Supplementary tables

Supplementary table 1: Fitness scores and errors

Supplementary table 2: Fitted values of $\Delta\Delta$ Gf and $\Delta\Delta$ Ga Supplementary table 3: Src surface pocket summary

Supplementary table 4: Plasmids

pGJJ133	DO4 1	Available upon request (Material Transfer Agreement required)
pTB022	toxicity empty	https://benchling.com/s/seq-rGJbDMKRao9IdIAqhMoJ?m =slm-cUTBKgetTLCpJ3TveV5w
pTB198	1 1 1 1 1 1 1 1	https://benchling.com/s/seq-mve4HVJwo23HnO6BPNym ?m=slm-INfOeXfnOvLHoarUjhPK
pTB109	DO 4 O 1/D	https://benchling.com/s/seq-obS1wabcFstnPlwNCdPl?m= slm-an1b6yZtzRU1xlytarl5
pTB112	toxicity Src KD	https://benchling.com/s/seq-PUlubmPUQrNsuv9YkjJM?m =slm-KBT9Fq1il6zXODI1mvnj
pTB043		https://benchling.com/s/seq-0sA5ySViNYIInltmMAFI?m=sl m-27zYqdcFKogMjbIGqR1y
pTB023	4 1 14	https://benchling.com/s/seq-PdGjC1KRegS3IUGnMNPh? m=slm-CCYco9fv12T7nVaTxXhf

Supplementary table 5: Oligonucleotides

Amplification of SRC KD from full length gBlock					
oTB063	CAATATGCTAGCGATGCTTGGGAGATCCCTC				
oTB064	TAATTTAAAGCTTCAAGTTCTCTC				
Introduction of start codon in pTB112					
oTB214	atgGATGCTTGGGAGATCCCTC				
oTB215	GCTAGCCTCCTTGACGTT				
oPool and backbone	amplification for Gibson assembly				
oTB447_b1_ins_F	GATGCTTGGGAGATCCCTC				
oTB448_b1_ins_R	CACTCACAACTGCATACAATTG				
oTB449_b2_ins_F	AGCACAAGTCATGAAGAAGC				
oTB450_b2_ins_R	CACGGTGTACGTAATTCATTC				
oTB451_b3_ins_F	CATGGCCGCCCAGATTG				
oTB452_b3_ins_R	CGTGAACCTTCCATATAAGGC				
oTB453_b4_ins_F	GTGCAAAGTTCCCCATCAAG				
oTB454_b4_ins_R	CATAAGGTCGTGCAAGCTC				
oTB455_b5_ins_F	GAACGTGGTTATAGAATGCC				

	<u> </u>
oTB220_b5_ins_R	GCGTGACATAACTAATTTAAAGC
oTB457_b1_bb_F	CAATTGTATGCAGTTGTGAGTG
oTB458_b1_bb_R	GAGGGATCTCCCAAGCATC
oTB459_b2_bb_F	GAATGAATTACGTACACCGTG
oTB460_b2_bb_R	AGCTTCTTCATGACTTGTGC
oTB461_b3_bb_F	GCCTTATATGGAAGGTTCACG
oTB462_b3_bb_R	CAATCTGGGCGGCCATG
oTB463_b4_bb_F	GAGCTTGCACGACCTTATG
oTB464_b4_bb_R	CTTGATGGGGAACTTTGCAC
oTB241_b5_bb_F	AAGCTTTAAATTAGTTATGTCACG
oTB466_b5_bb_R	GGCATTCTATAACCACGTTC
qPCR quantification	oligos
oGJJ152	GCCTACATACCTCGCTCTGC
oGJJ153	CAACCGGTAAGACACGACT
Frameshifting PCR1	oligos
oTB302_b1_fs_F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCTTGG GAGATCCCTC
oTB303_302_+1	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNATGCTTG GGAGATCCCTC
oTB304_302_+2	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNCATGCTT GGGAGATCCCTC
oTB305_302_+3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGCATGCT TGGGAGATCCCTC
oTB306_302_+4	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGNATGC TTGGGAGATCCCTC
oTB307_302_+5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNWWANAT GCTTGGGAGATCCCTC
oTB308_b1_fs_R	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCACTCA
oTB309_308_+1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCACTC ACAACTGCATACAATTG
oTB310_308_+2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCACT CACAACTGCATACAATTG
oTB311_308_+3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTAGCAC TCACAACTGCATACAATTG
oTB312_308_+4	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTWTTGCA CTCACAACTGCATACAATTG
oTB313_308_+5	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTSCATGC ACTCACAACTGCATACAATTG
oTB471_449_b2_F S_F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCACAAG TCATGAAGAAGC

