CSE-170 Computer Graphics

Lecture 11

Textures and Other Mappings

Dr. Renato Farias rfarias2@ucmerced.edu

Mapping Techniques

- Texture mapping
 - used to improve realism
 - extremely common
- Reflection mappings
 - A way to display reflections in real-time, for ex.
 computed from ray tracing
- Light maps
 - Lighting effects from texture mapping
- Bump maps and Displacement maps
 - To improve geometry detail appearance
- etc.

Mapping Techniques

- Mapping techniques usually involves mapping a 2D data array onto the surface of a 3D object
 - Ex: map a height field or an image to a surface

- Can be seen as extension to Phong's model
 - Rewrite the diffuse component I_d as a function of the texture map
 - Better name would be "color mapping"
- Powerful effects

- Main problem: the mapping
 - For every triangle to be rendered, we have to define how to map the triangle to the texture image

- Main problem: the mapping
 - Many tools exist to help "design" the mapping

Textures can become rather complex

- In OpenGL
 - Each vertex will be associated with (u, v) texture coordinates:
 - Texture coordinates are always in [0,1]

Triangle in world space

- Mapping using intermediate surface
 - First map to an "easy" surface
 - Then, map to the final object
 - ex: cylinder mapping

- Mapping using intermediate surface
 - First map to an "easy" surface
 - Then, map to the final object
 - ex: cylinder mapping

$$(\theta,h)\rightarrow(u,v)$$
: $(u,v) = (\theta/\theta_{max}, h/h_{max})$

- Mapping using intermediate surface
 - Several possibilities for the final mapping:
 - intersection of reflected view ray
 - intersection of surface normal
 - intersection of a line from object center
 - intermediate surface normal

- Common intermediate mappings
 - Cylindrical
 - Spherical
 - Projection
 - Orthogonal
 - etc.

- Spherical mappings
 - Texture mapping can be used to alter some or all of the constants in the illumination equation: diffuse color, alter the normal, etc.
 - GLSL uses keyword sampler to access the colors in the texture:

uniform sampler2D texId;

Texture used as Diffuse Color

- Difficulties
 - Textures do not define geometry
 - should really be thought as color mappings
 - Lighting may not appear correctly
 - Aliasing effects

- Aliasing is the under-sampling of a signal, and it's especially noticeable during animation
 - Details may pop in and out of view
 - Solution: mipmapping

Mipmapping

- Original high-resolution texture map is scaled and filtered into multiple resolutions before it is applied to a surface
 - multum in parvo: "many things in a small space."
- The texture can appear in full detail if it is seen in a close-up, or can be rendered quickly and smoothly from a lower MIP level when the object appears smaller or further away

Usually, powers of 2 are used for the MIP Map levels (for ex. if the highest resolution is 1024x1024, the next levels would be 512x512, 256x256, 128x128, etc.)

Billboards

Billboards

- Texture map is treated as a 3D object in a scene
 - it is not mapped to a solid object surface
 - it is just a plane with the image
 - the plane rotates to always face the viewer
 - parts of the texture can be transparent
 - ex: trees

Bumps by Normal Vector Perturbation

- Bump mapping
 - Heightmap buffer with perturbations to be applied to the surface normals, creating the effect of a different surface
 - New normals are used for illumination (contrary to simple textures)
 - The geometry does not actually change!

Bump mapping

Bump Map

Sphere w/Diffuse Texture & Bump Map

- Limitations
 - It is not possible to create bumps on the silhouette of a bump-mapped object

 Bump maps do not resolve self-occlusion

Displacement Mapping

Displacement maps

- Use the texture map to actually move the surface point
- The geometry must be displaced before visibility is determined

Environment Mapping

Environment Maps

 We can simulate reflections by using the direction of the reflected ray to index a spherical texture map at "infinity".

Environment Maps

• Ex:

Environment Maps

• Ex:

Light Maps

Light Maps

- First use a global renderer to realistically render the scene with lights, shadows, etc.
- Then use the image as a color map in the illumination of real-time environments
 - popular in games

