Contents

1	Insi	emi 2
	1.1	La notazione estensionale
	1.2	La notazione intensionale
	1.3	L'inclusione
	1.4	I diagrammi di Venn
	1.5	Insiemi numerici
	1.6	I sottoinsiemi
	1.7	Unione e intersezione
	1.8	Inclusione e implicazione
	1.9	La negazione: NOT o Complemento
	1.10	Prodotto cartesiano
	1.11	Gli insiemi e la logica matematica
		1.11.1 Connettivi logici
	1.12	Relazioni
		1.12.1 Le tabelle di adiacenza
		1.12.2 Diagrammi di Venn
		1.12.3 Relazioni binarie
		1.12.4 Relazioni riflessive
		1.12.5 Relazioni simmetriche
2	Con	nbinatoria 23
	2.1	Coefficiente binomiale
	2.2	Le disposizioni
		2.2.1 Disposizioni con ripetizioni
		2.2.2 Disposizioni semplici
	2.3	Differenza tra disposizioni semplici e con ripetizione 26
	2.4	Esercizi con combinazioni e permutazioni
	2.5	Dimostrazione per induzione

Appunti di Algebra e Geometria

Marco Zanchin

September 2022

1 Insiemi

Un insieme è una **collezione di oggetti**. Esso può essere descritto tramite due notazioni.

- modalità estensionale, ovvero descrivere l'insieme per esteso.
- modalità intensionale, ovvero descrivere l'insieme tramite proprietà.

Proprietà

- Non conta l'ordine degli elementi
- Non contano le ripetizioni degli elementi

Rule 1.1 – Insieme vuoto

L'insieme senza elementi si dice **insieme vuoto**, esso viene utilizzato in casi di proprietà non soddisfatte (l'insieme degli numeri dispari multipli di 2). Si denota con \emptyset

Rule 1.2 - Singleton

Un insieme con un solo elemento si chiama singleton, o singoletto.

1.1 La notazione estensionale

si elencano gli elementi (che devono essere finiti)

$$A = \{1, 2, 4, 6, 12, 8 \dots \}$$

1.2 La notazione intensionale

descrive l'insieme tramite proprietà che accomuna gli elementi presenti in esso.

$$P = \{0, 2, 4, 6, 8...\}$$
 Notazione poco precisa

$$P = \{ x \in B \mid Q(x) \}$$

1.3 L'inclusione

L'insieme X è incluso in y $X \subseteq Y$ Se ogni elemento di x appartiene a y.

$$\forall x \in X, X \in Y$$

1.4 I diagrammi di Venn

Un diagramma di Venn è un diagramma che mostra tutte le possibili relazioni logiche tra una collezione finita di insiemi differenti.

- $\bullet \ \mathbf{A} = \{a, b, c\}$
- $B = \{c, d, f\}$

 $A \not\subseteq B$, $B \not\subseteq A$

- $\bullet \ \mathbf{A} = \{a, b, c\}$
- $B = \{a, b, c, d, e\}$
- $C = \{d, e\}$
- $D = \{b, d\}$

- $\bullet \ A \subseteq B$
- \bullet $C \subseteq B$
- $D \subseteq B$
- \bullet $A \not\subseteq B$
- $\bullet \ D \not\subseteq A$
- $\bullet \ D \not\subseteq C$

Rule 1.3 – Insiemi uguali

Se
$$X\subseteq Y$$
e $Y\subseteq X$ allora $Y=X$

Proprietà

- $\bullet \ X \subseteq X$ Ogni insieme è sottoinsieme di sè stesso
- Ø \subseteq X per ogni x. Ø è un sottoinsieme di ogni insieme.

