Caleb Logemani James Rossmanith

Model

Numerical Method

Generalized Shallow Wate Equations

Equations

Numerical Methods

Future Wor

References

Discontinuous Galerkin Method for Solving Thin Film and Shallow Water Equations

Caleb Logemann James Rossmanith

Mathematics Department, Iowa State University

logemann@iastate.edu

May 13, 2019

Overview

aleb Logemann James Rossmanith

Equation

Model

Numerical Method

Generalized Shallow Wate Equations

Numerical Methods Results

References

1 Thin Film Equation

- Model
- Numerical Methods
- Results

2 Generalized Shallow Water Equations

- Model
- Numerical Methods
- Results
- Future Work

Model Equations

Caleb Logemann James Rossmanith

Thin Film Equation Model

Numerical Method: Results

Generalized Shallow Water Equations

Numerical Methods Results

References

Incompressible Navier-Stokes Equation

$$u_x + w_z = 0$$

$$\rho(u_t + uu_x + wu_z) = -\rho_x + \mu \Delta u - \phi_x$$

$$\rho(w_t + uw_x + ww_z) = -\rho_z + \mu \Delta w - \phi_z$$

$$w = 0, u = 0 \qquad \text{at } z = 0$$

$$w = h_t + uh_x \qquad \text{at } z = h$$

$$\mathbf{T} \cdot \mathbf{n} = (-\kappa \sigma + \Pi)\mathbf{n} + \left(\frac{\partial \sigma}{\partial s} + \tau\right)\mathbf{t} \quad \text{at } z = h$$

Caleb Logema James Rossmanith

Thin Film Equation Model

Results
Generalized

Shallow Wate Equations

Numerical Method: Results

References

Nondimensionalize, integrate over Z, and simplify, gives

$$H_T + \left(\frac{1}{2}(\tau+\Sigma_X)H^2 - \frac{1}{3}\big(\left.\Phi\right|_{Z=H} - \Pi\big)_X H^3\right)_X = -\frac{1}{3}\,\bar{C}^{-1}\big(H^3H_{XXX}\big)_X$$

$$q_t + \left(q^2 - q^3\right)_x = -\left(q^3 q_{xxx}\right)_x$$

Method Overview

aleb Logemann, James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Numerical Methods Results

References

Simplified Model

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$$
 $(0, T) \times \Omega$

Runge Kutta Implicit Explicit (IMEX)

$$q_t = F(q) + G(q)$$

- F evaluated explicitly
- G solved implicitly

$$F(q) = -(q^2 - q^3)_x$$
$$G(q) = (q^3 q_{xxx})_x$$

Convection

aleb Logemann James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations Model

Numerical Methods Results Future Work

References

Convection Equation

$$F(q) = f(q)_x = 0 \qquad (0, T) \times \Omega$$
$$f(q) = q^2 - q^3$$

Weak Form Find q such that

$$\int_{\Omega} (F(q)v - f(q)v_x) dx + \hat{f}v \Big|_{\partial\Omega} = 0$$

for all test functions v

Notation

Caleb Logemann James Rossmanith

Model

Numerical Methods

Generalized Shallow Water Equations

Numerical Methods Results

References

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \dots < x_{j-1/2} < x_{j+1/2} < \dots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}.$

Runge Kutta Discontinuous Galerkin

Caleb Logemanr James Rossmanith

Model
Numerical Methods

Generalized Shallow Water Equations

Numerical Methods Results

References

Find Q(t,x) such that for each time $t \in (0,T)$, $Q(t,\cdot) \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$

$$\begin{split} \int_{I_j} & F(Q) v \, \mathrm{d} x = \int_{I_j} & f(Q) v_x \, \mathrm{d} x \\ & - \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right) \end{split}$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = \frac{1}{2} \left(f\left(Q_{j+1/2}^{-}\right) + f\left(Q_{j+1/2}^{+}\right) \right) + \frac{1}{2} \max_{q} \left\{ \left| f'(q) \right| \right\} \left(Q_{j+1/2}^{-} - Q_{j+1/2}^{+}\right)$$

Diffusion

aleb Logemann James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Wate Equations

