Target - Business Case Study (SQL)

Q.1 Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

a) Data type of columns in a table

Table- Customers	
Features	Data type
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INTEGER
customer_city	STRING
customer_state	STRING

Table- Geolocation	
Features	Data type
geolocation_zip_code_prefix	INTEGER
geolocation_lat	FLOAT
geolocation_lng	FLOAT
geolocation_city	STRING
geolocation_state	STRING

Table- order_items	
Features	Data type
order_id	STRING
order_item_id	INTEGER
product_id	STRING
seller_id	STRING
shipping_limit_date	TIMESTAMP
price	FLOAT
freight_value	FLOAT

Table- order_reviews	
Features	Data type
review_id	STRING
order_id	STRING
review_score	INTERGER
review_comment_title	STRING
review_creation_date	TIMESTAMP
review_answer_timestamp	TIMESTAMP

Table- orders	
Features	Data type
order_id	STRING
customer_id	STRING
order_status	STRING
order_purchase_timestamp	TIMESTAMP
order_approved_at	TIMESTAMP
order_delivered_carrier_date	TIMESTAMP
order_delivered_customer_date	TIMESTAMP
order_estimated_delivery_date	TIMESTAMP

Table- product	
Features	Data type
procuct_id	STRING
product_category	STRING
product_name_length	INTEGER
product_discription_length	INTEGER
product_photos_qty	INTEGER
product_weight_g	INTEGER
product_length_cm	INTEGER
product_height_cm	INTEGER

Table- Payments	
Features	Data type
order_id	STRING
payment_sequential	INTEGER
payment_type	STRING
payment_installments	INTEGER
payment_value	FLOAT

Table- seller	
Features	Data type
seller_id	STRING
seller_zip_code_prefix	INTEGER
seller_city	STRING
seller_state	STRING

Q1 b) Time period for which the data is given

Query: - select min(order_purchase_timestamp) as Min_time,

Q 1 c) Cities and States of customers ordered during the given period.

Quer	y results						≛ SAVE RESULTS ▼	M EXPL
JOB IN	NFORMATION RE	SULTS	JSON	EXECUTION DET	ΓAILS	EXECUTION GRAPH PRE	VIEW	
Row	customer_city	li.	customer_state	//				
1	acu		RN					
2	ico		CE					
3	ipe		RS					
4	ipu		CE					
5	ita		SC					
6	itu		SP					
7	jau		SP					
8	luz		MG					
9	poa		SP					
10	uba		MG					

Q 2. In-depth Exploration:

a) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:-

select

```
sum(oi.price),
extract(month from o.order_purchase_timestamp) as Month,
extract(year from o.order_purchase_timestamp) as Year
from Target_analysis.orders as o
```

```
left join Target_analysis.order_items as oi
on o.order_id=oi.order_id
group by year,month
order by Year, Month
```

Quer	y results					≛ SAVE RESULTS ▼	M EXPLORE DATA
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PR	EVIEW	
Row /	f0_ //	Month //	Year //				
1	267.36	9	2016				
2	49507.6600	10	2016				
3	10.9	12	2016				
4	120312.869	1	2017				
5	247303.019	2	2017				
6	374344.300	3	2017				
7	359927.230	4	2017				
8	506071.140	5	2017				
9	433038.600	6	2017				
10	498031.480	7	2017				

Q 2 b) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
Query:-
```

```
select
count(order_id) as total_order,
case
when extract(hour from o.order_purchase_timestamp) between 0 and 6
then 'Dawn'
when extract(hour from o.order_purchase_timestamp) between 6 and 12
then 'Morning'
when extract(hour from o.order_purchase_timestamp) between 12 and 18
then 'Afternoon'
else 'Night'
end as Time_braket,
from Target_analysis.orders as o
group by Time_braket
order by count(order_id);
```

Quer	y results			≛ SAVE RESULTS ▼	™ EXPLORE DATA ▼ \$
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	total_order	Time_braket		,	1,
1	5242	Dawn			
2	27733	Morning			
3	28331	Night			
4	38135	Afternoon			

Q 3) Evolution of E-commerce orders in the Brazil region:

a) Get month on month orders by states

Query:-

