ME 599/699 Robot Modeling & Control

Coordinates And Mobile Robots

Spring 2020 Hasan Poonawala

Robot Configurations

Robot	Configuration Manifold	Coordinates
Point mass	\mathbb{R}^3	(x, y, z)
Pan-Tilt Camera	\mathcal{S}^2	$(heta,\phi)$
Differential-Drive Robot	$\mathbb{R}^2 \times S^1$ [SE(2)]	(x, y, θ)
Elbow Manipulator	$\mathcal{S}^1 imes \mathcal{S}^1$ [Torus]	(q_1,q_2)
Quadrotor	$\mathbb{R}^3 \times SO(3)$ [SE(3)]	(d,R)
Serial-Link Robot Arm	$(\mathcal{S}^1)^n$	(q_1,q_2,\ldots,q_n)

Maps Between Manifolds

Consider a map

$$f: M_1 \rightarrow M_2$$

where M_1 and M_2 are any two manifolds.

Maps Between Manifolds

Consider a map

$$f: M_1 \rightarrow M_2$$

where M_1 and M_2 are any two manifolds.

M_1	M_2	Properties of f	Interpretation
М	\mathbb{R}^m	continuous, bijective, inverse is continuous	Coordinates
\mathbb{R}	М	domain is an interval	Trajectory in <i>M</i> , domain is time
М	М	continuous bijection	Coordinate transformation
Eg.:	\mathbb{R}^n	$f = R^{-1}(p - d)$	Coordinate transformation

Maps Between Manifolds

Consider a map

$$f: M_1 \rightarrow M_2$$

where M_1 and M_2 are any two manifolds.

M_1	M_2	Properties of f	Interpretation
М	\mathbb{R}^m	continuous, bijective, in-	Coordinates
		verse is continuous	
$\overline{\mathbb{R}}$	М	domain is an interval	Trajectory in M ,
			domain is time
М	М	continuous bijection	Coordinate
			transformation
Eg.:			
\mathbb{R}^n	\mathbb{R}^n	$f = R^{-1}(p - d)$	Coordinate
			transformation

Example: Consider a circle drawn on the Sphere S^2 .

The Map Is Not The Territory

The green square in \mathbb{R}^2 becomes a patch on the sphere.

Rigid motions of the green square in \mathbb{R}^2 do not lead to rigid motions of the patch

The Map Is Not The Territory

The green square in \mathbb{R}^2 becomes a patch on the sphere.

Rigid motions of the green square in \mathbb{R}^2 do not lead to rigid motions of the patch

Example: What happens as the square moves upwards in \mathbb{R}^2 ?

We compute using coordinates in \mathbb{R}^n . It's our responsibility to handle the manifold structure underlying our robots' configurations.

Over to Youtube

- ► DARPA Grand Challenge (ca. 2004)
- ► DARPA Urban Challenge (ca. 2007)
- ► DARPA Robotics Challenge (ca. 2015)

For the next three weeks, your goal is to develop a simulated environment containing

1. A variable set of spherical / cylindrical obstacles/landmarks, each equipped with a coordinate frame

For the next three weeks, your goal is to develop a simulated environment containing

- 1. A variable set of spherical / cylindrical obstacles/landmarks, each equipped with a coordinate frame
- 2. A Quadrotor equipped with range-sensing capabilities

For the next three weeks, your goal is to develop a simulated environment containing

- 1. A variable set of spherical / cylindrical obstacles/landmarks, each equipped with a coordinate frame
- 2. A Quadrotor equipped with range-sensing capabilities
- 3. A mechanism for the quadrotor to detect and locate landmarks within a distance from the quadrotor

For the next three weeks, your goal is to develop a simulated environment containing

- 1. A variable set of spherical / cylindrical obstacles/landmarks, each equipped with a coordinate frame
- 2. A Quadrotor equipped with range-sensing capabilities
- 3. A mechanism for the quadrotor to detect and locate landmarks within a distance from the quadrotor

For the next three weeks, your goal is to develop a simulated environment containing

- 1. A variable set of spherical / cylindrical obstacles/landmarks, each equipped with a coordinate frame
- 2. A Quadrotor equipped with range-sensing capabilities
- 3. A mechanism for the quadrotor to detect and locate landmarks within a distance from the quadrotor

Given this simulation, you will also implement algorithms that

1. Solves path-planning problems given initial and goal poses

For the next three weeks, your goal is to develop a simulated environment containing

- 1. A variable set of spherical / cylindrical obstacles/landmarks, each equipped with a coordinate frame
- 2. A Quadrotor equipped with range-sensing capabilities
- 3. A mechanism for the quadrotor to detect and locate landmarks within a distance from the quadrotor

Given this simulation, you will also implement algorithms that

- 1. Solves path-planning problems given initial and goal poses
- 2. Implements state-estimation algorithms such as the Extended Kalman Filter

Example

(Quadrotor_Maze.jl on Canvas)

Example

(Quadrotor_Maze.jl on Canvas)
(This code depicts what I want, but is not a valid solution)

Information & Resources

This is a group assignment: group sizes between 3 and 4 only.

