TARGET – SQL PROJECT

- Q.1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
 - 1. Data type of columns in a table.
 - 2. Time period for which the data is given.
 - 3. Cities and States of customers ordered during the given period.

Solution:

1. i. Data type of columns in a table:

SQL QUERY:

select *
from target.INFORMATION_SCHEMA.COLUMNS
limit 10

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ Using 'Information_schema', we can get the data type of all the columns from the tables of the dateset.
- ✓ With this information, we know what type of data (i.e int, float, string, time) exists in the given dataset.

1.ii Time period for which the data is given:

SQL QUERY:

```
SELECT min(order_purchase_timestamp) as start_date,
max(order_purchase_timestamp) as end_date
FROM `target.orders`
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

✓ The provided data is from 2016 September – 2018 October. Reconfirming the same using the above query.

1.iii Cities and States of customers ordered during the given period.

SQL QUERY:

```
select distinct c.customer_city, c.customer_state, order_purchase_timestamp from `target.orders` o inner join `target.customers` c on c.customer_id=o.customer_id order by order_purchase_timestamp desc limit 10
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

✓ With the above query, we get to know the list of customers city and state, based on the order_purchase_timestamp.

Q.2. In-depth Exploration:

- 2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
- 2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Solution:

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

SQL QUERY:

QUERY SCREENSHOT:

CHART:

ANALYSIS:

- ✓ There is an increasing trend in the e-commerce business in Brazil since 2016 as we can see an upward trend in the orders.
- ✓ It was at its highest in November, 2017 and thereafter had started to decline gradually.
- ✓ By the end of 2018, it has reached the same point where it was in the year 2016 reflecting a kind of cyclical trend.

2.2 What time do Brazilian customers tend to buy (Dawn 3 to 6 am, Morning 6 to 12am, Afternoon 12 to 6 pm or Night 6pm to 3 am)?

SQL QUERY:

```
SELECT CASE WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 3 AND 6 THEN "Dawn"
WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 6 AND 12 THEN "Morning"
WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 12 AND 18 THEN "Afternoon"
ELSE "Night"
END AS purchase_time,
COUNT(*) AS num_of_orders
FROM `target.orders`
GROUP BY purchase_time
ORDER BY purchase_time
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ With the above query, we can interpret that most of the orders are place in the afternoon (i.e. 12 pm to 6pm) and then night time i.e. 6pm to 3 am.
- ✓ Remaining orders are placed during morning time i.e. from 6am to 12pm.
- ✓ Very few orders are placed during 'Dawn' time.

Q.3. Evolution of E-commerce orders in the Brazil region:

- i. Get month on month orders by states.
- ii. Distribution of customers across the states in Brazil.

Solution:

3. i Get month on month orders by states.

QUERY:

```
select c.customer_state,format_timestamp('%Y %B',order_purchase_timestamp) as order_YM,count(*) as order_count from `target.orders` o inner join `target.customers` c on o.customer_id=c.customer_id group by 1,2 order by 1,2
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ From the above output, we can analyse number of orders from each state for each month.
- ✓ Based on this we can try to understand which state has more orders, which has less order and in which particular month.
- ✓ We can focus on the marketing and selling strategies for states from where we get less number of orders.
- ✓ Also we can check if the customers are following any ordering patterns during any of the months.

3. ii Distribution of customers across the states in Brazil.

SQL QUERY:

```
select customer_state,count(customer_id) as countofcust
from `target.customers`
group by 1
order by 1
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ This query helps us in understanding which state has the highest/lowest number of customers.
- ✓ Allows us to focus on increasing the demand by understanding as to which product is in more demand in that particular region.

Q.4. Impact on Economy: Analyse the money movement by e-commerce by looking at order prices, freight and others.

- i. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table.
- ii. Mean & Sum of price and freight value by customer state.

Solution:

4. i. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table.

SQL QUERY:

```
with tab1 as
(SELECT
extract(year from order_purchase_timestamp) year,
round (sum(payment_value),2)total_cost

from
`target.payments` join `target.orders` using (order_id)
where
extract(month from order_purchase_timestamp) between 1 and 8
group by 1
order by 1 desc),
tab2 as
(select year,total_cost,lag(total_cost,1)over (order by year)prev_cost
from tab1)
```

select year,total_cost,prev_cost,round(((total_cost-prev_cost)/prev_cost)*100,2)percentage_increase from tab2

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ Since 2016 data is not given, therefore the percentage increase in cost for year 2017 is null.
- ✓ There is an increase of 136.98% in the year 2018 in the cost from the previous year (2017).
- ✓ This helps us in understanding where the cost is being incurred and have the measures in place to control the same.

4.ii Mean & Sum of price and freight value by customer state

SQL QUERY:

```
select c.customer_state,
    sum(oi.price) ps, sum(oi.freight_value) fs,
    avg(oi.price) meanp,avg(oi.freight_value) meanfreight

from `target.orders` o join `target.customers` c on o.customer_id=c.customer_id
    join `target.order_items` oi on o.order_id=oi.order_id
group by 1
order by c.customer_state
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ From the above output we get to know the sum of price as well as sum of freight according to the state.
- ✓ We also get to know the mean (avg) of price as well as freight.
- ✓ This helps us in understanding which state is incurring more freight charges and any another alternate mode of transport that can be used to control the same.
- ✓ This also helps us in understanding the actual price of the product in each state and understand the variation for the same.

Q.5. Analysis on sales, freight and delivery time:

- 1. Calculate days between purchasing, delivering and estimated delivery.
- 2. Find time to delivery & diff estimated delivery. Formula for the same given below:
 - time to delivery = order delivered customer date-order purchase timestamp
 - diff_estimated_delivery = order_estimated_delivery_dateorder delivered customer date
- 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery.
- 4. Sort the data to get the following:
 - Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - Top 5 states with highest/lowest average time to delivery
 - Top 5 states where delivery is really fast/ not so fast compared to estimated date.

Solution:

5.1 Calculate days between purchasing, delivering and estimated delivery.

SQL QUERY:

SELECT

date_diff(order_delivered_customer_date,order_purchase_timestamp, day) AS days_to_delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date, day) AS days_to_estimated_delivery
FROM `target.orders`

QUERY SCREENSHOT:

- ✓ The above output helps us in understanding the actual number of days for delivery and the estimated days for delivery.
- ✓ This helps us to identify any delay that is occurring which might lead to customer dissatisfaction.
- ✓ One can take necessary measures to deliver the products on time while reducing the number of days to deliver.

.....

5.2 Find time to delivery & diff estimated delivery. Formula for the same given below:

- time_to_delivery = order_delivered_customer_date-order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

SQL QUERY:

SELECT

date_diff(order_delivered_customer_date,order_purchase_timestamp, hour) AS time_to_delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date, hour) AS diff_estimated_delivery
FROM `target.orders`

QUERY SCREENSHOT:

- ✓ The above output helps us in understanding the number of hours for delivery and the estimated hours for delivery.
- ✓ This helps us to identify any delay that is occurring which might lead to customer dissatisfaction.
- ✓ One can take necessary measures to deliver the products within few hours while gaining the customer satisfaction.

5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery.

SQL QUERY:

```
SELECT c.customer_state,
   AVG(oi.freight_value) AS mean_freight_value,
   AVG (date_diff(order_delivered_customer_date,order_purchase_timestamp, day)) AS mean_time_to_delivery,
   AVG (date_diff(order_estimated_delivery_date,order_delivered_customer_date, day)) AS
mean_diff_estimated_delivery
FROM `target.orders` o
join `target.customers` c on o.customer_id=c.customer_id
join `target.order_items` oi on o.order_id=oi.order_id
GROUP BY c.customer_state
```

QUERY SCREENSHOT:

```
Q Type to search
                                                   17 ## 3.Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
#
       Viewing workspace resources.
        SHOW STARRED ONLY
                                                   19 SELECT c.customer state.
(1)
                                                              AVG(oi.freight_value) AS mean_freight_value,
                                                              AVG (date_diff(order_delivered_customer_date.order_purchase_timestamp,_dav)) AS mean_time_to_delivery.
                Prjt Q2-2.1
                                                             AVG (date_diff(order_estimated_delivery_date,order_delivered_customer_date, day)) AS mean_diff_estimated_delivery
8,
                                                   23 FROM <u>'target.orders'</u> o
                Proj Q1 a datatype of col
                                                   24 join <u>'target.customers'</u> c on o.customer_id=c.customer_id
:)+
                                                   25 join <u>'target.order_items'</u>oi on o.order_id=oi.order_id
                💄 Proj Q1 b n c
                                                   26 GROUP BY c.customer state
                2 Q3 - a and b
                                         :
                                                   27
Å
                                                                                                                                                                                        Press Alt+F1 for Accessibility Options
                ● Malandh
```


- ✓ The above output helps us to understand freight value, days to delivery and estimated number of days to deliver in different states.
- ✓ this helps us to understand which state is incurring more freight charges and is the state taking more number of days for delivery.
- ✓ This will help us in taking measures as to in which state we can make the delivery more fast by reducing the cost.