```
select
```

```
count(o.order_id) as Total_orders,
           c.customer_state,
avg(extract(month from o.order_purchase_timestamp)) as Month,
avg(extract(year from o.order_purchase_timestamp)) as Year,
from Target analysis. Customers as c
left join Target_analysis.orders as o
on c.customer_id=o.customer_id
```

group by extract(year from o.order_purchase_timestamp), extract(month from o.order_purchase_timesta mp),c.customer_state order by Year, Month;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GF
Row	Total_orders	customer_state	1.	Month /	Year //	
1	1	RR		9.0	2016.0	
2	1	RS		9.0	2016.0	
3	2	SP		9.0	2016.0	
4	113	SP		10.0	2016.0	
5	24	RS		10.0	2016.0	
6	56	RJ		10.0	2016.0	
7	3	MT		10.0	2016.0	
8	9	GO		10.0	2016.0	
9	40	MG		10.0	2016.0	
10	8	CE		10.0	2016.0	

Q 3 b) Distribution of customers across the states in Brazil.

Query: -

select

customer_state, count(customer_id) as total_customers from Target_analysis.Customers group by customer_state order by total_customers

Quer	y results			♣ SAVE RESULTS ▼			
JOB IN	JOB INFORMATION RESULTS		JSON	EXECUTION DETAILS	EXECUTION GRAPH PRE	EVIEW	
Row	customer_state	6	total_customers				
1	RR		46				
2	AP		68				
3	AC		81				
4	AM		148				
5	RO		253				
6	TO		280				
7	SE		350				
8	AL		413				
9	RN		485				
10	PI		495				

Q 4 Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

a) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
Query:-
with CTE2017 as
select
   sum(p.payment_value) as total_cost_of_order_2017,
   extract(month from o.order_purchase_timestamp) as Month,
from Target_analysis.orders as o
join Target analysis.payments as p
on o.order id=p.order id
where extract(month from o.order_purchase_timestamp) between 1 and 8
and extract(year from o.order purchase timestamp) = 2017
group by extract(month from o.order purchase timestamp)
),
CTE2018 as
select
   sum(p.payment value) as total cost of order 2018,
   extract(month from o.order_purchase_timestamp) as Month,
from Target_analysis.orders as o
join Target analysis.payments as p
on o.order_id=p.order_id
where extract(month from o.order purchase timestamp) between 1 and 8
and extract(year from o.order_purchase_timestamp) = 2018
group by extract(month from o.order_purchase_timestamp)
select
c1.month,
c1.total_cost_of_order_2017,
c2.total cost of order 2018,
round((((c2.total cost of order 2018-c1.total cost of order 2017)/c1.total cost of order 2017)*100),2) as percentage increase
from CTE2017 as c1 join CTE2018 as c2
on c1.month=c2.month
order by month;
  Query results

♣ SAVE RESULTS ▼

                                                                                                             0
                                                                    EXECUTION GRAPH PREVIEW
  JOB INFORMATION
                       RESULTS
                                    JSON
                                              EXECUTION DETAILS
                     total_cost_of_order_2017
                                         total_cost_of_order_2018 percentage_increase
 Row
     1
                 1
                       138488.03999999989
                                             1115004.1800000065
                                                                          705.13
                 2
     2
                       291908.00999999966
                                                                          239.99
                                             992463.34000000334
                 3
     3
                       449863.60000000027
                                             1159652.1199999973
                                                                          157.78
                 4
     4
                       417788.03000000032
                                             1160785.4800000025
                                                                          177.84
     5
                 5
                       592918.82000000111
                                             1153982.1500000041
                                                                          94.63
                       511276.38000000152
                                             1023880.4999999946
                                                                          100.26
                 6
                 7
     7
                       592382.92000000284
                                             1066540.7500000016
                                                                          80.04
                 8
                       674396.32000000309
                                             1022425.3199999979
                                                                           51.61
```


