LAMPIRAN *OUTPUT* PENELITIAN

1. HARDWARE PROTOTYPE

Inertial Sensor (modified from WiiMote &

Foot switch (inside sandal)

Power

WiiMotion+) 2. PROGRAM SOURCE CODE AND SCREENSHOOT FOR DATA ACQUISITION (USING C#)

2.1 Program.cs

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using WiimoteLib;
namespace Parameter_Gait
    static class Program
        /// <summary>
        /// The main entry point for the application.
/// </summary>
        [STAThread]
        static void Main()
            Application.EnableVisualStyles();
            Application.SetCompatibleTextRenderingDefault(false);
            Application.Run(new AnalisisGait());
        }
    }
```

2.2 AnalisisGait.cs

```
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using WiimoteLib;
```

```
using System.Drawing.Drawing2D;
using System.Runtime.InteropServices;
/*using AForge.Video;
using AForge.Video.VFW;
using AForge.Video.DirectShow;*/
namespace Parameter_Gait
    public partial class AnalisisGait : Form
        // map a wiimote to a specific state user control dealie
        Dictionary<Guid, parameter> mWiimoteMap = new Dictionary<Guid, parameter>();
        WiimoteCollection mWC;
        /*public FilterInfoCollection VideoCaptureDevices;
        public VideoCaptureDevice FinalVideo;*/
        public AnalisisGait()
           InitializeComponent();}
        private void AnalisisGait_Load(object sender, EventArgs e)
            // find all wiimotes connected to the system
            mWC = new WiimoteCollection();
            int index = 1;
            try
            { mWC.FindAllWiimotes();}
            catch (WiimoteNotFoundException ex)
                 MessageBox.Show(ex.Message, "Wiimote not found error",
                MessageBoxButtons.OK, MessageBoxIcon.Error); }
            catch (WiimoteException ex)
                MessageBox.Show(ex.Message, "Wiimote error", MessageBoxButtons.OK,
                MessageBoxIcon.Error);
            catch (Exception ex)
                MessageBox.Show(ex.Message, "Unknown error", MessageBoxButtons.OK,
                MessageBoxIcon.Error);
            }
            foreach (Wiimote wm in mWC)
                // create a new tab
                TabPage tp = new TabPage("Wiimote " + index);
                tabWiimotes.TabPages.Add(tp);
                // create a new user control
                parameter wi = new parameter(wm);
                tp.Controls.Add(wi);
                // setup the map from this wiimote's ID to that control
                mWiimoteMap[wm.ID] = wi;
                // connect it and set it up as always
                wm.WiimoteChanged += wm_WiimoteChanged;
                wm.WiimoteExtensionChanged += wm_WiimoteExtensionChanged;
                wm.Connect();
                if (wm.WiimoteState.ExtensionType != ExtensionType.BalanceBoard)
                    wm.SetReportType(InputReport.IRExtensionAccel,
                    IRSensitivity.Maximum, true);
                wm.SetLEDs(index++);
            }
        }
        void wm_WiimoteChanged(object sender, WiimoteChangedEventArgs e)
            parameter wi = mWiimoteMap[((Wiimote)sender).ID];
            wi.UpdateState(e);
```

```
}
     void wm_WiimoteExtensionChanged(object sender, WiimoteExtensionChangedEventArgs e)
            // find the control for this Wiimote
            parameter wi = mWiimoteMap[((Wiimote)sender).ID];
            wi.UpdateExtension(e);
            if (e.Inserted)
                ((Wiimote)sender).SetReportType(InputReport.IRExtensionAccel, true);
            else
                ((Wiimote)sender).SetReportType(InputReport.IRAccel, true);
        }
        private void AnalisisGait_FormClosing(object sender, FormClosingEventArgs e)
            foreach (Wiimote wm in mWC)
                wm.Disconnect();
        }
   }
}
```

2.3 parameter.cs

