TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM KHOA TOÁN - TIN HỌC **MÔN VI TÍCH PHÂN 2B**

BÀI TẬP NHÓM

 $Chuong\ 2$

GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM NHIỀU BIẾN VI PHÂN HÀM NHIỀU BIẾN

NHÓM 10 ĐIỂM - LỚP 20CTT1

BẢNG PHÂN CÔNG NHÓM THEO THÀNH VIÊN

STT	MSSV	Họ tên	Phân công	Kiểm tra chéo	Đánh giá
11	20120007	Đỗ Trung Hiếu	1.2 (LT), 1.1 (VD)	1.3, 2.7	Đúng hạn
12	20120009	Nguyễn Văn Hưng	2.4 (LT-LaTeX)	2.1, 2.2	Đúng hạn
15	20120012	Nguyễn Phạm Nhật Huy	2.2 (LT), 1.1, 1.2 (LaTeX)	2.3, 2.5	Đúng hạn
17	20120014	Vương Gia Huy	2.1, 2.2, 2.3 (VD)	1.3, 2.4	Đúng hạn
22	20120020	Huỳnh Đức Nhâm	2.1, 2.2 (LaTeX)	2.3, 2.4	Đúng hạn
23	20120021	Hồ Văn Sơn	2.6 (LT-LaTeX)	2.5, 2.4	Đúng hạn
24	20120022	Lê Quang Trí	1.1, 2.1 (LT)	1.2, 2.3	Đúng hạn
25	20120023	Bùi Quốc Trung	2.3 (LT-LaTeX)	2.1, 2.2	Đúng hạn
28	20120027	Lê Hải Duy	2.3, 2.4 (LaTeX)	2.1, 2.2	Đúng hạn
99b	20120131	Nguyễn Văn Lộc	2.4, 2.5 (VD)	2.6, 2.7	Đúng hạn
130	20120209	Nguyễn Nhật Tiến	2.5 (LT-LaTeX)	2.6, 2.7	Đúng hạn
133	20120301	Nguyễn Hoàng Khang	1.3 (LT-LaTeX)	1.2, 1.1	Đúng hạn
139	20120412	Nguyễn Quang Bình	2.7 (LT-LaTeX)	2.5, 2.6	Đúng hạn
141	20120459	Nguyễn Văn Dũng	2.5 (LT), 1.3 (LaTeX)	1.2, 1.1	Đúng hạn
147	20120572	Nguyễn Kiều Minh Tâm	1.2, 2.6, 2.7 (VD)	1.1, 1.3	Đúng hạn

BẢNG PHÂN CÔNG NHÓM THEO ĐỀ MỤC

Mục	Lý thuyết	Ví dụ	LaTeX	Kiểm tra chéo
1.1	Q.Trí	T.Hiếu	N.Huy	M.Tâm, H.Khang, V.Dũng
1.2	T.Hiếu	M.Tâm	N.Huy	Q.Trí, H.Khang, V.Dũng
1.3	H.Khang	V.Dũng	H.Khang	G.Huy, M.Tâm, T.Hiếu
2.1	Q.Trí	G.Huy	Ð.Nhâm	V.Hung, Q.Trung, H.Duy
2.2	N.Huy	G.Huy	Ð.Nhâm	V.Hung, Q.Trung, H.Duy
2.3	Q.Trung	G.Huy	Q.Trung, H.Duy	N.Huy, Đ.Nhâm, Q.Trí
2.4	V.Hung	V.Lộc	V.Hung, H.Duy	G.Huy, D.Nhâm, V.Sơn
2.5	V.Dũng, N.Tiến	V.Lộc	N.Tiến	N.Huy, V.Son, Q.Bình
2.6	V.Son	M.Tâm	V.Son	V.Lộc, N.Tiến, Q.Bình
2.7	Q.Bình	M.Tâm	Q.Bình	T.Hiếu, V.Lộc, N.Tiến

Mục lục

1	GIÓ	ÓI HẠN	VÀ SỰ LIÊN TỤC CỦA HÀM SỐ NHIỀU BIẾN	5
	1.1	Định lý	giới hạn kẹp	Ę
		1.1.1 T	Tóm tắt lý thuyết	
		1.1.2 V	/í dụ	Ē
	1.2	Phương	pháp chứng minh giới hạn không tồn tại	7
		1.2.1 S	Sử dụng hai dãy	7
		1.2.2 S	'ử dụng hai đường cong	7
		1.2.3 S	Sử dụng họ đường cong	7
		1.2.4 S	Sử dụng tọa độ cực	8
		1.2.5 V	/í dụ	8
	1.3	Sự liên t	tục của hàm phân nhánh	11
		1.3.1 Т	Tóm tắt lý thuyết	11
		1.3.2 V	/í dụ	11
2	VI	PHÂN (CỦA HÀM NHIỀU BIẾN	13
	2.1	Đạo hàn	n riêng bằng định nghĩa	13
		2.1.1 Т	Tóm tắt lý thuyết	13
		2.1.2 V	/í dụ	13
	2.2	Đạo hàn	n hàm hợp	15
		2.2.1 Т	Tóm tắt lý thuyết	15
		2.2.2 V	/í dụ	15
	2.3	Đạo hàn	n hàm ẩn	17
		2.3.1 Т	Tóm tắt lý thuyết	17
		2.3.2 V	/í dụ	17
	2.4	Đạo hàn	n theo hướng	18
		2.4.1 E	Dịnh nghĩa và công thức	18
		2.4.2	Cực trị hóa đạo hàm theo hướng	18
		2.4.3 V	/í dụ	18
	2.5	Mặt tiếp	xúc	20
		2.5.1 E	Dịnh nghĩa	20
		2.5.2 Ú	Íng dung vector gradient để tìm phương trình mặt tiếp xúc	20

	2.5.3	Ví dụ	20
2.6	Xấp x	ỉ tuyến tính	22
	2.6.1	Tóm tắt lý thuyết	22
	2.6.2	Ví dụ	22
2.7	Cực tr	i tự do	25
	2.7.1	Tóm tắt lý thuyết	25
	2.7.2	Ví dụ	25

1 GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM SỐ NHIỀU BIẾN

1.1 Định lý giới hạn kẹp

11	20120007	Đỗ Trung Hiếu	Ví dụ
15	20120012	Nguyễn Phạm Nhật Huy	LaTeX
24	20120022	Lê Quang Trí	Lý thuyết
133	20120301	Nguyễn Hoàng Khang	Kiểm tra chéo
141	20120459	Nguyễn Văn Dũng	Kiểm tra chéo
147	20120572	Nguyễn Kiều Minh Tâm	Kiểm tra chéo

1.1.1 Tóm tắt lý thuyết

Giả sử:

- tồn tại các giới hạn $\lim_{(x,y) \to (a,b)} g(x,y) = \lim_{(x,y) \to (a,b)} h(x,y) = L;$
- $g(x,y) \leq f(x,y) \leq h(x,y)$, đúng với mọi (x,y) trong một lân cận của (a,b).

Khi đó,
$$\lim_{(x,y)\to(a,b)} f(x,y) = L.$$

Một số trường hợp nhận định nên sử dụng định lý giới hạn kẹp:

- Hàm số cần tính giới hạn là tích của hai hàm, một hàm "có giới hạn bằng 0" và một hàm "bị chặn".
- Hàm số cần tính giới hạn rất cồng kềnh.

1.1.2 Ví dụ

Ví dụ 1

Tính giới hạn (nếu có) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}.$

Lời giải.

