

Z⁰-Resonanz

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

Theorie

Experimentelle Untersuchung

Zusammenfassung

1979 Nobelpreis an Steven Weinberg, Sheldon Glashow und Abdus Salam [1]

2018

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Experimentelle Untersuchung

Zusammenfassung

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[3]

Austauschteilchen

- lacktriangleright Photon ightarrow elektromagnetische Wechselwirkung
- ► Gluon → starke Wechselwirkung
- **>** W,Z-Boson → schwache Wechselwirkung

Schwacher Isospin

	Fermionmultipletts			
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$ ${\rm e_R}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$ μ_{R}	$ \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\rm L} $ $ \tau_{\rm R} $	
Quarks	$ \begin{pmatrix} u \\ d' \end{pmatrix}_L $ $ u_R $ $ d_R $	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$ c_R s_R	$ \begin{pmatrix} t \\ b' \end{pmatrix}_L $ $ t_R $ $ b_R $	

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ { m e} \end{pmatrix}_{ m L}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{ m L}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array}\right)_L$	1/2	
Que	u_{R}	c_{R}	t_{R}	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	

Schwacher Isospin

	Fermionmultipletts			T	T_3	
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} u_{ au} \\ \tau \end{array} ight)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	
Que	u_{R}	c_{R}	t_{R}	0	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	

Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\left(\begin{array}{c} \nu_{\mathrm{e}} \\ \mathrm{e} \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
ırks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Quarks	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	-1/3

Schwacher Isospin

 β^- -Zerfall[5]

Schwacher Isospin

 $ightharpoonup T_3$ soll erhalten bleiben

 β^- -Zerfall[5]

Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$

 β^- -Zerfall[5]

Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$

 β^- -Zerfall[5]

Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$
- W^0 : $(T = 1, T_3 = 0)$
- $\triangleright B^0$: $(T=0, T_3=0)$

 β^- -Zerfall[5]

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$\begin{aligned} |\gamma\rangle &= +\cos\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \sin\theta_{\mathrm{W}} \left| W^{0} \right\rangle \\ \left| Z^{0} \right\rangle &= -\sin\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \cos\theta_{\mathrm{W}} \left| W^{0} \right\rangle \end{aligned}$$

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$\begin{aligned} |\gamma\rangle &= +\cos\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \sin\theta_{\mathrm{W}} \left| W^{0} \right\rangle \\ |Z^{0}\rangle &= -\sin\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \cos\theta_{\mathrm{W}} \left| W^{0} \right\rangle \end{aligned}$$

➤ Weinbergwinkel:

$$\cos \theta_{\rm W} = \frac{M_{\rm W}}{M_{\rm 7}} \approx 0.88$$

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$\begin{aligned} |\gamma\rangle &= +\cos\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \sin\theta_{\mathrm{W}} \left| W^{0} \right\rangle \\ |Z^{0}\rangle &= -\sin\theta_{\mathrm{W}} \left| B^{0} \right\rangle + \cos\theta_{\mathrm{W}} \left| W^{0} \right\rangle \end{aligned}$$

➤ Weinbergwinkel:

$$\cos \theta_{\rm W} = \frac{M_{\rm W}}{M_7} \approx 0.88$$

► Gekoppelte Ladungen:

$$e = g \cdot sin\theta_W$$

Theorie

Experimentelle Untersuchung

Erzeugung Nachweis

Nachweis

Präzessionsmessungen

Eigenschaften

Anzahl Neutrinogenerationen

Zusammenfassung

Feynman-Diagramme

$$ightharpoonup e^- + e^-
ightarrow Z^0$$
: Schwerpunktsenergie $\sqrt{s} = 2E_e \geq M_Z c^2 pprox 91,6~GeV$

- $ightharpoonup e^- + e^-
 ightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e \geq M_{
 m Z}c^2 pprox 91,6~GeV$
- ▶ $u + \overline{u} \rightarrow Z^0$: pp-Kollision benötigt $E_p \gtrsim 600 \, GeV$

