fuDeepOrdinalRegression2018: Deep Ordinal Regression Network for Monocular Depth Estimation

Haocheng Zhao

September 16, 2021

Paper

- title: Deep Ordinal Regression Network for Monocular Depth Estimation
- author: Huang Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, Dacheng Tao
- vear: 2018 CVPR
- explanation:
 - Monocular Depth Estimation
 - Ordinal Regression

Paper

Research Background

- Monocular Depth Estimation (MDE) progress is slow, comparing to Stereo images or video sequences. A single 2D image may be produced from an infinite number of distinct 3D scenes.
- To overcome this inherent ambiguity, typical methods resort to exploiting statistically meaningful monocular cues or features, such as perspective and texture information, object sizes, object locations, and occlusions.
- Using DCNN-based models improved the MDE performance. These methods address the MDE problem by learning a DCNN to estimate the continuous depth map. This problem is a common regression problem, whose MSE in log-space or its variants are usually adopted as the loss function.

Research Gap

Main Problem

- Image-level information and hierarchical features from deep convolutional neural networks (DCNNs). Map the depth estimation to regression problem and training to minimize mean squared error.
- Existing depth estimation networks employ repeated spatial pooling operations, resulting in undesirable low-resolution feature maps.
- To obtain high-resolution maps, skip-connections or multi-layer deconvolution networks are required. But it complicates network training and consumes much more computations.

Algorithm Architecture

Overall Architecture

two parts:

- a dense feature extractor and scene understanding modular
- outputs multichannel dense ordinal labels

L Methodology

☐ Network Architecture

Dense Feature Extractor

Based on some recent Scene Parsing Network, they advocate removing the last few downsampling operators of DCNNs and inserting holes to filters in the subsequent *conv* layers, called dilated convolution, to enlarge the field-of-view of filters without decreasing spatial resolution or increasing the number of parameters. Methodology

Network Architecture

Scene Understanding Modular

- an atrous spatial pyramid pooling module
- a cross-channel learner 1x1 conv
- a full-image encoder

Methodology

☐ Network Architecture

Ordinal Regression

Spacing-Increasing Discretization and Uniformed

• UD: $t_i = \alpha + (\beta - \alpha) * i/K$,

• SID: $t_i = e^{\log(\alpha) + \frac{\log(\beta/\alpha) * i}{K}}$,

Training

Loss Function

$$\chi = \varphi(I, \Phi) \quad Y = \psi(\chi, \Theta)$$

$$\mathcal{L}(\chi, \Theta) = -\frac{1}{N} \sum_{w=0}^{W-1} \sum_{h=0}^{H-1} \Psi(w, h, \chi, \Theta)$$

$$\Psi(h, w, \chi, \Theta) = \sum_{k=0}^{l_{(w,h)-1}} \log \left(\mathcal{P}_{(w,h)}^{k} \right) + \sum_{k=l}^{K-1} \left(1 - \log \left(\mathcal{P}_{(w,h)}^{k} \right) \right)$$

$$\mathcal{P}_{(w,h)}^{k} = P \left(\hat{l}_{(w,h)} > k \mid \chi, \Theta \right)$$

$$\mathcal{P}_{(w,h)}^{k} = \frac{e^{y_{(w,h,2k+1)}}}{e^{y_{(w,h,2k)}} + e^{y_{(w,h,2k+1)}}}$$
(1)

Experiments Design

- Datasets: KITTI [1], Make3D [2, 3], NYU Depth v2 [4], ImageNet [5] for pre-training
- Depth Estimation network based on the Caffe
- Feature Extractor: VGG-16 [6], ResNet-101 [7]

KITTI - Results

KITTI

Method	cap	l	nigher is bett	er	lower is better			
		$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$	Abs Rel	Squa Rel	RMSE	$RMSE_{log}$
Make3D [49]	0 - 80 m	0.601	0.820	0.926	0.280	3.012	8.734	0.361
Eigen <i>et al</i> . [10]	0 - 80 m	0.692	0.899	0.967	0.190	1.515	7.156	0.270
Liu et al. [38]	0 - 80 m	0.647	0.882	0.961	0.217	1.841	6.986	0.289
LRC (CS + K) [17]	0 - 80 m	0.861	0.949	0.976	0.114	0.898	4.935	0.206
Kuznietsov et al. [31]	0 - 80 m	0.862	0.960	0.986	0.113	0.741	4.621	0.189
DORN (VGG)	0 - 80 m	0.915	0.980	0.993	0.081	0.376	3.056	0.132
DORN (ResNet)	0 - 80 m	0.932	0.984	0.994	0.072	0.307	2.727	0.120
Garg et al. [15]	0 - 50 m	0.740	0.904	0.962	0.169	1.080	5.104	0.273
LRC (CS + K) [17]	0 - 50 m	0.873	0.954	0.979	0.108	0.657	3.729	0.194
Kuznietsov et al. [31]	0 - 50 m	0.875	0.964	0.988	0.108	0.595	3.518	0.179
DORN (VGG)	0 - 50 m	0.920	0.982	0.994	0.079	0.324	2.517	0.128
DORN (ResNet)	0 - 50 m	0.936	0.985	0.995	0.071	0.268	2.271	0.116