Ta có:

$$0 \leq \left| \frac{x^2y}{x^2 + y^2} \right| = \frac{x^2|y|}{x^2 + y^2} \leq \frac{x^2|y|}{x^2 + y^2} + \frac{|y|y^2}{x^2 + y^2} \leq |y|.$$

Mà $\lim_{y\to 0} |y| = 0$ nên theo định lý giới hạn kẹp, ta được:

$$\lim_{(x,y)\to(0,0)} \left| \frac{x^2y}{x^2 + y^2} \right| = 0$$

$$\Rightarrow \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^2} = 0.$$

Ví du 2

Tính giới hạn (nếu có) $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{2x^2+y^2}$.

Lời giải.

Ta có:

$$0 \leq \left| \frac{x^2 y^3}{2x^2 + y^2} \right| = \frac{x^2 |y|^3}{2x^2 + y^2} \leq \frac{x^2 |y|^3}{2x^2 + y^2} + \frac{|y|^3 y^2}{2x^2 + y^2} \leq |y|^3.$$

Mà $\lim_{y\to 0} |y|^3=0$ nên theo định lý giới hạn kẹp ta được:

$$\lim_{(x,y)\to(0,0)} \left| \frac{x^2 y^3}{2x^2 + y^2} \right| = 0$$

$$\Rightarrow \lim_{(x,y)\rightarrow (0,0)}\frac{x^2y^3}{2x^2+y^2}=0.$$

Ví dụ 3

Tính giới hạn (nếu có) $\lim_{(x,y)\to(0,0)} \frac{\sin xy}{x}$.

Lời giải.

Ta có:

$$0 \le \left| \frac{\sin xy}{x} \right| = \frac{\left| \sin xy \right|}{\left| x \right|} \le \frac{\left| xy \right|}{\left| x \right|} \le \left| y \right|.$$

Mà $\lim_{y\to 0} |y| = 0$ nên theo định lý giới hạn kẹp ta thu được:

$$\lim_{(x,y)\to(0,0)} \left| \frac{\sin xy}{x} \right| = 0$$

$$\Rightarrow \lim_{(x,y)\to(0,0)} \frac{\sin xy}{x} = 0.$$

Bình luận. Ngoài **định lý giới hạn kẹp** thì ta có thể tiếp cận bằng **định lý Sertöz**, khi đó bài toán sẽ sáng sủa hơn.

Định lý Sertöz. Với $a_1,...,a_N$ là các số nguyên không âm, $m_1,...,m_N$ là các số nguyên dương và $c_1,...,c_N$ là các số thực dương, N > 1, giới hạn

$$\lim_{(x_1,\dots,x_N)\to (0,\dots,0)} \frac{(x_1)^{a_1}...(x_N)^{a_N}}{c_1(x_1)^{2m_1}+...+c_N(x_N)^{2m_N}}$$

tồn tại nếu và chỉ nếu $\sum_{i=1}^N \frac{a_i}{2m_i} > 1$. Hơn nữa, nếu giới hạn tồn tại thì giới hạn bằng 0.

1.2 Phương pháp chứng minh giới hạn không tồn tại

11	20120007	Đỗ Trung Hiếu	Lý thuyết
15	20120012	Nguyễn Phạm Nhật Huy	LaTeX
24	20120022	Lê Quang Trí	Kiểm tra chéo
133	20120301	Nguyễn Hoàng Khang	Kiểm tra chéo
141	20120459	Nguyễn Văn Dũng	Kiểm tra chéo
147	20120572	Nguyễn Kiều Minh Tâm	Ví dụ

1.2.1 Sử dụng hai dãy

Cho $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ và (a,b) là điểm tụ của D. Giả sử $\mathbf{u}_n = (x_n,y_n), \mathbf{v}_n = (x'_n,y'_n) \ \forall n \in \mathbb{N}$ thỏa $\{\mathbf{u}_n\}, \{\mathbf{v}_n\} \subset D$ sao cho $\lim_{n \to \infty} \mathbf{u}_n = \lim_{n \to \infty} \mathbf{v}_n = (a,b)$.

Khi đó, giới hạn $\lim_{(x,y)\to(a,b)} f(x,y)$ không tồn tại nếu **một trong hai** điều sau xảy ra

- $\lim_{n\to\infty} f(\mathbf{u}_n)$ không tồn tại.
- $\lim_{n\to\infty} f(\mathbf{u}_n) \neq \lim_{n\to\infty} f(\mathbf{v}_n)$.

1.2.2 Sử dụng hai đường cong

Một đường cong trong mặt phẳng Oxy thường được mô tả dưới dạng tham số:

$$C: \begin{cases} x = x(t), \\ y = y(t), \\ c \le t \le d. \end{cases}$$

Cho $f:D\subset\mathbb{R}^2\to\mathbb{R}.$ Với C_1,C_2 là các đường cong trong D. Giả sử

- giới hạn của hàm f(x,y) khi $(x,y) \to (a,b)$ theo đường cong C_1 là L_1 ,
- giới hạn của hàm f(x,y) khi $(x,y) \to (a,b)$ theo đường cong C_2 là L_2 .

Nếu $L_1 \neq L_2$ thì giới hạn $\lim_{(x,y) \to (a,b)} f(x,y)$ không tồn tại.

1.2.3 Sử dụng họ đường cong

Cho $f: D \subset \mathbb{R}^2 \to \mathbb{R}$. Xét đường cong tham số trong D:

$$\begin{cases} x = x(k, t), \\ y = y(k, t), \\ c \le t \le d. \end{cases}$$

Giả sử tồn tại $t_1 \in (c,d)$: $\lim_{t \to t_1} (x(k,t),y(k,t)) = (a,b)$. Khi đó, nếu $\lim_{t \to t_1} f(x(k,t),y(k,t))$ phụ thuộc vào tham số k thì giới hạn $\lim_{(x,y) \to (a,b)} f(x,y)$ không tồn tại.

1.2.4 Sử dụng tọa độ cực

Cho $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ và $g: \mathbb{R} \to \mathbb{R}$.

- Giả sử (0,0) là điểm trong của D. Nếu $\lim_{r\to 0+} f(r\cos\theta,r\sin\theta)$ phụ thuộc vào θ thì giới hạn $\lim_{(x,y)\to(0,0)} f(x,y)$ không tồn tại.
- Nếu $|f(x,y)| \le g(r), r = \sqrt{x^2 + y^2}, \lim_{r \to 0+} g(r) = 0$ thì $\lim_{(x,y) \to (0,0)} f(x,y) = 0.$

Hàm g có thể tìm ra bằng cách đánh giá biểu thức $f(r\cos\theta, r\sin\theta)$ sau khi được rút gọn.

1.2.5 Ví dụ

Ví dụ 1

Chứng minh giới hạn sau không tồn tại

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}.$$

Lời giải 1.

Xét họ đường cong phụ thuộc tham số k > 0 là y = kx.

Khi đó:

$$\lim_{(x,kx)\to(0,0)}\frac{x^2-k^2x^2}{x^2+k^2x^2}=\frac{1-k^2}{1+k^2}.$$

Rõ ràng, vì k>0 bất kì nên ta suy ra $\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2}$ không tồn tại.

Lời giải 2.

Xét trên đường cong y = x, ta được:

$$\lim_{x \to 0} f(x, x) = \lim_{x \to 0} \frac{x^2 - x^2}{x^2 + x^2} = \lim_{x \to 0} \frac{0}{2x^2} = 0.$$
 (1)

Xét trên đường cong y = 0, ta được:

$$\lim_{x \to 0} f(x,0) = \lim_{x \to 0} \frac{x^2 - 0^2}{x^2 + 0^2} = \lim_{x \to 0} \frac{x^2}{x^2} = 1.$$
 (2)

Từ (1) và (2) suy ra $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ không tồn tại.

