12/15/9

UTILITY PATENT APPLICATION TRANSMITTAL

Attorney Docket No. 2314-147

Total Pages

57

First Named Inventor or Application Identifier

Ω	DIVITIAL		Michael M. FAINZILBER			
บา เช้า new nonprovisional app	olications under 37 CFR 1.53(b))	Express Mail La	Express Mail Label No.			12 C
APPLICATION ELEMENTS WPEP chapter 600 concerning utility patent application contents.		ADDRESS		Assistant Commission Box Patent Application Washington, D.C. 202	on	
Specification		6. [] Microfiche Computer Program (Appendix) 7. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary) a. [XX] Computer Readable Copy b. [XX] Paper Copy (identical to computer copy) c. [XX] Statement verifying identity of above copies **ACCOMPANYING APPLICATION PARTS** 8. [] Assignment Papers (cover sheet & documents) 9. [] 37 CFR 3.73(b) Statement (when there is an assignee) [] Power of Attorney 10. [] English Translation Document (if applicable) 11. [] Information Disclosure Statement /PTO 1449 [] Copies of IDS Citations 12. [] Preliminary Amendment 13. [XX] Return Receipt Postcard (MPEP 503) (Should be specifically itemized) 14. [] Small Entity Statement(s) [] Statement Filed in prior application, Status still proper and desired 15. [] Certified Copy of Priority Document(s). (if foreign priority is claimed) 16. [] Other:				
17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:						
[] Continuation [] Divisional [] Continuation-in-part (CIP) of prior application No.:						
18. CORRESPONDENCE ADDRESS or [V] Correspondence address below						
[] Customer Number or Bar Code Label or [X] Correspondence address below (Insert Customer No. or Attach bar code label here)						
Name	Jeffrey L. Ihnen, Reg. No. 28,957 Juffrey Johnson					
Address Rothwell, Figg, Ernst & Kurz Suite 701-East, 555 13th Street, N.W.						
City	Washington	State	D.C.		Zip Code	20004
Country	USA	Telephone	202-783-6	040	Fax	202-783-6031

10

TITLE OF THE INVENTION

GAMMA-CONOPEPTIDES

CROSS-REFERENCE TO RELATED APPLICATION

The present application is related to U.S. provisional patent application Serial No. 60/069,706, filed 16 December 1997, incorporated herein by reference.

This invention was made in part with Government support under Grant No. RR01614 and GM48677 awarded by the National Institutes of Health, Bethesda, Maryland and under Grant No. DIR8700766 awarded by the National Science Foundation, Washington, D.C. The United States Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

This invention relates to relatively short peptides about 25-40 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogs to the naturally available peptides, and which include three cyclizing disulfide linkages and one or more γ -carboxyglutamate residues.

The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference, and for convenience are referenced in the following text by author and date and are listed alphabetically by author in the appended bibliography.

Mollusks of the genus *Conus* produce a venom that enables them to carry out their unique predatory lifestyle. Prey are immobilized by the venom that is injected by means of a highly specialized venom apparatus, a disposable hollow tooth that functions both in the manner of a harpoon and a hypodermic needle.

Few interactions between organisms are more striking than those between a venomous animal and its envenomated victim. Venom may be used as a primary weapon to capture prey or as a defense mechanism. Many of these venoms contain molecules directed to receptors and ion channels of neuromuscular systems.

The predatory cone snails (*Conus*) have developed a unique biological strategy. Their venom contains relatively small peptides that are targeted to various neuromuscular receptors and may be equivalent in their pharmacological diversity to the alkaloids of plants or secondary metabolites of microorganisms. Many of these peptides are among the smallest nucleic acid-

25

encoded translation products having defined conformations, and as such, they are somewhat unusual. Peptides in this size range normally equilibrate among many conformations. Proteins having a fixed conformation are generally much larger.

The cone snails that produce these toxic peptides, which are generally referred to as conotoxins or conotoxin peptides, are a large genus of venomous gastropods comprising approximately 500 species. All cone snail species are predators that inject venom to capture prey, and the spectrum of animals that the genus as a whole can envenomate is broad. A wide variety of hunting strategies are used, however, every *Conus* species uses fundamentally the same basic pattern of envenomation.

Several peptides isolated from *Conus* venoms have been characterized. These include the α -, μ - and ω -conotoxins which target nicotinic acetylcholine receptors, muscle sodium channels, and neuronal calcium channels, respectively (Olivera et al., 1985). A conotoxin, TxVIIA, containing a γ -carboxyglutamate residued and three disulfide bonds has bee isolated (Fainzilber et al., 1991). Conopressins, which are vasopressin analogs, have also been identified (Cruz et al., 1987). In addition, peptides named conantokins have been isolated from *Conus geographus* and *Conus tulipa* (Mena et al., 1990; Haack et al., 1990). These peptides have unusual age-dependent physiological effects: they induce a sleep-like state in mice younger than two weeks and hyperactive behavior in mice older than 3 weeks (Haack et al., 1990). Recently, peptides named contryphans containing D-tryptophan or D-leucine residues have been isolated from *Conus radiatus* (U.S. Serial No. 09/061,026), and bromo-tryptophan conopeptides have been isolated from *Conus imperialis* and *Conus radiatus* (U.S. Serial No. 08/785,534).

Ion channels are integral plasma membran proteins responsible for electrical activity in excitable tissues. It has been recognized that slow inward currents can influence neuronal excitability via long-lasting depolarizations of the cell membrane (Llinás, 1988). The role of slow inward currents in generating endogenous bursting behavior has been recognized in molluscan neurons (Wilson & Wachtel, 1974; Eckert & Lux, 1976; Partridge et al., 1979), and more recently in some types of mammalian neurons (Lanthorn et al., 1984; Stafstrom et al., 1985; Llinàs, 1988; Alonso & Llinàs, 1989). Changes in the slow inward currents carried by such nonspecific cation channels may play a crucial role in bursting and pacemaker activities in a variety of excitable systems, ranging from mammalian heart muscle to molluscan neurons (Partridge & Swandulla, 1988; Hoehn et al., 1993; Kits & Mansvelder, 1966; van Soest & Kits, 1997). Slow inward currents

10

5

30

10

are also believed to be important in generating epileptiform bursting in regions of the brain such as the hippocampus.

It is desired to identify drugs which are useful for modulating slow inward cation channels in vertebrates involved in syndromes of clinical relevance, such as epileptic activity in hippocampus (Hoehn et al., 1993) and pacemaker potentials in heart muscle (Reuter, 1984).

SUMMARY OF THE INVENTION

This invention relates to relatively short peptides about 25-40 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogs to the naturally available peptides, and which include three cyclizing disulfide linkages and one or more γ -carboxyglutamate residues.

More specifically, the present invention is directed to conopeptides having the general formula I:

 Xaa_1 -Cys- Xaa_2 -Cys- Xaa_3 - Xaa_4 -Cys-Cys- Xaa_5 -Cys- Xaa_6 -Cys- Xaa_7 (SEQ ID NO:1), wherein Xaa_1 is des- Xaa_1 or a peptide having 1-6 amino acids; Xaa_2 is a peptide having 5-6 amino acids; Xaa_3 is a peptide having 4 amino acids; Xaa_4 is Glu, γ -Glu (γ -carboxyglutamic acid; also referred to as Gla) or Gln; Xaa_5 is a peptide having 3-4 amino acids; Xaa_6 is a peptide having 3-6 amino acids; and Xaa_7 is des- Xaa_7 or a peptide having 2-9 amino acids, with the proviso that when Xaa_1 is des- Xaa_1 , then Xaa_5 is not the tripeptide Ser-Asp-Asn;

general formula II:

Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Cys-Xaa₇-Cys-Xaa₈ (SEQ ID NO:2), wherein Xaa₁ is des-Xaa₁ or a peptide having 1-6 amino acids; Xaa₂ is a peptide having 5-6 amino acids; Xaa₃ is a peptide having 4 amino acids; Xaa₄ is Glu, γ-Glu or Gln; Xaa₅ is Ser or Thr; Xaa₆ is a peptide having 2-3 amino acids; Xaa₇ is a peptide having 3-6 amino acids; and Xaa₈ is des-Xaa₈ or a peptide having 2-9 amino acids, with the proviso that when Xaa₁ is des-Xaa₁ and Xaa₅ is Ser, then Xaa₆ is not the dipeptide Asp-Asn;

general formula III:

Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₅-Cys-Xaa₆ (SEQ ID NO:3), wherein Xaa₁ is a peptide having 1-6 amino acids; Xaa₂ is a

25

hexapeptide; Xaa_3 is a peptide having 4 amino acids; Xaa_4 is Glu or γ -Glu; Xaa_5 is a tripeptide; and Xaa_6 is a peptide having 7-9 amino acids;

general formula IV:

Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₆-Cys-Xaa₇ (SEQ ID NO:4), wherein Xaa₁ is a peptide having 1-6 amino acids; Xaa₂ is a hexapeptide; Xaa₃ is Ser or Thr; Xaa₄ is a tripeptide; Xaa₅ is Glu or γ-Glu; Xaa₆ is a tripeptide; and Xaa₇ is a peptide having 7-9 amino acids;

or general formula V:

 Xaa_1 - Xaa_2 -Cys- Xaa_3 - Xaa_4 -Phe- Xaa_5 -Cys-Thr- Xaa_6 -Ser- Xaa_7 -Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys- Xaa_8 -Leu- Xaa_9 (SEQ ID NO:5), wherein Xaa_1 is des- Xaa_1 or a dipeptide; Xaa_2 is Asp, Glu or γ -Glu; Xaa_3 is a dipeptide; Xaa_4 is Trp or 6-bromo-Trp; Xaa_5 is a dipeptide; Xaa_6 is a dipeptide; Xaa_7 is Glu or γ -Glu; Xaa_8 is any amino acid; and, Xaa_9 is a pentapeptide.

The amino acid or the amino acid residues of the peptides is an amino acid selected from the group consisting of natural, modified or non-natural amino acids. The disulfide bridges in the conopeptides of general formulas I-V (as well as the specific conopeptides described herein) are between the first and fourth cysteine residues, between the second and fifth cysteine residues and between the third and sixth cysteine residues. The C-terminal end may contain a carboxyl or amide group. The invention also includes pharmaceutically acceptable salts of the conopeptides. These conopeptides are useful for modulating slow inward cation channels in vertebrates involved in syndromes of clinical relevance, such as epileptic activity in hippocampus (Hoehn et al., 1993) and pacemaker potentials in heart muscle (Reuter, 1984). Thus, the conopeptides are useful as agonists of neuronal pacemaker cation channels.

The invention further relates to the specific peptides:

Asp-Cys-Thr-Ser-Xaa₁-Phe-Gly-Arg-Cys-Thr-Val-Asn-Ser-Xaa₂-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys-Xaa₂-Leu-Tyr-Ala-Phe-Xaa₃-Ser (SEQ ID NO:6) (PnVIIA), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ-Glu, preferably γ-Glu; Xaa₃ is Pro or hydroxy-Pro (Hyp), preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably a free carboxyl group;

25

20

Xaa₁-Leu-Xaa₂-Cys-Ser-Val-Xaa₁-Phe-Ser-His-Cys-Thr-Lys-Asp-Ser-Xaa₂-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys-Thr-Leu-Met-Xaa₃-Xaa₃-Asp-Xaa₁ (SEQ ID NO:7) (Tx6.4), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ-Glu, preferably γ-Glu; Xaa₃ is Pro or Hyp, preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably a free carboxyl group;

 Xaa_1 - Xaa_1 -Arg- Xaa_1 -Gly-Gly-Cys-Met-Ala- Xaa_1 -Phe-Gly-Leu-Cys-Ser-Arg-Asp-Ser- Xaa_2 -Cys-Cys-Ser-Asn-Ser-Cys-Asp-Val-Thr-Arg-Cys- Xaa_2 -Leu-Met- Xaa_3 -Phe- Xaa_3 - Xaa_3 -Asp- Xaa_1 (SEQ ID NO:8) (Tx6.9), wherein Xaa_1 is Trp or 6-bromo-Trp; Xaa_2 is Glu or γ -Glu, preferably γ -Glu; Xaa_3 is Pro or Hyp, preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably a free carboxyl group;

Cys-Lys-Thr-Tyr-Ser-Lys-Tyr-Cys-Xaa₂-Ala-Asp-Ser-Xaa₂-Cys-Cys-Thr-Xaa₂-Gln-Cys-Val-Arg-Ser-Tyr-Cys-Thr-Leu-Phe (SEQ ID NO:9) (J010), wherein Xaa₂ is Glu or γ -Glu, preferably γ -Glu; and the C-terminus is a free carboxyl group or is amidated, preferably amidated;

Asp-Xaa₁-Xaa₁-Asp-Asp-Gly-Cys-Ser-Val-Xaa₁-Gly-Xaa₃-Cys-Thr-Val-Asn-Ala-Xaa₂-Cys-Cys-Ser-Gly-Asp-Cys-His-Xaa₂-Thr-Cys-Ile-Phe-Gly-Xaa₁-Xaa₂-Val (SEQ ID NO:10) (Tx6.6), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ-Glu, preferably γ-Glu; Xaa₃ is Pro or Hyp, preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably a free carboxyl group;

Gly-Met-Xaa₁-Gly-Xaa₂-Cys-Lys-Asp-Gly-Leu-Thr-Thr-Cys-Leu-Ala-Xaa₃-Ser-Xaa₂-Cys-Cys-Ser-Xaa₂-Asp-Cys-Xaa₂-Gly-Ser-Cys-Thr-Met-Xaa₁ (SEQ ID NO:11) (Tx6.5), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ -Glu, preferably γ -Glu; Xaa₃ is Pro or Hyp, preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably a free carboxyl group;

Xaa₂-Cys-Arg-Ala-Xaa₁-Tyr-Ala-Xaa₃-Cys-Ser-Xaa₃-Gly-Ala-Gln-Cys-Cys-Ser-Leu-Leu-Met-Cys-Ser-Lys-Ala-Thr-Ser-Arg-Cys-Ile-Leu-Ala-Leu (SEQ ID NO:12) (Gm6.7), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ -Glu, preferably γ -Glu; Xaa₃ is Pro or Hyp, preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably a free carboxyl group;

Asn-Gly-Gln-Cys-Xaa₂-Asp-Val-Xaa₁-Met-Xaa₃-Cys-Thr-Ser-Asn-Xaa₁-Xaa₂-Cys-Cys-Ser-Leu-Asp-Cys-Xaa₂-Met-Tyr-Cys-Thr-Gln-Ile (SEQ ID NO:13)

30

10

5

(Mr6.1), wherein Xaa_1 is Trp or 6-bromo-Trp; Xaa_2 is Glu or γ -Glu, preferably γ -Glu; Xaa_3 is Pro or Hyp, preferably Hyp; and the C-terminus is a free carboxyl group or is amidated, preferably amidated;

Cys-Gly-Gly-Xaa₁-Ser-Thr-Tyr-Cys-Xaa₂-Val-Asp-Xaa₂-Xaa₂-Cys-Cys-Ser-Xaa₂-Ser-Cys-Val-Arg-Ser-Tyr-Cys-Thr-Leu-Phe (SEQ ID NO:14) (Mr6.2), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ-Glu, preferably γ-Glu; and the C-terminus is a free carboxyl group or is amidated, preferably amidated;

Asn-Gly-Gly-Cys-Lys-Ala-Thr-Xaa₁-Met-Ser-Cys-Ser-Ser-Gly-Xaa₁-Xaa₂. Cys-Cys-Ser-Met-Ser-Cys-Asp-Met-Try-Cys (SEQ ID NO:15) (Mr6.3), wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂is Glu or γ -Glu, preferably γ -Glu; and the C-terminus is a free carboxyl group or is amidated, preferably amidated.

