Circuitos combinatorios

Luis Enrique Perez Señalin

<2024-06-05 mié>

Outline

Ejercicios

2 Resolución

Ejercicio1

Dada la siguiente tabla de verdad, simplificar utilizando Mapa de Karnaugh y obtener el respectivo circuito combinacional. Simular el resultado.

Α	В	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Ejercicio2

Obtener un circuito combinacional que realice la suma binaria. Para esto, considere que el sumador se resuelve integrado en cascada diferentes etapas que suman los dígitos de los sumandos y el acarreo, que inicia en 0.

- Obtenga la Tabla de Verdad
- Deduzca las expresiones booleanas reducidas
- Implemente el circuito en Matlab y realice la simulación

Ejercicio 1 - 1

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Ejercicio 1 - 2

Mapa de Karnaugh

AB/	00	01	11	10
С				
0	1	0	0	0
1	1	1	1	1

$$F = \overline{ABC} + C$$

Ejercicio 1 simulacion

Ejercicio 2

Obtener la tabla de verdad:

Α	В	С	S	С
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ejercicio 2 - expresion booleana

Deducir las expresiones booleanas reducidas

Para S, usamos la operación XOR: S = A(+)B(+)C

Para C(acarreo), utilizamos: C = (A * B) + (C * (A(+)B))

Ejercicio 2 - simulacion

