Miller-Rabin primality test

13.1 Overview of ideas

prime number theorem

Lemma 36. Let $\pi(n)$ be the number of primes $\leq n$. Then

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln n}=1$$

Proof. We won't present it.

13.1 Overview of ideas

prime number theorem

Lemma 36. Let $\pi(n)$ be the number of primes $\leq n$. Then

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln n}=1$$

Proof. We won't present it.

using Miller-Rabin primality test:

• Suppse we seek a prime n of length β , i.e

$$n \in [0:2^{\beta}-1]$$

• Miller- Rabin: test efficiently $(O(\beta^k) = O(\log n))$ bit operations) and very reliably (error probabilty $< 2^{-s}$), if p is a prime:

13.1 Overview of ideas

prime number theorem

Lemma 36. Let $\pi(n)$ be the number of primes $\leq n$. Then

$$\lim_{n\to\infty} \frac{\pi(n)}{n/\ln n} = 1$$

Proof. We won't present it.

using Miller-Rabin primality test:

• Suppse we seek a prime n of length β , i.e

$$n \in [0:2^{\beta}-1]$$

• Miller- Rabin: test efficiently $(O(\beta^k) = O(\log n))$ bit operations) and very reliably (error probabilty $< 2^{-s}$), if p is a prime:

Then

- test randomly drawn numbers $n \in [0: 2^{\beta} 1]$
- the Miller-Rabin tests cost $O(\beta^{k+1})$ (shown below)
- you get a wrong answer only with probability 2^{-s} .

13.1 Overview of ideas

prime number theorem

Lemma 36. Let $\pi(n)$ be the number of primes $\leq n$. Then

$$\lim_{n\to\infty} \frac{\pi(n)}{n/\ln n} = 1$$

Proof. We won't present it.

using Miller-Rabin primality test:

• Suppse we seek a prime n of length β , i.e

$$n \in [0:2^{\beta}-1]$$

• Miller- Rabin: test efficiently $(O(\beta^k) = O(\log n))$ bit operations) and very reliably (error probabilty $< 2^{-s}$), if p is a prime:

Then

- test randomly drawn numbers $n \in [0:2^{\beta}-1]$
- the Miller-Rabin tests cost $O(\beta^{k+1})$ (shown below)
- you get a wrong answer only with probability 2^{-s} .

• with k draws the probability not to draw a prime number k times tends to

$$p(n,k) = (\frac{n-\pi(n)}{n})^k = (1 - \frac{1}{\ln n})$$

 $k = \ln n$:

$$p(n,\ln n) = (1 - \frac{1}{\ln n})^{\ln n}$$

$$\lim_{n \to \infty} (1 - \frac{1}{\ln n})^{\ln n} = \lim_{x \to \infty} (1 - \frac{1}{x})^x = 1/e$$

witnesses for composite numbers n

• lemma 30 (Fermat's theorem). if p is prime, then

$$a^{p-1} \equiv 1 \mod p \quad \text{for all } a \in \mathbb{Z}_p^*$$

Thus

$$a^{n-1} \not\equiv 1 \bmod \rightarrow n \text{ is composite}$$

witnesses for composite numbers n

• lemma 30 (Fermat's theorem). if p is prime, then

$$a^{p-1} \equiv 1 \mod p \quad \text{for all } a \in \mathbb{Z}_p^*$$

Thus

$$a^{n-1} \not\equiv 1 \bmod \rightarrow n \text{ is composite}$$

• x is a nontrivial square root of 1 iff $x^2 \equiv 1 \mod n$ and $x \notin \{-1, 1\}$.

lemma 34: If there exists a nontrivial square root of n > 1, then n is composite.

candidates for such square roots derived from a

witnesses for composite numbers n

• lemma 30 (Fermat's theorem). if p is prime, then

$$a^{p-1} \equiv 1 \mod p \quad \text{for all } a \in \mathbb{Z}_p^*$$

Thus

$$a^{n-1} \not\equiv 1 \bmod \rightarrow n \text{ is composite}$$

• x is a nontrivial square root of 1 iff $x^2 \equiv 1 \mod n$ and $x \notin \{-1, 1\}$.

lemma 34: If there exists a nontrivial square root of n > 1, then n is composite.

candidates for such square roots derived from a

• randomly chosen a is witness if one of the tests succeeds.

witnesses for composite numbers n

• lemma 30 (Fermat's theorem). if p is prime, then

$$a^{p-1} \equiv 1 \mod p \quad \text{for all } a \in \mathbb{Z}_p^*$$

Thus

$$a^{n-1} \not\equiv 1 \mod \rightarrow n \text{ is composite}$$

• x is a nontrivial square root of 1 iff $x^2 \equiv 1 \mod n$ and $x \notin \{-1, 1\}$.

lemma 34: If there exists a nontrivial square root of n > 1, then n is composite.

candidates for such square roots derived from a

• randomly chosen a is witness if one of the tests succeeds.

bound on accuracy

- with a witness decision 'composite' is always correct.
- with randomly chosen $a \in [1:n-1]$ no witness may be found although n is composite. Now show:

The set *NW* of non-witnesses forms a proper subgroup of \mathbb{Z}_n^* .

witnesses for composite numbers n

• lemma 30 (Fermat's theorem). if p is prime, then

$$a^{p-1} \equiv 1 \mod p \quad \text{for all } a \in \mathbb{Z}_p^*$$

Thus

$$a^{n-1} \not\equiv 1 \bmod \rightarrow n \text{ is composite}$$

• x is a nontrivial square root of 1 iff $x^2 \equiv 1 \mod n$ and $x \notin \{-1, 1\}$.

lemma 34: If there exists a nontrivial square root of n > 1, then n is composite.

candidates for such square roots derived from a

• randomly chosen a is witness if one of the tests succeeds.

bound on accuracy

- with a witness decision 'composite' is always correct.
- with randomly chosen $a \in [1:n-1]$ no witness may be found although n is composite. Now show:

The set *NW* of non-witnesses forms a proper subgroup of \mathbb{Z}_n^* .

• recall lemma 13: If *H* is a proper subroup of finite group *g*, then $|H| \le |G|/2$

then

$$|NW| \le |\mathbb{Z}_n^*/2| \le (n-1)/2$$

thus probability to miss the witnesses is < 1/2

witnesses for composite numbers n

• lemma 30 (Fermat's theorem). if p is prime, then

$$a^{p-1} \equiv 1 \mod p \quad \text{for all } a \in \mathbb{Z}_p^*$$

Thus

$$a^{n-1} \not\equiv 1 \bmod \rightarrow n \text{ is composite}$$

• x is a nontrivial square root of 1 iff $x^2 \equiv 1 \mod n$ and $x \notin \{-1, 1\}$.

lemma 34: If there exists a nontrivial square root of n > 1, then n is composite.

candidates for such square roots derived from a

• randomly chosen a is witness if one of the tests succeeds.

bound on accuracy

- with a witness decision 'composite' is always correct.
- with randomly chosen $a \in [1:n-1]$ no witness may be found although n is composite. Now show:

The set *NW* of non-witnesses forms a proper subgroup of \mathbb{Z}_n^* .

• recall lemma 13: If H is a proper subroup of finite group g, then $|H| \le |G|/2$ then

$$|NW| \le |\mathbb{Z}_n^*/2| \le (n-1)/2$$

thus probability to miss the witnesses is < 1/2

• reduce probability to miss witnesses to 2^{-s} by trying s numbers a.

13.2 witness computation (identifying composites)

witness(a,n):

inputs

- $n \in \mathbb{N}$ odd,
- $a \in [1: n-1]$, possible witness for the fact, that n is composite.

decompose

$$n-1=u\cdot 2^t$$
 , $u \ odd$

binary representation of n-1 has t trailing zeros.

- 1. $x_0 = a^u \mod n$; (using modular exponentiation)
- 2. for i = 1 to t
- 3. $\{x_i = x_{i-1}^2 \mod n;$
- 4. if $x_i == 1 \land x_{i-1} \neq 1 \land x_{i-1} \neq n-1$ { return true} x_{i-1} is nontrivial square root of 1. }
- 5. if $x_t \neq 1$ { return true } else {return false }

13.2 witness computation (identifying composites)

witness(a,n):

inputs

- $n \in \mathbb{N}$ odd,
- $a \in [1:n-1]$, possible witness for the fact, that n is composite.

decompose

$$n-1=u\cdot 2^t$$
 , $u \ odd$

binary representation of n-1 has t trailing zeros.

- 1. $x_0 = a^u \mod n$; (using modular exponentiation)
- 2. for i = 1 to t
- 3. $\{x_i = x_{i-1}^2 \mod n;$
- 4. if $x_i == 1 \land x_{i-1} \neq 1 \land x_{i-1} \neq n-1$ { return true} x_{i-1} is nontrivial square root of 1. }
- 5. if $x_t \neq 1$ { return true } else {return false }

witness correctly identifies composite n:

Lemma 37. If witness(a,n) = true, the n is composite

13.2 witness computation (identifying composites)

witness(a,n):

inputs

- $n \in \mathbb{N}$ odd,
- $a \in [1: n-1]$, possible witness for the fact, that n is composite.

decompose

$$n-1=u\cdot 2^t$$
 , $u \ odd$

binary representation of n-1 has t trailing zeros.

- 1. $x_0 = a^u \mod n$; (using modular exponentiation)
- 2. for i = 1 to t
- 3. $\{x_i = x_{i-1}^2 \mod n;$
- 4. if $x_i == 1 \land x_{i-1} \neq 1 \land x_{i-1} \neq n-1$ { return true} x_{i-1} is nontrivial square root of 1. }
- 5. if $x_t \neq 1$ { return true } else {return false }

witness correctly identifies composite n:

Lemma 37. If witness(a,n) = true, the n is composite

- line 4 returns *true*: apply lemma 34
- for all $i \in [0:t]$

$$x_i = a^{u \cdot 2^i} \mod n$$

by induction i. Trivial for i = 0. Induction step

$$x_i = x_{i-1}^2 \mod n$$

 $= (a^{u \cdot 2^{i-1}})^2 \mod n$ (induction hypothesis)
 $= a^{u \cdot 2 \cdot 2^{i-1}} \mod n$
 $= a^{u \cdot 2^i} \mod n$

• line 5 returns true: $x_t = a^{n-1} \mod n$. Apply lemma 30

13.3 Miller-Rabin primality test

```
Miller - Rabin(n,s):
1. for j = 1 to s
2. { a = random(1,n-1) ;
3. if witness(a,n) { return composite} } } definitely
4. return prime
almost surely
```

13.3 Miller-Rabin primality test

```
Miller - Rabin(n,s):
1. for j = 1 to s
2. { a = random(1,n-1) ;
3. if witness(a,n) { return composite} } } definitely
4. return prime
almost surely
```

number of non witnesses a for composite n:

Lemma 38. For odd n the set of non witnesses a is contained in a proper subgroup of \mathbb{Z}_n^*

13.3 Miller-Rabin primality test

Miller - Rabin(n, s):

- 1. for j = 1 to *s*
- 2. $\{ a = random(1, n-1) ;$
- 3. if witness(a,n) { return composite}
 }
 definitely
- 4. return *prime* almost surely

number of non witnesses a for composite n:

Lemma 38. For odd n the set of non witnesses a is contained in a proper subgroup of \mathbb{Z}_n^*

• a not witnesess $\rightarrow a \in \mathbb{Z}_n^*$

$$a \cdot a^{n-2} = a^{n-1}$$
$$\equiv 1 \bmod n$$

 $ax \equiv 1 \mod n$ solvable by $x = a^{n-2}$

lemma 19 \rightarrow

$$gcd(a,n)|1$$
 , $gcd(a,n)=1$, $a \in \mathbb{Z}_n^*$

recall: Lemma 19. Let d = gcd(a, n). Then

 $ax \equiv b \mod n$

is solvalble if and only if d|b.

13.3 Miller-Rabin primality test

Miller - Rabin(n, s):

- 1. for j = 1 to s
- 2. $\{ a = random(1, n-1) ;$
- 3. if witness(a,n) { return composite}
 }
 definitely
- 4. return *prime* almost surely

number of non witnesses a for composite n:

Lemma 38. For odd n the set of non witnesses a is contained in a proper subgroup of \mathbb{Z}_n^*

• a not witnesess $\rightarrow a \in \mathbb{Z}_n^*$

$$a \cdot a^{n-2} = a^{n-1}$$
$$\equiv 1 \bmod n$$

 $ax \equiv 1 \mod n$ solvable by $x = a^{n-2}$

lemma 19 \rightarrow

$$gcd(a,n)|1$$
 , $gcd(a,n)=1$, $a \in \mathbb{Z}_n^*$

• (the easy case) there is witness $x \in \mathbb{Z}_n^*$ with

$$x^{n-1} \neq 1 \mod n$$

Set

$$B = \{b \in \mathbb{Z}_n^* : b^{n-1} \equiv 1 \bmod n\}$$

- $-1 \in B \rightarrow B \neq \emptyset$
- B closed under \cdot_n , hence subgroup
- all non witnesses a satisfy $a^{n-1} \equiv 1 \mod n$, hence $a \in B$
- $x \notin B$ → subgroup is proper

number of non witnesses a for composite n:

Lemma 38. For odd n the set of non witnesses a is contained in a proper subgroup of \mathbb{Z}_n^*

 $a \text{ not witnesess} \rightarrow a \in \mathbb{Z}_n^*$

• (the harder case) for all $x \in \mathbb{Z}_n^*$

$$x^{n-1} \equiv 1 \mod n$$

(*n* is Carmichael number, they are rare)

- n is no prime power. Assume otherwise $n = p^e$ with e > 1 (n is composite).

lemma 31 \rightarrow : \mathbb{Z}_n^* is cyclic with a generator g. With lemma 9

$$ord(g) = |Z_n^*| = \varphi(n) = p^e(1 - 1/p) = (p - 1)p^{e-1}$$

$$g^{n-1} \equiv 1 \mod n$$
 (the hard case)
= $g^0 \mod n$
 $n-1 \equiv 0 \mod \varphi(n)$ (lemma 32, discrete logarithm theorem)

$$(p-1)p^{e-1} | p^e - 1$$
, $p|(p-1)p^e - 1$ but $p \nmid p^e - 1$

number of non witnesses a for composite n:

Lemma 38. For odd n the set of non witnesses a is contained in a proper subgroup of \mathbb{Z}_n^*

 $a \text{ not witnesess} \rightarrow a \in \mathbb{Z}_n^*$

• (the harder case) for all $x \in \mathbb{Z}_n^*$

$$x^{n-1} \equiv 1 \mod n$$

(*n* is Carmichael number, they are rare)

- n is no prime power. Assume otherwise $n = p^e$ with e > 1 (n is composite).

lemma 31 \rightarrow : \mathbb{Z}_n^* is cyclic with a generator g. With lemma 9

$$ord(g) = |Z_n^*| = \varphi(n) = p^e(1 - 1/p) = (p - 1)p^{e-1}$$

$$g^{n-1} \equiv 1 \mod n$$
 (the hard case)
= $g^0 \mod n$
 $n-1 \equiv 0 \mod \varphi(n)$ (lemma 32, discrete logarithm theorem)

$$(p-1)p^{e-1} | p^e - 1$$
, $p|(p-1)p^e - 1$ but $p \nmid p^e - 1$

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

number of non witnesses a for composite n:

Lemma 38. For odd n the set of non witnesses a is contained in a proper subgroup of \mathbb{Z}_n^*

 $a \text{ not witnesess} \rightarrow a \in \mathbb{Z}_n^*$

• (the harder case) for all $x \in \mathbb{Z}_n^*$

$$x^{n-1} \equiv 1 \mod n$$

(*n* is Carmichael number, they are rare)

- n is no prime power. Assume otherwise $n = p^e$ with e > 1 (n is composite).

lemma 31 \rightarrow : \mathbb{Z}_n^* is cyclic with a generator g. With lemma 9

$$ord(g) = |Z_n^*| = \varphi(n) = p^e(1 - 1/p) = (p - 1)p^{e-1}$$

$$g^{n-1} \equiv 1 \mod n$$
 (the hard case)
= $g^0 \mod n$

 $n-1 \equiv 0 \mod \varphi(n)$ (lemma 32, discrete logarithm theorem)

$$(p-1)p^{e-1} | p^e - 1$$
, $p|(p-1)p^e - 1$ but $p \nmid p^e - 1$

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

- witness(a, n) with $n - 1 = 2^t u$ and u odd computes mod n sequence

$$X(a) = (a^{u}, a^{2u}, \dots, a^{2^{j}u}, \dots, a^{2^{t}u})$$

For $j, v \in \mathbb{Z}$ define

(v, j) acceptable $\leftrightarrow v \in \mathbb{Z}_n^* \land j \in [0:t] \land v^{2^j u} \equiv -1 \mod n$ (n-1,0) acceptable:

$$(n-1)^{2^0 u} \equiv (-1)^u \bmod n$$
$$= -1 \quad (u \text{ odd})$$

define

$$j = \max\{j : \exists v. (v, j) \text{ acceptable}\}\$$

define

$$B = \{ x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \bmod n \}$$

closed under \cdot_n , subgroup of \mathbb{Z}_n^* , |B| divides $|Z_n^*|$.

