

Pontificia Universidad Javeriana

Facultad de Ingeniería Departamento de Electrónica

Controles

Clase 2: Modelos de Sistemas - Tipos de Respuesta - Parámetros de Desempeño

Gerardo Becerra, Ph.D.

gbecerra@javeriana.edu.co

Enero 29, 2020

Modelos Matemáticos de Sistemas

Dinámicos

Modelos Matemáticos de Sistemas Dinámicos

- Para entender y controlar sistemas se requiere obtener modelos cuantitativos.
- Modelos → análisis de relaciones entre variables del sistema.
- ullet Sistemas dinámicos o representados por ecuaciones diferenciales.
- ullet Ecuaciones diferenciales lineales o usando la transformada de Laplace se pueden obtener funciones de transferencia.
- ullet Linealización o herramienta para obtener modelos de sistemas físicos.

Procedimiento para Modelamiento de Sistemas

- 1. Definir el sistema y sus componentes.
- 2. Formular las relaciones básicas entre variables y suposiciones usando los principios fundamentales.
- 3. Obtener las ecuaciones diferenciales que representan el modelo matemático.
- 4. Solucionar las ecuaciones para las variables deseadas.
- 5. Examinar las soluciones y las suposiciones.
- 6. En caso necesario, analizar o diseñar el modelo nuevamente.

Ecuaciones Diferenciales de Sistemas Físicos - Variables y Parámetros

- Variables pasantes: *F* (fuerza), *T* (torque), *i* (corriente), *Q* (flujo volumétrico), *q* (flujo de calor).
- Variables transversales: v (velocidad traslacional), ω (velocidad angular), V (voltaje), P (presión), \mathcal{T} (temperatura).
- Almacenamiento inductivo: L (inductancia), 1/k (rigidez traslacional o rotacional inversa), I (inertancia).
- Almacenamiento capacitivo: C (capacitancia), M (masa), J (momento de inercia), C_f (capacitancia de fluido), C_t (capacitancia térmica).
- Disipación de energía: R (resistencia), b (fricción viscosa), R_f (resistencia de fluido), R_f (resistencia térmica).

Ecuaciones Diferenciales de Sistemas Físicos - Relaciones Fundamentales

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
Inductive storage	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	$v_2 \circ \overbrace{\qquad \qquad }^L \stackrel{i}{\longrightarrow} v_1$
	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ \overbrace{\hspace{1cm}}^k \overset{v_1}{\circ} F$
	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \overbrace{\hspace{1cm}}^k \overset{\omega_1}{\circ} T$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ \bigcap P_1$

Ecuaciones Diferenciales de Sistemas Físicos - Relaciones Fundamentales

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power ℱ	Symbol
Capacitive storage	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^{2}$	$v_2 \circ \xrightarrow{i} \mid \stackrel{C}{\longrightarrow} \circ v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}M{v_2}^2$	$F \xrightarrow{v_2} M v_1 = $ constant
	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \longrightarrow \omega_1 = 0$ constant
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}^2$	$Q \xrightarrow{P_2} C_f \longrightarrow P_1$
	Thermal capacitance	$q = C_t \frac{d\mathcal{I}_2}{dt}$	$E = C_t \mathcal{T}_2$	$q \xrightarrow{\mathcal{T}_2} C_t \xrightarrow{\mathcal{T}_1} = $ $constant$

Ecuaciones Diferenciales de Sistemas Físicos - Relaciones Fundamentales

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
Energy dissipators	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathscr{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \longrightarrow \stackrel{R}{\longrightarrow} i \circ v_1$
	Translational damper	$F=bv_{21}$	$\mathscr{P}=b{v_{21}}^2$	$F \xrightarrow{v_2} b \circ v_1$
	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}^{2}$	$T \xrightarrow{\omega_2} \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathscr{P} = \frac{1}{R_t} \mathscr{T}_{21}$	$\mathcal{T}_2 \circ \longrightarrow \stackrel{R_t}{\longrightarrow} \stackrel{q}{\longrightarrow} \mathcal{T}_1$

- Obtener las ecuaciones diferenciales que describen el sistema.
- Obtener la representación en variables de estado.
- Obtener la función de transferencia.

