十进制	二进制	一进制
0	0000	000000000000000000
1	0001	000000000000000001
2	0010	00000000000000011
3	0011	0000000000000111
4	0100	0000000000001111
5	0101	0000000000011111
6	0110	0000000000111111
7	0111	0000000001111111
8	1000	0000000011111111
9	1001	00000001111111111
10	1010	0000001111111111

二进制与十进制

第1.2节 整数的表示和算法

Section 1.2: Integer Representations and Algorithms

1 整数n进制展开式

2 整数运算算法

3 模指数运算

知识要点

- □在日常生活中,我们都用**十进制**(以10为基数)记号来表示整数. 例如 765, 我们表示的是 $7\cdot10^2$ + $6\cdot10^1$ + $5\cdot10^0$.
- □有时候, 用10以外的数为基数更方便.
 - ▶ 计算机中通常用二进制记号(以2为基数)来做算术运算.
 - ▶八进制(以8为基数)记号或者十六进制(以16为基数)记号来表示字符,如字母和数字.
 - ▶再比如, 古玛雅人用20为基数的二十进制.
 - ▶再比如, 古巴比伦人用60为基数的六十进制.
- □实际上, 我们可以用任何大于1的整数为基数来表示整数.

- □【定理】: 令b是一个大于1的整数,则如果n是一个正整数,就可以唯一的表示为如下形式 $n = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b^1 + a_0 b^0$,其中k是非负整数, a_0 , a_1 , a_2 ,..., a_k 是小于b的非负整数,且 $a_k \neq 0$.这给出的n的表示称为n的进制展开式.可记为($a_k a_{k-1} a_1 a_0$)b
- □例如 $(245)_8$ 表示 $2 \cdot 8^2 + 4 \cdot 8 + 5 = (165)_{10} = 165$, 典型地, 整数的十进制展开式的下标10可以省略.

- □在计算机中采用**二进制展开式**来表示整数. 那么每位数字要么是0要 么是1, 一个整数的二进制展开式就是一个位串.
- □例: 以 (101011111)₂, (11011)₂为二进制展开式的整数分别是什么?
- □解:
 - $(101011111)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 351.$
 - $(11011)_2 = 1.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 27.$

- □**八进制展开式**是以8为基数的展开式,因此展开式中只有以下数字 {0,1,2,3,4,5,6,7}.
- □例:以(7016)8, (111)8为八进制展开式的十进制整数分别是多少?
- □解:
 - $(7016)_8 = 7.8^3 + 0.8^2 + 1.8^1 + 6.8^0 = 3598$
 - $(111)_8 = 1.8^2 + 1.8^1 + 1.8^0 = 64 + 8 + 1 = 73$

- □十六进制展开式需要用到16个不同的数字,通常使用的是{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F},其中A到F字母表示数字10到15.
- □例: 十六进制展开式(2AE0B)₁₆, (E5)₁₆的十进制展开式分别是多少?
- □解:
 - $(2AE0B)_{16} = 2.16^4 + 10.16^3 + 14.16^2 + 0.16^1 + 11.16^0 = 175627;$
 - \triangleright (E5)₁₆=14·16¹+5·16⁰=224+5=229

□其中十六进制和二进制,每一个十六进制的数字都可以用4位二进制的数字(0或者1)来表示. 比如(11100101)₂ = (E5)₁₆. 因为(1110)₂ = (E)₁₆, (0101)₂ = (5)₁₆

□那么任何两种进制之间的转换应该如何计算呢?这儿重点考虑十进制到其他任意进制的转换.