Chú \acute{y} . Nếu ở mẫu số xuất hiện lượng $x^2 + y^2$ thì ta có thể tiếp cận bằng phương pháp chuyển tọa độ cực như sau: Lời giải 3.

Chuyển hệ toạ độ cực với $\begin{cases} x=r\cos\theta\\ y=r\sin\theta \end{cases}, \theta\in[0,2\pi), r\geq0$

Ta có:

$$\lim_{r \to 0^+} \frac{r^2 \cos^2 \theta - r^2 \sin^2 \theta}{r^2} = \cos^2 \theta - \sin^2 \theta.$$

8

Rõ ràng, vì $\theta \in [0,2\pi)$ bất kì nên ta suy ra $\lim_{(x,y) \to (0,0)} \frac{x^2-y^2}{x^2+y^2}$ không tồn tại.

Ví du 2

Chứng minh giới hạn sau không tồn tại

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}.$$

Lời giải 1.

Xét họ đường cong phụ thuộc tham số k > 0 là y = kx. Khi đó:

$$\lim_{(x,kx)\to(0,0)}\frac{kx^2}{x^2+k^2x^2}=\frac{k}{1+k^2}.$$

Rõ ràng, vì k>0 bất kì nên ta suy ra giới hạn $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ không tồn tại.

Lời giải 2.

Xét trên đường cong y = x, ta được:

$$\lim_{x \to 0} f(x, x) = \lim_{x \to 0} \frac{x \cdot x}{x^2 + x^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = \frac{1}{2}.$$
 (1)

Xét trên đường cong y = 0, ta được:

$$\lim_{x \to 0} f(x,0) = \lim_{x \to 0} \frac{x \cdot 0}{x^2 + 0^2} = \lim_{x \to 0} \frac{0}{x^2} = 0.$$
 (2)

Từ (1) và (2) suy ra giới hạn $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ không tồn tại.

Lời giải 3.

Chuyển hệ toạ độ cực với
$$\begin{cases} x=r\cos\theta\\ y=r\sin\theta \end{cases}, \theta\in[0,2\pi), r\geq0$$

Ta có:

$$\lim_{r\to 0^+}\frac{r^2\cos\theta sin\theta}{r^2}=\frac{sin2\theta}{2}.$$

Rõ ràng, vì $\theta \in [0, 2\pi)$ bất kì nên ta suy ra giới hạn $\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}$ không tồn tại.

Ví dụ 3

Chứng minh giới hạn sau không tồn tại

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x+y}.$$

Lời giải 1.

Xét họ đường cong phụ thuộc tham số k > 0 là $y = \frac{kx}{x-k}$ và thu hẹp $x \in (0,k)$. Khi đó:

$$\lim_{(x,\frac{kx}{x-k})\to(0,0)} \frac{x\frac{kx}{x-k}}{x+\frac{kx}{x-k}} = k.$$

Rõ ràng, vì k>0 bất kì nên ta suy ra giới hạn $\lim_{(x,y)\to(0,0)}\frac{xy}{x+y}$ không tồn tại.

Lời giải 2.

Đặt $f(x,y) = \frac{xy}{x+y}$. Hàm số có miền xác định $D = \mathbb{R}^2 \setminus \{(0,0)\}$.

Xét 2 dãy điểm $\{\mathbf{u}_n\} = \left\{ \left(\frac{1}{n}, \frac{1}{n^2} - \frac{1}{n}\right) \right\}, \{\mathbf{v}_n\} = \left\{ \left(\frac{1}{n}, -\frac{1}{n^2} - \frac{1}{n}\right) \right\} \subset D$, sao cho $\lim_{n \to \infty} \mathbf{u}_n = \lim_{n \to \infty} \mathbf{v}_n = (0, 0)$. Ta có:

$$f(\mathbf{u}_n) = f\left(\frac{1}{n}, \frac{1}{n^2} - \frac{1}{n}\right) = \frac{\frac{1}{n^3} - \frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1-n}{n}$$

$$f(\mathbf{v}_n) = f\left(\frac{1}{n}, -\frac{1}{n^2} - \frac{1}{n}\right) = \frac{\frac{-1}{n^3} - \frac{1}{n^2}}{\frac{-1}{n^2}} = \frac{n+1}{n}.$$

 $\text{Vì } \lim_{n \to \infty} f(\mathbf{u}_n) = -1 \neq 1 = \lim_{n \to \infty} f(\mathbf{v}_n) \text{ nên ta suy ra giới hạn } \lim_{(x,y) \to (0,0)} \frac{xy}{x+y} \text{ không tồn tại.}$

1.3 Sự liên tục của hàm phân nhánh

11	20120007	Đỗ Trung Hiếu	Kiểm tra chéo
17	20120014	Vương Gia Huy	Kiểm tra chéo
133	20120301	Nguyễn Hoàng Khang	Lý thuyết, LaTeX
141	20120459	Nguyễn Văn Dũng	Ví dụ
147	20120572	Nguyễn Kiều Minh Tâm	Kiểm tra chéo

1.3.1 Tóm tắt lý thuyết

Xét hàm số

$$f(x,y) = \begin{cases} g(x,y) & \text{n\'eu } (x,y) \neq (x_0,y_0) \\ a & \text{n\'eu } (x,y) = (x_0,y_0) \end{cases}$$

Ta kiểm chứng sự liên tục của hàm phân nhánh f tại (x_0, y_0) .

Phương pháp giải.

Nếu $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a$ thì hàm f liên tục tại (x_0,y_0) .

Mà với mọi
$$(x,y) \neq (x_0,y_0), f(x,y) = g(x,y) \Rightarrow \lim_{(x,y) \to (x_0,y_0)} f(x,y) = \lim_{(x,y) \to (x_0,y_0)} g(x,y).$$

Như vậy, ta cần kiểm chứng giới hạn $\lim_{(x,y) \to (x_0,y_0)} g(x,y)$ tồn tại và bằng a.

1.3.2 Ví dụ

Ví du 1

Khảo sát sự liên tục của hàm số $f(x,y)=\begin{cases} \frac{x^2y}{x^2+y^2}, & \text{nếu } (x,y)\neq (0,0)\\ 0, & \text{nếu } (x,y)=(0,0) \end{cases}$ tại (0,0).

 $L \eth i \ gi \'a i.$

Ta có:

$$\begin{aligned} \forall (x,y) \neq (0,0), \left| \frac{x^2 y}{x^2 + y^2} \right| &= |y| \left| \frac{x^2}{x^2 + y^2} \right| \leq |y| \left| \frac{x^2 + y^2}{x^2 + y^2} \right| = |y| \\ \Rightarrow -|y| &\leq \frac{x^2 y}{x^2 + y^2} \leq |y| \end{aligned}$$

Mặt khác:

$$\lim_{(x,y)\to(0,0)} (-|y|) = 0, \lim_{(x,y)\to(0,0)} |y| = 0$$

Áp dụng định lý giới hạn kẹp, suy ra

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0.$$

Do đó,

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0.$$

mà f(0,0)=0 nên suy ra $\lim_{(x,y)\to(0,0)}f(x,y)=f(0,0).$

Vậy hàm f đã cho liên tục tại (0,0).

Ví du 2

Khảo sát sự liên tục của hàm số $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{nếu } (x,y) \neq (0,0) \\ 0, & \text{nếu } (x,y) = (0,0) \end{cases}$ tại mọi điểm $(x_0,y_0) \in \mathbb{R}^2$.

