NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to CHEN YUXING, CHEN YUMING

MA4266 Topology AY 2008/2009 Sem 2

Question 1

- (a) The family of all subsets of the form $O_1 \times O_2$, where O_1 , O_2 are open sets in X.
- (b) Suppose that D is closed. Let x and y be two distinct points of X. Then (x, y) is not on D, so there is a basis neighborhood $U \times V$ of (x, y) that misses D entirely. So x is in U, y is in V and we claim that U is disjoint from V. If not, say z is in $U \cap V$, then (z, z) would be in $U \times V$, and also in D, which contradicts we way we chose $U \times V$ in the first place. So U and V are the required disjoint neighborhoods of x and y.

Reversely, if (x,y) is any point outside D, we know then that x is unequal to y. So there are disjoint open neighborhoods U of x and V of y that are disjoint. Then we claim that $U \times V$ misses D entirely: if (z,z) from D would also be in $U \times V$ then z would be in U and in V, contradicting the disjointness of U and V. So for any point (x,y) in $X \times X - D$ we have an open neighborhood $U \times V$ (open in $X \times X$) such that $U \times V \subset X \times X - D$, so D is closed.

- (c) Let $a \in X$. Then $\{a\} \times X$, as a subspace of Y, is homeomorphic to X under $(a,t) \leftrightarrow t$, $t \in X$. Then $\{a\} \times X$ is connected and similarly $X \times \{t\}$ is connected. Note that $(a,t) \in (\{a\} \times X) \cap (X \times \{t\})$. By a corollary, $\{a\} \times X \cup \bigcup_{t \in X} (X \times \{t\})$, which is Y, is connected.
- (d) Consider a open neighborhood of (x, -x) in $X \times X$ which is $[x, a) \times [-x, b)$, a > x, b > -x. $(x, -x) = [x, a) \times [-x, b) \cap E$ is open in E. The closure of a subset of X is the subset itself and the only dense set of X is X which is uncountable so X is not separable.

Question 2

- (a) Each component of X consists of a single point.
- (b) Suppose that there is one component of X which consists of more than one points. Let x, y be two points in this component and p, q be their images under f. Let C be the image of this component. Since f is injective, $p \neq q$. C is connected since f is continuous. Let f be an irrational between f, f, f, and f, f, and f, f are separated sets of f, which contradicts that f is connected.
- (c) The set of all irrationals I with usual topology. Since I is uncountable, there is no injection from I to Q. Similarly, by proof of contradiction, if C is a component of I and C has more that one points, we can find a rational among C and from the rational divide C into separated sets.
- (d) The elements in this set has form

$$f = \begin{cases} 0, & x < i; \\ 1, & x \ge i. \end{cases}$$

or

$$f = \begin{cases} 0, & x \le i; \\ 1, & x > i. \end{cases}$$

where i is an irrational. It is easy to verify that f is continuous. If i is rational, then one of preimages of $\{0\}$, $\{1\}$ is not open, thus f is not continuous.

Question 3

- (a) Let $x = -1 + \cos \theta$, $y = \sin \theta$. Then $(x + 1)^2 + y^2 = 1$. Because $\theta \epsilon(\pi, 3\pi)$, the graph of the first part of union is a circle except (-2,0). Similarly, the second part of the union is a circle $(x 1)^2 + y^2 = 1$ except (2,0). The graph of B is the circle $x^2 + y^2 = 1$ except (1,0) and (-1,0). C consists of 4 segments whose one endpoints are all (0,0), the other endpoints are (1,0), (0,1), (-1,0), (0,-1) and these segments do not contain (1,0), (0,1), (-1,0), (0,-1). We can deform continuously form the graph of A to the graph of C by gluing (1,0) and (0,1), (-1,0) and (0,-1). Notice these endpoints are ont in C so the deformation is surjective and continuous. A and C are homeomorphic.
- (b) The closures of A, B, C are the same graph by adding those missing points on circles and endpoints of segments. There are no homeomorphic closures. \bar{A} has one point which is incident to 4 branches, so does \bar{C} . This means that only \bar{A} and \bar{C} are possibly homeomorphic to each other. But the original deformation is not injective any more since 4 endpoints of segments belong to \bar{C} . \bar{A} , \bar{B} , \bar{C} are not homeomorphic to each other.
- (c) \tilde{A} is formed by gluing (2,0) and (-2,0), then filling the gluing point. \tilde{B} is formed by gluing (1,0) and (-1,0), then filling the gluing point. \tilde{C} is formed by gluing all 4 endpoints altogether and filling the gluing point. \tilde{A} are homeomorphic to \tilde{C} .
- (d) \bar{A} is homeomorphic to \tilde{B} . Say f is the mapping from \bar{A} to \tilde{B} . f(0,0)= the adding infinity point. The left circle except (0,0) maps to the upper half of B. The right circle except (0,0) maps to the lower half of B.

Question 4

- (a) Every open set is a union of elements from basis but this is not true for the case of subbasis.
- (b) $\phi(s)|s\epsilon S$ is a subbasis of (Y, T').

We can show that T' consists of all $O \subset Y$ s.t. $\phi^{-1}(O)\epsilon T$. Suppose that Q is open in Y, then $P = \phi^{-1}(Q)$ is open in X. Thus $P = \bigcup_i B_i$ where $B_i = s_1 \cap s_2 \dots s_n$ which is a finite union of subbasis elements. $Q = \phi(P) = \phi(\bigcup_i B_i) = \phi(\bigcup_i (s_1 \cap s_2 \dots s_n)) = \bigcup_i (\phi(s_1) \cap \phi(s_2) \dots phi(s_n))$. This proves that $phi(s)|s\epsilon S$ is a subbasis of (Y,T').

