Logistic Regression

Classification Based on Probability

- Instead of just predicting the class, give the probability of the instance being that class
 - i.e., learn $p(y \mid \boldsymbol{x})$
- Comparison to perceptron:
 - Perceptron doesn't produce probability estimate
 - Perceptron (and other discriminative classifiers) are only interested in producing a discriminative model
- Recall that:

$$0 \le p(\text{event}) \le 1$$

 $p(\text{event}) + p(\neg \text{event}) = 1$

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\boldsymbol{\theta}}(\boldsymbol{x})$ should give $p(y=1\mid \boldsymbol{x};\boldsymbol{\theta})$
 - Want $0 \leq h_{\boldsymbol{\theta}}(\boldsymbol{x}) \leq 1$

Can't just use linear regression with a threshold

Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\intercal} \boldsymbol{x})$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Interpretation of Hypothesis Output

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 = estimated $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Interpretation of Hypothesis Output

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 = estimated $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that: $p(y = 0 \mid x; \theta) + p(y = 1 \mid x; \theta) = 1$

Therefore, $p(y=0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1 - p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Logistic Regression

$$h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
ight)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $heta^{\mathsf{T}} x$ should be large <u>positive</u> values for positive instances

g(z)

- Assume a threshold and...
 - Predict y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict y = 0 if $h_{\theta}(x) < 0.5$

Non-Linear Decision Boundary

 Can apply basis function expansion to features, same as with linear regression

Logistic Regression

• Given $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$

• Model:
$$h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
ight)$$

$$g(z) = \frac{1}{1+e^{-z}}$$

$$oldsymbol{ heta} oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_d \end{bmatrix} \qquad oldsymbol{x}^\intercal = egin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$$

Logistic Regression Objective Function

Can't just use squared loss as in linear regression:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Using the logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

results in a non-convex optimization

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 1

- Cost = 0 if prediction is correct
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{m{ heta}}(m{x})=0$, but y = 1

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(\boldsymbol{x})) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Cost of a single instance:

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \operatorname{cost} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$$

Compare to linear regression:
$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$

Regularized Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left| \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right|$$

Gradient Descent for Logistic Regression

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right]$$

This looks IDENTICAL to linear regression!!!

- Ignoring the 1/n constant
- However, the form of the model is very different:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Multi-Class Classification

Binary classification:

Multi-class classification:

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

Multi-Class Logistic Regression

For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 0} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 1}$$

• For *C* classes {1, ..., *C*}:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}{\sum_{c=1}^{C} \exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}$$

Called the softmax function

Multi-Class Logistic Regression

Split into One vs Rest:

• Train a logistic regression classifier for each class i to predict the probability that y = i with

$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}{\sum_{c=1}^{C} \exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}$$

Implementing Multi-Class Logistic Regression

• Use
$$h_c({m x}) = rac{\exp({m heta}_c^{\mathsf T} {m x})}{\sum_{c=1}^C \exp({m heta}_c^{\mathsf T} {m x})}$$
 as the model for class c

- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before, just with the above $h_c(x)$
- Predict class label as the most probable label

$$\max_{c} h_c(\boldsymbol{x})$$

Gradient Computation for square error

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$

$$\frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$
derivative of $\frac{1}{x}$?

$$\frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right) \qquad \text{derivative of } \frac{1}{x}?$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$

$$\frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} \frac{\partial}{\partial w} (e^{-(wx+b)})^2$$

$$rac{d}{dx}ig[x^{-1}ig] = \, -1ig(x^{-2}ig) = -rac{1}{x^2}$$

And Chain Rule

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$\frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} \frac{\partial}{\partial w} (e^{-(wx+b)})$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)}) \frac{\partial}{\partial w} (-(wx+b))$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) * \frac{\partial}{\partial w} (f(x)) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)}) \frac{\partial}{\partial w} (-(wx+b)))$$

$$= \frac{-1}{(1 + e^{-(wx+b)})} * \frac{e^{-(wx+b)}}{(1 + e^{-(wx+b)})} * (-x)$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) * \frac{\partial}{\partial w} (f(x)) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right)$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)}) \frac{\partial}{\partial w} (-(wx+b)))$$

$$= \frac{-1}{(1 + e^{-(wx+b)})} * \frac{e^{-(wx+b)}}{(1 + e^{-(wx+b)})} * (-x)$$

$$= \frac{1}{(1 + e^{-(wx+b)})} * \frac{e^{-(wx+b)}}{(1 + e^{-(wx+b)})} * (x)$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (\frac{1}{1 + e^{-(wx+b)}})$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)})$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)})$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)})$$

$$\begin{aligned}
v &= \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right] \\
&= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right] \\
&= (f(x) - y) * \frac{\partial}{\partial w} (f(x)) \\
&= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx + b)}} \right) \\
&= \frac{-1}{(1 + e^{-(wx + b)})^2} \frac{\partial}{\partial w} (e^{-(wx + b)}) \\
&= \frac{-1}{(1 + e^{-(wx + b)})^2} * (e^{-(wx + b)}) \frac{\partial}{\partial w} (-(wx + b))) \\
&= \frac{-1}{(1 + e^{-(wx + b)})} * \frac{e^{-(wx + b)}}{(1 + e^{-(wx + b)})} * (-x) \\
&= \frac{1}{(1 + e^{-(wx + b)})} * \frac{e^{-(wx + b)}}{(1 + e^{-(wx + b)})} * (x)
\end{aligned}$$

$$\nabla w = \frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^2 \right]$$

$$= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right]$$

$$= (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= (f(x) - y) * f(x) * (1 - f(x)) * x$$

$$= \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^2} * (e^{-(wx+b)})$$

$$= \frac{-1}{(1 + e^{-(wx+b)})} * \frac{e^{-(wx+b)}}{(1 + e^{-(wx+b)})}$$

$$\frac{\partial}{\partial w} \left[\frac{1}{2} * (f(x) - y)^{2} \right] \\
= \frac{1}{2} * \left[2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y) \right] \\
= (f(x) - y) * \frac{\partial}{\partial w} (f(x)) \\
= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right) \\
= (f(x) - y) * \frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right) \\
= (f(x) - y) * f(x) * (1 - f(x)) * x$$

$$= \frac{-1}{(1 + e^{-(wx+b)})^{2}} * (e^{-(wx+b)}) \frac{\partial}{\partial w} (-(wx+b))) \\
= \frac{-1}{(1 + e^{-(wx+b)})} * \frac{e^{-(wx+b)}}{(1 + e^{-(wx+b)})} * (-x) \\
= \frac{1}{(1 + e^{-(wx+b)})} * \frac{e^{-(wx+b)}}{(1 + e^{-(wx+b)})} * (x) \\
= f(x) * (1 - f(x)) * x$$