

Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment

Muhao Chen¹, Yingtao Tian², Mohan Yang¹, and Carlo Zaniolo¹
University of California, Los Angeles¹
Stony Brook University²

Outline

- Background
- MTransE—A multilingual knowledge graph embedding model
- Evaluation
- Open Challenges and Future Work

Knowledge Graphs

Symbolic representation of entities and relations

(California, capital city, Sacramento)

Monolingual knowledge: triples (relation facts of entities)

(カリフォルニア, 首都, サクラメント)

Cross-lingual knowledge: alignment of monolingual knowledge across languages

Knowledge Graph Embeddings

Encode entities as vectors

France (0.138, 0.551, ..., 0.222)

Embeddings

Semantic similarity of entities

Relational inferences as vector algebra

- France Paris ≈ capital
- US USD ≈ currency
- Bach German ≈ nationality
- _ ...
- KG Completion
- Relation extraction from text
- Question answering

Current KG Embedding Approaches

• Focused on embedding monolingual triples (h, r, t)

Later approaches

- TransH [Wang et al. 2014]
- TransR [Lin et al. 2015]
- TransD [Ji et al. 2015]
- HolE [Nickle et al. 2016]

- Complex [Trouillon et al. 2016]

TransE: *h+r≈t*

Embedding of **monolingual** knowledge seems to be well-addressed.

What about cross-lingual knowledge?

Emerging challenge

- Existing works do not characterize cross-lingual knowledge
 - Entity inter-lingual links (ILLs): (ambulance --- krankenwagen)
 - Triple-wise alignment (TWA): ((State of California, capital city, Sacramento) --- (カリフォルニア, 首都,サクラメント))
 - Many KGs store such knowledge

Why important?

- Enables multilingual semantic representations
- Benefits cross-lingual NLP
 - Knowledge alignment
 - Machine translation
 - Cross-lingual Q&A
 - _ ...

Difficult to characterize:

- Fewer samples: Cross-lingual knowledge currently accounts for a small portion of each KB
- Larger domains: Cross-lingual knowledge applies on the entire spaces of involved languages
- **Incoherence:** Language-specific versions of KG are usually incoherent
- Heterogeneity: Applies to both entities and monolingual relations with inconsistent vocabularies

What does MTransE use and enable?

- Corpora: (partially-aligned) multilingual KGs
- Enabling: inferable embeddings of multilingual semantics
- Can be applied to:
 - Knowledge alignment
 - Cross-lingual Q&A
 - Multilingual chat-bots
 - **–** ...

MTransE Model Components

Knowledge model

$$S_K = \sum_{L \in \{L_i, L_j\}} \sum_{T \in G_L} ||\mathbf{h} + \mathbf{r} - \mathbf{t}||$$

Alignment model

$$S_A = \sum_{(T,T') \in \delta(L_i,L_j)} S_a(T,T')$$

All aligned triples

- Objective of learning
 - Minimizing $J(\theta) = S_K + \alpha S_A$

Different alignment techniques

Encoding cross-lingual transitions just like monolingual relations

Translation vectors

Translate

Translate

Translate

Space L_i

Space L_j

Linear Transformations

 Transformations across embedding spaces of different languages

Transformations

Space L_i

Space L_i

Axis calibration

 Cross-lingual counterparts have close embeddings

Alignment Scores and Five Model Variants

Var_i combines the ith alignment model with the knowledge model

Variant	Alignment Score	Remark	
Var ₁	$S_{a_1} = \ \mathbf{h} - \mathbf{h}'\ + \ \mathbf{t} - \mathbf{t}'\ $		Axis Calibration
Var ₂	$S_{a_2} = \ \mathbf{h} - \mathbf{h}'\ + \ \mathbf{r} - \mathbf{r}'\ + \ \mathbf{t} - \mathbf{t}'\ $	_	Axis Calibration
Var ₃	$S_{a_3} = \ h + v_{ij}^e - h' \ + \ r + v_{ij}^r - r' \ + \ t + v_{ij}^e - t' \ $	v_{ij}^e =- v_{ji}^e , v_{ij}^r =- v_{ji}^r	Translation Vector
Var ₄	$S_{a_4} = \left\ \mathbf{M}_{ij}^e \mathbf{h} - \mathbf{h}' \right\ + \left\ \mathbf{M}_{ij}^e \mathbf{t} - \mathbf{t}' \right\ $	$m{M}_{ij}^e \in \mathbb{R}^{m{k} imes m{k}}, m{M}_{ij}^r \in \mathbb{R}^{m{k} imes m{k}}$	
Var ₅	$S_{a_5} = \ \mathbf{M}_{ij}^e \mathbf{h} - \mathbf{h}'\ + \ \mathbf{M}_{ij}^r \mathbf{r} - \mathbf{r}'\ + \ \mathbf{M}_{ij}^e \mathbf{t} - \mathbf{t}'\ $		Linear Transforms

Experimental Evaluation

- Cross-lingual knowledge alignment tasks
 - Entity Matching
 - Triple-wise Alignment (TWA) Verification
- Monolingual relation extraction task
- Trilingual data sets
 - Wiki-based (WK3I-15k, WK3I-120k)
 - ConceptNet-based (CN3I)
- Baselines
 - LM [Mikolov et al. 2013] + Knowledge model
 - CCA [Faruqui et al. 2014] + Knowledge mode
 - OT [Xing et al. 2015] + Knowledge models

Table 4.1: Statistics of the WK3l data sets.

