LOCALISATION AND QUASIMAP COHOMOLOGY

CONTENTS

1.	Localisation formula	1
2.	T-fixed loci	2
References		3

1. Localisation formula

1.1. **Notation from toric geometry.** Let X_{Σ} be a smooth complete toric variety, for $\Sigma \subseteq N$ a rational polyhedral fan and $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. Let us denote by r the Picard rank of X, by n its dimension, and by N = n + r the number of rays in Σ . Let v_{ρ} denote the primitive generator of the ray ρ , and assume that $\Sigma(1)$ is an ordered set.

The (non-effective) action of the big torus $T = \mathbb{G}_{\mathrm{m}}^N$ on X induces an action on $Q_{g,n}(X,\beta)$, by scaling the sections. Let us denote by $\lambda_1,\ldots,\lambda_N$ the corresponding weights.

Let us denote by $\{\sigma_i\}_{i\in\Sigma^{\max}}$ the T-fixed points on X (corresponding to maximal cones of Σ) and by $\{\tau_{i,j}\}_{i,j\in\Sigma^{\max}}$ the 1-dimensional orbits (corresponding to facets of the maximal cones; $\tau_{i,j}$ -if it exists- connects σ_i and σ_j).

Let σ_i and σ_j be two adjacent maximal cones; since X is smooth, $\{v_\rho\}_{\rho < \tau_{i,j}} \cup \{v_n\}$ is a \mathbb{Z} -basis of N (where v_n is the only ray in σ_i , but not in $\tau_{i,j}$), so we can find the dual basis $\{m_1, \ldots, m_n\}$ of M. Define $\lambda_{\sigma_j}^{\sigma_i} = \sum_{\rho \in \Sigma(1)} \langle m_n, v_\rho \rangle \lambda_\rho$. Compare with [Spi00, §§6.4 and 7.3].

Lemma 1.1. Let σ_i be a T-fixed point on X and $\tau_{i,j}$ be a 1-dimensional orbit through it, furthermore let D_ρ be a toric divisor. Then the weight of the T-action on $O(D_\rho)_{\sigma_i}$ is

$$\begin{cases} \lambda_{\sigma_j}^{\sigma_i}, & \text{if } \rho < \sigma_i \text{ and } \tau_{i,j} \cup \{v_\rho\} = \sigma_i \\ 0, & \text{otherwise.} \end{cases}$$

The weight of the *T*-action on $T(\tau_{i,j})_{\sigma_i}$ is $\lambda_{\sigma_i}^{\sigma_i}$.

Proof. Let σ_i be spanned by $\{v_{i_1}, \dots, v_{i_n}\}$. If $[z_1 : \dots : z_N]$ are homogeneous coordinates on X, then local coordinates around σ_i are given by

$$\left(x_{i_1}=z_{i_1}\prod_{j\neq i_1}z_j^{\langle m_{i_1},v_j\rangle},\ldots,x_{i_n}=z_{i_n}\prod_{j\neq i_n}z_j^{\langle m_{i_n},v_j\rangle}\right),$$

where $\{m_{i_1}, \ldots, m_{i_n}\}$ is the dual basis of $\{v_{i_1}, \ldots, v_{i_n}\}$.

If $\rho \not\prec \sigma_i$ then the weight is 0 because we can find a divisor representing $O(D_\rho)$ that does not pass through σ_i . Otherwise $\rho = i_j$ for some $j \in \{1, \ldots, n\}$, so D_ρ has local equation $x_{i_j} = 0$ near σ_i , which makes the first statement clear.

The second part follows from the exact sequence

$$0 \to T\tau_{i,j} \to TX_{|\tau_{i,j}} \to \bigoplus_{\rho < \tau_{i,j}} O_{\tau_{i,j}}(D_\rho) \to 0$$

together with the Euler exact sequence for TX and the first part.

2. T-fixed loci

The following discussion is inspired by [MOP11, §7.3]. *T*-fixed loci for $Q_{g,n}(X,\beta)$ are indexed by decorated graphs

$$(\Gamma, v, \gamma, b, \varepsilon, \delta, \mu)$$

where:

- (1) $\Gamma = (V, E)$ is a graph with vertex set V and edge set E (no self-edges allowed);
- (2) $v: V \to \{\sigma_i\}_{i \in \Sigma^{\max}}$ assigns a fix point to each vertex;
- (3) $\gamma: V \to \mathbb{Z}_{\geq 0}$ is a genus assignment;
- (4) $b: V \to H_2^+(X, \mathbb{Z})$ assigns an effective curve class to each vertex;
- (5) $\varepsilon: E \to \{\bar{\tau}_{i,j}\}_{i,j \in \Sigma^{\text{max}}}$ assigns a one-dimensional orbit to each edge;
- (6) $\delta: E \to \mathbb{Z}_{\geq 1}$ specifies the degree of the covering map;
- (7) $\mu: V \to 2^{\{1,\dots,n\}}$ is a distribution of the markings to the vertices V.

