LECOLUSE HEROTILS

STAT

STAT

вгостоптехиздат · 1957.

СОДЕРЖАНИЕ

	Стр
Алексеев Ф. А. Использование радиоактивных излучений и изото-	
пов в геологии нефти	1
вакиров Э. А., Гурари Ф. Г., Ровнин Л. И. Тектоника мезокайко-	
зойских отложений южной половины Западно-Сибирской	4.0
низменности	13
Чихачев С. М. Перспективы нефтеносности Азовской впадины	21
Габриэлян А. Г., Максимов С. П. Формирование залежей нефти	
газа в каменноугольных отложениях Сталинградского По-	23
волжья	20
в Пентральной Азии	33
в Центральной Азии	00
ного газа	37
печников В. В. Повые месторождения нефти на ссверо-запале	
Башкирин	41
Семихатова С. В., Рыжова А. А., Миняева Е. Г. Отложения ясно-	
полянского, окского и серпуховского подъярусов и протвин-	
ского горизонта в Бузулуке Чкаловской области	44
Овинесов Г. П., Залоев М. Т. Анализ состояния разработки девон-	
ских пластов Д _I и Д _{II} Туймазинского пефтяного место-	
рождения	47
Перьков Н. А. Выделение продуктивных коллекторов в карбонат-	~~
ных разрезах	58
	es.
тенциалов вызванной поляризации в нефтяных скважинах . Косыгин Ю. А. Опыт исследования генезиса азербайджанских	UQ
залежей нефти на основе большого аналитического мате-	
	72

Редакционная коллегия

М.В. АБРАМОВИЧ, В.Ф. АНДРЕЙКО, Б.К. БАБА-ЗАДЕ, А.И. БОГДАНОВ, И.О. БРОД, И.В. ВЫСОЦКИЙ, Г.Л. ГРИШИН, Б.Ф. ДЬЯКОВ, И.П. ЗУБОВ, Н.А. КАЛИНИН, С.Т. КОРОТКОВ, М.С. ЛЬВОВ (Зам. редактора), С.П. МАКСИМОВ (редактор), акад. С.И. МИРОНОВ, М.Ф. МИРЧИНК, Г.П. ОВАНЕСОВ, А.А. ТРОФИМУК, В.В. ФЕДЫНСКИЙ, М.М. ЧАРЫГИН.

Адрес редакции: Москва, К-12. Третьяковский пр., д. 1/19, тел. Б 3-17-35

ГОСУДАРСТВЕННОЕ НАУЧНО-ТЕХНИЧЕСКОЕ ИЗДАТЕЛЬСТВО НЕФТЯНОЙ И ГОРНО-ТОПЛИВНОЙ ЛИТЕРАТУРЫ, МОСКВА

ПРОЛЕТАРИИ ВСЕХ СТРАН, СОЕДИНЯЙТЕСЫ

Геология HETH

ОРГАН МИНИСТЕРСТВА НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ CCCP

5 МАЙ 1957

ГОД ИЗДАНИЯ ПЕРВЫЙ

Ф. А. АЛЕКСЕЕВ

Использование радиоактивных излучений и изотопов в геологии нефти

Общие замечания

Радиоактивные методы в промысловой геологии являются наиболее молодыми. Применение их (ГК и НГК) в промышленных целях для исследования пефтяных скважин началось практически с 1952 г., когда была создана используемая до настоящего времени двухканальная аппаратура РК, позволяющая одновременно снимать кривые ГК и НГК. Несмотря на относительную молодость метода, он прочно вошел в число обязательных при исследовании скважин во многих нефтяных районах и является единственным методом при исследовании скважин, крепленных колонной труб, когда возникает необходимость получить данные о содержании нефти, газа или воды в пластах за трубами.

При помощи радиоактивных методов практически успешно разрешена важная в технологии добычи нефти проблема определения положения водо-нефтяного контакта и контакта газ — жидкость в эксилуатационных скважинах, крепленных колонной труб.

За истекшие годы создана новая радиометрическая аппаратура, в которой используются высокоэффективные сцинтилляционные счетчики и нейтронные пропорциональные счетчики, разработаны новые методы исследования скважин — наведенная активность, нейтронный гамма-кароттаж со спек-

троскопией вторичного гамма-излучения, нейтрон-пейтронный кароттаж (ННК), гамма-гамма-кароттаж и др. Имеются основания ожидать в ближайшие годы бурного развития методов ядерной физики в геологии нефти, которое должно привести к успешному решению многих вопросов и, в частности, вопросов прямого выделения нефтеносных и газоносных пластов в разрезе разведочных скважин, определения положения контактов вода нефть, газ — жидкость в любых геологических условиях, количественного определения многих физических параметров нефтяного пласта (пористость, нефтенасыщенность и др.). Изучение минералогического состава пород по разрезу скважин и получение новых коррелятивов откроют большие перспективы для самых различных структурных и палеогеографических построений в разнообразных геологических условиях.

В настоящей статье рассматриваются возможности радиоактивных методов в решении некоторых вопросов промысловой геологии, таких, как расчленение разреза и выделение продуктивных пластов, определение положения контакта вода — нефть, нефть и газ — вода в условиях скважин, крепленных колонной стальных труб, количественное определение пористости и других физических параметров пласта, а также вопросы ис-Пользования радиоактивного

па — трития — для контроля за движением пластовых вод при законтурном заводнении и возможности радиометрии для поисков нефтяных и газовых месторождений. При написании статьи были широко использованы результаты исследований, ведущихся в лаборатории № 1 Института нефти АН СССР, особенно при освещении разработки новых радиометрических методов исследования и новейшей аппаратуры.

Успешная разработка методов НГК-ЛС, ННК, НА и их широкое промышленное опробование, как и опробование новой аппаратуры, были возможны только благодаря активной совместной работе лаборатории № 1 Института нефти АН СССР и тематических партий геофизических предприятий нефтяной промышленности во главе с начальниками партий: Е. Б. Бланковым, И. А. Дворкиным, А. В. Золотовым, Ю. А. Гулиным, Л. Цлавом, С. П. Омесь и В. П. Иванкиным.

Расчленение геологического разреза скважин

Расчленение геологического разреза, вскрываемого скважинами, бурящимися без выноса или с крайне ограниченным выносом керна, в общем случае удается методами электрического кароттажа. В большинстве случаев при помощи этих методов решаются вопросы выделения продуктивных нефтеносных и газоносных пластов и выясняются физические свойства их. Однако встречаются геологические условия, где электрический кароттаж не может решить указанные выше вопросы. Это относится прежде всего к разрезу, сложенному карбонатными и галогенными осадками, а также ко всем случаям изучения жидкостного насыщения пластов и их физических параметров в скважинах, крепленных колонной стальных труб. В этих условиях единственными и в высшей мере эффективными являются нейтронные методы.

При исследовании скважин используются нейтронные методы в двух модификациях: нейтронный гамма (НГК) и нейтрон-нейтронный (ННК)

кароттаж. Физические основы обеих модификаций нейтронного кароттажа (НГК и ННК) одинаковы; интенсивности измерений зависят в основном от содержания водорода и хлора в породах. При помощи НГК регистрируется интенсивность вторичного гамма-излучения, возникающего в результате взаимодействия быстрых нейтронов с породой, а при ННК регистрируются тепловые или надтепловые нейтроны. Преимущественное развитие у нас в стране получил метод нейтронного гамма-кароттажа (НГК). Существующая аппаратура РК позволяет снимать одновременно кривые ГК и НГК, которые, дополняя друг друга, повышают надежность геологической интерпретации измерений естественного и вторичного гамма-излучения. Сведения по ГК и НГК особенно важны в геологических условиях новых районов, где электрические параметры пород еще недостаточно изучены. Большая работа по разработке принципов интерпретации кривых ГК и НГК проведена коллективом ВНИИгеофизика под руководством Н. А. Перькова.

Нейтронный гамма-кароттаж (НГК) весьма эффективно используется для расчленения разреза, сложенного карбонатными и гидрохимическими осадками — известняками, доломитами, гипсами, ангидритами, солью; он помогает выделять в этом разрезе пористые зоны и тем самым способствует выявлению нефтяных и газовых залежей. В случаях осолонения бурового раствора или вообще при бурении на соленых растворах в карбонатном и галогенном разрезе НГК является по существу единственным методом, позволяющим выделять нефтеносные или

газоносные пласты.

Проведенные в 1955—1956 гг. Институтом нефти АН СССР исследования ряда скважин нефтяных месторождений в Волго-Уральской области показали большие возможности метода ННК в выделении пористых зон в карбонатном разрезе. Этим же методом отчетливо расчленяется тонко переслаивающийся разрез месторождений Краснодарского края. Особо следует отметить возможности, которые откры-

ваются перед методом ННК по надтепловым нейтронам для изучения скважин, заполненных солеными растворами.

При использовании гамма-спектрометров для исследования скважин колонкового бурения станет возможным выявление новых, в высшей мере надежных коррелятивов в немых однообразных толщах геологического разреза, значительное сокращение объема изучения кернового материала и повышение надежности структурных построений.

Опредёление положения контактов вода-нефть и газ-жидкость в скважинах, крепленных колонной стальных труб

В процессе разработки нефтяных месторождений важно своевременно выяснять характер продвижения законтурных и подошвенных вод в нефтяную часть залежи, предупреждать возможность разрыва нефтяной залежи на отдельные участки, обеспечивая в целом наибольшее извлечение нефти из пласта. Постоянный контроль за положением водо-нефтяного контакта в пласте позволяет регулировать отбор нефти из скважин и закачку жидкости в пласт, определять интервалы вскрытий пласта в скважинах после их капитального ремонта.

Перемещение водо-нефтяных контактов приобретает особо важное значение на месторождениях с искусственно создаваемым водонапорным режимом (законтурное и внутриконтурное заводнение), а для месторождений с пологим залеганием пластов (мссторождение типа Ромашкино) особое значение имеет и точность определения этого контакта.

Сегодня мы можем утверждать, что важнейшая научно-техническая проблема разработки нефтяных месторождений — определение положения водо-нефтяного контакта (ВНК) в скважинах методами радиометрии — успешно разрешена для большинства нефтеносных районов СССР.

Указанная задача методами радиометрии решается двумя способами: первый использует различие в содержании хлора в нефтеносном и водоносном пластах (методы нейтронного гамма-кароттажа (НГК) и нейтроннейтронного кароттажа (ННК), а второй — различие в содержании натрия (метод наведенной активности).

Известно, что при помощи метода НГК определяется водородонасыщенность горных пород, позволяя выявлять коллекторы, содержащие воду или нефть. НГК не позволяет непосредственно выделять водоносные и нефтеносные пласты, однако в природных условиях в некоторых районах удается использовать этот метод для определения нефтеносных и водоносных пластов в разрезе скважин благодаря тому, что пластовые воды обычно содержат минеральные соли и, в частности, хлориды щелочных и щелочноземельных металлов.

Хлор обладает аномально большим сечением поглощения медленных нейтронов (около 30 барн). Захват одного нейтрона ядром хлора сопровождается испусканием нескольких у- квантов, что повышает показания прибора, регистрирующего вторичное γ - излуче- $(H\Gamma K)$ против водоносного пласта. Хотя величина этих различий при измерениях в обсаженных скважинах не очень велика (20-30%), она оказалась достаточной, чтобы использовать НГК в условиях девонских месторождений Волго-Уральской области, характеризующихся высокой минерализацией пластовых вод, для определения водо-нефтяного контакта.

Туймазинская геофизическая контора [1] впервые широко использовала НГК (стандартную аппаратуру и методику исследования) для контроля за перемещением водо-нефтяного контакта на Туймазинском нефтяном месторождении.

Некоторые изменения в стандартной методике измерений (борное окружение, подбор зонда, увеличение диаметра защитной гильзы прибора), предложенные лабораторией РК Московского иефтяного института (В. Н. Дахнов, А. И. Холин и др.), несколько повышают эффективность измерений методом НГК со стандартной аппаратурой для определения ВНК [2].

1 *

Работы Московского нефтяного институга в значительной мере способствовали внедрению метода НГК в

повседневную практику.

Возможности НГК резко повышаются при использовании аппаратуры со сцинтилляционным счетчиком. Многочисленные исследования скважин этим прибором, проведенные Институтом нефти АН СССР и тематическими партиями трестов Татнефтегеофизика и Башнефтегеофизика на нефтяных месторождениях Башкирской и Татарской АССР, показали, что при индикации более жесткой части спектра гамма-излучения в водоносном и нефтеносном пластах эффекты на водонефтяном контакте увеличиваются до 50—60%.

В аналогичных условиях замеры на стандартной аппаратуре по методике МНИ и Туймазинской геофизической конторы различаются не более чем на 20—30%.

Применение НГК для определения положения ВНК даже в случаях использования аппаратуры с сцинтилляционным счетчиком ограничивается месторождениями с высокой минерализацией пластовых вод и однородным литологическим составом пластов.

Используя отмеченное выше свойство хлора — большое сечение поглощения медленных нейтронов, становится возможным применить также и метод нейтрон-нейтронного кароттажа (ННК) для определения положения водо-нефтяного контакта в скважинах.

Плотность тепловых нейтронов в водоносном пласте в 2—3 раза ниже, чем в нефтеносном. Однако при измерениях в обсаженной скважине эти различия снижаются, потому что быстрые нейтроны, замедляясь в цементном кольце и растворе, заполняющем скважину, создают около регистрирующего прибора интенсивное поле тепловых нейтронов, мало зависящее от свойств пласта.

Вытеснение скважинной жидкости на участке прибора во время измерения плотности тепловых нейтронов, как показали модельные работы, подтвержденные исследованиями скважин,

приводит к различию показаний прибора в несколько раз против нефтеносных и водоносных частей пласта. На рис. 1 приведен пример определения ВНК в скважинах методами НГК и ННК.

Рис. 1. Разделение нефтеносных и водоносных пород в обсаженной скважине методами НГК, НГК-ЛС и ННК (скв. 446, трест Бавлынефть).

При оценке возможностей НГК и ННК для определения ВНК, кроме минерализации вод, необходимо учитывать литологию пласта, его коллекторские свойства. Для пластов с низкими коллекторскими свойствами показания замеряемых значений методами НГК и ННК снижаются, что может приводить к неоднозначной интерпретации этих величин. Пористость продуктивного пласта существенно может изменяться на близких расстояниях, что ограничивает возможность названных методов. Практика последних 2—3 лет работы партий трестов Татгеофизических нефтегеофизика и Башнефтегеофизика указывает на то, что НГК не может решить однозначно задачу определения ВНК в скважинах. Это относится (Туймазинское, месторождениям Бавлинское, Ромашкинское) с высокой минерализацией пластовых вод, где при помощи НГК в среднем в 80% случаев удается удовлетворительно решить эту задачу. При низкой минерализации пластовых вод или щелочном типе их методы НГК и ННК для определения ВНК вообще не применимы. К такой категории относится большое число нефтяных месторождений Союза.

Наиболее надежное решение вопроса разделения нефтеносных и водоносных пластов в крепленных скважинах дает метод наведенной нейтронами активности натрия, разработанный еще в 1953 г. в Институте нефти АН СССР

В основе метода наведенной активности лежат принципы активационного анализа, широко применяемого в технике. Для разделения нефтеносных

и водоносных пластов при помощи этого метода нами в качестве индикаторного элемента был избран радиоактивный натрий (Na_{11}^{24}), имеющий период полураспада 15,1 часа ($T^1/2 = 15,1$ часа) и образующийся из стабильного изотопа Na_{11}^{23} при облучении его пейтронами. Как известно, содержание натрия в солевом составе пластовых вод, а следова-

тельно, и в водоносной части пласта практически в 10—15 раз превышает содержание его в нефтеносной части.

Проводимые до сих пор исследования в многочисленных скважинах для определения ВНК методом НА показали, что при помощи его удается надежно решать поставленную задачу там, где НГК и ННК ее совершенно не решают. Обычно для месторождений девона и карбона Русской платформы наведенная активность водоносного пласта превышает в 3—6 раз наведенную активность нефтеносного пласта. На рис. 2 приведен пример замера ВНК методом НА, где НГК и ННК не давали результата.

Исследования, выполненные за последние годы коллективом лаборатории № 1 Института нефти АН СССР и тематическими партиями гсофизических трестов, показали практическую возможность использования метода наведенной активности не только натрия, но и марганца, а в некоторых случаях и алюминия для разделения нефтеносных и водоносных пластов в отложе-

ниях как девона, так и карбона. Решающее значение метод НА будет иметь для определения ВНК в карбонатном разрезе и при слабой минерализации пластовых вод.

При еовместных работах Института нефти АН СССР и треста Красподарнефтегеофизика в 1956 г. получены первые результаты, подтвердившие наше предположение о возможности использования метода НА для определения положения ВНК в условиях нефтяных месторождений складчатых областей, характеризующихся относительно слабой минерализацией пластовых вод. Для широкого промышленно-

Рис. 2. Спад паведенной активности во времени для нефтеносного и водоносного песчаника (скв. 1238, Павловка)

го использования метода НА при определении ВНК на нефтяных месторождениях складчатых областей требуется аппаратура с сцинтилляционными счетчиками, пригодная для работы в скважинах с температурами до +80, +100° С.

В практике геофизических исследований метод НГК достаточно широко используется для разделения газоносной и пефтеносной (водоносной) частей пласта. Хорошие результаты по разделению этих частей пласта получены и методом ННК.

На рис. 3 приведен пример использования НГК и ННК для определения контакта газ — нефть.

Подводя итоти сказанному, можно сделать заключение, что геофизическая служба в настоящее время имеет три метода определения положения водонефтяного контакта в обсаженных скважинах: НГК, ННК и НА. При помощи этих методов можно определять ВНК в различных геологических условиях подавляющего большинства нефтяных месторождений Союза. Тре-

f

буется только обеспечить геофизические предприятия скважинной аппаратурой с сцинтилляционными и ней-

тронными пропорциональными счетчиками и термостойкими вариантами ее.

1 — песчаник; 2 — песчаник плотный; 3 — газоносность; 4 — песчаник глинистый; 5 — глина; 6 — нефтеносность; 7 — водоносность.

Количественное определение пористости

Для количественного определения пористости нефтеносных пластов были сделаны предложения использовать методы гамма-гамма-кароттажа (ГГК) и НГК (Гулин). В последнее время разработкой методики НГК для количественного определения пористости занимается лаборатория МНИ им. акад. И. М. Губкина.

Метод ГГК, оспованный на измерении интенсивности рассеянного у-излучения и отражающий плотность пород, позволяет в принципе определять и их пористость. Однако небольшая глубина, доступная методу, резкое влияние бурового раствора, глинистой корки, образующейся на стенке скважины, и другие факторы приводят к очень низкой точности определений.

На показания НГК, кроме водородосодержания, связанного с пористостью, оказывает значительное влияние химический состав пород (в основном хлор), а для пород с пористостью, большей 16—20%, НГК практически не фиксирует изменений пористости.

На основании изложенного можно сделать вывод, что возможности применения НГК для количественного определения пористости весьма ограничены.

Для практических целей наиболее ценным является метод ННК по надтепловым нейтронам. Плотность распределения надтепловых нейтронов практически не зависит от поглощающих свойств среды, она опредсляется в основном се замсдляющей способностью. Последняя мало зависит от химического состава пород и, наоборот, находится в большой зависимости от водородосодержания пород.

В отличие от НГК метод ННК характеризустся большей чувствительностью к изменению содсржания водорода в породе, на показания его не влияет γ -излучение и в значительно меньшей степени влияет плотность пород. Относительная дифференциация кривых ННК значительно выше (60—70%), чем при НГК (30—40%).

В США метод ННК по надтепловым нейтронам широко используется для количественного определения пористости, причем точность этих определений достигает долей процента [4].

В аналогичном плане ведутся исследования и у нас в тресте Башнефтегеофизика и в Институте нефти АН СССР. После модельных работ, выполненных в лаборатории № 1 Института нефти еще в 1955 г. и подтвердивших большие возможности метода ННК для количественного определения пористости, в 1956 г. были проведены широкие исследования в скважинах Туймазинского и Бавлинского нефтяных месторождений. Проведенные в этом направлении исследования на указанных месторождениях, а также на Анастасиевском нефтяном месторождении Краснодарского края показали, что для количественного определения пористости особенно успешно может быть использован метод ННК с регистрацией надтепловых нейтронов и что при этом точность определения пористости составляет $\pm 10\%$ от измеряемой величины.

На рис. 4 даны зависимости показаний кривых ННК по надтепловым нейтронам от пористости пластов для нескольких скважин. Полученые ре-

Рис. 4. Кривая зависимости показаний ННК по надтепловым нейтронам от пористости (Туймазинское и Бавлинское месторождения) 1- скв. 803; 2- скв. 1384; 3- скв. 1384; 4- скв. 67; $J_{\Pi}-$ интенсивность исследуемого пласта; $J_{9}-$ интенсивность эталова.

зультаты являются хорошими, если учесть, что измерения проводились в обсаженных скважинах, переход же к необсаженным скважинам и доработка методических вопросов будут сопровождаться значительным повышением точности количественного определения пористости.

Таким образом, в результате значительной исследовательской работы геофизическая служба получает надежный метод количественного определения пористости для чистых, неглинистых коллекторов — метод ННК по надтепловым нейтронам. Важнейшее значение он приобретает для количественного определения пористости

в карбонатных коллекторах.

Для широкого промышленного использования этого метода необходимы доработка некоторых методических вопросов (для карбонатных коллекторов), оснащение геофизических предприятий аппаратурой ННК (такая аппаратура разработана Институтом нефти АН СССР) и систематическая проводка одной или нескольких эталонных скважин со сплошным отбором керна в интересующих интервалах на каждом месторождении.

Перспективы развития нейтронных методов

Нетрудно видеть, что перспективы успешного и полноценного использования нейтронных методов в решенли вопросов нефтепромысловой геологии находятся в прямой связи с быстрейшим выпуском новой аппаратуры—скважинных сцинтилляционных гаммаспектрометров и приборов для регистрации нейтронов (ННК) с нейтронным пропорциональным, а еще лучше с сцинтилляционным счетчиком.

Чрезвычайно большое значение для увеличения эффективности сцинтилляционной аппаратуры имеет применение фотоэлектронных умножителей с большим фотокатодом и кристалло-фосфоров значительно больших размеров.

Это позволит не только значительно расширить возможности нейтронных методов в решении геологических вопросов, но и резко увеличить скорость исследования скважин.

Дальнейшие перспективы развития нейтронных методов связаны с созданием скважинного генератора нейтронов, который заменит используемые в настоящее время Po + Ве источники нейтронов, и новой измерительной аппаратуры.

Согласно сообщениям печати (например, J. Oil Forum, 1955, октябрь, стр. 369) в США генераторы нейтронов в габаритах, пригодных для исследования скважин, уже существуют и при помощи их ведутся интенсивные иссле-

дования.

Генераторы пейтронов имеют ряд решающих преимуществ перед Ро + Ве источниками и раскрывают необычайно широкие перспективы исследования скважин. Благодаря высокой интенсивности вторичного γ -излучения и γ -излучения активированных ядер, возникающего под действием нейтронного пучка большой интенсивности, представляется возможным осуществить детальный анализ его энергетического спектра. Увеличение интенсивности по сравнению с имеющимися в настоящее время источниками нейтронов в соты раз позволит прямо выделять нефтяные пласты по характерному для углерода спектру у-лучей. При использовании генератора нейтронов станет возможна регистрация излучения Na₁₁²⁴ на фоне интенсивного излучения Мп56 при выделении водо-нефтяного контакта и тем самым резко сократится время, необходимое для операции наведенной активности по натрию, а также значательно увеличится наблюдаемый относительный эффект.

С созданием генератора нейтронов появится возможность получения импульсного пучка нейтронов, что позволит развить новые методы исследования пород. Представится возможность также освободиться от основного недостатка методов НГК, ННК и НА—преимущественной чувствительности их к параметрам «ближней среды»—цементного кольца и бурового раствора. На базе этого метода, возможно, решится сложная задача количественного определения нефтенасыщеныя. Более того, регистрация быстрых нейтронов с первичной энергией (14 мэв)

через промсжуток времени $2.5 \cdot 10^{-6}$ сек. после импульса даст возможность с большой точностью определять содсржание водорода в породе, т. е. пористость.

При регистрации распределения быстрых псйтронов по времени и по энергии, станет возможным определение местоположения нефтенасыщенных пластов по особенностям в характере замедления быстрых нейтронов, связанным с присутствием углерода.

Наличие импульсного генератора нейтронов существенно расширит возможности активационного анализа для поэлементного анализа горных пород.

Следует указать еще, что высокая энергия нейтронов (14 мэв), получающихся в результате реакции Т—Д, значительно увеличивает проникающую способность (до 50 см вместо 15—20 см в породе средней влажности), а следовательно, резко увеличивает и разрешающую способность нейтронных методов для исследования скважии. Институтом нефти АН СССР совместно с ВНИИгеофизика и специализированными институтами ведутся работы по созданию скважинного генератора нейтронов и повой регистрирующей аппаратуры.

Так как с появлением скважинного генератора нейтронов нефтяная промышленность получит новос, в выс-шей мере эффективнос средство исследования скважин, быстрейшей разработке его должно быть уделено самое серьсзное внимание.

Радиометрический метод поисков нефтяных и газовых месторождений

Раднометрический метод относится к прямым методам обпаружения с поверхности земли пефтяных и газовых залежей.

По вопросу эффективности радиометрического метода ноисков нефтяпых месторождений в зарубежной печати, в частности в США, имсются протнворечивые суждения. В большинстве случаев [6, 7, 8, 9, 10, 11, 12] высказываются оптимистические взгляды на возможность примспения новых мсто-

дов для поисков нефтяных месторождений; имеются обратные утверждения— случаи совпадений радиометрических аномалий и нефтяных залежей рассматриваются как чисто случайные [13], обусловленные своеобразными условиями морфологии местности и литологии верхних отложений.

Исследования по разработке раднометрического метода поисков нефти, выяснению основных вопросов теории и созданию соответствующей аппаратуры ведутся в Институте нефти АН СССР с 1953 г. Хотя объем этих исследований и был относительно мал, все же удалось провести радиометрические наземные и воздушные съемки в комплексе с геолого-морфологичеекими и геохимическими исследованиями на известных нефтяных и газозых месторождениях Нижнего Поволжья, Предкавказья и Западной Туркмении и на площадях с неустановленной нефтеносностью. Полученные материалы оказались необычайно интересными и важными и позволяют надеяться, что радиометрический метод в ряде районов и прежде всего в равнинных степных и полупустычных может явиться прямым методом поисков нефтяных и газовых месторождений. Конечно, требуется провести еще много исследований методик работы и интерпретации получаемых материалов, а в особенности создать спектрометрическую высокочувствительную аппаратуру, чтобы рекомендовать этот метод для широкого промышленного исполь-

Нефтяные и газовые месторождения отчетливо выделяются на картах радиометрических аномалий; во всех случаях нефтяные залежи отражаются нониженными значениями величины γ -излучения. В общем виде нефтяные ноля обрамляются полосами повышенных значений γ -излучения.

