1

Question 1 Exercise(8.1)

Srihari S

Abstract—A question based on properties of triangles.

Download all python codes from

svn co https://github.com/Srihari123456/Summer -2020/tree/master/geometry/triangle/codes

Download all LATEX-Tikz codes from

svn co https://github.com/Srihari123456/Summer -2020/tree/master/geometry/triangle/figs

1 Question

1.1. Show that each angle in an equilateral triangle is 60°.

2 Construction

2.1. The figure for a triangle obtained in the question looks like Fig. 1, with equal sides a,b,c.

Fig. 1: Triangle by Latex-Tikz

The values used for constructing the triangles in both Python and LATEX-Tikz is in Table I:

Initial Input Values	
Parameter	Value
a	4
b	4
c	4

TABLE I: To construct $\triangle ABC$

2.2. Finding the coordinates of various points of Fig. 1:

From the information provided in the Table I: let

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \mathbf{A} = \begin{pmatrix} p \\ q \end{pmatrix} \quad (2.2.1)$$

The derived value of \mathbf{p} and \mathbf{q} is available in Table II.

Derived Values	
Parameter	Value
р	2
q	3.46

TABLE II: To construct $\triangle ABC$

The following Python code generates Fig. 2

./codes/eqtri.py

The equivalent LATEX- tikz code generating Fig. 1 is

./figs/constructionpic.tex

The above LATEX code can be compiled as a standalone document as

./figs/constructionpic standalone.tex

To Show:: We need to prove that $\angle BAC = \angle ACB = \angle CBA$

Fig. 2: Triangle generated using python

3 Solution

3.1.

$$\mathbf{a} = \mathbf{b} \implies \angle BAC = \angle CBA$$

 $\mathbf{c} = \mathbf{b} \implies \angle ACB = \angle CBA$

(Angles opposite to equal sides are equal) (3.1.1)

:. From the above equations,

$$\angle ACB = \angle BAC = \angle CBA$$
 (3.1.2)

3.2.

∴
$$\angle ACB + \angle BAC + \angle CBA = 180^{\circ}$$
 (Angle sum property of triangles) (3.2.1)

And from (3.1.2)

$$3(\angle BAC) = 180^{\circ}$$
 (3.2.2)

$$\implies \angle BAC = 60^{\circ}$$
 (3.2.3)

3.3.

$$\angle ACB = \angle BAC = \angle CBA = 60^{\circ}$$
 (3.3.1)

Hence proved.