Calculus 3 Study Guide

Coordinate Systems

Polar Coordinates

Note:

Polar coordinates describe a point in 2D space using two values:

- r: the distance from the origin
- θ : the angle from the positive x-axis

This system is ideal for problems with circular or rotational symmetry, such as spirals or radial fields.

Polar to Cartesian

- $x = r \cos \theta$
- $y = r \sin \theta$

Cartesian to Polar

- $r = \sqrt{x^2 + y^2}$
- $\tan \theta = \frac{x}{y} \to \theta = \tan^{-1} \left(\frac{x}{y}\right)$

Converting Coordinates

Example 1: Convert the Cartesian point (3,3) into Polar coordiantes.

$$r = \sqrt{x^2 + y^2} = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$$

$$\theta = \tan^{-1}\left(\frac{x}{y}\right) = \tan^{-1}\left(\frac{3}{3}\right) = \tan^{-1}(1) = \frac{\pi}{4}$$
Answer: $\left(3\sqrt{2}, \frac{\pi}{4}\right)$

Example 2: Convert the Polar point $(2, \frac{\pi}{3})$ to Cartesian coordinates.

$$x = r \cos \theta = 2 \cos \left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1$$

 $y = r \sin \theta = 2 \sin \left(\frac{\pi}{3}\right) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}$
Answer: $\left(1, \sqrt{3}\right)$

Converting Equations

Example 1: Convert the equation $r^2=4$ and $\theta=\frac{\pi}{4}$ to Cartesian coordinates.

Step 1: Polar to Cartesian conversions:

$$x = r\cos(\theta), y = r\sin(\theta)$$

Step 2: Substitute the gien values into these formulas:

$$x = 2\cos\left(\frac{\pi}{4}\right) = 2 \cdot \frac{\sqrt{2}}{2} = \sqrt{2}$$

$$y = 2\sin\left(\frac{\pi}{4}\right) = 2 \cdot \frac{\sqrt{2}}{2} = \sqrt{2}$$

Answer:

$$x = \sqrt{2}, y = \sqrt{2}$$

So the equation in Cartesian coordinates would be: $x^2 + y^2 = 4$

Cylindrical Coordinates

Note:

Polar coordinates describe a point in 3D space using three values:

- r: The distance from the origin in the xy-plane
- θ : The angle from the positive x-axis in the xy-plane (same as polar coordinates)
- z: The height above (or below) the xy-plane

This system is useful for objects with circular symmetry around the z-axis, like cylinders and spirals.

Cylindrical to Cartesian

- $x = r \cos \theta$
- $y = r \sin \theta$
- \bullet z=z

Cartesian to Cylindrical

•
$$r = \sqrt{x^2 + y^2}$$

•
$$\tan \theta = \frac{x}{y} \to \theta = \tan^{-1} \left(\frac{x}{y}\right)$$

$$\bullet$$
 $z=z$

Example 1: Convert the Cartesian point (3,3,4) into Cylindrical coordiantes.

$$\begin{array}{l} r = \sqrt{x^2 + y^2} = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2} \\ \theta = \tan^{-1}\left(\frac{x}{y}\right) = \tan^{-1}\left(\frac{3}{3}\right) = \tan^{-1}(1) = \frac{\pi}{4} \\ z = 4 \\ \textbf{Answer:} \ \left(3\sqrt{2}, \frac{\pi}{4}, 4\right) \end{array}$$

Example 2: Convert the Cylindrical point $(2, \frac{\pi}{6}, 5)$ into Cartesian coordinates.

$$x = r\cos\theta = 2\cos\left(\frac{\pi}{6}\right) = 2\cdot\frac{\sqrt{3}}{2} = \sqrt{3}$$

$$y = r\sin\theta = 2\sin\left(\frac{\pi}{6}\right) = 2\cdot\frac{1}{2} = 1$$

$$z = 5$$
Answer: $\left(\sqrt{3}, 1, 5\right)$

Spherical Coordinates

Note:

Spherical coordinates describe a point in 3D space using three values:

- ρ : the ditance from the origin
- θ : the angle from the positive x-axis in the xy-plane (same as polar coordinates)
- ϕ : the angle from the postive z-axis down to the point

This system is useful for problems with radial symmetry, like spheres and cones.

Spherical to Cartesian

- $x = \rho \sin \phi \cos \theta$
- $y = \rho \sin \phi \sin \theta$
- $z = \rho \cos \phi$

Cartesian to Spherical

$$\bullet \ \rho = \sqrt{x^2 + y^2 + z^2}$$

•
$$\tan \theta = \frac{x}{y} \to \theta = \tan^{-1} \left(\frac{x}{y}\right)$$

•
$$\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

Example 1: Convert the Cartesian point (2,2,1) into Spherical coordinates.

$$\begin{split} &\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{2^2 + 2^2 + 1^2} = \sqrt{9} = 3 \\ &\theta = \tan^{-1}\left(\frac{x}{y}\right) = \tan^{-1}\left(\frac{2}{2}\right) = \tan^{-1}(1) = \frac{\pi}{4} \\ &\phi = \arccos\left(\frac{z}{\rho}\right) = \arccos\left(\frac{1}{3}\right) \\ &\textbf{Answer:} \ \left(3, \frac{\pi}{4}, \arccos\left(\frac{1}{3}\right)\right) \end{split}$$

Example 2: Convert the Spherical point $\left(4, \frac{\pi}{3}, \frac{\pi}{4}\right)$

$$x = \rho \sin \phi \cos \theta = 4 \cdot \sin \left(\frac{\pi}{4}\right) \cdot \cos \left(\frac{\pi}{3}\right) = 4 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \sqrt{2}$$

$$y = \rho \sin \phi \sin \theta = 4 \cdot \sin \left(\frac{\pi}{4}\right) \cdot \sin \left(\frac{\pi}{3}\right) = 4 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \sqrt{6}$$

$$z = \rho \cos \phi = 4 \cdot \cos \left(\frac{\pi}{4}\right) = 4 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2}$$
Answer: $\left(\sqrt{2}, \sqrt{6}, 2\sqrt{2}\right)$