Use github, bitbucket, or other git-compatible online repositories to collaborate and eventually 'submit' the assignment.

- Learn version control (git) and unix skills online.
- Some code I played with. (Uploaded to Canvas)
- Original papers.

Relevant Planning Topics

- 1. Graph Search: DFS, BFS, A*, Djikstra's Algorithm
- 2. Probabilistic Road Maps
- 3. Rapidly Exploring Random Trees

A trajectory q(t) is a mapping from time t (subset of \mathbb{R}) to the configuration manifold $Q \ni q$.

A trajectory q(t) is a mapping from time t (subset of \mathbb{R}) to the configuration manifold $Q \ni q$.

A path is the image of that map.

A trajectory q(t) is a mapping from time t (subset of \mathbb{R}) to the configuration manifold $\mathcal{Q} \ni q$.

A path is the image of that map.

A trajectory with arbitrary time of travel becomes a path. For example trajectory

$$q_1(t)=t, q_2(t)=t$$

results in a path that can be expressed in \mathbb{R}^2 as $q_1=q_2$.

A trajectory q(t) is a mapping from time t (subset of \mathbb{R}) to the configuration manifold $Q \ni q$.

A path is the image of that map.

A trajectory with arbitrary time of travel becomes a path. For example trajectory

$$q_1(t)=t, q_2(t)=t$$

results in a path that can be expressed in \mathbb{R}^2 as $q_1=q_2$.

The path/trajectory planning problems can be cast as an optimization problem.

Suppose we can measure the 'cost' of a trajectory by a function $\cos t$.

Suppose we can measure the 'cost' of a trajectory by a function $\cos t$.

We want to find an optimal solution $q^*(t)$ of the problem:

$$\min_{q(t)}$$
 $\cos t(q(t))$

subject to

Robot doesn't destroy itself or things
Other concerns

Suppose we can measure the 'cost' of a trajectory by a function cost.

We want to find an optimal solution $q^*(t)$ of the problem:

$$\min_{q(t)}$$
 $\cos t(q(t))$

subject to

Robot doesn't destroy itself or things
Other concerns

This version of the problem doesn't worry about control. Out pops $q^*(t)$ and we try and use path following or trajectory tracking controllers.

- 1. Start with finding a path
- 2. Then, attach time to the path to get a trajectory

- 1. Start with finding a path
- 2. Then, attach time to the path to get a trajectory
- 1. Finding paths:
 - (a) Figure out the Obstacle-free configuration space (difficult, use over-approximations of robot and obstacles)

 - (b) Sample points in free space (easy)(c) Connect points in free space (depends)(d) Find a sequence of points from start to goal (Search)

- 1. Start with finding a path
- 2. Then, attach time to the path to get a trajectory
- 1. Finding paths:
 - (a) Figure out the Obstacle-free configuration space (difficult, use over-approximations of robot and obstacles)

 - (b) Sample points in free space (easy)(c) Connect points in free space (depends)(d) Find a sequence of points from start to goal (Search)
 - c. How to connect?
 - (i) Potential Field + random walk
 (ii) Probabilistic Road Maps
 (iii) Rapidly-exploring Random Trees

- 1. Start with finding a path
- 2. Then, attach time to the path to get a trajectory
- 1. Finding paths:
 - (a) Figure out the Obstacle-free configuration space (difficult, use over-approximations of robot and obstacles)

 - (b) Sample points in free space (easy)(c) Connect points in free space (depends)(d) Find a sequence of points from start to goal (Search)
 - c. How to connect?
 - (i) Potential Field + random walk
 (ii) Probabilistic Road Maps
 (iii) Rapidly-exploring Random Trees

 - d. How to Search?

- 1. Start with finding a path
- 2. Then, attach time to the path to get a trajectory
- 1. Finding paths:
 - (a) Figure out the Obstacle-free configuration space (difficult, use over-approximations of robot and obstacles)

 - (b) Sample points in free space (easy)(c) Connect points in free space (depends)(d) Find a sequence of points from start to goal (Search)
 - c. How to connect?
 - (i) Potential Field + random walk
 (ii) Probabilistic Road Maps
 (iii) Rapidly-exploring Random Trees

 - d. How to Search?
- 2. Polynomial/Parabolic Blends

