

Objetivos y Metodología

Objetivo

Implementar un sistema fuzzy para la segmentación de la membrana celular en imágenes de tejidos tratados con Inmunohistoquímica.

Inferencia Fuzzy para la segmentación de imágenes

Metodología

Comparación del desempeño de 4 modelos en la tarea de clasificación:

- Decision Tree Classifier
- Random Forest
- Fuzzy Decision Tree (class weighted)
- Fuzzy Decision Tree (without class weight)

Utilizando métricas de clasificación e inspección visual.

Antecedentes

Segmentación de Imágenes

La segmentación de imágenes corresponde a la división de una imagen digital en varias partes u objetos.

Puede entender como un **problema de clasificación** a nivel de píxel de la imagen.

Árboles de Decisión

Un árbol de decisión es un modelo de clasificación.

Compuesto por nodos. Utiliza uno de los atributos para determina su pertenencia en uno de los conjuntos (crisp) existentes.

Si el nodo es una hoja, esta determinará la clase a la que pertenece.

Entrenar un árbol es determinar qué atributos por nodo y divisiones (conjuntos) óptimas.

Un árbol de decisión fuzzy se diferencia en lo siguiente:

- Las "divisiones" de cada atributos están pre-definidas por conjuntos fuzzy.
- Al entrenar, se determina los atributos A_i que maximicen la ganancia de información **G**.
- Durante la predicción, la selección de conjuntos (o ramas) realizada en cada nodo no es única, ya que utiliza el grado de pertenencia para obtener la clase.
- Permite la construcción de reglas.

Definición: Un árbol está compuesto por nodos y hojas

Sea el conjunto de datos **D.** Donde cada dato tiene L atributos numéricos A_i : $\{A_{ii}, \dots, A_L\}$ Y asignado una clase C_k . De un conjunto de N clases. Cada atributo tiene M fuzzy sets (variable de cada atributo), F_{im} y sus funciones de membresía µ_{im}.

Sea D^{Ck} el subconjunto de datos de la clase. D_{FII} el subconjunto de datos

pertenecientes al fuzzy set F_{ij} Sea [D]_w y [D^{Ck}]_w la suma ponderada con w de las funciones de membresía de un conjunto de datos.

Construcción:

- 1. Se genera una raíz con todos los datos D, y una membresía igual a 1 para cada dato.
- 2. Si el nodo actual *t* cumple con una de las tres condiciones, es considerado hoja.
 - a. Si para alguna clase C_k , la proporción de clases es mayor o igual a Θ_r .

$$(|\mathbf{D}^{\mathbf{Ck}}|_{\mathbf{w}})/|\mathbf{D}|_{\mathbf{w}} > \theta_{\mathbf{r}}$$

b. La cantidad de miembros es menor a θ_n .

c. No quedan más atributos.

Construcción:

3. En caso contrario, se calcula la ganancia para cada atributo A_i $G(A_i, D) = I(D)-E(A_i, D)$

Donde:

$$I(D) = -\sum_{k=1}^{N} (p_k \log_2 p_k)$$

$$E(A_i, D) = \sum_{k=1}^{M} (p_k I(D_{Fij}))$$

$$p_k = |D^{ck}| / |D|$$

$$p_{ii} = |D_{Fii}| / \sum_{i=1}^{M} |D_{Fii}|$$

A_{may} es el atributo con mayor ganancia.

Construcción:

- 4. Se subdivide D en M subconjuntos D₁, ..., D_j..., D_M de acuerdo al atributo A_{max}. Y su nuevo valor de membresía µ_{max,j} corresponde al producto del valor de membresía en D y de F_{max,j}.
- 5. Generar nuevos nodos t_i para cada D_i y repetir desde 2.

Predicción


```
petal length (cm):
      [high]-> petal width (cm):
               [high]-> sepal length (cm):
                       [high]-> sepal width (cm):
                               [high]-> {'setosa': 0.0, 'versicolor': 0.24, 'virginica': 0.76}
                               [low]-> {'setosa': 0.0, 'versicolor': 0.3, 'virginica': 0.7}
                       [medium]-> sepal width (cm):
                               [high]-> {'setosa': 0.0, 'versicolor': 0.61, 'virginica': 0.39}
                               [low]-> {'setosa': 0.0, 'versicolor': 0.49, 'virginica': 0.51}
                       [low]-> sepal width (cm):
                               [high]-> {'setosa': 0.01, 'versicolor': 0.67, 'virginica': 0.33}
                               [low]-> {'setosa': 0.0, 'versicolor': 0.58, 'virginica': 0.42}
               [low]-> {'setosa': 0.02, 'versicolor': 0.9, 'virginica': 0.08}
       [medium]-> {'setosa': 0.01, 'versicolor': 0.91, 'virginica': 0.08}
       [low]-> petal width (cm):
               [high]-> {'setosa': 0.09, 'versicolor': 0.84, 'virginica': 0.07}
               [low]-> {'setosa': 0.91, 'versicolor': 0.09, 'virginica': 0.0}
```

Ejemplos:

```
IF (("petal length (cm)" IS "high") AND ("petal width (cm)" IS "high") AND ("sepal length (cm)" IS "high") AND ("sepal width (cm)" IS "low")), THEN IS "virginica"
```

IF (("petal length (cm)" IS "high") AND ("petal width (cm)" IS "high") AND ("sepal length (cm)" IS "low") AND ("sepal width (cm)" IS "high")), THEN IS "versicolor"

IF (("petal length (cm)" IS "low") AND ("petal width (cm)" IS "low")), THEN IS "setosa"

Contexto

La proteína HER2 (human epidermal growth factor receptor 2) está presente de manera natural en nuestras células.

Estudios han demostrado la correlación de su sobreexpresión con ciertos tipos de cáncer.

El análisis de imágenes de tejido permite determinar la presencia de sobreexpresión.

Según la guía de clasificación de la American Society of Clinical Oncology/ College of American Pathologists Clinical Practice Guideline Focused Update.

- A) 0+ Negativo
- B) 1+ Negativo
- C) 2+ Equivoco
- D) 3+ Positivo

Tejidos tratados con inmunohistoquímica, permiten resaltar estructuras con sobreexpresión de la proteína.

La sobreexpresión de la proteína HER2 presenta tonalidades intensas en la membrana celular.

De esta forma, realizar una segmentación de la membrana celular, permite cuantificar la sobreexpresión.

Clasificar cada píxel en una de las dos clases:

- Sobreexpresión
- Sin-Sobreexpresión

Clasificar cada píxel en una de las dos clases:

- Sobreexpresión
- Sin-Sobreexpresión

Clases no balanceadas

Recursos

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Recursos

Train Images:

1+_2.tif,

1+_20.tif

2+_1.tif

2+_8.tif

3+_16.tif

3+_19.ti

Test Images:

1+_25.tif,

2+_9.tif

3+_15.tif

 Resolución: 1000x1000

• Máscara con 2 clases :

0: Non-Overexpression

1: Overexpression

Solución Propuesta

Sistema de Inferencia Fuzzy

Podemos generar un sistema de inferencia basado en *Fuzzy Decision Trees* para realizar una segmentación de la imágen.

Extracción de características

Obtener de la imagen, medidas y/o características que permitan abstraerse de la imagen.

Nos interesan características a nivel de píxel (o vecindario):

- Intensidades en diferentes espacios de colores.
- Filtros/Derivadas
- Textura.

El objetivo es tener nuevas variables para la fuzzificación.

Extracción de características

Características de Color

Se obtienen a partir del promedio de un pequeño vecindario de píxeles de tamaño 3x3:

- RGB
- Gray
- Haematoxylin-Eosin-DAB (HED)
- HSV
- RGB Excess
 - \circ 2R (G+B)
 - \circ 2G (R+B)
 - 2B (G+R)

Extracción de características

Características de Color: RGB

Extracción de características

Características de Color: Gray

Extracción de características

Características de Color: Haematoxylin-Eosin-DAB (HED)

Extracción de características

Extracción de características

Características de Color: HSV

Extracción de características

Características de Color: RGB excess

Extracción de características

Características de Filtro o Derivadas

Se obtienen a partir aplicar una convolución con filtros de tamaño 3x3:

- Magnitud Gradiente Sobel
- Laplacian

Extracción de características

Características de Filtro o Derivadas: Magnitud Gradiente Sobel

Extracción de características

Características de Filtro o Derivadas: Laplacian

-1	-1	-1
-1	8	-1
-1	-1	-1

Extracción de características

Características de Textura

Se obtienen a partir del caractersticas emergentes de un pequeño vecindario de píxeles de tamaño 5x5:

- GLCM (Gray Level Co-occurrences-Matrix)
 - Energy
 - Homogeneity
 - Correlation
 - Mean
- Local Binary Pattern with rotation invariant extension

Extracción de características

Características de Textura: GLCM

Extracción de características

Características de Textura: GLCM

Extracción de características

Características de Textura: LBP with rotation invariant

Selección de Características

Importancia de Características

Selected Features

mean_rawblue
mean_dab
mean_intentsity,
mean_rawgreen,
mean_eosin
mean_vertical
mean_rawred
homogeneity_vertical
mean_hematoxylin
sobel_magnitud

Extracción de características

El conocimiento del dominio nos permite definir las funciones de pertenencias, por ejemplo:

El grado de intensidad de la tinción café: {bajo, moderado, alto}

Para estos casos, se utilizarán funciones de pertenencia triangulares, trapezoidales y sigmas.

