

Online Planning with Continuous Actions

Christopher Mutschler

Outline

- Motivation: why model-based RL?
- What is a model? What are its inputs? What is a good model?
- How can we use a model?
 - Background Planning
 - Environment data augmentation / simulation
 - Sample efficient policy learning
 - Online Planning
 - Discrete Actions
 - Continuous Actions
 - Auxiliary tasks
- Real-world application

The Objective

Imagine this everyday situation....

$$s_t \leftarrow \min_{\mathbf{a}_1, \dots, \mathbf{a}_T} \log p(\text{killed by Jason } | \mathbf{a}_1, \dots, \mathbf{a}_T)$$

$$\max_{\mathbf{a}_1,\dots,\mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \quad \text{s.t.} \quad s_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \underset{\mathbf{a}_1, \dots, \mathbf{a}_T}{\operatorname{arg}} \underbrace{J(\mathbf{a}_1, \dots, \mathbf{a}_T)}_{\text{don't care what this is}}, \qquad \mathbf{A} = \underset{\mathbf{A}}{\operatorname{arg}} \max_{\mathbf{A}} J(\mathbf{A})$$

- Simplest method:
- 1. pick $A_1, ..., A_N$ from some distribution (e.g., uniform)
- 2. choose \mathbf{A}_i based on $\underset{i}{\arg \max} J(\mathbf{A}_i)$

Online Planning with Continuous Actions

Random shooting:

- 1. Initialize $a_0, ..., a_H$ from guess
- 2. Expansion: execute actions $a_0, ..., a_H$ to get states $s_1, ..., s_H$
- 3. Evaluation: get trajectory reward $J(a) = \sum_{t=0}^{H} r_t$
- 4. Back-propagation: get recursive gradients

Remember:

$$\min_{\mathbf{a}_1,\dots,\mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \quad \text{s.t.} \quad s_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

This is:

$$\min_{\mathbf{a}_1,...,\mathbf{a}_T} r(s_1, a_1) + r(f(s_1, a_1), a_2) + \dots + r(f(f(...) ...), a_t)$$

Random shooting:

- 1. Initialize $a_0, ..., a_H$ from guess
- 2. Expansion: execute actions $a_0, ..., a_H$ to get states $s_1, ..., s_H$
- 3. Evaluation: get trajectory reward $J(a) = \sum_{t=0}^{H} r_t$
- 4. Back-propagation: get recursive gradients

$$\nabla_{\mathbf{a}} J = \sum_{t=0}^{H} \nabla_{\mathbf{a}} r_t$$

reward model derivatives

$$\nabla_{\mathbf{a}} r_t = \nabla_{\mathbf{s}} f_r(s_t, a_t) \nabla_{\mathbf{a}} s_t + \nabla_{\mathbf{a}} f_r(s_t, a_t)$$
$$\nabla_{\mathbf{a}} s_t = \nabla_{\mathbf{a}} f_s(s_{t-1}, a_{t-1}) + \nabla_{\mathbf{s}} f_s(s_{t-1}, a_{t-1}) \nabla_{\mathbf{a}} s_{t-1}$$

transition model derivatives

$$\nabla_{\mathbf{a}} s_{t-1} = \cdots$$

computed recursively

Easily available via auto-diff!

Random shooting:

- 1. Initialize $a_0, ..., a_H$ from guess
- 2. Expansion: execute actions $a_0, ..., a_H$ to get states $s_1, ..., s_H$
- 3. Evaluation: get trajectory reward $J(a) = \sum_{t=0}^{H} r_t$
- 4. Back-propagation: get recursive gradients

$$\nabla_{\mathbf{a}} J = \sum_{t=0}^{H} \nabla_{\mathbf{a}} r_t$$

$$\nabla_{\mathbf{a}} r_t = \nabla_{\mathbf{s}} f_r(s_t, a_t) \nabla_{\mathbf{a}} s_t + \nabla_{\mathbf{a}} f_r(s_t, a_t)$$

$$\nabla_{\mathbf{a}} s_t = \nabla_{\mathbf{a}} f_s(s_{t-1}, a_{t-1}) + \nabla_{\mathbf{s}} f_s(s_{t-1}, a_{t-1}) \nabla_{\mathbf{a}} s_{t-1}$$

$$\nabla_{\mathbf{a}} s_{t-1} = \cdots$$

5. Update actions via gradient ascent and repeat steps 2-5

Shooting methods vs. collocation

Shooting methods only optimize over actions:

$$\min_{\mathbf{a}_1, \dots, \mathbf{a}_T} \underbrace{r(s_1, a_1) + r(f(s_1, a_1), a_2) + \dots + r(f(f(\dots) \dots), a_t)}_{\mathsf{T}}$$

Same issue as exploding/vanishing gradients in RNN training (but cannot change transition function here)

- This leads to high sensitivity → poorly conditioned
 - small changes in early actions lead to large state changes downstream
- Collocation: optimize for states and/or actions directly

$$\min_{\mathbf{a}_1,\dots,\mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \quad \text{s.t.} \quad s_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

$$\min_{\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \quad \text{s.t.} \quad \|s_{t+1} - f(s_t, a_t)\| = 0$$

Shooting methods vs. collocation

Shooting methods only optimize over actions:

$$\min_{\mathbf{a}_1, \dots, \mathbf{a}_T} \underbrace{r(s_1, a_1) + r(f(s_1, a_1), a_2) + \dots + r(f(f(\dots) \dots), a_t)}_{\mathsf{T}}$$

Same issue as exploding/vanishing gradients in RNN training (but cannot change transition function here)

- small changes in early actions lead to large state changes downstream
- Collocation: optimize for states and/or actions directly

Shooting methods vs. collocation Summary:

- Well-conditioned optimization problem
 - Changing s_1a_1 becomes similar to changing s_Ta_T
- Larger, but easier to optimize search space
 - good for contact-rich problems

Posa et al (2014). A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact.

Mordatch et al (2012). Discovery of Complex Behaviors through Contact-Invariant Optimization.

- 1. pick $A_1, ..., A_N$ from some distribution (e.g., uniform) → Simplest method:
 - 2. choose A_i based on $\arg \max_i J(A_i)$
- Was this really a good idea? Can we do better?
- Yes, we can! → Cross Entropy Maximization (CEM) Conceptually:
 - 1.Sample A₁, ..., AN from p(A)
 2.Evaluate J(A₁), ..., J(AN)

 - 3. Pick best ones A_{i_1} , ..., A_{i_M} with M < N
 - 4. Refit p(A) around the best ones

Online Planning with Continuous Actions

Sampling methods → Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Cross-Entropy Method (one iteration)				
$oldsymbol{ heta}_{k=1K} \sim \mathcal{N}(oldsymbol{ heta}, \Sigma)$	sample	(1)		
$J_k = J(\boldsymbol{\theta}_k)$	eval.	(2)		
$oldsymbol{ heta}_{k=1K} \leftarrow \mathtt{sort} \; oldsymbol{ heta}_{k=1K} \; \mathtt{w.r.t} \; J_{k=1K}$	\mathbf{sort}	(3)		
$oldsymbol{ heta}^{new} = \sum_{k=1}^{K_e} rac{1}{K_e} oldsymbol{ heta}_k$	update	(4)		
$\Sigma^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} (\boldsymbol{\theta}_k - \boldsymbol{\theta}) (\boldsymbol{\theta}_k - \boldsymbol{\theta})^\intercal$	update	(5)		

https://sites.google.com/view/mbrl-tutorial

Sampling methods → Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Use Gaussian to sample around current parameter mean

Cross-Entropy Method (one itera	tion)	
$oldsymbol{ heta}_{k=1K} \sim \mathcal{N}(oldsymbol{ heta}, \Sigma) \ J_k = J(oldsymbol{ heta}_k)$	sample eval.	` /
$oldsymbol{ heta}_{k=1K} \leftarrow \mathtt{sort} \; oldsymbol{ heta}_{k=1K} \; \mathtt{w.r.t} \; J_{k=1K}$	\mathbf{sort}	(3)
$oldsymbol{ heta}^{new} = \sum_{k=1}^{K_e} rac{1}{K_e} oldsymbol{ heta}_k$	update	(4)
$\Sigma^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} (\boldsymbol{\theta}_k - \boldsymbol{\theta}) (\boldsymbol{\theta}_k - \boldsymbol{\theta})^{\intercal}$	update	(5)

https://sites.google.com/view/mbrl-tutorial

Sampling methods → Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Evaluate (using the model) the sampled parameters and keep the top K samples

$$Cross-Entropy\ Method\ (one\ iteration)$$

$$\boldsymbol{\theta}_{k=1...K} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \qquad \text{sample} \quad (1)$$

$$J_k = J(\boldsymbol{\theta}_k) \qquad \text{eval.} \quad (2)$$

$$\boldsymbol{\theta}_{k=1...K} \leftarrow \text{sort}\ \boldsymbol{\theta}_{k=1...K}\ \text{w.r.t}\ J_{k=1...K} \qquad \text{sort} \quad (3)$$

$$\boldsymbol{\theta}^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} \boldsymbol{\theta}_k \qquad \qquad \text{update} \quad (4)$$

$$\Sigma^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} (\boldsymbol{\theta}_k - \boldsymbol{\theta}) (\boldsymbol{\theta}_k - \boldsymbol{\theta})^{\mathsf{T}} \qquad \text{update} \quad (5)$$

https://sites.google.com/view/mbrl-tutorial

Sampling methods → Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Re-fit the sampling Gaussian using the top K samples

Cross-Entropy Method (one iteration)			
$oldsymbol{ heta}_{k=1K} \sim \mathcal{N}(oldsymbol{ heta}, \Sigma)$	sample	(1)	
$J_k = J(oldsymbol{ heta}_k)$	eval.	(2)	
$\boldsymbol{\theta}_{k=1K} \leftarrow \mathtt{sort} \; \boldsymbol{\theta}_{k=1K} \; \mathtt{w.r.t} \; J_{k=1K}$	\mathbf{sort}	(3)	
$oldsymbol{ heta}^{new} = \sum_{k=1}^{K_e} rac{1}{K_e} oldsymbol{ heta}_k$	update	(4)	
$\Sigma^{new} = \sum_{k=1}^{K_e} rac{1}{K_e} (oldsymbol{ heta}_k - oldsymbol{ heta}) (oldsymbol{ heta}_k - oldsymbol{ heta})^\intercal$	update	(5)	

https://sites.google.com/view/mbrl-tutorial

Sampling methods → Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

https://www.youtube.com/watch?v=tNAIHEse7Ms

Re-fit the sampling Gaussian using the top K samples

https://sites.google.com/view/mbrl-tutorial

Sampling methods → Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima
- Advantages
 - Super-simple to implement
 - Easy to parallelize
- Limitations
 - Fails for high-dimensional action spaces
 - Gradient-free → increased sample complexity

$$Cross-Entropy \ Method \ (one \ iteration)$$

$$\boldsymbol{\theta}_{k=1...K} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma}) \qquad \text{sample} \ \ (1)$$

$$J_k = J(\boldsymbol{\theta}_k) \qquad \text{eval.} \ \ (2)$$

$$\boldsymbol{\theta}_{k=1...K} \leftarrow \text{sort} \ \boldsymbol{\theta}_{k=1...K} \ \text{w.r.t} \ J_{k=1...K} \qquad \text{sort} \ \ (3)$$

$$\boldsymbol{\theta}^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} \boldsymbol{\theta}_k \qquad \qquad \text{update} \ \ (4)$$

$$\boldsymbol{\Sigma}^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} (\boldsymbol{\theta}_k - \boldsymbol{\theta}) (\boldsymbol{\theta}_k - \boldsymbol{\theta})^{\mathsf{T}} \qquad \text{update} \ \ (5)$$

https://sites.google.com/view/mbrl-tutorial

Linear-Quadratic Regulator (LQR)

Analytical methods → 2nd order optimization and iLQR

- Iterative linearization of the dynamics
- Explores gradient information → fast convergence
- Very complicated method

Approximate transitions with linear functions and rewards with quadratics:

$$\min_{a_0,...,a_H} \sum_{t=0}^{H} r_t, \quad s_{t+1} = f_s(s_t, a_t), \quad r_t = f_r(s_t, a_t)$$
$$f_s(s_t, a_t) \approx As_t + Ba_t, \quad f_r(s_t, a_t) \approx s_t^T Q s_t + a_t^T R a_t$$

Becomes Linear-Quadratic Regulator (LQR) problem and can be solved exactly

Locally approximate the model around current solution, solve LQR problem to update solution, and repeat

Todorov and Li (2005). A generalized iterative LQG method.

5

Outline

- Motivation: why model-based RL?
- What is a model? What are its inputs? What is a good model?
- How can we use a model?
 - Background Planning
 - Environment data augmentation / simulation
 - Sample efficient policy learning
 - Online Planning
 - Discrete Actions
 - Continuous Actions
 - Auxiliary tasks
- Real-world application

Auxiliary tasks

Curiosity-based exploration

- Use forward model prediction error as an intrinsic reward
- Train policy to maximize intrinsic reward
- Encourages the agent to revisit states that are novel or unexpected
- Close to semi-supervised learning ideas
- → See more in Lecture on Exploration Strategies

Jürgen Schmidhuber: Curious model-building control systems. IJCNN.1991. Pathak et al.: Curiosity-driven exploration by self-supervised prediction. ICML. 2017.

References

- https://sites.google.com/view/mbrl-tutorial
- Sergey Levine: CS285 Deep Reinforcement Learning
- Posa et al (2014). A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact.
- Mordatch et al (2012). Discovery of Complex Behaviors through Contact-Invariant Optimization.
- Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Online Planning with Continuous Actions