Chap2-Exercises_LuisCorreia-745724_v4

August 30, 2025

1 MAP5935 - Statistical Learning (Chapter 2 - Statistical Learning)

Prof. Christian Jäkel

https://www.statlearning.com/

1.1 Conceptual Questions

1.1.1 Question 3

(a) Provide a sketch of typical (squared) bias, variance, training error, test error, and Bayes (or irreducible) error curves, on a single plot, as we go from less flexible statistical learning methods towards more flexible approaches. The x-axis should represent the amount of flexibility in the method, and the y-axis should represent the values for each curve. There should be five curves. Make sure to label each one.

Bias-Variance Decomposition — Conceptual Solution On one plot: x-axis = Model flexibility (left = rigid, right = very flexible). y-axis = Error / magnitude.

- Squared Bias: monotonically decreasing curve (starts high on the left, drops toward ~0 on the right).
- Variance: monotonically increasing curve (starts low on the left, rises on the right).
- Training Error: monotonically decreasing curve (typically very low near the most flexible end).
- **Test Error**: **U-shaped** curve (decreases at first—sweet spot—then increases as overfitting kicks in).
- Bayes (Irreducible) Error: flat horizontal line (constant across all flexibility).

Measuring Model Flexibility

The x-axis in the bias-variance tradeoff plot represents **model flexibility**.

This is not a universal numeric scale, but rather a measure of how complex or adaptable the model is to fit patterns in the data.

Different model families control flexibility in different ways, as summarized below:

M 11D 1	Flexibility Control	I Di didu (Di di					
Model Family	Parameter(s)	Low Flexibility (Rigid)	High Flexibility (Flexible)				
Polynomial	Polynomial degree	Small (d) (e.g., linear,	Large (d) (e.g., 15th degree)				
Regression	(d)	$quadratic) \rightarrow high bias$	\rightarrow low bias, high variance				
k-Nearest	Number of	Large (k): smoother	Small (k): very wiggly, may				
Neighbors	neighbors (k)	predictions, underfitting	overfit noise				
Decision	Tree depth /	Shallow tree: underfits,	Deep tree: fits training data				
Trees	number of leaves	high bias	closely, high variance				
Regularized	Regularization	Large (): strong	Small (): weak shrinkage,				
Models	strength ()	shrinkage, simple model	complex model				
	(Ridge, Lasso)						
Neural	# Layers, # Units,	Few layers/units, strong	Many layers/units, weak				
Networks	Regularization	regularization	$\operatorname{regularization} \to \operatorname{highly}$				
			flexible				

Key idea:

- Moving left \rightarrow right on the x-axis means allowing the model more capacity to adapt to the data.
- More flexibility reduces bias but increases variance.
- The optimal point balances this trade-off, minimizing **test error**.

(b) Explain why each of the five curves has the shape displayed in part (a). Key Ideas from the Bias-Variance Tradeoff Graph

- Squared Bias decreases as model flexibility increases:
 Rigid models cannot capture complex patterns (high bias), but more flexible models approximate the true function better.
- Variance increases with flexibility:

 Flexible models adapt strongly to the training data, making them sensitive to noise and

sample variation.

- Training Error always decreases with flexibility:

 More flexible models fit the training data better, often driving training error close to zero.
- **Test Error** follows a U-shape:
 - Initially, increasing flexibility reduces error (bias reduction dominates).
 - After a point, variance dominates and test error rises due to overfitting.
- Bayes (Irreducible) Error is constant: Represents inherent noise in the data that no model can reduce.

In Summary:

- The best generalization is achieved near the minimum of the **test error curve**, where bias and variance are balanced.

1.1.2 Question 6

Describe the differences between a parametric and a non-parametric statistical learning approach. What are the advantages of a parametric approach to regression or classification (as opposed to a nonparametric approach)? What are its disadvantages?

Parametric Approaches

• **Definition:** Assume a specific functional form for the relationship between predictors and response.

Example: Linear regression assumes $Y \approx \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n + \varepsilon$.

- Process:
 - 1. Specify the form of the model (e.g., linear, logistic).
 - 2. Estimate a finite set of parameters (e.g., coefficients ()) from the data.