- □进制的转换: 构造一个整数n(十进制的整数n)的b进制展开式,
 - \triangleright 首先,用b除以n得到商和余数,即 $n = bq_0 + a_0$, $0 \le a_0 \le b$. 余数 a_0 就是n的 b进制展开式的最右边的数字.
 - 》接下来, 用b除以上一步的商 q_0 , 得 $q_0 = bq_1 + a_1$, $0 \le a_1 \le b$. 其中 a_1 就是n的 b进制展开式中从右边第二位的数字.
 - ▶继续以上过程, 连续用商除以b并以余数为新的b进制数.
 - ▶这一个过程在商为0时终止. 这个过程中从右向左产生n的b进制数字.
- □例如, (5)10=(101)2

- □例: 求(12345)₁0 的八进制展开式.
- □解:首先用8除以12345得到:
 - > 12345 = 8 · 1543 + 1
 - ▶ 1543 = 8 · 192 + 7(继续用8除以上一次的商)
 - ▶ 192 = 8 · 24 + 0(继续用8除以上一次的商)
 - ▶ 24 = 8 · 3 + 0(继续用8除以上一次的商)
 - → 3 = 8 · 0 + 3(继续用8除以上一次的商)
 - ▶商为0,终止.

以上过程中产生了一连串的余数1,7,0,0,3. 它们按照从右向左排列的数字30071就是对应的八进制展开式. 记作 $(12345)_{10}$ = $(30071)_8$.

- □二进制与八进制、十六进制展开式之间的转换其实是非常容易的.
- □每个八进制数字对应一组三位的二进制数字, 而每个十六进制数字 对应一组四位的二进制数字.
- □这种对应关系如下表所示, 其中未表示开头的0:

十进制:

十六进制

八进制:

二进制:

	TABLE 1 He	exad	ecim	al, O	ctal, a	and Bir	nary R	eprese	ntatio	of the	Integer	s 0 thro	ugh 15.				
	Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
IJ:	Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	В	(C)	D	Е	F
	Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
	Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

3位二进制数字可转换为 1位八进制数字 4位二进制数字可转换为1 位十六进制数字

- □例: 求(11 1110 1011 1100)2 的八进制和十六进制展开式.
- □解:
 - ▶ 为了求八进制, 每三个为一组, 必要时在最左一组的开头加0. 这样我们得到从 左到右为011,111,010,111和100. 对应的八进制数字则为3,7,2,7,4. 那么, 八 进制展开式为(37274)₈.
 - ▶类似地, 为了求十六进制, 每四个为一组, 必要时在最左一组的开头加0. 得到 0011,1110,1011,1100. 对应的十六进制数字3,E,B,C. 那么十六进制展开式为 (3EBC)₁₆.

- □例: 求(765)₈和 (A8D)₁₆的二进制展开式.
- □解:
 - ▶为了求二进制,把每个八进制数字转换为一组3个二进制数字.其中7表示为111,6表示为110,5表示为101,于是(765)₈=(1 1111 0101)₂.
 - ▶类似地, 把每个十六进制数字转换为一组4个二进制数字. 其中A表示为1010, 8表示为1000, D表示为1101. 因此, (A8D)₁₆=(1010 1000 1101)₂.

- □以前我们学过十进制的加减乘除法则, 比如11+20=31,11*3=33.
- □在计算机中我们是基于二进制来表示整数,那么二进制下如何进行整数运算?这儿重点考虑的是二进制数的加法、乘法、除法中求商、除法中求余.

□两个二进制展开式表示的整数的加法算法:

其中最基本的2个只有一位的二进制数字相加有以下四种情况:

```
0+0=0;
0+1=1;
1+0=1;
1+1=0, 其中进位为1
```

□总结:"逢二进一"的核心思想

□两个二进制展开式表示的整数的加法算法:

- 》给定两个整数a和b,其n位的二进制展开式分别为 $a = (a_{n-1}a_{n-2}...a_0)_2$ 和 $b = (b_{n-1}b_{n-2}...b_0)_2$
- 》要把a和b相加,首先把最右边的位相加,可得 $a_0 + b_0 = c_0 * 2 + s_0$,其中 s_0 是 a + b的二进制展开式中最右边数字, c_0 是进位,其中 c_0 可能为0,也可能为1.
- 》然后把下一对二进制位以及进位相加,可得 $a_1 + b_1 + c_0 = c_1 * 2 + s_1$,其中 s_1 是a + b的二进制展开式中的从右开始的第二位数字, c_1 是进位.
- \blacktriangleright 循环以上过程, 得到 s_0 , $s_1...s_n$. 因此, $a+b=(s_ns_{n-1}...s_1s_0)_2$.

□例:把 $a=(1110)_2$ 和 $b=(1011)_2$ 相加.

