

نمایش ساختار مولکولی داروها در شبکه های عصبی گرافی

Deep Learning Workshops

Representing Molecular Structure of Drugs in Graph Neural Networks

Table of Contents

- 1. Drug Structure
- 2. Introduction to SMILES
- 3. SMILES Notation Rules
- 4. Canonical SMILES
- 5. Canonical SMILES Algorithm
- 6. Cangen Algorithm
- 7. Cangen Example
- 8. Related Contents

Drug Structure

What is SMILES?

Simplified Molecular Input Line Entry System

- Translate a chemical's 3-dimensional structure into a string of symbols
- Simplicity and Readability to the human eye

Non-Hydrogen atoms represented by their atomic symbols

• Any unfulfilled valency of an atom is assumed to be Hydrogen

Example:

- Writing a simple C means a CH₄ (Methane)
 - A simple N is NH₃ (Ammonia)
 - A simple O is H_2O (Water)
- Representing elemental atoms by []
 - [C] is elemental Carbon

- Representing Charged Molecules
 - Using []
 - Positive charge represented by + sign
 - Negative charge represented by sign

Ammonium Cation
[NH4+]

H

H

H

➤ Hydroxyl Anion [OH-]

- Representing Bonds
 - Single -
 - Double =
 - Triple #
 - Aromatic
 - > Single and Aromatic bonds are often omitted for simplicity
 - > Adjacent atoms assumed to be connected by a single or aromatic bond

- Representing Bonds (Examples)
- Carbon dioxide (CO₂)
 O=C=C

• Formaldehyde (CH₂O) C=C

hydrogen cyanide (HCN) C#N

Representing Branches

- specified by enclosures in parentheses
- Propanoic acid
- $C_3H_6O_2$

- Green highlighted atoms are taken as base chain
- Yellow highlighted atoms are <u>branch</u>

Representing Cyclic Structures

- Break one single or double (aromatic) bond in each ring
- Bonds are numbered in any order, designating ring-opening/closure bonds by a digit immediately following the atomic symbol at each ring closure

Representing Cyclic Structures

- Different SMILES notations for the same structure
- Breaking a ring in different places

Aromatic Rings

• <u>Lowercase</u> letters tells us this is an <u>aromatic</u> ring signifying alternate single and double bonds

Benzene (C_6H_6) c1cccc1

Pyridine c1ccncc1

Nonaromatic Rings

Non-aromatic: indicated by UPPER CASE

• Hydroquinone

aromatic

O=c1ccc(O)cc1

Quinone

non-aromatic

O=C1C=CC(=O)C=C1

- Disconnected Structures
 - lons are not connected by a covalent bond
 - Disconnected compounds are separated by a "."

Sodium Chloride [Na+].[Cl-]

Na⁺ Cl⁻

Sodium Phenoxide [Na+].[O-]c1cccc1

Na⁺

Isotopic Specification

• The *double bond* configuration is indicated by placing '/' or '\' between the atom constituting the double bond and their subsequent bonding partners.

(Z)-1,2-Difluoroethylen

(E)-1,2-Difluoroethylen

Tetrahedral Centers

- <u>anticlockwise</u>, an '@' is inserted after the central C-atom in []
- For a <u>clockwise</u> order, '@@' is inserted after the central C-atom in []

look from N towards C (chiral center)

list the neighbors anticlockwise

...or clockwise

N[C@@](Br)(C)O

Disadvantages of SMILES string

- o SMILES is not unique
- o Doesn't provide information about positions of each atom in space

Canonical SMILES

- ➤ Absolute or Unique SMILES
- > Easy identification of identical molecules
- > Solves "graph isomorphism" problem
- Cangen Algorithm
- A practical, efficient algorithm for generating canonical SMILES

Canonical SMILES Algorithm

Calculating the initial ranks of atoms:

- Number of connections
- 2. Number of non-H bond orders
- 3. Atomic number
- 4. Sign of charge: O for non-negative, 1 for negative charge
- 5. Formal charge
- 6. Number of attached hydrogens
- 7. Isotope mass number

Cangen Algorithm

- > Improved invariants
- "Stable" prioritization
- > Avoids ambiguities from combining invariants
- > Resolves "symmetric" atoms

