

Cell-Based IC Physical Design and Verification - SOC Encounter

張年翔 CIC 2004/07

Class Schedule

◆ Day1

- ➤ Design Flow Over View
- > Prepare Data
- ➤ Getting Started
- > Importing Design
- > Specify Floorplan
- ➤ Power Planning
- > Placement
- > Synthesize Clock Tree

◆ Day2

- > Timing Analysis
- > Trial Route
- ➤ Power Analysis
- > SRoute
- > NanoRoute
- > Fill Filler
- ➤ Output Data
- > DRC
- > LVS
- > extraction/nanosim

Chapter1

Cell-Based Physical Design – SOC Encounter 3.2

Cell-Based Design Flow

SOC Encounter P&R flow

IO, P/G Placement

Specify Floorplan

Amoeba Placement

Scan Chain Reorder

Power Planning

Clock Tree Synthesis

Power Analysis

Add Filler

Power Route

Routing

Prepare Data

- ◆ Gate-Level netlist (verilog)
- ◆ Physical Library (LEF)
- ◆ Timing Library (LIB)
- ◆ Timing constraints (sdc)
- ♦ IO constraint

Preparing Data: gate-level netlist

- ◆ If designing a chip, IO pads, power pads and Corner pads should be added before the netlist is imported.
- ◆ Make sure that there is no "assign" statement and no "*cell*" cell name in the netlist.
 - ➤ Use the synthesis command below to remove assign statement. set_boundary_optimization
 - ➤ Use the synthesis commands below to remove "*cell*" cell name define_name_rules name_rule -map { {*cell*} cell"} } change_names -hierarchy -output name_rule

Prepare Data: LEF

-- Process Technology

Layers

♦Contact

Via1

Metal2

Design Rule

Net width
Net spacing
Area
Enclosure
Wide metal
slot
Antenna
Current density

Parasitic

Resistance Capacitance

Prepare Data: LEF -- APR technology

- **♦** Unit
- **♦** Site
- ◆ Routing pitch
- ◆ Default direction
- ◆ Via generate
- ♦ Via stack

Prepare Data: LEF

-- APR technology : SITE

➤ The Placement site give the placement grid of a family of macros

Row Based PR

Prepare Data: LEF -- APR technology:

routing pitch, default direction

metal1 routing pitch

Horizontal routing	Vertical routing
Metal1	Metal2
Metal3	Metal4
Metal5	Metal6

Prepare Data: LEF -- APR technology: via generate

- ◆ To connect wide metal, create a via array to reduce via resistance
- ◆ Defines formulas for generating via arrays

Layer Metal1
Direction HORIZONTAL
OVERHANG 0.2
Layer Metal2
Direction VERTICAL
OVERHANG 0.2
Layer Via1
RECT -0.14 -0.14 0.14 0.14
SPACING 0.56 BY 0.56

Prepare Data: LEF -- APR technology: via stack

With via stack

Without via stack

- ◆ Higher density routing
- ◆ Easier usage of upper layer
- ◆ Must Follow minimum area rule

Prepare Data: LEF

-- APR technology: Physical Macros

- ◆ Define physical data for
 - > Standard cells
 - > I/O pads
 - > Memories
 - > other hard macros
- describe abstract shape
 - > Size
 - > Class
 - > Pins
 - > Obstructions

Prepare Data: LEF


```
MACRO ADD1
  CLASS CORE;
  FOREIGN ADD1 0.0 0.0;
  ORIGEN 0.0 0.0;
  LEQ ADD;
  SIZE 19.8 BY 6.4;
  SYMMETRY x y;
  SITE coresite
  PINA
    DIRECTION INPUT;
    PORT
    LAYER Metal1:
    RECT 19.2 8.2 19.5 10.3
    END
  END A
  OBS
  END
END ADD1
```


Prepare Data: LIB

- Operating condition
 - > slow, fast, typical
- ◆ Pin type
 - > input/output/inout
 - > function
 - > data/clock
 - > capacitance
- ◆ Path delay
- **♦** Timing constraint
 - > setup, hold, mpwh, mpwl, recovery

Prepare Data: Timing constraint

- ◆ Create clock
- ◆ Input delay
- ◆ Output delay
- ◆ Input drive
- ◆ Output loading

Prepare Data: Timing constraint -- Create Clock

create_clock [-name clock_name]
-period period_value
[-waveform edge_list]
[clock_source_list]

create_clock -name CLK1 -period 20 -waveform {0 10} [get_ports I_CLK]

Prepare Data: Timing constraint -- create_generated_clock

create_generated_clock -name CLK2 -source [get_ports I_CLK] -divide_by 2 [get_pins DF/QN]

Prepare Data: Timing constraint --set_input_delay

set_input_delay 1 -clock [get_clocks {CLK1}] [getports {In1}]

Prepare Data: Timing constraint --set_output_delay

set_output_delay delay_value [-min] CLK1 [-max] [-rise] delay Out1 [-fall] [-clock clock_name] Out1 [-add_delay] CLK1 Design [-network_latency_included] [-source_latency_included] CLK1 port_pin_list

set_output_delay 1 -clock [get_clocks {CLK1}] [getports {Out1}]

Prepare Data: Timing constraint --set_drive

rise_min, rise_max, fall_min, fall_max

set_drive 1 [get_ports {In1}]

Prepare Data: Timing constraint --set_load


```
set_load [-min]
        [-max]
        [-pin_load]
        [-wire_load]
        load_value
        port_list
```

set_load 1 [get_ports {Out1}]

Prepare Data: IO constraint

♦Create an I/O assignment file manualy using the following template:

Version: 1

MicronPerUserUnit: value

Pin: pinName side |corner

Pad: padInstanceName side|corner [cellName]

Offset: length

Skip:length

Spacing: length

Keepclear: side offset1 offset2

Prepare Data: IO constraint cont.