Из числа известных месторождений нефти и газа хорошо отразились на радиометрической карте месторождения Коробковское, Казинка, Пеллагиада, Кум-Даг, Челекен, Кизыл-Кум, Котур-Тепе и др.; как нефтяные месторождения отметились не разведанные еще площади Гагрань-Даг, Гекча и др.

При обработке и интерпретации материалов радиометрической съемки необходимо со всей тщательностью учитывать стратиграфию и литологию коренных и четвертичных отложений, слагающих с поверхности исследуемую площадь, морфологию местности и особенно наличие речных долин, озер и болот, солончаков и различных шоров (соров), песчаных бугров и вносить поправки на них. Отмеченные особенности геологии и морфологии местности оказывают большое влияние на характер радиометрической карты.

Многочисленные примеры отчетливого отражения нефтяных месторождений в аномальном распределении интенсивности γ и α излучений выходят за пределы случайности и указывают на существование закономерности этого явления.

Вопрос о природе радиометрических аномалий, наблюдающихся над нефтяными месторождениями, является главным и наиболее сложным в теории метода. Хотя в изучении этого вопроса сделаны только первые шаги, представляется возможным в общем виде сформулировать наши представления на природу наблюдаемого явления: почему над нефтяными залежами наблюдаются пониженные значения величины у -излучения.

Пониженные значения величин у-излучения над нефтяной залежью и относительно повышенные за ее пределами, с учетом геологического строения исследуемой поверхности, связаны с различным кларковым содержанием радиоактивных элементов в породах. Качественный анализ жесткости у-излучения в районе нефтяных месторождений указывает на то, что наблюдаемые аномалии связаны с изменением содержания элементов уран-радиевого семейства и не связано с распределением Th.

При выяснении природы радиометрических аномалий может быть исключен из рассмотрения K^{40} , т. к. имеющие место амплитуды колебаний величин γ -излучения, выходят далеко за пределы содержания K^{40} в породах.

Исследование *а*-излучений образцов пород из района нефтяных месторо-

ждений при их нагревании до $+100-150^{\circ}$ С, с учетом периода полураспада эманации, свидетельствует об эпигенетическом характере накопления урана и радия.

Распределение кларковых содержаний урана и радия в породах находится в прямой связи со специфической геохимической обстановкой, присущей

нефтяному месторождению.

Экспериментальные исследования показывают, что сорбционные способности пород контролируются составом их газовой фазы и химизмом вод. Подмечено, что насыщение пород и вод такими продуктами, как СН₄, СО₂, NO₂, в четыре и более раз снижают сорбционные способности пород вне зависимости от их литологии.

Наряду с этим отмечается повышенная выщелачиваемость урана и радия, содержащихся в породах, при воздействии на них вод, насыщенных СО₂. Исследования в указанном выше плане приведут, мы полагаем, к раскрытию природы радиометрических аномалий над нефтяными залежами.

Для быстрейшего выяснения основных вопросов теории метода весьма желательно совместное проведение радиохимических, геохимических и физических исследований на ряде природных объектов наряду с проведением широких экспериментов в условиях лаборатории.

Изучение динамики подземных вод при помощи радиоактивных изотопов

Умение постоянно узнавать и контролировать направление и скорость движения подземных вод, надежно стратифицировать их имеет большое значение для различных отраслей гидрогеологии инженерной геологии и гидротехники. В разрешении этих вопросов радиометрические методы могут оказать существенную помощь. Применительно к нефтяной геологии представляет первостепенный интерес использование радиоактивных изотопов, во-первых, для контроля ва скоростью и направлением движения воды, закачиваемой в нефтяной пласт для поддержания пластовых давлений, и, во-вторых, с целью изучения режима подземных вод крупных нефтеносных провинций. Познание режима подземных вод, характера их движения и возрастных соотношений в региональном плане имеет большое значение для успешного решения важнейших теоретических вопросов нефтяной геологии, связанных с установлением закономерностей формирования нефтяных месторождений.

Для решения указанных вопросов современная гидрогеология наряду с изучением всей совожупности данных геологии располагает такими средствами, как контроль за пьезометрами и химическим составом вод. Несмотря на всю ценность этих параметров, нужно отметить, что они не могут полностью решать многие теоретические вопросы тидрогеологии. Изучение растворенных в воде газов и микроэлементов, значительно расширяя наши возможности в изучении многих вопросов гидрогеологии, является недостаточным для суждений о возрастных соотношениях вод различных этажей геологического фазреза или, что особенно важно, вод и вмещающих их пород, а также характера движения этих вод.

Изучение изотопного состава некоторых элементов вод и вмещающих их пород заслуживает серьезного внимания, и на этом пути, надо полагать, мы получим немало новых открытий.

Радиоактивные изотопы широко используются для выяснения геологии и выделения пористых проницаемых пластов в скважинах. Наряду с этим радиоактивные изотопы могут быть использованы не только для изучения технического состояния скважин, но и для контроля за движением подземных вод. Изучение распределения водных пластов по пласту при законтурном и внутриконтурном заводнении, широко применяемом при разработке нефтяных месторождений, возможно только с помощью «меченых» атомов.

Исследования ученых многих стран по подбору не сорбирующегося породой индикатора пока не привели к желаемым результатам. Для решения этих вопросов лабораторией № 1 ин-

ститута нефти АН СССР был применен изотоп водорода — тритий.

Тритий β-излучатель, обладающий энергией в 17,9 кэв, с периодом полураспада 12,4 лет. Тритий, как индикатор для мечения воды, обладает рядом решающих преимуществ перед другими индикаторами. Высокая чувствительность измерений позволяет определять 1 атом трития на 10¹⁶ атомов водорода. Тритий входит непосредственно в состав молекулы воды (вода практически метится водой), т. е. имеет место идеальный случай максимальной близости физико-химических свойств индикатора и исследуемой системы.

Мягкое β -излучение трития, большая степень разбавления в пластовых водах и, наконец, постояниая тенденция к дальнейшему разбавлению в естественных условиях делают использование трития желательным с точки зрения техники безопасности.

Теоретические оценки разбавления меченото объема воды в промысловых условиях показали, что основным фактом разбавления является самодиффузия в потоке, тогда как диффузия воду, связанную происходящая за чрезвычайно малое время $(10^{-4} \cdot 10^{-2} \text{ сек})$, для пор среднего радиуса (10-20 микрон) практически не вносит заметного вклада в разбавление вследствие обратной диффузии в поток. Сорбционные процессы в коллекторе, по-видимому, также мало изменят концентрацию трития из-за малого коэффициента сорбции воды нефтью и породами.

В 1956 г. лабораторией № 1 Института нефти АН СССР при участии ГрозНИИ на месторождении Октябрьском объединения Грознефть была процзведена закачка трития в одну из нагнетательных скважин (скв. 135). Распределение потока в пласте наблюдалось по трем эксплуатационным скважинам (скв. 73, 89 и 60) систематическим отбором проб воды и измерением трития.

Для обогащения проб тритием на один-два порядка было применено электрическое обогащение.

Излучение активности производи-

лось в виде газообразного водорода в счетчике внутреннего заполнения

Гейгера-Мюллера.

Фон счетчика объемом 0,5 л составлял 9—15 имп/мин. Расстояние между нагнетательной и эксплуатационными скважинами составляло 80, 118 и 150 м. Анализ отобранных проб из наблюдательных эксплуатационных скважин показал, что вода пришла через 3, 7 и 12 суток со скоростями 40, 12 п 13 м/сут, вместо ожидаемого прихода через 60, 45 и 180 суток по принятым промысловой службой расчетам.

Изучение активности воды позволило сделать заключение о количественном распределении потока.

Разработанная методика мечения воды тритием позволит рационально управлять режимом заводнения нефтяных месторождений и решать большой круг других гидрогеологических и гидротехнических волросов.

На первом этапе представляет большой интерес воспользоваться тритием для решения вопроса о перетоках из пласта Д₂ в пласт Д₁ и в целом для изучения движения закачиваемых в пласты вод по Туймазинскому место-

рождению.

Изучение в глубинных водах другого изотопа водорода — естественного дейтерия, проводимое в Институте нефти, позволит, по-видимому, использовать его для контроля за разбавлением пластовых вод при эксплуатации нефтяных месторождений, а также может быть использовано при выяснении вопросов генезиса вод различных горизонтов теологического разреза.

Заключение

Методы ядерной физики являются весьма эффективными в решении многих вопросов геолопии нефти: корреляции разрезов, выделении продуктивных пластов, контроля за перемещением контактов нефть — вода ч жидкость в процессе разработки месторождений, изучении динамики подземных вод, а также изучении элементного состава горных пород, как по разрезу скважин, так и в образцах. Не раскрыты еще возможности радиометрии для поисков нефтяных месторождений.

Современное состояние промышленного использования методов ядерной физики в геологии вообще и в геологии нефти, в частности, не отвечает возможностям этих методов. Есть все основания ожидать, что ближайшее будущее ознаменуется бурным развитием методов ядерной физики применительно к решению геологических задач. Этому в немалой мере будет способствовать создание скважинного генератора нейтронов, мощного транспортабельного источника излучений и более совершенной спектроскопической гамма- и нейтронной измерительной аппаратуры. Возросшее внимание к нейтронным методам со стороны геологической и геофизической служб предприятий нефтяной промышленности СССР окажет большое влияние на успешное развитие этих методов и их широкое использование в решении разнообразных геологических вопросов.

ЛИТЕРАТУРА

1. Галявич А. Ш., Дворкин И. А., Лепешинский И. Ю., Дорофеев В. С. Оценка водонефтеносности пластов в обсаженных скважинах методом нейтронного гамма-каротта ка. Нефт. хоз., № 11, 1955.
2. Холин А. И. Разделение нефтенос-

ных и водоносных пластов в обсаженных скважинах радиоактивными методами иссле-

дования. Изд. АН СССР, 1955. 3. Кухаренко Н.К., Одиноков В.П., Шимелевич Ю. С. Возможности использования метода активации натрия для выявления нефтеносных и водоносных пластов и определения водо-нефтяного контакта в услониях обсаженной колонной скважины. Изд. АН СССР, 1955.

4. James H. Russel, Bryan o. Bishop. Количественное определение пористости горных пород методом нейтрон-нейтронного

кароттажа. Petroleum Eng., v. 2, № 4, 1954. 5. H. Zundberg. World Petroleum, May,

1952. 6. Lobdell, Buchley, Merritt. World Oil, August, 1954.

7. Hare G. World Petroleum, 1954, III, v. 25, № 3.

8. H. Lumdberg. Oil Forum. Jan., 1955. 9. Stothart. World Petroleum, April, 1954. 10. H. Lundberg. Oil a. Gas J., 1956,

30/IV, v. 54, № 52.

11. George A. Haddad Jr. Сцинтилляция.

Практический подход к разведке газа и нефти. Oil Forum, III, 1956, p. 92—93.

12. Cregory A. F. Bulletin of the American Association of Petroleum Geologists, v. 40, № 10, Oktober, 1956.

Э. А. БАКИРОВ, Ф. Г. ГУРАРИ, Л. И. РОВНИН

Тектоника мезокайнозойских отложений южной половины Западно-Сибирской низменности

Для успешных поисков месторождений нефти и газа в мезозойских отложениях Западно-Сибирской низменности крайне важна правильная расшифровка тектонического строения

этой территории.

За последние годы в ряде опубликованных работ (Н. Н. Ростовцев — 1955, 1956 гг., Б. А. Петрушевский — 1955 г., Г. Л. Гришин — 1956 г., Г. Е. Рябухин и И. И. Нестеров — 1956 г.) авторы пытались выделить в мезокайнозойском чехле низменности структурные формы первого, второго и третьего порядков.

В 1955 г. группой работников ВНИГРИ, трестов Запсибнефтегеология, Тюменьнефтегеология, Сибнефтс-геофизика и Западсибнефтегеофизика под руководством Д. В. Дробышева составлена новая схема тектонического районирования Западно-Сибирской низменности. Однако и в этой работе выводы о геологическом строении центральной части низменности базируются в основном на материалах аэромагнитной съемки масштаба 1:1000000.

В течение 1955—1956 гг. трестами Запсибнефтегеология и Тюменьпефтегеология и Тюменьпефтегеология проведен большой объем колонкового бурения. Помимо структурно-картировочного бурения, проводившегося на отдельных площадях, большос количество скважин глубиной 300—500 м пробурсно по профилям, пересекающим низменность в различных направлениях. Все скважины изучены электрокароттажем. Нскоторые маркирующие горизонты, залегающие в глинистой толще нижнего олигоцена

(чеганская свита), четко фиксируются на электрокароттажных диаграммах и сохраняют свои характерные очертания на весьма обширных площадях.

Только в непосредственной близости к южному палеозойскому обрамлению низменности и на левобережье р. Обь (район Нарым — Колпашево), где в отложениях нижнего олигоцена резко возрастает роль песков, выделение маркирующих горизонтов несколько затруднено. Но и для этих районов, учитывая закономерности изменения мощностей и положение других опорных поверхностей (например, кровли или подошвы чеганокой свиты), можно определить положение маркирующих горизонтов в разрезе.

Все это позволило авторам настоящей статьи построить сводную структурную карту южной половины Западно-Сибирской низменности в масштабе 1:1000000 по маркирующему горизонту Д, залегающему в верхней части чеганской свиты нижнего олигоцена (рис. 1). Горизонт этот представлен песчанистыми глинами, которые на электрокароттажных диаграммах выражаются пологим максимумом кривой КС и таким же пологим минимумом кривой СП.

В юго-западной части низменности, там гдс верхняя часть нижнего олигоцена вместе с горизонтом Д размыта, структурная карта построена по по-

дошве нижнего олигоцена.

При построении структурной карты были использованы материалы по 1258 скважинам, из них 1170 колонко-

Рис. 1. Структурная карта южной части Западно-Сибирской низменности по подошвегоризонта Д чеганской свиты нижнего олигоцена (Сост. Э. А. Бакиров, Ф. Г. Гурари, Л. И. Ровнин,).

1 — изолинии подошвы горизонта Д; 2 — промежуточные изолинии подошвы горизонта Д; 3 — предполагаемые изолинии подошвы горизонта Д; 4 — изолинии подошвы горизонта Д, проведенные в итоге пересчета с другогогоризонта; 5 — граница области размыва горизонта Д; 6 — изолинии кровли эоцена; 7 — граница выхода на поверхность пород палеозойского возраста.

вых структурно-картировочного и профильного бурения и 88 роторных. Кроме того, учтено 97 скважин, пробуренных для водоснабжения.

. Построение структурной карты по маркирующему горизонту в нижнем олигоцене с учетом материалов глубокого бурения и геофизических исследований позволяет значительно уточнить представления о тектонике мезокайнозойского чехла южной половины Западно-Сибирской низменности.

В пределах южной половины низменности выделяются следующие структуры первого порядка: Ханты-Мансийская, Омская и Чулымо-Енисейская синеклизы, Васюганский свод, Тарская

седловина и склоны палеозойских складчатых сооружений (восточное погружение Урала, северо-восточный склон Казахского складчатого массива, северо-западные склоны Алтая и Колывань-Томской складчатой дуги и северо-западное погружение Восточного Саяна). Взаимоотношение указанных тектонических элементов показано на рис. 2.

В пределах склонов палеозойских складчатых сооружений Н. Н. Ростовцев (1955, 1956 гг.) выделяет Предуральскую синеклизу (к западу от р. Тобол), Вагай-Ишимскую антеклизу (в Вагай-Ишимском междуречье) и Родинскую антеклизу (к северо-западу

от подножий Алтая). На наш взгляд выделсние этих структур не обосновано, так как склоны палеозойских складчатых сооружений характеризуются моноклинальным строснием как поверхности фундамсита, так и отложений мезокайнозойского покрова. Характерной чертой строения склона палеозойского обрамления являстся постспенное выклинивание древних стратиграфических комплсков мезозоя по направлению к периферийным частям низменности, что обусловливает в свою очсредь уменьшенис углов наклона от древних горизонтов к более молодым. Однако в строении мезокайнозойских отложений отдельных районов существуют искоторые особенности.

Восточнос погружение Урала характеризустся довольно пологим наклоном поверхности фундамента и еще более пологим наклоном мезокайнозойских отложений. Углы наклона поверхности фундамента и нижнего олигоцена на участке Кузнецово — Тобольск соответственно равны: 0°14′ (4 м/км) и 0°03,5′ (1 м/км).

Поверхность фундамента низменности погружается от г. Кустанай на северо-восток под углом 0°15′ (4,1 м/км), а отложения нижнего олигоцена — под углом 0°02,5′ (0,7 м/км).

Разрез мезозойских отложений в пререлах Уральского погружения быстро наращивается в восточном направлении в основном за счет нижних горизонтов. Так, если в районе с. Бутка (115 км юго-западнее г. Тюмень) непосредственно на фундаменте залегают отложения сеномана, то в районе с. Лучинкино на фундаменте лежит готерив-баррем, а в районе г. Тюмень — средняя юра.

Отложения мезозоя Уральского склона характеризуются преобладанием морских и прибрежно-морских фаций, которые лишь на юго-западе в нижней своей части (юра, нижний мел) замещаются континентальными и прибрежно-континентальными фациями.

Большой фактический материал, полученный главным образом в результате глубокого бурения и сейсморазведки, позволяет выделить в пределах восточного погружения Урала структуры вто-

Рис. 2. Схема тектоники мезокайнозойских отложений южной половины Западно-Сибирской пизменности. (Сост. Ф. Г. Гурари и Э. А. Бакиров.)

A—склоны палеозойских складчатых сооружений; B—своды; B—сниеклизы; Γ —Тарская седловина; $\mathcal {J}$ —граница выхода палеозойских пород.

выхода палеозонских нород. Структуры второго порядка E-виадины: I-Томенская, II-Саргатская, III-Татарская, IV- Карасукская, V- Барнауло-Кулундинская, VI-Ларьякская, K-валы; I-Тобольский, 2- Петронавловский, 3- Быструхинско-Крутихинский, 4- Малиново-Солдатский, 5- Завъядовский, 6- Пологрудовский, 7- Нюрольский, 8- Александровский, 9-Парабитский, 10- Камсесский; 3- предполагаемые продолжения валов: 10- подятия, разделяющие впалины второго порядка: VII- Розановское, VIII- Купинское, IX- Славгоролское; IX- Потребенные валы, выраженные в верхах верхнего мела и в третичных отложениях сочетанием "структурных посов" или структурными террасами: II-Тебисский; II-Структуры третьего порядка (локальные поднятия в мезокайнозое). рого и третьего порядков, которые фиксируются не только по нижним горизонтам мезозоя, но и отчетливо выделяются на структурной карте нижнего олигоцсна (рис. 1). К структурам второго порядка нами относятся Тобольский вал и Тюменская впадина.

Тобольский вал (рис. 2, Ж, 1) имеет западный асимметричное строение: склон его пологий, восточный болес крутой. Простирание вала совпадает с северо-восточными простираниями складчатых комплексов фундамента. Южная периклиналь недостаточно изучена; северная периклиналь располагается, видимо, между г. Тобольск и с. Уват. Вал осложнен серией локальных структур третьего порядка, вытянутых вдоль его оси и кулисообразно расположенных по отношению друг к другу. С запада к Тобольскому валу примыкает Тюменская впадина (рис. 2, E, I), включающая в себя выделенные Н. Н. Ростовцевым (1956 г.) Усть-Тавдинскую и Тюменскую впадины, разделенные Боркинским валом. Боркинский вал, намеченный Н. Н. Ростовцевым условно как структура второго порядка, не подтверждается фактическим материалом, полученным за последние годы. Это обстоятельство и заставило нас выделить на месте двух впадин Н. Н. Ростовцева единую Тюменскую впадину.

На севере Тюмепская впадина, повидимому, открывается в сторону Ханты-Мансийской синеклизы.

Северо-восточный склон Казахского складчатого массива характеризуется более крутым наклоном поверхности фундамента и мезокайнозойских отложений по сравнению с Уралом.

Углы наклона поверхности фундамента и нижнего олигоцена (горизонт Д) здесь соответственно колеблются от $0^{\circ}23'$ (6,5 м/км) до $0^{\circ}03,5'$ (1 м/км)—вдоль р. Ишим и от $1^{\circ}03'$ (19 м/км) до $0^{\circ}05,6'$ (1,6 м/км)— на участке Кзыл-Ту — Омск.

Такой сравнительно крутой наклон фундамента в этих районах низменности объясняется, видимо, наличием серии разломов в фундаменте, приуроченной к юго-западной прибортовой

части Омской синеклизы. С разломами могут быть связаны выделяемые Н. Н. Ростовцевым [6] Асановская, Ганькинская и Рявкинская ступени фундамента.

Нижняя часть мезокайнозойского покрова в пределах большей части Казахского склона низменности отсутствует. Однако по мере погружения склона по направлению к Омской синеклизе разрез мезозоя быстро наращивается. Мезозойские, особенно нижнемеловые, отложения северо-восточного склона Казахского складчатого массива характеризуются развитием континентальных и прибрежно континентальных фаций.

Разрез третичных и верхнемеловых отложений Казахского склона мало отличается от одновозрастных образований восточного погружения Урала.

В пределах Казахского склона выделяются структуры второго и третьего порядков преимущественно северо-западного простирания. Однако встречаются поднятия (например, Асановское и Октябрьское), имеющие поперечную, северо-восточную ориентировку. К структурам второго порядка от-Быструхинско-Крутихинский носятся и Петропавловский валы. Петропавловский вал (рис. 2, Ж, 2) расположен на границе Уральского и Қазахского склонов и имеет почти мсридиональное простирание. Он хорошо выделяется на структурной карте по подошве горизонта Д (рис. 1) и на структурных картах, построенных Э. А. Бакировым по отдельным ярусам мезокайнозоя междуречья Иртыша и Тобола.

На северном периклинальном окончании Петропавловского вала выявлена локальная структура третьего порядка — Вяткинское поднятие. Южное периклинальное окончание протягивается, видимо, до западного выхода палеозойских пород Казахского массива.

К северу от широтного колена р. Ишим располагается вал, выделенный на схеме, составленной под руководством Д. В. Дробышева, под названием Быструхинско-Крутихинского (рис. 2, Ж, 3). Этот вал имеет северозападное простирание и хорошо выделяется по данным сейсмики и на структурной карте по горизонту Д нижнего

олигоцена (рис. 1). Строение его асимметричное: юго-западный борт несколько положе, чем северо-восточный. Вал осложнен локальными структурами третьего порядка, выявленными сейсморазведкой и колонковым бурением (Челноковская, Большесорокинская и

Крутихинская). Северо-западный склон Алтая по сравнению с северо-восточным склоном Казахского складчатого массива имеет более пологий характер. Наклон поверхности фундамента здесь не превышает 0°12′ (3,5 м/км). По палеогену (горизонт Д) погружение склона составляет 5′—6′ (1,6—1,7 м/км). Для этой области характерны сильно уменьшеные мощности мезозоя и широкое распространение континентальных фаций, представленных главным образом пестроцветными отложениями.

Мезокайнозойские отложения склона Алтая изучены сравнительно слабо, и для выделения каких-либо структур второго и третьего порядков пока нет данных,

Северо-западный склон Қолывань-Томской складчатой дуги имест погружение поверхности фундамента значительно более крутое, чем в рассмотренных выше районах, и достигает 2°20′ (40 м/км). В пределах этого склона в верховьях р. Шегарка электроразведкой и сейсмопрофилированием выявлена глубокая впадина фундамента.

Северо-западное погружение Восточного Саяна имеет аналогичную крутизну. Угол по поверхности фундамента равен приблизительно 2°18′ (39 м/км). Мезозойские отложения здесь значительно дислоцированы. Местами углы падения их достигают 40—50°. Для мезозойской толщи характерно преимущественно распространение континентальных фаций.

В центральной части Западно-Сибирской низменности выделяется обширная Ханты-Мансийская синеклиза. Ее южное, западное и восточное крылья довольно четко очерчиваются погружением маркирующих горизонтов как палеогена (рис. 1), так и мезозоя. Строение северного крыла синеклизы не вполне ясно. Очевидно, на севере она соединяется с Чулымо-Енисейской

синеклизой. Нами Ханты-Мансийская синеклиза выделяется почти в тех же пределах, как на схеме, составленной под руководством Д. В. Дробышева. Она включает в себя Усть-Иртышскую и Усть-Вахскую впадины, выделенные Н. Н. Ростовцевым (1955, 1956 гг.). Фундамент на территории синеклизы еще не вскрыт, так как бурившиеся опорные скважины были остановлены: Ханты-Мансийская при забое 2181 м в отложениях готерив-баррема, Уватская при забое 2983 м в нижней юре (?) и Покурская при забое 2361 м в валанжине. С учетом градиента изменения мощностей юрских отложений глубина залегания фундамента в центре синеклизы составляет не менее 3500— 3800 м. Расчет глубины фундамента по новейшим аэромагнитным исследованиям даст величины порядка 4-5 км.

Детали строения Ханты-Мансийской синеклизы не выяснены. Проведенные в южной части синеклизы аэромагнитные исследования масштаба 1:200000 указывают на наличие локальных поднятий в строении поверхности фундамента, которым соответствуют, очевидно, и структуры в мезокайнозойском чехле.

В южной части низменности выделяется Омская синеклиза, которая расположена к юго-востоку от Ханты-Мансийской синеклизы, отделяясь от нее Тарской седловиной (рис. 2). Югозападная граница синеклизы проходит вдоль долины р. Иртыш по направлению к ст. Булаево; юго-восточная южнее линии железной дороги Кулунда — Барнаул. Северо-восточная граница пересекает Транссибирскую железную дорогу несколько восточнее ст. Убинская, после чего, резко заворачивая к западу, огибает Тебисскую структуру и уходит на северо-запад. Северная граница, пересекая р. Иртыш севернее с. Большеречье, протягивается в широтном направлении р. Ишим. Омская синеклиза по нашей схеме существенно отличается от Омской синеклизы, выделенной Н. Н. Ростовцевым (1956 г.). Последним она была вытянута в северо-восточном направлении, т. е. вкрест простирания не только складчатых комплексов фун-

² геология нефти № 5.

дамента, но и мезокайнозойских отложений чехла. Кроме того, Н. Н. Ростовцевым площадь ее была сильно

сокращена.

В Омской синеклизе нами выделяются четыре впадины (с северо-запада на юго-восток): Саргатская, Татарская, Карасукская и Барнауло-Кулундинская. Впадины эти разделены Розановским, Купинским и Славгородским поднятиями (рис. 2). История развития этих впадин не одинакова. Наиболее древней из них является Татарская впадина. Глубина фундамента в этой впадине достигает 3000 м: в скв. 4-Р Татарской площади он не был встречен при забое 3000 м. В других скважинах этой же площади он вскрыт на глубинах 2812-2892 м, а в Омской опорной скважине на глубине 2936 м. Анализ мощностей свидетельствует о том, что в течение всего мезокайнозоя Татарская впадина являлась областью устойчивого прогибания, причем заложение ее относится к рэт-лейасу. На это указывают рэт-лейасовые отложения, вскрытые Омской скважиной и отсутствующие на других участках юга Западно-Сибирской низменности. Исключением является район г. Колпашево, где эти же отложения выделяются пока условно и имеют незначительную мощность. В наиболее прогнутой части Татарской впадины известны локальные поднятия: Татарское, Усть-Тарское, Георгиевское.

