САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

ИНСТИТУТ КОМПЬЮТЕРНЫХ НАУК И КИБЕРБЕЗОПАСНОСТИ

Направление подготовки: 09.03.04 «Программная инженерия» 65130904/30022

Задание №1, вариант 14.

Выполнил студент: Лютов Александр Владимирович, группа 30022.

Преподаватель: Воскобойников Сергей Петрович.

Задание

ВАРИАНТ N14

Для $1 \le x \le 4$ с h = 0.375 вычислить значения $f(x) = \int\limits_0^{20} \frac{dz}{e^z(z+x)},$

используя для вычисления интеграла программу **QUANC8**. По полученным точкам построить сплайн-функцию и полином Лагранжа 8-й степени. Сравнить значения обеих аппроксимаций в точках $x_k = 1.1875 + 0.375k$ (k=0,1,..,7).

Результат работы программы

xk	f(xk)	spline(xk)	lagrange(xk)	f(xk)-spline(xk)	f(xk)-lagrange(xk)
1.1875	0.529808	0.530495	0.530405	0.000687	0.000597
1.5625	0.435033	0.434805	0.434916	0.000228	0.000117
1.9375	0.370219	0.370262	0.370263	0.000043	0.000044
2.3125	0.322808	0.322786	0.322779	0.000022	0.000028
2.6875	0.286487	0.286492	0.286515	0.000005	0.000028
3.0625	0.257707	0.257689	0.257663	0.000018	0.000044
3.4375	0.234303	0.234360	0.234417	0.000056	0.000113
3.8125	0.214876	0.214663	0.214311	0.000213	0.000565

Выводы

Сравнение аппроксимаций

1. Сплайн-аппроксимация:

- Средняя ошибка: ≈0.00016.
- o Максимальная ошибка: 0.000687 при xk=1.1875.
- о Минимальная ошибка: 0.0000050 при xk=2.6875.

2. Полином Лагранжа:

- \circ Средняя ошибка: ≈0.00019.
- о Максимальная ошибка: 0.000565 при xk=3.8125.
- о Минимальная ошибка: 0.000028 при xk=2.6875.

Выводы

• Точность:

- В большинстве точек сплайн-аппроксимация дает меньшую ошибку по сравнению с полиномом Лагранжа.
- о Исключение составляет точка xk=1.5625, где полином Лагранжа точнее.
- о В крайней точке xk=3.8125 ошибка полинома Лагранжа значительно возрастает.

• Стабильность:

- о Сплайн демонстрирует более стабильную точность на всем интервале.
- о Полином Лагранжа менее стабилен, особенно на краях интервала.

Итоговый ответ

Сплайн-аппроксимация в данном случае работает лучше полинома Лагранжа, так как обеспечивает меньшую среднюю ошибку и более стабильную точность на всем интервале.

Код программы

main.f90

```
program main
  use integral func mod
  implicit none
  interface
    subroutine SPLINE(N, X, Y, B, C, D) integer, intent(in) :: N! Число заданных точек или узлов
       real, intent(in) :: X(N)! Абсциссы узлов в строго возрастающем порядке
       real, intent(in) :: Y(N)! Ординаты узлов
       real, intent(out) :: B(N), C(N), D(N) ! Массивы определенных выше коэффициентов сплайна
    end subroutine SPLINE
     function SEVAL(N, Xi, X, Y, B, C, D) result(seval_value)
       integer, intent(in) :: N
       real, intent(in) :: Xi, X(N), Y(N), B(N), C(N), D(N)
                     :: seval value
    end function SEVAL
  end interface
  external quanc8
  real :: a, b, relerr, abserr, res, errest, flag
  integer :: nofun
  real, allocatable :: x_values(:), f_values(:)
  real, allocatable :: b_coef(:), c_coef(:), d_coef(:)
  integer :: i, k, x n
  real :: xk, spline val, lagrange val
  ! Установка параметров интегрирования
  a = 0.0
  b = 20.0
  relerr = 1.E-06
  abserr = 0.0
  h = 0.375
  x = 1.0
  x n = 1
  DO WHILE (x \le 4)
    x = x + h
    x n = x n + 1
  END DO
  x = 1.0
  ALLOCATE(x\_values(x\_n), f\_values(x\_n), b\_coef(x\_n), c\_coef(x\_n), d\_coef(x\_n))
  ! Вычисление значений функции f(x) для 1 \le x \le 4 с шагом h
  DO WHILE (x \le 4.0)
    CALL quanc8(integral func, a, b, abserr, relerr, res, errest, nofun, flag)
    x \text{ values(i)} = x
    f values(i) = res
    x = x + h
    i = i + 1
  END DO
  ! Вызов подпрограммы SPLINE для вычисления коэффициентов сплайна
  CALL SPLINE(x n, x values, f values, b coef, c coef, d coef)
  ! Сравнение значений в точках xk = 1.1875 + 0.375k (k=0,1,...,7)
  WRITE(*, '(A20, A20, A20, A20, A20, A20)') &
     'xk', 'f(xk)', 'spline(xk)', 'lagrange(xk)', 'f(xk)-spline(xk)', 'f(xk)-lagrange(xk)'
  DO k = 0, 7
    xk = 1.1875 + 0.375 * k
    ! Вычисление значений сплайна, полинома Лагранжа и функции в точке xk
     spline_val = SEVAL(x_n, xk, x_values, f_values, b_coef, c_coef, d_coef)
    lagrange_val = compute_lagrange(xk, x_values, f_values)
    x = xk
```

```
CALL quanc8(integral_func, a, b, abserr, relerr, res, errest, nofun, flag)
     WRITE(*, '(F20.4, F20.6, F20.6, F20.6, F20.6, F20.6)') &
       xk, res, spline_val, lagrange_val, abs(res-spline_val), abs(res-lagrange_val)
  END DO
  DEALLOCATE(x values, f values, b coef, c coef, d coef)
contains
  REAL FUNCTION compute_lagrange(x, x_values, f_values) RESULT(lagrange_val)
     REAL, INTENT(IN) :: x, x_values(:), f_values(:)
    INTEGER :: n, i, j
    REAL :: term, prod
    n = SIZE(x values)
    lagrange val = 0.0
    DO i = 1, n
       term = f_values(i)
       prod = \overline{1.0}
       DO j = 1, n
IF (j \neq i) THEN
           prod = prod * (x - x_values(j)) / (x_values(i) - x_values(j))
         END IF
       END DO
       lagrange val = lagrange val + term * prod
    END DO
  END FUNCTION compute lagrange
 end program main
integral func.f90
MODULE integral func mod
  IMPLICIT NONE
  real :: x, h
CONTAINS
  real FUNCTION integral func(z) RESULT(func value)
    real, intent(in) :: z
    func_value = 1.0 / (EXP(z) * (z + x))
```

END FUNCTION integral_func

END MODULE integral func mod