Project VIX

Predicting market volatility

Nathan Maton 1/25/19

Problem Statement - Can we predict market volatility?

Part 1: Time series analysis

- Data isn't independent
- ARIMA & Facebook Prophet models

Part 2: Augment with exogenous data

- SARIMAX model
- Federal Prime Rate data

Prime Rate theorized to rise before market downturn

Data Sources

Data Available

- Scraped Federal Prime Rate history
- **Downloaded** Historical Vix data

Time Frame

• Federal Prime: 1920s-Today

Vix: 1990s-Today

Process & Tools

- Cleaned, normalized & split data 1)
- Optimized models in three ways: 2)
- Partial & autocorrelation analysis
- Grid search algorithm for parameters
- Time window refitting

Tools Used

StatsModels Statistics in Python

Time window refitting - Each dot is 1 data point

Model optimization only made minor difference

	RMSE	% Change
AR1	0.04217	-
ARMA(8,2)	0.04197	0.47
ARMA(8,2) Window	0.04117	2.37
SARIMAX	.04217	-0.05
Facebook Prophet	0.04257	-0.95

^{*}Test data ARMA(8,2) RMSE is .03794

Analysis conclusions

- Time series analysis challenging on highly analyzed market indices
- Federal prime rates aren't fast economic indicators

Future work: Try different exogenous data or other sources

- Use computers with larger processing power
- Include other economic data
- Try non-linear prediction models

Thanks!

Appendix

Data Seasonality

Weekly Vix Partial Autocorrelation

Weekly Vix Partial Autocorrelation