□解:

- \rightarrow 根据算法的步骤, $a_0 + b_0 = 0 + 1 = c_0 * 2 + s_0 = 0*2 + 1$, 所以 s_0 为1, 进位 c_0 为0;
- 》然后, $a_1 + b_1 + c_0 = 1 + 1 + 0 = c_1 * 2 + s_1 = 1 * 2 + 0$, 所以 s_1 为0, 进位 c_1 为1;
- 》然后, $a_2 + b_2 + c_1 = 1 + 0 + 1 = c_2 * 2 + s_2 = 1 * 2 + 0$, 所以 s_2 为0, 进位 c_2 为1;
- 》然后, $a_3 + b_3 + c_2 = 1 + 1 + 1 = c_3 * 2 + s_3 = 1 * 2 + 1$, 所以 s_3 为1, 进位 c_3 为1;
- ➤ 因此最后结果为11001. (1110)₂+(1011)₂ = (11001)₂

- □例:把 $a=(1110)_2$ 和 $b=(1011)_2$ 相加.
- □解法2:

其中斜体表示的是进位

□两个二进制展开式表示的整数的**乘法算法**:

其中最基本的2个只有一位的二进制数字相乘有以下四种情况:

$$0*0=0;$$

$$0*1=0;$$

$$1*1=1$$

□总结:二进制数乘法过程可仿照十进制数乘法进行

- **□乘法算法**:给定两个n位的整数a和b,其n位的二进制展开式分别为 $a = (a_{n-1}a_{n-2}...a_0)_2$ 和 $b = (b_{n-1}b_{n-2}...b_0)_2$
 - >要把a和b相乘, 利用分配律可以看出 $ab = a(b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{n-1} \cdot 2^{n-1}) = a(b_0 \cdot 2^0) + a(b_1 \cdot 2^1) + \dots + a(b_{n-1} \cdot 2^{n-1}).$
 - ightharpoonup 要把a和b相乘, 首先注意当 b_j = 1时, ab_j = a. 当 b_j = 0时, ab_j = 0.
 - 》当用2乘以一项时,可以把该项的二进制展开式向左移一位并在尾部加上0. 因而可以通过把 ab_j 的二进制展开式向左移j位,再在尾部加上j个0来获得 $a(b_j \cdot 2^j)$.
 - \rightarrow 最后, 把n个整数 $a(b_i \cdot 2^j)$, j=0,1,2,3,...,n-1, 相加就得到ab.

- □例:把 $a=(110)_2$ 和 $b=(101)_2$ 相乘.
- □解:

	110	
×	101	
_	110	
	000	
	110	
_	11110	

首先注意到

$$a(b_0 \cdot 2^0) = (110)_2 * 1 * 2^0 = (110)_2$$

$$a(b_1 \cdot 2^1) = (110)_2 * 0 * 2^1 = (0000)_2$$

$$a(b_2 \cdot 2^2) = (110)_2 * 1 * 2^2 = (11000)_2$$

因此, 把 $(110)_2$, $(0000)_2$, $(11000)_2$ 相加, 可得 $ab = (11110)_2$

- - 》当a为正时,就从a中尽可能多次减去d,直到剩下的值小于d为止.所做减法的次数就是商,而最后减剩下的值就是余数.
 - \rightarrow 当a为负时, 先求出|a|除以d的商和余数. 然后当a<0, 且r>0时, 就用这结果来计算当a除以d的商为-(q+1), 余数d-r.
- □前面提及-11=3×(-4)+1, 那么q=-4, r=1. 而不是-11=3×(-3)-2(不满足r大于等于0的要求)
- □备注:这儿*a*和*b*没有要求是二进制下的*n*位整数; 此外还有一些其他 更快的计算方式, 有兴趣的同学自行阅读课外书籍.

- □例: $a=(11)_2$ 和 $d=(10)_2$, 求a div d和a mod d的结果
- □解: $(11)_2$ $-(10)_{2=}(1)_2$,因为 $(1)_2$ 小于 $(10)_2$,所以a div d=减法的次数为1. <math>a mod d=多次减法后的剩余值为1.

