

Chicago Insurance Redlining

(Regression Analysis Report)

Ву

Malik Hassan Qayyum

Supervisor

Dr. Ellie Small

Table of Contents

Background	3
Data Source	4
Variables	4
Goal	5
Initial Data Analysis	5
Summary	5
Scaling Income variable	5
Assumptions	7
Checking the linear Structure of the model	7
Checking Normality	10
Checking Error Variance	11
Checking Collinearity	11
Checking Unusual Observations	
Checking Leverage Points	15
Checking Outliers	
Checking Influential Observations	20
Transformations	21
Power Transformation	21
Polynomials	24
Evaluating the model	25
Train and Test data	25
Training the model	26
Testing the model	26
References	28

Background

The term redlining originates from the 1930s practice of color-coding maps of cities based on different neighborhoods' eligibility to receive a loan or mortgage. The lowest ranked neighborhoods were often literally lined in red and were almost always a community of color or other marginalized identity.

Redlining began in 1935 when the Home Owner's Loan Corporation began producing maps of virtually every major city upon request of the Federal Home Loan Bank Board.

Neighborhoods were color coded based on their desirability, from "A - First Grade" to "D - Fourth Grade." Most often the "D" ranking neighborhoods were black communities, or other communities of minorities, while the "A" ranking neighborhoods were affluent white suburbs.

The maps were used by both public and private banks and loan offices to directly discriminate and refuse loans to residents of the "D" neighborhoods.

The Fair Housing Act of 1968 made discrimination during the process of selling a house illegal, yet redlining was not effectively outlawed until 1977. The Home Mortgage Disclosure Act of 1975 required transparency thus making redlining unfeasible, and was followed by the Community Reinvestment Act of 1977 that finally prohibited it

A red lined map of Oakland, California, created by Home Owner's Loan Corporation.

Data Source

In a study of insurance availability in Chicago, the U.S. Commission on Civil Rights attempted to examine charges by several community organizations that insurance companies were redlining their neighborhoods, i.e. canceling policies or refusing to insure or renew.

First the Illinois Department of Insurance provided the number of cancellations, non-renewals, new policies, and renewals of homeowners and residential fire insurance policies by ZIP code for the months of December 1977 through February 1978. The companies that provided this information account for more than 70% of the homeowner's insurance policies written in the City of Chicago. The department also supplied the number of FAIR plan policies written a renewed in Chicago by zip code for the months of December 1977 through May 1978. Since most FAIR plan policyholders secure such coverage only after they have been rejected by the voluntary market, rather than as a result of a preference for that type of insurance, the distribution of FAIR plan policies is another measure of insurance availability in the voluntary market.

Secondly, the Chicago Police Department provided crime data, by beat, on all thefts for the year 1975. Most Insurance companies claim to base their underwriting activities on loss data from the preceding years, i.e. a 2-3-year lag seems reasonable for analysis purposes. the Chicago Fire Department provided similar data on fires occurring during 1975. These fire and theft data were organized by zip code.

Finally, the US Bureau of the census supplied data on racial composition, income and age and value of residential units for each ZIP code in Chicago. To adjust for these differences in the populations size associated with different ZIP code areas, the theft data were expressed as incidents per 1,000 population and the fire and insurance data as incidents per 100 housing units.

Variables

Following are the variables of the data source.

race racial: composition in percent minority

fire: fires per 100 housing units

theft: theft per 1000 population

age: percent of housing units built before 1939

volact: new homeowner policies plus renewals minus cancellations and non-renewals per 100 housing units

involact: new FAIR plan policies and renewals per 100 housing units

income: median family income

Goal

To compute the effect of different parameters on insurance redlining in 1975, in which race has been a dominant contributor. To Creating a Linear model for the involuntary market activity variable (the number getting FAIR plan insurance) based on the other parameters. Hence, we can compare the parameters who effects the redlining most in the past vs the one's which are affecting it now. This regression analysis will give a comparison matric to the policy maker to measure the changes of insurance redlining now and then.