```
using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Drawing.Imaging;
using System.Data;
using System.Diagnostics;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;
using WiimoteLib;
using Microsoft.Office.Core;
using Excel = Microsoft.Office.Interop.Excel;
namespace Parameter_Gait
    public partial class parameter : UserControl
         //inisiasi delegate untuk meng-update wiimote state & perubahan extension
        private delegate void UpdateWiimoteStateDelegate(WiimoteChangedEventArgs args);
        private delegate void
UpdateExtensionChangedDelegate(WiimoteExtensionChangedEventArgs args);
        private Wiimote mWiimote;
        private int rollfast = 0; private int pitchfast = 0; private int yawfast = 0;
        private int toecek = 0; private int heelcek = 0;
        double[] state = new double[14];
        public parameter()
            InitializeComponent();
            //g = Graphics.FromImage(b);
        /* WIIMOTE: fungsi-fungsi untuk Wiimote
        public parameter(Wiimote wm):this ()
             mWiimote = wm;
        }
        //BEGININVOKE prosedur untuk memanggil delegate update wiimote state
        public void UpdateState(WiimoteChangedEventArgs args)
```

```
BeginInvoke(new UpdateWiimoteStateDelegate(UpdateWiimoteChanged), args);
        }
        //BEGININVOKE prosedur untuk memanggil delegate update perubahan extension
        public void UpdateExtension(WiimoteExtensionChangedEventArgs args)
        {
            BeginInvoke(new UpdateExtensionChangedDelegate(UpdateExtensionChanged),
args);
        }
        private void chkLED_CheckedChanged(object sender, EventArgs e)
            mWiimote.SetLEDs(chkLED1.Checked, chkLED2.Checked, chkLED3.Checked,
chkLED4.Checked);
        }
        //prosedur meng-update perubahan wiimote state
        private void UpdateWiimoteChanged(WiimoteChangedEventArgs args)
            WiimoteState ws = args.WiimoteState;
            toe.Checked = ws.ButtonState.Left;
            if (ws.ButtonState.Left)
            { toecek = 1; }
            else
            { toecek = 0; }
            heel.Checked = ws.ButtonState.Up;
            if (ws.ButtonState.Up)
            { heelcek = 1; }
            else
            { heelcek = 0; }
            lblAccel.Text = ws.AccelState.Values.ToString();
            switch (ws.ExtensionType)
                //extension yang digunakan hanya MotionPlus; nunchuck, balance board,
classic controllers, dll. tidak digunakan
                case ExtensionType.MotionPlus:
                    lblMotionPlus.Text = ws.MotionPlusState.RawValues.ToString();
                    clbSpeed.SetItemChecked(0, ws.MotionPlusState.YawFast);
                    clbSpeed.SetItemChecked(1, ws.MotionPlusState.PitchFast);
                    clbSpeed.SetItemChecked(2, ws.MotionPlusState.RollFast);
                    if (ws.MotionPlusState.YawFast)
                    { yawfast = 1; }
                    else
                    { yawfast = 0; }
                    if (ws.MotionPlusState.PitchFast)
                    { pitchfast = 1; }
                    else
                    { pitchfast = 0; }
                    if (ws.MotionPlusState.RollFast)
                    { rollfast = 1; }
                    else
                    { rollfast = 0; }
                    break;
            //q.Clear(Color.Black);
            pbBattery.Value = (ws.Battery > 0xc8 ? 0xc8 : (int)ws.Battery);
            lblBattery.Text = ws.Battery.ToString();
            lblDevicePath.Text = "Device Path: " + mWiimote.HIDDevicePath;
            state[1] = rollfast;
            state[2] = pitchfast;
            state[3] = yawfast;
            state[4] = (double)(ws.AccelState.Values.X * 9.8);
```