Сартатская впадина, расположенная севернее Татарской, имеет небольшие размеры. Она отчленяется от Татарской впадины небольшим Розановским поднятием, которое прослеживается на построенных Э. А. Бакировым по методу схождения структурных картах от кровли готерив-баррема и выше.

Карасукская впадина выделяется нами впервые. Барнауло-Кулундинская впадина выделена на месте Прииртышской и Кулундинской синеклиз, описанных Н. Н. Ростовцевым [6], и Бийско-Барнаульской впадины (М. К. Коровин, 1945), так как фактические материалы бурения и геофизических исследований не дают оснований для разделения этой депрессионной области на самостоятельные отри-

цательные структуры первого или второго порядков. Карасукская и Барнауло-Кулундинская впадины терны сравнительно поздним заложением. Наличие в сеномане широко развитых красноцветных отложений указывает, что в начале верхнего мела впадины еще не испытали значительного погружения. Попружение началось в верхнем мелу и наибольшего размаха достигло в третичном периоде, особенно в неогеновую эпоху. Характерно, что начало значительного погружения Карасукской и Барнауло-Кулундинской впадин совпадает по времени с началом интенсивного относительного воздымания смежной территории Васюганского свода и южной части Чулымо-Енисейской синеклизы.

Участки относительного поднятия, разделяющие впадины Омской синеклизы, хорошо прослеживаются не только по маркирующим горизонтам палеогена, но и в более тлубоких горизонтах. К ним же приурочены лоструктуры — Ипатовская, Федоровская (Купинская седловина), Бурлинская и Ефремовская (Славгородская седловина). Характерно, что простирания поднятий, разделяющих впадины, а также локальных поднятий в общем имеют северо-восточное направление и хорошо совпадают с простиранием известных здесь «грив» современного рельефа.

Следует отметить, что выделенные Н. Н. Ростовцевым на этой территории Каргатский, Краснозерский и Славгородский валы не прослеживаются ни по материалам бурения, ни по данным

геофизики.

Ханты-Мансийская и Омская синеклизы разделены крупной Тарской седловиной, выделенной нами в качестве структуры первого порядка (рис. 2, Г). Она характерна наиболее широким развитием структур второго и третьего порядков.

При общем преобладании северозападных простираний структур наличие отдельных поднятий субширотной ориентировки (Борисовское, Малиновское, Большереченское) и сложный перекрещивающийся характер простирания магнитных аномалий этого района указывают на раздробленность фундамента и значительную его мобильность, что обусловило развитие мноточисленных структур в мезокайнозойском чехле.

В предслах Тарской седловины геофизическими исследованиями выявлено несколько структур второго порядка (Малиново-Солдатский, Завьяловский валы; рис. 2, Ж, 4, 5) и большое количество локальных поднятий. Малиново-Солдатский и Завьяловский валы хорошо выражены и в палеогсне (рис. 1). Помимо этих структур, нами выделяются Пологрудовский вал (рис. 2, Ж, 6), хорошо прослеживаемый в палеогене и в глубоких горизонтах мсзозоя. На его оси также расположено несколько локальных структур.

К северу от Омской синсклизы между Ханты-Мансийской и Чулымо-Енисейской синеклизами в строении мезокайновоя выделяется пологий Васюганский свод. Существование этой структуры, выделявшейся ранее по материалам геологического картирования верхнетретичных отложений под названием Васюганского вала, позже отвергалось рядом исследователей, так как данные теофизики указывали на глубокое погружение фундамснта в области Обь-Иртышского междуречья. Новые данные бурения и геофизических исследований устанавливают наличие этой положитсльной структуры, имеющей сложное строение и сложную историю развития.

Современная праница Васюганского свода проходит на западе от устья р. Вах к верховьям р. Васюган и далее, отклопяясь немного к западу, спускается на юг к ст. Тебисская. Отсюда она резко заворачивает на восток и северо-восток.

Юго-восточный склон Васюганското свода хорошо подчеркивастся Тарской впадиной, выделенной С. Б. Шацким по распространению четвертичных отложений, залстающих среди поля плиоцена. Кроме того, электроразведочные и ссйсмические работы выявили в районе верховий р. Шегарка глубокое погружение фундамента, которое сменяется к северо-западу подъемом его поверхности. Восточная граница

свода менее четка. Она проводится нами через нижние течения правых притоков р. Обь.

Васюганский свод является положительной структурой первого порядка, которая с конца нижнего мела представляла собой область относительного поднятия. Соответственно она отличается значительным уменьшением мощностей третичных и верхнемеловых отложений и существенным развитием в осадках этого возраста континентальных и прибрежно-морских фаций. Мощность морского верхнего мела уменьшается от 274 м в г. Тара до 194 м в разрезе Пудинской опорной скважины; мощность третичных отложений соответственно изменяется от 594 м до 251 м. История развития этой структуры в нижнемеловую эпоху и юрский период еще не вполне ясна. Предварительные итоги бурения Пудинской опорной скважины совместно с данными аэромагнитной съемки масштаба 1:200 000 позволяют считать, что и в это время Васюганский свод представлял собой несильно погруженную область, характеризующуюся чередованием приподнятых и опущенных **VЧастков.**

В пределах Васюганского свода намечаются структуры второго и претьего порядков. К структурам второго порядка относится Александровский вал (рис. 2, Ж, 8), отмеченный Н. Н. Ростовцевым (1955, 1956 гг.) и расположенный в северной части свода. Этот вал прослежен нами по палеогену далеко на юго-восток, вплоть до р. Парабель (рис. 1). К нему приурочены три локальных поднятия: Назинское, Сильгинское и Сенькинское.

По материалам колонкового бурения нами выделен Нюрольский вал (рис. 2, Ж, 7), а по колонковому бурению и геофизическим данным Парабигский вал (рис. 2, Ж, 9), к которому приурочены Колпашевокое и Бакчарское поднятия. В результате проведения колонкового бурения и сейморазведочных работ, вероятно, будет выявлена на территории Васюганского свода еще целая серия структур второго и третьего порядков.

С востока к Васюганскому своду

примыкает Чулымо-Енисейская синеклиза.

Анализ мощностей мезокайнозойских отложений и современной структуры синеклизы указывает, что ее южная часть имеет довольно сложную историю развития. В юрский период, а особенно в среднеюрскую эпоху, эта область испытала весьма интенсивное погружение и была заполнена мощной (более 1000 м) серией угленосных континентальных отложений.

Морские условия, существовавшие в Чульмо-Енисейской синеклизев верхней юре, в результате трансгрессии моря с севера и запада в валанжине вновь сменяются континентальным режимом, удержавшимся до настоящего времени. В отдельные периоды (аптальб) восточная и южная части синеклизы подвергались размыву и пенепленизации. В конце мелового периода восходящие движения, развивавшиеся в пределах Васюганского свода, охватили Чулымо-Енисейскую синеклизу. В третичное время южная часть синеклизы претерпела относительно большее поднятие, чем районы Васюганского свода. На это указывают незначительное распространение и малые мощности третичных отложений южной части Чулымо-Енисейской синеклизы.

В северной части синеклизы нами выделяется Ларьякская впадина, которая характеризуется большими мощностями мезокайнозойских отложений и преобладающим развитием морских фаций.

С востока Ларьякская впадина ограничивается поднятием Пыль-Караминского вала, который был выделен Н. Н. Ростовцевым (1956 г.) и в последующие годы изучен С. Б. Шацким, проводившим там геологическую съемку и назвавшим его Камсесским валом.

Анализ фаций и мощностей мезокайнозоя указывает на возможное слияние Ларьякской впадины и всей Чулымо-Енисейской синеклизы с Ханты-Мансийской синеклизой севернее границы описываемой территории.

, Разделяя точку зрения Н. Н. Ростов-

цева (1956 г.) о том, что Чулымо-Енисейская синеклиза (или по Н. Н. Ростовцеву — впадина) являлась в мезокайнозое составной частью Западно-Сибирской депрессии и не была обособлена от ее центральных областей, мы считаем, что развитие этой синеклизы в мезокайнозое имело все же весьма своеобразные черты, которые отличают ее от других аналогичных структурных форм низменности (Омской и Ханты-Мансийской синеклиз).

Охарактеризованные основные черты тектонического строения мезокайно-зойских отложений Западно-Сибирской низменности с учетом данных о составе и распределении битумов, вод и тазов, о коллекторских свойствах пород позволяют наметить наиболее перспективные в отношении нефтегазоносности области.

На территории Западно-Сибирской низменности наиболее перспективными в отношении нефтегазоносности зонами мы считаем зоны, приуроченные как к центральной части, так и бортам обширной Ханты-Мансийской синеклизы, в пределах которой наблюдаются наибольшие мощности преимущественно морских мезокайнозойских отложений, в том числе толщи битуминозных сланцев верхней юры—нижнего валанжина (в Уватской скважине мощность сланцев, содержащих до 8% маслянистого битума, достигает 121 м).

Исходя из сказанного выше, к первоочередным объектам разведки мы относим структуры второго и третьего порядков, расположенные в непосредственной близости от Ханты-Мансийской синеклизы: Уватскую, Тобольскую, Деминскую, Абалакскую, Дубровинскую, северную часть Тарской седловины и северную часть Васюганского свода (Нюрольский и Александровский валы).

Что же касается центральной части синеклизы, то здесь первоочередной задачей является проведение комплекса геолого-геофизических исследований с целью выявления соответствующих структур, благоприятных для скопления нефти и газа.

ЛИТЕРАТУРА

Бакиров А. А. Опыт изучения геологии кристаллического фундамента Русской платформы на основс опорного бурения. Гостоптсхиздат, 1954.

Гришин Г. Л. О некоторых вопросах развития геолого-разведочных работ в Западной Сибири. Нефт. хоз., № 2, 1956.

Коровин М. К. Новая позднепалеозойская Обь-Енисейская складчатая зопа Западной Сибири. Изв. АН СССР, сер. геол., № 6, 1945.

Петрушевский Б. А. Урало-Сибирская эпигерцинская платформа и Тянь-Шань. Изд. АН СССР, 1955.
Ростовцев Н. Н. Геологическое строе-

Ростовцев Н. Н. Геологическое строепие и перспективы нефтегазоносности Западно-Сибирской низмсиности. Тр. ВСЕГЕИ, инф. сб. № 2. Госгеолиздат, 1955.

инф. сб. № 2. Госгеолиздат, 1955. Ростовцев Н. Н. Западно-Сибирская низменность. Очерки по геологии СССР, т. I, Тр. ВНИГРИ, нов. сер., вып. 96. Гостоптехиздат, 1956.

Ростовцев Н. Н. К тектонике Чулымо-Енисейского района. Материалы по геологии и полезным ископаемым, ч. І. Тр. ВСЕГЕИ, нов. сер., вып. 8, 1956. Рябухин Г. Е. и Нестеров И. И.

Рябухин Г. Е. и Нестеров И. И. Тектоника и возможная нефтегазоносность мезозойских отложений соверного погружения складчатого Казахстана. Нефт. хоз., № 10, 1956.

Туаев Н. П. Очерк геологии и нефтеносности Западно-Сибирской низменности. Гостоптехизлат. 1941.

Гостоптехиздат, 1941.

Шатский Н. С. Мезокайнозойская тектоника Центрального Казахстана и Западно-Сибирской низменности (к вопросу о явлениях унаследования и развития платформ). Сб. памяти А. Д. Архангельского, Изд. АН СССР, 1951.

* * *

С. М. ЧИХАЧЕВ

Перспективы нефтеносности Азовской впадины

(Нефтеносные отмели в Азовском море)

С реди перспективных на нефть и газ территорий юга СССР одно из первых мест занимает впадина Азовского моря. Эта впадина располагается в геологических условиях, аналогичных условиям соседних нефтсносных районов Северного Кавказа — Майкопскому и Краснодарскому. Вполне вероятно, что освоение нефтеносных отмелей и банок Азовского моря (учитывая ледовые условия зимнего периода) является делом далекого будущего, но перспективная оценка этого района вполне современна.

В структурно-тектоническом отношении Азовская впадина представляет собой опущенный передовой край Южно-Русской платформенной области, непосредственно примыкающий к альпийской геосинклинали Тетиса. Контуры Азовской впадины были заложены еще в мезозое и не прстерпсли значительных изменений до настоящего времени. Альпийская складчатость проявилась на территории впадины весьма своеобразно: покров кайнозоя был собран в пологие прсрывистые куполовидные складки, местами усложненные диапи-

рами. Такая складчатость является поверхностной, характерной для областей, переходных от геосинклинали к платформе. Представление о складках на территории Азовского моря создается при анализе типов складчатости Степного Крыма и Кубанской низменности.

Тектоничсски опущенная территория Азовского моря в отношении закрытости недр находится в несравненно более выгодном положении, нежели Керченский и Таманский полуострова, где препятствием для нефтяной разведки явились глубоко эродированные, раскрытые структуры.

Геологическими исследованиями последних лет, предпринятыми Крымским филиалом АН УССР и трестом Крымнефтеразведка, установлено, что нефтеносные фации майкопских и чокракских отложений продолжаются в сторону Азовского моря. О наличии нефтеносных пластов в южной части Азовского моря свидетельствуют нефтегазовые выбросы подводных грязевых вулканов вдоль северного побережья Керченского полуострова и в

Карта изомощностей майкопа Приазовья. I — оси антиклинальных структур; 2 — грязевые вулканы.

Темрюкском заливе. Изучение гидрохимии подземных вод и их газового состава в восточном Присивашье указывает на присутствие нефтяных вод в Азовской впадине и на Арабатской стрелке.

На карте изомощностей майкопа Приазовья (см. рисунок), составленной по данным большого числа глубоких роторных скважин, можно видеть сгущение изопахит майкопа в южной части Азовского моря. То же установлено и для отложений нефтеносных чокражских слоев, залегающих непосредственно на верхнем майкопе. Это означает, что существующие нефтесодержащие горизонты имеют здесь большие мощности и что возможно появление новых горизонтов.

Это особенно справедливо для песчаных фаций королевских слоев верхнего майкопа и подошвы чокракского горизонта, которые на крайнем северовостоке Керченского полуострова составляют наиболее перспективную серию пластов.

Как и в Бакинском районе Закавказья, грязевой вулканизм в Приазовье сопровождает нефтеносные толщи и может являться поисковым признаком на нефть и газ. Нами установлено, что степень развития грязевого вулканизма на Керченском полуострове прямо пропорциональна увеличению мощности майкопской толщи. Это подтверждает правильность прогноза увеличения нефтеносности в сторону центральной и южной частей Азовского моря.

Таким образом, по сравнению с территориями Степного Крыма, Керченского и Таманского полуостровов область, занимаемая Азовским морем, ввиду закрытости недр имеет ряд преимуществ, вследствие чего ее следует относить к районам, перспективным на нефть и газ. Основываясь на успешном опыте бакинских нефтяников по подводному бурению на исфть, можно рекомендовать для разведки южную часть Азовского моря как перспективную территорию для поисков нефти. Незначительные глубины Азовского моря, не превышающие 10—12 м, позволяют считать разведку на нефть здссь технически возможной.

Оси некоторых складчатых структур

уже сейчас намечаются вдоль северного побережья Керченского и Таманского полуостровов по рифовым банкам, каменным грядам и подводным грязевым вулканам. Глубина залегания перспективных на нефть и газ верхнемайкопских отложений и нижнечокракских слоев в южной части Азовского моря в сводах антиклиналей, вероятно, не превышает 500-750 м, благодаря чему разведка их возможна станком К-1000 20-метровой вышкой облегченного

Для выявления структур под разведку в Азовском море следует произвести сейсмическое профилирование и магнитометрическую съемку южной части моря.

* * *

А. Г. ГАБРИЭЛЯН, С. П. МАКСИМОВ

Формирование залежей нефти и газа в каменноугольных отложениях Сталинградского Поволжья

Р процессе разведки и разработки неф-теносных площадей Сталинградской области была установлена своеобразная, весьма важная особенность в распределении залежей нефти и газа, локальных прослеживающаяся на структурах, сравнительно далеко расположенных друг от друга по направлению регионального падения пластов.

Принято считать, что в боких ловушках скапливается вода, в повышенных — нефть, а в самых высоких - газ, как это имсет место в не-

которых районах [1].

В Сталинградской области выявлено распределение нефти и газа, обратное указанному принципу: верхнис структуры оказались заполненными нефтью, нижние — газом. На этом вопросс необходимо остановиться, так как познание закономерностей в расположении нефтяных и газовых залежей дает возможность правильно выбрать направления поисково-разведочных работ

и вместе с тем проливает свет на условия формирования этих залежей.

Данные, накопленные в процессе разбуривания, позволяют с достаточной уверенностью судить о структурном плане выделенных в разрезе каменноугольных отложений свит и горизонтов.

На фоне общего репионального погружения осадочных толщ Доно-Медведицкого вала на юго-восток, к Прикаспийской впадине, выделяются отпельные локальные поднятия.

Рассмотрим две группы поднятий: северную, состоящую из Бахметьевской, Жирновской и Линевской структур, и южную, включающую Арчединскую, Верховскую и Саушинскую структуры (Арчедино-Донские поднятия).

Из указанных структур три находятся в промышленной разработке и три почти закончены разведочными рабо-

Наиболее высоким поднятием в первой группе является Бахметьевское, промежуточное положение занимает Жирновское и пониженное — Линевское. Бахметьевское и Жирновское поднятия расположены на одной оси. Эта ось к югу от Жирновского поднятия погружается и вновь вздымается в широтном направлении, давая начало Линевскому поднятию.

Не вдаваясь в детали особенностей разреза вскрытой части каменноугольных отложений, рассмотрим только продуктивную часть визейского яруса — яснополянский подъярус, который расчленяется на сталиногорский (угленосную свиту) и тульский горизонты. Общая мощность яснополянского подъяруса на Бахметьевской площади 130 м, на Жирновской — 135 м, на Линевской — 145 м.

Тульский горизонт начинается сверху пачкой глин мощностью около 10 м, сменяющихся известняками, выраженными на кароттажной диаграмме высоомическими сопротивлениями. Вероятно, известняки по литологическому составу не везде выдерживаются, так как установлено, например, что в южной части Бахметьевской площади они замещаются водоносными песками. Ниже, почти до подошвы, тульский горизонт представлен глинами, песчаниками, песками. На Бахметьевской и Жирновской площадях среди этой песчано-глинистой толщи выделяются два песчаных пласта, расчлененные толщей глин мощностью до 12 м. Верхний из этих песчаных пластов назван пластом А, нижний — пластом Б₁. Мощности этих пластов изменяются в широких пределах. Песчаные отложения пласта Бі на юго-востоке Бахметьевки и на юге Жирного выклиниваются, замещаясь глинами. На Линевской площади достаточно четко выделяется пласт А, а пласт Бі представлен глинами.

В подошве тульского горизонта залегает известняк, прослеживающийся на Жирновской и Бахметьевской площадях, известный под названием репера N. Он также хорошо выделяется на кароттажных диаграммах Арчединской площади.

Между репером N и известняками турнейского яруса располагается пачка сталиногорского горизонта (угленосная свита), который представлен толщей переслаивающихся алевритовых глин, песчаников (часто глинистых) и алевролитов. Сталиногорский горизонт постепенно выклинивается в направлении к воронежскому массиву [2]. В пределах этого разреза выделяются три, а на некоторых участках и четыре песчаных пласта. Мощности глинистых и песчаных пластов непостоянны и изменяются, в связи с чем отмечаются колебания мощности сталиногорского горизонта в целом.

В рассматриваемой толще яснополянского подъяруса выделены три продуктивных горизонта с установленной промышленной нефтегазоносностью: два (пласты A и Б₁) в тульском и один в сталиногорском горизонтах.

На некоторых особенностях распределения нефти и газа в этих поризонтах и краткой характеристике их мы считаем необходимым остановиться.

Тульский горизонт, пласт А

Нефтеносность пласта А на Бахметьевской площади установлена по данным опробования в семи скважинах. Залежь нефти локализуется на небольшом участке в присводовой части поднятия (рис. 1).

Наивысшая отметка кровли пласта 796 м, отметка водо-нефтяного контакта, установленного по кароттажным данным, 820 м, т. е. этаж нефтеносности равен 24 м.

На Жирновской площади нефтеносность пласта А доказана по данным опробования в четырех окважинах (скв. 158, 214, 217 и 218). Так же как и на Бахметьевской площади, залежь нефти имеет весьма опраниченные размеры и приурочена к сводовой части структуры. Характерной особенностью является наличие в ней газовой шапки, которая выявлена опробованием пласта в скв. 158 и радиокароттажными исследованиями. Кроме того, на небольшом протяжении залежь нефти имеет подошвенную воду (даже при наивысшей отметке подошвы пласта), что позволяет считать ее водоплавающей.

Рис. 1. Схематическая структурная карта кровли пласта А тульского горизонта (месторождения Бахметьевка, Жирное, Линево). 1 — нефть; 2 — газ; 3 — основное направление миграции.

Наивысшая отметка кровли пласта А на Жирновской площади 805 м, т. е. ниже чсм на Бахметьевской на 9 м (см. табл. 1).

На Линевской площади наивысшая отметка кровли пласта А отмечена на глубине 1033 м. По всей площади пласт представлен водоносными песками и песчаниками.

На Бахметьевской площади воды имеют: удельный вес 1,091; содержание иона С1 78 865 мг/литр; воды бессульфатные; $S_1 = 69,4\%$; $S_2 = 29,92$;

зовая шапка больших размеров. Наивысшая отметка кровли пласта 820 м. Газо-нефтяной контакт имеет отметку 856 м. Водо-нефтяной контакт слабонаклопен на юг: на севере имеет отметку 911 м, на юге, у седловины между Жирновским и Бахметьевским поднятиями, 913 м (см. табл. 1).

На Жирновской площади пласт Бг почти полностью разбурен. Выявлена нефтяная залежь с небольшой газовой шапкой. Характеристика залежи и нефтей дана в табл. 1.

	Площадь	Отметки				Этаж	Этаж
Пласт		иаивысшей точки кровли пласта	газо- нефтяного контакта	водо- нефтяного контакта	газо- водяного коитакта	газо- иос- ности	иефте- носно- сти
А (тульского горизонта)	Бахметьевка Жирное Линево	796 805 1033	809 —	820 820	_ _ _	<u>4</u>	24 11 —
Б ₁ (тульского горизонта)	Бахметьевка Жирное Линево	820 835 —	856 847 —	912 913 —	<u>-</u>	36 12 —	56 66 —
Сталиногорский горизонт (угленосная свита)	Бахметьевка Жирное Линево	857 882 1091	902	906 913 —	<u> </u>	20 14	49 11 —
Сталиногорский горизонт (угленосная свита)	Арчеда Саушинская	854 935	Ξ	868	9 5 5	20	14

Состав газа на обеих площадях почти одинаковый, газ содержит: метана 80-85%, этана 3-6%, пропана 2,3-3,2%, бутана и высших 2,8-4,3%, CO_2 4,5-5,5%, азот 0,7-2,8%.

Воды пласта B_1 рассматриваемых площадей хлоркальциевые и не отли-

чаются друг от друга.

На Линевской площади, как уже отмечалось, пласт B_1 выражен глинистой фракцией.

Сталиногорский горизонт

Промышленная нефтеносность и высокая продуктивность сталиногорского горизонта на Бахметьевской площади установлены во многих скважинах. Опробование пласта в сводовой скв. 331, а также материалы радиокароттажных исследований свидетельствуют о том, что в залежи газовой шапки нет или она незначительных размеров (см. табл. 1 и рис. 2).

На Жирновской площади в скв. 156, 157, 158 и других, расположенных в сводовой части поднятия, в которых опробовались различные участки разреза (от III до I пласта), был получен газ. Результаты опробования, а также данные радиокароттажа позволили оконтурить сравнительно больших размеров тазовую шапку

с узкой нефтяной оторочкой. Наиболее высокая отметка кровли пласта 882 м, т. е. на 25 м ниже бахметьевской (см. табл. 1).

На Линевской площади из сталиногорского горизонта почти во всех скважинах был получен при опробовании газ. Исключение составляет скв. 19, в которой сначала было получено немного нефти, а затем вода. Залежь здесь, вероятно, чисто газовая. Наивысшая отметка кровли пласта 1091 м, т. е. на 209 м ниже, чем на жирновской и на 234 м ниже, чем на бахметьевской площадях. Газоводяной контакт на отметке 1105 м, этаж газоносности 14 м.

Нефть на Бахметьевском месторождении (удельный вес 0,859—0,874) несколько тяжелее, чем на Жирновском (0,809—0,859).

Газ на Линевской площади отличается большим содержанием метана (91,5%), чем на Жирновской (80%).

По направлению падения пластов наблюдается некоторое изменение состава вод. Так, содержание хлора в воде сталиногорского горизонта на Бахметьевской площади колеблется от 86 000 до 88 000 мг/л, на Жирновской от 87 500 до 92 500 мг/л, а на Линевской примерно 100 000 — 101 000 мг/л. Соответственным образом увеличи-

Таблица 1

Пластовое давление	Давле- ние насы- щения		Предели			
		удельный вес нефти	cepa, %	парафин, %	легкие фракции до 300° С, %	Примечание
95 97 — 106 106 — 106 111 130	88 95 — 96—97 96 — 91 95 —	0,869—0,873 0,877—0,881 — 0,847—0,868 0,851—0,864 — 0,859—0,874 0,809—0,859 — 0,880—0,903	0,27—0,34 — 0,02—0,37 0,05—0,71 — 0,25—0,45	1,60—2,50 5,62 — 1,18—3,80 1,28—5,80 — 2,40—4,30 1,70—3,50 — 1,45—4,60	32,0—40,0 29,0 — 32,0—44,0 30,0—42,5 — 39,0—43,5 32,5—37,5 — 26,0—33,0	Пласт содержит воду Пласт выражен в гли нистой фракции

вается и общая минерализация от 4900 до 5700 мг-экв

Коллекторские свойства продуктивных пластов на указанных площадях характеризуются следующими данными: пористость достигает 20%, проницаемость 0,6 дарси.

В пределах Арчедино-Донских поднятий установлена промышленная нефтеносность пока только на Арчединской площади, тде она связана с отложениями турнейского яруса и сталиногорского горизонта. Так как продуктивность турнейского яруса вообще ограничивается Арчединской площадью, мы его не будем рассматривать

Сталиногорский горизонт разбурен почти по всей нефтеносной площади, причем газовой шапки в пласте не обнаружено

Наивысшая отметка кровли пласта 854 м, водонефтяного контакта 868 м. Этаж нефтеносности 14 м (рис. 3).

