GEA1000 Tutorial 4

AY 24/25 Sem 2 — github/omgeta

- Q1. (a.) (i.) T
 - (ii.) H
 - (iii.) H 9. {H, T, H, H, H}
 - (iv.) H 26. {T, T, H, H, T}
 - (b.) P(T|HHHHH) = 0.5
 - (c.) Disagree; the probability of the result of each toss is independent of previous events.
 - (d.) (i.) $\frac{5}{32}$
 - (ii.) No, because $P(X \ge 4) = \frac{6}{32} = 18.75\% > 5\%$
- Q2. (a.) $P(\text{infected}|\text{positive}) = \frac{2400}{2470} \approx 0.9717$

	Infected (3000)	Not Infected (7000)
Positive (2470)	2400 (True Positives)	70 (False Positives)
Negative (7530)	600 (False Negatives)	6930 (True Negatives)

- (b.) No; base rate fallacy assumes the same prevalence as in Country X, which may not hold in Country Y.
- (a.) Sample proportion, $p^* = 0.525$ Q3.
 - (b.) (i.) Margin of error, $e = 1.96 \cdot \sqrt{\frac{0.495(1 0.495)}{200}} \approx 0.069$
 - (ii.) Yes; Confidence interval = 0.495 ± 0.069 which includes 0.506
 - (c.) (i.) Larger; higher sample size reduces error margin

(ii.)
$$n \ge \frac{1.96^2 \cdot 0.525(1 - 0.525)}{0.03^2} = 1064. \dots \implies n = 1065$$

(d.) (i.) Sample size n is directly proportional to p(1-p)

(ii.)
$$n \ge \frac{1.96^2 \cdot 0.5 \cdot 0.5}{0.03^2} \approx 1067.11 \implies n = 1068$$

(e.) Null hypothesis, H_0 : $\mu = 28$

Alternative hypothesis, H_1 : $\mu < 28$

Level of significance,
$$\alpha = 0.05$$

Test statistic = $\frac{27.038 - 28}{5.206/\sqrt{1000}} = -5.843$

Since $p < 0.001 < \alpha = 0.05$, therefore we reject the null hypothesis to conclude that mean age is less than 28.