Appello – Parte 2

25/01/2022 — versione 1 —

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1 — 2 pt

Si consideri la funzione $f(x) = e^x (1 + \sin(\pi x))$ e il suo interpolante polinomiale $\Pi_5 f(x)$ su n+1=6 nodi equispaziati in [-1,1]. Dopo aver costruito l'interpolante $\Pi_5 f(x)$, si riporti il valore dell'errore di interpolazione $e_5(f) = \max_{x \in [-1,1]} |f(x) - \Pi_5 f(x)|$.

0.1024

2-1 pt (***) No Multichance

La temperatura minima giornaliera (in gradi centigradi) misurata in una stazione metereologica in nove giorni consecutivi è riportata nel vettore Matlab[®] seguente: >> temperatura = [6.0, 5.5, 6.0, 4.5, 4.0, 3.5, 4.0, 4.5, 5.0]; Si stimi la temperatura al giorno 10 utilizzando un polinomio di grado 2 che approssimi i dati nel senso dei minimi quadrati.

5.4048

3 — 2 pt

Si consideri la funzione $f(x)=x^{\gamma}$, dipendente dal parametro $\gamma\geq 1$, e il suo interpolante polinomiale lineare a tratti $\Pi_1^Hf(x)$ su 10 sottointervalli equispaziati di [0,1]. Si riporti il valore stimato dell'errore di interpolazione, ovvero $e_1^H(f)=\max_{x\in[0,1]}\left|f(x)-\Pi_1^Hf(x)\right|$, in termini del parametro γ .

$$\gamma \left(\gamma - 1\right) / 800$$

4 — 1 pt

Si approssimi l'integrale $I(f) = \int_{-1}^{3} \sqrt{1+x} \, dx$ tramite la formula dei trapezi composita considerando M=4 sottointervalli equispaziati di [-1,3]. Si riporti il valore di $I_c^c(f)$ così ottenuto.

5.1463

5-1 pt

Si consideri l'approssimazione dell'integrale $I(f) = \int_a^b f(x) dx$, dove $f \in C^{\infty}([a, b])$, tramite la formula di Simpson composita. Sapendo che per $M_1 = 10$ sottointervalli equispaziati di [a, b] si ha un errore pari a $e_1(f) = 10^{-1}$, si stimi l'errore $e_2(f)$ commesso con $M_2 = 100$ sottointervalli.

$$10^{-5}$$

6 - 2 pt (***) No Multichance

Si consideri l'approssimazione dell'integrale doppio $I(f) = \int_a^b \int_c^d f(x,y) \, dy dx$ tramite la formula di quadratura Gauss–Legendre di ordine 1, ovvero

$$I_q(f) = \frac{(b-a)(d-c)}{4} \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x}_i, \overline{y}_j),$$

dove
$$\overline{x}_i = \frac{a+b}{2} + \frac{b-a}{2}\xi_i$$
, $\overline{y}_i = \frac{c+d}{2} + \frac{d-c}{2}\xi_i$, per $i=1,2,\ \xi_1=-\frac{1}{\sqrt{3}}$ e $\xi_2=+\frac{1}{\sqrt{3}}$. Posti $a=c=0,\ b=d=1$ e $f(x,y)=e^{(x+3y)}$, si riporti il valore di $I_q(f)$.

10.7713

7-1 pt

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -(1+t) \ y(t) & t \in (0,10), \\ y(0) = 2. \end{cases}$$

Utilizzando il metodo di Heun con passo generico h > 0, si esprima u_1 in termini di h, dove u_1 è l'approssimazione di $y(t_1)$, essendo $t_n = n h$ per $n = 0, \ldots, N_t$.

$$2 - 2h + h^3$$

8 — 2 pt

Si consideri il seguente problema ai limiti

$$\begin{cases} -u''(x) = (2+x)^2 & x \in (0,1), \\ u(0) = 1, & u(1) = 0. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate e passo di discretizzazione h=1/10 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per (N+1)=10. Si risolva il problema e si riporti il valore della soluzione numerica u_5 , ovvero l'approssimazione di $u(x_5)=u(0.5)$.

1.2863

9-1 pt

Si consideri il seguente problema ai limiti, dipendente dal parametro $\gamma > 10$:

$$\left\{ \begin{array}{ll} -u^{\prime\prime}(x)+\gamma\,u^{\prime}(x)=7 & x\in(0,1),\\ u(0)=u(1)=0. \end{array} \right.$$

Si supponga di approssimare tale problema utilizzando il metodo delle differenze finite centrate con tecnica Upwind e passo di discretizzazione h>0, ottenendo così la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$. Assumendo che la soluzione esatta $u\in C^4([0,1])$ sia nota e che l'errore per $h=h_1=10^{-4}$ sia $E_{h_1}=\max_{j=0,\dots,N+1}|u(x_j)-u_j|=4\cdot 10^{-3}$, si riporti il valore stimato dell'errore E_{h_2} corrispondente alla scelta $h=h_2=5\cdot 10^{-3}$.

 $2 \cdot 10^{-3}$

$10-2 \; \mathrm{pt}$ (***) No Multichance

Si consideri il seguente problema ai limiti:

$$\begin{cases} -u''(x) + 40 u'(x) = 0 & x \in (0,1), \\ u(0) = 7, & u(1) = 0. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con tecnica Upwind e passo di discretizzazione h=1/10 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per (N+1)=10. Si risolva il problema e si riporti il valore della soluzione numerica u_9 , ovvero l'approssimazione di $u(x_9)$.

