# 相関基礎 2025 大問 1-3



#### 最終更新日2025年8月9日

## 第1問

## I. (1).

x=0 を代入すると y=0 になる.  $x\neq 0$  とする. x で両辺割ると

$$y' - \frac{y}{x} = x^2 \tag{1}$$

となる. 上式の一般解をy, 特殊解を $y_0$  とすると,

$$\left(\frac{\mathrm{d}}{\mathrm{d}x} - \frac{1}{x}\right)(y - y_0) = x^2 - x^2 = 0$$

となるので、まず(1)式の特殊解を1つ見つけた後に

$$y' - \frac{y}{x} = 0 \tag{2}$$

の一般解  $y_1$  を求めると、求める一般解は  $y_1+y_0$  である.

 $y_0 = x^3/2$  とすると、これは (1) 式の特殊解になっていることがわかる. 次に (2) 式の一般解を求める. 変数分離して積分すると、

$$\frac{\mathrm{d}y}{y} = \frac{\mathrm{d}x}{x}, \quad : \ln|y| = \ln|x| + C, \quad : \frac{y}{x} = A$$

ここで C, A は定数. 以上より、求める一般解は

$$y = Ax + \frac{x^3}{2}$$

となる  $(x = 0 \circ y = 0 \circ a$  も満たす).

## I. (2).

(1) と同じように、与えられた ODE の特殊解  $y_0$  を一つ見つけたあと、

$$y'' + y' - 2y = 0 (3)$$

の一般解を求めれば良い.

 $y_0 = (x^2 - \frac{2}{3}x)e^x$  とすると、これは欲しい特殊解になっている<sup>1)</sup>. 次に (3) 式の一般解を求める.  $\lambda$  を定数として、 $y = e^{\lambda x}$  を (3) 式の左辺に代入すると、

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{\mathrm{d}}{\mathrm{d}x} - 2\right)e^{\lambda x} = (\lambda^2 + \lambda - 2)e^{\lambda x}$$

となるので,  $\lambda=1,-2$  のとき  $y=e^{\lambda x}$  は (3) 式の解である. この 2 解は独立で $^{2)}$ , 2 階斉次線型微分方程式の一般解は独立な 2 解の重ね合わせなので、一般解は

$$u = Ae^{-2x} + Be^x$$

(A, Bは定数)となる.以上より、求める一般解は

$$y = Ae^{-2x} + Be^x + \left(x^2 - \frac{2}{3}x\right)e^x$$

となる.

#### II. (1).

これは周期  $2\pi$  の周期関数であり、かつ偶関数なので

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

と Fourier 級数展開される $^{3)}$ . 非負整数 m,n について

$$\frac{1}{\pi} \int_{-\pi}^{\pi} dx \cos mx \cos nx = \begin{cases} 1 & (m=n), \\ 0 & (m \neq n). \end{cases}$$
 (4)

なので,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{d} x x^2 \cos n x = \begin{cases} \frac{2\pi^2}{3} & (n=0), \\ \frac{4(-1)^{n+1}}{n^2} & (n>0). \end{cases}$$

と計算され(途中計算略),以上より

$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$$

となる.

<sup>1)</sup> 私は  $y = (ax^2 + bx + c)e^x$  を代入し、a, b, c を決める方針で特殊解を見つけた。省いているけど、答案にはこれが本当に特殊解になっていることを示した方が良いかも.

<sup>2)</sup> Wronskian を計算してそれが非零を見せればもっと丁寧?

<sup>3)</sup>  $a_0$  の項は 2 で割っておくと見通しが良い. 忘れていても (4) 式の計算をして上手く調整すれば良い.

### II. (2).

 $f(x)^2$  の積分を 2 通りで表す.

$$\begin{split} \frac{2\pi^5}{5} &= \int_{-\pi}^{\pi} \mathrm{d}x f(x)^2 \\ &= \int_{-\pi}^{\pi} \mathrm{d}x \left( \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx \right)^2 \\ &= \frac{2\pi^5}{9} + \sum_{n=1}^{\infty} \frac{16}{n^4} \int_{-\pi}^{\pi} \mathrm{d}x (\cos nx)^2 = \frac{2\pi^5}{9} + 16\pi \sum_{n=1}^{\infty} \frac{1}{n^4} \end{split}$$

以上より,

$$s = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

となる.

