Sustainable Product Architecture and Supplier Selection (S-PASS)

Kijung Park, Gül E. Okudan Kremer
Industrial and Manufacturing Systems Engineering
Iowa State University

Introduction

A decision support tool for considering environmental impact in product architectures and supplier identification is presented for the Cool:SLiCE Platform.

Objectives

- To develop an instrument enhancing students' class activities on sustainable product and service design modules
- To provide an easy to use and effective tool to enable students to determine product architectures and OEM suppliers with consideration of possible environmental impacts
- → Sustainable Product Architecture & Supplier Selection (S-PASS) Tool is developed based on ASIT-E*, proposed by Ye et al. (2015).
 - *Architecture & Supplier Identification Tool with Environmental impact estimation

Overview of S-PASS

Input: Sustainability Requirements New Modules New Suppliers Thresholds: Requirement Satisfaction Environmental Impact Output: Sustainable Product Architectures Sustainable Suppliers

Stucture of S-PASS

S-PASS consists of three phases to identify sustainable product architectures and their suppliers.

Main Phases of S-PASS

- 1) Phase 1: Sustainability Requirement Satisfaction of Existing Products
- Phase 2: New Module & Supplier Filtering
- 3) Phase 3: Product Architecture & Supplier Selection

S-PASS Framework

Matrix System

Environmental Indicators (Examples)

Module Related

- Recyclability
- Hazardous Material Use
- Scarce Material Use

Supplier Related

- •ISO 14001
- Environmental Friendly Packaging
- Use of Recycled Material

Phase 1 - Input

Sustainability Requirement Satisfaction of Existing Products

Objective

Identify product modules that do not satisfy sustainability requirements and functions

Input Procedure

[Step1]: Construction of Requirements – Function (RF) Matrix

- 1. Define sustainability requirements (i) for products: i = r₁, ..., r_n
- 2. Identify product functions (j) related to defined requirements: j = f1, ..., fm
- 3. Construct $RF_{ij} = contribution$ (%) of j to i; $0 \le RF_{ij} \le 1$; $RF_{i-} = 1$

[Step2]: Construction of Function – Module (FM) Matrix

- 1. Identify modules (k) in products: k = m₁, ..., m_n
- 2. Construct FM_{jk} = satisfaction level (categorical value) of k to j; 1 (poor) ≤ FM_{jk} ≤ 5 (excellent)

[Step3]: Construction of Module – Product (MP) Matrix

- 1. List considered products (p): p = p1, ..., pn
- 2. Construct **MP**_{kp} = if k is related to p \rightarrow 1, if not \rightarrow 0

Phase 1 - Output

Sustainability Requirement Satisfaction by Existing Products

Output Procedure

[Step1]: Derivation of Function – Product (FP) Matrix

- 1. $\mathbf{R}_{jk} = \text{if } \mathbf{FM}_{jk} > 0 \rightarrow 1$, if not $\rightarrow 0$: association between functions and modules
- 2. $\mathbf{FP}_{jp} = \frac{\mathbf{FM}_{jk} \times \mathbf{MP}_{kp}}{\mathbf{R}_{jk} \times \mathbf{MP}_{kp}}$: average function satisfaction levels of modules in each product
- 3. If \mathbf{FP}_{jp} is less than 3 for any $p \rightarrow j$ is not satisfied in at least one of current products

[Step2]: Derivation of Requirement – Product (RP) Matrix

- 1. $\mathbf{RP}_{ip} = \mathbf{RF}_{ij} \times \mathbf{FP}_{jp}$: satisfaction level of each sustainability requirement for each product
- 2. If \mathbf{RP}_{ip} is less than 3 for any $p \rightarrow i$ is not satisfied in at least one of current products

[Step3]: Identification of Non-Sustainable Module

- 1. List k if $\mathbf{R}_{jk} = 1$ for unsatisfied j in Step 1
- A set of identified ks shows modules in current products that are non-sustainable and should be replace d with alternatives.

Phase 2 – Input & Output

Module & Suppler Filtering

Objective

Find new modules and their suppliers to replace the non-sustainable modules from Phase 1

Input Procedure

[Step1]: Identification of New Modules and Suppliers

1. $M = \{m1, ..., m_n\}$: new modules; $S_m = \{s1, ..., s_k\}$, $m \in M$: suppliers of new modules

[Step2]: Evaluation of Environmental Sustainability of New Modules and Suppliers

- 1. Set module related sustainability indicators (Im) and supplier related sustainability indicators (Is)
 - Im and Is should be measured with ordinal or numerical values
- Evaluate each module and supplier through Im and Is

[Step3]: Determination of Thresholds for Module and Supplier Related Sustainability Indicators

1. Determine evaluation values that indicate the least acceptable levels for Im and Is

Output Procedure

[Step1]: Checking Modules and Suppliers with Thresholds of Indicators

1. Identify modules and suppliers that are evaluated with an above threshold level in any one of indicators

[Step2]: Elimination Non-Sustainable Modules and Suppliers

- Eliminate m, which do not satisfy any one of Im
- 2. Eliminate m which are provided by s, and do not satisfy any one of ls

Phase 3 - Input

Product Architecture and Supplier Selection

Objective

Identify the most sustainable product architecture and associated suppliers

Input Procedure

[Step1]: Reconstruction of Function – Module (FM) Matrix

- 1. List modules (k^*) = existing sustainable modules in Phase 1 and new sustainable modules in Phase 2
- 2. List functions (j) obtained from Phase 1
- 3. Construct FM_{jk}^* = satisfaction level (categorical value) of k to j to I; 1 (poor) $\leq FM_{jk}^* \leq 5$ (excellent)

[Step2]: Construction of Supplier – Module (SM) Matrix

- 1. List modules (k*) = existing sustainable modules in Phase 1 and new sustainable modules in Phase 2
- List all suppliers (s) providing k*
- 3. Construct **SM**_{sk*} = if k is provided by $s \rightarrow 1$, if not $\rightarrow 0$

[Step3]: Construction of Module – Architecture (MA) Matrix

- 1. List modules (k^*) = existing sustainable modules in Phase 1 and new sustainable modules in Phase 2
- 2. A detonates possible product architectures ($A = a_1, ... a_n$)
- 3. Construct **MA** k^*a = if k is considered to be used in a \rightarrow 1, if not \rightarrow 0

Phase 3 - Output

Product Architecture and Supplier Selection

Output Procedure

[Step1]: Derivation of Function – Architecture (FA) Matrix

- 1. $\mathbf{R}_{jk^*} = \text{if } \mathbf{FM}_{jk^*} > 0 \rightarrow 1$, if not $\rightarrow 0$: association between functions and modules
- 2. $\mathbf{FA}_{ja} = \frac{\mathbf{FM}_{jk^*} \times \mathbf{MA}_{k^*j}}{\mathbf{R}_{jk^*} \times \mathbf{MA}_{k^*a}}$: average function satisfaction levels of modules in each product architecture

[Step2]: Derivation of Requirement – Architecture (RA) Matrix

- 1. $\mathbf{RA}_{ia} = \mathbf{RF}_{ij} \times \mathbf{FA}_{ja}$: satisfaction level of each sustainability requirement for each product architecture
- 2. $\max(\sum_a \mathbf{RA}_{ia}) \rightarrow$ the most appropriate product architecture

[Step3]: Derivation of Supplier – Architecture (SA) Matrix

- 1. **SA**sa = **SM**sk* × **MA**k*a: suppliers required to realize each product architecture
 - If **SA**sa = 1 → the product architecture needs the supplier,
 - $= 0 \rightarrow$ the product architecture does not need the supplier