Stochastik für Informatiker

- 2. Vorlesung -

Prof. Dr. Holger Kösters

Institut für Mathematik, MNF, Universität Rostock

24. Oktober 2019

Holger Kösters Stochastik Rostock, 24.10.2019 1 / 258

Organisatorisches (Ergänzungen)

- Vorübungen
 - Lösungen werden in der Übung besprochen und daher nur in Ausnahmefällen unter stud.ip bereitgestellt
- Übungen
 - Einzelabgabe
 - Abgabe auf Papier, NICHT per E-Mail
 - 1. Abgabe: ausnahmsweise schon Mittwoch, 30.10.2019, 13:00
- Klausurbedingungen
 - alle Unterlagen dürfen verwendet werden, ABER ...
 - Taschenrechner, Mobiltelefone, Computer etc. sind verboten!
- Klausurbedingungen
 - Mindestpunktzahl insgesamt
 - Mindestpunktzahl im Teil "Diskrete Strukturen und Optimierung"
 - Mindestpunktzahl im Teil "Stochastik"

(UND-Verknüpfung!)

Modellbildungsprozess

Modellbildungsprozess

- Beschreibung der Wirklichkeit durch ein mathematisches Modell
- jedes Modell beruht auf vereinfachenden Annahmen
- die Wahl des Modells lässt sich nicht "rein mathematisch" begründen
- die Wahl des Modells ist i. d. R. nicht eindeutig (vgl. Beispiel 2)

Holger Kösters Stochastik Rostock, 24.10.2019 21 / 258

Kapitel 1.1 Diskrete Wahrscheinlichkeitsräume

Mit diskreten W.räumen lassen sich einfache zufallsabhängige Vorgänge beschreiben, bei denen die Menge der Versuchsausgänge *abzählbar* (d. h. endlich oder abzählbar-unendlich) ist.

 Holger Kösters
 Stochastik
 Rostock, 24.10.2019
 24 / 258

Mit diskreten W.räumen lassen sich einfache zufallsabhängige Vorgänge beschreiben, bei denen die Menge der Versuchsausgänge *abzählbar* (d. h. endlich oder abzählbar-unendlich) ist.

Dabei heißt eine Menge Ω abzählbar-unendlich, wenn es eine bijektive Abbildung $\varphi: \mathbb{N} \to \Omega$ gibt, d. h. wenn sie sich in der Form $\Omega = \{\omega_1, \omega_2, \omega_3, \dots\}$ schreiben lässt, wobei jedes Element von Ω genau einmal vorkommt.

 Holger Kösters
 Stochastik
 Rostock, 24.10.2019
 24 / 258

Mit diskreten W.räumen lassen sich einfache zufallsabhängige Vorgänge beschreiben, bei denen die Menge der Versuchsausgänge *abzählbar* (d. h. endlich oder abzählbar-unendlich) ist.

Dabei heißt eine Menge Ω abzählbar-unendlich, wenn es eine bijektive Abbildung $\varphi: \mathbb{N} \to \Omega$ gibt, d. h. wenn sie sich in der Form $\Omega = \{\omega_1, \omega_2, \omega_3, \dots\}$ schreiben lässt, wobei jedes Element von Ω genau einmal vorkommt.

Ist Ω eine beliebige Menge, so bezeichnen wir mit $\mathfrak{P}(\Omega)$ die *Potenzmenge*, d. h. die Menge aller Teilmengen $A \subseteq \Omega$ (einschließlich der leeren Menge \emptyset und der Menge Ω selbst).

Mit diskreten W.räumen lassen sich einfache zufallsabhängige Vorgänge beschreiben, bei denen die Menge der Versuchsausgänge *abzählbar* (d. h. endlich oder abzählbar-unendlich) ist.

Dabei heißt eine Menge Ω abzählbar-unendlich, wenn es eine bijektive Abbildung $\varphi: \mathbb{N} \to \Omega$ gibt, d. h. wenn sie sich in der Form $\Omega = \{\omega_1, \omega_2, \omega_3, \dots\}$ schreiben lässt, wobei jedes Element von Ω genau einmal vorkommt.

Ist Ω eine beliebige Menge, so bezeichnen wir mit $\mathfrak{P}(\Omega)$ die *Potenzmenge*, d. h. die Menge aller Teilmengen $A \subseteq \Omega$ (einschließlich der leeren Menge \emptyset und der Menge Ω selbst).

Definition 1.1 (Diskreter W.raum)

Es seien $\Omega \neq \emptyset$ eine abzählbare Menge und $f:\Omega \to \mathbb{R}$ eine Abbildung mit den Eigenschaften $f(\omega) \geq 0$ für alle $\omega \in \Omega$ und $\sum_{\omega \in \Omega} f(\omega) = 1$. Dann heißt das Tripel $(\Omega, \mathfrak{P}(\Omega), \mathbb{P})$ mit der Abbildung $\mathbb{P}: \mathfrak{P}(\Omega) \to \mathbb{R}$, $\mathbb{P}(A) := \sum_{\omega \in A} f(\omega)$ diskreter W.raum (zu (Ω, f)).

