Average Variance

J. Poland

Risk and

Results
Performance

Performance Systematic Ris

Conclusion

How to Look Clever and Have Envious Neighbors: Average Variance Managed Investment

Jeramia Poland

Indian School of Business

November 27, 2018

J. Poland

Risk and Reward

Results
Performance

Conclusion

Background

 Hocquard et al (2013) - scaling investment to manage tail risk

Results
Performance
Systematic Risk

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance

Results
Performance
Systematic Risk

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t =$ $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t =$ $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$ average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$
 - average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} \rho_{m,n,t}$
 - $SV_t \approx AV * AC$ Anadu and Tierens (2004)

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$
 - average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$
 - $SV_t \approx AV * AC$ Anadu and Tierens (2004)
 - $r_{t+1} = \alpha_1 + \beta_1 AC_t + \epsilon_{1,t}$, β_1 positive and significant

- Hocquard et al (2013) scaling investment to manage tail risk
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : $SV_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
 - average variance (AV) : $\bar{\sigma}_t^2 = \sum_{m=1 \atop M}^N w_{m,t} \sigma_t^2$
 - average correlation (AC) : $\bar{\rho}_t = \sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} \rho_{m,n,t}$
 - $\mathsf{SV}_t pprox \mathit{AV} * \mathit{AC}$ Anadu and Tierens (2004)
 - $r_{t+1} = \alpha_1 + \beta_1 AC_t + \epsilon_{1,t}$, β_1 positive and significant
 - $r_{t+1} = \alpha_2 + \beta_2 AV_t + \epsilon_{2,t}$, β_2 insignificant

J. Poland

Risk and Reward

Doculto

Performance Systematic Ris

Conclusio

Central Idea I

• Moreira and Muir (2017) : weight $=\frac{c_{SV}}{SV_t}$, c is scaling factor to match buy and hold volatility

J. Poland

Risk and Reward

Reculte

Performance Systematic Ris

Conclusion

- Moreira and Muir (2017) : weight $=\frac{c_{SV}}{SV_t}$, c is scaling factor to match buy and hold volatility
- Me : weight $= \frac{c_{AV}}{AV_t}$, c_{AV} to match buy and hold volatility

Reculte

Systematic Ris

Conclusion

- Moreira and Muir (2017) : weight $=\frac{c_{SV}}{SV_t}$, c is scaling factor to match buy and hold volatility
- Me : weight $=\frac{c_{AV}}{AV_t}$, c_{AV} to match buy and hold volatility
- ullet AV $_t$ management decreases investment when AV $_t$ is high

Reculte

Systematic Ris

Conclusi

- Moreira and Muir (2017) : weight $=\frac{c_{SV}}{SV_t}$, c is scaling factor to match buy and hold volatility
- Me : weight $=\frac{c_{AV}}{AV_t}$, c_{AV} to match buy and hold volatility
- ullet AV $_t$ management decreases investment when AV $_t$ is high
- AV_t management avoids decreasing investment when SV_t is high because AC is high

Results

Systematic Ris

Conclusi

- Moreira and Muir (2017) : weight $=\frac{c_{SV}}{SV_t}$, c is scaling factor to match buy and hold volatility
- Me : weight $=\frac{c_{AV}}{AV_t}$, c_{AV} to match buy and hold volatility
- ullet AV $_t$ management decreases investment when AV $_t$ is high
- AV_t management avoids decreasing investment when SV_t is high because AC is high
- Should find AV management outperforms SV management

Results
Performance

Conclusion

Central Idea II

 Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns

Results
Performance
Systematic Risk

Conclusio

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:

J. Poland

Risk and Reward

Results Performance

Conclusio

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic

Results
Performance

Conclusio

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher

Results
Performance
Systematic Risk

Conclusio

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1},r_{u,t+1})$ is higher
 - when AV higher it is not

Results
Performance

Conclusio

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher
 - when AV higher it is not
 - AC = systematic, AV = unsystematic depends on:

Results
Performance

Conclusi

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher
 - · when AV higher it is not
 - AC = systematic, AV = unsystematic depends on:
 - the proportion of the true market observed, $w_{s,t}$, through the market proxy (index)

