Assignment 7

1.

$np = 270 \times 1/3 = 90, npq = 270 \times 1/3 \times 2/3 = 60$	B1	Correct unsimplified np and npq, SOI
$P(x>100) = P(z>\frac{99.5-90}{\sqrt{60}}) = P(z>1.2264)$	M1 M1	±Standardising using 100 need sq rt Continuity correction, 99.5 or 100.5 used
= 1 - 0.8899	M1	Correct area $1 - \Phi$ implied by final prob. < 0.5
= 0.110	A1	
Total:	5	

2.

l(a)	$P(x > 0) = P\left(z > \pm \frac{0 - \mu}{\sigma}\right)$ $= P\left(z > \frac{-\mu}{\mu/1.5}\right) \text{ or } P\left(z > \frac{-1.5\sigma}{\sigma}\right)$	M1	\pm Standardising, in terms of μ and/or σ with 0 in numerator, no continuity correction, no \vee
	= P(z > -1.5)	A1	Obtaining z value of ± 1.5 by eliminating μ and σ , SOI
	= 0.933	A1	
	Total:	3	
l(b)	z = -1.151	B1	$\pm z$ value rounding to 1.1 or 1.2
	$-1.151 = \frac{70 - 120}{s}$	M1	\pm Standardising (using 70) equated to a z-value, no cc, no squaring, no $$
	$\sigma = 43.4 \text{ or } 43.5$	A1	
	Totals:	3	

3.

٥.	•			
(a)	$z_1 = 2.4$	B1	± 2.4 seen accept 2.396	
	$z_2 = -0.5$	B1	± 0.5 seen	
	$2.4 = \frac{36800 - \mu}{\sigma}$	М1	Either standardisation eqn with z value, not 0.5082, 0.7565, 0.0082, 0.6915, 0.3085, 0.6209, 0.0032 or any other probability	
	$-0.5 = \frac{31000 - \mu}{\sigma}$	M1	Sensible attempt to eliminate μ or σ by substitution or subtraction from their 2 equations (z-value not required), need at least 1 value stated	
	σ = 2000 μ = 32000	A1	Both correct answers	
		5		
(b)	$P(X < 3\mu) = P\left(z < \frac{3\mu - \mu}{(4\mu/3)}\right)$ or $P = \left(z < \frac{(9\sigma/4) - (3\sigma/4)}{\sigma}\right)$	M1	Standardise, in terms of one variable, accept σ^2 or $\sqrt{\sigma}$	
	σ)			
	$P(z < \frac{6}{4})$	M1	$\frac{6}{4}$ or $\frac{6}{4\sigma}$ seen	
	= 0.933	A1	Correct final answer	
		3		

4.

3(i)	z = -1.282	B1	±1.282 seen
	$-1.282 = \frac{440 - \mu}{9}$	M1	\pm Standardisation equation with 440, 9 and μ , equated to a z-value, (not 1 – z-value or probability e.g. 0.1841, 0.5398, 0.6202, 0.8159)
	$\mu = 452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
(ii)	P(z > 1.8) = 1 - 0.9641 = 0.0359	B1	
	Number = 0.0359 × 150 = 5.385	M1	$p \times 150, 0$
	(Number of cartons =) 5	A1FT	Accept either 5 or 6, not indicated as an approximation, e.g. \sim , about FT their $p \times 150$, answer as an integer
		3	

5.

5(i)	$z_1 = \pm \frac{4.1 - 5.7}{0.8} = -2$ $z_2 = \pm \frac{5 - 5.7}{0.8} = -0.875$	М1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	$\begin{array}{ll} \text{P(Toffee Apple)} &= \text{P}(d < 5.0) - \text{P}(d < 4.1) \\ &= \text{P}(z < -0.875) - \text{P}(z < -2) \\ &= \Phi(-0.875) - \Phi(-2) \\ &= \Phi(2) - \Phi(0.875) \end{array}$	M1	Correct area Φ – Φ legitimately obtained – need 2 negative z-values or 2 positives – not one of each
	= 0.9772 - 0.8092 = 0.168 (or 0.1908 - 0.0228)	A1	Correct final answer
	Total:	3	
(ii)	np = 250 × 0.168 = 42, npq = 34.944	B1ft	Correct unsimplified mean and var – ft their prob for (i) providing $(0 Implied by \sigma = \sqrt{34.944} = 5.911$
	$P(<50) = P\left(z < \frac{49.5 - 42}{\sqrt{54.944}}\right) = P(z < 1.2687)$	M1	± Standardising using 50, their mean and sd; must have sq rt.
	$(\sqrt{34.944})$	M1	49.5 or 50.5 seen as a cc
	$=\Phi(1.2687)$	M1	Correct area $\Phi(>0.5 \text{ for} + z \text{ and} < 0.5 \text{ for} -z)$ in their final answer
	= 0.898	A1	Correct final answer
	Total:	5	

6.

