

Side Channel Attack on Encrypted Traffic

Rahul Kejriwal, CS14B023 Code at: https://github.com/kejriwalrahul/TrafficLeak

Assumptions

- Closed World Assumption
- No interleaved browsing
- Well demarcated request boundaries
- Webpage-level fingerprinting
- Caching Effects (assume hot pages)

Data Collection Methodology

- Chose top ~79 popular webpages (Source: Wikipedia)
- No highly similar webpages (Ex: google.com and google.co.in)
- Caching effects (Collected hot traces)


```
1 0.000000000 10.6.15.145 → 192.168.1.16 SSH 142 Server: Encrypted packet (len=76)
 2 0.000098783 10.6.15.145 → 192.168.1.16 SSH 662 Server: Encrypted packet (len=596)
 3 0.000106043 10.6.15.145 → 192.168.1.16 SSH 102 Server: Encrypted packet (len=36)
 4 0.000124750 192.168.1.16 → 10.6.15.145 TCP 66 52104 → 22 [ACK] Seg=1 Ack=709 Win=6157 Len=0 TSval=1526712
 TSecr=24340927
 5 0.000929440 192.168.1.16 → 10.6.15.145 SSH 134 Client: Encrypted packet (len=68)
 6 0.065609846 192.168.1.16 → 10.6.15.145 SSH 138 Client: Encrypted packet (len=72)
 7 0.093596680 192.168.1.16 → 10.6.15.145 SSH 246 Client: Encrypted packet (len=180)
 8 0.126329470 10.6.15.145 → 192.168.1.16 TCP 78 [TCP Dup ACK 1#1] 22 → 52104 [ACK] Seq=709 Ack=1 Win=1452 Len=0
 TSval=24341270 TSecr=1526313 SLE=69 SRE=141
 9 0.309597388 192.168.1.16 → 10.6.15.145 TCP 134 [TCP Retransmission] 52104 → 22 [PSH, ACK] Seq=1 Ack=709
 Win=6157 Len=68 TSval=1526790 TSecr=24341270
10 0.311972903 10.6.15.145 → 192.168.1.16 TCP 66 22 → 52104 [ACK] Seg=709 Ack=141 Win=1452 Len=0 TSval=24341316
TSecr=1526790
11 0.311995849 192.168.1.16 → 10.6.15.145 TCP 246 [TCP Retransmission] 52104 → 22 [PSH, ACK] Seg=141 Ack=709
Win=6157 Len=180 TSval=1526790 TSecr=24341316
12 0.312011785 10.6.15.145 - 192.168.1.16 SSH 102 Server: Encrypted packet (len=36)
13 0.353014325 10.6.15.145 → 192.168.1.16 TCP 66 22 → 52104 [ACK] Seg=745 Ack=321 Win=1452 Len=0 TSval=24341327
TSecr=1526790
14 0.353595041 192.168.1.16 → 10.6.15.145 TCP 66 52104 → 22 [ACK] Seq=321 Ack=745 Win=6157 Len=0 TSval=1526801
TSecr=24341316
15 0.441209136 192.168.1.16 → 10.6.15.145 SSH 102 Client: Encrypted packet (len=36)
16 0.495749007 10.6.15.145 → 192.168.1.16 SSH 138 Server: Encrypted packet (len=72)
17 0.495776551 192.168.1.16 → 10.6.15.145 TCP 66 52104 → 22 [ACK] Seq=357 Ack=817 Win=6157 Len=0 TSval=1526836
TSecr=24341362
18 0.495940844 192.168.1.16 → 10.6.15.145 SSH 102 Client: Encrypted packet (len=36)
19 0.497464924 10.6.15.145 → 192.168.1.16 SSH 102 Server: Encrypted packet (len=36)
20 0.526798663 10.6.15.145 → 192.168.1.16 TCP 78 [TCP Dup ACK 13#1] 22 → 52104 [ACK] Seg=853 Ack=321 Win=1452
Len=0 TSval=24341370 TSecr=1526801 SLE=357 SRE=393
21 0.526819171 192.168.1.16 → 10.6.15.145 SSH 158 Client: Encrypted packet (len=92)
22 0.532371248 10.6.15.145 → 192.168.1.16 TCP 78 [TCP Dup ACK 13#2] 22 → 52104 [ACK] Seg=853 Ack=321 Win=1452
Len=0 TSval=24341370 TSecr=1526801 SLE=357 SRE=485
23 0.661651594 192.168.1.16 → 10.6.15.145 TCP 102 [TCP Retransmission] 52104 → 22 [PSH, ACK] Seg=321 Ack=853
```

