

CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to Al

Lecture 11: Unsupervised Machine Learning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 16TH FEB, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 11

- Introduction Segment
 - Recap of Lecture 9-10
- Main Segment
 - Clustering: More methods
 - Distance metrics
 - Measuring cluster quality
 - Explaining / describing clusters
- Concluding Segment
 - About Next Lecture Lecture 12
 - Ask me anything

Discussion

- Quiz 1: uploading score is not working
- Project
 - Reviewed most project plans
 - Dates are missing
 - Please discuss in office hour

Introduction Segment

Recap of Lecture 10

- We looked at paper (Which ML to use)
- Understood Clustering problem
- Understood k-means
- Explored with
 - Weka tool
 - Code sample

Main Segment

Snapshot of Clustering Methods

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Conceptual Clustering

- Conceptual clustering
 - A form of clustering in machine learning
 - Produces a classification scheme for a set of unlabeled objects
 - Finds characteristic description for each concept (class)
- COBWEB (Fisher'87)
 - A popular a simple method of incremental conceptual learning
 - Creates a hierarchical clustering in the form of a classification tree
 - Each node refers to a concept and contains a probabilistic description of that concept

Code in Python

- https://github.com/cmaclell/concept formation
- •https://concept-formation.readthedocs.io/en/latest/examples.html
- https://concept-formation.readthedocs.io/en/latest/examples/cobweb_cluster_mushroom.html

Probabilistic Model-Based Clustering

Cluster analysis is to find hidden categories.

A hidden category (i.e., *probabilistic cluster*) is a distribution over the data space, which can be mathematically represented using a probability density function (or distribution function).

- Ex. 2 categories for digital cameras sold
 - consumer line vs. professional line
 - density functions f₁, f₂ for C₁, C₂
 - obtained by probabilistic clustering

- A mixture model assumes that a set of observed objects is a mixture of instances from multiple probabilistic clusters, and conceptually each observed object is generated independently
- Out task: infer a set of k probabilistic clusters that is mostly likely to generate D
 using the above data generation process

COBWEB Clustering Method

A classification tree

COBWEB in Weka

More on Conceptual Clustering

- Limitations of COBWFB
 - The assumption that the attributes are independent of each other is often too strong because correlation may exist
 - Not suitable for clustering large database data skewed tree and expensive probability distributions
- CLASSIT
 - an extension of COBWEB for incremental clustering of continuous data
 - suffers similar problems as COBWEB
- AutoClass (Cheeseman and Stutz, 1996)
 - Uses Bayesian statistical analysis to estimate the number of clusters

Distance Metrics – Numeric Variables

- Numeric quantity
 - Interval-scaled variables: continuous measurements of a roughly linear scale.
- Standardize with mean absolute deviation
 - $s_f = (1/n) * (|x_{1f} m_f| + ... + |x_{1f} m_f|)$
 - s_{nf} and m_f are measurements and mean, respectively
 - $z_{if} = (x_{if} m_f) / s_f$

Examples: weight, height, latitude, longitude, temperature

- Distances for numbers
 - Euclidean: $d(i,j) = \text{square root} \left(|x_{i1} x_{i1}|^2 + ... + |x_{ip} x_{ip}|^2 \right)$, for p-dimensional data
 - Manhattan: $d(i,j) = |x_{i1} x_{j1}| + ... + |x_{ip} x_{jp}|$, for p-dimensional data
 - Minlowski: 1/q root ($|x_{i1} x_{j1}|^q + ... + |x_{ip} x_{jp}|^q$), for p-dimensional data

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Distance Metrics – Binary Variables

	Object J			
		1	0	Sum
Object I	1	q	r	q+r
	0	S	t	s+t
	Sum	q+s	r+t	q+r+s+t

Contingency table for binary variables

- Notation
 - q: number of binary variables that equal 1 for both objects I and J
- Distance between objects by matching
- •d(I, J) = (r + s) / (q + r + s + t)

Examples:

Smoker/ non-smoker, electric v/s non-electric car

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Distance Metrics – Nominal Variables

- Notation
 - m: number of matches in values of nominal variables between objects I and J
 - M: total number of variables
- Distance between objects defined by matching
- •d(I, J) = (p m) / (p)

Examples:

map-color - red, yellow, green, pink, blue

Distance Metrics – Ordinal Variables

- Conversion and notation
 - $z_{if} = (r_{if} 1) / (M_{if} 1)$
 - variable f of i-th object has 1..M_f states in that order
- Now reuse distances for numbers
 - Euclidean: $d(i,j) = \text{square root} \left(|x_{i1} x_{j1}|^2 + ... + |x_{ip} x_{jp}|^2 \right)$, for p-dimensional data
 - Manhattan: $d(i,j) = |x_{i1} x_{j1}| + ... + |x_{ip} x_{jp}|$, for p-dimensional data
 - Minlowski: 1/q root ($|x_{i1} x_{i1}|^q + ... + |x_{ip} x_{ip}|^q$), for p-dimensional data

Examples:

professor ranks – assistant, associate, full Medals – bronze, silver, gold Military - ...