Version: 1

Pad: CORNER0 NW

Pad: PAD_CLK N

Pad: PAD_HALT N

Pad: CORNER1 NE

Pad: PAD_X1 W

Pad: PAD_X2 W

Pad: CORNER2 SW

Pad: PAD IOVDD1 S

Pad: PAD IOVSS1 S

Pad: CORNER3 SE

Pad: PAD_VDD1 E

Pad: PAD_VSS1 E

- ◆ Don't use stronger output buffers than what is necessary
- ◆ Use slew-rate controlled outputs
- ◆ Place power pad near the middle of the output buffer
- ◆ Place noise sensitive I/O pads away from SSO I/Os
- ◆ Place VDD and VSS pads next to clock input buffer
- ◆ Consider using double bonding on the same power pad to reduce inductance

Cadence On-Line document

unix%/usr/cadence/SOC/cur/tools/bin/cdsdoc & unix%/usr/cadence/IC/cur/tools/bin/cdsdoc & unix%/usr/cadence/LDV/cur/tools/bin/cdsdoc &

. . . .

- ◆ html browser must be installed
- do not set the proxy in html browser

Getting Started

- Source the encounter environment: unix% source /usr/cadence/cic_setup/soc.csh
- ◆ Invoke soc encounter in 64 bit mode: unix% encounter -64
- ◆ Do not run in background mode. Because the terminal become the interface of command input while running soc encounter.
- ◆ The Encounter reads the following initialization files:
 - > \$ENCOUNTER/etc/enc.tcl
 - > ./enc.tcl
 - ./enc.pref.tcl
- ◆ Log file:
 - > encounter.log*
 - > encounter.cmd*

GUI

Tool Wedgits

Design Views

- ▶ FloorplanView
 - ➤ displays the hierarchical module and block guides, connection flight lines and floorplan objects
- ◆ Amoeba View
 - ➤ display the outline of modules after placement
- ◆ Placement View
 - ➤ display the detailed placements of cells, blocks.

Display Control

Select Bar

Layers	
Metal0	<u></u>
Metal1	_
Metal2	_
Metal3	_
Metal4	_
Metal5	
V01	_
V12	_
V23	_
V34	_
V45	<u></u>

Common Used Bindkeys

Key	Action
q	Edit attribute
f	Fits display
Z	Zoom in
Z	Zoom out
Arrows	pans design area in the direction of the arrow
Delete	Removes the last ruler
Esc	Removes all rulers

Key	Action
d	popup Delete
e	popup Edit
T	editTrim
0-9	View layer [0-9]
h	hierarchy up
Н	hierarchy down

Looking for more bindkey: Design->Preference, Binding Key

Import Design

Design → Design Import...

- Max Timing Libraries
 - containing worst-case conditions for setup-time analysis
- ◆ Min Timing Libraries
 - containing best-case conditions for hold-time analysis
- ◆ Common Timing Libraries
 - > used in both setup and hold analysis
- ◆ IO Assignment File:

Import Design cont.

- ◆ Buffer Name/Footprint:
 - > specifies the buffer cell family to be inserted or swapped.
 - required to run IPO and TD placement.
- ◆ Delay Name/Footprint:
 - required to run a fix hold time violation
- ◆ Inverter Name/Footprint:
 - required to run IPO and TD placement.
- ◆ Get footprint of library cells by:
 - > Timing >Report >Cell Footprint

```
Footprint Example:
For Cells:

BUFXL

BUFX1

BUFX2

BUFX3

BUFX4

BUFX4

BUFX16

BUFX16

BUFX20

Footprint: buf
```


Import Design -- Timing

- ◆ Default Delay Pin Limit:
 - ➤ Nets with terminal counts greater than the specified value are assigned the default net delay and net load entries.
- ◆ Default Net Delay:
 - > Set the delay values for a net that meets the pin limit default.
- ◆ Default Net Load:
 - > Set the load for a net that meets the pin limit default.
- **♦** Input Transition Delay:
 - > Set the Primary inputs and clock nets.

Import Design -- Power

◆ Specify the names of Power Nets and Ground Nets

Global Net Connection

Floorplan → Gloval Net Connections...

Specify Floorplan

Floorplan --> Specify Floorplan ...

Specify Floorplan – Doube back rows

Core Limit, I/O Limnt

Place Blocks

Floorplan → Place Blocks/Modules → Place ...

- automatic place blocks (blackboxes and partitions) and hard macros at the top-level design.
- ◆ Block halo
 - > Specifies the minimum amount of space around blocks that is preserved for routing.

Manually Place Block

◆ Use functions in : Floorplan → Edit Floorplan to edit floorplan.

Align Instances...

Shift Instances...

Space Instances...

Elip/Rotate Instances...

Snap Floorplan...

Legalize Floorplan...

Set Block Placement Status...

