ΙΣΟΜΟΡΦΙΚΑ ΓΡΑΦΗΜΑΤΑ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

<u>Ορισμός:</u> Δύο γραφήματα $G_1(V_1, E_1)$ και $G_2(V_2, E_2)$ είναι <u>ισομορφικά</u>, αν υπάρχει συνάρτηση $f: V_1 \to V_2$ 1-1 και επί, τέτοια ώστε $(v_i, v_i) \in E_1$ και $(f(v_i), f(v_i)) \in E_2$ και αντίστροφα.

Η f λέγεται συνάρτηση ισομορφισμού ή ισομορφισμός του G_1 με το G_2

Με απλά λόγια:

• Υπάρχει αντιστοίχιση των κορυφών ώστε να ταυτίζονται οι ακμές.

<u>Θεώρημα:</u> Για δύο ισομορφικά γραφήματα $G_1(V_1, E_1)$ και $G_2(V_2, E_2)$ ισχύει ότι με κάποια κατάλληλη διάταξη των κορυφών οι πίνακες γειτνίασης των δύο γραφημάτων ταυτίζονται

Παράδειγμα: Στο σχήμα βλέπουμε δύο ισόμορφα γραφήματα. Η αναδιάταξη των κορυφών του G_2 ώστε να ταυτίζονται οι κορυφές προκύπτει από την συνάρτηση ισομορφισμού

Ορισμός:

Αυτομορφισμός είναι ένας ισομορφισμός από ένα γράφημα στον εαυτό του

- To K_n έχει n! αυτομορφισμούς
- To $K_{n,m}$ έχει n! m! αυτομορφισμούς

Αυτοσυμπληρωματικό καλείται ένα γράφημα, αν είναι ισόμορφο με το συμπλήρωμά του.

έχει m = n(n-1)/4 ακμές

- Το μονοπάτι 4 κορυφών είναι αυτοσυμπληρωματικό γράφημα
- Ο κύκλος 5 κορυφών είναι αυτοσυμπληρωματικό γράφημα

Για να δείξω ότι δύο γραφήματα είναι ισομορφικά:

- Δίνω τη συνάρτηση ισομορφισμού
- Δείχνω ότι τα συμπληρώματα είναι ισομορφικά

Για να δείξω ότι δύο γραφήματα δεν είναι ισομορφικά:

- Βρίσκω μία αναλλοίωτη ιδιότητα που δεν διατηρείται π.χ.
 - έχει η κορυφές, έχει m ακμές, έχει κορυφή βαθμού k, έχει κύκλο Euler, έχει κύκλο Hamilton, είναι συνδεόμενο, είναι επίπεδο κ.λπ.