Numerical Methods Results

References

■ Diffusion Equation

$$G(q) = -(q^3 q_{xxx})_x \qquad (0, T) \times \Omega$$

Local Discontinuous Galerkin

$$r = q_x$$

$$s = r_x$$

$$u = s_x$$

$$G(q) = (q^3 u)_x$$

Local Discontinuous Galerkin

aleb Logemann James Rossmanith

I hin Film
Equation
Model
Numerical Methods
Results

Generalized Shallow Water Equations Model

Numerical Methods Results

References

Find
$$Q(t,x), R(x), S(x), U(x)$$
 such that for all $t \in (0,T)$ $Q(t,\cdot), R, S, U \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$
$$\int_{I_j} Rv \, \mathrm{d}x = -\int_{I_j} Qv_x \, \mathrm{d}x + \left(\hat{Q}_{j+1/2} v_{j+1/2}^- - \hat{Q}_{j-1/2} v_{j-1/2}^+ \right)$$

$$\int_{I_j} Sw \, \mathrm{d}x = -\int_{I_j} Rw_x \, \mathrm{d}x + \left(\hat{R}_{j+1/2} w_{j+1/2}^- - \hat{R}_{j-1/2} w_{j-1/2}^+ \right)$$

$$\int_{I_j} Uy \, \mathrm{d}x = -\int_{I_j} Sy_x \, \mathrm{d}x + \left(\hat{S}_{j+1/2} y_{j+1/2}^- - \hat{S}_{j-1/2} y_{j-1/2}^+ \right)$$

$$\int_{I_j} G(Q)z \, \mathrm{d}x = -\int_{I_j} Q^3 Uz_x \, \mathrm{d}x + \left(\hat{U}_{j+1/2} z_{j+1/2}^- - \hat{U}_{j-1/2} z_{j-1/2}^+ \right)$$

for all $I_j \in \Omega$ and all $v, w, y, z \in V_h$.

Numerical Fluxes

aleb Logemann James Rossmanith

Thin Film Equation Model Numerical Methods

Generalized Shallow Wate Equations

Equations

Model

Numerical Meth

Results
Future Work

IMEX Runge Kutta

aleb Logemann James Rossmanith

Equation

Model

Numerical Method

Generalized Shallow Water Equations

Numerical Methods Results

References

■ IMEX scheme

$$egin{aligned} q^{n+1} &= q^n + \Delta t \sum_{i=1}^s \left(b_i' F(t_i, u_i)
ight) + \Delta t \sum_{i=1}^s \left(b_i G(t_i, u_i)
ight) \ u_i &= q^n + \Delta t \sum_{j=1}^{i-1} \left(a_{ij}' F(t_j, u_j)
ight) + \Delta t \sum_{j=1}^{i} \left(a_{ij} G(t_j, u_j)
ight) \ t_i &= t^n + c_i \Delta t \end{aligned}$$

■ Double Butcher Tableaus

$$\frac{c' \mid a'}{\mid b'^T} \frac{c \mid a}{\mid b^T}$$

Caleb Logemar James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Equations Model

Numerical Methods Results

References

■ 1st Order — L-Stable SSP

$$\begin{array}{c|c}
0 & 0 \\
\hline
 & 1
\end{array}$$
 $\begin{array}{c|c}
1 & 1 \\
\hline
 & 1
\end{array}$

■ 2nd Order — SSP

$$\begin{array}{c|ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}$$

Caleb Logeman James Rossmanith

Thin Film
Equation
Model
Numerical Methods

Generalized Shallow Wate Equations

Equations Model

Results
Future Work

References

■ 3rd Order — L-Stable SSP

$$\begin{split} \alpha &= 0.24169426078821\\ \beta &= 0.06042356519705\\ \eta &= 0.1291528696059\\ \zeta &= \frac{1}{2} - \beta - \eta - \alpha \end{split}$$

Nonlinear Solvers

aleb Logemann, James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations Model