Results Performance

Conclusi

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher
 - when AV higher it is not
 - AC = systematic, AV = unsystematic depends on:
 - the proportion of the true market observed, $W_{s,t}$, through the market proxy (index)
 - the aggregate wealth β_t for the index

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher
 - when AV higher it is not
 - AC = systematic, AV = unsystematic depends on:
 - the proportion of the true market observed, $w_{s,t}$, through the market proxy (index)
 - the aggregate wealth β_t for the index
 - if index returns are not a significant part of investor wealth or uncorrelated then signals not useful

Results
Performance

Conclusi

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher
 - when AV higher it is not
 - AC = systematic, AV = unsystematic depends on:
 - the proportion of the true market observed, $w_{s,t}$, through the market proxy (index)
 - the aggregate wealth β_t for the index
 - if index returns are not a significant part of investor wealth or uncorrelated then signals not useful
- AV management should work globally

Results
Performance

Conclus

- Pollet and Wilson make a theoretical argument that AC is a signal of systematic risk across the economy - index returns and unobservable returns
- Intuition:
 - shock to the economy common effect and idiosyncratic
 - when AC higher $cov(r_{s,t+1}, r_{u,t+1})$ is higher
 - when AV higher it is not
 - AC = systematic, AV = unsystematic depends on:
 - the proportion of the true market observed, $w_{s,t}$, through the market proxy (index)
 - the aggregate wealth β_t for the index
 - if index returns are not a significant part of investor wealth or uncorrelated then signals not useful
- AV management should work globally
- Equity AV management has higher investment in times of higher $cov(r_{s,t+1}, r_{u,t+1})$, so it should work across asset classes

J. Poland

Risk and Reward

Results

Performance

Conclusio

US Equity Performance

AV: 9.68% SV: 8.60% BH: 5.93%

Average Variance

J. Poland

Risk and Reward

Results

Performance Systematic Risk

Conclusion

Performance Measures

ullet RET = annualized average log excess return

Results

Performance Systematic Risk

Conclusion

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

• Sortino =
$$\frac{\mathbb{E}[R_x - 0]}{\sqrt{\int_{-\infty}^0 (0 - R_x)^2 f(R_x) dR}}$$
, return for downside

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^0 (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa_n = $\frac{\mathbb{E}[R_x-0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa₂ = Sortino

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_x 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 = \mathsf{Sortino}$
- Drawdown peak to valley loss in portfolio value

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n=rac{\mathbb{E}[R_{\mathbf{x}}-\mathbf{0}]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2=$ Sortino
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_x 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 =$ Sortino
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains
- Certainty Equivalent Return gain (CER) = Average utility from AV Average utility from SV for mean-variance investor with risk aversion γ

Average Variance

J. Poland

Risk and Reward

Results

Performance

Systematic Ris

Conclusio

Performance

1926:07-2016:12

c_{BH}: Unconstrained

	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄	α_{FF3}	$\alpha_{FF3+Mom}$
ВН	5.934	0.319	0.129	0.082	0.061		
SV	8.589	0.462	0.208	0.132	0.097	5.477	3.201
AV	9.676***	0.520*	0.225	0.150*	0.112*	5.594***	3.164

Constraint - 3

	Portfolio	Return	Sharpe	Sortino	$Kappa_3$	$Kappa_4$	
c ₁₀	SV	4.396	0.454	0.200	0.127	0.094	
c ₁₀	AV	5.225***	0.520*	0.225*	0.150**	0.112**	
c ₁₂	SV	5.219	0.452	0.198	0.127	0.094	
c ₁₂	AV	6.306***	0.520**	0.225**	0.150**	0.112**	
СВН	SV	7.606	0.456	0.199	0.129	0.096	
c _{BH}	AV	9.677***	0.522**	0.226**	0.150**	0.112**	

Notes:

***, **, and * Significant at the 1, 5, and 10 percent levels.

J. Poland

Risk and

Results

Performance

Conclusio

Investor Utility

J. Poland

Risk and

Results

Performance

Conclusio

Investor Utility

J. Poland

Risk and Reward

Results

Performance

Conclusio

Investor Utility

• Stochastic dominance tests show that non-EUT investors prefer AV management.

