# CSE221 Data Structures Lecture 22: Sorting

Antoine Vigneron antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

December 1, 2021

- Introduction
- 2 Merge-sort
  - Merging two sorted sequences
  - Analysis
  - C++ implementation
- 3 Divide-and-conquer
- Quicksort
  - Analysis
  - Implementation

#### Introduction

- Final exam is on Wednesday 15 December, 20:00–22:00.
- Assignment 4 will be posted tonight, due on Friday next week.
- Assignment 3 was graded by Seonghyeon Jue (shjue@unist.ac.kr).
   Grading script is now available.
- Today's lecture is on sorting algorithms.
- In Lecture 5, we already saw a sorting algorithm, insertion-sort, that runs in  $O(n^2)$  time.
- Today, I will present to  $O(n \log n)$ -time sorting algorithms: Merge-sort and quicksort.
- Reference for this lecture: Textbook Chapter 11.1 and 11.2

| 85 | 24 | 63 | 45  | 17 | 31 | 96 | 50 |
|----|----|----|-----|----|----|----|----|
| 85 | 24 | 63 | 45  | 17 | 31 | 96 | 50 |
| 24 | 45 | 63 | 85) | 17 | 31 | 50 | 96 |
| 17 |    | 31 | 45  | 50 | 63 | 85 | 96 |

#### Sorting a sequence S by merge-sort

- If S has zero or one element, return S. Otherwise, split S into two sequences  $S_1$  and  $S_2$  of size n/2.
- ② Sort  $S_1$  and  $S_2$  recursively.
- **3** Merge  $S_1$  with  $S_2$ .















































Result



















Result 1 2 3 4 5 10 11 15 18

# Merging two Sorted Arrays

```
procedure Merge(S_1, S_2, S)
    i \leftarrow i \leftarrow 0
    while i < S_1.size() and j < S_2.size() do
         if S_1[i] \leq S_2[i] then
             S.insertBack(S_1[i])
                                                       \triangleright copy the ith elements of S_1
             i \leftarrow i + 1
         else
             S.insertBack(S_2[i])
                                                       \triangleright copy the ith elements of S_2
             j \leftarrow j + 1
    while i < S_1.size() do
                                              \triangleright copy the remaining elements of S_1
         S.insertBack(S_1[i])
         i \leftarrow i + 1
    while i < S_2.size() do
                                              \triangleright copy the remaining elements of S_2
         S.insertBack(S_2[j])
        i \leftarrow i + 1
```

# Merging two Sorted Sequences

- Analysis: Let  $n_1$  and  $n_2$  be the sizes of  $S_1$  and  $S_2$ , respectively.
- At each iteration of a loop, either *i* or *j* is incremented.
- So there are  $n_1 + n_2$  iterations in total.
- So the running time is  $O(n_1 + n_2)$ .

#### Proposition

Two sorted sequences can be merged in linear time.

• In the pseudocode above, we assumed that  $S_1$  and  $S_2$  are recorded in arrays. It also works if they are stored in linked lists, and still in linear time. (See textbook.)



• We just showed that the running time of merge-sort is  $O(n \log n)$  using the *recursion tree* method.

### C++ Implementation

- We present below a C++ implementation of merge-sort.
- It uses a *comparator* class. See Lecture 15.

```
template <typename E, typename C>
void mergeSort(list<E>& S, const C& less) {
 typedef typename list<E>::iterator Itor;
 int n = S.size();
 if (n <= 1)
   return;
                                        // already sorted
 list<E> S1, S2;
 Itor p = S.begin();
 for (int i = 0; i < n/2; i++)
   S1.push back(*p++);
                                 // copy first half to S1
 for (int i = n/2; i < n; i++)
   S2.push back(*p++);
                               // copy second half to S2
 S.clear();
 mergeSort(S1, less);
                           // recur on first half
 mergeSort(S2, less);
                             // recur on second half
 merge(S1, S2, S, less);
                            // merge S1 and S2 into S
```

```
template <typename E, typename C>
void merge(list<E>& S1, list<E>& S2, list<E>& S,
           const C& less) {
 typedef typename list<E>::iterator Itor;
  Itor p1 = S1.begin();
 Itor p2 = S2.begin();
  while(p1 != S1.end() && p2 != S2.end()) {
    if(less(*p1, *p2))
      S.push back(*p1++);
    else
      S.push back(*p2++);
  while(p1 != S1.end())
    S.push back(*p1++);
  while(p2 != S2.end())
  S.push back(*p2++);
```

### Divide-and-Conquer

• Merge-sort is an example of a *divide-and-conquer* algorithm. It is a general approach to algorithm design.

#### Divide-and-Conquer

The divide-and-conquer approach consists of three steps:

- **Divide:** If the input size is smaller than a certain threshold (say, one or two elements), solve the problem directly using a straightforward method and return the solution obtained. Otherwise, divide the input data into two or more disjoint subsets.
- **Recur:** Recursively solve the subproblems associated with the subsets.
- **Conquer:** Take the solutions to the subproblems and "merge" them into a solution to the original problem.
- We now give another example: Quicksort.









