Model Predictive Control

Chapter 6: Feasibility and Stability

Prof. Melanie Zeilinger ETH Zurich Spring 2020

Coauthors: Prof. Manfred Morari, University of Pennsylvania

Prof. Colin Jones, EPFL

Receding Horizon Control: The Motivation

$$x(k+1) = g(x(k), u(k))$$
 $x, u \in \mathcal{X}, \mathcal{U}$

Design control law $u(k) = \kappa(x(k))$ such that the system:

- 1. Satisfies constraints : $\{x(k)\}\subset\mathcal{X},\ \{u(k)\}\subset\mathcal{U}$
- 2. Is stable: $\lim_{k\to\infty} x(k) = 0$
- 3. Optimizes "performance"
- 4. Maximizes the set $\{x(0) \mid \text{Conditions 1-3 are met}\}$

In this lecture, we will demonstrate that these objectives can be met in a predictive control framework.

Learning Objectives

- Contrast stability properties of LQR and MPC for constrained problems
- Understand why MPC by itself does not provide guarantees on stability and constraint satisfaction
- Pose sufficient conditions and prove guarantees on stability and constraint satisfaction

Outline

- 1. MPC: Key Points Illustrated
- 2. Loss of Feasibility and Stability in MPC
- 3. Feasibility and Stability Guarantees in MPC
- 4. Extension to Nonlinear MPC

Constrained Infinite Time Optimal Control (what we would like to solve)

$$J_{\infty}^{*}(x(0)) = \min_{u(\cdot)} \sum_{i=0}^{\infty} I(x_{i}, u_{i})$$
subj. to $x_{i+1} = Ax_{i} + Bu_{i}, i = 0, \dots, \infty$

$$x_{i} \in \mathcal{X}, u_{i} \in \mathcal{U}, i = 0, \dots, \infty$$

$$x_{0} = x(0)$$

- Stage cost I(x, u): "cost" of being in state x and applying input u
- Optimizing over a trajectory provides a tradeoff between short- and long-term benefits of actions
- We'll see that such a control law has many beneficial properties...
 but we can't compute it: there are an infinite number of variables

Constrained Finite Time Optimal Control (what we can sometimes solve)

$$J_{k \to k+N|k}^{\star}(x(k)) = \min_{U_{k \to k+N|k}} I_{f}(x_{k+N|k}) + \sum_{i=0}^{N-1} I(x_{k+i|k}, u_{k+i|k})$$
subj. to $x_{k+i+1|k} = Ax_{k+i|k} + Bu_{k+i|k}, i = 0, ..., N-1$

$$x_{k+i|k} \in \mathcal{X}, u_{k+i|k} \in \mathcal{U}, i = 0, ..., N-1$$

$$x_{k+N|k} \in \mathcal{X}_{f}$$

$$x_{k|k} = x(k)$$

$$(1)$$

Truncate after a finite horizon:

where $U_{k\to k+N|k} = \{u_{k|k}, \dots, u_{k+N-1|k}\}.$

- $l_f(x_{k+N|k})$: Approximates the 'tail' of the cost
- \mathcal{X}_f : Approximates the 'tail' of the constraints

MPC: Mathematical Formulation

At each sample time:

- Measure / estimate current state x(k)
- Find the optimal input sequence for the entire planning window N: $U^* = \{u_0^*, u_1^*, \dots, u_{N-1}^*\}$
- Implement only the first control action u_0^{\star}

Outline

- 1. MPC: Key Points Illustrated
- 2. Loss of Feasibility and Stability in MPC
- 3. Feasibility and Stability Guarantees in MPC
- 4. Extension to Nonlinear MPC

Example: Cessna Citation Aircraft

Linearized continuous-time model: (at altitude of 5000m and a speed of 128.2 m/sec)

$$\dot{x} = \begin{bmatrix}
-1.2822 & 0 & 0.98 & 0 \\
0 & 0 & 1 & 0 \\
-5.4293 & 0 & -1.8366 & 0 \\
-128.2 & 128.2 & 0 & 0
\end{bmatrix} x + \begin{bmatrix}
-0.3 \\
0 \\
-17 \\
0
\end{bmatrix} u$$
Angle of attack
$$y = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} x$$

