Lecture 5 Review Questions

Q1. Consider the following relation and dependencies.

R(A, B, C, D, E) $FD1: A \rightarrow B$ $FD2: C \rightarrow D$

For this relation, please

- (a) determine the candidate keys, and
- (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.
- **Q2.** Consider the following relation and dependencies.

R(A, B, F) $FD1: AB \rightarrow F$ $FD2: B \rightarrow F$

For this relation, please

- (a) determine the candidate keys, and
- (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.
- **Q3.** Consider the following relation and dependencies.

R(A, B, C, D, E) FD1: D \rightarrow B FD2: CE \rightarrow A

For this relation, please

- (a) determine the candidate keys, and
- (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.
- **Q4.** Consider the following relation and dependencies.

R(A, B, C, D, E) FD1: $A \rightarrow E$ FD2: $BC \rightarrow A$ FD3: $DE \rightarrow B$

For this relation, please

- (a) determine the candidate keys, and
- (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.

Q5. Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values.

- CH -> G
- A -> BC
- B -> CFH
- E -> A
- F -> EG

is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that hold for R. Determine the Candidate Keys for relation R.

Q6. Consider the following relational schema:

Suppliers (sid:integer, sname:string, city:string, street:string)
Parts (pid:integer, pname:string, color:string)
Catalog (sid:integer, pid:integer, cost:real)

Assume that, in the suppliers relation above, each supplier and each street within a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the following is TRUE about the above schema?

- a. The schema is in BCNF
- b. The schema is in 3NF but not in BCNF
- c. The schema is in 2NF but not in 3NF
- d. The schema is not in 2NF

Answers

Q1: R(A,C,B,D,E). FDs: $A \rightarrow B$, $C \rightarrow D$

Answer: First compute the keys for R1. The attributes A, C, E do not appear on right hand side of any functional dependency therefore they must be part of a key. So we start from {A, C, E} and find out that this set can determine all features. So the key is {A, C, E}

We have dependencies $A \to B$ and $C \to D$ so the table is not BCNF. Applying the BCNF decomposition algorithm, the non-BCNF dependency is $A \to B$, therefore create two relations (A, C, D, E) and (A, B). The first relation is still not in BCNF since we have a non-BCNF dependency $C \to D$. Therefore decompose further into (A, C, E) and (C, D). Now all relations are in BCNF and the final BCNF scheme is (A, C, E), (C, D), (A, B).

Q2: R(A,B,F). FDs: $AB \rightarrow F$, $B \rightarrow F$

Answer: First compute keys for R2. Note that AB -> F is totally redundancy since we already have B-> F. A,B do not appear on right side of any dependency, so start by computing attribute set closure of {AB}. Since AB \rightarrow F, we have {AB}+ = {ABF} and therefore {AB} is the key. Since we have B \rightarrow F, i.e., F is partially dependent on the key, the relation is not in BCNF. During BCNF decomposition, we have B \rightarrow F as the non-BCNF relation therefore create new schema (A,B) (B,F). Both are in BCNF.

Q3: R(A,B,C,D,E). FDs: D \rightarrow B, CE \rightarrow A.

Answer: The key for R5 is {CDE} since we have {CDE}+ = {ABCDE}. R5 is not in BCNF and not in 3NF. Applying the BCNF decomposition, we pick $D \rightarrow B$ which is not BCNF and decompose into (D, B) and (ACDE). But (ACDE) is still not in BCNF since $CE \rightarrow A$ is not BCNF. Therefore decompose into (D, B), (A,C,E) and (D,C,E) which is now in BCNF.

Q4: R(A,B,C,D,E). FDs: $A \rightarrow E$, BC $\rightarrow A$, DE $\rightarrow B$.

Answer: Since D and C do not appear on right hand side, all keys must contain C and D. The set $\{C,D\}$ by itself is not a key since $\{C,D\}+=\{C,D\}$. However, all three element sets containing $\{C,D\}$ are keys – i.e., $\{A,C,D\}$ is a key, $\{B,C,D\}$ is a key, and $\{C,D,E\}$ is a key. So all attributes are prime attributes. Therefore the schema is in 3NF. However, the left hand side of the FDs is not a key therefore it is not in BCNF. One decomposition will start by removing $A \to E$ to form $\{A,E\}$ and $\{A,B,C,D\}$. But $\{A,B,C,D\}$ is not in BCNF since BC is not the key. Therefore decompose further to get $\{A,E\}$, $\{BCA\}$ and $\{BCD\}$. This is in BCNF since the only dependency in $\{BCD\}$ is the trivial dependency BCD $\to BCD$.

Q5. Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. $\{CH -> G, A -> BC, B -> CFH, E -> A, F -> EG\}$ is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that hold for R. Determine the Candidate Keys for R.

Answer: A+ is ABCEFGH which is all attributes except D.

B+ is also ABCEFGH which is all attributes except D.

E+ is also ABCEFGH which is all attributes except D.

F+ is also ABCEFGH which is all attributes except D.

So, there are total 4 candidate keys AD, BD, ED and FD.

Q6. Consider the following relational schema:

Suppliers (sid:integer, sname:string, city:string, street:string)
Parts (pid:integer, pname:string, color:string)
Catalog (sid:integer, pid:integer, cost:real)

Assume that, in the suppliers relation above, each supplier and each street within a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the following is TRUE about the above schema?

Answer: The schema is in BCNF