

Bildanalyse

• Information automatisch aus Bildern generieren

Echtzeit 3d Erkennung

Gesichtserkennung

Erkennung von Tumorzellen

Wieso ist das wichtig?

- Menschen nehmen einen sehr großen Teil ihrer Umwelt über Bilder wahr
- alltägliche Entscheidungen auf der Basis von Bildern sind z.B.
 - wie sich im Straßenverkehr verhalten
 - welches Produkt zu kaufen
 - sich nach einer Gebrauchsanleitung verhalten
- andere, wichtige Entscheidungen sind z.B.
 - Diagnose von Krankheiten
 - Qualität von Produkten oder Bauteilen

Wieso Bildanalyse?

- Viele Entscheidungen sind schneller, präziser und/oder zuverlässiger zu treffen, wenn sie automatisiert werden, z.B.
 - Fahrerassistenzsysteme im Automobilbau
 - Qualitätssicherung in der Fertigung
 - Überwachung in sicherheitskritischen Orten (Flughäfen, Fussballstadien,...)
 - Diagnose und Therapieunterstützung in der Medizin
 - Exploration in der Geologie
- Problem: was ist die Information, die in den Bildern steckt, und wie kann sie gefunden werden?

Beispiele: Objektdetektion

- Ziel: automatische Kontrolle kritischer Situationen
 - Menschen
 - Fahrzeuge
- Beispiele
 - Kollisionsverhinderung
 - Personenkontrolle

Tracking

- Ziel: Situationsentwicklung verfolgen
 - Menschen, Fahrzeuge, Gesten
- Beispiele
 - Gestenerkennung
 - Erkennung von Stimmungen
 - Personen verfolgen
 - Fahrzeuge verfolgen
 - Content Tracking

Objekt Identifikation

- Ziel: Individuen identifizieren
 - Personen, Werkstücke, ...
- Beispiele
 - Personenidentifikation
 - Astronomie
 - Medizin

Objektextraktion

Ziel: interessante Objekte finden, Pixel von Objekten grupp

- Beispiele
 - Merkmale für Bildersuche generieren
 - Vorbereitung von Klassifikation in Bildern
 - Medizin

Bildanalyse ≠ Bildbearbeitung!

- Bildbearbeitung (z.B. mit Adobe Photoshop)
 - hat die Verbesserung eines Bilds zum Ziel
 - was Verbesserung ist, wird durch Bearbeiter/in beurteilt
 - Entscheidung über den Einsatz der Methoden durch Bearbeiter/in
- Bildverarbeitung und Bildanalyse
 - Algorithmus beschreibt, was Bildinformation ist
 - erfordert exakte Definition, was diese Information ist
 - erfordert validierbaren Algorithmus zu Extraktion dieser Information

Grundlagen der Bildverarbeitung

- Vorstufe für Analyseaufgaben
 - Störungen aus Bildern entfernen
 - Wahrnehmbarkeit von Inhalten verbessern
 - Bild in Komponenten zerlegen
- Was werden Sie lernen?
 - Beschreibung und erste Methoden zu Information in Bildern
 - Benötigte algorithmische und mathematische Methoden dazu

Information in Bildern

- Ein Bild kann viele Bedeutungen haben:
 - Sind Menschen abgebildet?
 - Wo sind Fahrzeuge zu sehen?
 - Ist Mr. X auf dem Bild?
 - Wie spät ist es?
 - Wo ist die Aufnahme gemacht worden?
- Erste Schritt einer Bildanalyse
 - Genaue Spezifikation der gesuchten Bedeutung

Informationen in Bildern

- Information in Bildern ist nicht leicht zu finden
- Beispiel Videokompression
 - Datenmenge DVD Video pro Bild = 720x576 RGB Pixel = ca. 1,2 MB pro Bild
 - 24 Bilder/sec, DVD Speicherkapazität ca. 8.5 GB
 - unkomprimiert können ca. 7000 Bilder, d.h. 5 Minuten Film gespeichert werden
 - um einen Film auf DVD zu speichern, muss ca. 97% der Daten weggeworfen werden (nur wesentliche Information bleibt)

Aufgaben

- Definition von "wesentlich"
- Methode finden, die die Information aus dem Bild "heraustrennt"
- Effiziente Repräsentation für die Speicherung der übriggebliebenen Information

• ...und das muss alles immer funktionieren (d.h., ohne dass man das Resultat jedes Mal überprüfen

kann)

Wie macht man das?