- ▶ $e^- + e^- \rightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_Z c^2 \approx 91,6 \ GeV$
- ▶ $u + \overline{u} \rightarrow Z^0$: pp-Kollision benötigt $E_p \gtrsim 600 \, GeV$
- ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \gtrsim 300 \, GeV$

- $ightharpoonup e^- + e^-
 ightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e \geq M_Z c^2 pprox 91,6~GeV$
- $ightharpoonup u + \overline{u}
 ightarrow Z^0$: pp-Kollision benötigt $E_p \gtrapprox 600~GeV$
- ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \gtrsim 300 \, GeV$
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$: benötigt $2E_e \geq 2M_{
 m W}c^2 pprox 160.8~GeV$

Einfluss auf Beschleuniger durch Gezeiten

LEP Ausdehnung[8]

Einfluss auf Beschleuniger durch Gezeiten

Relative Strahlenergieänderung[7]

Nachweis

L3 Detektoraufbau am LEP

L3 Detektor [7]

Nachweis

L3 Detektoraufbau am LEP

L3 Detektor [7]

Nachweis

Entdeckung des Z⁰ Bosons (1983 am CERN)

"Lego-Diagramm" $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

Präzessionsmessungen

L3 Detektor (1993 am LEP)

 $e^- + e^+
ightarrow Z^0
ightarrow$ hadronische Jets [7]

Präzessionsmessungen

L3 Detektor (1993 am LEP)

$$e^- + e^+ \to Z^0 \to e^+ + e^-$$
 [7]

Präzessionsmessungen

L3 Detektor (1993 am LEP)

 $e^- + e^+ \to Z^0 \to \mu^+ + \mu^-$ [7]

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_Z = 2,495(2) \, GeV$

17

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$
- > Zerfall:

$$Z^0 \rightarrow e^- + e^+$$
 3,363(4) %
 $\mu^- + \mu^+$ 3,366(7) %
 $\tau^- + \tau^+$ 3,370(8) %
 $v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau}$ 20,0(6) %
Hadronen 69,91(6) %

Wirkungsquerschnitt

$$\sigma_f = \frac{12\pi \cdot \Gamma_f \cdot \Gamma_e}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f \bar{f}}$$

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \rightarrow f\bar{f}} \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e},\mu,\tau} + \Gamma_{\nu_{e},\nu_{\mu},\nu_{\tau}} \end{split}$$

Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f| \sin^2 \theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,}\mu,\tau} + \Gamma_{v_e,v_\mu,v_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_{\mu} + N_C \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \end{split}$$

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_{\mu},v_{\tau}}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \end{split}$$

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_{\mu},v_{\tau}}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \ \textit{MeV} + 3 \cdot 3 \cdot 122,4 \ \textit{MeV} + 3 \cdot 83,3 \ \textit{MeV} + 3 \cdot 165,8 \ \textit{MeV} \\ &= 2,42 \ \textit{GeV} \end{split}$$

Zerfallsbreite

korrektui

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_{\mu},v_{\tau}}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} \\ &\xrightarrow{\text{Strahlungs-}} 2.497 \, \text{GeV} \end{split}$$

Wirkungsquerschnitt $e^+e^- \rightarrow \text{Hadronen}$ [4]

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

Zusammenfassung

- ► Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_Z \approx 2,4 \, GeV$
- ➤ 3 Neutrinogeneration

Quellen I

- Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225putting-the-puzzle-together (besucht am 12.11.2018).
 - F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN: 0370-2693. DOI:

https://doi.org/10.1016/0370-2693(73)90494-2.URL: http://www.sciencedirect.com/science/article/pii/0370269373904942.

Quellen II

- Standardmodell. URL:
 - https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).
- Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.
- Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).
- Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

Quellen III

- Versuch ZO-Resonanz. URL: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/zOresonance/index_html (besucht am 25.11.2018).
 - How is the beam energy calibrated through the resonant spin depolarization? URL:

http://tlep.web.cern.ch/content/how-beam-energy-calibrated-through-resonant-spin-depolarization (besucht am 29.11.2018).

Vielen Dank für eure Aufmerksamkeit!

Fragen?