Rede PROFIBUS

Seminário de Instrumentação e Automação

Arnaldo Viana¹ Otávio Petito² Tiago Demay³

¹RA 09.01746-0 6° Ano - Noturno

²RA 08.1453-0 6° Ano - Noturno

³RA 09.02270-8 6° Ano - Noturno

São Caetano do Sul, 2015

Overview

- ① O que é?
 - Rede PROFIBUS
 - Histórico
- PROFIBUS DP
 - Modelo OSI
 - Características
- 3 Aplicação
 - Exemplo

- ① O que é?
 - Rede PROFIBUS
 - Histórico
- PROFIBUS DP
 - Modelo OSI
 - Características
- Aplicação
 - Exemplo

PROFIBUS

Protocolo de comunicação

LER —> É um dos protocolos de comunicação que fazem parte do grupo dos *fieldbuses* abertos e independentes de fornecedores, que permitem a integração de equipamentos de diversos fabricantes em uma mesma rede.

- ① O que é?
 - Rede PROFIBUS
 - Histórico
- PROFIBUS DP
 - Modelo OSI
 - Características
- Aplicação
 - Exemplo

Histórico Alemanha, 1987

Iniciou em 1987 na Alemanha. 21 companhias e institutos se uniram para a criação. O objetivo era a realização e estabilização de um barramento de campo bitserial, sendo o requisito básico a padronização da interface de dispositivo de campo.

- 1987 foi especificado o protocolo de comunicações complexas -> PROFIBUS FMS (Fieldbus Message Specification);
- 1993 foi especificado o mais rápido e mais facilmente configurado -> PROFIBUS DP (Decentralized Periphery);
- 1995 adaptação do protocolo para uso em automação de processos -> PROFIBUS PA (Process Automation).

Histórico Alemanha, 1987

Iniciou em 1987 na Alemanha. 21 companhias e institutos se uniram para a criação. O objetivo era a realização e estabilização de um barramento de campo bitserial, sendo o requisito básico a padronização da interface de dispositivo de campo.

- 1987 foi especificado o protocolo de comunicações complexas -> PROFIBUS FMS (Fieldbus Message Specification);
- 1993 foi especificado o mais rápido e mais facilmente configurado -> PROFIBUS DP (Decentralized Periphery);
- 1995 adaptação do protocolo para uso em automação de processos -> PROFIBUS PA (Process Automation).

Histórico Alemanha, 1987

Iniciou em 1987 na Alemanha. 21 companhias e institutos se uniram para a criação. O objetivo era a realização e estabilização de um barramento de campo bitserial, sendo o requisito básico a padronização da interface de dispositivo de campo.

- 1987 foi especificado o protocolo de comunicações complexas -> PROFIBUS FMS (Fieldbus Message Specification);
- 1993 foi especificado o mais rápido e mais facilmente configurado -> PROFIBUS DP (Decentralized Periphery);
- 1995 adaptação do protocolo para uso em automação de processos -> PROFIBUS PA (Process Automation).

- O que é?
 - Rede PROFIBUS
 - Histórico
- PROFIBUS DP
 - Modelo OSI
 - Características
- Aplicação
 - Exemplo

Modelo OSI

	Sender	Sender Receiver		ŗ	Designation and function of the layers	
	7		7	Ī	Application layer	Interface to application program with application-oriented commands (read, Write).
	6		6		Presentation layer	Representation (coding) of data for analysis and interpretation in the next layer.
	5		5		Session layer	Establishing and clearing temporary station connections synchronization of communicating processes.
	4		4		Transport layer	Controlling data transmission for layer 5 (transport erros break down into packets).
	3		3		Network layer	Establishing and clearing connection, avoiding network congestion.
	2		2		Data-link layer	Description of bus access protocol (Medium Access Control MAC) including data security.
	1		1		Physical layer	Definition of the medium (hardware) coding and speed of the data transmission.
Г	Trans	smission m	nedium -			

- O que é?
 - Rede PROFIBUS
 - Histórico
- PROFIBUS DP
 - Modelo OSI
 - Características
- Aplicação
 - Exemplo

Características PROFIBUS DP

Além das características citadas na aula: tipo de comunicação: MASTER/SLAVE, acesso ao meio: via TOKEN...Essas outras se destacam...

