Задача 1. а) Докажите, что в любом бесконечном множестве найдется счётное подмножество; **6)** Докажите, что множество M бесконечно тогда и только тогда, когда оно равномощно множеству, полученному из M удалением одного элемента.

Задача 2. Равномощны ли множества точек:

- а) интервал и отрезок;
- б) полуокружность и прямая;
- в) интервал и прямая;
- **г)** два круга;
- д) окружность и треугольник;
- е) квадрат и плоскость;
- ж) квадрат и круг;
- з) отрезок и счётное объединение непересекающихся отрезков?

(Замечание: квадрат в этом листке — это квадрат с внутренностью, например множество точек (x,y), где $0 \le x,y \le 1$.)

Задача 3. Из бесконечного множества M удалили некоторое счётное множество и получили бесконечное множество M'. Докажите, что M и M' равномощны.

Задача 4. Равномощно ли множество иррациональных чисел множеству всех действительных чисел?

Задача 5. Равномощно ли множество всех лучей множеству всех окружностей (на плоскости)?

Задача 6. Докажите, что множество S бесконечных последовательностей из 0 и 1, множество всех подмножеств множества \mathbb{N} и множество бесконечных вправо и вниз таблиц из 0 и 1 равномощны.

Задача 7. а) Дана бесконечная вправо и вниз таблица из 0 и 1. Покажите, как по этой таблице составить бесконечную строку из 0 и 1, которая не совпадёт ни с одной из строк таблицы.

(Указание: надо, чтобы новая строка отличалась от каждой строки таблицы хотя бы в одном месте.)

б) Докажите, что множество бесконечных последовательностей из 0 и 1 *несчётно*: бесконечно, но не является счётным.

(Говорят, что множества из предыдущей задачи имеют мощность континуум).

Задача 8. Пусть S — множество из задачи 6. Докажите, что множества S и $S \times S$ равномощны.

Задача 9. Докажите, что множество всевозможных прямых на плоскости равномощно множеству точек этой плоскости.

Задача 10*. Докажите, что множество точек любого отрезка равномощно

- а) множеству S задачи 6;
- б) множеству точек квадрата;
- в) множеству точек куба.

Задача 11*. Пусть A — счётное множество, M — некоторое множество подмножеств A. Известно, что из любых двух элементов M один есть подмножество другого. Обязательно ли M счётно?

Задача 12*. ($Teopema\ Kahmopa-Бернштейна$) Если множество A равномощно подмножеству множества B и множество B равномощно подмножеству множества A, то A и B равномощны.

Задача 13*. Отрезок представлен в виде объединения двух множеств. Докажите, что одно из этих множеств равномощно отрезку. (*Указание:* отрезок равномощен квадрату.)

Задача 14*. Докажите, что множества задачи 6 равномощны

- a) множеству взаимно однозначных соответствий между N и N;
- б) множеству бесконечных последовательностей натуральных чисел.

Интересный трудный факт. Из любых двух множеств одно равномощно подмножеству другого.

1 a	1 6	2 a	2 6	2 B	2 Г	2 д	2 e	2 ж	2 3	3	4	5	6	7 a	7 б	8	9	10 a	10 6	10 B	11	12	13	14 a	14 б