```
DialogClassic Web(tm)
Dialog(R) File 351:D
```

```
DIALOG(R) File 351: Derwent WPI
(c) 2006 Thomson Derwent. All rts. reserv.
014016406
             **Image available**
WPI Acc No: 2001-500620/200155
XRPX Acc No: N01-371218
 Recording head of inkjet printer has transistors to control current
 supply to resistors that supply heat energy to nozzles
Patent Assignee: CANON KK (CANO )
Number of Countries: 001 Number of Patents: 001
Patent Family:
                                                   Date
             Kind
                    Date
                             Applicat No
                                            Kind
                                                            Week
Patent No
                   20010717 JP 20001164
                                           Α
                                                 20000107 200155 B
JP 2001191531 A
Priority Applications (No Type Date): JP 20001164 A 20000107
Patent Details:
                                     Filing Notes
Patent No Kind Lan Pg
                        Main IPC
JP 2001191531 A 6 B41J-002/05
Abstract (Basic): JP 2001191531 A
        NOVELTY - The recording head comprises transistors (Tr14-Tr(n+13))
    which switches ON and turns OFF current supply to each of the resistors
    (R1-Rn) which supply heat energy to each nozzle.
        DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the
    following:
        (a) Printing head drive method;
        (b) Printing device
       _USE - For inkjet printer of electric heat conversion system.
        ADVANTAGE - Ink can be discharged correctly irrespective of
    variation of source voltage and number of discharge nozzles.
        DESCRIPTION OF DRAWING(S) - The figure shows the circuit diagram of
    printing head. (Drawing includes non-English language text).
        Resistors (R1-Rn)
        ) Transistors (Trl4-Tr(n+13)
        pp; 6 DwgNo 1/4
Title Terms: RECORD; HEAD; PRINT; TRANSISTOR; CONTROL; CURRENT; SUPPLY;
  RESISTOR; SUPPLY; HEAT; ENERGY; NOZZLE
Derwent Class: P75; T04
International Patent Class (Main): B41J-002/05
International Patent Class (Additional): B41J-002/01
File Segment: EPI; EngPI
```

# (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-191531

(P2001-191531A)

(43)公開日 平成13年7月17日(2001.7.17)

| (51) Int.Cl.7 |      | 識別記号 | FΙ   |      | วั   | -7]-ド(参考) |
|---------------|------|------|------|------|------|-----------|
| B41J          | 2/05 |      | B41J | 3/04 | 103B | 2 C 0 5 6 |
|               | 2/01 |      |      |      | 1017 | 20057     |

# 審査請求 未請求 請求項の数5 OL (全 6 頁)

| (21)出願番号 | 特顧2000-1164(P2000-1164) | (71)出題人 000001007             |  |  |
|----------|-------------------------|-------------------------------|--|--|
|          |                         | キヤノン株式会社                      |  |  |
| (22)出願日  | 平成12年1月7日(2000.1.7)     | 東京都大田区下丸子3丁目30番2号             |  |  |
|          |                         | (72)発明者 辰巳 晋吾                 |  |  |
|          |                         | 東京都大田区下丸子3丁目30番2号 キヤ          |  |  |
|          |                         | ノン株式会社内                       |  |  |
|          |                         | (74)代理人 100066061             |  |  |
|          |                         | 弁理士 丹羽 宏之 (外1名)               |  |  |
|          |                         | 11 - 1111 1111                |  |  |
|          |                         | Fターム(参考) 20056 EC08 EC38 FA03 |  |  |
|          |                         | 20057 AF99 AG46 AM16 BA13     |  |  |
|          |                         |                               |  |  |
|          |                         |                               |  |  |
|          |                         |                               |  |  |
|          |                         |                               |  |  |
|          |                         |                               |  |  |

# (54) 【発明の名称】 印刷ヘッド、印刷ヘッド駆動方法、印刷装置

## (57)【要約】

【課題】 電源電圧の変動、吐出ノズル数の変動にかか わらず、単位ノズル当たりに供給するエネルギを安定化 でき、多ノズルを使用しても正しくインクを吐出する印 刷ヘッド、印刷ヘッド駆動方法、印刷装置を提供する。 【解決手段】 各ノズルに熱エネルギを供給する抵抗R 1……Fnの各々に、定電流源であるトランジスタTァ 14……Tr (n+13)より電流供給する。