1.5 Insiemi numerici

ullet Numeri naturali: $\mathbb N$

$$\mathbb{N} = \{0, 1, 2, 3, 4 \dots \}$$

- Numeri interi: $\mathbb Z$

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2\}$$

 $\bullet\,$ Numeri razionali: $\mathbb Q$

$$\mathbb{Q} = \{ \frac{n}{m} \mid n, m, \in \mathbb{Z} \}$$

 $\bullet\,$ Numeri reali: $\mathbb R$

 $\mathbb{R}=\mathbb{Q}\cup\{\ \ \text{Numeri con parte decimale infinita e non periodica} \ (\pi,\sqrt{2})\dots\}$

1.6 I sottoinsiemi

Rule 1.4 – cardinalità

La cardinalità di un insieme è il numero di elementi presenti in esso, si indica con |insieme|

$$|\emptyset| = 0$$

$$A = \{a, b\}, |A| = 2$$

Scrivo tutti i **sottoinsiemi** di a:

- $\{a\} \subseteq \{a,b\}$
- $\{b\} \subseteq \{a,b\}$
- $\{a,b\} \subseteq \{a,b\}$
- $\{\emptyset\} \subseteq \{a,b\}$

A ha 4 sottoinsiemi.

$$B = \{a, b, c\}, |B| = 3$$

B ha 8 sottoinsiemi.

Rule 1.1 – Regola

Se |X| = n allora X possiederà 2^n sottoinsiemi

Rule 1.5 – Insieme delle parti

Si indica con P(X) l'insieme dei sottoinsiemi di X, Chiamato **insieme** delle parti. Esso avrà un numero pari a 2 elevato al numero di elementi nell'insieme di partenza.

Esempio:

A =
$$\{a,b\}$$

$$P(A) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$$

$$|A| = 2 |P(A)| = 2^2 = 4$$

P(A) è un sottoinsieme. Quanti sottoinsiemi ha?

$$|P(A)| = 4$$
 quindi $|P(P(A))| = 2^4$

Elenco i sottoinsiemi di P(A), ovvero P(P(A))

•
$$\emptyset \subseteq \{a, b\}$$

•
$$\{\emptyset\}, \{a\}, \{b\}, \{a, b\} \subseteq \{a, b\}$$

$$\bullet \ \{\emptyset, \{a\}, \{b\}\}, \{\emptyset, \{a\}, \{a, b\}\}, \{\{b\}, \{a\}, \{\emptyset, \{b\}, \{a, b\}\}, \{a, b\}\} \subseteq \{a, b\}$$

•
$$\{\{\emptyset\}, \{a\}, \{b\}, \{a, b\}\}$$

Esercizi December 2, 2022-

Scrivere l'insieme dei sottoinsiemi di

- $A1 = \{1, \{1\}, \{1, 2\}\}$
- $A2 = \{\{1\}, 2\}$
- $A3 = \{a, 1, \{a, 1\}\}$
- $A4 = \{a, b, c, d, e\}$

1.7 Unione e intersezione

Unione

Rule 1.2 – Unione

Dati due insiemi A e B, l' insieme unione di A e B 'e l'insieme degli elementi che appartengono ad A oppure a B.

$$A \cup B = \{X \mid X \in A \ OR \ X \in B\}$$

Esempio:

$$\mathbf{A} = \{1, a, Alice\} \ \mathbf{B} = \{1, \{1\}, 3\}$$

$$A \cup B = \{1, a, Alice, \{1\}, 3\}$$

Rappresentazione tramite tabella:

	$X \in A$	$X \not\in A$
$X \in B$	$X \in A \cup B$	$X \in A \cup B$
$X \not\in B$	$X \in A \cup B$	$X \not\in A \cup B$

L'unica situazione in cui x non appartiene all'unione è quando x non appartiene ne ad A ne a B.

