머신러닝

1. 강의 개요

수강 : 번호		교과 목명	머신러닝 (딥러닝)	학과	컴	퓨터공학과	학년	시수/ 학점	3/3	담당 교수	변영철	
Emai	il y	cb@jeju	@jejunu.ac.kr		064) 754–3657	교재		강의지	사료 제	<u>구</u> o	
	교과목											
주별 강의 계획 (상황에 따라 변동 가능)												
주	월/일		주제			주요 내 용						
1		강의소개 및 유의사항			한 학기동안 공부할 강의 내용 및 일정 설명한다.							
2		뉴런과 학습 방법, 실습				뇌를 구성하는 신경세포가 어떻게 동작하고 신경세 포를 연결한 신경망이 어떻게 동작하는지 이해한다.						
3		선형 회귀(Linear Regression), 오류함수, 기울기의 의미, 실 습				회귀의 의미에 대하여 공부하고 회귀를 잘 표현하거 나 그렇지 못한 신경세포의 오류에 대하여 이해한 다. 또한 기울기의 의미를 이해한다.						
4		n), o	회귀(Logistic F 이진 결정경계, / 과 결정경계, 실	신경세크		1개 뉴런이 결정경계를 결정경계의	이해한다.	신경세프				
5		1 1	클래스 결정경기 , 오류함수, 실습		Œ	여러 클래스 기, 이를 위				결정경	계 만들	
6		플레이스 홀더, XOR 문제, 다층뉴런과 비선형 결정경계 실습				플레이스 홀더의 필요성, XOR 문제 및 이를 해결 하기 위한 방법으로서 비선형 결정경계를 만들기 위 한 다층뉴런, 다층 신경망을 이해한다.						
7		중간	고사			중간고사						
8		CNI	찾기, 컨볼루션 V 이해, 이미지! , 실습		''	딥 신경망의 제로 개발해] CNNo	에 대하여	여 학습	하고 실	
9		개인	별 과제 아이디여	거 발표		이제까지 학 획하여 발표		응을 바탕.	으로 개	인별 고	·제를 기	
9		개인	별 과제 아이디여	거 발표		이제까지 학 획하여 발표		 }을 바탕.	으로 개	인별 고	 사제를 기	
10		데이	터 수집 및 가공			개인 과제외	- 관련한 1	데이터를	수집하	고 가공	강한다.	
11		데이	터 수집 및 가공			개인 과제외	- 관련한 1	데이터를	수집하	_ 고 가공	 강한다.	
12		신경	망 훈련 및 테스	E		수집한 데이 트한다.	 터를 이용	 }하여 신	 경망을	 훈련하.	고 테스	

13	신경망 훈련 및 테스트	수집한 데이터를 이용하여 신경망을 훈련하고 테스 트한다.				
14	신경망 훈련 및 테스트	수집한 데이터를 이용하여 신경망을 훈련하고 테스 트한다.				
15	최종 발표	각자 완성한 과제를 발표한다. • 우수 발표자 선정하여 50만원, 30만원, 20만원 상당의 경품 제공 • 방학 중 2라운드 발표 및 머신러닝 멘토 선정 (50만원 이상의 장학금 지원 계획) • 방학 중 해외 연수, 인턴십 프로그램 우선 지원				

2. 강의 진행 방법

- 이론 2시간(매주 목요일) + 실습 1시간(매주 화요일)
- 외부 전문가 특강 발표 포함
- 수업 진행 방법은 진도 상황에 따라 달라질 수 있음.

3. 강의 자료

• 깃허브: https://github.com/yungbyun/ml

4. 평가 방법

- 중간고사, 기말고사
- 개인별 딥러닝 오픈소스 분석하여 발표 (Github, Kaggle 등에 있는 오픈소스 선택하여 활용)
- 중간고사 30% + 기말고사 30% + **개인 미니 프로젝트 발표 30%** + 출석 10% (평가 항목 및 비율 조정 가능)
- 발표 시 평가 요소: 주제의 난이도, 발표자료 준비, 발표력(이해도)

5. 주의사항

- 가급적 앞좌석에 착석
- 실습실 자리 이동 지양
- 게임, 인터넷 절대 금지 (적발시 퇴실 및 평가 반영)