IAA-2023 Clase 10: Métricas de Clasificación

Repaso: Clasificación Desbalanceada

Clasifico a todos como clase 1:

Nuevas Métricas:

$$precision = \frac{TP}{TP + FP} = \frac{TP}{TP + FN} = \frac{TP}{TP + FN} = \frac{TP}{TP + FN}$$

$$recall = \frac{TP}{TP + FN} = \frac{1}{1 + 1}$$

$$ullet$$
 F1-score: $rac{1}{F_1}=rac{1}{2}igg(rac{1}{precision}+rac{1}{exhaustividad}igg) \ F_1=rac{2\;precision\cdot exhaustividad}{precision+exhaustividad}$

Repaso: Clasificación Desbalanceada

Estrategias para lidiar con un dataset desbalanceado:

- Usar métricas adecuadas (nada de exactitud)
- Compensar el sesgo natural a la clase mayoritaria:
 - Dar mayor peso en la loss function a la clase minoritaria (class_weights)
 - Sobre-samplear la clase minoritaria (sklearn.utils.resample)
- Ajustar el umbral para maximizar la métrica de interés (más sobre esto la clase próxima)

Repaso: Clasificación MultiClase

Uno-vs-el resto

Si tengo K clases, entreno K clasificadores: Cada uno clasifica si un sample es de la clase K o no. Luego clasifico con la clase de mayor probabilidad (y puedo normalizar las probabilidades para obtener una probabilidad multiclase)

Tanto la exhaustividad como la precisión se definen una para cada clase.

Métricas de Clasificación Binaria

Matriz de confusión:

Predicciones

$$precision = rac{TP}{TP + FP}$$
 $exhaustividad = TPR = rac{TP}{TP + FN}$ $TNR = rac{FP}{FP + TN}$

Métricas de Clasificación Binaria

Matriz de confusión:

$$precision = rac{TP}{TP + FP}$$
 $exhaustividad = TPR = rac{TP}{TP + FN}$

Depende del umbral de decisión

Dependencia con el threshold

Los números en la matriz de confusión varían dependiendo del threshold que se use:

Uno incluso podría elegir el threshold para maximizar una métrica particular (como un hiper-parámetro más).

Dependencia con el threshold

Algo interesante para analizar y comparar modelos, es calcular las métricas para *todos los umbrales posibles* (es decir, N-1 umbrales cuanto mucho).

Luego, podemos ver como varían cada uno con el umbral:

Dependencia con el threshold

Algo interesante para analizar y comparar modelos, es calcular las métricas para todos los umbrales posibles (es decir, N-1 umbrales cuanto mucho).

Luego, podemos ver como varían cada uno con el umbral:

O incluso una métrica en función

de la otra:

Comparación de modelos

Distintos modelos / hiperparámetros, darán lugar a distintas distribuciones de probabilidad:

Lo que se traduce en distintas curvas

ROC, Precision-Recall, AUC

ROC: *Receiving Operating Characteristic* = TPR vs FPR (aka recall)

Para comparar modelos, independientemente del umbral, se suele usar como métrica el **area bajo la curva** (AUC) de esta curva.

Útil cuando nos interesa ordenarlos por probabilidad.