Mcahine Vision HW5 Report

資工三 110590004 林奕廷

Dependencies

```
python = ">=3.9,<4"
opency-python = "^4.9.0.80"
alive-progress = "^3.1.5"</pre>
```

Run

python 110590004_hw5.py

Question 1

Mean Filter

• Implement a mean filter with a kernel size of 3x3 and 7x7.

3x3

• Kernel:

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

7x7

• Kernel:

| $\frac{1}{49}$ |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $\frac{1}{49}$ |

Median Filter

- Implement a median filter with a kernel size of 3x3 and 7x7.
- Find the median value of the pixel values in the kernel and assign it to the center pixel.

3x3

7x7

Gaussian Filter

- Implement a Gaussian filter with a kernel size of $5\mathrm{x}5$
- Kernel:

$\frac{1}{2}$	1 73	$\frac{4}{273}$	$\frac{7}{273}$	$\frac{4}{273}$	$\frac{1}{273}$
$\frac{2}{2}$	$\frac{4}{73}$	$\frac{16}{273}$	$\frac{26}{273}$	$\frac{16}{273}$	$\frac{4}{273}$
$\frac{7}{2}$	$\frac{7}{73}$	$\frac{26}{273}$	$\frac{41}{273}$	$\frac{26}{273}$	$\frac{7}{273}$

$\frac{4}{273}$	$\frac{16}{273}$	$\frac{26}{273}$	$\frac{16}{273}$	$\frac{4}{273}$
$\frac{1}{273}$	$\frac{4}{273}$	$\frac{7}{273}$	$\frac{4}{273}$	$\frac{1}{273}$

Result

Bonus

Customized Filter

- $\bullet\,$ Implement a customized filter with a kernel size of $3\mathrm{x}3$
- Kernel:

```
kernel = (np.ones((3, 3)) * 0.3)/(9) + 0.7 * (median of the neighbors)
```

\mathbf{Result}

Discussion

- The mean filter is a simple filter that replaces the center pixel with the average of the pixel values in the kernel. It is effective in removing noise but may blur the image.
- The median filter is a non-linear filter that replaces the center pixel with the median value of the pixel values in the kernel. It is effective in removing noise while preserving edges.
- The Gaussian filter is a linear filter that uses a Gaussian kernel to blur the image. It is effective in removing noise and preserving edges.
- The customized filter is a combination of the mean filter and the median filter. It replaces the center pixel with a weighted average of the pixel values in the kernel and the median value of the pixel values in the kernel. It is effective in removing noise while preserving edges.