ЛАБОРАТОРНАЯ РАБОТА 6 ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ и РЕШЕНИЕ ЗАДАЧИ КОШИ

Теоретический материал к данной теме содержится в [1, главы 12 и 13].

Варианты заданий к задачам 6.1–6.2 даны в ПРИЛОЖЕНИИ 6.А.

ТРЕБОВАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ 6

Задачи выполняются с помощью Python.

Задача 6.1. Исследовать поведение погрешностей при численном дифференцировании функции.

порядок решения задачи:

- 1. Взять функцию из задачи 5.2. Выбрать фиксированную точку с на отрезке [a,b] и вычислить значения производных, указанных в индивидуальном варианте в точке с.
- 2. Задать массив шагов $h_k = 10^{-k}$, k=1,...15, и вычислить массивы приближенных значений производных в точке c по формуле (1) и по формуле из индивидуального варианта (для примера взята формула (4)):

$$d1_k = \frac{f(c+h_k) - f(c)}{h_k} \quad (1) \quad \text{if} \quad d4_k = \frac{f(c-2h_k) - 8f(c-h_k) + 8f(c+h_k) - f(c+2h_k)}{12h_k} \quad (4) ,$$

k=1,...15. Вычислить также массивы значений погрешностей: $\Delta 1_k = \left| d1_k - f'(c) \right|$ и $\Delta 4_k = \left| d4_k - f'(c) \right|$

- 3.По полученным таблицам результатов найти оптимальное значение шага дифференцирования для каждого метода. Результаты вычислений внести в первую часть таблицы (см. ПРИЛОЖЕНИЕ 6.В).
- 4. Проделать те же вычисления для производной более высокого порядка, указанной в индивидуальном варианте. Найти оптимальное значение шага дифференцирования, результаты внести во вторую часть таблицы (см. ПРИЛОЖЕНИЕ 6.В).
- 5. По полученным данным построить графики погрешностей
- 6. Вывести оценку погрешности указанной в индивидуальном варианте формулы.
- 7. Оформить отчет по работе.

Задача 6.2. Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) 1 порядка с точностью $\varepsilon = 10^{-6}$.

порядок решения задачи:

1. Найти аналитическое решение задачи 24 из РЗ.

- 2.Составить программу вычисления решения методом Эйлера с заданной точностью, используя правило Рунге. Найти решение задачи с точностью $\varepsilon = 10^{-6}$, число точек N и шаг, при котором точность достигается. Построить график решения.
- 3. Составить программу вычисления решения с заданной точностью методом индивидуального варианта. Найти решение задачи с заданной точностью, число точек N и шаг, при котором точность достигается. Построить график решения задачи.
- 4. Сравнить полученные результаты.
- 5. Оформить отчет по задаче

ПРИЛОЖЕНИЕ 6.А

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 6

ВНИМАНИЕ! Номер варианта N для лабораторных работ вычисляется по следующей формуле:

- 1) N = I для группы A-5-19;
- 2) N = 25 + I для группы A-13a-19
- 3) N = 40 + I для группы A-136-19
- 4) N = 55 I для группы A-14-19
- 5) N = 41 I для группы A-16-19

Таблица вариантов к задаче 6.1.

Варианты	Методы решения	
N = 1,8,15,22,	f'(x): центральная разностная производная (3)	
29,36,43,50,57	f''(x): формула 4-го порядка точности (11)	
	Для четных вариантов вывод формулы (3),для нечетных вариантов вывод формулы (3a)	
N =	f(x): односторонняя разностная производная второго порядка	
2,9,16,23,30,37,44,51,58	(4); $f''(x)$: формула (9)	
	Для четных вариантов вывод формулы (9), для нечетных вариантов вывод формулы (4a)	
<i>N</i> = 3,10,17,24,31,38,45,52,59	f(x): левая разностная производная (2)	
	f'(x): центральная производная второго порядка (6)	
	Для четных вариантов вывод формулы (6),для нечетных вариантов вывод формулы (6а)	
N =	f(x): односторонняя разностная производная второго порядка	
4,11,18,25,32,39,46,53,60	(5)	
	f''(x): формула 4-го порядка точности (11)	
	Для четных вариантов вывод формулы (5),для нечетных	

