

MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval

Helena Peić Tukuljac, Antoine Deleforge and Rémi Gribonval

Problem definition: Blind echo retrieval

Given *M* sensors measuring delayed and attenuated copies of an unknown source signal in the discrete-time domain, can the echo locations and weights be recovered?

Applications:

- Room Acoustics
- Audio Signal Processing
- Seismology
- Passive sonars ...

Measurements in continuous domain

$$\tilde{x}_m(t) = (\tilde{h}_m * \tilde{s})(t)$$

$$\tilde{h}_m(t) = \sum_{k=1}^K c_{m,k} \delta(t - \tau_{m,k})$$

Measurements in discrete domains

Time:
$$\hat{\mathbf{x}}_m(n) \approx (\hat{\mathbf{h}}_m \star \hat{\mathbf{s}})(n)$$
 where

$$\begin{cases} \hat{h}_m = (\tilde{\phi} * \tilde{h}_m)(n/F_s), \\ \hat{s}(n) = \tilde{s}(n/F_s), n \in \mathbb{Z} \end{cases}$$

Classical methods in two steps:

- 1. Blind estimation of discrete-time filters
- 2. Echo retrieval by peak-picking on filters

Cross-relation (CR) [1]

$$\underset{\hat{h}_{1}(1)=1,\hat{h}_{2}}{\operatorname{argmin}} \left\| \hat{\boldsymbol{h}}_{1} \star \hat{\boldsymbol{x}}_{2} - \hat{\boldsymbol{h}}_{2} \star \hat{\boldsymbol{x}}_{1} \right\|_{2}^{2} = \left\| \operatorname{Toep}(\hat{\boldsymbol{x}}_{2}) \hat{\boldsymbol{h}}_{1} - \operatorname{Toep}(\hat{\boldsymbol{x}}_{1}) \hat{\boldsymbol{h}}_{2} \right\|_{2}^{2}$$

Constrained LASSO (LASSO) [2]

$$\underset{\hat{h}_1(1)=1,\hat{h}_2}{\operatorname{argmin}} \left\| Toep(\hat{\boldsymbol{x}}_2) \hat{\boldsymbol{h}}_1 - Toep(\hat{\boldsymbol{x}}_1) \hat{\boldsymbol{h}}_2 \right\|_2^2 + \lambda (\|\hat{\boldsymbol{h}}_1\|_1 + \|\hat{\boldsymbol{h}}_2\|_1)$$

Limits:

- 1. Require filter sizes but true filters are infinite
- 2. True echoes are off-grid
- 3. Dirac energy spillage (basis mismatch [3])

Frequency: $x_m(f) \approx h_m(f)s(f) \approx \left(\sum_{k=1}^K c_{m,k}e^{-2\pi i f \tau_{m,k}}\right)s(f)$ where: $x_m(f) = \sum_{m=0}^{N-1} \hat{x}_m(n)e^{-2\pi i f n/F_s}$ (DFT)

Assuming input signal s(f) is **known**, the transfer function $h_m(f)$ is given by:

$$h_m(f) = z(f)x_m(f) = \sum_{k=1}^K c_{m,k}e^{-2\pi f \tau_{m,k}}$$
 (1) where: $z(f) = \frac{1}{s(f)}$

Non-blind case with finite rate of innovation [4] and annihilating filters

- $\{h_m(f)\}_{f=f_0,f_0+\Delta_f,f_0+2\Delta_f,...}$ is a sum of geometric series with ratios $r_{m,k} = e^{-2\pi i \Delta_f \tau_{m,k}}$
- We have: $[1,-w]\star [w^0,w^1,w^2,\ldots,w^{F-1}]=\mathbf{0}_{F-1}$ for any $w\in\mathbb{C}$
- Hence: $\mathbf{a}_m \star \mathbf{h}_m = \mathbf{0}_{F-K}$ for $\boldsymbol{a}_m \equiv [1, -r_{m,1}] \star [1, -r_{m,2}] \star \dots [1, -r_{m,K}] \in \mathbb{C}^{K+1}$
- Let $P_{\boldsymbol{a}_m}[y] = \sum a_{m,k} y^k \implies$ the roots of P_m are $\{r_{m,k}\}_{k=1}^K$!
- From r_m we deduce au_m and also c_m by solving (1)

