UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS SECRETARIA ACADEMICA

PROGRAMA ASIGNATURA

I. IDENTIFICACION

Nombre: ANALISIS FUNCIONAL Y APLICACIONES I: FUNCIONALES Y OPERADORES LINEALES	Código: 525401
Horas : 3 (teoría), 2 (práctica), 8 (trabajo académico). Modalidad : Presencial. Calidad : Obligatoria. Tuición : Departamento de Ingeniería Matemática. Decreto (o año) de creación: 2001-1 Ultima actualización : 2003-1.	Créditos : 4. Régimen : Semestral. Prerrequisitos : 525302. Correquisitos : No tiene. Semestre : 8°.

II. DESCRIPCION

Asignatura que describe los conceptos y resultados sobre funcionales y operadores lineales en espacios de Hilbert y Banach, mostrando, además, diversas aplicaciones.

III. OBJETIVOS

Objetivos Generales

Conocer, comprender y aplicar los resultados básicos del Análisis Funcional.

Objetivos Específicos

Conocer y comprender los principales resultados y teoremas fundamentales del Análisis Funcional dentro del contexto de espacios de Banach y espacios de Hilbert. Ilustrar la utilidad de estos conocimientos a través de diversas aplicaciones en otras áreas de la matemática, tales como ecuaciones diferenciales, ecuaciones integrales, optimización, teoría de aproximaciones, etc., y también en disciplinas afines.

IV. CONTENIDOS

- **Introducción**: ejemplos de motivación, conceptos básicos de espacios normados, espacios de Banach, espacios de Hilbert.
- Dualidad: funcionales lineales acotados, Teorema de la Proyección, Teorema de representación de Riesz, Teorema de Hahn-Banach, ejemplos de espacios duales, aplicación a ecuaciones diferenciales.
- Operadores Lineales Acotados: propiedades generales, operador adjunto, anuladores, Teorema de la Aplicación Abierta, Teorema de la Inversa Acotada, operadores cerrados, Teorema del Grafo Cerrado; aplicación a teoría de aproximaciones; operadores de rango cerrado, resolubilidad de ecuaciones lineales; acotación uniforme, Teorema de Banach-Steinhaus.
- **Problemas Variacionales**: Lema de Lax-Milgram, Teorema de Stampachia, problemas con restricciones, Teoría de Babuska-Brezzi, problema de Stokes.
- Reflexividad y Separabilidad: conceptos básicos, resultados fundamentales, convergencia débil, convergencia débil*, compacidad débil; aplicación a problemas de optimización.
- Operadores Compactos: resultados preliminares, operadores de rango finito, operador compacto, alternativa de Fredholm, aplicación a ecuaciones diferenciales y a ecuaciones integrales, adjunto de un operador compacto, desigualdad de Garding, compacidad y convergencia débil, aplicación a la ecuación de Navier-Stokes.

 Elementos de Teoría Espectral: Conjunto resolvente y espectro, propiedades espectrales básicas de operadores en espacios de Banach y Hilbert, teoría espectral de operadores compactos y autoadjuntos. Ejemplo de los operadores de Sturm-Liouville y de Green, operadores integrales de Hilbert-Schmidt.

V. METODOLOGIA DE TRABAJO

Sesiones teóricas y prácticas. Se incentiva permanentemente la participación del alumno a través de preguntas y comentarios, con el objeto de maximizar la comprensión de las materias tratadas en las clases.

VI. EVALUACION

De acuerdo con el Reglamento interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.

VII. BIBLIOGRAFIA

- Brezis, H. Analyse Fonctionnelle. Théorie et Applications. Masson, 1993.
- Dautray, R. and Lions, J. L. Mathematical Analysis and Numerical Methods for Science and Technology, Vols. 2-4. Springer Verlag, 1990.
- Friedman, A. Foundations of Modern Analysis. Dover Publications, 1982.
- Schechter, M. Principles of Functional Analysis. Academic Press, 1971.
- Siddiqi, A. H. Functional Analysis with Applications. Tata Mc Graw-Hill Publishing Company Ltd., 1986.
- Kreiszig, E. Introductory Functional Analysis with Applications. Wiley, 1978.
- Limaye, B. V. Functional Analysis. Wiley, 1981
- Bachman and Narici. Functional Analysis. Academic Press, 1966.
- Oden, J. T. Applied Functional Analysis. Prentice-Hall, 1979.
- Wouk, A. A Course of Applied Functional Analysis. Wiley, 1979.
- Groetsch, Ch. Elements of Applicable Functional Analysis. Dekker, 1980.
- Swartz, Ch. An Introduction to Functional Analysis. Dekker, 1992.
- Oden, J. T. and Demkowicz. Applied Functional Analysis. CRS Press, 1996
- Aubin, J. P. Applied Functional Analysis. Wiley-Interscience, 1979.
- Giles, J. Introduction to the Analysis of Normed Linear Spaces. Cambridge, 1999.
- **Pedersen, M.** Functional Analysis in Applied Mathematics and Engineering. Chapman and Hall/CRC, 1999.

AGS/GGP/HMM/CPW/aoa. Noviembre 2003.