

BR SMARTGUIA

Carrinho de supermercado adaptado para pessoas cegas

Autor: Gabriel Martins Ribeiro

Brasília-DF

Fevereiro/2025

Sumário

1. Escopo do projeto	3
1.1 Apresentação do projeto	3
1.2 Objetivos do projeto	3
1.3 Principais requisitos	4
1.4 Descrição do funcionamento	5
1.5 Justificativa	5
2. Hardware	6
2.1 Diagrama em blocos	6
2.2 Função de cada bloco	7
2.3 Configuração de cada bloco	8
2.4 Especificações Técnicas	8
2.5 Lista de materiais	9
2.6 Descrição do funcionamento	9
2.7 Descrição da pinagem usada	10
2.8 Circuito completo do hardware	10
3. Software	11
3.1 Blocos funcionais	11
3.2 Descrição das funcionalidades	
3.3 Definição das variáveis	
3.4 Fluxograma	
3.5 Inicialização	
3.6 Configurações dos registros	15
3.7 Estrutura e formato dos dados	
3.8 Organização da memória	
3.9 Protocolo de comunicação	
3.10 Formato do pacote de dados	17
4. Execução do projeto	18
4.1 Metodologia	18
4.2 Testes de validação	19
4.3 Discussão dos Resultados	19
4.4 Link do vídeo mostrando projeto funcionando	20
4.5 Manual do usuário	
4.6 Imagens do produto	21
E Deferêncies	٥٢

1. ESCOPO DO PROJETO

1.1 Apresentação do Projeto

O presente documento apresenta o BR SmartGuia, um sistema embarcado assistivo projetado para auxiliar pessoas cegas na detecção de obstáculos e sinalizar sua presença em um supermercado, contribuindo para a redução de riscos de colisões. Para alcançar esse objetivo, o sistema integra: sensor ultrassônico, matriz de LEDs, buzzers, botões e um display OLED, garantindo suporte tanto ao usuário quanto a terceiros, fornecendo alertas sobre obstáculos e exibindo informações relevantes em tempo real.

A Tabela 1 apresenta os principais componentes do sistema e suas respectivas funções.

Tabela 1 – Principais componentes e funcionalidades do BR SmartGuia

Componente	Função
Sensor ultrassônico (HC-SR04)	Detecta obstáculos e mede a distância ao objeto mais próximo.
Buzzer	Emite alertas sonoros para o usuário cego ao detectar um obstáculo.
Matriz de LEDs RGB	Sinaliza visualmente a presença do usuário para evitar colisões com terceiros.
Display OLED	Exibe mensagens de status para um acompanhante ou cuidador.
Botões	Permitem ativação/desativação dos LEDs.

Fonte: Autoria própria.

O sistema foi projetado para **proporcionar maior autonomia** às pessoas com deficiência visual em um supermercado.

1.2 Objetivos do Projeto

O BR SmartGuia tem como principal objetivo desenvolver um sistema assistivo de baixo custo que facilite a mobilidade de pessoas cegas, proporcionando detecção de obstáculos em tempo real e sinalização eficaz da presença do usuário para terceiros. Para garantir um funcionamento eficiente e acessível, foram estabelecidos objetivos específicos, detalhados na Tabela 2.

Tabela 2 - Objetivos específicos do projeto BR SmartGuia

Objetivo	Descrição
	Utilizar um sensor ultrassônico HC-SR04 para
Detecção de Obstáculos	identificar objetos próximos e emitir alertas sonoros
	ao usuário.
Sinalização Visual para Terceiros	Exibir a bandeira do Brasil na matriz de LEDs RGB,
Sinatização visual para Terceiros	aumentando a visibilidade do usuário.
Exibição de Informações	Exibir mensagens de status no display OLED para
Exibição de informações	um acompanhante/cuidador.
Facilidade de Controle	Permitir a ativação/desativação dos LEDs por meio
racididade de Controle	de botões.
Solução Acessível e Eficiente	Desenvolver um sistema de baixo custo e fácil
Solução Acessivel e Eliciente	operação.

