Practice Exam 2

Denny Cao

October 21, 2022

Question 1

Let $S = \{\emptyset, a, \{a\}\}$. Determine whether each of these is an element of S, a subset of S, neither, or both. Justify your answer

- (a) $\{a\}$
- (b) {{a}}}
- (c) Ø
- (d) $\{\{\emptyset\}, a\}$
- (e) $\{\emptyset\}$
- (f) $\{\emptyset, a\}$

- (a) $\{a\}$ is both an element of S and a subset of S. $\{a\}$ is in S, therefore it is an element of S. All elements of $\{a\}$ are in S (S contains an element a), therefore $\{a\}$ is a subset of S
- (b) $\{\{a\}\}$ is not an element of S, but is a subset of S. $\{\{a\}\}$ is not in S, therefore it is not an element of S. All elements of $\{\{a\}\}$ are in S (S contains an element $\{a\}$), therefore $\{\{a\}\}$ is a subset of S.
- (c) \emptyset is both an element of S and a subset of S. \emptyset is in S, therefore it is an element of S. \emptyset contains no elements, so all its elements (there are none) are in S. Therefore, \emptyset is a subset of S.
- (d) $\{\{\emptyset\}, a\}$ is neither an element of S nor a subset of S. $\{\{\emptyset\}, a\}$ is in S, therefore it is not an element of S. Since $\{\emptyset\}$ is an element of $\{\{\emptyset\}, a\}$ and not S, $\{\{\emptyset\}, a\}$ is not a subset of S.
- (e) $\{\emptyset\}$ is not an element of S, but is a subset of S. $\{\emptyset\}$ is not in S, therefore it is not an element of S. All elements of $\{\emptyset\}$ are in S (S contains an element \emptyset), therefore $\{\emptyset\}$ is a subset of S.
- (f) $\{\emptyset, a\}$ is not an element of S, but is a subset of S. $\{\emptyset, a\}$ is not in S, therefore it is not an element of S. All elements of $\{\emptyset, a\}$ are in S (S contains the elements \emptyset and a), therefore $\{\emptyset, a\}$ is a subset of S.

You begin with \$1000. You invest it at 5% compounded annually, but at the end of each year you withdraw \$100 immediately after the interest is paid.

- (a) Set up a recurrence relation and initial condition for the amount you have after n years.
- (b) How much is left in the account after you have withdrawn \$100 at the end of the third year?
- (c) Find a formula for a_n .
- (d) Use the formula to determine how long it takes before the last withdrawal reduces the balance in the account to \$0.

Solution

(a)
$$S_n = S_{n-1}(1.05) - 100, n \ge 1, S_0 = 1000$$

(b)

$$S_0 = 1000$$
 $S_1 = S_0(1.05) - 100$ $S_2 = S_1(1.05) - 100$ $S_3 = S_2(1.05) - 100$
 $= 1000(1.05) - 100$ $= 950(1.05) - 100$ $= 897.5(1.05) - 100$
 $= 1050 - 100$ $= 997.5 - 100$ $= 942.375 - 100$
 $= 950$ $= 897.5$ $= 842.375$

\$842.37 is left in the account after withdrawing \$100 at the end of the third year.

(c) Let
$$P = S_0 = 1000, r = 1.05, c = 100.$$

$$S_0 = P \qquad S_1 = Pr - c \qquad S_2 = (Pr - c)r - c \qquad S_3 = (Pr^2 - cr - c)r - c = Pr^2 - cr - c \qquad = Pr^3 - cr^2 - cr - c$$

$$S_n = Pr^n - cr^{n-1} - cr^{n-2} - \dots - cr^1 - c = Pr^n - c(r^{n-1} - r^{n-2} - \dots - r - 1)$$

$$= Pr^n - c\left(\sum_{i=0}^{n-1} r^i\right)$$

$$= Pr^n - c\left(\frac{1 - r^n}{1 - r}\right)$$

$$= 1000(1.05)^n - 100\left(\frac{1 - 1.05^n}{1 - 1.05}\right)$$

$$= 1000(1.05)^n + 2000(1 - 1.05^n)$$

$$= 1000(1.05^n + 2 - 2(1.05^n))$$

$$= 1000(-1.05^n + 2)$$

$$S_n = -1000(1.05^n - 2)$$

(d)

$$0 = -1000(1.05^{n} - 2)$$

$$2 = 1.05^{n}$$

$$\log_{1.05} 2 = n$$

$$\frac{\log 2}{\log 1.05} = n$$

$$14.21 \approx n$$

It will take 15 years until the last with drawal reduces the balance in the account to \$0.

