Лекционни записки по Математически Анализ

проф. Надежда Рибарска Набрани от Никола Юруков

6 ноември 2015 г.

Съдържание

1 Лекция 1 - преговор с разширение		
	1.1 Евклидовото пространство \mathbb{R}^n	3
	1.2 Топология в \mathbb{R}^n	4
	1.3 Основни теореми	7
2	Лекция 2. Кратен Риманов интеграл - въвеждане и основни свойства 2.1 Паралелотопи в \mathbb{R}^n и тяхната мярка	
3	Множества, пренебре	13

1 Лекция 1 - преговор с разширение

1.1 Евклидовото пространство \mathbb{R}^n

Като множество \mathbb{R}^n е множеството $\{x=(x_1,x_2,...,x_n): x_i\in\mathbb{R},\ i=1,2,..,n\}$ от нередените n-торки реални числа. Ако го снабдим със стандартните линейни операции събиране на вектори и умножение на вектор с реално число, получаваме реално линейно пространство (спомнете си аксиомите от курса по линейна алгебра). Да напомним формалните дефиниции: сума на векторите $x=(x_1,x_2,...,x_n)$ и $y=(y_1,y_2,...,y_n)$ е векторът $x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)$ (събирането е покоординатно). Произведение на скалара $\lambda\in\mathbb{R}$ с вектора x е векторът $\lambda x=(\lambda x_1,\lambda x_2,...,\lambda x_n)$ (умножението със скалар също е покоординатно). Ще означаваме с $\mathbf{0}$ нулевия вектор $(0,\ldots,0)$.

За да можем да правим анализ (да говорим за граница, непрекъснатост, производна и т.н.), освен линейната структура ни е необходима и някаква "мярка на близост"в нашето пространство. Както помните от курса по ДИС2, стандартната мярка на близост между два вектора е евклидовото разстояние между тях:

$$\rho(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}, \text{ където } x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n).$$

Забележете, че в \mathbb{R}^2 това е просто питагоровата теорема. Това разстояние е добре съгласувано с линейната структура в смисъл, че $\rho(x,y) = \|x-y\|$, където в дясната част стои евклидовата норма (или дължината) на вектора x-y:

$$||x|| := \sqrt{\sum_{i=1}^{n} x_i^2}, \ x = (x_1, x_2, ..., x_n).$$

Да напомним, че една функция $\|\cdot\|:\mathbb{R}^n\longrightarrow [0,+\infty)$ се нарича норма, ако за нея са в сила свойствата

- 1. $||x|| = 0 \iff x = \mathbf{0}$
- $2. \|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. ||x+y|| < ||x|| + ||y|| (неравенство на триъгълника)

В курса по ДИС2 е проверено, че евклидовата норма е норма. За упражнение проверете, че

- $\|(x_1,x_2)\|_1 = |x_1| + |x_2|$
- $||(x_1, x_2)||_{\infty} = \max\{|x_1|, |x_2|\}$
- $||(x_1, x_2)||_p = \sqrt[p]{|x_1|^p + |x_2|^p}, 1$

са норми в \mathbb{R}^2 . По-общо, проверете, че

$$\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$
 , $1 \le p < \infty$ е норма в \mathbb{R}^n .

Разбира се, за целта трябва да използвате неравенството на Минковски от курса по ДИС2.

Евклидовата норма има по-хубави геометрични свойства от горните примери, защото е съгласувана със скаларното произведение

$$\langle x,y \rangle = \sum_{i=1}^n x_i y_i$$
 , където $x = (x_1,x_2,...,x_n)$ и $y = (y_1,y_2,...,y_n),$

по стандартния начин $\|x\| = \sqrt{\langle x, x \rangle}$. Да напомним основното неравенство на Коши-Буняковски-Шварц:

$$|\langle x, y \rangle| \le ||x|| ||y||$$
.

Да напомним също означенията

$$B_r(x) := \{ y \in \mathbb{R}^n : ||y - x|| < r \}$$

за отворено кълбо с център x и радиус r и

$$\overline{B}_r(x) := \{ y \in \mathbb{R}^n : ||y - x|| \le r \}$$

за затворено кълбо с център x и радиус r. Като упражнение можете да скицирате кълбата с радиус 1 и център началото на координатната система за нормите $\|\cdot\|_1$ и $\|\cdot\|_\infty$ от предишното упражнение.

1.2 Топология в \mathbb{R}^n

Дефиниция 1.1. Подмножеството U на \mathbb{R}^n се нарича отворено, ако за всяка точка x от U съществува $\varepsilon>0$ такова, че $B_{\varepsilon}(x)\subset U$.

