Compte rendu du TP nº 1 Statistiques computationnelle

Maria Cherifa

22 octobre 2020

Exercice 1:

Soit R une variable aléatoire avec une Rayleigh distribution avec un paramètre 1 et θ avec une distribution uniforme sur $[0, 2\pi]$, R et θ sont indépendantes.

1- Nous voulons prouver que $X=R\cos(\theta)$ et $Y=R\cos(\theta)$ suivent une loi Normale centrée réduite et X et Y sont indépendant. En effet ici nous pouvons utiliser la notion de vecteur gaussien, considérons une fonction h une fonction mesurable et calculons :

$$\begin{split} E(h(X,Y)) &= E(h(R\cos(\theta),R\cos(\theta))) \\ &= \int_0^{+\infty} \int_0^{2\pi} h(r\cos(\theta),r\sin(\theta)) r \, e^{\frac{-r^2}{2}} \, \frac{1}{2\pi} \mathrm{d}r \mathrm{d}\theta \end{split}$$

On utilise un changement de variable en coordonnées polaires et on trouve :

$$E(h(X,Y)) = \int \int_{\mathbf{R}^2} h(x,y) \frac{e^{x^2 + y^2}}{2\pi} dx dy$$
$$= E(h(N_1, N_2))$$

On constate bien que $\binom{N_1}{N_2} \sim \mathcal{N}(\binom{0}{0}, I_2)$. Donc X et Y forment un vecteur gaussien on déduit alors que X et Y sont indépendants.

2- Construction d'un algorithme pour simuler des gausiennes indépendantes :

Etape 1: simular une uniforme sur $[0, 2\pi]$.

Etape 2 : simuler une loi R.

Etape 3: Calculer le vecteur $(R \cos(\theta), R \sin(\theta))$.

Si on sait simuler une uniforme alors on peut déduire la simulation de la loi de R, en effet on a :

$$P(r \ge R) = F_R(r)$$

$$= \int_0^{+\infty} r \, e^{\frac{-t^2}{2}} dr = 1 - e^{\frac{-r^2}{2}}$$

donc $R \sim F_R^{-1}(U) \sim \sqrt{-2\log(1-U)}$ ou $U \sim \mathcal{U}([0,1])$, donc on peut simuler R à partir de U.

- 3-(a)- On cherche la loi de (V_1, V_2) à la fin de la boucle c'est à dire $loi((V_1, V_2)) \sim loi((V_1, V_2)/V_1^2 + V_2^2 < 1)$, de plus $V_1 = 2U_1 1$ et $V_2 = 2U_2 1$ et U_1 et U_2 sont indépendantes ce qui implique que V_1 et V_2 le sont aussi, on peut alors déduire alors que V_1 et V_2 sont aussi des unifomes sur [0, 1].
- (b)- On veut voir que T et V sont indépendantes et calculer leurs lois. Prouvons d'abord l'indépendance de V et T, soit h une fonction mesurable alors :

$$\begin{split} E(h(T,V)) &= E(h\left(\frac{V_1}{\sqrt{V_1^2 + V_2^2}}, (V_1^2 + V_2^2)\right)) \\ &= \int h\left(\frac{v_1}{\sqrt{v_1^2 + v_2^2}}, (v_1^2 + v_2^2)\right) f_{V_1, V_2}(v_1, v_2) \mathrm{d}v_1 \, \mathrm{d}v_2 \end{split}$$

on sait que $f_{V_1,V_2}(v_1,v_2) = \frac{1}{\pi} \mathbf{1}_{v_1^2 + v_2^2 < 1}$

$$E(h(T,V)) = \int_{v_1^2 + v_2^2 \le 1} h\left(\frac{v_1}{\sqrt{v_1^2 + v_2^2}}, (v_1^2 + v_2^2)\right) dv_1 dv_2$$

En utilisant le changement de variable suivant $v_1 = t\sqrt{v}$ et $v_2 = \sqrt{v}\sqrt{1-t^2}$, le determinant du jacobien de cette transformation est égal à $\frac{1}{2\sqrt{1-t^2}}$, donc l'intégrale devient :

$$E(h(T,V)) = 2 \int_{-1}^{1} \int_{0}^{1} \frac{1}{\pi} h(t,v) \frac{1}{2\sqrt{1-t^{2}}} dv dt$$

On peut du coup déduire que $f_{T,V}(t,v) = \frac{1}{\pi\sqrt{1-t^2}} \mathbf{1}_{[-1,1]}(t) \times \mathbf{1}_{[0,1]}(v)$ donc on voit bien que $f_{T,V}(t,v) = f_T(t) \times f_V(v)$ et donc T et V sont indépendantes. De plus $f_V(v) = \mathbf{1}_{[0,1]}(v)$ ce qui implique que V suit une loi uniforme sur [0,1]. Pour T, considérons h une fonction mesurable on a alors :

$$E(h(T)) = \int_{-1}^{1} h(t) \frac{1}{\pi \sqrt{1 - t^2}} dt$$

avec le changement de variables : $\theta = \arccos t$ et donc $d\theta = \frac{1}{\sqrt{1-t^2}} dt$, et l'intégrale précédente devient :

$$E(h(T)) = \int_0^{\pi} h(\cos \theta) \frac{1}{\pi} d\theta$$

Donc on constate que $T \sim \cos \theta$.