If P(A) means the power set of A,

- (a) Prove that $P(A) \cup P(B) \subset P(A \cup B)$ is true for all sets A and B.
- (b) Prove that the converse of (a) is not true. That is, prove that:

 $P(A \cup B) \subset P(A) \cup P(B)$ is false for some sets A and B.

Solution

(a) Proof. Suppose $S \in (P(A) \cup P(B))$.

Then $S \in P(A) \vee S \in P(B)$. Since S is in the power set of A or B, it is a subset of A or B: $S \subset A \vee S \subset B$.

 $P(A \cup B)$, contains all subsets of $A \cup B$, which includes the subsets of A and B. This means that in either case $S \subset A \vee S \subset B$, $S \in P(A \cup B)$.

Since S is arbitrary, $P(A) \cup P(B) \subset P(A \cup B)$.

(b) *Proof.* Suppose $A = \{0\}, B = \{1\}$

$$A \cup B = \{0, 1\}. \ P(A \cup B) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\$$

$$P(A) = \{\emptyset, \{0\}\}. \ P(B) = \{\emptyset, \{1\}\}. \ P(A) \cup P(B) = \{\emptyset, \{0\}, \{1\}\}.$$

For $P(A \cup B)$ to be a subset of $P(A) \cup P(B)$, $P(A) \cup P(B)$ must contain all elements of $P(A \cup B)$.

Since $\{0,1\} \notin P(A) \cup P(B)$, $P(A \cup B) \subset P(A) \cup P(B)$ is false for some sets A and B.

Prove that the following is true for all sets A, B, and C: if $A \cap C \subset B \cap C$ and $A \cup C \subset B \cup C$, then $A \subset B$.

Solution

Proof. Suppose $x \in A$. There are two cases:

Case 1: $x \in C$. Then $x \in A \cap C$. Since $A \cap C \subset B \cap C$, $x \in B \cap C$. Therefore, $x \in B$.

Case 2: $x \notin C$. Since $x \in A$, $x \in A \cup C$. Since $A \cup C \subset B \cup C$, $x \in B \cup C$. Because $x \notin C$, $x \in B$.

Since x is arbitrary, $A \subset B$.

Let $f: R \to R$ have the rule $f(x) = \lceil 3x \rceil + 1$ and $g: R \to R$ have the rule $g(x) = \frac{x}{3}$.

- (a) Find $(fog)^{-1} = (\{2.5\})$. (b) Find $(fog)^{-1} = (\{2\})$.

$$(f \circ g)(x) = \left\lceil 3\left(\frac{x}{3}\right)\right\rceil + 1$$
$$= \left\lceil x\right\rceil + 1$$

$$(f \circ g)(\{2.5\}) = \{\lceil 2.5 \rceil + 1\}$$

= $\{3 + 1\}$
= $\{4\}$

$$(f \circ g)(\{2\}) = \{\lceil 2 \rceil + 1\}$$

= $\{2 + 1\}$
= $\{3\}$

Find a formula for the recurrence relation $a_n = 2a_{n-1} + 2^n$, $a_0 = 1$, using a recursive method.

