

Overview

- Introduction
- **Motivation & Research Questions**
- Methodology
- Results
- Limitations & Future Work
- Conclusion

Introduction

Semantic Aspect Meta Model (SAMM) and Asset Administration Shell (AAS) are designed to standardize and enhance data interoperability, particularly within Industry 4.0.

SAMM:

- A core component of the Eclipse Semantic Modelling Framework.
- RDF-based metamodel that semantically describes data within the digital twin.
- Explicitly supports semantic definitions, including units of measurement, and models constraints (ranges, regular expressions, etc.).
- Rich tooling for generating additional artifacts.

AAS:

smartFactory**

Example of SAMM Aspect Model

```
"uuidV4Property": "urn:uuid:48878d48-6f1d-47f5-8ded-a441d0d879df"
@prefix samm: <urn:samm:org.eclipse.esmf.samm:meta-model:2.1.0#>.
@prefix samm-c: <urn:samm:orq.eclipse.esmf.samm:characteristic:2.1.0#>.
@prefix samm-e: <urn:samm:org.eclipse.esmf.samm:entity:2.1.0#>.
@prefix unit: <urn:samm:orq.eclipse.esmf.samm:unit:2.1.0#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <urn:samm:io.catenax.shared.uuid:2.0.0#>.
                                                                                                       RDF/Turtle
:Uuid a samm: Aspect;
    samm:preferredName "Shared Aspect for UUIDs v4"@en;
    samm:description "This is a shared aspect for UUIDs with a regex."@en;
    samm:properties (:uuidV4Property);
    samm: operations ();
    samm: events ().
:uuidV4Property a samm:Property;
    samm:preferredName "UUID v4 Property"@en;
    samm:description "Property based on a UUID v4."@en;
    samm:characteristic :UuidV4Trait;
    samm:exampleValue "urn:uuid:48878d48-6f1d-47f5-8ded-a441d0d879df".
:UuidV4Trait a samm-c:Trait;
    samm:preferredName "Trait for UUIDs v4"@en;
    samm: description "Trait to ensure UUID v4 data format." @en;
    samm-c:baseCharacteristic :Uuidv4Characteristic;
    samm-c:constraint : Uuidv4RegularExpression.
:Uuidv4Characteristic a samm:Characteristic;
    samm:preferredName "UUID v4"@en;
    samm:description "A version 4 UUID is a universally unique identifier that is generated using random 32
    samm:dataType xsd:string;
    samm:see <https://tools.ietf.org/html/rfc4122>.
:Uuidv4ReqularExpression a samm-c:ReqularExpressionConstraint;
    samm:preferredName "UUID v4 Regular Expression"@en;
    samm:description "The provided regular expression ensures that the UUID is composed of five groups of c
    samm:see <https://datatracker.ietf.org/doc/html/rfc4122>;
    samm:value "(^[0-9a-fA-F]_{8}-[0-9a-fA-F]_{4}-[0-9a-fA-F]_{4}-[0-9a-fA-F]_{4}-[0-9a-fA-F]_{12}_{5}|(^urn:uuid:
```

SAMM Elements

JSON Payload

The root element of each Aspect Model

Abstract Property Abstract named value

Property

Named Value

Characteristic

The meaning of a Property in the conte...

Abstract Entity

The abstraction of a logical encapsulati...

The logical encapsulation of multiple va...

A definition of a physical unit

Constraint

A limitation applied to a Characteristic

Encapsulates multiple limitations to Ch...

Operation

An Operation represents an action that ...

Event

A definition of an Event supported by th...

Motivation

Problem

Creating SAMM Aspect Model or AAS Submodel for existing assets

Requires modeling expertise

Needs domain knowledge

Is hard and time consuming

Our Solution

Automate the process of generating Aspect models from existing JSON data

End Goal

Research Questions

- **RQ1**: How can existing domain data in JSON format be leveraged to automatically or semi-automatically derive the basic structure of Aspect Models within SAMM?
- **RQ2**: How do open-source LLMs compare to commercial solutions, such as OpenAl's models, in generating Aspect Models?
- **RQ3**: What automated methods can be developed to evaluate the Aspect Models generated by LLMs?
- **RQ4**: To what extent can data augmentation techniques improve the accuracy of LLMs when creating Aspect Models from domain data?
- **RQ5**: How can an LLM be integrated into various end-user tools and workflows, including but not limited to an Aspect Model Editor, to help domain experts?
- **RQ6**: How can SAMM and AAS be integrated to form a Knowledge Graph-based digital twin for enhanced data interoperability and decision-making?