Lời giải.

Xét $(x_0, y_0) \neq (0, 0)$.

Tồn tại $E = B((x_0, y_0), r) \subset \mathbb{R}^2$ không chứa (0, 0),

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{(x,y)\to(x_0,y_0)} f_{|E}(x,y) = \lim_{(x,y)\to(x_0,y_0)} \frac{xy}{x^2+y^2} = \frac{x_0y_0}{x_0^2+y_0^2} = f(x_0,y_0).$$

Do đó f liên tục tại (x_0, y_0) với mọi $(x_0, y_0) \neq (0, 0)$.

Xét $(x_0, y_0) = (0, 0)$.

Xét trên đường cong $(C_1): y = x$

$$E_1 = \{(x, y) \in \mathbb{R}^2 | y = x, x \neq 0\}$$

$$f_{|E_1}(x, y) = f(x, x) = \frac{x^2}{2x^2} = \frac{1}{2}, \forall (x, y) \in E_1.$$

Xét trên đường cong $(C_2): y = 0$

$$E_2 = \{(x, y) \in \mathbb{R}^2 | y = 0, x \neq 0 \}$$

$$f_{|E_2}(x,y) = f(x,0) = \frac{x.0}{x^2 + 0^2} = 0, \forall (x,y) \in E_2.$$

Ta có:

$$L_1 = \lim_{(x,y)\to(0,0)} f_{|E_1}(x,y) = \lim_{(x,y)\to(0,0)} \frac{1}{2} = \frac{1}{2}.$$

$$L_2 = \lim_{(x,y)\to(0,0)} f_{|E_2}(x,y) = \lim_{(x,y)\to(0,0)} 0 = 0.$$

Vì $L_1 \neq L_2$ nên giới hạn $\lim_{(x,y) \to (0,0)} f(x,y)$ không tồn tại.

Do đó f không liên tục tại (0,0).

2 VI PHÂN CỦA HÀM NHIỀU BIẾN

2.1 Đạo hàm riêng bằng định nghĩa

12	20120009	Nguyễn Văn Hưng	Kiểm tra chéo
17	20120014	Vương Gia Huy	Ví dụ
22	20120020	Huỳnh Đức Nhâm	LaTeX
24	20120022	Lê Quang Trí	Lý thuyết
25	20120023	Bùi Quốc Trung	Kiểm tra chéo
28	20120027	Lê Hải Duy	Kiểm tra chéo

2.1.1 Tóm tắt lý thuyết

Cho f là hàm số hai biến theo x và y. Giả sử chúng ta xem y như là hằng số và hàm số chỉ phụ thuộc vào biến x, ta lấy đạo hàm theo x thì sẽ được đạo hàm riêng của f theo x và ký hiệu là f_x . Tương tự, ta cũng có đạo hàm riêng của f theo y và ký hiệu là f_y . Nói cách khác, f_x và f_y là các hàm số được định nghĩa bởi:

$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f_y(x,y) = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

nếu các giới hạn trên tồn tại.

 $Luu\ y$. Chúng ta có thể sử dụng "h" thay cho " Δx " hoặc " Δy ".

2.1.2 Ví dụ

Ví dụ 1

Cho hàm số f(x,y) = xy.

Sử dụng định nghĩa của đạo hàm riêng để xác định đạo hàm của f theo x và y.

Lời giải.

Đối với f_x , ta có:

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)y - xy}{h}$$

$$= \lim_{h \to 0} \frac{xy + hy - xy}{h}$$

$$= \lim_{h \to 0} \frac{hy}{h}$$

$$= \lim_{h \to 0} y = y.$$

Đối với f_y , ta có:

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

$$= \lim_{h \to 0} \frac{x(y+h) - xy}{h}$$

$$= \lim_{h \to 0} \frac{xy + hx - xy}{h}$$

$$= \lim_{h \to 0} \frac{hx}{h}$$

$$= \lim_{h \to 0} x = x.$$

Ví dụ 2

Cho hàm số $f(x,y) = \sqrt[3]{xy}$.

Sử dụng định nghĩa của đạo hàm riêng để xác định đạo hàm của f theo x tại điểm (0,0). Lời $qi \mathring{a}i$.

Đối với $f_x(0,0)$, ta có:

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{\sqrt[3]{(0+h).0} - \sqrt[3]{0.0}}{h}$$
$$= \lim_{h \to 0} 0 = 0.$$

Ví dụ 3

Cho hàm số

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{n\'eu } (x,y) \neq (0,0) \\ 0 & \text{n\'eu } (x,y) = (0,0) \end{cases}$$

Sử dụng định nghĩa của đạo hàm riêng để xác định đạo hàm của f theo biến y tại điểm (0,0). Lời giải.

Đối với $f_y(0,0)$, ta có:

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{0.(0+h)}{0+(0+h)^2} - 0}{h}$$

$$= \lim_{h \to 0} \frac{\frac{0}{h^2} - 0}{h}$$

$$= \lim_{h \to 0} 0 = 0.$$

2.2 Đạo hàm hàm hợp

12	20120009	Nguyễn Văn Hưng	Kiểm tra chéo
15	20120012	Nguyễn Phạm Nhật Huy	Lý thuyết
17	20120014	Vương Gia Huy	Ví dụ
22	20120020	Huỳnh Đức Nhâm	LaTeX
25	20120023	Bùi Quốc Trung	Kiểm tra chéo
28	20120027	Lê Hải Duy	Kiểm tra chéo

2.2.1 Tóm tắt lý thuyết

Cho hàm số f hai biến là hàm xác định trên tập mở $U \subset \mathbb{R}^2$ và x = x(t), y = y(t) là các hàm xác định trên tập mở $V \subset \mathbb{R}$. Xét hàm số z(t) = f(x(t), y(t)), trong đó $t \in V$. Giả sử $\{(x(t), y(t))\} \subset U$.

Nếu $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ liên tục trên U và $\frac{dx}{dt}, \frac{dy}{dt}$ liên tục trên V thì tồn tại đạo hàm $\frac{dz}{dt}$ trên V thỏa

$$\frac{dz}{dt}(t) = \frac{\partial f}{\partial x}(x(t), y(t)) \frac{dx}{dt}(t) + \frac{\partial f}{\partial y}(x(t), y(t)) \frac{dy}{dt}(t).$$

Hay viết một cách ngắn gọn là

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

Trong trường hợp x và y là hàm của t và các biến khác nữa, thì các đạo hàm theo t trở thành đạo hàm riêng và ta viết công thức

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}.$$

2.2.2 Ví dụ

Ví dụ 1

Tính
$$\frac{dz}{dt}$$
 với $z = x^2 + y^2 + xy$, $x = \sin(t)$, $y = e^t$.

Lời giải

Đặt $f(x,y) = x^2 + y^2 + xy$. Xét hàm số z(t) = f(x(t), y(t)).

Theo quy tắc mắt xích ta có:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$= (2x+y)\cos t + (2y+x)e^{t}$$

$$= (2\sin t + e^{t})\cos t + (2e^{t} + \sin t)e^{t}$$

$$= \sin 2t + e^{t}\cos t + e^{t}\sin t + 2e^{2}t.$$

Ví du 2

Tính
$$\frac{dz}{dt}$$
 với $z = \cos(x+4y)$, $x = 5t^4$, $y = \frac{1}{t}$.

Lời giải.

Đặt $f(x,y) = \cos(x+4y)$. Xét hàm số z(t) = f(x(t),y(t)).

