

Indice

1.	Lezio	Lezione 1, accenni di GAL (03,04 e 05 mar 2025)				
	1.1.	. Lista Appelli				
	1.2.	Funzioni di più Variabili				
		1.2.1. Rappresentazione				
		1.2.2. Definizione funzioni in 2 Variabili				
		1.2.3. \mathbb{R}^2 come struttura lineare (spazio vettoriale)				
		1.2.4. \mathbb{R}^2 come struttura euclidea				
		1.2.4.1. Prodotto Scalare				
		1.2.4.2. Norma di un vettore				
		1.2.4.3. Distanza tra 2 punti				
		1.2.4.4. Angolo tra 2 vettori				
		1.2.5. Coordinate polari				
	1.3.	•				
	1.4.	Equazioni lineari				
		1.4.1. Regola di Cramer				
	1.5.	\mathbb{R}^3 come struttura euclidea				
	1.6.	Il piano				
		1.6.1. Caso $c \neq 0$				
		1.6.2. Rappresentazione di una retta in \mathbb{R}^3				
		1.6.2.1. Equazione parametrica				
		1.6.2.2. Equazione cartesiana				
	1.7.	Equazione parametrica del piano				
	1.8.	Significato geometrico del determinante				
	1.9.					
	1.10.	Sistema lineare a 3 equazioni				
		1.10.1. Esercizio di un equazione lineare a 3 equazioni con regola di Cramer				
	1.11.	Prodotto vettoriale				
		1.11.1. Esempio				
	1.12.	Prodotto misto di 3 vettori				
2.		Lezione 2, curve in \mathbb{R}^n (10 marzo 2025)				
	2.1.	\mathbb{R}^n				
		2.1.1. Spoiler				
	2.2.	Curve nello spazio euclideo \mathbb{R}^n				
	2.3.	Vettore «velocità» (tangente alla curva)				
	2.4.					
		2.4.1. Moto rettilineo uniforme				
		2.4.2. Moto circolare uniforme				
		2.4.3. Moto elicoidale				
	2.5.	Lunghezza di una curva regolare				
		2.5.1. Esempio				
		2.5.2. Lunghezza della circonferenza				
3.	Lezio	ezione3, Funzioni in più variabili (11 Marzo 2025)				
3.1.		Limiti				
		3.1.1. Continuità				
	3.2.	Differenziabilità				
		3 2 1 Derivata parziale				

		3.2.2.	Differenziabilità	15			
		3.2.3.					
	3.3.	Teorer	na di derivazione della funzione composta				
		3.3.1.	Gradiente				
		3.3.2.	Caso in n variabili	17			
	3.4.	Curva	di livello	17			
		3.4.1.	Teorema	18			
	3.5.	Punti S	Stazionari	18			
		3.5.1.	Intorno	18			
		3.5.2.	Minimo relativo	18			
		3.5.3.	Massimo relativo	18			
4.	Lezione 4, Sviluppo di taylor di una funzione in 2 variabili						
	4.1.		po di Taylor in un punto stazionario $(x_0,y_0)\dots$				
			Matrice Hessiana				
	4.2.	La form	na quadratica $H_{11}\Delta x^2 + 2H_{12}\Delta x\Delta y + H_{22}\Delta y^2 \ldots$	21			
5.	Lezione 5						
٠.	5.1.	Superfici bidimensionali nello spazio tridimensionale					
		5.1.1.	Superfici regolari	22			
	5.2.	Superfici come grafici di funzioni di 2 variabili					
	5.3.	Superfici di livello					
	5.4.	Derivazione di una funzione composta con superficie					
	5.5.	Restrizione di una funzione in 3 variabili					
	5.6.	. Teorema della funzione implicita		23			
		5.6.1.	Per 3 variabili	23			
		5.6.2.	Derivata della funzione del teorema della funzione implicita	24			
			5.6.2.1. Per 3 variabili	24			
6.	Lezio	ne 6, Pı	unti stazionari per funzioni ristrette	25			
	6.1.		licatori di Lagrange				
	6.2.	_	stazionari per funzioni ristrette in 3 variabili				
	6.3.	Moltiplicatori di Lagrange in 3 variabili					
		1					

1. Lezione 1, accenni di GAL (03,04 e 05 mar 2025)

1.1. Lista Appelli

- 1. Gennaio
- 2. Febbraio
- 3. Aprile
- 4. Giugno
- 5. Luglio
- 6. Settembre
- 7. Novembre

1.2. Funzioni di più Variabili

1.2.1. Rappresentazione

1.2.2. Definizione funzioni in 2 Variabili

$$\begin{split} f:\mathbb{R}^2 \to \mathbb{R} \\ \mathbb{R}^2 &= \{(x,y) \mid x,y \in \mathbb{R}\} \\ \mathbb{R}^n &= \{(x_1,...,x_n) \mid x_i \in \mathbb{R} \forall 1 \leq i \leq n\} \end{split}$$

 \mathbb{R}^2

- struttura lineare
- struttura euclidea

1.2.3. \mathbb{R}^2 come struttura lineare (spazio vettoriale)

$$\vec{x} = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

$$ec{y} = egin{bmatrix} y_1 \ y_2 \end{bmatrix}$$

$$c\vec{x} = \begin{vmatrix} cx_1 \\ cx_2 \end{vmatrix}$$

$$\vec{x} + \vec{y} = \begin{vmatrix} x_1 + y_1 \\ x_2 + y_2 \end{vmatrix}$$

1.2.4. \mathbb{R}^2 come struttura euclidea

1.2.4.1. Prodotto Scalare

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 = ||\vec{x}|| ||\vec{y}|| \cos \theta$$

Dove θ è l'angolo compreso tra i 2 vettori.

Quando $\vec{x} \cdot \vec{y} = 0$ i vettori \vec{x} e \vec{y} sono ortogonali.

1.2.4.2. Norma di un vettore

$$\parallel x \parallel = \sqrt{\vec{x} \cdot \vec{x}}$$

1.2.4.3. Distanza tra 2 punti

$$d(x,y) = \| \ \vec{x} - \vec{y} \ \| = \| \ \vec{y} - \vec{x} \ \|$$

dove $\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y}$

1.2.4.4. Angolo tra 2 vettori

$$\cos(\theta_{\vec{x}, \vec{y}}) = \frac{x_1 y_1 + x_2 y_2}{\|\vec{x}\| \|\vec{y}\|}$$

1.2.5. Coordinate polari

Dato un vettore $\vec{x} = (x_1, x_2)$ e l'angolo φ compreso tra il vettore e l'asse orizzontale, associo al vettore la coppia di numeri $(\|\vec{x}\|, \varphi)$, dove quindi:

$$x_1 = \|\vec{x}\| \cos(\varphi)$$

$$x_2 = \|\vec{x}\|\sin(\varphi)$$

$$x = \begin{pmatrix} \|\vec{x}\| \cos(\varphi) \\ \|\vec{x}\| \sin(\varphi) \end{pmatrix}$$

ora consideriamo il vettore $(\|\vec{y}\|, \psi)$

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 = \|\vec{x}\| \|\vec{y}\| \left(\cos(\varphi)\cos(\psi) + \sin(\varphi)\sin(\psi)\right) = \|\vec{x}\| \|\vec{y}\| \cos(\theta)$$

