

Features

- 4-CH H-Bridge Driver
- Built-in DC/DC Converter Controller Circuit
- Built-in Reset Circuit
- Built-in Battery Charging Circuit
- Built-in Voltage Drop Detector
- Built-in Thermal Shutdown Circuit
- Built-in General OP-AMP
- Low Power Consumption
- Built-in Power Controller Circuit

Description

CMD5901 is monolithic IC for portable CD player.

Typical application

- Portable Compact Disk Player (CDP)
- Portable Mini Disk Player (MD)
- Disc-Man
- Other Potable Compact Disk Media

Ordering Information

Device	Package	Operating Temp.
CMD5901	44-QFP-1010B	-35°C ~ +85°C

Email: server@ceramate.com.tw
Http: www.ceramate.com.tw
Dec 1.0 Dec.12, 2002

^{*} All specs and applications snown above subject to change without prior notice.

Pin Assignments

Pin Definitions

Pin Number	Pin Name	Pin Function Description
1	OVP	Battery Power Supply Mode
2	BATT	Battery Power Supply
3	RSTOUT	RSTOUT Detection Output
4	DEDSET	DEDSET Time Setting
5	BDSW	Booster Transistor Drive
6	ERRO	Error Amp Output
7	ERRI	Error Amp Input
8	SCP	Short Circuit Protection Setting
9	COSC	Triangular Wave Output
10	N.C	No Connection
11	OPIN(-)	OP-AMP Negative Input
12	SVCC1	Control Circuit Power Supply
13	OPOUT	OP-Amp Output
14	OPIN(+)	OP-Amp Positive Input
15	SVCC2	Pre-Drive Power Supply
16	VREF	Reference Voltage
17	DI3	CH3 Control Signal Input
18	DI4	CH4 Control Signal Input
19	MUTE34	CH3, 4 Mute
20	DI2	CH2 Control Signal Input
21	MUTE2	CH2, Mute
22	DI1	CH1 Control Signal Input
23	BRAKE	CH1 Brake
24	DO4(-)	CH4 Negative Output
25	DO4(+)	CH4 Positive Output
26	DO3(-)	CH3 Negative Output
27	DO3(+)	CH3 Positive Output
28	PGND	Power Unit Power Grand
29	DO2(+)	CH2 Positive Output
30	DO2(-)	CH2 Negative Output
31	DO1(+)	CH1 Positive Output
32	DO1(-)	CH1 Negative Output
33	CHGSET	Charge Current Setting
34	RST	RSTOUT Inverting Output
35	EMP	Empty Detection Output
36	DVCC	H-Bridge Power Supply
37	PWM	PWM Transistor Drive
38	CLKIN	External Clock Input
39	START	Boost DC/DC Converter Starting
40	STOP	Boost DC/DC Converter Off
41	ADPVCC	Charging Circuit Power Supply
42	EMPSET	Empty Detection Level Converting
43	SGND	Signal Ground
44	FIL	PWM Phase Compensation

Email: server@ceramate.com.tw

Rev 1.0 Dec.12, 2002

Http: www.ceramate.com.tw

4-Channel Motor Driver IC

Internal Block Diagram

Email: server@ceramate.com.tw

Rev 1.0 Dec.12, 2002

Http: www.ceramate.com.tw

4-Channel Motor Driver IC

Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Value	Unit
Maximum Supply Voltage	Vcc	13.2	V
Maximum Output Current	lo	500	mA
Power Dissipation	PD	1.0	W
Operating Temperature	TOPR	-35 ~ +85	°C
Stroage Temperature	TSTG	-55 ~ +150	°C

Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Charging Circuit Power Supply Voltage	ADPVCC	3.0	4.5	8.0	V
Power Supply Voltage	BATT	1.5	2.4	8.0	V
Control Circuit Power Supply Voltage	SVCC	2.7	3.2	5.5	V
PRE-Driver VCC	SVCC2	2.7	3.2	5.5	V
Output Voltage	VM	-	PWM	BATT	V
Operating Temperature	Ta	-10	25	70	°C

