

ÖZDİSAN ELECTRONIC A.Ş.

Ark Chip AMT630A Register Settings

Doc. Version 1.0 06.09.2016

Author: Sabri DAĞERİ

Özdisan Electronic R&D and Technical Support Department

Email: ts@ozdisan.com
Tel: +90 2164201882

www.ozdisan.com

OSD settings

OSD group registers: 0xB6

INDEX_RAM_ADD_L

FB00H index ram addr 写 index ram 地址,低 8bit

Index RAM address low byte

INDEX_RAM_ADD_H

FB0DH index_ram_addr_hb [0] 写 index ram 地址,高 1 bit [7:1] Reserved

Index RAM address high byte

INDEX_RAM_DATA_L

FB01H index ram data 写 index ram 数据,低 8bit

Index RAM data low byte

INDEX_RAM_DATA_H

FB0EH Index_ram_data_hb [1:0] 写 index ram 数据,高 2bit [7:2] Reserved

Index RAM data high byte

EACH_ICON_COLOR

FB10H Index_color_data | 写 index ram color data, 8bit, 用来表示每个 ICON 的前景色与背景色选择。
[2:0]: 选择前景色调色盘
[6:4]: 选择背景色调色盘

Index ram color.

[2-0] foreground color.

[6-4] background color.

- 0- Transparent
- 1- RED
- 2- GREEN
- 3- BLUE
- 4- YELLOW
- 5- GREY
- 6- WHITE
- 7- BLACK

FONT_RAM_ADD_L

FB02H font ram addr 写 font ram 地址,低 8bit

Font RAM address low byte

FONT_RAM_ADD_H

FB0FH Font_ram_addr_hb [3:0] 写 font ram 地址,高 4bit [7:4] Reserved

Font RAM address high byte

FONT RAM DATA L

FB04H	font ram data	写 font ram 低 8 位数据

Font RAM data low byte

FONT_RAM_DATA_H

FB03H	font ram data	写 font ram 高 4 位数据
-------	---------------	--------------------

Font RAM data high byte

OSD CON1

		[0] osdc_en : osd block 0 使能。0 无效,1 有效
		[1] osdc1_en : osd block 1 使能。0 无效,1 有效
		[2] osdc2_en : osd block 2 使能。0 无效,1 有效
		[3] osdc3_en : osd block 3 使能。0 无效, 1 有效
		[4] osdc4_en : osd block 4 使能。0 无效,1 有效
FB05H	osd_con1	[5] osd_bl_en: 闪烁区域使能 0 无效 1 有效
		[6] osdc_color_sel : color index select for 5 osd block 0: color
		from color index ram; 1: select front and back color.
		[7] osdc_bitmap_en : bitmap enable for 5 osd block, when set 1
		it means there are bitmap font in font ram, when set 0 it means
		there are not bitmap font in font ram.

AMT630A has 5 OSD block, each of them can be used independently.

OSD_CON1 [0-4] controls visibility of OSD Blocks.

- [0] OSD block_0: "0" Disable, "1" enable
- [1] OSD block_1: "0" Disable, "1" enable
- [2] OSD block_2: "0" Disable, "1" enable
- [3] OSD block_3: "0" Disable, "1" enable
- [4] OSD block_4: "0" Disable, "1" enable y of Distribution
- [5] OSD blink enable
- "0" Disable blinking, "1" Enable blinking

[6] OSD color select

If "1" all OSD has same background and foreground color.

If "0" every OSD has different background and foreground color.

OSD CON2

_			
			[5:0] osd_blink : osd 闪烁区域闪烁频率调节
			[6] osd_mix_en: osd 与 video 混合使能
	FB06H	osd_con2	[7] osd_mix_mode: OSD 的与 VIDEO blending 模式选择,
			1: 整块 OSD 与 VIDEO 混合; 0: OSD 背景色与 VIDEO 混合,
			该种模式只支持普通 OSD。

[5-0] OSD blink frequency.

[6] OSD mix enable:

"0" OSD and video alpha blending disable.

"1" OSD and video alpha blending enable.

[7] OSD mix mode:

"0" only background color alpha blending with video.

"1" foreground and background alpha blending with video.

OSD_SIZE_X_BK0

FB07H osdc_sizex [6:0] osd block 0 水平方向最大字符数 [7] Reserved

OSD block_0 width

OSD_SIZE_Y_BK0

FB08H osdc_sizey [5:0] osd block 0 垂直方向最大字符数 [7:6] Reserved

OSD block_0 height

OSD_POS_X_L_BK0

FB0AH osdc posx 确定 osd block 0 起始点像素的水平位置的低 8 位

OSD block_0 x position

OSD_POS_Y_L_BK0

FB0BH osdc_posy 确定 osd block 0 起始点像素的垂直位置的低 8 位

OSD block_0 y position

OSD_POS_XY_H_BK0

FB09H osdc_posx osdc posy

[2-0] OSD block_0 x position multiplier.

[6-4] OSD block_0 y position multiplier.

