Machine Learning

Session 5 Dimensionality Reduction

- Introduction to Dimensionality reduction
- Properties of the projections
- Principal Component Analysis and Dimensionality Reduction
- Examples

Chap 12 of C. Bishop book

https://www.youtube.com/watch?v=HMOI_lkzW08

https://www.youtube.com/watch?v= UVHneBUBW0

https://towardsdatascience.com/understanding-pca-fae3e243731d

Motivation

Pollen et al. Nat Biotechnol. 2014 Oct; 32(10): 1053-1058.

Motivation

Take a cell and extract the gens of them. Do that for different cell types

Two axis ('Principal Component 1 and 2') object of this lecture

Each dot represents a single cell.

Pollen et al. Nat Biotechnol. 2014 Oct; 32(10): 1053–1058.

There are about 10,000 transcribed genes in each cell: a cell represented as a points $\mathbf{x}^{(n)} \in \mathbb{R}^{10000}$

Cells with similar transcriptions should cluster.

The question of this lecture:

- 1. How the 10,000 genes of each cell get compressed to a single point in the 2D plot?
- 2. Principal Component Analysis (PCA) is a method for compressing a lot of data into something that captures the essence of the original data.

It tries to find this by focusing on the things that are different between the cells

Visualizing the data:

Imagine a $N \times D$ design matrix M, with N observations, each one with D variables Example: N = 50 samples of, each one with D = 5 variables.

	X ₁	X ₂	Х ₃	X ₄	X ₅
$\mathbf{x}^{(1)^T}$					
$\mathbf{x}^{(N)^{T}}$					

Visualizing the data:

For D=5, we need to represent the $\frac{D(D-1)}{2}$ scatterplots:

Visualizing the data:

For D=5, we need to represent the $\frac{D(D-1)}{2}$ scatterplots:

Can we do better?

PCA uses correlations between variables (redundancies) to represent the data

In general

- For many datasets, data points lie close to a manifold of much lower dimensionality compared to that of the original data space
- Training continuous latent variable models is often called dimensionality reduction, since there are typically fewer latent dimensions.
- Often there are some unknown underlying causes of the data.
- PCA can be understood as a *Continuous Latent Variable* model, in contrast to the mixture of Gaussians, which has *discrete* latent variables (cluster memberships)

Main Idea of PCA:

We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (1)

Orthogonal projection of a point $\mathbf{x}^{(n)}$ to a vector \mathbf{w}

Remember:

$$\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\| \|\mathbf{w}\| \cos \alpha$$

- The result is a number
- Order does not matter
- If $\|\mathbf{w}\|=1$, then $\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\|\cos\alpha$ is the projection of \mathbf{x} onto \mathbf{w}

Remarks (always, always take w with norm 1)

 $r^{(n)} = \mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}$ is a number: value of the projection onto \mathbf{w} $\mathbf{x}^{(n)}$ is a vector: the projected point

The difference between $\mathbf{x}^{(n)}$ and $\mathbf{\underline{x}}^{(n)}$ is the loss

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (1) Orthogonal projection of a point $\mathbf{x}^{(n)}$ to a vector \mathbf{w}

Remember:

$$\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\| \|\mathbf{w}\| \cos \alpha$$

- The result is a number
- Order does not matter
- If $\|\mathbf{w}\| = 1$, then $\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\| \cos \alpha$ is the projection of \mathbf{x} onto \mathbf{w}

Example:

$$\mathbf{x}^{(n)} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 on the direction $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$?

- Projection value?
- Vector projection?
- Loss?

