IFW

Docket No.: 069804-0187

OT 2 6 2006

PATENT

IN THE UNITED STATES ATENT AND TRADEMARK OFFICE

In re Application of

Customer Number: 20277

Richard W. BOOTH, et al.

Confirmation Number: 4376

Application No.: 09/885,811

Group Art Unit: 2638

Filed: June 19, 2001

Examiner: Dung X. NGUYEN

For: HYBRID POLAR MODULATOR DIFFERENTIAL PHASE CARTESIAN FEEDBACK

CORRECTION CIRCUIT FOR POWER AMPLIFIER

REQUEST FOR CHANGE OF ADDRESS

Mail Stop Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The undersigned attorney, being of record in the subject application with power of attorney, hereby requests that, for the above-identified application, all future correspondence, facsimiles and telephone calls be addressed to:

Michael E. Fogarty, Esq.
McDERMOTT WILL & EMERY LLP
600 13th Street, NW
Washington, DC 20005-3096

Phone: 202.756.8372 Facsimile: 202.756.8087

Respectfully submitted,

McDERMOTT WILL & EMERY LLP

Michael E. Hogarty

Registration No. 36,139

600 13th Street, N.W.

Washington, DC 20005-3096

Phone: 202.756.8000 MEF:cac

Please recognize our Customer No. 20277
as our correspondence address.

Facsimile: 202.756.8087 **Date: October 26, 2006**

Docket No.: FPM-0062

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Customer Number: 53080

Richard W.D. Booth

Confirmation Number: 4376

Application No.: 09/885,811

Group Art Unit: 2638

Filed: June 19, 2001

Examiner: Dung X. NGUYEN

For: Hybrid Polar Modulator Differential Phase Cartesian Feedback Correction Circuit For Power

Amplifier

REVOCATION OF POWER OF ATTORNEY, APPOINTMENT AND CERTIFICATION UNDER 37 CFR 3.73(B)

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The undersigned assignee of the above-identified application hereby revokes all previous Powers of Attorney and appoints the following attorneys with full power to prosecute the application, to make alterations and amendments therein, and to transact all business in the United States Patent Office connected therewith.

I hereby appoint the registered practitioners of McDermott Will & Emcry LLP, included in the Customer Number provided below, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

CUSTOMER NUMBER 53080

Application No. 09/885,811

Send correspondence to the address associated with Customer Number 53080, which is:

McDERMOTT WILL & EMERY LLP 600 13th Street, N.W. Washington, D.C. 20005-3096

CERTIFICATE UNDER 37 CFR 3.73(b)

Matsushita Electric Industrial Co., Ltd. (MEI), a corporation of Japan, certifies that it is the assignce of the entire right, title and interest in the patent application identified above by virtue of an Assignment (copy enclosed) and an Asset Purchase Agreement (redacted copy enclosed) between MEI and Tropian Inc., in which Tropian Inc. sold the entire right and interest in the patent application identified above to MEI.

The undersigned has reviewed all the documents identified above and, to the best of undersigned's knowledge and belief, title is in the assignee identified above.

The undersigned (whose title is supplied below) is empowered to act on behalf of the assignee.

The undersigned further declares that all statements made herein of its own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of

Application No. 09/885,811

the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Respectfully submitted,

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Name: Dr. Hiroki NAITO
Director: A Development Center
Authorized Signing Officer

Signature: Thinh Mate

Date: October 23, 2006

WDC99 1298151-1.069804.0010

77

EXECUTION VERSION

ASSET PÜRCHASE AGREEMENT

DATED AS OF MARCH 27, 2006

BY AND BETWEEN

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.,

PANASONIC CORPORATION OF NORTH AMERICA,

TROPIAN INC.

AND

CROSSPOINT ASSOCIATES 2000, L.L.C.

(for purposes of Section 8.5 and Exhibit P only)

TABLE OF CONTENTS

	Pag
Article I	DEFINITIONS
1.1	Definitions
Article II	PURCHASE AND SALE6
2.1	Purchased Assets
2.2	Excluded Assets
2.3	Assumed Liabilities; Excluded Liabilities
2.4	Assignment of Contracts and Rights9
2.5	Purchase Price
2.6	Closing 10
Article III	REPRESENTATIONS AND WARRANTIES OF TROPIAN 10
3.1	Organization and Qualification
3.2	Authority Relative to Agreements; Tropian Requisite Vote
3.3	Financial Statements
3.4	Inventory
3.5	Consents and Approvals; No Violations
3.6	No Undisclosed Liabilities
3.7	Absence of Changes
3.8	Litigation 14
3.9	Compliance with Applicable Law; Permits
3.10	Employee Benefits
3.11	Labor and Employment Matters
3.12	Environmental Laws and Regulations
3.13	Taxes
3.14	Intellectual Property
3.15	Real Property
3.16	Tangible Personal Property 23
3.17	Insurance 24
3.18	Receivables; Payables
3.19	Certain Business Practices

ASSET PURCHASE AGREEMENT

Mcdermott

THIS ASSET PURCHASE AGREBMENT, dated as of March 27, 2006 (this "Agreement"), is by and among Tropian Inc., a California corporation ("Tropian"), Matsushita Electric Industrial Co., Ltd., a corporation organized under the laws of Japan ("MEP"), Panasonic Corporation of North America, a Delaware corporation ("PNA"), and Crosspoint Associates, L.L.C. (the "Tropian Representative"), for purposes of Section 8.5 and Exhibit P only. All capitalized terms have the meanings ascribed to such terms in Article I or as otherwise defined herein.