Initial Data Analysis

Summary

```
summary(chicago)
##
                          fire
         race
                                         theft
                                                            age
           : 1.00
                    Min. : 2.00
                                     Min. : 3.00
                                                       Min. : 2.00
##
   Min.
##
    1st Ou.: 3.75
                    1st Ou.: 5.65
                                     1st Ou.: 22.00
                                                       1st Ou.:48.60
                                                       Median :65.00
   Median :24.50
                    Median :10.40
                                     Median : 29.00
##
           :34.99
                          :12.28
                                     Mean : 32.36
                                                            :60.33
##
   Mean
                    Mean
                                                       Mean
    3rd Qu.:57.65
                    3rd Qu.:16.05
                                     3rd Qu.: 38.00
                                                       3rd Qu.:77.30
##
##
           :99.70
                    Max.
                           :39.70
                                            :147.00
                                                       Max.
                                                              :90.10
    Max.
                                     Max.
##
                       involact
        volact
                                          income
           : 0.50
##
    Min.
                    Min.
                            :0.0000
                                      Min.
                                             : 5583
    1st Ou.: 3.10
                    1st Ou.:0.0000
                                      1st Ou.: 8447
##
   Median: 5.90
                    Median :0.4000
                                      Median:10694
##
##
   Mean
         : 6.53
                    Mean
                          :0.6149
                                      Mean
                                            :10696
    3rd Qu.: 9.65
##
                    3rd Ou.:0.9000
                                      3rd Ou.:11989
##
           :14.30
                            :2.2000
                                      Max.
                                              :21480
   Max.
                    Max.
```

Income has much bigger numbers then other parameters. It would have greater weight in the regression model. Hence, to avoid this we standardize the income variable.

Scaling Income variable

```
ch = chicago
ch$income = ch$income/1000
summary (ch)
##
                         fire
                                         theft
         race
                                                           age
##
   Min.
          : 1.00
                    Min. : 2.00
                                    Min. : 3.00
                                                      Min. : 2.00
    1st Qu.: 3.75
                    1st Qu.: 5.65
                                    1st Qu.: 22.00
                                                      1st Qu.:48.60
##
```



```
Median :24.50
                   Median :10.40
                                   Median: 29.00 Median: 65.00
                                                              :60.33
##
           :34.99
                           :12.28
                                           : 32.36
   Mean
                    Mean
                                    Mean
                                                      Mean
                    3rd Qu.:16.05
                                     3rd Qu.: 38.00
    3rd Qu.:57.65
                                                      3rd Qu.:77.30
##
           :99.70
                           :39.70
                                            :147.00
                                                              :90.10
##
    Max.
                    Max.
                                     Max.
                                                      Max.
##
        volact
                       involact
                                          income
                                             : 5.583
    Min.
           : 0.50
                    Min.
                            :0.0000
                                      Min.
                    1st Ou.:0.0000
##
    1st Qu.: 3.10
                                      1st Qu.: 8.447
##
   Median : 5.90
                    Median :0.4000
                                      Median :10.694
##
   Mean
         : 6.53
                    Mean
                           :0.6149
                                      Mean
                                             :10.696
##
    3rd Qu.: 9.65
                    3rd Qu.:0.9000
                                      3rd Qu.:11.989
           :14.30
                           :2.2000
                                      Max.
                                             :21.480
    Max.
                    Max.
par(mfrow=c(2,3))
for (i in 1:6)
boxplot(chicago[,i],main=names(chicago)[i])
```


Boxplots show some unusual observations, that we are later going to deal with.

Assumptions

Checking the linear Structure of the model

```
ch= data.frame(ch)
lmod full <- lm(involact~., ch)</pre>
lmod full$rank
## [1] 7
summary(lmod full)
## Call:
## lm(formula = involact ~ ., data = ch)
##
## Residuals:
##
      Min
               1Q Median 3Q
## -0.84296 -0.14613 -0.01007 0.18386 0.81235
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.486201 0.602048 -0.808 0.424109
             ## race
## fire
             0.037780 0.008982 4.206 0.000142 ***
## theft
            -0.010160 0.002908 -3.494 0.001178 **
              0.007615 0.003330 2.287 0.027582 *
## age
            -0.010180 0.027734 -0.367 0.715519
## volact
## income
              0.025685 0.032199 0.798 0.429759
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3387 on 40 degrees of freedom
## Multiple R-squared: 0.7517, Adjusted R-squared: 0.7144
## F-statistic: 20.18 on 6 and 40 DF, p-value: 1.072e-10
termplot(lmod full, partial.resid = T, terms=1)
```


termplot(lmod_full, partial.resid = T, terms=2)

termplot(lmod_full, partial.resid = T, terms=3)

termplot(lmod full, partial.resid = T, terms=4)

termplot(lmod_full, partial.resid = T, terms=5)

termplot(lmod_full, partial.resid = T, terms=6)

Structure is linear as we checked for every predictor.

