Liste des Tests du cours

Charles Vin

2022

Table des matières

1	Template	2
2	Test d'ajustement de Kolmogorov-Smirnov	2
3	Le test du \mathcal{X}^2 d'ajustement 3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi	3 4
4	Le test d'homogénéité de Kolmogorov-Smirnov	4
5	Test du \mathcal{X}^2 d'indépendance	5
6	Test du \mathcal{X}^2 d'homogénéité	6
7	Test sur les Gaussiennes 7.1 Sur la moyenne	7 7 7
8	Test de la somme des rangs	7
9	Test du signe	8
10	Signe et Rang	9
11	Test d'indépendance de Pearson	10
12	Test de comparaison asymptotique de proportion	11
13	ANOVA	12

	Echantillon appariés
Peu de données	Test du signe; Test de Wilcoscon si
On test si la médiane est nulle	KS d'homogénéité (comparaison d
Wilcoxson somme des rangs (Mann Witney) (va cont.) (comparaison de médiane)	
Beaucoup de données	Espérance de la différence null? (T
Données Gaussiennes	Student de la différence (test si l'es
Welsh (ss hypo sur variance)	
comparaison des espérances	

(X_i, Y_i)	Discret	Continue
Discret	\mathcal{X}^2 (si bcp de data)	
Continue	KS (si 2 modalité)	Test de corrélation (gaussienne ou bo
Spearman ou Kendall (peu de données, non gaussienne)		•

1 Template

Donnée

Conditions

Hypothèse

Statistique de test

Zone de Rejet

Méthode

2 Test d'ajustement de Kolmogorov-Smirnov

Conditions

- 1. Les X_i semblent provenir d'une loi à fonction de répartition continue. \Rightarrow on n'a pas plusieurs fois la même valeur (sauf si celle-ci on était arrondi).
- 2. Fonctionne $\forall n$: même si n est petit, ce test est pertinent
- 3. Si $n \ge 100$, on fait un test asymptotique.

Hypothèse

- $-H_0 = \text{les } X_i \text{ ont pour fdr. } F_X$ $-H_1 = \text{les } X_i \text{ n'ont pas pour fdr. } F_X$
- Statistique de test

$$h(F_n, F) = \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$

= $\max_{1 \le i \le n} (\max(\left| \frac{i}{n} - F(X_{(i)}) \right|, \left| \frac{i-1}{n} - F(X_{(i)}) \right|))$

Zone de Rejet

Si n est petit

La loi de $h(F_n,F)$ est tabulé alors prendre le paramètre n et :

$$\mathcal{R} = \{ h(F_n, F_X) \ge h_{1-\alpha} \}.$$

avec F_n fonction de réparation empirique, $h_{1-\alpha}$ le quantile à aller chercher dans la table

Si n est grand $n \ge 30$

Attention pas souvenir de l'avoir fait en TD. On a pas la table de $h(F_n, F)$ mais on sait que

$$\sqrt{n}h_n \to_{n\to\infty}^{\mathcal{L}} W_{\infty}.$$

Donc on pose la zone de rejet

$$\mathcal{R} = \{h(F_n, F_X) \ge \frac{k_\alpha}{\sqrt{n}}\}.$$

avec F_n fonction de réparation empirique, k_{lpha} le quantile de W_{∞} à aller chercher dans sa table

Méthode

Pour trouver la valeur de $h(F_n, F_X)$: Faire le grand tableau puis trouver le max. Exemple :

i	1	2	3	4	5
$X_{(i)}$	0.3	0.7	0.9	1.2	1.4
$X_{(i)} - 2$	-1.70	-1.30	-1.10	-0.80	-0.60
$F_0(X_{(i)})$	0.04	0.10	0.14	0.21	0.27
$\frac{i}{n}$	0.05	0.1	0.15	0.2	0.25
$\left \frac{i}{n}-F_0(X_{(i)})\right $	0.01	0.00	0.01	0.01	0.02
$\frac{ i-1 }{n} - F_0(X_{(i)}) $	0.04	0.05	0.04	0.06	0.07

