Lecture 10 Wavelet Transform

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Outline

- Discrete Wavelet Transform (DWT) (小波变换)
 - An example for 1D-DWT
 - Generalization of 1D-DWT
 - 2D-DWT

Discrete Wavelet Transform (DWT)

- ➤ Based on small waves called Wavelets-1) limited; 2) oscillation.
- Key idea: Translation & Scaling.
- Localized both time/space and frequency.
- > Efficient for noise reduction and image compression.
- Two types of DWT one for image processing (easy invertible) and one for signal processing (invertible but computational expensive).

A simplest example

> We can decompose an eight-point signal x(n):

into two four-point signals:

$$c(n) = 0.5x(2n) + 0.5x(2n+1)$$

$$c(n) = 0.5x(2n) + 0.5x(2n+1)$$
 $d(n) = 0.5x(2n) - 0.5x(2n+1)$

A simplest example

> The above process can be represented by a block diagram:

$$x(n) \longrightarrow \begin{bmatrix} \mathsf{AVE/} & \longrightarrow c(n) \\ \mathsf{DIFF} & \longrightarrow d(n) \end{bmatrix}$$

This decomposition can be easily reversed:

$$y(2n) = c(n) + d(n)$$
$$y(2n+1) = c(n) - d(n)$$

Which is also represented by a block diagram:

$$\begin{array}{ccc} c(n) \longrightarrow & & \\ d(n) \longrightarrow & & \\ \end{array} \longrightarrow y(n)$$

A simplest example

When we repeat the simple AVE/DIFF signal decomposition:

The Haar wavelet representation of the eight-point signal x[n] is simply the set of four output signals produced by this three-

level operation :

$$c_3 = [4.5]$$
 $d_3 = [-0.25]$
 $d_2 = [-0.75, 1.75]$
 $d = [-0.5, 0, 0.5, 1]$

➤ When N=2 we have:

$$\mathbf{H}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

➤ When N=4 we have:

$$\mathbf{H}_4 = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{vmatrix}$$

➤ When N=8 we have

The family of N Haar functions $h_k(t)$, (k = 0, ..., N - 1) are defined on the interval $0 \le t \le 1$. The shape of the specific function $h_k(t)$ of a given index k depends on two parameters p and q:

$$k=2^p+q-1$$

																15
													3			
q	0	1	1	2	1	2	3	4	1	2	3	4	5	6	7	8

 \triangleright When k > 0, the Haar function is defined by:

$$h_k(t) = \frac{1}{\sqrt{N}} \begin{cases} 2^{p/2} & (q-1)/2^p \le t < (q-0.5)/2^p \\ -2^{p/2} & (q-0.5)/2^p \le t < q/2^p \\ 0 & \text{otherwise} \end{cases}$$

Generalization of 1D-DWT

Discrete Wavelet Transform (DWT):

$$W_{\varphi}(j_0, k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \, \varphi_{j_0, k}(n)$$

$$W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \, \psi_{j,k}(n) \quad j \ge j_0$$

Inverse Discrete Wavelet Transform (IDWT):

$$f(n) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_0, k) \, \varphi_{j_0, k}(n) + \frac{1}{\sqrt{M}} \sum_{j=j_0}^{\infty} \sum_{k} W_{\psi}(j, k) \, \psi_{j, k}(n)$$

Where

 $\varphi_{j_0,k}(n)$: scaling function (尺度函数) $\psi_{j,k}(n)$: Wavelet (小波)

 $W_{\varphi}(j_0,k)$: Approximation coefficients (近似系数) $W_{\psi}(j,k)$: detail coefficients (细节系数)

Define 2D wavelet function: Directionally sensitive wavelet

$$\psi^H(x,y) = \psi(x)\varphi(y)$$

$$\psi^{H}(x,y) = \psi(x)\varphi(y) \qquad \psi^{V}(x,y) = \varphi(x)\psi(y) \qquad \psi^{D}(x,y) = \psi(x)\psi(y)$$

2D-DWT

$$W_{\varphi}(j_0, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \, \varphi_{j_0, m, n}(x, y)$$

$$W_{\psi}(j,m,n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \, \psi_{j,m,n}^{i}(x,y) \qquad i = \{H,V,D\}$$

2D-IDWT

$$f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} W_{\varphi}(j_0, m, n) \, \varphi_{j_0, m, n}(x, y)$$

$$+\frac{1}{\sqrt{MN}}\sum_{i=\{H,V,D\}}\sum_{j=j_0}^{\infty}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}W_{\psi}(j,m,n)\,\psi_{j,m,n}^{i}(x,y)$$

Input: image size 8X8 I_{in}

Generate a Haar matrix of 8X8 as shown right

Then clip it into 4 part:

For computing *level 1*

components:

$$H_{L1}(dim = 4 * 8); H_{L2}(dim = 2 * 8); H_{L3}(dim = 1 * 8); L_{L3}(dim = 1 * 8);.$$

For computing *level 2* components:

LL_2 is down-sample of LL_1 on both X and Y direction	HL ₂ = H _{L2} * I _{in} + downsample twice on Y direction				
LH ₂ =I _{in} * H _{L2} + downsample twice on X direction	$HH_2=H_{L2}*I_{in}*H_{L2}$				

For computing *level 3* components:

	1	1	1	1	1	1	1	1	L_{L3}
	1	1	1	1	-1	-1	-1	-1	H_{L3}
	$\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	0	0	0	0	
	0	0	0	0	$\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	H_{L2}
3	2	-2	0	0	0	0	0	0	
	0	0	2	-2	0	0	0	0	u
	0	0	0	0	2	-2	0	0	H_{L1}
	0	0	0	0	0	0	2	-2	
	- / 0	_	_		_	,			_

LL_1 is down-sample of $m{I_{in}}$ on both X and Y direction	HL ₁ = H _{L1} ∗ I _{in} + downsample on Y direction
LH ₁ =I _{in} * H _{L1} + downsample on X direction	$HH_1=H_{L1}*I_{in}*H_{L1}$

LL_3 is down-sample of LL_2 on both X and Y direction	#L ₃ =H _{L3} *I _{in} + downsample 3 times on Y direction
LH ₃ =I _{in} * H _{L3} + downsample 3 times on X direction	$HH_3=H_{L3}*I_{in}*H_{L3}$

2D-DWT

Mother Wavelet (母小波)

- Mother Wavelet should satisfy:
 - $\int_{-\infty}^{\infty} |\psi(t)|^2 dt = 1$
 - $\int_{-\infty}^{\infty} |\psi(t)| dt < \infty$
 - $\int_{-\infty}^{\infty} \psi(t)dt = 0$

Meyer

Take home message

- Based on small waves calledWavelets-1) limited; 2) oscillation.
- Key idea: Translation & Scaling.
- Localized both time/space and frequency.
- Efficient for noise reduction and image compression.
- JPEG2000, FBI finger printing databased.

