

Autodesk Robot Structural Analysis Professional 2020

Fixed column base design

Eurocode 3: NF EN 1993-1-8:2005/NA:2007/AC:2009 + CEB

Design Guide: Design of fastenings in concrete

Ratio **0.57**

GENERAL

Connection no.: 23

Connection name: Fixed column base

Structure node: 97 Structure bars: 91

GEOMETRY

COLUMN

Section: Bar no.:	IPE 220 91		
L _c =	5.38	[m]	Column length
$\alpha =$	0.0	[Deg]	Inclination angle
hc =	220	[mm]	Height of column section
$b_{fc} =$	110	[mm]	Width of column section
$t_{\text{wc}} =$	6	[mm]	Thickness of the web of column section
$t_{fc} =$	9	[mm]	Thickness of the flange of column section
r _c =	12	[mm]	Radius of column section fillet
$A_c =$	33.37	[cm ²]	Cross-sectional area of a column
$I_{yc} =$	2771.84	[cm ⁴]	Moment of inertia of the column section
Material:	ACIER		
$f_{yc} =$	235.00	[MPa]	Resistance
$f_{uc} =$	365.00	[MPa]	Yield strength of a material

COLUMN BASE

 $l_{pd} =$ 400 [mm] Length $b_{pd} =$ 220 [mm] Width $t_{pd} =$ 25 [mm] Thickness

Material: ACIER E24

 $f_{ypd} = 235.00$ [MPa] Resistance

 $f_{upd} = 365.00$ [MPa] Yield strength of a material

ANCHORAGE

The shear plane passes through the UNTHREADED portion of the bolt.

Class = 8.8 Anchor class 550.00 [MPa] Yield strength of the anchor material $f_{yb} =$ 800.00 [MPa] Tensile strength of the anchor material $f_{ub} =$ 18 Bolt diameter d =[mm] 1.92 Effective section area of a bolt $A_s =$ [cm²] $A_v =$ 2.54 [cm²] Area of bolt section 2 Number of bolt columns $n_H =$ 2 Number of bolt rows n∨ =

Horizontal spacing $e_{Hi} = 300$ [mm] Vertical spacing $e_{Vi} = 90$ [mm]

Anchor dimensions

Washer

 $l_{wd} =$ 30 [mm] Length $b_{wd} =$ 40 [mm] Width $t_{wd} =$ 10 [mm] Thickness

STIFFENER

400 [mm] Length 220 Height $h_s =$ [mm] $t_s =$ 10 [mm] **Thickness** $d_1 =$ 20 [mm] Cut $d_2 =$ 20 [mm] Cut

MATERIAL FACTORS

 $\gamma_{M0} = 1.00$ Partial safety factor $\gamma_{M2} = 1.25$ Partial safety factor $\gamma_{C} = 1.50$ Partial safety factor

SPREAD FOOTING

L =	680	[mm]	Spread footing length
B =	320	[mm]	Spread footing width
H =	500	[mm]	Spread footing height

Concrete

Class BETON25

 $f_{ck} = 25.00$ [MPa] Characteristic resistance for compression

Grout layer

 $t_g = 0$ [mm] Thickness of leveling layer (grout) $f_{\text{ck},g} = 12.00$ [MPa] Characteristic resistance for compression

 $C_{f,d} = 0.30$ Coeff. of friction between the base plate and concrete

WELDS

 $a_p = 8$ [mm] Footing plate of the column base

 $a_s = 8$ [mm] Stiffeners

LOADS

Case: 16: ULS /101/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 5*1.35 + 6*1.35 + 7*1.05 + 8*1.05 + 9*1.05 + $N_{j,Ed,y} = -20.96$ [kN] Axial force $V_{j,Ed,z} = 10.41$ [kN] Shear force

 $M_{j,Ed,y} = -14.57$ [kN*m] Bending moment $M_{j,Ed,z} = -0.08$ [kN*m] Bending moment