Numerical Methods Results Future Work

References

Nonlinear System

$$u_i - a_{ii}\Delta tG(u_i) = b$$

■ Picard Iteration

$$\tilde{G}(q,u) = (q^3 u_{xxx})_x$$

$$u_0 = q^n \qquad u_i^0 = u_{i-1}$$

$$u_i^j - a_{ii} \Delta t \, \tilde{G}(u_i^{j-1}, u_i^j) = b$$

Number of picard iterations equals order in time and space

Manufactured Solution

Caleb Logemann James Rossmanith

Thin Film
Equation
Model
Numerical Methods

Generalized Shallow Water Equations

Numerical Methods Results

References

$$\begin{split} q_t + \left(q^2 - q^3\right)_x &= - \left(q^3 q_{\text{xxx}}\right)_x + s \\ s &= \hat{q}_t + \left(\hat{q}^2 - \hat{q}^3\right)_x + \left(\hat{q}^3 \hat{q}_{\text{xxx}}\right)_x \\ \hat{q} &= 0.1 \times \sin(2\pi/20.0 \times (x - t)) + 0.15 \quad \text{for } (x, t) \in [0, 40] \times [0, 5.0] \end{split}$$

	1st Order		2nd Order		3rd Order	
n	error	order	error	order	error	order
20	0.136	_	7.33×10^{-3}	_	5.29×10^{-4}	_
40	0.0719	0.92	1.99×10^{-3}	1.88	5.38×10^{-5}	3.30
80	0.0378	0.93	5.60×10^{-4}	1.83	7.47×10^{-6}	2.85
160	0.0191	0.99	1.56×10^{-4}	1.85	9.97×10^{-7}	2.91
320	0.00961	0.99	3.98×10^{-5}	1.97	1.26×10^{-7}	2.98
640	0.00483	0.99	1.00×10^{-5}	1.99	1.58×10^{-8}	3.00
1280	0.00242	1.00	2.50×10^{-6}	2.00	1.98×10^{-9}	3.00

Table: Convergence table with a constant, linear, quadratic polynomial bases. CFL = 0.9, 0.2, 0.1 respectively.

aleb Logemann James Rossmanith

Thin Film Equation Model

Numerical Meth Results

Generalized Shallow Wate Equations

Numerical Method

Results

aleb Logemann James Rossmanith

Thin Film Equation _{Model}

Numerical Method Results

Generalized Shallow Water Equations

Numerical Method

Results

Caleb Logemani James Rossmanith

Thin Film Equation _{Model}

Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods Results

Future Work

Caleb Logemani James Rossmanith

Thin Film Equation ^{Model}

Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods Results

Future Work

 $q_r = 0.1 \qquad q_l = 0.3323 \qquad q_m = 0.6$ $q(x,0) = \begin{cases} \frac{q_m - q_l}{2} \tanh(x) + \frac{q_m + q_l}{2} & x < 10 \\ -\frac{q_m - q_r}{2} \tanh(x - 20) + \frac{q_m + q_r}{2} + q_r & x > 10 \end{cases}$

Caleb Logemann James Rossmanith

Thin Film Equation

Numerical Metho Results

Generalized Shallow Water Equations

Model
Numerical Methy

Results

$$q_r = 0.1$$
 $q_l = 0.4$ $q(x,0) = (-\tanh(x-100)+1) \frac{q_l-q_r}{2} + q_r$

Caleb Logemanr James Rossmanith

Thin Film Equation

Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods

Results

Generalized Shallow Water

Caleb Logemann James Rossmanith

Thin Film
Equation
Model
Numerical Metho

Generalized Shallow Water Equations

Model

Results
Future Work

$$\begin{aligned} & \div \mathbf{u} = 0 \\ & \mathbf{u}_t + \div * \mathbf{u} \mathbf{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \div \sigma + \mathbf{g} \end{aligned}$$

$$(h_s)_t + [u(t, x, y, h_s), v(t, x, y, h_s)]^T \cdot \nabla h_s = w(t, x, y, h_s)$$

$$(h_b)_t + [u(t, x, y, h_b), v(t, x, y, h_b)]^T \cdot \nabla h_b = w(t, x, y, h_b)$$

aleb Logemann, James Rossmanith

nin Film Equation Model Numerical Method Results

Generalized Shallow Water Equations

Equations Model

Results
Future Work

Reference:

Characteristic Lengths

$$\varepsilon = \frac{H}{L}, \quad x = L\hat{x}, \quad y = L\hat{y}, \quad z = H\hat{z}$$

