Introduction to Machine Learning

Lecture Outline

Review of Search and Planning?

Definition of Machine learning.

Machine learning techniques

Uninformed Searches

- Definition (description)?
 - do not use additional information to guide the search process.
 - Ignore the cost of finding a solution.
- Examples.
 - Breadth first search, depth first search, DFS-ID
- Vulnerability
 - Computational costs ??

Informed Searches

- Definition (description)?
 - Use additional information to guide the search process.
 - Heuristics function used.
- Examples.
 - Best first search, A*search.
- Vulnerability
 - Although quicker than uninformed -local optima.

Metaheuristics- Single Point

- Search single point
 - Tabu search
 - Simulated Annealing
- Key functionality
 - Tabu
 - taboo list
 - Simulated Annealing
 - temperature parameter
 - slow
- Real-word application
 - Search, routing, packing, scheduling

Metaheuristic - Multi-Point

- Population Evolutionary Computation
 - Evolutionary Algorithms
 - Swarm Intelligence.
- Principles
 - EA- Darwin's principle of natural selection.
 - Population , survival of the fittest.
 - SI- Swarming principle.
 - Population , collective advantage

Evolutionary Algorithms

- Genetic Algorithm
 - Representation fixed length chromosomes , genes
 - Search space
 - Solution space
- Genetic Programming
 - Representation syntax trees
 - Search space
 - Program space
- Grammatical Evolution
 - Representation variable length chromosomes
 - Search space
 - Program space

Swarm Intelligence

- Particle Swarm Optimization
 - Representation
 - Particles with velocity and direction
 - Search space
 - Solution/program space
- Ant Colony Optimization
 - Representation
 - Artificial Ants, (pheromone & heuristic values)
 - Search space
 - Solution/program

ACO Equation Updates

$$p(c_{ij}|s^p) = \frac{\tau_{ij}^{\alpha} * \eta_{ij}^{\beta}}{\sum_{c_{il} \in N(s^p)} \tau_{il}^{\alpha} * \eta_{il}^{\beta}}, \forall c_{il} \in N(s^p)$$

$$(1)$$

$$\tau_{ij} = (1 - \rho)\tau_{ij} + \rho \sum_{s} F(s) \tag{2}$$

ACO- Update

ACO @ t=0

ACO @ t+1

Adaptation & Hybridisation

- Adaptive Algorithms.
 - Make changes during the search.
- Hybridisation.
 - Two or more algorithms are combined.

Introduction Machine Learning

Machine Learning Outline

Define Machine Learning

Machine Learning Data.

Overview of Machine Learning Techniques.

Introduction

- What is machine learning?
 - Extract patterns from data.
 - Generalize.
- Types of machine learning
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

Machine Learning

The desire is to get machines to learn through examples.

This is how humans learn.

Given enough examples a machine should be able to learn on its own.

Data Formulation

- Data for machine learning comes from many sources.
- For machine learning we have a universe of objects.
- An object has a number of variables that describe its properties.
- In ML variables are often referred to as attributes.

Data Formulation

- The set of attribute values corresponding to each of the objects is called an instance.
- The complete set of data available to us for an application is called a dataset.
- The dataset is **labelled** if there is one attribute given special significance and the aim is to predict its value.

Data Formulation

• The significant variable is commonly referred to as the class.

 When there is no such significant attribute we call the dataset unlabelled.

Types of Variables

- Nominal variables are used to put objects into categories, e.g. the name or colour of an object.
- Binary variable is a special case of a nominal variable that takes only two possible values: true or false, 1 or 0 etc.

• Ordinal variables are similar to nominal variables, except that they have values that can be arranged in a meaningful order, e.g. small, medium, large.

Types of Variables

- Integer variables are ones that take values that are genuine integers, for example 'number of children'.
- Interval-scaled variables are variables that take numerical values which are measured at equal intervals from a zero point or origin e.g temperature.
- Ratio-scaled variables are similar to interval-scaled variables except that the zero point does reflect the absence of the measured characteristic.

