Sadržaj

1. Svojstva sveprisutnih sustava	3
2. Ulaz	3
3. Osjetila	3
Svojstva osjetila	4
Informacije, oblici informacija	5
Digitalno - analogna pretvorba	7
Tipovi D/A pretvornika	7
Analogno - digitalna pretvorba	8
Principi rada A/D pretvornika	9
3. Izlaz	12
Pulsno-širinska modulacija (pulse width modulation - PWM)	12
PID regulator	13
4. Vrijeme	14
Raspoređivač poslova	16
Model periodičkog posla	16
5. Energija	18
Tehnike za očuvanje energije	19
Kontrola potrošnje na mikroračunalu	19
ESP32 power modes	19
Tehnike štednje energije za mikrokontrolere	20
Pogreške i oporavak od pogreške	21
Sklopovi za nadzor rada	21
Sklopovi za detekciju ispadanja	21
8. Sučelja	22
Vrste komunikacije	22
Komunikacija unutar računalnih sustava	24
I2C (Inter-Integrated Circuit)	24
SPI (Serial Peripheral Interface Bus)	26
Komunikacija između računalnih sustava (žična)	27
Norma RS-232-C	27
Controller Area Network (CAN)	29
Svojstva	29
ISO OSI CAN model	30
Arbitriranje na mreži	30
Provjera ispravnosti paketa	31
9. Bežične mreže	33
Osnove radiokomunikacije	33
Mreže dugog dosega i male snage - Low Power Wide Area Networks (LPWAN)	35

	LoRa	36
	LoRaWAN	37
	Sigfox	39
Ν	Mreže kratkog pojasa - Personal Area Networks (PAN)	40
	Bluetooth	40
	ZigBee	45
10.	Bežične mreže osjetila	48
В	Bežične mreže osjetila - Wireless Sensor Networks (WSN)	48
	Osnovna svojstva WSN	48
	Vrste čvorova	49
	Kanonski model čvora WSN	49
	Mreže bez usmjeravanja	52
11.	Računarstvo na rubu	54
Ε	Edge-cloud arhitektura sustava	54
R	- Računarstvo u magli (<i>fog computing</i>)	55
12.		

1. Svojstva sveprisutnih sustava

- reaktivnost
 - o trajna interakcija sustava s okolinom
 - o opis ponašanja sustava slijed parova (ulaz, izlaz)
- konkurentnost
 - o na razini pojedine komponente više procesa ili dretvi
 - o na razini cijelog sustava
- interakcija s fizičkim svijetom
 - povratna veza: osjetila → obrada → aktuacija
- računanje u stvarnom vremenu
 - o brzina odziva sustava s obzirom na događaje u okolini i unutar sustava
 - o upravljanje resursima sustava
- sigurnost
 - o u oblikovanju i implementaciji
- energetska efikasnost
- interakcija s korisnicima
- sviesnost konteksta
 - o fizičkog okoline, lokacije, vremena...
 - korisničkog preferencije i stanje korisnika
 - o virtualnog interno stanje uređaja, sustava, okoline...
- autonomnost i adaptivnost
 - upravljanje sustava svojim akcijama, bez interakcije s čovjekom
 - o reakcija na događaje u okolini
 - o prilagodba sustava promjenom konteksta

2. Ulaz

Upravljanje procesima može biti:

- praćenje
 - o računalo **ne** upravlja procesom, samo služi za prikaz informacija o izlazu procesa
- upravljanje u otvorenom krugu
 - o upravljanje od strane računala neovisno o izlazu
 - \circ ulaz! = f(izlaz)
 - o primjer: štednjak (sami reguliramo jačinu)
- upravljanje u zatvorenom krugu (povratna veza)
 - o računalo upravlja procesom na osnovu njegova stanja
 - \circ ulaz == f(izlaz)
 - o primjer: pećnica (namjestimo željenu temp, ona se mjeri i regulira automatski)

3. Osjetila

- uređaji koji primaju pobudu i odgovara električnim signalom
- transformiraju neelektričnu vrijednost u električnu vrijednost
- služe kao pretvornici energije
- Termopar (termocouple, Seebackov efekt)
 - o kada se povežu dva poluvodiča i jedan kraj veze se zagrije, a drugi

- ostane hladan, struja teče od toplijeg prema hladnijem kraju
- o seebackov efekt generiranje snage iz razlike u temperaturi
- o peliterov efekt generiranje temperature iz snage
- objekt topliji od osjetila tok energije od mjerenog objekta prema osjetilu, + napon na izlazu
- osjetilo toplije od objekta tok energije od osjetila prema mjerenom objektu, napon na izlazu
- o osjetilo i objekt iste temperature nema napona na izlazu

• Hibridno osjetilo

- pretvarač između pobude i električnog signala
- pretvarač pretvara jednu vrstu energije u drugu

- Podjela osjetila s obzirom na
 - mjesto lociranja u sustavu
 - vanjska praćenje parametara promatranog procesa
 - interna praćenje parametara samog sustava
 - udaljenost od promatranog procesa
 - kontaktna npr. termistor
 - beskontaktna npr. kamera
 - potrebu za dodatnim izvorom energije
 - pasivna npr. termopar, fotodioda
 - aktivna termistor
- Svaki podražaj zahtijeva posebnu vrstu osjetila

Svojstva osjetila

- osjetljivost
 - koliko se mora promijeniti ulazna veličina da bi osjetilo dalo mjerljivu promjenu odziva
 - o apsolutna vrijednost
- raspon
 - o dozvoljeni min i max ulaznih veličina za koje je osjetilo namjenjeno
- preciznost
 - o koliko se razlikuje odziv osjetila za istu vrijednost ulazne veličine
- točnost
 - o koliko se razlikuje odziv osjetila od onog kojeg daje idealno
- rezolucija
 - o najmanja promjena ulazne veličine koja izaziva promjenu odziva
 - relativna vrijednost
- pomak
 - o pomak odziva u odnosu na idealni, pod određenim uvjetima
 - o npr. zbog razlike u temperaturi u odnosu na sobnu
- linearnost
 - o sličnost krivulje odziva pravcu koliko je krivulja ravna

- histereza
 - o nelinearnost odziva ovisna o smjeru promjene ulazne veličine
 - odgovor sustava je pod utjecajem prošlih ili trenutnog stanja, uzrokujući kašnjenje ili nelinearno ponašanje
 - o npr. vrijeme promjene iz stanja visokog napona u niski nije jednako kao vrijeme promjene iz niskog u visoki
- vrijeme odziva
 - vrijeme koje je potrebno da na promjenu ulazne veličine osjetilo poprimi promjenu vrijednosti odziva
 - o trajanje prijelazne pojave
- dinamička linearnost
 - o sposobnost osjetila da prati brze promjene ulazne veličine

Primjeri osjetila

- NDIR (non-dispersive infrared) CO2 osjetila
 - o CO2 molekule upijaju određene valne duljine svjetlosti
 - o dug životni vijek
 - o selektivna osjetljivost samo na CO2
 - o radi dobro u običajnom rasponu koncentracije CO2
 - o niska cijena
 - troše puno energije
 - o osjetljivi na temperaturu i vlažnost
- elektrokemijska CO2 osjetila
 - o vodljivost varira s obzirom na koncentraciju CO2
 - kratki životni vijek
 - o neosjetljivost na temperaturu i vlažnost
 - o ne traži dugotrajno napajanje
 - o visoka cijena
 - slaba selektivnost

Informacije, oblici informacija

- Oblici analogne i digitalne informacije
 - o amplituda napona
 - o amplituda impulsa
 - o frekvencija
 - o binarni signal
 - o broj impulsa u vremenu
- Predobrada signala
 - analogno oblikovanje/obrada signala
 - o priprema za A/D pretvorbu i unošenje u računalo
 - o pretvaranje izlaznog signala mjernog osjetila u oblik prikladan za daljnju obradu
 - o ne smije se promijeniti informacija o mjernom parametru
- Primjer predobrade
 - mosni spoj
 - pojačalo
 - prilagodba opterećenja
 - linearizacija

- o filtriranje
- o dovođenje u standardno područje

Mostni spoj

- sadrži 4 elementa, jedan je osjetilo nepoznatog otpora, ostala tri su poznati otpori
- izlaz: naponski signal
- način rada
 - o spoj se najprije balansira tako da je $U_0 = 0 \Rightarrow$ senzor je
 - referentnom stanju
 - \circ kada se promijeni otpor ili impedancija senzora, nastaje disbalans u spoju i pojavljuje se napon na U

Pojačalo

- koristi se za pojačavanje električnih signala
- slabi signal iz osjetila treba pojačati na vrijednost prikladnu za daljnju obradu
- integrirana operacijska pojačala u različitim spojevima

U – napon napajanja

U_o – mjerni napon (izlaz mosta)

Osietilo

Prilagodba opterećenja

- ulazne karakteristike sklopa za obradu signala moraju odgovarati izlaznim karakteristikama osjetila
- u suprotnom sklop utječe na karakteristike osjetila

Linearizacija

- primjena mreže za linearizaciju kako bi signal iz osjetila postao linearan
- linearnost signala oblik signala ostaje jednak, samo se njegova jačina mijenja

signal iz osjetila rezultat mreža za linearizaciju

Filtriranie

- šum se pojavljuje kod osjetila kao:
 - o toplinski šum iznutra
 - o interferencijski šum izvana
- smanjuje se
 - o fizičkim udaljavanjem
 - o uplitanjem/otklapanjem mjernih vodova
 - o filtriranjem
 - mjerenja treba dovesti u standardno područje, to se može raditi translacijom

- translacija se također koristi se za detekcije kvarova i izbjegavanje šuma
- npr. povišena nula
 - o kada ne znamo je li stvarno OV ispravno ili je pretovnik odspojen/neispravan

termo

metar

- o raspon izlaznog signala se mijenja na npr. 1-5 V
- standardni signali:
 - o naponski: 0-5 V, 1-5 V, 0-10 V, 2-10 V
 - o strujni: 1-5 mA, 0-20 mA, 4-20 mA, 10-50 mA
- često se umjesto naponskog izlaza koristi strujni
 - o promjena otpora prijenosnih vodova ne utječe na signal prijenos signala na velike udaljenosti bez gubitka točnosti
 - o otpornost na smetnje inducirani naponi u vodičima se poništavaju

Digitalno - analogna pretvorba

- binarna vrijednost se pretvara u analogni signal
- iednostavniji od A/D pretvornika

Karakteristike D/A pretvornika

- rezolucija broj različitih izlaznih razina koje D/A pretvornik (DAP) može reproducirati
- frekvencija maksimalna frekvencija na kojoj pretvornik može raditi
- ukupno harmoničko izobličenje mjera šuma koju pretvornik unosi u generirani signal
- dinamički raspon razlika između najvećeg i najmanjeg signala koji pretvornik može generirati

Idealni D/A pretvornik

- generira niz impulsa
- filtrira signal rekonstrukcijskim filterom tako što se diskretne razine se interpoliraju

Realni D/A pretvornik

- analogni signal osvježava se u diskretnim intervalima
- naglim prijelazom iz jedne diskretne razine na drugu generiraju se neželjeni viši harmonici

Tipovi D/A pretvornika

- težinski (R/2R) pretvornik
- R/2R pretvornik
- pretvornik s pulsno širinskom modulacijom (PWM)
- delta sigma pretvornik

Težinski pretvornik

- invertirajuće operacijsko zbrajalo
- težinu pojedine grane određuju otpornici
- najmanji otpor je kod bita najveće važnosti
- spajanjem i odspajanjem otpornika kontroliramo koliko struje dolazi do izlaza
- kada je vrijednost na ulazu 1 otpornik je spojen, inače je odspojen

A/D

6-bitni DAC s binarnim tezinama

- dvije vrijednosti otpora R i 2R, uz povećanje njihovog broja
- stepenasti otpori
- kada je vrijednost na ulazu 1 otpornik je spojen, inače je odspojen
- ista ideja kao i težinski pretvornik, drugačija izvedba

