

ADVANCED TOPICS IN SOFTWARE ENGINEERING

AR- Anchoring, Scanning and World Understanding

Sonal Lakhotia

Table Of Contents

- 1. Introduction
- 2. Anchoring and Scanning in AR
- 3. MaskFusion
- 4. Conclusion

Table Of Contents

- 1. Introduction
- 2. Anchoring and Scanning in AR
- 3. MaskFusion
- 4. Conclusion

What is Augmented Reality? (AR)

- Combination of :
 - Real scene viewed by a user
 - Virtual entity generated by computer
- Adds additional information and augments the real scene.

Augments the image from the book [1]

Motivation

- Physically integrated and interactive AR
- Environment-Aware AR
- Better world perception with Simultaneous Localization And Mapping (SLAM)
- Real-time tracking and detection of multiple objects in a scene

Motivation

- Most SLAM systems assume a static scene
- Assumption that the camera moves not objects
- Challenging to track and map objects in dynamic scene
- Inconsistent reconstruction
- Semantic information not available

Failed reconstruction of the rotating chair[5]

Table Of Contents

- 1. Introduction
- 2. Anchoring and Scanning in AR
- 3. MaskFusion
- 4. Conclusion

Anchoring and Scanning in AR

- Anchors objects recognized by AR software
- They help to integrate the real and virtual worlds
- AR scanners initiate an augmented experience with virtual overlays on anchors
- AR platforms (such as ARCore, ARKit, and Vuforia) use sensors for environmental understanding
 - Detecting size and location the main sensor is the camera
 - Position and orientation of surfaces
 - Real-world lighting conditions
 - Tracking motion

Anchoring and Scanning in AR

Plane Anchor [2]

Face Anchor [2]

3 D Object Anchor [2]

SLAM Augmented Reality

- Immersive AR is possible with SLAM technology
- It locates the device within the environment
- Builds the map of the environment
- Maps unknown environment
- Enables 3D reconstruction

[3]

[4]

Visual SLAM

- Visual SLAM for indoor localization and 3D reconstruction.
- Camera as a sensor visual SLAM
 - Collects abundant information
 - Strong object recognition features
 - Senses at higher resolution
 - Lower cost
 - Easy to carry
 - Monocular vision SLAM, binocular vision SLAM, and RGB-D depth camera SLAM
- RGB-D SLAM system acquires colored models and is mostly used for AR

Table Of Contents

- 1. Introduction
- 2. Anchoring and Scanning in AR
- 3. MaskFusion
- 4. Conclusion

Maskfusion

Real-time, object-aware, semantic, dynamic RGB-D SLAM system

Tracks, and reconstructs multiple moving objects along with background

Related Work In Dynamic and Semantic SLAM

Single Non-Rigid Object	Multiple rigid objects	Semantic information for 3D models available in advance	Fixed set semantic category (not differentiating object instances)
Non-Rigid RGBD	Co-Fusion	2.5D is not enough	Convolutional Neural Network(CNN) SLAM
Fusion4D		Slam ++	Semantic-Fusion
Dynamic Fusion			

Comparison with related SLAM systems

Important properties considered for the related systems							
Exisitng related		Scene		Multiple			
SLAM systems	Model-	Segmen-		moving	Non-		
	free	tation	Semantics	objects	Rigid		
Static-							
Fusion	✓	✓					
2.5D is not							
enough		✓	✓				
Slam++							
		✓	✓				
CNN-							
SLAM	√	√	✓				
Semantic-							
Fusion	√	√	√				
Non-Rigid							
RGBD					✓		
Dynamic-							
Fusion	√				√		
Fusion4D							
	√				✓		
Co-							
Fusion	✓	✓		√			
Mask-							
Fusion	✓	✓	✓	✓			

Maskfusion – Object-based SLAM

- Instance-level semantic segmentation (detects instances of objects and creates semantic object masks)
- Enables real-time object recognition
- Creates object-level representation for the world map

object boundaries, object masks, and semantic labels[5]

17

Instance level Semantic Segmentation

- Each instance is segmented and assigned semantic labels MaskRCNN (Mask Region-Based Convolutional Neural Network)
- Semantic labels could be used for AR experiments

MaskFusion Workflow

- MaskRCNN runs parallel to SLAM
- The masking network pulls frames, and updates frames to queue as soon as semantic masks are available
- Tracking, Segmentation, and Fusion are performed with each acquired camera frame
- The system runs in real-time

[7]

