Question 1:

From the following tables, write a SQL query to find all salespeople and customers located in the city of London.

Table Structure:

- salesman_id INT, name VARCHAR, city VARCHAR, commission DECIMAL
- customer_id INT, cust_name VARCHAR, city VARCHAR(50), grade INT, salesman_id INT

Input Tables:

```
        costomes AJ
        cost, costs
        cost, costs
        cost, costs
        cost, cost, costs
        cost, cost, costs
        cost, c
```

```
        edeamon_ld
        rame
        oity
        commission

        600
        James Hoop
        New York
        0.55

        602
        Hall Strate
        Fine
        0.13

        605
        PIT Alak
        Lundon
        0.81

        5000
        His Lipon
        Fine
        0.84

        6000
        Park Judyon
        Rome
        0.03

        5000
        Lace Internet
        5 on Jose
        0.02
```

Title for Question 1: Union function Salesman Question

Solution:

```
SELECT salesman_id "ID", name, 'Salesman'
FROM salesman
WHERE city='London'
UNION
(SELECT customer_id "ID", cust_name, 'Customer'
FROM customer
WHERE city='London')
```

TestCases:

S.No	Inputs	Outputs
1	na	ID name Salesman 5005 Pit Alex Salesman 3001 Brad Guzan Customer 3008 Julian Green Customer
2		
3		
4		
5		
6		

White List:

Black List:

Question 2:

Imagine you are an HR manager at a company, and you need to identify employees who are earning above the company-wide average salary.

Requirements:

- Using Sub-query
- Using Join

Output Format:

The result of this query will provide you with a list of employees (their names and departments) who earn salaries above the average salary of all employees in the company.

Table Structure:

EmployeeID INTEGER PRIMARY KEY, Name TEXT, Department TEXT, Salary REAL

Input Table:??????

EmployeeID	Name	Department	Salary
1	Alice	HR	65,000.00
2	Bob	Engineering	75,000.00
3	Charlie	HR	62,000.00
4	David	Sales	58,000.00
5	Eve	Engineering	72,000.00

Title for Question 2: Query Equalization (Sub-query and Join)

Solution:

```
SELECT E.Name, E.Department
FROM Employees E
WHERE E.Salary > (SELECT AVG(Salary) FROM Employees);
SELECT E.Name, E.Department
FROM Employees E
JOIN (SELECT AVG(Salary) AS AvgSal FROM Employees) AS Subquery
ON E.Salary > Subquery.AvgSal;
```

TestCases:

S.No	Inputs	Outputs
1	เทว	Name Department Bob Engineering Eve Engineering Name Department Bob Engineering Eve Engineering
2		

S.No	Inputs	Outputs
3		
4		
5		
6		

White List:

Black List:

Question 3:

Imagine you have a database storing information about authors and the books they've written.

- The "Authors" table contains AuthorID and AuthorName, while the "Books" table includes ISBN, Title, AuthorID, and PublishedYear.
- Your task is to find all the books with a publication year earlier than 2010 and display the book title along with the author's name.
- Please write the SQL query to achieve the desired result.

Table structure:

Author Table:

• AuthorID, AuthorName

Books Table:

ISBN, Title, AuthorID, PublishedYear

Input Table:

Title for Question 3: Author and books

Solution:

```
SELECT B.Title, A.AuthorName
FROM Books B
JOIN Authors A ON B.AuthorID = A.AuthorID
WHERE B.PublishedYear < 2010;
```

TestCases:

S.No	Inputs	Outputs
1		Title AuthorName Book 1 Author 1 Book 3 Author 3
2		
3		
4		
5		
6		

White List:

Black List:

Question 4:

You are tasked with designing a database to store historical product prices.

- The "ProductPrices" table consists of ProductID, ValidFrom, ValidTo, and Price columns.
- It allows you to keep track of product prices over time.
- Can you provide an SQL query to retrieve the price of a specific product on a particular date, for example, on '2023-02-10' for ProductID 1?
- Please write the SQL query that accomplishes this task.

Table structure:

• ProductID, ValidFrom, ValidTo, Price

Input Table:

ProductPrices				
ProductID	ValidFrom	ValidTo	Price	
1	2023-01-01	2023-01-15	19.99	
1	2023-01-16	2023-02-28	21.99	
1	2023-03-01	2023-03-15	24.99	
2	2023-01-01	2023-01-31	29.99	
2	2023-02-01	2023-03-15	31.99	

Title for Question 4: Price of the product

Solution:

```
-- Query to get the price of a product on a specific date SELECT Price FROM ProductPrices WHERE ProductID = 1
AND '2023-02-10' BETWEEN ValidFrom AND ValidTo;
```

TestCases:

S.No	Inputs	Outputs Price 21.99
1		Price 21.99
2		
3		
4		
5		
6		

White List:

Black List:

Question 5:

Imagine you work at a medium-sized company, and the HR department recently assigned employees to different departments. You want to retrieve a list of employees along with their corresponding department names. This information will help you understand which employees belong to which departments. Note: Department, Employees are keep in two different table.

Requirements:

• Must use inner join.

Table Structure:

• ?????EmployeeID, FirstName, LastName, DeptID

Input Table 1:

EmployeeID	FirstName	LastName	DeptID
1	John	Doe	101
2	Jane	Smith	102
5	Robert	Brown	103

Input Table 2:

DeptID	DepartmentName
101	Sales
102	Marketing
103	HR

Title for Question 5: inner join without where clause

Solution:

```
SELECT Employees.FirstName, Department.DepartmentName
FROM Employees
INNER JOIN Department ON Employees.DeptID = Department.DeptID;
```

TestCases:

S.No	Inputs	Outputs
1		FirstName DepartmentName John Sales Jane Marketing Robert HR
2		
3		
4		
5		
6		

White List:

Black List:

Question 6:

Imagine you are managing a retail business and want to create a report that lists all customer names and their associated order IDs. You are interested in seeing all customers, even if they haven't placed any orders yet.

Requirements:

• Must use left join.

Table Structure:

CustomerID, CustomerName

Input Table Customer:

Input Table Orde:

```
        OrderID
        CustomerID
        OrderDate

        1
        6
        2028-01-16

        2
        3
        2020-02-02-3

        3
        8
        2020-01-25

        4
        1
        2020-01-25
```

Title for Question 6: Left join without where clause

Solution:

```
SELECT * FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;
```

TestCases:

S.No	Inputs	Outputs
1		CustomerID CustomerName OrderID OrderDate Customer 1 4 2023-04-10 null Customer 2 null null 3 Customer 3 2 2023-02-20 null Customer 4 null null
2		
3		
4		
5		

S.No	Inputs	Outputs	
6			
White List:			

Black List: