Answers and Hints to Selected Odd-Numbered Exercises in Chapters 14-16

Chapter 14

- 14.1 (a) **Proof.** Let $a, b \in k\mathbf{Z}$. Then a = kx and b = ky for some $x, y \in \mathbf{Z}$. Note that a + b = kx + ky = k(x + y) and ab = (kx)(ky) = k(kxy). Since $x + y, kxy \in \mathbf{Z}$, it follows that $a + b, ab \in k\mathbf{Z}$; so the addition and multiplication defined are binary operations on $k\mathbf{Z}$. Since $k\mathbf{Z} \subseteq \mathbf{Z}$ and the binary operations in $k\mathbf{Z}$ are the same as those in \mathbf{Z} , properties R1, R2, R5, and R6 are automatically satisfied. Moreover, since $0 = k \cdot 0$ and $0 \in \mathbf{Z}$, it follows that $k\mathbf{Z}$ has an additive identity. To show that property R4 is also satisfied, let $a \in k\mathbf{Z}$. So a = kx, where $x \in \mathbf{Z}$. Then -a = -(kx) = k(-x). Since $-x \in \mathbf{Z}$, it follows that $-a \in k\mathbf{Z}$.
- 14.3 (a) **Solution** We show that $(S, *, \circ)$ is not a ring. Certainly, * and \circ are binary operations on S. However, property R6 is not satisfied. To see this, let a = b = c = 0. Then $a \circ (b * c) = 0 \circ 1 = 0$ and $(a \circ b) * (a \circ c) = 0 * 0 = 1$. \diamondsuit
- 14.7 **Proof.** Let $a \in \mathbf{R}$. Then $a^2 = a$. Thus $(a + a)^2 = (a + a)(a + a) = a(a + a) + a(a + a) = (a^2 + a^2) + (a^2 + a^2) = (a + a) + (a + a)$. Since $(a + a)^2 = a + a$, it follows that (a + a) + (a + a) = (a + a) + 0. Applying the Cancellation Law of Addition (Theorem 14.10), we obtain a + a = 0. Therefore, -a = a.
- 14.9 (a) Since the zero matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ belongs to S, it follows that $S \neq \emptyset$. Let $M_1, M_2 \in S$. Thus $M_1 = \begin{bmatrix} a_1 & 0 \\ 0 & b_1 \end{bmatrix}$ and $M_2 = \begin{bmatrix} a_2 & 0 \\ 0 & b_2 \end{bmatrix}$, where $a_i, b_i \in \mathbf{R}$ for i = 1, 2. Then $M_1 M_2 = \begin{bmatrix} a_1 a_2 & 0 \\ 0 & b_1 b_2 \end{bmatrix}$ and $M_1 M_2 = \begin{bmatrix} a_1 a_2 & 0 \\ 0 & b_1 b_2 \end{bmatrix}$ belong to S. By the Subring Test, S is a subring of $M_2(\mathbf{R})$.
- 14.11 **Solution** The set 2G of even Gaussian integers is a subring of G.
 - **Proof.** Since $0 \in 2\mathbf{Z}$, it follows that $0 = 0 + 0i \in 2G$ and so $2G \neq \emptyset$. Let $x, y \in 2G$. Then $x = a_1 + b_1i$ and $y = a_2 + b_2i$, where $a_i, b_i \in 2\mathbf{Z}$ for i = 1, 2. Then $x y = (a_1 a_2) + (b_1 b_2)i$ and $xy = (a_1a_2 b_1b_2) + (a_1b_2 + a_2b_1)i$. Since $a_1 a_2, b_1 b_2, a_1a_2 b_1b_2, a_1b_2 + a_2b_1 \in 2\mathbf{Z}$, it follows by the Subring Test that 2G is a subring of G.
- 14.13 (a) Since the zero matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ belongs to S, it follows that $S \neq \emptyset$. Let $M_1, M_2 \in S$.