## III. 反例 1 つ目

常に成立しない.

$$f_n(x) = \begin{cases} 2(x-n) & (n \leq x \leq n+1/2), \\ -2(x-n-1) & (n+1/2 \leq x \leq n), \\ 0 & (\text{otherwise}). \end{cases}$$

とすると、これは $n \to \infty$ でf(x) = 0に各点収束し、

$$\int_0^\infty f_n(x)\mathrm{d}x = \frac{1}{2} \xrightarrow{n \to \infty} \frac{1}{2}$$

だが,

$$\int_0^\infty f(x)\mathrm{d}x = 0$$

となり、反例になっている $^{4}$ ).

## III. 反例 2 つ目

今度は $f_n(x)$ を以下のようにする.

$$f_n(x) = \begin{cases} \frac{2}{n^2}x & (0 \le x \le n/2), \\ -\frac{2}{n^2}x + \frac{2}{n} & (n/2 \le x \le n), \\ 0 & (\text{otherwise}). \end{cases}$$

<sup>4)</sup> 自力でできなかった. [1] を参考にした.

1つ目と同じように考えれば、これは f(x)=0 に収束するが $^{5)}$ 、n を飛ばす前の三角形の面積は n に依存せず 1/2 なので、反例になっている.

## IV. (1).

i, j = 1, 2, 3, 4 について,  $Ae_i, e_i A$  を愚直に計算することで

$$M = \begin{pmatrix} 0 & -c & b & 0 \\ -b & a - d & 0 & b \\ c & 0 & d - a & -c \\ 0 & c & -b & 0 \end{pmatrix}$$

を得る.

#### IV. (2).

 $bc \neq 0$  なので  $b \neq 0$  かつ  $c \neq 0$  である. そこで b ないしは c が対角成分にくるように M を行基本変形すると,  $\operatorname{rank} M = 2$  とわかる. 従って

$$\mathrm{dim}\mathrm{Ker}f_A=4-\mathrm{rank}M=2$$

とわかる. 最後に  $\operatorname{Ker} f_A$  の基底を構成する.  $e_1' \coloneqq e_1 + e_4$  とすれば,

$$f_A(e_1') = f_A(e_1) + f_A(e_4) = \begin{pmatrix} 0 \\ -b \\ c \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \\ -c \\ 0 \end{pmatrix} = 0$$

なので、 $e_1' \in \operatorname{Ker} f_A$ . また、 $e_2' \coloneqq (a-d)e_1 + be_2 + ce_3$  とすれば、同じような計算から  $f_A(e_2') = 0$ 、よって  $e_2' \in \operatorname{Ker} f_A$  がわかる.  $e_1'$ 、 $e_2'$  は独立で、 $\operatorname{Ker} f_A$  の次元は 2 なので、 $\{e_1', e_2'\}$  は求める基底となっている.

#### V. (1)

a, b を定数として,  $f = r^n(a \sin n\theta + b \cos n\theta)$  とすると,

$$\varDelta f = \begin{cases} \left\{n(n-1)r^{n-2} + nr^{n-2} - n^2r^{n-2}\right\}(a\sin n\theta + b\cos n\theta) = 0 & (n \geq 2), \\ \left(\frac{1}{r} - \frac{1}{r}\right)(a\sin n\theta + b\cos n\theta) = 0 & (n = 1). \end{cases}$$

となるので,この f は答え.

<sup>5)</sup> これは一様収束になっている.  $\sup_{[0,\infty)}|f_n(x)-f(x)|=1/n\xrightarrow{n\to\infty}0$  より従う. 各点収束よりも強い一様収束についての反例にもなっているのが偉い. この反例は友人の M 君に教えてもらった.