3. Concatenate

- Quicksort sorts a sequence S as follows:
- **1 Divide**: If  $|S| \ge 2$ , choose an element  $x \in S$ , called the *pivot*. Usually x is the last element in S. Remove all the elements from S and put them in three sequences:
  - $\triangleright$  L, storing the elements in S less than x.
  - $\triangleright$  *E*, storing the elements in *S* equal to *x*.
  - $\triangleright$  G, storing the elements in S greater than x.
- **2 Recur**: Recursively sort sequences *L* and *G*.
- **Onquer**: Put back the elements into S in order by first inserting the elements of L, then those of E, and finally those of G.
  - Next slide presents pseudocode for an input sequence implemented as an array or a linked list.

```
procedure QUICKSORT(S)
   if S.size() \leq 1 then return
   p \leftarrow S.\mathsf{back}().\mathsf{element}()

    b the pivot

   L, E, G \leftarrow empty list-based sequences
   while S.empty() do \triangleright scan S backwards and split in L, E, G
       if S.back().element() < p then
           L.insertBack(S.eraseBack())
       else if S.back().element() = p then
           E.insertBack(S.eraseBack())
       else
           G.insertBack(S.eraseBack())
   QuickSort(L)

    ▶ recur on elements 
   QuickSort(G)
                                                  \triangleright recur on elements > p
   while !L.empty() do S.insertBack(L.eraseFront())
   while !E.empty() do S.insertBack(E.eraseFront())
   while !G.empty() do S.insertBack(G.eraseFront())
   return
```

- Let T(n) denote the running time of Quicksort. Let  $s_i$  denote the total size of the nodes at depth i in the recursion tree.
- We have  $s_i \leqslant n-i$  for all i, because the pivots at level i disappear at level i+1.
- So the total time spent at level i is at most  $Cs_i \leq C(n-1)$  for some constant C.
- It follows that

$$T(n) \leqslant C(n + (n-1) + \dots + 2 + 1)$$
  
=  $C\frac{n(n+1)}{2} = O(n^2)$ 

• So Quicksort is quadratic in the worst case.

- The analysis in previous slide is in the *worst case*, when there is one pivot chosen at each level of the recursion tree.
- It means that the pivot x is always the largest element of the array.
- It could happen in practice if the input array is already sorted.

#### Proposition

The worst-case running time of Quicksort is  $\Theta(n^2)$ .

- What about the best case?
- Suppose that the pivot *x* always falls in the middle of the current subsequence.
- Then the running time satisfies

$$T(n) = 2T(n/2) + O(n).$$

• It solves to  $T(n) = O(n \log n)$  because it is the same as merge-sort.

#### Proposition

The best-case running time of Quicksort is  $\Theta(n^2)$ .

#### Randomized Quicksort

 Now suppose that we always pick x at random in the current sequence. What is the probability that x is always the largest element in all the arrays on which we recurse? Answer:

$$\frac{1}{n} \times \frac{1}{n-1} \times \dots \times \frac{1}{2} = \frac{1}{n!}$$

- So the worst case is extremely unlikely to happen.
- What about the average case?
- In half of the cases, the pivot will split S into two sequences of sizes in [n/4, 3n/4]. We say that it is a *good* pivot.



### Randomized Quicksort

- With probability 1/2, the pivot is good and the size of the subsequences we recurse on shrinks by a factor at least 4/3.
- So intuitively, the depth of the recursion tree is  $O(\log n)$ .
- I will not prove it in this course. See textbook, or CSE331: Introduction to Algorithms.

#### Proposition

The expected running time of randomized Quicksort is  $O(n \log n)$ .

- This is an average-case analysis. Here the average is over the random choices of the algorithm: Even on worst-case input, randomized Quicksort is expected to run in  $O(n \log n)$  time.
- It can also be shown that it is  $O(n \log n)$  with high probability.
- This is why Quicksort is very fast in practice.

#### **Implementation**

- Our implementation of merge-sort requires to create, in addition to the input sequence *S*, three additional sequences *L*, *E*, and *G*.
- The sum of their sizes is n.
- So merge-sort uses O(n) space in addition to the size of the input.
- On the other hand, it is possible to implement Quicksort in such a way that it uses only O(1) space in addition to the input array.
- We say that such an implementation of Quicksort is in-place.
- This is one reason why Quicksort is very efficient in practice: it uses very little space.
- Next slide gives the C code of in-place Quicksort.
- More detailed explanation are given in the textbook, or CSE331: Introduction to Algorithms.

```
void qsort(int v[], int left, int right){
   int i, last;
   void swap(int v[], int i, int j);
   if (left >= right)
      return:
   swap(v, left, (left + right)/2);
   last = left:
   for (i = left + 1; i <= right; i++)
      if (v[i] < v[left])
         swap(v, ++last, i);
   swap(v, left, last);
   qsort(v, left, last-1);
   qsort(v, last+1, right);
void swap(int v[], int i, int j){
   int temp; temp = v[i]; v[i] = v[j]; v[j] = temp;
```