Assignment 4 MAT 458

Q2: Let T be a surjective linear mapping from banach spaces E to F. Suppose that T has a right inverse S. We claim that R(S) is the compliment of N(T). First we show that

$$R(S) \cap N(T) = \{0\}.$$

Let $v \in R(S) \cap N(T)$. For some u, Su = v. We also have that $Tv = TSu = id_Fu = 0$. Therefore u = 0 and so v = 0. We now claim that E = R(S) + N(T). If $v \in E$, then $u = STv - v \in \ker T$. Therefore v = STv - u. Now suppose that N(T) has a compliment in E. Let G be the compliment. We can write any $v \in E$ as v = x + y for $x \in N(T), y \in G$. Define the right inverse S as S(Tv) = x. We see that T(S(Tv)) = T(S(Tx)) = Tx.