# V. (2)

3 倍角の公式から,  $\sin^3\theta=(3\sin\theta-\sin3\theta)/4$  とかけるが, (1) の結果から  $3r\sin\theta/4$  も  $-r^3\sin3\theta/4$  も Laplace 方程式の解であり, Laplace 方程式は解の重ね合せもまた解になることより,

$$u = \frac{3r}{4}\sin\theta - \frac{r^3}{4}\sin3\theta$$

は求めるべき境界値問題の解になっている。これを (x,y) 座標系に直せば  $(x=r\cos\theta,\,y=r\sin\theta$  などを使って),

$$u = \frac{y}{4}(3 - 3x^2 + y^2)$$

を得る.

## 第2問

## I. (1).

与えられた Hamiltonian を代入すれば

$$[\hat{x},\hat{H}] = \left[\hat{x},\frac{\hat{p}^2}{2m}\right] = \frac{1}{2m}\left(\hat{p}[\hat{x},\hat{p}] + [\hat{x},\hat{p}]\hat{p}\right) = \frac{i\hbar}{m}\hat{p}$$

を得る. 同様にして

$$[\hat{p}, \hat{H}] = -i\hbar m\omega^2 \hat{x}$$

となる.

## I. (2).

状態  $|\psi\rangle$  は定常なので、Schrödinger 方程式を使うことで

$$\begin{split} 0 &= \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \psi \right| \hat{A} \left| \psi \right\rangle = \frac{\partial \left\langle \psi \right|}{\partial t} \hat{A} \left| \psi \right\rangle + \left\langle \psi \right| \hat{A} \frac{\partial \left| \psi \right\rangle}{\partial t} \\ &= -\frac{\left\langle \psi \right|}{i\hbar} \hat{H} \hat{A} \left| \psi \right\rangle + \left\langle \psi \right| \hat{A} \frac{\hat{H}}{i\hbar} \left| \psi \right\rangle = \frac{1}{i\hbar} \left\langle \psi \right| \left[ \hat{A}, \hat{H} \right] \left| \psi \right\rangle \end{split}$$

とかけるので,(1)の結果より

$$0 = \frac{1}{i\hbar} (-i\hbar m\omega^2) \langle \hat{x} \rangle, 0 = \frac{1}{i\hbar} \frac{i\hbar}{m} \langle \hat{p} \rangle, \quad : \langle \hat{x} \rangle = \langle \hat{p} \rangle = 0$$

を得る.

## I. (3).

(2) の計算を使うと、

$$\frac{1}{i\hbar} \left\langle \psi \right| \left[ \hat{x}\hat{p}, \hat{H} \right] \left| \psi \right\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \psi \right| \hat{x}\hat{p} \left| \psi \right\rangle = 0$$

なので、左辺の交換関係を計算して整理することで

$$\frac{m\omega^2}{2} \langle \hat{x}^2 \rangle = \frac{1}{2m} \langle \hat{p}^2 \rangle , \quad : \langle \hat{U} \rangle = \langle \hat{K} \rangle$$

を得る<sup>6)</sup>.

## I. (4).

基底状態は定常状態なので、これまでの結果が使える. (3) の結果から

$$\left\langle 0\right|\hat{H}\left|0\right\rangle =\left\langle 0\right|\hat{K}\left|0\right\rangle +\left\langle 0\right|\hat{U}\left|0\right\rangle =2\left\langle 0\right|\hat{K}\left|0\right\rangle =2\left\langle 0\right|\hat{U}\left|0\right\rangle$$

<sup>6)</sup> virial 定理から期待される結果と一致.