Table 1 – Ici le max c'est 0.07 à la dernière case

3 Le test du \mathcal{X}^2 d'ajustement

Conditions

- 1. Les X_i sont à valeur dans un ensemble fini (loi discrète). Si a valeur dans \mathbb{N} , on fusionne les classes à partir d'un certain rang choisis
- 2. Test asymptotique : $\forall k \in \{1,\dots,d\}, np_k^{ref}(1-p_k^{ref}) \geq 5 \Leftrightarrow n \geq 20$

Si on ne remplis pas les conditions, on peut fusionner les classes

Hypothèse

$$H_0=p=p^{ref}$$
 i.e. $\forall k\in\{1,\ldots,d\}, p_k=p_k^{ref}$ $H_1=p\neq p^{ref}$ i.e. $\exists k\in\{1,\ldots,d\}: p_k\neq p_k^{ref}$

Avec p^{ref} un vecteur fixé à tester (par exemple pour un lancé de dé $(\frac{1}{6},\dots,\frac{1}{6})$)

Statistique de test

$$D(\bar{p_n}, p^{ref}) = n \sum_{k=1}^d \frac{(p_{k,n}^- - p_k^{ref})^2}{p_k^{ref}} \to_{n \to \infty}^{\mathcal{L}} \mathcal{X}^2(d-1)$$
$$= \sum_{k=1}^d \frac{(N_{k,n} - np_k^{ref})^2}{np_k^{ref}}$$

avec

—
$$N_{k,n}=\sum_{i=1}^n\mathbbm{1}_{X_ix_k}$$
 (ce qu'il y a dans le tableau de la consigne) — $p_{k,n}^-=\frac{N_{k,n}}{n}$ les proportions observés

Zone de Rejet

$$\mathcal{R} = \{ D(\bar{p_n}, p^{ref}) \ge h_{\alpha} \}.$$

avec h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d-1)$

Méthode

1. Etape 0 : On vérifie les conditions

$$\forall k \in \{1, \dots, d\}, n * p_k \ge 5.$$

C'est la condition de Cochran (1954), il avait testé cas possible en observant l'approximation faites.

- 2. Etape 1 : On calcule les effectifs et proportions observées : $N_{k,n}$ et $\hat{p}_{k,n}$
- 3. Etape 2 : Calcul de la statistique de test

$$D = n \sum_{d}^{k=1} \frac{(\hat{p}_{k,n} - p_k)^2}{p_k}.$$

- 4. Etape 3 : Détermination de la zone de rejet au niveau α . On lit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d_1)$
- 5. Etape 4: Décisions
 - si $D>h_{lpha}$, on rejette H_0 (au niveau lpha).
 - Si $D \leq h_{\alpha}$ on conserve H_0

Bilan de la méthode

Aspects positifs:

- Fonctionne pour toutes les lois
- Facile à faire

Aspects négatifs:

- Problème de consistance. Regrouper les variables par intervalle ruiner l'erreur de seconde espèce.
- Asymptotique
- Dépendant du choix des intervalles. Ce qui n'est pas canonique.

3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi

Pratiquement comme avant, pas encore fait en TD, mais copier collé du cours quand même

- 1. Etape 1 : Soit $\hat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ (pour P_{θ}). On estime **tous** les paramètres de la loi $(p_1^{\hat{\theta}_n}, \dots, p_d^{\hat{\theta}_n})$
- 2. Etape 2 : On vas tester l'ajustement de X_1,\ldots,X_n à $P_{\hat{\theta}_n}$ On calcule les fréquences observées $\hat{p}_{k,n}$.
- 3. Etape 3 : Vérification des conditions $np_k^{\hat{\theta}_n}$ et possible regroupement en classes
- 4. Etape 4 : Calcul de la stat de test \mathcal{D}
- 5. Etape 5 : Zone de rejet : lecture de H_{α} le quantile d'ordre $1-\alpha$ d'une $\mathcal{X}^2(d-1-M)$ avec M nombre de paramètre.
- 6. Etape 6: Décision
 - $D > h_{\alpha}$ on rejette H_0
 - D ≤ h_{α} on conserve H_0