1.3 Principais Requisitos

Os requisitos do projeto foram elaborados com base nas **necessidades do usuário final** e nas **restrições técnicas do sistema embarcado**. Para melhor organização, os requisitos foram categorizados em **funcionais e não funcionais**, conforme ilustrado na **Tabela 3.**

Tabela 3 - Requisitos do projeto BR SmartGuia

Tipo	Requisitos	
	Detectar obstáculos a até 15 cm e emitir alertas sonoros	
	(buzzer).	
	Exibir mensagens e status do sistema no display OLED .	
Funcionais	Permitir controle por botões físicos	
	Ativar a matriz de LEDs RGB para que outras pessoas percebam	
	a presença do usuário.	
	Reproduzir uma música inicial ao ligar o dispositivo.	
	Utilizar componentes de baixo custo e fácil acesso .	
Não Funcionais	Garantir usabilidade e acessibilidade , incluindo um manual em	
(Qualitativo)	braile.	
(Qualitativo)	Manter o consumo de energia dentro dos limites do Raspberry	
	Pi Pico W.	

1.4 Descrição do Funcionamento

A Tabela 4 apresenta o fluxo de operação do BR SmartGuia, desde a inicialização até a sinalização visual para terceiros.

Tabela 4 - Fluxo de operação do BR SmartGuia

Fase	Descrição
	O sistema exibe uma mensagem no
Inicialização	display OLED e emite um som inicial para
	indicar que está pronto para uso.
	O sensor ultrassônico HC-SR04 monitora
Detecção de Obstáculos	continuamente a distância. Se um
	obstáculo for detectado a ≤ 15 cm , o
	buzzer emite um alerta sonoro.
Controle do Usuário	O usuário pode ativar/desativar a matriz
	de LEDs RGB usando os botões
	A matriz de LEDs RGB exibe a bandeira do
Sinalização Visual para Terceiros	Brasil para que outras pessoas percebam
	a presença do usuário cego e evitem
	colisões.

Fonte: Autoria própria.

1.5 Justificativa

Segundo o Instituto Brasileiro de Geografia e Estatística (IBGE, 2010), o Brasil possui mais de 6,5 milhões de pessoas com deficiência visual, das quais 528.624 são completamente cegas [6]. Em nível global, a Organização Mundial da Saúde (OMS) estima que aproximadamente 36 milhões de pessoas sejam cegas [7]. A mobilidade para essas pessoas pode ser desafiadora, especialmente em ambientes movimentados e com pouca iluminação (como supermercados), onde obstáculos inesperados podem comprometer sua segurança e autonomia. Para enfrentar essa dificuldade, o BRSmartGuia propõe uma solução assistiva inovadora, que combina tecnologia acessível e eficiente para facilitar a locomoção e proporcionar maior independência ao usuário. Seu desenvolvimento segue uma abordagem modular e escalável, permitindo futuras expansões e personalizações.

Pesquisas apontam que os supermercados são espaços com fluxo intenso de pessoas e pouca adaptação para acessibilidade [8]. Estudos indicam que a inovação nesses setores é lenta, pois a demanda por tecnologia assistiva nesses ambientes é frequentemente negligenciada [10]. Assim, o BR SmartGuia se apresenta como uma solução para facilitar a

locomoção e prevenir acidentes, minimizando os riscos de colisões e fornecendo informações úteis ao usuário.

A **Tabela 5** apresenta um resumo dos benefícios proporcionados pelo sistema.

Tabela 5 - Benefícios do projeto BR SmartGuia

Problema	Solução Proposta
Dificuldade em detectar obstáculos	Uso do sensor ultrassônico e alerta por
Difficultuate em detectal obstactios	buzzer.
Risco de colisões com outras pessoas	Matriz de LEDs RGB sinaliza visualmente
Nisco de collsões com outras pessoas	a presença do usuário.
Dificuldade de comunicação com	O display OLED exibe mensagens para
acompanhantes	cuidadores.
Custo elevado de outras soluções	Desenvolvimento com componentes
Custo elevado de oditas soluções	acessíveis e baratos.

