© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°14

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Mines-Ponts Maths2 MP 2013 – Quelques propriétés géométriques du groupe orthogonal

Notations et définitions

Soit E un espace vectoriel euclidien (préhilbertien réel de dimension finie). On note \langle , \rangle le produit scalaire de E et $\| \|$ la norme euclidienne associée. Si H est une partie de E , on appelle enveloppe convexe de H, notée conv(H), la plus petite partie convexe de E contenant H, c'est-à-dire l'intersection de tous les convexes de E contenant H.

Soit n un entier naturel supérieur ou égal à 2. On désigne par $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$ et si $A \in \mathcal{M}_n(\mathbb{R})$, on note A^T la matrice transposée de A et tr(A) la trace de A. On rappelle que le groupe orthogonal $O_n(\mathbb{R})$ de $\mathcal{M}_n(\mathbb{R})$ est l'ensemble des matrices U de $\mathcal{M}_n(\mathbb{R})$ telles que $UU^T = I$. On rappelle également qu'une matrice symétrique réelle est dite positive si ses valeurs propres sont positives ou nulles.

On pourra identifier \mathbb{R}^n et l'ensemble des matrices colonnes $\mathcal{M}_{n,1}(\mathbb{R})$, que l'on suppose muni du produit scalaire canonique, pour lequel la base canonique de \mathbb{R}^n est orthonormée. On note $\|\cdot\|_2$ la norme sur $\mathcal{M}_n(\mathbb{R})$ subordonnée à la norme euclidienne de \mathbb{R}^n : pour tout $A \in \mathcal{M}_n(\mathbb{R})$,

$$\|A\|_2 = \sum_{X \in \mathbb{R}^n, \|X\| = 1} \|AX\|$$

Les parties A., B., C. et D. sont indépendantes.

A. Produit scalaire de matrices

On rappelle que tr(A) désigne la trace de la matrice $A \in \mathcal{M}_n(\mathbb{R})$.

- 1 Montrer que pour toute base orthonormée (e_1, e_2, \dots, e_n) de \mathbb{R}^n , on a la formule $\operatorname{tr}(A) = \sum_{i=1}^n \langle Ae_i, e_i \rangle$.
- **2** Montrer que l'application $(A, B) \mapsto tr(A^T B)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, noté \langle , \rangle .

On note $\| \|_1$ la norme euclidienne associée à ce produit scalaire. L'attention du candidat est attirée sur le fait que $\mathcal{M}_n(\mathbb{R})$ est désormais muni de deux normes différentes $\| \|_1$ et $\| \|_2$.

Si A et B sont symétriques réelles positives, montrer que $\langle A, B \rangle \geq 0$. On pourra utiliser une base orthonormée de vecteurs propres de B.

© Laurent Garcin MP Dumont d'Urville

B. Décomposition polaire

Soit f un endomorphisme de E. On note A la matrice de f dans une base orthonormée de E, et on note f^* l'adjoint de f.

- Montrer que A^TA est une matrice symétrique réelle positive. Exprimer $||A||_2$ en fonction des valeurs propres de A^TA .
- **5** Montrer qu'il existe un endomorphisme auto-adjoint positif h de E tel que $f^* \circ f = h^2$.
- 6 Montrer que la restriction de h à Im h induit un automorphisme de Im h. On notera cet automorphisme \tilde{h} .
- Montrer que ||h(x)|| = ||f(x)|| pour tout $x \in E$. En déduire que Ker h et $(\operatorname{Im} f)^{\perp}$ ont même dimension et qu'il existe un isomorphisme v de Ker h sur $(\operatorname{Im} f)^{\perp}$ qui conserve la norme.
- **8** À l'aide de \tilde{h} et v, construire un automorphisme orthogonal u de E tel que $f = u \circ h$.
- En déduire que toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ s'écrit sous la forme A = US, où $U \in O_n(\mathbb{R})$ et S est une matrice symétrique positive.

On admet que si A est inversible, cette écriture est unique.

C. Projeté sur un convexe compact

Soit H une partie de E, convexe et compacte, et soit $x \in E$. On note

$$d(x, \mathbf{H}) = \inf_{h \in \mathbf{H}} \|x - h\|$$

- Montrer qu'il existe un unique $h_0 \in H$ tel que $d(x, H) = ||x h_0||$. On pourra utiliser pour h_0, h_1 dans H la fonction définie pour tout $t \in \mathbb{R}$ par la formule $q(t) = ||x th_0 (1 t)h1||^2$.
- Montrer que h_0 est caractérisé par la condition $\langle x h_0, h h_0 \rangle \le 0$ pour tout $h \in H$. On pourra utiliser la même fonction q qu'à la question précédente.

Le vecteur h_0 s'appelle projeté de x sur H.