1.3. Retta nel piano

$$a_1 x_1 + a_2 x_2 = c$$

 $x_2 = mx_1 + q$ è meno generale

$$a_1 x_1 + a_2 x_2 = 0$$

$$\vec{a} = \binom{a_1}{a_2}, \vec{x} = \binom{x_1}{x_2}$$

$$\vec{a} \cdot \vec{x} = 0$$

dove la retta è perperndicolare a \vec{a} e passa per l'origine perchè c=0

$$\begin{aligned} a_1x_1 + a_2x_2 &= c, c \neq 0 \\ a_1x_1 + a_2x_2 &= c \\ a_1x_1 + a_2x_2 &= a_1x_1^0a_2x_2^0 \\ a_1(x_1 - x_1^0) + a_2(x_2 - x_2^0) &= 0 \\ \vec{a} \cdot (\vec{x} - \vec{x_0}) \end{aligned}$$

questa è l'equazione cartesiana.

Data $\vec{x_0}=(x_1^0,x_2^0)$ e $\vec{V}=(v_1,v_2)$, l'equazione parametrica della retta passante per $\vec{x_0}$ e parallela a \vec{V} è data da $\vec{x}=\vec{x_0}+\vec{V}t$

$$\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} x_1^0 \\ x_2^0 \end{vmatrix} + t \begin{vmatrix} v_1 \\ v_2 \end{vmatrix} = \begin{vmatrix} x_1^0 + v_1 t \\ x_2^0 + v_2 t \end{vmatrix}$$

1.4. Equazioni lineari

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

Esistono 2 casi:

- 1. Le rette non sono parallele ed \exists ! una soluzione.
- 2. Le rette sono parallele
 - ∄ una soluzione.
 - Ci sono infinite soluzioni (le due equazioni rappresentano la stessa retta)

Siano
$$\vec{a_1} = \binom{a_{11}}{a_{12}}, \vec{a_2} = \binom{a_{21}}{a_{22}}$$
 le due rette sono parallele se: $\exists c \mid \vec{a_1} = c\vec{a_2}$

Sia

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

$$\det(A) = 0 \Leftrightarrow \exists c \mid a_1 = ca_2$$

VAI A CERCARE LA DIMOSTRAZIONE

1.4.1. Regola di Cramer

 $det(A) \neq 0$

$$x_i = rac{\det(A^i)}{\det(A)}$$

dove
$$A^i=A_0...A_{i-1}BA_{i+1}...A_n$$
e $B=\begin{pmatrix}b_1\\ \vdots\\ b_n\end{pmatrix}$

1.5. \mathbb{R}^3 come struttura euclidea

siano $\vec{x}, \vec{y} \in \mathbb{R}^n$

$$\vec{x} \cdot \vec{y} = \sum_{i=1}^n \vec{x}_i \vec{y}_i = \|\vec{x}\| \ \|\vec{y}\| \cos(\theta)$$

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$$

1.6. Il piano

$$a_1 x_1 + a_2 x_2 + a_3 x_3 = c$$

prendiamo il caso

$$a_1 x_1 + a_2 x_2 + a_3 x_3 = 0$$

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\vec{a} \cdot \vec{x} = 0$$

indica il piano passante per 0 e ortogonale (perpendicolare) ad \vec{a}

1.6.1. Caso $c \neq 0$

Sia $\overrightarrow{x_0}$ appartente
nte al piano

$$\begin{split} a_1x_1^0 + a_2x_2^0 + a_3x_3^0 &= c \\ a_1x_1^0 + a_2x_2^0 + a_3x_3^0 &= a_1x_1 + a_2x_2 + a_3x_3 \\ a_1(x_1 - x_1^0) + a_2(x_2 - x_2^0) + a_3(x_3 - x_3^0) &= 0 \\ \vec{a} \cdot (\vec{x} - \vec{x_0}) &= 0 \end{split}$$

ES scrivere l'equazione del piano passante per (1, 2, 3) e ortogonale a (1, 1, 1)

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right) = 0$$

$$x_1 + x_2 + x_3 = 6$$

1.6.2. Rappresentazione di una retta in \mathbb{R}^3

1.6.2.1. Equazione parametrica

dato $\vec{x_0}$ appartentente alla retta e \vec{v} parallela ad essa un equazione parametrica della retta è:

$$\vec{x} = \vec{x_0} + t\vec{v} \Leftrightarrow \begin{cases} x_1 = x_1^0 + tv_1 \\ x_2 = x_2^0 + tv_2 \\ x_3 = x_3^0 + tv_3 \end{cases}$$

1.6.2.2. Equazione cartesiana

Sia la retta

$$\begin{pmatrix} t \\ t \\ 1+t \end{pmatrix} \equiv \begin{cases} x_1 = t & \text{eliminando la t} \\ x_2 = t & \widehat{\Xi} \\ x_3 = 1+t \end{cases} \begin{cases} x_1 - x_2 = 0 \\ x_3 - x_2 = 1 \end{cases}$$

 ${f NB}$ sono infiniti i piani che hanno una retta come intersezione, quindi esistono infinite equazione cartesiana di una retta in \mathbb{R}^3

1.7. Equazione parametrica del piano

$$P: x_1 + x_2 + x_3 = 6$$

sostituendo $x_1=t, x_2=s$, allora $x_3=6-s-t$

$$P = \begin{pmatrix} t \\ s \\ 6 - s - t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$\vec{x_0} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} \in P, \vec{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \notin P, \vec{w} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \notin P$$

dove però $t\vec{v}+s\vec{w}$ è l'equazione parametrica del piano parallelo a P e passante per l'origine. Quindi \vec{v}, \vec{w} non sono linearmente dipendenti, e appartengono al piano passante per l'origine e parallelo a P.

1.8. Significato geometrico del determinante

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$\det\begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix} = \det\begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}$$

 $\det(\vec{v}\vec{w})$ coincide, a meno del segno con l'area del parallelogramma generato dai 2 vettori.

$$\begin{split} \vec{v} &= (\|\vec{v}\|, \varphi), \vec{w} = (\|\vec{w}\|, \psi) \\ \det(\vec{v}\vec{w}) &= v_1 w_2 - v_2 w_1 = \|\vec{v}\| \ \|\vec{w}\| \cos \varphi \sin \psi - \|\vec{v}\| \ \|\vec{w}\| \sin \varphi \cos \psi \\ \|\vec{v}\| \ \|\vec{w}\| \ (\cos \varphi \sin \psi - \sin \varphi \cos \psi) = \|\vec{v}\| \ \|\vec{w}\| \sin \theta_{\vec{v} \cdot \vec{w}} \end{split}$$

1.9. Determinante matrice 3x3

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \sum_{i=1}^{3} (-1)^{i+1} a_{ji} \det(A^{ji}) = \sum_{i=1}^{3} (-1)^{i+1} a_{ij} \det(A^{ij}), \forall 1 \leq j \leq 3$$

dove A^{ij} è la matrice A senza la colonna j e la riga i.

$$\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} ... a_{n-1\sigma(n-1)} a_{n\sigma(n)}$$

siano \vec{v} , \vec{w} , \vec{z} tre vettori di dimensione 3.

$$|\det(\vec{v}\vec{w}\vec{z})| = \left|\det\left(egin{array}{c} \vec{v}^t \ \vec{w}^t \ \vec{z}^t \end{array}
ight)
ight|$$

e indica il volume del parallelepipedo generato dai tre vettori.

