Cyclic duality for slice 2-categories

Ulrich Krähmer (with John Boiquaye and Philipp Joram)

- I Singular homology and the Dold-Kan correspondence
- II Cyclic homology and the Dwyer-Kan correspondence
- III Cyclic duality for slice 2-categories

I: Singular homology and the Dold-Kan correspondence

Homology

• The **homology** H(X) of a topological space X is a graded vector space.

Homology

• The **homology** H(X) of a topological space X is a graded vector space. For example, for a 2-dimensional torus, one has

$$H_0(X)\cong \mathbb{K}, \quad H_1(X)\cong \mathbb{K}^2, \quad H_2(X)\cong \mathbb{K}, \quad H_n(X)=0, \quad n>2.$$

Triangulations

A triangulation of X is a decomposition into homeomorphic copies of standard n-simplices (points, edges, triangles, tetrahedra...)

$$\Delta_n \stackrel{\text{def}}{=} \{(x_0,\ldots,x_n) \in [0,1]^{n+1} \mid \sum_i x_i = 1\}.$$

Triangulations

• A **triangulation** of *X* is a decomposition into homeomorphic copies of **standard** *n*-**simplices** (points, edges, triangles, tetrahedra...)

$$\Delta_n \stackrel{\text{def}}{=} \{(x_0,\ldots,x_n) \in [0,1]^{n+1} \mid \sum_i x_i = 1\}.$$

2 Let S_n^{tri} be the set of *n*-simplices in X, enumerate $S_0^{\text{tri}} = \{1, \dots, N\}$, and identify $s \in S_n^{\text{tri}}$ with its n+1 corners, $s = \{s_0, \dots, s_n\}$.

The boundary map b

• Let $C_n^{\text{tri}} \stackrel{\text{def}}{=} \mathbb{K}^{S_n^{\text{tri}}}$ be the vector space with basis S_n^{tri} and define

$$b \stackrel{\text{def}}{=} \sum_{i=0}^{n} (-1)^{i} \partial_{i} \colon C_{n}^{\text{tri}} \to C_{n-1}^{\text{tri}},$$

where ∂_i is the (linear extension of the) map that assigns to a simplex its *i*-th face,

$$\partial_i(\{s_0,\ldots,s_n\})\stackrel{\mathrm{def}}{=} \{s_0,\ldots,\widehat{s}_i,\ldots,s_n\}.$$

Ulrich Krähmer Cyclic duality Marburg 16/10/2025

The homology

• These maps turn the sequence C^{tri} into a **chain complex**

$$\partial_i \partial_{j+1} = \partial_j \partial_i \text{ for } i \leqslant j \quad \Rightarrow \quad bb = 0.$$

$$H(X) \stackrel{\text{def}}{=} H(C, b) \stackrel{\text{def}}{=} \ker b / \text{im } b.$$

Singular chains

• If you can't or don't want to fix a triangulation, let S_n^{sing} be the set of **singular simplices** in $X \stackrel{\text{def}}{=}$ continuous maps $s: \Delta_n \to X$, and define $\partial_i: S_n^{\text{sing}} \to S_{n-1}^{\text{sing}}$ by

$$(\partial_i s)(x_0,\ldots,x_{n-1})\stackrel{\text{def}}{=} s(x_0,\ldots,x_i,0,x_{i+1},\ldots,x_{n-1}).$$

Singular chains

• If you can't or don't want to fix a triangulation, let S_n^{sing} be the set of **singular simplices** in $X \stackrel{\text{def}}{=}$ continuous maps $s: \Delta_n \to X$, and define $\partial_i: S_n^{\text{sing}} \to S_{n-1}^{\text{sing}}$ by

$$(\partial_i s)(x_0,\ldots,x_{n-1})\stackrel{\mathrm{def}}{=} s(x_0,\ldots,x_i,0,x_{i+1},\ldots,x_{n-1}).$$

2 You also get a chain complex that computes the same homology H(X). This fits into a powerful general theory: $X \mapsto S^{\text{sing}}$ is a **simplicial functor Top** \to **Set**.

Simplicial objects

Definition

The objects in the **simplicial category** Δ are the ordered sets

$$[m] \stackrel{\text{def}}{=} \{0,\ldots,m\}, \quad m \geqslant 0.$$

Morphisms $f: [m] \to [n]$ are nondecreasing maps: $i \le j \Rightarrow f(i) \le f(j)$.

