Matricula:	Nome: Vinicius Wolosky Muchulski
22201827	

Observações: o relatório deve ser preenchido seguindo o modelo das tabelas PROVA 2

Questão 1 (4 pontos):

Dado um sistema de equações:

$${18x_1 - 2x_2 + 4x_3 = 73x_1 + 16x_2 - 1x_3 = 46x_1 - 5x_2 + 15x_3 = 10}$$

a) Resolver o sistema usando método de Gauss-Jacobi com 4 decimais e o erro < 0,001 Atribuição inicial

X ₁	X ₂	X ₃
0	0	0

Método Gauss- Jacobi

N	X ₁	\mathbf{X}_2	X_3	error x ₁	error x ₂	error x ₃
0	0	0	0			
1	0,3889	0,25	0,6666666667	0,3889	0,25	0,6666666667
2	0,2685	0,2188	0,5944	0,1204	0,0313	0,0722
3	0,2811	0,2368	0,6322	0,0126	0,0181	0,0377
4	0,2747	0,2368	0,6332	0,0064	0,0000	0,0010
5	0,2745	0,2381	0,6357	0,0002	0,0013	0,0026
6	0,2741	0,2383	0,6362	0,0004	0,0002	0,0005

b) Resolver o sistema usando método de Gauss-Seidel com 4 decimais e o erro < 0,001 Atribuição inicial

X ₁	X ₂	X ₃
0	0	0

Método Gauss-Seidel

N	X ₁	X ₂	X ₃	error x ₁	error x ₂	error x ₃
0	0	0	0			
1	0,3889	0,1771	0,5701	0,3889	0,1771	0,5701
2	0,2819	0,2328	0,6315	0,1070	0,0557	0,0614
3	0,2744	0,2380	0,6362	0,0075	0,0052	0,0047
4	0,2739	0,2384	0,6366	0,0005	0,0004	0,0003

c) Fazer uma analise comparativa dos resultados obtidos no item a com obtidos no item b

Vetor B	Método Gauss-Jacobi Vetor X	Método Gauss-Seidel Vetor X
7	0,2745	0,2739
4	0,2381	0,2384
10	0,6357	0,6366

Conclusões:

Em apenas quatro iterações o Gauss-Seidel já atinge o critério de erro (< 0,001), enquanto o Gauss-Jacobi precisa de seis. por reutilizar imediatamente cada componente recém-calculado, o Seidel converge mais rápido.

Questão 2 (3 pontos):

Ajustar os pontos da tabela abaixo à equação $\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$ utilizando o Método dos Quadrados Mínimos e fazendo ajuste polinomial dos dados da tabela a seguir:

i	1.	2.	3.	4.	5.	6.
X _i	2,18	3,39	4,01	5,15	6,12	7,31
f(x _i)	3,22	12,39	25,21	42,2	63,16	88,65

- a) Calcular a soma dos quadrados dos resíduos
- **b)** Calcular valor da função φ no ponto x = 4,2
- c) Calcular o erro absoluto entre $\varphi(x)$ e f(x) no ponto x = 5,15

Os resultados devem ser apresentadas nas tabelas de acordo com o modelo a seguir com **4** casas decimais.

	Υ		
6,00	28,16	149,74	234,83
28,16	149,74	870,23	1402,01
149,74	870,23	5374,92	8785,05
φ (x) =	-9,63 + 1,96 *x + 1,58 * x^2		
φ (4,2) =	26,58		

Erro absoluto para x	0,317
= 5,15	

Função φ e resíduos

			ição 🗘 e resid			
i	1	2	3	4	5	6
φ(x _i)	2,186	15,243	23,731	42,517	61,745	89,408
r ² (x _i)	1,034	-2,853	1,479	-0,317	1,415	-0,758
Soma dos quadrados dos resíduos	14,071					

Questão 3 (3 pontos): Calcular a integral com uma aproximação de 3 casas decimais

$$\int_{2}^{4,8} 30x^2 - 12x + 8dx$$

- a) usando a regra dos retângulos com n = 14
- b) usando a regra de Simpson com n = 14
- c) fazer analise comparativa dos resultados e conclusoões sobre a precisão

Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir, adequando a quantidade de linhas conforme a necessidade para mostrar todas que foram utilizadas para chegar no resultado.

Regra dos retângulos

i	X _i	f(x _i)	C i	c _i * f(x _i)
1	2	104,000	0	
2	2,2	126,800	115,4000	
3	2,4	152,000	139,4000	
4	2,6	179,600	165,8000	
5	2,8	209,600	194,6000	
6	3	242,000	225,8000	
7	3,2	276,800	259,4000	
8	3,4	314,000	295,4000	
9	3,6	353,600	333,8000	
10	3,8	395,600	374,6000	
11	4	440,000	417,8000	
12	4,2	486,800	463,4000	
13	4,4	536,000	511,4000	
14	4,6	587,600	561,8000	
15	4,8	641,600	614,6000	

Soma = 4673,200	
R(h ₁₄)= 934,6400	

Regra de Simpson

i	\mathbf{X}_{i}	f(x _i)	C i	c _i * f(x _i)
1	2	104,000	1	104,000
2	2,2	126,800	4	507,200
3	2,4	152,000	2	304,000
4	2,6	179,600	4	718,400
5	2,8	209,600	2	419,200
6	3	242,000	4	968,000
7	3,2	276,800	2	553,600
8	3,4	314,000	4	1256,000
9	3,6	353,600	2	707,200
10	3,8	395,600	4	1582,400
11	4	440,000	2	880,000
12	4,2	486,800	4	1947,200
13	4,4	536,000	2	1072,000
14	4,6	587,600	4	2350,400
15	4,8	641,600	1	641,600

Soma = 14011,200	
R(h ₁₄)= 934,0800	

Conclusões:

A análise mostra que a Regra de Simpson oferece uma precisão muito superior em relação à Regra dos Retângulos para integrais de funções polinomiais, atingindo resultados praticamente exatos mesmo com poucos subintervalos