第七章 网络规划与优化

第七章 网络规划与优化

- 7.1 业务需求预测
- 7.2 接入网规划
- 7.3 无线网规划
- 7.4 骨干网规划
- 7.5 虚拟网规划

logistic分布函数

归一化的用户数,p(t),随时间的变化,正比于已有 用户数,与待发展用户数之积,即:

$$p(t+d) - p(t) = d \cdot r \cdot p(t)(1 - p(t))$$
, 或 $dp/dt = r \cdot p(1 - p)$ $z = 1/p$ 代入上式,则有: $dz/dt = -(1/p^2)dp/dt$

$$= -r \cdot p(1 - p) (1/p^2)$$

= - r \cdot ((1/p) - 1) = - r \cdot (z - 1)

所以:

$$p = 1/(1 + \exp(-rt))$$

Gompertz模型

- ▶ 死亡率是两项之和,一项与人的年龄无 关, 一项与年龄相关。
- ▶ 自学成才的英国犹太人数学家 Benjamin Gompertz, 于1825年, 在 名为"On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies"的论文中提出。

http://en.wikipedia.org/wiki/Gompertz-Makeham law of mortality

Gompertz分布

- ▶ 不考虑与年龄无关项, $dp/dx = b \cdot p \cdot \ln(1/p)$
- ▶ 概率密度函数:

$$b\eta e^{bx}e^{\eta}\exp\left(-\eta e^{bx}\right)$$

▶ 累积概率函数:

$$1 - \exp\left(-\eta\left(e^{bx} - 1\right)\right)$$

▶ 等价表示:

$$h(x) = \alpha e^{\beta x} + \lambda$$

$$P(t) = K exp \left[ln \left(\frac{P_0}{K} \right) exp(-\alpha t) \right]$$

示例: 2004年的数据分析

Vanston L K, Hodges R L. Technology forecasting for telecommunications[R]. Technology Futures, Inc., 2004.

无线宽带流量预测

▶ 总增长率,来自HSPA渗透率和LTE新用户渗透率

$$P_{Total}(t) = D_{HSPA}(t) + P_{LTE}(t)$$

▶ 总业务流量:

$$T_{Total}(t) = T_{HSPA}(t) + T_{LTE}(t)$$

▶ 其中,LTE部分:

▶ HSPA部分:

$$T_{LTE}(t) = \, S_{Ntw} \, P_{LTE}(t) \, G_{LTE}(t) \,$$

$$T_{HSPA}(t) = S_{Ntw} D_{HSPA}(t) G_{HSPA}(t) =$$

 $S_{Ntw}[P_{Total}(t) - P_{LTE}(t)] G_{HSPA}(t)$

Kovács I Z, Mogensen P, Christensen B, et al. Mobile broadband traffic forecast modeling for network evolution studies[C]// 2011 VTC Fall, 2011: 1-5.

计算结果

8年增长周期,起始15/0/15

TF#1: total/LTE/HSPA=50/30/20

5.75~6.5年, HSPA逐渐退网

5.75~6.5年,以LTE为主要接入手段

第七章 网络规划与优化

7.1 业务需求预测

7.2 接入网规划

7.3 无线网规划

7.4 骨干网规划

7.5 虚拟网规划

接入带宽需求及定义

- ▶ 节点1~6的用户需求: 8,*3,5,15,5;
- ▶ 节点3为汇聚节点;
- 节点0为关口节点。
- ▶ J: 汇聚节点集;
- ▶ h_i: 节点i的带宽需求;
- ▶ c;;: 节点i汇聚到节点j成本;
- ▶ p: 汇聚节点计算成本;
- ▶ F_i: 汇聚节点建造成本;
- ▶ b_i: 汇聚节点宽带。

Carpenter T, Luss H. Telecommunications access network design[M]. Handbook of optimization in telecommunications. Springer US, 2006: 313-339.

固定容量设备选址问题(CFLP: capacitated facility location problem)

Minimize
$$\sum_{j \in J} F_j y_j + \sum_{i=1}^N \sum_{j \in J} h_i (c_{ij} + p_j) x_{ij}$$
 y_j . $0/1$: 节点 j 安装汇聚设备 so that:
$$\sum_{i=1}^N h_i x_{ij} \le b_j, \text{for } j \in J,$$
 容量约束
$$\sum_{j \in J} x_{ij} = 1, \text{for } i = 1, 2, \dots, N,$$
 $x_{ij} \le y_j, \text{for } j \in J$ and $i = 1, 2, \dots, N$, $y_j = \{0, 1\}, \text{for } j \in J,$ $x_{ij} = \{0, 1\}, \text{for } j \in J$ and $i = 1, 2, \dots, N$.

汇接成本 c_{ii}

第七章 网络规划与优化

- 7.1 业务需求预测
- 7.2 接入网规划
- 7.3 无线网规划
- 7.4 骨干网规划
- 7.5 虚拟交换机部署

无线覆盖场景

- ,室内覆盖
- 。占比20%左右,承载80%业务量。
- ,商业区覆盖
- 。高楼林立,无线环境复杂,节假日质量要求高。
- 大型场馆覆盖
- 。 无线传播条件较好,以视距传播为主,突发性强。
- ,生活区覆盖
- 。对电磁辐射较为敏感,天线安装困难。
- , 交通干线连续覆盖
- 。 流动性大, 合适站址受限。
- ,旅游区覆盖
- 。流动性强,景点集中。

室内微小区覆盖问题

- ▶ 用户站点 i, 总数 m
- ▶ 基站 j,位置 (x_i, y_i) ,总数 n
- ト路径损耗: $p_i(x,y) = \min_j \{g_i(x_j, y_j)\}$

15

惩罚函数

计算示例:接收位置等权重

- ▶ 5个BS
- ▶ 圈表示初始位置,星表示最优位置

计算示例: 虚线位置2倍权重

Sherali H D, Pendyala C M, Rappaport T S. Optimal location of transmitters for micro-cellular radio communication system design[J]. IEEE on Selected Areas in Communications, 1996, 14(4): 662-673 第七章 网络规划与优化

以NUPT四校区为例

[Prob] 1) 链路连哪些?

- N=4, 最多6条 2) 带宽配置多大?
- 0/100/1000/10000Mbps 路由如何选取? N个源, N-1个宿 每对源宿,中转N-1次

46 * 312 = 2.1768*109

三个规划方案

骨干网规划一般方法

- ▶ 基于经验的人工方式
- 。面向固定式路由和小规模网络
- ▶ 启发式
 - 。本地优化,接近全局最优
- 分支定界法
- 。类似于网络单纯形法
- ▶ 随机选取法
- ▶ 基本图论算法

固定电话网设计

启发式本地优化

选取成本最高的边,尝试新边

选取成本次高的边,尝试另一新边

链路(C,F)成本,与 链路(X,F)成本接近

专线成本受制于第三方资源

第七章 网络规划与优化

7.1 业务需求预测 7.2 接入网规划 7.3 无线网规划 7.4 骨干网规划 7.5 虚拟网规划

VNE 虚拟网络嵌入

虚拟网与基础物理网的关系

29

VNE示例

Mosharaf Chowdhury, Muntasir Raihan Rahman, Raouf Boutaba. ViNEYard: Virtual Network Embedding Algorithms With Coordinated Node and Link Mapping [J]. IEEE/ACM Transactions on Networking (TON), 2012, 20(1): 2062-219.

30

增广图解法

VNE-MIP问题模型

- fⁱ_{uv}: A flow variable denoting the total amount of flow from u to v on the substrate edge (u, v) for the i'th virtual edge.
- x_{uv} : A binary variable, which has the value '1' if $\sum_i (f_{uv}^i + f_{vu}^i) > 0$; otherwise, it is set to '0'.

31

约束条件

- Capacity Constraints:

$$\sum_{i} (f_{uv}^{i} + f_{vu}^{i}) \leq R_{E}(u, v) x_{u,v}, \forall u, v \in N^{S'}$$
 带宽约束
$$R_{N}(w) \geq x_{mw} c(m), \forall m \in N^{S'} \setminus N^{S}, \forall w \in N^{S}$$
 节点容量约束

- Flow Related Constraints:

$$\begin{split} \sum_{w \in N^{S'}} f_{uw}^i - \sum_{w \in N^{S'}} f_{wu}^i &= 0, \forall i, \forall u \in N^{S'} \setminus \{s_i, t_i\} \\ \sum_{w \in N^{S'}} f_{s_iw}^i - \sum_{w \in N^{S'}} f_{ws_i}^i &= b(e_i^V), \forall i \\ \sum_{w \in N^{S'}} f_{t_iw}^i - \sum_{w \in N^{S'}} f_{wt_i}^i &= -b(e_i^V), \forall i \end{split}$$

约束条件(续)

- Meta and Binary Constraints:

$$\sum_{w \in \Omega(m)} x_{mw} = 1, \forall m \in N^{S'} \setminus N^S$$

$$\sum_{m \in N^{S'} \setminus N^S} x_{mw} \leq 1, \forall w \in N^S$$

$$\sum_{m \in N^{S'} \setminus N^S} x_{mw} \leq 1, \forall w \in N^S$$

$$x_{uv} \leq R_E(u, v), \forall u, v \in N^{S'}$$

$$x_{uv} \geq 0, \forall u, v \in N^{S'}$$
 - Domain Constraints:
$$\begin{bmatrix} \text{Prob} \\ 0 < x < 1 \end{bmatrix}$$

$$f_{uv}^i \geq 0, \forall u, v \in N^{S'}$$

VN节点分割

Question

36

路径分割优点

FOR V1 MAPPING
SOLUTION
V₁->S₁, V₂->S₂
IF LET PATH(S1,S2)
SPLIT INTO
(S1,S2) AND
(S1,S3,S2)

节点分割优点

FOR V1 MAPPING
SOLUTION
V₁->S₁, V₂->S₂
IF LET V2
SPLIT INTO
V21->S2 AND
V22->S3
WHERE REQ. INCR.
V21:2+5 CYCLES
V22:2+5 CYCLES

对比计算结果

▶ 13节点NSFNET底层网络,5节点VN网络

38

第七章 网络规划与优化

- ▶ 嘀嘀打车用户数预测
- http://www.199it.com/archives/206362.html

用户数也呈现爆炸性增长的态势,从活动初期的2200万用户 一举跃升到1亿。

微信支付活动火爆,用户短时期内大量满入。 订单海绵。

第七章 网络规划与优化

▶ 采用最优化方法, 分析NUPT四校区骨 干网络规划的问题 模型。

第七章 网络规划与优化

▶ 参考以下文献,分析VNE-MIP整数变量放松后,计 算结果的问题及其处理方法。

Mosharaf Chowdhury, Muntasir Raihan Rahman, Raouf Boutaba. ViNEYard: Virtual Network Embedding Algorithms With Coordinated Node and Link Mapping [J]. IEEE/ACM Transactions on Networking, 2012, 20(1): 206-219.

41