

Algorítmica grado en ingeniería informática

Ejercicio de clase

Divide y Vencerás

Autores

Carlos Sánchez Páez

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2017-2018

${\bf \acute{I}ndice}$

1.	Enu	nciado	1
2.	Res	olución	1
	2.1.	Algoritmo desarrollado	1
	2.2.	Método básico	3
	2.3.	Método Divide y Vencerás	3
		Estudio de eficiencia	
		2.4.1. Eficiencia empírica	4
		2.4.2. Eficiencia híbrida	7
	2.5.	Conclusiones	8
Ír	ıdic	ce de cuadros	
	1.	Parámetros de ejecución	4
	2.	Tiempos de ejecución (s)	5
	3.	Bondad del ajuste	7

1. Enunciado

Implementar un algoritmo sencillo para calcular el valor máximo de un vector y otro basado en divide y vencerás. Realizar un estudio empírico e híbrido de su eficiencia.

2. Resolución

2.1. Algoritmo desarrollado

Para resolver el ejercicio he implementado el siguiente programa:

```
#include <iostream>
  #include <stdlib.h>
  #include <time.h>
  #include <climits>
  using namespace std;
  int hallarMaximo(const int *v, const int inicio, const int fin) {
           int max = v[inicio];
           for (int i = inicio + 1; i < fin; i++)
10
                    if (v[i] > max)
11
                            max = v[i];
           return max;
13
  }
14
15
  int hallarMaximoDyV(const int *v,const int i,const int j){
16
           if(i==j){
                    return v[i];
18
           }
19
           else{
20
                    int mitad=(i+j)/2;
21
                    int max_izquierda=hallarMaximoDyV(v,i,mitad);
                    int max_derecha=hallarMaximoDyV(v,mitad+1,j);
23
                    if(max_izquierda>max_derecha)
24
                             return max_izquierda;
25
                    else
26
                            return max_derecha;
27
           }
28
```

```
}
30
   int main(int argc, char **argv) {
31
            if (argc != 2) {
32
                     cerr << "Falta el tamaño del vector.";</pre>
33
                     exit(-1);
34
            }
35
36
            int tam = atoi(argv[1]);
            int *v = new int[tam];
38
            int max;
39
            clock_t tantes;
40
            clock_t tdespues;
41
            //Inicializar vector con valores aleatorios
43
            srand (time(NULL));
44
            for (int i = 0; i < tam; i++)
46
                     v[i] = rand();
47
48
            //Algoritmo sencillo
49
            cout<<"\t\tTamaño "<<tam<<endl;</pre>
51
            tantes = clock();
52
            max = hallarMaximo(v, 0, tam);
53
            tdespues = clock();
54
            cout << "Algoritmo sencillo:\tMáximo: " << max</pre>
            << "\tTiempo: " << ((double)(tdespues - tantes))</pre>
56
             / CLOCKS_PER_SEC << endl;</pre>
            //Algoritmo DyV
59
60
            tantes = clock();
61
            max = hallarMaximoDyV(v, 0,tam);
62
            tdespues = clock();
63
            cout << "Algoritmo DyV:\tMáximo:" << max</pre>
64
            << "\tTiempo: " << ((double)(tdespues - tantes))</pre>
65
              / CLOCKS_PER_SEC << endl;</pre>
66
  }
67
```

2.2. Método básico

El método básico sigue el siguiente algoritmo:

- 1. Asigno el máximo al primer elemento del vector
- 2. Itero desde v[1] hasta v[tam]
 - Si encuentro un elemento mayor que el máximo almacenado, lo sustituyo.
- 3. Devuelvo el máximo.

Como vemos, su eficiencia te'orica es O(n).

2.3. Método Divide y Vencerás

En el método Divide y Vencerás hacemos lo siguiente:

- 1. Caso base: i=j. Devolvemos v[i] = v[j]
- 2. Lanzamos el algoritmo dos veces, desde i a la mitad y desde la mitad al final.
- 3. Devolvemos el máximo de entre las dos ejecuciones anteriores.

```
int hallarMaximoDyV(const int *v,const int i,const int j){
    if(i==j){
        return v[i];
    }
    else{
        int mitad=(i+j)/2;
        int max_izquierda=hallarMaximoDyV(v,i,mitad);
        int max_derecha=hallarMaximoDyV(v,mitad+1,j);
```

```
if(max_izquierda>max_derecha)
return max_izquierda;
else
return max_derecha;
}

return max_derecha;

...
max = hallarMaximoDyV(v, 0,tam);
```

Como vemos, su eficiencia es $O(\frac{n}{2}) = O(n)$

2.4. Estudio de eficiencia

2.4.1. Eficiencia empírica

Para realizar un estudio de la eficiencia empírica, ejecutaremos el programa 25 veces con tamaños ascendentes mediante un script:

```
#!/bin/bash
  if [ $# -eq 3 ]
  then
  i="0"
  tam=$2
  #Primer argumento: programa a ejecutar
  #Segundo argumento: tamaño inicial
  #Tercer argumento : incremento
  while [ $i -lt 25 ]
10
           ./$1 $tam >> ./$1.dat
           i=$[$i+1]
12
           tam=$[$tam+$3]
  done
14
  else
  echo "Error de argumentos"
  fi
```

Tamaño inicial	Tamaño final	Incremento
1.000.000	3.400.000	100.000

Cuadro 1: Parámetros de ejecución

Los tiempos obtenidos son los siguientes:

Tamaño del vector	Algoritmo sencillo	Algoritmo DyV
1.000.000	0.002843	0.01785
1.100.000	0.003078	0.019833
1.200.000	0.003348	0.021738
1.300.000	0.003672	0.023498
1.400.000	0.00399	0.025195
1.500.000	0.004231	0.026859
1.600.000	0.004494	0.02824
1.700.000	0.004768	0.030195
1.800.000	0.005065	0.031905
1.900.000	0.005365	0.03421
2.000.000	0.005717	0.035741
2.100.000	0.005959	0.036774
2.200.000	0.006238	0.039702
2.300.000	0.00655	0.041812
2.400.000	0.006852	0.043164
2.500.000	0.007097	0.04456
2.600.000	0.007376	0.047041
2.700.000	0.007694	0.048758
2.800.000	0.007935	0.050333
2.900.000	0.00823	0.051901
3.000.000	0.008527	0.053997
3.100.000	0.008772	0.055266
3.200.000	0.009132	0.056647
3.300.000	0.009391	0.05865
3.400.000	0.009629	0.060409

Cuadro 2: Tiempos de ejecución (s)

Figura 1: Eficiencia empírica. Algoritmo básico

Figura 2: Eficiencia empírica. Algoritmo Divide y Vencerás

2.4.2. Eficiencia híbrida

Para esta sección, haremos una regresión mediante gnuplot de los datos empíricos obtenidos a la función $f(x) = a \cdot x$ para hallar la constante oculta.

Algoritmo	Valor de la constante oculta	Porcentaje de error
Básico	2.83765e-09	0.09622%
Divide y Vencerás	1.78876e-08	0.1751%

Cuadro 3: Bondad del ajuste

Figura 3: Eficiencia híbrida. Algoritmo básico

Figura 4: Eficiencia híbrida. Algoritmo Divide y Vencerás

2.5. Conclusiones

Como podemos ver, gracias al método *Divide y Vencerás* conseguimos rebajar la constante oculta del algoritmo inmediato. Sin embargo, sigue siendo mejor utilizar el algoritmo básico debido a los costes de la recursión que requiere Divide y Vencerás.