## NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2021/2022

## MA1521 Calculus for Computing

Tutorial 8

- 1. Let p be a positive real number.
  - (a) Use integral test to show that if p > 1 then  $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$  is convergent.
  - (b) Use integral test to show that if  $p \le 1$  then  $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$  is divergent.

(Thomas' Calculus (14<sup>th</sup> edition), p. 559, Problem 61 (Modified))

- 2. Which of the following series converge and which diverge? Give your reasons for your answers. (You may use any test of convergence or divergence.)
  - (a)  $\sum_{n=2}^{\infty} \frac{1}{5n + 10\sqrt{n}}$

(Thomas' Calculus (14 $^{\rm th}$  edition), p. 557, Problem 12)

(b)  $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$ 

(Thomas' Calculus (14th edition), p. 563, Problem 19)

(c)  $\sum_{n=1}^{\infty} \left( \frac{n}{3n+1} \right)^n$ 

(Thomas' Calculus (14<sup>th</sup> edition), p. 563, Problem 25)

(d) 
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+2)!}$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 563, Problem 44)

(e) 
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n - \ln n}$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 576, Problem 30)

3. Find the radius and interval of convergence of the following power series.

(a) 
$$\sum_{n=0}^{\infty} \frac{n}{5^n} (x+3)^n$$

(Thomas' Calculus (14 $^{\rm th}$  edition), p. 587, Problem 17)

(b) 
$$\sum_{n=0}^{\infty} \frac{1}{2 \cdot 4 \cdot 6 \cdots (2n)} x^n$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 587, Problem 33)

(c) 
$$\sum_{n=0}^{\infty} \left( \frac{n}{n+1} \right)^{n^2} x^n$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 587, Problem 40)

4. Let  $a_n$  be nonnegative numbers and suppose  $\sum_{n=1}^{\infty} a_n$  converges. Show that

$$\sum_{n=1}^{\infty} a_n^2 \text{ converges.}$$

Hint: Use the comparison test.

(Thomas' Calculus (14<sup>th</sup> edition), p. 564, Problem 60)

5. Let  $a_n$  be nonnegative numbers and suppose  $\sum_{n=1}^{\infty} a_n$  converges. Show that

$$\sum_{n=1}^{\infty} \frac{a_n}{n}$$
 converges.

Hint: Use the comparison test.

(Thomas' Calculus (14<sup>th</sup> edition), p. 564, Problem 58)

- 6. Use power series operations to find the Taylor's series at x=0 for the following functions:
  - (a)  $xe^x$

(Thomas' Calculus (14<sup>th</sup> edition), p. 600, Problem 13)

(b) 
$$\ln(1+x) - \ln(1-x)$$
 (Thomas' Calculus (14<sup>th</sup> edition), p. 600, Problem 30)

- 7. Use series to evaluate the following limits: (a)  $\lim_{x\to 0} \frac{1}{x^2} \left(e^{x^2}-1\right)$

(Thomas' Calculus (14 $^{\rm th}$  edition), p. 608, Problem 35 (modified))

(b) 
$$\lim_{x \to 0} \frac{\ln(1+x^2)}{1-\cos x}$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 608, Problem 37)

1. Let p be a positive real number.

- (a) Use integral test to show that if p > 1 then  $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$  is convergent.
- (b) Use integral test to show that if  $p \le 1$  then  $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$  is divergent.

(Thomas' Calculus (14<sup>th</sup> edition), p. 559, Problem 61 (Modified))

$$W = |\Lambda n|$$

$$du = \frac{1}{n}$$

$$= \lim_{\alpha \to \infty} \int_{\ln \Omega} \frac{1}{u^{\alpha}} du$$

$$= \lim_{\alpha \to \infty} \left( \frac{u^{1-\rho}}{1-\rho} \right) \int_{\ln \Omega} \frac{1}{1-\rho}$$

$$= \lim_{\alpha \to \infty} \left( \frac{(|n_{\alpha}|^{1-\rho})}{1-\rho} - \frac{(|n_{\alpha}|^{1-\rho})}{1-\rho} \right)$$

$$= \int_{-\infty}^{\infty} ((n_{\alpha})^{1-\rho})^{1-\rho}$$

$$= \int_{-\infty}^{\infty} ((n_{\alpha})^{1-\rho})^{1-\rho}$$

$$= \int_{-\infty}^{\infty} ((n_{\alpha})^{1-\rho})^{1-\rho}$$

.: For series to be conveyent, P>1.

$$\int_{2}^{\infty} \frac{1}{n(\ln n)^{p}} dn.$$

$$= \lim_{n \to \infty} \left( \frac{(\ln n)^{1/p}}{1 - p} - \frac{(\ln 2)^{1-p}}{1 - p} \right)$$

$$\therefore (f \neq \leq 1)$$

(\na)<sup>1-p</sup> → ∞ as a →∞.

