Графовые нейросети и их применение

Верещагина Алсу Рашитовна

Сферы:

- Classic ML
- NLP
- GraphNetworks
- TimeSeries
- Uplift modeling

- DS Sber (Ех Газпромнефть)
- Ex преподаватель СПбПУ курса "Classic ML"
- ITMO AI Talent Hub
- Победитель и призер 8 хакатонов

Контакты:

ΤΓ: @AlsuKrmkv

ТГ: Чат группы

Организационные моменты

	Лекция	Практика	
Введение в графы и графовые данные	+	+ HW1	
Основы графовых нейросетей	+	+	
Ключевые архитектуры GNN	+	+ HW2	
Динамические графовые нейросети	+	+	
Гетерогенные графы	+	+	
Graph Transformers	+	+	
Self-supervised Learning	+	+	
Применение GNN в индустрии	+	финальный проект	

Организационные моменты

Зачетные единицы

- 1) НМ1 (3 недели)
- 2) НМ2 (3 недели)
- 3) Хакатон (3 недели)
- 4) Экзамен

Система оценивания:

Минимальные требования: 1 домашка + экзамен

«4» - сдать две домашки + повысить оценку можно на экзамене

«9» - сдать две домашки + 1 место в рейтинге с учетом хакатона

Модуль 1 Введение в графы и графовые данные

Источник: Яндекс карты

Источник: Яндекс карты

Источник: Яндекс карты

Ссылка на оригинальную статью про использование GNN - https://arxiv.org/pdf/1707.01926

Молекулярный граф

Alibaba GraphRec, TikTok Graph4Rec

Ссылка на статью PinSage - https://arxiv.org/abs/1806.01973

Узлы (вершины) — ? Ребра (связи) — ?

Узлы (вершины) — объекты, которые мы изучаем Ребра (связи) — ?

Узлы (вершины) — объекты, которые мы изучаем Ребра (связи) — отношения между объектами

Узлы (вершины) — объекты, которые мы изучаем Ребра (связи) — отношения между объектами

G = (V, E), где

G- структура, которая состоит их двух множеств

V — множество вершин

E — множество ребер

|V| — количестов вершин

Виды графов. Гомогенные графы

Виды графов по типу направления

Направленный

Ненаправленный

Виды графов по весам

Взвешенный

Невзвешенный

Виды графов. Гетерогенные графы

G = (V, E, R, T), где

G — структура, которая состоит их двух множеств

V — множество вершин и их признаков

E — множество ребер и их признаков

T — можество типов вершин

Е – можество типов ребер

Виды разделения графов

Категория	Виды графов		
По направлению	Ориентированные, Неориентированные, Смешанные		
По весам	Взвешенные, Невзвешенные		
По структуре	Деревья, DAG, Циклические, Планарные, Разреженные, Плотные		
По типам узлов/рёбер	Гомогенные, Гетерогенные, Бипартийные, K-partite		
По времени	Статические, Динамические, Потоковые, Эволюционирующие		
По кратности	Простые, Мультиграфы, Псевдографы		
По связности	Связные, Несвязные, k-связные		
По размеру	Малые, Средние, Крупные		
	Социальные, Биологические, Пространственные, Графы знаний,		
По природе данных	Рекомендательные		

Задачи машинного обучения на графах

Матрица смежности

$$A \,=\, egin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Матрица $A \in \mathbb{R}^{|V| imes |V|}$, где:

$$A_{ij} = egin{cases} 1, & ext{если есть ребро } (i,j) \ 0, & ext{иначе}. \end{cases}$$

Для **взвешенных графов** в ячейках хранятся веса рёбер w_{ij} .

Список смежности (adjacency list)

- a: соседи $\{b, c, d\}$
- b: соседи $-\{a,c,d\}$
- c: соседи $\{a, b, d\}$
- d: соседи $-\{a,b,c,e,f\}$
- ullet e: соседи $-\left\{d,f,g,h
 ight\}$
- f: соседи $-\left\{d,e,g,h
 ight\}$
- g: соседи $-\left\{e,f,h\right\}$
- h: соседи $-\left\{e,f,g\right\}$

Для каждой вершины храним список всех её соседей.

$$Adj[v] = [u_1, u_2, \ldots, u_k]$$

Просто список всех рёбер.

Список рёбер (edge list)

$$E = \left[(u_1, v_1), (u_2, v_2), ..., (u_m, v_m)
ight]$$

Для каждой вершины храним множество соседей в виде dict

Словарь смежности (Adjacency Dictionary)

```
graph = {
    'a': {'b', 'c', 'd'},
    'b': {'a', 'c'},
    'c': {'a', 'b', 'd'},
    'd': {'a', 'c', 'e', 'f'},
    'e': {'d', 'f', 'g', 'h'},
    'f': {'d', 'e', 'g'},
    'g': {'e', 'f', 'h'},
    'h': {'e', 'g'}
}
```


Разреженное хранение: CSR (Compressed Sparse Row)

```
Храним только ненулевые элементы матрицы смежности.
```

Для CSR нужно три массива:

- indices список всех соседей подряд
- indptr где начинаются соседи каждой вершины
- data необязательно (веса)

```
a \rightarrow [b, c, d]
b \rightarrow [a, c]
c \rightarrow [a, b, d]
d \rightarrow [a, c, e, f]
                         indices = [b, c, d, a, c, a, b, d, a, c, e, f, d, f, g, h, d, e, g, e, f, h, e, g]
e \rightarrow [d, f, g, h]
                         indptr = [0, 3, 5, 8, 12, 16, 19, 22, 24]
f \rightarrow [d, e, g]
                          indptr[i] = индекс начала соседей i-й вершины
g \rightarrow [e, f, h]
h \rightarrow [e, g]
```


COOrdinate Format (COO)

COO (Coordinate) формат — это способ хранить **только ненулевые элементы** матрицы смежности A.

Каждое ненулевое значение (т.е. ребро) представляется тройкой:

 (i,j,A_{ij})

```
row = [a, a, a, b, c, d, d, e, e, e, f, g]

col = [b, c, d, c, d, e, f, f, g, h, g, h]

data = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

Метод представления	Память	Проверка ребра	Обход всех рёбер
Матрица смежности (Adjacency Matrix)	$O(n^2)$	0(1)	$O(n^2)$
Список смежности (Adjacency List)	O(n + m)	O(k)	O(n + m)
Список рёбер (Edge List)	0(m)	O(m)	O(m)
Словарь смежности (Adjacency Dict)	O(m)	0(1)	O(n + m)
CSR (Compressed Sparse Row)	O(n + m)	O(k)	O(n + m)
COO (Coordinate Format)	0(m)	0(m)	O(m)

n — количество вершин (узлов) в графе m — количество рёбер (связей) в графе k — степень вершины (dev(V))

Степень вершины

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин

Степень вершины – количество прилежащих ребер

$$deg(v) = |\{u \in V : (v,u) \in E\}|$$

$$dev(a) = 3$$

$$dev(b) = 2$$

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин

Плотность графа

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин

|E| — количество ребер

Плотность графа — плотностью называется отношение фактического числа рёбер в графе к максимально возможному числу рёбер при данном числе вершин

Для неориентированного графа:

$$D=\frac{2m}{n(n-1)}$$

Для ориентированного:

$$D=\frac{m}{n(n-1)}$$

Мера центральности

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин (n)

|E| — количество ребер (m)

Мера центральности - Degree Centrality (Центральность по степени)

Количество соседей вершины.

$$C_D(v) = deg(v)$$

В нормализованной форме:

$$C_D(v) = rac{deg(v)}{n-1}$$

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин (n)

|E| — количество ребер (m)

Мера центральности - Closeness Centrality

Показывает, насколько узел **близко к остальным узлам графа** в смысле расстояния (кратчайших путей).

$$C_C(v) = rac{1}{\sum_{u
eq v} d(v,u)}$$

где d(v,u) — длина кратчайшего пути между v и u.

Иногда нормализуют:

$$C_C(v) = rac{n-1}{\sum_{u
eq v} d(v,u)}$$

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин (n)

|E| — количество ребер (m)

Мера центральности - Betweenness Centrality

Показывает, **насколько часто вершина лежит на кратчайших путях между другими парами**.

$$C_B(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$

где

- σ_{st} количество кратчайших путей между s и t,
- $\sigma_{st}(v)$ из них проходят через v.

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин (n)

|E| — количество ребер (m)

Мера центральности - Eigenvector Centrality

"Узел важен, если он связан с другими важными узлами."

Формально — компонент собственного вектора матрицы смежности:

$$Ax = \lambda x$$

где

A — матрица смежности,

 x_i — центральность узла і,

 λ — собственное значение.

$$C_E(v_i) = rac{1}{\lambda} \sum_j A_{ij} C_E(v_j)$$

Мера центральности - PageRank

PageRank — это мера влияния или авторитетности узла в ориентированном графе.

Она показывает, насколько "важен" узел, исходя из того, сколько и какие другие важные узлы на него ссылаются.

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин (n)

G = (V, E), где

V — множество вершин

E — множество ребер

|V| — количестов вершин (n)

|E| — количество ребер (m)

Мера центральности - PageRank

Для графа с n узлами:

$$PR(v_i) = lpha \sum_{v_j \in N_{in}(v_i)} rac{PR(v_j)}{deg_{out}(v_j)} + (1-lpha)rac{1}{n}$$

где:

- $PR(v_i)$ рейтинг вершины i,
- $N_{in}(v_i)$ множество вершин, у которых есть ссылка на v_i ,
- $deg_{out}(v_j)$ число исходящих ссылок у узла v_j ,
- $lpha \in (0,1)$ коэффициент затухания (обычно 0.85),
- $\frac{1-\alpha}{n}$ вероятность "прыжка" к случайной вершине.

Example (3): Physics Simulation Ссылки и источники

- 1. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting https://arxiv.org/pdf/1707.01926
- 2. Highly accurate protein structure prediction with AlphaFold https://www.nature.com/articles/s41586-021-03819-2
- 3. Graph Convolutional Neural Networks for Web-Scale Recommender Systems https://arxiv.org/abs/1806.01973
- 4. DeepMind & Google's ML-Based GraphCast Outperforms the World's Best Medium-Range Weather Forecasting System https://www.science.org/stoken/author-tokens/ST-1550/full
- 5. Learning to Simulate Complex Physics with Graph Networks https://arxiv.org/pdf/2002.09405
- 6. Page Rank http://ilpubs.stanford.edu:8090/422/?utm_campaign=Technical%20SEO%20Weekly&utm_medium=ema_