Skin Cancer Lesion Image Classification

David Ding
Perry Gabriel
Marcos Geraldo

August 4th, 2025

Introduction

- Skin cancer is among the most common cancers globally, early detection is crucial for effective treatment.
- We leverage computer vision and Machine Learning techniques to support dermatological assessment and diagnosis.

Dataset: ISIC 2019 Challenge dataset

Class Name	Class Label	Training Dataset	Resampled Training
Melanocytic Nevus	NV	12876	1000
Melanoma	MEL	4522	1000
Basal Cell Carcinoma	всс	3323	1000
Benign Keratosis	BKL	2624	1000
Actinic Keratosis	AK	867	1000
Squamous Cell Carcinoma	SCC	628	1000
Vascular Lesion	VASC	253	1000
Dermatofibroma	DF	239	1000

- **25,331** images for **training**
- **6,091** images for **testing**,
- 8 diagnostic categories.
- Resolution: **450×450** to **6000×4000** pixels
- Channels: **RGB**
- Compression: **JPEG**
- Variations:
 - Lighting,
 - Skin tone,
 - Vignettes,
 - Artifacts (hairs, rulers)

Feature Selection

Feature	Melanoma	Carcinoma	Vascular Lesion	Nevus			
Asymmetry	✓ High	✓ Moderate	X Rare	X Absent			
Border Irregularity	✓ High	✓ Possible	X Usually smooth	X Absent			
Color Variation	✓ Significant	X Minimal	✓ Distinct (red/purple)	X Minimal			
Texture Variation	✓ Significant	✓ Possible	X Homogeneous	XAbsent			
Specific Dermoscopic Signs	✓ Pigment network, veil, streaks	Telangiectasia, keratin)	✓ (Lacunae, vessels)	✔ (Regular patterns)			
Growth Pattern	✓ Rapid	✓ Variable	✓ Can be fast	X Stable			

Edges & Gradients:

- HOG
- Laplacian

Texture and Patterns:

- Local Binary Pattern (LBP)
 - GLCM
 - Wavelet decomposition

Color Features:

- o HSV color histograms
- HSV metrics (mean, std, entropy)
- HSV contrast

Shape Features:

- Circularity
- Eccentricity
- Convexity

Feature Examples

Feature Extraction - Color & Shape Metrics

Mean	STD
h: 53.5	h: 80.63
s: 95.52	s: 15.64
v: 165.16	v: 13.4
Entropy	Contrast
h: 0.49	h: 39.27
s: 0.74	s: 31.44
v: 0.71	v: 19.85

Contrast Magnitude: 54.08

Shape Metrics

	circularity	eccentricity	convexity
2634	0.426892	0.343492	0.707103

Dimensionality Reduction

For each feature, we identified the optimal number of components by two methods.

- Cumulative Variance: The number of components is the one that reaches a cumulative variance of 95% of the total variance.
- **Cross Validation:** The number of components that returns the best cross-validation score when fitting a logistic regression to the data.

PCA Reduction - Wavelet (from 1,000 to 14)

t-SNE Visualization

Edges & Gradients: Modeling HOG Laplacian **Texture and Patterns:** Local Binary Pattern (LBP) Model 1 Model 2 Model 3 XGBoost **GLCM XGBoost** XGBoost XGBoost Wavelet decomposition **Color Features:** HSV color histograms Model 1 Model 2 Model 1 **HSV** metrics SVM HSV contrast **SVM SVM SVM Shape Features:** Circularity Eccentricity Convexity CNN High dimension Complex Simple Features PCA Reduced **Features** Texture Features kaggle Color Features CNN second last • Edge & Gradient Pre-Trained Shape Features layer Features CNN Top Layer **ISIC 2019** Fine - Tuning Preprocessing **PCA** EfficientNet-B3

Features Summary

Model Performance - SVM

```
DETAILED SVM MODEL COMPARISON
 Model Features CV Accuracy Test Accuracy Test F1 Test ROC-AUC
Model 1 16 0.4686 ± 0.0115
                                  0.4806 0.4717
                                                    0.8371
Model 2 195 0.5120 ± 0.0083
                                                   0.8659
                                  0.5262 0.5262
Model 3 244 0.5861 ± 0.0100 0.5969 0.5966
                                                   0.9018
Best performing SVM model: Model 3 (All features)
Test accuracy: 0.5969
```


