5.173. Гелий, находящийся при нормальных условиях, изотермически расширяется от объема $V_1 = 1$ л до $V_2 = 2$ л. Найти работу A, совершенную газом при расширении, и количество теплоты Q, сообщенное газу.

Решение:

Работа, совершаемая при изотермическом изменении объема газа, $A = RT \frac{m}{\mu} ln \frac{V_2}{V_1}$. Из уравнения Менделеева —

Клапейрона $pV_1 = \frac{m}{\mu}RT$, тогда работа $A = pV_1 \ln \frac{V_2}{V_1}$; A = 70 Дж. согласно первому закону термодинамики $Q = \Delta W + A$, но т. к. T = const, то изменение внутренней энергии $\Delta W = 0$, поэтому здесь Q = A; Q = 70 Дж.

5.174. При изобарическом расширении газа, занимавшего **объе**м V=2 м³, давление его меняется от $p_1=0.5$ МПа до $p_2=0.4$ МПа. Найти работу A, совершенную при этом.

Решение:

Работа, совершаемая при изотермическом расширении **газа,** $A = \nu RT \ln \frac{V_2}{V_1}$ (см. задачу 5.172). Согласно уравнению

Менделеева — Клапейрона $p_1V_1 = vRT$; $p_2V_2 = vRT$, **отку**да $T = \frac{p_1V_1}{vR}$; $V_2 = \frac{vRT}{p_2}$. Тогда $A = vR\frac{p_1V_1}{vR}\ln\frac{vRp_1V_1}{V_1p_2vR}$;

 $A = p_1 V_1 \ln \frac{p_1}{p_2}$; A = 223 кДж.

5.175. До какой температуры t_2 охладится воздух, нахомящийся при $t_1=0$ ° C, если он расширяется адиабатически от **объема** V_1 до $V_2=2V_1$?

эшение:

Воздух в первом приближении можно считать азотом, т.е. число степеней свободы i=5. Показатель адиабаты $\gamma=\frac{c_p}{c_V}$, где $c_p=\frac{i+2}{2}\frac{R}{\mu}$ и $c_V=\frac{i}{2}\frac{R}{\mu}$, тогда $\gamma=\frac{i+2}{2}$; $\gamma=1,4$. Из уравнения Пуассона $\frac{T_1}{T_2}=\left(\frac{V_2}{V_1}\right)^{\gamma-1}$. Т. к. по условию $V_2=2V_1$, то $\frac{T_1}{T_2}=\left(\frac{2V_1}{V_1}\right)^{\gamma-1}=2^{0.4}$. Отсюда T=206.89 К.

5.176. Объем $V_1 = 7.5$ л кислорода адиабатически сжимается до объема $V_2 = 1$ л, причем в конце сжатия установилось давление $p_2 = 1.6$ МПа. Под каким давлением p_1 находится газ до сжатия?

Решение:

Согласно уравнению Пуассона $pV^{\gamma}=const$, где показатель адиабаты $\gamma=\frac{C_p}{C_V}$, для кислорода $\gamma=1,4$; $p_1V_1^{\gamma}=p_2V_2^{\gamma}$, откуда $p_1=p_2\bigg(\frac{V_2}{V_1}\bigg)^{\gamma}$; $p_1=95\,\mathrm{k\Pi a}.$

5.177. При адиабатическом сжатии воздуха в цилиндрах двигателя внутреннего сгорания давление изменится от $p_1 = 0.1 \,\mathrm{MHz}$ до $p_1 = 3.5 \,\mathrm{MHz}$. Начальная температура воздуха $t = 40 \,^{\circ}\,\mathrm{C}$. Найти температуру воздуха в конце сжати

решение: Показатель адиабаты для воздуха (см. задачу 5.175)

$$\gamma = 1,4$$
. Из уравнения Пуассона $\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$, где $T_1 = 273 \,\mathrm{K}$. Тогда $T_2 = \frac{T_1}{\left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}}$; $T_2 = 862,86 \,\mathrm{K}$.

5.178. Газ расширяется адиабатически, причем объем его увеличивается вдвое, а термодинамическая температура падает в 132 раза. Какое число степсней свободы *і* имеют молекулы этого газа?

Решение:

Показатель адиабаты (см. задачу 5.175) $\gamma = \frac{i+2}{i}$. Из

уравнения Пуассона $\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{r-1}$. По условию $\frac{T_1}{T_2} = 1.32$ и

$$\frac{V_2}{V_1} = 2$$
, тогда $2^{\gamma - 1} = ln 1,32$ или $\left(\frac{i+2}{i} - 1\right) \cdot ln 2 = ln 1,32$.

Отсюда $\frac{i+2-i}{i} = \frac{2}{i} = \frac{\ln 1{,}32}{\ln 2} = 0{,}4$. Тогда $i = \frac{2}{0{,}4} = 5$.

5.179. Двухатомный газ, находящийся при давлении $p_1 = 2$ МПа и температуре $t_1 = 27^{\circ}$ С, сжимается адиабатически от объема V_1 до $V_2 = 0.5V_1$. Найти температуру t_2 и давление p_2 газа после сжатия.

Решение:

Показатель адиабаты для двухатомного газа $\gamma = 1,4$ (см. задачу 5.175). Из уравнения Пуассона $\frac{p_1}{p_2} = \left(\frac{V_1}{V_2}\right)^{\gamma}$ или

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}.$$
 По условию $\frac{V_2}{V_1} = 0.5$, тогда $\frac{p_1}{p_2} = 0.5^{1.4}$, $p_2 = 5.28$ МПа; $T_1/T_2 = 0.5^{1.4-1}$, $T_2 = 395.85$ K = 122.85° C.

5.180. В сосуде под поршнем находится гремучий газ, занимающий при нормальных условиях объем $V_1 = 0.1$ л. При быстром сжатии газ воспламеняется. Найти температуру T воспламенения гремучего газа, если известно, что работа сжатия A = 46.35 Дж.

Решение:

Процесс быстрого сжатия гремучего газа в первом приближении можно считать адиабатическим. Гремучий газ представляет из себя смесь водорода и кислорода, а т. к. оба газа двухатомные, то показатель адиабаты (см. задачу 5.175) $\gamma = 1,4$. Работа, совершаемая над газом при

адиабатическом сжатии,
$$A = \frac{p_1 V_1 (T_2 - T_1)}{(\gamma - 1) T_1}$$
. Отсюда

$$T_2 - T_1 = \frac{AT_1(\gamma - 1)}{p_1V_1}$$
 тогда температура воспламенения

гремучего газа
$$T_2 = \frac{AT_1(\gamma - 1)}{p_1V_1} + T_1 = T_1\left[\frac{A(\gamma - 1)}{p_1V_1} + 1\right];$$
 $T_2 = 774,13 \text{ K}.$

5.181. В сосуде под давлением находится газ при нормальных условиях. Расстояние между дном сосуда и дном поршня h=25 см. Когда на поршень положили груз массой m=20 кг, поршень опустится на $\Delta h=13.4$ см. Считая сжатие адиаба-

тическим, найти для данного газа отношение c_p/c_1 . Площадь поперечного сечения поршня $S=10\,\mathrm{cm}^2$. Массой поршня пренебречь.

