FÍSIGAY QUÍNGA

Cuaderno de Recuperación

39 [50

Nombre:	
Grupo: _	

Año académico:

El método científico. La medida

El conocimiento que tenemos sobre la naturaleza se debe fundamentalmente al trabajo de los científicos. Estos siguen un procedimiento denominado **MÉTODO CIENTÍFICO**:

Actividad que consiste en describir las leyes que rigen la naturaleza mediante un proceso válido y fiable.

que si bien no se considerarse como un conjunto de normas estrictas que se aplican de forma consecutiva y rigurosa, si es posible señalar etapas comunes a cualquier investigación científica:

- La observación.
- La emisión de hipótesis.
- La experimentación.
- El análisis de resultados

Actividades

Relaciona mediante flechas:

Hipótesis
Problema
Ley
Teoría
Diseño experimental

Posible método a seguir para contrastar hipótesis
Conjunto amplio de contenidos científicos (leyes, hipótesis, modelos...)
Hipótesis contrastada que se puede expresar mediante relación matemática
Algo para lo cual, de entrada, no se conoce la solución
Conjetura respecto a una posible respuesta o solución de un problema

- 2. Ordena las etapas que siguen en una investigación científica:
 - Análisis de resultados
 - Experimentación
 - Enunciado de leyes y Teorías
 - Observación
 - Publicación de resultados
 - Planteamiento de hipótesis
- En ocasiones por la calle, o en algunas secciones de revistas y periódicos podemos leer anuncios parecidos a este:

El nuevo absorbegrasas: LIPOSORB

La píldora que succiona la grasa y la atrapa como un imán, librándote de ella de una forma natural. Pierde peso sin pasar hambre, sin dietas, comiendo lo que desees. La idea es tan brillante como simple. ¿Has visto alguna vez un pez con sobrepeso? iClaro que no! porque sus cuerpos contienen Liposorb, la molécula quitagrasa, que ahora está a la venta en pastillas.

- Escribe unas líneas expresando tu opinión objetiva sobre el pretendido carácter científico de estos reclamos publicitarios. ¿por qué crees que abunda este tipo de anuncios en los diferentes medios de comunicación?
- ¿Qué opinas cuando ofrecen "resultados garantizados"?

. 1 .

4. Colgando sucesivas masas de un muelle se han obtenido los datos de la tabla:

Alargamiento (cm)	2	3	4	5	6	
Masa colgante (g)	10	15	20	25	30	ı

Aplica las etapas del método científico al ejemplo dado y explícalas.

Representa gráficamente la relación entre la masa y el alargamiento del muelle.

- ¿qué tipo de relación hay entre estas magnitudes?
- Propón una ecuación que relacione el alargamiento y la masa.
- ¿cuánto se alargaría el muelle al colgar del extremo libre una masa de 50 g?

MAGNITUDES FUNDAMENTALES Y DERIVADAS

Estudiar un fenómeno significa dos cosas: reconocer qué magnitudes intervienen en él y determinar cómo están relacionadas entre sí. Entendemos por **MAGNITUD**, cualquier característica de los cuerpos que pueda medirse de manera objetiva.

Unas se miden directamente, comparándolas con la unidad correspondiente, son **magnitudes fundamentales** y otras se miden indirectamente, con una fórmula matemática que permita relacionarlas, son las **magnitudes derivadas**.

Magnitud fundamental	Unidad patrón	Símbolo
Longitud	metro	m
Masa	kilogramo	Kg
Tiempo	segundo	s
Temperatura	kelvin	K
Cantidad de sustancia	mol	mol
Intensidad de corriente	amperio	A
Intensidad luminosa	candela	cd

Actividades

5. Indica las características de una persona que se consideran magnitudes físicas:

▶ la simpatía ___ La habilidad ___▶ La masa ___ La altura ___

► La belleza __ La velocidad __

- 6. Al medir el tiempo que tarda en llenarse una piscina con 50 m³ obtenemos un valor de 50 minutos. Identifica magnitud, cantidad y unidad.
- 7. Completa la siguiente tabla:

Magnitud	Unidad en el S.I.	Símbolo de la unidad
Masa		
Tiempo		
Longitud		Ţ
Temperatura		
Intensidad de corriente		
Intensidad luminosa		
Cantidad de sustancia		
Velocidad		
Volumen		
Densidad		

LA MEDIDA

Medir es comparar. Las propiedades que se miden en el ámbito científico se llaman MAGNITUDES, y el resultado se expresa en unidades del SISTEMA INTERNACIONAL, un acuerdo entre estados donde se decide qué comparar. Su uso, en España, está aprobado por ley desde 1967.

Como las medidas tienen un rango de posibilidades enormes, se usan múltiplos y submúltiplos de ellas y se expresan en NOTACIÓN CIENTÍFICA.

Múltiplos

Factor	Prefij o	Símb olo
10 ¹²	tera	T
10°	giga	G
10 ⁶	m ega	M
10 ³	kilo	k
10 ²	hecto	h
10 ¹	deca	da

submúltiplos

Factor	Prefijo	Símbolo
10 ⁻¹	deci	d
10-2	centi	С
10-3	mili	m
10-6	micro	u
10-9	nano	n
10 ⁻¹²	pico	p

 $9236000000000 = 9,236 \times 10^{11}$ $0,000132 = 1,32 \times 10^{-4}$ La parte entera debe tener siempre una sola cifra.

Actividades

8. Escribe estas cantidades utilizando la notación científica:

a. 0, 000 000 000 72 Km

b. 300.000 Km/s

c. 7 80, 42 cm

d. 0, 004 520 Kg

9. Indica cinco múltiplos y cinco submúltiplos de estas unidades:

múltiplos			s Unidad			submúltiplos			
				m					
				m²					
				m³					
				Litro					

- 10. Verdadero o falso:
 - a) Las propiedades de los cuerpos que se pueden medir se llaman magnitudes fundamentales ____
 - b) El dm³ es unidad de volumen
 - c) Los múltiplos del segundo son el minuto, la hora y el día ___
 - d) El peso se mide en Newton __
 - e) El litro es la unidad de volumen del S.I. ___

TRANSFORMACIÓN DE UNIDADES MEDIANTE FACTORES DE CONVERSIÓN:

El **factor de conversión** es una fracción unitaria ya que el numerador y el denominador valen lo mismo, son valores iguales expresados en unidades distintas. Basta multiplicar la medida que queramos convertir por el factor de conversión correspondiente.

¿Cómo se expresan 15 m/s en Km/h?

Relación entre unidades 1 km = 1000 m, 1 h = 3600 s.

Factores de conversión $\frac{1km}{1000m} = 1$; $\frac{3600s}{1h} = 1$ Transformación $15\frac{m}{s} \cdot \frac{1km}{1000m} \cdot \frac{3600s}{1h} = 54\frac{km}{h}$

Actividades

 La altura de una torre es de 125 m. Expresa esta altura en mm, cm y Km. km km² km³ kg hg hg dam dam² dam³ g dag g dg cm² cm² cm³ cg mg

12. La masa de un cuerpo es de 300 g. Expresa esta masa en mg, hg y dag.

En la escalera de la longitud, cada escalón es 10 veces mayor que el escalón inmediato inferior. En la escalera de la superficie, cada escalón es 100 veces (10²) el escalón inmediato inferior. En la escalera del volumen, cada escalón es 1000 veces (10³) el escalón inmediato inferior. En la escalera de la masa, cada escalón es 10 veces el escalón inmediato inferior.

- 13. El suelo de una habitación tiene 350 cm de largo y 2800 mm de ancho. Halla su área en m² y en cm² expresando el resultado en notación científica.
- 14. Expresar en las unidades que se indican las siguientes medidas utilizando factores de conversión:
 - a) $15 L \rightarrow m^3$
 - b) 25000 hL → L
 - c) $50 \text{ cm}^2 \rightarrow \text{m}^2$
 - d) $660 s \rightarrow h$

El litro es unidad de capacidad
$1 L = 1.000 cm^3 = 10^3 cm^3$
1 L = 1.000 ml = 10 ³ ml.
Por tanto: 1 mL = 1 cm ³

Expresar en unidades del Sistema Internacional y ordenar de mayor a menor, estas velocidades:

- a) 180 Km/h
- b) 60 m/s
- c) 3000 m/min
- 15. Expresar en unidades del Sistema Internacional siguiendo las mismas pautas del ejemplo resuelto:

• 45 Km	45.000 m	45. 10 ³ m	4,5.10 ⁴ m
■ 250 MHz			
■ 420 dam			
• 45 min			
• 0,3 Km			
■ 85 mm			
■ 0,08 g			
■ 125 ml			

- 16. Expresar en unidades del Sistema Internacional, utilizando factores de conversión y expresando el resultado en notación científica:
 - 135 Km/h

■ 5 días

■ 0,35 hm

450 mm²

■ 1,5.10⁶ cm

6,3.10⁵ Km

■ 1 hora 20 minutos

0,8 g/cm³

■ 400 mg

■ 328,5 g

■ 40°C

- 60 hL
- Toma los datos necesarios y calcula qué volumen corresponde a 1 Kg de aire, a 1 tonelada de platino y a 1 saco de 50 Kg de sal común.