### 【特許請求の範囲】

【請求項1】 複数のノズルと、この複数のノズルの各々に個別に熱エネルギを供給する複数の電気・熱変換素子と、この複数の電気・熱変換素子の各々に個別に電流を供給する複数の定電流源と、この複数の定電流源の各々から前記複数の電気・熱変換素子の各々への電流供給をオン、オフする複数のスイッチ手段とを備えたことを特徴とする印刷ヘッド。

【請求項2】 請求項1記載の印刷ヘッドにおいて、前記複数の電気・熱変換手段に供給される電流を検出する電流検出手段と、この電流検出手段で検出した電流に応じて前記複数の定電流源の供給電流を制御する制御手段とを備えたことを特徴とする印刷ヘッド。

【請求項3】 請求項1または2記載の印刷ヘッドにおいて、前記複数の定電流源の基準電流を制御する基準電流制御手段を備えたことを特徴とする印刷ヘッド。

【請求項4】 複数のノズルと、この複数のノズルの各々に個別に熱エネルギを供給する複数の電気・熱変換素子を備えた印刷ヘッドにおける駆動方法であって、前記複数の電気・熱変換素子の各々に個別に、定電流源から電流を供給することを特徴とする印刷ヘッド駆動方法。

【請求項5】 請求項1~3のいずれかに記載の印刷へッドを備えたことを特徴とする印刷装置。

# 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電気・熱変換方式 のインクジェットプリンタのヘッド駆動に関するもので ある。

[0002]

【従来の技術】電気・熱変換方式のインクジェットプリンタ (いわゆるBJプリンタ)の印刷ヘッドは、半導体プロセスで構成できるため、ノズルを高密度に実装できることが特徴である。そこで、近年、プリンタの印刷速度を上げるため、印刷ヘッドの多ノズル化がなされている。

【0003】ところが、BJプリンタの印刷ヘッドは、 熱によってインクを吐出するため、1ノズル当たりの消 費電流が多く、多ノズル化した場合、同時に多くのノズ ルを使用すると、ヘッドへの印加電圧が低下して正しく インクが吐出されないという問題があった。

【0004】逆に、多ノズルを使用しても正しくインクを吐出するように設定すると、1ノズルしか使用しない場合は、エネルギを印加しすぎて、ヘッド(ノズル)の寿命を縮めるという問題があった。

【0005】従来の駆動回路の概略構成を図4に示す。 【0006】ヘッドへ供給するための電源1の出力(電 圧VH0)は、配線による抵抗rによって電圧降下し、 電圧VHと成ってヘッド2に印加される。

【0007】ヘッド2では、各ノズルに対応したヒータ 抵抗R1,R2,……Rnは、各々ヒータ抵抗をスイッ チするためのトランジスタQ1,Q2,……Qnに依っ て選択的に、GNDに接続され、各ヒータ抵抗に電流が 流れ、各ノズルに気泡を発生させインクを吐出する。こ こで、各トランジスタQ1,Q2,……Qnは、図示し ない制御回路からのON/OFF信号 Hsw1,Hs w2,……Hswnに依ってON/OFF制御されてい

【0008】トランジスタがONされた時のヒータ抵抗 でのエネルギを簡単に計算する。

【0009】一例として、トランジスタQ1がONした時を想定し、簡単のため、トランジスタQ1のON抵抗を無視すると、等価回路は、図4(b)のように成る。この時の抵抗R1でのヘッド電圧VH、抵抗R1での電流I1および消費エネルギE1は、簡単な計算の結果、

 $VG = (R1/(R1+r)) \times VH0$ 

I 1 = VHO/(R1+r)

 $E1 = R1 \times (I1)^{-2}$ 

 $= (R1/(R1+r)^2) \times (VH0)^2$   $\geq x\delta$ .

【0010】従って、抵抗R1と r との関係で、配線抵抗 r の影響を受けやすい。

【0011】また、電源電圧(VHO)の変動は、二乗で影響をを受ける。

【0012】又、複数(n)のヒータ抵抗がONした場合の抵抗R1での消費エネルギE1nは、ヘッド電圧をVHn、抵抗R1での電流I1n、R1~Rnまでの並列抵抗をR1nとすると、

 $VHn = (R1n/(R1n+r)) \times VH0$   $I1n = (R1n/((R1n+r) \times R1)) \times VH0$  $E1n = R1 \times (I1n)^2$ 

 $= (1/R1) \times (R1n/R1n+r))^2 \times VHO^2$ 

となり、負荷変動によってもエネルギが変動していた。 【0013】そのため、従来は、インクの吐出ノズル数 に応じて、ノズルに流す電流の時間を制御することによ り、エネルギを補正をすると言う手法が取られていた。 【0014】しかし、この手法では、ヘッドに印加され ている電圧変動(ばらつき等)やヘッドへ至る経路での 配線抵抗による電圧降下のばらつきの影響を受けやす く、安定性に欠けるという問題が有った。