Characteristic Velocities

$$u = U\hat{u}, \quad v = U\hat{v}, \quad w = \varepsilon U\hat{w}$$

Characteristic Time

$$t = \frac{L}{U}\hat{t}$$

Characteristic Stresses

$$p = \rho g H \hat{p}, \quad \sigma_{xz/yz} = S \hat{\sigma}_{xz/yz}, \quad \sigma_{xx/xy/yy/zz} = \varepsilon S \hat{\sigma}_{xx/xy/yy/zz}$$

aleb Logemann James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Wate Equations

Model

Results

$$\begin{split} \hat{u}_{\hat{x}} + \hat{v}_{\hat{y}} + \hat{w}_{\hat{z}} &= 0 \\ \varepsilon F^2 \Big(\hat{u}_{\hat{t}} + \left(\hat{u}^2 \right)_{\hat{x}} + \left(\hat{u} \hat{v} \right)_{\hat{y}} + \left(\hat{u} \hat{w} \right)_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{x}} \\ + G \Big(\varepsilon^2 (\hat{\sigma}_{xx})_{\hat{x}} + \varepsilon^2 (\hat{\sigma}_{xy})_{\hat{y}} + (\hat{\sigma}_{xz})_{\hat{z}} \Big) + e_x \\ \varepsilon F^2 \Big(\hat{v}_{\hat{t}} + (\hat{u} \hat{v})_{\hat{x}} + (\hat{v}^2)_{\hat{y}} + (\hat{v} \hat{w})_{\hat{z}} \Big) &= -\varepsilon \hat{p}_{\hat{y}} \\ + G \Big(\varepsilon^2 (\hat{\sigma}_{xy})_{\hat{x}} + \varepsilon^2 (\hat{\sigma}_{yy})_{\hat{y}} + (\hat{\sigma}_{yz})_{\hat{z}} \Big) + e_y \\ \varepsilon^2 F^2 \Big(\hat{w}_{\hat{t}} + (\hat{u} \hat{w})_{\hat{x}} + (\hat{v} \hat{w})_{\hat{x}} + (\hat{w}^2)_{\hat{z}} \Big) &= -\hat{p}_{\hat{z}} \\ + \varepsilon G \Big((\hat{\sigma}_{xz})_{\hat{x}} + (\hat{\sigma}_{yz})_{\hat{y}} + (\hat{\sigma}_{zz})_{\hat{z}} \Big) + e_z \\ F &= \frac{U}{\sqrt{gH}} \approx 1, \quad G = \frac{S}{\rho gH} < 1 \end{split}$$

aleb Logemann James Rossmanith

Fhin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Model

Numerical Meth Results Future Work

i uture vvori

Drop ε^2 and εG terms

$$\hat{u}_{\hat{x}} + \hat{v}_{\hat{y}} + \hat{w}_{\hat{z}} = 0$$

$$\varepsilon F^{2} \Big(\hat{u}_{\hat{t}} + (\hat{u}^{2})_{\hat{x}} + (\hat{u}\hat{v})_{\hat{y}} + (\hat{u}\hat{w})_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{x}} + G(\hat{\sigma}_{xz})_{\hat{z}} + e_{x}$$

$$\varepsilon F^{2} \Big(\hat{v}_{\hat{t}} + (\hat{u}\hat{v})_{\hat{x}} + (\hat{v}^{2})_{\hat{y}} + (\hat{v}\hat{w})_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{y}} + G(\hat{\sigma}_{yz})_{\hat{z}} + e_{y}$$

$$\hat{p}_{\hat{z}} = e_{z}$$

Solving for the hydrostatic pressure

$$\hat{p}(\hat{t},\hat{x},\hat{y}) = \left(\hat{h}_s(\hat{t},\hat{x},\hat{y}) - \hat{z}\right)e_z$$

aleb Logemann James Rossmanith

I hin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Model
Numerical Met
Results

References

Dimensional Variables

$$u_{x} + v_{y} + w_{z} = 0$$

$$u_{t} + (u^{2})_{x} + (uv)_{y} + (uw)_{z} = -\frac{1}{\rho}p_{x} + \frac{1}{\rho}(\sigma_{xz})_{z} + ge_{x}$$

$$v_{t} + (uv)_{x} + (v^{2})_{y} + (vw)_{z} = -\frac{1}{\rho}p_{y} + \frac{1}{\rho}(\sigma_{yz})_{z} + ge_{y}$$

$$p(t, x, y, z) = (h_{s}(t, x, y) - z)\rho ge_{z}$$

Kinematic Boundary Conditions

$$(h_s)_t + [u(t, x, y, h_s), v(t, x, y, h_s)]^T \cdot \nabla h_s = w(t, x, y, h_s)$$

$$(h_b)_t + [u(t, x, y, h_b), v(t, x, y, h_b)]^T \cdot \nabla h_b = w(t, x, y, h_b)$$

