Tailoring Differentially Private Bayesian Inference to Distance Between Distributions

Mark Bun[†], Gian Pietro Farina*, Marco Gaboardi*, Jiawen Liu*

†Princeton University, *University at Buffalo, SUNY

Objectives

Design a mechanism that achieve differential privacy by scaling to a metric between distribution.

- 1. A differentially private bayesian mechanism,
- 2. Calibrating mechanism noise by the same probabilistic distance we want to measure accuracy with.
- 3. Applying smooth sensitivity in mechanism to achieve better accuracy.

Bayesian Inference Background

beta distribution, **beta** (α, β) , with parameters $\alpha, \beta \in \mathbb{R}^+$, and with p.d.f:

$$\mathsf{Pr}(heta) \equiv rac{ heta^{lpha} (1- heta)^{eta}}{\mathsf{B}(lpha,eta)}$$

where $B(\cdot, \cdot)$ is the beta function. The data x will be a sequence of $n \in \mathbb{N}$ binary values, that is $x = (x_1, \dots, x_n), x_i \in \{0, 1\}$, and the likelihood function is:

$$Pr(x|\theta) \equiv \theta^{\Delta\alpha} (1-\theta)^{n-\Delta\alpha}$$

where $\Delta \alpha = \sum_{i=1}^{n} x_i$. From this it can easily be derived that the posterior distribution is:

$$Pr(\theta|x) = beta(\alpha + \Delta\alpha, \beta + n - \Delta\alpha)$$

Differentially private Bayesian inference

Release a private version of posterior distribution $(\tilde{\alpha}, \tilde{\beta}) = (\alpha + \widetilde{\Delta \alpha}, \beta + n - \widetilde{\Delta \alpha})$ where $\widetilde{\Delta \alpha} \sim Lap(\Delta \alpha, \frac{2}{\epsilon})$, and where $Lap(\mu, \nu)$ denotes a Laplace random variable with mean μ and scale ν .

Our Approach - Exponential Mechanism with Smooth Sensitivity

define the mechanism $\mathcal{M}_{\mathcal{H}}^{B}$ which, given in input a sequence of observations \mathbf{x} and parameters $\epsilon > \mathbf{0}$ and $\delta > \mathbf{0}$, produces an element r in $\mathcal{R}_{\text{post}}$ with probability:

$$\Pr_{z \sim \mathcal{M}_{\mathcal{H}}^{B}}[z = r] = \frac{exp(\frac{-\epsilon \cdot \mathcal{H}(BI(x), r)}{2 \cdot S(x)})}{\sum_{r \in \mathcal{R}_{post}} exp(\frac{-\epsilon \cdot \mathcal{H}(BI(x), r)}{2 \cdot S(x)})}.$$

The smooth sensitivity is computed as follows:

$$S(\mathbf{x}) = \max_{\mathbf{x}' \in \{0,1\}^n} \left\{ \Delta_I \left(\mathcal{H}(\mathsf{BI}(\mathbf{x}'), \cdot) \right) \cdot e^{-\gamma \cdot d(C(\mathbf{x}), C(\mathbf{x}'))} \right\}, \tag{1}$$

where d is the Hamming distance between two datasets, $\gamma=\gamma(\epsilon,\delta)$ is a function of ϵ and

Some Experimental Results

(a) 2-dimensional, data size \in [100, 500] (b) 3-dimensional, data size \in [100, 500] (c) 4-dimensional, data size \in [100, 600] Figure 1: Increasing data size with unit prior beta(1, 1), beta(1, 1, 1) and beta(1, 1, 1, 1), balanced datasets and parameters $\epsilon = 0.8$ and $\delta = 10^{-8}$

Figure 2: The concrete outputting probabilities under different dimensions with data set of size 600 ,unit prior beta(1,1), beta(1,1,1) and beta(1,1,1,1), balanced datasets and parameters $\epsilon=0.8$ and $\delta=10^{-8}$

Conclusion and Future Work

- lacktriangle Our the probabiliy measure approach outperforms the ℓ_1 -norm approach when the Laplace noise cannot recognize the data to be protected is histogram and data size grow large.
- \triangleright 1. The accuracy that we are going to explore next, and in a more principled and formal way.
- 2. Experiments have shown that the actual privacy loss in the experiments can be smaller than ϵ . This means that we could improve accuracy, by adding less noise but still achieve (ϵ, δ) -dp.
- 3. The choice of the Hellinger distance might seem quite ad-hoc. Hence, it is worth exploring other distances over distributions. An interesting class of probability metrics is the family of f-divergences [1].
- 4. Other application of our scheme are going to be explored.

References

[1] I. Csiszár and P.C. Shields. Information theory and statistics: A tutorial. Foundations and Trends in Communications and Information Theory, 1(4):417-528, 2004.