

计算机学院(软件学院) SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle 编译原理

第14讲: 语法分析(11)

张献伟

xianweiz.github.io

DCS290, 4/11/2023

Review Questions

- Why LR(0) is of limited usage?
 No lookahead, easy to have shift-reduce and reduce-reduce conflicts
- How does SLR(1) improve LR(0)?
 Lookahead using the FOLLOW set when reduce happens
- At high level, how does LR(1) improve SLR(1)?
 Splitting FOLLOW set (i.e., splitting states) to enforce reduce to consider not only the stack top
- How does LR(1) split the states?
 Add lookaheads to each item, i.e., LR(1) item=LR(0) item+lookahead
- How to understand the item [A -> u•, a/b/c]
 Reduce using A -> u, ONLY when the next input symbol is a/b/c

LR(1) Parse Table[解析表]

- Shift[移进]
 - Same as LR(0) and SLR(1)
 - Don't care the lookahead symbols
- Reduce[归约]
 - Don't use FOLLOW set (too coarse-grain[太粗粒度])
 - Reduce only if input matches lookahead for item
- ACTION and GOTO[表格]
 - If [A -> α·aβ, b] ∈ S_i and goto(S_i , a) = S_j , Action[i, a] = S_j
 - □ Shift *a* and goto state *j*
 - Same as SLR(1)/LR(0)
 - If $[A \rightarrow \alpha \cdot, a] \in S_i$, Action[i, a] = r[R]
 - Reduce R: A -> α if input matches α
 - For SLR, reduced if put input matches FOLLOW(A)

	(0)	S	->	S
--	-----	---	----	---

- (1) S -> XX
- (2) X -> aX
- (3) X -> b

I ₀ :	S	I ₁ :			
I_0 : S' \rightarrow ·S, \$		$S' \rightarrow S, $$			
$S \rightarrow XX, $$		o , o, +		I ₅ :	
			V	-	
$X \rightarrow \cdot aX$, a/b	Χ	l ₂ :	X	$S \rightarrow XX \cdot , $$	
$X \rightarrow \cdot b$, a/b	→	$S \rightarrow X \cdot X, $$			
		$X \rightarrow aX, $$	а	I ₆ :	χ l ₉ :
		$X \rightarrow \cdot b, $$	_ a	$X \rightarrow a \cdot X, $ \$	$X \rightarrow aX \cdot , $$
	h	v → .n' ≥	١.	$X \rightarrow .aX, $$	a
	b		b	$X \rightarrow \cdot b, $$	
\		I ₄ :		, .	
\	_	$X \rightarrow b \cdot$, a/b	,	↓b	
a		A -		I ₇ :	
ď		b		$X \rightarrow b \cdot , $$	
		l ₃ :	V		
		$X \rightarrow a \cdot X, a/$	b X	l ₈ :	
		$X \rightarrow -aX, a/$	b a	$X \rightarrow aX \cdot , a/$	'b
		$X \rightarrow \cdot b$, a/b	(a)		

Chata		ACTION		GOTO	
State	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

- (1) S -> XX
- (2) X -> aX
- (3) X -> b

		ACTION		GOTO	
State	а	b	\$	S	Х
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r <u>1</u>		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

- (1) S -> XX
- (2) X -> aX
- (3) X -> b

Chaha		ACTION		GOTO	
State	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

LR(1) Grammars

- Every SLR(1) grammar is LR(1), but the LR(1) parser may have more states than SLR(1) parser[SLR一定是LR,LR状态更多]
 - LR(1) parser splits states based on differing lookaheads, thus it may avoid conflicts that would otherwise result if using the full FOLLOW set
- A grammar is LR(1) if the following two conditions hold for each configurating set[是LR需要满足两个条件]
 - (1) For any item [A \rightarrow u·xv, a] in the set, with terminal x, there is no item in the set of form [B \rightarrow v·, x]
 - In the table, this translates no shift-reduce conflict on any state
 - (2) The lookaheads for all complete items within the set must be disjoint, e.g. set cannot have both $[A \rightarrow u \cdot, a]$ and $[B \rightarrow v \cdot, a]$
 - This translates to no reduce-reduce conflict on any state

