1. DFA -> Language

Lecture 2 P15-example

We have a machine state diagram as below:

 q_1 is the start state and q_2 is an accept state.

Question.

Can the input string 0101010 be accepted by this machine?

Which kind of strings can be accepted by this machine?

2. Language -> DFA

Assignment 1 Q1-b

Question 1

Let $\Sigma = \{a, b\}$. Define $A = \{w \in \Sigma^* \mid \mid w \mid \geq 2$, second-to-last symbol of w is a} (20 marks)

(a) List the first 4 strings in A in lexicographic order. (4 marks)

Answer: They are $w_1 = acc$, $w_2 = aacc$,

(b) Draw a DFA for A. (16 marks)

whisher: $\frac{a}{a} = \frac{a}{a} = \frac{a}{a}$ This wer:

Question 2

3. 判断 DFA 能否接受字符串 w\table 与 diagram 转换

4. Language -> NFA

Lecture 3 P16-example

Example

Let A be the language $A = \{w \in \{0, 1\}^* : w \text{ has a } 1 \text{ in the third position from the } 1\}$ right}, design M: L(M).

- 5. NFA -> Language\NFA 能否接受字符串 w\ possible path 与 accepting path
- 6. DFA -> NFA

答案不唯一,加一个 q0,由空输入指向原 q0 即可。

7. NFA -> DFA

Assignment 1 Q3

8. Proof of closed of RL[The NFA after the operation\RE -> NFA]

(1) Union(DFA perspective)

Then $L(R_1) = L(R_1) \cup L(R_2)$ has NFA as:

(2) Concatenation

Then $L(R_1) = L(R_1) L(R_2)$ has NFA as:

(3) Star

6th case (Kleene star). If $R=(R_I)^*$ and ${\rm L}(R_I)$ has NFA N, then ${\rm L}(R)=(\ {\rm L}(R_I)\)^*$ has NFA M as:

9. RL -> Regular expression

Lecture 4 P19-example

The language $\{w: w \text{ contains exactly two } 0s\}$ is described by the expression:

1*01*01*

The language $\{w: w \text{ contains at least two } 0s\}$ is described by the expression:

 $(0 \cup 1)^* 0 (0 \cup 1)^* 0 (0 \cup 1)^*$

The language $\{w: 1011 \text{ is a substring of } w\}$ is described by the expression:

 $(0 \cup 1)^* 1011 (0 \cup 1)^*$

10. RE -> RL

Lecture 4 P23-example

11. 证明一个 expression 是 regular 的

Lecture 4 P21-example

12. DFA -> RE [Iterative procedure: DFA -> GNFA -> RE]

Lecture 5 P12/14

Example

Convert the given DFA into regular expression

Exercise

 $M = (Q, \Sigma, \delta, q_0, F), \text{ where } Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}, \text{ and } \delta \text{ is given as;}$ $A = \{q_0, q_1, q_2\}, \Sigma = \{q_0,$

13. Use pumping lemma prove RL

Assignment 1 Q5-b

Question 5 $S_2 \rightarrow bS_2 \not\vdash S$ $\Delta \cdot ab \cdot b \cdot c \cdot c \cdot e^2$ Let $\Sigma = \{a, b\}$, and consider the language $A = \{w \in \Sigma^* \mid w \text{ has more } b's \xrightarrow{\circ} Cij \geqslant \circ S$ than a's. (20 marks)

(a) Describe pumping lemma for regular languages. (4 marks)
Answer: Suppose A is a regular language. Then there exist an integer p>), allow the pumping length, such that
the following holds: Every strings in A, with 1s1 > p, can be written as s- xyz, such that y \$\frac{1}{2} \in \text{Ci.e.}, \left| y| > \text{Ci.e.}, \left| y| > \text{Ci.e.}, \left| y| > \text{P, and}

(b) Prove that A is not a regular language. (16 marks) for all i>0, xy = A.

Ayrswer: Proof by contradiction: Assume A is a regular language, then A holds the pumping lemma,

which means there exist a pumping length p, and for a string $s=a^pb^{p+1}$ ($p \neq 0$), $s=\pi yz$ Since $[s]=2pt|_{z}p$, pumping lemma holds. By pumping length, $[xy]\neq p$, $[y]\neq 1$, so π_{y} only contain α .

XJTLU/21-22/S1 Page 2 of 2 Suppose $x = a^m$, $y = a^n$, $z = a^{tb}p^{tl}$, for some m. $z = a^{tb}p^{tl}$ Page 2 of 2 $z = a^{tb}p^{tl}$ Page 3 $z = a^{tb}p^{tl}$ Page 3 z = a

Since nzl, p+n>p+l, which means we get work or equal a's than b's, xy2z&A, which is controlict to the purping lemma. Therefore, A is not a regular language.

