Equivalence Class Testing

Mohammad Mousavi

Eindhoven University of Technology, The Netherlands

Software Testing, 2008

Weak Normal E

Strong Normal E

Robustness

Combined with WC

Combined with WCT

Functional Testing (recap)

- functional testing: program is an input from a certain domain to a certain range
- impossible to check all input/output combinations: need to choose some

Boundary Value Testing (recap)

- boundary value testing: choose extreme values.
- variants:
 - worst-case
 - robust
 - robust worst-case
- other (non-standard) variants:
 - special value
 - random

Boundary Value Testing: Pros and Cons (recap)

- + straightforward test-case generation
 - no sense of covering the input domain
 - awkward for logical vars.
 - only independent input domains
 - not using white-box information

Boundary Value Testing: Pros and Cons (recap)

- + straightforward test-case generation
 - no sense of covering the input domain *
 - awkward for logical vars. *
 - only independent input domains *
 - not using white-box information
- *: Today's order of business.

Outline

Reca

Weak Normal EC

Strong Normal EC

Robustness

Combined with WC

Weak Normal EC: Idea

- Define equivalence classes on the domain (range) of input (output) for each variable: (independent input)
- cover equivalence classes for the domain of each variable: single fault assumption
- how many test-cases are needed?
- also called: (equivalence, category) partition method

Little Puzzle

What is the minimal number of tokens that are needed to be put in an $m \times n$ grid such that each row and column contains at leats one token?

Little Puzzle

Recap

What is the minimal number of tokens that are needed to be put in an $m \times n$ grid such that each row and column contains at leats one token?

max(m,n):

Put token number i at (max(i, m), max(i, n)).

Weak Normal EC: Idea

- Define equivalence classes on the domain (range) of input (output) for each variable: (independent input)
- cover equivalence classes for the domain of each variable: single fault assumption
- ► how many test-cases are needed? $\max_{x} |S_{x}|$.

Mortgage Example (recap)

Recap

```
Spec. Write a program that takes three inputs: gender (boolean), age([18-55]), salary ([0-10000]) and output the total mortgage for one person
```

Mortgage = salary * factor, where factor is given by the following table.

Category	Male	Female
Young	(18-35 years) 75	(18-30 years) 70
Middle	(36-45 years) 55	(31-40 years) 50
Old	(46-55 years) 30	(41-50 years) 35

Weak Normal EC Testing

Category	Male	Female
Young	(18-35 years) 75	(18-30 years) 70
Middle	(36-45 years) 55	(31-40 years) 50
Old	(46-55 years) 30	(41-50 years) 35

- ▶ age: difficult!
- ► salary: [0-10000]
- male: as strange as boundary value!

Weak Normal EC Testing

Category	Male	Female
Young	(18-35 years) 75	(18-30 years) 70
Middle	(36-45 years) 55	(31-40 years) 50
Old	(46-55 years) 30	(41-50 years) 35

- ▶ age: difficult! [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]
- ► salary: [0-10000]
- ▶ male: as strange as boundary value! true, false

Weak Normal EC Testing

Recap

if (male) then return

```
((18 \leq \mathit{age} < 35)?(75 * \mathit{salary}) : (31 \leq \mathit{age} < 40)?(55 * \mathit{salary}) : (30 * \mathit{salary}))
```

else return $((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))$

		, ,	, , ,	_ 0 ' / ' //	
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	20	1000	75*1000	75*1000	Р
female	32	1000	50*1000	50*1000	Р
male	38	1000	55*1000	50*1000	Р
female	42	1000	35*1000	35*1000	Р
male	48	1000	30*1000	30*1000	Р
female	52	1000	35*5000	too late!	F

Outline

Strong Normal EC

- cover the all combinations of equivalence classes for the domain of all variables: multiple fault assumption
- ▶ number of test-cases? $\prod_{x} |S_{x}|$


```
        Category
        Male
        Female

        Young
        (18-35 years) 75
        (18-30 years) 70

        Middle
        (36-45 years) 55
        (31-40 years) 50

        Old
        (46-55 years) 30
        (41-50 years) 35
```

- ▶ age: [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]
- ► salary: [0-10000]
- male: true, false

Recap

if (male) then return

```
((18 \leq \textit{age} < 35)?(75 * \textit{salary}) : (31 \leq \textit{age} < 40)?(55 * \textit{salary}) : (30 * \textit{salary}))
```

else return $((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))$

	- ((-	,	(_ '0' ' ') ('' ' ')	(
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	20	1000	75*1000	70*1000	F
female	32	1000	50*1000	50*1000	Р
female	38	1000	50*1000	50*1000	Р
female	42	1000	35*1000	35*1000	Р
female	48	1000	35*1000	35*1000	Р
female	52	1000	35*5000	too late!	F

Recap

if (male) then return

```
((18 \leq \mathit{age} < 35)?(75 * \mathit{salary}) : (31 \leq \mathit{age} < 40)?(55 * \mathit{salary}) : (30 * \mathit{salary}))
```

else return $((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))$

	((8- \)	()).(8- ().())	. ()))
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	20	1000	75*1000	75*1000	Р
male	32	1000	50*1000	75*1000	F
male	38	1000	55*1000	50*1000	Р
male	42	1000	30*1000	55*1000	F
male	48	1000	30*1000	30*1000	Р
male	52	1000	30*1000	30*1000	Р

Outline

Reca

Weak Normal E

Strong Normal E

Robustness

Combined with WC

Weak Robust EC

- includes weak normal; adds out of range test-cases for each variable
- ► number of test-cases? $(\max_x | S_x |) + 2 * n$

Weak Robust EC Testing

Recap

if (male) then return

```
((18 \le age < 35)?(75 * salary) : (31 \le age < 40)?(55 * salary) : (30 * salary))

else return ((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))
```