- ◆ Set placement status of all pre-placed block to *preplaced* in order to avoid these blocks be moved by amoebaPlace later.
- ◆ Floorplan → Edit Floorplan → Set Block Placement Status...

Add Halo To Block

Floorplan → Edit Block Halo...

◆ Prevent the placement of blocks and standard cells in order to reduce

congestion around a block.

Block Placement

- ◆ Flow step
 - ➤ I/O pre-placed
 - ➤ Run quick block placement
 - Throw away standard cell placement
 - ➤ Manually fit blocks
- ◆ Block place issue
 - > power issue
 - > noise issue
 - > route issue

Block Placement

- ◆ Preserve enough power pad
- ◆ Create power rings around block
- ◆ Follow default routing direction rule
- ◆ Reserve a rounded core row area for placer

Power Planning: Add Rings

Floorplan → Power Planning → AddRings

Use wire group to avoid slot DRC error

Power Planning: Wire Group

- ✓Use wire group no interleaving ✓number of bits = 2
- YDD GND GND

- **✓**Use wire group
- **√interleaving**
- ✓ number of bits = 2

Power Planning: Block Ring

Power Planning: Block Ring cont.

Power Planning: Add Stripes

Basic Advanced Via Generation	1			
-Set Configuration				
Net(s): GND VDD				
Layer: ME4 =				
Direction: 🔷 Vertical 💠 Hori:	zontal			
Width: 5				
Spacing: 0.28	<u>U</u> pdate			
Set Pattern				
♦ Set-to-set distance: 100				
♦ Number of sets: 3				
-Stripe Offset Boundary-				
☐ Selected power domain/fence				
Relative from core or area:				
X from left: 150				
X from right: 150				

Edit Route

Edit Route cont.

Placement

$Place \rightarrow Place ...$

- ◆ Prototyping: Runs quickly, but components may not be placed at legal location.
- ◆ Timing Driven:
 - > Build timing graph before place.
 - meeting setup timing constraints with routability.
 - ➤ Limited IPO by upsizeing/downsizing instances.
- ◆ Ignore Scan Connection
 - > nets connected to either the scan-in or scan-out are ignored.
- ◆ Check placement after placed
 - > place -> Check Placement

Floorplan Purposes

- ◆ Develop early physical layout to ensure design objective can be archived
 - ➤ Minimum area for low cost
 - ➤ Minimum congestion for design routable
 - > Estimate parasitic for delay calculation
 - ➤ Analysis power for reliability
- gain early visibility into implementation issues

Guide, Region, Fence

- ◆ Placement constraint
- ◆ Create guide for timing issue
- ◆ A critical path should not through two different modules
- ◆ The more region, the more complicated floorplanning

Difference Floorplan Difference Performance

Wire Load After Placement

Module Constraint

◆ Soft Guide

♦ Guide

♦ Region

♦ Fence

Specify Scan Chain

- ◆ Specifies a scan chain in a design. The actual tracing of the scan chain is performed by the *scanTrace* or *scanReorder* command
- ftname
 - ➤ The design input/output pin name
- **♦** instPinName
 - ➤ The design instance input/output pin name

Scan Chain Reorder

Place → Reorder Scan

- ◆ No Skip
 - > Buffers and inverters remain after the scan chain reorder
- ◆ Skip Buffer
 - > Ignores buffers in the scan chain.
- ◆ Skit Two Pin Cell
 - > Ignores buffers and inverters in the scan chain

Clock Problem

- Clock problem
 - ➤ Heavy clock net loading
 - ➤ Long clock insertion delay
 - ➤ Clock skew
 - > Skew across clocks
 - ➤ Clock to signal coupling effect
 - ➤ Clock is power hungry
 - > Electromigration on clock net
- ◆ Solutions of these problems may be conflict
- ◆ Clock is one of the most important treasure in a chip, do not take it as other use.

Clock Tree Topology

Synthesize Clock Tree

Create Clock Tree Spec.

Clock → Create Clock Tree Spec

CTS

- ◆ CTS traces the clock starting from a root pin, and stops at:
 - ➤ A clock pin
 - ➤ A D-input pin
 - ➤ An instance without a timing arc
 - ➤ A user-specified leaf pin or excluded pin
- ◆ Write a CTS spec. template:
 - > specifyClockTree -template

CTS spec.

- ◆ A CTS spec. contain the following information.
 - ➤ Timing constraint file (optional)
 - ➤ Naming attributes (optional)
 - ➤ Macro model data (optional)
 - Clock grouping data (optional)
 - ➤ Attributes used by NanoRoute routing solution (optional)
 - ➤ Requirement for manual CTS or utomatic, gated CTS

CTS spec. --Naming Attributes Section

◆ TimingConstraintFile filename

> define a timing constraint file for use during CTS

◆ NameDelimiter delimiter

- ➤ name delimiter used when inserting buffers and updating clock root and net names.
- ➤ NameDelimiter # → create names clk##L3#I2
- ➤ default → clk_L3_I2

◆ UseSingleDelim YES/NO

- \rightarrow YES \rightarrow clk_L3_I2
- ➤ NO → clk_L3_I2 (default)

-- NanoRoute Attribute Section

♦ RouteTypeName name

RouteTypeName CK1

.

