Explorando a Realidade Virtual em Museus da Cultura Latino-Americana: Uma Imersão na Cultura Colombiana

Autor: William Ramirez Ruiz

2023

1 Especificação do programa

1.1 Escopo

O escopo do projeto abrange o desenvolvimento de um software de Realidade Virtual para Museus Culturais Latino-Americanos (SRVMCLA), com foco na exploração dos aspectos culturais da Colômbia. O programa permitirá que os visitantes dos museus vivenciem uma experiência imersiva e interativa por meio de ambientes virtuais, onde poderão explorar exposições virtuais, interagir com objetos culturais e aprender mais sobre a rica herança colombiana.

O escopo inclui, mas não se limita a:

- Desenvolvimento de software: Projeto e implementação do SRVMCLA. Integração de tecnologias de Realidade Virtual, como renderização em tempo real, rastreamento de movimento e interatividade.
- Ambientes virtuais: Criação de ambientes virtuais que representam diferentes aspectos da cultura colombiana, como arte, música, dança e história.
- Design do ambiente: Design e modelagem 3D dos ambientes virtuais, considerando aspectos estéticos e de usabilidade, isso usando modelagem de personagens através de assets próprios do Unity (Hurricane VR).
- Interatividade e recursos educacionais: Implementação de interatividade nos ambientes virtuais, permitindo que os visitantes interajam com objetos culturais, acessem informações adicionais e participem de atividades interativas. Desenvolvimento de recursos educacionais, como textos informativos, vídeos explicativos e areas interativas, para fornecer conhecimento sobre a cultura colombiana.
- Testes e avaliação: Realização de testes para garantir a funcionalidade, usabilidade e eficácia do programa. Os testes serão conduzidos localmente pelo programador, visando identificar e corrigir possíveis problemas e garantir que o software atenda aos requisitos estabelecidos. Essa

abordagem foi adotada devido a limitações de recursos e disponibilidade de usuários em um estágio inicial do projeto.

• Documentação:

Elaboração de documentação completa do software, incluindo manuais do usuário e do desenvolvedor, guias de instalação e requisitos de sistema.

Os usuários principais do software são os visitantes do museu que desejam explorar e experimentar a cultura colombiana por meio da Realidade Virtual. Esses usuários podem ser tanto locais quanto turistas interessados em aprender sobre a cultura e o patrimônio latino-americano.

1.2 Requisitos funcionais

- RF1: Exibição de ambientes virtuais.
- RF2: Navegação interativa.
- RF3: Interatividade com objetos virtuais.
- RF4: Recursos educacionais.
- RF5: Áudio e/ou guias de áudio.
- RF6: Integração de mídia.
- RF7: Personalização das configurações.
- RF8: Compatibilidade de hardware.
- RF9: Integração de feedback dos visitantes.

1.3 Requisitos não funcionais

- RNF1: Desempenho.
- RNF2: Usabilidade.
- RNF3: Confiabilidade.
- RNF4: Compatibilidade.
- RNF5: Segurança.
- RNF6: Desenvolvimento sustentável.
- RNF7: Performance gráfica.
- RNF8: Disponibilidade.

1.4 Especificação dos requisitos

1.5 Requisitos Funcionais

1.5.1 Ambientes Virtuais

- O software deve permitir a criação e exibição de ambientes virtuais que representem aspectos da cultura colombiana, como exposições de arte, locais históricos e eventos culturais.
- Os ambientes virtuais devem ser imersivos, proporcionando uma experiência realista e interativa para os visitantes.

1.5.2 Navegação e Interatividade

- Os visitantes devem ser capazes de navegar pelos ambientes virtuais de forma intuitiva e interativa, utilizando dispositivos de entrada compatíveis com a tecnologia de realidade virtual.
- Deve ser possível interagir com objetos virtuais, como selecionar, ampliar, rotacionar e obter informações adicionais sobre os itens culturais.

1.5.3 Recursos Educacionais

- O software deve fornecer recursos educacionais para enriquecer a experiência dos visitantes, como informações detalhadas sobre os elementos exibidos, contexto histórico e cultural, bem como curiosidades relevantes.
- Deve ser possível apresentar vídeos, áudios e imagens relacionados aos elementos culturais, para aprofundar o conhecimento dos visitantes.

1.6 Requisitos Não Funcionais

1.6.1 Desempenho

- O software deve ter um desempenho adequado, garantindo tempos de resposta rápidos e fluidez na navegação pelos ambientes virtuais.
- A renderização gráfica dos elementos virtuais deve ser realizada de forma eficiente, proporcionando uma experiência visual imersiva e de alta qualidade.

