## ResNet strikes back: An improved training procedure in timm

Abstract competitive training settings and pre-trained models

a vanilla ResNet-50 reaches 80.4% top-1 accuracy at resolution 224×224 on ImageNet-val without extra data or distillation

Introduction

accuracy (model) = 
$$f(A, T, N)$$
,

A is the architecture design, T is the training setting along with its hyperparameters, and N is the measurement noise

Ideally, i.e., without resource and time constraints, one would optimally adopt the best possible training procedure for each architecture but realistically this is not possible

$$\mathcal{T}^{\star}(\mathcal{A}) = \max_{\mathcal{T}} f(\mathcal{A}, \mathcal{T}, \mathcal{N}),$$

When comparing architectures, most papers compare their results to other reported in older publications, but for which architectures were trained with potentially weaker recipes

이 논문에서 제시하는 것들

three training procedures intended to be strong baselines for a vanilla ResNet-50 used at inference resolution 224 × 224 - different numbers of epochs (100, 300 and 600)

we depart from the usual cross-entropy loss - binary cross entropy (Mixup / Cutmix)

stability of the accuracy over a large number of runs with different seeds, and discuss the overfitting issue

train popular architectures and re-evaluate their performance

discuss the necessity to optimize jointly the architecture and the training procedure

#### Related Work Imag

# Image Classification

#### The timm library

Pre-trained weights

implementations of many data augmentations, regularization techniques, optimizers, and learning rate schedulers

#### ResNet

some papers have also focused on ResNet-50 training, but they have either modified the architecture or changed the resolution, which does not allow for a direct comparison to the original ResNet-50 at resolution 224×224

#### Training ingredients & recipes

#### **Training Procedures**

| 0  |     |                  | 0    | Peak memory<br>by GPU (MB) |   |      | -1 accu<br>real |      |
|----|-----|------------------|------|----------------------------|---|------|-----------------|------|
| A1 | 600 | $224 \times 224$ | 110h | 22,095                     | 4 | 80.4 | 85.7            | 68.7 |
| A2 | 300 | $224 \times 224$ | 55h  | 22,095                     | 4 | 79.8 | 85.4            | 67.9 |
| A3 | 100 | $160\times160$   | 15h  | 11,390                     | 4 | 78.1 | 84.5            | 66.1 |

Table 1: Training resources used for our three training procedures on V100 GPUs and corresponding accuracies at resolution  $224 \times 224$  on ImageNet1k-val, -V2 and -Real. Note, the top-1 val acc. of pytorch-zoo [1] is 76.1%.

Procedure A1 aims at providing the best performance for ResNet-50. It is therefore the longest in terms of epochs (600) and training time (4.6 days on one node with 4 V100 32GB GPUs).

Procedure A2 is a 300 epochs schedule that is comparable to several modern procedures like DeiT, except with a larger batch size of 2048 and other choices introduced for all our recipes.

Procedure A3 aims at outperforming the original ResNet-50 procedure with a short schedule of 100 epochs and a batch size 2048. It can be trained in 15h on 4 V100 16GB GPUs and could be a good setting for exploratory research or studies.

### Loss: multi-label classification objective

mixup / cutmix

binary cross-entropy (BCE)

#### **Data-Augmentation**

#### Regularization

weight decay + label smoothing, RepeatedAugmentation(RA) and stochastic-Depth more regularization for longer training schedules.

RA와 stochastic depth는 초기단계에서 느리고 짧은 스케쥴에는 좋지 않다

putting more of RandAugment, mixup and stochastic depth regularization on top of A2 recipe

### Optimization

larger batch (2048)