- Kreativität und Disziplin
 - Ideen entwickeln, welche allgemeinen
 Merkmale für bestimmte Bedeutungen in Bildern zutreffen
 - mittels eines geeigneten Modells in einen Algorithmus umsetzen
- Werkzeuge
 - Algorithmen und Programmiersprachen
 - Mathematik

Tracking people in broadcast sports

Formale Beschreibung

- Fragestellung: Welche Bedeutung ist einem gegebenen Bild zuzuordnen
- Formale Problembeschreibung:
 - Bedeutung m produziert ein Bild b: b=h(m)
 - Suche inverse Funktion h-1, so dass m aus b gewonnen werden kann
- Aufgaben
 - Bild störungsfrei machen: "ideales" h finden
 - Eindeutige Umkehrung von h definieren

Die semantische Lücke

Bild

- Helligkeit
- Farbe
- Musterung

Interpretation

- Name (Klasse)
- Existenz/Nichtexistenz von Objekten
- Eigenschaften von Objekten

"Ente (2CV)"

gleiche Bedeutung

Der Sprung über die Lücke

- Die gesuchte Funktion h muss die Pixel auf die Bedeutung abbilden
 - ähnliche Bedeutungen im Bild müssen ähnliche Resultate von h produzieren
- Wenn das (für manche Fälle) gelingt,
 - dann ist das Bildverarbeitungsverfahren generell für diese Fälle anwendbar (also nützlich)
 - dann weiß man für diese Fälle, was den Informationsgehalt ausmacht
 - dann ist das Verfahren vorhersagbar
- Welche Information wird benötigt?

Bildinformation auf Pixelebene

- Charakteristische Farbe und Helligkeit
 - aber: Variation durch Beleuchtung
- Charakteristische

Musterung (Textur)

aber: Variation durch Skalierung und Projektionswinkel

Bildinformation: Merkmale

- Merkmale, die den abgebildeten Objekten angehören
 - Ecken und Kanten
 - Regionen
- gut geeignet für
 - Tracking-Aufgaben
 - Kombination zu Merkmalen mit mehr Semantik

Bildinformation: Kontext

- Bilder lassen sich nur im Kontext interpretieren (A-Priori-Wissen)
 - Bedeutungskontext (Bildklasse, erwartete Objektformen)
 - Anfragekontext
 - Räumlicher Kontext (Relation zu andern Objekten)
 - Zeitlicher Kontext (Bildfolge)
- Bild- und Kontextinformation müssen redundant sein, um auch bei Störungen oder fehlenden Objektdetails interpretierbar zu sein.

Informationsträger

• Es sind Pixelgruppen, die die Information tragen

☐ Suche nach Invarianten (z.B. was charakterisiert ein Auto)

wie findet man die Gruppen	Bildverarbeitung
☐ Segmentierung des Bildes	
☐ Unterschied zwischen Segmenten und Objekten	
nicht alles in einer Pixelgruppe ist Information	
☐ Störungen (Rauschen, Artefakte)	
☐ für die Fragestellung irrelevante Information	
 dieselbe Information kann unterschiedlich abgebildet se 	ein

Grundlagen der Bildverarbeitung, 1. Einführung, Klaus Toennies

Bildverarbeitung ≠ **Informatik**

- Wissen über die Bedeutung in Bildern stammt aus
 - Signalverarbeitung (Elektrotechnik)
 - Kognitionspsychologie
 - Neurobiologie
- Wissen über die kontrollierte Verarbeitung stammt aus
 - Signalverarbeitung (Elektrotechnik)
 - Algorithmik (Informatik)
 - Algebra und Numerik (Mathematik)

Bsp Mathematik: Lineare Operatoren

- Bildkompression (DVD-Beispiel): Bild wird als Vektor **b** von Pixeln betrachtet
- Komprimierbares Bild ist ein neuer Vektor k, bei dem an den ersten Stellen die relevante Information steht
- **k** kann durch Matrixmultiplikation von **b** mit einer invertierbaren Matrix \mathbf{H}_{komp} erzeugt werden: $\mathbf{k} = \mathbf{H}_{komp} \times \mathbf{b}$
- Kompression: k berechnen und unwichtigen Vektorelemente wegwerfen.
- Dekompression: Auffüllen der fehlenden Stellen von ${\bf k}$ mit Nullen und Multiplikation mit der Inversen von ${\bf H}_{komp}$