$$a_{0} = a_{0} \qquad a_{1} = 2(a_{0}) + 2^{1} \qquad a_{2} = 2(2^{1}(a_{0}) + 2^{1}) + 2^{2} \qquad a_{3} = 2(2^{2}a_{0} + 2(2^{2})) + 2^{3}$$

$$= 1 \qquad = 2^{1}a_{0} + 2^{1} \qquad = 2^{2}a_{0} + 2^{2} + 2^{2} \qquad = 2^{3}a_{0} + 2^{3} + 2^{3} + 2^{3}$$

$$= 4 \qquad = 2^{2}a_{0} + 2(2^{2}) \qquad = 2^{3}a_{0} + 3(2^{3})$$

$$= 12 \qquad = 32$$

$$a_{n} = 2^{n}a_{0} + n(2^{n})$$

$$= 2^{n} + n(2^{n})$$

$$= (n+1)2^{n}$$

Let $f: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ where $f(x) = \lfloor \frac{x}{2} \rfloor$

- (a) Show f(x) is surjective.
- (b) Show f(x) is not injective.

Solution

(a) *Proof.* Suppose that x = 2y.

$$f(2x) = \left\lfloor \frac{2y}{2} \right\rfloor$$
$$= \lfloor y \rfloor$$

Since $x \in \mathbb{N} \cup \{0\}$, $\lfloor y \rfloor$ will be as well.

Every $y \in \mathbb{N} \cup \{0\}$ has an $x \in \mathbb{N} \cup \{0\}$, such that f(x) = y where x = 2y. Therefore, f(x) is surjective.

(b) *Proof.* Suppose $x_1 = 0, x_2 = 1$.

 $f(x_1) = 0$, $f(x_2) = 0$. However, $x_1 \neq x_2$, meaning that there is an element in the domain of f(x) that is unique but does not map to a unique element in the codomain. Therefore, f(x) is not injective.

Suppose that A and B are sets such that $P(A \cup B) \subset P(A) \cup P(B)$. Prove that either $A \subset B$ or $B \subset A$.

Solution

Proof.

Since the power set contains all subsets of a set, the power set $P(A \cup B)$ contains the set $A \cup B$. Since $P(A \cup B) \subset P(A) \cup P(B)$, $A \cup B \in P(A) \cup P(B)$. Therefore, $(A \cup B \in P(A)) \vee (A \cup B \in P(B))$.

Thus, we have two cases:

Case 1: $A \cup B \in P(A)$. If an element is in the power set, it is a subset of the set: $A \cup B \subset A$. Since $B \subset A \cup B$, $B \subset A$.

Case 2: $A \cup B \in P(B)$. If an element is in the power set, it is a subset of the set: $A \cup B \subset B$. Since $A \subset A \cup B$, $A \subset B$.

Therefore, if there are two sets A and B such that $P(A \cup B) \subset P(A) \cup P(B)$, either $A \subset B$ or $B \subset A$.

Show that the set $\{x | -1 < x < 1\}$ is uncountable by showing that there is a one-to-one correspondence between this set and the set of all real numbers. Hint: A trigonometric function.

Solution

Let
$$S = \{x | -1 < x < 1\}$$

Let $f : \mathbb{R} \to S$, where $f(x) = \frac{2}{\pi} \tan^{-1} x$

Theorem: f is injective.

Proof. Suppose that $a_1, a_2 \in \mathbb{R}$

$$f(a_1) = \frac{2}{\pi} \tan^{-1} a_1, \ f(a_2) = \frac{2}{\pi} \tan^{-1} a_2$$
$$f(a_1) = f(a_2)$$
$$\frac{2}{\pi} \tan^{-1} a_1 = \frac{2}{\pi} \tan^{-1} a_2$$
$$\tan^{-1} a_1 = \tan^{-1} a_2$$

Since the range of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we can take the tangent of both sides, as $\tan x$ is defined.

$$a_1 = a_2$$

Since there are no 2 distinct values in the domain that map to the same image, f is injective.

Theorem: f is surjective.

