Università di Trieste Dipartimento di Ingegneria e Architettura

Corso di Tecnica delle Costruzioni

FLESSIONE

Prof. Ing. Natalino Gattesco

BIBLIOGRAFIA

Toniolo G., Di Prisco M., "Cemento Armato – Calcolo agli stati limite", Vol. 2a, terza edizione, Ed. Zanichelli, 2010.

Park R., Paulay T., "Reinforced Concrete Structures", John Wiley & Sons, New York, 1975.

Mac Gregor J., "Reinforced Concrete – Mechanics and Design", Prentice Hall, New Jersey, 1988.

Santarella L., "Prontuario del Cemento Armato", XXXVIII edizione, Ed. Hoepli, Milano.

ANALISI DELLA SEZIONE INFLESSA

In una trave inflessa le sezioni reagiscono al momento flettente prodotto dai carichi con una distribuzione di tensioni normali, parte di trazione e parte di compressione.

Data la ridotta resistenza a trazione del calcestruzzo la sezione della trave si parzializza già per livelli di carico molto modesti.

Dopo la fessurazione interviene solo l'acciaio di armatura per resistere alle trazioni del lembo teso della trave.

ANALISI DELLA SEZIONE INFLESSA

Il comportamento effettivo delle sezioni inflesse in c.a. vede 3 stadi

- Stadio I: livelli bassi di sollecitazione con comportamento elastico lineare dei materiali sezione interamente reagente (lo stadio IA rappresenta la situazione limite prima della fessurazione)
- Stadio II: sezione fessurata con trazioni affidate interamente all'acciaio comportamento dei materiali ancora elastico lineare
- Stadio III: sezione fessurata con trazioni affidate interamente all'acciaio comportamento dei materiali non lineare (armature metalliche snervate e/o calcestruzzo sul ramo plastico)

Gli stadi I e Il sono contemplati per le <u>verifiche di esercizio</u> (SLE), lo stadio III per le <u>verifiche di resistenza</u> (SLU).

Caso di sezione interamente reagente $\sigma_c \leq f_{ctd}$

- Conservazione delle sezioni piane (Ipotesi di Bernoulli)
 Perfetta aderenza acciaio-cls (congruenza)
 Cls elastico lineare, acciaio elastico lineare

Per il I stadio vale quanto dedotto per la trave di de Saint Venant

(basta omogeneizzare le aree di armatura con il coefficiente $\alpha_e = E_s/E_c$

Per $\sigma_c = f_{ctd}$ si ha il limite di formazione delle fessure

$$M_{cr} = \frac{f_{ctd} I_i}{y'_c}$$
 (momento di cracking)

Caso di sezione parzializzata (calcestruzzo fessurato)

- Conservazione delle sezioni piane (Ipotesi di Bernoulli)
 Perfetta aderenza acciaio-cls (congruenza)
 Cls fessurato, acciaio elastico lineare

Per il II stadio fessurato, da equilibrio e congruenza si ha

Semplice armatura

$$\begin{bmatrix}
\frac{C}{2} & \frac{Z}{\sigma_c b x} - \sigma_s A_s = 0 & \text{(equilibrio traslazione)} \\
\frac{\sigma_s / \alpha_e}{d - x} = \frac{\sigma_c}{x} & \text{(congruenza)}
\end{bmatrix}$$

Da cui si esprime σ_s in funzione di σ_c e sostituita nella prima equaz.

$$x^{2} + \frac{2\alpha_{e} A_{s}}{b} x - \frac{2\alpha_{e} A_{s}}{b} d = 0 \qquad \Rightarrow \qquad x = \frac{\alpha_{e} A_{s}}{b} \left\{ -1 + \sqrt{1 + \frac{2bd}{\alpha_{e} A_{s}}} \right\}$$

Semplice armatura (formule di verifica tensionale)

Nota la posizione dell'asse neutro, il braccio della coppia interna è

$$z = d - \frac{x}{3}$$

$$\frac{1}{2}\sigma_c b x z = M$$
 (equilibric rotazione)

Si possono quindi ricavare i valori di tensione nei due materiali

$$\sigma_c = \frac{2M}{bx\,z}$$

$$\sigma_{s} = \frac{M}{A_{s} z}$$

Questi valori di tensione vanno confrontati con quelli limite imposti in esercizio (verifica tensionale delle sezioni)

Cls
$$\begin{cases} \sigma_c \leq 0.45 \, f_{ck} & \text{Combinaz. q.p.} \\ \sigma_c \leq 0.6 \, f_{ck} & \text{Combinaz. rara} \end{cases}$$
 Acciaio $\sigma_s \leq 0.8 \, f_{yk}$

Semplice armatura (formule di semiprogetto)

E' possibile utilizzare le relazioni sopra viste per progettare la quantità di armatura e la larghezza o altezza della sezione.