(c) Let a, b belong to X. Define equivalence relation $a \sim b$ if $\phi(a) = \phi(b)$. (Y, T') satisfies T_1 condition iff for every distinctive equivalent class E_1 , E_2 , there are saturated open sets O_1 , O_2 in X s.t. $E_1 \subset O_1$, $E_2 \subset O_2$ and $E_1 \cap O_2 = \emptyset$, $E_2 \cap O_1 = \emptyset$.

Reason: Let y_1 , y_2 be two distinct points in Y. Then let $E_1 = \phi(y_1)$, $E_2 = \phi(y_2)$. By condition given above, there exist O_1 , O_2 s.t. $E_1 \subset O_1$, $E_2 \subset O_2$ and $E_1 \cap O_2 = \emptyset$, $E_2 \cap O_1 = \emptyset$. $\phi(O_1)$, $\phi(O_2)$ are required open neighborhoods.

Page: 2 of 3

(d) Suppose that F, F' are two distinct continuous functions from X to Y whose restrictions on A are f. There exists a point $x \in X$ s.t. $F(x) \neq F'(x)$. Since Y is Hausdorff, there are two disjoint open neighborhoods of F(x), F'(x), denoted as O, P. $F^{-1}(O)$, $F'^{-1}(P)$ are open in X since F, F' are continuous. $F^{-1}(O) \cap F'^{-1}(P)$ is open and nonempty because x is in this intersection, thus this intersection is a neighborhood of x and it should contain some $a \in A$. $F(a) \in O$ and $F'(a) \in P$, but F(a) = f(a), F'(a) = f(a) in which contradicts O and P are disjoint. In conclusion, there can exist at most one extension of f to X.

Question 5

- (a) Given $\epsilon > 0$. For each n, let $g_n = f f_n$ and E_n be those $x \epsilon X$ s.t. $g_n(x) < \epsilon$. Each g_n is continuous and each E_n is open. Since f_n is monotonically increasing, g_n is monotonically decreasing, it follows that E_n is ascending. Since f_n converge pointwisely to f, E_n is an open covering of X. By compactness, there is some positive integer N such that $E_N = X$ i.e. if n > N and then for all x in X we have $|f(x) f_n(x)| < \epsilon$ as desired.
- (b) For convenience, we use a capital letter to represent an element in l^2 , a lower class letter to represent a digit of an element in l^2 and letters such as \mathcal{X} to represent a subset in the Hilbert space. Thus X is an element in \mathcal{X} .

Let T_C map a bounded set to a set whose closure is compact. We will use proof by contradiction. Suppose c_n does not converge to 0, then there is $\epsilon > 0$ and a subsequence c_{n_i} with $|c_{n_i}| > \epsilon$. Let $Y_i = (0, 0, \dots, 1, 0, \dots)$, where i occur in the i-th position. All these Y_i s form a bounded set \mathcal{B} since $d(Y_i, Y_j) = \sqrt{2}$ when $i \neq j$. If $T_c(\mathcal{B})$ is compact, then there is a convergent subsequence of $T_C(Y_i)$. This subsequence is Cauchy. However, two terms in $T_C(Y_i)$ have distance larger that $\sqrt{2}\epsilon$, in contradicts with the existence of a Cauchy subsequence.

Suppose that $c_n \to 0$. Define T_{C_i} as $T_{C_i}(x) = (c_1x_1, c_2x_2 \dots c_ix_i, 0, \dots)$.

Claim: if T_{C_i} are compact operators for all i,then T_C is a compact operator. Proof of the claim: Suppose that \mathcal{D} is a bounded subset of \mathcal{X} . It can be proved that if every sequence in $T_C(\mathcal{D})$ has a convergent subsequence then every sequence (X_i) in $\bar{T}_C(\mathcal{D})$ has a convergent subsequence. We can do this by forming a new sequence (X_i') in $T_C(\mathcal{D})$ s.t. $||X_i - X_i'|| < 1/i$; this sequence has a convergent subsequence, which provides a convergent subsequence of (X_i) .

Suppose that $(T_C(D_i))$ is a sequence in $T_C(\mathcal{D})$. $(T_{C_1}(D_i))$ has a convergent subsequence, denote the index set as $\mathbf{I_1}$. From the sequence $\{T_{C_2}(D_i)|i\in\mathbf{I_1}\}$ we can form a convergent subsequence whose index set is $\mathbf{I_2}$ and $\mathbf{I_2}\subset\mathbf{I_1}$. In particular, the first digit of the limit of $\mathbf{I_2}$ indexed sequence is the same to the first digit of the limit of $\mathbf{I_1}$. Similarly, from subsequence $\{T_{C_2}(D_i)|i\in\mathbf{I_n}\}$ we can form a convergent subsequence whose index set is $\mathbf{I_{n+1}}$ and $\mathbf{I_{n+1}}\subset\mathbf{I_n}\subset\ldots\subset\mathbf{I_1}$ and the first n digits of its limit agreed with the first n digits of the limit of sequence indexed by $\mathbf{I_n}$. Define X whose first n digits are digits we just mentioned. $\lim_{n\to\infty}T_C(D_{i_j})=X$, where i_1 is the first element in $\mathbf{I_1}$, i_2 is the first element in $\mathbf{I_2}$ or the first element in $\mathbf{I_2}$ -1, etc. The claim is proved.

Similarly, by digonalized method and the convergence of C, we can show that the closure of $T_{C_i}(\mathcal{D})$ is sequentially compact, thus T_C is a compact operator.

Page: 3 of 3