Proof. Suppose that y is an element in S, the codomain of f. Suppose that x is $\tan \frac{\pi y}{2}$, an element in \mathbb{R} , the domain of f.

$$f(x) = \frac{2}{\pi} \tan^{-1} x$$

$$f\left(\tan\frac{\pi y}{2}\right) = \frac{2}{\pi} \tan^{-1} \left(\tan\frac{\pi y}{2}\right)$$

$$= \frac{2}{\pi} \left(\frac{\pi y}{2}\right)$$

$$= y$$

Since there exists an x, $\frac{\pi y}{2}$, such that f(x) = y, f is surjective.

Theorem: $\{x | -1 < x < 1\}$ is uncountable

Proof. Since f is both injective and surjective, f is bijective. This means that f is a one-to-one function, meaning there is a one-to-one correspondence between $\mathbb R$ and S. Therefore, S, $\{x|-1 < x < 1\}$, is uncountable.

a) Find a function $f: \mathbf{Z} \to \mathbf{N}$ that is one-to-one but not onto.

b) Find a function $f: \mathbf{Z} \to \mathbf{N}$ that is one-to-one and onto.

$$f(x) = \begin{cases} 2x+1 & x > 0 \\ -2x & x \le 0 \end{cases}$$

$$f(x) = \begin{cases} 2x - 1 & x > 0 \\ -2x & x \le 0 \end{cases}$$

Show that
$$\sum_{i=1}^{\infty} \frac{1}{4^i} = 2 \sum_{i=1}^{\infty} \frac{1}{7^i}$$

$$\sum_{i=1}^{\infty} \left(\frac{1}{4}\right)^{i} = \frac{\frac{1}{4}}{1 - \frac{1}{4}}$$

$$= \frac{\frac{1}{4}}{\frac{3}{4}}$$

$$= \frac{1}{3}$$

$$2\sum_{i=1}^{\infty} \left(\frac{1}{7}\right)^i = 2\left(\frac{\frac{1}{7}}{1-\frac{1}{7}}\right)$$
$$= \frac{\frac{2}{7}}{\frac{6}{7}}$$
$$= \frac{1}{\frac{1}{3}}$$

Since the two series' equate to the same value, $\sum_{i=1}^{\infty} \frac{1}{4^i}$ and $2\sum_{i=1}^{\infty} \frac{1}{7^i}$ are equivalent.

Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.

- a) integers not divisible by 3
- b) integers divisible by 5 but not by 7
- c) the real numbers with decimal representations consisting of all 1s
- d) the real numbers with decimal representations of all 1s or 9s.

Solution

(a)

$$\cdots, a_{-2} = -2, a_{-1} = -1, a_0 = 1, a_1 = 2, a_2 = 4, a_3 = 5, a_4 = 7, a_5 = 8, a_6 = 10, a_7 = 11, a_8 = 13, \cdots$$

$$a_{2n} = 3n + 1$$

$$a_{2n+1} = 3n + 2$$

We can split the set of integers not divisible by 3 into 2:

Let
$$n_1 = \{x \mid 2x \in \mathbb{Z}\}$$

Let $n_2 = \{x \mid 2x + 1 \in \mathbb{Z}\}$

$$S_1 = \{3n_1 + 1\}$$

$$S_2 = \{3n_2 + 2\}$$

The set of integers not divisible by 3, which we will denote A, is then $S_1 \cup S_2$. S_1 has a one-to-one correspondence to n_1 , even integers. S_2 has a one-to-one correspondence with n_2 , odd integers. The union of the two will create a set with a one-to-one correspondence to both even and odd integers, \mathbb{Z} . Therefore, A, the set of integers not divisible by 3, is countable.

(b) Let D be the set of all integers divisible by 5 but not by 7. We can represent D by spltting it into sets:

Let
$$n_1 = \{x \mid 2x \in \mathbb{Z}, 2x \ge 12\}$$

Let $n_2 = \{x \mid 2x + 1 \in \mathbb{Z}, 2x + 1 > 12\}$

$$a_1 = -5$$

$$a_2 = 5$$

$$a_3 = -10$$

$$a_4 = 10$$

$$a_{10} = 25$$

$$a_{11} = -30$$

$$a_{6} = 15$$

$$a_{12} = 30$$

$$a_n = a_{n-12} + 35(-1)^n, n > 12$$

The odd indices are negative integers divisible by 5 but not by 7, and the even indices are a positive integer divisible by 5 but not by 7. Since the values of B can be mapped to the positive integers, \mathbb{Z}^+ , B has a one-to-one correspondence with B. Therefore it is countable.

