P. Maurer

ENS Rennes

Recasages: 152, 159, 191, 214, 219, 267.

Références: Avez, Calcul différentiel et Rouvière, Petit guide du calcul différentiel.

Théorème des extrema liés

1 Rappels de géométrie différentielle

Définition 1. Soit $n \in \mathbb{N}^*$. On dit qu'une partie $M \subset \mathbb{R}^n$ est une sous-variété de \mathbb{R}^n de dimension m en un point $x_0 \in M$ il existe un voisinnage ouvert U de x_0 et un C^1 -difféomorphisme $\varphi: U \to \varphi(U) \subset \mathbb{R}^n$ vérifiant $\varphi(x_0) = 0$ et $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^m \times \{0\})$.

Proposition 2. On suppose qu'il existe $\varphi_1,...,\varphi_{n-m}$ différentiables sur un ouvert U contenant x_0 , à valeurs réelles, telles que $\varphi_1(x_0) = \cdots = \varphi_{n-m}(x_0) = 0$ et que les formes linéaires $(D\varphi_i(x_0))_{0 \le i \le n-m}$ sont linéairement indépendantes.

Alors l'ensemble $M = \{x \in U : \varphi_1(x) = \dots = \varphi_{n-m}(x) = 0\}$ est une sous-variété en x_0 de dimension m.

Démonstration. On complète $(D\varphi_1(x_0), \ldots, D\varphi_{n-m}(x_0))$ en une base $(D\varphi_1(x_0), \ldots, D\varphi_{n-m}(x_0), u_1, \ldots, u_m)$ de $(\mathbb{R}^n)^*$ via le théorème de la base incomplète. On pose $\varphi_{n-m+i}(x) = u_i(x-x_0)$ pour tout $i \in [1, m]$ et $x \in U$. Ces applications étant linéaires, elles sont différentiables et leur différentielle est elle-même.

Ainsi, l'application $\varphi = (\varphi_1, \dots, \varphi_n)$ est différentiable de U vers $\varphi(U)$, vérifie $\varphi(x_0) = 0$, et $D\varphi(x_0)$ est inversible car toutes les $D\varphi_i(x_0)$ sont indépendantes. D'après le théorème d'inversion locale, φ réalise un difféomorphisme local d'un ouvert $V \supset \{x_0\}$ inclu dans U vers un ouvert W de $\mathbb{R}^n \supset \{0\}$.

Par ailleurs, on a $\varphi(V \cap M) = W \cap \{\mathbb{R}^m \times \{0\}\}\$ par définition de M.

Définition 3. Soit $M \subset \mathbb{R}^n$ une sous-variété et $x_0 \in M$. On appelle espace tangent en x_0 à M l'ensemble :

$$T_{x_0}(M) = \{ v \in \mathbb{R}^n : \exists I \in \mathcal{I} \quad \exists \gamma \in D^1(I, M), \quad \gamma(0) = x_0 \text{ et } \gamma'(0) = v \}$$

Où l'on a noté \mathcal{I} l'ensemble des intervalles ouverts contenant 0, et $D^1(I,M)$ est l'ensemble des applications différentiables de I vers M, pour $I \in \mathcal{I}$.

2 Le développement (hors 152)

Théorème 4. Théorème des extrema liés

Soit O un ouvert de \mathbb{R}^n , $f, g_1, \ldots, g_k : O \to \mathbb{R}^n$ des applications de classe \mathcal{C}^1 , et $M = \{x \in O : g_1(x) = \cdots = g_k(x) = 0\}$. On suppose que $f_{|M}$ admet un extremum local en $x_0 \in M$, et que la famille $(Dg_i(x_0))_{0 \leq i \leq k}$ est libre. Alors il existe $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ tels que :

$$Df(x_0) = \sum_{i=1}^k \lambda_i Dg_i(x_0)$$

Démonstration.

D'après la définition équivalente d'une sous-variété donnée à la proposition 2, M est une sous-variété en x_0 , de dimension n-k. On va considérer l'espace tangent $T_{x_0}(M)$ à M en x_0 .

Etape 1: $T_{x_0}(M)$ est un sous-espace vectoriel de \mathbb{R}^n , de même dimension que M.

