

A Formula to Detect Association in Liquids

R. Parshad

Citation: The Journal of Chemical Physics 15, 761 (1947); doi: 10.1063/1.1746318

View online: http://dx.doi.org/10.1063/1.1746318

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/15/10?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Artifacts associated with implementation of the Grangeat formula

Med. Phys. 29, 2871 (2002); 10.1118/1.1522748

Radial correlations in associated liquids

J. Chem. Phys. 71, 3889 (1979); 10.1063/1.438800

Variations on Marill's Detection Formula

J. Acoust. Soc. Am. 43, 70 (1968); 10.1121/1.1910765

Associative Algebra in the Problem of Mass Formulas

J. Math. Phys. 8, 1551 (1967); 10.1063/1.1705392

Dielectric Relaxation in Associated Liquids

J. Chem. Phys. 37, 1699 (1962); 10.1063/1.1733360

where A and B do not depend upon the applied potential gradient.

If the load acts in a steady manner, it may be assumed as a first approximation that the force tending to break a bond increases directly with the number of bonds which have already been broken. Consequently, $f=f_0+cN$, where f_0 is the force tending to break the bond when the load is first applied. Substituting this relation into Eq. (2), integrating, and assuming that when fracture takes place the number of bonds broken is large, there results

$$f_0 = D \log \coth Et \tag{3}$$

as the relation between the initially applied stress, f_0 , and the time to fracture, t; D and E are constants which may be expressed in terms of A, B, and c. Through A and B the temperature dependence of the process may be studied.

For long times, Eq. (3) may be written:

$$f_0 = 2De^{-2Et}. (4)$$

For short breaking times, the effect of the rate of loading is predominant, and the additional stresses in the remaining bonds due to the breaking of bonds may be neglected. Assuming that the rate of loading is constant, f may be expressed in the form

$$f = rt. (4)$$

Substituting this into Eq. (2) and integrating leads to

$$t = (1/Br) \cosh^{-1} [(BrN_B/A) + 1],$$

 N_B being the number of bonds broken to bring about fracture. If the rate of loading is high and the first term in the parentheses large, this becomes approximately

$$t = (0/Br)\log Fr,\tag{5}$$

where F is a constant. This is a relation between the time to fracture, t, and the rate of loading, r. It is interesting to note that Eq. (5) also implies the temperature dependency of the process through the constant B and through F, which in turn depends on A and B. In a paper which the author expects to publish soon, the details and a comparison with experimental data will be given.

* Consultant to Glass Science, Incorporated.

1 E. S. Machlin and A. S. Nowick, N.A.C.A. Tech. Note No. 1126
(September, 1946).

(September, 1946).

² Glasstone, Laidler, and Eyring, *The Theory of Rate Processes* (McGraw-Hill Book Company, Inc., New York, 1941).

A Formula to Detect Association in Liquids

R. PARSHAD*

Physical Laboratory, Council of Scientific and
Industrial Research, Delhi, India
July 28, 1947

THERE are various formulas in literature which distinguish a normal liquid from an abnormal or associated liquid. In the following we present another such theory.

For normal liquids

$$E\chi/V\alpha = T$$
,

and for associated liquids,

$$E\chi/V\alpha > T$$
,

in which E is cohesive energy in ergs per mole, expressed as the latent heat of vaporization minus RT, and written positive.

 χ is the isothermal compressibility in absolute units (barye⁻¹),

V is the molar volume in ccms,

α is the coefficient of cubical expansion, and

T is the absolute temperature.

As an example, we compute the formulas at $20^{\circ}\text{C} = 293^{\circ}\text{A}$. (See Table I.) The data for the liquids were mainly taken

TABLE I. E_X/V_{α} for liquids.