1.10. Sistema lineare a 3 equazioni

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

Trovare la soluzione significa trovare l'intersezione tra i 3 piani

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\det(A) \neq 0 \Leftrightarrow \exists ! \vec{x} \mid A\vec{x} = \vec{b}$$

$$\det(A) = 0 \Rightarrow \begin{cases} \text{esistono infinite soluzioni} \\ \text{non esiste alcuna soluzione} \end{cases}$$

1.10.1. Esercizio di un equazione lineare a 3 equazioni con regola di Cramer

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 - x_2 + x_3 = 1 \\ x_1 - x_3 = 1 \end{cases}$$

abbiamo

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}, \vec{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\det A = 2 + 2 = 4$$

$$\det(BA^2A^3) = \det A = 4$$

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = 0(M^1 = M^2)$$

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 0(M^1 = M^3)$$

$$x_1 = \frac{4}{4} = 1, x_2 = \frac{0}{4} = 0, x_3 = \frac{0}{4} = 0, \vec{x} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

1.11. Prodotto vettoriale

siano \vec{v} e \vec{w}

$$\vec{v} \times \vec{w} = \|\vec{v}\| \|\vec{w}\| \sin \theta_{\vec{v}, \vec{w}} \vec{n}$$

dove $\|\vec{n}\| = 1$ e \vec{n} ortogonale ad \vec{v} e \vec{w} .

$$\vec{v} \times \vec{w} = \det \begin{pmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = \begin{pmatrix} v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_3 \end{pmatrix}$$

dove $\vec{e_i}$ è l'i-esimo vettore della base canonica.

$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

1.11.1. Esempio

$$\vec{e_1} \times \vec{e_2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \vec{e_3}$$

1.12. Prodotto misto di 3 vettori

siano \vec{v} , \vec{w} , \vec{z} , il prodotto misto dei 3 è:

$$(\vec{v} \times \vec{w}) \cdot \vec{z}$$

Il prodotto misto coincide con il volume del parallelepipedo generato dai 3 vettori.

$$(\vec{v} \times \vec{w}) \cdot \vec{z} = \underbrace{\|\vec{v}\| \|\vec{w}\| \sin \theta}_{\text{area del parallelogramma generato da } \vec{v} \text{ e } \vec{w}} \quad \|\vec{n}\| \underbrace{\|\vec{z}\| \cos \varphi}_{\text{altezza del parallelepipedo}}$$

Esercizio per casa: dimostrare che

$$\begin{pmatrix} v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_3 \end{pmatrix} \cdot \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \det \begin{pmatrix} v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

sono un sacco di passaggi ma è molto semplice.

2. Lezione 2, curve in \mathbb{R}^n (10 marzo 2025)

2.1. \mathbb{R}^n

$$\begin{split} \mathbb{R}^n &= \{(x_1,...,x_n) \mid x_i \in \mathbb{R} \forall 1 \leq i \leq n\} \\ c \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} &= \begin{pmatrix} cx_1 \\ \vdots \\ cx_n \end{pmatrix} \\ \vec{x} \cdot \vec{y} &= \sum_{i=1}^n x_i y_i \\ \\ d(\vec{x},\vec{y}) &= \sqrt{\sum_{i=1}^n \left(y_i - x_i\right)^2} \end{split}$$

2.1.1. **Spoiler**

$$f:\mathbb{R} o\mathbb{R}^n$$

$$f:\mathbb{R}^n o\mathbb{R}^m ext{(campi vettoriali)}$$

$$f:\mathbb{R}^2 o\mathbb{R}^3$$

2.2. Curve nello spazio euclideo \mathbb{R}^n

Una curva parametrizzata nello spazio euclideo \mathbb{R}^n è una funzione che associa valori vettoriali

$$\vec{x}:[a,b]\subset\mathbb{R}\to\mathbb{R}^n$$

$$t \to \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

Assumeremo che $x_i(t)$ sia una funzione derivabile con derivata continua (Classe c1).

2.3. Vettore «velocità» (tangente alla curva)

$$\vec{v}(t_0) = \frac{d\vec{x}}{dt}(t_0) = \lim_{\Delta t \mapsto 0} \frac{\vec{x}(t_0 + \Delta t) - \vec{x}(t_0)}{\Delta t}$$

- $\vec{v}(t_0)$ è tangente alla curva in $\vec{x}(t_0)$.
- Il verso di \vec{v} dipende dal verso in cui è percorsa la curva.

$$\frac{d\vec{x}}{dt}(t_0) = \lim_{\Delta t \mapsto 0} \frac{1}{\Delta t} \left(\begin{pmatrix} x_1(t_0 - \Delta t) \\ \vdots \\ x_n(t_0 - \Delta t) \end{pmatrix} - \begin{pmatrix} x_1(t_0) \\ \vdots \\ x_n(t_0) \end{pmatrix} \right) = \lim_{\Delta t \mapsto 0} \left(\frac{\frac{x_1(t_0 + \Delta t) - x_1(t_0)}{\Delta t}}{\frac{\vdots}{\Delta t}} \right)$$

Esempio (preso su carta)

2.4. Curva regolare

Una curva è regolare se:

- 1. Le componenti della curva sono derivabili con derivata continua nell'intervallo [a,b] dove la curva è definita.
- 2. $\vec{x}(t_1) \neq \vec{x}(t_2) \forall t_1 \neq t_2$, la curva non ha autointersezioni.

3.
$$\|\vec{v}\| > 0 \forall t \in [a, b]$$
.

2.4.1. Moto rettilineo uniforme

$$\frac{d\vec{x}}{dt} = \frac{d(\vec{x_0} + t\vec{v})}{dt} = \vec{v}$$

Moto rettilineo uniforme (a velocità costante).

2.4.2. Moto circolare uniforme

$$\begin{split} \vec{x} &= \binom{R\cos t}{R\sin t}, t \in [0,2\pi] \\ \vec{v} &= \frac{d\vec{x}}{dt} = \binom{-R\sin t}{R\cos t} \\ \|\vec{v}\| &= \sqrt{(-R\sin t)^2 + (R\cos t)^2} = \sqrt{R(\cos^2 t + \sin^2 t)} = R\sqrt{1} = R \end{split}$$

2.4.3. Moto elicoidale

$$\begin{pmatrix} R\cos t \\ R\sin t \\ \frac{t}{2\pi} \end{pmatrix}$$

Si nota perché le prime due descrivono una circonferenza, ma lungo la terza coordinata ci si sposta linearmente di $\frac{1}{2\pi}$.