4 Le test d'homogénéité de Kolmogorov-Smirnov

Conditions

- Deux échantillons indépendants de variable iid.
- De fdr. continue F_X, F_Y

$Z_{(i)}$	F_n	G_n	h_{n_1,n_2}	

Hypothèse

- H_0 : les X_i et Y_i ont la même loi, c'est à dire $F_{X_1}=F_{V_1}$ où F_{X_1},F_{Y_1} sont continues. H_1 les lois sont différentes

Statistique de test

$$\sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \le t} - \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{Y_j \le t} \right|.$$

Zone de Rejet

- Ce test est de taille α , si on utilise la table de $h_{n,m} = \sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{U_i \le s} \frac{1}{n} \sum_{j=1}^n \mathbbm{1}_{V_j \le s} \right|$.
- Si n et m sont trop grands, on utilise le résultat suivant : Sous H_0

$$h_{n_1,n_2} = \sqrt{\frac{nm}{n+m}} h(F_n,G_n) \to_{n,m\to+\infty}^\alpha W_\infty \text{ voir KS asymptotique}.$$

On utilise alors comme zone de rejet $\sqrt{\frac{n+m}{nm}}W_\infty$ avec W_∞ le quantile d'ordre $1-\alpha$ de W_∞ .

Méthode

Même qu'un khi deux classique! $Z_{(i)} = (X_i, Y_i)$

Test du \mathcal{X}^2 d'indépendance

Donnée

 $(X_1,Y_1),\ldots,(X_T,Y_T)$ iid appariés.

- $-X_1$ à valeur dans A_1, \ldots, A_M $-Y_1$ à valeur dans B_1, \ldots, B_N

Conditions

- Loi discrète
- -n ou T plutôt grand
- $\forall i < M, j < N: T * \hat{p}_m \hat{q}_m \geq 5$ ou avec la notation en TD : $E_{i,j} \geq 5$

- $H_0: X_1 \perp Y_1$ $H_1: X_1 \perp Y_1$

$$D = T * \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(\hat{p}_{m,n} - \hat{p}_{m}\hat{q}_{n})^{2}}{\hat{p}_{m}\hat{q}_{n}}$$
$$= \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(N_{m,n} - \frac{N_{m,n}N_{n,n}}{T})^{2}}{\frac{N_{m,n}N_{n,n}}{T}}$$

On utilise la deuxième en TD, la fraction est équivalent à $E_{i,j}$ aka le produit en croix à l'intérieur du tableau durant les TD (groupe 2)

Zone de Rejet

— Sous
$$H_0$$
, $D \to \mathcal{X}^2((M-1)(N-1))$
— Sous H_1 , $D \to +\infty$
$$\mathcal{R} = \{D \ge h_\alpha\}.$$

Méthode

Puis calculer la stat de test

$$D = \sum_{\text{chaque case du tableau}} \frac{N_{1,1} - E_{1,1}}{E_{1,1}}. \label{eq:decomposition}$$

Test du \mathcal{X}^2 d'homogénéité

Donnée

- X_1, \ldots, X_{n_1} échantillons iid
- Y_1, \ldots, Y_{n_2} échantillons iid
- Échantillons indépendant entre eux

Les variables sont toutes à valeurs dans les mêmes classes A_1, \ldots, A_M .

