Higher-dimensional categories: induction on extensivity

Thomas Cottrell¹
Soichiro Fujii²
John Power³

¹Department of Mathematical Sciences, University of Bath

²Department of Computer Science, University of Tokyo

³Department of Computer Science, University of Bath

7 July, 2018

Leinster's method for defining weak *n*-categories:

• Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.

- Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.
- ullet For a cartesian monad T on \mathcal{C} , define T-operads as monoids in $\mathcal{C}/T1$.

- ullet Start with the free strict *n*-category monad $\mathcal{T}^{(n)}$, which is cartesian.
- ullet For a cartesian monad ${\mathcal T}$ on ${\mathcal C}$, define ${\mathcal T}$ -operads as monoids in ${\mathcal C}/{\mathcal T}1$.
- Define a notion of *contraction* on $T^{(n)}$ -operads.

- Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.
- ullet For a cartesian monad T on ${\mathcal C}$, define T-operads as monoids in ${\mathcal C}/T1$.
- Define a notion of *contraction* on $T^{(n)}$ -operads.
- A weak *n*-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

Leinster's method for defining weak *n*-categories:

- Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.
- ullet For a cartesian monad T on ${\mathcal C}$, define T-operads as monoids in ${\mathcal C}/T1$.
- Define a notion of *contraction* on $T^{(n)}$ -operads.
- A weak *n*-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

Aims:

Leinster's method for defining weak *n*-categories:

- Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.
- ullet For a cartesian monad ${\cal T}$ on ${\cal C}$, define ${\cal T}$ -operads as monoids in ${\cal C}/{\cal T}1$.
- Define a notion of *contraction* on $T^{(n)}$ -operads.
- A weak *n*-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

Aims:

• Enrich this to define weak *n*-dimensional \mathcal{V} -categories.

Leinster's method for defining weak *n*-categories:

- Start with the free strict *n*-category monad $T^{(n)}$, which is cartesian.
- ullet For a cartesian monad ${\cal T}$ on ${\cal C}$, define ${\cal T}$ -operads as monoids in ${\cal C}/{\cal T}1$.
- Define a notion of *contraction* on $T^{(n)}$ -operads.
- A weak *n*-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

Aims:

- Enrich this to define weak *n*-dimensional V-categories.
- Build dimensions through iterated enrichment.

Definition		

Definition

A category $\ensuremath{\mathcal{V}}$ (with small coproducts) is $\ensuremath{\textit{extensive}}$ if,

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$,

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\coprod : \prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\coprod_{i \in I} X_i)$$

$$\begin{pmatrix} A_i \\ \downarrow \\ f_i \\ \downarrow \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigcup_{i \in I} f_i$$

$$\coprod_{i \in I} X_i$$

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\coprod : \prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\coprod_{i \in I} X_i)$$

$$\begin{pmatrix} A_i \\ f_i \\ \downarrow \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigcup_{i \in I} f_i$$

$$\coprod_{i \in I} X_i$$

is an equivalence of categories.

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\coprod : \prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\coprod_{i \in I} X_i)
\begin{pmatrix} A_i \\ f_i \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigcup_{i \in I} f_i \\ \coprod_{i \in I} X_i$$

is an equivalence of categories.

Examples:

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\coprod : \prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\coprod_{i \in I} X_i)
\begin{pmatrix} A_i \\ \downarrow \\ f_i \\ \downarrow \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigcup_{i \in I} f_i \\ \coprod_{i \in I} X_i$$

is an equivalence of categories.

Examples: Set,

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\prod_{i \in I} X_i)
\begin{pmatrix} A_i \\ f_i \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigvee_{i \in I} f_i \\
\prod_{i \in I} X_i$$

is an equivalence of categories.

Examples: **Set**, ω -**Cpo**,

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\coprod : \prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\coprod_{i \in I} X_i)
\begin{pmatrix} A_i \\ f_i \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigcup_{i \in I} f_i \\ \coprod_{i \in I} X_i$$

is an equivalence of categories.

Examples: **Set**, ω -**Cpo**, **Cat**,

Definition

A category V (with small coproducts) is *extensive* if, for any set I and family of objects $(X_i)_{i \in I}$, the functor

$$\coprod : \prod_{i \in I} (\mathcal{V}/X_i) \longrightarrow \mathcal{V}/(\coprod_{i \in I} X_i)
\begin{pmatrix} A_i \\ f_i \\ X_i \end{pmatrix}_{i \in I} \longmapsto \bigcup_{i \in I} A_i
\downarrow \prod_{i \in I} X_i$$

is an equivalence of categories.

