

Lecture 1: Introduction

Building Simulation Introduction Concepts Heat and temperature Thermal Analysis Energy conservation Constitutive laws Framework Dynamic models Conduction Convection Radiation Coupled Transfer

Curricula

2 x 4h Lectures

Conduction

Convection

Radiation

Coupled heat transfer

2 x 4h Tutorials and project

Model your own SmartHome

Simulate and discuss

1 x 2h Defend your project

1 x 2h Written exam

Prerequisites

Calculus

Linear algebra

Thermodynamics

Heat and mass trans

Energy Building Simulation

Concepts

Science: models of nature with testable explanations and predictions

Causality: causal relations; the cause must precede the effect

Relations = physical laws

Conservation (operation: addition $x_1 + x_2 = x_3$)

Linear momentum ⇔ translation symmetry (invariance)

Angular momentum ⇔ rotation symmetry (invariance)

...

Universal laws (operation: multiplication x = a y)

Universal attraction (Newton) $F_1 = F_2 = G \frac{m_1 m_2}{d^2}$

Plank-Einstein relation $E = h \nu$

Thermal energy $E_{thermal} = k T$

. .

Phenomenological laws

Ohm's law u = R iHooke's law $F = k \Delta l$

Energy Building Simulation slide 3

Introduction

Concepts

Building Simulation

Introduction

Concepts

Physical system: elements connected through conserved quantities

$$\begin{cases} a_{11}x_1 + a_{22}x_2 = y_1 \\ a_{21}x_1 + a_{22}x_2 = y_2 \end{cases}$$

Heat and temperature

Framework

Dynamic models

Dynamic models

Conduction

Convection

Radiation

Coupled Transfer

Concepts

Relations between quantities → limited number of independent units

SI: system of measurable quantities + relations between quantities

Introduction

Concepts

Building Simulation		
ln	troduction	
	Concepts	
	Heat and temperature	
TI	nermal Analysis	
	Energy conservation	
	Constitutive laws	
	Framework	
	Dynamic models	
С	onduction	
C	onvection	
R	adiation	
C	oupled Transfer	
Ť	- ap. ca i i anierei	
•		

С	onstantes fondamentales		
Constante	Symbole	Dimension	
constante gravitationnelle	G	M ⁻¹ L ³ T ⁻²	
constante de Planck réduite	\hbar (= $h/2\pi$, où h est la constante de Planck)	ML ² T ⁻¹	m, kg, s
vitesse de la lumière dans le vide	С	L ¹ T ⁻¹	
constante de Boltzmann	k	ML ² T ⁻² Θ ⁻¹	K
permittivité du vide	εο	Q ² M ⁻¹ L ⁻³ T ²	A

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

$$E = h\nu$$
 pour un photon

$$E_{thermal} = kT$$

Heat and temperature

$$pV = nRT$$

$$pV = NkT$$

$$k = \frac{R}{N_{\rm A}}$$

Boltzmann constant: relates thermal energy to temperature

$$E_{thermal} = kT$$

SI definition: 1 K the variation of temperature that changes the thermal energy by 1,380 648 8 \times 10⁻²³J

Energy Building Simulation slide 7

Introduction

Heat and temperature

Heat transfer (or heat) is thermal energy in transit due to temperature difference

0th **principle :** temperature scales $(e_1 = \theta_0 - \theta_1 + b)$

1st **principle**: energy conservation $(q_1 - q_2 = -f)$

 2^{nd} principle and constitutive laws: direction / value of heat $(q_1 = G_1 e_1)$

Heat and temperature

Building Simulation	Quantity	Meaning	Symbol	Units
Introduction Concepts	Thermal energy	Energy of matter at microscopic level	U	$J = kg m^2 s^{-2}$
Thermal Analysis Energy conservation	Temperature	Indirect measurement of stored thermal energy	T or θ	K or °C
Constitutive laws Framework Dynamic models Conduction	Heat transfer	Thermal energy transport due to temperature difference		
Convection Radiation Coupled Transfer	Heat	Amount of thermal energy transferred	Q	$J = kg m^2 s^{-2}$
Coupled Hallolol	Heat rate	Heat transferred per unit time	$\dot{Q}\equiv q,\Phi$	$W = kg m^2 s^{-3}$
	Heat flux	Heat rate per unit surface area	$\varphi = \frac{dq}{dA}$	$W/m^2 = kg s^{-3}$

Energy Building Simulation slide 9

Introduction

Heat and temperature

quantity

potential

w flow rate

potential difference

Heat and temperature

Modes of heat transfer

FIGURE 1.1 Conduction, convection, and radiation heat transfer modes.

