What's Special about Spatial Data Mining?

Shashi Shekhar Pusheng Zhang Yan Huang Ranga Raju Vatsavai

Department of Computer Science and Engineering University of Minnesota

Application Domains

- * Spatial data mining is used in
 - NASA Earth Observing System (EOS): Earth science data
 - National Inst. of Justice: crime mapping
 - Census Bureau, Dept. of Commerce: census data
 - Dept. of Transportation (DOT): traffic data
 - National Inst. of Health(NIH): cancer clusters
- * Sample Global Questions from Earth Science
 - How is the global Earth system changing?
 - What are the primary forcings of the Earth system?
 - How does the Earth system respond to natural and humanincluded changes?
 - What are the consequences of changes in the Earth system for human civilization?
 - How well can we predict future changes in the Earth system

Example of Application Domains

- * Sample Local Questions from Epidemiology[TerraSeer]
 - What's overall pattern of colorectal cancer?
 - Is there clustering of high colorectal cancer incidence anywhere in the study area?
 - Where is colorectal cancer risk significantly elevated?
 - Where are zones of rapid change in colorectal cancer incidence?

Figure 1: Geographic distribution of male colorectal cancer in Long Island, New York(in courtesy of TerraSeer)

Spatial Slicing

- * Spatial heterogeneity
 - "Second law of geography" [M. Goodchild, UCGIS 2003]
 - Global model might be inconsistent with regional models
 - spatial Simpson's Paradox

- * Spatial Slicing
 - Slicing inputs can improve the effectiveness of SDM
 - Slicing output can illustrate support regions of a pattern
 - e.g., association rule with support map

Location As Attribute

- * Location as attribute in spatial data mining
- * What value is location as an explanatory variable?
 - most events are associated with space and time
 - space is an important surrogate variable
 - critical to hypothesis formation about relationships among variables

Domain	Spatial Observa-	Hypothesis	Science
	tions		
Social Science	central places, e.g.,	power law	observed in social
	cities		networks
Animal Behavior	co-occurrence(pant-	chimpanzees use	observed in
	hoot, food-bout) in	pant-hoot to	Gombe dataset
	space and time	share abundant	
		food sources	
Physical Science	co-location(water in	water carries ele-	fluoride and den-
	Colorado Springs,	ments related to	tal health
	dental health)	dental health	
Physical Science	1854, London:	water carries	1883: germ the-
	co-location(water	cholera agents	ory
	pump, cholera)		

Spatial Data Mining (SDM)

- * The process of discovering
 - interesting, useful, non-trivial patterns
 - from large spatial datasets
- * Spatial patterns
 - Spatial outlier, discontinuities
 - bad traffic sensors on highways (DOT)
 - Location prediction models
 - model to identify habitat of endangered species
 - Spatial clusters
 - crime hot-spots (NIJ), cancer clusters (CDC)
 - Co-location patterns
 - predator-prey species, symbiosis
 - Dental health and fluoride

Example Spatial Pattern: Spatial Cluster

* The 1854 Asiatic Cholera in London

Example Spatial Pattern: Spatial Outliers and Predictive Models

\star Spatial Outliers

* Predictive Models

Example Spatial Pattern: Co-locations (backup)

* Given:

• A collection of different types of spatial events

* Illustration

* Find: Co-located subsets of event types

Overview

- * Spatial Data Mining
 - Find interesting, potentially useful, non-trivial patterns from spatial data
- * Components of Data Mining:
 - Input: table with many columns, domain(column)
 - Statistical Foundation
 - Output: patterns and interest measures
 - e.g., predictive models, clusters, outliers, associations
 - Computational process: algorithms

General Approaches in SDM

- * Materializing spatial features
 - e.g., spatial association rule mining[Koperski, Han, 1995]
 - commercial tools: e.g., Arc/Info family
- * Spatial slicing
 - e.g., association rule with support map[P. Tan et al]

Figure 2: Association rule with support map(FPAR-high \rightarrow NPP-high)

- commercial tools: e.g., Matlab, SAS, R, Splus
- * Customized spatial techniques
 - e.g., MRF-based Bayesian Classifier
 - commercial tools
 - e.g., Splus spatial/R spatial/terraseer + customized codes

Overview

- \Rightarrow Input
- \star Statistical Foundation
- * Output
- \star Computational process

Overview of Input

- * Data
 - Table with many columns(attributes)

