AUTÓMATOS E LINGUAGENS FORMAIS

Lic. Ciências da Computação Lic. Matemática

Exercícios - Autómatos finitos

1. Considere o autómato finito $\mathcal{A} = (\{1,2\}, \{a,b\}, \delta, 1, \{2\})$ onde δ é a função definida pela tabela abaixo.

δ	1	2
a	{2}	{2}
b	{1}	{1}

- a) Represente o autómato \mathcal{A} através de um grafo.
- b) Dê exemplos de palavras aceites por \mathcal{A} e de palavras rejeitadas por \mathcal{A} .
- c) Descreva a linguagem reconhecida pelo autómato A.
- 2. Considere o autómato $\mathcal{A}=(Q,A,\delta,i,F)$ onde $Q=\{1,2,3,4\},\ A=\{a,b\},\ i=1,$ $F=\{4\}$ e o conjunto de transições é definido pela função de transição δ definida pela tabela seguinte:

δ	1	2	3	4
a	$\{1, 2\}$	{4}	Ø	{4}
b	$\{1, 3\}$	Ø	{4}	{4}

- (a) Represente o autómato \mathcal{A} através de um grafo.
- (b) Dê exemplos de palavras aceites por \mathcal{A} e de palavras rejeitadas por \mathcal{A} .
- (c) Descreva a linguagem reconhecida pelo autómato A.
- (d) Classifique o autómato.
- 3. Seja L a linguagem sobre o alfabeto $\{a,b\}$ constituída pelas palavras que não têm aaa como prefixo.
 - (a) Mostre que L é uma linguagem reconhecível.
 - (b) Para cada uma das expressões regulares seguintes, diga, justificando, se a expressão representa L ou não:

i.
$$b^*ab^*ab^+(a+b)^*$$
;

ii.
$$(\varepsilon + a + a^2)(\varepsilon + b)(a + b)^*$$
;

iii.
$$\varepsilon + a + a^2 + (b + ab + a^2b)(a + b)^*$$
;

iv.
$$(b + ab + a^2b)^*$$
.

- 4. Considere o alfabeto $A = \{a, b, c\}$.
 - (a) Indique um autómato finito que reconheça o conjunto de todas as palavras sobre A que verificam:
 - i. ab é um fator; ii. ab não é fator; iii. existe uma única ocorrência de ab.
 - (b) Identifique a tabela das transições de cada um dos autómatos que desenhou.
 - (c) Classifique os autómatos que desenhou.
 - (d) Para cada linguagem da alínea anterior, indique uma expressão regular que a represente.
- 5. Considere o autómato finito $\mathcal{A} = (\{1, 2, 3, 4\}, \{a, b\}, \delta, 1, \{3\})$ em que a função de transição δ é definida pela tabela abaixo.

δ	1	2	3	4
a	{4}	{3}	Ø	{4}
b	{2}	{2}	{2}	{1}

De entre as seguintes opções escolha a que completa a frase corretamente:

A linguagem reconhecida pelo autómato \mathcal{A} é

(i)
$$L(\mathcal{A}) = \mathcal{L}((a+b)*b(ab+b)*a)$$

$$\text{(i) }L(\mathcal{A})=\mathcal{L}((a^+b)^*b(ab+b)^*a) \\ \text{(ii)}L(\mathcal{A})=\{u\in\{a,b\}^*\colon aa\text{ ou }bb\text{ s\~ao fatores de u}\}$$

(iii)
$$L(A) = \mathcal{L}((a^+b)^* + (b^+a)(ba)^*)$$

(iii)
$$L(A) = \mathcal{L}((a^+b)^* + (b^+a)(ba)^*)$$
 (iv) $L(A) = \{u \in \{a, b\}^* : ba \text{ \'e fator de } u\}$

- 6. Use o Lema da Iteração para provar que não são reconhecíveis as seguintes linguagens sobre o alfabeto $A = \{a, b\}.$
 - (a) $\{a^m b^{2m} \mid m \in \mathbb{N}\}.$

(b)
$$\{w^2 \mid w \in A^*\}.$$

(c)
$$\{w \in A^* \mid w^I = w\}.$$

(d)
$$\{a^p \mid p \in \mathbb{N} \text{ e } p \text{ \'e primo}\}.$$

(e)
$$\{a^n b^{f(n)} \mid n \in \mathbb{N}\}$$
 em que $f : \mathbb{N} \to \mathbb{N}$ é uma função injetiva.