A 1 atm. de	Densidad
presión	en g/cm ³
Aire	0,0013
Benceno	0,88
Sal Común	2,16
Etanol	0,79
Oro	19,3
Platino	21,4

. 4 .

18. Los datos de la tabla se refieren a un material por determinar. Representa en una gráfica la masa frente al volumen.

MASA (g)	240	120	60	360	24	480
VOLUMEN (cm ³)	100	50	25	150	10	200

¿Qué relación existe entre ambas magnitudes?

- ¿Cuál será la masa de una pieza de 5 cm³ de este material?
- 19. Cambia las unidades al S.I. utilizando factores de conversión:
 - a) En Estados Unidos la velocidad de algunas carreteras está limitada a 55 millas/h.
 - b) En la ficha de un jugador de la NBA aparece: altura 7,0 pies.
 - c) Un jugador de fútbol americano recorre 100 yardas con el balón.

Datos: 1 pie = 30 cm; 1 yarda= 0,91 m; 1 milla = 1,609 Km

ERRORES EN LAMEDIDA:

Al realizar medidas se cometen **errores** cuya magnitud es conveniente saber. Error absoluto. Se define como la diferencia entre el valor medido o calculado y el valor verdadero o exacto.

Ea = V_{medido} - V_{verdadero}

Si el error absoluto es positivo se comete un error por exceso (se mide más que el valor verdadero).

Si el error absoluto es negativo se comete error por defecto (se mide menos del valor verdadero)

El error absoluto no nos da idea de la calidad de la medida.

Para tener una idea de si la medida realizada es buena o mala hay que calcular el error relativo, que se indica normalmente en tanto por ciento.

Error relativo. Se puede definir como el tanto por ciento de error que representa el error absoluto. El error relativo nos da idea de la calidad de la medida.

 $E_r = \frac{|E_a|}{V_{\text{verd}}} 100$

Donde $|E_a|$ es el valor del error absoluto con signo positivo.

cifras significativas

(c.s) de una medida son todas las que se conocen con certeza, más una dudosa; una masa con una balanza que aprecia mg: $2,103 \text{ g} \rightarrow 4 \text{ c.s} \rightarrow \text{ el } 2, \text{ el } 1 \text{ y el } 0 \text{ se conocen con certeza, el } 3 \text{ es dudoso.}$ Nunca daremos el resultado con más cifras de las que aprecia el aparato de medida, pues no son significativas.

Actividades

- 20. Un cronómetro marca $10,45 \text{ s} \pm 0,01 \text{ s}$. Interpreta el resultado de esa medida.
- 21. Con una regla graduada en milímetros, medimos el grosor de una moneda de 1 € y obtenemos un valor de 2 mm, indica la precisión de la regla y la expresión correcta de la medida.

	b) 210,0 c) 0,54 + 3,1
	d) 2,3.0,04
23.	Al medir la longitud de un campo de futbol de 101,56 m se ha obtenido un valor de 102 m. Al medir el espesor de un libro de 3,25 cm se obtuvo, 32 mm. Compara los errores absolutos y relativos y diga qué medida es más precisa.
24.	En una carrera de 100 m lisos hay cinco cronometradores. Los tiempos que han medido para el vencedor de la carrera han sido los siguientes: 10,45 s; 10,62 s; 10,71 s; 10,52 s y 10,71 s. ¿cuál será el tiempo oficial del ganador?
25.	Cuatro alumnos miden el grosor de un libro obteniendo los siguientes resultados: 1,18 dm; 1,20 dm; 1,23 dm y 1,20 dm. a) ¿cuál es el valor más representativo de la serie de medidas realizadas? b) ¿qué error absoluto afectará a ese valor? c) ¿cuál es la expresión correcta para el grosor del libro?

22. Determinar el número de cifras significativas de las siguientes medidas y operaciones:

a) 0,0420

La materia

El Universo está formado por materia y energía. La materia ordinaria se haya en estado sólido líquido o gaseoso; además de otras propiedades posee masa y volumen y está formada por partículas.

La TEORÍA CINÉTICO MOLECULAR explica el comportamiento y los estados de agregación de la materia apoyándose en dos postulados:

Sólido	Líquido	Gas		
Forma fija	Forma del recipiente	Forma del recipiente		
Volumen fijo	Volumen fijo	Volumen del recipiente		
No se pueden comprimir	No se pueden comprimir	Se pueden comprimir		
No fluyen	Fluyen	Fluyen		

Propiedad	Sólido	Líquido	Gas	
Fuerza entre partí- culas Grande		Intermedia	Pequeña	
Velocidad de las partículas	Menor	Intermedia	Mayor	
Posición que ocu- pan las partículas	Siempre la misma, sólo pueden vibrar	Se pueden desplazar y cambia de posición	Se pueden desplazar y cambia de posición	

- Las partículas que forman la materia están en continuo movimiento.
- Cuanto mayor es la temperatura, mayor es el movimiento de las partículas.

Las propiedades de los gases van a depender de las condiciones externas. Las variables que definen el estado de un gas son: presión, volumen y temperatura. Cualquier variación en una de ellas supondrá un cambio en las otras dos:

- Cuando la temperatura permanece constante, si se aumenta la presión disminuye el volumen del gas. P. V = K
- Si la presión es constante, un aumento de la temperatura hace que aumente el volumen del gas. V/T = K
- Si el volumen es constante, al aumentar la temperatura aumenta la presión que ejerce el gas. P/T = K

Los CAMBIOS DE ESTADO se deben a cambios de presión o temperatura, y ocurren cuando una sustancia aumenta o disminuye su energía interna. Para fundir un sólido y vaporizar un líquido se absorbe energía. Cuando un gas pasa a líquido y un líquido se solidifica se desprende energía en forma de calor.

SUBLIMACIÓN REGRESIVA

,

La VAPORIZACIÓN puede producirse de dos modos:

- EVAPORACIÓN: afecta solo a la superficie del líquido y se produce a cualquier temperatura.
- EBULLICIÓN: afecta a toda la masa del líquido y ocurre a una temperatura fija, T ebullición.

Al calentar un sólido, aumenta su temperatura, sus partículas se mueven más, cuando las **fuerzas de cohesión** no pueden mantenerlas fijas, éstas deslizan una sobre otra: **el sólido se convierte en líquido**, (*fusión*) a una temperatura que se conoce como **punto de fusión** y no varía hasta que todo el sólido se haya convertido en líquido. Si el líquido se sigue calentando, sube la temperatura y llega un momento en que las **fuerzas** son incapaces de mantener juntas las partículas, éste hierve y **se convierte en gas**. La T_{ebullición}, no cambia hasta que todo el líquido se ha transformado en gas. *Hay sólidos, como el hielo seco (CO₂ sólido) usado en espectáculos para formar nieblas, que cuando se calientan se convierten directamente en gas (sublimación).*

Actividades

- 26. Indica cuáles de los siguientes procesos son físicos y cuáles químicos:
 - La fusión del hielo
- El rallado del pan
- ▶ El teñido de una tela

- La fabricación de jabón
- La combustión del papel
- La talla de un diamante
- 27. Asocia estas propiedades al estado sólido, líquido o gaseoso:
 - a) Volumen y forma variables.
 - b) Las partículas constituyen grupos que vibran y cambian de posición.
 - c) Volumen y forma constante.
 - d) Grandes fuerzas de atracción entre sus partículas.
 - e) Volumen constante y forma variable, se adaptan al recipiente que los contiene.
 - f) Las partículas se mueven libremente a gran velocidad.
- 28. Explica por qué
 - a) Desaparecen con el tiempo, las bolitas de naftalina que se cuelgan en los armarios.
 - b) Los cristales del coche se empañan con frecuencia en invierno.