Data set	#En triples	#Fr triples	#De triples	#Aligned triples
WK3l-15k	203,502	502 170,605 145,616	145 616	En-Fr:16,470
WKSI-13K	203,302		En-De:37,170	
WK31-120k	1,376,011	767,750	391,108	En-Fr:124,433
W K31-120K	1,570,011	707,750	371,100	En-De:69,413
CN31	47,696	18 624	18,624 25,560 En-Fr:3	En-Fr:3,668
CN31	47,090	10,024	En-De:8,588	

Table 4.2: Number of extra entity inter-lingual links (ILLs).

Data Set	En-Fr	Fr-En	En-De	De-En
WK31-15k	3,733	3,815	1,840	1,610
WK31-120k	42,413	41,513	7,567	5,921
CN31	2,154	2,146	3,485	3,813

These three data sets are available at https://github.com/muhaochen/MTransE

Entity Matching

What is the German entity for the English entity "Regulation of Property"?

- Evaluation protocol
 - For each (e, e'), rank e' in the neighborhood of $\tau(e)$
- Training sets
 - Pairs of language-specific graphs and corresponding alignment sets
- Test data
 - Entity Inter-lingual links $\{(e, e')\}$ (Unidirectional)

Entity Matching

UCLA

Hits@10 on WK3l-120k

Mean on WK3I-15k

Mean on CN3I

Axis Calibration	Var ₁ , Var ₂
Trans. Vectors	Var ₃
Linear Transforms	Var ₄ , Var ₅

Triple-wise Alignment Verification

Var₄≈Var₅>Var₁>Var₂>Var₃≈OT >>CCA>LM

We receive similar evaluation conclusions in all settings.

Axis Calibration	Var ₁ , Var ₂
Trans. Vectors	Var ₃
Linear Transforms	Var ₄ , Var ₅

Monolingual Relation Extraction (English, French)

- Train/Test
 - Train Sets: 90% triples and intersecting alignment sets
 - Test Sets: 10% triples
- MTransE preserves well the monolingual relations

Predicting Missing Relations (Hits@10)

Applications based on MTransE

Multilingual Q&A

Cross-lingual relation prediction

Improving monolingual KG completion using multilingual correlation

Knowledge alignment across knowledge bases

Examples of Cross-lingual Question Answering

Query	Target	Candidates (in ascending order of rank)
(Adam Lambert,	French	musique indèpendante, musique alternative,
genre, $?t$)		ode, glam rock
genie, :i)	German	popmusik, dance-pop, no wave, soul
(Ronaldinho,	French	milieu offensif, attaquant, quarterback, latèral gauche
position, $?t$)	German	stürmer, linker flügel, angriffsspieler, rechter flgel
(Italy, ?r, Rome)	French	capitale, plus grande ville, chef-lieu, garnison
(Italy, 17, Kollic)	German	hauptstadt, hauptort, verwaltungssitz, stadion
(Barack Obama, ?r,	French	ministre-prèsident, prèdècesseur, premier ministre,
George Bush)		prèsident du conseil
George Busii)	German	vorgänger, vorgängerin, besetzung, lied
(9h instrument	nt, French	Brant Bjork, Chris Garneau, David Draiman,
(?h, instrument,		Ian Mackaye
guitar)	German	Phil Manzanera, Styles P., Tina Charles, Luke Bryan

Bold-faced ones are correct answers, *italic* ones are close answers.

Improve the embedding model

- Other forms of knowledge models and alignment models
 - Neural knowledge models such as HolE and ComplEx
 - Other alignment models such as affine transformations
 - Alignment models which consider disambiguation
- Encoding more information from multilingual KGs
 - Entity domains, class templates, entity descriptions, etc
 - Cross-lingual disambiguation
- Jointly embedding with other forms of corpora such as multilingual documents

References

- [Bordes et al., 2013] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS, pages 2787–2795, 2013.
- [Nickel et al., 2016] Maximilian Nickel, Lorenzo Rosasco, Tomaso Poggio, et al. Holographic embeddings of knowledge graphs. In AAAI, 2016.
- [Saxe et al., 2014] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. ICLR, 2014.
- [Wang et al., 2014] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by translating on hyperplanes. In AAAI, 2014.
- [Lin et al., 2015] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation embeddings for knowledge graph completion. In AAAI, 2015.
- [Ji et al., 2015] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph embedding via dynamic mapping matrix. In ACL, pages 687–696, 2015.
- [Mikolov et al., 2013] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages for machine translation. arXiv, 2013.
- [Faruqui and Dyer, 2014] Manaal Faruqui and Chris Dyer. Improving vector space word representations using multilingual correlation. EACL, 2014.
- [Xing et al., 2015] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embedding and orthogonal transform for bilingual word translation. In NAACL HLT, pages 1006–1011, 2015.

Thank You