Separating rank-into-rank axioms through their descriptive consequences

Philipp Moritz Lücke Universität Hamburg

Seventh workshop on generalised Baire spaces, 08. February 2024

Joint work in progress with Vincenzo Dimonte (Udine).

Our starting point is the classical *Kunen Inconsistency*:

Theorem (Kunen)

Given an ordinal λ , there is no non-trivial elementary embedding $j: V_{\lambda+2} \longrightarrow V_{\lambda+2}$.

Our starting point is the classical *Kunen Inconsistency*:

Theorem (Kunen)

Given an ordinal λ , there is no non-trivial elementary embedding $j: V_{\lambda+2} \longrightarrow V_{\lambda+2}$.

Shortly after Kunen's proof, people started studying large cardinal notions on the verge of this inconsistency result.

Definition (Gaifman, Kanamori–Reinhardt–Solovay)

- An *I3-embedding* is a non-trivial elementary embedding $j: V_{\lambda} \longrightarrow V_{\lambda}$ for some limit ordinal λ .
- An *I2-embedding* is a non-trivial Σ_1 -elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.
- An *I1-embedding* is a non-trivial elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.

Definition (Gaifman, Kanamori-Reinhardt-Solovay)

- An *I3-embedding* is a non-trivial elementary embedding $j: V_{\lambda} \longrightarrow V_{\lambda}$ for some limit ordinal λ .
- An *I2-embedding* is a non-trivial Σ_1 -elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.
- An *I1-embedding* is a non-trivial elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.

Definition (Woodin)

An *I0-embedding* is a non-trivial elementary embedding $j: L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ with $crit(j) < \lambda$.

Results of Woodin show that, if $j: L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ is an I0-embedding, then the model $L(V_{\lambda+1})$ possesses various structural features that generalize properties of determinacy models.

Results of Woodin show that, if $j: L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ is an I0-embedding, then the model $L(V_{\lambda+1})$ possesses various structural features that generalize properties of determinacy models.

For example:

Theorem (Woodin)

If $j:L(V_{\lambda+1})\longrightarrow L(V_{\lambda+1})$ is an I0-embedding, then λ^+ is a measurable cardinal in $L(V_{\lambda+1})$.

Given a cardinal $\nu > 0$ and an infinite cardinal μ , we equip the set ${}^{\mu}\nu$ of all functions from μ to ν with the topology whose basic open sets consists of all functions that extend a given function $s: \xi \longrightarrow \nu$ with $\xi < \mu$.

Given a cardinal $\nu>0$ and an infinite cardinal μ , we equip the set ${}^{\mu}\nu$ of all functions from μ to ν with the topology whose basic open sets consists of all functions that extend a given function $s:\xi\longrightarrow\nu$ with $\xi<\mu$.

Next, we say that a map $\iota: X \longrightarrow Y$ between topological spaces is a perfect embedding if it induces a homeomorphism between X and the subspace $\operatorname{ran}(\iota)$ of Y.

Given a cardinal $\nu>0$ and an infinite cardinal μ , we equip the set ${}^{\mu}\nu$ of all functions from μ to ν with the topology whose basic open sets consists of all functions that extend a given function $s:\xi\longrightarrow\nu$ with $\xi<\mu$.

Next, we say that a map $\iota: X \longrightarrow Y$ between topological spaces is a perfect embedding if it induces a homeomorphism between X and the subspace $\operatorname{ran}(\iota)$ of Y.

Finally, given an infinite cardinal κ , we say that a subset of κ^2 has the perfect set property if it either has cardinality at most κ or it contains the range of a perfect embedding of $^{\mathrm{cof}(\kappa)}\kappa$ into $^{\kappa}2$.

Given a cardinal $\nu>0$ and an infinite cardinal μ , we equip the set ${}^{\mu}\nu$ of all functions from μ to ν with the topology whose basic open sets consists of all functions that extend a given function $s:\xi\longrightarrow\nu$ with $\xi<\mu$.

Next, we say that a map $\iota:X\longrightarrow Y$ between topological spaces is a perfect embedding if it induces a homeomorphism between X and the subspace $\mathrm{ran}(\iota)$ of Y.

Finally, given an infinite cardinal κ , we say that a subset of κ^2 has the perfect set property if it either has cardinality at most κ or it contains the range of a perfect embedding of $^{\mathrm{cof}(\kappa)}\kappa$ into $^{\kappa}2$.