Non-Parametric Approaches

• **Definition:** Do not assume a predetermined functional form.

Instead, they allow the data to determine the model's shape.

Example: k-Nearest Neighbors (kNN), decision trees, splines, kernel methods.

- Process:
 - The model complexity grows with the size of the dataset.
 - The method adapts more flexibly to complex, nonlinear patterns.

Advantages of Parametric Approaches

• Simplicity & Interpretability: Results are easy to understand and explain (e.g., linear coefficients).

- Efficiency with Small Data: Require estimating only a few parameters, so they perform well when the sample size is limited.
- Faster Computation: Training and prediction are typically computationally inexpensive.
- Less Risk of Overfitting (with correct form): When the assumed form is approximately correct, parametric models generalize well.

Disadvantages of Parametric Approaches

- Model Misspecification Risk: If the true relationship deviates from the assumed form, the model may suffer from high bias.
- Limited Flexibility: They struggle to capture highly nonlinear or complex structures in the data.
- **Rigid Assumptions:** Performance depends heavily on whether assumptions (linearity, normality, etc.) hold.

Summary:

- **Parametric models**: simple, interpretable, and efficient with small data, but prone to bias if the functional form is wrong.

- **Non-parametric models**: more flexible and data-driven, but require large sample sizes and can be harder to interpret.

1.2 Applied Questions

1.2.1 Question 8

This exercise relates to the College data set, which can be found in the file College.csv on the book website. It contains a number of variables for 777 different universities and colleges in the US. The variables are:

- **Private**: Public/private indicator
- Apps: Number of applications received
- Accept: Number of applicants accepted
- Enroll: Number of new students enrolled
- Top10perc: New students from top 10 % of high school class
- Top25perc: New students from top 25 % of high school class
- F.Undergrad: Number of full-time undergraduates
- P.Undergrad: Number of part-time undergraduates
- Outstate : Out-of-state tuition
- Room.Board: Room and board costs
- Books: Estimated book costs
- Personal: Estimated personal spending
- **PhD**: Percent of faculty with Ph.D.s
- **Terminal**: Percent of faculty with terminal degree
- S.F.Ratio: Student/faculty ratio

- perc.alumni : Percent of alumni who donate
 Expend : Instructional expenditure per student
- Grad.Rate: Graduation rate

(a) Use the pd.read_csv() function to read the data into Python. Call the loaded data college. Make sure that you have the directory set to the correct location for the data.

```
[2]: # Import libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset
college = pd.read_csv("../Data/College.csv")

# Show basic structure
print(college.shape)
college.head()
```

(777, 19)

	(77	7, 19	9)												
[2]:					Unnam	ned: 0	Private	Apps	Acce	ept 1	Enroll	Top10	perc	\	
	0	Abilene Ch		hrist	ian Unive	rsity	Yes	1660	12	232	721		23		
	1	Adri			phi Unive	University Yes ian College Yes ott College Yes		2186	19	924	512	16			
	2				Adrian Co			1428	10	97	336		22		
	3				Scott Co			417	3	349	137		60		
	4	Alaska Pacific		fic Unive	rsity	Yes	193	1	146 55		55 16				
		Top2	5perc	F.U	ndergrad	P.Uno	dergrad	Outstat	te R	loom.	Board	Books	Pers	onal	\
	0	_	52		2885		537	744	10		3300	450		2200	
	1		29		2683		1227	1228	30		6450	750		1500	
	2		50		1036		99	1125	50		3750	400		1165	
	3		89		510		63	1296	30		5450	450		875	
	4		44		249		869	756	60		4120	800		1500	
		PhD Termin		inal	S.F.Rati	.o pei	rc.alumni	Exper	nd G	rad.	Rate				
	0	70		78	18.	1	12	2 704	11		60				
	1	29		30	12.	2	16	1052	27		56				
	2	53		66	12.	9	30	873	35		54				
	3	92		97	7.	7	37	7 1901	16		59				
	4	76		72	11.	9	2	2 1092	22		15				

