Принцип Дирихле (базовый уровень)

- 1. В квадрате стороной 5 см расположено 26 точек. Докажите, что среди них существует две точки, расстояние между которыми не более $\sqrt{2}$ см.
- 2. В листе ватмана размером 40х40 см Петя Иванов проделал шилом 15 дырок. Докажите, что из него можно вырезать лист размером 10х10 см, в котором нет дырок. (Дырки можно считать точечными).
- 3. Десять учителей математики составили для проведения олимпиады 35 задач. Известно, что среди них было по одному учителю, которые составили одну, две и три задачи. Докажите, что среди них найдется хотя бы один учитель, который составил не менее пяти задач.
- 4. В автобусе едут 34 пассажира. Автобус делает 9 остановок. Ни на оной из остановок новые пассажиры не входят. Докажите, что найдутся две остановки, на которых выйдет одинаковое количество пассажиров.
- 5. Дано 10 целых чисел. Докажите, что их них можно выбрать два числа, разность которых делится на 9.
- 6. На клумбе в форме правильного треугольника со стороной 3 м растут 10 гвоздик. Докажите, что найдутся две гвоздики, которые находятся на расстоянии не более 1 м друг от друга.
- 7. 20 учеников сидят за круглым столом. Больше половины из них мальчики. Докажите, что какие-то два мальчика сидят напротив друг друга.
- 8. В школе в 33 классах учится 1150 учеников. Найдется ли класс, в котором меньше 35 учеников.
- 9. В соревновании по футболу участвуют 6 команд. Каждые две из них должны сыграть между собой один матч. Докажите, что в любой момент соревнований имеются две команды, сыгравшие одинаковое количество матчей.
- 10. На далекой планете, имеющей форму шара, суша занимает больше половины поверхности планеты. Докажите, что можно прорыть туннель, проходящий через центр планеты, который соединит сушу с сушей.
- 11. На плоскости имеется 5 точек с целыми координатами. Докажите, что середина одного из отрезков, соединяющих точки, также имеет целые координаты.
- 12. В поход пошли учащиеся 9 ,10 и 11 классов. Руководитель не знает, кто из учеников в каком классе учится. Какое наименьшее количество дежурных он должен назначить, чтобы среди них обязательно оказалось не менее трех учеников из одного класса?
- 13. Коля хочет записать на доске 55 различных чисел двузначных натуральных чисел так, чтобы среди них не было двух чисел, сумма которых равна 100. Сможет ли он это сделать?

Для самостоятельного решения

- 14. В прямоугольнике 3х4 расположено шесть точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит $\sqrt{5}$.
- 15. В городе 15 школ, между ними нужно распределить 90 компьютеров. Докажите, что как бы это ни делали, обязательно найдутся две школы, получившие одинаковое количество компьютеров.
- 16. 15 девочек собрали 100 орехов. Докажите, что какие—то две из них собрали одинаковое количество орехов.
- 17. В квадрате со стороной 10 см находится 51 точка. Докажите, что три точки будут принадлежать кругу с радиусом $1\frac{3}{7}$ см.
- 18. Докажите, что из любых целых n чисел можно выбрать несколько чисел (возможно, одно), сумма которых делится на n.

Дополнительные задачи.

- 19. На 99 карточках пишутся числа 1,2,3, ..., 99. Затем карточки перемешиваются и раскладываются чистыми сторонами вверх. На чистых сторонах карточек снова пишутся числа 1,2,3, ..., 99. Для каждой карточки числа, стоящие на ней, складываются, и 99 полученных сумм перемножаются. Докажите, что в результате получится четное число.
- 20. Докажите, что среди 6 человек найдется либо трое попарно знакомых, либо трое попарно незнакомых.
- 21. Двенадцать теннисистов провели однокруговой турнир (каждый сыграл с каждым ровно по одному разу). Докажите, что можно выбрать трех теннисистов так, что каждый из девяти оставшихся проиграл хотя бы одному из трех выбранных.
- 22. Равносторонний треугольник А можно закрыть пятью равносторонними треугольниками одинакового размера (треугольники могут пересекаться и выступать за пределы треугольника А). Докажите, что треугольник А можно полностью закрыть и четырьмя такими треугольниками.
- 23.Дано 20 различных натуральных чисел, каждое меньше 70. Докажите, что среди разностей этих чисел найдутся четыре одинаковые.
- 24. Докажите, что из 26 различных натуральных чисел, не превосходящих 50, всегда можно выбрать два числа, одно из которых делится на другое.
- 25. Дано 82 кубика, каждый из которых окрашен в какой-то цвет. Докажите, что среди них найдутся либо 10 кубиков разных цветов, либо 10 одноцветных.
- 26. В бригаде 7 человек, и их суммарный возраст 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не менее 142.
- 27. Докажите, что среди чисел, записываемых только единицами, найдется число, которое делится на 2021.