- 29. Justifica mediante la teoría cinética los siguientes hechos:
 - a. Los gases tienden a ocupar todo el espacio disponible.
 - b. Los líquidos y los gases pueden fluir pero los sólidos no.
 - c. El gas contenido en un recipiente ejerce presión.
 - d. Si a volumen constante, aumentamos la temperatura de un gas, aumenta la presión.
- 30. Ordena de mayor a menor estas temperaturas: 75°C; 260 K; 70°C y 300K

°C	+ 273 → ← 272	K
	- 213	

31. A partir de estos datos, indica el estado de agregación de las siguientes sustancias a temperatura ambiente:

	T _{Fusión}	T ebullición	Estado de agregación
Amoniaco	-78 °C	-33 °C	
Plomo	327 °C	1740 °C	
Glicerina	17 °C	290 °C	

32. Interpreta los diferentes tramos de la gráfica de calentamiento de un líquido según la teoría cinética y di cuál es el punto de ebullición y el punto de condensación.

33. La gráfica corresponde al enfriamiento de un líquido contenido en un vaso. Razone cuál de las siguientes afirmaciones es falsa:

- A los 10 min toda la sustancia está en estado sólido
- A los 5 minutos solo hay líquido en el vaso ___
- ► El punto de ebullición es inferior a 100°C ___

- 34. Dibuja la gráfica de calentamiento de una sustancia, que inicialmente se encuentra a 20°C, si sus puntos de fusión y ebullición, son respectivamente, 80°C y 130°C.
 - a. ¿Por qué se mantiene constante la temperatura durante cada uno de los cambios de estado?

b. Describe las diferencias y similitudes entre la ebullición y la evaporación

- 35. El esquema corresponde a dos estados de un mismo gas.
 - a) Expresa matemáticamente la relación que hay entre la presión y el volumen de un estado y la presión y el volumen del otro estado.

Estado 1	Estado 2
P_1, V_1 $T = 50 ^{\circ}\text{C}$	P_2, V_2 $T = 50 ^{\circ}\text{C}$

- b) Si el recipiente es de 5 L y la presión inicial 4 atm, ¿qué volumen pasaría a ocupar el gas si la presión se triplica?
- 36. El esquema representan dos estados de un mismo gas.
 - a) Expresa matemáticamente la relación que hay entre la temperatura y el volumen.
 - b) Si ocupa un volumen de 5 L a 0°C ¿cuál será su temperatura si ha pasado a ocupar un volumen de 10 L?

37. Observa los datos de presión y volumen de un gas a temperatura constante.

Presión (atm)	1	2	4	5	10
Volumen (L)	100	50	25	20	10

- a) Representa la gráfica Presión-Volumen.
- b) Expresa la relación entre las variables en lenguaje científico (enunciado y fórmula matemática)
- c) ¿cuánto vale el producto P.V para cada caso de la Tabla?
- d) Calcula la presión necesaria para que el gas ocupe un volumen de 1 L.

Clasificación de la materia

Todo lo que existe en el universo está compuesto de MATERIA. La materia se clasifica en MEZCLAS y SUSTANCIAS PURAS. Las mezclas son combinaciones de sustancias puras en proporciones variables, mientras que las sustancias puras son ELEMENTOS y COMPUESTOS (combinación de elementos en una proporción definida).

Si se hace reaccionar Sodio (Na) con Cloro (Cl_2) se obtendrá solo Na_1Cl_1 y no sustancias tales como $\text{Na}_{0.5}\text{Cl}_{2.3}$ o mezclas raras.

En las mezclas **HOMOGÉNEAS** (Disoluciones: los componentes no se distinguen a simple vista) mientras que en las mezclas **HETEROGÉNEAS** (los componentes se distinguen fácilmente).

Los componentes de las mezclas se separan por procesos físicos, basados en diferencias entre las propiedades físicas de los mismos:

- <u>Filtración</u>. Esta técnica se fundamenta en que sus componentes deben ser uno sólido y el otro líquido. Para separar estos componentes se pasa la mezcla por un papel de filtro y de esta manera el sólido quedará en el papel y el líquido lo traspasará.
- <u>Decantación</u>. Sirve para separar componentes con distinta densidad, para ello se usa un embudo de decantación donde se deja reposar los líquidos para después vaciar el que está debajo al abrir la llave.
- <u>Cristalización.</u> Se emplea para separar un sólido que está disuelto en un líquido, se hace con un cristalizador, se deja que el líquido se evapore y así se separa del sólido.
- <u>Destilación.</u> Es la técnica más usada para la separación y purificación de líquidos. En primer lugar el líquido pasa a vapor usando un termómetro, y en segundo lugar vuelve a pasar a líquido en un matraz distinto.

DISOLUCION: mezcla homogénea de dos o más sustancias puras en proporciones variables. Componentes: **DISOLVENTE** (el de mayor cantidad) y **SOLUTO** (el que está en menor cantidad)

La **CONCENTRACIÓN** de una disolución es la cantidad de soluto que hay disuelto en una determinada cantidad de disolvente o en una determinada cantidad de disolución. Hay varias formas de expresarla:

- ► Tanto por ciento en masa
- Tanto por ciento en volumen
- Gramos de soluto por litro de disolución
- ▶ Molaridad

Según la proporción relativa de soluto y disolvente, diferenciamos entre, disolución diluida (la proporción del soluto respecto al disolvente es muy pequeña), concentrada (la relación entre la cantidad de soluto y de disolvente es alta)

SOLUBILIDAD: máxima concentración de soluto que hay en una disolución a una temperatura dada. Hay disoluciones no saturadas (su concentración < solubilidad del soluto), saturadas (concentración = solubilidad del soluto) y sobresaturadas (concentración > solubilidad del soluto)

Actividades

38.	Identifica a qué tipo de sustancia: ELEMENTO, COMPUESTO; mezcla HOMOGÉNEA y mezcla HETEROGÉNEA corresponde cada frase:
	Una sustancia que posee una composición química constante, unas propiedades invariables y que no puede descomponerse en otras más simples
	Una sustancia de aspecto no uniforme, cuya composición y propiedades varían de un punto a otro y cuyos componentes se pueden separar por métodos físicos
	▶ Una sustancia pura cuya composición es fija y que se puede descomponer en otras más simples por métodos químicos
	▶ Una sustancia en la que a simple vista o con un microscopio no se distinguen partes diferentes y que presenta la misma composición y propiedades en todos sus puntos
C	lasifica como sustancias puras (P) o mezclas M):
	▶ sal ▶ azufre ▶ plata ▶ granito ▶ vinagre ▶ acetona ▶ aire ▶ aluminio
39.	Indica en cuál o cuáles de los recipientes que se representan hay un elemento químico, un compuesto o una mezcla:
40.	Ordena las letras para formar las palabras que correspondan a distintas técnicas de separación de sustancias y di en qué propiedad se basa cada una de ellas. • NATACCIÓNDE • CLONICARISATIZ • RATICIFLON • CESTADILINO
41.	Indica que disolución es más concentrada, una que se prepara disolviendo 10 g de sal en 100 mL de agua o una que se prepara disolviendo 5 g de sal en 20 mL de agua
42.	Se prepara una disolución con 10 g de nitrato de potasio y 15 g de cloruro de potasio en 475 g de agua. Distingue entre soluto y disolvente y halla el % en masa de cada componente en la disolución obtenida.

43.	La riqueza de azúcar en las magdalenas es de 51,5%. Calcula la cantidad de azúcar que ingieres al comer dos magdalenas, si cada una tiene una masa de 60 g.
44.	El suero fisiológico se prepara disolviendo 3 g de sal en 330 g de agua. Calcula la concentración de sal en el suero en % en masa.
45.	Un frasco de colonia indica que tiene un 80% de alcohol. Calcula la cantidad de alcohol necesaria para preparar 280 mL de colonia.
46.	El vinagre es una disolución de ácido acético en agua al 3% en masa. Determina cuál es el soluto y cuál el disolvente y halla la cantidad de soluto que hay en 50 g de vinagre.
47.	Para preparar un desinfectante mezclamos 400 mL de agua destilada con 200 mL de alcohol etílico y 10 mL de alcohol bencílico. Halla la concentración de cada uno de los solutos en % en volumen.
48.	El agua del mar tiene una densidad de 1,03 g/L y una riqueza en sales de un 0,35% en masa. Calcula la concentración de sales en el agua del mar en g/L.
49.	Algunas cervezas sin alcohol pueden contener hasta un 1% de alcohol. Si una persona bebe 0,5 L de esta cerveza ¿cuántos mL de alcohol habrá ingerido?

50. En los análisis de sangre, se indica como valor normal de la glucosa en sangre el correspondiente al intervalo entre 70 a 105 mg/L. Si en una muestra se encuentran 2 mg de glucosa en 20 mL de sangre, ¿estará dentro del intervalo normal en sangre? expresa la concentración en g/L

- 51. A partir de la curva de solubilidad del cloruro de potasio. Hallar:
 - a) la solubilidad de la sal a 45°C
 - b) La cantidad mínima de agua a 45°C que se necesita para preparar una disolución saturada con 2 Kg de sal.
 - La cantidad de sal necesaria para preparar una disolución saturada de cloruro de potasio en 250 mL de agua a 65°C.

