Linear Regression

Fraida Fund

Contents

In this lecture
Regression
Simple linear regression
Residual term
Linear model with residual - illustration
Interpretability of linear model
"Recipe" for simple linear regression
Least squares model fitting
"Recipe" for simple linear regression
Minimizing RSS (1)
Minimizing RSS (2)
Minimizing RSS (3)
Minimizing RSS (4)
Minimizing RSS (5)
Minimizing RSS (6)
Minimizing RSS (7)
Minimizing RSS (8)
Minimizing RSS (9)
Minimizing RSS (10)
Minimizing RSS (11)
Minimizing RSS (12)
Minimizing RSS (13)
Minimizing RSS (14)
Minimizing RSS (15)
Correlation coefficient: visual
Minimizing RSS - final solution
Minimum RSS
Visual example (1)
Visual example (2)
Visual example (3)
Regression performance metrics
R^2: coefficient of determination
RSS
Relative forms of RSS (1)
Relative forms of RSS (2)
Multiple linear regression
Matrix representation of data
Linear model
Matrix representation of linear regression (1)
Matrix representation of linear regression (2)
Least squares model fitting
Illustration - two features

Supervised learning recipe for linear regression	13
Setup: $\ell 2$ norm \ldots \ldots \ldots \ldots \ldots 1	13
Setup: Finding maxima/minima	13
Setup: RSS as vector norm	14
Least squares solution (1)	14
Least squares solution (2)	14
Least squares solution (3)	14
Least squares solution (4)	14
Interpretation using autocorrelation (1)	14
Interpretation using autocorrelation (2)	15
Interpretation using autocorrelation (3)	15
Categorical feature?	15
	15
Residuals plot	15
Dealing with outliers	15
References	15

In this lecture

- Simple linear regressionRegression performance metricsMultiple linear regression

Regression

The output variable y is continuously valued.

For each input $\mathbf{x_i}$, the model estimates

$$\hat{y_i} = y_i - \epsilon_i$$

where ϵ_i is an error term, also called the ${\bf residual}.$

Simple linear regression

Assume a linear relationship between single feature x and target variable y:

$$\hat{y} = \beta_0 + \beta_1 x$$

 $\pmb{\beta}=(\beta_0,\beta_1)$, the intercept and slope, are model parameters.

Residual term

Actual relationship include variation due to factors other than x, includes **residual** term:

$$y = \beta_0 + \beta_1 x + \epsilon$$

where $\epsilon = y - \hat{y}$.

Linear model with residual - illustration

Figure 1: Example of linear fit with residuals shown as vertical deviation from regression line.

Interpretability of linear model

If slope β_1 is 0.0475 sales/dollar spent on TV advertising, we can say that a \$1,000 increase in TV advertising budget is, on average, associated with an increase of about 47.5 in units sold.

However, note that:

- we can show a correlation, but can't say that the relationship is causative.
- the value for β_1 is only an estimate of the true relationship between TV ad dollars and sales.

"Recipe" for simple linear regression

- Choose a **model**: $\hat{y} = \beta_0 + \beta_1 x$
- Get data for supervised learning, we need labeled examples: $(x_i,y_i), i=1,2,\cdots,N$ Choose a loss function that will measure how well model fits data: ??
- Find model **parameters** that minimize loss: find β_0 and β_1
- Use model to **predict** \hat{y} for new, unlabeled samples

Least squares model fitting

Residual sum of squares:

$$RSS(\beta_0,\beta_1) := \sum_{i=1}^n (y_i - \hat{y_i})^2 = \sum_{i=1}^n (\epsilon_i)^2$$

Least squares solution: find (β_0, β_1) to minimize RSS.

