A Guided Tour of Chapter 11: Batch RL, Experience-Replay, DQN, LSPI, Gradient TD

Ashwin Rao

ICME, Stanford University

Moving on to practically sophisticated algorithms

- Let's examine the core pattern of RL Algorithms we've learnt so far
- Experiences arrive one at a time, is used (for learning) and discarded
- Learning is incremental, with VF update after each unit of experience
- Are there alternative patterns we can employ? The answer is Yes
- We highlight 2 key patterns that yield a richer range of RL Algorithms
 - 1 Experience-Replay: Store the data as it arrives, and re-use it
 - 2 Batch RL: Learn the VF for an entire batch of data directly
- Experience-Replay and Batch RL can be combined in interesting ways

2/24

Incremental RL makes inefficient use of training data

- Incremental versus Batch RL in the context of fixed finite data
- Let's understand the difference for the simple case of MC Prediction
- Given fixed finite sequence of trace experiences yielding training data:

$$\mathcal{D} = [(S_i, G_i)|1 \leq i \leq n]$$

• Incremental MC estimates $V(s; \mathbf{w})$ using $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})$ for each data pair:

$$\mathcal{L}_{(S_i,G_i)}(\mathbf{w}) = \frac{1}{2} \cdot (V(S_i; \mathbf{w}) - G_i)^2$$

$$\nabla_{\mathbf{w}} \mathcal{L}_{(S_i,G_i)}(\mathbf{w}) = (V(S_i; \mathbf{w}) - G_i) \cdot \nabla_{\mathbf{w}} V(S_i; \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha \cdot (G_i - V(S_i; \mathbf{w})) \cdot \nabla_{\mathbf{w}} V(S_i; \mathbf{w})$$

- n updates are performed in sequence for i = 1, 2, ..., n
- Uses update method of FunctionApprox for each data pair (S_i, G_i)
- ullet Incremental RL makes inefficient use of available training data ${\cal D}$
- Essentially each data point is "discarded" after being used for update

Ashwin Rao (Stanford) Batch RL Chapter 3/24

Batch MC Prediction makes efficient use of training data

• Instead we'd like to estimate the Value Function $V(s; \mathbf{w}^*)$ such that

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{1}{2} \cdot (V(S_i; \mathbf{w}) - G_i)^2$$
$$= \arg\min_{\mathbf{w}} \mathbb{E}_{(S,G) \sim \mathcal{D}} \left[\frac{1}{2} \cdot (V(S; \mathbf{w}) - G)^2 \right]$$

- ullet This is the solve method of FunctionApprox on training data ${\cal D}$
- This approach to RL is known as Batch RL
- solve by doing updates with repeated use of available data pairs
- Each update using random data pair $(S, G) \sim \mathcal{D}$

$$\Delta \mathbf{w} = \alpha \cdot (G - V(S; \mathbf{w})) \cdot \nabla_{\mathbf{w}} V(S; \mathbf{w})$$

- This will ultimately converge to desired value function $V(s; \mathbf{w}^*)$
- Repeated use of available data known as Experience-Replay
- ullet This makes more efficient use of available training data ${\cal D}$

Ashwin Rao (Stanford) Batch RL Chapter 4

Batch TD Prediction makes efficient use of Experiences

• In Batch TD Prediction, we have experiences data \mathcal{D} available as:

$$\mathcal{D} = [(S_i, R_i, S_i') | 1 \le i \le n]$$

- Where (R_i, S_i') is the pair of reward and next state from a state S_i
- So, Experiences \mathcal{D} in the form of finite number of atomic experiences
- This is represented in code as an Iterable [TransitionStep [S]]
- Parameters updated with repeated use of these atomic experiences
- Each update using random data pair $(S, R, S') \sim \mathcal{D}$

$$\Delta \mathbf{w} = \alpha \cdot (R + \gamma \cdot V(S'; \mathbf{w}) - V(S; \mathbf{w})) \cdot \nabla_{\mathbf{w}} V(S; \mathbf{w})$$

ullet This is TD Prediction with Experience-Replay on Finite Experiences ${\cal D}$

