# UNIVERSIDAD CARLOS III DE MADRID TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. GRADO EN INGENIERÍA INFORMÁTICA. Apellidos:\_\_\_\_\_\_ Nombre:\_\_\_\_\_\_ NIA:\_\_\_\_\_\_ Firma:\_\_\_\_\_ Grupo:\_\_\_\_\_\_

Tiempo de examen: 60 minutos Calificación máxima: 1,2 PUNTOS

Tipo de Examen: M1

SEGUNDA CUESTIÓN: Calificación máxima: 0,3 puntos

Dado  $\Sigma$ ={a, b}, diseñar un Autómata a Pila de **tres estados** que reconozca el lenguaje:

$$L=\{a^{x}(ba)^{z}a^{m}(ab)^{n}/x\geq 0, z>0, m+n=z\}$$

Verifique el funcionamiento de dicho autómata con la palabra **ababaaab** empleando una sucesión de descripciones instantáneas.

Indique razonadamente si el autómata diseñado es determinista o no determinista.

## Solución:

## e) Diseño (0,15 puntos)

$$a^{x}(ba)^{z}a^{m}(ab)^{n} = a^{x}(ba)^{z}a^{m}(ab)^{n} = a^{x}(ba)^{n}(ba)^{m}a^{m}(ab)^{n}$$

Las a<sup>x</sup> no se apilan, porque no hay que hacer nada con ellas. Leen Z y lo dejan.

#### POSIBILIDAD 1:

Es posible apilar todos los (ba) de Z sin diferenciar en M y N, y para ello los apilo todos con A (aunque el apilamiento se hace en dos fases, primero con B y cuando está (ba) con A. Cuando viene una a de a<sup>m</sup>, empieza a desapilar y lo hace a, A para a<sup>m</sup> y para (ab)<sup>n</sup> se parte el desapilamiento a-A da B y b-B –lambda.



## **POSIBILIDAD 2:**

Es posible apilar todos los (ba) de Z diferenciando en M y N, y para ello los apilo unos con N y otros con M. Cuando viene una a de a<sup>m</sup>, empieza a desapilar y lo hace a- M para a<sup>m</sup> y para (ab)<sup>n</sup> se parte el desapilamiento a-N da Z y b-Z –lambda. Lo último que se saca cuando la palabra está leída es S, símbolo inicial de pila.



# b) Descripciones instantáneas (0,1 puntos)

Están hechas para la primera solución.

(q0, ababaaab, Z) |- (q0, babaaab, Z) |- (q0, abaaab, BZ) |- (q0, baaab, AZ) |- (q0, aaab, BAZ) |- (q0, aab, AAZ) |- (q1, ab, AZ) |- (q2, b, BZ) |- (q2,  $\lambda$ , Z) |- (q2,  $\lambda$ ,  $\lambda$ )

# c) El ap es Determinista o no Determinista (razonadamente (0,05 puntos)

El autómata es no determinista por las transiciones:

$$f(q0, a, A)=\{(q2, B) (q1, \lambda)\}$$

$$f(qa, a, A) = \{(q2, B) (q1, \lambda)\}$$

| uc3m      | Universidad<br>Carlos III | UNIVERSIDAD CARLOS III DE MADRID<br>TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES.<br>GRADO EN INGENIERÍA INFORMÁTICA.<br>Apellidos: |        |  |  |  |  |  |
|-----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|
| SECTION S | de Madrid                 | Nombre:                                                                                                                         | Firma: |  |  |  |  |  |
|           |                           | Grupo:                                                                                                                          |        |  |  |  |  |  |

TERDERA CUESTIÓN: Calificación máxima: 0,3 puntos

Dada la MT con alfabeto  $\{x, y\}$ , que lee cadenas de x e y, sabiendo que no devuelve la cabeza a la posición original,



Complete cada uno de los apartados siguientes.

- a) Describa qué procesamiento realiza la MT. (0.02)
- b) Describa qué palabras reconoce la MT. (0.02)
- c) Modifique la MT para que sustituya cada uno de los 1 por una B. (0.04)
- d) Modifique la MT original para que sustituya los 1 por *B* sólo cuando van precedidos de algún 0. (0.12)
  - Ejemplos: #010# quedaría como #0B0#, #10101# quedaría como #10B0B#, #111# quedaría como #111#, #011# quedaría como #0B1#.
- e) Añada los estados y transiciones necesarios (sin quitar transiciones existentes) para dejar el cabezal sobre el primer símbolo a la izquierda de la cadena. Sustituye las *B* por 0. (0.10)

## **SOLUCIÓN:**

- a) Describe qué procesamiento realiza la MT. **(0.02)**Es una MT reconocedora, lee la cadena y deja el cabezal a la derecha.
- b) Describe qué palabras reconoce la MT. **(0.02)**Reconoce cadenas de 0 y 1 (incluida la palabra vacía): (0+1)\*.
- c) Modifica la MT para que sustituya cada uno de los 1 por una B (0.04)



d) Modifica la MT original para que sustituya los 1 por B sólo cuando van precedidos de algún 0. (0.12)

Ejemplos: #010# quedaría como #0B0#, #10101# quedaría como #10B0B#, #111# quedaría como #111#, #011# quedaría como #0B1#.



Q3 espera un primer 0, q0 sigue saltando 0, hasta que aparece el primer 1 y lo cambia por B pasando al q2. q2 vuelve a q1 si lee un 0, o inicia el ciclo en si lee más 1's. Todos los estados que avanzan a la derecha, q3, q0, q2 pasan a q1 si llegan al borde derecho de la cinta.

e) Añade los estados y transiciones necesarios (sin modificar transiciones existentes) para dejar el cabezal sobre el primer símbolo a la izquierda de la cadena. Sustituye las B por 0. (0.10)



Se modifica q1 para que retroceda hacia el borde izquierdo leyendo cualquier símbolo. B lo sustituye por 0. Al llegar al borde pasa a q4, estado final.

|             |             |            | UNIVERSIDAD CARLOS III DE MADRID          |  |
|-------------|-------------|------------|-------------------------------------------|--|
|             |             |            | TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. |  |
|             | Universidad |            | GRADO EN INGENIERÍA INFORMÁTICA.          |  |
| uc3m        | Carlos III  | Apellidos: |                                           |  |
| SHALL SHALL | de Madrid   | Nombre:    |                                           |  |
|             |             | NIA:       | Firma:                                    |  |
|             |             | Grupo:     |                                           |  |

Tipo de Examen: M1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
| С | В | В | D | В | С | A | А | С | С  |

Tipo de Examen: M2

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
| А | С | В | D | А | В | С | С | В | а  |