Modeling progress

27.05.2021

Case-study

2 buildings on 24h

- Electricity
- Domestic hot water
- Heat space

2 inputs

- Electricity grid
- Fuel (natural gas)

2 converters

- Heat pump
- CHP

2 storages

- Battery
- Hot water storage

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Abstract model

```
egin{array}{ll} \min & \sum_{j=1}^n c_j x_j \ \mathrm{s.\,t.} & \sum_{j=1}^n a_{ij} x_j \geq b_i & orall i = 1 \dots m \ x_j \geq 0 & orall j = 1 \dots n \end{array}
```

Definition of the model with AMPL format as:

```
# one way to input the data in AMPL format
# for indexed parameters, the indexes are given before the value

param m := 1 ;
param a := 1 1 3
1 2 4
;

param c:= 1 2
2 3
;

param b := 1 1 ;
```

26.05.2021

Model hours, technologies, timesteps **Example for OPTIM-EASE** param hours := 24; param unique_conv := 2; param conv := 6; param unique_stor := 2; param stor := 6; param techs := 13; param inputs := 2; param demand := 3; ## Coupling matrix : In: 1:Grid / 2:CHP1 / 3:CHP2 / 4:CHP3 / 5:HP1 / 6:HP2 / 7:HP3 ## Out: 1:Elec / 2:SpaceHeat / 3:DHW set Out := elec sh dhw ; set In := Electricity grid Natural gas ; set InCategory := fuel elec ; param ICategory := Electricity_grid elec Natural_gas fuel param IMin_capacity := Electricity_grid 1 Natural gas 0 param IMax_capacity := Electricity_grid 100 Natural_gas 100000 param Iho := Electricity grid 0 Natural gas 14.5

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Sets created

• Time: [1, 24]

• **SubTime**: [2, 24]

• Buildings : [1, 2]

• UConv : CHP, HP

• **Conv** : CHP₁₋₂₋₃, HP₁₋₂₋₃

• **UStor**: Battery, Hot water

Stor: Battery₁₋₂₋₃, Hot water₁₋₂₋₃

Techs: CHP₁₋₂₋₃, HP₁₋₂₋₃, Battery₁₋₂₋₃, Hot water₁₋₂₋₃

• In: Electricity grid, Natural gas

• **InCategory** : elec, fuel

• Out : elec, sh, dhw

• OutCategory : elec, heat

• **Heat**: sh, dhw

• **HP**: HP₁₋₂₋₃

• **CHP** : CHP₁₋₂₋₃

Battery, HW

• Elecin: HP₁₋₂₋₃, Battery₁₋₂₋₃

• **ElecOut**: Battery₁₋₂₋₃

• **FuelIn** : CHP₁₋₂₋₃

HeatIn : Hot water₁₋₂₋₃

HeatOut : HP₁₋₂₋₃, Hot water₁₋₂₋₃

• Fuels : Natural gas

• **Elec**: Electricity grid

<u>Hypothesis</u>: max 3 of the same technology /building

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Parameters

		Electricity_grid	Natural_gas
-	ICategory	elec	fuel
kW	IMin_capacity	1	0
kW	IMax_capacity	100	1000000000
kWh/kg	Iho	0	14,5
kWh/kg	Ihu	0	13,1
CHF/kWh	Icostw	0,2244	0,094
CHF/kWh	IFeedIn	0,1	0
CHF/kg	Icostkg	0	0
kWh	IUBP	1	137
kWh oil-eq	IPrimaryEnergyR	1	0,004
kWh oil-eq	IPrimaryEnergyNR	1	1,06
kgCO2 eq	IGWP	0,2	0,228

I			
		СНР	Heat_Pump
kW	CMin_capacity	5	5
kW	CMax_capacity	36	50
-	CSwitching_frequency	2	4
-	CNumber_max_per_building	3	3
-	CInput	fuel	elec
-	COutput	elec+heat	heat
% Investment	CMaintenanceCost	0,05	0,02
% Investment	CInstallationCost	0,15	0,15
% Investment	CPlanificationCost	0,05	0,05
CHF/kW	CInvestmentCost	830	980
CHF	CInvestmentCostBase	20700	6950
-	CUBP	70,5	149
kWh oil-eq	CPrimaryEnergyR	0,002	0,818
kWh oil-eq	CPrimaryEnergyNR	0,502	0,908
kg CO2 eq	CGWP	0,111	0,063

