CPSC 322: Introduction to Artificial Intelligence

CSPs: Search and Consistency

Textbook reference: [4.2,4.3,4.4]

Instructor: Varada Kolhatkar University of British Columbia

Credit: These slides are adapted from the slides of the previous offerings of the course. Thanks to all instructors for creating and improving the teaching material and making it available!

Announcements

- Midterm time and location
 Time: Friday, Oct 25th, from 6pm to 7pm
 Location: Woodward 2
 (Instructional Resources Centre-IRC) (WOOD) 2
- Midterm practice questions are available on Piazza.
- My office hours: Fridays from I lam to noon at ICCS 185

Lecture outline

- Recap CSPs (~5 mins)
- Solving CSPs
 - Generate and Test (~10 mins)
 - Search (~30 mins)
 - Constraint network (~10 mins)
- Class activity (~15 mins)
- Summary and wrap up

Today: Learning outcomes

From this lecture, students are expected to be able to:

- Implement the Generate-and-Test Algorithm.
 Explain its disadvantages.
- Solve a CSP by search (specify neighbours, states, start state, goal state). Compare strategies for CSP search. Implement pruning for DFS search in a CSP.
- Build a constraint network for a set of constraints.

A rough CPSC 322 overview

CSP: Motivation

Hardware verification

Software verification

"Using our constraint solver, IBM's hardware verification tools have reduced design and verification costs by more than \$100M. External companies that licensed the test generator tools noted the powerful CSP engine capabilities as a key factor in their decision."

https://www.research.ibm.com/haifa/dept/vst/csp_verification.shtml

Constraint satisfaction problems (CSPs)

A constraint satisfaction problem (CSP) consists of

- ullet a set of **variables** V
- a domain $dom(V_i)$ for each variable $V_i \in V$
- a set of constraints C

Simple example:

$$V = \{V_1\}$$
 $C = \{c_1, c_2\}$
 $dom(V_1) = \{2,4,8,16\}$ $c_1 : V_1 \neq 8$
 $c_2 : V_1 > 2$

Possible worlds and models

A possible world of a CSP is an assignment of values to all of its variables.

Simple example:

$$V = \{V_1\}$$

$$dom(V_1) = \{2,4,8,16\}$$

$$C = \{c_1, c_2\}$$

$$c_1 : V_1 \neq 8$$

$$c_2 : V_1 > 2$$

Possible worlds

$$\{V_1 = 2\}$$

 $\{V_1 = 4\}$
 $\{V_1 = 8\}$
 $\{V_1 = 16\}$

Possible worlds and models

A possible world of a CSP is an assignment of values to all of its variables.

A model/solution of a CSP is an assignment of values to all of its variables that **satisfies** all of its constraints.

Simple example:

$$V = \{V_1\}$$

$$dom(V_1) = \{2,4,8,16\}$$

$$C = \{c_1, c_2\}$$

$$c_1 : V_1 \neq 8$$

$$c_2 : V_1 > 2$$

Possible worlds and models

$$\{V_1 = 2\}$$

 $\{V_1 = 4\}$ (a model)
 $\{V_1 = 8\}$
 $\{V_1 = 16\}$ (a model)

Finite Constraint Satisfaction Problem

A finite constraint satisfaction problem (FCSP) consists of

- ullet a finite set of variables V
- a finite domain $dom(V_i)$ for each variable $V_i \in V$
- a set of constraints C

In this course when we say CSPs, we actually mean FCSPs.