J. Poland

Risk and Reward

Results

Performance Systematic Risk

Conclusio

Suggestively Systematic

• 1926-1962 CRSP dialy returns - low $\textit{w}_{\textit{s},\textit{t}}$ and $\beta_{\textit{t}}$

J. Poland

Risk and Reward

Results

Performance Systematic Risk

Conclusio

- 1926-1962 CRSP dialy returns low $\textit{w}_{\textit{s},\textit{t}}$ and $\beta_{\textit{t}}$
 - \bullet shallower with only NYSE firms, est below 87% market cap

J. Poland

Risk and Reward

Results

Performance Systematic Risk

Conclusio

- 1926-1962 CRSP dialy returns low $w_{s,t}$ and β_t
 - shallower with only NYSE firms, est below 87% market cap
 - persistently illiquid

Results

Performance Systematic Risk

Conclusion

- 1926-1962 CRSP dialy returns low $\textit{w}_{\textit{s},\textit{t}}$ and $\textit{\beta}_{\textit{t}}$
 - shallower with only NYSE firms, est below 87% market cap
 - persistently illiquid
 - investment not meaningful part of aggregate wealth

Results

Performance Systematic Risk

Conclusio

- 1926-1962 CRSP dialy returns low $w_{s,t}$ and β_t
 - shallower with only NYSE firms, est below 87% market cap
 - · persistently illiquid
 - investment not meaningful part of aggregate wealth
 - NYSE (2016) and Taylor (2014)

- 1926-1962 CRSP dialy returns low $w_{s,t}$ and β_t
 - shallower with only NYSE firms, est below 87% market cap
 - persistently illiquid
 - investment not meaningful part of aggregate wealth
 - NYSE (2016) and Taylor (2014)
 - AC should not predict returns 1926 1962

- 1926-1962 CRSP dialy returns low $\textit{w}_{\textit{s},\textit{t}}$ and $\beta_{\textit{t}}$
 - shallower with only NYSE firms, est below 87% market cap
 - persistently illiquid
 - investment not meaningful part of aggregate wealth
 - NYSE (2016) and Taylor (2014)
 - AC should not predict returns 1926 1962
- AV management should work globally

Results

Performance Systematic Risk

Conclusi

- 1926-1962 CRSP dialy returns low $w_{s,t}$ and β_t
 - shallower with only NYSE firms, est below 87% market cap
 - persistently illiquid
 - investment not meaningful part of aggregate wealth
 - NYSE (2016) and Taylor (2014)
 - AC should not predict returns 1926 1962
- AV management should work globally
- AV managed returns should depend systematically on the representativeness of daily returns

- 1926-1962 CRSP dialy returns low $\textit{w}_{\textit{s},\textit{t}}$ and $\beta_{\textit{t}}$
 - shallower with only NYSE firms, est below 87% market cap
 - · persistently illiquid
 - investment not meaningful part of aggregate wealth
 - NYSE (2016) and Taylor (2014)
 - AC should not predict returns 1926 1962
- AV management should work globally
- AV managed returns should depend systematically on the representativeness of daily returns
- AV management using the AV of equity returns should generate better performance across asset classes

Results

Performance Systematic Risk

Regression Sub-samples

AV	0.061			0.121	0.315
AC		-0.032		-0.099	
SV			-0.028		-0.264
R^2	0.004	0.001	0.001	0.010	0.026
Adjusted R ²	0.002	-0.002	-0.002	0.005	0.021

RET_{t+1} - 1962M6:2016M12

AV	-0.131			-0.168**	0.016
AC		0.047***		0.106***	
SV			-0.109		0.254
R^2	0.017	0.002	0.012	0.027	0.017
Adjusted R ²	0.015	0.001	0.010	0.024	0.014

Results
Performance
Systematic Risk

Global Performance

	AV		SV		ВН	
Country	RET	Sharpe	RET	Sharpe	RET	Sharpe
AUS	12.477***	0.981	11.993	0.943	7.805	0.614
BRA	11.000***	0.291	9.037	0.240	6.163	0.164
CHN	27.381	0.868	24.926	0.790	12.286	0.390
DEU	11.064***	0.537*	7.633	0.371	5.399	0.262
FRA	7.243***	0.404	6.128	0.341	4.904	0.273
IND	14.893***	0.633	12.256	0.521	11.460	0.487
ITA	3.838	0.194	3.912	0.198	1.451	0.073
JPN	1.375***	0.068	0.129	0.006	-0.775	-0.038
UK	6.591***	0.485	5.984	0.441	5.111	0.376
World	8.603***	0.551	8.306	0.536	4.484	0.290

