

Network Layer Part 5

Mark Allman mallman@case.edu

EECS 325/425 Fall 2018

"We goin' downtown in the middle of the night," We laughin' and I'm jokin' and we feelin' alright."

These slides are more-or-less directly from the slide set developed by Jim Kurose and Keith Ross for their book "Computer Networking: A Top Down Approach, 5th edition".

The slides have been lightly adapted for Mark Allman's EECS 325/425 Computer Networks class at Case Western Reserve University.

All material copyright 1996-2010 J.F Kurose and K.W. Ross, All Rights Reserved

Reading Along ...

- Network layer is chapters 4 & 5
 - IPv4 addressing

Q: How does network get subnet part of IP addr?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block <u>11001000 00010111 0001</u>0000 00000000 200.23.16.0/20

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	<u>11001000 00</u>	0010111 00	<u>001</u> 0000	00000000	200.23.16.0/20
Organization 0	<u>11001000 00</u>	010111 00	<u>001000</u> 0	00000000	200.23.16.0/23
Organization 1	<u>11001000 00</u>	010111 00	<u>001001</u> 0	00000000	200.23.18.0/23
Organization 2	<u>11001000 00</u>	010111 00	<u>001<mark>010</mark>0</u>	00000000	200.23.20.0/23
		• • • • •			
Organization 7	<u>11001000 00</u>	010111 00	<u>001111</u> 0	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

ISPs-R-Us has a more specific route to Organization 1

IP addresses: how to assign?

Q: How do we assign a host an IP address?

IP addresses: how to assign?

Q: How do we assign a host an IP address?

- *hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config

IP addresses: how to assign?

Q: How do we assign a host an IP address?

- *hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- *DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

Goal: allow host to dynamically obtain its IP address from network server when it joins network

Goal: allow host to dynamically obtain its IP address from network server when it joins network

Why?

Goal: allow host to dynamically obtain its IP address from network server when it joins network

Why?

- Ease admin burden
- Can renew its lease on address in use
- Allows reuse of addresses (only hold address while connected and "on")
- Support for mobile users who want to join network

- Conundrum: if we don't have an IP address, how can we communicate over the network?
 - who do we ask for an address?
 - who do they tell about an available address?

- Conundrum: if we don't have an IP address, how can we communicate over the network?
 - who do we ask for an address?
 - who do they tell about an available address?

- Bootstrap using broadcast
 - i.e., messages destined for everyone on a network instead of a single server

- Conundrum: if we don't have an IP address, how can we communicate over the network?
 - who do we ask for an address?
 - who do they tell about an available address?

- Bootstrap using broadcast
 - i.e., messages destined for everyone on a network instead of a single server
- Communication between two specific hosts is referred to as unicast

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP server: 223.1.2.5

DHCP renewal process

renewing DHCP server: 223.1.2.5 client: 223.1.2.4 **DHCP** request src: 223.1.2.4, 68 dest:: 223.1.2.5, 67 yiaddr: 223.1.2.4 transaction ID: 656 Lifetime: 3600 secs time **DHCP ACK** src: 223.1.2.5, 67 dest: 223.1.2.4, 68 yiaddr: 223.1.2.4 transaction ID: 656 Lifetime: 3600 secs

DHCP: more than IP address

DHCP: more than IP address

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

*What if you already have a DHCP address and ask for another?

- *What if you already have a DHCP address and ask for another?
- *How long should the lease be?

- *What if you already have a DHCP address and ask for another?
- *How long should the lease be?
- *How do you know to believe the server that answers?

- *What if you already have a DHCP address and ask for another?
- *How long should the lease be?
- *How do you know to believe the server that answers?
- *What if someone statically configures IP address X and then a DHCP server gives out the same address?

- *What if you already have a DHCP address and ask for another?
- *How long should the lease be?
- *How do you know to believe the server that answers?
- *What if someone statically configures IP address X and then a DHCP server gives out the same address?
- *Doesn't DHCP hinder accountability?

Reading Along ...

- Network layer is chapters 4 & 5
 - Address shortage

- *Crucial resource within networks
 - original vision: every host would have a globally unique network layer address
 - a peer-to-peer network

- *Crucial resource within networks
 - original vision: every host would have a globally unique network layer address
 - a peer-to-peer network
- *But, addresses grew scarce

*What to do about address scarcity?

*What to do about address scarcity?

*CIDR

*Allocate addresses we have more intelligently

*What to do about address scarcity?

- *CIDR
 - *Allocate addresses we have more intelligently
- *IPv6
 - *Invent more addresses

*What to do about address scarcity?

- *CIDR
 - *Allocate addresses we have more intelligently
- *IPv6
 - *Invent more addresses
- *NAT / CGN
 - *Share addresses we have

Classful Address Allocation

Class A: /8

0 netid subnet / hostid	
-------------------------	--

16.7M addrs

Class B: /16

10	netid	subnet / hostid
----	-------	-----------------

64K addrs

Class C: /24

110 netid	subnet/hostid
-----------	---------------

256 addrs

Classful Address Allocation

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- stopped massively coarse IP block assignment
- netid portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in netid portion of address

200.23.16.0/23

CIDR

- *CIDR helped
 - a lot!

*CIDR bought us a bunch of time

*Initial motivation: 32-bit address space was growing thin

- *Initial motivation: 32-bit address space was growing thin
- *Now: 32-bit IPv4 address space is completely allocated

- *Initial motivation: 32-bit address space was growing thin
- *Now: 32-bit IPv4 address space is completely allocated
- *Additional motivation:
 - while we're at it, let's incorporate some lessons we learned from IPv4

IPv4 vs. IPv6

IPv4 Header

Version IHL Type of Service Total Length Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source Address Destination Address Options Padding

IPv6 Header

Destination Address

Source Address

Transition From IPv4 To IPv6

- *Not all routers can be upgraded simultaneous
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- *Initial strategy: tunneling
 - IPv6 carried as payload in IPv4 datagram among IPv4 routers

IPv6 Roll Out

State of IPv6

Czyz, et.al., Measuring IPv6 Adoption, SIGCOMM 2014

IPv6 Current Availability

IPv6 Lesson

*It is difficult to change the tires while the car is moving

*We need to think hard about transition to new technology

We need to think about planning for transition when we build technology

Can We Better Use 32-bit Addresses?

- *IPv6 is not yet ubiquitous
 - after 20+ years!

*And, now we're out of IPv4 addresses for real

*So, how can we cope?