52. Indica razonadamente cuál de estas gráficas corresponde a la solubilidad de un gas y cuál a la de un sólido. Hallar en el caso del sólido la cantidad del mismo que se puede disolver en 5 L de agua a 20°C y la cantidad que se irá al fondo si la temperatura se reduce a 10°C.

Explica con qué guardan relación los siguientes hechos:

- Resulta enormemente perjudicial que las fábricas viertan agua caliente a los ríos o embalses.
- Las bebidas gaseadas (refrescos, cerveza o cava), se sirven en vasos o copas que estén fríos.
- ► El tapón de una botella de cava sale con más fuerza cuando la botella está a temperatura ambiente que cuando está recién sacada del frigorífico.
- Ciertos peces acostumbrados a aguas frías pueden morir al trasladarlas a aguas más cálidas.

Átomos y moléculas

El átomo es la porción más pequeña de la materia. Demócrito, creía que todos los elementos deberían estar formados por pequeñas partículas que fueran INDIVISIBLES. Átomo, en griego, significa INDIVISIBLE. Hoy día sabemos, que los átomos no son, como creía Demócrito, indivisibles. De hecho están formados por partículas.

Hacia 1803, el químico inglés **DALTON** propuso su **Teoría atómica**, con estas ideas básicas:

	Toda	la	materia	está	formada	por	átomos.
---------	------	----	---------	------	---------	-----	---------

- Los elementos son sustancias formadas por un solo tipo de átomo.
- Los compuestos resultan de la unión de átomos de diferentes elementos.

Nombre	Símbolo	Posición	Carga	Masa	
PROTÓN	En el núcleo		Positiva	Apreciable	
NEUTRÓN (n)		En el núcleo	Sin carga	Apreciable	
ELECTRÓN	-	En la corteza	Negativa	Muy pequeña	

MODELOS ATÓMICOS

Modelo de THOMSON: el átomo es una esfera maciza de carga + en la que están incrustados los electrones como pasas en un pastel y en nº suficiente para neutralizar la carga +.

Modelo de RUTHERFORD: En el átomo distingue la parte central, el **NÚCLEO:** muy pequeño, (unas cien mil veces menor que el átomo) que contiene los **protones** y **neutrones** y la **CORTEZA:** que ocupa casi todo el volumen del átomo y está formada por **electrones** moviéndose alrededor del núcleo.

Modelo de BHOR: los electrones giran en órbitas circulares alrededor del núcleo; ocupando las órbitas de menor energía posible (las más cercanas al núcleo).

Modelo ACTUAL: Los electrones no describen órbitas definidas en torno al núcleo sino que se distribuyen ocupando *orbitales*, agrupados en niveles de energía. Cada nivel tiene diferentes tipos de orbitales (s, p, d y f). En los (s) solo caben 2 electrones, en los (p): 8 e , en los (d): 10 e

Configuración electrónica de un elemento: distribución de los electrones de un átomo en los diferentes

orbitales de cada nivel de energía. El último nivel ocupado se llama *capa de valencia* y los electrones que éste contiene, *electrones de valencia*, (determinan el comportamiento químico del elemento). El diagrama indica el orden de llenado de los orbitales.

SÍMBOLO DEL ELEMENTO

IDENTIFICACIÓN DE LOS ÁTOMOS

Hay más de un centenar de átomos distintos, tantos como elementos. Para identificar un átomo utilizamos el número atómico, que es el número de protones del átomo.

Z = **Número atómico** = número de protones que contiene el núcleo de un átomo. Coincide con el número de electrones si el átomo es neutro.

 $A = Número másico = n^{\circ} de protones + n^{\circ} de neutrones del núcleo.$

- ▶ ISÓTOPOS son átomos de un mismo elemento con igual nº atómico y distinto nº másico, que solo se diferencian en el nº de neutrones.
- ► IÓN: átomo con defecto o exceso de electrones. Hay iones positivos (cationes) y negativos (aniones)
- ► MASA ATÓMICA: La masa de un átomo es muy pequeña y se mide en unidades de masa atómica (u)
 1 u = la doceava parte de la masa de un átomo de ¹²C = m protón = 1,66 .10⁻²⁷ Kg. La masa atómica de un elemento es la media ponderada, según las abundancias en la Naturaleza, de las masas de sus isótopos y es la que figura en la Tabla periódica.

Actividades

- 53. Encuentra en la siguiente sopa de letras, las partes y partículas del átomo:
- 54. Explica por qué desestimo Rutherford el modelo atómico de Thomson después de la experiencia de la lámina de oro.

A	E	F	W	S	В	J	V	A	V
0	L	Y	0	P	H	I	V	I	W
N	E	U	Т	R	0	N	E	S	N
E	C	I	W	0	0	U	E	Q	0
K	T	E	M	T	T	C	T	X	C
J	R	L	Q	0	R	L	U	M	M
T	0	J	C	N	3	E	F	R	Z
D	N	X	K	E	В	0	K	N	Z
D	E	T	I	S	C	W	F	W	I
R	s	Q	C	0	R	T	E	Z	A

55. Analiza los dibujos y completa la tabla:

Elemento	Símbolo	p ⁺	nº	e ⁻	Z	Α
Berilio						
Boro						

- 56. Señala a qué modelo atómico corresponde cada uno de los siguientes avances científicos:
 - ▶ Los electrones giran en órbitas circulares cualesquiera _____
 - ► Los electrones se distribuyen ocupando orbitales _____
 - Los electrones giran en órbitas circulares bien definidas _____
 - Los electrones están repartidos uniformemente en el átomo _____
 - Los átomos son indivisibles _____
- 57. Completa la siguiente tabla:

Nombre del elemento	Símbolo	Z	A	e-	p+	nº	Configuración electrónica	Electrones de valencia
	0	8				9		
Flúor	¹⁹ ₉ F							
	Mg		24				1s² 2s² 2p ⁶ 3s²	
	Cl		35		17			7
	$^{14}_{7}N$							
calcio		20				20		
Potasio			39	19				
	Ne		20		10			

- ¿qué elementos de la tabla son metales?
- ▶ Enumere dos propiedades características de los metales.
- > ¿cómo conseguiría el Mg la configuración estable de gas noble?
- ▶ Justifica qué tipo de enlace se dará entre el Mg y el Cl; escribe la fórmula del compuesto que resulta y enumera dos propiedades características del mismo.

58.	Si la masa de un átomo de nitrógeno es 14 u ¿cuál es su masa en gramos? (1 u = $1,67.10^{-27}$ Kg)
	Si la masa atómica media del nitrógeno es 14 u y sabemos que está formado por dos isótopos, de masas 14 u y 15 u, determina el porcentaje de abundancia de cada isótopo en la corteza terrestre.
59.	Contesta razonadamente a las siguientes preguntas:
	► Si un átomo que tiene 4 p ⁺ , 4 e ⁻ y 5 n ^o , pierde dos electrones ¿qué carga adquiere?
	► Si un átomo que tiene 7 p ⁺ , 7 e ⁻ y 8 n ^o , gana tres electrones ¿qué carga adquiere?
	➤ Si los átomos están formados por partículas con carga eléctrica ¿Por qué son neutros?
	► Los electrones ¿pueden girar alrededor del núcleo en infinitas órbitas?
	¿Por qué los siguientes átomos tienen el mismo número másico y distinto 39Ar y 39K símbolo?
60.	Indica cuáles de los siguientes núcleos son isótopos del mismo elemento:
	a) ${}^{14}_{7}X$ b) ${}^{13}_{6}X$ c) ${}^{7}_{3}X$ d) ${}^{12}_{6}X$ e) ${}^{24}_{12}X$ f) ${}^{15}_{7}X$
61.	El elemento bromo se presenta en forma de dos isótopos, uno de masa 79 u y abundancia relativa del 51% y otro cuya masa es de 81 u y tiene una abundancia relativa del 49% ¿cuál es la masa atómica media del Bromo?
62.	Explica razonadamente: ¿qué es un radioisótopo?
	Los técnicos que realizan radiografías abandonan la sala en la que está el paciente, justo antes de tomar la imagen. ¿de qué se protegen?

AGRUPACIONES DE ÁTOMOS

Un **elemento químico** es una sustancia pura formada por átomos iguales. Se representan con un **símbolo**. Tantos elementos distintos... es fácil hacerse un lío. Para evitarlo, se ordenan en la **tabla periódica**.