Batch RL Chapter 5 / 24

Batch $TD(\lambda)$ Prediction

• In Batch $TD(\lambda)$ Prediction, given finite number of trace experiences

$$\mathcal{D} = [(S_{i,0}, R_{i,1}, S_{i,1}, R_{i,2}, S_{i,2}, \dots, R_{i,T_i}, S_{i,T_i}) | 1 \leq i \leq n]$$

- Parameters updated with repeated use of these trace experiences
- Randomly pick trace experience (say indexed i) $\sim \mathcal{D}$
- For trace experience i, parameters updated at each time step t:

$$\begin{aligned} \boldsymbol{E}_t &= \gamma \lambda \cdot \boldsymbol{E}_{t-1} + \nabla_{\boldsymbol{w}} V(S_{i,t}; \boldsymbol{w}) \\ \Delta \boldsymbol{w} &= \alpha \cdot (R_{i,t+1} + \gamma \cdot V(S_{i,t+1}; \boldsymbol{w}) - V(S_{i,t}; \boldsymbol{w})) \cdot \boldsymbol{E}_t \end{aligned}$$

The Deep Q-Networks (DQN) Control Algorithm

DQN uses Experience-Replay and fixed Q-learning targets.

At each time *t* for each episode:

- Given state S_t , take action A_t according to ϵ -greedy policy extracted from Q-network values $Q(S_t, a; \mathbf{w})$
- ullet Given state S_t and action A_t , obtain reward R_{t+1} and next state S_{t+1}
- ullet Store atomic experience $(S_t,A_t,R_{t+1},S_{t+1})$ in replay memory ${\mathcal D}$
- ullet Sample random mini-batch of atomic experiences $(s_i, a_i, r_i, s_i') \sim \mathcal{D}$
- Update Q-network parameters \mathbf{w} using Q-learning targets based on "frozen" parameters \mathbf{w}^- of target network

$$\Delta \mathbf{w} = \alpha \cdot \sum_{i} (r_i + \gamma \cdot \max_{a'_i} Q(s'_i, a'_i; \mathbf{w}^-) - Q(s_i, a_i; \mathbf{w})) \cdot \nabla_{\mathbf{w}} Q(s_i, a_i; \mathbf{w})$$

• $S_t \leftarrow S_{t+1}$

Parameters \mathbf{w}^- of target network infrequently updated to values of Q-network parameters \mathbf{w} (hence, Q-learning targets treated as "frozen")

Least-Squares RL Prediction

- Batch RL Prediction for general function approximation is iterative
- Uses Experience-Replay and Gradient Descent
- We can solve directly (without gradient) for linear function approx
- ullet Define a sequence of feature functions $\phi_j:\mathcal{S} o\mathbb{R}, j=1,2,\ldots,m$
- Parameters w is a weights vector $\mathbf{w} = (w_1, w_2, \dots, w_m) \in \mathbb{R}^m$
- Value Function is approximated as:

$$V(s; \mathbf{w}) = \sum_{j=1}^{m} \phi_j(s) \cdot w_j = \phi(s)^T \cdot \mathbf{w}$$

where $\phi(s) \in \mathbb{R}^m$ is the feature vector for state s

Least-Squares Monte-Carlo (LSMC)

• Loss function for Batch MC Prediction with data $[(S_i, G_i)|1 \le i \le n]$:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2n} \cdot \sum_{i=1}^{n} (\sum_{j=1}^{m} \phi_{j}(S_{i}) \cdot w_{j} - G_{i})^{2} = \frac{1}{2n} \cdot \sum_{i=1}^{n} (\phi(S_{i})^{T} \cdot \mathbf{w} - G_{i})^{2}$$

• The gradient of this Loss function is set to 0 to solve for w^*

$$\sum_{i=1}^n \phi(S_i) \cdot (\phi(S_i)^T \cdot \boldsymbol{w}^* - G_i) = 0$$

- \mathbf{w}^* is solved as $\mathbf{A}^{-1} \cdot \mathbf{b}$
- $m \times m$ Matrix **A** is accumulated at each data pair (S_i, G_i) as:

$$\mathbf{A} \leftarrow \mathbf{A} + \phi(S_i) \cdot \phi(S_i)^T$$
 (i.e., outer-product of $\phi(S_i)$ with itself)