LALR(1) Parser

- LR(1) drawbacks[缺点]
 - With state splitting, the LR(1) parser can have many more states than SLR(1) or LR(0) parser
 - One LR(0) item may split up to many LR(1) items
 - As many as <u>all possible lookaheads</u>
 - In theory can lead to an exponential increase in #states
- LALR (lookahead LR) compromise LR(1) and SLR(1)[折衷]
 - Reduce the number of states in LR(1) parser by merging similar states[状态合并]
 - Reduces the #states to the same as SLR(1), but still retains the power of LR(1) lookaheads[LR状态可能过度细分,合并回去,但还是比FOLLOW精细]
 - **Similar states**: have same number of items, the core of each item is identical, and they differ only in their lookahead sets[相似:核心相同,展望不同]

The Example

State Merging[状态合并]

- Merge states with the same core
 - Core: LR(1) items minus the lookahead (i.e., LR(0) items)
 - All items are identical except lookahead

$$I_{3}: \qquad I_{6}: \\ X \rightarrow a \cdot X, a/b \qquad X \rightarrow a \cdot X, \$ \\ X \rightarrow .aX, a/b \qquad X \rightarrow .aX, \$ \\ X \rightarrow .b, a/b \qquad X \rightarrow .b, \$$$

$$I_6$$
:
 $X \rightarrow a \cdot X$, \$
 $X \rightarrow .aX$, \$
 $X \rightarrow .b$, \$

$$I_{36}$$
:
 $X \rightarrow a \cdot X$, $a/b/$$
 $X \rightarrow .aX$, $a/b/$$
 $X \rightarrow .b$, $a/b/$$

$$I_4$$
:
 $X \rightarrow b \cdot$, a/b

$$I_7$$
:
 $X \rightarrow b \cdot, $$

$$I_{47}$$
: $X \rightarrow b \cdot$, $a/b/$$

$$I_8$$
: $X \rightarrow aX \cdot, a/b$

$$I_9$$
: $X \rightarrow aX \cdot , $$

l₈₉: $X \rightarrow aX \cdot , a/b/$$

State Merging (cont.)

State	ACTION			GOTO	
State	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

LR(1)

		ACTIO	GO	ТО	
State	а	b	\$	S	Х
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

LALR(1)

Grammar:

$$(0) S' -> S$$

$$(1) S -> XX$$

(2)
$$X -> aX$$

11 (3)
$$X \rightarrow b$$

State Merging (cont.)

Ctata		ACTION	GOTO		
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

State		ACTIO	GO	то	
	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

LR(0)/SLR(1)

LALR(1)

6		ACTION	GC	то			
State	а	b	\$	S	Х		
0	s3	s4		1	2		
1			acc				
2	s6	s7			5		
3	s3	s4			8		
4	r3	r3					
5			r1				
6	s6	s7			9		
7			r3				
8	r2	r2					
9			r2				

LR(1)

Grammar:

$$(0) S' -> S$$

$$(1) S -> XX$$

(2)
$$X -> aX$$

$$(3) X -> b$$

Merge Effects[合并效果]

- Merging states can introduce conflicts[引入归约-归约冲突]
 - Cannot introduce shift-reduce (s-r) conflicts
 - i.e., a *s-r* conflict cannot exist in a merged set unless the conflict was already present in one of the original LR(1) sets
 - Can introduce reduce-reduce (r-r) conflicts
 - LR was introduced to split the FOLLOW set on reduce action
 - Merging reverts the splitting
- Detection of errors may be delayed[推迟错误识别]
 - On error, LALR parsers will not perform shifts beyond an LR parser, but may perform more reductions before finding error
 - We'll see an example

Merge Conflict: Shift-Reduce

- Shift-reduce conflicts are **not** introduced by merging
- Suppose

```
Sij contains: [A -> \alpha \cdot, a] reduce on input a [B -> \beta.a\gamma, b] shift on input a Formed by merging Si and Sj[注: Sij并不一定只有这两个item]
```