J. Poland

Risk and

Results

Performance Systematic Risk

Conclusio

Systematic Performance

Global Long - Short Ratio of Market Index RET to Wealth† RET $(w_{s,t})$

AV Managed Returns								
	RET	Sharpe	$lpha_{\it FF3}$	$lpha_{\it FF5}$	$lpha_{\it FF5+Mom}$			
Long	12.601	0.747	9.484**	7.909*	7.725*			
Short	7.537	0.562	5.038*	5.422*	5.318*			
Long - Short	5.065	0.405	4.446***	2.488***	2.407**			

[†] Credit Suisse annual reports on global wealth (2000-2017)

Economy-Wide Performance

Investment weight in other asset classes managed by equity AV

	2005M7:2015M12								
	AV		S	SV		ВН			
Index	RET	Sharpe	RET	Sharpe	RET	Sharpe			
Dollar _{BB}	1.324***	0.170	0.606	0.078	-0.296	-0.038			
Curr _{DB}	1.195***	0.272*	-0.668	-0.152	-0.244	-0.056			
Carry _{DB}	1.440***	0.134	-0.361	-0.033	-2.071	-0.192			
Mom_{DB}	1.942***	0.214	0.413	0.045	1.095	0.120			
REIT _{S&P}	26.706***	0.995	14.980	0.558	5.302	0.198			
Comm _{BB}	-5.579***	-0.303	-6.431	-0.349	-5.279	-0.286			
$Bond_{\mathit{Univ}}$	3.951***	1.168***	1.436	0.425	3.276	0.969			

Reculto

Performance Systematic Risk

Conclusion

Variance Management

Results
Performance

Conclusion

Variance Management

 Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)

Results
Performance

Conclusion

Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs

Results
Performance

Conclusion

Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and across asset classes (SV does not)

Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and across asset classes (SV does not)

Risk Dynamics

Conclusion

Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and across asset classes (SV does not)

Risk Dynamics

 Gonzalez-Urteaga and Rubio (2016) and Bollerslev, Hood, Huss, and Pedersen (2017)

Conclusion

Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and across asset classes (SV does not)

Risk Dynamics

- Gonzalez-Urteaga and Rubio (2016) and Bollerslev, Hood, Huss, and Pedersen (2017)
- AV comes from the foundations of investment risk

Conclusion

Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and across asset classes (SV does not)

Risk Dynamics

- Gonzalez-Urteaga and Rubio (2016) and Bollerslev, Hood, Huss, and Pedersen (2017)
- AV comes from the foundations of investment risk
- AV management informs about the risk mix across the economy

Equity Data

Equity Data

Country	Start	Obs	Index	Assets
USA	1926 - 8	1085	CRSP	500
AUS	2000 - 5	212	ASX	200
BRA	1995 - 2	275	iShares MSCI Brazil ETF	60
CHN	2005 - 5	152	CSI 300	300
DEU	1993 - 11	290	HDAX	110
FRA	1993 - 9	292	SBF 120	120
IND	2000 - 5	212	Nifty 50	50
ITA	2003 - 8	173	FTSE MIB	40
JPN	1993 - 6	295	Nikkei	255
UK	1993 - 6	295	FTSE	100
World	1995 - 3	274	MSCI ACWI	1735

Non-Equity Data

Other Asset Data

Index	Start	Obs	Asset Class
Bloomberg US Spot	2005 - 6	158	Currency
Deutsche Bank Currency	2005 - 6	158	Currency
Deutsche Bank Carry	2005 - 6	158	Currency
Deutsche Bank Momentum	2005 - 6	158	Currency
S&P REIT Index	2005 - 6	158	Real Estate
Bloomberg Commodity	2005 - 6	158	Commodities

AV Construction

- $\mathsf{SV}_t = \sigma_{\mathsf{S},t}^2$
- With m assets in the market, AV $_t = \sum_{m=1}^{M} w_{m,t} \sigma_{m,t}^2$
- $W_t = \frac{c}{X}$ is the investment weight in the portfolio, where X $\in \{AV_{t-1}, SV_{t-1}\}$
- The constant c_{target} is used to control the volatility of the strategy
- c_{BH} matching the buy and hold
- For robustness, c_{10} and c_{12} targeting 10% or 12% annual return volatility

Investment Weights

Strategy Investment Weight

J. Poland

Investment

Investment Weights Again

Investment Weight Again Again

Portfolio	Target	Mean	St. Dev.	Min	Pctl(25)	Median	Pctl(75)	Max
SV	C ₁₀	0.697	0.762	0.009	0.246	0.512	0.874	8.743
AV	c ₁₀	0.702	0.383	0.018	0.425	0.667	0.915	2.296
SV	c ₁₂	0.841	0.920	0.011	0.297	0.618	1.055	10.552
AV	C ₁₂	0.848	0.463	0.022	0.513	0.805	1.104	2.772
SV	СВН	1.290	1.412	0.017	0.455	0.948	1.619	16.193
AV	CBH	1.301	0.710	0.033	0.787	1.235	1.694	4.253

Performance Measures

• RET = annualized average log excess return

- ullet RET = annualized average log excess return
- Sharpe $= \frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

- RET = annualized average log excess return
- Sharpe $=\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

• Sortino =
$$\frac{\mathbb{E}[R_x - 0]}{\sqrt{\int_{-\infty}^0 (0 - R_x)^2 f(R_x) dR}}$$
, return for downside

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_{\times} 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 = \mathsf{Sortino}$

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_{\times} 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 =$ Sortino
- Drawdown peak to valley loss in portfolio value

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n=rac{\mathbb{E}[R_{\mathbf{x}}-\mathbf{0}]}{\sqrt[q]{LPM_n}},$ where LPM is lower partial moment Kappa $_2=$ Sortino
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa $_n = \frac{\mathbb{E}[R_x 0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa $_2 =$ Sortino
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains
- Certainty Equivalent Return gain (CER) = Average utility from AV Average utility from SV for mean-variance investor with risk aversion γ

Returns

Performance

 c_{BH} : 1926:07-2016:12

	Return	Sharpe	Sortino	Kappa ₃	Kappa ₄	α_{FF5}	$lpha_{\it FF5+Mom}$
ВН	5.932	0.319	0.129	0.082	0.061		
SV	8.598	0.462	0.208	0.132	0.097	5.477	3.201
AV	9.677***	0.520*	0.225	0.150*	0.112*	5.594***	3.164***

Drawdowns: c_{BH}

Strategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
ВН	82	-84.803	-8.069	188	11.549	154	7.207
SV	65	-63.637	-11.196	246	14.954	135	7.446
AV	87	-60.264	-9.026	205	10.851	135	5.034

Drawdown Insurance: c_{BH}

Knockout

- Drawndown large enough to shutter fund (investor pull-out), cost manager job
- Assuming 45% loss in a 12-month period as knockout
- SV 1.06% and AV .55% using Pav (2016)
- AV \approx half the cost to insure, Carr, Zhang, and Hadjiliadis (2011)

Leverage

	c _{BH} : Constraint - 1.5								
Portfolio	Return	Sharpe	Sortino	$Kappa_3$	Kappa ₄				
ВН	5.932	0.319	0.129	0.082	0.061				
SV	6.171	0.467	0.200	0.128	0.091				
AV	7.885***	0.486	0.204	0.133	0.097				

c_{BH}: Constraint - 3

		Di	,		
Portfolio	Return	Sharpe	Sortino	$Kappa_3$	$Kappa_4$
BH	5.932	0.319	0.129	0.082	0.061
SV	7.606	0.456	0.199	0.129	0.096
AV	9.677***	0.522**	0.226**	0.150**	0.112**

Notes: ***,**, and * Significant at the 1, 5, and 10 percent levels.