Fonte: Autoria própria.

Embora existam dispositivos de assistência baseados em sensores ultrassônicos, o **BR** SmartGuia se destaca por integrar múltiplos recursos em um único sistema, oferecendo alertas sonoros, visuais e exibição OLED, garantindo uma abordagem mais completa e acessível. Diferentemente de soluções convencionais (como o Amazon Cart [9]), este projeto prioriza baixo custo, fácil implementação e flexibilidade, facilitando a interação tanto para o usuário quanto para terceiros.

Além disso, ao contrário de outros sistemas que exigem infraestrutura especializada, [11] o BR SmartGuia pode ser implementado de forma independente, sem necessidade de adaptações caras no ambiente, tornando-se uma solução viável e acessível para diversos contextos.

2. HARDWARE

2.1 Diagrama em Blocos

O sistema BR SmartGuia é composto por diversos módulos interligados ao Raspberry Pi Pico W, que atua como a unidade central de controle. A Figura 1 apresenta o diagrama em blocos do sistema.

Figura 1 – Diagrama em blocos do hardware

2.2 Função de Cada Bloco

Cada componente tem uma função essencial para o funcionamento do sistema, conforme mostrado na **Tabela 6**.

Tabela 6 – Função de cada bloco do sistema BR SmartGuia

Bloco	Função
Raspberry Pi Pico W	Unidade central de controle que processa os sinais e gerencia
. ,	os periféricos.
Sensor ultrassônico	Mede a distância de obstáculos e envia os dados para o
(HC-SR04)	microcontrolador.
Buzzer	Emite alertas sonoros para indicar a proximidade de obstáculos.
Matriz de LED RGB 5x5	Sinaliza visualmente a presença do usuário para evitar colisões.
Botão A	Liga a matriz de LEDs.
Botão B	Desliga a matriz de LEDs.
Display OLED SSD1306	Exibe mensagens e informações do sistema para um
Display OLLD 33D 1300	acompanhante ou cuidador.
Fonte de Tensão	Fornece 5 Volts ao circuito de hardware completo

Fonte: Autoria própria.

O sistema foi projetado para proporcionar **segurança e acessibilidade** às pessoas com deficiência visual, especialmente em **ambientes movimentados e com pouca iluminação**.

2.3 Configuração de Cada Bloco

A configuração de cada módulo foi definida para garantir **eficiência e compatibilidade** com o **Raspberry Pi Pico W**. A **Tabela 7** apresenta os detalhes técnicos.

Tabela 7 – Configuração dos blocos de hardware

Bloco	Configuração
Sensor ultrassônico HC-SR04	Alimentação em 5V , comunicação via Trigger e
Sensor uttrassories no-sho4	Echo com nível lógico adaptado para 3.3V .
Buzzer	Alimentação em 3.3V , controle por saída digital
Buzzei	do microcontrolador.
Matriz de LED RGB 5x5	Alimentação em 3.3V , controle via pinos digitais .
Display OLED SSD1306	Comunicação via I2C (SDA/SCL) com o
	microcontrolador.
Botões A e B	Entrada digital com pull-up interno ativado.

Fonte: Autoria própria.

2.4 Especificações Técnicas

O sistema foi projetado para operar com **baixo consumo de energia**, garantindo **desempenho eficiente**. A **Tabela 8** apresenta as especificações principais.

Tabela 8 - Especificações técnicas do sistema

Parâmetro	Valor
Tensão de operação	3.3V – 5V
Microcontrolador	Raspberry Pi Pico W
Protocolo de comunicação do OLED	I2C
Distância máxima do sensor ultrassônico	4 metros
Distância mínima detectável	2 cm
Frequência de operação do buzzer	2 kHz (ajustável)
Consumo médio do sistema	300 mA

2.5 Lista de Materiais

A Tabela 9 apresenta os componentes utilizados na implementação do BR SmartGuia.