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (1) Orthogonal projection of a point $\mathbf{x}^{(n)}$ to a vector \mathbf{w}

Remember:

$$\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\| \|\mathbf{w}\| \cos \alpha$$

- The result is a number
- Order does not matter
- If $\|\mathbf{w}\|=1$, then $\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\|\cos\alpha$ is the projection of \mathbf{x} onto \mathbf{w}

Example:

$$\mathbf{x}^{(n)} = \binom{2}{4}$$
 on the direction $\binom{1}{1}$. First, normalize to have unit norm, $\mathbf{w} = \binom{1}{\sqrt{2}}$ then

• Projection value:
$$r^{(n)} = \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)} = \binom{1}{\sqrt{2}}, \binom{1}{\sqrt{2}} \binom{2}{4} = 3\sqrt{2}$$
 means $3\sqrt{2}$ times the length of \mathbf{w}

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (1) Orthogonal projection of a point $\mathbf{x}^{(n)}$ to a vector \mathbf{w}

Remember:

$$\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\| \|\mathbf{w}\| \cos \alpha$$

- The result is a number
- Order does not matter
- If $||\mathbf{w}|| = 1$, then $\mathbf{x}^{\mathsf{T}}\mathbf{w} = ||\mathbf{x}|| \cos \alpha$ is the projection of \mathbf{x} onto \mathbf{w}

Example:

 $\mathbf{x}^{(n)} = \binom{2}{4}$ on the direction $\binom{1}{1}$. First, normalize \mathbf{w} to have unit norm, $\mathbf{w} = \binom{1}{\sqrt{2}}$ then

- Projection value: $r^{(n)} = \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)} = \binom{1}{\sqrt{2}}, \binom{1}{\sqrt{2}} \binom{2}{4} = 3\sqrt{2}$ means $3\sqrt{2}$ times the length of \mathbf{w}
- Vector projection: $\underline{\mathbf{x}}^{(n)} = r^{(n)}\mathbf{w} = 3\sqrt{2} \binom{1/\sqrt{2}}{1/\sqrt{2}} = \binom{3}{3}$

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (1) Orthogonal projection of a point $\mathbf{x}^{(n)}$ to a vector \mathbf{w}

Remember:

$$\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\| \|\mathbf{w}\| \cos \alpha$$

- The result is a number
- Order does not matter
- If $\|\mathbf{w}\|=1$, then $\mathbf{x}^{\mathsf{T}}\mathbf{w} = \|\mathbf{x}\|\cos\alpha$ is the projection of \mathbf{x} onto \mathbf{w}

Example:

$$\mathbf{x}^{(n)} = \binom{2}{4}$$
 on the direction $\binom{1}{1}$. First, normalize \mathbf{w} to have unit norm, $\mathbf{w} = \binom{1}{\sqrt{2}}$ then

• Projection value:
$$r^{(n)} = \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(n)} = \binom{1}{\sqrt{2}}, \binom{1}{\sqrt{2}} \binom{2}{4} = 3\sqrt{2}$$
 means $3\sqrt{2}$ times the length of \mathbf{w}

• Vector projection:
$$\underline{\mathbf{x}}^{(n)} = r^{(n)}\mathbf{w} = 3\sqrt{2} \binom{1/\sqrt{2}}{1/\sqrt{2}} = \binom{3}{3}$$

• Loss:
$$\mathbf{x}^{(n)} - \underline{\mathbf{x}}^{(n)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (2)

The mean of the projections of the points in $\mathcal D$ onto $\mathbf w$, is the projected mean

$$E[r^{(n)}] = E[\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}]$$
$$= \mathbf{w}^{\mathsf{T}}E[\mathbf{x}^{(n)}]$$
$$= \mathbf{w}^{\mathsf{T}}\boldsymbol{\mu}$$

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (2)

The mean of the projections of the points in $\mathcal D$ onto $\mathbf w$, is the projected mean

$$E[r^{(n)}] = E[\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}]$$
$$= \mathbf{w}^{\mathsf{T}}E[\mathbf{x}^{(n)}]$$
$$= \mathbf{w}^{\mathsf{T}}\boldsymbol{\mu}$$

Exemple:
$$\mathbf{x}^{(1)} = \binom{2}{4}$$
, $\mathbf{x}^{(2)} = \binom{1}{3}$, $\mathbf{x}^{(3)} = \binom{1}{-3}$ amb $\mathbf{w} = \binom{1/\sqrt{2}}{1/\sqrt{2}}$

