MBMT Number Theory Round — Zermelo

May 21, 2022

Full Name		
	Student ID Number	

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of **8** questions. You will have **30** minutes to complete the round. Each question is *not* worth the same number of points. Questions answered correctly by fewer competitors will be weighted more heavily. Please write your answers in a reasonably simplified form.

 1	What is the largest integer less than 100 that is not divisible by 2, 3, or 5?
 2	Find the largest three digit integer which has an odd sum of digits, and an even product of digits.
 3	How many zeros does $5! + 10! + 15! + 20! + 25!$ end in? Recall that $n! = 1 \cdot 2 \cdot \cdots \cdot n$.
4	Suppose a, b , and c are equal to 2, 3 and 4, in some order. What's the last digit of the greatest possible value of a^{b^c} ?
 5	Let S be the set of all even integers greater than or equal to 2022. What's the unique element n of S such that the number of divisors of $512n$ that aren't divisors of 512 is minimized?
6	In a regular 10 by 10 multiplication table, the numbers that would appear are the products ab for every a ranging from 1 to 10 and every b ranging from 1 to 10. A wrong multiplication table is a multiplication table that only keeps the last digit of the product instead of entire product. In a 10 by 10 wrong multiplication table starting from 1, what is the least number of times that any result appears?
 7	Find the number of ordered pairs of positive integers (a,b) such that the least common multiple of a and b is $13^{29} \cdot 29^{13}$.
 8	Two items have prices $a.bc$ and $d.ef$ for digits a, b, c, d, e, f . When the cashier finds their value, he gets the same result regardless if he added them or multiplied them. Find the largest possible value of the digit d .