Reproducible Research: Peer Assessment 1

Note: Full project instructions were copied in this file for documentation and ease of completing the assignment. Throughout the report, all code generating output is included.

Loading and preprocessing the data

Required packages (from the wonderful Hadleyverse)

```
library(readr)
library(dplyr)
library(knitr)
library(ggplot2)
```

- 1. Load the data
- 2. Process/transform the data into a format suitable for analysis

```
Data <- tbl_df(read_csv("activity.zip",</pre>
                        skip=1,
                        col_names=c("Steps","Date","Interval"),
                        col_types=list(col_integer(),col_date(),col_integer())))
#verifed data was loaded as expected and reviewed its format
#no further processing needed at this point
str(Data); summary(Data); Data
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                17568 obs. of 3 variables:
    $ Steps : int NA ...
              : Date, format: "2012-10-01" "2012-10-01" ...
   $ Interval: int 0 5 10 15 20 25 30 35 40 45 ...
##
        Steps
                          Date
                                             Interval
##
          : 0.00
                     Min.
                            :2012-10-01
                                          Min.
                                                :
                                                     0.0
   1st Qu.: 0.00
                    1st Qu.:2012-10-16
                                          1st Qu.: 588.8
##
   Median: 0.00
                     Median :2012-10-31
                                          Median :1177.5
          : 37.38
                           :2012-10-31
                                          Mean
##
  Mean
                     Mean
                                                 :1177.5
##
    3rd Qu.: 12.00
                     3rd Qu.:2012-11-15
                                          3rd Qu.:1766.2
##
  Max.
           :806.00
                     Max.
                            :2012-11-30
                                          Max.
                                                 :2355.0
   NA's
           :2304
## Source: local data frame [17,568 x 3]
##
##
      Steps
                  Date Interval
## 1
        NA 2012-10-01
                              0
        NA 2012-10-01
                              5
## 2
## 3
        NA 2012-10-01
                             10
## 4
        NA 2012-10-01
                             15
## 5
       NA 2012-10-01
                             20
        NA 2012-10-01
## 6
                             25
```

```
## 7 NA 2012-10-01 30
## 8 NA 2012-10-01 35
## 9 NA 2012-10-01 40
## 10 NA 2012-10-01 45
```

What is mean total number of steps taken per day?

For this part of the assignment, ignore the missing values in the dataset

1. Calculate the total number of steps taken per day

Date	${\it Total Steps}$
2012-10-02	126
2012-10-03	11352
2012-10-04	12116
2012-10-05	13294
2012-10-06	15420
2012-10-07	11015
2012-10-09	12811
2012-10-10	9900
2012-10-11	10304
2012-10-12	17382
2012-10-13	12426
2012-10-14	15098
2012-10-15	10139
2012-10-16	15084
2012-10-17	13452
2012-10-18	10056
2012-10-19	11829
2012-10-20	10395
2012-10-21	8821
2012-10-22	13460
2012-10-23	8918
2012-10-24	8355
2012-10-25	2492
2012-10-26	6778
2012-10-27	10119
2012-10-28	11458
2012-10-29	5018
2012-10-30	9819
2012-10-31	15414
2012-11-02	10600
2012-11-03	10571
2012-11-05	10439
2012-11-06	8334

Date	TotalSteps
2012-11-07	12883
2012-11-08	3219
2012-11-11	12608
2012-11-12	10765
2012-11-13	7336
2012-11-15	41
2012-11-16	5441
2012-11-17	14339
2012-11-18	15110
2012-11-19	8841
2012-11-20	4472
2012-11-21	12787
2012-11-22	20427
2012-11-23	21194
2012-11-24	14478
2012-11-25	11834
2012-11-26	11162
2012-11-27	13646
2012-11-28	10183
2012-11-29	7047

2. Make a histogram of the total number of steps taken each day

Histogram of Total Steps Taken Each Day (with blue line showing the mean and dashed orange line shown the media

3. Calculate and report the mean and median of the total number of steps taken per day

```
mean(DaySteps$TotalSteps);median(DaySteps$TotalSteps)
```

```
## [1] 10766.19
```

[1] 10765

What is the average daily activity pattern?

1. Make a time series plot (i.e., type="1") of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all days (y-axis)

2. Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?

Interval	AverageSteps
835	206.1698

Imputing missing values

Note that there are a number of days/intervals where there are missing values (coded as NA). The presence of missing days may introduce bias into some calculations or summaries of the data.

1. Calculate and report the total number of missing values in the dataset (i.e. the total number of rows with NAs)

```
#288 missing intervals equals one day (288*5=1440; 1440/60=24)
#8 days have all their Step values missing
kable(MissingByDate)
```

Date	MissingCount
2012-10-01	288
2012-10-08	288
2012-11-01	288
2012-11-04	288
2012-11-09	288
2012-11-10	288
2012-11-14	288
2012-11-30	288

```
#total number of rows with NAs
sum(MissingByDate$MissingCount)
```

[1] 2304

- 2. Devise a strategy for filling in all of the missing values in the dataset. The strategy does not need to be sophisticated. For example, you could use the mean/median for that day, or the mean for that 5-minute interval, etc.
- 3. Create a new dataset that is equal to the original dataset but with the missing data filled in.

Steps	Date	Interval	AverageSteps	ImputedSteps
NA	2012-10-01	0	1.7169811	1.7169811
NA	2012-10-01	5	0.3396226	0.3396226
NA	2012-10-01	10	0.1320755	0.1320755
NA	2012-10-01	15	0.1509434	0.1509434
NA	2012-10-01	20	0.0754717	0.0754717
0	2012-10-03	545	18.3396226	0.0000000
90	2012-10-03	550	39.4528302	90.0000000
411	2012-10-03	555	44.4905660	411.0000000
413	2012-10-03	600	31.4905660	413.0000000
415	2012-10-03	605	49.2641509	415.0000000
519	2012-10-03	610	53.7735849	519.0000000

4. Make a histogram of the total number of steps taken each day. Calculate and report the mean and median total number of steps taken per day. Do these values differ from the estimates from the first part of the assignment? What is the impact of imputing missing data on the estimates of the total daily number of steps?

<pre>kable(bind_rows(OrigDataStats,ImpDataStats)</pre>
--

DataType	MeanSteps	MedianSteps
Original	10766.19	10765.00
Imputed	10766.19	10766.19

Are there differences in activity patterns between weekdays and weekends?

For this part the weekdays() function may be of some help here. Use the dataset with the filled-in missing values for this part.

1. Create a new factor variable in the dataset with two levels - "weekday" and "weekend" indicating whether a given date is a weekday or weekend day.

DayType
Weekday Weekend

2. Make a panel plot containing a time series plot (i.e. type = "l") of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all weekday days or weekend days (y-axis). See the README file in the GitHub repository to see an example of what this plot should look like using simulated data.