Решение:

Т. к. по условию сжатие адиабатическое, то $\frac{c_p}{c_{t'}} = \gamma$ — по-

-казатель адиабаты. Из уравнения Пуассона
$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$
. Когда на поршень положили груз, давление стало равным

 $p_2 = p_1 + \frac{mg}{S}$. Начальный и конечный объемы соответственно равны $V_1 = Sh$ и $V_2 = S(h - \Delta h)$, тогда

$$\frac{V_2}{V_1} = \frac{h - \Delta h}{h}$$
. Следовательно, $\frac{p_1}{p_1 + mg/S} = \left(\frac{h - \Delta h}{h}\right)^{\gamma}$ или

$$\frac{p_1}{p_1 S + mg} = \left(\frac{h - \Delta h}{h}\right)^{\gamma}$$
. Чтобы выразить γ , прологарифми-

руем полученное выражение
$$ln\bigg(\frac{p_1S}{p_1S+mg}\bigg)=\gamma\,ln\bigg(\frac{h-\Delta h}{h}\bigg),$$
 откуда $\frac{c_p}{c_V}=\gamma=\frac{ln(p_1S/(p_1S+mg))}{ln((h-\Delta h)/h)}=\frac{ln(p_1S)-ln(p_1S+mg)}{ln(h-\Delta h)-ln\,h}.$

Подставив числовые значения, получим $\frac{c_p}{c_t} = 1.4$.

5.182. Двухатомный газ занимает объем $V_1=0.5\,\mathrm{л}$ при давлении $p=50\,\mathrm{к}\Pi$ а. Газ сжимается адиабатически до некоторого объема V_2 и давления p_2 . Затем он охлаждается при $V_2=const$ до первоначальной температуры, причем его давление становится равным $p_0=100\,\mathrm{k}\Pi$ а. Начертить график этого процесса. Найти объем V_2 и давление p_2 .

Решение:

Для двухатомного газа (см. задачу 5.175) $\gamma = 1,4$. Из уравне-

ния Пуассона
$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^r$$
 или

$$V$$
 $\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$. Т. к. $V_2 = const$, то $\frac{p_2}{T_2} = \frac{p_0}{T_1}$, откуда $\frac{T_1}{T_2} = \frac{p_0}{p_2}$. Тогда

имеем
$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$
 — (1) и $\frac{p_0}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$ — (2). Разделим

(1) на (2), тогда
$$\frac{p_1}{p_0} = \frac{(V_2/V_1)^{\gamma}}{(V_2/V_1)^{\gamma-1}} = \left(\frac{V_2}{V_1}\right)^{[\gamma-(\gamma-1)]} = \frac{V_2}{V_1}$$
. Отсюда

$$V_2 = \frac{p_1 V_1}{p_0} = 0.25 \text{ л. Из (1)} \quad p_2 = \frac{p_1}{(V_2 / V_1)^{\gamma}} = 132 \text{ кПа.}$$

5.183. Газ расширяется адиабатически так, что его давление падает от $p_1 = 200$ кПа до $p_2 = 100$ кПа. Затем он нагревается при постоянном объеме до первоначальной температуры, причем его давление становится равным p = 122 кПа. Найти отношение c_n/c_1 . для этого газа. Начертить график этого процесса.

Решение:

Из уравнения

$$\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$$
. Т. к. $V = const$, то

Пуассона

$$\frac{p_2}{T_2} = \frac{p}{T_1}$$
 или $\frac{T_1}{T_2} = \frac{p}{p_2}$. Тогда

 $\frac{p}{p_2} = \left(\frac{p_1}{p_2}\right)^{\frac{r}{r}}$. Прологарифмируем полученное выражение $ln\left(\frac{p}{p_2}\right) = ln\left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$ или $ln\left(\frac{p}{p_2}\right) = \frac{\gamma-1}{\gamma}ln\left(\frac{p_1}{p_2}\right)$. Отсюда

$$\frac{\gamma-1}{\gamma} = \frac{\ln(p \, / \, p_2)}{\ln(p_1 \, / \, p_2)} \quad \text{или} \quad \frac{1}{\gamma} = 1 - \frac{\ln(p \, / \, p_2)}{\ln(p_1 \, / \, p_2)} \,. \quad \text{Окончательно}$$
 получим $\gamma = \frac{1}{1 - \left(\ln(p \, / \, p_2) / \ln(p_1 \, / \, p_2)\right)} = 1,4 \,.$

5.184. Количество v = 1 кмоль азота, находящегося при нормальных условиях, расширяется адиабатически от объема V_1 до $V_2 = 5V_1$. Найти изменение ΔW внутренней энергии газа и **рабо**ту A, совершенную газом при расширении.

Решение:

Изменение внутренней энергии при адиабатическом процессе $\Delta W = -A$ или $\Delta W = \frac{i}{2} \nu R (T_2 - T_1)$. Из уравнения

процессе
$$\Delta W = -A$$
 или $\Delta W = \frac{1}{2} \nu R (T_2 - T_1)$. Из уравнения Пуассона найдем $T_2 = T_1 \left(\frac{V_1}{V_2} \right)^{\gamma-1}$. Для азота количество степеней свободы $i=5$. Тогда $\Delta W = \frac{5}{2} \nu R T_1 \left(\left(\frac{V_1}{V_2} \right)^{\gamma-1} - 1 \right)$;

5.185. Необходимо сжать воздух от объема $V_1 = 10$ л до $V_2 = 2$ л. Как выгоднее его сжимать (адиабатически или **из**отермически)?

 $\Delta W = -2.69 \text{ МДж}; A = 2.69 \text{ МДж}.$

Решение:

Работа, совершаемая при адиабатическом сжатии.

$$A_{!}=rac{RT_{1}}{\gamma-1}rac{m}{\mu}\Biggl(1-\Biggl(rac{V_{1}}{V_{2}}\Biggr)^{\gamma-1}\Biggr)$$
, где $\gamma=rac{c_{p}}{c_{V}}$. Работа, совершаемая

при изотермическом сжатии, $A_2 = RT \frac{m}{\mu} ln \frac{V_2}{V_1}$. Отсюда

$$\frac{A_1}{A_2} = \frac{1 - (V_1 / V_2)^{\gamma - 1}}{(\gamma - 1)ln(V_2 / V_1)};$$
 $\frac{A_1}{A_2} = 1,4$. Следовательно, выгоднее сжимать воздух изотермически.

5.186. При адиабатическом сжатии количества v = 1 кмоль двухатомного газа была совершена работа A = 146 кДж. На сколько увеличилась температура газа при сжатии?

Решение:

Для двухатомного газа (см. задачу 5.175) $\gamma=1,4$. Работа над газом при адиабатическом сжатии $A=\frac{RT_1}{\gamma-1}\frac{m}{\mu}\times \left(1-\frac{T_2}{T_1}\right)=\frac{RT_1}{\gamma-1}\nu\frac{T_1-T_2}{T_1}$; $A=\frac{R\nu(T_1-T_2)}{\gamma-1}=\frac{R\nu\Delta T}{\gamma-1}$. Отсюда $\Delta T=\frac{A(\gamma-1)}{R\nu}$; $\Delta T\approx 7$ К.

5.187. Во сколько раз уменьшится средняя квадратичная скорость молекул двухатомного газа при адиабатическом увеличении объема газа в два раза?

Решение:

Для двухатомного газа (см. задачу 5.175) $\gamma = 1,4$. Средняя квадратичная скорость молекул $\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$, тогда

$$\frac{\sqrt{\overline{v_1^2}}}{\sqrt{\overline{v_2^2}}} = \frac{\sqrt{3RT_1/\mu}}{\sqrt{3RT_2/\mu}} = \sqrt{\frac{3RT_1}{\mu} \frac{\mu}{3RT_2}} = \sqrt{\frac{T_1}{T_2}} \;. \; \text{Из уравнения Пу-}$$

ассона
$$T_1 / T_2 = (V_2 / V_1)^{\gamma - 1}$$
, отсюда $\frac{\sqrt{\overline{v_1^2}}}{\sqrt{\overline{v_2^2}}} = \sqrt{\left(\frac{V_2}{V_1}\right)^{\gamma - 1}} =$

5.188. Масса
$$m = 10$$
 г кислорода, находящегося при нормальных условиях, сжимается до объема $V_2 = 1,4$ л. Найти давление p_2 и температуру t_2 кислорода после сжатия, если кислород сжимается: а) изотермически; б) адиабатически. Найти работу A сжатия в каждом из этих случаев.