Ecuaciones diferenciales:

$$\frac{di_{L_1}(t)}{dt} = -\frac{R_1}{L_1}i_{L_1}(t) - \frac{1}{L_1}v_c(t) + \frac{1}{L_1}v_i(t)$$
 (1a)

$$\frac{di_{L_2}(t)}{dt} = -\frac{R_2}{L_2}i_{L_2}(t) + \frac{1}{L_2}v_c(t)$$
 (1b)

$$\frac{dv_c(t)}{dt} = \frac{1}{C}i_{L_1}(t) - \frac{1}{C}i_{L_2}(t)$$
 (1c)

Ecuación de salida:

$$V_o(t) = R_2 i_{L_2}(t)$$
 (1d)

Diagrama de bloques y respuesta paso:

Organizando las ecs. (1) en forma matricial:

$$\begin{bmatrix} \frac{di_{L_1}(t)}{dt} \\ \frac{di_{L_2}(t)}{dt} \\ \frac{dv_{C}(t)}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{R_1}{L_1} & 0 & -\frac{1}{L_1} \\ 0 & -\frac{R_2}{L_2} & \frac{1}{L_2} \\ \frac{1}{C} & -\frac{1}{C} & 0 \end{bmatrix} \begin{bmatrix} i_{L_1}(t) \\ i_{L_2}(t) \\ v_{C}(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{L_1} \\ 0 \\ 0 \end{bmatrix} v_i(t)$$
(2a)

$$v_o(t) = \begin{bmatrix} 0 & R_2 & 0 \end{bmatrix} \begin{bmatrix} i_{L_1}(t) \\ i_{L_2}(t) \\ v_c(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} v_i(t)$$
 (2b)

se obtiene la representación en variables de estado:

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t) \tag{3a}$$

$$y(t) = Cx(t) + Du(t) \tag{3b}$$

Aplicando la transformada de Laplace a las Ecs. (1):

$$sI_{L_1}(s) = -\frac{R_1}{L_1}I_{L_1}(s) - \frac{1}{L_1}V_c(s) + \frac{1}{L_1}V_i(s)$$
 (4a)

$$Si_{L_2}(S) = -\frac{R_2}{L_2}I_{L_2}(S) + \frac{1}{L_2}V_c(S)$$
 (4b)

$$sV_{c}(s) = \frac{1}{C}I_{L_{1}}(s) - \frac{1}{C}I_{L_{2}}(s)$$
 (4c)

$$V_o(s) = R_2 I_{L_2}(s)$$
 (4d)

- Objetivo: A partir de las Ecs. (4), obtener $V_o(s)/V_i(s)$.
- Procedimiento: Manipulación Algebráica.
- Alternativa: Usando la representación en variables de estado.

Usando la fórmula:

$$H(s) = C(sI - A)^{-1}B + D$$
(5)

se obtiene la función de transferencia:

$$H(s) = \frac{2 \times 10^{11}}{s^3 + 5.1 \times 10^4 s^2 + 5.6 \times 10^7 s + 2.02 \times 10^{11}}$$
 (6)

Tipos de Respuesta Transitoria

Tipos de Sistemas

• Sistemas de primer orden:

$$H(s) = \frac{K}{\tau s + 1}$$

• Sistemas de primer orden con tiempo muerto:

$$H(s) = \frac{Ke^{-Ls}}{\tau s + 1}$$

• Sistemas de **segundo orden**:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Sistemas de Primer Orden - Respuesta Paso

$$H(s) = \frac{K}{\tau s + 1}$$

K: Ganancia

au: Constante de tiempo

Sistemas de Primer Orden mas Tiempo Muerto - Respuesta Paso

$$H(s) = \frac{Ke^{-Ls}}{\tau s + 1}$$

K: Ganancia

au: Constante de tiempo

L: Tiempo muerto

Sistemas de Segundo Orden - Respuesta Paso

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

 ω_n : Frecuencia natural ζ : Factor de amortiguamiento

 $\zeta <$ 1: subamortiguado $\zeta =$ 1: críticamente amortiguado $\zeta >$ 1: sobreamortiguado

Respuesta Transitoria

La respuesta transitoria del sistema puede describirse en función de dos factores:

- La rapidez de la respuesta, la cual está representada por el tiempo de subida y el tiempo pico.
- La **proximidad de la respuesta al valor final**, representada por el **sobrepico** y el **tiempo de establecimiento**.

Respuesta Transitoria

- Tiempo de subida (T_r): Tiempo que tarda la respuesta en ir del 10% al 90% del valor final.
- Tiempo pico (T_p) : Tiempo en el cual la respuesta alcanza el valor máximo.
- Sobrepico (PO): Relación en porcentaje entre el valor máximo y el valor final.
- Tiempo de establecimiento (T_s): Tiempo que tarda la respuesta en mantenerse dentro de un 2% del valor final.