```
state[5] = (double)(ws.AccelState.Values.Y * 9.8);
            state[6] = (double)(ws.AccelState.Values.Z * 9.8);
            state[7] = (double)(ws.MotionPlusState.RawValues.X);
            state[8] = (double)(ws.MotionPlusState.RawValues.Y);
            state[9] = (double)(ws.MotionPlusState.RawValues.Z);
            state[10] = toecek;
            state[11] = heelcek;
            chkLED1.Checked = ws.LEDState.LED1;
            chkLED2.Checked = ws.LEDState.LED2;
            chkLED3.Checked = ws.LEDState.LED3;
            chkLED4.Checked = ws.LEDState.LED4;
        }
        //prosedur meng-update perubahan extension
        private void UpdateExtensionChanged(WiimoteExtensionChangedEventArgs args)
        {
            chkExtension.Text = args.ExtensionType.ToString();
            chkExtension.Checked = args.Inserted;
        }
        public Wiimote Wiimote
            set { mWiimote = value; }
        }
        /* fungsi-fungsi user control untuk form
        private void initMPlus_Click(object sender, EventArgs e)
        {
            mWiimote.InitializeMotionPlus();
        System.Globalization.CultureInfo oldCI;
        //get the old CurrenCulture and set the new, en-US
        void SetNewCurrentCulture()
        {
            oldCI = System.Threading.Thread.CurrentThread.CurrentCulture;
            System.Threading.Thread.CurrentThread.CurrentCulture = new
System.Globalization.CultureInfo("en-US");
        //reset Current Culture back to the originale
        void ResetCurrentCulture()
        {
            System.Threading.Thread.CurrentThread.CurrentCulture = oldCI;
        }
        public void data()
            Stopwatch sw = new Stopwatch();
            //buat kalarray
            int col = 0;
            double[,] dataarray = new double[2100, 12];
            sw.Start();
            while (sw.ElapsedMilliseconds<21000)</pre>
            {
                swcounter.Text = sw.ElapsedMilliseconds.ToString();
                swsecond.Text = sw.Elapsed.Seconds.ToString();
                //isi kolom dataarray 0 - 11
                dataarray[col, 0] = sw.ElapsedMilliseconds;
                for (int j = 1; j < 12; j++)
                {
                    dataarray[col, j] = state[j];
                PauseForMilliSeconds(10);
                col++;
            sw.Stop();
            SetNewCurrentCulture();
            Excel.Application myExcelApp = new Excel.ApplicationClass();
```

```
myExcelApp.Visible = true;
            object misValue = System.Reflection.Missing.Value;
            Excel.Workbooks myExcelWorkbooks = myExcelApp.Workbooks;
            Excel.Workbook myExcelWorkbook = myExcelWorkbooks.Add(misValue);
            Excel.Worksheet kal = (Excel.Worksheet)myExcelWorkbook.ActiveSheet;
            kal.Cells[1, 1] = "Waktu";
            kal.Cells[1, 2] = "FastBit Roll";
            kal.Cells[1, 3] = "FastBit Pitch";
            kal.Cells[1, 4] = "FastBit Yaw";
            kal.Cells[1, 5] = "AX";
            kal.Cells[1, 6] = "AY";
kal.Cells[1, 7] = "AZ";
            kal.Cells[1, 8] = "GX";
            kal.Cells[1, 9] = "GY";
            kal.Cells[1, 10] = "GZ"
            kal.Cells[1, 11] = "toe";
kal.Cells[1, 12] = "heel";
            kal.get_Range("A2", "L2101").Value2 = dataarray;
            ResetCurrentCulture();
        public static DateTime PauseForMilliSeconds(int MilliSecondsToPauseFor)
                     System.DateTime ThisMoment = System.DateTime.Now;
                     System.TimeSpan duration = new System.TimeSpan(0, 0, 0, 0,
MilliSecondsToPauseFor);
                     System.DateTime AfterWards = ThisMoment.Add(duration);
                     while (AfterWards >= ThisMoment)
                         System.Windows.Forms.Application.DoEvents();
                         ThisMoment = System.DateTime.Now;
                     return System.DateTime.Now;
        private void rekam_Click(object sender, EventArgs e)
        { data();}
   }
```

2.4 PROGRAM SCREENSHOOT FOR DATA ACQUISITION (USING C#)

3. PROGRAM SOURCE CODE AND SCREENSHOOT FOR INERTIAL SENSOR DATA PROCESSING (USING MATLAB)

3.1 data gait.m