		S	VM M	odel P	erform	nance	Com	parisor	n						Со	nfusio Mod	n Mat el 1	trix								Co	onfusio Mod	on Ma del 2	rix			Ш	
											CV Accuracy Test Accuracy Test F1	AK	100	22	12	20	10	4	31	1		160	¥	96	27	22	12	9	3	31	0		140
0.8			ı			ı					Test ROC-AUC	BCC	51	40	13	26	10	8	38	14		140	BCC	39	72	21	19	11	7	23	8		120
0.6			L			ı						BKL	34	17	53	19	34	22	11	10		120	BKL	21	17	76	6	29	31	16	4		100
Score			ı			d						Actual L DF	28	15	7	125	4	3	15	3		30	Actual L DF	9	16	9	145	3	5	13	0		80
ගි 0.4						ı		Н				AC MEL	16	7	22	10	97	26	14	8		80	MEL	13	10	39	9	88	26	12	3		60
						ı		ı				Š	5	4	21	7	29	123	5	6		10	Ž	1	6	21	11	25	131	1	4		40
0.2						ı		ı	П			SCC	39	21	10	32	21	8	67	2	2	20	SCC	43	31	13	13	18	5	76	1		20
0.0												VASC	5	5 BCC	3	9	8	0	6	164 VASC	0		VASC	3	5 BCC	11	4	10 MEL	7	2	158 VASC		0
		Model	`		Mode	812		400	del3				AK	ВСС	BKL	Predi		NV	SCC	VASC				AK	ВСС	BKL	Pred		NV	SCC	VASC		
			Co	nfusio Mod	n Mati el 3	rix									Model	Com	plexity	y vs P	erforr	mance						Cross	-Valid	ation :	Score	Distri	bution		
AK		21	7	13	8	2	38	1		160		0.60									•	Model 3	0.60								F	5	
BCC	41	87	11	13	6	4	32	6		140		0.58											0.58									T	
BKL	26	17	80	3	30	24	17	3		120		0.56											0.56										
Actual L DF	6	10	4	162	2	2	14	0		100	Weller	0.54										uracy	0.54										
Ac	14	11	24	7	108	23	9	4		80	Test									Mod	del 2	Aco	0.52					F					
Ž	8	5	14	3	32	132	3	3		40		0.52											0.50					_					
SCC	31	31	8	4	17	4	105	0		20		0.50											0.48		T	7							
VASC	4	4	3	6	6	4	2	171				0.48	● ^{Mc}	odel 1									0.46		4	_							
	AK	BCC	BKL	DF Predic		NV	SCC	VASC		0				50		100 Nun	nber of	150 f Featu		200		250			Model	`		Mod	2		426	dels	

Model Performance - XGBoost

DETAILED XGB MODEL COMPARISON

Model Features CV Accuracy Test Accuracy Test F1 Test ROC-AUC

Model 1 16 0.6514 ± 0.0076 0.6506 0.6417 0.9067

Model 2 195 0.6539 ± 0.0100 0.6431 0.6349 0.9183

Model 3 244 0.6773 ± 0.0156 0.6538 0.6470 0.9250

Best performing model: Model 3 (All features)

Test accuracy: 0.6538

Best Performance Model - XGBoost Model 3

Features : 244

Accuracy : 0.6538 F1 : 0.6470 ROC-AUC : 0.9255

	Class	Recall	Precision	Accuracy	F1
Actinic Keratosis	AK	0.7000	0.6422	0.9138	0.6699
Basal Cell Carcinoma	BCC	0.4950	0.5789	0.8919	0.5337
Benign Keratosis	BKL	0.4600	0.5644	0.8881	0.5069
Dermatofibroma	DF	1.0000	0.8696	0.9813	0.9302
Melanoma	MEL	0.5450	0.5533	0.8881	0.5491
Melanocytic Nevus	NV	0.6950	0.6814	0.9213	0.6881
Squamous Cell Carcinoma	SCC	0.6600	0.6600	0.9150	0.6600
Vascular Lesion	VASC	0.9900	0.9124	0.9869	0.9496

Best Efficiency Model - XGBoost Model 1

Features : 16

Accuracy : 0.6506 F1 : 0.6423 ROC-AUC : 0.9071

	Class	Recall	Precision	Accuracy	F1
Actinic Keratosis	AK	0.8050	0.7285	0.9381	0.7648
Basal Cell Carcinoma	BCC	0.4300	0.5150	0.8781	0.4687
Benign Keratosis	BKL	0.3550	0.4226	0.8588	0.3859
Dermatofibroma	DF	1.0000	0.9009	0.9863	0.9479
Melanoma	MEL	0.4450	0.4495	0.8625	0.4472
Melanocytic Nevus	NV	0.5850	0.6223	0.9038	0.6031
Squamous Cell Carcinoma	SCC	0.8350	0.7422	0.9431	0.7859
Vascular Lesion	VASC	1.0000	0.9479	0.9931	0.9732

175

150

125

100

75

50

25

Conclusion

XGBoost models performed comparably across increasing dimensionality, and outperformed SVM models.

SVM models performed better with more complex feature sets.

Due to the high cost in compute time to fine-tune and get inferences from VGG16, and the small trade-off in performance, we would recommend using an XGBoost model with simple features, as Model 1.

Thank You

Appendix

HOG

Hog was calculated using the following parameters:

- Orientations = 4
- Pixels per cell = 16 x 16
- Cell per block = 2 x 2
- Block Normalization Method = 'L2-Hys'

LBP

LBP was calculated using the following parameters:

- Radius = 3
- Points = 24

The graph below shows the histogram of binary patterns for the same image above.

GLCM

(Gray-Level Co-occurrence Matrix)

The GLCM features were extracted using the graycomatrix from the skimage package, using the following parameters:

- Distances = 1, 2, and 3.
- Angles = 0°, 45°, 90°, and 135°

For each image we extracted the following metrics:

- Contrast
- Dissimilarity
- Homogeneity
- Energy
- Correlation
- ASM

Wavelet

The Wavelet method helps to analyze the image in several frequencies, showing different levels of textures.

- For the final model we used two levels.
- Here is an example with 3 levels, and the respective LL, HL, LH, and HH filters.