Rev 1.0 Dec.12, 2002

4-Channel Motor Driver IC

Electrical characteristics

(Ta=25°C, BATT=2.4V, SVCC1=SVCC2=3.2V, VREF=1.6V, ADPVCC=0V, fCLKIN=88.2kHz)

Parameter	ter Symbol Conditions		Min.	Тур.	Max.	Unit
COMMON SECTION			II.	l	l.	
BATT Stand-by Current	IST	BATT=10.5V,SVCC1, 2=VREF=0V	-	-	5	μΑ
BATT Supply Current (No Load)	IBATT	DVCC=0.45V, MUTE34=3.2V	-	2.5	3.5	mA
SVCC Supply Current (No Load)	Isvcc1	DVCC=0.45V, MUTE34=3.2V, ERRI=0V	-	3.0	3.5	mA
SVCC2 Supply Current (No Load)	ISVCC2	DVCC=0.45V, MUTE34=3.2V	-	3.5	5.0	mA
ADPVCC Supply Current (No Load)	IADPVCC	ADPVCC=4.5V, ROUT=OPEN	-	0.2	1.0	mA
H-DRIVE PART				•	•	
Voltage Gain CH1, 3, 4 CH2	Gvc134 Gvc2	-	12 21.5	14 23.5	16 24.5	dB
Gain Error By Polarity	ΔGvc	-	-2	0	2	dB
Input pin Resistance CH1, 3, 4 CH2	R _{DI1} 34 R _{DI2}	IN=1.7 & 1.8V	9 6	11 7.5	13 9	ΚΩ
Maximum Output Voltage	Vout	RL=8 Ω , DVCC=BATT=4V, IN=0 ~ 3.2V	1.9	2.1	-	V
Saturation Voltage (Lower)	VSAT1	IO= -300mA, IN=0 & 3.2V	-	240	400	mV
Saturation Voltage (Upper)	VSAT2	IO=300mA, IN=0 & 3.2V	-	240	400	mV
Input offset Voltage	VIO	-	-8	0	8	mV
OutputOffsetVoltageCH1,3,4 CH2	V ₀₀ 134 V ₀₀ 2	VREF=IN=1.6V	-70 -130	0 0	70 130	mV
DEAD Zone	VDB	-	-20	0	20	mV
Brake1 On Voltage	V _M 10N	DI1=1.8V	2.0	-	-	V
Brake1 Off Voltage	V _M 10FF	DI1=1.8V	-	-	0.8	V
MUTE2 On Voltage	V _{M2} ON	DI2=1.8V	2.0	-	-	V
MUTE2 Off Voltage	V _{M2} OFF	DI2=1.8V	-	-	0.8	V
MUTE34 On Voltage	VM34ON	DI3=DI4=1.8V	-	-	0.8	V
MUTE34 Off Voltage	VM340FF	DI3=DI4=1.8V	2.0	-	-	V
VREF On Voltage	VREFON	INn=1.8V(N=1, 2, 3, 4)	1.2	-	-	V
VREF Off Voltage	VREFOFF	INn=1.8V(N=1, 2, 3, 4)	-	-	8.0	V
BRAKE1 Brake Current	IBRAKE	Brake Current	4	7	10	mA