 Thus $M_1 = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix}$ and $M_2 = \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix}$, where $a_i, b_i \in \mathbf{R}$ for $1 \leq i \leq 2$. Then $M_1 M_2 = \begin{bmatrix} a_1 a_2 & b_1 b_2 \\ 0 & 0 \end{bmatrix}$ and $M_1 M_2 = \begin{bmatrix} a_1 a_2 & a_1 b_2 \\ 0 & 0 \end{bmatrix}$ belong to S. By the Subring Test, S is a subring of $M_2(\mathbf{R})$.
 - (b) Let $E = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and let $A = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ be an arbitrary element of S. Then $EA = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$. Let $C = \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \in S$. Then $CE = \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} \neq C$.

- 14.15 **Proof.** First we show that $(2\mathbf{Z}, +, \circ)$ is a ring. Certainly, $2\mathbf{Z}$ is closed under addition. Let $a, b, c \in 2\mathbf{Z}$. Then a = 2x, b = 2y, and c = 2z, where $x, y, z \in 2\mathbf{Z}$. So $a \circ b = (2x)(2y)/2 = 2(xy)$. Since xy is an integer, $2\mathbf{Z}$ is closed under this multiplication. Because $(2\mathbf{Z}, +, \cdot)$ is a ring, where \cdot is ordinary multiplication, $(2\mathbf{Z}, +, \circ)$ satisfies properties R1–R4 and the integer 0 is the zero element. Now $a \circ (b \circ c) = a \circ (bc/2) = a(bc)/4 = (ab)c/4 = (ab/2) \circ c = (a \circ b) \circ c$; so $(2\mathbf{Z}, +, \circ)$ satisfies property R5. Finally, $a \circ (b+c) = a(b+c)/2 = (ab/2) + (ac/2) = (a \circ b) + (a \circ c)$, and so $(2\mathbf{Z}, +, \circ)$ satisfies property R6. Therefore, $(2\mathbf{Z}, +, \circ)$ is a ring. Since $a \circ b = ab/2 = ba/2 = b \circ a$, the ring $(2\mathbf{Z}, +, \circ)$ is commutative. Because $a \circ 2 = (a \cdot 2)/2 = a$ and $a \circ 2 \in 2\mathbf{Z}$, the integer 2 is a unity for $a \circ 2\mathbf{Z} = a \circ$
- 14.19 Hint: Consider the following rings R and subrings S:

(a)
$$R = M_2(\mathbf{R}); S = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbf{R} \right\}.$$

- (b) $R = \mathbf{R}[x]$; $S = \{ f \in \mathbf{R}[x] : f \text{ is a constant function} \}$.
- (c) $R = \mathbf{Q} \times \mathbf{Z}$; $S = \mathbf{Q} \times \{0\}$.
- 14.21 Hint: First show that $\mathbf{Q}[i]$ is a subring of \mathcal{C} . Then show that every nonzero element of $\mathbf{Q}[i]$ is a unit.
- 14.23 (a) $\mathbf{Z}_n \ (n \ge 2)$
 - (b) **Z**
 - (c) $M_2(\mathbf{Z}_2)$
 - (d) $M_2({\bf R})$
- 14.25 (3) occurs. Now explain your answer with justification.

Chapter 15

15.1 **Proof.** Let $\mathbf{u}, \mathbf{v} \in \mathcal{C}$ and $\alpha, \beta \in \mathbf{R}$. Then $\mathbf{u} = a + bi$ and $\mathbf{v} = c + di$, where $a, b, c, d \in \mathbf{R}$. Then $\mathbf{u} + \mathbf{v} = (a + bi) + (c + di) = (a + c) + (b + d)i$ and $\alpha \mathbf{u} = \alpha(a + bi) = \alpha a + \alpha bi$. Since $a + c, b + d, \alpha a, \alpha b \in \mathbf{R}$, it follows that $\mathbf{u} + \mathbf{v} \in \mathcal{C}$ and $\alpha \mathbf{u} \in \mathcal{C}$. Now $\mathbf{u} + \mathbf{v} = (a + c) + (b + d)i = (c + a) + (d + b)i = \mathbf{v} + \mathbf{u}$, and property 1 is satisfied. Let $\mathbf{w} = e + fi$, where $e, f \in \mathbf{R}$. Then $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = [(a + c) + (b + d)i] + (e + fi) = [(a + c) + e] + [(b + d) + f]i = [a + (c + e)] + [b + (d + f)]i = (a + bi) + [(c + e) + (d + f)i] = (a + bi) + [(c + di) + (e + fi)] = \mathbf{u} + (\mathbf{v} + \mathbf{w})$; so property 2 is satisfied.

