IS 2108 – IT Project Management

Lecture 03 Project Planning II

- Step 0 Select project
- Step 1 Identify project scope and objectives
- Step 2 Identify project infrastructure
- Step 3 Analyze project characteristics
- Step 4 Identify the project products and activities
- Step 5 Estimate effort for each activity

- Step 6 Identify activity risks
- Step 7 Allocate resources
- Step 8 Review/ Publicize plan
- Step 9 Execute plan
- Step 10 Lower level planning

- Outside main project planning process
 - Hence step 0
- Feasibility study justifies project selection
- Evaluation of project selection
 - Individual basis
 - Part of strategic planning

- Identify objectives and measures of effectiveness in meeting them
- Establish a project authority
- Identify stakeholders
- Modify objectives in the light of stakeholder analysis
- Establish methods of communication with all parties

- Establish relationship between project and strategic planning
- Identify installation standards and procedures
- Identify project team organization

- Distinguish the project as either objective or product driven
- Analyze other project characteristics
- Identify high-level project risks
- Take into account user requirements concerning implementation
- Select general life cycle approach
- Review overall resource estimates

- Identify and describe project products (Including quality criteria)
- Document generic product flows
- Recognize product instances
- Produce ideal activity network
- Modify ideal network to take into account need for stages and checkpoints

- Carry out bottom-up estimation
- Revise plan to create controllable activities

- Identify and quantify activitybased risks
- Plan risk reduction and contingency measures where appropriate
- Adjust plans and estimates to take account of risks

- Identify and allocate resources
- Revise plans and estimates to account for resource constraints

- Review quality aspects of project plan
- Document plans and obtain agreement

Step 9 & 10 – Execute plan and Lower- level planning

- Develop the plans for each activity in greater detail (because they have to wait for details till, they are available)
- This is common in an iterative development approach.

Activity Planning

- Ensure that the appropriate resources will be available precisely when required
- Avoid different activities competing for the same resources at the same time
- Produce a detailed schedule showing which staff carry out each activity
- Produce a detailed plan against which actual achievement may be measured
- Produce a timed cash flow forecast
- Re-plan the project during its life to correct drift from the Target

Objectives of Activity Planning

- Feasibility assessment
 - Is project possible within required timescales and resource constraints?
- Resource allocation
 - What are the most effective ways of allocating resources?
- Detailed costing
 - How much will the project cost and when is that expenditure likely to take place?
- Motivation
 - Providing targets and being seen to monitor achievement against targets
- Co-ordination
 - When do the staff in different departments need to be available to work on a particular project and when do staff need to be transferred between projects?

- Planning is an on-going process of refinement
- Over successive iterations, the emphasis and purpose of planning will shift
- Beyond feasibility study, emphasis will be upon production of activity plans for ensuring resource availability and cash flow control
- Throughout the project, until the final deliverable has reached the customer, monitoring and re-planning must continue

Project Schedules

- Defining Activities
 - A project is composed of a number of interrelated activities
 - A project may start when at least one of its activities is ready to start
 - A project will be completed when all of the activities it encompasses have been completed
 - An activity must have a clearly defined start and a clearly defined endpoint, normally marked by the production of a tangible deliverable
- If an activity requires a resource (as most do) then that resource requirement must be forecastable and is assumed to be required at a constant level throughout the duration of the activity

- The duration of an activity must be forecastable assuming normal circumstances, and the reasonable availability of resources
- Some activities might require that others are completed before they can begin (these are known as precedence requirement)

•

Sequencing and Scheduling Activities

- Throughout a project, we will require a schedule that clearly indicates when each of the project's activities is planned to occur and what resources it will need.
- Take account of the nature of the development process (that is, certain tasks must be completed before others)

Work Breakdown Structure (WBS)

- Divide project into components and then sub-divide them until you identify the manageable tasks.
- Manageable tasks mean:
 - Ability to assign responsibilities
 - Reduce interdependence between tasks
 - Ability to measure progress

