Szükséges fogalmak

Teljes helyesség leírása Hoare-hármassal

Amit eddig úgy jelöltünk hogy $Q \Longrightarrow lf(S,R)$, jelölhetjük egy Hoare-hármassal is, a jelentésük ugyanaz: Q feltételnek eleget tevő állapotokból indulva garantált hogy az S program minden végrehajtása helyesen terminál, méghozzá olyan állapotban ahol R teljesül.

$$\{\{Q\}\}S\{\{R\}\}$$

Új programkonstrukciók levezetési szabályai

Továbbra is szekvenciális programokkal foglalkozunk, de bevezettünk három új programkonstrukciót. Ezeknek megadjuk a levezetési szabályait $\frac{a}{b}$ alakban, ami azt jelöli hogy a teljesülése esetén b-re tudunk következtetni. Vagy másképp: ahhoz hogy b-t belássuk, elegendő belátni a-t.

Atomi utasítás levezetési szabálya

$$\frac{\{\{Q\}\}\ S\ \{\{R\}\}\}}{\{\{Q\}\}\ [S]\ \{\{R\}\}}$$

Várakoztató utasítás levezetési szabálya

$$\begin{array}{c} Q \implies \beta \vee \neg \beta \\ \\ \{\{Q \wedge \beta\}\} \; S \; \{\{R\}\} \\ \hline \{\{Q\}\} \; \text{await} \; \beta \; \text{then} \; S \; \text{ta} \; \{\{R\}\} \end{array}$$

• Párhuzamos blokk levezetési szabálya

$$Q \Rightarrow Q_1 \wedge \ldots \wedge Q_n$$

$$\forall i \in \{1, \ldots, n\} : \{\{Q_i\}\} S_i \{\{R_i\}\}\}$$

$$R_1 \wedge \ldots \wedge R_n \Rightarrow R$$

a párhuzamos blokk holtpontmentes

 $\frac{\{\{Q_i\}\}S_i\{\{R_i\}\}\text{teljes helyességi tételek interferencia-mentesek}}{\{\{Q\}\}\text{ parbegin }S_1\parallel\cdots\parallel S_n\text{ parend }\{\{R\}\}}$

Az első három feltétel azt fejezi ki, hogy

- ha Q előfeltétel teljesül, akkor a párhuzamos blokk bármely S_i komponensprogramja elvégezhető, mert teljesül a Q_i előfeltétele (ezt nevezhetjük "belépési feltételnek")
- minden S_i komponens önmagában teljesen helyes a Q_i előfeltételével és R_i utófeltételével adott feladatra nézve
- amikor a párhuzamos blokk terminál (az összes S_i komponens befejeződött, elérte utófeltételét) akkor jó helyen terminált: ott ahol R utófeltétel igaz (ezt nevezhetjük "kilépési feltételnek")

Interferencia mentesség

- Azt mondjuk hogy az S_j komponens kritikus u utasítása (aminek előfeltételét jelölje pre_u) nem interferál a $\{\{Q_i\}\}S_i\{\{R_i\}\}$ teljes helyességi tétellel, ha
 - $\{\{pre_u \land R_i\}\}u\{\{R_i\}\}\}$ Azaz u végrehajtása nem rontja el S_i utófeltételét: ha R_i igaz volt a végrehajtás előtt akkor utána is igaz lesz.
 - $\{\{pre_u \land pre_s\}\}u\{\{pre_s\}\}$ Azaz u végrehajtása igaznak tartja meg S_i bármely s utasításának előfeltételét: ha s elvégezhető volt u végrehajtása előtt akkor utána is az lesz.
 - $\{\{pre_u \land P \land t = t_0\}\}u\{\{t \le t_0\}\}\forall t_0 \in \mathbb{Z} \text{ Azaz } u \text{ végrehajtása } S_i \text{ bármely ciklusának } t \text{ terminálófüggvényének értékét nem növeli meg } (P \text{ ugyanezen ciklus invariánsát jelöli}).}$

Ezzel a fogalommal azt akarjuk kifejezni, hogy ha valamit már beláttunk az S_i komponens esetén, az a bizonyítás nem veszti érvényét egy S_i komponenssel párhuzamosan végrahajtott S_j komponensben lévő u utasítás végrehajtásával. Például, ne legyen az hogy már beláttuk hogy S_i egy ciklusának magjában a termináló függvény értéke csökken, a bizonyításunkat meg tönkreteszi u azáltal hogy meg tudja növelni az adott ciklus termináló függvényének értékét.

