ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 30 giugno 2014

Esercizio A

$R_1 = 10 \text{ k}\Omega$	$R_{10} = 50 \Omega$
$R_3 = 500 \text{ k} \Omega$	$R_{11}=2950\;\Omega$
$R_4 = 1.5 \text{ k}\Omega$	$R_{12} = 4 \ k\Omega$
$R_5 = 10 \text{ k}\Omega$	$R_{13} = 10 \text{ k}\Omega$
$R_6 = 950 \Omega$	$C_1 = C_2 = 1 \mu F$
$R_7 = 50 \Omega$	C ₃ = 100 nF
$R_8 = 18 \text{ k } \Omega$	$C_4=1 \text{ nF}$
$R_9 = 6 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V 2 e $V_T = 1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 10 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 6646.66 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.016$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = f_{p1}$; $f_{z2} = 167.53$ Hz; $f_{p2} = 202.19$ Hz; $f_{z3} = 539.51$ Hz; $f_{p3} = 3433.23$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 11368.21$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{B + \overline{C}}\right)\left(\overline{A}\,\overline{B} + D + \overline{B}\,\overline{E}\right) + \overline{\overline{C}E}\left(\overline{A} + BD + \overline{E}\right) + A\overline{B}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e V_T =1 V_T =