These data are required to satisfy a number of compatibility conditions:

- Γ must be connected;
- if $e: v_1 \to v_2$ then $\varepsilon(e) = \tau_{i,j}$ with $v(v_1) = \sigma_i$ and $v(v_2) = \sigma_j$ (or viceversa);
- $h^1(\Gamma) + \sum_{v \in V} \gamma(v) = g$;
- *b* is compatible with *v*;
- $\sum_{v \in V} b(v) + \sum_{e \in E} \delta(e)[\varepsilon(e)] = \beta$.

We are going to denote by val: $V \to \mathbb{Z}_{\geq 1}$ the number of edges adjacent to a vertex, and by deg: $V \to \mathbb{Z}_{\geq 2}$ the sum of val with the number of marked points associated to each vertex.

The corresponding *T*-fixed locus is isomorphic, up to a finite map, to:

$$\prod_{v \in V} \overline{\mathcal{M}}_{\gamma(v), \deg(v) \mid \sum_{\rho \not\prec v(v)} b(v) \cdot D_{\rho}}$$

The moduli spaces corresponding to degenerate vertices (where $\deg(v) = 2$, $\underline{\gamma}(v) = 0$, and b(v) = 0) are treated as points in this product. Notice that $\overline{\mathcal{M}}_{g,n|d}/S_d \simeq Q_{g,n}(\mathbb{A}^1 /\!\!/ \mathbb{G}_m,d)$. Hence the finite map has degree

$$|\mathbf{A}| \cdot \prod_{v \in V} (b(v) \cdot D_{\rho})!$$

CHECK ME AND SPELL ME OUT

where |A| can be extrapolated from

$$0 \to \prod_{e \in E} \mathbb{Z}/\delta(e)\mathbb{Z} \to \mathbf{A} \to \operatorname{Aut}(\Gamma) \to 0.$$

Notice here that, for every maximal cone σ_i , the collection $\{D_\rho\}_{\rho \not \prec \sigma_i}$ constitutes a basis of Pic(X) (since every support function can be made into vanishing on every $\rho \not \prec \sigma_i$ by subtracting an appropriate $m \in M$).

The corresponding quasimap can be described as follows: edges correspond to maps (without basepoints) from \mathbb{P}^1 to the corresponding 1-dimensional T-orbit $\varepsilon(e)$, of degree $\delta(e)$ and totally ramified at the two T-fixed points. Pick instead a vertex $v \in V$: according to $v(v) = \sigma_i$, we may write $O(D_{i_j}) = \bigotimes_{\rho \not \prec \sigma_i} O(D_\rho)^{\otimes a_{i_j,\rho}}$ for each i_j , $j = 1,\ldots,n$ such that the corresponding ray belongs to σ_i . For a marked curve C_v in the mixed moduli space $\overline{\mathcal{M}}_{\gamma(v),\deg(v)|\sum_{\rho \not\prec v(v)} b(v)\cdot D_\rho}$ with markings

$$\{p_1,\ldots,p_{\deg(v)}\}\cup\bigcup_{\rho\neq\sigma_i}\{q_{\rho,1},\ldots,q_{\rho,b(v)\cdot D_\rho}\}$$

the corresponding quasimap is given by:

$$\left((C_v, \{p_1, \dots, p_{\deg(v)}\}), (O_{C_v} \hookrightarrow O_{C_v}(\sum_{j=1}^{b(v) \cdot D_\rho} q_{\rho,j}) =: L_\rho)_{\rho \not \prec \sigma_i}, (O_{C_v} \xrightarrow{0} \bigotimes_{\rho \not \prec \sigma_i} L_\rho^{\otimes a_{i_j,\rho}} =: L_{i_j})_{j=1,\dots,n} \right)$$

Gluing along flags F = (e, v) is made possible by the required compatibilities.

REFERENCES

[MOP11] Alina Marian, Dragos Oprea, and Rahul Pandharipande. The moduli space of stable quotients. *Geom. Topol.*, 15(3):1651–1706, 2011.

[Spi00] H. Spielberg. The Gromov-Witten invariants of symplectic manifolds. *ArXiv Mathematics e-prints*, June 2000.