Lecture outline

- Recap CSPs (~5 mins)
- Solving CSPs
 - Generate and Test (~10 mins)
 - Search (~30 mins)
 - Constraint network (~10 mins)
- Class activity (~15 mins)
- Summary and wrap up

Solving CSPs

In this lecture, we will look at two methods to solve CSPs

- Generate-and-Test
- Graph search

Generate-and-Test

Systematically check all possible worlds Possible worlds: cross product of domains $dom(V_1) \times dom(V_2) \times ... \times dom(V_n)$

```
Example: Suppose you have three variables, say A, B, and C.
dom(A) = {1,2,3,4,5}, dom(B) = {2,4}, dom{C} = {1,2,3,4,5}
for a in dom(A)
  for b in dom(B)
  for c in dom(C)
   if (abc) satisfies all the constraints
    return abc
return NULL
```

Generate-and-Test

Generate possible worlds one at a time and test them to see if they violate any constraints

```
Example: Suppose you have three variables, say A, B, and C.
dom(A) = {1,2,3,4,5}, dom(B) = {2,4}, dom{C} = {1,2,3,4,5}
for a in dom(A)
  for b in dom(B)
  for c in dom(C)
   if (abc) satisfies all the constraints
    return abc
return NULL
```

Would this method be able to solve any given CSP? What's wrong with this approach?

Generate-and-Test complexity

iclicker.

If there are k variables, each with domain size d, and there are c constraints, the complexity of generate-and-test is

- A. O(ckd)
- B. $O(ck^d)$
- C. $O(cd^k)$
- D. $O(d^{ck})$

Generate-and-Test algorithm

If there are k variables, each with domain size d, and there are c constraints, the complexity of generate-and-test is

- A. O(ckd)
- B. $O(ck^d)$
- C. $O(cd^k)$
- D. $O(d^{ck})$

There are d^k possible worlds.

For each one need to check c constraints.

Lecture outline

- Recap CSPs (~5 mins)
- Solving CSPs
 - Generate and Test (~10 mins)
 - Search (~30 mins) —
 - Constraint network (~10 mins)
- Class activity (~15 mins)
- Summary and wrap up

Solving CSPs using graph search

- States: assignments of values to a subset of the variables (partial assignments)
- Start state: the empty assignment (no variables assigned values)

The path to the goal node is not important.

- Neighbours of a state: nodes in which values are assigned to one additional variable
- Goal state: a state which assigns a value to each variable, and satisfies all of the constraints

Solving CSPs using graph search

Start state: empty assignment

States have partial assignments

Search strategy for a CSP

i⊭clicker.

If there are n variables in a CSP, every solution is at depth n. Is there a role for heuristic function?

- A. Yes
- B. No
- C. It depends

Search strategy for a CSP

iclicker.

The search space in CSPs is always

- A. Finite with cycles
- B. Infinite without cycles
- C. Finite without cycles

D. Infinite with cycles

Search strategy for a CSP

i⊭clicker.

So which search strategy is better for CSPs?

- A. BFS
- B. A*
- C. IDS
- D. DFS

Solving CSPs using graph search: Backtracking

Explore search space via DFS but evaluate each constraint as soon as all its variables are bound.

Any partial assignment that doesn't satisfy the constraint can be pruned.

Example:

3 variables A, B, C each with domain $\{1,2,3,4\}$ $\{A = I, B = I\}$ is inconsistent with constraint $A \neq B$ regardless of the value of the other variables \Rightarrow Fail! Prune!

How do you find neighbours?

Two formulations of using graph searching to solve CSPs based on the successor function

- I. Decide an ordering of the variables beforehand V_1, V_2, \ldots, V_n and follow the total order during search
- 2. Assign each previously unassigned variable not necessarily in a particular order.

Follow the total ordering V_1, V_2, \ldots, V_n during search

Follow the total ordering V_1, V_2, \ldots, V_n during search

Follow the total ordering $V_1, V_2, ..., V_n$ during search

Check unary constraints on V_1 . If not satisfied, PRUNE!

Check constraints on V_1, V_2, V_3 . If not

satisfied, PRUNE!

Check unary constraints on V_1 . If not satisfied, PRUNE!

Check constraints on

 V_1, V_2, V_3 . If not satisfied, PRUNE!

The algorithm's efficiency heavily depends on the order in which variables are considered. E.g., only two constraints:

$$V_n = V_{n-1}$$
 and $V_{n-1} \neq V_n$

- A state assigns values to some subset of variables
- Successor function assign each previously unassigned variable (not necessarily in a particular order.)