RECITALS

WHEREAS, Tropian desires to sell to MEI and PNA, and MEI and PNA desire to purchase from Tropian, all of the Purchased Assets (as defined below), and Tropian desires to transfer to MEI and PNA, and MEI and PNA desire to assume from Tropian, all of the Assumed Liabilities (as defined below);

WHEREAS, concurrently with the execution of this Agreement, Tropian will solicit written consents from its shareholders ("Shareholders"), in the form attached hereto as Exhibit A (the "Written Consent"), representing a number of shares of Tropian Capital Stock (as defined below) necessary for the approval of this Agreement and the consummation of the transactions contemplated hereby by the Tropian Requisite Vote (as defined below);

WHEREAS, MEI, PNA and Tropian shall enter into certain other Transaction Documents (as defined below) at Closing (as defined below); and

WHEREAS, Tropian, MEI and PNA desire to make certain representations, warranties, covenants and agreements in connection with the transaction contemplated by this Agreement as set forth herein.

NOW, THEREFORE, in consideration of the foregoing premises, the mutual representations, warranties, covenants and agreements hereinafter set forth, and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto agree as follows:

ARTICLE I

DEFINITIONS

- 1.1 <u>Definitions</u>. The following terms, as used herein, have the following meanings:
- "<u>Affiliate</u>" means, with respect to any person, any person directly or indirectly controlling, controlled by or under direct or indirect common control with such other person.
- "Applicable Law" means, with respect to any person, any federal, state, local or foreign statute, law, ordinance, rule, administrative interpretation, regulation, order, writ, injunction, directive, judgment, decree or other requirement of any court, tribunal or

Governmental Authority applicable to such person or any of its Affiliates or any of their respective properties, assets, officers, directors, employees, consultants or agents.

"Assignment and Assumption Agreements" means, collectively, (a) the Assignment and Assumption Agreement related to the Tropian Intellectual Property and the Tropian Technology (the "Intangible Assets Assignment and Assumption Agreement"), to be dated as of the Closing Date, by and between MEI and Tropian, in substantially the form attached hereto as Exhibit B, and (b) the Assignment and Assumption Agreement related to all of the other Purchased Assets (the "Tangible Assets Assignment and Assumption Agreement"), to be dated as of the Closing Date, by and between PNA and Tropian, in substantially the form attached hereto as Exhibit C.

"Bill of Sale" means that certain Bill of Sale to be dated as of the Closing Date and executed by Tropian in favor of MEI and PNA, in substantially the form attached hereto as Exhibit D.

"Books and Records" means with respect to any person, all files, documents, instruments, papers, books and records, whether in written or electronic form, relating to such person's development efforts, operations, affairs, financial condition, results of operations, prospects, assets or Liabilities, including financial statements, Tax Returns, work papers and letters from accountants and auditors, budgets, pricing guidelines, ledgers, journals, deeds, title policies, customer and marketing materials and information, product data sheets, performance benchmark reports, customer account histories and profiles, sales training and presentation materials, customer support materials, support bulletins, vendor lists, contracts, licenses, customer lists, permits, computer files and programs, retrieval programs, operating data and plans, projections, forecasts and environmental studies and plans.

"Business Day" means each day other than a Saturday, Sunday or other day on which commercial banks in San Francisco, California are authorized or required by Applicable Law to close.

"COBRA" means the Consolidated Omnibus Budget Reconciliation Act of 1985, as amended.

"Code" means the Internal Revenue Code of 1986, as amended.

"Contracts" means all contracts, agreements, options, leases, licenses, sales and purchase orders, commitments and other instruments of any kind, whether written or oral, to which Tropian is a party or is otherwise bound.

"<u>Designated Employees</u>" means all employees of Tropian as of the date hereof and identified on <u>Schedule 3.11(a)</u> of the Tropian Disclosure Schedule.

"Environmental Laws" means any applicable federal, state, local or foreign law, statute, treaty, bylaw, ordinance, rule, regulation, policy, permit, consent, approval, license, judgment, order, decree or injunction relating to (a) Releases or threatened Releases of Hazardous Material into the environment, (b) the generation, treatment, storage, disposal, use, handling, manufacturing, transportation or shipment of Hazardous Material, (c) the health or

safety of employees in the workplace, (d) protecting or restoring natural resources or (e) the environment.

"Equipment" means all machinery, equipment, furniture, office equipment, communications equipment, computer equipment, vehicles, spare and replacement parts, fuel and other tangible personal property (and interests in any of the foregoing).

"ERISA" means the Employment Retirement Income Security Act of 1974, as amended.

"Governmental Approval" means an authorization, consent, approval, permit or license issued by, or a registration or filing with, or notice to, or waiver from, any Governmental Authority.

"Governmental Authority" means any government or governmental or regulatory body thereof, or political subdivision thereof, whether federal, state, local or foreign, or any agency, instrumentality or authority thereof, or any court or arbitrator (public or private).

"Hazardous Material" means (a) any substance which is or is deemed to be, alone or in combination, hazardous, hazardous waste, special waste, toxic, radioactive, or a pollutant under any Environmental Laws, (b) petroleum, including crude oil and any fractions thereof, (c) natural gas, synthetic gas and any mixtures thereof, (d) asbestos and/or asbestos containing materials, (e) polychlorinated biphenyls ("PCBs") or materials containing PCBs, (f) any material regulated as a medical waste, (g) lead containing paint, (h) radioactive materials and (i) "Hazardous Substance" or "Hazardous Material" as those terms are defined in any indemnification provision in any contract, lease, or agreement, note, bond, mortgage or license to which Tropian is a party.

"include" or "including" means "include, without limitation" or "including, without limitation," as the case may be, and the language following "include" or "including" shall not be deemed to set forth an exhaustive list.