RESULTS

COMPRESSION ZONE

COMPRESSION OF CONCRETE

COMITINE	-001014 0	CONTO	CLIL	
$f_{cd} =$	16.67	[MPa]	Design compressive resistance	EN 1992-1:[3.1.6.(1)]
$f_j =$	17.47	[MPa]	Design bearing resistance under the base plate	[6.2.5.(7)]
$c = t_p \sqrt{f_y}$	$_{p}/(3*f_{j}*\gamma_{M0}))$)		
c =	53 [m	nm] Addit	ional width of the bearing pressure zone	[6.2.5.(4)]
$b_{eff} =$	-	-	tive width of the bearing pressure zone under the flange	[6.2.5.(3)]
$I_{\text{eff}} =$	-	-	tive length of the bearing pressure zone under the flange	[6.2.5.(3)]
	_	_	of the joint between the base plate and the foundation	EN 1992-1:[6.7.(3)]
	_	_	mum design area of load distribution	EN 1992-1:[6.7.(3)]
$F_{rdu} = A_{c0}$	$*f_{cd}*\sqrt{(A_{c1}/A_{c1})}$	$A_{c0}) \leq 3*A$	co*f _{cd}	
$F_{rdu} =$	873.05	[kN]	Bearing resistance of concrete	EN 1992-1:[6.7.(3)]
$\beta_j =$	0.67		Reduction factor for compression	[6.2.5.(7)]
$f_{jd} = \beta_j * F_{ro}$	$du/(b_{eff}*I_{eff})$			
$f_{jd} =$	23.43	[MPa]	Design bearing resistance	[6.2.5.(7)]
$A_{c,n} =$	683.65	[cm ²]	Bearing area for compression	[6.2.8.2.(1)]
$A_{c,y} =$	289.17	[cm ²]	Bearing area for bending My	[6.2.8.3.(1)]
$A_{c,z} =$	341.82	[cm ²]	Bearing area for bending Mz	[6.2.8.3.(1)]
$F_{c,Rd,i} = A$.C,i *f jd			
$F_{c,Rd,n} =$	1601.88	[kN]	Bearing resistance of concrete for compression	[6.2.8.2.(1)]
$F_{c,Rd,y} =$	677.57	[kN]	Bearing resistance of concrete for bending My	[6.2.8.3.(1)]
$F_{c,Rd,z} =$	800.94	[kN]	Bearing resistance of concrete for bending Mz	[6.2.8.3.(1)]
COLUMN	I FLANGE	AND WE	EB IN COMPRESSION	
CL =	1.00		Section class	EN 1993-1-1:[5.5.2]
$W_{pl,y} =$	564.43	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,y} =$	132.64	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]
$h_{f,y} =$	232	[mm]	Distance between the centroids of flanges	[6.2.6.7.(1)]
	$M_{c,Rd,y}$ / h_f	,y		
$F_{c,fc,Rd,y} =$	571.11	[kN]	Resistance of the compressed flange and web	[6.2.6.7.(1)]
$W_{pl,z} =$	62.61	[cm ³]	Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,z} =$	14.71	[kN*m]	Design resistance of the section for bending	EN1993-1-1:[6.2.5]

$W_{pl,z} = 62.61$ [cm ³] Plastic section modulus	EN1002 1 1:16 2 5 (2)]
h _{f,z} = 93 [mm] Distance between the centroids of flanges	EN1993-1-1:[6.2.5.(2)] [6.2.6.7.(1)]
$F_{c,fc,Rd,z} = M_{c,Rd,z} / h_{f,z}$	[0.2.0.7.(1)]
$F_{c,fc,Rd,z} = 157.42$ [kN] Resistance of the compressed flange and web	[6.2.6.7.(1)]
RESISTANCES OF SPREAD FOOTING IN THE COMPRESSION ZONE	1 (/1
$N_{i,Rd} = F_{c,Rd,n}$	
N _{j,Rd} = 1601.88 [kN] Resistance of a spread footing for axial compression	[6.2.8.2.(1)]
$F_{C,Rd,y} = \min(F_{c,Rd,y}, F_{c,fc,Rd,y})$	
$F_{C,Rd,y} = 571.11$ [kN] Resistance of spread footing in the compression zone	[6.2.8.3]
$F_{C,Rd,z} = min(F_{c,Rd,z},F_{c,fc,Rd,z})$	
$F_{C,Rd,z} = 157.42$ [kN] Resistance of spread footing in the compression zone	[6.2.8.3]
TENSION ZONE	
TENSION ZONE	
STEEL FAILURE	
$A_b = 1.92$ [cm ²] Effective anchor area	[Table 3.4]
f _{ub} = 800.00 [MPa] Tensile strength of the anchor material	[Table 3.4]
Beta = 0.85 Reduction factor of anchor resistance	[3.6.1.(3)]
$F_{t,Rd,s1} = beta*0.9*f_{ub}*A_b/\gamma_{M2}$	
$F_{t,Rd,s1} = 94.00$ [kN] Anchor resistance to steel failure	[Table 3.4]
$\gamma_{Ms} = 1.20$ Partial safety factor	CEB [3.2.3.2]
$f_{yb} = 550.00$ [MPa] Yield strength of the anchor material	CEB [9.2.2]
$F_{t,Rd,s2} = f_{yb} * A_b / \gamma_{Ms}$	
$F_{t,Rd,s2} = 88.00$ [kN] Anchor resistance to steel failure	CEB [9.2.2]
$F_{t,Rd,s} = \min(F_{t,Rd,s1}, F_{t,Rd,s2})$	
$F_{t,Rd,s} = 88.00$ [kN] Anchor resistance to steel failure	
PULL-OUT FAILURE	
$f_{ck} = 25.00$ [MPa] Characteristic compressive strength of concrete	EN 1992-1:[3.1.2]
$f_{ctd} = 0.7^*0.3^* f_{ck}^{2/3} / \gamma_C$	
$f_{ctd} = 1.20$ [MPa] Design tensile resistance	EN 1992-1:[8.4.2.(2)]
$\eta_1 = 1.00$ Coeff. related to the quality of the bond conditions and concreting conditions	ions EN 1992-1:[8.4.2.(2)]
$\eta_2 = 1.00$ Coeff. related to the bar diameter	EN 1992-1:[8.4.2.(2)]
$f_{bd} = 2.25 * \eta_1 * \eta_2 * f_{ctd}$	
$f_{bd} = 2.69$ [MPa] Design value of the ultimate bond stress	EN 1992-1:[8.4.2.(2)]
h _{ef} = 300 [mm] Effective anchorage depth	EN 1992-1:[8.4.2.(2)]
$F_{t,Rd,p} = \pi^* d^* h_{ef}^* f_{bd}$	
$F_{t,Rd,p} = 45.69$ [kN] Design uplift capacity	EN 1992-1:[8.4.2.(2)]
TENSILE RESISTANCE OF AN ANCHOR	
$F_{t,Rd} = \min(F_{t,Rd,s}, F_{t,Rd,p})$	
$F_{t,Rd} = 45.69$ [kN] Tensile resistance of an anchor	
BENDING OF THE BASE PLATE	
Bending moment M _{j,Ed,y}	[6.0.6.5]
leff,1 = 194 [mm] Effective length for a single bolt for mode 1	[6.2.6.5]
l _{eff,2} = 205 [mm] Effective length for a single bolt for mode 2 m = 31 [mm] Distance of a bolt from the stiffening edge	[6.2.6.5]
$M_{\text{pl.1 Rd}} = 7.14$ [kN*m] Plastic resistance of a plate for mode 1	[6.2.6.5]
M _{pl,1,Rd} = 7.14 [kN*m] Plastic resistance of a plate for mode 1 M _{pl,2,Rd} = 7.53 [kN*m] Plastic resistance of a plate for mode 2	[6.2.6.5] [6.2.4]
$M_{pl,2,Rd} = 7.53$ [kN*m] Plastic resistance of a plate for mode 2	[6.2.6.5] [6.2.4] [6.2.4]
$M_{Pl,2,Rd} = 7.53$ [kN*m] Plastic resistance of a plate for mode 2 $F_{T,1,Rd} = 922.84$ [kN] Resistance of a plate for mode 1	[6.2.6.5] [6.2.4] [6.2.4]
$M_{Pl,2,Rd} = 7.53$ [kN*m] Plastic resistance of a plate for mode 2 $F_{T,1,Rd} = 922.84$ [kN] Resistance of a plate for mode 1	[6.2.6.5] [6.2.4] [6.2.4]
$M_{\text{pl,2,Rd}} = 7.53$ [kN*m] Plastic resistance of a plate for mode 2 $F_{\text{T,1,Rd}} = 922.84$ [kN] Resistance of a plate for mode 1 $F_{\text{T,2,Rd}} = 255.84$ [kN] Resistance of a plate for mode 2	[6.2.6.5] [6.2.4] [6.2.4] [6.2.4]
$M_{\text{pl,2,Rd}} = 7.53$ [kN*m] Plastic resistance of a plate for mode 2 $F_{\text{T,1,Rd}} = 922.84$ [kN] Resistance of a plate for mode 1 $F_{\text{T,2,Rd}} = 255.84$ [kN] Resistance of a plate for mode 2 $F_{\text{T,3,Rd}} = 91.38$ [kN] Resistance of a plate for mode 3	[6.2.6.5] [6.2.4] [6.2.4] [6.2.4]
$\begin{array}{lll} M_{pl,2,Rd} = & 7.53 & [kN^*m] & Plastic resistance of a plate for mode 2 \\ F_{T,1,Rd} = & 922.84 & [kN] & Resistance of a plate for mode 1 \\ F_{T,2,Rd} = & 255.84 & [kN] & Resistance of a plate for mode 2 \\ F_{T,3,Rd} = & 91.38 & [kN] & Resistance of a plate for mode 3 \\ F_{t,pl,Rd,y} = min(F_{T,1,Rd} , F_{T,2,Rd} , F_{T,3,Rd}) \end{array}$	[6.2.6.5] [6.2.4] [6.2.4] [6.2.4] [6.2.4]

$\begin{array}{llllllllllllllllllllllllllllllllllll$	[6.2.6.5] [6.2.6.5] [6.2.6.5] [6.2.4] [6.2.4] [6.2.4] [6.2.4] [6.2.4]
$F_{T,Rd,z} = F_{t,pl,Rd,z}$ $F_{T,Rd,z} = 91.38$ [kN] Resistance of a column base in the tension zone	[6.2.8.3]
CONNECTION CAPACITY CHECK	
$N_{j,Ed} / N_{j,Rd} \le 1,0 $ (6.24) 0.01 < 1.00 verified	(0.01)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	[6.2.8.3] [6.2.8.1.(2)] [6.2.8.1.(3)] [6.2.8.3]
$M_{i,Ed,y} / M_{i,Rd,y} \le 1,0 $ (6.23) 0.50 < 1.00 verified	(0.50)
$\begin{array}{llll} e_z = & 4 & [mm] & \text{Axial force eccentricity} \\ z_{c,z} = & 47 & [mm] & \text{Lever arm } F_{C,Rd,z} \\ z_{t,z} = & 45 & [mm] & \text{Lever arm } F_{T,Rd,z} \\ M_{j,Rd,z} = & 1.16 & [kN^*m] & \text{Connection resistance for bending} \end{array}$	[6.2.8.3] [6.2.8.1.(2)] [6.2.8.1.(3)] [6.2.8.3]
$M_{j,Ed,z} / M_{j,Rd,z} \le 1,0 $ (6.23) 0.07 < 1.00 verified	(0.07)
$M_{j,Ed,y} / M_{j,Rd,y} + M_{j,Ed,z} / M_{j,Rd,z} \le 1,0$ 0.57 < 1.00 verified	(0.57)
SHEAR BEARING PRESSURE OF AN ANCHOR BOLT ONTO THE BASE PLATE Shear force V _{j,Ed,y}	
$\alpha_{d,y} = 1.08$ Coeff. taking account of the bolt position - in the direction of shear	[Table 3.4]
$\alpha_{b,y} = 1.00$ Coeff. for resistance calculation $F_{1,vb,Rd}$	[Table 3.4]
$k_{1,y} = 2.50$ Coeff. taking account of the bolt position - perpendicularly to the direction of shear $F_{1,vb,Rd,y} = k_{1,y}^* \alpha_{b,y}^* f_{up}^* d^* t_p / \gamma_{M2}$	[Table 3.4]
$F_{1,vb,Rd,y} = 328.50$ [kN] Resistance of an anchor bolt for bearing pressure onto the base plate Shear force V _{j,Ed,z}	[6.2.2.(7)]
$\alpha_{d,z} = 0.83$ Coeff. taking account of the bolt position - in the direction of shear	[Table 3.4]
$\alpha_{b,z} = 0.83$ Coeff. for resistance calculation $F_{1,vb,Rd}$	[Table 3.4]
$k_{1,z} = 2.50$ Coeff. taking account of the bolt position - perpendicularly to the direction of shear	[Table 3.4]
$F_{1,vb,Rd,z} = k_{1,z} \alpha_{b,z} f_{up} d^*t_p / \gamma_{M2}$	
$F_{1,vb,Rd,z} = 273.75$ [kN] Resistance of an anchor bolt for bearing pressure onto the base plate	[6.2.2.(7)]
SHEAR OF AN ANCHOR BOLT	
$\alpha_b = 0.28$ Coeff. for resistance calculation $F_{2,vb,Rd}$	[6.2.2.(7)]
$A_{vb} = 2.54$ [cm ²] Area of bolt section $f_{ub} = 800.00$ [MPa] Tensile strength of the anchor material	[6.2.2.(7)]
	[6.2.2.(7)] [6.2.2.(7)]
$\gamma_{M2} = 1.25$ Partial safety factor $F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{vb} / \gamma_{M2}$	[0.2.2.(1)]
$F_{2,Vb,Rd} = 44.79$ [kN] Shear resistance of a bolt - without lever arm	[6.2.2.(7)]

CONCRETE PRY-OUT FAILURE	
$N_{Rk,c} = 19.84$ [kN] Design uplift capacity	CEB [9.2.4]
$k_3 = 2.00$ Factor related to the anchor length	
$\gamma_{Mc} = 2.16$ Partial safety factor	CEB [3.2.3.1]
$F_{v,Rd,cp} = k_3 * N_{Rk,c} / \gamma_{Mc}$	
$F_{v,Rd,cp} = 18.37$ [kN] Concrete resistance for pry-out fail	ure CEB [9.3.1]
CONCRETE EDGE FAILURE	
Shear force V _{j,Ed,y}	
$V_{Rk,c,y}^0 = 85.39$ [kN] Characteristic resistance of an anchor	CEE
$\psi_{A,V,y} = 1.00$ Factor related to anchor spacing and edge di	
$\psi_{h,V,y} = 1.00$ Factor related to the foundation thickness	CEE
$\psi_{s,V,y} = 1.00$ Factor related to the influence of edges parallel Factor related to the edges parallel Factor related to the edges parallel Factor related to the influence of edges parallel Factor related to the edges para	
$\psi_{ec,V,y} = 1.00$ Factor taking account a group effect when di	fferent shear loads are acting on the individual anchors in a group CEB
$\psi_{\alpha,V,y} = 1.00$ Factor related to the angle at which the shea	r load is applied CEI
$\psi_{\text{ucr,V,y}} = 1.00$ Factor related to the type of edge reinforcem	ent used CEB
$\gamma_{Mc} = 2.16$ Partial safety factor	CE
$F_{v,Rd,c,y} = V_{Rk,c,y}{}^{0*}\psi_{A,V,y}{}^{*}\psi_{h,V,y}{}^{*}\psi_{s,V,y}{}^{*}\psi_{ec,V,y}{}^{*}\psi_{\alpha,V,y}{}^{*}\psi_{ucr,V,y}/\gamma_{Mc}$	
$F_{v,Rd,c,y} = 39.53$ [kN] Concrete resistance for edge failur	e CEB [9.3.1]
Shear force V _{i,Ed,z}	
$V_{Rk,c,z}^{0} = 181.35$ [kN] Characteristic resistance of an anchor	CE
$\psi_{A,V,z} = 0.40$ Factor related to anchor spacing and edge	
$\psi_{h,V,z} = 1.00$ Factor related to the foundation thickness	CE
$\psi_{s,V,z} = 0.82$ Factor related to the influence of edges par	
· · · · · · · · · · · · · · · · · · ·	different shear loads are acting on the individual anchors in a group CE
$\psi_{\alpha,V,z} = 1.00$ Factor related to the angle at which the she	-
$\psi_{\text{ucr,V,z}} = 1.00$ Factor related to the type of edge reinforcer	
$\gamma_{Mc} = 2.16$ Partial safety factor	C
$F_{v,Rd,c,z} = V_{Rk,c,z}{}^{0*}\psi_{A,v,z}{}^{*}\psi_{h,v,z}{}^{*}\psi_{s,v,z}{}^{*}\psi_{ec,v,z}{}^{*}\psi_{\alpha,v,z}{}^{*}\psi_{ucr,v,z}/\gamma_{Mc}$	
$F_{v,Rd,c,z} = 27.82$ [kN] Concrete resistance for edge failur	re CEB [9.3.1]
SPLITTING RESISTANCE	[]
$C_{f,d} = 0.30$ Coeff. of friction between the base plate	e and concrete [6.2.2.(6)]
$N_{c,Ed} = 20.96$ [kN] Compressive force	[6.2.2.(6)]
$F_{f,Rd} = C_{f,d} * N_{c,Ed}$	[0.2.2.(0)]
$F_{f,Rd} = 6.29$ [kN] Slip resistance	[6.2.2.(6)]
SHEAR CHECK	L- (-/1
$V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y}, F_{2,vb,Rd}, F_{v,Rd,cp}, F_{v,Rd,c,y}) + F_{f,Rd}$ $V_{j,Rd,y} = 79 \cdot 78$ [kN] Connection resistance for shear	CEB [9.3.1]
$V_{j,Ed,y} / V_{j,Rd,y} \le 1,0$ 0.00 < 1.00	verified (0.00)
$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_{2,vb,Rd}, F_{v,Rd,cp}, F_{v,Rd,c,z}) + F_{f,Rd}$	Voliniou
$V_{j,Rd,z} = 116 \text{ Hill}(\Gamma_{1,vb,Rd,z}, \Gamma_{2,vb,Rd}, \Gamma_{v,Rd,cp}, \Gamma_{v,Rd,c,z}) + \Gamma_{f,Rd}$ $V_{j,Rd,z} = 79 \cdot 78 \text{[kN]} \text{Connection resistance for shear}$	CEB [9.3.1]
$V_{j,Ed,z} = V_{j,Ed,z} = V_{$	verified (0.13)
$V_{j,Ed,y} / V_{j,Rd,y} + V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$ 0.13 < 1.00	verified (0.13)
STIEFENED CHECK	
STIFFENER CHECK	
Stiffener parallel to the web (along the extension of the colur	nn web)
$M_1 = 1.82$ [kN*m] Bending moment acting on a stiffener	···· ·· ·-·· ,
$O_1 = 45.59$ [kN]. Shear force acting on a stiffener	

