

now prove it

Define H with the symmetric convention $H(0)=\frac{1}{2}$, so $H(x)=\frac{1}{2}(\operatorname{sgn} x+1)$ and $1-H(x)=\frac{1}{2}(1-\operatorname{sgn} x)$ for all real x. The proposed form [1] [2]

$$incTheta(t) = \theta(a) + [\theta(t) - \theta(a)] sgn(t - a)$$

is equivalent to the Heaviside form

$$\operatorname{incTheta}(t) = 2\theta(a) - \theta(t) + 2[\theta(t) - \theta(a)]H(t - a),$$

since
$$\mathrm{sgn}(t-a)=2H(t-a)-1$$
 under $H(0)=rac{1}{2}.$ [2] [1]

Verification is pointwise by cases:

• Case
$$t>a$$
: $H(t-a)=1$, $\mathrm{sgn}(t-a)=1$. Then $2\theta(a)-\theta(t)+2[\theta(t)-\theta(a)]\,H(t-a)=2\theta(a)-\theta(t)+2[\theta(t)-\theta(a)]=\theta(t),$

and

$$\theta(a) + [\theta(t) - \theta(a)] \operatorname{sgn}(t - a) = \theta(a) + [\theta(t) - \theta(a)] = \theta(t),$$

matching the piecewise definition $\mathrm{incTheta}(t) = heta(t)$ for t > a. [3] [1] [2]

• Case
$$t < a$$
: $H(t-a)=0$, $\mathrm{sgn}(t-a)=-1$. Then $2\theta(a)-\theta(t)+2[\theta(t)-\theta(a)]\,H(t-a)=2\theta(a)-\theta(t),$

and

$$\theta(a) + [\theta(t) - \theta(a)] \operatorname{sgn}(t - a) = \theta(a) - [\theta(t) - \theta(a)] = 2\theta(a) - \theta(t),$$

matching the piecewise definition $\mathrm{incTheta}(t) = 2 heta(a) - heta(t)$ for t < a. [3] [1] [2]

• Case t=a: With the symmetric convention, $H(0)=\frac{1}{2}$ and $\mathrm{sgn}(0)=0$. Both forms give $2\theta(a)-\theta(a)+2[\theta(a)-\theta(a)]\frac{1}{2}=\theta(a),\quad \theta(a)+[\theta(a)-\theta(a)]\cdot 0=\theta(a),$

so the function is continuous with value $\theta(a)$ at t=a, consistent with the reflection definition at the critical point where $\theta'(a)=0$. [1] [2] [3]

Hence the compact expression

$$\operatorname{incTheta}(t) = \theta(a) + [\theta(t) - \theta(a)] \operatorname{sgn}(t - a)$$

is exactly the reflected piecewise definition for all t, assuming the standard symmetric convention linking H and sgn . [2] [3] [1]

- 1. https://en.wikipedia.org/wiki/Heaviside_function
- 2. https://mathworld.wolfram.com/HeavisideStepFunction.html
- 3. https://en.wikipedia.org/wiki/Riemann-Siegel_theta_function
- 4. https://www.youtube.com/watch?v=_tWOVabiHbk
- 5. https://math.mit.edu/classes/18.785/2021fa/LectureNotes17.pdf
- 6. https://www.youtube.com/watch?v=_5foUq0U1HY
- 7. https://michaelberryphysics.wordpress.com/wp-content/uploads/2013/07/berry265.pdf
- 8. https://math.libretexts.org/Bookshelves/Differential_Equations/Elementary_Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations/Elementary_Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations/Elementary_Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations/Elementary_Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations_with_B https://math.libretexts.org/Bookshelves/Differential_Equations_with_B <a href="https://math.libretexts.org/Bookshelves/Differential_Equations_with_B <a href="https://math.libretexts.org/Bookshelves/Differential_Equations_with_B <a href="https://math.libretexts.org/Bookshelves/Differential_Equations_with_B <a href="https://math.libretexts.org/Bookshelves/Differential_Equations_with_B <a href="https://ma
- 9. https://math.libretexts.org/Courses/Cosumnes_River_College/Math_420:
 Differential_Equations(Breitenbach)/09:_Laplace_Transforms/9.05:_Constant_Coefficient_Equations_with_Piecewise_Continuous_Forcing_Functions
- 10. https://web.viu.ca/pughg/thesis.d/masters.thesis.pdf
- 11. https://tutorial.math.lamar.edu/classes/de/StepFunctions.aspx
- 12. https://www.youtube.com/watch?v=pgIMW2GsbQ8
- 13. https://reference.wolfram.com/language/ref/SiegelTheta.html
- 14. http://scipp.ucsc.edu/~haber/ph215/Stepfun18.pdf
- 15. https://en.wikipedia.org/wiki/Heaviside_step_function
- 16. https://www.youtube.com/watch?v=OUNvg5AnLfA
- 17. https://www.youtube.com/watch?v=JewW5ukzwlc
- 18. https://www.astro.rug.nl/~vdhulst/SignalProcessing/dsp/stepfunction_wolfram.pdf
- 19. https://www.reddit.com/r/learnmath/comments/geg7qv/linear_algebra_how_to_convert_heaviside_function/
- 20. https://www.reddit.com/r/HomeworkHelp/comments/1dkfmzr/university_differential_equations_converting_a/