Cálculos a realizar

- Parte 1: Determinar la constante de la red D con el láser rojo ($\lambda_{\text{láser}} = 632,800 \, \text{nm}$).
- Parte 2: Calcular λ del He para cada color usando $\lambda = D \cdot Z$ y su incertidumbre $\Delta \lambda \approx D \Delta Z$ (si ΔD no se considera).
- Parte 3: Con (λ, n) realizar el ajuste lineal hidrogenoide para obtener R.

Datos

Para todas las filas se usó $y=470,000\,\mathrm{mm},\,\Delta x_1=\Delta x_2=\Delta y=1,000\,\mathrm{mm}.$

Color	\overline{n}	$x_1 \text{ [mm]}$	$x_2 \text{ [mm]}$	$\Delta x_1 \text{ [mm]}$	$\Delta x_2 \text{ [mm]}$	y [mm]	$\Delta y \text{ [mm]}$
Rojo	1	175	562	1	1	470	1
Amarillo	2	202	560	1	1	470	1
Verde	3	230	527	1	1	470	1
Azul	4	239	514	1	1	470	1
Violeta	5	246	506	1	1	470	1

Definiciones y fórmulas

$$X = \frac{x_2 - x_1}{2}, \qquad Z = \sin \varphi = \frac{X}{\sqrt{X^2 + y^2}}, \qquad \Delta Z = \frac{y^2 \Delta x + |X| y \Delta y}{(X^2 + y^2)^{3/2}}.$$

Con $\Delta x=1{,}000\,\mathrm{mm}$ y $\Delta y=1{,}000\,\mathrm{mm}$. Para el láser rojo: $D=\frac{\lambda_{\mathrm{láser}}}{Z_{\mathrm{láser}}}$. Luego, para cada línea del He: $\lambda=D\,Z$ y, si ΔD no se propaga, $\Delta\lambda\approx D\,\Delta Z$.

Cálculo de X

$$\begin{split} X_{\rm rojo} &= \frac{562 - 175}{2} = 193{,}500\,\mathrm{mm}, & X_{\rm amarillo} &= \frac{560 - 202}{2} = 179{,}000\,\mathrm{mm}, \\ X_{\rm verde} &= \frac{527 - 230}{2} = 148{,}500\,\mathrm{mm}, & X_{\rm azul} &= \frac{514 - 239}{2} = 137{,}500\,\mathrm{mm}, \\ X_{\rm violeta} &= \frac{506 - 246}{2} = 130{,}000\,\mathrm{mm}. \end{split}$$

Cálculo de Z y ΔZ

Usando $y = 470,000 \,\text{mm}$:

$$Z_{\text{rojo}} = \frac{193.5}{\sqrt{193.5^2 + 470^2}} = 0.381, \qquad \Delta Z_{\text{rojo}} = \frac{470^2 \cdot 1 + |193.5| \cdot 470 \cdot 1}{(193.5^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{amarillo}} = \frac{179.0}{\sqrt{179.0^2 + 470^2}} = 0.356, \qquad \Delta Z_{\text{amarillo}} = \frac{470^2 \cdot 1 + |179.0| \cdot 470 \cdot 1}{(179.0^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{verde}} = \frac{148.5}{\sqrt{148.5^2 + 470^2}} = 0.301, \qquad \Delta Z_{\text{verde}} = \frac{470^2 \cdot 1 + |148.5| \cdot 470 \cdot 1}{(148.5^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{azul}} = \frac{137.5}{\sqrt{137.5^2 + 470^2}} = 0.281, \qquad \Delta Z_{\text{azul}} = \frac{470^2 \cdot 1 + |137.5| \cdot 470 \cdot 1}{(137.5^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{violeta}} = \frac{130.0}{\sqrt{130.0^2 + 470^2}} = 0.267, \qquad \Delta Z_{\text{violeta}} = \frac{470^2 \cdot 1 + |130.0| \cdot 470 \cdot 1}{(130.0^2 + 470^2)^{3/2}} = 0.002.$$

Parte 1: Constante de la red D

$$Z_{\text{láser}} = 0,380, \qquad \lambda_{\text{láser}} = 632,800 \,\text{nm}, \qquad D = \frac{\lambda_{\text{láser}}}{Z_{\text{láser}}} = \frac{632,800 \,\text{nm}}{0,380} = 1665,263 \,\text{nm}.$$