Tracking

- Scene representation using surface element (surfel) map
 - Only the surface of an object is represented
 - An object is represented by a dense set of points (surfel cloud)
 - Each surfel is a disk with data position, color, radius, timestamps, normal

[5]

20

Tracking

- 3D geometry of each object is represented as a set of surfels
- Tracking jointly optimizes two costs
 - Photometric cost ensuring photometric consistency between the surface objects being looked at and 3D models
 - Iterative Closest Point (ICP) Geometric cost by minimizing the distance between the model and newly reconstructed surfels
 - A rigid transformation is obtained that tells the current position of the camera and each of the independently segmented objects

Segmentation

- Instance-level semantic segmentation on images is not enough
- Boundaries are not precise and bleed into the background
- Depth images are utilized for geometric segmentation (oversegmentation)
- Geometric + Semantic segmentation gives very precise object boundaries

(a) Segment of interest

(b) Semantic only (c) With geometric

Fusion

- Individual surfel map for each detected object
- 2D segmentation defines the models to fuse with
- Depth map provides new 3D points with normal
- These are weighted with existing surfels
- Object labels used to associate surfels with the correct model

Recognition, Tracking, and Mapping in MaskFusion

[7]

Quantitative Evaluation

IOU graphs comparing the labeling performance over time [7]

Red – Mask RCNN

- Green Mask RCNN + geometric segmentation
- Blue MaskFusion

MaskFusion maintains temporally consistent 3D models through tracking and fusion and gives better results

Qualitative Evaluation – AR experiment

An augmented reality experiment [7]

Qualitative Evaluation – Calories Demo

[7]

22.02.2023

Limitations

- Limited object recognition, on 80 classes of the MS-COCO dataset
- Miss-classification of object labels not accounted
- Tracking and reconstruction are limited to rigid objects
- Challenging to track small objects with less geometric information

Future Work

- Including more classes for object recognition
- Enabling tracking of small objects with limited features
- Extending the system to track and reconstruct non-rigid objects such as humans in a dynamic environment
- Virtual characters could be aware of the background model along with the object it interacts with

Table Of Contents

- 1. Introduction
- 2. Anchoring and Scanning in AR
- 3. MaskFusion
- 4. Conclusion

Summary

- Interactive, environment-aware AR enables better world understanding
- Static SLAM systems do not achieve this
- MaskFusion used to develop novel AR applications
- AR with MaskFusion instance-aware, semantic, dynamic
- MaskFusion is limited to object classes on which MaskRCNN is trained
- It can be extended to observe human-object interactions

References for Images

- [1] https://www.apptunix.com/blog/augmented-reality-apps-industries-uses-ar/
- [2] https://www.learningguild.com/articles/understanding-anchors-in-augmented-reality-experiences/
- [3] https://augmentedpixels.com/pokemon-go-make-truly-augmented-reality-game-slam-sdk/
- [4] Snapfeet. https://snapfeet.io/en
- [5] https://www.youtube.com/watch?v=GbD3OMOk2DE
- [6] http://cs231n.stanford.edu/slides/2020/lecture 12.pdf
- [7] M. Runz, M. Buffier, and L. Agapito, 'MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects', in 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Oct. 2018, pp. 10–20. doi: 10.1109/ISMAR.2018.00024.

32

References

- **Primary**: M. Runz, M. Buffier, and L. Agapito, 'MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects', in *2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)*, Oct. 2018, pp. 10–20. doi: 10.1109/ISMAR.2018.00024.
- Y.-C. Wu, L. Chan, and W.-C. Lin, 'Tangible and Visible 3D Object Reconstruction in Augmented Reality', in *2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)*, Oct. 2019, pp. 26–36. doi: 10.1109/ISMAR.2019.00-30.
- X. Xiang *et al.*, 'Mobile3DScanner: An Online 3D Scanner for High-quality Object Reconstruction with a Mobile Device', *IEEE Transactions on Visualization and Computer Graphics*, vol. 27, no. 11, pp. 4245–4255, Nov. 2021, doi: 10.1109/TVCG.2021.3106491.
- P. Stotko, S. Krumpen, M. Weinmann, and R. Klein, 'Efficient 3D Reconstruction and Streaming for Group-Scale Multi-Client Live Telepresence', in *2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)*, Oct. 2019, pp. 19–25. doi: 10.1109/ISMAR.2019.00018.
- K. Wang, H. Zheng, G. Zhang, and J. Yang, 'Parametric Model Estimation for 3D Clothed Humans from Point Clouds', in 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Oct. 2021, pp. 156–165. doi: 10.1109/ISMAR52148.2021.00030.