¿Por qué se unen los átomos?

Los átomos de los gases nobles son muy estables; aparecen en la naturaleza sin enlazarse con otros átomos, debido a que tienen su capa de valencia completa con 8 e⁻. Los demás átomos quieren ser así de estables, y para lograrlo deben perder o ganar e⁻ de sus capas más externas. Los átomos se unen con otros para lograr la configuración estable de los gases nobles. Así forman un enlace: unión entre átomos de forma estable para formar una sustancia química.

Las propiedades de una sustancia están condicionadas en gran medida por el tipo de enlace:

- > En la tabla periódica actual, los elementos se ordenan de izquierda a derecha y de arriba abajo, en orden creciente de número atómico. Se estructura en 18 grupos y 7 períodos.
- ➤ Los elementos con el mismo número de electrones en su última capa presentan las mismas propiedades químicas y están situados en un mismo grupo.
- > Los elementos que tienen el mismo número de capas electrónicas se sitúan en un mismo período.

Enlace Iónico:

Se produce por transferencia de e del átomo del metal al del no metal. Se forman iones + y - que se atraen y se agrupan formando estructuras cristalinas, un *cristal iónico*.

SUSTANCIAS IONICAS

Propiedades

Son sólidos a temperatura ambiente, con altos puntos de fusión y ebullición.

Se fracturan al golpearlos, formando cristales de menor tamaño.

En general, se disuelven en agua.

No conducen la corriente eléctrica en estado sólido, pero son conductores en estado líquido y en disolución

Enlace Covalente:

Se forma entre dos átomos no metálicos por compartición de e⁻ para completar sus capas de valencia. Puede ser sencillo o múltiple (doble, triple,...) según compartan uno o más pares de e⁻Hay sustancias covalentes moleculares y atómicas (cristales covalentes).

Formación de la molécula de cloro.

Enlace Metálico:

Los metales tienen pocos e de valencia y sus cristales están formados por cationes, átomos a los que les faltan uno o más e. Los e desprendidos por todos estos iones entran a formar parte de un fondo común, una nube electrónica que rodea a los iones y los mantiene unidos.

Estructura de los metales. La red metálica está formada por átomos fijos cargados positivamente y sumergidos en un mar de electrones que están deslocalizados y, por tanto, no pertenecen a ningún átomo en concreto.

SUSTANCIAS COVALENTES Sustancias moleculares Propiedades

Tienen bajos puntos de fusión y ebullición, por lo que son gases o líquidos a temperatura ambiente.

No se disuelven (o se disuelven muy poco) en agua.

No conducen la corriente eléctrica (algunas lo hacen débilmente).

Cristales covalentes

A temperatura ambiente son sólidos muy duros con altos puntos de fusión.

No se disuelven en agua.

No conducen la corriente eléctrica (salvo el grafito).

SUSTANCIAS METÁLICAS Propiedades

Son sólidos a temperatura ambiente.

Conducen la corriente eléctrica como sólidos y como líquidos.

Son deformables.

Actividades

63. Identifica las siguientes sustancias como elementos o compuestos:

► Agua (H₂O)

Oxígeno (O₂)

Dióxido de carbono (CO₂) Hierro (Fe) Carbono (C) Agua oxigenada (H_2O_2)

64.	¿cómo están	ordenados	los el	lementos	en la	tabla	periódica	actual?
\circ \cdot	7.COITIO CStari	oi aci iaaas	103 C	ici i ci i tos	CII IU	tabia	periodica	actuari

▶ Define grupo y período dentro de la tabla periódica.

▶ ¿Qué tienen en común los elementos de un mismo período de la tabla?

- 65. Completa las columnas de la tabla y responde a las preguntas:
 - ¿presentan alguna semejanza entre sí estos elementos?

Elemento	Símbolo	Z	Grupo	Período	Metal / No metal	Ión (+/-)
Flúor		9				
Cloro		17				
Bromo		35				
Yodo		53				

- ▶ ¿Pertenecen todos al mismo grupo? ¿A cuál?
- 66. Busca el elemento número 15 en la tabla periódica.
 - ▶ ¿Cuál es su nombre?
 - ▶ ¿A qué grupo y período pertenece?
 - > ¿qué elementos son de su mismo grupo? ¿y de su mismo período?
- 67. Completa la tabla indicando el modo en que se agrupan los átomos:

Sustancia	Átomos/moléculas/cristal
Hidrógen (H₂)	
Aluminio (Al)	
Helio (He)	
Agua (H₂O)	
Cloruro de sodio (NaCl)	

	 Los cristales iónicos tienen más cationes qu El número atómico del H coincide con la po El Xenón (Xe) es un elemento del 6º grupo Los cristales iónicos presentan puntos de fu Todos los elementos del grupo 18 son gase 	sición que ocupa en la tab de la tabla periódica Isión bajos	·
68.	En 100 g de espinacas hay 4 mg de hierro, pero 10%. En los adultos las necesidades diarias de h en 14 mg. ¿qué cantidad diaria de espinacas deb que necesita? Busca información acerca de en qu funciones vitales en las que interviene y los trast	ierro para realizar las fun ería consumir un adulto p lé otros alimentos está pr	ciones vitales se estiman para tener todo el hierro esente el hierro, las
69.0	 Cuáles de estas propiedades corresponden a un cr Posee elevados puntos de fusión y ebullició Es soluble en agua Conduce la corriente eléctrica en estado sól 	n	
	Conduce la corriente eléctrica sólo si está d		
70.	Tenemos cuatro sustancias sólidas con estas	Sustancia A	Sustancia B
	propiedades: Indica cuál es una sustancia iónica, cuál es un metal, cuál una sustancia covalente molecular y cuál un sólido covalente atómico.	 Altos puntos de fusión y ebullición. Conduce la corriente eléctrica en estado sólido. No se disuelve en agua. Es un elemento. 	 Altos puntos de fusión y ebullición. No conduce la corriente eléctrica en estado sólido. Se disuelve en agua. Es un compuesto.
		Sustancia C	Sustancia D
		 Altos puntos de fusión y ebullición. No conduce la corriente eléctrica en estado sólido. No se disuelve en agua. Es un compuesto. 	 Bajos puntos de fusión y ebullición. No conduce la corriente eléctrica en estado sólido. No se disuelve en agua. Es un elemento.
		·	

Indica si las siguientes afirmaciones son verdaderas (V) o falsas (F):

Cantidad de sustancia: el mol

No hay una balanza capaz de medir la masa de un solo átomo. Por ello los químicos idearon el concepto de masa relativa y crearon una escala adoptando como unidad de referencia, unidad de masa atómica u la doceava parte de la masa del átomo de C-12.

Para facilitar nuestros cálculos medimos la masa de gran cantidad de átomos. 14q, no es la masa de un átomo de N, es la masa de un nº muy grande de átomos, que es siempre el mismo:

 $602.000.000.000.000.000.000 = 6.02 \times 10^{23}$

Realmente un número muy grande, que tiene nombre propio, se llama NÚMERO DE AVOGADRO.

Entonces ahora sabemos que con la masa atómica nos referimos a la masa de todos esos átomos. Una nueva palabra: MOL

El MOL es una unidad de cantidad del tipo de la "docena" pero mucho más grande, ya que 1 docena son 12 unidades y 1 mol son 6,02.10²³ unidades.

El mol designa un conjunto de 6,02.1023 partículas idénticas. Estas pueden ser átomos, moléculas, iones, electrones o agrupamientos específicos de ellas.

1 mol de átomos →

 \rightarrow 6,022 · 10²³ átomos

1 mol de moléculas →

→ 6,022 · 10²³ moléculas

Es decir:

n mol de moléculas, átomos... de cualquier sustancia, multiplicado por 6,022 · 1023, es igual al número de moléculas, átomos... de dicha sustancia.

n mol de partículas \cdot 6,022 \cdot 10²³ = = n.º de partículas

- 1 mol de cualquier elemento tiene una masa en gramos igual al nº que expresa su masa atómica en "u"
- 1 mol de un compuesto tiene una masa en gramos igual al nº que expresa su masa molecular en "u"

Información obtenida de una fórmula química

Compuesto formado por moléculas

Una molécula de amoniaco, NH₃, contiene:

- 1 átomo de nitrógeno.
- 3 átomos de hidrógeno.

Su masa molecular relativa es:

$$1 \cdot 14 + 3 \cdot 1 = 17$$

Su composición centesimal es:

% de N =
$$\frac{14}{17} \cdot 100 = 82,35\%$$

% de H =
$$\frac{3}{17} \cdot 100 = 17,65\%$$

Compuesto formado por cristales

En un cristal de cloruro de calcio, CaCl₂, por cada átomo de calcio en forma de ion Ca2+ existen dos iones de cloro, CIT.