Checking Normality

```
qqnorm(residuals(lmod_full),ylab = "Residuals", main ="")
qqline(residuals(lmod_full))
```


It looks we have fatter tails distribution. We use Shapiro Test for verification.

```
#Checking using Shapiro Test
shapiro.test(residuals(lmod_full))
##
## Shapiro-Wilk normality test
```



```
##
## data: residuals(lmod_full)
## W = 0.98095, p-value = 0.6317
```

P-value High, Accepting Null hypotheses. Dist. is Normal.

Checking Error Variance

```
plot(fitted(lmod_full), residuals(lmod_full))
abline(h=0)
```


Looks constant variance with few anomalies.

Checking Collinearity

```
X = model.matrix(lmod_full)[,-1]
cor(X)
                           fire
                                    theft
                                                          volact
                                                                     income
                race
                                                 age
                     0.5927956 0.2550647 0.2505118 -0.7594196 -0.7037328
  race
          1.0000000
                     1.0000000 0.5562105 0.4122225 -0.6864766 -0.6104481
  fire
          0.5927956
                     0.5562105
  theft
          0.2550647
                                1.0000000 0.3176308 -0.3116183 -0.1729226
                               0.3176308 1.0000000 -0.6057428 -0.5286695
          0.2505118
                     0.4122225
  age
## volact -0.7594196 -0.6864766 -0.3116183 -0.6057428 1.0000000 0.7509780
```



```
## income -0.7037328 -0.6104481 -0.1729226 -0.5286695 0.7509780 1.0000000
vif(X)
## race fire theft age volact income
## 3.491088 2.798840 1.684571 2.266203 4.851903 3.153110
```

Every Predictor is under 5. we are safe. (volact has relatively high correlation with other predictors Building model without volact:

```
lmod1 without volcat = lm(involact ~ race + fire + theft + age + income, ch )
summary(lmod1 without volcat)
##
## Call:
## lm(formula = involact ~ race + fire + theft + age + income, data = ch)
## Residuals:
      Min
            10 Median 30
                                     Max
## -0.84428 -0.15804 -0.04093 0.18116 0.80828
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.608979   0.495260   -1.230   0.225851
            ## race
## fire
            ## theft
            0.008271 0.002782 2.973 0.004914 **
## age
## income
            0.024500 0.031697 0.773 0.443982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3351 on 41 degrees of freedom
## Multiple R-squared: 0.7508, Adjusted R-squared: 0.7204
## F-statistic: 24.71 on 5 and 41 DF, p-value: 2.159e-11
```

Model without volcat performs better.

Now, Checking this using anova().

```
anova(lmod1_without_volcat,lmod_full)
## Analysis of Variance Table
##
## Model 1: involact ~ race + fire + theft + age + income
## Model 2: involact ~ race + fire + theft + age + volact + income
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 41 4.6047
## 2 40 4.5892 1 0.015457 0.1347 0.7155
```

H0: Beta(r) = 0H1: Beta(r) != 0

High p-value accept Null Hypotheses. simple words: volcat is not significant.

Checking Summary of the model

```
summary(lmod1 without volcat)
##
## Call:
## lm(formula = involact ~ race + fire + theft + age + income, data = ch)
##
## Residuals:
       Min
                 10
                     Median
                                   3Q
## -0.84428 -0.15804 -0.04093 0.18116 0.80828
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.608979
                          0.495260 -1.230 0.225851
                         0.002316 3.944 0.000307 ***
               0.009133
## race
## fire
               0.038817
                          0.008436 4.602
                                              4e-05 ***
              -0.010298
                          0.002853 -3.610 0.000827 ***
## theft
               0.008271
                          0.002782 2.973 0.004914 **
## age
## income
               0.024500
                          0.031697 0.773 0.443982
```



```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3351 on 41 degrees of freedom
## Multiple R-squared: 0.7508, Adjusted R-squared: 0.7204
## F-statistic: 24.71 on 5 and 41 DF, p-value: 2.159e-11
```

P-value of income is high. means it insignificant.