OSD_SIZE_X_BK1

FB12H Osdc1 sizex [6:0] osd block 1 水平方向最大字符数

OSD block_1 width

OSD_SIZE_Y_BK1

FB13H Osdc1_sizey [5:0] osd block 1 垂直方向最大字符数

OSD block_1 height

OSD_POS_X_L_BK1

FB15H Osdc1_posx 确定 osd block 1 起始点像素的水平位置的低 8 位

OSD block_1 x position

OSD_POS_Y_L_BK1

FB16H Osdc1_posy 确定 osd block 1 起始点像素的垂直位置的低 8 位

OSD block_1 y position

OSD_POS_XY_H_BK1

PB14H Osdc1_posy Osdc1_posx [2:0] 确定 osd block 1 起始点像素的水平位置的高 2 位 [6:4] 确定 osd block 1 起始点像素的垂直位置的高 2 位 [7] 确定 osd block 1 对应的 index ram 起始地址高 1 位

[2-0] OSD block_1 x position multiplier.

[6-4] OSD block_1 y position multiplier.

INDEXRAM ADD BK1 START

确定 osd block 1 对应的 index ram 起始地址低 8 位 FB17H Osdc1 index start a

Index RAM block_1 start address.

OSD SIZE X BK2

[6:0] osd block 2 水平方向最大字符数 FB18H Osdc2 sizex

OSD block 2 width

OSD_SIZE_Y_BK2

[5:0] osd block 2 垂直方向最大字符数 FB19H Osdc2 sizey

OSD block_2 height

OSD_POS_X_L_BK2

FB1BH Osdc2 posx 确定 osd block 2 起始点像素的水平位置的低 8 位

OSD block_2 x position

OSD POS Y L BK2

确定 osd block 2 起始点像素的垂直位置的低 8 位 FB1CH Osdc2 posy

OSD block 2 y position

OSD_POS_XY_H_BK2

[2:0] 确定 osd block 2 起始点像素的水平位置的高 2 位 Osdc2 posx [6:4] 确定 osd block 2 起始点像素的垂直位置的高 2 位 FB1AH

Osdc2 posy [7] 确定 osd block 2 对应的 index ram 起始地址高 1 位

[2-0] OSD block_2 x position multiplier.

[6-4] OSD block_2 y position multiplier.

INDEXRAM_ADD_BK2_START

确定 osd block 2 对应的 index ram 起始地址低 8 位 FB1DH Osdc2 index start a

Index RAM block_2 start address.

OSD SIZE X BK3

[6:0] osd block 3 水平方向最大字符数 FB1EH Osdc3 sizex

OSD block 3 width

OSD_SIZE_Y_BK3

FB1FH Osdc3 sizey [5:0] osd block 3 垂直方向最大字符数

OSD block_3 height

OSD POS X L BK3

确定 osd block 3 起始点像素的水平位置的低 8 位 FB21H Osdc3 posx

OSD block_3 x position

OSD_POS_Y_L_BK3

FB22H Osdc3_posy 确定 osd block 3 起始点像素的垂直位置的低 8 位

OSD block_3 y position

OSD_POS_XY_H_BK3

FB20H Osdc3_posx Osdc3_posy [2:0] 确定 osd block 3 起始点像素的水平位置的高 2 位 [6:4] 确定 osd block 3 起始点像素的垂直位置的高 2 位

[7] 确定 osd block 3 对应的 index ram 起始地址高 1 位

[2-0] OSD block_3 x position multiplier.

[6-4] OSD block_3 y position multiplier.

INDEXRAM_ADD_BK3_START

FB23H Osdc3 index start a 确定 osd block 3 对应的 index ram 起始地址低 8 位

Index RAM block_3 start address.

OSD_SIZE_X_BK4

FB24H Osdc4 sizex

[6:0] osd block 4 水平方向最大字符数

OSD block_4 width

OSD_SIZE_Y_BK4

FB25H Osdc4 sizey

[5:0] osd block 4 垂直方向最大字符数

OSD block_4 height

OSD_POS_X_L_BK4

FB27H Osdc4 posx

确定 osd block 4 起始点像素的水平位置的低 8 位

OSD block_4 x position Smart Way of Distribution

OSD_POS_Y_L_BK4

FB28H Osdc4 posy

确定 osd block 4 起始点像素的垂直位置的低 8 位

OSD block_4 y position

OSD_POS_XY_H_BK4

FB26H

Osdc4_posx
Osdc4_posy

[2:0] 确定 osd block 4 起始点像素的水平位置的高 2 位 [6:4] 确定 osd block 4 起始点像素的垂直位置的高 2 位

[7] 确定 osd block 4 对应的 index ram 起始地址高 1 位

[2-0] OSD block_4 x position multiplier.

[6-4] OSD block_4 y position multiplier.

INDEXRAM_ADD_BK4_START

FB29H Osdc4 index start a 确定 osd block 4 对应的 index ram 起始地址低 8 位

Index RAM block_4 start address.

OSD_alpha_bright

FB0CH

osd_alpha_bright [2:0]osd_alpha: 5 块 osd 与 video 混合参数 [7:3]osd bright: 5 块 osd 亮度调节参数

[2-0] osd_alpha: OSD and video alpha blending transparency.

