Airbnb New User Bookings

Rob Castellano, Zi Jin, Yannick Kimmel, Michael Winfield

Introduction

- I. Goal of our project
- II. The data
- III. Insights into the data
- IV. Our strategy
 - A. Feature engineering
 - B. Stacking
 - C. Feature importance
- V. Results
- VI. Conclusions

Goals

- Kaggle competition hosted by Airbnb, ending Feb 2016.
- Goal: Predict the country of a new user's first destination. This can include not booking (NDF).
- The competition allowed by the submission of five suggestions for each user.
- The competition was graded on normalized discounted cumulative gain (NDCG), which measures the performance of a recommendation system based on the relevance of the recommended entries.

Airbnb Kaggle Dataset

The Airbnb Kaggle dataset consisted of:

- **User information:** Unique ID, age, gender, web browser, avenue in which the user accessed AirBnB, country destination, timestamp of first activity, account created, and first booking.
- Browser session data: Unique ID, action type, and time elapsed.
- Training set: 200,000 users--Jan 2010 to Jun 2014
 Test set: 60,000 users--July 2014 to Sep 2014

Airbnb User Booking Behavior

User demographics

Age/Gender Missingness

Age & Gender on Country Destination

Time variable feature engineering

 We decided to engineer 3 features based on user booking behavior, specifically the time between the creation of Airbnb accounts, a user's first activity on the website, and their date of first booking.

Stacking

 Out-of-fold predictions of those three features were then added to the training dataset and test dataset through the process of stacking.

Workflow

Predicting Country Destination

- First choices either NDF or USA.
- Ran grid search cross-validation
- Unstacked:
 - XGBoost -- Improved Kaggle ranking from #1165 to #374 with score of 0.87055
 - Best parameters: learning_rate 0.1, max_depth 0.4, n_estimators: 100
- Stacked:
 - XGBoost -- Kaggle ranking of #1030 with score of 0.86332
 - AdaBoost -- Kaggle ranking of #1028 with score of 0.86445

Variables of importance in XGBoost

Conclusions

- 1. Performed exploratory data analysis on Airbnb new user information.
- 2. Wrangled and munged data in Python and R.
- 3. Used R for visualization and the creation of a Shiny App.
- 4. Feature engineered time-lag-based variables using Python and R.
- 5. Fit models (XGBoost/Random Forest/AdaBoost) using Python.
- 6. Performed predictions on users using XGBoost that ranked at 374 on Kaggle.

Recommendations to Airbnb

- Invest in collecting more demographic data to differentiate country destinations. A possible source includes Facebook (~½ users enter through FB).
- Flag users who decline to enter age and gender; such users are more likely to browse without booking.
- Continuously collect browser session activity; such data was helpful for predictions. This data was available only for newer users.

Future Directions

Steps to improve our predictions:

- Optimize tuning parameters for XGBoost on the stacked dataset.
- Stack country of destination predictions to dataset as features to improve predictions.
- Use multiple XGBoost models (stacked or unstacked) and ensemble them.