Study on new possible variables to control QCD

J. Pela

Imperial College London

2013-06-17

Introduction and Motivation

Control of QCD

QCD is a major concern of our analysis, and the search for ways to control/estimate it a priority.

- The current event selection only uses variables over the dijet system of the the MET.
- Charateristics of the Dijet+MET system can be exploited to reduce the QCD background with minimal signal loss.
 - Total energy of selected objects (2 jets and MET).
 - Balance over MET and dijet system.

Definition of variables

Control of QCD

Three variable are being analyzed for possible use on this analysis

- Scalar Tri-Object Sum = |pT(jet1)| + |pT(jet2)| + |MET|
 - Similar to HT
 The higher it is the better is average selected object resolution
- Dijet pT fraction = $p_T(dijet)/(p_T(dijet) + MET)$
 - Refects balance dijet+MET system
 - Signal should be highly concentrated around 0.5
- Vector Tri-Object Sum = |VectorSum(pT(jet1) + pT(jet2) + MET)|
 - Refects balance dijet+MET system
 - Signal should be highly concentrated around zero
 - Study underway to possibly include the jet and MET resolution in the variable

2013-06-17

Individual Variables after TightMjj

Scalar Tri-Object Sum

- Like expected this variable by itself will not allow a big signal discrimination but conjugated with other variables it may be helpful.
- It can have the same role that HT has in conjunction with alphaT in the SUSY analysis.

Individual Variables after TightMjj

2D plots of variables on MC and Data at MET cut level

QCD Control

Definition of test cut zones

Dijet PT Fraction + scalar pT Sum

We can define a rectangle cut:

- Dijet PT Fraction := [0.46,0.54]
- Scalar pT Sum := [250,600]

Vector pT sum + scalar pT Sum

We can define a rectangle cut:

- Dijet PT Fraction := [0,40]
- Scalar pT Sum := [250,550]

Plots before and after cut on dphi > 2.6 for DijetFrac

Event Yields DijetFraction

After TightMjj cut

Step	QCD	W+jets	Z+jets	SumMC	Data	Signal 120
JetPair	1529141 ± 103399	23443 ± 107	10769 ± 51	1571309 ± 103619	1435063	1440 ± 21
AN	23162 ± 2055	5192 ± 60	3534 ± 32	33018 ± 2179	32324	856 ± 18
DEta	605071 ± 46654	11333 ± 83	5123 ± 41	623389 ± 46813	576792	1171 ± 19
MET	8540 ± 1778	4250 ± 54	2795 ± 30	16186 ± 1885	16282	881 ± 17
TightMjj	6560 ± 1445	2032 ± 39	1357 ± 21	10256 ± 1521	10481	543 ± 14
DijetFraction	3035 ± 1163	895 ± 27	584 ± 14	4606 ± 1213	XXX	344 ± 11
DPhiSIGNAL	688 ± 688	217 ± 14	130 ± 7	1057 ± 714	XXX	137 ± 7
DPhiQCD	2206 ± 927	129 ± 10	73 ± 4	2421 ± 945	1873	22 ± 3

Conclusions

Conclusions

- Variable that use the dijet+MET show signal discrimination potencial for our analysis.
- With first attempt of 2D cut, we have a factor of 3 reduction on QCD and keep 60% of signal.
- Vector p_T sum, not presented today but similar discrimination is expectable.

Next

- Finish Vector p_T sum first study
- Optimize variables
- Include resolution effects (possible gains)