Make3D - Results

Make3D

Method		C1 erro	or	C2 error			
Method	rel	\log_{10}	rms	rel	\log_{10}	rms	
Make3D [49]	-	-	-	0.370	0.187	-	
Liu et al. [37]	-	-	-	0.379	0.148	-	
DepthTransfer [26]	0.355	0.127	9.20	0.361	0.148	15.10	
Liu et al. [39]	0.335	0.137	9.49	0.338	0.134	12.60	
Li <i>et al</i> . [34]	0.278	0.092	7.12	0.279	0.102	10.27	
Liu <i>et al</i> . [38]	0.287	0.109	7.36	0.287	0.122	14.09	
Roy et al. [46]	-	-	-	0.260	0.119	12.40	
Laina et al. [33]	0.176	0.072	4.46	-	-	-	
LRC-Deep3D [57]	1.000	2.527	19.11	-	-	-	
LRC [17]	0.443	0.156	11.513	-	-	-	
Kuznietsov et al. [31]	0.421	0.190	8.24	-	-	-	
MS-CRF [58]	0.184	0.065	4.38	0.198	-	8.56	
DORN (VGG)	0.236	0.082	7.02	0.238	0.087	10.01	
DORN (ResNet)	0.157	0.062	3.97	0.162	0.067	7.32	

Figure: c1: 0~80m c2: 0~70m

NYU Depth v2

Method	δ_1	δ_2	δ_3	rel	\log_{10}	rms
Make3D [49]	0.447	0.745	0.897	0.349	-	1.214
DepthTransfer [26]	-	-	-	0.35	0.131	1.2
Liu et al. [39]	-	-	-	0.335	0.127	1.06
Ladicky et al. [32]	0.542	0.829	0.941	-	-	-
Li et al. [34]	0.621	0.886	0.968	0.232	0.094	0.821
Wang <i>et al</i> . [55]	0.605	0.890	0.970	0.220	-	0.824
Roy <i>et al</i> . [46]	-	-	-	0.187	-	0.744
Liu <i>et al</i> . [38]	0.650	0.906	0.976	0.213	0.087	0.759
Eigen et al. [9]	0.769	0.950	0.988	0.158	-	0.641
Chakrabarti et al. [2]	0.806	0.958	0.987	0.149	-	0.620
Laina <i>et al</i> . [33]	0.629	0.889	0.971	0.194	0.083	0.790
Li et al. [35]	0.789	0.955	0.988	0.152	0.064	0.611
Laina <i>et al</i> . [33] [†]	0.811	0.953	0.988	0.127	0.055	0.573
Li <i>et al</i> . [35] [†]	0.788	0.958	0.991	0.143	0.063	0.635
MS-CRF [58] [†]	0.811	0.954	0.987	0.121	0.052	0.586
DORN [†]	0.828	0.965	0.992	0.115	0.051	0.509

Main Evaluation Methods

• threshold δ [8]

$$\max\left(\frac{\hat{d}_p}{d_p}, \frac{d_p}{\hat{d}_p}\right) = \delta$$

■ Abs Rel, Sq Rel, RMSE and RMSE_{log}

abs rel.
$$=\frac{1}{n}\sum \left|\frac{y_{pred}-y_{gt}}{y_{gt}}\right|$$
 (3)

sq. rel.
$$=\frac{1}{n}\sum\left(\frac{y_{\text{pred}}-y_{gt}}{y_{gt}}\right)^2$$
 (4)

$$RMSE = \sqrt{\frac{1}{n}} \sum_{n} (y_{pred} - y_{gt})^2$$
 (5)

$$\log RMSE = \sqrt{\frac{1}{n} \sum (\log (y_{pred}) - \log (y_{gt}))^2}$$
 (6)

- A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The KITTI dataset," *The International Journal of Robotics Research*, vol. 32, no. 11, pp. 1231–1237, Sep. 2013.
- A. Saxena, M. Sun, and A. Y. Ng, "Make3D: Learning 3D Scene Structure from a Single Still Image," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 31, no. 5, pp. 824–840, May 2009.
- A. Saxena, S. Chung, and A. Ng, "Learning Depth from Single Monocular Images," in *Advances in Neural Information Processing Systems*, vol. 18. MIT Press, 2006.
- N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor Segmentation and Support Inference from RGBD Images," in Computer Vision ECCV 2012, ser. Lecture Notes in Computer Science, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Heidelberg: Springer, 2012, pp. 746–760.

- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "ImageNet Large Scale Visual Recognition Challenge," *Int J Comput Vis*, vol. 115, no. 3, pp. 211–252, Dec. 2015.
- K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556 [cs], Apr. 2015.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv:1512.03385 [cs], Dec. 2015.
- L. Ladicky, J. Shi, and M. Pollefeys, "Pulling Things out of Perspective," in 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, Jun. 2014, pp. 89–96.