CS325 - Project 1

Group 6 William Jernigan, Alexander Merrill, Sean Rettig

October 2014

Proof of Claim 1

Claim 1: y_i is not visible iff $\exists j, k$ such that j < i < k and $y * > m_i x * + b_i$ where (x *, y *) is the intersection of y_i and j_k .

 $A \equiv y_i$ is not visible

 $B \equiv \exists j, k \text{ such that } j < i < k \text{ and } y* < m_i x* + b_i \text{ where } (x*, y*) \text{ is the intersection of } y_j \text{ and } y_k.$ $A \Leftrightarrow B$

First Prove $A \Rightarrow B$

Direct Proof:

Let y_i be a line that is not visible.

Then l < i < n because y_l and y_n are always visible.

Let k be the smallest index greater than i such that y_k is visible.

e.g. $y_1, y_2, ..., y_k, y_{k+1}, ..., y_{n-1}, y_n$

Let (x*, y*) be the left most point on y_k that is visible.

Let j be the greatest index such that y_i intersects y_k at (x*, y*) is visible.

Because y_i through y_{k-1} are not visible (by definition of k_j) j < i < k.

Since x*, y* is visible and y_i is not visible, $m_i x + b_i < y*$.

Prove $B \Rightarrow A$

Direct Proof:

Since $m_i < m_k$, the intersection point of y_i and y_k is left of x*.

Since $m_i < m_k$, $m_i x + b_i < m_k x + b_k \ \forall x > \bar{x}$.

Likewise since $m_i > m_j$, y_i and y_j intersect at (\bar{x}, \bar{y}) right of $x*(\bar{x} > x*)$.

 $\therefore m_i x + b_i < m_j x + b_j; \forall x < \bar{\bar{x}}.$

 $\therefore y_i$ is not visible.

 $y_k + y_i$ intersect at $m_k x + b_k = m_i x + b_i$

$$x = \frac{(b_j - b_k)}{(m_k - m_j)}$$

$$x = \frac{(b_j - b_k)}{(m_k - m_j)}$$
Is $m_j \left(\frac{b_j - b_k}{m_k - m_j}\right) + b_j > m_i \left(\frac{b_j - b_k}{m_k - m_j}\right) + b_i$

If $m_k > m_j$ then instead compare $m_i(b_i - b_k) + b_i(m_k - m_i) > m_i(b_i + b_k)$

Proof of Claim 2

Claim 2: If $\{y_{j_1}, y_{j_2}, ..., y_{j_t}\}$ is the visible subset of $\{y_1, y_2, ..., y_{i-1}\}$ $(t \le i-1)$ then $\{y_{j_1}, y_{j_2}, ..., y_{j_k}, y_i\}$ is the visible subset of $\{y_1, y_2, ..., y_i\}$ where y_{j_k} is the last line such that $y_{j_k}(x^*) > y_i(x^*)$ where $(x*, y_{j_k}(x*))$ is the point of intersection of lines y_{j_k} and $y_{j_{k-1}}$.

Direct Proof

0.1 Prove that $y_i \in V^+k$

Let $A^+ = A\{y_i\}.$

Because $m_i > m_n, n < i, y_i$ is visible by the Claim 1 proof in the "Visible Line Notes" handout. Since y_i is visible and $y_i \in A^+, y_i$ must also be in V^+ , the visible subset of A^+ .

0.2 Prove that $y_{i_k} \in V^+k$

Let $(x^*, y_{j_k}(x^*))$ be the point of intersection of the lines y_{j_k} and $y_{j_{k-1}}$. Since $y_{j_k}(x^*)y_i(x^*)$ by definition, y_{j_k} is visible with respect to y_i . Since y_{j_k} was already in V, it is defined to be visible with respect to all other elements. $\therefore y_{j_k} \in V^+$.

0.3 Prove that $y_{i_n} \in V^+, 0 < n < k$

Because $y_{j_n} \in V$, it is defined to be visible with all other elements. So we must show that y_{j_n} is visible with respect to y_i as well. Let $(x_n^*, y_{j_n}(x_n^*))$ be the point of intersection of the lines y_{j_n} and $y_{j_{n+1}}$. By definition, $m_{j_n} < m_{j_{n+1}}$, so $\forall x_n < x_n^*, y_{j_n}(x_n) > y_{j_{n+1}}(x_n)$. $\therefore y_{j_1}(x_{1,2}^*) = y_{j_2}(x_{1,2}^*) \geq y_{j_3}(x_{1,2}^*), y_{j_2}(x_{2,3}^*) = y_{j_3}(x_{2,3}^*) \geq y_{j_4}(x_{2,3}^*), ..., y_{j_{n-1}}(x_{n-1,n}^*) = y_{j_n}(x_{n-1,n}^*)$ $y_{j_{n+1}}(x_{n-1,n}^*), ..., y_{j_{k-1}}(x_{k-1,k}^*) = y_{j_k}(x_{k-1,k}^*) \geq y_{j_i}(x_{k-1,k}^*)$ Since y_{j_n} was already in V, it is defined to be visible with respect to all other elements. $y_{j_n} \in V^+$.

0.4 Prove that $y_{j_n} \in V^+, 0 < n < k$

Because $y_{j_n} \in V$, it is defined to be visible with all other elements. So we must show that y_{j_n} is visible with respect to y_i as well. Let $(x_n^*, y_{j_n}(x_n^*))$ be the point of intersection of the lines y_{j_n} and $y_{j_{n+1}}$. By definition, $m_{j_n} < m_{j_{n+1}}$, so $\forall x_n < x_n^*, y_{j_n}(x_n) > y_{j_{n+1}}(x_n)$. $\therefore y_{j_1}(x_{1,2}^*) = y_{j_2}(x_{1,2}^*) \ge y_{j_3}(x_{1,2}^*), y_{j_2}(x_{2,3}^*) = y_{j_3}(x_{2,3}^*) \ge y_{j_4}(x_{2,3}^*), \dots, y_{j_{n-1}}(x_{n-1,n}^*) = y_{j_n}(x_{n-1,n}^*)$ $\ge y_{j_{n+1}}(x_{n-1,n}^*), \dots, y_{j_{k-1}}(x_{k-1,k}^*) = y_{j_k}(x_{k-1,k}^*) \ge y_{j_i}(x_{k-1,k}^*)$ Since y_{j_n} was already in V, it is defined to be visible with respect to all other elements. $\therefore y_{j_n} \in V^+$.