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

- witness(a, n) with $n - 1 = 2^t u$ and u odd computes mod n sequence

$$X(a) = (a^{u}, a^{2u}, \dots, a^{2^{j}u}, \dots, a^{2^{t}u})$$

For $j, v \in \mathbb{Z}$ define

$$(v, j)$$
 acceptable $\leftrightarrow v \in \mathbb{Z}_n^* \land j \in [0:t] \land v^{2^j u} \equiv -1 \mod n$

(n-1,0) acceptable:

$$(n-1)^{2^0 u} \equiv (-1)^u \bmod n$$
$$= -1 \quad (u \text{ odd})$$

define

$$j = \max\{j : \exists v. (v, j) \text{ acceptable}\}\$$

define

$$B = \{ x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \bmod n \}$$

closed under \cdot_n , subgroup of \mathbb{Z}_n^* , |B| divides $|Z_n^*|$.

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

- witness(a, n) with $n - 1 = 2^t u$ and u odd computes mod n sequence

$$X(a) = (a^{u}, a^{2u}, \dots, a^{2^{j}u}, \dots, a^{2^{t}u})$$

For $j, v \in \mathbb{Z}$ define

(v, j) acceptable $\leftrightarrow v \in \mathbb{Z}_n^* \land j \in [0:t] \land v^{2^j u} \equiv -1 \mod n$

(n-1,0) acceptable:

$$(n-1)^{2^0 u} \equiv (-1)^u \bmod n$$
$$= -1 \quad (u \text{ odd})$$

define

$$j = \max\{j : \exists v. (v, j) \text{ acceptable}\}\$$

define

$$B = \{x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \bmod n\}$$

closed under \cdot_n , subgroup of \mathbb{Z}_n^* , |B| divides $|Z_n^*|$.

- a not witness $\rightarrow a \in B$:

X(a) has -1 at position $j' \le j$ (maximality of j) or X(a) = (1, ..., 1)

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

- witness(a, n) with $n - 1 = 2^t u$ and u odd computes mod n sequence

$$X(a) = (a^{u}, a^{2u}, \dots, a^{2^{j}u}, \dots, a^{2^{t}u})$$

For $j, v \in \mathbb{Z}$ define

(v,j) acceptable $\leftrightarrow v \in \mathbb{Z}_n^* \land j \in [0:t] \land v^{2^j u} \equiv -1 \bmod n$ (n-1,0) acceptable:

$$(n-1)^{2^0 u} \equiv (-1)^u \bmod n$$
$$= -1 \quad (u \text{ odd})$$

define

$$j = \max\{j : \exists v. (v, j) \text{ acceptable}\}\$$

define

$$B = \{ x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \bmod n \}$$

closed under \cdot_n , subgroup of \mathbb{Z}_n^* , |B| divides $|Z_n^*|$.

- a not witness $\rightarrow a \in B$:

$$X(a)$$
 has -1 at position $j' \le j$ (maximality of j) or $X(a) = (1, ..., 1)$

$$-\exists w \in \mathbb{Z}_n \setminus B$$

Using corollaries of Chinese remainder theorem

$$v^{2^{j}} \equiv -1 \mod n$$

$$v^{2^{j}} \equiv -1 \mod n_1 \quad (\text{lemma 28})$$

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

- witness(a, n) with $n - 1 = 2^t u$ and u odd computes mod n sequence

$$X(a) = (a^{u}, a^{2u}, \dots, a^{2^{j}u}, \dots, a^{2^{t}u})$$

For $j, v \in \mathbb{Z}$ define

(v,j) acceptable $\leftrightarrow v \in \mathbb{Z}_n^* \land j \in [0:t] \land v^{2^j u} \equiv -1 \bmod n$ (n-1,0) acceptable:

$$(n-1)^{2^0 u} \equiv (-1)^u \bmod n$$
$$= -1 \quad (u \text{ odd})$$

define

$$j = \max\{j : \exists v. (v, j) \text{ acceptable}\}\$$

define

$$B = \{ x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \bmod n \}$$

closed under \cdot_n , subgroup of \mathbb{Z}_n^* , |B| divides $|Z_n^*|$.

