NAIL062 P&P Logic: Worksheet 7 – Properties of Structures and Theories

Teaching goals: After completing, the student

- understands the notion of substructure, generated substructure, can find them
- understands the notion of expansion and reduct of a structure, can define them formally and give examples
- understands the notions of [simple, conservative] extension, can formulate the definitions and the corresponding semantic criterion (for both expansions and reducts), and apply it to an example
- understands the notion of extension by definition, can define it formally and give examples
- can decide whether a given theory is a extension by definition, construct an extension by a given definition
- understands the notion of definability in a structure, can find definable subsets/relations

IN-CLASS PROBLEMS

Problem 1. Consider $\underline{\mathbb{Z}}_4 = \langle \{0,1,2,3\}; +, -, 0 \rangle$ where + is binary addition modulo 4 and - is the unary function returning the *inverse* for + with respect to the *neutral* element 0.

- (a) Is \mathbb{Z}_4 a model of the theory of groups (i.e. is it a group)?
- (b) Determine all substructures $\mathbb{Z}_4\langle a\rangle$ generated by some $a\in\mathbb{Z}_4$.
- (c) Does \mathbb{Z}_4 contain any other substructures?
- (d) Is every substructure of $\underline{\mathbb{Z}}_4$ a model of the theory of groups?
- (e) Is every substructure of \mathbb{Z}_4 elementarily equivalent to \mathbb{Z}_4 ?

Solution. (a) Yes, one can check that $\underline{\mathbb{Z}}_4$ satisfies all axioms of the theory of groups (+ is associative, 0 is neutral for +, -x is the inverse of x w.r.t. + and 0).

- (b) $\underline{\mathbb{Z}}_{\underline{4}}\langle 0 \rangle = \underline{\mathbb{Z}}_{\underline{4}} \upharpoonright \{0\}$ (the trivial group), $\underline{\mathbb{Z}}_{\underline{4}}\langle 1 \rangle = \underline{\mathbb{Z}}_{\underline{4}}\langle 3 \rangle = \underline{\mathbb{Z}}_{\underline{4}}$, $\underline{\mathbb{Z}}_{\underline{4}}\langle 2 \rangle = \underline{\mathbb{Z}}_{\underline{4}} \upharpoonright \{0,2\}$ (a two-element group isomorphic to \mathbb{Z}_2).
- (c) No, as soon as we have the element 1 or 3, the generated substructure is the whole \mathbb{Z}_4 .
- (d) Yes, the theory of groups is universal (closed under substructures), hence substructures of models (groups) are also models (subgroups).
- (e) No, the language of group theory is with equality, and any finite model size can be expressed by a sentence, so finite models of different sizes cannot be elementarily equivalent. However, we do not even need to express model size directly. It suffices to use "group properties" to distinguish them: e.g. the sentence $(\forall x)x = 0$ distinguishes the trivial group $\underline{\mathbb{Z}}_4 \upharpoonright \{0\}$ from the two-element group $\underline{\mathbb{Z}}_4 \upharpoonright \{0,2\}$ and from $\underline{\mathbb{Z}}_4$; and e.g. $(\forall x)x + x = 0$ is valid in $\mathbb{Z}_4 \upharpoonright \{0,2\}$ but not in \mathbb{Z}_4 .

Problem 2. Let $\mathbb{Q} = \langle \mathbb{Q}; +, -, \cdot, 0, 1 \rangle$ be the field of rationals with the standard operations.

- (a) Is there a reduct of \mathbb{Q} that is a model of the theory of groups?
- (b) Can the reduct $\langle \mathbb{Q}, \overline{\cdot}, 1 \rangle$ be extended to a model of the theory of groups?
- (c) Does \mathbb{Q} contain a substructure that is not elementarily equivalent to \mathbb{Q} ?
- (d) Let $Th(\mathbb{Q})$ denote the set of all sentences true in \mathbb{Q} . Is $Th(\mathbb{Q})$ a complete theory?

