Ommited Formulations in Column Generation Algorithm

Column Generation Algorithm 1

In our paper, the formal formulations of column generation algorithm is omitted. Here, we present the formal formulation of pattern generation and cutting stock formulation of RASA problem.

Pattern Generation Formulation 1.1

A pattern $p \in \mathbb{N}^N$ is a combination of service containers, which represents a feasible placement of containers on a machine (i.e., p_s is the number of containers that service s places on the machine). The formulation below generates one possible pattern of a machine m:

$$\max. \qquad \sum_{s \in \mathcal{S}} \hat{\pi}_s \cdot p_s + \sum_{(s,s') \in E} a_{s,s'} \tag{1}$$

s.t.
$$w_{s,s'} \cdot \frac{p_s}{d_s} \le a_{s,s'}, \quad \forall (s,s') \in E$$
 (2)

$$w_{s,s'} \cdot \frac{p_{s'}}{d_{s'}} \le a_{s,s'}, \qquad \forall (s,s') \in E$$
 (3)

$$w_{s,s'} \cdot \frac{p_s}{d_s} \le a_{s,s'}, \qquad \forall (s,s') \in E \qquad (2)$$

$$w_{s,s'} \cdot \frac{p_{s'}}{d_{s'}} \le a_{s,s'}, \qquad \forall (s,s') \in E \qquad (3)$$

$$\sum_{s \in S} p_s \cdot R_{r,s}^S \le R_{r,m}^M, \qquad \forall r \in \mathcal{R} \qquad (4)$$

$$\sum_{s \in A_k} p_s \le h_k, \qquad \forall A_k \in \mathcal{A} \qquad (5)$$

$$\sum_{s \in A_k} p_s \le h_k, \qquad \forall A_k \in \mathcal{A} \tag{5}$$

$$0 \le p_s \le b_{s,m} \cdot d_s, \qquad \forall s \in \mathcal{S}$$
 (6)

$$p_s \in \mathbb{N}, \qquad \forall s \in \mathcal{S}.$$
 (7)

Here, p_s 's and $a_{s,s'}$'s are the decision variables, $\hat{\pi}_s$'s are the optimal solution of the dual variables for constraints in the cutting stock formulation.

1.2 **Cutting Stock Formulation**

Given a pattern set \mathcal{P}_m of machine m, which consists of feasible patterns on machine m. Let $p^{(l)} = \left[p_1^{(l)}, p_2^{(l)}, \dots, p_N^{(l)}\right] \in \mathcal{P}_m$ be the l^{th} pattern of machine m, and $\sigma_{m,l}$ be the gained affinity of the pattern $p^{(l)}$. The formal cutting stock formulation of RASA is

max.
$$\sum_{m \in \mathcal{M}} \sum_{p^{(l)} \in \mathcal{P}_m} \sigma_{m,l} \cdot y_{m,l}$$
 (8)

s.t.
$$\sum_{m \in \mathcal{M}} \sum_{p^{(l)} \in \mathcal{P}_m} p_s^{(l)} \cdot y_{m,l} \le d_s, \qquad \forall s \in \mathcal{S} \qquad (9)$$
$$\sum_{p^{(l)} \in \mathcal{P}_m} y_{m,l} \le 1, \qquad \forall m \in \mathcal{M}. \qquad (10)$$

$$\sum_{p^{(l)} \in \mathcal{P}_m} y_{m,l} \le 1, \qquad \forall m \in \mathcal{M}.$$
 (10)