with repeated augmentation / the binary cross entropy loss, LAMB is good

LAMB w/ cosine schedule

#### Details of our ingredients and comparison to existing training procedures.

|                                                                                 |                    | Pre                | vious app        | roaches                   |                     |                           | Ours                      |                           |
|---------------------------------------------------------------------------------|--------------------|--------------------|------------------|---------------------------|---------------------|---------------------------|---------------------------|---------------------------|
| $\begin{array}{c} \text{Procedure} \rightarrow \\ \text{Reference} \end{array}$ | ResNet [13]        | PyTorch [1]        | FixRes<br>[48]   | DeiT<br>[45]              | FAMS (×4)<br>[10]   | A1                        | A2                        | A3                        |
| Train Res<br>Test Res                                                           | 224<br>224         | 224<br>224         | 224<br>224       | 224<br>224                | 224<br>224          | 224<br>224                | 224<br>224                | 160<br>224                |
| Epochs<br># of forward pass                                                     | 90<br>450k         | 90<br>450k         | 120<br>300k      | 300<br>375k               | 400<br>500k         | 600<br>375k               | 300<br>188k               | 100<br>63k                |
| Batch size<br>Optimizer                                                         | 256<br>SGD-M       | 256<br>SGD-M       | 512<br>SGD-M     | 1024<br>AdamW             | 1024<br>SGD-M       | 2048<br>LAMB              | 2048<br>LAMB              | 2048<br>LAMB              |
| LR<br>LR decay                                                                  | 0.1<br>step        | 0.1<br>step        | 0.2<br>step      | $1 \times 10^{-3}$ cosine | 2.0<br>step         | $5 \times 10^{-3}$ cosine | $5 \times 10^{-3}$ cosine | $8 \times 10^{-3}$ cosine |
| decay rate<br>decay epochs                                                      | 0.1<br>30          | 0.1<br>30          | 0.1<br>30        | -                         | $0.02^{t/400}$ 1    | -                         | -                         | -                         |
| Weight decay<br>Warmup epochs                                                   | 10 <sup>-4</sup> × | 10 <sup>-4</sup> × | 10 <sup>-4</sup> | 0.05<br>5                 | $\frac{10^{-4}}{5}$ | 0.01<br>5                 | 0.02<br>5                 | 0.02<br>5                 |
| Label smoothing $\varepsilon$                                                   | X                  | X<br>X             | X<br>X           | 0.1<br>×                  | 0.1<br>×            | 0.1<br>×                  | X                         | X                         |

| Dropout         | ^        | ^        | ^        | ^        | ^        | ^        | ^     | ^        |
|-----------------|----------|----------|----------|----------|----------|----------|-------|----------|
| Stoch. Depth    | X        | Х        | Х        | 0.1      | X        | 0.05     | 0.05  | X        |
| Repeated Aug    | X        | X        | ✓        | ✓        | X        | ✓        | ✓     | X        |
| Gradient Clip.  | X        | X        | X        | X        | X        | X        | X     | X        |
| H. flip         | <b>/</b> | ✓        | ✓        | ✓        | <b>✓</b> | <b> </b> | ✓     | <b>✓</b> |
| RRC             | X        | ✓        | ✓        | ✓        | ✓        | ✓        | ✓     | ✓        |
| Rand Augment    | X        | X        | X        | 9/0.5    | X        | 7/0.5    | 7/0.5 | 6/0.5    |
| Auto Augment    | X        | X        | X        | X        | ✓        | X        | X     | X        |
| Mixup alpha     | X        | Х        | Х        | 0.8      | 0.2      | 0.2      | 0.1   | 0.1      |
| Cutmix alpha    | X        | X        | X        | 1.0      | X        | 1.0      | 1.0   | 1.0      |
| Erasing prob.   | X        | X        | X        | 0.25     | X        | ×        | ×     | X        |
| ColorJitter     | X        | ✓        | ✓        | X        | X        | X        | X     | X        |
| PCA lighting    | ✓        | X        | X        | X        | X        | X        | X     | X        |
| SWA             | Х        | Х        | Х        | Х        | <b>✓</b> | Х        | Х     | Х        |
| EMA             | Х        | Х        | Х        | X        | X        | Х        | Х     | X        |
| Test crop ratio | 0.875    | 0.875    | 0.875    | 0.875    | 0.875    | 0.95     | 0.95  | 0.95     |
| CE loss         | <b>/</b> | <b>✓</b> | <b>✓</b> | <b>/</b> | <b>√</b> | X        | Х     | X        |
| BCE loss        | X        | X        | X        | X        | X        | ✓        | ✓     | ✓        |
| Mixed precision | X        | X        | X        | ✓        | ✓        | <b>✓</b> | ✓     | ✓        |
| Top-1 acc.      | 75.3%    | 76.1%    | 77.0%    | 78.4%    | 79.5%    | 80.4%    | 79.8% | 78.1%    |