Conditions

Hypothèse

On veut tester l'homogénéité

- $\begin{array}{l} \boldsymbol{--} \ H_0 = X_1 \ \text{et} \ Y_1 \ \text{ont la même loi} \Leftrightarrow \forall m \in \{1, \dots, M\}, P(X_1 \in A_m) = P(Y_1 \in A_m) \\ \boldsymbol{--} \ H_1 = X_1 \ \text{et} \ Y_1 \ \text{n'ont pas la même loi} \Leftrightarrow \exists m \in \{1, \dots, M\} \ \text{tel que} \ P(X_1 \in A_m) \neq P(Y_1 \in A_m) \end{array}$

Zone de Rejet

Méthode

Test sur les Gaussiennes

7.1 Sur la moyenne

- Test sur 1 échantillon : Loi de Student
 - Variance inconnu : On utilise \bar{X}_n dans V_n
 - Variance connu : on l'utilise à la place de V_n
- Test sur 2 échantillons indépendants :
 - Variance inconnu : Test de welch : $D = \frac{\bar{X}_{n_1} \bar{Y}_{n_2}}{\sqrt{\frac{V_{n_1}^X}{n_1} + \frac{V_{n_2}^Y}{n_2}}} \sim_{H_0} \mathcal{T}(\mu)$ avec μ Formule horrible
 - Même variance inconnu : $\bar{X}_{n_1} \bar{Y}_{n_2} \sim \mathcal{N}(m_1 m_2, \sigma^2(\frac{1}{n_1} + \frac{1}{n_2}))$ Same stat de test sauf qu'on estime la variance avec $W=\frac{(n_1-1)V_{n_1}^X+(n_2-1)V_{n_2}^Y}{n_1+n_2-2}$. Finalement la stat de test centrée réduite $\sim \mathcal{T}(n_1+n_2-2)$
- Variances connus : $\bar{X}_{n_1}-\bar{Y}_{n_2}\sim\mathcal{N}(m_1-m_2,\sigma^2(\frac{1}{n_1}+\frac{1}{n_2}))$ cette fois-ci de variance connus Test sur 2 échantillons appariés : $Z_n=X_i-Y_i$ into $\mathcal{T}(n-1)$ classique sur 1 échantillon (Y'a un exo de td il parait)

7.2 Sur la variance

- Test sur 1 échantillon : Comme le semestre d'avant
 - Moyenne inconnu : On utilise $ar{X}_n$ dans le calcul de V_n puis penser que comme on connaît la moyenne ça suit une $\mathcal{X}^2(n)$
 - -- Moyenne connu : On l'utilise dans le calcul de V_n
- Test sur 2 échantillons indépendants :
 - Moyenne inconnu : $D = \frac{V_{n_1}^X}{V_{n_2}^Y}$ qui suit $\mathcal{F}(n_1-1,n_2-1)$ sans besoin de transformation.
 - Même Moyenne inconnu : X Pas de solution so do same as before
 - Moyennes connus : L'utiliser dans les calcul des V_n . Est-ce qu'on gagne des degrés de liberté?
- Test sur 2 échantillons apparié : X (maybe un Zn into khi deux)

8 Test de la somme des rangs

C'est le test de sur l'ordre stochastique.

Donnée

- X_1, \ldots, X_{n_1} iid.
- Y_1, \ldots, Y_{n_2} iid.
- Échantillons indépendants
- On suppose que F_X et F_Y sont **continues**.

Conditions

- On suppose que F_X et F_Y sont **continues**.
- Mieux qu'un KS à deux échantillons!

- $H_0=X_1$ et Y_1 ont la même loi. $F_{X_1}=F_{Y_1}$
- $H_0 = X_1$ et Y_1 n'ont pas la même loi. $F_{X_1} neq F_{Y_1}$
 - Ou $X_1 \succ Y_1$ C'est à dire $F_{X_1} \neq F_{Y_1}$ et $\forall t \in \mathbb{R}, F_{Y_1}(t) \leq F_{X_1}(t)$

— Ou
$$Y_1 \succ X_1$$
 C'est à dire $F_{X_1} \neq F_{Y_1}$ et $\forall t \in \mathbb{R}, F_{X_1}(t) \leq F_{Y_1}(t)$

$$U = \sum_{i=1}^{n_1} R(i) = \sum_{i=1}^{n_1} \sum_{j=1}^{n} \mathbb{1}_{X_i \le Z_j}.$$

Remarque. En cas d'ex-æquo, on leur attribue le rang moyen des rangs. Voir exemple.

