# Earnings by California County Employees

An analysis of publicly available data

Moises Evangelista 2016-06-13

## Introduction

This report tries to mimic the report titled County Pay Practices, Report 2015-132. County Pay Practices report was created by the California State Auditor and it sheds light in the wage gap between females and male employees employed by California counties.

This report uses publicly available data to shed more light on the report created by the California State Auditor. The data the data source for this report is from transparentcalifornia.com

### **Empirical Analysis**

The data from transparentialifornia.com was downloaded for years 2013 and 2014 (the data for year 2015 is incomplete as of 2016-06-13). The data includes employee names but it lacks employee gender. To overcome the gender data not being included a processed was used to match the names to another list that is composed of names and gender. A list of names that includes gender was extracted from the R package babynames. 'The baby names list is composed from US baby names provided by the SSA. This package contains all names used for at least 5 children of either sex'. see this more more information.

The names from the county data were generally composed in one of two formats. The first format was FIRST LAST, the second format was LAST, FIRST.

The county data was processed by extracting the first names for each record. The data from the R package was summarized and names were given a proportion of usage e.g. Alexy was classified as female and as was Adel. Some names are almost exclusively used by females e.g. Therese or Annabelle and some are almost exclusively used by males e.g. Rodrigo or Mauricio. Some names are used by male and females almost equally e.g. Alexy or Adel.

Names from the county data were matched with the list of names with gender and the likely gender was then selected for each name. After the name matching processes some names were left unmatched e.g.Mcheko or SuiKwong.

Also, For this report the median was used because it is less prone to be skewed by total pay observations that are too high or too low especially since the total earnings have long tails e.i. some records have cents and some records have over a million of total earnings.

#### Data issues

This analysis uses each row as if it was a unique worker and this method this creates some issues. Some workers may be employees in one department with a certain title e.g. Program Analyst and then promote to another title within the department e.g. Information Systems Analyst. In this situations the same worker may appear twice in the data in the same year. In addition, some workers may start working for the county for part of the year due to being a new hire or leaving county employment due to retirement, death, or employment in the private sector. This situations may impact the wages per employee.

Some salaries include back pay and court settlement payments, which make total pay increase and thus skew the data for some records.

Suggestions to mitigate these situations and get a better idea of county pay is to include a unique identifier by worker (it does not have to be the employee number), and include the number of hours a worker was paid in the year and separate the payments due to court settlements. In addition, the names to have a consistent format either first name first or first name after a comman.

Table 1: The table below shows the percent of names matched to males or females for years 2013 and 2014. Kern County has the highest percent of unmatched names because their name structure is in disarray

|                | bothMissing | FemaleLikely | MaleLikely |
|----------------|-------------|--------------|------------|
| Alameda County | 0.06        | 0.55         | 0.39       |
| Amador County  | 0           | 0.54         | 0.45       |

