In the name of Allah

Overview Presentation

Zohre Soorani Mahdi Haghverdi Hussein Husseini Hosna Rajaei

November 14, 2023

Content

Computer Abstraction and Technology

Instructions: Language of the computer Operations of the Computer Hardware

Overview Presentation 1 / S

Computer Abstraction and Technology

Computer Abstraction and Technology

Instructions: Language of the computer

Operations of the Computer Hardware

Figure: Arithmatic Instructions in MIPS

Category	Instruction	Example	Meaning	Comments
Arithmetic	add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three register operands
	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three register operands
	add immediate	addi \$s1,\$s2,20	\$s1 = \$s2 + 20	Used to add constants

load word	lw \$s1, 20(\$s2)	\$s1 = Memory[\$s2 + 20]	Word from memory to register
store word	sw \$s1, 20(\$s2)	Memory[\$s2 + 20] = \$s1	Word from register to memory
load byte	lb \$s1, 20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register
load byte unsigned	lbu \$s1, 20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register
store byte	sb \$s1, 20(\$s2)	Memory[\$s2 + 20] = \$s1	Byte from register to memory
load upper immed	lui \$s1, 20	\$s1 = 20 * 2 ¹⁶	Loads constant in upper 16 bits

Table: Data Transfer Instructions in MIPS

Figure: Logical Instructions in MIPS

Logical	and	and	\$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Three reg. operands; bit-by-bit AND
	or	or	\$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Three reg. operands; bit-by-bit OR
	nor	nor	\$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR
	and immediate	andi	\$s1,\$s2,20	\$s1 = \$s2 & 20	Bit-by-bit AND reg with constant
	or immediate	ori	\$s1,\$s2,20	\$s1 = \$s2 20	Bit-by-bit OR reg with constant
	shift left logical	s11	\$s1,\$s2,10	\$s1 = \$s2 << 10	Shift left by constant
	shift right logical	srl	\$s1,\$s2,10	\$s1 = \$s2 >> 10	Shift right by constant

Figure: Conditional Branch Instructions in MIPS

Conditional branch	branch on equal	beq	\$s1,\$s2,25	if (\$s1 == \$s2) go to PC + 4 + 100	Equal test; PC-relative branch
	branch on not equal	bne	\$s1,\$s2,25	if (\$s1!= \$s2) go to PC + 4 + 100	Not equal test; PC-relative
	set on less than	slt	\$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compare less than; for beq, bne
	set on less than unsigned	sltu	\$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compare less than unsigned
	set less than immediate	slti	\$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1; else \$s1 = 0	Compare less than constant
	set less than immediate unsigned	sltiu	ı \$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1; else \$s1 = 0	Compare less than constant unsigned

Figure: Unconditional Jump Instructions in MIPS

iumn	jump	j	2500	go to 10000	Jump to target address
	jump register	jr	\$ra	go to \$ra	For switch, procedure return
	jump and link	jal	2500	ra = PC + 4; go to 10000	For procedure call