【0015】また、吐出ノズル数(実際に使用するノズル数)を印刷する画柄に応じて制御する必要上、吐出ノズルを数えるための回路が必要になり、トータルの回路規模が大きく成ると言う問題も有った。

【0016】本発明は、このような状況のもとでなされたもので、電源電圧の変動、吐出ノズル数の変動にかか

わらず、単位ノズル当りに供給するエネルギを安定化でき、多ノズルを使用しても正しくインクを吐出する印刷 ヘッド、印刷ヘッド駆動方法、印刷装置を提供すること を目的とするものである。

#### [0017]

【課題を解決するための手段】前記目的を達成するため、本発明では、印刷ヘッドを次の(1),(2),

- (3) のとおりに構成し、印刷ヘッド駆動方法を次の
- (4)のとおりに構成し、印刷装置を次の(5)のとおりに構成する。

【0018】(1)複数のノズルと、この複数のノズルの各々に個別に熱エネルギを供給する複数の電気・熱変換素子と、この複数の電気・熱変換素子の各々に個別に電流を供給する複数の定電流源と、この複数の定電流源の各々から前記複数の電気・熱変換素子の各々への電流供給をオン、オフする複数のスイッチ手段とを備えた印刷ヘッド。

【0019】(2)前記(1)記載の印刷ヘッドにおいて、前記複数の電気・熱変換手段に供給される電流を検出する電流検出手段と、この電流検出手段で検出した電流に応じて前記複数の定電流源の供給電流を制御する制御手段とを備えた印刷ヘッド。

【0020】(3)前記(1)または(2)記載の印刷へッドにおいて、前記複数の定電流源の基準電流を制御する基準電流制御手段を備えた印刷へッド。

【0021】(4)複数のノズルと、この複数のノズルの各々に個別に熱エネルギを供給する複数の電気・熱変換素子を備えた印刷ヘッドにおける駆動方法であって、前記複数の電気・熱変換素子の各々に個別に、定電流源から電流を供給する印刷ヘッド駆動方法。

【0022】(5)前記(1) $\sim$ (3)のいずれかに記載の印刷へッドを備えた印刷装置。

#### [0023]

【発明の実施の形態】以下本発明の実施の形態をインク ジェットプリンタ用印刷ヘッドの実施例により詳しく説 明する。

# [0024]

【実施例】図1は、実施例である"インクジェットプリンタ用印刷ヘッド"の回路図で有る。

【0025】図1では、回路上の記号を図4と区別するため、新たに付加した抵抗は小文字のrにサフィックスを付加し、トランジスタはTrにサフィックスを付加した記号で記載した。ヒータ抵抗への電力供給用電源VHとは別に、安定した電源VDは、抵抗r1を経由してダイオード接続されているトランジスタTr1(NPN型)のコレクタ、ベース端子へ至る。トランジスタTr1のエミッタは、GNDに接続されている。トランジスタTr1とカレントミラーを構成しているトランジスタTr2(NPN型)のコレクタは、ダイオード接続されているPNPトランジスタTr3,Tr4を経由して、

電力供給用電源VHに接続されている。トラジスタTr3のベース、コレクタ端子は、トランジスタTr4, Tr3とカレントミラーを構成しているトランジスタTr6, Tr5のペアのトランジスタのTr5のベース端子に接続されている。トランジスタTr5のコレクタは、GNDに接続されており、ダイオード接続されているトランジスタTr6のベース、コレクタ端子は、トランジスタTr7のベースに接続されており、トランジスタTr7のベースに接続されており、トランジスタTr6とTr7でカレントミラーを構成している。トランジスタTr7のコレクタは、抵抗r3を経由してGNDに接続されていて、カレントミラーで得られる電流(トランジスタTr6に流れる電流)を電圧に変換している。

【0026】また、トランジスタTr8はトランジスタTr1とカレントミラーを構成しており、コレクタは、ダイオード接続されているトランジスタTr9を経由して電源VHに接続されている。さらに、トランジスタTr9とペアでカレントミラーを構成するトランジスタTr10のコレクタは、抵抗r2を経由してGNDに接続されており、トランジスタTr10, Tr9のカレントミラーに流れる電流、即ち、安定した電源から供給される抵抗r1に流れる電流を電圧に変換して、比較基準電圧として、トランジスタTr11に印加している。

【0027】トランジスタTr11, Tr12, Tr13は、差動AMPを構成し、トランジスタTr11とTr12の各ベースに印加される電圧の差に応じて、トランジスタTr11のコレクタに流れ込む電流を制御している。

【0028】また、各ヒータ抵抗R1,R2,……Rnは、各々定電流用トランジスタTr14,Tr15……Tr(n+13)のコレクタに接続されており、各々の定電流用トランジスタのエミッタは、電源VHに接続されている。また、各々の定電流用トランジスタTr14~Tr(n+13)のベースは、トランジスタTr5のエミッタ即ちトランジスタTr6のベース、コレクタ端子に接続されている。

【0029】動作について、簡単に説明する。各トランジスタのベース電流が"0"と考えると、定電流用トランジスタTr14,Tr15……Tr(n+13)に流れる電流は、トランジスタTr6のベース、コレクタ端子の電圧と、各定電流トランジスタのベースの電圧が同じであるため、トランジスタTr6,Tr5とTr4,Tr3で構成されるカレントミラー回路に流れる電流と同じに成る。さらに、トランジスタTr4,Tr3に流れる電流は、トランジスタTr1,Tr2で構成されるカレントミラー回路に流れる電流であるから、結局各定電流用トランジスタTr14~Tr(n+1)に流れる電流は、電源VDから抵抗r1を経由して流れる電流と同じ値となる。

【0030】次に、各トランジスタのベース電流を考慮

した場合の説明を有する。各定電流用トランジスタTァ 14~Tr(n+13)は、負荷電流が大きいため、ベ ース電流もある程度流れ、さらに、各定電流用トランジ スタTr14~Tr (n+13) に流れる電流は、ヒー タオンオフ信号Hsw1~Hswnによってダイナミッ クに変化する。この時、各定電流用トランジスタTr1 4~Tr(n+13)のベースから流れる電流の総和 は、トランジスタTr6のベース、コレクタ端子から流 れ込む電流と合計されて、トランジスタTァラのエミッ 夕に流れ込む。ところが、トランジスタTr5のベース 電流は、カレントミラーの相手の電圧で制限されている ため、トランジスタTァラのエミッタに流れ込む電流の 総和はほとんど変化しない。従って、トランジスタTr 5のエミッタに流れ込む各定電流用トランジスタT r 1 4~Tr(n+13)のベース電流が増加する(変動す る)分だけ、トランジスタTr6のベース, コレクタ端 子に流れる電流が減少(変動)する。

【0031】このトランジスタTr6の電流の減少(変 動)は、カレントミラーを構成しているトランジスタT r7を経由して電圧に変換される。即ち、トランジスタ Tr6の電流の減少は、トランジスタTr12のベース 電圧の低下となり、従って差動AMPの相手側のトラン ジスタT r 1 1 のコレクタに流れる電流の増加と成る。 【0032】トランジスタTr11のコレクタに引き込 まれる電流は、トランジスタTr5のベースを経由して B倍されてトランジスタTr5のエミッタ電流の増加と なり、各定電流用トランジスタTr14~Tr(n+1 3)のベース電流の増加を吸収するように働く。このよ うにして、帰還回路が構成され、各定電流用トランジス タ(各定電流源)は、安定した電流を各負荷(電気・熱 変換素子である抵抗R1~Rn)に対して供給出来る。 【0033】以上は、負荷変動に対する動作の簡単な説 明で有るが、電源電圧の変動(即ち、VHの変動)につ いては、元々、定電流構成で有るため、VH依存性が無

【0034】この様にして、電源電圧の変動に対して も、負荷変動(吐出するノズル数の変化)に対しても、 単位負荷(各ノズル)に対して、安定したエネルギを供 給することが出来る。

く、問題が無い。

【0035】参考までに、本実施例の概略構成図に基づ いて構成した或る定数による回路でのSPICEシミュ レーション結果を図2、図3に示す。

【0036】図2は、電源電圧変動(VHの変動)につ いてのDC解析の結果である。図の横軸は、VHの印加 電圧を表し、縦軸は負荷に流れる電流を表す。シミュレ ーションを簡単にするため、シミュレーション回路とし ては、負荷を1つ(抵抗R1)で構成した。また、トラ ンジスタQ1は、ON (ON抵抗= "O")を前提に、 シミュレーションした。シミュレーション結果に依る と、図2から分かる様に、VHの所望の電圧範囲(δ