Let's try removing income.

```
lmod2 without volcat income = lm(involact ~ race + fire + theft + age, ch)
summary(lmod2 without volcat income)
##
## Call:
## lm(formula = involact ~ race + fire + theft + age, data = ch)
##
## Residuals:
##
      Min
               10
                   Median
                                3Q
                                       Max
## -0.87108 -0.14830 -0.01961 0.19968 0.81638
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.243118   0.145054   -1.676   0.101158
             0.008104 0.001886 4.297 0.000100 ***
## race
## fire
             ## theft
## age
             0.007210 0.002408 2.994 0.004595 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3335 on 42 degrees of freedom
## Multiple R-squared: 0.7472, Adjusted R-squared: 0.7231
## F-statistic: 31.03 on 4 and 42 DF, p-value: 4.799e-12
```


Removing income does not make much of the difference

Comparing models using anova():

```
anova(lmod2_without_volcat_income,lmod1_without_volcat)
## Analysis of Variance Table
##
## Model 1: involact ~ race + fire + theft + age
## Model 2: involact ~ race + fire + theft + age + income
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 42 4.6718
## 2 41 4.6047 1 0.067101 0.5975 0.444
```

```
H0: Beta(r) = 0
H1: Beta(r) != 0
Significance level = 5%
High p-value accept Null Hypothesis.
simple words: income is not significant.
```

Checking Unusual Observations

Checking Leverage Points

```
zips = row.names(ch)
hat_vals = hatvalues(lmod2_without_volcat_income)
halfnorm(hat_vals, labs = zips, ylab = "Leverages")
```


Zip Code: 60607 seems to be high leverage point.

Checking this observation:

```
row1 = which(rownames(ch) == 60607)
ch[row1,]
## race fire theft age volact involact income
## 60607 50.2 39.7 147 83 5.2 0.9 7.459
```

We can observe high theft in this observation

See what's happens if we remove this observation.

```
lmod3 \ modified\_1 = lm(involact \sim race + fire + theft + age , ch[-row1])
summary(lmod3_modified_1)
##
## Call:
## lm(formula = involact ~ race + fire + theft + age, data = ch[-row1])
##
## Residuals:
        Min
                  10
                      Median
                                     3Q
## -0.87108 -0.14830 -0.01961 0.19968 0.81638
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.243118   0.145054   -1.676   0.101158
                0.008104 0.001886 4.297 0.000100 ***
## race
```



```
## fire     0.036646     0.007916     4.629     3.51e-05 ***

## theft     -0.009592     0.002690     -3.566     0.000921 ***

## age          0.007210     0.002408     2.994     0.004595 **

## ---

## Signif. codes: 0 '***'     0.001 '**'     0.01 '*'     0.05 '.'     0.1 ' ' 1

##

## Residual standard error: 0.3335 on 42 degrees of freedom

## Multiple R-squared: 0.7472, Adjusted R-squared: 0.7231

## F-statistic: 31.03 on 4 and 42 DF, p-value: 4.799e-12
```

No Effect. As it is not affecting the model let it be in the model but report the case.

Further Investigation:

```
theft = 3
boxplot(ch[,theft],main=names(ch)[theft])
```


This observation theft value is far higher than other observation. it must be reported.

Checking Outliers

```
sort(abs(residuals(lmod2_without_volcat_income)))
## 60631 60619 60632 60616 60638 60618
## 0.001966931 0.004373166 0.007351602 0.013648913 0.018400932 0.019607322
```