oTB472_449_+1	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGCACAA GTCATGAAGAAGC
oTB473_449_+2	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTAGCACA AGTCATGAAGAAGC
oTB474_449_+3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTAGCAC AAGTCATGAAGAAGC
oTB475_449_+4	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNTAGCA CAAGTCATGAAGAAGC
oTB476_449+5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNTTAGC ACAAGTCATGAAGAAGC
oTB477_450_b2_F S_R	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCACGGT GTACGTAATTCATTC
oTB478_450_+1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCACGG TGTACGTAATTCATTC
oTB479_450_+2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCACG GTGTACGTAATTCATTC
oTB480_450_+3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGCAC GGTGTACGTAATTCATTC
oTB481_450_+4	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTWSTTCA CGGTGTACGTAATTCATTC
oTB482_450_+5	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTSWNWW CACGGTGTACGTAATTCATTC
oTB483_451_b3_F S_F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATGGCCG CCCAGATTG
oTB484_451_+1	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATGGCC GCCCAGATTG
oTB485_451_+2	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCATGGC CGCCCAGATTG
oTB486_451_+3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGCATGG CCGCCCAGATTG
oTB487_451_+4	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCATG GCCGCCCAGATTG
oTB488_451_+5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNWCA TGGCCGCCCAGATTG
oTB489_452_b3_F S_R	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGTGAA CCTTCCATATAAGGC
oTB490_452_+1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACGTGA ACCTTCCATATAAGGC
oTB491_452_+2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACGTG AACCTTCCATATAAGGC
oTB492_452_+3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTACGT GAACCTTCCATATAAGGC
oTB493_452_+4	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTWSSACG

	TGAACCTTCCATATAAGGC
oTB494_452_+5	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTSWWWN CGTGAACCTTCCATATAAGGC
oTB495_453_b4_F S_F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGCAAAG TTCCCCATCAAG
oTB496_453_+1	ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGCAAA GTTCCCCATCAAG
oTB497_453_+2	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTGCAA AGTTCCCCATCAAG
oTB498_453_+3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCCGTGCA AAGTTCCCCATCAAG
oTB499_453_+4	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNAAGTGC AAAGTTCCCCATCAAG
oTB500_453_+5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGT GCAAAGTTCCCCATCAAG
oTB501_454_b4_F S_R	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATAAG GTCGTGCAAGCTC
oTB502_454_+1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCATAA GGTCGTGCAAGCTC
oTB503_454_+2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCATAA GGTCGTGCAAGCTC
oTB504_454_+3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGCATA AGGTCGTGCAAGCTC
oTB505_454_+4	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNGCA TAAGGTCGTGCAAGCTC
oTB506_454_+5	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNSGC ATAAGGTCGTGCAAGCTC
oTB507_455_b5_F S_F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAACGTG GTTATAGAATGCC
oTB508_455_+1	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAACGTG GTTATAGAATGCC
oTB509_455_+2	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAACGT GGTTATAGAATGCC
oTB510_455_+3	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGAACG TGGTTATAGAATGCC
oTB511_455_+4	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNCTGAAC GTGGTTATAGAATGCC
oTB512_455_+5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNTGAA CGTGGTTATAGAATGCC
oGJJ589_b5_R	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCGTGA CATAACTAATTTAAAGC
oGJJ590_589_+1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNGCGTG ACATAACTAATTTAAAGC

oGJJ591_589_+2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNGCGT GACATAACTAATTTAAAGC
oGJJ592_589_+3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHNHGCG TGACATAACTAATTTAAAGC
oGJJ593_589_+4	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHWWHG CGTGACATAACTAATTTAAAGC
oGJJ594_589_+5	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHWWAA GCGTGACATAACTAATTTAAAGC
oTB513_470+	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCACC ACCTCCactAAG
oTB514_470_+1	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATCCCA CCACCTCCactAAG
oTB515_470_+2	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGACCC ACCACCTCCactAAG
oTB516_470_+3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAGTCC CACCACCTCCactAAG
oTB517_470_+4	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTSWTGDC CCACCACCTCCactAAG
oTB518_470_+5	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTWSNNDC CCACCACCTCCactAAG

Supplementary Table 6: Src sequences

Src kinase domain:

Full length Src:

GGGACGTTTCTGGTCAGGGAAAGCGAAACAACAAAAGGAGCGTACTGCTTAAGCGTAAGCGATT TCGACAATGCCAAAGGTCTTAACGTTAAGCATTATAAGATTAGGAAGTTGGACTCCGGGGGCTTTT ATATAACGAGCAGAACCCAATTTAACTCTCTACAGCAATTGGTTGCATATTACTCCAAACATGCAGA CGGTCTATGTCATCGTTTGACAACTGTTTGCCCCACAAGTAAGCCTCAGACGCAAGGTTTAGCAA AGGATGCTTGGGAGATCCCTCGTGAATCACTGCGTCTTGAGGTAAAGTTAGGCCAGGGATGCTTT GGGGAGGTGTGGATGGCACGTGGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCG GAACCATGTCTCCTGAGGCGTTCCTGCAAGAAGCACAAGTCATGAAGAAGCTACGTCATGAGAAG CTAGTGCAATTGTATGCAGTTGTGAGTGAAGAGCCGATCTACATTGTCACTGAGTACATGAGCAAG GGTTCTTTGCTGGACTTCTTGAAGGGTGAAACCGGCAAATACCTGAGACTTCCCCAGTTGGTAGA TAAGAGCTGCGAACATACTGGTTGGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCG AGGCTTATTGAAGACAATGAATACACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGC TCCAGAGGCTGCCTTATATGGAAGGTTCACGATAAAGTCCGATGTGTGGAGTTTCGGGATATTGTT AACAGAATTGACAACGAAAGGACGTGTACCATATCCTGGCATGGTTAATAGAGAAGTACTTGACCA GGTAGAACGTGGTTATAGAATGCCATGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGT GTCAGTGTTGGAGGAAAGAGCCTGAGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAA GACTACTTCACGTCCACAGAACCACAGTACCAACCCGGAGAGAACTTGA

Supplementary Table 7: Library design

Block	start aa	end aa	Backgrounds (neutral, gain of function, loss of function)
1	268	326	WT, E273G, G282A, E283L, G287P, K298M, T304A, E313R, V316I, E323R
2	321	381	WT, T341I, L328I, K354R, D368V, A370L, K354P, S345P, G355V, M377F
3	376	435	WT, E381K, R382P, R391A, I395C, T420V, R412F, Y419A, P434H, I429A
4	431	491	WT, W431V, L454A, E473T, E489S, T443W, L458V, T443P, I444F, I444P
5	486	536	WT, D496Y, E508G, Y514R, P532W, Y530D, M498Q, F523K, Y514N, L494P

Library block 1

5' constant region:

GATGCTTGGGAGATCCCTCGT

Variable region:

GAATCACTGCGTCTTGAGGTAAAGTTAGGCCAGGGATGCTTTGGGGAGGTGTGGATGGGCACGT GGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCGGAACCATGTCTCCTGAGGCGTTC CTGCAAGAAGCACAAGTCATGAAGAAGCTACGTCATGAGAAGCTAGTG

3' constant region:

CAATTGTATGCAGTTGTGAGTG

Library block 2

5' constant region:

AGCACAAGTCATGAAGAAGCTA

Variable region:

3' constant region:

AGAATGAATTACGTACACCGTG

Library block 3

5' constant region:

CATGGCCGCCCAGATTGCATCC

Variable region:

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG

3' constant region:

GCTGCCTTATATGGAAGGTTCACG

Library block 4

5' constant region:

GTGCAAAGTTCCCCATCAAG

Variable region:

3' constant region:

GAGAGCTTGCACGACCTTATG

Library block 5

5' constant region:

GAACGTGGTTATAGAATGCCA

Variable region:

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

3' constant region:

AAGCTTTAAATTAGTTATGTCACGC

Genetic background sequences:

Block 1:

>WT

>E273G

GATGCTTGGGAGATCCCTCGTGAATCACTGCGTCTTGGTGTAAAGTTAGGCCAGGGATGCTTTGG GGAGGTGTGGATGGGCACGTGGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCGGA ACCATGTCTCCTGAGGCGTTCCTGCAAGAAGCACAAGTCATGAAGAAGCTACGTCATGAGAAGCT AGTGCAATTGTATGCAGTTGTGAGTG

>G282A

>E283L

GATGCTTGGGAGATCCCTCGTGAATCACTGCGTCTTGAGGTAAAGTTAGGCCAGGGATGCTTTGG GTTAGTGTGGATGGGCACGTGGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCGGAA CCATGTCTCCTGAGGCGTTCCTGCAAGAAGCACAAGTCATGAAGAAGCTACGTCATGAGAAGCTA GTGCAATTGTATGCAGTTGTGAGTG

>G287P

>K298M

>T304A

>E313R

GATGCTTGGGAGATCCCTCGTGAATCACTGCGTCTTGAGGTAAAGTTAGGCCAGGGATGCTTTGG GGAGGTGTGGATGGGCACGTGGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCGGA ACCATGTCTCCTGAGGCGTTCCTGCAAAGAGCACAAGTCATGAAGAAGCTACGTCATGAGAAGCT AGTGCAATTGTATGCAGTTGTGAGTG

