# Report: Simulated Phishing Campaign Analysis

#### **Executive Summary**

- Objective: To simulate a basic password-harvesting phishing attack in a controlled educational environment to understand the mechanics and identify key defensive weaknesses.
- Methodology: A campaign was launched using the Gophish framework, targeting a single test user (myself).
- Key Finding: The simulation was 100% successful. The email was delivered, the link was clicked, and credentials were successfully captured. This demonstrates the high risk of credential-harvesting attacks, even simple ones.

### **Campaign Setup & Configuration**





**Execution & Results** 





| Parameter             | Value(s)                                                         |
|-----------------------|------------------------------------------------------------------|
| original_url          | https://www.linkedin.com/login/checkpoint/lg/login-submit        |
| _d                    | d                                                                |
| ac                    | 0                                                                |
| apfc                  | 0                                                                |
| authUUID              |                                                                  |
| controlid             | d_checkpoint_lg_consumer_login-login_submit_button               |
| csrfToken             | ajax:7888160290166278369                                         |
| fp_data               | default                                                          |
| loginCsrfParam        | aeefe209-bfed-4906-8482-995061e99229                             |
| loginFailureCount     | 0                                                                |
| pageInstance          | urn:licpage:checkpoint_lg_login_default;A37FIAUIQd2rwAbjRDqw8g== |
| parentPageKey         | d_checkpoint_lg_consumer_login                                   |
| password              | test123                                                          |
| pkSupported           | false                                                            |
| rememberMeOptIn       | true                                                             |
| stdString             | f6e344ac-f2e8-4168-a421-a6465c504b8f                             |
| session_key           | test@mail.com                                                    |
| session_redirect      |                                                                  |
| showAppleLogin        | true                                                             |
| showGoogleOneTapLogin | true                                                             |
| showMicrosoftLogin    | true                                                             |
| trk                   |                                                                  |

## **Analysis & Defensive Recommendations**

Analysis: The attack was successful because it relied on social engineering (a sense of urgency) and a cloned website that looked legitimate. The "victim" (me) clicked the link and entered credentials without verifying the URL.

#### **Defensive Recommendations:**

- 1. User Training: This simulation proves that users should be trained to always hover over links to check the destination URL before clicking.
- 2. Email Filters: Better email security gateways could potentially block emails with links to raw IP addresses or newly registered domains.
- 3. Two-Factor/Multi-Factor Authentication (2FA/MFA): This is the single most effective defense. Even though the attacker (me) successfully stole the password, I would still be unable to log in to the real LinkedIn without the 2FA code from the user's phone.