Solution. (a) Yes, $\mathbb{Q} = \langle \mathbb{Q}; +, -, 0 \rangle$ (the additive group reduct).

(b) No, the element 1 (interpretation of the symbol 0 of the language of groups) is not a neutral element with respect to \cdot (the interpretation of +), because $1 \cdot 0 = 0 \neq 1$.

- (c) Yes, for example $\mathbb{Q} \upharpoonright \mathbb{Z} = \langle \mathbb{Z}; +, -, \cdot, 0, 1 \rangle$ (the ring of integers): in it not every nonzero element has a multiplicative inverse, so the sentence $(\forall x)(\neg x = 0 \rightarrow (\exists y)x \cdot y = 1)$ fails (e.g. 2 has no inverse in \mathbb{Z} , while it does in \mathbb{Q}). (From this it follows that the theory of fields is not openly axiomatizable, otherwise substructures of fields would be fields.)
- (d) Yes, the so-called theory of a structure is always complete: for every sentence ψ either $\operatorname{Th}(\mathbb{Q}) \models \psi \text{ or } \operatorname{Th}(\mathbb{Q}) \models \neg \psi, \text{ because } \mathbb{Q} \models \psi \text{ or } \mathbb{Q} \models \neg \psi.$

Problem 3. Consider the theory $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ in the language L = $\langle c_1, c_2, c_3 \rangle$ with equality.

- (a) Is T complete?
- (b) How many simple extensions of T are there, up to equivalence? How many are complete? Write down all complete ones and at least three incomplete ones.
- (c) Is the theory $T' = T \cup \{x = c_1 \lor x = c_4\}$ in the language $L' = \langle c_1, c_2, c_3, c_4 \rangle$ an extension of T? Is T' a simple extension of T? Is T' a conservative extension of T?

Solution. The theory says that every element is one of the three constants. But these constants need not be distinct. First find all models up to isomorphism; there are five (draw them):

- $A_1 = \langle \{0\}; 0, 0, 0 \rangle$ (one-element model, $c_1^{A_1} = c_2^{A_1} = c_3^{A_1} = 0$)
- $\mathcal{A}_{2} = \langle \{0,1\}; 0,0,1 \rangle$ (two-element model, $c_{1}^{A_{2}} = c_{2}^{A_{2}} \neq c_{3}^{A_{2}} \rangle$)
 $\mathcal{A}_{3} = \langle \{0,1\}; 0,1,1 \rangle$ (two-element model, $c_{1}^{A_{3}} \neq c_{2}^{A_{3}} = c_{3}^{A_{3}} \rangle$)
 $\mathcal{A}_{4} = \langle \{0,1\}; 0,1,0 \rangle$ (two-element model, $c_{1}^{A_{4}} = c_{3}^{A_{4}} \neq c_{2}^{A_{4}} \rangle$)

- $A_5 = \langle \{0,1,2\}; 0,1,2 \rangle$ (three-element model, constants are distinct)
- (a) It is not complete; for example the sentence $c_1 = c_2$ is independent in T: it is valid in A_1 but not in A_3 . (Equivalently, by the semantic criterion, models A_1 and A_3 are not elementarily equivalent.)
- (b) Simple extensions correspond to subsets of $\{A_1, A_2, A_3, A_4, A_5\}$, there are $2^5 = 32$ of them; complete ones correspond to singletons (complete theories of individual models), so there are 5.

Simple extensions that are not complete:

```
    T

                                                                                                             models A_1, A_2, A_3, A_4, A_5
\bullet \ T \cup \{x = y \lor x = z\}
                                                                                                             models A_1, A_2, A_3, A_4
• T \cup \{(\exists x)(\exists y) \neg x = y\}
                                                                                                              models
                                                                                                                                 \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5
    (Note: (\exists x)(\exists y) \neg x = y \sim \neg(\forall x)(\forall y)x = y \nsim \neg x = y \sim (\forall x)(\forall y) \neg x = y.)
```

 $\bullet \ \{x = x \land \neg x = x\}$

the inconsistent theory, has no model

Complete simple extensions:

- Th(\mathcal{A}_1) $\sim \{x = y\}$
- Th(A_2) $\sim \{(\exists x)(\exists y) \neg x = y, x = y \lor x = z, c_1 = c_2, \neg c_2 = c_3\}$
- Th(\mathcal{A}_3) $\sim \{(\exists x)(\exists y)\neg x = y, x = y \lor x = z, \neg c_1 = c_2, c_2 = c_3\}$
- Th(\mathcal{A}_4) $\sim \{(\exists x)(\exists y) \neg x = y, x = y \lor x = z, c_1 = c_3, \neg c_1 = c_2\}$
- Th(\mathcal{A}_5) $\sim \{x = c_1 \lor x = c_2 \lor x = c_3, \neg(c_1 = c_2 \lor c_1 = c_3 \lor c_2 = c_3)\}$
- (c) The theory additionally says that every element is either the interpretation of c_1 or c_4 . Thus models have at most two elements; up to isomorphism they are:
 - $\mathcal{A}'_1 = \langle \{0\}; 0, 0, 0, 0 \rangle$
 - $\mathcal{A}'_2 = \langle \{0,1\}; 0,0,1,1 \rangle$

- $\mathcal{A}'_3 = \langle \{0, 1\}; 0, 1, 1, 1 \rangle$ $\mathcal{A}'_4 = \langle \{0, 1\}; 0, 1, 0, 1 \rangle$

The theory T' is an extension of T. All consequences of T are valid in T'; semantically: the reducts of models of T' to the original language L are models of T (e.g. the reduct of \mathcal{A}'_1 to L is \mathcal{A}_1). It is not a simple extension, since we enlarged the language.

It is also not a conservative extension: for example the sentence $(\forall x)(\forall y)(\forall z)(x=$ $y \lor x = z$) is a sentence in the original language L, it is valid in T' but it was not valid in T. Semantically: the three-element model A_5 of T cannot be expanded to an L'-structure that models T', i.e. the reducts of models of T' to L do not yield all models of T.

Problem 4. Let T' be an extension of $T = \{(\exists y)(x+y=0), (x+y=0) \land (x+z=0) \rightarrow y=z\}$ in the language $L = \langle +, 0, \leq \rangle$ with equality by definitions of \langle and unary - with axioms

$$-x = y \quad \leftrightarrow \quad x + y = 0$$
$$x < y \quad \leftrightarrow \quad x \le y \quad \land \quad \neg (x = y)$$

(c) -(x+y) < -x

Find formulas in the language L that are equivalent in T' to the following formulas.

(a)
$$(-x) + x = 0$$
 (b) $x + (-y) < x$

Solution. Note that the axioms express existence and uniqueness for the definition of the function symbol –, so this is a proper extension by definition. We proceed according to the (proof of the) claim from the lecture:

- (a) $(\exists z)(x+z=0 \land z+x=0)$ (The subformula x+z=0 says that 'z is -x' and the second subformula says that (-x) + x = 0?)
- (b) First replace the term -y by its definition:

$$(\exists z)(y + z = 0 \land x + z < x)$$

Now replace the relation symbol <:

$$(\exists z)(y+z=0 \land x+z \le z \land \neg(x+z=z))$$

(c)
$$(\exists u)(\exists v)((x+y)+u=0 \land x+v=0 \land u \leq v \land \neg u=v)$$
 (Where 'u is $-(x+y)$ ' and 'v is $-x$ '.)