であり、 $\langle 0|\hat{H}|0\rangle = \hbar\omega/2$  なので

$$\langle 0|\left(\frac{m\omega^2\hat{x}^2}{2}\right)|0\rangle = \langle 0|\left(\frac{\hat{p}^2}{2m}\right)|0\rangle = \frac{\hbar\omega}{4}, \quad \div\langle 0|\,\hat{x}^2\,|0\rangle = \frac{\hbar}{2m\omega}, \quad \langle 0|\,\hat{p}^2\,|0\rangle = \frac{m\hbar\omega}{2}$$

また (2) より  $\langle \hat{x} \rangle = \langle \hat{p} \rangle = 0$  なので,  $\delta x_0$ ,  $\delta y_0$  の定義から

$$\delta x_0 = \sqrt{\frac{\hbar}{2m\omega}}, \quad \delta p_0 = \sqrt{\frac{m\hbar\omega}{2}}$$

を得る<sup>7)</sup>.

#### I. (5).

 $\hat{x}$ ,  $\hat{p}$  はエルミート演算子になっているため, 生成演算子は

$$\hat{a}^{\dagger} = \frac{1}{2} \left( \frac{\hat{x}}{\delta x_0} - i \frac{\hat{p}}{\delta p_0} \right)$$

とかけ、従って

$$\hat{x} = \delta x_0 (\hat{a} + \hat{a}^{\dagger})$$

とかける. さらに, 第 n 励起状態  $|n\rangle$  に対して,  $\langle i|j\rangle=\delta_{ij},\,\hat{a}^{\dagger}\,|n\rangle=\sqrt{n+1}\,|n+1\rangle,\,n\geq 1$  について  $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle, \hat{a}|0\rangle = 0$  となることも断りなしに使う<sup>8)</sup>. すると直交性から

$$\langle \phi(\theta) | \hat{x} | \phi(\theta) \rangle = 0$$

また, $\hat{x}$ のエルミート性から

$$\begin{split} \left\langle \phi(\theta) | \, \hat{x}^2 \, | \phi(\theta) \right\rangle &= (\delta x_0)^2 \left( \cos \theta \, \langle 1 | -\sin \theta (\sqrt{2} \, \langle 1 | +\sqrt{3} \, \langle 3 |) \right) \left( \cos \theta \, | 1 \rangle -\sin \theta (\sqrt{2} \, | 1 \rangle +\sqrt{3} \, | 3 \rangle) \right) \\ &= (\delta x_0)^2 (1 + 4 \sin^2 \theta - 2 \sqrt{2} \sin \theta \cos \theta) \end{split}$$

以上より求める揺らぎは

$$\delta x(\theta) = 2\delta x_0 \left(\frac{1}{4} + \sin^2 \theta - \frac{\sin \theta \cos \theta}{\sqrt{2}}\right)^{1/2}$$

と計算される。

最後に揺らぎの最小値を求める.

$$\sin^2\theta - \frac{1}{\sqrt{2}}\sin\theta\cos\theta = \frac{1-\cos2\theta}{2} - \frac{\sin2\theta}{2\sqrt{2}} = \frac{1}{2} - \frac{\sqrt{6}}{4}\sin(2\theta + \beta)$$

と変形できるので,  $\theta_{\min} = \pi/4 - \beta/2$  のとき  $\delta x(\theta)$  は最小値をとり, このとき

$$\delta x(\theta_{\rm min}) = \delta x_0 \sqrt{3 - \sqrt{6}}$$

となる. これは  $\delta x_0$  より小さい.

<sup>7)</sup>  $\delta x_0 \cdot \delta p_0 = \hbar/2$  と計算され、最小不確定になっていて安心. 8) 本当に勝手にこんな性質使ってしまっていいのかは分からない…

#### II. (1).

 $|0\rangle$  は  $\hat{Z}$  の固有値 1 の固有状態なので、

$$\hat{U}_{\hat{H_0}}(t)\left|0\right\rangle = e^{-i\omega t/2}\left|0\right\rangle$$

となる.

