G

Corrigé devoir sur table n°3

Compétence 1: Exposants positifs

Le produit de 5 facteurs tous égaux à 4 est : $4^5 = 2^{10} = 1024$

Le produit de 2 facteurs tous égaux à (-2) est : $(-2)^2 = +4$ Le résultat est positif. Quand l'exposant est pair et que la base est un nombre relatif, alors le résultat est positif.

Compétence 2 : Exposants négatifs

$$5^{-2} = \frac{1}{5^2} = \frac{1}{5 \times 5}$$

$$31^{-4} = \frac{1}{31^4} = \frac{1}{31 \times 31 \times 31 \times 31}$$

$$1^{-5} = \frac{1}{1^{5}} = \frac{1}{1 \times 1 \times 1 \times 1 \times 1}$$

$$(-2)^{-3} = \frac{1}{(-2)^3} = \frac{1}{(-2)\times(-2)\times(-2)}$$

Compétence 3 : Puissances de dix

Calcul:

Complète les pointillés,

sur chaque ligne, c'est le même nombre écrit de différentes façons :

$$10\ 000\ 000\ 000\ 000\ = \ 10^{13} = 10^{1} \times 10^{12} = 10^{15} \times 10^{-2}$$

$$100\ 000\ 000\ = (10^{4})^{2} = 10^{9} \div 10 = 10^{8}$$

$$0,1 = \frac{1}{10} = 10^{-1} = \frac{10^{2}}{10^{3}}$$

$$0,000\ 000\ 001 = \frac{1}{10^{4}} \times \frac{1}{10^{5}} = \frac{1}{10^{9}} = 10^{-9}$$

$$0,1 = \frac{1}{10} = 10^{-1} = \frac{10^2}{10^3}$$

$$0,000\ 000\ 001 = \frac{1}{10^4} \times \frac{1}{10^5} = \frac{1}{10^9} = 10^{-9}$$

Préfixes (cours):

Complète le tableau des préfixes scientifiques :

Nombre	10-3	10 ⁹	10-9	10-6	10^6	10 ³
Préfixe	milli	giga	nano	micro	mega	kilo
Symbole	m	G	n	μ	M	k

Compétence 4 : Notation scientifique Conversion :

Ecris en notation scientifique :

$$14 = 1,4 \times 10^{1}
777 = 7,77 \times 10^{2}
-5 010 000 = -5,01 \times 10^{6}
0,09 = 9 \times 10^{-2}$$

$$613 \times 10^{-7} = 6,13 \times 10^{2} \times 10^{-7} = 6,13 \times 10^{-5}$$

 $0,613 \times 10^{15} = 6,13 \times 10^{-1} \times 10^{15} = 6,13 \times 10^{14}$

Calcul:

$$x = (2 \times 10^{100}) \times (3 \times 10^{200})$$

 $x = 2 \times 3 \times 10^{100} \times 10^{200} = 6 \times 10^{300}$

$$y = (3,14 \times 10^{2020}) \times (3 \times 10^{-2020})$$

 $y = 3,14 \times 3 \times 10^{2020} \times 10^{-2020} = 9,42 \times 10^{0} = 9,42$

Compétence 5 : Résoudre des problèmes

Les fourmis : (proposé par Paul Bastien)

Un être humain pèse en moyenne 70 kg. On estime à 7,8 milliards le nombre d'êtres humains sur Terre.

Une fourmi pèse en moyenne 5,46 mg. On estime à 10¹⁸ le nombre de fourmis vivant sur Terre.

- a. Quelle est la masse totale (en g) des êtres humains?
- b. Quelle est la masse totale (en g) des fourmis?
- c. Combien de fois la masse totale des fourmis est-elle plus grande que la masse totale des êtres humains ?

Zone réponse :

$$a.70 \text{ kg} = 70\ 000 \text{ g} = 7 \times 10^4 \text{ g}$$

On appelle $m_{humains}$ la masse totales des humains en grammes. $m_{humains}$ = masse d'un humain en grammes × nombre d'humains $m_{humains}$ = $(7 \times 10^4) \times (7.8 \times 10^9)$ = 54.6×10^{13} g = 5.46×10^{14} g

La masse totale des humains est $5,46 \times 10^{14}$ grammes.

b. 5,46 mg = 5,46
$$\times$$
 10⁻³ g m_{fourmis} = masse d'une fourmi en grammes \times nombre de fourmis m_{fourmis} = (5,46 \times 10⁻³) \times (1 \times 10¹⁸) = 5,46 \times 10¹⁵ g

La masse totale des fourmis est $5,46 \times 10^{15}$ grammes.

c.
$$\frac{m_{fourmis}}{m_{humains}} = \frac{5.46 \times 10^{15}}{5.46 \times 10^{14}} = 10$$

La masse totale des fourmis est 10 fois plus grande que celle des humains.

Exercices Bonus:

A.Range dans l'ordre croissant :

$$-9 \times 10^{14} < -9 \times 10^{-14} < 9 \times 10^{-14} < 9 \times 10^{14}$$

loin de zéro proche de zéro proche de zéro loin de zéro