V) に対する電流の変化 (δ I ) は、A点の電流を基準 にすると、

 $\delta I/I \times 100 = 1.32(\%)$ 

程度となり、良好な結果が得られた。

【0037】また、図3は、電源電圧VH固定で、トラ ンジスタQ1のON/OFFのダイナミックな特性と負 荷の増減のシミュレーションするために、負荷抵抗をパ ラメータとして、1/100まで変化(負荷が100個 つながった場合を想定し)した場合の負荷抵抗に流れる トランジェント解析のシミュレーション結果である。 【0038】図3のグラフは、上段、下段共横軸は、時 間であり、上段の縦軸は電圧、下段の縦軸は電流を表 す、又、上段のグラフは、トランジスタQ1~Qnをス イッチするための電圧で、電圧が "Hi" の期間は、負 荷に電流を流すための信号の期間を表す。下段は、シミ ュレーションの目的の負荷に流れる電流の波形を表す。 シミュレーション結果によると、負荷1個の時の電流 (I-1)と負荷100個の時の電流(I-100)と の変化量( $\Delta I$ )は、I-1を基準にすると、  $\Delta I / I - 1 \times 100 = 5.5$  (%)

となり、これも良好な結果が得られた。

【0039】いずれも、電源変動、負荷変動にかかわら ず負荷に流れる電流が安定していることが分かる。

【0040】なお、前述のシミュレーション結果の数字 は、一回路定数での値であり、なんら限定するものでは なく、あくまで、参考値である。

【0041】また、別の効果として、負荷に流す電流 を、安定した電源VDから抵抗r1に流す電流で制御出 来るため、ヒータ抵抗のデフォルトでの全体ばらつき を、VDの電圧を変化させることに依って吸収(補正ま たは、制御)出来る。

【0042】さらに、積極的にこの特性を利用して、各 ヒータ抵抗に流す電流を制御する、即ちエネルギを制御 することによって、吐出インク量の微細な制御も可能と なる。ちなみに、VDの電圧を制御する場合は、出力電 圧の制御可能な可変電源に接続することは、言うまでも ない。

【0043】又、本実施例は、従来からの手法である、 ヒータ抵抗に電流を流す時間を制御する手法と併用して も良い事は、言うまでもない。

【0044】前述のように、本実施例に依れば、各ヒー 夕抵抗独立に、定電流源を設けると共に、負荷電流検出 回路を設けて負荷に流れる電流を一定にする定電流源制 御回路を少なくとも1個設け、該定電流源制御回路が対 応する前記複数の定電流源に流れる電流を制御するよう に構成することによって、電源電圧の変動に依る単位ノ ズルに対応するヒータ抵抗に流れる電流の変動の影響を 軽減すると共に、ノズルに印加される電流量の変動(即 ち、吐出ノズル数の変動)による単位ノズル当たりに流 れる電流量の変動を軽減する事が可能となる。

【0045】即ち、電源電圧の変動、吐出ノズル数の変動に関わらず、単位ノズル当たりに供給するエネルギを安定させる事が出来る。

【0046】さらに、BJヘッドが半導体プロセスで構成出来る事を利用し、同一半導体上に回路を構成した場合、コスト的にも安く、また特性の揃った回路構成部品が使用出来、安定した回路を構成できる。

【0047】また、別の効果として、負荷に流す電流を、安定した基準電圧VDから基準抵抗に流す電流で制御出来るため、負荷抵抗のデフォルトでの全体的なばらつきを、基準電圧VDの電圧を変化させる値ことによって吸収(補正または、制御)できる。さらに、積極的にこの特性を利用して、各ヒータ抵抗に流す電流を制御する、即ち、エネルギを制御することによって、吐出インク量の微細な制御も可能となる。

[0048]

【発明の効果】以上説明したように、本発明によれば、

電源電圧の変動, 吐出ノズル数の変動にかかわらず、単位ノズル当たりに供給するエネルギを安定化でき、多ノズルを使用しても正しくインクを吐出するようにできる。

【図面の簡単な説明】

【図1】 実施例の回路図

【図2】 電源電圧変動についてのDC解析の結果を示す図

【図3】 負荷変動についてのトランジェント解析の結 果を示す図

【図4】 従来の回路図

【符号の説明】

Q1~Qn トランジスタ

R1~Rn ヒータ抵抗

Tr14~Tr(n+13) 定電流用トランジスタ VD 安定した電源

【図1】

実施例の回路型



【図2】



#### 【図4】

### 従来例の回路図





!(6) 001-191531 (P2001-)p31

【図3】

