Resolução de Problemas

Problema de locação de espaço

O gerente de projeto de uma empresa de Desenvolvimento de Software está definindo os requisitos necessários para a elaboração de um grande projeto.

A questão mais decisiva para a empresa é o local onde a equipe irá trabalhar. A empresa pretende contratar uma empresa de coworking que aluga postos de trabalho.

A coworking possui postos distintos para locação: o espaço E1, de custo de \$500,00 por locação e o espaço E2, custando \$200,00 por unidade locada. O gerente pretende alugar tais espaços, inteiros ou fracionados, de forma a minimizar os gastos com a alocação da equipe.

Os espaços oferecidos apresentam características divergentes para os espaços de trabalho:

	E1	E2
Capacidade (pessoas)	400	350
Divisões internas	25	50
Espaço (m2)	750	375

Problema de locação de espaço

A gestão acredita que o espaço físico não deve ser grande demais, que provoque a dispersão da equipe, nem pequeno demais, que atrapalhe a concentração da equipe, sendo assim ele estabeleceu que necessitará de exatamente 1050m2 para a locação.

Estima ainda que serão no mínimo 630 funcionários trabalhando no projeto, mas esse número pode ser aumentando, se necessário.

Por fim, para incentivar a integração da equipe a gestão deseja que o máximo de divisões de áreas internas deve ser de 80 unidades.

Modelagem Problema de locação de espaço

Variáveis: Unidades de locação dos espaços

E1 - x1

E2 - x2

Objetivo: Minimizar custos de locação

Zmin = 500 x1 + 200 x2

Restrições:

$$400 \times 1 + 350 \times 2 = 1050$$

$$25 \times 1 + 50 \times 2 \le 80$$

$$750 \times 1 + 375 \times 2 \ge 630$$

Problema de Combinação de Produtos

Uma empresa fabrica TVs, Home Theaters e Alto-falantes usando um estoque de peças como Placas eletrônicas, Telas, Caixas de sons, etc.

Algumas das peças necessárias da produção possuem um estoque limitado:

Placa eletrônica	Tela	Caixa de som	Fonte de energia	Conversor
450	250	950	450	600

A empresa deseja maximizar o lucro de produção, para tal, necessita determinar o que e quanto deverá ser montado da relação de produtos possíveis, uma vez que eles consomem elementos com estoque limitado.

	TV	Home Theater	Alto-falante
Placa eletrônica	1	1	0
Tela	1	0	0
Caixa de som	2	2	1
Fonte de energia	1	1	0
Conversor	2	1	1

Problema de Combinação de Produtos

Após uma análise dos custos de produção verificou-se que os preços de venda serão:

TV: R\$1280,00

Home Theater: R\$579,00

Alto-falante: R\$150,00

Você foi contratado para determinar a combinação mais lucrativa na montagem dos produtos.

Modelagem Problema de Combinação de Produtos

Variáveis: Produção

TV -x1Home Theater -x2Alto-falante -x3

Objetivo: Maximizar lucro

Zmax = 1280x1 + 579x2 + 150x3

Restrições: Estoque de peças

 $2x1 + x2 + x3 \le 600$

x1 + x2	≤ 450	x1 ≥ 0
x1	≤ 250	x2 ≥ 0
2x1 + 2x2 +	· x3 ≤ 950	x3 ≥ 0
x1 + x2	≤ 450	

OBS.: Esse é um problema de Programação Inteira, uma vez que não é possível fracionar a produção de aparelhos eletrônicos, no entanto, para o conteúdo dessa disciplina (Programação Linear), ele será resolvido por meio de técnicas lineares cuja solução poderá ser fracionada.

A programação Inteira será estudada em uma próxima disciplina.

Problema da Dieta

A anemia é uma doença decorrente de baixos níveis de hemoglobina no sangue. Para prevenção deve-se adotar uma dieta rica em ferro, vitamina A, vitamina B12 e ácido fólico.

Esses nutrientes podem ser encontrados em diversos alimentos, como espinafre, brócolis, agrião, tomate, cenoura, ovo, feijão, grão de bico, soja, carne, fígado e peixe.

A Tabela a seguir traz as informações nutricionais desses alimentos e seus custos:

Problema da Dieta

	Ferro (mg)	Vit. A (UI)	Vit. B12 (mcg)	Ácido Fólico (mg)	Preço (R\$)
Espinafre	30	74000	0	4	3,00
Brócolis	12	1388	0	5	2,00
Agrião	2	47250	0	1	1,80
Tomate	4,9	11300	0	2,5	1,60
Cenoura	10	145000	1	0,05	3,00
Ovo	9	32150	10	0,5	3,00
Feijão	71	0	0	0,56	4,00
Grão de bico	48,6	410	0	4	4,00
Soja	30	10000	0	0,8	4,50
Carne	15	0	30	0,6	7,50
Fígado	100	320000	1000	3,8	8,00
Peixe	11	1400	21,4	0,02	8,50
Necessidades diárias	80	45000	20	4	

^{*} Porções de 1000 gramas dos alimentos

Problema da Dieta

Um hospital, a fim de prevenir que seus apresentem casos de anemia, está planejando um novo cardápio.

O que se pretende é selecionar, para a dieta das duas principais refeições diárias (almoço e jantar), ingredientes que possam suprir 100% das necessidades diárias dos pacientes.

Além disso, o total ingerido nas duas refeições não pode ultrapassar 1,5 kg.