#### aim

1 quantifying the sensitivity of the performance to random factors

2 evaluating the overfitting by measuring on a different test set

## Comparison of training procedures for ResNet-50

### Performance comparison with other architectures.

Table 3: Comparison on ImageNet classification between other architectures trained with our ResNet-50 optimized training procedure **without any hyper-parameters adaptation**. In particular, our procedure must be adapted for deeper/larger models, which benefit from more regularization. For the training cost we report the training time (time) in hours, the number of GPU used (#GPU) and the peak memory by GPU (Pmem) in GB. For A1 and A2, we adopt the same training and test resolution as in the original publication introducing the architecture. For A3 we use a smaller training resolution to reduce the compute-time. †: torchvision [1] results. \*: DeiT [45] results.

|                                    | A1-A2 | 2-org. | A     | 3    |      |        |       | Cost |      |       |      | In   | mageN | et-1k-v | al   |
|------------------------------------|-------|--------|-------|------|------|--------|-------|------|------|-------|------|------|-------|---------|------|
|                                    | train | test   | train | test | A1   | A2     | A1    | -A2  |      | A3    |      | A1   | A2    | A3      | org. |
| ↓ Architecture                     | res.  | res.   | res.  | res. | time | (hour) | # GPU | Pmem | time | # GPU | Pmem |      | Accur | acy(%)  |      |
| ResNet-18 [13] <sup>†</sup>        | 224   | 224    | 160   | 224  | 186  | 93     | 2     | 12.5 | 28   | 2     | 6.5  | 71.5 | 70.6  | 68.2    | 69.8 |
| ResNet-34 [13] <sup>†</sup>        | 224   | 224    | 160   | 224  | 186  | 93     | 2     | 17.5 | 27   | 2     | 9.0  | 76.4 | 75.5  | 73.0    | 73.3 |
| ResNet-50 [13] <sup>†</sup>        | 224   | 224    | 160   | 224  | 110  | 55     | 4     | 22.0 | 15   | 4     | 11.4 | 80.4 | 79.8  | 78.1    | 76.1 |
| ResNet-101 [13] <sup>†</sup>       | 224   | 224    | 160   | 224  | 74   | 37     | 8     | 16.3 | 8    | 8     | 8.5  | 81.5 | 81.3  | 79.8    | 77.4 |
| ResNet-152 [13]†                   | 224   | 224    | 160   | 224  | 92   | 46     | 8     | 22.5 | 9    | 8     | 11.8 | 82.0 | 81.8  | 80.6    | 78.3 |
| RegNetY-4GF [32]                   | 224   | 224    | 160   | 224  | 130  | 65     | 4     | 27.1 | 15   | 4     | 13.9 | 81.5 | 81.3  | 79.0    | 79.4 |
| RegNetY-8GF [32]                   | 224   | 224    | 160   | 224  | 106  | 53     | 8     | 19.8 | 10   | 8     | 10.3 | 82.2 | 82.1  | 81.1    | 79.9 |
| RegNetY-16GF [32]                  | 224   | 224    | 160   | 224  | 150  | 75     | 8     | 25.6 | 13   | 8     | 13.4 | 82.0 | 82.2  | 81.7    | 80.4 |
| RegNetY-32GF [32]                  | 224   | 224    | 160   | 224  | 120  | 60     | 16    | 17.6 | 12   | 16    | 9.4  | 82.5 | 82.4  | 82.6    | 81.0 |
| SE-ResNet-50 [20]                  | 224   | 224    | 160   | 224  | 102  | 51     | 4     | 27.6 | 16   | 4     | 14.2 | 80.0 | 80.1  | 77.0    | 76.7 |
| SENet-154 [20]                     | 224   | 224    | 160   | 224  | 110  | 55     | 16    | 23.3 | 12   | 16    | 12.2 | 81.7 | 81.8  | 81.9    | 81.3 |
| ResNet-50-D [14]                   | 224   | 224    | 160   | 224  | 100  | 50     | 4     | 23.9 | 14   | 4     | 12.3 | 80.7 | 80.2  | 78.7    | 79.3 |
| ResNeXt-50-32x4d [51] <sup>†</sup> | 224   | 224    | 160   | 224  | 80   | 40     | 8     | 14.3 | 15   | 4     | 14.6 | 80.5 | 80.4  | 79.2    | 77.6 |
| EfficientNet-B0 [41]               | 224   | 224    | 160   | 224  | 110  | 55     | 4     | 22.1 | 15   | 4     | 11.4 | 77.0 | 76.8  | 73.0    | 77.1 |
| EfficientNet-B1 [41]               | 240   | 240    | 160   | 224  | 62   | 31     | 8     | 17.9 | 8    | 8     | 7.9  | 79.2 | 79.4  | 74.9    | 79.1 |
| EfficientNet-B2 [41]               | 260   | 260    | 192   | 256  | 76   | 38     | 8     | 22.8 | 9    | 8     | 11.9 | 80.4 | 80.1  | 77.5    | 80.1 |
| TOTAL ON A PARTIES                 | 200   | 200    | 224   | 200  |      | 21     | 4.    | 40.5 | -    |       | 101  | 04.4 | 04.4  | 70 A    | 04 / |

