Deep Learning, Spring 2020 Assignment 5 - Part 1

Detecting Coronavirus Infections through Chest X-Ray images

Git Repository Link:

https://github.com/wassam21/BSCS17028_COVID19_DLSpring2020

1.0. Objective

In this assignment we are required to write code for detecting infections such as COVID-19 among X-Ray images.

- Use CNN, pre-trained on ImageNet, to extract basic features from X-Ray images.
- Train the classification layers in order to detect instances of Infected (COVID-19 + Pneumonia) and Normal X-Ray images.
- Fine-tune the entire network to try to improve performance.

1.1. Task 01: Load pretrained CNN model and fine-tune FC layers

In this task we will fine-tune two networks (VGG-16 and ResNet-18) pretrained on ImageNet weights. We freeze all the features layers expect FC layers and then trained the FC layers on our dataset. Following are the result of Task 01.

1.1.0. VGG-16

1.1.0.1. Experimental Setup:

```
Epochs = 10
Learning Rate = 0.001
Feature Layers = Freeze
Fine-tune layers =
(classifier): Sequential(
   (0): Linear(in_features=25088, out_features=380, bias=True)
   (1): ReLU(inplace=True)
   (2): Dropout(p=0.5, inplace=False)
   (3): Linear(in_features=380, out_features=2, bias=True)
```

1.1.0.2. Loss and Accuracy Curve:

1.1.0.3. Confusion Matrix:

Confusion matrix, without normalization [[515 100] [10 875]]

1.1.0.4. Best and Worst Classified Images

1.1.0.4.0. Best Classified Infected Images

1.1.0.4.1. Best Classified Normal Images

1.1.0.4.2. Worst Classified Infected Images

1.1.0.4.3. Worst Classified Normal Images

1.1.0.5. Final Accuracy and F1 Score:

The final accuracy for test dataset is 92.6 % and F1 score is 0.94.

1.1.0.6. Analysis:

The results are very interesting, pretrained weights works fine with this dataset and give very good accuracy of 92.6%. Also, FC layer play its role in the accuracy there are 2 FC layers with 380 and 2 neurons respectively. In confusion matrix you can see False Negative is less than False Positive.

1.1.1. ResNet-18

1.1.1.0. Environment Setup:

```
Epochs = 10
Learning Rate = 0.001
Feature Layers = Freeze
Fine-tune layers =
    Sequential(
       (0): Linear(in_features=512, out_features=380, bias=True)
       (1): ReLU(inplace=True)
       (2): Dropout(p=0.5, inplace=False)
       (3): Linear(in_features=380, out_features=2, bias=True)
}
```

1.1.1.1. Loss and Accuracy Curve:

1.1.1.2. Confusion Matrix:

Confusion matrix, without normalization [[554 61] [69 816]]

1.1.1.3. Best and Worst Classified Images:

1.1.1.3.1. Best Classified Infected Images:

1.1.1.3.2. Best Classified Normal Images:

1.1.1.3.3. Worst Classified Infected Images:

1.1.1.3.4. Worst Classified Normal Images:

1.1.1.4. Final Accuracy and F1 Score:

The final accuracy for test dataset is 91.3 % and F1 score is 0.926.

1.1.1.5. Analysis:

ResNet18 is faster than VGG16 but VGG16 accuracy is slightly high than ResNet18. Both Model run with same experimental setup. In confusion matrix you can see False Negative and False Positive are almost same but in VGG16 False positive are very less compare to ResNet18 but False Positive are greater than Resnet18

2.1. Task 02 Fine-tune the CNN and FC layers of the network:

2.1.1. VGG-16 Entire

2.1.1.1. Environment Setup:

Epochs = 10 Learning Rate = 0.001 Feature Layers = unfreeze

Fine-tune layers = All feature layers and

FC layers are Fine-tune

2.1.1.2. Loss and Accuracy Curve:

2.1.1.3. Confusion Matrices:

Confusion matrix, without normalization [[550 65] [2 883]]

