神经网络压缩-剪枝方法的分析与探究

主要内容

- 模型压缩的方法介绍
- 5种经典剪枝方法的分析
- 目前我的研究进展

模型压缩的几种方法介绍。

- 1.参数共享。主要思想就是让几个参数共享一个值。(比如哈希网络等)
- 2.量化。量化主要思想是降低权重所需要的比特数来压缩原始网络
 - 3.网络分解。主要思想就是将一个大的二维矩阵,分解成三维卷 积核或者使用多个一维张量外积求和。
- 4.轻量化网络设计。MobileNet,ShuffleNet等
- 我们涉及的方法。
- 1.蒸馏
- 2.剪枝

知识蒸馏

知识蒸馏就是用教师网络的输出信息,指导学生网络参数的训练。

- Hinton 等引入知识蒸馏压缩框架,使用教师模型最终 softmax 的输出对学生模型的输出进行监督,使得教师模型的信息可以传递到学生模型中。知识蒸馏算法虽然简单,但在各种图像分类任务中显示出良好效果。
- Romero 等提出当模型层数较多时,直接使用教师模型的输出对学生模型进行监督会比较困难,因此提出 Fitnets 模型,将教师模型的中间层输出作为对学生模型的中级监督信息。马师兄的论文,就是用到了中间层学习。
- 我们做的kjw的项目,训练方法上就用了hinton的知识蒸馏训练网络。

知识蒸馏[hinton]:

学习方法:
$$L_{kd}(t,s) = (1-\alpha)L_{CE}(y,\sigma(s)) + 2T^2L_{kl}(\sigma(\frac{t}{T}),\sigma(\frac{s}{T}))$$

类别	牛	狗	猫	汽车
硬目标	0	1	0	0
Softmax 输出	10^{-6}	0.9	0.1	10^{-9}
软化目标	0.05	0.3	0.2	0.005

Hinton14年的文章使用软化目标体现不同类别 之间的相似性,增加了监督信息,因此准确度 更好,如图狗与猫和牛的接近程度远大于狗与 汽车,软化目标在在数值上也能够体现。

剪枝方法介绍

• 剪枝的主要思想:

现代深度神经网络使用参数已足够强大的模型,这些模型的参数有一定冗余的参数,甚至有对模型表现力贡献度影响不大的参数。因此我们可以对模型进行剪枝。剪枝的本质就是,找到这些冗余参数,或者是对模型贡献度不大的参数进行删减。因此可以将剪枝归结于,对模型参数的贡献度做一个排序,删除不重要的,留下重要的参数。

- 剪枝分类
- 1.稀疏化剪枝(非结构化剪枝)
- 2.结构化剪枝(卷积核和filter剪枝。)

稀疏化剪枝

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN CODING 2016ICLR 很多奖

- 在初始化训练阶段后,我们通过移除权重低于阈值的连接而实现 DNN 模型的剪枝,这种剪枝将密集层转化为稀疏层。
- 稀疏化剪枝的优劣性:

局限性:稀疏化剪枝能够大大压缩结构的参数量。但是DNN是卷积操作。虽然稀疏了矩阵,但是矩阵的计算量在没有通过三方的加速方法下,并没有直接实质性的对DNN的操作进行加速。

优势:由于在剪枝过程中,没有相关结构性的限制,剪枝可以大大剪掉参数量,韩松的论文中能够实现指标35-49倍,而模型的表现型没有损失

图中蓝色的方块,表示阀值以上的权重,**0**表示阀值以下的权重,应当删除,后来论文实验表明,这种训练过程除了可以学习神经网络的权重外,还可以学习神经元间的连通性。(既神经网络之间的结构关系。)

结构化剪枝

• 为了能够对神经网络能够直接加速,目前文章中大部分的剪枝方式都采用结构化的剪枝方式。结构化剪枝由于在剪枝过程中有结构之间的限制,所以结构化剪枝剪枝的比例,没有非结构化剪枝的比例大。目前最好的能做到,剪掉resnet50/101百分之40精度损失1个点多一点。

经典论文分析:

PRUNING FILTERS FOR EFFICIENT CONVNETS——2017 ICLR

指标: 在CIFAR10上, VGG-16的推理成本可降低高达34%, ResNet-110最高可降低38%, 同时通过重新训练网络恢复接近原始精度。

这篇文章提出了使用卷积核L1正则化的思路来判断卷积核的重要性。后续发展出了L0,L2正则化的剪枝方法。

这篇文章剪枝步骤如下:

- 1.对每个卷积核F, 计算他的权重绝对值 之和s:
- 2.根据s的大小在每一层卷积中进行排序 3.将m个卷积和s最小的卷积核以及对应 的feature maps 剪掉。下一个卷积层中 与剪掉的feature maps相对应的核也要移 除;

Learning Efficient Convolutional Networks through Network Slimming 2017 ICCV

- batch normalization(BN)——在每次SGD时,通过mini-batch来对相应的activation做规范化操作,使得结果(输出信号各个维度)的均值为0,方差为1.而在这个规范操作过程中,就会对每一层的channel产生一个缩放因子γ
- Network slimming,利用BN层中的缩放因子γ,在训练过程当中来衡量channel的重要性,将不重要的channel进行删减,达到压缩模型大小,提升运算速度的效果。 看一下模型图,左边为训练当中的模型,中间一列是scaling factors,也就是BN层当中的缩放因子γ,当γ较小时(如图中0.001,0.003),所对应的channel就会被删减,得到右边所示的模型。 道理非常简单,而且巧妙的将γ增加到目标函数中去,达到了一边训练一边剪枝的奇效。

使得在训练过程中,loss减少的同时缩放因子也跟着减少,这个 创新,后来的很多文章都借鉴了这个思想,将权重或者其他的加入到loss中, 使得训练过程中权重w更加稀疏话,能够更好的剪枝。

Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks IJCAI 2018的关于模型加速压缩的文章

这篇文章思想简洁而且有效,主要是和Hard Filter Pruning(HFP)做对比,HFP是比较常见的剪枝方式,一般是按照某些指标对卷积核进行排序,然后直接剪掉不符合指标的卷积核,然后做fine tune,fine tune的时候网络中就不包含那些被剪掉的卷积核。这篇文章主要提出了通过Soft Filter Pruning (SFP)做模型加速,SFP和HFP的不同点在于剪掉的卷积核依然参与下一次迭代更新,而并不是剪掉一次就永远没有了,而且SFP在不采用fine tune的情况下依然能够有不错的效果,因为SFP在每个epoch结束后会进行剪枝,剪枝后就会再训一个epoch,然后继续剪枝,

- 1.这篇文章卷积核的判断他是采用L2, 正则化的方法。
- 2.文章在训练过程中,使用了加mask的方法。

图中表示,网络中每一个权重w乘m (0,1)

如果改卷积核通过L2的正则化判断以后是需要删除的卷积核,那么就将m设置为0,表示该卷积核删除。如果该卷积核需要保留,就设置为1.

这种剪枝方法,在训练过程既是剪枝过程,不依赖预训练过程,关键指标如下:

网络	drop (30%)
res18	3.18
res50	0.84
res101	-1.4

Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration 2019 cvpr

- 文章指出,之前的剪枝评价指标,都是通过范数来判断卷积核的重要性,这实际上包含两 个隐含条件1)范数标准差足够大;2)最小的范数接近于0。
- 文章提出了一种基于几何中心滤波器评价指标(FPGM)

(a) Criterion for filter pruning

文章通过判断filter之间的欧几里得距离, 创造性删除距离较近的filter (既是图中的中位数filter) 文章对为什么要这样删除filter做出来解释: 对每一层的feature maps做出可视化,我们可以发现, 欧式距离比较近的两个filter之间是比较相似的。我们可 以认为,相似的两个filter之间的信息会有冗余。

