Relatório da	Experiência de Th	omson	
Turno:	Grupo:	_ Data:	
 Descret Desenle e força Escolhe nos ensence Preence 	eva quais os object he um diagrama d as aplicadas nas d a os 5 pares de co saios de deflexão r	rio a realizar ANTES da sessivos do trabalho que irá realizar na os campos eléctricos, magnéticos, da ferentes zonas do TRC. Fordenadas, $(y, \pm z)$, na grelha do tunagnética, de modo a obter os maiore colunas da Secção 2.1.2.	sessão de laboratório. velocidade dos electrões lbo TRC que irá utilizar
1.1.1 Equal Escreva no s como as sua	seguinte quadro to	das as equações necessárias para cal	lcular as grandezas, bem

2 Relatório

${f 2.1}$ DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA

2.1.1 Montagem Experimental

Desenhe um diagrama da experiência. Inclua uma lista e legenda dos instrumentos e a sua esolução e incerteza.						

2.1.2 Medidas Experimentais e Cálculos Intermédios

Preencha as seguintes tabelas indicando apenas os algarismos significativos. Poderá em alternativa utilizar folhas de cálculo, com o mesmo formato (apresentando-as em anexo) mas terá de preencher as colunas 1, 2, 3, 4 das tabelas seguintes e as colunas 1 e 6 das secção 2.1.3. Em qualquer dos casos terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente.

$$U_a = \underline{\hspace{1cm}} V$$
, $\delta U_a = \underline{\hspace{1cm}} V$, $\delta (y, z) = \underline{\hspace{1cm}} mm$

y [cm]	$\pm z \text{ [cm]}$	R [m]	δR [m]	I_{+} [mA]	I_{-} [mA]	$\overline{I} = \frac{ I_+ + I }{2}$ [mA]	$\delta I = \frac{ I_+ - I }{2} \text{ [mA]}$

$$U_a = \underline{\hspace{1cm}} V$$

y [cm]	$\pm z \text{ [cm]}$	R [m]	$\delta R [m]$	I_{+} [mA]	I_{-} [mA]	$\overline{I} = \frac{ I_+ + I }{2}$ [mA]	$\delta I = \frac{ I_{+} - I_{-} }{2} \text{ [mA]}$

$$U_a = \underline{\hspace{1cm}} V$$

y [cm]	$\pm z \text{ [cm]}$	R [m]	δR [m]	I_{+} [mA]	I_{-} [mA]	$\overline{I} = \frac{ I_+ + I }{2} \text{ [mA]}$	$\delta I = \frac{ I_{+} - I_{-} }{2} \text{ [mA]}$

${f 2.1.3}$ Cálculos de q/m

	$\overline{I} \pm [A]$	B [mT]	$\delta B \; [\mathrm{mT}]$	q/m [C/kg]	$\delta q/m \; [{\rm C/kg}]$	q/m	± [C/kg]
$U_a = $ V							
<i>u</i> •							
$U_a = $ V							
$egin{array}{cccccccccccccccccccccccccccccccccccc$							
17 17							
$U_a = \underline{\hspace{1cm}} V$							

2.1.4 Resultados Finais. Explique os critérios que utilizou para obter as incertezas.

$$q/m = (\underline{} \pm \underline{}) \times 10^{+} \text{ C/kg}$$

Desvio à Exactidão = ____(%), Incerteza relativa = ____(%)

2.2 DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA E ELÉTRICA QUASE COMPENSADAS

2.2.1 Dados Experimentais e Cálculos

			$U_a = \underline{\hspace{1cm}}$	_ ±	V			
I_{max} [mA]	I_{min} [mA]	\overline{I} [A]	$\delta I = \frac{ I_{max} - I_m }{2}$	$\frac{ in }{ A }$	B[T]	$\delta B [T]$	q/m [C/kg]	$\delta q/m \; [{ m C/kg}]$

$$U_{a} = \underline{\hspace{0.2cm}} \pm \underline{\hspace{0.2cm}} V$$

$$\boxed{I_{max} \text{ [mA]} \quad I_{min} \text{ [mA]} \quad \overline{I} \text{ [A]} \quad \delta I = \frac{|I_{max} - I_{min}|}{2} \text{ [A]} \quad B \text{ [T]} \quad \delta B \text{ [T]} \quad q/m \text{ [C/kg]} \quad \delta q/m \text{ [C/kg]}}$$

$$U_{a} = \underline{\hspace{0.2cm}} \pm \underline{\hspace{0.2cm}} V$$

$$I_{max} [mA] \quad I_{min} [mA] \quad \overline{I} [A] \quad \delta I = \frac{|I_{max} - I_{min}|}{2} [A] \quad B [T] \quad \delta B [T] \quad q/m [C/kg] \quad \delta q/m [C/kg]$$

2.2.2 Resultados

$$q/m = (\underline{} \pm \underline{}) \times 10^{+} \text{ C/kg}$$

Desvio à Exatidão = (%), Incerteza relativa = (%)

2.3 Trajetória não compensada

Aumente agora o campo B (com $I \leq 3$ A) de forma a visualizar uma trajetória não compensada. Faça um esboço da curva observada, indicando os vetores das forças em jogo (com uma estimativa do seu valor em N), bem como as condições experimentais. Comente a figura obtida.

2.4	Análise e comparação dos dois métodos.	Conclusões e Comentários Finais