STUDENT ID NO

		$\overline{}$			
	1 1	E			
- 1		ı			
ſ			1		
				1 1	

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

TSW 3241 – SEMANTIC WEB TECHNOLOGY

(All sections / Groups)

8 March 2018 2:30pm – 4:30pm (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of NINE pages, which includes the front cover, with FIVE Questions only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please print all your answers in the answer booklet provided, and start each question on a new page.

Question 1 [10 marks]

- (a) Explain the following terminology:
 - (i) Semantic technology
 - (ii) Partonomy

[2 marks]

- (b) The World Wide Web (WWW) is penetrating human society.
 - (i) Two domains of WWW application are administration and social contacts. List and then explain an example of WWW application in each of these two domains.

 [4 marks]
 - (ii) Explain TWO limitations of WWW.

[2 marks]

(c) A schema knowledge can be represented as either a taxonomy or a partonomy. Provide an example of taxonomy and an example of partonomy.

[2 marks]

Question 2 [10 marks]

- (a) A claim is made that "XML revolutionises software development".
 - (i) List an advantage of using Extensible Markup Language (XML)?

(ii) What are THREE features of a well-formed XML document?

[1 mark]
[3 marks]

(i) Convert the tree structure above into an XML document. Assume in this document, a tag can bear with only an attribute.

[4 marks]

- (ii) By referring to your answer from (i),
 - assign a tag length with an attribute name duration.
 - assign a tag singer with an attribute name name.

What version is this XML document?

[2 marks]

Question 3 [10 marks]

(a) A document in a Resource Description Framework (RDF) is written as follows:

```
<rdf:RDF
  xmlns:rdf="http://www.w3.orf/1999/02/22-rdf-syntax-ns#"
  xmlns:rdfs="http://www.w3.org/2000/010rdf-schema#"
  xmlns:iswww="http://un.org/#"
<rdf:Description rdf:about="http://un.org/#portugal">
  <rdf:type rdf:resource="http://un.org/#country"> />
</rdf:Description>
<rdf:Description rdf:about="http://un.org/#capital_of">
  <rdf:type
   rdf:resource="http://www.w3.orf/1999/02/22-rdf-syntax-ns#Property" />
  <rdfs:domain rdf:resource="http://un.org/#city"/>
  <rdfs:range rdf:resource="http://un.org/#country"/>
</rdf:Description>
<rdf:Description rdf:about="http://un.org/#country">
  <rdf:type_rdf:resource="http://www.w3.org/2000/010rdf-schema#Class" />
  <rdfs:label xml:lang"pt">Pais</rdfs:label>
</rdf:Description>
<rdf:Description rdf:about="http://un.org/#lisboa">
  <rdfs:label xml:lang="en">Lisbon</rdfs:label>
  <rdf:type rdf:resource="http://un.org/#city"/>
  <iswww: city_of rdf:resource="http://un.org/#" />
</rdf:Description>
<rdf:Description rdf:about="http://un.org/#city">
 <rdf:type rdf:resource="http://www.w3.org/2000/010rdf-schema#Class"/>
 <rdfs:label xml:lang"pt">Citade</rdfs:label>
</rdf:Description>
</rdf:RDF>
```

- Describe in natural language the content of this document.
- (ii) Draw the graph representation of this document.

[3 marks]

[5 marks]

Question 3 (continued...)

(b) Given the following listing:

Write the listing above in Turtle syntax.

[2 marks]

Question 4 [10 marks]

- (a) One of the species of Web Ontology Language (OWL) is OWL Lite.
 - (i) What is this OWL Lite?

[1 mark]

(ii) State two advantages of OWL Lite.

[2 marks]

(iii) State one disadvantage of OWL Lite.

[1 mark]

- (b) Another species of OWL is OWL Description Logic (OWL DL). Use OWL DL to model the following sentences.
 - (i) The class whale is a subclass of mammal.

[2 marks]

(ii) Every bread has at least three toppings.

[4 marks]

Question 5 [10 marks]

(a) Given the following predicate logic formulae:

 $Lady(x) \wedge Tea(y) \wedge Loves(x, y) \wedge Loves(x, coffee) \rightarrow Smart(x) \wedge Hardworking(x)$

(i) Translate the formulae into a datalog rule.

