Liquidate your Assets

Reasoning about resource usage in Liquid Haskell

M. Handley, **N. Vazou**, and G. Hutton University of Nottingham and **IMDEA**

Refinement types for length preservation

SMT automated checking. Even for list sortedness.

Refinement types for length preservation

What about resources? (here number of comparisons)

Tracking resources

Tracking resources using The Tick data type

The Tick data type

The Tick data type

The Applicative Instance

Zero resources using the Tick data type

The Tick data type

Resource tracking

Actual resources using the Tick data type

Let's define insertion sort!

Let's define insertion sort!

Tick is a Monad!

The Tick data type

The Monad Instance

Resources of insertion sort

Problem: type level computations!

Solution I: ghost parameter

```
(>>={n}) :: x:Tick a
  -> f:(a -> {t:Tick b | tcost t <= n})
  -> {t:Tick b | tcost t <= tcost x + n}</pre>
```

```
(>>={n}) :: x:Tick a
  -> f:(a -> {t:Tick b | tcost t <= n})
  -> {t:Tick b | tcost t <= tcost x + n}</pre>
```

Cost of monadic function is bound by n

```
(>>={n}) :: x:Tick a
  -> f:(a -> {t:Tick b | tcost t <= n})
  -> {t:Tick b | tcost t <= tcost x + n}</pre>
```

No type level computations...

```
(>>={n}) :: x:Tick a
  -> f:(a -> {t:Tick b | tcost t <= n})
  -> {t:Tick b | tcost t <= tcost x + n}</pre>
```

... but explicit parameter should be provided.

Resource Tracking using Refinement Types

Tick monad lets you track resources in refinement types

Problem:

The bind operation breaks automatic verification

Solution I: ghost parameter

Solution II: extrinsic proofs

Extrinsic resource analysis proofs

```
isortCostSorted :: Ord a => xs:OList a
      -> { tcost (isort xs) <= len xs }
isortCostSorted [] = () - automated
isortCostSorted [ ] = () - automated
isortCostSorted (x:xs@(y:ys))
= tcost (isort (x:xs))
==. tcost (isort xs >>={len xs} insert x)
==. tcost (isort xs) + tcost (insert x (tval (isort xs)))
     ? isortSortedVal xs - tval (isort xs) == xs
==. tcost (isort xs) + tcost (insert x xs)
     ? isortCostSorted xs
 <=. len xs + tcost (insert x xs)</pre>
 <=. len xs + tcost (insert x (y:ys))</pre>
 \leq len xs + 1
<=. len (x:xs)
 ***
    OED
```

Relational Properties, e.g., sorted lists are sorted faster.

```
xs:0List a

→ ys:{[a] | len xs == len ys}

→ { tcost (isort xs) <= tcost (isort ys) }</pre>
```

Relational Properties, e.g., sorted lists are sorted faster.

We encoded all the examples from the relational refinement types^{1, 2, 3} work.

): But, required manual proofs:(

¹Aguirre et al: A Relational Logic for Higher-Order Programs. ICFP'17.

²Çiçek et al: Relational Cost Analysis. POPL'17.

³Radiček et al:Monadic Refinements for Relational Cost Analysis. POPL'18.

Relational Properties, e.g., sorted lists are sorted faster.

Function optimization, e.g., [] ++ xs is faster than xs ++ []

We developed operators to simultaneously reason about 1/ resource modification and 2/program equivalence.

Function optimization, e.g., [] ++ xs is faster than xs ++ []

$$xs:[a] \rightarrow \{ [] ++ xs <\sim< xs ++ [] \}$$

value preservation & cost improvement!

Relational Properties, e.g., sorted lists are sorted faster.

Function optimization, e.g., [] ++ xs is faster than xs ++ []

Higher Order Properties, e.g., map fusion is an optimization

Higher Order Properties, e.g., map fusion is an optimization

```
mapM f xs >>= mapM g
>== len xs ==>
mapM (f >=> g) xs
```

value preservation & exact cost improvement!

Relational Properties, e.g., sorted lists are sorted faster.