$M_1 =$	1.82	[kN*m]	Bending moment acting on a stiffener	
$Q_1 =$			Shear force acting on a stiffener	
z _s =	48	[mm]	Location of the neutral axis (from the plate base)	
ls =	3274.10	[cm ⁴]	Moment of inertia of a stiffener	
$\sigma_d =$	1.25	[MPa]	Normal stress on the contact surface between stiffener and plate	EN 1993-1-1:[6.2.1.(5)]
σ_g =	11.00	[MPa]	Normal stress in upper fibers	EN 1993-1-1:[6.2.1.(5)]

M ₁ = τ =	20.72 [N	MPa] Tar	nding moment acting on a stiffener		EN 1993-1-1:[6.2.1.(5
$\sigma_z = \max (\sigma_0)$			vivalent stress on the contact surface by $MO(1) \le 1.0 (6.1)$ 0.15 < 1.00	verified	0.15) 0.15)
			THE COLUMN AND THE		·
σ ⊥ =	12.21	[MPa]	Normal stress in a weld		[4.5.3.(7
$ au_{\perp}$ =	12.21	[MPa]	Perpendicular tangent stress		[4.5.3.(7
τ _у =	-0.01	[MPa]	Tangent stress parallel to $V_{j, Ed, y}$		[4.5.3.(7
$\tau_{zII} =$	1.71	[MPa]	Tangent stress parallel to $V_{j,Ed,z}$		[4.5.3.(7
βw =	0.85		Resistance-dependent coefficient		[4.5.3.(7
	$9*f_u/\gamma_{M2}) \le 1$		0.05 < 1.00	verified	(0.05
			$(3W^*\gamma_{M2}))) \le 1.0 (4.1) 0.07 < 1.00$	verified	(0.07
√(σ _⊥ ² +	3.0 (τ _{zll} ² + τ _.	⊥²)) / (fu/(ʃ:	$(w^*\gamma_{M2}))) \le 1.0 (4.1) 0.06 < 1.00$	verified	(0.06
VER1	ΓICAL W	/ELDS	OF STIFFENERS		
	=		(along the extension of the column	web)	[4 5 2 /7
σ⊥ =	9.99 9.99	[MPa]	Normal stress in a weld		[4.5.3.(7
τ _⊥ =	12.95	[MPa] [MPa]	Perpendicular tangent stress Parallel tangent stress		[4.5.3.(7 [4.5.3.(7
$\tau_{II} = \sigma_z = 0$	30.04	[MPa]	Total equivalent stress		[4.5.3.(7
βw =	0.85	[ivii a]	Resistance-dependent coefficient		[4.5.3.(7
•		/ (f/(Bw*	γ_{M2}) $\leq 1.0 (4.1) 0.09 < 1.00$	verified	(0.0)
σ⊥ =	22.39	[MPa]	Normal stress in a weld	web)	[4.5.3.(7
τ_{\perp} =	22.39	[MPa]	Perpendicular tangent stress		[4.5.3.(7
τιι =	16.74	[MPa]	Parallel tangent stress		[4.5.3.(7
σ _z =	53.34	[MPa]	Total equivalent stress Resistance-dependent coefficient		[4.5.3.(7
$\beta_W = \max (\sigma_1)$		/ (fu/(Bw*	$\gamma_{M2}) \le 1.0 (4.1) 0.16 < 1.00$	verified	[4.5.3.(7
	NECTIO	,			· ·
	g moment l		TNEOO		
$b_{eff} = 1$.15 [mm] l	Effective v	width of the bearing pressure zone und	~	[6.2.5.(3
			ength of the bearing pressure zone und	der the flange	[6.2.5.(3
	$E_c*\sqrt{(b_{eff}*I_{eff})/(b_{eff}*I_{eff})}$		0.77		T 11 0.4
$k_{13,y} =$	19	[mm]	Stiffness coeff. of compressed concre		[Table 6.1
l _{eff} =	194	[mm]	Effective length for a single bolt for m		[6.2.6.
m =	31). 425*l eff *t p ³ /([mm]	Distance of a bolt from the stiffening of	eage	[6.2.6.
$k_{15,y} = 0$ $k_{15,y} =$			fness coeff. of the base plate subjected	to tension	[Table 6.1
$L_b =$	188	[mm]	Effective anchorage depth	a to tension	[Table 6.1
	.6*A _b /L _b	լուուդ	Encouve anonorage deput		[I able 0. I
$k_{16,y} = 1$	2	[mm]	Stiffness coeff. of an anchor subjected	to tension	[Table 6.1
$\lambda_{0,v} =$	0.63		Column slenderness		[5.2.2.5.(2
	25064.12				[Table 6.12
					[5.2.2.
	32458.35				_

$S_{j,ini,y} < S_{j,rig,y}$ SEMI-RIGID	[5.2.2.5.(2)]
Bending moment M _{j,Ed,z}	
$k_{13,z} = E_c^* \sqrt{(A_{c,z})/(1.275^*E)}$	
$k_{13,z} =$ 22 [mm] Stiffness coeff. of compressed concrete	[Table 6.11]
l _{eff} = 194 [mm] Effective length for a single bolt for mode 1	[6.2.6.5]
m = 31 [mm] Distance of a bolt from the stiffening edge	[6.2.6.5]
$k_{15,z} = 0.425 * l_{eff} * t_p^3 / (m^3)$	
$k_{15,z} = 44$ [mm] Stiffness coeff. of the base plate subjected to tension	[Table 6.11]
$L_b = 188$ [mm] Effective anchorage depth	[Table 6.11]
$k_{16,z} = 1.6 A_b/L_b$	
$k_{16,z} = 2$ [mm] Stiffness coeff. of an anchor subjected to tension	[Table 6.11]
$\lambda_{0,z} = 2.31$ Column slenderness	[5.2.2.5.(2)]
$S_{j,ini,z} = 20268.82$ [kN*m] Initial rotational stiffness	[6.3.1.(4)]
$S_{j,rig,z} = 2399.22$ [kN*m] Stiffness of a rigid connection	[5.2.2.5]
$S_{j,ini,z} \ge S_{j,rig,z} \text{ RIGID}$	[5.2.2.5.(2)]

WEAKEST COMPONENT:

FOUNDATION - PULL-OUT OF AN ANCHOR BOLT FROM CONCRETE

REMARKS

Anchor curvature radius is too small. 40 [mm] < 54 [mm] Segment L4 of the hook anchor is too short. 80 [mm] < 90 [mm]

Connection conforms to the code Ratio 0.57
--