Mapping

Model

Transform from $z \rightarrow \zeta$, by

$$\zeta = \frac{z - h_b(t, x, y)}{h(t, x, y)},$$

or equivalently

$$z = h(t, x, y)\zeta + h_b(t, x, y)$$

where $h(t, x, y) = h_s(t, x, y) - h_h(t, x, y)$.

$$\tilde{\Psi}(t,x,y,\zeta) = \Psi(t,x,y,h(t,x,y)\zeta + h_b(t,x,y))$$

Mapping Continuity Equation

Model

$$u_x + v_v + w_z = 0$$

Map to new space

$$(h\tilde{u})_{x}-((\zeta h+h_{b})_{x}\tilde{u})_{\zeta}+(h\tilde{v})_{y}-\left((\zeta h+h_{b})_{y}\tilde{v}\right)_{\zeta}+(\tilde{w})_{\zeta}=0$$

Solve for vertical velocity, w,

$$\widetilde{w}(t,x,y,\zeta') = -\left(h\int_{0}^{\zeta'} \widetilde{u} \,\mathrm{d}\zeta\right)_{x} - \left(h\int_{0}^{\zeta'} \widetilde{v} \,\mathrm{d}\zeta\right)_{y} \\
+ (\zeta'h + h_{b})_{x}\widetilde{u}(t,x,y,\zeta') + (\zeta'h + h_{b})_{y}\widetilde{v}(t,x,y,\zeta')$$

Depth averaged equation

$$h_t + \left(h \int_0^1 \tilde{u} \, \mathrm{d}\zeta\right)_{\mathsf{x}} + \left(h \int_0^1 \tilde{v} \, \mathrm{d}\zeta\right)_{\mathsf{y}} = 0$$

Let u_m and v_m denote the mean velocity

$$h_t + (hu_m)_x + (hv_m)_v = 0$$

Mapping Momentum Equations

Caleb Logeman James Rossmanith

Thin Film Equation Model Numerical Method Results

Generalized Shallow Water Equations

Model

Numerical Methods Results Future Work

$$\begin{split} u_t + \left(u^2\right)_x + \left(uv\right)_y + \left(uw\right)_z &= -\frac{1}{\rho} p_x + \frac{1}{\rho} (\sigma_{xz})_z + ge_x \\ v_t + \left(uv\right)_x + \left(v^2\right)_y + \left(vw\right)_z &= -\frac{1}{\rho} p_y + \frac{1}{\rho} (\sigma_{yz})_z + ge_y \end{split}$$

$$\begin{split} \left(h\tilde{u}\right)_{t} + \left(h\tilde{u}^{2} + \frac{1}{2}ge_{z}h^{2}\right)_{x} + \left(h\tilde{u}\tilde{v}\right)_{y} + \left(h\tilde{u}\omega - \frac{1}{\rho}\tilde{\sigma}_{xz}\right)_{\zeta} &= gh\left(e_{x} - e_{z}(h_{b})_{x}\right) \\ \left(h\tilde{v}\right)_{t} + \left(h\tilde{u}\tilde{v}\right)_{x} + \left(h\tilde{v}^{2} + \frac{1}{2}ge_{z}h^{2}\right)_{y} + \left(h\tilde{v}\omega - \frac{1}{\rho}\tilde{\sigma}_{yz}\right)_{\zeta} &= gh\left(e_{x} - e_{z}(h_{b})_{y}\right) \end{split}$$

where

$$\omega = \frac{1}{h} \left(-\left(h \int_0^{\zeta} \tilde{u} - u_m \, \mathrm{d}\zeta' \right)_x - \left(h \int_0^{\zeta} \tilde{v} - v_m \, \mathrm{d}\zeta' \right)_y \right)$$