"Recipe" for simple linear regression

- Choose a model: $\hat{y} = \beta_0 + \beta_1 x$
- Get data for supervised learning, we need labeled examples: $(x_i,y_i), i=1,2,\cdots,N$
- Choose a **loss function** that will measure how well model fits data: $RSS(eta_0,eta_1)$
- Find model **parameters** that minimize loss: find β_0 and β_1
- Use model to **predict** \hat{y} for new, unlabeled samples

Minimizing RSS (1)

RSS is convex, so to minimize, we take

$$\frac{\partial RSS}{\partial \beta_0} = 0, \frac{\partial RSS}{\partial \beta_1} = 0$$

where

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Minimizing RSS (2)

First, the intercept:

$$\frac{\partial RSS}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i)(-1)$$

$$= -2\sum_{i=1}^{n}(y_i - \beta_0 - \beta_1 x_i) = 0$$

using chain rule, power rule.

Minimizing RSS (3)

This is equivalent to setting sum of residuals to zero:

$$\sum_{i=1}^{n} \epsilon_i = 0$$

Minimizing RSS (4)

Now, the slope:

$$\frac{\partial RSS}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i)(-x_i)$$

$$= -2\sum_{i=1}^{n} x_i(y_i - \beta_0 - \beta_1 x_i) = 0$$

Minimizing RSS (5)

This is equivalent to:

$$\sum_{i=1}^{n} x_i \epsilon_i = 0$$

Minimizing RSS (6)

Two conditions,

$$\sum_{i=1}^{n} \epsilon_i = 0, \sum_{i=1}^{n} x_i \epsilon_i = 0$$

where

$$\epsilon_i = y_i - \beta_0 - \beta_1 x_i$$

Minimizing RSS (7)

Which we expand into

$$\sum_{i=1}^{n} y_i = n\beta_0 + \sum_{i=1}^{n} x_i \beta_1$$

$$\sum_{i=1}^n x_i y_i = \sum_{i=1}^n x_i \beta_0 + \sum_{i=1}^n x_i^2 \beta_1$$

Minimizing RSS (8)

Divide

$$\sum_{i=1}^n y_i = n\beta_0 + \sum_{i=1}^n x_i \beta_1$$

by n, we find the intercept

$$\beta_0 = \frac{1}{n} \sum_{i=1}^n y_i - \beta_1 \frac{1}{n} \sum_{i=1}^n x_i$$

Minimizing RSS (9)

$$\beta_0 = \frac{1}{n} \sum_{i=1}^n y_i - \beta_1 \frac{1}{n} \sum_{i=1}^n x_i$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

where sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

Minimizing RSS (10)

To solve for β_1 : Multiply

$$\sum_{i=1}^n y_i = n\beta_0 + \sum_{i=1}^n x_i \beta_1$$

by $\sum x_i$, and multiply

$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i \beta_0 + \sum_{i=1}^{n} x_i^2 \beta_1$$

by n.

Minimizing RSS (11)

$$\sum_{i=1}^n x_i \sum_{i=1}^n y_i = n \sum_{i=1}^n x_i \beta_0 + (\sum_{i=1}^n x_i)^2 \beta_1$$

$$n\sum_{i=1}^{n} x_i y_i = n\sum_{i=1}^{n} x_i \beta_0 + n\sum_{i=1}^{n} x_i^2 \beta_1$$

Subtract the first equation from the second to get...

Minimizing RSS (12)

$$\begin{split} n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i &= n \sum_{i=1}^{n} x_i^2 \beta_1 - (\sum_{i=1}^{n} x_i)^2 \beta_1 \\ &= \beta_1 \left(n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2 \right) \end{split}$$

Minimizing RSS (13)

Solve for β_1 :

$$\beta_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Minimizing RSS (14)

which is:

$$\frac{s_{xy}}{s_x^2}$$

- sample covariance $s_{xy}=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})$ sample variance $s_x^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$

Minimizing RSS (15)

Also express as

$$\frac{r_{xy}s_y}{s_x}$$

7

where sample correlation coefficient $r_{xy} = \frac{s_{xy}}{s_x s_y}$.

(Note: from Cauchy-Schwartz law, $|s_{xy}| < s_x s_y$, we know $r_{xy} \in [-1,1]$)

Figure 2: Several sets of (x, y) points, with \boldsymbol{r}_{xy} for each. Image via Wikipedia.