7. Use o Lema da Iteração para provar que não são reconhecíveis as seguintes linguagens sobre o alfabeto $A = \{a, b, c\}.$

(a)
$$\{a^n b^2 c^n \mid n \in \mathbb{N}\}.$$
 (b) $\{a^i b^j c^k \mid j = i + k \land i, j, k \in \mathbb{N}_0\}.$

8. Considere-se $A=\{a,b\}$ e $L=\{a^nb^m: m\geq n\geq 0\}$. Sejam $n\in\mathbb{N}$, e $u=a^nb^n$ uma palavra de L. Qualquer que seja o prefixo xy de u tal que $|xy| \le n$ e $y \ne \varepsilon$, tem-se que $x=a^i,\,y=a^j$ com $i+j\leq n,\,i\geq 0$ e $j\geq 1$. Então $|u|\geq n,\,u=xyz$ com $z=a^{n-i-j}b^n$. Se k=2, então $xy^kz=a^{n+j}b^n$ pelo que xy^kz não é uma palavra de L.

De entre as afirmações abaixo diga qual é a afirmação verdadeira.

- (i) Com base no Lema da Iteração, a argumentação apresentada não permite concluir que a linguagem L não é regular.
- (ii) Com base no Lema da Iteração, a argumentação apresentada prova que L é uma linguagem regular.
- (iii) Com base no Lema da Iteração, a argumentação apresentada prova que L não é uma linguagem regular.
- (iv) Com base no Lema da Iteração, só poderíamos concluir que L não é uma linguagem regular se, para qualquer $k \geq 0$, xy^kz não fosse uma palavra de L.

9. Considere-se $A = \{a,b\}$ e $L = \{a^nb^m : 0 \le n \le m\}$. Sejam $n \in \mathbb{N}$, m = 2n, e $u = a^nb^{2n}$. Qualquer que seja o prefixo xy de u tal que $|xy| \le n$ e $y \ne \varepsilon$, tem-se que $x = a^i$, $y = a^j$ com $i + j \le n$, $i \ge 0$ e $j \ge 1$. Se $z = a^{n-i-j}b^{2n}$, vem que u = xyz. Então, existem inteiros não negativos k tais que

$$xy^kz = a^i a^{kj} a^{n-i-j} b^{2n} = a^{n+(k-1)j} b^{2n}$$

e $n + (k-1)j \le m = 2n$. Em tais casos $xy^kz \in L$.

De entre as afirmações abaixo diga qual é a afirmação verdadeira.

- (i) Com base no Lema da Iteração, a argumentação apresentada não permite concluir que a linguagem L não é regular.
- (ii) Com base no Lema da Iteração, a argumentação apresentada prova que L é uma linguagem regular.
- (iii) Com base no Lema da Iteração, a argumentação apresentada prova que L não é uma linguagem regular.
- (iv) Com base no Lema da Iteração, só poderíamos concluir que L não é uma linguagem regular se, para qualquer $k \geq 0$, xy^kz não fosse uma palavra de L.
- 10. Considere o autómato \mathcal{A} representado abaixo. por

- (a) Mostre que acba é uma palavra aceite por \mathcal{A} e que acbab é uma palavra rejeitada por este autómato.
- (b) Escreva a tabela da função de transição δ do autómato \mathcal{A} .
- (c) Descreva a linguagem L(A).
- (d) Classifique \mathcal{A} .
- 11. Prove que é reconhecível a linguagem sobre o alfabeto $A = \{a, b, c\}$ formada por todas as palavras que se caraterizam por:
 - (a) ter um número par de ocorrências de a;
 - (b) ter comprimento par;
 - (c) ter pelo menos uma ocorrência de a e toda a ocorrência de b é seguida de uma ocorrência de c.
- 12. Considere os seguintes autómatos de alfabeto $\{a, b\}$.