Rule 1.6 – Principio di inclusione-esclusione

$$A \cup B = \mid A \mid \ + \mid B \mid -(A \cup B)$$

Intersezione

Rule 1.3 – Intersezione

Dati due insiemi A e B, l' insieme intersezione di A e B 'e l'insieme degli elementi che appartengono contemporaneamente ad A e a B.

$$A \cap B = \{X \mid X \in A \text{ } AND \text{ } X \in B\}$$

Esempio:

$$A = \{1, a, Alice\} B = \{1, \{1\}, 3\}$$

$$A \cup B = \{1\}$$

Rappresentazione tramite tabella:

	$X \in A$	$X \not\in A$
$X \in B$	$X \in A \cap B$	$X \not\in A \cap B$
$X \not\in B$	$X \not\in A \cap B$	$X \not\in A \cap B$

L'unica situazione in cui x appartiene all'intersezione è quando x non appartiene sia ad A che a B.

Proprietà degli operatori logici

- $\bullet \ \ X \cup \varnothing = X$
- $X \cap \emptyset = \emptyset$
- $X \cup (X \cap Y) = X$

- Proprietà commutativa:
 - $-X \cup Y = Y \cup X$
 - $-X\cap Y=Y\cap Z$

1.8 Inclusione e implicazione

$$\mathbf{A} = \{1,2,3\}$$
 $\mathbf{B} = \{n \in \mathbb{N} \mid \mathbf{n} \ \mathbf{\grave{e}} \ \mathbf{pari} \ \}$ Implicazione:

$$A \subseteq B$$
?

$A \subseteq B$	$n \in A$	$n \not\in A$
$n \in B$	ok	ok
$n \notin B$	contro esempio	ok

Un inseme A non è incluso in un altro insieme B $a \not\subseteq B$ se esiste almeno un **controesempio**. Cioè $x \in A$ ma $x \not\in B$

$$A\subseteq B\ \forall x\ x\in A\to x\in B$$

$$A \not\subseteq B \; \exists x \; x \in A \to x \not\in B$$

Nella seconda formula abbiamo la ricetta del controesempio $\exists x.$ Basta un solo elemento per negare l'implicazione.

Una frase universale **negata** diventa esistenziale.

Tutti gli alberi perdono le foglie: basta trovare **un** albero che non perda le foglie per avere un controesempio.

1.9 La negazione: NOT o Complemento

• Complemento assoluto:

Si riferisce ad un **insieme universo**. (Quando parlo di numeri, l'insieme di tutti i numeri)

$$A = \{1, 2, 3\}, A \subseteq \mathbb{N}$$

$$\overline{A} = \{n \in \mathbb{N} \mid n \not \in A\}$$

Il **complemento assoluto di A** sono **tutti i numeri** non presenti in esso

• Complemento relativo:

Si riferisce a due insiemi

$$A - B = \{ x \in A \mid x \not\in B \}$$

Tutti i numeri che appartengono ad A tali che NON appartengono a B

$$A - B = A - (A \cap B)$$

Proprietà

$$-A-\emptyset=A$$

$$-A-B \neq B-A$$

$$A-B = \{1, 2\}$$

 $B-A = \{4, 5\}$

$$-\emptyset$$
- $A=\emptyset$

$$(A \cup B) - (A \cap B) = (A - (A \cap B) \cup (B - (A \cap B))$$

1.10 Prodotto cartesiano

Dati due insiemi A e B, il prodotto cartesiano di $A \times B$ è l'insieme di tutte le coppie (x, y) dove x è un elemento di A e y è un elemento di B.

$$A \times Y = \{(x, y) : x \in A \in y \in B\}$$

- Esempio: prodotto cartesiano di due insiemi
 - 1. $X = \{a, b, c\}$
 - 2. $Y = \{1, 2\}$

$$\substack{ \mathbf{x} \times Y = \\ \{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\} }$$

Rule 1.7 – Coppia

L'insieme {a, {a, b}} è chiamato coppia e viene di solito denotato con (a, b). Quindi la coppia (a, b) è diversa dalla coppia (b, a), dato che l'insieme {a, {a, b}} è diverso dall'insieme {b, {a, b}}.

Una coppia (a, b) è quindi una sequenza di due elementi che sono la prima componente a e la seconda componente b, e non useremo la definizione come insieme.

