UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Laboratorio de Cálculo Integral

Nombre del Alumno	Diego Joel Zuñiga Fragoso	Grupo	514
Fecha de la Práctica	22/05/2023	No Práctica	10
Nombre de la Práctica	Volumen de sólidos en revolución		
Unidad	Aplicaciones de la Integral		

OBJETIVOS

Aplicar el concepto de integral definida para obtener el área entre curvas y el volumen de sólidos en revolución

EQUIPO Y MATERIALES

Computadora y el programa Scientific workplace

DESARROLLO

Volumen de sólidos en revolución

Dadas dos funciones f(x) y g(x), encontrar el volumen generado al girar el área contenida entre sus gráficas en el intervalo [a, b]

Utilizando el programa Scientific WorkPlace, grafica en 2D las funciones dadas en el mismo sistema cartesiano para visualizar la región limitada entre las funciones y los límites del intervalo.

Grafica el volumen generado al girar la región respecto a alguno de los 2 ejes escribiendo (x,0,0) si se gira respecto al *eje X* ó (0,y,0) si se gira sobre el *eje Y* **Compute>Plot 3D>Tube**

Selecciona la imagen de la gráfica y utilizando **Plot properties>Item ploted>Add item** escribe la(s) funciones que limitan la región en el espacio **Radius.**

Define la integral definida que permite calcular el volumen generado

Si los discos se forman sobre el eje X, utiliza la expresión: $V = \pi \int_{x_i}^{x_2} ([f(x)]^2 - [g(x)]^2) dx$

Si los discos se forman sobre el eje Y, utiliza la expresión $V = \pi \int_{y_1}^{y_2} \left(\left[f(y) \right]^2 - \left[g(y) \right]^2 \right) dx$

1.
$$y = x^2 - 4x$$
, $y = 0$; Se gira sobre eje: X

2.
$$y = \frac{1}{x}$$
, $x = 1$; $x = 3$; $y = 0$; Se gira sobre eje: X

$$v = \int_1^3 \pi(\frac{1}{x})^2 dx = 2\pi$$

3.
$$y = x^3$$
, $y = -2$; $x = -2$; Se gira sobre eje: X

(x, 0, 0)

$$x^3 = -2$$
, Solution is: $-\sqrt[3]{2}$
 $\pi \int_{-2}^{-\sqrt[3]{2}} ((x^3)^2 - (-2)^2) dx = \pi \left(\frac{24}{7}\sqrt[3]{2} + \frac{72}{7}\right) = 45.88435$

4.
$$y = x^3$$
, $y = -2$; $x = -2$; Se gira sobre eje: Y

(x, 0, 0)

 $x^3 = -2$, Solution is: $-\sqrt[3]{2}$ $2\pi \int_{-2}^{-\sqrt[3]{2}} x(x^3) dx = -2\pi \left(\frac{2}{5}2^{\frac{2}{3}} - \frac{32}{5}\right) = 36.22281$

5. $y = \sqrt{1 - x^2} + 2$, $y = -\sqrt{1 - x^2} + 2$; $-1 \le x \le 1$ Se gira sobre eje: X

(x, 0, 0)

 $\sqrt{1-x^2} + 2 = -\sqrt{1-x^2} + 2$, Solution is: -1, 1

$$\pi \int_{-1}^{1} \left((\sqrt{1-x^2} + 2)^2 - (-\sqrt{1-x^2} + 2)^2 \right) dx = 4\pi^2 = 39.47842$$

Explica en qué casos fue necesario utilizar rectángulos verticales, en cuáles rectángulos horizontales y cuándo fue necesario dividir la región en 2 o más sub-regiones para calcular el área entre las curvas.

Cuando la función gira en el mismo eje de la variable independiente, se utiliza el método de capas o anillos, y cuando gira al lado de la variable dependiente se utiliza el método de cascaron.

CONCLUSIONES

Aunque aun me quedan algunas dudas sobre este tema, esta practica me ayudo a comprenderlo mejor y evitar errores.

EVALUACIÓN DE LA PRÁCTICA

Se evaluará el documento con los datos solicitados, las gráficas y conclusiones enviado a través del Campus Virtual