- Input: elevator angle
- States: x_1 : angle of attack, x_2 : pitch angle, x_3 : pitch rate, x_4 : altitude
- Outputs: pitch angle and altitude
- Constraints: elevator angle ± 0.262 rad ($\pm 15^{\circ}$), elevator rate ± 0.524 rad/s $(\pm 60^{\circ}/s)$, pitch angle $\pm 0.349 (\pm 39^{\circ})$

Open-loop response is unstable (open-loop poles: 0, 0, $-1.5594 \pm 2.29i$)

LQR and Linear MPC with Quadratic Cost

- Quadratic cost
- Linear system dynamics
- Linear constraints on inputs and states

LQR

$$J_{\infty}^{\star}(x(k)) = \min \sum_{i=0}^{\infty} x_i^{\mathsf{T}} Q x_i + u_i^{\mathsf{T}} R u_i$$

$$\text{subj. to } x_{i+1} = A x_i + B u_i$$

$$x_0 = x(k)$$

$$J^{\star}(x(k)) = \min \bigcup_{i=0}^{N-1} x_i^{\mathsf{T}} Q x_i + u_i^{\mathsf{T}} R u_i$$

$$\text{subj. to } x_{i+1} = A x_i + B u_i$$

$$x_i \in \mathcal{X}, \ u_i \in \mathcal{U}$$

Assume: $Q = Q^T \succ 0$. $R = R^T \succ 0$

MPC

$$J^{\star}(x(k)) = \min_{U} \sum_{i=0}^{N-1} x_{i}^{\top} Q x_{i} + u_{i}^{\top} R$$
subj. to $x_{i+1} = A x_{i} + B u_{i}$

$$x_{i} \in \mathcal{X}, \ u_{i} \in \mathcal{U}$$

$$x_{0} = x(k)$$

Example: LQR with saturation

Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of 10m of the desired altitude, i.e. $x_0 = [0; 0; 0; 10]$

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10

- Closed-loop system is unstable
- Applying LQR control and saturating the controller can lead to instability!

Example: MPC with Bound Constraints on Inputs

MPC controller with input constraints $|u_k| \le 0.262$

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 10

The MPC controller uses the knowledge that the elevator will saturate, but it does not consider the rate constraints.

⇒ System does not converge to desired steady-state but to a limit cycle

Example: MPC with all Input Constraints

MPC controller with input constraints $|u_k| \le 0.262$ and rate constraints $|\dot{u}_k| \le 0.349$ approximated by $|u_i - u_{i-1}| \le 0.349 T_s$

The MPC controller considers all constraints on the actuator

- Closed-loop system is stable
- Efficient use of the control authority

Example: Inclusion of state constraints

MPC controller with input constraints $|u_k| < 0.262$ and rate constraints $|\dot{u}_k| < 0.349$ approximated by $|u_i - u_{i-1}| \le 0.349 T_s$

Increase step:

At time t = 0 the plane is flying with a deviation of 100m of the desired altitude, i.e.

$$x_0 = [0; 0; 0; 100]$$

• Pitch angle too large during transient

Example: Inclusion of state constraints

MPC controller with input constraints $|u_k| \le 0.262$ and rate constraints $|\dot{u}_k| \le 0.349$ approximated by $|u_i - u_{i-1}| \le 0.349 T_s$

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 10

Add state constraints for passenger comfort:

$$|x_2| \le 0.349$$

Example: Short horizon

MPC controller with input constraints $|u_k| \le 0.262$ and rate constraints $|\dot{u}_k| \le 0.349$ approximated by $|u_i - u_{i-1}| \le 0.349 T_s$

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Decrease in the prediction horizon causes loss of the stability properties

Outline

- 1. MPC: Key Points Illustrated
- 2. Loss of Feasibility and Stability in MPC
- 3. Feasibility and Stability Guarantees in MPC
- 4. Extension to Nonlinear MPC

Loss of Feasibility and Stability

What can go wrong with "standard" MPC?