Secondo il **principio della moltiplicazione** Se A è un insieme di x oggetti e B un insieme di y oggetti, allora l'insieme delle coppie ordinate (a,b) con $a \in A$ e $b \in B$ contiene $x \times y$ elementi.

- Esempio: principio della moltiplicazione
 - 1. $X = \{a, b, c\}$
 - $2. Y = \{1\}$

$$x \times Y = \{(a, 1), (b, 1), (c, 1)\}$$

Infatti | $X \times Y$ | = | X | \times | Y |= $3 \times 1 = 3$

1.11 Gli insiemi e la logica matematica

Per approfondire questo paragrafo è importante capire la nozione di **notazione intensionale** (pagina 2) Scriviamo:

$$\{x \in X \mid P(x)\}$$

Per indicare tutti gli elementi x di X che soddisfano la proprietà P. Ad esempio, se P è la proprietà di essere multiplo di 3, allora scriviamo $\{x \in N \mid P(x)\}$ per indicare l'insieme dei numeri naturali che sono multipli di 3.

P(x) è una frase che deve essere necessariamente **vera o falsa**, deve avere quindi un valore di verità oggettivo. è chiamata **proposizione o asserzione**. se P è la propietà di essere un numero naturale multiplo di 4, allora P(1) (1 è un numero naturale multiplo di 4) è una proposizione falsa e P(8) (8 è un numero naturale multiplo di 4) è una proposizione vera.

1.11.1 Connettivi logici

Con le proposizioni si possono eseguire delle operazioni, utilizzando i cosiddetti **connettivi logici** tra cui:

- La negazione ¬ (NOT)
- La congiunzione \wedge (AND)
- La disgiunzione \vee (OR)

Se P e Q sono proprietà, allora $\neg P(x)$, $P(x) \land Q(x)$ e $P(x) \lor Q(x)$ sono nuove proposizioni i cui valori di verità dipendono da quelli di P(x) e Q(x) e sono descritti attraverso tabelle chiamate tavole di verità.

• Negazione di una proposizione Sia P una proprietà, allora la negazione di P(x), che si indica con $\neg P(x)$ e si legge "not P(x)"

P(X)	$\neg P(X)$
V	F
$oxed{F}$	V

Se
$$A = \{x \in X \mid P(x)\}$$

allora
$$\overline{A} = \{x \in X \mid \neg P(x)\}\$$

• Congiunzione di due proposizioni

Date le proprietà P e Q, la congiunzione diP(X) e Q(x), che si indica con $P(x) \wedge Q(x)$ e si legge "**P(x) AND Q(x)**", è la proposizione che è vera se P(x) e Q(x) sono contemporaneamente vere ed è falsa in ogni altro caso.

P(X)	Q(X)	$P(x) \wedge Q(x)$
V	V	V
V	F	F
F	V	F
F	F	F

Se

$$- A = \{x \in X \mid P(x)\}\$$

$$-B = \{x \in X \mid Q(x)\}$$

allora
$$A \cap B = \{x \in X \mid P(x) \land Q(x)\}$$

• Disgiunzione di due proposizioni

Date le proprietà $P \in Q$, la congiunzione $diP(X) \in Q(x)$, che si indica con $P(x) \vee Q(x)$ e si legge "P(x) OR Q(x)", è la proposizione che'e vera se almeno una delle due proposizioni 'e vera ed 'e falsa se entrambe le proposizioni sono false.

P(X)	Q(X)	$P(x)\vee Q(x)$
V	V	V
V	F	V
F	V	V
F	F	F

Se

$$- A = \{x \in X \mid P(x)\}\$$

$$-B = \{x \in X \mid Q(x)\}\$$

allora
$$A \cup B = \{x \in X \mid P(x) \lor Q(x)\}$$

• Implicazione

Date le proprietà P e Q, l'implicazione diP(X) e Q(x), che si indica con $P(x) \to Q(x)$ e si legge "se P(x) allora Q(x)", è la proposizione che è falsa se P(x) è vera e Q(x) falsa ed è vera in tutti gli altri casi.

