Sistemas de ecuaciones lineales y matrices

Bibliografía: Álgebra lineal de Stanley Grossman En un quiosco han vendido 20 revistas a dos precios distintos: unas a \$ 800 y otras a \$1200, con las que han obtenido \$19.200. ¿Cuántas revistas han vendido de cada precio?

$$\begin{cases} x + y = 20 \\ 800x + 1200y = 19200 \end{cases}$$

$$y = 20 - x$$

$$800x + 1200 \cdot (20 - x) = 19200$$

$$800x + 24000 - 1200x = 19200$$

$$-400x = 19200 - 24000$$

$$x = \frac{-4800}{-400}$$

$$x = 12$$

$$y = 8$$

$$C_s = \{(12; 8)\}$$

Sistemas lineales de dos ecuaciones y dos incógnitas

Ejemplos

$$\begin{cases} x - y = 7 \\ x + y = 5 \end{cases}$$

Solución única

Sistema compatible determinado

Infinitas soluciones

Sistema compatible indeterminado

Sistemas lineales de dos ecuaciones y dos incógnitas

$$\begin{cases} x - y = 7 \\ 5x - 5y = 0 \end{cases}$$

Sin solución

Sistema incompatible o Inconsistente

$$+ + + + + = 24$$
 $+ + + = 18$
 $+ + + + = 13$
 $+ + + + = 13$
 $+ + + + = 13$
 $+ + + + = 13$
 $+ + + + = 13$
 $+ + + = 13$
 $+ + = 13$
 $+ + = 13$
 $+ = 13$
 $+ = 13$
 $+ = 13$
 $+ = 13$

$$x = \boxed{8}$$

$$y = \boxed{5}$$

$$2 = \boxed{5}$$

$$2 = \boxed{2}$$

$$= \boxed{8}$$

$$\begin{cases} 3.x = 24 \\ x + 2y = 18 \\ y + 4z = 13 \end{cases}$$

$$x = \frac{14}{3} \Rightarrow x =$$

Capacidad de producción Una compañía tiene tres máquinas, A, B y C que pueden producir cierto artículo. No obstante, por falta de operadores capacitados, sólo dos de las máquinas pueden usarse simultáneamente. La tabla siguiente indica la producción de un período de tres días, usando varias combinaciones de las máquinas. ¿Cuánto tomaría cada máquina, si se usa sola, para producir 1000 artículos?

Máguinas usadas	Horas empleadas	Artículos producidos
A y B	6	4500
АуС	8	3600
ВуС	7	4900

$$\begin{cases}
6A + 6B = 4500 \\
8A + 8C = 3600 \\
7B + 7C = 4900
\end{cases}$$

$$\begin{cases} 6A + 6B = 4500 \\ 8A + 8C = 3600 \\ 7B + 7C = 4900 \end{cases}$$

$$8A = 3600 - 8C$$
 $A = 450 - C$ $A = 250$

$$A = 450 - 0$$

$$A = 250$$

$$7B = 4900 - 7C$$
 $B = 700 - C$ $B = 500$

$$B = 700 - C$$

$$B = 500$$

$$6(450-C)+6(700-C)=4500$$

$$2700 - 6C + 4200 - 6C = 4500$$

$$-12C = 4500 - 4200 - 2700$$

$$C = \frac{-2400}{-12} \qquad C = 200$$

¿Cuánto tarda cada máquina en producir 1000 artículos?

$$A = 250$$

$$B = 500$$

$$C = 200$$

 $A \rightarrow 4 horas$

 $B \rightarrow 2 horas$

 $C \rightarrow 5 horas$

Sistemas lineales de tres ecuaciones y tres incógnitas

Sistema Compatible Determinado

$$\begin{cases} x+3y-z=4\\ -2x+y+3z=9\\ 4x+2y+z=11 \end{cases}$$

Sistema compatible indeterminado

$$\begin{cases} x + 2y - z = 4 \\ 2x + 5y + 2z = 9 \\ x + 4y + 7z = 6 \end{cases}$$

Sistemas incompatibles

$$\begin{cases} y - 2z = -5 \\ 2x - y + z = -2 \\ 6x - 2y + z = -8 \end{cases}$$

Sistemas incompatibles

x > 1

$$\begin{cases} x+y+z=4\\ -x-y+z=-1\\ x+y+z=-1 \end{cases}$$

Sistemas incompatibles

$$\begin{cases} x + y + z = -4 \\ x + y + z = 4 \\ x + y + z = 0 \end{cases}$$

Sistemas de ecuaciones lineales

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \end{cases}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

 a_{ij} : coeficientes

con $1 \le i \le m$; $1 \le j \le n$

 b_i : términos constantes

 x_i : incógnitas o variables