Package 'temStaR'

August 31, 2020

	•
Title Tempered Stable Distribution	
Version 0.814	
Author Aaron Y.S. Kim [aut, cre], Stoyan Stoyanov [aut, cre], Minseob Kim [ctb]	
Maintainer Aaron Y.S. Kim <aaron.kim@stony< td=""><td>ybrook.edu></td></aaron.kim@stony<>	ybrook.edu>
Description This package provides useful tools to bution and process	to use the multivariate normal tempered stable distri-
License `use_mit_license()`	
Encoding UTF-8	
LazyData true	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.1.1	
Imports functional, nloptr, pracma, spatstat, Matrix Suggests functional, nloptr, pracma, spatstat, Matrix	
R topics documented:	
chf_stdNTS cvarnts dnts fitmnts fitnts fitstdnts gensamplepathnts ipnts	

chf_NTS

chf N	NTS	chf NTS			
Index					2
	setPortfolioParam		 	 	1
	rnts				
	rmnts				
	qnts				
	pnts				
	moments_stdNTS				

Description

chf_NTS calculates Ch.F of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If a time parameter value is given, it calculates Ch.F of the NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
chf_NTS(u, param)
```

Arguments

u An array of u $\mbox{A vector of the NTS parameters } (\alpha,\theta,\beta,\gamma,\mu). \mbox{ For NTS process case it is a vector of parameters } (\alpha,\theta,\beta,\gamma,\mu,t).$

Value

Characteristic function of the NTS distribution

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
```

chf_stdNTS 3

```
ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101) phi <- chf_NTS(u, ntsparam)
```

chf_stdNTS

chf_stdNTS

Description

chf_stdNTS calculates Ch.F of the standard NTS distribution with parameters (α, θ, β) . If a time parameter value is given, it calculates Ch.F of the standard NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the standard NTS process generated by the standard NTS distribution with parameters (α, θ, β) .

Usage

```
chf_stdNTS(u, param)
```

Arguments

u An array of u

ntsparam A vector of the standard NTS parameters (α, θ, β) . For the standard NTS pro-

cess case it is a vector of parameters $(\alpha, \theta, \beta, t)$.

Value

Characteristic function of the standard NTS distribution

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)

#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
u <- seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
```

4 cvarnts

cvarnts

cvarnts

Description

cvarnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter (α, θ, β)

Usage

```
cvarnts(eps, ntsparam)
```

Arguments

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS

parameters (α, θ, β) .

u Real value between 0 and 1

Value

CVaR of the NTS distribution.

References

- Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvarnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05)
q \leftarrow cvarnts(u, ntsparam)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
```

dnts 5

```
gamma <- 0.3 mu <- 0.1 #scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u <- c(0.01,0.05) q <- cvarnts(u, ntsparam)
```

dnts

dnts

Description

dnts calculates pdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates pdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates pdf of the NTS profess f(x)dx = d(P((X(t+s) - X(s)) < x)), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
dnts(xdata, ntsparam)
```

Arguments

xdata An array of x

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters

 (α, θ, β) .

Value

Density of NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
x <- seq(from = -6, to = 6, length.out = 101)
d <- dnts(x, ntsparam)
plot(x,d,type = 'l')

alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3</pre>
```

6 fitmnts

```
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x \leftarrow seq(from = -2, to = 2, by = 0.01)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x <- seq(from = -0.02, to = 0.02, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = '1')
```

fitmnts

fitmnts

Description

fitmnts fit parameters of the n-dimensional NTS distribution.

```
r=\mu+diag(\sigma)X where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{res <- fitmnts(returndata, n)}
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta)}
\code{res <- fitmnts(returndata, n, stdflag = TRUE }
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta), stdflag = TRUE}</pre>
```

Arguments

returndata	column of the matrix contains a sequence of asset returns. The number of row of the matrix is the number of assets.		
n	Dimension of the data. That is the number of assets.		
alphaNtheta	If α and θ are given, then put those numbers in this parameter. The function fixes those parameters and fits other remaining parameters. If you set alphaNtheta = NaN, then the function fits all parameters including α and θ .		
stdflag	If you want only standard NTS parameter fit, set this value be TRUE.		

