Bios 6301: Assignment 6

Yudong Cao

Due Thursday, 1 December, 1:00 PM $5^{n=day}$ points taken off for each day late.

50 points total.

Submit a single knitr file (named homework6.rmd), along with a valid PDF output file. Inside the file, clearly indicate which parts of your responses go with which problems (you may use the original homework document as a template). Add your name as author to the file's metadata section. Raw R code/output or word processor files are not acceptable.

Failure to name file homework6.rmd or include author name may result in 5 points taken off.

Question 1

15 points

Consider the following very simple genetic model (*very* simple – don't worry if you're not a geneticist!). A population consists of equal numbers of two sexes: male and female. At each generation men and women are paired at random, and each pair produces exactly two offspring, one male and one female. We are interested in the distribution of height from one generation to the next. Suppose that the height of both children is just the average of the height of their parents, how will the distribution of height change across generations?

Represent the heights of the current generation as a dataframe with two variables, m and f, for the two sexes. We can use **rnorm** to randomly generate the population at generation 1:

```
pop <- data.frame(m = rnorm(100, 160, 20), f = rnorm(100, 160, 20))
```

The following function takes the data frame pop and randomly permutes the ordering of the men. Men and women are then paired according to rows, and heights for the next generation are calculated by taking the mean of each row. The function returns a data frame with the same structure, giving the heights of the next generation.

```
next_gen <- function(pop) {
    pop$m <- sample(pop$m)
    pop$m <- rowMeans(pop)
    pop$f <- pop$m
    pop</pre>
```

Use the function <code>next_gen</code> to generate nine generations (you already have the first), then use the function <code>hist</code> to plot the distribution of male heights in each generation (this will require multiple calls to <code>hist</code>). The phenomenon you see is called regression to the mean. Provide (at least) minimal decorations such as title and x-axis labels.

```
par(mfrow=c(3,3))
gen_1 <- data.frame(m = rnorm(100, 160, 20), f = rnorm(100, 160, 20))
hist(gen_1$m,main=paste("male heights in generation 1"),xlim=c(100,200),xlab="male height",ylab="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequence="frequenc
```

```
gen_3 <- next_gen(gen_2)</pre>
hist(gen_3$m, main=paste("male heights in generation 1"), xlim=c(100,200), xlab="male height", ylab="freque:
gen_4 <- next_gen(gen_3)</pre>
hist(gen_4$m,main=paste("male heights in generation 1"),xlim=c(100,200),xlab="male height",ylab="freque:
gen_5 <- next_gen(gen_4)</pre>
hist(gen_5$m, main=paste("male heights in generation 1"), xlim=c(100,200), xlab="male height", ylab="freque:
gen_6 <- next_gen(gen_5)</pre>
hist(gen 6$m, main=paste("male heights in generation 1"), xlim=c(100,200), xlab="male height", ylab="freque:
gen_7 <- next_gen(gen_6)</pre>
hist(gen_7$m,main=paste("male heights in generation 1"),xlim=c(100,200),xlab="male height",ylab="freque:
gen_8 <- next_gen(gen_7)</pre>
hist(gen_8$m, main=paste("male heights in generation 1"), xlim=c(100,200), xlab="male height", ylab="freque:
gen_9 <- next_gen(gen_8)</pre>
hist(gen_9$m,main=paste("male heights in generation 1"),xlim=c(100,200),xlab="male height",ylab="freque:
   male heights in generation 1
                                     male heights in generation 1
                                                                        male heights in generation 1
requency
                                      20
       100
               140
                       180
                                         100
                                                 140
                                                         180
                                                                           100
                                                                                   140
                                                                                           180
              male height
                                                male height
                                                                                  male height
    male heights in generation 1
                                     male heights in generation 1
                                                                        male heights in generation 1
requency
    25
E
                                                                        20
       100
               140
                       180
                                         100
                                                 140
                                                         180
                                                                           100
                                                                                   140
                                                                                           180
              male height
                                                male height
                                                                                  male height
   male heights in generation 1
                                     male heights in generation 1
                                                                        male heights in generation 1
requency
                                      20
                                                                        25
    20
                                      0
       100
               140
                       180
                                         100
                                                 140
                                                         180
                                                                                   140
                                                                                           180
                                                                           100
```

Question 2

male height

10 points

Use the simulated results from question 1 to reproduce (as closely as possible) the following plot in ggplot2.

male height

male height

```
library(ggplot2)
gen <- rbind(gen_1,gen_2,gen_3,gen_4,gen_5,gen_6,gen_7,gen_8,gen_9)
gennb <- c(rep(1:9,each=100))
gen <- cbind(gen,gennb)
ggplot(gen) + geom_point(mapping=aes(m,f),alpha=1/7) + facet_wrap(~gennb)</pre>
```


Figure 1: generations plot

Question 3

10 points

You calculated the power of a study design in question #2 of assignment 3. The study has two variables, treatment group and outcome. There are two treatment groups (0, 1) and they should be assigned randomly with equal probability. The outcome should be a random normal variable with a mean of 60 and standard deviation of 20. If a patient is in the treatment group, add 5 to the outcome.