Energy Building Simulation slide 11

Thermal analysis

Energy conservation

Energy conservation for a control volume

$$\Delta E_{st} = E_{in} - E_{out} + E_g [J]$$

$$\frac{dE_{st}}{dt} = \dot{E}_{in} - \dot{E}_{out} + \dot{E}_{g} \quad [W]$$

Thermal analysis **Energy conservation**

Volume phenomena

- Sensible heat
- $Q = mc(\theta_2 \theta_1)$
- Latent heat
- Q = ml
- Generated heat: thermal ⇔ other form (e.g. electrical, chemical, nuclear)
- Surface phenomena
 - Energy in
 - Energy out

Energy Building Simulation slide 13

Thermal analysis Constitutive laws

= relation between two physical quantities that is specific to a material

Conduction: Fourier law

$$\varphi_n = -\lambda \frac{d\theta}{dx}$$
$$q = \frac{\lambda A}{\Delta x} (\theta_1 - \theta_2)$$

	Valeurs typiques des propriétés des matériaux (Lefebvre, 1994)				
Matériau	Masse volumique, ρ $[kg \cdot m^{-3}]$	Capacité thermique massique, c $[J \cdot kg^{-1} \cdot K^{-1}]$	Conductivité thermique, λ [W·m ⁻¹ ·K ⁻¹]		
Isolants	50 à 200	700	0.004		
Bois	500	1250	0.2		
Verre	1000	1000	1.2		
Béton	1000 à 2000	1000	1.7		
Pierre	2000	1000	2.0		

Thermal analysis Constitutive laws

Energy Building Simulation slide 17

Thermal analysis Constitutive laws

Radiation

$$\varphi_{abs} = \alpha E$$
 $\varphi_{em} \equiv M = \varepsilon \sigma T_S^4$
 $\alpha = \varepsilon$

$$\varphi = \varphi_{em} - \varphi_{abs} = \varepsilon M^{\circ} - \alpha E$$
$$= \varepsilon \sigma (T_S^4 - \overline{T}_e^4)$$

$$q = h_r A(\theta_S - \overline{\theta}_e)$$

$$h_r \equiv \varepsilon \sigma (T_S + \overline{T}_e) (T_S^2 + \overline{T}_e^2)$$

Radiation

$$T_{S} \cong T_{e}$$

$$T_{S}^{4} \Big|_{T_{S} \cong \overline{T_{e}}} = \overline{T_{e}}^{4} + 4\overline{T_{e}}^{3} (T_{S} - \overline{T_{e}})$$

$$T_S^4 - \overline{T}_e^4 = 4\overline{T}_e^3 (T_S - \overline{T}_e)$$

$$q = h_r A(\theta_S - \overline{\theta}_e) \qquad h_r = 4\varepsilon\sigma \overline{T}_e^3$$