Figura 1: Un moto elicoidale

2.5. Lunghezza di una curva regolare

Def: si chiama lunghezza di una curva regolare. $\vec{x}(t), t \in [a, b]$.

$$l = \int_{a}^{b} \left\| \frac{d\vec{x}}{dt} \right\| dt$$

2.5.1. **Esempio**

Siano due punti a, b, la parametrizzazione standard della rette che le unisce è:

$$\begin{pmatrix} a_1 + t(b_1 - a_1) \\ a_2 + t(b_2 - a_2) \end{pmatrix}$$

quindi la lunghezza da [0, 1] della retta è:

$$\int_{0}^{1} \left\| \begin{pmatrix} b_{1} - a_{1} \\ b_{2} - a_{2} \end{pmatrix} \right\| dt = \int_{0}^{1} \sqrt{\left(b_{1} - a_{1}\right)^{2} + \left(b_{2} - a_{2}\right)^{2}} dt = \sqrt{\left(b_{1} - a_{1}\right)^{2} + \left(b_{2} - a_{2}\right)^{2}}$$

2.5.2. Lunghezza della circonferenza

$$\int_{0}^{2\pi} Rdt = 2\pi R$$

3. Lezione3, Funzioni in più variabili (11 Marzo 2025)

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

L'obiettivo è studiarne limiti, continuità e differenziabilità.

Il grafico di una funzione $f:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ è l'insieme dei punti in \mathbb{R}^{n+1} della forma $(x_1,...,x_n,f(x_1,...,x_n))$

Figura 2: Grafico di una funzione in 2 variabili

Per le funzioni in più di 2 variabili la rappresentazione è praticamente impossibile.

3.1. Limiti

Per le funzioni in una variabile la definizione di limite è:

$$\lim_{x\to x_0} f(x) = l \text{ se } \forall \varepsilon > 0 \\ \exists \delta > 0 : \forall x \text{ che soddisfa } 0 < |x-x_0| < \delta \text{ vale } |f(x)-l|$$

Per funzioni in più variabili:

$$\lim_{\vec{x}\to\overrightarrow{x_0}}f(\vec{x})=l$$

Se $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{t.c.} \ \forall \vec{x}$ che soddisfa $0 < \|\vec{x} - \vec{x_0}\| < \delta \ \text{vale} \ |f(\vec{x}) - l| < \varepsilon.$

3.1.1. Continuità

Una funzione è continua in $\vec{x_0}$ se

$$\lim_{\vec{x}\to \overrightarrow{x_0}} f(\vec{x}) = f(\vec{x_0})$$

3.2. Differenziabilità

Per le funzioni in più variabile la derivata è definita come:

$$\lim_{\Delta x\mapsto 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=f'(x_0)=\frac{df}{dx}(x_0)$$

3.2.1. Derivata parziale

$$\lim_{\Delta x \mapsto 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Se esiste si chiama derivata parziale di f rispetto ad x nel punto (x_0,y_0) . Ed è rappresentata dalle seguenti notazioni: $\frac{\partial f}{\partial x},f'_x,f_x$

Analogamente

$$\lim_{\Delta y \mapsto 0} \frac{f(x_0,y_0+\Delta y) - f(x_0,y_0)}{\Delta y}$$

Se esiste si chiama derivata parziale di f rispetto ad y nel punto (x_0, y_0) . Ed è rappresentata dalle seguenti notazioni: $\frac{\partial f}{\partial y}, f'_y, f_y$

Esempio: $f = x^2y^2$, $f_x = 2xy^3$, $f_y = 3x^2y^2$, $f_{xx} = 2y^3$, $f_{xy} = 6xy^2$, $f_{yx} = 6xy^2$, $f_{yy} = 6x^2y$. **Nota**: L'ordine di derivazione non conta, conta solo per ogni variabile quante volte viene derivata.

3.2.2. Differenziabilità

Si dice che f è derivabile in x_0 se esiste una costante m t.c. $f(x) = f(x_0) + m(x - x_0) + o(\Delta x)$ dove $\lim_{\Delta x \mapsto 0} \frac{o(\Delta x)}{\Delta x} = 0$

$$\begin{split} \frac{f(x)}{\Delta x} - \frac{f(x_0)}{\Delta x} &= m + \frac{o(\Delta x)}{\Delta x} \\ \lim_{\Delta x \mapsto 0} \frac{f(x) - f(x_0)}{\Delta x} &= m + \lim_{\Delta x \mapsto 0} \frac{o(x)}{\Delta x} \\ \lim_{\Delta x \mapsto 0} \frac{f(x) - f(x_0)}{\Delta x} &= m \end{split}$$

Si dice che f(x,y) è differenziabile in (x_0,y_0) se esistono due costanti m_1 e m_2 t.c.

$$f(x,y) = f(x_0,y_0) + m_1(x-x_0) + m_2(y-y_0) + o(\rho)$$
dove $\rho = \sqrt{{(x-x_0)}^2 + {(y-y_0)}^2} = \sqrt{(\Delta x)^2 + (\Delta y)^2}$

Nota: l'equazione $z-f(x_0,y_0)-m_1(x-x_0)-m_2(y-y_0)=0$ è l'equazione di un piano, quindi una funzione in due variabili è differenziabile in (x_0,y_0) se esiste un piano tangente alla funzione in quel punto.

Ora dimostriamo che $m_1=f_{x(x_0,y_0)}$, che $m_2=f_{y(x_0,y_0)}$ è una dimostrazione analoga.

$$f(x,y) = f(x_0,y_0) + m_1(x-x_0) + m_2(y-y_0) + o(\rho)$$

scelgo $y = y_0$

$$\begin{split} f(x,y_0) &= f(x_0,y_0) + m_1(x-x_0) + m_2(y_0-y_0) + o(\rho) \\ f(x,y_0) &= f(x_0,y_0) + m_1(x-x_0) + o(|\Delta x|) \\ m_1 &= \frac{f(x,y_0) - f(x_0,y_0)}{\Delta x} + \frac{o(|\Delta x|)}{\Delta x} \\ m_1 &= \lim_{\Delta x \mapsto 0} \frac{f(x,y_0) - f(x_0,y_0)}{\Delta x} \end{split}$$

$$m_1 = f_x(x_0, y_0)$$

L'equazione del piano tangente al grafico di f(x, y) nel punto (x_0, y_0) ha la forma:

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Esempio: calcolare l'equazione del piano tangente al grafico di $f = x^2 + y^2$ nel punto (1, 1).

$$f(1,1) = 2$$

$$f_x = 2x$$

$$f_y = 2y$$

$$f_x(1,1) = f_y(1,1) = 2$$

$$z = 2 + 2(x-1) + 2(y-1)$$

$$z = 2 + 2x - 2 + 2y - 2$$

$$z = 2x + 2y - 2$$

$$2x + 2y - z = 2$$

3.2.3. Differenziabilità ⇒ Continuità

$$\lim_{(x,y)\mapsto(x_0,y_0)}f(x,y)=\lim_{(x,y)\mapsto(x_0,y_0)}(f(x_0,y_0)+m_1(x-x_0)+m_2(y-y_0)+o(\rho))=f(x_0,y_0)+o(\rho)$$