```
% JANGAN LUPA CEK "NAMA FILE", "KOLOM", "RANGE", & "INDEX" (untuk i)
% 1. lihat ekstensi file excel "*.XLS" (excel 2003) atau "*.XLSX" (excel 2007)
% 2. kalibrasi giroskop XYZ
   % "calt" = file saat giroskop diam/kalibrasi
% 3. "s" = shank/betis; "t" = thigh/paha
% REFERENSI UNTUK KALIBRASI
    % uref = 8192; unit referensi
    % vref = 1350; mV referensi
    % vds = 2.27; mV/deg/s
    % dref = vref/vds = 594.7136564 deg/s
    % dalam (unit/deg/s)--> referensi unit: udref = uref/dref
    udref = 13.7746963;
% THIGH SEGMENT
% BACA DATA WIIMOTE
    kalt='kalt_1610.xlsx';
    data1='t3_1610.xlsx';
% nilai kalibrasi -> nilai rata-rata unit GOX, GOY, GOZ
    calt = xlsread(kalt, 'E2:J1318');
    Acalt = [mean(calt(:,1)) mean(calt(:,2)) mean(calt(:,3))];
    Gcalt = [mean(calt(:,4)) mean(calt(:,5)) mean(calt(:,6))];
% "FB" = Fast Bit; bit indikator untuk mode cepat (pitchfast, rollfast, yawfast)
% Waktu dalam "detik"
    data_t = xlsread(data1, 'A2:L1346');
    Tt = data_t(:,1)/1000;
    FBt = [data_t(:,2) \ data_t(:,3) \ data_t(:,4)];
    Att = [data_t(:,5) data_t(:,6) data_t(:,7)];
    Gtt = [data_t(:,8) \ data_t(:,9) \ data_t(:,10)];
% FOOT SWITCH: cek sajbungannya (ke Tt atau S?)
   TH = [data_t(:,11) \ data_t(:,12)];
% ----
% NILAI AKSELERASI LINIER At & NILAI KECEPATAN SUDUT Gt
% "Go" = nilai giroskop sebelum disamakan orientasinya dengan akselerometer
% nilai kec.angular giroskop (dlm deg/s -> sensor frame) setelah dikalibrasi
    GoT=zeros(length(data_t),3);
    for i=1:length(data_t)
        for j=1:3
           if (FBt(i,j) == 0)
           GoT(i,j) = (Gtt(i,j) - Gcalt(1,j))/udref;
           GoT(i,j) = ((Gtt(i,j) - Gcalt(1,j))/udref)*(2000/440);
           end
    end
% koordinat giroskop wiimotionplus berbeda dari wiimote
         = [GoT(:,2), -1*GoT(:,3), -1*GoT(:,1)];
    At=zeros(length(data_t),3);
    for i=1:length(data_t)
        for j=1:3
            At(i,j) = (Att(i,j) - Acalt(1,j));
        end
    end
% SHANK SEGMENT
% BACA DATA WIIMOTE
    kals='kals_1610.xlsx';
    data2='s3_1610.xlsx';
|% nilai kalibrasi -> nilai rata-rata unit GOX, GOY, GOZ
    cals = xlsread(kals, 'E2:J2083');
    Acals = [mean(cals(:,1)) mean(cals(:,2)) mean(cals(:,3))];
    Gcals = [mean(cals(:,4)) mean(cals(:,5)) mean(cals(:,6))];
% "FB" = Fast Bit; bit indikator untuk mode cepat (pitchfast, rollfast, yawfast)
% waktu dalam "detik"
    data_s = xlsread(data2, 'A2:L2096');
    Ts = data_s(:,1)/1000;
```

