

Mathématiques et Calcul 1

Contrôle continu n°1 — 22 octobre 2018 durée: 1h30

Exercice 1.

(1) On considère les deux nombres complexes $z_1 = 1 + i\sqrt{3}$ et $z_2 = 1 + i$. Calculer, sous forme algébrique, le nombre complexe $z = \frac{z_1}{z_2}$.

$$\frac{z_1}{z_2} = \frac{1 + i\sqrt{3}}{1 + i} = \frac{(1 + i\sqrt{3})(1 - i)}{(1 + i)(1 - i)} = \frac{1 + i\sqrt{3} - i - i^2\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2} + i\frac{\sqrt{3} - 1}{2}$$

- (2) Calculer le module et un argument de z_1 , puis le module et un argument de z_2 . $|z_1| = \sqrt{1^2 + \sqrt{3}^2} = 2$, et $\frac{z_1}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{\frac{i\pi}{3}}$ donc un argument de z_1 est $\frac{\pi}{3}$. $|z_2| = \sqrt{1^2 + 1^2} = \sqrt{2}$, et $\frac{z_2}{\sqrt{2}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = e^{\frac{i\pi}{4}}$ donc un argument de z_2 est $\frac{\pi}{4}$.
- (3) En déduire l'écriture de z sous forme exponentielle.

$$z_1 = 2e^{\frac{i\pi}{3}}$$
 et $z_2 = \sqrt{2}e^{\frac{i\pi}{4}}$, donc $\frac{z_1}{z_2} = \sqrt{2}e^{\frac{i\pi}{3} - \frac{i\pi}{4}} = \sqrt{2}e^{\frac{i\pi}{12}}$.

(4) En déduire les valeurs exactes de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

On déduit des questions précédentes que

$$\frac{1+\sqrt{3}}{2} + i\frac{\sqrt{3}-1}{2} = \sqrt{2}\cos(\frac{\pi}{12}) + i\sqrt{2}\sin(\frac{\pi}{12}),$$

d'où par identification

$$\cos\left(\frac{\pi}{12}\right) = \frac{1+\sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{4}$$
 et
$$\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{\sqrt{6}-\sqrt{2}}{4}.$$

Exercice 2.

(1) Déterminer les racines carrées de 8 - 6i.

Une racine carrée x + iy de 8 - 6i vérifie les équations

$$\begin{cases} x^2 - y^2 = 8 \\ 2xy = -6 \\ x^2 + y^2 = |8 - 6i| = 10 \end{cases}$$

qui se résout en $x^2 = 9$ et $y = \frac{-3}{x}$, donc les deux racines carrées cherchées sont z = 3 - i et z = -3 + i.

(2) Résoudre dans \mathbb{C} l'équation $z^2 + (1+i)z - 2 + 2i = 0$.

On donnera les solutions sous forme algébrique.

Le discriminant de cette équation du second degré vaut

$$\Delta = (1+i)^2 - 4(-2+2i) = 8-6i,$$

donc d'après la question précédente, les deux solutions sont

$$z_1 = \frac{-(1+i) + (3-i)}{2} = 1-i$$
 et $z_2 = \frac{-(1+i) - (3-i)}{2} = -2$.

Exercice 3. On considère le polynôme $P = X^3 - X^2 + 4X + 6$.

(1) Trouver une racine évidente de P, et expliciter la factorisation de P qui en résulte.

 $P(0) \neq 0, P(1) \neq 0$, mais en revanche P(-1) = 0 donc -1 est racine évidente de P. On peut donc factoriser P par X+1, ce qui donne

$$P = X^3 - X^2 + 4X + 6 = (X+1)(X^2 - 2X + 6).$$

(2) En déduire l'ensemble des racines (réelles et complexes) de P.

Les racines du polynôme $X^2 - 2X + 6$ sont

$$z_1 = \frac{2+\delta}{2} \quad \text{et} \quad z_2 = \frac{2-\delta}{2},$$

où δ est une racine carrée de $\Delta=4-4.6=-20=(2i\sqrt{5})^2$. Par conséquent, l'ensemble des racines de P est

$$\{-1, 1+i\sqrt{5}, 1-i\sqrt{5}\}.$$

Exercice 4.

(1) Soit θ un réel qui n'est pas multiple de 2π . Calculer $S(\theta) = \sum_{k=0}^{2019} \cos(k\theta)$.

Comme $\cos(k\theta) = \text{Re}(e^{ik\theta})$, on a

$$S(\theta) = \text{Re}\left(\sum_{k=0}^{2019} (e^{i\theta})^k\right) = \text{Re}\left(\frac{1 - e^{2020i\theta}}{1 - e^{i\theta}}\right) = \text{Re}\left(\frac{e^{1010i\theta}(e^{-1010i\theta} - e^{1010i\theta})}{e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}})}\right)$$

d'où finalement $S(\theta) = \cos \frac{2019\theta}{2} \cdot \frac{\sin 1010\theta}{\sin \frac{\theta}{2}}$.