END

- ◆ *NonDefaultRule* ruleName
 - > Specify LEF NONDEFAULTRULE to be used
- ◆ PreferredExtraSpace [0-3]
 - ➤ add space around clock wires
- ◆ Shielding PGNetName
 - ➤ Defines the power and ground net names

- -- Macro Model Data Section
- -- Clock Grouping Section

♦ *MacroModel*

- ➤ MacroModel port R64x16/clk 90ps 80ps 90ps 80ps 17pf
- ➤ MacroModel pin ram1/clk 90ps 80ps 90ps 80ps 17pf
- delay_and_capacitance_value:
 maxRise minRise maxFall minFall inputCap

♦ ClkGroup

➤ Specifies tow or more clock domains for which you want CTS to balance the skew.

> ClkGroup

- +clockRootPinName1
- +clockRootPinName2

.

CTS Spec. --Manually Define Clock Tree Topology

ClockNetName netName

LevelNumber number

> Specify the clock tree level number

LevelSpec levelNumber numberOfBuffers bufferType

- > levelNumber
 - ✓ Specify the level number in the clock tree
- > numberOfBuffer
 - ✓ the total number of buffers CTS should allow on the specified level
- > Example:

LevelSpec 1 2 CLKBUFX2

LevelSpec 2 2 CLKBUFX2

End

-- Automatic Gated CTS Section

- **♦** AutoCTSRootPin clockRootPinName
- **♦** *MaxDelay* number{ns/ps}
- **♦ MinDelay** number{ns/ps}
- ◆ SinkMaxTran number{ns/ps}
 - maximum input transition time for sinks(clock pins)
- **♦ BufMaxTran** number{ns/ps}
 - > maximum input transition time for buffers (defalut 400)
- **◆** *MaxSkew* number{ns/ps}

-- Automatic Gated CTS Section cont.

- ◆ *NoGating* {rising|falling|NO}
 - > rising: stops tracing through a gate(include buffers and inverters) and treats the gate as a rising-edge-triggered flip-flop clock pin.
 - ➤ falling: stops tracing through a gate(include buffers and inverters) and treats the gate as a falling-edge-triggered flip-flop clock pin.
 - ➤ No: Allows CTS to trace through clock gating logic. (default)
- ◆ AddDriverCell driver_cell_name
 - ➤ Place a driver cell at the cloest possible location to the clock port location .

-- Automatic Gated CTS Section cont.

- **♦** *MaxDepth* number
- **♦** *RouteType* routeTypeName
- **♦** RouteClkNet YES/NO
 - > Specifies whether CTS routes clock nets.
- ◆ PostOpt YES/NO
 - ➤ whether CTS resizes buffers of inverters, refines placement, and corrects routing for signal and clock wires.
 - > default YES
- ◆ Buffer cell1 cell2 cell3 ...
 - > Specifies the names of buffer cells to use during CTS.

-- Automatic Gated CTS Section cont.

♦ LeafPin

- + pinName rising/falling
- +
 - ➤ Mark the pin as a "leaf" pin for non-clock-type instances.
- ➤ LeafPin
 - + instance1/A rising
 - + instance2/A rising

.

♦ LeafPort

- + portName rising/faling
- +
 - ➤ Mark the port as a "leaf" port for non-clock-type instances

- -- Automatic Gated CTS Section cont.
- ◆ ExcludedPin + pinName
 - +
- ◆ ExcludedPort
 - + portName
 - +

Treats the port as a non-leaf port, and prevents tracing and skew analysis of the pin.

-- Automatic Gated CTS Section cont.

♦ ThroughPin

- + pinName
- +

Traces through the pin, even it the pin is a clock pin

▶ PreservePin

+ inputPinName

+

> Preserve the netlist for the pin and pins below the pin in the clock tree.

-- Automatic Gated CTS Section cont.

♦ DefaultMaxCap capvalue

- > CTS adheres to the following priority when using maximum capacitance value:
 - ✓ MaxCap statements in the clock tree specification file
 - ✓ DefaultMaxCap statement in the clock tree specification file
 - ✓ Maximum capacitance values in the SDC file
 - ✓ maximum capacitance values in the .lib file

♦ MaxCap

- + bufferName1 capValue1{pf/ff}
- + bufferName2 capValue2{pf/ff}
- +
- ➤ Buffer should be inserted if the given capacitance value is exceeded

Synthesize Clock Tree

Clock → Synthesize Clock Tree

Reconvergence clock

Clock Synthesis report

- ◆ Summary report and detail report
 - > number of sub trees
 - ➤ rise/fall insertion delay
 - > trigger edge skew
 - > rise/fall skew
 - buffer and clock pin transition time
 - > detailed delay ranges for all buffers add to clocks

◆ Clock nets

- > Saves the generated clock nets
- > used to guide clock net routing
- ◆ Clock routing guide
 - > Saves the clock tree routing data
 - > used as preroute guide while running Trial Route

Display Clock Tree

Clock → Display Clock Tree...

Display Clock Tree -- by level

Display Clock Tree --by phase delay

Clock Tree Browser

Clock → Clock Tree Brower

- ◆ Display trig edge, rise/fall delay, rise/fall skew, input delay, input tran of each cell.
- ◆ Resize/Delete leaf cell or clock buffer
- ◆ Reconnect clock tree

In-Place Optimization

Timing →In-Place Optimization...