Основните свойства на отворените множества, проверени в курса по ДИС2, са

- 1. \emptyset и \mathbb{R}^n са отворени
- 2. Сечение на краен брой отворени множества е отворено, т.е. ако $U_1, U_2, ..., U_k$ са отворени, то $\bigcap_{i=1}^k U_i$ е отворено.
- 3. Обединение на произволна фамилия от отворени множества е отворено, т.е. ако U_{α} са отворени за всяко $\alpha \in I$, то $\bigcup_{\alpha \in I} U_{\alpha}$ е отворено.

Пример 1.2. Отворените кълба са отворени множества.

Доказателство. Да разгледаме $B_r(x_0)$, r>0. Взимаме си произволно x от кълбото, т.е. растоянието между x и x_0 е по-малко от r. Нека $\varepsilon:=r-\|x_0-x\|>0$. Тогава $B_\varepsilon(x)\subset B_r(x_0)$. Наистина, нека $y\in B_\varepsilon(x)$, т.е. $\|y-x\|<\varepsilon$. Получаваме

$$||x_0 - y|| \le ||x - y|| + ||x - x_0|| < \varepsilon + ||x - x_0||$$

 $||x_0 - y|| < r - ||x_0 - x|| + ||x - x_0||$
 $||x_0 - y|| < r$

Пример 1.3. Нека функцията $g: \mathbb{R}^n \to \mathbb{R}$ е **непрекъсната**. Тогава множеството $U = \{x \in \mathbb{R}^n : g(x) > 0\}$ е отворено.

Доказателство. Взимаме произволна точка $x_0 \in U$, следователно $\varepsilon = g(x_0) > 0$. От непрекъснатостта на функцията получаваме, че съществува положително число δ такова, че $|g(x) - g(x_0)| < \varepsilon$ за всяко $x \in B_\delta(x_0)$. Следователно $g(x) > g(x_0) - \varepsilon = 0$ и оттук $x \in U$ за всяко $x \in B_\delta(x_0)$.

Дефиниция 1.4. Едно подмножество F на \mathbb{R}^n се нарича затворено, ако $\mathbb{R}^n \setminus F$ е отворено множество.

Основните свойства на затворените множества, проверени в курса по ДИС2, са

- 1. \emptyset , \mathbb{R}^n са затворени.
- 2. Обединие на краен брой затворени множества е затворено, т.е. ако $F_1, F_2, ..., F_k$ са затворени, то $\bigcup_{i=1}^k F_i$ е затворено.
- 3. Сечение на произволна фамилия от затворени множества е затворено, т.е. ако F_{α} са затворени за всички $\alpha \in I$, то $\bigcap_{\alpha \in I} F_{\alpha}$ е затворено.

Пример 1.5. Затворените кълба са затворени множества. Доказателството оставяме за упражнение.

Дефиниция 1.6. Контур на множеството $A \subset \mathbb{R}^n$ наричаме множеството

$$\partial A := \{x \in \mathbb{R}^n : \forall U \text{ отворено}, \ x \in U \text{ е в сила } U \cap A \neq \emptyset \text{ и } U \setminus A \neq \emptyset \}$$

Дефиниция 1.7. Затворена обвивка на множеството $A \subset \mathbb{R}^n$ наричаме най-малкото затворено множество, съдържащо A:

$$\overline{A} := \bigcap \{ F \subset \mathbb{R}^n : F \supset A \text{ и } F \text{ е затворено } \}$$

В курса по ДИС2 е доказано, че

$$\overline{A} = \{x \in \mathbb{R}^n : \exists \{x_m\}_{m=1}^{\infty} \subset A, \ x_m \to x\}$$

Лесно се проверява, че едно множество е затворено точно тогава, когато съвпада със затворената си обвивка. Връзките между контур на множество и затворена обвивка на множество са

$$\overline{A} = A \cup \partial A \ , \ \partial A = \overline{A} \cap \left(\overline{\mathbb{R}^n \setminus A}\right) \ .$$

Следователно контурът на произволно множество е винаги затворено множество. Също лесно се проверява, че

$$\partial A = \{ x \in \mathbb{R}^n : \exists \{ x_m \}_{m=1}^{\infty} \subset A, \ x_m \to x \text{ if } \exists \{ y_m \}_{m=1}^{\infty} \subset \mathbb{R}^n \setminus A, \ y_m \to x \}$$

Дефиниция 1.8. Вътрешност на $A \subset \mathbb{R}^n$ наричаме най-голямото отворено множество, съдържащо се в A:

$$\mathring{A} = \bigcup \{U \subset \mathbb{R}^n : \ U \subset A$$
 и U е отворено $\}$

Друго означение за вътрешност на A е int A. Понятието за вътрешност е дуално на понятието за затворена обвивка, т.е.

$$intA = \mathbb{R}^n \setminus \left(\overline{\mathbb{R}^n \setminus A}\right) , \overline{A} = \mathbb{R}^n \setminus (int(\mathbb{R}^n \setminus A)) .$$

Едно от най-важните и често използвани понятия в топологията е понятието за компактност.