3.3. Teorema di derivazione della funzione composta

$$g:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}^n, f:\mathbb{R}^n\longrightarrow\mathbb{R}$$

$$F:f\circ g$$

$$g(t)=\begin{pmatrix}g_1(t)\\\vdots\\g_n(t)\end{pmatrix}, F(t)=f(g_1(t),...,g_n(t))$$

Teo: Sia f(x,y) una funzione differenziabile in (x_0,y_0) e $\vec{x}(t)=(x(t),y(t))$ una curva regolare passante per (x_0,y_0) a $t=t_0$.

$$\frac{dF}{dt}(t_0) = \frac{df(x(t),y(t))}{dt}(0) = \frac{\partial f}{\partial x}(x_0,y_0)\frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(x_0,y_0)\frac{dy}{dt}(t_0)$$

Dim:

$$\begin{split} f(x,y) &= f(x_0,y_0) + \frac{\partial f}{\partial x}(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0) + o(\rho) \\ f(x(t),y(t)) &= f(x(t_0),y(t_0)) + \frac{\partial f}{\partial x}(x_0,y_0)(x(t)-x(t_0)) + \frac{\partial f}{\partial y}(x_0,y_0)(y(t)-y(t_0)) + o(\rho) \\ \frac{f(x(t),y(t)) - f(x(t_0),y(t_0))}{\Delta t} &= \frac{\partial f}{\partial x}(x_0,y_0)\frac{x(t)-x(t_0)}{\Delta t} + \frac{\partial f}{\partial y}(x_0,y_0)\frac{y(t)-y(t_0)}{\Delta t} + \frac{o(\rho)}{\Delta t} \\ \lim_{\Delta t \mapsto 0} \frac{f(x(t),y(t)) - f(x(t_0),y(t_0))}{\Delta t} &= \lim_{\Delta t \mapsto 0} \frac{\partial f}{\partial x}(x_0,y_0)\frac{x(t)-x(t_0)}{\Delta t} + \lim_{\Delta t \mapsto 0} \frac{\partial f}{\partial y}(x_0,y_0)\frac{y(t)-y(t_0)}{\Delta t} + \lim_{\Delta t \mapsto 0} \frac{o(\rho)}{\Delta t} \end{split}$$

$$F'(t) = \frac{\partial f}{\partial x}(x_0,y_0)\frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(x_0,y_0)\frac{dy}{dt}(t_0) + \lim_{\Delta t \mapsto 0}\frac{o(\rho)}{\Delta t}$$

inoltre

$$\lim_{\Delta t \mapsto 0} \frac{o(\rho)}{\Delta t} = \lim_{\Delta t \mapsto 0} \frac{o(\rho)}{\rho} \frac{\rho}{\Delta t} = \lim_{\Delta t \mapsto 0} 0 * \frac{\rho}{\Delta t} = \lim_{\Delta t \mapsto 0} 0 * \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2} = \lim_{\Delta t \mapsto 0} 0 * \left\|\frac{d\vec{x}}{dt}(t_0)\right\| = 0$$

quindi

$$F'(t) = \frac{\partial f}{\partial x}(x_0,y_0)\frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(x_0,y_0)\frac{dy}{dt}(t_0)$$

Esempio: $f(t) = x(t)^2 y(t)^3$, x(t) = t + 1, $y(t) = t^2$. Calcolare la derivata della funzione composta nel punto (2, 1).

Per quale valore di t la curva passa per (2,1)? t=1.

$$F(t) = (t+1)^{2} + t^{6} = t^{8} + 2t^{7} + t^{6}$$

$$F'(t) = 8t^{7} + 14t^{6} + 6t^{5}$$

$$F'(1) = 28$$

$$F'(1) = \frac{\partial f}{\partial x}(2, 1)\frac{dx}{dt}(1) + \frac{\partial f}{\partial y}(2, 1)\frac{dy}{dt}(1)$$

$$\frac{\partial f}{\partial x} = 2xy^{3} \mid_{2,1} = 4$$

$$\frac{\partial f}{\partial y} = 3x^{2}y^{2} \mid_{2,1} = 12$$

$$\frac{dx}{dt} = 1$$

$$\frac{dy}{dt} = 2t \mid_{1} = 2$$

$$F'(1) = 4 * 1 + 12 * 2 = 28$$

3.3.1. Gradiente

$$\vec{\nabla} f(\vec{x_0}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{x_0}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\vec{x_0}) \end{pmatrix}$$

3.3.2. Caso in n variabili

$$\begin{split} f(x_1,...,x_n),x_1(t),...,x_n(t),F(t) &= f(x_1(t),...,x_n(t)) \\ F'(t_0) &= \sum_{i=1}^n \frac{\partial f}{\partial x_i} \big(x_1^0,...,x_n^0\big) \frac{dx_i}{dt}(t_0) = \vec{\nabla} f(\vec{x_0}) \cdot \frac{d\vec{x}}{dt}(t_0) \end{split}$$

3.4. Curva di livello

Si dice che $(x_1(t),...,x_n(t))$ è una curva di livello di $f(x_1,...,x_n)$ se

$$F(t) = f(x_1(t), ..., x_n(t)) = \text{costante}$$

Esempio: $f=x^2+y^2, x(t)=\sin(t), y(t)=\cos(t)$

$$F(t) = f(\sin(t), \cos(t)) = \sin^2 t + \cos^2 t = 1$$

3.4.1. Teorema

Il gradiente è ortogonale alle curve di livello. Sia $(x_1(t),...,x_n(t))$ una curva di livello di $f(x_1,...,x_n)$, allora

$$F(t) = f(x_1(t), ..., x_n(t)) = \mathrm{costante}$$

$$F' = \vec{\nabla} f \cdot \frac{d\vec{x}}{dt} = 0$$

3.5. Punti Stazionari

In $\mathbb R$ i punti stazionari sono i punti dove la derivata sia annulla. In $\mathbb R^n$ i punti stazionari sono i punti dove tutte le derivate parziali si annullano. $(x_1,...,x_n)$ è un punto stazionario se:

$$\vec{\nabla} f(x_1,...,x_n) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

3.5.1. Intorno

Si dice intorno di (x_0, y_0) di raggio δ l'insieme dei punti $(x, y) \in \mathbb{R}^2$ che distano meno di delta da (x_0, y_0) .

Si dice intorno di $\vec{x_0} \in \mathbb{R}^n$ di raggio δ l'insieme dei punti $\vec{x} \in \mathbb{R}^n$ tali che $d(\vec{x_0}, \vec{x}) < \delta$.

3.5.2. Minimo relativo

In $\mathbb R$ un punto x_0 è un minimo relativo se $\exists \delta \text{ t.c. } f(x_0) \leq f(x) \forall x \in (x-\delta,x+\delta).$

In \mathbb{R}^n un punto $\vec{x_0}$ è un punto di minimo relativo se esiste un intorno I di $\vec{x_0}$ t.c.

$$f(\vec{x_0}) \le f(\vec{x}) \forall \vec{x} \in I$$

.

