Dong Yang^{1, 2}, Tomoki Koriyama¹, Yuki Saito²

CyberAgent Al Lab

Overview

1 Code & speech samples

think that ... Hmm

Inhale

[click] go should

(Filled Pause)

(Silence) (Breath)

(Tongue Click)

¹CyberAgent, Inc., Japan; ²The University of Tokyo, Japan

Breath synthesis remains underexplored in Text-to-Speech (TTS) research.

1. Breath Detection (Our Focus)

- a. Develop a rule-based approach for initial labeling
 - I. Propose two novel acoustic features
 - II. Avoid extensive manual annotation of training data
- b. Propose and train our breath detection model

II. Self-training method on a large TTS corpus

- I. Frame-wise detection with reduced computational costs

2. Speech Synthesis (For Validation)

- a. Insert breath marks to text transcripts based on detection results
- b. Train a TTS model
 - I. Achieve more natural breath-contained synthetic speech

Acoustic Features

Duration[1]

Zero-Crossing Rate (ZCR)^[2]

Definition: Rate of the audio signal changes its sign For discrete sampled signal:

N: window length, $X = \{x[n]\}_{n=0}^{N-1}$: audio signal

$$ZCR(X) = \frac{1}{N-1} \sum_{n=1}^{N-1} 0.5 |sgn(x[n]) - sgn(x[n-1])|$$

Variance of Mel-Spectrogram (VMS)

Definition: Var(Mel) in frequency domain

Normalized Average of VMS (NA-VMS)

Definition: mean of min-max normalized VMS F: frame, $V = \{v[f]\}_{f=0}^{F-1}$: VMS values

$$NA - VMS(V) = \frac{1}{F} \sum_{f=0}^{F-1} \frac{v[f] - \min(V)}{\max(V) - \min(V)}$$

Dataset & Annotation

LibriTTS-R^[3] Corpus + MFA^[4] for text-speech alignment & pause recognition

Manual annotation for valid & test sets:

	Utterances	Pauses	Annotated breath
Validation set	520	2,049	400
Test set	455	2,051	480

Rule-based annotation for training set:

Class	Duration	Max(VMS)	Max(ZCR)	NA-VMS	Precision	Recall
Breath	> 300 ms	> 150	> 1 x 10 ⁻⁴	> 0.6	0.982	0.450
Non-breath	_	< 150	< 5 x 10 ⁻⁵	_	1.000	0.111

Self-Training Process

label(T, P, B, U):

All frames in training set: T MFA-recognized pauses: P

Annotated breath: $B \rightarrow 1$ Annotated non-breath: $U \rightarrow 0$ Unannotated: $P \setminus (B \cup U) \rightarrow -100$

Non-pauses: $T \setminus P \rightarrow 0$

Algorithm: Self-training for breath detection models

 $k \leftarrow 0$

 $Y^0 \leftarrow label(T, P, B, U)$

 $D_{\theta}^{0} \leftarrow BCE(D_{\theta}(T), Y^{0})$

Repeat:

 $k \leftarrow k+1$

 $\alpha^k \leftarrow argmin_{\alpha^k}|Precision(D_{\theta}^{k-1}(P_{valid}) > \alpha^k, B_{valid}) - (0.97 - 0.02 * k)|$

 $\beta^k \leftarrow argmin_{\beta^k}|Precision(D_{\theta}^{k-1}(P_{valid}) < \beta^k, U_{valid}) - (0.97 - 0.02 * k)|$

 $\widehat{B} \leftarrow D_{\theta}^{k-1}(T) > \alpha^k$

 $\widehat{U} \leftarrow D_{\theta}^{k-1}(T) < \beta^k$

 $Y^k \leftarrow label(T, P, B \cup \widehat{B}, U \cup \widehat{U}) \triangleright Pseudo-labeling$

 $D_{\theta}^{k} \leftarrow BCE(D_{\theta}^{k-1}(T), Y^{k})$

 $\gamma^k \leftarrow argmax_{\gamma^k} IoU(D_{\theta}^k(T_{valid}) > \gamma^k, B_{valid})$

 $IoU(D_{\theta}^{k}(T_{valid}) > \gamma^{k}, B_{valid}) < IoU(D_{\theta}^{k-1}(T_{valid}) > \gamma^{k-1}, B_{valid})$ Until:

Output:

Experimental Results

Breath detection experiments:

Proposed Model

Metric: intersection over union (IoU)

		,
Iteration	Baseline ^[5]	Proposed
0	0.616	0.777
1	0.634	0.809
2	0.681	0.829
3	0.710	0.836
4	0.709	0.827

Training configurations:

- Optimizer: AdamW
- Scheduler: Linear
- Peak learning rate: 2 x 10⁻⁵
- Epochs in each iteration: 10 - Batch size: 64
- Dataset: train-clean-100 train-other-500
- 1. Our proposed model consistently outperformed the baseline model.
- 2. Both models achieved their peak IoU after the 3rd training iteration, where the models were considered the best-performing ones and used in the TTS experiments.

Ablation studies:

ADIGITO I GIGGIOO.		
Model	Iteration	loU
Proposed	0	0.777
w/o ZCR		0.631
w/o VMS		0.677
w/o non-breath		0.702
Proposed	1	0.809
w/o pseudo-label		0.740

1. ZCR and VMS in the input and the use of non-breath set proved to be critical.

2. Continued training without pseudolabeling did not improve performance.

[4] M. McAuliffe et al., INTERSPEECH 2017.

TTS experiments:

TTS model: VITS^[6]; Dataset: train-clean-360

, , , , , , , , , , , , , , , , , , , ,				
Model	MOS1 ± CI	MOS2 ± CI		
Ground truth	4.03 ± 0.12	3.92 ± 0.13		
VITS	3.35 ± 0.15	3.34 ± 0.17		
VITS w/ baseline	3.27 ± 0.15	3.50 ± 0.14		
VITS w/ proposed	3.37 ± 0.14	3.55 ± 0.15		

MOS1:

- General evaluation
- Samples: Not all utterances included breath
- Conclusion: Inaccurate breath detection negatively affected the TTS training

MOS2:

- Breath-focus evaluation
- Samples: All utterances included breath
- Instruction: "Please focus on the breath sounds" - Conclusion: Detected breath marks enhanced the naturalness of synthetic breath sounds
- [1] N. Braunschweiler and L. Chen, SSW 2015. [2] D. Ruinskiy and Y. Lavner, TASLP 2007.
 - [5] E. Sz'ekely et al., ICASSP 2019. [6] J. Kim, J. Kong, and J. Son, ICML 2021.
- [3] Y. Koizumi et al., INTERSPEECH 2023.