Bemerkung 1.2 (Umgang mit Summen)

Eine Summe der Form $\sum_{\omega \in A} f(\omega)$ (A abzählbar) berechnen wir, indem wir eine <u>beliebige</u> Reihenfolge $\{\omega_1,\ldots,\omega_n\}$ (für endliches A) bzw. $\{\omega_1,\omega_2,\omega_3,\ldots\}$ (für abzählbar-unendliches A) der Elemente von A wählen und die Summe

$$\sum_{i=1}^n f(\omega_i)$$
 bzw. $\sum_{i=1}^\infty f(\omega_i) := \lim_{n \to \infty} \sum_{i=1}^n f(\omega_i)$

bilden. Dabei hängt der Wert der Summe nicht von der Wahl der Reihenfolge ab, da man Summen <u>mit nicht-negativen Summanden</u> beliebig umordnen kann, ohne den Wert der Summe zu verändern (vgl. Kapitel A.4).

 Holger Kösters
 Stochastik
 Rostock, 24.10.2019
 25 / 258

Bemerkung 1.2 (Umgang mit Summen)

Eine Summe der Form $\sum_{\omega \in A} f(\omega)$ (A abzählbar) berechnen wir, indem wir eine <u>beliebige</u> Reihenfolge $\{\omega_1, \ldots, \omega_n\}$ (für endliches A) bzw. $\{\omega_1, \omega_2, \omega_3, \ldots\}$ (für abzählbar-unendliches A) der Elemente von A wählen und die Summe

$$\sum_{i=1}^n f(\omega_i)$$
 bzw. $\sum_{i=1}^\infty f(\omega_i) := \lim_{n o \infty} \sum_{i=1}^n f(\omega_i)$

bilden. Dabei hängt der Wert der Summe nicht von der Wahl der Reihenfolge ab, da man Summen <u>mit nicht-negativen Summanden</u> beliebig umordnen kann, ohne den Wert der Summe zu verändern (vgl. Kapitel A.4).

Ähnliche Umordnungen werden im Folgenden stillschweigend verwendet. Ist etwa $A = \bigcup_{i \in I} A_i$, wobei I eine abzählbare Indexmenge ist und jedes Element von A in <u>genau einer</u> Teilmenge A_i liegt, so gilt

$$\sum_{i \in A} f(\omega) \stackrel{\textit{Umordnen}}{=} \sum_{i \in I} \sum_{\omega \in A_i} f(\omega).$$

Bezeichnungen

Im Folgenden seien (Ω, f) und $(\Omega, \mathfrak{P}(\Omega), \mathbb{P})$ wie in Definition 1.1.

Bemerkung 1.3 (Bezeichnungen)

```
Es seien \omega \in \Omega und A \in \mathfrak{P}(\Omega).
```

Ω Ergebnismenge / Grundraum / Stichprobenraum

 ω Ergebnis

 $f(\omega)$ W. des Ergebnisses ω f W.dichte / W.funktio

f W.dichte / W.funktion (gibt die W.en der Ergebnisse an)

A Ereignis

 $\mathbb{P}(A)$ W. des Ereignisses A

 \mathbb{P} W.maß / W.verteilung (gibt die W.en der Ereignisse an)

A Ereignis

 $\{\omega\}$ Elementarereignis

 $\mathbb{P}(\{\omega\}) = f(\omega)$ Elementar-W.

Ω sicheres Ereignis

Ø unmögliches Ereignis

A tritt ein. Es erscheint ein Ergebnis $\omega \in A$. A tritt nicht ein. Es erscheint ein Ergebnis $\omega \notin A$.

Holger Kösters Stochastik Rostock, 24.10.2019 26 / 258

Laplace-Experimente

Ein wichtiger Spezialfall liegt vor, wenn der W.raum endlich ist und jedes Ergebnis die gleiche Chance des Eintretens besitzt:

Bemerkung 1.4 (Gleichverteilung)

Ist $\Omega \neq \emptyset$ endlich und gilt $f(\omega) = 1/|\Omega|$ für alle $\omega \in \Omega$, so heißt die zugehörige W.verteilung $\mathbb P$ (diskrete) Gleichverteilung auf Ω , kurz $\mathcal U_\Omega$. In diesem Fall gilt

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{\textit{Anzahl der für A günstigen Fälle}}{\textit{Anzahl der möglichen Fälle}} \qquad \forall \, A \in \mathfrak{P}(\Omega) \,,$$

d. h. die Bestimmung von W.en lässt sich auf die Bestimmung von Anzahlen zurückführen.