| EfficientNet-B3 [41]     | 300 | 300   22 |       | 62     | 31         | 16          | 19.5   | 6  | 16 | 10.1 | 81.4 | 81.4 | 79.2   81.6 |
|--------------------------|-----|----------|-------|--------|------------|-------------|--------|----|----|------|------|------|-------------|
| EfficientNet-B4 [41]     | 380 | 380   32 |       | 64     | 32         | 32          | 20.4   | 8  | 32 | 14.3 | 81.6 | 82.4 | 81.2   82.9 |
| ViT-Ti [45]*             | 224 | 224 16   | 0 224 | 98     | 49         | 4           | 16.3   | 14 | 4  | 7.0  | 74.7 | 74.1 | 66.7   72.2 |
| ViT-S [45]*              | 224 | 224 16   |       | 68     | 34         | 8           | 16.1   | 8  | 8  | 7.0  | 80.6 | 79.6 | 73.8   79.8 |
| ViT-B [11]*              | 224 | 224 16   |       | 66     | 33         | 16          | 16.4   | 5  | 16 | 7.3  | 80.4 | 79.8 | 76.0   81.8 |
|                          |     |          |       | timm [ | 50] specif | fic archite | ctures |    |    |      |      |      |             |
| ECA-ResNet-50-T          | 224 | 224   16 | 0 224 | 112    | 56         | 4           | 29.3   | 15 | 4  | 15.0 | 81.3 | 80.9 | 79.6   _    |
| EfficientNetV2-rw-S [42] | 288 | 384   22 |       | 52     | 26         | 16          | 16.6   | 7  | 16 | 10.1 | 82.3 | 82.9 | 80.9   83.8 |
| EfficientNetV2-rw-M [42] | 320 | 384   25 |       | 64     | 32         | 32          | 18.5   | 9  | 32 | 12.1 | 80.6 | 81.9 | 82.3   84.8 |
| ECA-ResNet-269-D         | 320 | 416 25   | 6 320 | 108    | 54         | 32          | 27.4   | 11 | 32 | 17.8 | 83.3 | 83.9 | 83.3   85.0 |

Table 4: **Performance of models trained with A1 training procedure.** We measure peak memory and throughput on one GPU V100 32GB with batch size 128, FP16 precision and test resolution from Table 3. Note that the throughput is indicative, since it depends on the GPU hardware, the software that runs the models, and other factors like the adjustment of batch size (we keep it fix in this table).

