2/20/2019 Wine-kNN

Задача 12.

Предсказать сорт винограда из которого сделано вино, используя результаты химических анализов, с помощью KNN - метода k ближайших соседей с тремя различными метриками. Построить график зависимости величины ошибки от числа соседей k.

In [23]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn import neighbors
from sklearn import metrics
%matplotlib inline
```

Установим реккомендуемые параметры:

In [44]:

```
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = 'FreeSerif'
plt.rcParams['lines.linewidth'] = 2
plt.rcParams['lines.markersize'] = 12
plt.rcParams['xtick.labelsize'] = 24
plt.rcParams['ytick.labelsize'] = 24
plt.rcParams['legend.fontsize'] = 24
plt.rcParams['axes.titlesize'] = 36
plt.rcParams['axes.labelsize'] = 24
```

Загрузим данные:

2/20/2019 Wine-kNN

In [45]:

Out[45]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Pro
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
4										•

Разобьем данные на класс и признаки, а также на обучающую и тестовую выборки:

In [69]:

```
X = data.loc[:, data.columns != 'Class'].values
Y = data.loc[:, data.columns == 'Class'].values

used_metrics = ['euclidean', 'manhattan', 'chebyshev']
X_train, X_test, y_train, y_test = model_selection.train_test_split(
    X, Y, test_size = 0.2, random_state = 42)

y_train = y_train.ravel()
y_test = y_test.ravel()
```

Посчитаем точность предсказания класса при разных метриках и разных параметрах kNN.

In [67]:

Построим график зависимости точности от количеста соседей:

2/20/2019 Wine-kNN

In [68]:

```
plt.figure(figsize=(15, 8))
for i in range(0, 3):
    plt.plot(np.linspace(1, 100, 100), accuracy[i][1:], label = used_metrics[i])
plt.legend()
plt.title('Dependency of accuracy from number of neighbors')
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.show()
```


Вывод:

Как видно из графика, точность определения класса вина достаточно хорошая и не особо зависит от числа соседей в алгоритме kNN.