Theorem (Cramer, Shi & Woodin)

If $j: L(V_{\lambda+1}) \longrightarrow L(V_{\lambda+1})$ is an I0-embedding, then every subset of ${}^{\lambda}2$ in $L(V_{\lambda+1})$ has the perfect set property.

Question

Do weaker large cardinal assumptions suffice to derive the above conclusion for smaller classes of definable subsets of $^{\lambda}2$?

Question

Do weaker large cardinal assumptions suffice to derive the above conclusion for smaller classes of definable subsets of $^{\lambda}2$?

The starting point of our project is the following result:

Theorem (L.-Müller)

If λ is a limit of measurable cardinals, then every subset of ${}^{\lambda}2$ that is definable by a Σ_1 -formulas with parameters in $V_{\lambda} \cup \{\lambda\}$ has the perfect set property.

Theorem (L.-Müller)

Let λ be a singular strong limit cardinal with the property that for every subset of $^\lambda 2$ that is definable by a Σ_1 -formula with parameters in $V_\lambda \cup \{\lambda\}$ has the perfect set property. Then there is an inner model with a sequence of measurable cardinals of length $cof(\lambda)$.

Theorem (L.-Müller)

Let λ be a singular strong limit cardinal with the property that for every subset of ${}^{\lambda}2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda} \cup \{\lambda\}$ has the perfect set property. Then there is an inner model with a sequence of measurable cardinals of length $\operatorname{cof}(\lambda)$.

Question

Can we derive a stronger Perfect Set Theorem at limits of measurable cardinals?

Theorem (L.-Müller)

Let λ be a singular strong limit cardinal with the property that for every subset of ${}^{\lambda}2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda} \cup \{\lambda\}$ has the perfect set property. Then there is an inner model with a sequence of measurable cardinals of length $\operatorname{cof}(\lambda)$.

Question

Can we derive a stronger Perfect Set Theorem at limits of measurable cardinals?

What happens if we allow other *simple* parameters, like V_{λ} or a cofinal ω -sequence in λ , in our Σ_1 -definitions?

If $\vec{\lambda}$ is a strictly increasing sequence of measurable cardinals with supremum λ , then the following statements hold in an inner model containing the sequence $\vec{\lambda}$:

 \bullet The sequence $\vec{\lambda}$ consists of measurable cardinals.

- ullet The sequence $\vec{\lambda}$ consists of measurable cardinals.
- There is a subset of $^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameter V_{λ} .

- The sequence $\vec{\lambda}$ consists of measurable cardinals.
- There is a subset of $^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameter V_{λ} .
- There is a subset of ${}^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameter $\vec{\lambda}$.

- The sequence $\vec{\lambda}$ consists of measurable cardinals.
- There is a subset of $^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameter V_{λ} .
- There is a subset of ${}^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameter $\vec{\lambda}$.
- If $\vec{\mu}$ is an ω -sequence of regular cardinals with limit λ , then there is a subset of $^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameters in $\mathbb{R} \cup \{\vec{\mu}\}$.

Descriptive properties of

I2-embeddings

Remember that an I2-embedding is a non-trivial Σ_1 -elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.

Remember that an I2-embedding is a non-trivial Σ_1 -elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.

Theorem (Dimonte-lannella-L.)

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I2-embedding with critical sequence $\vec{\lambda}$, then every subset of $^\lambda 2$ that is definable by a Σ_1 -formula with parameters in $V_\lambda \cup \{V_\lambda, \vec{\lambda}\}$ has the perfect set property.

Remember that an I2-embedding is a non-trivial Σ_1 -elementary embedding $j: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.

Theorem (Dimonte-lannella-L.)

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I2-embedding with critical sequence $\vec{\lambda}$, then every subset of $^{\lambda}2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda}\cup\{V_{\lambda},\vec{\lambda}\}$ has the perfect set property.

We will in fact show that the above conclusion holds for a larger collection of parameters that we will now define.

Lemma

The following statements are equivalent for every strictly increasing sequence $\vec{\lambda}$ with supremum λ :

- There is an I2-embedding with critical sequence $\vec{\lambda}$.
- There is a transitive class M with $V_{\lambda} \subseteq M$ and an elementary embedding $j: V \longrightarrow M$ with critical sequence $\vec{\lambda}$.

Lemma

The following statements are equivalent for every strictly increasing sequence $\vec{\lambda}$ with supremum λ :

- There is an I2-embedding with critical sequence $\vec{\lambda}$.
- There is a transitive class M with $V_{\lambda} \subseteq M$ and an elementary embedding $j: V \longrightarrow M$ with critical sequence $\vec{\lambda}$.