Let $\mathbf{z} = 0 + 0i$. Since $\mathbf{u} + \mathbf{z} = (a + bi) + (0 + 0i) = a + bi = \mathbf{u}$, property 3 is satisfied. Let $-\mathbf{u} = (-a) + (-b)i$. Then $\mathbf{u} + (-\mathbf{u}) = (a + bi) + [(-a) + (-b)i] = 0 + 0i = \mathbf{z}$, and property 4 is satisfied. Because $\alpha(\mathbf{u} + \mathbf{v}) = \alpha[(a + bi) + (c + di)] = \alpha[(a + c) + (b + d)i] = (\alpha a + \alpha c) + (\alpha b + \alpha d)i = (\alpha a + \alpha bi) + (\alpha c + \alpha di) = \alpha(a + bi) + \alpha(c + di) = \alpha \mathbf{u} + \alpha \mathbf{v}$, property 5 is satisfied. Now $(\alpha + \beta)\mathbf{u} = (\alpha + \beta)(a + bi) = (\alpha + \beta)a + (\alpha + \beta)bi = \alpha a + \beta a + \alpha bi + \beta bi = (\alpha a + \alpha bi) + (\beta a + \beta bi) = \alpha(a + bi) + \beta(a + bi) = \alpha \mathbf{u} + \beta \mathbf{u}$. Thus property 6 is satisfied. Since $(\alpha \beta)\mathbf{u} = (\alpha \beta)(a + bi) = (\alpha \beta)a + (\alpha \beta)bi = \alpha(\beta a) + \alpha(\beta bi) = \alpha(\beta a + \beta bi) = \alpha(\beta(a + bi)) = \alpha(\beta \mathbf{u})$, property 7 is satisfied. Finally, $1 \cdot \mathbf{u} = 1(a + bi) = 1 \cdot a + 1 \cdot bi = a + bi = \mathbf{u}$, and so property 8 is satisfied.

