

9/13/21

for math 115 week 7

§12.6 Quadratic Surfaces

Ex: Understand the surface w/ equation $x^2 + y^2 - 2x - 6y - z + 10 = 0$

Solution: First we will rewrite the equation (via completing the square)

$$x^2 + y^2 - 2x - 6y - z + 10 = 0$$

$$(x^2 - 2x) + (y^2 - 6y) - z + 10 = 0$$

$$(x^2 + 2(-1)x + (-1)^2) + (y^2 + 2(-3)y + (-3)^2) - z + 10 = 0$$

$$(x-1)^2 - (-1)^2 + (y-3)^2 - (-3)^2 - z + 10 = 0$$

$$(x-1)^2 + (y-3)^2 - z = 0$$

Now we analyze the equation via cross-sections
when $z = k$: $\underline{k \text{ constant}}$

$$(x-1)^2 + (y-3)^2 - k = 0$$

i.e. $(x-1)^2 + (y-3)^2 = k \leftarrow$ (ellipse, or point, or empty if k is negative)

when $y = k$: $(x-1)^2 + (k-3)^2 - z = 0$

i.e. $z = (x-1)^2 + (k-3)^2 \leftarrow$ parabola (upward facing)

when $x = k$: $(k-1)^2 + (y-3)^2 - z = 0$

i.e. $z = (k-1)^2 + (y-3)^2 \leftarrow$ parabola (upward facing)

*Conic Sections

$$\text{Ellipses } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\text{Parabolas } \frac{x^2}{a^2} + \frac{z}{c} = 0$$

Equations

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z}{c} = 0 \quad \text{Elliptic Paraboloid}$$

Name:

$$\text{Hyperboloids } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad \text{Ellipsoid}$$

Name:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z}{c} = 0 \quad \text{Hyperboloid}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{One-sheet Hyperboloid}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 \quad \text{Cone}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad \text{Two-sheet Hyperboloid}$$

§13.1: Space Curves

A space curve is a function $\vec{r}: I \rightarrow \mathbb{R}^n$
Ex: The helix is the curve $\vec{r}(t) = \langle \cos(t), \sin(t), t \rangle$

Defn: The limit of space curve $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ at time $t=a$ is the component limit provided each component limits as $t \rightarrow a$

$$\text{i.e. } \lim_{t \rightarrow a} \vec{r}(t) = \lim_{t \rightarrow a} \langle x(t), y(t), z(t) \rangle$$

$$= \left(\lim_{t \rightarrow a} x(t), \lim_{t \rightarrow a} y(t), \lim_{t \rightarrow a} z(t) \right)$$

~~Exercise: Compute $\lim_{t \rightarrow \frac{2\pi}{16}} \vec{r}(t) = \langle (1+5\sin(20t))\cos(8t), (1+5\sin(20t))\sin(8t), \cos(20t) \rangle$~~