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (2)

The mean of the projections of the points in $\mathcal D$ onto $\mathbf w$, is the projected mean

$$E[r^{(n)}] = E[\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}]$$
$$= \mathbf{w}^{\mathsf{T}}E[\mathbf{x}^{(n)}]$$
$$= \mathbf{w}^{\mathsf{T}}\boldsymbol{\mu}$$

Exemple:
$$\mathbf{x}^{(1)} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
, $\mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, $\mathbf{x}^{(3)} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ amb $\mathbf{w} = \begin{pmatrix} 1 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$
$$\mathbf{\mu} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
,
$$\mathbf{E}[r^{(n)}] = \frac{4}{3}\sqrt{2}$$

Main Idea of PCA:

Given data $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$. We project each point **orthogonally** to a line (or subspace), such that the variance of the projected data is maximized.

Preliminary (3)

The variance of the projections of the points in \mathcal{D} onto \mathbf{w} is the projected covariance matrix of the data

Mean of the projected data

$$Var[r^{(n)}] = Var[\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)}] = E[(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} - \mathbf{w}^{\mathsf{T}}\boldsymbol{\mu})^{2}]$$

$$= E[(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} - \mathbf{w}^{\mathsf{T}}\boldsymbol{\mu})(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(n)} - \mathbf{w}^{\mathsf{T}}\boldsymbol{\mu})^{\mathsf{T}}]$$

$$= E[\mathbf{w}^{\mathsf{T}}(\mathbf{x}^{(n)} - \boldsymbol{\mu})(\mathbf{x}^{(n)} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{w}]$$

$$= \mathbf{w}^{\mathsf{T}}E[(\mathbf{x}^{(n)} - \boldsymbol{\mu})(\mathbf{x}^{(n)} - \boldsymbol{\mu})^{\mathsf{T}}]\mathbf{w}$$

$$= \mathbf{w}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{w}$$

Conclusion: The projected data has mean $\mathbf{w}^{\mathsf{T}}\boldsymbol{\mu}$ and variance $\mathbf{w}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{w}$

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - 1. Find a vector \mathbf{w}_1 that maximizes Var[r] subject to $||\mathbf{w}_1|| = 1$

Lagrangian
$$\mathcal{L}(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{w}_1 - \lambda_1 (\mathbf{w}_1^\mathsf{T} \mathbf{w}_1 - 1)$$

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - 1. Find a vector \mathbf{w}_1 that maximizes Var[r] subject to $||\mathbf{w}_1|| = 1$

Lagrangian
$$\mathcal{L}(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{w}_1 - \lambda_1 (\mathbf{w}_1^\mathsf{T} \mathbf{w}_1 - 1)$$

- Take derivative of \mathcal{L} w.r.t. \mathbf{w}_1 :

$$\boldsymbol{\Sigma} \boldsymbol{w}_1 = \lambda_1 \boldsymbol{w}_1$$
 that is, \boldsymbol{w}_1 is an eigenvector of $\boldsymbol{\Sigma}$

Remember: $\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$ $\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x}$

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - 1. Find a vector \mathbf{w}_1 that maximizes Var[r] subject to $||\mathbf{w}_1|| = 1$

Lagrangian
$$\mathcal{L}(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{w}_1 - \lambda_1 (\mathbf{w}_1^\mathsf{T} \mathbf{w}_1 - 1)$$

- Take derivative of \mathcal{L} w.r.t. \mathbf{w}_1 :

$$\boldsymbol{\Sigma} \boldsymbol{w}_1 = \lambda_1 \boldsymbol{w}_1$$
 that is, \boldsymbol{w}_1 is an eigenvector of $\boldsymbol{\Sigma}$

- Left-multiplying with \mathbf{w}_1^T :

$$\mathbf{w}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{w}_1 = \lambda_1 \mathbf{w}_1^\mathsf{T} \mathbf{w}_1 = \lambda_1$$

