WORLD INTELLECTUAL PROPERTY ORGANIZATI International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: H04R 7/06, 7/10

A1

(11) International Publication Number:

WO 99/37121

(43) International Publication Date:

22 July 1999 (22.07.99)

(21) International Application Number:

PCT/GB99/00143

(22) International Filing Date:

15 January 1999 (15.01.99)

(30) Priority Data:

9801057.2 20 January 1998 (20.01.98) GB 9801054.9 20 January 1998 (20.01.98) GB 23 May 1998 (23.05.98) 9811100.8 GB 9813293.9 20 June 1998 (20.06.98) GB

(71) Applicant (for all designated States except US): NEW TRANS-DUCERS LIMITED [GB/GB]; Stonehill, Huntingdon, Cambridgeshire PE18 6ED (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AZIMA, Farad [GB/GB]; Flat 3, 1 Palace Gate, Kensington, London W8 5KS (GB). AZIMA, Henry [CA/GB]; 3 Southacre Close, Chaucer Road, Cambridge CB2 2TT (GB). COLLOMS, Martin [GB/GB]; 22 Burgess Hill, London NW2 2DA (GB). BANK, Graham [GB/GB]; 1 Boartree Way, Huntingdon, Cambridgeshire PE18 6GL (GB). HILL, Nicholas, Patrick, Roland [GB/GB]; The Flat, 206 Cherry Hinton Road, Cambridge CB1 4AW (GB).

(74) Agent: MAGUIRE BOSS; 5 Crown Street, St. Ives, Cambridgeshire PE17 4EB (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ACTIVE ACOUSTIC DEVICES COMPRISING PANEL MEMBERS

(57) Abstract

Active acoustic device comprises a panel member (11) having distribution of resonant modes of bending wave action determining acoustic performance in conjunction with transducer means (31-34). The transducer means (31-34) is coupled to the panel member (11) at a marginal position. The arrangement is such as to result in acoustically acceptable action dependent on said distribution of active said resonant modes. Methods of selecting the transducer location, or improvement by location of localised marginal clamping, rely on assessing best or better operative interaction of said transducer means (31-34) and the panel members (11) according to parameters of acoustic output for the device as an acoustic radiator.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

						•	approunding ander t
AL AM	Albania	ES	Spain	LS	Lesotho	SI	Clausais
	Armenia	FI	Finland	LT	Lithuania		Slovenia
AT	Austria	FR	France	LU	Luxembourg	sk	Slovakia
ΑU	Australia	GA	Gabon	LV	Latvia	SN	Senegal
AZ	Azerbaijan	GB	United Kingdom	MC		8Z	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia		Monaco	TD	Chad
BB	Barbados	GH	Ghana	MD	Republic of Moldova	TG	Togo
BE	Belgium	GN	Guinea	MG	Madagascar	TJ	Tajikistan
BF	Burkina Faso	GR	Greece	MK	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria	HU			Republic of Macedonia	TR	Turkey
BJ	Benin	IE	Hungary	ML	Mali	TT	Trinidad and Tobago
BR	Brazil		Ireland	MN	Mongolia	UA	Illeraine
BY	Belarus	IL	Israel	MR	Mauritania	UG	Uganda
CA	Canada	IS	Iceland	MW	Malawi	US	United States of America
CF	Central African Republic	IT	Italy	MX	Mexico	UZ	Uzbekistan
CG	Congo	JP	Japan	NE	Niger	VN	Viet Nam
CH	Switzerland	KE	Kenya	NL	Netherlands	YU	
CI CI		KG	Kyrgyzstan	NO	Norway	-	Yugoslavia
	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
2N	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ.	Czech Republic	LC	Saint Lucia	. RU			
DE	Germany	L	Liechtenstein		Russian Federation		
K	Denmark	LK	Sri Lanka	SD	Sudan		
æ	Estonia	LR	Liberia	SE	Sweden		
			LAUCIA	8G	Singapore		

5 ACTIVE ACOUSTIC DEVICES COMPRISING PANEL MEMBERS

10

DESCRIPTION

15 FIELD OF THE INVENTION

This invention relates to active acoustic devices and more particularly to panel members for which acoustic action or performance relies on beneficial distribution of resonant modes of bending wave action in such a panel member and 20 related surface vibration; and to methods of making or improving such active acoustic devices.

It is convenient herein to use the term "distributed mode" for such acoustic devices, including acoustic radiators or loudspeakers; and for the term "panel-form".

25 to be taken as inferring such distributed mode action in a panel member unless the context does not permit.

In or as panel-form loudspeakers, such panel members operate as distributed mode acoustic radiators relying on

bending wave action induced by input means applying mechanical action to the panel member; and resulting excitation of resonant modes of bending wave action causing surface vibration for acoustic output by coupling 5 to ambient fluid, typically air. Revelatory teaching regarding such acoustic radiators (amongst a wider class of active and passive distributed mode acoustic devices) is given in our International patent application WO97/09842; and various of our later patent applications—

10 concern useful additions and developments.

BACKGROUND TO THE INVENTION

Hitherto, transducer locations have been considered as viably and optimally effective at locations in-board of the panel member to a substantial extent towards but 15 offset from its centre, at least for panels that are substantially isotropic as to bending stiffness exhibit effectively substantially constant anisotropy of bending stiffness(es). Aforementioned WO97/09842 gives specific guidance in terms of optimal 20 proportionate co-ordinates for such in-board transducer locations, including alternatives; and preference for different particular co-ordinate combinations when using two or more transducers.

Various advantageous applications peculiar to the 25 panel-form of acoustic devices have been foreshadowed, including carrying acoustically non-intrusive surfacing sheets or layers. For example, physically merging or incorporating into trim or cladding is feasible, including

as visually virtually indistinguishable. Also, functional combination is feasible with other purposes, such as display, including pictures, posters, write-on/erase boards, projection screens, etc. The capability 5 effectively to hide in-board transducers from view is enough for many applications. However, there potential practical applications where it could be useful larger, particularly central, panel regions unobstructed even by hideable transducers. For example, 10 for video or other see-through display use, pursuit of translucence, even transparency, of panel members is not worthwhile with such in-board intrusions of transducers, though a panel-form acoustic device would be highly attractive if it could afford large medial areas of

SUMMARY OF THE INVENTION

15 unobstructed visibility.

According to one device aspect of this invention, there is provided a panel-form acoustic device comprising a distributed mode acoustic panel member with transducer 20 means located at a marginal position, the arrangement being such as to result in acoustically acceptable effective distribution and excitement of resonant mode vibration. Existence of suitable such marginal positions is established herein as locations for transducer means, 25 along with valuable teaching as to judicious selection or improvement of one or more such locations. Such judicious selection may advantageously be by or as would result from investigation of an acoustic radiator device

1

loudspeaker relative satisfactorily to introducing vibrational energy into the panel member, say conveniently by assessing parameters of acoustic output from the panel member concerned when excited at marginal positions or 5 locations. Αt least best results also apply microphones.

From the relevant background teaching as of the time this invention, availability of successful of marginal locations is, to say the least, unexpected. 10 Indeed, main closest prior art cited against WO97/09842, is the start-point for its invention and revelatory teaching, namely WO92/03024 from which progress was made particularly in terms of departing from in-corner excitation thereof. Such progress involved appreciating 15 that distributed resonant mode bending wave action as required for viable acoustic performance results in high vibrational activity at panel corners; as is also a factor for panel edges generally. At least intuitively, and as greatly reinforced by practical success with 20 somewhat off-centre but very much in-board transducer locations, such high vibrational activity compounds strongly with panel margins self-evidently affording limited access, thus likely available effect upon, panel member material as a whole; this compounding combination 25 contributing to previously perceived non-viability of edge excitation.

