CSCI 5304 HW 1

Jingxiang Li

September 22, 2014

Problem 1

Given two vectors $u, v \in \mathbb{R}^n$, and real scalars α , β , let $A = I + \alpha u v^T$, $B = I + \beta u v^T$.

Problem a

If u, v, α are given, find β such that $B = A^{-1}$

Solution

Problem b

For which values of α is A singular, if any? For that particular value of α , give a non-zero vector x in the right nullspace of A. Write x in terms of u, v, α .

Solution

∴
$$A$$
 is singular
∴ $|I + \alpha u v^T| = 0$

Following the Sylvester's determinant theorem, we have

$$|I + \alpha u v^{T}| = 1 + \alpha v^{T} u = 0$$

$$\Rightarrow \alpha = -\frac{1}{v^{T} u}$$

Set
$$x = u$$
 We have $Ax = u - \frac{uv^Tu}{v^Tu} = u - u = 0$

Problem c

Prove of disprove: for any given pair of vector u, v, there always exists a value α such that A singular. To prove, show such an α always exists, giving a formula in terms of u, v. To disprove, give an example of a pair of non-zero vectors u, v for which no such α exists. In the latter case, what general property do u, v satisfy to prevent the existence of α ? You can illustrate your answer with a 2×2 example.

Solution

Disprove: When $v^T u = 0$, no such α exists.

Because when $v^T u = 0$, $|I + \alpha u v^T| = 1 + \alpha v^T u = 1 > 0$;

For example, let $u = (1, 1)^T$, $v = (1, -1)^T$, Then A is always non-singular.

Problem d

Give a value of α (in terms of u, v) such that $A^2 = A$ (i.e., A is a projector).

Solution

$$A^2 = A$$

$$(I + \alpha u v^T)^2 = I + \alpha u v^T$$

$$\Rightarrow I + \alpha u v^T + \alpha u v^T + \alpha^2 u v^T u v^T = I + \alpha u v^T$$

$$\Rightarrow \alpha u v^T + \alpha^2 u v^T u v^T = 0$$

Thus $\alpha = 0$ is one solution.

Otherwise,
$$trace(uv^T) + \alpha trace(uv^Tuv^T) = 0$$

$$\Rightarrow v^T u + \alpha v^T u v^T u = 0$$

if
$$v^T u \neq 0$$

$$\alpha = -\frac{1}{v^T u}$$

So that we have $\alpha = 0$ or $\alpha = -\frac{1}{v^T u}$.

Problem 2

Let $f_p(v) = \max_{||u||_p=1} |u^T v|$, where $||v||_p$ denotes the p-norm.

Problem a

Prove or disprove: f_p is a vector norm. (check each property, or show one is violated).

Solution

Proof.

1.
$$f_p(v) = \max_{||u||_p=1} |u^T v| > 0$$

2.
$$\forall \in \mathbb{R}, \ f_p(av) = \max_{||u||_v=1} |u^T av| = \max_{||u||_v=1} a|u^T v| = af_p(v)$$

3.
$$f_p(x+y) = \max_{||u_1||_p=1} |u^T(x+y)| \le |u_1^T x| + |u_1^T y| \le \max_{||u_x||_p=1} |u_x^T x| + \max_{||u_y||_p=1} |u_y^T y| = f_p(x) + f_p(y)$$

Therefore f_p is a vector norm.

Problem b

Give a formula for f_p for p = 1, 2. Hint, the answers can be written in terms of $||\cdot||_2$, $||\cdot||_{\infty}$. For p = 2, use the Cauchy-Schwartz inequality.

Solution

$$f_1(v) = \max_{||u||_1=1} |u^T v| = ||v||_{\infty}$$

$$f_2(v) = \max_{||u||_2=1} |u^T v| \le ||u||_2 \cdot ||v||_2 = ||v||_2$$

Problem 3

Define the inner product among square matrices by $\langle A, B \rangle = \text{trace}(A^T B)$, where A, B are $n \times n$ matrices.

Problem a

What is the norm induced by this inner product: $||A|^2 = \langle A, A \rangle$? Answer this question for the general case for any A.

Solution

$$||A|| = \sqrt{\operatorname{trace}(A^T A)}$$

Problem b

Now answer the remaining questions below using this specific matrix:

$$A = \begin{pmatrix} 6 & -2 & 1 \\ 7 & -7 & 3 \\ -4 & 5 & -2 \end{pmatrix}$$

For this specific matrix A, what is the value of < A, A > and the corresponding induced norm $||A||^2 = < A, A >$ from part (a)?

Solution

$$< A, A > = trace(A^{T}A) = 193$$

 $||A|| = \sqrt{< A, A >} = \sqrt{193}$

Problem c

What is the *p* norm of *A*, for p = 1? Find a vector *x* s.t. $||A||_p = ||Ax||_p$.

Solution

Assume the dimension of A is $n \times m$

$$||A||_1 = \max_{||x||_1=1} ||Ax||_1 = 1_{1\times n} \cdot A \cdot x = \max_{||x||_1=1} (s_1, \dots, s_m) \times x$$

Where s_i is the *i*th column sum of absolute value of matrix A. Since $||x||_1 = 1$, we have

$$||A||_1 = \max_i s_i = 17$$

 $x = (1,0,0)^T$

Problem d

Repeat the above for p = 2. Use Matlab and write the result to 4 decimal places. Show your Matlab commands.

Solution

```
format short;

A = [6, -2, 1; 7, -7, 3; -4, 5, -2];

[EVECT, EVAL] = eig(A' * A);

sqrt(max(abs(diag(EVAL))))

> 13.595

x = EVECT(:,3)

> 0.72496

-0.63330

0.27086

||A||_2 = 13.595

x = (0.7250, -0.6333, 0.2709)^T
```

Problem e

Use Matlab to help solve this problem: Find a vector x achieving the minimum in $\min_{||x||_p=1} ||Ax||_p$. Do this for p=1,2.

Solution

For p = 1, similar to the maximum problem, the minimum result should be the smallest value of sum of absolute column values.

```
min(sum(abs(A),1)) > 6 \min_{||x||_1=1} ||Ax||_1 = 6x = (0,0,1)^T
```

For p = 2, similar to the maximum problem, the minimum result should be the smallest square root of absolute eigenvalue.

```
[EVECT,EVAL] = eig(A' * A);
sqrt(min(abs(diag(EVAL))))
>
0.077258

x = EVECT(:,1)
>
-0.040332
0.353531
0.934553
```

$$\min_{||x||_p=2} ||Ax||_2 = 0.0773$$

 $x = (-0.0403, 0.3535, 0.9346)^T$