3.5.3. Massimo relativo

In \mathbb{R} un punto x_0 è un massimo relativo se $\exists \delta$ t.c. $f(x_0) \geq f(x) \forall x \in (x - \delta, x + \delta)$.

In \mathbb{R}^n un punto $\vec{x_0}$ è un punto di massimo relativo se esiste un intorno $I\,$ di $\,\vec{x_0}$ t.c.

$$f(\vec{x_0}) > f(\vec{x}) \forall \vec{x} \in I$$

•

4. Lezione 4, Sviluppo di taylor di una funzione in 2 variabili

Sia f(x,y) una funzione. per fare lo sviluppo della serie lungo una determinata linea si può restringere la funzione lungo un segmento su quella linea.

$$\begin{split} x(t) &= x_0 + t(x - x_0) \\ y(t) &= y_0 + t(y - y_0) \\ x(0) &= x_0, y(0) = y_0, x(1) = x, y(1) = y \\ F(t) &= f(x_0 + t(x - x_0), y_0 + t(y - y_0)) \\ F(t) &= F(0) + F'(0)t + \frac{1}{2}F''(0)t^2 + \text{resto} \\ F(0) &= F(x_0, y_0) \\ F(1) &= F(0) + F'(0) + \frac{1}{2}F''(0) \end{split}$$

Ora, sia F(t) = f(x(t), y(t))

$$\begin{split} F'(t) &= f_x(x(t),y(t))\frac{dx}{dt}(t) + f_y(x(t),y(t))\frac{dy}{dt}(t) \\ &= f_x(x(t),y(t))\Delta x + f_y(x(t),y(t))\Delta y \\ &= f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y \end{split}$$

L'approssimazione di Taylor del I ordine è:

$$f(x,y)=f(x_0,y_0)+f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y$$

ora procediamo con la derivata seconda:

$$F''(t) = \Delta x \big(f_{xx}(x_0, y_0) \Delta x + f_{xy}(x_0, y_0) \Delta y \big) + \Delta y \big(f_{yx}(x_0, y_0) \Delta x + f_{yy}(x_0, y_0) \Delta y \big)$$

$$F''(t) = f_{xx}(x_0, y_0) \Delta x^2 + 2 f_{xy}(x_0, y_0) \Delta x \Delta y + f_{yy}(x_0, y_0) \Delta y^2$$

L'approssimazione di Taylor del II ordine è:

$$f(x,y) = f(x_0,y_0) + f_x(x_0,y_0) \Delta x + f_y(x_0,y_0) \Delta y + \frac{1}{2} \left(f_{xx}(x_0,y_0) \Delta x^2 + 2 f_{xy}(x_0,y_0) \Delta x \Delta y + f_{yy}(x_0,y_0) \Delta y^2 \right)$$

Esempio: Calcolare lo sviluppo di Taylor del II ordine di $f(x,y) = \cos(x+y)$ in (0,0).

$$\begin{split} f_x(x+y) &= -\sin(x+y) \\ f_y(x+y) &= -\sin(x+y) \\ f_{xx}(x+y) &= -\cos(x+y) \\ f_{xy}(x+y) &= -\cos(x+y) \\ f_{yy}(x+y) &= -\cos(x+y) \\ f(0,0) &= 1 \end{split}$$

$$f_x(0,0) = 0$$

 $f_y(0,0) = 0$
 $f_{xx}(0,0) = -1$
 $f_{xy}(0,0) = -1$

$$f(x,y) = 1 - \frac{1}{2} \left(\Delta x^2 + 2\Delta x \Delta y + \Delta y^2 \right) = 1 - \frac{1}{2} (\Delta x + \Delta y)^2$$

Esempio 2: Calcola lo sviluppo di Taylor di II ordine di $f(x,y) = 3 + 6y + x^2 + 2xy + 7y^2$, Nota che ci si aspetta di trovare la funzione stessa essendo un polinomio di secondo grado.

$$f_x = 2x + 2y$$

$$f_y = 6 + 2x + 14y$$

$$f_{xx} = 2$$

$$f_{xy} = 2$$

$$f_{yy} = 14$$

$$f(0,0)=3, f_x(0,0)=0, f_y(0,0)=6$$

$$f(x,y)=3+6y+\frac{1}{2}\big(2x^2+4xy+14y^2\big)=3+6y+x^2+2xy+7y^2$$

4.1. Sviluppo di Taylor in un punto stazionario (x_0,y_0)

$$\Delta f = f(x,y) - f(x_0,y_0)$$

Se (x_0, y_0) è un punto stazionario allora

$$\Delta f = \frac{1}{2} \left(f_{xx}(x_0, y_0) \Delta x^2 + 2 f_{xy}(x_0, y_0) \Delta x \Delta y + f_{yy}(x_0, y_0) \Delta y^2 \right)$$

4.1.1. Matrice Hessiana

$$H = \begin{bmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{bmatrix}$$

La forma quadratica $H_{11}\Delta x^2 + 2H_{12}\Delta x\Delta y + H_{22}\Delta y^2$ si dice

- Definita positiva se è ≥ 0 per ogni scelta di Δx e Δy e si annulla solo quando $\Delta x = \Delta y = 0$.
 - In questo caso in (x_0, y_0) è presente un punto di minimo relativo.
- Definita positiva se è ≤ 0 per ogni scelta di Δx e Δy e si annulla solo quando $\Delta x = \Delta y = 0$.
 - In questo caso in (x_0, y_0) è presente un punto di massimo relativo.
- Indefinita se il segno dipende dalla scelta di Δx e Δy .
 - ► In questo caso in (x_0, y_0) è presente un punto sella.
- Semi-definita positiva se è ≥ 0 per ogni scelta di Δx e Δy e $\exists (\Delta x, \Delta y) \neq (0, 0)$ in cui la forma quadratica si annulla.
 - Con la matrice Hessiana non è possibile decidere che tipo di punto stazionario sia.

- Semi-definita negativa se è ≤ 0 per ogni scelta di Δx e Δy e $\exists (\Delta x, \Delta y) \neq (0, 0)$ in cui la forma quadratica si annulla.
 - Con la matrice Hessiana non è possibile decidere che tipo di punto stazionario sia.