In the following, we will use the term "I2-embedding" for both types of embeddings.

 $(\omega + 1)$ -iterable, i.e. there exists a commuting system $\langle \langle M_{\alpha}^{j} \mid \alpha \leq \omega \rangle, \langle j : M_{\alpha}^{j} \longrightarrow M_{\beta}^{j} \mid \alpha \leq \beta \leq \omega \rangle \rangle$

Classical results of Martin show that I2-embeddings $j:V\longrightarrow M$ are

 $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

- $M_0^j = V$ and $j_{0,1} = j$.

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \mathrm{Ord} \}.$

• $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of

 $(\omega + 1)$ -iterable, i.e. there exists a commuting system

$$\langle\langle M_{\alpha}^{j}\mid\alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid\alpha\leq\beta\leq\omega\rangle\rangle$$
 of inner models and elementary embeddings with:

- of inner models and elementary embeddings with: • $M_0^j = V$ and $j_{0,1} = j$.
 - If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \text{Ord} \}$.

Classical results of Martin show that I2-embeddings $j:V\longrightarrow M$ are

- $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

If
$$\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$$
 is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:

$$\langle\langle M_{\alpha}^{j}\mid\alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid\alpha\leq\beta\leq\omega\rangle\rangle$$

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \text{Ord} \}$.
- $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

If
$$\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$$
 is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:

- Given $m \leq n < \omega$, we then have $V_{\lambda} \subseteq M_{\omega}^{j} \subseteq M_{n}^{j} \subseteq M_{m}^{j}$,

$$\langle\langle M_{\alpha}^{j}\mid \alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid \alpha\leq\beta\leq\omega\rangle\rangle$$

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \text{Ord} \}$.
- $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

If
$$\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$$
 is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:

- Given $m \leq n < \omega$, we then have $V_{\lambda} \subseteq M_{\omega}^{j} \subseteq M_{n}^{j} \subseteq M_{m}^{j}$,
- $\operatorname{crit}(j_{n,n+1}) = \lambda_n = j_{m,n}(\lambda_m),$

$$\langle\langle M_{\alpha}^{j}\mid\alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid\alpha\leq\beta\leq\omega\rangle\rangle$$

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \text{Ord} \}$.
- $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

If
$$\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$$
 is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:

- Given $m \leq n < \omega$, we then have $V_{\lambda} \subseteq M_{\omega}^{j} \subseteq M_{n}^{j} \subseteq M_{m}^{j}$,
- $\operatorname{crit}(j_{n,n+1}) = \lambda_n = j_{m,n}(\lambda_m), \ j_{m,n}(\lambda) = \lambda$

$$\langle\langle M_{\alpha}^{j}\mid \alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid \alpha\leq\beta\leq\omega\rangle\rangle$$

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \text{Ord} \}$.
- $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

If
$$\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$$
 is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:

- Given $m \leq n < \omega$, we then have $V_{\lambda} \subseteq M_{\omega}^{j} \subseteq M_{n}^{j} \subseteq M_{m}^{j}$, $\operatorname{crit}(j_{n,n+1}) = \lambda_n = j_{m,n}(\lambda_m), \ j_{m,n}(\lambda) = \lambda \ \text{and} \ j_{n,\omega}(\lambda_n) = \lambda.$

$$\langle\langle M_{\alpha}^{j}\mid \alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid \alpha\leq\beta\leq\omega\rangle\rangle$$

of inner models and elementary embeddings with: • $M_0^j = V$ and $j_{0,1} = j$.

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \mathrm{Ord}\}.$
- $\langle M_{j,n}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of
- $\langle \langle M_r^j \mid n < \omega \rangle, \langle j_{m,n} : M_r^j \longrightarrow M_r^j \mid m < n < \omega \rangle \rangle.$

If $\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$ is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:

- Given $m \leq n < \omega$, we then have $V_{\lambda} \subseteq M_{\omega}^{j} \subseteq M_{n}^{j} \subseteq M_{m}^{j}$, $\operatorname{crit}(j_{n,n+1}) = \lambda_{n} = j_{m,n}(\lambda_{m}), \ j_{m,n}(\lambda) = \lambda \ \text{and} \ j_{n,\omega}(\lambda_{n}) = \lambda.$
 - $j_{0,\omega}(\lambda^+) = \lambda^+$ and $(2^{\lambda})^{M_{\omega}^j} < \lambda^+$.

$$\langle\langle M_{\alpha}^{j}\mid\alpha\leq\omega\rangle,\langle j:M_{\alpha}^{j}\longrightarrow M_{\beta}^{j}\mid\alpha\leq\beta\leq\omega\rangle\rangle$$

of inner models and elementary embeddings with: • $M_0^j = V$ and $j_{0,1} = j$.