Methodology

- Data Preparation
 - Collection: Aspect Models from Eclipse Tractus-X Semantic Layer (SLDT) GitHub repository
 - Cleanup: Fix issues in the repository, remove unnecessary data, etc.
 - Augmentation: Remove and rename properties randomly
 - Split based on the Aspect Model name
- LLM Selection, Configuration, and Benchmarking
- Integration & Deployment
- **Human Evaluation**

Final Dataset

Test Data = 20% of Data Validation Data = 10% of Remaining Data

	Original-Cleaned Data	Synthetic Data
Train Data	110	241
Validation Data	13	27
Test Data	32	96
Total	155	364

LLM Models and Fine-Tuning

- Cloud Fine-Tuning (Azure Al Studio, OpenAl Platform, AWS Bedrock, ...)
 - Low entry cost
 - Fully managed with various billing options
 - GPT4o-mini
- Local Fine-Tuning (PyTorch, HuggingFace, Unsloth, ...) We used Unsloth library for fine-tuning due to its efficiency and lower resource consumptions.
 - Deployment locally via Ollama
 - Chat interface via LibreChat, ...
 - Llama3.1-8b, Qwen2.5-Coder-7b, Llama3.2-3b, and CodeLlama-7b

OpenAI's dashboard to create a fine-tuning job.

Zero Shot Prompt Template

- You are a bot to help people create Semantic Aspect Meta Model (SAMM) from given JSON data. Create SAMM model based on the following JSON:
- JSON:
 - <Domain Data (JSON)>
- Provide only the SAMM model without explanation. Make sure you always give a valid RDF turtle as the SAMM model.

Few Shot Prompt Template (One Example)

- This is an example SAMM model:
 - <SAMM Aspect Model (turtle)>
- This is its corresponding JSON example:
 - <JSON Payload of Aspect Model>
- Your task is to create a SAMM model from a JSON Example.
- Json Example:
 - <Domain Data (JSON)>
- Provide only the SAMM model without explanation, make sure that the output is a valid RDF Turtle format.

Few Shot Prompt Template (Two Examples)

- This is an example SAMM model:
 - <SAMM Aspect Model (turtle) #1>
- This is its corresponding JSON example:
 - <JSON Payload of Aspect Mode #1>
- This is an example SAMM model:
 - <SAMM Aspect Model (turtle) #2>
- This is its corresponding JSON example:
 - <JSON Payload of Aspect Mode #2>
- Your task is to create a SAMM model from a JSON Example.
- Json Example:
 - <Domain Data (JSON)>
- Provide only the SAMM model without explanation, make sure that the output is a valid RDF Turtle format.

Evaluation

- Produce Valid Turtle (Valid Turtle)
- Produce Valid SAMM (Valid SAMM)
- Generated JSON structurally similar to the input JSON (Correct)
- Human Evaluation (Complete)

Compare two JSON Data Input: Generate SAMM Corresponding Example LLM **ESMF SDK JSON** Aspect **JSON** Model

cfk Innovative Fabriksysteme

Iterative Prompting

Ask the model to correct itself by providing feedbacks.

Iterative Prompting Template:

• In your previous attempt you created this Semantic Aspect Meta Model (SAMM Aspect Model):

<Pre><Previous SAMM Aspect Model generated by the LLM>

But it has the following error:

<Pre><Previous Error Messages>

 Try to fix the error and generate the whole corrected SAMM Aspect Model without any extra explanation.