Correlation coefficient: visual **Minimizing RSS - final solution**

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\beta_1 = \frac{s_{xy}}{s_x^2} = \frac{r_{xy}s_y}{s_x}$$

Minimum RSS

$$\min_{\beta_0,\beta_1}RSS(\beta_0,\beta_1)=N(1-r_{xy}^2)s_y^2$$

- coefficient of determination: $R^2=r_{xy}^2$, explains the portion of variance in y explained by x.
- s_y^2 is variance in target y $(1-R^2)s_y^2$ is the residual sum of squares after accounting for x.

Visual example (1)

Visual example (2)

Visual example (3)

Figure 3: Example of linear fit with residuals shown as vertical deviation from regression line.

Figure 4: Regression parameters - 3D plot.

Figure 5: Regression parameters - contour plot.

Regression performance metrics

R^2: coefficient of determination

$$R^2 = 1 - \frac{\frac{RSS}{n}}{s_y^2} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{\sum_{i=1}^{n} (y_i - \overline{y_i})^2}$$

- For linear regression: What proportion of the variance in y is "explained" by our model?
- $R^2 pprox 1$ model "explains" all the variance in y
- + $R^2 pprox 0$ model doesn't "explain" any of the variance in y
- Depends on the sample variance of y can't be compared across datasets

RSS

Definition: **Residual sum of squares** (RSS), also called **sum of squared residuals** (SSR) and **sum of squared errors** (SSE):

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

RSS increases with n (with more data).

Relative forms of RSS (1)

· RSS per sample

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{RSS}{n}$$

Relative forms of RSS (2)

• Normalized RSS (divide RSS per sample, by sample variance of y), the ratio of average error of your model to average error of prediction by mean.

$$\frac{\frac{RSS}{n}}{s_y^2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{\sum_{i=1}^{n} (y_i - \overline{y_i})^2}$$

Multiple linear regression

Matrix representation of data

Represent data as a **matrix**, with n samples and k features; one sample per row and one feature per column:

$$X = \begin{bmatrix} x_{1,1} & \cdots & x_{1,k} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,k} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

 $x_{i,j}$ is jth feature of ith sample.

Linear model

Assume a linear relationship between feature vector $x = [x_1, \cdots, x_k]$ and target variable y:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k + x_k$$

Model has p = k + 1 terms.

Matrix representation of linear regression (1)

Samples are $(\mathbf{x_i}, y_i), i = 1, 2, \cdots, n$

Each sample has a feature vector $\mathbf{x_i} = [x_i, 1, \cdots, x_i, k]$ and scalar target y_i

Predicted value for ith sample will be $\hat{y_i} = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$

Matrix representation of linear regression (2)

Define feature matrix and regression vector:

$$A = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,k} \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}$$

Then, $\hat{\mathbf{y}} = A\boldsymbol{\beta}$, and given a new sample with feature vector \mathbf{x} , predicted value is $\hat{y} = [1, \mathbf{x}^T]\boldsymbol{\beta}$.

Least squares model fitting

Problem: learn the best coefficients $\pmb{\beta}=[\beta_0,\beta_1,\cdots,\beta_k]$ from the labeled training data.

$$RSS(\boldsymbol{\beta}) := \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

Least squares solution: Find β to minimize RSS.

Figure 6: The least squares regression is now a plane, chosen to minimize sum of squared distance to each observation.

Illustration - two features

Supervised learning recipe for linear regression

- Linear model: $\hat{y}=\beta_0+\beta_1x_1+\cdots+\beta_kx_k$ Data: $(\mathbf{x_i},y_i), i=1,2,\cdots,n$ Loss function:

$$RSS(\beta_0, \beta_1, \cdots, \beta_k) = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

• Find parameters: Select $\beta = (\beta_0, \beta_1, \cdots, \beta_k)$ to minimize $RSS(\beta)$

Setup: $\ell 2$ norm

Definition: Euclidian norm or $\ell 2$ norm of a vector $\mathbf{x} = (x_1, \cdots, x_n)$:

$$||\mathbf{x}|| = \sqrt{x_1^2 + \dots + x_n^2}$$

Intuitively, it is the "length" of a vector. We will want to minimize the norm of the residual.