'(i)	$P(<700) = P\left(z < \frac{700 - 830}{120}\right) = P(z < -1.083)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	= 1 - 0.8606	M1	Appropriate area Φ from standardisation formula P(z<) in final probability solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 0.1394	A1	Correct final probability rounding to 0.139
	Expected number of female adults = 430 × their 0.1394 = 59.9 So 59 or 60	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	
'(ii)	P(giraffe < 830+w) = 95% so $z = 1.645$	B1	±1.645 seen (critical value)
	$\frac{(830+w)-830}{120} = \frac{w}{120} = 1.645$	M1	An equation using the standardisation formula with a z-value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$ not 0.8519, 0.8289
	w = 197	A1	Correct answer
		3	
(iii)	P(male > 950) = 0.834, so $z = -0.97$	B1	± 0.97 seen
	$\frac{950 - 1190}{\sigma} = -0.97$	M1	Using \pm standardisation formula, condone continuity correction, σ^2 or $\sqrt{\sigma}$, condone equating with non z-value not 0.834, 0.166
	σ = 247	A1	Condone $-\sigma = -247$. www.
		3	

$z = 0.842 = \left(\frac{121 - \mu}{\sigma}\right)$ so $0.842\sigma = 121 - \mu$	B1	$\pm~0.842$ seen but B0 if 1 $\pm~0.842$ oe seen
σ	M1	One appropriate standardisation equation with a z-value, μ , σ and 121 or 102, condone continuity correction. Not 0.158, 0.42,
$z = -0.58 = \left(\frac{102 - \mu}{\sigma}\right)$ so $-0.58 \sigma = 102 - \mu$	B1	$\pm~0.58(0)$ seen but B0 if 1 $\pm~0.58$ oe seen
Solving	M1	Correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable, condone 1 numerical slip
σ = 13.4 μ = 110	A1	If M0A0 scored (i.e. no algebraic elimination seen), SC B1 can be awarded for both answers correct $ \text{Consistent use of } \sigma^2 \text{ or } \sqrt{\sigma} \text{ throughout apply MR penalty to A mark or SC B mark}. $
	5	

8.

(i)	$P(<570) = P\left(z < \frac{570 - 500}{91.5}\right) = P(z < 0.7650)$ = 0.7779	M1	Standardising for either 570 or 390, no cc, no sq. no $$
	$P(<390) = P\left(z < \frac{390 - 500}{91.5}\right) = P(z < -1.202)$	A1	One correct z value
	= 1 - 0.8853 = 0.1147	A1	One correct Φ , final solution
	Large: 0.222 (0.2221) Small: 0.115 (0.1147)	A1	Correct small and large
	Medium: 0.663 (0.6632)	A1FT	Correct Medium rounding to 0.66 or ft 1 – (their small + their large)
		5	

'(ii)	$1.645 = \left(\frac{x - 500}{91.5}\right)$	B1	± 1.645 seen (critical value)
		M1	Standardising accept cc, sq. sq rt
	x = 651	A1	650 ≤ Ans ≤ 651
		3	
(iii)	P(x > 610) = 0.1147 (symmetry)	M1	Attempt to find upper end prob $x > 610$ or $\Phi(x)$, ft their P(< 390) from (i)
	$0.3 + 0.1147 = 0.4147 \Rightarrow \Phi(x) = 0.5853$	M1	Adding 0.3 to <i>their</i> $P(x > 610)$ or subt 0.5 from $\Phi(x)$ or 0.8853 – 0.3
	z = 0.215 or 0.216	M1	Finding $z = \Phi^{-1}(0.5853)$
	$0.215 = \frac{k - 500}{91.5}$	M1	Standardising and solving, accept cc, sq. sq rt
	k = 520	A1	
		5	