Porovnanie L^1 a L^{∞} lineárnej regresie

- L¹ veľmi dobre zachytáva lineárny vzťah, môže viesť k overfittingu
- $ightharpoonup L^{\infty}$ príliš ovplyňovaná outliermi

Minimalizácia váženého súčtu noriem

redukcia overfittingu L^1 regresie váženým súčtom s L^{∞} normou min $\omega ||y - \hat{y}||_1 + (1 - \omega)||y - \hat{y}||_{\infty}, \ \omega \in [0; 1]$

stále implementovateľné ako úloha lineárneho programovania

$$\min \left(0_{k+1}^{T} \mid \omega 1_{n}^{T} \mid (1 - \omega) \right) \left(\frac{\beta}{t} \right), \ \omega \in [0; 1]$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{-A \mid \mathbb{I}_{n} \mid 0_{n}} \right) \left(\frac{\beta}{t} \right) \geq \left(\frac{y}{-y} \right)$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{A \mid 0_{n \times n} \mid 1_{n}} \right) \left(\frac{\beta}{t} \right) \geq \left(\frac{y}{-y} \right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t \geq 0_{n}, \ \gamma \geq 0$$

Minimalizácia váženého súčtu noriem

implementované ako WeightedL1LInfModel

