Convergence of Allen-Cahn equations to multi-phase mean curvature flow

Pascal Maurice Steinke

Born 22.05.1999 in Gießen, Germany 09.09.2022

Master's Thesis Mathematics

Advisor: Prof. Dr. Tim Laux

Second Advisor: Prof. Dr. X Y

Institute for Applied Mathematics

Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 The Allen–Cahn equation

1

1 The Allen–Cahn equation

This chapter follows [LS16], but since the authors decided to only sketch some proofs. we want to go into more detail.

Let $\Lambda > 0$ and define the flat torus $\mathbb{T} = [0, \Lambda)^d \subset \mathbb{R}^d$, where we work with periodic boundary conditions and write $\int \mathrm{d}x$ instead of $\int_{\mathbb{T}} \mathrm{d}x$. Then for $u : [0, \infty) \times \mathbb{T} \to \mathbb{R}^N$ and some potential $W : \mathbb{R}^N \to [0, \infty)$, the Allen-Cahn equation with parameter $\varepsilon > 0$ is given by

$$\partial_t u = \Delta u - \frac{1}{\varepsilon^2} \nabla W(u). \tag{1.1}$$

To understand this equation better, we consider the Cahn-Hilliard energy which assigns to u for a fixed time the real number

$$E_{\varepsilon}(u) := \int \frac{1}{\varepsilon} W(u) + \frac{\varepsilon}{2} |\nabla u|^2 dx.$$
 (1.2)

If everything is nice and smooth, we can compute that under the assumption that u satisfies equation (1.1), we have that

$$\frac{\mathrm{d}}{\mathrm{d}t} \,\mathrm{E}_{\varepsilon}(u) = \int \frac{1}{\varepsilon} \langle \nabla W(u) \,,\, \partial_t u \rangle + \varepsilon \langle \nabla u \,,\, \nabla \partial_t u \rangle \,\mathrm{d}x$$

$$= \int \left\langle \frac{1}{\varepsilon} \nabla W(u) - \varepsilon \Delta u \,,\, \partial_t u \right\rangle \,\mathrm{d}x$$

$$= \int -\varepsilon |\partial_t u|^2 \,\mathrm{d}x \,. \tag{1.1}$$

This calculation suggests that equation (1.1) is the L² gradient-flow (rescaled by $\sqrt{\varepsilon}$) of the Cahn–Hilliard energy. Thus we can try to construct a solution to the PDE (1.1) via De Giorgis minimizing movements scheme, which we will do in theorem ??.

But first we need to clarify what our potential W should look like. Classic examples in the scalar case are given by $W(u) = (u^2 - 1)^2$ or $W(u) = u^2(u - 1)^2$, and we call functions like these *doublewell potentials*, see also 1.

In higher dimensions, we want to accept the following potentials: $W: \mathbb{R}^N \to [0, \infty)$ has to be a smooth multiwell potential with finitely many zeros at $u = \alpha_1, \dots, \alpha_P \in \mathbb{R}^N$. Furthermore we aks for polynomial growth in the sense that there exists some $p \geq 2$ such that

$$|u|^p \lesssim W(u) \lesssim |u|^p \tag{1.3}$$

and

$$|\nabla W(u)| \lesssim |u|^{p-1} \tag{1.4}$$

1 The Allen–Cahn equation

Figure 1.1: The graph of a doublewell potential

for all u sufficiently large. Lastly we want W to be convex up to a small perturbation in the sense that there exist smooth functions W_{conv} , $W_{\text{pert}} \colon \mathbb{R}^N \to [0, \infty)$ such that

$$W = W_{\text{conv}} + W_{\text{pert}}, \tag{1.5}$$

 $W_{\rm conv}$ is convex and

$$\sup_{x \in \mathbb{R}^N} \left| \nabla^2 W_{\text{pert}} \right| < \infty. \tag{1.6}$$

These assumptions are in particular satisfied by our two examples for doublewell potentials and therefore seem to be plausible.

Bibliography

[LS16] Tim Laux and Theresa Simon. "Convergence of the Allen-Cahn Equation to Multiphase Mean Curvature Flow". In: Communications on Pure and Applied Mathematics 71 (June 2016). DOI: 10.1002/cpa.21747.