(c)- $S=\sqrt{-2\log(V_1^2+V_2^2)}=\sqrt{-2\log(V)}$, comme V est une uniforme sur [0,1] alors on peut voir que S est une loi de Rayleigh, et donc X=ST ou $T\sim\cos\theta$ ce qui implique que $X=ST=R\cos\theta\sim\mathcal{N}(0,1)$, de même pour $Y=S\frac{V_2}{\sqrt{V_1^2+V_2^2}}=R\sin\theta\sim\mathcal{N}(0,1)$, et donc comme vu précédemment nous avons bien

$$(X,Y) \sim \mathcal{N}(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, I_2).$$

$$(d)-\text{proba} = \frac{|\text{boule de rayon 1}|}{|[-1,1]^2|} = \frac{\pi}{4}$$

Exercice 2:

Soit $(X_n)_{n\geq 0}$ une chaine de Markov à valeurs dans [0,1].

1- On veut prouver que le kernel de transition de la chaine de Markov est égal à la formule donnée. En effet :

$$P(X_{n+1} \in A/X_n) = E(\mathbf{1}_{X_{n+1} \in A}/X_n)$$

Dans ce cas on sait par hypothese que X_{n+1} suit une uniforme sur [0,1] pour n'importe qu'elle X_n alors on trouve bien,

$$P(X_{n+1} \in A/X_n) = |A \cap [0, 1]|$$

= $\int_{A \cap [0, 1]} dt$

maintenant considérons le cas ou $X_n = \frac{1}{m}$, avec $K_n \sim Ber(X_n^2)$ alors :

$$\begin{split} \mathrm{P}(X_{n+1} \in A/X_n &= \frac{1}{m}) = \mathrm{E}(\mathbf{1}_{X_{n+1} \in A}/X_n = \frac{1}{m}) \\ &= E_{K_n}(E(\mathbf{1}_{X_{n+1} \in A}/X_n, K_n)/X_n) \\ &= X_n^2 \, E(\mathbf{1}_{X_{n+1} \in A}/X_n, K_n = 1) + (1 - X_n^2) E(\mathbf{1}_{X_{n+1} \in A}/X_n, K_n = 0) \\ &= X_n^2 \, \int_{[0,1] \cap A} \mathrm{d}t + (1 - X_n^2) \delta_{\frac{1}{m+1}}(A) \end{split}$$

2- On veut prouver que la distribution uniforme sur [0,1] notée π est invariante pour P, c'est à dire que que $\pi P = \pi$. En effet en calculant :

$$\pi P(x, A) = \int_{\mathbf{R}} P(x, A) \pi dx$$
$$= \int_{0}^{1} P(x, A) dx$$

en prenant $B=\frac{1}{m}, m\in \mathbf{N}^*,$ l'intégrale précédente peut alors s'écrire sous cette forme :

$$\pi P(x, A) = \int_{\mathbf{R}} P(x, A) \pi dx$$

$$= \int_{0}^{1} P(x, A) dx$$

$$= \int_{B} P(x, A) dx + \int_{[0,1] \setminus B} P(x, A) dx$$

$$= 0 + \int_{[0,1] \setminus B} |A \cap [0, 1]| dx$$

$$= |A \cap [0, 1]|$$

$$= \pi$$

3-pour $x \notin B$, et f une fonction mesurable bornée, calculons Pf(x):

$$Pf(x) = \int_0^1 f(y)P(x, dy) = \int_0^1 f(y)dy$$

de plus:

$$P^{2}f(x) = \int_{0}^{1} \int_{0}^{1} f(y) dy dz = \int_{0}^{1} f(y) dy$$

Nous pouvons alors déduire que :

$$P^n f(x) = \int_0^1 f(y) \mathrm{d}y$$

4- Calculons $P^n(x, \frac{1}{m+n})$:

$$P^{n}(\frac{1}{m}, \frac{1}{m+n}) = \int_{[0,1]} P^{n-1}(x, dy) P(y, \frac{1}{m+n})$$

$$= P^{n-1}(\frac{1}{m}, \frac{1}{m+n-1}) \left(1 - (\frac{1}{m+n-1})^{2}\right)$$

$$= \frac{(m+n)(m+n-2)}{(m+n-1)^{2}} P^{n-1}(\frac{1}{m}, \frac{1}{m+n-1})$$

et donc en itérant on aura :

$$P^{n}(\frac{1}{m}, \frac{1}{m+n}) = \frac{(m+n)(m+n-2)}{(m+n-1)^{2}} \frac{(m+n-1)(m+n-3)}{(m+n-2)^{2}} \dots \frac{(m+1)(m-1)}{(m)^{2}}$$
$$= \frac{m+n}{m+n-1} \times \frac{m-1}{m}$$

4-b On veut voir si $P^n(x,A)$ converge vers $\pi(A)$: on a $P^n(x,A) > P^n(x,\frac{1}{m+n})$ or $P^n(x,\frac{1}{m+n}) = \frac{m+n}{m+n-1} \times \frac{m-1}{m}$ qui tend vers $\frac{m-1}{m}$ quand n tend vers l'infini donc on déduit que $P^n(x,A)$ ne converge pas vers $\pi(A)$.