		Battery	Hot_water
kWh	SMin_capacity	1	10
kWh	SMax_capacity	200	50
-	SNumber_max_per_building	3	3
-	SMin_power_of_charging	0,7	0,8
-	SMax_power_of_charging	0,7	0,8
-	SMin_power_of_discharging	0,95	1
-	SMax_power_of_discharging	0,95	1
-	SEfficiency_of_charging	0,9	0,7
-	SEfficiency_of_discharging	0,86	0,7
-	SInput	elec	heat
-	SOutput	elec	heat
% Investment	SInstallationCost	0,15	0,15
% Investment	SPlanificationCost	0,05	0,05
CHF/kWh	SInvestmentCost	570	100
CHF	SInvestmentCostBase	230	C
-	SUBP	1	1
kWh oil-eq	SPrimaryEnergyR	1	1
kWh oil-eq	SPrimaryEnergyNR	1	1
kg CO2 eq	SGWP	1	1

Inputs Converters Storage

.dat file used in the code is created with python script data_extraction.py from an excel file

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Variables

- Tinp (Time, In): quantity of input consumed per time
- ElecTech (Time, Building, ElecIn): quantity of electricity from electricity grid that goes in every technologies per building that need it, per time
- FuelTech (Time, Fuels, Building, FuelIn): quantity of each fuel that goes in technologies that need it, per time and per building
- FeedIn (Time, Building, ElecOut+CHP): quantity of electricity that is sold to the grid, per time and per building
- TechCapacity (Building, Techs): capacity of the technology
- TechUse (Building, Techs): use binary on the whole horizon
- TechUset (Building, Time, Techs): use binary per time
- Switch (Building, Time, CHP+HP): Integer (-1, 0, 1) wich describe the transition between on and off state for CHP and HP per time (not used yet)
- Techin (Building, Time, Techs): quantity of power received by every technology (except heat-in) per time
- TechOut (Building, Time, Techs): quantity of power out of every technology (except CHP and heat-out) per time
- TechHeatInG (Building, Time, HeatIn, Heat): quantity of heat received by corresponding technologies per time
- TechHeatOutG (Building, Time, HeatOut, Heat): quantity of heat out of corresponding technologies per time
- TechCHPOut (Building, Time, CHP, Out): quantity of power out of CHP technologies per time

Hypothesis: every technology can interact with others (except itself)

Variables

- SOC (Building, Time, Battery): state of charge of the battery per time
- SOCdhw (Building, Time, HW): state of charge of the HW dhw storage per time
- SOCsh (Building, Time, HW): state of charge of the HW sh storage per time
- **TechFlow (Building, Time, Tech, Techs, Out)**: quantity of electricity/heat moving from a technology A to a technology B at a specific time and in a specific building
- DemElec (Building, Time, Elec+ElecOut+CHP): quantity of electricity satisfying the demand per time and its origins, per building
- DemSH (Building, Time, HeatOut+CHP): quantity of heat satisfying the demand of SH per time and its origins, per building
- **DemDHW (Building, Time, HeatOut+CHP)**: quantity of heat satisfying the demand of DHW per time and its origins, per building

<u>Hypothesis</u>: every technology can interact with others (except itself)

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Constraints

- Demand satisfaction
- Link between the flows (heat-out, heat-in, elec-out, elec-in, ...)
- Constraining a technology not to provide itself
- Bounding the capacity + introduction of the use binary (whole horizon)
- Bounding the output of the technologies with the capacity chosen
 - → For HW : SOC for SH storage and SOC for DHW storage <= capacity chosen /2
- HP model (see next page)
 - → SH relation (priority to DHW)
- CHP model (similar to HP)
- SOC definition for batteries, SH and DHW storage for HW (see next page)
- SOCs initial and final state to 0
- 1st definition of the use binary per time: zero if whole use binary at 0

