人智导 Lab2 二元情感分类实验报告

洪一宁 2020011022

0 网盘链接

https://cloud.tsinghua.edu.cn/d/dde6babcdba64b78aa83/

1 模型结构及流程分析

1.1 CNN

对于长度为 n 的文本,通过 word2vec 得到大小为 $n \times kdim$ 的 embedding 张量,其中 kdim = 50。

kernel_num 参数默认取100,经过 kernel_num 个 $3 \times kdim$ 的卷积核,kernel_num 个 $4 \times kdim$ 的卷积核和 kernel_num 个 $5 \times kdim$ 的卷积核的计算后得到 kernel_num 个 n-2 长度的张量,kernel_num 个 n-3 长度的张量和 kernel_num 个 n-4 长度的张量。

对每个张量取 max,并拼接,得到一个长度为 $3 imes kernel_num$ 的张量。对这个张量应用 dropout。

经过全连接层,得到一个长度为2的张量,为最终结果。

1.2 RNN

对于长度为 n 的文本,通过 word2vec 得到 n 个大小为 kdim 的 embedding 张量,其中 kdim=50。按上图所示结构,将这 n 个向量输入 LSTM cell,得到结果 $h_n\in\mathbb{R}^{1\times kdim}$ 。对这个张量应用 dropout。上述结构stack为两层。

经过全连接层,得到一个长度为2的张量,为最终结果。

1.3 MLP

对于长度为 n 的文本,通过 word2vec 得到 n 个大小为 kdim 的 embedding 张量,其中 kdim=50。

对于每个区间 $embedding_i - embedding_{i+window-1}, \forall i=1,2,\ldots,n-window+1$,将 embedding 相连,压成一维,进行全连接,得到 n-window+1 个大小为 $1\times hdim_1$ 的张量。

对张量应用 Relu 激活函数,进行全连接,得到 n-window+1 个大小为 $1 imes hdim_2$ 的张量。

将 n-window+1 个张量按第一维取平均值,得到一个大小为 $1 \times hdim_2$ 的张量。

对张量应用 Relu 激活函数,进行全连接,得到一个二维张量,即为最终结果。

2 实验结果及参数分析

2.1 CNN

dropout	batchsize	shuffle	optimizer	lr	核数	参数量	асс	prec	recall	F	epoch	总epoch
0.3	50	1	adam	1e-3	100	61k	0.829	0.812	0.852	0.831	7	11
0.3	50	0	adam	1e-3	100	61k	0.493	0.493	1.000	0.661	6	10
0.3	50	1	SGD	1e-2	100	61k	0.789	0.734	0.896	0.807	28	30
0.1	50	1	adam	1e-3	100	61k	0.824	0.780	0.896	0.834	5	9
0.2	50	1	adam	1e-3	100	61k	0.797	0.756	0.868	0.808	3	12
0.4	50	1	adam	1e-3	100	61k	0.829	0.779	0.912	0.841	8	14
0.3	25	1	adam	1e-3	100	61k	0.829	0.782	0.907	0.840	5	9
0.3	75	1	adam	1e-3	100	61k	0.821	0.809	0.835	0.822	7	18
0.3	50	1	adam	5e-4	100	61k	0.835	0.810	0.835	0.838	9	17
0.3	50	1	adam	5e-3	100	61k	0.824	0.780	0.896	0.834	4	8
0.3	50	1	adam	1e-3	75	46k	0.824	0.806	0.846	0.826	7	11
0.3	50	1	adam	1e-3	125	76k	0.821	0.790	0.868	0.827	6	12

第一行为 base 模型,仿照原论文设置初始参数。其余行加粗部分为修改的参数。

base 模型的 accuracy = 0.829, precision = 0.812, recall = 0.852, F = 0.831.

可以观察到,每轮 epoch 对数据进行 shuffle 有助于提高训练表现,对于此数据集(数据成规律性分布)尤为有效。

使用 adam optimizer 比 SGD optimizer 在相同 epoch 下效果更好。但由于算力有限,本次实验设置了 maxepoch=30,而 SGD optimizer 在第 30 个 epoch 时尚未收敛,因此无法判断继续训练将会有怎样的结果。

调整 dropout,发现效果变化不显著,推测可能是模型表示能力有限,不易过拟合导致的。

调整 batch size,发现效果变化不显著,说明 batch size 可能对效果影响不大。

调整初始 learning rate,发现learning rate 减半后效果更好,learning rate 翻倍后效果变化不显著,推测 base 使用的 learning rate 过大导致下降过快,难以达到全局最优解。

调整模型大小,模型变大或变小后效果略有下降,说明当前模型大小比较合适。

2.2 RNN

dropout	batchsize	shuffle	optimizer	lr	hdim	参数量	acc	prec	recall	F	epoch	总epoch
0.3	50	1	adam	1e-3	60	57k	0.846	0.838	0.852	0.845	18	26
0.3	50	0	adam	1e-3	60	57k	0.493	0.493	1.000	0.661	30	30
0.3	50	1	SGD	1e-2	60	57k	0.767	0.767	0.758	0.762	29	30
0.1	50	1	adam	1e-3	60	57k	0.832	0.806	0.868	0.836	14	30
0.2	50	1	adam	1e-3	60	57k	0.848	0.809	0.907	0.855	17	23
0.4	50	1	adam	1e-3	60	57k	0.843	0.823	0.868	0.845	21	25
0.3	25	1	adam	1e-3	60	57k	0.843	0.833	0.852	0.842	14	22
0.3	75	1	adam	1e-3	60	57k	0.843	0.801	0.907	0.851	18	30
0.3	50	1	adam	5e-4	60	57k	0.856	0.831	0.890	0.859	30	30
0.3	50	1	adam	5e-3	60	57k	0.832	0.803	0.874	0.837	6	12
0.3	50	1	adam	1e-3	50	41k	0.854	0.833	0.879	0.856	19	30

(dropout	batchsize	shuffle	optimizer	lr	hdim	参数量	acc	prec	recall	F	epoch	总epoch
(0.3	50	1	adam	1e-3	70	74k	0.854	0.827	0.890	0.857	15	20

第一行为 base 模型,仿照 CNN 设置初始参数。其余行加粗部分为修改的参数。

base 模型的 accuracy = 0.846, precision = 0.838, recall = 0.852, F = 0.845.