- 15.3 (a) Since (1,0,0) + (0,1,0) = (1,0,0) and (0,1,0) + (1,0,0) = (0,1,0), property 1 is not satisfied and so \mathbb{R}^3 is not a vector space.
 - (c) Let $\mathbf{v} = (1,0,0)$ and let $\mathbf{z} = (a,b,c)$ be the zero vector, where $a,b,c \in \mathbf{R}$. Then $\mathbf{v} + \mathbf{z} = (0,0,0) \neq \mathbf{v}$; so property 3 is not satisfied and \mathbf{R}^3 is not a vector space.
 - (e) Let $\mathbf{v} = (1,0,0)$. Since $1\mathbf{v} = (0,0,1) \neq \mathbf{v}$, property 8 is not satisfied and \mathbf{R}^3 is not a vector space.
- 15.5 **Proof.** Observe that $\alpha(-\mathbf{v}) = \alpha((-1)\mathbf{v}) = (\alpha(-1))\mathbf{v} = (-\alpha)\mathbf{v} = ((-1)\alpha)\mathbf{v} = (-1)(\alpha\mathbf{v}) = -(\alpha\mathbf{v}).$
- 15.7 (a) The statement is false. Since $\mathbf{z} + \mathbf{z} = \mathbf{z}$, it follows that $-\mathbf{z} = \mathbf{z}$. \diamondsuit
- 15.9 (a) The set W_1 is a subspace of \mathbf{R}^4 . **Proof.** Since $(0,0,0,0) \in W_1$, it follows that $W_1 \neq \emptyset$. Let $\mathbf{u}, \mathbf{v} \in W_1$ and $\alpha \in \mathbf{R}$. Then $\mathbf{u} = (a, a, a, a)$ and $\mathbf{v} = (b, b, b, b)$ for some $a, b \in \mathbf{R}$. Then $\mathbf{u} + \mathbf{v} = (a + b, a + b, a + b, a + b)$ and $\alpha \mathbf{u} = (\alpha a, \alpha a, \alpha a, \alpha a)$. Because $\mathbf{u} + \mathbf{v}, \alpha \mathbf{u} \in W_1$, it follows that W_1 is a subspace of \mathbf{R}^4 by the Subspace Test.
 - (c) Since $(0,0,0,1) \in W_3$ but $2(0,0,0,1) \notin W_3$, it follows that W_1 is not closed under scalar multiplication and so W_3 is not a subspace of \mathbf{R}^4 . \diamondsuit
- 15.11 (a) The set U_1 is a subspace of $\mathbf{R}[x]$. **Proof.** Since the zero function f_0 defined by $f_0(x) = 0$ for all $x \in \mathbf{R}$ belongs to $\mathbf{R}[x]$, it follows that $U_1 \neq \emptyset$. Let $f, g \in U_1$ and $\alpha \in \mathbf{R}$. Then there exist constants a and b such that f(x) = a and g(x) = b for all $x \in \mathbf{R}$. Then (f+g)(x) = f(x) + g(x) = a + b and $(\alpha f)(x) = \alpha f(x) = \alpha a$. Since $f+g, \alpha f \in U_1$, it follows by the Subspace Test that U_1 is a subspace of $\mathbf{R}[x]$.
 - (b) Since the function h defined by $h(x) = x^3$ for all $x \in \mathbf{R}$ belongs to U_2 , but $(0 \cdot h)(x) = 0 \cdot h(x) = 0 \cdot x^3 = 0$ does not belong to U_2 , it follows that U_2 is not closed under scalar multiplication and so U_2 is not a subspace of $\mathbf{R}[x]$. \diamondsuit
- 15.15 **Proof.** Since (0,0), that is, x=0 and y=0, is a solution of the equation, $(0,0) \in S$ and so $S \neq \emptyset$. Let $(x_1,y_1), (x_2,y_2) \in S$ and $\alpha \in \mathbf{R}$. Then $3x_1 5y_1 = 0$ and $3x_2 5y_2 = 0$. However, $3(x_1+x_2)-5(y_1+y_2)=(3x_1-5y_1)+(3x_2-5y_2)=0$. Thus $(x_1+x_2,y_1+y_2) \in S$. Furthermore, $3(\alpha x_1)-5(\alpha y_1)=\alpha(3x_1-5y_1)=\alpha\cdot 0=0$, and so $\alpha(x_1,y_1)=(\alpha x_1,\alpha y_1)\in S$. Therefore, S is a subspace of \mathbf{R}^2 by the Subspace Test.
- 15.17 $i = -\frac{1}{2}\mathbf{u}_1 + \frac{1}{2}\mathbf{u}_2 + \frac{1}{2}\mathbf{u}_3.$
- 15.19 **Proof.** Let $\mathbf{v} \in W$. Thus $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$, where $c_i \in \mathbf{R}$ for $1 \leq i \leq n$. Furthermore, let $\mathbf{v}_i = a_{i1} \mathbf{w}_1 + a_{i2} \mathbf{w}_2 + \ldots + a_{im} \mathbf{w}_m$, where $a_{ij} \in \mathbf{R}$ for $1 \leq i \leq n$ and $1 \leq j \leq m$. Then

$$\mathbf{v} = \begin{bmatrix} c_1 \ c_2 \ \dots \ c_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} c_1 \ c_2 \ \dots \ c_n \end{bmatrix} A \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \vdots \\ \mathbf{w}_m \end{bmatrix},$$

where
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$
. Hence \mathbf{v} is a linear combination of $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m$ and so $\mathbf{v} \in W'$.