Rule 1.8 – Implicazione

L'implicazione è un legame tra proposizioni che mette in relazione i valori di verità di due proposizioni matematiche.

P(X)	Q(X)	$\begin{array}{ccc} P(x) & \to \\ Q(x) & \end{array}$
V	V	V
V	F	F
F	V	V
F	F	F

- p: piove
- $-\ q$: la strada è bagnata
- $p \rightarrow q$: se piove la strada è bagnata.

Con un espressione del genere $p \to q$ si orriene un nesso causa-effetto tra p e q, cioè se si verifica la causa p (piove) allora segue l'effetto q $(la\ strada\ e\ bagnata)$

Quando si verifica la prima causa ${\bf p}$ deve **necessariamente** verificarsi l'effetto ${\bf q}$ quindi se la prima proposizione è vera ma la seconda è falsa allora l'implicazione è falsa.

Infine nel caso in cui la causa \mathbf{p} sia falsa, nulla può dire sull'effetto \mathbf{q} . Nel nostro esempio la strada può essere bagnata anche dopo una notte di umidità, quindi **anche se non piove**. quindi in corrispondenza della falsità di \mathbf{p} , l'implicazione **è comunque vera**.

• Contronominale

A partire dalla tavola di verit'a dell'implicazione, ci possiamo accorgere che dire che P implica Q equivale a dire che la negazione di Q implica la negazione di P Esempio:

consideriamo l'aula dove facciamo lezione e l'affermazione "se una persona in aula ha meno di 20 anni allora è uno studente."

Se indico con V la proprietà avere meno di 20 anni e con S la proprietà essere uno studente allora l'espressione precedente si pu'o formalizzare in questo modo:

per ogni x in quest'aula, $V(x) \to S(x)$

Questa affermazione equivale a dire che: per ogni x in quest'aula, $\neg V(x) \rightarrow \neg S(x)$

cio'e che se una persona in quest'aula non 'e uno studente allora non pu'o avere meno di 20 anni.

Le due espressioni sono equivalenti e la seconda si chiama **contronominale** della prima

Equivalenza

Altre volte gli enunciati hanno una forma del tipo:

vale P se e solo se vale Q.

Questo tipo di affermazione corrisponde in realt'a a due fatti: P implica Q e Q implica P. Si dice anche in questo caso che P e Q sono equivalenti.

• Quantificatori

Siano X un insieme e P una proprietà. L'espressione $\exists x P(x)$ indica che esiste almeno un elemento x di X per cui P(x) è vera.

Il simbolo ∃ si chiama **quantificatore esistenziale**. Viene interpretato come "esiste" o "c'è almeno un"

L'espressione $\forall x P(x)$, invece, indica che P(x) è vera per tutti gli x di X.

Il simbolo \forall si chiama **quantificatore universale**. Viene interpretato come "dato qualsiasi elemento" o "per ogni elemento"

• Esempio:

Se X = NeP(x) è la proprietà di essere un numero pari, allora l'espressione $\exists x P(x)$ è vera, dato che è vero che esiste un numero pari, mentre l'espressione

 $\forall x P(x)$ è falsa perchè non è vero che tutti i numeri sono pari.

In modo pi'u formale possiamo scrivere nel seguente modo le proprietà:

$$\neg(\forall x P(x)) = \exists x \neg P(x)$$

 $\neg(\forall x P(x)) = \exists x \neg P(x)$ Questo punto suggerisce che in matematica, per dimostrare che una proprietà P su un certo insieme X non è valida, basta esibire un controesempio, ovvero basta trovare un elemento $x \in X$ per cui P(x)risulta falsa.

