PC3130 W3L1 AY2024

Tuesday, 27 August 2024 9:46 am

Tutorial 1 - due to day

Tutorial 2 — ported today

Revision - Postulates of QM Reap

> (general) · Angular momentum

. Commuting o bserables (A, B)=0 =>] a set of common eigentates of & ê

· These common eigenstates can be labelled by their eizervalues or quantities (eg. vi, l, m) that are sufficient to tell you the eigenvalue.

· Orbital angular morrentum] = rxp · Addition of angular rismentum ٤ الم , Jz >

- hydrogen atom In Im> [H, L]] = [L, L] = [A, L] = 0 {H, L2, L23 is a CS(0 ignory spin

- . multi-election atom
- approximations enable us to also think about orbital angular momentum in multi- do them atoms

· [Li, Li] = its Eige Le defines any wher momentum

Approx - Born-Oppenheimer

- Central potential approx for multi-election atoms Si ingle particle approx

[J., J.] - it Eise J. ayular momestum. - generator of rotations Simplify integrals; selection rules topological physics, nonlinear optics, defect physics group theory (not examined) Chapter 6 Gniffiths (exapt 6.7-6.8) 3 types of symmetries will be considered 1) Inversion symmetry — if a system obeys invesion sym, we can find that 2) Tronslational symmetry - - " - translational sym., d=0 3) Rotational symmetry - _ n _ notational . , angular nuo mentum conserved. Inversion symmetry What is inversion? (spatial) . A spatial inversion is implemented by a parity operator T. ↑ : r ---> -r

If $\gamma(\vec{r})$ is an eigenstate $\hat{\eta}$, $\hat{\eta}(\vec{r}) = h(\vec{r})$, h is a scalar Note that $\hat{\eta}(\hat{\eta}(\vec{r})) = \hat{\eta}((\eta - \vec{r})) = \psi(\vec{r})$ for all ψ .

In particular, if $\hat{\eta}(\vec{r}) = h(\vec{r})$

What we the eigenvalues of Ti?

 $\hat{\pi} \ \Psi(\vec{r}) = \ \Psi(-\vec{r})$

In particular, if
$$\hat{\Pi} \varphi(\vec{r}) = h \varphi(\vec{r})$$

$$\hat{\Pi} \left(\hat{\Pi} \varphi(\vec{r}) \right) = \hat{\Pi} \left(h \varphi(\vec{r}) \right) = h \hat{\Pi} \varphi(\vec{r}) = h \left(h \varphi(\vec{r}) \right) = h \hat{\Pi} \varphi(\vec{r})$$
But LHS= $\varphi(\vec{r})$

Eigenstates of party special
$$\widehat{\Pi}$$
 obey
$$\widehat{\Pi}(\widehat{r}) = \varphi(-\widehat{r}) = \begin{cases} + \varphi(\widehat{r}) & (p = 1) & (\varphi \text{ is an even function}) \\ - \varphi(\widehat{r}) & (p = -1) & (\varphi \text{ is an odd function}) \end{cases}$$
(states with definite party)

$$\hat{\Pi} = \sum_{i} (1) |e_{i}\rangle\langle e_{i}| + \sum_{i} (-1) |\sigma_{i}\rangle\langle \sigma_{i}|$$

What does it mean for a system to have spatial inversion symmetry?

— Look at the Hamithonian

Eg.
$$\hat{H} = \frac{1}{2}m\omega^2\hat{x}^2$$
 ($x \rightarrow -x$; \hat{H} is not changed)

has inversion symmetry.

Counter-example.

$$f = \frac{1}{2} m \omega^2 \hat{\kappa}^2 + (-e) E \hat{\kappa}$$
 ($\kappa \longrightarrow -\kappa$; \hat{H} will change).
breaks investion symmetry.

Let's be more nigorous

A system has inversion symmetry if the Hamiltonian is uncharged by a parity transformation.

Transforming an operation

An operator Q transformed under Ti (giving Q') is defined as the operator Q' that gives the same expectation value in the untransformed state (4) as does the operator Q in the transformed state (Ti4).

in the transformed state $|\hat{\eta}+\rangle$.

ie. $\langle +|\hat{Q}'|+\rangle = \langle \hat{\eta}+|\hat{Q}|\hat{\eta}+\rangle$ $= \langle +|\hat{\eta}'|\hat{Q}|\hat{\eta}+\rangle$

True for all $|4\rangle$. $|\hat{Q}' = \hat{1}^{\dagger} \hat{Q} \hat{1}|$

A system has inversion symmetry if \widehat{H} is uncharged by the parity transformation, i.e. $\widehat{H} = \widehat{H}' = \widehat{\Pi}^{\dagger} \widehat{H} \widehat{\Pi}$,

Es. $\hat{H} = \hat{x}^2$. Check if $\hat{H} = \hat{H}'$.