Дефиниция 1.9. Едно множество $A \subset \mathbb{R}^n$ се нарича компакт, ако от всяко негово отворено покритие можем да изберем крайно подпокритие, т.е. ако $\{U_{\alpha}\}_{\alpha \in I}$ е фамилия от отворени подмножества на \mathbb{R}^n , за която е в сила $\bigcup_{\alpha \in I} U_{\alpha} \supset A$, то можем да изберем краен брой индекси $\alpha_1, \alpha_2, \ldots, \alpha_k \in I$ такива, че $\bigcup_{i=1}^k U_{\alpha_i} \supset A$.

В курса по ДИС2 са доказани две важни и нетривиални характеризации на компактните полмножества на \mathbb{R}^n :

- 1. Едно подмножество A на \mathbb{R}^n е компакт точно тогава, когато A е ограничено и затворено.
- 2. Едно подмножество A на \mathbb{R}^n е компакт точно тогава, когато от всяка редица от негови елементи може да се избере сходяща подредица, чиято граница е също в множеството.

Сега въвеждаме първото разширение, т.е. понятие, за което не сте учили в курса по ДИС2: множество, релативно отворено в A. Ще го използваме по-нататък, за да говорим за множества, релативно отворени в някаква гладка двумерна повърхнина в тримерното евклидово пространство. Интуицията е, че забравяме за всичко извън множеството A.

Дефиниция 1.10. Нека $A \subset \mathbb{R}^n$. Едно подмножество U на A наричаме релативно отворено в A, ако съществува отворено множество $V \subset \mathbb{R}^n$ такова, че $U = A \cap V$.

Твърдение 1.11. Множеството $U \subset A$ е релативно отворено в A точно тогава, когато за всяка негова точка $x \in U$ съществува $\varepsilon > 0$ такова, че $B_{\varepsilon}(x) \cap A \subset U$.

Доказателство. Нека първо $U \subset A$ е релативно отворено в A и $x \in U$ е произволна. Тогава съществува отворено множество $V \subset \mathbb{R}^n$ с $U = A \cap V$. Тъй като $x \in U \subset V$, съществува $\varepsilon > 0$ с $B_{\varepsilon}(x) \subset V$ и оттук $B_{\varepsilon}(x) \cap A \subset V \cap A = U$. В обратната посока, нека за всяка точка $x \in U$ съществува $\varepsilon_x > 0$ такова, че $B_{\varepsilon_x}(x) \cap A \subset U$. Полагаме $V := \bigcup_{x \in U} B_{\varepsilon_x}(x)$. Очевидно V е отворено множество като обединение на отворени кълбета. Освен това

$$V \cap A = (\bigcup_{x \in U} B_{\varepsilon_x}(x)) \cap A = \bigcup_{x \in U} (B_{\varepsilon_x}(x) \cap A) \subset U$$
.

От друга страна, всяка точка $x \in U$ принадлежи на $B_{\varepsilon_x}(x) \subset V$, следователно $U \subset V$ и от $U \subset A$ следва $U \subset V \cap A$. С това $U = V \cap A$ и доказателството е завършено.

Следното приложение на понятието за релативна отвореност е важно и изключително често използвано:

Твърдение 1.12. Нека $f: D \longrightarrow \mathbb{R}^m$ е изображение с дефиниционна област $D \subset \mathbb{R}^n$ и стойности в \mathbb{R}^m . Твърдим, че f е непрекъсната в D точно тогава когато първообраз на всяко отворено в \mathbb{R}^m множество е релативно отворено в D. Да напомним, че първообраз на $U \subset \mathbb{R}^m$ е множеството $f^{-1}(U) := \{x \in D : f(x) \in U\}$.

Доказателство. Първо ще докажем, че ако първообраз на всяко отворено в \mathbb{R}^m множество е релативно отворено в D, то f е непрекъсната. Избираме произволна точка x от D и произволно $\varepsilon > 0$. Тъй като кълбото $B_{\varepsilon}(f(x))$ е отворено в \mathbb{R}^m , първообразът $f^{-1}(B_{\varepsilon}(f(x)))$ ще е релативно отворен в D. Тогава $f^{-1}(B_{\varepsilon}(f(x))) = D \cap V$ за някое множество V, отворено в \mathbb{R}^n . Тъй като $x \in f^{-1}(B_{\varepsilon}(f(x))) \subset V$, съществува $\delta > 0$ с $B_{\delta}(x) \subset V$. Нека $x' \in D$ е произволна точка с $\|x' - x\| < \delta$. Значи $x' \in D \cap B_{\delta}(x) \subset D \cap V = f^{-1}(B_{\varepsilon}(f(x)))$ и следователно $f(x') \in B_{\varepsilon}(f(x))$, т.е. $\|f(x') - f(x)\| < \varepsilon$.

