The basic **threat model** is a concise description of the powers of the adversary and the operations they're permitted to perform, as well as their goals. For example, if Alice is trying to send a message to Bob, we might describe the threat model through a middleman, Mallory, who can intercept and send new messages, manipulating them arbitrarily, and trying to have Bob accept an altered message.

We look at:

- 1. Confidentiality
- 2. Integrity
- 3. Availability

If Alice just sends the message X, it clearly won't be sufficient. Instead, she'll need to send (X, f(X)) (i.e., X and some additional information). In this model, we call f(X), the "Message Authentication Code" (MAC).

Say Mallory sends (a, b). Bob accepts the message i.f.f.f(a) = b. What does this say about f?

- f must be deterministic.
- f must be easily computable (by Alice and Bob).
- \bullet f must not be computable by Mallory.
- $\bullet \implies f$ depends on knowledge that only Alice and Bob have.

What if we decide that f is a secret function? This is actually *not* a good idea. It's very difficult to figure out the likelihood that Mallory won't be able to guess what Alice and Bob are thinking–difficult to quantify the likelihood of attack here.

A better approach: rely on a **secret key** (preference for secret key but public function over private function is *Kerckhoff's Principle*).

- Say k is a 256-bit random value known only to Alice and Bob.
- Define f(k, X) to be a function of the secret key k and the message X.

At this point:

- 1. We can quantify the probability that Mallory guesses the key correctly (in this case, $\frac{1}{2^{256}}$).
- 2. If we lose the key for some reason, we can just generate a fresh key (much easier than generating a new function, as we're now just generating a single variable to refresh our security protocol).
- 3. We can communicate with many different individuals by swapping out the key.

Defining "Secure"

We call this the "Secure MAC Game":

- 1. Mallory sends us x_0 .
- 2. We send back $f(x_i)$.
- 3. Mallory sends us x_i , continuing a polynomial number of times.
- 4. Mallory guesses by sending across (y, f(y)), where $y \notin \{x_0, x_1, ...\}$.
- 5. Mallory wins if f(y) is correct.

Definition (Secure MAC). *f is a secure MAC* if and only if every "efficient" (poly-time) strategy for Mallory wins with "negligible" (goes to zero as a negative exponential in the key-size) probability.

Example: try a random function that takes an arbitrary-size input, produces 256-bit output, and defined on a random truth table.

Theorem 0.1. A random function is a secure MAC.

Proof. Learning any row of the truth table provides no information on any other row. Guessing a distinct row is always $\frac{1}{2^{256}}$ probability. There's no strategy that does better than guessing.

As this function is way too large and expensive to represent and implement, we want a function that appears random, but actually isn't (i.e., a pseudorandom function).

Pseudorandom Functions

Definition (Pseudorandom Function). A **pseudorandom function** is a public function f(k,x) where k is a secret 256-bit key.

f is a **secure PRF** if and only if every "efficient" strategy for Mallory wins with prob $\leq \frac{1}{2} + \epsilon$, where ϵ is "negligible".

The goal is that Mallory cannot tell the difference between a truly random function and our pseudorandom function: play the "Secure MAC Game", but use a random function with probability $\frac{1}{2}$ and a pseudorandom function with probability $\frac{1}{2}$. Mallory should not be able to guess whether we're using our pseudorandom function or a truly random function with probability $> \frac{1}{2}$.

Caveats:

- Mallory can win by trying all values of k; but that's not "efficient".
- Mallory can get non-zero advantage over guessing by trying a poly-size subset of k values; but this advantage is "negligible" because the pool of k values is exponential.

Theorem 0.2. If f is a secure PRF, then f(k,x) with a random k is a secure MAC.

Proof. If Mallory could win the "Secure MAC Game", then she could simply play it to win the "Secure PRF Game". \Box

Do PRFs Exist?

Maybe. We don't have a theoretical reason why a PRF definitely does or doesn't exist; all we know is that there are *some* functions that appear to be PRFs and have not been proven otherwise (although there are functions that once appeared to be PRFs and *were* proven otherwise). Most theorists would say "Probably".

In practice, we use a "candidate" PRF. The standard for acceptance is based on how long we've failed to prove it as a non-PRF.

HMAC-SHA256

A common candidate PRF, defined as:

$$HMAC - SHA256(k, X) = SHA256(k \oplus z_1 || SHA256(k \oplus z_2 || X))$$

where $z_1 = 0x3636...$ and $z_2 = 0x5c5c...$

Cryptographic Hash Functions

Definition. A cryptographic hash function is a function from arbitrary-sized input to fixed-size output that is "hard to reverse."

Example: SHA256. Break input into fixed-size (512-bit) blocks: $b_0, b_1, ..., b_{k-1}$. Take some 256-bit constant c (looked up in standards document), pass c and b_0 into a function h that produces a 256-bit output; apply h again with the output and b_1 , etc.

SHA256 is not a secure MAC on its own. However, some properties that it does have:

- Collision resistance: you can't find $x \neq y$ such that H(x) = H(y).
- Second pre-image resistance: given x, you can't find y such that H(x) = H(y).
- If x is chosen randomly from a high-entropy distribution, then given H(x), you can't find x. (You want to say that given H(x), you can't find x; but that isn't quite true in general.)

Aside: Security Models

Two ways to discuss security:

- On the level of a story (i.e., using Alice and Bob).
- On the level of mathematics.

Even theoretical security researchers use stories quite often. Why? Easy to follow and remember. However:

- What we describe as "Alice" and "Bob" might actually be computers.
- What we describe as "Alice" is usually a person and a computer. Forgetting this leads us to rule out certain kinds of attacks (e.g., phishing).