♦ IPO

- > setup time
- ➤ hold time
- ➤ DRV (Design Rule Violation)

Congestion Optimization

```
encounter > congOpt
    [-nrIterInCongOpt nrIter]
    [-maxCPUTimeInCongOpt time]
```

- ◆ Reduces congestion after placement in an iterative way.
- **♦** Parameters
 - > nrIterInCongOpt nrIter
 - ✓ Specifies the total number of iteration in congestion optimization. (default 1)
 - maxCPUTimeInCongOpt
 - ✓ specifies the maximum CPU time in congestion optimization, in hours.

Balance Slew

```
encounter > balanceSlew
     [ -selNetFile selNetFileName ]
     [ -excNetFile excNetFileName ]
```

- ◆ Speeds up or slows down the transition time if it is greater or less than the specified maximum transition time.
- **♦** Parameters
 - > selNetFile selNetFileName
 - ✓ Specifies th file that contains the hierarchical net names that are excluded from the IPO pperation
 - > excNetFile excNetFileName
 - ✓ Specifies the file that contains the hierarchical net (path) names for the IPO operations. Only these net names are considered.

Useful Skew

encounter > setAnalysisMode -usefulSkew

encounter > skewClock

encounter > optCritPath

balanced clock

Trial Route

• perform quick routing for congestion and parasitics

estimation

- ◆ Prototyping:
 - Quickly to gauge the feasibility of netlist.
 - > components in design might no be routed at legal location

Trial Route Congestion Marker

The vertical (V) overflow is 25/20 (25 tracks are required, but only 20 tracks are available). The Horizontal (H) overflow is 16/18 (16 tracks are required, and 18 tracks are available).

Trial Route Congestion Marker cont.

Level	Color	Overflow Value
1	Blue	One more track required
2	Green	Two more track required
3	Yellow	Three more track required
4	• Red	Four more track required
5	Magenta	Five more track required
6 and higher	Grey to White	Six or more track required

Timing Analysis

Timing → Specify Analysis Condition → Specify RC Extraction Mode ...

Timing →Extract RC...
Timing →Timing Analysis...

- ◆ No Async/Async:
 - > recovery, removal check
- ◆ No Skew/Skew:
 - check with/without clock skew constraint

Slack Browser

Timing → Timing Debug → Slack Browser...

Power Analysis

Timing →Extract RC...

Power →Edit Pad Location...

Power →Edit Net Toggle Probability...

Statistical Power Analysis

Power →Power Analysis →Statistical

- analysis report:
 - ➤ A power graph
 - > report contains
 - ✓ average power usage
 - ✓ worst IR drop
 - ✓ worst EM violation
 - instance power file
 - ➤ instance voltage file
 - boundary voltage file

Simlation-Based Power Analysis

Power → Power Analysis → Simulation-Based

- save netlist for simulation
 - > Design ->Save -> Netlist...
- simulation and dump vcd file.
 - > \$dumpvars;
 - \$dumpfile("wave.vcd");
- Input vcd file for power analysis

Display IR Drop

Power → Display → Display IR Drop...

Display Electron Migration

Power →Display →Display EM...

SRoute

- ◆ Route Special Net (power/ground net)
 - ➤ Block pins
 - ➤ Pad pins
 - > Pad rings
 - > Standard cell pins
 - > Stripes (unconnected)

Add IO filler

```
addIoFiller -cell PFILL -prefix IOFILLER
addIoFiller -cell PFILL_9 -prefix IOFILLER
addIoFiller -cell PFILL_1 -prefix IOFILLER
addIoFiller -cell PFILL_01 -prefix IOFILLER -fillAnyGap
```

- ◆ Connect io pad power bus by inserting IO filler.
- ◆ Add from wider filler to narrower filler.

Add IO filler cont.

- ◆ In order to avoid DRC error
 - The sequence of placing fillers must be from wider fillers to narrower ones.
 - ➤ Only the smallest filler can use -fillAnyGap option.

NanoRoute

Route →NanoRoute

NanoRoute Attributes

Route → NanoRoute/Attributes

-	Na	anoRoute/Attribu	tes	- -
_Net Attributes—				
Net Type(s):	☐ Clock Nets ☐ Exter	rnal Nets 🔟 Criti		
Net Name(s):				
Skip Antenna		Top Layer	ASIS Bottom Layer	ASIS
Skip Routing	♦ TRUE ♦ FALSE ♦ ASIS	Weight	ASIS Spacing	ASIS
Avoid Detour	♦ TRUE ♦ FALSE ♦ ASIS	Shield Net(s)	ASIS	
SI Prevention	♦ TRUE ♦ FALSE ♦ ASIS	Nondefault Rule	ASIS	
SI Post Route Fix	♦ TRUE ♦ FALSE ♦ ASIS	Pattern	ASIS	
<u>0</u> K	<u>A</u> pply	<u>S</u> elect	<u>C</u> ancel	<u>H</u> elp

114

Crosstalk

Crosstalk problem are getting more serious in 0.25um and below for:

- > Smaller pitches
- > Greater height/width ratio
- > Higher design frequency

Crosstalk Problem

◆ Delay problem

◆ Noise problem

Crosstalk Prevention

- ◆ Placement solution
 - > Insert buffer in lines
 - ➤ Upsize driver
 - ➤ Congestion optimization
- ◆ Routing solution
 - ➤ Limit length of parallel nets
 - > Wider routing grid
 - > Shield special nets

Antenna Effect

- ◆ In a chip manufacturing process, Metal is initially deposited so it covers the entire chip.
- ◆ Then, the unneeded portions of the metal are removed by etching, typically in plasma(charged particles).
- ◆ The exposed metal collect charge from plasma and form voltage potential.
- ◆ If the voltage potential across the gate oxide becomes large enough, the current can damage the gate oxide.