剪枝目前state-of-theart

Depth	Method	Fine- tune?	Baseline top-1 acc.(%)	Accelerated top-1 acc.(%)	Baseline top-5 acc.(%)	Accelerated top-5 acc.(%)	Top-1 acc. ↓(%)	Top-5 acc. ↓(%)	FLOPs↓(%)
18	MIL [5]	×	69.98	66.33	89,24	86.94	3,65	2.30	34.6
	SFP [15]	×	70.28	67.10	89.63	87.78	3.18	1.85	41.8
	Ours (FPGM-only 30%)	×	70,28	67.78	89.63	88.01	2.50	1.62	41.8
	Ours (FPGM-mix 30%)	×	70.28	67.81	89.63	88.11	2.47	1.52	41.8
	Ours (FPGM-only 30%)	-/-	70.28	68.34	89.63	88.53	1.94	1.10	41.8
	Ours (FPGM-mix 30%)	1	70.28	68.41	89.63	88.48	1.87	1.15	41.8
	SFP [15]	X	73.92	71.83	91.62	90.33	2.09	1.29	41.1
	Ours (FPGM-only 30%)	×	73.92	71.79	91.62	90.70	2.13	0.92	41.1
	Ours (FPGM-mix 30%)	×	73,92	72.11	91.62	90.69	1.81	0.93	41.1
34	PFEC [21]	-7-	73.23	72.17		:	1.06		24.2
	Ours (FPGM-only 30%)	1	73.92	72.54	91.62	91.13	1.38	0.49	41.1
	Ours (FPGM-mix 30%)	1	73.92	72.63	91.62	91.08	1.29	0.54	41.1
	SFP [15]	×	76,15	74.61	92.87	92.06	1.54	0.81	41.8
	Ours (FPGM-only 30%)	×	76.15	75.03	92.87	92.40	1.12	0.47	42.2
	Ours (FPGM-mix 30%)	×	76.15	74.94	92.87	92.39	1.21	0.48	42.2
	Ours (FPGM-only 40%)	X	76,15	74.13	92.87	91.94	2.02	0.93	53.5
	ThiNet [25]	-/	72.88	72.04	91.14	90.67	0.84	0.47	36.7
50	SFP [15]	1	76.15	62.14	92.87	84.60	14.01	8.27	41.8
	NISP [39]	1	-	-	-	-	0.89	-	44.0
	CP [16]	1	-	-	92.20	90.80	-	1.40	50.0
	Ours (FPGM-only 30%)	1	76.15	75.59	92.87	92.63	0.56	0.24	42.2
	Ours (FPGM-mix 30%)	1	76.15	75.50	92.87	92.63	0.65	0.21	42.2
	Ours (FPGM-only 40%)	1	76.15	74.83	92.87	92.32	1.32	0.55	53.5
101	Rethinking [38]	1	77,37	75.27	-		2.10	-	47.0
101	Ours (FPGM-only 30%)	1	77.37	77.32	93.56	93.56	0.05	0.00	42.2

我目前工作

• 层与层之间关系,与层间关系。

层与层之间关系,与层内关系重要性证明:

Layer1,layer2,layer3之间关系表示为层与层之间的关系(vgg16—16层,resnet50—50层) C1,c2,c3,c4,c5,c6表示层间关系。既是每一层之间各个通道之间的关系。

	L	B (164)	S	G
正常剪枝	93.1	94.92	92.26	93.43
剪枝得到层间 结构,层内随 机	92.5	94.11	91.98	93.10
随机层间结构	87.6	89.9	68.4	75.8
剪枝得到层间 用I1层内选择	92.8		92.04	93.10

图中L,B,S,G分别表示上面提到的4中结构化剪枝通过对表中数据分析:

1.随机层内结构,和随机层间结构对比,层间结构比层内结构重要的多。

2.将剪枝分为层间剪枝,和层内剪枝两部分。似乎可以 我们在剪枝过程中,优先找到层间结构,层内结构可以 通过简单的方法提升。

接下来工作

在2019年ICLR的两篇论文, [Gilpin L H](best paper),[Liu Z]。分析了剪枝过程留下来权重信息的重要性分析,

(剪枝过程,留下来的主要信息是网络之间结构信息,网络权重信息可以通过相关初始化获取)加上我上一页的ppt分析。我们似乎可以进一步得出一个结论:神经网络剪枝留下来的信息,主要是层与层之间的关系。

那么我可以将创新性的将剪枝方法,分为以下三步:

- 1.通过多种方法,剪枝相同比例。得到各自层与层之间的相互关系。
- 2.分析综合各种剪枝方法,得到每一层的剪枝比例。
- 3.然后用一个比较常见,简单的方法,选择层内之间的结构。

谢谢