#### LITERATURE REVIEW:

DEEP SYMBOLIC REGRESSION: RECOVERING MATHEMATICAL EXPRESSION FROM DATA VIA RISK-SEEKING POLICY GRADIENTS

NANCY LYU 02/10/2022

# **OUTLINE**

- Motivation
- Symbolic regression
- Method
- \* Results.

#### MOTIVATION

Understanding the underlying mathematical relationships among variables describing a
dataset is a major task in the scientific process.

[1] Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio P. Santiago, Soo K. Kim, Joanne T. Kim, Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients.

#### SYMBOLIC REGRESSION

- What is symbolic regression?
- Traditional approaches to symbolic regression vs. Deep symbolic regression

#### WHAT IS SYMBOLIC REGRESSION?

• Symbolic regression is the process of identifying mathematical expressions that fit observed output from a black-box process. It is a discrete optimization problem generally believed to be NP-hard. [1]

[1] T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel M. Faissol, Brenden K. Petersen, Symbolic Regression via Neural-Guided Genetic

Programming Population Seeding,

# TRADITIONAL APPROACHES TO SYMBOLIC REGRESSION VS. DEEP SYMBOLIC REGRESSION

- The space of mathematical expressions is discrete (in model structure) and continuous (in model parameters).
- Traditional approaches to symbolic regression using evolutionary algorithms. In particular, genetic programming (GP) (Koza, 1992; Schmidt & Lipson, 2009; Back et al., 2018).
- GP exhibits high sensitivity to hyperparameters and scale poorly to larger problems.

# TRADITIONAL APPROACHES TO SYMBOLIC REGRESSION VS. DEEP SYMBOLIC REGRESSION

• DSR framework: use a large model (i.e. neural network) to search the space of small models (i.e. symbolic expressions).

## METHODS - Generate symbolic expression tree with RNN

- Binary tree
- Internal nodes are mathematical operators
- Terminal nodes are input variables or constants
  - Pre-order traversal
  - Uniqueness

Griven a dataset (X, y), X; ER, y; ER.

$$\mathcal{L} = \{+, -, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$

$$\sum_{i=1}^{5} \{-, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$

$$\sum_{i=1}^{5} \{-, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$

$$\sum_{i=1}^{5} \{-, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$

$$\sum_{i=1}^{5} \{-, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$

$$\sum_{i=1}^{5} \{-, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$

$$\sum_{i=1}^{5} \{-, \times, +, \log - \sin - \cos , \chi, \cosh \}^{4}$$



#### METHODS - Generate symbolic expression tree with RNN

- RNN emits a categorical distribution with parameter  $\psi$ over tokens.
- Ψ defines probabilities of selecting each token from library L.

$$p(\tau_i | \tau_{1:(i-1)}; \theta) = \psi_{\mathcal{L}(\tau_i)}^{(i)},$$

$$p(\tau | \theta) = \prod_{i=1}^{|\tau|} p(\tau_i | \tau_{1:(i-1)}; \theta) = \prod_{i=1}^{|\tau|} \psi_{\mathcal{L}(\tau_i)}^{(i)},$$

$$p(\tau|\theta) = \prod_{i=1}^{| au|} p( au_i| au_{1:(i-1)}; heta) = \prod_{i=1}^{| au|} \psi_{\mathcal{L}( au_i)}^{(i)}$$



## Providing hierarchical inputs to the RNN

- Parent and sibling nodes
- Empty token for node does not have a parent or sibling

#### Constraining the search space

- Expressions are limited to a pre-specified minimum and maximum length.
- The children of an operator should not all be constants, as the result would simply be a different constant.
- The child of a unary operator should not be the inverse of that operator, e.g. log(exp(x)) is not allowed.
- Descendants of trigonometric operators should not be trigonometric operators, e.g.  $\sin(x + \cos(x))$

#### Reward function

- Normalized root-mean-square error (NRMSE)
- Given a dataset (X, y) of size n and candidate expression f:

NRMSE = 
$$\frac{1}{\sigma_y} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - f(X_i))^2} \simeq \bigcirc$$

$$R(\tau) = \frac{1}{1 + NRMSE}$$

# METHODS - training the RNN using policy gradients

- Using reinforcement learning to train the RNN to produce better-fitting expressions.
- $p(\tau | \theta)$  is like a policy
- Sampled tokens are like actions
- Standard policy gradient vs. Risk-seeking policy gradient

#### Standard policy gradient

- The expectation of a reward function  $R(\tau)$  under expressions from the policy,  $J_{std}(\theta)$ .
- The standard REINFORCE policy gradient (Williams, 1992) can be used to maximize this
  expectation via gradient ascent:

$$\nabla_{\theta} J_{\text{std}}(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim p(\tau|\theta)} \left[ R(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim p(\tau|\theta)} \left[ R(\tau) \nabla_{\theta} \log p(\tau|\theta) \right]$$