Finally, the invention further relates to the propertide sequences for the above peptides and the DNA sequences coding for these propertide sequences as described in further detail herein.

SEQUENCE SUMMARY

SEQ ID NO:1 = γ -conopeptides of general formula I; SEQ ID NO:2 = γ -conopeptides of general formula II; SEQ ID NO:3 = γ -conopeptides of general formula III; SEQ ID NO:4 = γ conopeptides of general formula IV; SEQ ID NO:5 = γ-conopeptides of general formula V; SEQ ID NO:6 = γ -conopeptide corresponding to PnVIIA; SEQ ID NO:7 = γ -conopeptide corresponding to Tx6.4; SEQ ID NO:8 = γ -conopeptide corresponding to Tx6.9; SEQ ID NO:9 = γ -conopeptide corresponding to J010; SEQ ID NO:10= γ-conopeptide corresponding to Tx6.6; SEQ ID NO:11 = γ -conopeptide corresponding to Tx6.5; SEQ ID NO:12 = γ -conopeptide corresponding to Gm6.7; SEQ ID NO:13 = γ -conopeptide corresponding to Mr6.1; SEQ ID NO:14 = γ -conopeptide corresponding to Mr6.2; SEQ ID NO:15 = γ-conopeptide corresponding to Mr6.3; SEQ ID NO:16 = DNA encoding propeptide of Tx6.4; SEQ ID NO:17 = propeptide of Tx6.4; SEQ ID NO:18 = DNA encoding propeptide of Tx6.9; SEQ ID NO:19 = propeptide of Tx6.9; SEQ ID NO:20 = DNA encoding propeptide of J010; SEQ ID NO:21 = propeptide of J010; SEQ ID NO:22= DNA encoding propeptide of Tx6.6; SEQ ID NO:23 = propeptide of Tx6.6; SEQ ID NO:24 = DNA encoding propertide of Tx6.5; SEQ ID NO:25 = propertide of Tx6.5; SEQ ID NO:26 = DNA encoding propeptide of Gm6.7; SEQ ID NO:27 = propeptide of Gm6.7; SEQ ID NO:28 = DNA encoding propeptide of Mr6.1; SEQ ID NO:29 = propeptide of Mr6.1; SEQ ID NO:30 = DNA encoding

5

10

propeptide of Mr6.2; SEQ ID NO:31 = propeptide of Mr6.2; SEQ ID NO:32 = DNA encoding propeptide of Mr6.3; SEQ ID NO:33 = propeptide of Mr6.3; SEQ ID NO:34 = DNA encoding propeptide of Tx6.1; SEQ ID NO:35 = propeptide of Tx6.1; SEQ ID NO:36 = γ -conopeptide corresponding to Tx6.1; SEQ ID NO:37 = consensus sequence of γ -conopeptides PnVIIA and Tx6.4; SEQ ID NO:38 = degenerate probe for consensus sequence of γ -conopeptides; SEQ ID NO:39 = degenerate probe for consensus sequence of γ -conopeptides; SEQ ID NO:40 = consensus sequence of pro- γ -conopeptides; SEQ ID NO:41 = degenerate probe for consensus sequence of pro- γ -conopeptides; SEQ ID NO:42 = γ -conopeptide PnVIIA; SEQ ID NO:43 = γ -conopeptide TxVIIA; SEQ ID NO:44 = N-terminal tryptic peptide of γ -conopeptide PnVIIA; SEQ ID NO:46 = primer for isolating conopeptides from *Conus textile* cDNA library; SEQ ID NO:47 = primer for isolating conopeptides from *Conus textile* cDNA library.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

This invention relates to relatively short peptides about 25-40 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogs to the naturally available peptides, and which include three cyclizing disulfide linkages and one or more γ -carboxyglutamate residues.

More specifically, the present invention is directed to conopeptides having the general formulas I-V described above. The invention is also directed to the specific γ-conopeptides PnVIIA, Tx6.4, Tx6.9, J010, Tx6.6, Tx6.5, Gm6.7, Mr6.1, Mr6.2 and Mr6.3, the sequences of which are described above.

The invention is further directed to isolated nucleic acids which encode γ -conopeptides, including the above and γ -conopeptide Tx6.1, and to isolated propeptides encoded by the nucleic acids. This aspect of the present invention is set forth in Table 1.

10

 $TABLE \ 1$ Nucleic Acids and Propeptides of $\gamma\mbox{-}Conopeptides$

Nucleic Acid SEQ ID NO:	Propeptide SEQ ID NO:
16	17
18	19
20	21
22	23
24	25
26	27
28	29
30	31
32	33
34	35
	16 18 20 22 24 26 28 30 32

The mature peptide sequence for Tx6.1 is $LCX_3DYTX_2X_3CSHAHX_2CCSX_1NCYNGHCT$ (SEQ ID NO:36), wherein X_1 , X_2 and X_3 are as described for Xaa , 1Xaa and Xaa , 3 respectively. The C-terminus is preferably amidated.

The conopeptides of the present invention are useful for modulating slow inward cation channels in vertebrates involved in syndromes of clinical relevance, such as epileptic activity in hippocampus (Hoehn et al., 1993) and pacemaker potentials in heart muscle (Reuter, 1984). Thus, the conopeptides are useful as agonists of neuronal pacemaker cation channels.

The γ-conopeptides of the present invention are identified by isolation from *Conus* venom. Alternatively, the γ-conopeptides of the present invention are identified using recombinant DNA techniques. According to this method of identification, cDNA libraries of various *Conus* species are screened using conventional techniques with degenerate probes for the peptide consensus sequence Xaa-Cys-Cys-Ser (SEQ ID NO:37), wherein Xaa is Glu or Gln. Suitable probes are 5' SARTGYTGYAGY 3' (SEQ ID NO:38) or 5' SARTGYTGYTCN 3' (SEQ ID NO:39). Alternatively, cDNA libraries are screened with degenerate probes for the propeptide consensus sequence Ile-Leu-Leu-Val-Ala-Ala-Val-Leu (SEQ ID NO:40). Suitable probes for this sequence are 5' ATHYTNYTNGTNGCNGCNGTNYTN 3' (SEQ ID NO:41). Clones which hybridize to these probes are analyzed to identify those which meet minimal size requirements, i.e., clones having approximately 300 nucleotides (for a propeptide), as determined using PCR primers which flank the cDNA cloning sites for the specific cDNA library being examined. These minimal-sized clones are then sequenced. The sequences are then examined for the presence of a peptide having the characteristics noted above for γ-conopeptides, such as the presence of a Glu residue which could

30

be modified to a γ -Glu and 6 cysteine residues. The biological activity of the peptides identified by this method is tested as described herein.

5

10

25

30

These peptides are sufficiently small to be chemically synthesized. General chemical syntheses for preparing the foregoing conopeptides peptides are described hereinafter, along with specific chemical synthesis of conopeptides and indications of biological activities of these synthetic products. Various ones of these conopeptides can also be obtained by isolation and purification from specific *Conus* species using the techniques described in U.S. Patent Nos. 4,447,356 (Olivera et al., 1984), 5,514,774 (Olivera et al., 1996) and 5,591,821 (Olivera et al., 1997), the disclosures of which are incorporated herein by reference.

Although the conopeptides of the present invention can be obtained by purification from cone snails, because the amounts of conopeptides obtainable from individual snails are very small, the desired substantially pure conopeptides are best practically obtained in commercially valuable amounts by chemical synthesis using solid-phase strategy. For example, the yield from a single cone snail may be about 10 micrograms or less of conopeptide. By "substantially pure" is meant that the peptide is present in the substantial absence of other biological molecules of the same type; it is preferably present in an amount of at least about 85% purity and preferably at least about 95% purity. Chemical synthesis of biologically active conopeptides depends of course upon correct determination of the amino acid sequence. Thus, the conopeptides of the present invention may be isolated, synthesized and/or substantially pure.

The conopeptides can also be produced by recombinant DNA techniques well known in the art. Such techniques are described by Sambrook et al. (1979). The peptides produced in this manner are isolated, reduced if necessary, and oxidized to form the correct disulfide bonds, if present in the final molecule.

One method of forming disulfide bonds in the conopeptides of the present invention is the air oxidation of the linear peptides for prolonged periods under cold room temperatures or at room temperature. This procedure results in the creation of a substantial amount of the bioactive, disulfide-linked peptides. The oxidized peptides are fractionated using reverse-phase high performance liquid chromatography (HPLC) or the like, to separate peptides having different linked configurations. Thereafter, either by comparing these fractions with the elution of the native material or by using a simple assay, the particular fraction having the correct linkage for maximum biological potency is easily determined. It is also found that the linear peptide, or the oxidized product having more than one fraction, can sometimes be used for *in vivo* administration because the cross-linking

30

5

and/or rearrangement which occurs *in vivo* has been found to create the biologically potent conopeptide molecule. However, because of the dilution resulting from the presence of other fractions of less biopotency, a somewhat higher dosage may be required.

The peptides are synthesized by a suitable method, such as by exclusively solid-phase techniques, by partial solid-phase techniques, by fragment condensation or by classical solution couplings.

In conventional solution phase peptide synthesis, the peptide chain can be prepared by a series of coupling reactions in which constituent amino acids are added to the growing peptide chain in the desired sequence. Use of various coupling reagents, e.g., dicyclohexylcarbodiimide or diisopropylcarbonyldimidazole, various active esters, e.g., esters of N-hydroxyphthalimide or Nhydroxy-succinimide, and the various cleavage reagents, to carry out reaction in solution, with subsequent isolation and purification of intermediates, is well known classical peptide methodology. Classical solution synthesis is described in detail in the treatise, "Methoden der Organischen Chemie (Houben-Weyl): Synthese von Peptiden," (1974). Techniques of exclusively solid-phase synthesis are set forth in the textbook, "Solid-Phase Peptide Synthesis," (Stewart and Young, 1969), and are exemplified by the disclosure of U.S. Patent 4,105,603 (Vale et al., 1978). The fragment condensation method of synthesis is exemplified in U.S. Patent 3,972,859 (1976). Other available syntheses are exemplified by U.S. Patents No. 3,842,067 (1974) and 3,862,925 (1975). The synthesis of peptides containing γ-carboxyglutamic acid residues is exemplified by Rivier et al. (1987), Nishiuchi et al. (1993) and Zhou et al. (1996). Synthesis of conopeptides have been described in U.S. Patent Nos. 4,447,356 (Olivera et al., 1984), 5,514,774 (Olivera et al., 1996) and 5,591,821 (Olivera et al., 1997).

Common to such chemical syntheses is the protection of the labile side chain groups of the various amino acid moieties with suitable protecting groups which will prevent a chemical reaction from occurring at that site until the group is ultimately removed. Usually also common is the protection of an α -amino group on an amino acid or a fragment while that entity reacts at the carboxyl group, followed by the selective removal of the α -amino protecting group to allow subsequent reaction to take place at that location. Accordingly, it is common that, as a step in such a synthesis, an intermediate compound is produced which includes each of the amino acid residues located in its desired sequence in the peptide chain with appropriate side-chain protecting groups linked to various ones of the residues having labile side chains.

5

As far as the selection of a side chain amino protecting group is concerned, generally one is chosen which is not removed during deprotection of the α -amino groups during the synthesis. However, for some amino acids, e.g., His, protection is not generally necessary. In selecting a particular side chain protecting group to be used in the synthesis of the peptides, the following general rules are followed: (a) the protecting group preferably retains its protecting properties and is not split off under coupling conditions, (b) the protecting group should be stable under the reaction conditions selected for removing the α -amino protecting group at each step of the synthesis, and (c) the side chain protecting group must be removable, upon the completion of the synthesis containing the desired amino acid sequence, under reaction conditions that will not undesirably alter the peptide chain.

It should be possible to prepare many, or even all, of these peptides using recombinant DNA technology. However, when peptides are not so prepared, they are preferably prepared using the Merrifield solid-phase synthesis, although other equivalent chemical syntheses known in the art can also be used as previously mentioned. Solid-phase synthesis is commenced from the C-terminus of the peptide by coupling a protected α-amino acid to a suitable resin. Such a starting material can be prepared by attaching an α-amino-protected amino acid by an ester linkage to a chloromethylated resin or a hydroxymethyl resin, or by an amide bond to a benzhydrylamine (BHA) resin or paramethylbenzhydrylamine (MBHA) resin. Preparation of the hydroxymethyl resin is described by Bodansky et al. (1966). Chloromethylated resins are commercially available from Bio Rad Laboratories (Richmond, CA) and from Lab. Systems, Inc. The preparation of such a resin is described by Stewart and Young (1969). BHA and MBHA resin supports are commercially available, and are generally used when the desired polypeptide being synthesized has an unsubstituted amide at the C-terminus. Thus, solid resin supports may be any of those known in the art, such as one having the formulae -O-CH2-resin support, -NH BHA resin support, or -NH-MBHA resin support. When the unsubstituted amide is desired, use of a BHA or MBHA resin is preferred, because cleavage directly gives the amide. In case the N-methyl amide is desired, it can be generated from an N-methyl BHA resin. Should other substituted amides be desired, the teaching of U.S. Patent No. 4,569,967 (Kornreich et al., 1986) can be used, or should still other groups than the free acid be desired at the C-terminus, it may be preferable to synthesize the peptide using classical methods as set forth in the Houben-Weyl text (1974).