Setup: Finding maxima/minima

For f(x), can find local maxima and minima by finding where the derivative with respect to x is zero.

For a multivariate function $f(\mathbf{x})=f(x_1,\cdots,x_n)$, we find places where the **gradient** - vector of partial derivatives - is zero, i.e. each entry must be zero:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

If function is convex, there is a single global minimum.

Setup: RSS as vector norm

$$RSS = ||\mathbf{y} - \hat{\mathbf{y}}||^2$$

$$RSS = ||\mathbf{y} - \mathbf{A}\boldsymbol{\beta}||^2$$

Least squares solution (1)

RSS is convex, so there is a single global minimum Cost function (remember, p=k+1):

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y_i})^2, \hat{y_i} = \sum_{j=0}^{p} A_{i,j} \beta_j$$

Least squares solution (2)

In matrix form (note: ||Ax - b|| = ||b - Ax||):

$$RSS = ||A\beta - \mathbf{y}||^2$$

Compute gradient via chain rule, power rule:

$$\nabla RSS = 2A^T(A\boldsymbol{\beta} - \mathbf{y})$$

Least squares solution (3)

Set derivative to zero:

$$2A^T(A\boldsymbol{\beta} - \mathbf{y}) = 0 \to A^TA\boldsymbol{\beta} = A^T\mathbf{y}$$

then

$$\boldsymbol{\beta} = (A^T A)^{-1} A^T \mathbf{y}$$

Least squares solution (4)

Minimum RSS:

$$RSS = \mathbf{y}^T[I - A(A^TA)^{-1}A^T]\mathbf{y}$$

Interpretation using autocorrelation (1)

Each sample has feature vector

$$A_i = (A_{i0}, \cdots, A_{ik}) = (1, x_{i1}, \cdots, x_{ik})$$

Interpretation using autocorrelation (2)

Define:

- Sample autocorrelation matrix: $R_{AA}=rac{1}{n}A^TA, R_{AA}(l,m)=rac{1}{n}\sum_{i=1}^n A_{il}A_{im}$ (correlation of feature l and feature m)
- Sample cross-correlation vector: $R_{Ay}=rac{1}{n}A^Ty, R_{yA}(l)=rac{1}{n}\sum_{i=1}^n A_{il}y_i$ (correlation of feature l and target)

Interpretation using autocorrelation (3)

Least squares solution:

$$\beta = R_{AA}^{-1} R_{Ay}$$

Categorical feature?

Can use one hot encoding:

- For a categorical variable x with values $1, \cdots, M$
- Represent with M binary features: $\phi_1,\phi_2,\cdots,\phi_m$ Model as $y=\beta_0+\beta_1\phi_1+\cdots+\beta_M\phi_M$

Linear regression - what can go wrong?

- · Relationship may not actually be linear (may be addressed by non-linear transformation future
- · Violation of additive assumption (need interaction terms)
- "Tracking" in residuals (e.g. time series)
- Outliers may be difficult to spot may have outsize effect on regression line and/or \mathbb{R}^2
- Collinearity

Residuals plot

Figure 7: Residuals plot

Dealing with outliers

References

• Figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R.

Figure 8: "Remove outliers" is not a strategy for dealing with outliers.

Tibshirani.

- For more detail on the derivation of the least squares solution to the multiple linear regression, refer to Chapter 12 in "Introduction to Applied Linear Algebra", Boyd and Vandenberghe.
- For more detail on the statistical aspects of linear regression (outside the scope of the ML course), please refer to chapter 3 of: "An Introduction to Statistical Learning with Applications in R", G. James, D. Witten, T. Hastie and R. Tibshirani.