|                          | # params      | FLOPs         | Throughput        | Peak mem | Top-1 | Real | V2   |
|--------------------------|---------------|---------------|-------------------|----------|-------|------|------|
| Architecture             | $\times 10^6$ | $\times 10^9$ | (im/s)            | (MB)     | Acc.  | Acc. | Acc. |
| ResNet-18 [13]           | 11.7          | 1.8           | 7960.5            | 588      | 71.5  | 79.4 | 59.4 |
| ResNet-34 [13]           | 21.8          | 3.7           | 4862.6            | 642      | 76.4  | 83.4 | 65.1 |
| ResNet-50 [13]           | 25.6          | 4.1           | 2536.6            | 1,155    | 80.4  | 85.7 | 68.7 |
| ResNet-101 [13]          | 44.5          | 7.9           | 1547.9            | 1,264    | 81.5  | 86.3 | 70.3 |
| ResNet-152 [13]          | 60.2          | 11.6          | 1094.0            | 1,355    | 82.0  | 86.4 | 70.6 |
| RegNetY-4GF [32]         | 20.6          | 4.0           | 1690.6            | 1,585    | 81.5  | 86.7 | 70.7 |
| RegNetY-8GF [32]         | 39.2          | 8.1           | 1122.3            | 2,139    | 82.2  | 86.7 | 71.1 |
| RegNetY-16GF [32]        | 83.6          | 16.0          | 694.1             | 3,052    | 82.0  | 86.4 | 71.2 |
| RegNetY-32GF [32]        | 145.0         | 32.4          | 431.5             | 3,366    | 82.5  | 86.6 | 71.7 |
| SE-ResNet-50 [20]        | 28.1          | 4.1           | 2174.8            | 1,193    | 80.0  | 85.8 | 68.8 |
| SENet-154 [20]           | 115.1         | 20.9          | 511.5             | 2,414    | 81.7  | 86.0 | 71.2 |
| ResNet-50-D [14]         | 25.6          | 4.4           | 2418.8            | 1,205    | 80.7  | 85.9 | 68.9 |
| ResNeXt-50-32x4d [51]    | 25.0          | 4.3           | 1727.5            | 1,247    | 80.5  | 85.5 | 68.4 |
| EfficientNet-B0 [41]     | 5.3           | 0.4           | 3701.5            | 932      | 77.0  | 83.8 | 65.0 |
| EfficientNet-B1 [41]     | 7.8           | 0.7           | 2365.2            | 1,077    | 79.2  | 85.3 | 67.7 |
| EfficientNet-B2 [41]     | 9.2           | 1.0           | 1786.8            | 1,318    | 80.4  | 86.0 | 69.3 |
| EfficientNet-B3 [41]     | 12.0          | 1.8           | 1082.4            | 2,447    | 81.4  | 86.7 | 70.4 |
| EfficientNet-B4 [41]     | 19.0          | 4.2           | 561.3             | 5,058    | 81.6  | 85.9 | 70.8 |
| ViT-Ti [45]              | 5.7           | 1.3           | 3497.7            | 346      | 74.7  | 82.1 | 62.4 |
| ViT-S [45]               | 22.0          | 4.6           | 1762.3            | 682      | 80.6  | 85.6 | 69.4 |
| ViT-B [11]               | 86.6          | 17.6          | 771.0             | 1,544    | 80.4  | 84.8 | 69.4 |
|                          | timm          | [50] spec     | ific architecture | es       |       |      |      |
| ECA-ResNet50-T           | 25.6          | 4.4           | 2139.7            | 1,155    | 81.3  | 86.1 | 69.9 |
| EfficientNetV2-rw-S [42] | 23.9          | 8.8           | 823.1             | 2,339    | 80.6  | 84.8 | 69.2 |
| EfficientNetV2-rw-M [42] | 53.2          | 18.5          | 456.8             | 2,916    | 82.3  | 87.1 | 71.7 |
| ECA-Resnet269-D          | 102.1         | 70.6          | 168.1             | 4,134    | 83.3  | 86.9 | 71.9 |

### Significance of measurements: seed experiments

weight initialization, but also for the optimization procedure - inherent random
we measure the distribution of performance when changing the random generator choices
exist of outliers significantly outperforming or underperforming the average outcome of a traing procedure



|                      | Top-1 accuracy (%) |      |       |       |        |  |  |  |  |
|----------------------|--------------------|------|-------|-------|--------|--|--|--|--|
| $dataset \downarrow$ | mean               | std  | max   | min   | seed 0 |  |  |  |  |
| ImageNet-val         | 79.72              | 0.10 | 79.98 | 79.50 | 79.85  |  |  |  |  |
| ImageNet-real        | 85.37              | 0.08 | 85.55 | 85.21 | 85.45  |  |  |  |  |
| ImageNet-V2          | 67.99              | 0.23 | 68.69 | 67.39 | 67.90  |  |  |  |  |

Figure 1: *Top*  $\uparrow$ : Statistics for ResNet-50 trained with A2 and 100 different seeds. The column "seed 0" corresponds to the weights that we take as reference. Its performance is +0.13% above the average top-1 accuracy on Imagenet-val.