Una stima di z è circa 0.9d per cui, fissando la tensione nell'acciaio pari al valore limite di norma $(0.8f_y)$ e sostituendolo nell'equazione

$$\sigma_s = \frac{M}{A_s z}$$

 $A_s = \frac{M}{0.8 f_y \, 0.9 d}$

La base della trave si dimensiona fissando un valore di $\sigma_c = 0.45 \, f_{ck}$ e sostituendolo nell'equazione. Analogamente per l'altezza utile d.

$$\sigma_c = \frac{2M}{bxz}$$
 si ottengono le relazioni

$$b = \frac{2M}{0.45 \, f_{ck} \, 0.3 \, d \, 0.9 \, d}$$

$$d = \sqrt{\frac{2M}{0.45 \, f_{ck} \, 0.3 \cdot 0.9b}}$$

N.B. Solo una delle due - semiprogetto

Per il II stadio fessurato, da equilibrio e congruenza si ha

$$\begin{bmatrix}
\frac{1}{2}\sigma_{c}bx + \sigma'_{s}A'_{s} - \sigma_{s}A_{s} = 0 \\
\frac{1}{2}\sigma_{c}bx + \sigma'_{s}A'_{s} - \sigma'_{s}A_{s} = 0
\end{bmatrix}$$
 (equil. traslaz)

$$\frac{\sigma_s/\alpha_e}{d-x} = \frac{\sigma_c}{x} = \frac{\sigma'_s/\alpha_e}{x-d'}$$
 (congruenza)

Dall'equazione di congruenza si esprimono σ_s e σ_s' in funzione di σ_c e sostituite nella prima equazione danno

$$x^{2} + \frac{2\alpha_{e}(A_{s} + A'_{s})}{b}x - \frac{2\alpha_{e}(A_{s} + A'_{s})}{b}d = 0$$

$$x = \frac{\alpha_e \left(A_s + A'_s \right)}{b} \left\{ -1 + \sqrt{1 + \frac{2b \left(A_s d + A'_s d' \right)}{\alpha_e \left(A_s + A'_s \right)^2}} \right\}$$
 (posizione asse neutro)

Doppia armatura (formule di verifica tensionale)

Il momento d'inerzia della sezione parzializzata si esprime:

$$I_i = \frac{bx^3}{3} + \alpha_e A_s (d - x)^2 + \alpha_e A'_s (x - d')^2$$

Si possono quindi ricavare i valori di tensione nei due materiali utilizzando la formula di Navier

$$\sigma_c = \frac{M}{I_i} x$$

$$\sigma_{s} = \alpha_{e} \frac{M}{I_{i}} (d - x)$$

$$\sigma_c = \frac{M}{I_i} x \qquad \sigma_s = \alpha_e \frac{M}{I_i} (d - x) \qquad \sigma'_s = \alpha_e \frac{M}{I_i} (x - d')$$

(compressione acc.)

Cls
$$\begin{cases} \sigma_c \leq 0.45 \, f_{ck} & \text{Combinaz. q.p.} \\ \sigma_c \leq 0.6 \, f_{ck} & \text{Combinaz. rara} \end{cases}$$

Acciaio
$$\sigma_s \leq 0.8 f_{yk}$$

Per le verifiche di resistenza allo stato limite ultimo si parte da:

Ipotesi

- Conservazione delle sezioni piane (Ipotesi di Bernoulli)
- Perfetta aderenza acciaio-cls (congruenza) Cls con legame parabolico rettang, acciaio elasto-plastico Cls non resistente a trazione

Per $\varepsilon_c = \varepsilon_{cu}$ si ha che

$$\beta_o \cong 0.8$$

$$\kappa_o \cong 0.4$$

Volume delle tensioni reali rispetto al prisma circoscritto

Per $\varepsilon_c < \varepsilon_{cu}$ si ha invece

$$\beta = (1.6 - 0.8 \,\overline{\varepsilon}_c) \,\overline{\varepsilon}_c \qquad \kappa = 0.33 + 0.07 \,\overline{\varepsilon}_c$$

$$\overline{\varepsilon}_c = \varepsilon_c / \varepsilon_{cu}$$

Posizione della risultante delle compressioni rispetto al lembo compresso

Campi di rottura della sezione

- campo "a" delle deboli armature caratterizzato dalla rottura dell'armatura metallica, con $\varepsilon_s = \varepsilon_{ud}$, mentre al bordo compresso del calcestruzzo la contrazione non raggiunge il limite ultimo ($\varepsilon_c < \varepsilon_{cu}$);
- campo "b" delle medie armature caratterizzato dalla rottura del calcestruzzo al bordo compresso ($\varepsilon_c = \varepsilon_{cu}$) con acciaio già snervato ($\varepsilon_{ud} > \varepsilon_s > \varepsilon_{yd}$);
- campo "c" delle forti armature caratterizzato sempre dalla rottura del calcestruzzo per raggiungimento della contrazione ultima $\varepsilon_c = \varepsilon_{cu}$ con acciaio ancora in fase elastica ($\varepsilon_s < \varepsilon_{vd}$).

Semplice armatura

Con il modello elastico-perfettamente plastico indefinito per l'acciaio sparisce il campo "a"

Nel campo "b" l'equilibrio alla traslazione si pone

$$\begin{array}{c}
C \\
\overline{\beta_o} f_{cd} b x - f_{yd} A_s = 0
\end{array}$$

E quindi la posizione dell'asse neutro si ricava dalla relazione

$$x = \frac{f_{yd} A_s}{\beta_o f_{cd} b} = \xi d$$

$$\xi = \frac{\omega_s}{\beta_o}$$
(asse neutro

$$\xi = \frac{\omega_s}{\beta_o}$$
(asse neutro adimensionalizzato)

$$\omega_s = \frac{f_{yd} A_s}{f_{cd} b d}$$

 $\omega_{s} = \frac{f_{yd} A_{s}}{f_{cd} b d}$ (percentuale meccanica di armatura)

Semplice armatura

La situazione al confine del campo "c" è caratterizzata dalla relaz.

$$\frac{\varepsilon_{cu}}{x_c} = \frac{\varepsilon_{yd} + \varepsilon_{cu}}{d}$$

Che porta a

$$x_c = \frac{\varepsilon_{cu}}{\varepsilon_{yd} + \varepsilon_{cu}} d = \xi_c d \qquad \Longrightarrow \qquad \omega_{sc} = \beta_o \, \xi_c \qquad \qquad \text{(armatura limite che separa i campi "b" e "c")}$$

Il momento resistente risulta uguale a

$$M_{Rd} = \beta_o f_{cd} b \xi d \zeta d$$
 \longrightarrow $\zeta = 1 - \kappa_o \xi$ (braccio della adimensionalizzato)

Semplice armatura

Considerando il modello semplificato "stress-block" per il cls si ha: Nel campo "b" l'equilibrio alla traslazione si pone

$$\frac{C}{f_{cd} b \bar{x}} - f_{yd} A_s = 0$$

E quindi la posizione dell'asse neutro si ricava dalla relazione

$$\overline{x} = \frac{f_{yd} A_s}{f_{cd} b} \longrightarrow x = \frac{\overline{x}}{0.8} \qquad z = d - \frac{\overline{x}}{2} \longrightarrow M_{Rd} = f_{yd} A_s z$$

Doppia armatura

Considerando il modello semplificato "stress-block" per il cls si ha: Nel campo "b" l'equilibrio alla traslazione si pone

$$\frac{C_c}{f_{cd} b \overline{x} + f_{vd} A'_s} - f_{vd} A_s = 0$$

E quindi la posizione dell'asse neutro si ricava dalla relazione

$$\overline{x} = \frac{f_{yd} (A_s - A'_s)}{f_{cd} b} \longrightarrow x = \frac{\overline{x}}{0.8} \longrightarrow M_{Rd} = f_{yd} A_s \left(d - \frac{\overline{x}}{2} \right) + f_{yd} A'_s \left(\frac{\overline{x}}{2} - d' \right)$$

Verifica condizione di snervamento delle barre di armatura

$$\varepsilon_{s} = \frac{d - x}{x} \varepsilon_{cu} \ge \varepsilon_{yd} \qquad \qquad \varepsilon'_{s} = \frac{x - d'}{x} \varepsilon_{cu} \ge \varepsilon_{yd}$$

