

Probability and Stochastic Processes

Lecture 02: Sample Space, Algebra, σ -Algebra, Measure

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

01/05 August 2024

Probability Theory - Humble Beginnings

• Bernoulli (1713) and de Moivre (1718) gave the first definition of probability:

$$probability \ of \ an \ event = \frac{\text{\# favourable outcomes}}{\text{total number of outcomes}}.$$

- Cournot (1843):
 - "An event with very small probability is morally impossible; an event with very high probability is morally certain."
- French mathematicians of the day were satisfied with the "frequentist" approach to probability, but not the German and English mathematicians of the day
- Frequentist approach could not satisfactorily explain certain paradoxes

Why Axiomatic Theory? Bertrand's Paradox

Take a circle with unit radius and inscribe an equilateral triangle in it. Draw a random chord. What is the probability that the length of the "random chord" is greater than $\sqrt{3}$? Bertrand's perfectly valid arguments:

Mid-point of chord should lie inside incircle of radius 1/2
 Answer: 1/4

• Angle between chord and tangent at A should be between $\pi/3$ and $2\pi/3$

Answer: 1/3

 Mid-point of chord should be between O and projection of O onto side BC

Answer: 1/2

Borel to the Rescue

- Contributions to Measure Theory by Borel (1894) provided a shift in perspective
- Countable unions played a key role in Borel's theory
- Kolmogorov's genius was in applying Borel's theory to formalise the axioms of probability, laying the foundation stone for modern probability theory
- For more details on the history of probability, see [Shafer and Vovk, 2018] and [Kolmogorov, 2004]

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

• If our interest is in the face that shows, then $\Omega = \{H, T\}$

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

- If our interest is in the face that shows, then $\Omega = \{H, T\}$
- If our interest is in the velocity with which the coin lands on ground, then $\Omega = [0, \infty) = \mathbb{R}_+$

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

- If our interest is in the face that shows, then $\Omega = \{H, T\}$
- If our interest is in the velocity with which the coin lands on ground, then $\Omega=[0,\infty)=\mathbb{R}_+$
- If our interest is in the number of times coin flips in air, then $\Omega=\mathbb{N}$

Example: Toss a coin n times, for some $n < \infty$.

Interest: faces that show up

$$\Omega = \{H, T\}^n$$

Example: Toss a coin infinitely many times.

Interest: faces that show up

$$\Omega = \{H, T\}^{\infty}$$

Event

Informal Definition (Event)

Informally,^a an event is a subset of outcomes "of interest" to us.

^aWe shall give a more formal definition of an event later.

Example: Toss a coin 3 times; interest is in the faces that show up

$$\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

Event A of interest: at least 2 heads show up

$$A = \{HHH, THH, HTH, HHT\}$$

Note

If an outcome $\omega \in A$ occurs, we say that the event A occurs.

Algebra

Definition (Algebra)

Let Ω be a sample space.

A collection \mathscr{A} of subsets of Ω is called an algebra if it satisfies the following properties:

- 1. $\Omega \in \mathscr{A}$.
- 2. $A \in \mathscr{A} \implies A^c \in \mathscr{A}$ (closure under complements).
- 3. $A, B \in \mathscr{A} \implies A \cup B \in \mathscr{A}$.

Property 3 above implies, by mathematical induction, that

$$A_1,A_2,\ldots,A_n\in\mathscr{A}\implies\bigcup_{i=1}^nA_i\in\mathscr{A}\quad\text{for all }n\in\mathbb{N}\quad\text{(closure under finite unions)}.$$

Exercise

Show that an algebra is closed under finite intersections.

σ -Algebra - Motivation

Motivating example: toss a coin until first head shows up

$$\Omega = \{H, TH, TTH, TTTH, \ldots\}$$

Event of interest A = # of tosses is even

$$A = \{TH, TTTH, \ldots\}$$

Remark

The event A cannot be constructed as unions of finitely many subsets of Ω , unless one of the sets under consideration is A itself.

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

• Elements of a σ -algebra are called events

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathcal{F}$ is also referred to as an \mathcal{F} -measurable set

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathscr{F}$ is also referred to as an \mathscr{F} -measurable set
- Every σ -algebra is also an algebra, but the converse is not true (see homework)

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^c \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathcal{F}$ is also referred to as an \mathcal{F} -measurable set
- Every σ -algebra is also an algebra, but the converse is not true (see homework)
- The pair (Ω, \mathscr{F}) is called a measurable space

One can readily verify the following properties of σ -algebras:

- Every σ -algebra is closed under countable intersections
- Let \mathcal{I} be an arbitrary index set, and let $\{\mathscr{F}_i : i \in \mathcal{I}\}$ be a collection of σ -algebras of subsets of a given sample space Ω . Then, $\bigcap_{i \in \mathcal{I}} \mathscr{F}_i$ is a σ -algebra of subsets of Ω .

σ -Algebra – Examples

Fix a sample space Ω .

- The most trivial σ -algebras $\{\emptyset, \Omega\}$ and 2^{Ω}
- For any $A\subset\Omega$, $\{\emptyset,\Omega,A,A^c\}$ is a σ -algebra
- Given a collection $\mathscr C$ of subsets of Ω , the smallest σ -algebra containing $\mathscr C$ is denoted by $\sigma(\mathscr C)$.

Example:
$$\Omega=\{1,2,\ldots,6\},\quad \mathscr{C}=\left\{\{1,2\},\{1,3\}\right\}$$

$$\sigma(\mathscr{C}) = \left\{\emptyset, \Omega, \{1, 2\}, \{1, 3\}, \{1\}, \{2, 3, 4, 5, 6\}, \{1, 2, 3\}, \{4, 5, 6\}, \{1, 2, 3\}, \{4, 5, 6\}, \{1, 2, 3\}, \{4, 5, 6\}, \{1, 2, 3\}, \{1, 3, 4, 5, 6\}, \{1, 2, 3, 4, 5$$

$$\left.\{3,4,5,6\},\{2,4,5,6\},\{2\},\{3\},\{1,3,4,5,6\},\{1,2,4,5,6\},\{2,3\},\{1,4,5,6\}\right\}$$

Measure

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Measure)

A function $\mu:\mathscr{F}\to[0,+\infty]$ is called a measure on (Ω,\mathscr{F}) if it satisfies the following properties:

- 1. $\mu(\emptyset) = 0$.
- 2. If A_1, A_2, \ldots is a countable collection of disjoint sets, with $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Property 2 above is called the property of countable additivity.

The triplet $(\Omega, \mathcal{F}, \mu)$ is called a measure space.

Measure

- When $\mu(\Omega) < +\infty$, the measure μ is called a finite measure
- When $\mu(\Omega) = +\infty$, the measure μ is called an infinite measure
- When $\mu(\Omega)=1$, the measure μ is called a probability measure, and denoted by $\mathbb{P}.$

Probability Measure

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Probability Measure)

A function $\mathbb{P}:\mathscr{F}\to[0,1]$ is called a probability measure if the following properties are satisfied:

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. If $A_1, A_2, ...$ is a countable collection of disjoint sets, with $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mathbb{P}\left(igcup_{i\in\mathbb{N}}A_i
ight)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i).$$

References

Shafer, G. and Vovk, V. (2018).
The origins and legacy of Kolmogorov's Grundbegriffe.
arXiv preprint arXiv:1802.06071.