Решение:

 $= \left(\frac{V_2}{V_1}\right)^{\frac{\gamma-1}{2}}; \frac{\sqrt{v_1^2}}{\sqrt{v_2^2}} = 1.15.$

а) При изотермическом сжатии газа T = const, поэтому $T_2 = T_1 = 273$ К. Из уравнения Менделеева — Клапейрона

$$p_2V_2 = \frac{m}{\mu}RT_1$$
, давление $p_2 = \frac{mRT_1}{\mu V_2}$; $p_2 = 506,39$ кПа.

Работа при изотермическом сжатии $A=RT\frac{m}{\mu}ln\frac{V_2}{V_1}$. Из

закона Бойля — Мариотта
$$p_1V_1=p_2V_2$$
 имеем $\frac{V_2}{V_1}=\frac{p_1}{p_2}$,

тогда $A = RT_1 \frac{m}{\mu} ln \frac{p_1}{p_2}$; A = -1.14 кДж. б) Поскольку кисло-

род двухатомный газ, то $\gamma = 1.4$ (см. задачу 5.175). Из урав-

нения Пуассона
$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma} - (1)$$
 или $\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma-1} - (2)$.

Разделим (1) на (2)
$$\frac{p_1 T_2}{p_2 T_1} = \left(\frac{V_2}{V_1}\right)^{\left[g-(y-1)\right]} = \frac{V_2}{V_1}$$
 или

 $V_1 = \frac{p_2 V_2 T_1}{p_1 T_2}$. Согласно уравнению Менделеева — Клапей-

рона
$$p_2V_2=\frac{m}{\mu}RT_2$$
, тогда $V_1=\frac{\left(m/\mu\right)RT_2T_1}{p_1T_2}=\frac{mRT_1}{\mu p_1}$. Под-

ставим в (1)
$$\frac{p_1}{p_2} = \left(\frac{V_2 \mu p_1}{mRT_1}\right)^{\gamma}$$
, откуда $p_2 = \frac{p_1}{\left(V_2 \mu p_1 / (mRT_1)\right)^{\gamma}}$;

$$p = 965$$
 кПа. Подставим в (2) $\frac{T_1}{T_2} = \left(\frac{V_2 \mu p_1}{RT_1}\right)^{\gamma-1}$, откуда

$$T_2 = \frac{T_1}{(V_2 \mu p_1 / (mRT_1))^{\gamma-1}};$$
 $T_2 = 520 \text{ K.}$ Работа при адиа-

батическом сжатии
$$A = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \left(1 - \frac{T_2}{T_1} \right); A = -1,605$$
 кДж.

5.189. Масса m = 28 г азота, находящегося при температуре $t_1 = 40^{\circ}$ С и давлении $p_1 = 100$ кПа, сжимается до объема $V_2 = 13$ л. Найти температуру t_2 и давление p_2 азота после сжатия, если азот сжимается: а) изотермически; б) адиабатически. Найти работу A сжатия в каждом из этих случаев.

Решение:

а) При изотермическом сжатии газа (см. задачу 5.188) температура $T_2 = T_1 = 313 \text{ K} = 40^{\circ} \text{ C}$, давление $p_2 = \frac{mRT_1}{\mu V_1}$;

$$p_2 = 200$$
 кПа, работа $A = RT_1 \frac{m}{\mu} ln \frac{p_1}{p_2}$; $A = -1.8$ кДж.

б) Давление
$$p_2 = \frac{p_1}{(V_2 \mu p_1 / (mRT_1))^{\gamma}}$$
; $p_2 = 264 \text{ кПа. Темпе-}$

parypa $T_2 = \frac{I_2}{(V_2 \mu_D, /(mRT.))^{\gamma-1}};$ $A = \frac{RT_1}{v - 1} \frac{m}{\mu} \left(1 - \frac{T_2}{T_1} \right); A = -2.08 \text{ кДж.}$

5.190. Во сколько раз возрастает длина свободного пробега молекул двухатомного газа, если его давление падает в двое при расширении газа: а) изотермически; б) аднабатически?

 $T_2 = 413 \, \mathrm{K}$. Работа

Решение: Средняя длина свободного пробега молекул (см. задачу

5.120)
$$\lambda = \frac{kT}{\sqrt{2}\pi\sigma^2p}$$
. Тогда $\frac{\lambda_2}{\lambda_1} = \frac{T_2}{T_1} \frac{p_1}{p_2}$. а) При изотермическом расширении $T = const$, поэтому $\frac{\lambda_2}{\lambda_1} = \frac{p_1}{p_2} = 2$.

б) При адиабатическом расширении из уравнения

Пуассона имеем $\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$, тогда $\frac{\lambda_2}{\lambda_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}} \frac{p_1}{p_2}$, где **у** = 1,4; т. к. газ двухатомный (см. задачу 5.175).

Следовательно, $\frac{\lambda_2}{\lambda_2} = 1,64$.

5.191. Два различных газа, из которых один одноатомный, а другой двухатомный, находятся при одинаковых температурах и занимают одинаковые объемы. Газы сжимаются адиабатически так, что объем их уменьшается вдвое. Какой из газов нагреется больше и во сколько раз?

Решение:

Показатель адиабаты (см. задачу 5.120) $\gamma = \frac{i+2}{i}$. У одно**атомн**ого газа число степеней свободы $i_1 = 3$, поэтому $\gamma_1 = \frac{5}{3} = 1,67$, а у двухатомного $\gamma = 1,4$. Из уравнения Пуас-

сона имеем
$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$$
, откуда $T_2 = \frac{T_1}{\left(V_2 / V_1\right)^{\gamma-1}}$. По усло-

вию $\frac{V_2}{V_1} = 0.5$, следовательно, отношение температур

$$k=\frac{T_{2_1}}{T_{2_2}}=\frac{0.5^{\gamma_1-1}}{0.5^{\gamma_2-1}}\,;\;\;k=0.5^{\gamma_1-\gamma_2}=1.2$$
 . Значит, больше нагреется одноатомный газ в 1.2 раза.

5.192. Масса $m=1\,\mathrm{kr}$ воздуха, находящегося при давлении $p_1=150\,\mathrm{k\Pi a}$ и температуре $t_1=30^{\circ}\,\mathrm{C}$, расширяется адиабатически и давление при этом падает до $p_2=100\,\mathrm{k\Pi a}$. Во сколько раз увеличился объем воздуха? Найти конечную температуру t_2 и работу A, совершенную газом при расширении.

Решение:

Воздух в первом приближении можно считать двухатомным газом, поэтому показатель адиабаты $\gamma = 1.4$. Из

уравнения Пуассона
$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$
, откуда $\frac{V_2}{V_1} = \left(\frac{p_1}{p_2}\right)^{\frac{1}{\gamma}}$;

 $\frac{V_2}{V_1}$ = 1,34 . Кроме того, уравнение Пуассона может быть

записано в виде:
$$\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$$
, откуда $T_2 = \frac{T_1}{\left(p_1 / p_2\right)^{\frac{\gamma-1}{\gamma}}}$;

 $T_2 = 720 \text{ K.}$ работа расширения газа при адиабатическом

процессе
$$A = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right]; A = 24 \text{ кДж.}$$

5.193. Количество v=1 кмоль кислорода находится при нормальных условиях, а затем объем его увеличивается до $V=5V_0$. Построить график зависимости p=f(V), приняв за единицу по оси абсцисс значение V_0 , если кислород расширяется: а) изотермически; б) адиабатически. Значения давления p найти для объемов, равных: V_0 , $2V_0$, $3V_0$, $4V_0$ и $5V_0$.