4□ > 4□ > 4 = > 4 = > = 90

27 / 258

Laplace-Experimente

Ein wichtiger Spezialfall liegt vor, wenn der W.raum endlich ist und jedes Ergebnis die gleiche Chance des Eintretens besitzt:

Bemerkung 1.4 (Gleichverteilung)

Ist $\Omega \neq \emptyset$ endlich und gilt $f(\omega) = 1/|\Omega|$ für alle $\omega \in \Omega$, so heißt die zugehörige W.verteilung $\mathbb P$ (diskrete) Gleichverteilung auf Ω , kurz $\mathcal U_\Omega$. In diesem Fall gilt

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl der für A günstigen F\"{a}lle}}{\text{Anzahl der m\"{o}glichen F\"{a}lle}} \qquad \forall \, A \in \mathfrak{P}(\Omega) \,,$$

d. h. die Bestimmung von W.en lässt sich auf die Bestimmung von Anzahlen zurückführen.

Beachte, dass die Formel in Bem. 1.4 nur anwendbar ist, wenn eine Gleichverteilung vorliegt. Manchmal erweist es sich daher als nützlich, den W.raum geschickt zu wählen, so dass man mit der Gleichverteilung arbeiten kann.

Holger Kösters Stochastik Rostock, 24.10.2019 27 / 258

Laplace-Experimente

Ein wichtiger Spezialfall liegt vor, wenn der W.raum endlich ist und jedes Ergebnis die gleiche Chance des Eintretens besitzt:

Bemerkung 1.4 (Gleichverteilung)

Ist $\Omega \neq \emptyset$ endlich und gilt $f(\omega) = 1/|\Omega|$ für alle $\omega \in \Omega$, so heißt die zugehörige W.verteilung $\mathbb P$ (diskrete) Gleichverteilung auf Ω , kurz $\mathcal U_\Omega$. In diesem Fall gilt

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{\textit{Anzahl der für A günstigen Fälle}}{\textit{Anzahl der möglichen Fälle}} \qquad \forall \, A \in \mathfrak{P}(\Omega) \,,$$

d. h. die Bestimmung von W.en lässt sich auf die Bestimmung von Anzahlen zurückführen.

In der Situation von Bem. 1.4 spricht man auch von Laplace-Experimenten. Wir werden diese Bezeichnung allerdings vermeiden, weil für uns Experimente die realen Vorgänge sind, während wir die math. Modelle W.räume nennen.

Holger Kösters Stochastik Rostock, 24.10.2019 27 / 258

naa

Rechenoperationen und Rechenregeln für Mengen

Bemerkung 1.5

Da Ereignisse formal Teilmengen von Ω sind, können wir mit Hilfe mengentheoretischer Operationen aus gegebenen Ereignissen A, B, C_n $(n \in \mathbb{N})$ neue Ereignisse konstruieren:

Modell	Bezeichnung	Interpretation
A^c	Komplement / Gegenereignis	A tritt nicht ein.
$A \cap B$	Durchschnitt	A und B treten ein.
$A \cup B$	Vereinigung	A oder B treten ein.
$A \Delta B$	symmetrische Differenz	Entweder A oder B tritt ein.
$A \setminus B$	mengentheoretische Differenz	A tritt ein, B tritt nicht ein.
$\bigcap_{n=1}^{\infty} C_n$	(abzählbarer) Durchschnitt	Alle Ereignisse C _n treten ein.
$\bigcup_{n=1}^{\infty} C_n$	(abzählbare) Vereinigung	Mindestens ein Ereignis C _n tritt ein.
	_n C _m limes superior	Unendlich viele Ereignisse C_n treten ein.
$\bigcup_{n=1}^{\infty}\bigcap_{m=1}^{\infty}$	_n C _m limes inferior	Fast alle Ereignisse C_n treten ein.

4 D F 4 D F 4 D F 4 D F

naa

Rechenoperationen und Rechenregeln für Mengen

```
Es gelten dann die üblichen Rechenregeln:
(A^c)^c = A (Involution)
(A \cup B)^c = A^c \cap B^c (de Morgan'sche Regel)
(A \cap B)^c = A^c \cup B^c (de Morgan'sche Regel)
A \cup B = B \cup A (Kommutativgesetz)
A \cap B = B \cap A (Kommutativgesetz)
(A \cup B) \cup C = A \cup (B \cup C) (Assoziativgesetz)
(A \cap B) \cap C = A \cap (B \cap C) (Assoziativgesetz)
A \cup (B \cap C) = (A \cup B) \cap (A \cup C) (Distributivgesetz)
A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (Distributivgesetz)
(A \cup B) \cap A = A (Absorptionsgesetz)
(A \cap B) \cup A = A (Absorptionsgesetz)
Ahnliches gilt für Durchschnitte und Vereinigungen von mehr als zwei Mengen:
(\bigcup_{n=1}^{\infty} C_n)^c = \bigcap_{n=1}^{\infty} C_n^c (de Morgan'sche Regel)
(\bigcap_{n=1}^{\infty} C_n)^c = \bigcup_{n=1}^{\infty} C_n^c (de Morgan'sche Regel)
A \cup (\bigcap_{n=1}^{\infty} C_n) = \bigcap_{n=1}^{\infty} (A \cup C_n) (Distributivgesetz)
A \cap (\bigcup_{n=1}^{\infty} C_n) = \bigcup_{n=1}^{\infty} (A \cap C_n) (Distributivgesetz)
```