Transmissão de Dados	Digital, sincronizado a bit, código Manchester
Taxa de Transmissão	31,25 Kbit/s, modo tensão
Segurança de Dados	Preâmbulo, error-proof start e end limiter
Cabos	Par trançado blindado
Alimentação	Via barramento ou externa(9-32Vdc)
Classe Proteção à Explosão	Segurança Intrínseca (Eex ia/ib) e encapsulação (Eex d/m/p/q)
Topologia	Linha ou árvore, ou combinadas.
Número de Estações	Até 32 estações por segmento, máximo de 126
Distância Máxima sem repetidor	1900m (Cabo tipo A)
Repetidores	Até 4 repetidores

- Velocidade; O PROFIBUS-DP requer aproximadamente 1 ms a 12 Mbit/sec para a transmissão de 512 bits de dados de entrada e 512 bits de dados de saída distribuídos em 32 estações. O significativo aumento da velocidade em comparação com o PROFIBUS-FMS deve-se principalmente ao uso do serviço SRD (Envia e Recebe Dados) da camada 2 para transmissão de entrada/saída de dados num único ciclo de mensagem.
- Funções de diagnóstico; As várias funções de diagnósticos do PROFIBUS-DP permitem a rápida localização de falhas. As mensagens de diagnósticos são transmitidas ao barramento e coletadas nu mestre. Estas mensagens são divididas em três níveis que são:
- Diagnóstico de estação; estas mensagens ocupam-se com o estado operacional geral da estação (po exemplo: alta temperatura ou baixa tensão).
- Diagnóstico de módulo; estas mensagens indicam que existe uma falha em um I/O específico (por ex.: o bit 7 do módulo de saída) de uma estacão.
- Diagnóstico de canal. estas mensagens indicam um erro em um bit de I/O (por ex.: curto-circuito na saída 7)

- Velocidade; O PROFIBUS-DP requer aproximadamente 1 ms a 12 Mbit/sec para a transmissão de 512 bits de dados de entrada e 512 bits de dados de saída distribuídos em 32 estações. O significativo aumento da velocidade em comparação com o PROFIBUS-FMS deve-se principalmente ao uso do serviço SRD (Envia e Recebe Dados) da camada 2 para transmissão de entrada/saída de dados num único ciclo de mensagem.
- Funções de diagnóstico; As várias funções de diagnósticos do PROFIBUS-DP permitem a rápida localização de falhas. As mensagens de diagnósticos são transmitidas ao barramento e coletadas no mestre. Estas mensagens são divididas em três níveis que são:
- Diagnóstico de estação; estas mensagens ocupam-se com o estado operacional geral da estação (po exemplo: alta temperatura ou baixa tensão).
- Diagnóstico de módulo; estas mensagens indicam que existe uma falha em um I/O específico (por ex.: o bit 7 do módulo de saída) de uma estacão.
- Diagnóstico de canal. estas mensagens indicam um erro em um bit de I/O (por ex.: curto-circuito na saída 7)

- Velocidade; O PROFIBUS-DP requer aproximadamente 1 ms a 12 Mbit/sec para a transmissão de 512 bits de dados de entrada e 512 bits de dados de saída distribuídos em 32 estações. O significativo aumento da velocidade em comparação com o PROFIBUS-FMS deve-se principalmente ao uso do serviço SRD (Envia e Recebe Dados) da camada 2 para transmissão de entrada/saída de dados num único ciclo de mensagem.
- Funções de diagnóstico; As várias funções de diagnósticos do PROFIBUS-DP permitem a rápida localização de falhas. As mensagens de diagnósticos são transmitidas ao barramento e coletadas no mestre. Estas mensagens são divididas em três níveis que são:
- Diagnóstico de estação; estas mensagens ocupam-se com o estado operacional geral da estação (por exemplo: alta temperatura ou baixa tensão).
- Diagnóstico de módulo; estas mensagens indicam que existe uma falha em um I/O específico (por ex.: o bit 7 do módulo de saída) de uma estação.
- Diagnóstico de canal. estas mensagens indicam um erro em um bit de I/O (por ex.: curto-circuito na saída 7)

