RECEIVED

INFORMATION DISCLOSURE STATEMENT

AUG 0 9 2002

In re Application of:

Serial No:

Dominic P. BEHAN and Derek T. CHALMERS TECH CENTER 1600/2900

09/060,188

Filed: For:

April 14, 1998

A Method of Identifying Modulators of Cell Surface Membrane

Receptors Useful in the Treatment of Disease

Attorney's Docket:

Examiner: Group Art No: 3086-9

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Honorable Commissioner of Patents and

Trademarks, Washington D.C. 20231 on July 8, 1998.

Suzannah K. Sundby

Parent Agent for the Applicants USPTO Reg. No. P-43,172

U.S. PATENT DOCUMENTS

Examiner's Cite No.		T²
· · · · · · · · · · · · · · · · · · ·		
Examiner Signature	Date Considered	

OTHER DOCUMENTS - NON-PATENT LITERATURE DOCUMENTS

Examiner's Initials	ite No.	T²
311	ALLA, S.A., et al (1996). Extracellular domains of the bradykinin B2 receptor involved in ligand binding and agonist sensing defined by anti-peptide antibodies. J. Biol. Chem., 271, 1748-1755.	
	ADVENIER, C. et al (1992). Effects on the isolated human bronchus of SR 48968, a potent and selective nonpeptide antagonist of the neurokinin A (NK2) receptors. Am. Rev. Respir. Dis., 146:5 Pt 1, 1177-81.	
V	ALEXANDER, W.S., et al (1995). Point mutations within the dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J., 14, 5569-78.	

Examiner Signature	Zarelo	Howard	Dat Cor	nte onsidered	4/1	1/05
0.5.12.0.0					- ,	,

		ARVANITIKIS, L., et al (1997). Human herpesvirus KSHV encodes a	
1	1	constitutively active G-protein-coupled receptor linked to cell proliferation.	1
$\langle \mathcal{M} $	1	37-4 205 247 340	+
/ 	+	Brown Ed. et al (1994) Constitutively active 5-hydroxytryptamine 2C	- 1
7	- [receptors reveal novel inverse agonist activity of receptor ligands. J. Biol.	- 1
/	ļ	ar 260.16 11697 11600	
	-	BAXTER, G. (1995). 5-HT2 receptors: a family re-united? Trends Pharmacol.	
	İ	BAXTER, G. (1995). 5-112 receptors. a family to wanted	
		Sci. 16, 105-110. BESMER, P., et al (1986). A new acute transforming feline retrovirus and	
11	- {	BESMER, P., et al (1986). A new acute transforming removed the linese gene family. Nature.	
1 1	- }	relationship of its oncogene v-kit with the protein kinase gene family. Nature,	
	- {	320, 415.	
	\top	BLIN, N., et al (1995). Mapping of single amino acid residues required for	
	- 1	selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. 3.	(
- 11	-	Dist Cham 270 17741-17748	⊣
	+	Described M. (1998) Inverse agoms is and O-protein	1 1
		coupled receptors. Receptor-Based Drug Design. Ed. Paul Leff. New York;	
1 1		N. D. 13 262 277	\sqcup
-+-		Brown C. et al (1993) Mutations that alter the third cytoplasmic loop of the	1 1
] [- 1	a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc.	1 1
	- }	a-ractor receptor lead to a combination of the approximation of the appr	
		Natl. Acad. Sci. (USA), 90:21, 9921-5. BURSTEIN, E.S., et al (1996). Constitutive activation of chimeric m2/m5	
	-1	BURSTEIN, E.S., et al (1996). Constitutive activation of ordinates muscarinic receptors and delineation of G-protein coupling selectivity	11
()		muscarinic receptors and define after the coupling series and define after the coupli	
		domains. Biochem Pharmacol, 51:4, 539-44.	† †
		BURSTEIN, E.S., et al (1996). Amino acid side chains that define muscarinic	11
		receptor/G-protein coupling. Studies of the third intracellular loop. J. Biol.	1 1
ļ		or 071.6 1001 5	┼╂
		BURSTEIN, E.S., et al (1995). Constitutive activation of muscarinic receptors	1
		1 b. Ab C protein Go FFRS Left 363:3, 201-3,	╅╂
		By IND D (1994). International union of pharmacology nomenciatine of	11
		advancement Pharmacol Review, 46, 121-130.	╁╂
	┼┼	Chart C et al (1996) Constitutively active mulant 3-1112A Sciolomi	
l	1 1	receptors: inverse agonist activity of classical 5HT2A antagonists.	
1		Soc.Neurosci. Abstracts # 699.10	$\perp \perp$
	++	CHEATHAM, B., et al (1993). Substitution of the erb-2 oncoprotein	
	\	CHEATHAM, B., et al (1993). Substitution of the cro 2 substitution of the cro2 substi	
l		transmembrane domain activates the histain receptor and incumentation of insulin-receptor substrate. Proc. Natl. Acad. Sci. (USA), 90, 7336-	
1			
_ [73340.	11
	T	CHEN, T.S. et al (1993). Microbial hydroxylation and glucuronidation of the	
		angiotensin II (AII) receptor antagonist MK 954. J. Antibiot. (Tokyo), 46:1,	
		133.4	┽┨
	++	Cymy W et al (1995) A colorimetric assay for measuring activation of Us	-
1		and G coupled signalling nathways, Anal. Blochem., 220:2, 343-334.	+
, ,		and of the state o	1 1
	+	CHIDIAC, P., et al (1994). Inverse agonist activity of beta-adrenergic	

