

Mesh Decimation

Mark Pauly

Oversampled 3D scan data

~80k triangles

Overtessellation: E.g. iso-surface extraction

- Multi-resolution hierarchies for
 - efficient geometry processing
 - level-of-detail (LOD) rendering

Adaptation to hardware capabilities

283

Size-Quality Tradeoff

Mark Pauly - ETH Zurich

Outline

- Applications
- Problem Statement
- Mesh Decimation Methods
 - Vertex Clustering
 - Iterative Decimation
 - Extensions
 - Remeshing
 - Variational Shape Approximation

Problem Statement

- Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal

Problem Statement

- Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal

hard!

→ look for sub-optimal solution

Problem Statement

- Given: $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal
- Respect additional fairness criteria
 - normal deviation, triangle shape, scalar attributes, etc.

Outline

- Applications
- Problem Statement
- Mesh Decimation Methods
 - Vertex Clustering
 - Iterative Decimation
 - Extensions

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Uniform 3D grid
 - Map vertices to cluster cells
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
 - Hierarchical approach
 - Top-down or bottom-up
- Computing a representative
- Mesh generation
- Topology changes

- Cluster Generation
- Computing a representative
 - Average/median vertex position
 - Error quadrics
- Mesh generation
- Topology changes

Computing a Representative

Average vertex position → Low-pass filter

Computing a Representative

Median vertex position → Sub-sampling

Computing a Representative

Error quadrics

Error Quadrics

Squared distance to plane

$$p = (x, y, z, 1)^T, q = (a, b, c, d)^T$$

$$dist(q, p)^2 = (q^T p)^2 = p^T (qq^T)p =: p^T Q_q p$$

$$Q_q = egin{bmatrix} a^2 & ab & ac & ad \ ab & b^2 & bc & bd \ ac & bc & b^2 & cd \ ad & bd & cd & d^2 \ \end{bmatrix}$$

Error Quadrics

Sum distances to vertex' planes

$$\sum_{i} dist(q_i, p)^2 = \sum_{i} p^T Q_{q_i} p = p^T \left(\sum_{i} Q_{q_i}\right) p =: p^T Q_p p$$

Point that minimizes the error

$$\begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} p^* = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Comparison

- Cluster Generation
- Computing a representative
- Mesh generation
 - Clusters $p \Leftrightarrow \{p_0,...,p_n\}, q \Leftrightarrow \{q_0,...,q_m\}$
 - Connect (p,q) if there was an edge (p_i,q_i)
- Topology changes

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes
 - If different sheets pass through one cell
 - Not manifold

Outline

- Applications
- Problem Statement
- Mesh Decimation Methods
 - Vertex Clustering
 - Iterative Decimation
 - Extensions

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

General Setup

```
Repeat:
   pick mesh region
   apply decimation operator
Until no further reduction possible
```

Greedy Optimization

```
For each region evaluate quality after decimation enque (quality, region)
```

Repeat:

```
pick best mesh region
apply decimation operator
update queue
Until no further reduction possible
```

Global Error Control

```
For each region
 evaluate quality after decimation
 enqeue (quality, region)
Repeat:
 pick best mesh region
 if error < €
    apply decimation operator
    update queue
Until no further reduction possible
```

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Decimation Operators

- What is a "region" ?
- What are the DOF for re-triangulation?
- Classification
 - Topology-changing vs. topology-preserving
 - Subsampling vs. filtering
 - Inverse operation → progressive meshes

Select a vertex to be eliminated

Select all triangles sharing this vertex

Remove the selected triangles, creating the hole

Fill the hole with triangles

Decimation Operators

- Remove vertex
- Re-triangulate hole
 - Combinatorial DOFs
 - Sub-sampling

Decimation Operators

- Merge two adjacent triangles
- Define new vertex position
 - Continuous DOF
 - Filtering

Decimation Operators

- Collapse edge into one end point
 - Special vertex removal
 - Special edge collapse
- No DOFs
 - One operator per half-edge
 - Sub-sampling!

Priority Queue Updating

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Local Error Metrics

- Local distance to mesh [Schroeder et al. 92]
 - Compute average plane
 - No comparison to original geometry

- Simplification envelopes [Cohen et al. 96]
 - Compute (non-intersecting) offset surfaces
 - Simplification guarantees to stay within bounds

- (Two-sided) Hausdorff distance: Maximum distance between two shapes
 - In general $d(A,B) \neq d(B,A)$
 - Computationally involved

- Scan data: One-sided Hausdorff distance sufficient
 - From original vertices to current surface

- Error quadrics [Garland, Heckbert 97]
 - Squared distance to planes at vertex
 - No bound on true error

Complexity

- N = number of vertices
- Priority queue for half-edges
 - 6 N * log (6 N)
- Error control
 - Local O(1) \Rightarrow global O(N)
 - Local O(N) ⇒ global $O(N^2)$

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

- Rate quality of decimation operation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

$$\frac{r_1}{e_1} < \frac{r_2}{e_2}$$

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

- Rate quality after decimation
 - Approximation error
 - Triangle shape
 - Dihedral angles
 - Valence balance
 - Color differences

Rate quality after decimation

- Approximation error
- Triangle shape
- Dihedral angles
- Valance balance
- Color differences

Incremental Decimation

- General Setup
- Decimation operators
- Error metrics
- Fairness criteria
- Topology changes

Topology Changes?

- Merge vertices across non-edges
 - Changes mesh topology
 - Need spatial neighborhood information
 - Generates non-manifold meshes

Topology Changes?

- Merge vertices across non-edges
 - Changes mesh topology
 - Need spatial neighborhood information
 - Generates non-manifold meshes

Comparison

- Vertex clustering
 - fast, but difficult to control simplified mesh
 - topology changes, non-manifold meshes
 - global error bound, but often not close to optimum
- Iterative decimation with quadric error metrics
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality

Outline

- Applications
- Problem Statement
- Mesh Decimation Methods
 - Vertex Clustering
 - Iterative Decimation
 - Extensions

Out-of-core Decimation

- Handle very large data sets that do not fit into main memory
- Key: Avoid random access to mesh data structure during simplification
- Examples
 - Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002
 - Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003

- 1. Phase: Out-of-core clustering
 - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid
- 2. Phase: In-core iterative simplification
 - compute fundamental quadrics
 - iteratively contract edge of smallest cost

- 1. Phase: Out-of-core clustering
 - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid
- 2. Phase: In-core iterative simplification
 - compute fundamental quadrics
 - use accumulated quadrics from clustering phase
 - iteratively contract edge of smallest cost
 - → achieves a coupling between the two phases

Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002

Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002

Mark Pauly - ETH Zurich

Out-of-core Decimation

- Streaming approach based on edge collapse operations using QEM
- Pre-sorted input stream allows fixed-sized active working set independent of input and output model complexity

Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003

Mark Pauly - ETH Zurich

Out-of-core Decimation

- Randomized multiple choice optimization avoids global heap data structure
- Special treatment for boundaries required

Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003

Mark Pauly - ETH Zurich