TP 233 - Transformation d'énergie - Transformateur monophasé

17 février 2025

Encadrement: Emmanuel Hoang & Olivier Villain

Ibrahim ELKASSIMI

Table des matières

I	Objectif	3
II	Manipulation 0 - Mesure de R_1 et R_2	4
III	Manipulation 1 - Mesure du rapport de transformation	5
IV	Manipulation 2 - Mesure de L_{μ} et R_f	6
\mathbf{v}	Manipulation 3 - Mesure de R_c et I_c	7

Figure 1 – Transformateur de poteau Source : fr.fyswitchgear.com

I Objectif

L'objectif de ce TP est de tester le modèle des défauts de Kapp, d'étudier les saturations du circuit magnétiqe et d'identifier les paramètres de ce modèle sur un transformateur réel monophasé.

Figure 2 – Transformateur industriel

Source : fr.wikipedia.org

II Manipulation 0 - Mesure de R_1 et R_2

Pour mesurer les résistances des enroulements du primaire et du secondaire, on effectue l'expérience dont le schéma est le suivant :

Figure 3 – Schéma de l'expérience permettant la mesure de \mathcal{R}_1 et \mathcal{R}_2

Pour les valeurs suivantes : $U_1=3.02V$, $U_2=2.31V$ et $I_1=I_2=10A$ on trouve : $R_1=0,23~\Omega et$ $R_2=0,30~\Omega$

III Manipulation 1 - Mesure du rapport de transformation

Figure 4 – Modèle de Kapp du transformateur monophasé

Figure 5 – Schéma de la première manipulation

Figure 6 – Image de la première manipulation

On a $m = \frac{V_2}{V_1}$ $V_1 = 220 \pm 0,02$ V et $V_2 = 229,9 \pm 0,2$ V D'où $m = 1,045 \pm 0,001$

IV Manipulation 2 - Mesure de L_{μ} et R_f

Pour mesurer L_m et R_f on effecture l'expérience dont le montage est le suivant :

Figure 7 – Schéma et image de la manipulation.

$$U_1 = 220 \text{ V}, I_1 = 0,56 \text{ A}, P_1 = 46,2 \text{ W}, \text{VAR} = 114 \text{ VA}, PF = 0,37$$

 $P_1 = U_1 I_1 \cos(\varphi) \text{ et } \varphi = \arctan\left(\frac{L_\mu \omega}{R_f}\right). \text{ Donc } \frac{L_\mu}{R_f} = \frac{1}{\omega} \tan\left(\arccos(\frac{P_1}{U_1 I_1})\right) = 0$

et
$$I_1 = \frac{\sqrt{R_f^2 + L_\mu^2 \omega^2}}{R_f L_\mu} U_1$$
.
Donc $L_\mu = \frac{1}{\omega} \frac{U_1}{I_1} \sqrt{1 + \left(\frac{L_\mu}{R_f} \omega\right)^2} = 3,33 \text{ H et } R_f = 424 \Omega$

V Manipulation 3 - Mesure de R_S et l_S

$$U_1 = 6,0 \text{ V}, I_1 = 7,9 \text{ A}, P_1 = 40 \text{ W}, \text{VAR} = 26 \text{ VA}, PF = 0,83$$

$$R_S = \frac{P_1 - \frac{U_1^2}{R_F}}{I_2^2} \approx \frac{P_1 - \frac{U_1^2}{R_F}}{(I_1/m)^2} = 0,69 \Omega. \text{ et } l_s = \frac{Q - \frac{U_1^2}{L_f \omega}}{\omega I_2^2} \approx \frac{Q - \frac{U_1^2}{L_f \omega}}{\omega (I_1/m)^2} = 1,43 \text{ mH}.$$

Annexe Quelques explications sur le transformateur

Figure 8 – Transformateur triphasé

Source: www.universalis.fr

Modèle équivalent du transformateur monophasé (modèle de Kapp)

? (c'est pour cette raison que je vous demande de relire)