"Intellectual Property" means all intellectual property rights and related priority rights, arising from or in respect of the following, whether protected, created or arising under the laws of the United States or any other jurisdiction or under any international convention, including (a) all patents and applications therefor, including all continuations, divisionals, continuations-in-part and provisionals and patents issuing thereon, and all reissues, reexaminations, substitutions, renewals and extensions thereof (collectively, "Patents"), (b) all trademarks, service marks, trade names, trade dress, logos, corporate names and other source or business identifiers, together with the goodwill associated with any of the foregoing, and all applications, registrations, renewals and extensions thereof (collectively, "Marks"), (c) all Internet domain names, (d) all copyrights, works of authorship and moral rights, and all registrations, applications, renewals, extensions and reversions thereof (collectively, "Copyrights"), and (e) discoveries, concepts, ideas, research and development, know-how, formulae, inventions, compositions, manufacturing and production processes and techniques, technical data, procedures, designs, drawings, specifications, databases, information, designs, algorithms, methods, techniques, research and development, technical data, programs,

subroutines, tools, processes, and other proprietary or confidential information, including customer lists, supplier lists, pricing and cost information, and business and marketing plans and proposals, in each case excluding any rights in respect of any of the foregoing that comprise or are protected by Patents (collectively, "Trade Secrets").

"Intellectual Property License" means (a) any grant by Tropian to another person of any license, sublicense, right, permission, consent or non-assertion relating to or under any Intellectual Property and/or Technology, and (b) any grant by another person to Tropian of any license, sublicense, right, permission, consent or non-assertion relating to or under any Intellectual Property and/or Technology owned by a third person.

"IRS" means the Internal Revenue Service.

"Knowledge," "Knowledge of Tropian" or "Known" means, with respect to any matter in question, the actual knowledge of the executive officers of Tropian listed on Exhibit E attached hereto and, for the purposes of Section 3.14 only, the actual knowledge of the employees of Tropian involved in the research and development of the Tropian Intellectual Property and/or the Tropian Technology.

"Liability" means, with respect to any person, any liability or obligation of such person of any kind, character or description, whether known or unknown, absolute or contingent, accrued or unaccrued, liquidated or unliquidated, secured or unsecured, joint or several, due or to become due, vested or unvested, executory, determined, determinable or otherwise and whether or not the same is required to be accrued on the financial statements of such person.

"Lien" means any mortgage, pledge, assessment, security interest, lien, claim, levy, charge, easement, right of way, transfer restriction, right of first refusal, encroachments or encumbrance of any kind, or any defect in title, conditional sale contract, title retention contract, or other contract to give or to refrain from giving any of the foregoing.

"Material Adverse Effect on Tropian" means any circumstance, change in, or effect on Tropian that is materially adverse to (a) the operations, assets, Liabilities, prospects, results of operations, or the condition (financial or otherwise) of Tropian, the Purchased Assets or the Assumed Liabilities, taken as a whole, or (b) Tropian's ability to consummate the transactions contemplated by this Agreement or any of the other Transaction Documents to which it is a party; provided, however, in no event shall any of the following, either individually or in combination, constitute a Material Adverse Effect on Tropian: (i) any actions taken by Tropian that are specifically required by this Agreement or any of the Transaction Documents to be taken, (ii) any change in conditions in the United States, foreign or global economy or capital or financial markets generally, (iii) any act of terrorism or war, (iv) any change in the laws or regulations relating to the business or operations of Tropian or the Purchased Assets or Assumed Liabilities, (v) any change generally applicable to the industries in which Tropian operates, (vi) the entry into and consummation of this Agreement and the transactions contemplated hereby, (vii) any effect resulting or arising from any action taken by MEI or PNA, or (viii) any effect resulting or arising from any action taken by Tropian with the consent of MEI or PNA.

"person" means an individual, corporation, partnership, limited liability company, association, trust, unincorporated organization or other legal entity including any Governmental Authority.

mcoermott

"<u>Post-Closing Tax Period</u>" means any Tax period (or portion thereof) beginning after the close of business on the Closing Date.

"Pre-Closing Tax Period" means any Tax period (or portion thereof) ending on or before the close of business on the Closing Date.

"Releases" means the releasing, spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaking, depositing, introducing, migrating, disposing or dumping of any substance, or permitting any of the foregoing to occur.

"Software" means any and all (a) computer programs, including any and all software implementations of algorithms, models and methodologies, whether in source code or object code, (b) databases and compilations, including any and all data and collections of data, whether machine readable or otherwise, (c) descriptions, flow-charts and other work product used to design, plan, organize and develop any of the foregoing, screens, user interfaces, report formats, firmware, development tools, templates, menus, buttons and icons, and (d) all documentation, including user manuals and other training documentation, related to any of the foregoing.

"Tangible Net Worth" means, at any date, an amount as calculated in accordance with the principles set forth on Schedule 1.1 of the Tropian Disclosure Schedule.

"Taxes" means (a) all foreign, federal, state, local and other net income, gross income, gross receipts, sales, use, ad valorem, value added, intangible, unitary, capital gain, transfer, franchise, profits, license, lease, service, service use, withholding, backup withholding, payroll, employment, estimated, excise, severance, stamp, occupation, premium, property, prohibited transactions, windfall or excess profits, customs duties or other taxes, fees, assessments or charges of any kind whatsoever, together with any interest and any penalties, additions to tax or additional amounts with respect thereto, (b) any Liability for payment of amounts described in clause (a) whether as a result of transferee Liability, of being a member of an Affiliated, consolidated, combined or unitary group for any period, or otherwise through operation of law, and (c) any Liability for the payment of amounts described in clauses (a) or (b) as a result of any tax sharing, tax indemnity or tax allocation agreement or any other express or implied agreement to indemnify any other person for Taxes.