• Unbiased estimate of  $\nabla_{\theta} J_{\text{std}}(\theta)$ :

$$abla_{ heta} J_{ ext{std}}( heta) pprox rac{1}{N} \sum_{i=1}^{N} R( au^{(i)}) 
abla_{ heta} \log p( au^{(i)}| heta)$$

#### Risk-seeking policy gradient

- Optimizing the average performance or maximizing the best-case performance?
- Define  $R_{\epsilon}(\theta)$  as the  $(I \epsilon)$ -quantile of the distribution of rewards under the current policy.

$$J_{\text{risk}}(\theta; \varepsilon) \doteq \mathbb{E}_{\tau \sim p(\tau \mid \theta)} \left[ R(\tau) \mid R(\tau) \geq R_{\varepsilon}(\theta) \right]$$



# Risk-seeking policy gradient

- How to estimate this objective via Monte Carlo sampling?
- **Proposition I**. Let  $J_{risk}(\theta; \varepsilon)$  denote the conditional expectation of rewards above the  $(I-\varepsilon)$ -quantile, as in Equation (I). Then the gradient of  $J_{risk}(\theta; \varepsilon)$  is given by:

$$\nabla_{\theta} J_{risk}(\theta; \varepsilon) = \mathbb{E}_{\tau \sim p(\tau|\theta)}[(R(\tau) - R_{\varepsilon}(\theta)) \cdot \nabla_{\theta} \log p(\tau|\theta) \mid R(\tau) \geq R_{\varepsilon}(\theta)]$$



# Risk-seeking policy gradient

A simple Monte Carlo estimate of the gradient from a batch of N samples:

$$abla_{ heta} J_{ ext{risk}}( heta; arepsilon) pprox rac{1}{arepsilon N} \sum_{i=1}^{N} \left[ R( au^{(i)}) - ilde{R}_{arepsilon}( heta) 
ight] \cdot \mathbf{1}_{R( au^{(i)}) \geq ilde{R}_{arepsilon}( heta)} 
abla_{ heta} \log p( au^{(i)} | heta),$$

- Two differences from the standard reinforcement MC estimate:
- I. it suggests a specific baseline,  $R\epsilon(\theta)$ , whereas the baseline for standard policy gradients is non-specific, chosen by the user;.
- 2. Only the top ε fraction of samples from each batch are used in the gradient computation.

# **RESULTS**

| Benchmark | Expression                        | DSR   | PQT   | VPG   | GP    | Eureqa | Wolfram      |
|-----------|-----------------------------------|-------|-------|-------|-------|--------|--------------|
| Nguyen-1  | $x^3+x^2+x$                       | 100%  | 100%  | 96%   | 100%  | 100%   | 100%         |
| Nguyen-2  | $x^4 + x^3 + x^2 + x$             | 100%  | 99%   | 47%   | 97%   | 100%   | 100%         |
| Nguyen-3  | $x^5 + x^4 + x^3 + x^2 + x$       | 100%  | 86%   | 4%    | 100%  | 95%    | 100%         |
| Nguyen-4  | $x^6 + x^5 + x^4 + x^3 + x^2 + x$ | 100%  | 93%   | 1%    | 100%  | 70%    | 100%         |
| Nguyen-5  | $\sin(x^2)\cos(x) - 1$            | 72%   | 73%   | 5%    | 45%   | 73%    | 2%           |
| Nguyen-6  | $\sin(x) + \sin(x + x^2)$         | 100%  | 98%   | 100%  | 91%   | 100%   | 1%           |
| Nguyen-7  | $\log(x+1) + \log(x^2+1)$         | 35%   | 41%   | 3%    | 0%    | 85%    | 0%           |
| Nguyen-8  | $\sqrt{x}$                        | 96%   | 21%   | 5%    | 5%    | 0%     | 71%          |
| Nguyen-9  | $\sin(x) + \sin(y^2)$             | 100%  | 100%  | 100%  | 100%  | 100%   | <del>-</del> |
| Nguyen-10 | $2\sin(x)\cos(y)$                 | 100%  | 91%   | 99%   | 76%   | 64%    | _            |
| Nguyen-11 | $x^y$                             | 100%  | 100%  | 100%  | 7%    | 100%   | _            |
| Nguyen-12 | $x^4-x^3+\tfrac{1}{2}y^2-y$       | 0%    | 0%    | 0%    | 0%    | 0%     | _            |
|           | Average                           | 83.6% | 75.2% | 46.7% | 60.1% | 73.9%  |              |
|           |                                   |       |       |       |       |        |              |

# RESULTS P'(t) = P(x) + N(0,6)



#### **RESULTS**