Par définition de M, il existe un voisinnage U de x_0 et un difféomorphisme $\varphi: U \to \varphi(U)$ tel que $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^{n-k} \times \{0\})$, et avec $\varphi(x_0) = 0$. Montrons que $D\varphi(x_0)(T_{x_0}(M)) = \mathbb{R}^{n-k} \times \{0\}$.

- \subseteq Soit $v \in T_{x_0}(M)$, $I \in \mathcal{I}$ et $\gamma \in D^1(I, M)$ tel que $\gamma(0) = x_0$ et $\gamma'(0) = v$. Quitte à restreindre γ à un intervalle $J \subset I$ plus petit, on peut supposer que $\gamma(t) \in U$ pour tout $t \in I$.
 - Dans ce cas, $\varphi \circ \gamma$ est à valeurs dans $\mathbb{R}^{n-k} \times \{0\}$. De plus, la dérivée en zéro de $\varphi \circ \gamma$ vaut $(\varphi \circ \gamma)'(0) = D\varphi(\gamma(0))(\gamma'(0)) = D\varphi(x_0)(v)$. Comme $\mathbb{R}^{n-k} \times \{0\}$ est un sous-espace vectoriel de dimension finie, il est fermé dans \mathbb{R}^n , et en particulier $\varphi \circ \gamma'(0) \in \mathbb{R}^{n-k} \times \{0\}$. On en déduit que $D\varphi(x_0)(v) \in \mathbb{R}^{n-k} \times \{0\}$.
- \supseteq Soit $v \in \mathbb{R}^{n-k} \times \{0\}$, $I \in \mathcal{I}$ et $\eta \in D^1(I, \mathbb{R}^{n-k} \times \{0\})$ tel que $\eta(0) = 0$ et $\eta'(0) = v$ (par exemple, on peut prendre $\eta(t) = tv$). De la même manière, on peut supposer que $\gamma(t) \in \varphi(U)$ pour tout $t \in I$, quitte à restreindre γ à un intervalle $J \subset I$ plus petit.

On pose $\gamma = \varphi^{-1} \circ \eta$. Alors $\gamma \in D^1(I, M), \ \gamma(0) = \varphi^{-1}(0) = x_0$, et en dérivant, il vient :

$$\gamma'(0) = D\varphi^{-1}(\eta(0))(\eta'(0)) = (D\varphi^{-1}(0))^{-1}(v) = (D\varphi(x_0))^{-1}(v),$$

où on a utilisé le fait que $(D\varphi(x_0))^{-1} = D\varphi^{-1}(\varphi(x_0))$. Donc $v = D\varphi(x_0)(\gamma'(0))$ avec $\gamma'(0) \in T_{x_0}(M)$.

On en déduit que $T_{x_0}(M) = (D\varphi(x_0)^{-1})(\mathbb{R}^m \times \{0\})$, qui est un sous-espace vectoriel de \mathbb{R}^n de dimension $\dim(M) = n - k$.

Etape 2 : On a $T_{x_0}(M) = \bigcap_{i=1}^k \operatorname{Ker}(D\varphi_i(x_0)).$

Notons
$$T = \bigcap_{i=1}^{k} \operatorname{Ker} (D\varphi_i(x_0)).$$

On a $\operatorname{Ker}(D\varphi_1(x_0),\ldots,D\varphi_k(x_0))=T$ et $\operatorname{Im}(D\varphi_1(x_0),\ldots,D\varphi_k(x_0))=\mathbb{R}^k$ puisque $D\varphi(x_0)$ est surjective. D'après le théorème du rang, T est de dimension n-k, tout comme $T_{x_0}(M)$.

Il suffit alors de montrer que $T_{x_0}(M) \subset T$.

Soit $v \in T_{x_0}(M)$, $I \in \mathcal{I}$ et $\gamma \in D^1(I, M)$ une courbe telle que $\gamma(0) = x_0$ et $\gamma'(0) = v$. Pour tout $i \in [1, k]$, et pour tout $t \in I$, on a $\varphi_i(\gamma(t)) = 0$ par définition de M. En différentiant, on obtient :

$$D\,\varphi_i(\gamma(t))\circ D\,\gamma(t)=0$$

En évaluant en t=0, on trouve $D\varphi_i(x_0) \cdot v = 0$. Ceci est vrai pour tout $i \in [1, k]$, donc $v \in T$. Ceci conclut que $T_{x_0}(M) \subset T$, et donc par l'argument des dimensions, que $T_{x_0}(M) = T$.