Pretvornik s pulsno širinskom modulacijom

- pretvara digitalni signal u analogni mijenjajući širinu pulseva
- ima fiksnu frekvenciju

Delta sigma pretvornik

- pretvara digitalni signal u analogni koristeći metode preuzorkovanja (oversampling) i oblikovanja buke (noise shaping)
- pretvornik generira visokofrekventni niz podataka koji se pretvara u analogni pomoću low pass
 filtera

Analogno - digitalna pretvorba

- pretvaranje analogne veličine (napon) u ekvivalentnu digitalnu vrijednost
- [0, V] se preslikava u [0, 2^N 1], gdje je N rezolucija pretvornika
- osnovni parametri A/D pretvornika
 - o razlučivost (rezolucija) broj bitova pretvornika
 - o brzina pretvorbe broj uzoraka po sekundi
- **Nyquistov kriterij**: brzina pretvorbe treba biti najmanje dvostruko veća od najviše frekvencije prisutne u signalu
 - o broj uzoraka na jednom intervalu signala mora biti veći od 2

Prijenosna funkcija A/D pretvornika

- Vi ulazni analogni napon
- Vo izlazni napon A/D pretvornika
- VLSB- osjetljivost

Proces A/D pretvorbe

- 1. uzorkovanje
 - o uzimanje uzoraka ulaznog signala određenom frekvencijom uzorkovanja
 - o pretvaranje kontinuiranog signala u diskretne vrijednosti
- 2. kvantizacija
 - o određivanje amplitude uzorka i pridjeljivanje neke od N diskretnih razina
- 3. kodiranje
 - o dodjela binarnog koda svakoj kvantizacijskoj razini

Svojstva A/D pretvornika

- rezolucija
 - o broj diskretnih vrijednosti koje pretvornik generira za raspon analognog signala
 - o rezolucija = 2^{broj bitova}

- najmanja promjena analognog signala koja uzrokuje promjenu 1 bita digitalne vrijednosti
- točnost
 - o greška kvantizacije zbog kvantizacijskog šuma
 - o greška otvora nepreciznost takta koji vodi uzorkovanje
- stopa uzorkovanja
 - o frekvencija kojom pretvornik uzorkuje analogni signal
 - proces uzorkovanja traje neko vrijeme u slučaju brzih promjena analogne veličine, potrebno je snimiti ulaznu vrijednost da bi se ona u miru uzorkovala
 - sample and hold sklop kondenzator se nabije na napon ulazne veličine i zadržava je

aliasing

- frekvencija uzorkovanja mora biti barem dvostruko veća od najviše frekvencije koja se može pojaviti u signalu koji se uzorkuje
- o inače se pojavljuju frekvencije koje ne postoje u originalnom signalu → harmonici
- o signal se propušta kroz niskopropusni filter koji uklanja sve frekvencije > 2 * f
- zamućivanje
 - namjerno dodavanje bijelog šuma niske amplitude u ulazni signal da bi se izbjegao aliasing
 - koristi se kada smanjujemo rezoluciju
- oversampling
 - o uzimanje uzorka većom frekvencijom od potrebne kako bi se postigla veća točnost ili olakšala izvedba pretvornika

Principi rada A/D pretvornika

- najčešće korištene izvedbe uključuju brojilo
 - o karakteristična petlja povratne veze i naponski komparator
 - o tu pripadaju
 - 1. prateći A/D
 - 2. A/D sa sukcesivnom aproksimacijom
 - 3. integracijski A/D
- izvedbe bez brojila za zahtjevnije primjene, skupe

Prateći A/D pretvornik

- koristi brojilo "naprijed/natrag"
- analogni ulaz veći od izlaza → brojilo broji unaprijed
- analogni ulaz manji od izlaza → brojilo broji unatrag
- mnogo manje vrijeme ažuriranja
- brojilo se nikad ne resetira
- izlaz se mijenja sa svakim taktom signala vremenskog vođenja

Sukcesivna aproksimacija

- vrijeme pretvorbe je konstantno
- pretvornik se sastoji od

- kontrolne logike
- kontrolnog registra
- D/A pretvornika
- kontrolna logika postavlja najviši bit kontrolnog registra i D/A pretvornik generira odgovarajući napon
 - o Ako je taj napon veći od ulaznog napona, komparator prelazi u nisku razinu i kontrolna logika spušta najveći bit, inače ostaje postavljen
- ponavlja se za svaki bit
- nakon što su svi bitovi isprobani, u kontrolnom registru se nalazi digitalni zapis ulazne veličine

Integrirajući A/D pretvornik

- operacijsko pojačalo (integrator) proizvodnja pilastog valnog oblika
- jedno-kosinski (single slope) ili dvo-kosinski (dual slope)
- jedno-kosinski pretvornik
 - o ima sve nedostatke digitalne rampe
 - calibration drift
 - o mjera integracije i mjera brojila nezavisne su jedne o drugoj
- dvo-kosinski pretvornik
 - o integrator je vođen pozitivnim analognim ulaznim signalom koji stvara pozitivnu kosinu
 - o s određenim referentnim naponom na ulazu se stvara negativna kosina, a vrijeme se mjeri istim brojilom
 - o rješenje calibration drifta

Metoda integracije (single-slope)

- radi na principu punjenja i pražnjenja kondenzatora s poznatim referentnim naponom
- kondenzator se puni sve dok se ne dosegne napon koji je jednak analognom naponu i za to vrijeme brojilo broji, a izlazni napon je u visokoj razini
- kada se dosegne analogni napon, brojilo prestaje brojiti i izlazni napon se prebacuje u nisku razinu
- problem točne frekvencije, pretvorba ovisi o R i C

Counter

Metoda integracije (dual slope)

- analogna integracija
- mjerenje vremena da se kondenzator nabije od Vin nepoznatog napona V, a isprazni od poznatog \sqrt{r} napona V_{ref}
- omjer vremena je omjer napona
- vrlo precizna ali jako spora
- pretvorba neovisna o R i C

Counter Control Logic Output Buffe

Metoda paralelne pretvorbe - flash

- najbrža, ali zahtijeva puno više sklopovlja od ostalih
 - N-bitni pretvornik zahtijeva 2^N -1 komparatora
- nema signala vremenskog vođenja
- pretvorba započinje čim se pojavi napon na ulazu

- trajanje pretvorbe ograničeno vremenom propagacije signala
- analogni ulaz spojen je na ulaz svakog komparatora
- izlazi komparatora su nisko ako je napon veći od referentnog, inače visoko

Usporedba karakteristika A/D pretvornika

(poredak od najboljeg do najgoreg)

- rezolucija
 - o broj bitova koji su izlaz iz pretvornika
 - integracijski ADC, dvo-kosinski ADC, prateći ADC, ADC sa succ apx, flash ADC
- brzina (frekvencija uzorkovanja)
 - o brzina kojom pretvornik daje novi binarni broj
 - o flash ADC, prateći ADC, ADC sa succ apx, integracijski ADC, dvo-kosinski ADC
- step recovery
 - o brzina promjene izlaza prema velikoj, iznenadnoj promjeni na ulazu
 - o flash ADC, ADC sa succ apx, integracijski ADC, dvo-kosinski ASC, prateći ADC

A/D pretvornik ugrađen u mikrokontrolere

- prednosti
 - o manji broj komponenata u sustavu
 - o ne troše se U/I linije mikrokontrolera za komunikaciju s A/D om
- nedostaci
 - o razlučivost ograničena na 10 bita
 - o način pretvorbe ograničen na sukcesivnu aproksimaciju

• A/D pretvornik vezan na sabirnicu mikroprocesora (vanjski)

- prednosti
 - o nema ograničenja na vrstu pretvornika, brzinu i razlučivost
- nedostaci
 - o potrebno je koristiti vanjsku sabirnicu

Analogno multipleksiranje

- omogućuje korištenje jednog A/D pretvornika za pretvorbu više analognih signala
- ukupan broj uzoraka koji je moguće pretvoriti u jedinici vremena dijeli se na više kanala
- nedostatak je što nije moguće dobiti uzorke svih signala u istom trenutku

A/D pretvorba u ESP32

- ugrađena dva A/D pretvornika
 - ADC1 8 kanala
 - ADC2 10 kanala
- sukcesivna aproksimacija
- rezolucija: 12 bita

3. Izlaz

- TTL označava klasu integriranih sklopova
- označava naponske razine sklopova koji nisu TTL
- povezni sklopovi visoko integriranih komponenta
- napajanje = 5V
- uvijek teče mala struja nužna za održavanje ispravne logičke razine
- TTL naponi
 - o V oh min minimalni izlazni napon visoke logičke razine
 - o V ol max maksimalni izlazni napon niske logičke razine
 - o V ih min minimalni ulazni napon visoke logičke razine
 - o Vil max maksimalni ulazni napon niske logičke razine

CMOS

- novi tip tranzistora jeftiniji za izradu i lakši za integraciju
- prednosti:
 - otpornost na smetnje
 - mala statička potrošnja
 - o manje zagrijavanje
 - o brzina
- stanja
 - visoka razina 1
 - o niska razina 0
 - o odspojen u visokoj impedanciji High Z

Pulsno-širinska modulacija (pulse width modulation - PWM)

- širina impulsa sadrži informaciju o amplitudi izlaznog signala
- što je signal dulje u visokom stanju, to je amplituda izlaznog signala veća

Građa PWM-a

- brojilo PTx
- komparatori
- registri
 - o period signala PPx
 - o širina signala PWx

Osnovni način rada PWM-a

- brojilo broji impulse prema gore ili dolje
- komparator uspoređuje vrijednost brojila i vrijednost registra širine
- komparator određuje treba li uključiti izlaz modulatora
- vrijednost registra širine je granična vrijednost brojila koja uključuje izlaz

PWM signal može biti

- asimetričan
 - o brojilo broji prema gore, kad izbroji kreće od nule
- simetričan
 - o brojilo broji prema gore, kad izbroji nastavlja opet prema nuli

- kombinirani
 - o neki uređaji imaju mogućnost kombinacije više PWM signala
 - o najčešće logičkom operacijom AND

Primjena PWM signala

- vrlo jednostavna izvedba D/A pretvornika
- izlazni signal je pravokutni
- integriranjem izlaznog signala (kondenzator) dobijemo srednju vrijednost signala (snagu)
- izlazni signal izravno ovisi o faktoru popunjenost (duty cycle)
- pr: brizgaljka goriva u motoru s unutarnjim sagorijevanjem

D/A pretvorba pomoću PWM

- pulsno-širinska modulacija
- PWM generira pravokutni signal stalne frekvencije i promjenjive popunjenosti

PID regulator

- ulaz u regulator je signal pogreške - razlika između postavl janje (željene) i izmjerene vrijednosti veličine koju reguliramo
- Proporcionalno, Integracijsko i Derivacijsko djelovanje
- regulator može imati samo jednu ili kombinaciju komponenata

Proporcionalno djelovanje

- utječe na brzinu odziva sustava
- $P_{dio} = greška * P_{konstanta}$
- ispravlja trenutnu pogrešku
- brzi sustav reguliran P regulatorom oscilira oko željene temperature
- spori sustav reguliran P regulatorom ne dostiže postavljenu vrijednost

Integracijsko djelovanje

- utječe na pogrešku u statičkom stanju
- I += greška
- $I_{dio} = I_{suma} * I_{konstanta}$
- donosi informaciju o prošlosti sustava ispravlja grešku koja se dogodila prije
- regulator pamti prethodno stanje sustava
- prijelazna pojava traje dulje nego kod P djelovanja, ali je stacionarno stanje točno

PI djelovanje

- kombinacija proporcionalnog i integracijskog djelovanja
- sustav dolazi u točno stacionarno stanje brže nego kod I djelovanja

Derivativno djelovanje

- djeluje na kvalitetu prijelaznog procesa
- $D_{dio} = (greška D_{stanje}) * D_{konstanta}$ $D_{stanje} = greška$
- koristi prošlo stanje sustava da bi se procijenila brzina promjene i time predvidjela nova vrijednost regulirane veličine

