Отчет о выполнении лабораторной работы 2.2.3 "Измерение теплопроводности воздуха при атмосферном давлении"

Калашников Михаил, Б03-205

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются:

- цилиндрическая колба с натянутой по оси нитью ($2r_1=50\pm 3$ мкм, $2r_0=7,0\pm 0,1$ мм, $L=400\pm 2$ мм);
- термостат ($\sigma_t = 0, 1 \, {}^{\circ}C$);
- вольтметр ($\varepsilon_U = 0,012\%$) и амперметр ($\varepsilon_I = 0,05\%$) (цифровые мультиметры);
- источник постоянного напряжения;
- магазин сопротивлений (0,1 Ом 99999, 9 Ом)

1. Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых час тей системы к холодным за счёт хаотического движения частиц среды. В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии \vec{q} пропорциональна градиенту температуры ∇T

$$\vec{q} = \kappa \nabla T$$

где κ — коэффициент теплопроводности. Его можно пропопрционален квадратному корню из температуры:

$$\kappa \sim \lambda \bar{v} n c_V = \frac{1}{\sigma} \sqrt{\frac{8kT}{\pi m}} \frac{i}{2} R \propto \sqrt{T}$$

В случае, когда тепло выделяется в длинном проводе, размещенном в оси полого цилиндра той же длины и теплопроводность стационарна, нетрудно получить, что тепловая мощность провода равна

$$Q = \frac{2\pi L}{\ln r_0/r_1} \kappa \Delta T$$

где r_1 — радиус провода, r_0 — радиус цилиндра, L — длина провода, ΔT — перепад температуры между проводом и стенками цилиндра.

2. Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0$ размещена металлическая нить диаметром $2r_1$ и длиной L. Полость трубки заполнена воздухом. Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура T_0 поддерживается постоянной.

Рис. 1: Схемы установки и цепи

Для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. Подключение к нити $R_{\rm H}$ осуществляется по четырёхпроводной схеме. По двум проводам через сопротивление пропускается измерительный ток, а два других используются для параллельного подключения вольтметра.

3. Проведение эксперимента

1. Предварительно рассчитаем максимальные допустимые значения напряжения $U_{\text{макс}}$ и $I_{\text{макс}}$ тока на нити из формулы

$$Q = \frac{2\pi L}{\ln r_0/r_1} \kappa \Delta T$$

используя приближенные значения параметров установки. Получим:

$$U_{\text{makc}} = 2,7 \text{ B}$$
 $I_{\text{makc}} = 130 \text{ MA}$

- Выставим максимальное значение сопротивления на магазине сопротивлений. Включим вольтметр и амперметр, настроим их на нужный режим работы. Запустим источник питания и термостат.
- 3. Выставим на термостате комнатную температуру и будем фиксировать показания приборов, постепенно уменьшая сопротивление магазина $R_{\rm M}$. Занесем данные в таблицу 2. Значения сопротивления $R_{\rm M}$ были предварительно рассчитаны таким образом, чтобы мощность, выделяемая проволокой, возрастала монотонно в диапазоне от 0 до $Q_{\rm Makc}$ (таблица 1).
- 4. Вновь выставим на магазине максимальное сопротивление.
- 5. Повторим предыдущие два пункта еще шесть раз постепенно увеличивая температуру термостата и дожидаясь ее установления.

6. Выключим все измерительные приборы, блок питания, на магазине сопротивлений установим максимальное сопротивление, а на термостате установим комнатную температуру.