```
FBs = [ data_s(:,2) data_s(:,3) data_s(:,4)];
    Ass = [ data_s(:,5) data_s(:,6) data_s(:,7)];
    Gss = [ data_s(:,8) data_s(:,9) data_s(:,10)];
% NILAI AKSELERASI LINIER AS & NILAI KECEPATAN SUDUT GS
% "Go" = nilai giroskop sebelum disamakan orientasinya dengan akselerometer
% nilai kec.angular giroskop (dlm deg/s -> sensor frame) setelah dikalibrasi
    GoS=zeros(length(data_s),3);
    for k=1:length(data_s)
        for m=1:3
           if (FBs(k,m) == 0)
           GoS(k,m) = (Gss(k,m) - Gcals(1,m))/udref;
           else
           GoS(k,m) = ((Gss(k,m) - Gcals(1,m))/udref)*(2000/440);
           end
        end
    end
% koordinat giroskop wiimotionplus berbeda dari wiimote
          = [GoS(:,2), -1*GoS(:,3), -1*GoS(:,1)];
    As=zeros(length(data_s),3);
    for k=1:length(data_s)
        for m=1:3
            As(k,m) = (Ass(k,m) - Acals(1,m));
        end
    end
% PLOT/FIGURE
% -----
% THIGH
figure ('Name','3_1610_At','NumberTitle','off')
    subplot(3,1,1);line(Tt(1:(i-1)),At(1:(i-1),1),'marker','.','color', 'black');
    title('Grafik Akselerasi Linier - 1');
    subplot(3,1,2);line(Tt(1:(i-1)),At(1:(i-1),2),'marker','.','color','red');
    ylabel('Akselerasi (m/s2)');
    subplot(3,1,3);line(Tt(1:(i-1)),At(1:(i-1),3),'marker','.','color', 'blue');
    xlabel('Waktu (s)');
    saveas(gcf, '3_1610_At', 'fig');
    saveas(gcf, '3_1610_At', 'jpg');
figure ('Name', '3_1610_Gt', 'NumberTitle', 'off')
    subplot(3,1,1);line(Tt(1:(i-1)),Gt(1:(i-1),1),'marker','.','color', 'black');
    title('Grafik Kecepatan Sudut - 1')
    subplot(3,1,2);line(Tt(1:(i-1)),Gt(1:(i-1),2),'marker','.','color','red');
    ylabel('Kecepatan Sudut (sudut/s)');
    subplot(3,1,3);line(Tt(1:(i-1)),Gt(1:(i-1),3),'marker','.','color', 'blue');
    xlabel('Waktu (s)');
    saveas(gcf, '3_1610_Gt', 'fig');
saveas(gcf, '3_1610_Gt', 'jpg');
% SHANK
figure ('Name','3_1610_As','NumberTitle','off')
    subplot(3,1,1);line(Ts(1:(k-1)),As(1:(k-1),1),'marker','.','color', 'black');
    title('Grafik Akselerasi Linier - 2');
    subplot(3,1,2);line(Ts(1:(k-1)),As(1:(k-1),2), 'marker','.','color','red');
    ylabel('Akselerasi (m/s2)');
    subplot(3,1,3);line(Ts(1:(k-1)),As(1:(k-1),3),'marker','.','color', 'blue');
    xlabel('Waktu (s)');
saveas(gcf,'3_1610_As','fig');
    saveas(gcf, '3_1610_As', 'jpg');
figure ('Name', '3_1610_Gs', 'NumberTitle', 'off')
    subplot(3,1,1);line(Ts(1:(k-1)),Gs(1:(k-1),1),'marker','.','color', 'black');
    title('Grafik Kecepatan Sudut
    subplot(3,1,2);line(Ts(1:(k-1)),Gs(1:(k-1),2),'marker','.','color','red');
    ylabel('Kecepatan Sudut (sudut/s)');
    subplot(3,1,3);line(Ts(1:(k-1)),Gs(1:(k-1),3),'marker','.','color', 'blue');
    xlabel('Waktu (s)');
    saveas(gcf, '3_1610_Gs', 'fig');
saveas(gcf, '3_1610_Gs', 'jpg');
% TOE & HEEL
```

