Numa: Pap Novia

Grupa: 232

Examen la prababilitation

1=44

Prababilitäti.

a) Mr. casuri favorabile =
$$\left(\frac{44-1}{3}\right)$$
 = 14
Mr. casuri total = 44

Pb =
$$\frac{Kr. c.f.}{Nr. c.t.} = \frac{6}{44} = \frac{3}{22} \sim 9.136$$

a)
$$\frac{1000}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1000}{1000} = 1 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 1000 = 10000 = 10000 = 1000$$

6)
$$\frac{1}{4000(x)} = E(x) = \sum_{j=1}^{\infty} x_j p(x_j) = (-1) \cdot \frac{hh}{1000} + 0 \cdot \frac{1}{100} + 1 \cdot \frac{9h6}{1000} = -hh + 9h6$$

$$= \frac{-44 + 946}{1000} = \frac{902}{1000} = 0,902$$

TO TENDER ON THE		- 1032 65 7 82h - 1032, 657 82h
ter metuman unu (La) in 19a	$V(\omega r(x) = 4.25816456)$	c) \(\(\alpha\) = 2 \(\alpha\) = 4\(\om\(\x\))
es del cercios dividenda	3 0 k0 + 30 853840 = 258 164 456	= 159 17 + 576 + 81360K0 +81
	3). 100 + (98)2. 946 =	Var (x) = (1902) - 45 + (903) - 100 +
Scanned w		$(\chi - \frac{902}{1000})^{2} (\frac{1902}{1000})^{2} (\frac{902}{1000})^{2} (\frac{98}{1000})^{2}$
ith CamScanner	Sith CamScanner	1400
		×
		$\int dx (x) = E((x-0.900)^2)$

$$F(x) = F(x, y) = F(x, y) = F(x, y)$$

$$F(x) = F(x, y) = F(x, y) = F(x, y)$$

$$F(x) = F(x, y) = F(x, y) = F(x, y)$$

$$F(x, y) = F(x, y) = F(x, y)$$

(3) c)
$$\times$$
 si, Y imdependents $c = x$ $f(x,y) = f_{x}(x) \cdot f_{y}(y)$
 $f_{x}(x) = \int_{0}^{x} f(x,y) dy = \int_{0}^{x} cxy dy = cx \int_{0}^{x} f(y) = cx \int_{0}^{x} f(x,y) dy = \int_{0}^{x} cxy dy = cx \int_{0}^{x} f(y) = \int_{0}^{x} f(x,y) dx = \int_{0}^{x} cxy dx = cy \int_{0}^{x} x dx = cy \int_{0}^{x} f(x,y) dx = \int_{0}^{x} cxy dx = cy \int_{0}^{x} x dx = cy \int_{0}^{x} f(x,y) dx = \int_{0}^{x} f(x,y) dx = \int_{0}^{x} f(x,y) = \int_{0}^{x} f(x,y) = \int_{0}^{x} f(x) \cdot f_{y}(y)$
 $f_{x}(x) \cdot f_{y}(y) = \int_{0}^{x} f(x) \cdot f(x) \cdot f(x) = \int_{0}^{x} f(x) \cdot f(x) \cdot f($

4)
$$P(D_H/A) = 0.5$$

 $P(D_H/A) = 0.8$

$$P(A) = \frac{hh}{200} = 0.22$$

$$P(A) = 156 = 0.79$$

$$P(B) = \frac{156}{200} = 0,78$$

Probabilitatia predictivà a priori:

$$P(\Delta_H) = P(\Delta_H / A)P(A) + P(\Delta_H / B) P(B) = 0.5 \cdot 0.22 + 0.8.078 = 0.41 + 0.624 = 0.734$$

Probabilitata predictivo a posteriori:

Tabel Bayes:

H	P(H)	(H/A)P	P(H) P(H)	PCHIAI
A	0,22	0,5	0,11	0,11
<u>D</u>	0,78	0,8	0,624	0, 734 = 0,119
lotok	1		0 4041	3 0,624 = 9,850
			0,734	

$$\begin{array}{l} X: m \to [0, 4n] \\ S(S(xydx)dy = 1 = n) S(C(x^2y/5))dy = 1 = n) S(S(xydx)dy = 1) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx)dy = 1 = n) S(S(xydy))dy = 1 = n) \\ S(S(xydx))dy = n) \\ S($$

6)
$$f_{x}(x) = \int_{0}^{4\pi} f(x,y) dy = \frac{1}{4h^{2} + 8h} \int_{0}^{4\pi} axy dy = \frac{1}{44^{2} + 8h} \cdot x \cdot \frac{y^{2}}{4h} \int_{0}^{4\pi} axy dy = \frac{1}{44^{2} + 8h} \cdot x \cdot \frac{y^{2}}{4h} \int_{0}^{4\pi} axy dy = \frac{1}{44^{2} + 8h} \cdot \frac{x}{4h} \cdot \frac{y}{4h} \int_{0}^{4\pi} axy dy = \frac{1}{44^{2} + 8h} \cdot \frac{x}{4h} \cdot \frac{y}{4h} \int_{0}^{4\pi} axy dy = \frac{1}{44^{2} + 8h} \cdot \frac{x}{4h} \cdot \frac{y}{4h} \cdot$$

110-hh = 66 Jangani

(4,00, A) jupostition bimomiolo-Upropumilitates P(x/0) = (1000 61) (1-0)66

	P	hypothum	Todoux
	1.00		
	1.00 (110) O 4/1-066 (44) O.	prior lik likaad Bayes num. pastarios	
· (44)	(110) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	Bayes num.	
	(4-0)00 (2 0 (1-0) 00	posturior	

pd\$ a parteriori \$ (0/x) - 20 (1-0) 66 caront.de maromalistare c=(45+6+-1)! (45-1)! (67-1)! (41.66)