Theo quy tắc mắt xích ta có:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$= -\sin(x+4y)20t^3 + \frac{1}{4t^2}\sin(x+4y)$$

$$= -\sin(5t^4 + \frac{4}{t})20t^3 + \frac{1}{4t^2}\sin(5t^4 + \frac{4}{t}).$$

Ví dụ 3

Cho hàm số

$$z = z(x, y) = x \cos y, x = x(u, v) = u + v, y = y(u, v) = u - v.$$

Xét hàm số f(u,v)=z(x(u,v),y(u,v)). Hãy tính các đạo hàm riêng cấp một của f. Lời giải.

Ta có: $z_x = \cos y, z_y = -x \sin y, x_u = 1, x_v = 1, y_u = 1, y_v = -1.$

Theo quy tắc mắt xích:

$$f_{u} = z_{x}x_{u} + z_{y}y_{u} = \cos y - x \sin y = \cos (u - v) - (u + v) \sin (u - v)$$

$$\Rightarrow f_{u}(u, v) = \cos (u - v) - (u + v) \sin (u - v).$$

$$f_{v} = z_{x}x_{v} + z_{y}y_{v} = \cos y - x \sin y = \cos (u - v) + (u + v) \sin (u - v)$$

$$\Rightarrow f_{v}(u, v) = \cos (u - v) + (u + v) \sin (u - v).$$

2.3 Đạo hàm hàm ẩn

15	20120012	Nguyễn Phạm Nhật Huy	Kiểm tra chéo
17	20120014	Vương Gia Huy	Ví dụ
22	20120020	Huỳnh Đức Nhâm	Kiểm tra chéo
24	20120022	Lê Quang Trí	Kiểm tra chéo
25	20120023	Bùi Quốc Trung	Lý thuyết, LaTeX
28	20120027	Lê Hải Duy	LaTeX

2.3.1 Tóm tắt lý thuyết

Nếu một khoảng của đường cong, với phương trình F(x,y)=0, là đồ thị của một ẩn hàm y có đạo hàm theo biến x thì

$$\frac{dy}{dx}(x) = -\frac{\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}.$$

Nếu một khoảng của mặt cong, với phương trình F(x,y,z)=0, là đồ thị của một ẩn hàm z thuộc lớp C^1 và phụ thuộc theo hai biến x và y thì

$$\frac{\partial z}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,z)}{\frac{\partial F}{\partial z}(x,y,z)}; \qquad \frac{\partial z}{\partial y}(x,y) = -\frac{\frac{\partial F}{\partial y}(x,y,z)}{\frac{\partial F}{\partial z}(x,y,z)}.$$

2.3.2 Ví dụ

Ví dụ 1

Tính
$$\frac{dy}{dx}$$
 với $\sqrt{xy} = 1 + x^2y$.

Lời giải.

Xét hàm số $f(x,y) = 1 + x^2y - \sqrt{xy}$.

Áp dụng công thức đạo hàm hàm ẩn ta được:

$$\frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{2xy - \frac{y}{2\sqrt{xy}}}{x^2 - \frac{x}{2\sqrt{xy}}} = \frac{y - 4xy\sqrt{xy}}{2x^2\sqrt{xy} - x}.$$

Ví dụ 2

Tính
$$\frac{\partial z}{\partial x}$$
 với $x^2 + y^2 + z^2 = 3xyz$.

Lời giải.

Xét hàm số $f(x, y, z) = x^2 + y^2 + z^2 - 3xyz$.

Áp dụng công thức đạo hàm hàm ẩn ta được:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} = -\frac{2x - 3yz}{2z - 3xy} = \frac{3yz - 2x}{2z - 3xy}.$$

2.4 Dao hàm theo hướng

	1		,
12	20120009	Nguyễn Văn Hưng	Lý thuyết, LaTeX
17	20120014	Vương Gia Huy	Kiểm tra chéo
22	20120020	Huỳnh Đức Nhâm	Kiểm tra chéo
23	20120021	Hồ Văn Sơn	Kiểm tra chéo
28	20120027	Lê Hải Duy	LaTeX
99b	20120131	Nguyễn Văn Lộc	Ví dụ

2.4.1 Định nghĩa và công thức

Vector đơn vị $\vec{u}=(a,b)$ là vector thỏa $a^2+b^2=1$. Đôi khi vector \vec{u} cũng được cho bởi góc chỉ hướng θ và $\vec{u}=(\cos\theta,\sin\theta)$.

Đạo hàm của f theo hướng \vec{u} tại (x_0, y_0) là giới hạn (nếu tồn tại) cùng với kí hiệu sau đây:

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

Với hai hướng đặc biệt $\vec{i}=(1,0), \vec{j}=(0,1),$ thì $D_{\vec{i}}(x_0,y_0)=f_x(x_0,y_0)$ và $D_{\vec{j}}(x_0,y_0)=f_y(x_0,y_0)$

 \acute{Y} nghĩa.

- $D_{\vec{u}}f(x_0,y_0)$ là độ dốc của tiếp tuyến của đồ thị tại $P(x_0,y_0,z_0)$, theo hướng \vec{u} . Nếu $D_{\vec{u}}f(x_0,y_0) > 0$ địa hình tại P lên dốc, nếu $D_{\vec{u}}f(x_0,y_0) < 0$ thì địa hình tại P xuống dốc.
- Vector $\nabla f(x,y) = (f_x(x,y), f_y(x,y))$ được đọc là gradient của f tại (x,y).

Công thức. Tính đạo hàm theo hướng

Nếu f là hàm số có các đạo hàm riêng cấp 1 xác định trên một lân cận của (x_0, y_0) thì f có đạo hàm theo mọi hướng $\vec{u} = (a, b)(a^2 + b^2 = 1)$ và

$$D_{\vec{u}}f(x_0, y_0) = \nabla f(x_0, y_0).\vec{u} = a.f_x(x, y) + b.f_y(x, y)$$

2.4.2 Cực trị hóa đạo hàm theo hướng

Nếu f là hàm số có các đạo hàm riêng cấp 1 xác định trên một lân cận của (x_0, y_0) và liên tục tại (x_0, y_0) thì tại một điểm (x, y) cố định

- Giá trị lớn nhất của $\mathbb{D}_{\vec{u}} f(x_0, y_0)$ là $\nabla f(x, y)$, đạt được khi \vec{u} cùng hướng với vector $\nabla f(x, y)$ nghĩa là $\vec{u} = \frac{1}{|\nabla f(x, y)|} \nabla f(x, y)$.
- Giá trị nhỏ nhất của $\mathbb{D}_{\vec{u}} f(x_0, y_0)$ là $-\nabla f(x, y)$, đạt được khi \vec{u} ngược hướng với vector $\nabla f(x, y)$, nghĩa là $\vec{u} = -\frac{1}{|\nabla f(x, y)|} \nabla f(x, y)$.

2.4.3 Ví du

Ví du 1

Tìm đạo hàm của hàm số $f(x,y) = \sqrt{xy}$ tại P(2,8) theo hướng đến Q(5,4).

Lời giải.