|                           | bothMissing | FemaleLikely | MaleLikely     |
|---------------------------|-------------|--------------|----------------|
| Butte County              | 0.02        | 0.63         | 0.35           |
| Calaveras County          | 0.01        | 0.56         | 0.43           |
| Colusa County             | 0.03        | 0.58         | 0.39           |
| Contra Costa County       | 0.06        | 0.61         | 0.34           |
| Del Norte County          | 0.02        | 0.59         | 0.39           |
| El Dorado County          | 0.01        | 0.55         | 0.43           |
| Fresno County             | 0.04        | 0.54         | 0.42           |
| Glenn County              | 0.02        | 0.59         | 0.39           |
| Humboldt County           | 0.02        | 0.61         | 0.37           |
| Imperial County           | 0.01        | 0.57         | 0.42           |
| Inyo County               | 0.01        | 0.53         | 0.45           |
| Kern County               | 0.5         | 0.06         | 0.44           |
| Kings County              | 0.02        | 0.58         | 0.4            |
| Lassen County             | 0.01        | 0.47         | 0.52           |
| Los Angeles County        | 0.07        | 0.53         | 0.4            |
| Madera County             | 0.02        | 0.58         | 0.4            |
| Marin County              | 0.03        | 0.52         | 0.45           |
| Mariposa County           | 0.01        | 0.57         | 0.41           |
| Mendocino County          | 0.02        | 0.59         | 0.39           |
| Merced County             | 0.02        | 0.54         | 0.43           |
| Mono County               | 0.01        | 0.42         | 0.49 $0.57$    |
| Monterey County           | 0.03        | 0.63         | 0.34           |
| Napa County               | 0.03        | 0.58         | 0.34 $0.4$     |
| Napa County Nevada County | 0.03        | 0.55         | 0.43           |
| Orange County             | 0.02 $0.04$ | 0.53 $0.54$  | $0.43 \\ 0.42$ |
|                           |             |              |                |
| Placer County             | 0.01        | 0.57         | 0.42           |
| Plumas County             | 0.01        | 0.54         | 0.45           |
| Riverside County          | 0.04        | 0.59         | 0.37           |
| Sacramento County         | 0.04        | 0.48         | 0.48           |
| San Benito County         | 0.01        | 0.63         | 0.36           |
| San Bernardino County     | 0.03        | 0.62         | 0.35           |
| San Diego County          | 0.04        | 0.55         | 0.41           |
| San Francisco             | 0.07        | 0.41         | 0.52           |
| San Joaquin County        | 0.05        | 0.6          | 0.34           |
| San Luis Obispo County    | 0.02        | 0.58         | 0.4            |
| San Mateo County          | 0.05        | 0.57         | 0.38           |
| Santa Barbara County      | 0.02        | 0.56         | 0.42           |
| Santa Clara County        | 0.07        | 0.58         | 0.35           |
| Santa Cruz County         | 0.02        | 0.58         | 0.4            |
| Shasta County             | 0.01        | 0.61         | 0.38           |
| Sierra County             | 0           | 0.5          | 0.5            |
| Siskiyou County           | 0.01        | 0.51         | 0.48           |
| Solano County             | 0.04        | 0.63         | 0.34           |
| Sonoma County             | 0.02        | 0.55         | 0.43           |
| Stanislaus County         | 0.04        | 0.63         | 0.33           |
| Sutter County             | 0.04        | 0.58         | 0.39           |
| Tehama County             | 0.01        | 0.63         | 0.36           |
| Tulare County             | 0.03        | 0.57         | 0.4            |
| Tuolumne County           | 0.01        | 0.58         | 0.41           |
| Ventura County            | 0.02        | 0.56         | 0.41           |
| Yolo County               | 0.03        | 0.6          | 0.37           |
| Yuba County               | 0.03        | 0.56         | 0.41           |

For this analysis the data from Kern County represented a major concern since it does not follow any of the two name formats used by the other counties.

Table 2: Sample of five records that were matched and five records that were unmatched from Kern County data. For some records the names are scrabbled, first name appears first and sometimes it appears in the middle of the name, and commas are missing. In addition, Name initials and name suffix add to the complexity of Kern County data.

| Employee.Name             | FinalGender  | Type           |
|---------------------------|--------------|----------------|
| Andress Julie M           | MaleLikely   | Matched Name   |
| Hernandez Jose            | MaleLikely   | Matched Name   |
| Garcia Julissa            | MaleLikely   | Matched Name   |
| Cervantes Alfred          | MaleLikely   | Matched Name   |
| Bailey Shannon A          | FemaleLikely | Matched Name   |
| Cornelison Curtis         | bothMissing  | Unmatched Name |
| Mcsperitt Katelyn Cheyene | bothMissing  | Unmatched Name |
| Lund Cheryl L             | bothMissing  | Unmatched Name |
| Gibbons Rebecca Lynne     | bothMissing  | Unmatched Name |
| Contreras Ernie           | bothMissing  | Unmatched Name |

#### Median pay

To measure the gap in pay by gender, it is useful to know the number of employees who are above and below the median for each county. So the median pay was extracted, rather than the average, by county and by year. The records where then grouped into above or below the median and a Chi-squared test was complete by county. For most counties the number of records classified as female and that are above the median is lower that what is expected and the difference is statistically significant (it's unlikely that occurred by chance).