1.6.2 Usabilidade

- A interface do usuário deve ser intuitiva, de fácil utilização e acessível para usuários com diferentes níveis de habilidade.
- O software deve fornecer feedback claro e orientações adequadas para ajudar os visitantes a interagir e explorar os ambientes virtuais.

1.6.3 Segurança

 O software deve adotar medidas de segurança adequadas para proteger os dados dos usuários, garantindo a privacidade das informações pessoais.

1.6.4 Compatibilidade

 O software deve ser compatível com dispositivos de realidade virtual populares, como Oculus Rift, HTC Vive, para garantir que os visitantes possam acessar a experiência com os equipamentos disponíveis.

1.6.5 Documentação

- Deve ser fornecida documentação completa, incluindo manuais de usuário e guias de instalação, para ajudar os visitantes a utilizar o software adequadamente.
- A documentação deve ser clara, concisa e fácil de entender, abordando todos os aspectos relevantes do uso do programa.

2 Projeto do programa

2.1 Modelo de programação

Nossa arquitetura do software de Realidade Virtual para Museus seguirá o padrão MVP (Model-View-Presenter), uma arquitetura de software que separa as responsabilidades e a lógica em três componentes principais: Modelo (Model), Visualização (View) e Apresentador (Presenter), ver figura 1.

Figure 1: Arquitetura de modelo.

• Modelo

O modelo será implementado como classes em C++ que lidam com a recuperação e manipulação das funcionalidades, fornecendo métodos para buscar a execução de tarefas específicas, interações, etc.

• Visualização

A Visualização é responsável pela apresentação da interface do usuário e pela exibição dos ambientes virtuais e elementos culturais. Ela será responsável pela renderização gráfica e pela interação com o usuário. A Visualização pode ser implementada usando os recursos do Unity, como objetos GameObjects, scripts de controle de cena e elementos de interface do usuário (UI) para exibir informações, menus e controles de navegação.

• Apresentador

O Apresentador atua como intermediário entre o Modelo e a Visualização. Ele lida com a lógica de negócios, processa as interações do usuário e atualiza a Visualização com base nos dados fornecidos pelo Modelo. O Apresentador é implementado como scripts C++ que respondem a eventos de entrada do usuário, como cliques ou movimentos, interagem com o Modelo para recuperar informações e atualizam a Visualização de acordo.

2.2 Arquitetura e projeto

2.2.1 UML: SRVMCLA

Figure 2: UML do projeto SRVMCLA.

Nosso projeto conterá 2 grandes blocos, que refletem a complexidade do nosso programa, que são basicamente o jogador e as cenas. No que diz respeito ao jogador, começaremos projetando um modelo de mãos flutuantes. A ideia é que, para cada mão, iremos definir a física, mapeamento de controles e ações, utilizando um asset chamado "hurricane". Nele, teremos os seguintes scripts:

- Rigid body.
- Classe de agarrar.
- Física.
- Modelo.
- Colisor.
- Awake e update para o sistema de câmera.
- Wrist menu.

Quanto ao modelo de cena, teremos uma única cena principal e várias cenas gerais com 3 tipos diferentes de prefabs ou designs de objeto. Em cada cena, teremos vários objetos com algum tipo de arquitetura de prefab definida. A diferença entre os prefabs será destacada por serem agarráveis, tocáveis para expandir informações e escrevíveis. Teremos apenas 1 usuário por cena, já que nosso museu para esta versão continua sendo para um único jogador. O diagrama UML mostrado na figura 2 nos apresenta de forma clara cada entidade e a relação entre elas.

2.2.2 Diagrama de sequencia

Figure 3: Diagrama de fluxo do projeto SRVMCLA.

O diagrama de fluxo mostra de forma geral como o usuário irá navegar no museu virtual, ver Figura 3. Como pode ser observado, percorreremos cada cena a partir de um menu e o programa será cíclico, o que significa que poderemos revisitar outras exposições. Para sair, será necessário apenas selecionar essa opção. De forma geral, cada sala seguirá a mesma lógica, com exceção da sala principal e das outras três salas, que terão interações únicas.

Na Figura 3, podemos ver uma diferenciação entre cena principal, cena 1 e cena id. Sequencialmente, o usuário mudará o modo de interação ao mudar de cena. Na cena principal, ele só poderá iniciar o programa e será forçado a iniciar na cena 1, que será o lobby, e depois poderá interagir entre as cenas, podendo sair do museu através do menu do pulso.

