LECTURE 4: BAYESIAN ANALYSIS

CHRIS CONLON

NYU STERN

FEBRUARY 24, 2019

Introduction

- Suppose that we toss a coin several times with $x_i \in \{H, T\} = \{1, 0\}$
- \blacksquare **X** = {*H*, *T*, *H*, *H*, ...}.
- Suppose that the probability of heads $Pr(x_i = H) = p$.
- What is the likelihood of an observed sequence of **X**? where x_i are I.I.D.

$$Pr(x_i|p) = p^{x_i} (1-p)^{1-x_i}$$

$$Pr(\mathbf{X}|p) = p^{\sum_i x_i} (1-p)^{\sum_i (1-x_i)}$$

Introduction: MLE for coin toss

■ Can construct the log likelihood

$$\ell(\mathbf{X}|p) = \left(\sum_{i} x_{i}\right) \ln p + \left(N - \sum_{i} x_{i}\right) \ln(1 - p)$$

$$\frac{\partial \ell(p)}{\partial p} = \left(\sum_{i} x_{i}\right) \frac{1}{p} - \left(N - \sum_{i} x_{i}\right) \frac{1}{1 - p} = 0$$

$$\frac{1 - p}{p} = \frac{\left(\frac{1}{N} \cdot N - \frac{1}{N} \cdot \sum_{i} x_{i}\right)}{\frac{1}{N} \cdot \sum_{i} x_{i}} \rightarrow \hat{p} = \frac{1}{N} \cdot \sum_{i} x_{i}$$

