Wersja:

 \mathbf{A}

Imię i nazwisko:

Logika dla informatyków

Egzamin końcowy (część licencjacka) 1 lutego 2006

Za każde z poniższych zadań można otrzymać od -2 do 2 punktów. Za brak rozwiązania otrzymuje się 0 punktów, punkty ujemne otrzymuje się tylko za rozwiązania kompromitująco fałszywe. Aby zdać tę część egzaminu (być dopuszczonym do części zasadniczej) trzeba uzyskać co najmniej 10 punktów. Egzamin trwa 60 minut.

Zadanie 1. Podaj formułę równoważną formule $p \Leftrightarrow \neg q$ i mającą:

(a) koniunkcyjną postać normalną	
(b) dysjunkcyjną postać normalną	

Zadanie 2. Niech φ i ψ oznaczają formuły rachunku kwantyfikatorów, być może zawierające wolne wystąpienia zmiennej x. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej formuł, które dla dowolnych formuł φ i ψ są prawami rachunku kwantyfikatorów. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(a)
$$(\exists x\varphi) \Rightarrow \Big((\exists x(\varphi \Rightarrow \psi)) \Rightarrow (\exists x\psi)\Big)$$

(b) $(\forall x\varphi) \Rightarrow \Big((\exists x\psi) \Rightarrow (\exists x(\varphi \Rightarrow \psi))\Big)$

Zadanie 3. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej równości, które zachodzą dla dowolnych zbiorów A, B i C. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(a)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

(b) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$

Zadanie 4. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej równości, które zachodzą dla dowolnych indeksowanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$. W pozostałe prostokąty wpisz odpowiednie kontrprzykłady.

(b)
$$\bigcup_{t \in T} (A_t \setminus B_t) = \bigcup_{t \in T} A_t \setminus \bigcap_{t \in T} B_t$$

Zadanie 5.

1. Rozważmy funkcje

 $f: (A \times B)^C \to A^{B \times C},$

 $g: C \to A \times B$,

 $h: B \times C \to A$

oraz elementy $a \in A, b \in B$ i $c \in C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne.

- (a) (f(h))(c)
- (b) (f(g))(b,c)
- (c) f(h(b, c), b)
- (d) h(f(c),b)

2. W poniższy prostokąt wpisz definicję jakiejkolwiek funkcji $f: \mathbb{R}^{\mathbb{N}} \times \mathbb{Z}^{\mathbb{N}} \to (\mathbb{R} \times \mathbb{Z})^{\mathbb{N}}$.

Zadanie 6. Wpisz słowo "TAK" w te spośród kratek poniższej tabelki, które odpowiadają parom zbiorów równolicznych.

	\mathbb{Z}	$\mathcal{P}(\mathbb{Q})$	$\mathbb{R}^{\mathbb{N}}$	$\mathbb{N}^{\mathbb{R}}$	$\mathcal{P}(\mathbb{R})$	$[0,1]\cap \mathbb{Q}$	$\mathbb{R} \times \mathbb{N}$	$\mathbb{N} \times \{0, 1, 2\}$
\mathbb{N}								
\mathbb{R}								

Przypominamy, że $\mathcal{P}(X)$ to rodzina pozdbiorów zbioru X, przez A^B oznaczamy zbiór funkcji ze zbioru B w zbiór A, a [0,1] to w zbiorze liczb rzeczywistych domknięty przedział o końcach 0,1.

Zadanie 7. W prostokąty obok tych spośród podanych niżej par zbiorów uporządkowanych, które są izomorficzne, wpisz odpowiednie izomorfizmy. W pozostałe prostokąty wpisz uzasadnienie, dlaczego nie istnieje izomorfizm pomiędzy podanymi porządkami.

(a) $\langle \mathbb{N}, \leq \rangle$ i $\langle \mathbb{Q}, \leq \rangle$	
(b) $\langle \mathbb{R}, \leq \rangle$ i $\langle \mathbb{Q}, \leq \rangle$	

Zadanie 8. W poniższe prostokąty wpisz odpowiedzi na zadane pytania wraz z uzasadnieniami.

Czy funkcja $f: \mathbb{N} \to \mathbb{N}$ dana wzorem $f(n) = 2^n$ jest homomorfizmem

(a) algebry $\langle \mathbb{N}, + \rangle$ w algebre $\langle \mathbb{N}, + \rangle$?

