EE 513: Stochastic Systems Theory Fall 2022 Schmid

Final (take home)

Distributed on December 15, 2022 (at 9 am)

Due is on December 16, 2022 (at 9 am)

Do your own work. The test is take home and thus open book and notes.

Name:

Pledge: "I have neither given nor received unauthorized aid on this examination."

Signed:

Problem	Points	Points received
1	13	
2	15	
3	12	
4	15	
5	15	
6	15	
7	15	
Bonus	10	
Total		

Problem 1 (13 points): Assume n i.i.d. Poisson distributed random variables $X_1, ..., X_n$ with parameter λ .

- (a) Find the maximum likelihood (ML) estimate of λ .
- (b) Compute the bias and variance of the estimate.

Problem 2 (15 points): Suppose R is a random variable that, under hypothesis H_0 , has pdf

$$p_R(r | H_0) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{r^2}{2}\right)$$

and, under hypothesis H_1 , has pdf

$$p_R(r \mid H_1) = \begin{cases} 1/5, & \text{if } r \in [0,5] \\ 0, & \text{otherwise} \end{cases}$$

Find the Bayesian rule and the total probability of error for testing H_0 against H_1 when the prior probabilities are set to $\pi_0 = 3/4$ and $\pi_1 = 1/4$.

Problem 3 (12 points): Let $X_1, ..., X_n, ...$ be a sequence of independent identically distributed random variables. Each X_i is a ternary random variable:

$$X_i = \begin{cases} 1 & with prob. \ 1/3 \\ 0 & with prob. \ 1/3 \\ -1 & with prob. \ 1/3 \end{cases}$$

State and prove the weak law of large numbers for a sequence of sample means:

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i .$$

Problem 4 (15 points): The number of messages arriving at a multiplexer is a Poisson random variable with mean 15 messages/second. Use the central limit theorem to estimate the probability that more than 950 messages arrive in one minute.

Problem 5 (15 points): A linear time invariant system (LTI) system is shown below. Let $Y(t) = X(t) * h(t) = \int_{-\infty}^{+\infty} X(\tau)h(t-\tau)d\tau$ and Z(t) = X(t) - Y(t).

H(f) is the frequency response of the filter with the impulse response h(t) is given as

$$H(f) = \frac{1}{1 + f^2}$$

The random process X(t) is given as $X(t) = A\cos(2\pi f_c t + \Theta)$, where A and Θ are independent random variables. A is a binary random variable with the probability mass function

$$A = \begin{cases} 4 & with \ probability \ 1/2 \\ 0 & with \ probability \ 1/2 \end{cases}$$
 and Θ is uniform over $(0, 2\pi)$.

- (a) Find the mean and autocovariance function of X(t).
- (b) Prove that X(t) is a wide sense stationary process (WSS).
- (c) Find the power spectral density on the output of the system $S_Z(f)$. Assume that $f_c = 1$.
- (d) Find $E[Z^2(t)]$.

Hint: Find the frequency response (transfer function) of the overall LTI system, then use it to answer questions (c) and (d).

Problem 6 (15 points): Suppose X and Y have joint pdf $f_{X,Y}(x,y)$ and W = 2X - Y and Z = X + 2Y.

- (a) Find the pdf of Z. Express it in terms of $f_{X,Y}(x,y)$.
- (b) Express the joint pdf of W and Z in terms of $f_{X,Y}(x,y)$.

Problem 7 (15 points): Suppose X and Y are jointly Gaussian random variables such that X is N(0,16), Y is N(0,9), and the correlation coefficient is denoted by ρ . For two jointly Gaussian random variables, they are independent if and only if they are uncorrelated. The solution to the questions below may depend on ρ and may fail to exist for some values of ρ .

- (a) For what value(s) of a is X independent of $X + \alpha Y$?
- (b) For what value(s) of d is 2X + dY independent of $(X dY)^2$? If d exists, providing one value of d is sufficient.

Bonus Problem (10 points)

- (a) Develop the tightest right Chernoff bound on the probability $P(X > E[X] + \varepsilon)$, where $\varepsilon > 0$. Assume that the probability density function $f_X(x)$ of X is known.
- (b) Demonstrate your result on a Gaussian random variable with mean 5 and variance 4 and compare it with the exact value of the probability.
- (c) Plot the bound and the exact probability as a function of ε .