Let C be the set of real numbers with decimal representations consisting of all 1s. To prove that C is countable, we can first list out the elements in C^+ , the set of positive real numbers with decimal representations consisting of all 1s in a grid, where the ith row has i-1 1s before the decimal point. The jth column has j 1s after the decimal point. Every $x \in C, x \in \mathbb{R}^+$ can be found at row i, the amount of 1s before the decimal point of x, and column j, the amount of 1s after thed decimal point.

```
0.1 0.11 0.111 ... 1.1 1.11 1.111 ... 11.1 11.11 ... \vdots \vdots \vdots \vdots \vdots
```

Let C be the set of negative real numbers with decimal representations consisting of all 1s., the same can be done.

Since $C = C^+ \cup C^-$ and both C^+ and C^- are countable, C, the set of real numbers with decimal representations consisting of all 1s, is countable.

If A and B are $n \times n$ matrices with $AB = BA = I_n$, then B is called the inverse of A (this terminology is appropriate because such a matrix B is unique) and A is the inverse of B and A and B are said to be invertible. The notation $B = A^{-1}$ denotes that B is the inverse of A. Show that the matrix

$$B = \left(\begin{array}{ccc} 2 & 3 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 3 \end{array}\right)$$

is the inverse of

$$A = \left(\begin{array}{ccc} 7 & -8 & 5 \\ -4 & 5 & -3 \\ 1 & -1 & 1 \end{array}\right)$$

Solution

$$AB = \begin{bmatrix} 7(2) - 8(1) + 5(-1) & -4(2) + 5(1) - 3(-1) & 1(2) - 1(1) + 1(-1) \\ 7(3) - 8(2) + 5(-1) & -4(3) + 5(2) - 3(-1) & 1(3) - 1(2) + 1(-1) \\ 7(-1) - 8(1) + 5(3) & -4(-1) + 5(1) - 3(3) & 1(-1) - 1(1) + 1(3) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$BA = \begin{bmatrix} 2(7) + 3(-4) - 1(1) & 2(-8) + 3(5) - 1(-1) & 2(5) + 3(-3) - 1(1) \\ 1(7) + 2(-4) + 1(1) & 1(-8) + 2(5) + 1(-1) & 1(5) + 2(-3) + 1(1) \\ -1(7) - 1(-4) + 3(1) & -1(-8) - 1(5) + 3(-1) & -1(5) - 1(-3) + 3(1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since $AB = BA = I_n$, B is the inverse of A.

Solve for x:
$$\lfloor x \rfloor + \sqrt{x - \sqrt{x}} = \lfloor x + \frac{1}{x} \rfloor$$

Solution

To find the domain of x, we can find the domain restrictions of the addends and the sum. $\lfloor x \rfloor$ is defined for all real numbers. $\lfloor x + \frac{1}{x} \rfloor$ is undefined when x = 0. $\sqrt{x - \sqrt{x}}$ is undefined when $x - \sqrt{x} < 0$:

x is undefined when $(-\infty, 1)$. Therefore, the domain is $[1, \infty)$

Let
$$\lfloor x \rfloor = n, \lceil x \rceil = c$$

$$n \le x \le c$$

Since the least value of x is n and the greatest is c, we can bound the value of $\lfloor n + \frac{1}{n} \rfloor$:

$$\left\lfloor n + \frac{1}{n} \right\rfloor \le \left\lfloor x + \frac{1}{x} \right\rfloor \le \left\lfloor c + \frac{1}{c} \right\rfloor$$

Since n and c are $\lfloor x \rfloor$, $\lceil x \rceil$ respectively, they are both integers. Therefore, we can simplify:

$$n + \left\lfloor \frac{1}{n} \right\rfloor \le \left\lfloor x + \frac{1}{x} \right\rfloor \le c + \left\lfloor \frac{1}{c} \right\rfloor$$

