3)
$$u_{E} + \left(\frac{1}{2}u^{2}\right)x = 0$$

$$f(u) = \frac{1}{2}u^2$$
 $f'(u) = u$

when
$$\kappa = 1$$

$$f'(u_1)=1$$
 and $f'(u_r)=0$
since $f'(u_1) > f'(u_r)$ thus is a shock here

u(x) is either flat or increasing: there are no shocks for x<1

shock speed

$$\frac{1}{2}(t) = \frac{f(u_r) - f(u_x)}{u_r - u_x} = \frac{0 - \frac{z^2}{2}}{0 - x} = \frac{z}{2}$$
 : The slope of the

b) at
$$t=0$$
, $x=1$

$$\hat{\lambda}'(t) = x = \frac{1}{2}$$

Change of notation: f (u(-00,+))=0 f(u(\omega)+1)=0 Let $dz_s(t) = \chi'(t)$ $\frac{d}{dt} \left[\int_{-\infty}^{\infty} ddx + \int_{0}^{\infty} u dx + \int_{0}^{\infty} dx \right] + \left[\int_{0}^{\infty} dx + \int_{0}^{\infty} dx \right] = 0$ $G(x_s(t),t)$ $G^{\dagger}(x_s^{\dagger}(t),t)$ Since $\frac{d}{dt}G(x_s(t),t) = \frac{dG}{dx_s}\frac{dx_s}{dt} + \frac{dG}{dt}$ $u_{\downarrow} + (f(u))_{\varkappa} = 0$ = $u(x_s(t),t)dx_s + \int_0^{x_s(t)} du dx$, Since $u_t = -f(u)_x$ = $u(x_{3}^{-}(t),t)\frac{dx_{3}}{dt} + \left[-f(u(x_{3}(t),t))+f(u(0,t))\right]$ = $u(x_s^-(t),t) \frac{dx_s}{dt} - f(u(x_s^-(t),t))$ Similarly $\frac{d}{dt}$ $\left(\pi^{+}(x_{s}^{+}(t),t)=-u\left(x_{s}^{+}(t),t\right)dx_{s}+f\left(u\left(x_{s}^{+}(t),t\right)\right)$ So $d G(x_s^-(t),t) + d G^+(x_s^+(t),t) = 0$ $\frac{dx_s(t)}{dt} = \frac{x_s(t)}{2}$ Let u = u(xs(t),t) and u = u(zs(t),t) $\int \frac{1}{x_1} dx_3 = \int \frac{1}{2} dt$ $ln(x_s) = -t + c$ $u \frac{dx_s}{dt} - f(u,t) - u^t \frac{dx_s}{dt} + f(u^t,t) = 0$ $\frac{dx_s}{dt} = \underbrace{f(\bar{u}) - f(\bar{u})}_{u\bar{u}} = \underbrace{(\bar{u})}_{u\bar{u}} = \underbrace{\bar{u}}_{2}$, then $\frac{dx_s}{dt} = \frac{x_s}{2}$

$$\frac{dn_{s}}{dt} = \frac{\chi_{s}}{2}$$

$$\int \left(\frac{1}{\chi_{s}}\right) dx_{s} = \int \frac{1}{2} dt$$

$$\ln(\chi_{s}) = \frac{1}{2}t + C$$

$$\chi_{s} = e^{\frac{1}{2}t + C} = e^{\frac{1}{2}t} c$$

$$= ae$$

$$= ae$$

$$\text{when } t = 0 \quad \chi_{s} = 1 \quad 50:$$

$$a = 1$$

$$\therefore \chi_{s} = e^{\frac{1}{2}t}$$

$$\therefore \chi_{s} = e^{\frac{1}{2}t}$$

Q4) $U_{t} + f(u)_{x=0}, U_{t} + f'(u)u_{x} = 0$

U is constant along characteristic curves x(t) i.e. $u_t=0$ x'(t)=f'(u)

Consider a particular characteristic curve $\chi_g(t)$ and its neighboring curve $\chi_{g+g}(t)$ such that

 $x_{\xi}(0) = \zeta$ and $x_{\xi+\xi\xi}(0) =$