Q 4 b) Mean & Sum of price and freight value by customer state

Query - Mean and sum of price

select

c.customer_state,

sum(oi.price) as Sum,

avg(oi.price)as Mean

from Target_analysis.order_items as oi

join Target_analysis.orders as o on oi.order_id=o.order_id

join Target_analysis.Customers as c on c.customer_id= o.customer_id

group by c.customer_state

Order by mean

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS	EXECUT
Row	customer_state	li .	Sum	Mean	
1	SP		5202955.05	109.653629	
2	PR		683083.760	119.004139	
3	RS		750304.020	120.337453	
4	MG		1585308.02	120.748574	
5	ES		275037.309	121.913701	
6	SC		520553.340	124.653577	
7	RJ		1824092.66	125.117818	
8	DF		302603.939	125.770548	
9	GO		294591.949	126.271731	
10	BA		511349.990	134.601208	

Query :- Mean and sum of freight value

select

```
c.customer_state,
sum(oi.freight_value) as Sum,
avg(oi.freight_value)as Mean
from Target_analysis.order_items as oi
join Target_analysis.orders as o on oi.order_id=o.order_id
```

join Target_analysis.Customers as c on c.customer_id= o.customer_id group by c.customer_state Order by mean Query results ▲ SAVE RESULTS ▼ JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** EXECUTION GRAPH PREVIEW Row customer_state Sum Mean SP 718723.069... 15.1472753... 1 2 PR 117851.680... 20.5316515... 3 MG 270853.460... 20.6301668... RJ 305589.310... 20.9609239... 4 DF 5 50625.4999... 21.0413549... 6 SC 89660.2600... 21.4703687... 7 RS 135522.740... 21.7358043... 8 ES 49764.5999... 22.0587765... 9 GO 53114.9799... 22.7668152... 10 MS 19144.0300... 23.3748840..

Q5. Analysis on sales, freight and delivery time

a) Calculate days between purchasing, delivering and estimated delivery

Query:-

select

```
order_purchase_timestamp,
order_estimated_delivery_date,
order_delivered_customer_date,
timestamp_diff (order_estimated_delivery_date,order_purchase_timestamp,day) as Estimated_days,
timestamp_diff (order_delivered_customer_date,order_purchase_timestamp,day) as Actual_days,
from Target_analysis.orders
where timestamp_diff (order_delivered_customer_date,order_purchase_timestamp,day) is not null;
```

Quer	y results			₫ SAVE RE	SULTS ▼ A
JOB IN	FORMATION RESULTS	JSON EXECUTION DET	TAILS EXECUTION GRAPH	PREVIEW	
Row	order_purchase_timestamp	order_estimated_delivery_date	order_delivered_customer_date	Estimated_days	Actual_days
1	2016-10-07 14:52:30 UTC	2016-11-29 00:00:00 UTC	2016-10-14 15:07:11 UTC	52	7
2	2016-10-09 15:39:56 UTC	2016-12-08 00:00:00 UTC	2016-11-09 14:53:50 UTC	59	30
3	2016-10-09 00:56:52 UTC	2016-11-30 00:00:00 UTC	2016-10-16 14:36:59 UTC	51	7
4	2016-10-08 20:17:50 UTC	2016-11-30 00:00:00 UTC	2016-10-19 18:47:43 UTC	52	10
5	2016-10-03 21:01:41 UTC	2016-11-25 00:00:00 UTC	2016-11-08 10:58:34 UTC	52	35
6	2017-03-17 15:56:47 UTC	2017-05-18 00:00:00 UTC	2017-04-07 13:14:56 UTC	61	20
7	2017-03-20 11:01:17 UTC	2017-05-18 00:00:00 UTC	2017-03-30 14:04:04 UTC	58	10
8	2017-03-21 13:38:25 UTC	2017-05-18 00:00:00 UTC	2017-04-18 13:52:43 UTC	57	28
9	2018-08-20 15:56:23 UTC	2018-10-04 00:00:00 UTC	2018-08-29 22:52:40 UTC	44	9
10	2018-08-12 18:14:29 UTC	2018-10-04 00:00:00 UTC	2018-08-23 02:08:44 UTC	52	10

