Graphite strain sensor

Based on « Pencil Drawn Strain Gauges and Chemiresistors on Paper »1

Made at INSA Toulouse (France)

Features

- Low-tech sensor
- Low-cost
- Printable and Replaceable
- Eco-friendly
- Portable

Dimensions

Description

This graphite strain sensor is a low-tech strain sensor based on the paper « Pencil Drawn Strain Gauges and Chemiresistors on Paper » (Zang et al., 2015)¹. It was made by students at INSA Toulouse from the physical engineering department as part of a Sensor Project.

The sensor is made by depositing graphite onto a 80 gsm office paper. Therefore, a conductance property appears on this graphite granular system due to the various size of graphite grains spaced at an inter-grain distance.

When folding the paper, the inter-grain distance change, which change exponentially the conductance. This variations can be measured in order to recover the initial stress applied.

1. Zang, X., Zhang, F., Di, C., & Zhu, D. (2015). Pencil drawn strain gauges and chemiresistors on paper. Scientific Reports, 5, Article 10921. https://doi.org/10.1038/srep10921

Typical Application

Ratings

Parameter	Rating	
V _{cc}	5V	
Lifetime $\varepsilon = 0.002$	15-20 uses	
Lifetime ϵ = 0.005	1-2 uses	
Temperature	0°C to 50 °C	
Pencil Tone	HB to 4B	

Specifications

Pencil Tone	Symbol	Тур.	Unit
Supply Voltage	V _{cc}	5.0	V
НВ	R	6	ΜΩ
2B	R	3.4	ΜΩ
4B	R	0.9	ΜΩ

Characteristic in compression

Characteristic in tension