Blind case with MULAN: MULtichannel Annihilation

• We consider the following non-convex program:

$$\underset{\|\boldsymbol{z}\|_{2}^{2}=\|\boldsymbol{a}_{1}\|_{2}^{2}=\cdots=\|\boldsymbol{a}_{M}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{m=1}^{M} \|\boldsymbol{a}_{m}\star(\boldsymbol{x}_{m}\odot\boldsymbol{z})\|_{2}^{2} = \sum_{m=1}^{M} \|Toep(\boldsymbol{x}_{m}\odot\boldsymbol{z})\boldsymbol{a}_{m}\|_{2}^{2} = \sum_{m=1}^{M} \|Toep_{0}(\boldsymbol{a}_{m})Diag(\boldsymbol{x}_{m})\boldsymbol{z}\|_{2}^{2} = C(\boldsymbol{a},\boldsymbol{z})$$

MULAN Algorithm

Input: $\{oldsymbol{x}_{1:M}(f); f \in \mathcal{F}\}$ Output: $\{ au_{m,k}, c_{m,k}\}_{m,k=1}^{M,K}$

0. Randomly initialize *z*

Repeat until convergence of $C(\boldsymbol{a}, \boldsymbol{z})$:

- 1. For each m update a_m : $\boldsymbol{a}_m \leftarrow \operatorname{argmin} \| \operatorname{Toep}(\boldsymbol{x}_m \odot \boldsymbol{z}) \boldsymbol{a}_m \|_2^2 = \min_{\boldsymbol{z} \in \mathcal{S}} \operatorname{vect}(\operatorname{Toep}(\boldsymbol{x}_m \odot \boldsymbol{z}))$
- $Toep_0(\boldsymbol{a}_1)Diag(\boldsymbol{x}_1)$ 2. Update *z* : $Toep_0(oldsymbol{a}_2) Diag(oldsymbol{x}_2)$ $oldsymbol{z} \leftarrow \operatorname{argmin} \|\mathbf{Q} oldsymbol{z}\|_2^2 = \min_{} eig_{} vect(\mathbf{Q}), \ \mathbf{Q} =$ $|\mathit{Toep}_0(oldsymbol{a}_M)\mathit{Diag}(oldsymbol{x}_M)$
- 3. From each a_m deduce τ_m and c_m
- 4. Shift and rescale $\{\tau_{m,k}, c_{m,k}\}_{m,k=1}^{M,K}$

- Multiple initializations are used to fight local minima (20 in our experiments)
- Problem solved exactly if $C(\boldsymbol{a}, \boldsymbol{z}) = 0$
- Filters are recovered up to a **global shift** and scaling
- Non-identifiability when:
- Filters have **common roots** (open question)
- Emitted signal has too many zero frequencies
- Need at least 2K + 1 regularly-spaced frequencies (open question)

Results

Percentage of full weight and location recovery vs. (M, K, F):

Benchmark for M = 2, K = 7 over 100 randomly simulated shoebox rooms, microphone pair, and speech source:

case	method	full location recovery	weight RMSE
on-grid	CR [1] LASSO [2] MULAN (proposed)	92 % 13 % 59 %	0.0390 0.155 0.00016
off-grid	CR [1] LASSO [2] MULAN (proposed)	1% $2%$ 70 %	0.0442 0.0346 0.00048

References

[1] Guanghan Xu, Hui Liu, Lang Tong, and Thomas Kailath. A least-squares approach to blind channel identification. Transactions on signal processing, IEEE (1995). [2] Yuanqing Lin, Jingdong Chen, Youngmoo Kim, and Daniel D. Lee. Blind channel identification for speech dereverberation using l1-norm sparse learning. In Advances in Neural Information Processing Systems, Curran Associates, Inc. (2008)

[3] Yuejie Chi, Louis L. Scharf, Ali Pezeshki, and A. Robert Calderbank. Sensitivity to basis mismatch in compressed sensing. Transactions on Signal Processing, IEEE (2011). [4] Martin Vetterli, Pina Marziliano, and Thierry Blu. Sampling signals with finite rate of innovation. Transactions on Signal Processing, IEEE (2002).

[5] Yuejie Chi. Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. Journal of Selected Topics in Signal Processing, IEEE (2016).

Conclusion

- Near-exact blind and off-grid echo retrieval from multichannel discrete-time measurements directly in the parameter space.
- Future work: robustness to observation noise, filter mismatch and missing frequencies, convex relaxation of the program [5] or spectral initialization.