MTH 201, Curves and surfaces

Practice problem set 11

Recall that $\mathbf{n}(x,y)$ is the standard unit normal at $\sigma(x,y)$ with respect to some surface patch $\sigma(x,y)$. With respect to this same surface patch, $\sigma_x(x,y)$ and $\sigma_y(x,y)$ form a basis for the tangent space at $\sigma(x,y)$. Together, the three vectors form a basis for the all vectors at $\sigma(x,y)$ (not necessarily only the ones tangent to the surface). Be careful, only \mathbf{n} is a unit vector and is orthogonal to the other two vectors.

Recall the following definitions: $E(x,y) := \sigma_x(x,y) \cdot \sigma_x(x,y)$, $F(x,y) := \sigma_x(x,y) \cdot \sigma_y(x,y)$, $G(x,y) := \sigma_y(x,y) \cdot \sigma_y(x,y)$, and that,

$$L(x,y) := \sigma_{xx}(x,y) \cdot \mathbf{n}(x,y), M(x,y) := \sigma_{xy}(x,y) \cdot \mathbf{n}, N(x,y) := \sigma_{yy}(x,y) \cdot \mathbf{n},$$

- 1. The following parts will attempt to find the derivatives of the above basis vector valued functions, i.e. \mathbf{n}_x , \mathbf{n}_y , σ_{xx} , σ_{xy} , and σ_{yy} , as linear combinations of the basis vectors \mathbf{n} , σ_x , and σ_y . Observe that all the coefficients will be in terms of E, F, G, L, M, and N.
 - a) Why are \mathbf{n}_x and \mathbf{n}_y linear combinations of merely σ_x and σ_y ? Therefore, $\mathbf{n}_x = \alpha \sigma_x + \beta \sigma_y$ and $\mathbf{n}_y = \gamma \sigma_x + \delta \sigma_y$. Prove that the coefficients, $\alpha, \beta, \gamma, \delta$, can be computed in terms of E, F, G, L, M, and N. (Take the dot product of each equation with σ_x and then with σ_y to get four linear equations involving E, F, G, L, M, and N. You now have four equations and four unknowns. You will need to use the fact that \mathbf{n} is orthogonal to σ_x)
 - b) Show that the respective coefficients of \mathbf{n} , when writing σ_{xx} , σ_{xy} , and σ_{yy} , as a linear combination of σ_x , σ_y , and \mathbf{n} , are L, M, and N, respectively. Thefore,

$$\sigma_{xx} = \Gamma_{11}^1 \sigma_x + \Gamma_{11}^2 \sigma_y + L\mathbf{n}$$

$$\sigma_{xy} = \Gamma_{12}^1 \sigma_x + \Gamma_{12}^2 \sigma_y + M\mathbf{n}$$

$$\sigma_{yy} = \Gamma_{22}^1 \sigma_x + \Gamma_{22}^2 \sigma_y + N\mathbf{n}$$

Prove that each Γ^k_{ij} can be expressed entirely in terms of E, F, and G. (To find enough linear relations, take the dot product with σ_x , and then with σ_y . Play with the derivatives of $\sigma_x \cdot \sigma_y, \sigma_x \cdot \sigma_y$, and $\sigma_x \cdot \sigma_y$, which are just E, F, and G, to rewrite terms such as $\sigma_{xy} \cdot \sigma_x$ in terms of E, F, and G.)

- 2. Consider a regular curve on a surface parametrized by a unit speed parametrization, $\gamma(t) = \sigma(x(t), y(t))$, where σ is a surface patch of the surface.
 - a) Compute the vector $\dot{\gamma}(t)$ as a linear combination of σ_x and σ_y (You have done this in a previous problem set!).
 - b) Compute the vector $\ddot{\gamma}(t)$ as a linear combination of σ_x , σ_y , and **n** (The previous exercise should help you to replace the $\sigma_x x$ etc in your calculations.).
 - c) An alternative basis instead of $\{\sigma_x, \sigma_y, \mathbf{n}\}$, are (taking $\mathbf{T} := \dot{\gamma}$), $\{\mathbf{T}, \mathbf{n}, \mathbf{n} \times \mathbf{T}\}$. Why is $\ddot{\gamma}$ a linear combination of only \mathbf{n} and $\mathbf{n} \times \mathbf{T}$? Therefore $\ddot{\gamma} = \kappa_n \mathbf{n} + \kappa_g \mathbf{n} \times \mathbf{T}$, for some $\kappa_n = \ddot{\gamma} \cdot \mathbf{n}$ and $\kappa_g = \ddot{\gamma} \cdot (\mathbf{n} \times \mathbf{T})$. Show that k_n depends only on L, M, and N, and that k_g depends only on E, F, and G. (Use the previous parts and the linearity of the dot and cross products, wherever applicable, to write everything in terms of σ_x , σ_y , and \mathbf{n} . Somewhere, you will a term like $\mathbf{n} \cdot (\sigma_x \times \sigma_y)$, but that can be written in terms of E, E, and E. Do you see why?)
- 3. Recall the definition of $W_{p,S}$, which can be interpreted as a linear map from $T_p(S)$ to itself.
 - a) Prove that $W_{p,S}(\sigma_x) = -\mathbf{n}_x$ and $W_{p,S}(\sigma_y) = -\mathbf{n}_y$. (Recall the definition of $D_p(f)$. What curve represents σ_x ? Why is the derivative of the image of that curve under the Gauss map \mathcal{G}_S equal to \mathbf{n}_x ?)
 - b) $W_{p,S}(\sigma_x)$ and $W_{p,S}(\sigma_y)$ are both tangent vectors of the surface (why?) and therefore is some linear combination of only σ_x and σ_y , i.e. $-\mathbf{n}_x = \alpha \sigma_x + \beta \sigma_y$ and $-\mathbf{n}_y = \gamma \sigma_x + \delta \sigma_y$. This is another way of seeing that \mathbf{n}_x and \mathbf{n}_y can be written as linear combinations of only σ_x and σ_y . Use part a) of the first question to find a matrix representation for $W_{p,S}$.
- 4. Recall the definition $\langle v, w \rangle_p' := \langle \mathcal{W}_{p,S} v, w \rangle$
 - a) $\langle \sigma_x, \sigma_x \rangle' = L$, $\langle \sigma_x, \sigma_y \rangle' = M$, $\langle \sigma_y, \sigma_y \rangle' = N$ (Relate, for example, $\mathbf{n}_x \cdot \sigma_x$ with L by using the fact that $\mathbf{n} \cdot \sigma_x$ is orthogonal.)
 - b) $\langle v, w \rangle'$ is symmetric.
 - c) Show that for a unit speed parametrization γ of a regular curve on the surface, κ_n (defined in question 2) is $\langle \dot{\gamma}, \dot{\gamma} \rangle'$. (You can use part (a) of the previous question to relate it with $W_{p,S}$). This will be an alternative proof for why κ_n depends only on L, M, and N.