"Tax Returns" means all returns, declarations, reports, statements, information statement, forms or other documents filed or required to be filed with respect to any Tax (including any attachments thereto, and any amendment thereof) including any information return, claim for refund, amended return or declaration of estimated Tax, and including, where permitted or required, combined, consolidated, affiliated or unitary returns for any group of entities that includes Tropian or any of its Affiliates.

"Technology" means all Software, materials, inventions (whether patentable or unpatentable and whether or not reduced to practice), apparatus, creations, improvements, works

of authorship and other similar materials, and all recordings, graphs, drawings, reports, analyses, and other writings, and other tangible embodiments of the foregoing, in any form whether or not specifically listed herein, and all related technology, documentation and other materials used in, incorporated in, embodied in or displayed by any of the foregoing, or used or useful in the design, development, reproduction, maintenance or modification of any of the foregoing.

"Transaction Documents" means this Agreement, the Bill of Sale, the Assignment and Assumption Agreements, the Retention Plan, the McCune Employment Agreement, the Unger Consulting Agreement, the Woolley Consulting Agreement, the McCune Non-Competition Agreement, Woolley Non-Competition Agreement, the Escrow Agreement, the Offer Letters and any other document or agreement executed in connection with any of the foregoing, together with any Exhibits and Schedules hereto and thereto, and in each case as modified, amended, supplemented, restated or renewed from time to time.

"Tropian Capital Stock" means, collectively, the Tropian Common Stock and the Tropian Preferred Stock.

"Tropian Common Stock" means each share of Common Stock of Tropian, par value r share.

"Tropian Intellectual Property" means all Intellectual Property owned or held for use by Tropian.

"Tropian Preferred Stock" means each share of Series A-1 Preferred Stock of Tropian, par val.

"Tropian Stock Options" means all options to purchase Tropian Common Stock.

"Tropian Technology" means all Technology owned or held for use by Tropian.

"Tropian Warrants" means all warrants to purchase Tropian Common Stock including, without limitation, the warrants held by Silicon Valley Bank, Mixed Signal Systems, Incorporated and Heidrick & Struggles, Inc.

"WARN" means the Worker Adjustment and Retraining Notification Act of 1988, as amended, and the rules and regulations promulgated thereunder.

ARTICLE II

PURCHASE AND SALE

2.1 Purchased Assets.

(a) Upon the terms and subject to the conditions of this Agreement, at Closing, MEI shall purchase from Tropian, and Tropian shall sell, transfer, assign and deliver to MEI, free and clear of all Liens, the Tropian Intellectual Property, the Tropian Technology and all other assets related thereto owned, leased or licensed by Tropian (collectively, the "MEI all other assets"), other than the Excluded Assets (as defined below) and the PNA Purchased

Assets (as defined below), including, without limitation, all of Tropian's right, title and interest in, to and under:

- (i) all of the Tropian Intellectual Property and the Tropian Technology (including all rights, claims, credits, causes of action or rights of set-off against third persons relating to the MEI Purchased Assets of Tropian or any of its Affiliates) listed on Schedule 2.1(a)(i) of the Tropian Disclosure Schedule;
- (ii) subject to Section 2.4 hereof, all Contracts listed on Schedule 2.1(a)(ii) of the Tropian Disclosure Schedule (the "MEI Assumed Contracts");
- (iii) originals or correct and complete copies of all Books and Records relating to the MEI Purchased Assets;
- (iv) all rights of Tropian under express or implied warranties from third parties who supplied Tropian with any of the MEI Purchased Assets; and
- (v) all goodwill and other intangible assets associated with the MEI Purchased Assets.

IN WITNESS WHEREOF, each of the parties has caused this Agreement to be duly executed on its behalf as of the date set forth below.

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

By: Susumu Koike
Title: Senior Managing Director, Member of the Board
Date: March 27, 2006

PANASONIC CORPORATION OF NORTH AMERICA

Name:
Title:
Date:

TROPIAN INC.

By:
Name:
Title:
Date:

TROPIAN REPRESENTATIVE, (for purposes of Section 8.5 and Exhibit P only)

By:
Name:
Title:
Date:

[SIGNATURE PAGE TO ASSET PURCHASE AGREEMENT]

mcoermotτ

IN WITNESS WHEREOF, each of the parties has caused this Agreement to be duly executed on its behalf as of the date set forth below.

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
By: Name: Title: Date:
PANASONIC CORPORATION OF NORTH AMERICA
By: Tailles Name: Paul Lav Title: Chief Technology Office Date: March 28, 2006
TROPIAN INC.
By: Name: Title: Date:
TROPIAN REPRESENTATIVE, (for purposes of Section 8.5 and Exhibit P only)
By: Name: Title: Date:

[SIGNATURE PAGE TO ASSET PURCHASE AGREEMENT]

IN WITNESS WHEREOF, each of the parties has caused this Agreement to be duly executed on its behalf as of the date set forth below.

MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD. Name: Title: Date: PANASONIC CORPORATION OF NORTH AMERICA Name: Title: Date: TROPLAN INC. Namo: Title: PAS Date: MARCH 25, 2006 TROPIAN REPRESENTATIVE, (for purposes of Section 8.5 and Exhibit P only) Name: Title: Date:

[SIGNATURE PAGE TO ASSET PURCHASE AGREEMENT]

Tropian-MEI_transfer_list(June-30-2006).xls

No.	MEI Ref.	PEARL Ref.	Country	Title	Patent No.	Issue Date	Serial No.	File Date	Status
1	TBD	US001	US	Digital Frequency Sampling and Discrimination	6,219,394	04/17/01	08/947,027	10/08/97	Granted
2	TBD	US002	US	Direct Digital Synthesis of Precise, Stable Angle Modulated RF Signal	5,952,895	09/14/99	09/027,954	02/23/98	Granted
3	TBD	US003	us	Quadrature-Free RF Receiver for Directly Receiving Angle Modulated Signal	6,112,071	08/29/00	09/027,742	02/23/98	Granted
4	TBD	US004	US	Phase Lock Loop Enabling Smooth Loop Bandwidth Switching	6,140,882	10/31/00	09/197,523	11/23/98	Granted
5	TBD	US005	US	Direct Digital Frequency Synthesis Enabling Spur Elimination	6,094,101		09/268,731		
6	TBD	US005ii	US	Sigma-Delta-Based Frequency Synthesis	6,690,215	02/10/04	09/942,449	08/29/01	Granted
7	TBD	US006	us	Driving Circuits for Switch Mode RF Power Amplifiers	6,198,347		09/362,880		
8	TBD	US006i	us	High-Efficiency Modulating RF Amplifier	6,636,112		09/637,269		
9	TBD	US006ic	US	High-Efficiency Modulating RF Amplifier Constant Impedance for Switchable Amplifier	6,816,01 <u>6</u>	11/09/04	10/688,444	10/10/03	Granted
10	TBD	US007	US	with Power Control Digital Phase Discrimination Based on	6,215,355	04/10/01	09/416,865	10/13/99	Granted
11	TBD	US008	US	Frequency Sampling Variable Bias Control for Switch Mode RF	6,269,135	07/31/01	09/008,938		
12	TBD	US009	US -	Amplifler	6,323,731				
13	TBD	US010	US	High Efficiency Power Modulators Multi-Band Amplifier Having Multi-Tap RF	6,366,177	04/02/02	09/495,891	02/02/00	Granted
14	TBD	US011	US	Choke	6,356,155		09/834,056		
15	TBD	US012	US	High-Efficiency Modulation RF Amplifier	6,377,784				
16	TBD	US012c	US	High-Efficiency Modulating RF Amplifier	N/A	N/A N/A	10/094,104 11/317,228		
17	TBD TBD	US012cc US013	US US	High-Efficiency Modulating RF Amplifier High-Efficiency Amplifier Output Level and	N/A				
18		US014	US	Burst Control RF Power Amplifier Having High Power-Added	6,864,668		09/247,097		
19	TBD		US	Efficiency Oscillator Circuit Having Reduced Phase	N/A	N/A	09/564,548		
20	TBD	US015		Noise PLL Noise Smoothing Using Dual-Modulus	6,462,627				
21	TBD	US016i	US	Interleaving PLL Noise Smoothing Using Dual-Modulus	7,012,984				
22	TBD	US016ic	US	Interleaving High Efficienty Line Driver for High Crest-	N/A	N/A	11/202,387	08/10/05	preUA
23	TBD	US017	US	Factor Signals Such as DMT/ADSL Signals High Efficienty Line Driver for High Crest-	6,567,491	05/20/03	09/419,707	10/14/99	Granted
24	TBD	US017c	US	Factor Signals such as DMT/ADSL signals	6,724,830		09/794,542		
25	TBD	US019	US	Boost Doubler Circuit	6,522,192				
26	TBD	US020	US	Ring VCO Based on RC Timing Saturation Prevention and Amplifier Distortion	6,686,806	02/03/04	09/738,094	12/14/00	Granted
27	TBD	US021	US	Reduction	6,528,975	03/04/03	09/738,691	12/15/00	Granted
28	TBD	US023	US	Quadrature Modulation with Reduced Phase- Error Distortion	6,650,711	11/18/03	09/585,591	08/02/00	Granted
29	TBD	US024	us	Method and System of Amplitude Modulation Using Dual/Split Channel Unequal Amplification	6,751,265	06/15/04	09/661,167	09/13/00	Granted
30	TBD	US025	US	Power Control and Modulation of Switched- Mode Power Amplifiers with One or More					
	. 55			Stages Power Control and Modulation of Switched-	6,734,724	05/11/04	09/684,497	10/08/00	Granted
31	TBD	US025c	us	Mode Power Amplifiers with One or More Stages	6,844,776	01/18/05	10/431,976	05/07/03	Granted
32	TBD	US025c1	us	Power Control and Modulation of Switched- Mode Power Amplifiers with One or More Stages	7,042,282	05/09/06	11/039,633	01/14/05	Granted
33	TBD	US026	US	Method and Apparatus for Reception Quality Indication in Wireless Communication	6,850,736		09/746,257	12/21/00	Granted
34	TBD	US027	US	Method and Apparatus for Accurate Measurement of Communication Signals	6,724,177		09/738,114	12/14/00	Granted
35	TBD	US028	US	Efficient, Precise RF Modulation Using Multiple Amplifier Stages	6,690,233	02/10/04	09/746,530	12/21/00	Granted
36	TBD	US029	US	Direct Phase and Frequency Modulation	6,969,984	11/29/05	09/746,249	12/21/00	Granted
37	TBD	US029c	US	Oirect Phase and Frequency Demodulation	N/A	N/A	11/136,607	05/23/05	preOA
38	тво		us	Communications Signal Amplifiers Having Independent Power Control and Amplitude Modulation	7,010,276	03/07/06	09/834,024	04/11/01	Granted
39	TBD	US031c	US	Communications Signal Amplifiers Having Independent Power Control and Amplitude Modulation	N/A	N/A	11/208,327	08/19/05	preOA
40	TBD	US031c1	US	Communications Signal Ampliflers Having Independent Power Control and Amplitude Modulation	N/A	N/A	11/208,301	08/19/05	preOA