<Extra Hints related to the Exception>

Iterative Prompting Example:

```
2-result.txt
                                                                                    3-result.txt
      @prefix samm: <urn:samm:org.eclipse.esmf.samm:meta-model:2.1.0#> .
                                                                                          @prefix samm: <urn:samm:org.eclipse.esmf.samm:meta-model:2.1.0#> .
      @prefix samm-c: <urn:samm:org.eclipse.esmf.samm:characteristic:2.1.0#>
                                                                                          @prefix samm-c: <urn:samm:org.eclipse.esmf.samm:characteristic:2.1.0#>
      @prefix samm-e: <urn:samm:org.eclipse.esmf.samm:entity:2.1.0#> .
                                                                                          @prefix samm-e: <urn:samm:org.eclipse.esmf.samm:entity:2.1.0#> .
      @prefix unit: <urn:samm:orq.eclipse.esmf.samm:unit:2.1.0#> .
                                                                                          @prefix unit: <urn:samm:org.eclipse.esmf.samm:unit:2.1.0#> .
      @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
                                                                                          @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
      @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
                                                                                          @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
      @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
                                                                                          @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
      @prefix : <urn:samm:io.catenax.determination load data source:1.0.0#> .
                                                                                          @prefix : <urn:samm:io.catenax.determination load data source:1.0.0#> .
      :DeterminationLoadDataSource a samm:Aspect ;
                                                                                          :DeterminationLoadDataSource a samm:Aspect ;
         samm:preferredName "Determination Load Data Source"@en ;
                                                                                     11
                                                                                             samm:preferredName "Determination Load Data Source"@en ;
         samm:description "The determination of the load data source is based
                                                                                             samm:description "The determination of the load data source is based
 13
                                                                                     13
         samm:properties (:sourceLoadSpectrum);
                                                                                             samm:properties (:DETERMINATIONLOADDATASOURCE);
 14
         samm: operations ( );
                                                                                     14
                                                                                             samm: operations ( );
         samm:events ( ) .
                                                                                             samm:events ( ) .
 16
                                                                                     16
      :sourceLoadSpectrum a samm:Property ;
                                                                                           DETERMINATIONLOADDATASOURCE a samm: Property ;
         samm:preferredName "Source Load Spectrum"@en ;
                                                                                             samm:preferredName "Determination Load Data Source"@en ;
         samm:description "The source load spectrum is the URI to the load sp-
                                                                                     19
                                                                                             samm:description "The determination load data source is the aspect
 19
                                                                                             samm: characteristic : DeterminationLoadDataSourceCharacteristic .
         samm: characteristic samm-c: ResourcePath .
                                                                                     21
3-prompt.txt - Notepad
                                                                          X
                                                                                          :DeterminationLoadDataSourceCharacteristic a samm:Characteristic ;
File Edit Format View Help
                                                                                             samm:preferredName "Determination Load Data Source Characteristic"@e
iava.lang.Exception: JSONs are not similar:
                                                                                     24
                                                                                             samm: description "The determination load data source characteristic
JSONs are not similar: ground truth has key "DETERMINATIONLOADDATASOURCE" but it is missing
                                                                                             samm:dataType :DeterminationLoadDataSourceEntity .
Add a SAMM "DETERMINATIONLOADDATASOURCE" as a Property or Entity to the Aspect Model.
                                                                                     26
Required Ground truth JSON should be like:
                                                                                     27
                                                                                          :DeterminationLoadDataSourceEntity a samm:Entity;
                                                                                             samm: preferredName "Determination Load Data Source Entity"@en ;
  "DETERMINATIONLOADDATASOURCE" : {
                                                                                     29
                                                                                             samm:description "The determination load data source entity represen
   "sourceLoadSpectrum": "telnet://192.0.2.16:80/"
                                                                                             samm:properties (:sourceLoadSpectrum).
                                                                                          :sourceLoadSpectrum a samm:Property ;
However, the generated Aspect Model corresponds to the following JSON structure:
                                                                                             samm:preferredName "Source Load Spectrum"@en ;
                                                                                     34
                                                                                             samm:description "The source load spectrum is the URI to the load spectrum."
 "sourceLoadSpectrum" : "telnet://192.0.2.16:80/"
                                                                                             samm:characteristic samm-c:ResourcePath .
                                                                                     36
Try to fix the error and generate the whole corrected SAMM Aspect Model without any extra exp
For understanding the construction rules, we define the following terms:
```


Experiment 1: Effect of Examples and Number of Attempts

- Counting the number of metamodel elements used in the Aspect Model, such as Property, Characteristics, Trait, Enumeration, etc.
- A more complete example improved the result by 4%.

| Model | Valid Turtle | Valid SAMM | Correct |
|-----------------|--------------|------------|----------|
| Simple example | 84 (87%) | 34 (35%) | 28 (29%) |
| Complex example | 85 (88%) | 41 (42%) | 32 (33%) |

Increasing the number of attempts improved performance.

| Model | Attempt 1 | Attempt 2 | Attempt 3 |
|-----------------|-----------|---------------|---------------|
| Simple example | 21 (21%) | 25 (26%) (+4) | 28 (29%) (+3) |
| Complex example | 27 (28%) | 31 (32%) (+4) | 32 (33%) (+1) |

Simple example: io.catenax.waste

Complex example: io.catenax.secondary material content

smartFactoruk®

Experiment 2: Comparison of Llama3.1-8b, Qwen2.5-Coder-7b, Llama3.2-3b, and CodeLlama-7b without Fine-Tuning

- Code-based LLMs are more capable of generating valid Turtle Aspect Models.
- In the absence of SAMM knowledge, they generate arbitrary RDF Turtle statements, but not a valid SAMM Aspect Model.