	((8- \/-	(-8- () ())	()))
Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	1000	30*1000	too young!	F
female	56	1000	35*1000	too late	F
male	36	-1	55*-1	0	F
female	36	10001	50*10001	50*10000	F

Strong Robust EC

- Same as strong normal but also checks for all out of range combinations
- ▶ number of test-cases? $\prod_{x} (|S_x| + 2)$

Strong Robust EC

Recap

if (male) then return

```
((18 \le age < 35)?(75 * salary) : (31 \le age < 40)?(55 * salary) : (30 * salary))

else return ((18 \le age < 30)?(75 * salary) : (31 \le age < 40)?(50 * salary) : (35 * salary))
```

Mostly similar faults to Weak Robust EC:

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	1000	30*1000	too young!	F
female	56	1000	35*1000	too late	F
female	17	1000	35*1000	too young!	F
male	56	1000	30*1000	too late	F
male	36	-1	55*-1	0	F
female	36	10001	50*10001	50*10000	F

A Brief Comparison

 $A \rightarrow B$: Test-cases of A (faults detected by A) is a subset of those of B.

Mortgage Case: #Test-Cases

Mortgage Case: Detected Fault

Mortgage Case: #Test-Cases/Fault

Outline

Reca

Weak Normal EC

Strong Normal EC

Robustness

Combined with WCT

Idea

- ► Functional techniques need to be combined...
- Example: Robust WCT + Robust BV

Strong Robust EC + Robust BV

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	-1	30*-1	too young!	F 1
male	17	1000	30*1000	too young!	F 1
male	17	10001	30*10001	too young!	F 1
male	56'	-1	30*-1	too late	F 2
male	56	1000	30*1000	too late	F 2
male	56	10001	30*10001	too late	F 2
female	17	-1	30*-1	too young!	F 3
female	17	1000	30*1000	too young!	F 3
female	17	10001	30*10001	too young!	F 3
female	56	-1	30*-1	too late	F 4
female	56	1000	30*1000	too late	F 4
female	56	10001	30*10001	too late	F 4

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	18	1000	75*1000	70*1000	F 5
female	19	1000	75*1000	70*1000	F 5
female	20	1000	75*1000	70*1000	F 5
female	29	1000	75*1000	70*1000	F 5
female	30	1000	35*1000	70*1000	F 6
female	31	1000	50*1000	50*1000	Р
female	32	1000	50*1000	50*1000	Р
female	34	1000	50*1000	50*1000	Р
female	35	1000	50*1000	50*1000	Р
female	36	1000	50*1000	50*1000	Р
female	38	1000	50*1000	50*1000	Р
female	39	1000	50*1000	50*1000	Р
female	40	1000	35*1000	50*1000	F 7

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	41	1000	35*1000	35*1000	Р
female	42	1000	35*1000	35*1000	Р
female	44	1000	35*1000	35*1000	Р
female	45	1000	35*1000	35*1000	Р
female	46	1000	35*1000	35*1000	Р
female	49	1000	35*1000	35*1000	Р
female	50	1000	35*1000	35*1000	Р
female	51	1000	35*1000	too late!	F 7
female	52	1000	35*1000	too late!	F 7
female	53	1000	35*1000	too late!	F 7
female	54	1000	35*1000	too late!	F 7
female	55	1000	35*1000	too late!	F 7

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	18	1000	75*1000	75*1000	Р
male	19	1000	75*1000	75*1000	Р
male	20	1000	75*1000	75*1000	Р
male	29	1000	75*1000	75*1000	Р
male	30	1000	75*1000	75*1000	Р
male	31	1000	55*1000	75*1000	F 8
male	32	1000	55*1000	75*1000	F 8
male	34	1000	55*1000	75*1000	F 8
male	35	1000	55*1000	75*1000	F 9
male	36	1000	55*1000	55*1000	Р
male	38	1000	55*1000	55*1000	Р
male	39	1000	55*1000	55*1000	Р
male	40	1000	55*1000	20*1000	F 10

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	41	1000	30*1000	30*1000	Р
male	42	1000	30*1000	30*1000	Р
male	44	1000	30*1000	30*1000	Р
male	45	1000	30*1000	30*1000	Р
male	46	1000	30*1000	30*1000	Р
male	49	1000	30*1000	30*1000	Р
male	50	1000	30*1000	30*1000	Р
male	51	1000	30*1000	30*1000	Р
male	52	1000	30*1000	30*1000	Р
male	53	1000	30*1000	30*1000	Р
male	54	1000	30*1000	30*1000	Р
male	55	1000	30*1000	30*1000	Р

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	17	-1	35*-1	0	F 11
female	18	-1	75*-1	0	F 11

.

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
female	17	10001	35*10001	too young!	F 11
female	18	10001	75*10001	75*10000	F 12

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	-1	30*-1	0	F 12
male	18	-1	70*-1	0	F 12

Gender	Age	Salary	Output	Correct Out.	Pass/Fail
male	17	10001	30*10001	too young!	F 12
male	18	10001	70*10001	75*10000	F 12

Problems

Recap

► Example: Strong EC + Robust BV number of test-cases: $\sim \prod_{x} 4(|S_x|+1)$, whopping!

Problems

- >100 test-cases for the mortgage example
- ► too many for any real-life program e.g., 5 vars., each 5 partitions:
 - \sim 8 million test-cases
 - 1 sec. for each test-case:
 - 3 months testing!

Problems

- ▶ Problems:
 - No constraints on the equivalence classes
 - 2. Dependencies among different variables not taken into account
 - No choice among relevant classes (e.g., apply worst-case testing on some and boundary values on others)
- ➤ Solutions: Attend the coming lecture!