^{*}Granteed Design Value

Email: server@ceramate.com.tw

Rev 1.0 Dec.12, 2002

Http: www.ceramate.com.tw

4-Channel Motor Driver IC

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
PWM POWER SUPPLY DRIVING		1		I	I	
PWM Sink Current	IPWM	DI1=2.1V	10	13	17	mA
*DVCC Level Shift Voltage	VSHIF	DI1=1.8V, DVCC-OUT1F	0.35	0.45	0.55	V
DVCC Leak Current	IDLK	DVCC=9V, SVCC1,2=BATT=0V	-	0	5	μΑ
*PWM Amp Transfer Gain	GPWM	DI1=1.8V, DVCC=1.2V ~ 1.4V	1/60	1/50	1/40	1/kΩ
DC/DC CONVERTER				l	l	
ERROR AMP						
SVCC1 Pin Threshold Voltage	Vs1TH	-	3.05	3.20	3.35	V
ERRO Pin Output Voltage H	VEOH	ERRI=0.7V, IO = -100μA	1.4	1.6	-	V
ERRO Pin Output Voltage L	VEOL	ERRI=1.3V, IO = 100μA	-	-	0.3	V
SHORT CIRCUIT PROTECTION				l	l	
SCP Pin Voltage	VSCP	ERRI=1.3V	-	0	0.1	V
SCP Pin Current 1	ISCP1	ERRI=0.7V	6	10	16	μΑ
SCP Pin Current 2	ISCP2	ERRI=1.3V, OFF=0V	12	20	32	μΑ
SCP Pin Current 3	ISCP3	ERRI=1.3V, BATT=9.5V	12	20	32	μΑ
*SCP Pin Impedance	RSCP	-	175	220	265	kΩ
SCP Pin Threshold Voltage	VSCPTH	ERRI=0.7V, COSC=470PF	1.10	1.20	1.30	V
Over Voltage Protection Detect	Vovp	OVP Voltage	9.5	10	10.5	V
TRANSISTOR DRIVING				l	l	
BDSW Pin Output Voltage 1H	Vsw1H	BATT=COSC=1.5V =SVCC2=0V, 10mA	0.78	0.98	1.13	V
BDSW Pin Output Voltage 2H	Vsw2H	COSC=0V, IO = -10mA, ERRI=0.7V SCP=0V	1.0	1.5	-	V
BDSW Pin Output Voltage 2L	Vsw2L	CT=2V, IO=1-mA	-	0.3	0.45	V
BDSW Pin Oscillating Reequency1	fsw1	COSC=470pF, =SVCC2=0V	65	80	95	kHz
SW Pin Oscillating Reequency 2	fsw2	COSC=470pF, CLKIN=0V	60	70	82	kHz
BDSW Pin Oscillating Reequency 3	fsw3	COSC=470pF	-	88.2	-	kHz
*BDSW Pin Minimum Pulse Width	TSWMIN	COSC=470pF, ERRO=0.5 → 0.7V	0.01	-	0.6	μs
Pulse Duty Start	Dsw ₁	COSC=470PF, SVSS1,SVCC2=0V	40	50	60	%
MAX. Pulse Duty at Self-Running	Dsw2	COSC=470pF, ERR0=0.8V, CLKIN=0V	50	60	70	%
MAX. Pulse Duty at CLKIN Synchronization	Dsw3	ERR0=0.8V, COSC=470pF	45	55	65	%

^{*}Granteed Design Value

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
DEAD TIME	1			u	l	I.
*DEDSET Pin Impedance	RDEDSET	-	52	65	78	kΩ
DEDSET Pin Output Voltage	VDEDSET	-	0.78	0.88	0.98	V
INTERFACE			•		•	•
STOP Pin Threshold Voltage	VSTOPTH	ERRI=1.3V	2.0	-	-	V
STOP Pin Bias Current	ISTOP	OFF=0V	75	95	115	μΑ
START Pin On Threshold Voltage	VSTATH1	SVCC1,SVCC2=0V, COSC=2V	1.3	-	-	V
START Pin Off Threshold Voltage	VSTATH2	SVCC1,SVCC2=0V, COSC=2V	-	-	2.1	V
START Pin Bias Current	ISTART	START=0V	13	16	19	μΑ
CLKIN Pin Threshold Voltage H	VCLKINTH H	-	2.0	-	-	V
CLKIN Pin Threshold Voltage L	VCLKINTH L	-	-	-	0.8	V
CLKIN Pin Bias Current	ICLKIN	CLKIN=3.2V	-	-	10	μΑ
START CURCUIT			•		•	•
Starter Switching Voltage	Vssv	SVCC1,SVCC2=0V → 3.2V START=0V	2.3	2.5	2.7	V
Starter Switching Hysteresis Width	Vsshs	START=0V	130	200	300	mV
Discharge Release Voltage	VDIS	-		1.83	2.03	V
RESET CIRCUIT	•					
*SVCC1 RESET Threshold Voltage Ratio	RRSTOTH	-	85	90	95	%
RESET Detection Hysteresis Width	VRSTHS	-	25	50	100	mV
RSTOUT Pin Output Voltage	VRSTO	IO=1mA, SVCC1,SVCC2=2.8V	-	-	0.5	V
RSTOUT Pin Pull Up Resistance	RRSTO	-	72	90	108	kΩ
RST Pin Output Voltage 1	VRST1	IO= -1mA, SVCC1,SVCC2=2.8V	2.0	-	2.4	V
RST Pin Output Voltage 2	VRST2	IO= -1mA, SVCC1,SVCC2=0V	2.0	-	2.4	V
*RST Pin Pull Up Resistance	RRST	-	77	95	113	kΩ

