B Tech II 4th Sem End Sem Exam CS 208 Automata and Formal Languages (AFL) May

202I

5 May 2021 (2:00 pm to 3:00 pm)

There are 60 number of questions. The duration for the quiz is one hour.

Your email will be recorded when you submit this form.

Not u19cs031@coed.svnit.ac.in? Switch account

* Required

The number of terms in expression of $(x+y+z)^n$ is

$$^{1}/_{2}(n)(n+2)$$

(a)

$$^{1}/_{2}(n+1)(n+2)$$

(b)

$$1/2(n+1)(n+3)$$

d) None of the above

O c)

Which of the following grammars is ambiguous?

- (a) $S \rightarrow a \mid abSb \mid aAb, A \rightarrow bS \mid aAAb$
- (b) $S \rightarrow aB \mid ab, A \rightarrow aAB \mid a, B \rightarrow ABb \mid b$
- (c) $S \rightarrow S + S \mid S * S \mid a \mid b$
- (d) all of these

d

If we have an algorithm to determine whether a given element belongs to a set X or not, then this set is called *

- Recursive
- Recursively Enumerable
- Complete
- Context-sensitive

×

Which of the following is FALSE with respect to possible outcomes of executing a Turing Machine over a given input?

- a) It may halt and accept the input
- (a) b) It may halt by changing the input
- c) It may halt and reject the input
- d) It may never halt

Find the false statement *

- L is recursively enumerable then so is complement of L
- L is recursive then so is complement of L
- L is recursive then complement of L is recursively enumerable
- If L and complement of L are recursively enumerable then both are recursive

Write correct option from (a, b, c, d) *

Which of the following identity doesn't hold?

(a)
$$\varepsilon R = R\varepsilon = R$$

(b)
$$\varepsilon + R = R + \varepsilon = R$$

(c)
$$\phi R = R\phi = \phi$$

(d)
$$\phi + R = R + \phi = R$$

b

CFG is not closed under *

- union
- Kleene star
- complement
- product

Comparing TM and computers we find *

- Computers have more computational power
- M has move computational power
- Both are equivalent
- They cannot be compared

Write correct option from (a, b, c, d) *

The language generated by the grammar $S \rightarrow 0S1 \mid 0A1, A \rightarrow 1A \mid 1$ is

- (a) $\{0^m1^n : m > n > 1\}$
- (b) $\{0^m1^n : m > n > 1\}$
- (c) $\{0^m1^n : n > m \ge 1\}$
- (d) $\{0^m1^n : n > m > 1\}$

С

What is the difference in number of state when the given epsilon NFA is Converted to NFA?

- (a) 0
- **(b)** 1
- (c) 2
- () d) 3

If there exists a language L, for which there exists a TM, T that accepts every word in L and either rejects or loops for every word that is not in L, is said to be *

- Recursive
- Recursive enumerable
- NP-hard
- None of these

Let P (n) be the statement that $1^2+2^2+\cdots+n^2=n(n+1)(2n+1)/6$ for n > 0. What is the statement P (1)?

$$1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$$

b) n=1

(a)

c) It doesn't exist

$$1^2 = 1(1+1)(2+1)/6$$

(b)

*
Which of the following is an extension to the basic model of Turing machine
a) Multitude Turing machine
b) Multi-head Turing machine
c) Offline Turing machine
o d) All of the above

Given an arbitrary non-deterministic finite automaton (NFA) with N states, the maximum number of states in an equivalent minimized DFA is at least.

N²

a)

b)

c) 2N

d) N!

*
Which of the following is true for the language $\{a^p p \text{ is a } prime\}$
a) It is not accepted by a Turing Machine
b) It is regular but not context-free
c) It is context-free but not regular
d) It is neither regular nor context-free but accepted by a Turing machine
Find the incorrect statement *
set of real numbers is not enumerable
if a set S is infinite countable then its power set is not countable
if L is not recursively enumerable then its complement cannot be recursive
family of recursive is a equivalent to family of recursively enumerable
*
The number of states in the minimal deterministic finite automaton corresponding to the regular expression (0 + 1)*(10) is
(a) 2
(a) b) 3
O c) 4
O d) 5

The grammar that generates $L = \{a^nb^nc^i \mid n=1, i=0\}$ is

- (a) $S \rightarrow A \mid Sc, A \rightarrow ab \mid aAb$
- (b) $S \rightarrow aAb \mid Sc, A \rightarrow ab \mid aAb$
- (c) both set of production rules
- (d) none of these

d

*

Which of the following transition IDs given below denotes stack is popped?