PID djelovanje

- sustav postiže željenu vrijednost brzo i bez nadvišenja (overshoot)
- D djelovanje skraćuje prijelazno vrijeme i smanjuje nadvišenje
- $izlaz = P_{dio} + I_{dio} + D_{dio}$

4. Vrijeme

- signal vremenskog vođenja sinkronizacija rada komponenti sustava
- mjerenje protoka vremena u sustavu i okolini
- obavljanje zadataka u ograničenom vremenu

Signal takta (vremenskog vođenja)

- koristi se za sinkroniziranje rada sklopova
- sinkroniziranje izvođenje operacija točno određenim redoslijedom
- Generator signala takta (oscilator) stvara signal takta
- osnovni dijelovi: rezonator i pojačalo
- rezonator je sklop koji može titrati ako mu se dovodi energija
 - u kombinaciji s pojačalom tvori oscilator, pojačalo ostvaruje dodatnu vezu kako bi se održale oscilacije
- faktor dobrote omjer pohranjene i izgubljene energije u svakom ciklusu
- mogu biti analogni ili digitalni
 - o analogni njihalo, energija pohranjena u dva krajnja stanja njihala
 - o digitalni mijenja stanja između 0 i 1

Usporedba oscilatora

- zasnovani na mehaničkim rezonatorima
 - kristali i keramički rezonatori
 - o visoka inicijalna preciznost
 - o umjereno mali temperaturni koeficijent
 - osjetljivi na promjenu frekvencije
- zasnovani na električnim spojevima s faznim pomakom
 - RC oscilator
 - o niska cijena
 - o preciznost ovisi o temperaturi i napajanju
 - o varijacija nominalne izlazne frekvencije 5% do 50%

Utjecaj okoline na oscilator

- treperenje faze signala
- promjena izlazne frekvencije
- u težim slučajevima prekid rada

Oscilator takta	Preciznost	Prednosti	Mane
Kristal	Srednja do velika	Niska cijena	Osjetljivost na EM zračenje, vibracije i vlagu
Kristal oscilator modul	Srednja do velika	Neosjetljivost na EM zračenje i vlagu, nepotrebne dodatne komponente	Visoka cijena, visoka potrošnja električne energije, osjetljivost na vibracije, velikih dimenzija
Keramički rezonator	Srednja	Niža cijena	Osjetljivost na EM zračenje, vibracije i vlagu
Ugrađeni silicijski oscilator	Mala do srednja		Temperaturna osjetljivost je generalno lošija nego kod kristala i kermamičkih oscilatora, visoka potrošnja električne energije
RC oscilator	Mala	Najniža cijena	Obično osjetljivi na EM zračenje, vlagu i temperaturu, velika potrošnja električne energije

Usporedba oscilatora

Oscilator takta	Točnost	Starenje (10 godina)	Potrebna snaga	Težina
Kristal (XO)	1E-5 do 1E-4	10-20 ppm	20 μW	20 g
Rubidij (Rb, RbXO)	1E-9	5E-10 do 5E-9	6-12 W	1,5 - 2,5kg
Cezij (Cs)	1E-12 do 1E-12	1E-12 do 1E-11	25-40 W	10 - 20 kg

Preciznost oscilatora

Pokretanje oscilatora

- uspostavljanje titranja rezonatora
- potrebna je određena količina šuma koja zatitra rezonator šiljak napona pri uključivanju napajanja

Vremenski sklopovi

- sklopovi mikrokontrolera namijenjeni mjerenju vremena ili generiranju vremenski određenih signala
- primjeri
 - brojilo (counter)
 - vremenski sklopovi (timer)
 - o sklopovi za zapis trenutnog vremena i usporedbu vremena (capture & compare)
 - stvarno vrijeme (real time clock)
 - o pulsno-širinski modulatori (pulse-width modulator)

Brojilo

- brojanje + dijeljenje ulazne frekvencije
- slijedni logički sklop od N bistabila
- raspon: [0, 2^N-1], prema gore ili dolje
- kontrolira frekvenciju koja se dovodi na ulaz brojila
- upravljanje radom
 - o zaporni sklop (gated-timer) određuje radi li timer ili ne
 - o određivanje smjera brojenja (*up-down*)

Capture sklop

- upravljanje pohranom pohrana snimke trenutnog stanja brojila
- trenutak okidanja određen vanjskim signalom
- trenutno stanje brojila pohranjuje se u poseban registar

RTC - real time clock

- informacija o apsolutnom vremenu
- vrste
 - o interni ugrađen u mikrokontroler
 - o eksterni zasebni IC povezani sabirnicom s mikrokontrolerom
- ESP RTC
 - o čuva vrijeme sustava i tijekom reseta i modova spavanja
 - o preciznost ovisi o izvoru signala vremenskog vođenja
- sustav za rad u stvarnom vremenu znači da je vrijeme kada je dobiven rezultat značajno
- ispravnost rada više nije samo rezultat izračunavanja već i vrijeme kada je proizveden
- prema strogosti poštivanja vremenskih ograničenja postoje:
 - o strogi sustavi (npr. aktiviranje zračnog jastuka)
 - ublaženi sustavi (npr. dekodiranje video sadržaja)
- poslovi s obzirom na vrijeme dolaska
 - o periodički
 - o aperiodički

Raspoređivač poslova

- optimalno rasporediti poslove po dostupnim resursima i s obzirom na ovisnosti između poslova, tako da sva vremenska ograničenja obavljanja poslova budu poštovana
- osnovni zahtjevi
 - o u jednom trenutku samo jedan posao aktivan
 - svaki posao mora dobiti dovoljno procesorskog vremena za njegovo obavljanje u zadanom roku
- mora pronaći raspored poslova u raspoložive vremenske odsječke tako da su zadovoljeni krajnji rokovi izvršavanja za sve poslove

Model periodičkog posla

- vrijeme razdijeljeno u vremenske odsječke proizvoljnog trajanja
- tri ključna parametra
 - $\pi(I)$ period dolaska posla
 - $\delta(J)$ krajnji rok završetka posla
 - $\eta(J)$ najdulje vrijeme izvršavanja posla
- $\pi(J)$ i $\delta(J)$ definirani tijekom oblikovanja sustava
- η(J) posljedica implementacije sustava
- posao J se izvršava svakih $\pi(J)$ vremenskih odsječaka
- Ja je a-ta instanca posla J
- vrijeme dolaska instance posla: $(a 1) * \pi(J)$
- instanca posla je inicijalno u stanju idle

- raspoređivač šalje događaj *arrive*, instanca posla prelazi u stanje *wait* i čeka da joj se dodjeli vrijeme na procesoru/jezgri
- dospjeli posao J mora biti završen za δ(J) vremenskih odsječaka, s obzirom na vremenski odsječak dolaska
- $done_{I} arrive_{I} \leq \delta(J)$
- $\delta(J) \leq \pi(J)$
- da bi posao bio rasporediv također mora vrijediti $\eta(J) \le \delta(J) \le \pi(J)$
- konačan skup periodičkih poslova, gdje svaki posao ima J ima pridruženi period $\pi(J)$, krajnje vrijeme izvršavanja $\delta(J)$ i najdulje vrijeme izvršavanja $\eta(J)$
- zadatak raspoređivača je pronaći raspored poslova u raspoložive vremenske odsječke tako da su zadovoljeni krajnji rokovi izvršavanja za sve poslove
- raspored je sukladan rokovima za periodički model poslova ako je sukladan rokovima za svaki od poslova iz modela poslova
- svi poslovi završeni prije krajnjih rokova → kažemo da je model poslova rasporediv
- iskorištenje posla (engl. *utilization*) predstavlja koliko procesnog vremena je potrebno da bi bila moguća obrada svih poslova
- ako je $U(\mathfrak{I}) > 1$, model poslova nije rasporediv
- preemptive raspoređivač može prekinuti izvođenje posla i naknadno ga nastaviti
 - suprotan njemu je non-preemptive
- treba odrediti periodički raspored σ sukladan rokovima ili prijaviti nemogućnost nalaženja takvog rasporeda – mora postojati politika odlučivanja
- svojstva politika:
 - o računalna složenost
 - on-line ili off-line raspoređivanje
 - o alternativni kriteriji raspoređivanja
- Politika najbližeg roka (eariest deadline first, EDF)
 - o određuje se čiji je rok $\delta(I)$ najbliži
 - \circ ako je model poslova rasporediv, EDF politika će stvoriti raspored σ koji je sukladan rokovima
- politike fiksnog prioriteta poslova
 - o poslovi **ne** mijenjaju prioritet tijekom vremena
 - o raspoređivač odlučuje o dodjeli vremenskog bloka na temelju prethodno određenih prioriteta
- određivanje prioriteta
 - o prethodno dodijeljen prioritet
 - o deadline-monotonic poslovi s kraćim rokom imaju veći prioritet
 - o *rate-monotonic* poslovi s kraćim **periodom** imaju veći prioritet

Svojstva politike fiksnog prioriteta

- ako su krajnji rokovi implicitni, rate-monotonic politika je optimalna
- ako su krajnji rokovi kraći od vremena dolaska posla, deadline-monotonic politika je optimalna
- ni jedna od navedeni politika ne garantira pronalazak rasporeda sukladnog rokovima

5. Energija

- primjeri izvora napajanja su regulator, baterija i prikupljena energija iz okoline (engl. energy harvesting)
- napajanje mora biti efikasno, stabilno i točno

Usporedba baterija

Tip baterije	NiCd	NiMh	Olovne	Lilon (kobalt)	Lilon (fosfat)
Gustoća energije [Wh/kg]	45-80	60-120	30-50	150-190	90-120
Životni ciklus (pad do 80% kap.)	1500	300-500	200-300	300-500	>1000
Brzo punjenje	1h	2-4h	8-16h	1.5-3h	>= 1h
Podnosi prepunjenje	umjereno	slabo	dobro	jako slabo	jako slabo
Samopražnjenje (mjesečno)	20%	30%	5%	<10%	<10%
Napon ćelije	1.25V	1.25V	2V	3.6V	3.3V
Radna temperatura	-40 do 60	-20 do 60	-20 do 60	-20 do 60	-20 do 60
Otrovnost	Visoka	Relativno niska	Visoka	Nis	ka

Ostali tipovi baterija

- gorive ćelije, protočne ćelije
 - o kemijski reaktor koji pretvara kemijsku energiju goriva u električnu energiju
 - kemijski procesi redukcije i oksidacije redox
 - o punjenje dopuna rezervoara goriva
- superkondenzatori kondenzatori velike gustoće energije
- pinovi se dijele na
 - o pinovi napajanja Vcc ili VDD
 - o pinovi uzemljenja GND ili V_{ss}
- \bullet V_{CC} potječe od bipolarnih tranzistora kolektori tranzistora (C-C) spojeni zajedno na napajanje
- Vss izvori, uvodi (source, S-S) spojeni zajedno na uzemljenje
- V_{DD} odvodi (drain, D-D) spojeni zajedno na napajanje
- parazitni kapacitet
 - o pri promjeni stanja nabijanje/pražnjenje prividnih kondenzatora
 - o energija se gubi, prelazi u toplinu
- potrošnja kratkog spoja
 - u kratkom trenutku vode i P i N tranzistor
 - neznatno u usporedbi s promjenom stanja 10% 20%
- Potrošnja curenja
 - dio nA po vratima
 - zanemariv u aktivnom stanju
 - problem kod dugog stajanja

Tehnologija izvedbe mikrokontrolera

- TTL Transistor-transistor logic
 - o troši i u statičkom stanju (kada nema promjene stania)
- NMOS
 - MOFSET tipa N
 - o otpornik manjeg otpora ubrzat će promjenu stanja no porasti će disipacija
- CMOS complementary metal-oxide-semiconductor
 - o visoka otpornost na smetnje i vrlo niska potrošnja u statičkom stanju
 - sporost zbog parazitnih kapaciteta

Tehnike za očuvanje energije

Clock gating

- selektivno isključivanje clock signala nekim komponentama kada ne izvode aktivne operacije
- upravljanje dostavom signala vremenskog vođenja (clock) dijelovima mikrokontrolera