Table 1: Example of Input Table

- e.g., tid: tuple id; f_i : attributes
- Spatial attribute: geographically referenced
- Non-spatial attribute: traditional
- * Relationships among Data
 - Non-spatial
 - Spatial

Data in Spatial Data Mining

- * Non-spatial Information
 - Same as data in traditional data mining
 - Numerical, categorical, ordinal, boolean, etc
 - e.g., city name, city population
- * Spatial Information
 - Spatial attribute: geographically referenced
 - Neighborhood and extent
 - Location, e.g., longitude, latitude, elevation
 - Spatial data representations
 - Raster: gridded space
 - Vector: point, line, polygon
 - Graph: node, edge, path

Figure 3: Raster and Vector Data for UMN Campus (in courtesy of UMN, MapQuest)

Relationships on Data in Spatial Data Mining

- * Relationships on non-spatial data
 - Explicit
 - Arithmetic, ranking(ordering), etc.
 - Object is_instance_of a class, class is a subclass_of another class, object is part_of another object, object is a membership_of a set
- * Relationships on Spatial Data
 - Many are implicit
 - Relationship Categories
 - Set-oriented: union, intersection, and membership, etc
 - Topological: meet, within, overlap, etc
 - Directional: North, NE, left, above, behind, etc
 - Metric: e.g., Euclidean: distance, area, perimeter
 - Dynamic: update, create, destroy, etc
 - Shape-based and visibility

• Granularity

Granularity	Elevation Example	Road Example
local	elevation	on_road?
focal	slope	adjacent_to_road?
zonal	highest elevation in a zone	distance to nearest road

Table 2: Examples of Granularity

Mining Implicit Spatial Relationships

* Choices:

- Materialize spatial info + classical data mining
- Customized spatial data mining techniques

Relationships		Materialization	Customized SDM Tech.
Topological	Neighbor, Inside, Outside	Classical Data Mining	NEM, co-location
Euclidean	Distance,	can be used	K-means
	density		DBSCAN
Directional	North, Left, Above		Clustering on sphere
Others	Shape, visibility		

Table 3: Mining Implicit Spatial Relationships

- * What spatial info is to be materialized?
 - Distance measure:
 - Point: Euclidean
 - Extended objects: buffer-based
 - Graph: shortest path
 - Transactions: i.e., space partitions
 - Circles centered at reference features
 - Gridded cells
 - Min-cut partitions
 - Voronoi diagram

Overview

- √ Input
- ⇒ Statistical Foundation
- * Output
- \star Computational process

Statistics in Spatial Data Mining

- * Classical Data Mining
 - Learning samples are independently distributed
 - \bullet Cross-correlation measures, e.g., $\chi^2,$ Pearson
- * Spatial Data Mining
 - Learning sample are not independent
 - Spatial Autocorrelation
 - Measures:
 - * distance-based(e.g., K-function)
 - * neighbor-based(e.g., Moran's I)
 - Spatial Cross-Correlation
 - Measures: distance-based, e.g., cross K-function
 - Spatial Heterogeneity

Overview of Statistical Foundation

- * Spatial Statistics[Cressie, 1991]
 - Geostatistics
 - Continuous
 - Variogram: measure how similarity decreases with distance
 - Spatial prediction: spatial autocorrelation
 - Lattice-based statistics
 - Discrete location, neighbor relationship graph
 - Spatial Gaussian models
 - * Conditionally specified spatial Gaussian model
 - * Simultaneously specified spatial Gaussian model
 - Markov Random Fields, Spatial Autoregressive Model
 - Point process
 - Discrete
 - Complete spatial randomness (CSR): Poisson process in space
 - K-function: test of CSR

		Point Process	Lattice	Geostatistics
raster				
vector	point			
	line			
	polygon			
graph				

Table 4: Data Types and Statistical Models

Spatial Autocorrelation(SA)

* First Law of Geography

• "All things are related, but nearby things are more related than distant things. [Tobler, 1970]"

Figure 4: Spatial Randomness vs. Autocorrelation

* Spatial autocorrelation

- Nearby things are more similar than distant things
- Traditional i.i.d. assumption is not valid
- Measures: K-function, Moran's I, Variogram, · · ·

Spatial Autocorrelation: Distance-based Measure

* K-function Definition:

- Test against randomness for point pattern
- $K(h) = \lambda^{-1}E[\text{number of events within distance } h \text{ of an arbitrary event}]$
 - λ is intensity of event
- Model departure from randomness in a wide range of scales