Starting with a sample size of 250, create a 95% bootstrap percentile interval for the mean of each group. Then create a new bootstrap interval by increasing the sample size by 250 until the sample is 2500. Thus you will create a total of 10 bootstrap intervals. Each bootstrap should create 1000 bootstrap samples. (4 points)

```
df<-data.frame(numeric(0),numeric(0),numeric(0),numeric(0),numeric(0),numeric(0))
for(n in seq(250,2500,by=250)) {
   trt<-rbinom(n,1,.5)
   out<-rnorm(n,60,20)+5*trt
   dat<-data.frame(trt,out)
   m<-1000
   bootstrap<-data.frame(numeric(m),numeric(m))
   for (j in 1:m) {
      bootstrap[j,1]<-mean(sample(dat$out[trt==0],n,replace=T))
      bootstrap[j,2]<-mean(sample(dat$out[trt==1],n,replace=T))
   }
   q0<-quantile(bootstrap[,1],probs=c(.025,.5,.975))
   q1<-quantile(bootstrap[,2],probs=c(.025,.5,.975))
   qt<-c(n,q0,q1)</pre>
```

```
df<-rbind(df,qt)
}
colnames(df)<-c('n','2.5% ctrl','50% ctrl','97.5% ctrl','2.5% trt','50% trt','97.5% trt')</pre>
```

Produce a line chart that includes the bootstrapped mean and lower and upper percentile intervals for each group. Add appropriate labels and a legend. (6 points)

You may use base graphics or ggplot2. It should look similar to this (in base).

Figure 2: bp interval plot

```
makeTransparent = function(..., alpha=0.5) {
  if(alpha<0 | alpha>1) stop("alpha must be between 0 and 1")
```

```
alpha = floor(255*alpha)
  newColor = col2rgb(col=unlist(list(...)), alpha=FALSE)
  .makeTransparent = function(col, alpha) {
    rgb(red=col[1], green=col[2], blue=col[3], alpha=alpha, maxColorValue=255)
  newColor = apply(newColor, 2, .makeTransparent, alpha=alpha)
  return(newColor)
par(new=FALSE)
plot(NULL,
 xlim=c(1, 10),
  ylim=c(50, 75),
 xlab="",
 ylab=""
lines(df[,'n']/250,df[,'50% ctrl'])
lines(df[,'n']/250,df[,'50% trt'])
polygon(x=c(rev(df[,'n']/250),df[,'n']/250),
        y=c(rev(df[,'97.5% ctrl']),df[,'2.5% ctrl']), border=NA, col=makeTransparent('blue',alpha=0.5))
polygon(x=c(rev(df[,'n']/250),df[,'n']/250),
        y=c(rev(df[,'97.5% trt']),df[,'2.5% trt']), border=NA, col=makeTransparent('red',alpha=0.5))
```


Here's an example of how you could create transparent shaded areas.

```
makeTransparent = function(..., alpha=0.5) {
  if(alpha<0 | alpha>1) stop("alpha must be between 0 and 1")
  alpha = floor(255*alpha)
  newColor = col2rgb(col=unlist(list(...)), alpha=FALSE)
  .makeTransparent = function(col, alpha) {
    rgb(red=col[1], green=col[2], blue=col[3], alpha=alpha, maxColorValue=255)
  }
  newColor = apply(newColor, 2, .makeTransparent, alpha=alpha)
  return(newColor)
```


Question 4

15 points

Programming with classes. The following function will generate random patient information.

```
makePatient <- function() {
   vowel <- grep("[aeiou]", letters)
   cons <- grep("[^aeiou]", letters)
   name <- paste(sample(LETTERS[cons], 1), sample(letters[vowel], 1), sample(letters[cons], 1), sep='')
   gender <- factor(sample(0:1, 1), levels=0:1, labels=c('female', 'male'))
   dob <- as.Date(sample(7500, 1), origin="1970-01-01")
   n <- sample(6, 1)
   doa <- as.Date(sample(1500, n), origin="2010-01-01")
   pulse <- round(rnorm(n, 80, 10))
   temp <- round(rnorm(n, 98.4, 0.3), 2)
   fluid <- round(runif(n), 2)
   list(name, gender, dob, doa, pulse, temp, fluid)
}</pre>
```