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Distance for Mixed Variable Types

- Keep separate and perform cluster analysis separately
 - Impractical
- Combine them into one scale between 0 to 1

• d(i,j) =
$$\frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- Where $\delta_{ij}^{(f)}$ is 0 if x_{if} or x_{if} are missing, otherwise 1
- There can be a weighted variation too

Exercise - 1

- Consider clustering of days
 - What are some possible groups?
 - What features make sense?
 - What distances make sense?

Exercise - 2

Consider clustering of documents, like resumes, into groups

- What are some possible groups?
 - By areas: Technology, finance, services, manufacturing, ...
- What features make sense?
 - Syntactic: Words, sentiments, ...
 - Semantic: qualification, experience, ...
- What distances make sense?

Clustering Quality

Case A: Ground Truth is Known

- homogeneity: each cluster contains only members of a single class.
- completeness: all members of a given class are assigned to the same cluster
- Example:
 - true labels = [0, 0, 0, 1, 1, 1]
 - P1: Predicted labels = [0, 0, 1, 1, 2, 2]
 - P2: Predicted labels = [0, 0, 0, 2, 2, 2]
- In example P1, informally
 - Homogeneity (Predicted) 1 has members of 0 and 1
 - Completeness (Actual) 0 is assigned to 0 and 1, (Actual) 1 is assigned 1 and 2

Note: P2 is homogeneous and complete

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

Case A: Ground Truth is Known

- homogeneity: each cluster contains only members of a single class.
- completeness: all members of a given class are assigned to the same cluster
- v-measure

$$v = rac{(1 + eta) imes ext{homogeneity} imes ext{completeness}}{(eta imes ext{homogeneity} + ext{completeness})}$$

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

Case B: Ground Truth is Unknown

Silhouette Coefficient

- a: The mean distance between a sample and all other points in the same class.
- **b**: The mean distance between a sample and all other points in the *next nearest cluster*.

The Silhouette Coefficient s for a single sample is then given as:

$$s = \frac{b-a}{max(a,b)}$$

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

Question: can you calculate when all data is in one cluster?

-1: incorrect clustering+1: highly dense clustering.Scores around zero indicate overlapping clusters.

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html # clustering-performance-evaluation

Case B: Ground Truth is Unknown

Davies-Bouldin Index

- s_i , the average distance between each point of cluster i and the centroid of that cluster also know as cluster diameter.
- d_{ij} , the distance between cluster centroids i and j.

A simple choice to construct R_{ij} so that it is nonnegative and symmetric is:

$$R_{ij} = rac{s_i + s_j}{d_{ij}}$$

Then the Davies-Bouldin index is defined as:

$$DB = rac{1}{k} \sum_{i=1}^k \max_{i
eq j} R_{ij}$$

0: best 1: worst

Limitation: Needs euclidean distances

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html # clustering-performance-evaluation

Measuring Clustering Quality

- •Two methods: extrinsic vs. intrinsic
- •Extrinsic: supervised, i.e., the ground truth is available
 - Compare a clustering against the ground truth using certain clustering quality measure
 - Ex. Recall precision and recall metrics in classification
- •Intrinsic: unsupervised, i.e., the ground truth is unavailable
 - Evaluate the goodness of a clustering by considering how well the clusters are separated, and how compact the clusters are
 - Fx. Silhouette coefficient

Measuring Clustering Quality: Extrinsic Methods

- •Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g .
- Q is good if it satisfies the following 4 essential criteria
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a rag bag (i.e., "miscellaneous" or "other" category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Summary

- •Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- •K-means and K-medoids algorithms are popular partitioning-based clustering algorithms
- Birch and Chameleon are interesting hierarchical clustering algorithms, and there are also probabilistic hierarchical clustering algorithms
- •DBSCAN, OPTICS, and DENCLU are interesting density-based algorithms
- •STING and CLIQUE are grid-based methods, where CLIQUE is also a subspace clustering algorithm
- Quality of clustering results can be evaluated in various ways

Code Examples

- Clustering quality
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l10-11-unsupervised-ml/clustering-quality-measures.ipynb
- Clustering methods
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l10-11-unsupervised-ml/Cluster-exploration-syntheticdata.ipynb

Exercise: Weka

- Pick a data-set with at least 5 attributes
- Cluster with 2 methods
- Review cluster quality

Explaining Clusters

- How to describe them?
 - Centroid
 - Exemplars
- What name to give them?
 - Using features of the members
 - Algorithm may produce (Concept Clustering)
- Explanations can be based on domain specific rules

Lecture 11: Concluding Comments

- Clustering: More method
- Distance metrics
- Measuring cluster quality
- Explaining / describing clusters

Concluding Segment

About Next Lecture – Lecture 12

Lecture 12: Unsupervised Learning

- Advanced ML topics
 - AutoAl automating machine learning pipeline
 - Generating explanations
- Quiz 2
- Reading exercise: AutoAl paper
 - Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools; https://arxiv.org/abs/1908.05557, 2019
 - Discuss in class on Feb 23, 2020