Power gating

- selektivno isključivanje struje određenim komponentama mikrokontrolera
- upravljanje napajanjem pojedinih dijelova mikrokontrolera
- eliminacija potrošnje curenja

Napon napajanja

- minimalni potreban napon napajanja ovisi o ciljanoj frekvenciji
- viša željena frekvencija → viši napon napajanja → viša potrošnja

PIC modovi rada - PIC18

- spavanje (sleep)
 - o jezgra i vanjske jedinice ignoriraju takt
- mirovanje (idle)
 - o jezgra ignorira takt, vanjske jedinice rade na vanjskom ili internom taktu
- izvođenje (run)
 - o jezgra i vanjske jedinice rade na vanjskom ili internom taktu

Prelazak na niži takt oscilatora

- većina mikrokontrolera ima mogućnost korištenja alternativnog oscilatora nižeg takta
- u trenutku kada više nije potrebno brzo izvođenje, prelazi se na niži takt

Kontrola potrošnje na mikroračunalu

Tehnike uštede energije na mikroračunalima

- stanje mirovanja (Sleep mode)
 - o isključivanje određenih dijelova
- dinamička modifikacija frekvencije procesora (Dynamic Modification of Processor Frequency)
 - o alternacija između visoke i niske frekvencije
- struktura rukovanje prekidima (Interrupt Handler Firmware Structure)
 - o najekstremnija tehnika

ESP32 power modes

ESP32 active mode

sve komponente čipa su aktivne

ESP32 modem sleep mode

- WiFi, Bluetooth i radio su isključeni, bude se u određenim intervalima
- CPU i clock su aktivni

ESP32 light sleep mode

- digitalna periferija, dio CPU-a i RAM-a su clock gated
- CPU je pauziran

ESP32 deep sleep mode

- većina RAM-a i sva periferija su isključeni
- RTC kontroler, RTC memorija i RTC periferija su uključeni

ESP32 hibernation mode

- sve je isključeno osim RTC timera
- tijekom hibernacije nije moguće sačuvati podatke

ESP32 wakeup izvori

- timer
 - o budi čip nakon unaprijed definiranog vremena
- touchpad
 - o čip se budi kada se okine touchpad event
 - touchpad okidač mora se definirati prije nego što čip ode u deep sleep
- external wakeup (ext0 i ext1)
 - ext0 RTC IO okida buđenje kada je neki od RTC GPIO-va postavljen na određenu logičku razinu
 - o ext1 omogućuje korištenje više RTC GPIO-va
- ULP coprocessor wakeup
 - ULP coprocessor može okinuti buđenje (to je dio RTC periferije za napajanje)
- GPIO wakeup (light sleep only)
 - svaki pin može biti postavljen da okine buđenje kada dođe na određenu logičku razinu
- UART wakeup (light sleep only)
 - UART periferija može okinuti buđenje čipa

ESP32 Dynamic Modification of Processor frequency

 algoritam za upravljanje snagom koji je uključen u ESP-IDF može prilagoditi frekvenciju APB-a (advanced peripheral bus), frekvenciju CPU-a i postaviti čip u light sleep mode

Tehnike štednje energije za mikrokontrolere

- sleep modes
 - isključenje određenih dijelova kruga ili satova koji pokreću određenu periferiju mikorkontrolera
 - o različite razine light sleep, deep sleep, idle...
- dinamička modifikacija frekvencije procesora
 - o dinamički se pokreće takt procesora, izmjenjuju se visoke i niske frekvencije
 - o firmware za rukovanje prekidima
- bit za spavanje pri izlasku
 - o mogućuje mirovanje mikrokontrolera nakon pokretanja prekidne rutine

Pogreške i oporavak od pogreške

Pogreška može biti uvjetovana

- programski zbog algoritma
- sklopovski zbog vanjske smetnje ili kvara

Sklopovi za nadzor rada

- Power-on reset (POR)
 - o reset prilikom uključivanja
 - o resetira sklop kada su sve komponente inicijalizirane
- Power-up timer (PWRT)
 - vremenski sklop za uključivanje
 - drži mikrokontroler u stanju RESET sve dok se ne dosegne napon potreban za ispravan rad svih komponenti
- Oscillator start-up timer (OST)
- Brown-out reset (BOR)
 - o detektira namjerni ili nenamjerni pad napona u sustavu za napajanje
 - može izazvat neželjeno ponašanje sustava koji je sastavljen od digitalnih komponenti
 - o smanjeni napon može izazvati da digitalni signali budu ispod dozvoljene razine
 - problem nastaje kad se napon stabilizira, jer pojedine komponente mogu ostati u krivom stanju
 - o detekcija korištenjem analognog naponskog komparatora ili ADC pretvornika
- Watchdog timer (WDT)
 - samostalno resetira mikrokontroler kada dođe do pogreške ili nepredviđenog stanja

NE555

 vremenski sklop koji se koristi za dobivanje izlaznih valnih oblika dodavanjem vanjskih RC komponenti sklopu

Sklopovi za detekciju ispadanja

- sklopovski brown-out
 - resetira mikrokontroler i drži ga u reset stanju sve dok se ponovo ne postigne stabilno napajanje
 - o osigurava da se sve komponente ponovo ispravno pokrenu
- programski brown-out
 - programski dio koda koji se pokreće prilikom pada napona kao prekidna funkcija nekog mikrokontrolera
 - omogućava programima da u kratkom vremenu odrade kritične poslove na procesoru

Watchdog timer izvedba

- vremenski sklop podesive frekvencije
- WDT broji od neke zadane vrijednosti K prema nuli ili od nule prema K
- u trenutku dosega nule/K, WDT mijenja stanje svog izlaza
- ako se operacija izvrši prije isteka timera, brojač se resetira i počinje novi ciklus brojenja
- izlaz može izvesti razne aktivnosti, npr. alarmirati korisnika, sklopovski resetirati računalo

- period se bira tako da se odredi najduže dopušteno izvođenje neke operacije
 - o FW efektivna WDT frekvencija
 - K konstanta WDT
 - TS maksimalno trajanje operacije
 - \circ $K \leq TS * FW$

Zaštita od EMI (electromagnetic interference)

- EMS (RFI) kad u frekvencijskom radijskom spektru nastane smetnja uzrokovana od strane vanjskog izvora koja utječe na rad digitalnog sklopa
- izvori EMS
 - o prirodni ili umjetni, izazvani od čovjeka
- zaštita
 - o voditi računa kod izrade PCB-a
 - raspored komponenti
 - o uzemljenje i napajanje
 - o filtriranje
- verifikacija am I building the product right
- validacija am I building the right product

ESP32 WDT

- prekidni WDT
 - omogućava ESP-u kontrolu da prekid ne traje predugo i da ne zaustavlja rad taskova
 - osnovna operacija WDT je da pozove panic handler i ispiše sadržaje registara i završi
- task WDT
 - svaki task može biti kontroliran od WDT

ESP32 - programske pogreške

- razlozi: nepostojeća naredba, greška prilikom load/store naredbe, dijeljenje s nulom...
- iznimke sustava: prekidna WDT iznimka, task WDT iznimka, brownout iznimka, preljev stoga...
- svaka pogreška biti će obrađena od strane panic handler funkcije

8. Sučelja

Vrste komunikacije

- po tipu podataka
 - o analognim signalom
 - o digitalnim signalom
- po širini sabirnice (po slijednosti)
 - paralelno
 - istovremen prijenos većeg broja signala
 - veća brzina prijenosa pri manjim udaljenostima
 - veća cijena

- serijski
 - prijenos manjeg broja signala u vremenskom slijedu (sekvencijalno)
 - manja brzina i manja cijena
 - pogodniji za velike udaljenosti
- po usklađenosti prijenosa
 - sinkrono
 - pojava novog podatka vezana je uz određeni vremenski trenutak određen sklopovljem za sinkronizaciju
 - omogućuje velike brzine, ali zahtijeva usklađenost predajnika i prijamnika
 - asinkrono
 - koristi se ako ne postoji znatna neprilagođenost u brzini između predajnika i prijamnika
 - za svaki preneseni podatak treba obavijestiti predajnu stranu o uspješnosti prihvata
- po zastupljenosti na tržištu
 - o široko prihvaćena norma
 - o usko prihvaćena norma
- po udaljenosti
 - kratke udaljenosti
 - unutar računalnog sustava
 - o srednje udaljenosti
 - unutar prostorije
 - velike udaljenosti
 - telekomunikacijske mreže, računalni sustavi

Unipolarni signal

- predstavljen jednom razinom napona (jednom polarnosti) ili nedostatkom napona
- informacija je razlika napona prijenosne i referentne linije (GND)
- za N signala potrebno N + 1 (referentna) linija
- smetnje nastaju zbog
 - o razlike referentnog potencijala na predajnoj i prijamnoj strani
 - o vanjskih utjecaja na prijenosnu liniju

Diferencijalni signal

- dvjema prijenosnim linijama prenose se dva komplementarna signala
- informacija je razlika između potencijala linija
- smetnje jednako utječu na obje linije te se njihov utjecaj poništava
 - o male razlike referentnog potencijala više ne utječu na informaciju
- za N signala potrebno 2N linija
- diferencijalni signal najčešće se prenosi simetričnom linijom (npr. parica)
 - o dva vodiča istog tipa i jednake impedancije prema masi
 - o minimiziran utjecaj smetnji

Podjela po standardiziranosti

- cilj je iskoristiti postojeće norme i nadograditi dobiveno rješenje
- dodatna podjela na
 - o standardni način povezivanja

- šire rasprostranjeni i namijenjeni povezivanju u različitim namjenama
- primjenjivi od strane različitih proizvođača
- ne postoje licencna ograničenja
- o specifični način povezivanja
 - određena specifična namjena
 - industrijsko umrežavanje

Komunikacija unutar računalnih sustava

I2C (Inter-Integrated Circuit)

- serijski komunikacijski protokol za komunikaciju između integriranih krugova
- namjena
 - o priključenje sporijih periferija u računalne i ugradbene sustave
 - osigurati jednostavno sučelje za uređaje koji ne traže brzu komunikaciju ili određenu brzinu
- ima jednostavan mehanizam za arbitriranje na sabirnici
- izvodi mreže uređaja sa samo dvije linije
- omogućuje *hot-swapping* mogućnost dodavanja/uklanjanja novih uređaja u mrežu dok ostali rade
- sastoji se od dvije aktivne linije
 - SDA serial data line
 - koristi se za prijenos podataka između slave i master uređaja
 - SCL serial clock line
 - zadužena za slanje clock signala
 - o obje linije su dvosmjerne
 - o open drain izlazi nužni pull up otpornici za definiranje stanja
 - o naponske razine mogu biti proizvoljne (ovisi o VDD)
- budući da je samo jedan SDA, ovo je unipolarni signal
- svaki uređaj ima jedinstvenu adresu, čak i ako su različitih tipova
- 2 tipa uređaja
 - vodeći (master) generira clock i postavlja adresu pratećeg uređaja
 - **prateći** (slave) prima clock i adresu
- više uređaja mogu biti vodeći Multi-Master Bus
- moguća zamjena uloga vodećeg i pratećeg između poruka, nakon slanja signala STOP

μC

Master

ADC

Slave

DAC

Slave

- postoji i podvrsta **SMBus** strža definicija, robusnije
- adrese imaju 7 bitova, 16 je rezerviranih adresa i najviše 112 čvorova može komunicirati
- doseg je nekoliko metara, a brzina 10-100Kbit/s
- 3 osnovna tipa poruka
 - o vodeći šalje jednu poruku pratećem
 - o vodeći prima jednu poruku od pratećeg
 - o kombinirane poruke
 - vodeći uređaj šalje/prima više poruka od pratećeg
 - sa svakom porukom šalje se START ili STOP signal koji govori je li poruka zadnja ili ih ima još
- semantika poruka specifična za određeni proizvod