Antenna Ratio

Antenna Problem Repair

- ◆ Add jumper
- ◆ Add antenna cell (diode)
- ◆ Add buffer

Add Core Filler

$Place \rightarrow Filler \rightarrow Add \ Filler \dots$

- ◆ Connect the NWELL/PWELL layer in core rows.
- ◆ Insert Well contact.
- ◆ Add from wider filler to narrower filler.

Add bonding pads (stagger IO pads only)

Add bonding pads (stagger IO pads only)

- ◆ For the limitation of bonding wire technique, the stagger IO pads are used in order to reduce IO pad width.
- ◆ We have to add the bonding pads after APR is finished if stagger IO pads is used. But SE does not provide a built-in function for add bonding pads, CIC reaches this purpose by the way of importing DEF.
- ◆ CIC provides a perl script to calculate the bonding pad location. The full flow is described in next page

Add bonding pads flow (stagger IO pads only)

Output Data

Design →Save →GDS...

Design →Save->Netlist...

Design →Save->DEF

- ◆ Export GDS for DRC,LVS,LPE,and tape out.
- ◆ Export Netlist for LVS and simulation.
- ◆ Export DEF for reordered scan chain.

Chapter2

Post-Layout Verification – DRC/ERC/LVS/LPE

Post-Layout Verification Overview

- ◆ Post-Layout Verification do the following things :
 - ➤ DRC (Design Rule Check)
 - > ERC (Electrical Rule Check)
 - ➤ LVS (Layout versus Schematic)
 - ➤ LPE/PRE (Layout Parasitic Extraction / Parasitic Resistance Extraction) and Post-Layout Simulation.

Post-Layout Verification Overview cont.

Post-Layout Verification Overview

DRC flow

- ◆ Prepare Layout
 - > stream in gds2
 - ➤ add power pad text
 - > stream out gds2
- ◆ Prepare command file
- ◆ run DRC
- ◆ View DRC error (DRC summary/RVE)

Prepare Layout

Prepare Layout: Stream In GDSII

- ◆ Require:
 - > technology file
 - ➤ display.drf
- ◆ File->import->stream

Prepare Layout: Add Power Text

- ◆ Add power text for LVS and Nanosim
- ◆ For UMC18/artisan library
 - ➤ Add text DVDD for IO power pad
 - ➤ Add text DGND for IO ground pad
 - ➤ Add text VDD for core power pad
 - ➤ Add text GND for core ground pad

Prepare Layout: Stream Out GDSII

lacktriangledown File->Export->stream..

Prepare command file

- ◆ Prepare DRC Command file:
 - > **0.18** (CBDK018_UMC_Artisan) Calibre
 - ✓ 180nm_layers.cal
 - ✓ G-DF-IXEMODE_RCMOS18-1.8V-3.3V-1P6M-MMC-Calibre-drc-2.2-p1

Prepare Calibre Command file

◆ Edit runset file

```
LAYOUT PATH "CHIP.gds2"
LAYOUT PRIMARY "CHIP"

LAYOUT SYSTEM GDSII
...
...
DRC SELECT CHECK
NW.W.1
NW.W.2
...
DRC UNSELECT CHECK
NW.S.1Y
NW.S.2Y
...
DRC ICSTATION YES
INCLUDE "Calibre-drc-cur"
```


Submit Calibre Job

- ◆ Submit Calibre Job
 - > calibre -drc umc18DRC.cal
- ◆ Result log
 - ➤ CHIP.drc.summary (ASCII result)
 - > CHIP.drc.results (Graphic result)

Using Calibre RVE

◆ Add in .cdsinit

setSkillPath(". ~/ /usr/memtor/Calibre_ss/cur/shared/pkgs/icb/tools/queryskl")
load("calibre.skl")

Using Calibre RVE

Using Calibre RVE

LVS Overview

Layout Data

Schematic Netlist

Initial Correspondence Points

- ◆ Initial correspondence points establish a starting place for layout and schematic comparison.
- ◆ Create initial correspondence node pairs by
 - ➤ adding text strings on layout database.
 - ➤ all pins in the top of schematic netlist will be treated as an initial corresponding node if calibre finds a text string in layout which matches the node name in schematic.

Black-Box LVS

Calibre black-box LVS

- ➤ One type of hierarchical LVS.
- ➤ Black-box LVS treats every library cell as a *black box*.
- ➤ Black-box LVS checks only the interconnections between library cells in your design, but not cell inside.
- ➤ You need not know the detail layout of every library cells.
- > Reduce CPU time.

Black-Box LVS vs. Transistor-Level LVS

Transistor Level LVS

Black-Box LVS

VS.

