Topics: increasing and decreasing, reference angles

Student Learning Outcomes:

- 1. Students will be able to evaluate trigonometric functions of any angle.
- 2. Students will be able to determine reference angles.
- 3. Students will be able to evaluate trigonometric functions using reference angles.

1 Trigonometric Functions of Any Angle

Recall: We have used trigonometric functions with acute angles. What if the angle is not acute?

A circle with center (0,0) and radius r has the equation $x^2 + y^2 = r^2$. Choose a point P(x,y). We can create reference triangles inside the circle in order to define our trig functions.

If the point (x,y) lies on the **terminal side** of θ , the six trig functions of θ can be defined as follows:

$$\sin(\theta) = \frac{y}{r} \qquad \qquad \cos(\theta) = \frac{x}{r}$$

$$\sin(\theta) = \frac{y}{r}$$
 $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$ $\sec(\theta) = \frac{r}{y}$ $\cot(\theta) = \frac{x}{y}$

What changes when we are on the unit circle?

1. Let P(-6,8) be a point on the terminal side of θ . Find each of the six trig functions of θ .

Trigonometric Functions of Quadrantal Angles

θ	0° = 0	$90^{\circ} = \frac{\pi}{2}$	180° = π	$270^{\circ} = \frac{3\pi}{2}$
$\sin \theta$	0	1	0	-1
cos θ	1	0	-1	0
$\tan \theta$	0	undefined	0	undefined

2 The Signs of the Trigonometric Functions

2. Let θ be an angle in standard position. Name the quadrant in which θ lies.

$$\sin(\theta) < 0, \qquad \tan(\theta) < 0$$

3. Find the exact value of each of the remaining trigonometric functions of θ .

$$\sin(\theta) = \frac{4}{5}, \quad \theta \text{ in Quadrant 2}$$

3 Reference Angles

Let's draw our two reference triangles as well as an xy-plane.

Let θ be a nonquadrantal angle in standard position. The reference angle for θ , called θ_R , is the *acute* angle θ_R that the *terminal side* of θ makes with the x-axis.

If
$$90^{\circ} < \theta < 180^{\circ}$$
,
then $\theta' = 180^{\circ} - \theta$.

If
$$180^{\circ} < \theta < 270^{\circ}$$
, then $\theta' = \theta - 180^{\circ}$.

If
$$270^{\circ} < \theta < 360^{\circ}$$
, then $\theta' = 360^{\circ} - \theta$.

- 4. Determine the reference angle θ_R for each of the following angles.
 - (a) $\theta = 45^{\circ}$

Quadrant _____

 θ_R _____

(b)
$$\theta = -73^{\circ}$$

Quadrant _____

 θ_R _____

(c)
$$\theta = -915^{\circ}$$

Quadrant _____

 θ_R _____

5. Determine the reference angle θ_R for each of the following angles.

(a)
$$\theta = \frac{19\pi}{6}$$

Quadrant _____

 θ_R _____

(b)
$$\theta = \frac{47\pi}{4}$$

Quadrant _____

 θ_R _____

(c)
$$\theta = \frac{-7\pi}{6}$$

Quadrant _____

 θ_R _____

Let θ be a nonquadrantal angle in standard position. To find the value of a trig function at θ , find its value for the reference angle θ_R and prefix the appropriate sign (using ASTC).

6. Determine the exact values of $\sin(2\pi/3)$ and $\cos(2\pi/3)$.

7. Determine the exact values of $\cos(210^{\circ})$, $\sec(210^{\circ})$, and $\cot(210^{\circ})$.

Student Learning Outcomes Check

- 1. Can you evaluate trigonometric functions of any angle?
- 2. Are you able to determine reference angles?
- 3. Can you evaluate trigonometric functions using reference angles?

If any of your answers were no, please ask about these topics in class.