Q 5 b) Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

o time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

Query:-

select

timestamp_diff (order_delivered_customer_date,order_purchase_timestamp_,day) as Time_to_delivery, timestamp_diff (order_delivered_customer_date,order_estimated_delivery_date,day) as Diff_estimated_delivery, from Target_analysis.orders

Quer	y results					♣ SAVE RESULTS ▼	
JOB IN	IFORMATION	RESUL	TS JSON	EXECUTION DETAILS	EXECUTION GRAPH PRE	EVIEW	
Row	Time_to_delivery	11	Diff_estimated_delivery	6			
1		30	1	12			
2		30	-2	28			
3		35	-1	16			
4		30		-1			
5		32		0			
6		29		-1			
7		43		4			
8		40		4			
9		37		1			
10		33		5			

Q 5 c) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Query:-

select

c.customer_state,

round(avg(freight_value),2)as Mean_freight_value,

round(avg(timestamp_diff(order_delivered_customer_date,order_purchase_timestamp_,day)),2) as Mean_time_to_delivery, round(avg(timestamp_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as Mean_diff_in_estimated

_time

from Target analysis.order items as oi

join Target_analysis.orders as o on oi.order_id=o.order_id

join Target_analysis.Customers as c on o.customer_id=c.customer_id

group by c.customer state

Quer	y results				▲ SAVE RESULTS ▼	:
JOB IN	FORMATION	RESULTS JS	ON EXECUTION DE	TAILS EXECUTION GRAPH	PREVIEW	
Row	customer_state //	Mean_freight_value	Mean_time_to_delivery	Mean_diff_in_estimated_time		
1	SP	15.15	8.26	10.27		
2	PR	20.53	11.48	12.53		
3	MG	20.63	11.52	12.4		
4	RJ	20.96	14.69	11.14		
5	DF	21.04	12.5	11.27		
6	SC	21.47	14.52	10.67		
7	RS	21.74	14.71	13.2		
8	ES	22.06	15.19	9.77		
9	GO	22.77	14.95	11.37		
10	MS	23.37	15.11	10.34		

Q 5 d) Sort the data to get the following:

a) Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Query:-

```
select
    c.customer_state,
    round(avg(freight_value),2) as Avg_freight
from Target_analysis.order_items as oi
left join Target_analysis.orders as o on oi.order_id=o.order_id
left join Target_analysis.Customers as c on o.customer_id=c.customer_id
group by c.customer_state
order by avg(freight_value) desc
limit 5;
```

Quer	y results				
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row /	customer_state	li.	Avg_freight //		
1	RR		42.98		
2	PB		42.72		
3	RO		41.07		
4	AC		40.07		
5	PI		39.15		

b) Top 5 states with highest/lowest average time to delivery

Query:-

```
select
```

c.customer_state,

round(avg(timestamp_diff(order_delivered_customer_date,order_purchase_timestamp ,day))) as Mean_time_to_delivery
from Target analysis.order items as oi

join Target_analysis.orders as o on oi.order_id=o.order_id

join Target_analysis.Customers as c on o.customer_id=c.customer_id

group by c.customer state

order by avg(timestamp_diff(order_delivered_customer_date,order_purchase_timestamp ,day)) desc limit 5

