 = 6. In this example a = 0. We see that $y = e^x$ and so

$$y'(x) = y''(x) = \dots = y^{(5)}(x) = y^{(6)}(x) = e^x$$

and so $y^{(6)}(c) = e^{c}$. The remainder term of order 5, $R_5(x)$, is given by

$$R_5(x) = \frac{e^c x^6}{6!}$$
 for some number c between 0 and x

17

Taylor's Formula and the Remainder Term

- (a) Calculate the fourth-order Taylor polynomial, $p_4(x)$, generated by $y(x) = \sin 2x$ about x = 0.
- (b) State the fourth-order error term, $R_4(x)$.
- (c) Calculate an upper bound for this error term given |x| < 1.
- (d) Compare y(0.5) and $p_4(0.5)$.

(a)
$$y(x) = \sin 2x$$
, $y(0) = 0$
 $y'(x) = 2\cos 2x$, $y'(0) = 2$
 $y''(x) = -4\sin 2x$, $y''(0) = 0$
 $y^{(3)}(x) = -8\cos 2x$, $y^{(3)}(0) = -8$
 $y^{(4)}(x) = 16\sin 2x$, $y^{(4)}(0) = 0$

Taylor's Formula and the Remainder Term

The fourth-order Taylor polynomial, $p_4(x)$, is

$$p_4(x) = y(0) + y'(0)x + y''(0)\frac{x^2}{2!} + y^{(3)}(0)\frac{x^3}{3!} + y^{(4)}(0)\frac{x^4}{4!}$$
$$= 0 + 2x + 0 - \frac{8x^3}{6} + 0$$
$$= 2x - \frac{4x^3}{3}$$

(b) We note that $y^{(5)}(x) = 32\cos 2x$ and so $y^{(5)}(c) = 32\cos(2c)$. The error term, $R_4(x)$, is given by

$$R_4(x) = y^{(5)}(c) \frac{x^5}{5!}$$

$$= \frac{32\cos(2c)x^5}{120}$$

$$= \frac{4}{15}\cos(2c)x^5 \quad \text{where } c \text{ is a number between } 0 \text{ and } x$$

19

Taylor's Formula and the Remainder Term

(c) In order to calculate an upper bound for this error term we note that $|\cos(2c)| \le 1$ for any value of c. Hence an upper bound for $R_4(x)$ is given by

$$|R_4(x)| \leqslant \left| \frac{4x^5}{15} \right|$$

We know |x| < 1, and so $\frac{4x^5}{15}$ is never greater than $\frac{4}{15}$. Hence an upper bound for the error term is $\frac{4}{15}$. If we use $p_4(x)$ to approximate $y = \sin 2x$ the error will be no greater than $\frac{4}{15}$ provided |x| < 1.

20

Taylor's Formula and the Remainder Term

(d) We let x = 0.5.

$$y(0.5) = \sin 1 = 0.8415$$

$$p_4(0.5) = 2(0.5) - \frac{4}{3}(0.5)^3 = 0.8333$$

The difference between y(0.5) and $p_4(0.5)$ can never be greater than an upper bound of the error term evaluated at x = 0.5. This is verified numerically.

$$y(0.5) - p_4(0.5) = 0.8415 - 0.8333 = 0.0082$$

and

$$|R_4(0.5)| \le \frac{4}{15}(0.5)^5 = 0.0083$$

As more and more terms are included in the Taylor polynomial, we obtain an infinite series, called a **Taylor series**. We denote this infinite series by p(x).

Taylor series:

$$p(x) = y(a) + y'(a)(x - a) + y''(a)\frac{(x - a)^2}{2!} + y^{(3)}(a)\frac{(x - a)^3}{3!} + \dots + y^{(n)}(a)\frac{(x - a)^n}{n!} + \dots$$

A special, commonly used, case of a Taylor series occurs when a = 0. This is known as the **Maclaurin series**.