- a not witness $\rightarrow a \in B$:

$$X(a)$$
 has -1 at position $j' \le j$ (maximality of j) or $X(a) = (1, ..., 1)$

$$-\exists w \in \mathbb{Z}_n \setminus B$$

Using corollaries of Chinese remainder theorem

$$v^{2^{j}} \equiv -1 \mod n$$

$$v^{2^{j}} \equiv -1 \mod n_1 \quad (\text{lemma 28})$$

Lemma $27 \rightarrow \exists w$:

$$w \equiv v \mod n_1$$

 $w \equiv 1 \mod n_2$

$$w^{2^{j}u} \equiv -1 \bmod n_1$$

$$w^{2^{j}u} \equiv 1 \bmod n_2$$

- decompose $n = n_1 n_2$ with $gcd(n_1, n_2) = 1$:

$$n = \prod_{i=1}^{r} p_i^{r_i}, \quad , \quad n_1 = p_1^{e_1} \quad , \quad n_2 = \prod_{i=2}^{r} p_i^{r_i}$$

- witness(a, n) with $n - 1 = 2^t u$ and u odd computes mod n sequence

$$X(a) = (a^{u}, a^{2u}, \dots, a^{2^{j}u}, \dots, a^{2^{t}u})$$

For $j, v \in \mathbb{Z}$ define

(v, j) acceptable $\leftrightarrow v \in \mathbb{Z}_n^* \land j \in [0:t] \land v^{2^j u} \equiv -1 \mod n$ (n-1,0) acceptable:

$$(n-1)^{2^0 u} \equiv (-1)^u \bmod n$$
$$= -1 \quad (u \text{ odd})$$

define

$$j = \max\{j : \exists v. (v, j) \text{ acceptable}\}\$$

define

$$B = \{x \in \mathbb{Z}_n^* : x^{2^j u} \equiv \pm 1 \bmod n\}$$

closed under \cdot_n , subgroup of \mathbb{Z}_n^* , |B| divides $|Z_n^*|$.

- a not witness $\rightarrow a \in B$:

$$X(a)$$
 has -1 at position $j' \le j$ (maximality of j) or $X(a) = (1, ..., 1)$

$$-\exists w \in \mathbb{Z}_n \setminus B$$

Using corollaries of Chinese remainder theorem

$$v^{2^{j}} \equiv -1 \mod n$$

$$v^{2^{j}} \equiv -1 \mod n_1 \quad (\text{lemma 28})$$

Lemma $27 \rightarrow \exists w$:

$$w \equiv v \bmod n_1$$
$$w \equiv 1 \bmod n_2$$

$$w^{2^{j}u} \equiv -1 \bmod n_1$$

$$w^{2^{j}u} \equiv 1 \bmod n_2$$

Lemma 28:

$$w^{2^j u} \not\equiv 1 \bmod n_1 \to w^{2^j u} \not\equiv 1 \bmod n$$

$$w^{2^{j}u} \not\equiv -1 \bmod n_2 \to w^{2^{j}u} \not\equiv -1 \bmod n$$

$$w^{2^j u} \not\equiv \pm 1 \mod n$$
, $w \notin B$

Lemma 27. Let

$$n = n_1 n_2 \dots n_k$$
, $i \neq j \rightarrow gcd(n_i, n_j) = 1$ (pairwise relatively prime)

and

$$(a_1,\ldots,a_k)\in\mathbb{N}^k$$

Then the set of equations

$$x \equiv a_i \mod n_i$$
, $1 \le i \le k$

has a unique solution in Z_n

Lemma 28. Let

$$n = n_1 n_2 \dots n_k$$
 , $i \neq j \rightarrow gcd(n_i, n_j) = 1$ (pairwise relatively prime)

and

$$a, x \in \mathbb{Z}$$

then

$$x \equiv a \mod n_i \text{ for all } i \in [1:k] \quad \leftrightarrow \quad x \equiv a \mod n$$

- claim: $w \in \mathbb{Z}_n^*$ (hence $w \in \mathbb{Z}_n^* \setminus B$ and B is proper subgroup)

$$v \in \mathbb{Z}_n^*$$
 , $gcd(v,n) = 1$, $gcd(v,n_1) = 1$
$$w \equiv v \bmod n_1 \to gcd(w,n_1) = 1$$

$$as \ d \mid n_1 \wedge d \mid v + kn_1 \to d \mid v$$

$$w \equiv 1 \bmod n_2 \to gcd(w,n_2) = 1$$

Lemma 3:

$$gcd(w, n_1n_2) = gcd(w, n) = 1$$
 , $w \in \mathbb{Z}_n^*$

as $d \mid n_2 \land d \mid 1 + kn_2 \rightarrow d \mid 1$

W = (S, p) probability space, $A, B \subseteq S$ events

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$
 (def. of conditional prob.)