>V316I

GATGCTTGGGAGATCCCTCGTGAATCACTGCGTCTTGAGGTAAAGTTAGGCCAGGGATGCTTTGGGGAGGTGTGGATGGGCACGTGGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCGGAACCATGTCTCCTGAGGCGTTCCTGCAAGAAGCACAAATTATGAAGAAGCTACGTCATGAGAAGCTAGTGCAATTGTATGCAGTTGTGAGTG

>E323R

GATGCTTGGGAGATCCCTCGTGAATCACTGCGTCTTGAGGTAAAGTTAGGCCAGGGATGCTTTGGGGAGGTGTGGATGGGCACGTGGAACGGTACTACCAGGGTTGCAATTAAGACTCTGAAACCCGGAACCATGTCTCCTGAGGCGTTCCTGCAAGAAGCACAAGTCATGAAGAAGCTACGTCATAGAAAGCTAGGCAATTGTATGCAGTTGTGAGTG

Block 2:

>WT

Block 3:

>WT

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG

GGTATGGCTTACGTGAAAAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG >R382P

GGTATGGCTTACGTGGAGCCCATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG >R391A GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAGCCGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG >1395C

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACTGCCTGGT TGGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATA CACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG >T420V

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC GTCGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG >R412F

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGTTTCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG >Y419A

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAAGC AACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCCAGAG

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCATCAAGTGGACGGCTCACGAG >1429A

GGTATGGCTTACGTGGAGAGAATGAATTACGTACACCGTGATCTAAGAGCTGCGAACATACTGGTT GGAGAAAACTTGGTATGTAAGGTCGCTGATTTCGGTCTGGCGAGGCTTATTGAAGACAATGAATAC ACTGCACGTCAAGGTGCAAAGTTCCCCGCGAAGTGGACGGCTCCAGAG

Block 4:

>WT

Block 5:

>I444F

>WT

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

>D496Y

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACTATCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

>E508G

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGGCAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

>Y514R

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGAGGCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCA CAGTACCAACCCGGAGAGAACTTG

>P532W

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAATGGGGAGAGAACTTG

>Y530D

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGGATCAACCCGGAGAGAACTTG

>M498Q

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTCAATGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

>F523K

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACAAAACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

>Y514N

TGCCCTCCGGAGTGTCCCGAGAGCTTGCACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGAACCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCA CAGTACCAACCCGGAGAGAACTTG

>L494P

TGCCCTCCGGAGTGTCCCGAGAGCCCACACGACCTTATGTGTCAGTGTTGGAGGAAAGAGCCTG AGGAGAGGCCTACATTCGAGTATCTACAAGCATTCTTAGAAGACTACTTCACGTCCACAGAACCAC AGTACCAACCCGGAGAGAACTTG

Supplementary Table 8: Kinase Atlas known allosteric pockets from the literature

Site	Site Name Origin	Inhibitor Type	Source Kinase	PDB	Pocket Description	Present in Src
DFG	DFG motif	II	many	1IEP	Hydrophobic pocket that opens up when DFG motif switches to inactive "DFG-out" conformation; binding here may stabilize inactive kinase conformation	yes
MT3	MEK1/2 type III inhibitor	III	MEK1/ 2	4AN2	Adjacent to ATP and DFG-out pockets; binding disrupts salt bridge required for kinase activity	yes
PIF	PDK1 interacting fragment	IV	PDK1	4RQK	PDK1 regulates other AGC kinases by recruiting them through this site	no
MPP	MKK4 p38a peptide	IV	MKK4	3ALO	p38a peptide binding inhibits MKK4 by inducing conformational changes that lead to auto-inhibition	yes
CMP	c-Abl myristoyl pocket	IV	c-Abl	3K5V	Binding here leads to active or inactive state in c-Abl (depending on ligand size) by affecting SH domain binding	yes
PMP	PKA myristoyl pocket	IV	PKA	1CMK	Myristoyl binding here activates membrane binding in PKA	no
DRS	D-recruitme nt site	IV	all MAPKs	1UKI	Substrate docking site present in all MAP kinases	no
DEF	docking site for ERK FXF	IV	some MAPKs	3O2M	Substrate docking site present in some MAP kinases; located near MAPK insert	no

LBP	lipid binding pocket	IV	p38a MAPK	3NEW	Binding of different lipids here affects p38a MAPK's preference and activity for different substrates	no
PDIG	PDIG motif	IV	Chk1	3JVS	Substrate recognition site located near PDIG motif in Chk1	yes
AAS	Aurora A activation segment	IV	Aurora A	4C3P	An Aurora A monomer activates another through binding of its activation segment to this site	yes
EDI	EGFR dimerization interface	IV	EGFR	2RFE	An EGFR monomer activates another by binding at this interface on the C-terminal domain	yes