D. Théorème de Carathéodory et compacité

Dans cette partie, on suppose que E est de dimension n. On dit que $x \in E$ est une combinaison convexe des p éléments $x_1, x_2, \dots, x_p \in E$ s'il existe des réels $\lambda_1, \lambda_2, \dots, \lambda_p$ positifs ou nuls tels que

$$x = \sum_{i=1}^{p} \lambda_i x_i$$
 et $\sum_{i=1}^{p} \lambda_i = 1$

Montrer que l'enveloppe convexe conv(H) d'une partie H de E est constituée des combinaisons convexes d'éléments de H.

On souhaite montrer que l'enveloppe convexe conv(H) est constituée des combinaisons convexes d'au plus n+1 éléments de H.

Soit $x = \sum_{i=1}^{p} \lambda_i x_i$ une combinaison convexe de $x_1, x_2, \dots, x_p \in H$ avec $p \ge n + 2$.

Montrer qu'il existe p réels non tous nuls $\mu_1, \mu_2, \dots, \mu_p$ tels que

$$\sum_{i=1}^{p} \mu_i x_i = 0 \qquad \text{et} \qquad \sum_{i=1}^{p} \mu_i = 0$$

On pourra considérer la famille $(x_2 - x_1, x_3 - x_1, \dots, x_p - x_1)$.

© Laurent Garcin MP Dumont d'Urville

En déduire que x s'écrit comme combinaison convexe d'au plus p-1 éléments de H et conclure que conv(H) est constituée des combinaisons convexes d'au plus n+1 éléments de H. On pourra considérer une suite de coefficients de la forme $\lambda_i - \theta \mu_i \ge 0$, $i \in \{1, 2, ..., p\}$ pour un réel θ bien choisi.

Si H est une partie compacte de E, montrer que conv(H) est compacte. On pourra introduire l'ensemble compact de \mathbb{R}^{n+1} défini par

$$\Lambda = \left\{ (t_1, \dots, t_{n+1}) \in \mathbb{R}^{n+1}, \ \forall i \in \{1, \dots, n+1\}, t_i \ge 0 \ \text{et} \ \sum_{i=1}^{n+1} t_i = 1 \right\}$$

E. Enveloppe convexe de $O_n(\mathbb{R})$

16 Montrer que l'enveloppe convexe conv $(O_n(\mathbb{R}))$ est compacte.

On note \mathcal{B} la boule unité fermée de $(\mathcal{M}_n(\mathbb{R}), \| \|_2)$.

Montrer que $conv(O_n(\mathbb{R}))$ est contenue dans \mathcal{B} .

On suppose qu'il existe $M \in \mathcal{B}$ telle que M n'appartient pas à $conv(O_n(\mathbb{R}))$. On note N le projeté de M sur $conv(O_n(\mathbb{R}))$ défini à la partie C. pour la norme $\| \|_1$, et on pose $A = (M - N)^T$. On écrit enfin A = US, avec $U \in O_n(\mathbb{R})$ et S symétrique réelle positive (question 9).

- **18** Montrer que pour tout $V \in \text{conv}(O_n(\mathbb{R}))$, $\text{tr}(AV) \leq \text{tr}(AN) < \text{tr}(AM)$. En déduire que tr(S) < tr(USM).
- 19 Montrer que $tr(MUS) \le tr(S)$. On pourra appliquer le résultat de la question 1.
- **20** Conclure : déterminer $conv(O_n(\mathbb{R}))$.

F. Points extrémaux

Un élément $A \in \mathcal{B}$ est dit extrémal dans \mathcal{B} si l'écriture $A = \frac{1}{2}(B + C)$, avec B, C appartenant à \mathcal{B} entraîne A = B = C. Dans cette partie, on cherche à déterminer l'ensemble des points extrémaux de \mathcal{B} .

- On suppose que $U \in O_n(\mathbb{R})$ s'écrit sous la forme $U = \frac{1}{2}(V + W)$, avec V, W appartenant à \mathcal{B} . Montrer que pour tout $X \in \mathbb{R}^n$, les vecteurs VX et WX sont liés. En déduire que U est extrémal dans \mathcal{B} . Soit A appartenant à \mathcal{B} mais n'appartenant pas à $O_n(\mathbb{R})$.
- Montrer que l'on peut écrire A sous la forme A = PDQ, où P et Q sont deux matrices orthogonales et où D est une matrice diagonale dont les éléments diagonaux d_1, d_2, \dots, d_n sont positifs ou nuls.
- Montrer que $d_i \le 1$ pour tout $i \in \{1, 2, ..., n\}$, et qu'il existe $j \in \{1, 2, ..., n\}$ tel que $d_j < 1$.
- **24** En déduire qu'il existe deux matrices A_{α} et $A_{-\alpha}$ appartenant à \mathcal{B} telles que $A = \frac{1}{2}(A_{\alpha} + A_{-\alpha})$. Conclure.