Examen 2I003

Mercredi 7 Juin 2017, 2 heures aucun document autorisé

Exercice 1 – Recherche du k-ème plus petit élément - 12 points

Le k-ème plus petit élément d'un ensemble E de n nombres tous différents, avec $n \ge k$, est l'élément x de E tel qu'il y a exactement k-1 éléments de E strictement inférieurs à x.

Par exemple, le 3-ème plus petit élément de $\{8, 5, 3, 4, 1, 6, 7\}$ est 4.

Recherche dans un ABR

Question 1

- 1. Rappeler la définition d'un arbre binaire de recherche.
- 2. Pour chacun des arbres B_1 , B_2 , B_3 , dire s'il est ou non un arbre binaire de recherche. Justifier les réponses négatives.

Solution:

- 1. Voir cours.
- 2. B_1 n'est pas un ABR car la clef 7 est supérieure à la clef 6.

 B_2 est un ABR.

 B_3 n'est pas un ABR car la clef 6 est inférieure à la clef 7.

Question 2

On considère dans la suite de l'exercice la fonction ABinfixe(B) ainsi définie, pour B arbre binaire :

```
def ABinfixe(T):
    if estABvide(T):
        return []
    return ABinfixe(T.gauche) + [T.clef] + ABinfixe(T.droit)
```

Calculer sans justification les valeurs ABinfixe (B1), ABinfixe (B2), ABinfixe (B3).

Solution:

```
ABinfixe(B1): [1, 3, 4, 5, 7, 6, 8]
ABinfixe(B2): [1, 3, 4, 5, 6, 7, 8]
ABinfixe(B3): [1, 3, 4, 5, 7, 6, 8]
```

Question 3

Montrer par induction structurelle sur B que pour tout arbre binaire de recherche B, ABinfixe(B) est une liste rangée en ordre strictement croissant.

Solution:

Base Si $B = \emptyset$ alors ABinfixe (B) = [] donc la propriété est vraie.

Induction Soit G et D deux arbres binaires de recherche, supposons que la propriété soit vraie pour G et D. Soit B = (x, G, D) un arbre binaire de recherche alors :

La liste ABinfixe (B) est la concaténation de :

- la liste ABinfixe (G) qui est rangée en en ordre strictement croissant,
- la liste [x], dont le seul élément x est supérieur à tous les éléments de ABinfixe (G), et inférieur à tous les éléments de ABinfixe (D), puisque B est un ABR,
- la liste ABinfixe (D) qui est rangée en en ordre strictement croissant.

Donc la liste ABinfixe (B) est rangée en ordre strictement croissant.

Conclusion La propriété est vraie pour tout arbre binaire de recherche.

Question 4

- 1. En déduire un algorithme qui calcule la k-ème plus petite clef d'un arbre binaire de recherche B.
- 2. Calculer le nombre de concaténations de listes effectuées par l'appel ABinfixe(B), pour un arbre binaire B de taille n. En supposant que la complexité de la concaténation de deux listes est en $\Theta(1)$, calculer la complexité de ABinfixe(B), pour un arbre binaire B de taille n.
- 3. En déduire la complexité de la recherche de la k-ème plus petite clef d'un arbre binaire de recherche B de taille n.

Solution:

- 1. ABinfixe(B)[k]
- 2. Le nombre de concaténations est 2n. On peut le prouver par induction : c(B) = 0 si B est vide, c(B) = c(G) + c(D) + 2 = 2n(G) + 2n(D) + 2 = 2n(B) si B = (x, G, D).

La complexité de ABinfixe (B) est en $\Theta(n)$.

3. Il faut calculer la complexité de ABinfixe (B) [k] : la complexité de ABinfixe (B) est en $\Theta(n)$ et la complexité de l'accès à L[k] pour une liste de taille n est en O(n), quelle que soit la représentation de la liste. La complexité totale est donc en $\Theta(n)$.

Recherche dans un ABR dénombré

Un arbre binaire de recherche $d\acute{e}nombr\acute{e}$ est un arbre binaire de recherche dont chaque nœud x contient deux informations :

- la clef (B.clef), sur laquelle est effectuée la recherche,
- la taille (B.taille), qui est égale au nombre de nœuds de l'arbre enraciné en x.

