

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral II — Avaliação PS Prof. Adriano Barbosa

Engenharia de Produção	29/11/2021
------------------------	------------

1	
2	
3	
4	
5	
Nota	

Aluno(a):.....

Todas as respostas devem ser justificadas.

Avaliação P1:

- 1. Calcule a integral definida $\int_0^1 (x+2)(x+1)^5 dx$.
- 2. Calcule a integral indefinida $\int e^{3x} \cos(2x) \ dx$.
- 3. Calcule a integral $\int_0^1 \frac{e^{1/x}}{x^2} dx$.
- 4. Calcule a integral imprópria $\int_1^\infty x e^{-x} \ dx.$
- 5. Encontre uma primitiva para a função $f(x) = \frac{1}{x^3 + 9x^2}$.

Avaliação P2:

1. Verifique se cada função é solução da equação dada:

(a) (1 pt)
$$y = -\frac{2}{x^2 + 1}$$
, $y' = xy^2$.

(b) (1 pt)
$$y = \text{sen}(\ln x), x^2y'' + xy' + y = 0$$

2. (2 pt) Encontre a solução do PVI

$$y'' - 2y - 3y = 6x + 4, y(1) = 4, y'(1) = -2$$

- 3. (2 pt) Encontre a solução geral da equação diferencial $y' = \frac{t}{ye^{y+t^2}}$.
- 4. (2 pt) Resolva a EDO $ts' = t^2 \cos(t) s, t > 0.$
- 5. (2 pt) Resolva a equação y'' + 16y = 0.

Avaliação P3:

1. (2 pt) Encontre o termo geral das sequências e determine se são convergentes ou divergentes:

(a)
$$\frac{3}{4-1}$$
, $\frac{4}{9-4}$, $\frac{5}{16-9}$, ...

(b)
$$\frac{1}{3}, -\frac{2}{5}, \frac{3}{7}, -\frac{4}{9}, \dots$$

2. Determine se as séries são convergentes ou divergentes.

(a)
$$(1 \text{ pt}) \frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots$$

(b) (1 pt)
$$\sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$$

(c) (1 pt)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{\sqrt{2}}$$

(d) (1 pt)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

- 3. (2 pt) Determine o raio e o intervalo de convergência a da série $\sum_{n=1}^{\infty} \frac{n}{4^n} (x+1)^n$.
- 4. (2 pt) Encontre a série de Maclaurin da função $f(x) = \frac{1}{(1-x)^2}$ e calcule seu intervalo de convergência.