(b) Look at the data used in the notebook by creating and running a new cell with just the code college in it. You should notice that the first column is just the name of each university in a column named something like Unnamed: 0. We don't really want pandas to treat this as data. However, it may be handy to have these names for later. Try the following commands and similarly look at the resulting data frames:

```
[3]: college2 = pd.read_csv('..\\Data\\College.csv', index_col =0)
    college3 = college.rename({'Unnamed: 0': 'College'},
    axis=1)
    college3 = college3.set_index('College')
```

This has used the first column in the file as an index for the data frame. This means that pandas has given each row a name corresponding to the appropriate university. Now you should see that the first data column is Private. Note that the names of the colleges appear on the left of the table. We also introduced a new python object above: a dictionary, which is specified by dictionary (key, value) pairs. Keep your modified version of the data with the following:

```
[4]: college = college3
```

(c) Use the describe() method of to produce a numerical summary of the variables in the data set.

[5]: college.describe()

[5]:		Apps	Accep	ot Enr	oll	Top10pe	erc	Тор25ре	erc	\	
	count	777.000000	777.00000		000	777.0000	000	777.0000			
	mean	3001.638353	2018.80437	6 779.972	973	27.558	559	55.7966	354		
	std	3870.201484	2451.11397	1 929.176	190	17.6403	364	19.8047	778		
	min	81.000000	72.00000	00 35.000	0000	1.0000	000	9.0000	000		
	25%	776.000000	604.00000	00 242.000	0000	15.0000	000	41.0000	000		
	50%	1558.000000	1110.00000	00 434.000	0000	23.0000	000	54.0000	000		
	75%	3624.000000	2424.00000	902.000	0000	35.000000		69.000000			
	max	48094.000000	26330.00000	0 6392.000	000	96.0000	000	100.0000	000		
		F.Undergrad	P.Undergra	d Outs	state	Room.I	Board		Book	s	\
	count	777.000000	777.00000			777.00		777.0			•
	mean	3699.907336	855.29858			4357.52		549.3			
	std	4850.420531	1522.43188	37 4023.01	.6484	1096.69		165.1			
	min	139.000000	1.00000			1780.00			0000		
	25%	992.000000	95.00000	0 7320.00	0000	3597.00	00000	470.0			
	50%	1707.000000	353.00000		0000	4200.00	00000	500.0			
	75%	4005.000000	967.00000	0 12925.00	0000	5050.00	00000	600.0	0000	0	
	max	31643.000000	21836.00000	0 21700.00	0000	8124.00	00000	2340.0	0000	0	
		Personal	PhD	Terminal	S I	F.Ratio	nerc	.alumni	\		
	count	777.000000	777.000000	777.000000		.000000	-	.000000	`		
	mean	1340.642214	72.660232	79.702703		.089704		.743887			
	std	677.071454	16.328155	14.722359		.958349		.391801			
	min	250.000000	8.000000	24.000000		500000		.000000			
	25%	850.000000	62.000000	71.000000		500000		.000000			
	50%	1200.000000	75.000000	82.000000		600000		.000000			
	75%	1700.000000	85.000000	92.000000		500000		.000000			
	max	6800.000000	103.000000	100.000000		.800000		.000000			

Expend Grad.Rate

```
777.00000
count
         777.000000
        9660.171171
                       65.46332
mean
std
        5221.768440
                       17.17771
                       10.00000
min
        3186.000000
25%
        6751.000000
                       53.00000
50%
        8377.000000
                       65.00000
75%
       10830.000000
                       78.00000
       56233.000000
                      118.00000
max
```

(d) Use the $pd.plotting.scatter_matrix()$ function to produce a scatterplot matrix of the first columns [Top10perc, Apps, Enroll]. Recall that you can reference a list C of columns of a data frame A using A[C].

```
[6]: _ = pd.plotting.scatter_matrix(college[['Top10perc', 'Apps', 'Enroll']])
```


(e) Use the boxplot() method of college to produce side-by-side boxplots of Outstate versus Private.

```
[7]: sns.boxplot(x="Private", y="Outstate", data=college)
   plt.title("Out-of-State Tuition by Private/Public")
   plt.show()
```