Ta có:

$$\overrightarrow{PQ} = \langle 3, -4 \rangle \Rightarrow \overrightarrow{u} = \frac{\overrightarrow{PQ}}{\left| \overrightarrow{PQ} \right|} = \frac{\langle 3, -4 \rangle}{5} = \left\langle \frac{3}{5}, -\frac{4}{5} \right\rangle.$$

$$f_x(x, y) = \frac{y}{2\sqrt{xy}} \Rightarrow f_x(2, 8) = \frac{8}{2\sqrt{2 \cdot 8}} = 1.$$

$$f_y(x, y) = \frac{x}{2\sqrt{xy}} \Rightarrow f_y(2, 8) = \frac{2}{2\sqrt{2 \cdot 8}} = \frac{1}{4}.$$

$$\Rightarrow \nabla f(2, 8) = \left\langle 1, \frac{1}{4} \right\rangle.$$

$$D_{\overrightarrow{u}} f(2, 8) = \nabla f(2, 8) \cdot \overrightarrow{u} = \left\langle 1, \frac{1}{4} \right\rangle \cdot \left\langle \frac{3}{5}, -\frac{4}{5} \right\rangle = \frac{2}{5}.$$

Ví dụ 2

Tìm tốc độ biến thiên lớn nhất của hàm f định bởi $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ tại điểm (3,6,-2), và tìm hướng mà theo đó tốc độ biến thiên này đạt được.

Lời giải.

Đạo hàm f theo biến x ta được:

$$f_x(x, y, z) = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \Rightarrow f_x(3, 6, -2) = \frac{3}{7}.$$

Tương tự ta được: $f_y\left(3,6,-2\right)=\frac{6}{7}$ và $f_z\left(3,6,-2\right)=-\frac{2}{7}.$

Do đó,
$$\nabla f\left(3,6,-2\right)=\left\langle \frac{3}{7},\frac{6}{7},-\frac{2}{7}\right\rangle.$$

Giá trị lớn nhất của $D_{\overrightarrow{u}}f(3,6,-2)$ là $|\nabla f(3,6,-2)|=1$ đạt được khi

$$\overrightarrow{u} = \frac{1}{\left|\nabla f\left(3,6,-2\right)\right|} \nabla f\left(3,6,-2\right) = \left\langle \frac{3}{7},\frac{6}{7},-\frac{2}{7}\right\rangle.$$

Ví dụ 3

Tìm hướng theo đó hàm f định bởi $f(x,y)=x^4y-x^2y^3$ giảm nhanh nhất tại điểm (2,-3). Lời giải.

Ta có:

$$\begin{cases} f_x(x,y) = 4x^3y - 2xy^3 \\ f_y(x,y) = x^4 - 3x^2y^2 \end{cases} \Rightarrow \begin{cases} f_x(2,-3) = 12 \\ f_y(2,-3) = -92. \end{cases}$$
$$\Rightarrow \nabla f(2,-3) = \langle 12, -92 \rangle \Rightarrow |\nabla f(2,-3)| = 4\sqrt{538}.$$

Tại điểm (2,-3), hàm số f giảm nhanh nhất theo hướng của \overrightarrow{u} ngược hướng với $\nabla f(2,-3)$, nghĩa là

$$\overrightarrow{u} = -\frac{1}{|\nabla f(2, -3)|} \nabla f(2, -3) = -\frac{1}{4\sqrt{538}} \langle 12, -92 \rangle = \left\langle -\frac{3\sqrt{538}}{538}, \frac{23\sqrt{538}}{538} \right\rangle.$$

2.5 Mặt tiếp xúc

15	20120012	Nguyễn Phạm Nhật Huy	Kiểm tra chéo
23	20120021	Hồ Văn Sơn	Kiểm tra chéo
99b	20120131	Nguyễn Văn Lộc	Ví dụ
130	20120209	Nguyễn Nhật Tiến	Lý thuyết, LaTeX
139	20120412	Nguyễn Quang Bình	Kiểm tra chéo
141	20120459	Nguyễn Văn Dũng	Lý thuyết

2.5.1 Định nghĩa

Cho hàm số $f: \mathbb{R}^2 \to \mathbb{R}$ có các đạo hàm riêng cấp 1 xác định trên một lân cận của (x_0, y_0) và các đạo hàm riêng này liên tục tại (x_0, y_0) .

Phương trình mặt phẳng

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0).(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0).(y - y_0)$$

được gọi là mặt phẳng tiếp xúc với đồ thị hàm f tại (x_0, y_0) .

Phương trình trên có dạng: z = ax + by + c và đi qua $(x_0, y_0, f(x_0, y_0))$.

2.5.2 Úng dung vector gradient để tìm phương trình mặt tiếp xúc

Cho hàm số 3 biến F(x,y,z) thuộc lớp C^1 . Xét mặt đồng mức $(S): F(x,y,z) = F(x_0,y_0,z_0)$ chứa điểm (x_0,y_0,z_0) thuộc tập xác định của F. Giả sử vector gradient $\nabla F(x_0,y_0,z_0) \neq \overrightarrow{0}$. Khi đó mặt phẳng đi qua (x_0,y_0,z_0) và nhận $\nabla F(x_0,y_0,z_0)$ là vector pháp tuyến có phương trình

$$\nabla F(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

$$\Leftrightarrow F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

là mặt phẳng tiếp xúc với (S) tại (x_0, y_0, z_0) .

2.5.3 Ví du

Ví dụ 1

Cho hàm số f(x,y) = xy.

Tìm vector gradient $\nabla f(3,2)$ và sử dụng nó để tìm tiếp tuyến với đường cong f(x,y)=6 tại điểm (3,2).

Lời giải.

Ta có:

$$\begin{cases} f_x(x,y) = y \\ f_y(x,y) = x \end{cases} \Rightarrow \begin{cases} f_x(3,2) = 2 \\ f_y(3,2) = 3 \end{cases}$$
$$\Rightarrow \nabla f(3,2) = \langle 2, 3 \rangle.$$

Tiếp tuyến với đường cong f(xy) = 6 tại điểm (3,2) có phương trình là

$$(t): f_x(3,2)(x-3) + f_y(3,2)(y-2) = 0$$
$$\Leftrightarrow 2(x-3) + 3(y-2) = 0.$$

Ví du 2

Cho hàm số $g(x,y) = x^2 + y^2 - 4x$,.

Tìm vector gradient $\nabla g\left(1,2\right)$ và sử dụng nó để tìm tiếp tuyến với đường cong $g\left(x,y\right)=1$ tại điểm $\left(1,2\right)$. Lời giải.

Ta có:

$$\begin{cases} g_x(x,y) = 2x - 4 \\ g_y(x,y) = 2y \end{cases} \Rightarrow \begin{cases} g_x(1,2) = -2 \\ g_x(1,2) = 4 \end{cases}$$
$$\Rightarrow \nabla g(1,2) = \langle -2, 4 \rangle.$$

Tiếp tuyến của đường cong g(x,y) = 1 tại điểm (1,2) có phương trình là

$$(t): g_x(1,2)(x-1) + g_x(1,2)(y-2) = 0$$

$$\Leftrightarrow -2(x-1) + 4(y-2) = 0.$$

Ví dụ 3

Chứng minh rằng mặt phẳng tiếp xúc với ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ tại điểm (x_0, y_0, z_0) có thể viết là

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1.$$

Lời giải.

Xét hàm số fđịnh bởi $f\left(x,y,z\right)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}.$

$$\Rightarrow \begin{cases} f_x(x, y, z) = \frac{2x}{a^2} \\ f_y(x, y, z) = \frac{2y}{b^2} \\ f_z(x, y, z) = \frac{2z}{c^2} \end{cases}$$

Xét mặt (S): f(x, y, z) = 1 và điểm $(x_0, y_0, z_0) \in (S)$.

$$(x_0, y_0, z_0) \in (S) \Leftrightarrow f(x_0, y_0, z_0) = \frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} + \frac{{z_0}^2}{c^2} = 1.$$

Phương trình mặt tiếp xúc với mặt (S) tại điểm (x_0, y_0, z_0) là

$$\frac{2x_0}{a^2} (x - x_0) + \frac{2y_0}{b^2} (y - y_0) + \frac{2z_0}{c^2} (z - z_0) = 0.$$

$$\Leftrightarrow \frac{x_0}{a^2} (x - x_0) + \frac{y_0}{b^2} (y - y_0) + \frac{z_0}{c^2} (z - z_0) = 0.$$

$$\Leftrightarrow \frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2}.$$

$$\Leftrightarrow \frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1.$$

Vậy ta có đpcm.