На расположенном к югу Саушипском поднятии наивысшая отметка кровли сталиногорского горизонта установлена на 916 м, т. е. на 62 м ниже, чем на Арчеде. Между тем сталиногорский поризонт здесь содержит чистый таз. Газоводяной контакт на Саушинской площади имеет отметку 936 м. Этаж газоносности 20 м.

Сталиногорский горизонт на Верховской площади распространен повсеместно. В разрезе горизонта выделяются три песчаных прослоя, отделенных друг от друга пачками серых слюдистых слоистых глин с изменяющейся мощностью. Вторая пачка распространена не повсеместно. Песчаники мелкозернистые, хорошо отсортированные. Коллекторские свойства к нижней части разреза ухудшаются. Пористость 22—24%, проницаемость в среднем 393—512 миллидарси. Мощность пласта колеблется от 23 до 27 м, а на северо-востоке периклинали возрастает до 33 м (скв. 19).

Залежь газа имеет наивысшую отметку 916 м. Газоводяной контакт проходит на отметке 936 м. Следовательно, этаж газоносности составляет 20 м, т. е. такой же, как и на смежной Саушинской площади.

Состав газа: CH_4 — $98,4^0/_0$, C_2H_6 — $-0,22\,\%$; C_3H_8 и более высокие фракции — $0,01\,\%$; CO_2 — $0,17^0/_0$; N_2 — $1,1\,\%$.

Таким образом, для отдельных структурных поднятий Сталинградского Поволжья можно отметить следующие особенности.

1. В пласте А тульского горизонта на гипсометрически повышенной Бах-

Рис. 2. Схематическая структурная карта по кровле сталиногорского горизонта (месторождения Бахметьевка, Жирное, Линево).

1 — основное направление миграции; 2 — локальное направление миграции; 3 — нефть;

метьевской структуре имеется чисто нефтяная залежь.

На Жирновской структуре, расположенной ниже Бахметьевской на 9 м, залежь содержит газовую шапку.

Линевская площадь погружена по сравнению с Жирновской структурой на 228 м, однако промышленных скоплений нефти и таза здесь в пласте А не установлено.

2. В пласте Б₁ тульского горизонта на Бахметьевской и Жирновской пло-

Установленная закономерность наблюдается также в отложениях башкирского яруса, которые нефтеносны на Бахметьевской и Жирновской площадях и газоносны на Линевской. На Арчединской и Саушинской структурах отложения башкирского яруса содержат газ. Естественно, что в каждой залежи нефть и газ располагаются по гравитационному признаку.

Проведенные исследования в пределах продуктивного пласта сталиногор-

ского горизонта (в угленосной свите) описанных выше месторождений со всей очевидностью подтверждают наличие процесса дифференциального скопления нефти и газа в ловушках в зависимости от их гипсометрического положения. Указанная закономерность установлена С. П. Максимовым в 1954 г. [3] для ряда месторождений Самарской луки и У. С. Гуссоу [4] в пределах нескольких зон нефтегазонакопления США и Ближнего Востока.

Принципиальная схема дифференциации углеводородов в ловушке изображена на рис. 4. По мере поступления в данную ловушку новых порций углеводородов газ будет занимать повышенную часть структуры и оттеснять нефть. Этот процесс будет продолжаться до тех пор, пока вся ловушка не заполнится газом. Нефть, вытесненная газом из этой структуры, будет перемещаться в направлении регионального подъема пласта до тех пор, пока не встретит новую ловушку. Если газ в данном районе имеется в достаточном количестве, то и во второй ловушке начнется процесс дифференциации газа и нефти по удельным весам. В связи с этим вторая ловушка может целиком заполниться газом или образовать только газовую шапку с оторочкой нефти.

Третья структура, расположенная на

пути движения углеводородов по региональному подъему пласта, будет заполнена только нефтью, содержащей в себе растворенный газ, и.т. д.

1 — нефть; 2 — газ;
 3 — основное направление миграции.

Рис. 4. Принципиальная схема дифференциации углеводородов в ловушке.

Если в четвертой структуре будет образована нефтяная залежь, то нефть этой залежи будет несколько тяжелее нефти предыдущей ловушки (третьей

структуры).

Наиболее тяжелая нефть будет аккумулироваться в самой крайней продуктивной структуре [3]. Следовательно, при наличии нескольких ловушек, расположенных по региональному подъему пластов, ловушка, наиболее погруженная и расположенная ближе к бассейну нефтеобразующих пород, будет промежуточная заполнена газом, газом и нефтью и повышенная --нефтью. После истощения бассейна, поддерживающего миграцию, верхние структуры останутся заполненными вопой или могут иметь признаки нефти в результате локальной (местной) миграции.

отмечает Таким образом, как У. С. Гуссоу [4], миграцией и аккумуляцией нефти и газа управляют три ос-

новные закономерности:

1) гравитационный эффект, заставляющий мигрировать нефть и газ вверх в водонасыщенной среде;

2) непроницаемые породы, ограничивающие пути миграции и образующие места скопления нефти и газа;

3) эффект последовательности заполнения углеводородами структур, лежащих на пути миграции.

Все три основных фактора определяют возможность образования и характер нефтяного или газового место-

рождения.

На результат действия этих основных факторов влияют: 1) гидродинамические условия; 2) наличие трещин и плоскостей нарушения; 3) глубина залегания, от которой зависит вместимость для залежи газа; 4) региональный наклон; 5) температура и давле-

ния (на фазовые соотношения нефти и

газа в месторождении) [4].

По-видимому, в значительной степени могут видоизменить первоначальный состав нефти и оказать влияние на выявленные закономерности: 1) минерализация и тип пластовых вод, 2) литологический состав коллекторов, покоторым происходит миграция углеводородов, и 3) последующие тектонические движения, которые могут вызвать рост структуры или ее уничтожить, что может привести к переформированию залежей нефти и газа.

Признание описанной схемы формирования нефтяных и газовых залежей приводит к следующим выводам:

а) миграция и аккумуляция нефти и газа происходили в уже сформировавшиеся локальные структуры;

б) внутрирезервуарная миграция

нефти и газа происходила:

1) в сталиногорском горизонте северной группы поднятий — с юго-востока на северо-запад, т. е. от Линева к Бахметьевке; не исключена локальная миграция нефти с востока на запад (рис. 2);

2) в сталиногорском горизонте южной группы поднятий (Саушинское, Верховское и Арчеда) — с юга на се-

вер (рис. 3);

- 3) в пласте Б₁ тульского горизонта северной группы поднятий — с юго-востока на северо-запад и с востока на запад; учитывая, что состав и минерализация пластовых вод в Жирном и Бахметьевке одни и те же, можно предположить, что формирование залежи в Жирном по времени опередило аккумуляцию нефти и газа в Бахметьевке, ибо имела место миграция несколько утяжеленной нефти из Жирв направлении Бахметьевки; впоследствии залежь нефти в пласте Б1 Жирновской и Бахметьевской площадей по существу стала единой;
- 4) в пласте А тульского горизонта северной группы поднятий — с востока на запад (рис. 1); газовая шапка в залежи пласта А месторождения Жирпое явно имеет вторичный характер.

Нам представляется, что при одинаковых составе и минерализации пластовых вод в Жирном и Бахметьевке газовая шапка в Жирном образовалась (этаж газоносности 4 м) вследствие поднятия пород новейшими тектоническими движениями, в результате чего пластовое давление почти уравнялось с давлением насыщения. Выделение газа из пефти в связи с падением пластового давления привело к некоторому увеличению удельного веса нефти пласта А Жирного и умельшению выхода легких фракций по сравнению с аналогичной залежью в Бахметьевке.

Обращает внимание тот факт, что залежи нефти в пласте Л в Жирном и Бахметьевке по своим размерам очень незначительны и приурочены только к купольным частям структур, а в Линево пласт А содержит только воду. Очевидно, указапные структуры следует рассматривать как последние на пути миграции нефти по региональному подъему пласта А, для заполнения которых нефтиштаза не хватило. На пути миграции нефти и газа с востока на запад, вероятно, имеются гипсометрически пониженные ловушки, которые и аккумулировали основные количества » нефти и газа. При этом следует указать, что если в направлении Жирного и Бахметьевки нефти и газа было все же достаточно, чтобы достигнуть этих структур, то при миграции с востока на запад в направлении Линево нефги не хватило и ловушка в пласте А осталась заполненной водой.

В последнее время на Иловлинской площади Саратовской области, расположенной к востоку от Бахметьевского и Жирновского месторождений, сталиногорский и тульский горизонты были вскрыты на значительном погружении и оказались промышленно продуктивными.

При этом получены из сталиногорского горизонта промышленный приток газа в количестве 900 000 м³/сутки, а из тульского горизонта газ и нефть.

Открытие залежей газа и пефти па Иловлинской площади подтверждает сделанный нами вывод о миграции нефти и газа с востока на запад и полностью укладывается в схему дифференциального скопления этих полезных ископаемых в залежах, расположен-

ных на едином региональном подъеме пласта.

Можно предположить, что установленная закономерность в распространении залежей нефти и газа в локальных структурах по региональному падению пластов объясняется причинами тектонического характера, что современный структурный план каменноугольных отложений не соответствует древнему структурному плану и что структуры, содержащие в настоящее время газ, раньше занимали повышенное положение. Последовавшие тектонические движения могли привести к погружению одних структур и подъему других, что в свою очередь обусловило перераспределение пластового давления, от которого наряду с насыщением нефти газом зависят типы залежей.

С целью выяснения влияния тектонического фактора на условия формирования залежей нефти было прослежено посредством анализа мощностей и составления палеоструктурных карт взаимоположение рассматриваемых локальных структур, например, к концу каширского времени (наиболее высокий репер, залегающий на глубинах 180—400 м).

На палеоструктурной карте поверхности угленосной свиты к концу каширского времени (рис. 5) можно видеть, что Линевское поднятие находилось примерно на 90—100 м ниже Бахметьевского и на 30—40 м ниже Жирновского.

Арчединское поднятие, судя по мощности, к концу каширского времени подъема в северном направлении не испытывало, хотя контуры его сформировались раньше Саушинского. Отмечается лишь региональное воздымание слоев в западном направлении в сторону Воронежского массива. Следовательно, подъем в северном направлении произошел позже.

Таким образом, возможность объяснения аномального распределения нефтяных и газовых залежей влиянием тектонического фактора отпадает. Этот вывод нам кажется достоверным, ибо в противном случае пришлось бы констатировать наличие отдельных текто-

ской плошади. Следовательно, в каширское время процесс миграции уже мог итти, но еще не было на Жирновской и Бахметьевской площадях човушек, которые образовались в послекаширское время. В связи с этим в указанных районах нефть и газ не могли накапливаться в виде залежи до того момента, пока не образовалась ловушка. Образование ловушек не определяет точного времени аккумуляции нефти и газа в залежах, но оно устанавливает время, до которого не могло происходить накопление углеводородов [5]. В соответствии с этим можно предположить, что начало формирования залежи газа в сталиногорском гори-

Рис. 5. Схема палеорельефа поверхности каширского времени (месторождения Бахметьевка, Жирное, Линево).

нических блоков, объединявших группы структур, которые были изолированы друг от друга и перемещались во времени в строгой последовательности.

В заключение статьи следует хотя бы схематично остановиться на определении времени формирования этих залежей. Из изложенного выше видно, что региональный подъем пласта является необходимым условием для дифференциального скопления газа и нефти в ловушках. Миграция нефти и газа не может итти без некоторого наклона пласта, и до начала миграции требуется определенный минимум этого наклона. Исследуя региональный наклон пластов к концу каширского времени (рис. 5), можно установить, что к этому времени уже были созданы необходимые условия для начала миграции с востока на запад и даже для аккумуляции газа и нефти на Липевзонте на Линевской площади относится к каширскому времени, а формирование залежей нефти и газа на Жирновской и Бахметьевской площадях следует отнести к послекаширскому периоду.

ЛИТЕРАТУРА

 Т. Федоров С. Ф. Принципы формирования залежей нефти. ДАН СССР, т. 109, № 5, 1956.

№ 5, 1956.
2. Яриков Г. М., Мельникова А. С., Игнатович Н. А. и Никитина Г. П. Каменноугольные отложения западной части Сталинградской области. Нов. нефт. техники, геология № 2. Изл. ИНИИТЭНЕФТЬ. 1956.

геология, № 2. Изд. ЦНИИТЭНЕФТЬ, 1956.

3. Максимов С. П. К вопросу формирования залежей нефти в каменноугольных и девонских отложениях Самарской Луки. Нефт. ход. № 10 1954

Нефт. хоз., № 10, 1954. 4. Гуссоу У. С. Основной принцип дифференциального накопления нефти и газа. Бюлл. Ам. Ассоц. нефт. геологии, т. 38, № 5, 1954.

 Б. Гуссоу У. С. Время миграции нефти и газа. Бюлл. Ам. Ассоц. нефт. геологии, т. 39, № 5, 1955.

* * *

М. Н. САИДОВ

Генетическая связь нефти с озерными отложениями в Центральной Азии

М ногие исследователи до настоящего времени считают, что нефть генетически связана только с морскими отложениями, и исключают возможность образования ее в других фациях.

Сомнений нет в том, что подавляющее большинство исфтяных мссторождений мира образовалось за счет пефти, генетически связанной с морскими осадками, по имеются достаточно веские факты, свидетельствующие о возможности образования ее и в озерных отложениях в условиях пресноводной или слабо минерализованной среды.

В работах советских исследоватслей С. Н. Алексейчика [1] и Г. И. Теодоровича [2], китайского геолога Пань [4], американцев Доббин [3], Ван-Тайл и Паркер [5] мы находим некоторые сведения, указывающие на возможность образования нефти в континептальных отложениях.

Наиболее ярко генетическая связь нефти с континситальными отложениями выражена во впадинах Цснтральной Азии.

Как известно, в результате герцинской складчатости море покинуло пределы Центральной Азии в пермское время и болсе не возвращалось туда, за исключением западной части Таримской впадины, куда оно заходило в меловое и палеогеновос время со стороны Таджикской депрессии. Эти же тектонические движения привели к образованию Тянь-Шаня, Алтая, Саян, Куэнь-Луня, Нань-Шаня и других горных систем, между которыми расположены обширные впадины, представлявшие в течение почти всего мезозойского и третичного времени пресноводные и солоновато-водные бассейны (озера) с меняющимися контурами. Продукты размыва окружающих горных сооружений накапливались в этих бассейнах, создавая мощные толщи глин, песчаников и конгломератов.

Естественные выходы нефти и газа, связанные с мезокайнозойскими озерными отложениями, известны в пределах следующих впадин Центральной Азии: Джунгарской, Таримской, Турфанской, Цайдамской Цзюцюанской (Сучжоу), Чаушуйской, Миньхе и Сев. Шаньси. Промышленные залежи нефти пока выявлены только в пределах Джунгарской, Цзюцюанской и Восточно-Гобийской впадин и в бассейне Сев. Щаньси (см. рис.).

В Джунгарской впадине, расположенной в северной части провинции Синьцзян, промышленно нефтеносными являются юрские, меловые и третичные отложения, смятыс в систему крупных аптиклинальных и синклинальных складок.

Юрские отложения характеризуются серыми глинами, песчаниками и конгломератами и содержат пласты каменного угля и прослои сидеритов. В большом количестве встречаются здесь остатки наземных и озерных растений и реже — плоские пресноводные пелециподы и эстерии. В верхней части разреза преобладают красноцветные породы. Общая мощность осадков достигает 3000—4000 м.

Комплекс осадков мелового возраста выражен в нижней части разреза контломератами и песчаниками, а в верхней — эсленовато-серыми и красными глинами с прослоями песчаников, в которых встречаются пресноводные пелециподы, эстерии и остракоды, а также остатки рыб и речных черепах. Мощность меловых отложений 2000—2500 м.

Третичные отложения нредставлены красноцветными глинами с прослоями песчаников и конгломератов, срсди которых расположены мощные толщи

³ геологии нефти № 5.

Обзорная карта Центральной Азии.

Межгорпые впадииы, запятые мезокайнозойскими пефтеносными осадками: 1— Джунгарская; 2— Таримская; 3— Турфанская; 5— Цзидамская; 5— Цзиоцюанская; 6— Чаушуйская; 7— Миньхе; 8—Сев. Шапьси; 8—Восточно-Гобийская.

серых и зеленовато-серых слоистых глин, охарактеризованных остатками пресноводных моллюсков и остракод, речных черепах, крокодилов, рыб, наземных позвоночных и растений. Разрез этих отложений венчается мощной толщей серых конгломератов. Общая мощность третичных осадков достигает 4000—5000 м.

Нефтеносные отложения юры в западной части впадины подстилаются сильно дислоцированными метаморфическими породами палеозоя (от силура до карбона), а в юго-восточном углу впадины под юрой расположена толща красноцветных глин, песчаников и конгломератов мощностью 1000—1500 м, в которых изредка встречаются пресноводные пелециюды, остатки рептилий и растения триасового возраста.

Триасовые отложения в свою очередь подстилаются заметно метаморфизованными осадками перми, верхняя часть которых также представлена в континентальной фации.

Таким образом, в Джунгарской впадине в разрезе мезокайнозойских отложений нет морских фаций, которые можно было бы принять за нефтематеринские, а метаморфические породы палеозоя не могли служить источником для формирования залежей нефти в мезокайнозойских отложениях. На наш взгляд нефтепроизводящими являются здесь мощные толщи серых глин,

весьма богатых органикой, расположенных среди юрских, меловых и третичных отложений. Литологический состав этих отложений, фациальные условия и характер органических остатков указывают на то, что накопление их происходило в условиях восстановительной среды озерных бассейнов.

Цзюцюанская впадина, на юго-западной окраине которой расположено известное нефтяное месторождение Лаоцзю-мяо и ряд других более мелких месторождений, находится в северозападной части провинции Ганьсу. Нефтеносными здесь являются верхнетретичные отложения, которые представлены красноцветными глинами с прослоями песчаников и мощных конгломератов в верхней части разреза. Мощность отложений около 2500 м.

Наличие палеогена в пределах Цзюцюанской впадины не установлено, и верхнетретичные отложения лежат на различных горизонтах мела, юры и триаса с резким угловым несогласием.

В районе нефтяного месторождения Лао-цзю-мяо под третичными отложениями буровыми скважинами вскрыты отложения мела мощностью 206 м, представленные пестроцветными, содержащими растительные остатки песчаниками и серыми глинами, которые подстилаются светло-красными крупнозернистыми песчаниками триаса.

Более полно меловые отложения

развиты в северной части впадины, где мощность их достигает 1200 м. Кроме растительных остатков, здесь встречаются пресноводные моллюски, остракоды, а также остатки насекомых и рыб.

Нижележащие юрские отложения представлены серыми глинами, глипистыми сланцами, песчаниками и конгломератами и содержат пласты каменного угля. В этих отложениях встречаются гладкис формы эстерий и флора лейасового возраста. Мощность отложений около 1000 м.

Триас представлен красноцветными грубозерниетыми пссчаниками и конгломератами мощностью около 1000 м. Континентальное происхождение их не вызывает сомпений. В континентальной фации выражены и подстилающие их пермские отложения.

Таким образом, весь комплекс осадков мезокайнозоя и перми в пределах Цзюцюанской впадины выражен в континентальной фации. Мало вероятна миграция нефти из морских отложений верхнсго карбона через толщу осадков мощностью более 3000 м в верхнетретичные отложения. Нефтематеринскими, видимо, являются здесь глинистые толщи нижнего мела, богатые органическими остатками. При бурении разведочных скважин на месторождении Лао-цзю-мяо в них были обнаружены следы нсфти.

В. Сев. Шаньси имеются два небольших месторождения пефти — Яньчанское и Многочисленные естественные выходы пефти, приуроченные к континентальным отложениям верхнего триаса и нижней юры.

Верхний триас представлси светлосерыми и краеноватыми пссчаниками, серыми и тсмно-серыми глинами с прослоями горючих сланцев, в которых встречаются просноводные пелециподы, квадратные чешуи рыб и растительные остатки. Мощность отложений 1400 м.

Нижняя юра, которая лежит с некоторым угловым несогласием на верхнем триасе, представлена серыми пссчаниками, темно-ссрыми и серыми гли-

нами и сланцами, содержащими в большом количестве остатки наземных растений и несколько пластов каменного угля в нижней части резреза. Мощность отложений 200—500 м.

Эти нефтеносные отложения несогласно перекрываются осадками средней и верхней юры, выраженными мощными песчаликами и глинистыми сланцами е тонкими прослоями известняков, в которых встречаются остатки рыб, характерных для пресноводных бассейнов. Мощность отложений 200—250 м.

Меловые отложения, которые залегают выше с угловым несогласием, выражены в основном песчаниками с прослоями конгломератов, глины и глинистых сланцев. Мощность их 1500—2000 м.

Ниже нефтеносных осадков верхнего триаса залегает мощная толща (до 1100 м) верхнепермских и пермотриасовых континентальных отложений, выраженная темно-красными песчапиками с прослоями глинистых сланцев.

Еще ниже расположен комплекс осадков нижней перми мощностью 400 м, охарактеризованный пресноводной фауной моллюсков и растительными остатками.

Все эти отложения имсют весьма пологое (0,5—1°) моноклинальное падение на запад, местами осложненное слабо выраженными структурными выступами, с которыми связаны нефтепроявления.

Нефтематеринскими, по-видимому, являются темно-серые и серые глины или глинистыс сланцы верхнего триаса и нижней юры, богатые органикой. Миграция нефти из морских отложений верхнего карбона еквозь 1500-метровую толщу пермских осадков мало вероятна, ссли иметь в виду весьма слабую нарушенность пластов и отсутствие резко выраженных структур.

Восточно-Гобийская впадина расположена в южной части Монгольской Народной Республики. Здесь, в районе Дзунбаинекого месторождения промышленные залежи нефти приурочены к нижнемеловым отложениям, пред-

3*

ставленным в нижней части разреза зеленовато-серыми глинами с прослоями серых песчаников, а в верхней части темно-серыми, серыми, зелеповато-серыми и красновато-бурыми глинами с прослоями песчаников. В некоторых местах в основании нижнего мела расположена довольно мощная толща грубых песчаников и конгломератов. Общая мощность осадков превышает 2500 м.

Нижнемеловые отложения охарактеризованы пресноводной фауной, представленной моллюсками, остракодами,

эстериями и рыбами.

Верхнемеловые отложения, залегающие на нижнем мелу с угловым несогласием, представлены красноцветными глинами и песчаниками; их мощ-

ность достигает 800 м.

На месторождении Дзунбаин и в ряде других мест отложения нижнего мела лежат непосредственно на палеозое, представленном сильно дислоцированными хлоритовыми и серицитовыми метаморфическими сланцами, окварцованными известняками и плагиопорфирами, прорванными гранитными интрузиями. В некоторых местах депрессии между палеозоем и нижним мелом расположена толща слабо метаморфизованных осадков нижней и средней юры, представленная конгломератами, песчаниками и глинами и охарактеризованная озерной и прибрежной флорой и тонко створчатыми ферганоконхами. Значительное развитие имеют здесь и юрские (?) эффузивы (порфириты).

Наличие триасовых отложений в пределах Восточно-Гобийской впадины не

установлено.

Нам кажется совершенно очевидным, что сильно метаморфизованные палеозойские породы, хотя они и морского происхождения, не могли служить источником для образования залежей нефти в нижнемеловых отложениях. Каких-либо признаков нефти или газа в пределах развития палеозойских отложений не установлено. Судя по литологическому составу, фациальным особенностям и органическим остаткам, накопление нижнемеловых нефтеносных отложений происходило в озер-

ных бассейнах. Нефтематеринскими здесь следует считать богатые органикой глинистые толщи нижнего мела.

В аналогичных условиях находятся нефтспроявления и в осталыных впадинах Центральной Азии. Так, например, в Таримской впадине нефтеносными являются юрские, меловые и третичные отложения, охарактеризованные пресноводной фауной и флорой. Подстилающие их отложения триаса и верхней перми также выражены в континентальной фации.

В Турфанской впадине нефтеносные озерные отложения юры и мела несогласно залегают на метаморфических породах палеозоя.

В Цайдамской впадине нефтепроявления приурочены к нижним горизонтам третичных отложений озерного происхождения. Нижележащие отложения мела и юры также являются озерными и лежат с резким угловым несогласием на метаморфических породах палеозоя.

В Чаушуйской впадине выходы нефти связаны с угленосными отложениями нижней юры, ниже которых расположены метаморфические породы

палеозоя.

И, наконец, во впадине Миньхе нефтеносные континентальные отложения третичного и юрского возрастов, подстилаются также метаморфическими породами палеозоя.

Породы палеозойского фундамента в результате каледонских и терцинских тектонических движений были сильно дислоцированы, метаморфизованы и подверглись глубокой эрозии еще до начала накопления мезокайнозойских континентальных осадков. Поэтому они не могли быть источником нефти для формирования залежей в вышележащих отложениях.

Таковы фактические данные о генетической связи нефти в Центральной Азии с континентальными отложениями. Они свидетельствуют о том, что процессы нефтеобразования могут происходить не только в условиях морской среды, но и в озерной. Нефтематеринскими следует считать здесь мощные толщи темноцветных пелитовых осад-

ков, расположенных среди юрских, меловых и третичных отложений, которые очень богаты органикой и содержат прослои битуминозных сланцев, серлистые соединения железа. Накопление их, по-видимому, происходило в условиях восстановительной среды. Богатая фауна моллюсков (Unio, Cyrena, Planorbis, Viviparus и др.), которая встречается в этих осадках, свидетельствует о том, что отложение их происходило в пресноводных озерах.

ЛИТЕРАТУРА

1. Алексейчик С. Н. К возможности образования нефти в континентальных отложениях. Нефт. хоз., № 12, 1946.

2. Теодорович Г. И. О нефтепроизво-

дящих породах. Нефт. хоз., № 8, 1954. 3. Dobbin C. E. Exceptional vil fields in Rocky Mountian Region of United States. Bull.

AAPG. № 5, 1948. 4. Pan C. H. Non-marine origin of petroleum in North Shensi, and the Cretaceous of Szchuan, Chine. Bull. AAPG, M. 11, 1941.

5. Van Tuyl F. M. and Parker B. H.

The time of origin and accumulation of petroleum, 1941.

* * *

Г. Л. ГРИШИН, Л. И. РОВНИН

Березовское месторождение природного газа

В Директивах XX съезда Коммунистической партии Советского Союза по развитию нефтяной и газовой промышленности нашей страны в шестой пятилетке указано обеспечение ввода в промышленную разработку Березовского месторождения газа в 1960 г. Претворение в жизнь этой важной задачи во многом будет зависеть от разведки и подготовки значительных запасов газа в этом районе.

Предварительные геолого-разведочные и геофизические работы показывают, что эта задача при соответетвующей помощи может быть успешно решена и открытие в Березовском районе четырех газовых месторождений со значительными запасами ---

яркое тому свидетельство.