Examples: **Set**, ω -**Cpo**, **Cat**, \mathcal{V} -**Cat** and \mathcal{V} -**Gph** (for extensive \mathcal{V}).

$\mathcal{V} extsf{-}\mathsf{Cat}^{(n)}$ and $\mathcal{V} extsf{-}\mathsf{Gph}^{(n)}$

Definition		

V-Cat⁽ⁿ⁾ and V-Gph⁽ⁿ⁾

Definition

Let $\ensuremath{\mathcal{V}}$ be a category with finite products.

$\overline{\mathcal{V}} ext{-}\overline{\mathsf{Cat}^{(n)}}$ and $\mathcal{V} ext{-}\overline{\mathsf{Gph}^{(n)}}$

Definition

Let $\ensuremath{\mathcal{V}}$ be a category with finite products.

For each natural number n, V- $Cat^{(n)}$ is defined by:

Definition

Let $\mathcal V$ be a category with finite products.

For each natural number n, V-**Cat**⁽ⁿ⁾ is defined by:

$$V$$
-Cat⁽⁰⁾ = V ; V -Cat⁽ⁿ⁺¹⁾ = $(V$ -Cat⁽ⁿ⁾)-Cat,

Definition

Let \mathcal{V} be a category with finite products.

For each natural number n, \mathcal{V} - $\mathbf{Cat}^{(n)}$ is defined by:

$$\mathcal{V} ext{-}\mathsf{Cat}^{(0)} = \mathcal{V}; \qquad \mathcal{V} ext{-}\mathsf{Cat}^{(n+1)} = (\mathcal{V} ext{-}\mathsf{Cat}^{(n)}) ext{-}\mathsf{Cat},$$

and V-**Gph**⁽ⁿ⁾ is defined by:

Definition

Let \mathcal{V} be a category with finite products.

For each natural number n, V-**Cat**⁽ⁿ⁾ is defined by:

$$\mathcal{V} ext{-}\mathbf{Cat}^{(0)}=\mathcal{V}; \qquad \mathcal{V} ext{-}\mathbf{Cat}^{(n+1)}=(\mathcal{V} ext{-}\mathbf{Cat}^{(n)}) ext{-}\mathbf{Cat},$$

and V-**Gph**⁽ⁿ⁾ is defined by:

$$\mathcal{V} ext{-}\mathsf{Gph}^{(0)}=\mathcal{V}; \qquad \mathcal{V} ext{-}\mathsf{Gph}^{(n+1)}=(\mathcal{V} ext{-}\mathsf{Gph}^{(n)}) ext{-}\mathsf{Gph}.$$

Definition

Let \mathcal{V} be a category with finite products.

For each natural number n, V- $Cat^{(n)}$ is defined by:

$$\mathcal{V} ext{-}\mathsf{Cat}^{(0)} = \mathcal{V}; \qquad \mathcal{V} ext{-}\mathsf{Cat}^{(n+1)} = (\mathcal{V} ext{-}\mathsf{Cat}^{(n)}) ext{-}\mathsf{Cat},$$

and V-**Gph**⁽ⁿ⁾ is defined by:

$$\mathcal{V} ext{-}\mathsf{Gph}^{(0)}=\mathcal{V}; \qquad \mathcal{V} ext{-}\mathsf{Gph}^{(n+1)}=(\mathcal{V} ext{-}\mathsf{Gph}^{(n)}) ext{-}\mathsf{Gph}.$$

When $V = \mathbf{Set}$, \mathbf{Set} - $\mathbf{Cat}^{(n)} = n$ - \mathbf{Cat} , the category of strict n-categories.

Extensivity and enrichment

Proposition

If $\mathcal V$ is extensive and finitely complete,

Extensivity and enrichment

Proposition

If V is extensive and finitely complete, then V-**Gph** and V-**Cat** are also extensive and finitely complete.

Extensivity and enrichment

Proposition

If V is extensive and finitely complete, then V-**Gph** and V-**Cat** are also extensive and finitely complete.

Corollary

If V is extensive and finitely complete, then V- $\mathbf{Gph}^{(n)}$ and V- $\mathbf{Cat}^{(n)}$ are also extensive and finitely complete.

