MA 214: Introduction to numerical analysis (2021–2022)

Tutorial 1

(January 12, 2022)

- (1) Find the 4-th Taylor $P_4(x)$ polynomial for the function $f(x) = xe^{x^2}$ at x = 0.
- (2) Let $f(x) = (1-x)^{-1}$. Find the n-th Taylor polynomial $P_n(x)$ for f(x) about x = 0.
- (3) For f(x) and $P_n(x)$ as in the above problem, find a value of n such that $P_n(x)$ approximates f(x) to within 10^{-6} on [0,0.5].
- (4) If we use k digits and the chopping method to approximate a real number $y \neq 0$ then prove that the relative error is $\leq 10^{-k+1}$.
- (5) If we use k digits and the rounding method to approximate a real number $y \neq 0$ then prove that the relative error is $\leq 0.5 \times 10^{-k+1}$.
- (6) Suppose $x=\frac{5}{7}$ and $y=\frac{1}{3}$. Use five-digit chopping to compute $x\oplus y$, $x\ominus y$, $x\otimes y$ and $x\oplus y$. Compute the absolute and the relative errors in the above 4 operations.
- (7) Let p=0.546217 and q=0.546201. Use five-digit arithmetic to compute $p\ominus q$ and determine the absolute and the relative errors using the methods of chopping and rounding. Compute the number of significant digits in both these methods for the result.
- (8) Consider the quadratic equation $x^2 62.10x + 1 = 0$ whose roots are (approximately) $x_1 = -0.01610723$ and $x_2 = -62.08390$.

Use the four-digit rounding arithmetic to compute the roots using the formula

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Compute the absolute and the relative errors.

(9) Evaluate $f(x) = x^3 - 6.1x^2 + 3.2x + 1.5$ at x = 4.71 using three-digit arithmetic in both the chopping and the rounding methods. Compute the absolute and the relative errors.