Satz 1.6 (Eigenschaften von W.maßen)

Für jede diskreten W.raum $(\Omega, \mathfrak{P}(\Omega), \mathbb{P})$ gilt:

- (1) $\forall A \in \mathfrak{P}(\Omega) : \mathbb{P}(A) \geq 0$ (Nicht-Negativität)
- (2) $\mathbb{P}(\Omega) = 1$ (Normiertheit)
- (3) $\forall A_1, \dots, A_n \in \mathfrak{P}(\Omega) : A_1, \dots, A_n$ paarweise disjunkt $\Rightarrow \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$ (Additivität)
- (3') $\forall A_1, A_2, \ldots \in \mathfrak{P}(\Omega) : A_1, A_2, \ldots$ paarweise disjunkt $\Rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ (σ -Additivität)

Holger Kösters Stochastik Rostock, 24.10.2019 30 / 258

Satz 1.6 (Eigenschaften von W.maßen)

Für jede diskreten W.raum $(\Omega, \mathfrak{P}(\Omega), \mathbb{P})$ gilt:

(1)
$$\forall A \in \mathfrak{P}(\Omega) : \mathbb{P}(A) \geq 0$$
 (Nicht-Negativität)

- (2) $\mathbb{P}(\Omega) = 1$ (Normiertheit)
- (3) $\forall A_1, \dots, A_n \in \mathfrak{P}(\Omega) : A_1, \dots, A_n$ paarweise disjunkt $\Rightarrow \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$ (Additivität)
- (3') $\forall A_1, A_2, \ldots \in \mathfrak{P}(\Omega) : A_1, A_2, \ldots$ paarweise disjunkt $\Rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ (σ -Additivität)
- (4) $\forall A \in \mathfrak{P}(\Omega) : \mathbb{P}(A^c) = 1 \mathbb{P}(A)$ (Regel von der Gegen-W.)
- (5) $\forall A \in \mathfrak{P}(\Omega) : \mathbb{P}(A) \leq 1$
- (6) $\mathbb{P}(\emptyset) = 0$
- (7) $\forall A, B \in \mathfrak{P}(\Omega) : A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ (Monotonie)
- (8) $\forall A, B \in \mathfrak{P}(\Omega) : A \subseteq B \Rightarrow \mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$ (Subtraktivität)
- (9) $\forall A_1, \dots, A_n \in \mathfrak{P}(\Omega) : \mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i)$ (Subadditivität)
- (9') $\forall A_1, A_2, \ldots \in \mathfrak{P}(\Omega) : \mathbb{P}(\bigcup_{i=1}^\infty A_i) \leq \sum_{i=1}^\infty \mathbb{P}(A_i)$ (σ -Subadditivität)
- (10) $\forall A_1, \ldots, A_n \in \mathfrak{P}(\Omega) : \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k})$

(Siebformel von Sylvester-Poincaré / Einschluss-Ausschluss-Prinzip)

Holger Kösters Stochastik Rostock, 24.10.2019 30 / 258

Eigenschaften von W.maßen

Siebformel von Sylvester-Poincaré / Einschluss-Ausschluss-Prinzip

$$\forall A_1, \ldots, A_n \in \mathfrak{P}(\Omega) : \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k})$$

Holger Kösters Stochastik Rostock, 24.10.2019 31 / 258

Eigenschaften von W.maßen

Siebformel von Sylvester-Poincaré / Einschluss-Ausschluss-Prinzip

$$\forall A_1, \dots, A_n \in \mathfrak{P}(\Omega) : \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Spezialfall n = 2:

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$$

 Holger Kösters
 Stochastik
 Rostock, 24.10.2019
 31 / 258

Eigenschaften von W.maßen

Siebformel von Sylvester-Poincaré / Einschluss-Ausschluss-Prinzip

$$\forall A_1, \dots, A_n \in \mathfrak{P}(\Omega) : \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Spezialfall n = 2:

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$$

Spezialfall n = 3:

$$\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3)$$
$$- \mathbb{P}(A_1 \cap A_2) - \mathbb{P}(A_1 \cap A_3) - \mathbb{P}(A_2 \cap A_3)$$
$$+ \mathbb{P}(A_1 \cap A_2 \cap A_3)$$

 Holger Kösters
 Stochastik
 Rostock, 24.10.2019
 31 / 258

Beispiel 1.7 (Würfelwurf)

Ein 'fairer' Würfel wird 4-mal geworfen.

- (a) Mit welcher W. fällt mindestens einmal die Sechs?
- (b) Mit welcher W. fällt genau einmal die Sechs?
- (c) Mit welcher W. ist das größte Ergebnis eine Vier?