Query results

JOB IN	JOB INFORMATION		S JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row /	customer_state	Mea	an_time_to_delivery		
1	RR		28.0		
2	AP		28.0		
3	AM		26.0		
4	AL		24.0		
5	PA		23.0		

c) Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
Query:-
```

```
select
```

```
c.customer_state,
round(avg(timestamp_diff(order_estimated_delivery_date ,order_delivered_customer_date,day))) as Mean_time_to_delivery
from Target_analysis.order_items as oi
join Target_analysis.orders as o on oi.order_id=o.order_id
join Target_analysis.Customers as c on o.customer_id=c.customer_id
group by c.customer_state
order by avg(timestamp_diff(order_estimated_delivery_date ,order_delivered_customer_date,day)) desc
limit 5
```

Query results ▲ SAVE RESULTS ¬ EXECUTION GRAPH PREVIEW JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** Row customer_state Mean_time_to_delivery AC 20.0 1 2 RO 19.0 3 AM 19.0 4 ΑP 17.0 5 RR 17.0

Q 6) Payment type analysis:

a) Month over Month count of orders for different payment types

Query:-

```
select
```

```
count(o.order_id) as Total_orders,
  avg(extract(Month from o.order_purchase_timestamp))as Month,
  p.payment_type

from Target_analysis.payments as p
  join Target_analysis.orders as o on p.order_id=o.order_id
  group by extract(Month from o.order_purchase_timestamp), p.payment_type
  order by Month,p.payment_type;
```


b) Count of orders based on the no. of payment installments

Query:-

select

count(o.order_id)as Total_orders,
p.payment_installments

from Target_analysis.payments as p join Target_analysis.orders as o on p.order_id=o.order_id group by p.payment_installments order by p.payment_installments;

Insights and Recordation's:-

- 1) Time period of the data provided was observed between: Sept 2016 to October 2018
- 2) For Question 2 By the chart above we can conclude:
- E-commerce on Brazil really has a growing trend along the time.
- We can see some seasonality with peaks at specific months, but in general we can see clear that customers are more prone to buy things online than before.
- They tend to buy more at afternoons followed by Night followed by Morning which is followed by the Dawn.
- We have a sharp decrease between August 2018 and September 2018 and maybe the origin of that is related to noise/ any fault on data. For further comparison between 2017 and 2018, let's just consider orders between January and August in both years.
- 3) In this we analyzed the e-commerce orders variations month on month orders by state, and found that the SP state of Brazil had around 2 to 3 times more orders than average Brazil's orders.
- 4) Also, the analysis showed more orders in the month between October to February than the rest of the years.
- 5) From 4 we can draw insight that there was clear increase in the number of orders when we compare same month on month between 2017 and 2018, with a average increase of 200% meaning, order approximately became thrice in 2018 compared to 2018.
- 6) When compared mean and sum of price It was very interesting to see how some states have a high total amount sold and a low price per order. If we look at SP (São Paulo) for example, it's possible to see that it is the state with most valuable state for e-commerce (5,188,099 sold) but it is also where customers pay less per order (110.00 per order).
- 7) When compared mean and sum of freight we can get insights about the customers states with highest mean freight value. For example, customers in Roraima (RR), Paraiba (PB), Rondônia (RO) and Acre (AC) normally pays more than anyone on freights.
- 8) Insights with question 5 D
 - State RR with highest freight Value of 42.98
 - State SP with lowest freight Value of 15.15
 - State RR with maximum average time to delivery of 28 days
 - State SP with lowest average time to delivery of 8 days
- 9) Recommendation for the company is they need to deploy more delivery partners at the RR state and following 6-7 states where they are receiving most orders and due to high freight value delivery commute is high around 1 month. Which may result in the loss of customers.
- 10) In Question 6- we can see that payments made by credit card really took majority place on Brazilian e-commerce. Besides that, since 2018 march it's possible to see a little decrease on this type of payment. By the other side, payments made by debit card is showing a growing trend since 2018 may, which is a good opportunity for investor to improve services for payments like this.
- 11) By the analysis in question 6B we can see how Brazilian customers prefer to pay the orders: mostly of them pay once into 1 installment and it's worth to point out the quantity of payments done by 10 installments.