SLE - CONTROLLO FESSURAZIONE

Distanza di fessurazione

Per il calcolo della distanza di fessurazione si opera analogamente al caso del tirante

Dall'equilibrio di metà parte del concio si ha:

$$M = \sigma'_s A_s z' = \sigma_s A_s z_s + \frac{Z_c}{2} \sigma_c b(h - x) z_c$$

Ponendo $\sigma_c = f_{ctf}$ si ha:

$$\sigma'_{s} = \left\{ \frac{1}{2} f_{ctf} b(h-x) z_{c} + \sigma_{s} A_{s} z_{s} \right\} \frac{1}{A_{s} z'}$$

E la variazione di tensione nell'acciaio si ottiene di conseguenza

$$\Delta \sigma_s = \left\{ \frac{1}{2} \frac{z_c}{z'} - \alpha_e \, \rho_s^* \frac{d - x}{h - x} \left(1 - \frac{z_s}{z'} \right) \right\} \frac{f_{ctf}}{\rho_s^*} = \gamma \frac{f_{ctf}}{\rho_s^*}$$

$$\Delta \sigma_s = \sigma'_s - \sigma_s$$

Distanza di fessurazione

Avendo posto

$$\sigma_s = \alpha_e \, \sigma_c \, \frac{d-x}{h-x}$$

$$\rho_s^* = \frac{A_s}{b(h-x)}$$

Scrivendo l'equilibrio delle barre tra la fessura e la sezione di mezzo del concio nell'ipotesi di tensione di aderenza costante si ha:

$$n\frac{\pi\phi^2}{4}\Delta\sigma_s = n\pi\phi\tau_{bm}\lambda$$

Da cui

$$\lambda = \gamma \frac{\phi}{4 \rho_s^*} \frac{f_{ctf}}{\tau_{bm}}$$

Distanza di fessurazione

Analogamente al caso del tirante, l'espressione teorica della distanza λ va modificata per via empirica per tener conto delle risultanze sperimentali, soprattutto per quanto riguarda la distribuzione dei ferri entro la sezione.

$$\lambda = c_o + \gamma \beta \, \frac{0.1 \phi}{\rho_s}$$

Con c_o =c- ϕ /2 è il ricoprimento di calcestruzzo, ρ_s è il rapporto geometrico di armatura riferito all'area efficace costituita da una striscia di spessore pari a $2.5c \le (h-x)/3$, assumendo in via approssimata $z' \cong z_s$ si può porre

$$\gamma\beta \cong 1/2$$

Ampiezza di fessurazione

Il comportamento della trave inflessa, rilevato con prove portate oltre il limite di fessurazione, è descritto in figura ($diagramma\ M-\chi$)

Tratto OA – non fessurato (/ stadio)

Tratto AB – completa fessurazione

Se lo scarico delle tensioni di trazione fosse totale si raggiung. B'

Tratto BC – contributo decrescente del calcestruzzo teso

Ampiezza di fessurazione

La tensione nell'acciaio in corrispondenza della sezione fessurata é

$$\sigma_s' = \alpha_e \frac{M}{I_i'} y_s'$$
 $y_s' = d - x'$ I_i' Mom. Inerzia sez. fessurata

Per la deformazione media dell'acciaio in fase fessurata

$$\varepsilon_{sm} = \frac{\sigma_{s}'}{E_{s}} - \Delta \varepsilon_{s}$$

Può assumersi per la trave inflessa un modello iperbolico di "tension stiffening" (effetto irrigidente del cls fra fessura e fessura), per cui si ha

$$\varepsilon_{sm} = \frac{\sigma_{s}^{'}}{E_{s}} \left[1 - 0.5 \, \beta_{o} \beta_{1} \beta_{2} \left(\frac{\overline{\sigma}_{s}^{'}}{\sigma_{s}^{'}} \right)^{2} \right] \qquad per \, \sigma_{s}^{'} \geq \overline{\sigma}_{s}^{'}$$

 β_o rapporto d'area efficace $\beta_o \le 1$

 β_1 tiene conto delle caratteristiche di aderenza ($\beta_1 = 1$ per ader. migl.) β_2 tiene conto della durata del carico ($\beta_2 = 1$ per carico breve durata)