可以观察到,每轮 epoch 对数据进行 shuffle 有助于提高训练表现,对于此数据集(数据成规律性分布)尤为有效。

使用 adam optimizer 比 SGD optimizer 在相同 epoch 下效果更好。但由于算力有限,本次实验设置了 maxepoch=30,而 SGD optimizer 在第 30 个 epoch 时尚未收敛,因此无法判断继续训练将会有怎样的结果。

调整 dropout, 发现 dropout >= 0.2 时效果变化不显著,推测可能是模型表示能力有限,不易过拟合导致的。 dropout 取 0.1 时模型效果略下降,可能出现过快过拟合问题。

调整 batch size,发现效果变化不显著,说明 batch size 可能对效果影响不大。

调整初始 learning rate,发现learning rate 减半后效果更好,learning rate 翻倍后效果更差,推测 base 使用的 learning rate 过大导致下降过快,难以达到全局最优解。

调整模型大小,模型变小后性能整体提升,说明原模型可能过大,或数据量过小,难以训练出 generalizable 的模型。

2.3 MLP

参数量	accuracy	precision	recall	F	epoch	总epoch
61k	0.756	0.721	0.824	0.769	12	23

MLP 模型作为 baseline,用于后续与上述两个模型进行对比。

实际实验中为使参数量与前两个模型的 base 大体保持一致,取 window=20, hdim1=57, hdim2=65.

3模型对比

对比三个模型的base:

模型	参数量	accuracy	precision	recall	F	epoch	总epoch
MLP (Baseline)	61k	0.756	0.721	0.824	0.769	12	23
CNN	61k	0.829	0.812	0.852	0.831	7	11
RNN	57k	0.846	0.838	0.852	0.845	18	26

可以观察到,模型的效果 RNN 优于 CNN 优于 MLP,推测是因为 MLP 结构比较简单,模型空间比较局限;CNN 相比 MLP 能更加有效、显式地提取出 features;RNN 相比 CNN 使用了 LSTM,能更好的处理 sequence 信息。

从效率来看,在一块 3050Ti GPU上,三个模型单个 epoch 耗时均为约 28s,无显著区别。

4 问题思考

1. 实验训练什么时候停止是最合适的?简要陈述你的实现方式,并试分析固定迭代次数与通过验证集调整等方法的优缺点。

理论上,实验的 training loss 应当不断下降,validation loss 先下降再上升(不断拟合直至过拟合)。应该在 validation loss 的最低点停止训练最合适。

因此取 max_epoch = 30,同时采取 early stopping,若连续4个 epoch 的 validation_loss 上升或不变,则停止训练。训练结束后,采取 validation loss 最低的模型作为最终结果。

固定迭代次数的优点是方便实现,缺点是容易过拟合,导致训练结果不好。

通过验证集调整的优点是可以辨别出过拟合的模型,缺点是需要分出一部分数据用于验证,无法使用全部数据训练模型。

- 2. 实验参数的初始化是怎么做的?不同的方法适合哪些地方? (现有的初始化方法为零均值初始化,高斯分布初始化,正交初始化等)
 - 1. CNN 模型

对于 CNN 模型,卷积核和全连接层均使用 Kaiming 均匀分布初始化(He 初始化),即一种零均值均匀分布初始化。

2. RNN 模型

对于 RNN 模型, h_0, c_0 采用正态分布初始化(均值0,方差1)。LSTM 和全连接层均采用 Kaiming 零均值均匀分布初始化。

3. MLP 模型

对于 MLP 模型,全部采取零均值均匀分布初始化。

正交初始化可以有效防止训练开始时梯度消失或梯度爆炸;高斯分布初始化可以使参数限于某一范围,固定参数的理论均值和方差;零均值初始化通过设定合适的区间,可以以很简单的方式达到很好的效果。

3. 过拟合是深度学习常见的问题,有什么方法可以防止训练过程陷入过拟合。

使用dropout,使用 adam optimzer,使用L1/L2 norm,使用验证集选择最优模型,对 training data 进行 shuffle。

4. 试分析CNN, RNN, 全连接神经网络 (MLP) 三者的优缺点。

CNN: 能够有效提取出 feature,并行计算效率高;对于依赖 sequence 中先后关系的一些 task 的处理效果不好,即难以处理先后序问题。

RNN:能很好地处理序列中的先后问题,模型效果好;无法并行计算,效率低,尤其是对于长 sequence input。

MLP: 简单易实现;模型表示能力不强,可解释性差。

5 总结心得

通过完成三个模型的代码即训练,体会了神经网络的设计与实现,加深了对知识的认识、提高了功臣能力,加强了对人工智能的理解。

通过分析不同参数的作用,进一步体会到了不同方法在神经网络训练中的重要性。

由于时间、精力限制,未能进行更多参数的尝试。根据现有的结果,rnn部分仅通过调参应当还有上升空间。