• m-Vector \boldsymbol{b} is accumulated at each data pair (S_i, G_i) as:

$$\boldsymbol{b} \leftarrow \boldsymbol{b} + \phi(S_i) \cdot G_i$$

9 / 24

• Sherman-Morrison incremental inverse can be done in $O(m^2)$

Least-Squares Temporal-Difference (LSTD)

• Loss func for Batch TD Prediction with data $[(S_i, R_i, S_i')|1 \le i \le n]$:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2n} \cdot \sum_{i=1}^{n} (\phi(S_i)^T \cdot \mathbf{w} - (R_i + \gamma \cdot \phi(S_i')^T \cdot \mathbf{w}))^2$$

• The semi-gradient of this Loss function is set to 0 to solve for w^*

$$\sum_{i=1}^{n} \phi(S_i) \cdot (\phi(S_i)^T \cdot \mathbf{w}^* - (R_i + \gamma \cdot \phi(S_i')^T \cdot \mathbf{w}^*)) = 0$$

- \mathbf{w}^* is solved as $\mathbf{A}^{-1} \cdot \mathbf{b}$
- $m \times m$ Matrix **A** is accumulated at each atomic experience (S_i, R_i, S'_i) :

$$m{A} \leftarrow m{A} + m{\phi}(S_i) \cdot (m{\phi}(S_i) - \gamma \cdot m{\phi}(S_i'))^T$$
 (note the Outer-Product)

• *m*-Vector **b** is accumulated at each atomic experience (S_i, R_i, S'_i) :

$$\boldsymbol{b} \leftarrow \boldsymbol{b} + \phi(S_i) \cdot R_i$$

• Sherman-Morrison incremental inverse can be done in $O(m^2)$

$LSTD(\lambda)$

- Likewise, we can do LSTD(λ) using Eligibility Traces
- Denote the Eligibility Traces of atomic experience i as E_i
- Note: \boldsymbol{E}_i accumulates $\nabla_{\boldsymbol{w}} V(s; \boldsymbol{w}) = \phi(s)$ in each trace experience
- \bullet When accumulating, previous step's eligibility traces discounted by $\lambda\gamma$

$$\sum_{i=1}^{n} \mathbf{E}_{i} \cdot (\phi(S_{i})^{T} \cdot \mathbf{w}^{*} - (R_{i} + \gamma \cdot \phi(S_{i}^{\prime})^{T} \cdot \mathbf{w}^{*})) = 0$$

- \mathbf{w}^* is solved as $\mathbf{A}^{-1} \cdot \mathbf{b}$
- $m \times m$ Matrix **A** is accumulated at each atomic experience (S_i, R_i, S_i') :

$$\mathbf{A} \leftarrow \mathbf{A} + \mathbf{E_i} \cdot (\phi(S_i) - \gamma \cdot \phi(S_i'))^T$$
 (note the Outer-Product)

• m-Vector \boldsymbol{b} is accumulated at each atomic experience (S_i, R_i, S_i') as:

$$\boldsymbol{b} \leftarrow \boldsymbol{b} + \boldsymbol{E_i} \cdot R_i$$

• Sherman-Morrison incremental inverse can be done in $O(m^2)$

Ashwin Rao (Stanford) Batch RL Chapter 11 / 24

Convergence of Least Squares Prediction Algorithms

On/Off Policy	Algorithm	Tabular	Linear	Non-Linear
	MC	✓	✓	✓
On-Policy	LSMC	✓	✓	-
	TD	✓	✓	X
	LSTD	✓	✓	-
Off-Policy	MC	✓	✓	✓
	LSMC	✓	X	-
	TD	✓	X	X
	LSTD	✓	X	-