Table 3: Expected and observed females counts over the median pay by county in 2014. County where the p-value is highlighted show a statistical significant difference between expected and observed counts

| ID | Agency                 | ActualCount | ExpectedCount | pvalue                      |
|----|------------------------|-------------|---------------|-----------------------------|
| 1  | Alameda County         | 2,288       | 2,714         | 9.242e-73                   |
| 2  | Amador County          | 94          | 115           | $5.428\mathrm{e}\text{-}05$ |
| 3  | Butte County           | 927         | 1,037         | 6.643e-16                   |
| 4  | Colusa County          | 109         | 130           | $4.429\mathrm{e}\text{-}05$ |
| 5  | Contra Costa County    | $3,\!277$   | 3,570         | 1.812e-31                   |
| 6  | El Dorado County       | 493         | 615           | $5.458\mathrm{e}\text{-}26$ |
| 7  | Fresno County          | 1,780       | 2,069         | 4.32e-42                    |
| 8  | Glenn County           | 127         | 147           | 0.0002197                   |
| 9  | Humboldt County        | 624         | 696           | 3.358e-10                   |
| 10 | Imperial County        | 566         | 656           | 1.702e-14                   |
| 11 | Inyo County            | 131         | 142           | 0.04543                     |
| 12 | Kern County            | 296         | 307           | 0.3448                      |
| 13 | Lassen County          | 5           | 5             | 0.8008                      |
| 14 | Los Angeles County     | 23,153      | 27,222        | 0                           |
| 15 | Madera County          | 268         | 353           | 1.646e-23                   |
| 16 | Marin County           | 687         | 760           | $3.239\mathrm{e}\text{-}08$ |
| 17 | Mariposa County        | 146         | 168           | 0.0002983                   |
| 18 | Mendocino County       | 380         | 405           | 0.005017                    |
| 19 | Merced County          | 728         | 712           | 0.196                       |
| 20 | Monterey County        | 1,983       | 2,094         | $8.335\mathrm{e}\text{-}09$ |
| 21 | Napa County            | 398         | 478           | $5.673\mathrm{e}\text{-}16$ |
| 22 | Nevada County          | 243         | 279           | $5.074\mathrm{e}\text{-}06$ |
| 23 | Orange County          | 4,099       | 5,044         | 3.113e-179                  |
| 24 | Placer County          | 634         | 834           | 9.675 e-51                  |
| 25 | Plumas County          | 138         | 150           | 0.04195                     |
| 26 | Riverside County       | 5,737       | 6,960         | 2.9e-249                    |
| 27 | Sacramento County      | 2,454       | 3,033         | 4.842e-99                   |
| 28 | San Benito County      | 161         | 172           | 0.05964                     |
| 29 | San Bernardino County  | 5,690       | 6,843         | 1.737e-240                  |
| 30 | San Diego County       | 4,519       | 5,337         | 3.192e-132                  |
| 31 | San Francisco          | 6,632       | 7,941         | 3.414e-172                  |
| 32 | San Joaquin County     | 1,962       | 2,232         | 3.178e-41                   |
| 33 | San Luis Obispo County | 762         | 918           | 6.589e-30                   |
| 34 | San Mateo County       | 2,535       | 2,565         | 0.176                       |
| 35 | Santa Barbara County   | 1,662       | 1,888         | 5.511e-30                   |
| 36 | Santa Clara County     | 4,957       | 5,399         | 1.563e-43                   |
| 37 | Santa Cruz County      | 687         | 769           | 5.422e-11                   |
| 38 | Shasta County          | 559         | 615           | 6.327e-07                   |
| 39 | Sierra County          | 31          | 34            | 0.2429                      |
| 40 | Siskiyou County        | 182         | 209           | 0.0001521                   |
| 41 | Solano County          | 905         | 1,016         | 1.192e-16                   |
| 42 | Sonoma County          | 1,280       | 1,437         | 1.033e-18                   |
| 43 | Stanislaus County      | 1,124       | 1,308         | 7.416e-34                   |