For application of this invention, a suitable acoustic panel member, or at least region thereof, may be

transparent or translucent. Typical panel members may be generally polygonal, often substantially rectangular. Plural transducer means may be at or near different edges, at least for substantially rectangular panel members.

- 5 The or each transducer may be piezo-electric, electrostatic or electro-mechanical. The or each transducer may be arranged to launch compression waves into the panel edge, and/or to deflect the panel edge laterally to launch transverse bending waves along a panel
- 10 edge, and/or to apply torsion across a panel corner, and/or to produce linear deflection of a local region of the panel.

Assessment of acoustic output from panel members may be relative to suitable criteria for acoustic output 15 include as to amount of power output thus efficiency in converting input mechanical vibration (automatically also customary causative electrical drive) into acoustic output, smoothness of power output as measure of even-ness of excitation of resonant mode of bending wave action, 20 inspection of power output as to frequencies of excited resonant modes including number and distribution or spread of those frequencies, each up to all as useful indicators. Such assessments of viability of locations for transducer means constitute method aspects of this invention " 25 individually and in combination.

As aid to assessment at least of smoothness of power output, it is further proposed herein to use techniques based on mean square deviation from some reference. Use

WO 99/37121

of the inverse of mean square deviation has the benefit of presenting smoothness for assessment according directly to positive values and/or representations. reference can be individual to each case considered, say a 5 median-based, such represented graphically by as smoothed line through actual measured power output over a frequency range of interest. It is significantly helpful to mean square deviation assessment for the reference to have a be normalised standard format; and for the 10 measured acoustic power output to be adjusted to fit that standard format. The standard format may be a graphically straight line, preferably a flat straight line thus corresponding to some particular constant reference value; further preferably the same line or value as found 15 naturally to apply to a distributed mode panel member at higher frequencies where modes and modal action are more or most dense.

In this connection it is seen as noteworthy that whatever function is required for such normalising to a 20 substantially constant reference is effectively also a basis for an equalisation function applicable to input signals to improve lower frequency acoustic output. It is the case that viable distributed mode panel members as such, and with preferential aspect ratios and bending 25 stiffness(es) as in our above patent application, may naturally have acoustic power output characteristics relative to frequency that show progressive droops towards and through lower frequencies where resonant modes and

- Tar . Die

modal action are less dense - but, as their frequency distribution as such is usually beneficial to acoustic action in such lower frequency range, such equalisation of input signal can be useful. This lower acoustic power 5 output at lower frequencies is related to free edge vibration of the panel members as such, and consequential greater loss of lower frequency power, greater proportion of which tends to be poorly radiated and/or dissipated, including effectively short-circuited about free adjacent As expected, these lower frequency power 10 panel edges. loss effects are significantly greater for panel members with transducer locations at or near their edges and/or lesser stiffnesses - compared with panel members using inboard transducer locations. However, and separately from 15 any input signal equalisation, significant mitigation of these effects is available by mounting the panel members surrounded by baffles and/or by clamping at the edges of Indeed, spaced localised edge clamps the panel members. can have usefully selectively beneficial effects relative 20 to frequencies with wavelengths greater than the spacing. of the localised edge clamps.

Interestingly, for specific panel members of quite high stiffnesses, viable marginal transducer locations include positions having edge-wise correlation with 25 normally in-board locations for transducer means arising as preferred by application of teachings or practice such as specifically in our above patent applications. When using transducer means in pairs, a first preference was

found for marginal transducer locations with correlation as corresponding to notionally encompassing greatest area. For a substantially rectangular panel member, said correlation can be by way of correspondence 5 with orthogonal or Cartesian co-ordinates, with said first preference represented by associating transducer means with diagonally opposite quadrants. However, this was in relation to a particularly high stiffness/high-Q panel member, and is not always true; even for quite (but less) 10 stiff panels, see further below showing promising operation with association in some or adjacent quadrants. elliptical panel member said correlation/ correspondence can be according to hyperbolic resonant mode related lines as going edge-wards through the in-15 board locations. Other variously less good, but feasibly viable, pairs of edge locations for transducer means were found by investigation based on rotating orthogonal vectors about in-board preferential transducer locations, including close to or at corner positions of panel 20 members. Another inventive aspect regarding corner or near-corner excitation involves suitably mass-loading or clamping substantially at a known in-board optimal or preferential drive location, where it appears that such mass-loaded optimal drive location(s) effectively 25 behave(s) to some useful extent as "virtual" source(s) of bending wave vibrations in the member. This latter may not avoid central intrusion by the mass loading but is clearly germane to successful marginal excitation

corners.

Further investigations have been made, including of panel members having different stiffnesses, specifically again quite high but also much lower and intermediate 5 stiffness panels, in each case of usual substantially rectangular configuration with aspect ratios and axial bending stiffnesses generally as in WO97/09842.

For the higher stiffness panel member, assessment based on smoothness of power output for single transducer 10 locations along longer and shorter edges were generally confirmatory of above preferential coordinate positions, i.e. peaking as expected for best locations for single transducer means. However, additionally, longer edges had promising spreads of smoothness measure within about 15% 15 of peak at transducer locations between the co-ordinate positions in each half of the edge and beyond those coordinate positions to about one-third length from each and within about 30% along to at least the quarter length positions. For the shorter edges, spreads 20 of smoothness measure were within about 10% between the co-ordinate positions, and within about 25% at quarter length positions. The shorter edges actually showed a better power smoothness measure than the longer edges showed at quarter length positions right through to within 25 about one-tenth length of the corners.

Investigation of combinations of two transducers has also been extended particularly for same and adjacent quadrants with one transducer, for one on each of longer

and shorter edges. One transducer can be at one best position along one of the edges for a single transducer, with the other transducer varied along the other edge. For variation along the shorter edge, above preference for 5 one of positions according to co-ordinates of in-board preferential transducer locations is confirmed by best smoothness measure at about six-tenths length. There are also near as good positions at three-quarter length and only a little less good at quarter and third length Marathur: 10 positions. Moreover, most positions other than below about one-tenth from a corner are better, similar, near as good, or not much worse, than for association with coordinates of preferred in-board locations in the same quadrant. For variation along the longer edge, the 15 shorter edge transducer was located at about preferred near six-tenths position, there was then actually marked preference for combinations of transducer locations in adjacent quadrants, with best at just under one-fifth, and slightly better than the 0.42 position at the one-third 20 length position with only a little worse at the one-tenth length position. The quarter length position is actually about the same as for the mid-length position and the adjacent quadrant position of the co-ordinate of preferred in-board location. Self-evidently, these procedures may 25 be continued on an iterative basis, and may then reveal more favourable combinations.

Investigations of much lower stiffness panel members on the basis of smoothness of power output have shown

peaking for marginal transducer locations also at about the in-board co-ordinate position, but near as good at quarter length of panel edges, and generally markedly less criticality as to position along the edges in terms of 5 actual achieved modal distribution. This is seen explicable by interaction between the lower stiffness and compliance within the used transducer itself. It appears that the resonant modal distribution of the panel is affected and altered by the transducer To location, at least to some extent going with such Higher panel stiffnesses substantially avoid location. such effects. However, such in-transducer compliance and possible interaction with panel stiffness/elasticity is clearly another factor to be taken into account, including 15 exploited usefully.

Investigations of panel members with quite high and much lower stiffnesses clearly reveal rather different cases for application of marginal excitation, including as to more and less criticality as to transducer locations, 20 whether singly or in pairs, and as to less or more interaction with in-transducer compliance. It is thus appropriate to consider a panel member of intermediate stiffness.

For such intermediate stiffness panel member, and.

25 much as expected, differences relative to the much lower stiffness panel member include increase in acoustic power output available by edge clamping, markedly increased power for mid-range frequency modes, and stronger modality

or peakiness for lower-frequency modes. Tendency towards characteristics of the higher stiffness panel member include stronger preference as best single transducer locations for edge positions on a co-ordinate of optimal 5 in-board transducer locations, also promising feasibility for through the mid-point, but perhaps also at about one-tenth in from corners. For two marginally located transducer means, marked preference resulted for the co-ordinate related position of optimal in-board transducer middle and two-thirds length positions and equality of same quadrant co-ordinate related and two-thirds length positions.

It is evident that differences in materials 15 parameters of panel members beyond basic capability to sustain bending wave action are significant in determining marginal transducer locations; and that use of two or more such transducer locations produces highly individual solutions requiring experimental assessment such as now 20 enabled by teachings hereof.

Also, at least specifically for tested substantially rectangular panel members, it has been found that many if not most, probably going on all, of edge or near-edge locations for transducer means that are unpromising as 25 such can be significantly improved (as to bending wave dependent resonant mode distribution and excitement into acoustical response of the member) if associated with localised mass-loading or clamping at one or more selected

other marginal position(s) of the panel member concerned. Inventive aspects thus includes association of a said drive means position with helpful other mass-loading or clamping position marginal of the panel member.

- Regarding use of two or more transducer means, exhaustive investigation of combinations of marginal locations is impractical, but teaching is given as to how to find best and other viable marginal locations for second transducer means for any given first transducer
- 10 marginal location. Indeed, yet further marginal transducer locations could be investigated and assessed according to the teaching hereof. Somewhat likewise, use of localised marginal damping for improving performance for any given transducer marginal location is 15 investigatable and assessable to any extent and number using the teaching hereof, whether for enhancing or reducing contributions of some resonant mode(s), otherwise
- It believed to be worthwhile generally to take into account the fact that lowest resonant modes are related to length of the longest natural axis of any panel member, thus that longer edges of substantially rectangular panel members are sensibly always favoured for location of 25 transducer means including lengths.

deliberately interfering with other resonant mode(s), or

mainly to increase output power.

25 transducer means, including doing so wherever feasible at the best position for operation with single transducer means. It is sensible to see this as applying even where use of another transducer means is encouraged or intended,

again whether for enhancing some resonant deliberately interfering with other resonant mode(s) or mainly to increase output power.

Also relevant as a general matter is the fact that 5 the operating frequency range of interest should be made part of assessment of location for transducer means, and may well affect best and viable such locations, i.e. could be different for ranges wholly above and extending below such as 500 Hz. Another influencing factor could be 10 presence of an adjacent surface, say behind the panel member at a spacing affecting acoustic performance.

It is inferred or postulated that the nature of preferred said edge or edge-adjacent position(s) towards what is fore-shadowed in our above PCT and other 15 patent applications, typically viewed affording coupling to more approaching most frequency modes, and doing so more rather than less evenly, perhaps typically avoiding dominance of up to only a few frequency modes. Such suitability may be for lower rather than higher total 20 actual vibrational energy locally in the panel member, but high as to population by frequency modes, i.e. rather than "dead" in the sense of little or no coupling to any or few

BRIEF DESCRIPTION OF THE DRAWINGS

25 Specific implementation for the invention diagrammatically illustrated and described in and with reference to by way of example, in the accompanying drawings, in which:-

modes.

HUNDER DE

Figure 1 shows a distributed mode acoustic panel with a fitted transducer as generally described in the above PCT application;

Figure 2 shows outline indication of four different 5 ways of marginal or edge excitation an acoustic panel;

Figure 3 shows possible placements of transducers marginally of an acoustic panel to achieve actions shown in Figure 2, and Figure 3A shows transparent such panel;

Figure 4 shows four favoured marginal locations for 10 transducers shown in outline, relative to an in-board location of Figure 1 shown in phantom;

Figure 5 shows the same four favoured locations relative to another preferential in-board drive location and favoured pair of the complementary or phantom in-board 15 drive location;

Figure 6 indicates how any pairs and all four drive transducers at such favoured locations were connected for testing;

Figure 7 shows viable if less favoured pairs of 20 marginal drive transducer locations;

Figure 8 shows corner drive position and helpful mass-loading at an in-board preferential drive location;

Figures 9 and 9A show four normally unfavoured marginal drive transducer locations together with many 25 marginal mass-loading or clamping positions and how test masses and drive transducers were associated with the panel; and

Figure 10 shows in-board area unobstructed within

marginal positions for drive transducer(s), clamp termination(s) and resilient suspension/mounting.

Figures 11A, B are graphs of output power/frequency for a substantially rectangular panel member of quite high 5 stiffness and single transducer positions along longer and shorter edges;

Figures 12A, B are related bar charts for measures of smoothness of output power;

Figures 13A, B are graphs of output power/frequency

10 for two transducer positions with one varied along shorter
or longer edges;

Figures 14A, B are related bar charts for measures of smoothness of output power;

Figures 15A, B are output power/frequency graphs and 15 related power smoothness bar chart for a panel member of much lower stiffness and single transducer positions along the longer edge;

Figures 16A, B are output power/frequency graphs and power smoothness bar chart for second transducer positions 20 along the shorter edge;

Figure 17 shows comparison of power outputs with transducers located preferentially in-board and at edge for the low stiffness panel member;

Figures 18A, B, C show effects of baffling, three-25 edge clamping and both;

Figures 19A, B are output power/frequency graphs and related power smoothness bar chart for the low stiffness panel member clamped along on three edges and transducer

positions on the fourth edge;

Figures 20A, B are output power/frequency graphs and related power smoothness bar chart for the low stiffness panel member clamped on two parallel edges sides and 5 transducer positions on another edge;

Figures 21A, B are output power/frequency graphs and related power smoothness bar chart for the low stiffness panel member with localised clamping at corners/mid-edges and transducer positions on other longer edge;

Figure 22 is a power smoothness bar chart for the low stiffness panel member with further localised clamping between other corner/mid-point clamping;

Figures 23A, B are bar charts for power assessment without normalisation for the low stiffness panel member 15 with three edge clamping of seven-point and full edge nature, respectively, and for position of another local clamp along the other edge at which transducer means has an unfavourable position;

Figures 24A, B are power output/frequency graphs and 20 related power smoothness bar chart for the three-edge clamped case assessed with normalisation;

Figures 25A, B are power output/frequency graphs and related power smoothness bar charts for a panel member of intermediate stiffness and single transducer positions 25 along the longer edge with normalisation;

Figures 26A, B are output power/frequency graphs and power assessment bar chart for the intermediate stiffness panel member with seven point localised clamping assessed

without normalisation;

Figures 27A, B are similar but with normalising for power smoothness assessment;

Figures 28A, B are power output graph and power 5 smoothness bar chart for the intermediate stiffness panel member and a second transducer position along shorter edge;

Figure 29 indicates seven- and thirteen- point localised clamping as applied above;

10 Figure 30 is a schematic diagram useful in explaining impact of in-transducer compliance, and

Figures 31A-E are power efficiency bar charts for the lower stiffness panel member for different edge conditions.

15 DESCRIPTION OF ILLUSTRATED EMBODIMENTS

In Figure 1, distributed mode acoustic panel loud-speaker 10 is as described in WO97/09842 with panel member 11 having typical optimal near- (but off-) centre location for drive means transducer 12. The sandwich structure 20 shown with core 14 and skins 15, 16 is exemplary only, there being many monolithic and/or reinforced and other structural possibilities. In any event, normal in-board transducer placement potentially limits clear area available, e.g. for such as transmission of light in the 25 case of a transparent or translucent panel.

Mainly transparent or translucent resonant mode acoustic panel members might use known transparent piezo-electric transducers, e.g. of lanthanum doped titanium

zirconate. However these are relatively costly, hence the alternative approach thereof by which it is possible to leave the resonant mode acoustic panel member 10 mainly clear and unobstructed by optimising loudspeaker design. 5 from a choice of four types of excitation shown in Figure 2 directed to the margins or perimeter of the panel, and labelled as types T1 - T4, as follows:-

- T1 launching compression waves into an edge (shown along 18A) of the panel member 11 as available by inertial action or reference plane related drive transducers
- T2 launching transverse bending waves along an edge
 (also shown along 18A) of the panel member 11 as
 available by laterally deflecting the panel edge
 using bender action drive transducers
 - T3 applying torsion to the panel member 11 as shown across a corner between edges 18A, B available by action of either of bender or inertial type drive transducers
- 20 T4 producing linear deflection directly at an edge of the panel member 11 as shown at edge 18B available at local region of contact by inertial action drive transducers.

Figure 3—is a scrap view of composite panel 11
25 showing high tensile skins 15, 16 and structural core 14
with drive transducers/exciters 31 - 34 for the abovementioned four types T1 - T4 of edge/marginal drive. In
practice, fewer than four drive types might be used at the

20

same time on a panel which can usefully be acoustically and mechanically optimised for the desired bandwidth of operation and for the particular type of drive employed. Thus, an optimised panel may be driven by any one or more 5 of the different drive types.

A transparent or translucent edge-driven acoustic panel could be monolithic, e.g. of glass, or of skinned core structure using suitable translucent/transparent core and skin materials, see Figure 11. Interpretation with a 10 a visual display unit (VDU) may enable the screen also to be used as a loudspeaker, can have suitably high bending stiffness along with low mass if comprising a pair of skins 15A, 16A sandwiching a lightweight core of aerogel material 14A using transparent adhesive 15B, 16B. Aerogel 15 materials are extremely light porous solid materials, say of silica. Transparent or translucent skin or skins may be of laminated structure and/or made from transparent plastics material such a polyester, or from glass. Conventional transparent VDU screens may be replaced by 20 such a transparent acoustic radiator panel, including with acoustic excitation outside unobstructed main screen area. A particular suitable silica aerogel core material is (RTM) BASOGEL from BASF. Other feasible core materials could include less familiar aerogel-forming materials 25 including metal oxides such as iron and tin oxide, organic polymers, natural gels, and carbon aerogels. A particular suitable plastics skin laminates may be of polyethylene terephthalate (RTM) MYLAR, or other transparent materials

with the correct thickness, modulus and density. Very high shear modulus of aerogels allow extremely thin composites to be made to suit miniaturisation and other physically important factors and working under distributed 5 mode acoustic principles.

If desired, such transparent panel could be added to an existing VDU panel, say incorporated as an integral front plate. For a plasma type display the interior is held at low gas pressure, close to vacuum, and is of very 10 low acoustic impedance. Consequently there will be negligible acoustic interaction behind the sound radiator, resulting in improved performance, and the saving of the usual front plate. For film type display technologies, again the front transparent window may be built using a 15 distributed mode radiator while the display structures behind may be dimensioned and specified to include acoustic properties which aid the radiation of sound from front panel. For example partial acoustic transparency for the rear display structures will reduce 20 back wave reflection and improve performance for the distributed mode speaker element. In the case of the light emitting class of display, these may be deposited on the rear surface of the transparent distributed mode panel, without significant impediment to its acoustic 25 properties, the images being viewed from the front side.

A transparent distributed mode loudspeaker may also have application for rear projection systems where it may be additional to a translucent screen or this function may

22

itself be incorporated with a suitably prepared surface for rear projection. In this case the projection surface and the screen may be one component both for convenience and economy but also for optimising acoustic performance.

5 The rear skin may be selected to take a projected image, or alternatively, the optical properties of the core may be chosen for projection use. For example in the case of a loudspeaker panel having a relatively thin core, full optical transparency may not be required or be ideal,

10 allowing the choice of alternative light transmitting cores, e.g. other grades of aerogel or more economical substitutes. Special optical properties may be combined with the core and/or the skin surface to generate directional and brightness enhancing properties for the 15 transmitted optical images.

Where the transparent distributed mode speaker has an exposed front face it may be enhanced, for example, by the provision of conductive pads or regions, visible, or transparent, for user input of data or commands to the 20 screen. The transparent panel may also be enhanced by optical coatings to reduce reflections and/or improve scratch resistance, or simply by anti scratch coatings. The core and skin for the transparent panel may be selected to have an optical tint, for colour shading or in 25a neutral hue to improve the visual contrast ratios for the display used with or incorporated in the distributed mode transparent panel speaker. During manufacture of the transparent distributed model panel, invisible wiring,

LUCE:

e.g. in the form of micro-wires, or transparent conductive films, may be incorporated together with indicators, e.g. light emitting diodes (LED) or liquid crystal displays (LCD) or similar, allowing their integration into the 5 transparent panel and consequent protection, the technique also minimising impairment to the acoustic performance. Designs may also be produced where total transparency is not required, e.g. where one skin only of the panel has transparency to provide a view to an integral display 10 under that surface.

The transducers may be piezo-electric or electrodynamic according to design criteria including price and performance considerations, and are represented in Figure 3 as simple outline elements simply bonded to the panel by 15 suitable adhesive(s). For above T1 type drive excitation, inertial transducer 31 is shown driving vertically directed compression waves into the panel 30. For above T2 type of drive excitation, bending type of transducer 32 is shown operative for directly bending regionally to 20 launch bending waves through the loudspeaker panel 30. For above T3 type of drive excitation, inertial transducer 33 is shown serving to deflect the panel corner in driving into the diagonal and thence into the whole loudspeaker panel 30. For above type T4 drive excitation another 25 inertial transducer 34 is shown of block or semi-circular form serving to deflect an edge of the loudspeaker panel 30.

Each type of excitation will engender its own-

characteristic drive to the panel 30 which is accounted for in the overall loudspeaker design including parameters of the panel 30 itself. The placement of the transducers 31 - 34 along the panel edge is in practice iterated with 5 the panel design parameters for optimum or at operationally acceptable modal distribution of bending It is envisaged that, according to the panel waves. characteristics, including such as controlled loss for example, and the location(s) and type(s) of marginal edge 10 or near-edge drive, more than one audio channel may be applied to the panel 30 concerned, e.g. via plural drive transducers. multi-channel potential This augmented by signal processing to optimise the sound may quality, and/or to control the sound radiation properties 15 and/or even to modify the perceived channel-to-channel separation and spatial effects.

Particularly satisfactory drive transducer locations along edges of a substantially rectangular panel member are at edge positions reached by orthogonal side-parallel 20 lines or co-ordinates through an in-board optimal or preferential drive transducer position according to our above PCT application, see dashed at 42 to 45 - 48 in Figure 4. is actually practical to use drive Ιt transducers at at least two such co-ordinate related edge 25 locations 45 - 48. Figure 6 shows in-phase serial and serial/parallel connections for two and four drive transducers at A and B. Other driver connections are feasible, and may often be preferred, including directly

one-to-one to each transducer means; and any desirable signal conditioning may be applied, e.g. differential filtering etc, to suit reduction of say undesirable interaction between transducers and/or with 5 electrical signal source and favoured drive transducer positions CP1 - CP4 in Figure 5 relative to in-board preferential location PL. Pairing can be one from each co-ordinate, i.e. CP1 and CP2, CP2 and CP3, CP3 and CP4, CP4 and CP1, and a first favoured pairing is the one 10 notionally defining included area that is greatest, indeed, contains the geometrical centre X. Such notional area will, of course, further pass through or contain other usual optimal or preferential in-board drive transducer position, see complementary location CL and 15 indication at CP5 and CP6 for the first favoured pairing of drive transducer locations.

It has been interesting to note for a very high Q panel that preferred and most preferred pairs of orthogonal co-ordinate related drive locations can produce 20 low frequency output that may be more extended and uniform even than prior preferential in-board much nearer centre positions, albeit with some moderate variation in the higher frequency range. Off-axis response is similar at higher frequencies but actually somewhat more symmetrical 25 at lower frequencies.

Figure 7 shows select results of an experiment where pairs of transducers for which orthogonal angular relative relation is maintained centred on above normal inboard

is not strictly to scale.

preferential transducer location, specifically beneficial most for co-ordinate related marginal locations SP1 and SP4, but the transducers are tested at drive positions relatively translated round the panel edge.

5 Most viable/promising pairs of locations are indicated at pairs of positions la, 1b to 6a, 6d. Figure 7 actually also shows results of another experiment where pairs of transducers were at opposite ends of straight lines through the preferential in-board drive location SP1, 2.

10 Fewer viable/promising locations were found at positions 2a, 2d and 3a, 3d. More experimental work may well be worthwhile relative to other pairs or more of edge-drive positions, and theoretical/systematising work is being attempted. It will be appreciated from dimensions quoted 15 and measured at pairs οf positions viable/promising measured/assessed results that Figure 7

Figure 8 shows a panel 70 of core 74 and skins 75, 76 structure, and having near-corner-mounted transducer 72 20 with mass loading 78 substantially at an otherwise normal in-board preferential transducer, actually the one or in the group furthest away from the corner of excitation by the transducer 72, which is found to be particularly effective in appearing to behave as a "virtual" source of 25 bending wave vibrations. It can be advantageous for the transducer to avoid or at least couple outside a position with a co-ordinate location substantially centred at 5% of side dimensions from the corner as such, where it has been

established that many resonant mode(s) have nodes, i.e. low vibrational activity.

Turning to Figure 9, outline is indicated for an investigation involving select single positions for one 5 edge or edge-adjacent transducer mounting, see at ST1 - ST4 for in-corner, half-side length, quarter-side length and three-eighths side-length, respectively; and select positions for edge-clamping/mass-loading at edge positions about the panel. An exciting transducer was used, see 92 10 in Figure 9A relative to panel 90, along with loads/clamps by way of panel flanking/gripping 93A/B magnets.

Performance using the corner exciting transducer position ST1 was aided by mass-loading as in Figure 9A at positions Pos. 13, 14, 18, 19 - including in further 15 combination with other positions. For exciting transducer position ST2, good single mass-loading positions are Pos. 6, 7, 8 perhaps 9, 11 particularly, 12, 15 - again including combinations with other positions. Combinations 5 = 11 and 6 + 11 were of particular value, including in 20 further combinations. For exciting transducer position ST3, good single mass-loading positions are Pos. 5, 6, 7, 13, especially the combinations 5 + 13 and 10 + 13, the combination 6 + 18, and combinations/further combinations. For exciting transducer position ST4, best positions 25 appear to be 6, 18 but neither was as good as those for the other exciter positions ST1 - ST3.

Figure 10 shows a panel-form loudspeaker 80 having an in-board unobstructed region 81 extending throughout and

beyond normal in-board preferential drive transducer locations, and a marginally located transducer 82. The region 81 may serve for display purposes directly, or represent something carried by the panel 80 without 5 affecting acoustic performance, or something behind which the loudspeaker panel 80 passes, say in close spacing and/or transparent or translucent. Both of loudness and quality are readily enhanced, the former by additional drive transducers judiciously placed (not shown), and

- 10 quality by localised edge clamping(s) 83 beneficially to control particular modal vibration points effectively as panel termination(s). The panel 80 is further indicated with localised resilient suspensions 84 located neutrally or even beneficially regarding achieved acoustic 15 performance. High pass filtering 85 is preferred for
- input signals to drive transducer(s) 82, conveniently to limit to range of best reproduction, say not below 100Hz for A4-size or similar panels. Then, there should not be any problematic low-frequency panel/exciter vibration.
- It is advantageous in terms for acoustic performance to control acoustic impedance loading on the panel 80, say to be relatively low in the marginal or peripheral region, especially in the vicinity of the drive transducer(s) 82 where surface velocity tends to be high. Beneficial such 25 control provision includes significant clearance to local planar members (say about 1 3 centimetre) and/or slots or other apertures in adjacent peripheral framing or support provision or grille elements.

It is further feasible and advantageous deliberately to arrange for such as mechanical damping to result in acoustic modification including loss in the area 81, or even also marginally thereof, not to be obstructed, at 5 least for higher frequencies. This may be done by choice of materials, e.g. monolithic polycarbonate or acrylic and/or suitable surface coating or laminated construction. Resulting effective concentration of acoustic radiation marginal regions about plural drive transducers 10 particularly facilitates reproduction of more than one sound channel, at least for near-field listening as for playing computer games or like localised virtual sound stage applications. Further away, merging even multiple as-energised sound sources need 15 problematic when summed, at least for such as audio visual presentations.

The following Table gives relevant physical parameters of actual panel members used for investigation to which Figures 11-28 relate.

20

25

30

	Lower Stiffness Panel	Higher Stiffness Panel	Intermediate Stiffness	
Core material	Rohacell	Al honeycomb	Panel Rohacell	
Core thickness	1.5mm	4 mm	1.8mm	
Skin material	Melinex	Black glass	Black glass	
Skin thickness	50 μm	102 μm	102 μm	
Panel Area	0.06m2	0.06m2		
Aspect ratio	1:1.13	1:1.13	0.06m2	
Bending stiffness	0.32 Nm	12.26 Nm	1:1.13 2.47 Nm	
Mass density	0.35 kgm-2	0.76 kgm-2		
Zm	2.7 Nsm-1	24.4 Nsm-1	0.6 kgm-2 9.73 Nsm-1	

Figures 11-14 relate to the higher stiffness panel member of the first column, Figures 15-24 to the much 5 lower stiffness panel member of the second column, and Figures 25-28 to the intermediate stiffness panel member of the third column.

All of the graphs have acoustic output power (dB/W) as ordinate and frequency as abscissa, thus show measured 10 acoustic output power as formation of a frequency, typically as a truly plotted dotted line. Most of the graphs also show an upper adjustment of the true power line. As mentioned in the preamble, this adjustment is by way of applying functions that normalise to a flat 15 straight line, and allows assessment of resonant modality free of often encountered effects of fall-off of power at

lower frequencies. It is found that smoothness of power makes significant contribution to quality of sound. From such normalised value of the actual power output, it is advantageous to produce assessment of smoothness by 5 inverse of mean square deviation, and most of the bar plots are of that type.

The higher stiffness panel member for Figures 11-14 is actually somewhat less stiff than that used for previous Figures 7 and 9, but does clearly show preference single transducers to be located at positions 10 for corresponding to co-ordinates of in-board transducer locations previously established as optimal, i.e. at about 3/7, 4/9 length from any corner or about 0.42-0.44. there are substantial spreads of promising 15 potential location between and beyond such positions for each edge, actually within about 10% and 15% in the midregions of shorter and longer edges, respectively, and further within 28% and 30% at quarter-length positions.

At least for the most part, trial positions for 20 transducer edge or near edge location are based on spacing substantially corresponding to the difference between the preferential co-ordinate value of 0.42 for in-board transducer location and the mid-point (0.5) of the edge, albeit with alternate spacings increased to 0.09. Usual 25 trial locations are thus 0.08, 0.17, 0.28, 0.33, 0.42, 0.50.

In the main, it is believed that the illustrated graph and bar charts are substantially self-explanatory as

to showing best and presumably promising locations for transducers, and for localised clamping as feasible for improving less promising transducer locations, see Figures 23.

- 5 As far transducer edge single or near-edge location is concerned, the other two tested panel members of much lower and intermediate stiffnesses also show the same in-board co-ordinate preference on a smoothness of power basis, see Figures 15 and 25. However, the lower 10 stiffness panel member shows another band of nearly as promising locations ranging from about quarter to below tenth length from corners. Interestingly, if assessment is based on efficiency, i.e. amount of power output - as would be the case for a median line through the true 15 output power plot being the basis used for mean square deviation - the above band becomes skewed to emphasise the quarter length position and is mostly preferential to the in-board coordinate related position, see inverse mean square deviation bar chart of Figure 31A. 20 intermediate stiffness panel member veers towards characteristic of the higher stiffness panel member in showing promising spread between the in-board preferential coordinate positions, but also shows promise at about the one-tenth length positions.
- It will be appreciated from inspection of true output power plots by those skilled in the art that there are differences between indicated best and viable transducer edge locations in terms of impact on expected quality of

sound reproduction - for which modality is normally taken as a significant factor, i.e. number and evenness of excitation of resonant modes. If characteristics such as modality are seen as more promising for locations 5 indicated as preferential on the basis of assessing smoothness of output power, it is, of course, feasible to process input signals towards what is shown after above normalising - specifically selectively to amplify low frequency in a form of signal conditioning or equalising.

10 This would achieve, indeed exceed, power available using locations optimised on efficiency basis; but obviously not the efficiency itself as more input power has to be used.

Accordingly, other ways of increasing lower frequency 15 power were investigated as foreshadowed above, namely baffling and/or selectively spaced local clamping or full edge clamping. Figures 18A, B, C give indication of generally beneficial raising of lower frequency output for surrounding baffling with an area over 60% greater than 20 the low stiffness panel, rigid clamping of all three edges not affording transducer location, and both of such baffling and clamping. Such baffling tends to maintain modality but may not always be feasible in specific applications. Accordingly, full investigation of clamping 25 seemed worthwhile for alternative transducer locations for the lower stiffness panel member. showed that assessment on an efficiency basis tended to emphasise the quarter length point for both of full edge

clamping at true parallel edges or three edges, and 7point local edge clamping at corners and mid-points as at
'X' in Figure 29, with the edge of transducer location
unclamped along its length, see bar charts of Figures 31B,
5C and D, respectively. However, 13-point clamping as at
'X' + 'O' in Figure 29 shifted emphasis strongly to the
in-board preferential coordinate position. Assessment of
panel members with clamping on the basis of power
smoothness produces much the same results for indication
10 of best transducer locations, see bar charts of Figures
19A, 20B, 21B and 22, but with considerable differences as
to next favoured positions, as is generally confirmed by
inspection of true output power plots.

Indeed, particularly strong general correlation is 15 found between preferences based on skilled inspection and assessment according to smoothness of power output. In turn, this tends to confirm at least slight preference for such assessment unless there are practical factors that lead to preference for efficiency rather than quality - 20 though that may not be much different anyway.

Another application for localised edge clamping is in relation to improving an unpromising transducer edge location, see bar charts Figures 23A, B showing right hand rather than left hand sides of the edge concerned as 25 otherwise in the drawings. The cases concerned relate to the lower stiffness panel member, and are full clamping of three edges and seven point clamping, with a localised clamp varied along the same edge as the transducer means.

aille cera eg

In both cases, useful improvement results at about the quarter length position from the corner more remote from the exciter - see reference bar at right hand side of Figure 23B for no clamping condition. The spread is 5 greater for the full edge clamping case, see Figure 23A.

Where there is disagreement between assessments based on power efficiency and power smoothness, it is worth bearing in mind that any panel member with clamping of edge with which the transducer is corners to the 10 associates effectively has forced nulls at the corner. There thus must be up to half wavelengths distance for resonant modes concerned before vibrational activity can reach anti-nodal peaks. If preference for a close-tocorner transducer location is indicated by power 15 smoothness assessment, it should be treated with caution as it could be of low power/efficiency, even though smooth by reason of coupling to all resonant mode waveform concerned at may be quite small rises in their waveforms. Checking with the corresponding - power/efficiency 20 assessment is thus recommended. Indeed, best is always likely to be where there is substantial agreement between the two bases of assessment, or some compromise particularly suited to a specific application; preferably further taking account of skilled-inspection of 25 power/frequency graphs perhaps advantageously with as well as without any normalisation for assessment purposes.

For the investigated panel members with higher and intermediate stiffnesses, there is a considerable measure

of consistency as to best transducer edge locations, but with quite marked difference as to other promising locations. The much lower stiffness panel member is markedly less critical as to promising transducer edge 5 locations.

This position is yet more apparent when considering use of more than one transducer means associated with edges of the same panel member. The position for increased coupling to the resonant modes of a panel member 10 is accompanied by complexity of their inevitable combined interaction with the natural distributed resonant vibration pattern of the panel member, and compounded by such distributed vibration pattern being available only at panel edges. There are notable variations from simple 15 rules such based on coordinates of as established preferential in-board transducer location. However, the assessment procedures hereof afford valuable tools for finding good combinations of edge-associated transducer locations.

For the higher stiffness panel of the above Table, Figures 13A, 14A one transducer means is located at a position within the tolerance range of about 0.38-0.45 for the 0.42 preferred position for single transducer means along the longer edge. Second transducer means is varied 25 along the closest shorter edge and Figure 14A shows marginal preference for the furthest 0.42 preferred position, i.e. centred at 0.58, compared with several other positions at about quarter, third and two-thirds

lengths from the common corner. Interestingly, fixing the second transducer means at such about 0.58 preferred position along the shorter panel edge, and varying the other transducer along the longer pane edge (see Figures 513B, 14B), produced best and next best preferences at about the one-fifth (0.17) and quarter length positions along the longer panel edge, both showing better than the start position (about 0.42) for power smoothness. This is a procedure clearly capable of further application in an 10 iterative manner, though it is recommended that either or both of power/efficiency assessment and skilled inspection be deployed, particularly if there is no convergence of location in the procedure or any indicated good position is less good in practice than hoped (or was before in the 15 procedure).

Figures 16A, B show results of investigation of the much lower stiffness panel member with the preferred about 0.42 transducer location used for the longer edge and a second transducer varied along the nearest shorter edge.

- 20 There were no great differences in power smoothness increase, the best three approaching corners and the nearest 0.42 preferential position, with some otherwise general preference for associations being in some quadrant.
- The same investigation for the intermediate stiffness panel member showed strong preference for the adjacent quadrant preferential 0.42 transducer location (actually 0.58), see Figures 28A, B.

Reverting to the case of the much less stiff panel member, two effects are seen as contributing to much less well-defined best/near best exciter position. One is that the panel modes for the range of frequencies of the 5 optimisation are higher than for stiffer panel members. The panel member is therefore a closer approximation to a continuum, and smoothness of output power is less dependent on transducer position, particularly second transducer positions.

The other effect concerns the much lower mechanical impedance of the panel member, which leads to a less strong dependence on transducer position for energy transfer. The mechanism involved is now explained.

The mechanical impedance (Zm) of a panel member 15 determines the movement resulting for an applied point force, see 100, 101 in Figure 30. An object associated with the panel with a mechanical impedance put very much less than, even approaching comparable to, the panel impedance will strongly offset panel motion where the 20 object is located. Associating an exciting transducer of moving coil type with the panel is equivalent connecting the panel to a grounded mass (the magnet cup of the transducer, see 102) via a spring (the voice coil suspension of the transducer, see 108). When the 25 impedance of such spring is too close to the panel impedance, it will in some part determine the panel motion at the transducer. In the limit of this spring wholly determining the point motion at the transducer, there

would be no dependence of input power on exciter position.

In practice the ratio of spring impedance to panel impedance can so profoundly affect best transducer location, and results are no longer so clear for best/near 5 best transducer locations.

This low mechanical impedance has more effect for edge transducer location than for in-board transducer location as mechanical impedance is yet lower at the panel edge, which means that a transducer, voice coil suspension 10 has a larger effect. Specifically, for the lower stiffness panel of the above Table:

mechanical impedance in the body of the panel is Zmbody=2.7 Nsm-1

mechanical impedance at the panel edge is approximately 15 half Zmbody, i.e.

Zmedge=1.3 Nsm-1

Compliance of the voice coil suspension of the transducer used is:

Cms=0.52x10-3 mN-1

The mechanical impedance at each of modal frequencies can be an order of magnitude lower than the average impedance, Zmedge. It is therefore feasible to estimate a typical frequency, below which the exciter has a strong effect on the panel member, say where impedance of the 25 voice coil suspension is about one-fifth of the average impedance at the panel edge. Then,

x Zmedge

ω x Cms 5

and gives an estimate of 1200 Hz, below which the transducer and panel are intendedly coupled, which is 5 within the frequency range of optimisation.

Considering the transducer and such low mechanical impedance, panel member as one coupled system the transducer in part determines the impedance of the panel member, and smoothness of the output power is less 10 dependent on the position of the transducer.

Repeating such analysis for the high stiffness panel gives a corresponding frequency of 130Hz, which is outside the frequency range of the optimisation.

å.c

CLAIMS

- 1. Active acoustic device comprising a panel member having distribution of resonant modes of bending wave action determining acoustic performance in conjunction 5 with transducer means coupled to the panel member, wherein the transducer means is located at a marginal position of the panel member, the arrangement being such as to result in acoustically acceptable action dependent on said distribution of active said resonant modes.
- 10 2. Active acoustic device according to claim 1, wherein said marginal position has been selected for best or better operative interaction of said transducer means as located thereat with said panel member as to numbers and frequencies of said resonant modes involved in operation 15 of said transducer means in conjunction with said panel member.
 - 3. Active acoustic device according to claim 1 or claim 2, wherein said marginal position has been selected for
 - best or better operative interaction of said transducer
- 20 means as located thereat with said panel member as to power of acoustic output as an acoustic radiator or loudspeaker.
 - 4. Active acoustic device according to claim 1, 2 or 3, wherein said marginal position has been selected for best
- 25 or better operative interaction of said transducer means as located thereat with said panel member as to smoothness of acoustic output power as an acoustic radiator or loudspeaker.

- 5. Active acoustic device according to any preceding claim, wherein said panel member has edge clamping means.
- 6. Active acoustic device according to claim 5, wherein said edge clamping means is localised.
- 57. Active acoustic device according to claim 6 with claim 1, wherein said arrangement includes said localised edge clamping means being located to improve acoustic operation of the device in conjunction with said transducer means located at a said marginal position not 10 itself selected for best operative interaction with said panel member.
 - 8. Active acoustic device according to claim 6, having plural said localised edge clamping means.
- 9. Active acoustic device according to claim 7, wherein 15 mutual spacing of said plural localised edge clamping means is related to wavelengths of lower frequency resonant modes so as to raise their contribution to acoustic action of the device.
- 10. Active acoustic device according to claim 7, 8 or 9
 20 wherein said panel member is of plural-sided form with
 said localised edge clamping means associated with more
 than one side.
 - 11. Active acoustic device according to claim 10 with claim 8, wherein said panel member is substantially
- 25 rectangular with said plural localised edge clamping means associated with three sides not associated with said transducer means.
 - 12. Active acoustic device according to claim 11, wherein

ے ریے دیجا کا کا

said plural localised edge clamping means are at each corner and at mid-points of said three sides.

- 13. Active acoustic device according to claim 5, wherein said edge clamping means extends along said panel member.
- 514. Active acoustic device according to claim 13, wherein said panel member is of plural sided form and said edge clamping means extends along at least one side not associated with said transducer means.
- 15. Active acoustic device according to claim 14, wherein
- 10 said panel member is substantially rectangular and said edge clamping means extends along two parallel sides.
 - 16. Active acoustic device according to claim 14, wherein said edge-clamping means extends along three sides.
 - 17. Active acoustic device according to any preceding
- 15 claim, wherein said panel member has at least two said transducer means in edge association therewith.
 - 18. Active acoustic device according to claim 17, wherein said panel member is of plural sided form with said transducer means associated with at least two side edges.
- 2019. Active acoustic device according to claim 17 or claim 18, wherein said panel member is substantially rectangular with said transducer means associated with longer and shorter sides.
- 20. Active acoustic device according to any preceding 25 claim, wherein at least one said marginal position has correlation with in-board transducer location known to be viable.
 - 21. Active acoustic device according to any preceding

WO 99/37121 PCT/GB99/00143

44

claim, further comprising baffle means extending about and beyond said panel member.

- 22. Active acoustic device according to any preceding claim, wherein said panel member is at least partially 5 transparent or translucent.
 - 23. Active acoustic device according to any preceding claim, wherein said transducer means is of electromechanical type.
- 24. Active acoustic device according to any preceding

 10 claim, wherein said transducer means is operative to
 launch compression waves into edge of said panel member
 and/or to deflect edge of said panel member laterally to
 launch transverse bending waves along said panel member
 and/or to apply torsion across a corner of said panel

 15 member and/or to produce linear deflection of a local edge
 region of said panel member.

 25. Method of making an active acoustic device to include
- a panel member having distribution of resonant modes of bending wave action beneficial to acceptable acoustic 20 performance in conjunction with transducer means suitably coupled to the panel member, the method comprising assessing acoustic performance resulting from locating the transducer means at a number of different marginal positions of the panel member, and selecting a said 25 marginal position for acceptable acoustic performance.
 - 26. Method for making an acoustic device to include a panel member having distribution of resonant modes of bending wave action beneficial to acceptable acoustic

performance in conjunction with transducer means suitably coupled to the panel member, the method comprising adding localised clamping means improve to said performance resulting from some particular marginally 5 located said transducer means, the method comprising assessing acoustic performance resulting from locating said localised clamping means at a number of different marginal positions of the panel member, and selecting a said marginal position for acceptable acoustic 10 performance.

- 27. Method according to claim 25 or claim 26, wherein said assessing of said acoustic output is limited to a frequency range germane to intended use and acceptable performance of said active acoustic device.
- 15 28. Method according to claim 1, 25, 26 or 27, wherein said assessing is of the active acoustic device operative as a sound radiator or loudspeaker and in relation to its acoustic output using said different marginal positions.
- 29. Method according to claim 28, wherein said assessing 20 of said acoustic output is or includes in relation to its content corresponding to said resonant modes as to number of such resonant modes and/or their frequencies or distribution and/or evenness of their contributions to said acoustic output.
- 2530. Method according to claim 28, or claim 29,, wherein said assessing of said acoustic output is or includes in relation to amount of power in said acoustic output thus efficiency in conversion of input mechanical vibration

(thus customary causative electrical drive) acoustic output.

- Method according to claim 28,29 or 30, wherein said assessing of said acoustic output is or includes in 5 relation to smoothness of power of said acoustic output thus evenness of contributions from said resonant modes.
- Method according to claim 30 or claim 31, wherein 32. said assessing includes relating said acoustic output to reference and producing an assessment measure some
- 10 according to deviation from said reference.
 - Method according to claim 32 with claim 30, wherein 33. said reference is a single substantially median value over a particular frequency range of said acoustic output.
- 34. Method according to claim 32 with claim 31, wherein 15 said reference comprises a succession or continuum of substantially median values throughout said acoustic output over a particular frequency range of said acoustic output.
- 35. Method according to claim 34, wherein said assessing 20 includes adjusting measured said acoustic selectively to levels consonant with said reference having meaningful a single value.
 - 36. Method according to claim 35, wherein said single median value corresponds with what applies at higher
- 25 frequencies where said resonant modes are relatively dense.
 - 37. Method according to claim 35 or claim 36, wherein said adjusting involves raising levels

frequencies where said resonant modes are less dense.

- 38. Method according to any one of claims 32 to 37, wherein said assessment measure involves mean square deviation from said reference.
- 539. Method according to claim 38, wherein said assessment measure comprises inverse mean square deviation from said reference.
- 40. Method according to any preceding method claim, wherein application of a method according to any one of
- 10 claims 5, 6 and 7 is followed or accompanied by application of at least one other method of claims 5 to 7 to the same said acoustic outputs from the same said number of different positions.
- 41. Method according to any preceding method claim, as 15 applied to a said panel member with three or more sides or edges, wherein each of stages of said assessing is applied to said number of different positions spaced along the one and the same edge of said panel member.
- 42. Method according to claim 41 with claim 25, wherein a 20 said assessing stage is applied with a first transducer means already at one marginal location of said panel member, the assessing stage serving to locate any other marginal position for a second transducer means to be satisfactorily operative together with the first 25 transducer means.
 - 43. Method according to claim 42, wherein said one marginal location of said first transducer means is as indicated best or viable by an earlier stage of said

assessing.

- 44. Method according to claim 43, wherein said first and second transducer means are marginally located relative to different edges of said panel member.
- 545. Method according to claim 44, wherein said different edges are longer and shorter edges of a substantially rectangular panel.
- 46. Method according to claim 45, wherein said first transducer means is marginally located relative to said 10 longer edge.
 - 47. Method according to claim 46, wherein longer and shorter edges of a substantially rectangular panel member are subject to said assessing individually in separate said assessing stages.
 - 1548. Method according to any preceding method claim, wherein spacings of said different positions along said one edge are related to difference between the mid-point of said one edge and a point orthogonally related to a known successful transducer location in-board of said 20 panel member.

FIG.1

3/27

FIG.5

SUBSTITUTE SHEET (RULE 26)

9 . cama

....

5/27

6/27

10 / 27

11/27

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 99/37121 PCT/GB99/00143

14 / 27

FIG.17

15 / 27

SUBSTITUTE SHEET (RULE 26)

WO 99/37121 PCT/GB99/00143

SUBSTITUTE SHEET (RULE 26)

19 / 27

SUBSTITUTE SHEET (RULE 26)

WO 99/37121 PCT/GB99/00143

FIG.28B 200Hz-10kHz

26 / 27

FIG.30

27 / 27

FIG.31C

FIG.31E

FIG.31D

300Hz-3kHz

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/00143 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H04R7/06 H04R H04R7/10 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) HO4R Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT. Citation of document, with indication, where appropriate, of the relevant passages Category * Relevant to claim No. X WO 92 03024 A (SECR DEFENCE BRIT) 20 February 1992 1-5.25cited in the application Y see page 5, line 6 - line 23; figures 26 Α WO 97 09842 A (AZIMA HENRY ; HARRIS NEIL (GB); COLLOMS MARTIN (GB); VERITY GROUP P) 1,17-2413 March 1997 27,28, cited in the application 40,41,48 Υ see abstract; figures 50-55 see page 80, line 22 - page 82, line 27 26 X US 3 347 335 A (BILL G. WATTERS) 17 October 1967 1-5,25see column 2, line 50 - column 3, line 13; figures Further documents are listed in the continuation of box C. X X Patent family members are listed in annex. Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "T" later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "E" earlier document but published on or after the international invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention "O" document referring to an oral disclosure, use, exhibition or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled document published prior to the international filling date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 14 June 1999 21/06/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Gastaldi, G

2

Form PCT/ISA/210 (second sheet) (July 1992)

ational Application No
PCT/GB 99/00143

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.				
4	US 3 247 925 A (GLENN E. WARNAKA) 26 April 1966 see the whole document	1-5					
	PATENT ABSTRACTS OF JAPAN vol. 010, no. 228 (E-426), 8 August 1986 & JP 61 061598 A (MATSUSHITA ELECTRIC IND CO LTD), 29 March 1986 see abstract	17-24					
1			eren e e e				
			* * *				
			ā ,				
			_				
			Sec. 1				

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

	mormation on patent family members		PCT/GB 99/00143	
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
	A 20-02-1992	GB AT DE DK EP GB HK JP	2246684 A 117155 T 69106712 D 69106712 T 541646 T 0541646 A 2262861 A,B 1000544 A 5509211 T	05-02-1992 15-01-1995 23-02-1995 08-06-1995 20-03-1995 19-05-1993 30-06-1993 03-04-1998 16-12-1993
WO 9709842 A	10 00 133,	AT AT AT AT AT AT	177579 T 177574 T 177580 T 177575 T 177581 T 177582 T	15-03-1999 15-03-1999 15-03-1999 15-03-1999 15-03-1999
Form PCT/ISA/210 (petent family appear) (Lt. 190		ATT	177583 T 177578 T 177576 T 177576 T 179297 T 177577 T 179563 T 176826 T 179045 T 177281 T 177281 T 177282 T 177282 T 177043 T 179044 T 702865 B 6880196 A 702920 B 6880296 A 702967 B 6880396 A 703015 B 6880496 A 702863 B 6880596 A 702863 B 6880596 A 702873 B 6880596 A 702999 B 6880796 A 703061 B 6880896 A 703071 B 6880896 A 703071 B 6881096 A 703058 B 6881296 A 703058 B 6881296 A 6881396 A 703296 B 6881396 A 703296 B 6881396 A 703296 B	15-03-1999 15-03-1999 15-03-1999 15-05-1999 15-05-1999 15-05-1999 15-04-1999 15-05-1999 15-03-1999 15-04-1999 15-04-1999 15-04-1999 15-04-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997 11-03-1999 27-03-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

	
national	Application No
PCT/GB	99/00143

Patent document cited in search report	Patent document cited in search report			Patent family member(s)	Publication date
WO 9709842	Α		AU AU	6881696 A 703122 B	27-03-1997 18-03-1999
US 3347335	A	17-10-1967	NONE		
US 3247925	Α	26-04-1966	GB	1013643 A	

Form PCT/ISA/210 (patent family annex) (July 1992)

This Page Blank (uspto)