

SELF-DRIVING CARS

Exercise 0 – Introduction

Release date: Thu, 18. October 2018 - Deadline for Homework: Wed, 31. October 2018 - 21:00

Important Information

a) Exercise Procedure via "ILIAS"

- We will organize the exercises sheets and your submissions using the **ILIAS**-System (https://ovidius.uni-tuebingen.de/ilias3).
- Please register by no later than Monday, 22.10.18 23:59 as follows:
 - 1. Go to the ILIAS-website and login into your account using your personal ZDV credentials.
 - In section Informatik/Computergrafik please enroll into the lecture Machine Learning in Graphics & Vision. Direct-Link is https://ovidius.uni-tuebingen.de/ ilias3/ilias.php?ref_id=1768123&cmdClass=ilrepositorygui&cmdNode=so&baseClass= ilrepositorygui
 - 3. You will need to provide some information there (name, matriculation number, ...).
 - 4. After completing the survey, you should be able to download your first homework from the **Exercise** section.
 - 5. If you have any questions regarding the exercises, please ask at the **Forum**.
 - 6. Please upload although you get no points this time your solution for the tasks below into ILIAS, to familiarize yourself with the system.
- Exercise sheets will be available after the lecture in the ILIAS system for download. Please solve these homeworks until the next Wednesday 21:00:00. The submission deadline will be stated in each exercise sheet.
 - We encourage you to discuss these homeworks within a group. You are eligible to submit the solution of a group of up to 2 people. But you are responsible yourself to submit the solution for the homework.
 - By continuous and active participation in the weekly exercises, students may obtain a 0.3 bonus on the final grade, if and only if passing the exam. To qualify for this bonus, the student must successfully solve 50% of the assigned homework problems which will be determined by grading the submitted homework solutions.

b) Submitting your solutions:

- Please compress your submission using the ZIP format and *only* include necessary files.
- We will provide a template for most tasks to avoid potential confusions. Please follow them to ensure a smooth procedure.

c) Infrastructure:

• You are eligible to use the Training Center for Machine Learning (TCML) cluster. Please read the cluster documentation for more details (https://docs.google.com/document/d/1AgtLy28VVZaPe79TwOb9jjC4F1KVzffb8y1vZoURZE8/edit?usp=sharing).

Exercises

0.1 Local PyTorch Installation (0 Points)

We use PyTorch for exercises. To ensure a working environment, we ask you to install PyTorch on your machine:

- a) It is recommended to manage PyTorch with Anaconda. Please install Anaconda with Python version 3.5+ following instructions at https://www.anaconda.com/download/.
- b) Install PyTorch following instructions at https://pytorch.org/get-started/locally/.
- c) We ask you to run the toy regression code exercise_pytorch.py we provided. Please save the output log in the terminal as a .txt file. Please pack all files in this exercise into a ZIP file and upload it to the ILIAS system. Please rename the ZIP file as your name.

0.2 Local OpenAI Gym Installation (0 Points)

We ask you to install OpenAI Gym on your machine:

- a) Please install Python 3.5+ if you don't have it.
- b) Unzip the sdc_gym.zip you downloaded together with this Exercise Sheet and enter the folder sdc_gym, install the Box2D environment by the command

```
pip install -e '.[box2d]'
```

c) After installation, please take a screen-shot of your full screen with the car racing game on top. Please pack the screen-shot into the ZIP file and upload it to the ILIAS system. If you are in the sdc_gym folder, you should be able to start the car racing game by the command

```
cd gym/envs/box2d
python car_racing.py
```

0.3 Cluster Setup (0 Points)

To get fimilar with the TCML cluster, we ask you to run a small Python script with the Singularity image we provided:

- a) Read the cluster documentation and log in to the cluster after you get the account.
- **b)** Download the Singularity image and copy it to your home directories on the cluster via scp: https://owncloud.tuebingen.mpg.de/index.php/s/TNJS7Y7bXdZJfZ4
- c) Submit a task to the cluster to run the Python script exercise_gym.py as follow. You need to create a .sbatch file to submit the task.

```
from pyvirtualdisplay import Display
2
   import gym
3
   display = Display(visible=0, size=(800,600))
4
   display.start()
   env = gym.make('CarRacing-v0')
6
   obs, done = env.reset(), False
   ep_rew = 0.0
   while not done:
      obs, rew, done, _{-} = env.step([0.0, 1.0, 0.0])
10
       ep_rew += rew
11
12
   print(ep_rew)
   display.stop()
```

Note that you need to run python with our provided Singularity Container sdc_gym.simg, such as

- ${\scriptstyle 1}$ # when using the OpenAI gym and rendering to a virtual display
- 2 singularity exec ~/sdc_gym.simg python3 your_python_script.py
- 3 # when training networks on GPUs in PyTorch without accessing the gym environment
- 4 singularity **exec** --nv ~/sdc_gym.simg python3 your_python_script.py

Please pack the output file on the cluster (job.JOBID.out) into the ZIP file and upload it to the ILIAS system.