Example:

current node n: { $V_4 = v_1, V_7 = v_1, V_{30} = v_1$ } Neighbours of n:

$$\{V_4 = v_1, V_7 = v_1, V_{30} = v_1, V_x = y\}, V_x \notin \{V_4, V_7, V_{30}\}, y \in dom(V_x)$$

Selecting variables in a smart way

Relies on one or more heuristics to select which variables to consider next.

- E.g., variable involved in the largest number of constraints: "If you are going to fail on this branch, fail early!"
- Can also be smart about which values to consider first

Note that we are using the word "heuristics" in a different sense here. It doesn't mean estimate of the distance to the goal in this context.

Toy problem

Variables: A, B, C, Domains: {1,2,3,4}, Constraints: A < B, B < C

Toy problem

Variables: A, B, C, Domains: {1,2,3,4}, Constraints: A < B, B < C

Standard search vs. CSPs as graph search

State: assignment of values to a subset of variables

Successor function: assign values to a free variable

Goal test: all variables assigned a value and all constraints satisfied

Solution: a possible world that satisfies the constraints: a model

Heuristic function: None (all solutions are at a same distance from the start)

CSP solvers vs. state-space searchers

CSP solvers

- They can identify whether a partial assignment is not a solution
- They are faster because they can quickly eliminate large portions of the search space
- Only the goal is important and not the path to the goal

State-space searchers

- They can only identify whether a specific state is goal or not
- They are slower
- The path to the goal is important

Can we do better than search?

Key idea: **Prune the domains** as much as possible **before searching** for a solution

Simple when using constraints involving single variables

Lecture outline

- Recap CSPs (~5 mins)
- Solving CSPs
 - Generate and Test (~10 mins)
 - Search (~30 mins)
 - Constraint network (~10 mins)
- Class activity (~15 mins)
- Summary and wrap up

Can we do better than search?

Definition: A variable is **domain consistent** if no value of its domain is ruled impossible by any unary constraint.

Example:

If we have the unary constraint $B \neq 3$, then $D_B = \{1,2,3,4\}$ is NOT domain consistent.

Constraints involving multiple variables

Definition: A constraint network is defined by a graph, with

- one node for every variable (ovals)
- one node for every constraint (rectangles)
- undirected edges running between variable nodes and constraint nodes whenever a given variable is involved in a given constraint.

Constraints involving multiple variables

Definition: A **constraint network** is defined by a graph, with

- one node for every variable (ovals)
- one node for every constraint (rectangles)
- undirected edges running between variable nodes and constraint nodes whenever a given variable is involved in a given constraint

Note: strictly speaking, when all of the constraints are binary, constraint nodes are not necessary: we can drop constraint nodes and use edges to indicate that a constraint holds between a pair of variables. However, in this course we will always show constraint nodes.

Constraint network for map colouring

The constraint nodes are not shown because all the constraints are binary

Class activity (~15 mins)

Companies	Times they can make	Constraints	
Google (G)	{1}	$G \neq F, G \neq I, G \neq M, G \neq O$ $F \neq I, F \neq M, F \neq O$ $I \neq O$ $O \neq A$	
Facebook (F)	{1, 2, 3, 4}		
IBM (I)	{1, 2, 3, 4}		
Microsoft (M)	{1, 2, 3, 4}		
OpenAl (O)	{1,2,3}		
Apple (A)	{2}		

- Draw a constraint network for this problem
- Errata: left-most branch = assign values to at least
 4 variables

Revisit: Learning outcomes

From this lecture, students are expected to be able to:

- Implement the Generate-and-Test Algorithm.
 Explain its disadvantages.
- Solve a CSP by search (specify neighbours, states, start state, goal state). Compare strategies for CSP search. Implement pruning for DFS search in a CSP.
- Build a constraint network for a set of constraints.

Coming up

Readings for next class

- 4.4 Consistency Algorithms
- 4.5 Domain Splitting