Post Processing

PostProcessing

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

Entrenamiento

Fuzzy Decision Tree

Fuzzy Tree 1

Considera desbalance max_deep = 4, theta_r = 0.98, theta_n = 15

Fuzzy Tree 2

No considera desbalance max_deep = 4, theta_r = 0.98, theta_n = 15

Evaluación

Se utilizará la medida de **Precision, Recall y F1-Score** para determinar el desempeño de la clasificación de cada pixel.

TP: True Positive

TN: True Negative

FP: False Positivo

FN: False negative

$$\begin{array}{ll} precision & = & \frac{TP}{TP + FP} \\ \\ recall & = & \frac{TP}{TP + FN} \\ \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \\ \\ accuracy & = & \frac{TP + TN}{TP + FN + TN + FP} \end{array}$$

Fuzzy Decision Tree				
	precision	recall	f1-score	support
non-overexpression overexpression	0.99 (0.37	0.88 0.93	0.93	2781471 211306
Fuzzy Decision Tree	- Imbalanced precision		f1-score	support
non-overexpression overexpression	0.95 (0.77	0.99 0.25	0.97	2781471 211306

Decision Tree		
	precision	recall f1-score support
non-overexpression overexpression	0.93 (0.97	1.00 0.96 2781471 0.04 0.08 211306
Random Forest		Pacent annual se
	precision	recall f1-score support
non-overexpression overexpression	0.99 0.46	0.92 0.95 2781471 0.87 0.60 211306
Fuzzy Decision Tree		
	precision	recall f1-score support
non-overexpression overexpression		0.88 0.93 2781471 0.93 0.53 211306

Inspección Visual

Inspección Visual: DT

Inspección Visual: RF

Inspección Visual: FDT

Inspección Visual

Inspección Visual: DT

Inspección Visual: RF

Inspección Visual: FDT

Inspección Visual

Inspección Visual: DT

Inspección Visual: RF

Inspección Visual: FDT

Rule Sets: 46 Reglas para OverExpressed

Utilizando cada nodo como una condición, se agregan nuevas condiciones a medida que se desciende.

Al llegar a la hoja, se decide la clase.

Ejemplos:

```
IF (("mean_rawgreen" IS "medium") AND ("mean_rawblue" IS "medium") AND ("homogeneity_vertical" IS "low") AND ("mean_rawbred" IS "low") AND ("mean_dab" IS "high")), THEN IS "overexpressed"
```

IF (("mean_rawgreen" IS "medium") AND ("mean_rawblue" IS "low") AND ("mean_hematoxylin" IS "high") AND ("homogeneity_vertical" IS "medium") AND ("sobel_magnitud" IS "high")), THEN IS "overexpressed"

Conclusiones

Análisis de Resultados

- Se obtuvieron resultados satisfactorios con una mejora en el Recall respecto a los árboles de decisión clásicos y random forests.
- Considerar el desbalance de clases durante el entrenar con un árbol, mejora el desempeño del modelo.

Ventajas del uso de *Fuzzy Decision Trees*

- Visita todas las ramas del árbol
- Permite generar reglas de inferencia.
- Permite incluir conocimiento del dominio
- Alta interpretabilidad del árbol y reglas generadas.

Desventajas del uso de *Fuzzy Decision Trees*

Visita todas las ramas del árbol, lo que implica más tiempo de cómputo.

Referencias

Referencias

- Begelrnan, G., Gur, E., Rivlin, E., Rudzsky, M., & Zalevsky, Z. (2004, October). Cell nuclei segmentation using fuzzy logic engine. In 2004 International Conference on Image Processing, 2004. ICIP'04. (Vol. 5, pp. 2937-2940). IEEE.
- Hall-Beyer, M. (2000). GLCM texture: a tutorial. National Council on Geographic Information and Analysis Remote Sensing Core Curriculum, 3.
- Pezoa, R., Salinas, L., Torres, C., Härtel, S., Maureira-Fredes, C., & Arce, P. (2016, October). Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines. In Journal of Physics: Conference Series (Vol. 762, No. 1, pp. 528-536).
- Gonzalez, R. C., & Richard, E. (2002). Woods, digital image processing. ed: Prentice Hall Press, ISBN 0-201-18075, 8.
- Ruifrok, A. C., & Johnston, D. A. (2001). Quantification of histochemical staining by color deconvolution. Analytical and quantitative cytology and histology, 23(4), 291-299.
- Tabakov, M., & Kozak, P. (2014). Segmentation of histopathology HER2/neu images with fuzzy decision tree and Takagi—Sugeno reasoning. Computers in biology and medicine, 49, 19-29.
- Tanaka, K. (1997). An introduction to fuzzy logic for practical applications.
- Umanol, M., Okamoto, H., Hatono, I., Tamura, H. I. R. O. Y. U. K. I., Kawachi, F., Umedzu, S., & Kinoshita, J. (1994, June). Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems. In Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference (pp. 2113-2118). IEEE.