Simplicial objects

Definition

The objects in the **simplicial category** Δ are the ordered sets

$$[m] \stackrel{\text{def}}{=} \{0,\ldots,m\}, \quad m \geqslant 0.$$

Morphisms $f: [m] \to [n]$ are nondecreasing maps: $i \le j \Rightarrow f(i) \le f(j)$.

A functor $S: \Delta^{op} \to \mathcal{C}$ is a **simplicial object** in \mathcal{C} .

One usually writes $S_n \stackrel{\text{def}}{=} S([n])$.

Face and degeneracy maps in Δ

1 Δ is generated by the **faces** d_i : $[m-1] \rightarrow [m]$ and **degeneracies** s_i : $[m+1] \rightarrow [m]$, $i,j=0,\ldots,m$.

$$d_2 \colon [3] \to [4]$$

$$s_2 \colon [5] \to [4]$$

Face and degeneracy maps on S

- If $S: \Delta^{\text{op}} \to \mathcal{C}$ is a simplicial object, the d_i, s_j induce morphisms $\partial_i: S_m \to S_{m-1}$ and $\sigma_i: S_m \to S_{m+1}$.
- In particular, a simplicial vector space becomes as above a chain complex with boundary maps

$$b=\sum (-1)^i\partial_i.$$

The Dold-Kan correspondence

Every simplicial vector space C decomposes as chain complex as

$$C_n = \bigcap_{i \le n} \ker \, \partial_i \oplus \sum_{i \ge 0} \operatorname{im} \, \sigma_i.$$

The Dold-Kan correspondence

Every simplicial vector space C decomposes as chain complex as

$$C_n = \bigcap_{i < n} \ker \, \partial_i \oplus \sum_{i \geqslant 0} \operatorname{im} \, \sigma_i.$$

$$(C,b) \stackrel{\text{quasi}}{\cong} (N(C),b) \stackrel{\text{def}}{=} C/\sum_{i>0} \text{im } \sigma_i.$$

The Dold-Kan correspondence

Every simplicial vector space C decomposes as chain complex as

$$C_n = \bigcap_{i < n} \ker \, \partial_i \oplus \sum_{i \geqslant 0} \operatorname{im} \, \sigma_i.$$

$$(C,b) \stackrel{\text{quasi}}{\cong} (N(C),b) \stackrel{\text{def}}{=} C/\sum_{i\geq 0} \text{im } \sigma_i.$$

Theorem (Dold-Kan)

N is an equivalence simplicialal vector spaces \simeq chain complexes.

II: Cyclic homology and the Dwyer-Kan correspondence

Duplicial and paracyclic objects

Definition

The **paracyclic category** Λ^{∞} has the same objects as Δ . Morphisms $f:[m] \to [n]$ are nondecreasing maps $\mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(j + m + 1) = f(j) + n + 1.$$

Adding the condition $f(0) \ge 0$ yields the **duplicial category K**.

We view Δ as subcategory of K by extending a nondecreasing map $[m] \to [n]$ using the above periodicity condition to a map $\mathbb{Z} \to \mathbb{Z}$.

The extra degeneracies

1 K is generated by \triangle and the maps $t: [m] \rightarrow [m], i \mapsto i+1$:

The extra degeneracies

1 K is generated by Δ and the maps $t: [m] \rightarrow [m], i \mapsto i+1$:

Alternatively, one can add to Δ the **extra degeneracies** $s_{-1} \stackrel{\text{def}}{=} ts_m \colon [m+1] \to [m]$ as $t = s_{-1}d_{m+1}$. Here is m=3:

The Dwyer-Kan correspondence

 A duplicial vector space C becomes a mixed complex (chain and cochain) with coboundary map

$$c \stackrel{\text{def}}{=} \sum_{j=-1}^{n} (-1)^{j+1} \sigma_j \colon C_n \to C_{n+1}, \quad cc = 0.$$

Theorem (Dwyer-Kan)

N is an equivalence duplicial vector spaces \simeq mixed complexes.

Cyclic homology

1 Define $B: C_n \to C_{n+1}$ by

$$B\stackrel{\text{def}}{=} c(1+q+q^2+\cdots+q^n), \quad q:=1-bc.$$

Then $qc = c \Rightarrow BB = 0$.