fitmnts 7

Value

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-12-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-12-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata, n=2 )</pre>
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-12-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-12-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-12-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata,</pre>
                 n = 2,
                 alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
```

8 fitnts

Description

fitnts fit parameters $(\alpha, \theta, \beta, \gamma, \mu)$ of the NTS distribution. This function using the curvefit method between the empirical cdf and the NTS cdf.

Usage

```
\code{fitnts(rawdat)}
\code{fitnts(rawdat), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu))}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), maxeval = 100, ksdensityflag
```

Arguments

rawdat Raw data to fit the parameters.

initialparam A vector of initial NTS parameters. This function uses the nloptr package. If

it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN, that is default. The function cffitnts() may be helpful to find the initial parameters.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0, then the

empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)
ret <- diff(log(pr))
ntsparam <- fitnts(ret)

Femp = ecdf(ret)
x = seq(from=min(ret), to = max(ret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(ntsparam))</pre>
```

fitstdnts

```
plot(x,ncdf,type = 'l', col = "red")
points(x,cemp, type = 'l', col = "blue")
a = density(ret)
p = dnts(x,ntsparam)
plot(x,p,type = 'l', col = "red")
lines(a,type = 'l', col = "blue")
```

fitstdnts

fitstdnts

Description

fitstdnts fit parameters (α, θ, β) of the standard NTS distribution. This function using the curvefit method between the empirical cdf and the standard NTS cdf.

Usage

```
\code{fitstdnts(rawdat)}
\code{fitstdnts(rawdat), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta))}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), maxeval = 100, ksdensityflag = 1}
```

Arguments

rawdat Raw data to fit the parameters.

initialparam A vector of initial standard NTS parameters. This function uses the nloptr

package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN,

that is default.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the standard NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0,

then the empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

10 gensamplepathnts

Examples

```
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)</pre>
ret <- diff(log(pr))</pre>
stdret <- (ret-mean(ret))/sd(ret)</pre>
stdntsparam <- fitstdnts(stdret)</pre>
Femp = ecdf(stdret)
x = seq(from=min(stdret), to = max(stdret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(stdntsparam))
plot(x,ncdf,type = 'l', col = "red")
lines(x,cemp, type = '1', col = "blue")
a = density(stdret)
p = dnts(x,stdntsparam)
plot(x,p,type = 'l', col = "red", ylim = c(0, max(a$y, p)))
lines(a,type = 'l', col = "blue")
```

gensamplepathnts

gensamplepathnts

Description

gensamplepathnts generate sample paths of the NTS process with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generate sample paths of the standard NTS process with parameters (α, θ, β) .

Usage

```
gensamplepathnts(npath, ntimestep, ntsparam, dt)
```

Arguments

npath Number of sample paths $\begin{array}{ll} \text{number of sample paths} \\ \text{ntimestep} \\ \text{ntsparam} & \text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS } \\ \text{parameters } (\alpha, \theta, \beta). \\ \text{dt} & \text{the time length of one time step by the year fraction. "dt=1" means 1-year.} \\ \end{array}$

Value

Structure of the sample path. Matrix of sample path. Column index is time.

```
#standard NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
```

ipnts 11

```
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
#NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
```

ipnts

ipnts

Description

ipnts calculates inverse cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates inverse cdf of the standard NTS distribution with parameter (α, θ, β)

Usage

```
ipnts(u, ntsparam, maxmin = c(-10, 10), du = 0.01)
```

Arguments

u Real value between 0 and 1

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS parameters (α, θ, β) .

Value

Inverse cdf of the NTS distribution. It is the same as qnts function.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

12 moments_NTS

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(u,q,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q \leftarrow ipnts(u, ntsparam)
plot(x,q,type = 'l')
```

moments_NTS

moments_NTS

Description

moments_NTS calculates mean, variance, skewness, and excess kurtosis of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
moments_NTS(param)
```

Arguments

param

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. The mean is always the same as the parameter μ .

moments_stdNTS 13

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
moments_NTS(param = ntsparam)</pre>
```

moments_stdNTS

moments stdNTS

Description

moments_stdNTS calculates mean, variance, skewness, and excess kurtosis of the standard NTS distribution with parameters (α, θ, β) .

Usage