Holger Kösters Stochastik Rostock, 24.10.2019 32 / 258

Beispiel 1.7 (Würfelwurf)

Ein 'fairer' Würfel wird 4-mal geworfen.

- $\Omega = \{(\omega_1, \omega_2, \omega_3, \omega_4) : \omega_i \in \{1, \dots, 6\} \text{ für } i = 1, 2, 3, 4\}$ (wobei $\omega_i \triangleq Augenzahl \text{ im } i\text{-ten Wurf})$
- $f(\omega) := 1/|\Omega| \ \forall \ \omega \in \Omega \ oder \ \mathbb{P} := \textit{Gleichvtlg. auf } \Omega$ (Begründung: Symmetrie)
- (a) Mit welcher W. fällt mindestens einmal die Sechs?
- (b) Mit welcher W. fällt genau einmal die Sechs?
- (c) Mit welcher W. ist das größte Ergebnis eine Vier?

32 / 258

Beispiel 1.7 (Würfelwurf)

Ein 'fairer' Würfel wird 4-mal geworfen.

- $\Omega = \{(\omega_1, \omega_2, \omega_3, \omega_4) : \omega_i \in \{1, \dots, 6\} \text{ für } i = 1, 2, 3, 4\}$ (wobei $\omega_i \triangleq Augenzahl im i-ten Wurf$)
- $f(\omega) := 1/|\Omega| \ \forall \omega \in \Omega \ oder \mathbb{P} := Gleichvtlg. \ auf \ \Omega$ (Begründung: Symmetrie)
- (a) Mit welcher W. fällt mindestens einmal die Sechs?
 - A: "mindestens einmal die Sechs", $A = \{\omega \in \Omega : \exists i \in \{1, 2, 3, 4\} : \omega_i = 6\}$
 - Idee: Übergang zum Komplement
 - A^c : "nie die Sechs", $A^c = \{ \omega \in \Omega : \forall i \in \{1, 2, 3, 4\} : \omega_i \neq 6 \}$
 - $\bullet \mathbb{P}(A^c) = \frac{|A^c|}{|\Omega|} = \frac{5^4}{6^4} = \frac{625}{1296}$
 - $\mathbb{P}(A) = 1 \mathbb{P}(A^c) = 1 \frac{625}{1206} = \frac{671}{1206} \approx 0.518$
- (b) Mit welcher W. fällt genau einmal die Sechs?
- (c) Mit welcher W. ist das größte Ergebnis eine Vier?

Beispiel 1.7 (Würfelwurf)

Ein 'fairer' Würfel wird 4-mal geworfen.

- $\Omega = \{(\omega_1, \omega_2, \omega_3, \omega_4) : \omega_i \in \{1, \dots, 6\} \text{ für } i = 1, 2, 3, 4\}$ (wobei $\omega_i \triangleq Augenzahl \text{ im } i\text{-ten Wurf})$
- $f(\omega) := 1/|\Omega| \ \forall \ \omega \in \Omega \ oder \ \mathbb{P} := \textit{Gleichvtlg. auf } \Omega$ (Begründung: Symmetrie)
- (a) Mit welcher W. fällt mindestens einmal die Sechs?
- (b) Mit welcher W. fällt genau einmal die Sechs?
 - B : "genau einmal die Sechs", $B = \{\omega \in \Omega : \exists ! j \in \{1, 2, 3, 4\} : \omega_j = 6\}$
 - Idee: geschickte Zerlegung
 - B_i : "die Sechs genau im i-ten Wurf", $B_i = \{\omega \in B : \omega_i = 6\}$
 - $\mathbb{P}(B_i) = \frac{|B_i|}{|\Omega|} = \frac{5^3}{6^4} = \frac{125}{1296}$
 - $\bullet \ \mathbb{P}(B) = \mathbb{P}(B_1 \cup \cdots \cup B_4) \underset{Add}{=} \mathbb{P}(B_1) + \cdots + \mathbb{P}(B_4) = \frac{500}{1296} [\approx 0.386]$
- (c) Mit welcher W. ist das größte Ergebnis eine Vier?

32 / 258

Beispiel 1.7 (Würfelwurf)

Ein 'fairer' Würfel wird 4-mal geworfen.

- $\Omega = \{(\omega_1, \omega_2, \omega_3, \omega_4) : \omega_i \in \{1, \dots, 6\} \text{ für } i = 1, 2, 3, 4\}$ (wobei $\omega_i \triangleq Augenzahl \text{ im } i\text{-ten Wurf})$
- $f(\omega) := 1/|\Omega| \ \forall \ \omega \in \Omega \ oder \ \mathbb{P} := Gleichvtlg.$ auf Ω (Begründung: Symmetrie)
- (a) Mit welcher W. fällt mindestens einmal die Sechs?
- (b) Mit welcher W. fällt genau einmal die Sechs?
- (c) Mit welcher W. ist das größte Ergebnis eine Vier?
 - C: "größte Augenzahl = 4", $C = \{\omega \in \Omega : \max_{i=1,\dots,4} \omega_i = 4\}$
 - Idee: geschickte Zurückführung auf einfachere Ereignisse
 - C_i : "größte Augenzahl $\leq i$ ", $C_i = \{\omega \in \Omega : (\forall j : \omega_j \leq i)\}$
 - $\bullet \ \mathbb{P}(C_i) = \frac{|C_i|}{|\Omega|} = \frac{i^4}{6^4}$
 - $\mathbb{P}(C) = \mathbb{P}(C_4 \setminus C_3) = \sum_{Subtrakt.} \mathbb{P}(C_4) \mathbb{P}(C_3) = \frac{256}{1296} \frac{81}{1296} = \frac{175}{1296} = 0.135$