2.1.1.4. Best and Worst Classified Images:

2.1.1.4.1. Best Classified Infected Images:

2.1.1.4.2. Best Classified Normal Images:

2.1.1.4.3. Worst Classified Infected Images:

2.1.1.4.4. Worst Classified Normal Images:

2.1.1.5. Final Accuracy and F1 Score:

The final test accuracy for this network is **95.53%** and F1 score is **0.96.**

2.1.1.6. Experiments:

Model: VGG16

Table 1 VGG16 Experiments

Experiment	Accuracy	F1 Score	Confusion Matrix			
Only FC layers Fine-tune	92.66%	0.94	Confusion matrix, without normalization [[515 100] [10 875]] Confusion matrix, without normalization			
			infected -	515	100	- 800 - 700 - 600 - 500 - 400 - 300 - 200 - 100
				- 10	875	
				.nfected Predict	ted label	

		1	To 6 1 11 11 1 11 11			
			Confusion matrix, without normalization [[562 53]			
One Conv2d	96.53%	0.97	[4 881]]			
(feature layer 10)			Confusion matrix, without normalization			
and FC layers			- 800			
Fine-tune			- 700			
			infected - 562 53 - 600			
			- 500 - 400			
			300			
			normal - 4 881 - 200			
			100			
			- 100			
			interted to the street			
			interted			
		Predicted label				
Few Conv2d	95.53	0.96	Confusion matrix, without normalization			
layers (0, 5, 10,			[2 883]]			
12, 19, 21, 26,			Confusion matrix, without normalization			
28) and FC layers			900			
Fine-tune			- 800			
			infected - 550 65 - 700			
			- 600			
			- 500 - 400			
			normal - 2 883 - 200			
			- 200			
			-100			
			8 3			
			interted torna			
			Predicted label			
			Confusion matrix, without normalization			
Entire Model	95.53%	0.96	[[550 65] [2 883]]			
Fine-tune (Both			Confusion matrix, without normalization			
Feature and FC						
layers)			- 800			
layers)			infected - 550 65 - 700			
			- 600			
			- 500 - 400			
			normal - 2 883 - 200			
			200			
			-100			
			-eb -ab			
			intected territal			
		Predicted label				

2.1.2. ResNet18 Entire:

2.1.2.1. Environment Setup:

Epochs = 10 Learning Rate = 0.001 Feature Layers = unfreeze

Fine-tune layers = All features and FC layers

2.1.2.2. Loss and Accuracy Curve:

2.1.2.3. Confusion Matrix:

Confusion matrix, without normalization [[579 36] [22 863]]

2.1.2.4. Best and Worst Classified Images:

2.1.2.4.1. Best Classified Infected Images:

2.1.2.4.2. Best Classified Normal Images:

2.1.2.4.3. Worst Classified Infected Images:

2.1.2.4.4. Worst Classified Normal Images:

2.1.2.5. Final Accuracy and F1 Score

The final test accuracy for this network is **96.13**% and F1 score is **0.97**

2.1.2.6. Experiments:

Model: ResNet18

Table 2 ResNet18 Experiments

Experiment	Accuracy	F1 Score	Confusion Matrix			
Only FC layers Fine-tune	91.3%	0.93	Confusion matrix, without normalization [[554 61] [69 816]] Confusion matrix, without normalization			
			infected -	554	61	- 800 - 700 - 600 - 500
			normal -	- 69	816	- 400 - 300 - 200 - 100
				_{infected} Predict	tornal	

2.1.3. Analysis:

In VGG16 10th layer of model which is covn2d layer is unfreeze this layer fine-tune with respect to this dataset due to which it has highest accuracy (96.53%), it is higher than all fine-tune model. From this I conclude that we can check every possibility of freeze and unfreeze it help us to find better accuracy. But in ResNet18 entire fine-tune model gives higher accuracy which is 96.13%. The Main reason that more layer fine-tune with dataset it gives more accuracy as you can see in Table1 and Table2 above.