Систематизированное изучение нефтегазоносности Западно-Сибирекой низменности началось с 1932 г., когда академик И. М. Губкин обосновал возможность перехода юрских угленосных отложений, развитых вдоль восточного склона Урала, к востоку, т. е. в сторону открытого моря, в битуминозные нефтематеринские породы; в том же году Н. С. Шатекий высказал взгляд о возможной пефтеносности Западной Сибири.

Непосредственное изучение Березов-

ского района было начато П. Ф. Ли и Н. И. Архангельским в 1951 г. Вее указанные иеследования носили маршрутный характер, и геологические выводы по району давались предположительно — регионального характера. Глубинное строение недр оставалось предметом догадок и предположений, так как четвертичные отложения повсеместно похрывали мощным слоем территорию как Березовского, так и прилегающих к нему районов.

В 1953 г. была пробурена в с. Березово опорная скв. 1, из которой получили мощный газо-водяной фонтан е суточным дебитом 1 млн. м³. Этот первый газовый фонтан на территории Западно-Сибирской низменности привлек к себе внимание геологов-нефтяников и выдвинул Березовский район в число промышленно-газоносных. Были начаты большие геолого-геофизические и научно-исследовательские работы, проводимые Министерством

ВСЕГЕИ, ВНИГРИ, УФАН.

В дальнейшем господствующими по изучению и выявлению структур в данном районе стали методы геофизических иселедований и, в частности, наиболее эффективными — сейсморазведочные работы. В результате этих работ выделены опорные горизонты, по которым и построены структурные карты, положенные в основу разведочного бурения.

В настоящий момент площадь геофизических работ значительно расширяется в восточном направлении.

К сожалению, западные и южные районы Сосвинского свода, Ляпинская и Ханты-Мансийская впадины, где предположительно намечаются структуры, более значительные по своим размерам и не менее перспективные в нефтегазоносном отношении, вследствие слабой оснащенности геологогеофизических организаций, специальным транспортом и оборудованием изучаются недостаточно, а этим самым задерживается решение основной задачи по расширению, несомненно, имеющихся перспектив нефтегазоносности этих районов.

Проводимые буровые разведочные работы позволили установить, что западная часть Западно-Сибирской низменности слагается тремя комплексами пород, характеризующимися определенными структурно-геологическими и тектоническими условиями их образования.

К первому структурно-геологическому этажу относятся породы, слагающие фундамент мезокайнозойского чехла. Породы, образовавшиеся в переходный период от геосинклинальных условий к платформенным, относятся ко ворому этажу, который сложен в основном грубообломочными образованиями с туффитовым материалом. Характерными особенностями этого этажа является меньшая степень дислоцированности и метаморфизма. Породы второго этажа образовались в результате разрушения первого структурногеологического этажа и накопления продуктов разрушения в глубоких депрессиях и прогибах.

Отложения мезокайнозойского возраста, формировавшиеся в платформенных условиях в результате длительного и устойчивого погружения фундамента и характеризующиеся слабой дислоцированностью, отсутствием метаморфизма, морским или континентальным обликом пород, относятся нами к

третьему геологическому этажу. Этот геологический раздел и представляет наибольший интерес в нефтегазоносном отношении.

В пределах Березовского района отложения третьего структурно-геологического этажа залегают непосредственно на породах первого и перекрываются толщей континентальных осадков неоген-четвертичного возраста.

Для лучшего понимания взаимосвязи такого структурно-геологического деления нами ниже приводится краткая стратиграфическая схема, составленная в основном по разведочным скважинам Березовского района.

В пределах северо-западной части низменности в отложениях мезокайнозоя выделяются структуры первого порядка: Северо-Сосвинский свод, Ханты-Мансийская и Ляпинская впадины (рис. 1).

На Северо-Сосвинском своде выявлен ряд антиклинальных и синклинальных структур второго порядка, в том числе Люлин-Ворский, Муглинский и Березовский валы, причем последний отмечается примерно у устья

Рис. 1. Структурно-тектоническая схема мезокайнозойского чехла района Березово (сост. И.В. Дербиков, Б. П. Казаринов, Д.Ф. Уманцев, Г. К. Боярских и др.)

Возраст пород	Краткое описание пород	Мощность пород, м
Четвертичная система	Ледниковые, морские и озерно-речные осадки. Алевролиты с включением валунов изверженных пород, гравия, галек, песков и глин	
Палеоцен+датский (?)	Аргиллиты серые и зеленовато-серы е	20-45
Кампан-м аа стрихт	Аргиллиты (глины) серые пеяснослоистые с включеннями пирита. Количество обломочного материала, кварца, полевых шпатов колеблется от 5 до 20%. Редкие прослои известняков	45—57
Коньяк-саптоп	Опоки и опоковидные породы с прослоями алевролитов, местами кремни	150 –160
Турон	Алевритистые глины, переслаивающиеся с алевритами и аргиллитовидными глинами	29—38
Сеноман	Алевролиты крупно- и мелкозернистые. Глини- стого материала до 50%	
Альб	В верхней части преобладают алевролиты рыхлые перавпозернистые, в нижней части—аргиллитоподобные глины	145
Апт .	Алевролиты серые крупно- и мелкозернистые, чередующиеся с серыми песчаниками	180
Готерив-барром	В основном алевролиты серые крупно- и мелко- зернистые с прослоями аргиллитов, песчаников и реже известняков	300—328
Валанжин	Верхняя часть представлена аргиллитами ниж- няя песчаниками	31—108
Палеозой (?)	Кора выветривания фундамента. Граниты, гра- по-диориты, диориты и серые биотитовые гнейсы	

р. Малая Сосьва и протягивается к северо-востоку вдоль р. Северная Сосьва на 200 км.

В районе Березовского вала в результате сейсморазведочных работ и значительного объема структурного бурения выявлены локальные поднятия поверхности палеозойского фундамента: Березовское, Деминское, Мало-Деминское, Тутлеймское Игримекое и др.

Березовский вал, несомненно, является важным объектом для значительного наращивания запасов газа, а получение в ряде скважин Березовского месторождения газа и конденса-

та заставляет предполагать наличие нефтяных заложей.

При опробовании газовой скв. 4 была отобрана нефть светло-желтого и темно-коричневого цвета удельного веса которая 0,835, по заключению ВНИГРИ образовалась в процесее ретроградной конденсации, при которой в газовую фазу перешли, а затем сконденсировались средние по молекулярному весу углеводороды нефти, отвечающие фракции керосина. Исследователи предполагают, что материнская нефть должна быть более тяжелой и иметь в своем составе большие количества масляных погонов и асфальтово-смолистых веществ по сравнению с обнаруженными в конденсате.

В скв. 8 встречены в основании продуктивного горизонта два прослоя битуминозного аргиллита и два прослоя песчаника, пропитанные битумом «А».

Конечно, указанное выше положение в части Березовского вала ни в какой степени не исключает перспективности всего Сосвинского свода и окружающих его впадин.

Березовское поднятие вытянуто в севсро-западном направлении. Углы наклона крыльев складки пологие — от 30' до 20, длина окладки 7,5 км и ширина 4,7 км. Примерно аналогичное строенис имеет Деминская и другие локальные структуры. В более молодых отложениях эти поднятия постепенно выполаживаются, их конфигурация песколько меняется, однако они сохраняются как две самостоятельные структуры, что н видно из структурных построений по кровле готеривбаррема (рис. 2).

Очертания поднятий с увеличением глубины и особенно по подошве продуктивного пласта приобретают резко выраженный характер, хорошо прослеживаемый на геологических профилях, построенных по пробуренным глубоким скважинам (рис. 3).

На описываемых площадях Березовского месторождения промышленно носным является пласт песчаника, залегающий в подошве валанжинского комплекса отложений. мощностью от 0.5 м в своде, до 37 м на крыльях, причем газовая залежь подпирается контурными и подошвенными BOдами. Залегает пласт прямо на породах кристаллического фундамента.

Отмечаются газопроявления на данных месторождениях

Рис. 2. Структурная карта по кровле готеривбаррема.

и в отложениях готерив- баррема, дебит которых достигает $65\,000\,$ м 3 .

Несомненно, что эти отложения заслуживают самого пристального внимания и изучения, и возможно, что в более благоприятных геологических условиях они окажутся промышленными, поэтому опробование их на каждой новой структуре должно проводиться обязательно.

Огромные усилия теологов и геофизиков сибирских организаций, работающих в этих районах, были бы плодотворнее, если бы научно-исследовательские организации ВНИГРИ, НИИГР, ВСЕГЕИ и Академии наук СССР стояли ближе к производственным предприятиям.

Рис. 3. Геологический профиль по линии скв. 2—17 Березовского и Деминского поднятий.

I — вода; 2 — газ; Q — четвертичные отложения; Cr — меловые отложения; K , B — кора вывертывання; Pz — палеозойский фундамент.

Работы этих учреждений по созданию теоретических основ поисков нефти и газа вообще недостаточны, а по Сибири их пока нет.

Конечно, нельзя признать нормальным высказывания отдельных ученых о существовании в Западно-Сибирской низменшости каких-то особых «гидротермальных» условий образования нефти и газа или возможность нахождения в этом опромном геологическом регисне только газовых месторождений. Очевидно, повые варианты всеми отвергасмой теории неорганического происхождения пефти и газа такжс бездоказательны и навряд ли отвечают резко возросшей роли нефтяной геологической науки по выявлению и расширению разведываемых запасов газа в Сибири.

К настоящему моменту в результате обобщений уже значительного теологического материала в западной части Западно-Сибирской низменности выявлены первоочередные районы для геолого-геофизических работ, которыми являются Соевинский свод, южные части Усть-Вахского и Верхне-Тазов-

ското сводов, западный и южный борта Ханты-Мансийской впадины (Тарское Прииртышье, Уват- Тобольский и Куз-педовский районы).

Геологическое изучение названных выше огромных перспективных районов требует помощи и оснащения геолого-геофизических организаций в Сибири специальными видами транспорта и оборудования. Было бы чрезвычайно желательным и необходимым, чтобы планирующие органы не откладывали решение этих вопросов на будущее.

Все возрастающие объемы геологогеофизических исследований и глубокого разведочного бурения, а главное, их упорядочение дают нам основания считать, что задача, поставленная Коммунистической партией Советского-Союза перед нефтяниками Сибири, о вводе в промышленную разработку Бсрезовских месторождений газа будет выполнена с честью.

ЛИТЕРАТУРА

Пастухова Т. Н., Подойницина К. В. Отчет треста Тюменнефтегеология...

* * *

В. В. ПЕЧНИКОВ

Новые месторождения нефти на северо-западе Башкирии

В о второй половинс 1955 г. геологамиразведчиками Башкирии в северо-западной части Башкирской АССР на Арланской площади было открыто крупное месторождение пефти. При опробовании песчапиков угленосного горизонта нижнего карбона из разведочной скв. З черсз 12-мм штуцер был получен фонтан пефти с дебитом около 144 т в сутки. В конце 1956 г. в этом же районе на Уртаульской площади открыто сще одно месторождение нефти. Нефтесодержащими здесь также оказались пссчаники угленосного горизонта.

В последние годы работники Уфимского научно-исследовательского инсти-

тута, изучающие терригенные отложения нижнего карбона, и некоторые геологи объединения Башнефть пришли к выводу о разновозрастности этих отложений. По их мнению нижняя часть терригенного комплекса относится к кизеловскому горизонту турнейского яруса, верхняя— к тульскому горизонту и только средняя— к угленосному (сталиногорскому) горизонту.

На сегодня это подразделение требует дополнительного изучения и пришимается далеко не всеми геологамипроизводственниками Башкирии. Поэтому мы в дальнейшем описании под угленосным горизонтом будем подразумевать всю пачку терригенных отло-

Структурная схема по кровле угленосного горизонта и сакмаро-артинским отложениям Арланской и Уртаульской площадей (сост. Ф. С. Куликов).

1 — скважины, давшие иефти; 2 — скважины, находящиеся в бурении; 3 — изогипсы по кровле угленосного горизонта; 4 — изогипсы по поверхности сакмарских отложений.

жений, залегающую между достаточно хорошо фаунистически охарактеризованными известняками тульского горизонта и турнейского яруса.

Терригенные отложения угленосного горизонта нижнего карбона широко распространены в Башкирской АССР. До 1944 г., т. е. до открытия «девонской» нефти, с ними были связаны основные промышленно нефтеносные объекты в платформенной части Башкирии. Это обусловило более детальное их изучение.

Были подмечены колебания мощности угленосного горизонта и его литологическое непостоянство как в пределах отдельных разведочных площадей, так и в региональном плане. В северозападных районах Башкирии мощность терригенных отложений угленосного горизонта достигает 65 м, тогда как в районе Туймазинского месторождения она уменьшается до 20 м. С увеличением мощности угленосного горизонта в нем появляются дополнительные пласты песчаников.

За истекшее пятилетие в пределах северо-западной Башкирии в песчаниках угленосного горизонта на ряде

площадей открыты промышленные залежи нефти, что стимулировало дальнейший разворот здесь поисково-разведочных работ.

Арланская площадь была введена в глубокое разведочное бурение в 1955 г., Уртаульская — в 1956 г. Административно обе площади входят в Краснокамский район в северо-западной части Башкирской АССР.

Тектонически Арланская и Уртаульская разведочные площади располагаются в прогибе, разделяющем Татарское и Башкирское сводовые поднятия.

В пределах этих площадей было проведено структурно-поисковое бурение. На Арланской площади по сакмаро-артин-

ским отложениям закартировано поднятие в виде брахиантиклинальной складки северо-западного простирания. Размеры складки в пределах изогипсы — 250 по большой оси ≈ 10 км., по малой 6—7 км.

На Уртаульской площади по тем же отложениям вырисовывается брахиантиклинальная складка северо-западного простирания с размерами в пределах изогипсы — 255 по большой оси 6—8 км, по малой 2—3 км. По сакмаро-артинским отложениям Уртаульская брахиантиклинальная складка отделяется от Арланской небольшим прогибом и располагается с последней на одной тектонической линии в 3,5—4 км юго-восточнее.

В 1953—1954 гг. на Арланской площади была проведена сейсморазведка, в результате которой было намечено по второму отражающему (девонскому) горизонту поднятие, несколько смещенное к юго-западу относительно сакмаро-артинской структуры.

Как уже указывалось выше, в 1955 г. на Арланской площади было начато разведочное бурение с целью поисков

залежей нефти в угленосном горизонте и терригенных отложениях девона.

Во втором полугодии 1955 г. разведочная скв. З в угленосном горизонте вскрыла несколько песчаных пластов. Опробованию подвергся пласт, залегающий в нижней части горизонта, в интервале 1250—1257 м, из которого был получен фонтан нефти с дебитом 144 т/сутки.

Пробуренными в дальнейшем разведочными скв. 1, 7, 8 и 13 была подтверждена нефтеносность угленосного горизонта и уточнено его геологиче-

ское строение.

Было установлено, что кроме нижнего пласта песчаника, залегающего в подошвенной части угленосного горизонта, имеется еще верхний песчаный пласт, который также оказался нефтеносным.

В скв. 1 верхний пласт песчаника мощностью около 7 м разделен на два пласта маломощным прослоем аргиллитов. При одновременном испытании двух пластов через 9-мм штуцер получен приток нефти 29 т в сутки.

Терригенные отложения девона были вскрыты разведочными скв. 1 и 7, не встретившими в них нефтесодержащих

горизонтов.

По девонским отложениям подтверждается подъем слоев в юго-западном

направлении.

Делать выводы о достоверности существования «сейсмической» девонской структуры и ее нефтеносности сейчас преждевременно, так как до сих пор не

пробурено ни одной скважины в своде предполагаемой структуры или южнее

В 1956 г. на Арланской площади была открыта залежь нефти в известняках каширского горизонта. Скв. 311-УФ с интервала 806,5—824,2 дала приток нефти с дебитом 6 м³ в сутки.

Таким образом, на Арланской площади глубоким разведочным бурением открыты две залежи нефти. Залежь в угленосном горизонте подтверждена несколькими скважинами, доказавшими ее высокую продуктивность и большие размеры. Залежь в каширском горизонте, по-видимому, будет менее значительна, но сам факт ее открытия показывает перспективность каширского горизонта в северо-западной Башкирии.

На Арланской площади в общих чертах установлено соответствие тектоники сакмаро-артинских отложений со всеми горизонтами карбона и доказано несовпадение тектонических планов девонских и вышележащих отложений.

В 1956 г. с целью поисков залежей нефти в угленосном горизонте было начато разведочное бурение на Уртаульской площади.

В том же году скв. 302-УФ вскрыла песчаный пласт угленосного горизонта в интервале 1270—1277,6 м, при опробовании которого через 8-мм штуцер получено около 29 т нефти в сутки.

В 1957 г. на описываемых площадях с целью оконтуривания выявленных залежей продолжается разведочное буре-

ИНФОРМАЦИОННОЕ СООБЩЕНИЕ

Всесоюзный научно-исследовательский геолого-разведочный пефтяной институт (ВНИГНИ) в апреле 1958 г. проводит совещание по уточнению унифицированной схемы стратиграфии юрских и меловых отложений Русской платформы и сопоставлению ее со схемами Кавказа, Средней Азин и Западной Европы.

Одновременно будут рассмотрены основные литологические разрезы — стратотипы — для

отдельных регионов Русской платформы.

Оргкомитет просит научно-исследовательские и учебные институты, производственные организации и отдельных исследователей, занимающихся изучением стратиграфии, фауны, флоры н литологического состава юрских и меловых отложений, принять участие в указанном совещании.

Все замечания по унифицированной схеме стратиграфии юрских и меловых отложений Русской платформы, изданной Гостоптехиздатом в 1955 г., а также заявки на предполагаемые доклады и тезисы докладов просим высылать в адрес оргкомитета: Москва, Шоссе Энтузнастов, д. 121, ВНИГНИ.

Тезисы докладов (объемом до 5 страниц машинописного текста через 2 интервала) и замечания, поступившие в оргкомитет до 15 августа 1957 г., будут опубликованы

ОРІ КОМИТЕТ

С. В. СЕМИХАТОВА, А. А. РЫЖОВА, Е. Г. МИНЯЕВА

Отложения яснополянского, окского и серпуховского подъярусов и протвинского горизонта в Бузулуке Чкаловской области

Р азрез карбона, вскрытый опорным бурением в Бузулукском районе, освещает до сих пор неизвестное строение нижнекаменноугольных отложений в этой части северного борта Прикаспийской депрессии. Отложения карбона, вскрытые в Бузулуке, комплексно изучались во Всесоюзном научно-исследовательском геолого-разведочном нефтяном институтс (ВНИГНИ) в 1954—1956 гг.; из разреза, который рассматривается в настоящей статье, фораминиферы обрабатывались Е. Г. Миняевой, кораллы — Т. А. Добролюбовой, брахиоподы — С. В. Семихатовой. Литологическое изучение пород проведено А. А. Рыжовой, споропыльцевой анализ Т В. Бывшевой.

Нижний карбон в Бузулуке представлен всеми своими ярусами; данные, полученные по турнейскому ярусу; опубликованы [2]; в настоящей статье кратко изложены сведения о более высоких частях разреза нижнего карбона.

Яснополянский подъярус. На верхнекизеловские слои турнейского яруса налегают со стратиграфичсским перерывом осадки сталиногорского горизонта. Здесь отсутствует мощная песчаная толща, относимая В. М. Познером к верхнемалиновским слоям кизеловского горизонта [3] 1, с этим связано выпадение из разреза комплекса пород, установленного В. Т. Бывшевой в песчаной толице в Мелекессе [1].

Сталиногорский горизонт (мощность 37 м) слагают серые и желтоватые песчаники, мелкозернистые, кварцевые с доломитовым и глинистым цеменгом, с прослоями алевролитов, алеврити-

стых глин, углисто-глинистых сланцев и угля (вверху). Найдены споры Stenotriletes literatus (w) Naum., Trilobozonotriletes inciso—trilobus Naum., Trachytriletes punctulatus (w) Naum. и многие другие.

Отложения тульского горизонта (мощность 58 м) подразделены на две пачки. Нижняя (8 м) представляет переслаивание пятнистых кварцевых мелкозернистых песчаников, черных глин и слюдистых алевролитов; внизу — прослой известняка.

Верхнюю пачку тульского горизонта (мощность 50 м) слагают известняки серые и темно-серые микро- и тонкозернистые с прослоями органогеннодетритусовых известняков, иногда обломочных, вверху глинистых с включениями кремня, битуминозной тлины и твердого битума, с прослоями доломитов. В этом комплексе пород определены фораминиферы Endothyra cras-- sa compressa Raus. et Reitl., E. prisca Raus. et Reitl., Archaediscus krestovnikovi Raus., A. krestovnikovi yar. pusilla Raus., Eostaffella mediocris Viss. и др; и брахиоподы Echinoconchus punctatus (Mart.), Spirifer ustyensis Semich. и др.

Окский подъярус. Алексинский горизонт (мощность 54 м) сложен. серыми и темно-серыми органогенными чизвестняками, внизу фораминиферовыми, вверху водорослево-фораминиферовыми, редко микрозернистыми, глинистыми, иногда алевритисто-гличистыми с прослоями серых мелкозернистых и темно-коричневых песчаниковидных доломитов, с частыми тонкими прослойками и примазками чербитуминозной известковистой глины. В этом подъярусе определены фораминиферы Endothyra globulus Eichw., E. bradyi Mikh., E. cf. crassa crassa Br. E. crassa compressa Raus. et Reitl., E. crassa var. mos-

¹ Мы считаем более правильным причленение этой песчаной толщи к яснополянскому подъярусу [2].

quensis Raus., Cribrospira mikhailovi Raus., Eostaffella proikensis Raus., Parastaffella concinna Schlyk., Archaediscus embolicus Schlyk., A. krestovnikovi var. magna Schlyk., A. pauxilus Schlyk. и др., кораллы Dibunophyllum turbinatum Мс Соу Syringopora cf. ramnlosa Goldf. и др.; брахиоподы Gigantoproductus aff. то-deratus (Schw.) и водоросли Nodosinella и Ungdarella.

Михайловский горизонт (мощность 96 м) представлен известняками и доломитами и делится на три пачки. Нижнюю (11 м) слагают доломиты коричневато-серые микро- и мелкозернистые с включениями ангидрита и прослойками водорослевых глинистых известняков, в нижней части этмечается прослой конгломерата. Вторая пачка сложена серыми и темно-серыми нзвестияками органогенными, фораминиферово-водорослевыми, редко микрозернистыми, местами окремненными или доломитизированными, с тонкими прослойками черной известковистой глины и с подчиненными прослоями доломитов и коричневато-серой палыгорскитовой глины. Встречаются включения ангидрита. Третью пачку слагают доломиты коричневые микро- н мелкозернистые, местами окремнелые, с подчиненными прослоями микрозернистых и органогенных известняков. Встречаются включения и прослои ангидрита, тонкие прослойки и включения углистой глины и твердого битума. Четвертая пачка представлена переслаиванием серых органогенных, в основном водорослевых известняков и доломитов, иногда окремпенных, с редкими прослоями кремней.

В михайловском горизопте встречена обильная фауна: фораминиферы Endothyra omphalota Raus. et Reitl., E. crassa crassa Br., Cribrostomum recurreens Lip., Eostaffella proikensis Raus., E. tujmasensis Viss., E. ex gr. prisca Raus., E. ex gr. mediocris Viss., Bradyina rotula Eich w., Cribrospira michailovi Raus., C. panderi Moell., Lituotubella glomospiroides var. magna Raus. и многие другие; кораллы Lithostrotium rossicus St., L. ex gr. irregulare Phill.;

брахиоподы Gigantoproductus cf. praemoderatus Sar., Striatifera striata Fisch. и др.

Кроме того, здесь многочисленны

остракоды и криноидеи.

(мощность Веневский горизонт 140 м) делится на две пачки. Нижняя сложена чередующимися слоями чзвестняков и доломитов с включениями ангидрита и флюорита, прослоями палыгорскитовой глины и примазками твердого битума. В этом горизонте определены фораминиферы Endothyra crassa sphaerica Raus. et Reitl., Cribrostomum recurrens Lip., Bradyina rotula Eichw., Eostaffella ikensis Viss., Monotaxis gibba Moell., Lituotubella glomospiroides var. magna Raus., Permodiscus vetustus Dutk., Archaediscus parvus Raus. и многие другие; кораллы Dibunophyllum turbinatum McCoy; брахиоподы Gigantoproductus aff. praemoderatus (Sar.), Athyris cf. ex. pansa Phill.; водоросли Calcifolium okense Schn. et

Вторая пачка веневского горизонта (мощность 99 м) слагается переслапванием доломитов и ангидритов. Встречаются примазки твердого битума и многда капельки жидкой нефти. Фауна не встречена.

Серпуховский подъярус (мощность до 170 м) не расчленен на горизонты, но в его нижней части выделена особая, так называемая покровская пачка (22 м), аналогичная покровской толще в других скважизах Куйбышевского Заволжья и сложенная переслаиванием серых мелкозернистых, иногда органогенных окремненных известняков, темно-серых доломитовых мергелей, серых мелкозернистых, сильно глинистых, вверху алевритистых доломитов, голубоватосерых ангидритов и вверху палыгорскитовых глин. Из организмов встречены фораминиферы: Endothyra geobulus Eichw., Archaediscus ex gr. baschkiricus Theod. et Krest., A. cf. krestovnikovi Raus., Eostaffella mosguensis var. acuta Raus., E. minutissima Raus. Остальную толщу серпуховского подъяруса слаангидриты крупнокристаллигают

ческие с глинистыми прослоями, часто палыгорскитизированные, с прослоями доломитов, с включениями флюорита, с частыми тонкими прослойками и примазками палыгорскитовой глины и единичными прослойками афанитового палыгорскитизированного известняка и примазками битуминозно-глинистого материала. Органических остатков не встречено.

Намюрский ярус представлен только протвинским горизонтом (мощность 23 м), выделенным условно и сложенным желтовато-серыми органогенчыми и микрозернистыми известняками, местами перекристаллизованными, с сутурными поверхностями. Фауна бедная, состоящая из немногих видов фораминифер: Hyperammina vulgaris (?) Raus. et Reitl., Endothyra ex gr. bradyi Mikh., E. ex gr. prisca (?) Raus., Bradyina aff. cribrostomata Raus, et Reitl., Archaediscus cf. rugosus Raus., A. cf. parvus Raus., Eostaffella cf. minutissima Raus., E. cf. tujmasensis Viss. и др.

На размытой поверхности протвинского горизонта залегают осадки башкирского яруса среднего карбона.

Приведенные факты показывают, что отложения нижнего карбона отличаются в районе Бузулука мощностью, большей, чем одновозрастные отложения близлежащих районов. Общая мощность пород от подошвы яснополянского подъяруса до кровли про-, твинского горизонта в Бузулуке составляет около 600 м (580 м), в то время как в Пилюгине 460 м, в Красной Поляне около 450 м. Большая мощность отложений в Бузулуке свидетельствует об интенсивном погружении северного борта Прикаспийской депрессии в нижнем карбоне.

