Anéis - Homomorfismos

José Antônio O. Freitas

MAT-UnB

12 de outubro de 2020

Sejam $(A, +, \cdot)$

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes)

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis.

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis. Uma função $f\colon A o B$

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis. Uma função $f: A \to B$ é chamada de um **homomorfismo de anéis**,

i)
$$f(x+y)$$

$$i) \ f(x+y) = f(x)$$

$$i) \ f(x+y) = f(x) \oplus f(y)$$

$$i) \ f(x+y) = f(x) \oplus f(y)$$

ii)
$$f(x \cdot y)$$

$$i) \ f(x+y) = f(x) \oplus f(y)$$

ii)
$$f(x \cdot y) = f(x)$$

$$i) \ f(x+y) = f(x) \oplus f(y)$$

ii)
$$f(x \cdot y) = f(x) \otimes f(y)$$

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis. Uma função $f: A \to B$ é chamada de um **homomorfismo de anéis**, ou simplesmente **homomorfismo**, se satisfaz:

$$i) \ f(x+y) = f(x) \oplus f(y)$$

$$ii) \ f(x \cdot y) = f(x) \otimes f(y)$$

para todos $x, y \in A$.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis. Uma função $f: A \to B$ é chamada de um **homomorfismo de anéis**, ou simplesmente **homomorfismo**, se satisfaz:

$$i) \ f(x+y) = f(x) \oplus f(y)$$

$$ii) \ f(x \cdot y) = f(x) \otimes f(y)$$

para todos $x, y \in A$.

Exemplos

Verifique se as seguintes funções $f: A \rightarrow B$,

Exemplos

Exemplos

i)
$$A = \mathbb{Z}$$
,

Exemplos

i)
$$A = \mathbb{Z}$$
, $B = \mathbb{Z}$

Exemplos

i)
$$A = \mathbb{Z}$$
, $B = \mathbb{Z}$ e $f(x) = x + 1$

Exemplos

- i) $A = \mathbb{Z}$, $B = \mathbb{Z}$ e f(x) = x + 1
- ii) $A = \mathbb{Z}$,

Exemplos

i)
$$A = \mathbb{Z}$$
, $B = \mathbb{Z}$ e $f(x) = x + 1$

ii)
$$A = \mathbb{Z}$$
, $B = M_2(\mathbb{Z}_5)$

Exemplos

Verifique se as seguintes funções $f:A\to B$, são homomorfismos de anéis:

i)
$$A = \mathbb{Z}$$
, $B = \mathbb{Z}$ e $f(x) = x + 1$

ii)
$$A = \mathbb{Z}$$
, $B = M_2(\mathbb{Z}_5)$ e

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

3/16

Exemplos

Verifique se as seguintes funções $f:A\to B$, são homomorfismos de anéis:

i)
$$A = \mathbb{Z}$$
, $B = \mathbb{Z}$ e $f(x) = x + 1$

ii)
$$A = \mathbb{Z}$$
, $B = M_2(\mathbb{Z}_5)$ e

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

3/16

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis. Se $f: A \to B$ é um homomorfismo, então:

i) $f(0_A)$

$$i) \ f(0_A) = 0_B$$

i)
$$f(0_A) = 0_B$$

$$ii) f(-x)$$

i)
$$f(0_A) = 0_B$$

$$ii) \ f(-x) = -f(x),$$

i)
$$f(0_A) = 0_B$$

ii)
$$f(-x) = -f(x)$$
, para todo $x \in A$.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis. Se $f: A \to B$ é um homomorfismo, então:

i)
$$f(0_A) = 0_B$$

ii)
$$f(-x) = -f(x)$$
, para todo $x \in A$.

Prova:

Observação:

A condição (i) da proposição anterior

Observação:

A condição (i) da proposição anterior serve para determinar quando uma função $f:A\to B$,

A condição (i) da proposição anterior serve para determinar quando uma função $f: A \to B$, onde $A \in B$ são anéis, não é um homomorfismo.

A condição (i) da proposição anterior serve para determinar quando uma função $f:A\to B$, onde A e B são anéis, não é um homomorfismo. Caso $f(0_A)\neq 0_B$,

A condição (i) da proposição anterior serve para determinar quando uma função $f:A\to B$, onde A e B são anéis, não é um homomorfismo. Caso $f(0_A)\neq 0_B$, então f não é um homomorfismo.

