CS25010

Information Theory and Coding

3 lectures

Aim: to formalise the notion of information and explain representation principles for its electronic transfer.

- What are information and data?
- How can this data be encoded for transmission?
- Why are there physical data rate limits for transmission?
- How can errors be detected/ corrected?

What is information?

- If an event is certain to occur then we gain no information if we are told that it has occurred.
- If an event is unlikely to occur then we gain a lot of information by being told that it has occurred.

So it seems reasonable that we might quantify information using an expression which involves the **probability** that the event might occur.

 The value of the information should decrease as the probability of the event increases.

Independent Events

If we have two independent events called Q and R, then the total information gained after both events I(Q) and I(R) is I(Q+R). If Q and R are independent

A Formula for information

$$I(Q) = \log_b \left(\frac{1}{\text{Probability}(Q)} \right)$$

Entropy

"A measure of the amount of information that is output by a source, or throughput by a channel, or received by an observer (per symbol or second)."

Dictionary of Computing, Oxford Scientific publications

The entropy of a discrete memoryless source can be regarded as the average amount of information delivered by each symbol.

- Alphabet $A = \{a_i\}$ of size n
- output X at time t
- $P(x_i) = \text{Probability}\{X_i = a_i\}$

Entropy is given:

$$H(X) = \sum_{i=0}^{n-1} P(x_i) \log_b \frac{1}{P(x_i)}$$

Units of Entropy

- b = 2 called a bit
- b = e called nat
- b = 10 called hartley

Example:

base b=2

for two equally likely symbols:

$$Pr \, ob(X_1) = \frac{1}{2}$$

$$Pr \, ob(X_2) = \frac{1}{2}$$

$$H(X) = \frac{1}{2} \log_2 \left(\frac{1}{\frac{1}{2}}\right) + \frac{1}{2} \log_2 \left(\frac{1}{\frac{1}{2}}\right)$$

$$H(X) = \frac{1}{2}\log_2(2) + \frac{1}{2}\log_2(2)$$

$$H(X) = \frac{1}{2} \times 1 + \frac{1}{2} \times 1 = 1$$

Entropy (cont.)

- Similarly, 4 equally likely symbols H(X) = 2
- 8 equally likely symbols H(X) = 3

Note 3 symbols in sequence, each with a choice of one of two

$$H(X) = 1+1+1 = 3$$

i.e.

$$H_8(X) = 3 = H_2(X) + H_2(X) + H_2(X)$$

choice of 8 equally choice of 2 equally likely symbols

Codes

 For example if we required a binary code to represent an alphabet with 8 symbols, what is the average length of the codewords?

$$H_{\mathfrak{g}}(X) = 3$$

therefor, average length is 3 bits

• codewords (for equally likely symbols)

 $S_1 000$

 $S_2 = 001$

 S_3 010

S₄ 011

S₅ 100

S₆ 101

S₇ 110

S₈ 111

Codes (cont.)

what if symbols are not equally likely?

therefor we need less information than that provided by 3 binary digits

note:

$$log_2(2) = 1$$

 $log_2(4) = 2$
 $log_2(8) = 3$

Variable length codes

Shannon code

- Arrange symbols in decreasing order of probability.
- Calculate number of bits (N_i) for each symbol from:

$$\log_2\left(\frac{1}{P_i}\right) \le N_i < 1 + \log_2\left(\frac{1}{P_i}\right)$$

• calculate:

$$F_i = \sum_{j=0}^{i-1} P_j$$

for each S_i

• Use first N_i bits of F_i after binary point

Example: Shannon code

symbol	$prob, P_i$	N_{i}	F_{i}	SymbolCode
S_1	1/4	2	0.00000	00
S_2	³ / ₁₆	3	0.01000	010
S_3	1/8	3	0.01110	011
S_4	³ / ₃₂	4	0.10010	1001
S_5	3/32	4	0.10101	1010
S_6	³ / ₃₂	4	0.11000	1100
S_7	³ / ₃₂	4	0.11011	1101
S_8	1/16	4	0.11110	1111

