Tez Malzemeleri

Hakan ERGÜL

October 1, 2016

1 TANIMLAR

Kullanabileceğim tanımlar:

Tanım 1 (sabit nokta). (X,d) bir metrik uzay ve $f:X\to X$ bir fonksiyon olmak üzere f(x)=x şeklindeki $x\in X$ noktasına f fonksiyonunun sabit noktası denir.

Tanım 2 (periyodik nokta). (X,d) bir metrik uzay ve $f: X \to X$ bir fonksiyon ve N > 1 bir doğal sayi olmak üzere $f^1(x) = f(x)$ ve $f^{N+1}(x) = f(f^N(x))$ şeklinde tanımlansın. $f^N(x) = x$ şeklindeki $x \in X$ noktasına f fonksiyonunun periyodik noktası denir. N = 1 için bu x noktası sabit noktadır. Ayrıca f^N nin sabit noktaları, f nin periyodik noktalarıdır.

Tanım 3 (yaklaşık(approximate) sabit noktası- ε -sabit nokta). (X,d) bir metrik uzay ve $f:X\to X$ bir dönüşüm olsun. Eğer bir $\varepsilon>0$ için $d(f(x_0),x_0)<\varepsilon$ olacak şekildeki $x_0\in X$ noktasına ε -sabit nokta denir.

Tanım 4 (coincidence point-çakışık nokta). (X,d) bir metrik uzay ve $f,g:X\to X$ birer dönüşüm olsun. Eğer $x\in X$ için f(x)=g(x) ise x noktası f ve g fonksiyonlarının çakışma noktasıdır denir. Eğer f(x)=g(x)=x ise bu tür noktalara da f ve g 'nin ortak sabit noktaları denir.

Tanım 5 (lipschitz fonksiyon). (X,d) bir metrik uzay ve $f:X\to X$ bir fonksiyon olsun. Bir $\alpha>0$ reel sayısı için f fonksiyonu

$$d(f(x), f(y)) \le \alpha d(x, y)$$

şartını sağlıyorsa bu fonksiyona lipschitz fonksiyonu, α reel sayısına da lipschitz sabiti denir.

Tanım 6 (daraltan fonksiyon). (X, d) bir metrik uzay ve $f: X \to X$ bir fonksiyon olsun. Bir $0 \le \alpha < 1$ reel sayısı için f fonksiyonu

$$d(f(x), f(y)) < \alpha d(x, y)$$

şartını sağlıyorsa bu fonksiyon
a daraltan fonksiyon denir. $\alpha=1$ için bu şartı sağlayan f fonksiyon
una genişlemeyen fonksiyon denir.

Tanım 7 (kesin daraltan fonksiyon). (X,d) bir metrik uzay ve $f:X\to X$ bir fonksiyon olmak üzere $x\neq y$ için

$$d(f(x), f(y)) < d(x, y)$$

şartını sağlıyorsa bu fonksiyona kesin daraltan fonksiyon denir.

daraltan \Longrightarrow kesin daraltan \Longrightarrow genişlemeyen \Longrightarrow Lipschitz

Tanım 8 (mesafe değiştiren fonksiyon). $\psi:[0,+\infty)\to[0,+\infty)$ fonksiyonu

- ψ sürekli ve azalmayan(monoton artan)dir.
- $\psi(t) = 0 \iff t = 0$

şartlarıni sağlıyorsa bu fonksiyona mesafe değiştiren fonksiyon denir. Her mesafe değiştiren fonksiyon bir metriktir. Fakat tersi her zaman doğru değildir. Ters örnek: $\psi(t) = t^2$.

Tanım 9 (Picard iterasyonu). (X,d) bir metik uzay ve $f: X \to X$ bir dönüşüm olsun. $x_0 \in X$ ve $x_1 = f(x_0), x_2 = f(x_1), \cdots$ olmak üzere

$$x_{n+1} = f(x_n), \quad n = 0, 1, 2, \cdots$$

şeklindeki ifadede x_n 'e x_0 noktasının f altındaki n. Picard iterasyonu olarak adlandırılır.

Tanım 10 (asimptotik regulerlik). (X, d) bir metrik uzay ve $f: X \to X$ bir dönüşüm olmak üzere bir $x_0 \in X$ noktası için

$$\lim_{n \to \infty} d(f^n(x_0), f^{n+1}(x_0)) = 0$$

oluyorsa f dönüşümü x_0 noktasında asimptotik regulerdir denir.