A condição (i) da proposição anterior serve para determinar quando uma função $f\colon A\to B$, onde A e B são anéis, não é um homomorfismo. Caso $f(0_A)\neq 0_B$, então f não é um homomorfismo. Mas pode acontecer de $f(0_A)=0_B$

A condição (i) da proposição anterior serve para determinar quando uma função $f: A \to B$, onde A e B são anéis, não é um homomorfismo. Caso $f(0_A) \neq 0_B$, então f não é um homomorfismo. Mas pode acontecer de $f(0_A) = 0_B$ e mesmo assim f não é um homomorfismo de anéis,

A condição (i) da proposição anterior serve para determinar quando uma função $f: A \to B$, onde A e B são anéis, não é um homomorfismo. Caso $f(0_A) \neq 0_B$, então f não é um homomorfismo. Mas pode acontecer de $f(0_A) = 0_B$ e mesmo assim f não é um homomorfismo de anéis, como o exemplo a seguir mostra:

A condição (i) da proposição anterior serve para determinar quando uma função $f: A \to B$, onde A e B são anéis, não é um homomorfismo. Caso $f(0_A) \neq 0_B$, então f não é um homomorfismo. Mas pode acontecer de $f(0_A) = 0_B$ e mesmo assim f não é um homomorfismo de anéis, como o exemplo a seguir mostra:

Sejam $A=M_2(\mathbb{R})$,

Sejam $A=M_2(\mathbb{R}),\ B=\mathbb{R}$

Sejam $A = M_2(\mathbb{R})$, $B = \mathbb{R}$ anéis com as operações usuais.

Sejam $A=M_2(\mathbb{R})$, $B=\mathbb{R}$ anéis com as operações usuais. A função

Sejam $A=M_2(\mathbb{R})$, $B=\mathbb{R}$ anéis com as operações usuais. A função

$$f\left(\begin{bmatrix} x & y \\ z & t\end{bmatrix}\right)$$

Sejam $A=M_2(\mathbb{R}),\ B=\mathbb{R}$ anéis com as operações usuais. A função

$$f\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = x$$

$$\acute{e}$$
 tal que $f(0_A) = 0_B$

Sejam $A=M_2(\mathbb{R})$, $B=\mathbb{R}$ anéis com as operações usuais. A função

$$f\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = x$$

é tal que $f(0_A) = 0_B$ e no entanto f não é um homomorfismo de anéis.

Sejam $A=M_2(\mathbb{R})$, $B=\mathbb{R}$ anéis com as operações usuais. A função

$$f\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = x$$

é tal que $f(0_A) = 0_B$ e no entanto f não é um homomorfismo de anéis.

Seja $f: A \rightarrow B$ um homomorfismo, onde A e B são anéis. Dizemos que:

i) f é um **epimorfismo**

Seja $f: A \rightarrow B$ um homomorfismo, onde A e B são anéis. Dizemos que:

i) f é um **epimorfismo** se f for sobrejetora.

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo**

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo** se f for injetora.

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo** se f for injetora.
- iii) f é um **isomorfismo**

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo** se f for injetora.
- iii) f é um **isomorfismo** se f for bijetora.

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um monomorfismo se f for injetora.
- iii) f é um **isomorfismo** se f for bijetora.
- iv) Quando A = B

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo** se f for injetora.
- iii) f é um **isomorfismo** se f for bijetora.
- iv) Quando A = B e f é um isomorfismo,

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo** se f for injetora.
- iii) f é um **isomorfismo** se f for bijetora.
- iv) Quando A = B e f é um isomorfismo, então f é um **automorfismo**.

- i) f é um **epimorfismo** se f for sobrejetora.
- ii) f é um **monomorfismo** se f for injetora.
- iii) f é um **isomorfismo** se f for bijetora.
- iv) Quando A = B e f é um isomorfismo, então f é um **automorfismo**.

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis.

$$ker(f) =$$

$$\ker(f) = N(f) =$$

$$\ker(f) = N(f) = \{x \in A$$

$$\ker(f) = N(f) = \{x \in A \mid f(x) = 0_B\}$$

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis. Então o subconjunto de A definido por

$$\ker(f) = N(f) = \{x \in A \mid f(x) = 0_B\}$$

é chamado de **kernel**

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis. Então o subconjunto de A definido por

$$\ker(f) = N(f) = \{x \in A \mid f(x) = 0_B\}$$

é chamado de kernel ou núcleo

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis. Então o subconjunto de A definido por

$$\ker(f) = N(f) = \{x \in A \mid f(x) = 0_B\}$$

é chamado de kernel ou núcleo de f.