Examiner Signature Land Aoward Considered	/n/	05

			CLOZEL, M. et al (1993). In vivo pharmacology of Ro 46-2005, the first	1
1//	11	1	synthetic nonpeptide endothelin receptor antagonist: implications for	
	P[]		endothelin physiology. J. Cardiovasc. Pharmacol., 22 Suppl 8:, S377-9.	<u> </u>
\overline{Z}			COLLESI, C., et al (1996). A splicing variant of the RON transcript induces	
	1 1		constitutive tyrosine kinase activity and an invasive phenotype. Mol. &	
	1 1	- }	Cellular Biol., 16, 5518-5526.	Щ
			COOPER, C.S., et al (1984). Molecular cloning of a new transforming gene	
		- 1	from a chemically transformed human cell line. Nature, 311, 29-33.	
	Ì		DESBIOS-MOUTHON, C. et al (1996). Deletion of Asn281 in the -su b unit of	
1 1			the human insulin receptor causes constitutive activation of the receptor and	
			insulin desensitization. J. Clin. Endocrinol. Metab., 81, 719-727.	
\Box			DI RENZO, M.F., et al (1991). Expression of the Met/HGF receptor in normal	
			and neoplastic human. Oncogene, 6:11, 1997-2003.	
		\dashv	Di Renzo, M.F., et al (1992). Overexpression of the c-Met/HGF receptor	1 T
			gene in human thyroid carcinomas. Oncogene, 7, 2549-2553.	
			DUPREZ, L., et al (1994). Germline mutations in the thyrotropin receptor gene	
		1	cause non-autoimmune autosomal dominant hyperthyroidism. Nature	
			Genetics, 7, 396-401.	
		\neg	EGGERICKX, D., et al (1995). Molecular cloning of an orphan G-protein-	
		- 1	coupled receptor that constitutively activates adenylate cyclase. Biochem. J.,	
		1	389, 837-843.	
			EVANS, B.E. et al (1992). Orally active, nonpeptide oxytocin antagonists. J.	
			Med. Chem., 35:21, 3919-27.	
		\dashv	Fu, M., et al (1994). Functional autoimmune epitope on alpha1-adrenergic	
1			receptors in patients with malignant hypertension. Lancet, 344, 1660-1663.	
			FURITSU, T., et al (1993). Identification of mutations in the coding sequence	
	l	ı	of the proto-oncogene c-kit in a human mast cell leukemia cell line causing	
			ligand-independent activation of c-kit product. J. Clin. Invest., 92, 1736.	
			GELLAI, M. et al (1995). Nonpeptide endothelin receptor antagonists. V:	
1	ļ	j	Prevention and reversal of acute renal failure in the rat by SB 209670. J.	
1			Pharmacol. Exp. Ther., 275:1, 200-6.	
\vdash	-	+	GITTER, B.D. et al (1995). Pharmacological characterization of LY303870: a	
1			novel, potent and selective nonpeptide substance P (neurokinin-1) receptor	
		1	antagonist. J. Pharmacol. Exp. Ther., 275:2, 737-44.	
		_	GOUILLEUX-GRUART, V., (1996). STAT-related transcription factors are	
		1	constitutively activated in peripheral blood cells from acute leukemia	
		Ī	patients. Blood, 87:5, 1692-7.	
\vdash		+-	HANSSON, J.H., et al (1995). Hypertension caused by a truncated epithelial	\sqcap
			sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome.	
		1	Nat. Genet., 11:1, 76-82.	
$\vdash \vdash \vdash$,	+	HASEGAWA, H., et al (1996). Two isoforms of the prostaglandin E receptor	П
	/		EP3 subtype different in agonist-independent constitutive activity. J. Biol.	
1		l	Chem., 271:4, 1857-1860.	'
l			Chom., 271.7, 1037-1000.	

