# Régulation Industrielle

DS

#### Exercice N° 1:

Soit le réseau passif ci-contre :



- **1-** Donner l'expression de la fonction de transfert:  $H(p) = \frac{V_S(p)}{V_e(p)}$
- 2- La Mettre sous forme canonique
- 3- Identifier les paramètres caractéristiques.
- **4-**  $V_e(t)$  est un échelon de 20  $V(V_e(t) = 20.u(t))$ . Donner l'expression de  $V_s(t)$ .
- **5-**  $R = 10 \Omega$  et  $C = 10 \mu F$ , Calculer la valeur de  $V_s(t)$  en régime établi, c-à-d lorsque  $t \to \infty$ . (vous pouvez utiliser le théorème de la valeur finale).
- **6-** Calculer le temps de réponse  $t_{5\%}$ .

#### Exercice N° 2:

On considère un système de fonction de transfert en boucle ouverte :

$$G(p) = \frac{K}{(p+1)^4}$$
 Avec:  $K > 0$ 

On place ce système dans une boucle à retour unitaire.

- 1- Déterminer sa FTBF
- **2-** Déterminer l'erreur ε d'asservissement en régime permanent de système pour une entrée:
  - a) Echelon d'amplitude 2,
  - b) Rampe de pente 3.
- **3-** Calculer la valeur de K qui assure au système en boucle fermée une erreur de position égale à 5%.
- 4- Cette valeur de K assure -t-elle la stabilté du système?

## **Exercice N° 3:**

Soit le système décrit par le schéma bloc suivant:



- **1** Déterminer par simplification du schéma bloc, la fonction de transfert:  $H_m(p) = \frac{\Omega_s(p)}{U_m(p)}$
- **2** Déterminer par simplification du schéma bloc, la FTBO:  $FTBO(p) = \frac{X_m(p)}{F(p)}$
- **3** Déterminer par simplification du schéma bloc, la FTBF:  $FTBF(p) = \frac{X_S(p)}{X_C(p)}$

#### Exercice N° 4:

On considère un système d'entrainement, composé principalement d'un moteur électrique représenté par le schéma fonctionnel donné par la **figure suivante**.



$$F(p) = \frac{k_1}{1 + \tau_1 p}$$
 et  $R(p) = \frac{k_2}{1 + \tau_2 p}$ 

On suppose dans la suite du problème que le couple résistant est nul :  $\mathcal{C}_{r}=0$ 

On désigne par  $w(t) = L^{-1}(\Omega(p))$ : w(t) est la transformée de Laplace inverse de  $\Omega(p)$ .

- **1-** Déterminer, par simplification de schéma bloc, l'expression de:  $H(p) = \frac{\Omega(p)}{\Omega_{+}(p)}$
- **2-** Pour les valeurs numériques suivantes :  $K_1 = 2$  ;  $K_2 = 0$ , 5 ;  $\tau_1 = 0$ , 5 ;  $\tau_2 = 2$  ;  $K_c = 1$  et  $K_c = 1$ 
  - **a.** Calculer alors H(p) et déduire l'ordre de système
  - **b.** Déterminer les valeurs des caractéristiques de la fonction de transfert H(p)
- 3- On s'intéresse à l'étude de la réponse indicielle pour les deux cas suivants :
- a. Pour ( $k_1 = 2$  et  $\tau_1 = 0$ , 5) calculer la réponse indicielle  $w_1(t)$  pour une entrée en échelon d'amplitude égale à 10 ( $c_m(t) = 10$  N. m)
- **b.** Pour ( $k_1 = 2$  et  $\tau_1 = 2$ ) calculer la réponse indicielle  $w_2(t)$  pour une entrée en échelon d'amplitude égale à 10 ( $c_m(t) = 10$  N.m)
- c. Conclure

# Régulation Industrielle

## **Exercice 1:**

1) A partir du tableau des transformées de Laplace inverses, trouver la réponse temporelle des fonctions de transfert suivantes:

$$F(p) = \frac{2}{p(1+\frac{p}{3})} \qquad G(p) = \frac{1}{(1+3p)^2} \qquad H(p) = \frac{1}{p} - \frac{e^{-4p}}{p}$$

- 2) On considère un système d'entrée e(t) et de sortie s(t) régi par l'équation différentielle suivante :  $\frac{d^2s(t)}{dt^2} + 3\frac{ds(t)}{dt} + 2s(t) = e(t)$ . (les conditions initiales sont nulles).
  - a) Calculer la fonction de transfert de ce système.
  - b) Calculer la réponse de ce système s(t) à une entrée e(t) en échelon unitaire.

## **Exercice 2:**

On donne le circuit électrique ci-contre :



- 1) Ecrire les images de ces équations dans le domaine de Laplace. (les conditions initiales sont nulles).
- 2) Exprimer la fonction de transfert  $G(p) = \frac{U_s(p)}{U_e(p)}$

On précise que le système peut se mettre sous la forme du schéma bloc suivant :



- 3) Exprimer  $G_1(p)$  et  $G_2(p)$  en fonction  $R_1$ ,  $R_2$ , C et p
- 4) Donner l'expression numérique de  $H_I(p)$ . On donne  $\tau_1 = R_2.C = 1$  ms ;  $\tau_2 = (R_1 + R_2).C = 5$  ms
- 5) A l'instant t = 0 s, on applique au réseau un échelon de tension de 10 V ( $u_e(t)=10.u(t)$ ) En appliquant les théorèmes aux valeurs limites, calculer les valeurs initiale et finale de  $u_s(t)$ .

# **Exercice 3**

Le schéma fonctionnel d'un système bouclé est donné ci-dessous:



- 1) Donner en fonction de K l'expression de sa fonction de transfert en boucle ouverte  $H(p) = X_r(p)/E(p)$
- 2) Calculer ensuite la fonction de transfert en boucle fermée  $G(p) = Y(p)/Y_e(p)$  en fonction de l'amplification K.
- 3) Donner la fonction de transfert T(p) = Y(p)/X(p) par simplification des schémas blocs suivants:

