1. Choose a σ that sends v to a different vertex

Then $\sigma v = w$ for some vertex $w \neq v$

Now suppose that $h \in H$ and that $h \neq id$

So,
$$(\sigma h \sigma^{-1})v = \sigma h(\sigma^{-1}v)$$

Case 1:
$$\sigma^{-1}v = w$$

but $\sigma v = w$, so it contradicts our assumption!

so $\sigma^{-1}v = v$ can't happen, ouch!

Case 2:
$$\sigma^{-1}v \neq v$$

$$let \ \sigma^{-1}v = u \neq v$$

then $\sigma hu \neq v$ because h only fixes v, ouch again!

so,
$$\sigma h \sigma^{-1} \in \sigma H \sigma^{-1}$$
 but $\not\in H$

$$2. \ G = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \}$$

so,
$$ord(a) = 3$$
 because $a^3 = a$

and similarly, $\operatorname{ord}(b) = 2$ because $b^2 = b$

so,
$$\langle a \rangle = \{ id, a, a^2 \}$$
 and $\langle b \rangle = \{ id, b \}$

so,
$$aba^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \notin \langle b \rangle$$

so, $\langle b \rangle$ is not normal

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} = a \in \langle a \rangle$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} a \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = a^2 \in \langle a \rangle$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} a \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = a^2 \in \langle a \rangle$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} a \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = a \in \langle a \rangle$$

$$aaa^{-1} = a \in \langle a \rangle$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} a \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = a^2 \in \langle a \rangle$$

so $\langle a \rangle$ is normal

3. (a) Suppose that every non-identity element of G has order 11

so pick $a \in G$ with ord(a) = 11

Let
$$H = \langle a \rangle$$

then
$$|H| = 11$$

so,
$$|G/H| = \frac{33}{11} = 3$$

since 3 is prime, G/H is cyclic

then there is a $b \in G$ such that bH generates G/H

so
$$(bH)^3 = H \Rightarrow b^3 \in H$$

so assume ord(b) = 11

so
$$b^3 \in H = \langle a \rangle$$

so
$$b^3 = a^k$$
 for some k

so
$$(b^3)^4 = b^{12} = a^{4k} = e$$

and since $b^{11} = e$

then $b=a^t$ for some t, so $b\in H$

but bH = H which cannot generate G/H

which is a contradiction, ouch!, so not all non-identity can have order 11.

(b) By the same argument, if every non-identity element had order 3

take a with $\operatorname{ord}(a)=3$, then $H=\langle a \rangle$ has order 3

and
$$|G/H| = 11$$

then G/H cyclic \Rightarrow there is a b with $b^{11} \in H$

so if b also had order 3, then $(b^{11})^3 = e \Rightarrow b \in H$, contradiction, ouch!

so, not all elements can have order 3

(c) Suppose that $a, b \in G$ with $\operatorname{ord}(a) = 3$ and $\operatorname{ord}(b) = 11$

since G is abelian, ab = ba

so,
$$(ab)^{33} = a^{33}b^{33} = e$$

so, ord(33) divides 33

It can't be 1, because ab=e, so $a=b^{-1}$

which is not possible since order 3 and 11 differ

It can't be 3 because $(ab)^3=e\Rightarrow a^3b^3=b^3=e\Rightarrow b=e$ contradiction, ouch!

It can't be 11 because $(ab)^{11}=e\Rightarrow a^{11}b^{11}=a^{11}=e$, but $\mathrm{ord}(a)=3\Rightarrow 3|11$ Big ouch!

So, ord(ab) = 33