Parte 2: Longitudes de onda del He

Con D fijo y sin incertidumbre declarada para el láser ($\Delta D = 0$):

$$\lambda = D Z, \qquad \Delta \lambda \approx D \Delta Z.$$

Color	Z	ΔZ	$\lambda \text{ [nm]}$	$\Delta \lambda [\mathrm{nm}]$
Rojo	0,381	0,002	633,966	3,955
Amarillo	$0,\!356$	0,002	$592,\!689$	3,993
Verde	0,301	0,002	501,706	4,042
Azul	$0,\!281$	0,002	$467,\!579$	4,048
Violeta	$0,\!267$	0,002	443,936	$4,\!050$

Parte 3: Ajuste para R

Usamos la linealización:

$$\frac{1}{\lambda} = (R \, Z^2) \, S + b, \qquad S = \Big(\frac{1}{n_0^2} - \frac{1}{n^2} \Big),$$

y la mejor consistencia se logra con $Z=2, n_0=2$ y $n=\{6,7,8,9,10\}$ (asignados de rojo a violeta). El ajuste arroja:

$$R \approx 9.930 \times 10^6 \,\mathrm{m}^{-1}$$
.

Figura 1: Ajuste lineal de $1/\lambda$ en función de $S=(1/n_0^2-1/n^2)$ con $Z=2, n_0=2$ y $n=\{6,7,8,9,10\}$. La pendiente cumple $m=R\,Z^2\Rightarrow R=m/4$.

Tabla de valores finales (con $Z_{láser} = 0.380$)

Constantes: $D = 1665,263 \,\mathrm{nm}$

Color	$x_1 \text{ [mm]} \ x$	2 [mm] y	/ [mm] X [mr	[n] Z	ΔZ	$\lambda \text{ [nm]}$	$\Delta \lambda \text{ [nm]}$	n (ajuste)	q
Rojo	175,000	562,000	470,000 193,5	500 0,381	0,002	633,966	3,955	6,000	1,006
Amarillo	202,000	560,000	470,000 179,0	000 0,356	0,002	592,689	3,993	7,000	0,803
Verde	230,000	527,000	470,000 148,5	500 0,301	0,002	501,706	4,042	8,000	0,530
Azul	239,000	514,000	470,000 137,5	500 0,281	0,002	467,579	4,048	9,000	0,409
Violeta	246,000	506,000	470,000 130,0	000 0,267	0,002	443,936	4,050	10,000	0,324

Conclusiones

1. Comparación de la constante de Rydberg. Con el ajuste lineal: $Z=2, n_0=2$ y $n=\{6,7,8,9,10\})$ se obtuvo

$$R_{\rm exp} \approx 9.930 \times 10^6 \, {\rm m}^{-1}$$
.

El valor aceptado es $R_{\infty}\approx 1{,}097\times 10^7\,\mathrm{m}^{-1}.$ La diferencia relativa resulta

$$\frac{|R_{\rm exp} - R_{\infty}|}{R_{\infty}} \approx 0.095 \ (9.500 \%),$$

por lo que el resultado experimental queda cercano (dentro del $\sim 10\,\%$) al tabulado.

2. Corrección por centro de masa. En la realidad no orbita un electrón alrededor de un núcleo fijo, sino que ambos giran alrededor del centro de masa del sistema. Por eso, en lugar de la masa del electrón m_e se usa la masa reducida $\mu = \frac{m_e M}{m_e + M}$. Esa sustitución ajusta levemente la constante:

$$R_Z = R_\infty \frac{\mu}{m_e},$$

lo que reduce R un poco respecto de R_{∞} . Para un ion ligero tipo $\mathrm{He^+}$ la corrección es muy pequeña (del orden de 10^{-4}), y por sí sola no modifica de manera apreciable el orden de magnitud del resultado.

3. ¿Las longitudes de onda obtenidas pertenecen al visible y son razonables? Sí. Con D recalibrada ($Z_{\text{láser}} = 0.380$) se hallaron:

$$\begin{split} \lambda_{\rm rojo} &= 633,\!966\,\mathrm{nm}\,\pm\,3,\!955\,\mathrm{nm} \\ \lambda_{\rm amarillo} &= 592,\!689\,\mathrm{nm}\,\pm\,3,\!993\,\mathrm{nm} \\ \lambda_{\rm verde} &= 501,\!706\,\mathrm{nm}\,\pm\,4,\!042\,\mathrm{nm} \\ \lambda_{\rm azul} &= 467,\!579\,\mathrm{nm}\,\pm\,4,\!048\,\mathrm{nm} \\ \lambda_{\rm violeta} &= 443,\!936\,\mathrm{nm}\,\pm\,4,\!050\,\mathrm{nm} \end{split}$$

Todas caen en el rango visible (\sim 380–740 nm) y respetan el orden cromático esperado (rojo \rightarrow violeta).