```
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier, RandomForestClassifier
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
models = [
     KNeighborsClassifier(), # 0
     DecisionTreeClassifier(), # 1
     BaggingClassifier(base_estimator=DecisionTreeClassifier()), # 2
     BaggingClassifier(base_estimator=KNeighborsClassifier()), # 3
     RandomForestClassifier(), # 4
names = [
    'KNeighborsClassifier',
    'DecisionTreeClassifier',
    'BaggingClassifier with base estimator= DecisionTreeClassifier',
    in classifier with base estimator= KNeighborsClassifier',
     'RandomForestClassifier
acc = [0, 0, 0, 0, 0]
for i, model in enumerate(models):
     model.fit(X_train, y_train)
fx_test = model.predict(X_test)
     accuracy = accuracy_score(y_test, fx_test)
     acc[i] = accuracy
for i, ac in enumerate(acc):
    print('{} Accuracy = {}'.format(names[i], ac))
index = acc.index(max(acc))
print('the best is {} with accuracy = {}'.format(names[index], acc[index]))
```

± 8	🕏 🗓 ର ୯		=	
Name 📤	Туре	Size	Value	
ac	float64	1	0.9666666666666667	
acc	list	5	[1.0, 0.966666666666667, 0.966666	
accuracy	float64	1	0.966666666666666	
fx_test	Array of int32	(30,)	[0 1 1 0 1 2]	
i	int	1	4	
index	int	1	0	
iris	utilsbunch.Bunch	8	Bunch object of sklearn.utilsbun	
model	ensembleforest.RandomForestClassifier	100	RandomForestClassifier object of s	
models	list	5	[KNeighborsClassifier, DecisionTre	
names	list	5	['KNeighborsClassifier', 'Decision	
X	Array of float64	(150, 4)	[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2]	

± 8	₽ 1		≡
Name 📤	Туре	Size	Value
index	int	1	0
iris	utilsbunch.Bunch	8	Bunch object of sklearn.utilsbun
model	ensembleforest.RandomForestClassifier	100	RandomForestClassifier object of s
models	list	5	[KNeighborsClassifier, DecisionTre
names	list	5	['KNeighborsClassifier', 'Decision
х	Array of float64	(150, 4)	[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2]
X_test	Array of float64	(30, 4)	[[5.8 4. 1.2 0.2] [5.1 2.5 3. 1.1]
X_train	Array of float64	(120, 4)	[[6.1 3. 4.6 1.4] [7.7 3. 6.1 2.3]
у	Array of int32	(150,)	[0 0 0 2 2 2]
y_test	Array of int32	(30,)	[0 1 1 0 1 2]
y_train	Array of int32	(120,)	[1 2 1 1 2 0]

Best Parameters of each algorithm Using the same code above for each algorithm while playing with parameters i obtained the following optimum parameters:

Algorithm	Parameters	Accuracy	note
KNN	n_neighbors < 7 (1,2,3,4,5 or 6) algorithm="auto", "ball_tree" or "kd_tree" (same result)	1.0	Increasing the n_neghbors reduces generalization so keeping it relatively low is better
Decision Tree Classifier	criterion="entropy" or "gini" splitter="random",min_sample s_split between 3 and 7 max_depth=6	Average of 0.98	Setting a fixed max- depth value enhanced this algorithm very well because it increased the generalization of the algorithm
Bagging Classifier with Decision Tree Classifier as the base estimator	base_estimator = DecisionTreeClassifier(criterio n="entropy", splitter="random", min_samples_split=28, max_depth=3), n_estimators=5	Average of 0.973	Increased min_samples_s plit so the algorithm better generalize a larger amount of data
Bagging Classifier with KNN as the base estimator	base_estimator = KNeighborsClassifier(algorith m="ball_tree",n_neighbors=3) n_estimators=5	1.0	Reduced n_neigbors as above
Random Forest Classifier	criterion="gini", min_samples_split=2, max_depth=5, n_estimators=10	0.967	The Random Forest Classifier achieved 96.7% accuracy on the iris dataset using the "gini" criterion, at least 2 replicate splits, a maximum depth of 5, and 10 predictors.

Applying the table optimum parameters again to the previous code