Tabela 9 - Lista de materiais do BR SmartGuia

ltem	Quantidade
Sensor ultrassônico HC-SR04	1
Raspberry Pi Pico W	1
Botão	2
Matriz de LED RGB 5x5	1
Buzzer	2
Display OLED SSD1306	1
Fios jumper	Diversos
Power Bank com saída de 5V e	1
1 cabo micro-USB	'

Fonte: Autoria própria.

2.6 Descrição do Funcionamento

A **Tabela 10** apresenta o fluxo de operação do **BR SmartGuia**, desde a **inicialização** até a **sinalização visual para terceiros**.

Tabela 10 - Fluxo de operação do BRSmartGuia

Fase	Descrição	
Inicialização	O sistema exibe uma mensagem no display OLED e emite um som inicial para indicar que está pronto para uso.	
Detecção de Obstáculos	O sensor ultrassônico HC-SR04 monitora continuamente a distância. Se um obstáculo for detectado a ≤ 15 cm , o buzzer emite um alerta sonoro .	
Controle do Usuário	O usuário pode ativar/desativar a matriz de LEDs RGB usando os botões A e B.	
Sinalização Visual para Terceiros	A matriz de LEDs RGB exibe um padrão luminoso para que outras pessoas percebam a presença do usuário cego e evitem colisões.	

2.7 Descrição da Pinagem Usada

A Tabela 11 apresenta a relação entre os pinos do Raspberry Pi Pico W e os periféricos conectados.

Tabela 11 - Mapeamento de pinos do microcontrolador

GPIO	Função	Periférico Conectado
4	Trigger	Sensor ultrassônico HC-SR04
9	Echo	Sensor ultrassônico HC-SR04
GND	Terra	Sensor ultrassônico HC-SR04
VCC	Alimentação 5V	Sensor ultrassônico HC-SR04
21	Buzzer 1	Buzzer
10	Buzzer 2	Buzzer
14	SDA	Display OLED
15	SCL	Display OLED
7	Matriz de LED RGB	Matriz de LED 5x5
5	Botão A	Botão A
6	Botão B	Botão B

Fonte: Autoria própria.

2.8 Circuito Completo do Hardware

A **Figura 2** apresenta o **circuito completo** do hardware, destacando as conexões entre os componentes e o **Raspberry Pi Pico W**.

Buzzer

Botão A

Sensor
HC-SR04

Raspberry Pi
PicoW

Figura 2 - Circuito completo do hardware

3. SOFTWARE

3.1 Blocos Funcionais

O software do projeto segue uma estrutura modular baseada em quatro camadas principais: aplicação, interface, drivers e hardware. Essas camadas são projetadas para facilitar a integração dos periféricos e garantir uma execução eficiente do sistema. A figura 3 apresenta o diagrama da estrutura funcional do software, dividida em suas respectivas camadas e responsabilidades.

Figura 3 – Diagrama de blocos funcionais do software

3.2 Descrição das Funcionalidades

A **Tabela 12** apresenta as principais funcionalidades do software e suas respectivas camadas.

Tabela 12 - Funcionalidades do software BR SmartGuia

Camada	Função	
Aplicação	Executa o loop principal , gerenciando todas as interações	
Αριισαζαυ	em tempo real.	
	Exibe informações no display OLED via I2C .	
Interface	Controla a Matriz de LEDs via PIO .	
	Gera sons no buzzer via PWM .	
	Lê os botões físicos para controlar a Matriz de LEDs.	
Drivers	Mede a distância com o sensor ultrassônico.	
	Configura o buzzer via PWM para alerta e música.	
Hardware	Interface com GPIOs , I2C , PIO e PWM , garantindo a	
	comunicação e controle dos periféricos	

3.3 Definição das Variáveis

A **Tabela 13** apresenta as principais variáveis utilizadas no software e seus respectivos significados.

