1.
$$\frac{d}{dx} e^{kx}$$

Oct. 29 Monday 0

$$\frac{d}{dx} e^{kx} = e^{kx}. \quad \frac{d}{dx}(kx) = ke^{kx}$$

$$Chain rule$$

f(t) x $t_0 = f^{-1}(x)$

Not a good example.

Inverse dues not exist!

(see below)

$$f(f^{-1}(x)) = f(to) = x$$

3. (QZ). (geometry, issue of existence)

4.
$$(Q3)$$
 \tilde{E} coli growth.
 $B = 2^{\frac{4}{20}}$

$$lnB = ln(2^{\frac{t}{20}}) = \frac{t}{20} ln2$$

We know
$$B=6.10^8$$
. $lnB=ln(6.10^8)$
= $ln6+8ln10$

$$\Rightarrow \ln 6 + 8 \ln 10 = \frac{t}{20} \ln 2$$

$$\Rightarrow \qquad t = 20 \frac{lnb + 8lnlo}{ln2}$$

Recall
$$\frac{d}{dx} a^{x} = C_{a} a^{x}$$

-> Logs can help us!

Sex
$$y=a^{x}$$
. In $y=x$ In a

> implicit differentiation:

$$\int \frac{dy}{dx} = \ln \alpha \implies \frac{dy}{dx} = y \ln \alpha = (\ln \alpha)\alpha^{x}$$
requires derivative of natural logs

An alternative that does not require differentiating natural logs:

Notice $\alpha^{\times} = (e^{\ln \alpha})^{\times} = e^{(\ln \alpha) \times}$

 $\frac{d}{dx}\left(e^{(\ln a)x}\right) = (\ln a) e^{(\ln a)x} \leftarrow \sec P1$

= (Ina) at S Ca. Yes!

yes!

6. Derivative of 4= laga x

Let $f(x) = \log a x$. Then $a^{f(x)} = x$

Implicit differentiation

 $(\ln \alpha) a^{f(x)} \cdot \frac{d}{dx} f(x) = 1$

see Ps chain rule above.

 $\frac{df}{dx} = \frac{1}{\ln a} \frac{1}{a^{f(x)}}$

In particular, if a=e, then $\frac{d}{dx}(\ln x) = \frac{1}{x}$

= lna ×