4. Open quantum systems

Due date: 18.06.2025 10:00

Throughout this exercise sheet, we adopt the convention $\hbar = 1$

Exercise 1 Phase damping when $[H_S, H_{SB}] = 0$

3 P.

Consider a two-level quantum system with the following Hamiltonians:

$$H_S = -\frac{1}{2}\omega_z\sigma_z, \quad H_{SB} = g\,\sigma_z\otimes B.$$

- a) Identify the system operator(s) appearing in the interaction Hamiltonian and express them in the basis of H_S .
- b) Using the RWA-LE (Rotating Wave Approximation in the weak coupling limit), write down the resulting master equation for the reduced density matrix $\rho(t)$ of the system.

Note: Recall that the RWA-LE in the Schrödinger picture is:

$$\frac{d\rho}{dt} = -i\left[H_S + H_{LS}, \rho\right] + g^2 \sum_{\alpha\beta} \sum_{\omega} \gamma_{\alpha\beta}(\omega) \left[A_{\beta}(\omega) \rho A_{\alpha}^{\dagger}(\omega) - \frac{1}{2} \left\{ A_{\alpha}^{\dagger}(\omega) A_{\beta}(\omega), \rho \right\} \right]$$
(1)

Remember from the lecture that expanding

$$H_S = \sum_a \varepsilon_a |\varepsilon_a\rangle \langle \varepsilon_a|,$$

the time-evolved operator becomes

$$A_{\alpha}(t) = U_{S}^{\dagger}(t)A_{\alpha}U_{S}(t) = \sum_{a,b} e^{-i(\varepsilon_{b} - \varepsilon_{a})t} |\varepsilon_{a}\rangle \langle \varepsilon_{a}| A_{\alpha} |\varepsilon_{b}\rangle \langle \varepsilon_{b}| = \sum_{\omega} A_{\alpha}(\omega)e^{-i\omega t},$$

with Bohr frequencies $\omega = \varepsilon_b - \varepsilon_a$, and

$$A_{\alpha}(\omega) = \sum_{\varepsilon_{b} - \varepsilon_{a} = \omega} \langle \varepsilon_{a} | A_{\alpha} | \varepsilon_{b} \rangle | \varepsilon_{a} \rangle \langle \varepsilon_{b} |, \quad A_{\alpha}(t) = A_{\alpha}^{\dagger}(t), \quad A_{\alpha}(\omega) = A_{\alpha}^{\dagger}(-\omega).$$
 (2)

- c) Derive the differential equations governing the matrix elements $\rho_{00}(t)$, $\rho_{11}(t)$, and $\rho_{01}(t)$. Solve them explicitly.
- d) Determine the characteristic decoherence timescale and express it in terms of the coupling strength g and the bath correlation function $\gamma_{\alpha\beta}(\omega)$.

5 P.

Consider a two-level quantum system with the following Hamiltonians:

$$H_S = -\frac{1}{2}\omega_x \sigma_x, \quad H_{SB} = g \, \sigma_z \otimes B.$$

- a) Find the eigenstates and eigenvalues of the system Hamiltonian H_S .
- b) Express the system operator σ_z in the energy eigenbasis of H_S . Using this, identify the Lindblad operators $A_{\alpha}(\omega)$ (see Eq.2) in the RWA-LE framework.
- c) Write down the master equation using the RWA-LE framework (see Eq.1), including the Lamb shift Hamiltonian. Solve it explicitly for the components of ρ .

Hint: It is most convenient to work in the energy eigenbasis, i.e., the basis that diagonalizes H_S , namely the $\{|+\rangle, |-\rangle\}$ basis.

d) Derive the relaxation timescale for the diagonal elements of the density matrix, $\rho_{--}(t)$ and $\rho_{++}(t)$, and compare it to the decoherence timescale of the off-diagonal element $\rho_{+-}(t)$.

Exercise 3 Dark states in a three-level atom

3 P.

Consider a three-level quantum system consisting of two ground states $|1\rangle$ and $|3\rangle$, and one excited state $|2\rangle$. The system interacts with a classical field in the rotating wave approximation, with equal Rabi frequencies driving the transitions $|1\rangle \leftrightarrow |2\rangle$ and $|3\rangle \leftrightarrow |2\rangle$. The system Hamiltonian is given by:

$$H = \frac{\Omega}{2} (|1\rangle\langle 2| + |3\rangle\langle 2| + \text{h.c.}).$$

Spontaneous emission from $|2\rangle$ to both ground states occurs with equal decay rate γ , described by the jump operators:

$$L_1 = |1\rangle\langle 2|, \quad L_2 = |3\rangle\langle 2|.$$

a) Show that the antisymmetric state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |3\rangle)$$

is an eigenstate of the Hamiltonian with eigenvalue zero.

- b) Verify that this state is annihilated by both jump operators: $L_1|\psi\rangle = 0$ and $L_2|\psi\rangle = 0$. What does this imply about its evolution under the Lindblad master equation?
- c) Argue why there are no other pure stationary states, in particular why the symmetric state $|\psi_s\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |3\rangle)$ does not qualify as a stationary state of the full master equation.