Survival Analysis Example

Ani Katchova

Survival Analysis Example

- Survival, hazard, and cumulative hazard functions
- Nonparametric analysis (Kaplan-Meier survival function)
- Parametric models (Exponential, Weibull, Gompertz, and Log-logistic)
- Semi-parametric models (Cox proportional hazard model)
- We want to study the unemployment duration the length of time it takes someone to find a full-time job.
- Data from the January Current Population Survey's Displaced Workers Supplements (DWS) for years 1986, 1988, 1990 and 1992.
- Dependent variable: duration (number of periods being unemployed), event (finding a job)
- Independent variables: log wage, claim unemployment insurance, and age.
- Summary statistics: Subjects tracked from 1 to 28 periods. They either find a job (event) or are still looking (censored). Number of subjects is 3,343; time at risk (periods summed over the subjects) is 20,887. Number of failures is 1,073 or 32% of sample has failed. Incidence rate is 5.13% which is the number of failures divided by the time at risk.

Survival function table

	Number of			
Time	subjects	Failure/event	Net lost/censored	Survival Function
1	3343	294	246	0.91
2	2803	178	304	0.85
3	2321	119	305	0.81
4	1897	56	165	0.79
5	1676	104	233	0.74
6	1339	32	111	0.72
7	1196	85	178	0.67
••••				
25	58	0	10	0.38
26	48	2	13	0.37
27	33	5	24	0.31
28	4	0	4	0.31

Nonparametric methods

The hazard rate shows the probability of having the event (finding a job) going down from 4% to 3% over 25 time periods.

The Nelson-Aalen cumulative hazard estimate is non-decreasing.

The Kaplan-Meier survival function shows that survival probabilities go down to 31% over 28 time periods. This means that 31% of the individuals still have not found a job after 28 time periods.

Survival function for the group that has unemployment insurance (ui=1) and the group that does not have unemployment insurance (ui=0). The survival functions show at any point in time that claiming unemployment insurance is associated with higher survival rate. This means that if someone receives unemployment benefits he/she is more likely to still be unemployed.

Parametric regression model coefficients

Duration of unemployment	Exponential	Weibull	Gompertz	Cox
	regression	regression	regression	proportional
	coefficients	coefficients	coefficients	hazard model
				coefficients
Log wage	0.48*	0.49*	0.48*	0.46*
Claim unemployment	-1.08*	-1.11*	-1.06*	-0.98*
insurance				
Age	-0.01*	-0.01*	-0.01*	-0.01*

Results reported here are Stata results. SAS produces opposite signs for the exponential, Weibull, and Gompertz regression. R produces opposite signs for exponential and Weibull regression. Also, the Weibull regression in SAS and R give different estimates.

• Interpretation of the coefficients: Individuals with higher wages have *lower* unemployment duration, meaning will terminate unemployment faster. Individuals who claim unemployment insurances have *higher* unemployment durations, meaning they terminate unemployment slower.

Parametric regression model hazard rates

Duration of unemployment	Exponential	Weibull	Gompertz	Cox
	regression	regression	regression	proportional
	hazard rates	hazard rates	hazard rates	hazard model
				hazard rates
Log wage	1.62*	1.63*	1.61*	1.58*
Claim unemployment	0.34*	0.33*	0.35*	0.37*
insurance				
Age	0.99*	0.99*	0.99*	0.98*

• Interpretation of the hazard rates: A unit increase in the log wage is associated with 1.62-1 = 62% increase in the hazard rates. For individuals who claim unemployment insurance the hazard rates are 0.34-1 = 66% lower. In other words, individuals with higher wages are more likely to find a job and those that claim unemployment insurance are less likely to find a job.