Modern Fizika Laboratórium

Pozitron annihiláció vizsgálata jegyzőkönyv

Mérést végezte: Iharosi Péter (A5YF3U) Koroknai Botond (AT5M0G) Mérés időpontja: 2023.11.28

Jegyzőkönyv leadásának időpontja: 2023.12.12

Tartalomjegyzék:

1	Mérés célja és rövid leírása	2
2	Mérőeszközök	2
3	Mérési adatok kiértékelése	2
4	Diszkusszió	9
5	Források	9

1 Mérés célja és rövid leírása

A mérés során a célunk az volt, hogy a plüssmaciban található "daganatot" (^{22}Na izotópok), elektron-pozitron annihiláció segítségével sikeresen lokalizáljuk. Megtalálásukhoz a beütések számát vizsgáltuk az energia függvényében, ami pedig a feszültséggel arányos. A megfelelő feszültség érték beállítása után a mozgatható detektor segítségével meghatározhatjuk, a koincidencia szögfüggését, melyek segítségével megkereshetjük a válaszegyeneseket. 3-3 ilyen vonal meghatározását követően pedig már az izotópok helyét is megtudjuk.

2 Mérőeszközök

- számítógép és Excel táblázat
- fólia
- fonál
- · szögmérő
- · detektorok

3 Mérési adatok kiértékelése

A beteg maci bekerült a műanyag dobozába, mi pedig a dobozra egy fóliát helyezve körberajzoltuk a maci körvonalát. Az első feladatunk a nátrium izotóp fotoenergia-spektrumának megmérése volt, amit 0.4 V és 3 V között mértünk 0.1 V-os ugrásokkal és 12 másodperces mérésidővel.

U [V]	Sc1	Sc2	Koinc
0.4	237	265	1
0.5	147	151	1
0.6	96	99	0
0.7	66	60	0
0.8	33	61	0
0.9	71	86	4
1.0	88	109	16
1.1	39	38	0
1.2	34	29	0
1.3	25	27	0
1.4	24	25	0
1.5	14	11	0
1.6	23	21	0
1.7	10	11	0
1.8	14	10	0
1.9	11	16	0
2.0	13	10	0
2.1	13	12	0
2.2	12	8	0
2.3	8	11	0
2.4	14	16	0
2.5	8	19	0
2.6	5	14	0
2.7	3	7	0
2.8	7	16	0
2.9	8	7	0
3.0	1	1	0

táblázat 1: Beütések száma az egyes detektorokban és a koincidencia fotonok

Ábra 1: Fotoenergia-spektrum

annihilációs vonala 1V-nál található, mint ahogy látjuk az ábra alapján, így a laborvezető utasítására a mérési szűrőhatárt 0.8 V-ra állítottuk, míg a mérést idejét 1 perce növeltük. A követekző mérés során a mozgatható detektor szögét 140-220/25 fok között állítva elindítottuk a mérést és feljegyeztük az egyes detektorokban mért beütések számát, illetve a koincidenciák számát. A mérést macit különböző állásokba forgatva háromszor ismételtük meg.

Első mérés:

táblázat 2: Az adatok táblázatos formában.

D.szög	Sc1	Sc2	Koinc	
140	1835	1977	5	
145	1899	2158	7	
150	1905	2094	9	
155	1821	2017	20	
160	1821	2121	34	
165	1843	2118	71	
170	1827	2131	87	
175	1831	2151	120	
180	1815	2011	109	
185	1782	2047	115 58	
190	1829	2084		
195	1853	2090	22	
200	1861	2143	7	
205	1810	2074	6	
210	1738	2134	6	
215	1827	2131	3	
220	1798	2129	6	

táblázat 3: Első állapothoz tartozó mérési eredmények

Ábra 2: Koncidenciák száma a szög függvényében - első állapot

Az ábráról, valamint a táblázatból is leolvashatjuk, hogy a legmagasabb csúcs a $175\pm3^{\circ}$ -nál volt található, ezért visszaállítottuk a detektort ebbe a pozícióba és egy kifeszített fonál segítségével meghúztuk az első válaszegyenest. A csúcs hibája a következő képpen adódott, előszőr is az ábrát jobban szemügyre véve az is elképzelhető, hogy nem a valódi csúcsot találtuk meg, mert az a két lokális maximum között helyekedik el. Mivel öt fokonként változtattuk a detektor szögét, így ez 2.5° hibát jelent. Másodszot a szögmérő pontatlanságát is figyelembe kell venni, ezért a legkisebb beosztás felének megfelelő, azaz 0.5° -os hibát is rászámoltunk még. Ezt követően a mérésvezető elfordította a macit és megkezdtük a második mérést.

D.szög	Sc1	Sc2	Koinc	
140	1793	2017	0	
145	1868	2113	4	
150	1925	2007	1	
155	1872	2055	15	
160	1871	2020	35	
165	1795	2060	58	
170	1831	2052	65	
175	1792	2056	41	
180	1877	2094	21	
185	1770	2031	17 22	
190	1818	1959		
195	1810	2028	43	
200	1782	2015	73	
205	1831	1930	80	
210	1754	2030	78	
215	1776	2014	51	
220	1739	2046	26	
225	1809	2087	5	

táblázat 4: A második állapothoz tartozó eredmények

Ábra 3: Koncidenciák száma a szög függvényében - második állapot

A méréshez tartozó legmagasabb csúcsok: $170\pm3^\circ$ és $205\pm3^\circ$ -nál voltak találhatóak. Ebben az esetben is mindkét csúcshoz tartozó szögérthez visszaállítottuk a detektorunkat és egy-egy válasz egyenest húztunk meg.

Ezután a mérésvezető ismét elforgatta a macit, és harmadszorra is végigmentünk a vizsgált szögtartományon. Ismét két csúcsot mértünk, és az ezekből adódó két válaszegyenessel már be lehetett azonosítani a két "tumor" helyét.

D.szög	Sc1	Sc2	Koinc	
140	1809	1890	1	
145	1860	1963	4	
150	1836	2013	16	
155	1873	1962	30	
160	1787	1910	44	
165	1842	1929	68	
170	1919	1979	79	
175	1864	1908	43	
180	1852	1981	22 11 4	
185	1853	2002		
190	1859	1903		
195	1905	1946	30	
200	1856	1940	70	
205	1943	1963	90	
210	1848	1912	77	
215	1910	1928	52	
220	1966	2058	33	
225	1913	2014	3	

táblázat 5: A harmadik állapothoz tartozó eredmények

A harmadik méréshez tartozó legmagasabb csúcsok: $170\pm3^\circ$ és $205\pm3^\circ$. (Pusztán a véletlen műve, hogy pont ugyanezen szögeknél voltak a második állásban mért csúcsok is.) Az így összesen kapott öt válaszegyenessel már beazonosítható a két $^{22}\mathrm{Na}$ minta (kétdimenziós) helye a maciban. Az eredmény az 5-ös ábrán látható. A két $^{22}\mathrm{Na}$ minta helyét a képen koordinátákkal is meg kell adni. Ehhez a kép alsó oldalát tekintjük x tenge-

Ábra 4: Koncidenciák száma a szög függvényében - harmadik állapot

Ábra 5: A maci felülnézeti vázlatos képe, rajta a válaszegyenesekkel

lynek, bal oldalát y tengelynek, bal alsó sarkát pedig origónak. A koordináták egysége az egyszerűség kedvéért a pixel lesz. Viszonyítási alapként: a kép mérete 1750 x 1910 pixel.

Mivel a válaszegyenesek metszéspontjai nem illeszkednek tökéletesen (még a maci mellkasán lévő ponton sem, bár annak a pontossága igen jól sikerült), ezért mindkét "tumor" helyéhez három pont tartozik az ábrán. A GIMP képszerkesztő segítségével megkapjuk a maci fején lévő metszésponthoz tartozó P_1, P_2 és P_3 , illetve

a mellkasán lévő metszésponthoz tartozó P_4 , P_5 és P_6 pontok pixelkoordinátáit. A kapott számokat kiátlagolva kapjuk meg a végeredményt, a P_{fej} és $P_{mellkas}$ pontok koordinátáit, és azok empirikus szórását.

x_1	810	y_1	1435
x_2	805	y_2	1380
x_3	885	y_3	1390
x_4	810	y_4	780
x_5	815	y_5	775
x_6	820	y_6	775

táblázat 6: A hat metszéspont pixelkoordinátái

A 6-os táblázatban láthatóak a mért pixelkoordináták. Az értékek 5-ös kerekítéssel vannak feltüntetve, ahogy a kép méretét is ilyen kerekítéssel adtuk meg fentebb. Az átlagolás során az ebből adódó hiba remélhetőleg eltűnik, valószínűleg az empirikus szórás fog dominálni, legalábbis P_{fej} hibájánál bizonyosan. A 7-es táblázatban láthatóak az eredmények.

	Érték	Hiba	
x_{fej}	833	45	
y_{fej}	1402	29	
$x_{mellkas}$	815	5	
$y_{mellkas}$	777	3	
Pont	Pozíció	$\sqrt{(\Delta x)^2 + (\Delta y)^2}$	
P_{fej} (833, 1402)		54	
$P_{mellkas}$	(815,777)	6	

táblázat 7: A ²²Na minták koordinátái és azok hibái

Hibabecslés a szögmérési pontosságból

A metszéspontok hibáira becslést teszünk a szögmérés bizonytalanságából is. A válaszegyenesek meredeksége nem feleltethető meg egyszerűen a detektor 180° -tól mért szögeltérésével. Azt találtuk, hogy a 170 és 205° -hoz tartozó válaszegyenesek a második és a harmadik állásban is 17 és 18° közötti szöget zárnak be egymással, ami a két detektor-állás közötti szögkülönbség fele. Ezért éltünk a durva közelítéssel, hogy a $\pm 3^{\circ}$ -os szögmérési bizonytalanság $\pm 1,5^{\circ}$ -os bizonytalanságot ad a válaszegyenesek meredekségébe. A második és a harmadik mérésnél felvett két-két válaszegyenesnek páronként megkerestük a metszéspontjait. (Ezeket az 5-ös ábrán akkor láthatnánk csak, ha az ábra jobbra folytatódna.) Ezután minden egyeneshez felvettünk két-két olyan egyenest, amelyek a metszésponton áthaladnak, meredekségük pedig $\pm 1,5^{\circ}$ -kal tér el az eredeti egyenestől. Így minden válaszegyenest két "hibahatár-egyenes" közé fogtunk, melyeken kívül a szögmérési pontosság alapján ezen durva becslés szerint biztosan nem lehet a valódi válaszegyenes.

Az első mérésnél felvett egyetlen válaszegyenesnél nem volt viszonyítási alapot adó metszéspont, ezért azt pusztán eltoltuk az x tengely mentén mindkét irányba egy olyan önkényes értékkel, mely a többi válaszegyenesre kapott hibákkal azonos nagyságrendű.

	Érték	Hiba	
x_{fej}	833	95	
y_{fej}	1402	70	
$x_{mellkas}$	815	90	
$y_{mellkas}$	777	55, 5	
Pont	Pozíció	$\sqrt{(\Delta x)^2 + (\Delta y)^2}$	
P_{fej}	(833, 1402)	118	
$P_{mellkas}$	(815,777)	106	

táblázat 8: A ²²Na minták koordinátáinak hibái a szögmérési pontosságból becsülve

Eredményül kaptunk mind P_{fej} , mind $P_{mellkas}$ értékére újabb tizenkettő-tizenkettő metszéspontot. Ezeknek empirikus szórását számoltam ki a 7-es táblázatban lejegyzett átlagok körül. A mért válaszegyenesek metszéspontjait nem számoltam bele, de ezzel legfeljebb túlbecsülhettem a hibát. A kapott eredmények a 8-as táblázatban láthatóak.

Ábra 6: A szögmérési bizonytalanságból becsült hibahatár-egyenesek (piros) és a mért válaszegyenesek (fekete). (Az x és y tengelyek rendre az x és y pixelkoordinátáknak felelnek meg.

A koncentráció és a térbeli kiterjedés

Nem áll módunkban becslést tenni a mintákban ("tumorokban") lévő $^{22}\mathrm{Na}$ -koncentrációra, sem a minták térbeli kiterjedésére. Azt azonban megbecsülhetjük, hogy az egyik minta koncentrációja és kiterjedése hogyan aránylik a másik mintáéhoz. Feltesszük, hogy a második és harmadik mérésnél felvett csúcsokra Gaussgörbéket illesztve, az illesztett görbék amplitúdója a hozzá tartóz mintában lévő $^{22}\mathrm{Na}$ -koncentrációval, szórása pedig a minta kiterjedésével lesz arányos.

Ábra 7: A második mérésnél felvett csúcsokra illesztett Gauss-görbék

	A_{170}	A_{205}	σ_{170}	σ_{205}	A_{205}/A_{170}	$\sigma_{205} / \sigma_{170}$
2. mérés	63, 1	83, 4	8	9,6	1,33	1, 2
3. mérés	72,8	89,4	8,6	8, 3	1,23	0,97

táblázat 9: Az illesztések eredménytáblázata

A 9-es táblázatban láthatóak az illesztések eredményei. A két mérés nem ad egységes eredményt arra nézve, hogy melyik "tumor" a nagyobb. A görbék amplitúdóinak arányai már egységesebbek, így azt meg tudjuk becsülni, hogy a maci mellkasi részébe helyezett mintában nagyobb a sugárzó izotóp koncentrációja.

Ábra 8: A harmadik mérésnél felvett csúcsokra illesztett Gauss-görbék

4 Diszkusszió

A felvett válaszegyenesek segítségével viszonylag jó pontossággal meghatároztuk a "tumorok" helyét, egyik koordináta hibája sem haladta meg az öt százalékot. Ha azonban a szögmérési hibát is beleszámítjuk az eredmény bizonytalanságába, akkor már kevésbé pontos a kapott érték, az x koordináta hibája tíz százalék fölé kúszik.

5 Források

- Mérésleírás
- https://moodle.elte.hu/pluginfile.php/1634509/mod_resource/content/1/Eloadas_09.pdf?lang=hu