Mapped Reference System

Caleb Logemanr James Rossmanith

Fhin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Model

Numerical Met Results Future Work

References

$$\begin{aligned} h_t + \left(hu_m\right)_x + \left(hv_m\right)_y &= 0 \\ \left(h\tilde{u}\right)_t + \left(h\tilde{u}^2 + \frac{1}{2}ge_zh^2\right)_x + \left(h\tilde{u}\tilde{v}\right)_y + \left(h\tilde{u}\omega - \frac{1}{\rho}\tilde{\sigma}_{xz}\right)_\zeta &= gh\left(e_x - e_z(h_b)_x\right) \\ \left(h\tilde{v}\right)_t + \left(h\tilde{u}\tilde{v}\right)_x + \left(h\tilde{v}^2 + \frac{1}{2}ge_zh^2\right)_y + \left(h\tilde{v}\omega - \frac{1}{\rho}\tilde{\sigma}_{yz}\right)_\zeta &= gh\left(e_x - e_z(h_b)_y\right) \\ \omega &= \frac{1}{h}\left(-\left(h\int_0^\zeta \tilde{u}_d\,\mathrm{d}\zeta'\right)_x - \left(h\int_0^\zeta \tilde{v}_d\,\mathrm{d}\zeta'\right)_y\right) \end{aligned}$$

with

$$\tilde{u}_d = \tilde{u} - u_m \quad \tilde{v}_d = \tilde{v} - v_m$$

Newtonian Flow

Model

Newtonian Stree Tensor

$$\sigma_{\rm xz} = \mu {\it u}_{\rm z} \quad \sigma_{\rm yz} = \mu {\it v}_{\rm z}$$

Kinematic Viscosity

$$\nu = \frac{\mu}{\rho}$$

Mapped stress tensor

$$\frac{1}{\rho}\tilde{\sigma}_{\mathsf{x}\mathsf{z}} = \frac{\nu}{\mathsf{h}}\tilde{\mathsf{u}}_{\zeta} \quad \frac{1}{\rho}\tilde{\sigma}_{\mathsf{y}\mathsf{z}} = \frac{\nu}{\mathsf{h}}\tilde{\mathsf{v}}_{\zeta}$$

Boundary Conditions

Model

Stree Free Condition at surface

$$u_z|_{z=h_s} = v_z|_{z=h_s} = 0$$

Mixed Slip Condition at bottom topography

$$u - \frac{\lambda}{\mu} \sigma_{xz} \bigg|_{z=h_b} = v - \frac{\lambda}{\mu} \sigma_{yz} \bigg|_{z=h_b} = 0$$

Mapped with Newtonian Stress

$$\left. \tilde{u}_{\zeta} \right|_{\zeta=1} = \left. \tilde{v}_{\zeta} \right|_{\zeta=1} = 0$$

and

$$\left| \tilde{u} - \frac{\lambda}{h} \tilde{u}_{\zeta} \right|_{\zeta=0} = \left| \tilde{v} - \frac{\lambda}{h} \tilde{v}_{\zeta} \right|_{\zeta=0} = 0$$

Moment Closure

Caleb Logemann James Rossmanith

Equation Model Numerical Method

Generalized Shallow Water Equations

Model

Results

References

Depth Averaged Momentum Equations

$$(hu_m)_t + \left(h \int_0^1 \tilde{u}^2 d\zeta + \frac{1}{2} g e_z h^2\right)_x + \left(h \int_0^1 \tilde{u} \tilde{v} d\zeta\right)_y$$
$$+ \frac{\nu}{\lambda} \left(u|_{\zeta=0} = hg(e_x - e_z(h_b)_x)\right)$$
$$(hv_m)_t + \left(h \int_0^1 \tilde{u} \tilde{v} d\zeta\right)_y + \left(h \int_0^1 \tilde{v}^2 d\zeta + \frac{1}{2} g e_z h^2\right)_y$$
$$+ \frac{\nu}{\lambda} \left(v|_{\zeta=0} = hg(e_x - e_z(h_b)_y)\right)$$

Polynomial Ansatz

aleb Logemann James Rossmanith

Equation Model Numerical Methods

Generalized Shallow Water Equations

Model

Results

Reterence

$$\begin{split} \tilde{u}(t,x,y,\zeta) &= u_m(t,x,y) + u_d(t,x,y,\zeta) \\ &= u_m(t,x,y) + \sum_{j=1}^N \left(\alpha_j(t,x,y)\phi_j(\zeta)\right) \\ \tilde{v}(t,x,y,\zeta) &= v_m(t,x,y) + v_d(t,x,y,\zeta) \\ &= v_m(t,x,y) + \sum_{j=1}^N \left(\beta_j(t,x,y)\phi_j(\zeta)\right) \end{split}$$

