Wojciech Błyskal 247632 Rok akademicki 2023/24 Łukasz Centkowski 247638 poniedziałek, godzina 12:15

METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – Rozwiązywanie układów N równań liniowych z N niewiadomymi.

Opis rozwiązania

Celem zadania drugiego było zaimplementowanie metody eliminacji Jordana(Gaussa-Jordana) do znajdowania rozwiązań układów liniowych. Sposób działania tej metody:

- 1. Jeśli macierz posiada wiersz zerowy, to albo nie będzie miała rozwiązania, albo będzie nieoznaczona, co kończy dalsze wykonywanie algorytmu.
- 2. Wybieramy element podstawowy poprzez wybranie największego co do modułu elementu w danej kolumnie oraz przestawiamy wiersze, jeśli element podstawowy nie znajduje się na głównej przekątnej.
- 3. dzielimy k-ty wiersz przez współczynnik a_{kk} (dla k naturalnych od 1 do n $a_{kj} = a_{kj}/a_{kk}$)
- 4. Dla pozostałych wierszy dzielimy k-ty wiersz przez współczynnik a_{ik} , a następnie odejmujemy ten iloczyn od od itego wiersza $(a_{ij} = a_{ij} a_{kj} * a_{ik}/a_{kk})$. Następnie wracamy do kroku 1. zwiększając o 1 wartość k.

Wyniki

Przykłady z treści zadania:

_	1
а	•
	_

X ₁	X ₂	X ₃	Macierz wynikowa		Wyniki programu	Wartości analityczne
3	3	1	12	x ₁ 1,000		1
2	5	7	33	X ₂	1,999	2
1	2	1	8	X 3	3,000	3

b)						
X_1	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
3	3	1	1	X ₁		
2	5	7	20	X ₂	Układ nieoznaczony	Układ nieoznaczony
-4	-10	-14	-40	X ₃		medanacadny

(:)						
	\mathbf{X}_1	\mathbf{X}_2	X 3	Macierz wynikowa	Wyniki programu		Wartości analityczne
	3	3	1	1	\mathbf{X}_1		
	2	5	7	20	X ₂	Układ sprzeczny	Układ sprzeczny
	-4	-10	-14	-20	X ₃		

d)	

X ₁	X ₂	X ₃	X4	Macierz wynikowa	Wyniki programu		Wartości analityczne
0,5	-0,0625	0,1875	0,0625	1,5	X ₁	2,0	2
-0,0625	0.5	0	0	-1,625	X ₂	-3,0	-3
0,1875	0	0,375	0,125	1	X ₃	1,5	1,5
0,0625	0	0,125	0,25	0,4375	X4	0,499	0,5

X_1	X ₂	X 3	X4	Macierz wynikowa	Wyniki programu		Wartości analityczne
3	2	1	-1	0	\mathbf{X}_1		
5	-1	1	2	-4	X ₂	układ	układ

1	-1	1	2	4	X 3	sprzeczny	sprzeczny
7	8	1	-7	6	X4		

<u>f)</u>	_						
\mathbf{X}_1	\mathbf{X}_2	\mathbf{x}_3	X_4	Macierz wynikowa		Wyniki programu	Wartości analityczne
3	-1	2	-1	-13	X ₁	1,0	1
3	-1	1	1	1	X2	2,999	3
1	2	-1	2	21	X 3	-4,000	-4
-1	1	-2	-3	-5	X4	4,999	5

g)							
	X_1	X ₂	X ₃	Macierz wynikowa	Wyniki	Wyniki programu	
	0	0	1	3	X ₁	7,0	7
	1	0	0	7	X ₂	5,0	5
	0	1	0	5	X 3	3,0	3

<u>h)</u>						
X ₁	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
10	-5	1	3	\mathbf{X}_1	1,0	1
4	-7	2	-4	X ₂	2,0	2
5	1	4	19	X ₃	3,0	3

<u>i)</u>						
X ₁	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
6	-4	2	4	X ₁		
-5	5	2	11	X ₂	Układ nieoznaczony	Układ nieoznaczony
0,9	0,9	3,6	13,5	X ₃		

j)						
X ₁	X ₂	\mathbf{X}_3	Macierz wynikowa	Wyniki programu		Wartości analityczne
1	0,2	0,3	1,5	\mathbf{X}_1	1,0	1
0,1	1	-0,3	0,8	X ₂	1,0	1
-0,1	-0,2	1	0,7	X 3	0,999	1

Wnioski

Metoda eliminacji Gaussa-Jordana:

- 1. Ma problem jeżeli współczynnik a_{kk} będzie wynosił 0. Skala problemu jest zmniejszana poprzez przestawianie wierszy. Jeżeli ten problem nie wystąpi to z pewną dokładnością program zadziała zawsze poprawnie.
- 2. Uzyskujemy macierz jednostkową(chyba, że układ jest sprzeczny lub nieoznaczony).
- 3. Sprawdzamy czy macierz jest nieoznaczona lub sprzeczna, co jeżeli jest prawdą, zostaje wykryte przed zakończeniem algorytmu.
- 4. Z powodu posługiwania się liczbami zmiennoprzecinkowymi występują minimalne odstępstwa obliczonych wartości niewiadomych względem wartości analitycznych.