## Problem

Triangle ABC is inscribed in the circle O. Draw CD//AB. Draw tangent line through B to meet the extension of CD at P. Show that



## Solution

Connect BD. Since BP is tangent to circle  $O, \angle PBD = \angle BCD = \alpha$  (both angles face the same arc BD ).

Since  $\overrightarrow{AB}//CD$ ,  $\angle BCD = \angle CBA = \alpha$ .

So  $\angle PBD = \angle CBA = \alpha$ .

Since points A, B, D, and C are concyclic,  $\angle PDB = \angle CAB = \beta$ . Thus  $\triangle PDB \sim \triangle CAB$ .



Thus  $\frac{AC}{PD} = \frac{CB}{PB}$   $\Rightarrow$   $PB \times CA = CB \times PD$ .