Nonparametric covariance estimation for longitudinal data via tensor product smoothing

Tayler A. Blake

June 27, 2017

The data:

$$Y_i = (Y_{i1}, Y_{i2}, \dots, Y_{im})', \qquad i = 1, \dots, N$$

associated with measurement times

$$t_1 < t_2 < \cdots < t_m.$$

- ► Covariance matrices (and their estimates) should be positive definite.
 - Constrained optimization is a headache.
- ▶ The $\{t_{ij}\}$ may be suboptimal.
 - Observation times may not fall on a regular grid, may vary across subjects.
- ▶ More dimensions, more problems (maybe.)
 - Sample covariance matrix falls apart when m is large

- ► Covariance matrices (and their estimates) should be positive definite.
 - Constrained optimization is a headache.
- ▶ The $\{t_{ij}\}$ may be suboptimal.
 - Observation times may not fall on a regular grid, may vary across subjects.
- ▶ More dimensions, more problems (maybe.)
 - Sample covariance matrix falls apart when m is large

- ► Covariance matrices (and their estimates) should be positive definite.
 - Constrained optimization is a headache.
- ▶ The $\{t_{ij}\}$ may be suboptimal.
 - Observation times may not fall on a regular grid, may vary across subjects.
- ► More dimensions, more problems (maybe.)
 - Sample covariance matrix falls apart when m is large.

- ► Covariance matrices (and their estimates) should be positive definite. A cute little reparameterization ⇒ unconstrained estimation, meaningful interpretation
- ► The $\{t_{ij}\}$ may be messy. Frame covariance estimation as function estimation
- ▶ More dimensions, more problems (maybe.)

Figure: Regulate like Nate Dogg.

- ► Covariance matrices (and their estimates) should be positive definite. A cute little reparameterization ⇒ unconstrained estimation, meaningful interpretation
- ► The $\{t_{ij}\}$ may be messy. Frame covariance estimation as function estimation
- ▶ More dimensions, more problems (maybe.)

Figure: Regulate like Nate Dogg.

- ► Covariance matrices (and their estimates) should be positive definite. A cute little reparameterization ⇒ unconstrained estimation, meaningful interpretation
- ► The $\{t_{ij}\}$ may be messy. Frame covariance estimation as function estimation
- ▶ More dimensions, more problems (maybe.)

Figure: Regulate like Nate Dogg.

- ► Covariance matrices (and their estimates) should be positive definite. A cute little reparameterization ⇒ unconstrained estimation, meaningful interpretation
- ▶ The $\{t_{ij}\}$ may be messy. Frame covariance estimation as function estimation
- ▶ More dimensions, more problems (maybe.)

Figure: Regulate like Nate Dogg.

- ► Covariance matrices (and their estimates) should be positive definite. A cute little reparameterization ⇒ unconstrained estimation, meaningful interpretation
- ► The $\{t_{ij}\}$ may be messy. Frame covariance estimation as function estimation.
- ► More dimensions, more problems (maybe.)

Figure: Regulate like Nate Dogg.

- ► Covariance matrices (and their estimates) should be positive definite. A cute little reparameterization ⇒ unconstrained estimation, meaningful interpretation
- ► The $\{t_{ij}\}$ may be messy. Frame covariance estimation as function estimation
- ► More dimensions, more problems (maybe.)

Figure: Regulate like Nate Dogg.

Covariance dress-up: the modified Cholesky decomposition

$$Y = (Y_1, \ldots, Y_M)' \sim \mathcal{N}(0, \Sigma).$$

For any positive definite Σ , we can find T which diagonalizes Σ :

$$D = T\Sigma T', \quad T = \begin{bmatrix} 1 & 0 & \dots & & \\ -\phi_{21} & 1 & & & & \\ -\phi_{31} & -\phi_{32} & 1 & & & \\ \vdots & & & \ddots & & \\ -\phi_{M1} & -\phi_{M2} & \dots & -\phi_{M,M-1} & 1 \end{bmatrix}$$
(1)

Here's the cute part:

Imagine regressing Y_i on its predecessors:

$$Y_{j} = \begin{cases} e_{1} & j = 1, \\ \sum_{k=1}^{j-1} \phi_{jk} Y_{k} + \sigma_{j} e_{j} & j = 2, \dots, M \end{cases}$$
 (2)

In matrix form:

$$e = TY, (3)$$

and taking covariances on both sides:

$$D = diag\left(\sigma_1^2, \dots, \sigma_M^2\right) = T\Sigma T'. \tag{4}$$

No constraints on the ϕ_{jk} s!

The regression model tool box: a deep treasure chest of luxury.

Model Y_i , e_i as

$$Y_j = Y(t_j), \quad e_j = e(t_j),$$

 $e(s) \sim \mathcal{WN}(0, 1),$

Swap the standard regression model 2 for a varying coefficient model:

$$\phi_{jk} = \phi\left(t_j, t_k\right),\,$$

$$y(t_{j}) = \sum_{k=1}^{j-1} \phi(t_{j}, t_{k}) y(t_{k}) + \sigma(t_{j}) \epsilon(t_{j})$$
 (5)

(Iterated) penalized maximum likelihood estimation

- 1. Fix $\sigma_{ij}^2 = \sigma_{ij0}^2$, i = 1, ..., N, j = 1, ..., M.
- 2. Find $\phi_0 = \underset{\phi}{arg \ min} 2L_{\phi}\left(\phi, y_1, \dots, y_N\right) + \lambda J\left(\phi\right)$
- 3. Fix $\phi = \phi_0$.
- 4. Find $\sigma_0^2 = \underset{\sigma^2}{arg \ min} 2L_\sigma^2(\sigma^2, y_1, \dots, y_N) + \lambda J(\sigma^2)$

$$-2L_{\phi}(\phi, y_1, \dots, y_N) = \sum_{i=1}^{N} \sum_{j=2}^{m_i} \sigma_{ij0}^{-2} \left(y_{ij} - \sum_{k=1}^{j-1} \phi(t_{ij}, t_{ik}) y_{ik} \right)^2$$

Regularization of $\phi(s,t)$ is more intuitive if we transform the s-t axis.

Rotate the input axes:

$$l = s - t$$

$$m = \frac{1}{2} (s + t).$$

Then ϕ becomes

$$\phi^* (l, m) = \phi^* \left(s - t, \frac{1}{2} (s + t) \right)$$
$$= \phi (s, t).$$

Take $\hat{\phi}^*$ to be the minimizer of

$$-2L + \lambda J\left(\phi^*\right)$$

Smooth ANOVA models

Decompose

$$\phi^*(l,m) = \mu + \phi_1(l) + \phi_2(m) + \phi_{12}(l,m), \tag{7}$$

so Model 5 becomes

$$y(t_{j}) = \sum_{k=1}^{j-1} \left[\mu + \phi_{1}(l_{jk}) + \phi_{2}(m_{jk}) + \phi_{12}(l_{jk}, m_{jk}) \right] y(t_{k}) + \sigma(t_{j}) \epsilon(t_{j})$$