| ID | Agency          | ActualCount | ExpectedCount | pvalue                       |
|----|-----------------|-------------|---------------|------------------------------|
| 44 | Sutter County   | 286         | 324           | 2.918e-06                    |
| 45 | Tehama County   | 251         | 297           | 3.184e-10                    |
| 46 | Tulare County   | 846         | 1,136         | 2.706e-79                    |
| 47 | Tuolumne County | 236         | 255           | 0.008567                     |
| 48 | Ventura County  | 2,179       | 2,707         | $5.007\mathrm{e}\text{-}108$ |
| 49 | Yolo County     | 449         | 521           | 3.666e-13                    |
| 50 | Yuba County     | 262         | 298           | $4.24\mathrm{e}\text{-}06$   |



Figure 1: Top 10 counties in 2014 (representing about 70% of total records) broken down by expected and actual counts of those above and below the median total pay.

Table 4: Wage ratio by county for 2014, Merced and Lassen counties ratio is over 1. Pay ratios for counties where the ratio is close or over 1 are in bold font in column 'FamaleToMaleRatioWage'.

| Agency                 | FemaleLikely | MaleLikely | ${\it Famale To Male Ratio Wage}$ |
|------------------------|--------------|------------|-----------------------------------|
| Alameda County         | 92,220       | 124,491    | 0.7408                            |
| Amador County          | 69,915       | 87,725     | 0.797                             |
| Butte County           | 39,940       | 57,987     | 0.6888                            |
| Colusa County          | 62,185       | 77,509     | 0.8023                            |
| Contra Costa County    | 74,968       | 95,053     | 0.7887                            |
| El Dorado County       | 62,762       | 87,468     | 0.7175                            |
| Fresno County          | 59,480       | 76,920     | 0.7733                            |
| Glenn County           | $55,\!292$   | $65,\!400$ | 0.8455                            |
| Humboldt County        | 55,101       | 65,936     | 0.8357                            |
| Imperial County        | $56,\!425$   | 69,957     | 0.8066                            |
| Inyo County            | 68,969       | 75,283     | 0.9161                            |
| Kern County            | 79,694       | 82,326     | 0.968                             |
| Lassen County          | 105,630      | 101,484    | 1.041                             |
| Los Angeles County     | 77,417       | 102,387    | 0.7561                            |
| Madera County          | 52,797       | 67,940     | 0.7771                            |
| Marin County           | 83,358       | 95,791     | 0.8702                            |
| Mariposa County        | 46,127       | 58,803     | 0.7844                            |
| Mendocino County       | 56,235       | 63,415     | 0.8868                            |
| Merced County          | 67,745       | 63,568     | 1.066                             |
| Monterey County        | 66,873       | 77,949     | 0.8579                            |
| Napa County            | 81,888       | 104,389    | 0.7844                            |
| Nevada County          | 61,183       | 74,433     | 0.822                             |
| Orange County          | 77,719       | 105,566    | 0.7362                            |
| Placer County          | 75,153       | 105,113    | 0.715                             |
| Plumas County          | 38,408       | 52,897     | 0.7261                            |
| Riverside County       | 54,106       | 78,030     | 0.6934                            |
| Sacramento County      | 77,942       | 101,662    | 0.7667                            |
| San Benito County      | 54,188       | 63,133     | 0.8583                            |
| San Bernardino County  | 58,860       | 84,623     | 0.6956                            |
| San Diego County       | 71,084       | 91,901     | 0.7735                            |
| San Francisco          | 91,298       | 111,316    | 0.8202                            |
| San Joaquin County     | 67,552       | 89,866     | 0.7517                            |
| San Luis Obispo County | 68,823       | 94,889     | 0.7317 $0.7253$                   |
| San Mateo County       | 72,431       | 76,098     | 0.7253 $0.9518$                   |
| Santa Barbara County   |              |            | 0.606                             |
| Santa Clara County     | 50,530       | 83,377     |                                   |
| v                      | 94,346       | 111,909    | 0.8431                            |
| Santa Cruz County      | 83,515       | 96,638     | 0.8642                            |
| Shasta County          | 46,255       | 54,179     | 0.8537                            |
| Sierra County          | 52,230       | 65,276     | 0.8001                            |
| Siskiyou County        | 53,369       | 67,090     | 0.7955                            |
| Solano County          | 78,141       | 95,437     | 0.8188                            |
| Sonoma County          | 92,516       | 111,819    | 0.8274                            |
| Stanislaus County      | 64,073       | 83,630     | 0.7661                            |
| Sutter County          | 68,363       | 85,805     | 0.7967                            |
| Tehama County          | 53,592       | 65,567     | 0.8174                            |
| Tulare County          | 49,777       | 70,934     | 0.7017                            |
| Tuolumne County        | 49,760       | 62,062     | 0.8018                            |
| Ventura County         | 70,054       | 103,925    | 0.6741                            |
| Yolo County            | 70,017       | 89,513     | 0.7822                            |
| Yuba County            | 60,706       | 74,210     | 0.818                             |