#### II. (2).

 $(c_1\hat{X} + c_2\hat{Y} + c_3\hat{Z})^2 = \hat{I}$ を使うと、

$$\begin{split} \exp(-\frac{i\hat{H}t}{\hbar}) &= \exp(-i\omega t (c_1\hat{X} + c_2\hat{Y} + c_3\hat{Z})) \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (\omega t)^{2n} \cdot \hat{I} + i\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)!} (\omega t)^{2n-1} \cdot (c_1\hat{X} + c_2\hat{Y} + c_3\hat{Z}) \\ &= \cos \omega t \cdot \hat{I} - i\sin \omega t \cdot (c_1\hat{X} + c_2\hat{Y} + c_3\hat{Z}) \end{split}$$

これより,

$$\alpha_0(t) = \cos \omega t, \quad \alpha_i(t) = -ic_i \sin \omega t \quad (i=1,2,3)$$

となる9)

#### II. (3).

 $|+\rangle:=(|0\rangle+|1\rangle)/\sqrt{2},\ |-\rangle:=(|0\rangle-|1\rangle)/\sqrt{2}$  とすると、これは  $\hat{X}$  の固有値  $\pm 1$  の 2 つの独立な固有状態なので、

$$\hat{U}_{\hat{H}_{\Omega}}(t) \left| \pm \right\rangle = e^{\mp i\Omega t/2} \left| \pm \right\rangle$$

となり、グローバル位相しか $\Omega$ に依存していないので、この2状態は $\hat{H}_{\Omega}$ による時間発展後 $\Omega$ に依存しない。以上より、求める状態は例えば $|+\rangle$ となる $^{10}$ .

#### II. (4).

(2) の結果を使う.

$$\hat{H}_0 + \hat{H}_1 = \frac{\hbar\omega}{\sqrt{2}} \left( \frac{\hat{X}}{\sqrt{2}} + \frac{\hat{Z}}{\sqrt{2}} \right)$$

とかけるため.

$$\hat{U}_{\hat{H}_0+\hat{H}_1}(t) = \cos\frac{\omega t}{\sqrt{2}} \cdot \hat{I} - i\sin\frac{\omega t}{\sqrt{2}} \cdot \left(\frac{\hat{X}}{\sqrt{2}} + \frac{\hat{Z}}{\sqrt{2}}\right)$$

<sup>9)</sup> この問題では  $\hat{H}=\hbar\omega(c_1\hat{X}+c_2\hat{Y}+c_3\hat{Z})$  だったが, この Hamiltonian に単位行列  $\hat{I}$  の定数倍が加わった場合の一般 の時間発展演算子を求める問題が 2021 年度の東大物工の量子で出題されていた. その場合, この問題に加えて演算子が 交換するとき使える演算子の指数法則を使って解けばいい(一回やらないと気づくのは割と難しい気がする.).

<sup>10)</sup> 今考えている 2 準位系を  $\{|+\rangle, |-\rangle\}$  が張っているため、その線形結合で表される任意の状態は相対位相の部分が  $\Omega$  に依存してしまうため、(3) の条件を満たす状態は  $|\pm\rangle$  のみだとわかる.

となる. これを使うと

$$\hat{U}_{\hat{H}_0+\hat{H}_1}(t)\left|0\right>=\cos\frac{\omega t}{\sqrt{2}}\left|0\right>-i\sin\frac{\omega t}{\sqrt{2}}\left|+\right>$$

とかけるため,  $|0\rangle$  からこの Hamiltonian を使って  $|-\rangle$  にすることはできず,  $|0\rangle$  から  $|+\rangle$  にする最小の時間を探せば良いとわかる. 以上より求める時間は

$$t = \frac{\pi}{\sqrt{2}\omega}$$

となる.

#### II. (5).

(2) の結果を使えば

$$\hat{U}_{\hat{H}_0}(t) = \cos\frac{\omega t}{2} \cdot \hat{I} - i\sin\frac{\omega t}{2} \cdot \hat{Z}, \quad \hat{U}_{\hat{H}_1}(t) = \cos\frac{\omega t}{2} \cdot \hat{I} - i\sin\frac{\omega t}{2} \cdot \hat{X}$$