- No feasibility guarantee, i.e., the MPC problem may not have a solution
- No stability guarantee, i.e., trajectories may not converge to the origin

Consider the double integrator

$$\begin{cases} x(k+1) &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ y(k) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) \end{cases}$$

subject to the input constraints

$$-0.5 \le u(k) \le 0.5$$

and the state constraints

$$\begin{bmatrix} -5\\ -5 \end{bmatrix} \le x(k) \le \begin{bmatrix} 5\\ 5 \end{bmatrix}.$$

Compute a receding horizon controller with quadratic objective with

$$N = 3, P = Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 10.$$

The QP problem associated with the RHC is

$$H = \begin{bmatrix} 13.50 & -10.00 & -0.50 \\ -10.00 & 22.00 & -10.00 \\ -0.50 & -10.00 & 31.50 \end{bmatrix}, F = \begin{bmatrix} -10.50 & 10.00 & -0.50 \\ -20.50 & 10.00 & 9.50 \end{bmatrix}, Y = \begin{bmatrix} 14.50 & 23.50 \\ 23.50 & 54.50 \end{bmatrix}$$

$$G = \begin{bmatrix} 0.50 & -1.00 & 0.50 \\ -0.50 & 1.00 & -0.50 \\ -0.50 & 0.00 & 0.50 \\ -0.50 & 0.00 & -0.50 \\ 0.50 & 0.00 & -0.50 \\ 0.50 & 0.00 & 0.50 \\ -1.00 & 0.00 & 0.50 \\ 0.00 & -1.00 & 0.00 \\ 0.00 & -1.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.50 \\ -0.50 & 0.50 & 0.50 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.50 \\ 0.50 & 0.50 & 0.50 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.50 & 0.00 & 0.50 \\ 0.50 & 0.50 \\ 0.50 & 0.50$$

- 1) MEASURE the state x(k) at time instance k
- 2) OBTAIN $U^*(x(k))$ by solving the CFTOC
- 3) IF $U^*(x(k)) = \emptyset$ THEN 'problem infeasible' STOP
- 4) APPLY the first element u_0^* of U^* to the system
- 5) WAIT for the new sampling time k+1, GOTO 1)

$$x_0 = [-4; 3], \quad u_0^*(x(0)) = -0.5$$

Time step 2:

$$x_0 = [-1; 2.5], \quad u_0^*(x(1)) = -0.5$$

Time step 3:

$$x_0 = [1.5; 2]$$
, Problem infeasible

Depending on initial condition, closed loop trajectory may lead to states for which optimization problem is infeasible.

Boxes (**Circles**) are initial points leading (not leading) to feasible closed-loop trajectories

22

Example: Feasibility and stability are function of tuning

Unstable system
$$x(k+1) = \begin{bmatrix} 2 & 1 \\ 0 & 0.5 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(k)$$

Input constraints $-1 \le u(k) \le 1$

State constraints
$$\begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x(k) \le \begin{bmatrix} 10 \\ 10 \end{bmatrix}$$
, Parameters: $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Investigate the stability properties for different horizons N and weights R by solving the finite-horizon MPC problem in a receding horizon fashion...

Example: Feasibility and stability are function of tuning

- 1. R = 10, N = 2: all trajectories unstable.
- 2. R = 2, N = 3: some trajectories stable.
- 3. R = 1, N = 4: more stable trajectories.
 - * Initial points with convergent trajectories
 - Initial points that diverge

Green lines denote the set of all feasible initial points. They depend on the horizon N but not on the cost $R \Longrightarrow \text{Parameters have complex effect and trajectories.}$

Summary: Feasibility and Stability

Problems originate from the use of a 'short sighted' strategy

⇒ Finite horizon causes deviation between the open-loop prediction and the closed-loop system:

Ideally we would solve the MPC problem with an infinite horizon, but that is computationally intractable