Su masa molecular relativa es:

$$1 \cdot 40 + 2 \cdot 35,5 = 111$$

Su composición centesimal es:

% de Ca =
$$\frac{40}{111} \cdot 100 = 36 \%$$

% de CI =
$$\frac{71}{111} \cdot 100 = 64\%$$

Comprueba que la suma de los porcentajes es 100.

Dióxido de carbono

Está formado por moléculas de CO₂.

- 1 mol de moléculas de CO₂ tiene una masa de 12 + 16 · 2 = 44 q.
- La masa molar del CO₂ es 44 g/mol.
 En 44 g de CO₂ hay 6,022 · 10²³ moléculas de CO₂, es decir, $6,022 \cdot 10^{23}$ átomos de C y $6,022 \cdot 10^{23} \cdot 2 = 1,204 \cdot 10^{24}$ átomos

COMPOSICIÓN CENTESIMAL:

Lo que caracteriza a un compuesto es la proporción fija que hay entre los átomos que lo componen. La composición centesimal de un compuesto químico, es el % en masa de cada uno de los elementos que lo forman.

Calcula la composición centesimal del agua, H2O.

Primero se halla su masa molecular relativa, para lo cual hay que consultar en la tabla periódica las masas atómicas relativas, que son H = 1 y O = 16. Así:

2 átomos de H = 2; 1 átomo de O = 16 ⇒ masa molecular relativa = 18

A continuación, se halla el porcentaje de hidrógeno y de oxígeno en la molécula:

% de H =
$$\frac{2}{18} \cdot 100 = 11,1 \%$$
; % de O = $\frac{16}{18} \cdot 100 = 88,9 \%$

La composición centesimal del agua es 11,1 % de hidrógeno y 88,9 % de oxígeno.

VOLUMEN MOLAR:

Para referirnos al volumen de un gas hay que indicar a qué temperatura y a qué presión ha sido medido dicho volumen. Por esto se establecen unas condiciones fijas de presión y temperatura para comparar los volúmenes de los gases. Convencionalmente se ha establecido que las condiciones normales de presión y temperatura son 1 atmósfera y 0°C (273 K).

- El Volumen molar es el volumen que ocupa 1 mol de gas medido a 273 K y 1 atm y para todos los gases es 22,4 L. En 22,4 L de cualquier gas hay 6,02.1023 átomos o moléculas
- x mol de un gas a 273 K y 1 atm, multiplicado por 22,4 L/mol, es igual al número de litros de ese gas.
- x litros de un gas a 273 K y 1 atm, dividido entre 22,4 L/mol, es igual al número de mol de ese gas.

Actividades

- 71. Calcula la masa molecular de las siguientes sustancias:
 - óxido de zinc Zn O
 - Sulfato de aluminio Al₂(SO₄)₃
 - hidróxido de calcio Ca(OH)₂

```
masas atómicas Zn=65; O=16; Al=27; Ca=40; S=32
```

- 72. Calcula la composición centesimal del metano CH₄ (Datos: masas atómicas C=12; H=1)
- 73. Determina cuál de estos compuestos tiene mayor porcentaje de oxígeno:
 - óxido de potasio K₂O
 - óxido de magnesio MgO
 - ▶ dióxido de carbono CO₂

masas atómicas K=39; O=16; Mg=24; C=12

- 74. ¿cuál de estas sustancias tiene mayor porcentaje de plata?
 - nitrato de plata AgNO₃
 - yoduro de plata Agl

masas atómicas Ag=107,8; O=16; I=127; N=14

- 75. Un frasco contiene 120 g de cloruro de calcio CaCl₂ ¿cuántos moles de CaCl₂ hay en ese recipiente? Datos: masas atómicas Cl= 35,5; Ca=40;
- 76. Determina la masa en gramos de:
 - 3 moles de bromuro de sodio NaBr
 - ► 3,01.10²⁴ moléculas de oxígeno O₂

Datos: masas atómicas Na=23; Br=80; $N_A = 6.02.10^{23}$

77.		é cantidad de sulfuro de hidrógeno H_2S , en moles, hay en 170 g de esa sustancia? ¿y cuántas éculas? ¿cuántos átomos de azufre y de hidrógeno hay enesa cantidad de sustancia?
	Dato	ps: masas atómicas H=1; S=32; $N_A = 6.02.10^{23}$
7.0		
78.	Calc	ula el volumen que ocupan en condiciones normales (c.n.):
		0,4 moles de propano C ₃ H ₈ 1,5 moles de CO ₂
	>	6,02.10 ²¹ moléculas de monóxido de carbono CO
		3,01 .10 ²³ átomos de Helio He
79.	Conte	sta razonadamente a las preguntas:
	•	¿Dónde hay más moléculas: en 1 L de O ₂ , en 1 L de HCl o en 1 L de NH ₃ medidas todas las
		sustancias en las mismas condiciones de presión y temperatura?
	•	1 mol de hidrógeno, H ₂ y 1 mol de metano, CH ₄ ¿ocupan siempre el mismo volumen?
		Para disponer de 2 moles de cloro Cl ₂ habría que tomar 20 L de ese gas en c.n. o 1,204.10 ²⁴ moléculas de dicho gas?
		moleculas de dicho gas:
	•	En 22,4 L de metano CH ₄ y en 22,4 L de butano C ₄ H ₁₀ medidos ambos en c.n. ¿hay el mismo
		número de moléculas?
80.		ondiciones normales, 1 mL de un gas contiene 4,46. 10 ⁻⁵ moles. Halla el número de molécula:
	que	hay en una botella de 1 L llena del gas en esas condiciones.

Formulación Inorgánica

Los compuestos químicos están formados por la unión de un número reducido de átomos que se repiten en la misma proporción. Una fórmula consta de unas letras que simbolizan los átomos que forman el compuesto y de unos números que se escriben como subíndices y que indican el número de átomos de un determinado elemento que interviene en una molécula de dicho compuesto.

VALENCIA: capacidad que tiene un átomo de un elemento para combinarse con los átomos de otros elementos y formar compuestos. La valencia es un número, positivo o negativo, que nos indica el número de electrones que gana, pierde o comparte un átomo con otro átomo o átomos.

Tabla de VALENCIAS de los elementos más importantes del sistema periódico

NOMENCLATURA:

Para nombrar los compuestos químicos inorgánicos se siguen las normas de la *IUPAC* internacional de química pura y aplicada). Se aceptan tres tipos de nomenclaturas para los compuestos inorgánicos, la sistemática, nomenclatura de stock nomenclatura tradicional.

SISTEMÁTICA: Utiliza prefijos: mono, di, ... Cl₂O₃ Trióxido de dicloro

Prefij o	Subindice
mono	1
dl	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7

+1	+2		 								3	2 ±4	±3 +5	±2 +4 +6	±1 +3 +5 +7	
±1 H																
Li	Ве										В	С	N	-2 O	-1 F	
Na	Mg										AI	Si	Р	s	CI	
К	Ca			2,3 (6) Cr	2,3, (4,6,7) Mn	2,3 Fe	2,3 Co	2,3 Ni	1,2 Cu	2 Zn	Ga	Ge	As	Se	Br	
Rb	Sr							2,4 Pd	1 Ag	2 Cd	In	Sn	Sb	Те	1	
Cs	Ва	,						2,4 Pt	1,3 Au	1,2 Hg	TI	Pb	Bi	Po	At	
Fr	Ra											-4	-3	-2	-1	

- STOCK: cuando el elemento que forma el compuesto tiene más de una valencia, ésta se indica al final, en números romanos y entre paréntesis: Fe(OH)₂ Hidróxido de hierro (II)
- NOMENCLATURA TRADICIONAL: para poder distinguir con qué valencia funcionan los elementos en ese compuesto se utilizan una serie de prefijos y sufijos:

				hipo_	_oso	menor valencia
					_oso	
1 valencia	2 valencias	3 valencias	4 valencias		_ico	, .
				per	ico	mayor valencia

COMPUESTOS BINARIOS:

formados por dos tipos de elementos distintos.

LAS VALENCIAS DE LOS ELEMENTOS SE INTERCAMBIAN ENTRE ELLOS Y SE PONEN COMO SUBÍNDICES. (Si la valencia es par se

simplifica).

ÓXIDOS:

Compuestos binarios formados por oxígeno y otro elemento. El O actúa con valencia (-2) y el otro elemento con una de las valencias positivas (x). Fórmula general: M_2O_X En la nomenclatura tradicional los óxidos de la tabla serían: óxido sódico, óxido férrico, óxido perclórico y óxido sulfúrico.