.. Series diverges

## No limit for seymon (feit 3),

2. Which of the following series converge and which diverge? Give your reasons for your answers. (You may use any test of convergence or diver-

(a) 
$$\sum_{n=2}^{\infty} \frac{1}{5n + 10\sqrt{n}}$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 557, Problem 12)

(b) 
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 563, Problem 19)

(c) 
$$\sum_{n=1}^{\infty} \left( \frac{n}{3n+1} \right)^n$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 563, Problem 25)

Q.a) \$ 105m.

By Comprision lest, 6)

By integral test,

So Sation do = lim . 1 5 a 1 12 dn Since  $\frac{\left(\frac{\sin n}{n}\right)^{\frac{1}{n}}}{n^{\frac{1}{n}}} \leq \frac{1}{n^{2}}$ Then the series  $\frac{\cos \frac{\sin n}{n}}{n^{\frac{1}{n}}}$  converges

or  $\frac{1}{n^{\frac{1}{n}}}$  converges.

qu. zw.

 $= \lim_{n \to \infty} \frac{1}{5} \int_{12}^{12} \frac{1}{2^{n+1}} dn.$   $= \lim_{n \to \infty} \frac{1}{5} \int_{12}^{12} \frac{1}{2^{n+1}} dn.$ 

c)  $\sum_{k=1}^{3^{1}} \left(\frac{3^{1}}{\sqrt{1}}\right)_{k}$ 

- llm = (211(=+1))5

= lim = (250 (=+1) - 210(=+1)/

= fim ( Sh ( =+1)) = 5 (n ( =+1)

Snu In ( = +1) -> ~ au a > a

the series is divergent.

By timb companion tost

Unit Compaian

Man ( ration)

= Im ( n )

= lim (1/. 5+10)

By we terr

 $\frac{8}{2}$   $\left(\frac{n}{2n}\right)^n$ 

 $\left( \left( \frac{341}{V} \right)_{N} \right)_{N} = \left( \frac{241}{V} \right) \Rightarrow \frac{3}{7} \text{ or unow}$ 

: S ( 344) Connecto.

= = fo.

And Za dirya,

: E Intern diveger

(d) 
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+2)!}$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 563, Problem 44)

(e) 
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n - \ln n}$$
 or the sufficient sum-

(Thomas' Calculus (14<sup>th</sup> edition), p. 576, Problem 30)

d) By whith the truly 
$$\frac{1}{(n+2)!}$$
  $\frac{1}{(n+2)!}$   $\frac{1}{(n+2)!}$ 

= 
$$\frac{n+\infty}{n+\infty}$$
  $\left(\frac{n+3}{n}\right) \times \left(\frac{n+3}{n+1}\right)$  =  $\frac{n+\infty}{n+1}$   $\left(\frac{n+3}{n+1}\right) \times \left(\frac{n+2}{n+1}\right)$ 

Comparison fest.

$$= \frac{(v+3)(v+1)v}{(v-1)!}$$

$$= \frac{(v+3)(v+1)(v)(v-1)!}{(v-1)!}$$

Consider  $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$   $\frac{1}{\sqrt{3}}$ 

e) By alternating teries test,

$$\sum_{\infty} (-1)_{V} \frac{\overline{U_{-1}UU}}{|UV|} > 0 \text{ if } V > ($$

$$=\sum_{n=1}^{\nu_{n}}\left(-1\right)_{\nu+1}\cdot\left(-1\right)_{-1}\frac{\nu-\nu}{\nu}\nu$$

$$C_{Val} = \frac{1}{Val} \frac{Val}{Val}$$

$$O Sign Property = O Sign Pro$$

· Deien is consequent

: Congres.



(a) 
$$\sum_{n=0}^{\infty} \frac{n}{5^n} (x+3)^n$$
 (Thomas' Calculus (14<sup>th</sup> edition), p. 587, Problem 17)

(b) 
$$\sum_{n=0}^{\infty}\frac{1}{2\cdot 4\cdot 6\cdots (2n)}x^n$$
 (Thomas' Calculus (14<sup>th</sup> edition), p. 587, Problem 33)

(c) 
$$\sum_{n=0}^{\infty} \left( \frac{n}{n+1} \right)^{n^2} x^n$$

(Thomas' Calculus (14<sup>th</sup> edition), p. 587, Problem 40)



 $\frac{1}{2} \frac{1}{46 \cdot \cdot \cdot (2(n+1))} \times \frac{1}{2} \frac{1}{46 \cdot \cdot \cdot (2(n+1))} \times \frac{1}{2} \times \frac{1}{2} \frac{1}{$ 

= 2m ( = 2(nH) ) 2 4/2 = comage for all x6/B.