⇒ Design finite horizon problem such that it approximates the infinite horizon

Summary: Feasibility and Stability

- Infinite-Horizon If we solve the RHC problem for $N=\infty$ (as done for LQR), then the open loop trajectories are the same as the closed loop trajectories. Hence
 - If problem is feasible, the closed loop trajectories will be always feasible
 - If the cost is finite, then states and inputs will converge asymptotically to the origin
- Finite-Horizon
 RHC is "short-sighted" strategy approximating infinite horizon controller.
 But
 - Feasibility. After some steps the finite horizon optimal control problem may become infeasible. (Infeasibility occurs without disturbances and model mismatch!)
 - **Stability**. The generated control inputs may not lead to trajectories that converge to the origin.

Feasibility and stability in MPC - Solution

Main idea: Introduce terminal cost and constraints to explicitly ensure feasibility and stability:

$$J^*(x(k)) = \min_{\mathcal{U}} \quad l_f(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i)$$
 Terminal Cost subj. to
$$x_{i+1} = Ax_i + Bu_i, \ i = 0, \dots, N-1$$
 $x_i \in \mathcal{X}, \ u_i \in \mathcal{U}, \ i = 0, \dots, N-1$ Terminal Constraint $x_0 = x(k)$

 $I_f(\cdot)$ and \mathcal{X}_f are chosen to mimic an infinite horizon.

Outline

- 1. MPC: Key Points Illustrated
- 2. Loss of Feasibility and Stability in MPC
- 3. Feasibility and Stability Guarantees in MPC
- 4. Extension to Nonlinear MPC

Feasibility and Stability of MPC: Proof

Main steps:

- Prove recursive feasibility by showing the existence of a feasible control sequence at all time instants when starting from a feasible initial point
- Prove stability by showing that the optimal cost function is a Lyapunov function

Reminder: Lyapunov Stability

Definition: Lyapunov function

Consider the equilibrium point x=0. Let $\Omega\subset\mathbb{R}^n$ be a closed and bounded set containing the origin. A function $V:\mathbb{R}^n\to\mathbb{R}$, continuous at the origin, finite for every $x\in\Omega$, and such that

$$V(0) = 0 \text{ and } V(x) > 0, \ \forall x \in \Omega \setminus \{0\}$$
$$V(g(x)) - V(x) \le -\alpha(x) \ \forall x \in \Omega \setminus \{0\}$$

where $\alpha: \mathbb{R}^n \to \mathbb{R}$ is continuous positive definite,

is called a Lyapunov function.

Theorem: Lyapunov stability (asymptotic stability)

If a system admits a Lyapunov function V(x), then x = 0 is **asymptotically stable** in Ω .

Feasibility and Stability of MPC: Proof

Main steps:

- Prove recursive feasibility by showing the existence of a feasible control sequence at all time instants when starting from a feasible initial point
- Prove stability by showing that the optimal cost function is a Lyapunov function

Two cases:

- 1. Terminal constraint at zero: $x_N = 0$
- 2. Terminal constraint in some (convex) set: $x_N \in \mathcal{X}_f$

General notation: Regulation to original

$$J^{*}(x(k)) = \min_{U} \underbrace{\int_{f}(x_{N})}_{\text{terminal cost}} + \sum_{i=0}^{N-1} \underbrace{\int_{\text{stage cost}}}_{\text{stage cost}}$$

$$|\langle x, \mathcal{L} \rangle > 0 \quad \text{for} \quad x_{i} \mathcal{L} \neq 0 \quad \text{if } (o, \mathcal{L}) = 0$$

$$O \in \mathcal{A} \times O_{e} \mathcal{A} \mathcal{L}$$

Outline

3. Feasibility and Stability Guarantees in MPC

Proof for $\mathcal{X}_f = 0$

General Terminal Sets

Example

32

Stability of MPC - Zero terminal state constraint

Terminal constraint: $x_N \in \mathcal{X}_f = 0$

- Assume feasibility of x(k) and let $\{u_0^{\star}, u_1^{\star}, \ldots, u_{N-1}^{\star}\}$ be the optimal control sequence computed at x(k) and let $\{x(k), x_1^{\star}, \ldots, x_N^{\star}\}$ be the corresponding state trajectory
- Apply $u(k) = u_0^*$ and let system evolve to $x(k+1) = Ax(k) + Bu(k) = \checkmark$

Stability of MPC - Zero terminal state constraint

Terminal constraint: $x_N \in \mathcal{X}_f = 0$

- Assume feasibility of x(k) and let $\{u_0^{\star}, u_1^{\star}, \ldots, u_{N-1}^{\star}\}$ be the optimal control sequence computed at x(k) and let $\{x(k), x_1^{\star}, \ldots, x_N^{\star}\}$ be the corresponding state trajectory
- Apply $u(k) = u_0^*$ and let system evolve to x(k+1) = Ax(k) + Bu(k)
- At $x(k+1) = x_1^*$ the control sequence $\tilde{U} = \{\underbrace{u_1^*, u_2^*, \dots, u_{N-1}^*, 0}_{\textbf{e}}\}$ is feasible (apply 0 control input $\Rightarrow A \underbrace{x_N^* + B \cdot 0}_{\textbf{o}} = 0$)

⇒ Recursive feasibility

Stability of MPC - Zero terminal state constraint

Terminal constraint: $x_N \in \mathcal{X}_f = 0$ Goal: Show $J^*(x(k+1)) < J^*(x(k)) \quad \forall x(k) \neq 0$ $J^*(x(k+1)) - J^*(x(k)) = -\infty$ $J^{\star}(x(k)) = \underbrace{I_{f}(x_{N}^{\star})}_{0} + \sum_{i=0}^{\infty} I(x_{i}^{\star}, u_{i}^{\star})$ $J^{*}(x(k+1)) \leq \tilde{J}(x(k+1)) = \sum_{i=1}^{N-1} I(x_{i}^{*}, u_{i}^{*}) + I(x_{N}^{*}, 0)$ $=\sum_{i=1}^{N-1}I(x_{i}^{\star},u_{i}^{\star})-I(x_{0}^{\star},u_{0}^{\star})+I(x_{N}^{\star},0)$ $=J^{\star}(x(k))-\underbrace{J(x(k),u_{0}^{\star})}+\underbrace{J(0,0)}$

 $\Rightarrow J^{\star}(x)$ is a Lyapunov function \rightarrow (Lyapunov) Stability \checkmark

at stage k

staying at 0=0

$$\begin{array}{lll}
\text{Cost of "shifted" conditate solution} \\
\text{S}(x(12+1)) &= \sum_{i=0}^{N-1} 1(x_{i}, 0_{i}) \\
&= \sum_{i=1}^{N-1} 1(x_{i}, 0_{i,1}) + 1(0,0) \\
&+ 1(x_{o|12}, 0_{o|12}) - 1(x_{o|12}, 0_{o|12}) \\
&= \sum_{i=1}^{N} (x(12+1)) - 1(x_{o|12}, 0_{o|12}) \\
&= \sum_{i=1}^{N} (x(12+1)) - \sum_{i=0}^{N} (x(12+$$

Example: Impact of Horizon with Zero Terminal Constraint

System dynamics:

$$x(k+1) = \begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u(k)$$

Constraints:

$$\mathcal{X} := \{x \mid -50 \le x_1 \le 50, -10 \le x_2 \le 10\} = \{x \mid A_x x \le b_x\}$$

 $\mathcal{U} := \{u \mid ||u||_{\infty} \le 1\} = \{u \mid A_u u \le b_u\}$

Stage cost:

$$I(x_i, u_i) := x_i^{\top} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x_i + u_i^{\top} u_i$$

Example: Impact of Horizon with Zero Terminal Constraint

The horizon can have a strong impact on the region of attraction.

Outline

3. Feasibility and Stability Guarantees in MPC

Proof for $X_f = 0$

General Terminal Sets

Example

Extension to More General Terminal Sets

Problem: The terminal constraint $x_N = 0$ reduces the size of the feasible set

Goal: Use convex set \mathcal{X}_f to increase the region of attraction

Double integrator
$$x(k+1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
$$\begin{bmatrix} -5 \\ -5 \end{bmatrix} \le x(k) \le \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$
$$-0.5 \le u(k) \le 0.5$$
$$N = 5, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 10$$

Goal: Generalize proof to the constraint $x_N \in \mathcal{X}_f$

Invariant sets

Definition: Invariant set

A set \mathcal{O} is called **positively invariant** for system $x(k+1) = g_{cl}(x(k))$, if

$$x(0) \in \mathcal{O} \Rightarrow x(k) \in \mathcal{O}, \quad \forall k \in \mathbb{N}_+$$

The positively invariant set that contains every closed positively invariant set is called the maximal positively invariant set \mathcal{O}_{∞} .

Stability of MPC - Main Result

Assumptions

- 1. Stage cost is positive definite, i.e. it is strictly positive and only zero at the origin
- 2. Terminal set is **invariant** under the local control law $\kappa_f(x_i)$:

$$x_{i+1} = Ax_i + B\kappa_f(x_i) \in \mathcal{X}_f$$
, for all $x_i \in \mathcal{X}_f$

All state and input **constraints are satisfied** in \mathcal{X}_f :

$$\mathcal{X}_f \subseteq \mathcal{X}$$
, $\kappa_f(x_i) \in \mathcal{U}$, for all $x_i \in \mathcal{X}_f$

3. Terminal cost is a continuous **Lyapunov function** in the terminal set \mathcal{X}_f and satisfies:

$$l_f(x_{i+1}) - l_f(x_i) \le -l(x_i, \kappa_f(x_i)), \text{ for all } x_i \in \mathcal{X}_f$$

Under those 3 assumptions:

Theorem

The closed-loop system under the MPC control law $u_0^{\star}(x)$ is asymptotically stable and the set \mathcal{X}_N is positive invariant for the system

$$x(k+1) = Ax(k) + Bu_0^{\star}(x(k)).$$

Stability of MPC - Outline of the Proof

• Assume feasibility of x(k) and let $\{u_0^{\star}, u_1^{\star}, \ldots, u_{N-1}^{\star}\}$ be the optimal control sequence computed at x(k) and $\{x(k), x_1^{\star}, \ldots, x_N^{\star}\}$ the corresponding state trajectory

43

Stability of MPC - Outline of the Proof

- Assume feasibility of x(k) and let $\{u_0^{\star}, u_1^{\star}, \ldots, u_{N-1}^{\star}\}$ be the optimal control sequence computed at x(k) and $\{x(k), x_1^{\star}, \ldots, x_N^{\star}\}$ the corresponding state trajectory
- At $x(k+1) = x_1^*$, the control sequence $\tilde{U} = \{u_1^*, u_2^*, \dots, \kappa_f(x_N^*)\}$ is feasible:

$$x_N^*$$
 is in $\mathcal{X}_f \to \kappa_f(x_N^*)$ is feasible $\in \mathcal{U}$ by Ass. 2 and $Ax_N^* + B\kappa_f(x_N^*)$ in \mathcal{X}_f (by invariance) by Ass. 2

⇒ Terminal constraint provides recursive feasibility

Asymptotic Stability of MPC - Outline of the Proof

$$J^{\star}(x(k)) = \sum_{i=0}^{N-1} I(x_{i}^{\star}, u_{i}^{\star}) + I_{f}(x_{N}^{\star})$$
At $x(k+1) = x_{1}^{\star}$, $\tilde{U} = \{u_{1}^{\star}, u_{2}^{\star}, \dots, \kappa_{f}(x_{N}^{\star})\}$ is feasible & sub-optimal
$$J^{\star}(x(k+1)) \leq \sum_{i=1}^{N-1} I(x_{i}^{\star}, u_{i}^{\star}) + I(x_{N}^{\star}, \kappa_{f}(x_{N}^{\star})) + I_{f}(Ax_{N}^{\star} + B\kappa_{f}(x_{N}^{\star}))$$