The variance in the w_1 direction is the largest eigenvalue of Σ

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - 1. Find a vector \mathbf{w}_1 that maximizes Var[r] subject to $||\mathbf{w}_1|| = 1$

Remember: $\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$ $\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x}$

Lagrangian
$$\mathcal{L}(\mathbf{w}_1, \lambda_1) = \mathbf{w}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{w}_1 - \lambda_1 (\mathbf{w}_1^\mathsf{T} \mathbf{w}_1 - 1)$$

- Take derivative of \mathcal{L} w.r.t. \mathbf{w}_1 :

$$\Sigma \mathbf{w}_1 = \lambda_1 \mathbf{w}_1$$

that is, \mathbf{w}_1 is an eigenvector of $\boldsymbol{\Sigma}$

- Left-multiplying with $\mathbf{w}_1^{\mathsf{T}}$:

$$\mathbf{w}_1^\mathsf{T} \mathbf{\Sigma} \mathbf{w}_1 = \lambda_1 \mathbf{w}_1^\mathsf{T} \mathbf{w}_1 = \lambda_1$$

The variance in the w_1 direction is the largest eigenvalue of Σ The 1^{st} Principal Component is the eigenvector with the largest eigenvalue

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - 2. Second Principal Component: Find \mathbf{w}_2 that maximizes Var[r], subject to $\|\mathbf{w}_2\| = 1$ and \mathbf{w}_2 be orthogonal to \mathbf{w}_1

$$\mathcal{L}(\mathbf{w}_1, \lambda_1, \eta) = \mathbf{w}_2^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}_2 - \lambda_2 (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_2 - 1) + \eta (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_1 - 1)$$

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - 2. Second Principal Component: Find \mathbf{w}_2 that maximizes Var[r], subject to $\|\mathbf{w}_2\| = 1$ and \mathbf{w}_2 be orthogonal to \mathbf{w}_1

$$\mathcal{L}(\mathbf{w}_1, \lambda_1, \eta) = \mathbf{w}_2^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}_2 - \lambda_2 (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_2 - 1) + \eta (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_1 - 1)$$

- Deriving w.r.t. \mathbf{w}_2 and left-multiplying the equation with \mathbf{w}_1^T we get $\mathbf{\Sigma}\mathbf{w}_2 = \lambda_2\mathbf{w}_2$, that is, \mathbf{w}_2 is another eigenvector of $\mathbf{\Sigma}$
- As before, the variance in the \mathbf{w}_2 direction is the second largest eigenvalue of Σ

- Objective: Find a low-dimensional space such that the variance of the projected data is maximized (Hotelling 1933)
 - **2.** Second Principal Component: Find \mathbf{w}_2 that maximizes Var[r], subject to $\|\mathbf{w}_2\| = 1$ and \mathbf{w}_2 be orthogonal to \mathbf{w}_1

$$\mathcal{L}(\mathbf{w}_1, \lambda_1, \eta) = \mathbf{w}_2^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}_2 - \lambda_2 (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_2 - 1) + \eta (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_1 - 1)$$

- Deriving w.r.t. \mathbf{w}_2 and left-multiplying the equation with \mathbf{w}_1^T we get $\mathbf{\Sigma}\mathbf{w}_2 = \lambda_2\mathbf{w}_2$, that is, \mathbf{w}_2 is another eigenvector of $\mathbf{\Sigma}$
- As before, the variance in the \mathbf{w}_2 direction is the second largest eigenvalue of Σ
- One can proceed incrementally to obtain the rest of Principal Components

- The Principal Components are the eigenvectors of the Sample Covariance. The eigenvalue is the variance in the eigenvector direction
- The SVD of a square matrix (spectral decomposition): $\Sigma = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}$

The eigenvector \mathbf{u}_i (principal component i) is the column i of the \mathbf{U} matrix. Its eigenvalue λ_i (variance in the is the non-zero value of the column i in the diagonal matrix \mathbf{D}

- The vectors \mathbf{u}_i are ordered in decreasing variance: $\lambda_1 \geq \lambda_2 \geq \lambda_3 \dots$
- $-\mathbf{u}_i^\mathsf{T}\mathbf{u}_j=\delta_{ij}$: the Principal Components are orthonormal $\mathbf{U}\mathbf{U}^\mathsf{T}=\mathbf{U}^\mathsf{T}\mathbf{U}=\mathbf{I}$
- The Covariance $\mathbf{\Sigma} = \lambda_1 \mathbf{u_1} \mathbf{u_1}^\mathsf{T} + \cdots + \lambda_D \mathbf{u_D} \mathbf{u_D}^\mathsf{T}$

- The Principal Components are the eigenvectors of the Sample Covariance. The eigenvalue is the variance in the eigenvector direction
- The SVD of a square matrix (spectral decomposition): $\Sigma = \mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}$
- PCA involves evaluating the mean μ and the covariance matrix Σ of the data set and then finding the eigenvectors of Σ corresponding to the largest eigenvalues

- The **Principal Components** are the eigenvectors of the Sample Covariance. The eigenvalue is the variance in the eigenvector direction.
 - 2. If we take the M Principal Components: $\mathbf{W} = [\mathbf{u}_1, \dots, \mathbf{u}_M]$, then we can project any data point $\mathbf{x}^{(n)}$ into the subspace centred on μ with the basis vectors $\langle \mathbf{u}_1, ..., \mathbf{u}_M \rangle$
 - The projected point of $\mathbf{x}^{(n)}$ in such a subspace (orthogonal) is the vector $\mathbf{W}^{\mathsf{T}}(\mathbf{x}^{(n)} - \mathbf{\mu})$

Note: the result is in $\langle \mathbf{u}_1, ..., \mathbf{u}_M \rangle$ coordinate system (previous $r^{(n)}$ in M dimensions)

- The Principal Components are the eigenvectors of the Sample Covariance. The eigenvalue is the variance in the eigenvector direction.
 - 2. If we take the M Principal Components: $\mathbf{W} = [\mathbf{u}_1, ..., \mathbf{u}_M]$, then we can project any data point $\mathbf{x}^{(n)}$ into the subspace centred on $\boldsymbol{\mu}$ with the basis vectors $\langle \mathbf{u}_1, ..., \mathbf{u}_M \rangle$
 - The **projected point** of $\mathbf{x}^{(n)}$ in such a subspace (orthogonal) is the vector $\mathbf{W}^{\mathsf{T}}(\mathbf{x}^{(n)} \mathbf{\mu})$ Note: the result is in $\langle \mathbf{u}_1, \dots, \mathbf{u}_M \rangle$ coordinate system (previous $r^{(n)}$ in M dimensions)
 - The reconstruction error of the point $\mathbf{x}^{(n)}$ is $\|\mathbf{x}^{(n)} \underline{\mathbf{x}}^{(n)}\|^2$

- The Principal Components are the eigenvectors of the Sample Covariance. The eigenvalue is the variance in the eigenvector direction.
 - 2. If we take the M Principal Components: $\mathbf{W} = [\mathbf{u}_1, ..., \mathbf{u}_M]$, then we can project any data point $\mathbf{x}^{(n)}$ into the subspace centred on $\boldsymbol{\mu}$ with the basis vectors $\langle \mathbf{u}_1, ..., \mathbf{u}_M \rangle$
 - The **projected point** of $\mathbf{x}^{(n)}$ in such a subspace (orthogonal) is the vector $\mathbf{W}^{\top}(\mathbf{x}^{(n)}-\mathbf{\mu})$ Note: the result is in $\langle \mathbf{u}_1,...,\mathbf{u}_M \rangle$ coordinate system (previous $r^{(n)}$ in M dimensions)
 - The reconstruction error of the point $\mathbf{x}^{(n)}$ is $\|\mathbf{x}^{(n)} \underline{\mathbf{x}}^{(n)}\|^2$
 - The reconstruction error of all the dataset is the addition of this reconstruction from all the points

$$\sum_{n} \left\| \mathbf{x}^{(n)} - \underline{\mathbf{x}}^{(n)} \right\|^{2}$$

$$\operatorname{Var}[\mathbf{x}^{(n)}] = \sum_{i=1}^{D} \mathbf{\Sigma}_{ii} = \operatorname{trace}(\mathbf{\Sigma}) = \operatorname{tr}(\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}) = \operatorname{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}) = \operatorname{tr}(\mathbf{D}) = \sum_{i=1}^{D} \lambda_{i}$$

3. We are interested in the sum of the variances of each component of $\mathbf{x}^{(n)}$

$$\operatorname{Var}[\mathbf{x}^{(n)}] = \sum_{i=1}^{D} \mathbf{\Sigma}_{ii} = \operatorname{trace}(\mathbf{\Sigma}) = \operatorname{tr}(\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}) = \operatorname{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}) = \operatorname{tr}(\mathbf{D}) = \sum_{i=1}^{D} \lambda_{i}$$

• In the reduced space, the variance explained by the M principal Components will be $\operatorname{Var}_M = \sum_{i=1}^M \lambda_i$

$$\operatorname{Var}[\mathbf{x}^{(n)}] = \sum_{i=1}^{D} \mathbf{\Sigma}_{ii} = \operatorname{trace}(\mathbf{\Sigma}) = \operatorname{tr}(\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}) = \operatorname{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}) = \operatorname{tr}(\mathbf{D}) = \sum_{i=1}^{D} \lambda_{i}$$

- In the reduced space, the variance explained by the M principal Components will be $\mathrm{Var}_M = \sum_{i=1}^M \lambda_i$
- The Covariance matrix in the principal components basis is diagonal.
 So the new r.v. are uncorrelated.

$$\operatorname{Var}[\mathbf{x}^{(n)}] = \sum_{i=1}^{D} \mathbf{\Sigma}_{ii} = \operatorname{trace}(\mathbf{\Sigma}) = \operatorname{tr}(\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}) = \operatorname{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}) = \operatorname{tr}(\mathbf{D}) = \sum_{i=1}^{D} \lambda_{i}$$

- In the reduced space, the variance explained by the M principal Components will be $\mathrm{Var}_M = \sum_{i=1}^M \lambda_i$
- The Covariance matrix in the principal components basis is diagonal.
 So the new r.v. are uncorrelated.
- The **proportion of the variance** explained by the M Principal Components is

PofV =
$$\frac{\lambda_1 + ... + \lambda_M}{\lambda_1 + ... + \lambda_M + ... + \lambda_D}$$
, typically choose M such that PofV > **90%**

$$\operatorname{Var}[\mathbf{x}^{(n)}] = \sum_{i=1}^{D} \mathbf{\Sigma}_{ii} = \operatorname{trace}(\mathbf{\Sigma}) = \operatorname{tr}(\mathbf{U}\mathbf{D}\mathbf{U}^{\mathsf{T}}) = \operatorname{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{D}) = \operatorname{tr}(\mathbf{D}) = \sum_{i=1}^{D} \lambda_{i}$$

- In the reduced space, the variance explained by the M principal Components will be $\mathrm{Var}_M = \sum_{i=1}^M \lambda_i$
- The Covariance matrix in the principal components basis is diagonal.
 So the new r.v. are uncorrelated.
- The **proportion of the variance** explained by the M Principal Components is $PofV = \frac{\lambda_1 + ... + \lambda_M}{\lambda_1 + ... + \lambda_M + ... + \lambda_D}$, typically choose M such that PofV > 90%
- The scree graph plots value of the variance against eigenvector number. Also PofV against M