^{*}Granteed Design Value

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OP-AMP				•	•	
Input Bias Current	IBIAS	IN(+)=1.6V	-	-	300	nΑ
Input Offset Voltage	VOFOP	IN(+)=1.6V	-5.5	0	5.5	mV
High Level Output Voltage	VOHOP	RL=OPEN	2.8	-	-	V
Low Level Output Voltage	VOLOP	RL=OPEN	-	-	0.2	V
Output Drive Current (Source)	VSOURCE	50Ω GND	-	-6.5	-3.0	mA
Output Drive Current (Sink)	VSINK	50Ω SVCC	0.4	0.7	-	mA
*Open Loop Voltage Gain	GVO	VIN= -75dB, F=1kHz	-	70	-	dB
*Slew Rate	SR	-	-	0.5	-	V/μs
BATTERY CHARGING CURCUIT						
CHGSET Pin Bias Voltage	VCHGSET	ADPVCC=4.5V, CHGSET=1.8k Ω	0.71	0.81	0.91	V
*CHGSET Pin Output Resistance	RCHGSET	ADPVCC=4.5V	0.75	0.95	1.20	kΩ
EMPSET Pin Leak Current 1	IEMPSET	ADPVCC=4.5V, CHGSET=OPEN	-	-	1.0	μΑ
EMPSET Pin Leak Current 2	IEMPSET	ADPVCC = 0.6V, CHGSET = $1.8k\Omega$	-	-	1.0	μΑ
EMPSET Pin Saturation Voltage	VEMPSET	ADPVCC = 4.5V, IO = 300mA, CHGSET = 0Ω	-	0.45	1.0	V
EMPTY DETECTION			I			
EMP Detection Voltge 1	VEMPT1	VEMPSET = 0V	2.1	2.2	2.3	V
EMP Detection Voltge 2	VEMPT2	IEMPSET = -2μA	1.7	1.8	1.9	V
EMP Detection Hysteresis Voltage 1	VEMHS1	VEMPSET = 0V	25	50	100	mV
EMP Detection Hysteresis Voltage 2	VEMHS2	IEMPSET = -2μA	25	50	100	mV
EMP Pin Output Voltage	VEMP	IO = 1mA, OVP = 1V	-	-	0.5	V
EMP Pin Output Leak Current	IEMPLK	OVP = 2.4V	-	-	1.0	μΑ
*OVP Pin Input Resistance	Rovp	VEMPSET = 0V	17	23	27	kΩ
OVP Pin Leak Current	IOVPLK	SVCC1 = SVCC2 = 0V, OVP = 4.5V	-	-	1.0	V
EMP_SET Pin Detection Voltage	VEMPSET	VEMPSET = BATT-EMPSET, OVP = 2V	1.5	-	-	V
EMP_SET Pin Detection Current	IEMPSET	EMPSET	-2	-	-	μΑ

^{*}Granteed Design Value

Email: server@ceramate.com.tw Http: www.ceramate.com.tw Rev 1.0 Dec.12, 2002

Application Information

1. Mute Function

- When The BRAKE Pin is low is normal opration (high is CH1 mute on).
- When The Mute2 Pin is low is normal opration (high is CH2 mute on).
- When The Mute34 Pin is high is normal opration (low is CH3,4 mute on).