Zone de Rejet

La loi est symétrique. On a uniquement la table d'un côté, il faut calculer l'autre coté $h_{1-lpha}=h_lpha+$ $2(\frac{n_1n+1}{2} - h_\alpha) = .$

Sin n est grand, on utilise le TCL suivant

$$\frac{U - E(U)}{\sqrt{Var(U)}} = \frac{U - n\frac{n_1 + 1}{2}}{\sqrt{\frac{n_1 n_2 (n+1)}{12}}} \to Z \sim \mathcal{N}(0, 1).$$

Méthode

On trie les données : On calcule

Obs	5.6	7.4	9.6	11	12.6	12.6	12.8	13	
Rang	1	2	3	4	5.5	5.5	7	8	
Obs	14.8	15	15.2	15.4	15.6	15.6	16.4	16.4	18.8
Rang	9	10	11	12	13.5	13.5	15.5	15.5	17

$$U = 1 + 7 + 10 + 11 + 13.5 + 15.5 + 15.5 + 17$$

= Somme des rangs de $X_i = 90.5$

Test du signe

Donnée

- X_1, \ldots, X_{n_1} iid.
- $\begin{array}{ll} & & Y_1, \dots, Y_{n_2} \text{ iid.} \\ & & \text{Échantillon } \mathbf{appari\acute{e}es} \; (X_1, Y_1), \dots, (X_n, Y_n) \text{ sont iid } X_1 \not\perp Y_1 \end{array}$

On note $Z_i = Y_i - X_i$. On suppose que Z_i a une fonction de répartition continue donc aucun des Z_i ne vaut 0.

Conditions

Fonction de répartition continue.

- H_0 La médiane de Z vaut 0. $m_Z=0$. C'est à dire que $P(Y_1 < X_1)=1/2$
- $\ \ H_1 = m_Z \neq 0 \text{ ou } m_Z > 0 \Leftrightarrow P(Z \leq 0) > 1/2 \Leftrightarrow P(Y_1 > X_1) > 1/2 \text{ ou } m_Z < 0$

$$S_n = \sum_{i=1}^n \mathbb{1}_{Z_i \leq 0}$$
 = Nombre de $Y_i > X_i$

Remarque. En cas d'ex-æquo, on leur attribue le rang moyen des rangs. Voir exemple.

Zone de Rejet

- Sous $H_0: P(Z_i > 0) = P(Y_i > X_i) = \frac{1}{2}$

$$\mathbb{1}_{Z_i>0} \sim Ber(\frac{1}{2}).$$

donc

$$S_n \sim Bin(n, \frac{1}{2}).$$

— Sous H_1

— Si $m_z>0, P(Y_i>X_i)>\frac{1}{2}, S_n\sim Bin(n,p), p>\frac{1}{2}$ donc S_n est "grand" — Si $m_z<0, P(Y_i< X_i)>\frac{1}{2}$ donc S_n est petit.

— Si $m_z \neq 0, S_n$ a un comportement proche des extremes (petit/grand).

On utilise donc une table de la loi binomiale. Si n est grand, on utilise le TCL.

Méthode

$$\sum_{k=1}^{l=1} n_l (\bar{Y}_l - \bar{Y})^2 \sum_{k=1}^{l=1} \sum_{n_l}^{i=1} (Y_l^l - \bar{Y}_l) \bar{Y}_l = \frac{1}{n_l} \sum_{n_l}^{i=1} X_l^l.$$

9

Signe et Rang 10

Donnée

 $\begin{array}{ll} & - \ X_1, \dots, X_{n_1} \text{ iid.} \\ & - \ Y_1, \dots, Y_{n_2} \text{ iid.} \\ & - \text{ Échantillon } \mathbf{appariées} \ (X_1, Y_1), \dots, (X_n, Y_n) \text{ sont iid } X_1 \not\perp Y_1 \end{array}$

On pose $Z_i = Y_i - X_i$ iid. de médiane m

En réalité iid sur les variables n'est même pas obligatoire.