Nomenclatura Sistemática: prefijo-óxido de prefijo-nombre elemento Nomenclatura Stock: Óxido de nombre elemento (Valencia romanos)

	Óxido	Nomenclatura sistemática	Nomenclatura Stock			
	Na ₂ O	(mon)ôxido de disodio	óxido de sodio			
	Fe ₂ O ₃	trióxido de dihierro	áxido de hierro (III)			
	Cl ₂ O ₇	heptaôxido de dicloro	áxido de cloro (VII)			
	SO₃	trióxido de azufre	óxido de azufre (VI)			
- 1		1.000.00000				

óxido de plomo (IV) Pb204 PbO2

En la N. sistemática se formula lo que se ve

pero en Stock hay que deducir la valencia del elemento que acompaña al O y que en caso de estar la fórmula simplificada no coincide con el subíndice que aparece.

HIDRUROS: Combinaciones del hidrógeno con otros elementos. Hay dos tipos:

Hidruros metálicos: Fórmula general: MHx El H actúa con valencia (-1) y el metal con una

de sus valencias positivas (x)

Tradicional: Hidruro de litio, hidruro férrico

Nomenclatura Sistemática	:	prefijo- hidruro de nombre metal
Nomenclatura Stock :	Hic	druro de nombre metal (Valencia romanos)

Hidruro	Nomenclatura sistemática	Nomenclatura Stock
Li H	(mono)hidruro de litio	hidruro de litio
Fe H ₃	trihidruro de hierro	hidruro de hierro (III)

▶ Hidruros NO metálicos: Combinaciones del H con un elemento de los grupos que van del 13 al 17. El H con valencia (+1) y el no metal (Y) con valencia negativa.

Fórmula general: YH_X

Se admiten nombres propios o tradicionales que por otro lado, son los más utilizados y no se utiliza Stock.

Hidruro	Nomenclatura Sistemática	Nomenclatura tradicional
B H ₃	trihidruro de boro	Borano
C H₄	tetrahidruro de carbono	Metano
Si H ₄	tetrahidruro de silicio	Silano
NH,	trihidruro de nitrógeno	Amoniaco
P H₃	trihidruro de fósforo	Fosfina
As H ₃	trihidruro de arsénico	Arsina
Sb H₃	trihidruro de antimonio	Estibina

Cuando el H se combina con elementos de los grupos 16 (salvo el O) y 17, la fórmula es H_XY La N. sistemática sigue otro criterio para estos hidruros -

Y las disoluciones acuosas de estas sustancias tienen carácter ácido: ÁCIDOS HIDRÁCIDOS que se nombran utilizando la N. Tradicional

Nomenclatura Sistemática (gaseosas) : no metal-uro de hidrógeno Nomenclatura tradicional (disueltas): ácido + no metal-hídrico

Fórmula	Sistemática (sustancia pura)	Tradicional (disolución a cuosa)
H₂S	sulfuro de hidrógeno	Ácido sulfhidrico
H₂Se	seleniuro de hidrógeno	Ácido selenhídrico

SALES BINARIAS:

Combinaciones de un metal y un no metal. Resultan de sustituir el/los H de un ácido hiidrácido por

valencia del metal.

Fórmula general MH_x o M_2H_x donde x es la Nomenclatura Sistemática: prefijo-no metal de prefijo-metal Nomenclatura Stock: no metal-uro de metal (valencia romanos)

Fórmula	Nomenclatura Sistemática	Nomenclatura Stock
Na CI	cloruro de sodio	cloruro de sodio
Fe Cl ₃	tricloruro de hiemo	cloruro de hiemo (III)
Pt Br₄	tetrabromuro de platino	bromuro de platino (IV)

COMPUESTOS TERNARIOS: formados por tres tipos de elementos distintos.

HIDRÓXIDOS: formados por un metal y el grupo hidroxilo (OH). Fórmula general: Μ(OH)χ

M = metal y x la valencia del metal. El	Valencia	Fórmula	N. sistemática	N. stock (la más frecuente)	N. tradicional
grupo OH siempre tiene	3	Fe(OH) ₃	trihidróxido de hierro	Hidróxido de hierro (III)	Hidróxido férrico.
valencia (-1).	2	Pb(OH) ₂	Dihidróxido de plomo	Hidróxido de plomo (II)	Hidróxido plumboso

ÁCIDOS OXÁCIDOS:

Compuestos ternarios formados por un no metal, oxígeno e hidrógeno. Se obtienen a partir del anhídrido correspondiente sumándole una molécula de agua (H₂O). Su fórmula general es:

	TERMINACIONES		Nª DE VALENCIAS CON LA SQUE PUE- DE ACTUAR		
Valencia	Ácido Hipooso				
menor	Ácidooso		,	3	١,
Valencia	Ácidoico	1	_		4
mayor	Ácido Perico				

Fórmula general: HaXbOc

El H actúa con valencia (+1); el no metal X con valencia positiva y el oxígeno con valencia (-2).

Habitualmente b=1 y en cuanto al valor de a: si la valencia de X es par a=2 y si la valencia de X es impar a=1.

Para nombrarlos existe un nombre sistemático pero suele utilizarse la N. tradicional.

FÓRMULA	TRADICIONAL
H CIO	Ácido hipocloroso
H CI O ₂	Ácido cloroso
H CI O ₃	Àcido clórico
H CI O ₄	Ácido perclórico
H ₂ S O ₂	Ácido hiposulfuroso
H₂S O₃	Àcido sulfuroso
H₂S O₄	Àcido sulfúrico
HNO	Ácido hiponitroso
HNO ₂	Àcido nitroso
H N O ₃	Àcido nítrico

Actividades

81. Formula los siguientes óxidos:

- ▶ óxido de calcio
- ▶ óxido de plomo (IV)
- ▶ óxido de sodio
- ▶ dióxido de carbono
- ▶ óxido de estaño (II)
- pentaóxido de dicloro
- ▶ óxido de fósforo (III)
- ► trióxido de azufre
- ▶ óxido de bromo (VII)

COMPUESTO	VALENCIAS		SISTEMÁTICA	STOCK
Óxidos metálicos	Oxigeno: -2 Metal: positivas	Рь О2	dióxido de plomo	áxido de plomo (IV)
Óxidos no metálicos	Oxigeno: -2 No metal: positivas	Cl ₂ O ₇	hepta óxido de dicloro	óxido de cloro (VII)
Hidruros	Hidrogeno: -1 Metal: positivas	Fe H ₂	dihidruro de hierro	hidruro de hierro (II)
	Hidrogeno: +1	NH _s	sistemática	Tradicional
Hidruros nometálicos	No metal: negativa		trihidruro de nitrógeno	amoniaco
	Hidrògeno: +1		Sistemática (pura)	tradicional (dis aq)
Ácidos hidrácidos	No metal: negativa	H CI	Cloruro de hidrógeno	Ácido clorhidrico
Sales (metal)	Metal: positiva No metal: negativa	Cr,S,	Trisulfuro de dicromo	sulfuro de cromo (III)

82. Completar la siguiente tabla:

Fórmula	N. sistemática	N. stock
		Óxido de cloro (III)
I ₂ O ₇		
P ₂ O ₅		
Ni ₂ O ₃		
	Trióxido de dialuminio	
MgO		
	dióxido de selenio	
CuO		

83. Formular los hidruros:

- ▶ trihidruro de cobalto
- seleniuro de hidrógeno
- hidruro de plomo (IV)
- tetrahidruro de carbono
- cloruro de hidrógeno

84. Completar la siguiente Tabla:

Fórmula	N. Sistemática	N. Stock	N. Tradicional
AuH ₃			
		Hidruro de plomo (II)	
			Fosfina
			Metano
PtH ₄			
NH ₃			
	Tetrahidruro de estaño		
			Sulfuro de hidrógeno
			Hidruro niquélico
			Ácido bromhídrico
CuH ₂			

85. Completar la siguiente Tabla:

Fórmula	N. Sistemática	N. Stock
BeO		
		Hidróxido de platino (IV)
		Cloruro de cobre (I)
		óxido de yodo (I)
	Diyoduro de plomo	
КОН		
		Óxido de aluminio
		Sulfuro de plata
BaH ₂		

$86. \ \ \text{Formular y nombrar estos \'acidos:}$

- Ácido sulfúrico
- Ácido nítrico
- Ácido hipocloroso
- Ácido carbónico
- ► HIO₄
- ► HBrO
- \rightarrow H_2SO_3
- ► HNO₂

Las reacciones químicas

Cualquier material puede sufrir cambios de distinta índole, unos son **físicos** y otros **químicos**. En los primeros no se modifica la naturaleza del material (movimientos, mezclas o cambios de estado). Sin embargo en los cambios químicos se produce tal modificación del material, que la composición de éste no es la misma que al principio (oxidación de metales, combustión de materiales).

