Xilinx Zynq FPGA, TI DSP, MCU 프로그래밍 및 회로 설계 전문가 과정

강사 – Innova Lee(이상훈) gcccompil3r@gmail.com

A Class Amplification

A 급 증폭에 대해 알아보도록 하자!

http://toshiba.semicon-storage.com/ap-en/product/bipolar-transistor/bipolar-transistor/detail.2SC2873.html 위의 링크에서 모토로라의 2SC2873 데이터시트를 획득할 수 있다.

http://assets.nexperia.com/documents/data-sheet/PZTA44.pdf NXP 사의 트랜지스터다.

https://www.sparkfun.com/datasheets/Components/2N3904.pdf 2N3904 의 데이터시트이다.

DC current gain	h _{FE (1)} (Note 3)	V _{CE} = 2 V, I _C = 0.5 A	70	1	240
	h _{FE (2)}	$V_{CE} = 2 \text{ V}, I_{C} = 2.0 \text{ A}$	20	١	_

h _{EE}	DC current gain	V _{CE} = 10 V		
		I _C = 1 mA	40	-
		I _C = 10 mA	50	200
		I _C = 50 mA; note 1	45	-
		I _C = 100 mA; note 1	40	-

h _{FE} * [I _C = 0.1 mA I _C = 1 mA I _C = 10 mA I _C = 50 mA I _C = 100 mA	V _{CE} = 1 V V _{CE} = 1 V V _{CE} = 1 V V _{CE} = 1 V V _{CE} = 1 V	60 80 100 60 30		300	
---------------------	--	---	---	-----------------------------	--	-----	--

 $h_{FE} = 100$ $I_2 = 10I_B$ $V_E = 1V$

2N3904 로 이와 같은 증폭기를 설계하고자 해보자!

TR 은 다양한 형태로 사용할 수 있는데 소신호, 등가모델, 그리고 고주파가 있다. 고주파 트랜지스터의 경우 몇백만원정도 된다. 미국이 만들 수 있고 중국은 이것을 카피해서 사용하고 있다.

$$h_{FE} = 100$$
 $I_2 = 10I_B$
 $V_E = 1V$

V _{CE(sat)} *	Collector-Emitter	I _C = 10 mA	I _B = 1 mA		0.2	V
	Saturation Voltage	Ic = 50 mA	$I_B = 5 \text{ mA}$		0.2	V

$$I_{C}(max) = \frac{12V - 1V - 0.2V}{1,2k\Omega} = \frac{10.8V}{1.2k\Omega} = 9mA$$

$$I_{C}(Q) = \frac{I_{C}(max)}{2} = 4.5mA$$

$$I_{B}(Q) = \frac{I_{C}(Q)}{hfe} = 45\mu A$$

$$I_{E} = I_{C} + I_{B} = 4.545mA$$

$$I_{2} = 10I_{B} = 450\mu A$$

$$I_{1} = I_{2} + I_{B} = 495\mu A$$

$$R_{E} = \frac{1V}{I_{E}} = \frac{1V}{4.545mA} = 220\Omega$$

$$R_{2} = \frac{V_{B}}{I_{2}} = \frac{1V + 0.6V}{450\mu A} = 3.55k\Omega$$

V _{BE(sat)*}	Base-Emitter	I _C = 10 mA	$I_B = 1 \text{ mA}$		0.85	V
	Saturation Voltage	$I_C = 50 \text{ mA}$	$I_B = 5 \text{ mA}$	0.65	0.95	V

$$R_1 = \frac{12V - 1.6V}{I_1} = 21k\Omega$$

전류 100배 증폭 효과

전압 증폭비
$$\frac{R_C}{R_E} = \frac{1.2k}{220} = 6$$