За да докажем обратната посока, избираме произволно отворено $U \subset \mathbb{R}^m$. Нека $x \in f^{-1}(U)$. Тогава f(x) принадлежи на отвореното множество U и следователно съществува $\varepsilon > 0$ такова, че $B_{\varepsilon}(f(x)) \subset U$. Тъй като f е непрекъсната в x, съществува $\delta > 0$ такова, че $\|f(x')-f(x)\| < \varepsilon$ за всяко $x' \in D$, за което $\|x'-x\| < \delta$. Записано по друг начин това означава, че $f(B_{\delta}(x) \cap D) \subset B_{\varepsilon}(f(x)) \subset U$, следователно $B_{\delta}(x) \cap D \subset f^{-1}(U)$. Така доказахме, че множеството $f^{-1}(U)$ е релативно отворено в D, защото изпълнява условието от предишното твърдение.

1.3 Основни теореми

Теорема 1.13 (Теорема на Вайершрас). Непрекъснат образ на компакт е компакт. Формално записано, ако $f: K \longrightarrow \mathbb{R}^m$ е непрекъснато изображение с дефиниционна област компактното подмножество K на \mathbb{R}^n , то множеството $f(K) := \{f(x) : x \in K\}$ от стойностите на f е компактно подмножество на \mathbb{R}^m .

Доказателство. Нека $\{y_l\}_{l=1}^{\infty} \subset f(K)$ е редица от елементи на f(K). Тогава за всеки елемент y_l на тази редица съществува елемент x_l на K такъв, че $y_l = f(x_l)$. Сега редицата $\{x_l\}_{l=1}^{\infty}$ се съдържа в компактното множество K. Следователно съществува нейна сходяща подредица $\{x_{l_k}\}_{k=1}^{\infty}$, чиято граница x_0 е елемент на K. Тъй като f е непрекъсната, от дефиницията на Хайне за непрекъснатост получаваме, че $f(x_{l_k}) = y_{l_k} \xrightarrow[k \to \infty]{} f(x_0)$. Тъй като очевидно $f(x_0) \in f(K)$, остава да се позовем на характеризацията (2) на компактните множества.

Хубаво упражнение е да се докаже теоремата на Вайерщрас, като се използва дефиницията на компакт и характеризацията на непрекъснатите изображения, която доказахме.

Друго добро упражнение е да се убедите, че теоремата на Вайерщрас от ДИС 1 (една непрекъсната функция върху краен затворен интервал е ограничена и достига своята найголяма и най-малка стойност) е следствие от тази форма на теоремата.

Теорема 1.14 (Теорема на Кантор). Нека $f: D \longrightarrow \mathbb{R}^m$ е дефинирана в $D \subset \mathbb{R}^n$. Нека K е компактно подмножество на D. Ако f е непрекъсната в K, т.е. непрекъсната е във всяка точка от K, то твърдим, че за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяко $x \in K$ и за всички $x' \in D$, за които е изпълнено $\|x' - x\| < \delta$, е в сила $\|f(x) - f(x')\| < \varepsilon$. Забележете, че заключението е малко по-силно от равномерна непрекъснатост на f върху K.

Доказателство. Отново ще използваме характеризацията (2) на компактността чрез редици. Допускаме противното, т.е. съществува такова $\varepsilon_0 > 0$, че за всички $\delta > 0$ съществуват точки $x_\delta \in K$ и $x_\delta' \in D$ такива, че

$$||x_{\delta} - x_{\delta}'|| < \delta$$
 и $||f(x_{\delta}) - f(x_{\delta}')|| \ge \varepsilon$.

Даваме на δ стойности $1, \frac{1}{2}, \frac{1}{3}, \dots$ и преименуваме $x_{1/m}$ и $x'_{1/m}$ съответно на x_m и x'_m . Така се образуват две редици $\{x_m\}_{m=1}^{\infty} \subset K$ и $\{x'_m\}_{m=1}^{\infty} \subset D$. Знаем, че

$$||x_m - x_m'|| < \frac{1}{m} \text{ if } ||f(x_m) - f(x_m')|| \ge \varepsilon_0 > 0$$

за всяко естествено m. Тъй като K е компакт, съществува сходяща подредица $x_{m_k} \xrightarrow[k \to \infty]{} x_0 \in K$ на $\{x_m\}_{m=1}^{\infty} \subset K$. От неравенствата

$$||x'_{m_k} - x_0|| \le ||x'_{m_k} - x_{m_k}|| + ||x_{m_k} - x_0|| < \frac{1}{m_k} + ||x_{m_k} - x_0||$$

получаваме, че редицата $\{x'_{m_k}\}_{k=1}^\infty$ също клони към точката $x_0 \in K$. Сега използваме непрекъснатостта на f в точката $x_0 \in K$ и получаваме, че

$$f(x_{m_k}) \xrightarrow[k\to\infty]{} f(x_0)$$
 и $f(x'_{m_k}) \xrightarrow[k\to\infty]{} f(x_0)$.

