Perceptron for basic formulas

Machine Learning Course A.A. 22/23

Filippo Fantinato 2041620

October 25, 2022

Contents

	Rercise $A \land \neg B$	
Lis	of Figures	
	Perceptron for $A \land \neg B$ formula	
Lis	of Tables	
	$A \wedge \neg B$ truth table	

1 Exercise

Give Perceptron-based multi-layer networks with hard thresholds and relative weights (without using learning) that implement simple Boolean functions such as: A and (not B), A xor B, ...

1.1 $A \wedge \neg B$

The formula I want to implement is $\phi = A \wedge \neg B$.

A	B	$\neg B$	$A \land \neg B$
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	0

Table 1: $A \wedge \neg B$ truth table

Figure 1: Perceptron for $A \wedge \neg B$ formula

1.2 $A \oplus B$

The formula I want to implement is $\phi = A \oplus B$.

,	A	B	$A \oplus B$
	0	0	0
	0	1	1
	1	0	1
	1	1	0

Table 2: XOR truth table

The xor operator can be seen as

$$\phi = DNF(A \oplus B) = (\neg A \land B) \lor (A \land \neg B)$$

in Disjunctive Normal Form, which is easier to implement.

Figure 2: Perceptron for XOR operator