Verifica fessurazione mediante calcolo diretto

Si possono utilizzare le seguenti relazioni per ε_{sm} e $\Delta_{s\max}$

$$\varepsilon_{sm} = \frac{\sigma_{s}^{'} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \left(1 + \alpha_{e} \rho_{eff}\right)}{E_{s}} \ge 0.6 \frac{\sigma_{s}^{'}}{E_{s}}$$

$$\Delta_{s \max} = 3.4c + 0.425 k_1 k_2 \frac{\phi}{\rho_{eff}}$$

$$w_d = \Delta_{s \max} \varepsilon_{sm} \le w_{\lim}$$

$$k_t = 0.6$$
 (per carico di breve durata)

$$k_1 = 0.8$$
 (per barre ad aderenza migliorata)

$$k_2 = 0.5$$
 (per flessione)

$$\rho_{eff} = \frac{A_s}{A_{c,eff}}$$

$$\phi_{eq} = \frac{n_1 \, \phi_1^2 + n_2 \, \phi_2^2}{n_1 \, \phi_1 + n_2 \, \phi_2}$$

Verifica fessurazione mediante criterio indiretto

L'ampiezza delle fessure causate da distorsioni imposte o da carichi applicati può essere controllata mediante disposizione di una quantità minima di armatura secondo la relazione

$$A_{S} = k_{c} k f_{ctm} \frac{A_{ct}}{\sigma_{S}}$$

 A_{ct} area di calcestruzzo nella zona tesa prima della formazione della fessura

 $\sigma_{\!s}\,$ massima tensione ammessa nell'armatura dopo la formazione della fessura

 f_{ctm} resistenza media a trazione del calcestruzzo

 k_c coefficiente che tiene conto della distribuzione di tensioni prima della fessurazione

coefficiente che tiene conto degli effetti di tensioni auto-equilibrate non uniformi

 $\begin{cases} k_c = 1.0 \text{ per trazione pura} \\ k_c = 0.4 \text{ per flessione pura} \end{cases}$ $\begin{cases} k = 0.8 \text{ tens. di traz. dovute a def. Intrinseche impedite} \\ k = 1.0 \text{ tens. di traz. dovute a def. estrinseche impedite} \\ k = 0.8 \text{ sez. rett. } h < 30 \text{ cm}; \quad k = 0.5 \text{ sez. rett. } h > 80 \text{ cm} \end{cases}$

Verifica fessurazione mediante criterio indiretto

Dal diagramma si ricava in funzione del valore di tensione σ_s il diametro massimo per soddisfare una determinata apertura max.

Verifica fessurazione mediante criterio indiretto

Dal diagramma si ricava in funzione del valore di tensione σ_s la spaziatura barre per soddisfare una determinata apertura max.

Verifica fessurazione limiti apertura di fessura

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Gruppi di Esigenze	Condizioni ambientali	Combinazione di azioni	Armatura			
			Sensibile		Poco sensibile	
			Stato limite	w _k	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Α.	Ordinarie	frequente	apertura fessure	≤ W ₂	apertura fessure	≤ W ₃
A		quasi permanente	apertura fessure	≤ W ₁	apertura fessure	\leq W ₂
	Aggressive	frequente	apertura fessure	≤ w ₁	apertura fessure	\leq W ₂
В		quasi permanente	decompressione	84.	apertura fessure	$\leq W_1$
С	Molto aggressive	frequente	formazione fessure	323	- apertura fessure	
		quasi permanente	decompressione	27 5 8	apertura fessure	≤ W ₁

Tab. 4.1.III - Descrizione delle condizioni ambientali

Tab. 4.1.III – Descrizione delle condizion	$w_1 = 0.2 \text{ mm}$	
Condizioni ambientali	Classe di esposizione	,,,, o,,,, imi
Ordinarie	X0, XC1, XC2, XC3, XF1	$w_2 = 0.3 \text{ mm}$
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4	$w_3 = 0.4 \text{ mm}$

CLASSI DI ESPOSIZIONE

DESCRIZIONE	ESEMPI	
n rischio		
Calcestruzzo semplice senza attacchi c.a./c.a.p. in ambiente molto asciutto	Interno di edifici con umidità molto bassa	
sione da carbonatazione	* 1	
Asciutto o permanentemente bagnato	Interno di edifici	
Bagnato, raramente asciutto	Molte fondazioni	
Umidità moderata	Esterni protetti	
Ciclicamente bagnato e asciutto	Strutture in bagnasciuga	
one da cloruri		
Umidità moderata	Atmosfera salina	
Bagnato raramente asciutto	Piscine	
Ciclicamente bagnato e asciutto	Ponti, pavimenti esterni	
	Calcestruzzo semplice senza attacchi c.a./c.a.p. in ambiente molto asciutto sione da carbonatazione Asciutto o permanentemente bagnato Bagnato, raramente asciutto Umidità moderata Ciclicamente bagnato e asciutto one da cloruri Umidità moderata Bagnato raramente asciutto	