1. Create an S3 class medicalRecord for objects that are a list with the named elements name, gender, date_of_birth, date_of_admission, pulse, temperature, fluid_intake. Note that an individual patient may have multiple measurements for some measurements. Set the RNG seed to 8 and create a medical record by taking the output of makePatient. Print the medical record, and print the class of the medical record. (5 points)

```
set.seed(8)
c<-makePatient()</pre>
names(c)<-list('name', 'gender', 'date_of_birth', 'date_of_admission', 'pulse', 'temperature', 'fluid_i</pre>
class(c)<-'medicalRecord'</pre>
print(c)
## $name
## [1] "Mev"
##
## $gender
## [1] male
## Levels: female male
##
## $date_of_birth
## [1] "1976-08-09"
##
## $date_of_admission
## [1] "2011-03-14" "2013-10-30" "2013-02-27" "2012-08-23" "2011-11-16"
##
## $pulse
## [1] 67 81 95 74 81
## $temperature
## [1] 98.33 98.16 99.00 98.49 98.67
##
## $fluid_intake
## [1] 0.62 0.93 0.18 0.39 0.34
##
## attr(,"class")
## [1] "medicalRecord"
attributes(c)
## $names
## [1] "name"
                             "gender"
                                                  "date_of_birth"
## [4] "date_of_admission" "pulse"
                                                  "temperature"
## [7] "fluid intake"
##
## $class
## [1] "medicalRecord"
```

2. Write a medicalRecord method for the generic function mean, which returns averages for pulse, temperature and fluids. Also write a medicalRecord method for print, which employs some nice formatting, perhaps arranging measurements by date, and plot, that generates a composite plot of measurements over time. Call each function for the medical record created in part 1. (5 points)

```
mean.medicalRecord<-function(x) {</pre>
  mean.pulse<-mean(x$pulse)</pre>
  mean.temperature<-mean(x$temperature)</pre>
  mean.fluids<-mean(x$fluid_intake)</pre>
  return(c(mean.pulse,mean.temperature,mean.fluids))
mean.medicalRecord(c)
## [1] 79.600 98.530 0.492
print.medicalRecord<-function(x) {</pre>
  cat(sprintf("name: %s\ngender: %s\ndate of birth: %s",
               x$name, x$gender, x$date_of_birth), "\n")
  date<-as.data.frame(x[4:7])</pre>
  date.order<-date[order(date[,1]),]</pre>
  return(date.order)
}
print.medicalRecord(c)
## name: Mev
## gender: male
## date of birth: 1976-08-09
     date_of_admission pulse temperature fluid_intake
##
## 1
            2011-03-14
                           67
                                     98.33
                                                    0.62
## 5
             2011-11-16
                           81
                                     98.67
                                                     0.34
## 4
             2012-08-23
                           74
                                     98.49
                                                    0.39
## 3
             2013-02-27
                           95
                                     99.00
                                                    0.18
## 2
            2013-10-30
                           81
                                     98.16
                                                    0.93
plot.medicalRecord<-function(x) {</pre>
  par(mfrow=c(1,3))
  plot(x$date_of_admission,x$pulse)
  plot(x$date_of_admission,x$temperature)
  plot(x$date_of_admission,x$fluid_intake)
plot.medicalRecord(c)
```


3. Create a further class for a cohort (group) of patients, and write methods for mean and print which, when applied to a cohort, apply mean or print to each patient contained in the cohort. Hint: think of this as a "container" for patients. Reset the RNG seed to 8 and create a cohort of ten patients, then show the output for mean and print. (5 points)

```
set.seed(8)
mean.medicalRecord<-function(x) {
    mean.pulse<-mean(x$pulse)
    mean.temperature<-mean(x$temperature)
    mean.fluids<-mean(x$fluid_intake)
    return(c(mean.pulse,mean.temperature,mean.fluids))
}
for (i in 1:10) {
    cohort_i<-makePatient()
    class(cohort_i)<-'medicalRecord'
    names(cohort_i)<-list('name', 'gender', 'date_of_birth', 'date_of_admission', 'pulse', 'temperature',
    print(print(cohort_i))
    print(c('mean:',mean.medicalRecord(cohort_i)))
}</pre>
```

```
## name: Mev
   gender: male
##
  date of birth: 1976-08-09
##
     date_of_admission pulse temperature fluid_intake
## 1
            2011-03-14
                                     98.33
                            67
                                                    0.62
## 5
            2011-11-16
                            81
                                     98.67
                                                    0.34
                            74
## 4
            2012-08-23
                                     98.49
                                                    0.39
## 3
            2013-02-27
                            95
                                     99.00
                                                    0.18
                                                    0.93
## 2
            2013-10-30
                            81
                                     98.16
```

```
## [1] "mean:" "79.6" "98.53" "0.492"
## name: Yul
## gender: male
## date of birth: 1988-06-28
## date_of_admission pulse temperature fluid_intake
## 1
           2012-01-16
                        76
                                  98.92
                                                 0.14
## 2
            2013-08-07
                          80
                                   98.07
                                                 0.35
## [1] "mean:" "78"
                         "98.495" "0.245"
## name: Zet
## gender: female
## date of birth: 1970-06-13
   date_of_admission pulse temperature fluid_intake
## 6
           2010-03-21
                          79
                                   98.58
                                                 0.22
## 5
           2010-04-01
                          73
                                   98.32
                                                 0.61
## 4
           2012-08-29
                          88
                                   98.47
                                                 0.59
## 3
            2013-06-01
                          84
                                   98.22
                                                 0.25
## 1
            2013-11-03
                          72
                                   98.54
                                                 0.03
## 2
            2014-02-05
                          93
                                   98.51
                                                 0.72
## [1] "mean:"
                           "81.5"
                                               "98.44"
## [4] "0.40333333333333333333
## name: Qih
## gender: female
## date of birth: 1987-08-30
## date_of_admission pulse temperature fluid_intake
## 1
            2011-06-22 78
                                    98.6
                                                 0.65
## [1] "mean:" "78" "98.6" "0.65"
## name: Wut
## gender: male
## date of birth: 1974-06-28
    date_of_admission pulse temperature fluid_intake
## 3
            2010-04-12
                          76
                                   98.05
                                                 0.65
## 1
            2011-02-16
                          93
                                   98.26
                                                 0.97
## 2
                          96
            2012-04-12
                                   97.84
                                                 0.14
## [1] "mean:"
                           "88.333333333333" "98.05"
## [4] "0.5866666666667"
## name: Juy
## gender: male
## date of birth: 1983-06-09
## date_of_admission pulse temperature fluid_intake
## 4
                                   99.11
           2010-03-10
                                                 0.66
                          81
## 1
           2010-03-25
                          90
                                   98.58
                                                 0.26
## 3
           2010-04-18
                          75
                                   98.58
                                                 0.60
            2010-06-10
                          88
                                   97.53
                                                 0.29
## [1] "mean:" "83.5"
                         "98.45" "0.4525"
## name: God
## gender: female
## date of birth: 1990-02-12
## date_of_admission pulse temperature fluid_intake
            2010-03-12
                          83
                                   98.01
                                                 0.97
## [1] "mean:" "83"
                       "98.01" "0.97"
## name: Fut
## gender: male
## date of birth: 1970-01-11
## date of admission pulse temperature fluid intake
```

```
## 5
           2011-04-07
                                97.87
                                              0.36
                      80
## 4
           2011-04-14 83
                                97.91
                                              0.00
## 2
          2011-08-16 66
                                98.49
                                              0.13
## 1
           2013-03-15
                        74
                                98.38
                                              0.31
## 6
           2013-06-20
                        74
                                98.41
                                              0.49
           2013-11-12
                                97.83
## 3
                      88
                                              0.73
## [1] "mean:"
                       "77.5"
                                            "98.1483333333333"
## [4] "0.33666666666667"
## name: Pet
## gender: male
## date of birth: 1979-01-01
## date_of_admission pulse temperature fluid_intake
## 1
      2010-10-30 85
                           98.84
                                             0.60
## 2
         2012-05-10 69
                                98.82
                                              0.29
## [1] "mean:" "77" "98.83" "0.445"
## name: Yed
## gender: male
## date of birth: 1977-11-11
## date_of_admission pulse temperature fluid_intake
          2010-01-28 63
                           97.95
## 4
## 3
                      81
           2010-03-06
                                98.45
                                              0.67
## 1
           2010-07-10
                      98
                                98.65
                                              0.79
## 6
           2010-08-27
                      66
                                97.68
                                              0.36
## 5
           2011-06-18
                        83
                                98.00
                                              0.69
## 2
           2013-01-06
                        85
                                 99.07
                                              0.50
## [1] "mean:"
                       "79.3333333333333" "98.3"
## [4] "0.65833333333333333333
```