Leverage

Leverage

Risk averse, mean-variance investors see substantial utility gains switching from the SV to AV managed portfolio and these gains increase with leverage usage and risk aversion

AC/AV and Systematic Risk

 Pollet and Wilson (2010) - AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"

AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.

AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.
- This is similar to the difference in results between Goyal and Santa Clara (2003) and Bali et all (2005) when the latter removes a significant number of daily returns and the forecasting ability of idiosyncratic volatility disappears

AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.
- This is similar to the difference in results between Goyal and Santa Clara (2003) and Bali et all (2005) when the latter removes a significant number of daily returns and the forecasting ability of idiosyncratic volatility disappears
- Thus we can run a placebo-like test on a sub-sample where the daily returns are not representative

Subsample Tests

 The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.
- Twice as many firms covering twice as many industries are available at the end of 1962 as compared to the end of 1961.

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.
- Twice as many firms covering twice as many industries are available at the end of 1962 as compared to the end of 1961.
- As shown in Taylor (2014) the NYSE market was not a significant part of marginal wealth in the US following the Great Depression before the late 1950s.

Regressions

• Expect AC not to predict returns in the pre-1962 data but it should post-1962

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction
- Omit variance (SV_{t+1}) prediction by AV as it works in both sub-samples

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction
- Omit variance (SV_{t+1}) prediction by AV as it works in both sub-samples
- Goyal and Welch (2008) forecasting relationships maybe unstable and quite sensitive to sample period choice; they may not respond dynamically with the limited information available to investors in real-time and may not explain or support a trading strategy

Return Prediction

1962:07 - 2016:12

			RET_{t+1}		
AV	-0.131 p = 0.166			-0.168** $p = 0.020$	$\begin{array}{c} 0.016 \\ p = 0.739 \end{array}$
AC		0.047^{***} $p = 0.001$		0.106^{***} $p = 0.0001$	
SV			-0.109 p = 0.746		0.254 $p = 0.893$
Constant	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 $p = 1.000$	-0.000 p = 1.000	-0.000 $p = 1.000$
NR ²	655 0.017	655 0.002	655 0.012	655 0.027	655 0.017
Adjusted R ²	0.015	0.001	0.010	0.024	0.014

Notes:

^{***}Significant at the 1 percent level.

^{**}Significant at the 5 percent level.

^{*}Significant at the 10 percent level.

Return Prediction

1926:08 - 1962:07

 RET_{t+1} - 1926M7:1962M6

AV	0.061			0.121	0.315
AC		-0.032		-0.099	
SV			-0.028		-0.264
R^2	0.004	0.001	0.001	0.010	0.026
Adjusted R ²	0.002	-0.002	-0.002	0.005	0.021

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T imes rac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2) \frac{1}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast $= \hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- ullet $\lambda =$ measure of the optimal combination of forecasts

Diebold-Marino Statistic (1995)

• DM =
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

MSE-F Mcracken (2004)

• MSE-F =
$$T imes rac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2) \frac{1}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast $= \hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- ullet $\lambda =$ measure of the optimal combination of forecasts

Diebold-Marino Statistic (1995)

- DM = $\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$
- Asymptotically normally statistic comparing significance of accuracy ratio

ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast = $\hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- \bullet $\lambda =$ measure of the optimal combination of forecasts

Rossi and Inoue (2012)

- Calculate OOS stats on all feasible window specifications
- Use asymptotic distribution \rightarrow stat critical values
- Use asymptotic distribution \rightarrow stat critical values

Out of Sample Results

Table: Sample 1939:12 to 2016:12

	DM	MSE-F	ENC-HLN
AC_{t+1}	1.604*	46.251***	1**
SV_{t+1}	1.041	21.57***	0.956**
AV_{t+1}	3.104***	198.267***	1***
RET_{t+1}	-2.027	-8.702	0

Robust Out of Sample Results

Table: Sample 1939:12 to 2016:12

Stat	Variable	DM	ENC-HLN
R_T	SV_{t+1}	8.874***	1.838***
R_T	RET_{t+1}	29.124***	4.871***
A_T	SV_{t+1}	2.647***	0.949***
A_T	RET_{t+1}	13.347***	1.68***

Notes: ***,**, and * Significant at the 1, 5, and 10 percent levels.