- (1) $\forall A \in \mathfrak{P}(\Omega) : \mathbb{P}(A) \geq 0$
- (2) $\mathbb{P}(\Omega) = 1$
- (3) $\forall A_1, \dots, A_n \in \mathfrak{P}(\Omega) : A_1, \dots, A_n$ paarweise disjunkt $\Rightarrow \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$ (Additivität)

Lemma 1.8 (Charakterisierung der σ -Additivität)

Es sei $\Omega \neq \emptyset$ eine nicht-leere Menge und $\mathbb{P}: \mathfrak{P}(\Omega) \to \mathbb{R}$ eine Abbildung mit den obigen Eigenschaften (1) – (3). Dann sind äquivalent:

- (a) $(\sigma\text{-Additivit} ilde{a}t)$ Für jede Folge $(A_n)_{n\in\mathbb{N}}$ paarweise disjunkter Mengen in $\mathfrak{P}(\Omega)$ gilt $\mathbb{P}(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mathbb{P}(A_n)$.
- (b) (Stetigkeit von unten) Für jede aufsteigende Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathfrak{P}(\Omega)$ gilt $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n=1}^{\infty} A_n)$.
- (c) (Stetigkeit von oben) Für jede absteigende Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathfrak{P}(\Omega)$ gilt $\lim_{n\to\infty}\mathbb{P}(A_n)=\mathbb{P}(\bigcap_{n=1}^\infty A_n)$.

Dabei heißt eine Folge $(A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{P}(\Omega)$ aufsteigend bzw. absteigend, falls für alle $n\in\mathbb{N}$ $A_n\subseteq A_{n+1}$ bzw. $A_n\supseteq A_{n+1}$ gilt.

4□ > 4酉 > 4 壹 > 4 壹 > 壹 = ♥ Q (

Lemma 1.8 (Charakterisierung der σ -Additivität)

Es sei $\Omega \neq \emptyset$ eine nicht-leere Menge und $\mathbb{P}: \mathfrak{P}(\Omega) \to \mathbb{R}$ eine Abbildung mit den obigen Eigenschaften (1) – (3). Dann sind äquivalent:

- (a) $(\sigma$ -Additivität) Für jede Folge $(A_n)_{n\in\mathbb{N}}$ paarweise disjunkter Mengen in $\mathfrak{P}(\Omega)$ gilt $\mathbb{P}(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mathbb{P}(A_n)$.
- (b) (Stetigkeit von unten) Für jede aufsteigende Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathfrak{P}(\Omega)$ gilt $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n=1}^{\infty} A_n)$.
- (c) (Stetigkeit von oben) Für jede absteigende Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathfrak{P}(\Omega)$ gilt $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcap_{n=1}^{\infty} A_n)$.

Dabei heißt eine Folge $(A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{P}(\Omega)$ aufsteigend bzw. absteigend, falls für alle $n\in\mathbb{N}$ $A_n\subseteq A_{n+1}$ bzw. $A_n\supseteq A_{n+1}$ gilt.

Bemerkung: Ist $(A_n)_{n\in\mathbb{N}}\subseteq\mathfrak{P}(\Omega)$ eine aufsteigende bzw. absteigende Folge und $A=\bigcup_{n=1}^{\infty}A_n$ bzw. $A=\bigcap_{n=1}^{\infty}A_n$, so schreibt man auch $A_n\uparrow A$ bzw. $A_n\downarrow A$. Damit kann man die Eigenschaften (b) und (c) auch wie folgt formulieren:

$$\left[A_n \uparrow A \ \Rightarrow \ \mathbb{P}(A_n) \uparrow \mathbb{P}(A)\right]$$
 bzw. $\left[A_n \downarrow A \ \Rightarrow \ \mathbb{P}(A_n) \downarrow \mathbb{P}(A)\right]$

Idee: Approximation von innen bzw. außen (vgl. Volumen-Bestimmung in der Geometrie)

Holger Kösters Stochastik Rostock, 24.10.2019 33 / 258

Kombinatorik (Satz 1.9)

Problemstellung: Aus einer Menge mit n Elementen (o. E. $\{1, \ldots, n\}$) wird k-mal ein Element ausgewählt. Wie viele Möglichkeiten gibt es?