HP model

« 3 » : random number

```
396
       def hp_rule(model, b, t, hp):
            efficacitegdhw = (3 + 3 * model.Tamb[t] + 3 * 55 + 3 * model.Tamb[t] * 55 + 3 * (model.Tamb[t] ^ 2) + 3 * (55 ^ 2))
397
            efficacitewdhw = (1 + 1 * model.Tamb[t] + 1 * 55 + 1 * model.Tamb[t] * 55 + 1 * (model.Tamb[t] ^ 2) + 1 * (55 ^ 2))
398
399
            COPdhw = efficaciteqdhw / efficacitewdhw
            Tcond = 25 * (model.Tamb[t] > 15) + (32.5 - 1 / 2 * model.Tamb[t]) * (model.Tamb[t] <= 15)
            efficaciteqsh = (3 + 3 * model.Tamb[t] + 3 * Tcond + 3 * model.Tamb[t] * Tcond + 3 * (model.Tamb[t] ^ 2) + 3 * (Tcond ** 2))
            efficacitewsh = (1 + 1 * model.Tamb[t] + 1 * Tcond + 1 * model.Tamb[t] * Tcond + 1 * (model.Tamb[t] ^ 2) + 1 * (Tcond ** 2))
            COPsh = efficaciteqsh / efficacitewsh
            return model.TechIn[b, t, hp] == model.TechHeatOutG[b, t, hp, "dhw"] * COPdhw + model.TechHeatOutG[b, t, hp, "sh"] * COPsh
404
       # Priority of Domestic Hot Water over Space Heat
406
407
      def hp_sh_rule(model, b, t, hp):
            return model.TechHeatOutG[b, t, hp, "sh"] <= model.TechCapacity[b, hp] - model.TechHeatOutG[b, t, hp, "dhw"]</pre>
408
```

$$\dot{q}_c = bq_1 + bq_2 * \bar{T}_{ext} + bq_3 * \overline{35} + bq_4 * \bar{T}_{ext} * \overline{35} + bq_5 * \bar{T}_{ext}^2 + bq_6 * \overline{35}$$
$$\dot{\omega}_c = bp_1 + bp_2 * \bar{T}_{ext} + bp_3 * \overline{35} + bp_4 * \bar{T}_{ext} * \overline{35} + bp_5 * \bar{T}_{ext}^2 + bp_6 * \overline{35}$$

$$SH(out) \le Capacity - DHW(out)$$

Storage model

```
def SOC_battery_rule(model, b, t, batt):
    return model.SOC[b, t, batt] == model.SOC[b, t-1, batt] + model.TechIn[b, t-1, batt] * model.SEfficiency_of_charging[batt] - \
    model.TechOut[b, t-1, batt] / model.SEfficiency_of_discharging[batt]

def init_state_battery_rule(model, b, batt):
    return model.SOC[b, 1, batt] == model.InitState

def final_state_battery_rule(model, b, batt):
    return model.SOC[b, model.hours, batt] == model.InitState
```

```
def SOC_HW_dhw_rule(model, b, t, hw):
return model.SOCdhw[b, t, hw] == model.SOCdhw[b, t-1, hw] + model.TechHeatInG[b, t-1, hw, "dhw"] * model.SEfficiency_of_charging[hw] - \
model.TechHeatOutG[b, t-1, hw, "dhw"] / model.SEfficiency_of_discharging[hw]

def SOC_HW_sh_rule(model, b, t, hw):
return model.SOCsh[b, t, hw] == model.SOCsh[b, t-1, hw] + model.TechHeatInG[b, t-1, hw, "sh"] * model.SEfficiency_of_charging[hw] - \
model.TechHeatOutG[b, t-1, hw, "sh"] / model.SEfficiency_of_discharging[hw]
```

$$SOC_{Bt+1} = SOC_{Bt} + \eta_{Bc} * P_{Bct} - (1/\eta_{Bd}) * P_{Bdt}$$
 SPF model
$$SOC_{Bt} = SOC_{Bt-1} + \eta_{Bc} * P_{Bct} - (1/\eta_{Bd}) * P_{Bdt}$$
 (urbs model)

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Objective function: costs

- Inputs consumed (1517)
- Maintenance costs (1 518)
- Installation costs (1 519, 522)
- Planification costs (1 520, 523)

