```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
        using SSBR
In [2]:
        function getPos(ped,IDs)
            posAi = Array(Int64, size(IDs, 1))
            for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
            end
            return posAi
        end
Out[2]: getPos (generic function with 1 method)
In [3]: | ; cd Data/0.5a0/G/8
        /home/nicole/Jupyter/JG3/Data/0.5a0/G/8
In [4]:
        ;ls
        Correlation.G5.G.PBLUP.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.PBLUP.txt
        all.ID
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
```

```
;join -v1 all.ID genotype.ID > noGenotype.ID
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
 In [9]:
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [13]:
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ;join G0.ID genotype.ID > G0.Genotype.ID
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [18]:
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [21]:
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [23]:
In [24]:
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]:
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("GenNF.txt",numSSBayes)
         M Mats = make MMats(df, A Mats, ped, center=true);
                                                                                  # with
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J_Vecs = make_JVecs(numSSBayes,A_Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(J_Vecs,Z_Mats,M_Mats,numSSBayes)
                                                                                  # wit
         nothing
         vRes
                = 0.741
In [31]:
                = 0.741
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs,J Vecs,Z Mats,X Mats,W Mats,A Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2542.852166 seconds (23.06 G allocations: 724.005 GB, 7.62% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          4.3323
          0.461955
In [33]: using DataFrames
```

```
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: | IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.920
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.970
Out[35]: 0.9204625212828684
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: -0.126820069664077
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi], aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.983
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.048
Out[37]: 0.9833707420299354
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 1.1479882629801954
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.885
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.963
Out[39]: 0.8846328332872395
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: -0.4210066079666014
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.715
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.887
Out[41]: 0.7152089453755239
In [42]: GEBV = aHat1[posAi]
         G0GEBV=mean(GEBV)
Out[42]: -1.6215285926682155
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         req4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.782
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.989
Out[43]: 0.7820440143595487
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -0.9417318378267069
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ep
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.785
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.024
Out[45]: 0.7854754213332379
```

```
In [46]: | GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -0.34135092949505874
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with e;
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation =
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.999
Out[47]: 0.7654872646210837
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: 0.22330267966780282
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         req7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.779
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.993
Out[49]: 0.778932711386787
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: 0.7223909784619206
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ei
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.981
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.046
Out[51]: 0.9810509307253711
```

```
In [52]: | GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 1.1979972838757957
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation =
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 1.092
Out[53]: 0.9805147455621315
In [54]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[54]: -0.23088068562463376
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         req9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.981
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.057
Out[55]: 0.981200272033414
In [56]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[56]: 0.29100303865173777
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.976
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 1.039
Out[57]: 0.9757388787622868
```

```
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: 0.8082003321317086
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         corl1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.975
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.021
Out[59]: 0.9750247159891389
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: 1.2318873049210588
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.971
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.028
Out[61]: 0.9708846673164552
In [62]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[62]: 1.6393704889970908
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.981
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 1.046
Out[63]: 0.9810509307253711
In [64]: | writedlm("Correlation.G5.G.JC.txt",cor13)
```

```
In [65]: writedlm("Regression.G5.G.JC.txt",reg13)
In [66]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 5.482843125
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: 1.1979972838757957
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.693
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.889
Out[68]: 0.693336103024918
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: -1.6571862313103582
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.763
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.992
Out[70]: 0.7634815449788519
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: -0.9733404244030771
```

```
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.770
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.030
Out[72]: 0.7700354557079618
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: -0.37082660287010405
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.750
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.000
Out[74]: 0.7496527138224498
In [75]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[75]: 0.19744153543053983
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.765
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.993
Out[76]: 0.7647586049406105
In [77]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[77]: 0.698878683319993
```

```
numSSBayes
In [78]:
Out[78]: SSBR.NumSSBayes(54922,45922,9000,40000,39000,1000,200)
In [79]:
         J1 = sortrows(J_Vecs.J1)
Out[79]: 45922x1 Array{Float64,2}:
          -0.986886
          -0.98681
          -0.986652
          -0.986167
          -0.985627
          -0.985584
          -0.985549
          -0.985547
          -0.98549
          -0.98527
          -0.985215
          -0.984637
          -0.984623
           7.0587e-17
           7.35847e-17
           7.43413e-17
            7.45955e-17
            8.59149e-17
            8.86198e-17
            8.88706e-17
           8.9519e-17
           9.67177e-17
           1.07311e-16
            1.22139e-16
            1.40744e-16
```

```
In [80]: J1[J1 .< 0.0,:]
Out[80]: 43953x1 Array{Float64,2}:
          -0.986886
          -0.98681
          -0.986652
          -0.986167
          -0.985627
           -0.985584
          -0.985549
          -0.985547
          -0.98549
          -0.98527
          -0.985215
          -0.984637
           -0.984623
           -7.2166e-36
           -7.2166e-36
          -7.2092e-36
          -6.60657e-36
          -6.60657e-36
          -2.1823e-51
          -5.19078e-65
          -2.70994e-65
          -2.58495e-65
          -1.29248e-65
           -1.62865e-67
           -1.62865e-67
```