Energy Building Simulation slide 19

Thermal analysis Constitutive laws

Convection and radiation

$$\varphi = \varphi_{cv} + \varphi_r$$

$$= h_c (T_S - T_{\infty}) + \mathcal{E}\sigma (T_S^4 - T_{me}^4)$$

$$T_S \cong T_{me} \cong T_S$$

$$q = h_t A(\theta_S - \overline{\theta}_e)$$
$$h_t = h_c + h_r$$

Building Simulation	• Cond	uction, conv	ection, ray	onnement
Introduction				
Concepts				
Heat and temperature	Mode	Mécanisme	Loi	Coefficient caractéristique
Thermal Analysis	Conduction	Diffusion	Fourier	Conductivité thermique
Energy conservation			$\varphi_n = -\lambda \frac{dT}{dx}$	$\lambda [W/m \cdot K]$
Constitutive laws			$\varphi_n = -\lambda \frac{d}{dx}$	
Framework Dynamic models				
Conduction	Convection	Diffusion et	Newton	Coefficient d'échange convectif
	_	trnasport de masse	$\varphi = h_c \left(T_S - T_{\infty} \right)$	$h_c [W/m^2 \cdot K]$
Convection Radiation	Rayonnement	Ondes électromagnétiques	Dérivée de Stefan-Boltzmann	Emissivité ε [-]
Coupled Transfer		cicciomagnetiques	$\varphi = \varepsilon \sigma (T_s^4 - T_{m_e}^4)$	Coefficient d'échange radiatif
			$\varphi = h_r (T_S - T_{me})$	$h_r [W/m^2 \cdot K]$
	Advection	Transport de masse	$\dot{Q} = \dot{m}c_p(T_o - T_i)$	$\dot{m}c_{p}$
		_		r

Energy Building Simulation slide 21

Thermal analysis Framework for thermal analysis

Framework for thermal analysis

Thermal analysis Framework for thermal analysis

Energy Building Simulation slide 23

- 4) Solve the problem:
 - temperature differences for each resistance

$$\begin{bmatrix} e_1 = T_o - \theta_a \\ e_2 = T_o - \theta_{so} \\ e_3 = \theta_{so} - \theta_w \\ e_4 = \theta_w - \theta_{si} \\ e_5 = \theta_{si} - \theta \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \theta_{so} \\ \theta_{si} \\ \theta_a \\ \theta_w \end{bmatrix} + \begin{bmatrix} T_o \\ T_o \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{e} = [e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5]^T$$

$$\mathbf{b} = [T_o \quad T_o \quad 0 \quad 0 \quad 0]^T$$

$$\mathbf{0} = [\theta_{so} \quad \theta_{si} \quad \theta_a \quad \theta_w]^T$$

$$e = -A\theta + b$$

Framework for thermal analysis

Building Simulation

Introduction

Concepts

Heat and temperature

Thermal Analysis

Energy conservation

Constitutive laws Framework

Dynamic models

Conduction

Convection

Radiation

Coupled Transfer

4) Solve the problem:

- heat rates for each branch

$$\begin{bmatrix} q_1 \equiv q_v = R_v^{-1} e_1 \\ q_2 \equiv q_{co} = R_{co}^{-1} e_2 \\ q_3 \equiv q_{w1} = R_{w1}^{-1} e_3 \\ q_4 \equiv q_{w2} = R_{ci}^{-1} e_2 \\ q_5 \equiv q_{ci} = R_{ci}^{-1} e_2 \end{bmatrix} = \begin{bmatrix} R_v^{-1} & 0 & 0 & 0 & 0 \\ 0 & R_{co}^{-1} & 0 & 0 & 0 \\ 0 & 0 & R_{w1}^{-1} & 0 & 0 \\ 0 & 0 & 0 & R_{w2}^{-1} & 0 \\ 0 & 0 & 0 & 0 & R_{co}^{-1} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix}$$

$$\mathbf{q} = [q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5]^T$$

$$\mathbf{G} = \begin{bmatrix} R_v^{-1} & 0 & 0 & 0 & 0 \\ 0 & R_{co}^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & R_{w1}^{-1} & 0 & 0 \\ 0 & 0 & 0 & R_{w2}^{-1} & 0 \\ 0 & 0 & 0 & 0 & R_{co}^{-1} \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} q_1 & q_2 & q_3 & q_4 & q_5 \end{bmatrix}^t$$

$$\mathbf{G} = \begin{bmatrix} R_{\nu}^{-1} & 0 & 0 & 0 & 0 \\ 0 & R_{co}^{-1} & 0 & 0 & 0 & 0 \\ 0 & 0 & R_{w1}^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & R_{w2}^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & R_{co}^{-1} \end{bmatrix}$$