Examiner		Date ///11//
	LAND HOUTHIN	Considered 7/1/00
Signature	SIVIN NIINIVIVI	Considered
	/ /	

				_	
3	11	1	HENDLER, A.M. & OZANNE, B.W. (1984). Human squamous cell lung cancers express increased epidermal growth factor receptors. J. Clin. Invest., 74, 647-651.		
			HERRICK-DAVIS, K., et al (1996). Constitutively active 5HT _{2C} serotonin receptor created by site directed mutagenesis. Soc. Neuroscience abstract #699.18.		
			HIEBLE, J. (1995). International union of pharmacology. X. Recommendation for nomenclature of 1-adrenoceptors. Pharmacol. Review., 47, 267-270.		
		1	HILL, S. (1990). Distribution properties and functional characteristics of three classes of histamine receptor. Pharmacol. Review. 7, 1-51.		
			HOGGER, P. et al (1995). Activating and inactivating mutations in the N- and C-terminal I3 loop junctions of muscarinic acetylcholine Hm1 receptors. J. Biol. Chem., 270, 7405-7410.		
			IKEDA, H., et al (1991). Expression and functional role of the proto-oncogen c-kit in acute myeloblastic leukemia cells. Blood, 78, 2962.		
			IMURA, R. et al (1992). Inhibition by HS-142-1, a novel nonpeptide atrial natriuretic peptide antagonist of microbial origin, of atrial natriuretic peptide-induced relaxation of isolated rabbit aorta through the blockade of guanylyl cyclase-linked receptors. Mol. Pharmacol., 42:6, 982-90.		
			JAKUB/EIK, J., et al (1995). Constitutive activity of the M1-M4 subtypes of muscarinic receptors in transfeceted CHO cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett, 377:2, 275-9.		
	·		KJELSBERG, M.A., et al (1992). Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem., 267, 1430-1433.		
_			KNAPP, R. (1995). Molecular biology and pharmacology of cloned opioid receptors. FASEB J. 9, 516-525.		
			Kosugi, S., et al (1995). Characterization of heterogenous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Human Molecular Genetics, 4:2, 183-188.		
			KOSUGI, S., et al (1993). Identification of thyroid-stimulating antibody- specific interaction sites in the N-terminal region of the thyrotropin receptor. Molecular Endocrinology, 7, 114-130.		
			KRAUS, M.H., et al (1993). Demonstration of ligand-independent signalling by the erbB-3 tyrosine kinase and its constitutive activation in human breast tumor cells. Proc. Natl. Acad. Sci. (USA), 90, 2900-4.		
			KUDLACZ, E.M. et al (1996). In vitro and in vivo characterization of MDL 105,212A, a nonpeptide NK-1/NK-2 tachykinin receptor antagonist. J. Pharmacol. Exp. Ther., 277:2, 840-51.		
	/		KURIU, A., et al (1991). Proliferation of human myeloid leukemia cell line associated with the tyrosine phosphorylation and activation of the proto-oncogene c-kit product. Blood, 78, 2834.		

