추세와 계절성

결정론적 추세

확률 과정의 기대값이 시간 t에 대한 함수로 표현될 수 있으면 이를 결정론적 추세(trend)라고 한다.

$$\mu_t = \mathrm{E}[Y_t] = f(t)$$

다음 시계열들은 모두 추세를 가지는 확률 과정을 시뮬레이션 한 것이다.

In [1]:

```
np.random.seed(0)
t = np.arange(20)
y = np.zeros((30, 20))
for i in range(30):
    y[i, :] = t + sp.stats.norm.rvs(size=20)
    plt.plot(t, y[i], lw=1)

plt.title("결정론적 추세를 가지는 확률 과정 시뮬레이션")
plt.show()
```


시간에 의해 결정되는 결정론적 계절성도 결정론적 추세에 포함된다.

In [2]:

```
np.random.seed(0)
t = np.arange(20)
y = np.zeros((30, 20))
for i in range(30):
    y[i, :] = -5 * np.sin(0.25 * np.pi * t) + sp.stats.norm.rvs(size=20)
    plt.plot(t, y[i], lw=1)
plt.title("결정론적 계절성을 가지는 확률 과정 시뮬레이션")
plt.show()
```


결정론적 추세 추정

추세 추정(trend estimation)은 확률 과정의 결정론적 기댓값 함수를 알아내는 것을 말한다. 보통 다음과 같은 가정을 사용하여 확률 과정으로부터 추세 성분을 분리한다.

우리가 분석하고자하는 확률 과정 Y_t 이 일반적인 비정상 과정이 아니라 추정이 가능한 **결정론적 추세 함수** f(t)와 정상 확률 과정 X_t 의 합으로 표현될 수 있다.

$$Y_t = f(t) + X_t$$

다항식 추세

다항식 추세 분석 방법은 추세 함수 즉. 확률 과정의 기댓값을 시간에 대한 다항식으로 나타낼 수 있다고 가정하

$$f(t) = \sum_{i=0}^{M} a_i t^i = a_0 + a_1 t + a_2 t^2 + \cdots$$

가장 단순한 모형으로 선형 추세를 가지는 경우를 살펴보자. 다음 시계열 데이터는 대기중 CO2 농도를 측정한 것이다.

In [3]:

```
data = sm.datasets.get_rdataset("CO2", package="datasets")
df = data.data

def yearfraction2datetime(yearfraction, startyear=0):
    import datetime
    import dateutil
    year = int(yearfraction) + startyear
    month = int(round(12 * (yearfraction - year)))
    delta = dateutil.relativedelta.relativedelta(months=month)
    date = datetime.datetime(year, 1, 1) + delta
    return date

df["datetime"] = df.time.map(yearfraction2datetime)
df["month"] = df.datetime.dt.month
df.tail()
```

Out[3]:

	time	value	datetime	month
463	1997.583333	362.57	1997-08-01	8
464	1997.666667	360.24	1997-09-01	9
465	1997.750000	360.83	1997-10-01	10
466	1997.833333	362.49	1997-11-01	11
467	1997.916667	364.34	1997-12-01	12

```
result = sm.OLS.from_formula("value ~ time", data=df).fit()
print(result.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Tu	Va Least Squa e, 25 Jun 2 19:19 nonrol	2019 5:03 468 466 1	Adj. F-sta Prob	nared: R-squared: ntistic: (F-statisti ikelihood:	c):	0.969 0.969 1.479e+04 0.00 -1113.5 2231. 2239.
	coef	std err	=====	t	P> t	[0.025	0.975]
Intercept -2249. time 1.3	7742 3075	21.268 0.011	-105 121	.784 .634	0.000 0.000	-2291.566 1.286	-2207.982 1.329
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0	.857 .000 .048 .375		•	:	0.212 7.798 0.0203 3.48e+05

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 3.48e+05. This might indicate that there are strong multicollinearity or other numerical problems.

위 회귀 분석 결과 보고서에서 추세 함수가 다음과 같다는 것을 할 수 있다.

$$f(t) = 1.3075t - 2249.7742$$

In [5]:

```
t = df.time
y = df.value
trend = result.params[0] + result.params[1] * t
plt.plot(t, y, '-', t, trend, '-')
plt.title("CO2 농도 시계열과 그에 대한 추세 함수")
plt.xlabel("시간")
plt.ylabel("CO2의 농도")
plt.show()
```


In [6]:

```
result2 = sm.OLS.from_formula("value ~ time + I(time ** 2)", data=df).fit()
print(result2.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	l Tue, ns:	value OLS Least Squares 25 Jun 2019 19:15:04 468 465 2 nonrobust	F-stati: Prob (F	squared:		0.979 0.979 1.075e+04 0.00 -1027.8 2062. 2074.
======================================	coef	std err	 t	 P> t	[0.025	0.975]
Intercept time I(time ** 2)	4.77e+04 -49.1907 0.0128	3482.902 3.521 0.001	13.696 -13.971 14.342	0.000 0.000 0.000	4.09e+04 -56.110 0.011	5.45e+04 -42.272 0.015
Omnibus: Prob(Omnibus): Skew: Kurtosis:		66.659 0.000 -0.116 2.072	Durbin- Jarque- Prob(JB Cond. N	Bera (JB):):		0.306 17.850 0.000133 1.35e+11

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 1.35e+11. This might indicate that there are strong multicollinearity or other numerical problems.

In [7]:

```
trend2 = result2.params[0] + result2.params[1] * t + result2.params[2] * t**2
plt.plot(t, y, '-', t, trend2, '-')
plt.title("CO2 농도 시계열과 그에 대한 추세 함수")
plt.show()
```


이렇게 구한 결정론적 추세 모형을 이용하면 1998년 1월의 CO2 농도는 다음과 같이 예측할 수 있다.

In [8]:

```
t_{test} = 1998 + 1 / 12
X_test = pd.DataFrame([[t_test]], columns=["time"])
X_test
```

Out[8]:

time

0 1998.083333

In [9]:

```
result2.predict(X_test)
```

Out [9]:

366.010741 dtype: float64

In [10]:

```
trend2 = result2.params[0] + result2.params[1] * t + result2.params[2] * t**2 plt.plot(t[-30:], y[-30:], 'o-', t[-30:], trend2[-30:], '-') plt.plot(t_test, result2.predict(X_test).values[0], 'o', ms=10, lw=5) plt.title("CO2 농도 시계열과 1998년 1월 예측치") plt.show()
```


계절성 추세

계절성 추세는 특정한 달(month)이나 요일(day of week)에 따라 기댓값이 달라지는 것을 말한다. 이는 달 이름이나 요일 이름을 카테고리(category) 값으로 사용하여 회귀분석하여 추정할 수 있다.

다음은 호흡기질환 사망자수를 나타낸 시계열 데이터이다.

In [11]:

```
df2 = sm.datasets.get_rdataset("deaths", "MASS").data
df2["datetime"] = df2.time.map(yearfraction2datetime)
df2.tail()
```

Out[11]:

	time	value	datetime
67	1979.583333	1354	1979-08-01
68	1979.666667	1333	1979-09-01
69	1979.750000	1492	1979-10-01
70	1979.833333	1781	1979-11-01
71	1979.916667	1915	1979-12-01

In [12]:

```
df2["month"] = df2.datetime.dt.month
df2.tail()
```

Out[12]:

	time	value	datetime	month
67	1979.583333	1354	1979-08-01	8
68	1979.666667	1333	1979-09-01	9
69	1979.750000	1492	1979-10-01	10
70	1979.833333	1781	1979-11-01	11
71	1979.916667	1915	1979-12-01	12

In [13]:

```
result = sm.OLS.from_formula('value ~ C(month) - 1', data=df2).fit()
print(result.summary())
```

OLS Regression Results

Model: Method: Least Squa Date: Tue, 25 Jun 2 Time: 19:15 No. Observations: Df Residuals: Df Model:		value OLS Least Squares , 25 Jun 2019 19:15:07 72 60 11 nonrobust	R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	squared: stic: -statistic)	:	0.853 0.826 31.66 6.55e-21 -494.38 1013. 1040.
	coef	std err	t	P> t	[0.025	0.975]
C(month)[1] C(month)[2] C(month)[3] C(month)[4] C(month)[5] C(month)[6] C(month)[7] C(month)[8] C(month)[9] C(month)[10] C(month)[11] C(month)[12]	2959.3333 2894.6667 2743.0000 2269.6667 1805.1667 1608.6667 1550.8333 1408.3333 1397.3333 1690.0000 1874.0000 2478.5000	103.831 103.831 103.831 103.831 103.831 103.831 103.831 103.831 103.831 103.831 103.831	28.502 27.879 26.418 21.859 17.386 15.493 14.936 13.564 13.458 16.277 18.049 23.871	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2751.641 2686.975 2535.308 2061.975 1597.475 1400.975 1343.141 1200.641 1189.641 1482.308 1666.308 2270.808	3167.025 3102.359 2950.692 2477.359 2012.859 1816.359 1758.525 1616.025 1605.025 1897.692 2081.692 2686.192
Omnibus: 19.630 Prob(Omnibus): 0.000 Skew: 0.787 Kurtosis: 6.750		Durbin-V Jarque-E Prob(JB) Cond. No	Bera (JB):):		1.374 49.630 1.67e-11 1.00	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