Решение:

а) При изотермическом процессе по закону Бойля — Мариот-

та $p_0 V_0 = p V$, откуда $p = \frac{p_0 V_0}{V}$.

б) При адиабатическом процессе из уравнения Пуассона

следует, что
$$\frac{p_0}{p} = \left(\frac{V}{V_0}\right)^r$$
,

откуда
$$p = \frac{p_0}{\left(V / V_0\right)^{\gamma}}$$
.

p,	<u> </u>
	изотерма
	адиабата
	<i>v</i>

V.	V_0	$2V_0$	$3V_0$	41′0	$5V_0$
а, кПа (изотерма)	101,300	38,386	21,759	14,545	10,643
р, кПа (адиабата)	101,300	50,650	33,767	25,325	20,260

5.194. Некоторая масса кислорода занимает объем $V_1 = 3$ л при температуре $t_1 = 27^{\circ}$ С и давлении $p_1 = 820$ кПа. В другом состоянии газ имеет параметры $V_2 = 4,5$ л и $p_2 = 600$ кПа. Найти количество теплоты Q, полученное газом, работу A, соверменную газом при расширении, и изменение ΔW внутренней энергии газа при переходе газа из одного состояния в другое: а) по участку ACB; б) по участку ADB.

Решение:

304

а) По участку ACB: Участок AC — изохора, т. е. $A_1=0$, поскольку $\Delta V=0$. Следовательно, $Q_1=\Delta W_1=\frac{5}{2}\frac{m}{\mu}R\Delta T$. Согласно уравнению Менделеева — Клапейрона $p_1V_1=\frac{m}{\mu}RT_1$ — (1)

и $p_2V_1 = \frac{nr}{u}RT_2$ — (2). Вычтем уравнение (2) из (1), тогда $(p_1 - p_2)V_1 = \frac{m}{l}R\Delta T$. Отсюда $Q_1 = \Delta W_1 = \frac{5}{2}(p_1 - p_2)V_1$; $Q_1 = 1,65$ кДж. Участок CB — изобара, следовательно, $A_2 = p_2(V_2 - V_1); \ A_2 = 0.9$ кДж. Изменение внутренней энергии $\Delta W_2 = \frac{5}{2} \frac{m}{\mu} R \Delta T$. Согласно уравнению Менделеева — Клапейрона $p_2V_1 = \frac{m}{\mu}RT_1$ — (3) и $p_2V_2 = \frac{m}{\mu}RT_2$ — (4). Вычтем (3) из (4), тогда $p_2(V_2-V_1)=\frac{m}{\prime\prime}R\Delta T$. Отсюда $\Delta W_2 = \frac{5}{2} p_2 (V_2 - V_1); \quad \Delta W_2 = 2,25 \,\mathrm{кДж}.$ Таким образом, на всем участке ACB: работа $A = A_2 = 0.9$ кДж; изменение внутренней энергии $\Delta W = \Delta W_2 - \Delta W_1 = 0.6$ кДж. Согласно первому началу термодинамики количество $Q = \Delta W + A = 1.5 \text{ кДж.}$ б) Аналогично на участке ADB: работа $A = A_1 = p_1(V_2 - V_1) = 1,23$ кДж; изменение внутренней энергии $\Delta W = \Delta W_1 - \Delta W_2 = \frac{5}{2} p_1 (V_2 - V_1) - \frac{5}{2} (p_1 - p_2) \times$ $\times V_2 = 0.6$ кДж; количество тепла $Q = \Delta W + A = 1.83$ кДж.

5.195. Идеальная тепловая машина, работающая по циклу Карно, за цикл получает от нагревателя количество теплоты $Q_1 = 2.512$ кДж. Температура нагревателя $T_1 = 400$ К, температура холодильника $T_2 = 300$ К. Найти работу A, совершаемую машиной за один цикл, и количество теплоты Q_2 , отдаваемое холодильнику за один цикл.

Решение:

Работа, совершаемая тепловой машиной, определяется выражением $A = Q_1 - Q_2 = \eta Q_1$, где Q_1 — количество теплоты, полученное машиной от нагревателя, Q_2 — количество теплоты, отдаваемое холодильнику, η — к. п. д. машины. $\eta = \frac{T_1 - T_2}{T_1} = 0.25$. Отсюда A = 630 Дж; $Q_2 = Q_1 - A = 1.88$ кДж.

5.196. Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу A=2,94 кДж и отдает за один цикл холодильнику количество теплоты $Q_2=13,4$ кДж. Найти к.п.д. η цикла.

Решение:

К.п.д. цикла Карно $\eta = \frac{A}{Q_1}$ — (1), где Q_1 — количество тепла, подведенного к рабочему телу. Т. к. по условию машина является идеальной, то $\eta = \frac{T_1 - T_2}{T_1} = \frac{Q_1 - Q_2}{Q_1}$ — (2). Сравнивая выражения (1) и (2), получим $A = Q_1 - Q_2$, откуда $Q_1 = A + Q_2$. Тогда $\eta = \frac{A}{A + Q_2}$; $\eta = 18\%$.

5.197. Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу A = 73.5 кДж. Темпе-

ратура нагревателя $t_1 = 100^{\circ}$ С, температура холодильника $t_2 = 0^{\circ}$ С. Найти к. п. д. η пикла, количество теплоты Q_1 , получаемое машиной за один цикл от нагревателя, и количество теплоты Q_2 , отдаваемое за один цикл холодильнику

Решение:

К. п. д. идеального цикла Карно $\eta = \frac{T_1 - T_2}{T_1}$; $\eta = 26.8 \%$. С

другой стороны,
$$\eta = \frac{A}{Q_{\rm I}}$$
, откуда $Q_{\rm I} = \frac{A}{\eta}$; $Q_{\rm I} = 274$ кДж.

Т. к. машина идеальная, то количество тепла, отданное холодильнику $Q_2 = Q_1 - A$; $Q_2 = 200$ кДж.

5.198. Идеальная тепловая машина работает по циклу Карно. При этом 80% количества теплоты, получаемого от нагревателя, передается холодильнику. Машина получает от нагревателя количество теплоты $Q_1 = 6,28$ кДж. Найти к. п. д. η цикла и работу A, совершаемую за один цикл.

Решение:

Поскольку
$$\frac{Q_2}{Q_1}=0.8$$
, то $Q_2=0.8Q_1=5.024$ кДж. По условию, машина идеальная, значит, $A=Q_2-Q_1$; $A=1.256$ кДж и $\eta=\frac{A}{Q_1}$; $\eta=20$ %.

5.199. Идеальная тепловая машина работает по циклу Карно. Воздух при давлении $p_1 = 708 \, \mathrm{k\Pi a}$ и температуре $t_1 = 127^{\circ} \, \mathrm{C}$ занимает объем $V_1 = 2 \, \mathrm{л}$. После изотермического расширения воздух занял объем $V_2 = 5 \, \mathrm{n}$; после адиабатического расширения объем стал равным $V_3 = 8 \, \mathrm{n}$. Найти: а) координаты пересечения изотерм и адиабат; б) работу A, совершаемую на каждом 306

участке цикла; в) полную работу A, совершаемую за весь цикл; p) к. п. д. η цикла; д) количество теплоты Q_1 , полученное от нагревателя за один цикл; e) количество теплоты Q_2 , отданное колодильнику за один цикл.

Решение:

а) Запишем уравнение изотермы

$$AB: pV = \frac{m}{\mu}RT_1$$
 — (1). По- p_1 A скольку точка A принадлежит AB , то $p_1V_1 = \frac{m}{\mu}RT_1$, откуда p_2 p_3

$$\frac{m}{\mu} = \nu = \frac{p_1 V_1}{RT_1}$$
; $\nu = 0.427$ моль

Тогда (1) можно записать в виде $pV = 0.427RT_1 = 1.42$ кДж.