On considère l'arbre binaire de recherche dénombré Bex:

On définit une fonction taille sur les arbres binaires dénombrés, dont la complexité est en $\Theta(1)$:

```
def taille(T):
  if estABvide(T):
    return 0
  return T.taille
 On définit une fonction ABRD_k_eme (B, k) sur les arbres binaires de recherche dénombrés :
def ABRD_k_eme(B, k):
```

"""hypothèse_:_k_<=_taille(T)""" print("appel_avec_k_=_", k)

t = taille(B.gauche) **if** k == t + 1 :

res = B.clef elif k <= t:</pre>

res = $ABRD_k$ _eme(B.gauche, k)

else:

res = $ABRD_k_eme(B.droit, k - (t + 1))$

print("retour_:_", res)

return res

Question 5

Exécuter l'appel de ABRD_k_eme (Bex, 6), en donnant les affichages successifs et le résultat final.

Solution:

```
appel avec k =
appel avec k =
appel avec k =
appel avec k = 2
retour :
retour :
        7
retour: 7
retour: 7
7
```

Question 6

Montrer par induction structurelle sur B que pour tout arbre binaire de recherche dénombré B et pour tout k tel que $0 < k \le taille(B)$, ABRD_k_eme (B, k) calcule la k-ème plus petite clef de B.

Solution:

Par induction.

Base Si $B = \emptyset$ alors il n'y a aucun k tel que $0 < k \le taille(B)$ donc la propriété est vraie.

Induction Soit G et D deux arbres binaires de recherche dénombrés, supposons que la propriété soit vraie pour G et pour tout k' tel que $0 < k' \le taille(G)$ et qu'elle soit vraie pour D et pour tout k' tel que $0 < k' \le taille(D)$. Soit B un arbre binaire de recherche dénombré de clef x, de sous-arbre gauche G et de sous-arbre droit D. Soit t = taille(G). Trois cas sont possibles.

- k = t + 1: dans ce cas, il y a exactement t = k 1 clefs de B qui sont inférieures à x, x est donc la k-ème plus petite clef de B et c'est la valeur calculée par la fonction.
- $k \le t$: dans ce cas, la k-ème plus petite clef de B est dans le sous-arbre gauche G de B et on peut appliquer l'hypothèse de récurrence, la fonction calcule la k-ème plus petite clef de G, qui est aussi la k-ème plus petite clef de B.
- k > t+1: dans ce cas la k-ème plus petite clef de B est dans le sous-arbre droit D de B et c'est la k-(t+1)-ème plus petite clef de D; par hypothèse de récurrence, l'appel à ABRD_k_eme (D, k-(t+1)) calcule la k-(t+1)-ème plus petite clef de D, qui est aussi la k-ème plus petite clef de B.

Conclusion La propriété est vraie pour tout arbre binaire de recherche dénombré B et pour tout entier k tel que $0 < k \le taille(B)$.

Question 7

- 1. Quelle est la complexité de la recherche de la k-ème plus petite clef dans un arbre de recherche dénombré de taille n dans le meilleur cas ? dans le pire cas ?
- 2. Mêmes questions pour un arbre de recherche dénombré H-équilibré.

Solution:

- 1. Dans le meilleur cas, la k-ème plus petite clef est à la racine et la complexité est en $\Omega(1)$. Dans le pire cas l'arbre est filiforme et la complexité est en O(n).
- 2. Dans le meilleur cas, la k-ème plus petite clef est à la racine et la complexité est en $\Omega(1)$. Dans le pire cas, la k-ème plus petite clef est dans une des feuilles les plus profondes. La hauteur d'un arbre H-équilibré est en $O(\log n)$. La complexité dans le pire cas est donc en $O(\log n)$.

Exercice 2 – Graphes non orientés - 8 points

Dans cet exercice, G = (V, E) est un graphe non orienté. On pose n = |V| et m = |E|.

Ouestion 1

Dans cette question, on considère le graphe non orienté G=(V,E) avec $V=\{1,2,3,4,5,6\}$ et $E=\{\{1,2\},\{2,3\},\{3,1\},\{4,5\},\{5,6\}\}$. Que valent n et m? Donnez la matrice sommet-sommet du graphe.

