Data Advanced Analytics Test

Total customers by graduation

Total customers% by graduation

Graduation

Master 2n Cycle Basic

Education per Marital Status

Marital Status

Marital Status%

Marital Status per Education

Mean Income per Age

Mean Income per Education

The average income does not have much variation, only the basic one (2.5% of the dataset)

Mean Income per Education%

PhD

Graduation 2n Cycle Basic

Income per Education

Total Spent per Education

Total Spent per Income

Total Spent with Wine per Income

Total Spent with Fruits per Income

Total Spent with Meat Products per Income

Total Spent with Fish Products

Total Spent with Sweet Products per Income

Total Spent with Gold Products per Income

Pearson Correlation of Income per Category of Products

MntWines

Income

MntFruits

MntMeatProducts

MntFishProducts

MntSweetProducts

MntGoldProds

MntTT

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

Total Spend% per Education

Graduation

Master 2n Cycle Basic

Total Spend per Education

Total Spend with Wine per Education

Total Spend with Fruits per Education

Total Spend with Meat per Education

Education=Graduation Education=PhD Education=Master

Education=Basic Education=2n Cycle

Total Spend with Fish per Education

Total Spend with Sweet Products per Education

Total Spend per Year

Total Spend% per Year

Total of Clients per date

Total of Customers per Year

Dependents

Total Spend of Customers with Dependents%

Dependents

Total Spend of Customers with Kids%

Dependents

Total Spend of Customers with Teens%

Campaigns

Total of Customers per Total of Campaigns Accepted

Campaigns

Total Spend per Number of Campaigns Accepted

Recency

Total of Customers per Recency

Recency

Total of Campaigns Accepted per Recency

Time Series Forecast

Six months forecast

	ds	yhat
24	2014-07-01	44685.808586
25	2014-08-01	43874.656448
26	2014-09-01	37494.388518
27	2014-10-01	54475.231201
28	2014-11-01	36183.497223
29	2014-12-01	35083.189117

Classification

3 models were chosen for training, testing and validation: Random Forest Classifier: It creates decision trees at random, where each tree will be used in the choice of the final result.

Logistic Regression: aims to produce, from a set of observations, a model that allows the prediction (probability) of values taken by a categorical variable.

XGBClassifier: It is an algorithm based on Decision Trees (Gradient Boosting). means that the algorithm uses the Gradient Descent algorithm to minimize the loss (loss) while new models are being added

Classification

The models had the following results:

Metric	Random Forest	Logistic Regression	XGBClassifier
Recall	73,33%	61,66%	36,66%
Precision	37,60%	25,69%	62,85%
Accuracy	80,04%	70,85%	88,56%

Linkedin

Presentation by Alysson Guimarães

Contact me

Github