Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по лабораторной работе № 8 по дисциплине: Математическая статика.

Выполнила студентка: Заболотских Екатерина Дмитриевна группа: 3630102/70301

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Оглавление

Постановка задачи	
Теория	
Интервальное оценивание	
Классическое оценивание	
Для математического ожидания т	
Для среднего квадратичного отклонения о	
Асимптотически нормальные оценки	5
Для математического ожидания т	
Для среднего квадратичного отклонения σ	
Реализация	7
Результаты	8
Классические оценки	8
Асимптотически нормальные оценки	8
Обсуждение	
Список литературы	10
Список таблиц	
Таблица 1: Классические оценки	8
Таблица 2: Асимптотически нормальные оценки	8

Постановка задачи

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1) для параметров положения масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве надёжности взять $\gamma=0.95$.

Теория

Интервальное оценивание

Интервальной оценкой (доверительным интервалом) числовой характеристики или параметра распределения θ генеральной совокупности с доверительной вероятностью γ называется интервал (θ_1, θ_2), границы которого являются случайными функциями $\theta_1 = \theta_1(x_1, ... x_n)$, который покрывает θ с вероятностью γ :

$$P(\theta_1 < \theta < \theta_2) = \gamma \tag{1}$$

Часто вместо доверительной вероятности γ рассматривается уровень значимости $\alpha = 1 - \gamma$. Важной характеристикой данной интервальной оценки является половина длины доверительного интервала, она называется точностью интервального оценивания.

$$\Delta = \frac{\theta_1 - \theta_2}{2} \tag{2}$$

Общий вид интервальных оценок:

Пусть известна статистика $Y(\hat{\theta}, \theta)$, содержащая оцениваемый параметр θ и его точечную оценку $\hat{\theta}$. Функция $Y(\hat{\theta}, \theta)$ непрерывна и строго монотонна (для определенности строго возрастает) по θ . Известна функция распределения $F_V(x)$, и она зависит от θ .

Зададим уровень значимости α и будем строить доверительный интервал так, чтобы $(-\infty$, $\alpha_1)$, (α_2,∞) накрывали θ с вероятностью $\frac{\alpha}{2}$.

Пусть $y_{\alpha/2}$, $y_{1-\alpha/2}$ – квантили распределения Y соответствующих порядков, тогда:

$$P(y_{\alpha/2} < Y(\hat{\theta}, \theta) < y_{1-\alpha/2}) = F_Y(y_{1-\alpha/2}) - F_Y(y_{\alpha/2})$$

= 1-\alpha/2 - \alpha/2 = 1 - \alpha = \gamma

Так как $Y(\hat{\theta}, \theta)$ строго возрастает по θ , то у нее есть обратная функция $Y^{-1}(y)$. Она в свою очередь строго возрастает и тоже зависит от θ , следовательно:

$$y_{\alpha/2} < Y(\hat{\theta}, \theta) < y_{1-\alpha/2}$$

 $Y^{-1}(y_{\alpha/2}) < \theta < Y^{-1}(y_{1-\alpha/2})$ (4)

Получаем границы интервала: $\theta_1 = Y^{-1}(y_{\alpha/2}), \theta_2 = Y^{-1}(y_{1-\alpha/2}).$

Классическое оценивание

Для математического ожидания т

Доказано, что случайная величина

$$T = \sqrt{n-1} * \frac{\overline{x} - m}{s} \tag{5}$$

называется статистикой Стьюдента, распределена по закону Стьюдента с n-1 степенями свободы. После некоторых выкладок имеем оценки границ интервала:

$$m_{1} = \bar{x} - \frac{xt_{1-\alpha/2}(n-1)}{\sqrt{n-1}}$$

$$m_{2} = \bar{x} + \frac{xt_{1-\alpha/2}(n-1)}{\sqrt{n-1}}$$
(6)

, где $t_{1-\alpha/2}(n-1)$ – квантиль порядка $1-\alpha/2$ распределения Стьюдента с n-1 степенями свободы.

Δ ля среднего квадратичного отклонения σ

Доказано, что случайная величина $ns^2/_{\sigma^2}$ распределена по закону χ^2 с n – 1 степенями свободы. Применяя общий метод построения интервальных оценок, получаем оценки границ интервала:

$$\sigma_{1} = \frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^{2}(n-1)}}$$

$$\sigma_{2} = \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^{2}(n-1)}}$$
(7)

, где $\chi^2_{1-\alpha/2}(n-1)$, $\chi^2_{\alpha/2}(n-1)$ — квантили соответствующих порядков χ^2 -распределения с n — 1 степенями свободы.

Асимптотически нормальные оценки

Для математического ожидания т

В силу центральной предельной теоремы, центрированная и нормированная случайная величина $\sqrt{n}(\bar{x}-m)/_{\sigma}$ распределена приблизительно нормально с параметрами 0 и 1. Исходя из этого получаем:

$$m_1 = \bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}}$$

$$m_2 = \bar{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}$$
(8)

, где $u_{1-lpha/2}$ – квантиль нормального распределения $\mathcal{N}(0,1)$ порядка 1-lpha/2

Δ ля среднего квадратичного отклонения σ

Аналогично, в силу ЦПТ, центрированная и нормированная случайная величина $(s^2-M_{s^2})/\sqrt{D_{s^2}}$ при большом объеме выборки распределена приблизительно нормально с параметрами 0 и 1. Исходя из этого получаем оценку:

$$\sigma_{1} = s \left(1 + u_{1-\alpha/2} \sqrt{(e+2)/n} \right)^{-1/2}$$

$$\sigma_{2} = s \left(1 - u_{1-\alpha/2} \sqrt{(e+2)/n} \right)^{-1/2}$$
(9)

, где е – выборочный эксцесс, определяемый по формуле:

$$e = \frac{m_4}{s^4} - 3 \tag{10}$$

, где m_4 – четвертый выборочный центральный момент, определяемый по формуле:

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{s})^4 \tag{11}$$

Реализация

Код программы, реализующий данную задачу, был написан на языке Python в интегрированной среде разработке PyCharm.

Были использованы библиотеки:

• SciPy – модуль "stats" для генерации данных, и встроенных вычислений.

Результаты

Классические оценки

	m (6)	σ (7)
n= 20	-0.57 < m < 0.25	$0.67 < \sigma < 1.28$
n = 100	-0.12 < m < 0.27	$0.86 < \sigma < 1.14$

Таблица 1: Классические оценки

Асимптотически нормальные оценки

	m (8)	σ (9)
n= 20	$-0.54 \le m \le 0.21$	$0.69 < \sigma < 1.23$
n = 100	-0.12 < m < 0.27	$0.86 < \sigma < 1.14$

Таблица 2: Асимптотически нормальные оценки

Обсуждение

Результаты показывают, что значения m=0, $\sigma=1$ лежат в соответствующих интервалах с вероятностью 0.95. Интервалы действительно накрывают значения параметров, причем при увеличении п асимптотические оценки почти совпадают с классическими.

Список литературы

- 1. Конспекты лекции
- 2. Википедия: https://ru.wikipedia.org/wiki

Ссылка на github: https://github.com/KateZabolotskih/MathStatLabs