Cyclic homology

• Define $B: C_n \to C_{n+1}$ by

$$B\stackrel{ ext{def}}{=} c(1+q+q^2+\cdots+q^n), \quad q:=1-bc.$$

Then $qc = c \Rightarrow BB = 0$.

② The **(periodic) cyclic homology** HP(C) of (C, b, c) is the homology of the \mathbb{Z}_2 -graded chain complex

$$T_0 \stackrel{b+B}{\longleftrightarrow} T_1$$
, $T_i \stackrel{\text{def}}{=} \bigoplus_{j \in \mathbb{N}} C_{2j+i}/\text{im} (bB + Bb)$.

Ulrich Krähmer Cyclic duality Marburg 16/10/2025

Commutative algebra was noncommutative geometry

Theorem (Hochschild, Kostant, Rosenberg, Rinehart)

If A is a unital associative \mathbb{K} -algebra, then $C_n = A^{\bigotimes_{\mathbb{K}} n+1}$ is a duplicial vector space via

$$\partial_i(f_0 \otimes \cdots \otimes f_n) \stackrel{\text{def}}{=} \begin{cases} f_0 \otimes \cdots \otimes f_i f_{i+1} \otimes \cdots \otimes f_n, & i < n, \\ f_n f_0 \otimes \cdots \otimes f_{n-1}, \end{cases}$$

$$\sigma_i(f_0\otimes\cdots\otimes f_n)=f_0\otimes\cdots\otimes f_{i-1}\otimes 1\otimes f_{i+1}\otimes f_n.$$

If A is the coordinate ring of a smooth affine variety X and $\mathbb{Q} \subseteq \mathbb{K}$, then HP(C) is the (algberaic) De Rham cohomology of X.

Ulrich Krähmer Cyclic duality Marburg 16/10/2025 15/27

III: Cyclic duality for slice 2-categories

Cyclic duality

Mixed complexes have duals: applying a contravariant functor yields a mixed complex. This carries over to a self-duality of **K**:

Cyclic duality

Mixed complexes have duals: applying a contravariant functor yields a mixed complex. This carries over to a self-duality of **K**:

Theorem (Connes, Dwyer-Kan)

There are isomorphisms $\mathbf{\Lambda}^{\circ} \cong (\mathbf{\Lambda}^{\circ})^{\mathrm{op}}, \mathbf{K} \cong \mathbf{K}^{\mathrm{op}}$ with $[m]^{\circ} \stackrel{\mathrm{def}}{=} [m]$ and $f^{\circ}: [n] \to [m]$ given for $f: [m] \to [n]$ by $f^{\circ}(i) \stackrel{\text{def}}{=} \max\{j \mid -f(-j) \leqslant i\}$.

2 Elmendorf: With $a \perp b \stackrel{\text{def}}{=} a \ge -b$, this means (k = -i) $f^{\circ}(i) \perp k \Leftrightarrow i \perp f(k)$.

Ulrich Krähmer Cyclic duality Marburg 16/10/2025

Cyclic duality

Mixed complexes have duals: applying a contravariant functor yields a mixed complex. This carries over to a self-duality of K:

Theorem (Connes, Dwyer-Kan)

There are isomorphisms
$$\mathbf{\Lambda}^{\circ} \cong (\mathbf{\Lambda}^{\circ})^{\operatorname{op}}$$
, $\mathbf{K} \cong \mathbf{K}^{\operatorname{op}}$ with $[m]^{\circ} \stackrel{\text{def}}{=} [m]$ and $f^{\circ} \colon [n] \to [m]$ given for $f \colon [m] \to [n]$ by $f^{\circ}(i) \stackrel{\text{def}}{=} \max\{j \mid -f(-j) \leqslant i\}$.

2 Elmendorf: With $a \perp b \stackrel{\text{def}}{=} a \geqslant -b$, this means (k = -j)

$$f^{\circ}(i) \perp k \Leftrightarrow i \perp f(k)$$
.

Question

So
$$K \cong K^{op}$$
, $\Lambda^{\infty} \cong (\Lambda^{\infty})^{op}$, but $\Delta \not\cong \Delta^{op}$. Why?

(2,1)-categories

• Let C be a strict (2,1)-category all of whose 1-cells are monic.