Perfil de comunicação Características básicas

- Velocidade; O PROFIBUS-DP requer aproximadamente 1 ms a 12 Mbit/sec para a transmissão de 512 bits de dados de entrada e 512 bits de dados de saída distribuídos em 32 estações. O significativo aumento da velocidade em comparação com o PROFIBUS-FMS deve-se principalmente ao uso do serviço SRD (Envia e Recebe Dados) da camada 2 para transmissão de entrada/saída de dados num único ciclo de mensagem.
- Funções de diagnóstico; As várias funções de diagnósticos do PROFIBUS-DP permitem a rápida localização de falhas. As mensagens de diagnósticos são transmitidas ao barramento e coletadas no mestre. Estas mensagens são divididas em três níveis que são:
- Diagnóstico de estação; estas mensagens ocupam-se com o estado operacional geral da estação (por exemplo: alta temperatura ou baixa tensão).
- Diagnóstico de módulo; estas mensagens indicam que existe uma falha em um I/O específico (por ex.: o bit 7 do módulo de saída) de uma estacão.
- Diagnóstico de canal. estas mensagens indicam um erro em um bit de I/O (por ex.: curto-circuito na saída 7)

- Velocidade; O PROFIBUS-DP requer aproximadamente 1 ms a 12 Mbit/sec para a transmissão de 512 bits de dados de entrada e 512 bits de dados de saída distribuídos em 32 estações. O significativo aumento da velocidade em comparação com o PROFIBUS-FMS deve-se principalmente ao uso do serviço SRD (Envia e Recebe Dados) da camada 2 para transmissão de entrada/saída de dados num único ciclo de mensagem.
- Funções de diagnóstico; As várias funções de diagnósticos do PROFIBUS-DP permitem a rápida localização de falhas. As mensagens de diagnósticos são transmitidas ao barramento e coletadas no mestre. Estas mensagens são divididas em três níveis que são:
- Diagnóstico de estação; estas mensagens ocupam-se com o estado operacional geral da estação (por exemplo: alta temperatura ou baixa tensão).
- Diagnóstico de módulo; estas mensagens indicam que existe uma falha em um I/O específico (por ex.: o bit 7 do módulo de saída) de uma estação.
- Diagnóstico de canal. estas mensagens indicam um erro em um bit de I/O (por ex.: curto-circuito na saída 7)

Perfil físico PROFIBUS DP

- RS-485; para uso universal, em especial em sistemas de automação da manufatura;
- IEC 61158-2; para aplicações em sistemas de automação em controle de processo;
- Fibra ótica. para aplicações em sistemas que demandam grande imunidade à interferências e grandes distâncias.

Perfil físico PROFIBUS DP

- RS-485; para uso universal, em especial em sistemas de automação da manufatura;
- IEC 61158-2; para aplicações em sistemas de automação em controle de processo;
- Fibra ótica. para aplicações em sistemas que demandam grande imunidade à interferências e grandes distâncias.

Perfil físico PROFIBUS DP

- RS-485; para uso universal, em especial em sistemas de automação da manufatura;
- IEC 61158-2; para aplicações em sistemas de automação em controle de processo;
- Fibra ótica. para aplicações em sistemas que demandam grande imunidade à interferências e grandes distâncias.

- O que é?
 - Rede PROFIBUS
 - Histórico
- PROFIBUS DP
 - Modelo OSI
 - Características
- 3 Aplicação
 - Exemplo

Aplicação PROFIBUS PD

Referências bibliográficas I

PROFIBUS

PROFIBUS

Disponível em: http://www.profibus.com/technology/profibus/2015

CASSIOLATO, C., TORRES, L. H. B., CAMARGO, P. R.

PROFIBUS - Descrição Técnica.

Disponível em: http://www.smar.com/brasil/profibus 2006

RTA Automation.

PROFIBUS

Disponível em:

http://www.rtaautomation.com/technologies/profibus/2015