CLASSI DI ESPOSIZIONE

3. Corros	sione da cloruri di acqua marina			
XS1	Atmosfera con umidità marina	Strutture prossime alla costa		
XS2	Permanentemente sommerse	Parti di strutture marine		
XS3	Zone di bagnasciuga	Parti di strutture marine		
4. Attacc	o di cicli gelo/disgelo			
XF1	Superfici bagnate senza antigelo	Parti verticali alla pioggia		
XF2	Superfici bagnate con antigelo	Parti verticali di ponti		
XF3	Sature d'acqua senza antigelo	Parti orizzontali alla pioggia		
XF4	Sature d'acqua con antigelo	Parti orizzontali di ponti		
5. Attacc	o chimico			
XA1	Ambiente chimico poco aggressivo	Suoli ed acque del terreno		
XA2	Ambiente chimico medio aggressivo	Suoli ed acque del terreno		
XA3	Ambiente chimico molto aggressivo	Suoli ed acque del terreno		

SLE – CONTROLLO DEFORMAZIONE

Calcolo freccia

Si fa riferimento ad un modello semplificato che tiene conto del

contributo del "tension stiffening"

$$f_m = \eta f + (1 - \eta) f'$$

$$\eta = 1 - \beta^* \left(\frac{M_{cr}}{M} \right)^2$$

$$M_{cr} = \frac{f_{ctd} I_i}{y'_c}$$

f è la freccia nella condizione di trave non fessurata l_i

f' è la freccia nella condizione di trave fessurata l'i

 β^* pari a 1.0 per carico di breve durata, 0.5 per ciclico o lunga durata

$$f = \frac{5}{384} \frac{q \, l^4}{E_c I_i} \qquad f' = \frac{5}{384} \frac{q \, l^4}{E_c I_i'}$$

$$f_m = \eta f + (1 - \eta) f'$$

Limiti freccia

I limiti per la freccia sono fissati in funzione delle esigenze d'uso

1/250 I per solai e travi nella condizione quasi-permanente dei carichi

1/500 l per solai e travi che portano pareti divisorie e di tamponamento nella condizione quasi-permanente dei carichi

Verifica freccia senza calcolo diretto

Per travi e solai con luci non superiori a 10 m è possibile omettere la verifica mediante calcolo diretto, ritenendo implicitamente soddisfatta la verifica se il rapporto luce/altezza

$$\frac{l}{h} \le K \left[11 + \frac{0.0015 f_{ck}}{\rho + \rho'} \right] \cdot \left[\frac{500 A_{s,eff}}{f_{yk} A_{s,calc}} \right]$$

 ρ , ρ' sono le percentuali geometriche di armatura a trazione e compress.

Il secondo termine tra parentesi quadre può essere assunto = 1.0

Per travi a T con ala superiore a 3 volte l'anima il rapporto di riferimento va ridotto del 20%

Per travi e piastre nervate caricate da tramezzi che possono subire danni a causa di inflessioni eccessive, i valori di riferimento vanno moltiplicati per 7/l, con l luce di calcolo in m

Se le luci sono maggiori di 8.5 m, I valori vanno moltiplicati per 8.5/l

Verifica freccia senza calcolo diretto

Valori di K e rapporti I/h limite per calcestruzzo molto sollecitato e calcestruzzo poco sollecitato. Per valori intermedi si può interpolare linearmente.

Sistema strutturale		Calcestruzzo molto sollecitato ρ=1,5%	Calcestruzzo poco sollecitato ρ=0,5%
Travi semplicemente appoggiate, piastre incernierate mono o bidirezionali	1,0	14	20
Campate terminali di travi continue o piastre continue monodirezionali o bidirezionali continue sul lato maggiore	1,3	18	26
Campate intermedie di travi continue o piastre continue mono o bidirezionali	1,5	20	30
Piastre non nervate sostenute da pilastri (snellezza relativa alla luce maggiore)	1,2	17	24