Average symbol length of code (bits per symbol):

$$\begin{split} \sum_{1}^{8} P_{i}.N_{i} \\ &= \frac{1}{2} + \frac{9}{16} + \frac{3}{8} + 4.\frac{12}{32} + \frac{4}{16} \\ &= \frac{1}{2} + \frac{9}{16} + \frac{3}{8} + \frac{12}{8} + \frac{1}{4} \\ &= \frac{8}{16} + \frac{9}{16} + \frac{6}{16} + \frac{24}{16} + \frac{4}{16} = \frac{51}{16} = 3.1875 \end{split}$$

Shannon-Fano Code

- · Arrange in order of decreasing probability
- Split into two groups of roughly equal probability.
- Allocate '0' to one half '1' to other half.
- Repeat last 2 steps for groups with greater than 1 member.

symbol	prob, P_i	Symbol Code	Code Length
S_1	1/4	00	2
S_2	3/16	01 <u>0</u>	3
S_3	1/8	011	3
S_4	3/32	1000	4
S_5	3/32	1001	4
S_6	3/32	$10\overline{1}$	3
S_7	3/32	110	3
S_8	1/16	$11\overline{1}$	3

Average code length =
$$\sum_{i=1}^{8} P_i N_i = 2.9375$$

Huffman Coding

- · Pick two least probable
- replace most prob. by '1' and least prob. by '0'
- Add probs. and replace pair with single item with this prob.
- repeat if more than 1 item remaining
- read code from 'top of tree'

symbol	P_{i}	P_{i}	
S_1	$\frac{1}{4}$	8/32	0
S_2	$\frac{3}{16}$	$\frac{6}{16}$	1———
S_3	1/8		$1 \frac{1}{3} \frac{1}{3} 0$
S_4	$\frac{3}{32}$	3/32	$0 - \frac{7}{32} 0 - \frac{7}{32} 1$
S_5	$\frac{3}{32}$	$\frac{3}{32}$	1
S_6	$\frac{3}{32}$	3/32	0 6/32 1
S_7	$\frac{3}{32}$	$\frac{3}{32}$	$1 \longrightarrow 1 \longrightarrow$
S_8	1/16	$\frac{2}{32}$	0—5/32 0—

Huffman example (cont.)

Ave code length =
$$\sum_{i=1}^{8} P_i N_i = 2.90625$$

"Huffman coding is optimal in the sense that no other scheme uses fewer binary digits to represent a message" -Telecommunications Technology, R.L.B. Renster

A real symbol set

- Any Problems?
 - statistics of symbol set needs to be known
 - coding scheme needs to be known at receiver
- ASCII American Standard Code for Information Interchange
- Normally represented as 8 bits/per symbol (fixed length code)
- 7 bits for basic code
 - 8th bit used historically as parity bit
 - nowadays extra bit used for extra symbols

example ASCII code set - this slide was produced by using the UNIX command % man ascii

Redundancy/compression

- Redundancy exists when information content is less than data content.
- Lossless encoding or compression seeks to reduce redundancy by making the data rate closer to the information content.
- Data sources often produce lots of data.
- Sometimes in an application not all of the "information" is of interest.
- We can throw away this unwanted information to further improve transmission performance.
- These type of coding strategies are known as *lossey*.

Compression

- Lossless compression
 - fully reversible (no information lost)
 - produces more efficient data representation of information
 - applications:
 numerical data
 textual/ASCII data
- Lossey compression
 - Not reversible (information is lost)
 - based on having knowledge of data usage
 - applications:
 images (JPEG)
 video (MPEG, H.261)
 sound, speech
- Most lossey compression algorithms also perform lossless compression.

Summary

- Most raw data contains some redundancy
- Techniques such as variable length codes can be used to remove this and improve channel utilisation.

•

- Some coding techniques deliberately remove some information from a data source, to gain big savings in the amount of data to transmit.
- However we may ADD redundancy to allow for detection and correction of transmission errors.