信号理論基礎

2020/05/22

【今日のテーマ】

- ・ (周期的な)インパルス列
- ・ 複素フーリエ級数(フーリエ級数の複素形)
- ・スペクトル

< 復習(1) ~不連続関数の微分~ >

$$f(t) = -\frac{1}{T}t + 1 \quad (0 < t < T)$$

(基本)周期 T

$$2T \rightarrow t$$
 (基本)角周波数 $\omega_0 = \frac{2\pi}{T}$

$$f(t) = g(t) + \sum_{k=1}^{N} a_k u(t - t_k)$$

$$g(t) = -\frac{1}{T}t + \alpha$$
 と仮定すると、

$$f(t) = -\frac{1}{T}t + \alpha + \sum_{n=-\infty}^{\infty} u(t - nT)$$

微分
$$f'(t) = -\frac{1}{T} + \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

< 復習(2) ~周期関数のフーリエ級数~ >

$$f(t) = -\frac{1}{T}t + 1 \quad (0 < t < T)$$

(基本)角周波数
$$\omega_0 = \frac{2\pi}{T}$$

$$a_0 = \frac{2}{T} \int_0^T f(t)dt = 1$$

$$a_0 = \frac{2}{T} \int_0^T f(t)dt = 1$$
 $a_n = \frac{2}{T} \int_0^T f(t)\cos(n\omega_0 t)dt = 0$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt = \frac{1}{n\pi}$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{n\pi} \sin\frac{2\pi n}{T} t$$

微分 $f'(t) = \frac{2}{T} \sum_{n=0}^{\infty} \cos \frac{2\pi n}{T} t$

復習(1)の結果

復習②の結果

$$f'(t) = -\frac{1}{T} + \sum_{n=-\infty}^{\infty} \delta(t - nT) \qquad f'(t) = \frac{2}{T} \sum_{n=1}^{\infty} \cos \frac{2\pi n}{T} t$$
$$-\frac{1}{T} + \sum_{n=-\infty}^{\infty} \delta(t - nT) = \frac{2}{T} \sum_{n=1}^{\infty} \cos \frac{2\pi n}{T} t$$

$$\sum_{n=-\infty}^{\infty} \delta(t-nT) = \frac{1}{T} + \frac{2}{T} \sum_{n=1}^{\infty} \cos \frac{2\pi n}{T} t$$

$$\delta(t+2T) \quad \delta(t+T) \quad \delta(t) \quad \delta(t-T) \quad \delta(t-2T)$$

$$-2T \quad -T \quad 0 \quad T \quad 2T$$
(周期的な)単位インパルス列

インパルス列とAD変換

3.2 フーリエ級数の複素形(p.64)

(実)フーリエ級数

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)\}\$$

$$e^{j\theta} = \cos \theta + j \sin \theta$$
$$e^{-j\theta} = \cos \theta - j \sin \theta$$

オイラー(1707-1783)

複素フーリエ級数

$$f(t) = \sum_{n = -\infty}^{\infty} c_n \, e^{jn\omega_0 t}$$

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jn\omega_0 t} dt$$

(実)フーリエ級数から複素フーリエ級数へ

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)\}\$$

$$+b_n \sin(n\omega_0 t)$$

$$\cos(n\omega_0 t) = \frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2}$$

$$\sin(n\omega_0 t) = \frac{e^{jn\omega_0 t} - e^{-jn\omega_0 t}}{2j}$$
がら

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) + b_n \left(\frac{e^{jn\omega_0 t} - e^{-jn\omega_0 t}}{2j} \right) \right\}$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ \frac{1}{2} (a_n - jb_n) e^{jn\omega_0 t} + \frac{1}{2} (a_n + jb_n) e^{-jn\omega_0 t} \right\}$$

$$c_0 = \frac{a_0}{2}$$
, $c_n = \frac{1}{2}(a_n - jb_n)$, $c_{-n} = \frac{1}{2}(a_n + jb_n)$

$$= c_0 + \sum_{n=1}^{\infty} \{c_n e^{jn\omega_0 t} + c_{-n} e^{-jn\omega_0 t}\} = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$$

複素フーリエ係数 c_n

$$c_n = \frac{1}{2}(a_n - jb_n)$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$$

$$c_n = \frac{1}{2} \left(\frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt - j \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt \right)$$

$$= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \{\cos(n\omega_0 t) - j\sin(n\omega_0 t)\} dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t} dt$$

複素フーリエ級数

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t} dt$$

 c_n :複素フーリエ係数(スペクトルとも呼ぶ)

複素フーリエ級数の基底 $e^{jn\omega_0t}$ は直交関数なのか?

⇒ 内積=0 ならば直交

3.3 複素フーリエ級数関数の直交性(p.69)

複素関数の内積の定義

ightharpoonup 区間 $a \le x \le b$ で定義された複素関数 $f \ge g$ の内積

$$\langle f, g \rangle = \int_a^b f(x)g^*(x)dx$$

 g^* はg の複素共役

大きさ(ノルム)

> 自身の内積の平方根

$$||f(x)|| = \sqrt{\langle f, f \rangle}$$

$$\langle f, f \rangle = \int_{a}^{b} f(x)f^{*}(x)dx$$

複素フーリエ級数の基底関数

$$f_n(t) = e^{jn\omega_0 t}, \qquad n = 0, \pm 1, \pm 2, \cdots$$

内積

$$< f_n, f_m > = \int_{-\frac{T}{2}}^{\frac{T}{2}} f_n(t) f_m^*(t) dt = \begin{cases} 0, & n \neq m \\ r_n, & n = m \end{cases}$$

$$n \neq m$$
 とき
$$\int_{-\frac{T}{2}}^{\frac{T}{2}} e^{jn\omega_0 t} e^{-jm\omega_0 t} dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{j(n-m)\omega_0 t} dt = 0$$

$$n = m$$
 とき
$$\int_{-\frac{T}{2}}^{\frac{T}{2}} e^{jn\omega_0 t} e^{-jn\omega_0 t} dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt = T$$

3.4 複素周波数スペクトル(p.71)

スペクトルの意味

複雑な情報や信号を、その周波数ごとの成分に分解して、成分ごとの大小にしたがって配置したもの

$$c_n = |c_n|e^{j\phi_n} : \mathcal{A}^{\gamma} \cap \mathcal{V}$$

 $|c_n|$:振幅スペクトル

 $|c_n|^2$: パワースペクトル

 ϕ_n : 位相スペクトル

スペクトルとフーリエ係数の関係

$$c_0 = \frac{a_0}{2}$$
, $c_n = \frac{1}{2}(a_n - jb_n)$, $c_{-n} = \frac{1}{2}(a_n + jb_n)$

スペクトルの重要な特徴

f(t) が実数のとき、 $c_{-n} = c_n^*$ となる

(振幅スペクトルは偶対称、位相スペクトルは奇対称)

(13)

【**例1**】 $f(t) = \cos 2\pi t + 2\cos 6\pi t$ のスペクトルを求め、振幅スペクトルを図示せよ。

f(t) の周期は T=1, 基本角周波数 $\omega_0=2\pi$, 基本周波数 $f_0=1$

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \{a_n \cos(2\pi nt) + b_n \sin(2\pi nt)\}\$$

■ フーリエ係数: $a_0 = 0$, $a_1 = 1$, $a_2 = 0$, $a_3 = 2$, $a_4 = 0$..., $b_n = 0$

係数とスペクトルの関係

$$c_0 = \frac{a_0}{2}$$
, $c_n = \frac{a_n - jb_n}{2}$, $c_{-n} = \frac{a_n + jb_n}{2}$

■ スペクトル:
$$c_0 = \frac{a_0}{2} = 0$$
, $c_1 = \frac{a_1 - jb_1}{2} = \frac{1}{2}$, $c_2 = 0$, $c_3 = 1$, $c_4 = 0$,
$$c_{-1} = \frac{a_1 + jb_1}{2} = \frac{1}{2}$$
, $c_{-2} = 0$, $c_{-3} = 1$, $c_{-4} = 0$,