q = Ge

Energy Building Simulation slide 25

Thermal analysis

Framework for thermal analysis

Building Simulation

Introduction

Concepts

Heat and temperature

Thermal Analysis

Energy conservation

Constitutive laws Framework

Dynamic models

Conduction

Convection

Radiation

Coupled Transfer

- 4) Solve the problem:
 - energy balance for each node

$$\mathbf{C}\dot{\mathbf{\theta}} = \mathbf{A}^T \mathbf{q} + \mathbf{f}$$

Framework for thermal analysis

Introduction Concepts

Heat and temperature

Thermal Analysis Energy conservation

Constitutive laws

Framework Dynamic models

Conduction

Convection

Radiation

Coupled Transfer

4) Solve the problem:

$$\begin{cases} \mathbf{e} = -\mathbf{A}\mathbf{\theta} + \mathbf{b} \\ \mathbf{q} = \mathbf{G}\mathbf{e} \\ \mathbf{C}\dot{\mathbf{\theta}} = \mathbf{A}^{T}\mathbf{q} + \mathbf{f} \end{cases} \qquad \begin{cases} \mathbf{G}^{-1}\mathbf{q} + \mathbf{A}\mathbf{\theta} = \mathbf{b} \\ -\mathbf{A}^{T}\mathbf{q} + s\mathbf{C}\mathbf{\theta} = \mathbf{f} \end{cases} \qquad \begin{bmatrix} \mathbf{G}^{-1} & \mathbf{A} \\ -\mathbf{A}^{T} & s\mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{\theta} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{f} \end{bmatrix}$$

- solution: system of algebraic differential equations

$$\mathbf{C}\dot{\mathbf{\theta}} = -\mathbf{A}^T\mathbf{G}\mathbf{A}\mathbf{\theta} + \mathbf{A}^T\mathbf{G}\mathbf{b} + \mathbf{f}$$

Energy Building Simulation slide 27

Thermal analysis

Framework for thermal analysis

Building Simulation

Introduction Concepts

Heat and temperature

Thermal Analysis

Energy conservation

Constitutive laws

Framework

Dynamic models

Conduction

Convection Radiation

Coupled Transfer

4) Solve the problem

$$\begin{array}{c}
R_{v} \\
R_{co} \\
R_{w1} \\
R_{w2} \\
R_{ci}
\end{array}
\mathbf{A} = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & -1 & 1 & 0
\end{bmatrix}
\mathbf{G} = \begin{bmatrix}
R_{v}^{-} \\
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{array}{c}
R_{v} \\
R_{co} \\
R_{w1} \\
R_{ci}
\end{array}
\mathbf{A} = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & -1 & 1 & 0
\end{bmatrix}
\mathbf{G} = \begin{bmatrix}
R_{v}^{-1} & 0 & 0 & 0 & 0 \\
0 & R_{co}^{-1} & 0 & 0 & 0 \\
0 & 0 & R_{w1}^{-1} & 0 & 0 \\
0 & 0 & 0 & R_{w2}^{-1} & 0 \\
0 & 0 & 0 & 0 & R_{ci}^{-1}
\end{bmatrix}
\mathbf{b} = \begin{bmatrix}
T_{o} \\
T_{o} \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\mathbf{f} = [\dot{Q}_o \quad \dot{Q}_i \quad \dot{Q}_g + \dot{Q}_{HVAC} \quad 0]^T$$

$$\mathbf{C}\dot{\mathbf{\theta}} = -\mathbf{A}^T\mathbf{G}\mathbf{A}\mathbf{\theta} + \mathbf{A}^T\mathbf{G}\mathbf{b} + \mathbf{f}$$

$$\mathbf{C}\dot{\mathbf{\theta}} = -\mathbf{A}^{T}\mathbf{G}\mathbf{A}\mathbf{\theta} + \mathbf{A}^{T}\mathbf{G}\mathbf{b} + \mathbf{f} \qquad \begin{bmatrix} \mathbf{G}^{-1} & \mathbf{A} \\ -\mathbf{A}^{T} & s\mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{q} \\ \mathbf{\theta} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{f} \end{bmatrix}$$