Respuesta Transitoria - Sistemas de Primer Orden

Tiempo de subida:

$$T_r = 2.2\tau$$

Tiempo de establecimiento:

$$T_{\rm S}=4\tau$$

Respuesta Transitoria - Sistemas de Primer Orden mas Tiempo Muerto

Tiempo de subida:

$$T_r = 2.2\tau$$

Tiempo de establecimiento:

$$T_s = L + 4\tau$$

Tiempo de establecimiento:

$$T_{\rm S}=4\tau=\frac{4}{\zeta\omega_{\rm n}}$$

Tiempo de pico:

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Sobrepico:

$$PO = 100e^{-\zeta \pi / \sqrt{1 - \zeta^2}}$$

Tiempo de subida:

$$T_{r1} = \frac{2.16\zeta + 0.60}{\omega_n}$$

Aproximación lineal válida para $0.3 \le \zeta \le 0.8$.

Respuesta paso para $\zeta=$ 0.2 con $\omega_n=$ 1 y $\omega_n=$ 10.

Respuesta paso para $\omega_n=5$ con $\zeta=0.7$ y $\zeta=1$.

Estabilidad

Estabilidad de Sistemas Realimentados

- Estabilidad → requerimiento práctico para muchos sistemas.
- Sistema inestable → puede destruirse o saturarse con cualquier entrada / disturbio.
- Dependiendo del tipo de respuesta analizada (estado cero / entrada cero), se consideran dos tipos de estabilidad:
 - Estabilidad externa.
 - Estabilidad interna.

Estabilidad Externa

- Señal acotada: no crece indefinidamente. Existe una constante u_m tal que $||u(t)|| \le u_m \le \infty$.
- Estabilidad BIBO (bounded input bounded output): toda entrada acotada produce una salida acotada.
- Estabilidad BIBO → se define para respuesta a estado-cero (sistema inicialmente relajado).

Theorem

Un sistema con función de transferencia racional propia G(s) es BIBO estable si y sólo si todos los polos de G(s) tienen parte real negativa, o se encuentran en el lado izquierdo del semiplano complejo, sin incluir el eje imaginario.

Estabilidad Interna

- Se estudia para el caso de respuesta a entrada cero: $\dot{x}(t) = Ax(t)$
- Se presentan dos criterios de estabilidad:
 - Estable en el sentido de Lyapunov: toda condición inicial limitada genera una respuesta limitada del estado.
 - Asintóticamente estable: toda condición inicial limitada genera una respuesta del estado limitada que tiende a cero cuando el tiempo tiende a infinito.

Estabilidad Interna

Theorem

- El sistema es asintóticamente estable si y sólo si todos los valores propio de A tienen parte real negativa.
- El sistema es marginalmente estable si y sólo si todos los valores propios de A tienen parte real cero o negativa, y aquellos con parte real cero son raices simples del polinomio característico de A.

Estabilidad

En general, los polos de G(s) son un subconjunto de los valores propios de A.

- Si el sistema es asintóticamente estable, entonces el sistema es BIBO estable.
- Si el sistema es BIBO estable, el sistema no necesariamente será asintóticamente estable.
- Si el sistema no es asintóticamente estable, no se puede hacer afirmación alguna sobre su estabilidad BIBO.

Taller

1. Para el sistema mostrado en la figura, considere como entrada la fuerza aplicada sobre la masa de la izquierda, y la salida como la distancia entre las dos masas. Obtenga las ecuaciones diferenciales que describen el sistema, la representación en el espacio de estados y la función de transferencia.

Taller

2. El control de inyecciones de insulina puede permitir mejorar la calidad de vida de pacientes diabéticos. La inyección automática de insulina usando una bomba y un sensor que mide los niveles de azucar en la sangre puede ser un tratamiento efectivo. La figura muestra el sistema de control correspondiente a éste proceso. Calcule un valor apropiado para K tal que PO = 7%. Calcule T_S y T_p.

Taller

- 3. Para el sistema mostrado en la figura, determine si el sistema es:
 - BIBO estable.
 - Estable en el sentido de Lyapunov.

4. El sistemas mostrado en la figura representa un proceso que controlador por un controlador proporcional-derivativo (PD). Determine el rango de K_P y K_D para garantizar BIBO-estabilidad del sistema en lazo cerrado.