Tabela 13 - Principais variáveis do software

Variável	Tipo	Descrição
led_on	bool	Estado da matriz de LEDs
leds	pixel_t	Buffer da matriz de LEDs
melody[]	int[]	Notas musicais da melodia
distance_cm	float	Distância medida pelo sensor ultrassônico
buf[]	uint8_t[]	Buffer do display OLED

Fonte: Autoria própria.

3.4 Fluxograma

A Figura 4 apresenta o fluxograma completo do software, ilustrando a sequência lógica das operações desde a inicialização do sistema até o processamento e resposta ao usuário.

Início Fim Inicializa GPIOS,I2C, PWM e PIO **Loop Principal Exibe dados no Display OLED Configura Display OLED** Desativa **Ativa Buzzer** Configura Sensor Ultrassônico Buzzer Sim Não Configura Matriz de LEDS Distância < 15 cm? Mede Distância (Ultrassom) Verifica botões A e B Botão A **Botão B** pressionado? pressionado? Liga Matriz de **Desliga Matriz LEDS** de LEDS

Figura 4 – Fluxograma do software BR SmartGuia

3.5 Inicialização

O processo de inicialização do software ocorre em cinco etapas principais:

1. Configuração dos GPIOs

- Define os pinos para botões, buzzer, sensor ultrassônico e LEDs.
- Ativa os resistores pull-up internos para os botões.

2. Configuração do I2C (Display OLED)

- Inicializa o barramento I2C para comunicação com o SSD1306.
- Configura os pinos SDA e SCL.

3. Configuração do PWM (Buzzer e LEDs)

- Configura a frequência do PWM para gerar tons sonoros no buzzer.
- Ativa o controle de brilho para a matriz de LEDs.

4. Configuração do PIO (Matriz de LEDs WS2818b)

- Carrega o programa PIO para o controle dos LEDs via ws2818b_program.
- Inicializa e limpa a matriz de LEDs.

5. Inicialização do Display OLED

 Define a área de renderização e limpa o buffer antes de iniciar a exibição das informações.

3.6 Configurações dos Registros

O código configura registradores para **GPIOs**, **PWM** e **I2C**, permitindo controle preciso sobre os periféricos.

A **Tabela 14** apresenta as principais configurações utilizadas.

Tabela 14 – Configuração dos registros do microcontrolador

Componente	Descrição	Código
GPIOs (Entradas e Saídas) - Botões	Os botões são configurados com pull-up interno.	 gpio_init(BUTTON_A_PIN); gpio_set_dir(BUTTON_A_PIN, GPIO_IN); gpio_pull_up(BUTTON_A_PIN);
GPIOs (Entradas e Saídas) - Sensor Ultrassônico	O sensor ultrassônico usa GPIOs configurados para entrada e saída.	 gpio_init(TRIGGER_PIN); gpio_set_dir(TRIGGER_PIN,GPI O_OUT) gpio_init(ECHO_PIN); gpio_set_dir(ECHO_PIN, GPIO_IN);
PWM para o Buzzer	Configura o PWM para geração de sons no buzzer.	 gpio_set_function(BUZZER_PIN, GPIO_FUNC_PWM); uint slice_num =pwm_gpio_to_slice_num(BUZZ ER_PIN); pwm_set_wrap(slice_num, 125000000 / frequency); pwm_set_enabled(slice_num, true);
PIO para a Matriz de LEDs	Configuração do barramento PIO para controle da matriz de LEDs.	 uint offset = pio_add_program(pio0, &ws2818b_program); ws2818b_program_init(np_pio, sm, offset, LED_PIN, 800000.f);

3.7 Estrutura e Formato dos Dados

O software utiliza uma **estrutura de dados simples e eficiente**, baseada no armazenamento das medições e status do sistema. Os principais dados armazenados são:

• **Buffer de Pixels para os LEDs:** Os LEDs são atualizados por meio de um vetor de 25 posições, representando a matriz 5x5. Conforme o seguinte código:

```
struct pixel_t {
          uint8_t G, R, B;
};
pixel_t leds[LED_COUNT];
```

• Notas Musicais (Tocar Música): A melodia é armazenada em um array de notas e durações:

```
int melody[] = {
    NOTE_G4,8, NOTE_A4,8, NOTE_B4,4, NOTE_D5,4, NOTE_D5,4, NOTE_B4,4,
    NOTE_C5,4, NOTE_C5,2, NOTE_G4,8, NOTE_A4,8
    };
```

• **Armazenamento de texto para o OLED**: O display exibe mensagens armazenadas em arrays de strings:

```
char *text[] = { "Wellcome to", "BR SmartGuia" };
```

3.8 Organização da Memória

O software do **BR SmartGuia** utiliza **endereços de memória bem definidos** para armazenar as variáveis e otimizar o desempenho. A **Tabela 15** apresenta a organização da memória.

Tabela 15 - Organização da memória do software

Componente	Tipo de Memória
Matriz de LEDs	Array (leds[25]) armazenado na RAM
Notas musicais	Array (melody[]) armazenado na RAM
Texto do OLED	String (char *text[]) armazenada na RAM
Configuração PIO	Carregada na memória dedicada do PIO

3.9 Protocolo de Comunicação

O BRSmartGuia utiliza o **barramento I2C** para comunicação com o **display OLED SSD1306**. Os principais **parâmetros do protocolo** são:

- Endereço do dispositivo: 0x3C
- Velocidade de comunicação: 400 kHz
- Barramento: SDA e SCL (GPIO 14 e 15)
- Os dados são enviados para o display por meio da função i2c_write_blocking().

3.10 Formato do Pacote de Dados

O formato dos pacotes de dados enviados para o **display OLED** segue a estrutura padrão do protocolo **I2C**. Cada comando enviado ao **OLED SSD1306**, está na **tabela 16**.

Tabela 16 – Estrutura e Composição dos Pacotes de Dados

Byte	Função
Byte 1	Endereço do dispositivo (0x3C)
Byte 2	Código do comando (0x00 para comandos, 0x40 para dados gráficos)
Byte 3N	Dados a serem exibidos na tela

4. EXECUÇÃO DO PROJETO

4.1 Metodologia

A execução do projeto **BR SmartGuia** seguiu uma abordagem estruturada, baseada em **pesquisa, desenvolvimento e validação**. As etapas do processo são descritas na **Tabela 17**.

Tabela 17 - Etapas da execução do projeto

Etapa	Descrição	
	Levantamento de tecnologias assistivas existentes,	
Pesquisas Realizadas	estudos sobre sensores ultrassônicos e	
	microcontroladores compatíveis.	
	Seleção do Raspberry Pi Pico W , do sensor	
Escolha do Hardware	ultrassônico HC-SR04, do buzzer, da matriz de LEDs e	
L'SCOUIA GO FIAI GWAI E	do display OLED SSD1306 , com base em critérios de	
	acessibilidade, consumo de energia e custo.	
Definição das Funcionalidades	Determinação dos recursos principais, incluindo alerta	
	sonoro, sinalização visual e exibição de mensagens no	
	OLED.	
	Configuração do ambiente de desenvolvimento na IDE	
Inicialização da IDE	Pico SDK version 2.1.1, instalação das bibliotecas	
	necessárias e configuração do microcontrolador.	
Programação na IDE	Desenvolvimento do código-fonte do sistema	
	embarcado, incluindo leitura de sensores, controle dos	
	LEDs, do buzzer e do OLED.	
Depuração	Testes individuais e integração dos módulos,	
	identificação e correção de falhas.	

Fonte: Autoria própria.