5.4 Sort the data to get the following:

5.4.1 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5.

SQL QUERY:

highest avg freight

```
SELECT c.customer_state, AVG(oi.freight_value) AS avg_freight_value FROM `target.orders` o join `target.customers` c on o.customer_id=c.customer_id join `target.order_items` oi on o.order_id=oi.order_id GROUP BY 1

ORDER BY avg_freight_value DESC

LIMIT 5
```

QUERY SCREENSHOT:

- ✓ With the above output we get the states with highest freight charges.
- ✓ With this, we can see if there is any other cost effective mode which helps in controlling the overall delivery cost.

SQL QUERY:

lowest avg freight

```
SELECT c.customer_state, AVG(oi.freight_value) AS avg_freight_value FROM `target.orders` o join `target.customers` c on o.customer_id=c.customer_id join `target.order_items` oi on o.order_id=oi.order_id GROUP BY 1

ORDER BY avg_freight_value
LIMIT 5
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ With the above output we get the states with the lowest freight charges.
- ✓ For these states we can focus on other aspects of delivery like num of days, time of delivery and other to attain customer satisfaction.

5.4.2 Top 5 states with highest/lowest average time to delivery.

SQL QUERY:

```
SELECT c.customer_state,AVG (date_diff(order_delivered_customer_date,order_purchase_timestamp, day)) AS avg_time_to_delivery
FROM `target.orders` o
join `target.customers` c on o.customer_id=c.customer_id
join `target.order_items` oi on o.order_id=oi.order_id
GROUP BY 1
ORDER BY avg_time_to_delivery
LIMIT 5
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

- ✓ This output helps us in understanding the states where the average time taken for delivery is the lowest.
- ✓ This helps to understand in which state the products are delivered in less time and gaining customer satisfaction.

5.4.3 Top 5 states where delivery is really fast/ not so fast compared to estimated date.

SQL QUERY:

```
SELECT customer_state,

AVG(case when order_delivered_customer_date <= order_estimated_delivery_date then 1 else 0 end) AS
on_time_delivery_rate
FROM `target.orders` o
join `target.customers` c on o.customer_id=c.customer_id
join `target.order_items` oi on o.order_id=oi.order_id
GROUP BY customer_state
ORDER BY on_time_delivery_rate DESC
LIMIT 5
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

✓ This hels us in understanding in which state the orders are being delivered on time and how quickly there are being delivered.

Q.6. Payment type analysis:

- i. Month over Month count of orders for different payment types.
- ii. Count of orders based on the no. of payment instalments.

Solution:

6.1 Month over Month count of orders for different payment types

SQL QUERY:

```
select p.payment_type,format_timestamp('%Y %B',order_purchase_timestamp) as order_YM,count(*) as order_count from `target.orders` o left join `target.payments` p on o.order_id=p.order_id group by 1,2 order by 1,2
```

QUERY SCREENSHOT:

OUTPUT:

ANALYSIS:

✓ The above output gives us an overview about the payment type for orders on the basis of the months.

......

6.2 Count of orders based on the no. of payment instalments.

SQL QUERY:

```
SELECT p.payment_installments, COUNT(o.order_id) AS order_count FROM `target.orders`o join `target.payments`p on o.order_id=p.order_id GROUP BY p.payment_installments order by 1,2
```

QUERY SCREENSHOT:

```
Viewing workspace resources.
                                                         11 ## Count of orders based on the no. of payment installments
         SHOW STARRED ONLY
(1)
                                                        13 SELECT·p.payment_installments, COUNT(o.order_id)·AS·order_count
                                                        14 FROM· `target.orders`o
                  Prjt Q2-2.1
                                                        15 join target.payments pronro.order_id=p.order_id
16 GROUP BY p.payment_installments
8,
                  Proj Q1 a datatype of col
                                             i
                                                        17 order by 1,2
<u>;</u>)*
                  🎍 Proj Q1 b n c
                                             :
                                                                                                                                                                                                           Press Alt+F1 for Accessibility Options
```

OUTPUT:

ANALYSIS:

- ✓ The above output gives us an understanding about the number of installemts by each order.
- ✓ This helps us in keeping the track of the payment yet to be received by the order and also if its being paid on time.
- ✓ If any default in payment of installmets also that can be tracked.

END