Last revised: 22.01.2013

Exercise 3 – Pulse Echo Imaging

Purpose: To understand the concept of pulse-echo imaging in ultrasound.

Deadline: See It's Learning

Matlab code: *PulseEcho.m* contains a simple simulation for an ultrasound pulse echo system. This is the basis for solving the exercises. The file is downloadable from It's Learning.

Exercises

- 1. Draw a block diagram of the pulse-echo system (This is not expected to be handed in).
- 2. Consider an object of 1 cm thick layer of fat submerged in water, at depth 2 cm. Vary the pulse length Tp and center frequency f0.
 - a. Which values for Tp and f0 gives good resolution?
 - b. Which values for Tp and f0 gives good signal to noise ratio?
 - c. Suggest a value for Tp and f0 that both gives good resolution and good signal to noise ratio.
- 3. Vary the thickness of the fatty layer. Look in particular at thicknesses = $\lambda/2$, $\lambda/4$.
 - a. Explain what happens.
 - b. Try to formulate an expression for the received signal and look at the amplitude when the thickness is $\lambda/2$ and $\lambda/4$. (Some useful equations are given in a separate pdf file).
- 4. We shall now take a look at the signal from muscular tissue (2cm thick) in water (at depth 1cm). The acoustic impedance is on average $1.66 \frac{kg}{m^2 s}$, and we assume that the impedance varies periodically (sine function) with an amplitude of $0.02 \frac{kg}{m^2 s}$, and period 0.385 mm.
 - a. Plot the received signal for frequencies f0 = 2.0 MHz and 4.0 MHz (pulse length Tp=2e-6).
 - b. Why is the signal so different for the two frequencies used?
- 5. We shall now turn to a piece of liver, 2cm thick, at a distance of 1cm. The acoustic impedance for liver is on average $1.66 \frac{kg}{m^2 s}$, with a Gaussian distributed spatial fluctuation, with a standard deviation of $0.02 \frac{kg}{m^2 s}$. We assume that the correlation length

is less than 0.01 mm.

- a. Plot the received signal using two pulse lengths (f0=2.5 MHz) Tp=0.6e-6 and Tp=1.8e-6.
- b. Simulate several times, and observe how the speckle-pattern varies. Try to explain what happens.

Good Luck!