



# Design, Fabrication and Performance of Anti-splashing surface

Presented by

Md. Hedayetul Islam Chy.

Department Of EEE

University Of Chittagong

Supervised by

Mohammed Arif Iftakher Mahmood, PhD

**Associate Professor** 

Department Of EEE

University Of Chittagong

### **Problem statement**

- Hospital surgery ward basin, Kitchen sink, urinals etc. surfaces contains germs and microbes.
  - ✓ Microorganisms will spread due to the droplet splashing.
  - ✓ Increase disease.
- In juice industry, microbes may enter during product filling and packaging.
  - ✓ Reduce shelf-life of the product.



Bacterial transmission, spread disease



Reduce shelf life of a product containing liquids

### **Objective / Our goal**

- Study the formation and splash effect of water droplet on a pillar
- Design different geometric pattern and compare their splashing
- Check the feasibility of the design with natural surface structure
- Fabricate the anti-splashing model using 3D printer(SLA) and evaluate the splashing.
- Differentiate the pattern design with AI powered design

### **Literature Review**

- ✓ Micro-structure self cleaning plant surface
- ✓ Ink-jet printing
- ✓ Coating manufacture
- ✓ Electrostatic painting
- ✓ Spray cooling



Fig 1: Lamella expansion on various pillar structure [1]



Fig 2: Calathea zebrina leaf and Its surface SEM Image [2]



Fig 3: Footwear sole on muddy water [3]

- 1. Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M. L., & Arratia, P. E.. Splash control of drop impacts with geometric targets.
- 2. Koch, K., & Grichnik, R. Influence of surface structure and chemistry on water droplet splashing.
- 3. Dong, Z., Wu, L., Wang, J., Ma, J., & Jiang, L. Superwettability controlled overflow.

### Methodology

#### **Device preparation process**



### **Time Frame**

|                                       |                                 |   | Month |   |   |   |   |   |   |   |    |    |    |  |
|---------------------------------------|---------------------------------|---|-------|---|---|---|---|---|---|---|----|----|----|--|
|                                       |                                 | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| Continuous review of current research |                                 |   |       |   |   |   |   |   |   |   |    |    |    |  |
| Setup required tools and tech         |                                 |   |       |   |   |   |   |   |   |   |    |    |    |  |
| Optimization                          | Pillar optimization             |   |       |   |   |   |   |   |   |   |    |    |    |  |
|                                       | Morphology of the pillar        |   |       |   |   |   |   |   |   |   |    |    |    |  |
|                                       | Topography of the tip           |   |       |   |   |   |   |   |   |   |    |    |    |  |
|                                       | Array Structure                 |   |       |   |   |   |   |   |   |   |    |    |    |  |
|                                       | Droplet with different velocity |   |       |   |   |   |   |   |   |   |    |    |    |  |
|                                       | Analyzes with different fluid   |   |       |   |   |   |   |   |   |   |    |    |    |  |
| Multiple array structure              |                                 |   |       |   |   |   |   |   |   |   |    |    |    |  |
| Fabrication of the model              |                                 |   |       |   |   |   |   |   |   |   |    |    |    |  |
| Experimental performance analysis     |                                 |   |       |   |   |   |   |   |   |   |    |    |    |  |
| Documentation                         |                                 |   |       |   |   |   |   |   |   |   |    |    |    |  |

### **Research State**

Lamella expansion of water droplet (validation)



**Numerical validation** 

<sup>\*</sup> Juarez, G., Gastopoulos, T., Zhang, Y., Siegel, M. L., & Arratia, P. E. Splash control of drop impacts with geometric targets.

### **Research State**

Droplet diameter ratio



## Thank You!