$$p(A \cap B) = p(B)p(A|B)$$
$$= P(A)p(B|A)$$

W = (S, p) probability space, $A, B \subseteq S$ events

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$
 (def. of conditional prob.)

$$p(A \cap B) = p(B)p(A|B)$$
$$= P(A)p(B|A)$$

Bayes's theorem

Lemma 39.

$$p(A|B) = \frac{p(A)p(B|A)}{p(B)}$$

W = (S, p) probability space, $A, B \subseteq S$ events

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$
 (def. of conditional prob.)

$$p(A \cap B) = p(B)p(A|B)$$
$$= P(A)p(B|A)$$

Bayes's theorem

Lemma 39.

$$p(A|B) = \frac{p(A)p(B|A)}{p(B)}$$

$$B = (B \cap A) \cup (B \cap \overline{A})$$
 , $(B \cap A) \cap (B \cap \overline{A} = \emptyset$

$$p(B) = p(B \cap A) + p(B \cap \overline{A})$$
$$= p(A)p(B|A) + p(\overline{A})p(B|\overline{A})$$

W = (S, p) probability space, $A, B \subseteq S$ events

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$
 (def. of conditional prob.)

$$p(A \cap B) = p(B)p(A|B)$$
$$= P(A)p(B|A)$$

Bayes's theorem

Lemma 39.

$$p(A|B) = \frac{p(A)p(B|A)}{p(B)}$$

$$B = (B \cap A) \cup (B \cap \overline{A})$$
 , $(B \cap A) \cap (B \cap \overline{A}) = \emptyset$

$$p(B) = p(B \cap A) + p(B \cap \overline{A})$$
$$= p(A)p(B|A) + p(\overline{A})p(B|\overline{A})$$

Lemma 40.

$$p(A|B) = \frac{p(A)p(B|A)}{p(A)p(B|A) + p(\overline{A})p(B|\overline{A})}$$

W = (S, p) probability space, $A, B \subseteq S$ events

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$
 (def. of conditional prob.)

$$p(A \cap B) = p(B)p(A|B)$$
$$= P(A)p(B|A)$$

Bayes's theorem

Lemma 39.

$$p(A|B) = \frac{p(A)p(B|A)}{p(B)}$$

$$B = (B \cap A) \cup (B \cap \overline{A})$$
 , $(B \cap A) \cap (B \cap \overline{A}) = \emptyset$

$$p(B) = p(B \cap A) + p(B \cap \overline{A})$$
$$= p(A)p(B|A) + p(\overline{A})p(B|\overline{A})$$

Lemma 40.

$$p(A|B) = \frac{p(A)p(B|A)}{p(A)p(B|A) + p(\overline{A})p(B|\overline{A})}$$

Let β length of bin(n).

$$W = (S, p)$$
, $S = [0: 2^{\beta} - 1]$, $p(n) = 1/2^{\beta}$

$$A = \{n \in S : n \text{ prime}\}\$$

prime number theorem \rightarrow

$$p(A) \approx 1/\ln n$$

$$e^{\ln n} = n = 2^{\log n} = e^{(\ln 2) \log n}$$

$$\ln n = (\ln 2) \log n \approx 0.693 \log n$$

Let β length of bin(n).

$$W = (S, p)$$
, $S = [0: 2^{\beta} - 1]$, $p(n) = 1/2^{\beta}$

$$A = \{n \in S : n \text{ prime}\}$$

prime number theorem \rightarrow

$$p(A) \approx 1/\ln n$$

$$e^{\ln n} = n = 2^{\log n} = e^{(\ln 2)\log n}$$

$$\ln n = (\ln 2) \log n \approx 0.693 \log n$$

$$1/\ln n = 1/((\ln 2))\log n) \approx 1.443/\beta$$

$$p(A) \approx 1.443/\beta$$

Let β length of bin(n).

$$W = (S, p)$$
, $S = [0: 2^{\beta} - 1]$, $p(n) = 1/2^{\beta}$

$$A = \{n \in S : n \text{ prime}\}$$

prime number theorem \rightarrow

$$p(A) \approx 1/\ln n$$

$$e^{\ln n} = n = 2^{\log n} = e^{(\ln 2)\log n}$$

$$\ln n = (\ln 2) \log n \approx 0.693 \log n$$

$$1/\ln n = (1/(\ln 2))\log n \approx 1.443/\beta$$

$$p(A) \approx 1.443/\beta$$

$$p(\overline{A})/p(A) \approx (1 - 1/\ln n) \cdot \ln n = \ln n - 1$$

Let β length of bin(n).