```
figure ('Name','3_1610_TH','NumberTitle','off')
subplot(2,1,1);line(Tt(1:(i-1)),TH(1:(i-1),1),'marker','.','color', 'black');
     title('Grafik TOE-HEEL');
     ylabel('TOE');
     subplot(2,1,2);line(Tt(1:(i-1)),TH(1:(i-1),2), 'marker','.','color','red');
     ylabel('HEEL');
    saveas(gcf, '3_1610_TH', 'fig');
saveas(gcf, '3_1610_TH', 'jpg');
% KECEPATAN SUDUT-Z & TOE-HEEL
|figure, line(Tt(1:(i-1)),Gt(1:(i-1),3),'marker','.','color','blue')
     hold on
     line(Ts(1:(k-1)), Gs(1:(k-1), 3), 'marker', '.', 'color', 'red')
     hold on
    line(Tt(1:(i-1)),300*TH(1:(i-1),1),'marker','.','color','black'), line(Tt(1:(i-1)),300*TH(1:(i-1),2),'marker','.','color','green');
    legend ('Kec.Sudut THIGH', 'Kec.Sudut SHANK', 'TOE', 'HEEL') saveas(gcf, '3_1610_GzTH', 'jpg'); saveas(gcf, '3_1610_GzTH', 'fig');
hold off
% SHIFTING & CUTTING PLOT
|% -----
% Menyamakan waktu pengambilan data segmen paha (thigh) & betis (shank)
|% Potong grafik pada bagian berjalan saat direkam saja
% ALERT: TIAP DATA BERBEDA!!
\% t_sf = Tt(x)-Ts(x);dimana x adalah INDEX ketika nilai At(x)/Gt(x)= +-0
t_sf = 0.21;
Ts_s = Ts-t_sf;
idx_t = 194:771 ;
idx s = 300:1198 ;
% SAVE FILE .mat
|% ------
savefile = '3_1610.mat';
    Tt = Tt(idx_t); TH = TH(idx_t,:);
     Axt = At(idx_t,1); Ayt = At(idx_t,2); Azt = At(idx_t,3);
     Gxt = Gt(idx_t,1);Gyt = Gt(idx_t,2);Gzt = Gt(idx_t,3);
     Ts = Ts_s(idx_s);
     Axs = As(idx_s,1); Ays = As(idx_s,2); Azs = As(idx_s,3);
    Gxs = Gs(idx_s,1);Gys = Gs(idx_s,2);Gzs = Gs(idx_s,3);
save(savefile, 'Tt','Axt','Ayt','Azt','Gxt','Gyt','Gzt',...
'TH','Ts','Axs','Ays','Azs','Gxs','Gys','Gzs');
```

3.2 data_gait.m

```
% nama file: gait_ictc.m
clear all; clc; close all;
load '3_1610.mat'
figure, line(Tt,Gzt,'marker','.','color','blue')
    hold on
    line(Ts,Gzs,'marker','.','color','red')
    hold on
line(Tt,300*TH(:,1), 'marker','.','color','black'), line(Tt,300*TH(:,2), 'marker','.','col
or', 'green');
    legend ('Kec.Sudut THIGH', 'Kec.Sudut SHANK', 'TOE', 'HEEL')
    hold off
% FILTERING
% frekuensi sampling (fs) dihitung dalam "lp5orbt.m"
% lp5orbt: LowPass filter Orde "X"(biasanya 5), Butterworth
% lp5orbt(Tt,a,N):
    % Tt=waktu
    % a=untuk frekuensi cut-off (fs/a)
    % N=orde filter
Gzt=filter(lp5orbt(Tt(:),5,5),Gzt(:));
Gzs=filter(lp5orbt(Ts(:),5,5),Gzs(:));
Axt=filter(lp5orbt(Tt(:),5,5),Axt(:));
```

3.3 par_gait.m