- Investment costs (1 521, 524)
- Feed-in costs (1 525)

```
def objective_costs(model):
return model.fcosts ==
```

```
sum(model.Icostw[inp]*model.Tinp[time, inp] for inp in model.In for time in model.Time) + \
sum(model.CMaintenanceCost[tech] * (model.TechCapacity[b, tech]*model.CInvestmentCost[tech] + model.CInvestmentCostBase[tech]) for b in model.Building for tech in model.Conv) + \
sum(model.CInstallationCost[tech] * (model.TechCapacity[b, tech] * model.CInvestmentCost[tech] + model.CInvestmentCostBase[tech]) for b in model.Building for tech in model.Conv) + \
sum(model.CPlanificationCost[tech] * (model.TechCapacity[b, tech] * model.CInvestmentCostBase[tech]) for b in model.Building for tech in model.Conv) + \
sum(model.TechCapacity[b, tech] * model.CInvestmentCostBase[tech]) for b in model.Building for tech in model.Stor) + \
sum(model.SInstallationCost[tech] * (model.TechCapacity[b, tech] * model.SInvestmentCost[tech] + model.SInvestmentCostBase[tech]) for b in model.Building for tech in model.Stor) + \
sum(model.SPlanificationCost[tech] * (model.TechCapacity[b, tech] * model.SInvestmentCostBase[tech]) for b in model.Building for tech in model.Stor) + \
sum(model.TechCapacity[b, tech] * model.SInvestmentCostBase[tech]) for b in model.Building for tech in model.Stor) + \
-model.IFeedIn["Electricity_grid"] * sum(model.FeedIn[t, b, tech] for t in model.Time for b in model.Building for tech in model.CHP)
```

Objective function: emissions

• Global warming potential applied to outputs (1 529-534)

```
def objective_emissions(model):
return model.femissions ==
```

```
sum(model.Tinp[t, inp] * model.IGWP[inp] for t in model.Time for inp in model.In) + \
sum(model.TechOut[b, t, tech] * model.CGWP[tech] for b in model.Building for t in model. Time for tech in model.Conv - model.CHP - model.HeatOut) + \
sum(model.TechOut[b, t, tech] * model.SGWP[tech] for b in model.Building for t in model.Time for tech in model.Stor - model.CHP - model.HeatOut) + \
sum(model.TechHeatOutG[b, t, tech, heat] * model.CGWP[tech] for b in model.Building for t in model.Time for tech in model.HeatOut - model.Stor for heat in model.Heat) + \
sum(model.TechCHPOut[b, t, tech, heat] * model.SGWP[tech] for b in model.Building for t in model.Time for tech in model.CHP for out in model.Out)
sum(model.TechCHPOut[b, t, tech, out] * model.CGWP[tech] for b in model.Building for t in model.Time for tech in model.CHP for out in model.Out)
```

Mutli-objective optimization: sigma-constraint method

- Definition of functions A and B
- <u>Deactivation</u> of function A
- Optimization: max of function A registered
- Activation of function A, deactivation of function B
- Optimization: min of function A registered
- Deactivation of function A, activation of function B
- Optimization with constraint of function A between min and max
- Plot of the Pareto front

```
model.0_fcosts.activate()
584
        model.O_femissions.deactivate()
585
        model.e = pyo.Param(initialize=0, mutable=True)
586
        model.C_epsilon = pyo.Constraint(expr=model.femissions <= model.e+1)</pre>
587
588
        instance = model.create_instance('extraction.dat')
589
590
        opt = SolverFactory("glpk") # slover can be chosen here
        opt.options["mipgap"] = 0.001 # define optimality gap
591
        opt.Tee = True
592
593
        solver_manager = SolverManagerFactory("serial") # solve instances in series
594
        solver_manager.solve(instance, tee=True, opt=opt, timelimit=None)
595
596
       n = 10
        step = int((femissions_max - femissions_min) / n)
597
       steps = list(range(int(femissions_min), int(femissions_max), step)) + [femissions_max]
598
599
        f1_l = []
        f2_l = []
601
602
       dfor i in steps:
            print("etape")
603
            print(i)
604
            instance.e = i
606
            instance.e.pprint()
            solver_manager.solve(instance, tee=True, opt=opt, timelimit=None)
607
            f1_l.append(pyo.value(instance.fcosts))
609
            f2_l.append(pyo.value(instance.femissions))
610
        plt.plot(f1_l, f2_l, '0-.')
```

Model creation	ConcreteModel() or AbstractModel().
Sets definition	Lists of "things" that define the problem.
Parameters definition	Inputs data.
Variables definition	Variables that will be optimized.
Constraints definition	
Objective function creation	Defined as a constraint. Can be maximized or minimized, no automatic multi-objective optimization. Activation/deactivation of the functions is possible.
Model resolution	Different solvers can be used.

Resolution