とかけるため,

$$\begin{split} \hat{U}_{\hat{H}_0}(\Delta t)\hat{U}_{\hat{H}_1}(\Delta t) &= \left\{ \left(1 - \frac{\omega^2(\Delta t)^2}{8}\right) \cdot \hat{I} - i\frac{\omega\Delta t}{2} \cdot \hat{Z} + \mathcal{O}((\Delta t)^3) \right\} \cdot \left\{ \left(1 - \frac{\omega^2(\Delta t)^2}{8}\right) \cdot \hat{I} - i\frac{\omega\Delta t}{2} \cdot \hat{X} + \mathcal{O}((\Delta t)^3) \right\} \\ &= \left(1 - \frac{\omega^2(\Delta t)^2}{4}\right)\hat{I} - i\frac{\omega\Delta t}{2}\hat{X} - i\frac{\omega\Delta t}{2}\hat{Z} - \frac{\omega^2(\Delta t)^2}{4}\hat{Z} \cdot \hat{X} + \mathcal{O}((\Delta t)^3) \end{split}$$

一方で (4) での計算より

$$\hat{U}_{\hat{H}_0+\hat{H}_1}(\varDelta t) = \left(1 - \frac{\omega^2(\varDelta t)^2}{4}\right)\hat{I} - i\frac{\omega\varDelta t}{\sqrt{2}}\left(\frac{\hat{X}}{\sqrt{2}} + \frac{\hat{Z}}{\sqrt{2}}\right) + \mathcal{O}((\varDelta t)^3)$$

なので,

$$\hat{U}_{\hat{H}_0+\hat{H}_1}(\varDelta t) - \hat{U}_{\hat{H}_0}(\varDelta t) \hat{U}_{\hat{H}_1}(\varDelta t) = \frac{\omega^2(\varDelta t)^2}{4} \hat{Z} \cdot \hat{X} + \mathcal{O}((\varDelta t)^3)$$

と計算される.

#### II. (6).

 $\Delta t = t/N$  とすれば、(5) の結果より

$$\hat{U}_{\hat{H}_0 + \hat{H}_1} \left( \frac{t}{N} \right) - \frac{\omega^2}{4} \hat{Z} \cdot \hat{X} \left( \frac{t}{N} \right)^2 + \mathcal{O} \left( \left( \frac{t}{N} \right)^2 \right) = \hat{U}_{\hat{H}_0} \left( \frac{t}{N} \right) \hat{U}_{\hat{H}_1} \left( \frac{t}{N} \right)$$

とかけるので.

$$\begin{split} \hat{V}_N(t) &= \left\{ \hat{U}_{\hat{H}_0 + \hat{H}_1} \left( \frac{t}{N} \right) - \frac{\omega^2}{4} \hat{Z} \cdot \hat{X} \left( \frac{t}{N} \right)^2 + \mathcal{O} \left( \left( \frac{t}{N} \right)^2 \right) \right\}^N \\ &\simeq \hat{U}_{\hat{H}_0 + \hat{H}_1}(t) + \mathcal{O} \left( \frac{t^2}{N} \right) \end{split}$$

と計算できて11), 従って

$$\sqrt{\left< \Delta_N \right| \left| \Delta_N \right>} = \mathcal{O}\left(\frac{t^2}{N}\right) \lesssim \epsilon, \quad \therefore N \gtrsim \frac{t^2}{\epsilon}$$

と評価できると考えられる12).

## 参考文献

- [1] 数学の景色 「極限と積分の順序交換定理 6 つと交換できない例 3 つまとめ」 https://mathlandscape.com/limit-int/#toc8
- [2] 白石直人「2024 年度 物理数学 II」https://naotoshiraishi.wordpress.com/wp-content/uploads/2024/07/2023-mathphys.pdf

<sup>11)</sup>  $N-1\simeq N$ 回  $\hat{U}_{\hat{H}_0+\hat{H}_1}(t/N)$  を取って、残り 1 回  $\omega^2\hat{Z}\cdot\hat{X}(t/N)^2/4$  の項を選ぶ場合の数は  $_NC_1=N$  なので、 $\mathcal{O}\left(\frac{t^2}{N}\right)$  となる

<sup>12) (</sup>参考)関連した話題に、リーの積公式、Trotter 分解があると思われる. 詳しくは [2] を参照.