Tanım 11 (süreklilik). $(X, d \text{ ve } (Y, \rho)$ iki metrik uzay, $f: X \to Y$ bir dönüşüm ve $x_0 \in X$ olsun. Her $\varepsilon > 0$ için $d(x, y) < \delta$ olduğunda $\rho(f(x), f(x_0)) < \varepsilon$ veya buna denk ifadeyle $f(B(x_0; \delta)) \subseteq B(f(x_0); \varepsilon)$ olacak şekilde bir $\delta > 0$ varsa, f ye x_0 noktasında süreklidir denir. Eğer f, X in her noktasında sürekli ise, f ye X de süreklidir denir.

Tanım 12 (alttan yarısürekli). (X,d) bir metrik uzay ve $f:X\to\mathbb{R}$ bir dönüşüm olsun. $x_0\in X$ olmak üzere her $x\in X$ için

$$\liminf_{x \to x_0} f(x) \ge f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında alttan yarısüreklidir denir. Veya X'teki x_0 'a yakınsayan her (x_n) dizisi için

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \liminf_{n \to \infty} f(x_n) \ge f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında alttan yarısüreklidir denir.

Tanım 13 (üstten yarısürekli). (X,d) bir metrik uzay ve $f:X\to\mathbb{R}$ bir dönüşüm olsun. $x_0\in X$ olmak üzere her $x\in X$ için

$$\limsup_{x \to x_0} f(x) \le f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında üstten yarısüreklidir denir. Veya X'tek
i x_0 'a yakınsayan her (x_n) dizisi için

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \limsup_{n \to \infty} f(x_n) \le f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında üstten yarısüreklidir denir.

Tanım 14 (metrik uzay). X boş olmayan bir küme ve $d: X \times X \to \mathbb{R}$ bir fonksiyon olsun. Her $x, y, z \in X$ için

- $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)
- $d(x,y) \le d(x,z) + d(z,y)$

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir metrik ve d ile birlikte X'e metrik uzay denir ve bu metrik uzay (X, d) ile gosterilir.

Tanım 15 (yarımetrik uzay). X boş olmayan bir küme ve $d: X \times X \to \mathbb{R}$ bir fonksiyon olsun. Her $x, y, z \in X$ için

- $d(x,y) = 0 \iff x = y$
- $\bullet \ d(x,y) = d(y,x)$
- $d(x,y) \le d(x,z) + d(z,y)$

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir yarımetrik ve d ile birlikte X'e yarımetrik uzay denir ve bu metrik uzay (X, d) ile gosterilir.

Tanım 16 (quasi-metrik uzay). X boş olmayan bir küme ve $d: X \times X \to \mathbb{R}$ bir fonksiyon olsun. Her $x, y, z \in X$ için

- $d(x,y) = 0 \iff x = y$
- $d(x,y) \leq d(x,z) + d(z,y)$

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir quasi-metrik ve d ile birlikte X'e quasi-metrik uzay denir ve bu metrik uzay (X, d) ile gosterilir.

Tanım 17 (cauchy dizisi). (X,d) bir metrik uzay ve $\{x_n\}$ de bu uzayda bir dizi olsun. Her $\varepsilon > 0$ için m, n > N olduğunda $d(x_n, x_m) < \varepsilon$ olacak bicimde $N(\varepsilon) \in \mathbb{N}$ sayısı varsa $\{x_n\}$ dizisine Cauchy dizisi denir.

Tanım 18 (tam metrik uzay). (X, d) metrik uzayındaki her cauchy dizisi yine bu uzayda bir noktaya yakınsıyorsa bu uzaya tam metrik uzay denir.

Tanım 19 (vektor(lineer) uzayı). V boş olmayan bir küme, F bir cisim ve $+: V \times V \to V$ ve $\cdot: F \times V \to V$ işlemleri aşağıdaki şartları sağlasin:

- V1. Her $x, y \in V$ için $x + y \in V$ dir.
- V2. Her $x, y, z \in V$ için x + (y + z) = (x + y) + z dir.
- V3. Her $x \in V$ için $x + \theta = \theta + x = x$ olacak bicimde $\theta \in V$ vardir.
- V4. Her $x \in V$ için $x + (-x) = (-x) + x = \theta$ olacak bicimde $-x \in V$ vardir.
- V5. Her $x, y \in V$ için x + y = y + x dir.
- V6. Her $x \in V$ ve her $\alpha \in F$ için $\alpha \cdot x \in V$ dir.
- V7. Her $x \in V$ ve her $\alpha, \beta \in F$ icin $(\alpha\beta) \cdot x = \alpha(\beta \cdot x)$ dir.
- V8. Her $x \in V$ ve her $\alpha, \beta \in F$ için $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ dir.
- V9. Her $x, y \in V$ ve her $\alpha \in F$ için $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ dir.
- V10. Her $x \in V$ için $1 \cdot x = x$ dir.