Solution:

n=6, et m=5. La matrice sommet-sommet est :

$$M = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Question 2

Rappelez la définition du degré $d_G(x)$ pour $x \in V$. Quel est le degré des sommets du graphe de la question 1?

Solution:

Le degré de tout sommet $x \in V$ est le nombre de sommets de V qui sont adjacents à x. Les degrés du graphe G donné sont :

x	1	2	3	4	5	6
$d_G(x)$	2	2	2	1	2	1

Question 3

Démontrez par récurrence sur le nombre m d'arêtes que, pour tout graphe non orienté $G=(V,E), \sum_{x\in V} d_G(x)=2m$..

Solution:

La propriété à démontrer s'énonce ainsi, pour $m \ge 0$:

$$\Pi(m)$$
 : pour tout graphe $G=(V,E)$ non orienté de m arêtes, $\displaystyle\sum_{x\in V}d_G(x)=2m.$

La propriété se démontre par récurrence faible.

Base m=0. Pour tout graphe G sans arête, $d_G(x)=0$ donc $\Pi(0)$ est bien vérifiée.

Induction Soit m > 0 tel que $\Pi(m-1)$ soit vérifiée. Soit G = (V, E) un graphe ayant m arêtes, $a = \{u, v\} \in E$, $E' = E \setminus \{a\}$ et G' = (V, E'). G' est un graphe qui a m-1 arêtes donc, par hypothèse de récurrence :

$$\sum_{x \in V} d_{G'}(x) = 2(m-1)$$

D'autre part, on observe que $d_G(u) = d_{G'}(u) + 1$, $d_G(v) = d_{G'}(v) + 1$ et que $d_G(x) = d_{G'}(x)$ pour tout $x \in V \setminus \{u, v\}$. On en déduit que

$$\sum_{x \in V} d_G(x) = 2 + \sum_{x \in V} d_{G'}(x) = 2 + 2(m - 1) = 2m$$

Donc $\Pi(m)$ est vérifiée.

Conclusion On en conclut que la propriété est vraie pour tout $m \in \mathbb{N}$.

Ouestion 4

- 1. Qu'est ce qu'un graphe connexe ? Est-ce que le graphe de la question 1 est connexe ?
- 2. Rappelez la définition de la composante connexe C_x de x pour $x \in V$.
- 3. Quelles sont les composantes connexes du graphe G de la question 1?

Solution:

- 1. Un graphe est connexe si, il existe une chaîne reliant tout couple de sommets. Le graphe de la question 1 n'est pas connexe.
- 2. La composante connexe de $x \in V$ est l'ensemble des sommets $y \in V$ tels qu'il existe une chaîne entre x et y.
- 3. Le graphe est constitué des deux composantes $\{1, 2, 3\}$ et $\{4, 5, 6\}$.

Ouestion 5

Supposons dans cette question que H=(V,E) est un graphe non orienté connexe tel que, $\forall v\in V,\, d(v)\leq 2.$ Montrez par récurrence forte sur le nombre de sommets que H est soit un cycle, soit un chaîne.

Solution:

On le montre par récurrence forte sur le nombre de sommets.

Base: Pour n=1, l'unique sommet est de degré 0 et constitue bien une chaîne à lui tout seul.

Induction : Supposons maintenant que la propriété est vérifiée pour tout graphe de strictement moins de n sommets, avec n>1. Soit alors H=(V,E) un graphe de n sommets tel que, $\forall v\in V, d(v)\leq 2$. On enlève une arête $e=\{x,y\}$ prise au hasard dans A. On a alors deux cas :

- Si le graphe $H' = (V, E \setminus \{e\})$ est connexe, il y a donc un chaîne de x à y dans H'. Tous les sommets de cette chaîne, exeptés x et y ont un degré de z. De plus, dans z0 ont un degré de z2. Donc, il n'y a pas d'autres arêtes dans z1 et z2 et z3 donc un cycle.
- Sinon, on a alors deux composantes connexes C_x et C_y , chacune d'elles étant un cycle ou une chaîne par récurrence forte. De plus, les degrés de x et y sont au plus de 1, ce sont donc des chaînes. Donc, H est une chaîne.