- a) $\delta(q,a,Y)=\{(p,ε)\}$
- b) $\delta(q,a,Y)=\{(p,Y)\}$
- () None of the mentioned

Write correct option from (a, b, c, d) *

The grammar that generates $L = \{wcw^t \mid w \in \{a, b\}^*\}$ is

- (a) $S \rightarrow aSa \mid bSb \mid aca \mid bcb$
- (b) $S \rightarrow aSa \mid bSb \mid c$
- (c) both set of production rules
- (d) none of these

С

Which of the following is not regular

- (a) string of zero whose length is perfect square
- (b) set of palindromes over 0 and 1
- (c) string of zero whose length is prime
- (d) all of these

d

If we have a procedure to determine whether a given element belongs to a set X or not, then this set is called *

- Recursive
- Recursively Enumerable
- Complete
- Context-sensitive

Write correct option from (a, b, c, d) *

Context free grammar which generates {albmcn | I+m = n} has its production rules given by

- (a) S \rightarrow bSc | aSc | ac | a | bS₁, S₁ \rightarrow S₁c | c
- (b) $S \rightarrow aSc \mid ac \mid bc \mid bS_1c$, $S_1 \rightarrow bS_1c \mid bc$
- (c) $S \rightarrow cSb$, $cS \rightarrow Sc$, $bS \rightarrow Sb$, $S \rightarrow aS_1c$, $S_1 \rightarrow aS_1c$, $S_1 \rightarrow ac$
- (d) $S \rightarrow aS$, $S \rightarrow aS1$, $S_1 \rightarrow bS_1$, $S_1 \rightarrow bS_2$, $S_2 \rightarrow bS_3$, $S_3 \rightarrow cS_3 \mid c$

b

Which of the following statement is correct? *
O If the emptiness problem is decidable for Type 3 grammars, then it is also decidable for Type 0 grammars
If the emptiness problem is decidable for Type 0 grammars, then it is also decidable for Type 3 grammars
O If the emptiness problem is undecidable for Type 0 grammars, then it is also undecidable for Type 3 grammars
O None of these
The number of symbols necessary to simulate any TM with m symbols and n states is *
O m + n
O mn
● mn + m
O mn + n
Write correct option from (a, b, c, d) *
Pick the correct statement. The logic of pumping lemma is a good example of
(a) the pigeon hole principle
(b) the divide and conquer technique
(c) recursion
(d) iteration
a

Finite state machine can be considered to be a TM *
a finite tape length, with rewinding and unidirectional movement
a finite tape length, without rewinding capability and unidirectional tape movement
a finite tape length, without rewinding and bi-directional movement
a finite tape length, rewinding capability and bi-directional tape movement
*
The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is
a*(ba)*b*a*
a) 2
O b) 3
o c) 4
O d) 5
*
A language L is called Turing-decidable (or just decidable), if there exists a Turing Machine M such that on input x , M accepts if $x \in L$ and M rejects otherwise. L is called undecidable if it is not decidable. Which of the following option is false?
a) The class of decidable languages is closed under union
b) The class of decidable languages is closed under complement.
c) The class of decidable languages is closed under intersection
d) None of these

* Consider the following CFG, G: S → AaS ε A → SbB	
B → bCC C → cD Ec D → abAA E → bc F → bBC The number of useless symbols in the grammar is,	
(a) 0	
O b) 1	
o c) 2	
O d) 5	
Set of all Turing machines is *	
O Uncountable	
Ountable but infinite	
Finite	
○ Void	

Consider the following two statements:

S1: { 02n |n >= |} is a regular language

S2: { $0^m \ 0^n \ 0^{(m+n)} \ I \ m >= 1$ and n >= 2} is a regular language. Which of the following is true?

- (a) Only S1 is Correct
- b) Only S2 is Correct
- c) Both S1 and S2 are Correct
- d) None of S1 and S2 is Correct

Write correct option from (a, b, c, d) *

The language generated by the grammar S \rightarrow 0S1 | 0A1, A \rightarrow 1A0 | 10 is

- (a) $\{0^n1^m0^m1^n : m, n > 1\}$
- (b) { $0^n1^m0^m1^n : m, n \ge 1$ }
- (c) $\{0^m1^n : n, m \ge 1\}$
- (d) { $1^m0^n : n, m \ge 1$ }

b

What is the equivalent grammar to that given below containing no unit productions?