* Inference

- For Poisson complete spatial randomness(csr): $K(h) = \pi h^2$
- Plot Khat(h) against h, compare to Poisson csr
 - >: cluster
 - <: decluster/regularity</pre>

Spatial Autocorrelation: Topological Measure

* Moran's I Measure Definition:

$$MI = \frac{zWz^t}{zz^t}$$

- $\bullet \ z = \{x_1 \bar{x}, \dots, x_n \bar{x}\}$
 - $-x_i$: data values
 - $-\bar{x}$: mean of x
 - -n: number of data
- W: the contiguity matrix
- \star Ranges between -1 and +1
 - higher positive value \Rightarrow high SA, Cluster, Attract
 - lower negative value \Rightarrow interspersed, de-clustered, repel
 - e.g., spatial randomness \Rightarrow MI = 0
 - e.g., distribution of vegetation durability \Rightarrow MI = 0.7
 - e.g., checker board \Rightarrow MI = -1

Cross-Correlation

- * Cross K-Function Definition
 - $K_{ij}(h) = \lambda_j^{-1} E$ [number of type j event within distance h of a randomly chosen type i event]
 - Cross K-function of some pair of spatial feature types
 - Example
 - Which pairs are frequently co-located?
 - Statistical significance

Figure 5: Example Data (o and * ; x and +)

Illustration of Cross-Correlation

 \star Illustration of Cross K-Function for Example Data

Figure 6: Cross K-function for Example Data

Overview

- √ Input
- ✓ Statistical Foundation
- \Rightarrow Output
- \star Computational process

Overview of Data Mining Output

- * Supervised Learning: Prediction
 - Classification
 - Trend
- * Unsupervised Learning:
 - Clustering
 - Outlier Detection
 - Association
- \star Input Data Types vs. Output Patterns

Patterns	Point Process	Lattice	Geostatistics
Prediction			
Trend			$\sqrt{}$
Clustering			
Outliers		$\sqrt{}$	$\sqrt{}$
Associations			

Table 5: Output Patterns vs. Statistical Models

Illustrative Application to Location Prediction (Backup)

Prediction and Trend

* Prediction

- Continuous: trend, e.g., regression
 - Location aware: spatial autoregressive model(SAR)
- Discrete: classification, e.g., Bayesian classifier
 - Location aware: Markov random fields(MRF)

Classical	Spatial
$\mathbf{y} = \mathbf{X}\beta + \epsilon$	$y = \rho W y + X \beta + \epsilon$
$Pr(C_i X) = \frac{Pr(X C_i)Pr(C_i)}{Pr(X)}$	$Pr(c_i X,C_N) = \frac{Pr(c_i)*Pr(X,C_N c_i)}{Pr(X,C_N)}$

Table 6: Prediction Models

• e.g., ROC curve for SAR and regression

Figure 7: (a) Comparison of the classical regression model with the spatial autoregressive model on the Darr learning data. (b) Comparison of the models on the Stubble testing data.

Prediction and Trend

- * Open Problems
 - Estimate W for SAR
 - Spatial interest measure: e.g., avg dist(actual, predicted)

Figure 8: An example showing different predictions: (a) The actual sites, (b) Pixels with actual sites, (c) Prediction 1, (d) Prediction 2. Prediction 2 is spatially more accurate than 1.

Clustering

- * Clustering: Find groups of tuples
- \star Statistical Significance
 - Complete spatial randomness, cluster, and decluster

Figure 9: Inputs: Complete Spatial Random (CSR), Cluster, and Decluster

Figure 10: Classical Clustering

Figure 11: Spatial Clustering

Clustering

- * Similarity Measures
 - Non-spatial: e.g., soundex
 - Classical clustering: Euclidean, metric, graph-based
 - Topological: neighborhood EM
 - Implicitly based on locations
 - Interest measure:
 - spatial continuity
 - cartographic generalization
 - unusual density
 - keep nearest neighbors in common cluster

Outlier Detection

- * Spatial Outlier Detection
 - Finding anomalous tuples
 - Global and spatial outlier
 - Detection Approaches
 - Graph-based outlier detection: variogram, moran scatter plot
 - Quantitative outlier detection: scatter plot, and z-score
- * Location-awareness
 - All tuples/No tuple: classical
 - Some tuple: locations for neighborhood and non-spatial attributes for difference test