^{1.} La dérivée de $\varphi \circ \gamma$ en zéro n'est autre que la limite du taux d'accroissement, qui est donc toujours dans le fermé $\mathbb{R}^{n-k} \times \{0\}$.

Etape 3 : Lemme. Soit v, u_1, \ldots, u_k des formes linéaires sur \mathbb{R}^n . Supposons que u_1, \ldots, u_k sont linéairement indépendantes, et que $\bigcap_{i=1}^k \operatorname{Ker}(u_i) \subset \operatorname{Ker}(v)$. Alors il existe $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ tels que $v = \sum_{i=1}^k \lambda_i u_i$.

On pose $F = \text{Vect}(u_1, \dots, u_k)$ et D = Vect(v) dans $(\mathbb{R}^n)^*$.

On a $\bigcap_{i=1}^k \operatorname{Ker}(u_i) = \{x \in \mathbb{R}^n : \forall i \in \llbracket 1, k \rrbracket \quad u_i(x) = 0\} = F^{\perp} \text{ et } \operatorname{Ker}(v) = \{x \in \mathbb{R}^n : v(x) = 0\} = D^{\perp},$ où les orthogonaux sont au sens de la dualité.

Comme $\bigcap_{i=1}^k \operatorname{Ker}(u_i) \subset \operatorname{Ker}(v)$, on a $F^{\perp} \subset D^{\perp}$, et donc les propriétés de la dualité donnent $D \subset F$, ce qui conclut la preuve.

Etape 4: Conclusion.

On a montré à l'étape 2 que $T_{x_0}(M) = \bigcap_{i=1}^k \operatorname{Ker}(D\varphi_i(x_0))$. Pour pouvoir appliquer le lemme et conclure, il suffit de prouver que $T_{x_0}(M) \subset \operatorname{Ker}(Df(x_0))$.

Soit $v \in T_{x_0}(M)$, et soit $I \in \mathcal{I}$ et $\gamma \in C^1(I, M)$ tel que $\gamma(0) = x_0$ et $\gamma'(0) = v$. Comme γ est à valeurs dans M, on a $f_{|M} \circ \gamma = f \circ \gamma$.

Cette application admet un extremum en zéro. Ainsi, $t \mapsto Df(\gamma(t)) \circ D\gamma(t)$ s'annule en zéro. Autrement dit, on a $Df(x_0) \cdot v = 0$, donc $v \in \text{Ker}(Df(x_0))$. Ce qui conclut la preuve.

3 Le développement (152).

Dans la démo du TIL, on traite juste le lemme + la conclusion en admettant les étapes 1 et 2. On complète avec l'inégalité de Hadamard suivante.

Théorème 5. On considère le produit scalaire $\langle .,. \rangle$ usuel sur \mathbb{R}^n . Soit $x_1, ..., x_n \in \mathbb{R}^n$, on a alors l'inégalité :

$$|\det(x_1,\ldots,x_n)| \le ||x_1|| \cdots ||x_n||$$

Avec égalité si et seulement si les $(x_i)_{1 \le i \le n}$ forment une base orthogonale de E.

Démonstration. On note $X = \{(x_1, ..., x_n) \in (\mathbb{R}^n)^n, ||x_1|| = \cdots = ||x_n|| = 1\}.$

- Etape 1 : det atteint un maximum (positif) sur X.
 - X s'écrit comme produit de sphères unités de \mathbb{R}^n , donc c'est un compact de $(\mathbb{R}^n)^n$. Par ailleurs, det est continue sur X, donc elle atteint son maximum sur X. Par ailleurs, la base canonique de \mathbb{R}^n $(e_1,\ldots,e_n)\in X$ et $\det(e_1,\ldots,e_n)=1$, donc ce maximum vaut au moins 1. On note (v_1,\ldots,v_n) un élément de X tel que $\det_{|X}$ soit maximale.
- Etape 2: (v_1, \ldots, v_n) forme une base orthogonale de $(\mathbb{R}^n)^n$.

