Sets

Disjoint Sets

Disjoint Sets

- We have a fixed set U of Elements X_i
- **U** is divided into a number of disjoint subsets S_1 , S_2 , S_3 , ... S_k
- $S_i \cap S_j$ is empty $\forall i \neq j$
- $S_1 \cup S_2 \cup S_3 \cup ... S_k = U$

Disjoint Sets

- Operations on Disjoint Sets
 - MakeSet(X): Return a new set consisting of the single item X
 - Union(S,T): Return the set S ∪ T, which replaces S and T in the data base
 - Find(X): Return that set S such that X ∈ S
- If each element can belong to only one set (definition of disjoint), a tree structure known as an **up-tree** can be used to represent disjoint sets
- Up-trees have pointers up the tree from children to parents

Up-Trees

Properties

- Each node has a single pointer field to point to its parent; at the root this field is empty
- A node can have any number of children
- The sets are identified by their root nodes

Disjoint Sets: {A,C,D,E,G,H,J} and {B,F}

Up-Trees: Union

- Union(S, T): Just make the root of one tree point to the tree of the other. If we make root of S point to the root of T, we say we are merging S into T
- Optimization: Prevent the linear growth of the height of the tree – always merge the "smaller" tree into the larger one
 - By height worst case optimization
 - By size (# of nodes) avg case optimization
 - □ Increases depth of fewer nodes → minimizes expected depth of a node

Up-Trees: Union

- Called the balanced merging strategy
- Why avoid linear growth of the tree's height?
 - Find takes time proportional to the height of the tree in the worst case
- Implementation: Each node has an additional Count field that is used, if the node is the root, to hold the count of the number of nodes in the tree (or height)
- Running time: O(1) if we assume S and T are roots, else running time of Find(X)

Up-Trees: Union by Size

Up-Trees: Find

- Find(X): which set does an element belong to? Follow the pointers up the tree to the root
 - But where is X?
- LookUp(X): Get the location of the node X
 - If we assume we know location of X → constant time
 - Then Running time of Find(X): O(log n)
 - If we cannot directly access the node → logarithmic
 - E.g. use a balanced tree to index nodes
 - Then Running time of Find(X): still O(log n)
 - log time to LookUp node + log time to search up the uptree

Up-Trees: Find

Optimization: Path Compression

- Find(X) would take less time in a shallow, bushy tree than it would in a tall, skinny tree
- Use balanced merging strategy to prevent the growth in the tree's height → ensures height is at worst logarithmic in size
- However, since any number of nodes can have the same parent, we can restructure our uptree to make it bushier...

Up-Trees: Find

- Path Compression: After doing a Find, make any node on that path to the root point directly to the root.
- Any subsequent **Find** on any one of these nodes or their descendants will take less time since the node is now closer to the root.
- Minor "problem" when combined with Union-by-height
 - Treat height as an estimate → Union-by-rank

Up-Trees: Array Implementation

■ If we assume all elements of the universe to be integers from 0 to N, then we can represent the Up-Trees as one Array of size N

Summary

- Disjoint Sets
 - Operations on Disjoint Sets
 - Up-Tree as a Disjoint Set
 - Array Implementation
 - □ Union: O(log*n), Find: O(log*n)