Relative Frequency

- $f_k(n) = \frac{N_k(n)}{n} \leftarrow$ Relative Frequency
 k is the outcome

 - $-N_k(n)$ is the number of times outcome k
- $\lim f_k(n) = p_k \leftarrow \textbf{Statistical Regularity}$
 - $\stackrel{\sim}{-} p_k$ is the probability of event k occurring

Properties of Relative Frequencies

- 1. $f_k(n) = \frac{N_k(n)}{n}$
- $2. \ 0 \le N_k(n) \le n$
- 3. $0 \le f_k(n) \le n$ 4. $\sum_{k=1}^k f_k(n) = \sum_{k=1}^k \frac{N_k(n)}{n} \le \frac{n}{n}$ 5. $\sum_{k=1}^k f_k(n) = 1$
- 6. If events A and B are disjoint and event C is "A or B", then $F_C = F_A(n) + F_B(n)$

$\mathbf{2}$ Set Theory

- A set is a collection of objects, denoted by capital letters
- Denote the universal set, U; consisting of all possible objects of interest in a given setting/application
- For any set A, we say that "x is an element of A", denoted $x \in A$ if object x of the universal set U is contained in A
- We say that "x is not an element of A", denoted $x \notin A$ if object x of the universal set U is not contained in A
- We say that "A is a subset of B", denoted $A \subset B$ if every element in A also belongs to $B, x \in A \to x \in B$
- The *empty set*, \emptyset is defined as the set with no elements
 - The empty set is a subset of every set
- Sets A and B are equal if they contain the same elements. To show this:
 - 1. Enumerate the elements of each set
 - 2. Thm: $A = B \iff A \subset B \text{ AND } B \subset A$
- The union of 2 sets A, B, denoted $A \cup B$ is defined as the set of outcomes that are either in A, or in B, or both
- The intersection fo 2 sets, A, B, denoted $A \cap B$ is defined as the set of outcomes in A and B
- The 2 sets A, B are said to be disjoint or mutually exclusive if $A \cap B = \emptyset$
- The complement of a set A, denoted A^C is defined as the set of elements of U not in A $-A^C = \{x \in U | x \notin A\}$
- Relative complement or difference, denoted A-B, is the set of elements in A that are not in B
 - $-A B = A \cap B^C$
 - $-A^{C} = U A$

Properties of Set Operations

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$
(1)

3 Probability Theory

There are 3 main components to Probability Theory.

- 1. Set Theory
- 2. Axioms of Probability
- 3. Conditional Probability and Independence

3.1Random Experiments

Defn 1 (Random Experiment). A random experiment is an experiment whose outcome varies in an unpredictable fashion when performed under the same conditions.

Defn 2 (Sample Space). A sample space, S of a random experiment is the set of all possible experiments.

Defn 3 (Outcome/Sample Point). An outcome, or sample point of a random experiment is a result that cannot be decomposed into other results.

