Analiza seria 3

Bartosz Kucypera, bk439964

3 maja 2023

Zadanie 5

$$S(x) = \sum_{n=1}^{\infty} \frac{\cos(n\pi)\arctan(x/\sqrt{n})}{\sqrt{n}}$$

Neich $(S_N)_1^{\infty}$ będzie ciągiem sum częściowych S. (S_N) dobrze określony i różniczkowalny na \mathbb{R} . Zbadajmy S'_N :

$$S_N'(x) = \sum_{n=1}^N \left(\frac{(-1)^n \arctan(x/\sqrt{n})}{\sqrt{n}} \right)' = \sum_{n=1}^N \frac{(-1)^n}{\sqrt{n}} \cdot \frac{1}{1+x^2/n} \cdot \frac{1}{\sqrt{n}} = \sum_{n=1}^N \frac{(-1)^n}{n+x^2}$$

$$\sum_{n=1}^{N} (-1)^n \text{ ograniczony}$$

$$\frac{1}{n+x^2} \leq \frac{1}{n}$$
czyli z kryterium Weierstrassa, zbieżny jednostajnie do 0

 (S'_N) spełnia, więc założenia jednostajnego kryterium Dirichlet'a, czyli jest zbieżny jednostajnie do pewnej ciągłej funkcji g (ciągłej, bo każdy element ciągu (S'_N) jest skończoną sumą funckji ciągłych, czyli jest ciągły).

Teraz skoro ciąg $(S_N(0))$ zbieżny (bo S(0)=0), oraz $S_N' \rightrightarrows g$ możemy skożystać z twierdzenia 7.19 ze skryptu Pawła Strzeleckiego.

Wnioskujemy, że:

 (S_N) zbieżny jednostajnie, czyli S ciągła i określona na \mathbb{R} ,

S różniczkowalna i S' = g.

Ciągłość g mieliśmy już wcześniej. Czyli faktycznie S klasy C^1 .