Sleep signature project

Goals:

I) Demonstrate sleep state is encoded in gene expression matrix

II) Find subset of genes encoding this state (~feature selection)

Data generation:

Monitor animals with ethoscope platform > sample @ diff ZT and cond > SCS > analysis with Kris Davie's scanpy pipeline (documented on his notebook) > .h5ad import

Proposal:

Train MLP with different architectures on the same datasets:

6 different clusters: y, ab, abp, AST, EG, SG

Consider:

- * 1 timepoint (ZT20) → remove circadian effects
- * 2 conditions (sleep vs sleep deprivation) → simplicity
- * 2 DGRP lines (303 and 88) → minimise DGRP effec

ARCH:200-100-10

sklearn.neural_network.MLPClassifier defaults

ARCH:50-25-5

sklearn.neural_network.MLPClassifier defaults

ARCH:3-2-1

sklearn.neural_network.MLPClassifier defaults

1320 genes, y KCs, 69.5 % accuracy

Conclusions

* State partially predictable

*Predictable on some clusters, not others (!)

* Technical effect very predictable with simple model

Conclusions

- * Remove technical components?
- → SVD, ...?

- * Is state still predictable after that?
- → Evidence of state encoding

* Better models? Autoencoder, etc

2) Find subset of genes

- * DEA: Wilcoxon rank test
- → (already done by Joana)
- * Feature selection of genes? Which genes support state prediction?
- → *in silico* gene knockdown