```
% nama file: par_gait.m
clear all; clc; close all;
t1_ic=T(T>=T(T==ic(1,1))&T<=T(T==ic(2,1)));
t2_ic=T(T>=T(T==ic(2,1))&T<=T(T==ic(3,1)));
gz1_ic=Gz(T>=T(T==ic(1,1))&T<=T(T==ic(2,1)));
gz2_ic=Gz(T>=T(T==ic(2,1))&T<=T(T==ic(3,1)));
gzf1_ic=Gz1(T>=T(T==ic(1,1))&T<=T(T==ic(2,1)));
gzf2_ic=Gz1(T>=T(T==ic(2,1))&T<=T(T==ic(3,1)));
ax1_ic=Ax(T>=T(T==ic(1,1))&T<=T(T==ic(2,1)));
ax2_ic=Ax(T>=T(T==ic(2,1))&T<=T(T==ic(3,1)));
axf1_ic=Ax1(T>=T(T==ic(1,1))&T<=T(T==ic(2,1)));
axf2_ic=Ax1(T>=T(T==ic(2,1))&T<=T(T==ic(3,1)));
% SUDUT V.02 T==ic(1,1) \sim T==ic(length(ic),1)
incl1(1)=0;
for iag=1:length(t1_ic)-1
       incl1(iag+1)=trapz(t1_ic(1:iag+1),gzf1_ic(1:iag+1));
lend
incl2(1)=0;
for iag=1:length(t2_ic)-1
       incl2(iag+1)=trapz(t2_ic(1:iag+1),gzf2_ic(1:iag+1));
lend
% PARAMETER: KNEE ANGLES
incl1=incl1';
incl2=incl2'
incl1g = 90-incl1;
incl2g = 90-incl2;
figure
subplot(311),plot(t1_ic,gzf1_ic,t2_ic,gzf2_ic),legend('kec.sudut ic1-ic2','kec.sudut
ic2-ic3')
subplot(312),plot(t1_ic,incl1,t2_ic,incl2),legend('sudut ic1-ic2','sudut ic2-ic3')
subplot(313),plot(t1_ic,incl1g,t2_ic,incl2g),legend('90-sudut ic1-ic2','90-sudut ic2-
ic3')
saveas(gcf, 'data1_sudut', 'fig');
% PARAMETER: TIMES
%stride times or CYCLE TIMES
idsr=1;
for ts=1:length(ic)-1
    tsr(idsr) = ic(ts+1,1)-ic(ts,1);
    idsr=idsr+1;
lend
|mean_tsr = mean(tsr);
% -----
% swing times
idsw=1;
|for ts=1:length(ic)
    tsw(idsw) = ic(ts,1)-tc(ts,1);
    idsw=idsw+1;
lend
|mean_tsw = mean(tsw);
```

```
% stance times
idst=1;
for ts=1:length(tsr)
    tst(idst) = tsr(ts)-tsw(ts+1);
    idst=idst+1;
end
mean_tst = mean(tst);
temps = [max, tc, ic];
par_temps = [mean_tsr mean_tsw mean_tst];
% par_temp = {'t stride','t swing','t stance';                                mean_tsr mean_tsw mean_tst};
% PARAMETER: CADENCE (steps/minute)
% stride time = 120/cadence
cadence = 120/mean_tsr;
cadence_r=round(cadence);
% PARAMETER: LENGTHS
% double integral Ax filtered T
vx1(1)=0;
disX1(1)=0;
for iag=1:length(T)-1
       vx1(iag+1)=trapz(T(1:iag+1),Ax1(1:iag+1));
       disX1(iag+1)=trapz(T(1:iag+1), vx1(1:iag+1));
end
% stride length T filtered (sum)
for n=1:length(ic)-1
    posl1=find(T==ic(n,1));
    posl2=find(T==ic(n+1,1));
    sl1(n)=disX1(posl2)-disX1(posl1);
end
figure
subplot(211),plot(T,vx1),legend('kec.linier filtered')
subplot(212),plot(T,disX1),legend('perpindahan filtered')
saveas(gcf, 'data1_VxDxFilter', 'fig');
SL = mean(sl1(:));
V = SL*cadence/120;
% double integral Ax filtered
% T==ic(1,1) \sim T==ic(length(ic),1)
vl1(1)=0;
for iag=1:length(t1_ic)-1
       vl1(iag+1)=trapz(t1_ic(1:iag+1),axf1_ic(1:iag+1));
       dlx1(iag+1)=trapz(t1_ic(1:iag+1), vl1(1:iag+1));
lend
for iag=1:length(t2_ic)-1
       vl2(iag+1)=trapz(t2_ic(1:iag+1),axf2_ic(1:iag+1));
       dlx2(iag+1)=trapz(t2_ic(1:iag+1),vl2(1:iag+1));
end
DLX1=(dlx1(length(dlx1))-dlx1(1));
DLX2=(dlx2(length(dlx2))-dlx2(1));
VL1 = DLX1*cadence/120;
VL2 = DLX2*cadence/120;
% stride length ic1~ic3 filtered
DLX= mean([DLX1 DLX2]);
VL = DLX*cadence/120;
% double integral Ax unfiltered
% T==ic(1,1) \sim T==ic(length(ic),1)
|vu1(1)=0;
for iag=1:length(t1_ic)-1
       vu1(iag+1)=trapz(t1_ic(1:iag+1),ax1_ic(1:iag+1));
       dx1(iag+1)=trapz(t1_ic(1:iag+1), vu1(1:iag+1));
lend
|vu2(1)=0;
for iag=1:length(t2_ic)-1
       vu2(iag+1)=trapz(t2_ic(1:iag+1),ax2_ic(1:iag+1));
```

```
dx2(iag+1)=trapz(t2_ic(1:iag+1), vu2(1:iag+1));
end
DX1 = (dx1(length(dx1))-dx1(1));
DX2 = (dx2(length(dx2))-dx2(1));
VU1 = DX1*cadence/120;
VU2 = DX2*cadence/120;
% stride length ic1~ic3 unfiltered
DX = mean([DX1 DX2]);
VU = DX*cadence/120;
figure
subplot(221),plot(t1_ic,axf1_ic),legend('aksel.linier ic1-ic2 filtered')
subplot(222),plot(t2_ic,axf2_ic),legend('aksel.linier ic2-ic3 filtered')
subplot(223),plot(t1_ic,ax1_ic),legend('aksel.linier ic1-ic2 unfiltered')
subplot(224),plot(t2_ic,ax2_ic),legend('aksel.linier ic2-ic3 unfiltered')
saveas(gcf, 'data1_Aksel', 'fig');
figure
subplot(221),plot(t1_ic,vl1,t2_ic,vl2),legend('kec.linier ic1-ic2 filtered','kec.linier
ic2-ic3 filtered')
subplot(222),plot(t1_ic,dlx1,t2_ic,dlx2),legend('jarak ic1-ic2 filtered','jarak ic2-ic3
filtered')
subplot(223),plot(t1_ic,vu1,t2_ic,vu2),legend('kec.linier ic1-ic2
unfiltered','kec.linier ic2-ic3 unfiltered')
subplot(224),plot(t1_ic,dx1,t2_ic,dx2),legend('jarak ic1-ic2 unfiltered','jarak ic2-ic3
unfiltered')
saveas(gcf,'data1_KecJarak','fig');
```

3.4 PROGRAM SCREENSHOOT FOR DATA PROCESSING (USING MATLAB)

Angular Velocity of thigh and shank segments and foot switch result

Initial Contact and Terminal Contact points at thigh (top) dan shank segment (below)