모형식 문자열에서 "-1"은 y 절편을 모형에 넣지 않는 것을 의미한다. 즉, 모든 month변수의 가능한 값을 사용한다. month 변수가 0과 1값을 가지는 dummy 변수이기때문에 이 분석에서 구한 계수는 특정한 달의 기온 평균값이 된다.

추정한 계절성 성분과 나머지 성분을 분리하여 그리면 다음과 같다.

In [14]:

```
plt.plot(df2.value, label="사망자 수 시계열")
plt.plot(result.fittedvalues, lw=3, alpha=0.5, label="추정한 시계열")
plt.plot(result.resid, label="잔차")
plt.title("시계열의 계절성 추정")
plt.legend(loc=1)
plt.show()
```


위 방법으로 찾아낸 잔차 시계열을 보면 시간이 지나갈 수록 점점 감소하고 있는 것을 알 수 있다. 이러한 선형 추세까지 한꺼번에 잡아내려면 다음과 같이 회귀분석을 하면 된다.

result2 = sm.OLS.from_formula('value ~ time + C(month) - 1', data=df2).fit()
print(result2.summary())

OLS Regression Results

Dep. Variable: value Model: OLS Method: Least Squares Date: Tue, 25 Jun 2019 Time: 19:15:08 No. Observations: 72 Df Residuals: 59 Df Model: 12 Covariance Type: nonrobust			R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:			0.881 0.857 36.43 8.56e-23 -486.75 999.5 1029.
	coef	std err	t	P> t	[0.025	0.975]
C(month)[1]	1.204e+05	3.15e+04	3.825	0.000	5.74e+04	1.83e+05
C(month)[2]	1.203e+05	3.15e+04	3.823	0.000	5.73e+04	1.83e+05
C(month)[3]	1.202e+05	3.15e+04	3.819	0.000	5.72e+04	1.83e+05
C(month)[4]	1.197e+05	3.15e+04	3.803	0.000	5.67e+04	1.83e+05
C(month)[5]	1.192e+05	3.15e+04	3.789	0.000	5.63e+04	1.82e+05
C(month)[6]	1.19e+05	3.15e+04	3.782	0.000	5.61e+04	1.82e+05
C(month)[7]	1.19e+05	3.15e+04	3.781	0.000	5.6e+04	1.82e+05
C(month)[8]	1.189e+05	3.15e+04	3.776	0.000	5.59e+04	1.82e+05
C(month)[9]	1.188e+05	3.15e+04	3.776	0.000	5.59e+04	1.82e+05
C(month)[10]	1.191e+05	3.15e+04	3.785	0.000	5.62e+04	1.82e+05
C(month)[11]	1.193e+05	3.15e+04	3.791	0.000	5.63e+04	1.82e+05
C(month)[12]	1.199e+05	3.15e+04	3.810	0.000	5.7e+04	1.83e+05
time	-59.4024 	15.920 	-3.731 	0.000	-91.258 	-27.547
Prob(Omnibus): 0.00 Skew: 0.90		26.709 0.000 0.943 8.535	Durbin-V Jarque-E Prob(JB) Cond. No	Bera (JB):):		1.679 102.584 5.30e-23 7.93e+06

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 7.93e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [16]:

```
plt.plot(df2.value, label="사망자 수 시계열")
plt.plot(result2.fittedvalues, lw=3, alpha=0.5, label="추정한 시계열")
plt.plot(result2.resid, label="잔차")
plt.title("시계열의 계절성과 추세 추정")
plt.legend()
plt.show()
```


이렇게 구한 결정론적 추세 모형을 이용하면 1980년 1월의 사망자 수는 다음과 같이 예측할 수 있다.