Bu şartları sağlaniyorsa V'ye F cismi üzerinde vektor uzayı denir. Ozel olarak $F = \mathbb{R}$ alınırsa reel vektör uzayı, \mathbb{C} alınırsa kompleks vektör uzayı denir.

Tanım 20 (normlu uzay). N, F cismi üzerinde bir vektör uzayı olsun. $\|\cdot\|: N \to \mathbb{R}$ bir fonksiyon ve bu fonksiyonun bir $x \in N$ 'deki değeri de $\|x\|$ ile gösterilsin. Her $x, y \in N$ için

- N1 $||x|| = 0 \iff x = \theta$
- N2 $\|\alpha \cdot x\| = |\alpha| \|x\|, \quad (\alpha \in F)$
- N3 $||x + y|| \le ||x|| + ||y||$

şartları sağlanıyorsa bu $\|\cdot\|$ fonksiyonuna norm, bu fonksiyonla birlikte N vektor uzayına normlu uzay denir.

Tanım 21 (Banach uzay). N bir normlu uzay ve d(x,y) = ||x-y|| şeklinde tanımlanan fonksiyon da gerçekten bir metriktir. Bu metriğe göre tam olan N normlu uzayına Banach uzayı denir.

Tanım 22 (iç çarpım uzayı). N, F cismi üzerinde bir vektör uzayı olsun. $\langle \cdot, \cdot \rangle : N \times N \to F$ de fonksiyonu her $x, y, z \in N$ için

- If $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $i2 \langle x, y \rangle = \langle y, x \rangle$
- If $\langle \alpha \cdot x, y \rangle = \alpha \langle x, y \rangle$, $(\alpha \in F)$
- i4 $\langle x, x \rangle > 0$ ve $\langle x, x \rangle = 0 \iff x = \theta$

şartlarını sağlıyorsa bu fonksiyona iç çarpım fonksiyonu denir. Bu fonksiyonla birlikte N vektör uzayına iç çarpım uzayı veya ön-Hilbert uzayı denir.

Tanım 23 (Hilbert Uzayı). H bir iç çarpım uzayı olmak üzere $||x|| = \sqrt{\langle x, x \rangle}$ bir norm ve $d(x, y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$ bir metrik tanımlar. Bu metriğe göre tam olan H iç çarpım uzayına Hilbert uzayı denir.

Tanım 24 (sınırlı küme). (X, d) bir metrik uzay ve $B \subset X$ olmak üzere her $x, y \in B$ için $d(x, y) \le r$ olacak şekilde bir r > 0 sayısı varsa B kümesine sınırlı küme denir.

Tanım 25 (diameter-çap). (X,d) bir metrik uzay ve $B \subset X$ olmak üzere her $x,y \in B$ için $\delta(B) = \sup_{x,y \in B} d(x,y)$ sayısına B kümesinin çapı denir.

Tanım 26 (totally bounded-tamamen sınırlı(precompact-önkompakt)). (X, d) bir metrik uzay ve $B \subset X$ olmak üzere her $\varepsilon > 0$ için

$$B \subseteq \bigcup_{n=1}^{N} B_{\varepsilon}(a_n), \quad (B_{\varepsilon}(a_n) = \{x : d(x, a_n) < \varepsilon\})$$

olacak şekilde $a_1, a_2, \dots, a_N \in X$ sonlu sayıda nokta vardır. A uniformly continuous function maps totally bounded sets to totally bounded sets. A totally bounded set is geometrically 'finite', so an infinite sequence of points in a totally bounded set is caged in, so to speak, with nowhere to escape to: A set B is totally bounded \iff Every sequence in B has a Cauchy subsequence.

Tanım 27 (kompakt küme). (X, d) bir metrik uzay ve $K \subseteq X$ olsun. K kümesinin her açık örtüsünün yine K kümesini örten onlu bir alt örtüsü varsa K kümesine kompakt küme denir.

Tanım 28 (convex-konveks). V bir vektör uzay ve $A \subseteq V$ olsun. Eğer $\lambda \in [0,1]$ olmak üzere her $u,v \in A$ için

$$\lambda u + (1 - \lambda)v \in A$$

oluyorsa A kümesine konveks küme denir.

Tanım 29 (convex hull). V bir vektör uzay ve $A \subseteq V$ olmak üzere A kümesini içeren tüm konveks kümelerin kesişimine (yani en küçük konveks kümeye) convex hull denir.