Ashwin Rao (Stanford) Batch RL Chapter 12 / 24

Least Squares RL Control

- To perform Least Squares RL Control, we do GPI with:
 - Policy Evaluation as Least-Squares Q-Value Prediction
 - Greedy (or ϵ -Greedy) Policy Improvement
- For On-Policy MC/TD Control, Q-Value Prediction (for policy π):

$$Q^{\pi}(s,a) pprox Q(s,a;oldsymbol{w}^*) = \phi(s,a)^T \cdot oldsymbol{w}^*$$

- ullet Direct solve for $oldsymbol{w}^*$ using experiences data generated using policy π
- We are interested in Off-Policy Control with Least-Squares TD
- Using the same idea as Q-Learning and with Experience-Replay
- This technique is known as Least Squares Policy Iteration (LSPI)

Ashwin Rao (Stanford) Batch RL Chapter 13 / 24

Least Squares Policy Iteration (LSPI)

- Input is fixed finite data set \mathcal{D} consisting of (s, a, r, s') experiences
- Goal is to determine Optimal Q-Value Linear Function Approximation
- ullet Each iteration of GPI starts with a deterministic target policy π_D
- ullet π_D is made available from the previous iteration of GPI
- Goal of the iteration is to solve for weights \mathbf{w}^* to minimize:

$$\mathcal{L}(\mathbf{w}) = \sum_{i} (Q(s_i, a_i; \mathbf{w}) - (r_i + \gamma \cdot Q(s'_i, \pi_D(s'_i); \mathbf{w})))^2$$

$$= \sum_{i} (\phi(s_i, a_i)^T \cdot \mathbf{w} - (r_i + \gamma \cdot \phi(s'_i, \pi_D(s'_i))^T \cdot \mathbf{w}))^2$$

- Solved using sampled mini-batch of experiences (s_i, a_i, r_i, s_i') from \mathcal{D}
- This solved **w*** defines an updated Q-Value Function
- Iteration ends by setting the target policy π_D (for next iteration) as:

$$\pi_D(s) = \operatorname*{arg\; max}_{a} Q(s, a; \boldsymbol{w}^*)$$

14 / 24

Solving with weights w^* with LSTDQ

• We set the semi-gradient of $\mathcal{L}(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}^*$ to 0

$$\sum_{i} \phi(s_i, a_i) \cdot (\phi(s_i, a_i)^T \cdot \mathbf{w}^* - (r_i + \gamma \cdot \phi(s_i', \pi_D(s_i'))^T \cdot \mathbf{w}^*)) = 0 \quad (1)$$

- \mathbf{w}^* is solved as $\mathbf{A}^{-1} \cdot \mathbf{b}$
- $m \times m$ Matrix **A** is accumulated at each experience (s_i, a_i, r_i, s'_i) :

$$m{A} \leftarrow m{A} + \phi(s_i, a_i) \cdot (\phi(s_i, a_i) - \gamma \cdot \phi(s_i', \pi_D(s_i')))^T$$

• m-Vector \boldsymbol{b} is accumulated at each experience (s_i, a_i, r_i, s_i') as:

$$\boldsymbol{b} \leftarrow \boldsymbol{b} + \phi(s_i, a_i) \cdot r_i$$

- Sherman-Morrison incremental inverse can be done in $O(m^2)$
- ullet This least-squares solution of $oldsymbol{w}^*$ (Prediction) is known as LSTDQ
- GPI with LSTDQ and greedy policy improvement known as LSPI

Convergence of Control Algorithms

Algorithm	Tabular	Linear	Non-Linear
MC Control	✓	(✓)	Х
SARSA	✓	(✓)	×
Q-Learning	✓	X	×
LSPI	✓	(✓)	-

(\checkmark) means it chatters around near-optimal Value Function

LSPI for Optimal Exercise of American Options

- American Option Pricing is Optimal Stopping, and hence an MDP
- So can be tackled with Dynamic Programming or RL algorithms
- But let us first review the mainstream approaches
- For some American options, just price the European, eg: vanilla call
- When payoff is not path-dependent and state dimension is not large, we can do backward induction on a binomial/trinomial tree/grid
- Otherwise, the standard approach is Longstaff-Schwartz algorithm
- Longstaff-Schwartz algorithm combines 3 ideas:
 - Valuation based on Monte-Carlo simulation
 - Function approximation of continuation value for in-the-money states
 - Backward-recursive determination of early exercise states
- We consider LSPI as an alternative approach for American Pricing