13 <41 Â19> = <41 Â'19> for arbitrary 14>,19>.

LHS = $\int_{-\infty}^{\infty} dx \ \psi^{*}(x) \ \chi^{2} \ \varphi(x)$

RHS = <41 H'14>

= 〈41 行 分 14〉

= < 144 1174>

 $= \int_{-\infty}^{\infty} dx + (-x) x^{2} \varphi(-x)$

u=-x du=-dx $= \int_{-\infty}^{-\infty} (-du) \, (-u)^2 \, \varphi(u)$

 $= \int_{-\infty}^{\infty} du \ \Psi^{*}(u) \ u^{2} \ \varphi(u) = LHS$

So
$$\hat{H} = \hat{\lambda}^{\perp}$$
 obeys $\hat{H} = \hat{\Pi}^{\dagger} \hat{H} \hat{\Pi}$ (has inversion symmetry),

then $[\hat{\Pi}, \hat{H}] = 0$

and $\hat{H} = \hat{\Lambda}^{\dagger} \hat{H} \hat{\Pi}$ (has inversion symmetry),

then $[\hat{\Pi}, \hat{H}] = 0$

and $\hat{H} = \hat{\Lambda}^{\dagger} \hat{H} \hat{\Pi}$ (has inversion symmetry),

ie. $\hat{H} = \hat{\Lambda}^{\dagger} \hat{H} \hat{\Pi} \hat{\Pi}$ (has inversion symmetry)

— If these eigenstates are non-degenerate,

then they must have definite parity.

(e) $\hat{H} = \frac{1}{2} m \hat{N} \hat{N} \hat{\Pi} \hat{\Pi}$ — system has inversion symmetry (see above)

— Eigenstates are non-degenerate.

Thinking we need to show $[\hat{\Pi}, \hat{H}] = 0$.

Thinking we need to show $[\hat{\Pi}, \hat{H}] = 0$.

We have $\hat{H} = \hat{\Pi}^{\dagger} \hat{H} \hat{\Pi}$ (inversion symmetry)

LHS of (i): $\hat{\Pi} \hat{H} = \hat{\Pi}^{\dagger} \hat{H} \hat{\Pi}$ (inversion symmetry)

RHS of (ii): $\hat{H} \hat{H} \hat{\Pi}$ so for LHS=RHS we need $\hat{\Pi} \hat{\Pi}^{\dagger} = \hat{\Pi}$

so it is sufficient to show $\hat{\pi} = \hat{\pi}^{\dagger}$.

We will show that $\hat{\pi} = \hat{\Pi}^{\dagger}$.

we know $\hat{\pi}^2 = 1$

We will show that $\hat{\pi} = \hat{\Pi}^{\dagger}$.

ie. $\langle 4|\hat{\Pi}| \varphi \rangle = \langle 4|\hat{\Pi}^{\dagger}| \varphi \rangle$ for general $|4\rangle$, $|4\rangle$. = 194147 RHS = (77418) = 5 dx 4(-x) P(x) = \int (-du) 4*(u) 4-u) du = -dx = \int du 4 (u) \(\tau \) = (4/1747 = <41 7 14> = LHS. so fi=fit. $\hat{\Pi} = \hat{\Pi} \left(\hat{\Pi}^{\dagger} \hat{\Pi} \hat{\Pi} \right) = \hat{\Pi} \left(\hat{\Pi} \hat{\Pi} \hat{\Pi} \right) = \hat{\Pi} \hat{\Pi} \hat{\Pi} = \hat{\Pi} = \hat{\Pi} \hat{\Pi} = \hat{\Pi} \hat{\Pi} = \hat{\Pi} \hat{\Pi} = \hat{\Pi} = \hat{\Pi} \hat{\Pi} = \hat{$ 7 Hermitian → [元, 斤]=0 ~ Ĥ=元+斤元.

Summary - defined invesion/parity transformation of

- explained what it means for a system to have inversion symmetry
- Showed that [7], fi]=0 for systems with inversion symmetry.
 - of If I has non-degenerate eigenvaluer, the eigenstates of H are either odd or even. eg Harmonic Oscillatur.

Translation symmetry

y ,

Translation symmetry

· What is translation?

$$f'(x+1) = f(x)$$

 $f'(x) = f(x-1)$
 $= (x-1)^{2}$