Maclaurin series:

$$p(x) = y(0) + y'(0)x + y''(0)\frac{x^2}{2!} + y^{(3)}(0)\frac{x^3}{3!} + \dots + y^{(n)}(0)\frac{x^n}{n!} + \dots$$

Determine the Maclaurin series for $y = e^x$.

In this example $y(x) = e^x$ and clearly $y'(x) = e^x$ too. Similarly,

$$y''(x) = y^{(3)}(x) = \dots = y^{(n)}(x) = e^x$$

for all values of n. Evaluating at x = 0 yields $y(0) = y'(0) = y''(0) = \cdots = y^{(n)}(0) = 1$ and so

$$p(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

As mentioned earlier, the series and the generating function are equal for all values of x. Hence,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 for all values of x, that is $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Obtain the Maclaurin series for $y(x) = \sin x$.

$$y(x) = \sin x,$$
 $y(0) = 0$
 $y'(x) = \cos x,$ $y'(0) = 1$
 $y''(x) = -\sin x,$ $y''(0) = 0$
 $y^{(3)}(x) = -\cos x,$ $y^{(3)}(0) = -1$
 $y^{(4)}(x) = \sin x,$ $y^{(4)}(0) = 0$

$$p(x) = y(0) + y'(0)x + \frac{y''(0)x^2}{2!} + \frac{y^{(3)}(0)x^3}{3!} + \dots = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Since the generating function and series are equal for all values of x we have

$$\sin x = \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Obtain the Maclaurin series for $y(x) = \cos x$.

$$y(x) = \cos x,$$
 $y(0) = 1$
 $y'(x) = -\sin x,$ $y'(0) = 0$
 $y''(x) = -\cos x,$ $y''(0) = -1$
 $y^{(3)}(x) = \sin x,$ $y^{(3)}(0) = 0$
 $y^{(4)}(x) = \cos x,$ $y^{(4)}(0) = 1$

and so on. Therefore

$$p(x) = y(0) + y'(0)x + y''(0)\frac{x^2}{2!} + y^{(3)}(0)\frac{x^3}{3!} + y^{(4)}(0)\frac{x^4}{4!} + \dots = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

Since the series and the generating function are equal for all values of x then

$$\cos x = \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i}}{(2i)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Find the Maclaurin series for the following functions:

(a)
$$y = e^{2x}$$
 (b) $y = \sin 3x$ (c) $y = \cos(\frac{x}{2})$

We use the previously stated series.

(a) We note that

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \cdots$$

Substituting z = 2x we obtain

$$e^{2x} = 1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \frac{(2x)^4}{4!} + \cdots$$
$$= 1 + 2x + 2x^2 + \frac{4x^3}{3!} + \frac{2x^4}{3!} + \cdots$$

(b) We note that

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots$$

By putting z = 3x we obtain

$$\sin 3x = 3x - \frac{(3x)^3}{3!} + \frac{(3x)^5}{5!} - \frac{(3x)^7}{7!} + \dots = 3x - \frac{9}{2}x^3 + \frac{81}{40}x^5 - \frac{243}{560}x^7 + \dots$$

(c) We note that

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots$$

Putting $z = \frac{x}{2}$ we obtain

$$\cos\left(\frac{x}{2}\right) = 1 - \frac{(x/2)^2}{2!} + \frac{(x/2)^4}{4!} - \frac{(x/2)^6}{6!} + \dots = 1 - \frac{x^2}{8} + \frac{x^4}{384} - \frac{x^6}{46080} + \dots$$

Find the Maclaurin series for $y(x) = x \cos x$.