Obtain dynamic models

Introduction

Concepts

Heat and temperature

Thermal Analysis

Energy conservation

Constitutive laws

Framework Dynamic model

Conduction

Convection

Radiation

Coupled Transfer

algebraic differential equations to state-space representation

$$\mathbf{C}\dot{\mathbf{\theta}} = -\mathbf{A}^T\mathbf{G}\mathbf{A}\mathbf{\theta} + \mathbf{A}^T\mathbf{G}\mathbf{b} + \mathbf{f}$$

$$\dot{\boldsymbol{\theta}}_C = \mathbf{A}_S \boldsymbol{\theta}_C + \mathbf{B}_S \mathbf{u}$$
$$\mathbf{y} = \mathbf{C}_S \boldsymbol{\theta}_C + \mathbf{D}_S \mathbf{u}$$

$$\mathbf{C}\dot{\mathbf{\theta}} = \mathbf{K}\mathbf{\theta} + \mathbf{K}_{b}\mathbf{b} + \mathbf{f}$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_C \end{bmatrix} \begin{bmatrix} \dot{\mathbf{\theta}}_0 \\ \dot{\mathbf{\theta}}_C \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\theta}_0 \\ \mathbf{\theta}_C \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{b1} \\ \mathbf{K}_{b2} \end{bmatrix} \mathbf{b} + \begin{bmatrix} \mathbf{I}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{f}_0 \\ \mathbf{f}_C \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_C \end{bmatrix} \begin{bmatrix} \dot{\mathbf{\theta}}_0 \\ \dot{\mathbf{\theta}}_C \end{bmatrix} = \begin{bmatrix} -\mathbf{K}_{21} & -\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\theta}_0 \\ \mathbf{\theta}_C \end{bmatrix} + \begin{bmatrix} -\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{b1} \\ \mathbf{K}_{b2} \end{bmatrix} \mathbf{b} + \begin{bmatrix} -\mathbf{K}_{21}\mathbf{K}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{f}_0 \\ \mathbf{f}_C \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{C}_{C} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{\theta}}_{0} \\ \dot{\mathbf{\theta}}_{C} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{12} + \mathbf{K}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\theta}_{0} \\ \mathbf{\theta}_{C} \end{bmatrix} + (-\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{b1} + \mathbf{K}_{b2})\mathbf{b} + \begin{bmatrix} -\mathbf{K}_{21}\mathbf{K}_{11}^{-1} & \mathbf{I}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{0} \\ \mathbf{f}_{C} \end{bmatrix}$$

$$\begin{aligned} \mathbf{C}_{C}\dot{\boldsymbol{\theta}}_{C} &= (-\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{12} + \mathbf{K}_{22})\boldsymbol{\theta}_{C} + (-\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{b1} + \mathbf{K}_{b2})\mathbf{b} + \begin{bmatrix} -\mathbf{K}_{21}\mathbf{K}_{11}^{-1} & \mathbf{I}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{0} \\ \mathbf{f}_{C} \end{bmatrix} \\ \dot{\boldsymbol{\theta}}_{C} &= \mathbf{C}_{C}^{-1}(-\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{12} + \mathbf{K}_{22})\boldsymbol{\theta}_{C} + \mathbf{C}_{C}^{-1}\begin{bmatrix} -\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{b1} + \mathbf{K}_{b2} & -\mathbf{K}_{21}\mathbf{K}_{11}^{-1} & \mathbf{I}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{f}_{0} \\ \mathbf{f}_{C} \end{bmatrix} \end{aligned}$$

$$\dot{\boldsymbol{\theta}}_C = \mathbf{A}_S \boldsymbol{\theta}_C + \mathbf{B}_S \mathbf{u}$$
 $\mathbf{A}_S = \mathbf{C}_C^{-1} (-\mathbf{K}_{21} \mathbf{K}_{11}^{-1} \mathbf{K}_{12} + \mathbf{K}_{22})$

$$\mathbf{B}_{S} = \mathbf{C}_{C}^{-1} \left[-\mathbf{K}_{21} \mathbf{K}_{11}^{-1} \mathbf{K}_{b1} + \mathbf{K}_{b2} - \mathbf{K}_{21} \mathbf{K}_{11}^{-1} \quad \mathbf{I}_{22} \right]$$

Energy Building Simulation slide 29

Thermal analysis

Obťain dynamic models

Building Simulation

From algebraic differential equations ...

