UNIDAD 3: BÚSQUEDA DE PARES SIMILARES

FUNCIONES HASH SENSIBLES A LA LOCALIDAD

Gibran Fuentes Pineda Abril 2021

HASHING SENSIBLE A LA LOCALIDAD (LSH)

- Método para realizar búsqueda del vecino más cercano aproximado en espacios de alta dimensionalidad.
- La idea es proyectar el espacio original a otro de mucho menores dimensiones que preserve las distancias entre los objetos de forma aproximada con alta probabilidad.
- Para ello se define una familia de funciones \mathcal{H} sensibles a la localidad para una distancia $dist(\mathbf{x}^{(i)},\mathbf{x}^{(j)})$.

FAMILIAS DE FUNCIONES SENSIBLES A LA LOCALIDAD

• Una familia de funciones $\mathcal{H} = \{h : \mathbb{R}^d \to \mathbb{Z}\}$ se llama sensible a la localidad para una distancia dist si para cualquier par $\{\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\} \in \mathbb{R}^d$, existen números reales r_1, r_2, p_1, p_2 tal que:

$$dist(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \le r_1 \Rightarrow P[h(\mathbf{x}^{(i)}) = h(\mathbf{x}^{(j)})] \ge p_1$$

 $dist(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \ge r_2 \Rightarrow P[h(\mathbf{x}^{(i)}) = h(\mathbf{x}^{(j)})] \le p_2$

donde $r_1 < r_2$.

• En general, es deseable que $p_1 \gg p_2$.

TUPLAS DE FUNCIONES LSH

• Para ampliar el margen entre p_1 y p_2 , se generan l tuplas $g_1, \dots g_l$ de r funciones $hash^1$:

$$g_1 = (h_{11}, \dots, h_{1r})$$

 \vdots \vdots
 $g_l = (h_{l1}, \dots, h_{lr})$

- Se pueden ver como una familia de funciones con $d_1, d_2, (p_1)^r, (p_2)^r$.
- Para buscar se construyen l tablas (una por tupla) y se almacena cada punto en la cubeta correspondiente.²

 $^{^1}$ Sacadas de forma independiente y uniforme de ${\cal H}$

²Esto se logra mediante una función *hash* universal que toma la tupla y la mapea a un índice de la tabla.

LSH PARA DISTANCIA DE HAMMING

• Para vectores binarios $\mathbf{x}^{(i)} \in \{0,1\}^d$ (o cadenas de bits de longitud d) y la distancia de Hamming, una familia LSH se construye obteniendo el valor de una posición j

$$h_j(\mathbf{x}^{(i)}) = x_j^{(i)}$$

• Más generalmente, esta familia de funciones se puede aplicar a vectores M-arios $\mathbf{x}^{(i)} \in \{0, 1, \dots, M\}^d$.

Extensión a distancia ℓ_1

 Sean {x¹,...,xⁿ} puntos en un espacio de d dimensiones y C el valor máximo de cualquier coordenada, cada punto se transforma a un vector de Cd bits:

$$f(\mathbf{x}^{(i)}) = [t(x_1); t(x_2); \cdots; t(x_d)]$$

donde $t(x_k)$ es una cadena de bits con x_k unos seguidos de $C - x_k$ ceros.

 La distancia de Hamming sobre f(x⁽ⁱ⁾) y f(x^(j)) es igual a la distancia l₁ sobre x⁽ⁱ⁾ y x^(j)

LSH para distancias $\ell_{ extsf{s}}$

• Se elige aleatoriamente una proyección de \mathbb{R}^d sobre una línea, se desplaza por b y se córta en segmentos de tamaño w, esto es,

$$h_{\mathbf{a},b} = \left\lfloor \frac{\mathbf{a} \cdot \mathbf{x} + b}{\mathbf{w}} \right\rfloor$$

donde $b \sim Unif(0, w)$

- Si ${\bf a}$ se muestrea de una distribución normal se obtiene una familia LSH para la distancia ℓ_2 .
- Si ${f a}$ se muestrea de una distribución de Cauchy se obtiene una familia LSH para la distancia ℓ_1

LSH PARA DISTANCIA ANGULAR

• Dado un par de puntos $\{\mathbf{x}^{(i)},\mathbf{x}^{(j)}\}\in\mathbb{R}^d$, el ángulo entre ellos se obtiene de la siguiente manera:

$$\theta(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \arccos\left(\frac{\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}}{\|\mathbf{x}^{(i)}\| \cdot \|\mathbf{x}^{(j)}\|}\right)$$

· Una familia LSH para la distancia angular 1 $-\theta(\mathbf{x}^{(i)},\mathbf{x}^{(j)})$ es:

$$h_{\mathbf{v}}(\mathbf{x}^{(i)}) = signo(\mathbf{v} \cdot \mathbf{x}^{(i)})$$

donde $\mathbf{v} \in \mathbb{R}^d$ es un vector aleatorio de tamaño unitario.

• Esta función se puede ver como dividir el espacio en 2 por un hiperplano elegido aleatoriamente

$$Pr[h_{\mathbf{v}}(\mathbf{x}^{(i)}) = h_{\mathbf{v}}(\mathbf{x}^{(i)})] = 1 - \frac{\theta(\mathbf{x}^{(i)}, \mathbf{x}^{(i)})}{\pi}$$