$$W = (S, p)$$
, $S = [0: 2^{\beta} - 1]$, $p(n) = 1/2^{\beta}$

$$A = \{ n \in S : n \text{ prime} \}$$

prime number theorem \rightarrow

$$p(A) \approx 1/\ln n$$

$$e^{\ln n} = n = 2^{\log n} = e^{(\ln 2)\log n}$$

$$\ln n = (\ln 2) \log n \approx 0.693 \log n$$

$$1/\ln n = (1/(\ln 2))\log n \approx 1.443/\beta$$

$$p(A) \approx 1.443/\beta$$

$$p(\overline{A})/p(A) \approx (1 - 1/\ln n) \cdot \ln n = \ln n - 1$$

$$B = \{n \in S : Miller - Rabin(n, s) = prime\}$$

• $p(\overline{B}|A) = 0$ as there are no witnesses.

$$p(B|A) = 1$$

- $p(B|\overline{A}) \le 2^{-s}$ probability to declare a composite a prime after s tests.
- p(A|B) probability the a number declared prime is indeed prime

Let β length of bin(n).

$$W = (S, p)$$
, $S = [0: 2^{\beta} - 1]$, $p(n) = 1/2^{\beta}$

$$A = \{n \in S : n \text{ prime}\}$$

prime number theorem \rightarrow

$$p(A) \approx 1/\ln n$$

$$e^{\ln n} = n = 2^{\log n} = e^{(\ln 2)\log n}$$

$$\ln n = (\ln 2) \log n \approx 0.693 \log n$$

$$1/\ln n = (1/(\ln 2))\log n \approx 1.443/\beta$$

$$p(A) \approx 1.443/\beta$$

$$p(\overline{A})/p(A) \approx (1 - 1/\ln n) \cdot \ln n = \ln n - 1$$

$$B = \{n \in S : Miller - Rabin(n, s) = prime\}$$

• $p(\overline{B}|A) = 0$ as there are no witnesses.

$$p(B|A) = 1$$

- $p(B|\overline{A}) \le 2^{-s}$ probability to declare a composite a prime after s tests.
- p(A|B) probability the a number declared prime is indeed prime

Lemma 40:

$$p(A|B) = \frac{p(A)p(B|A)}{p(A)p(B|A) + p(\overline{A})p(B|\overline{A})}$$

$$= \frac{p(A)}{p(A) + p(\overline{A})p(B|\overline{A})}$$

$$\approx \frac{1}{1 + 2^{-s}(\ln n - 1)}$$

Let β length of bin(n).

$$W = (S, p)$$
, $S = [0: 2^{\beta} - 1]$, $p(n) = 1/2^{\beta}$

$$A = \{ n \in S : n \text{ prime} \}$$

prime number theorem \rightarrow

$$p(A) \approx 1/\ln n$$

$$e^{\ln n} = n = 2^{\log n} = e^{(\ln 2)\log n}$$

$$\ln n = (\ln 2) \log n \approx 0.693 \log n$$

$$1/\ln n = (1/(\ln 2))\log n \approx 1.443/\beta$$

$$p(A) \approx 1.443/\beta$$

$$p(\overline{A})/p(A) \approx (1 - 1/\ln n) \cdot \ln n = \ln n - 1$$

$$B = \{n \in S : Miller - Rabin(n, s) = prime\}$$

• $p(\overline{B}|A) = 0$ as there are no witnesses.

$$p(B|A) = 1$$

- $p(B|\overline{A}) \le 2^{-s}$ probability to declare a composite a prime after s tests.
- p(A|B) probability the a number declared prime is indeed prime

Lemma 40:

$$p(A|B) = \frac{p(A)p(B|A)}{p(A)p(B|A) + p(\overline{A})p(B|\overline{A})}$$

$$= \frac{p(A)}{p(A) + p(\overline{A})p(B|\overline{A})}$$

$$\approx \frac{1}{1 + 2^{-s}(\ln n - 1)}$$

$$\beta = 1024$$
:

$$\log(\ln n - 1) \approx \log(\beta/1.443) \approx 9$$

[CLRS]: choose s = 50