(a) Outliers in Example Data

(b) Outliers in Traffic Data

Association

- * Association
 - Domain (f_i) = union { any, domain (f_i) }
 - Finding frequent itemsets from f_i
 - Co-location
 - Effect of transactionizing: **loss of info**
 - Alternative: use spatial join, statistics

Figure 12: Different Transactionizing Schemes

- * Location-awareness
 - All tuples: co-location mining
 - No tuple: classical association rule mining
 - Some tuple: future work

Output Patterns

\star Output Patterns vs. Input

	Vector Data			
SDM Techniques	Point	Line	Polygon	Raster Data
classification		-	$\sqrt{}$	
association		-		
clustering		-		
outlier detection				

Table 7: Output Patterns vs. Input

\star Output Patterns vs. Interest Measures

	Traditional Non-spatial	Spatial	Mixture
Predictive	Classification accuracy	Spatial accuracy, e.g., avg	Future Work
Model		dist(actual site, predicted site)	
Cluster	Low coupling and high cohe-	Spatial continuity, unusual	Future Work
	sion in feature space	density, cartographic general-	
		ization	
Outlier	Different from population or	Geographically distant from	Significant at-
	neighbors in feature space	neighbors	tribute discon-
			tinuity in geo-
			graphic space
Association	Subset prevalence,	Clique prevalence	Future Work
	$Pr[B \in T \mid A \in T],$	$Pr[B \in N(L) \mid A at L]$	
	Correlation: e.g.,	Cross K-Function	

Table 8: Output Patterns vs. Interest Measures

Output Patterns vs. Location Awareness

- * Output Patterns vs. Location Awareness
 - No awareness: no location info
 - Total awareness: location info available for all tuples
 - Partial awareness: location info missing for some tuples

	No Awareness	Total Awareness	Partial
			Awareness
Prediction	Decision tree, nearest neighbor,	kriging, MRF Bayesian classi-	future work
	Bayesian classifier, neural net-	fier, self-organizing map, spa-	
	work, regression	tial autoregressive model	
Clustering	EM in feature space, k-means,	Neighborhood EM	future work
	density-based, graph-based		
Outliers	Neighbor def: feature domain	Neighbor def: geographic do-	future work
		main	
	Difference test def: feature do-	Difference test def: feature do-	
	main	main	
Association	Association rules	Co-location	future work

Table 9: Output vs. Location Awareness

Overview

- √ Input
- √ Statistical Foundation
- √ Output
- \Rightarrow Computational process

Computational Process

- * Most algorithmic strategies are applicable
- * Algorithmic Strategies in Spatial Data Mining:

Classical Algorithms	Algorithmic Strategies in SDM	Comment	s
Divide-and-Conquer	Space Partitioning	possible	info
		loss	
Filter-and-Refine	Minimum-Bounding-Rectangle(MBR), Predi-		
	cate Approximation		
Ordering	Plane Sweeping, Space Filling Curves	possible	info
		loss	
Hierarchical Structures	Spatial Index, Tree Matching		
Parameter Estimation	Parameter estimation with spatial autocorre-		
	lation		

Table 10: Algorithmic Strategies in Spatial Data Mining

* Challenges

- Does spatial domain provide computational efficiency?
 - Low dimensionality: 2-3
 - Spatial autocorrelation
 - Spatial indexing methods
- Generalize to solve spatial problems
 - Linear regression vs SAR
 - * Continuity matrix W is assumed known for SAR, however, estimation of anisotropic W is non-trivial
 - Spatial outlier detection: spatial join
 - Co-location: bunch of joins

Example of Computational Process

- * Teleconnection
 - Find locations with climate correlation over θ
 - e.g., El Nino affects global climate

Figure 13: Global Influence of El Nino during the Northern Hemisphere Winter(D: Dry; W:Warm; R:Rainfall)

- \star Challenge: high dim(e.g., 600) feature space
- * Computational Efficiency Idea
 - Observation: Spatial autocorrelation
 - Spatial indexing to organize locations
 - Top-down tree traversal is a strong filter
 - Spatial join query: filter-and-refine
 - * 50 year long monthly data on 67k land locations and 100k ocean locations
 - * save 40% to 98% computational cost at $\theta = 0.3$ to 0.9

Summary

- * What's Special About Spatial Data Mining?
 - Input Data
 - Statistical Foundation
 - Output Patterns
 - Computational Process