Mivel értéket megváltoztatni csak az értékadás (legyen az akár egy await-en belül) tud, így u utasításként azokat kell figyelembe venni, nevezzük őket kritikus utasításnak.

- Azt mondjuk hogy a $\{\{Q_i\}\}S_i\{\{R_i\}\}$ és $\{\{Q_j\}\}S_j\{\{R_j\}\}$ (ahol $i \neq j$) teljes helyességi tételek nem interferálnak, ha S_j bármely u kritikus utasítása nem interferál a $\{\{Q_i\}\}S_i\{\{R_i\}\}$ teljes helyességi tétellel (és hasonló igaz S_i bármely kritikus utasítására).
- A $\{\{Q_i\}\}S_i\{\{R_i\}\}$ teljes helyességi tételek ($i \in [1..n]$) interferencia mentesek, ha közülük egyik pár sem interferál.

Feladatok

1. $A = (x:\mathbb{Z})$

$$S_1$$
:
$$\{x = 0 \lor x = 3\}$$

$$x := x + 2$$

$$\{x = 2 \lor x = 5\}$$

$$\{x = 0 \lor x = 2\}$$

$$x := x + 3$$

$$\{x = 3 \lor x = 5\}$$

Bizonyítsuk be hogy $\{\{x=0\}\}$ parbegin $S_1 \parallel S_2$ parend $\{\{x=5\}\}$ teljesül.

2. $A = (x:\mathbb{Z})$

```
S_1: \{x=0 \lor x=1\} await x=1 then SKIP ta \{x=1\}
```

```
S_2:

\{x = 0\}

x := 1

\{x = 1\}
```

Bizonyítsuk be hogy $\{\{x=0\}\}$ parbegin $S_1 \parallel S_2$ parend $\{\{x=1\}\}$ teljesül.

```
3. A = (x:\mathbb{N}, n:\mathbb{N}, z:\mathbb{N}) B = (x':\mathbb{N}, n':\mathbb{N}) Q = (x = x' \land n = n' \land x > 0) R = (z = x'^{n'})
```

Jelölje S a következő programot:

```
egin{aligned} \{x>0\} \ z &:= 1; \ \{Inv\} \ \mathbf{parbegin} \ S_1 \| S_2 \ \mathbf{parend} \ \{z = x'^{n'}\} \end{aligned}
```

```
\{Inv\}
S_1:
\{Inv\}
while n \neq 0 do
\{Inv \land n \neq 0\}
n,z := n-1,z \cdot x
od
\{z = x'^{n'} \land n = 0\}
```

```
\{Inv\}
S_2:
\{Inv\}
while n \neq 0 do
\{Inv\}
await even(n) then
x, n := x \cdot x, n/2
ta
od
\{z = x'^{n'} \wedge n = 0\}
```

Inv jelöli a ciklusok invariánsát: $Inv = (z \cdot x^n = x'^{n'})$ A ciklusok termináló függvénye: t: n

- Lássuk be hogy teljesül az interferencia-mentesség.
- Mutassuk meg hogy S program megoldja a specifikált feladatot.

```
4. A = (a : \mathbb{Z}^n, b : \mathbb{Z}^n)
```

```
i, j := 1, 1;

\{a = a' \land i = 1 \land j = 1\}

parbegin S_1 || S_2 parend
```

```
\{Inv\} \ S_1: \ \{Inv\} \ 	ext{while } i \leq n 	ext{ do } \ \{Inv \wedge i \leq n\} \ 	ext{await } i = j 	ext{ then } \ 	ext{} x, i := a[i], i+1 \ 	ext{ ta } \ \{Inv\} \ 	ext{do } \ \{Inv \wedge i = n+1\}
```

```
\{Inv\}
S_2:
\{Inv\}
while j \leq n do
\{Inv \wedge j \leq n\}
await i > j then
b[j], j := x, j + 1
ta
\{Inv\}
do
\{Inv \wedge j = n + 1\}
```

 $Inv = (a = a' \land 0 \le i - 1 \le j \le i \le n + 1 \land \forall k \in [1..j - 1] \colon b[k] = a[k]) \land (i > j \to x = a[i - 1]))$

 $i:\mathbb{N}$ és $j:\mathbb{N}$ segédváltozók. S_1 ciklusának termiáló függvénye n+1-i, S_2 -é n+1-j. Mutassuk meg az interferencia-mentességet.