Because

- Cores must be the same for Si and Sj, and thus one of them must contain $[A \rightarrow \alpha \cdot, a]$
- and it must have an item [B -> β.aγ, c] for some c[否则怎么同core?
 - This state has the same shift/reduce conflict on a, i.e., the grammar was not LR(1)
- Shift-reduce conflicts were already present in either Si and Sj (or both) and not newly introduced by merging

Merge Conflict: Reduce-Reduce

Reduce-reduce conflicts can be introduced by merging

```
S' \rightarrow S
                                                         l<sub>69</sub>:
            S -> aBc | bCc | aCd | bBd
                                                         C \rightarrow e \cdot , c/d
            B -> e
                                                         B \rightarrow e \cdot d/c
            C \rightarrow e
                                                         S -> b•Cc, $
I_0:
       S' -> •S, $
                                               I3:
       S -> •aBc, $
                                                         S -> b•Bd, $
       S -> •bCc, $
                                                         C -> •e, c
       S -> •aCd, $
                                                         B -> •e, d
       S -> •bBd, $
                                                         S -> aB • c, $
                                               I_4:
       S' -> S•, $
I<sub>1</sub>:
                                               I<sub>5</sub>:
                                                         S \rightarrow aC \cdot d, $
     S -> a•Bc, $
I<sub>2</sub>:
                                               I<sub>6</sub>:
       S -> a•Cd, $
                                                        B -> e•, c
       B -> •e. c
                                                         C \rightarrow e^{\bullet}, d
       C -> •e, d
                                                         S -> bC•c. $
```

next token is c or d, reduce to B or C???

Reduce to B when next token is d
Reduce to C when next token is c

I₈: S -> bB•d, \$

$$I_{10}$$
: S -> aBc•, \$

$$I_{11}$$
: S -> aCd•, \$

$$I_{12}$$
: S -> bCc•, \$

$$I_{13}$$
: S -> bBd•, \$

(0) S' -> S

(1) $S \rightarrow XX$ Inc

Input: aab\$

(2) X -> aX

(3) X -> 0						
		ACTION	GOTO			
State	а	b	\$	S	X	
0	s3	s4		1	2	
1			acc			
2	s6	s7			5	
3	s3	s4			8	
4	r3	r3				
5			r1			
6	s6	s7			9	
7			r3			
8	r2	r2				
9			r2			

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

(3) X -> b

Ctots		ACTION	GOTO		
State	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

state \rightarrow S_0 symbol \rightarrow \$

aab\$

(0) S' -> S

(1) S -> XX

Input: aab\$

(2) X -> aX

State	ACTION			GOTO	
	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

state → S ₀	
symbol - \$	aab\$
state \rightarrow S_0S_3	
symbol → \$ a	ab\$

(0) S' -> S

(1) $S \rightarrow XX$

Input: aab\$

(2) X -> aX

State	ACTION			GC	ТО
	а	b	\$	S	Х
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

state → S ₀	
symbol → \$	aab\$
state \rightarrow S ₀ S ₃	
symbol → \$ a	ab\$
state \rightarrow $S_0S_3S_3$	

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

(3) X -> b

State		ACTION	١	GO	ТО
	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

state → S ₀	
symbol • \$	aab\$
state → S_0S_3	
symbol → \$ a	ab\$
state \rightarrow $S_0S_3S_3$	
symbol → \$ a a	b\$
state $\rightarrow S_0S_3S_3S_4$	

symbol • \$ a a b

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

State	ACTION			GC	то
	а	b	\$	S	X
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

state → S ₀	
symbol → \$	aab\$
state \rightarrow S_0S_3	
symbol → \$ a	ab\$
state \rightarrow $S_0S_3S_3$	
symbol → \$ a a	b\$

state
$$\rightarrow$$
 S₀S₃S₃S₄ \leftarrow symbol \rightarrow \$ a a b

(0) S' -> S

(1) $S \rightarrow XX$ Input: aab\$

(2) X -> aX

State	ACTION			GOTO	
	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

Input: aab\$

(0) S' -> S

state \rightarrow S_0

 $(1) S \rightarrow XX$

symbol → \$

aab\$

(2) X -> aX

State	ACTION			GOTO	
	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

(3) X -> b

Ctata	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state
$$\rightarrow$$
 S_0

aab\$

state
$$\rightarrow$$
 S₀S₃₆

ab\$

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

Ctata	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state → S ₀	
symbol - \$	aab\$
state → S_0S_{36}	
symbol → \$ a	ab\$
state \rightarrow $S_0S_{36}S_{36}$	
symbol → \$ a a	b\$