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis. Então o subconjunto de A definido por

$$\ker(f) = N(f) = \{x \in A \mid f(x) = 0_B\}$$

é chamado de kernel ou núcleo de f.

i)
$$f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$$

i)
$$f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$$
 tal que

i)
$$f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$$
 tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

i)
$$f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$$
 tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

ii) Seja
$$(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$$

Determine o kernel dos seguintes homomorfismo de anéis:

i) $f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$ tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

ii) Seja $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ um anel com as seguintes operações

Determine o kernel dos seguintes homomorfismo de anéis:

i) $f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$ tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

ii) Seja $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ um anel com as seguintes operações (a, b) + (c, d) = (a + c, b + d)

Determine o kernel dos seguintes homomorfismo de anéis:

i) $f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$ tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

ii) Seja $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ um anel com as seguintes operações

$$(a, b) + (c, d) = (a + c, b + d)$$

 $(a, b) \cdot (c, d) = (ac, ad + bc)$

Determine o kernel dos seguintes homomorfismo de anéis:

i) $f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$ tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

ii) Seja $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ um anel com as seguintes operações

$$(a, b) + (c, d) = (a + c, b + d)$$

 $(a, b) \cdot (c, d) = (ac, ad + bc)$

para todos
$$(a,b)$$
, $(c,d) \in \mathbb{Z} \times \mathbb{Z}$.

Determine o kernel dos seguintes homomorfismo de anéis:

i) $f: \mathbb{Z} \to M_2(\mathbb{Z}_5)$ tal que

$$f(a) = \begin{bmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{a} \end{bmatrix}.$$

ii) Seja $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ um anel com as seguintes operações

$$(a, b) + (c, d) = (a + c, b + d)$$

 $(a, b) \cdot (c, d) = (ac, ad + bc)$

para todos (a, b), $(c, d) \in \mathbb{Z} \times \mathbb{Z}$. O homomorfismo $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ é dado por f(a, b) = a.

iii) $f: \mathbb{Q} \to M_3(\mathbb{Q})$

iii) $f: \mathbb{Q} \to M_3(\mathbb{Q})$ dada por

iii) $f: \mathbb{Q} \to M_3(\mathbb{Q})$ dada por

$$f(x) = \begin{pmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix}$$

iii)
$$f: \mathbb{Q} \to M_3(\mathbb{Q})$$
 dada por

$$f(x) = \begin{pmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix}$$

Solução:

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e $f: A \to B$ um homomorfismo de anéis. Então:

i) ker(f) é um subanel de A.

- i) ker(f) é um subanel de A.
- ii) f é injetora

- i) ker(f) é um subanel de A.
- ii) f é injetora se, e somente se,

- i) ker(f) é um subanel de A.
- ii) $f \in injetora se$, e somente se, $ker(f) = \{0_A\}$.

- i) ker(f) é um subanel de A.
- ii) $f \in injetora se$, e somente se, $ker(f) = \{0_A\}$.

Prova:

Seja $(A,+,\cdot)$ um anel unitário.

Seja $(A, +, \cdot)$ um anel unitário. Dado $x \in A$,

Seja $(A,+,\cdot)$ um anel unitário. Dado $x\in A$, dizemos que x é **inversível**

Seja $(A, +, \cdot)$ um anel unitário. Dado $x \in A$, dizemos que x é **inversível** ou que x **possui inverso**

$$x \cdot y = 1_A$$

$$x \cdot y = 1_A = y \cdot x$$
.

$$x \cdot y = 1_A = y \cdot x$$
.

Seja $(A,+,\cdot)$ um anel unitário.

Seja $(A, +, \cdot)$ um anel unitário. O inverso multiplicativo de um elemento $x \in A$,

Seja $(A, +, \cdot)$ um anel unitário. O inverso multiplicativo de um elemento $x \in A$, se existir,

Seja $(A, +, \cdot)$ um anel unitário. O inverso multiplicativo de um elemento $x \in A$, se existir, é único.

Seja $(A, +, \cdot)$ um anel unitário. O inverso multiplicativo de um elemento $x \in A$, se existir, é único.

Prova:

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo sobrejetor de anéis.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade,

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f:A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f:A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo,

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x)

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x) tem inverso e

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x) tem inverso e

$$[f(x)]^{-1} = f(x^{-1}).$$

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e seja $f\colon A\to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x) tem inverso e

$$[f(x)]^{-1} = f(x^{-1}).$$

Prova: