absToolkit

———an open-source frequencies searcher, also a small subroutine of SIMUPKGS distributed independently

For reporting issue or uploading datasets, contact me via: ykhuang@dicp.ac.cn

Double click to run absToolkit.exe, remember to put lib.xlsx and absToolkit.exe in the same directory, or absToolkit will not find its dataset ⁽³⁾

To get a not bad program using experience, maximize this window size. If you find trouble when want to maximize it, **right click on the header** of this window and, click setting to change something in it.

To choose CO absorption, press 0 and ENTER

```
will overestimate absorption energy, vdw-correction will even make problem worse. So do not blindly trust so-called first-principle.

*Chemical environment distinguished by FVHM
full width of half max, can be used as an qualitative indicator of homogenity of PGM_iso-CO sites such as Ir(CO)2 on various supports, FVHM 5cm-1, similar with organmetallic complexes 4cm-1, indicating an nearly isolated site, see J. Phys. Chem. Lett., 2016, 7, 3854-3860.

absToolkit | step 1: choose absorbate:
[0] CO
[1] NO
absToolkit | (to directly quit program, enter 999) >> 0
```

For instance, if you want to look up CO frequencies of moiety CO-Au/support, type-in Au and ENTER

```
absToolkit | step 1: choose absorbate:

[0] CO

[1] NO

absToolkit | (to directly quit program, enter 999) >> 0

absToolkit | for molecule you choose, there are 37 lines of data available.

absToolkit | step 2: type-in element symbol of your metal, currently supported metals: ['Rh', 'Pt', 'Au']

absToolkit | (to directly quit program, enter 999) >> Au
```

Enter frequency you measured in experiment, e.g., 2100, then ENTER

Just ENTER, under most common circumstances, this function is not needed.

Finally we obtain relating data (if exists), "mode description" is a short description of vibration, also there are two references provided explicitly. For more information, please read instructions of absToolkit.

Data extension: in lib.xlsx, you can add more data once you see in paper, for your future use. To properly type-in new data, just follow format of present data. Also it is highly recommended to share your customized data with other absToolkit users. An updated version of lib.xlsx is welcome if sent to ykhuang@dicp.ac.cn. Once there is any updated version of lib.xlsx, I will update it at https://github.com/kirk0830/SIMUPKGS. ***WARNING***: in the third column, Chinese comma (', ') is strictly illegal! Use English comma and a blank (', ').

If one frequency is provided, program absToolkit will search around ±5cm-1, if two frequencies are provided, and normal mode is used in step 4., absToolkit will search directly in interval of them two.

4	Α	В	С		D		E F		G	Н	1	J	K	L	М	N	0
1 activ	e metal sup	port	frequencey d	lomain	m Tike Huang:	refe	rence refere	nce r	reference	reference	reference	reference	reference	reference	reference	reference	reference in
2 Au	TiO2	2	2190, 2186		oplease type in frequencey domain in the		nys. Che Catal.										
3 <mark>Au</mark>	TiO2	2	2126, 2122		format: C1900, 2100		nys. Che Catal.										
4 <mark>Au</mark>	TiO2	2		2141	Ounit it cm-1 as default. If only one	J. Pl	nys. Che J. Phy:	s. Che(Catal. Tod	J. Catal. 2	J. Catal. 19	J. Mater. S	Phys. Chen	Phys. Chei	n. Chem. Pl	Catal. Surv	J. Phys. Che
Au	TiO2	2		2129	hi frequency is provided, program will use	J. Pl	nys. Chem. C	2011, 1	115, 2240)-22408							
Au	TiO2	2		2126	lo an interval.	J. Pl	nys. Chem. C	2011, 1	115, 2240	-22408							
Au	TiO2	2		2114	hil g.,, oo processo, ma on eage and stope	J. Pl	ys. Chem. C	2011, 1	115, 2240	22408							
Au	TiO2	2			not CO frequency, Ti-O phonon vibration, n-o	·d J. Pl	nys. Che J. Phy:	s. Cher	m. Solids 1	968, 29, 9	35.						
Au	TiO2	2		2116	CO linear absorption on Au(110), 230K	J. Pl	nys. Che J. Phy:	s. Cher	m. B 2003,	107, 1266	8.						
0 Au	TiO2	2		2113	Au(332), 105K	J. Pl	nys. Che Farad	ay Tra	ans. 1996, 9	92, 4829.							
1 Au	TiO2	2		2115	full coverage of CO on Au	J. Pl	nys. CheSurf. S	Sci. 19	72, 32, 231								
2 <mark>Au</mark>	TiO2	2	2090, 2080		CO on low coordinated Au, metallic	J. Pl	nys. CheSurf. S	Sci. 203	J. Phys. Ch	em. C 2009	9, 113, 16772	2					
Au Au	TiO2	2		2100	CO on anionic Au	J. Pl	nys. Che J. Am	Cher S	Surf. Sci. 2	Surf. Sci. 2	Gold Bull. 2	2009, 42, 10)6.				
4 Au	TiO2	2	2050, 1900		CO on reduced Au		nys. Che J. Cata										
5 Pt			1750, 1950		CO bridge absorption, red shifted	Chir	n. J. Catal., 20:	17, 38:	: 1473-148	30							
Pt			2030, 2100		CO linear absorption	Chir	n. J. Catal., 20:	17, 38:	: 1473-148	30							
7 Pt	H-Z	SM5		2115	CO linear absorption on Pt1, lowest loading	Chir	n. J. Cat Scien	ce, 201	15, 350, 18	9-192.							
Pt Pt	H-Z	SM5	2070, 2090		CO linear absorption on Pt cluster, higher load	ad Chir	n. J. Cat Scien	ce, 201	15, 350, 18	9-192.							
Pt	Hmo	or		2120	CO absorption on partially reduced Pt cluster	r J. C	nem. Soc., 19	94, 90,	, 233-238.								
Rh	TiO2	2		2097	symmetric Rh(CO)2 stretching	Chir	n. J. Catal., 20:	17, 38:	: 1473-148	30							
Rh	TiO2	2		2028	asymmetric Rh(CO)2 stretching	Chir	n. J. Catal., 20:	17, 38:	: 1473–148	30							
2 Rh	TiO2	2		2068	CO linear absorption on Rh cluster, 4% loading	ıg Chir	n. J. Catal., 20:	17, 38:	: 1473-148	30							
Rh.	TiO2	2		1860	CO bridge absorption on Rh cluster, 4% loading	in Chir	n. J. Catal., 20:	17, 38:	: 1473-148	30							
Rh	NPT	Α		2108	cation: Rh3+ absorbate: (CO)2, symmetric vib	or Ind	Eng. Chem. I	Res., 2	017, 56, 3	578-3587.							
Rh	NPT	Α		2048	cation: Rh3+ absorbate: (CO)2, asymmetric vi	ib Ind	Eng. Chem. I	Res., 2	017, 56, 3	578-3587.							
Dh	Tala			2002	cation: Ph+ abcorbate: (CO\2 exempetric vibre	rallad	Ena Cham	Dac 2	017 56 2								
	CO	NO	⊕							: 🖪							l Þ