A → BC | B

 $B \rightarrow C \mid bd$

 $C \rightarrow cC \mid d$

 $A \rightarrow BC \mid bd \mid cC \mid d$

 $B \rightarrow bd$

 $C \rightarrow cC \mid d$

 $A \rightarrow BC \mid bd$ $B \rightarrow bd$ $C \rightarrow cC \mid d$

b)

() a)

 $A \rightarrow BC \mid bd \mid cC \mid d$

 $B \rightarrow bd \mid cC \mid d$

 $C \rightarrow cC \mid d$

d) None of these

o c)

*
Language of finite state machine is
a) Type 0
b) Type 1
C) Type 2
o d) Type 3
*
Which of the following statement/s states that Input string is accepted in Pushdown Automata (PDA):
S1: When the final state is reached in PDA. S2: When the stack has any input symbol in it. S3: When the stack is empty.
a) S1 only
b) S2 and S3 only
c) S2 and S1 only
o d) S1 and S3 only

Let G be the grammar S \rightarrow aA, A \rightarrow Abb | b, sentential forms of G are

- (a) aAb^{2n} , ab^{2n+1} where, $n \ge 0$
- (b) aAb^{2n} , ab^{2n+1} where, $n \ge 1$
- (c) aAb^{2n} , ab^{2n} where, $n \ge 0$
- (d) none of these

а

Decidability in Decidable and Undecidable problems refers to *

- Unsolvability
- Existence of algorithm which generates the set of solutions
- Existence of algorithm which takes an instance of the problem and determines whether the answer to that instance is yes or no
- Those problems whose answers are only either in yes or no

Write correct option from (a, b, c, d) *

Which of the following grammars can generate w = aabbb

- (a) $S \rightarrow AB$, $A \rightarrow aA \mid a, B \rightarrow bB \mid b$
- (b) $S \rightarrow AB$, $A \rightarrow BB \mid a, B \rightarrow AB \mid b$
- (c) both set of production rules
- (d) none

С

Which of the following is true?

- (A) The language $L = \{a^n b^n \mid n \ge 0\}$ is regular.
- (B) The language $L = \{a^n \mid n \text{ is prime}\}$ is regular.
- (C) The language $L = \{w \mid w \text{ has } 3k + 1 \text{ b's for some } k \in \mathbb{N} \text{ with } \Sigma = \{a, b\}\}$ is regular.
- (D) The language $L = \{ ww \mid w \in \Sigma^* \text{ with } \Sigma = \{0,1\} \}$ is regular.
- (a) A
- (b) B
- (c) C
- (d) D
- e) None of these

*

Let Σ be a finite non-empty alphabet and let $2\Sigma^*$ be the power set of Σ^* . Which one of the following is TRUE?

- a) Both 2 Σ * and Σ* are countable
- b) $2\Sigma^*$ is countable and Σ^* is uncountable
- **(a)** c) $2\sum^*$ is uncountable and Σ^* is countable
- \bigcirc d) Both $2\Sigma^*$ and Σ^* are uncountable

Which of the following is accepted by an NPDA and not DPDA? *
all strings in which a given symbol is present atleast twice
even palindromes (i.e. palindromes made up if even no of symbols)
string ending with a particular alphabet
one of these

The problem of determining that a Turing Machine would halt after giving Yes / No output is *

- Unsolvable
- Solvable
- Decidable
- None of these

Write correct option from (a, b, c, d) *

What language is generated by the following grammar $G = \langle S, \Lambda, \{A, B\}, \{a, b\}, P, S \rangle$ where P is

- $S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid aBB$
- (a) all words consisting of equal numbers of a's and b's
- (b) all words consisting of one a more than the number of b's
- (c) all words consisting of one b more than the number of a's
- (d) none of these

С

The regular expression (1+00*1)+(1+00*1)(0+0+10*1)*(0+10*1) is equivalent to

- (a) 0*1(0+10*1)*
- (b) (1+00*1)(0+10*1)*
- (c) (1+00*1)(0*(10*1)*)*
- (d) all of these

d

×

The Finite state machine described by the following state diagram with A as starting state, where an arc label is x / y and x stands for 1-bit input and y stands for 2- bit output

- a) Outputs the sum of the present and the previous bits of the input.
- b) Outputs 01 whenever the input sequence contains 11.
- c) Outputs 00 whenever the input sequence contains 10.
- d) None of these

Which of the following regular expressions describes the language over {0, 1} consisting of strings that contain exactly three 0's?