				<u></u>	_
Examiner Signature	South Arms and	Date Considered][/	05	
<u> </u>	Jacon wow order		7	-	_

			LABBE-JULLIE, C. (1994). Effect of the nonpeptide neurotensin antagonist, SR 48692, and two enantiomeric analogs, SR 48527 and SR 49711, on	}
111	1)	1	neurotensin binding and contractile responses in guinea pig ileum and colon.	
X	P_{\parallel}		I Pharmacol, Exp. Ther., 271:1, 267-76.	Ш.
//-			LATRONICO, A.C., et al (1995). A novel mutation of the luteinizing hormone	
1 1			receptor gene causing male gonadotropin-independent precocious puberty. J.	
			Clin. Endocrinol. Metab., 80, 2490-2494.	
	-	\Box	LAUE, L., et al (1995). Genetic heterogeneity of constitutively activating	
			mutations of the human luteinizing hormone receptor in familial male-limited	
1 [precocious puberty. Proc. Natl. Acad. Sci. (USA), 92, 1906-1910.	
			LØVLIE, R., et al (1996). The Ca(2+)-sensing receptor gene (PCAR1)	
			mutation T151M in isolated autosomal dominant hypoparathyroidism. Hum.	
			Genet., 98:2, 129-33.	
			LEFKOWITZ, R., et al (1993). Constitutive activity of receptors coupled to	
			guanine nucleotide regulatory proteins. Trends Pharmacol. Sci., 14, 300-307.	\vdash
		•	LIBERMANN, T.A., et al (1985). Amplification, enhanced expression and	
			possible rearrangement of EGF receptor gene in primary human brain tumors	
			of glial origin. Nature, 313, 144-147.	
			LIU, C., et al (1992). Overexpression of c-met proto-oncogene but not	
			epidermal growth factor receptor or c-erbB-2 in primary human colorectal	
			carcinomas. Oncogene, 7:1, 181-185.	
			Liu, J., et al (1996). Molecular mechanisms involved in muscarinic	
			acetylcholine receptor-mediated G protein activation studied by insertion	1 1
		<u> </u>	mutagenesis. J. Biol. Chem., 271:11, 6172-6178.	$\vdash \vdash$
			LONARDO, F., et al (1990). The normal erb-2 product is an atypical receptor-	
			like tyrosine kinase with constitutive activity in the absence of ligand. The	
		- -	new Biologist, 2:11, 992-1003. MAENHAUT, C., et al (1990). RCD8 codes for an adenosine A2 receptor with	
			physiological constitutive activity. Biochem. Biophys. Res. Com., 173:3,	
		H		
 			MANN, J., et al (1986). Increased serotonin2 and beta-adrenergic receptor	
			binding in the frontal cortices of suicide victims. Arch. Gen. Psychiat. 43,	1
			954-959.	
-		┼╂-	MARTONE, R.L. et al (1996). Human CRF receptor chimeras: mapping of	
			ligand binding determinants. Abstract 609.8. 26th meeting for the society of	
			neuroscience, Washington, D.C., November 16-21, 1996.	
\vdash		 	MAGNUSSON, Y., et al (1994). Autoimmunity in idiopathic dilated	T
			cardiomyopathy, Circulation, 89, 2760-2767.	
		++	MATUS-LEIBOVITCH, N., et al (1995). Truncation of the thyrotropin-releasing	\prod
1.1	/		hormone receptor carboxy tail causes constitutive activity and leads to	11.
V	1		impaired responsiveness in Xenopus oocytes and AtT20 cells. J. Biol. Chem.,	
	-	1	270:3, 1041-1047.	
		Ц		

		7			<i>f</i>			
Examiner		mil	How	ward		Date Considered	4/11/0	25
Signature	7	TO DI	UND				//	