Le réel $\det(v_1, \ldots, v_n)$ est un maximum de det sur l'ensemble $X = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^{n^2} : g_1(x) = \cdots = g_n(x) = 0\}$, où $g_i(x_1, \ldots, x_n) := ||x_i||^2 - 1$. Les différentielles $Dg_i(v_1, \ldots, v_n) \cdot (h_1, \ldots, h_n) = 2 \langle v_i, h_i \rangle$ sont indépendantes commes formes linéaires en (h_1, \ldots, h_n) car $Dg_i(v_1, \ldots, v_n)(0, \ldots, 0, v_j, 0, \ldots, 0) = 2\delta_{ij}$, où δ_{ij} désigne le symbole de Kronecker.

X est une sous-variété de \mathbb{R}^{n^2} de dimension n^2-n . Par ailleurs, det est C^{∞} car elle est polynomiale.

D'après le théorème des extrema liés, il existe $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tels que :

$$D\det(v_1,\ldots,v_n)\cdot(h_1,\ldots,h_n)=\sum_{k=1}^n\lambda_k\langle v_i,h_i\rangle$$

Comme det est linéaire par rapport à chacun des v_j , en prenant tous les h_j nuls sauf le $i^{\text{ème}}$, on obtient :

$$D \det(v_1, \dots, v_n)(0, \dots, 0, h_i, 0, \dots, 0) = \det(v_1, \dots, v_{i-1}, h_i, v_{i+1}, \dots, v_n)$$

On déduit alors de l'égalité précédente que :

$$\det(v_1,\ldots,v_{i-1},h_i,v_{i+1},\ldots,v_n) = \lambda_i \langle v_i,h_i \rangle$$

En prenant $h_i = v_i$, on obtient $\lambda_i = \det(v_1, \ldots, v_n) > 0$, et en prenant $h_i = v_j$ avec $j \neq i$, on obtient $\langle v_i, v_j \rangle = 0$, donc (v_1, \ldots, v_n) est orthogonale (l'orthonormalité se déduit de la définition de X).

• Etape 3 : Réciproque de 2, preuve de l'inégalité.

Réciproquement, si $(v_1,...,v_n)$ est une base orthonormale de \mathbb{R}^n , la matrice dont les vecteurs colones sont $v_1,...,v_n$ est orthogonale, donc son déterminant est 1 ou -1: de fait, le maximum de det sur X vaut 1 et il est atteint en $(v_1,...,v_n)$ si et seulement si $(v_1,...,v_n)$ forme une base orthonormale directe de \mathbb{R}^n .

Soit $(x_1, \ldots, x_n) \in \mathbb{R}^{n^2}$, avec les x_i non nuls. Alors $\left(\frac{x_1}{\|x_1\|}, \ldots, \frac{x_n}{\|x_n\|}\right) \in X$, donc d'après ce qui précède :

$$\det\left(\frac{x_1}{\|x_1\|},\dots,\frac{x_n}{\|x_n\|}\right) \le 1 \quad \Rightarrow \quad \det(x_1,\dots,x_n) \le \|x_1\| \cdots \|x_n\|$$

En changeant x_1 en $-x_1$, on change le signe Commedu déterminant, mais pas celui de l'inégalité précédente : on a $-\det(x_1,\ldots,x_n) \leq \|x_1\| \cdots \|x_n\|$, donc $|\det(x_1,\ldots,x_n)| \leq \|x_1\| \cdots \|x_n\|$.

Finalement, si l'un des x_i est nul, l'inégalité devient trivialement vraie.

• Etape 4 : Cas d'égalité.

On a l'égalité $|\det(x_1,\ldots,x_n)| = ||x_1|| \cdots ||x_n||$ si et seulement si un des x_i est nul, ou s'ils sont tous non nuls avec $\left|\det\left(\frac{x_1}{\|x_1\|},\ldots,\frac{x_n}{\|x_n\|}\right)\right| = 1$, ce qui équivaut à :

$$\det\!\left(\frac{x_1}{\|x_1\|},\ldots,\frac{x_n}{\|x_n\|}\right) = 1 \quad \text{ou} \quad \det\!\left(-\frac{x_1}{\|x_1\|},\ldots,\frac{x_n}{\|x_n\|}\right) = 1$$

D'après ce qui précède, cela n'arrive que si $\left(\frac{x_1}{\|x_1\|}, \dots, \frac{x_n}{\|x_n\|}\right)$ est une base orthonormale de \mathbb{R}^n , i.e si (x_1, \dots, x_n) est une base orthonormale de \mathbb{R}^n .