По закону Бойля — Мариотта для точки
$$B$$
 $p_2 = \frac{pV}{V_2} =$ = 284 кПа. Точки B и C принадлежат аднабате BC , следовательно, $p_2V_2^\gamma = p_3V_3^\gamma$, откуда $p_3 = p_2\left(\frac{V_2}{V_2}\right)^\gamma =$

=146 кПа. Уравнение изотермы CD имеет вид $pV = \nu RT_2 = p_3 V_3$, отсюда $T_2 = \frac{p_3 V_3}{\nu R}$; $T_2 = 330$ К. Координаты точек D и A удовлетворяют уравнению адиабаты DA,

следовательно, $\left(\frac{V_4}{V_1}\right)^{r-1} = \frac{T_1}{T_2}$, откуда $V_4 = 3.2$ л. Кроме того,

$$\left(\frac{V_4}{V_1}\right)^r = \frac{p_1}{p_4}$$
, откуда $p_4 = p_1 \left(\frac{V_1}{V_4}\right)^r = 365$ кПа. Таким обра-

30м, координаты искомых точек: A(2;708), B(5;284), C(8;146), D(3,2;365), здесь объем измеряется в литрах, давление — в килопаскалях.

б) Работа на участке
$$AB$$
 (изотерма): $A_1 = RT_1 \frac{m}{\mu} ln \frac{V_2}{V_1} =$

 $=1300 \, \text{Дж.}$ Работа на участке *BC* (адиабата):

$$A_2 = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right] = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \left(1 - \frac{T_2}{T_1} \right) = 620 \text{ Дж. Работа}$$

на участке CD (изотерма): $A_3 = RT_2 \frac{m}{\mu} ln \frac{V_4}{V_3} = -1070 \, \text{Дж.}$

Работа на участке
$$DA$$
 (адиабата): $A_4 = \frac{RT_2}{\gamma - 1} \frac{m}{\mu} \left(1 - \frac{T_1}{T_2} \right) = -620 \, \text{Дж}.$

- в) Работа за полный цикл $A = A_1 + A_2 + A_2 + A_4 = 230$ Дж.
- г) К. п. д. цикла $\eta = \frac{(T_1 T_2)}{T_1} = 0,175$.
- д) Количество теплоты, полученное от нагревателя за один цикл, $Q = \frac{A}{n} = 1300 \, \text{Дж}$.
- е) Количество теплоты, отданное холодильнику за один цикл $Q_2 = Q_1 A = 1070 \, \text{Дж}$.
- **5.200.** Количество v=1 кмоль идеального газа совершает цикл, состоящий из двух изохор и двух изобар. При этом объем газа изменяется от $V_1=25~{\rm M}^3$ до $V_2=50~{\rm M}^3$ и давление изменяется от $p_1=100~{\rm k\Pi a}$ до $p_2=200~{\rm k\Pi a}$. Во сколько раз работа, совершаемая при таком цикле, меньше работы, совершаемой в цикле Карно, изотермы которого соответствуют наибольшей и наименьшей температурам рассматриваемого цикла, если при изотермическом расширении объем увеличился в 2 раза?

Решение:

Работа, совершаемая при цикле из двух изобар и двух изохор, $A_1 = p_1(V_2 - V_1) - p_2(V_2 - V_1) = (p_1 - p_2)(V_2 - V_1)$; $A_1 = -2500$ кДж. Работа, совершаемая по циклу Карно, 308

 $A_{1\mu_3} = A_{1\mu_3} + A_{1\alpha_4} + A_{2\mu_3} + A_{2\alpha_4}$. Из уравнения Менделеева —

Клапейрона $pV = \nu RT$ имеем $T = \frac{pV}{\nu R}$. Тогда температура при изотермическом расширении и сжатии соответственно $T_1 = \frac{p_1 V_1}{\nu R}$ и $T_2 = \frac{p_2 V_2}{\nu R}$. Значит, работа при изотермическом расширении и сжатии $A_{1\mu_3} = RT_1 v \ln 2 = p_1 V_1 \ln 2$; $A_{2\mu3}=RT_2v\ln 0.5=p_2V_2\ln 0.5$. Идеальный газ является **одно**атомным, поэтому показатель адиабаты $\gamma = 1,67$ (см. задачу 5.191). Тогда работа при адиабатическом расширении и сжатии $A_{lag} = \frac{RT_1}{\nu - 1} \nu \left(1 - \frac{T_2}{T_1} \right) = \frac{p_1 V_1}{\nu - 1} \times$ $\times \left(1 - \frac{p_2 V_2}{p_1 V_1}\right) \quad \text{if} \quad A_{2a\pi} = \frac{R T_2}{\gamma - 1} \nu \left(1 - \frac{T_1}{T_2}\right) = \frac{p_2 V_2}{\gamma - 1} \left(1 - \frac{p_1 V_1}{p_2 V_2}\right), \quad \text{ot}$ сюда $A_2 = p_2 V_2 \left| ln 0.5 + \left(1 - \frac{p_1 V_1}{p_2 V_2} \right) \right| + p_1 V_1 \left[ln 2 + \left(1 - \frac{p_2 V_2}{p_1 V_1} \right) \right].$ Подставляя числовые данные, получим: $A_2 = -5198 \, \text{кДж}$,

5.201. Идеальная холодильная машина, работающая по обратному циклу Карно, совершает за один цикл работу A=37 кДж. При этом она берет тепло от тела с температурой $t_2=-10^{\circ}$ С и передает тепло телу с температурой $t_1=17^{\circ}$ С. Найти к. п. д. η цикла, количество теплоты Q_2 , отнятое у холодного тела за один цикл, и количество теплоты Q_1 , переданное более горячему телу за один цикл.

Решение:

тогда $\frac{A_2}{A_1} = 2,1$.

Поскольку холодильная машина работает по обратному циклу, то для перехода тепла от менее нагретого тела к более нагретому необходимо, чтобы внешние силы совер-

шили положительную работу. Количество теплоты Q_2 , отнятое у холодного тела, вместе с работой внешних сил A равно количеству теплоты Q_1 , переданному более нагретому телу, $Q_2 = Q_1 - A = \frac{A}{\eta} = \frac{1-\eta}{\eta} A$. Поскольку $\eta = \frac{\left(T_1 - T_2\right)}{T_1} = 0,093$, то $Q_2 = 360$; $Q_1 = Q_2 + A = 379$ кДж.

Таким образом холодильная машина за каждый цикл передает более горячему телу количество теплоты $397 \kappa Д_{ж}$, из которых $37 \kappa Д_{ж}$ за счет механической работы, а $360 \kappa Д_{ж}$ от холодного тела.

5.202. Идеальная холодильная машина работает как тепловой насос по обратному циклу Карно. При этом она берет тепло от воды с температурой $t_2 = 2^{\circ}$ С и передает его воздуху с температурой $t_1 = 27^{\circ}$ С. Найти: а) коэффициент η_1 — отношение количества теплоты, переданного воздуху за некоторый промежуток времени, к количеству теплоты, отнятому за это же время от воды; б) коэффициент η_2 — отношение количества теплоты, отнятого за некоторый промежуток времени от воды, к затраченной на работу машины энергии за этот же промежуток времени (коэффициент η_2 называется холодильным коэфв) коэффициент — η_3 отношение фициентом машины); затраченной на работу машины энергии за некоторый промежуток времени к количеству теплоты, переданному за это же время воздуху (коэффициент η_3 — к. п. д. цикла). Найти соотношение между коэффициентами $\eta_{\scriptscriptstyle 1}$, $\eta_{\scriptscriptstyle 2}$ и $\eta_{\scriptscriptstyle 3}$.