We can bound the values of $\left\lfloor x + \frac{1}{x} \right\rfloor - \lfloor x \rfloor$. The lower bound will be:

$$n + \left\lfloor \frac{1}{n} \right\rfloor - \lfloor x \rfloor \le \left\lfloor x + \frac{1}{x} \right\rfloor - \lfloor x \rfloor$$
$$\lfloor x \rfloor + \left\lfloor \frac{1}{\lfloor x \rfloor} \right\rfloor - \lfloor x \rfloor \le \left\lfloor x + \frac{1}{x} \right\rfloor - \lfloor x \rfloor$$
$$\left\lfloor \frac{1}{\lfloor x \rfloor} \right\rfloor \le \left\lfloor x + \frac{1}{x} \right\rfloor - \lfloor x \rfloor$$

The domain is $x \ge 1$.

Case 1:
$$1 \le x < 2$$
 Case 2: $x \ge 2$
 $\lfloor x \rfloor$ will always be 1. $\lfloor x \rfloor$ will always be greater than 1
$$\therefore \frac{1}{\lfloor x \rfloor} = 1 \qquad \qquad \therefore \frac{1}{\lfloor x \rfloor} = 0$$

$$\therefore \left| \frac{1}{|x|} \right| = 1 \qquad \qquad \therefore \left| \frac{1}{|x|} \right| = 0$$

When $1 \le x < 2$, $\lfloor x + \frac{1}{x} \rfloor - \lfloor x \rfloor$ must at least be 1. Otherwise, it must be at least 0.

We can find the upper bound of $\lfloor x + \frac{1}{x} \rfloor - \lfloor x \rfloor$:

$$\left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor \le c + \left\lfloor \frac{1}{c} \right\rfloor - \left\lfloor x \right\rfloor$$

$$\left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor \le \left\lceil x \right\rceil + \left\lfloor \frac{1}{\left\lceil x \right\rceil} \right\rfloor - \left\lfloor x \right\rfloor$$

The domain is $x \geq 1$.

Case 1:
$$x = 1$$

$$\begin{bmatrix}
1 \\
 \end{bmatrix} + \begin{bmatrix}
\frac{1}{\lceil 1 \rceil}
\end{bmatrix} - \begin{bmatrix} 1 \\
 \end{bmatrix} = 1$$
Case 2: $x > 1$

$$\begin{bmatrix}
\frac{1}{\lceil x \rceil}
\end{bmatrix} \text{ will always be 0.}$$

$$\begin{bmatrix}
x \\
 \end{bmatrix} + \begin{bmatrix}
\frac{1}{\lceil x \rceil}
\end{bmatrix} - \begin{bmatrix}
x \\
 \end{bmatrix} = \begin{bmatrix}
x \\
 \end{bmatrix} - \begin{bmatrix}
x \\
 \end{bmatrix} = \begin{bmatrix}
x \\
 \end{bmatrix} = \begin{bmatrix}
x \\
 \end{bmatrix} = \begin{bmatrix}
x \\
 \end{bmatrix} + 1$$

$$\therefore \begin{bmatrix}
x \\
 \end{bmatrix} + \begin{bmatrix}
\frac{1}{\lceil x \rceil}
\end{bmatrix} - \begin{bmatrix}
x \\
 \end{bmatrix} = 0$$

$$\therefore \begin{bmatrix}
x \\
 \end{bmatrix} + \begin{bmatrix}
\frac{1}{\lceil x \rceil}
\end{bmatrix} - \begin{bmatrix}
x \\
 \end{bmatrix} = 0$$

$$\therefore \begin{bmatrix}
x \\
 \end{bmatrix} + \begin{bmatrix}
\frac{1}{\lceil x \rceil}
\end{bmatrix} - \begin{bmatrix}
x \\
 \end{bmatrix} = 1$$

When x = 1, $\lfloor x + \frac{1}{x} \rfloor - \lfloor x \rfloor$ must be at most 1. Otherwise, if x is an integer, it must be at most 0 and if x is not an integer, it must be at most 1.