- (a) Escreva a tabela da função de transição de cada um dos autómatos.
- (b) Classifique cada um dos autómatos quanto à completude, acessibilidade, co-acessibilidade e determinismo.
- (c) Verifique que os três autómatos são equivalentes.
- 13. Modele, através de um autómato finito, o funcionamento de uma máquina de venda de café. Suponha que a máquina apenas aceita moedas de 5, 10, e 20 cêntimos e que o café custa 30 cêntimos. Quando o valor das moedas depositadas atinge ou excede os 30 cêntimos a máquina fornece um café, mas não devolve troco nem o guarda para uma próxima compra.
- 14. Para cada uma das linguagens dos exercícios 4 e 11, indique um autómato determinista, acessível e completo que a reconheça.
- 15. Determine um autómato determinista, acessível e completo equivalente ao autómato do exercício 10.
- 16. Considere o autómato \mathcal{A} representado pelo seguinte grafo.

- (a) Descreva a linguagem L(A).
- (b) Determine um autómato determinista, completo e acessível equivalente a A.
- (c) Determine um autómato determinista, acessível e co-acessível equivalente a \mathcal{A} .
- 17. Sejam $A = \{a, b\}$ e $m \in \mathbb{N}$. Recorde que, dados $x, y \in \mathbb{N}_0$, diz-se que x é congruente com y módulo m, e escreve-se $x \equiv_m y$, se x e y têm o mesmo resto na divisão inteira por m (ou seja, se x y é um múltiplo de m).
 - (a) Mostre que a linguagem $L=\left\{u\in A^*\:|\:\:|u|_a=|u|_b\:\right\}$ não é reconhecível.
 - (b) Mostre que a linguagem $L_m = \left\{u \in A^* \mid \ |u|_a \equiv_m |u|_b \right\}$ é reconhecível.
- 18. Determine autómatos síncronos equivalentes a cada um dos seguintes autómatos assíncronos.

19. Determine autómatos assíncronos que reconheçam as seguintes linguagens sobre o alfabeto $A = \{a, b\}$.

- (a) $bab+a^*b+(ab)^*b^*$. (b) $(bab+a^*b+(ab)^*b^*)^*$. (c) $a(bab+a^*b+(ab)^*b^*)^*(a+b)^*$.
- 20. Considere os seguintes autómatos.

Em cada caso,

- (a) indique o sistema de equações lineares que lhe está associado; (sugestão para o autómato \mathcal{C} : adaptar o sistema associado fazendo $s_j = \varepsilon$ se fecho $_{\varepsilon}(j) \cap F \neq \emptyset$, e fazendo $s_j = \emptyset$ caso contrário)
- (b) resolva o sistema e determine uma expressão regular que represente a linguagem reconhecida pelo autómato.
- 21. Recorrendo à elaboração de autómatos e usando sistemas de equações lineares, determine uma expressão regular que represente cada uma das seguintes linguagens sobre o alfabeto $A = \{a, b, c\}$.
 - (a) $L_1 = \{ u \in A^* : |u|_b \le 1 \}.$
 - (b) $L_2 = \{u \in A^* : |u|_a \text{ \'e par}\}.$
 - (c) $L_3 = \{u \in A^* : u \text{ tem uma e uma só ocorrência do factor } ab\}.$
- 22. Sejam $A = \{a, b\}$ um alfabeto e $L = A^*(ab)^+$.
 - (a) Determine todos os resíduos da linguagem L.
 - (b) Deduza que L é reconhecível.
- 23. Considere o alfabeto $A = \{a, b\}$ e o autómato $\mathcal A$ descrito na figura abaixo.

- (a) Determine L(A), utilizando o método das equações lineares.
- (b) Determine o autómato minimal equivalente ao autómato dado.

24. Considere os autómatos \mathcal{A}_1 e \mathcal{A}_2 representados respetivamente por

e para cada um destes autómatos:

- (a) Calcule um autómato determinista completo e acessível que lhe seja equivalente.
- (b) Determine o autómato minimal que lhe é equivalente.
- 25. Considere o alfabeto $A = \{a, b, c\}$ e o autómato $\mathcal A$ descrito na figura abaixo.

- (a) Determine L(A), utilizando o método das equações lineares.
- (b) Indique um autómato determinista e acessível que reconheça $L(\mathcal{A})^*$.
- (c) Determine o autómato minimal que reconhece $L(A)^*$.
- 26. Considere o alfabeto $A = \{a, b, c\}$ e o autómato $\mathcal A$ descrito na figura abaixo.

- (a) Determine duas palavras de comprimento maior do que 7 que sejam aceites pelo autómato \mathcal{A} .
- (b) Determine L(A), utilizando o método das equações lineares.
- (c) Indique um autómato síncrono determinista que reconheça $L(\mathcal{A}) \cup \mathcal{L}(a^*b^*)$.