4.2. La forma quadratica $H_{11}\Delta x^2+2H_{12}\Delta x\Delta y+H_{22}\Delta y^2$ Assumiamo che $H_{11}\neq 0$.

$$\begin{split} H_{11} \Delta x^2 + 2 H_{12} \Delta x \Delta y + H_{22} \Delta y^2 \\ H_{11} \bigg(\Delta x^2 + 2 \frac{H_{12}}{H_{11}} \Delta x \Delta y \bigg) + H_{22} \Delta y^2 \\ H_{11} \bigg(\Delta x^2 + 2 \frac{H_{12}}{H_{11}} \Delta x \Delta y + \frac{H_{12}^2}{H_{11}^2} \Delta y^2 \bigg) - \frac{H_{12}^2}{H_{11}} \Delta y^2 + H_{22} \Delta y^2 \\ H_{11} \bigg(\Delta x + \frac{H_{12}}{H_{11}} \Delta y \bigg)^2 + \frac{H_{11} H_{12} - H_{12}^2}{H_{11}} \Delta y^2 \\ H_{11} \bigg(\Delta x + \frac{H_{12}}{H_{11}} \Delta y \bigg)^2 + \frac{\det H}{H_{11}} \Delta y^2 \end{split}$$

Quindi adesso, se

- $\det H > 0$:
 - 1. $H_{11} > 0$: La forma quadratica è definita positiva
 - L'annullarsi della forma quadratica equivale alla richiesta che:

$$\begin{cases} \Delta y = 0 \\ \Delta x + \frac{H_{12}}{H_{11}} \Delta y = 0 \end{cases} \Rightarrow \Delta x = \Delta y = 0$$

- 2. $H_{11} < 0$: La forma quadratica è definita negativa
- $\det H < 0$: La forma quadratica è indefinita.

Esempio: Sia (x_0, y_0) un punto stazionario e sia $H(x_0, y_0)$ la matrice Hessiana valutata in (x_0, y_0) .

- $\det H(x_0,y_0)>0 \land H_{11}(x_0,y_0)>0$: allora (x_0,y_0) è un punto di minimo relativo.
- $\det H(x_0,y_0)>0 \land H_{11}(x_0,y_0)<0$: allora (x_0,y_0) è un punto di massimo relativo.
- $\det H(x_0, y_0) < 0$: allora (x_0, y_0) è un punto sella.

5. Lezione 5

5.1. Superfici bidimensionali nello spazio tridimensionale

$$D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3, \vec{r}(s,t) = \begin{bmatrix} x(s,t) \\ y(s,t) \\ z(s,t) \end{bmatrix}$$

$$\vec{r_s} = \begin{bmatrix} \frac{\partial x}{\partial s} \\ \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial s} \end{bmatrix}$$
, la velocità di r
 lungo la linea dove t è fissata

5.1.1. Superfici regolari

- 1. Le componenti di $\vec{r}(s,t)$ sono funzioni continue con derivate parziali continue.
- 2. \vec{r} sia iniettiva. $\vec{r}(s_1,t_1) \neq \vec{r}(s_2,t_2)$ se $(s_1,t_1) \neq (s_2,t_2)$
- 3. I vettori $\vec{r_s}$ e $\vec{r_t}$ sono lin. indipendenti fra di loro in ogni punto.

Esempio: Superficie sferica di raggio R e centrata nell'origine.

$$\vec{r}(\theta,\varphi) = \begin{cases} x(\theta,\varphi) = R\cos\theta\cos\varphi \\ y(\theta,\varphi) = R\cos\theta\sin\varphi \\ z(\theta,\varphi) = R\sin\theta \end{cases}$$

 $D = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \times [0, 2\pi]$. Per rispettare l'iniettività.

 θ la chiamiamo latitudine, e φ la chiamiamo longitudine.

5.2. Superfici come grafici di funzioni di 2 variabili

Dato $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ la superficie associata alla funzione è

$$\vec{r}(x,y) = \begin{bmatrix} x \\ y \\ f(x,y) \end{bmatrix}$$

ed è sempre una superficie regolare

$$\vec{r_x} = \begin{bmatrix} 1 \\ 0 \\ f_x \end{bmatrix}, \vec{r_y} = \begin{bmatrix} 0 \\ 1 \\ f_y \end{bmatrix}$$

5.3. Superfici di livello

Sotto opportune ipotesi data una funzione $f:\mathbb{R}^3\longrightarrow\mathbb{R}$ il luogo dei punti che soddisfano l'equazione

$$f(x, y, z) = c$$

è la superficie detta superficie di livello di f.

Esempio: $f(x, y, z) = x^2 + y^2 + z^2$.

Se c > 0 il luogo dei punti descritto dall'equazione

$$x^2 + y^2 + z^2 = c$$

è una superficie sferica di raggio \sqrt{c}

5.4. Derivazione di una funzione composta con superficie

$$\begin{split} f(x,y,z), \vec{r}(s,t) &= \begin{bmatrix} x(s,t) \\ y(s,t) \\ z(s,t) \end{bmatrix} \\ F(s,t) &= f(x(s,t),y(s,t),z(s,t)) \\ F_{s(s_0,t_0)} &= \vec{\nabla} f(x_0,y_0,z_0) \cdot \vec{r_s}(s_0,t_0) \\ F_{t(s_0,t_0)} &= \vec{\nabla} f(x_0,y_0,z_0) \cdot \vec{r_t}(s_0,t_0) \end{split}$$

5.5. Restrizione di una funzione in 3 variabili

Calcola $f = y^2 + x - z$ ristretta al piano

$$\begin{cases} x = 1 + 2s \\ y = s - t \\ z = 1 + s + 3t \end{cases}$$

$$F(s,t) = (s-t)^2 + 1 + 2s - 1 - s - 3t$$

$$F(s,t) = s^2 + t^2 - 2st + s - 3t$$

$$F_s = 2s - 2t + 1$$

$$F_t = 2t - 2s - 3$$

$$\vec{\nabla} f = \begin{bmatrix} 1 \\ 2y \\ -1 \end{bmatrix}$$

5.6. Teorema della funzione implicita

Supponiamo che una funzione F(x,y) abbia derivate parziali prime continue in un intorno di un punto (x_0,y_0) dove $F(x_0,y_0)=0$ e $F_y(x_0,y_0)\neq 0$.

Allora \exists un intorno di (x_0,y_0) tale che i punti (x,y) che soddisfano l'equazione F(x,y)=0 appartengono al grafico di una funzione f(x), cioè

$$\exists f(x) \text{ t.c. } F(x, f(x))$$

in particolare $y_0 = f(x_0)$

Esempio:
$$F(x, y) = x^2 + y^2 - 1$$

$$F(x,y)=0 \Leftrightarrow x^2+y^2-1=0$$

$$y = \pm \sqrt{1 - x^2}$$

$$f_1(x) = \sqrt{1-x^2}, f_2(x) = -\sqrt{1-x^2}$$

5.6.1. Per 3 variabili

Supponiamo che una funzione F(x,y,z) abbia derivate parziali prime continue in un intorno di un punto (x_0,y_0,z_0) dove $F(x_0,y_0,z_0)=0$ e $F_z(x_0,y_0,z_0)\neq 0$.