(2) Que vaut $S(\frac{\pi}{4})$?

Une première solution est de remarquer que comme $e^{i\frac{\pi}{4}}$ est une racine 8-ième de l'unité, tout somme de type

$$\sum_{k=a}^{a+8n-1} e^{ik\frac{\pi}{4}}$$

est nulle et comme 2019 = 8.252 + 3, on a

$$\sum_{k=0}^{2019} e^{i\frac{k\pi}{4}} = \sum_{k=0}^{3} e^{i\frac{k\pi}{4}} = 1 + e^{i\frac{\pi}{4}} + i + e^{i\frac{3\pi}{4}} = 1 + (1 + \sqrt{2})i$$

donc la partie réelle vaut $S(\frac{\pi}{4}) = 1$.

Une autre solution est d'utiliser la question 1, en remarquant que 2019 = 16.126 + 3 et 505 = 4.126 + 1, de sorte que

$$S\left(\frac{\pi}{4}\right) = \cos\frac{2019\pi}{8} \cdot \frac{\sin\frac{505\pi}{2}}{\sin\frac{\pi}{8}} = \cos\frac{3\pi}{8} \cdot \frac{\sin\frac{\pi}{2}}{\sin\frac{\pi}{8}} = \frac{\cos\frac{3\pi}{8}}{\sin\frac{\pi}{8}}.$$

Comme $\cos \frac{3\pi}{8} = \sin \left(\frac{\pi}{2} - \frac{3\pi}{8}\right) = \sin \frac{\pi}{8}$, on retrouve bien $S(\frac{\pi}{4}) = 1$.

Exercice 5. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=1$ et la récurrence

$$\forall n \in \mathbb{N}^*, \quad u_{n+1} = u_n \left(1 - \frac{1}{4n^2} \right).$$

(1) Montrer par récurrence que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.

On a $u_1 > 0$ donc la propriété est vraie au rang 1.

Si $u_n > 0$ pour un certain $n \in \mathbb{N}^*$, alors comme $1 - \frac{1}{4n^2} > 0$ on a également $u_{n+1} > 0$ donc la propriété est héréditaire.

On en déduit donc par récurrence que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.

(2) Montrer que (u_n) est décroissante.

La suite (u_n) est à valeurs strictement positives et pour tout $n \in \mathbb{N}^*$, on a

$$\frac{u_{n+1}}{u_n} = 1 - \frac{1}{4n^2} < 1,$$

donc (u_n) est (strictement) décroissante.

(3) En déduire que (u_n) converge vers une limite L. Quelle inégalité vérifie L?

La suite (u_n) est décroissante et minorée (par 0) donc converge vers une limite L.

De $u_n > 0$ on peut seulement déduire que $L \ge 0$.

Remarque 1: ce n'était pas l'esprit de la question, mais on peut également montrer que $L \leq 1$, et même que L < 1, puisque (u_n) est décroissante et $u_2 < 1$ (un bonus est prévu pour cette réponse).

Remarque 2: pour information, avec (nettement !) plus de travail (évidemment non demandé ici), on peut démontrer que $L=\frac{2}{\pi}$

Exercice 6. Donner un équivalent (le plus simple possible) de chacune des suites définies ci-dessous, en justifiant votre réponse :

- (1) $u_n = \frac{n^7 + n^3 e^{2n} + n^2 \sin(n^4)}{n^6 + 2n^3 + 1}$ $n^4 = o(e^{2n})$ par <u>croissance comparée</u>, donc $n^7 = o(n^3 e^{2n})$. Par ailleurs comme sin est bornée, $n^2 \sin(n^4) = o(n^7)$ donc le numérateur est équivalent à $n^3 e^{2n}$. Concernant le dénominateur, il s'agit d'une suite <u>polynomiale</u>, donc équivalente au terme de <u>plus haut degré</u> (n^6) . Par quotient, on obtient donc que $u_n \sim \frac{e^{2n}}{n^3}$.
- (2) $v_n = \frac{2(n!) + n^n}{n + \log(n^3)}$ $n! = o(n^n)$ (cf cours) donc également $2(n!) = o(n^n)$. De plus, $\log(n^3) = 3\log(n) = o(n)$ par <u>croissance comparée</u> donc par quotient d'équivalents on trouve $v_n \sim \frac{n^n}{n}$, ce qui peut se réécrire $v_n \sim n^{n-1}$.
- (3) $w_n = \sqrt{n^3 + n\sqrt{n}\log(n)} \sqrt{n^3}$

