МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Машинное обучение»

Тема: Понижение размерности пространства признаков

Студент гр. 6304	F	Ковынев М.В.
Преподаватель	K	Кангиров Т.Р.

Санкт-Петербург 2020

Цель

Ознакомиться с методами понижения размерности данных из библиотеки Scikit Learn

Ход работы

- 1. Загружен датасет по ссылке: https://www.kaggle.com/uciml/glass. Данные представлены в виде сsv таблицы.
- 2. Создан Python скрипт. Загружен датасет в датафрейм, и разделены данные на описательные признаки и признак отображающий класс
- 3. Проведена нормировку данных к интервалу [0 1].
- 4. Построить диаграммы рассеяния для пар признаков.

Рисунок 1 — Диаграммы рассеяния

5. Соответствие цвета и класса

Рисунок 2 — Соответствие

- 6. Используя метод главных компонент (РСА). Проведено понижение размерности пространства до размерности 2.
- 7. Выведены значение объясненной дисперсии в процентах и собственные числа:
 - объясненная дисперсия [0.45429569 0.17990097]
 - собственные числа [5.1049308 3.21245688]

По двум компонентам дисперсия 63.3% - недостаточно.

8. Построена диаграмма рассеяния после метода главных компонент

Рисунок 3 — Диаграмма рассеяния для 2х компонент

9. Изменяя количество компонент, определено количество, при котором компоненты объясняют не менее 85% дисперсии данных. Результат – 4.

```
1 0.4542956890746849 is bigger than 0.85 - False
2 0.6341966621042779 is bigger than 0.85 - False
3 0.7606912558548664 is bigger than 0.85 - False
4 0.858669730510272 is bigger than 0.85 - True
5 0.9272937149511479 is bigger than 0.85 - True
6 0.9694347221994032 is bigger than 0.85 - True
7 0.9955326243472863 is bigger than 0.85 - True
8 0.9998605862637864 is bigger than 0.85 - True
9 1.0 is bigger than 0.85 - True
```

Рисунок 4 — Дисперсия от количества компонент.

10.Используя метод inverse_transform восстановлены данные. Для сравнения данных вычислено mse.

Al	0.005693
Ba	0.007382
Ca	0.000912
Fe	0.000916
К	0.009069
Mg	0.000439
Na	0.010299
RI	0.000866
Si	0.002308

11.Исследован метод главных компонент при различных параметрах svd_solver.

Значения svd_solder – auto, full, arpack, randomized.

Рисунок 5 — Диаграммы рассеяния.

Дисперсия компонент:

- Full 0.858669730510272
- Arpack 0.8586697305102715
- Randomized 0.8586697305102718

12.По аналогии с PCA исследован KernelPCA для различных параметров kernel и различных параметрах для ядра.

KernelPCA при kernel=linear ведет себя как PCA. В поле lambdas хранятся собственные числа. Сравним объясненные дисперсии для различных ядер на 4 компонентах.

	PC1	PC2	PC3	PC4	Кумул.	Объясненные
					сумма	дисперсии
Liner	26.06	10.31	7.25	5.6	49.25	0.858
Poly	10.91	4.31	3.11	2.36	20.7	0.361
Rbf	5.35	2.01	1.49	1.11	9.97	0.173
Sigmoid	1.00	0.39	0.27	0.21	1.89	0.033
Cosine	18.31	6.47	4.69	3.57	33.06	0.576

13.SparcePCA

1

Компоненты РСА:

```
[0.03420952 0.11044243 -0.90903503 0.24901968
                                                    0.05079549 -
0.00269769\ 0.14094732\ 0.26682812\ -0.06801349
[0.51327262 \ -0.19867029 \ -0.11710045 \ -0.34736315 \ -0.21642569 \ -
0.12930091 0.50234458 -0.16429176 0.46883578]
```

Компоненты Sparse Lars:

```
[0. 0. 0.99804243 -0.03718353 0. 0. 0. -0.0502861 0.
 [0. 0. 0.
              0.
                  0.
                       0.
                           0.
                                0.
                                    1.
                                        1
1
```

Компоненты Sparse cd:

```
Γ
 [0. 0. 0.99804243 -0.03718353 0. 0. 0. -0.0502861 0.
 [0. 0. 0.
             0.
                 0.
                      0.
                           0.
                               0.
                                   1.
1
```


Рисунок 6 — Диаграммы рассеяния SparcePCA и PCA.

Рисунок 6 — Диаграммы рассеяния 2x компонент при разных alpha.

Значения компонент при разных alpha

- Alpha = 0.75
- $[[\ 0. \quad \ 0. \quad 0.985 \ \text{-}0.117 \ \ 0. \quad \ 0. \quad \text{-}0.005 \ \text{-}0.129 \ \ 0. \ \]$
- $[\ 0. \quad \ \, 1. \ \,]]$
- Alpha = 0.50
- $[[\ 0. \quad -0.001 \ 0.965 \ -0.173 \ 0. \quad 0. \quad -0.061 \ -0.186 \ 0. \]$
- $[0. \quad 0. \quad 0. \quad 0. \quad 0. \quad 0. \quad 0. \quad 1. \quad]]$
- Alpha = 0.25
- [[-0.008 -0.052 0.943 -0.203 0. 0. -0.126 -0.228 0.]
- $[\ 0.477\ \hbox{-}0.169\ 0. \ \hbox{-}0.288\ \hbox{-}0.191\ \hbox{-}0.022\ 0.437\ \hbox{-}0.073\ 0.654]]$

14. Факторный анализ

Рисунок 6 — Диаграммы рассеяния РСА, FA

- 1. РСА компоненты ортогональны друг другу, FA не обязательно
- 2. PCA метод уменьшения размерности данных, FA метод поиска скрытых переменных (факторов)
- 3. PCA линейная комбинация наблюдаемой переменной, FA наблюдаемые переменные есть линейная комбинация данных

Вывод

В ходе выполнения данной лабораторной работы было осуществлено ознакомление с методами понижения размерности данных из библиотеки Scikit Learn.

В ходе работы выявлено, что разное количество компонент в РСА объясняет разное количество дисперсии данных.

KernelPCA используется для поиска нелинейных зависимостей в данных. KernelPCA сводится к PCA с линейным ядром, SparsePCA – при alpha = 0 (параметр регуляризации)