Figure 2: Top 10 counties in 2014 (representing about 70% of total records) broken down gender and county. It excludes records with over one million or less than 100 dollars total pay.



Figure 3: Tectonic changes are needed to close the gap between total earnings between males and females. For Riverside and San Diego Counties, the highest paid records are female in 2014.

Table 5: Descriptive statistics by year

|                | 2013                                                | 2014                                              | Test Statistic                      |
|----------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------|
|                | N = 360372                                          | N = 367650                                        |                                     |
| FinalGender    |                                                     |                                                   | $\chi_1^2 = 2, \ P = 0.1^1$         |
| FemaleLikely   | 57% (203899)                                        | 57% (208682)                                      |                                     |
| MaleLikely     | 43% (156473)                                        | $43\% \ (158968)$                                 |                                     |
| Total Earnings | $49035$ <b>77553</b> $115933$ ( $85642 \pm 57829$ ) | $48629$ <b>79492</b> 119595 ( $87872 \pm 60634$ ) | $F_{1,728020} = 173, \ P < 0.001^2$ |

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.  $x \pm s$  represents  $\bar{X} \pm 1$  SD.Numbers after percents are frequencies. Tests used: Pearson test; Wilcoxon test

Table 6: Descriptive statistics by year for likely males only.

|                | 2013                                                | 2014                                                 | Test Statistic                   |
|----------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------|
|                | N = 156473                                          | N = 158968                                           |                                  |
| Total Earnings | $55269$ <b>92842</b> $137102$ ( $99249 \pm 65152$ ) | $55082$ <b>94654</b> $141429$ ( $101754 \pm 68375$ ) | $F_{1,315439} = 63, \ P < 0.001$ |

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.  $x \pm s$  represents  $\bar{X} \pm 1$  SD. Test used: Wilcoxon test

Table 7: Descriptive statistics by year for likely females only.

|                | 2013                                                | 2014                                                | Test Statistic                    |
|----------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------|
|                | N = 203899                                          | N = 208682                                          |                                   |
| Total Earnings | $45527$ <b>70053</b> $100256$ ( $75199 \pm 49008$ ) | $45065$ <b>72289</b> $103626$ ( $77296 \pm 51546$ ) | $F_{1,412579} = 156, \ P < 0.001$ |

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.  $x \pm s$  represents  $\bar{X} \pm 1$  SD. Test used: Wilcoxon test

\_\_\_\_\_

The analysis was completed on Monday Jun 13 8:22:49 AM 2016 in 27 seconds.