Let S be a scheme Def: S-scheme is a scheme X with a direct $X \longrightarrow S$ Morphisms: X-> Y Rem: For imes any wheme and A- any commutative ring $\operatorname{Hom}_{\operatorname{Scheme}}(\mathsf{X},\operatorname{Spec}\mathsf{A}) \ \stackrel{\cong}{=} \ \operatorname{Hom}_{\operatorname{Rings}}(\mathsf{A}, \ \mathsf{\Gamma}(\mathsf{X}, \mathcal{O}_{\mathsf{X}}))$ i.e. $A \longrightarrow Spec A$ } adjoint functors $x \longrightarrow \Gamma(x, 0_x)$ Adjoint maps: $X \longrightarrow \operatorname{Spec} \Gamma(X, O_X)$ is isomorphism iff X is raffine. Kem: X scheme, $x \in X$ have canonical map: Spec $\mathcal{O}_{\mathbf{x}} \longrightarrow X$ For this fick x & SpecA chen affine $x \longleftrightarrow \beta \in A$ gives $A \longrightarrow A_{\beta} \simeq \mathcal{O}_{x,x}$ gives Spec $Q_{X,*} \longrightarrow \operatorname{Spec} A \subseteq X$ Why independent of shoice of A. Further $\mathcal{O}_{X,x} \longrightarrow K(x)$ gives ω : Spec K(x) -> X Functor of foints: C any rategory (eg: schemes, S-schemes) X,Z E & C $h_{x}(z):= X(z):= Hom_{e}(z,x)=:$ Let of Z valued points in X. or Schemes/S and Z= Spec A then X(A):=X(Spec A)of C= Schemes $f_{X} = X(-) = \text{Hom}(-, X)$ is a functor $C^{\circ p} \longrightarrow \text{Sets}$ Functor of chaints associated to X

eg:
$$X = \text{Spec } \mathbb{Z}[x_1, ..., x_n]/(f_i, ..., f_r)$$

 $X(B) = \text{Hom } (\text{Spec } B, X) = \text{Hom } (\mathbb{Z}[x_1...x_n]/(f_i, f_r), B)$
 $= \{(y_1, ..., y_n) \in B^{X^n} : f_i(x_1, ..., x_n) = 0\}$

eg:
$$A_Z^1 = \text{Spec } Z[x]$$

$$A_Z^1(x) = \text{Hom } (X, \text{Spec } Z[x]) \cong \text{Hom } (Z[x], \Gamma(x, \mathcal{O}_x))$$

$$\cong \Gamma(X, \mathcal{O}_x)$$
As it should be for itegralar functions on X

More generally: A'_A = Spec A[x] plays same take in the category A-Schemes $A'_A(x)\cong \Gamma(x,0_x)$ for $X\longrightarrow$ Spec A

§ 6.6 Representable Functors & Group Schemes
$$\times \longrightarrow \Gamma(X, \mathbb{Q}_x)$$

Schemes Sets

Jiven
$$X \xrightarrow{f} Y$$
, we get $\Gamma(X, \mathcal{O}_{x}) \xleftarrow{f^{*}} \Gamma(Y, \mathcal{O}_{y})$

$$A'_{z}(X) \xleftarrow{f^{*}} A'_{z}(Y)$$

 \Rightarrow Som orphism of functors $h_{A_{2}}(\cdot) \cong \Gamma(-)$

Def: Representable functors:
 a functor
$$F\colon \mathcal{C}^{op}\longrightarrow Sets$$
 is represented by $Y\in Ob$ C $F\cong h_y$

Yoneda's Jemma:

$$\mathsf{Hom}_{\mathsf{functors}}(\mathsf{h}_{\mathsf{y}},\mathsf{F}) \cong \mathsf{F}(\mathsf{y})$$

Proof:

$$\phi: h_y \longrightarrow F \longrightarrow \phi_y (id)$$

 $d_z: h_y(z) \longrightarrow F(z) \longleftarrow d \in F(y)$
 $d \in F(y)$
 $d \in F(y)$
 $d \in F(y)$

$$f = f_{*}(idy)$$

$$F(Z) \xrightarrow{\phi} F(Z)$$

$$f_{*}(\phi(idy))$$

$$F(Y) \xrightarrow{\phi} F(Y)$$

$$G(Y, Y) \xrightarrow{\phi} F(Y)$$

Corrolary: ${\cal C} \longrightarrow {\sf Hom}\,({\it C}^{\sf op},{\sf Sets})$ is fully faithful because Hom (hy, hz) = hz(Y) y → hy Home(Y, Z) Cor: F representable then the representing object is unique up iso. Eg: In any \mathcal{C} , $\times \times \vee$ moonly any Z which refresents $h_{\times} \times h_{\gamma}$ · More generally, $\mathcal{D}:\mathcal{D}\to\mathcal{C}$ any covariant functor T - fim Hom (T,D) Im D is just ob X in C representing F. ic. $Hom(T, \underline{lim} D) \cong \underline{lim} Hom(T, D)$ eg: In Schemes: $X \longrightarrow \Gamma(X, \mathcal{O}_{x}^{*})$ is represented by Spec $\mathbb{Z}[\alpha, \infty]$ Rem: $\Gamma(X, \mathcal{O}_X)^* \longrightarrow \Gamma(X, \mathcal{O}_X)$ Yoneda Spec $\mathbb{Z}[x,x^{-1}] \longrightarrow \text{Spec } \mathbb{Z}[x]$ $\mathbb{Z}[x,x^{-1}] \longleftarrow \mathbb{Z}[x]$ Def: $G_m := Spec \mathbb{Z}[x,x^{-1}]$ multiplicative group Of: A group object in a scal C is Y∈Ob C equipped with ie $f_{\gamma}(T)$ is a group $\forall T$ & $Hom(T,Y) \rightarrow Hom(S,Y)$ is a group HomSchemes, . Om is a group wheme · $\mathbb{A}_{\mathbb{Z}}^{\prime}$ is a group scheme ($\mathbb{A}_{\mathbb{Z}}^{\prime}=:\mathbb{G}_{a}$, additive group.)