.: Mother = 0.

convoyer at 0.

By who tat,
$$\lim_{N\to\infty} \left( \frac{n+1}{5^{m+1}} \left( \frac{n+3}{n+3} \right)^{n+1} \right)$$

$$\left|\frac{\pi+3}{5}\right| < 1$$

$$\frac{n_{\text{ol}}}{\sqrt{2}} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$$

By Ratio test

C) 
$$\sum_{n=0}^{\infty} \left(\frac{n}{n!}\right)^{n^{2}} \times n$$
 $\sum_{n=0}^{\infty} \left(\frac{n}{n!}\right)^{n^{2}} \times n$ 
 $\sum_{n=0}^{\infty} \left(\frac{n}{n!}\right)^{n^{2}} \times n$ 
 $\sum_{n=0}^{\infty} \left(\frac{n}{n!}\right)^{n} \times n$ 
 $\sum_{n=0}^{\infty} \left$ 

4. Let 
$$a_n$$
 be nonnegative numbers and suppose  $\sum_{n=1}^{\infty} a_n$  converges. Show that

$$\sum_{n=1}^{\infty} a_n^2 \text{ converges.}$$

Hint: Use the comparison test.  $\$ 

(Thomas' Calculus ( $14^{\rm th}$  edition), p. 564, Problem 60)

$$\lim_{n\to\infty} \frac{\alpha_n^2}{\alpha_n}$$

$$= \lim_{n\to\infty} \alpha_n$$

$$\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \alpha_n^2 = \lim_{n\to\infty} \alpha_$$

5. Let 
$$a_n$$
 be nonnegative numbers and suppose  $\sum_{n=1}^{\infty} a_n$  converges. Show that

$$\sum_{n=1}^{\infty} \frac{a_n}{n}$$
 converges.

Hint: Use the comparison test.

(Thomas' Calculus (14 $^{\rm th}$  edition), p. 564, Problem 58)

By conjuin test,

Since 
$$0 \le \frac{\alpha_n}{n} \le \alpha_n$$
 since  $n \in \mathbb{Z}^*$ , and other  $\int_{-\infty}^{\infty} \alpha_n$  change,

6. Use power series operations to find the Taylor's series at x = 0 for the following functions:

(a)  $xe^x$ 

(Thomas' Calculus (14th edition), p. 600, Problem 13)

(b)  $\ln(1+x) - \ln(1-x)$ 

(Thomas' Calculus (14<sup>th</sup> edition), p. 600, Problem 30)

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2$$

$$f^{(n)}(a)$$

The **Maclaurin series of f** is the Taylor series generated by f at x = 0, or

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

$$= f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + ... + \frac{f^{(n)}(0)}{n!}x^{n+...}$$

$$+ (xe^{x} + e^{x}) + (3e^{x} + 6^{x} + e^{x})$$

$$= (xe^{x} + 2e^{x})$$

: Implor feien: 
$$\sum_{k=0}^{\infty} \frac{k}{k!} \chi^{k} = \sum_{k=0}^{\infty} \frac{1}{(k-1)!} \chi^{k}$$

$$= |a(1) - |a(1-1) + (1-x) + (1-x) + (1-x)^{2}$$

this fer is not be tooked

7. Use series to evaluate the following limits: (a) 
$$\lim_{x\to 0} \frac{1}{x^2} \left(e^{x^2}-1\right)$$
 (Thomas' Calculus (14<sup>th</sup> edition), p. 608, Problem 35 (modified))

(b) 
$$\lim_{x \to 0} \frac{\ln(1+x^2)}{1-\cos x}$$

(Thomas' Calculus (14th edition), p. 608, Problem 37)

**DEFINITIONS** Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor series generated

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

**DEFINITIONS** A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots.$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$$
 (2)

in which the **center** a and the **coefficients**  $c_0, c_1, c_2, \ldots, c_n, \ldots$  are constants.

$$\ell^{x^2} = \sum_{m=0}^{\infty} \frac{\chi^{2m}}{m!} = 1 + \frac{\chi^n}{1!} + \frac{\chi^n}{2!} + \dots$$

$$\frac{Q^{x^2}}{u^2} \left( + \frac{x^2}{1!} + \frac{y^4}{4^{4n}} - 1 \right) \right) \quad 0 \quad x \neq 0$$

$$\int_{0}^{\infty} \frac{1}{2} \frac{1}{N!} \int_{0}^{\infty} \frac{1}{N!} \int_{$$

Maclany - certor at 0. Taylor -> center at anything.