Ashwin Rao (Stanford) Batch RL Chapter 17 / 24

LSPI as an alternative to Longstaff-Schwartz

- RL is straightforward if we clearly define the MDP
- State is [Current Time, History of Underlying Security Prices]
- Action is Boolean: Exercise (i.e., Stop) or Continue
- Reward always 0, except upon Exercise (= Payoff)
- State-transitions based on Underlying Security's Risk-Neutral Process
- Key is function approximation of state-conditioned continuation value
- ullet Continuation Value \Rightarrow Optimal Stopping \Rightarrow Option Price
- We customize LSPI to Optimal Exercise of American Options
- Based on this paper by Li, Szepesvari, Schuurmans

LSPI customized for American Options Pricing

- 2 actions: a = c (continue the option) and a = e (exercise the option)
- Create function approx representation for Q(s, a) only for a = c since we know option payoff g(s) for a = e, i.e., Q(s, a) = g(s)

$$\hat{Q}(s, a; \mathbf{w}) = \begin{cases} \phi(s)^T \cdot \mathbf{w} & \text{if } a = c \\ g(s) & \text{if } a = e \end{cases}$$

for feature funcs $\phi(\cdot) = [\phi_i(\cdot)|i=1,\ldots,m]$ of only state & not action

- ullet Each iteration of GPI starts with a deterministic target policy π_D
- π_D is greedy policy from previous iteration's solved $Q(s,a; \boldsymbol{w}^*)$
- Since we learn Q-Value function for only a=c, behavior policy μ generating experiences data for training is a constant func $\mu(s)=c$
- Also, for American Options, the reward for a = c is 0
- So each atomic experiences for training is of the form (s, c, 0, s')
- ullet So we represent each atomic experience for training as a 2-tuple (s,s')

Ashwin Rao (Stanford) Batch RL Chapter 19/24

LSPI customized for American Options Pricing

This reduces LSPI Semi-Gradient Equation (1) to:

$$\sum_{i} \phi(s_i) \cdot (\phi(s_i)^T \cdot \boldsymbol{w}^* - \gamma \cdot \hat{Q}(s_i', \pi_D(s_i'); \boldsymbol{w}^*)) = 0$$
 (2)

- We need to consider two cases for the term $\hat{Q}(s_i', \pi_D(s_i'); \mathbf{w}^*)$
 - C1: If s_i' is non-terminal and $\pi_D(s_i') = c$ (i.e., $\phi(s_i')^T \cdot \mathbf{w} \ge g(s_i')$): Substitute $\phi(s_i')^T \cdot \mathbf{w}^*$ for $\hat{Q}(s_i', \pi_D(s_i'); \mathbf{w}^*)$ in Equation (2)
 - C2: If s_i' is a terminal state or $\pi_D(s_i') = e$ (i.e., $g(s_i') > \phi(s_i')^T \cdot \mathbf{w}$): Substitute $g(s_i')$ for $\hat{Q}(s_i', \pi_D(s_i'); \mathbf{w}^*)$ in Equation (2)
- So rewrite Equation (2) using indicator notation for cases C1, C2 as:

$$\sum_{i} \phi(s_i) \cdot (\phi(s_i)^T \cdot \boldsymbol{w}^* - \mathbb{I}_{C1} \cdot \gamma \cdot \phi(s_i')^T \cdot \boldsymbol{w}^* - \mathbb{I}_{C2} \cdot \gamma \cdot g(s_i')) = 0$$

• Factoring out **w***, we get:

$$(\sum_{i} \phi(s_{i}) \cdot (\phi(s_{i}) - \mathbb{I}_{C1} \cdot \gamma \cdot \phi(s'_{i}))^{T}) \cdot \mathbf{w}^{*} = \gamma \cdot \sum_{i} \mathbb{I}_{C2} \cdot \phi(s_{i}) \cdot g(s'_{i})$$

