

Computer Networks 컴퓨터네트워크

(Ch 1. Introduction)

Wonjun Lee, Ph.D., IEEE Fellow

Network and Security Research Lab. (NetLab) http://netlab.korea.ac.kr

http://mobile.korea.ac.kr

Korea University

Chapter I Introduction

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Chapter I: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

What is Computer Network(ing)?

- What is "Computer Networking"?
- ◆ What is a computer network?

Answer in your own words

Wikipedia

Computer network?

- is a set of <u>computers</u> sharing resources located on or provided by <u>network nodes</u>. Computers use common <u>communication</u>
 <u>protocols</u> over <u>digital interconnections</u> to communicate with each other.
 These interconnections are made up of <u>telecommunication</u>
 <u>network</u> technologies based on physically wired, <u>optical</u>, and wireless <u>radiofrequency</u> methods that may be arranged in a variety of <u>network topologies</u>.
- Note: There are many other possible answers to this question

Leonard Kleinrock talks to Vint Cerf about DTN

And, if you do so optimize, the optimized (i.e., minimized) ween response time will be T(E) = N(E) (\$\frac{1}{2}\frac{1 All of this boils down to the problem you posed, namely to find a vonting protocol that achieves an accoptable flow vector [x(+)]. EQS[2] and [3] assume H/H/1 quencing believes on each link Coul which assumes the time variation of Cite) is slow compared to the settling time of the flas - this is a " approximate state ment). LEN KLEINERE 10/21/20

Chapter I: introduction

Chapter goal:

- •Get "feel," "big picture," introduction to terminology
 - more depth, detail later in course
- Approach:
 - use Internet as example

Overview/roadmap:

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

Internet history

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

Kleinrock

These Two Small Letters Heralded the Beginning of Online Communication Their message is far more profound in retrospect than it was at the time

THE ARPA NETWORK

Vint Cerf And Bob Kahn

- Vint CerfBob Khan
- Co creaters of the TCP/IP protocol
- Cerf is now vice-president of Google while Khan is now chairman CEO and president of the Corporation for National Research Initiatives

Evolution of TCP

Internet history

1973: The C Programming Language

- Designed by Dennis Ritchie
- Developed by Dennis Ritchie and Bell Labs
- Appeared in 1972; almost 50 years ago
- Bell Labs
 - AT&T (1925-1996)
 - <u>Lucent</u> (1996-2006)
 - Alcatel-Lucent (2006-2016)
 - Nokia (2016 present)
- Transistor (1947) → 1956 Nobel Prize
- Channon's capacity (1948)
- Unix, C (1973) → 1983 Turing Award
- C++ (1987)

The Protocol Wars

- US nets mainly leased lines, European X.25
- 7 layer OSI vs SNA vs DECNET vs Internet vs CB
 - Each layer generated arguments, including whether layer was at correct place or needed
- Different Groups worked on Standards
 - CCITT improved X.25, X.400, X.500, XXX
 - ISO File, Presentation, Alphabet, Transport
 - IETF worked on Internet Protocols (from 1986)
 - DEC on DECNET protocols
 - IBM/BITNET/EARN on SNA and EARN
 - JNT on Coloured Books
 - Significant amount of cross-filing of standards

Comparison of Various Network Models to OSI

- □ IBM SNA
- DECnet DNA
- AppleTalk
- Xerox XNS
- Novell Netware
- Banyan Vines

review

