Intro to ML

December 13th, 2021

CHAPTER 12: Deep Learning

More ways to handle vanishing gradient Skip Connections

Learning Time (sequence modeling)

- Applications:
 - Sequence recognition: Speech recognition
 - Sequence reproduction: Time-series prediction

- Network architectures
 - Time-delay networks (Waibel et al., 1989)
 - Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks (TDNN)

It is also just like a 1-D convolution neural network

Recurrent Networks(RNN)

Unfolding in Time -> sequence model

Many variants of RNN for different applications

Long Short-Term Memory (LSTM)

Long short-term memory (LSTM)

Activation function

Conceptually, we lose information

LSTM equations

We use shadow state to calculate gates

Write gate

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$
 Input gate

$$f_t = \overline{\sigma(W_f h_{t-1} + U_f x_t + b_f)}$$
 Forget gate

 $f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f) \text{ Forget gate}$ Read gate $o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o) \text{ Output gate}$

$$\widetilde{c}_t = tanh(Wh_{t-1} + Ux_t + b)$$
 Memory cell candidate

$$c_t = f_t \circ c_{t-1} + i_t \circ \widetilde{c}_t$$
 Memory cell

$$h_t = o_t \circ \ tanh(c_t)$$
 Shadow state $y_t = h_t$ Cell Output

Read occurs after writing

