Serial Port (UART)

Macam pengiriman data:

1. Parallel: Data pada keseluruhan bit dikirimkan secara bersamaan

2. Serial: Data dikirimkan bit per bit (satu per satu)

Serial

- Serial port dikontrol oleh register : SBUF (99H) dan SCON (98H).
- Data dari dan menuju ke serial port akan melalui register SBUF
- Port serial terlebih dahulu dikonfigurasi untuk mode operasi dan baud rate

Isi Register SCON

MSB	SB						
SM0	SM1	SM2	REN	TB8	RB8	TI	RI

Keterangan:

Bit (0) RI = Receive Interupt Flag

Diset oleh hardware untuk menunjukkan suatu byte telah lengkap diterima

Bit (1) TI = Transmit Interupt Flag

Diset oleh hardware untuk menunjukkan suatu byte telah lengkap dikirimkan Bit (2) RB8 = receive bit 8

Bit ini digunakan sesuai mode pengoperasian. Pada mode 2 dan 3 dimana 9 bit diterima, bit terakhir akan dicopy ke RB8. Pada mode 1 dimana 8 bit data dikirimkan, dimana bit SM2 dibuat rendah, maka stop bit akan dicopy ke RB8

Bit (3) TB8 = Transmit bit 8

Data ke 9 yang akan dikirimkan pada mode 2 dan 3. Diset atau dihapus dengan software sesuai kebutuhan

Bit (4) REN = Receive enable

Bit ini harus diset untuk menerima data. Jika tidak data akan diblok

Bit (5) SM2 = Serial mode (bit 2)

Digunakan pada mode 2 dan 3 untuk mendukung komunikasi multiprosesor

Bit (6) SM1 = Serial Mode bit 1

Bit (7) SM0 = Serial mode bit 0

Mode Serial

SMO	SM1	Mode	Keterangan	Baud Rate	
0	0	0	8 bit shift register	Fosc/12	
0	1	1	8-bit UART	Set oleh Timer 1	
1	0	2	9-bit UART	Fosc/64 atau Fosc/32	
1	1	3	9-bit UART	Set oleh Timer 1	

Baud rate

- Dapat diambilkan dari sistem clock atau dengan timer 1
- Jika timer 1 dioperasikan mode 2(8 bit auto reload) maka baud rate diberikan sbb.

Baud rate =
$$\frac{2^{SMOD} x(Frekuensi _OSC)}{384x(256-TH1)}$$

- Mode 0 dan 2 baud rate ditentukan oleh frekunsi osilator yang dipakai, Contoh pada mode 0 baud rate frekuensi osilator dibagi 12. Jika osilatornya 11,059 Mhz, maka baud ratenya 921,583 baud
- Mode 1 dan 3 ditentukan oleh beberapa kali timer 1 mengalami over flow, semakin sering timer 1 over flow maka baud rate semakin besar. Bila baud rate telah ditentukan, maka TH1 dapat dihitung berdasarkan rumus sbb:

TH1 = 256-((Frek Kristal/384)/Baud) jika bit SMOD berlogika 0

TH1 = 256-((Frek Kristal/192)/Baud) jika bit SMOD berlogika 1

SMOD = bit 7 pada register PCON (Power Control)

Contoh:

Frek Kristal 11,059 Mhz dan mengharapkan baud rate 9800 bps, maka nilai TH1:

TH1 = 256 - ((11059000/384)/9800)

- = 256 (28799,4791/9800)
- = 256-2.93
- = 256-3
- = 253 = 0FDH

Frek Kristal 11,059 Mhz dan mengharapkan baud rate 19200 bps, maka nilai TH1:

TH1 = 256 - ((11059000/384)/19200)

- = 256 (28799,4791/19200)
- = 256-1.5
- = 254,5

nilai TH1 bila diset ke 254 baud rate menjadi 11400 bps, namun jika diset 255 maka menjadi 28800 bps. Oleh karena itu SMOD harus diset (logika 1)

```
TH1 = 256-((11059000/192)/19200)
= 256-(57598,95/19200)
= 256-2,999
= 256-3 = 253 = 0FDH
```

Sehingga untuk mengkonfigurasikan serial port dengan frekuensi kristal 11,059 Mhz memiliki baud rate 19200 bps dilakukan sbb:

- 1. Konfigurasi ke mode 1 atau 3
- 2. konfigurasi timer 1 pada mode 2 (8 bit auto reload)
- 3. Set TH1 pada nilai 253 = 0FDH untuk menghasilkan 19200 bps
- 4. Set bit SMOD (PCON.7)

Inisialisasi port serial

RET

Misal: konfigurasi 8 bit UART dengan baud rate 2400 menggunakan timer 1. Ada 4 buah register yang harus diinisialisasi yaitu SMOD, TMOD, TCON, dan TH1

SCON:	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	0	1	0	1	0	0	1	0
TMOD:	Gate	C/T	M1	M0	Gate	C/T	M1	M0
	0	0	1	0	0	0	0	0
TCON:	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
	0	1	0	0	0	0	0	0
TH1:	1	1	1	1	0	0	1	1

```
SM0=0 dan SM1=1 ----- Mode UART 8 bit
REN=1 ----- Mengaktifkan port serial agar dapat menerima data
TI=1----- Mengaktifkan pengiriman data (SBUF dalam kondisi
kosong)
M1=1 dan M0=0----- Timer 1 bekerja sebagai pewaktu 8 bit dengan isi ulang
otomatis
TR1=1----- Mengaktifkan timer 1
Contoh program inisialisasi
ORG 0h
INIT:
   mov SCON,#52h
                      ;port serial mode 1
   mov TMOD,#20h
                      ;timer 1 mode 2
                      ;setb Baud rate 2400/ -13 bisa digantikan F3H
   mov TH1,#-13
   setb TR1
Contoh program untuk mengirim data
Serialout:
   JNB TI,$
                      ;Tunggu data sebelumnya selesai
                      :Kirim data baru
   MOV SBUF,A
                      ;Sinyal ada pengiriman baru
   CLR TI
```

Atau:

CLR EA

MOV SBUF,A ;kirim serial

JNB TI,\$ CLR TI SETB EA

Contoh program untuk menerima data

Serialin:

JNB RI,\$;Tunggu SBUF berisi data baru

MOV A,SBUF ;Ambil data

CLR RI ;Penandaan data sudah diambil

RET