Originalbi ld

als Funktion grauwert(x,y)

multipliziert mit einer invertierbaren Matrix

Lineare Operatoren II: Das Einbringen von Kontextwissen

Modellgestützte Interpretation

Der Unterschied zwischen den beiden Operatoren

- "Kompressionsoperator"
 - der lineare Operator ist für alle Bilder gleich
 - Bedeutung ergibt sich "aus dem Bild heraus"
 - Komplexere Bedeutungen werden erst nachher eingebracht
- Hundesuchoperator
 - ein Modell des gesuchten Hundes wird gebraucht
 - Bedeutung ergibt sich aus dem Vergleich der Erwartung mit dem Bildinhalt

Bottom-Up vs. Top-Down-Strategie

Modelle

Modellierung beschreibt Umwandlungen, Störungen und Verluste bei der Abbildung eines Objekts

Modellierung

- ...des Bildentstehungsprozesses: Bildrestauration
- ...der Wahrnehmbarkeit: Bildverbesserung
- ...der Informationsträger: Segmentierung
- ...der Objektzuordnung: Klassifikation

Bildverarbeitung und Bildanalyse

- Bildverarbeitung:
 - Trennung von Information und Artefakten (Störungen).
 - Speicherung, Kompression und Transfer von Bildern
 - Verbesserung der Wahrnehmbarkeit von Bildern.
- Bildanalyse/Bildverstehen
 - Identifikation von Bedeutung tragenden Merkmalen.
 - Berechnung von Merkmalswerten.
 - Zuordnung von Bedeutung.

Was sollten Sie mitbringen?

- Neugier
 - wie Bilder "funktionieren".
 - wie man das algorithmisch beschreiben kann.
- Kreativität und einen disziplinierbaren Basteltrieb.
- Keine (allzu große) Angst vor der Mathematik.
- Programmierkenntnisse.

Was sollten Sie heute gelernt haben?

- Digitale Bilder = Information aus Pixeln
- Was ist Bildanalyse und Bildverarbeitung
- Modelle, Top-Down- und Bottom-Up-Ansatz
- Prozesse der Bildverarbeitung
 Bildrestauration, -verbesserung, Segmentierung, Klassifikation

Literatur

Deutschsprachig:

- K.D. Toennies, *Grundlagen der Bildverarbeitung*, Pearson, 2005.
- B. Jähne, *Digitale Bildverarbeitung*, 5. Auflage, Springer, 2002.
- Vorlesungsfolien: http://isgwww.cs.uni-magdeburg.de/bv/gbv/bv.html

Englischsprachig:

- G. Baxes, *Digital Image Processing: Principles and Applications*, J. Wiley & Sons, 1994.
- K. Castleman, *Digital Image Processing*, Prentice-Hall, 1996
- R. Gonzales, R. Woods, *Digital Image Processing*, Addison-Wesley, 1992
- M. Sonka, V. Hlavac, R. Boyle, *Image Processing, Analysis, and Machine Vision*, Addison-Wesley, 1998.

Scheine, Prüfungen etc.

- Prüfung
 - Prüfungsvoraussetzungen laut Website
 - Klausur 2h
- Unbenotete Leistungen
 - Prüfungsvoraussetzungen in diesem Semester erfüllt
 - Klausur in diesem Semester oder im Folgesemester bestanden
 - Praktische Leistungen aus den Übungen gehen in die Klausurbewertung mit ein

Übungen

- Details auf wwwisg.cs.uni-magdeburg.de/bv (dort unter "Lehre", "Grundlagen der Bildverarbeitung")
- Theoretische und praktische Übungen
 - Details dazu in den Übungsgruppen
- Programmieren in Matlab
 - Matlab-Tutorial auf der LV-Seite (pdf-Datei)
 - schon mal durchlesen für die erste Übung

Übungszeiten und Eintragung

- Übungszeiten (ab 20.10.2015, Raum G29-335/K059):
 - Di, 11-13, G29-K059, und 13-15, G29-335
 - Mi, 13-15, G29-335
 - Do, 09-11, G29-335
- Informationen zu Vorlesung und Übung, sowie Eintragung in die Übungsgruppen (ab 12.10.2015,
 19 Uhr, also gleich) unter
 - wwwisg.cs.uni-magdeburg.de/bv
 - dort unter "Lehre", "Grundlagen der Bildverarbeitung"

Famous Last Question

Was könnte/sollte getan werden, um die Anzahl

der Personen zu zählen?