En multipliant et en divisant par la quantité conjuguée, on obtient

$$w_n = \frac{\left(\sqrt{n^3 + n\sqrt{n}\log(n)} - \sqrt{n^3}\right) \cdot \left(\sqrt{n^3 + n\sqrt{n}\log(n)} + \sqrt{n^3}\right)}{\sqrt{n^3 + n\sqrt{n}\log(n)} + \sqrt{n^3}}$$
$$= \frac{n\sqrt{n}\log(n)}{\sqrt{n^3 + n\sqrt{n}\log(n)} + \sqrt{n^3}}.$$

Comme $\log(n) = o(n)$ par croissance comparée, on a $n^{3/2}\log(n) = o(n^{5/2})$ avec $n^{5/2} = o(n^3)$, donc

$$n^3 + n\sqrt{n}\log(n) \sim n^3$$

et par suite $\sqrt{n^3 + n\sqrt{n}\log(n)} \sim n^{3/2}$, ce qui implique que

$$\sqrt{n^3 + n\sqrt{n}\log(n)} + \sqrt{n^3} = n^{3/2} + o(n^{3/2}) + n^{3/2} = 2n^{3/2} + o(n^{3/2}) \sim 2n^{3/2}.$$

Finalement, on obtient donc

$$w_n \sim \frac{n\sqrt{n}\log(n)}{2n^{3/2}} \sim \frac{\log(n)}{2}.$$

Exercice 7. On considère la suite $(u_n)_{n\geqslant 1}$ définie par

$$\forall n \geqslant 1, \quad u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

(1) Montrer que $\forall n \geqslant 1, \ u_n \geqslant \sqrt{n}$.

Pour tout k tel que $1 \leq k \leq n$, on a $\frac{1}{\sqrt{k}} \geqslant \frac{1}{\sqrt{n}}$ donc

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \geqslant \sum_{k=1}^n \frac{1}{\sqrt{n}} = \frac{n}{\sqrt{n}} = \sqrt{n}.$$

(2) En déduire que $u_n \to +\infty$.

Comme $u_n \geqslant \sqrt{n}$ pour tout n et $\sqrt{n} \to +\infty$, on en déduit que $u_n \to +\infty$.

(3) On définit deux suites $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$ par

$$b_n = u_n - 2\sqrt{n}$$
 et $a_n = b_n - \frac{1}{\sqrt{n}}$.

Montrer que (b_n) est décroissante, puis que (a_n) est croissante.

On a, pour tout $n \ge 1$,

$$\begin{array}{rcl} b_{n+1} - b_n & = & u_{n+1} - u_n - 2\sqrt{n+1} + 2\sqrt{n} \\ \\ & = & \frac{1}{\sqrt{n+1}} - 2\left(\sqrt{n+1} - \sqrt{n}\right) \\ \\ & = & \frac{1}{\sqrt{n+1}} - 2\frac{\left(\sqrt{n+1} - \sqrt{n}\right) \cdot \left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}} \\ \\ & = & \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+1} + \sqrt{n}}. \end{array}$$

Comme $\sqrt{n} \leqslant \sqrt{n+1}$, on a $\frac{2}{\sqrt{n+1}+\sqrt{n}} \geqslant \frac{2}{2\sqrt{n+1}}$ donc $b_{n+1}-b_n \leqslant 0$ et par conséquent (b_n) est décroissante.

De même, on peut écrire

$$a_{n+1} - a_n = b_{n+1} - b_n - \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n}}$$
$$= \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+1} + \sqrt{n}} - \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n}}$$

en reprenant les calculs précédents, de sorte que

$$a_{n+1} - a_n = \frac{1}{\sqrt{n}} - \frac{2}{\sqrt{n+1} + \sqrt{n}} \geqslant 0$$

puisque $\frac{2}{\sqrt{n+1}+\sqrt{n}} \leqslant \frac{2}{2\sqrt{n}}$. Par conséquent, (a_n) est croissante.

(4) Montrer que les suites (a_n) et (b_n) sont adjacentes, et en déduire qu'il existe un réel L tel que

$$u_n = 2\sqrt{n} + L + \mathop{o}_{n \to +\infty}(1).$$

La suite (a_n) est croissante, la suite (b_n) est décroissante, et $b_n - a_n = \frac{1}{\sqrt{n}} \to 0$, donc les suites (a_n) et (b_n) sont adjacentes, donc elles convergent vers une même

limite
$$L$$
. Comme $b_n=u_n-2\sqrt{n},$ on en déduit que
$$u_n=2\sqrt{n}+b_n=2\sqrt{n}+L+o(1).$$

(5) Donner un équivalent (le plus simple possible) de u_n . On déduit de la question précédente que $u_n = 2\sqrt{n} + o(\sqrt{n}) \sim 2\sqrt{n}$.