Sample Trace

Model 1: Ad-Hoc Model

Feature Extraction

- Three major sources of information:
 - a. Packet size distribution (and direction)
 - b. Timing distribution (rate of transmission)
 - c. Ordering of packets
- Features used:
 - Packet size distribution
 - i. # of packets (from client and server)
 - ii. Avg Pkt Length (from client and server)
 - iii. Std. Dev. of Pkt Lengths (from client and server)
 - iv. # of full pkts (from client and server)
 - b. Timing distribution
 - i. Total Time
 - ii. # of lag periods

Models

- 4-fold cross-validation on dataset
- 79 websites with 4 traces each = 316 training instances
- Best accuracy of ~67% using ExtraTrees Classifier

Sr. No.	Model (sklearn models)	Avg. Accuracy (after 4-fold cross validation)
1	k-NN	55.24%
2	LDA	60.02%
3	Logistic Regression	52.68%
4	SVM (Linear Kernel)	58.40%
5	SVM (Poly Kernel)	59.36%
6	SVM (RBF Kernel)	56.52%
7	Decision Trees	51.11%
8	Random Forests	66.05%
9	ExtraTrees	66.99%
10	MLP	40.01%

Model 2: SVMs using Damerau-Levenshtein distance Model (Discretized Packet Size)

Strategy

- Request packets are likely to get reordered, broken up and/or merged at different times.
 - a. Use Damerau-Levenshtein distance to measure edit-distance (similarity) between multiple traces. This captures insertion, deletion, substitution and transposition of requests. (Cost schemes are hyperparameters.)
 - b. Discretized packet size into 24 levels (hyperparameter) for computing DL distance.
- 2. Normalize DL distance:

$$L(t, t') = \frac{d(t, t')}{\min(|t|, |t'|)}$$

3. Build kernel using DL distance for SVMs (γ is hyperparameter):

$$K(t, t') = \exp(-\gamma L(t, t')^2)$$

Results & Discussion

- Xiang et al. [2] unfortunately do not give us the complete cost schemes used for computing DL distance.
- Avg. accuracy (after 4-fold cross-validation) was 75.26%.
 - o Easily outperforms the ad-hoc models considered earlier.
- Xiang et al. trained the model using **20-40 cold traces** and got **80-85%** accuracy.
 - We used only **4 hot traces/webpage**.
 - Possible to improve our accuracy by increasing # of traces.

Advantages:

- Unlike ad-hoc models, this one scales well with increasing # of websites.
- Robust against many proposed traffic obfuscation based security measures.

Model 3: DLSVM Model (No packet size information)

Src: Xiang et al. [2]

Strategy & Results

- Almost same model as previous one.
 - Only 1 level of packet size, sign gives direction.
- This model uses only ordering information and ignores timing and size distribution present in the trace.
- Avg. accuracy (after 4-fold cross-validation) was 53.96%
 - o On-par with most ad-hoc models considered earlier.
- Still performs quite well (as good as many ad-hoc models)
 - Order of requests contains lot of information ignored by previous work

Scalability

Differences wrt Xiang et al.

Procedural Differences

- Worked on hot traces rather than cold traces which is more difficult to distinguish.
- Used only SSH packets for experiments. Xiang et al. also use TCP level packets.
- Used much lesser training instances (4 per website as compared to 20-40 per website).
- Used different cost schemes for DL distance and different hyperparameter configurations.

Possible Further Work

Relook at some Assumptions

- Closed World Assumption:
 Larger # of negative instances needed for training the model.
- Webpage-level fingerprinting:
 Xiang et al.[2] have given a strategy to extend this webpage fingerprinting to create fingerprints for websites using HMM models
- Caching Effects (assumed hot pages):
 Cold pages are actually easier to distinguish due to the larger # of differing requests.

Security Counter-Measures

Some Counter-Measures

- Obfuscation based techniques to prevent side-channel attacks:
 - Reorder, merge, split requests
 - Make dummy requests
 - Add dummy data in headers
- Proposed & Used Techniques:
 - o Randomized Pipelining over Tor
 - HTTPOS
 - Cover Traffic
 - Traffic morphing
- Xiang et al. showed that such schemes are not very secure against DLSVM based attacks.

References

- 1. Cai, Xiang, et al. "Touching from a distance: Website fingerprinting attacks and defenses." Proceedings of the 2012 ACM conference on Computer and communications security. ACM, 2012.
- 2. Herrmann, Dominik, Rolf Wendolsky, and Hannes Federrath. "Website fingerprinting: attacking popular privacy enhancing technologies with the multinomial naïve-bayes classifier." Proceedings of the 2009 ACM workshop on Cloud computing security. ACM, 2009.
- 3. Perry, Mike. "A Critique of Website Traffic Fingerprinting Attacks." Tor Blog, Tor Blog, 7 Nov. 2013, blog.torproject.org/critique-website-traffic-fingerprinting-attacks.