In [26]:

```
t_test = 1980 + 1 / 12
month_test = 1
X_test = pd.DataFrame([[t_test, month_test]], columns=["time", "month"])
X_test
```

Out [26]:

time month

0 1980.083333 1

In [18]:

```
result2.predict(X_test)
```

Out[18]:

0 2746.474802 dtype: float64

In [19]:

```
plt.plot(df2.value, label="사망자 수 시계열")
plt.plot(result2.fittedvalues, lw=3, alpha=0.5, label="추정한 시계열")
plt.plot(len(df2) + 1, result2.predict(X_test).values[0], 'o', ms=10, lw=5)
plt.title("사망자 수 시계열과 1980년 1월 예측치")
plt.show()
```


이번에는 위에서 보았던 CO2 농도를 계절성까지 포함하여 추세 추정을 해보자.

In [20]:

```
result3 = sm.OLS.from_formula("value \sim 0 + C(month) + time + I(time ** 2)", data=df).fit() print(result3.summary())
```

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	Tue ons:	value OLS Least Squares , 25 Jun 2019 19:15:09 468 454 13	R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	squared: stic: -statistic):		0.998 0.998 1.531e+04 0.00 -505.82 1040. 1098.
	coef	std err	t	P> t	[0.025	0.975]
C(month)[1]	4.771e+04	 1155.536	41.289	0.000	4.54e+04	 5e+04
C(month)[2]	4.771e+04	1155.536	41.290	0.000	4.54e+04	5e+04
C(month)[3]	4.771e+04	1155.536	41.290	0.000	4.54e+04	5e+04
C(month)[4]	4.771e+04	1155.536	41.291	0.000	4.54e+04	5e+04
C(month)[5]	4.771e+04	1155.536	41.292	0.000	4.54e+04	5e+04
C(month)[6]	4.771e+04	1155.536	41.291	0.000	4.54e+04	5e+04
C(month)[7]	4.771e+04	1155.536	41.290	0.000	4.54e+04	5e+04
C(month)[8]	4.771e+04	1155.536	41.288	0.000	4.54e+04	5e+04
C(month)[9]	4.771e+04	1155.536	41.287	0.000	4.54e+04	5e+04
C(month)[10]	4.771e+04	1155.536	41.286	0.000	4.54e+04	5e+04
C(month)[11]	4.771e+04	1155.536	41.287	0.000	4.54e+04	5e+04
C(month)[12]	4.771e+04	1155.536	41.288	0.000	4.54e+04	5e+04
time	-49.2021	1.168	-42.120	0.000	-51.498	-46.907
I(time ** 2)	0.0128	0.000	43.242	0.000	0.012	0.013
 Omnibus:		8.181	 	 Watson:		0.169
Prob(Omnibus)):	0.017	Jarque-l	Bera (JB):		7.581
Skew:		0.260	Prob(JB):		0.0226

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

4.68e+11

[2] The condition number is large, 4.68e+11. This might indicate that there are strong multicollinearity or other numerical problems.

2.654

In [21]:

```
plt.subplot(211)
plt.title("CO2 농도 시계열 추정")
plt.plot(df.value)
plt.plot(result3.fittedvalues, lw=2, alpha=0.9)
plt.subplot(212)
plt.title("잔차 시계열")
plt.plot(df.value - result3.fittedvalues)

plt.tight_layout()
plt.show()
```


연습 문제 1

다음 데이터는 1937-1960년 사이의 미국 항공운송거리 시계열이다. (Passenger Miles on Commercial US Airlines, 1937-1960) 결정론적 추세를 사용하여 1961년의 운송거리를 예측하라.

In [22]:

```
data = sm.datasets.get_rdataset("airmiles", package="datasets")
df = data.data
df.tail()
```

Out[22]:

	time	value
19	1956	22362
20	1957	25340
21	1958	25343
22	1959	29269
23	1960	30514

In [23]:

```
df.plot(x="time", y="value", style=["bo-"])
plt.show()
```


연습 문제 2

다음 데이터는 2012-2015년 사이의 월간 교통량 시계열이다. (Monthly Peace Bridge Traffic. 2012-2015) 결정론 적 추세를 사용하여 2016년 1월의 교통량을 예측하라.

In [24]:

```
data = sm.datasets.get_rdataset("PeaceBridge2012", package="Stat2Data")
df = data.data
df.tail()
```

Out[24]:

	Year	Month	Traffic	t
43	2015	8	598.6	44
44	2015	9	476.9	45
45	2015	10	457.9	46
46	2015	11	401.3	47
47	2015	12	395.9	48

In [25]:

```
df.plot(x="t", y="Traffic", style=["bo-"])
plt.show()
```