- If $n < \omega$, then $j_{n+1,n+2} = \bigcup \{j_{n,n+1}(j_{n,n+1} \upharpoonright V_{\alpha}) \mid \alpha \in \text{Ord}\}.$
- $\langle M_{\omega}^{j}, \langle j_{n,\omega} \mid n < \omega \rangle \rangle$ is a direct limit of

 $\langle \langle M_n^j \mid n < \omega \rangle, \langle j_{m,n} : M_m^j \longrightarrow M_n^j \mid m < n < \omega \rangle \rangle.$

- If $\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$ is the critical sequence of j and $\lambda = \sup_{n < \omega} \lambda_n$, then:
- Given $m \leq n < \omega$, we then have $V_{\lambda} \subseteq M_{\omega}^{j} \subseteq M_{n}^{j} \subseteq M_{m}^{j}$, $\operatorname{crit}(j_{n,n+1}) = \lambda_{n} = j_{m,n}(\lambda_{m}), \ j_{m,n}(\lambda) = \lambda \ \text{and} \ j_{n,\omega}(\lambda_{n}) = \lambda.$
 - $j_{0,\omega}(\lambda^+) = \lambda^+$ and $(2^{\lambda})^{M^j_{\omega}} < \lambda^+$.
 - ullet $\vec{\lambda}$ is Prikry-generic over M^j_ω and hence $(2^\lambda)^{M^j_\omega[\vec{\lambda}]} < \lambda^+.$

Theorem (Laver)

Let $j \ : \ V \ \longrightarrow \ M$ be an I2-embedding with critical sequence

$$\langle \lambda_n \mid n < \omega \rangle$$
 and set $\lambda = \sup_{n < \omega} \lambda$.

If $d \in V_{\lambda}$ and $r : d \longrightarrow \operatorname{Ord}$ is a function, then the function

$$j_{0,\omega} \circ r : d \longrightarrow \operatorname{Ord}$$

is an element of M_{ν}^{j} .

Theorem (Laver)

Let $j:V\longrightarrow M$ be an I2-embedding with critical sequence $\langle \lambda_n\mid n<\omega\rangle$ and set $\lambda=\sup_{n<\omega}\lambda$.

If $d \in V_{\lambda}$ and $r: d \longrightarrow \operatorname{Ord}$ is a function, then the function

$$j_{0,\omega} \circ r : d \longrightarrow \operatorname{Ord}$$

is an element of M_{ω}^{j} .

Using Laver's result, we will be able to prove a strengthening of the above Perfect Set Theorem.

Theorem (Dimonte-lannella-L.)

Let $j:V\longrightarrow M$ be an I2-embedding with critical sequence

Let
$$j:V\longrightarrow M$$
 be an i2-embedding with critical sequence $\vec{\lambda}=\langle \lambda_n\mid n<\omega\rangle$, set $\lambda=\sup_{n<\omega}\lambda_n$ and let N be an inner model of **ZFC** with $M_\omega^j\cup\{\vec{\lambda}\}\subseteq N$ and $(2^\lambda)^N<\lambda^+$.

Theorem (Dimonte-lannella-L.)

Let $j:V\longrightarrow M$ be an I2-embedding with critical sequence $\vec{\lambda}=\langle \lambda_n\mid n<\omega\rangle$, set $\lambda=\sup_{n<\omega}\lambda_n$ and let N be an inner

model of **ZFC** with $M_{\omega}^{j} \cup \{\vec{\lambda}\} \subseteq N$ and $(2^{\lambda})^{N} < \lambda^{+}$.

Then every subset of $^{\lambda}2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ has the perfect set property.

• A subset of ${}^{\omega}\lambda$ is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ iff it is definable over V_{λ} by a Σ_2^1 -formula with parameters in $V_{\lambda+1}^N$.

- A subset of ${}^{\omega}\lambda$ is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ iff it is definable over V_{λ} by a Σ_2^1 -formula with parameters in $V_{\lambda+1}^N$.
- A subset of ${}^{\omega}\lambda \times {}^{\omega}\lambda$ that is definable over V_{λ} by a Σ^1_1 -formula with parameters in $V^N_{\lambda+1}$ can be represented as the projection p[T] of the set [T] of all cofinal branches through a subtree $T \in N$ of $({}^{<\omega}V_{\lambda})^3$.

