Software Project Management

Lecture 16

Last Lecture Summary

IEEE 1540:2001 – Standard for Software Life Cycle Processes -Risk Management

• Describes a process for the management of risk during software acquisition, supply, development, operations and maintenance.

Source: IEEE Standard 1540:2001 © IEEE 2001. All rights reserved.

Words of Wisdom

 Accept the total responsibility of your choices and actions.

• Every soul will be (held) in pledge for its deeds. Al-Qur'an (74:38)

Planning - Estimating

Estimation

- The process of forecasting/predicting, or approximating the amount of
 - Effort
 - Cost
 - Duration
- required for completing project and/or project deliverables.

Duration vs. Effort vs. Productive Time

- Duration is the elapsed time in business working days
- Work effort is the labor required to complete an activity.
 - Work effort is typically the amount of focused and uninterrupted labor time required to complete an activity.
- Productive time considers the percentage of the work day that can be devoted to project activity work.
 - Estimates in software range from 66-75%, recent estimates of about 50-65% (same client base). This doesn't include unexpected interruptions!

Elapsed time vs. work time

Why Estimation?

- The most common problem in building the software systems is not the construction of them itself, but rather the estimation of the cost of that construction [Robert L Glass (Software Runaways)]
- According to the Standish Group CHAOS report of 2003:
 - 15% of software projects are terminated before they produce anything
 - 66% are considered to have failed
 - Of those that do complete the average cost blowout is 43%
- "On average, Government projects are being delivered 37% later than their estimate and 22% over their cost estimate." ISBS Group report of January 2004 on Government projects in Australia.

Why Estimation?

Project	First ; Last Estimates			
	Cost (\$M)	Schedule (months)	Status at Completion	
PROMS (Royalty Collection)	12 ; 21+	22 ; 46	Canceled, Month 28	
London Ambulance	1.5 ; 6+	7 ; 17+	Canceled, Month 17	
London Stock Exchange	60-75 ; 150	19 ; 70	Canceled, Month 36	
Confirm (Travel Reservation)	56 ; 160+	45 ; 60+	Canceled, Month 48	
Master Net (banking)	22 ; 80+	9 ; 48+	Canceled, Month 48	

Why Estimate?

- To determine if planned features are realistic in terms of
 - Resources (effort)
 - Schedule, and
 - Cost
- To determine staff loading during phases
- To be competitive
- To allow project monitoring and controlling

When to Estimate?

- Throughout the software lifecycle
 - Initial estimates
 - Detailed estimates
 - Re estimates
- Software cost estimation is a process of gradual refinement

Cone of Uncertainty

Types of Estimates

- Top-down (macro) estimates
 - E.g., Analogy, Group Consensus
- Bottom-up (micro) estimates
 - E.g., Estimates of elements of the work breakdown structure

Conditions for Preferring Top-Down or Bottom-up Time and Cost Estimates

Condition	Macro Estimates	Micro Estimates
Strategic decision making	X	
Cost and time important		X
High uncertainty	X	
Internal, small project	X	
Fixed-price contract		X
Customer wants details		X
Unstable scope	X	

Problems in Estimation

- Complexity and Uniqueness of Software Development Project
- Imprecise estimation models and methods
- Ineffective management of requirements
- In-experienced project management
- Lack of application domain expertise
- Software processes and process maturity
- Lack of historical data

Size Estimation

- Metric used in estimating the size of software product are
 - LOC, function points, ...
- Notion of size changes in project from requirement analysis to implementation and test
 - at requirements time
 - at design time
 - at implementation/test time
- Size can be estimated
 - Using an algorithmic approach
 - Using old similar project's size as a basis
 - Using expert judgment

Function Points

- It was developed by A.J. Albrecht of the IBM Corporation in the early 1980s (1979, 1983).
- Economic output unit of software projects should be valid for all languages
- The size is measured from a functional, or user, point of view
- Used at design stages of a project

Systems View (FP perspective)

FP- Functionality Types

EXTERNAL USER

Application Boundary

Other Applications

FPA Estimates

Components of FP

Data functions

- Internal logical files
 - Major logical group of end user data
 - Might consists of single flat file or a single table in relational databases
- External interface files
 - The data resides in another system and is maintained by another user or system
 - Shared databases, shared routines

Components of FP

Transactional functions

- External inputs
 - Screens, forms, dialog boxes, controls or messages through which an end user or other program adds, deletes or changes a program's data
- External outputs
 - Screens, reports, graphs or messages that a program generates for a use of an end user or other program
- External inquiries
 - Input/output combination

Complexity Level

For ILF and EIF				
Record Elements	Data Elements			
	1 - 19	20 - 50	51+	
1	Low	Low	Avg	
2 – 5	Low	Avg	High	
6+	Avg	High	High	

Complexity Level

For EO and EQ			
File Type	Data Elements		
	1-5	6 - 19	20+
0 – 1	Low	Low	Avg
2 – 3	Low	Avg	High
4+	Avg	High	High

Complexity Level

For EI			
File Types	Data Elements		
	1 – 4	5 - 15	16+
0 – 1	Low	Low	Avg
2 – 3	Low	Avg	High
3+	Avg	High	High

Weighting Factors

	Low	Average	Complex
Internal logical files	7	10	15
External interface files	5	7	10
External inputs	3	4	6
External outputs	4	5	7
External inquiries	3	4	6

Un-adjusted function points are computed using UFP = $\sum \sum X_i W_j$ where i=1..5, j=1..3

Environment Complexity Factor

- Is data communication required?
- Are there distributed processing functions?
- Is performance critical?
- Will the system run in an existing, heavily utilized environment?
- Does the system require online data entry?
- Is application designed to facilitate the ease of use by user?
- Are inputs, outputs or inquiries complex?

- Are the master files updated online?
- Is the internal processing complex?
- Is the code designed to be reusable?
- Are conversation and installation included in the design?
- Does the system require reliable backup?
- Is the system designed for multiple installations on different sites?
- Is the application designed to facilitate the change?

Q&A