Contents

1	$\mathbf{Sm}\mathbf{c}$	ooth Convex Optimization	-
	1.1	Minimization of Smooth Functions	
		1.1.1 Smooth Convex Functions	 -

2 CONTENTS

Chapter 1

Smooth Convex Optimization

1.1 Minimization of Smooth Functions

1.1.1 Smooth Convex Functions

In this section, we consider the unconstrained minimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}),\tag{1.1.1}$$

where the objective function $f(\cdot)$ is smooth enough. \mathscr{F} represents differentiable functions.

Assumption 1.1.1

For any $f \in \mathcal{F}$, the first-order optimality condition is sufficient for a point to be a global solution to 1.1.1

Assumption 1.1.2

If
$$f_1, f_2 \in \mathscr{F}$$
 and $\alpha, \beta \ge 0$, then $\alpha f_1 + \beta f_2 \in \mathscr{F}$.

Assumption 1.1.3

Any linear function $l(\boldsymbol{x}) = \alpha + \langle , \boldsymbol{x} \rangle$