1/2

No.	MEI Daf	PEARL Ref.	Country	Title	Patent Nn	Issue Date	Serial No.	File Date	Status
140.	MIET LARL	FLANL ROL	Journa y	Communications Signal Amplifiers Having	. 4,4,16,140.				
41	TBD	US031d	us	Independent Power Control and Amplitude Modulation	7,035,604	04/25/06	10/887,586	07/08/04	Granted
42	TBD	US032	us	High Quality Power Ramping in a Communications Transmitter	6,983,025	01/03/06	09/833,967	04/11/01	Granted
43	TBD	US032c	US	High Quality Power Ramping in a Communications Transmitter	N/A	N/A	11/172,387	06/29/05	OA
44	TBD	US033	US	PLL Bandwidth Switching	6,580,329	06/17/03	09/834,247		Granted
45	TBD	US034	US	Data Sampler for Digital Frequency/Phase Determination	7,027,545	04/11/06	09/852,818	05/09/01	Granted
46	TBD	US034c	US	Data Sampler for Digital Frequency/Phase Determination	N/A	N/A	11/400,449	04/06/06	preOA
47	TBD	US036	US	Quadrature Alignment in Communications Receivers	N/A	N/A	09/865,409		Allowance
48	TBD	US037	US	Notch Filter and Method	6,587,018	07/01/03	09/865,972	05/25/01	Granted
49	TBD	US038	us	Hybrid Polar Modulator Differential Phase Cartesian Feedback Correction Circuit for power Amplifier Linearization	N/A	N/A	09/885,811	06/19/01	OA
50	TBD	US040	us	Method and Apparatus for Impedance Matching in an Amplifier Using Lumped and Distributed Inductance	N/A	07/04/06	09/942,448	08/29/01	Granted
51	. TBD	US040c	บร	Method and Apparatus for Impedance Matching in an Amplifier Using Lumped and Distributed Inductance	N/A	N/A	11/194,047	07/28/05	preOA
52	TBD	US041	us	Power Supply Processing for Power Amplifiers	6,781,452	08/24/04	09/942,484	08/29/01	Granted
53	TBD	US041c	us	Power Supply Processing for Power Amplifiers	6,924,695	08/02/05			
54	TBD	US041cc	US	Power Supply Processing for Power Ampliflers	7,038,536	05/02/06	11/175,752	07/06/05	
55	TBD	US043	US	Waveform Preshaping for Efficiency Improvements in DC to RF Conversion	6,624,695	09/23/03			
56	TBD	US044	US	Reduction of Average-to-Minimum Power Ratio in Communications Signals	7,054,385	05/30/06	10/037.870	10/22/01	Granted
57	TBD	US045	us	Multi-Mode Communications Signals Multi-Mode Communications Transmitter	N/A	N/A	10/045,199		
58	TBD	US046	US	Switch Mode Power Supply and Driving Method for Efficient RF Amplification	6,867,574	03/15/05	09/992,049	11/21/01	Granted
59	TBD	US047	US	Image Reject Circuit Using Sigma-Delta Conversion	N/A	N/A	10/023,309		
60	TBD	US048	US	Combined Low-IF/Direct Down Conversion Baseband Architecture for 3G GSM/WCDMA Receivers	N/A	N/A	10/013,209		
61	TBD	US049	US	Twin-T Dual Notch Filter	N/A	N/A	10/040,535	12/28/01	Allowance
62	TBD	US050	US	Frequency Synthesizer for Dual Mode Receiver	7,020,230	03/28/06	10/040,534	12/28/01	Granted
63	TBD	US050c	us	Frequency Synthesizer for Dual Mode Receiver	N/A	N/A	11/198,868	08/05/05	preOA
64	TBD	US051	US	Differential RF/Microwave Power Amplifier Using Independent Synchronized Polar Modulators	6,653,896	11/25/03	09/997,743	11/30/01	Granted
65	TBD	US052	US	Method and Apparatus for Combining Two AC Waveforms	6,760,572	07/06/04	10/115,298	04/02/02	Granted
66	TBD	US056	US	Digital Time Alignment in a Polar Modulator	7,042,958	05/09/06	10/454,906	08/04/03	Granted
67	TBD	US056c	US	Digital Time Alignment in a Polar Modulator	N/A	N/A	11/244,010	10/04/05	OA
68	TBD	US059	us	Method For Continuously Calibrating The Gain For A Multi Path Angle Modulator	N/A	N/A_	11/280,665	11/15/05	preOA
69	TBD	US060	US	Power Distribution and Blasing in RF Switch- Mode Power Amplifiers	6,995,613	02/07/06	10/631,931	07/30/03	Granted
70	TBD	US060c	US	Power Distribution and Blasing in RF Switch- Mode Power Amplifiers	N/A	N/A	11/233,397	09/21/05	preOA
71	TBD	US0604	US	Power Distribution and Biasing in RF Switch- Mode Power Amplifiers	N/A	N/A	11/282,158	01/13/06	ргеОА
72	TBD	US077	US	Extremely High-Speed Switchmode DC-DC Converters	7,026,797	04/11/06	10/394,948	03/21/03	Granted
73	TBD	US096	US	APPARATUS AND METHOD FOR MULTI- PHASE DIGITAL SAMPLING	N/A	N/A	11/282,322	11/18/05	preOA
74	TBD	US096P	เบร	APPARATUS AND METHOD FOR MULTI- PHASE DIGITAL SAMPLING	N/A	N/A	60/719,991	09/23/05	Filed
75	TBD	US103	us	An Apparatus and Method for Dynamically Clocking A Loop Filter In a Digital Communications Device	N/A	N/A	11 <i>/</i> 268,798	11/08/05	ргеОА
76	TBD	US104	us	APPARATUS AND METHOD FOR CONDITIONING A MODULATED SIGNAL IN A COMMUNICATIONS DEVICE:	N/A	N/A	11/274,068		
77	TBD	US106	us	AN APPARATUS AND METHOD FOR OPERATING A VARIABLE SEGMENT	N/A	N/A	11/326,645	2006/1/6	
			L	OSCILLATOR	(7// \				