Classification of Variables

Categorical corresponding to nominal, binary and ordinal variables.

 Continuous corresponding to integer, interval-scaled and ratio-scaled variables.

Pre-processing

- The hardest task may be to get the data into a standard form in which it can be analysed.
- In real-world datasets erroneous values can be recorded for a variety of reasons, including measurement errors, subjective judgements and malfunctioning or misuse of automatic recording equipment.

Pre-processing

Missing Values

- Discard Instances delete all instances where there is at least one missing value and use the remainder.
- (advantage ?, disadvantage ?)
- Replace by -
 - most frequent.
 - average value.

Pre-processing

Reducing the Number of Attributes

 For some datasets there can be substantially more attributes than there are instances.

- The term feature reduction or dimension reduction is generally used for this process.
- Eg Dob and age

Normalisation

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- Is the process of transforming data values in a dataset to the same scale.
- Normalisation is the process of scaling data to within a certain range usually 0-1.
- Why normalise when a feature exhibits high numeric variation in its values.

Supervised Learning

- Machine learning using labelled data is known as supervised learning.
- If the designated attribute is categorical, the task is called classification.

• If the designated attribute is numerical, the task is called the task is called **regression**.

Supervised Learning

Data is divided into

- -Training
- -Validation
- -Testing

Split - (60%, 10%, 30%) OR (70% 30%)

Importance of appropriate data

-K-fold cross-validation

Unsupervised Learning

In unsupervised learning the data provided is not labelled, e.g. the attributes are provided in an instance but not the class.

- Grouping algorithms are used.
- Clustering is commonly used.

Reinforcement Learning

- Learning takes place as the problem is solved.
- Involves a set of agents solving a problem over a number of time steps in a particular environment.
- Actions taken by agents in the environment.
- Assessment and reward/punishment.
- Effect of the reward in the next time step.

Machine Learning Techniques

ML Techniques

- K-Nearest neighbour.
- Decision Trees.

- Regression.
- Support Vector Machines
- Artificial Neural Networks.

Nearest Neighbour

 Assigns the output for a new instance depending on the output of its neighbours.

- K-Nearest neighbour.
- Determining the nearest neighbours.
- Majority voting.

Nearest Neighbour

а	b	С	d	е	f	Class
yes	no	no	6.4	8.3	low	negative
yes	yes	yes	18.2	4.7	high	positive
yes	no	no	6.6	8.0	low	????

- We can predict its classification using that of the first instance, i.e. as 'negative'.
- It is usual to base the classification on those of the k (3 or 5) nearest neighbours not just one.

K-Nearest Neighbour

Distance Metrics

- 1. Euclidean distance- length of a line segment between 2 pts.
- 2. Manhattan distance e.g (12,9) and (4,2) distance = (12-4) + (9-2) = 15.

Decision Tree

The decision tree is the classifier.

The internal nodes of the tree represent problem attributes.

- The leaf nodes represent classes
- Performs binary and multiclass classification
- Derived by induction algorithms such as ID3 and C4.5

Decision Tree

Regression

Finds patterns in data.

 Finds the relationship between a set of independent variables and a dependent variable.

- Linear vs. logistic regression.
- Evaluation Root mean square error.

Support Vector Machines

- Build classification and regression models from data
- Linear vs. nonlinear classification

Unsupervised learning

Biological Neuron vs Artificial Neuron

Neural Network

- Mathematical models good at pattern association and classification
- Single layer neural network
- Multilayer neural network
- Weights and learning algorithm
- Activations functions
- Convolutional neural networks and deep learning

Ensemble Learning

- An ensemble performs the classification or regression
- Each ensemble is a set of classifiers or regression models
- The output from each element of the ensemble is combined to produce a single output
 - Random forests.
 - Boosting weak classifiers.

Next Lecture

Artificial Neural Networks

QUESTIONS