2. Vref Drop Mute (Figure 1)

• When the Voltage of the mute pin is above 1V, the mute circuit is stopped and the output circuit is.

Figure 1. VREF Drop MUTE Circuit

Figure 2. TSD Circuit

3. Thermal Shutdown(Figure 2)

• If the chip temperature rises above 150°C, then the thermal shutdown (TSD) circuit is activated and the output circuit will be mute.

4. H-bridge Driver (4-Channels)

Driver input resistance is $10k\Omega$ of CH1, CH3, CH4 and input resistance of CH2 is $7.5k\Omega$.

Driver gain can obtain under -mentioned

CH1, 3, 4:
$$GV = 20log \left| \frac{55K}{11K + R} \right|$$

$$CH2 \qquad GV = 20log \left| \frac{110K}{7.5K + R} \right|$$

R is External resistance.

5. Switching Regulated Power Supply Drive

- This circuit detects a maximum output value of 4CH drivers and then generates PWM Signal.
- External Component is PNP-Tr, Coil, Schottky Diodeand Capacitor .

Figure 1. Switching Regulated Power Supply

6. DC/DC Converter Control Circuit

• Booster circuit needs External component. and the voltage() is defined as follows.

$$SVCC1 = 1.267 \times \frac{\frac{R1 \cdot R3}{R1 + R3} + \frac{R2 \cdot R4}{R2 + R4}}{\frac{R2 \cdot R4}{R2 + R4}} \\ \times \frac{R1 = Resistor1}{R2 = Resistor2} \\ \times R3 = 30 \times \Omega \\ \times R4 = 30.5 \times \Omega$$

Figure 2. Output Voltage

Email: server@ceramate.com.tw Http: www.ceramate.com.tw Rev 1.0 Dec.12, 2002

 Short Circuit Protection function when GND and is short, ERRI become LOW and ERRO HIGH and it makes capacitor charging, fanally AMP3 is OFF.(figure 5)

Figure 3. DC/DC Converter Control Circuit

Switching off time depen on a capacitor of the SCP . and the equation is as follow.

$$t = C_{SCP} \times \frac{V_{TH}}{I_{SCP}}$$
 $(V_{TH} = 1.25V, I_{SPRT} = 10\mu A)$

• Max Duty can be controlled resistor. the equation is as follow.

$$t = C_{DEDSET} \times R$$
 $(R = 65K\Omega)$

• Capacitor of the SCP terminal can control disable switiching time and it can be calculated by as follow equation.

$$t = C_{SCP} \times \frac{V_{TH}}{I_{STOP}}$$
 $(V_{TH} = 1.25V, I_{OFF} = 20\mu A)$

• Over Voltage Protection BATT Voltage is over 9.7V charging SCP terminal Capacitor, it reach to V_{TH} SW terminal signal is OFF the equation is as follow

$$t = \, C_{SCP} \! \times \! \frac{V_{TH}}{I_{HV}} \qquad \quad (V_{TH} = 1.25 \, V, \ I_{HV} = 20 \mu A) \label{eq:total_theory}$$

• If Output Voltage of RSTOUT Circuit DC/DC Conver is over than 90%, RSTOUT terminal turn to HIGH and Hysteresis is 50mV. and RSTOUT stste is ON.

7. Empty Detecting Circuit.

EMPSET	Detect Voltage	Hysteresis	Mode
LOW	2.2V	50mV	Battery Mode
HIGH-Z	1.8V	50mV	Adapter Mode

8. Battery Charging Circuit

- the battery charger circuit is separated from any other block .
- TSD operate at 150°C. Hysteresis is 30°C

* All specs and applications shown above subject to change without prior notice.

Typical Performance Characteristics

^{*} All specs and applications shown above subject to change without prior notice.

Application Circuits

^{*} All specs and applications shown above subject to change without prior notice.