← *Left*: Point cloud plotting the ImageNet-val top-1 accuracy vs ImageNet-V2 for all seeds. Note that the outlying seed that achieves 68.5% top-1 accuracy on ImageNet-V2 has an average performance on ImageNet-val.

### Peak performance and control of overfitting

However optimizing over a large number of choices typically leads to overfitting.

whether this model is intrinsically better than the average ones, or if it was just lucky on this particular measurement set. we compute for all the seeds the couples

some significant measurement noise, which advocates to report systematically the performance on different datasets, more particularly one making a clear distinction between validation and test.

#### More on sensitivity analysis: variance along epochs.





Figure 3: We show how the mean, standard deviation, minimum and maximum of the top-1 accuracy on ImageNet-val evolves during training with the A2 procedure (ResNet-50 architecture). (**Left**) For all 300 training epochs. (**Right**) Same but for the last epochs. We note that the variance in accuracy is high at the hoginaing, see for instance at epoch 100, where the difference

variance in accuracy is high at the beginning, see for instance at epoch 100, where the difference in performance can be as large as 10% in accuracy. Towards the end of the training, most of the networks converge to similar values and the range significantly decreases in the last 50 epochs. *Credit*: this figure and experiment was inspired by Picard [30].

### **Transfer Learning**

Table 5: Performance comparison on transfer-learning tasks for different pre-training recipes.

| Dataset               | Train size | Test size | #classes | Pytorch [1] | A1   | A2   | A3   |
|-----------------------|------------|-----------|----------|-------------|------|------|------|
| ImageNet-val [36]     | 1,281,167  | 50,000    | 1000     | 76.1        | 80.4 | 79.8 | 78.1 |
| iNaturalist 2019 [18] | 265,240    | 3,003     | 1,010    | 73.2        | 73.9 | 75.0 | 73.8 |
| Flowers-102 [29]      | 2,040      | 6,149     | 102      | 97.9        | 97.9 | 97.9 | 97.5 |
| Stanford Cars [24]    | 8,144      | 8,041     | 196      | 92.5        | 92.7 | 92.6 | 92.5 |
| CIFAR-100 [25]        | 50,000     | 10,000    | 100      | 86.6        | 86.9 | 86.2 | 85.3 |
| CIFAR-10 [25]         | 50,000     | 10,000    | 10       | 98.2        | 98.3 | 98.0 | 97.6 |

fine-tuning tend to smooth the difference of performance on certain datasets, such as CIFAR or Stanford Cars

### Comparing architectures and training procedures: a show-case of contradictory conclusions

|                | test set $\rightarrow$ | Image | Net-val | Image | Net-v2 |
|----------------|------------------------|-------|---------|-------|--------|
| ↓ architecture | $training \rightarrow$ | A2    | T2      | A2    | T2     |
| ResNet-50      |                        | 79.9  | 79.2    | 67.9  | 67.9   |
| DeiT-S         |                        | 79.6  | 80.4    | 68.1  | 69.2   |

parameter 수는 비슷한데 학습 방식에 따라 성능 비교가 달라지더라

### Ablations Main ingredients and hyper-parameters

| loss | LR                 | WD   | RA | A2    |
|------|--------------------|------|----|-------|
| BCE  | $2 \times 10^{-3}$ | 0.02 | /  | 78.24 |
| BCE  | $2 \times 10^{-3}$ | 0.03 | ✓  | 78.47 |
| BCE  | $3 \times 10^{-3}$ | 0.02 | 1  | 79.16 |
| BCE  | $3 \times 10^{-3}$ | 0.03 | ✓  | 79.28 |
| BCE  | $5 \times 10^{-3}$ | 0.01 | ✓  | 79.66 |
| BCE  | $5 \times 10^{-3}$ | 0.02 | ✓  | 79.85 |
| BCE  | $5 \times 10^{-3}$ | 0.03 | /  | 79.73 |
| BCE  | $8 \times 10^{-3}$ | 0.02 | ✓  | 79.63 |
| BCE  | $3 \times 10^{-3}$ | 0.02 | X  | 78.74 |
| BCE  | $5 \times 10^{-3}$ | 0.02 | X  | 79.57 |
| BCE  | $5 \times 10^{-3}$ | 0.03 | X  | 79.58 |
| CE   | $2 \times 10^{-3}$ | 0.02 | 1  | 77.37 |