| Model | Valid Turtle | Valid SAMM | Correct |
|------------------|--------------|------------|---------|
| Qwen2.5-Coder 7B | 39 (40%) | 0 | 0 |
| CodeLlama 7B | 31 (32%) | 0 | 0 |
| Llama 3.1 8B | 29 (30%) | 0 | 0 |
| Llama 3.2 3B | 5 (5%) | 0 | 0 |

Experiment 3: Effect of More Shots on Qwen2.5-coder-7b and Llama3.1-8b

• Two-shot prompting improves the performance of the base LLM compared to one-shot.

| Model | Valid Turtle | Valid SAMM | Correct |
|-----------------------------|--------------|------------|---------|
| Qwen2.5-Coder 7B (two-shot) | 38 (39%) | 12 (12%) | 3 |
| Qwen2.5-Coder 7B (one-shot) | 39 (40%) | 0 | 0 |
| Llama 3.1 8B (two-shot) | 24 (25%) | 4 (%) | 0 |
| Llama 3.1 8B (one-shot) | 29 (30%) | 0 | 0 |

Experiment 4: Comparison of GPT-4o-mini Base, Fine-Tuned on Original Data, and Fine-Tuned on Augmented Data

- The augmented dataset improved results by 3% (one-shot) but doubled the training cost.
- Our data augmentation introduces minimal variations with simplifying the model, this does not teach new concepts to the LLM.

| Model | Valid Turtle | Valid SAMM | Correct |
|--|--------------|------------|----------|
| GPT-4o-mini (zero-shot) | 75 (78%) | 0 | 0 |
| GPT-4o-mini (one-shot) | 88 (91%) | 24 (25%) | 4 (4%) |
| GPT-4o-mini (two-shot) | 83 (86%) | 34 (35%) | 9 (9%) |
| GPT-4o-mini fine-tuned on original data (zero-shot) | 79 (82%) | 20 (20%) | 21 (21%) |
| GPT-4o-mini fine-tuned on original data (one-shot) | 85 (88%) | 41 (42%) | 32 (33%) |
| GPT-4o-mini fine-tuned on original data (two-shot) | 80 (83%) | 39 (40%) | 31 (32%) |
| GPT-4o-mini fine-tuned on augmented data (zero-shot) | 67 (69%) | 25 (26%) | 22 (22%) |
| GPT-4o-mini fine-tuned on augmented data (one-shot) | 82 (85%) | 43 (44%) | 35 (36%) |
| GPT-4o-mini fine-tuned on augmented data (two-shot) | 75 (78%) | 36 (37%) | 28 (29%) |

Experiment 5: Iterative Prompting on Fine-tuned GPT-4o-mini

- Iterative prompting is more effective than simple retry.
- Providing extra information enhances the LLM's performance in iterative prompting.

| Model | Attempt 1 | Attempt 2 | Attempt 3 |
|---|-----------|---------------|---------------|
| GPT-4o-mini (one-shot) using simple retry | 27 (28%) | 31 (32%) (+4) | 32 (33%) (+1) |
| GPT-4o-mini (one-shot) using iterative feedback | 33 (34%) | 41 (42%) (+8) | 42 (43%) (+1) |

Summary of the Results

| Model | Valid Turtle | Valid SAMM | Correct |
|---|--------------|------------|----------|
| Fine-tuned GPT-4o-mini (3 iterations) | 86 (89%) | 63 (65%) | 42 (43%) |
| Fine-tuned GPT-4o-mini (one-shot) | 85 (88%) | 41 (42%) | 32 (33%) |
| Fine-tuned GPT-4o-mini (two-shots) | 80 (83%) | 39 (40%) | 31 (32%) |
| Fine-tuned GPT-4o-mini (zero-shot) | 79 (82%) | 20 (20%) | 21 (21%) |
| Base GPT-4o-mini (two-shot) | 83 (86%) | 34 (35%) | 9 (9%) |
| Fine-tuned Qwen2.5-Coder 7B (one-shot) | 43 (44%) | 10 (10%) | 6 (6%) |
| Base GPT-4o-mini (one-shot) | 88 (91%) | 24 (25%) | 4 (4%) |
| Base Qwen2.5-Coder 7B (two-shots) | 38 (39%) | 12 (12%) | 3 (3%) |
| Fine-tuned Qwen2.5-Coder 7B (two-shots) | 38 (39%) | 6 (6%) | 2 (2%) |
| Fine-tuned Qwen2.5-Coder 7B (zero-shot) | 53 (55%) | 5 (5%) | 1 (1%) |
| Base Llama 3.1 8B (two-shots) | 24 (25%) | 4 (%) | 0 |
| Base GPT-4o-mini (zero-shot) | 75 (78%) | 0 | 0 |
| Base Qwen2.5-Coder 7B (zero-shot) | 40 (41%) | 0 | 0 |
| Base Qwen2.5-Coder 7B (one-shot) | 39 (40%) | 0 | 0 |
| Base CodeLlama 7B (one-shot) | 31 (32%) | 0 | 0 |
| Base Llama 3.1 8B (one-shot) | 29 (30%) | 0 | 0 |
| Base Llama 3.2 3B (one-shot) | 5 (5%) | 0 | 0 |

