Probabilités de base - DM 1 - Corrigé

Vous trouverez à la fin des exercices des remarques abordant les difficultés les plus souvent rencontrées dans vos copies.

Exercice 1. Inverse de loi de Cauchy

La v.a. X est non nulle presque sûrement donc 1/X est bien définie p.s. Soit f borélienne positive sur \mathbb{R} :

$$\mathbb{E}f(1/X) = \int_{\mathbb{R}} f(1/x) \frac{1}{\pi} \frac{1}{1+x^2} dx = \int_{\mathbb{R}^*} f(1/x) \frac{1}{\pi} \frac{1}{1+x^2} dx.$$

On utilise le changement de variables pour l'intégrale de Lebesgue : l'application $\varphi : u \mapsto 1/u$ est \mathcal{C}^1 -difféomorphisme de \mathbb{R}_* dans lui-même dont le jacobien égal $u \mapsto -1/u^2$. On a donc

$$\int_{\mathbb{R}^*} f(1/x) \frac{1}{\pi} \frac{1}{1+x^2} \, dx = \int_{\mathbb{R}^*} f(u) \frac{1}{\pi} \frac{1}{1+(1/u)^2} \left| -\frac{1}{u^2} \right| du = \int_{\mathbb{R}^*} f(u) \frac{1}{\pi} \frac{1}{1+u^2} \, du.$$

La loi de 1/X est donc la loi de Cauchy (X et 1/X ont même loi!).

Remarque. Pour caractériser loi de 1/X, on peut aussi faire le calcul pour toute fonction borélienne bornée parce que la mesure que l'on cherche à caractériser est une mesure de probabilité. En toute généralité, il vaut mieux établir le résultat pour toute fonction borélienne positive.

Remarque. On peut aussi faire deux changements de variables "à la Riemann" sur $]-\infty,0[$ et $]0,+\infty[$ mais ça c'est plus long et peut-être moins élégant...

Exercice 2. Partie entière d'une v.a. exponentielle

La v.a. X est à valeurs dans \mathbb{R}_+ donc la v.a. Y = 1 + [X] est à valeurs dans \mathbb{N}^* . Soit $k \in \mathbb{N}^*$.

$$\mathbb{P}(Y = k) = \mathbb{P}(X \in [k-1, k[) = \int_{k-1}^{k} \alpha e^{-\alpha x} \, dx = e^{-(k-1)\alpha} - e^{-k\alpha} = (1 - e^{-\alpha})e^{-(k-1)\alpha}.$$

La loi de Y est donc la loi géométrique de paramètre $1 - e^{-\alpha}$.

Remarque. Pour déterminer la loi d'une variable aléatoire X discrète, le plus simple est souvent de travailler en deux temps :

- 1. Trouver un ensemble dénombrable A sur lequel X prend ses valeurs,
- 2. Pour chaque $x \in A$, trouver $\mathbb{P}(X = x)$.

Exercice 3. Convergence dominée

1. Pour tout $s \geq 0$, $\omega \mapsto u[sX(\omega)]$ est mesurable. On a d'autre part,

$$\sup_{s \ge 0} |u(sX)| = \sup_{s > 0} \frac{1}{1 + s|X|} \le 1. \tag{1}$$

La fonction constante égale à un est intégrable puisque nous travaillons sur un espace probabilisé. Remarquons, que pour ω fixé, la fonction $s \longmapsto u \left[sX(\omega) \right]$ est continue sur \mathbf{R}^+ et vérifie

$$\lim_{s \to +\infty} u[sX(\omega)] = \mathbf{1}_{\{0\}}(X(\omega)).$$

La majoration (1) permet d'appliquer les résultats de continuité et passage à la limite pour les intégrales à paramètres : la fonction θ est définie et continue sur \mathbf{R}^+ et on a

$$\lim_{s \to +\infty} \theta(s) = \mathbb{E} \left[\lim_{s \to +\infty} u(sX) \right] = \mathbb{P}(X = 0).$$

L'application – à ω fixé – $s \longmapsto u[sX(\omega)]$ est en fait de classe \mathcal{C}^1 sur $]0, +\infty[$ et on a

$$\forall s > 0, \qquad \frac{\partial}{\partial s} u[sX(\omega)] = -\frac{|X(\omega)|}{(1+s|X(\omega)|)^2}.$$

Remarquons, que pour tout a > 0,

$$\sup_{s \ge a} \left| \frac{\partial}{\partial s} u[sX(\omega)] \right| = \sup_{s \ge a} \frac{1}{s} \frac{s|X(\omega)|}{(1 + s|X(\omega)|)^2} \le \frac{1}{a}.$$

Le majorant précédent est intégrable : u est de classe \mathcal{C}^1 sur $[a, +\infty[$, pour tout a > 0 donc sur $]0, +\infty[$ et

$$\forall s > 0, \qquad \theta'(s) = \mathbb{E}\left[\frac{\partial}{\partial s}u(sX)\right] = -\mathbb{E}\left[\frac{|X|}{(1+s|X|)^2}\right].$$

2. On a, pour tout $s \geq 0$,

$$\theta(s) = \int_0^1 \frac{1}{1 + s(u - c)^+} du = c + \int_c^1 \frac{1}{1 + s(u - c)} du = c + \frac{1}{s} \ln\left[1 + s(1 - c)\right].$$

Par conséquent, $\theta(s) \longrightarrow c$ si $s \to +\infty$. Or $\mathbb{P}((U-c)^+ = 0) = \mathbb{P}(U \le c) = c$.

Remarque. Une espérance est une intégrale contre une mesure de masse 1. Les fonctions bornées sont donc intégrables par rapport à cette mesure...

Remarque. Une mesure de probabilité sur \mathbf{R} n'a pas toujours de densité par rapport à la mesure de Lebesgue et peut charger un point.

Remarque. La fonction $u \mapsto u^+$ est égale à la fonction $u \mapsto \max(u,0)$ donc, par exemple,

$$\int_0^1 \frac{1}{1 + s(u - c)^+} du = \int_0^c 1 du + \int_c^1 \frac{1}{1 + s(u - c)} du = \dots$$

Exercice 4. Somme aléatoire de v.a. aléatoires

Dans tout l'exercice, on utilise la convention $\sum_{l=1}^{0} u_l = 0$. Pour tout $t \in \mathbb{R}$,

$$\varphi_Y(t) = \mathbb{E}\left(e^{itY}\right) = \mathbb{E}\left(\sum_{k=0}^n \mathbf{1}_{\{N=k\}} e^{itY}\right) = \sum_{k=0}^n \mathbb{E}\left(\mathbf{1}_{\{N=k\}} e^{itY}\right),$$

par linéarité de l'espérance et intégrabilité des v.a. $\mathbf{1}_{\{N=k\}}e^{itY}$ (qui sont bornées). Pour $k=1,\ldots,n,$

$$\begin{split} \mathbb{E} \big(\mathbf{1}_{\{N=k\}} e^{itY} \big) &= \mathbb{E} \Big(\mathbf{1}_{\{N=k\}} e^{it(X_1 + \dots + X_k)} \Big) = \mathbb{E} \big(\mathbf{1}_{\{N=k\}} \big) \mathbb{E} \Big(e^{it(X_1 + \dots + X_k)} \Big) \\ &= \mathbb{P}(N=k) \prod_{l=1}^k \mathbb{E} \big(e^{itX_l} \big) = C_n^l p^l (1-p)^{n-l} \prod_{l=1}^k \mathbb{E} \big(e^{itX_l} \big), \end{split}$$

par indépendance des v.a. N, X_1, \ldots, X_n . De plus, les v.a. $(X_i)_{1 \le i \le n}$ sont identiquement distribuées donc

$$\prod_{l=1}^{k} \mathbb{E}(e^{itX_l}) = \left[\mathbb{E}(e^{itX_1})\right]^k = \varphi_{X_1}(t)^k.$$

Enfin, $\mathbb{E}(\mathbf{1}_{\{N=0\}}e^{itY}) = \mathbb{P}(N=0) = (1-p)^n$. On a donc, d'après la formule du binôme,

$$\varphi_Y(t) = (1-p)^n + \sum_{k=1}^n C_n^k p^k (1-p)^{n-k} \varphi_{X_1}(t)^k = (p\varphi_{X_1}(t) + 1 - p)^n.$$

Remarque. Les variables aléatoires e^{itX} ne sont pas positives!!! Par contre elles sont à valeurs complexes mais bornées.

Exercice 5. Variables aléatoires exponentielles indépendantes

1. Les v.a. X et Y sont à valeurs dans \mathbb{R}_+ . Il en est donc de même pour Z. Soit t > 0,

$$\mathbb{P}(Z>t)=\mathbb{P}(\min(X,Y)>t)=\mathbb{P}(X>t,\ Y>t)=\mathbb{P}(X>t)\mathbb{P}(Y>t).$$

De plus, pour t > 0,

$$\mathbb{P}(X > t) = \int_{t}^{+\infty} \lambda e^{-\lambda x} \, dx = e^{-\lambda t}.$$

Donc,

$$\mathbb{P}(Z > t) = e^{-(\lambda + \mu)t}$$
 et $F_Z(t) = (1 - e^{-(\lambda + \mu)t}) \mathbf{1}_{\{t > 0\}}$.

La loi de Z est donc la loi exponentielle de paramètre $\lambda + \mu$.

2. On a, d'après le théorème de Tonelli,

$$\mathbb{P}(Z=X) = \mathbb{P}(X \le Y) = \int_{\mathbb{R}^2_+} \mathbf{1}_{\{x \le y\}} \lambda e^{-\lambda x} \mu e^{-\mu y} \, dx \, dy$$
$$= \int_0^{+\infty} \left(\int_x^{+\infty} \mu e^{-\mu y} \, dy \right) \lambda e^{-\lambda x} \, dx = \int_0^{+\infty} \lambda e^{-(\lambda + \mu)x} \, dx = \frac{\lambda}{\lambda + \mu}.$$

3. Soit B un borélien de \mathbb{R} . Par le même raisonnement qu'à la question précédente,

$$\mathbb{P}(Z \in B, \mathbf{1}_{\{Z=X\}} = 1) = \mathbb{P}(X \in B, X \leq Y) = \int_{\mathbb{R}^{2}_{+}} \mathbf{1}_{B}(x) \mathbf{1}_{\{x \leq y\}} \lambda e^{-\lambda x} \mu e^{-\mu y} dx dy$$

$$= \int_{0}^{+\infty} \left(\int_{x}^{+\infty} \mu e^{-\mu y} dy \right) \mathbf{1}_{B}(x) \lambda e^{-\lambda x} dx = \int_{0}^{+\infty} \mathbf{1}_{B}(x) \lambda e^{-(\lambda + \mu)x} dx$$

$$= \frac{\lambda}{\lambda + \mu} \int_{0}^{+\infty} \mathbf{1}_{B}(x) (\lambda + \mu) e^{-(\lambda + \mu)x} dx = \mathbb{P}(\mathbf{1}_{\{Z=X\}} = 1) \mathbb{P}(Z \in B).$$

Les v.a. Z et $\mathbf{1}_{\{Z=X\}}$ sont donc indépendantes.