Deep Learning for Visual Recognition Part 1

Injung Kim
Handong Global University

Agenda

- Introduction to Deep Learning
- CNN Architectures
- Training of CNN
- Deep Learning Issues

Deep Learning

 Each layer combines input features to produce high-level features.

$$o = f(\sum_{i=1}^{n} w_i x_i + \theta)$$

 A neural network with many layers can learn high-level features.

Visualization of Low-level Layers [Zeiler2013]

Visualization of High-level Layers [Zeiler2013]

Feature of MLP Layers

Nagamine and Mesgarani, "Understanding the Representation and Computation of Multilayer Perceptrons: A Case Study in Speech Recognition," 2017.

Deep Learning Architectures

- Deep Neural Networks (DNN)
 - MLP, SOM, RBF, ...
 - RBM, DBN, DBM, ···

- Convolutional neural networks (CNN)
 - Recognition/processing/generation of images
 - Combines heterogeneous layers (convolution, pooling, etc.)
 - Learns position invariant local features

output layer

A Full Convolutional Neural Network (LeNet)

- Recurrent neural networks (RNN)
 - Recognition/processing/generation of time-series data
 - Recurrent connection (memory)
 - Input + context

Deep Learning Architectures

- Hybrid models / combined models
 - Convolutional RBM, Recurrent CNN, Long-term recurrent convolutional network (LSTM + CNN), CBHG
- Deep generative models
 - GAN, VAE, pixel RNN/CNN
- Detection / segmentation models
 - R-CNN, Fast/Faster R-CNN, Mask R-CNN, YOLO, SSD
 - FCN, SegNet, RefineNet, DeepLab, JPP net, etc.
- Attention models
 - Machine translation, ASR/TTS, visual recognition
 - Transformer, non-local nets, self-attention models
- Explicit memory models
 - Memory networks, neural Turing machines (NTM)

CNN Architectures

Biological Discoveries [Hubel&Wiesel 1962]

- Visual area neurons responds selectively to local feature of a visual patterns
 Ex) lines and edges.
- Higher area neurons responds selectively to higher level features
 - Ex) circles, triangles, squares, human face
- Neural networks in brain are not complete at birth.
 - They gradually develop, adapting flexibly to circumstances after birth.

Convolutional Neural Networks

- Convolutional Neural networks (CNN): a class of deep feed-forward network designed to mimic human/animal visual systems
 - LeNet 1998, MNIST, CPU

AlexNet 2012, ImageNet, GTX 580 x 2

Convolutional Neural Networks (CNN)

- Most CNN layers input/output 3-5D tensors
 - 3D: channels, rows, columns
 - 4D: channels, rows, columns + batch
 - 5D: channels, rows, columns + batch + time
 - Recurrent convolutional layers

Convolutional Neural Networks (CNN)

- Composed of heterogeneous layers
 - Convolution (standard, transposed, dilated, separable)
 - Pooling (max, GAP, average, SPP, …)
 - Fully-connected
 - Batch/instance/layer/group normalization, dropout
 - Skip connections (Highway, ResNet, DenseNet, DPN)
 - ROI pooling, RPN, etc.

Convolution Layers

 Convolution layers extract position-invariant local features by convolution operation

$$X_{(p,i,j)}^{n} = f\left(\sum_{q \in C_{p}^{n}} \sum_{0 \le u,v \le M_{n}-1} w_{(q,p,u,v)}^{n} X_{(q,iS_{n}+u,jS_{n}+v)}^{n-1} + \theta_{p}^{n}\right)$$

Learning Filters

Convolution filters

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	4
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	6

Filter learning

Convolution Layers

Filte	r W	1 (3	x3x3)	Out	put V	/olu	me (3x	3x2)
w1[:,:	,0]	0[:	,:,	0]		
0	1	-1		2	3	3		
0	-1	0		3	7	3		
0	-1	1		8	10	-3		
w1[:,:	,1]	0[:	,:,	1]		
-1	0	0		-8	-8	-3		
1	-1	0		-3	1	0		
1	-1	0		-3	-8	-5		
w1[:,:	,2]					
-1	1	-1						
0	-1	-1						
1	0	0						

Bias b1 (1x1x1)

b1[:,:,0]

0

toggle movement

Learning Kernels

Trained kernels of 1st layer

Cf. Gabor functions

CNN vs. Human Vision

- V1 cells have weights that are described by Gabor functions
 - Response of simple cell

$$s(I) = \sum_{x \in \mathbb{X}} \sum_{y \in \mathbb{Y}} w(x,y) I(x,y)$$

 $\mathbf{w}(x,y)$: Gabor function

Gabor Function

Gabor Function

$$w(x, y; \alpha, \beta_x, \beta_y, f, \phi, x_0, y_0, \tau) = \alpha \exp(-\beta_x x'^2 - \beta_y y'^2) \cos(fx' + \phi),$$

$$x' = (x - x_0) \cos(\tau) + (y - y_0) \sin(\tau)$$

$$y' = -(x - x_0) \sin(\tau) + (y - y_0) \cos(\tau)$$

 $\alpha, \beta_x, \beta_y, f, \phi, x_0, y_0, \text{ and } \tau \text{ are parameters}$