O objetivo é estabelecer um cardápio que atenda as necessidades diárias indicadas na tabela anterior ao menos custo possível.

Modelagem Problema da Dieta

Variáveis: Alimentos consumidos

espinafre	- x1	feijão	- x7
brócolis	- x2	grão de bico	- x8
agrião	- x3	soja	- x9
tomate	- x4	carne	- x10
cenoura	- x5	fígado	- x11
OVO	- x6	peixe	- x12

Objetivo: Minimizar custos

```
Zmin = 3 x1 + 2 x2 + 1,8 x3 + 1,6 x4 + 3 x5 + 3 x6 + 4 x7 + 4 x8 + 4,5 x9 + 7,5 x10 + 8 x11 + 8,5x12
```

Modelagem Problema da Dieta

Restrições:

AF

Necessidades diárias dos alimentos

Ferro
$$30 \times 1 + 12 \times 2 + 2 \times 3 + 4,9 \times 4 + 10 \times 5 + 9 \times 6 + 71 \times 7 + 48,6 \times 8 + 30 \times 9 + 15 \times 10 + 100 \times 11 + 11 \times 12 \ge 80$$

Vit.A $74000 \times 1 + 1388 \times 2 + 47250 \times 3 + 11300 \times 4 + 145000 \times 5 + 32150 \times 6 + 0 \times 7 + 410 \times 8 + 10000 \times 9 + 0 \times 10 + 320000 \times 11 + 1400 \times 12 \ge 45000$

Vit.B12 $0 \times 1 + 0 \times 2 + 0 \times 3 + 0 \times 4 + 1 \times 5 + 10 \times 6 + 0 \times 7 + 0 \times 8 + 0 \times 9 + 30 \times 10 + 1000 \times 11 + 21,4 \times 12 \ge 12$

 $4 \times 1 + 5 \times 2 + 1 \times 3 + 2.5 \times 4 + 0.05 \times 5 + 0.5 \times 6 + 0.56 \times 7 + 4 \times 8 + 0.8 \times 9 + 0.6 \times 10 + 3.8 \times 11 + 0.02 \times 12 \ge 4$

Modelagem Problema da Dieta

Restrições:

Peso máximo

 $x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 \le 1,5$

Nulidades

 $x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 \ge 0$

Problema de Planejamento de Pessoal

Em um parque de diversões, que funciona todos os dias da semana, os funcionários contratados trabalham em turnos de 5 dias consecutivos e tem folga nos outros 2 dias da semana.

O gestor do parque sabe que em determinados dias da semana o fluxo de clientes é maior e são necessários mais funcionários que em outros.

Dessa forma, o gestor estabeleceu, conforme os dias da semana as necessidades de funcionários, conforme a tabela abaixo:

	Demanda
Domingo	23
Segunda-feira	11
Terça-feira	12
Quarta-feira	15
Quinta-feira	19
Sexta-feira	14
Sábado	22

O gestor deseja planejar a contratação dos funcionários necessários ao parque, de forma a minimizar os gastos com pessoal.

Variáveis: funcionários / dias da semana

Variável	Inicio dos trabalhos	Folgas
x1	Domingo	Sexta e sábado
x2	Segunda	Sábado e domingo
х3	Terça	Domingo e segunda
x4	Quarta	Segunda e terça
x5	Quinta	Terça e quarta
х6	Sexta	Quarta e quinta
х7	Sábado	Quinta e sexta

Objetivo: Minimizar funcionários

Zmin = x1 + x2 + x3 + x4 + x5 + x6 + x7

Escalonamento x necessidade de funcionários

Dia da semana			Esc	aloname	nto			Demanda
Domingo	x1			х4	x5	х6	x7	23
Segunda	x1	x2			x5	х6	x7	11
Terça	x1	x2	Х3			х6	x7	12
Quarta	x1	x2	х3	x4			x7	15
Quinta	x1	x2	х3	x4	x5			19
Sexta		x2	х3	x4	x5	х6		14
Sábado			х3	x4	x5	х6	x7	22

Restrições:

Escalonamento diário de funcionários

Domingo	$x1 + x4 + x5 + x6 + x7 \ge 23$
---------	---------------------------------

Segunda $x1 + x2 + x5 + x6 + x7 \ge 11$

Terça $x1 + x2 + x3 + x6 + x7 \ge 12$

Quarta $x1 + x2 + x3 + x4 + x7 \ge 15$

Quinta $x1 + x2 + x3 + x4 + x5 \ge 19$

Sexta $x2 + x3 + x4 + x5 + x6 \ge 14$

Sábado $x3 + x4 + x5 + x6 + x7 \ge 22$

Restrições:

Escalonamento diário de funcionários

Segunda
$$x1 + x2 + x5 + x6 + x7 \ge 11$$

Terça
$$x1 + x2 + x3 + x6 + x7 \ge 12$$

Quarta
$$x1 + x2 + x3 + x4 + x7 \ge 15$$

Quinta
$$x1 + x2 + x3 + x4 + x5 \ge 19$$

Sexta
$$x2 + x3 + x4 + x5 + x6 \ge 14$$

Sábado
$$x3 + x4 + x5 + x6 + x7 \ge 22$$

$$x1, x2, x3, x4, x5, x6, x7 \ge 0$$

OBS.: Esse também é um problema de Programação Inteira, uma vez que não é possível fracionar a alocação de pessoas, no entanto, para o conteúdo dessa disciplina (Programação Linear), ele será resolvido por meio de técnicas lineares cuja solução poderá ser fracionada.