4. Обработка данных

- 7. Для каждой температуры построим зависимость R(Q) $(R=\frac{U}{I},\ Q=UI)$. Через точки проведем прямую МНК. Рассчитаем значения $R_0=R(0)$ и $\frac{\mathrm{d}R}{dO}$ и занесем их в таблицу 3.
- 8. Через точки R_0 , полученные в предыдущем пункте, построим прямую МНК. Заметим, что на прямую ложатся только первые три точки, поэтому в дальнейшем будем использовать только их. Получим зависимость R(T). Рассчитаем температурный коэффициент сопротивления нити α по формуле:

$$\alpha = \frac{1}{R(T_0)} \frac{\mathrm{d}R}{\mathrm{d}T}, \quad T_0 = 273 \text{ K}$$

9. Используя результаты предыдущих пунктов, вычислим наклон зависимости выделяющейся на нити мощности Q от ее перегрева ΔT относительно стенок:

$$\frac{\mathrm{d}Q}{\mathrm{d}\Delta T} = \frac{\mathrm{d}R}{\mathrm{d}T} / \frac{\mathrm{d}R}{\mathrm{d}Q}$$

Дополним таблицу 2.

10. Зная, что $\frac{\mathrm{d}Q}{\mathrm{d}\Delta T} = \frac{2\pi L}{\ln r_0/r_1} \kappa$, вычислим значение коэффициента теплопроводности κ :

$$\kappa = \frac{\ln r_0/r_1}{2\pi L} \frac{\mathrm{d}Q}{\mathrm{d}\Delta T}$$

Результаты также занесем в таблицу.

11. Построим график зависимости $\kappa(T)$ в двойной логарифмическом масштабе и определим показатель степени в зависимости $\kappa \propto T^{\beta}$.

5. Расчет погрешностей

Определим относительную погрешность величин, полученных в пункте 7. Пусть зависимость R(Q) имеет вид R=kQ+b. Тогда:

$$\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}Q}} = \sqrt{\varepsilon_k^2 + \varepsilon_U^2 + \varepsilon_I^2} = 0,9\%$$

$$\varepsilon_{R_0} = \sqrt{\varepsilon_b^2 + \varepsilon_U^2 + \varepsilon_I^2} = 0,08\%$$

Определим погрешность $\frac{\mathrm{d}R}{\mathrm{d}T}$ из МНК:

$$\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}} = \sqrt{\varepsilon_k^2 + \varepsilon_{R_0}^2 + \varepsilon_t^2} = 2,0\%$$

Величина $1/arepsilon_{rac{{
m d}R}{{
m d}T}}\approx 50$ удовлетворяет критерию Стьюдента при $n\!-\!k\!-\!1=1$ и p=0,95, равному 12,7.

Погрешность величины α выражается по формуле:

$$\varepsilon_{\alpha} = \sqrt{\frac{\sigma_k^2 T_0^2 + \sigma_b^2}{(kT_0 + b)^2} + \varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}}^2} = 2,0\%$$

$$\alpha = 0,49 \pm 0,01 \ \frac{10^{-3}}{\text{K}}$$

Найдем погрешность $\frac{\mathrm{d}Q}{\mathrm{d}\Delta T}$:

$$\varepsilon_{\frac{\mathrm{d}Q}{\mathrm{d}\Delta T}} = \sqrt{\varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}Q}}^2 + \varepsilon_{\frac{\mathrm{d}R}{\mathrm{d}T}}^2} = 2,2\%$$

Вычислим погрешность коэффициента теплопроводности:

$$\varepsilon_{\kappa} = \sqrt{\frac{\varepsilon_{r_0}^2 + \varepsilon_{r_1}^2}{\ln^2(r_0/r_1)} + \varepsilon_L^2 + \varepsilon_{\frac{\mathrm{d}Q}{\mathrm{d}\Delta T}}^2} = 2,6\%$$

Наконец, определим погрешность коэффициента β :

$$\frac{\sigma_{\beta}}{\beta} = \frac{1}{\beta} \sqrt{\varepsilon_{\kappa}^2 + \varepsilon_t^2 + \sigma_k^2} = 13\%$$
$$\beta = 0.42 \pm 0.06$$

6. Вывод

В результате работы, несмотря на осложнения, вызванные данными, полученными при высоких температурах термостата, получилось определить коэффициент β , приближенный к его действительному значению, равному 0,5. Температурный коэффициент сопротивления платины α , однако, сильно отличнается от настоящего значения, равного $=3,9\cdot 10^{-3}~{1\over {
m K}}$.

7. Приложения

	η	0,01	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Г	$R_{\scriptscriptstyle \mathrm{M}}, \ \mathrm{Om}$	180	43,2	24,7	16,5	11,6	8,3	5,8	3,9	2,4	1,1	0

Таблица 1: Значения $R_{\rm m}$, подобранные для монотонного возрастания мощности, выделяемой нитью ($Q=\eta\cdot Q_{\rm makc}$)

$t, ^{\circ}C$	η	0,01	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
27,9	I, мА	16,596	48,935	66,188	78,235	87,671	95,289	101,92	107,55	112,36	116,81	142,48
21,9	U, B	0,3461	1,0326	1,4123	1,6857	1,9055	2,0872	$02,\!249$	02,389	$02,\!511$	2,6252	3,3196
35,0	I, мА	16,556	48,879	66,099	78,121	87,537	95,137	101,76	107,37	112,16	116,60	142,20
35,0	U, B	0,3465	1,0349	1,4147	1,6879	1,9075	2,0889	$2,\!2504$	02,390	$2,\!5117$	2,6262	3,3191
40,0	I, мА	16,549	48,836	66,013	78,020	87,403	97,523	101,58	107,19	111,97	116,41	141,95
40,0	U, B	0,3472	1,0364	1,4163	1,6894	1,9089	2,1518	2,2512	2,3910	$02,\!512$	2,6265	3,3183
45,0	I, мА	16,681	48,827	66,010	78,002	87,397	94,983	101,59	107,21	112,00	116,45	141,99
45,0	U, B	0,3483	1,0374	1,4174	1,6906	1,9101	2,0916	2,2528	2,3926	$2,\!5138$	2,6282	3,3203
50,0	I, мА	16,591	48,861	66,055	78,056	87,745	95,045	$101,\!65$	107,28	112,07	116,52	142,09
30,0	U, B	0,3483	1,0376	1,4177	1,6910	1,9106	2,0920	2,2532	2,3931	$02,\!514$	2,6288	3,3213
55,1	I, мА	16,593	48,872	66,078	78,088	87,494	95,092	101,70	107,33	112,13	116,59	142,18
35,1	U, B	0,3481	1,0372	1,4173	1,6906	1,9102	2,0917	2,2529	2,3927	$2,\!5141$	2,6285	3,3214
60,1	I, мА	16,594	48,887	66,103	78,123	87,539	95,143	101,76	107,40	112,20	116,65	142,27
00,1	U, B	0,3478	1,0363	1,4163	1,6896	1,9093	2,0908	2,2522	2,3921	$2,\!5134$	2,6280	3,3215

Таблица 2: Данные, полученные в ходе выполнения работы

	$t, ^{\circ}C$	27,9	35,0	40,0	45,0	50,0	55,1	60,1
ľ	R_0 , Om	20,85	20,92	20,97	20,96	20,97	20,97	20,95
	$rac{\mathrm{d}R}{\mathrm{d}Q},\;\mathrm{OM}/\mathrm{Д}\mathrm{ж} \ rac{\mathrm{d}Q}{\mathrm{d}\Delta T},\;\mathrm{M}\mathrm{Д}\mathrm{ж}/\mathrm{K}$	$5,\!26$	5,20	5,17	5,26	$5,\!14$	5,12	$5,\!13$
	$\frac{\mathrm{d}\check{Q}}{\mathrm{d}\Delta T}$, мДж/К	1,92	1,94	1,95	_	-	_	-
	κ , MKBT/(M·K)	3,8	3,8	3,8	-	-	-	-

Таблица 3: Значения R_0 и $\frac{\mathrm{d}R}{\mathrm{d}Q}$ для различных температур

Рис. 2: Графики зависимостей R(Q) для различных температур

Рис. 3: Графики зависимости R(T)

Рис. 4: Графики зависимости $\ln \kappa (\ln T)$, отнормированный таким образом, что первая точка совпадает с точкой (0,0)