- a) (0 + 1) * 000(0 + 1) *
- (a) b) 1 * 01 * 01 * 01 *
- c) 1 * 0001 *
- d) (0 + 1) * 0(0 + 1) * 0 (0 + 1) * 0 (0 + 1) *

Write correct option from (a, b, c, d) *

Any string of terminal that can be generated by the following CFG

 $S \rightarrow XY, X \rightarrow aX \mid bX \mid a, Y \rightarrow Ya \mid Yb \mid a$

- (a) has at least one b
- (b) should end in a
- (c) has no consecutive a or b
- (d) has at least two a

b

Pushdown automata can recognize *

- all regular languages, some nonregular languages, all context-free languages
- all regular languages, all nonregular languages, all context-free languages
- all regular languages, some nonregular languages, all context-free languages and some non-context-free languages
- all regular languages, some nonregular languages, all context-free languages and all non-context-free languages

*
A formal language is recursive if
a) A total turing machine exists
b) A turing machine that halts for every input
c) Turing machine rejects if the input does not belong to the language
d) All of the mentioned

* Find a CFG for { w | w is odd and its middle symbol is 0 } $S \rightarrow 0A \mid 1A$ $A \rightarrow 0S \mid \epsilon$ (a) $S \rightarrow 0 | 1 | 0S0 | 0S1$ b) $\mbox{S} \rightarrow \mbox{OAS} \mid \mbox{OA1S} \mid \mbox{A}$ $\mbox{A} \rightarrow \mbox{O} \mid \mbox{OS} \mid \mbox{10S}$ (a) $S \rightarrow 0 \mid 0S0 \mid 0S1 \mid 1S0 \mid 1S1$ d)

Which of the following is true

- (a) S \rightarrow aSbS | bSaS | λ is unambiguous
- (b) S \rightarrow aB | ab, A \rightarrow aAB | a, B \rightarrow ABb | b is unambiguous
- (c) S \rightarrow AB | aaB, A \rightarrow a | Aa, B \rightarrow b is unambiguous
- (d) $S \rightarrow aB$, $B \rightarrow Bb \mid b$ is unambiguous

d

The class of TMs is equivalent to the class of *

- Type 0 Grammars
- Type 1 Grammars
- Type 2 Grammars
- Type 3 Grammars

The following mealy machine outputs which of the following?

- a) 9's Complement
- b) 2's Complement
- c) 1's Complement
- d) 10's Complement

Select the false statement *

- The Turing Machine halting problem is undecidable
- The Turing Machine halting problem is decidable
- The blank-tape halting problem is undecidable
- None of these

>

Can we use PDA to recognize the following language: $L=\{a^ic^j|i=j \ and \ i,j\geq 1\}$?

- a) True
- (b) False

How many strings of length less than 3 contains the language described by the regular expression (a+b)*b(x+xy)*?

- (a) 7
- (b) 4
- (c) 12
- O d) 5

Write correct option (a, b, c, d) *

Which of the following languages is context free?

(a)
$$L = \{a^m b^m c^n : m \le n \le 2^m\}$$

(b)
$$L = \{a^m b^n : n = m^2\}$$

(c)
$$L = \{a^n \land 2 : 1 \le n\}$$

(d) None of these

d

TM is more powerful than Finite state machine because *

- tape movement is confined to one direction
- it has no finite state control
- it has the capability to remember arbitrary long input symbols
- none of there

Write correct option from (a, b, c, d)*

Which of the following languages cannot be produced by a regular grammar?

(i) $\{a^nb^n: n>0\}$ (ii) $\{a^mb^k: k>n\geq 0\}$ (iii) $\{ww^R: w\in \{a, b\}^*\}$ (a) (i)
(b) (i) and (ii)
(c) (ii) and (iii)
(d) all of these

Page 1 of 1

Submit

Never submit passwords through Google Forms.

This form was created inside of Sardar Vallabhbhai National Institute of Technology, Surat. Report Abuse

Google Forms