- A subset of ${}^{\omega}\lambda$ is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ iff it is definable over V_{λ} by a Σ_2^1 -formula with parameters in $V_{\lambda+1}^N$.
- A subset of ${}^{\omega}\lambda \times {}^{\omega}\lambda$ that is definable over V_{λ} by a Σ^1_1 -formula with parameters in $V^N_{\lambda+1}$ can be represented as the projection p[T] of the set [T] of all cofinal branches through a subtree $T \in N$ of $({}^{<\omega}V_{\lambda})^3$.
- ullet We can build a *Shoenfield tree* for the Σ^1_2 -subset of ${}^\omega\lambda$ defined by T.

- A subset of ${}^{\omega}\lambda$ is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ iff it is definable over V_{λ} by a Σ^1_2 -formula with parameters in $V^N_{\lambda+1}$.
- A subset of ${}^{\omega}\lambda \times {}^{\omega}\lambda$ that is definable over V_{λ} by a Σ_1^1 -formula with parameters in $V_{\lambda+1}^N$ can be represented as the projection p[T] of the set [T] of all cofinal branches through a subtree $T \in N$ of $({}^{<\omega}V_{\lambda})^3$.
- We can build a *Shoenfield tree* for the Σ_2^1 -subset of ${}^{\omega}\lambda$ defined by T.

Let S_T^V denote the Shoenfield tree of T in V and let S_T^N denote the

Shoenfield tree of T in N.

- A subset of ${}^{\omega}\lambda$ is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ iff it is definable over V_{λ} by a Σ_2^1 -formula with parameters in $V_{\lambda+1}^N$.
- A subset of ${}^\omega \lambda \times {}^\omega \lambda$ that is definable over V_λ by a Σ^1_1 -formula with parameters in $V^N_{\lambda+1}$ can be represented as the projection p[T] of the set [T] of all cofinal branches through a subtree $T \in N$ of $({}^{<\omega}V_\lambda)^3$.
- We can build a Shoenfield tree for the Σ_2^1 -subset of ${}^\omega \lambda$ defined by T. Let S_T^V denote the Shoenfield tree of T in V and let S_T^N denote the Shoenfield tree of T in N.
- Then $S_T^N \subseteq S_T^V$ and we can use Laver's theorem to find an embedding of S_T^V into S_T^N that is the identity on the first coordinate.

- A subset of ${}^{\omega}\lambda$ is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}^N$ iff it is definable over V_{λ} by a Σ_2^1 -formula with parameters in $V_{\lambda+1}^N$.
- A subset of ${}^\omega \lambda \times {}^\omega \lambda$ that is definable over V_λ by a Σ^1_1 -formula with parameters in $V^N_{\lambda+1}$ can be represented as the projection p[T] of the set [T] of all cofinal branches through a subtree $T \in N$ of $({}^{<\omega} V_\lambda)^3$.
- We can build a Shoenfield tree for the Σ_2^1 -subset of ${}^\omega \lambda$ defined by T. Let S_T^V denote the Shoenfield tree of T in V and let S_T^N denote the Shoenfield tree of T in N.
- Then $S_T^N\subseteq S_T^V$ and we can use Laver's theorem to find an embedding of S_T^V into S_T^N that is the identity on the first coordinate.
- $\bullet \ \ \text{We then know that} \ p[S_T^N]^V = p[S_T^V]^V.$

Let $\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$ be a strictly increasing sequence of infinite cardinals with limit λ and let $T \subseteq {}^{<\omega}a \times {}^{<\omega}b$ be a tree such that p[T] does not contain the range of a perfect embedding of ${}^{\omega}\lambda$ into ${}^{\omega}a$.

If N is an inner model with $V_{\lambda} \cup \{T, \vec{\lambda}\} \subseteq N$, then $p[T]^V \subseteq N$.

Let $\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$ be a strictly increasing sequence of infinite cardinals with limit λ and let $T \subseteq {}^{<\omega}a \times {}^{<\omega}b$ be a tree such that p[T] does not contain the range of a perfect embedding of ${}^{\omega}\lambda$ into ${}^{\omega}a$.

If N is an inner model with $V_{\lambda} \cup \{T, \vec{\lambda}\} \subseteq N$, then $p[T]^V \subseteq N$.

• Assume that $p[S_T^V]^V$ has cardinality greater than $(2^\lambda)^N$.