- □例: $a = (-11)_{10}$, $d = (3)_{10}$ 时求a **div** d和a **mod** d的结果
- □解:
 - \triangleright 因为a小于0,那么我们首先求出|a|=11除以d的商和余数. 对应的结果分别为 q=3和r=2.
 - 》然后,当a<0且r>0时,就用这结果来计算当a除以d的商a div d = -(q+1)=-4, 余数a mod d = d r = 1.

□在密码学中,能够有效地计算 $b^n \mod m$ 很重要,这其中b,n,m都是大整数. 采用传统的先计算 b^n ,再求**mod** 的方法不可行,因为 b^n 是一个非常大的数.

□例如:123¹⁰⁰¹ **mod** 101,这儿都是默认的十进制数,当使用计算器还

能算出结果.

□例如:123¹⁰⁰⁰⁰ **mod** 101

- □为了解决以上难题 $b^n \mod m$,我们可以采用**模指数运算**. 常用的模指数算法有二进制法, 二进制NAF算法, 滑动窗口算法等. 这儿我们介绍**二进制法**(或称逐次平方法, successive squaring method), 其他方法有兴趣的同学可自行课外学习.
- □令n的二进制展开式为 $n = (a_{k-1}a_{k-2} \dots a_1a_0)_2$. 我们注意到

$$b^n = b^{(a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2^1 + a_0)}$$

- $= b^{a_{k-1} \cdot 2^{k-1}} * \dots * b^{a_2 \cdot 2^2} * b^{a_1 \cdot 2^1} * b^{a_0}$
- 》 = $(b^{a_{k-1}})^{2^{k-1}} * \cdots * (b^{a_2})^4 * (b^{a_1})^2 * (b^{a_0})^1$,其中 $a_{k-1}, a_{k-2}, \dots a_1, a_0$ 要么为1,要么为0
- □为了计算 b^n , 只需要计算b, b^2 , $(b^2)^2 = b^4$, $(b^4)^2 = b^8$, ..., $b^{2^{k-1}}$ 的值. 然后有了这些值, 把其中 $a_i = 1$ 的那些项 b^{2^j} 相乘就可以得到 b^n 的值.

- □例:计算3¹¹.
- □解:
 - ▶首先注意11=(1011)₂, 因此3¹¹=3^{1*2³} * 3^{1*2¹} * 3^{1*2⁰}= 3⁸ * 3² * 3¹.
 - ▶通过连续取平方可以得到 $3^2 = 9$, $3^4 = 9^2 = 81$, $3^8 = 81^2 = 6561$. 因此, $3^{11} = 3^8 * 3^2 * 3^1 = 6561 * 9 * 3 = 177147$.

- □例:计算3⁶⁴⁴.
- □解:
 - 》首先注意 $644 = (10\ 1000\ 0100)_2$,因此 $3^{644} = 3^{1*2^9} * 3^{1*2^7} * 3^{1*2^2} = 3^{512} * 3^{128} * 3^4$.
 - \blacktriangleright 通过连续取平方可以得到 $3^2 = 9$, $3^4 = 9^2 = 81$, $3^8 = 81^2 = 6561$, $3^{16} = 6561^2 = 43046721$, $3^{32} = 43046721^2 = ...$
- □因此,从这个例子我们看出以上方法中仍然计算量十分庞大.为了提高效率, $b^n \mod m$ 中,我们每乘以一项,都做一次 $\mod m$ 运算,以缩小结果值.

□为了计算 $b^n \mod m$, 依次求出 $b \mod m$, $b^2 \mod m$, $b^4 \mod m$, $b^{2^{k-1}} \mod m$, 并把其中 $a_j = 1$ 的那些项 $b^{2^j} \mod m$ 相乘, 在每次乘法后求乘积除以m所得的余数. 具体伪代码如下所示:

\Box 模指数运算 $b^n \mod m$ 伪代码

```
procedure modular exponentiation (b整数;n = (a_{k-1}a_{k-2} ... a_1a_0)_2;m正整数) x := 1 power := b \mod m for i := 0 to k - 1 if a_i = 1 then x := (x * power) \mod m power := (power * power) \mod m return x \{x \circledast T b^n \mod m\}
```