Решение:

Согласно условию задачи
$$\eta_1 = \frac{Q_1}{Q_2}$$
 — (1);
$$\eta_2 = \frac{Q_2}{A} = \frac{Q_2}{Q_1 - Q_2}$$
 — (2); $\eta_3 = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1}$ — (3). Кроме

жего, к. п. д. цикла $\eta_3 = \frac{T_1 - T_2}{T_1} = 0.083$. Из (3) имеем

$$Q_2 = \frac{Q_1}{\left(1 - \eta_3\right)}$$
. Тогда из (1) $\eta_1 = \frac{1}{1 - \eta_3} = 1,09$. Из (2) имеем $\frac{1}{\eta_2} = \eta_1 - 1 = \frac{1}{1 - \eta_3} - 1$, откуда $\eta_2 = \frac{1 - \eta_3}{\eta_3} = 11$.

5.203. Идеальная холодильная машина, работающая по **братному** циклу Карно, передает тепло от холодильника с **водой** при температуре $t_2 = 0^{\circ}$ С кипятильнику с водой при **температуре** $t_1 = 100^{\circ}$ С. Какую массу m_2 воды нужно заморозить в холодильнике, чтобы превратить в пар массу $m_1 = 1$ кг воды в кипятильнике?

Решение:

К п. д. идеальной холодильной машины $\eta = \frac{T_2}{T_1 - T_2} = 2,73$.

Количество тепла, отдаваемое холодильнику $Q_2 = \lambda m_2$, где $\lambda = 335 \, \mathrm{k} \, \mathrm{Jm}/\mathrm{kr}$ — удельная теплота плавления льда. Количество тепла, принимаемое кинятильником $Q_1 = rm_1$, где $r = 2,26 \, \mathrm{M} \, \mathrm{Jm}/\mathrm{kr}$ — удельная теплота парообразования

воды. С другой стороны,
$$\eta = \frac{Q_2}{Q_1 - Q_2}$$
, откуда $\eta = (Q_1 - Q_2) =$

$$=Q_2$$
 или $\eta Q_1 - \eta Q_2 = Q_2$. Отсюда $Q_1 = \frac{Q_2(1+\eta)}{\eta}$ или $\lambda m_1(1+n)$

$$rm_1 = \frac{\lambda m_2(1+\eta)}{\eta}$$
. Окончательно $m_2 = \frac{rm_1\eta}{\lambda(1+\eta)}$; $m_2 = 4.94$ кг.

5.204. Помещение отапливается холодильной машиной, работающей по обратному циклу Карно. Во сколько раз количество теплоты Q, получаемое помещением от сгорания пров в печке, меньше количества теплоты Q', переданного

помещению холодильной машиной, которая приводится в действие тепловой машиной, потребляющей ту же массу дров? Тепловой двигатель работает между температурами $t_1 = 100^{\circ}$ С и $t_2 = 0^{\circ}$ С. Помещение требуется поддерживать при температуре $t_1' = 16^{\circ}$ С. Температура окружающего воздуха $t_2' = -10^{\circ}$ С.

Решение:

Пусть к. п. д. тепловой машины $\eta = \frac{T_1 - T_2}{T_1}$, а к. п. д. холодильной машины $\eta' = \frac{T_1' - T_2'}{T_1'}$. Тогда за счет количества тепла Q совершается работа $A = \eta Q$, а помещению передается количество теплоты $Q' = \frac{A}{\eta'}$. Отсюда $\frac{Q'}{Q} = \frac{\eta A}{\eta' A} = \frac{(T_1 - T_2)T_1'}{(T_1' - T_2')T_1} \frac{Q'}{Q} = 3$. Т. е. от сгорания дров в печке помещение получит в три раза меньше тепла, чем при отоплении его холодильной машиной.

5.205. Рабочий цикл идеальной паровой машины изображен на рисунке. В начале доступа пара из котла в цилиндр давление в нем возрастает при $V_0 = const$ от p_0 до p_1 (ветвь AB). При дальнейшем поступлении пара до объема V_1 поршень движется слева направо при $p_1 = const$ (ветвь BC). При дальнейшем движении поршня вправо доступ пара из котла в цилиндр прекращается, происходит адиабатическое расширение пара до объема V_2 (ветвь CD). При крайнем правом положении поршня пар из цилиндра выходит в холодильник — давление падает при $V_2 = const$ до давления p_0 (ветвь DE). При обратном движений поршень выталкивает оставшийся пар при $p_0 = const$; объем при этом уменьшается от V_2 до V_0 (ветвь EA). Найти работу A этой машины, совершаемую за каждый цикл, если $V_0 = 0.5\,\mathrm{J}$,

 $V_1 = 1.5 \,\mathrm{л}, \quad V_2 = 3 \,\mathrm{л}, \quad p_0 = 0.1 \,\mathrm{M}\Pi\mathrm{a}, \quad p_1 = 1.2 \,\mathrm{M}\Pi\mathrm{a}$ и показатель алиабаты $\gamma = c_n / c_{t'} = 1.33$.

Решение:

Решение: Из рисунка видно, что работа за один цикл равна
$$A = A_{BC} + A_{CD} - A_{EA}$$
 или P $A = p_1(V_1 - V_0) + \frac{p_1V_1}{\gamma - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right] - P_0(V_2 - V_0)$, подставляя числовые P данные, получим $A = 1,92$ кДж.

5.206. Паровая машина мощностью P = 14.7 кВт потребляет за время t = 1 ч работы массу m = 8,1 кг угля с удельной теплотой сгорания $q = 33 \,\mathrm{MДж/кг}$. Температура котла $t_1 = 200^{\circ} \,\mathrm{C}$, температура холодильника $t_2 = 58^{\circ}$ С. Найти фактический к. п. д. η **ма**шины и сравнить его с к. п. д. η' идеальной тепловой машины, работающей по циклу Карно между теми температурами.

Решение:

Работа, совершаемая паровой машиной, A = Pt. Теплота, при сгорании угля, Q = qm. Фактический выделяемая

к. п. д. машины
$$\eta = \frac{A}{Q} = \frac{Pt}{qm}$$
; $\eta = 19.8$ %. К. п. д. идеальной

тепловой
$$\eta' = \frac{T_1 - T_2}{T_1} = 30 \%.$$

5.207. Паровая машина мощностью P = 14,7 кВт имеет площадь поршня $S = 0.02 \,\mathrm{m}^2$; ход поршня $h = 45 \,\mathrm{cm}$. Изоба-**Рический** процесс BC (рис.) происходит при движении поршня на одну треть его хода. Объемом $V_{\scriptscriptstyle 0}$, по сравнению с объемами

 V_1 и V_2 , пренебречь. Давление пара в котле $p_1=1.6\,\mathrm{MMa}$. давление пара в холодильнике $p_2 = 0.1 \, \mathrm{MHa}$. Сколько циклов за время t = 1 мин делает машина, если показатель адиабаты $\gamma = 1.3$?

Решение:

C На изохорных участках работа $A_{AB} = A_{DE} = 0$, т. к. $\Delta V = 0$. На изобарном участке $A_{BC} = \frac{1}{3} p_1 Sh$, т. к. $\frac{1}{3}$

хода. На адиабатном участке (см.