[7-3] osd bright: OSD brightness.

OSD_COLOR

FB2AH

osdc_clr

5 块 osd 调色盘选择 , 在 osdc_color_sel 为 1 时有效 [7:4] 选择背景色 [3:0] 选择前景色

[3-0] OSD foreground color [7-4] OSD background color

- 0- Transparent
- 1- RED
- 2- GREEN
- 3- BLUE
- 4- YELLOW
- 5- GREY
- 6- WHITE
- 7- BLACK

OSD_H_MIRROR

FB35H	osd_h_mirror	[2:0] blink_block_sel: osd 闪烁块选择,当 osd_bl_en 为 1 时有
	&	效 0: osd block 0 闪烁; 1: osd block 1 闪烁; 2: osd block 2
	blink_block_sel	闪烁; 3: osd block 3 闪烁; 4: osd block 4 闪烁; ohers: osd
		block 0 闪烁。
		[3] hsyn_edge_sel: 输入行同步上升沿、下降沿选择,用来定位
		osd 位置;
		1: 选择下降沿;
		0: 选择上升沿;
		[4] osd_bitmap_cr0_touming_sel: OSD 的 bitmap 调色盘 cr0
		是否为透明选择, 1: 不透明, 为调色盘 cr0 的颜色; 0: 透明
		[5] vsyn_edge_sel: 输入场同步上升沿、下降沿选择,用来定位
		osd 位置;
		1: 选择下降沿;
		0: 选择上升沿;

[2-0] blink_block_sel: selects blinking block.

Video Process Registers

VP group registers: 0xB4

CONTRAST_REG

0xD3	80h	[7:0]	Contrast	Contrast		图像效果相关,	开放调试。
------	-----	-------	----------	----------	--	---------	-------

Adjust contrast.

BRIGHT_REG

0xD4	80h	[7:0]	Brightness	Brightness	图像效果相关, 开放调试。

Adjust brightness.

SATURATION_REG

0xD6	3Fh [7:0]	Saturation	Saturation	图像效果相关,	开放调试。
0,1,00	5	5414141511	outuration.	HI DOVENTIANCE	11/2000

Adjust Color.

VDE_REG

0xD2	4Fh	[7]		VDE test vector select
			vde_test_vector_s	0-output normal signal 1-output test
			el	vecotr(controlled by [3:0])
		[6:4]	vde_protect_sel	YCbCr dat format control in VDE module.
				Description is the same as rgb_protect_sel
		[3:0]	vde_out_sel	VDE output select

This register switch screen to test mode.

[7] vde_test_vector_sel

"0" Normal working mode, video signal on screen.

"1" Test mode, Test signal on screen.

[3-0] test signal select.

0: RED

1: GREEN

2: BLUE

3: GREY

4: BLACK

5: WHITE

IC2 communication with AMT630A

AMT630A has 3 byte command array.

1. Byte register group address

Every register group has different registers

(6.	Register Descriptions	9
		6.1 Global Register(I2C Address: 0xB0 MCU Address: 0xFDXX)	9
		6.2 Tcon Register(I2C Address: 0xB8 MCU Address: 0xFCXX)	16
		6.3 Decoder Register(I2C Address: 0xB2 MCU Address: 0xFEXX)	27
		6.4 Video Process Register(I2C Address: 0xB4 MCU Address: 0xFFXX)	33
		6.5 GAMMA Register(I2C Address: 0xB4 MCU Address: 0xFFXX),	38
		6.6 RCRT Register(MCU Address: 0xFFXX MCU access only)	41
		6.7 Scaler Register(I2C Address: 0xB8 MCU Address: 0xFCXX)	49
		6.7 OSD 设备地址 B6,mcu 地址 0XFBXX	60
		6.9 SPI Register(I2C Address: 0xB0 MCU Address: 0xFDXX)	71
		6.10 12bit ADC Register(I2C Address: 0xB0 MCU Address: 0xFDXX)	73

For example Video process group address 0xB4.

2. Byte sub register address

Sub registers described in datasheet.

For example brightness register address 0xD4

3. Byte Register value mart Way of Distribution Register value which you want to set.

Example command array to set brightness value 100, 0xB4,0xD4,0x64

Connecting to AMT630A

To connect AMT630A you can use this function.

```
void connect()
{
  write_register(0xBE,0xC6,0x40);
  write_register(0xB6,0x78,0x02);
}
```


OSD Settings

AMT630A has Font RAM and Font ROM.

Font ROM stores internal Fonts,

Those fonts are included in AMT630A.

All font size are 16X22.

As you can see in the picture Fonts have a sequence, to select fonts, font address should be entered to INDEX_RAM_DATA_H and INDEX_RAM_DATA_L registers, for example "A" font address 11.

Font RAM is for user-defined fonts.

Font RAM address starts from 0x01C0.

AMT630A has 5 OSD block, all of them can be used independently.

All font color can be set to same or different color.

For more details please study demo codes.