

Contexte et objectifs

- Mission pour "place de marché"
- Faisabilité de classification automatique
- Classification supervisée
- Test d'une API

Description du jeu de données

- Fichier csv :
 - Id
 - Nom de l'article
 - Description
 - **—** ...
- Images

Quantité: 1050

Etude de faisabilité : Natural Language Process

NLP:

- Preprocessing
- Approches basiques
- Approches avancées (Deep Learning)

Faisabilité NLP : Preprocessing

→ Fonction preprocessing

> Corpus : 47651 mots

➤ Vocabulaire : 3940 mots

Faisabilité NLP : Approches basiques

- Bag of Words (fréquence de chaque mots) :
 - Score ARI : 0,423
- TF-IDF (évaluation de l'importance de chaque mots) :
 - Score ARI: 0,426

Faisabilité NLP : Approches avancées

• Word2Vec : Embeddings dans un Espace vectoriel

Score ARI: 0,179

• BERT: Transformer qui comprend le contexte bidirectionnel des phrases

Score ARI: 0,25

• USE : capte le sens des phrases complètes

Score ARI: 0,295

Faisabilité NLP : Comparaison des performances

- TF-IDF obtient le meilleur score ARI (0,426), surpassant les modèles avancés.
- Raison probable: Le jeu de données est trop modeste pour que les modèles avancés montrent tout leur potentiel.
- Perspectives: Plus de données et un finetuning des modèles avancés pourraient inverser cette tendance.

Etude de faisabilité : Computer Vision

Computer Vision:

- Approche basique :
 - SIFT
- Approche avancée :
 - CNN

Faisabilité Computer Vision : Approche basique - SIFT

- 1. Preprocessing
- 2. Extraction des descripteurs Shape : (514634, 128)
- 3. Création des Bags of Visual Words Kmeans avec 717 clusters de descripteurs
- 4. Création des histogrammes Shape : (1050, 717)
- 5. Réduction de dimension (ACP 99 % → 456 dimensions)
- Classification Kmeans
- Réduction de dimension T-SNE à 2D
- 8. Affichage et score ARI

Faisabilité Computer Vision : Approche basique - SIFT

Faisabilité Computer Vision : Approche avancée - CNN

- 1. Preprocessing
- 2. Extraction des features (vgg-16 pré-entrainé)
- 3. Réduction de dimension (ACP 99% \rightarrow 741 dimensions)
- 4. Classification Kmeans
- 5. Réduction de dimension T-SNE à 2D
- Affichage et score ARI

Faisabilité Computer Vision : Approche avancée - CNN

Faisabilité Computer Vision : Comparaison des méthodes

- CNN obtient le meilleur score
- Score honorable sans optimisations

Classification supervisée

Transfer Learning

- Modèle vgg-16:
 - Recherche d'hyperparamètres optimaux
- Preprocessing
- Entrainements:
 - Dataset de base
 - Dataset + Data Augmentation

Classification supervisée : Transfer Learning - CNN

- A **SANS** Data Augmentation
- B **AVEC** Data Augmentation

- 1. Preprocessing
- 2. Split des données (Train, Test, Validation)
- 3. Tuner Keras
- 4. Entrainement du modèle
- 5. Évaluation des performances

Tuner in 90 trials				
Parameters	*	Basic dataset	▼.	Dataset + DA
Units in dense laye	er	384		416
Dropout rate		0,2		0,5
Learning rate		0,001		0,001
Best epochs		14		4
Trainning duration		37min with GP	U	5h with CPU

Method	Train Loss	Train Accuracy	-	Test Loss	Test Accuracy
Basic Dataset	0.189	0.959	-	0.811	0.829
With Data Augmentation	0.966	0.794	-	1.36	0.776

Collecte de données par API

Test d'une API - EDAMAM

- Critères RGPD
- Clé API
- Requête
- Mise en forme résultats

1. Licéité, loyauté, transparence

- 1. Licéité, loyauté, transparence
- 2. Limitation des finalités

- 1. Licéité, loyauté, transparence
- 2. Limitation des finalités
- 3. Minimisation des données

- 1. Licéité, loyauté, transparence
- 2. Limitation des finalités
- 3. Minimisation des données
- 4. Exactitude des données

- 1. Licéité, loyauté, transparence
- 2. Limitation des finalités
- 3. Minimisation des données
- 4. Exactitude des données
- 5. Limitation de la conservation

Collecte de données par API:

- Clé API
- Requête :
 - > app_id=******

 - > ingr=champagne
 - nutrition-type=logging

Request URL

https://api.edamam.com/api/food-database/v2/parser?app_id=a586f207&app_key=b28ac44e9a58f42fdbacc41603e1f053&ingr=champagne&nutrition-type=logging

- Réception Fichier JSON
- Mise en forme des données
- Export d'un fichier CSV
- **→** Fonction

Conclusion

- **Contexte** : Projet de classification automatique des biens de consommation à partir de données textuelles et visuelles.
- **Réalisations principales**: Exploration d'approches avancées en NLP (Word2Vec, BERT, USE). Mise en place de modèles de vision par ordinateur (SIFT, CNN).
- **Résultats significatifs**: NLP (BoW T-SNE) atteint un ARI de 0.426, et la classification d'images par CNN obtient une précision de 77,5 %.
- **Insight majeur**: L'intégration du NLP et de la vision par ordinateur offre des perspectives prometteuses pour la classification automatique.
- Perspectives : Des améliorations sont possibles pour optimiser la précision et l'efficacité du système.

Perspectives

- Augmentation du jeu de données : Ajouter plus de données textuelles et d'images pour améliorer la généralisation des modèles grâce à plus de variabilité.
- Fine-tuning et ressources: Utiliser des ressources plus puissantes (GPU/TPU) afin d'entrainer les couches du modèle sur nos données pour affiner les poids et ainsi réduire les erreurs de classification.
- Combinaison NLP et Vision par ordinateur : Développer un modèle multimodal combinant les informations textuelles (description des produits) et visuelles (images) pour une classification plus précise.

Questions?