	Classical DM	Spatial DM
Input	All explicit, simple types	often Implicit relationships, complex types
Stat Foundation	Independence of samples	spatial autocorrelation
Output	Interest Measures: set-based	Location-awareness
Computational Process	Combinatorial optimization	Computational efficiency opportunity
		Spatial autocorrelation, plane-sweeping
	Numerical alg.	New complexity: SAR, co-location mining
		Estimation of anisotropic W is nontrivial

Table 11: Summary of Spatial Data Mining

* A Hard Problem:

• Estimate W besides ρ and β for $y = \rho Wy + X\beta + \epsilon$

Research Needs

- * Research Issues:
 - Classical DM techniques vs. SDM techniques
 - Statistical interpretation models for spatial patterns
 - e.g., co-location and Ripley's K-function
 - Spatial interest measures: e.g., spatial accuracy
 - Modeling semantically rich spatial properties
 - Visualization
 - Improving computational efficiency
 - Preprocessing

Conclusions

- * Applications of Spatial Data Mining
 - Businesses, e.g. logistics, marketing, ...
 - Government almost all branches e.g. defense, public safety, ...
- * Rationale for spatial data mining
 - Simpson's paradox and 2nd law of Geography
 - Space as a surrogate variable
 - Ex. co-location(water, cholera) led to Germ theory
 - Unique properties of spatial data, e.g. auto-correlation
- * Approaches to mine spatial data
 - A. Traditional DM methods + spatial feature selection
 - + Easy to start with
 - But results are weak due to spatial-autocorrelation etc.
 - B. Novel spatial DM methods
 - + Better models unique properties of spatial data
 - + Often improves results
 - + Sometime reduces computation costs

References

- * Email: shekhar@cs.umn.edu
- * More http://www.cs.umn.edu/research/shashi-group
- * References
 - [Cressie, 1991], N. Cressie, Statistics for Spatial Data, John Wiley and Sons, 1991
 - [Miller, Han, 2001], H. Miller and J. Han(eds), Geographic Data Mining and Knowledge Discovery, Taylor and Francis, 2001
 - [Kazar at al., 2003], B. Kazar, S. Shekhar, and D. Lilja, *Parallel Formulation* of *Spatial Auto-Regression*, Army High-Performance Computing Research Center (AHPCRC) Technical Report no. 2003-125, August 2003
 - [Koperski, Han, 1995], K. Kopperski and J. Han, Discovery of Spatial Association Rules in Geographic Information Database, SSTD, 1995
 - [Koperski et al, 1996], K. Kopperski, J. Adhikary, and J. Han, *Spatial Data Mining: Progress and Challenges*, DMKD, 1996
 - [Roddick, 2001], J. Roddick, K. Hornsby and M. Spiliopoulou, Yet Another Bibliography of Temporal, Spatial Spatio-temporal Data Mining Research, KDD Workshop, 2001
 - [Shekhar et al, 2003], S. Shekhar, C. T. Lu, and P. Zhang, *A Unified Approach to Detecting Spatial Outliers*, GeoInformatica, 7(2), Kluwer Academic Publishers, 2003
 - [Shekhar, Chawla, 2003], S. Shekhar and S. Chawla, *Spatial Databases: A Tour*, Prentice Hall, 2003

References

* References

- [Shekhar et al, 2002], S. Shekhar, P. Schrater, R. Vatsavai, W. Wu, and S. Chawla, *Spatial Contextual Classification and Prediction Models for Mining Geospatial Data*, IEEE Transactions on Multimedia (special issue on Multimedia Databases), 2002
- [Shekhar et al, 2001], S. Shekhar and Y. Huang, Discovering Spatial Colocation Patterns: A Summary of Results, SSTD, 2001
- [Tan et al, 2001], P. Tan and M. Steinbach and V. Kumar and C. Potter and S. Klooster and A. Torregrosa, Finding Spatio-Temporal Patterns in Earth Science Data, KDD Workshop on Temporal Data Mining, 2001
- [Tobler, 1970], W. Tobler, A Computer Movie Simulating Urban Growth of Detroit Region, Economic Geography, 46:236-240, 1970
- [Zhang at al, 2003], P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, Exploiting Spatial Autocorrelation to Efficiently Process Correlation-Based Similarity Queries, SSTD, 2003

Spatial Databases: A Tour

