Lista 5 de Álgebra Linear e Aplicações

14 de novembro de 2022

Exercício 1: Considere $V = \mathcal{P}(\mathbb{R})$ o espaço vetorial dos polinômios com coeficientes reais. Verifique se cada uma das funções $f: V \times V \to \mathbb{R}$ é um produto interno em V.

- (a) f(p(x), q(x)) = 0 para todos $p(x), q(x) \in V$.
- (b) f(p(x), q(x)) = p(0)q(0) para todos $p(x), q(x) \in V$.
- (c) f(p(x), q(x)) = 0 para todos $p(x), q(x) \in V$.
- (d) $f(p(x), q(x)) = \int_0^1 p(x)q(x)dx$ para todos $p(x), q(x) \in V$.

Exercício 2: Considere $U = \{(0, 2, 1, 0), (3, 2, 0, -1)\} \subset \mathbb{R}^4$. Encontre o conjunto dos vetores em \mathbb{R}^4 que são ortogonais a U.

Exercício 3: Considere o conjunto $\mathcal{P}_2(\mathbb{R})$ dos polinômios de grau 2, verifique que a função $p:\mathcal{P}_2(\mathbb{R})\times\mathcal{P}_2(\mathbb{R})\to\mathbb{R}$ dada por

$$p(f(x), g(x)) = f(-1)g(-1) + f(0)g(0) + f(1)g(1)$$

é um produto interno. Em seguida calcule o produto interno entre f(x) = x e $g(x) = x^2 - 1$.

Exercício 4: Verifique que toda norma $\|.\|$ que vem de um produto interno \langle , \rangle satisfaz a regra do paralelogramo

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2.$$

Em seguida verifique que a norma em \mathbb{R}^2 dada por

$$||(x,y)|| = \max\{|x|,|y|\}$$

não vem de um produto interno.

Exercício 5: Considere o subespaço $W = \{(x, y, z) \in \mathbb{R}^3; 2x + y - z = 0\}$ de \mathbb{R}^3 . Encontre uma base ortonormal para W.

Exercício 6: Seja V um espaço vetorial com uma norma $\|.\|$ que vem de um produto interno. Dizemos que $T:V\to V$ é uma isometria se

$$||T(u)|| = ||u||, u \in V.$$

Mostre que se T é uma isometria, então T é um isomorfismo.

Exercício 7: Prove o Teorema de Pitágoras em \mathbb{R}^n com relação a norma usual: Os vetores u, v são ortogonais se e somente se $||u+v||^2 = ||u||^2 + ||v||^2$.