(f) Create a new qualitative variable, called Elite, by binning the Top10perc variable into two groups based on whether or not the proportion of students coming from the top 10% of their high school classes exceeds 50%.

```
[8]: # pd.cut bins (splits) a numeric variable into intervals, doing (0, 50] → "No" and (50, 100] → "Yes"

college['Elite'] = pd.cut(college['Top10perc'], [0,50,100], labels=['No', 4'Yes'])
```

Use the value_counts() method of college['Elite'] to see how many elite universities there are. Finally, use the boxplot() method again to produce side-by-side boxplots of Outstate versus Elite.

```
[9]: # Frequency table (counts)
print(college['Elite'].value_counts())
```

Elite No 699 Yes 78

Name: count, dtype: int64

(g) Use the plot.hist() method of college to produce some histograms with differing numbers of bins for a few of the quantitative variables. The command plt.subplots(2, 2) may be useful: it will divide the plot window into four regions so that four plots can be made simultaneously. By changing the arguments you can divide the screen up in other combinations.

```
[11]: # Choose 4 quantitative variables to explore
vars_to_plot = ['Apps', 'Accept', 'Outstate', 'Grad.Rate']

# Create a 2x2 subplot grid
fig, axes = plt.subplots(2, 2, figsize=(12, 8))

# Loop through variables and plot histograms with different bin sizes
# Method: .ravel() flattens the array into 1D.

for ax, var, bins in zip(axes.ravel(), vars_to_plot, [20, 30, 15, 25]):
    college[var].plot.hist(bins=bins, ax=ax, edgecolor='black')
```

```
ax.set_title(f"Histogram of {var} (bins={bins})")
ax.set_xlabel(var)

plt.tight_layout()
plt.show()
```


(h) Continue exploring the data, and provide a brief summary of what you discover.

```
[12]: # Percentage of PhD per Public and Private institutions
sns.boxplot(x="Private", y="PhD", data=college)
plt.title("Out-of-State Tuition by Private/Public")
plt.show()
```


- Both sectors: high PhD levels
- Public: higher median, less spread
- Private: wider variation, some very low outliers

```
[13]: # Outstate Tuition vs. Graduation Rate (Scatterplot)

# Check if Schools with higher tuition may have better resources and student

support → possibly higher graduation rates.

sns.scatterplot(x="Outstate", y="Grad.Rate", hue="Private", data=college)

plt.title("Graduation Rate vs. Out-of-State Tuition")

plt.show()
```


- There is a **positive relationship** between out-of-state tuition and graduation rate: colleges with higher tuition generally have higher graduation rates.
- Private institutions (blue) cluster at higher tuition levels and often show higher graduation rates compared to public ones.
- Public institutions (orange) tend to concentrate in the lower tuition range (roughly below \$8,000), with graduation rates more widely spread.
- A few schools show unusual graduation rates above 100%, likely data entry or reporting anomalies in the dataset.
- Overall, tuition appears to be an important differentiator: private colleges charge more and, on average, achieve higher graduation rates than public colleges.
- **Positive relation**: higher tuition \rightarrow higher grad rate
- Private schools: higher tuition, higher grad rates
- Public schools: lower tuition, wider grad rate spread
- Outliers: some grad rates > 100%
- [14]: # Expenditure per Student vs. Student-Faculty Ratio (Scatterplot, maybe_ olog-scale for Expend)

```
# The Student-Faculty Ratio (S.F.Ratio) is the number of students per faculty_
member at an institution.

# Check if Instructional expenditure (Expend) should relate to teaching_
resources; schools that spend more might have smaller student-faculty ratios

sns.scatterplot(x="Expend", y="S.F.Ratio", hue="Private", data=college)
plt.xscale("log") # log-scale often helps since Expend is skewed
plt.title("Expenditure per Student vs. Student-Faculty Ratio")
plt.show()
```


- Clear negative relationship: higher instructional expenditures per student are associated with lower student–faculty ratios.
- Private schools (blue) generally spend more per student and achieve lower ratios, reflecting smaller class sizes.
- Public schools (orange) cluster at lower expenditures and higher ratios, meaning larger class sizes.
- A few outliers exist, with unusually high expenditure but still moderate ratios.

• Higher expend \rightarrow lower S.F. ratio

• Private: higher spending, smaller ratios

• Public: lower spending, larger ratios

• Some high-expend outliers