Monte Carlo Integration Report

1. Introduction

This report explores the calculation of definite integrals using two Monte Carlo (MC) methods: the simple MC and geometric MC approaches. We examine the accuracy of these methods by calculating four integrals and plotting the error (ϵ) as a function of the total MC statistics, N_{tot} . The integrals are as follows:

1.
$$I_1=\int_{-1}^3 x\,e^{-x^2}\,dx$$

2.
$$I_2 = \int_0^2 x \sin(x^2) dx$$

3.
$$I_3=\int_{0.5}^{2.5} rac{x}{1+x^2} \, dx$$

4.
$$I_4=\int_0^1 x^2\,e^{-x^3}\,dx$$

2. Methods

We use two different Monte Carlo approaches for numerical integration:

- **Simple Monte Carlo Method:** This approach uses random sampling of points within the interval of integration, averaging the function's value at these points, and multiplying by the interval length.
- **Geometric Monte Carlo Method:** Similar to the simple MC, but uses the absolute values of the function at the random points, which can sometimes improve accuracy in certain integral types.

3. Error Calculation

The error (ϵ) for each integral I is defined as:

$$\epsilon = |I_{
m exact} - I_{
m MC}|$$

where I_{exact} is the result obtained from the exact integration using SciPy's quad function, and I_{MC} is the result from the Monte Carlo integration. This error is evaluated across several values of N_{tot} : 100, 1000, 10000, 100000, and 1000000.

4. Results and Discussion

This code calculates the exact integrals, performs Monte Carlo integration with both methods, and generates the plot for error analysis.

```
import numpy as np
     from scipy.integrate import quad
 6 def I1 exact():
          return quad(lambda x: x * np.exp(-x**2), -1, 3)[0]
 9 def I2_exact():
          return quad(lambda x: x / (1 + x^{**2}), 0.5, 2.5)[0]
         return quad(lambda x: x**2 * np.exp(-x**3), 0, 1)[0]
19 def simple monte carlo(f, a, b, N):
         random_points = np.random.uniform(a, b, N)
          return (b - a) * np.mean(f(random_points))
24 def geometric_monte_carlo(f, a, b, N):
          weights = np.abs(f(random_points))
          return (b - a) * np.sum(weights) / N
31 f2 = lambda x: x * np.sin(x**2)
32 f3 = lambda x: x / (1 + x**2)
33 f4 = lambda x: x**2 * np.exp(-x**3)
36    I_exact = [I1_exact(), I2_exact(), I3_exact(), I4_exact()]
39 N tot values = [100, 1000, 10000, 100000, 1000000]
43 eps_geometric = np.zeros((4, len(N_tot_values)))
45  # Calculate the errors for each integral and N_tot
46  functions = [f1, f2, f3, f4]
47  I_exact = [I1_exact(), I2_exact(), I3_exact(), I4_exact()]
49 for i, (f, I) in enumerate(zip(functions, I exact)):
         I mc_simple = simple_monte_carlo(f, -1, 3, N_tot) if i == 0 else simple_monte_carlo(f, 0, 2.5, N_tot)

I_mc_geometric = geometric_monte_carlo(f, -1, 3, N_tot) if i == 0 else geometric_monte_carlo(f, 0, 2.5, N_tot)
              eps_simple[i, j] = np.abs(I - I_mc_simple)
eps_geometric[i, j] = np.abs(I - I_mc_geometric)
59 plt.figure(figsize=(10, 8))
          plt.plot(N tot values, eps simple[i], label=f'I{i+1} Simple MC', linestyle='--')
plt.plot(N_tot_values, eps_geometric[i], label=f'I{i+1} Geometric MC')
66 plt.yscale('log')
67 plt.xlabel('N_tot')
68 plt.ylabel('epsilon (|I_exact - I_MC|)')
69 plt.legend()
70 plt.title('Error (epsilon) as function of N tot for Simple and Geometric Monte Carlo methods')
    plt.grid(True)
73  # Save the plot as a .jpg file
74  plt.savefig("monte_carlo_errors_plot_3.jpg")
```

In the following plot, we show the dependence of the error ϵ as a function of N_{tot} for both MC methods. Each curve represents the error for one of the integrals, with separate lines for the simple and geometric approaches.