- 15.21 **Proof.** We first show that $\langle \mathbf{u}, \mathbf{v} \rangle \subseteq \langle \mathbf{u}, 2\mathbf{u} + \mathbf{v} \rangle$. Observe that $\mathbf{u} \in \langle \mathbf{u}, 2\mathbf{u} + \mathbf{v} \rangle$ and $\mathbf{v} = (-2)\mathbf{u} + 1 \cdot (2\mathbf{u} + \mathbf{v}) \in \langle \mathbf{u}, 2\mathbf{u} + \mathbf{v} \rangle$. By Exercise 15.19, $\langle \mathbf{u}, \mathbf{v} \rangle \subseteq \langle \mathbf{u}, 2\mathbf{u} + \mathbf{v} \rangle$. Next, we show that $\langle \mathbf{u}, 2\mathbf{u} + \mathbf{v} \rangle \subseteq \langle \mathbf{u}, \mathbf{v} \rangle$. Since $\mathbf{u} \in \langle \mathbf{u}, \mathbf{v} \rangle$ and $2\mathbf{u} + \mathbf{v}$ is a linear combination of \mathbf{u} and \mathbf{v} , it follows that $\langle \mathbf{u}, 2\mathbf{u} + \mathbf{v} \rangle \subseteq \langle \mathbf{u}, \mathbf{v} \rangle$, again by Exercise 15.19.
- 15.23 Hint: One possibility is to choose $\mathbf{w} = (1,0,0)$. Now consider $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = (0,0,0)$, where $a,b,c \in \mathbf{R}$.
- 15.25 (a) The set S is not linearly independent since $1 + (-1)\sin^2 x + (-1)\cos^2 x = 0$ for all $x \in \mathbf{R}$.
 - (b) The set S is linearly independent. **Proof.** Let $a, b, c \in \mathbf{R}$ such that $a \cdot 1 + b \cdot \sin x + c \cdot \cos x = 0$. We show that a = b = c = 0. Letting x = 0, $x = \pi/2$, and $x = -\pi/2$, we obtain a + c = 0, a + b = 0, and a b = 0, respectively. Solving these equations simultaneously, we obtain a = b = c = 0.
- 15.27 Hint: Consider a proof by mathematical induction.
- 15.29 **Proof.** Define the mapping $T: \mathbf{R}^2 \to \mathcal{C}$ by T(a,b) = a+bi. Assume that T(a,b) = T(c,d). Then a+bi=c+di, which implies that a=c and b=d. Thus (a,b)=(c,d). Hence T is one-to-one. Next let $a+bi\in\mathcal{C}$. Since T(a,b)=a+bi, the mapping T is onto. Therefore, T is bijective. Let $\mathbf{u}=(a,b)$ and $\mathbf{v}=(c,d)$ be vectors in \mathbf{R}^2 and let $\alpha\in\mathbf{R}$. Then $T(\mathbf{u}+\mathbf{v})=T(a+c,\ b+d)=(a+c)+(b+d)i=(a+bi)+(c+di)=T(\mathbf{u})+T(\mathbf{v})$. Also, $T(\alpha\mathbf{u})=T(\alpha a,\alpha b)=(\alpha a)+(\alpha b)i=\alpha(a+bi)=\alpha T(\mathbf{u})$. Since T preserves both addition and scalar multiplication, T is a linear transformation.
- 15.33 (a) $D(W) = \mathbf{R}$
 - (b) $D(W) = \{0\}$
 - (c) $\ker(T) = \mathbf{R}$.
- 15.35 (1) occurs.

Chapter 16

- 16.1 (a) property (1) is not satisfied. For example, d(2,1) = -1 < 0. property (2) is satisfied since d(x,y) = y - x = 0 if and only if x = y. property (3) is not satisfied. For example, d(2,1) = -1 and d(1,2) = 1. property (4) is satisfied since d(x,y) + d(y,z) = (y-x) + (z-y) = z - x = d(x,z).
 - (b) Since d(x, y) = (x y) + (y x) = 0, property (1) is satisfied. Since d(1, 2) = 0 and $1 \neq 2$, property (2) is not satisfied. Since d(x, y) = d(y, x) = 0, property (3) is satisfied. Since d(x, y) + d(z, x) = d(x, z) = 0, property (4) is satisfied.
- 16.3 Hint: For $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, $d'(P_1, P_2) = d(x_1, x_2) + d(y_1, y_2) \ge 0 + 0 = 0$, so (1) is satisfied. If $P_1 = P_2$, then $x_1 = x_2$ and $y_1 = y_2$. Thus $d'(P_1, P_2) = d(x_1, x_2) + d(y_1, y_2) = 0 + 0 = 0$. Conversely, if $d'(P_1, P_2) = 0$, then $d(x_1, x_2) + d(y_1, y_2) = 0$. Since $d(x_1, x_2) \ge 0$ and $d(y_1, y_2) \ge 0$, it follows that $d(x_1, x_2) = 0$ and $d(y_1, y_2) = 0$. So $x_1 = x_2$ and $y_1 = y_2$, it follows that $P_1 = P_2$, and so (2) is satisfied. Now properties (3) and (4) remain to be considered.