2/2

PATENT ASSIGNMENT

THIS PATENT ASSIGNMENT (this "Patent Assignment") dated as of April 5, 2006 ("Effective Date"), is made by and between Tropian, Inc., a California corporation ("Assignor"), and Matsushita Electric Industrial Co., Ltd., a corporation organized under the laws of Japan ("Assignee").

WHEREAS, Assignor and Assignee have entered into an Assignment of Intellectual Property, executed on even date herewith, pursuant to which Assignor has agreed to assign all of its patent rights to Assignee.

NOW, THEREFORE, for good and valuable consideration, including the promises and covenants set forth in the Assignment of Intellectual Property, the parties agree as follows:

1. Patents.

"Patents" shall mean the patents and patent applications listed on Attachment 1 attached hereto, as well as any reexaminations, extensions and reissues thereof and any divisionals, continuations and continuation-in-parts and any other applications or patents that claim priority therefrom, including, without limitation, any corresponding foreign patents and applications.

2. Assignment.

Assignor hereby assigns, transfers, sells and conveys to Assignee all of its rights, title and interest in and to the Patents, and all rights, claims and privileges pertaining to the Patents, including, without limitation, rights to the underlying inventions, the right to sue and recover damages for past, present and future infringement thereof, and the right to prosecute and maintain the Patents.

[THE REMAINDER OF THIS PAGE IS INTENTIONALLY LEFT BLANK]

IN WITNESS WHEREOF, the parties have caused this Patent Assignment to be executed as of the date set forth below

ASSIGNOR:	ASSIGNEE:
TROPIAN, INC.	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
By: 6 kg Wa	Ву:
Name: TIM UNGERC	Name:
Title: PRESIDENT + COO	Title:
Date: ALANT 3. 2006	Date:

IN WITNESS WHEREOF, the parties have caused this Patent Assignment to be executed as of the date set forth below.

ASSIGNOR:	ASSIGNEE:
TROPIAN, INC.	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
By: Name: Title: Date:	By: <u>Saseimu Cooks</u> Name: Susumu Koike Title: Vice President, Member of the Board Date: April 4, 2006

/	AP65
3010	OCT 2 & 2006 :88
	PATE

Title	Datent No	loons Date		- 1	
	י בוכוונ ואס.	o. issue Date	Seriai No.	Filing Date Inventors	Inventors
Interleaving	•	•	09/362,670	07/29/99	Sander, Brian; McCune, Earl W.
Direct Digital Frequency Synthesis Enabling Spur Elimination	•	2	09/624,574	07/24/00	Sander, Wendell B.
Circuit for Compensation Against Backgating	•		09/874,458	06/04/01	Judkins, James G.
Sampling	•	•	09/919,696	07/31/01	Sander, Wendell B.
Quadrature Alignment in Communications Receivers		•	09/865,409	05/25/01	McCune, Earl W.
Combined Low-IF/Direct Down Conversion Baseband Architecture for 3G GSM/WCDMA Receivers	•		10/013,209	12/07/01	Wilson, Duane
Twin-T Dual Notch Filter			10/040.535	12/28/01	Oson Nicol
High-Efficiency Modulating RF Amplifier		•	10/094,104	03/07/02	McCune, Earl W.
DIGITAL SAMPLING	•	•	60/719,991	09/23/05	Sander, Wendell B.
Digital Frequency Sampling and Discrimination	6,219,394	04/17/01	08/947,027	10/08/97	Sander. Wendell B
Digital Phase Discrimination Based on Frequency Sampling	6,269,135	07/31/01	09/006,938	01/14/98	Sander, Wendell B.
Direct Digital Synthesis of Precise, Stable Angle Modulated RF Signal	5,952,895	09/14/99	09/14/99 09/027,954	02/23/98	McCune, Earl W.; Sander, Wendell B.
Quadrature-Free RF Receiver for Directly Receiving Angle Modulated Signal	6,112,071	08/29/00	09/027,742 02/23/98	02/23/98	McCune, Earl W.
Phase Lock Loop Enabling Smooth Loop Bandwidth Switching	6,140,882	10/31/00	10/31/00 09/197,523	11/23/98	Sander, Brian
High-Efficiency Modulation RF Amplifier	6,377,784	04/23/02	04/23/02 09/247,095	02/09/99	McCune, Earl W.
night-Enidency Amplifier Output Level and Burst Control	6,864,668	03/08/05	09/247.097	02/09/99	McCune, Earl W.; Sander, Wendell B.
Direct Digital Frequency Synthesis Enabling Spur Elimination	6,094,101	07/25/00	09/268,731	03/17/99	Sander, Wendell B.; Sander, Brian
Driving Circuits for Switch Mode RF Power Amplifiers	6,198,347	03/06/01	09/362,880	07/29/99	Sander, Wendell B.; McCune, Earl W.; Meck, Ronald A.
Constant Impedance for Switchable Amplifier with Power Control	6,215,355	04/10/01	09/416,865	10/13/99	Meck, Ronald A.; McCune, Earl W.; Burns