2.6 Xấp xỉ tuyến tính

23	20120021	Hồ Văn Sơn	Lý thuyết, LaTeX
99b	20120131	Nguyễn Văn Lộc	Kiểm tra chéo
130	20120209	Nguyễn Nhật Tiến	Kiểm tra chéo
139	20120412	Nguyễn Quang Bình	Kiểm tra chéo
147	20120572	Nguyễn Kiều Minh Tâm	Ví dụ

2.6.1 Tóm tắt lý thuyết

Ý chính của xấp xỉ tuyến tính hàm nhiều biến cũng tương tự như hàm một biến chính là dùng **mặt phẳng tiếp** xúc để xấp xỉ đồ thị.

Xét hàm z = f(x, y), giả sử hàm f có đạo hàm riêng tại điểm (x_0, y_0) , ta có xấp xỉ tuyến tính của mặt cong z = f(x, y) tại điểm (x_0, y_0) là:

$$f(x,y) \approx L(x,y) = f(x_0,y_0) + f_x(x_0,y_0) \cdot (x-x_0) + f_y(x_0,y_0) \cdot (y-y_0)$$
 với $(x,y) \approx (x_0,y_0)$

Xét mặt cong F(x, y, z) = 0, giả sử hàm F có đạo hàm riêng tại điểm (x_0, y_0, z_0) , ta có xấp xỉ tuyến tính của mặt cong F(x, y, z) = 0 tại điểm (x_0, y_0, z_0) là:

$$L(x,y) = z_0 - \frac{F_x}{F_z}(x_0,y_0) \cdot (x-x_0) - \frac{F_y}{F_z}(x_0,y_0) \cdot (y-y_0) \text{ v\'oi } (x,y) \approx (x_0,y_0)$$

2.6.2 Ví dụ

Ví du 1

Cho hàm số $f(x,y) = \sqrt{e^x + y^3}$. Ước lượng giá trị của f(-0.03, 2.01).

Lời giải.

Ta có
$$\begin{cases} f_x(x,y) = \frac{e^x}{2\sqrt{e^x + y^3}} \\ f_y(x,y) = \frac{3y^2}{2\sqrt{e^x + y^3}} \end{cases} \Rightarrow \begin{cases} f_x(0,2) = \frac{1}{6} \\ f_y(0,2) = 2 \end{cases}, \text{ dồng thời } f(0,2) = 3.$$

Vì các hàm số f_x , f_y xác định và liên tục tại (0,2), đồng thời, điểm (-0.03,2.01) gần với điểm (0,2), ta có thể ước lượng thông qua phép xấp xỉ tuyến tính:

$$f(-0.03, 2.01) \approx f(0, 2) + f_x(0, 2)(-0.03 - 0) + f_y(0, 2)(2.01 - 2) = 3 + \frac{1}{6}(-0.03) + 2(0.01) = 3.015.$$

Ví dụ 2

Uớc lượng giá trị $\sqrt[3]{\ln 1.012 + \cos(-0.01)}$

Lời giải.

Xét hàm số $f(x,y) = \sqrt[3]{\ln x + \cos y}$, ta có $\sqrt[3]{\ln 1.012 + \cos(-0.01)} = f(1.012, -0.01)$, và

$$\begin{cases} f_x(x,y) = \frac{1}{x} \cdot \frac{1}{3\left(\sqrt[3]{\ln x + \cos y}\right)^2} \\ f_y(x,y) = -\sin y \cdot \frac{1}{3\left(\sqrt[3]{\ln x + \cos y}\right)^2} \end{cases} \Rightarrow \begin{cases} f_x(1,0) = \frac{1}{3} \\ f_y(1,0) = 0 \end{cases}, \text{ dồng thời } f(1,0) = 1.$$

Vì các hàm số f_x , f_y xác định và liên tục tại (1,0), đồng thời, điểm (1.012, -0.01) gần với điểm (1,0), ta có thể ước lượng thông qua phép xấp xỉ tuyến tính:

$$f(1.012, -0.01) \approx f(1,0) + f_x(1,0)(1.012 - 1) + f_y(1,0)(-0.01 - 0) = 1 + \frac{1}{3}(0.012) + 0(-0.01) = 1.004.$$

Ví dụ 3

Cho hàm số
$$f(x,y)=\begin{cases} \dfrac{xy}{x^2+y^2}, & \text{n\'eu } (x,y)\neq (0,0), \\ 0, & \text{n\'eu } (x,y)=(0,0). \end{cases}$$

Có thể xấp xỉ tuyến tính 'tốt' cho hàm f quanh (0,0) hay không?

Lời qiải.

Xét giới hạn

$$\lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0.$$

Vậy, $D_1 f(0,0)$ tồn tại và $D_1 f(0,0) = 0$.

Đồng thời, ta cũng có

$$\lim_{\Delta y \to 0} \frac{f(0, 0 + \Delta y) - f(0, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = \lim_{\Delta y \to 0} 0 = 0$$

Vậy, $D_2 f(0,0)$ tồn tại và $D_2 f(0,0) = 0$.

Đặt
$$E(x,y) = f(x,y) - [f(0,0) + D_1 f(0,0)(x-0) + D_2 f(0,0)(y-0)], \text{ với } (x,y) \neq (0,0)$$

$$\Rightarrow E(x,y) = \frac{xy}{x^2 + y^2}$$

Ta khảo sát giới han

$$\lim_{(x,y)\to(0,0)} \frac{E(x,y)}{\sqrt{(x-0)^2 + (y-0)^2}},$$

hay chính là giới han

$$\lim_{(x,y)\to(0,0)}g(x,y),$$

trong đó
$$g(x,y) = \frac{xy}{\left(\sqrt{x^2 + y^2}\right)^3}.$$

Xét đường cong $(C_1): y = x$

$$E_1 = \{(x, y) \in \mathbb{R}^2 | y = x, x \neq 0\}$$

$$g_{|E_1}(x, y) = g(x, x) = \frac{x^2}{\left(\sqrt{2x^2}\right)^3} = \frac{x^2}{2\sqrt{2}x^2|x|} = \frac{1}{2\sqrt{2}|x|}, \forall (x, y) \in E_1.$$

Xét đường cong $(C_2): y = 0$

$$E_2 = \{(x, y) \in \mathbb{R}^2 | y = 0, x \neq 0\}$$
$$g_{|E_2}(x, y) = g(x, 0) = \frac{x \cdot 0}{\left(\sqrt{x^2 + 0^2}\right)^3} = 0, \forall (x, y) \in E_2.$$

Ta có

$$L_1 = \lim_{(x,y)\to(0,0)} g_{|E_1}(x,y) = \lim_{(x,y)\to(0,0)} \frac{1}{2\sqrt{2}|x|} = \infty.$$

$$L_2 = \lim_{(x,y)\to(0,0)} g_{|E_2}(x,y) = \lim_{(x,y)\to(0,0)} 0 = 0.$$

Vì
$$L_1 \neq L_2$$
 nên $\lim_{(x,y)\to(0,0)} g(x,y)$ không tồn tại, hay $\lim_{(x,y)\to(0,0)} \frac{E(x,y)}{\sqrt{(x-0)^2+(y-0)^2}}$ không tồn tại.