Като извадим тези две редици, получаваме $f(x_{m_k}) - f(x'_{m_k}) \xrightarrow[k \to \infty]{} 0$, което противоречи на $||f(x_m) - f(x'_m)|| \ge \varepsilon_0 > 0$ за всяко естествено m. Теоремата е доказана.

2 Лекция 2. Кратен Риманов интеграл - въвеждане и основни свойства

Конструкцията на Дарбу, с която сте въвели Риманов интеграл в курса по ДИС1, е важна и естествена и ние ще я използваме отново, за да въведем *п*-кратен Риманов интеграл. Геометричната интуиция остава същата. В курса по ДИС1 сте искали да дефинирате по един разумен начин лицето на фигура, заградена от абцисата, две вертикални прави и графиката на ограничена неотрицателна функция. Постигнали сте го чрез оценяване отгоре и отдолу на това лице чрез лицата на стъпаловидни фигури, съставени от краен брой правоъгълници (тези лица са големите и малките суми на Дарбу). Сега за *n*=2 трябва да оценяваме отгоре и отдолу обема на тяло, заградено от равнината на първите две координатни оси, вертикални равнини по границата на даден правоъгълник и графиката на ограничена неотрицателна функция, дефинирана в този правоъгълник. Оценката е чрез обема на тела, състоящи се от краен брой паралелепипеди (за оценка отгоре вземаме обема на такова стъпаловидно тяло, съдържащо нашето, а за оценка отдолу - съдържащо се в нашето). За по-големи размерности идеята и конструкцията остават същите, само че вече не можем да нарисуваме подходяща картинка.

2.1 Паралелотопи в \mathbb{R}^n и тяхната мярка

Първият въпрос, който трябва да решим, е с какво заменяме крайния и затворен интервал от ДИС1, ако размерността е по-голяма от едно. Естественият отговор е: с правоъгълник в равнината, с паралелепипед в тримерното пространство и т.н.

Дефиниция 2.1. Паралелотоп (на английски interval, box) е множество в \mathbb{R}^n , за което всяка координата се мени (независимо от останалите) в краен затворен интервал:

$$\Delta := \{x \in \mathbb{R}^n : a_i < x_i < b_i, i = 1, 2, ...n\}$$
.

За различните размерности (стойности на n) имаме

n	Δ
1	$[a_1,b_1]$ интервал
2	$[a_1,b_1] imes[a_2,b_2]$ правоъгълник
3	$[a_1,b_1] imes[a_2,b_2] imes[a_3,b_3]$ паралелепипед

.. ...

Същественото за тези най-прости фигури е, че нямаме съмнения какво трябва да наречем дължина на интервал, лице на правоъгълник, обем на паралелепипед, а за паралелотоп в \mathbb{R}^n естествено въвеждаме мярка в \mathbb{R}^n .

Дефиниция 2.2. За паралелотопа $\Delta = \{x \in \mathbb{R}^n : a_i \leq x_i \leq b_i, i = 1, 2, ...n\}$ дефинираме неговата n-мерна мярка като

$$\mu_n(\Delta) := \prod_{i=1}^n (b_i - a_i) .$$

Забележете, че при n=1 това е дължината $\mu_1([a_1,b_1])=b_1-a_1$ на интервала $[a_1,b_1]$, при n=2 това е лицето $\mu_2([a_1,b_1]\times[a_2,b_2])=(b_1-a_1)(b_2-a_2)$ на правоъгълника $[a_1,b_1]\times[a_2,b_2]$, при n=3 това е обемът $\mu_3([a_1,b_1]\times[a_2,b_2]\times[a_3,b_3])=(b_1-a_1)(b_2-a_2)(b_3-a_3)$ на паралеленинеда $[a_1,b_1]\times[a_2,b_2]\times[a_3,b_3]$.

Следващият етап е да уточним как да разделяме паралелотоп на паралелотопчета по аналогия с разделянето на интервал на подинтервали от ДИС1. Неформално, подразделяне на паралелотоп са краен брой паралелотопи, чието обединение е първоначалният паралелотоп, и които не се припокриват.

Дефиниция 2.3. Подразделение Π на един паралелотоп Δ е крайно множество от паралелотопи $\Pi = \{\Delta_k\}_{k=1}^{k_0}$, за което $\bigcup_{k=1}^{k_0} \Delta_k = \Delta$ и $\mathring{\Delta}_k \cap \mathring{\Delta}_l = \emptyset \ \forall k \neq l$.

Забележете, че вътрешността на паралелотопа $\Delta = \{x \in \mathbb{R}^n : a_i \leq x_i \leq b_i, i = 1, 2, ...n\}$ е множеството $\mathring{\Delta} = \{x \in \mathbb{R}^n : a_i < x_i < b_i, i = 1, 2, ...n\}$. Следното твърдение е геометрически очевидно, но съществено за по-нататъшната ни работа:

Твърдение 2.4. Ако
$$\Pi = \{\Delta_k\}_{k=1}^{k_0}$$
 е подразделяне на Δ , то $\mu_n(\Delta) = \sum_{k=1}^{k_0} \mu_n(\Delta_k)$.