Title	Patent No. Issue Date	Issue Date	Serial No.	Filing Date Investor	
rign Efficienty Line Driver for High Crest-Factor Signals Such as DMT/ADSL Signals	6,567,491	05/20/03	09/419,707	10/14/99	McCune, Earl W.; Sander, Wendell B.
High Efficiency Power Modulators	6,366,177	04/02/02	09/495,891	02/05/00	McCune, Earl W : Sander Wendell B
Quadrature Modulation with Reduced Phase-Error Distortion	6,650,711	11/18/03	09/585,591	06/02/00	Booth, Richard W. D.
High-Efficiency Modulating RF Amplifier	6,636,112	10/21/03	09/637,269	08/10/00	McCune Farl W
Oscillator Circuit Having Reduced Phase Noise	6,462,627	10/08/02	09/648,914	08/25/00	Lee, Jeroid
Method and System of Amplitude Modulation Using Dual/Split Channel Unequal Amplification	6,751,265	06/15/04	09/661,167	09/13/00	Schell, Stephen V.; Sander, Wendell B.; McCune, Earl
Variable Bias Control for Switch Mode RF Amplifier	6,323,731	11/27/01	09/684,496	10/06/00	McCune, Earl W.
Power Control and Modulation of Switched-Mode Power Amplifiers with One or More Stages	6,734,724	05/11/04	09/684,497	10/06/00	Schell, Stephen V.; Sander, Wendell B.; Meck, Ronald A. Bayrins, Boher I
Boost Doubler Circuit	6,522,192	02/18/03	09/688,269	10/11/00	Sander, Wendell B
Ring VCO Based on RC Timing	6,686,806	02/03/04	09/738,094	12/14/00	Dufour, Yves
Measurement of Communication Signals	6,724,177	04/20/04	09/738,114	12/14/00	Schell, Stephen V.
Saturation Prevention and Amplifier Distortion Reduction	6,528,975	03/04/03	09/738,691	12/15/00	Sander, Wendell B.
Method and Apparatus for Reception Quality Indication in Wireless Communication	6,850,736	02/01/05	09/746,257	12/21/00	McCune, Earl W.
Efficient, Precise RF Modulation Using Multiple Amplifier Stages	6,690,233	02/10/04	09/746,530	12/21/00	Sander, Wendell B.
Direct Phase and Frequency Modulation	6,969,984	11/29/05	09/746,249	12/21/00	McCune, Earl W.
High Efficienty Line Driver for High Crest-Factor Signals such as DMT/ADSL signals	6,724,830	04/20/04	09/794,542	02/26/01	Do, Gary L.; McCune, Earl W.; Sander, Wendell B.
Multi-Band Amplifier Having Multi-Tap RF Choke	6,356,155	03/12/02	09/834,056	04/11/01	Judkins, James G.
Confindingations Signal Amplifiers Having Independent Power Control and Amplitude Modulation	7,010,276	03/07/06	09/834,024	04/11/01	Sander, Wendell B.; Meck, Ronald A.; McCune, Earl W.
High Quality Power Ramping in a Communications Transmitter	6,983,025	01/03/06	09/833,967	04/11/01	Schell, Stephen V.
PLL Bandwidth Switching	6,580,329	06/17/03	06/17/03 09/834,247	04/11/01	Sander, Wendell B.

Title	Patent No.	lo. Issue Date	Serial No.	Filing Date Inventors	Inventors
Data Sampler for Digital Frequency/Phase Determination	7,027,545	04/11/06	09/852,818	05/09/01	Sander, Brian
Notch Filter and Method	6,587,018	07/01/03	09/865,972	05/25/01	Meck, Ronald A.; McCune, Earl W.; Twitchell, Edwin R.
Sigma-Delta-Based Frequency Synthesis	6,690,215	02/10/04	09/942,449	08/29/01	McCune, Earl W.; Sander, Wendell B.
Method and Apparatus for Impedance Matching in 09/942,448 an Amplifier Using Lumped and Distributed Inductance	09/942,448	07/04/06	09/942,448	08/29/01	Meck, Ronald A.
Power Supply Processing tor Power Amplifiers	6,781,452	08/24/04	09/942,484	08/29/01	Cioffi, Kenneth R.; Tolson, Nigel J.: McCune. Earl W
Reduction of Average-to-Minimum Power Ratio in Communications Signals	7,054,385	. 05/30/06	10/037,870	10/22/01	Booth, Richard W. D.; Schell, Stephen V.; Biedka, Thomas F. Liang, Paul Chang, Do
Waveform Preshaping for Efficiency Improvements in DC to RF Conversion	6,624,695	09/23/03	060'666/60	10/31/01	Sevic, John F.; Salam, Khan M.
Switch Mode Power Supply and Driving Method for Efficient RF Amplification	6,867,574	03/15/05	09/992,049	11/21/01 Silic, Bojan	Silic, Bojan
Differential RF/Microwave Power Amplifier Using Independent Synchronized Polar Modulators	6,653,896	11/25/03		1.1/30/01	09/997,743 11/30/01 Sevic, John F.; Sander, Schell, Stephen V.
Frequency Synthesizer for Dual Mode Receiver	7,020,230	03/28/06	03/28/06 10/040,534	12/28/01	Tolson, Nigel J.
PLL Noise Smoothing Using Dual-Modulus Interleaving	7,012,984	03/14/06	03/14/06 10/095,738	03/11/02	03/11/02 Sander, Brian; McCune, Earl W.
Method and Apparatus for Combining Two AC Waveforms	6,760,572		07/06/04 10/115,298	04/02/02	Noori, Basim

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.