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

Ctoto	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state → S ₀	
symbol - \$	aab\$
state \rightarrow S_0S_{36}	
symbol → \$ a	ab\$
state \rightarrow $S_0S_{36}S_{36}$	
symbol → \$ a a	b\$
state $ > S_0 S_{36} S_{36} S_{47} $	
symbol → \$ a a b	\$

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

Ctoto	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state → S ₀	
symbol > \$	aab\$
state → S ₀ S ₃₆	
symbol → \$ a	ab\$
state \rightarrow $S_0S_{36}S_{36}$	
symbol → \$ a a	b\$
state \rightarrow $S_0S_{36}S_{36}S_{47}$	
symbol → \$ a a b	\$
state \rightarrow $S_0S_{36}S_{36}S_{89}$	
symbol → \$ a a X	\$

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

Ctoto	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state → S ₀	
symbol → \$	aab\$
state \rightarrow S_0S_{36}	
symbol → \$ a	ab\$
state \rightarrow $S_0S_{36}S_{36}$	
symbol → \$ a a	b\$
state \rightarrow $S_0S_{36}S_{36}S_{47}$	
symbol → \$ a a b	\$
state $\rightarrow S_0S_{36}S_{36}S_{89}$	
symbol → \$ a a X	\$
state \rightarrow $S_0S_{36}S_{89}$	
symbol → \$ a X	\$

(0) S' -> S

 $(1) S \rightarrow XX$

Input: aab\$

(2) X -> aX

Ctoto	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state → S ₀	
symbol → \$	aab\$
state → S ₀ S ₃₆	
symbol → \$ a	ab\$
state \rightarrow $S_0S_{36}S_{36}$	
symbol → \$ a a	b\$
state $\rightarrow S_0 S_{36} S_{36} S_{47}$	
symbol → \$ a a b	\$
state $\rightarrow S_0S_{36}S_{36}S_{89}$	
symbol → \$ a a X	\$
state \rightarrow $S_0S_{36}S_{89}$	
symbol → \$ a X	\$
state → S_0S_2	
symbol → \$ X	\$

(0) S' -> S

(1) $S \rightarrow XX$

Input: aab\$

(2) X -> aX

Ctoto	ACTION			GOTO	
State	а	b	\$	S	X
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

state → S ₀	
symbol - \$	aab\$
state \rightarrow S_0S_{36}	
symbol → \$ a	ab\$
state \rightarrow $S_0S_{36}S_{36}$	
symbol → \$ a a	b\$
state $\rightarrow S_0 S_{36} S_{36} S_{47}$	
symbol → \$ a a b	\$
state $\rightarrow S_0 S_{36} S_{36} S_{89}$	
symbol → \$ a a X	\$
state \rightarrow $S_0S_{36}S_{89}$	
symbol → \$ a X	\$
state \rightarrow S_0S_2	
symbol → S X	5

LALR Table Construction[解析表构建]

- LALR(1) parsing table is built from the configuration sets in the <u>same way as LR(1)</u>[同样方法构建的项目集]
 - The lookaheads determine where to place reduce actions
 - If there are no mergable states, the LALR(1) table will be identical to the LR(1) table and we gain nothing[退化为LR(1)]
 - Usually, there will be states that can be merged and the LALR table will thus have fewer rows than LR
- LALR(1) table have the same #states (rows) with SLR(1) and LR(0), but have fewer reduce actions[同等数目的状态,但更少的归约动作]
 - Some reductions are not valid if we are more precise about the lookahead
 - Some conflicts in SLR(1) and LR(0) are avoided by LALR(1)
 - For C language: SLR/LALR 100s states, LR 1000s states

LALR Table Construction (cont.)

- Brute force[暴力方式]
 - Construct LR(1) states, then merge states with same core
 - If no conflicts, you have a LALR parser
 - Inefficient: building LR(1) items are expensive in time and space
 - We need a better solution

- Efficient way[高效方式]
 - Avoid initial construction of LR(1) states
 - Merge states on-the-fly (step-by-step merging)
 - States are created as in LR(1)
 - On state creation, immediately merge if there is an opportunity

LALR(1) Grammars

- For a grammar, if the LALR(1) parse table has no conflicts, then we say the grammar is LALR(1)
 - No formal definition of a set of rules
- LALR(1) is a <u>subset of LR(1)</u> and a <u>superset of SLR(1)</u>
 - A SLR(1) grammar is definitely LALR(1)[LALR归约更精细了]
 - A LR(1) grammar may or may not be LALR(1)[LALR合并了状态]
 - Depends on whether merging introduces conflicts
 - A non-SLR(1) grammar may be LALR(1)[LALR能解决SLR冲突]
 - Depends on whether the more precise lookaheads resolve the SLR(1) conflicts
- LALR(1) reaches a good balance between the lookahead power and the table size
 - Most used variant of the LR family

LALR Summary[小结]

- LALR(1)是LR(1)和SLR(1)的平衡
 - 文法范围: LR > LALR > SLR
 - 状态数目: LR > LALR = SLR
- 假如一个文法G是LR而非SLR,可能是LALR
 - 非SLR: SLR产生了冲突(依靠FOLLOW集进行归约不够精确)
 - □ 是LR: 而LR通过精确的lookahead解决了冲突
 - 可能是LALR: LALR对LR进行相似状态合并
 - □ 若合并后出现了冲突 --> 不是LALR文法
 - □ 若合并后<u>没有冲突</u> --> 是LALR文法
 - LALR可以解析文法G, 也即解决了SLR原有的冲突
 - 实际上LALR的状态数与SLR相同,但归约动作减少了(也即,对SLR解析表而言,多个移进/归约动作的单元格中的归约被消除了)
 - □ 如果没有相似状态,则LALR=LR
- 假如一个文法G是SLR
 - 那么G一定也是LR和LALR文法
 - LR的FOLLOW集细分是不必要的,因此LALR合并回了SLR

LL vs. LR Parsing (LL < LR)

- LL(k) parser, each expansion A -> α is decided based on
 - Current non-terminal at the top of the stack[依赖LHS]
 - Which LHS to produce
 - k terminals of lookahead at *beginning* of RHS[RHS的一点展望]
 - Must guess which RHS by peeking at first few terminals of RHS
 - 选择依据: LHS + RHS的k个符号(有限信息)
- LR(k) parser, each production A -> α · is decided based on
 - RHS at the top of the stack[依赖RHS]
 - Can postpone choice of RHS until entire RHS is seen
 - Common left factor is OK waits until entire RHS is seen anyway
 - Left recursion is OK does not impede forming RHS for reduction
 - k terminals of lookahead <u>beyond</u> RHS[超越RHS]
 - Can decide on RHS after looking at entire RHS plus lookahead
 - 选择依据:整个RHS+LHS后的k个符号(充足信息)

Hierarchy of Grammars[文法层级]

总结: 语法分析(1)

- 语法分析(Syntax analysis)是编译的第二个阶段
 - 输入: 词法分析产生的token序列
 - 输出: 分析树(parse tree)或抽象语法树(AST)
- 语法指定(Syntax specification)
 - 词法分析使用的RE/FA表达能力不够(e.g., 嵌套结构)
 - 需要使用文法(grammar), 尤其是上下文无关文法(context-free grammar, CFG)
- 文法形式化定义: {T, N, s, σ}
 - T: terminal symbols[终结符] = 词法分析的token, 分析树的叶子节点
 - N: non-terminal symbols[非终结符], 分析树的内部节点
 - s: start symbol[开始符号]
 - σ : set of productions[产生式], 形式: LHS -> RHS