(2,1)-categories

- Let C be a strict (2,1)-category all of whose 1-cells are monic.
- **②** Our motivating example is $C = \mathbf{Mfld}^d$. Here:
- **O**bjects $T \in \mathbf{Mfld}_0^d$ are d-dimensional compact manifolds,
- 1-cells $f: X \to Y$ are embeddings (injective smooth immersions),
- **3** 2-cells $[\phi]$: $f \Rightarrow g$ are isotopy classes of isotopies

$$\phi \colon [0,1] \times X \to Y, \quad \phi(0,-) = f, \quad \phi(1,-) = g.$$

1 Example: f, g could be two knots (embeddings of $S^1 \times D^2$ into $S^3 = \mathbb{R}^3 \cup \{\infty\}$) and ϕ deforms them into each other.

The slice category

4 A **subobject** of $T \in C_0$ is an isomorphism class [x] of an object

$$x: X \to T$$

in the **slice category** of C over T, that is, in the preorder of all 1-cells in C with codomain T with the preorder relation

$$x \leq y :\Leftrightarrow \exists f \in C_1 : x = yf$$

The slice category

4 A **subobject** of $T \in C_0$ is an isomorphism class [x] of an object

$$x: X \to T$$

in the **slice category** of C over T, that is, in the preorder of all 1-cells in C with codomain T with the preorder relation

$$x \leq y :\Leftrightarrow \exists f \in \mathcal{C}_1 : x = yf$$

18 / 27

② Example: In $\mathcal{C} = \mathbf{Mfld}^d$, a subobject is a submanifold $X \subseteq \mathcal{T}$.

Ulrich Krähmer Cyclic duality Marburg 16/10/2025

The slice 2-category

- Same objects as the slice category,
- ② 1-cells $x \to y$ are 2-cells $\phi \colon x \Rightarrow z$ in \mathcal{C} with $z = yf \le y$:

3 Example: If $X, Y \subseteq T$ are submanifolds, ϕ is a smooth family $\{X_t \subseteq T\}_{t \in [0,1]}$ of submanifolds with $X_0 = X$, $X_1 \subseteq Y$.

2-cells and the homotopy category

① 2-cells between $\phi: x \Rightarrow yf$ and $\psi: x \Rightarrow yg$ are 2-cells ξ in \mathcal{C} with

$$\psi = y\xi \circ \phi,$$

where $y\xi$ is the horizontal composition of id_y with ξ .

② So: 2-cells in C/T deform the target object [z] of ϕ inside [y].

2-cells and the homotopy category

① 2-cells between $\phi: x \Rightarrow yf$ and $\psi: x \Rightarrow yg$ are 2-cells ξ in \mathcal{C} with

$$\psi = y\xi \circ \phi,$$

where $y\xi$ is the horizontal composition of id_{y} with ξ .

- **②** So: 2-cells in C/T deform the target object [z] of ϕ inside [y].
- **1** In the **homotopy category** ho(C/T) such final perturbations of [z] in [y] get identified.
- **②** Example: A 2-cell between families $\{X_t\}$, $\{\tilde{X}_t\}$ of submanifolds is an extension of X_t to $t \in [1,2]$ with $X_t \subseteq Y$ for $t \ge 1$ and $X_2 = \tilde{X}_1$, which after reparametrisation becomes isotopic to $\{\tilde{X}_t\}$.

An answer to our question - informal version

- After adding initial and terminal objects, Δ and K are (skeletal subcategories of) $ho(\mathbf{Mfld}^1/T)$ with T = [0,1] resp. $T = S^1$.
- ② The m+1 elements of [m] become replaced by m intervals in T (tubular neighbourhoods if you want).

An answer to our question - informal version

- After adding initial and terminal objects, Δ and K are (skeletal subcategories of) $ho(\mathbf{Mfld}^1/T)$ with T = [0,1] resp. $T = S^1$.
- ② The m+1 elements of [m] become replaced by m intervals in T (tubular neighbourhoods if you want).

Theorem (Boiquaye-Joram-K)

 $\operatorname{ho}(\mathbf{Mfld}^d/T) \simeq \operatorname{ho}(\mathbf{Mfld}^d/T)^{\operatorname{op}}$ if $\partial T = \emptyset$, with $X^{\circ} = \overline{T \setminus X}$. The dual of a morphism also inverts time, $\{X_t^{\circ}\} = \{\overline{T \setminus X_{1-t}}\}$.

