

Efternamn	förnamn	pnr	programkod

Kontrollskrivning 4A till Diskret Matematik SF1610, för CINTE, vt2017

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), n = 1, ..., 5.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		\mathbf{sant}	falskt
a)	I Boolesk algebra gäller det att $p \cdot (\bar{p} + \bar{p} \cdot (p+1)) = 0$.		
b)	Det finns en linjär kod C av längd 7, med 8 kodord, som har en kontrollmatris med 3 rader.		
c)	Ett RSA-krypto kan ha offentlig modulo $n=77$ och offentlig krypteringsnyckel $e=9$.		
d)	Om C är en linjär kod och x, y är kodord i C , då är $x-y$ också ett kodord i C .		
e)	Det finns 2^n olika Booleska funktioner i n variabler.		
f)	Ett RSA-krypto med offentlig modulo $n=65$ kan ha krypteringsnyckel $e=5$ och avkrypteringsnyckel $d=29$.		

poäng uppg.1	

bonus

Namn	poäng uppg.2

 ${\bf 2a)}$ (1
p) Låt den Booleska funktionen f(x,y,z)i tre variable
r $x,\ y$ och z definieras genom

$$f(x,y,z) = (x+y)\overline{z} + \overline{y}(\overline{x}+z)\overline{(x+\overline{z})} + \overline{x}(\overline{y}+z).$$

Bestäm f(0,1,1).

(Det räcker att ange rätt svar.)

b) (1p) En kod C är 1-felsrättande med kontrollmatrisen

$$\mathbf{H} = \left(\begin{array}{ccccccc} 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{array}\right).$$

Rätta ordet 0110010 till det närmaste kodordet i C. (Det räcker att ange rätt svar.)

c) (1p) Ett RSA-krypto har n=33. Ange samtliga möjliga värden på den offentliga krypteringsnyckeln e som vi kan välja i intervallet 1 < e < 12. (Det räcker att ange rätt svar.)

Namn	poäng uppg.3

3) (3p) Låt $B=\{0,1\}$ vara en Boolesk algebra och låt $g:B^3\to B$ vara den Booleska funktionen given av formeln

$$g(x, y, z) = \overline{y} + y \cdot z.$$

a) Bestäm hur många olika Booleska funktioner $f:B^3\to B$ det finns sådana att

$$f(x, y, z) \cdot g(x, y, z) = (x + \overline{x}) \cdot \overline{y} \cdot z.$$

b) Skriv ned en möjlig sådan funktion f antingen i disjunktiv normalform eller konjunktiv normalform (ditt val).

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Namn	poäng uppg.4

- **4)** (3p)
- a) För vilka värden på parametrarna $x, y \in \{0, 1\}$ blir matrisen **H** nedan en binär kontrollmatris till en linjär 1-felsrättande kod C?

$$\mathbf{H} = \left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & x & 0 & 0 & y \end{array}\right)$$

- b) För samtliga värden på parametrarna x,y som uppfyller ovan krav, bestäm hur många kodord det finns i koden.
- c) En mottagare tar emot orden 101111 och 101100. Rätta dessa ord till kodord i C enligt närmaste-granne-principen, för samtliga värden på parametrarna x, y som uppfyller kravet i (a).

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Namn	poäng uppg.5

5) (3p) Ett RSA-krypto har den offentliga modulon n=85 och krypteringsnyckel e=13. Finn avkrypteringsnyckeln d och använd denna för att avkryptera meddelandet b=3.

OBS. En komplett lösning med fullständiga motiveringar skall ges.