LSPI customized for American Options Pricing

• This can be written in the familiar vector-matrix notation: $\mathbf{A} \cdot \mathbf{w}^* = \mathbf{b}$

$$oldsymbol{A} = \sum_i \phi(s_i) \cdot \left(\phi(s_i) - \mathbb{I}_{C1} \cdot \gamma \cdot \phi(s_i')
ight)^T$$

$$m{b} = \gamma \cdot \sum_i \mathbb{I}_{C2} \cdot \phi(s_i) \cdot g(s_i')$$

• $m \times m$ Matrix **A** is accumulated at each atomic experience (s_i, s'_i) as:

$$m{A} \leftarrow m{A} + \phi(s_i) \cdot (\phi(s_i) - \mathbb{I}_{C1} \cdot \gamma \cdot \phi(s_i'))^T$$

• m-Vector \boldsymbol{b} is accumulated at each atomic experience (s_i, s_i') as:

$$m{b} \leftarrow m{b} + \gamma \cdot \mathbb{I}_{C2} \cdot \phi(s_i) \cdot g(s_i')$$

21 / 24

• Sherman-Morrison incremental inverse of **A** can be done in $O(m^2)$

Feature functions

- Li, Szepesvari, Schuurmans recommend Laguerre polynomials (first 4)
- Over $M_t = S_t/K$ where S_t is underlying price and K is strike

•
$$\phi_0(S_t) = 1, \phi_1(S_t) = e^{-\frac{M_t}{2}}, \phi_2(S_t) = e^{-\frac{M_t}{2}} \cdot (1 - M_t), \phi_3(S_t) = e^{-\frac{M_t}{2}} \cdot (1 - 2M_t + M_t^2/2)$$

- They used these for Longstaff-Schwartz as well as for LSPI
- For LSPI, we also need feature functions for time
- They recommend $\phi_0^{(t)}(t) = \sin(\frac{\pi(T-t)}{2T}), \phi_1^{(t)}(t) = \log(T-t), \phi_2^{(t)}(t) = (\frac{t}{T})^2$

Deep Q-Learning for American Pricing

- LSPI is data-efficient/compute-efficient, but linearity is a limitation
- Alternative is (incremental) Q-Learning with neural network approx
- We employ the same set up as LSPI (including Experience-Replay)

$$\hat{Q}(s, a; \mathbf{w}) = \begin{cases} f(s; \mathbf{w}) & \text{if } a = c \\ g(s) & \text{if } a = e \end{cases}$$

where $f(s; \mathbf{w})$ is the deep neural network function approximation

• Q-Learning update for each atomic experience (s_i, s'_i)

$$\Delta \mathbf{w} = \alpha \cdot (\gamma \cdot \hat{Q}(s_i', \pi(s_i'); \mathbf{w}) - f(s_i; \mathbf{w})) \cdot \nabla_{\mathbf{w}} f(s_i; \mathbf{w})$$

• When s'_i is a non-terminal state, the update is:

$$\Delta \mathbf{w} = \alpha \cdot (\gamma \cdot \max(\mathbf{g}(\mathbf{s}_i'), f(\mathbf{s}_i'; \mathbf{w})) - f(\mathbf{s}_i; \mathbf{w})) \cdot \nabla_{\mathbf{w}} f(\mathbf{s}_i; \mathbf{w})$$

• When s'_i is a terminal state, the update is:

$$\Delta \mathbf{w} = \alpha \cdot (\gamma \cdot \mathbf{g}(\mathbf{s}_i') - f(\mathbf{s}_i; \mathbf{w})) \cdot \nabla_{\mathbf{w}} f(\mathbf{s}_i; \mathbf{w})$$

Key Takeaways from this Chapter

- Batch RL makes efficient use of data
- DQN uses Experience-Replay and fixed Q-learning targets, avoiding the pitfalls of time-correlation and semi-gradient
- LSTD is a direct (gradient-free) solution of Batch TD Prediction
- LSPI is an off-policy, experience-replay Control Algorithm using LSTDQ for Policy Evaluation
- Optimal Exercise of American Options can be tackled with LSPI and Deep Q-Learning algorithms