Definition

A monad ($\mathcal{T}, \eta, \mu)$ on \mathcal{C} is $\mathit{cartesian}$ if

Definition

A monad (\mathcal{T}, η, μ) on $\mathcal C$ is cartesian if

 \bullet $\ensuremath{\mathcal{C}}$ has all pullbacks,

Definition

A monad (T, η, μ) on $\mathcal C$ is cartesian if

- ullet $\mathcal C$ has all pullbacks,
- T preserves pullbacks,

Definition

A monad (T, η, μ) on C is *cartesian* if

- ullet C has all pullbacks,
- T preserves pullbacks,
- ullet all the naturality squares for η and μ are pullback squares.

Definition

A monad (T, η, μ) on C is *cartesian* if

- \bullet \mathcal{C} has all pullbacks,
- T preserves pullbacks,
- ullet all the naturality squares for η and μ are pullback squares.

Proposition

Let ${\mathcal V}$ be extensive and finitely complete. For each ${\mathsf n}$, there is an adjunction

Definition

A monad (T, η, μ) on C is *cartesian* if

- \bullet \mathcal{C} has all pullbacks,
- T preserves pullbacks,
- ullet all the naturality squares for η and μ are pullback squares.

Proposition

Let ${\mathcal V}$ be extensive and finitely complete. For each n, there is an adjunction

$$V$$
-Gph⁽ⁿ⁾ $\xrightarrow{\perp}$ V -Cat⁽ⁿ⁾

Definition

A monad (T, η, μ) on C is *cartesian* if

- \bullet \mathcal{C} has all pullbacks,
- T preserves pullbacks,
- ullet all the naturality squares for η and μ are pullback squares.

Proposition

Let ${\mathcal V}$ be extensive and finitely complete. For each ${\mathsf n}$, there is an adjunction

$$V$$
-Gph $^{(n)} \xrightarrow{\perp} V$ -Cat $^{(n)}$

and the induced monad $T^{(n)}$ is cartesian.

For a cartesian monad T on a finitely complete category \mathcal{C} , $\mathcal{C}/T1$ can be given a monoidal structure.

For a cartesian monad T on a finitely complete category \mathcal{C} , $\mathcal{C}/T1$ can be given a monoidal structure.

Definition

A T-operad is a monoid in $\mathcal{C}/T1$.

For a cartesian monad T on a finitely complete category C, C/T1 can be given a monoidal structure.

Definition

A *T-operad* is a monoid in C/T1.

Given a T-operad $m \colon M \to T1$, an algebra for (M, m) consists of an object X of $\mathcal C$ together with an action of (M, m) on X.

For a cartesian monad T on a finitely complete category C, C/T1 can be given a monoidal structure.

Definition

A T-operad is a monoid in C/T1.

Given a T-operad $m: M \to T1$, an algebra for (M, m) consists of an object X of C together with an action of (M, m) on X.

• Classical operads: $C = \mathbf{Set}$, T = free monoid.

For a cartesian monad T on a finitely complete category C, C/T1 can be given a monoidal structure.

Definition

A T-operad is a monoid in C/T1.

Given a T-operad $m: M \to T1$, an algebra for (M, m) consists of an object X of C together with an action of (M, m) on X.

- Classical operads: $C = \mathbf{Set}$, T = free monoid.
- For weak *n*-dimensional \mathcal{V} -categories, use $\mathcal{C} = \mathcal{V}$ -**Gph**⁽ⁿ⁾, $T = T^{(n)}$.

A contraction on $m \colon M \to \mathcal{T}^{(n)} 1$ consists of

A contraction on $m \colon M \to T^{(n)}1$ consists of a lifting

for every such commuting square, where f_j is a "cell boundary inclusion".

A contraction on $m: M \to T^{(n)}1$ consists of a lifting

for every such commuting square, where f_j is a "cell boundary inclusion".

Definition

Let ${\mathcal V}$ be extensive, finitely complete, and locally presentable.

A contraction on $m: M \to T^{(n)}1$ consists of a lifting

for every such commuting square, where f_j is a "cell boundary inclusion".

Definition

Let $\mathcal V$ be extensive, finitely complete, and locally presentable.

A weak n-dimensional V-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

A contraction on $m: M \to T^{(n)}1$ consists of a lifting

for every such commuting square, where f_j is a "cell boundary inclusion".

Definition

Let ${\mathcal V}$ be extensive, finitely complete, and locally presentable.

A weak n-dimensional V-category is an algebra for the initial $T^{(n)}$ -operad with contraction.

For $V = \mathbf{Set}$, this agrees with Leinster's definition of weak *n*-category.