The C-terminal amino acid, protected by Boc or Fmoc and by a side-chain protecting group, if appropriate, can be first coupled to a chloromethylated resin according to the procedure set forth

30

5

in Horiki et al. (1978), using KF in DMF at about 60° C for 24 hours with stirring, when a peptide having free acid at the C-terminus is to be synthesized. Following the coupling of the BOC-protected amino acid to the resin support, the α -amino protecting group is removed, as by using trifluoroacetic acid (TFA) in methylene chloride or TFA alone. The deprotection is carried out at a temperature between about 0° C and room temperature. Other standard cleaving reagents, such as HCl in dioxane, and conditions for removal of specific α -amino protecting groups may be used as described in Schroder and Lubke (1965).

After removal of the α -amino-protecting group, the remaining α -amino- and side chain-protected amino acids are coupled step-wise in the desired order to obtain the intermediate compound defined hereinbefore, or as an alternative to adding each amino acid separately in the synthesis, some of them may be coupled to one another prior to addition to the solid phase reactor. Selection of an appropriate coupling reagent is within the skill of the art. Particularly suitable as a coupling reagent is N,N'-dicyclohexylcarbodiimide (DCC, DIC, HBTU, HATU, TBTU in the presence of HoBt or HoAt).

The activating reagents used in the solid phase synthesis of the peptides are well known in the peptide art. Examples of suitable activating reagents are carbodiimides, such as N,N'-diisopropylcarbodiimide and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide. Other activating reagents and their use in peptide coupling are described by Schroder and Lubke (1965) and Kapoor (1970).

Each protected amino acid or amino acid sequence is introduced into the solid-phase reactor in about a twofold or more excess, and the coupling may be carried out in a medium of dimethylformamide (DMF):CH₂Cl₂ (1:1) or in DMF or CH₂Cl₂ alone. In cases where intermediate coupling occurs, the coupling procedure is repeated before removal of the α-amino protecting group prior to the coupling of the next amino acid. The success of the coupling reaction at each stage of the synthesis, if performed manually, is preferably monitored by the ninhydrin reaction, as described by Kaiser et al. (1970). Coupling reactions can be performed automatically, as on a Beckman 990 automatic synthesizer, using a program such as that reported in Rivier et al. (1978).

After the desired amino acid sequence has been completed, the intermediate peptide can be removed from the resin support by treatment with a reagent, such as liquid hydrogen fluoride or TFA (if using Fmoc chemistry), which not only cleaves the peptide from the resin but also cleaves all remaining side chain protecting groups and also the α -amino protecting group at the N-terminus if it was not previously removed to obtain the peptide in the form of the free acid. If Met is present

30

in the sequence, the Boc protecting group is preferably first removed using trifluoroacetic acid (TFA)/ethanedithiol prior to cleaving the peptide from the resin with HF to eliminate potential Salkylation. When using hydrogen fluoride or TFA for cleaving, one or more scavengers such as anisole, cresol, dimethyl sulfide and methylethyl sulfide are included in the reaction vessel.

5

10

Cyclization of the linear peptide is preferably affected, as opposed to cyclizing the peptide while a part of the peptido-resin, to create bonds between Cys residues. To effect such a disulfide cyclizing linkage, fully protected peptide can be cleaved from a hydroxymethylated resin or a chloromethylated resin support by ammonolysis, as is well known in the art, to yield the fully protected amide intermediate, which is thereafter suitably cyclized and deprotected. Alternatively, deprotection, as well as cleavage of the peptide from the above resins or a benzhydrylamine (BHA) resin or a methylbenzhydrylamine (MBHA), can take place at 0°C with hydrofluoric acid (HF) or TFA, followed by oxidation as described above. A suitable method for cyclization is the method described by Cartier et al. (1996).

The present γ-conotoxins are useful for modulating slow inward cation channels in vertebrates involved in syndromes of clinical relevance, such as epileptic activity in hippocampus (Hoehn et al., 1993) and pacemaker potentials in heart muscle (Reuter, 1984). Thus, the conopeptides are useful as agonists of neuronal pacemaker cation channels.

Pharmaceutical compositions containing a compound of the present invention as the active ingredient can be prepared according to conventional pharmaceutical compounding techniques. See, for example, *Remington's Pharmaceutical Sciences*, 18th Ed. (1990, Mack Publishing Co., Easton, PA). Typically, an antagonistic amount of active ingredient will be admixed with a pharmaceutically acceptable carrier. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., intravenous, oral or parenteral. The compositions may further contain antioxidizing agents, stabilizing agents, preservatives and the like.

25

For oral administration, the compounds can be formulated into solid or liquid preparations such as capsules, pills, tablets, lozenges, melts, powders, suspensions or emulsions. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, suspending agents, and the like in the case of oral liquid preparations (such as, for example, suspensions, elixirs and solutions); or carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations (such as, for example, powders, capsules and tablets). Because of their ease in administration, tablets and capsules represent the most

10

advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar-coated or enteric-coated by standard techniques. The active agent can be encapsulated to make it stable to passage through the gastrointestinal tract while at the same time allowing for passage across the blood brain barrier. See for example, WO 96/11698.

For parenteral administration, the compound may dissolved in a pharmaceutical carrier and administered as either a solution of a suspension. Illustrative of suitable carriers are water, saline, dextrose solutions, fructose solutions, ethanol, or oils of animal, vegetative or synthetic origin. The carrier may also contain other ingredients, for example, preservatives, suspending agents, solubilizing agents, buffers and the like. When the compounds are being administered intrathecally, they may also be dissolved in cerebrospinal fluid.

The conopeptides are administered in an amount sufficient to agonize the neuronal pacemaker calcium channels. The dosage range at which the conopeptides exhibit this agonistic effect can vary widely depending upon the particular condition being treated, the severity of the patient's condition, the patient, the specific conopeptide being administered, the route of administration and the presence of other underlying disease states within the patient. Typically, the conopeptides of the present invention exhibit their therapeutic effect at a dosage range from about 0.05 mg/kg to about 250 mg/kg, and preferably from about 0.1 mg/kg to about 100 mg/kg of the active ingredient. A suitable dose can be administered in multiple sub-doses per day. Typically, a dose or sub-dose may contain from about 0.1 mg to about 500 mg of the active ingredient per unit dosage form. A more preferred dosage will contain from about 0.5 mg to about 100 mg of active ingredient per unit dosage form. Dosages are generally initiated at lower levels and increased until desired effects are achieved.

EXAMPLES

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described below were utilized.

EXAMPLE 1

Experimental Procedures

<u>Toxins and Bioassays</u>. Venom of *Conus pennaceus* was obtained from specimens collected in the Northern Red Sea. Conotoxin-TxVIIA was from venom-purified aliquots (Fainzilber et al.,

25

10

1991). Assays for paralysis in limpet snails (*Patella caerulea*), bivalves (*Mytilus edulis*), and fish (*Gambusia affinis*) were performed as previously described (Fainzilber et al., 1995).

Column Chromatography. Conus pennaceus venom was extracted and fractionated on Sephadex G-50 (Pharmacia) and semipreparative C18 (Vydac) columns as previously described (Fainzilber et al., 1994). Final purification of the active peptides was on wide pore reverse-phase phenyl (Vydac, 25 x 0.46 cm, 0.5 μm particle size) as described in Fig. 1, with on-line spectral analysis of peak purity utilizing a Hewlett-Packard 1040A Diode Array Detector coupled with HP 300 Chemstation Software.

Amino Acid Analysis. Analysis of amino acid composition after acid hydrolysis and 9-fluorenylmethyl-oxycabonyl-chloride (FMOC) derivatization was performed on a Merck-Hitachi reverse-phase HPLC system, according to Betner & Foldi, 1988. The system was calibrated prior to each analysis with FMOC-amino acid standards.

Reduction and alkylation. Dried purified peptides were dissolved in 50 μ 1 of 0.1M NH₄HCO₃ (pH 8) containing 6M guanidine-HCl and 10 μ M EDTA, and reduced with 200 μ g of D11 at 37°C for 2 hrs under argon. 4 vinylpyridine, or iodoacetic acid, or iodoacetamide were added and the mixture incubated at 37°C for 1.5 hrs under argon. The alkylated peptide sample was purified on reverse-phase HPLC immediately after derivatization.

<u>Edman Degradation Analyses</u>. Reverse-phase purified peptides were applied to PVDF or glass filters, and sequenced by automated Edman degradation on an Applied Biosystems 475A gas-phase protein sequencing system.

Proteolytic digest. HPLC purified sample of reduced and alkylated peptide was digested with TPCK-trypsin (Pierce, Rockford, IL) for 20 hrs at 37°C. A portion of the digest was directly analyzed by LCIESI/MS, and the remainder purified by reverse-phase HPLC. pH of the digest was adjusted to 3.0 prior to loading on the HPLC, in order to minimize the possibility of γ-carboxyglutamate decomposition in extremely acidic conditions. Purified C-terminal peptide fragments were further digested by Endoproteinase Asp-N (Boehringer-Mannheim, Indianapolis, IN) for 20 hrs at 37°C, and immediately purified on reverse-phase HPLC. A portion of the purified Asp N peptide was then methylated for LSI CID mass spectrometry.

Mass spectrometry. Microbore LC/ESI/MS experiments were carried out on a VG/Fisons (Manchester, U.K.) platform mass spectrometer using a C18 column (macrosphere C18, 5 μ m particle size, 1 x 250 mm, Alltech, Deerfield IL) with a linear gradient of 2-62% acetonitrile in 0. 1% TFA in 60 min. A post column addition of make up solvent, 2-propanol/2-methoxyethanol (1:1)

30

10

Electrophysiology. Isolated *Lymnaea* caudodorsal neurons were kept in Petri dishes (Costar) and bathed in Hepes buffered saline (in mM: NaCl 30, NaCH₃SO₄ 10, NaHCO₃ 5, KCl 1.7, CaCl₂ 4, MgCl₂ 1.5, HEPES 10; pH 7.8 set with NaOH). To record calcium, sodium or potassium currents, HBS was replaced under continuous perfusion by the appropriate saline. The compositions of extracellular and pipette solutions used to selectively record specific currents were as follows (in mM): Extracellular I_{Ca} saline: TEACl 40, CaCl₂ 4, HEPES 10, 4aminopyridine 2, pH 7.8 set with TEAOH; Extracellular I_{Na} saline: NaCl 47.5, CaCl₂ 4, MgCl₂ 1, HEPES 10, CdCl 0.1, 4-aminopyridine 1, pH 7.8 set with NaOH; Pipette saline (I_{Ca} and I_{Na}): CsCl 29, CaCl₂ 2.3, HEPES 10, EGTA 11, ATPMg 2, GTPtris 0.1, pH 7.4 adjusted with CsOH; Pipette saline (non-selective): KCl 29, CaCl₂ 2.3, HEPES 10, EGTA 11, ATPMg 2, GTPtris 0.1, pH 7.4 adjusted with KOH. Toxin was administered by means of a laboratory-built pressure ejection system through a small glass pipette (tip diameter 20 μM) placed at ~100 μM from the recorded cell. This enabled rapid application of toxins, which were applied continuously during voltage ramps or series of depolarizing voltage steps.

25

30

Membrane potential measurements were performed using sharp microelectrodes filled with 0.5 M KC1 (40 M Ω) using an Axoclamp 2A (Axon Instr., Foster City, IA) amplifier in the bridge balance mode. Whole-cell voltage-clamp experiments were performed using the Axoclamp 2A amplifier in the continuous single electrode voltage clamp mode. Pipettes (2-6 M Ω) were pulled on a Flaming/Brown P-87 (Sutter Instruments, CO) horizontal micro-electrode puller from Clark GC-150T glass (Clark Electromedical Instruments, U.K.) (seal resistance >1 G Ω). After disrupture of the patch membrane series resistance (< 10 M Ω) was compensated for --80%. With current amplitudes of <5 nA, the maximal voltage error is estimated to be \leq 10 mV. Cell capacitance (~ 100 pF) was not compensated. Measurements of calcium or sodium currents were commenced 20 mins after access to the cell, in order to allow equilibration with the pipette solution. Data acquisition was controlled by a CED AD/DA converter (Cambridge Electronics Design, Cambridge, U.K.) connected to an Intel 80486-based computer, run with voltage-clamp software developed in our laboratory. The current recordings were filtered at 1-5 kHz, sampled at 1 kHz (calcium currents and

K+ currents) or 3 kHz (Na+ currents) and stored on-line. This system allowed simultaneous application of voltage-steps, acquisition of current recordings and timed application of toxins.

EXAMPLE 2

Purification of y-Conotoxin PnVIIA

Conus pennaceus venom was fractionated as described under Methods, and reverse-phase peptide containing fractions were assayed for γGlu content using a comparison of positive ion versus negative ion modes of MALDI mass spectrometry (Nakamura et al., 1996). The positive fraction indicated as PnVII in Fig. 1B of Fainzilber et al. (1994) was repurified by reverse phase phenyl chromatography and conotoxin-PnVIIA was obtained as the major component. On-line spectral analyses of the final chromatographic step suggested homogeneity of the purified toxin. ESI/MS measurements of the purified peptide revealed a single mass of 3718.4, further confirming homogeneity of PnVIIA.

EXAMPLE 3

Chemical Characterization of y-Conotoxin PnVIIA

Automated Edman sequencing of PnVIIA after alkylation with 4-vinylpyridine revealed a 32 amino acid sequence, allowing unambiguous assignments of 30 residues (Table 2). The extremely low yields of Glu at steps 14 and 26 further suggested the presence of γ -carboxyglutamate residues at these positions. Amino acid composition analysis (Table 3) was consistent with the proposed sequence (Table 4), and the ESI/MS measurement fits that predicted from the sequence assuming two γ -carboxyglutamate residues, three disulfide bridges and a free carboxy terminus (measured mass 3718.4, predicted 3719.0).

10

TABLE 2

Edman Degradation of PnVIIA

		Assigned	Yield
	Cycle #	<u>Residue</u>	(pmoles)
5	1	Asp	185
		Cys	170
	2 3	Thr	180
	4	Ser	190
	5	Trp	170
10	6	Phe	140
	7	Gly	210
	8	Arg	85
	9	Cys	93
	10	Thr	150
15	11	Val	170
	12	Asn	85
TOTAL	13	Ser	110
15 ————————————————————————————————————	14	Glu	9
Specification of the Control of the	15	Cys	50
20	16	Cys	56
	17	Ser	18
100 100 100 100 100 100 100 100 100 100	18	Asn	35
	19	Ser	15
P SS CONTROL C	20	Cys	11
255.	21	Asp	23
	22	Gln	26
MARTIN CO	23	Thr	22
Transport	24	Tyr	17
	25	Cys	14
30	26	Glu	3
	27	Leu	17
	28	Tyr	14
	29	Ala	11
	30	Phe	13
35	31	Hyp	8
	32	Ser	9

m

30

35

5

10

TABLE 3

Amino Acid Composition Analysis of Conotoxin-PnVIIA

Amino Acid	Mole Ratio
Asx	3.9 (4)
Ser	4.7 (5)
Glx	3.0(3)
Cys	5.2 (6)
Thr	2.8 (3)
Gly	1.1(1)
Arg	1.0(1)
Нур	0.8(1)
Ala	1.2(1)
Tyr	2.0(2)
Val	1.2(1)
Phe	2.0(2)
Leu	1.2(1)
Trp	n.d (1)

Molar ratios of amino acids determined after acid hydrolysis and FMOC derivatization. Values in brackets are those predicted from the amino acid sequence.

TABLE 4

Amino Acid Sequence of PnVIIA and TxVIIA

PnVIIA (SEQ ID NO:42): D C TSWFGR C T V N SYCCS N S C DQT YC Y L YAFOS-COOH TxVIIA (SEQ ID NO:43): C GGYSTY C Y V D SYCCS D N C VRS YC T L F-NH₂

Sequence identities are underlined; similarities are in bold type; and spaces inserted to maximize homologies.

In order to verify the presence of γcarboxyglutamate, and to determine the C-terminus, the peptide was further analyzed by mass spectrometry. A tryptic digest of reduced and carboxymethylated PnVIIA gave two peptides, T1 and T2, whose average molecular masses by ESI/MS were 1029.0 and 3062.6, respectively. These masses fit those predicted for the two PnVIIA tryptic peptides, namely 1029.1 for the sequence DXTSWFGR (SEQ ID NO:44), where X is carboxymethylCys, and 3062.2 for the sequence XTVNSX₁XXSNSXDQTYXX₁LYAFX₂S (SEQ ID NO:45), where X₁ is γ-carboxyglutamate and X₂ is 4-trans-hydroxyproline. Asp-N digest of the C-terminal tryptic peptide T2 gave two products, AN1 and AN2. ESI/MS average mass for AN1 was 1525.4, fitting the predicted mass of the Asp-N fragment XTVNSX₁XXSNSX (residues 1-12 of SEQ ID NO:45; predicted 1525.6). The monoisotopic LSI/MS measured mass for the C-terminal

30

5

10

fragment AN2 was 1553.7, in agreement with the calculated value assuming the C-terminal is a free acid. An attempt to further confirm the C-terminal sequence of PnVIIA by LSI tandem MS failed, perhaps due to poor ionization efficiency of AN2. Therefore, PnVIIA was reduced and alkylated with iodoacetamide, a procedure expected to generate derivatives with better CID spectra than After trypsin followed by Asp-N digests, the C-terminal carboxymethylated peptides. carbamolmethylated peptide AN2u was isolated. Methylation with HCl/MeOH gave a tetra ester, with monoisotopic LSI/MS mass of 1608.9. This mass fits a peptide with incorporation of four methyl groups -- one at the side chain of Asp, two at the carboxyl groups of the γ-carboxyglutamate, and the fourth at the presumed C-terminal free carboxyl (predicted monoisotopic mass 1608.7). The protonated tetra-methylated AN2u was further analyzed by CID mass spectrometry, giving a spectrum confining all details of the C-terminal sequence. The γ-carboxyglutamate residue is clearly indicated by the immonium ion at m/z 174, and its position revealed by the b5 and b6 molecular ions. The y2 ion confirms a C-terminal structure of -Hyp-Ser-OMe, derived from the free carboxy terminal of PnVIIA. Thus, the sequence of the peptide including the modified residues γ-carboxyglutamate and Hyp was confirmed; and the free carboxy terminus established by mass spectrometry.

PnVIIA belongs to the large group of conotoxins with the cysteine framework of ϖ and δ conotoxins, however, the sequence is most homologous to conotoxin-TxVIIA (Table 4). These homologies comprise approximately 48% amino acid identity and 63% similarity, including positioning of most hydrophobic and some charged residues, as well as one of the γ -carboxyglutamates.

EXAMPLE 4

Biological Activity of γ-Conotoxin PnVIIA

Paralytic Activity of PnVllA. Initial injections of PnVllA to limpet snails (Patella) did not

reveal the contractile paralysis previously observed for TxVIIA and other conotoxins in this bioassay (Fainzilber et al., 1991), however at doses above 50 pmoles/100 mg body weight some flaccidity of the foot musculature could be observed. Flaccid or relaxation paralytic effects are more easily observed in bioassays on bivalve molluscs, hence toxicity of PnVIIA was quantified in bioassays in freshwater mussels (Mytilus), as previously done for conotoxins PnIVA and PnIVB (Fainzilber et al., 1995). The ED₅₀ for Mytilus paralysis was 63.2 pmoles/100 mg body weight. No toxic or other effects could be observed upon injection of 1 nmole PnVEA (15-fold higher than the

 $Mytilus ext{ ED}_{50}$) per 100 mg body weight in Gambusia fish or blowfly (Sarcophaga) larvae. Interestingly, decarboxylated PnVIIA had no observable effects on Mytilus at doses of up to five-fold the ED_{50} of the native peptide.

Electrophysiological Effects of PnVIIA on Lymnaea Neuroendocrine Cells. Effects of PnVIIA were first screened in a number of mollusc or vertebrate electrophysiological preparations. Consistent effects were observed on caudodorsal neurons from the snail Lymnaea stagnalis, and this system was therefore used for detailed investigations on toxin activity. The caudodorsal neurons are typical rythmic bursting cells responsible for production of egg laying hormone, and their ionic currents have been characterized exhaustively (Brussaard et al., 1991; Dreijer & Kits, 1995; Kits & Mansvelder, 1996). In the first series of experiments, PnVIIA was applied to caudodorsal neurons recorded under current clamp and the effects on membrane potential and action potential firing were investigated. It was found that PnVIIA enhances the excitability of these cells in a dose-dependent way. Thus, a dose-dependent increase in excitability of caudodorsal cells (CDCs), inducing depolarization and repetitive spiking upon application of micromolar doses of PnVIIA was seen. Cells that were silent responded to low doses (≤ 1 µM) of the toxin by depolarization, while doses of 10 μM or more induced trains of action potentials. The number of action potentials increased with increasing doses. The duration of PnVIIA application also markedly influenced the response. In silent cells, responding with a burst of action potentials, the number of action potentials and the duration of the burst increased with increasing duration of the PnVIIA pulse. Thus, a time dependence of the excitatory effect of PnVIIA in silent CDCs, showing increased duration of spiking with increased duration of application was seen. Cells that were spontaneously active responded by a temporary increase in firing frequency, followed by an afterburst hyperpolarization during which the cell stops firing for a short period. Increasing the duration of PnVIIA application under these circumstances led to an increase in the duration of the burst, but even more so in the duration of the afterburst silent refractory period. Thus, a time dependence of the excitatory effect of PnVIIA in spontaneously active CDCs, showing that not only spiking increases but also the duration of silent period after the afterburst increases with longer applications was seen. The latter effect is possibly indirect, as a natural consequence from the increased firing frequency induced by the toxin.

Whether the effect was due to closure (blockade) or opening (activation) of ion channels was investigated by measuring input resistance of the cell membrane upon injection of hyperpolarizing current pulses (30 μ A). The amplitude of the resulting hyperpolarization is a direct measure of the

10

5

25

10

25

30

In a further series of experiments, the identity of the channel(s) activated by PnVIIA was investigated. To this end, whole cell voltage clamp experiments were performed on caudodorsal neurons, however, no consistent effects of the toxin could be observed on fast voltage gated sodium or calcium currents, nor on the potassium currents that are activated in a standard voltage step protocol. A slow ramp protocol was then applied to investigate possible effects on slow voltage gated currents (also designated as pacemaker currents) that are believed to underlie spontaneous firing. In this experiment current responses to a voltage ramp protocol in standard HBS during which the membrane potentials go from -80 to +20 mV at a rate of mV/s (control) were measured. This protocol will only reveal slow, voltage-gated currents, as fast currents will inactivate during the slow voltage ramp. An inward current is activated at \sim -30 mV and more positive. Most likely, this represents a pacemaker current. With 10 μM PnVIIA (10 μM) the voltage dependence shifts to the left (i.e., the current activates already at more hyperpolarized potentials). Furthermore, an increase in outward current at $> \sim 0$ mV occurs. Thus, the experiments indicated that a noninactivating inward current is activated at voltages above $\sim 30 \text{ mV}$ to the voltage ramp protocol. Preliminary experiments indicate that this inward current is a nonspecific cation current that is reduced in Na⁺ free selective saline and completely blocked by 1 mM Ni²+. Thus, most likely, Na⁺ and Ca²⁺ carry the inward current. In voltage dependence and ion selectivity, this current strongly resembles a pacemaker current in other Lymnaea neurons elaborately described by van Soest and Kits (1997). In the presence of 10 μ M PnVIIA, a dual effect was observed. First, the activation range of the slow inward current shifted by $\sim 10\ mV$ to a more negative potential, thus accounting for the enhanced excitability of the cells. Second, we saw an increase in noninactivating outward current at potentials above ~ 0 mV. Whether the latter is a direct effect of PnVIIA, or an indirect effect due to the increased inward current, remains to be determined. It is, however, in line with the previously observed prolongation of afterburst hyperpolarization under current clamp conditions. These data

5

show that the primary event mediating the excitatory effects of PnVIIA on *Lymnaea* caudodorsal neurons is an enhancement of a slow, voltage-activated inward cation channel.

EXAMPLE 5

Isolation of a y-Conotoxin Tx6.4 from Conus textile

A *Conus textile* cDNA library was prepared from venom duct using conventional techniques. DNA from single clones was amplified by conventional techniques using primers which correspond approximately to the M13 universal priming site and the M13 reverse universal priming site. The primers which were used are:

5'-TTTCCCAGTCACGACGTT-3' (SEQ ID NO:46) and

5'-CACACAGGAAACAGCTATG-3' (SEQ ID NO:47).

Clones having a size of approximately 300 nucleotides were sequenced and screened for similarity in sequence to PnVIIA and TxVIIA. A DNA was isolated having the sequence set forth in SEQ ID NO:16, which encoded the propeptide sequence set forth in SEQ ID NO:17. This new γ -conotoxin has the sequence described above and set forth in SEQ ID NO:7. Preferably, Xaa₁ is Trp, Xaa₂ is γ -Glu and Xaa₃ is Hyp. The C-terminus preferably contains a free hydroxyl group.

EXAMPLE6

<u>Isolation of γ-Conopeptides</u>

The procedure of Example 5 was followed to isolate additional nucleic acids encoding γ -conopeptides. The nucleic acids which were isolated have the nucleotide sequences set forth in SEQ ID NOs:18, 20, 22, 24, 26, 28, 30, 32 and 34. These nucleic acids encode the propeptides having the amino acid sequences set forth in SEQ ID NOs:19, 21, 23, 25, 27, 29, 31, 33 and 35, respectively. The mature peptide sequences are set forth in SEQ ID NOs:8-15 and 36.

EXAMPLE 7

Biological Activity of γ-Conotoxin TxVIIA

Isolated medial neurons from *Aplysia oculifera* pleuropedal ganglia (Kehoe, 1972) were cultured as previously described (Schacher & Proshansky, 1983). The neurons were cultured at very low densities to prevent any possible synaptic interactions among them. Passive and active membrane properties of the cultured neurons were studied using conventional intracellular recording and stimulation techniques. Briefly, the cell body of a cultured neuron was impaled by two

25

microelectrodes filled with 2 M KCl (5-10 M Ω resistance), one for current injection and the other for voltage recording. Analysis of the resting potential, input resistance, and action potential amplitude and shape was carried out in artificial sea water composed of 460 nM NaCl, 10 mM KCl, 11 mM CaCl₂, 55 mM MgCl₂ and 10 mM Hepes, pH 7.6. Venom fractions for electrophysiological experiments were dissolved in artificial sea water containing 10 mg/ml bovine serum albumin. The SephadexTM G-50 fraction was applied at 100-200 μ g/ml and purified toxin at final concentrations of 0.25-0.5 μ M.

The effects of venom fractions and purified toxin on isolated Aplysia neurons were characterized by measuring the resting potential, input resistance and action potential amplitude and shape. The Vt fraction from the SephadexTM G-50 column (G-50-Vt) (Fainzilber et al., 1991) and the purified toxin revealed significant effects at concentrations of 100 μg/ml and 0.25-0.5 μM, respectively. The effects of G-50-Vt, TxIA and TxIB were essentially similar Fainzilber et al., 1991). These fractions induced a transient membrane depolarization of 5-12 mV for 40-120 s. Within 3-30 s. after bath application of the toxin, the quiescent neurons fired spontaneously. Concomitantly, the action potential duration increased by one to two orders of magnitude, extending in many experiments to over 1 s. The prolonged action potentials are typically composed of an initial spike with a prolonged shoulder. In the continuous presence of the toxin in the bathing solution, the action potential duration gradually recovers. 20-30 min. after toxin application, the action potential duration was only 50-100% longer than in the control. Throughout this period, the threshold for action potential initiation was reduced. The changes in membrane excitability and action potential duration induced by the toxins were completely reversible upon washing of the neuron with artificial sea water. TxI-induced prolongation of the action potential duration was observed also when Ca2+ and K+ conductances were blocked (Ca^{2+} free artificial sea water, 16 mM Ca^{2+} and 50 mM tetraethylammonium, 150 μM 3,4diaminopyridine and 10 nM Cs⁺). Addition of tetrodotoxin (10 µM) under these conditions reduced the TxI-induced spike prolongation. TxVIIA induced similar effects on the membrane properties of isolated neurons, including membrane depolarization and repetitive firing. However, TxVIIA did not cause any increase in action potential duration.

The amino acid sequence of PnVIIA conserves the six-cysteine, four-loop framework C...C...CC...C typical of ω and δ conotoxins, and as shown in Table 4, is most homologous to the sequence of conotoxin-TxVIIA, an excitatory toxin from *Conus textile* venom (Fainziber et al., 1991; Nakamura et al., 1996). Both of these toxins have an identical, extremely acidic net charge (-5) and

5

25

10

are similar in their surface hydrophobic/hydrophilic interaction properties, as evidenced by comparable elusion properties in reverse-phase chromatography. Furthermore, the grow effects of these toxins in their respective sensitive systems (*Aplysia* versus *Lymnaea* neurons) are very similar, comprising an enhancement of excitability decreased membrane resistance, and increased repetitive firing. PnVIIA and TxVIIA may therefore represent closely related members of the same family, or convergent evolution to closely related receptor/channel targets.

The paralytic activities of both TxVIIA and PnVIIA in their respective bioassays are markedly decreased upon decarboxylation of the γ Glu residues. Although the primarily structural importance of γ Glu-metal chelates in mammalian vitamin K-dependent blood coagulation proteins and in mollusc conantokins is well established (Freedman et al., 1995; Skjaerbaek et al., 1997), there is also evidence, for example, in prothrombin of a functional role of individual γ Glu residues in membrane binding (Ratcliffe et al., 1993). Although the 3-D structures of conotokins TxVIIA and γ PnVIIA are most likely directed and stabilized by the three disulfide bonds, as in conotoxins in general, we cannot rule out at this stage a secondary microstructural role of the γ Glu residues. However, an attractive hypothesis is that the γ Glu residues in these peptides form part of a membrane or receptor recognition patch, with other variable residues (Table 4) providing specific recognition for channel isoforms or subtypes. Hypervariability in structurally related conotoxins is a well established mediator of the exquisite selectivity of these peptides for receptor subtypes (Myers et al., 1993; Nielsen et al., 1996).

It will be appreciated that the methods and compositions of the instant invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. It will be apparent to the artisan that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

LIST OF REFERENCES

Betner, I., & Foldi, P. (1986). Chromatographia 22:381-387.

Bodansky et al. (1966). Chem. Ind. 38:1597-98.

Brussaard, A.B. et al. (1991). J. Physiol. 441:385-404.

Burlingame, A.L. (1994). In *Biological Mass Spectrometry, Present and Future* (Matquo, T., et al., Eds.) pp. 147-164, Wiley, Chichester.

Cartier, G.E. et al. (1996). J. Biol. Chem. 271:7522-7528.

Cruz, L.J. at al. (1976). Verliger 18:302-308.

25

30

Cruz, L.J. et al. (1987). *Conus geographus* toxins that discriminate between neuronal and muscle sodium channels. *J. Biol. Chem.* **260**:9280-9288.

Dreijer, A.M., & Kits, K.S. (1995). Neuroscience 64:787-800.

Fainzilber, M. et al. (1991). Eur. J. Biochem. 202:589-596.

5 Fainzilber M. et al. (1994). J. Biol. Chem. 269:2574-2580.

Fainzilber, M. et al. (1994). Biochemistry 33:9523-9529.

Fainzilber M. et al. (1995). J. Biol. Chem. 270:1123-1129.

Fainzilber M. et al. (1995). Biochemistry 34:8649-8656.

Freedman, S.J., Furie, B.C., Furie B. & Baleja J.D. (1995). Biochemistry 35:12126-12137.

Haack, J.A. et al. (1990). Contryphan-T: a gamma-carboxyglutamate containing peptide with N-methyl-d-aspartate antagonist activity. *J. Biol. Chem.* **265**:6025-6029.

Hoehn, K., Watson, T.W.J. & MacVicar, B.A. (1993) Neuron 10:543-552.

Horiki, K. et al. (1978). Chemistry Letters 165-68.

Kaiser et al. (1970). Anal. Biochem. 34:595.

Kapoor (1970). J. Pharm. Sci. 59:1-27.

Kits K.S., & Mansvelder H.D. (1996). Invertebrate Neuroscience 2:9-34.

Kornreich, W.D. et al. (1986). U.S. Patent No. 4,569,967.

Medzihradszky, K. F. et al. (1994). J. Am. Soc. Mass Spectrom. 5:350-358.

Mena, E.E. et al. (1990). Contryphan-G: a novel peptide antagonist to the N-methyl-D-aspartic acid (NMDA) receptor. *Neurosci. Lett.* **118**:241-244.

Methoden der Organischen Chemie (Houben-Weyl): Synthese von Peptiden, E. Wunsch (Ed.), Georg Thieme Verlag, Stuttgart, Ger. (1974).

Myers, R.A., Ctuz, L.J., Rivier, J. & Olivera, B.M. (1993). Chem. Rev. 93, 1923-36.

Nakamura, T. et al. (1996). Protein Science 5:524-530.

Nielsen, K.J., Thomas, L., Lewis, R.J., Alewood, P.F., Craik, D.J. (1996). J. Mol. Biol. 263:297-310.

Nishiuchi, Y. et al. (1993). Synthesis of gamma-carboxyglutamic acid-containing peptides by the Boc strategy. *Int. J. Pept. Protein Res.* **42**:533-538.

Olivera, B.M. et al. (1984). U.S. Patent 4,447,356.

Olivera, B.M. et al. (1985). Peptide neurotoxins from fish-hunting cone snails. *Science* **230**:1338-1343.

Olivera, B.M. et al. (1996). U.S. Patent 5,514,774.

Olivera, B.M. et al. (1997). U.S. Patent 5,591,821.

Partridge, L.D. & Swandulla, D. (1988). Trends Neurosci. 11:69-72.

Ratcliffe, J.V., Furie, B., Furie, B.C. (1993). J. Biol. Chem. 268:24339-24345.

Remington's Pharmaceutical Sciences, 17th Ed., Mack Publishing Co., Easton, PA (1985).

Rivier, J.R. et al. (1978). Biopolymers 17:1927-38.

Rivier, J.R. et al. (1987). Total synthesis and further characterization of the gamma-carboxy-glutamate-containing 'sleeper' peptide from *Conus geographus*. *Biochem.* **26**:8508-8512.

5 Roberts et al. (1983). The Peptides **5**:342-429.

Reuter, H. (1984). Annual Rev. Physiol. 46:473-484.

Sambrook, J. et al. (1979). *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Schroder & Lubke (1965). The Peptides 1:72-75, Academic Press, NY.

10 Skjaerbaek, N., Nielsen, K.J., Lewis, R.J., Alewood, P., Craik, D.J. (1997). *J. Biol Chem.* **272**:291-2299.

Stewart and Young, Solid-Phase Peptide Synthesis, Freeman & Co., San Francisco, CA (1969).

Vale et al. (1978). U.S. Patent 4,105,603.

van Soest, P.F. & Kits, K.S. (1997). J. Neurophysiol.

Wilson, G.F. & Kaczmarek, L.K. (1993). Nature 366:433-448.

Zhou L.M., et al. (1996a). Synthetic Analogues of Contryphan-G: NMDA Antagonists Acting Through a Novel Polyamine-Coupled Site. *J. Neurochem.* **66**:620-628.

U.S. Patent 3,972,859 (1976).

U.S. Patent 3,842,067 (1974).

U.S. Patent 3,862,925 (1975).

PCT Published Application WO 96/11698

30

5

10

WHAT IS CLAIMED IS:

- 1. A substantially pure conopeptide or pharaceutically acceptable salt thereof, said conopeptide having the general formula I: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Cys-Xaa₆-Cys-Xaa₇ (SEQ ID NO:1), wherein Xaa₁ is des-Xaa₁ or a peptide having 1-6 amino acids; Xaa₂ is a peptide having 5-6 amino acids; Xaa₃ is a peptide having 4 amino acids; Xaa₄ is Glu, γ-carboxyglutamic acid (γ-Glu) or Gln; Xaa₅ is a peptide having 3-4 amino acids; Xaa₆ is a peptide having 3-6 amino acids; and Xaa₇ is des-Xaa₇ or a peptide having 2-9 amino acids, with the proviso that when Xaa₁ is des-Xaa₁, then Xaa₅ is not the tripeptide Ser-Asp-Asn.
- 2. The conopeptide of claim 1, wherein Xaa_4 is γ -Glu.
- 3. The conopeptide of claim 1, wherein Xaa₁ is des-Xaa₁.
- 4. The conopeptide of claim 1, wherein Xaa₁ is a peptide having 1-6 amino acids.
- 5. The conopeptide of claim 1, wherein Xaa₇ is des-Xaa₇.
- 6. The conopeptide of claim 1, wherein Xaa₇ is a peptide having 2-9 amino acids.
- 7. A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula II: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Cys-Xaa₇-Cys-Xaa₈ (SEQ ID NO:2), wherein Xaa₁ is des-Xaa₁ or a peptide having 1-6 amino acids; Xaa₂ is a peptide having 5-6 amino acids; Xaa₃ is a peptide having 4 amino acids; Xaa₄ is Glu,γ-carboxyglutamic acid (γ-Glu) or Gln; Xaa₅ is Ser or Thr; Xaa₆ is a peptide having 2-3 amino acids; Xaa₇ is a peptide having 3-6 amino acids; and Xaa₈ is des-Xaa₈ or a peptide having 2-9 amino acids, with the proviso that when Xaa₁ is des-Xaa₁ and Xaa₅ is Ser, then Xaa₆ is not the dipeptide Asp-Asn.
- 8. The conopeptide of claim 7, wherein Xaa₄ is γ-Glu.
- 9. The conopeptide of claim 7, wherein Xaa₁ is des-Xaa₁.

- 10. The conopeptide of claim 7, wherein Xaa₁ is a peptide having 1-6 amino acids.
- 11. The conopeptide of claim 7, wherein Xaa₅ is Ser or Thr.
- 5 12. The conopeptide of claim 7, wherein Xaa₈ is des-Xaa₈.
 - 13. The conopeptide of claim 1, wherein Xaa₈ is a peptide having 2-9 amino acids.
 - 14. A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula III: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₅-Cys-Xaa₆ (SEQ ID NO:3), wherein Xaa₁ is a peptide having 1-6 amino acids; Xaa₂ is a hexapeptide; Xaa₃ is a peptide having 4 amino acids; Xaa₄ is Glu or γ-carboxyglutamic acid (γ-Glu); Xaa₅ is a tripeptide; and Xaa₆ is a peptide having 7-9 amino acids.
 - 15. The conopeptide of claim 14, wherein Xaa₄ is γ-Glu.
 - 16. A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula IV: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₆-Cys-Xaa₇ (SEQ ID NO:4), wherein Xaa₁ is a peptide having 1-6 amino acids; Xaa₂ is a hexapeptide; Xaa₃ is Ser or Thr; Xaa₄ is a tripeptide; Xaa₅ is Glu or γ-carboxyglutamic acid (γ-Glu); Xaa₆ is a tripeptide; and Xaa₇ is a peptide having 7-9 amino acids.
 - 17. The conopeptide of claim 16, wherein Xaa₅ is γ-Glu.
 - 18. A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula V: Xaa₁-Xaa₂-Cys-Xaa₃-Xaa₄-Phe-Xaa₅-Cys-Thr-Xaa₆-Ser-Xaa₇-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys-Xaa₈-Leu-Xaa₉ (SEQ ID NO:5), wherein Xaa₁ is des-Xaa₁ or a dipeptide; Xaa₂ is Asp, Glu or γ-carboxyglutamic acid (γ-Glu); Xaa₃ is a dipeptide; Xaa₄ is Trp or 6-bromo-Trp; Xaa₅ is a dipeptide; Xaa₆ is a dipeptide; Xaa₇ is Glu or γ-Glu; Xaa₈ is any amino acid; and, Xaa₉ is a pentapeptide.

Xaa₃ is Pro or hydroxy-Pro (Hyp).

wherein Xaa₁ is Trp or 6-bromo-Trp; Xaa₂ is Glu or γ-carboxyglutamic acid (γ-Glu); and

- 21. The conopeptide of claim 20, wherein Xaa₂ is γ-Glu.
- 22. The conopeptide of claim 20, wherein Xaa₂ is Glu.
- 5 23. The conopeptide of claim 20, wherein Xaa₃ is Hyp.
 - 24. The conopeptide of claim 20, wherein Xaa₃ is Pro.
 - 25. The conopeptide of claim 20, wherein Xaa₁ is Trp.
 - 26. The conopeptide of claim 20, wherein Xaa₁ is 6-bromo-Trp.
 - 27. The conopeptide of claim 20, wherein the conopeptide is PnVIIA and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu, Xaa₃ is Hyp and the C-terminus has a free carboxyl group.
 - 28. The conopeptide of claim 20, wherein the conopeptide is Tx6.4 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu, Xaa₃ is Hyp and the C-terminus has a free carboxyl group.
 - 29. The conopeptide of claim 20, wherein the conopeptide is Tx6.9 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu, Xaa₃ is Hyp and the C-terminus has a free carboxyl group.
 - 30. The conopeptide of claim 20, wherein the conopeptide is Tx6.6 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu, Xaa₃ is Hyp and the C-terminus has a free carboxyl group.
- 25 31. The conopeptide of claim 20, wherein the conopeptide is Tx6.5 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu, Xaa₃ is Hyp and the C-terminus has a free carboxyl group.
 - 32. The conopeptide of claim 20, wherein the conopeptide is J010 and wherein Xaa₂ is γ-Glu and the C-terminus is amidated.
 - 33. The conopeptide of claim 20, wherein the conopeptide is Gm6.7 and wherein Xaa_1 is Trp, Xaa_2 is γ -Glu, Xaa_3 is Hyp and the C-terminus has a free carboxyl group.

25

- 34. The conopeptide of claim 20, wherein the conopeptide is Mr6.1 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu, Xaa₃ is Hyp and the C-terminus is amidated.
- 5 35. The conopeptide of claim 20, wherein the conopeptide is Mr6.2 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu and the C-terminus is amidated.
 - 36. The conopeptide of claim 20, wherein the conopeptide is Mr6.3 and wherein Xaa₁ is Trp, Xaa₂ is γ-Glu and the C-terminus is amidated.
 - 37. An isolated nucleic acid selected from the group consisting of:
 - (a) a nucleic acid encoding a Tx6.4 propetide having the amino acid sequence set forth in SEQ ID NO:17;
 - (b) a nucleic acid encoding a Tx6.9 propetide having the amino acid sequence set forth in SEQ ID NO:19;
 - (c) a nucleic acid encoding a J0104 propetide having the amino acid sequence set forth in SEQ ID NO:21;
 - (d) a nucleic acid encoding a Tx6.6 propetide having the amino acid sequence set forth in SEQ ID NO:23;
 - (e) a nucleic acid encoding a Tx6.5 propetide having the amino acid sequence set forth in SEQ ID NO:25;
 - (f) a nucleic acid encoding a Gm6.7 propetide having the amino acid sequence set forth in SEQ ID NO:27;
 - (g) a nucleic acid encoding an Mr6.1 propetide having the amino acid sequence set forth in SEQ ID NO:29;
 - (h) a nucleic acid encoding an Mr6.2 propetide having the amino acid sequence set forth in SEQ ID NO:31;
 - (i) a nucleic acid encoding an Mr6.3 propetide having the amino acid sequence set forth in SEQ ID NO:33; and
 - (j) a nucleic acid encoding a Tx6.1 propetide having the amino acid sequence set forth in SEQ ID NO:35.

- 38. The nucleic acid of claim 37 encoding a Tx6.4 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:16, or complement thereof.
- 39. The nucleic acid of claim 37 encoding a Tx6.9 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:18, or complement thereof.
 - 40. The nucleic acid of claim 37 encoding a J010 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:20, or complement thereof.
- 10 41. The nucleic acid of claim 37 encoding a Tx6.6 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:22, or complement thereof.
 - 42. The nucleic acid of claim 37 encoding a Tx6.5 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:24, or complement thereof.
 - 43. The nucleic acid of claim 37 encoding a Gm6.7 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:26, or complement thereof.
 - 44. The nucleic acid of claim 37 encoding an Mr6.1 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:28, or complement thereof.
 - 45. The nucleic acid of claim 37 encoding an Mr6.2 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:30, or complement thereof.
- 25 46. The nucleic acid of claim 37 encoding an Mr6.3 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:32, or complement thereof.
 - 47. The nucleic acid of claim 37 encoding a Tx6.1 propetide, said nucleic acid having a sequence set forth in SEQ ID NO:34, or complement thereof.

TITLE OF THE INVENTION GAMMA-CONOPEPTIDES

ABSTRACT OF THE DISCLOSURE

5

10

This invention relates to relatively short peptides about 25-40 residues in length, which are naturally available in minute amounts in the venom of the cone snails or analogs to the naturally available peptides, and which include three cyclizing disulfide linkages and one or more ycarboxyglutamate residues. More specifically, the present invention is directed to γ-conopeptides having the general formula I: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Cys-Xaa₆-Cys-Xaa₇ (SEQ ID NO:1), as described herein; or having the general formula II:Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Cys-Xaa₇-Cys-Xaa₈ (SEQ ID NO:2), as defined herein; or having the general formula III: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₆-Cys-Xaa₇ (SEQ ID NO:3), as described herein; or having the general formula IV: Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₆-Cys-Xaa₇ (SEQ ID NO:4), as described herein: or having the general formula V: Xaa₁-Xaa₂-Cys-Xaa₃-Xaa₄-Phe-Xaa₅-Cys-Thr-Xaa₆-Ser-Xaa₇-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys-Xaa₈-Leu-Xaa₉ (SEQ ID NO:5), as described herein. The invention further relates to specific y-conopeptides, specific pro-yconopeptides and nucleic acids encoding the pro-γ-conopeptides. The invention also includes pharmaceutically acceptable salts of the conopeptides. These conopeptides are useful as agonists of neuronal pacemaker calcium channels.

SEQUENCE LISTING

```
<110> Fainzilber, Michael M.
      Kits, Karel S.
      Burlingame, Alma L.
      Olivera, Baldomero M.
      Walker, Craig
      Watkins, Maren
      Shetty, Reshma
      Cruz, Lourdes J.
      Imperial, Julita
      Colledge, Clark
      University of Utah Resarch Foundation
      Vrije Universiteit
      Regents of the University of California
<120> Gamma-Conopeptides
<130> Gamma-Conpeptides
<140>
<141>
<150> US 60/069,706
<151> 1997-12-16
<160> 47
<170> PatentIn Ver. 2.0
<210> 1
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic formula
      of gamma-conopeptides
<220>
<221> PEPTIDE
<222> (1)
<223> Xaa at residue 1 is des-Xaa or a peptide having
      1-6 amino acids.
<220>
<221> PEPTIDE
<222> (3)
<223> Xaa at residue 3 is a peptide having 5-6 amino
      acids.
<220>
<221> PEPTIDE
<222> (5)
<223> Xaa at residue 5 is a peptide having 4 amino
      acids.
<220>
<221> PEPTIDE
<223> Xaa at residue 6 is Glu, gamma-carboxylglutamate
      or Gln.
<220>
```

```
<221> PEPTIDE
<222> (9)
<223> Xaa at residue 9 is a peptide having 3-4 amino
      acids.
<220>
<221> PEPTIDE
<222> (11)
<223> Xaa at residue 11 is a peptide having 3-6 amino
      acids.
<220>
<221> PEPTIDE
<222> (13)
<223> Xaa at residue 13 is des-Xaa or a peptide of 2-9
      amino acids.
<400> 1
Xaa Cys Xaa Cys Xaa Cys Xaa Cys Xaa Cys Xaa
 1
                  5
                                     10
<210> 2
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:generic
      sequence of gamma-conopeptides.
<220>
<221> PEPTIDE
<222> (1)
<223> Xaa at residue 1 is des-Xaa or a peptide having
      1-6 amino acids.
<220>
<221> PEPTIDE
<222> (3)
<223> Xaa at residue 3 is a peptide having 5-6 amino
     acids.
<220>
<221> PEPTIDE
<222> (5)
<223> Xaa at residue 5 is a peptide having 4 amino
      acids.
<220>
<221> PEPTIDE
<222> (6)
<223> Xaa at residue 6 is Glu, gamma-carboxyglutamate or
      Gln.
<220>
<221> PEPTIDE
<222> (9)
<223> Xaa at residue 9 is Ser or Thr.
<220>
<221> PEPTIDE
<222> (10)
<223> Xaa at residue 10 is a peptide having 2-3 amino
```

Ī

ū

L

N

##

11

T

ļ-ā

ui

ũ

```
acids.
<220>
<221> PEPTIDE
<222> (12)
<223> Xaa at residue 12 is a peptide having 3-6 amino
      acids.
<220>
<221> PEPTIDE
<222> (14)
<223> Xaa at residue 14 is a peptide having 2-9 amino
      acids.
<400> 2
Xaa Cys Xaa Cys Xaa Xaa Cys Cys Xaa Xaa Cys Xaa Cys Xaa
<210> 3
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: generic formula
      of gamma-conopeptides
<220>
<221> PEPTIDE
<222> (1)
<223> Xaa at residue 1 is a peptide having 1-6 amino
<220>
<221> PEPTIDE
<222> (3)
<223> Xaa at residue 3 is a hexapeptide.
<220>
<221> PEPTIDE
<222> (5)
<223> Xaa at residue 5 is a peptide having 4 amino
      acids.
<220>
<221> PEPTIDE
<222> (6)
<223> Xaa at residue 6 is Glu or gamma-carboxyglutamate.
<220>
<221> PEPTIDE
<222> (14)
<223> Xaa at residue 14 is a tripeptide.
<220>
<221> PEPTIDE
<223> Xaa at residue 16 is a peptide having 7-9 amino
      acids.
Xaa Cys Xaa Cys Xaa Cys Cys Ser Asn Ser Cys Asp Xaa Cys Xaa
                                     10
 1
```

```
<210> 4
     <211> 17
      <212> PRT
     <213> Artificial Sequence
      <220>
      <223> Description of Artificial Sequence:generic
            sequence of gamma-conopeptides.
     <220>
     <221> PEPTIDE
     <222> (1)
      <223> Xaa at residue 1 is a peptide having 1-6 amino
           acids.
     <220>
     <221> PEPTIDE
     <222> (3)
     <223> Xaa at residue 3 is a hexapeptide.
     <220>
     <221> PEPTIDE
     <222> (5)
     <223> Xaa at residue 5 is Ser or Thr.
T
<220>
     <221> PEPTIDE
     <222> (6)
     <223> Xaa at residue 6 is a tripeptide.
IJ
T
     <220>
#
     <221> PEPTIDE
<222> (7)
T
     <223> Xaa at residue 7 is Glu or gamma-carboxyglutamate.
ļ.
     <220>
I
     <221> PEPTIDE
ũ
     <222> (15)
     <223> Xaa at residue 15 is a tripeptide.
     <220>
     <221> PEPTIDE
     <222> (17)
     <223> Xaa at residue is a peptide having 7-9 amino
           acids.
     <400> 4
     Xaa Cys Xaa Cys Xaa Xaa Xaa Cys Cys Ser Asn Ser Cys Asp Xaa Cys
                        5
                                           10
                                                               15
     Xaa
     <210> 5
     <211> 26
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:generic
            sequence of gamma-conopeptides.
```

```
<220>
<221> PEPTIDE
<222> (1)
<223> Xaa at residue 1 is des-Xaa or a dipeptide.
<220>
<221> PEPTIDE
<222> (2)
<223> Xaa at residue 2 is Asp, Glu or
      gamma-carboxyglutamate.
<220>
<221> PEPTIDE
<222> (4)
<223> Xaa at residue 4 is a dipeptide.
<220>
<221> PEPTIDE
<222> (5)
<223> Xaa at residue 5 is Trp or 6-bromo-Trp.
<220>
<221> PEPTIDE
<222> (7)
<223> Xaa at residue 7 is dipeptide.
<220>
<221> PEPTIDE
<222> (10)
<223> Xaa at residue 10 is a dipeptide.
<220>
<221> PEPTIDE
<222> (12)
<223> Xaa at residue 12 is Glu, gamma-carboxyglutamate
      or Gln.
<220>
<221> PEPTIDE
<222> (24)
<223> Xaa at residue 24 is any amino acid.
<220>
<221> PEPTIDE
<222> (26)
<223> Xaa at residue 26 is a pentapeptide.
<400> 5
Xaa Xaa Cys Xaa Xaa Phe Xaa Cys Thr Xaa Ser Xaa Cys Cys Ser Asn
 1
Ser Cys Asp Trp Thr Tyr Cys Xaa Leu Xaa
             20
<210> 6
<211> 32
<212> PRT
<213> Conus pennaceus
<220>
<221> PEPTIDE
<222> (1)..(31)
<223> Xaa at residue 5 is Trp or 6-bromo-Trp; Xaa at
```

M

N

=

T

I

I.

residues 14 and 26 are Glu or gamma-carboxyglutamate; Xaa at residue 31 is Pro or hydroxy-Pro.

<400> 6 Asp Cys Thr Ser Xaa Phe Gly Arg Cys Thr Val Asn Ser Xaa Cys Cys

Ser Asn Ser Cys Asp Gln Thr Tyr Cys Xaa Leu Tyr Ala Phe Xaa Ser

<210> 7 <211> 34 <212> PRT

<213> Conus textile

<220> <221> PEPTIDE

<222> (1)..(34)

<223> Xaa at residues 1, 7 and 34 are Trp or 6-bromo-Trp; Xaa at residues 3 and 16 are Glu or gamma-carboxyglutamate; Xaa at residues 31 and 32 are Pro or hydroxy-Pro.

<400> 7 Xaa Leu Xaa Cys Ser Val Xaa Phe Ser His Cys Thr Lys Asp Ser Xaa

Cys Cys Ser Asn Ser Cys Asp Gln Thr Tyr Cys Thr Leu Met Xaa Xaa

Asp Xaa

<210> 8 <211> 39

<212> PRT

<213> Conus textile

<220>

<221> PEPTIDE

<222> (1)..(39)

<223> Xaa at residues 1, 2, 4, 10 and 39 are Trp or 6-bromo-Trp; Xaa at residues 19 and 31 are Glu or gammacarboxyglutamate; Xaa at residues 34, 36 and 37 ar Pro or hydroxy-Pro.

Xaa Xaa Arg Xaa Gly Gly Cys Met Ala Xaa Phe Gly Leu Cys Ser Arg

Asp Ser Xaa Cys Cys Ser Asn Ser Cys Asp Val Thr Arg Cys Xaa Leu

Met Xaa Phe Xaa Xaa Asp Xaa 35

```
<211> 27
<212> PRT
<213> Conus textile
<220>
<221> PEPTIDE
<222> (1)..(27)
<223> Xaa at residues 9, 13 and 17 are Glu or
      gamma-carboxyglutamate.
<400> 9
Cys Lys Thr Tyr Ser Lys Tyr Cys Xaa Ala Asp Ser Xaa Cys Cys Thr
Xaa Gln Cys Val Arg Ser Tyr Cys Thr Leu Phe
<210> 10
<211> 34
<212> PRT
<213> Conus textile
<220>
<221> PEPTIDE
<222> (1)..(34)
<223> Xaa at residues 2, 3, 10 and 32 are Trp or
      6-bromo-Trp; Xaa at residues 18, 26 and 33 are Glu
      or gamma-carboxyglutamate; Xaa at residue 12 is
      Pro or hydroxy-Pro.
<400> 10
Asp Xaa Xaa Asp Asp Gly Cys Ser Val Xaa Gly Xaa Cys Thr Tyr Asn
Ala Xaa Cys Cys Ser Gly Asp Cys His Xaa Thr Cys Ile Phe Gly Xaa
Xaa Val
<210> 11
<211> 31
<212> PRT
<213> Conus textile
<220>
<221> PEPTIDE
<222> (1)..(31)
<223> Xaa at residues 3 and 31 are Trp of 6-bromo-Trp;
      Xaa at residues 5, 18, 22 and 25 are Glu or
      gamma-carboxyglutamate; Xaa at residue 16 is Pro
      or hydroxy-Pro.
<400> 11
Gly Met Xaa Gly Xaa Cys Lys Asp Gly Leu Thr Thr Cys Leu Ala Xaa
Ser Xaa Cys Cys Ser Xaa Asp Cys Xaa Gly Ser Cys Thr Met Xaa
```

<210> 12

```
<211> 32
<212> PRT
<213> Conus gloriamaris
<220>
<221> PEPTIDE
<222> (1)..(32)
<223> Xaa at residue 5 is Trp or 6-bromo-Trp; Xaa at
      residue 1 is Glu or gamma-carboxyglutamate; Xaa at
      residues 8 and 11 are Pro or hydroxy-Pro.
<400> 12
Xaa Cys Arg Ala Xaa Tyr Ala Xaa Cys Ser Xaa Gly Ala Gln Cys Cys
Ser Leu Leu Met Cys Ser Lys Ala Thr Ser Arg Cys Ile Leu Ala Leu
<210> 13
<211> 29
<212> PRT
<213> Conus marmoreus
<220>
<221> PEPTIDE
<222> (1)..(29)
<223> Xaa at residues 8 and 15 are Trp or 6-bromo-Trp;
      Xaa at residues 5, 16 and 23 are Glu or
      gamma-carboxyglutamate; Xaa at residue 10 is Pro
      or hydroxy-Pro.
<400> 13
Asn Gly Gln Cys Xaa Asp Val Xaa Met Xaa Cys Thr Ser Asn Xaa Xaa
                                      10
Cys Cys Ser Leu Asp Cys Xaa Met Tyr Cys Thr Gln Ile
<210> 14
<211> 27
<212> PRT
<213> Conus marmoreus
<220>
<221> PEPTIDE
<222> (1)..(27)
<223> Xaa at residue 4 is Trp or 6-bromo-Trp; Xaa at
      residues 9, 12, 13 and 17 are Glu or
      gamma-carboxyglutamate.
<400> 14
Cys Gly Gly Xaa Ser Thr Tyr Cys Xaa Val Asp Xaa Xaa Cys Cys Ser
Xaa Ser Cys Val Arg Ser Tyr Cys Thr Leu Phe
```

<210> 15

```
<211> 26
<212> PRT
<213> Conus marmoreus
<220>
<221> PEPTIDE
<222> (1)..(26)
<223> Xaa at residues 8 and 15 are Trp or 6-bromo-Trp;
      Xaa at residue 16 is Glu or
      gamma-carboxyglutamate.
<400> 15
Asn Gly Gly Cys Lys Ala Thr Xaa Met Ser Cys Ser Ser Gly Xaa Xaa
Cys Cys Ser Met Ser Cys Asp Met Tyr Cys
<210> 16
<211> 323
<212> DNA
<213> Conus textile
<220>
<221> CDS
<222> (1)..(153)
<400> 16
gaa cgg gct aag atc aac ttg ctt cca aag aga aag cca cct gct gag
                                                                    48
Glu Arg Ala Lys Ile Asn Leu Leu Pro Lys Arg Lys Pro Pro Ala Glu
cgt tgg ttg gaa tgc agt gtt tgg ttt tca cat tgt acg aag gac tcg
                                                                    96
Arg Trp Leu Glu Cys Ser Val Trp Phe Ser His Cys Thr Lys Asp Ser
             20
gaa tgt tgt tct aat agt tgt gac caa acg tac tgc acg tta atg cca
                                                                   144
Glu Cys Cys Ser Asn Ser Cys Asp Gln Thr Tyr Cys Thr Leu Met Pro
                              40
ccg gac tgg tgacatcgcc actctcctgt tcagagtctt caaggctttt
                                                                    193
Pro Asp Trp
     50
gttctctttt gaagaatttt aacgagtgaa caaaaaagtg gactagcatg tttccttttc 253
cctttgcaaa atcaatgatg gaggtaaaag cctcccattt tgtcttcatc aataaagaac 313
                                                                    323
ttatcatcat
<210> 17
<211> 51
<212> PRT
<213> Conus textile
<400> 17
Glu Arg Ala Lys Ile Asn Leu Leu Pro Lys Arg Lys Pro Pro Ala Glu
Arg Trp Leu Glu Cys Ser Val Trp Phe Ser His Cys Thr Lys Asp Ser
```

Glu Cys Cys Ser Asn Ser Cys Asp Gln Thr Tyr Cys Thr Leu Met Pro 35 40 45	
Pro Asp Trp 50	
<210> 18 <211> 510 <212> DNA <213> Conus textile	
<220> <221> CDS <222> (95)(337)	
<400> 18 tgactcgcca tctcctctct cagtctccct gacagctgcc ttcagtcgac cctgccgtca	60
tctcaacgca cacttgaagt gaaaaacctt tatc atg gag aaa ctg aca att ctg : Met Glu Lys Leu Thr Ile Leu 1 5	115
ctt ctt gtt gct gct gta ctg ttg tcg atc cag gcc cta aat caa gaa Leu Leu Val Ala Ala Val Leu Leu Ser Ile Gln Ala Leu Asn Gln Glu 10 15 20	163
aaa cac caa cgg gca aag atc aac ttg ctt tca aag aga aag cca cct Lys His Gln Arg Ala Lys Ile Asn Leu Leu Ser Lys Arg Lys Pro Pro 25 30 35	211
gct gag cgt tgg tgg cgg tgg gga gga tgc atg gct tgg ttt ggg ctt Ala Glu Arg Trp Trp Arg Trp Gly Gly Cys Met Ala Trp Phe Gly Leu 40 45 50 55	259
tgt tcg agg gac tcg gaa tgt tgt tct aat agt tgt gac gta acg cgc Cys Ser Arg Asp Ser Glu Cys Cys Ser Asn Ser Cys Asp Val Thr Arg 60 65 70	307
tgc gag tta atg cca ttc cca cca gac tgg tgacatcgac actctcctct Cys Glu Leu Met Pro Phe Pro Pro Asp Trp 75 80	357
tcagagtctt caaggctttt gttctctttt gaagaatttt tacgagtgaa caaaaacgtg	417
gactagcacg tttccttttc cctttgcaaa atcaatgatg gaggtaaaag tgtcccattt	477
tgtcttcatc aataaagaac ttatcatcat aat	510
<210> 19 <211> 81 <212> PRT <213> Conus textile	
<400> 19 Met Glu Lys Leu Thr Ile Leu Leu Leu Val Ala Ala Val Leu Leu Ser 1 5 10 15	
Ile Gln Ala Leu Asn Gln Glu Lys His Gln Arg Ala Lys Ile Asn Leu 20 25 30	
Leu Ser Lys Arg Lys Pro Pro Ala Glu Arg Trp Trp Arg Trp Gly Gly 35 40 45	

Cys Met Ala Trp Phe Gly Leu Cys Ser Arg Asp Ser Glu Cys Cys Ser Asn Ser Cys Asp Val Thr Arg Cys Glu Leu Met Pro Phe Pro Pro Asp Trp <210> 20 <211> 441 <212> DNA <213> Conus textile <220> <221> CDS <222> (16)..(243) <400> 20 ggaaaaactt ttatc atg gag aaa ctg aca atc ctg ctc ctt gtt gct gct Met Glu Lys Leu Thr Ile Leu Leu Leu Val Ala Ala gta ctg atg tcg acc cag gcc atg ttt caa ggt gat gga gaa aaa tcc 99 Val Leu Met Ser Thr Gln Ala Met Phe Gln Gly Asp Gly Glu Lys Ser cgg aag gcg gag atc aac ttt tct gaa aca aga aag ttg gcg aga aac 147 Arg Lys Ala Glu Ile Asn Phe Ser Glu Thr Arg Lys Leu Ala Arg Asn 35 aag cag aaa ggc tgc aaa act tat tca aag tat tgt gaa gct gac tcg 195 Lys Gln Lys Arg Cys Lys Thr Tyr Ser Lys Tyr Cys Glu Ala Asp Ser gaa tgc tgt acc gaa cag tgt gta agg tct tac tgc acg ttg ttt gga 243 Glu Cys Cys Thr Glu Gln Cys Val Arg Ser Tyr Cys Thr Leu Phe Gly 65 tgaattcgga ccacaagcca tccgatatca cccctctcct cttcagaggc ttcaaggctt 303 ttgttatcct tttgaagaat ctttatcgag taaacataag tagacaagct tttttttcc 363 tttgcaaaat gaagaatgat ggcaaaaagc ccccatttt gtcttcatca ataaagaact 423 441 cgctatcaga ataaaaaa <210> 21 <211> 76 <212> PRT <213> Conus textile <400> 21 Met Glu Lys Leu Thr Ile Leu Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala Met Phe Gln Gly Asp Gly Glu Lys Ser Arg Lys Ala Glu Ile Asn Phe Ser Glu Thr Arg Lys Leu Ala Arg Asn Lys Gln Lys Arg

Cys Lys Thr Tyr Ser Lys Tyr Cys Glu Ala Asp Ser Glu Cys Cys Thr Glu Gln Cys Val Arg Ser Tyr Cys Thr Leu Phe Gly 70 <210> 22 <211> 460 <212> DNA <213> Conus textile <220> <221> CDS <222> (49)..(273) <400> 22 ctgccgtcat ctcagcgcac acttggtaag aagtgaaaaa ccttgatc atg gag aaa Met Glu Lys 1 105 ctg aca att ctg ctt ctt gtt gct gct gtg ctg atg tcg acc cag gcc Leu Thr Ile Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala 10 cta att caa gat caa cgc caa aag gca aag atc aac ttg ttt tca aag 153 Leu Ile Gln Asp Gln Arg Gln Lys Ala Lys Ile Asn Leu Phe Ser Lys 30 20 25 201 aga cag gca tat gct cgt gat tgg tgg gac gat ggc tgc agt gtg tgg Arg Gln Ala Tyr Ala Arg Asp Trp Trp Asp Asp Gly Cys Ser Val Trp ggg cct tgt acg gtg aac gca gaa tgt tgt tct ggt gat tgt cat gaa 249 Gly Pro Cys Thr Val Asn Ala Glu Cys Cys Ser Gly Asp Cys His Glu acg tgc att ttc ggg tgg gaa gtc tgaccacaaa ccatccgaca tcgccactct 303 Thr Cys Ile Phe Gly Trp Glu Val cctcttcaga gacttcaagg cttttgttct cttttgaaga attttacgag tgagcaaaaa 363 ggtagactag cacgtttctt tttccctttg caaaatcaat gatggaggta aaagcctccc 423 460 attttgtcct catcaataaa gaacttatca tcataat <210> 23 <211> 75 <212> PRT <213> Conus textile <400> 23 Met Glu Lys Leu Thr Ile Leu Leu Leu Val Ala Ala Val Leu Met Ser 10 Thr Gln Ala Leu Ile Gln Asp Gln Arg Gln Lys Ala Lys Ile Asn Leu Phe Ser Lys Arg Gln Ala Tyr Ala Arg Asp Trp Trp Asp Asp Gly Cys Ser Val Trp Gly Pro Cys Thr Val Asn Ala Glu Cys Cys Ser Gly Asp

55 60 50 Cys His Glu Thr Cys Ile Phe Gly Trp Glu Val 70 <210> 24 <211> 533 <212> DNA <213> Conus textile <220> <221> CDS <222> (110)..(337) <400> 24 ctctgccggt tgacacntca tctactctct cagtctccct gacagetgcc ttcagtcgac 60 cctgccgtca tctcagcgca gacttgataa gaagtgaaaa acctttatc atg gag aaa 118 Met Glu Lys ctg aca atc ctg ctt ctt gtt gct gct gta ctg atg tcg acc cag gcc Leu Thr Ile Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala 214 ctg gtt gaa cgt gct gga gaa aac cac tca aag gag aac atc aat ttt Leu Val Glu Arg Ala Gly Glu Asn His Ser Lys Glu Asn Ile Asn Phe tta tta aaa aga aag aga gct gct gac agg ggg atg tgg ggc gaa tgc 262 Leu Leu Lys Arg Lys Arg Ala Ala Asp Arg Gly Met Trp Gly Glu Cys aaa gat ggg tta acg aca tgt ttg gcg ccc tca gag tgt tgt tct gag 310 Lys Asp Gly Leu Thr Thr Cys Leu Ala Pro Ser Glu Cys Cys Ser Glu 357 gat tgt gaa ggg agc tgc acg atg tgg tgatgaattc tgaccacaag Asp Cys Glu Gly Ser Cys Thr Met Trp ccatctgaca tcaccactct cctcttcaga ggcttcaagg cttttgtttt ccttttgaat 417 aatetttaeg agtaaacaaa taagtagaet agegegtttt ttteeetttg agaaateaat 477 gatggaggta aatagcttcc tattttgtct tattcaataa agaacttatc ataata <210> 25 <211> 76 <212> PRT <213> Conus textile <400> 25 Met Glu Lys Leu Thr Ile Leu Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala Leu Val Glu Arg Ala Gly Glu Asn His Ser Lys Glu Asn Ile Asn Phe Leu Leu Lys Arg Lys Arg Ala Ala Asp Arg Gly Met Trp

Arq Cys Ile Leu Ala Leu

65

Gly Glu Cys Lys Asp Gly Leu Thr Thr Cys Leu Ala Pro Ser Glu Cys Cys Ser Glu Asp Cys Glu Gly Ser Cys Thr Met Trp 70 <210> 26 <211> 408 <212> DNA <213> Conus gloriamaris <220> <221> CDS <222> (2)..(211) <400> 26 g ctg aca atc ctg ctt ctt gtt gct gct gta ctg atg tcg acc cag gcc 49 Leu Thr Ile Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala 10 5 ctg att caa ggt ggt ggt gac aaa cgt caa aag gca aac atc aac ttt Leu Ile Gln Gly Gly Gly Asp Lys Arg Gln Lys Ala Asn Ile Asn Phe 20 ctt tca agg tgg gac cgt gag tgc agg gct tgg tat gcg ccg tgt agc 145 Leu Ser Arg Trp Asp Arg Glu Cys Arg Ala Trp Tyr Ala Pro Cys Ser cct ggc gcg caa tgt tgt agt ttg ctg atg tgt tca aaa gcg acc agc 193 Pro Gly Ala Gln Cys Cys Ser Leu Leu Met Cys Ser Lys Ala Thr Ser 241 cgc tgc ata ttg gcg tta tgaactctga ccacaagcca tccgacatca Arg Cys Ile Leu Ala Leu ccacteteet etteagagge tteaaggett tttgttttte ttttgaagaa tetttaegag 301 tgaacaaata agtagaatag cacgtttttc cccctttgca aaatcaataa tggaggttaa 361 408 aaaaaaactt ctgtcttctt caataaagaa gttatcataa taaaaaa <210> 27 <211> 70 <212> PRT <213> Conus gloriamaris <400> 27 Leu Thr Ile Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala Leu Ile Gln Gly Gly Gly Asp Lys Arg Gln Lys Ala Asn Ile Asn Phe Leu Ser Arg Trp Asp Arg Glu Cys Arg Ala Trp Tyr Ala Pro Cys Ser Pro Gly Ala Gln Cys Cys Ser Leu Leu Met Cys Ser Lys Ala Thr Ser 60

```
<210> 28
<211> 278
<212> DNA
<213> Conus marmoreus
<220>
<221> CDS
<222> (4)..(222)
<400> 28
atc atg cag aaa ctg ata atc ctg ctt ctt gtt gct gct gtg ctg ctg
    Met Gln Lys Leu Ile Ile Leu Leu Val Ala Ala Val Leu Leu
tog acc cag goo cta aat caa gaa aaa ogo coa aag gag atg atc aat
Ser Thr Gln Ala Leu Asn Gln Glu Lys Arg Pro Lys Glu Met Ile Asn
ttt tta tca aaa gga aag aca aat gct gag agg cgg aac ggc caa tgc
Phe Leu Ser Lys Gly Lys Thr Asn Ala Glu Arg Arg Asn Gly Gln Cys
gag gat gtt tgg atg cct tgt aca tcg aac tgg gaa tgc tgt tct ttg
                                                                   192
Glu Asp Val Trp Met Pro Cys Thr Ser Asn Trp Glu Cys Cys Ser Leu
                             55
gat tgt gaa atg tac tgc aca cag ata gga tgaactctga ccacaagcca
                                                                   242
Asp Cys Glu Met Tyr Cys Thr Gln Ile Gly
                                                                   278
tccgacatca ccactctcct cttcagagtc ttcaag
<210> 29
<211> 73
<212> PRT
<213> Conus marmoreus
<400> 29
Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Leu Ser
Thr Gln Ala Leu Asn Gln Glu Lys Arg Pro Lys Glu Met Ile Asn Phe
Leu Ser Lys Gly Lys Thr Asn Ala Glu Arg Arg Asn Gly Gln Cys Glu
Asp Val Trp Met Pro Cys Thr Ser Asn Trp Glu Cys Cys Ser Leu Asp
Cys Glu Met Tyr Cys Thr Gln Ile Gly
<210> 30
<211> 287
<212> DNA
<213> Conus marmoreus
<220>
<221> CDS
<222> (4)..(231)
```

<pre><400> 30 atc atg gag aaa ctg aca atc ctg ctt ctt gtt gct gct gta ctg ata Met Glu Lys Leu Thr Ile Leu Leu Val Ala Ala Val Leu Ile 1 5</pre>	48
ccg acc cag gcc ctt ttt caa ggt gat gac gga aaa tcc cag aag gcg Pro Thr Gln Ala Leu Phe Gln Gly Asp Asp Gly Lys Ser Gln Lys Ala 20 25 30	96
gag atc aag tct ttt gaa aca aga aag tta gcg aga aac aag cag gta Glu Ile Lys Ser Phe Glu Thr Arg Lys Leu Ala Arg Asn Lys Gln Val 35 40 45	144
cgc tgc ggt ggt tgg tca acg tat tgt gaa gtt gac gag gaa tgc tgt Arg Cys Gly Gly Trp Ser Thr Tyr Cys Glu Val Asp Glu Glu Cys Cys 50 55 60	192
tcg gaa tca tgt gta agg tct tac tgc acg ctg ttt gga tgaactcgga Ser Glu Ser Cys Val Arg Ser Tyr Cys Thr Leu Phe Gly 65 70 75	241
ccacaageca teegatatea ecaeteteet gtteagagte tteaag	287
<210> 31 <211> 76 <212> PRT <213> Conus marmoreus	
<400> 31 Met Glu Lys Leu Thr Ile Leu Leu Leu Val Ala Ala Val Leu Ile Pro 1 5 10 15	
Thr Gln Ala Leu Phe Gln Gly Asp Asp Gly Lys Ser Gln Lys Ala Glu 20 25 30	
Ile Lys Ser Phe Glu Thr Arg Lys Leu Ala Arg Asn Lys Gln Val Arg 35 40 45	
Cys Gly Gly Trp Ser Thr Tyr Cys Glu Val Asp Glu Glu Cys Cys Ser 50 60	
Glu Ser Cys Val Arg Ser Tyr Cys Thr Leu Phe Gly 65 70 75	
<210> 32 <211> 278 <212> DNA <213> Conus marmoreus	
<220> <221> CDS <222> (4)(213)	
<pre><400> 32 atc atg cag aaa ctg ata att ctg ctt ctt gtt gct gct gtg ctg atg Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met</pre>	48
acg acc cag gcc cta tat caa gaa aaa cgc cga aag gag atg atc aat Thr Thr Gln Ala Leu Tyr Gln Glu Lys Arg Arg Lys Glu Met Ile Asn 20 25 30	96

ttt tta tca aaa gga aag ata aat gct gag agg cgg aac ggc gga tgc Phe Leu Ser Lys Gly Lys Ile Asn Ala Glu Arg Arg Asn Gly Gly Cys 35 40 aaa gct act tgg atg tct tgt tca tcg ggc tgg gaa tgc tgt tct atg Lys Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met 50 60 agt tgt gac atg tac tgc gga tagataggat gaactctgac cacaagcat Ser Cys Asp Met Tyr Cys Gly 65 70 ccgacatcac cactctcctc ttcagagtct tcaag <210 > 33 <211 > 70 <212 > PRT 213 > Conus marmoreus <400 > 33 Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Thr 1 5 10 Thr Gln Ala Leu Tyr Gln Glu Lys Arg Arg Lys Glu Met Ile Asn Phe 20 25 Leu Ser Lys Gly Lys Ile Asn Ala Glu Arg Arg Asn Gly Gly Cys Lys 40 Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met Ser 50 Cys Asp Met Tyr Cys Gly 65 70 Cys Asp Met Tyr Cys Gly 65 70 <210 > 34 <211 > 528 <212 > DNA <213 > Conus textile <220 < 221 > CDS <222 > CDS <222 > (98)(316)
Lys Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met 50 60 agt tgt gac atg tac tgc gga tagataggat gaactctgac cacaagccat 243 Ser Cys Asp Met Tyr Cys Gly 70 ccgacatcac cactctcctc ttcagagtct tcaag 278 <210> 33 <211> 70 <212> PRT <213> Conus marmoreus <400> 33 Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Thr 1 10 15 15 Thr Gln Ala Leu Tyr Gln Glu Lys Arg Arg Lys Glu Met Ile Asn Phe 20 25 30 Het Gly Lys Gly Lys 40 45 Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met Ser 50 Asp Met Tyr Cys Gly 70 <210> 34 <211> 528 <212> DNA <220> <221> CDS
Ser Cys Asp Met Tyr Cys Gly 65 70 ccgacatcac cactctcctc ttcagagtct tcaag 278 <210> 33 <211> 70 <212> PRT <213> Conus marmoreus <400> 33 Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Thr 1 5 10 Thr Gln Ala Leu Tyr Gln Glu Lys Arg Arg Lys Glu Met Ile Asn Phe 20 25 Leu Ser Lys Gly Lys Ile Asn Ala Glu Arg Arg Asn Gly Gly Cys Lys 35 40 Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met Ser 50 Cys Asp Met Tyr Cys Gly 65 Cys Asp Met Tyr Cys Gly 70 <210> 34 <211> 528 <212> DNA <220> <220> <221> CDS
<pre> <210> 33 <211> 70 <1212> PRT <213> Conus marmoreus <400> 33 Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Thr</pre>
<pre><211> 70 <212> PRT <213> Conus marmoreus </pre> <pre><400> 33 Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Thr</pre>
Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Thr 1
Leu Ser Lys Gly Lys Ile Asn Ala Glu Arg Arg Asn Gly Gly Cys Lys 35 Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met Ser 50 Cys Asp Met Tyr Cys Gly 65 70 <210> 34 <211> 528 <212> DNA <213> Conus textile <220> <221> CDS
35 40 45 Ala Thr Trp Met Ser Cys Ser Ser Gly Trp Glu Cys Cys Ser Met Ser 50 60 Cys Asp Met Tyr Cys Gly 65 70 <210> 34 <211> 528 <212> DNA <213> Conus textile <220> <221> CDS
50 55 60 Cys Asp Met Tyr Cys Gly 65 70 <210> 34 (211> 528 (212> DNA (213> Conus textile) <220> (221> CDS
65 70 <210> 34 <211> 528 <212> DNA <213> Conus textile <220> <221> CDS
<211> 528 <212> DNA <213> Conus textile <220> <221> CDS
<221> CDS
<400> 34 gcacgtcatc ttctctctca gtctgcctga cagctgcctt cagtcaaccc tgccgtcatc 60
tcagcgtaga cttggtaaga agtgaaaaac atttatc atg cag aaa ctg ata atc 11 Met Gln Lys Leu Ile Ile 1 5
ctg ctt ctt gtt gct gct gtg ctg atg tcg acc cag gcc gtg ctt caa 16 Leu Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala Val Leu Gln 10 15 20
gaa aaa cgc cca aag gag aag atc aag ctt tta tca aag aga aag aca 21 Glu Lys Arg Pro Lys Glu Lys Ile Lys Leu Leu Ser Lys Arg Lys Thr 25 30 35
gat gct gag aag cag cag aag cgc ctt tgc ccg gat tac acg gag cct 25 Asp Ala Glu Lys Gln Gln Lys Arg Leu Cys Pro Asp Tyr Thr Glu Pro 40 45 50

1 €

tgt tca cat gcc cat gaa tgc tgt tca tgg aat tgt tat aat ggg cac 307 Cys Ser His Ala His Glu Cys Cys Ser Trp Asn Cys Tyr Asn Gly His 65 356 tgt acg gga tgaactegga ceacaageea teegacatea eeacteteet Cys Thr Gly cttcagaggc ttcaagactt ttgttctgat tttggacaat ctttacgagt aaacaaataa 416 ttagactage acttttttc ccctttgcaa aatcaatgat ggaggtaaaa agcctcccat 476 528 <210> 35 <211> 73 <212> PRT <213> Conus textile <400> 35 Met Gln Lys Leu Ile Ile Leu Leu Leu Val Ala Ala Val Leu Met Ser Thr Gln Ala Val Leu Gln Glu Lys Arg Pro Lys Glu Lys Ile Lys Leu Leu Ser Lys Arg Lys Thr Asp Ala Glu Lys Gln Gln Lys Arg Leu Cys Pro Asp Tyr Thr Glu Pro Cys Ser His Ala His Glu Cys Cys Ser Trp Asn Cys Tyr Asn Gly His Cys Thr Gly <210> 36 <211> 26 <212> PRT <213> Conus textile <220> <221> PEPTIDE <222> (1)..(26) <223> Xaa at residue 18 is Trp or 6-bromo-Trp; Xaa at residues 7 and 14 are Glu or gamma-carboxyglutamate; Xaa at residues 3 and 8 are Pro or hydroxy-Pro. <400> 36 Leu Cys Xaa Asp Tyr Thr Xaa Xaa Cys Ser His Ala His Xaa Cys Cys Ser Xaa Asn Cys Tyr Asn Gly His Cys Thr <210> 37 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:consensus

<400> 41

athytnytng tngcngcngt nytn

gamma-conopeptide sequence for probe <220> <221> PEPTIDE <222> (1) <223> Xaa is Glu or Gln. <400> 37 Xaa Cys Cys Ser <210> 38 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:degenerate probe for consensus gamma-conopeptide sequence. <400> 38 12 sartgytgya gy <210> 39 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:degenerate probe for consensus gamma-conopeptide sequence. <400> 39 12 sartgytgyt cn <210> 40 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:consensus pro-gamma-conopeptide sequence for probe. <400> 40 Ile Leu Leu Val Ala Ala Val Leu 7 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:degenerate probe for consensus pro-gamma-conopeptide sequence.

2 cc 2

```
<210> 42
<211> 31
<212> PRT
<213> Conus pennaceus
<220>
<221> PEPTIDE
<222> (1)..(31)
<223> Xaa at residues 14 and 26 are
      gamma-carboxyglutamate; Xaa at residue 31 is
      hdroxy-Pro.
<400> 42
Asp Cys Thr Ser Trp Phe Gly Arg Cys Thr Val Asn Ser Xaa Cys Cys
Ser Asn Ser Cys Asp Gln Thr Tyr Cys Xaa Leu Tyr Ala Phe Xaa Ser
<210> 43
<211> 27
<212> PRT
<213> Conus textile
<220>
<221> PEPTIDE
<222> (1)..(27)
<223> Xaa at residues 9 and 13 are
      gamma-carboxyglutamate.
<400> 43
Cys Gly Gly Tyr Ser Thr Tyr Cys Xaa Val Asp Ser Xaa Cys Cys Ser
Asp Asn Cys Val Arg Ser Tyr Cys Thr Leu Phe
<210> 44
<211> 8
<212> PRT
<213> Conus pennaceus
<220>
<221> MOD RES
<222> (2)
<223> Xaa at residue 2 is carboxymethylCys
<400> 44
Asp Xaa Thr Ser Trp Phe Gly Arg
<210> 45
<211> 24
<212> PRT
<213> Conus pennaceus
<220>
<221> PEPTIDE
<222> (1)..(24)
<223> Xaa at residues 6 and 18 are
```

gamma-carboxyglutamate; Xaa at residue 23 is
hydroxy-Pro.
<400> 45
Xaa Thr Val Asn Ser Xaa Xaa Xaa Ser Asn Ser Xaa Asp Gln Thr Tyr
1 5 10 15

Xaa Xaa Leu Tyr Ala Phe Xaa Ser

<210> 46 <211> 18 <212> DNA

<213> Artificial Sequence

<220>

A + c >

<223> Description of Artificial Sequence:primer for M13
 universal priming site.

<400> 46 tttcccagtc acgacgtt

18

<210> 47 <211> 19 <212> DNA <213> Arts

<213> Artificial Sequence

<220>

 $<\!\!223\!\!>$ Description of Artificial Sequence:primer for M13 reverse priming site.

<400> 47 cacacaggaa acagctatg