A metodologia adotada garantiu um fluxo organizado de desenvolvimento, permitindo **testes iterativos e refinamentos ao longo do processo**.

4.2 Testes de Validação

Para garantir a **funcionalidade e confiabilidade** do sistema **BR SmartGuia**, foram realizados **testes de validação** em diferentes condições. A **Tabela 18** apresenta os principais testes e seus resultados.

Tabela 18 – Testes de validação do BRSmartGuia

Teste	Descrição	Resultado Obtido
Detecção de	Avaliação da resposta do sensor	Precisão acima de
Obstáculos	ultrassônico a diferentes distâncias.	95% em até 2 metros.
Sinalização	Teste da intensidade do buzzer	Níveis de volume
Sonora	conforme a proximidade do obstáculo.	ajustados
Soliola	comorne a proximidade do obstactio.	corretamente.
Sinalização	Ativação da matriz de LEDs quando o	Matriz de LEDs aciona
Visual	botão A é pressionado.	corretamente.
Exibição no	Teste da exibição de mensagens de	Mensagens exibidas
Display OLED	status no OLED.	corretamente.
Resistência a	Teste de funcionamento em ambientes	Sistema manteve
	ruidosos e com variação de	
Interferências	luminosidade.	operação estável.

Fonte: Autoria própria.

Os testes demonstraram que o **sistema responde de forma eficiente** aos estímulos externos, garantindo **usabilidade e confiabilidade** na aplicação real.

4.3 Discussão dos Resultados

Os resultados obtidos nos testes validam a **eficácia e aplicabilidade** do **BR SmartGuia**. Os principais pontos observados foram:

- 1. **Detecção de obstáculos:** O **sensor ultrassônico HC-SR04** apresentou alta precisão para distâncias de até **2 metros**, garantindo a segurança do usuário.
- 2. **Alertas sonoros e visuais:** O **buzzer** respondeu corretamente à proximidade dos obstáculos, enquanto a **matriz de LEDs** foi eficiente na sinalização para terceiros.
- 3. **Interface intuitiva:** O uso dos **botões físicos** facilitou o controle do sistema, permitindo ativação/desativação da matriz de LEDs de forma simples.
- 4. **Baixo consumo de energia:** O sistema operou dentro dos limites do **Raspberry Pi Pico W**, garantindo um consumo médio de **300 mA**, adequado para uso portátil.

Os testes indicam que o BR SmartGuia é um produto confiável e viável para aplicação no dia a dia de pessoas cegas, melhorando sua segurança e mobilidade.

4.4 Link do Vídeo Mostrando o Projeto Funcionando

Para complementar a documentação, foi produzido um **vídeo demonstrativo** apresentando o funcionamento do **BR SmartGuia**. O vídeo mostra:

- 1. Inicialização do sistema e exibição da mensagem no display OLED.
- 2. **Detecção de obstáculos** e ativação dos alertas sonoros e visuais.
- Demonstração do controle do usuário, incluindo ativação e desativação da matriz de LEDs.

O vídeo pode ser acessado por meio do seguinte link: https://youtube.com/shorts/CITF2qKHdql?feature=share

O repositório de código está no GitHub, de forma a manter o controle de versão dos códigos e da documentação. Os links para acesso, respectivamente, ao GitHub e à documentação, podem ser vistos abaixo:

Site: https://gabrielrmg.github.io/EMBARCATECH/ GitHub: https://github.com/Gabrielrmg/EMBARCATECH/

4.5 Manual do usuário

Para orientar o usuário em seus primeiros usos do **BR SmartGuia**, foi produzido um **manal simplificado.** A **versão em braile** desse manual encontra-se na parte traseira do carrinho, abaixo da placa BitDogLab.

1. Ligando o Carrinho

 Pressione o botão reset da placa BitDogLab (em cima do carrinho) até ouvir a música "Asa Branca" (de Luiz Gonzaga) tocar. O carrinho estará pronto para uso.