Allora \exists un intorno di (x_0, y_0, z_0) tale che i punti (x, y, z) che soddisfano l'equazione F(x, y, z) = 0 appartengono al grafico di una funzione f(x, y), cioè

$$\exists f(x,y) \text{ t.c. } F(x,y,f(x,y))$$

in particolare $z_0=f(x_0,y_0)$

Esempio:
$$F(x, y, z) = x^2 + y^2 + z^2 - 1$$

$$F(x, y, z) = 0 \Leftrightarrow x^2 + y^2 + z^2 = 1$$

$$z = \pm \sqrt{1 - x^2 - y^2}$$

$$f_1(x,y) = \sqrt{1-x^2-y^2}, f_2(x,y) = -\sqrt{1-x^2-y^2}$$

5.6.2. Derivata della funzione del teorema della funzione implicita

$$F(t) = f(x(t), y(t))$$

$$F' = \vec{\nabla} f \cdot \frac{d\vec{x}}{dt} = F_x \frac{dx}{dt} + F_y \frac{dy}{dt}$$

$$F(x, f(x)) = 0$$

$$\tfrac{d}{dx}F(x,f(x))=0\equiv F_x+F_yf'(x)=0 \Leftrightarrow f'=-\tfrac{F_x}{F_y}$$

$$f'(x) = -\frac{F_x}{F_y}$$

5.6.2.1. Per 3 variabili

$$F(x, y, f(x, y)) = 0$$

Faccio la derivata parziale di G(x,y) := F(x,y,f(x,y)) rispetto a x.

$$G_x = F_x + F_z f_x = 0$$

rispetto a y

$$G_y = F_y + F_z f_y = 0$$

$$\begin{cases} f_x = -\frac{F_x}{F_z} \\ f_y = -\frac{F_y}{F_z} \end{cases}$$

Esempio: $F(x, y, z) = x^2 + y^2 + z^2 - 1$

$$f_2 = -\sqrt{1 - x^2 - y^2}$$

$$(f_2)_x = \frac{x}{\sqrt{1-x^2-y^2}}, (f_2)_y = \frac{y}{\sqrt{1-x^2-y^2}}$$

usando il teo:

$$f_x = -\frac{F_x}{F_z} = -\frac{2x}{2z} = -\frac{x}{z} \stackrel{z=f_2}{\widehat{=}} -\frac{x}{-\sqrt{1-x^2-y^2}} = \frac{x}{\sqrt{1-x^2-y^2}}$$

analogamente

$$f_y = -\frac{F_y}{F_z} = -\frac{2y}{2z} = -\frac{y}{z} \stackrel{z=f_2}{\widehat{=}} -\frac{y}{-\sqrt{1-x^2-y^2}} = \frac{y}{\sqrt{1-x^2-y^2}}$$

6. Lezione 6, Punti stazionari per funzioni ristrette

Problema studiare i punti stazionari di una funzione di due variabili f(x,y) ristretta alla curva di livello di una funzione g(x,y) (vincolo).

$$f(x,y)$$
 ristretta a $g(x,y)=c$

La soluzione diretta:

- 1. Parametrizzo il vincolo g(x(t), y(t)) = c.
- 2. Restringo f al vincolo F(t) = f(x(t), y(t)).
- 3. I punti stazionari sono le soluzioni di F'=0.

Parametrizzare il vincolo può essere tedioso.

6.1. Moltiplicatori di Lagrange

 $F'=f_x(x(t),y(t))\frac{dx}{dt}+f_y(x(t),y(t))\frac{dy}{dt}=\vec{\nabla}f\cdot\frac{d\vec{r}}{dt}$ Nei punti stazionari di F

$$F' = 0 \Leftrightarrow \vec{\nabla} f \cdot \frac{d\vec{r}}{dt} = 0$$

Nei punti stazionari $\vec{\nabla} f$ è ortogonale alla curva. D'altra parte, su **TUTTI** i punti della curva g=c $\vec{\nabla} g$ è ortogonale alla curva.

Nei punti stazionari che cerco $\exists \lambda \text{ t.c } \vec{\nabla} f = \lambda \vec{\nabla} g.$

$$(*) = \begin{cases} \vec{\nabla} f = \lambda \vec{\nabla} g \\ g(x,y) = c \end{cases}$$

$$L(x,y,z) = f - \lambda(g(x,y) - c)$$

I punti stazionari di L sono le soluzioni di (*).

$$L_x = f_x - \lambda g_x = 0$$

$$L_y = f_y - \lambda g_y = 0$$

$$L_z = f_z - \lambda g_z = 0$$

Esempio Determinare il punto sulla retta x-y=3 posto alla minima distanza da (1,2)

$$d(x,y) = \sqrt{(x-1)^2 + (y-2)^2}$$

Nota che il minimo della distanza è anche il minimo della distanza al quadrato

$$d^2(x,y) = (x-1)^2 + (y-2)^2$$

Proviamo a parametrizzare:

$$\begin{cases} x = t \\ y = t - 3 \end{cases}$$

$$F(t) = (t-1)^2 + (t-5)^2 = t^2 - 2t + 1 + t^2 - 10t + 25 = 2t^2 - 12t + 26 = 2(t^2 - 6t + 13), 2t - 6 = 0 \Rightarrow t = 3$$

quindi la distanza minima si trova a (3, 0)

$$\vec{\nabla}d = \begin{bmatrix} 2(x-1) \\ 2(y-2) \end{bmatrix}$$

$$\vec{\nabla}g = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{cases} 2(x-1) = \lambda \\ 2(y-2) = -\lambda \Rightarrow (3,0) \\ x-y=3 \end{cases}$$

6.2. Punti stazionari per funzioni ristrette in 3 variabili

Come nel caso in 2 variabili si può procedere in più modi:

- 1. Si trova una parametrizzazione per g(x, y, z) = c in g(x(s, t), y(s, t), z(s, t)) = c.
- 2. Si restringe la funzione f(x,y,z) al vincolo: F(s,t)=f(x(s,t),y(s,t),z(s,t))3. I punti stazionari sono le soluzioni del sistema $\begin{cases} F_s=0 \\ F_t=0 \end{cases}$

6.3. Moltiplicatori di Lagrange in 3 variabili

$$\begin{cases} \vec{\nabla} f = \lambda \vec{\nabla} g \\ g = c \end{cases} \equiv \begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ f_z = \lambda g_z \\ g = c \end{cases}$$

Esempio Calcola le coordinate del punto appartenente al piano x+y+z=0 avente minima distanza dal punto (1, 1, 1).

$$f(x,y,z) = d^2(x,y,z) = (x-1)^2 + (y-1)^2 + (z-1)^2$$

$$g(x,y,z) = x + y + z$$
Il vincolo è $g = 0$

$$\vec{\nabla} f = \begin{bmatrix} 2(x-1) \\ 2(y-1) \\ 2(z-1) \end{bmatrix}, g_x = g_y = g_z = 1$$

$$\begin{cases} 2(x-1) = \lambda \\ 2(x-1) = \lambda \end{cases}$$
non ci interess.

$$\begin{cases} 2(x-1) = \lambda \\ 2(y-1) = \lambda \\ 2(z-1) = \lambda \\ x+y+z=0 \end{cases} \Leftrightarrow \begin{cases} x=y=z=\frac{\lambda}{2}+1 \\ 3\left(\frac{\lambda}{2}+1\right)=0 \Leftrightarrow \frac{\lambda}{2}+1=0 \end{cases} \Leftrightarrow x=y=z=0, \text{ non ci interessa}$$

Il punto di distanza minima è O(0, 0, 0).