	mit Wiederholung	ohne Wiederholung
geordnete Stichproben	Fall I	Fall II
ungeordnete Stichproben	Fall IV	Fall III

34 / 258

Kombinatorik (Satz 1.9)

Problemstellung: Aus einer Menge mit n Elementen (o. E. $\{1, \ldots, n\}$) wird k-mal ein Element ausgewählt. Wie viele Möglichkeiten gibt es?

	mit Wiederholung	ohne Wiederholung
geordnete Stichproben	Fall I	Fall II
ungeordnete Stichproben	Fall IV	Fall III

Fall I (Geordnete Stichproben mit Wiederholung)

$$\Omega_{\mathsf{I}} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\} \text{ für } i = 1, \dots, k\} =: \{1, \dots, n\}^k |\Omega_{\mathsf{I}}| = n \cdot n \cdot \dots \cdot n = n^k$$

Fall II (Geordnete Stichproben ohne Wiederholung)

$$\Omega_{\text{II}} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\} \text{ für } i = 1, \dots, k \text{ und } \omega_i \neq \omega_j \text{ für } i \neq j\} \\
|\Omega_{\text{II}}| = n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Fall III (Ungeordnete Stichproben ohne Wiederholung)

$$\Omega_{\text{III}} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\} \text{ für } i = 1, \dots, k \text{ und } \omega_1 < \dots < \omega_k\} \\
|\Omega_{\text{III}}| = \frac{n!}{(n-k)! \ k!} = \binom{n}{k}$$

Fall IV (Ungeordnete Stichproben mit Wiederholung)

$$\Omega_{\mathsf{IV}} = \{(\omega_1, \dots, \omega_k) : \omega_i \in \{1, \dots, n\} \text{ für } i = 1, \dots, k \text{ und } \omega_1 \leq \dots \leq \omega_k\}$$
 $|\Omega_{\mathsf{IV}}| = \binom{n+k-1}{k}$

Kombinatorik (Bemerkungen zu Satz 1.9)

Bemerkung 1.10

In Fall II ist der Fall n=k von besonderem Interesse; hier ist Ω_{II} die Menge der <u>Permutationen</u> (<u>Umordnungen</u>) der n Elemente, und es gilt $|\Omega_{II}|=n!$.

Bemerkung 1.11

Um die Größe von n! (für großes n) bzw. von $\binom{n}{k}$ (für großes k und n-k) abzuschätzen, kann man die <u>Stirling-Formel</u> verwenden:

$$n! \sim \sqrt{2\pi n} \, (n/e)^n \quad (n \to \infty) \quad \left[\iff \lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \, (n/e)^n} = 1 \, \right].$$

◆ロト ◆昼 ト ◆ 差 ト → 差 → りへぐ

35 / 258

Holger Kösters Stochastik Rostock, 24.10.2019

Kombinatorik (Bemerkungen zu Satz 1.9)

Bemerkung 1.12

Die obige Problemstellung lässt sich unterschiedlich interpretieren:

1. Urnenmodell

Aus einer Urne mit n Kugeln (mit den Nummern 1 – n) wird k-mal gezogen.

- mit / ohne Zurücklegen ≜ mit / ohne Wiederholung
- mit / ohne Berücksichtigung der Reihenfolge
 ≜ geordnete / ungeordnete Stichproben

2. Teilchen-Fächer-Modell

k Teilchen werden auf n Fächer (mit den Nummern 1 – n) verteilt.

- mit / ohne Mehrfachbelegung ≜ mit / ohne Wiederholung
- unterscheidbare / nicht-unterscheidbare Teilchen
 ≜ geordnete / ungeordnete Stichproben

Kombinatorik (Bemerkungen zu Satz 1.9)

Bemerkung 1.12

Die obige Problemstellung lässt sich unterschiedlich interpretieren:

1. Urnenmodell

Aus einer Urne mit n Kugeln (mit den Nummern 1 – n) wird k-mal gezogen.

- mit / ohne Zurücklegen ≜ mit / ohne Wiederholung
- mit / ohne Berücksichtigung der Reihenfolge
 ≜ geordnete / ungeordnete Stichproben

2. Teilchen-Fächer-Modell

k Teilchen werden auf n Fächer (mit den Nummern 1 – n) verteilt.

- mit / ohne $Mehrfachbelegung \triangleq mit$ / ohne Wiederholung
- unterscheidbare / nicht-unterscheidbare Teilchen
 ≜ geordnete / ungeordnete Stichproben

Zusammenhang:

Wähle für jedes Teilchen das Fach, in welches das Teilchen gelegt wird.