5.6

ESERCIZIO – 17 pt

Si consideri il seguente sistema di Equazioni Differenziali Ordinarie del primo ordine nella forma

$$\begin{cases}
\frac{d\mathbf{y}}{dt}(t) = A\mathbf{y}(t) + \mathbf{g}(t) & t \in (0, t_f), \\
\mathbf{y}(0) = \mathbf{y}_0,
\end{cases}$$
(1)

dove $\mathbf{y}(t) = (y_1(t), y_2(t), \dots, y_m(t))^T$, $A \in \mathbb{R}^{m \times m}$, $\mathbf{g}(t) : (0, t_f) \to \mathbb{R}^m$ e $\mathbf{y}_0 \in \mathbb{R}^m$, per $m \ge 1$.

In particolare, consideriamo m = 9 e $A = \text{tridiag}(3, -2, -1) \in \mathbb{R}^{9 \times 9}$

Punto 1) — 2 pt (***) No Multichance

Con riferimento al generico sistema di Equazioni Differenziali Ordinarie nella forma (1), si riporti la definizione di zero-stabilità in relazione al metodo di Eulero in avanti. Si definisca tutta la notazione utilizzata.

Spazio per risposta lunga

Punto 2) — 3 pt

Per il problema (1) con $t_f = +\infty$ e $\mathbf{g} = \mathbf{0}$ si ricavi la condizione di assoluta stabilità per il metodo di Eulero in avanti. Si illustri la procedura seguita.

0 < h < 0.2693

Spazio per risposta lunga

Punto 3) — 3 pt

Si pongano ora $t_f = 10$, $\mathbf{g}(t) = e^{\sin(\pi t)} \mathbf{1}$ e $\mathbf{y}_0 = \mathbf{4}$ per il problema (1).

Si approssimi tale problema tramite il metodo di Eulero in avanti con passo di discretizzazione h=0.1 utilizzando la funzione Matlab[®] eulero_avanti_sistemi.m Dopo aver indicato i tempi discreti $t_n=n\,h$ per $n=0,1,\ldots,N_h$ e $h=\frac{t_f}{N_h}$, si riportino:

- i valori delle approssimazioni $u_{5,1}$ e u_{5,N_h} rispettivamente di $(\mathbf{y}(t_1))_5$ e $(\mathbf{y}(t_f))_5$;
- il valore minimo $u_{5,min} = \min_{n=0,\dots,N_h} u_{5,n}$ e il tempo discreto $t_{5,min} = \operatorname{argmin}_{n=0,\dots,N_h} u_{5,n} \text{ corrispondente a } u_{5,min}.$

Si riportino i principali comandi Matlab[®] usati.

$$u_{5,1}=4.1000, \quad u_{5,N_h}=1.1675, \quad u_{5,min}=0.7852, \quad t_{5,min}=2.2$$

Spazio per risposta lunga

Punto 4) — 2 pt

Con i dati di cui al Punto 3) e assumendo che la soluzione esatta al tempo $t_f = 10$ del problema (1) nella componente 5 sia

$$y_5(t_f) = (\mathbf{y}(10))_5 = 1.142174435142178,$$

si calcolino gli errori $E_h=|u_{5,N_h}-y_5(t_f)|$ ottenuti con il metodo di Eulero in avanti e corrispondenti ai passi $h_1=10^{-2},\,h_2=5\cdot 10^{-3},\,h_3=2.5\cdot 10^{-3}$ e $h_4=1.25\cdot 10^{-3}$. Si riportino i valori E_{h_i} per $i=1,\ldots,4$ e i principali comandi Matlab[®] usati.

$$0.5602 \cdot 10^{-3}$$
, $0.2417 \cdot 10^{-3}$, $0.1115 \cdot 10^{-3}$, $0.0534 \cdot 10^{-3}$

Spazio per risposta breve

Punto 5) — 2 pt

Si utilizzino gli errori E_{h_i} ottenuti al Punto 4) per stimare algebricamente l'ordine di convergenza p del metodo di Eulero in avanti. Si giustifichi la risposta data e la si motivi alla luce della teoria. Si riportino i principali comandi Matlab® usati.

$$p = 1.0616$$

Spazio per risposta lunga

Punto 6) — 2 pt

Si vuole ora approssimare il sistema di Equazioni Differenziali Ordinarie (1) con i dati di cui al Punto 3) tramite il metodo di Crank-Nicolson con passo h=0.1. Si riportino il valore dell'approssimazione $u_{5,1}$ di $(\mathbf{y}(t_1))_5$ così ottenuta e i principali comandi Matlab[®] usati.

$$u_{5,1} = 4.1177$$

Spazio per risposta lunga

Punto 7) — 3 pt (***) No Multichance

Si vuole ora applicare al sistema di Equazioni Differenziali Ordinarie nella forma (1) il metodo di Runge-Kutta associato alla seguente tabella di Butcher

$$\begin{array}{c|cccc}
1/3 & 1/3 & 0 \\
2/3 & 1/3 & 1/3 \\
\hline
0 & 1/2 & 1/2
\end{array}$$

Si implementi in Matlab[®] il metodo precedente e lo si utilizzi per risolvere il sistema di Equazioni Differenziali Ordinarie (1) con i dati di cui al Punto 3) usando il passo h=0.1. Si riportino i valori delle approssimazioni $u_{5,1}$ e u_{5,N_h} così ottenute e i principali comandi Matlab[®] usati.

$$u_{5,1} = 4.1168, \quad u_{5,N_h} = 1.1441$$

Spazio per risposta lunga