ЛАБОРАТОРНАЯ РАБОТА №3

МАКСИМИЗАЦИЯ ПОТОКА В СЕТЯХ СВЯЗИ

3.1 Цель работы

Изучить алгоритм максимизации потока на сети связи

В данной работе рассматривается задача определения максимального потока между двумя выделенными узлами связной сети. Каждая дуга сети обладает пропускными способностями в обоих направлениях, которые определяют максимальное количество потока, проходящего по данной дуге. Ориентированная (односторонняя) дуга соответствует нулевой пропускной способности в запрещенном направлении.

Пропускные способности c_{ij} сети можно представить в матричной форме. Для определения максимального потока из источника s в сток t применяются следующие шаги.

Шаг 1. Найти цепь, соединяющую s с t, по которой поток принимает положительное значение в направлении $s \to t$. Если такой цепи не существует, перейти к шагу 3. В противном случае перейти к шагу 2.

Шаг 2. Пусть c_{ij}^{-} (C_{ij}^{+}) — пропускные способности дуг цепи (s,t) в направлении $s \to t$ ($t \to s$) и

$$\theta = \min \left\{ c_{ij}^{-} \right\} > 0.$$

Матрицу пропускных способностей $\left(c_{ij}\right)$ изменить следующим образом:

- а) вычесть θ из всех c_{ij}^{-} ;
- б) прибавить θ ко всем $c_{ij}^{^+}$.

Заменить текущую c_{ij}^{-} матрицу на вновь полученную и перейти к шагу 1.

Операция «а» дает возможность использовать остатки пропускных способностей дуг выбранной цепи в направлении $s \to t$. Операция «б» восстанавливает исходные пропускные способности сети, поскольку уменьшение пропускной способности дуги в одном направлении можно рассматривать как увеличение ее пропускной способности в противоположном направлении.

Шаг 3. Найти максимальный поток в сети. Пусть $C = \|c_{ij}\| - ucxod$ ная матрица пропускных способностей, и пусть $C^* = \|c_{ij}^*\| - nocned$ няя матрица, получившаяся в результате модификации исходной матрицы (шаги 1 и 2). Оптимальный поток $X = \|x_{ij}\|$ в дугах задается как

$$x_{ij} = \begin{cases} c_{ij} - c_{ij}^{*}, & c_{ij} > c_{ij}^{*} \\ 0, & c_{ij} \le c_{ij}^{*} \end{cases}.$$

Максимальный поток из s в t равен

$$z = \sum_{i} x_{si} = \sum_{i} x_{tj}.$$

Заметим, что z есть сумма всех положительных 0, определенных на шаге 2. Таким образом, можно объяснить, почему используются положительные элементы матрицы $C-C^*$ для определения результирующего потока в направлении $s \to t$.

Рисунок 3.1

Пример. Рассмотрим сеть на рисунке 3.1 с данными пропускными способностями. Соответствующая матрица пропускных способностей C приведена в таблице 3.1.

Таблица 3. 1

		S	1	2	3	4	t
	S		10-	3	14	4	
	1	5+		5	9	5-	
	2	5	6		15		10
C=	3	12	7	10		7	2
	4	3	9+		8		13-
	T			3	4	5+	

Цепь
$$[s \to 1 \to 4 \to t]$$
 $\theta = \min\{10,5,13\}$.

В качестве исходной цепи можно выбрать $s \to 1 \to 4 \to t$. Таким образом, ячейки (s,1), (1,4) и (4,t) помечаются знаком (-), ячейки (1,s), (4,1) и (t,4) — знаком (+). Для данной цепи максимальный поток определяется как

$$\theta = \min\{c_{s1}, c_{14}, c_{4t}\} = \min\{10, 5, 13\} = 5$$

Заметим, что можно выбирать различные исходные цепи. Очевидно, что хороший выбор (вначале и на каждой итерации) должен давать наибольшее значение θ . Однако при этом, возможно, понадобится перебрать несколько вариантов, что в конечном итоге оказывается малоэффективным. При программировании алгоритма цепь удобно определять непосредственно из матрицы C, начиная c первой строки (s-строки) и выбирая следующий узел среди тех, которые соединены c s положительным потоком. Далее рассматривается строка, соответствующая выбранному узлу, и выбирается следующий узел, соединенный c предыдущим положительной дугой. Процесс продолжается до тех пор, пока не будет достигнут узел t.

Матрица С в таблице 3.1 корректируется путем вычитания $\theta = 5$ из всех элементов, помеченных знаком (–), и сложения со всеми элементами, имеющими знак (+). Результаты приведены в таблице 3.2.

Таблица 3.2

	S	1	2	3	4	t
S		5	3	14-	4	
1	10		5	9	0	
2	5	6		15+		10-
3	12+	7	10-		7	2
4	3	14		8		8
T			3+	4	10	

Цепь
$$[s \to 3 \to 2 \to t]$$
 $\theta = \min\{14,10,10\} = 10$.

Результаты последующих итераций приведены в таблицах 3.3—3.6.

T ~	\mathbf{a}	$^{\circ}$
Гаолица	→	- ≺
таолица	J	••

	S	1	2	3	4	T
S		5-	3	4	4	
1	10+		5	9-	0	
2	5	6		25		0
3	22	7+	0		7-	2
4	3	14		8+		8-
T			13	4	10+	

Цепь
$$[s \to 1 \to 3 \to 4 \to t]$$
 $\theta = \min\{5,9,7,8\} = 5$.