Hàm f không thỏa điều kiện cần và đủ để có xấp xỉ tuyến tính quanh (0,0), do đó không tồn tại xấp xỉ tuyến tính 'tốt' cho hàm f quanh (0,0).

2.7 Cực trị tự do

11	20120007	Đỗ Trung Hiếu	Kiểm tra chéo
99b	20120131	Nguyễn Văn Lộc	Kiểm tra chéo
130	20120209	Nguyễn Nhật Tiến	Kiểm tra chéo
139	20120412	Nguyễn Quang Bình	Lý thuyết, LateX
147	20120572	Nguyễn Kiều Minh Tâm	Ví dụ

2.7.1 Tóm tắt lý thuyết

Cho f là hàm số có các đạo hàm riêng cấp hai liên tục trên một đĩa tròn tâm (a,b), đồng thời (a,b) là điểm dừng của f (có nghĩa là $f_x(a,b)=0$ và $f_y(a,b)=0$)

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

- Nếu D(a,b) > 0 và $f_{xx}(a,b) > 0$, thì f(a,b) là một cực tiểu địa phương.
- Nếu D(a,b)>0 và $f_{xx}(a,b)<0$, thì f(a,b) là một cực đại địa phương.
- Nếu D(a,b) > 0 thì (a,b) là điểm yên ngựa, nghĩa là f không có cực trị tại (a,b).
- Nếu D(a, b) = 0, thì tiêu chuẩn không xác định và ta không có kết luận tổng quát tùy bài toán cụ thể mà ta xét và phân tích để có kết quả.

2.7.2 Ví du

Ví dụ 1

Phân loại (các) điểm dùng của hàm $f(x,y) = x \cos y$.

Lời giải.

Ta có

$$f_x(x,y) = \cos y, f_y(x,y) = -x \sin y$$

$$f_{xx}(x,y) = 0, f_{xy}(x,y) = -\sin y, f_{yy}(x,y) = -x \cos y$$

Xét hệ phương trình

$$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} \cos y = 0 \\ -x \sin y = 0 \end{cases} \Leftrightarrow \begin{cases} y = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \\ x = 0 \end{cases}$$

Vậy hàm f có vô số điểm dừng, các điểm dừng có dạng $\left(0, \frac{\pi}{2} + k\pi\right)$, với mọi $k \in \mathbb{Z}$.

Đặt
$$D(x,y) = f_{xx}(x,y)f_{yy}(x,y) - [f_{xy}(x,y)]^2$$

⇒ $D(x,y) = 0(-x\cos y) - (\sin y)^2 = -(\sin y)^2$.

Tại các điểm dừng (x,y): $\cos y = 0 \Rightarrow (\sin y)^2 = 1 - (\cos y)^2 = 1 \Rightarrow D(x,y) < 0$. Vậy các điểm dừng đã tìm được đều không là điểm cực trị của hàm f.

Ví dụ 2

Tìm các điểm cực trị của hàm số $f(x,y) = x^3 + y^3 - 6xy$.

Lời giải.

Ta có

$$f_x(x,y) = 3x^2 - 6y, f_y(x,y) = 3y^2 - 6x$$
$$f_{xx}(x,y) = 6x, f_{xy}(x,y) = -6, f_{yy}(x,y) = 6y$$

Xét hệ phương trình

$$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3x^2 - 6y = 0 \\ 3y^2 - 6x = 0 \end{cases} \Leftrightarrow \begin{cases} y = \frac{x^2}{2} \\ \frac{3x^4}{4} - 6x = 0 \end{cases} (*)$$

$$(*) \Leftrightarrow x^4 - 8x = 0 \Leftrightarrow x(x-2)(x^2 + 2x + 4) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{cases}$$

Từ đây hàm f có 2 điểm dùng (0,0) và (2,2).

Đặt
$$D(x,y) = f_{xx}(x,y)f_{yy}(x,y) - [f_{xy}(x,y)]^2$$

$$\Rightarrow D(x,y) = 6x.6y - (-6)^2 = 36xy - 36.$$

Xét từng điểm dừng:

- Tại (0,0): $D(0,0) = -36 < 0 \Rightarrow (0,0)$ không là điểm cực trị của f.

- Tại
$$(2,2)$$
: $D(2,2) = 108 > 0$, và $f_{xx}(2,2) = 12 > 0 \Rightarrow f$ đạt cực tiểu tại $(2,2)$.

Ví du 3

Tìm các điểm cực trị của hàm $f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$.

 $L \eth i \ gi \'a i.$

Ta có

$$f_x(x,y) = 4x^3 - 2x - 2y, f_y(x,y) = 4y^3 - 2x - 2y$$
$$f_{xx}(x,y) = 12x^2 - 2, f_{xy}(x,y) = -2, f_{yy}(x,y) = 12y^2 - 2$$

Xét hệ phương trình

$$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 4x^3 - 2x - 2y = 0 \\ 4y^3 - 2x - 2y = 0 \end{cases} \Leftrightarrow \begin{cases} 4x^3 - 2x - 2y = 0 \\ 4y^3 - 4x^3 = 0 \end{cases} \Leftrightarrow \begin{cases} 4x^3 - 2x - 2y = 0 \\ y = x \end{cases} \Leftrightarrow \begin{cases} 4x^3 - 4x = 0 \\ y = x \end{cases} \end{cases}$$
$$\Leftrightarrow \begin{cases} 4x^3 - 4x = 0 \quad (*) \\ y = x \end{cases}$$
$$(*) \Leftrightarrow 4x(x-1)(x+1) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \\ x = -1 \end{cases}$$

Từ đây hàm f có 3 điểm dùng (0,0), (1,1) và (-1,-1).

$$\text{Dăt } D(x,y) = f_{xx}(x,y)f_{yy}(x,y) - [f_{xy}(x,y)]^{2}$$

$$\Rightarrow D(x,y) = (12x^2 - 2)(12y^2 - 2) - (-2)^2 = 144x^2y^2 - 24x^2 - 24y^2$$

Xét từng điểm dừng:

- Tại (0,0): D(0,0) = 0, ta xét riêng ở phần sau.
- Tại (1,1): D(1,1) = 144 24 24 = 96 > 0, và $f_{xx}(1,1) = 10 > 0 \Rightarrow f$ đạt cực tiểu tại (1,1).
- Tại (-1,-1): D(-1,-1) = 144 24 24 = 96 > 0, và $f_{xx}(-1,-1) = 10 > 0 \Rightarrow f$ đạt cực tiểu tại (-1,-1).

Bây giờ, xét tại (0,0), đặt

$$\delta(x,y) = f(x,y) - f(0,0) = x^4 + y^4 - x^2 - 2xy - y^2 = x^4 + y^4 - (x+y)^2.$$

Xét trên đĩa tròn B((0,0),r) với r>0,ta có $\delta(x,-x)=2x^4>0, \forall x\neq 0,$ và

$$\delta(x,0) = x^4 - x^2 < 0, \forall x \in [-m,m] \setminus \{0\}, m = \min\left\{\frac{1}{2}, \frac{r}{2}\right\}$$

Như vậy, xung quanh điểm (0,0), hàm σ nhận cả giá trị âm và giá trị dương, do đó (0,0) không là điểm cực trị của hàm f.

 $[H\hat{E}T]$