Beispiele zur Kombinatorik I

Beispiele 1.13

- (a) (Wörter) Aus einem Alphabet mit n "Buchstaben" werden "Wörter" der Länge n gebildet, wobei Buchstaben mehrfach verwendet werden dürfen. Mit welcher W. enthält ein rein zufälliges Wort keinen Buchstaben doppelt?
- (b) (Murmeln) 6 nicht unterscheidbare Murmeln werden auf 3 unterscheidbare Dosen verteilt. Wie viele Möglichkeiten gibt es?
- (c) (Murmeln) 6 nicht unterscheidbare Murmeln werden auf 3 nicht unterscheidbare Dosen verteilt. Wie viele Möglichkeiten gibt es?
- (d) (Wörter) Aus den Buchstaben des Wortes ANANAS werden "Wörter" der Länge 6 gebidet, wobei jeder Buchstabe genau so oft verwendet werden muss, wie er in ANANAS vorkommt. Wie viele Möglichkeiten gibt es?
- (e) (Lotto) Sie geben beim Lotto "6 aus 49" (mit Superzahl) einen Tipp ab. Wie groß ist die W. für die Gewinnklassen I, II, III, . . . ?
- (f) (Münzwurf) Es werden n faire Münzen gleichzeitig geworfen. Mit welcher W. erhalten wir (genau) k-mal "Kopf", $k=0,\ldots,n$?

4 D > 4 B > 4 E > 4 E > 9 Q P

Beispiele zur Kombinatorik II

Beispiel 1.13(e): Lotto

(e) (Lotto) Sie geben beim Lotto "6 aus 49" (mit Superzahl) einen Tipp ab. Wie groß ist die W. für die Gewinnklassen I, II, III, ...?

	I	
Gewinnklasse	Beschreibung	Wahrscheinlichkeit
I	6 Richtige mit Superzahl	$\frac{1}{139838160} \approx 1:139.838.160$
П	6 Richtige (ohne Superzahl)	$\frac{9}{139838160} \approx 1:15.537.573$
III	5 Richtige mit Superzahl	$\frac{258}{139838160} \approx 1:542.008$
IV	5 Richtige (ohne Superzahl)	$\frac{2322}{139838160} \approx 1:60.223$
V	4 Richtige mit Superzahl	$\frac{13545}{139838160} \approx 1:10.324$
VI	4 Richtige (ohne Superzahl)	$\frac{121905}{139838160} \approx 1:1.147$
VII	3 Richtige mit Superzahl	$\frac{246820}{139838160} \approx 1:567$
VIII	3 Richtige (ohne Superzahl)	$\frac{2221380}{139838160} \approx 1:63$
IX	2 Richtige mit Superzahl	$\frac{1851150}{139838160} \approx 1:76$

Beispiele zur Kombinatorik III

Beispiel 1.13(f): Münzwurf

(f) (Münzwurf) Es werden n faire Münzen gleichzeitig geworfen. Mit welcher W. erhalten wir (genau) k-mal "Kopf", $k=0,\ldots,n$?

Die Ereignisse A_0, \ldots, A_n bilden eine Zerlegung von Ω (d. h. A_0, \ldots, A_n sind nicht-leer, und jedes $\omega \in \Omega$ ist in genau einer Menge A_k enthalten).

$$\Rightarrow \quad \sum_{k=0}^n \mathbb{P}(A_k) \ \underset{\mathsf{Additivit\"{a}t}}{=} \ \mathbb{P}(\bigcup_{k=0}^n A_k) = \mathbb{P}(\Omega) = 1 \, .$$

Wir können die Werte $\widetilde{f}(k) := \mathbb{P}(A_k)$ verwenden, um einen neuen W.raum mit der Grundmenge $\widetilde{\Omega} := \{0, \ldots, n\}$ zu konstruieren.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Holger Kösters Stochastik Rostock, 24.10.2019 38 / 258

Zusammenfassung:

- Zufallabhängige Vorgänge, bei denen die Menge der möglichen Ergebnisse abzählbar ist, lassen sich durch diskrete W.räume beschreiben.
- Wir geben diskrete W.räume an, indem wir die Menge Ω der möglichen Ergebnisse sowie die W.dichte $f:\Omega \to [0,1]$ angeben.
- Mit Hilfe der Rechenregeln für W.maße lassen sich die W.en von komplizierteren Ereignissen häufig auf die W.en von einfacheren Ereignissen zurückführen.
- Liegt eine diskrete Gleichverteilung vor, so lässt sich die Berechnung von W.en auf die Berechnung von Anzahlen zurückführen.
 (→ Kombinatorik)

Zusammenfassung:

- Zufallabhängige Vorgänge, bei denen die Menge der möglichen Ergebnisse abzählbar ist, lassen sich durch diskrete W.räume beschreiben.
- Wir geben diskrete W.räume an, indem wir die Menge Ω der möglichen Ergebnisse sowie die W.dichte $f:\Omega \to [0,1]$ angeben.
- Mit Hilfe der Rechenregeln für W.maße lassen sich die W.en von komplizierteren Ereignissen häufig auf die W.en von einfacheren Ereignissen zurückführen.
- Liegt eine diskrete Gleichverteilung vor, so lässt sich die Berechnung von W.en auf die Berechnung von Anzahlen zurückführen.
 (→ Kombinatorik)

Vielen Dank für Ihre Aufmerksamkeit!