Assignment 4

To compile mod files (*.mod), run nrnivmodl in the directory where the mod files are. Also run your simulations in this directory.

1. Simplifying the network simulation

Run demo9.py and demo9_1.py and compare the results.

- 1. Which one ran faster?
- 2. Read the two programs and explain what are main differences between them.
- 3. In which conditions can you use simplifications in demo9_1.py ? Discuss in which situations the simplication scheme cannot be used.

2. Membrane potential fluctuation by random synaptic inputs

hw4_2.py simulates a single passive neuron that is bombarded by random excitatory synaptic inputs. A current clamp is also embedded to probe the membrane property. The simulation will repeat 100 times and save the result in voltages_hw4_2.csv. The simulation result will show an initial effect up to t < 100 ms, and please use the data beyond this range.

- 1. By using the current clamp, measure the *effective* membrane conductance g_L ' from the averaged membrane potential. Try different number of synaptic inputs N_{exc} and plot how g_L ' depends on N_{exc} . Also, try different firing rate f_{exc} as well. How does g_L ' compare with g_L + g_{exc} f_{exc} N_{exc} τ_{exc} ? Here g_L = 0.5 nS is the original membrane conductance. τ_{exc} = 1.25 ms is a time scale for synapse deactivation, and g_{exc} = 1 nS is the synaptic conductance.
- 2. Plot how the *measured* membrane reversal potential E_L changes with N_{exc} and f_{exc} . How does it compare with $g_L E_L/g_L$?
- 3. Plot how the *variance* of the membrane potential (σ_V^2) scales with N_{exc} , f_{exc} , and g_{exc} . In particular, find m, n, and k in the scaling relation $\sigma_V^2 \sim N_{exc}{}^m f_{exc}{}^n g_{exc}{}^k$.
- 4. Is the membrane potential fluctuation sufficiently Gaussian? If so, assuming that our neuron fires when the membrane potential reaches a fixed threshold $V=V_{th}$ (e.g. $V_{th}=-50$ mV), discuss how the firing rate of the neuron will be affected by N_{exc} , f_{exc} , g_{exc} , etc.?

3. Vogels-Abbott network model

hw4_3.py is a simulation of 1000 randomly connected neurons. 20% of the neurons are inhibitory while the rest is excitatory. Each neuron gets inputs from 10% of the neurons in each of the excitatory and inhibitory pool. The network is driven by external stimuli for 7 ms at the simulation start, but, after that, the simulation runs without any external stimulus. The data will be save to spikes_hw4_3.csv.

The default value for the excitatory conductance (gexc) is g_{exc} = 1.5 nS and the inhibitory conductance (ginh) is $g_{inh} = r g_{exc}$ where r = 6.2.

- 1. Run the simulation twice and compare the results. Is firing of neurons deterministic or random, given the same initial condition? Make a very small change in one of the parameters (g_{exc} , r) and observe how the firing pattern changes.
- 2. By trying different r values, find a maximal r that can generate stable and asynchronous firing in the network for 200 ms. With the maximal r, what is the average firing rate?
- 3. Try several different g_{exc} from 2 nS up to 30 nS, and find the maximal r for asynchronous firing and average firing rate. What pattern do you see? Explain your results.
- 4. Compare the firing pattern between the small g_{exc} (~ a few nS) and large g_{exc} (> 10 nS) case. Discuss why the differences arise.
- 5. (Optional) Discuss how your results compare with <u>Ostojic, S. (2013) Nat Neurosci 17, 594-600</u> (Figure 1).