

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture 5: Decision Trees (continued),
Interpretation and evaluation
of Decision Trees,
Advanced Decision Trees

CS 422 vgurbani@iit.edu

Tree Induction

- Now that we know how to construct a Decision Tree ... let's see how to split the records at each level.
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - How to split the records?
 - Specify attribute test condition
 - How to determine the best split?
 - When to stop splitting.

Tree Induction: Specify attribute test conditions

- Depends on attribute type
 - Binary (simple: 2-way split)
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - N-way split

Tree Induction: Specify attribute test conditions

Nominal attributes

Multi-way split: Use as many partitions as there are distinct values.

Binary split: Divides values in two subsets; need to find optimal partitioning.

Tree Induction: Specify attribute test conditions

Continuous attributes

Single

Yes

- Discretize: That is, convert from continuous to binary, or n-ary.
 - How: Step 1: Sort the data
 - Step 2: Split them by specifying n-1 split points and bin them by frequency of response variable.

- Entropy: Amount of uncertainty involved in the value of a random variable, or the measure of disorder in a system.
- Entropy is defined as: $H(Y) = -\sum_{i=0}^{s-1} P(Y = y_i) \log_2 P(Y = y_i)$ where y_i is the class label.

Example:

Ţid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\sum_{i=0}^{c-1} P(Y = y_i) \log_2 P(Y = y_i)$$

At the root node of the tree, Entropy is calculated as follows:

$$H(Y) = -\left[\frac{7}{10}\log_2\frac{7}{10} + \frac{3}{10}\log_2\frac{3}{10}\right] = 0.88$$

- In decision tree algorithms, entropy measures purity.
 - Purity is defined as the fraction of observations belonging to a particular class in a node.
 - If all observations belong to the same class, we have a pure node → when we have a pure node, we minimize entropy.

- Measures of node impurity
 - Gini index (used by CART, and rpart)
 - **Entropy**
 - Misclassification error

At p = 0.5, maximum impurity when p = 0 or 1, distribution is **pure** (or minimum impurity)

CS 422 vgurbani@iit.edu

- Related to entropy is Information.
- Entropy: Amount of uncertainty involved in the value of a random variable, or the measure of disorder in a system.

 Dictionary
- Information is →
- So, informally, information is the opposite of entropy.

 We want to maximize Information, or Information Gain (IG) while minimizing entropy.

- When we split, key question we want to answer is:
 - How much "information" does an attribute give us about the class?
 - Attributes that perfectly partition the observations should give us maximal information (pure partitions).
 - Unrelated attributes should give no (or very little) information.
- So we need to choose the split that maximizes
 Information Gain (IG) while minimizing entropy
 after the split.

Information Gain = Entropy before the split – Entropy after the split.

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\sum_{i=0}^{c-1} P(Y = y_i) \log_2 P(Y = y_i)$$

At the root node of the tree, Entropy is calculated as follows:

$$H(Y) = -\left[\frac{7}{10}\log_2\frac{7}{10} + \frac{3}{10}\log_2\frac{3}{10}\right] = 0.88$$

Ţid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\sum_{i=0}^{c-1} P(Y = y_i) \log_2 P(Y = y_i)$$

At the root node of the tree, Entropy is calculated as follows:

$$H(Y) = -\left[\frac{7}{10}\log_2\frac{7}{10} + \frac{3}{10}\log_2\frac{3}{10}\right] = 0.88$$

Question is: What do we split on now?

- Homeowner?
- Marital Status?
- Annual Income?

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\sum_{i=0}^{c-1} P(Y = y_i) \log_2 P(Y = y_i)$$

At the root node of the tree, Entropy is calculated as follows:

$$H(Y) = -\left[\frac{7}{10} \log_2 \frac{7}{10} + \frac{3}{10} \log_2 \frac{3}{10}\right] = 0.88$$

Let's see what's the IG if we split on Homeowner attribute.

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No

$$H(Y) = -\left[\frac{0}{3}\log_2\frac{0}{3} + \frac{3}{3}\log_2\frac{3}{3}\right] = 0.0$$

Tid	Home owner		Annual Income	Defaulted?
2	No	Married	100K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\left[\frac{4}{7}\log_2\frac{4}{7} + \frac{3}{7}\log_2\frac{3}{7}\right] = 0.99$$

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\sum_{i=0}^{c-1} P(Y = y_i) \log_2 P(Y = y_i)$$

At the root node of the tree, Entropy is calculated as follows:

$$H(Y) = -\left[\frac{7}{10}\log_2\frac{7}{10} + \frac{3}{10}\log_2\frac{3}{10}\right] = 0.88$$

Let's see what's the IG if we split on Homeowner attribute.

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
4	Yes	Married	120K	No
7	Yes	Divorced	220K	No
H(Y)	= -[$\left[\frac{0}{3} log_2 \frac{0}{3}\right]$	$+\frac{3}{3} la$	$g_2 \frac{3}{3} =$

٠	Tid	Home owner	Marital Status	Annual Income	Defaulted?
	2	No	Married	100K	No
	3	No	Single	70K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

$$H(Y) = -\left[\frac{4}{7}\log_2\frac{4}{7} + \frac{3}{7}\log_2\frac{3}{7}\right] = 0.99$$

Now calculate the conditional entropy H(Y|X), or the remaining entropy of Y given X:

$$H(Defaulted|Homeowner) = \frac{3}{10} * 0 + \frac{7}{10} * 0.99 = 0.69$$

Tid	Home owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\sum_{i=0}^{c-1} P(Y = y_i) \log_2 P(Y = y_i)$$

At the root node of the tree, Entropy is calculated as follows:

$$H(Y) = -\left[\frac{7}{10}\log_2\frac{7}{10} + \frac{3}{10}\log_2\frac{3}{10}\right] = 0.88$$

Let's see what's the IG if we split on Homeowner attribute.

Tid	Home		Marital Status	Annual Income	Defaulted?
1	Yes		Single	125K	No
4	Yes		Married	120K	No
7	Yes		Divorced	220K	No
		Ð	Ð	3	3

$$H(Y) = -\left[\frac{0}{3}\log_2\frac{0}{3} + \frac{3}{3}\log_2\frac{3}{3}\right] = 0.0$$

Tid	Home owner	Marital Status	Annual Income	Defaulted?
2	No	Married	100K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$H(Y) = -\left[\frac{4}{7}\log_2\frac{4}{7} + \frac{3}{7}\log_2\frac{3}{7}\right] = 0.99$$

Now calculate the conditional entropy H(Y|X), or the remaining entropy of Y given X:

$$H(Defaulted|Homeowner) = \frac{3}{10} * 0 + \frac{7}{10} * 0.99 = 0.69$$

IG on splitting on Homeowner = Entropy before – Entropy after = 0.88 - 0.69 = 0.19

IG on splitting on Homeowner = Entropy before – Entropy after = 0.88 - 0.69 = 0.19

IG on splitting on Marital Status = Entropy before – Entropy after = 0.88 - 0.60 = 0.28

	{Single, Divorced}		Married	
-	Yes	3	Yes	0
	No	3	No	4

Entropy: 1 Entropy: 0 $H(Defaulted|MaritalStatus) = \frac{6}{10}*1.00 + \frac{4}{10}*0.00 = 0.60$

IG on splitting on Homeowner = Entropy before – Entropy after = 0.88 - 0.69 = 0.19

IG on splitting on Marital Status = Entropy before – Entropy after = 0.88 - 0.60 = 0.28

IG on splitting on Annual Income = Entropy before – Entropy after = 0.88 - 0.69 = 0.19

	{Single, Divorced}		Married	
-	Yes	3	Yes	0
	No	3	No	4

Entropy: 1 Entropy: 0 $H(Defaulted|MaritalStatus) = \frac{6}{10}*1.00 + \frac{4}{10}*0.00 = 0.60$

Income >= 80K		Income < 80K	
Yes	3	Yes	0
No	4	No	3

Entropy: 0.99 Entropy: 0 $H(Defaulted|Income) = \frac{7}{10} * 0.99 + \frac{3}{10} * 0.00 = 0.69$

Decision Trees: Characteristics

- Non-parametric approach for classification.
- Finding an optimal decision tree is NPcomplete.
- Building a tree is computationally inexpensive; using it is O(log n), where n is number of nodes in the tree.
- Multicollinearity does not affect accuracy (though it will affect the height).

Decision Trees: Characteristics

Rectilinear decision boundaries.

Model selection

- Remember: model = algorithm + hypothesis
- When we select a model, we evaluate all steps in the procedure:
 - Preparing the training data;
 - Choose a hypothesis set and an algorithm;
 - Tune the algorithm
 - Train the model, fit the model to out of sample data (test set) and evaluate results.

Model selection

- Assume you have two models (regression and neural networks).
 Important question: Which model performs better on your dataset?
- Such evaluation metrics are motivated by two fundamental problems:
 - Model checking
 - All algorithms have hyper-parameters
 - -k in kNN
 - Weights, network size, ...
 - How do we select the optimal parameters for the model?
 - Performance estimation
 - How should we evaluate a model's goodness of fit?
- Goal of model selection: Select the <u>best</u> model from training phase.
- Problem: How do we define best? (The best model is also called the final model.)

Model selection

- Assume you have two models (regression and neural networks). Important question: Which model performs better on your dataset?
- Such evaluation metrics are motivated by two fundamental problems:
 - Model checking
 - All algorithms have hyper-parameters
 - k in kNN
 - Weights, network size, ...
 - How do we select the optimal parameters for the model?
 - Performance estimation
 - How should we evaluate a model's goodness of fit?
- Goal of model selection: Select the <u>best</u> model from training phase.
- Problem: How do we define best? (The best model is also called the final model.)
- The best model is the one that gives you the smallest prediction error (or minimizes the loss function) on the training set and generalizes well on the testing set.

- Given a dataset, you divide it into training and testing dataset.
 - Model is trained on the training dataset and evaluated on the test dataset.
- Problem with this?

- Given a dataset, you divide it into training and testing dataset.
 - Model is trained on the training dataset and evaluated on the test dataset.
- Problem with this?
 - What happens if you randomly select test points that are not representative of the population in general?
- Solution: Cross validation.

- Solution: Cross validation --- an approach to systematically create and evaluate multiple models on multiple subsets of the dataset.
- Cross validation approaches:
 - Holdout method.
 - k-fold cross validation.
 - Leave one out cross-validation (LOOC).

k-fold cross validation.

Split data into k chunks, train on k-1 chunks and test on the k^{th} chunk. Do this k times and calculate average error.

• LOOC: extreme version of k-fold, where k = 1. (1 observation, not chunk!)

for all *i* in {1..*n*}
train model on every point except *i*compute the test error at the held out point *i*average the test errors

Example:

Training Set				
Train Test				
Train	Test	Train		
Test	Train	Train		

• Use of *k*-fold or LOOC resampling methods more robust if the dataset is split into three parts:

 Typical application of these holdout methods is determining a stopping point with respect to error

Graphic source: Ricardo Gutierrez-Osuna, Wright State University

- Model = a particular classifier trained on a dataset, or informally, the target function.
- How to evaluate the performance of a model?
 - Confusion matrix: widely used measure.
 - Provides numerous metrics computed from the matrix (TPR, TNR, PPR)
 - Receiver Operating Characteristics (ROC) curve.
 - Characterize the trade-off between positive hits and false alarms
- Other performance metrics exist as well, but these are the most commonly used when evaluating model performance.
- Remember: Focus on the predictive capability of the model, not how long it takes to train (mostly offline), how fast it takes to classify (it shouldn't be too slow, of course).

- Population

- Population
- Samples in black are relevant elements

- Population
- Samples in black are relevant elements
- You do a search and select elements

- Population
- Samples in black are relevant elements
- You do a search and select elements

Confusion Matrix:

	Actual Class		
		Class = Yes	Class = No
Predicted	Class = Yes	TP	FP
Class	Class = No	FN	TN

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

From book; different format but same information as one on right.

Classification accuracy:
$$\frac{(TP+TN)}{(TP+TN+FP+FN)}$$

Error rate:
$$\frac{(FP + FN)}{(TP + TN + FP + FN)}$$

TPR (sensitivity, hit rate, $\overline{TP + FN}$ recall):

How many relevant items are selected

All actual positive observations in the test set

TNR (specificity):

$$\frac{TN}{TN + FP}$$

All actual negative observations in the test set

PPV (precision):

$$\frac{TP}{TP + FP}$$

How many selected items are relevant

	Actual Class		
		Class = Yes	Class = No
Predicted	Class = Yes	TP	FP
Class	Class = No	FN	TN

$$\mathrm{FNR} = rac{\mathrm{FN}}{\mathrm{P}} = rac{\mathrm{FN}}{\mathrm{FN} + \mathrm{TP}} = 1 - \mathrm{TPR}$$
 $\mathrm{FPR} = rac{\mathrm{FP}}{\mathrm{N}} = rac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}} = 1 - \mathrm{TNR}$

	Actual Class		
		Class = Yes	Class = No
Predicted	Class = Yes	TP	FP
Class	Class = No	FN	TN

In people with confirmed COVID-19, antigen tests correctly identified COVID-19 infection in an average of 72% of people with symptoms. In people who did not have COVID-19, antigen tests correctly ruled out infection in 99.5% of people with symptoms.

(Source: https://www.cochrane.org/CD013705/INFECTN how-accurate-are-rapid-tests-diagnosing-covid-19).

Q. Is this a good test?

TPR =
$$0.72$$
, FNR = $1 - \text{TPR} = 1 - 0.72 = 0.280$
TNR = 0.995 , FPR = $1 - \text{TNR} = 1 - 0.995 = 0.005$

CS 422 vgurbani@iit.edu

Why accuracy alone is not a good measure.

Consider a spam detector model.

	Actual Class			Totals
	Class = Yes Class = No		Class = No	
Predicted	Class = Yes	TP 0	FP 0	0
Class	Class = No	FN 25	TN 125	150
Totals:		25	125	150

Accuracy = ???

Why accuracy alone is not a good measure.

Consider a spam detector model.

	Actual Class			Totals
Class = Yes Class = No		Class = No		
Predicted	Class = Yes	TP 0	FP 0	0
Class	Class = No	FN 25	TN 125	150
Totals:		25	125	150

Accuracy = 125/150 = 83.3%!!
But sensitivity and precision are 0!