BINARY ADDER-SUBTRACTOR

Half Adder

 Circuit needs two binary inputs and two binary outputs

Half Adder

X	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

- Two half adders can be used to construct a full adder
- $S=x'y+xy'=x\oplus y$

$$S = x'y + xy'$$
$$C = xy$$

- Addition of n-bit binary numbers requires the use of a full adder
- Addition proceeds on a bit-by-bit basis
- Right to left, beginning with the least significant bit
- Must consider a possible carry out from the previous position

- A full adder add three bits and produces two output
- Input variables, denoted by x and y, represent the two significant bits to be added
- The third input, z , represents the carry from the previous lower significant position
- Output bits are Sum and carry

-		
ru		

X	y	Z	C	5
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$C = xy + xz + yz$$

X	y	Z	C	5
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

(a)
$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$C = xy + xz + yz$$

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$C = xy + xz + yz$$

$$S = z \oplus (x \oplus y)$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$
$$(x \oplus y) z + xy$$

- Constructed with full adders connected in cascade
- Output carry from each full adder connected to the input carry of the next full adder in the chain
- •Addition of *n-bit numbers requires a chain of n full* adders

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_i
Output carry	0	0	1	1	C_{i+1}

4/08/2020 UCS1301 DPSD 11

Ripple Carry Adder

Parallel Adders

- Reduce the carry propagation delay
 - Employ faster gates
 - Look-ahead carry (more complex mechanism, yet faster)
 - Carry propagate: $P_i = A_i \oplus B_i$
 - Carry generate: $G_i = A_i B_i$
 - Sum: $S_i = P_i \oplus C_i$
 - Carry: $C_{i+1} = G_i + P_i C_i$
 - $-C_0 = Input carry$
 - $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0)_{C_i C_i}$

$$- C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

Carry Propagation

P_i is the carry Propagator G_i is the carry Generator

$$P_i = A_i \oplus B_i$$

$$G_i = A_i B_i$$

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

Carry Propagation

Let's look at the carry out equations for specific bits, using the general equation from the previous page C_{i+1} = G_i + P_iC_i.

$$C_{1} = G_{0} + P_{0}C_{0}$$
Ready to see the circuit?

$$C_{2} = G_{1} + P_{1}C_{1}$$

$$= G_{1} + P_{1}(G_{0} + P_{0}C_{0})$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2}$$

$$= G_{2} + P_{2}(G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0})$$

$$= G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3}C_{3}$$

$$= G_{3} + P_{3}(G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0})$$

$$= G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0}$$

 These expressions are all sums of products, so we can use them to make a circuit with only a two-level delay.

Carry Lookahead Logic

Carry Lookahead adder

Carry Propagate Adder

Half Subtractor

Inputs		Outputs		
X	Y	D	Bout	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

$$D = X \oplus Y$$
 $B_{ ext{out}} = \overline{X} \cdot Y$.

Full Subtractor

Inputs			Ou	tputs
X	Y	B _{in}	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D=A \oplus B \oplus B_{in}$$
 and $B_{out}=A'B_{in}+A'B+BB_{in}$

Making a full subtractor from a full adder

Adder/Subtractor-2

E = 0: 4-bit adder

E = 1: 4-bit subtractor

В	Ε	B xor E	
0	0	0	E=0 Add
1	0	1	
0	1	1	E=1 Sub
1	1	0	CS

4-bit Adder: E = 0

Add A to B

That is, add A to B

$$D = A + B$$

4-bit Subtractor: E = 1

Add A to !B (one's complement) plus 1 That is, add A to two's complement of B

$$D = A - B$$

Checking Overflow

- V detects overflow
- V=0 means no overflow
- V=1 means the result is wrong because of overflow
- Overflow when adding two numbers of the same sign (both negative or positive)
- And result can not be shown with the available bits.

С3	C4	V= C3 xor C4
0	0	0
1	0	1 overflow
0	1	1 overflow
1	1	0

4-bit adder subtractor with overflow

Fig. 4-13 4-Bit Adder Subtractor

4/08/2020 UCS1301 DPSD 27