$$= \sum_{i=0}^{N-1} I(x_{i}^{\star}, u_{i}^{\star}) - I(x_{0}^{\star}, u_{0}^{\star}) + I(x_{N}^{\star}, \kappa_{f}(x_{N}^{\star})) + I_{f}(Ax_{N}^{\star} + B\kappa_{f}(x_{N}^{\star}))$$

$$= \int_{J^{\star}(x(k)) - I_{f}(x_{N}^{\star})}^{J^{\star}(x(k)) - I_{f}(x_{N}^{\star})} + \underbrace{I_{f}(Ax_{N}^{\star} + B\kappa_{f}(x_{N}^{\star})) - I_{f}(x_{N}^{\star}) + I(x_{N}^{\star}, \kappa_{f}(x_{N}^{\star}))}_{\leq 0 \text{ by Assumption 3}}$$

$$\implies J^{\star}(x(k+1)) - J^{\star}(x(k)) \leq -I(x(k), u_{0}^{\star}), \quad I(x, u) > 0 \text{ for } x, u \neq 0$$

$J^{\star}(x)$ is a Lyapunov function

⇒ The closed-loop system under the MPC control law is asymptotically stable

Choice of Terminal Sets and Cost - Linear System, Quadratic Cost

$$J^{*}(x(k)) = \min_{U} x_{N}^{\top} P x_{N} + \sum_{i=0}^{N-1} x_{i}^{\top} Q x_{i} + u_{i}^{\top} R u_{i}$$
 Terminal Cost subj. to
$$x_{i+1} = A x_{i} + B u_{i}, \ i = 0, \dots, N-1$$

$$x_{i} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ i = 0, \dots, N-1$$
 Terminal Constraint
$$x_{0} = x(k)$$

Choice of Terminal Sets and Cost - Linear System, Quadratic Cost

Design unconstrained LQR control law

$$F_{\infty} = -(B^{\top}P_{\infty}B + R)^{-1}B^{\top}P_{\infty}A$$

where P_{∞} is the solution to the discrete-time algebraic Riccati equation:

$$P_{\infty} = A^{\mathsf{T}} P_{\infty} A + Q - A^{\mathsf{T}} P_{\infty} B (B^{\mathsf{T}} P_{\infty} B + R)^{-1} B^{\mathsf{T}} P_{\infty} A$$

- Choose the terminal weight $P = P_{\infty}$
- Choose the terminal set \mathcal{X}_f to be the maximum invariant set for the closed-loop system $x_{k+1} = (A + BF_{\infty})x_k$:

$$x_{k+1} = Ax_k + BF_{\infty}(x_k) \in \mathcal{X}_f$$
, for all $x_k \in \mathcal{X}_f$

All state and input constraints are satisfied in \mathcal{X}_f :

$$\mathcal{X}_f \subseteq \mathcal{X}, F_{\infty} x_k \in \mathcal{U}, \text{ for all } x_k \in \mathcal{X}_f$$

Choice of Terminal Sets and Cost - Linear System, Quadratic Cost

- 1. The stage cost is a positive definite function
- 2. By construction the terminal set is **invariant** under the local control law $\kappa_f(x) = F_\infty x$
- 3. Terminal cost is a continuous **Lyapunov function** in the terminal set \mathcal{X}_f and satisfies:

$$\begin{aligned} x_{k+1}^{\top} P x_{k+1} - x_k^{\top} P x_k \\ &= x_k^{\top} (-P_{\infty} + A^{\top} P_{\infty} A + F_{\infty}^{\top} B^{\top} P_{\infty} A - F_{\infty}^{\top} R F_{\infty}) x_k \\ &= x_k^{\top} (-P_{\infty} + A^{\top} P_{\infty} A - A^{\top} P_{\infty} B (B^{\top} P_{\infty} B + R)^{-1} B^{\top} P_{\infty} A - F_{\infty}^{\top} R F_{\infty}) x_k \\ &= -x_k^{\top} (Q + F_{\infty}^{\top} R F_{\infty}) x_k \end{aligned}$$

All the Assumptions of the Feasibility and Stability Theorem are verified.

