

Description

The S4560 is dual operational amplifiers which achieve approximately twice the high output current of the S4560, as well as featuring a higher slew rate of 4V/us, a gain band width of 10MHz, and an improved frequency characteristic.

Features

- Built-in output short-circuit protection circuit.
- Internal phase correction.
- No latch-up
- Wide same phase mode and differential voltage ranges
- High gain. low noise

Applications

- Active filters
- Audio amplifiers
- VCOs
- Other electronic circuits

Ordering Information

Type NO.	Marking	Package Code
S4560	S4560	SOP-8

Outline Dimensions unit: mm

KSI-K004-000 1

Absolute maximum ratings

 $(Ta = 25 \, {}^{\circ}C)$

Characteristic	Symbol	Ratings	Unit	
Supply voltage	V_{CC}	±18	V	
Differential input voltage	V_{ID}	±30	V	
Input voltage	V_{IC}	-Vcc~Vcc	V	
Power Dissipation	P _D *	550	mW	
Operating temperature	T_{opr}	-40 ~ +85	°C	
Storage temperature	T_{stg}	-55 ~ +125	°C	

^{*} Refer to Pd characteristics diagram. The values for the S4560 are those when it is mounted on a glass epoxy $PCB(50 \text{ mm} \times 50 \text{ mm} \times 1.6 \text{ mm})$.

Electrical Characteristics

(Unless otherwise specified. $V_{CC} = +15V$, $V_{EE} = -15V$ and Ta = 25 °C)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input offset voltage	V_{IOS}	$Rg \leq 10 \text{ k}\Omega$	-	0.5	6	mV
Input offset current	I_{IOS}	-	-	5	200	nA
Input bias current	I_{IB}	-	-	50	500	nA
Input common mode Voltage Range	$V_{\rm ICR}$	-	±12	±14	-	V
Maximum Output Voltage	V _{OM}	R _L ≥ 10 kΩ	±12	±14	-	V
Maximum Output Voltage		R _L ≥ 2 kΩ	±10	±13	-	V
Large signal Voltage Gain	G _V	Vout=±10V, RL≥2 kΩ	86	100	1	dB
Common mode rejection ratio	CMRR	Rg ≤ 10 kΩ	70	90	1	dB
Power supply rejection ratio	PSRR	Rg ≤ 10 kΩ	-	30	150	uV/V
Slew Rate	SR	$G_V=1$, $R_L \ge 2$ k Ω	-	4.0	-	V/us
Input conversion noise voltage	V _n	-	-	-	2.2	uV
Gain band width product	GBW	f=10kHz	_	10	-	MHz

KSI-K004-000 2

Electrical Characteristic Curves

Fig. 1 G_V – f

Fig. 3 I_{IB} - T_a

Fig. 5 I_Q - V_{CC} / V_{EE}

Fig. 2 $V_{OP-P}-f$

Fig. 4 V_{ICR} - V_{CC} / V_{EE}

Fig. 6 I_{IB} - V_{CC}

KSI-K004-000 3