	вариантов вывод формулы (5а)	
N = 5,12,19,26,33,40,47,54	f(x): левая разностная производная (2)	
	f'(x): односторонняя правая производная второго порядка (7)	
	Для четных вариантов вывод формулы (7),для нечетных вариантов вывод формулы (2a)	
N = 6,13,20,27,34,41,48,55	f'(x): центральная разностная производная (3)	
	f'(x): односторонняя левая производная второго порядка (8)	
	Для четных вариантов вывод формулы (8),для нечетных вариантов вывод формулы (8a)	
N =	f(x): односторонняя разностная производная второго порядка	
7,14,21,28,35,42,49,56	(4);	
	f''(x): центральная производная второго порядка (10)	
	Для четных вариантов вывод формулы (10),для нечетных вариантов вывод формулы (4)	

Таблица вариантов к задаче 6.2

Номер варианта	Метод решения задачи Коши		
1, 14, 27,40,53	Эйлера-Коши		
2, 15, 28,41,54	Усовершенствованный Эйлера		
3, 16, 29,42,55	Рунге-Кутты 3 порядка I		
4, 17, 30,43,56	Рунге-Кутты 2 порядка (I)		
5, 18, 31,44,57	Метод разложения по Тейлору 2 порядка		
6, 19, 32,45,58	Рунге-Кутты 3 порядка III		
7, 20, 33,46,59	Рунге-Кутты 2 порядка (II)		
8, 21, 34,47,60	Экстраполяционный метод Адамса 2 порядка		
9, 22, 35,48,61	Формула Гира 2-го порядка точности		
10, 23, 36,49,62	Формула Гира 3-го порядка точности		
11,24,37,50,63	Интерполяционный метод Адамса 2-го порядка		
12,25,38,51,64	Интерполяционный метод Адамса 3-го порядка		
13,26,39,52,65	Экстраполяционный метод Адамса 3-го порядка		

ПРИЛОЖЕНИЕ 6.В

Задача 6.1. Пример заполнения результатов в задаче нулевого варианта.

ФИО Группа Номер варианта 0

Функция:
$$f(x) = \frac{x-1}{x+1}$$
; $f'(x) = \frac{2}{(x+1)^2}$; $f''(x) = -\frac{4}{(x+1)^3}$;

Значения производных: f'(c) = 0.125 f''(c) = -0.0625

$$(1) f'(x) \approx \frac{f(x+h) - f(x)}{h}; \qquad (4) f'(x) \approx \frac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h}.$$

$$(11) f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

(11)
$$f''(x) \cong \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

f'(c)	Первый результат	Наилучший результат	Последний результат
	при шаге $h = 10^{-1}$	при шаге $h=$	при шаге $h = 10^{-15}$
Формула	$d1_1 = 0.122$		d1 ₁₅ = 0.111
(1)	$\Delta l_1 = 0.003$		$\Delta l_{15} = 0.014$
Формула	$d1_1 = 0.122$		d1 ₁₅ = 0.111
(4)	$\Delta l_1 = 0.003$		$\Delta 1_{15} = 0.014$
f''(c)	Первый результат	Наилучший результат	Последний результат
	при шаге $h = 10^{-1}$	при шаге $h=$	при шаге $h = 10^{-15}$
Формула	$d1_1 = -0.06254$		$d1_{15} = 0$
(11)	$\Delta l_1 = 0.00003$		$\Delta l_{15} = 0.0625$

ПРИЛОЖЕНИЕ 6.С

Формулы численного дифференцирования первого порядка точности

(1)
$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
; остаточный член (1a) $R = \frac{M_2}{2}h$.

(2)
$$f'(x) \approx \frac{f(x) - f(x-h)}{h}$$
; остаточный член (2a) $R = \frac{M_2}{2}h$.

Формулы численного дифференцирования второго порядка точности

- (3) Центральная разностная производная $f'(x) \approx \frac{f(x+h) f(x-h)}{2h}$;
- (3a) остаточный член $R = \frac{M_3}{6}h^2$.