μC

Slave

- vodeći su inicijalno u stanju slanja podataka
- vodeći šalje startni bit, 7 adresnih bitova (od uređaja) i bit koji kaže žele li čitati ili pisati sa pratećeg uređaja (0 – pisanje, 1 – čitanje)
- ako postoji adresirani prateći uređaj, on odgovara ACK bitom
- nakon ACK-a, vodeći nastavlja slati/primati, prateći nastavlja komplementarno vodećem
 - o u idućim se porukama šalje adresa **registra** u koji se piše/s kojeg se čita

- ACK bit očitava kao nisko stanje na SDA tijekom jednog cijelog period clocka
- dokle god vodeći ne primi ACK od pratećeg, šalje mu isti bajt
- start bit se moće poslati samo ako je SCL neaktivan (u visokom stanju) jer se slanje podataka može odvijati samo kad je SCL linija neaktivna
 - o po tome što je SCL neaktivan, svi ostali znaju da je SDA zauzeta pa neće slati svoje podatke
- ako se pošalje start bit, SCL ostaje u niskom stanju dokle god se ne pošalje STOP
 - o mogućuje tzv. *clock stretching* ako prateći uređaj nije spreman za nastavak transmisije, zadržat će SCL nisko, što vodećem govori da ne smije slati dalje
 - omogućuje i detekciju kolizije u slučaju više mastera ako jedan uoči izmjenu START i STOP bita, neće početi prijenos svojih podataka

- kad se šalje više uzastopnih poruka, ne šalje se STOP pa START nego tzv. repeated START
 - o inače bi postojala vjerojatnost da se netko ubaci u komunikaciju
- sinkronizacija ide i preko SDA
 - ako dva vodeća uređaja postavljaju SDA tako da jedan postavi 0 a drugi 1, rezultat
 je 0
 - oba uređaja usporede trenutno stanje s očekivanim stanjem onaj uređaj čije se željeno stanje ne poklapa s trenutnim prekida prijenos

- o niži bitovi imaju prioritet prioritetna sabirnica
- dvije faze arbitriranja
 - o adresna na temelju adrese se određuje čija će se poruka gledati prva (ako više uređaja šalje istodobno)
 - o podatkovna na temelju sadržaja poruke (poruka s manjim ID-jem ima prednost)
- ne podržavaju svi uređaji arbitriranje
- I2C ima relativno mala brzinu u odnosu na ostala rješenja i veliki broj definiranih brzina, ali malo uređaja ih zapravo podržava

SPI (Serial Peripheral Interface Bus)

- sinkrona, serijska, dvosmjerna sabirnica
- prednosti pred I2C i SMBUs
 - brži, dvosmjerna komunikacija
 - nema ograničenja broja bitova
 - o manja potrošnja, jednostavno sklopovlje
 - o nema arbitriranja na sabirnici
 - o prateći moduli ne traže jedinstvenu adresu
- nedostaci
 - više linija
 - o nema sklopovskog nadzora ispravnosti rada
 - o nema sklopovske potvrde primitka od pratećeg uređaja
 - o podržan samo jedan vodeći uređaj
 - o pokriva samo kratke udaljenosti
 - norma nije do kraja definirana pa je nemoguće provjeriti normiranost implementacije
- sinkrona serijska komunikacija između jednog vodećeg (master) i jednog ili više pratećih (slave) uređaja – obično dva mikrokontrolera ili mikrokontroler i periferija
- dvije upravljačke linije (obje izlaze iz glavnog uređaja)
 - SCLK/SCK/CLK serial clock
 - **SS**/CS slave select
- dvije podatkovne linije
 - MOSI/SIMO/SO (master output slave input)
 - MISO/SOMI/SDI (master input slave output)
- prijenos započinje spuštanjem SS linije i generiranjem signala
- signal vremenskog vođenja daje vodeći
 - o upravlja signalom SS aktivira pratećeg s kojim želi komunicirati
 - o za vrijeme jednog clock takta odvija se dvosmjerna komunikacija
- glavni gradivni element je posmačni registar
- kraj komunikacije jer kad vodeći prestaje generirati signal vremenskog vođenja
- ukoliko se koristi samo jedan prateći uređaj, SS može biti trajno vezana na GND i to je tzv. **3-pinska verzija SPI sučelja**
- ako uređaj nije odabran, linije su u stanju visoke impedancije

SPI umrežavanje

- paralelno
 - neovisni prateći uređaji (broj ovisi o tome koliko SS-ova može imati master)
 - o u jednom trenutku može biti odabran samo jedan

prateći uređaj

serijski

daisy chain

SPI polaritet i pomak

- CPOL polaritet
 - određuje stanje mirovanja clock linije (SCLK) i je li podatak zabilježen na rastućem ili padajućem bridu
 - označuje je li clock u mirovanju u visokom (1) ili niskom (0) stanju
- CPHA faza
 - o određuje kada se podaci obrađuju a kada šalju na MISO i MOSI linije
 - o opcije: na rastućem ili na padajućem bridu

Komunikacija između računalnih sustava (žična)

Norma RS-232-C

- definira električke karakteristike signala i sučelja
- ne definira
 - kodiranje znakova
 - uokvirivanje podataka
 - mehanizme otkrivanja grešaka ili kompresije podataka
 - brzine prijenosa
- dva tipa uređaja
 - DTE (engl. data terminal equipment)
 - DCE (engl. data circut-terminating equipment)
- dva tipa priključka dvoredni muški i ženski s 25 ili 9 pinova (DB-25 ili DB-9)
- dvije naponske razine
 - o -12V logička jedinica, MARK
 - +12V logička nula, SPACE
- problem je što norma ima nestandardni raspored pinova, nedostaju kontrolni signali i koriste se previsoki naponi za današnja računala
- prednosti
 - jednostavnost, rasprostranjenost, norma ne definira protokol pa se može prenositi bilo što
- nedostatci
 - o potreban previsok napon, kratka udaljenost, povezuju se samo dva uređaja

Signali

- Tx (transmit) linija za slanje podataka
- Rx (receive) linija za primanje podataka
- DTR (data terminal ready) određuje spremnost uređaja za rad
- RTS (request to send) uređaj ima podatke za slanje
- CTS (clear to send) uređaj želi primiti podatak

Spajanje računala i modema sa svim signalima:

GND (oklop) Tx

s minimalnim skupom signala:

- sklopovsko usklađivanje
 - o handshake posebne linije
- programsko usklađivanje
 - protokol Xon/Xoff
 - o prijemnik šalje Xoff kada više ne može primati podatke i Xon kada je opet spreman

Prijenos podataka

- UART universal asynchronous receiver/transmitter
 - sklop koji podatak predaje bit po bit fizičkom uređaju uz dodatne sinkronizacijske bitove
 - protokol za izmjenu serijskih podataka između dva uređaja
 - koristi samo dvije žice: Tx to Rx (oba uređaja)
 - može biti
 - simplex samo jedan uređaj šalje, drugi prima
 - half-duplex oba uređaja šalju ali ne istovremeno
 - full-duplex oba uređaja mogu slati istovremeno
 - podaci se šalju u okvirima
 - prijenos je obično asinkron počinje START bitom, zatim slijedi informacija (5, 6, 7 ili 8 bitova) i paritet (određuje je li došlo do greške), te završava jednim ili više STOP bitova
 - o protokol mora biti poznat i usklađen na predajnoj i prijamnoj strani
 - šalje se od bita najmanjeg značenja do bita najvećeg (unatrag)

Fizička razina

- osim sklopa UART, potreban je sklop za prilagodbu naponskih razina URS
- URS integrirani sklop za pogon serijskog kabela (??)

Norma EIA-422

- koristi diferencijalni signal, omogućuje spajanje do 10 pratećih uređaja Norma EIA-423 (RS-422, RS-423)
- samo ulaz prijemnika je diferencijalan, izlaz predajnika je unipolaran Norma EIA-485 (RS-485)
 - do 32 uređaja, multipoint komunikacija svaki uređaj može biti glavni
 - o kako će se odrediti tko priča, a tko sluša? Nije definirano
 - nekad jedan ipak postane master pa koordinira
 - brzina prijenosa ovisi o dužini prijenosnog medija
 - na fizičkoj razini ima sklop UART i sklop za prilagodbu razina/generiranje diferencijalnog signala
 - propisuje samo električke karakteristike: naponske razine signala, terminiranje linija...
 - o ne propisuje: protokol i funkcije pinova

Controller Area Network (CAN)

- protokol za brzu serijsku sabirnicu
- otvorena, linearna, multi-point arhitektura sabirnice
- CAN dijelovi
 - o recesivni bit logička jedinica na CAN sabirnici
 - o dominantni bit logička nula na CAN sabirnici
 - o paket skup korisnih podataka koji se prenose u jednom CAN okviru
 - CAN okvir niz bitova kodiranih po CAN protokolu koji sadrži korisne podatke i potrebne kontrolne bitove za siguran prijenos podataka i sinkronizaciju

Svojstva

- pouzdanost
 - o informacije se prenose diferencijalnim vodovima pa su otporne na EM smetnje
 - efikasne metode otkrivanja i popravljanja grešaka u prijenosu
 - o ako dođe do greške, ponovno se šalje poruka
- relativno niska cijena
 - o sabirnica ima samo dva voda
- rad u stvarnom vremenu
 - o poruke su vrlo kratke
 - o arbitriranje ne nedestruktivno ako poruka nije pročitana, ne uništi se
 - o ne gubi se vrijeme na dogovaranje tko prvi ima pristup
- fleksibilnost
 - o točke se mogu jednostavno odspajati i spajati, njihov broj nije ograničen
- zadovoljavajuća brzina prijenosa
 - o jer je udaljenost relativno malena, a i na 40m može prenositi cca 1Mbit/S
- multi-master sabirnica
 - o svaka CAN točka je ravnopravna na sabirnici nema mastera
 - o podaci se mogu prenositi prema jednoj ili više točaka
 - više točaka u isto vrijeme može primati podatke
 - o podaci se ne prenose prema pokvarenim točkama
 - o autodetekcija kvara i autoisključivanje pokvarenih točaka

ISO OSI CAN model

- OSI open system interconnection
- CAN norme definiraju dvije najniže razine:
 - data link razina
 - definira način pretvorbe digitalnih podataka u slijed bitova po zadanim formatima okvira
 - logical link control i media access control
 - fizička razina
 - definira potrebna svojstva medija za prijenos signala
 - parica ili CAN svjetlovod

Formati CAN okvira podataka

- data frame osnovni okvir, do 64 bita podataka
- remote frame zahtjev za određenim podatkom, data frame je odgovor
- error frame odgovor na grešku
- overload frame šalje ga točka koja želi odgoditi slanje sljedeće poruke prema njoj

Arbitriranje na mreži

- CSMA/CA+AMP carrier sense multiple access collision detection with non destructive arbitration
- mehanizam koji sprječava da više uređaja počne slati podatke istovremeno
- uređaj može slati podatke kada je linija u stanju idle (kada je recesivni bit prisutan 5 puta za redom)
- kada šalje podatke, uređaj ih istovremeno i prima
 - ako poslani i primljeni arbitrirajući bitovi nisu jednaki, neka druga točka većeg prioriteta je zauzela sabirnicu
- najveći prioritet ima CAN točka koja odašilje arbitrirajuće bitove najmanjeg sadržaja

- o svi uređaji su spojeni na sabirnicu pomoću spojeno-I logike;
- arbitriranje je potrebno kada više uređaja pronađe sabirnicu u idle stanju i počnu emitirati podatke
- nedestruktivna metoda podaci od pošiljatelja koji preuzima sabirnicu nikada nisu uništeni
- nema gubitka vremena zbog dogovaranja jer bitovi koji se koriste su ID poruke

CAN fizička razina

- osnovne vrste medija
 - žičana parica
 - svjetlovod
- CAN_Txd i CAN_Rxd su TTL signali iz CAN kontrolera
- driver pretvara TTL signal u diferencijalni signal kakav se prenosi sabirnicom