задачу 5.200) $A_{CD} = p_1 V_1 \left(1 - \frac{T_2}{T} \right)$, где $V_1 = \frac{2}{3} Sh$. Из

уравнения Пуассона $\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$ или $\frac{T_2}{T_2} = \left(\frac{p_2}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$, тогда

 $A_{CD} = \frac{2}{3} p_1 Sh \left| 1 - \left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{\gamma}} \right|$. На изобарном участке

 $A_{EA} = p_2 Sh$, тогда полная работа одного

$$A_{1} = A_{BC} + A_{CD} - A_{EA} = \frac{1}{3} p_{1}Sh + \frac{2}{3} p_{1}Sh \left[1 - \left(\frac{p_{2}}{p_{1}} \right)^{\frac{\gamma-1}{\gamma}} \right] - p_{2}Sh;$$

 $A_1 = 8,43 \text{ кДж.}$ Работа, совершаемая за время

$$A_t = Pt = 882$$
 кДж, число циклов $n = \frac{A_t}{A_1} = 104,6$.

5.208. Цикл карбюраторного и газового четырехтактного двигателя внутреннего сгорания изображен на рисунке. При 314

первом ходе поршня в цилиндр всасывается горючее (в карбюраторных двигателях горючая смесь представляет собой смесь паров бензина с воздухом, приготовляемую в карбюраторах, в газовых двигателях рабочая смесь «газ — возпух» поступает из газогенераторной установки), при этом $p_0 = const$ и объем увеличивается от V_2 до V_1 (ветвь AB). При втором ходе поршня горючее адиабатически сжимается от V, до V_2 , при этом температура повышается от T_0 до T_1 и давление от p_0 до p_1 (ветвь BC). Далее происходит зажигание (взрыв) **горюч**его от искры; при этом давление возрастает от p_1 до p_2 при $V_2 = const$ и температура возрастает от T_1 до T_2 (ветвь СО). Третий ход поршня — адиабатическое расширение **горючего** от V_2 до V_1 , температура падает до T_3 (ветвь DE рабочий ход). При крайнем положении поршня (точка E) открывается выпускной клапан, давление падает при $V_1 = const$ p_0 (ветвь EB). Четвертый ход поршня — изобарическое сжатие (ветвь ВА — выталкивание отработанного газа). Найти **ж. п. д.** η цикла, если степень сжатия $V_1/V_2 = 5$ и показатель аднабаты $\gamma = 1.33$.

Решение:

К. п. д. цикла $\eta = \frac{A}{Q}$, где A — полная работа за весь цикл и Q — количество теплоты, выделяющееся при сгорании горючего. Т. к. $A_{AB} = -A_{BA}$ н $A_{CD} = A_{EB} = 0$, то $A = A_{BC} - A_{DE} = \frac{m}{\mu} \frac{R(T_0 - T_3)}{\gamma - 1} \left[1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1} \right]$ — (1). Но

величина
$$\frac{R}{(\gamma-1)} = C_V$$
 и $\left(\frac{V_1}{V_2}\right)^{r-1} = \frac{T_1}{T_0} = \frac{T_2}{T_3}$; поэтому (1) можно записать как $A = \frac{m}{\mu} C_V \left(T_0 - T_3\right) \left(1 - \frac{T_2}{T_3}\right)$. Т. к. $Q = \frac{m}{\mu} C_V \left(T_2 - T_1\right)$, то $\eta = \frac{A}{Q} = \frac{\left(T_0 - T_3\right) \left(1 - \frac{T_2}{T_3}\right)}{T_2 - T_1} = \frac{T_2 - T_3}{T_2}$; $\eta = 1 - \frac{T_3}{T_2} = 1 - \frac{1}{\left(\frac{V_1}{V_2}\right)^{\gamma-1}} = 0,412 = 41,2\%$.

5.209. В цилиндрах карбюраторного двигателя внутреннего сгорания газ сжимается политропически до $V_2 = V_1/6$. Начальное давление $p_1 = 90 \, \mathrm{k\Pi a}$, начальная температура $t_1 = 127^{\circ} \, \mathrm{C}$. Найти давление p_2 и температуру t_2 газа в цилиндрах после сжатия. Показатель политропы n = 1,3.

Решение:

Уравнение политропического процесса $p_1V_1^n=p_2V_2^n$. По условию $V_2=\frac{V_1}{6}$, следовательно, $p_1V_1^n=p_2\bigg(\frac{V_1}{6}\bigg)^n$, откуда $p_2=p_1\cdot 6^n=934$ кПа. Из уравнения политропического процесса $T_1V_1^{n-1}=T_2V_2^{n-1}$ или $T_1V_1^{n-1}=T_2\bigg(\frac{V_1}{6}\bigg)^{n-1}$, откуда $T_2=T_1\cdot 6^{n-1}=684,7$ К.

5.210. В цилиндрах карбюраторного двигателя внутреннего сгорания газ сжимается политропически так, что после сжатия температура газа становится равной $t_2 = 427^{\circ}$ С. Начальная 316

температура $t_1 = 140^{\circ}$ C газа. Степень сжатия $V_2 / V_1 = 5.8$. Найти показатель политропы n.

Решение:

Из уравнения политропического процесса (см. задачу 5.209): $T_2 = T_1 \cdot 5.8^{n-1}$ или $\frac{T_2}{T_1} = 5.8^{n-1}$. Прологарифмируем полученное выражение: $ln\frac{T_2}{T_1} = ln5.8^{n-1}$ или $ln\frac{T_2}{T_1} = (n-1)\times ln5.8$, откуда $n = \frac{ln(T_2/T_1)}{ln5.8} + 1$; n = 1.3.

5.211. Диаметр цилиндра карбюраторного двигателя внутреннего сгорания D=10 см, ход поршня h=11 см. Какой объем V должна иметь камера сжатия, если известно, что начальное давление газа $p_1=0,1$ МПа, начальная температура газа $t_1=127^\circ$ С и давление в камере после сжатия $p_2=1$ МПа? Какова будет температура t_2 газа в камере после сжатия? Найти работу A, совершенную при сжатии. Показатель политропы n=1,3.

Решение:

Изменение объема в результате сжатия $V_1 - V_2 = Sh$ — (1), где S — площадь сечения цилиндра. Согласно уравнению

Пуассона
$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$
 — (2). Площадь сечения цилиндра

 $S = \pi \cdot D^2 / 4 = 7.85 \cdot 10^{-3} \text{ м}^2$. Решая совместно уравнения (1) **и** (2), найдем $V_2 = \frac{Sh}{\sqrt{\frac{p_2}{n}} - 1}$; $V_2 = 176 \cdot 10^{-6} \text{ м}^3$. Уравнение

Пуассона также можно записать в виде $\frac{T_1}{T_2} = (p_1 / p_2)^{\frac{\gamma - 1}{\gamma}}$,

откуда
$$T_2 = 680$$
 К. Работа при сжатии $A = \frac{p_1 V_1}{\gamma - 1} \frac{T_1 - T_2}{T_1}$, где $V_1 = Sh + V_2 = 1.04 \cdot 10^{-3} \text{ м}^3$; $A = 243 \text{ Дж}$.

5.212. Найти к. п. д. η карбюраторного двигателя внутреннего сгорания, если показатель политропы n=1,33 и степень сжатия: а) $\frac{V_1}{V_2}=4$; б) $\frac{V_1}{V_2}=6$; в) $\frac{V_1}{V_2}=8$.

Решение:

К. п. д карбюраторного двигателя внутреннего сгорания $\eta = \frac{T_2 - T_1}{T_2}$. Из уравнения политропического процесса

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_2}\right)^{n-1}$$
, следовательно, $T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{n-1}$. Тогда к. п. д.

$$\eta = \frac{T_1 (V_1 / V_2)^{n-1} - T_1}{T_1 (V_1 / V_2)^{n-1}} = 1 - \left(\frac{V_2}{V_1}\right)^{n-1}.$$

- а) Степень сжатия $\frac{V_1}{V_2} = 4$, тогда $\eta = 36.7\%$;
- б) Степень сжатия $\frac{V_1}{V_2} = 6$, тогда $\eta = 44.6$ %;
- в) Степень сжатия $\frac{V_1}{V_2} = 8$, тогда $\eta = 49.6$ %.
- 5.213. Карбюраторный двигатель мощностью $P=735.5\,\mathrm{Bt}$ потребляет за время $t=1\,\mathrm{H}$ минимальную массу $m=265\,\mathrm{F}$ бензина. Найти потери бензина на трение, теплопроводность и пр. Степень сжатия $V_1/V_2=6.2$. Удельная теплота сгорания бензина $q=46\,\mathrm{MДж}$. Показатель политропы n=1.2.