An answer to our question - informal version

- ① After adding initial and terminal objects, Δ and K are (skeletal subcategories of) $ho(\mathbf{Mfld}^1/T)$ with T = [0,1] resp. $T = S^1$.
- ② The m+1 elements of [m] become replaced by m intervals in T (tubular neighbourhoods if you want).

Theorem (Boiquaye-Joram-K)

 $\operatorname{ho}(\mathbf{Mfld}^d/T) \simeq \operatorname{ho}(\mathbf{Mfld}^d/T)^{\operatorname{op}}$ if $\partial T = \emptyset$, with $X^{\circ} = \overline{T \setminus X}$. The dual of a morphism also inverts time, $\{X_t^{\circ}\} = \{\overline{T \setminus X_{1-t}}\}$.

3 So $[m]^{\circ} = [m]$ is in a sense a coincidence!

$t: [1] \rightarrow [1]$ and $s_1: [2] \rightarrow [1]$

The action of 2-cells

More precisely

Assume there is a self-duality of the slice category $((\mathcal{C}/T)_0, \leq)$ that is equivariant with respect to the natural action of the automorphism group $\operatorname{Aut}(T)$ of T, i.e. a map $\circ: (\mathcal{C}/T)_0 \to (\mathcal{C}/T)_0$, $x \mapsto x^\circ$ with

$$[x^{\circ}] = [x], \quad [(gx)^{\circ}] = [g(x^{\circ})], \quad x \leq y \Leftrightarrow y^{\circ} \leq x^{\circ}$$

for all $x, y \in \mathcal{C}/T_0$ and $g \in \operatorname{Aut}(T)$.

② In $C = \mathbf{Mfld}^d$, x is the embedding of a submanifold $X \subseteq T$ and on the slice 1-category we have an obvious duality in which x° embeds the closure of $T \setminus X$ into T.

More precisely

② Such a duality on \mathcal{C}/\mathcal{T} defines a subrelation \prec of \leq which is an $\operatorname{Aut}(\mathcal{T})$ -cosieve in $((\mathcal{C}/\mathcal{T})_0, \leq)$ (is closed under $\operatorname{Aut}(\mathcal{T})$ -action and under postcomposition with any 1-cell).

$$u \ll v : \Leftrightarrow \forall \xi \colon x \Rightarrow z \,\exists \gamma \colon \mathrm{id}_T \Rightarrow g \colon t(x) = s(v^\circ) \Rightarrow \gamma x = x, \gamma v^\circ x = v^\circ \xi.$$

In $C = \mathbf{Mfld}^d$, $u \ll v$ means that the submanifold [u] is not just contained in the submanifold [v], but is contained in ints interior.

More ingredients

• Our main result states that if all $x \in (\mathcal{C}/T)_0$ satisfy a strong form of the **homotopy extension property** and admit an abstract version of **tubular neighbourhoods**, then \circ extends to $ho(\mathcal{C}/T)$.

More ingredients

- Our main result states that if all $x \in (\mathcal{C}/T)_0$ satisfy a strong form of the **homotopy extension property** and admit an abstract version of **tubular neighbourhoods**, then \circ extends to $ho(\mathcal{C}/T)$.
- We abbreviate

$$G \stackrel{\mathrm{def}}{=} \bigcup_{g \in \mathrm{Aut}(\mathcal{T})} \mathcal{C}_2(\mathrm{id}_{\mathcal{T}}, g).$$

This is a group under horizontal composition, the **source group** of the **automorphism 2-group Aut**(T) of T.

Main theorem

Theorem

Assume \ll is an $\operatorname{Aut}(T)$ -cosieve in $(\mathcal{C}/T_0, \leq)$ with

- of or all $f, h: X \to Y$, $y: Y \to T$, and $\phi: yf \Rightarrow yh$, we have

$$(\exists \xi \colon f \Rightarrow h \colon \phi = y\xi) \quad \Leftrightarrow \quad (\forall u \ll y^{\circ} \exists \gamma \in G \colon \gamma u = u, \gamma yf = \phi)$$

• for all $u \ll y^{\circ}, v \ll y^{\circ}$ there exists $\tau : \mathrm{id}_{\mathcal{T}} \Rightarrow t$ in G and $r \ll y$ with

$$\tau u = u, \ \tau v = v, \ [tr] = [y].$$

Then \circ lifts to an $\operatorname{Aut}(T)$ -equivariant self-duality on $\operatorname{ho}(\mathcal{C}/T)$.