 These results compare the use AV to SV in forecasting not case either is good (RET) but AV is better

Global Equity

- If AV management times investment to compensated risk because it changes in response to changes in systematic vs non-systematic risk it should work outside the US
- World AV and SV are market cap weighted averages of country values, US included

	Д	AV		V	В	ВН	
Country	RET	Sharpe	RET	Sharpe	RET	Sharpe	
AUS	12.477	0.981	11.993	0.943	7.805	0.614	
BRA	11.000	0.291	9.037	0.240	6.163	0.164	
CHN	27.381	0.868	24.926	0.790	12.286	0.390	
DEU	11.064	0.537	7.633	0.371	5.399	0.262	
FRA	7.243	0.404	6.128	0.341	4.904	0.273	
IND	14.893	0.633	12.256	0.521	11.460	0.487	
ITA	3.838	0.194	3.912	0.198	1.451	0.073	
JPN	1.375	0.068	0.129	0.006	-0.775	-0.038	
UK	6.591	0.485	5.984	0.441	5.111	0.376	
World	8.604	0.551	8.306	0.536	4.484	0.2902	

Global Equity Again

Drawdown Statistics

	AV			SV			ВН		
Country	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery
AUS	-6.302	7.174	3.348	-5.322	9.263	5.421	-6.318	8.600	4.550
BRA	-8.059	9.560	4.208	-17.469	15.235	5.500	-15.064	17.067	4.286
CHN	-9.511	10.333	5.917	-10.074	10.583	3.727	-19.374	27.400	2.000
DEU	-11.051	10.625	5.783	-12.587	16.812	9.933	-10.706	17.125	12.333
FRA	-10.263	14.111	5.941	-15.260	18.267	10.214	-11.590	19.071	15.077
IND	-8.170	6.500	2.885	-12.545	12.467	5.733	-10.862	8.318	4.500
ITA	-14.625	19.500	2.143	-18.174	22.571	2.333	-8.919	15.400	1.667
JPN	-30.655	72.750	41.750	-78.514	294.000	175.000	-40.792	148.00	2.000
UK	-6.060	11.609	4.652	-7.872	14.158	8.158	-6.018	10.560	7.240
World	-6.982	9.909	7.333	-9.776	12.500	7.059	-8.209	10.091	6.429

Global Equity Again Again

Trading Costs

	AV						
Country	RET	$ \Delta\omega $	Break Even	RET	$ \Delta\omega $	Break Even	RET_{BH}
AUS	12.477	0.486	80.139	11.993	0.466	74.914	7.805
BRA	11.000	0.253	159.118	9.037	0.623	38.462	6.163
CHN	27.381	0.305	412.715	24.926	0.538	195.972	12.286
DEU	11.064	0.499	94.545	7.633	0.581	32.052	5.399
FRA	7.243	0.468	41.656	6.128	0.536	19.041	4.904
IND	14.893	0.710	40.316	12.256	0.507	13.097	11.460
ITA	3.838	0.448	44.366	3.912	0.603	33.991	1.451
JPN	1.375	0.442	40.518	0.129	0.551	13.675	-0.775
UK	6.591	0.473	26.113	5.984	0.509	14.287	5.111
World	8.604	0.439	78.113	8.306	0.642	49.586	4.484

Asset Classes

- If AV management times to changes systematic vs non-systematic risk, equity AV should provide a management signal for more than equities
- Moriera and Muir (2017) show that equity SV does not work as a signal for currency investment
- World AV and SV used with c calculated to match buy and hold for each index

	AV		S	iV	ВН	
Index	RET	Sharpe	RET	Sharpe	RET	Sharpe
Bloomberg Dollar	1.324	0.170	0.606	0.078	-0.296	-0.038
DB Currency	1.195	0.272	-0.668	-0.152	-0.244	-0.056
DB Carry	1.440	0.134	-0.361	-0.033	-2.071	-0.192
DB Mom	1.942	0.214	0.413	0.045	1.095	0.120
S&P REIT	26.706	0.995	14.980	0.558	5.302	0.198
Bloomberg Commodity	-5.579	-0.303	-6.431	-0.349	-5.279	-0.286

