Minimum Spanning Trees

Outline and Reading

- Minimum Spanning Trees
 - Definitions
 - A crucial fact
- The Prim-Jarnik Algorithm
- Kruskal's Algorithm
- Baruvka's Algorithm
- TSP (briefly)

Minimum Spanning Tree

Spanning subgraph

Subgraph of a graph G
 containing all the vertices of G

Spanning tree

 Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

- Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks

Cycle Property

Cycle Property:

- Let T be a minimum spanning tree of a weighted graph G
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T
- For every edge f of C, $weight(f) \le weight(e)$

Proof:

- By contradiction
- If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e with f

Replacing f with e yields a better spanning tree

Partition Property

Partition Property:

- Consider a partition of the vertices of G into subsets U and V
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of
 G containing edge e

Proof:

- Let T be an MST of G
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property, weight(f) ≤ weight(e)
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing f with e

Replacing f with e yields another MST

Prim-Jarnik's Algorithm

- Similar to Dijkstra's algorithm (for a connected graph)
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v a label d(v) = the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
 - We add to the cloud the vertex *u* outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to u

Prim-Jarnik's Algorithm (cont.)

- A priority queue stores the vertices outside the cloud
 - Key: distance
 - Element: vertex
- Locator-based methods
 - insert(k,e) returns a locator
 - replaceKey(l,k) changes the key of an item
- We store three labels with each vertex:
 - Distance
 - Parent edge in MST
 - Locator in priority queue

```
Algorithm PrimJarnikMST(G)
  Q \leftarrow new heap-based priority queue
  s \leftarrow a vertex of G
  for all v \in G.vertices()
     if v = s
        setDistance(v, 0)
     else
        setDistance(v, \infty)
     setParent(v, \emptyset)
     l \leftarrow Q.insert(getDistance(v), v)
     setLocator(v,l)
  while \neg Q.isEmpty()
     u \leftarrow Q.removeMin()
     for all e \in G.incidentEdges(u)
        z \leftarrow G.opposite(u,e)
        r \leftarrow weight(e)
        if r < getDistance(z)
           setDistance(z,r)
           setParent(z,e)
           Q.replaceKey(getLocator(z),r)
```

Example

Example (contd.)

Analysis

- Graph operations
 - Method incidentEdges is called once for each vertex
- Label operations
 - We set/get the distance, parent and locator labels of vertex z $O(\deg(z))$ times
 - Setting/getting a label takes O(1) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
 - The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes $O(\log n)$ time
- Prim-Jarnik's algorithm runs in $O((n+m) \log n)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$
- The running time is $O(m \log n)$ since the graph is connected

Kruskal's Algorithm

- A priority queue stores the edges outside the cloud
 - Key: weight
 - Element: edge
- At the end of the algorithm
 - We are left with one cloud that encompasses the MST
 - A tree Twhich is our MST

Algorithm KruskalMST(G)for each vertex V in G do define a Cloud(v) of $\leftarrow \{v\}$ let Q be a priority queue. Insert all edges into Q using their weights as the key $T \leftarrow \emptyset$ while T has fewer than n-1 edges do edge e = T.removeMin()Let u, v be the endpoints of e if $Cloud(v) \neq Cloud(u)$ then Add edge e to T Merge Cloud(v) and Cloud(u)return T

Data Structure for Kruskal Algortihm

- The algorithm maintains a forest of trees
 - An edge is accepted it if connects distinct trees
 - We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations:
 - -find(u): return the set storing u

-union(u,v): replace the sets storing u and v with

their union

Representation of a Partition

- Each set is stored in a sequence
- Each element has a reference back to the set
 - operation find(u) takes O(1) time, and returns the set of which u is a member.
 - in operation union(u,v), we move the elements of the smaller set to the sequence of the larger set and update their references
 - the time for operation union(u,v) is min(n_u , n_v), where n_u and n_v are the sizes of the sets storing u and v
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times

Partition-Based **Implementation**

A partition-based version of Kruskal's Algorithm performs cloud merges as unions and tests as finds.

```
Input: A weighted graph G.
  Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do
  (u,v) \leftarrow Q.removeMinElement()
  if P.find(u) != P.find(v) then
          Add (u,v) to T
          P.union(u,v)
```

Algorithm Kruskal(*G*):

Running time: $O((n+m)\log n)$

Baruvka's Algorithm

Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once.

```
Algorithm BaruvkaMST(G)
T \leftarrow V {just the vertices of G}
while T has fewer than n-1 edges do
for each connected component C in T do
Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then
Add edge e to T
return T
```

- Each iteration of the while-loop halves the number of connected components in T.
 - The running time is O(m log n).

Traveling Salesperson Problem

- A tour of a graph is a spanning cycle (e.g., a cycle that goes through all the vertices)
- A traveling salesperson tour of a weighted graph is a tour that is simple (i.e., no repeated vertices or edges) and has has minimum weight
- No polynomial-time algorithms are known for computing traveling salesperson tours
- The traveling salesperson problem (TSP) is a major open problem in computer science
 - Find a polynomial-time algorithm computing a traveling salesperson tour or prove that none exists

Example of traveling salesperson tour (with weight 17)

TSP Approximation

- We can approximate a TSP tour with a tour of at most twice the weight for the case of Euclidean graphs
 - Vertices are points in the plane
 - Every pair of vertices is connected by an edge
 - The weight of an edge is the length of the segment joining the points
- Approximation algorithm
 - Compute a minimum spanning tree
 - Form an Eulerian circuit around the MST
 - Transform the circuit into a tour