(解答のつづき)

$$c_0 = \frac{a_0}{2} = 0, c_1 = \frac{a_1 - jb_1}{2} = \frac{1}{2}, c_2 = 0, c_3 = 1, c_4 = 0, \dots$$

$$c_{-1} = \frac{a_1 + jb_1}{2} = \frac{1}{2}, c_{-2} = 0, c_{-3} = 1, c_{-4} = 0, \dots$$

なので、その振幅スペクトルは以下のようになる

【 $\mathbf{M2}$ 】以下に示す周期関数f(t)を複素フーリエ級数展開せよ。 また、振幅スペクトルを図示せよ。

解答例)
$$f(t) = t$$
 $\cdots 0 \le t < 1$ $T = 1, \omega_0 = \frac{2\pi}{T} = 2\pi$

$$T=1, \omega_0=\frac{2\pi}{T}=2\pi$$

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-jn\omega_0 t} dt = \int_0^1 te^{-j2\pi nt} dt$$

$$n=0$$
 のとき $c_0=\int_0^1 t \ dt = \left[\frac{1}{2}t^2\right]_0^1 = \frac{1}{2}$

$$c_0 = \frac{1}{2}, \quad c_n = j \frac{1}{2\pi n}$$

スペクトル:
$$c_0 = \frac{1}{2}e^{j0}$$
, $c_1 = j\frac{1}{2\pi} = \frac{1}{2\pi}e^{j\frac{\pi}{2}}$, $c_{-1} = -j\frac{1}{2\pi} = \frac{1}{2\pi}e^{-j\frac{\pi}{2}}$, $c_2 = j\frac{1}{4\pi} = \frac{1}{4\pi}e^{j\frac{\pi}{2}}$, $c_{-2} = -j\frac{1}{4\pi} = \frac{1}{4\pi}e^{-j\frac{\pi}{2}}$, $c_3 = j\frac{1}{6\pi} = \frac{1}{6\pi}e^{j\frac{\pi}{2}}$, $c_{-3} = -j\frac{1}{6\pi} = \frac{1}{6\pi}e^{-j\frac{\pi}{2}}$,

ピアノの「ラ」の音(波形)、スペクトル

ピアノとオルガンの「ラ」の音を比較

いきものがかり「YELL」のスペクトル

【練習問題】以下の信号のスペクトルを求めよ。

周期
$$T = 2\pi$$
, $\omega_0 = \frac{2\pi}{T} = 1$
$$f(t) = \begin{cases} 1, & -d < t < d \\ 0, & -\pi < t < -d, \end{cases} \quad d < t < \pi$$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t)e^{-jn\omega_0 t} dt = \frac{1}{2\pi} \int_{-d}^{d} e^{-jnt} dt$$

(練習問題計算用)

【練習問題】単位インパルス列のスペクトルを求め図示せよ。

ヒント: 周期
$$T$$
, $\omega_0 = \frac{2\pi}{T}$

1周期
$$-\frac{T}{2} < t < \frac{T}{2}$$
 で考えると、

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} \delta_T(t) e^{-jn\omega_0 t} dt = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-j\frac{2\pi n}{T}t} dt$$

(練習問題計算用)

パーシヴァルの定理

$$\frac{1}{T} \int_{-T/2}^{T/2} [f(t)]^2 dt = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$
 (p.17)

$$\frac{1}{T} \int_{-T/2}^{T/2} [f(t)]^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2$$

時間領域のパワー = 周波数領域のパワー

宿題

- 演習問題4
- ILIASからダウンロード
- 提出期限: 5月28日(木)24:00(日本時間)まで

【注意】

- ノート・レポート用紙等に解答する(問題文は書かなくても良い)。
- 解答をスキャン(カメラで撮影など)して電子ファイルとしてILIAS から提出する。
- ファイル形式は提出ができれば何でも構いません(jpeg, word, pdf など)。
- ファイル名は「bst_report_4」としてください。複数のファイルになる場合は「bst_report4_1」、「bst_report4_2」などとしてください。