- Iterative prompting improved performance by 10%.
- More shots help base LLMs and confuse fine-tuned LLMs
- Zero-shot works only for fine-tuned LLMs.

| Model | Pass@1 |
|--|--------|
| ▼o1-2024-12-17 (temperature=1, reasoning=high)� | 35.5 |
| ▼o3-mini-2025-01-31 (temperature=1, reasoning=medium) �� | 35.5 |
| <u>WDeepSeek-R1</u> | 35.1 |
| ▼ 03-mini-2025-01-31 (temperature=1, reasoning=high) ☆ | 35.1 |
| o1-2024-12-17 (temperature=1, reasoning=low) ❖ | 34.5 |

BigCodeBench (hard code generation tasks) Source: https://bigcode-bench.github.io/

Deployment & Integration

Deployment & Integration: SAMM Copilot Platform User Interface

https://sammcopilot.studio/

SAMM and AAS in an RDF-based Knowledge Graph

- Convert SAMM Aspect Model to AAS Submodel.
- Submodel templates/instances are converted to RDF (according to the AAS specification) using an experimental feature in the Eclipse BaSyx Python SDK.
- This enables the integration of GenAI and Graph Retrieval Augmented Generation (GraphRAG) for applications such as question answering in future work.

Contact Information

Contact Information

Types:

samm:Aspect

RDF Rank:

□

samm:preferredName
Contact Information en

samm:description
Entity encapsulating the contact details. en

 $\underline{\text{GraphDB}} \ 10.7.3 \cdot \underline{\text{RDF4J}} \ 4.3.13 \cdot \underline{\text{Connectors}} \ 16.2.9 \cdot \underline{\text{Workbench}} \ 2.7.3 \cdot \underline{\text{@}} \ 2002 - 2025 \ \underline{\text{Ontotext AD}}. \ All \ rights \ reserved.$

Human Evaluation

- Manual modeling generally took longer compared to using SAMM Copilot in most cases.
- SAMM Copilot was able to generate valid models in most cases.

| Participant | Modeling
Time | Sources Used | Time | SAMM Copilot |
|-------------|------------------|--|--------------------------|--------------------------------------|
| 1 | 11 minutes | No | 2 minutes | Yes, valid and complete model |
| 2 | 7 minutes | No | >10 minutes | No, invalid model |
| 3 | 5 minutes | None | 8 minutes | Yes, valid but incom-
plete model |
| 4 | 7 minutes | SAMM specifica-
tion, Smart Plug
Datasheet | 4 minutes | Yes, valid but incom-
plete model |
| 5 | 60 minutes | ESMF documen-
tation | 45 minutes | No, valid but incorrect model |
| 6 | 10 minutes | No | Less than 3 min-
utes | No, invalid model |

SAMM Conilot Satisfaction

Limitations & Future Work

- Evaluation Scope Limitations:
 - Including further commercial models (Gemini, Claude) and open-source models (DeepSeek, ...)
 - Exploration of various LLM sizes and hyperparameters
- Human Evaluation Constraints:
 - Outputs from different LLMs were not compared through human evaluation.
 - Including more human evaluations.
- Single JSON Example Limitation:

A single JSON example may not fully represent the data due to structural variability.

Integration of Generative AI approach in Aspect Model Editor.

GenAl Integration in Aspect Model Editor

GenAl Integration in Aspect Model Editor

GenAl Integration in Aspect Model Editor

Conclusion

- LLMs can automatically generate Aspect models from a sample JSON (RQ1):
 - Reduces time and effort for experts.
 - Eliminates the need to start from scratch.
 - Modeling is up to 4 times faster based on human evaluation.
- Commercial models outperform open-source models (RQ2).
- Methods to evaluate the output of LLMs have been introduced (RQ3).
- Our data augmentation method did not improve accuracy but added value during evaluation (RQ4).
- A chat user interface has been deployed, with further prototype ideas demonstrated (RQ5).
- SAMM Aspect Model and AAS Submodel have been integrated into a Knowledge Graph (RQ6).

From Data To Semantic

or How to use LLMs to bootstrap your semantic model

Thank you for your attention!

Any Questions?