##	60651	60643	60645	60612	60646	60635	
##	0.021481962	0.036764563	0.038561267	0.043673115	0.069513114	0.079401224	
##	60634	60629	60607	60636	60630	60609	
##	0.085058456	0.090890292	0.093118206	0.104531778	0.110429605	0.118843923	
##	60633	60655	60608	60620	60639	60644	
##	0.126700197	0.131776158	0.148096306	0.160332787	0.169898411	0.186612598	
##	60657	60656	60647	60611	60626	60628	
##	0.193319018	0.206048996	0.207880464	0.212589033	0.222429899	0.238847285	
##	60627	60652	60637	60640	60641	60614	
##	0.250934003	0.255827264	0.308243446	0.314421019	0.323936345	0.350925819	
##	60649	60617	60624	60615	60622	60625	
##	0.358846125	0.360328508	0.385193257	0.451842984	0.457316717	0.460601200	
##	60623	60653	60613	60621	60610		
##	0.510361779	0.627657515	0.714891996	0.816376747	0.871077427		

Following are the outlier observations

 60653
 60613
 60621
 60610

 0.990274659
 1.127907196
 1.288022823
 1.374325778

Now Let's Try by removing them

```
#Getting Outlier Rows
rn = rownames(ch)
rows outliers = subset(ch, rn == 60610 | rn == 60621 | rn == 60613 | rn == 60653)
rows outliers
        race fire theft age volact involact income
                              4.8 1.2 9.948
## 60613 19.6 10.5
                   36 73.5
## 60610 54.0 34.1
                 68 52.6
                              4.0 0.3 8.231
## 60653 99.7 21.6 31 65.0 0.5
                                      0.9 5.583
## 60621 98.9 17.4 32 68.6
                              1.7
                                       2.2 7.520
#buliding model with out them
lmod2 without volcat income outlier removed = lm(involact ~ race + fire + theft + ag
e, data = ch[-c(60653,60613,60621,60610),])
summary(lmod2_without_volcat_income)
```



```
##
## Call:
## lm(formula = involact ~ race + fire + theft + age, data = ch)
##
## Residuals:
      Min
             10
                   Median
                               30
## -0.87108 -0.14830 -0.01961 0.19968 0.81638
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.243118   0.145054   -1.676   0.101158
## race
             0.008104 0.001886 4.297 0.000100 ***
## fire
             ## theft
           0.007210 0.002408 2.994 0.004595 **
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3335 on 42 degrees of freedom
## Multiple R-squared: 0.7472, Adjusted R-squared: 0.7231
## F-statistic: 31.03 on 4 and 42 DF, p-value: 4.799e-12
summary(lmod2 without volcat income outlier removed)
##
## Call:
\#\# lm(formula = involact ~ race + fire + theft + age, data = ch[-c(60653,
     60613, 60621, 60610), ])
##
##
## Residuals:
      Min
             10 Median
                               3Q
## -0.87108 -0.14830 -0.01961 0.19968 0.81638
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.243118   0.145054   -1.676   0.101158
```



```
## race    0.008104    0.001886    4.297 0.000100 ***
## fire     0.036646    0.007916    4.629 3.51e-05 ***
## theft     -0.009592    0.002690    -3.566 0.000921 ***
## age     0.007210    0.002408    2.994 0.004595 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3335 on 42 degrees of freedom
## Multiple R-squared: 0.7472, Adjusted R-squared: 0.7231
## F-statistic: 31.03 on 4 and 42 DF, p-value: 4.799e-12
```

Does not make any difference in the result. Hence, we let them in the model.

Checking Influential Observations

```
cd = cooks.distance(lmod2_without_volcat_income)
plot(cd)
abline(h=0.5)
```


2nd method

```
plot(lmod2_without_volcat_income)
```


No point is Over 0.5. No Influential Observations.

Transformations

Power Transformation

```
# Reponses do not have strictly positive number
unique(ch$involact)
## [1] 0.0 0.1 1.2 0.5 0.7 0.3 0.4 1.1 1.9 0.2 0.8 1.8 0.9 1.5 0.6 1.3 1.4 2.2 1.0
which(ch$involact == 0.0)
## [1] 1 7 8 12 13 14 15 16 17 18 32 33 37 42 47

#scale response by adding 10^-100
ch2 = ch
ch2$involact = ch$involact + (10^-100)

#creating new model with scaled response
lmod4_without_volcat_income_resposeScaledPositive = lm(involact ~ race + fire + thef
t + age, ch2)

summary(lmod2_without_volcat_income)$r.squared
```



```
## [1] 0.7471912
summary(lmod4_without_volcat_income_resposeScaledPositive)$r.squared
## [1] 0.7471912
#doesnt not makes much of the difference

#Ploting boxcox
bc = boxcox(lmod4_without_volcat_income_resposeScaledPositive, plotit=T)
```