- □1、π用二进制表示
- \square 2、初始时, x置为1, power置为b **mod** m

\Box 模指数运算 $b^n \mod m$ 伪代码

```
procedure modular exponentiation (b整数;n = (a_{k-1}a_{k-2} ... a_1a_0)_2;m正整数) x := 1 power := b \mod m for i := 0 to k - 1 if a_i = 1 then x := (x * power) \mod m power := (power * power) \mod m return x \{x \oplus T b^n \mod m\}
```

- □3、for循环内:如果二进制中某一项 a_i 为1, 那么x=(x*power) **mod** m. 同时power=(power*power) **mod** $m(a_i$ 为0时, for循环内只执行这个)
- \square 4、循环结束后, x的值为 $b^n \mod m$ 的结果

- □例:计算3⁶⁴⁴ mod 645.
- □解:
 - ▶ 644的二进制展开式为(10 1000 0100)₂. 因此k 1=9.
 - ➤ 首先令*x*=1, power=3 **mod** 645=3.
 - 》然后通过连续地取平方并**mod** 645来减少结果值. 计算 $3^{2^{j}}$ **mod** 645, j = 1, 2, ..., 9. a_{j} 是645的二进制展开式的第j位. 如果 $a_{j} = 1$, 就在x当前值乘以 $3^{2^{j}}$ **mod** 645来减少结果值. 具体过程如下:
 - i = 0 : 因为 $a_0 = 0$,所以有x = 1,power= 3^2 **mod** 645 = 9
 - i = 1:因为 $a_1 = 0$,所以有x = 1,power= 9^2 **mod** 645 = 81
 - i = 2:因为 $a_2 = 1$,所以有x = 1*81,power= 81^2 **mod** 645 = 111

□解(续):

- i = 3:因为 $a_3 = 0$,所以有x = 81,power= 111^2 **mod** 645 = 66
- i=4:因为 $a_4=0$, 所以有x=81, power= 66^2 **mod** 645=486
- i = 5:因为 $a_5 = 0$,所以有x = 81,power= 486^2 **mod** 645 = 126
- $\triangleright i = 6$:因为 $a_6 = 0$,所以有x = 81,power= 126^2 **mod** 645 = 396
- i=7:因为 $a_7=1$,所以有x=(81*396) **mod** 645=471,power= 396^2 **mod** 645=81
- i = 8:因为 $a_8 = 0$,所以有x = 471,power= 81^2 **mod** 645 = 111
- ▶ *i* = 9:因为*a*₉ = 1, 所以有*x* = (471*111) **mod** 645 = 36
- ▶根据以上步骤, 可以得出结果为3⁶⁴⁴ mod 645=36.

- □例:计算3⁶⁴⁴ mod 645.
- □解法2(简化的写法):
 - ▶ 644的二进制展开式为(10 1000 0100)₂.
 - $> 3^{644} = 3^4 * 3^{128} * 3^{512}$
 - ▶ 然后通过连续地取平方并mod 645来减少结果值. 计算3² mod 645=9; 3⁴ mod 645=81; 3⁸ mod 645=111; 3¹⁶ mod 645=66; 3³² mod 645=486; 3⁶⁴ mod 645=126; 3¹²⁸ mod 645=396; 3²⁵⁶ mod 645=81; 3⁵¹² mod 645=111.
 - ➤ 因此, 3⁶⁴⁴ mod 645=81*396*111 mod 645=36

- □例:计算54¹³ **mod** 55.
- □解:
 - \rightarrow 13的二进制展开式为 $(1101)_2$. 因此 $54^{13} = 54^1 * 54^4 * 54^8$.
 - ▶通过连续地取平方并mod 55来减少结果值. 54² mod 55=1; 54⁴ mod 55=1; 54⁸ mod 55=1.
 - ▶因此, 54¹³ mod 55=54*1*1 mod 55=54.

第1.2节 整数的表示和算法小结

- □整数n(默认的10进制)的b进制展开式
- □b进制下的加法, 乘法, div, mod运算算法
- \square b^n mod m, 模指数运算