LVS flow

- ◆ Prepare Layout
 - ➤ The same as DRC Prepare Layout
- ◆ Prepare Netlist
 - > v2lvs
- ◆ Prepare calibre command file
- ♦ run calibre LVS
- ◆ View LVS error (LVS summary/RVE)

Prepare Netlist for Calibre LVS

Prepare Netlist

♦ v2lvs ¬v CHIP.v ¬l umc18lvs.v ¬o CHIP.spi ¬s umc18lvs.spi ¬s1 VDD ¬s0 GND

If a macro DRAM64x16 is used

◆ v2lvs ¬v CHIP.v ¬l umc18lvs.v ¬l DRAM64x16.v ¬o CHIP.spi ¬s umc18lvs.spi ¬s DRAM64x16.spi ¬s1 VDD ¬s0 GND

CIC Supported Files (0.18)

- ◆ CIC supports the following files in our cell library design kit.
 - Calibre LVS runset file umc18LVS.cal
 - Calibre LVS rule file
 G-DF-MIXEDMODE_RFCMOS18-1.8V_3.3V-1P6M-MMCCALIBRE-LVS-1.2-P3.txt
 - ➤ Black-box LVS relative files
 - ✓ pseudo spice file umc18LVS.spi
 - ✓ pseudo verilog file umc18LVS.v

Black Box related file

◆ Pseudo spice file

```
.GLOBAL VDD VSS
.SUBCKT AN2D1 Z A1 A2 VDD GND
.ENDS
```

◆ Pseudo verilog file

```
module AN2D1 (Z, A1, A2);
output Z;
input A1;
input A2;
endmodule
```

Prepare command file for Calibre LVS

◆ Edit Calibre LVS runset

```
LAYOUT PATH "CHIP.calibre.gds"
LAYOUT PIMARY "CHIP"

LAYOUT SYSTEM GDSII

SOURCE PATH "CHIP.spi"
SOURCE PRIMARY "CHIP"
...

INCLUDE "/calibre/LVS/Calibre-lvs-cur"
```

◆ Edit Calibre LVS rule file

```
LVS BOX PVSSC
LVS BOX PVSSR
LVS BOX DRAM64x4s
```


Submit Calibre LVS

◆ calibre —lvs —spice layout.spi —hier —auto umc18LVS.cal > lvs.log

- ◆ OVERALL COMPAISON RESULTS
- ◆ CELL SUMMARY
- ◆ INFORMATION AND WARNINGS
- ◆ Initial Correspondence Points

Check Calibre LVS Summary OVERALL COMPAISON RESULTS

OVERALL COMPARISON RESULTS

CELL SUMMARY

CELL SUMMARY

INFORMATION AND WARNINGS

INFORMATION AND WARNINGS

	Matched	Matched	Unmatched	Unmatched	Component
	Layout	Source	Layout	Source	Type
Nets:	11525	11525	0	0	
Instances:	1	1	0	0	ADDFHX1
	54	54	0	0	ADDFHX4
	79	79	0	0	ADDFX2
	542	542	0	0	AND2X1
	8	8	0	0	XOR3X2
Total Inst:	10682	10682	0	0	

Initial Correspondence Points

o Initial Correspondence Points:

Nets: DVDD VDD DGND GND I_X[2] I_X[3] I_X[4] I_X[5] I_X[6] I_X[7] I_X[8] I_X[9] I_X[10] I_X[11] O_SCAN_OUT O_Z[0] O_Z[1] O_Z[2] O_Z[3] I_HALT I_RESET_ I_DoDCT I_RamBistE I_CLK I_SCAN_IN I_SCAN_EN I_X[0] O_Z[4] I_X[1] O_Z[5] O_Z[6] O_Z[7] O_Z[8] O_Z[9] O_Z[10] O_Z[11]

Check Calibre LVS Log

- **◆** TEXT OBJECT FOR CONNECTIVITY EXTRACTION
- **♦** PORTS
- ◆ Extraction Errors and Warnings for cell "CHIP"

Check Calibre LVS Log TEXT OBJECT FOR CONNECTIVITY EXTRACTION

TEXT OBJECTS FOR CONNECTIVITY EXTRACTION

O_Z[0] (523.447,31.68) 105 CHIP O_Z[1] (598.068,31.68) 105 CHIP O_Z[2] (821.931,31.68) 105 CHIP O_Z[3] (896.553,31.68) 105 CHIP O_Z[4] (971.175,31.68) 105 CHIP O_Z[5] (1164.455,446.966) 105 CHIP O_Z[6] (1164.455,446.966) 105 CHIP O_Z[8] (1164.455,594.97) 105 CHIP O_Z[9] (1164.455,668.972) 105 CHIP O_Z[10] (1164.455,742.974) 105 CHIP O_Z[11] (1164.455,816.976) 105 CHIP

.

.

Check Calibre LVS Log

PORTS

.

.

Check Calibre LVS Log

Extraction Errors and Warnings for cell "CHIP"

Extraction Errors and Warnings for cell "CHIP"

WARNING: Short circuit - Different names on one net:

Net Id: 18

- (1) name "GND" at location (330.301,216.95) on layer 102 "M2_TEXT"
- (2) name "GND" at location (673.2,29.1) on layer 101 "M1_TEXT"
- (3) name "VDD" at location (748.1,31.5) on layer 101 "M1_TEXT"
- (4) name "VDD" at location (208.93,274.56) on layer 101 "M1_TEXT" The name "VDD" was assigned to the net.

Chapter3

Post-Layout Timing Analysis

-- Nanosim

What Introduce After Place&Route?

◆ Interconnection wire's parasitic capacitance.

What Introduce After Place&Route?

◆ Interconnection wires' parasitic resistance.

Pre-Layout And Post-Layout Design

◆ A pre-layout design (before P&R) and a post-layout design (after P&R)

Why Post-Layout Simulation?