MYLES, G.M., et al (1994). Tyrosine 569 in the c-fins juxtamembrane domain is essential for kinase activity and macrophage colony-stimulating factor-dependent internalization. Mol. Cell. Biol., 14, 4843. NANEVICZ, T., et al (1996). Thrombin receptor activating mutations. J. Biol Chem., 271, 702-706. NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDL					_	
factor-dependent internalization. Mol. Cell. Biol., 14, 4843. NANEVICZ, T., et al (1996). Thrombin receptor activating mutations. J. Biol Chem., 271, 702-706. NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'Dowd, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365, 260 reduces basal acid secretion and prevents gastrointestina	1			MYLES, G.M., et al (1994). Tyrosine 569 in the c-fms juxtamembrane	,	1
NANEVICZ, T., et al (1996). Thrombin receptor activating mutations. J. Biol Chem., 271, 702-706. NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA ₂ -adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARENTT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA ₂ -adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365, 260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the r	1/1		1			1
Chem., 271, 702-706. NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin recepto	IXI	41	1	factor-dependent internalization. Mol. Cell. Biol., 14, 4843.	Ш	L
Chem., 271, 702-706. NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin recepto				Nanevicz, T., et al (1996). Thrombin receptor activating mutations. J. Biol		
NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA ₂ -adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA ₂ -adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365, 260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their	41			Chem., 271, 702-706.		
melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin				NATALI, P.G., et al (1993). Expression of the c-Met/HGF receptor in human		
melanoma tumor progression. Br. J. Cancer, 68:4, 746-750. NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA ₂ -adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARTITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA ₂ -adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotomin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment			Ì	melanocytic neoplasms: demonstration of the relationship to malignant		
NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'Dowd, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		ļ		melanoma tumor progression. Br. J. Cancer, 68:4, 746-750.		
factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			-	NEILSON, K.M., et al (1995). Constitutive activation of fibroblast growth	П	
Biol. Chem., 270:44, 26037-26040. ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	1 /		1	factor receptor-2 by a point mutation associated with Crouzon syndrome. J.	П	
ODA, S. et al (1992). Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	1 1	ĺ			$\ \ $	
nonpeptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'Dowd, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARTITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			-	One S et al (1992) Pharmacological profile of HS-142-1, a novel	Π	
Restoration by HS-142-1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'Dowd, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin				nonpentide atrial natriuretic pentide (ANP) antagonist of microbial origin. II.		
production in adrenal glomerulosa cells. J. Pharmacol. Exp. Ther., 263:1, 241-5. O'Dowd, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid bormone (PTH/)PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		ŀ		Restoration by HS-142-1 of ANP-induced inhibition of aldosterone	11	
O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETITIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			-	production in adrenal glomerulosa cells. I. Pharmacol. Exp. Ther., 263:1.	\	
O'DOWD, B.F., et al (1988). Site-directed mutagenesis of the cytoplasmic domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin						
domains of the human BETA2-adrenergic receptor. J. Biol. Chem., 263, 15985-15992. PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			+			Γ
PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			-	domains of the human BETA2-adrenergic recentor. J. Biol. Chem., 263.		1
PALKOWITZ, A.D. et al (1994). Structural evolution and pharmacology of a novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotopin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		j	-1			
novel series of triacid angiotensin II receptor antagonists. J. Med. Chem., 37:26, 4508-21. PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	\vdash		+		П	
PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		1				
PARENT, J., et al (1996). Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			1			
inactive and constitutively active forms of the human platelet-activating factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			+-		П	
factor receptor. J. Biol. Chem., 271:14, 7949-7955. PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	1 1		ĺ		П	
PARFITT, A.M., et al (1996). Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin						
parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin					††	
primary hyperparathyroidism. J. Clin. Endocr. Metab., 81, 3584-3588. PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			1		Ш	
PARMA, J., et al (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		i	1		П	
cause hyperfunctioning thyroid adenomas. Nature, 365, 649-651. PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	$\vdash \vdash \vdash$		+-		H	
PEI, G., et al (1994). A constitutive active mutant BETA2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin					$\ \ $	
is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. (USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	 		+-		H	
(USA), 91, 2699-2702. PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		į	1			
PENDLEY, C.E. et al (1993). The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin					1	
antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin			+		$\vdash \uparrow$	_
gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin					$ \ $	
J Pharmacol Exp Ther, 265:3, 1348-54. PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin					$ \ $	
PEROUTKA, S. (1995). Serotonin receptor subtypes. Their evolution and clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin				1 🕶		
clinical relevance. CNS Drugs. 4, 19-28. PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin	 				$\vdash \vdash$	
PETTIBONE, D.J. & CLINESCHMIDT, B.V. (1993). Development and pharmacological assessment of novel peptide and nonpeptide oxytocin		İ				
pharmacological assessment of novel peptide and nonpeptide oxytocin					H	
		/				
antagonists. Regul Pept, 29, 45:1-2.	V	/	ı			
	L			antagonists. Regul Pept, 29, 45:1-2.	<u></u>	