14. Construct CFG\[Derivation of CFG] Assignment 1 Q4\[Assignment 2 Q1]

Question 4

Design context free grammars for the following languages (only providing rules). (20 marks)

(a) The set $\{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (6 marks) $P = \{a^n \mid n \ge 1\}$ (7) $P = \{a^n \mid n \ge 1\}$ (8 marks) $P = \{a^n \mid n \ge 1\}$ (8 marks) $P = \{a^n \mid n \ge 1\}$ (8 marks) $P = \{a^n \mid n \ge 1\}$ (8 marks) $P = \{a^n \mid n \ge 1\}$ (9 marks) $P = \{a^n \mid n \ge 1\}$ (10 marks) $P = \{a^n \mid n \ge 1\}$ (10 marks) $P = \{a^n \mid n \ge 1\}$ (11 marks) $P = \{a^n \mid n \ge 1\}$ (12 marks) $P = \{a^n \mid n \ge 1\}$ (13 marks) $P = \{a^n \mid n \ge 1\}$ (14 marks) $P = \{a^n \mid n \ge 1\}$ (15 marks) $P = \{a^n \mid n \ge 1\}$ (16 marks) $P = \{a^n \mid n \ge 1\}$ (17 marks) $P = \{a^n \mid n \ge 1\}$ (18 marks) $P = \{a^n \mid n \ge 1\}$ (19 marks) than a'el (20 marks)

15. CFG -> CNF

Lecture 6 P19-example\Tutorial 4 Q4\Assignment 2 Q3

Step 1. Eliminate the start variable from the right-hand side of the rules.

- New start variable S₀
- New rule $S_0 \rightarrow S$

 \checkmark Step 2. Remove ε-rules $A \rightarrow \varepsilon$, where $A \subseteq V - \{S\}$.

- Before: $B \to xAy$ and $A \to \varepsilon \mid \cdot \cdot \cdot$
- After: B \rightarrow xAy xy and A \rightarrow · · ·

When removing $A \to \epsilon$ rules, insert all new replacements:

- Before: $B \to AbA$ and $A \to \epsilon \,|\,$ · · · ·
- After: $B \rightarrow AbA \mid bA \mid Ab \mid b$ and $A \rightarrow \cdot \cdot \cdot \cdot$

Step 3. Remove unit rules $A \rightarrow B$, where $A \in V$.

- Before: $A \rightarrow B$ and $B \rightarrow xCy$
- After: $A \rightarrow xCy$ and $B \rightarrow xCy$

Step 4. Eliminate all rules having more than two symbols on the right-hand side.

- Before: $A \rightarrow B_1B_2B_3$
- After: $A \rightarrow B_1A_1$, $A_1 \rightarrow B_2B_3$

Step 5. Eliminate all rules of the form $A \rightarrow ab$, where a and b are not both variables.

- Before: A → ab
- $\bullet \quad \mathsf{After} \colon \mathsf{A} \to \mathsf{B}_1 \mathsf{B}_2 \text{, } \mathsf{B}_1 \to \mathsf{a} \text{, } \mathsf{B}_2 \to \mathsf{b}.$

16. DFA -> CFG

Lecture 6 P13-example

Example

Let L be the language defined as

 $L = \{w \in \{0, 1\}^*: 101 \text{ is a substring of } w\}.$

The DFA M that accepts L

How can we convert M to a context-free grammar G whose language is L? $q_1 \rightarrow 0 q_0 \mid q_3 \\ q_1 \rightarrow 0 q_1 \mid 0 q_2 \quad , \quad q_2 \rightarrow 0 q_1 \mid q_3 \mid g_2 \mid g_3 \mid$

17. CFL -> PDA

Tutorial 5 Q3/Q4

- 3. PDA for language $\{ww^R \mid w \in \{0, 1\}^*\}$
- 4. PDA for language $\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k \}$

3.

- $ullet \ q_1
 ightarrow q_2$: First pushes \$ on stack to mark bottom
- $\bullet \; q_2 \rightarrow q_2 : \;$ Reads in first half w of string, pushing it onto stack
- $ullet q_2
 ightarrow q_3$: Guesses that it has reached middle of string
- $ullet \ q_3 o q_3$: Reads second half $w^{\mathcal R}$ of string, matching symbols from first half in reverse order (recall: stack LIFO)
- $ullet \ q_3
 ightarrow q_4$: Makes sure that no more input symbols on stack

4.