		E				E_X
		×10 ⁻⁷	$\times^{\chi}_{10^{12}}$			
No.	Liquid	ergs	X1012	V	α	Vα
		Class	I			
1	Pentane	27000	200	114.9	.001589	295
2 3 4 5 6 7 8	Iso-pentane	25920	225	117.0	.001533	325
3	Hexane	31390	150	130.3	.001445	250
4	Heptane	35000	134	146.3	.00115	279
Ş	Octane	37620 48280	121 102	162.4 194.3	.001124	249 256
7	Decane Ether	27010	200	194.3	.000988	310
é	Acetone	32016	100	73.5	.001030	292
9	Cyclohexane	31080	109	105.4	.00114	282
1Ó	Cyclohexanol	50000	55	105.5	.000804	324
11	Carbon tetrachloride	32953	105	96.5	.001206	297
12	Chloroform	30989	100	80.2	.001254	308
13	Carbon disulphide	28138	75	60.3	.0011823	296
14	Ethylene chloride	33810	80	78.9	.00112	308
15	Ethylene bromide	42255	60	86.1	.000942	312
16	Methyl iodide	39110	56	62.2	.001273	276
17	Methyl acetate	33670	90	79	.00136	281
18	Ethyl bromide	29403	105	74.6	.00141	293
19	Ethyl iodide	31980	95	80.8	.001179	310
20	Ethyl formate	35558	75	80.2	.001378	241
21	Ethyl acetate	34359	113 98	97.9	.001359	292 264
22 23	Ethyl propionate	40800 46440	98 95	115.0 132.2	.001344	289
24	Ethyl n-butyrate n-Propyl acetate	42840	100	115.1	.001214	306
25	Benzene	33883	92	89	.001214	282
26	Aniline	31080	44	84	.000855	265
27	Nitrobenzene	43970	54.5	105	.0008263	276
28	Chlorobenzene	42750	75	101.7	.0009967	316
29	Bromobenzene	58090	50	105	.00091505	302
30	O-Xylene	39220	75	118	.000973	257
31	m-Xylene	38160	85	122	.001009	274
32	p-Xylene	37600	80	124	.001011	240
33	Toluene	35420	92	106.3	.001099	279
34	p-Toluidine	46200	50	112.2	.0008681	259
		Class	II			
1	Methyl alcohol	37440	95	140	.001229	735
2	Ethyl alcohol	41860	90	98	.000739	520
3	n-Propyl alcohol	42600	90	75	.000956	533
4	i-Propyl alcohol	41400	100	75	.001094	493
5	n-Buty! alcohol	46620	99	91.4	.000950	488
6	i-Butyl alcohol	45880	93	103.6	.0009	458
7 8	n-Amyl alcohol	47520 40600	85 80	110 70	.000907	403 500
8	Allyl alcohol Glycol	50840	34	56	.0001241	484
10	Glycor Glycerine	924000	22	73	.000505	552
11	Formic acid	28520	55	37.7	,000999	416
12	Acetic acid	27600	98	56	.001065	454
13	n-Valeric acid	54129	90	108.8	.0009886	453
14	Mercury	5897934	3.4	14.81	.00018169	745
15	Water	41706	45.5	18.06	.0002097	5010

from International Critical Tables and tables of Landolt-Bornstein. Generally, a direct value of E and χ at 20°C and one atmospheric pressure was not available, and a rough reduction was made simply by guessing. The absence of round figures in most of the E values does not indicate the order of accuracy attained, but that the reduction was made for a value per g and then the value was multiplied

by the proper molecular weight. The V and α values are comparatively more accurate to the figure described, because density-temperature relations of most of the liquids mentioned are given in the I.C. Tables.

It will be seen that despite the approximations used in computing the data, the liquids bifurcate neatly into two classes. From the variation of E_{χ}/V_{α} for associated liquids, it can be seen that its magnitude depends not upon the strength of associations (carboxylic acids have much greater strength of association than water), but upon the amount of abnormal behavior of a liquid. It has already been shown that the abnormal behavior of an associated liquid depends not upon the strength of an association, but rather upon its weakness and extensiveness.

Mercury turns out to be an 'associated liquid,' but as it is a metallic liquid it cannot be discussed in the same class as the other organic molecular liquids.

The formula has more than passing interest, and its theoretical implications will be discussed in another paper.

* Present address: Department of Physics, Oregon State College, Corvallis, Oregon.
¹ R. Parshad, J. Chem. Phys. 14, 348 (1946).

Microwave Spectrum and Structure of Isothiocyanic Acid*

C. I. BEARD Massachusetts Institute of Technology, Cambridge, Massachusetts

> B. P. DAILEY** Harvard University, Cambridge, Massachusetts September 12, 1947

O aid in the analysis of the complicated microwave spectrum of methyl isothiocyanate¹ a search for transitions of the simpler molecules HSCN and HNCS was made in the region from 19,000 to 30,000 mc/sec. Stark modulation apparatus^{2,3} was used with a 10-foot wave guide absorption path of the acid vapor. Table I gives the ab-

TABLE I. The absorption spectrum of isothiocyanic acid molecules.