(b) algebry $\langle \mathbb{N}, + \rangle$ w algebrę $\langle \mathbb{N}, \cdot \rangle$?

Zadanie 9. Liczby Fibonacciego to wyrazy ciągu zdefiniowanego rekurencyjnie w następujący sposób: $F_0=0,\ F_1=1$ oraz $F_{n+2}=F_n+F_{n+1}$ dla wszystkich liczb naturalnych $n\geq 0$. Korzystając z zasady indukcji udowodnij, że dla wszystkich liczb naturalnych n zachodzi równość

$$\sum_{i=0}^{n} F_i = F_{n+2} - 1.$$

Zadanie 10. W tym zadaniu u, v, w, x, y, z są zmiennymi, natomiast a, f, g, h, p symbolami funkcyjnymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

(a)
$$p(f(y), w, g(z)) \stackrel{?}{=} p(v, u, v)$$

(b)
$$p(a, x, f(g(y))) \stackrel{?}{=} p(z, h(w), f(w))$$

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

1 lutego 2006

Za każde z poniższych zadań można otrzymać od -10 do 10 punktów. Za brak rozwiązania otrzymuje się 0 punktów, za rozpoczęcie rozwiązywania -2 punkty, a za poprawne rozwiązanie 12 punktów (co razem z punktami za rozpoczęcie daje 10 punktów). Egzamin trwa 120 minut.

Zadanie 11. Czy istnieje relacja równoważności

- (a) w zbiorze N, której wszystkie klasy abstrakcji są nieskończone i jest ich nieskończenie wiele?
- (b) w zbiorze \mathbb{R} , której wszystkie klasy abstrakcji są przeliczalne i jest ich przeliczalnie wiele? Odpowiedzi uzasadnij.

Zadanie 12. Uogólnionym iloczynem kartezjańskim indeksowanej rodziny zbiorów $\{A_i\}_{i\in I}$, gdzie $I \neq \emptyset$, nazywamy zbiór wszystkich funkcji $f: I \to \bigcup_{i \in I} A_i$ spełniających warunek $f(i) \in A_i$ dla wszystkich $i \in I$. Iloczyn ten oznaczamy $\prod_{i \in I} A_i$.

Udowodnij, że jeśli $\{A_i\}_{i\in\mathbb{N}}$ jest indeksowaną rodziną skończonych zbiorów liczb naturalnych (czyli dla wszystkich $i\in\mathbb{N}$ zachodzi $A_i\subseteq\mathbb{N}$ oraz $|A_i|<\aleph_0$), to uogólniony iloczyn kartezjański $\prod\limits_{i\in\mathbb{N}}A_i$ jest zbiorem skończonym lub ma moc co najmniej continuum.

Zadanie 13.¹

- (a) Niech $\langle A, \leq \rangle$ będzie skończonym zbiorem częściowo uporządkowanym. Udowodnij, że jeśli A ma element najmniejszy, to $\langle A, \leq \rangle$ jest porządkiem zupełnym.
- (b) Niech $\langle A, \leq \rangle$ będzie skończonym porządkiem zupełnym. Udowodnij, że jeśli funkcja $f: A \to A$ jest monotoniczna, to jest ciągła.

Zadanie 14. W zbiorze Fin wszystkich skończonych podzbiorów zbioru liczb naturalnych określamy relację \leq w następujący sposób. Dla zbiorów $X,Y\in Fin$ zachodzi $X\leq Y$ wtedy i tylko wtedy, gdy

$$X = Y$$
 lub $\max(X - Y) \in Y$,

gdzie $\dot{-}$ oznacza różnicę symetryczną zbiorów, a $\max(A)$ jest największą w sensie naturalnego porządku liczbą w zbiorze A. Udowodnij, że $\langle Fin, \preceq \rangle$ jest dobrym porządkiem (czyli że jest porządkiem liniowym i nie ma w nim nieskończonych łańcuchów zstępujących).

 $^{^{1}}$ Dla ułatwienia przypominamy w nieformalny sposób niektóre definicje. Zbiór X jest skierowany jeśli jest niepusty i każda para elementów zbioru X ma w tym zbiorze ograniczenie górne. Porządek jest zupełny jeśli ma element najmniejszy oraz każdy jego skierowany podzbiór posiada kres górny. Funkcja jest ciągła jeśli zachowuje kresy górne zbiorów skierowanych.