ESTUDO DE PROFUNDIDADE EM GRAFOS ALEATÓRIOS

RENAN A. B. VIEIRA 70212

Teoria dos Grafos Prof. Dr. Arlindo Conceição

Instituto de Ciência e Tecnologia/ICT - UNIFESP 13/10/2015

Erdos-Renyi Model

Definição da função

Complexidade computacional

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges in the graph.

Parâmetros usados

igraph_erdos_renyi_game(&graph,	//uninitialized graph object
IGRAPH_ERDOS_RENYI_GNM,	//G(n,m): m edges are selected uniformly randomly in a graph with n vertices
vertex_n,	//the number of vertices
edge_m,	//the number of edges
IGRAPH_UNDIRECTED,	//undirected graph
IGRAPH NO LOOPS);	//no loop (self) edges allowed

Resultados Obtidos

Depth-First Search

V=1000	E=3000		
depth	media	desvio	<pre>perc.media</pre>
0	0.000	0.000	0.000
1	1.015	0.151	0.001
2	2.031	0.228	0.002
3	3.060	0.314	0.003
4	4.082	0.379	0.004
5	5.110	0.450	0.005
6	6.134	0.514	0.006
7	7.161	0.572	0.007
8	8.200	0.636	0.008
9	9.235	0.694	0.009
10	10.255	0.743	0.010

Breadth-First Search

V=1000	E=3000		
depth	media	desvio	<pre>perc.media</pre>
0	0.000	0.000	0.000
1	6.000	2.415	0.006
2	40.886	17.017	0.041
3	216.726	81.632	0.217
4	694.312	150.402	0.694
5	974.642	48.586	0.975
6	998.496	2.758	0.998
7	999.000	0.000	0.999
8	999.000	0.000	0.999

Barabási-Albert Model

Definição da função

```
int igraph_barabasi_game(igraph_t *graph, igraph_integer_t n,
igraph_real_t power,
igraph_integer_t m,
const igraph_vector_t *outseq,
igraph_bool_t outpref,
igraph_real_t A,
igraph_bool_t directed,
igraph_barabasi_algorithm_t algo,
const igraph_t *start_from);
```

Complexidade computacional

Time complexity: O(|V|+|E|), the number of vertices plus the number of edges.

Parâmetros usados

Resultados Obtidos

Depth-First Search

V=1000	E=3000		
depth	media	desvio	<pre>perc.media</pre>
0	0.000	0.000	0.000
1	1.002	0.045	0.001
2	2.655	0.625	0.003
3	7.148	1.804	0.007
4	12.576	2.476	0.013
5	16.217	1.593	0.016
6	18.175	2.114	0.018
7	19.645	2.619	0.020
8	20.875	3.049	0.021
9	26.914	3.602	0.027
10	30.640	2.518	0.031
11	32.188	2.826	0.032
12	35.466	4.561	0.035
13	37.837	4.773	0.038
14	39.383	5.194	0.039
15	41.032	6.197	0.041
16	42.282	6.482	0.042
17	43.426	6.631	0.043
18	49.354	6.037	0.049
19	54.110	5.239	0.054
20	56.277	5.307	0.056

Breadth-First Search

V=1000	E=3000		
depth	media	desvio	<pre>perc.media</pre>
0	0.000	0.000	0.000
1	5.746	17.343	0.006
2	300.678	176.947	0.301
3	897.648	123.982	0.898
4	998.256	3.321	0.998
5	999.000	0.000	0.999
6	999.000	0.000	0.999

Estudo complementar - Barabási-Albert em menor escala

Breadth-First Search

V=50	E=150		
depth	media	desvio	<pre>perc.media</pre>
0	0.000	0.000	0.000
1	1.020	0.141	0.020
2	2.600	1.400	0.052
3	9.720	1.762	0.194
4	12.240	0.938	0.245
5	15.280	1.213	0.306
6	19.140	1.512	0.383
7	23.040	1.807	0.461
8	26.060	2.180	0.521
9	28.260	2.648	0.565
10	31.720	3.270	0.634
11	37.380	3.244	0.748
12	39.060	3.548	0.781
13	41.120	3.391	0.822
14	42.980	3.000	0.860
15	45.360	1.987	0.907
16	47.600	0.881	0.952
17	49.000	0.000	0.980

Representação do grafo utilizado no estudo complementar

Bibliografia

Igraph Reference Manual –

http://igraph.org/c/doc/igraph-docs.pdf

Erdos-Renyi Model –

 $https://en.wikipedia.org/wiki/Erd\%C5\%91s\%E2\%80\%93R\%C3\%A9nyi_model$

Barabási-Albert Model –

https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model