Post-layout Timing Analysis Flow

Transistor-level Post-layout Simulation

What is Nanosim

- Nanosim is a transistor- level timing simulation tool for digital and mixed signal CMOS and BiCMOS designs.
- Nanosim handles voltage simulation and timing check.
- ◆ Simulation is event driven, targeting between SPICE (circuit simulator) and Verilog (logic simulator).

- ◆ Apply for a CIC account
 - ➤ http://www.cic.org.tw ⇒ 工作站帳號申請.
 - > fill in your personal data and your request.
- ◆ Install *identd* program
 - > this program is used to identify yourself when you log into CIC's account from remote machine.
- ◆ Put your DB file to CIC's account

Replace Layout / LPE

```
♦Oentry
  -M {LPE}
  -tech {UMC18 | TSMC18 | TSMC25 | TSMC35}
  -f GDSII
  -T Top cell name
  -s Ram spce filename
  -t {ra1sd | ra1sh | ra2sd | ra2sh | rf2sh |
      t18ra1sh | t18ra2sh | t18rf1sh | t18rf2sh | t18rodsh |
      18ra1sh_1 | 18ra1sh_2 | 18ra2sh}
  -c {UMC18 | TSMC18 | TSMC25 | TSMC35}
  -i {UMC18 | TSMC18 | TSMC25 | TSMC35}
  -o Netlist file_name
◆Example:
 >Qentry -M LPE -tech UMC18 -f CHIP.gds -T CHIP
   -s RAM1.spec -t 18ra2sh -s RAM2.spec -t 18ra1sh 1
   -s RAM3.spec -t 18ralsh 2 -c UMC18 -i UMC18 -o CHIP.netlist
◆Use Qstat to check the status of your job.
                                                                169
◆The result is stored in "result_#" directory.
```


Replace/LPE

♦ INPUT

- > gds2
- > ram spec

◆ OUTPUT

- > output netlist
- > TOP_CELL.NAME
- > nodename
- > spice.header
- > nanosim.run
- > log files for strem in, stream out, lpe

Running Nanosim

```
◆Qentry
    -M {NANOSIM}
    -n {CHIP.io}
    -nspice CHIP.netlist spice.header
    -nvec CHIP.vec
-m Top_cell_name
    -c {CHIP.cfg}
    -z {CHIP.tech.z}
    -o Output_file_name
    -out fsdb
-t Total_simulation_time
```

- ◆Example:
 - ➤ Qentry -M NANOSIM -nspice CHIP.netlist spice.header -nvec CHIP.vec -m CHIP -c CHIP.cfg -z CHIP.tech.z -o UMC18 -t 100
- ◆Use Qstat to check the status of your job.
- ◆The result is stored in "result_#" directory.

Spice Header File

- ◆ Spice Header File → Modify PVT
 - > .lib 'l18u18v.012' L18U_BJD
 - > .lib 'l18u18v.012' L18U18V_TT
 - > .lib 'l18u33v_g2.011' l18u33v_tt
 - > *epic tech="voltage 3.3"
 - *epic tech="temperature 100"

Generate Nanosim Simulation Pattern

◆ Input simulation pattern --- *vec* format

```
type vec
signal CLOCK,START,IN[7:0]
; time
              clock start
                                in<7:0>
radix
                                     44
io
                                     ii
high 3.3
low 0.0
       25
                                     XX
       50
                                     XX
       75
                                     XX
```


Generate Nanosim Simulation Pattern

◆ Input simulation pattern --- *nsvt* format

Generate Nanosim Simulation Pattern

◆ You can generate Nanosim simulation pattern from Verilog-XL stimulus.

Verilog test bench file

```
integer outf;
initial begin
  outf = $fopen("input.dat");
    . . . .
  $fclose(outf);
  $finish;
  end

always @(sys_clock or start or in)
        $fdisplay(outf,"%t %b %b %h",$time,sys_clock,start,in);
    . . . .
```


Nanosim Configuration File

```
Example Nanosim_configuration file
```

```
bus_notation [ : ]
print_node_logic ADRS[0]
print_node_logic CLK
print_node_logic DATA[0]
....
report_node_power VDD
set_node_gnd DGND
set_node_gnd GND
set_node_v DVDD 3.3
set_node_v VDD 1.8
```

nodename file

```
ADRS[0]
ADRS[1]
.....
CLK
DATA[0]
.....
```


View Simulation Result --- nWave

- ◆ NOVAS nWave
 - ➤ a waveform viewer which support Timemill output waveform format.
- ◆ Environment setup

unix% source /usr/debussy/CIC/debussy.csh

◆ Starting *nWave*

unix% nWave &

Load Simulation Result --- nWave

Select Signals --- nWave

Check Simulation Result --- nWave

Power Analysis Result

lack The power analysis result is stored in Nanosim simulation $\log(xxx.log)$ file

```
Current information calculated over the intervals:

0.00000e+00 - 1.00010e+03 ns

Node: VDD
Average current : -3.53355e+05 uA
RMS current : 3.53388e+05 uA

Current peak #1 : -4.54061e+05 uA at 6.78400e+02 ns
Current peak #2 : -4.34973e+05 uA at 4.00000e-01 ns
Current peak #3 : -3.88048e+05 uA at 2.59000e+01 ns
Current peak #4 : -3.87280e+05 uA at 1.27500e+02 ns
Current peak #5 : -3.84302e+05 uA at 5.77800e+02 ns
```