The Maclaurin series, p(x), for $\cos x$ is

$$\cos x = p(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

So the Maclaurin series for $x \cos x$ is xp(x), that is

$$x\cos x = xp(x) = x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \cdots$$

Calculate the first-order Taylor polynomial generated by $y(x) = e^x$ about

(a)
$$x = 0$$

(b)
$$x = 2$$

(a)
$$x = 0$$
 (b) $x = 2$ (c) $x = -3$

Calculate the first-order Taylor polynomial generated by $y(x) = \sin x$ about

(a)
$$x = 0$$

(b)
$$x = 1$$

(a)
$$x = 0$$
 (b) $x = 1$ (c) $x = -0.5$

Calculate the first-order Taylor polynomial generated by $y(x) = \cos x$ about

(a)
$$x = 0$$

(b)
$$x = 1$$

(c)
$$x = -0.5$$

- (a) Find a linear approximation, $p_1(t)$, to $h(t) = t^3$ about t = 2.
- (b) Evaluate h(2.3) and $p_1(2.3)$.

- (a) Find a linear approximation, $p_1(t)$, to $R(t) = \frac{1}{t}$ about t = 0.5.
- (b) Evaluate R(0.7) and $p_1(0.7)$.

- (a) Obtain the second-order Taylor polynomial, $p_2(x)$, generated by $y(x) = 3x^4 + 1$ about x = 2.
- (b) Verify that $y(2) = p_2(2)$, $y'(2) = p'_2(2)$ and $y''(2) = p''_2(2)$.
- (c) Evaluate $p_2(1.8)$ and y(1.8).
- (a) Calculate the second-order Taylor polynomial, $p_2(x)$, generated by $y(x) = \sin x$ about x = 0.
- (b) Calculate the second-order Taylor polynomial, $p_2(x)$, generated by $y(x) = \cos x$ about x = 0.
- (c) Compare your results from (a) and (b) with the small-angle approximations given in Section 6.5.

A function, x(t), satisfies the equation

$$\dot{x} = x + \sqrt{t+1} \qquad x(0) = 2$$

- (a) Estimate x(0.2) using a first-order Taylor polynomial.
- (b) Differentiate the equation w.r.t. t and hence obtain an expression for \ddot{x} .
- (c) Estimate x(0.2) using a second-order Taylor polynomial.

A function,
$$y(x)$$
, has $y(0) = 3$, $y'(0) = 1$, $y''(0) = -1$ and $y^{(3)}(0) = 2$.

- (a) Obtain a third-order Taylor polynomial, $p_3(x)$, generated by y(x) about x = 0.
- (b) Estimate y(0.2).

A function,
$$h(t)$$
, has $h(2) = 1$, $h'(2) = 4$, $h''(2) = -2$, $h^{(3)}(2) = 1$ and $h^{(4)}(2) = 3$.

- (a) Obtain a fourth-order Taylor polynomial, $p_4(t)$, generated by h(t) about t = 2.
- (b) Estimate h(1.8).

The function, y(x), is given by $y(x) = \sin x$.

- (a) Calculate the fifth-order Taylor polynomial generated by y about x = 0.
- (b) Find an expression for the remainder term of order 5.
- (c) State an upper bound for your expression in (b).
- (a) Find the third-order Taylor polynomial generated by $h(t) = \frac{1}{t}$ about t = 2.
- (b) State the error term.
- (c) Find an upper bound for the error term given $1 \le t \le 4$.

Use the Maclaurin series for $\sin x$ to write down the Maclaurin series for $\sin 5x$.

Use the Maclaurin series for $\cos x$ to write down the Maclaurin series for $\cos 3x$.

Use the Maclaurin series for e^x to write down the Maclaurin series for $\frac{1}{e^x}$.

Find the Taylor series for $y(x) = \sqrt{x}$ about x = 1.

- (a) Find the Maclaurin series for $y(x) = x^2 + \sin x$.
- (b) Deduce the Maclaurin series for $y(x) = x^n + \sin x$ for any positive integer n.
- (a) Obtain the Maclaurin series for $y(x) = xe^x$.
- (b) State the range of values of x for which y(x) equals its Maclaurin series.

Find the Taylor series for $y(x) = x + e^x$ about x = 1.

Find the Maclaurin series for $y(x) = \ln(1+x)$.