Доказателство. Първо разглеждаме случая на правилно подразделяне, т.е. П се получава като се раздели интервалът, в който се мени i-тата координата, на подинтервали за всяко i, и се вземат всевъзможните декартови произведения на такива подинтервали. За пестене на място и по-прости означения ще изпишем нещата за n=2, в общия случай доказателството е аналогично. И тъй, нека $\Delta=[a_1,b_1]\times[a_2,b_2]$ и делим $[a_1,b_1]$ и $[a_2,b_2]$ на подинтервали:

$$a_1 = x_0 < x_1 < \dots < x_{m_0} = b_1$$

$$a_2 = y_0 < y_1 < \dots < y_{l_0} = b_2$$
.

Тогава $\Pi = \{\Delta_{ml}: m = 1, \dots, m_0, l = 1, \dots, l_0\}$, където $\Delta_{ml} = [x_{m-1}, x_m] \times [y_{l-1}, y_l]$. Пресмятаме

$$\sum_{l=1}^{l_0} \sum_{m=1}^{m_0} \mu_2(\Delta_{ml}) = \sum_{l=1}^{l_0} \sum_{m=1}^{m_0} (x_m - x_{m-1})(y_l - y_{l-1})$$

$$= \sum_{l=1}^{l_0} (y_l - y_{l-1}) \sum_{m=1}^{m_0} (x_m - x_{m-1})$$

$$= (b_1 - a_1) \sum_{l=1}^{l_0} (y_l - y_{l-1})$$

$$= (b_1 - a_1)(b_2 - a_2)$$

$$= \mu_2(\Delta)$$

Нека сега да разгледаме произволно подразделяне $\Pi = \{\Delta_k\}_{k=1}^{k_0}$. Можем да намерим правилно подразделяне Π^* на Δ такова, че елементите на $\Pi^* = \{\Delta_k^*\}_{l=1}^{l_0}$, които се съдържат в Δ_k , образуват подразделяне на Δ_k (например при размерност 2 продължаваме вертикалните и хоризонтални страни на правоъгълниците от Π в целите интервали). Тогава, използвайки два пъти предишната стъпка, получаваме

$$\mu_n(\Delta) = \sum_{l=1}^{l_0} \mu_n(\Delta_l^*) = \sum_{k=1}^{k_0} \left(\sum_{\Delta_l^* \subset \Delta_k} \mu_n(\Delta_l^*) \right) = \sum_{k=1}^{k_0} \mu_n(\Delta_k) .$$

Дефиниция 2.5. Нека имаме ограничена фукнция $f:\Delta\to R$ и подразделение $\Pi=\{\Delta_k\}_{k=1}^{k_0}$ на $\Delta.$ Тогава

 $s_f(\Pi) = \sum_{k=1}^{k_0} m_k \mu(\Delta_k)$ е малка сума на Дарбу за фукнцията f върху подразделението Π , а $m_k = \inf\{f(x): x \in \Delta_k\}$.

 $S_f(\Pi) = \sum_{k=1}^{k_0} M_k \mu(\Delta_k)$ е голяма сума на Дарбу за фукнцията f върху подразделението Π , а $M_k = \sup\{f(x) : x \in \Delta_k\}$.

Също $\Pi^* \geq \Pi$ означава, че Π^* е по-фино от Π .

Лема 2.6. Ако $\Pi^* \geq \Pi$, то $s_f(\Pi^*) \geq s_f(\Pi)$, а $S_f(\Pi^*) \leq S_f(\Pi)$

Доказателство. Без ограничение на общността (б.о.о.), нека $\Pi = \{\Delta_k\}_{k=1}^{k_0}$ и $\Pi^* = \{\Delta_1', \Delta_1'', \Delta_2, ...\}$ Тогава

$$s_{f}(\Pi^{*}) - s_{f}(\Pi) = m'_{1}\mu(\Delta'_{1}) + m''_{1}\mu(\Delta''_{1}) - m_{1}\mu(\Delta_{1})$$

$$\geq m_{1}\mu(\Delta'_{1}) + m_{1}\mu(\Delta''_{1}) - m_{1}\mu(\Delta_{1})$$

$$= m_{1}(\mu(\Delta'_{1}) + \mu(\Delta''_{1}) - \mu(\Delta_{1}))$$

$$= 0$$

Това е така, защото $m_1' \geq m_1$, тъй като $\Delta_1' \subset \Delta_1$.

Аналогично аргументираме за $S_f(\Pi^*) \leq S_f(\Pi)$.