• parica je diferencijalna prijenosna linija pa je otporna na EM smetnje

Usmjeravanje podataka na CAN-u

- ne postoji adresiranje temeljeno na stalnim adresama pojedinih točaka
- svaka CAN točka odašilje poruke određenog tipa i ima određeni tip poruka koje može primiti
- više točaka koje imaju dozvolu za primanje poruka mogu istovremeno primiti poruku (nije izvedivo kod sabirnica gdje točke imaju fiksne adrese)
- kada neka točka želi podatak od neke druge točke šalje remote frame određenog tipa i prima

data frame tog istog tipa

Uzorkovanje podataka

- kontroler koji prima podatke sa serijske linije nema poseban takt za sinkronizaciju s predajnom stranom jer je CAN asinkroni protokol
- osim sinkronizacije na početku okvira, CAN prijemnik se usklađuje na svaki padajući brid u nizu podataka
- da bi se osigurala dovoljno česta sinkronizacija, ako se pojavi 5 recesivnih bitova za redom, umeće se jedan dominantni bit (tzv. bit stuffing)
- na predajnoj strani takvi se bitovi maknuti (dakle, na svaku pojavu 5 recesivnih bitova, makne se šesti koji mora biti 0)

Provjera ispravnosti paketa

CAN norma propisuje pet metoda zaštite od pogrešaka

1. CRC provjera

- koristi se 15-bitni CRC kod
- računa se od bita koji označava početak okvira sve do posljednjeg bita korisnih podataka
- kod se ugrađuje u okvir iza korisnih podataka
- primatelj na svojoj strani računa CRC kod i uspoređuje ga s dobivenim

2. Acknowledge bit

- nalazi se u okviru iza CRC podataka
- uvijek se šalje kao recesivni bit od strane predajnika
- kada barem jedan uređaj primi poruku ponovo šalje taj bit kao dominantni
 - ako je barem jedan uređaj primio poruku, ovaj bit se ne može pojaviti kao recesivni
- predajnik paralelno sa slanjem provjerava stanje sabirnice
- ako se taj bit pojavljuje na sabirnici kao recesivni, kakvim ga je predajnik postavi, znači da je došlo do pogreške jer niti jedan uređaj nije primio poruku

3. Frame check

- prijemnik provjerava stanje nekoliko bitova za koje zna da moraju biti u određenom stanju - u suprotnom se pojavljuje greška
- provjerava se stanje
 - o CRC delimiter bita
 - Acknowledge delimiter bita
 - End of frame ili Interframe space bita

4. Bit monitoring

- paralelno s predajom bitova predajnik čita stanje na sabirnici i uspoređuje s poslanim podacima
- ovi podaci moraju biti uvijek jednaki, osim acknowledge bita koji mora biti suprotan
- nejednakost podataka i stanja sabirnice označava grešku

5. Bit stuffing

- kod CAN standarda ne smije postojat niz dulji od pet bitova u nizu istog polariteta, tj. pet dominantnih ili pet recesivnih bitova u nizu
- ako je uvjet prekršen paket se smatra pogrešnim

CAN standardi

- ISO 11519-2, za sporije CAN sabirnice
 - o do 40m, do 1Mbit/s, svi su direktno priključeni na sabirnicu (do 32 uređaja)
- ISO 11898, za brze CAN sabirnice
 - o Ima dvije linije CAN_H i CAN_L
 - Njihovo recesivno stanje je 2.5V, a dominantno je 3.5 (CAN_H) i 1.5 (CAN_L)

Verzije CAN protokola

- 2.0A 11-bitno ID polje (2048 tipa poruka)
- 2.0B 29-bitno ID polje (536 milijuna tipova poruka)

Elementi CAN implementacije

- mediji za prijenos podataka, CAN sabirnica
 - o medij zahtijevanih svojstava za prijenos CAN paketa podataka
 - o svi CAN kontroleri komuniciraju preko iste linije
- CAN pogonski sklop (*driver*)
 - o pretvara CAN pakete u električne signale koji se prenose medijem
- CAN kontroler
 - o integrirani sklop koji implementira CAN protokol
 - o s jedne strane prima/šalje čiste digitalne podatke
 - o s druge strane šalje/prima podatke kodirane u CAN pakete
 - dvije skupine kontrolera
 - BASIC CAN
 - obavlja samo elementarne poslove na CAN sabirnici
 - složeniji poslovi se prebacuju na matični procesor veliko opterećenje procesora
 - FULL CAN
 - potpuno implementira sve potrebe komunikacije na CAN sabirnici
 - minimalno opterećenje procesor
- matični kontroler, mikroračunalo
- aplikacija

9. Bežične mreže

Osnove radiokomunikacije

Dimenzije sustava

- vrijeme
- frekvencija (spektar)
- prostor
- korisnici
- komunikacijski kanal je komunikacijska veza predajnik-prijemnik
- tamo se radi modeliranje signala u točki prijemnika
 - o jačina signala
 - o faza signala
 - šum (SNR signal to noise ratio)

Tipovi komunikacije

- glasovna komunikacija
 - o mala količina podataka
 - o konstantna brzina prijenosa
 - o ograničeno kašnjenje (100ms)
- podatkovna komunikacija
 - zahtjevi ovisni o konkretnoj aplikaciji
 - o multimedija velika propusnost, srednje kašnjenje
 - o kritične aplikacije velika propusnost, malo kašnjenje
 - o IoT burst način prijenosa
 - o običan prijenos podataka
- Osnovni problemi komunikacijskog kanala su slabljenje signala i interferencija Uzroci slabljenja signala
 - **velikog** razmjera (frekvencijski **neovisno**)
 - uzrokovano udaljenošću predajnika od prijamnika
 - uzrokovano zasjenjivanjem predajnika
 - malog razmjera (frekvencijski ovisno)
 - uzrokovano interferencijom zbog višestrukog rasprostiranja
 - interferencija između više korisnika komunikacijskog kanala

Spektralna efikasnost

slabljenje signala - ponovna iskoristivost spektra

Slabljenje signala

- teoretsko slabljenje: r⁻²
- refleksije od tla: r⁻⁴
- refleksija od prepreka: e-r

Interferencija

- konstruktivna ili destruktivna
- statička komponenta: refleksija od prepreka
- dinamička komponenta: Dopplerov efekt

Diverzifikacija

- slanje podataka različitim putevima, s neovisnim slabljenjem signala i rekonstrukcija na prijamniku
- može se raditi po bilo kojoj dimenziji sustava
- vremenska diverzifikacija
 - podatci se kodiraju simbolima i višestruko ponavljaju u vremenu
 - da bi se dodatno smanjila
 vjerojatnost potpunog gubitka
 informacije, uvodi se ispreplitanje
 simbola gubitak signala u kanalu
 periodičan pa se neće izgubiti cijeli podatak

prostorna diverzifikacija

- signal koji dolazi može biti distorizran i odbijati se od različitih prepreki
- ako antena ne prima signal, često je dovoljan samo mali pomak da opet može primati signale
- često postavljaju dvije antena na dovoljno velikom razmaku jedne od druge

frekvencijska diverzifikacija

- odbijanje vala od prepreke i pojavljivanje točaka bez prijama ovisi o frekvenciji vala
- promjenom frekvencije utječe se na promjenu lokacije točaka bez prijama
- zato se radi raspršivanje spektra signal se prenosi različitim frekvencijama zato da sigurno jedan od njih bude primljen

Izbjegavanje kolizija

- CSMA/CA Carrier sense multiple access with collision avoidance
 - ne može se koristiti colision detection jer bežična komunikacija ne može osluškivati medij dok šalje podatke
- prije slanja podataka osluškuje se kanal
- ako je kanal slobodan, šalje se signal svim ostalima da ne šalju podatke, a tek onda podaci
- inače pošiljatelj čeka slučajno vrijeme da se kanal oslobodi

Problem skrivenog terminala

- kada su dva predajnika u dosegu zajedničkog prijemnika, ali van dosega jedan drugog
- predajnici nisu svjesni postojanja drugog predajnika i mogu istodobno slati podatke, stvarajući interferenciju i koliziju

- Prijenos više podataka jednim signalom može se izvesti:
 - o korištenjem većeg broja frekvencija zahtijeva veći spektar

- korištenje kompleksnije modulacije
- primjer: FM radio
- **frekvencijska modulacija signala**: energija vala raspršuje se kroz mnogo širi frekvencijski spektar nego što je to potrebno
- tehnologija raspršenog spektra najčešće se implementira kao:
 - o raspršeni spektar direktnog slijeda DSSS (direct sequence spread spectrum)
 - raspršeni spektar sa skakanjem frekvencije FHSS (frequency hopping spread spectrum)

DSSS

- podaci se prije slanja moduliraju (XOR) sa slučajnim uzorkom (chipping sequence)
 - o unaprijed se zna kako na prijemnoj strani treba izgledati 0, a kako 1
- fazna modulacija velike brzine raspršuje spektar, i pritom smanjuje frekvencijsku gustoću snage
- dužina uzorka je minimalno 10 (prema FCC)
 - što se duži uzorak, veća se šansa detektiranja i ispravljanja pogreške jer će se bit krivo pročitati tek ako je preko 50% uzorka izmijenjeno
- dobitak pri procesiranju: omjer raspršivanja (dužina uzorka), u dB
- značajke
 - za slanje uzorka duljine N koji reprezentira 1 bit potrebno je N puta više znakova pa time se N puta veći frekvencijski opseg
 - o energija se široko rasprostire po području pojasa

FHSS

- kanal za prijenos podataka se brzo mijenja po pseudo-slučajnom uzorku frekvencija skače
- komunikacija naizgled zauzima vrlo široki frekvencijski pojas
- energija je također raspršena pa se smanjuje prosječna snaga na uskom frekvencijskom kanalu
- obje strane moraju biti sinkronizirane (znati redoslijed skakanja po frekvencijama)
- DSSS daje veću pokrivenost, domet i propusnost
- FHSS rješava problem višestrukog rasprostiranja signala u području s jakom interferencijom

Bežične mreže

- umjesto žičanih veza koriste se elektromagnetski valovi u prostoru
- svaka primjena ima definiran frekvecijski pojas
- na svjetskoj razini dostupni su 2.4 GHz i 5.2G Hz

Mreže dugog dosega i male snage - Low Power Wide Area Networks (LPWAN)

- kod tradicionalnih mobilnih mreža, podrazumijeva se trajna komunikacijska aktivnost uređaja i dominantan smjer komunikacije je downlink (iz mreže), potrošnja energije je velika i podrazumijeva se trajan pristup energiji
- kod IoT uređaja dostupne su vrlo ograničene zalihe energije koje se teško nadopunjuju

- zato je komunikacijska aktivnost kratkotrajna i prenosi se malo podataka
 - o dominantan smjer komunikacije je uplink (prema mreži)

LoRa

- komunikacijski protokol dugog dosega za uređaje s ograničenom energijom
- doseg komunikacije
 - o 3 5 km na urbanim područjima, 20 km na ruralnim područjima
- količina podataka u paketu: 2 255 okteta
- brzina prijenosa do 50 kbit/s (a u stvarnosti i niža)
- vrlo visoka otpornost na smetnje, slabljenje signala

Chirp spread spectrum modulacija

- porodica modulacija raspršenog spektra
- koriste se frekvencijski chirpovi (impuls) čija se frekvencija mijenja linearno u vremenu
- modulacija je parametrizirana moguće je mijenjati parametre
 - o Bandwidth **BW** 125, 250, 500 kHz
 - o Spreading factor SF (6-12)
 - o Code rate **CR** (4/5 4/8)
- Spreading factor je broj bitova kodira svaki chirp
 - o raspon frekvencija je uvijek isti
 - ovisno o tome na kojoj frekvenciji impuls završi, određuje se poslana vrijednost tako što se frekvencijski raspon dijeli na 2^{sr} dijelova
- **simbol** je 2^{SF} chirpova po simbolu koji pokrivaju čitavi BW komunikacijskog kanala
- trajanje pojedinog chirpa ovisi samo o BW čitavog kanala
- trajanje simbola:

$$T_S = \frac{2^{SF}}{BW}$$

- LoRa koristi FEC (Forward Correction Code)
- FEC dodaje dodatne informacije (n bitova) na početak koda prije transmisije kako bi se mogle ispraviti pogreške u kodu

$$CR = \frac{4}{4+n}, n = 1, ..., 4$$

- osjetljivost dekodera
 - veći BW manja osjetljivost → više grešaka
 - o veći SF veća osjetljivost → manje grešaka