- 27. Seja $A = \{0, 1\}$. Considere as linguagens:
 - \bullet L_1 constituída pelas palavras sobre A que têm pelo menos um algarismo repetido;
 - L_2 constituída pelas palavras sobre A que têm um número par de ocorrências do símbolo 1 e um número ímpar de ocorrências do símbolo 0.
 - (a) Para cada uma das linguagens anteriores, determine um autómato que a reconhece.
 - (b) Para cada uma das linguagens anteriores, indique uma expressão regular que a represente.
 - (c) Determine o autómato minimal que reconhece L_1 :
 - i. determinando-o por minimização do autómato calculado anteriormente;
 - ii. usando a construção com base no cálculo de resíduos.
- 28. Seja $A = \{a, b, c\}$ um alfabeto. Considere os seguintes autómatos finitos:
 - (i) $\mathcal{B}_1 = (\{1,2,3,4\},A,\delta_1,1,\{2,3\})$ em que a função de transição δ_1 é definida pela tabela abaixo.

δ_1	1	2	3	4
a	$\{2,4\}$	{3}	Ø	{4}
b	{1}	Ø	Ø	{1}
c	{1}	Ø	Ø	{1}

(ii) $\mathcal{B}_2=(\{1,2,3,4\},A,\delta_2,1,\{3,4\})$ em que a função de transição δ_2 é definida pela tabela abaixo.

δ_2	1	2	3	4
a	{3}	{2}	{4}	{2}
b	{1}	{1}	{1}	{1}
c	{1}	{1}	{1}	{1}

(iii) $\mathcal{B}_3 = (\{1,2,3,4\}, A, \delta_3, 1, \{3,4\})$ em que a função de transição δ_3 é definida pela tabela abaixo.

δ_3	1	2	3	4
a	{1}	$\{1, 3\}$	{4}	Ø
b	{2}	{1}	Ø	Ø
c	{2}	{1}	Ø	Ø

De entre as afirmações seguintes selecione a afirmação verdadeira.

- (a) \mathcal{B}_2 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .
- (b) \mathcal{B}_1 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .
- (c) \mathcal{B}_1 , \mathcal{B}_2 e \mathcal{B}_3 são autómatos equivalentes.
- (d) \mathcal{B}_2 e \mathcal{B}_3 são autómatos e acessíveis e são equivalentes.
- 29. Considere o alfabeto $A = \{a, b, c\}$ e o autómato \mathcal{A} descrito na figura abaixo.

- (a) Determine uma palavra, que admite o factor c^2a^3c , reconhecida pelo autómato \mathcal{A} e verifique se \mathcal{A} é determinista.
- (b) Determine um autómato que seja determinista, completo e acessível e que reconheça a linguagem L(A).
- (c) Determine um autómato que seja determinista e acessível e que reconheça a linguagem $L(A)^*$.
- (d) Calcule $L(A)^*$.
- 30. Sejam A um alfabeto e $L \subseteq A^*$ uma linguagem reconhecível. Mostre que $A^* \setminus L$ é uma linguagem reconhecível.
- 31. Seja $A = \{a, b\}$. Mostre que são reconhecíveis as linguagens:
 - (a) $a^{-1}A^*abaA^*$;
- (b) $(abab)^{-1}A^*abaA^*$.
- 32. Sejam A um alfabeto, $u \in A^*$ e L uma linguagem sobre A. Supondo que L é reconhecível, mostre que $u^{-1}L$ é uma linguagem reconhecível.
- 33. Elabore uma pequena pesquisa de modo a responder às questões seguintes.
 - (a) Sejam A um alfabeto e L_1 e L_2 linguagens sobre A reconhecíveis. Mostre que:
 - i. $L_1 \cap L_2$ é uma linguagem reconhecível;
 - ii. $L_1 \setminus L_2$ é uma linguagem reconhecível.
 - (b) Seja $A = \{a, b, c\}$. Mostre que são reconhecíveis as linguagens:
 - i. K_1 constituída pelas palavras com um número par de ocorrências de a e que admitem bc como factor.
 - ii. K_2 constituída por todas as palavras que têm um número par de ocorrências de a e que não têm ca^2 como fator.