Sujet 3 - Capteur de sécheresse connecté

Sommaire

Table des matières

Liste des exigences du système	3
Liste des fonctionnalités du système	4
Diagramme des exigences	5
Le diagramme des cas d'utilisation (Uses Case)	6
Diagramme Synoptique	6

Liste des exigences du système

1. Exigences techniques:

Capteur d'humidité : Le capteur devra être précis et adapté aux sols des plantes d'intérieur.

2. Communication série entre Arduino et Node.js:

Communication : L'Arduino enverra les données d'humidité à Node.js via une liaison série USB.

3. Interface web (IHM):

Lecture des informations par l'utilisateur : Affiche en temps réel le taux d'humidité et l'état correspondant.

Configuration : Permet de configurer les seuils d'humidité.

4. LED pour état local :

Une LED rouge : pour indiquer un sol trop sec.

Une LED verte : pour un taux d'humidité optimal.

Une LED bleue : pour un sol trop humide.

5. Alimentation:

Le système devra être alimenté via **USB** pour la communication avec le serveur ou une alimentation autonome pour un usage mobile.

Liste des fonctionnalités du système

1. Mesurer le taux d'humidité du sol :

Un capteur d'humidité inséré dans le pot permettra de surveiller en temps réel l'état du sol.

2. Envoyer les données d'humidité à un serveur Node.js :

L'Arduino devra être connecté en série à un PC ou un serveur Node.js, qui recevra les données collectées par le capteur d'humidité.

3. Afficher les données sur une interface web :

Une IHM web permettra de consulter en temps réel le taux d'humidité du sol et l'état de la plante. L'interface devra indiquer :

- **Sol trop sec** : Nécessité d'arroser.
- Humidité optimale : Aucune action nécessaire.
- **Sol trop humide** : Il faut éviter d'arroser davantage.

4. Gérer des seuils personnalisables via l'interface web :

L'utilisateur pourra définir des seuils pour chaque état (trop sec, optimal, trop humide) via l'IHM web.

Ces seuils seront envoyés au serveur Node.js, qui les transmettra à l'Arduino.

5. Éclairer une LED en fonction de l'état du sol :

Une LED connectée à l'Arduino indiquera localement l'état du sol (rouge, vert, bleu), même sans consultation de l'IHM.

Diagramme des exigences

Le diagramme des cas d'utilisation (Uses Case)

Diagramme Synoptique