Unable to interpret the diagram. Let's try the transform directly if the model works better then fine else revert.

```
bc$x[which.max(bc$y)]
## [1] 0.02020202
```

Best possible Power transformation is ^0.0202

Applying Transformation:

```
lmod5 without volcat income resposeScaledPositive powerT = lm(involact^0.0202 ~ race
+ fire + theft + age, ch2)
summary(lmod4 without volcat income resposeScaledPositive)
##
## Call:
## lm(formula = involact ~ race + fire + theft + age, data = ch2)
##
## Residuals:
       Min
                 10
                     Median
                                    3Q
## -0.87108 -0.14830 -0.01961 0.19968 0.81638
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.243118
                          0.145054 -1.676 0.101158
                          0.001886 4.297 0.000100 ***
## race
               0.008104
                                    4.629 3.51e-05 ***
## fire
               0.036646
                          0.007916
                          0.002690 -3.566 0.000921 ***
## theft
              -0.009592
               0.007210
                          0.002408
                                    2.994 0.004595 **
## age
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3335 on 42 degrees of freedom
## Multiple R-squared: 0.7472, Adjusted R-squared: 0.7231
## F-statistic: 31.03 on 4 and 42 DF, p-value: 4.799e-12
summary(lmod5 without volcat income resposeScaledPositive powerT)
##
## Call:
## lm(formula = involact^0.0202 \sim race + fire + theft + age, data = ch2)
##
## Residuals:
##
      Min
               1Q Median
                                3Q
## -0.5646 -0.2323 -0.0291 0.2607 0.5683
##
```



```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.0787021 0.1312383 -0.600 0.55194
              0.0072822 0.0017063 4.268 0.00011 ***
## race
              0.0076946 0.0071624 1.074 0.28882
## fire
## theft
            -0.0006683 0.0024339 -0.275 0.78499
## age
              0.0071348 0.0021785 3.275 0.00212 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3018 on 42 degrees of freedom
## Multiple R-squared: 0.6134, Adjusted R-squared: 0.5765
## F-statistic: 16.66 on 4 and 42 DF, p-value: 2.992e-08
```

Before Transformation R2 was 0.7472 After Transformation R2 is 0.6134 Model works better without Transformation. Hence continuing with model 2.

Polynomials

Let's try polynomial on "theft":

```
#Previous model
summary(lmod2_without_volcat_income)$r.squared
## [1] 0.7471912
summary(lmod2_without_volcat_income)$adj.r.squared
## [1] 0.7231142
#model with poly 2
lmod7_without_volcat_income_poly2 = lm(involact ~ race + fire + poly(theft,2) + age, ch2)
summary(lmod7_without_volcat_income_poly2)$r.squared
## [1] 0.7472763
summary(lmod7_without_volcat_income_poly2)$adj.r.squared
## [1] 0.7164564
#model with poly 3
lmod8_without_volcat_income_poly3 = lm(involact ~ race + fire + poly(theft,3) + age, ch2)
summary(lmod8_without_volcat_income_poly3)$r.squared
```



```
## [1] 0.76032
summary(lmod8_without_volcat_income_poly3)$adj.r.squared
## [1] 0.724368
#model with poly 4
lmod9_without_volcat_income_poly4 = lm(involact ~ race + fire + poly(theft,4) + age, ch2)
summary(lmod9_without_volcat_income_poly4)$r.squared
## [1] 0.7606418
summary(lmod9_without_volcat_income_poly4)$adj.r.squared
## [1] 0.71768
```

3rd polynomial of theft makes model better. Hence, continue with model 8.