Таблица 3.4

	S	1	2	3	4	T
S		0	3	4	4-	
1	15		5	4	0	
2	5	6		25		0
3	22	7+	0		2	2-
4	3+	14		13		3-
T			13	4	15+	

Цепь
$$[s \rightarrow 4 \rightarrow t]$$
 $\theta = \min\{4,3\} = 3$.

Таблица 3.5

	S	1	2	3	4	T
S		0	3	4-	1	
1	15		5	4	0	
2	5	6		25		0
3	22+	12	0		2	2-
4	6	14		13		0
T			13	4	18+	

Цепь
$$[s \rightarrow 3 \rightarrow t]$$
 $\theta = \min\{4,2\} = 2$.

	Таблица	3.6				
	S	1	2	3	4	T
S		0	3	2	1	
1	15		5	4	0	
2	5	6		25		0
3	24	12	0		2	0
4	6	14		13		0
T			13	4	20	

(Между s и t нельзя построить цепь)

Из таблицы 3.6 следует, что между s и t нельзя построить цепей с положительным потоком, поскольку все элементы в столбце t равны нулю. Таким образом, таблица 3.6 дает матрицу C^* .

В таблицах 3.1 (матрица C) и 3.6 (матрица C^*) приведены данные, характеризующие оптимальный поток, которые получаются вычислением $X = C - C^*$ и заменой отрицательных величин нулями. Таблица 3.7 дает матрицу X .

		Таблица 3	3.7				
		S	1	2	3	4	T
	S		10		12	3	
	1				5	5	
	2						10
X=	3			10		5	2
	4						13
	t						

Из таблицы 3.7 видно, что

$$z = \sum x_{si} = 10 + 12 + 3 = \sum x_{ti} = 10 + 2 + 13 = 25$$
.

Сумма всех $\theta = (5+10+5+3+2=25)$ также дает максимальный поток. Графически решение представлено на рисунке 3.2. Здесь уместно ввести понятие **минимального разреза. Разрез** в связанной сети представляет собой такое множество дуг, которое определяет нулевой поток из s в t, если пропускные способности этих дуг полагаются равными нулю. Пропускная способность разреза равна сумме пропускных способностей его дуг. В сети на рисунке 3. 2 можно выделить следующие разрезы:

Разрез	Пропускная способность				
(s, 1), (s, 2), (s, 3), (s, 4) (4, t), (3, t), (2, t) (1, 4), (s, 4), (3, 4), (3, t), (2, t)	10 + 3 + 14 + 4 = 31 $13 + 2 + 10 = 25$ $5 + 4 + 7 + 2 + 10 = 28$				

Интуитивно очевидно, что максимальный поток можно найти, перебирая все разрезы сети. Разрез минимальной пропускной способности даст решение. Это интуитивное соображение на самом деле можно доказать, используя теорему о максимальном потоке — минимальном разрезе, согласно которой максимальный поток в сети равен пропускной способности минимального разреза.

3.2 Исходные данные к работе

Вариант	а	b	С	d	е	f	g	h	i	j	k	1	m
1	- 6	1	12	4	10	12	9	18	9	4	5	11	10
2	8	1	12	3	8	11	8	17	10	5	4	10	11
3	9	2	13	3	6	10	7	16	11	6	3	9	12
4	10	3	14	4	5	9	6	15	12	7	2	8	13
5	11	4	15	5	4	8	5	14	13	8	1	7	14
6	2	5	17	6	3	7	4	13	14	9	15	6	8
7	3	6	19	7	2	6	3	12	15	10	29	5	2
8	4	7	47	8	2	5	2	11	16	11	43	4	4
9	5	8	75	9	2	4	1 🔻	10	17	12.	57	3	6
10	6	9	103	10	2	3	0	9	18	13	71	2	8
11	7	10	131	11	2	,2	1	8	19	14	85	1	10
12	8	11	159	12	2	1	2	7	20	15	99	0	12
13	9	12	187	13	2	0	3	6	21	16	113	1	14
14	10	13	215	14	2	1	4	5	22	17	127	2	16
15	11	14	243	15	. 2	2	5	4	23	18	141	3	18
16	12	15	271	16	2	3	6	3	24	19	155	4	20
17	13	16	299	17	2	4	7	2	25	20	169	5	22
18	14	17	327	18	. 2	5	8	1	26	21	183	6	24
. 19	15	18	355	19	2	, 6	9.	2 _	27 -	22	197.	7 .	26
20	16	19	383	20	2	. 7	10	3	28	23	211	8	28
21	17	20	411	21	2	8	11	. 4	29	24.	225	9	30
22	18	21	439	22	2	9	12	5	30	25	239	10	32
23	19	22	467	23	2	10	1 13	6	31	26	253	11	34
24	20	23	495	24	2	11	14	7	32	27	267	12	36
25	21	24	523	25	2	12	15	. 8	33	28	281	13	38
26	22	25	551	26	2	13	16	9	34	29	295	14	40
27	23	26	579	27	2	14	17	10	35	30	309	15	
28	24	27	607	28	2	15	18	11	36	31	323	16	42
29	25	28	635	29	2	16	19	12	37	32	337	17	44
30	26	29	663	30	2	17	20	13	38	33	351	18	46

3.3 Порядок выполнения работы:

- 1.Получить исходные данные к работе.
- 2.Построить сеть связи.
- 3. Определить максимальный поток на сети между узлами $s \to t$.

3.4 Содержание отчета:

- 1. Цель работы.
- 2. Ручной расчет сети.
- 3. Блок-схема алгоритма, расчет на ЭВМ.