DAILY ASSESSMENT FORMAT

Date:	01/06/2020	Name:	Poorvi hj
Course:	Digital design using HDL	USN:	4al17ec086
Topic:	 Industry Applications of FPGA FPGA Business Fundamentals FPGA vs ASIC Design Flow FPGA Basics – A Look Under the Hood 	Semester & Section:	6 th , Bsec
Github Repository:	Poorvi-2000		

Reduced Time-to-Market Developing and prototyping on FPGAs can reduce TTM, especially in emerging markets where standards have not yet been defined ADAS Trypermate Statistic Crop

poorvi hj

is here by awarded the certificate of achievement for the successful completion of

Step into Robotic Process Automation

during GUVI's RPA SKILL-A-THON 2020

Valid certificate ID Wu9550g3l7l8Uh208

verified certificate issue on June 12020

S.P.Balamurugan

Co-founder, CEO

In association with

Verily certificate at www.guvl.in/certificate?id=1fu9550g31718Uh308

Report – Report can be typed or hand written for up to two pages.m 01/06/2000. Digital derign using HDF. FPGA Business fundamentals * Different Hardware are like Signs 1. ASIC - Application specific Integrated celanit * sperific to one company * High upport cost * Large volum 2. ASSP - Application specific standard product + Sperific function & General enough that anyone can purchasely 3. FPGA - Field programmable Gate Array. + Flixible raind customizable * IP is like a magnitue letter you can strik on the board. ASIC | ASSP advantage 4 Disadvantages. PROS 1. Low cost per unit 2. Low pouver consumption. 3. High performanu/clock speed 4. Small unit size. CONS 1. High non-reculling engineering CNRE) cost 2. Not fluxible - carrot be upgraded once hardened 3. complex design flow. A. Long time to market

Why FPGA

e. Reprogrammable 4 fexible

2. Product Longewitz

3. Reduced time to market

4 market-size optimized.

FPGA V/A ASIC design flow. Design flow.

1. Asi & FPGA derign & implementation methodologies differ somewhat

2. Xilinix EPGA provide for reduced design time and later bug fixes. No duign for test logie is required.

No vailing for prototypes.

· For high performance durigns, FPGAs may 3. coding style require some pipelining . When retargeting code from vour Asie to an EPGA, the code usually requires optimi-- 2ation

ASIC design flow.

1. Ask took are generally duines by surpts

2. Post syntheir state timing analysis and equivalency checking are musts for sign-off to foundry.

ASIC implementation 1. Create HOL. 2. Synthesis · Parmarily driver by screpts · Synopsys drign compile · Design for test logic insertion [BIST, Scan and 3. plan 4 noute · Foundry tooks, cadence, AVANT FPGA 1. Create HOL. 2. Synthus · Synopsys, mentoe, XST · Pushbotton flow with scripting capabilities 3. Plan & noute · completed by the user · Xilinx implementation bol -18E software. · Pushbutton flow, suipting capabilities. FPGA Basis: EPGA is a digital réconfigurable ASIC. Implementation of NAND gate. B Dipoy modulem (AIB Y): enput A,B; output 4; will r. and (B,A 1B); not (n) y); endruoduli

Data flow modelling Y= ~(A&B). module rand CY, A, B); expect A.B: output 4; arrign y= n(A&B); endmodule Behavioral modeling module rand (4, A, B); B input AIB; 0 0 output y; 0 0 always & (Ans)
begin

if (A=1'b1 & B=1'b1) pragu 1 = 1, po; clu 4= 1.01; end endriodule.