Evaluating the model

Train and Test data

```
##Test data
#Selecting Few random rows from data
test data = ch2[sample(nrow(ch2), 5), ]
options(scipen = 999) #disabling Scintific notation
round(test data,2)
       race fire theft age volact involact income
## 60630 1.6 2.5 22 63.8 10.7 0.0 12.40
                           2.6
## 60609 46.2 21.8
                  4 73.1
                                   1.3 8.33
## 60643 42.5 10.4 25 40.8 10.2 0.5 12.96
## 60607 50.2 39.7 147 83.0 5.2 0.9 7.46
## 60639 2.5 7.2 29 84.2 8.5 0.2 11.08
##Train data
rows= as.numeric(row.names(test data))
train data = ch2[-rows,]
head(round(train data,2))
##
       race fire theft age volact involact income
                           5.3
## 60626 10.0 6.2 29 60.4
                                   0.0 11.74
## 60640 22.2 9.5 44 76.5 3.1 0.1 9.32
## 60613 19.6 10.5 36 73.5 4.8 1.2 9.95
```



```
## 60657 17.3 7.7 37 66.9 5.7 0.5 10.66
## 60614 24.5 8.6 53 81.4 5.9 0.7 9.73
## 60610 54.0 34.1 68 52.6 4.0 0.3 8.23
```

Training the model

```
#Training the model
lmod final = lm(involact ~ race + fire + poly(theft,3) + age, data = train data)
summary(lmod final)
##
## Call:
## lm(formula = involact ~ race + fire + poly(theft, 3) + age, data = train data)
##
## Residuals:
      Min
               10 Median
                                3Q
                                       Max
## -0.71209 -0.16182 -0.01792 0.17004 0.79694
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               -0.450491 0.174390 -2.583 0.013550 *
                 ## race
## fire
                 ## poly(theft, 3)1 -1.415081 0.406476 -3.481 0.001221 **
## poly(theft, 3)2 -0.074267  0.380385 -0.195  0.846193
## poly(theft, 3)3 0.562725 0.381402 1.475 0.147931
                          0.002882 1.833 0.074258.
## age
                 0.005282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3328 on 40 degrees of freedom
## Multiple R-squared: 0.7603, Adjusted R-squared: 0.7244
## F-statistic: 21.15 on 6 and 40 DF, p-value: 0.0000000005386
```

Testing the model

```
#Testing the model
```



```
test data with removed varibles = test data[,-c(5,6,7)]
predict(lmod final, test data with removed varibles )
##
       60630
                 60609
                           60643
                                     60607
                                               60639
## 0.1252968 1.2089165 0.6096953 0.9044523 0.3797168
round(test data, 2)
         race fire theft age volact involact income
## 60630 1.6 2.5
                     22 63.8
                               10.7
                                          0.0 12.40
## 60609 46.2 21.8
                     4 73.1
                                2.6
                                         1.3
                                              8.33
## 60643 42.5 10.4
                   25 40.8
                                10.2
                                         0.5 12.96
## 60607 50.2 39.7
                   147 83.0
                                5.2
                                          0.9
                                              7.46
## 60639 2.5 7.2
                      29 84.2
                                 8.5
                                          0.2 11.08
```

Predicted values are almost same as the actual values. Hence, Our Model Performs Well.

Amendment:

Transformed *theft* to various polynomial degrees and also tried power transformations. It turned out that non of them improves the model performance.

```
lmod2_without_volcat_income = lm(involact ~ race + fire + theft + age, ch)
```

Hence, this is our final model.

Conclusion:

We can conclude that racial composition, fire, theft and age of housing drives the redlining. However, the family income was not a significant contributor. Taking these factors into account policy makers can make sure to make better polices and laws to outlaw redlining especially the racial composition factor. Resulting, providing equal opportunities for every USA national.

Furthermore, we can question that is the *involact* a true representative of redlining or we can come up with a better measure? How redlining have changed over the period of time? How these analyses can be used for better policy making?

References

Jackson, Kenneth T. Crabgrass Frontier: The Suburbanization of the United States. New York: Oxford UP, 1985. Print.

Squires, Gregory D. "Racial Profiling, Insurance Style: Insurance Redlining and the Uneven Development of Metropolitan Areas." Journal of Urban Affairs 25.4 (2003): 391-410. Print.

Badger, Emily. "Redlining: Still a thing." The Washington Post. WP Company, 28 May 2015. Web. 19 Dec. 2016.

Tootell, G. M. B. "Redlining in Boston: Do Mortgage Lenders Discriminate Against Neighborhoods?" The Quarterly Journal of Economics 111.4 (1996): 1049-079. Print.