Trained Kernels

- A simple unsupervised learning algorithm, sparse coding, learns features with receptive fields similar to those of simple cells (Gabor-like functions)
- The features learned by machine learning models with those employed by V1

Unsupervised learning

Fully supervised CNN

Convolution Layers

Propagation

$$X_{(p,i,j)}^{n} = f\left(\sum_{q \in C_{p}^{n}} \sum_{0 \le u,v \le M_{n}-1} w_{(q,p,u,v)}^{n} X_{(q,iS_{n}+u,jS_{n}+v)}^{n-1} + \theta_{p}^{n}\right)$$

- q: input plane, p: output plane, M_n : mask width/height
- C_p^n : # of input planes connected to p^{th} output plane
- $w_{(q,p,u,v)}^n$: weight at (u,v) on the mask from q^{th} plane to p^{th} plane
- $X_{(p,i,j)}^n$: feature at (i,j) on p^{th} plane of layer n
- lacksquare S_n : stride (horizontal/vertical distance between adjacent windows)
- \bullet θ_p^n : bias

Dilated Convolution

- A.k.a. "atrous convolution"
- Dilated convolutions "inflate" the kernel by inserting spaces between the kernel elements
 - Filter upsampling (reduces computation and parameters)

Masked Convolution

- Convolution on past information
 - Frequently used for autoregressive models (e.g. PixelCNN)

Transposed Convolution

- A.k.a. "fractionally-strided convolution" or "deconvolution(?)"
- Transposed convolutions work by swapping the forward and backward passes of convolution.
 - Feature upsampling

Backward Convolution

Forward vs. backward convolution

forward convolution

backward convolution

- Back-propagation of convolution layer
- Transposed convolution
 - Up-sampling

Convolution as MatMul

1 2 2 1

3x3 Input

2x2 Kernel

22	21
22	20

 3
 1
 2
 3
 1
 2
 3

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

2x2 output

1	2	0	2	1	0	0	0	0
0	1	2	0	2	1	0	0	0
0	0	0	1	2	0	2	1	0
0	0	0	0	1	2	0	2	1

X

Transposed Convolution as MatMul

1 2 2 1

2x2 Kernel

1	2
2	4

2x2 input (to add padding)

1	4	4
4	13	10
4	10	4

3x3 output

1	0	0	0
2	1	0	0
0	2	0	0
2	0	1	0
1	2	2	1
0	1	0	2
0	0	2	0
0	0	1	2
0	0	0	1

 1
 4
 4

 4
 13
 10

 4
 10
 4

Separable Convolutions

- Separable convolutions consists of two consecutive convolution operations.
 - Depth-wise convolution + point-wise convolution
 - Reduce computation and parameters
- Computation
 - Standard convolution
 - $\square D_K D_K M N D_F D_F$
 - → Depthwise convolution
 - + Pointwise convolution
 - $\square D_K D_K M D_F D_F + M N D_F D_F$

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Max-Pooling Layers

- Reduces feature dim.
- Reduces positional variation

$$X_{(p,i,j)}^{n} = f\left(\max_{0 \le u,v \le M_n - 1} X_{(p,iS_n + u,jS_n + v)}^{n-1}\right)$$

6	8
3	4

Fully-connected Layers

Propagation

$$X_p^n = f\left(\sum_q w_{(q,p)}^n X_q^{n-1} + \theta_p^n\right)$$

- → Perform target task with the feature extracted by previous layers
 - Classification
 - Regression

Why CNN Works Well?

- Effective in learning high-level representation
- Good at catching 2D structures
 - Convolution layers are effective in learning 2D features
 - Tolerates shape variation by pooling and abstraction
- Network structure that less suffers from vanishing gradient problem and overfitting
 - Parameter sharing, sparse connection
- Flexible structure
- Easy to parallelize
- Recent issues: limited context compared to RNN
 - Remedy: non-local neural nets

CNN in PyTorch

Defining a CNN

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
   def init (self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       x = self.fc3(x)
        return x
net = Net()
```

Names	Layer Types	Hyper-parameters
conv1	convolution	1 -> 6, mask = 5x5
pool	max-pooling	window = 2x2, stride = 2
conv2	convolution	6 -> 16, mask = 5x5
pool	max-pooling	window = 2x2, stride = 2
fc1	fully-connected	400 (16 * 5 * 5) -> 120
fc2	fully-connected	120 -> 84
fc3	fully-connected	84 -> 10

CNN in PyTorch

Defining Loss function and Optimizer