Introduction

Concepts

Heat and temperature

Thermal Analysis

Energy conservation

Constitutive laws

Framework Dynamic mode

Conduction

Convection

Radiation

Coupled Transfer

 $\mathbf{C}\dot{\mathbf{\theta}} = -\mathbf{A}^T\mathbf{G}\mathbf{A}\mathbf{\theta} + \mathbf{A}^T\mathbf{G}\mathbf{b} + \mathbf{f}$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_G \end{bmatrix} \begin{bmatrix} \dot{\mathbf{\theta}}_0 \\ \dot{\mathbf{\theta}}_G \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\theta}_0 \\ \mathbf{\theta}_G \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{b1} \\ \mathbf{K}_{12} \end{bmatrix} \mathbf{b} + \begin{bmatrix} \mathbf{I}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{f}_0 \\ \mathbf{f}_G \end{bmatrix}$$

... to state-space representation

$$\begin{cases} \dot{\boldsymbol{\theta}}_C = \mathbf{A}_S \boldsymbol{\theta}_C + \mathbf{B}_S \mathbf{u} \\ \mathbf{0} = \mathbf{C} \cdot \mathbf{0} + \mathbf{D} = \mathbf{0} \end{cases}$$

$$\begin{cases} \dot{\boldsymbol{\theta}}_C = \mathbf{A}_S \boldsymbol{\theta}_C + \mathbf{B}_S \mathbf{u} & \mathbf{A}_S = \mathbf{C}_C^{-1} (-\mathbf{K}_{21} \mathbf{K}_{11}^{-1} \mathbf{K}_{12} + \mathbf{K}_{22}) \\ \boldsymbol{\theta}_0 = \mathbf{C}_S \boldsymbol{\theta}_C + \mathbf{D}_S \mathbf{u} \end{cases}$$

$$\mathbf{\theta}_0 = \mathbf{C}_S \mathbf{\theta}_C + \mathbf{D}_{S^1}$$

$$\mathbf{B}_{S} = \mathbf{C}_{C}^{-1} \begin{bmatrix} -\mathbf{K}_{21} \mathbf{K}_{11}^{-1} \mathbf{K}_{b1} + \mathbf{K}_{b2} & -\mathbf{K}_{21} \mathbf{K}_{11}^{-1} & \mathbf{I}_{22} \end{bmatrix}$$

$$\mathbf{C}_{\mathrm{s}} = -\mathbf{K}_{11}^{-1} \, \mathbf{K}_{12}$$

$$\mathbf{D}_{S} = -\mathbf{K}_{11}^{-1} \begin{bmatrix} \mathbf{K}_{b1} & \mathbf{I}_{11} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} \mathbf{b} & \mathbf{f}_0 & \mathbf{f}_C \end{bmatrix}^T$$

Thermal analysis Obtain dynamic models

From state-space representation ...

$$\begin{cases} \dot{\boldsymbol{\theta}}_C = \mathbf{A}_S \boldsymbol{\theta}_C + \mathbf{B}_S \mathbf{u} \\ \boldsymbol{\theta}_0 = \mathbf{C}_S \boldsymbol{\theta}_C + \mathbf{D}_S \mathbf{u} \end{cases}$$

... to transfer function

$$\theta_a = [\mathbf{C}_S (s\mathbf{I} - \mathbf{A}_S)^{-1} \mathbf{B}_S + \mathbf{D}_S] \mathbf{u}$$

$$\mathbf{H} = \mathbf{C}_S (s\mathbf{I} - \mathbf{A}_S)^{-1} \mathbf{B}_S + \mathbf{D}_S$$

Energy Building Simulation slide 31