Cangen Initial Invariants

- ❖ Initial invariants encode atom type information
 - Number of neighbors
 - Sum of bond orders
 - Charge
 - Number of attached hydrogens
- ❖ Initial invariants are transformed to ranks

Cangen Update Rule for Invariants

- * Rank is mapped to corresponding prime (Carbon)
- ❖ New invariant:
 - primes of neighbors are multiplied

New ranks are determined based on:

- Old ranks
- New invariants

Cangen Iteration

- Repeat until ranking is stable
 - Calculate new invariants
 - Re-rankatoms
- Final ranking yields priorities
- Generate Smiles

Initial invariants encode atom type information

Atom	#bds	Σ bds	At.Nr	Chg.	#H	rank
а	1	2	08	0	0	3
b	1	1	08	0	1	2
С	3	4	06	0	0	6
d	3	4	06	0	0	6
е	2	3	06	0	1	5
f	2	3	06	0	1	5
g	2	3	06	0	1	5
h	2	3	06	0	1	5
i	3	4	06	0	0	6
j	2	2	06	0	0	4
k	3	4	06	0	0	6
1	1	1	06	0	3	1
m	1	2	08	0	0	3

Primes of neighbors are multiplied

Atom	rank	prime	Nbors	New Inv.
а	3	5	С	13
b	2	3	С	13
С	6	13	a,b,d	195 = 5*3*13
d	6	13	c,e,i	1889 = 13*11*13
е	5	11	d,f	143 = 13*11
f	5	11	e,g	121 = 11*11
g	5	11	f,h	121 = 11*11
h	5	11	g,i	143 = 11*13
i	6	13	d,h,j	1001 = 13*11*7
j	4	7	i,k	169 = 13*13
k	6	13	j,l,m	70 = 7*2*5
I	1	2	k	13
m	3	5	k	13

Repeat until ranking is stable Iteration 2

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	3	13	(3,13)	3
b	2	13	(2,13)	2
С	6	195	(6,195)	8
d	6	1889	(6,1889)	10
е	5	143	(5,143)	6
f	5	121	(5,121)	5
g	5	121	(5,121)	5
h	5	143	(5,143)	6
i	6	1001	(6,1001)	9
j	4	169	(4,169)	4
k	6	70	(6,70)	7
1	1	13	(1,13)	1
m	3	13	(3,13)	3

Iteration 3

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	3	19	(3,19)	4
b	2	-	(2,-)	2
С	8	-	(8,-)	10
d	10	-	(10,-)	12
е	6	319	(6,319)	8
f	5	143	(5,143)	6
g	5	143	(5,143)	6
h	6	243	(6,243)	7
i	9	-	(9,-)	11
j	4	-	(4,-)	5
k	7		(7,-)	9
1	1	-	(1,-)	1
m	3	17	(3,17)	3

Iteration 4 (Final ranking)

Atom	rank	New Inv.	(rk.,inv.)	New rank
а	4	-	(4,-)	4
b	2	-	(2,-)	2
С	10	-	(10,-)	11
d	12	-	(12,-)	13
е	8	-	(8,-)	9
f	6	249	(6,249)	7
g	6	221	(6,221)	6
h	7	-	(7,-)	8
i	11	-	(11,-)	12
j	5	-	(5,-)	5
k	9		(9,-)	10
1	1	-	(1,-)	1
m	3	-	(3,-)	3

Generating SMILES

Canonical Limitations

- > Depends on the aromaticity model
- ➤ Different variations of the algorithms exist

Related Python Libraries

- ✓ RDKit
- ✓ pubchempy
- √ py3Dmol

Related Websites

- √ https://go.drugbank.com/
- √ https://pubchem.ncbi.nlm.nih.gov/
- √ https://chembl.gitbook.io/chembl-interface-documentation/downloads
- √ https://drugs.ncats.io/
- ➤ Online Tools:

Canonical SMILES generator:

https://www.antvaset.com/canonical-smiles-generator

SMILES checker:

https://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator__checker/index.html

Related Websites

Represented By:

Afrooz Rashedi

MSc student of Al

Feel Free To Contact Me:

afrooz.rashedi@gmail.com

