

Ime i Prezime

1. (10) Alice je poslala istu poruku m nekolicini agenata. Eva je presrela šifrate c_1 , c_2 , c_3 za trojicu agenata čiji su javni ključevi n_1 , n_2 i n_3 . Poznato je da Alice i agenti koriste RSA kriptosustav s javnim eksponentom e=3. Za zadane

$$n_1 = 217,$$
 $c_1 = 153,$
 $n_2 = 299,$ $c_2 = 226,$
 $n_3 = 319,$ $c_3 = 298.$

pokažite kako će Eva otkriti poruku m (bez poznavanja faktorizacije modula n_1, n_2, n_3).

- 2. (10) Konačno polje $GF(2^3)$ realizirano je skupom $\{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$ uz operacije zbrajanja i množenja polinoma u $\mathbb{Z}_2[x]$ modulo polinom $f(x) = x^3 + x + 1$.
 - (a) Provjerite da je polinom $g(x) = x + x^2$ generator multiplikativne grupe $GF(2^3)^*$.
 - (b) Zadan je ElGamalov kriptosustav u $GF(2^3)^*$ s parametrima

$$\alpha = g(x) = x + x^2, \ a = 3, \ \beta = \alpha^a.$$

Dešifrirajte šifrat $(y_1, y_2) = (1 + x + x^2, x^2)$.

3. (8) U Rabinovom kriptosustavu s parametrima

$$(n, p, q) = (2773, 47, 59),$$

dešifrirajte šifrat y = 2729. Poznato je da je otvoreni tekst prirodan broj x < n kojem su zadnja četiri bita u binarnom zapisu međusobno jednaka.

- 4. (6) Ispitajte je li 133
 - a) Eulerov pseudoprosti broj u bazi 11,
 - b) jaki pseudoprosti broj u bazi 11.
- 5. (6) Neka je $n = 137\,833 = p \cdot q$ gdje su p i q prosti brojevi. Uz pretpostavku da su sve potencije prostih brojeva koje dijele p-1 manje ili jednake B=7, odredite faktorizaciju broja p pomoću Pollardove p-1 metode.

Dozvoljeno je korištenje džepnog kalkulatora, te papir s formulama.

Kalkulatori se mogu koristiti za standardne operacije, ali nije dozvoljeno korištenje gotovih funkcija za modularno potenciranje, modularni inverz, rješavanje linearnih kongruencija i sustava linearnih kongruencija, faktorizaciju i sl.

Rezultati/ uvidi / upis ocjena: ponedjeljak, 27.1.2020. u 14-15.30 sati.

Ime i Prezime

1. (10) Alice je poslala istu poruku m nekolicini agenata. Eva je presrela šifrate c_1 , c_2 , c_3 za trojicu agenata čiji su javni ključevi n_1 , n_2 i n_3 . Poznato je da Alice i agenti koriste RSA kriptosustav s javnim eksponentom e=3. Za zadane

$$n_1 = 161,$$
 $c_1 = 57,$
 $n_2 = 247,$ $c_2 = 96,$
 $n_3 = 493,$ $c_3 = 272.$

pokažite kako će Eva otkriti poruku m (bez poznavanja faktorizacije modula n_1, n_2, n_3).

- 2. (10) Konačno polje $GF(2^3)$ realizirano je skupom $\{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$ uz operacije zbrajanja i množenja polinoma u $\mathbb{Z}_2[x]$ modulo polinom $f(x) = x^3 + x + 1$.
 - (a) Provjerite da je polinom $g(x) = 1 + x^2$ generator multiplikativne grupe $GF(2^3)^*$.
 - (b) Zadan je El
Gamalov kriptosustav u $GF(2^3)^*$ s parametrima

$$\alpha = g(x) = 1 + x^2, \ a = 4, \ \beta = \alpha^a.$$

Dešifrirajte šifrat $(y_1, y_2) = (x + x^2, x + x^2)$.

3. (8) U Rabinovom kriptosustavu s parametrima

$$(n, p, q) = (2021, 43, 47),$$

dešifrirajte šifrat y = 917. Poznato je da je otvoreni tekst prirodan broj x < n kojem su zadnja četiri bita u binarnom zapisu međusobno jednaka.

- 4. (6) Ispitajte je li 217
 - a) Eulerov pseudoprosti broj u bazi 7,
 - b) jaki pseudoprosti broj u bazi 7.
- 5. (6) Neka je $n=128\,417=p\cdot q$ gdje su p i q prosti brojevi. Uz pretpostavku da su sve potencije prostih brojeva koje dijele p-1 manje ili jednake B=7, odredite faktorizaciju broja n pomoću Pollardove p-1 metode.

Dozvoljeno je korištenje džepnog kalkulatora, te papir s formulama.

Kalkulatori se mogu koristiti za standardne operacije, ali nije dozvoljeno korištenje gotovih funkcija za modularno potenciranje, modularni inverz, rješavanje linearnih kongruencija i sustava linearnih kongruencija, faktorizaciju i sl.

Rezultati/ uvidi / upis ocjena: ponedjeljak, 27.1.2020. u 14-15.30 sati.