Per dimostrare che una proprietà è valida su un insieme X, bisogna provare che P(x) è vera per ogni $x \in X$. Verificare che ciasun elemento di X soddifa la proprietà P risulta dispendioso se l'insieme X è molto grande e impossibile se X è infinito. Di conseguenza, bisogna ricorrere a una dimostrazione generale attraverso diversi metodi come il principio di induzione e la dimostrazione per assurdo.

$$\neg(\exists x P(x)) = \forall x \neg P(x)$$

1.12 Relazioni

Dati gli insiemi A e B una relazione tra i due insiemi è un sottoinsieme del prodotto cartesiano $A \times B$

$$R \subseteq A \times B$$

Se
$$(a,b) \in R$$

 aRb "a ha una relazione con b"

Quante relazioni ci sono tra due insiemi?

Una relazione è un **sottoinsieme** del prodotto cartesiano, dunque:

$$\mid A\times B\mid=\mid A\mid\times\mid B\mid=6$$

$$|P(A \times B)| = 2^{|A| \times |B|} = 2^6$$

Tra le relazioni si trova:

- $\emptyset \subseteq A \times B$ (Insieme **vuoto**)
- $A \times B \subseteq A \times B$ (Insieme **totale**)

Relazioni tra due insiemi

$$R \subseteq A \times B$$
 Dove R è un insieme di coppie

Esempio:

$$A = \{a, b, c, d, e\}$$

B = Iniseme delle parole italiane

$$R = \{(x,y) \mid x$$
è una lettera in A che è presente nella parola $y \in B\}$
$$R \subseteq A \times B$$

a **R** cane,
$$(a, cane) \in R$$

a **R** gatto,
$$(a, gatto) \in R$$

1.12.1 Le tabelle di adiacenza

Se A e B sono insiemi finiti, una relazione $R \subseteq AB$ può essere rappresentata da una tabella a doppia entrata con:

- $\bullet\,$ Le righe corrispondenti agli elementi di A
- $\bullet\,$ Le colonne corrispondenti agli elementi di B
- un segno nelle celle corrispondenti alle coppie che appartengono alla relazione.

a/b	<i>b</i> 1	<i>b</i> 2	 bn
<i>a</i> 1	V		
<i>a</i> 2			V
an			

1.12.2 Diagrammi di Venn

 $R \subseteq A \times B$ Se $(a_1, b_1) \in R$ allora unisco a1 e b1 tramite una freccia.

 $(a_2, b_1) \in R$ $(a_2, b_2) \not\in R$

Esempio:
$$A = \{a, b\}, B = P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

$$R = \{(a,B) \mid a \in B\} \subseteq A \times B$$

$$R = \{(a,\{a\}), (a,\{a,b\}), (b,\{b\}), (b,\{a,b\})\}$$

A/P(A)	Ø	<i>{a}</i>	{b}	$\{a,b\}$
a		V	V	
b			V	V
			•	•

1.12.3 Relazioni binarie

Una relazione binaria R di A è un sotto
insieme di $A\times A$

$$R \subseteq A \times A$$

1.12.4 Relazioni riflessive

Una relazione binaria si dice **riflessiva** se $\forall x \in A$ xRx. Ovvero se ogni elemento è in relazione con se stesso.

La relazione su A seguente:

$$R = \{(x, x) \mid x \in A\}$$

forma una diagonale se rappresentata in una tabella delle adiacenze.

$$A = \{a, b, c\}$$

$$R = \{(a, a), (b, b), (c, c)\}$$

(b) Diagramma di Eulero Venn

Ogni elemento è in relazione con sè stesso

Una relazione binaria su A si dice **riflessiva** se

$$\forall x \in A \ x \mathcal{R} x$$

Ossia se e solo se ogni elemento è in relazione con sè stesso. Quindi R non è riflessiva se esiste $x \in A$ tale che $x \notin x$ (controesempio)

Esempio:

$$A=\mathbb{N}\leq 0$$

$$R = \{ (n, m) \mid n \le m \}$$

(a) Tabella delle adiacenze

(b) Diagramma di Eulero Venn, (Rappresentiamo solo i primi 3 elementi.)