	_ , ,	4			<i></i> ,
Examiner Signature	SWIN	Howard	Date Considered	4/11/	05
			•	, k	

				_	
1			PRAT, M.P., et al (1991). The receptor encoded by the human C-MET	ļ	
131	ノ ニ	1	oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int. J.		ĺ
1/)'			Cancer, 49, 323-328.	┕	L
17.			PREZEAU, L., et al (1996). Changes in the carboxy-terminal domain of		
Y		} .	metabotropic glutamate receptor 1 by alternate splicing generate receptors		1
			with differing agonist-independent activity. Mol. Pharmacol., 49, 422-429.	<u> </u>	
			RAKOVSKA, A. et al (1993). Effect of loxiglumide (CR 1505) on CCK-		1
			induced contractions and 3H-acetylcholine release from guinea-pig	1	l
			gallbladder. Neuropeptides, 25:5, 271-6.		1_
			De Dios, I. & Manso, M.A. (1994). Effect of L-364,718 (CCK receptor		П
		1	antagonist) on exocrine pancreatic secretion of hydrocortisone-treated rats.		
			Pancreas, 9:2, 212-8.		
		\top	REN, Q., et al (1993). Constitutive active mutants of the ALPHA2-adrenergic		Г
			receptor. J. Biol. Chem., 268, 16483-16487.	ļ	L
		1	REYNOLDS, E.E. (1995). Pharmacological characterization of PD 156707, an		Π
			orally active ETA receptor antagonist. J. Pharmacol. Exp. Ther., 273:3, 1410-		
			7.		
		\mathcal{T}	ROBBINS, L.S., et al (1993). Pigmentation phenotypes of variant extension		
			locus alleles result from point mutations that alter MSH receptor function.		
			Cell, 72, 827-834.		
	\top	\top	RONG, S., el al (1993). Met expression and sarcoma tumorigenicity. Cancer		
ŀ		П	Res., 53:22, 5355-60.		
		\Box	SAMAMA, P., et al (1993a). A mutation-induced activation state of the B2-	П	
ŀ	į	П	adrenergic receptor. J. Biol. Chem., 268:7, 4625-36.		
			SAUTEL, M. et al (1996). Neuropeptide Y and the nonpeptide antagonist		
	1		BIBP 3226 share an overlapping binding site at the human Y1 receptor. Mol.	il	
			Pharmacol., 50:2, 285-92.	Ц	
			SAWUTZ, D.G. et al (1995). Pharmacology and structure—activity		
			relationships of the nonpeptide bradykinin receptor antagonist WIN 64338.		
]			Can. J. Physiol. Pharmacol., 73:7, 805-11.		
			SCHEER, A. & COTECCHIA, S., (1997). Constitutively active G protein-		
			coupled receptors: potential mechanisms of receptor activation. J. Receptor &		
			Signal Transduction Research, 17(1-3), 57-73.		
			SCHEER, A., et al (1997). The activation process of the 1B-adrenergic		
			receptor: potential role of protonation and hydrophobicity of a highly		
			conserved aspartate. Proc. Natl. Acad. Sci. (USA)., 94, 808-813.	Ш	
			SCHWININ, D.A., et al (1995). Cloning and pharmacological characterization		
			of human Alpha-1 adrenergic receptors: sequence corrections and direct		
			comparison with other species homologues. The J. Pharmacol., 272, 134-142.		
		П	SCHILD, L., et al (1995). A mutation in the epithelial sodium channel causing		
			Liddle disease increases channel activity in the Xenopus laevis oocyte		
	,		expression system. Proc. Natl. Acad. Sci. (USA), 92, 5699-703.		
		П	SEEMAN, P. & VAN TOL, H. (1994). Dopamine receptor pharmacology.		
v			Trends Pharmacol. Sci. 15, 264-270.		