Virtualni LoRa komunikacijski kanal

- definiran parovima (BW, SF)
- nema interferencije između virtualnih kanala iako zauzimaju isti frekvencijski pojas zbog raspršenog spektra
- virtualni kanali efektivno povećavaju ukupan kapacitet komunikacijskih kanala
- svaki virtualni kanal ima
 - o različitu brzinu prijenosa

$$R_b = \frac{SF*BW}{2^{SF}*CR}$$

- o različit doseg komunikacije koji je definiran osjetljivošću prijemnika
- veća brzina komunikacije → manji doseg

LoRa okvir

- preambula
 - sinkronizacija predajnika i prijemnika - network ID
 - o služi za buđenje uređaja
- zaglavlje (opcionalno)
 - veličina podataka
 - CR za ostatak okvira
 - o postoji li CRC na kraju
 - CRC zaglavlje
 - Podatci (najviše 255 okteta)
 - CRC podataka (opcionalno)

LoRaWAN

- MAC (Media Access Control) protokol nad LoRa fizičkim slojem
- dizajn namijenjen mrežama osjetila
 - o mala brzina prijenosa podataka
 - o mala količina podataka s jednog čvora
 - vrlo kratak period aktivnosti čvorova
 - o vrlo velik broj čvorova u mreži

Arhitektura LoRaWAN mreže

- krajnji uređaji senzori
- LoRa konekcija
 - LoRa gatewayIP konekcija
 - LoRa network server
 - aplikacijski poslužitelj (server)

LoRaWAN krajnji uređaji

- razred A asinkroni
 - šalje podataka po potrebi
 - prima podatke samo dva kratka prozora nakon slanja najmanja potrošnja energije
- razred B sinkroni
 - šalje podatke po potrebi

- o prima podatake dva prozora nakon slanja i u određenim vremenskim trenucima
- mora se sinkronizirati s premosnikom da se odredi koliko često se radi periodička provjera i da mu dodijeli vremenski period za primanje podataka - povećana potrošnja energije

razred C

- o radio podsustav trajno aktivan
- o primanje trajno moguće, osim u trenucima slanja

LoRaWAN pristupnik

- transparentan za krajnje uređaje
- višestruka LoRa sučelja prema krajnjim uređajima
- stalna veza velike propusnosti s mrežnim poslužiteljem
- od krajnjeg uređaja prema poslužitelju
 - o prikuplja sve valjane poruke
 - o dodaje podatke o jačini signala
 - o prosljeđuje poruke mrežnom poslužitelju
- od poslužitelja prema krajnjim uređajima
 - o sinkronizacija vremena s krajnjim uređajima
 - o upravljanje vremenom slanja poruka prema pojedinim krajnjim uređajima

LoRaWAN mrežni poslužitelj

- agregacija svih poruka od strane mrežnih pristupnika (ujedno i filtrira duple poruke)
- stvaranje ACK poruka za poruke koje zahtijevaju potvrdu
- prosljeđivanje poruka odgovarajućim aplikacijskim poslužiteljima
- zaprimanje poruka od aplikacijskog poslužitlja, formiranje LoRaWAN poruke i slanje pristupniku
- upravljanje mrežom i krajnjim uređajima

LoRaWAN format poruke

- adresiranje uređaja
 - o prema premosniku (**uplink**) nema adrese **odredišta** (valjda jer nije važno kojem premosniku ide)
 - o prema uređajima (**downlink**) nema adrese **izvorišta** (vjerojatno jer je samo samo jedan centralni ili opet nije važno od koga je)
 - adresa krajnjeg uređaja sigurno uvijek piše jer je važno gdje je nešto izmjereno i važno je kojem se uređaju šalje naredba
- FPort (1 oktet) multipleksiranje podataka
- ACK poruke (acknowledged ili not acknowledged oboje se šalje)
- ACK bit označava potvrdu prethodnog paketa
- FCnt praćenje slijeda poruka

LoRaWAN MAC naredbe

- upravljanje parametrima krajnjih uređaja od strane mrežnog poslužitelja
 - o snagom odašiljanja, brojem retransmisija, SF, period budnosti...
- provjera kvalitete veze od krajnjih uređaja prema premosniku

Adaptive Data Rate algorithm - ARD

algoritam za dinamičku prilagodbu brzine prijenosa na temelju uvjeta u bežičnom kanalu

- optimiranje rada krajnjih uređaja u mreži upravljanjem njihovim parametrima konstrukcije SF, BW, snaga odašiljanja
- mrežni poslužitelj
 - o procjenjuje kvalitetu veze pristupnika s pojedinim krajnjim uređajima
 - o računa zalihost kvalitete signala
 - o prema krajnjem uređaju šalju se naredbe smanjenja SF i snage odašiljanja
- krajnji uređaji
 - prilagođava parametre komunikacijskog kanala ADR naredbama pristupnika
 - ako prestane dobivati potvrde o odaslanih okvirima, povećava SF zato da uspori komunikaciju jer očito prebrzo šalje poruke

Propusnost mreže

- LoRaWAN izvorno ne podržava CSMA/CA
- opterećenje kanala (channel load): prosječan broj uređaja koji šalje pakete
- iskorištenost kapaciteta (*capacity usage*): postotak iskorištenosti od ukupnog kapaciteta kanala

Sigfox

- zaštićena (tajna) izvedba fizičkog sloja
- asimetrična izvedba
 - bolji prijem na strani bazne stanice nego na strani krajnjih uređaja zato što je naglasak na komunikaciji prema baznoj stanici
 - veća kompleksnost bazne stanice od krajnjih uređaja
- doseg komunikacije (veći nego LoRa)
 - o 30 50 km u ruralnim područjima
 - 3 10 km u urbanim područjima
- topologija zvijezde
 - postoji jedna bazna stanica s kojom su svi spojeni i ona je agregator komunikacije
 - krajnji uređaji koriste baznu stanicu za komunikaciju s aplikacijskim poslužiteljima
- infrastruktura se temelji na pružanju usluga pristupa mreži
 - o veliki pružatelji usluga pristupa, plaćaju se naknade za korištenje usluge
- prepostavlja se nizak duty cycle krajnjih čvorova, kratke poruke (do 12 okteta uplink i 8 downlink) te malo poruka (do 4 poruke na sat)
- komunikacija
 - krajnji uređaj formira poruku
 - o aktivira se sigfox sučelje
 - o šalje se poruka prema baznoj stanici (uplink)
 - čeka se eventualni odgovor (downlink)
 - o samo client push i polling, server push nije moguć
 - pogodno za osjetila, loše za upravljanje/aktuatore jer bazna stanica ne može poslati ništa krajnjem uređaju bez da je to odgovor na nešto
 - o pouzdanost prijenosa podataka
 - retransmisije, bez potvrde prijema (??)

- vremenska i frekvencijska diverzifikacija poruka
- prostorna diverzifikacija baznih stanica

NB-IoT

- LPWAN u sklopu licenciranog spektra mobilnih operatera
- Izravna konkurencija Sigfoxu
- visoka pokrivenost prostora korištenjem postojećih baznih stanica i veća brzina

Mreže kratkog pojasa - Personal Area Networks (PAN) Bluetooth

- otvoreni standard za bežičnu komunikaciju kratkog dometa
- inicijalna namjena je bežično povezivanje mobilnih uređaja
- za rad troši malo baterije pa je pogodan za uređaje s baterijskim napajanjem
- uređaji koji implementiraju Bluetooth dijele se u 3 razreda ovisno o potrošnji energije

Class	Maximum Permitted Power mW (dBm)	Range (approximate)
Class 1	100 mW (20 dBm)	~100 meters
Class 2	2.5 mW (4 dBm)	~10 meters
Class 3	1 mW (0 dBm)	~1 meter

- norma prijenosnog medija definirana je na dvije razine
 - fizička razina radio frekvencija
 - o viša razina protokoli i profili
- prijenosni medij je nelicencirani ISM pojas frekvencije područje 2.4 -2.5GHz
- frekvencijski spektar podijeljen je na 79 komunikacijskih kanala širine
 1MHz
 - ο kanal je podijeljen u vremenske odsječke u trajanju od 625 μs
 - o jedan master uređaj upravlja satom unutar grupe komunicirajućih uređaja

- Bluetooth ima ugrađene mehanizme za izbjegavanje interferencije
 - o odašiljanje slabog signala, prilagodba jačine slanja signala ovisno o interferenciji
 - mali podatkovni paketi
 - brze promjene komunikacijskog kanala u pravilnim vremenskim razmacima u pseudoslučajnom redoslijedu (FHSS) oko 1600 puta u sekundi
 - interferencija se može dogoditi mali dio sekunde, ali se riješi retransmisijom na drugoj frekvenciji
- Bluetooth normom definira dvije vrste veza
 - o sinkrono spojno orijentirana veza SCO (synchronous connection oriented)
 - za prijenos govora
 - istovremeno do tri aktivna glasovna kanala
 - o asinkrona bespojna veza ACL (asynchronous connectionless link)
 - za prijenos podataka i upravljačkih informacija
- mreža se formira tek kada postoji potreba za prijenosom podataka ne zahtijeva prethodnu infrastrukturu (tzv. ad-hoc mreža)
- uređaji mogu preuzeti jednu od uloga
 - master
 - postavlja redoslijed promjena frekvencije
 - može istovremeno komunicirati sa do 7 slave uređaja,
 istovremeno samo s jednim slaveom može razmjenjivati poruke
 - slave
 - izražava zahtjev za komunikaciju s master uređajem
- dva tipa mreža
 - piconet
 - o jedan master uređaj i do 7 slave uređaja
 - scatternet
 - nekoliko povezanih piconeta
 - vezu između piconet mreža čini jedan uređaj povezan u oba piconeta (master u jednom, slave u drugom piconetu)

- Stanja uređaja
 - master
 - slave
 - parked
 - low power mode, ostaju sinkronizirani s masterom i mogu biti ponovno probuđeni i spremni za komunikaciju
 - standby
 - low power mode, cijelo vrijeme spremni za komunikaciju

Povezivanje

1. inquiry

• inicijalno uređaji ne znaju jedni za druge, nisu sinkronizirani

- uređaji osluškuju u standby načinu rada i mogu postati master ili slave uređaji
- uređaj koji započne komunikaciju postaje master i traži uređaje u blizini slanjem upita (inquiry)
- uređaji u dometu odgovaraju porukom inquiry response
- ako je faza inquiry uspješno završena prelazi se u page fazu

2. page

- dogovor oko parametara komunikacije
- uređaj koji je započeo povezivanje šalje svim uređajima poruke s postavkama veze (page response)
- uređaji koji su tijekom inquiry faze u odgovarajućem stanju primitkom page response poruke prelaze u connection fazu

3. connection

• uređaji su povezani i mogu međusobno komunicirati

sva moguća stanja standby odspojen oko 2s u procesu odvajanje inquiry page spajanja (detach) oko 0.6s **Transmit** Connected aktivan **AMA AMA** oko 2ms **Park** Hold Sniff stanja male **PMA AMA AMA** potrošnje

(nadam se da nije važno, ali nek se nađe)

- osim komunikacije na fizičkoj razini, Bluetooth specifikacija definira cijeli složaj protokola
- host i controller komuniciraju preko standardnog sučelja
 - host računalo
 - o controller komunikacijski uređaj
 - standardno sučelje HCI (host controller interface)
- protokoli se ne koriste izravno već kroz profile koji definiraju moguće namjene/uloge uređaja
- poslužitelj nudi usluge klijentima oglašavanjem
 - o za svaku ponuđenu uslugu postoji zapis koji opisuje uslugu (Service Record)
 - svi zapisi čuvaju se u bazi zapisa (Service Discovery Database SDDB) koju sadrži je svaki poslužitelj, klijenti je pretražuju
- klijent zahtjeva uslugu od servisa i time se uspostavlja komunikacija

