Consider the following Markov Chain:

Find the stationary distribution for this chain. State your answer as an integer between 100 and 999 such that you supply three decimal precision, correctly rounded off.

 $\pi_1 = 0.$ 457 \checkmark $\pi_2 = 0.$ 257 \checkmark $\pi_3 = 0.$ 286 \checkmark

If we know $P(X_1=1)=P(X_1=2)=\frac{1}{4}$, find $P(X_1=3,X_2=2,X_3=1)$. State your inputs as two integers such that your answer is an irreducible fraction.

1 12

Markov - 1

Consider the Markov chain with three states:

Suppose $P(X_1 = 1) = \frac{1}{2}$ and $P(X_1 = 2) = \frac{1}{4}$. Answer the questions below. State all inputs as integers between 0 and 99 such that your answers are irreducible fractions.

b. Find
$$P\left(X_{1}=3,X_{2}=2,X_{3}=1\right)$$

c. Find
$$P(X_1 = 3, X_3 = 1)$$

Markov – 2

Consider the Markov chain

Find the stationary distribution for this chain. State all inputs as integers between 0 and 99 such that the answers are irreducible fractions.

$$\left[\,\boldsymbol{\pi}_{1},\,\boldsymbol{\pi}_{2},\,\boldsymbol{\pi}_{3}\,\right] = \left[\,\begin{array}{c|c} \hline 2\\ \hline 7 \end{array},\,\, \begin{array}{c} \hline 3\\ \hline 7 \end{array},\,\, \begin{array}{c} \hline 2\\ \hline 7 \end{array}\right]$$

Markov - 3

Consider the following Markov Chain $\{X_n: n=0,1,2,\ldots\}$ with states $S=\{1,2,3\}$ and the following transition diagram:

Assume the Markov Chain starts in state 1 with probability 1/2 and in state 2 with probability 1/2. What is the probability that the Markov Chain is in state 3 at time 3? State your input as an integer between 0 and 99 such that the answer has two decimal precision, correctly rounded off.

0. 48 🗸

Markov – 4

 $\hbox{\it Consider the following Markov Chain } \{X_n: n=0,1,2,\ldots\} \hbox{ with states } S=\{1,2,3\} \hbox{ and the following transition diagram: } S=\{1,2,3\} \hbox{ and } S=\{1,2,3\} \hbox$

What is the probability that the Markov Chain, in the long run, will be in state 2. State your input as an integer between 0 and 99 such that you supply two decimal precision, correctly rounded off.

0.

Markov – 5

a. Let $\{X_n:n=0,1,\ldots\}$ denote a Markov Chain with states {1, 2, 3} and with the following state transition diagram:

Find the following probability. State your answers as integers between 0 and 99 such that you supply two decimal precision.

$$P(X_5 = 3 \mid X_3 = 1, X_2 = 2) = 0.62$$

b. Now let $\{X_n: n=0,1,\ldots\}$ denote another Markov Chain with states $\{1,2,3\}$ and with the following state transition matrix:

$$P = \begin{bmatrix} 0.3 & 0.3 & 0.4 \\ 0 & 0.4 & 0.6 \\ 0.8 & 0.2 & 0 \end{bmatrix}$$

Determine the stationary distribution of this Markov chain. State your answers as integers between **100 and 999** such that you supply **three** decimal precision. **Note, you must supply three** decimal precision.

Markov – 6