AN EXPONENTIAL IDENTITY IN TERMS OF PARTIAL DERIVATIVES

PETRO KOLOSOV

Abstract. Your abstract here.

Contents

1.	Introduction and Main Results	1
2.	Conclusions	3
Ref	ferences	3

1. Introduction and Main Results

This manuscript provides an exponential identity in terms of partial derivatives, extending the main idea explained in [Kol22] that gives polynomial identity in a form as follows

$$n^{2m+1} = \sum_{k=1}^{n} \sum_{r=0}^{m} \mathbf{A}_{m,r} k^{r} (n-k)^{r}, \quad (m,n) \in \mathbb{N},$$
 (1)

where $\mathbf{A}_{m,r}$ are real coefficients defined recursively, see [Kol16]. Define the function f such that based on the identity (1) with the only difference that values of n, m in the right part of (1) appear to be parameters of the function f. In contrast to the equation (1), upper bound n of the sum $\sum_{k=1}^{n}$ turned into function's parameter as well, so that f defined as follows

Definition 1.1. (Polynomial function f.)

$$f(x, y, z) = \sum_{k=1}^{z} \sum_{r=0}^{y} \mathbf{A}_{y,r} k^{r} (x - k)^{r},$$
(2)

where definition space of (x, y, z) in (2) is $x \in \mathbb{R}$, $y \in \mathbb{N}$, $z \in \mathbb{R}$ so that the triple $(x, y, z) \in \mathbb{R} \times \mathbb{N} \times \mathbb{R}$. At first glance, equation (2) might look complex and not immediately understood, so in order to understand the function f and polynomials it produces clearly

Date: October 25, 2022.

²⁰¹⁰ Mathematics Subject Classification. 32W50, 33B10.

 $Key\ words\ and\ phrases.$ Partial differential equations, PDE, Exponential function .

let's show few examples. Substituting the values of y = 1, 2, 3 to the function f we get the following polynomials

$$f(x,1,z) = 3xz - 3z^2 + 3xz^2 - 2z^3$$

$$f(x,2,z) = 5x^2z - 15xz^2 + 15x^2z^2 + 10z^3 - 30xz^3 + 10x^2z^3 + 15z^4 - 15xz^4 + 6z^5$$

$$f(x,3,z) = -7xz + 14x^2z + 7z^2 - 42xz^2 + 35x^3z^2 + 28z^3 - 140x^2z^3 + 70x^3z^3 + 175xz^4 - 210x^2z^4 + 35x^3z^4 - 70z^5 + 210xz^5 - 84x^2z^5 - 70z^6 + 70xz^6 - 20z^7$$

According to the main topic of the current manuscript, it provides an odd-exponential identity in terms of partial derivatives. Therefore, define the exponential function we work in context of. Exponential function g is a function of two variables defined as follows

Definition 1.2. (Exponential function g.)

$$g(x,y) = x^{2y+1}, \quad (x,y) \in \mathbb{R} \times \mathbb{N}$$
 (3)

One more important thing is to conclude on partial derivative notation, more precisely the following notation for the partial derivative is used across the manuscript and remains unchanged

Notation 1.3. (Partial derivative.) Let be a function $f(x_1, x_2, ..., x_n)$ defined over the real space \mathbb{R}^n . We denote partial derivative of the function f with respect to x_i , $1 \le i \le n$ as follows

$$f'_{x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, x_2, \dots, x_i + \Delta x_i, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{\Delta x_i}$$

Derivative of the function f with respect to x_i , $1 \le i \le n$ evaluated in point $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ is denoted as follows

$$f_{x_i}'(y_1, y_2, \dots, y_n)$$

Therefore, the following identity in terms of partial derivatives shows the relation between exponential function g and polynomial function f

Theorem 1.4. Derivative of the odd-exponential function $g(x,y) = x^{2y+1}$ with respect to x evaluated at point $(u,v) \in \mathbb{R} \times \mathbb{N}$ equals to derivative of the function f with respect to x evaluated at point $(u,v,u) \in \mathbb{R} \times \mathbb{N} \times \mathbb{R}$ plus derivative of the function f with respect to x evaluated at point $(u,v,u) \in \mathbb{R} \times \mathbb{N} \times \mathbb{R}$

$$g'_{x}(u,v) = f'_{x}(u,v,u) + f'_{z}(u,v,u)$$
(4)

Particularly, it follows that for every triple $(u, v, u) \in \mathbb{R} \times \mathbb{N} \times \mathbb{R}$ an identity holds

$$(2v+1)u^{2v} = f'_x(u,v,u) + f'_z(u,v,u)$$
(5)

that is also an ordinary derivative of odd-power function $f(u) = u^{2v+1}$. To summarize and clarify all above, we provide a few examples that show an identity (4) in action.

2. Conclusions

Conclusions of your manuscript.

References

[Kol16] Petro Kolosov. On the link between Binomial Theorem and Discrete Convolution of Polynomials. arXiv preprint arXiv:1603.02468, 2016. https://arxiv.org/abs/1603.02468.

[Kol22] Petro Kolosov. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509-513, 2022. https://doi.org/10.1017/mag.2022.129.

 $Email\ address{:}\ \verb+kolosovp94@gmail.com+$

 URL : https://razumovsky.me/