IN THE CLAIMS:

 (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t, estimating the SNR to get time and frequency SNR information

calculating the time and frequency weighting to get <u>weighting coefficient</u> γ_{tr.} <u>wherein</u> γ_{tr.} is a <u>function of</u> η_{tr.};

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_j - \mu)$ associated with the speech frame t, to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_t , which represents the weighting coefficient $?_{t,t}$:

 $\frac{transforming\ the\ weighted\ spectral\ distance\ to\ a\ weighted\ cepstral\ distance\ employing\ a}{forward\ DCT\ matrix\ M\ performing\ the\ back\ and\ forth\ weighted\ time\ varying\ DCT\ transformation\ matrix\ computation\ MG_iM^4\ to\ get\ a\ transformation\ matrix\ T_t;}$

providing the transformation matrix eomputation T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition $b_j(o_t)$.

2. (Currently Amended) The method of claim 1 elaim1 wherein

$$\gamma_{t,f} = \frac{\sqrt{\eta_{z,f}}}{1 + \sqrt{\eta_{z,f}}}$$

which guarantees that γ_{tf} is equal to 0 when $\eta_{t,f} = 0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

 (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each <u>time</u> period t, estimating the SNR to get time and frequency SNR information

[hcf[fi]]

calculating the time and frequency weighting to get weighting coefficient γ_{rt} , wherein γ_{rt} is a function of $\eta_{t,t}$;

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_i - \mu)$ associated with the speech time period t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_i , which represents the weighting coefficient $2_{i,j}$:

transforming the weighted spectral distance to a weighted cepstral distance employing a forward DCT matrix M performing the back and forth weighted time varying DCT transformation matrix emputation MG_iM^{-1} to get a transformation matrix T_i ;

providing the transformation matrix eemputation T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition b_t(o_t).

- (Currently Amended) The method of claim 3 wherein the said estimating the SNR to get time and frequency SNR information η_{t,f} step is a pronunciation probability estimation step.
 - 5. (Currently Amended) The method of claim 3 wherein the said estimating the SNR to

get time and frequency SNR information $\eta_{\rm tf}$ step is a transmission over a noisy communication channel reliability estimation.

(Original) The method of claim 3 wherein

$$\gamma_{t:f} = \frac{\sqrt{\eta_{t:f}}}{1 + \sqrt{\eta_{t:f}}}$$

which guarantees that γ_{tf} is equal to 0 when $\eta_{t,f} = 0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

7. (New) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t, estimating SNR to get time and frequency SNR information η_{Lf} ; calculating the time and frequency weighting to get weighting coefficient γ_{tf} wherein γ_{tf} is a function of η_{Lf} ;

transforming a cepstral distance $(o_{\Gamma}\mu)$ associated with the speech frame t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix that represents the weighting coefficient 2,;

transforming the weighted spectral distance to a weighted cepstral distance to get a transformation matrix $T_{\bf i}$:

providing the transformation matrix T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer that performs Viterbi decoding; and

performing weighted Viterbi recognition b_j(o_t).

Appl. No. 10/823,059 Reply to Examiner's Action dated 09/24/2007

- 8. (New) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a pronunciation probability estimation.
- 9. (New) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a transmission over a noisy communication channel reliability estimation.