J. Poland

Investment

Asset Classes Again

Drawdown Statistics

	AV			SV			ВН		
Index	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery	Avg DD	Avg Length	Avg Recovery
Bloomberg Dollar	-8.393	29.000	12.750	-10.632	39.333	21.333	-13.565	60.000	27.000
DB Currency	-2.236	9.750	2.667	-10.471	59.500	20.500	-8.839	59.500	41.500
DB Carry	-7.336	14.250	7.375	-33.972	121.000	98.000	-30.332	60.000	21.000
DB Mom	-4.748	11.900	3.300	-14.679	59.000	17.000	-12.278	38.333	18.333
S&P REIT	-7.692	4.400	1.800	-15.016	9.455	5.000	-17.004	15.143	9.286
Bloomberg Commodity	-9.784	12.222	2.111	-31.116	39.000	12.333	-26.638	39.333	4.333

Asset Classes Again Again

Trading Costs

	AV			SV			
Index	RET	$ \Delta\omega $	Break Even	RET	$ \Delta\omega $	Break Even	RET _{BH}
Bloomberg Dollar	1.324	0.411	32.846	0.606	0.620	12.126	-0.296
DB Currency	1.195	0.430	27.851	-0.668	0.482	-7.339	-0.244
DB Carry	1.440	0.427	68.600	-0.361	0.510	27.947	-2.071
DB Mom	1.942	0.441	16.010	0.413	0.599	-9.501	1.095
S&P REIT	26.706	0.592	301.254	14.980	0.807	99.908	5.302
Bloomberg Commodity	-5.579	0.460	-5.430	-6.431	0.555	-17.285	-5.279

Conclusion

- AV management is better than SV: higher returns, better ratios, lower costs
- AV management is better because it times moving in and out of investments to changes in systematic risk which is compensated and non-systematic risk which is not
- As such, AV management is a useful signal both globally and across assets classes where SV management does not perform
- Thank you

More Pollet and Wilson (2010)

PW Details

- Start with Campbell and Viceira (2002) : $r_{i,t+1} \approx \gamma \sigma_{i,m,t} \frac{\sigma_{i,t}^2}{2}$, m is true market
- holds for i = s, stock market portfolio
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, r_{m,t+1}) \frac{\sigma_{s,t}^2}{2}$
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, w_{s,t}r_{s,t+1} + (1-w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$, u is observable component
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, w_{s,t}r_{s,t+1} + (1 w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$
- $r_{s,t+1} \approx \gamma w_{s,t} var_t(r_{s,t+1}) + cov(r_{s,t}, (1-w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$

More Pollet and Wilson (2010)

- assume shocks to stock returns : $\bar{\epsilon}_{z,t+1} + \epsilon_{i,t+1}$, z common i idiosyncratic
- $r_{s,t+1} = \beta_t r_{m,t} + \overline{\epsilon}_{z,t+1}$
- $\operatorname{var}(\overline{\epsilon}_{z,t+1} + \epsilon_{i,t+1}) = \sigma_{z,t}^2 = \theta_t \sigma_{z,t}^2 + (1 \theta_t) \sigma_{i,t}^2$, θ common part
- $r_{u,t+1} = \frac{1 w_{s,t}\beta_t}{1 w_{s,t}} r_{m,t} \frac{w_{s,t}\beta_t}{1 w_{s,t}}$
- substitute and simplify (many steps)
- $cov(r_{s,t}, r_{u,t+1}) = \frac{1 w_{s,t}\beta_t}{1 w_{s,t}} \frac{\bar{\sigma}_t^2}{\beta_t} \frac{\bar{\rho}_t \theta_t}{1 \theta_t} \bar{\rho}_t \frac{w_{s,t}\theta_t}{1 w_{s,t}} \frac{\bar{\sigma}_t^2}{\beta_t} \frac{1 \bar{\rho}_t}{1 \theta_t} \bar{\sigma}_t^2$
- more simplification
- $cov(r_{s,t}, r_{u,t+1}) = \pi_0 + \zeta_1 \bar{\rho_t} + \zeta_2 \bar{\sigma}_t^2$
- ζ_1 positive but small for plausible values of $w_{s,t}$ and β_t , ζ_2 negative but small for plausible values
- Return