Решение.

Фактический к. п. д. двигателя $\eta = \frac{Pt}{mq}$; $\eta = 0.22 = 22\%$.

Теоретический к. п. д. $\eta' = 1 - \left(\frac{V_2}{V_1}\right)^{n-1}$; $\eta' = 0.3 = 30\%$.

Тогда потери бензина составляют 8%.

5.214. Цикл четырехтактного двигателя Дизеля изображен на рисунке. Ветвь AB — в цилиндры засасывается воздух ($p_0 = 0.1\,\mathrm{M\Pi a}$). Ветвь BC — воздух адиабатически сжимается до давления p_1 . В конце такта сжатия в цилиндры впрыскивается топливо, которое воспламеняется в горячем воздухе и сгорает, при этом поршень движется вправо, сначала изобарически (ветвь CD), а затем адиабатически (ветвь DE). В конце адиабатического расширения открывается выпускной клапан, давление падает до p_0 (ветвь EB). При движении поршня влево смесь удаляется из цилиндров (ветвь BA). Найти к.п.д. η двигателя Дизеля.

Решение:

Полная работа цикла $A = Q_1 - Q_2$ — (1), где Q_1 — количество теплоты, выделившееся при сгорании топлива (участок CD), Q_2 — количество теплоты, отданное наружу (участок EB). Участок CD — изобара, следовательно, $Q_1 = \frac{m}{\mu} C_p (T_2 - T_1)$ — (2),

где T_1 и T_2 — температура в начале и в конце расширения.

Участок EB — изохора, следовательно, $Q_1 = \frac{m}{\mu} C_V (T_3 - T_0)$

— (3), где T_3 и T_0 — температура в начале и в конце процесса. Подставляя (2) и (3) в формулу (1), имеем $A = \frac{m}{U} C_V [\gamma (T_2 - T_1) - (T_3 - T_0)]$ — (4), откуда $\eta = \frac{A}{Q_1} =$ $=1-\frac{1}{v}\frac{T_3-T_0}{T_2-T_2}$ — (5). Кроме того, температуры T_0 , T_1 и T_3 можно выразить через T_2 . Для изобары CD имеем $\frac{T_2}{T_1} = \frac{V_3}{V_1} = \beta$ — степень изобарического расширения, и, следовательно, $T_1 = T_2 / \beta$. Для адиабаты $\frac{T_2}{T} = \left(\frac{V_2}{V}\right)^{\gamma-1} = \delta^{\gamma-1}$, где δ — степень адиабатического расширения; следовательно, $T_3 = \frac{T_2}{S^{r-1}}$. Для адиабаты BCимеем $\frac{T_1}{T_2} = \left(\frac{V_2}{V_2}\right)^{\gamma-1} = \varepsilon^{\gamma-1}$, где ε — степень адиабатического сжатия; следовательно, $T_0 = \frac{T_1}{S^{r-1}} = \frac{T_2}{R_C^{r-1}}$. Подставляя полученные значения T_0 , T_1 и T_3 в (5) и учитывая, что $\beta = \frac{\varepsilon}{\delta}$, получим $\eta = 1 - \frac{\beta \gamma - 1}{\gamma \varepsilon^{\gamma - 1} (\beta - 1)}$.

5.215. Двигатель внутреннего сгорания Дизеля имеет степень адиабатического сжатия $\varepsilon=16$ и степень адиабатического расширения $\delta=6,4$. Какую минимальную массу m нефти потребляет двигатель мощностью P=36,8 кВт за время t=1ч? Показатель адиабаты $\gamma=1,3$. Удельная теплота сгорания нефти q=46 МДж/кг.

Решение: **К.** п. д. двигателя $\eta = \frac{A}{O} = \frac{Pt}{ma}$ — (1), откуда $m = \frac{Pt}{na}$. С

другой стороны, $\eta = 1 - \frac{\beta \gamma - 1}{\gamma \varepsilon^{\gamma - 1} (\beta - 1)}$ — (2) (см. задачу **2.214).** В условиях данной задачи $\beta = \frac{\varepsilon}{\varepsilon} = \frac{16}{6.4} = 2.5$;

 $\gamma = 1.3$; $\beta \gamma = 3.29$; $\beta^{\gamma} - 1 = 2.29$; $\epsilon^{\gamma - 1} = 2.30$; $\beta - 1 = 1.5$. **Подставляя** эти данные в (2), получим $\eta = 0.49 = 49\%$. **Тог**да $m = 5.9 \, \text{кг}$.

5.216. Найти изменение ΔS энтропии при превращении массы m = 10 г льда ($t = -20^{\circ}$ C) в пар ($t_n = 100^{\circ}$ C).

Решение:

Изменение энтропии при переходе вещества из состояния

1 в состояние 2 $\Delta S = \int_{-T}^{2} \frac{dQ}{T}$, где, согласно первому началу **терм**одинамики, $dQ = dU + dA = \frac{m}{U}C_V dT + pdV$. Т. к. из

уравнения Менделеева — Клапейрона давление $p = \frac{m}{u} \frac{RT}{V}$, **ТО** $dQ = \frac{m}{U}C_V dT + \frac{m}{U}\frac{RT}{V}dV$. При переходе из одного агре-

гатного состояния в другое, общее изменение энтропии складывается из изменений ее в отдельных процессах. При нагревании льда от T до T_0 (T_0 — температура плав-

удельная При плавлении теплоемкость льда. льда 11-3268 321

$$\Delta S_2 = \int_1^2 \frac{dQ}{T_0} = \frac{m\lambda}{T_0}$$
, где $\lambda = 0.33$ МДж/кг — удельная теплота плавления. При нагревании воды от T_0 до T_n $\Delta S_3 = \int_{T_0}^{T_n} \frac{mc_{_B}dT}{T} = mc_{_B} \ln \frac{T_n}{T_0}$, где $c_{_B} = 4.19$ кДж/(кг·К) — удельная теплоемкость воды. При испарении воды при температуре T_n $\Delta S_4 = \int_1^2 \frac{dQ}{T_n} = \frac{mr}{T_n}$, где $r = 2.26$ МДж/кг — удельная теплота парообразования. Общее изменение энтропии $\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4$; $\Delta S = mc_{_R} \ln \frac{T_0}{T} + \frac{m\lambda}{T_0} + mc_{_B} \ln \frac{T_n}{T_0} + \frac{mr}{T_0}$; $\Delta S = 88$ Дж/К.

5.217. Найти изменение ΔS энтропии при превращении массы m=1 г воды ($t=0^{\circ}$ C) в пар ($t_n=100^{\circ}$ C).

Решение:

Общее изменение энтропии ΔS складывается из изменения энтропии ΔS_1 при нагревании массы m воды от температуры T до температуры T_n и изменения энтропии ΔS_2 при испарении массы m воды. $\Delta S_1 = mc \ln \frac{T_n}{T}$, где c = 4.19 кДж/кг·К — удельная теплоемкость воды. $\Delta S_2 = \frac{mr}{T_n}$, где r = 2.26 МДж/кг — удельная теплота паробразования. Тогда $\Delta S = m\left(c \ln \frac{T_n}{T} + \frac{r}{T_n}\right)$; $\Delta S = 7.4$ Дж/К.