2. Detectando Obstáculos

 O carrinho avisa com um barulho (buzzer) se houver um obstáculo a menos de 15 cm à frente. Ajuste o caminho ao ouvir o alerta.

3. Luzes de Sinalização (LEDs)

 Caso o ambiente esteja bastante movimentado ou escuro, recomenda-se ligar o painel de LEDS (será formada uma imagem da bandeira do Brasil), a fim de alertar terceiros. Use o botão A no painel (placa BitDogLab) do carrinho, para ligar. Botão B desliga.

4. Informações no Display

• O display mostra a distância (em centímetros) do obstáculo à sua frente.

5. Desligando o Carrinho

Basta remover o cabo de alimentação da bateria PowerBank.

Dicas Importantes:

- 1. Sempre confira se o carrinho está ligado e funcionando antes de usar.
- 2. Aprenda a reconhecer os sons e luzes para maior segurança.
- 3. Use o BR SmartGuia com tranquilidade e aproveite suas compras com mais independência!

4.6 Imagens do produto

Figura 5 e 6 – Vista lateral do BRSmartGuia(esquerda) e visão traseira (direita)

Figura 7 e 8 – Display Oled com a mensagem "Wellcome to BR SmartGuia" (esquerda); e visão da parte inferior com a protoboard e fios jumper (direita)

Figura 9 – Vista frontal

Figura 10 e 11 – Vista traseira

5. Referências

- [1] Banco de Informações de Hardware (BIH) Documentos Google: https://docs.google.com/document/d/13-68OqiU7ISE8U2KPRUXT2ISeBI3WPhXjGDFH52eWIU/edit?tab=t.0
- [2] RASPBERRY PI LTD. Raspberry Pi Pico C/C++ SDK. 2024. Disponível em: https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf.
- [3] RASPBERRY PI LTD. RP2040 Datasheet. 2024. Disponível em: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf.
- [4] BitDogLab. Manual BitDogLab, Disponível em: https://github.com/BitDogLab/BitDogLab/tree/main/doc.
- [5] TRADUTOR BRAILLE. Tradutor Braille Online. Disponível em: https://www.tradutorbraille.com.br/. Acesso em: 16 fev. 2025.
- [6] BRASIL. Ministério da Educação (MEC). Portal MEC: Deficiência Visual. Disponível em: http://portal.mec.gov.br/component/tags/tag/deficiencia-visual#:~:text=Segundo%20dados%20do%20censo%20demogr%C3%A1fico,algum%20tipo%20de%20defici%C3%AAncia%20visual.&text=O%20Minist%C3%A9rio%20da%20Educa%C3%A7%C3%A3o%20trabalha,e%20a%C3%A7%C3%B5es%20voltados%20aos%20cegos. Acesso em: 18 fev.2025
- [7] LOUIS BRAILLE. Estatísticas sobre deficiência visual no Brasil e no mundo. Disponível em: https://louisbraille.org.br/portal/2020/04/13/estatisticas-sobre-deficiencia-visual-no-brasil-e-no-mundo/. Acesso em: 18 fev. 2025
- [8] SILVA, C. H. C. d. O papel dos supermercados e hipermercados nas relações entre cidade, comércio e consumo. Geografia, v. 30, n. 3, p. 610–625, 2007.
- [9] AMAZON lança carrinho de supermercado inteligente. 2020. https://startupi.com.br/2020/07/amazon-lanca-carrinho-de-supermercado-inteligente/. Acesso em: 18 fev 2025.
- [10] CUGNASCA, C. E. Projetos de Sistemas Embarcados. Departamento de Engenharia de Computação e Sistemas Digitais, Escola Politécnica da USP, 2018.
- [11] RESEARCHGATE. Photo of the electronic walking stick for the blind. Disponível em: https://www.researchgate.net/figure/Photo-of-the-electronic-walking-stick-for-the-blind_fig1_308871791. Acesso em: 10 fev. 2025.