Examiner Signature	Lash Howard	Date Considered	4/1	u/	05
				/	

			_	_
311	1	SEEMAN, P. (1993). Dopamine D4 receptors elevated in schizophrenia. Nature, 365, 441-445.		
1//-		SERRADEIL-LE GAL, C., et al (1993). Biochemical and pharmacological	П	
101		properties of SR 49059, a new, potent, nonpeptide antagonist of rat and	П	
	1 1	human vasopressin V1a receptors. J. Clin. Invest., 92:1, 224-31.		
 	++	SHARIF, M., et al (1994). Malignant transformation by G protein-coupled	П	
		hormone receptors. Molecular & Cellular Endocrinology, 100, 115-119.		
	+ +	SHOWERS, M.O., et al (1992). Activation of the erythropoietin receptor by the	П	
]	1 1	Friend spleen focus-forming virus gp55 glycoprotein induces constitutive	H	
1 1		protein tyrosine phosphorylation. Blood, 80, 3070-8.		
 	++	SKINNER, R.H., et al (1994). Direct measurement of the binding of Ras to	П	
		neurofibromin using scintillation proximity assay. Anal. Biochem., 223, 259-		
1 1		265.		
 -	++	SLAMON, D.J., et al (1987). Human breast cancer: correlation of relapse and	\Box	_
		survival with amplification of the HER-2 neu oncogene. Science, 235, 177-		
		182.		
 	 	SLAMON, D.J., et al (1989). Studies of the HER-2/neu proto-oncogene in	П	
		human breast and ovarian cancer. Science, 244, 707-712.		
	++	SOLOMON, Y., et al (1974). A highly sensitive adenylate cyclase assay. Anal.		
		Biochem., 58, 541-548.		
	++	SPIEGEL, A.M., et al (1995). Defects in G protein-coupled signal transduction	П	
<u> </u>	1 }	in human disease. Ann. Rev. Physiol., 58, 143-170.		
	++	TER LACK, A., et al (1995). Modelling and mutation studies on the histamine	П	
		H1-receptor agonist binding site reveal different binding modes for H1-	$ \ $	
		agonists: Asp116 (TM3) has a constitutive role in receptor stimulation. J.	П	
1		Computer-aided molecular design, 9, 319-330.		
		TIBERI, M. & CARON, M.G. (1994). High agonist-independent activity is a	П	
		distinguishing feature of the dopamine D1B receptor subtype. The J. Biol.		
		Chem. 269:45. 27925-27931.	\coprod	
	11	TSUJIMURA, T., et al (1996). Constitutive activation of c-kit in FMA3 murine		
	.	mastocytoma cells caused by a deletion of seven amino acids at the		
		juxtamembrane domain. Blood, 87, 273-283.	Ш	
 	11	WANG, Z., et al (1994). Constitutive opioid receptor activation as a regulatory	T	
		mechanism underlying narcotic tolerance and dependance. Life Sciences,		
		54:22, 339-350.	\Box	
	11	WATOWICH, S.S., et al (1992). Homodimerization and constitutive activation	$ \ $	
		of the erythropoietin receptor. Proc. Natl. Acad. Sci. (USA), 89, 2140-4.	Ш	
	++	WEBER-NORDT, R.M., et al (1996). Constitutive activation of STAT proteins		
		in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus		
		(EBV)-related lymphoma cell lines. Blood, 88:3, 809-16.	Ц	_
—	11	WEBSTER, K. & DONOGHUE, J. (1996). Constitutive activation of fibroblast	\prod	
$ \cdot $		growth factor receptor 3 by the transmembrane point mutation found in		
	'	achondroplasia. The EMBO J., 15, 520-527.	\Box	

		`		1	 		41	/
Examiner		1111		11 - 1	Date	16.1	11/	ni
Signature		ZOVIJA	/>	HTO TUNA	Considered_	47	<u> </u>	00
			-v	4000		ι,	- 1	
	/	/	•					

09/060,188

311	1	Xu, Y.H., et al (1984). Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc. Natl .Acad. Sci. (USA)., 81, 7308-7312.	
		YAMADA, K., et al (1992). Substitution of the insulin receptor transmembrane domain with the c-neu/erb2 transmembrane domain constitutively activates the insulin receptor tyrosine kinase in vitro. J. Biol. Chem., 267, 12452-12461.	
V		ZHEN, Z., et al (1994). Structural and functional domains critical for constitutive activation of the HGF-receptor (Met). Oncogene, 9, 1691-1697.	

		/ /
Examiner Signature 2 MM Annual	Date Considered	11/05