Los fenómenos químicos, reacciones químicas, se caracterizan por tres aspectos que los diferencian de los físicos, que son:

- Las sustancias iniciales se transforman en otras de distinta naturaleza.
- En una reacción química se produce un intercambio de energía con el exterior, en forma de calor que se absorbe, o que se desprende (combustiones).
- Los cambios químicos, a diferencia de los físicos, son difíciles de invertir.

Energía reacción = Energía dada para romper enlaces - Energía liberada enlaces formados

Las reacciones químicas se representan

mediante **ecuaciones químicas.** Por ejemplo: el magnesio, arde por estimulación de una llama produciéndo óxido de magnesio. La ecuación que refleja esta reacción es:

Magnesio + oxígeno → Óxido de magnesio

$$Mg(s) + O_2(g) \rightarrow MgO(s)$$

En una ecuación química siempre se escriben a la izquierda los reactivos y a la derecha los productos, separados por una flecha (→) que indica el sentido de la reacción. Una vez escritas las fórmulas correctamente, tendremos que **AJUSTARLA**

2 Mg (s) +
$$O_2$$
 (g) \rightarrow 2 MgO (s)

AJUSTAR una ecuación es añadir unos NÚMEROS (coeficientes estequiométricos) delante de las fórmulas de los compuestos para que el número de átomos de cada elemento sea el mismo en ambos miembros. Es una consecuencia de la conservación de la masa.

Ley de conservación de la masa:

En toda reacción química, la masa de los reactivos es igual a la masa de los productos; es decir: se conserva la masa del sistema.

Sustancias sólidas (s) Sustancias líquidas (l) Sustancias gaseosas (g) Sustancias disueltas en agua (ac)

Al ajustar una ecuación jamás modifiques las fórmulas, pon los números delante y no modifiques ni introduzcas subíndices.

Una vez ajustada la reacción ¿para qué sirve? La ecuación ajustada nos proporciona una información:

- *cualitativa*, el Mg reacciona con el O₂ produciéndose óxido de magnesio.
- y lo que es más importante, cuantitativa. Eso nos lleva, en buena lógica a realizar una interpretación molar de la reacción, más útil de cara a realizar cálculos

2 Mg (s) $O_2(g)$ 2 MqQ (s) Y conociendo al menos la cantidad de una de las sustancias que intervienen 2 átomos de Mg 1 molécula de O₂ producen 2 moléculas de MgO en la reacción, podremos calcular a 5 molécula de O₂ producen 10 átomos de Mg 10 moléculas de MgO 100 molécula de O₂ partir de ella las cantidades de 200 átomos de Ma producen 200 moléculas de MgQ sustancia consumidas o producidas en 2 docenas 1 docena producen 2 docenas 2 MOLES 1 MOL producen 2 MOLES dicha reacción.

Por tostación del sulfuro de cinc, se obtiene el óxido del metal y se desprende dióxido de azufre. ZnS (s) + O_2 (g) \rightarrow 2 SO_2 (g) + ZnO (s). Si disponemos de 8,5 Kg de sulfuro, ¿Qué cantidad de óxido se producirá?

(masas atómicas: S=32; Zn=65,4; O=16)

 $\begin{array}{l} M_{\text{M}} \ Z \text{nS} = 65, 4 + 32 = 97, 4 \ g/\text{mol} \\ M_{\text{M}} \ O_2 = 16, 2 = 32 \ g/\text{mol} \\ M_{\text{M}} \ S O_2 = 32 + 16, 2 = 64 \ g/\text{mol} \\ M_{\text{M}} \ Z \text{nO} = 65, 4 + 16 = 81, 4 \ g/\text{mol} \end{array}$

Ajustar la ecuación:

2 ZnS (s) +	3 O ₂ (g)	→	2 SO ₂ (g)	+ 2 <u>ZnQ</u> (s)
2 moles de ZnS	3 moles de O₂	producen	2 moles de SO₂	2 moles de ZnQ
2 97,4 = 194,8 g	3 32 = 96 g	producen	2 64 = 128 g	2 81,4 = 162,8 g

Como los 8,5 Kg de ZnS son 8500 g/ 97,4 g.mol $^{-1}$ = 87,3 moles de ZnS Se producirán también 87,3 moles de ZnO. Y para calcular su masa: 87,3 moles ... 81,4 g.mol $^{-1}$ = 7106,2 g de ZnO = 7,1 Kg de ZnO

Actividades

- 87. ¿cuáles son las características de un cambio químico?
- 88. ¿cómo es que a partir del sodio, un metal de color plateado que reacciona violentamente con el agua y del cloro, un gas tan venenoso que fue usado como un arma en la Primera Guerra Mundial, resulta un compuesto, el cloruro de sodio (la sal de mesa), tan inofensivo que lo comemos todos
- 89. Indica si los siguientes procesos son físicos o químicos:
 - Se fríe un huevo
 - Un imán que atrae un trozo de hierro
 - Fabricación de un yogur
 - Fusión de estaño en la soldadura
 - Oxidación de un llave de hierro puesta a la intemperie
 - Se quema con un mechero una cinta de magnesio
 - Se hincha un neumático
 - Dilatación de una barra de hierro
 - Combustión del butano en una estufa
 - Explosión de la gasolina en los motores de los coches
- 90. Ajusta las siguientes reacciones químicas:
 - ▶ $BaCl_2$ (aq) + H_2SO_4 (aq) → $BaSO_4$ (aq) + HCl (aq)
 - \triangleright PbO (s) + C (s) \rightarrow CO₂ (g) + Pb (s)
 - \blacktriangleright KCIO₃ (s) \rightarrow KCI (s) + O₂ (g)
 - $ightharpoonup C_2H_2(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
 - \triangleright CO (g) + O₂ (g) \rightarrow CO₂ (g)
 - $\blacktriangleright AI (s) + S (s) \rightarrow AI_2S_3 (s)$
 - ► $CH_4O(I) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
 - ▶ Na (s)+ H_2O (I) \rightarrow NaOH (aq) + H_2 (g)
 - ► Fe_2O_3 (s) + C (s) → Fe (s) + CO_2 (q)
 - ► HCI (aq) + Mg(OH)₂ (aq) \rightarrow MgCl₂ (s) + H₂O (I)
- 91. El magnesio se combina con el ácido clorhídrico según: $Mg + HCl \rightarrow MgCl_2 + H_2$
 - a) Ajusta la reacción y calcula cuántos gramos de ácido reaccionan con 6 g de Mg.
 - b) Halla la masa de H_2 y de cloruro de magnesio que se obtiene. masas atómicas Mg=24; H=1; CI=35,5

- 92. Una de las fases de la metalurgia del estaño consiste en hacer reaccionar el óxido de estaño (IV) con carbón para obtener estaño metálico y monóxido de carbono.
 - a) Escribe la ecuación química y ajústala.
 - b) Halla la masa de carbón que reacciona completamente con 1000 g de óxido.
 - c) ¿cuántos gramos de estaño se obtienen? masas atómicas Sn= 118,7; O=16; C012.

- 93. El sodio reacciona con el agua según la reacción: Na (s) + $H_2O(I) \rightarrow Na(OH)$ (aq) + H_2 (g)
 - a) Ajusta la ecuación e indica cuáles son los reactivos y cuáles los productos.
 - b) Halla qué masa de sodio reacciona con 90 g de agua. Masas atómicas Na= 23; H=1; O=16
- 94. Dada la reacción: $N_2(g) + H_2(g) \rightarrow NH_3(g)$ (sin ajustar)
 - a) calcula cuántos gramos de amoniaco se obtienen con 59 g de N₂. masas atómicas N=14; H=1.
 - b) ¿cuántos moles de hidrógeno reaccionan con los 59 g de nitrógeno?.

95. En la siguiente tabla completa los huecos respecto a las cantidades señaladas para la reacción de descomposición del agua en oxígeno e hidrógeno.

H_2O (I)	→	H ₂ (g) +	O ₂ (g)
18 g	producen	2 g	16 g
33,3 g	producen		29,6 g
10 g			

- 96. El carbono reacciona con el oxígeno según la siguiente reacción: $C(s) + O_2(g) \rightarrow CO_2(g)$ Si partimos de 20 g de carbono, calcula:
 - a) Cuántos moles de CO₂ se obtienen.

(masas atómicas C=12; O=16)

b) La masa de oxígeno necesaria para que reaccione con los 20 g de carbono.