工科数学分析期末试题(A卷)

Th: /t	ж. п	Lit. A
班级	字号	姓名

(本试卷共6页,十一个大题. 试卷后面空白纸撕下做草稿纸,试卷不得拆散.)

题号	1	1 1	11.	四	五.	六	七	八	九	十	十一	总分
得分												
签名												

- 一. 填空题 (每小题 2 分, 共 10 分)
- 1. 直线 $\frac{x-2}{3} = \frac{y+1}{1} = \frac{z-4}{-2}$ 与平面 2x + y + z 6 = 0 的夹角 $\varphi = \underline{\qquad}$
- 3. 设 f(x,y) 具有连续偏导数,曲线 f(x,y) = 0 在其上点 (x_0, y_0) 处的切线斜率 $\frac{dy}{dx} = 2$,又 $f'_y(x_0, y_0) = 3$,则 $f'_x(x_0, y_0) = \dots$.
- 4. 函数 f(x) = x 1 (0 ≤ $x \le \pi$) 的以 2π 为周期的余弦级数的系数 $a_5 =$ ______.
- 5. 设 S^+ 是曲面 $x^2 + y^2 + (z-1)^2 = 1$ $(z \ge 1)$ 的上侧, L 是 S 的边界曲线, 从 z 轴正向看去 L 是逆时针方向,则 $\oint_L x^2 y dx + xy dy + y^2 dz = \iint_{S^+}$ _______.
- 二. (8 分)设方程组 $\begin{cases} xu yv = 0 \\ yu + xv = 1 \end{cases}$, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$.

三. (9 分) 将 $I = \int_0^1 dx \int_x^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy$ 化成极坐标系中的累次积分, 并计算积分的值.

四. (10 分) 求函数 $z = x^3 + 3xy^2 - 12x$ 的极值点和极值.

五. (9 分) 求正数 λ 的值,使得曲面 $xyz = \lambda$ 与曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 在某一点相切.

六. (9分) 设 V 是曲面 $z = \sqrt{1 - x^2 - y^2}$ 与 $z = \sqrt{x^2 + y^2}$ 所围成的立体,其上任一点的密度等于此点到原点的距离,求 V 关于 z 轴的转动惯量.

七. (9 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n}}{2n+1}$ 的收敛域及和函数.

八. (10 分) 已知 $\vec{A} = (6y + x^2y^2)y^3f(x)\vec{i} + (8x + x^3y)y^3f(x)\vec{j}$ 是某二元函数u(x,y)的梯度, 其中f(x)有连续导数,且f(1) = 1,求f(x),并求u(x,y).

九. (9 分) 把 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展成 x - 1 的幂级数, 并指出收敛域.

十. (9 分) 设 S 是曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ (0 $\leq z \leq$ 2) 绕 z 轴旋转一周而成的曲面的上侧. (1)求 S 的方程; (2) 利用高斯公式计算曲面积分 $I = \iint_S xy^2 dydz + x^2ydzdx + (z-1)dxdy$.

十一. (8 分) 设函数 f(x) 在 [-1,1] 有定义, 在 x=0 处可导, 且级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 收敛, 证明 f'(0)=0.