Molecule	vmc/sec.		
HNC ¹² S ³²	23,464		
$DNC^{12}S^{32}$	21.897		
HNC18S32	23,389		
DNC ¹³ S ³²	21,839		
HNC12S24	22.915		

sorption lines found for HNCS and its artificially enriched isotopic forms.

The acid was prepared by gentle warming of a mixture of KSCN with H₃PO₄. The HNC¹³S was prepared from KSC¹⁸N obtained by fusing sulfur and KC¹⁸N containing 17 percent of C13. The deuterium isotopes were made by the same processes, merely substituting D₃PO₄ for H₃PO₄.

In the preliminary analysis of the spectrum the assumption was made that the NCS group was linear and that, while the HNC angle differed from 180°, the molecule was very nearly a symmetric top. The symmetric Stark pattern of two components gives strong support to this assumption and indicates that the observed spectral lines correspond to transitions from J=1 to J=2. Using the symmetric top approximation that ν cm⁻¹=2C(J+1), four of the frequencies of the lines of the isotopic molecules enable one to solve for approximate values of the three interatomic distances and the H-N-C angle, neglecting for the moment the effect of the zero-point vibrational energy on these parameters.

The solution for the structure HSCN results in quite unreasonable values of the bond distances and angle. The solution for the structure HNCS, however, yielded: $HN = 1.2 \pm 0.1A$, $NC = 1.21 \pm 0.01A$, $CS = 1.57 \pm 0.01A$, and the angle HNC= $112^{\circ}\pm10^{\circ}$.

The NC and CS distances are intermediate between the values for double and triple bonds. The probable resonating structures are H-N=C=S, $H-N^+=C-S^-$, and $H-N^--C \equiv S^+$. The CS distance is the same as in COS and CS₂. The NCS distances for HNCS compare well with those obtained by Goubeau and Gott4 from Raman spectra of NC=1.21A and CS=1.575A. The HNC angle of 112° compares with that of 111° obtained for the HNN angle of N₃H by Eyster.⁵ The HN distance is larger than the 1.01A value in N₃H and NH₃ which may indicate partial ionic character of this bond.

The spectral analysis indicated that the vapor is principally isothiocyanic acid; HSCN if it exists in the vapor could not be present by more than 5 percent. Gallais and Voigt,6 by measuring molecular magnetic rotations, conclude that the acid is isothiocyanic. Goubeau and Gott4 also conclude that HNCS is the predominant form. The position and intensity of the very weak line at 22,915 mc indicate that it may be the HNCS34 line due to the natural 4 percent abundance of S34.

*The research reported in this paper was made possible through support extended Harvard University by the Navy Department (Office of Naval Research) under Office of Naval Research Contract N50ri-76 and Massachusetts Institute of Technology under Joint Service Contract W-36-039sc-32037.

tract W-36-O398c-32037.

** Present address: Department of Chemistry, Columbia University, New York, New York.

1 C. I. Beard and B. P. Dailey, paper presented at the Am. Chem. Soc. meeting in New York, September 15, 1947.

2 R. H. Hughes and E. B. Wilson, Jr., Phys. Rev. 71, 562 (1947).

3 B. P. Dailey, Phys. Rev. 72, 84 (1947).

4 J. Goubeau and O. Gott, Ber. 73B, 127 (1940).

5 E. Eyster, J. Chem. Phys. 8, 135 (1940).

6 F. Gallais and D. Voigt, Comptes Rendus 210, 104 (1940).

Measurement of Na+ Ion Diffusion by Means of Radiosodium

ARTHUR W. ADAMSON Chemical Laboratories, University of Southern California, Los Angeles 7, California July 29, 1947

N interesting application of the radioactive tracer A technique is to the measurement of the diffusion of ions in solution. This approach was first made by Jehle,1 who used Na²⁴ and Cl³⁸ to obtain ionic-diffusion constants in NaCl solutions. Similar work has been done by Schubert and others2 on the Plutonium Project, and some preliminary studies have been described recently by Robinson