Conditions

- La loi des Z_i est continue
- Les Z_i sont symétriques par rapport à leur médiane m.

$$- H_0 = m = 0 \Leftrightarrow P(Y_i > X_i) = P(X_i < Y_i) = \frac{1}{2}$$

$$- \ H_0 = m \neq 0 \text{ ou } m > 0 \text{ ou } m < 0$$

Somme des rangs positif des $Z_{(i)}$

$$W_n^+ = \sum_{i=1}^n \mathbb{1}_{Z_i > 0} R_i.$$

et

$$W_n^- = \sum_{i=1}^n \mathbb{1}_{Z_i < 0} R_i.$$

Pas mal d'interaction entre eux, tout est dans le poly de table.

Zone de Rejet

- Sous $H_0, W_n^+ \sim \mathcal{B}(n, \frac{1}{2})$
- - $-H_1: m>0 \Leftrightarrow X_i>Y_i \Leftrightarrow {\sf plus} \ {\sf de} \ {\sf rang} \ {\sf positif} \Leftrightarrow W_n^+ \ {\sf prend} \ {\sf de} \ {\sf plus} \ {\sf grande} \ {\sf valeur} \ {\sf et} \ W_n^- \ {\sf de}$

 - $\begin{array}{l} \boldsymbol{-} \quad H_1: m>0 \text{ Même raisonnement} \\ \boldsymbol{-} \quad H_1: m\neq 0 \Leftrightarrow W_n^+ \text{ prend des valeurs extremes.} \end{array}$

Bref on regarde la table avec le n nombre de couple (X_i, Y_i) . On fait attention si on regarde W_n^+ ou W_n^- . Et on utilise la symétrie avec les formules du centre ou des extrémités pour trouver l'autre quantile si besoin.

Méthode

$X_{(i)}$	•••			•••	
$Y_{(i)}$					
Z_i	Avec	des	couleur	pour	X ou Y
$Z_{(i)}$					
Rang	1	2	3		2n

Test d'indépendance de Pearson 11

Donnée

- $-X_1,\ldots,X_n$ iid $\mathcal{N}(m,\sigma^2)$
- Y_1,\ldots,Y_n iid $\mathcal{N}(m,\sigma^2)$ Échantillon appariés et (X_i,Y_i) vecteur gaussien (not sure)

Conditions

- Gaussien car c'est ce qui créé l'équivalence entre corrélation et indépendance
- Apparié? (pas sur en td on l'a fait sans)

- $\begin{array}{l} \boldsymbol{-} \ H_0 = X_i \bot Y_i \left(cor(X,Y) = 0 \right) \\ \boldsymbol{-} \ H_0 = X_i \ \angle Y_i \left(cor(X,Y) \neq 0 \right) \end{array}$

Soit R la corrélation empirique :

$$R = \frac{cov_n((X_1, \dots, X_n), (Y_1, \dots, Y_n))}{\sqrt{V_n^X * V_n^Y}}$$

$$R_n = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)(Y_i - \bar{Y}_n)}{\sqrt{(\sum_{i=1}^n (X_i - \bar{X}_n)^2) \sum_{i=1}^n (Y_i - \bar{Y}_n)^2}}$$

 R_n est un estimateur fortement consistant de $cor(X_i, Y_i)$

$$D = \frac{R_n}{\sqrt{1 - R_n^2}} \sqrt{n - 1}.$$

Zone de Rejet

- Sous $H_0, D \sim \mathcal{T}(n-2)$
- Sous H_1, D est grand en valeur absolue

On utilise les quantiles de la loi de Student.