Example: What PCA does

Problem statement: we have the dataset:

$$X = \{(1,2), (3,3), (3,5), (5,4), (5,6), (6,5), (8,7), (9,8)\}$$

- -Let's first plot the data and get an idea
- Project the point (5, 6)^T on the two principal components

Solution

Let
$$\mathbf{X} = \begin{pmatrix} 1 & 3 & 3 & 5 & 5 & 6 & 8 & 9 \\ 2 & 3 & 5 & 4 & 6 & 5 & 7 & 8 \end{pmatrix}$$
; $\boldsymbol{\mu} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$

The sample covariance is

$$\Sigma_{x} = \frac{1}{8}XX^{T} - \mu\mu^{T} = \begin{pmatrix} 6.25 & 4.25 \\ 4.25 & 3.5 \end{pmatrix}$$

The eigenvectors and eigenvalues are the zeros of the characteristic equation:

$$\Sigma_{\mathbf{x}}\mathbf{u} = \lambda\mathbf{u} \Rightarrow |\Sigma_{\mathbf{x}}\mathbf{u} - \lambda\mathbf{I}| = 0 \Rightarrow \begin{vmatrix} 6.25 - \lambda & 4.25 \\ 4.25 & 3.5 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda_1 = 9.34; \ \lambda_2 = 0.41$$

The eigenvectors are the solution of the system:

$$\begin{pmatrix} 6.25 & 4.25 \\ 4.25 & 3.5 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{12} \end{pmatrix} = 9.34 \begin{pmatrix} u_{11} \\ u_{12} \end{pmatrix} \Rightarrow \boldsymbol{u_1} = \begin{pmatrix} u_{11} \\ u_{12} \end{pmatrix} = \begin{pmatrix} 0.81 \\ 0.59 \end{pmatrix} \text{ with } |\boldsymbol{u_1}| = 1 \text{ Same: } \boldsymbol{u_2} = \begin{pmatrix} u_{21} \\ u_{22} \end{pmatrix} = \begin{pmatrix} -0.59 \\ 0.81 \end{pmatrix}$$

Example: What PCA does

Spectral decomposition
$$\Sigma_x = \begin{pmatrix} 6.25 & 4.25 \\ 4.25 & 3.5 \end{pmatrix} = UDU^T = \begin{pmatrix} 0.81 & -0.59 \\ 0.59 & 0.81 \end{pmatrix} \begin{pmatrix} 9.34 & 0 \\ 0 & 0.41 \end{pmatrix} \begin{pmatrix} 0.81 & -0.59 \\ 0.59 & 0.81 \end{pmatrix}^T$$

Projection of $(5,6)^T$ on the first Principal Component:

$$\mathbf{u}_{1}^{\mathsf{T}}\left(\binom{5}{6}-\binom{5}{5}\right)=0.59$$
 And into the second component $\mathbf{u}_{2}^{\mathsf{T}}\left(\binom{5}{6}-\binom{5}{5}\right)=0.81$

The new coordinates of $(5, 6)^T$ in the basis $\langle \mu, \mathbf{u}_1, \mathbf{u}_2 \rangle$ are $(0.59, 0.81)^T$

Example: OPTIDIGITS dataset

- OPTDIGITS data set contains 5620 instances of digitized handwritten digits in range 0–9.
- Each digit is a \mathbb{R}^{64} vector: $8 \times 8 = 64$ pixels, 16 grayscales.

Example: OPTIDIGITS Scree Graph

Example: OPTIDIGITS visualization: Projection on the 2 first eigens (from R⁶⁴ to R²)

Run PCA on 2429 19x19 grayscale images (CBCL database)

- Data compression: We can get good reconstructions with only 3 components.
- Pre-processing: We can apply a standard classifier to latent representation PCA with 3 components obtains 79% accuracy on face/non-face discrimination in test data, vs. 77% for a mixture of Gaussians with 84 components.
- Data visualization: by projecting the data onto the first two principal components.

Learned Basis

• Run PCA on 2429 19x19 grayscale images (CBCL database)

Geometrical interpretation