Лема 2.7. Всички малки суми на Дарбу са по-малки или равни на големите суми на Дарбу.

$$s_f(\Pi_1) \leq S_f(\Pi_2)$$
 $orall \Pi_1, \Pi_2$ подразбивки на Δ

10

Доказателство. Нека $\Pi^* \geq \Pi_1$, $\Pi^* \geq \Pi_2$, следователно $s_f(\Pi_1) \leq s_f(\Pi^*) \leq S_f(\Pi^*)$ $S_f(\Pi_2)$

Дефиниция 2.8. Интегруема по Риман.

f се нарича интегруема по Риман, когато съществува единствено число I, което разделя малките от големите суми на Дарбу. $I = \int_{\Lambda} f = \int_{\Lambda} f(x) dx$.

$$n = 1 \quad \int_{[a,b]} f(x) dx$$

$$n = 2 \int_{\Delta}^{-1} \int_{\Delta} f(x_1, x_2) dx_1 dx_2$$

$$n = 3 \int_{\Delta} \int_{\Delta} f(x_1, x_2, x_3) dx_1 dx_2 dx_3$$

Дефиниция 2.9. Първи критерий за интегруемост.

$$\forall \varepsilon > 0 \quad \exists \ \Pi_1, \Pi_2 : S_f(\Pi_1) - s_f(\Pi_2) < \varepsilon.$$

Дефиниция 2.10. Втори критерий за интегруемост.

$$\forall \varepsilon > 0 \quad \forall \eta > 0 \quad \exists \ \Pi : \sum_{M_k = m_k > \eta} \mu(\Delta_k) < \varepsilon.$$

Упражнение 2.11. Да се докаже, че първа форма води до дефиницията за интегруемост.

Дефиниция 2.12. Сума на Риман.

Сумата на Риман се различава от сумите на Дарбу по това, че не взимаме най-малката или най-голяма стойност на определен подинтервал, а взимаме произволна пробна точка (sample point) от него.

И така ако имаме $\xi=\{\xi_1,\xi_2,...,\xi_{k_0}\}$ $\qquad \xi_i\in\Delta_i \quad i=1,\ldots k_0$ пишем за сумата на Риман

$$\sigma_f(\Pi, \xi) = \sum_{k=1}^{k_0} f(\xi_k) \mu(\Delta_k)$$

Твърдение 2.13. Сумите на Риман са между малката и голямата сума на Дарбу. $s_f(\Pi) \le \sigma_f(\Pi, \xi) \le S_f(\Pi)$.

Доказателство. Очевидно

$$\sup \{ \sigma_f(\Pi, \xi) : \xi_k \in \Delta_k \} = S_f(\Pi)$$

$$\inf \{ \sigma_f(\Pi, \xi) : \xi_k \in \Delta_k \} = S_f(\Pi)$$

Дефиниция 2.14. Диаметър на множество.

Ако имаме множеството $A \subset \mathbb{R}^n$, то диаметър на A наричаме разстоянието между най-"отдалечените"точки в А. Написано формално, имаме

$$diam(A) = sup||x - y|| : x, y \in A$$

Дефиниция 2.15. Диаметър на подразбиване.

Диаметърът на едно подразбиване Π на паралелотопа Δ е най-големият от диаметрите на всички паралелотопи от разбиването.

$$d(\Pi) = max\{diam(\Delta_k) : k = 1, 2, ..k_o\}$$

Теорема 2.16. Нека имаме фукнцията $f:\Delta\to\mathbb{R},\quad \Delta\subset\mathbb{R}^n$, която също е интегруема по Риман и $I = \int_{\Delta} f \iff \lim_{d(\Pi) \to 0} \sigma_f(\Pi, \xi) = I$

Доказателство. \Leftarrow) Нека $\varepsilon = 1 > 0$ $\exists \delta > 0$ $\forall \Pi; d(\Pi) < \delta$ $\forall \xi : \sigma_f(\Pi, \xi) < I + 1$ и $I - 1 < \sigma_f(\Pi, \xi) < I + 1$. Да се докаже, че функцията е ограничена върху всеки елемент.

Фиксираме си: $k, \Pi, \xi_s, s \neq k$. Тогава получаваме, че $(I-1) - \sum_{s \neq k} f(\xi_s) \mu(\Delta_s) < f(\sigma_k) \mu(\Delta_k) < (I+1) - \sum_{s \neq k} f(\xi_s) \mu(\Delta_s)$ Така получаваме, че $f(\xi_k) \mu(\Delta_k)$ е ограничено отгоре и отдолу. $|f(\xi_k) \mu(\Delta_k)| \leq A_k \quad \forall \xi_k \in \Delta_k$

 $\mu(\Delta_k) > 0$

 $|f(\xi_k)| \le \frac{A_k}{\mu(\Delta_k)}$ $\forall \xi_k \in \Delta_k$ от което следва, че функцията е ограничена върху всеки елемент, но елементите Δ_k са краен брой, което означава, че фукнцията е ограничена в цялото Δ . Почти сме готови. Получихме, че $\forall \varepsilon > 0 \; \exists \delta > 0 \exists \Pi \; \mathrm{c} \; d(\Pi) < \delta \; \mathrm{u} \; \forall \xi : I - \varepsilon < \sigma_f(\Pi, \xi) < I + \varepsilon$. Ако вземем супремум и инфимум получваме, че разликата между голямата и малката сума на Дарбу е 2ε от което следва, че функцията е интегруема по Риман.