Let $\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$ be a strictly increasing sequence of infinite cardinals with limit λ and let $T \subseteq {}^{<\omega}a \times {}^{<\omega}b$ be a tree such that p[T] does not contain the range of a perfect embedding of ${}^{\omega}\lambda$ into ${}^{\omega}a$.

If N is an inner model with $V_{\lambda} \cup \{T, \vec{\lambda}\} \subseteq N$, then $p[T]^V \subseteq N$.

- Assume that $p[S_T^V]^V$ has cardinality greater than $(2^\lambda)^N$.
- Then $p[S_T^N]^V = p[S_T^V]^V \nsubseteq N$.

Let $\vec{\lambda} = \langle \lambda_n \mid n < \omega \rangle$ be a strictly increasing sequence of infinite cardinals with limit λ and let $T \subseteq {}^{<\omega} a \times {}^{<\omega} b$ be a tree such that p[T] does not contain the range of a perfect embedding of ${}^{\omega} \lambda$ into ${}^{\omega} a$.

If N is an inner model with $V_{\lambda} \cup \{T, \vec{\lambda}\} \subseteq N$, then $p[T]^{V} \subseteq N$.

- Assume that $p[S_T^V]^V$ has cardinality greater than $(2^{\lambda})^N$.
- Then $p[S_T^N]^V = p[S_T^V]^V \nsubseteq N$.
- The lemma shows that $p[S_T^V]^V$ contains the range of a perfect embedding of ${}^\omega\lambda$ into itself.

Proposition (Dimonte-lannella-L.)

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I2-embedding, then the following statements hold in an inner model:

Proposition (Dimonte-lannella-L.)

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I2-embedding, then the following statements hold in an inner model:

• There is an I2-embedding $i: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.

Proposition (Dimonte-lannella-L.)

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I2-embedding, then the following statements hold in an inner model:

- There is an I2-embedding $i: V_{\lambda+1} \longrightarrow V_{\lambda+1}$.
- There is a subset of ${}^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameters in $\mathcal{P}(\lambda)$.

through their descriptive consequences

Separating rank-into-rank axioms

More specifically, they motivate the question whether we can canonically assign parameter sets to rank-into-rank axioms in a way that ...

More specifically, they motivate the question whether we can canonically assign parameter sets to rank-into-rank axioms in a way that \dots

ullet ... the given axiom implies that all sets definable by a Σ_1 -formula with parameters from the given set have the perfect set property.

More specifically, they motivate the question whether we can canonically assign parameter sets to rank-into-rank axioms in a way that \dots

- ullet ... the given axiom implies that all sets definable by a Σ_1 -formula with parameters from the given set have the perfect set property.
- ... weaker axiom, if consistent, do not imply this regularity property.

More specifically, they motivate the question whether we can canonically assign parameter sets to rank-into-rank axioms in a way that ...

- ullet ... the given axiom implies that all sets definable by a Σ_1 -formula with parameters from the given set have the perfect set property.
- ... weaker axiom, if consistent, do not imply this regularity property.

Recent work with Vincenzo Dimonte reveals that this is indeed possible for I1-, I2- and I3-embeddings, and unveils a canonical generalized descriptive set theory in the presence of rank-into-rank axioms.

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I1-embedding, then every subset of $^\lambda 2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}$ has the perfect set property.

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I1-embedding, then every subset of $^\lambda 2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}$ has the perfect set property.

Theorem (Dimonte-L.)

If there is an I3-embedding, then there is a cardinal λ such that the following statements hold in an inner model of **ZFC** of a forcing extension of V:

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I1-embedding, then every subset of $^\lambda 2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}$ has the perfect set property.

Theorem (Dimonte-L.)

If there is an I3-embedding, then there is a cardinal λ such that the following statements hold in an inner model of **ZFC** of a forcing extension of V:

• There is an I3-embedding $j: V_{\lambda} \longrightarrow V_{\lambda}$.

If $j:V_{\lambda+1}\longrightarrow V_{\lambda+1}$ is an I1-embedding, then every subset of $^{\lambda}2$ that is definable by a Σ_1 -formula with parameters in $V_{\lambda+1}$ has the perfect set property.

Theorem (Dimonte-L.)

If there is an I3-embedding, then there is a cardinal λ such that the following statements hold in an inner model of **ZFC** of a forcing extension of V:

- There is an I3-embedding $j: V_{\lambda} \longrightarrow V_{\lambda}$.
- There is a subset of $^{\lambda}2$ without the perfect set property that is definable by a Σ_1 -formula with parameter V_{λ} .

Thank you for listening!