

Olimpiada Naţională de Matematică Etapa Judeţeană şi a Municipiului Bucureşti, 19 martie 2016 CLASA a XII-a — Soluţii şi barem orientativ

Problema 1. Un inel $(A, +, \cdot)$ are proprietatea (P) dacă A este finit şi grupul multiplicativ al elementelor sale inversabile este izomorf cu un subgrup diferit de $\{0\}$ al grupului aditiv (A, +). Arătați că:

(a) Dacă un inel are proprietatea (P), atunci numărul elementelor sale este par.

(b) Pentru o infinitate de numere naturale n, există inele cu exact n elemente, care au proprietatea (P).

Soluție. (a) Fie A un inel care are proprietatea (P) și fie m = |U(A)|. Rezultă că $(-1)^m = 1$.

Dacă m este par, cum m este un divizor al lui |A|, rezultă că |A| este par. 2 puncte

(b) Fie m un număr natural nenul, fie $n = 2^{m+2}$ și fie $A = \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{m} \times \mathbb{Z}_4$.

Atunci grupul multiplicativ $U(A) = \{(\hat{1}, \dots, \hat{1}, \hat{1}), (\hat{1}, \dots, \hat{1}, \hat{3})\}$ este izomorf cu subgrupul $\{(\hat{0}, \dots, \hat{0}, \hat{0}), (\hat{0}, \dots, \hat{0}, \hat{2})\}$ al grupului aditiv (A, +).

......3 puncte

Problema 2. Fie $f: \mathbb{R} \to (0, \infty)$ o funcție continuă și periodică. Dacă 2 este perioadă a lui f, arătați că:

(a)
$$\int_0^2 \frac{f(x+1)}{f(x)} dx \ge 2$$
.

(b) $\int_0^2 \frac{f(x+1)}{f(x)} dx = 2$ dacă și numai dacă 1 este perioadă a lui f.

Soluție. (a) Inegalitatea rezultă din relațiile de mai jos:

$$\int_0^2 \frac{f(x+1)}{f(x)} dx = \int_0^1 \frac{f(x+1)}{f(x)} dx + \int_1^2 \frac{f(x+1)}{f(x)} dx$$

$$= \int_0^1 \frac{f(x+1)}{f(x)} dx + \int_1^2 \frac{f(x-1+2)}{f(x-1+1)} dx$$

$$= \int_0^1 \frac{f(x+1)}{f(x)} dx + \int_0^1 \frac{f(x+2)}{f(x+1)} dx$$

$$= \int_0^1 \left(\frac{f(x+1)}{f(x)} + \frac{f(x)}{f(x+1)}\right) dx \ge \int_0^1 2 dx = 2.$$

......4 puncte

Dacă $x \in [1, 2]$, atunci f(x) = f((x-1)+1) = f(x-1) = f((x-1)+2) = f(x+1), deci f(x+1) = f(x), oricare ar fi x în [0, 2].

În fine, dacă x este un număr real oarecare, atunci $2n \le x < 2n + 2$, pentru un unic număr întreg n, și f(x) = f(x - 2n) = f((x - 2n) + 1) = f((x + 1) - 2n) = f(x + 1). Prin urmare, 1 este perioadă a funcției f.

Problema 3. Fie p un număr prim impar și fie G un grup care are exact p+1 elemente. Arătați că, dacă p divide numărul automorfismelor lui G, atunci $p \equiv 3 \pmod{4}$.

Pe de altă parte, |G| = p + 1 este par, deci G are un element x_0 de ordin 2. Prin urmare, ord $f^k(x_0) = 2$, $k = 0, \ldots, p - 1$. Rezultă că $x^2 = e$, oricare ar fi x în G, deci $p + 1 = 2^n$, unde $n \ge 2$ este un număr întreg. ..3 puncte

Remarcă. Grupurile $\mathbb{Z}_2 \times \mathbb{Z}_2$ şi $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ îndeplinesc condiția din enunț.

Problema 4. Fie $f: [0,1] \to [0,1]$ o funcție crescătoare și fie

$$a_n = \int_0^1 \frac{1 + (f(x))^n}{1 + (f(x))^{n+1}} dx, \quad n \in \mathbb{N}^*.$$

Arătați că șirul $(a_n)_{n\in\mathbb{N}^*}$ este convergent și calculați limita sa.

Soluție. În mod evident, $a_n \geq 1$, oricare ar fi $n \in \mathbb{N}^*$. Pe de altă parte,

$$a_n - a_{n+1} = \int_0^1 \left(\frac{1 + (f(x))^n}{1 + (f(x))^{n+1}} - \frac{1 + (f(x))^{n+1}}{1 + (f(x))^{n+2}} \right) dx$$
$$= \int_0^1 \frac{(f(x))^n (1 - f(x))^2}{(1 + (f(x))^{n+1})(1 + (f(x))^{n+2})} dx \ge 0, \quad n \in \mathbb{N}^*,$$

Fie $\ell = \lim_{n \to \infty} a_n$. Fără să restrângem generalitatea, putem presupune că f(0) = 0 și f(1) = 1. Fie $a = \inf\{x \colon 0 \le x \le 1, f(x) = 1\}$.

Dacă a > 0, fie $\epsilon \in (0, a)$. Atunci

$$0 \le a_n - 1 = \int_0^1 \left(\frac{1 + (f(x))^n}{1 + (f(x))^{n+1}} - 1 \right) dx = \int_0^1 \frac{(f(x))^n (1 - f(x))}{1 + (f(x))^{n+1}} dx$$

$$\le \int_0^1 (f(x))^n (1 - f(x)) dx = \int_0^a (f(x))^n (1 - f(x)) dx$$

$$\le \int_0^a (f(x))^n dx = \int_0^{a - \epsilon} (f(x))^n dx + \int_{a - \epsilon}^a (f(x))^n dx$$

$$\le (a - \epsilon)(f(a - \epsilon))^n + \epsilon, \quad n \in \mathbb{N}^*.$$