Обилие фораминифер, частые находки кораллов и присутствие брахиопод -- все это указывает на господство в окское время нормальных морских условий, обычных для небольших глубин. В конце окского времени условия резко изменились: развитие мощной толщи ангидритов с прослоями доломитов в верхней части нижнего карбона заставляет предполагать, что в этот отрезок времени Бузулукский участок входил в какую-то замкнутую или полузамкнутую часть бассейна с повышенной концентрацией солей.

Особенности геологической истории. Бузулукского района проявились и в другие моменты нижнекаменноугольной эпохи: отсутствие мощной песчаной толщи, подстилающей осадки сталиногорского горизонта в разрезах. карбона, лежащих севернее в Камско-Кинельской впадине, небольшая по сравнению с этими разрезами мощность сталиногорского горизонта, значительное количество доломитовых пород в разрезе, частое присутствие флюорита и прослоев палыгорскитовой глины — все эти черты говорят о своеобразных условиях образования осадков в этой части северного борта Прикаспийской депрессии в нижнем карбоне.

ЛИТЕРАТУРА

1. Бывшева Т. В. Споро-пыльцевые комплексы терригенной части нижнекаменноугольных отложений Мелекесской скв. 1. Отугольных отложений Мелекесской скв. 1. Отчет Б. А. Персидского, А. Б. Филимоновой и др. Отчет по теме 12. Фонды ВНИГНИ, 1955.
2. Семихатова С. В., Рыжова А. А., Ростовцева А. Ф. Верхнекизеловские слои близ Бузулука Чкаловской области. ДАН СССР, т. 113, № 4, 1957.
3. Познер В. М. Стратиграфия терригенной толщи нижнего карбона Камско-Кинельской впадины. ДАН СССР, т. 104, № 6, 1955

Г. П. ОВАНЕСОВ, М. Т. ЗОЛОЕВ

Анализ состояния разработки девонских пластов Д и Д Туймазинского нефтяного месторождения

Туймазинское нефтяное месторождение расположено в западной части Башкирии в пределах юго-восточного склона Татарского свода. Месторождение приурочено к крупному платформенному поднятию, ориентированному с юго-запада на северо-восток.

Планомерное изучение геологии и нефтеносности района было начато с 1934 г., после установления структуры по спириферовым отложениям верх-

непермского возраста.

Стуктурным (колонковым) бурением, проведенным в последующие два года, было подтверждено наличие структуры по артинским отложениям. С осени 1936 г. начато глубокое разведочное бурение.

В результате разведочных работ в мае 1937 г. была получена промышленная нефть из песчаников угленосной свиты нижнего карбона, после чего началась разработка месторождения. До открытия нефтеносных горизонтов девона месторождение не имело серьезного промышленного значения в связи с небольшими запасами нефти. В сентябре 1944 г. был получен первый нефтяной фонтан из песчаников пашийской свиты девона, что установило большую перспективность этих отложений.

После открытия промышленной нефти в отложениях девона все бурение на Туймазинском месторождении направлено на разведку девона.

В 1945 г. удалось установить, что Туймазинское месторождение по запасам нефти является одним из крупнейших в СССР.

К настоящему времени пробурено около тысячи разведочных и эксплуатационных скважин, причем многими разведочными скважинами пройден весь комплекс осадочных пород и вскрыт кристаллический фундамент, залегающий в виде выступа под осадочной толщей палеозоя.

Общая мощность осадочных образований, вскрытых на Туймазинскомместорождении, достигает примерно 1900 м. По возрасту они относятся к додевонским, девонским, каменноугольным и пермским отложениям. Разрез сложен известняками, доломитами, терригеновыми и гидрохимическими осадками. В разрезе преимущественно развиты карбонатные отложения, подчиненную роль играют терригеновые и совсем незначительную гидрохимические осадки, залегающие в верхней части разреза. Все эти отложения дислоцированы в виде очень пологой несколько асимметричной антиклинальной складки северо-восточного простирания.

Складка осложнена тремя поднятиями; Южно-Александровским, Александровским и наиболее крупным собственно Туймазинским. Размеры ее измеряются сотнями квадратных километров. Юго-восточное крыло имеет углы падения не более 2—2,5°, а падение слоев на северо-западном крыле измеряется

минутами.

Наблюдается почти полное соответствие в строении складки по всем стратиграфическим горизонтам, начиная с живетского яруса и кончая верхнепермскими отложениями.

Нефтеносные горизонты приурочены к ряду стратиграфических комилексов. Верхний нефтеносный горизонт связан с рыхлыми песчаниками угленосной свиты нижнего карбона. Песчаники залегают на глубине 1100—1150 м. Продуктивность скважин варьирует в широких пределах — от одной-двух нескольких десятков тонн в сутки.

Другой промышленно-нефтеносный горизонт нижнего карбона приурочен к верхней части известняков турнейского яруса. Продуктивность известняков невысокая, суточный дебит скважин не

превышает 3—5 т.

В разрезе терригеновых отложений нижнефранского подъяруса верхнего дсвона и живетского яруса среднего девона установлен ряд песчаных нефтеносных пластов (Π_0 , Π_I , Π_{II} , Π_{III} , Π_{III}).

Основные запасы нефти заключены в пластах $\mathcal{A}_{\mathbf{I}}$ и $\mathcal{A}_{\mathbf{II}}$. Эти песчаные пласты залегают на глубине 1650—1700 м. Большинство скважин, вскрывших эти пласты, фонтанировало с высокими дебитами. Разработка пластов $\mathcal{A}_{\mathbf{I}}$ и $\mathcal{A}_{\mathbf{II}}$ вызвала бурный рост добычи нефти на

Туймазинском мссторождении.

Перечисленными продуктивными горизонтами не исчерпывается нефтеносность разреза Туймазинского месторождения. Почти 80% мощности разреза составляют карбонатные породы, изучением нефтеносности которых до последнего времени почти не занимались главным образом из-за отсутствия геофизической методики распознавания нефтесодержащих пластов и недостаточного отбора керна. В то же время при бурении ряда интервалов карбонатного разреза как на Туймазинской, так и на соседних площадях имели место значительные нефтепроявления.

За последнее время в связи с получением промышленной нефти из карбонатных пород на соседних Стахановской и Субхангуловской площадях интерес к ним значительно возрос.

Учитывая эти данные, намечена программа изучения нефтеносности карбонатного разреза Туймазинского месторождения, осуществление которой, очевидно, приведет к открытию новых нефтяных горизонтов и дальнейшему росту добычи нефти.

Прежде чем перейти к анализу состояния разработки иластов $\mathcal{A}_{\mathbf{I}}$ и $\mathcal{A}_{\mathbf{II}}$, мы считаем необходимым кратко осве-

тить историю этого вопроса.

Разработка месторождения была начата в 1945 г. согласно проекту, составленному коллективом работников Московского нефтяного института и работниками производства. В основу составления проекта были положены геолого-промысловые данные, полученные по 16 разведочным скважинам, в общем определившим размеры структуры и залежей нефти.

По проекту разработки намсчалось: а) разработку пласта \mathcal{A}_{II} осуществить кольцевыми рядами скважин, расположенными внутри контура сплошной исфтеносности с последующим заполнением центральной части; всего пробурить 80 скважин со степенью уплотнения 19 га на скважину: в процессе эксплуатации при полном обводнении скважин произвести возврат на пласт \mathcal{A}_{I} ; среднесуточная добыча нефти проектировалась в объеме

б) при разработке пласта $Д_{\mathbf{I}}$ осуществить кольцевое размещение скважин трсмя рядами на северо-западном крыле и двумя рядами на юго-востоке; пробурить около 325 скважин со степенью уплотнения также 19 га при расстоянии 400 м между скважинами в ряду и 500 м между рядами. В процессе эксплуатации при выходе скважин в тираж (стопроцентное обводнение) проектировался перенос нагнетания в обводненный внешний ряд, а внутрь — нарастание последующего нового ряда эксплуатационных скважин. Предполагалось, что среднесуточная добыча по пласту достигнет примерно 8 тыс. т. в сутки. Разработка Д, на Александровской площади в проект не входила, так как это месторождение было открыто позже.

Для поддержания пластового давления намечалось пробурить нагнетательные скважины с расстояниями между ними 2 км. Проектировалось начать промышленную закачку воды в пласты Д_I и Д_{II} с 1946 г. с тем, чтобы в 1948 г. полностью освоить все нагнетательные скважины.

В процессе осуществления проекта и дальнейших разведочных работ на основе накапливающегося геолого-промыслового материала в проект систсматически вносились дополнения и изменения. Например, пласт $\mathcal{L}_{\mathbf{II}}$ на площади внутреннего контура нефтеносности разбурен полностью. То же самое было сделано по $\mathcal{L}_{\mathbf{I}}$ на Александровской площади, не вошедшей в генеральный проект; пласт $\mathcal{L}_{\mathbf{I}}$ на Туймазинской площади разбурен четырьмя

кольцевыми рядами вдоль внутреннего контура и т. д. В связи с этими изменениями резко увеличилось количество эксплуатационных и нагнетательных скважин, а также отбор нефти и закачка воды.

Строение коллекторов оказалось значительно сложнее, чем это представлялось в начальный период разработки.

Было установлено, что песчаники пластов $\mathcal{L}_{\mathbf{I}}$ и $\mathcal{L}_{\mathbf{II}}$ часто замещаются на близких расстояниях алевролитами и даже аргиллитами. Это значительно осложнило разработку залежи и нагнетание воды. Разработка пластов осложнилась также резким отставанием освоения закачки воды. В самом деле, пласт Д, начали разрабатывать осенью 1944 г., Д_т—в середине 1945 г., а закачка воды в $\mathcal{A}_{\mathbf{H}}$ была начата в июне 1948 г., а в $\mathcal{I}_{\mathbf{I}}$ — в июле 1949 г., т. е. заводнение пластов начали осуществлять с опозданием на 4 года. В результате этого к началу заводнения средневзвешенное давление снизилось в пласте $\mathcal{L}_{\mathbf{II}}$ на 52 ат и в $\mathcal{L}_{\mathbf{I}}$ на 53 ат. В процессе дальнейшей разработки пластов резко наращивали отбор нефти из Д, несколько был увеличен отбор и из ${\it \coprod}_{{\bf H}}$, при этом закачка воды в пласт Д, продолжала отставать. Давления в пластах продолжали оставаться на этом низком уровне почти до осени 1955 г.

В стабилизации давления в пласте \mathcal{A}_{I} на уровне 120 ат при увеличенных отборах известную роль сыграли переток жидкости из \mathcal{A}_{I} в \mathcal{A}_{I} через литологические «окна» (соединения пластов вследствие отсутствия на отдельных участках глинистой перемычки). В результате снижения давления в пластах эксплуатационный фонд скважин стал работать с большими перебоями.

Следует отметить, что низкие давления в залежах $Д_{\rm I}$ и $Д_{\rm II}$ были связаны также с удаленностью нагнетательных скважин от эксплуатационных рядов и незамкнутостью кольца нагнетательных скважин.

Так, например, по северному крылу

по $Д_{\rm I}$ расстояния от нагнетательных до эксплуатационных скважин в среднем достигали 4—5 км, а по $Д_{\rm II}$ — 3—4 км. К тому же были просветы в линии нагнетательных скважин протяженностью до 7—8 км.

После тщательного изучения фактического материала в сентябре 1955 г. Центральная комиссия МНП по разработке отметила неудовлетворительное состояние разработки пластов $\mathcal{L}_{\mathbf{I}}$ и $\mathcal{L}_{\mathbf{II}}$ Туймазинского нефтяного месторождения. Было подчеркнуто, что резкое отставание нагнетания воды, особенно в пласт Ді Туймазинской площади, снижает эффективность законтурного заводнения, вызывает ряд осложнений в разработке как в самом $Д_{I}$, так и в \mathcal{L}_{II} , поскольку пласты литологически связаны. Действительно, средневзвешенные пластовые давления к этому времени были настолько снижены, что пришлось переводить скважины из фонтанного способа эксплуатации на механизированную добычу при помощи электропогружных насосов, а десятки скважин вовсе останавливались из-за низкого забойного давления. В этих условиях стало почти невозможным регулировать разработку залежей.

В целях коренного улучшения состояния разработки месторождения и обеспечения высокого пластового давления для стабилизации добычи нефти на достигнутом высоком уровне в течение ряда лет были намечены конкретные мероприятия. Были выделены наиболее важные мероприятия, как, например, увеличение закачки в Д Туймазинской площади равномерно по всему периметру залежи, полное прекращение эксплуатации одиночных скважин, расположенных вне рядов (в центре залежи), с переложением добычи этих скважин на периферийные участки, значительное приближение фронта нагнетания воды к зоне отбора на отдельных участках, реконструкция кустовых станций для повышения давления нагнетания и некоторые другие.

За истекшие 15 месяцев проделана большая работа по осуществлению решения Центральной комиссии МНП по

⁴ Геология нефти № 5.

разработке МНП. Отбор нефти в центральной части залежи пласта Д полностью прекращен. Все 19 скважин с суммарной добычей 1300--1400 т в сутки законсервированы и используются для контрольных замеров пластового давления Дт. На северо-западном крыле с целью приближения фронта закачки воды к зоне отбора создан дополнительный ряд нагнетательных скважин вдоль внутреннего контура нефтеносности пласта $\mathcal{L}_{\mathbf{I}}$ на расстоянии 1-1,5 км от внешнего ряда эксплуатационных скважин. На юго-восточном крыле освоены все нагнетательные скважины.

За это время для улучшения системы нагнетания воды было освоено 37 нагнетательных скважин, т. е. столько, сколько было освоено за три предыдущих года, в результате чего достигнута кольцевая закачка воды по периметру залежей $\mathcal{L}_{\mathbf{I}}$ и $\mathcal{L}_{\mathbf{II}}$ в объемах, предусмотренных в решении Центральной Комиссии МНП по разработке. В итоге успешного осуществления указанных мероприятий состояние разработки пластов $\mathcal{L}_{\mathbf{I}}$ и $\mathcal{L}_{\mathbf{II}}$ заметно изменилось в сторону ее улучшения.

По состоянию на 1 января 1957 г. из пластов Д и $Д_{\mathbf{I}}$ извлечено около чет-

верти запасов нефти.

По состоянию на 1 января 1957 г. баланс суммарной закачки воды и отбора нефти из пластов с начала разработки характеризуется следующими цифрами:

Объекты разработки	Баланс, %	Обеспеченность с учетом 20% резерва, % (отток)
Пласт Д ₁ Александровской площади . Пласт Д ₁ Туймазин-	129,2	107,8
ской площади Пласт Д ₁ в целом .	66,5 78,1	55,5 65,0
Пласт Ди	148,2	123,7
В целом Ді+Діі	99,8	83

По уровню текущей закачки воды и отборов нефти на 1 января 1957 г. баланс составляет:

Таблица 2

Объекты разработки	Баланс с учетом 20% резерва, % (отток		
Пласт Д ₁ Туймазинской площади	108,1 127,9 113,8 152,8 122,0		

Приведенный в таблицах цифровой материал показывает, что объемы текущей закачки стали значительно перекрывать отбор по всем объектам, в том числе и по пласту Д_I собственно Туймазинской площади. Ликвидированы большие разрывы и достигнута круговая закачка воды почти по всему периметру пластов Д_I и Д_{II}. К концу 1956 г. достигнут баланс суммарного объема отбора нефти и закачки воды в пласты, что имеет существенное значение, если учесть наличие литологической связи между пластами.

Полное прекращение отбора нефти из скважин $\mathcal{L}_{\mathbf{I}}$, расположенных в центральной сводовой площади залежи, значительный темп увеличения объемов закачки воды в $\mathcal{L}_{\mathbf{I}}$ Туймазинской площади и приближение закачки к местам отбора вызвали соответствующий равномерный и быстрый рост пластового давления как в самом $\mathcal{L}_{\mathbf{I}}$, так и в $\mathcal{L}_{\mathbf{II}}$.

Значительный рост давления в пластах, приведенный в табл. З и наглядно показанный на графиках, характеризующих состояние разработки объектов (рис. 1 и 2), резко улучшил эксплуатацию всего фонда скважин.

Текущий и суммарный эффект от заводнения по объектам с начала разработки по состоянию на 1 января 1957 г.

приведен в табл. 4.

Таблица 4

Объекты разработки	Текущнй эффект, %	Суммарный эффект с нача ла разработки %
Д ₁ — Александров- ская площадь	91,3	78,0
Д _І — Туймазинская пл о щадь	74,1 83,1	43,9 52,2

Таблица 3 Динамика изменения количества закачиваемой воды и роста давления в пластах Ді и Дії после сентября 1955 г.

	Д _І — Александровская площадь		Дј — Туймазі	инская площадь	дП		
Периоды	среднесуточная закачка воды, мз средневзвещенное пластовое давления из конец квартала, ат квартала, ат		среднесуточная закачка воды, м8	средневзвешен- ное пластовое лавление в зоне отбора на конец квартала, ат	Среднесуточная закачка воды, м3	Средилвавещен- ное пластовое дладение в зоне отбора на конец кваргала, ат	
Ha 1/I 1956 r. Ha 1/IV 1956 r. Ha 1/VII 1956 r. Ha 1/X 1956 r. Ha 1/I 1957 r.	12 550 12 000 13 000 12 400 13 550	118,9 122,6 129,6 134,2 137,8	22 100 24 000 28 000 30 200 31 360	111,7 115,8 123,3 126,3 131,6	17 900 15 000 18 200 17 150 15 360	127,1 136,3 140,2 145,9 150,0	
Изменения за 5 кварталов	+1000	+18,9	+9260	+20,1	2500	+22,9	

Как видно из табл. 4, большая часть нефти, добываемой из каждого пласта Туймазинского месторождения, получается за счет поддержания пластового давления.

Для характеристики улучшения состояния разработки отдельных пластов и площадей приводим анализ состояния эксплуатационного и нагнетатель-

ного фонда скважин.

Действующий эксплуатационный фонд по пласту Д_I на 1 января 1957 г. состоит из 482 скважин, из них 202 — фонтанные, 90 — работающие на электропогружных и 190 на глубоких насосах. Часть фонда глубинно-насосных скважин к сентябрю 1955 г. из-за низкого пластового давления работала периодически. В настоящее время в связи с возросшими пластовыми давлениями этой категории скважин нет, весь фонд скважин работает непрерывно. Число

действующих нагнетательных скважин увеличилось с 32 в сентябре 1955 г. до 46 к 1 января 1957 г. Если тогда на одну действующую нагнетательную скважину приходилось 14,6 эксплуатационных скважин, то сейчас приходится 10,5.

Успешное освоение значительного количества новых нагнетательных скважин позволило производить закачку воды в пласт более равномерно по всему периметру залежи (рис. 3).

Анализ карт изобар показывает, что в течение всех четырех кварталов наблюдался довольно равномерный рост пластового давления во всех частях залежи в соответствии с характеристикой пласта. В результате этого скважины, в прошлом перешедшие из фонтанных в насосные, вновь переходят на фонтанирование.

В течение 1956 г. число скважин,

перешедших вновь на фонтанирование, лостигло 105.

Обводненность фонда эксплуатационных скважин на 1 января 1957 г. характеризуется наличием 204 скважин, дающих нефть с водой, т. е. почти 42% фонда скважин работает с водой. 42 скважины содержат воды до 2%, 83— от 2 до 20%, 79— свыше 20%.

Из 204 скважин на водоплавающей части залежи, т. е. за начальным внутренним контуром, расположено 65 скважин.

Общее содержание воды в товарной нефти выросло до 6,2% против 3,9% в сентябрс 1955 г., что, естественно, связано с увеличением закачки воды и другими причинами, на которых остановимся нижс.

Рост числа скважин, дающих нефть с водой, характеризуется следующими данными: за 1953 г. вода появлялась в 31 скважине, за 1954 г. — в 32 скважинах, за 1955 г. — в 50 скважинах, а за 1956 г. — в 25 скважинах.

Интенсивность роста процентного содержания воды в скважинах в процессе их эксплуатации различна и зависит не столько от объемов отбора нефти, сколько от местоположения скважин на структуре и от качества цементного кольца против эксплуатационного объекта. Например, в скважинах северозападного пологого крыла рост содержания воды идет значительно медленнее, чем в скважинах юго-восточного, относительно более крутого крыла. Быстро растет обводненность скважин, расположенных на «водоплавающих» частях залежей. Часты случаи, когда водонефтяной раздел в пласте на 5 м и более ниже отверстия интервала перфорации, а скважина с момента пуска дает нефть с водой, что, несомненно, является результатом плохого качества цементного кольца. Случаи некачественного тампонажа скважин стали частыми, особенно в последнее время, когда тампонаж скважин осуществляется цементом Стерлитамакского завода.

Испытание Стерлитамакского цемента, проведенное в ЦНИЛ Туймазанефть, показало, что цементный камень начинает трескаться в пластовой воде через 9 месяцсв, а через 9,5 месяца

вовсе разрушается. Поэтому не случайно, что значительное количество скважин с высоким содержанием воды расположено в зоне текущей водоплавающей полосы залежи.

Следует отметить также массовый характер преждевременного обводнения скважин из-за конусообразования. На ряде участков залежей $\mathcal{L}_{\mathbf{I}}$ и $\mathcal{L}_{\mathbf{I}1}$ вомногих скважинах появляются подошвенные воды при отметках нижних отверстий фильтра на 25—30 м вышс текущего водо-нефтяного контакта.

Образование конусов воды ведет к осложнению эксплуатации скважин, срыву фонтанирования при высоких пластовых давлениях и вынужденному ремонту для изоляции подошвенных вод. Однако, несмотря на очень большой ущерб, наносимый рациональной разработке залежей образованием конусов воды, эффективной борьбы с этим явленисм ещс не ведется.

В целом состояние обводненности пласта Д тревожное, поэтому следует более кропотливо регулировать отбор и закачку, а также улучшать качества тампонажных работ, сохраняя достигнутый уровень добычи нефти из пласта.

Пласт $\mathcal{I}_{\mathbf{I}}^{\dagger}$ на Александровской площади в чисто нефтяной части залежи разбурен полностью. Ширина водоплавающей части залежи $\mathcal{I}_{\mathbf{I}}$ на северо-западном крыле Александровской площади достигает 8—10 км и поэтому разрабатывается самостоятельно.

На 1 января 1957 г. действующий эксплуатационный фонд на всей Александровской площади составляет 179 скважин, из них 73 фонтанные, 24 работают на электропогружных и 82 на глубоких насосах. Нагнетание воды ведется через 22 скважины против 17 скважин в сентябре 1955 г. На одну действующую нагнетательную скважину приходится 8 эксплуатационных скважин.

Как показано выше, баланс отбора нефти и закачки воды в пласт, как текущий, так и с начала разработки, положительный.

Текущая закачка перекрывала отбор с четвертого квартала 1955 г., а к концу 1956 г. избыток закачки над отбо-

ром составлял 4700 м³/сутки. Тем самым созданы благоприятные технологические условия для регулирования разработки.

В течение всех четырех кварталов 1956 г. давление в пласте быстро поднималось: за год выросло на 18,9 ат. Наиболее высокие давления в пласте отмечаются на северо-западном крыле и в центральной части Александровской структуры, т. е. на тех участках залежи, где пласт имеет большие мощности и хорошую проницаемость. Наиболее низкие пластовые давления приурочены к песчаникам $\mathcal{L}_{\mathbf{I}}$ с ухудшенными физико-геологическими параметрами.

На этих участках залежи весь фонд эксплуатационных скважин работает механизированным способом, несмотря на то, что они окружены кольцом действующих нагнетательных скважин (см. карту разработки).

В связи с перемещением контура за год обводнилось 7 скважин. Из всего действующего фонда с содержанием воды в нефти работают 54 скважины.

По степени обводненности скважины распределяются следующим образом: 8 скважин содержат воды до 2%, 13— от 2 до 20%, 33— более 20%.

Скважины с высоким содержанием воды в добываемой нефти расположены в местах развития песчаников с хорошими коллекторскими свойствами, там, где отбор и закачка идут более высокими темпами, и на водоплавающей части залежи северного крыла. Для достижения высоких темпов разработки на участках с ухудшенными коллекторскими свойствами мы считаем рациональным снижать давления на забое глубиннонасосных скважин ниже давления насыщения на 10—15 ат путем увеличения отборов.

Проведенные НПУ Туймазанефть и УфНИИ исследования показали, что снижение забойного давления в указанных пределах не влияет на коэффициент продуктивности. Внедрение этого мероприятия позволит более рационально перераспределить отбор по залежи и улучшит условия стягивания контуров в процессе разработки 1.

По сравнению с другими площадями темпы отбора нефти из пласта $\mathcal{L}_{\rm I}$ на Александровской площади наиболее высокие. Годовой отбор нефти составляет 5,8% от начальных промышленных запасов.

Основные технологические мероприятия, предусмотренные в решении Центральной комиссии МНП по разработке по Александровской площади, выполнены. Однако впереди еще очень много работы по дальнейшему усовершенствованию осуществляемой сложной системы разработки.

Имеются в виду более равномерное распределение нагнетания воды по периметру залежи, борьба с преждевременным обводнением скважин, углубление исследовательских работ по изучению эффективности системы разработки в отношении ожидаемого конечного коэффициента использования запасов нефти и др.

В соответствии с принятой схемой разработки пласта \mathcal{L}_{II} Туймазинского месторождения разбурен эксплуатационными скважинами по сетке 400 м между скважинами в ряду и 500 м между рядами.

В 1954 г. Центральная комиссия МНП по разработке по нашему предложению вынесла решение о бурении дополнительного ряда эксплуатационных скважин на северо-западном крыле, в водоплавающей части залежи, для выравнивания отбора по крыльям структуры.

На 1 января 1957 г. эксплуатационный фонд состоит из 124 скважин, из которых 47 работают фонтанным способом, 30 — при помощи электропогружных насосов и 47 — на глубинных насосах.

В 1950 г. отбор нефти из пласта достиг максимального уровня и с небольшими отклонениями сохраняется по настоящее время.

В течение ряда лет до начала 1956 г. разработка пласта $\mathcal{A}_{\mathbf{I}}$ осуществлялась со сниженными пластовыми давлениями в результате систематического отстава-

¹ Опытные исследования произведены на единичных скважинах, поэтому заключение авторов нуждается в подтверждении. — *Ред*.

ния нагнетания воды, поэтому избыток закачки воды в $\mathcal{L}_{\mathbf{II}}$ уходил на компенсацию отбора в $\mathcal{L}_{\mathbf{I}}$. В начале 1956 г. резко увеличена и технологически улучшена закачка воды в пласт $\mathcal{L}_{\mathbf{I}}$, при этом немедленно стали расти пластовые давления примерно одинаковыми темпами как в самом $\mathcal{L}_{\mathbf{I}}$, так и в $\mathcal{L}_{\mathbf{II}}$. Средневзвешенное давление в $\mathcal{L}_{\mathbf{II}}$ возросло за год на 22,9 ат и на 1 января 1957 г. составляет 150 ат.

Из всего эксплуатационного фонда по состоянию на 1 января 1957 г. дают обводненную нефть 83 скважины, из них 11 скважин содержат до 2% воды, 35— от 2 до 20% и 37— свыше 20%.