Function optimization, e.g., [] ++ xs is faster than xs ++ []

Higher Order Properties, e.g., map fusion is an optimization

In the paper:

More benchmarks

Soundness of the Tick library

What about laziness?
Lazy ADTs should be explicitly defined using Ticks*

Resource Tracking using Refinement Types

Tick monad lets you track resources in refinement types

Problem:

The bind operation breaks automatic verification

Solution I: ghost parameter

Solution II: extrinsic proofs

Extrinsic proofs can prove arbitrary resource properties

Thanks!

The End

Benchmarks

		Lines of code		
	Property	Exec.	Spec.	Proof
Laziness [Danielsson 2008]				
Insertion sort	$COST(lisort xs) \leq xs $	12	8	0
Implicit queues	$COST(lsnoc \ q \ x) = 5$, $COST(view \ q) = 1$	50	14	0
Relational [Aguirre et al. 2017; Çiç	ek et al. 2017; Radiček et al. 2017]			
2D count	$Cost(2DCount\ find_1) \leq Cost(2DCount\ find_2)$	16	3	24
Binary counters	$Cost(decr \ k \ tt) = Cost(incr \ k \ ff)$	26	21	21
Boolean expressions	$NoShort(e) \Rightarrow Cost(eval_1 e) = Cost(eval_2 e)$	28	2	13
Constant-time comparison	$Cost(compare p u_1) = Cost(compare p u_2)$	3	8	3
Insertion sort	$SORTED(xs) \Rightarrow COST(isort \ xs) \leq COST(isort \ ys)$	16	17	44
Memory allocation of length	$Cost(length_2 xs) - Cost(length_1 xs) = length xs$	10	4	6
Relational insertion sort	Cost(isort xs) - Cost(isort ys) = unsortedDiff xs ys	16	11	69
Relational merge sort	$COST(msort \ xs) - COST(msort \ ys) \le xs (1 + \log_2(diff \ xs \ ys))$	23	25	59
Square and multiply	$COST(sam\ t\ x\ l_1) - COST(sam\ t\ x\ l_2) \leqslant t*diff\ l_1\ l_2$	3	8	3
Datatypes [Vazou et al. 2018]				
Append's monoid laws	see example 5 of section 2	12	10	74
Appending	COST(xs ++ ys) = xs	8	3	0
Flattening	$PERFECT(t) \Rightarrow COST(flattenOpt \ t) = 2^{ t } - 1$	5	18	45
Optimised-by-construction reverse	reverse xs >~> fastReverse xs	18	37	140
Reversing (naive)	$COST(reverse \ xs) = \frac{ xs ^2}{2} + \frac{ xs + 1}{2}$	9	7	22
Reversing (optimised)	COST(fastReverse xs) = xs	5	8	0
Sorting				
Data.List.sort	$COST(ssort xs) \leq 4 xs \log_2 xs + xs $	39	49	107
Insertion sort	$Cost(isort xs) \leq xs ^2$	8	10	33
Merge sort	$\frac{ xs }{2}\log_2 xs \leq \text{COST}(msort \ xs) \leq xs \log_2\frac{ xs }{2} + xs $	22	69	139
Quicksort	$COST(qsort xs) \leqslant \frac{1}{2}(xs +1)(xs +2)$	15	8	27
Total		344	340	829

Metatheory

A corollary of monadic encapsulation + metatheory of refinement types:

THEOREM (SOUNDNESS OF COST ANALYSIS). Let $p :: Int \rightarrow Bool$ be a predicate over integers and $f :: x : \tau_x \rightarrow \tau$ a safe and terminating function.

- Intrinsic cost analysis If $\emptyset \vdash f :: x : \tau_x \to \{t : Tick_\tau \mid p \ (tcost_\tau \ t)\}$, then for all $e_x \in [\tau_x]$, $e_f \ e_x \hookrightarrow^* Tick_\tau \ i \ e \ and \ p \ i \hookrightarrow^* true$.
- Extrinsic cost analysis If $\emptyset \vdash e :: x : \tau_x \to \{v : \tau \mid p \ (tcost_\tau f \ x)\}$, then for all $e_x \in [\tau_x]$, $f e_x \hookrightarrow^* Tick_\tau$ i e and $p i \hookrightarrow^* true$.

Future Directions

Resource Bound Inference

Automate lifting or, at least, erasure

Turn Tick into a monad transformer (e.g., to combine with Parallel Monad)