Predicting Claims from FNOL

Satya Venkataswamy

UNDERSTANDING THE PROBLEM

My Approach

01

ISSUES & DATA CLEANING

Otaining the data, issues with the data, clraning techniques identified

02

FEATURE SELECTION & MODEL BUILDING

EDA, Feature Selection and Model Selection through Nested Cross Validation

03

FURTHER STEPS & IMPLEMENTATION

Suggestions on Model Improvements and Practical challenges.

Overview of the Dataset

Dataset Dimensions

7,691 records and 46 features

Data Types

9 categorical features and 37 numerical ones

Time Frame

Claims range from April 2003 to June 2015

Missing Values

~4.5% of missing values in the weather_conditions column

Issues with the Dataset

- 3 Columns (Loss_code, Loss_description and Vehicles_registration_present) with zero variance or near zero variance.
- 4 Third party type related variables with zero or near zero variance amongst them.
- Records with '#' values in the
 PH_considered_TP_at_fault
 variable.
- 3 records with Negative values in the Notification_Period variable.
- Multivariate analysis and correlation maps of TP variables

My Approach

01

ISSUES & DATA CLEANING

Otaining the data, issues with the data, clraning techniques identified

02

FEATURE SELECTION & MODEL BUILDING

EDA, Feature Selection and Model Selection through Nested Cross Validation

03

FURTHER STEPS & IMPLEMENTATION

Suggestions on Model Improvements and Practical challenges.

Splitting Schema of the Dataset

Feature Selection Approach

Baseline Model (Linear Regression)
MAE Score: 12,019

Feature Selection Methods

Recursive Feature
Elimination with CV

22 Features were selected

Base Model (Linear Regression)

Feature Selection Method 1

MAE Score: 11,553.29

Lasso Regression model coefficients with CV

22 Features were selected

Base Model (Linear Regression)

Feature Selection Method 2

MAE Score: 11,539.89

HyperParameter Tuning and Model Evaluation

feature importance are

isolated and Exp1 is repeated

3000

knn mae

Model Selection

- 1. Leveraged Bootstrapping in order to create a distribution of Test dataset performances.
- 2. As a part of bootstrapping the selected model (best hyperparameters) of each experiment was fit on the train dataset and evaluated on the Test dataset.
- create a 95% confidence interval.

3. The above process was repeated for a total of 20 iterations and the Mean Test MAE and Standard Error of the MAE was used to

4. (By assuming the test MAE follows a t-distribution as the number of samples are less than 30 and the standard deviation of the population is unknown).

My Approach

01

ISSUES & DATA CLEANING

Otaining the data, issues with the data, clraning techniques identified

FEATURE SELECTION & MODEL BUILDING

EDA, Feature Selection and Model Selection through Nested Cross Validation

FURTHER STEPS & IMPLEMENTATION

Suggestions on Model Improvements and Practical challenges.

Future Steps and Challenges

Future Steps

- 1. Explore the performance of other categorical encoding techniques such as Target Encoding etc..
- 2. Use of Non-linear base models in feature selection techniques.
- 3. Use Feature Selection techniques such as Mutual Information Gain in SelectKBest Models in order to isolate the important features.
- 4. Experiment with other implementations of Boosting techniques such as LightGBM etc..
- 5. Use of RMSE score as an evaluation metric in order to minimize the error on outlier data points.

Challenges

1. Since Nested Cross validation is employed, processing needs would be on the higher side.

Thank You