1.12.5 Relazioni simmetriche

- Una relazione R su A si dice **simmetrica** se per $\forall x,y \in A$ se $x\mathcal{R}y$ allora $y\mathcal{R}x$
- Per far sì che una relazione non sia simmetrica basta che esistano $x,y\in A$ tali che $x\mathcal{R}y$ ma $y\mathcal{R}x$

Esempio:

$$A = \{a, b, c\}$$

$$R = \{(a, b), (b, a), (b, c), (c, b)\}$$

(a) Tabella delle adiacenze

(b) Diagramma di Eulero Venn, (banalmente troviamo una freccia di "ritorno" quando ne esiste una di "andata".)

2 Combinatoria

Il calcolo combinatorio studia i raggruppamenti che si possono ottenere con un dato numero di oggetti disposti su un dato numero di posti.

Teniamo a mente le seguenti proprietà:

- $\bullet \mid X \cup Y \mid = \mid X \mid + \mid Y \mid \mid X \cap Y \mid$
- $\bullet \mid X \times Y \mid = \mid X \mid \cdot \mid Y \mid$
- $P(x) = 2^{|x|}$
- Esempio: se A = B

$$A \times A = \{(a_1, a_2 \mid a_1, a_2 \in A)\}$$

$$a = \{1, 2, 3\}$$

$$A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

2.1 Coefficiente binomiale

Il coefficiente binomiale è usato per calcolare le combinazioni.

Rule 2.1 – Combinazioni

sono i raggruppamenti realizzati quando il numero di oggetti è diverso dal numero di posti e non conta l'ordine con cui si dispongono. Le combinazioni possono essere senza ripetizioni di oggetti o con ripetizione di oggetti.

Sottoinsiemi di A di 2 elementi: $A = \{1, 2, 3\}$ $\{1,2\}, \{1,3\}, \{2,3\}$

- 3 sottoinsiemi di 2 elementi
- 3 sottoinsiemi di 1 elemento
- 1 sottoinsieme di 0 elementi
- 1 sottoinsieme di 3 elementi

Rule 2.2 – Coefficiente binomiale

Se ${\bf A}$ ha ${\bf n}$ elementi allora per contare i sottoinsiemi di ${\bf k}$ elementi si usa questa formula:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Dove n! è il **fattoriale** di n, ovvero il prodotto dei numeri interi positivi minori o uguali a tale numero.

Esempio:

$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5 \cdot \cancel{4}^2 \cdot \cancel{32}}{\cancel{32} \cdot \cancel{4}^1} = 10$$

Vuol dire che ci sono 10 sottoinsiemi formati da 3 elementi a partire da un insieme di 5 elementi.

Formula generale:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n = P(a)$$

2.2 Le disposizioni

sono i raggruppamenti realizzati quando il numero di oggetti è diverso dal numero di posti e **conta l'ordine con cui si dispongono**. Le disposizioni possono essere senza ripetizioni di oggetti o con ripetizione di oggetti.

2.2.1 Disposizioni con ripetizioni

Rule 2.3 – Disposizione con ripetizioni

Una disposizione con ripetizioni di k elementi scelti tra n è una **k-upla** di elementi appartenenti ad un insieme di cardinalità n $d_{n,k}^1$ è il numero di disposizioni **con ripetizioni**

$$d_{n,k}^1 = n^k$$

Esempio: quante targhe con 2 lettere - 3 cifre - 2 lettere posso scrivere?

$$d_{10,3}^1 = |\{0,...,9\} \times \{0,...,9\} \times \{0,...,9\}| = 10^3 = 1000$$

In questo modo ho ottenuto il numero di disposizioni di 3 cifre codificate con numeri da 0 a 9.

$$d_{26,2}^1 = 26 \cdot 26$$

In questo modo ho ottenuto il numero di disposizioni di 2 cifre codificate con lettere dell'alfabeto.

Rispondiamo alla domanda iniziale con il seguente calcolo:

$$26^2 \cdot 1000 \cdot 26^2 = 26^4 \cdot 1000$$

2.2.2 Disposizioni semplici

Rule 2.4 – Disposizione semplice

Sono oggetti scelti tra n k-tuple senza ripetizioni.

Coppie senza ripetizioni di A: $A = \{a, b, c\}$

triple senza ripetizioni di A:

Formula generale:

$$d_{n,k} = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)$$

Esempio: n = 3, k=2. n-k+1 = 2

$$d_{5,3} = 5 \cdot (5 - 1) = 5 \cdot 4 = 20$$

Seconda formula:

$$d_{n,k} = \frac{n!}{(n-k)!}$$

Esempio: Quanti numeri posso scrivere nel range 0-100 accertandomi che essi abbiano tutte le cifre differenti?

$$d_{10,3} = \frac{10!}{7!} = 720$$

2.3 Differenza tra disposizioni semplici e con ripetizione

Disposizione	Disposizione
con ripetizione	semplice
AA	- 44 -
AB	AB
AC	AC
BA	BA
BB	BB
Bc	Bc
CA	C.A
cc	-cc-

2.4 Esercizi con combinazioni e permutazioni

• Esercizio 1

Quante stringhe da due caratteri possiamo fomare con le seguenti lettere? a.b.c.d

Combinazioni: l'ordine non importa: AB = BA.

$$\binom{4}{2} = \frac{4!}{2!*(4-2)!} = 6$$

Disposizioni: l'ordine **conta**: $AB \neq BA$.

$$d_{4,2} = \frac{4!}{(4-2)!} = 12$$

• Esercizio 2

In quanti modi puoi disporre 3 libri su una mensola da un gruppo di 7? L'ordine conta oppure no? L'ordine conta, sono **disposizioni**

$$d_{7,3} = \frac{7!}{4!} = 210$$

• Esercizio 3

In quanti modi puoi disporre 5 libri su una mensola?

• Esercizio 4

Quanti gruppi da 4 si possono creare da una squadra di 12 scienziati? In questo caso l'ordine non conta

 $\{Anna, John, Mark, Lucas\} = \{John, Lucas, Mark, Anna\}$

Perciò si parla di combinazioni

$$\binom{12}{4} = \frac{12!}{4!(8!)} = 495$$

• Esercizio 5

In quanti modi possiamo disporre le lettere nella parola ALABAMA?

$$\frac{Letter enella parola!}{Letter eripetute!} = \frac{7!}{4!} = 210$$

2.5 Dimostrazione per induzione

L'induzione matematica è una tecnica di dimostrazione. È usata essenzialmente per provare che una tesi p(n) sia verificata per ogni numero naturale $n=0,1,2,3,\ldots$.

L'induzione matematica prova che possiamo salire quanto vogliamo su una scala, provando che possiamo arrampicarci sul primo gradino e da qualsiasi piolo possiamo arrampicarci su quello dopo.

— Donald Knuth, Concrete Mathematics

Tesi: Provare che $S(n) = \frac{n(n+1)}{2}$ dove S(n) è la somma di tutti i numeri interi compresi tra 1 e n inclusi.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Passo base

per
$$n=1$$

$$\sum_{k=1}^{1} k = 1 = \frac{1(2)}{2}$$

La tesi è dunque verificata per n=1Ipotesi

$$\sum_{k=1}^{t} k = \frac{t(t+1)}{2}$$

Ora dobbiamo provare che questo assuma la veridicità della tesi per ogni n+1

$$S(n+1) = 1 + 2 + 3 + 4 + \dots + k + (k+1)$$

Assumiamo di avere già una formula per la serie di interi che va da 1 a k.

$$\sum_{k=1}^{t+1} k = \frac{\frac{t(t+1)}{2} + (k+1)}{2} + (k+1)$$

$$= \frac{\frac{k(k+1)}{2} + \frac{2(k+1)}{2}}{2} = \frac{\frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}}{2} = \frac{(k+1)((k+1)+1)}{2} = \frac{k(k+1)}{2} \text{ per } k = k+1$$