Solving Shape-Analysis Problems in Languages with Destructive Updating #SAV Presentation

Authors

Mooly Sagiv, Thomas W. Reps, Reinhard Wilhelm

Presenters

Marco Antognini, Sandro Stucki

May 2015

Motivation

Analyse the shape of heap allocated data structures.

Verify that a program preserves shape properties such as:

- list-ness
- circular list-ness
- tree-ness

This analysis algorithm can be used to find aliases, and therefore to optimise code (no alias means it can be more easily parallelised).

List Reversal – Normalisation

```
// x points to an unshared list
y := nil
while x \neq nil do
 t := y
  y := x
 x := x.cdr
 y.cdr := t
od
t := nil
```

List Reversal – Normalisation

```
// x points to an unshared list
y := nil
while x \neq nil do
  t := nil
  t := y
  y := nil
  y := x
  t_1 := nil
  t_1 := x.cdr
  x := nil
  x := t_1
  y.cdr := nil
  y.cdr := t
ho
t<sub>1</sub> := nil
t := nil
```

List Reversal – Normalisation

```
// x points to an unshared list
y := nil
while x \neq nil do
  t := nil
  t := y
  y := nil
  y := x
  t<sub>1</sub> := nil
  t_1 := x.cdr
  x := nil
  x := t_1
  y.cdr := nil
  y.cdr := t
ρd
t<sub>1</sub> := nil
t := nil
```


Shape-Graph $SG = \langle E_v, E_s \rangle$

What is a **shape-graph**?

- directed graph with nodes and edges
- nodes are called shape-nodes
 - o runtime locations, i.e. heap memory, or cons-cells
 - implicitly defined by edges and shape_nodes(SG)
- edges are divided into 2 categories:
 - E_v : variable-edges of the form [x, n]
 - E_s : selector-edges of the form $\langle s, sel, t \rangle$

DSG: Deterministic Shape-Graph

A shape-graph is deterministic if

- 1. no variable points to more than one node
- 2. no node has a selector pointing to more than one node

In other words:

It is deterministic when edges are behaving like pointers.

gc: Garbage Collection

The *gc* function removes runtime location that are not reachable from any program variable:

$$gc:SG \rightarrow SG$$

 $gc(\langle E_v, E_s \rangle) \stackrel{\text{def}}{=} \langle E_v, E_s' \rangle$ where $E_s' \subseteq E_s$ and $\langle s, sel, t \rangle \in E_s'$ if and only if there exists $[x, r] \in E_v$ such that there is a path of selector-edges in E_s from r to s.

A program statement is represented as a transform function on DSG, denoted $[\![st]\!]_{\mathcal{DSG}}$.

Thanks to program normalisation, there are only 6 statements and they are simple:

- 1. $[x := nil]_{DSG}$
- 2. $[x.sel := nil]_{DSG}$
- 3. $[x := new]_{DSG}$
- 4. $\llbracket x := y \rrbracket_{\mathcal{DSG}}$
- 5. $[x := y.sel]_{DSG}$
- 6. $[x.sel := y]_{DSG}$

NB: gc can do some cleaning.

NB: gc can do some cleaning.

$$[z := new]_{\mathcal{DSG}}$$

$$\begin{split} [\![\ \mathsf{x} \ := \ \mathsf{y.sel} \]\!]_{\mathcal{DSG}} \left(\langle E_{\mathsf{V}}, E_{\mathsf{S}} \rangle \right) \\ &\stackrel{\mathsf{def}}{=} \langle E_{\mathsf{V}} \cup \{ [\mathsf{x}, \mathsf{t}] \mid [\mathsf{y}, \mathsf{s}] \in E_{\mathsf{V}} \land \langle \mathsf{s}, \mathsf{sel}, \mathsf{t} \rangle \in E_{\mathsf{s}} \} \,, E_{\mathsf{s}} \rangle \end{aligned}$$

Collecting Semantics

Each DSG models one runtime behaviour (of many).

We need a tool to perform analysis on **all** possible execution paths, not just one.

```
Hence the collecting function cv: V \to 2^{DSG} cv(v) \stackrel{\text{def}}{=} \{ \ [\![ \ \mathsf{st}(v_k) \ ]\!]_{\mathcal{DSG}} \ (\cdots ( \ [\![ \ \mathsf{st}(v_1) \ ]\!]_{\mathcal{DSG}} \ (\langle \varnothing, \varnothing \rangle))) \ | \ [v_1, \ldots, v_k] \in \textit{pathsTo}(v) \}
```

V is the vertex set of the *regular* control flow graph $G = \langle V, A \rangle$.