```
moments_stdNTS(param)
```

Arguments

param

A vector of the standard NTS parameters (α, θ, β) .

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. Of course, the mean and variance are always 0 and 1, respectively.

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
moments_stdNTS(param = ntsparam)</pre>
```

14 pnts

pnts pnts

Description

pnts calculates cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates cdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates cdf of the profess F(x) = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
pnts(xdata, ntsparam, dz = 2^-8, m = 2^12)
```

Arguments

xdata An array of x

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters

 (α, θ, β) .

Value

Cumulative probability of the NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
x \leftarrow seq(from = -6, to = 6, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x < - seq(from = -2, to = 2, by = 0.01)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
#Annual based parameters
alpha <- 1.2
```

qnts 15

```
theta <- 1 beta <- 0.2 gamma <- 0.3 mu <- 0.1 #scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- 0.02, to = 0.02, length.out = 0.01 p <- 0.01 pnts(x, ntsparam) plot(x,p,type = 0.01 right)
```

qnts

qnts

Description

qnts calculates quantile of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates quantile of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates quantile of NTS profess. That is it finds x such that u = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
qnts(u, ntsparam)
```

Arguments

ntsparam

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters (α, θ, β) .

vector

of probabilities.

Value

The quantile function of the NTS distribution

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- c(0.01,0.05,0.25,0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)

alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
u <- c(0.01,0.05,0.25,0.5, 0.75, 0.95, 0.99)
```

16 rmnts

```
q <- qnts(u, ntsparam)

#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
u <- c(0.01,0.05,0.25,0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
```

rmnts

rmnts

Description

rmnts generates random vector following the n dimensional NTS distribution.

```
r=\mu+diag(\sigma)X, where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
rmnts(strPMNTS, numofsample, rW = NaN, rTau = NaN)
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $trPMNTS\$: μ mean vector (column vector) of the input data.

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

 $trPMNTS\$ coincidents of the std NTS distribution (X).

numofsample number of samples.

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

rnts 17

Examples

rnts

rnts

Description

rnts generates random numbers following NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generates random numbers of standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it generates random numbers of increments of NTS profess for time interval t.

Usage

```
rnts(n, ntsparam)
```

Arguments

n number of random numbers to be generated.

ntsparam

A vector of NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$.

Value

NTS random numbers

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
alpha <- 1.2
theta <- 1</pre>
```

18 setPortfolioParam

```
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
```

setPortfolioParam

setPortfolioParam

Description

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. setPortfolioParam find the parameters of R_p .

Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}</pre>
```

Arguments

```
Structure of parameters for the n-dimensional NTS distribution.  strPMNTS$ndim: dimension \\ strPMNTS$mu: $\mu$ mean vector (column vector) of the input data. \\ strPMNTS$sigma: $\sigma$ standard deviation vector (column vector) of the input data. \\ strPMNTS$slpha: $\alpha$ of the std NTS distribution (X). \\ strPMNTS$theta: $\theta$ of the std NTS distribution (X). \\ strPMNTS$beta: $\beta$ vector (column vector) of the std NTS distribution (X). \\ strPMNTS$Rho: $\Sigma$ matrix of the std NTS distribution (X). \\
```

Value

The weighted sum follows 1-dimensional NTS.

$$R_p = \langle w, r \rangle = \mu + diag(\sigma)X,$$
 where

setPortfolioParam 19

```
X follows stdNTS_1(\alpha,\theta,\beta,1). Hence we obtain \operatorname{res\$mu}: \mu \text{ mean of } R_p. \operatorname{res\$sigma}: \sigma \text{ standard deviation of } R_p. \operatorname{res\$alpha}: \alpha \text{ of } X. \operatorname{res\$theta}: \theta \text{ of } X. \operatorname{res\$beta}: \beta X.
```

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Index

```
chf_NTS, 2
{\tt chf\_stdNTS}, {\color{red}3}
cvarnts, 4
dnts, 5
fitmnts, 6
fitnts, 8
fitstdnts, 9
{\tt gensample pathnts}, \\ 10
ipnts, \\ 11
{\tt moments\_NTS},\, \underline{12}
moments_stdNTS, 13
pnts, 14
qnts, 15
rmnts, 16
rnts, 17
setPortfolioParam, 18
```