- Estimate costs
- Schedule activities
- Identify responsibilities
- Develop network analysis
- Analyse risk of each activity
- Can find the milestones

Work Breakdown Structure

Source: https://www.archimetric.com/faq-items/project-management-work-breakdown-structure-project-management/

- Manpower planning and material requirement for each stage.
- Expected start and end dates of each activity.
- Sequential relationship among the activities.
- Using scheduling, you can:
 - Predict completion time
 - Control cost and resources
 - Mange changes and uncertainties
 - Use for future references

Tools for project scheduling

- Project schedule shows what work needs to be performed, which resources are required and what is the timeframe given to complete the project.
 - Bar chart (Gantt chart)
 - Critical Path Method (CPM)
 - Project Evaluation and Review Techniques (PERT)

- A bar chart plotted against over time.
- An activity is illustrated by a bar (its length is based on time estimation)
- Depending on the availability of task dependencies and availability of resources, the bars can be parallel or sequential.
- Each bar is drawn at the earliest start date.

Allocation of staff

Week	1	2	3	4	5	6	7	8	9	10	11	12	13
Task: Person													
A: Nuwan													
B: Nuwan													
C: Nuwan				į									
D: Nuwan					*								
E: Anwar				•									
F: Anwar					۰								
G: Sathya													
H:Sathya													
1: Lalani													

Gantt Chart

	(A)	Name	Duration	Start	
1		Begin project	0 days	7/19/04 8:00 AM	7/19/
8		⊡Design Phase	55 days	7/19/04 8:00 AM	10/1
2		Prototype design	25 days	7/19/04 8:00 AM	8/20/
9	□ /2	Test prototype	20 days	9/5/04 8:00 AM	10/1)
15	,	Prototype completed	0 days	10/1/04 5:00 PM	10/1)
16		⊟Finance Phase	45 days	7/19/04 8:00 AM	9/17
3		Create business plan	15 days	7/19/04 8:00 AM	8/6/C
10		Present to current investor	0 days	8/6/04 5:00 PM	8/6/C
17		Meet with bankers	0 days	8/6/04 5:00 PM	8/6/0
22		Circulate plan w/ venture c	5 days	8/9/04 8:00 AM	8/13/
28		Negotiate with venture cap	10 days	8/16/04 8:00 AM	8/27)
34		Reach agreement	0 days	8/27/04 5:00 PM	8/27)
39		Create legal documentation	15 days	8/30/04 8:00 AM	9/17)
42		Financing closed	0 days	9/17/04 5:00 PM	9/17)
23		□Production Phase	73 days	8/16/04 8:00 AM	11/2
4		Setup assembly line	15 days	10/4/04 8:00 AM	10/22
11		Hire assemblers	50 days	8/16/04 8:00 AM	10/22
18		Assemble first batch	3 days	10/25/04 8:00 AM	10/2:
24		Quality testing	10 days	10/28/04 8:00 AM	11/10
29		Assemble product	10 days	11/11/04 8:00 AM	11/24
35		Inventory available	0 days	11/24/04 5:00 PM	11/24
30			30 days	9/20/04 8:00 AM	10/2

Critical Path Method (CPM)

- For project with a large number of activities, a bar chart is not effective.
- this method is easier to illustrate activities of complex projects.
- Critical path indicates the longest path in a CPM network.
- Time required to traverse in the critical path is the project duration. There can be more than one critical path.
- The activities lie on a critical path are critical activities. It might require resources prior to other activities.
- Shows float time for each activity.

Project Evaluation and Review Techniques (PERT)

- Suitable to projects with uncertain duration and R&D projects (doing for the first time).
- Uses three estimates of duration.
 - optimistic time estimate (t_0) shortest possible time
 - Pessimistic time estimate (t_p) maximum time required to complete an activity (worst situation)
 - Mot probable time estimate (t_m)- time required under normal circumstance

$$t_e = (t_0 + 4 t_m + t_p)/6$$