18. CFG -> PDA

Assignment 2 Q2

Consider the following CFG $G=(V,\Sigma,R,S)$, where $V=\{S,T,X\}$, $\Sigma=\{a,b\}$, the start variable is S, and the rules R are: $S\to aTXb$ $T\to XTS|\varepsilon$ $X\to a|b$

19. CFL must be RL

20. Pumping lemma for CFL Assignment 2 Q3

21. TM configuration/Detailed process Tutorial 7 Q2/Q1

(1) Configuration:

2.

(2) Detailed process

1.

- 22. Run TM on input w/Language of TM/Address/Encoding
- 23. Acceptance problem
 - (1) L_{DFA}, L_{NFA}, L_{REX}, CFGs, CFLs are decidable
 - (2) L_{TM} is not decidable
- 24. Countable / Uncontable set: just need to know the basic idea
- 25. Reducibility: need to know how to use it to prove TM-R and TM-D

Theorem If $A \leq_m B$ and B is decidable, then A is decidable. Corollary Right If $A \leq_m B$ and A is undecidable, then B is undecidable also. Theorem Proof It was the Think the decides B, CB is decidable.

(1)

```
Theorem
           If A \mathrel{\leq_{_{m}}} B and B is Turing-recognizable, then A is Turing-recognizable.
           Corollary
           If A \leq_m B and B is not Turing-recognizable, then is not Turing-recognizable.
                             1. Let MB be the TM that recognize B
           Theorem Proof
                              2 Let f be the reducing function from A to B
                              3. Define a new TM as follows: MA = " on injut w:
                                                                        10 Congrete four)
                                                                       @ Aun MB on input ten) and give the same result"
                            4, Since it's reducing function, then we and foureB
                                 O A wea, then towners, so MB and Ma accept
                                 19 17 w/A, then fow &A so Me and MA reject or loop
                                                                                              ®
                              Thus MA recognize A
(2)
```

26. Minimal length description: 3 Theorems

27. Enumerator

Enumerator

Theorem

A language is enumerable if and only if it has an enumerator.

```
Proof 1. Assume that \bot has an enumerator. E, we construct a TM M with an arbitary string w.

TM M(w) : 0 run E, everytime E enters the paint state, let v be the string on the print tape.

\textcircled{B} \ \overrightarrow{q} \ w = V, then M accept

2. Then M actistics proporties: J it well, then w will be sent to the printer. M are w is some action to the printer, M will not derivate.

3. Thus, M satisfies the defination, \bot is enumerable.
```

28. Hierarchy

29. Big-O and Little-O

- (1) Definition and difference
- (2) Is Big-O or Little-O properly?[Count time complexity]

®

30. 图灵机的概念们:

图灵机接受的语言 L(M) 是指被图灵机 M 接受的所有属于字母表的字符串的集合

- **1. 图灵可识别(Turing-recognizable):** 对于语言 A,如果存在 TM M 使得 A = L(M),即语言 A 与图灵机接受的语言相同。也称为**递归可枚举(Recursively enumerable)**或者(enumerable language)
 - 2. Enumerator(枚举器): 通常表示为一个双带图灵机,一个工作带一个打印带。
 - 3. Decider(判定器): 一个对于所有输入都会停机(halt)不会 loop 的图灵机,就是 decider。
 - (1) 对于语言 L,如果存在一个图灵机 M,对于属于 L 的 w,输入 M 后 M 在接受态停机;对于不属于 L 的 w,输入 M 后 M 在拒绝态停机,那么称 L 为可判定(decidable)语言,L 对应的问题称为可判定问题。也叫 Turing-decidable,或称递归语言(recursive language)。
 - (2) 图灵可判定与图灵可识别的区别:对于不属于该语言的字符串w,图灵可判定语言存在图灵机 M,输入w时终止在拒绝态,而图灵可识别则不确定,有可能 loop 也有可能 halt。
 - (3) 递归可枚举语言里面包括不可判定问题,只有递归语言中一定是可判定问题。
 - (4) 能保证停机的图灵机=算法
- **4.** 没有图灵机能够接受的语言叫非递归可枚举语言(不递归也不枚举),例如对角化语言与通用语言。所对应的问题叫 unsolvable problem 不可解问题。递归可枚举语言对应的问题叫做不可判定问题(undecidable problem),是不可解问题的子集。
- **5. 多带图灵机**与普通图灵机等价:加入井号来代表不同纸带的边界(其实是**用多道图 灵机模拟多带图灵机**)。
 - 6. 非确定图灵机(NTM)也与普通(确定)图灵机等价,可以用多带图灵机模拟 NTM
- 7. 一个数组 A 如果与 N(自然数数组)存在双射(bijection)或其大小有限,则称 A 是 countable set。
 - (1) Z(整数数组)与 Q(有理数数组)都是 countable 的
 - (2) R(实数数组)是 uncontable 的