[2 marks]

(ii) Translate the formulae into SROIQ.

[2 marks]

(b) Given the following knowledgebase:

Member ⊆ ∃presents. Workshop

Workshop ⊆ ∃presentedBy.(Member ∩ Diligent)

Member(aMember)

¬Diligent(aMember)

(i) Translate the knowledgebase above into a datalog program.

[4 marks]

(ii) Identify which of the resulting rules from (b)(i) are datalog rules. Explain why.

[2 marks]

APPENDIX

1. Overview of OWL 1 Language Constructs

1.1 Header

rdfs:comment rdfs:seeAlso	owl:versionInfo owl:priorversion	owl:DeprecatedClass owl:DeprecatedProperty
rdfs:label rdfs:isDefineBy	owl:backwardCompatibleWith owl:incompatibleWith	owl:imports

1.2 Relations Between Individuals

owl:sameAs	-	owl:differentFrom	
owl:AllDifferent	together with	owl:distinctMembers	

1.3 Class Constructs and Relationships

owl:Class rdfs:subClassOf owl:intersectionOf	owl:Thing owl:disjointWith* owl:unionOf*	owl:Nothing owl:equivalentClass owl:complementOf*

1.4 Role Constructors, Relationships and Characteristics

owl:ObjectProperty	owl:FunctionalProperty	rdfs:range
rdfs:subPropertyOf	owl:inverseOf	owl:SymmetricProperty
rdfs:domain	owl:DatatypeProperty	owl:InverseFunctionalProperty
owl:TranstiveProperty	owl:equivalentProperty	

1.5 Allowed Datatypes

The standard only requires the support of xsd:string and xsd:integer

xsd:string	xsd:boolean	xsd:decimal
xsd:float	xsd:double	xsd:dateTime
xsd:time	xsd:date	xsd:gYearMonth
xsd:gYear	xsd:gMonthDay	xsd:gDay
xsd:gMonth	xsd:hexBinary	xsd:base64Binary
xsd:anyURI	xsd:token	xsd:normalizedString
xsd:language	xsd:NMTOKEN	xsd:positiveInteger
xsd:NCName	xsd:Name	xsd:nonPositiveInteger
xsd:long	xsd:int	xsd:negativeInteger
xsd:short	xsd:byte	xsd:nonNegativeInteger
xsd:unsignedLong	xsd:unsignedInt	xsd:unsignedShort
xsd:unsignedByte	xsd:integer	

2. Overview of Additional OWL 2 Language Constructs

2.1	Declaring	Individuals	

owl:NamedIndividual

2.2 Class Relationships

owl:disjointUnionOf	owl:AllDisjointClasses	owl:members	

2.3 Role Characteristics and Relationships

owl:AsymmetricProperty	owl:ReflexiveProperty
owl:IrreflextiveProperty	owl:topDataProperty
owl:topObjectProperty	owl:bottomDataProperty
owl:bottomObjectProperty	owl:AllDisjointProperty
owl:propertyDisjointWith	owl:hasKey
owl:propertyChainAxiom	owl:inverseOf

2.4 Role Restrictions

owl:maxQualifiedCardinality	owl: minQualifiedCardinality
owl:qualifiedCardinality	owl:onClass
owl:onDataRange	owl:hasSelf

2.5 Role Assignments

137		
owl:NegativePropertyAssertion	owl: sourceIndividual	
	owi. sourcemarvidual	
owl:assertionProperty	avulator cot Individual	
o missibilition topolty	owl:targetIndividual	
owl:targetValue	_	
OWI.target value		

2.6 Datatype Restrictions

owl:onDataType	owl: withRestrictions
* *	owi. with cestifulous
owl:datatypeComplementOf	
own dataly pecomplement of	

2.7 Additional Datatypes

4 .		
owl:real	owl:rational	rdf:PlainLiteral
	Owi.ianonai	rur ramulterai
rdf:XMLLiteral	readed at a Time - Ct	
Tur. Mivib Litterar	xsd:dateTimeStamp	

End of Paper