Premières définitions

EUCLIDE d'Alexandrie (vivant vers 300 av. JC)

On sait très peu de choses d'Euclide; par exemple, on ne connaît pas ses dates de naissance et de mort précises.

Il est l'auteur de plusieurs ouvrages de mathématiques, le plus célèbre d'entre eux étant les Éléments, composé de treize livres. Cet ouvrage est remarquable par sa structure hypothético-déductive, enchaînant définitions, axiomes et propositions. De ce fait, il constitue un modèle de la pratique mathématique.

Sommaire

I.	Théorie des ensembles	.p.2
II.	Suites réelles	. p. 3
III.	Parties réelles	. p. 5
τv	Fonctions réelles	p 7

I. Théorie des ensembles

Soient E et F des ensembles.

1. Inclusion

Premières définitions 2/8

II. Suites réelles

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. Suites croissantes et décroissantes

De même, on définit :

2. Suites majorées, minorées, bornées


```
Définition 11
On dit que (u_n)_{n\in\mathbb{N}} est bornée ssi
```

Premières définitions 3/8

3. Limites des suites réelles

Définition 12 Soit $\ell \in \mathbb{R}$. On dit que $(u_n)_{n \in \mathbb{N}}$ tend vers ℓ et on note $u_n \longrightarrow \ell$ ssi Définition 13 On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et on note $u_n \longrightarrow +\infty$ ssi Définition 14 On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $u_n \longrightarrow -\infty$ ssi 4. Suites géométriques et arithmétiques Définition 15 Soit $r \in \mathbb{R}$. On dit que $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison r ssi Définition 16 Soit $a \in \mathbb{R}$. On dit que $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison a ssi 5. Propriétés vraies à partir d'un certain rang Définition 17 On dit que $(u_n)_{n\in\mathbb{N}}$ est stationnaire ssi Définition 18 On dit que $(u_n)_{n\in\mathbb{N}}$ est croissante à partir d'un certain rang ssi Définition 19 On dit que $(u_n)_{n\in\mathbb{N}}$ est décroissante à partir d'un certain rang ssi

Premières définitions 4/8

III. Parties réelles

Soit $A \subset \mathbb{R}$ une partie non vide de l'ensemble des nombres réels \mathbb{R} .

1. Majorants, minorants

Définition 25

Soit $m \in \mathbb{R}$. On dit que m est la borne inférieure de A ssi

Premières définitions 5/8

4. Intérieur, adhérence, accumulation et densité

Définition 26	
Soit $x \in \mathbb{R}$. On dit que x est un point intérieur de A ssi	
Définition 27	
Soit $x \in \mathbb{R}$. On dit que x est un point adhérent à A ssi	
Définition 28	
Soit $x \in \mathbb{R}$. On dit que x est un point d'accumulation à A ssi	
bott w C 12.1 Off and que w est an point a accumulation w 11 ser	
Définition 29	
Soit B une partie de A. On dit que B est dense dans A ssi	
Solv B and partie de 11. On the que B est dense dons 11 ssi	
5. Parties convexes	
Définition 30	
On dit que A est convexe ssi	

Premières définitions 6/8

IV. Fonctions réelles

Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$ une fonction.

1. Croissance et décroissance

De même :

2. Extrema

Soit $a \in I$.

Premières définitions 7/8

3. Extrema locaux

On dit que f admet un maximum local en a (sur I) $\overset{\Delta}{ssi}$

Définition 38

On dit que fadmet un minimum local en a (sur I) $\overset{\Delta}{\text{ssi}}$

4. Parité et imparité

Définition 39

Soit $A \subset \mathbb{R}$. On dit que A est symétrique par rapport à 0 ssi

Définition 40

On suppose I symétrique par rapport à 0. On dit que f est paire ssi

Définition 41

On suppose I symétrique par rapport à 0. On dit que f est impaire ssi

5. Périodicité

Définition 42

On suppose $I=\mathbb{R}.$ Soit T>0. On dit que f est T-périodique ssi

Définition 43

On suppose $I = \mathbb{R}$. On dit que f est périodique ssi

6. Lipschitziannité

Définition 44

Soit C>0. On dit que f est C-lipschitzienne ssi

Premières définitions 8/8