Односторонние формулы численного дифференцирования второго порядка:

(4)
$$f'(x) \approx \frac{-3 f(x) + 4 f(x+h) - f(x+2h)}{2h}$$
; остаточный член (4a) $R = \frac{M_3}{3} h^2$.

(5)
$$f'(x) \approx \frac{f(x-2h)-4f(x-h)+3f(x)}{2h}$$
; остаточный член (5a) $R = \frac{M_3}{3}h^2$.

- (6) Формула вычисления **второй производной** $f''(x) \cong \frac{f(x+h)-2f(x)+f(x-h)}{h^2};$
- (6а) остаточный член $R = \frac{M_4}{12} h^2$.
- (7) одностороння правая производная для вычисления второй производной $f''(x) \cong \frac{2f(x) 5f(x+h) + 4f(x+2h) f(x+3h)}{h^2}; \quad \text{(7a)} \quad \text{остаточный член } R = \frac{11M_4}{12}h^2.$
- (8) одностороння левая производная для вычисления второй производной $f''(x) \cong \frac{2f(x) 5f(x h) + 4f(x 2h) f(x 3h)}{h^2}; \qquad \textbf{(8a) остаточный член } R = \frac{11M_4}{12}h^2.$
- (9) формула для вычисления первой производной четвёртого порядка точности

$$f'(x) \approx \frac{f(x-2h) - 8 f(x-h) + 8 f(x+h) - f(x+2h)}{12h}$$
. (9a) остаточный член $R = \frac{M_5}{30} h^4$.

- (10) формула для вычисления **третьей производной** второго порядка точности $f'''(x) \cong \frac{f(x+2h)-2\,f(x+h)+2\,f(x-h)-f(x-2h)}{2\,h^3}; \ \ \textbf{(10a)} \quad \textbf{остаточный член} \quad R = \frac{M_5}{4}\,h^2\,.$
- (11) формула для вычисления второй производной четвёртого порядка точности $f''(x) \approx \frac{-f(x-2h)+16f(x-h)-30f(x)+16f(x+h)-f(x+2h)}{12h^2}.$
- (11а) остаточный член $R = \frac{M_5}{4} h^4$.
- (12) формула для вычисления третьей производной четвёртого порядка точности $f'''(x) \cong \frac{-f(x+3h)+8f(x+2h)-13f(x+h)+13f(x-h)-8f(x-2h)+f(x-3h)}{8h^3};$
- (12a) остаточный член $R = \frac{M_5}{4} h^4$.

приложение 6.D

I. Правило Рунге практической оценки погрешности решения задачи Коши для ОДУ 1-го порядка (правило двойного пересчета):

 $y(t_i) - y_i^{h/2} \approx \varepsilon_i^h$, где $\varepsilon_i^h = \frac{y_i^{h/2} - y_i^h}{2^p - 1}$, i = 1,...,N, p — порядок метода (вычисления ведутся в узлах сетки t_i).

Уточненное решение вычисляется по формуле: $y_{i, y_{1004H}} = y_{i}^{h/2} + \varepsilon_{i}^{h}, \quad i = 1,..., N.$

II. Расчетные формулы методов решения задачи Коши для ОДУ 1-го порядка:

1. Метод разложения по формуле Тейлора:

2-го порядка:
$$\mathbf{y}_{i+1} = \mathbf{y}_i + h \cdot f(t_i, y_i) + \frac{h^2}{2} \cdot (f'_t(t_i, y_i) + f'_y(t_i, y_i) \cdot f(t_i, y_i));$$

3-го порядка:
$$\mathbf{\textit{y}}_{i+1} = \mathbf{\textit{y}}_i + h \cdot f + \frac{h^2}{2!} \cdot \left(f'_t + f'_y \cdot f \right) + \frac{h^3}{3!} \cdot \left(f''_{tt} + 2 f''_{ty} \cdot f + f'_t \cdot f'_y + (f'_y)^2 \cdot f + f''_{yy} \cdot f^2 \right);$$

(в этих формулах значения функции f(t,y) и её частных производных берутся в точке $M_i(t_i,y_i)$).