 \Rightarrow) Имаме, че f е интегруема по Риман, от което следва, че $I-\varepsilon \leq s_f(\Pi) \leq S_f(\Pi) \leq I+\varepsilon$. Оттук твърдението ще следва, защото при произволен избор на представителните точки ξ имаме

$$s_f(\Pi) \le \sigma_f(\Pi, \xi) \le S_f(\Pi)$$

и следователно от горните неравенства получаваме $|\sigma_f(\Pi,\xi)-I|<\varepsilon$.

И така $\varepsilon > 0$. От дефиницията за интеграл на Риман следва, че съществува Π_1 подразделяне на Δ , такова че

$$S_f(\Pi_1) < I + \frac{\varepsilon}{2}$$

От f интегруема, следва, че е и ограничена. Нека $M=\sup\{|f(x)|: x\in \Delta\}$. Нека $\Pi_1=\{\Box_j\}_{j=1}^{j_0}$ и нека P_{Π_1} е общата площ на границите на паралелотопчетата от Π_1 . Нека $\delta=\frac{\varepsilon}{8MP_{\Pi_1}}>0$. Искаме да оценим $S_f(\Pi)$, където Π е произволно подразбиване на Δ с диаметър, по-малък от δ .

$$d(\Pi) < \delta, \ \Pi = \{\Delta_i\}_{i=1}^{i_0}$$

Нека сега Π_2 да е подразбиване от сеченията на елементите на Π и Π_1 . $\Pi_2 = \{\Box_j \cap \Delta_i\}_{i=1}^{i_0} j_0^0$ и изхвърляме празните множества. Така $d(\Pi_2) \leq d(\Pi) \leq \delta$. $\Pi_2 \succ \Pi_1 \Rightarrow S_f(\Pi_2) \leq S_f(\Pi) < I + \frac{\varepsilon}{2}$. Ще оценим отгоре $S_f(\Pi) - s_f(\Pi_2)$. Делим елементите Δ_i на Π на две групи - които се секат с някоя стена на елемнт на Π_1 и които се съдържат изцяло в елемент на Π_1 . Събираемите, съответстващи на елементите от втория вид, участват както в $S_f(Pi)$, така и в $S_f(\Pi_2)$ и се съкращават. Нека индексите на елементите на Π от първия вид са $I_1 \subset \{1,2,...,i_0\}$.

Тогава

$$S_f(\Pi) - S_f(\Pi_2) = \sum_{i \in I_1} M_i \mu_n(\Delta_i) - \sum_{i \in I_1} \sum_{j=1}^{j_0} M_{ij} \mu_n(\Delta_i \cap \Box_j)$$

$$diam(\Delta_i) < \delta \Rightarrow \sum_{i \in I_1} \mu_n(\Delta_i) \le 2\delta P_{\Pi_1} \Rightarrow \left| \sum_{i \in I_1} M_i \mu_n(\Delta_i) \right| \le 2M\delta P_{\Pi_1}$$

Аналогично

$$\sum_{i \in I_1} \sum_{j=1}^{j_0} \mu_n(\Delta_i \cap \Box_j) \le 2\delta P_{\Pi_1} \Rightarrow \left| \sum_{i \in I_1} \sum_{j=1}^{j_0} M_{ij} \mu_n(\Delta_i \cap \Box_j) \right| \le 2\delta M P_{\Pi_1}$$

12

Следователно

$$\begin{aligned} S_f(\Pi) - S_f(\Pi_2) &\leq \left| \sum_{i \in I_1} M_i \mu_n(\Delta_i) \right| + \left| \sum_{i \in I_1} \sum_{j=1}^{j_0} M_{ij} \mu_n(\Delta_i \cap \Box_j) \right| \\ &\leq 4M P_{\Pi_1} \delta \\ &= 4M P_{\Pi_1} \frac{\varepsilon}{8M P_{\Pi_1}} \\ &= \frac{\varepsilon}{2} \end{aligned}$$

Тогава имаме

$$S_f(\Pi) = (S_f(\Pi) - S_f(\Pi_2)) + S_f(\Pi_2)$$

$$\leq \frac{\varepsilon}{2} + S_f(\Pi_2)$$

$$< \frac{\varepsilon}{2} + I + \frac{\varepsilon}{2}$$

$$= I + \varepsilon$$

Аналогично доказваме, че $s_f(\Pi)>I-\varepsilon$ за всички Π с достатъчно малък диаметър, с което доказателството е завършено.

3 Множества, пренебрежими по Лебег