Orthogonality Condition

$$\int_0^1 \phi_j(\zeta)\phi_i(\zeta) \,\mathrm{d}\zeta = 0 \quad \text{for } j \neq i$$

$$\phi_0(\zeta) = 1$$
, $\phi_1(\zeta) = 1 - 2\zeta$, $\phi_2(\zeta) = 1 - 6\zeta + 6\zeta^2$

Constant Moments

aleb Logemani James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Model

Results
Future Work

$$\begin{split} \left(hu_{m}\right)_{t} + \left(h\left(u_{m}^{2} + \sum_{j=1}^{N} \frac{\alpha_{j}^{2}}{2j+1}\right) + \frac{1}{2}ge_{z}h^{2}\right)_{x} \\ + \left(h\left(u_{m}v_{m} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right)\right)_{y} = -\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N} \alpha_{j}\right) + hg\left(e_{x} - e_{z}(h_{b})_{x}\right) \\ \left(hv_{m}\right)_{t} + \left(h\left(v_{m}^{2} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right) + \frac{1}{2}ge_{z}h^{2}\right)_{y} \\ + \left(h\left(u_{m}v_{m} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right)\right)_{x} = -\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N} \beta_{j}\right) + hg\left(e_{y} - e_{z}(h_{b})_{y}\right) \end{split}$$

Higher Order Moments

Caleb Logemani James Rossmanith

Fhin Film Equation Model Numerical Methoo Results

Generalized Shallow Water Equations

Model
Numerical Methor
Results

References

Moment Equation

$$\begin{split} \int_{0}^{1} \phi_{i} \bigg(\left(h \tilde{u} \right)_{t} + \left(h \tilde{u}^{2} + \frac{1}{2} g e_{z} h^{2} \right)_{x} + \left(h \tilde{u} \tilde{v} \right)_{y} + \left(h \tilde{u} \omega - \frac{1}{\rho} \tilde{\sigma}_{xz} \right)_{\zeta} \bigg) \, \mathrm{d}\zeta \\ &= \int_{0}^{1} \phi_{i} (g h (e_{x} - e_{z} (h_{b})_{x})) \, \mathrm{d}\zeta \end{split}$$

Simplified gives

$$(h\alpha_{i})_{t} + \left(2hu_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\alpha_{k}\right)_{x}$$

$$+ \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\beta_{k}\right)_{y}$$

$$= u_{m}D_{i} - \sum_{i,k=1}^{N} B_{ijk}D_{j}\alpha_{k} - (2i+1)\frac{\nu}{\lambda}\left(u_{m} + \sum_{i=1}^{N} \left(1 + \frac{\lambda}{h}C_{ij}\right)\alpha_{j}\right)$$

Higher Order Moments

Caleb Logemanr James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Water Equations

Model

Results

$$\begin{split} \left(h\beta_{i}\right)_{t} + \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N}A_{ijk}\alpha_{j}\beta_{k}\right)_{x} + \left(2hv_{m}\beta_{i} + h\sum_{j,k=1}^{N}A_{ijk}\beta_{j}\beta_{k}\right)_{y} \\ = v_{m}D_{i} - \sum_{j,k=1}^{N}B_{ijk}D_{j}\beta_{k} - (2i+1)\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N}\left(1 + \frac{\lambda}{h}C_{ij}\right)\beta_{j}\right) \\ A_{ijk} = (2i+1)\int_{0}^{1}\phi_{i}\phi_{j}\phi_{k}\,\mathrm{d}\zeta \\ B_{ijk} = (2i+1)\int_{0}^{1}\phi'_{i}\left(\int_{0}^{\zeta}\phi_{j}\,\mathrm{d}\hat{\zeta}\right)\phi_{k}\,\mathrm{d}\zeta \\ C_{ij} = \int_{0}^{1}\phi'_{i}\phi'_{j}\,\mathrm{d}\zeta \\ D_{i} = (h\alpha_{i})_{x} + (h\beta_{i})_{y} \end{split}$$

