

The Introduction To Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn 2024-2025-1

The Introduction to Artificial Intelligence

- Part I Brief Introduction to AI & Different AI tribes
- Part II Knowledge Representation & Reasoning
- Part III AI GAMES and Searching
- Part IV Model Evaluation and Selection
- Part V Machine Learning
- Part VI Neural Networks

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

The development history of neural network

Where does intelligence come from?

☐ The brain

■ The typical human neocortex:

- Stretched flat, the human neocortical sheet is roughly the size of a large dinner napkin.
- 2mm thick
- 30 billion neurons
- A tiny square millimeter contains an estimated 100,000 neurons.
- 100 trillion synapses.
- The neocortex plays a key role in most "advanced cognitive functions" such as thinking, memory, planning, perception, language, and attention. 5

☐ Artificial Neuron

Neurons

Connection between neurons

Neural Networks

Idea: Using computers to simulate the activities of biological neural networks is expected to make machines intelligent

Artificial neural networks

■ Artificial Neuron

Biological neural network

Artificial neural networks

Weights Neural network models Learning algorithm

☐ Artificial Neuron

Single neuron structure

How to abstract?

- Soma, Dendrites, Axons
- Function: Collect and transmit signals
- Dendrites receive multiple inputs
- Soma superimposes input information
- Pulses are generated when information is superimposed to a certain extent
- Single output

■ Artificial Neuron

☐ Artificial Neuron

以下哪些是正确的:

A.
$$a = f(z)$$

B.
$$z = w_i x_i$$

C.
$$a = f(\sum_{i=1}^R w_i x_i)$$

$$D. a = f(Wx)$$

Artificial Neuron

■ Neural Networks

Neurons

Neural Networks

■ Neural Networks

Neural Network = Neurons + Connections

■ Neural Networks

Feedforward neural network

neurons + feedforward connections

Recurrent neural network

neurons + recurrent connections

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

- Feedforward neural network with three layers.
- light-sensing cells bipolar cells ganglion cells (光感受细胞-双极细胞-节细胞)
- Neurons receive the outputs of neurons at previous layer as inputs.

Problem: How are these neurons connected to form a feedforward neural network?

Component form
$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

Vector form
$$\begin{cases} a^{l+1} = f(z^{l+1}) \\ z^{l+1} = W^l a^l \end{cases}$$

Algorithm:

Input W^l , a^l for l = 1:L, run function: $a^{l+1} = fc(W^l, a^l)$ return

Function $fc(W^la^l)$ For i = 1: n_{l+1} $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$ $a_i^{l+1} = f(z_i^{l+1})$ end

■ Example: XOR Problem

Problem: Could build a feedforward neural network to complete F?

XOR

■ Example: XOR Problem

■ Example: XOR Problem

$$F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = f[f(2x_1 + 2x_2 - 1) + f(-x_1 - x_2 + 1.5) - 1.5]$$

$$f(s) = \begin{cases} 1, & s \ge 0 \\ 0, & otherwise \end{cases}$$

In fact, FNN is a nonlinear mapping from R^{n_1} space to R^{n_L} space.

$$a^{L} = f(w^{L-1}a^{L-1}) = f\left(w^{L-1}f\left(w^{L-2}f\left(w^{L-3}\cdots f(w^{1}a^{1})\right)\right)\right)$$

■ FNN

- The feedforward neural network is described by nonlinear mapping and is suitable for spatial correlation data analysis.
- Based on the topology of feedforward neural network, a variety of feedforward neural network models are developed.

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

Recurrent neural network

neurons + recurrent connections

RNN = neurons + recurrent connections

Topology Structure

Problem: how to develop computational model of the RNNs?

RNNs – Computational Neural Networks Model:

$$a_1(t+1) = f(w_{11}a_1(t) + w_{12}a_2(t))$$
$$a_2(t+1) = f(w_{21}a_1(t) + w_{22}a_2(t))$$

Computational Model of RNNs:

$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

Vector form:

$$a(t+1) = f(Wa(t))$$

$$W = \begin{bmatrix} w_{11} & \cdots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{n1} & \cdots & w_{nn} \end{bmatrix}, a(t) = \begin{bmatrix} a_1(t) \\ \vdots \\ a_n(t) \end{bmatrix}$$
 The time changes in discrete

manner.

This model is a discrete time dynamic system.

With expanding in time, this networks could have infinite layers.

- Multiple recurrent layers connected by a forward connection
- The neurons within the recurrent layer are connected by recurrent connections

Through the recurrent connection,

□ RNN

- The recurrent neural network is described by the dynamic system and is suitable for spatiotemporal correlation data analysis.
- Based on the topological structure of recurrent neural network, a variety of recurrent neural network models are developed.

LSTM

Recurrent High-way

Have a try

1. 给定以下回复式神经网络结构,其中包含两个权重 w_1 和 w_2 ,和激活函数f(s) = s:

(1) 确定该网络的前向计算。

Have a try

1. 给定以下回复式神经网络结构,其中包含两个权重 w_1 和 w_2 ,和激活函数 f(s) = s:

(1) 确定该网络的前向计算。

$$y(t) = f(s(t)),$$

 $s(t) = x(t)w_1 + y(t-1)w_2$

FNNs VS. RNNs

FNNs

- Extract the spatial features of static data
- Describe spatial correlation

no recurrent connection

- Memory mechanism
- Extract spatiotemporal features of time sequence data
- Describe time correlation

with recurrent connection

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

- Knowledge is acquired by learning.
 - Three human learning models:

Learning with teacher

Reinforcement learning

Learning without teacher

Learning: establishment of new connections and the modification of existing connections

- Learning is to change the connections by some rules.
- Similar with the three learning model of human:

Supervised Learning: Update the network parameters according to the error between the target output and the actual network output of the training sample

Unsupervised learning: For non-label samples, the network parameters are updated by reconstructing these samples.

Reinforcement learning:

Update network parameters with the goal of maximizing rewards during interactions with the environment

Unsupervised Learning

Unsupervised learning: For nonlabel samples, the network parameters are updated by reconstructing these samples.

Supervised Learning

Feature: red, round

Feature: yellow, strip

Supervised Learning