Tanım 30 (b-Metrik Uzayı). X boş olmayan bir küme ve $b \ge 1$ bir reel sayı olsun. $d: X \times X \to \mathbb{R}^+$ fonksiyonu her $x, y, z \in X$ için aşağıdaki şartları sağlasın:

- $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)
- $d(x,z) \le b[d(x,y) + d(y,z)]$

Bu şekildeki (X,d) metrik uzayıda b-metrik uzayı denir. b=1 için metrik uzay elde ederiz. b-metrik uzay, metrik uzayların bir genelleştirmesidir. Yakınsaklık, cauchy dizisi ve tamlık özellikleri metrik uzaylardaki şekliyle aynı şekilde tanımlanır. In a b-metric space (i) a convergent sequence has a unique limit, (ii) each convergent sequence is Cauchy, (iii) in general, a b-metric is not continuous.

2 TEOREMLER

Teorem 1 (banach daralma ilkesi). (X,d) bir tam metrik uzay ve $f: X \to X$ bir daraltan fonksiyon olsun. f fonksiyonunun bu uzayda bir tek sabit noktası vardır. Dahası x noktasının f altındaki n-inci iterasyonu olan $f^n(x)$, $f^0(x) = x$, $f^{n+1}(x) = f(f^n(x))$ şeklinde tanımlansın. $\lim_{n\to\infty} f^n(x)$ bu fonksiyonun sabit noktasıdır.

Teorem 2. 3 ÖRNEKLER

Örnek 1 (sabit nokta). $f, g: [0,1] \to [0,1], f(x) = x^2$ fonksiyonu için x = 0 ve x = 1 noktaları sabit noktalardır. Gerçekten f(0) = 0 ve f(1) = 1 dir. Fakat g(x) = x - 1 fonksiyonun hiçbir sabit noktası yoktur.

Örnek 2 (periyodik-sabit nokta). $f:(0,1)\to(0,1,\ f(x)=\frac{1}{x}\ fonksiyonunun\ sabit\ noktası\ yoktur.$ Fakat $f^2(x)=x$ olduğundan her $x\in(0,1)\ noktası\ f\ nin\ periyodik\ noktasıdır.$

Örnek 3 (daraltan dönüşüm). $f:(0,1] \to (0,1], f(x) = \frac{x}{3}$ fonksiyonu

$$|f(x) - f(y)| = \frac{1}{3}|x - y| \le \frac{1}{3}|x - y|$$

olup daraltan bir dönüşümdür. Fakat sabit noktası yoktur, bu (0,1]'in tam olmamasından kaynaklanır.

Örnek 4 (tamlık-kompaktlık). R alısılmıs metrikle tamdır fakat kompakt değildir.

Örnek 5 (sabit nokta-kesin daraltan). $f:[1,+\infty)\to[1,+\infty)$ olmak üzere $f(x)=x+\frac{1}{x}$ şeklinde tanımlanan fonksiyon kesin daraltandır. O halde

$$|f(x) - f(y)| = |x + \frac{1}{x} - y - \frac{1}{y}|$$

$$= |x - y + \frac{1}{x} - \frac{1}{y}|$$

$$= |x - y||1 - \frac{1}{xy}|$$

$$< |x - y|$$

elde edilir. Çünkü birbirinden farklı her $x,y \in [1,+\infty)$ için $0 < 1 - \frac{1}{xy} < 1$ dır.

Örnek 6 (sabit nokt-kesin daraltan). $f:[0,1] \rightarrow [0,1], \ f(x) = \frac{1}{2}x + \frac{1}{4}x^2 \ fonksiyonu \ kesin \ daraltandır. \ Gerçekten daraltandır.$

$$\begin{split} \big| \frac{1}{2} x + \frac{1}{4} x^2 - \frac{1}{2} y - \frac{1}{4} y^2 \big| &\leq \frac{1}{2} |x - y| + \frac{1}{4} |x + y| |x - y| \\ &< \frac{1}{2} |x - y| + \frac{1}{2} |x - y| \\ &= |x - y| \end{split}$$

olup daraltan olduğu görülebilir.

Örnek 7 (daraltan dönüşüm). \mathbb{R} üzerinde tanımlı $f(x) = \cos x$ fonksiyonu açıkça görüleceği üzere daraltan dönüşüm değildir. Kabul edelim ki bir $h \in (0,1)$ olsun öyle ki her $x \neq y$ için

$$\left| \frac{\cos x - \cos y}{x - y} \right| \le h$$

sağlansın. $y \to x$ iken her iki tarafın türevini alırsak $|\sin x| \le h$ olur her x için. Fakat bu bir çelişkidir, çünkü $x = \frac{\pi}{2}$ için hiçbir $h \in (0,1)$ bulunamaz. Diğer yandan 2