Job No.: Andrew and Shiela Address: Lot 5 DP 571430 Makomako Road, Pahiatua, New Date: 17/11/2024

Zealand

Latitude: -40.458983 **Longitude:** 175.76679 **Elevation:** 119 m

General Input

0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
3	Subsoil Category	D	Exposure Zone	В
1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4 m
NZ2	Terrain Category	1.71	Design Wind Speed	39.12 m/s
0.92 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
High	Earthquake ARI	100		
	N1 3 1 NZ2 0.92 KPa	N1 Ground Snow Load 3 Subsoil Category 1 Ultimate wind & Earthquake ARI NZ2 Terrain Category 0.92 KPa Lee Zone	N1 Ground Snow Load 0 KPa 3 Subsoil Category D 1 Ultimate wind & Earthquake ARI NZ2 Terrain Category 1.71 0.92 KPa Lee Zone NO	N1 Ground Snow Load 0 KPa Roof Snow Load 3 Subsoil Category D Exposure Zone 1 Ultimate wind & Earthquake ARI 100 Years Max Height NZ2 Terrain Category 1.71 Design Wind Speed 0.92 KPa Lee Zone NO Ultimate Snow ARI

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp,i = -0.3

For roof CP,e from 0 m To 3.70 m Cpe = -0.9 pe = -0.74 KPa pnet = -0.74 KPa

For roof CP,e from 3.70 m To 7.40 m Cpe = -0.5 pe = -0.41 KPa pnet = -0.41 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 8.50 m Cpe = 0.7 pe = 0.58 KPa pnet = 0.86 KPa

For side wall CP,e from 0 m To 3.70 m Cpe = pe = -0.54 KPa pnet = -0.54 KPa

Maximum Upward pressure used in roof member Design = 0.74 KPa

Maximum Downward pressure used in roof member Design = $0.45\ \text{KPa}$

Maximum Wall pressure used in Design = 0.86 KPa

Maximum Racking pressure used in Design = 0.99 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4050 mm Try Purlin 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.50 S1 Downward =11.27 S1 Upward =23.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.62 Kn-m	Capacity	2.23 Kn-m	Passing Percentage	359.68 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.67 Kn-m	Capacity	2.97 Kn-m	Passing Percentage	177.84 %
Mo.9D-WnUp	-0.95 Kn-m	Capacity	-1.87 Kn-m	Passing Percentage	49.47 %

Second page

V _{1.35D}	0.62 Kn	Capacity	9.65 Kn	Passing Percentage	1556.45 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.37 Kn	Capacity	12.86 Kn	Passing Percentage	938.69 %
V _{0.9D-WnUp}	-0.94 Kn	Capacity	-16.08 Kn	Passing Percentage	1710.64 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.06 mm

Limit by Woolcock et al, 1999 Span/240 = 16.67 mm

Deflection under Dead and Service Wind = 9.74 mm

Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Reactions

Maximum downward = 1.37 kn Maximum upward = -0.94 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Intermediate Design Front and Back

Intermediate Spacing = 2100 mm Intermediate Span = 3250 mm Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.58

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.38 Kn-m	Capacity	4.2 Kn-m	Passing Percentage	176.47 %
$ m V_{0.9D-WnUp}$	2.93 Kn	Capacity	-24.12 Kn	Passing Percentage	823.21 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 17.265 mm Limit byWoolcock et al, 1999 Span/100 = 32.50 mm

Reactions

Maximum = 2.93 kn

Intermediate Design Sides

Intermediate Spacing = 2125 mm Intermediate Span = 3700 mm Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.62

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.56 Kn-m	Capacity	4.2 Kn-m	Passing Percentage	269.23 %
$ m V_{0.9D-WnUp}$	1.69 Kn	Capacity	24.12 Kn	Passing Percentage	1427.22 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 29.36 mm

Limit by Woolcock et al, 1999 Span/100 = 37.00 mm

Reactions

Maximum = 1.69 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm Girt's Span = 2100 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.91 S1 Downward =9.63 S1 Upward =14.71

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.62 Kn-m	Capacity	1.91 Kn-m	Passing Percentage	308.06 %
$ m V_{0.9D-WnUp}$	1.17 Kn	Capacity	12.06 Kn	Passing Percentage	1030.77 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 3.00 mm Limit by Woolcock et al, 1999 Span/100 = 21.00 mm

Sag during installation = 1.18 mm

Reactions

Maximum = 1.17 kn

Girt Design Sides

Girt's Spacing = 1300 mm Girt's Span = 2125 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.91 S1 Downward =9.63 S1 Upward =14.80

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.63 Kn-m	Capacity	1.91 Kn-m	Passing Percentage	303.17 %
$V_{0.9D\text{-W}nUp}$	1.19 Kn	Capacity	12.06 Kn	Passing Percentage	1013.45 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 3.15 mm

Limit by Woolcock et al. 1999 Span/100 = 21.25 mm

Sag during installation =1.24 mm

Reactions

Maximum = 1.19 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3700 mm
Area	27598 mm2	As	20698.2421875 mm2
Ix	60639381 mm4	Zx	646820 mm3
Iy	60639381 mm4	Zx	646820 mm3
Lateral Restraint	3700 mm c/c		

Loads

Total Area over Pole = 17.85 m^2

Dead	4.46 Kn	Live	4.46 Kn
Wind Down	8.03 Kn	Snow	0.00 Kn
Moment wind	8.30 Kn-m		
Phi	0.8	K8	0.68
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	271.46 Kn	PhiMnx Wind	12.83 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	162.88 Kn	PhiMnx Dead	7.70 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.71 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.48 < 1 OK$

Deflection at top under service lateral loads = 30.73 mm < 37.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

$Assumed \, Soil \, \, Properties$

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				

5/8

 $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1400 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 5.56 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.86 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.84 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level)	Dry Use	Height	3700 mm
Area	20729 mm2	As	15546.6796875 mm2
Ix	34210793 mm4	Zx	421056 mm3
Iy	34210793 mm4	Zx	421056 mm3
Lateral Restraint	mm c/c		

Loads

Total Area over Pole = 8.925 m^2

Dead	2.23 Kn	Live	2.23 Kn
Wind Down	4.02 Kn	Snow	0.00 Kn
Moment Wind	4.15 Kn-m		
Phi	0.8	K8	0.54
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

6/8

PhiNex Wind	161.75 Kn	PhiMnx Wind	6.63 Kn-m	PhiVnx Wind	36.81 Kn
PhiNcx Dead	97.05 Kn	PhiMnx Dead	3.98 Kn-m	PhiVnx Dead	22.09 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.68 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.44 < 1 OK$

Deflection at top under service lateral loads = 29.37 mm < 39.90 mm

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 8.925 m^2

Moment Wind = 4.15 Kn-m Shear Wind = 1.38 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.56 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.86 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.42 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 4.15 Kn-m Shear Wind = 1.38 Kn

Pile Properties

0.55

Safety Factory

Hu = 5.56 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 9.86 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.42 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1400) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1400)

Skin Friction = 15.83 Kn

Weight of Pile + Pile Skin Friction = 19.92 Kn

Uplift on one Pile = 9.19 Kn

Uplift is ok