

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

P1-M5. Pomiar gęstości ciał stałych i cieczy metodą piknometryczną

1 Wprowadzenie

Piknometr jest to szklane naczynie o pewnej objętości V, zaopatrzone w korek z kapilarnym otworem, służącym do odprowadzania nadmiaru cieczy. Gęstość badanej cieczy jest równa stosunkowi masy tej cieczy m i objętości piknometru V

$$\rho_x = \frac{m}{V} = \frac{m_{p+c} - m_p}{V},$$

gdzie m_{p+c} jest masą piknometru wypełnionego cieczą c, a m_p jest masą pustego piknometru. Jeśli wykonać pomiar masy piknometru wypełnionego cieczą nr 1 o znanej gęstości ρ_1 oraz piknometru wypełnionego cieczą o nieznanej gęstości ρ_x , wówczas przez porównanie objętości, jaką zapewnia użycie tego samego piknometru, można wyznaczyć gęstość tej cieczy

$$V = \frac{m_{p+1}}{\rho_1} = \frac{m_{p+x}}{\rho_x} \to \rho_x = \rho_1 \frac{m_{p+x}}{m_{p+1}}.$$

W przypadku ciał stałych, muszą być one rozdrobnione w sposób umożliwiający umieszczenie ich w piknometrze. Aby wyznaczyć gęstość substancji stałej, należy zważyć piknometr wypełniony tą substancją do maksymalnie około 2/3 jego objętości i ponownie zważyć po uzupełnieniu piknometru cieczą o znanej gęstości. Masa cieczy o objętości substancji jest taka sama jak masa cieczy, która nie zmieściła się w piknometrze.

2 Układ pomiarowy

Na stanowisku pomiarowym znajduje się waga analityczna AXIS ALZ220G, przeznaczona do prac laboratoryjnych wymagających wysokiej dokładności, wraz z odpowiednią dokumentacją techniczną. Waga znajduje się na stole antywibracyjnym. Na stanowisku dostępna jest woda destylowana, butelka z NaCl do przygotowania roztworów i odpowiednie naczynia.

Zadaniem eksperymentatora jest:

- (1) przygotowanie roztworów NaCl o zadanym przez prowadzącego stężeniu,
- (2) wyznaczenie gęstości tych roztworów metodą piknometryczną,
- (3) ocena zgodności wyznaczonych gęstości z wartościami tabelarycznymi dla przygotowanych stężeń,
- (4) wyznaczenie gęstości materiału sypkiego (śrut wędkarski).

3 Pomiary

- I. Przygotować roztwór o zadanym stężeniu procentowym
 - 1. Wyprowadzić wzór na masę substancji jaką należy rozpuścić w danej masie rozpuszczalnika, by uzyskać roztwór o pożądanym stężeniu procentowym.
 - 2. Odmierzyć niewielką ilość wody (tzn. nieco większą niż objętość piknometru).
 - 3. Obliczyć masę NaCl, jaką należy dodać do zmierzonej masy wody by uzyskać roztwór o zadanym stężeniu.
 - 4. Odmierzyć odpowiednia ilość NaCl i sporządzić roztwór.
- II. Wyznaczenie gęstości badanego roztworu metodą piknometryczną
 - 1. Zważyć osuszony piknometr wraz z korkiem.
 - 2. Napełnić piknometr wodą destylowaną. Nadmiar wody usunąć za pomocą papieru. Zważyć.
 - 3. Napełnić piknometr badaną cieczą. Nadmiar cieczy usunąć za pomocą papieru. Zważyć.

temperatura, °C	
m_1 - masa pustego piknometru	
m_2 - masa piknometru z wodą	
m_A - masa piknometru z cieczą A	
m_B - masa piknometru z cieczą B	

- III. Wyznaczenie gestości substancji sypkiej metodą piknometryczną
 - 1. Napełnić piknometr badaną substancją do 2/3 pojemności. Zważyć.
 - 2. Dopełnić piknometr wodą i zważyć.

m_S - masa piknometru z subs. sypką	
m_{SW} - masa piknometru z subs. sypką i wodą	

4 Opracowanie wyników pomiarów

- 1. Korzystając z tabeli gestości określić gestość wody odpowiadającą danej temperaturze.
- 2. Obliczyć gęstości badanych cieczy

$$\rho_A = \rho_w \frac{m_A - m_1}{m_2 - m_1}, \quad \rho_B = \rho_w \frac{m_B - m_1}{m_2 - m_1}.$$

3. Obliczyć gęstość śrutu

$$\rho_s = \rho_w \frac{m_S - m_1}{m_2 + m_S - m_1 - m_{SW}}.$$

- 4. Bazujac na dokumentacji technicznej używanej wagi określić niepewność pomiaru masy $u_b(m_x)$.
- 5. Korzystając z prawa przenoszenia niepewności obliczyć niepewności pomiarowe wyznaczonych gęstości.
- 6. Zapisać wyniki i ich niepewności w stosownym formacie.
- 7. Obliczyć niepewności rozszerzone dla wszystkich wyników i zapisać w odpowiednim formacie.

8. Porównać otrzymane gęstości z danymi tablicowymi¹.

Temperatura, °C	Gęstość wody, kg/m³		
0	999.84		
1	999.90		
2	999.94		
3	999.96		
4	999.97		
5	999.96		
6	999.94		
7	999.90		
8	999.85		
9	999.78		
10	999.70		
11	999.60		
12	999.49		
13	999.37		
14	999.24		
15	999.10		
16	998.94		
17	998.77		
18	998.59		
19	998.40		
20	998.20		
25	997.04		
30	995.64		
40	992.21		
50	988.04		
60	983.21		
70	977.78		
80	971.80		
90	965.31		
100	958.35		

Tabela przedstawia zależność gęstości wodnego roztworu chlorku sodu od stężenia i temperatury. Współczynnik $A_{20^{\circ}\text{C}}$ jest poprawką temperaturową o następującym znaczeniu: jeśli gęstość roztworu jest określona w temperaturze 20°C , to należy do niej dodać wartość $A\times(20^{\circ}\text{C}-7)$, żeby otrzymać gęstość w temperaturze T.

Stężenie NaCl (T = 20°C)		Gęstość		
%	kg/m3	mol/L	(kg/m³) t = 20°C	A _{20°C}
1	10,053	0,1720	1005,3	0,22
2	20,250	0,3464	1012,2	0,24
4	41,072	0,7026	1026,8	0,28
6	62,478	1,0688	1041,3	0,31
8	84,472	1,4451	1055,9	0,34
10	107,070	1,8317	1070,7	0,37
12	130,284	2,2288	1085,7	0,39
14	154,128	2,6367	1100,9	0,42
16	178,592	3,0553	1116,2	0,44
18	203,742	3,4855	1131,9	0,47
20	229,560	3,9272	1147,8	0,49
22	256,080	4,3808	1164,0	0,51
24	283,296	4,8465	1180,4	0,53
26	311,272	5,3251	1197,2	0,55

Rys. 1: Tabele gęstości wody i roztworów NaCl

 $^{^{1}}$ Źródło: Poradnik fizykochemiczny, WNT Warszawa 1974