Problem 5. Consider the language $L = \langle F \rangle$ with equality, where F is a binary function symbol. Find formulas defining the following sets (without parameters):

- (a) the interval $(0,\infty)$ in $\mathcal{A} = \langle \mathbb{R}, \cdot \rangle$ where \cdot is multiplication of real numbers
- (b) the set $\{(x,1/x) \mid x \neq 0\}$ in the same structure \mathcal{A}
- (c) the set of all singleton subsets of \mathbb{N} in $\mathcal{B} = \langle \mathcal{P}(\mathbb{N}), \cup \rangle$
- (d) the set of all prime numbers in $\mathcal{C} = \langle \mathbb{N} \cup \{0\}, \cdot \rangle$

Solution. (a) $(\exists y)F(y,y) = x \land \neg(\forall y)F(x,y) = x$ (The number x is a square, and it is not

- (b) $(\exists z)(F(x,y)=z \land (\forall u)F(z,u)=u)$ (The product equals one.)
- (c) $(\forall y)(\forall z)(F(y,z)=x \rightarrow y=x \lor z=x) \land \neg(\forall y)F(x,y)=y$ (Whenever the set is the union of two sets, it equals one of them. And it is not empty.)
- (d) Same as (c), $(\forall y)(\forall z)(F(y,z) = x \rightarrow y = x \lor z = x) \land \neg(\forall y)F(x,y) = x$ (Whenever the product of two numbers equals a prime, one of them equals the prime, and a prime is not zero.)

EXTRA PRACTICE

Problem 6. Let $T = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x), (\exists x)(\exists y)(\exists z)(E(x, y) \land E(y, z) \land E(x, z) \land \neg (x = y \lor y = z \lor x = z)), \varphi \}$ be a theory in the language $L = \langle E \rangle$ with equality, where E is a binary relation symbol and φ expresses that "there are exactly four elements."

- (a) Consider the expansion $L' = \langle E, c \rangle$ of the language by a new constant symbol c. Determine the number (up to equivalence) of theories T' in L' that are extensions of T.
- (b) Does T have any conservative extension in the language L'? Justify your answer.

Problem 7. Let $T = \{x = f(f(x)), \varphi, \neg c_1 = c_2\}$ be a theory in the language $L = \langle f, c_1, c_2 \rangle$ with equality, where f is a unary function symbol, c_1, c_2 are constant symbols, and the axiom φ expresses that "there are exactly three elements."

- (a) Determine how many pairwise nonequivalent complete simple extensions the theory T has. Write down two of them.
- (b) Let $T' = \{x = f(f(x)), \varphi, \neg f(c_1) = f(c_2)\}$ be a theory in the same language, with φ same as above. Is T' an extension of T? Is T an extension of T'? If so, is it a conservative extension? Provide justification.

Problem 8. Consider $L = \langle P, R, f, c, d \rangle$ with equality and the following two formulas:

$$\varphi: \quad P(x,y) \leftrightarrow R(x,y) \land \neg x = y$$

$$\psi: \quad P(x,y) \rightarrow P(x,f(x,y)) \land P(f(x,y),y)$$

Consider the following L-theory:

$$T = \{ \varphi, \ \psi, \ \neg c = d,$$

$$R(x, x),$$

$$R(x, y) \land R(y, x) \rightarrow x = y,$$

$$R(x, y) \land R(y, z) \rightarrow R(x, z),$$

$$R(x, y) \lor R(y, x) \}$$

- (a) Find an expansion of the structure (\mathbb{Q}, \leq) to the language L that is a model of T.
- (b) Is the sentence $(\forall x)R(c,x)$ valid/contradictory/independent in T? Justify all 3 answers.
- (c) Find two nonequivalent complete simple extensions of T, or justify why they do not exist.
- (d) Let $T' = T \setminus \{\varphi, \psi\}$ be a theory in the language $L' = \langle R, f, c, d \rangle$. Is the theory T a conservative extension of the theory T'? Provide justification.

FOR FURTHER THOUGHT

Problem 9. Let $T_n = \{ \neg c_i = c_j \mid 1 \le i < j \le n \}$ be a theory in the language $L_n = \langle c_1, \ldots, c_n \rangle$ with equality, where c_1, \ldots, c_n are constant symbols.

- (a) For a given finite $k \geq 1$, count k-element models of the theory T_n up to isomorphism.
- (b) Determine the number of countable models of the theory T_n up to isomorphism.
- (c) For which pairs of values n and m is T_n an extension of T_m ? For which pairs is it a conservative extension? Justify your answer.