Test de comparaison asymptotique de proportion 12

Donnée

- $-X_1,\ldots,X_n$ iid $\mathcal{B}er(p_1)$
- $-Y_1,\ldots,Y_n$ iid $\mathcal{B}er(p_2)$
- $-(X_1,\ldots,X_n)\perp(Y_1,\ldots,Y_n)$

Conditions

- Bernouilli
- Ech indépendant

Hypothèse

- $\begin{array}{l} \boldsymbol{-} & H_0 = p_1 = p_2 \\ \boldsymbol{-} & H_1 = p_1 \neq p_2 \text{ ou } p_1 < p_2 \text{ ou } p_1 > p_2 \end{array}$

Statistique de test

$$S_{n,m} = \frac{\bar{X}_n - \bar{Y}_n}{\sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}} + \frac{\bar{Y}_n(1 - \bar{Y}_n)}{n}}.$$

Zone de Rejet

$$\begin{array}{l} - \ \operatorname{Sous} \, H_0, S_{n,m} \to_{n,m \to +\infty}^{\mathcal{L}} \mathcal{N}(0,1) \\ - \ \operatorname{Sous} \, H_1 \end{array}$$

- Si
$$p_1 > p_2, S_{n,m} \to_{n,m\to\infty} +\infty$$

- Si
$$p_1 < p_2, S_{n,m} \rightarrow_{n,m \rightarrow \infty} +\infty$$

- Si
$$p_1 \neq p_2, S_{n,m} \rightarrow_{n,m \rightarrow \infty} +\infty$$

Donc

$$- H_1: p_1 > p_2, \mathcal{R} = \{S > h_{1-\alpha}\}\$$

$$- H_1: p_1 < p_2, \mathcal{R} = \{S > h_\alpha\}$$

-
$$H_1: p_1 \neq p_2, \mathcal{R} = \{S > h_{\alpha/2}\} \cup \{S > h_{1-\alpha/2}\}$$

Où les h_{α} sont des quantiles de la loi normale.

13 ANOVA

Donnée

 $\begin{array}{l} - \ X_1^{(1)}, \dots, X_{n_1}^{(1)} \ \text{va iid} \ \mathcal{N}(m, \sigma_1^2) \\ - \ X_1^{(2)}, \dots, X_{n_2}^{(2)} \ \text{va iid} \ \mathcal{N}(m, \sigma_2^2) \\ - \ X_1^{(K)}, \dots, X_{n_K}^{(K)} \ \text{va iid} \ \mathcal{N}(m, \sigma_K^2) \end{array}$

Conditions

- Échantillon gaussien indépendant de même variance
- On suppose de plus l'**homoscédasticité** : $\sigma_1^2 = \cdots = \sigma_K^2$
- K échantillons indépendants

Hypothèse

$$- H_0 = m_1 = \dots = m_k$$

$$- H_1 = \exists i, jtqm_i \neq m_j$$

Statistique de test

$$SCE_{intra}^{totale} = \sum_{p=1}^{K} SCE^{(p)}.$$

$$\bar{X} = \text{ moyenne totale } = \frac{1}{n} \sum_{p=1}^K n_p \bar{X}^{(p)}.$$

$$SCE_{inter} = \sum_{p=1}^{K} n_p (\bar{X}^{(p)} - \bar{X})^2.$$

Zone de Rejet

$$F = \frac{SCE_{inter}/(K-1)}{SCE_{intra}^{totale}/(n-K)}.$$

Sous $H_0: F \sim \mathcal{F}(K_1, n-K)$ Sous H_1, F prend de grande valeurs.

Méthode

Tout calculer jusqu'à la stat de test.

Si la loi de Fisher est trop grande. On se souvient que

$$\frac{\mathcal{X}^{2}(k)}{k} \to_{k \to +\infty} 1$$

$$\Rightarrow F = \frac{SCE_{inter}/(K-1)}{SCE_{intra}^{totale}/(n-K)} \to \frac{SCE_{inter}/(K-1)}{1}$$

$$= \mathcal{X}^{2}(K-1)/K-1$$

- Si on ne nous donne pas SCE directement on sait que

$$SCE^{(p)} = \sum_{i=1}^{n_p} (X_i^{(p)} - \bar{X}^{(p)})^2 = (n_p - 1)V^{(p)}.$$