

- Background Introduction
- Data Pipeline
 - ML at Edge
 - o Body Pose Detection
 - Body Framing
 - Action Recognition
- Results
- Simulation (Demo)
- Challenge and Next Steps

Use Case / Problem Statement

Problem: Public resource groups like parks & recreation would like to know how the public places are being used?

Traditional Solution: Engage people to physically scout the places and gather the data.

- Costly (Surveyor)
- Safety issues (Covid, Privacy)

Proposed Solution: ML and edge devices with video cameras.

Less cost & Scalable

• Safe and can manage better privacy (Superintendents)

Data Pipeline

Phase 1: Body Part Detection (Resnet 18)

Phase 2: Action Recognition (LSTM)

Machine Learning at Edge

Camera:

Stream video to the inference engine on the Edge Device

Edge Device(Jetson):

- Extract information about people and their body parts
- Perform object tracking
- Detect activity
- Record the metrics

Body Part detection - Solution

Transfer Learning:

- Used pre-trained model (Resnet 18)
- Fine tune with COCO dataset
- Identify body parts
- Object tracking

Body Part detection - Pretrained Model

ResNet18

COCO(Common Object in Context) Dataset:

• 121K+ images with 262K+ humans with 1.8M+ body parts

Body Frame - The Hungarian Algorithm

Body Part detection - Output

Activity Recognition - Model & Data

Input:

- Body Pose data with object detection from Phase 1
- NTU Dataset

Output

Action Label (drink_eat; sit_squat; phone; walk; selfie)

Activity Recognition - NTU Dataset

Fine Tuning Models

For Body Pose Detection (ResNet18)

- Image shape: 224 x 224 | 368 x 368; 256 x 256
- Batch size: 64
- loU: 0.5 0.95
- Area: all medium, large
- maxDets: 20
- Optimizer: Adam

For Action Recognition (LSTM)

- Batch size: 32 96
- Windows: 9
- Dropout: 0.2 0.4
- Optimizer: RMS prop
- Layers: 128 x 64

Validation AP: 0.45

Validation AR: 0.60

Validation Loss: 0.52

Validation Accuracy: 0.84

Activity Recognition - Output

	precision	recall	f1-score	support
drink_eat	0.88	0.73	0.80	13746
phone_talk	0.72	0.89	0.80	13319
selfie	0.91	0.79	0.85	11297
sit_squat	0.80	0.82	0.81	6884
walk	0.90	0.93	0.91	12817
accuracy			0.83	58063
macro avg	0.84	0.83	0.83	58063
weighted avg	0.84	0.83	0.83	58063

10000

- 8000

- 6000

4000

2000

Simulation (Demo)

Solution Architecture

Scope for future work

- Demographic (Age/Gender) tracking
- Emotion capture
- Time Span at different places of park
- Streaming data to a dashboard
- Implement controls for privacy

Thank you!