2. Модифицированный метод Эйлера 2-го порядка (метод Эйлера-Коши):

$$\overline{y}_{i+1} = y_i + h \cdot f(t_i, y_i), \quad y_{i+1} = y_i + \frac{h}{2} \cdot [f(t_i, y_i) + f(t_{i+1}, \overline{y}_{i+1})].$$

3. Усовершенствованный метод Эйлера 2 порядка:

$$\mathbf{y}_{i+1} = \mathbf{y}_i + hf\left(t_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}f(t_i, \mathbf{y}_i)\right).$$

4. Метод Рунге-Кутты 3-го порядка (вариант I): $y_{i+1} = y_i + \frac{h}{6}(k\mathbf{1} + 4 \cdot k\mathbf{2} + k\mathbf{3})$, где

$$k1 = f(t_i, y_i), k2 = f\left(t_i + \frac{h}{2}, y_i + h\frac{k1}{2}\right), k3 = f(t_i + h, y_i - h \cdot k1 + 2h \cdot k2).$$

5. Метод Рунге-Кутты 3-го порядка (вариант II): $y_{i+1} = y_i + \frac{h}{4}(k\mathbf{1} + 3 \cdot k\mathbf{3})$, где

$$k1 = f(t_i, y_i), k2 = f\left(t_i + \frac{h}{3}, y_i + h\frac{k1}{3}\right), k3 = f\left(t_i + \frac{2}{3}h, y_i + h\frac{2}{3}k2\right).$$

6. Метод Рунге-Кутты 3-го порядка (вариант III): $y_{i+1} = y_i + \frac{h}{9}(2 \cdot k\mathbf{1} + 3 \cdot k\mathbf{2} + 4 \cdot k\mathbf{3}),$ где

$$k1 = f(t_i, y_i), k2 = f\left(t_i + \frac{h}{2}, y_i + h\frac{k1}{2}\right), k3 = f\left(t_i + \frac{3}{4}h, y_i + h\frac{3}{4}k2\right).$$

7. Метод Рунге-Кутты 4-го порядка: $y_{i+1} = y_i + \frac{h}{6}(k\mathbf{1} + 2 \cdot k\mathbf{2} + 2 \cdot k\mathbf{3} + k\mathbf{4})$, где

$$k1 = f(t_i, y_i), k2 = f\left(t_i + \frac{h}{2}, y_i + h\frac{k1}{2}\right), k3 = f\left(t_i + \frac{h}{2}, y_i + h\frac{k2}{2}\right), k4 = f(t_i + h, y_i + h \cdot k3).$$

8. Экстраполяционный метод Адамса 2-го порядка:

$$\mathbf{y}_{i+1} = \mathbf{y}_i + \frac{h}{2} \cdot [3f(t_i, y_i) - f(t_{i-1}, y_{i-1})].$$

9. Экстраполяционный метод Адамса 3-го порядка:

$$\mathbf{y}_{i+1} = \mathbf{y}_i + \frac{h}{12} \cdot [23 f(t_i, y_i) - 16 f(t_{i-1}, y_{i-1}) + 5 f(t_{i-2}, y_{i-2})].$$

10. Экстраполяционный метод Адамса 4-го порядка:

$$\mathbf{y_{i+1}} = \mathbf{y_i} + \frac{h}{24} \cdot \left[55 f(t_i, y_i) - 59 f(t_{i-1}, y_{i-1}) + 37 f(t_{i-2}, y_{i-2}) - 9 f(t_{i-3}, y_{i-3}) \right].$$

11. Интерполяционный метод Адамса 2-го порядка:

$$y_{i+1} = y_i + \frac{h}{2} (f_i + f_{i+1})$$

12. Интерполяционный метод Адамса 3-го порядка:

$$y_{i+1} = y_i + \frac{h}{12} (5f_{i+1} + 8f_i - f_{i-1})$$

13. Метод Гира 2-го порядка:

$$\frac{3y_{n+1} - 4y_n + y_{n-1}}{2h} = f(t_{n+1}, y_{n+1})$$

14. Метод Гира 3-го порядка:

$$\frac{11y_{n+1} - 18y_n + 9y_{n-1} - 2y_{n-2}}{6h} = f(t_{n+1}, y_{n+1})$$

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копчёнова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994