48

Example: Unstable Linear System

System dynamics:

$$x(k+1) = \begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u_k$$

Constraints:

$$\mathcal{X} := \{x \mid -50 \le x_1 \le 50, \ -10 \le x_2 \le 10\} = \{x \mid A_x x \le b_x\}$$

 $\mathcal{U} := \{u \mid ||u||_{\infty} \le 1\} = \{u \mid A_u u \le b_u\}$

Stage cost:

$$I(x_i, u_i) := x_i^{\top} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x_i + u_i^{\top} u_i$$

Horizon: N = 10

Example: Designing MPC Problem

- 1. Compute the optimal LQR controller and cost matrices: F_{∞} , P_{∞}
- 2. Compute the maximal invariant set \mathcal{X}_f for the closed-loop linear system $x_{k+1} = (A + BF_{\infty})x_k$ subject to the constraints

$$\mathcal{X}_{\mathsf{cl}} := \left\{ x \, \middle| \, \begin{bmatrix} A_{\mathsf{x}} \\ A_{\mathsf{u}} F_{\infty} \end{bmatrix} x \leq \begin{bmatrix} b_{\mathsf{x}} \\ b_{\mathsf{u}} \end{bmatrix} \right\}$$

Example: Lyapunov Decrease of Optimal Cost

Choice of Terminal Set and Cost: Summary

- Terminal constraint provides a sufficient condition for feasibility and stability
- Region of attraction without terminal constraint may be larger than for MPC with terminal constraint but characterization of region of attraction extremely difficult
- $\mathcal{X}_f = 0$ simplest choice but small region of attraction for small N
- Solutions available for linear systems with quadratic cost
- In practice: Enlarge horizon and check stability by sampling
- With larger horizon length *N*, region of attraction approaches maximum control invariant set

Outline

3. Feasibility and Stability Guarantees in MPC

Proof for $\mathcal{X}_f = 0$

General Terminal Sets

Example

Example: Short horizon

MPC controller with input constraints $|u_k| \le 0.262$ and rate constraints $|\dot{u}_k| \le 0.349$ approximated by $|u_i - u_{i-1}| \le 0.349 T_s$

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Decrease in the prediction horizon causes loss of the stability properties

Example: Short horizon

MPC controller with input constraints $|u_k| \le 0.262$ and rate constraints $|\dot{u}_k| \le 0.349$ approximated by $|u_i - u_{i-1}| \le 0.349 T_s$

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Inclusion of terminal cost and constraint provides stability

Outline

- 1. MPC: Key Points Illustrated
- 2. Loss of Feasibility and Stability in MPC
- 3. Feasibility and Stability Guarantees in MPC
- 4. Extension to Nonlinear MPC

Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x(k+1) = g(x(k), u(k))

$$J^{*}(x(k)) = \min_{\mathcal{U}} \qquad l_{f}(x_{N}) + \sum_{i=0}^{N-1} l(x_{i}, u_{i})$$
subj. to
$$x_{i+1} = g(x_{i}, u_{i}), i = 0, \dots, N-1$$

$$x_{i} \in \mathcal{X}, u_{i} \in \mathcal{U}, i = 0, \dots, N-1$$

$$x_{N} \in \mathcal{X}_{f}$$

$$x_{0} = x(k)$$

- Presented assumptions on the terminal set and cost did not rely on linearity
- Lyapunov stability is a general framework to analyze stability of nonlinear dynamic systems
- → Results can be directly extended to nonlinear systems.

However, computing the sets \mathcal{X}_f and function I_f can be very difficult!

Summary

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

- An infinite-horizon provides stability and invariance.
- We 'fake' infinite-horizon by forcing the final state to be in an invariant set for which there exists an invariance-inducing controller, whose infinite-horizon cost can be expressed in closed-form.
- These ideas extend to non-linear systems, but the sets are difficult to compute.