We can now create different bounds for $\lfloor x + \frac{1}{x} \rfloor - \lfloor x \rfloor$ depending on the value of x:

Case 1:
$$1 \le x < 2$$

$$1 \le \left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor \le 1$$

By the squeeze theorem,

$$\left| x + \frac{1}{x} \right| - \lfloor x \rfloor = 1$$

Case 2:
$$x \geq 2, x \in \mathbb{Z}$$

$$0 \le \left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor \le 0$$

By the squeeze theorem,

$$\left| x + \frac{1}{x} \right| - \left\lfloor x \right\rfloor = 0$$

Case 3: $x \geq 2, x \notin \mathbb{Z}$

$$0 \le \left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor \le 1$$

Since $\lfloor x + \frac{1}{x} \rfloor$ and $\lfloor x \rfloor$ are both integers, $\lfloor x + \frac{1}{x} \rfloor - \lfloor x \rfloor$ will be an integer. Since it is bounded below by 0 and above by 1, the only possible values are:

$$\left[x + \frac{1}{x}\right] - \left[x\right] = 0 \lor \left[x + \frac{1}{x}\right] - \left[x\right] = 1$$

In all cases, $\left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor = 0 \ \lor \ \left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor = 1.$

$$\left\lfloor x + \frac{1}{x} \right\rfloor - \left\lfloor x \right\rfloor = \sqrt{x - \sqrt{x}}$$

Therefore,

$$\sqrt{x - \sqrt{x}} = 0 \ \lor \ \sqrt{x - \sqrt{x}} = 1$$
$$\sqrt{x - \sqrt{x}} = 0$$

Since the domain is $x \geq 1$, squaring both sides will not eliminate solutions.

$$x - \sqrt{x} = 0$$
$$\sqrt{x}(\sqrt{x} - 1) = 0$$
$$x = 0, 1$$

$$\sqrt{x - \sqrt{x}} = 1$$

Since the domain is $x \geq 1$, squaring both sides will not eliminate solutions.

$$x - \sqrt{x} = 1$$
$$x - \sqrt{x} - 1 = 0$$

Let $a^2 = x$.

$$a^{2} - a - 1 = 0$$

$$\frac{1 \pm \sqrt{5}}{2} = a$$

$$\left(\frac{1 \pm \sqrt{5}}{2}\right)^{2} = x$$

$$\frac{\left(1 + \sqrt{5}\right)^{2}}{4}, \frac{\left(1 - \sqrt{5}\right)^{2}}{4} = x$$

We can eliminate $x = 0, \frac{\left(1-\sqrt{5}\right)^2}{4}$ as potential solutions, as they are outside the domain, $x \ge 1$.

We will validate the solution x = 1:

$$\left\lfloor 1 + \frac{1}{1} \right\rfloor - \left\lfloor 1 \right\rfloor \stackrel{?}{=} \sqrt{1 - \sqrt{1}}$$
$$1 \neq 0$$

x = 1 is not a solution.

We will validate the solution $x = \frac{\left(1+\sqrt{5}\right)^2}{4}$

$$\left[\frac{\left(1 + \sqrt{5}\right)^2}{4} + \frac{4}{\left(1 + \sqrt{5}\right)^2} \right] - \left[\frac{\left(1 + \sqrt{5}\right)^2}{4} \right] \stackrel{?}{=} \sqrt{\frac{\left(1 + \sqrt{5}\right)^2}{4} - \sqrt{\frac{\left(1 + \sqrt{5}\right)^2}{4}}}$$

$$1 = 1$$

Since the two expressions evaluate to the same value, the solution to the equation $\lfloor x \rfloor + \sqrt{x - \sqrt{x}} = \left\lfloor x + \frac{1}{x} \right\rfloor$ is:

$$x = \frac{\left(1 + \sqrt{5}\right)^2}{4}$$