Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie LABORATORIUM MASZYN I NAPĘDU ELEKTRYCZNEGO Elektrotechnika z Napędami Elektrycznymi Ćwiczenie EA3 Silnik uniwersalny Grupa ćwicz: B Grupa laborat: 4b Wydz. EAIIB kier. AiR rok II lmię i nazwisko Ocena Data zaliczenia Lp Aleksandra Stachniak 1 2 Martyna Wolny 3 Julita Wójcik Tomisław Tarnawski 4 5 Jakub Szczypek Piotr Stosik 6

Data	i podpis prowadzącego:	Uwagi:
Data	i poupis prowauzącego.	Owa

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z możliwościami pracy i podstawowymi charakterystykami silnika komutatorowego szeregowego o małej mocy. Silniki tego typu są powszechnie stosowane do napędów różnych drobnych urządzeń przy zasilaniu z sieci napięcia przemiennego 220 V. W mniejszym stopniu używane są w układach sterowania i regulacji.

2. Wykonanie ćwiczenia

2.1 Zasilanie silnika przez prostownik dwudrogowy

Przy zmianie rezystancji na zaciskach prądnicy hamulcowej dokonywaliśmy pomiaru:

- napięcia zasilania U [V]
- prądu zasilania I [A]
- mocy pobieraną P_{pob} (z watomierza)
- napięcia na zaciskach prądnicy hamulcowej \mathcal{U}_p
- prądu na zaciskach prądnicy I_p
- prędkości obrotowej zespołu n [obr/min]

Korzystając z powyższych danych, dla każdego punktu pomiarowego obliczono:

- straty w uzwojeniu wirnika prądnicy hamulcowej, zgodnie ze wzorem:

$$P_{cu} = R_a * I^2 [W] \tag{1}$$

gdzie:

$$R_a = 26 [\Omega]$$

- straty mechaniczne prądnicy hamulcowej i tachoprądnicy oraz straty w żelazie prądnicy na podstawie zależności:

$$P_0 = 1.2 * n^2 * 10^{-6} + 1.1 * n * 10^{-3} [W]$$
 (2)

- moc oddawaną przez prądnice zgodnie ze wzorem:

$$P_{od} = U * I [W] \tag{3}$$

W celu wyznaczenia charakterystyki mechanicznej n(T) konieczne było obliczenie:

- mocy pobieranej przez prądnice oraz oddawanej przez silnik, danej wzorem:

$$P_{pobp} = P_{od} + P_{cu} + P_0 = P_{odsil} \tag{4}$$

- momentu na wale:

$$T = \frac{P_{pobp}}{\omega} \tag{5}$$

gdzie:

$$\omega = \frac{(\pi * n)}{30} \tag{6}$$

Ostatnim etapem obliczeń było wyliczenie sprawności silnika:

$$\eta = \frac{P_{odsil}}{P_{pobsil}} \tag{7}$$

Wyniki na podstawie powyższych wzorów zamieściliśmy w tabeli 1.

Tabela 1. Pomiary przy zasilaniu przez prostownik

n [obr/min]	P_pobsil [W]	I_p [A]	U_p [V]	P_od [W]	P_cu [W]	P_0 [W]	P_pob [W]	T [Nm]	η	ω [rad/s]
5000	72,6	0,1	124	11	0,26	35,5	52,72	0,100688	0,64	523,59
4500	73,7	0,16	118	17,6	0,66	29,25	50,37	0,106888	0,64	471,23
4000	77	0,22	107	24,2	1,25	23,6	48,58	0,115976	0,63	418,87
3500	80,3	0,29	88	31,9	2,16	18,55	48,22	0,131562	0,65	366,51
3000	79,2	0,44	65	48,4	5,03	14,1	49,23	0,156734	0,85	314,15
2500	81,4	0,5	52	55	6,5	10,25	48,75	0,186211	0,88	261,79

Wyznaczono charakterystykę mechaniczną n(T), oraz charakterystykę n(P_{odsil}).

Rysunek 1. Charakterystyka n(T) silnika zasilonego prostownikiem

Rysunek 2. Charakterystyka $\eta(P_{odsil})$ silnika zasilonego prostownikiem

2.2 Zasilanie silnika napięciem przemiennym

Wykonano analogiczne pomiary o obliczenia jak przy zasilaniu przez prostownik. Wyniki zestawiono w tabeli 2.

Tabela 2. Pomiary przy zasilaniu silnika napięciem przemiennym

n [obr/min]	P_pobsil	I_p A2 [A]	U_p V2 [V]	P_od	P_cu	P_0	P_pob [W]	T	η
5000	71,3	0,13	122	15,86	0,4394	35,5	53, 55	0,09893	0,726499
4500	82,8	0,19	104	19,76	0,9386	29,25	50,74	0,105994	0,603244
4000	88,55	0,24	91	21,84	1,4976	23,6	49,86	0,112055	0,530069
3500	96,6	0,3	76	22,8	2,34	18,55	48,88	0,119203	0,452277
3000	103,5	0,36	61	21,96	3,3696	14,1	40,51	0,125508	0,380962
2500	109,25	0,42	48	20,16	4,5864	10,25	35,21	0,133676	0,320333

Rysunek 3. Charakterystyka n(T) silnika zasilonego napięciem przemiennym

Rysunek 4. Charakterystyka $\eta(P_{odsil})$ silnika zasilonego napięciem przemiennym

2.3 Zasilanie silnika regulatorem tyrystorowym

Wykonano analogiczne pomiary o obliczenia jak przy zasilaniu przez prostownik. Wyniki zestawiono w tabeli 3.

Tabela 3. Pomiary przy zasilaniu silnika regulatorem tyrystorowym

n [obr/min]	I_p A3 [A]	U_p V4 [V]	P_od	P_cu	P_0	ω [rad/s]	Т
5000	0,36	265	95,4	3,3696	35,5	523,5986667	0,256436
4500	0,38	262,5	99,75	3,7544	29,25	471,2388	0,281714
4000	0,4	260	104	4,16	23,6	418,8789333	0,314554
3500	0,42	255	107,1	4,5864	18,55	366,5190667	0,355333
3000	0,44	255	112,2	5,0336	14,1	314,1592	0,418048
2500	0,46	252,5	116,15	5,5016	10,25	261,7993333	0,503827

Stworzono analogiczną charakterystyki mechaniczną n(T).

Rysunek 5. Charakterystyka n(T) silnika zasilonego regulatorem, tyrystorowym

3. Wnioski

Wykonując powyższe ćwiczenie zapoznaliśmy się z działaniem silnika uniwersalnego, z jego możliwościami użycia oraz charakterystykami. W trakcie przebiegu laboratorium silnik zasilaliśmy 3 różnymi sposobami: z prostownika, napięciem sinusoidalnym oraz generatorem terystorowym. Dla każdego z napięć wykonaliśmy obliczenia na podstawie zebranych danych, a następnie wykonaliśmy charakterystyki w programie Matlab. Najlepszą sprawność udało się osiągnąć dla silnika zasilonego napięciem prostowniczym. Wraz z malejącą prędkość, spada wartość momentu na wale. Powodem błędnych charakterystyk mogą być niedokładności, drobne błędy podczas odczytu wartości pomiarowych lub zbyt mała ilość dokonanych pomiarów. Ostatniej części laboratorium nie udało się przeprowadzić z powodu awarii sprzętu.