Example Systems

Caleb Logemann James Rossmanith

I nin Film Equation Model Numerical Method: Results

Generalized Shallow Water Equations

Model

Numerical Methods Results

References

1D model with h_b constant, $e_{\rm x}=e_{\rm y}=0$, and $e_{\rm z}=1$ Constant System

$$\begin{bmatrix} h \\ hu_m \end{bmatrix}_t + \begin{bmatrix} hu_m \\ hu_m^2 + \frac{1}{2}gh^2 \end{bmatrix} = -\frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m \end{bmatrix}$$

Linear System, $s = \alpha_1$

$$\begin{bmatrix} h \\ hu_m \\ hs \end{bmatrix}_t + \begin{bmatrix} hu_m \\ hu_m^2 + \frac{1}{2}gh^2 + \frac{1}{3}hs^2 \\ 2hu_m s \end{bmatrix} = Q \begin{bmatrix} h \\ hu_m \\ hs \end{bmatrix}_x - P$$

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & u_m \end{bmatrix} \quad P = \frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m + s \\ 3(u_m + s + 4\frac{\lambda}{h}s) \end{bmatrix}$$

Nonconservative Flux

aleb Logemann James Rossmanith

Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Numerical Methods

Future Work

$$\int Q\mathbf{q}_x\phi\,\mathrm{d}x$$

$$\begin{bmatrix} Q_{\mathsf{x}}^1 \\ Q_{\mathsf{x}}^2 \\ Q_{\mathsf{x}}^3 \\ Q_{\mathsf{x}}^4 \\ Q_{\mathsf{x}}^5 \\ Q_{\mathsf{x}}^5 \end{bmatrix} = \frac{1}{2\Delta x} \begin{bmatrix} \Delta Q^1 - 2\sqrt{5}\Delta Q^3 + 78\Delta Q^5 \\ \Delta Q^2 - \frac{10}{3}\sqrt{3}\sqrt{7}\Delta Q^4 \\ \Delta Q^3 - 14\sqrt{5}\Delta Q^5 \\ \Delta Q^4 \\ \Delta Q^5 \end{bmatrix}$$

Caleb Logemann, James Rossmanith

Thin Film Equation

Numerical Methods

Results

Generalized Shallow Water Equations

Numerical Methods

Results

Future Work

Higer Momemt Equations

aleb Logemann James Rossmanith

Equation

Model

Numerical Method

Results

Generalized Shallow Water Equations

Numerical Methods Results

Future Work

Quadratic Vertical Profile

$$\begin{bmatrix} h \\ hu \\ hs \\ h\kappa \end{bmatrix}_t + \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}hs^2 + \frac{1}{5}h\kappa^2 \\ 2hus + \frac{4}{5}hs\kappa \\ 2hu\kappa + \frac{2}{3}hs^2 + \frac{2}{7}h\kappa^2 \end{bmatrix}_x = Q \begin{bmatrix} h \\ hu \\ hs \\ h\kappa \end{bmatrix}_x - P$$

Bibliography I

Caleb Logemann James Rossmanith

Thin Film Equation Model Numerical Method Results

Generalized Shallow Wate Equations Model

Numerical Methods Results Future Work

- [1] Andrea L Bertozzi, Andreas Münch, and Michael Shearer. "Undercompressive shocks in thin film flows". In: *Physica D: Nonlinear Phenomena* 134.4 (1999), pp. 431–464.
- [2] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: J. Comp. Phys. 227.15 (2008), pp. 7246–7263.
- [3] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: *Int. J. Heat and Mass Transfer* 47.25 (2004), pp. 5483–5500.
- [4] Tim G Myers. "Thin films with high surface tension". In: *SIAM review* 40.3 (1998), pp. 441–462.
- [5] NASA. URL: http://icebox.grc.nasa.gov/gallery/ images/C95_03918.html.

Bibliography II

Taleb Logemann James Rossmanith

Equation

Model

Numerical Method

Generalized Shallow Water Equations

Numerical Methods Results

- [6] Alexander Oron, Stephen H Davis, and S George Bankoff. "Long-scale evolution of thin liquid films". In: Reviews of modern physics 69.3 (1997), p. 931.
- [7] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.