```
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```

- Cross entropy (with softmax activation)
 - □ Softmax activation: $X_c^N = \frac{\exp(net_c^N)}{\sum_c \exp(net_c^N)}$

$$E_{CE} = -\sum_{c} d_c \log(X_c^N)$$

Stochastic gradient descent

$$W^{t+1} = W^t + \Delta W^t$$

$$\Delta W^t = -\eta \frac{\partial Loss}{\partial W^t} + m\Delta W^{t-1}$$

CNN in PyTorch

Training

```
for epoch in range(2): # loop over the dataset multiple times
   running loss = 0.0
   for i, data in enumerate(trainloader, ∅):
        # get the inputs
       inputs, labels = data
       # zero the parameter gradients
       optimizer.zero grad()
        # forward + backward + optimize
        outputs = net(inputs)
                                  # feed input to network
        loss = criterion(outputs, labels) # compute loss function
        loss.backward()
                                           # compute gradients
        optimizer.step()
                                           # update weights
        # print statistics
       running loss += loss.item()
        if i % 2000 == 1999:
                                           # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
           running loss = 0.0
```

Deep Learning Issues

Challenges in Deep Learning

- Difficulties in deep learning
 - Backpropagation algorithm does not work or slow
 - Not better than shallow networks
- Why?
 - The vanishing/exploding gradient problem
 - Local minima, saddle points, plateaus
 - Overfitting
 - Internal covariate shift [loffe15]
 - Scattered gradient problem [Balduzzi17]
 - Many unknown reasons

Vanishing Gradient Problem

 Conventional back-propagation algorithm does not work well for deep networks.

VANISHING GRADIENT PROBLEM

Vanishing Gradient Problem

- Conventional back-propagation algorithm does not work well for deep networks.
 - Backpropagation formula

$$\frac{\partial L}{\partial X_i^l} = \frac{\partial L}{\partial X_i^{l+1}} \frac{\partial X_i^{l+1}}{\partial X_i^l} = f'(net_j^{l+1}) \sum_j w_{ij}^{l+1} \frac{\partial L}{\partial X_j^{l+1}}$$

Saturated regime of Activation functions

Blended gradient

Vanishing/Exploding Gradient on RNN

One step propagation on RNN

$$\boldsymbol{h}^{(t)} = \boldsymbol{W}^{\top} \boldsymbol{h}^{(t-1)}$$

$$\boldsymbol{h}^{(t)} = \left(\boldsymbol{W}^t\right)^{\top} \boldsymbol{h}^{(0)}$$

Eigen decomposition of W

$$egin{aligned} oldsymbol{W} &= oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q} oldsymbol{\Lambda}^{(t)} &= oldsymbol{Q}^{ op} oldsymbol{\Lambda}^t oldsymbol{Q} oldsymbol{h}^{(0)} \end{aligned}$$

• Gradients propagated over many stages tend to either vanish ($|\lambda_i|<1$) or explode ($|\lambda_i|>1$)

Solutions of Vanishing Gradient Problem

- Layer-wise unsupervised pre-training
 - DBN, stacked auto-encoders
- Architectures to avoid vanishing gradient problem
 - Convolutional neural networks (CNN)
 - Sparse connection, shared weights
 - Gated units (LSTM, GRU, GLU)
- Improved structures and learning algorithms
 - Piece-wise linear activation functions

 □ max-out, ReLU, LReLU, PReLU, ELU, etc.…
 - Skip connection (ResNet, DenseNet, DPN)
 - Batch normalization
 - Xavier initialization, He initialization, LL-initialization
 - Transfer learning, multi-task learning
 - Auxiliary networks, deeply supervised network

Local Minima, Saddle Point, Plateau

- Learning sometimes stops at local minima, saddle points or plateaus
 - Small networks: local minima is major issues
 - Large networks: plateau or saddle points are major issues

Local minima / Plateau

Saddle point

Overfitting

- Overfitting occurs when a model is excessively complex relative to the number of observations.
 - Large capacity model + insufficient data

Overfitting

Large gab between training and test accuracy

- Remedies
 - More data or simpler model
 - Regularization, transfer learning, batch norm, dropout, etc.

Generalization of Deep Networks

- Traditional knowledge
 - Model with too large capacity does not generalize well
- New observations in deep learning
 - Network depth helps improve generalization
 - Many huge networks generalize well.
 - □ Train VGG19 (20M parameters) on CIFAR10 (50K samples)
 - → Generalization of deep networks is not explainable with conventional knowledge
- Current trend: powerful model + additional techniques
 - Regularization techniques
 - Data augmentation
 - Unsupervised pretraining / semi-supervised learning

Overfitting in Deep Learning

In deep learning, over-parameterization is often successful

Regularization

- Introduce additional information to solve ill-posed problems or reduce overfitting
- Add regularization term to loss function

$$E(W) + \lambda ||W||$$

- \blacksquare E(W): main loss function
- λ: regularization factor
- $\parallel W \parallel$: norm of W
 - □ L2-norm is more popular
 - □ L1-norm is used for some models (e.g. sparse autoencoder)
- Related topics
 - Support vector machines
 - Prior probability

[Wikipedia]

Thank you for your attention!