2.2.3 Modelamiento: Objetos

- Modelagem 3D: Para criar objetos 3D, são utilizadas ferramentas de modelagem 3D, como Blender, Maya ou 3ds Max. Essas ferramentas permitem criar geometria, aplicar texturas, definir materiais e estabelecer propriedades visuais dos objetos.
- Importação no Unity: Uma vez que os objetos 3D são criados e exportados em um formato compatível, como FBX ou OBJ, eles são importados no Unity. O Unity é um motor de jogo multiplataforma que suporta a importação de modelos 3D e fornece ferramentas para sua gestão.
- GameObjects: No Unity, os objetos 3D são representados como GameObjects, que são contêineres para componentes. Os GameObjects podem ser criados e colocados na cena e podem ter transformações (posição, rotação e escala) aplicadas a eles.
- Componentes: Os componentes são peças funcionais que são anexadas aos GameObjects para definir seu comportamento e características. No caso de objetos 3D, alguns componentes comuns são: MeshRenderer (renderização de malha), Collider (colisões físicas), Rigidbody (simulação de física), Animator (animações), entre outros. Esses componentes permitem definir a aparência visual, interações físicas e comportamento dos objetos no ambiente de jogo.
- Scripts e programação: O Unity permite estender a funcionalidade dos GameObjects por meio da escrita de scripts em linguagens como C++ ou JavaScript. Esses scripts são anexados como componentes aos GameObjects e são usados para controlar seu comportamento, como a interação com o jogador, a lógica do jogo ou a manipulação de propriedades.
- Hierarquia de GameObjects: Os GameObjects podem ser organizados em uma hierarquia para estabelecer relações parentais e fazer com que os objetos sigam transformações relativas. Isso permite criar estruturas mais complexas e manter uma organização clara dos objetos na cena.

Para o nosso caso, os scripts serão em C++ e serão destinados a efeitos de ações, como o uso de menus, relógio e interações, como pegar, redefinir posição e interagir com o ambiente.

3 Protocolo de teste

3.1 Unity play mode

O Play Mode Test (Teste no Modo de Jogo) no Unity é uma função que permite testar e depurar seu jogo sem a necessidade de compilar e executar uma build independente. Em vez disso, é possivel executar o jogo diretamente do editor do Unity.

3.1.1 Main scene

O primeiro teste buscará focar na cena principal de início. Ao executar o modo de reprodução, a cena começará com um som instrumental e poderemos testar as duas opções mostradas na imagem. Basta interagir com o canvas para habilitar o script "loadscene0" quando estiver true. O movimento será apenas através do headset.

Figure 4: Play mode main scene.

A primeira opção nos levará à próxima cena, ativando uma tela de carregamento, e a segunda opção mostrará informações sobre a licença. Conforme mostrado na Figura 4, teremos uma cena com um menu como uma tela em branco com 2 opções, ambientadas musicalmente e artisticamente decoradas.

3.1.2 Cena do museum

Ao chegar à cena 1, poderemos ver diferentes opções, sendo a mais destacada a mudança para um modo de jogo livre. Esse modo nos permitirá usar inicialmente um menu no pulso, sensores de movimento, pegar coisas, escrever coisas, agachar e abrir portas.

Conforme mostrado na Figura 5, nossa cena envolve uma série de mecânicas interessantes, que foram parcialmente recriadas a partir de atividades cotidianas

Figure 5: Play mode scene.

reais. Em relação ao menu, a tecnologia de RV foi aproveitada para modelar um sistema inovador e moderno para ver informações, interagir com objetos e mover-se entre cenas. Ao entrar no modo de reprodução, também podemos testar os diferentes eventos relacionados aos tutoriais, que serão em formato de áudio em inglês.

3.1.3 Minijogo

Para a última cena, foi projetado um minijogo do esporte nacional "tejo", onde o objetivo é acertar um alvo com uma pedra, exatamente como mostrado na Figura 6.

Play mode scene "tejo mini game"

Zoom in scene

Figure 6: Play mode scene.

Conforme visto na Figura 7, teremos uma linha e, no final, teremos um alvo, que teremos que acertar com uma pedra. Durante o teste, avaliou-se o respawn da pedra e a explosão do alvo.

Figure 7: Play mode tejo.

Para testar essa cena, as interações foram recriadas através do modo de reprodução, conforme mostrado na Figura 7, verificando seu funcionamento correto.

3.2 Oculus

Os testes de cada funcionalidade durante o desenvolvimento do programa envolveram, em parte, o uso de um Meta Quest. Para a entrega, foram realizados vários testes, seguindo as instruções do manual do usuário, totalizando um percurso de 20 minutos. Nesse aspecto e considerando a complexidade do acesso a esses dispositivos, a fase de testes e o manual envolvem a jogabilidade de uma demonstração, que resultou em gravações da tela feitas por um testador (um usuário não desenvolvedor) do nosso programa. O vídeo foi acelerado e dividido em 2 seções, pois ficou bastante longo e pouco atraente para alguém que esteja explorando nosso projeto pela primeira vez (https://github.com/williamalbert94/vr_museo_proyecto_final_de_programacion).