

진동신호 생성을 위한 적대적 생성 신경망 (GAN)

Prof. Seungchul Lee Industrial AI Lab.

Supervised Learning

Discriminative model

The discriminative model learns how to classify input to its class.

Unsupervised Learning

Generative model

Probability Distribution

Probability density function

There is a $p_{data}(x)$ that represents the distribution of actual images.

Probability Density Estimation Problem

• If $P_{model}(x)$ can be estimated as close to $P_{data}(x)$, then data can be generated by sampling from $P_{model}(x)$

Generative Models from Lower Dimension

- Learn transformation via a neural network
- Start by sampling the code vector z from a fixed, simple distribution (e.g. uniform distribution or Gaussian distribution)
- Then this code vector is passed as input to a deterministic generator network G, which produces an output sample x = G(z)

Deterministic Transformation (by Network)

• 1-dimensional example:

- Remember
 - Network does not generate distribution, but
 - It maps known distribution to target distribution

Deterministic Transformation (by Network)

• High dimensional example:

Generative Adversarial Networks (GANs)

- In generative modeling, we'd like to train a network that models a distribution, such as a distribution over images.
- GANs do not work with any explicit density function!
 - Instead, take game-theoretic approach

Turing Test

- One way to judge the quality of the model is to sample from it.
- GANs are based on a very different idea:
 - Model to produce samples which are indistinguishable from the real data, as judged by a discriminator network whose job is to tell real from fake

Generative Adversarial Networks (GAN)

- The idea behind Generative Adversarial Networks (GANs): train two different networks
 - Generator network: try to produce realistic-looking samples
 - Discriminator network: try to distinguish between real and fake data
- The generator network tries to fool the discriminator network

Generative Adversarial Networks (GAN)

Analogous to Turing Test

Generative Adversarial Networks (GAN)

Analogous to Turing Test

Intuition for GAN

Discriminator Perspective (1/2)

Discriminator Perspective (2/2)

Generator Perspective

Loss Function of Discriminator

Loss Function of Generator

GAN Implementation in TensorFlow

TensorFlow Implementation

Generator

```
generator = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units = 256, input_dim = 100, activation = 'relu'),
    tf.keras.layers.Dense(units = 784, activation = 'sigmoid')
])
```


Discriminator

```
discriminator = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units = 256, input_dim = 784, activation = 'relu'),
    tf.keras.layers.Dense(units = 1, activation = 'sigmoid'),
])
```

Assume x is MNIST (784 dimension)

Discriminator

Combined

```
combined_input = tf.keras.layers.Input(shape = (100,))
generated = generator(combined_input)
discriminator.trainable = False
combined_output = discriminator(generated)

combined = tf.keras.models.Model(inputs = combined_input, outputs = combined_output)
```


Training: Discriminator

Forward, Bac


```
n iter = 5000
batch size = 50
fake = np.zeros(batch_size)
real = np.ones(batch size)
for i in range(n iter):
    # Train Discriminator
   noise = make_noise(batch_size)
   generated images = generator.predict(noise)
   idx = np.random.randint(0, train_x.shape[0], batch_size)
    real_images = train_x[idx]
   D_loss_real = discriminator.train_on_batch(real_images, real)
   D_loss_fake = discriminator.train_on_batch(generated_images, fake)
   D_loss = D_loss_real + D_loss_fake
    # Train Generator
   noise = make_noise(batch_size)
   G_loss = combined.train_on_batch(noise, real)
```

Training: Generator

Train the generator to deceive the discriminator

Forward, Backwai


```
n iter = 5000
batch size = 50
fake = np.zeros(batch_size)
real = np.ones(batch size)
for i in range(n_iter):
   # Train Discriminator
   noise = make_noise(batch_size)
   generated images = generator.predict(noise)
   idx = np.random.randint(0, train_x.shape[0], batch_size)
    real_images = train_x[idx]
   D_loss_real = discriminator.train_on_batch(real_images, real)
   D_loss_fake = discriminator.train_on_batch(generated_images, fake)
   D_loss = D_loss_real + D_loss_fake
    # Train Generator
   noise = make_noise(batch_size)
   G_loss = combined.train_on_batch(noise, real)
```