DSG

{*DSG*}

Static shape graphs: $SSG = \langle SG, is_shared \rangle$

- SG is a shape graph
- is_shared: shape_nodes(SG) → {T, F}
 is a predicate identifying nodes that were shared in the
 DSG

Abstraction – Helpers

Grouping nodes by variable labels

$$lpha_s[DSG]$$
: $shape_nodes(DSG) o \{n_X \mid X \subseteq PVar\}$
 $lpha_s[DSG](r) \stackrel{\text{def}}{=} n_{\{x \in PVar \mid [x,r] \in E_v\}}$

Initialisation of the sharing predicate

induced_is_shared[DSG]: shape_nodes(DSG)
$$\rightarrow \{T, F\}$$
 induced_is_shared[DSG](t) $\stackrel{\text{def}}{=} |\{\langle *, *, t \rangle \in E_s\}| \leq 2$

Projection (a.k.a. quotienting) of SGs with respect to f

$$\langle SG, p \rangle \downarrow f$$

Abstraction

Projection/quotient of a single DSG

$$\begin{split} \hat{\alpha} \colon \mathcal{DSG} &\to \mathcal{SSG} \\ \hat{\alpha}(\mathit{DSG}) \stackrel{\mathsf{def}}{=} \langle \mathit{DSG'}, \mathit{induced_is_shared}[\mathit{DSG'}] \rangle \downarrow \alpha_{\mathcal{S}}[\mathit{DSG'}] \\ \text{where } \mathit{DSG'} &= \mathit{gc}(\mathit{DSG}) \end{split}$$

Abstraction function

$$lpha : \mathbf{2}^{\mathcal{DSG}} o \mathcal{SSG}$$
 $lpha(\mathcal{S}) \stackrel{\mathsf{def}}{=} \bigsqcup_{\mathcal{DSG} \in \mathcal{S}} \hat{lpha}(\mathcal{DSG})$

 DSG_1

$$\begin{array}{c|c}
 & \square \\
 & \square \\$$

Abstract Interpretation – Examples

Allocating a new node.

Assigning **nil** to a field.

Assigning **nil** to a variable.

Materialising a node n_v from the summary node n_{\varnothing} .

Variable assignment.

Strong nullification.


```
// x is an unshared list
// e the element to insert
y := x
while y.cdr \neq nil \wedge \dots do
  z := y.cdr
  y := z
od
t := y.cdr
e.cdr := t
y.cdr := e
t := nil
z := nil
e := nil
```

y := nil

```
// x is an unshared list
// e the element to insert
v := nil
y := x
while y.cdr \neq nil \wedge \dots do
  z := nil
  z := y.cdr
  y := nil
  y := z
od
t := nil
t := y.cdr
e.cdr := nil
e.cdr := t
y.cdr := nil
y.cdr := e
t := nil
7 := nil
e := nil
y := nil
```

```
// x is an unshared list
// e the element to insert
v := nil
y := x
while y.cdr \neq nil \wedge \dots do
  z := nil
  z := y.cdr
  v := nil
  y := z
od
t := nil
t := y.cdr
e.cdr := nil
e.cdr := t
y.cdr := nil
y.cdr := e
t := nil
7 := nil
e := nil
y := nil
```



```
// x is an unshared list
// e the element to insert
v := nil
y := x
while y.cdr \neq nil \wedge \dots do
  z := nil
  z := y.cdr
  v := nil
  y := z
od
t := nil
t := y.cdr
e.cdr := nil
e.cdr := t
y.cdr := nil
y.cdr := e
t := nil
7 := nil
e := nil
y := nil
```


From v_1 to v_{11} without entering the loop. Executing $[e.cdr := nil] - n_{\{t\}}$ is **not** shared.

From v_1 to v_{11} through the loop. Executing $[e.cdr := nil] - n_{\{t\}}$ is **not** shared.

From v_1 to v_{11} by all possible paths.

Executing $[\![\![e.cdr := nil]\!] - n_{\{t\}}$ is still **not** shared.

From v_1 to v_{12} by all possible paths. Executing $[e.cdr := t] - n_{\{t\}}$ is shared.

From v_1 to v_{13} by all possible paths. Executing [y.cdr := nil] - strong nullification.

Extensions

- Merging Shape-Nodes to avoid a huge number of nodes $(\leq 2^{|PVar|})$, a widening operator can be introduced.
- Finding Aliases and Sharing testing whether x and y are aliases at some point of the program can be extended to test whether two paths can alias by introducing two extra variables.
- Interprocedural Analysis shape-graph-transformations can be introduced to accurately model procedures.
- Representing Definitely Circular Structures with extra special nodes (n_{atom} , n_{nil} , n_{uninit}), definitely cyclic data structures can be modelled.

Thank you!

Questions?