## Disciplina: Geometria Analítica, cód. 6871 – Turma 01 Prof. Rui Avaliação P2 Parte B (valor 2,0 pts.)

O acadêmico deverá escrever duas rotinas feitas no SageMath. Deverá salvar o arquivo em PDF e usar o seu RA?????? como nome do arquivo.

## 01) A rotina a ser construída é bem simples.

Consiste em determinar os elementos de uma hipérbole com centro na origem C=(0,0) e com equação na forma geral  $\pm m(x^2) \pm n(y^2) + k = 0$ .

Evidentemente, se o usuário inserir m>0 deverá inserir n<0. Se ele inserir m<0 deverá inserir n>0. Também será necessário que ele insira sempre valores negativos para k.

Os coeficientes deverão ser inseridos separados por vírgulas, de maneira que sua rotina armazenará um vetor de apenas 3 componentes.

## Por exemplo:

Armazenar [-1, 2, -3] para equação  $-x^2 + 2y^2 - 3 = 0$ .

Armazenar [3, -1, -5] para a equação  $3x^2 - y^2 - 5 = 0$ .

Armazenar [2, -2, -2] para a equação  $2x^2 - 2y^2 - 2 = 0$ .

A rotina deverá determinar as coordenadas dos focos  $F_1$  e  $F_2$ , as coordenadas dos vértices reais  $A_1$  e  $A_2$ , as coordenadas dos vértices imaginários  $B_1$  e  $B_2$  e as equações das retas assíntotas.

De posse desses valores (usar "float" para valores racionais aproximados) deverá mostrar parte da hipérbole e das assíntotas e os pontos  $F_1, F_2, A_1, A_2, B_1$  e  $B_2$ .

Um exemplo de saída na tela para que o usuário fique satisfeito está a seguir. A apresentação dos resultados de sua rotina pode ser até melhor do que as das figuras a seguir.

Insira os coeficientes de  $(m)x^2 + (n)y^2 + (k) = 0$ Necessariamente k tem de ser negativo.

$$m = -1$$

$$k = -5$$

F1= [0, -2.738612787525831] F2= [0, 2.738612787525831] A1= [0, -1.5811388300841898] A2= [0, 1.5811388300841898] B1= [-2.23606797749979, 0] B2= [2.23606797749979, 0]



Observe que a variação  $[x_{min}, x_{max}] \times [y_{min}, y_{max}]$  da saída gráfica deverá mostrar todos os pontos importantes. Por isso você deve considerar os módulos dos valores  $F_1$  e  $B_1$  para que, sejam exibidos todos os elementos importantes.

Por exemplo, no caso dos focos estarem no eixo Ox, podemos considerar  $x_{min} = |F_1| - 2$ ,  $x_{max} = |F_1| + 2$ ,  $y_{min} = |B_1| - 2$  e  $y_{max} = |B_1| + 2$ . No caso dos focos estarem sobre o eixo Oy, as considerações deverão ser trocadas.