- 16.5 Hint: It is straightforward to show that properties (1)-(3) are satisfied. So only property (4) needs to be investigated. Consider d(x, y) for various pairs x, y of elements of A.
- 16.7 (a) Let $P_1 = (1,2)$ and $P_2 = (1,3)$. Since $d(P_1, P_2) = 0$ and $P_1 \neq P_2$, it follows that (\mathbf{R}^2, d) is not a metric space.
- 16.9 (a) Hint: Consider beginning a proof as follows: Let O be an open set in (\mathbf{R}^2, d) . To show that O is open in (\mathbf{R}^2, d') , we show that every point $P_0 = (x_0, y_0)$ is the center of an open sphere in (\mathbf{R}^2, d') that is contained in O. Since O is open in (\mathbf{R}^2, d) , there exists a real number r > 0 such that $S_r(P_0) \subseteq O$. It remains to show that $S'_r(P_0) = \{P \in \mathbf{R}^2 : d'(P, P_0) < r\}$ is contained in $S_r(P_0)$.
- 16.11 (a) Hint: Consider beginning a proof as follows: Let $P_0 = (x_0, y_0) \in \mathbf{R}^2$, and let $\epsilon > 0$ be given. We show that there exists $\delta > 0$ such that if $d(P, P_0) < \delta$, where P = (x, y), then $d'(f(P), f(P_0)) < \epsilon$. Notice that $d(P, P_0) = |x x_0| + |y y_0|$ and $d'(f(P), f(P_0)) = \left|\frac{1}{2}(x y) \frac{1}{2}(x_0 y_0)\right|$.
- 16.13 (a) No, since $X \notin S_1$.
 - (b) No, since $\{a, b\} \cap \{a, c\} = \{a\} \notin S_2$.
 - (c) Yes.
- 16.17 Hint: Consider beginning a proof as follows: Observe that the result is true if $|X| \leq 1$. So we may assume that $|X| \geq 2$. Assume that (X, τ) is a metric space, say (X, d). First we show that $\{a\}$ is open for every $a \in X$. Let $r = \min\{d(x, a) : x \in X \{a\}\}$. Since $X \{a\}$ is finite, r > 0. Then $S_r(a) = \{a\}$ is open. Now complete the proof of this implication. For the converse, assume that (X, τ) is a discrete topological space. Then $\tau = \mathcal{P}(X)$. We define the "discrete" metric d on X by d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y. It
- 16.19 Hint: It is useful to prove the **Lemma**: If O_1, O_1, \dots, O_n are countable sets, where $n \in \mathbb{N}$, then $\bigcup_{i=1}^n O_i$ is countable.
- 16.21 Let a and b be distinct real numbers, where, say a < b, and let O_a and O_b be open sets containing a and b, respectively. Since $(a, \infty) \subset O_a$ and $(b, \infty) \subset O_b$, it follows that $(b, \infty) \subset O_a \cap O_b$. So $O_a \cap O_b \neq \emptyset$.
- 16.23 We claim that f(1) = 1.
 - **Proof.** Let f(a) = 1. Since $\{1\}$ is an open set and f is continuous, it follows that $f^{-1}(\{1\}) = \{a\}$ is open. Since $1 \in \{a\}$, it follows that a = 1. Thus f(1) = 1.
- 16.27 (3) occurs. The fact that O_1, O_2, \ldots, O_n $(n \in \mathbb{N})$ are infinite sets does not imply that $\bigcap_{\alpha \in I} O_\alpha$ is infinite. For example, let $X = \mathbb{Z}$, n = 2, $O_1 = \{k \in \mathbb{Z} : k \geq 0\}$ and $O_2 = \{k \in \mathbb{Z} : k \leq 0\}$. Then O_1 and O_2 are infinite, but $O_1 \cap O_2 = \{0\}$.
- 16.29 (a). Solution: The statement is true.
 - **Proof.** Let $b \in X \{a\}$, and let d(b, a) = r. Then the open sphere $S_r(b)$ is contained in $X \{a\}$.
- 16.31 The statement is false. Now a counterexample must be found.

remains to show that every subset of X is open in (X, d).