|          |                                          |              | - |                |
|----------|------------------------------------------|--------------|---|----------------|
| CE       | $3 \times 10^{-3}$                       | 0.02         | / | 78.22          |
| CE       | $5 \times 10^{-3}$                       | 0.02         | ✓ | 79.18          |
| CE       | $5 \times 10^{-3}$                       | 0.03         | ✓ | 79.23          |
| CE       | $5 \times 10^{-3}$                       | 0.05         | ✓ | 79.31          |
| CE       | $8 \times 10^{-3}$                       | 0.03         | ✓ | 79.12          |
|          |                                          |              |   |                |
| CE       | $3 \times 10^{-3}$                       | 0.02         | Х | 77.71          |
| CE<br>CE | $3 \times 10^{-3}$<br>$5 \times 10^{-3}$ | 0.02<br>0.01 | × | 77.71<br>78.93 |
|          |                                          |              | • |                |
| CE       | $5 \times 10^{-3}$                       | 0.01         | × | 78.93          |

Learning rate and Weight Decay.

Loss: Binary Cross Entropy versus Cross Entropy

| mixu | p Rep. aug. | RandA | label smooth. | stoch. depth | BCE target | top-1 acc. |
|------|-------------|-------|---------------|--------------|------------|------------|
| 0.1  | ✓           | 7     | X             | 0.05         | ✓          | 79.85      |
| 0.2  | Х           |       |               |              |            | 79.62      |
| 0.2  |             | 6     |               |              |            | 79.61      |
| 0.0  | 5           |       |               |              |            | 79.57      |
|      |             |       |               |              | X          | 79.57      |

### Repeated augmentation

## Stochastic Depth & Smoothing

| drop-factor | A1    | A2    | A3    |  |  |
|-------------|-------|-------|-------|--|--|
| 0           | 79.94 | 79.79 | 78.06 |  |  |
| 0.05        | 80.38 | 79.85 | 77.57 |  |  |
| 0.1         | 80.12 | 79.62 | 77.32 |  |  |
| smoothing   |       |       |       |  |  |
| X           | 80.22 | 79.85 | 78.06 |  |  |
| ✓           | 80.38 | 79.58 | 77.99 |  |  |

## Augmentation

## Crop-ratio

|            | A1           |               | A2     |              |               | A3     |              |               |        |
|------------|--------------|---------------|--------|--------------|---------------|--------|--------------|---------------|--------|
| crop-ratio | mean (std)   | max-min       | seed 0 | mean (std)   | max – min     | seed 0 | mean (std)   | max – min     | seed 0 |
| 0.875      | 80.18 (0.14) | 80.45 – 79.90 | 80.14  | 79.67 (0.08) | 79.91 – 79.59 | 79.91  | 77.69 (0.10) | 77.85 – 77.48 | 77.69  |
| N 9        | 80 22 (0 15) | 80 54 - 79 98 | 80.25  | 79 73 (0 09) | 79 89 _ 79 56 | 79 75  | 77 86 (0.09) | 78.01 - 77.62 | 77.83  |

| 0.9  | 00.22 (0.13) 00.34 - /7.70 | 00.40 | / <b>7./3</b> (0.09) | /7.07-/7.30   | 17.13 | //.00 (0.09) | /0.U1-//.04   | 11.00 |
|------|----------------------------|-------|----------------------|---------------|-------|--------------|---------------|-------|
| 0.95 | 80.24 (0.14) 80.49 – 79.91 | 80.38 | 79.68 (0.09)         | 79.85 – 79.57 | 79.85 | 78.00 (0.09) | 78.09 – 77.83 | 78.06 |
| 1.0  | 80.15 (0.11) 80.15 – 79.66 | 80.19 | 79.58 (0.13)         | 79.88 – 79.32 | 79.88 | 78.02 (0.10) | 78.16 - 77.83 | 77.93 |

### **Evaluation at other resolutions**



### Conclusion

new training procedures for a vanilla ResNet-50 we have established the new state of the art for training this gold-standard model we do not claim that our procedures are universal, quite the opposite