Из 83 обводненных скважин 43 расположены за начальным внутренним контуром нефтеносности — в водоплавающей части залежи. За 1956 г. в результате продвижения контура вода появилась в скважинах. Общее содержание воды в товарной нефти выросло на 4,1% и достигло 10%. Продвижение контуров происходит нормально - параллельно первоначальному их положению. Однако следует отметить, что вода продвигается по подошве пласта с большой скоростью. Из 79 скважин, пробуренных на участке в 2000 га чисто нефтяной части залежи, с водой работают уже 46 и безводными остались только 33 скважины на площади 730 га (см. рис. 4 и 5).

Темп обводнения скважин залежи Д_{II}, судя по заводненной площади пласта, в результате законтурного заводнения следует считать весьма быстрым и не соответствующим величине суммарного отбора нефти от подсчитанных промышленных запасов.

Чем же объяснить такую неблагоприятную картину? Первое, что следует имсть в виду, — это неточность установления положения текущего водо-нефтяного контакта в зоне эксплуатационных скважин. Как отмечалось выше, из-за образования конусов воды мы имеем в действующих скважинах ненормально высокий контакт, что подтверждается бурением нового ряда скважин на северном участке залежи. Контакты в новых скважинах на 5—7 м ниже среднего контакта, зафиксированного в районе ранее разбуренного участка.

Водо-нефтяной контакт в скважинах отбивается радиокароттажем, но вследствие несовершенства этого метода (недостаточный охват объема эксплуатируемого пласта) фактически в скважинах мы отбиваем не истинный водонефтяной контакт, а верхнюю границу водяного конуса, отсюда и неточное представление о положении контакта в целом по разрабатываемой части залежи и объеме заводненной части пласта. Это, вероятно, приводит к занижению процента выработки запасов.

Однако есть факты, которые вызывают законную тревогу за эффективную выработку запасов, а именно то, что в ряде скважин, пробуренных за современным контуром нефтеносности (на площади первоначально нефтеносной), по отбору керна и геофизическими исследованиями установлено, что выработка запасов составляет всего эт 30 до 70%, т. е. в среднем близка к подсчитанной по объему заводненной площади.

Эти факты заставляют серьезно задуматься над вопросом о темпах закачки воды и отборов нефти (скоростей проталкивания нефти). Надо думать, что вследствие неоднородности разрезов нефтеносных пластов \mathcal{A}_{II} и \mathcal{A}_{I} (и других продуктивных пластов Башкирии и Татарии) вытеснение нефти из малопроницаемых пластов отстает и вода, продвигаясь по более проницаемым пластам, преждевременно обводняет эксплуатационные скважины, создавая впечатление полной их разработанности.

Учитывая эти обстоятельства, мы снизили закачку воды в пласт Д_{ІІ} примерно до 4000 м³/сутки и ограничили отборы нефти из крайних рядов эксплуатационных скважин для предотвращения быстрого обводнения эксплуатационного фонда скважин. Мы считаем необходимым более тщательно изучить поднятый вопрос, так как он имеет первостепенное значение в деле рациональной разработки месторождений. В этом нам должны помочь работники ВНИИ и УфНИИ,

контролирующие разработку месторождений.

Резюмируя приведенные данные и соображения, характеризующие состояние разработки девонских залежей нефти Туймазинского месторождения, следует отметить, что:

- а) в результате успешного выполнения решсний Центральной комиссии МНП по разработке, принятых в сентябре 1955 г., удалось преодолеть долголетнее отставание закачки воды в пласт $\mathcal{L}_{\mathbf{T}}$;
- б) значительно выросли пластовые давления, что обеспечило более благоприятные условия для контроля и регулирования разработки залежей;

в) обеспечен высокий устойчивый уровень добычи нефти из пластов $\mathcal{A}_{\mathbf{I}}$ и $\mathcal{A}_{\mathbf{TT}}$

Наряду с этими положительными результатами имеют место факты быстрого обводнения скважин и недостаточной выработки запасов из отдельных участков залежей.

Для дальнейшего совершенствования разработки следует осуществить ряд мероприятий.

- 1. Усилить работы по освоению оставшихся нагнетательных скважин, необходимых для улучшения регулирования нагнетания равномерно по периметру залежи Д₁.
- 2. Объем закачки воды по пластам регулировать в зависимости от необходимого оптимального пластового давления. Оптимальное средневзвешенное пластовое давление установить в пре-

делах 150 ат (давление фонтанирования при обводненности нефти до 50%).

- 3. Учитывая большую ширину водоплавающей залежи пласта Д_{II} на северо-западном крыле, для ускорения ее выработки пробурить еще один дополнительный ряд эксплуатационных скважин.
- 4. Участить натнетательные скважины в разрезающих рядах (Туймаза, Абсалямово и др.).
- 5. Учитывая возможность закачки в пласт Д_{II} значительно бо́льших объемов воды, чем это требуется для текущего отбора, с целью более полной выработки запасов, начать форсированный отбор жидкости из сильнообводненных скважин этого пласта. По мере увеличения закачки осуществить эти мероприятия и по пласту Д_I.
- 6. Поручить ВНИИ и УфНИИ исследовать вопрос об оптимальных скоростях продвижения воды при законтурном и внутриконтурном заводнении для конкретных условий девонских месторождений.
- 7. Поручить НИИГР, ВНИИ и УФНИИ выработать методику отбивки истинного текущего водо-нефтяного контакта в разрабатываемых залежах.

8. Поручить УфНИИ разработать эффективные методы для борьбы с образованием конусов воды в скважинах.

9. Объединению Башнефть совместно с УфНИИ на основе накопившихся геолого-промысловых материалов поручить составить проект доразработки пластов Д_I и Д_{II} Туймазинского нефтяного месторождения.

н. А. ПЕРЬКОВ

Выделение продуктивных коллекторов в карбонатных разрезах

За последнее время все большее внимание нефтяников начинают привлекать вопросы поисков нефтеносных горизонтов в мощных толщах карбонатных отложений каменноугольного и девонского возраста, слагающих значительную часть разрезов нефтяных месторождений Урало-Волжской нефтеносной провинции.

В связи с этим представляет интерес оценка различных методов промысловой геофизики для решения поставленного вопроса.

Электрический и радиоактивный кароттаж

Опыт геофизических исследований скважин в районах, где продуктивные горизонты представлены карбонатными породами, пористыми известняками и доломитами (Ишимбайский, Бугурусланский и др.), показывает, что, наиболее эффективным для выделения нефтегазоносных пластов в данных условиях является применение комплекса, включающего стандартный электрический кароттаж, а также методы радиоактивного кароттажа: гамма-кароттаж (ГК) и нейтронный гамма-кароттаж (НГК).

При помощи методов радиоактивното кароттажа в разрезе выделяют
чистые от примесей глин содержащие
водород пласты, отмечаемые относительно низкими показаниями на диаграммах ГК и НГК. Обычно такими
пластами являются пористые разности
известняков и доломитов, насыщенные
водой или нефтью.

Газонасыщенные карбонатные коллекторы, так же как нефтеносные и водоносные, отмечаются низкими значениями на диаграммах нейтронного гамма-кароттажа. Это объясняется глубоким проникновением глинистого раствора и его фильтрата в карбонатные пласты, вследствие чего водородсодержание газоносных пластов у стенки скважины в пределах радиуса исследования методом НГК (порядка 50—70 см) не отличается от водородсодержания пластов, насыщенных нефтью или водой

Оценка нефтегазоносности пористых разностей карбонатных пород, выделенных по диаграммам радиоактивного кароттажа, основана на данных электрического кароттажа. Пористые водонасыщенные известняки отмечаются более низкими кажущимися сопротивлениями, чем вмещающие их плотные разности карбонатных пород. Нефтегазоносные карбонатные коллекторы обычно отмечаются кажущимися сопротивлениями, величина которых близка к сопротивлению окружающих пород.

Таким образом, отсутствие заметных уменьшений кажущихся сопротивлений против зон пористых карбонатных пород, характеризующихся низкими показаниями на диаграммах ГК и НГК, или более высокие кажущиеся сопротивления сравнительно с сопротивлением вмещающих пород свидетельствуют о нефтегазоносности карбонатных коллекторов.

Типичный пример выделения нефтеносных пластов в карбонатных отложениях артинского возраста Ишимбайского района по данным радиоактивного и электрического кароттажа изображен на рис. 1. Разрез представлен известняками, содержащими тонкие редкие прослои ангидритов и слабоглинистых известняков. Отсутствие глинистых пород в разрезе подтверждается диаграммой ГК, которая характеризуется низкими монотонными показаниями естественного гаммаизлучения.

Диаграмма НГК сильно дифференцирована. По минимумам на диаграмме НГК, отмечаемым в интервалах 629—635, 640—644, 648—650, 665—

Рис. 1. Выделение нефтеносных карбонатных пластов по диаграммам радиоактивного и электрического кароттажа (Ишимбайский район).

I — кривая ГК; 2 — кривая НГК-60; 3 — кривая КС, полученная с зонлом МЗА 0,25В; 4 — кривая ПС; 5 — глины; 6 — известняки; 7 — апгидриты; 8 — пефтеносные пласты.

683 м и другим, хорошо выделяются зоны, сложенные высокопористыми, ситчатыми известняками, насыщенными нефтью. О нефтеносности перечисленных интервалов свидетельствует отсутствие против них заметных понижений кажущихся сопротивлений на диаграмме стандартного электрического кароттажа. Возможно водоносными в рассматриваемом разрезе могут являться известняки, залегающие в интервале 700-740 м, которые, судя по диаграмме НГК, обладают невысокой сравнительно с перечисленными выше нефтеносными пластами пористостью и по диаграмме электрического кароттажа отмечаются пониженными сопротивлениями.

Пример выделения карбонатных пластов с благоприятными коллекторскими свойствами по данным радлоактивного и электрического кароттажа и оценки их нефтенасыщенности приведен на рис. 2, где изображены кароттажные диаграммы одной из скважин нефтяных месторождений Куйбышевского Заволжья.

Рассматриваемый разрез представлен в основном известняками. Мощный пласт глинистых пород в интервале 775—791 м хорошо выделяется по низким значениям на диаграммах НГК и кажущихся сопротивлений и по высоким показаниям на диаграммах гаммакароттажа и ПС. Редкие прослои слабоглинистых пород, не являющихся коллекторами, отмечаются по повышенным показаниям на диаграмме ПС и незначительными повышениями на диаграмме гамма-кароттажа,

Пористые неглинистые интервалы, которые могут рассматриваться как коллекторы, отмечаются по низким по-казаниям НГК в интервалах 752—758, 820—833, 878—887 и 892—895 м. Из указанных интервалов только верхний (752—758 м) является нефтеносным, так как его кажущееся сопротивление довольно высокое. Остальные пласты являются водоносными, о чем свидетельствуют низкие показания, соответствующие этим пластам на диаграмме электрического кароттажа.

Пример выделения по диаграммам электрического и радиоактивного ка-

Рис. 2. Выделение карбонатных коллекторов и оценка их нефтеносности по данным радиоактивного и электрического кароттажа (Куйбышевское Поволжье).

I — диаграмма ГК; 2 — диаграмма НГК-60; 3 — диаграмма КС, полученияя с зонлом B2,5A0,5M; 4 — кривая ПС; 5 — известияк нефтеносный; 6 — известняк глинистый; 7 — глинистая порода; 8 — известняк водоносный; 9 — пористые зоны.

роттажа карбонатного коллектора внутри контура нефтяной залежи в скважине нефтяного месторождения Соколовая гора (Саратовское Поволжье) изображен на рис. 3.

Нефтеносный пласт в данном случае выделяется по тому же правилу, как и в предыдущем случае: низкие показания ПС и НГК и высокие значения кажущихся сопротивлений (заштри-

хованная зона на рис. 3 в интервале глубин 1623—

1631 м). Часто стандартный электрический кароттаж не может дать однозначного решения вопроса об удельном сопротивлении пласта. Анализ значительного количества диаграмм БКЗ в карбонатных коллекторах указывает на наличие глубокого проникновения фильтрата глинистого раствора в пласт, вследствие чего на показания стандартных зондов решающее влияние оказывает сопротивление зоны проник-

новения. При бурении глинистыми растворами, изготовленными на пресной воде, что обычно имеет место в скважинах месторождений Урало-Волжской нефтеносной провинции, сопротивление зоны проникновения в пластах средней пористости дсстигает десятков и сотен омметроз. Поэтому для более точной оценки удельного сопротивления пласта необходимо пользоваться данными БКЗ или измерениями КС с зондами большой длины (например, с градиент зондом с АО до 8 м).

Газовый кароттаж

Для решения задачи поисков в карбонатных разрезах продуктивных горизонтов за последнее время значительное развитие получили методы геохимических исследований скважин: газовый и люминесцентный кароттаж.

При помощи указанных методов зафиксировано большое число аномалий повышенных показаний в карбонатных отложениях фаменского возраста в скважинах Куйбышевского Заволжья, Татарии и Западной Башкирии, а также в подольских и каширских известняках северной части Западной Башкирии, юга Молотовского Приуралья и в Куйбышевском Поволжье.

Опробование ряда этих аномалий привело к открытию новых нефтеносных горизонтов. Следует при этом от-

Рис. 3. Выделение карбонатного коллектора внутри контура нефтяной залежи (Соколовая гора, Саратовское Поволжье).

1 — кривая ПС; 2 — кривая КС, полученная с зондом M2,5A0,5B: 3 — кривая НГК.

метить, что из-за несовершенства техники и методики проведения газового кароттажа, а также из-за отсутствия обоснованной методики интерпретации аномалии повышенных газопоказаний нередко ошибочно относятся к пластам непроницаемых плотных пород или водоносным коллекторам.

Поэтому из многочисленных аномалий, обычно отмечаемых на диаграмме газового кароттажа, рекомендуются к опробованию только те, которые имеют благоприятные показания по данным электрического и радиоактивного кароттажа.

Такая методика интерпретации данных газового кароттажа получила повсеместное признание, и блатодаря ее применению удается исключить из рассмотрения значительное количество аномалий газового кароттажа, которые могли быть при формальном подходе приписаны непродуктивным пластам. Такой прием позволяет резко сократить число случаев неудачных опробований.

Отметим также, что границы интервала для опробования устанавливаются, как правило, по диаграммам электрического и радиоактивного кароттажа, так как точность определения глубины аномалий повышенных газопоказаний по данным газового каротража недостаточна для этой цели.

Микрозонды

Микрозонды применяются для выявления в терригенных разрезах посчаных пластов, обладающих хорошими коллекторскими свойствами.

Применение микрозондов основано на допущении известного факта, что в проницаемых пластах под влиянием избыточного давления происходит фильтрация глинистого раствора, в результате которой на стенке скважины образуется глинистая корка.

Наличие глинистой корки на стенке скважины определяется путем сравнения диаграмм КС, полученных микропотенциал- и градиент-зондами.

Результаты обработки значительного количества диаграмм микрозондов, полученных главным образом в скважинах нефтяных месторождений Волго-Уральской нефтеносной провинции, позволяют полагать, что при помощи диаграмм сопротивлений, полученных с микрозондами, можно выделять в карбонатных разрезах интервалы с благоприятными коллекторскими свойствами, детально расчленять эти интервалы и выделять в них плотные непроницаемые прослои.

Сопоставление диаграмм измсрений диаметра скважин каверномером в карбонатных породах с диаграммами естественных потенциалов (ПС) указывает на наличие соответствия между ними: понижениям на диаграммах ПС, как правило, соответствуют сужения диаметра скважины, обусловленные наличием глинистой корки.

Сужение диаметра скважины против отложений калиновской свиты Бугурусланского района является характерным для пластов известняков и доломитов, обладающих хорошими коллекторскими свойствами. Заметные локальные сужения диаметра скважины,

обусловленные образованием глинистой корки, часто отмечаются при интерпретации кавернограмм скважип, полученных в карбонатных коллекторах других районов Волго-Уральской нефтеносной провинции, а также Фсрганской долины.

Все это заставляет полагать, что механизм образования глинистой корки в карбонатных пластах такой же, как и в пластах песчаных пород, вследствие чего глинистая корка на стенке скважины свидетельствует о залегании в этом интервале пласта, обладающего повышенными пористостью и проницаемостью. Пласты, на стенке которых глинистая корка отсутствует, не обладают коллекторскими свойствами. Исключение составляет редкий случай, когда пластовое давление высокое, вследствие чего фильтрации глинистого раствора в проницаемый пласт не происходит.

Часто карбонатные коллекторы не отмечаются на кавернограмме заметными сужениями диаметра скважин. Это следует объяснить в первую очередь недостаточной точностью измерений диаметра, получаемой при помощи применяемых нами каверномеров (±2 см), вследствие чего обычно тонкая глинистая корка не отмечается на кавернограмме.

Опыт измерения микрозондами в карбонатных породах показывает, что наличне очень тонкого (порядка нескольких миллиметров) проводящего прослоя между башмаком микрозонда и породой резко снижает измеренную величину кажущихся сопротивлений, особенно при измерениях с микроградиент-зондом.

Благодаря этому создается возможность выделять в мощных, внешне однородных толщах карбонатных пород пласты с хорошими коллекторскими свойствами.

Кажущиеся сопротивления, измеренные с микропотенциал-зондом, при наличии на стенке скважины глинистой корки превышают кажущиеся сопротивления, измеренные микроградиент-зондом. Это обусловлено сравнительно большим радиусом исследования микропотенциал-зонда, вследствие чего

на его показания глинистая корка оказывает меньшее влияние чем на микроградиент-зонд.

Поэтому карбонатные коллекторы, как и песчаные, отмечаются положительными приращениями на диаграм-

мах микрозондов.

На рис. 4 изображено сопоставление диаграмм стандартного кароттажа, микрозондов и радиоактивного кароттажа одной из скважин Саратовского Поволжья в части разреза, сложенной известняками каменноугольного воз-

раста. Из этого сопоставления видноследующее.

1. Зоны, отмечаемые пониженными показаниями кажущихся сопротивлений и положительными приращениями на диаграммах микрозондов, отмечаются в пределах интервалов 560—570, 573—577, 583—590 и 597—599 м.

2. Указанным зонам соответствуют минимумы ПС и ГК, что свидетельствует об отсутствии примесей глин в карбонатных породах, залегающих в этих интервалах.

Рис. 4. Выделение карбонатных коллекторов по данным стандартного электрического кароттажа, микрозондов и радиоактивного кароттажа (Саратовское Поволжье).

кривая КС, полученная с зондом В2,5А0,25М; 2 — кривая ПС; 3 — кривая КС микропотенцнал-зонда А0,05М;
 кривая КС микроградиент-зонда М0,025N0,025А; 5 — кривая НГК; 6 — кривая ГК; 7 — известняки;
 кривая КС микроградиент-зонда М0,025N0,025А;
 кривая КС микропотенциал-зонда А0,05М;
 кривая КС микропотенциал-зонда КС микропотенциал-зонда А0,05М;
 кривая КС микро

- 3. Показания НГК в пределах указанных интервалов пониженные, что свидетельствует о повышенной пористости пород, слагающих эти интервалы.
- 4. Плотным непроницаемым прослоям, которым на диаграммах микрозондов соответствуют повышенные значения кажущихся сопротивлений, соответствуют, как правило, повышенные значения на кривой ПС, что свидетельствует об их плохой проницаемости.
- 5. Диаграммы микрозондов позволяют весьма четко выделить по положительным приращениям пористые проницаемые разности известняков и более точно определить их границы, чем по данным электрического и радиоактивного кароттажа. Благодаря этому в толще в основном непроницаемых пород, залегающих на приведенном рисунке в интервале 606—636 м, можно выделить границы тонких прослоев пористых разностей известняков, о наличии которых можно судить по диаграммам НГК и ПС только качественно.

Проведенная обработка большого количества диаграмм микрозондов скважин районов Саратовского и Сталинградского Поволжья, а также огдельных скважин районов Татарии и сопоставление полученных данных с диаграммами стандартного электрического кароттажа и радиоактивного кароттажа подтверждают выводы, приведенные для описанного типичного случая.

Результаты обработки БКЗ по этим скважинам позволили установить, что зоны, отмечаемые положительными приращениями на диаграммах микрозондов, часто характеризуются наличием проникновения фильтрата бурового раствора в пласт с диаметром зоны проникновения, превышающим диаметр скважины в 4-8 раз и более. В некоторых случаях наличие зоны проникновения по кривым БКЗ не отмечается, что может быть в результате очень глубокого проникновения или же вследствие незначительной пористости пласта.

Полученные результаты комплексной обработки кароттажных диаграмм также показывают, что пласты, отмечаемые на диаграммах микрозондов положительными приращениями, не всегда отмечаются значительными понижениями на диаграммах нейтронного гамма-кароттажа; глинистая корка часто образуется против пластов, пористость которых невелика (порядка 3—7%). По-видимому, такие пласты представлены карбонатными породами, в которых поровое пространство образовано редкой сетью тонких трещин. обеспечивающих достаточно хорошую фильтрацию глинистого раствора в пласт при его незначительной общей пористости.

Упомянем, наконец, что зоны минимумов на диаграммах КС микроградиент-зондов приурочены к минимальным показаниям на диаграммах гамма-кароттажа, т. е. к интервалам, не содержащим заметных примесей глин.

В заключение остановимся на одном из методов выделения карбонатных коллекторов, привлекающем к себе внимание в течение последних лет. Речь идет о применении метода бурения на глинистом растворе, содержащем добавки радиоактивного изотопа.

Полученные данные свидетельствовали о наличии повышенных показаний против пластов с благоприятными коллекторскими овойствами, что интерпретировалось как результат проникновения активированного раствора впористые проницаемые пласты карбонатных пород.

Последующие исследования показали, что использовавшийся для этой цели радиоактивный изотоп кобальта (Собо) в глинистом растворе нацело адсорбируется твердыми частицами глины. Поэтому повышенные показания на диаграммах ГК, полученных после бурения скважины на радиоактивном растворе или ее промывки, связаны с образованием глинистой корки на стенке скважины.

В настоящее время этот метод применяется редко, так как микрозонды являются более удобными и безопасными для индикации глинистой корки; на стенках скважины,

Выводы

1. Основными для выявления карбонатных коллекторов в разрезах скважин являются методы радиоактивного кароттажа: гамма-кароттажа и нейтронного гамма-кароттажа. Коллекторы выделяются по пониженным показаниям НГК, которым соответствуют низкие значения на диаграммах ГК.

2. Оценка нефтегазонасыщенности коллекторов, выявленных по данным радиоактивного кароттажа, проводится по их удельному электрическому сопротивлению. Нефтегазоносным коллекторам соответствуют удельные сопротивления, превышающие или имеющие такую же величину, как и вмещающие их плотные породы. Вследствие глубокого проникновения глинистого раствора в карбонатные пласты их удельное сопротивление следует определять по данным боковых кароттажных зондирований или оценивать по диаграммам кажущихся сопротивлений, снятым с длинным градиентзондом (АО = 8 м и более). Поэтому в скважинах, где электрический кароттаж ограничивается проведением замеров КС и ПС стандартным зондом, в разрезах, сложенных карбонатными породами, следует проводить дополнительные измерения кажущихся сопротивлений длинным градиент-зондом.

3. Оценку продуктивности карбонатных коллекторов по данным газового кароттажа следует проводить только после сопоставления интервалов повышенных газопоказаний с диаграммами электрического и радиоактивного кароттажа. Опробованию должны подвергаться газокароттажные аномалии, которые соответствуют по данным электрического и радиоактивного кароттажа пластам с благоприятными

коллекторскими свойствами.

При этом определение границ интервала для опробования, ввиду неточной привязки глубин по данным газового кароттажа, следует проводить по диаграммам электрического и радиоактивного кароттажа.

4. Диаграммы микрозондов позволяют по зонам положительных приращений выделять в разрезе карбонатных пород интервалы с благоприятными коллекторскими свойствами. Отнооценку коллекторских сительную свойств этих интервалов — их пористости и нефтенасыщенности — следует проводить по диаграммам НГК, а также по БКЗ или замерам КС с длинным градиент-зондом. Диаграммы микрозондов в этом случае следует использовать для уточнения границ коллекторов, а также для выделения тонких прослоев пород с хорошими коллекторскими свойствами, залегающими среди мощных пачек непроницаемых пород.

5. Как показали результаты обработки данных БКЗ, карбонатные коллекторы в подавляющем большинстве случаев характеризуются очень глубоким проникновением фильтрата глинистого раствора в пласт. При наличии достаточно крупных трещин можно предполагать проникновение в пласт не только фильтрата, но и непосредственно глинистого раствора. Это создает надежную закупорку поровых каналов и трещин, соединяющих пласт со скважиной при его опробовании, для устранения которой применяемые методы пулевой и торпедной перфорации совершенно недостаточны.

В связи с этим опробование карбонатных пластов надлежит проводить при помощи мощных кумулятивных перфораторов и торпедирования с последующей кислотной обработкой.

м. г. латышова, в. м. добрынин

Интерпретация диаграмм потенциалов вызванной поляризации в нефтяных скважинах

Кратние сведения о физической сущности явления вызванной поляризации песчано-глинистых пород

При пропускании через горные породы различного типа постоянного электрического тока возникает электрическое поле поляризации, созданной этим током ¹.

Вызванная поляризация горных пород объясняется окислительно-восстановительными процессами, объемной поляризацией породы и другими электрохимическими процессами, возникающими в породе при воздействии на нее электрического тока. В осадочных породах, содержащих минералы с элекпроводимостью тронной (каменные угли, антрациты, руды), вызванная поляризация возникает главным образом за счет окислительно-восстановительных процессов. В обломочных горных перодах, имеющих ионную проводимость (песчаники), преобладающее значение имеет объемная поляризация [1, 2, 4].

В результате исследований, проведенных за последние 3—4 года на кафедре промысловой геофизики Московского нефтяного института, возникла гипотеза о природе явления вызванной поляризации песчано-глинистых пород, которая схематически может представлена следующим образом. Каждая частица песчаной горной породы, являющаяся диэлектриком, окружена в естественном залегании электролитом, насыщающим поры породы. На поверхности каждой такой частицы в результате адсорбционных процессов образуется двойной электрический слой. Искусственно вызванная

поляризация песчаных пород возникает вследствие деформации двойного электрического слоя на поверхности частиц горной породы под воздействием внешнего (поляризующего) электрического поля-

В результате возникающих при этом процессов через некоторое время после включения поляризующего тока устанавливается динамическое равновесие, характеризующееся для данной породы и данного поляризующего внешнего поля определенной величиной зарядов на концах каждой частицы горной породы.

При исследовании песчаной горной породы по методу потенциалов вызванной поляризации наблюдается суммарное электрическое поле, создаваемое бесчисленным множеством поляризованных частиц горной породы.

Таким образом, величина потенциала вызванной поляризации ($\Delta U_{\rm BH}$) песчаной горной породы определяется адсорбционными явлениями, имеющими место на поверхности частиц горной породы, а следовательно, при прочих равных условиях должна зависеть от степени дисперсности породы или от удельной поверхности породы.

Зависимость коэффициента вызванной электрохимической активности от удельной поверхности и проницаемости песчаников

Многочисленные экспериментальные исследования подтверждают связь между вызванной поляризацией, адсорбционной способностью и удельной поверхностью песчано-глинистых пород.

¹ Схемы измерений потенциалов вызванной поляризации в лабораторных и скважинных условиях, а также конструкция измерительной установки описаны ранее [1, 4] и поэтому здесь не приводятся.

⁵ Геология нефти № 5.

Способность горной породы поляризоваться количественно характеризуется коэффициентом вызванной электрохимической активности (A_B) ,

Рис. 1. Зависнмость вызванной электрохимической активности $A_{\rm B}$ от удельной поверхности $S_{\rm 0}$ девонских песчаников Туймазинского района.

который на основании результатов лабораторных исследований на цилиндрических образцах определяется следующим образом:

$$A_{\rm B} = \frac{\Delta U_{\rm B\Pi}}{I} \cdot \frac{1}{P_{\Pi} (\varrho_{\Pi \rm B} - 0.65)} \frac{S}{I} \approx$$

$$\approx \frac{\Delta U_{\rm B\Pi}}{\Delta U \varrho} , \qquad (1)$$

где $\varDelta U_{\rm B\Pi}$ — разность потенциалов вызванной поляризации, мв;

I — сила поляризующего тока, ма; $\varrho_{\Pi B}$ — удельное сопротивление электролита, ом м;

S — площадь поперечного сечения образца, M^2 ;

l — длина образца, м;

 P_{Π} — параметр пористости (относительное сопротивление образца, полностью насыщенного электролитом);

0,65 — постоянный эмпирический коэффициент.

На рис. 1 дается зависимость коэффициента вызванной электрохимической активности от удельной поверхности S_0 девонских песчаников Туймазинского района. Определение удельной поверхности этих песчаников производилось по методу проницаемости, основанному на применении формулы Кармана [5].

Зависимость, изображенная на рис. 1, свидетельствует о корреляционной связи между коэффициентом вызванной электрохимической активности и удельной поверхностью:

 $S_0 = 52.3 \cdot 10^8 A_B + 0.509 \cdot 10^8.$ (2)¹

Коэффициент корреляции этой связи равен 0,83, что указывает на возможность практического ее использования.

Интервал удвоенной среднеквадратичной ошибки ограничен на рис. 1

пунктирными линиями.

Поскольку удельная поверхность песчаных пород в свою очередь является функцией пористости и проницаемости, можно переписать формулу (1) в виле

$$A_{\rm B} = 38.5 \cdot 10^{-3} \left(\frac{k_{\rm H}^2}{k_{\rm np} \cdot P_{\rm H}} \right)^{0.5} - 9.73 \cdot 10^{-3}.$$
 (3)

На рис. 2 изображено семейство кривых, построенных по формуле (3). Параметром кривых служит коэффициент пористости. На этом же рисунке нанесены результаты исследования 97 образцов девонских песчаников Туймазинского района. Песчаники, обладающие высокой, средней и низкой пористостью, даны различными условными обозначениями. Как видно, результаты лабораторных исследований согласуются с данными расчетных кривых. Некоторый разброс экспериментальных точек наблюдается в связи с ошибками эксперимента, а также в связи с влиянием неоднородности образцов песчаников, которая в значительной степени сказывается при исследовании малых объемов породы.

Таким образом, при определении проницаемости песчаной породы по

 $^{^{1}}$ Линейность связи нарушается при значениях $A_{
m B} < 0{,}0005.$

Рис. 2. Зависимость вызванной электрохимической активности $A_{\mathbf{B}}$ от проницаемости $K_{\mathbf{np}}$ и пористости K_n девонских песчаников Туймазинского района и сопоставление с экспериментальными дапными (шифр кривых -коэффициент пористости).

- пористость менее 16%; 2 — пористость меняется от 20%; 3 — пористость меняется от 20% до 22%; 4 — пористость меняется от 22% до 26%.

данным метода потенциалов вызванной поляризации необходимо учитывать изменение коэффициента пористости по-

Примеры интерпретации диаграмм потенциалов вызванной поляризации

На основании теоретических расчетов, подкрепленных лабораторными исследованиями, установлено, что в скважинных условиях величина аномалии потенциалов вызванной поляризации при прочих равных условиях зависит от следующих факторов:

- а) размера измерительной устаповки;
 - б) мощности поляризующего пласта;
 - в) диаметра скважины;
- г) эффективного диаметра зоны проникновения фильтрата бурового раствора в пласт;
 - д) удельного сопротивления пласта;
- е) удсльного сопротивления бурового раствора;
- ж) силы и направления поляризующего тока.

При помощи полученных при расчетах формул в результате комплексной интерпретации диаграмм потенциалов

вызванной поляризации совместно с другими диаграммами электрометрии скважин можно определить коэффициент поляризуемости горной породы который характеризует способ- $(\varkappa_{\partial}),$ ность среды поляризоваться и не зависит от ее геометрических особенностей и удельного сопротивления.

Определение лабораторного коэффициента вызванной электрохимической активности породы (Ав) производилось на тщательно отмытых от посторонних солей цилиндрических образцах с последующим насыщением химически чистым раствором хлористого натрия.

В скважинных условиях насыщающие породы электролиты могут иметь различный химический состав.

На основании теоретических и лабораторных исследований установлена связь между коэффициентом вызванной электрохимической активности (A_{B}) , определенным в лаборатории, и коэффициентом поляризуемости породы (\varkappa_a) , полученным в результате интерпретации диаграмм:

$$A_{\rm B} = 4\pi \varkappa_{\rm 0} \frac{1}{\beta} \,, \tag{4}$$

где β — коэффициент, учитывающий различие в химическом составе насыщающего песчаник электролита при лабораторных и скважинных исследованиях.

Коэффициент β определяется как отношение коэффициента вызванной электрохимической активности песчаника, насыщенного электролитом данного химического состава, к коэффициенту вызванной электрохимической активпости того же песчаника, насыщенного раствором хлористого натрия равной концентрации.

По данным лабораторных исследований приближенное среднее значение коэффициента β при насыщении образцов раствором едкого натра равно 6,3. В районах, где производится химическая обработка бурового раствора реагентом, включающим в себя едкий натр, рекомендуется при интерпретации диаграмм потенциалов вызванной использовать среднее поляризации значение коэффициента $m{eta} = 6,3$. Однако для более точной интерпретации

необходимо учитывать в дальнейшем изменение коэффициента в за счет изменения щелочности бурового раствора.

Выявление данной связи позволило использовать результаты обширных лабораторных исследований для количественной интерпретации диаграмм.

С целью облегчения вычислительной работы построены специальные палетки для определения коэффициента проницаемости и удельной поверхности песчаных коллекторов в туймазинских и грозненских условиях. Одна из таких палеток изображена на рис. 3.

Пример использования палетки по данным скв. 222 Серафимовской площади в интервале 1743,8-1754,2 м, по-

казанном на рис. 6.

В результате интерпретации диаграмм потенциалов вызванной поляризации и бокового электрического зондирования в водоносном пласте песчаника получено:

$$\Delta U_{\rm BII} = 10$$
 мв; $\frac{\varrho_2{}'}{\varrho_0} = 15$; $\varrho_0 = 2,4$ ом м при t° пласта $I = 400$ ма; $\frac{D}{d_0} = 3,0$; $k_{\rm H} = 21\%$.

Требуется определить коэффициент проницаемости пласта.

1. Вычислим следующие отношения: $\frac{\Delta U_{\rm BII}}{I} = 0.025; \quad \frac{\varrho_0 - 0.7}{d_0} = 5.65.$

2. На левой номограмме палетки по абсциссе $\frac{\varrho_2'}{\varrho_0} = 15$ находим нату точки кривой с модулем = 3,0. Ординату переносим параллельно оси абсцисс на следующую шкалу, которая позволяет учесть влияние удельного сопротивления бурового раствора и диаметра скважины.

3. Найденную точку перемещаем по этой шкале до абсциссы, $\frac{\varrho_0-0.7}{2}=5.65$, а затем ординату найденной точки переносим на следующую шкалу до абсциссы = 0.025.

4. Ордината данной точки по шкале правой номограммы равна $\varkappa_0 = 0.0012$.

Из семейства кривых, изображенных на правой номограмме, выбираем кривую, имеющую модуль «21» (K_{Π} = = 21 %), и по данной кривой находим проницаемости $K_{np} =$ коэффициент = 260 миллидарси.

Методика количественной интерпретации диаграмм потенциалов вызван-

Рис. 3. Палетка для определения проницаемости девонских песчаников по данным метода ВП.

потенциалов вызваниой поляризации мв;, І вызваниом поляризующего тока, ма; есила поляризующего тока, ма; есила поляризующего тока, ма; есила при сопротивление бу-рового раствора при с пласта, ом м; еси — удельное сопротивле-ние пласта в зоие проникиовения бурового раствора, ом м; жэ эффициент поляризуемости пласта;

 $\overline{D} = rac{D}{d_0}$ — диаметр зоны проинкновения, выраженный в долях диаметра скважины; d_0 — диаметр скважины, м; $K_{\rm fl}$ — коэффициент пористости, %; $K_{\rm flp}$ — коэффициент проинцаемости, мд.

Таблица 1 Результаты опробования методики количественной интерпретации диаграмм потенциалов вызванной поляризации в Туймазинском нефтяном районе

			К _{п,} % (по		По данным метода ВП		Средние данные по керну		
№ сква- жины	Площадь	Интервал исследования, м	данным бокового электри- ческого зондиро- вания)	К _{п,} % (по дапным микро- зонда)	удельная поверх- иость, <i>см2/см</i> 3	К _{пр,} милли- дарси	К _{пр} , милли- дарси	К _{п,}	число образ- цов в иссле- дуемом интер- вале
222	Серафимовская	1743,8—1754,2	21,0	_	634	260	210	19,0	8
997	Туймазинская	1628,4—1643,4 1665—1674	_	23,8 22,7	670 676	300 220	206 234	21,7 18,45	2
115	Александровская	1841,2—1845,2 1878—1885,2	16,5 16,0	_	760 670	65 70	95,9 189	19,0 21,9	1 1
243	Серафимовская	1742,8—1748.8	10—11	_	802	7,0	От 0 до 7,3	10,0	7

Таблица 2
Результаты опробования методики количественной интерпретации диаграмм потенциалов вызванной поляризации в Грозненской нефтеносной провинции

			Кп, % (по	К _{пр} , миллидарси (по даииым метода ВП)	Средиие данные по кериу			
∦жины ≅[сква- <u>т</u>	Площадь	Иитервал неследования, <i>м</i>	даиным бокового электрического зондирования)		<i>К</i> пр, миллидарси	Кп, %	число образцов в исследуемом иитервале	
228	Скалистая	413—433 511—534	21 20	1500 880	1520 1200	22,5	3 Неизвестно	
246	Скалистая	772—786 806—812	19 19	570 650	789 805	24,92 20,81	1	
221	Скалистая	862—872 911—917,5	~ 17 16,5	140 240	168 336	19,32 15,2	1 1	
71	Овечья	846—860,3 861—868	17 17,5	~110 370	7,9 470	17,7	1 2	
27	Брагуны	1485—1515 1523—1537 1540—1550 1572—1605	23 ~23 ~23 ~23 ~23	1100 ~ 1400 ~ 1200 ~ 1600	1390 710 1200 377	24,4 23,8 21,7 21,6	1 1 1 1	

ной поляризации была опробована в Туймазинском нефтяном районе и в Грозненской нефтеносной провинции. Результаты этого опробования сведены в табл. 1 и 2.

Интерпретация диаграмм потенциалов вызванной поляризации произведена только в водоносных пластах, где было отобрано некоторое количество керна.

Средняя проницаемость исследованных интервалов по керну определена по весьма малому количеству образцов, и ее следует рассматривать как при-

ближенную величину. Возможно, что отдельные расхождения в величине коэффициента проницаемости, определенной методом вызванной поляризации, с данными по керну объясняются малым отбором последнего.

Расчленяющая способность метода потенциалов вызванной поляризации

Помимо количественных сведений об удельной поверхности и проницаемости песчаных коллекторов, метод потенциалов вызванной поляризации позволяет получить ряд дополнительных

сведений о литологических особенностях пород, пройденных скважинами.

На рис. 4, 5 и 6 изображены диаграммы ВП, зарегистрированные в различных районах. Эти диаграммы свидетельствуют о том, что при помощи метода ВП удается в ряде случаев более подробно охарактеризовать разрез, чем по данным стандартных методов.

В скв 20 Горячеисточнинского района (рис. 4а) разрез представлен достаточно мощными пластами песчаников и глин. В интервалах, отмеченных черными прямоугольниками, производился отбор керна, причем для трех из этих интервалов, приуроченных к песчаникам, имеются анализы механического состава (рис. 4б).

Как видно из этого сопоставления, всличины аномалий вызванной поляризации в песчаниках возрастают с увеличением степени дисперсности их.

Рис. 4а. Диаграмма потенциалов вызванной поляризации по скв. 20 Горячеисточнинского района (Грозный).

Раствор: $\gamma = 1,24$, $\varrho_0 = 2,38$ при $t = 18^\circ$;

I — КС, вонд B0.25 A2M; 2 — СП масштаб 12,5 мв/см; 3 — ВП, вонд B8A 0.02 М0, 02A; I — +200 ма; 4 — ВП, вонд тот же, I — -200 ма.

Рис. 46. Механический состав пород в скв. 20 Горячеисточнинского района.

I — песчаник мелкозернистый (нитервал 1097—1103 м); II — песчаник мелкозернистый (нитервал 1154—1158 м); III — песчаник крупнозернистый (нитервал 1275—1280 м).

Интересно отметнть, 500 г что пласты песчаников данным стандартных методов характеризуются как однородные, а по диаграммам ВП существенно различаются по своей дисперсности.

На второй диаграмме (рис. 5) значитель- 600 ными аномалиями ВП выделяются в разрезе почти все пласты песчаников. Против глубин, указанных стрел- 650 ками, производился отбор грунтов. Данные описания этих гручтов показывают, что все пласты, дающие большие аномалии ВП, ябляются мелко- и гонкозернистыми песчаниками. Два верхних пласта, в которых аномалии ВП меньше, харак- 753 теризуются как среднезернистый песчаник. Важно отметить также, что интервалы, в которых наблюдаются 600 прослои глин с повышенной степснью несчанистости, отмечаются увеличением активности глиц по сравне- 850 нию с глинами нижней части разреза.

В разрезе скв. 222 (рис. 6) весьма четко большими аномалиями ВП выделяются ИЗвестняки, причем имеет место изменение знака на диаграмме ВП с положительным током.

Менее значительными аномалиями выделяются алевролиты и песчаники, а минимальными --- глины.

Приведенные примеры диаграмм являются свидетельством того, что метод вызванной поляризации дает возможность получать весьма важные сведе-

Рис. 6. Диаграмма потенциалов вызванной поляризации по скв. 222 (Серафимовская площадь, Туймазинский район) $\varrho_0 = 2,74$ ом м при t = 20°.

I — КС, зоид В7,5A0,75М; 2 — СП, масштаб 12,5 мв/см; 3 — ВП, зонд A0,04М0,04A5,0В, i — 400 ма, масштаб 14 мв/см; 4 — ВП, зоид тот же, i — i + 400 ма, масштаб 14 мв/см; 5 — илтервал (1743,8—1754,2 м), для которого произведена иитерпретация диаграмм.

Рис. 5. Диаграмма потенциалов вызванной поляризации с напесением данных отбора грунтов по скв. 400 (район г. Горская, Грозный).

Раствор: $\gamma = 1,26$; $\varrho_0 = 2,9$ ом м при $t^\circ = 18$ °.

ния о дисперсности и литологии пройденных скважиной пород.

Выводы

1. Метод потенциалов вызванной поляризации позволяет более детально, чем метод СП, расчленять разрез и оценивать дисперсность пород.

- 2. Метод потенциалов вызванной поляризации для условий, аналогичных туймазинским и грозненским, позволяет определять проницаемость песчаных коллекторов.
- 3. По мнению авторов, метод потенциалов вызванной поляризации должен быть широко опробован в различных районах для оценки перспектив его применения в промышленности.

ЛИТЕРАТУРА

1. Дахнов В. Н., Латышова М. Г., Ряполова В. А. Исследование скважин методом искусственно вызванных потенциалов (электролитический кароттаж). Промыс-

ловая геофизика, сб. статсй. Гостоптехиздат, 1952.

2. Латышова М. Г., Шеффер Н.Д. К вопросу о потенциалах вызванной поляризации тонкодисперсных песчано-глинистых пород. Тр. МНИ, вып. 15. Гостоптсхиздат, 1955. 3. Латышова М. Г., Добры-

3. Латышова М. Г., Добрынин В. М. Моделирование метода вызванных потенциалов. Тр. МНИ, вып. 15. Гостоптехиздат, 1955.

4. Латышова М. Г. О зависимости между вызванными потенциалами и проницаемостью песчаников. Тр. МНИ, вып. 12.

Гостоптехиздат, 1953.
5. Wyllie M. R. J. and Spangler M. B. Application of electrical resistivity measurments to problem of fluid flowin porous media. Bull. of the American Association of Petroleum Geologists v. 36 № 2 (February 1952)

of the American Assocuation of Petroleum Geologists, v. 36, № 2 (February, 1952).
6. Winsauer W. O., Shearin U. M., Masson P. H. and Williams M. Resistivity of brine-saturated sand in relation to porc geometry. Там же.

« « «

Опыт исследования генезиса азербайджанских залежей нефти на основе большого аналитического материала

В 1956 г. в издатсльстве Академии наук Азербайджанской ССР вышла в свет книга Ш. Ф. Мехтиева «Вопросы проп**схож**дения пефти и формирования нефтяных залежей Азербайджана».

Известно, что поставленные в заглавии книги вопросы имеют длительную историю. В течение многих десятилетий Азербайджан давал больше половины всей добычи нефтинашей страны и, естественно, нефтяные месторождения Азербайджана привлекали особое внимание ученых, занимавшихся вопросами происхождения нефти.

сами происхождения нефти.
Исследования в области генезиса нефти Азербайджана осложнялись тем, что вопрос об условиях образования самой продуктивной толщи среднего плиоцена, из которой пла основная нефтедобыча, долгое время оставался спорным.

Напомним, что Шегрен считал продуктилную толщу прибрежным морским образованием, Д. В. Голубятников на основании детальных полевых описаний разрезов продуктивной толщи писал о ее коитинентальном происхождении, К. П. Жалицкий, С. А. Ковалевский и В. П. Батурип видели в продуктивной толще отложения дельт.

Все эти высказывания, если подходить к их оценке с современными требованиями, носили характер более или менее умозрительных гипотез, в которых выделялась какая-либо одна сторона явления. В. И. Батурин первый провел обширное исследование этого вопроса

с применением современных методов; он сделал большое количество минералогических знализов и пришел к обоснованным выводам об источниках сноса. В дальнейшем представления о генезисе продуктивной толщи развивались и совершенствовались.

Происхождение нефти продуктивной толщи также в течсние долгого времени находилось в области догадок. Как для подтверждения более удачных и логичных схем (например, представления И. М. Губкина о миграции нефти снизу), так и для опровержения менее удачных (например, представления К. П. Калицкого о первичном залегании нефти в продуктивной толще) явно не хватало фактов. Они могли быть получены в результате обширных геохимических исследований, которые были в достаточном объемс поставлены только в послевоенные годы Институтом геологии АН АзССР и азербайджанскими институтами нефтяной промышленности (АзНИНГРИ и АзНИИ). Геохимические работы с большим количеством специальных в Институте геологии, и легли в основу исследования Ш. Ф. Мехтиева.

Его книга вызывает понятный интерес как первая появившаяся в печати монография по генезису азербайджанской нефти, основанная на большом аналитическом материале.

Работа состоит из шести глав.

Первая и вторая главы посвящены геологическому строению территории Азербайджа-

на и условиям залегания нефти. Они носят вводный характер, и их объем (45 стр.) невелик по сравпснию с общим объемом книги (318 стр.). В этих главах использованы новейшие данные по стратиграфии и тектонике Азербайджана. Особое место уделяется разрсзу, фациальным особенностям и генезису продуктивной толщи.

Третья глава — «Краткая геохимическая характеристика различных комплексов осадочных пород Азербайджана» (150 стр.) — является центральным исследовательским ядром монографии. После обзора геохимических исследований в Азербайджане и критического рассмотрения существующих общих взглядоп по вопросам битуминозности аптор описывает избранную им методику аналити-

ческой работы.

Далее следует изложение фактического материала. С 1951 по 1955 г. было исследовано 2416 образцов; в большинстве из них опредслялось процентное содержание битумов, а в некоторых их компонентный состав. Из продуктивной толщи было проанализировано 702 образца, из понтического яруса 13, из днатомовой спиты и чокракского горизонга 12, из сармата 17, из майкопской свиты 509. из мела 695, из юры 362 и из девона (опорная скважина на г. Велидаг в Нахичеванской АССР) 106 образнов. Читатель может следить за всеми построениями и умозаключениями автора, оценивая степень их достоверности и сличая с фактами, так как в работе приведены полные таблицы аналитических данных. Обработка этих таблиц позволила автору составить диаграммы, на которых показана связь распределения битумов по их процентному еодержанию с положением слоев в стратиграфических разрезах и с их литологическим составом. Такне диаграммы составлены для девона, юры, мела, фораминиферовых слоев и майкопской свиты, чокрака, сармата, диатомовых слоев, понтического и апшеронского ярусов, а также для продуктивпой толщи и ее отдельных свит (ПК, КС, НКП, НКТ и т. д.). По тому же принципу составлена диаграмма распределения битумов с учетом их компонентного состава для всего разреза от нижней юры до апшеронского яруса. Перечисленные днаграммы носят обобщенный характер. Для прослеживания особенностей распределения битумоп в конкретных условиях составлены днаграммы распределения битумоп и их комионентного состава по отдельным площадям: Мир Башпр, Казан-Булаг и Шемаха (фораминиферовые слои и майкопская свита), Ясамальская Долина, Кирмаку, о. Артема, о. Жилой (продуктив-ная толща). Основываясь на полученном матернале, автор в четвертой глапе подробно н

критически рассматривает вопрос о пефтематеринских толщах Азербайджана, в пятой главе намечает и обосновывает пути дальнейших исследований ио генезису нефтиных залежей и миграции нефти и, наконец, в шестой главе рассматривает генезис вод месторождений Азербайджана, причем устанавливаются очень интересные параллели в стратиграфическом распредслении вод (по степени минсрализации и химизма) и битумов.

Анализ больного количества данных при пх надлежащей обработке позволил Ш. Ф. Мехтиеву сделать ряд выводов, пажных для понимания генезиса нефтяных залежей продуктивной толщи. Так, им устапавливается, что образование нефтяных битумов происходит преимущественно в тонкодисперс-

пых породах в восстановительных условиях. Распределение битумоп в породах юры, мела, майкопа и сармата отличается от распределения их в продуктипной толще.

Компонснтный состав битумов древних (старше продуктивной) толщ не изменяется закономерно по вертикальному разрезу, а зависит лишь от литологии вмещающих пород; битумы носят преимущественно маслянистый характер. Ш. Ф. Мсхтисв делает отсюда вывод, что битумы этих толщ не связаны с миграцией углеводородов из нижележащих отложений, а генетически связаны с теми породами, п которых образовались. Возможными нефтематеринскими свитами Ш. Ф. Мехтиев считает породы средней юры, нскоторые глинистые свиты мсловой системы в интервале нижний альб — нижний турои, майкопскую и диатомовую свиты.

В продуктивной толще битуминозность закономерно изменяется по разрезу: содержание асфальтово-смолистых компонентоп возрастает кверху, что связывается с миграцией снизу. Продуктивная толща в целом по Ш. Ф. Мехтиеву не является нефтематеринской. «В ее нижнем отделе наряду с аллотигенными присутствуют и аутигенные битумы, при этом последних значительно меньше, чем нервых. Это позволяет считать, что в нижнем отделе продуктивной толщи образовалась нефти, содержащейся в этой толще в целом».

Работа Ш. Ф. Мехтисва основана на большом количестве фактов, приведенных в кииге, что способствует убедительности научных выводов автора. Выводы этой работы должны учитываться при поисках нефти в нижнетретичных и мсзозойских отложениях Азербайджана. Книга Ш. Ф. Мехтисва представляет определенный вклад в развитие геологии пефти и совершенствование се иаучноисследовательской методики.

Ю. Косыгин

Редактор С. П. Максимов

Технический редактор А. В. Трофимов

Корректор Г. В. Николаева

Подписано к печати 27/1V 1957 г. Т-02875. Формат 70×1081/₁₆. Тираж 2000 экз.

Заказ 274.

Усл. печ. л. 6,16. Уч.-изд. л. 6,93. Цена 6 руб.

Гостоптехиздат, Москва, К-12, Третьяковский проезд, 1/19. Типография "Красный Печатник". Лепинград, Московский проспект, 91, 6 руб.

ОТКРЫТА ПОДПИСКА НА ВТОРОЕ ПОЛУГОДИЕ 1957 ГОДА

на ежемесячные журналы Гостоптехиздата

ГЕОЛОГИЯ НЕФТИ

орган Министерства нефтяной промышленности СССР Подписная цена: на 6 мес. — 36 руб., на 3 мес. — 18 руб.

НЕФТЯНОЕ ХОЗЯЙСТВО

орган Министерства нефтяной промышленности СССР Подписная цена: на 6 мес. — 36 руб., на 3 мес. — 18 руб.

ХИМИЯ И ТЕХНОЛОГИЯ ТОПЛИВА И МАСЕЛ

орган Министерства нефтяной промышленности СССР и Президиума Академии Наук СССР Подписная цена: на 6 мес. — 36 руб., на 3 мес. — 18 руб.

ГАЗОВАЯ ПРОМЫШЛЕННОСТЬ

орган Главгаза СССР, Министерства номмунального хозяйства РСФСР и Научно-технического общества энергетической промышленности Подписная цена: на 6 мес. — 24 руб., на 3 мес. — 12 руб.

СТРОИТЕЛЬСТВО ПРЕДПРИЯТИЙ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ

орган Министерства строительства предприятий нефтяной промышленности
Подписная цена: на 6 мес. — 24 руб., на 3 мес. — 12 руб.

НЕФТЯНИК

массовый производственно-технический журнал

орган Министерства нефтяной промышленности СССР и ЦК профсоюза рабочих нефтяной промышленности СССР Подписная цена: на 6 мес. — 18 руб., на 3 мес. — 9 руб.

ЭНЕРГЕТИЧЕСКИЙ БЮЛЛЕТЕНЬ

орган Министерства нефтяной промышленности СССР Подписная цена: на 6 мес. — 18 руб., на 3 мес. — 9 руб.

Подписка принимается в городских отделах "Союзпечать", конторах, отделениях и агентствах связи, в пунктах подписки на заводах, промыслах и стройках, в учебных заведениях, учреждениях и организациях.