总结: 语法分析(2)

- 推导(Derivation)
 - 对产生式的若干次使用 (从LHS到RHS)
 - □ 从文法开始符号到输入串(input string)
- 归约(Reduce)
 - 推导的逆过程(从RHS到LHS)
 - □ 从输入串(input string)到开始符号
- 分析树(Parse tree)
 - 是推导的图形化表示,略去了推导中产生式的使用顺序
- 歧义文法(Ambiguous grammar)
 - 某个句子对应多个(最左或最右)分析树
 - 通过指定优先级(precedence)和和结合性(associativity)来改写文法以消除 歧义

总结: 语法分析(3)

- 语法分析(或解析)就是处理给定文法的输入句子,构建一个以分析树或抽象语法树表示的推导
 - 自顶向下(Top-down): 从根节点扩展到叶子节点,每步考虑
 - □ 替换哪个非终结符?
 - □ 使用哪个产生式来替换?
 - 自底向上(Bottom-up): 从叶子节点回到根节点
 - 』消耗输入token还是归约?
 - □ 使用哪个产生式来归约?

Top-down (leftmost derivation)

$S \Rightarrow AB (1)$ $\Rightarrow aCB (2)$ $\Rightarrow acB (3)$ $\Rightarrow acbD (4)$ $\Rightarrow acbd (5)$ A B C D A C D

Bottom-up (reverse of rightmost derivation)

总结: 语法分析(4)

- Top-down分析
 - 递归下降分析(Recursive descent): 试错->回溯(backtracking)
 - □ 消除左递归(Left recursion)
 - 预测分析(Predictive): 预测,无需回溯
 - □ 消除左递归,提取左共因子(Left factoring)
- 表驱动的LL(1)分析器
 - 四部分: input buffer, stack, parse table, parser driver
 - 基于<stack top, current token>来采取操作(expand or match)
 - 解析表行为文法的非终结符、列为文法的终结符号及\$
 - 单元格存放一个产生式或空
 - 表格是借助FIRST和FOLLOW集来构建

总结: 语法分析(5)

- Bottom-up分析
 - 主要有移进(Shift)和归约(Reduce)两个动作
 - 实现上主要是LR类型分析器
 - □ 表格驱动,高效
- 表驱动的LR分析器
 - 四部分: input buffer, stack, parse table, parser driver
 - 基于栈顶来采取操作(shift or reduce)
 - □ 栈保存状态序列和每个状态关联的文法符号
 - 解析表包含Action和Goto两个子表
 - □ 表格是通过识别文法的可能项目集及转换(i.e., DFA)
 - LR(0) -> SLR(1) -> LR(1) -> LALR(1)

计算机学院(软件学院)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Compilation Principle 编译原理

第14讲: 语义分析(1)

张献伟

xianweiz.github.io

DCS290, 4/11/2023

Compilation Phases[编译阶段]

Compilation Phases (cont.)

- Lexical analysis[词法分析]
 - Source code → tokens
 - Detects inputs with illegal tokens
 - Is the input program lexically well-formed?
- Syntax analysis[语法分析]
 - Tokens \rightarrow parse tree or abstract syntax tree (AST)
 - Detects inputs with incorrect structure
 - Is the input program syntactically well-formed?
- Semantic analysis[语义分析]
 - AST → (modified) AST + symbol table
 - Detects semantic errors (errors in meaning)
 - Does the input program has a well-defined meaning?

Compilation Phases (cont.)

- Lexical analysis[词法分析]
 - Source code → tokens

x#y = 1

- Detects inputs with illegal tokens
- Is the input program lexically well-formed?
- Syntax analysis[语法分析]
 - Tokens \rightarrow parse tree or abstract syntax tree (AST)
 - Detects inputs with incorrect structure

x = 1 y = 2

- Is the input program syntactically well-formed?
- Semantic analysis[语义分析]
 - AST → (modified) AST + symbol table

int x; y = x(1)

- Detects semantic errors (errors in meaning)
- Does the input program has a well-defined meaning?