- o pretražuje SDDB za željenom uslugom
- o također može otvoriti određenu uslugu i postati server u bilo kojem trenutku

Tijek komunikacije

- inicijalizacija uređaja
- poslužitelj stvara opisnik usluge i sprema ga u svoj SDDB
- klijent započinje pretragu za susjednim uređajima spajanjem na fizičkoj razini
- nakon uspostave veze, pronađene uređaje pretražuje SDDB za željenom uslugom
- Opisnik usluge (Service record) sadrži atribute koji opisuju pojedinu uslugu
- svaka usluga ima UUID (16 ili 32 bita, ali obično se može proširiti na 128)

Bluetooth low energy (BLE)

- za uređaje ultraniske potrošnje (ima oko 100 puta manju potrošnju od BT)
- rješava probleme Bluetootha:
 - o trajanja povezivanja
 - o problem trajnosti veze
- BT ima stabilan prijenos, a BTLE burst prijenos
- organizacija komunikacije
 - o point-to-point
 - mesh
 - broadcast
- single i dual mode implementacije
- koristi isti frekvencijski pojas kao i BT

BLE vrste uređaja

- poslužitelj
 - o implementira jednu ili više usluga
 - o oglašava usluge klijentima unutar komunikacijskog dosega
- klijent
 - skenira aktivne (oglašavane) poslužitelje unutar komunikacijskog dosega
 - o spaja se na uslugu poslužitelja

Generic Access Profile (GAP)

- upravlja konekcijama i oglašavanjem (advertising)
- čini uređaj vidljiv vanjskom svijetu
- određuje kako uređaji komuniciraju
- dvije uloge uređaja
 - periferni
 - mali uređaji male snage i ograničenih resursa
 - mogu se povezati s mnogo snažnijim centralnim uređajem (ali samo jednim)
 - centralni (središnji)
 - uređaji velike procesorske snage i memorije
 - telefoni, tableti...
- Oglašavanje pomoću GAP-a može ići na dva načina:

- 1. advertising data payload
 - obavezan
 - cijelo vrijeme odašilje podatke iz uređaja
 - služi kako bi centralni uređaji znali da taj uređaj postoji
- 2. scan response payload
 - opcionalan
 - podaci koje centralni uređaji mogu zatražiti
 - više podataka o samom uređaju (npr. ime uređaja)
- periferni uređaj može razgovarati samo sa središnjim, pa ako dva periferna moraju izmijeniti podatke formira se "sandučić" (mailbox) koji ide preko središnjeg uređaja
 - o u tom slučaju komunikacija može ići u dva smjera

Broadcasting u BLE

- služi ako se žele oglašavati samo podatci
- uključi se mala količina proizvoljnih podataka u 31 bajt payloada (advertising/scan response)
- broadcast šalje podatke u jednom smjeru svim uređajima u dosegu (ne očekuje potvrdu)

BLE GATT

- generički atribut
- definira radni okvir za organiziranje i razmjenu podataka između BLE uređaja
- središnji i periferni uređaj razgovaraju preko koncepta klijent-poslužitelj
 - o perfierni uređaj je GATT poslužitelj
 - o središnji uređaj je GATT klijent i on započinje sve transakcije
 - periferni uređaj predlaže "connection interval" koliko će se često središnji spajati na periferni da vidi ima li novih podataka
 - taj interval je samo prijedlog ako je centralni uređaj zauzet, spojit će se kasnije
- GATT transakcije bazirane su na profilima
 - hijerarhija: profil poslužitelja → usluga → karakteristika
 - profil ne postoji na uređaju, već je on samo kolekcija usluga koju taj uređaj pruža, a kompajlira ju BT SIG (Special Interest Group) ili dizajner perifernog uređaja
- usluga dijeli podatke na logičke entitete i sadrži specifične podatke koji se zovu karakteristike
 - o može biti jedna ili više po usluzi
 - o svaki servis ima UUID
- karakteristika je koncept najniže razine u GATT transakcijama
 - također svaka ima svoj UUID
 - o postoje već gotove karakteristike, ali i svako može implementirati svoju
 - o na služi za slanje podataka periferiji, podatci se mogu i upisivait
- svoistva karakteristika:
 - READ: zahtjev za čitanjem varijable
 - o WRITE: pisanje u varijablu **s potvrdom,** inicira klijent

- WRITE WITHOUT RESPONE: bez potvrde
- AUTHENTICATED SIGNED WRITES: pisanje koje inicira autenticiran klijent
- NOTIFY: obavijest o promjeni varijable (npr. counter koji se povećava automatski i dojavljuje klijentu svaki put kad se promijeni)
 - INDICATE: isto, ali zahtijeva potvrdu servera
- o BROADCAST: podatci koji se nalaze u paketima oglašavanja

ZigBee

- nova norma za bežičnu komunikaciju na kratke udaljenosti
- glavni cilj je fleksibilnost u suradnji i sučeljavanju uređaja različitih proizvođača
- primjena
 - o grijanje, klimatizacija, ventilacija, rasvjeta
 - o detekcija požara, provala
 - nadgledanje vozila
 - o praćenje stanja pacijenata, sportaša...
 - o bilo koja situacija gdje čvorovi većinu vremena ne primaju ni ne šalju poruke
- troslojna arhitektura
 - fizički sloj
 - MAC adresiranje (osnovno, kontorlno adresiranje)
 - o kontrola medija
 - o koristi radijski pojas na frekvenciji koja je definirana normom
 - frekvencijski pojas se prilagođava, jedan pojas ima više kanala
 - koristi DSSS
 - pojasi niže frekvencije imaju manje korisnika, manje interferencija i manju apsorpciju i refleksiju energije radiovalova
 - viša frekvencija (npr. 2400Mhz) ima bolju prihvaćenost, veću brzinu prijenosa, veći broj kanala i nižu potrošnju jer slanje/primanje traje kraće
 - o domet: otvoren prostor oko 200m, zatvoren 30m
 - ZigBee stog
 - uspostavljanje mreže
 - o prosljeđivanje poruka
 - zaštita podataka (autentikacija, enkripcija)
 - aplikacijski sloj
 - koriste usluge mreže za svoj rad
 - daju funkcionalnost čvoru
 - jedan čvor može imati više aplikacija
- ne moraju svi čvorovi mreže nužno imati stalno napajanje
- autonomija se može postići:
 - o baterijsko napajanje baterije manjeg kapaciteta, potrebna rjeđa zamjena
 - o solarno napajanje svjetlosna energija, zahtijevaju svjetla mjesta
 - smanjenje potrošnje
 - duty cycle aktivno vrijeme
 - režim spavanja
 - modulacija s ciljem manje potrošnje
- štednja energija može se postići slanjem poruka

ograđenih signalnim okvirima – beacon

- o čvor može spavati između dva beacona
- sučelje se izvodi sklopovska sa što manje analognih dijelova jer je pogodno za ugradnju u jeftine mikrokontrolere
- također, lakša kontrola kvalitete digitalnih sklopova
- čvorovi u mreži mogu biti:
 - full-function device (FFD)
 - reduced-function device (RFD)
- jednostavne mreže
 - jedan-na-jedan (point-to-point)
 - zvijezda (star)
 - proširenje na složenije mreže (peer-to-peer)
- topologija mreže određuje način slanja poruka među čvorovima
 - zvijezda (star)
 - središnji čvor je vezan s ostalima
 - nije potrebno korištenje
 ZigBeeja za uspostavu mreže

- stablo (tree)
 - središnji čvor korijen stabla
 - poruke se penju/spuštaju po stablu
- mreža (mesh)
 - slično stablu samo su pojedine grane vezane
 - najefikasnija za prijenos poruka
 - otporna na ispad čvorova
 - najsloženija za održavanje
- kod stabla i mreže ZigBee stog omogućava mehanizme prosljeđivanja poruka i moguće su veće udaljenosti
- unutar mreže može biti do 65536 čvorova
- osnovni tipovi čvorova
 - koordinator ZC
 - uvijek samo jedan u slučaju ispada mreža ponekad može nastaviti s radom
 - odabire komunikacijski kanal
 - inicira mrežu
 - dozvoljava uređajima pristup mreži
 - može imati ulogu prijenosnika
 - o usmjernik (router) ZR
 - odgovoran za komunikaciju dijela mreže ne smije spavati
 - prenosi poruke među čvorovima
 - dozvoljava čvorovima da se povežu s njim
 - o krajnji uređaj (end device) ZED

- šalje i primaje poruke
- ne prenose poruke za druge čvorove
- svaki čvor ima
 - IEEE adresu 64 bita (MAC adresa, proširena adresa)
 - o mrežnu adresu 16 bita (kratka adresa, koordinator uvijek 0x0000)
- aplikacija koristi krajnju točku 8 bita
 - o početna ili završna točka prijenosa poruke
 - 0 je rezervirana za ZigBee Device Objects (za kontrolu mreže), korisničke aplikacije mogu koristiti 1-140; 255 je broadcast
- ZigBee definira profile uređaja za pojedine primjene da se osigura kompatibilnost uređaja raznih proizvođača
- dvije razine poštivanja protokola
 - ZigBee network capable uređaj koristi ZB mrežu za rad, koristi privatni profil pa mu ne smeta mu rad ostalih ZB uređaja (drugih proizvođača)
 - o ZigBee compliant product uređaj koriste ZB mrežu za rad i javne profile
- funkcija uređaja opisana opisnicima (descriptor)
 - opisnik čvora (node descriptor) osnovne informacije
 - opisnik **napajanja** (power descriptor) napajanje čvora
 - opisnici **aplikacija** (application descriptor) opcionalno, atributi i koje aplikacija nudi
- ZB orijentiran prema nadgledanju i kontroli
 - atributi su uglavnom mjerne ili kontrolne veličine, grupiraju se u funkcionalne cjeline
- atributi se mogu međusobno povezivati
- mehanizam povezivanja oslanja se na grupe atributa
 - o povezivanje dva uređaja moguće samo ako imaju kompatibilne grupe
 - jedan uređaj mora nuditi neku grupu atributa kao izlaz, dok drugi mora iskoristit tu grupu atributa kao ulaz
 - o moguće su 1:1, 1:N i N:N veze
- ZigBee osigurava pouzdanost prijenosa
 - o prije komunikacije odabire se kanal koji je najmanje aktivan
 - o podatci se kodiraju za najmanju vjerojatnost pogreške
 - o pri ispadu čvora otkriva se novi put
 - koristi se mehanizam rukovanja
- **sigurnost** se osigurava kontrolom pristupa mreži, enkripcijom i vremenskim oznakama poruka (za zaštitu od napada ponavljanjem poruke)
- unutar ZigBee svijeta može postojati više mreža koje dijele eter jer svaka ima svoj ID
 - također, parametri mreža su odabrani tako da ne smetaju drugim mrežama (WFI, BT i ostale mreže zasnovane na IEEE 802.15.4)
- alternative ZigBeeju su Z-Wave i EnOcean

10. Bežične mreže osjetila

- osjetila rade mjerenja, obrađuju ih, nakon toga se radi fuzija svega što su sva osjetila izmjerila i na temelju toga se rade zaključci
- što je osjetilo dalje od pojave, ima bolju vidljivost, ali ne bilježi detalje
 - zato se to primjenjuje za velike pojave
 - o u tom slučaju potrebna je optička vidljivost (engl. line-of-sight)
- kod prostorno raspodijeljenih promatranja, osjetila moraju biti postavljena rijetko (biti dovoljno udaljena), dakle potrebna je infrastruktura
- s druge strane, kod promatranja na mikrorazini, osjetila moraju biti gusto postavljena jer promatraju na razini dimenzija pojave
 - o osjetila su tada dio okoline koju promatraju
- računala
- radiokomunikacija ima nisku potrošnju jer radi na niskoj snazi i pouzdana je

Računala – makro i mikro

- Računala
- Mikroračunala
- Mikrokontroleri
- Motes (Mote čestica, zrnce, vršak trna)

 - Povezivanje računala "jedan na jedan"
 - Mreže računala
 - Bežične mreže
- Bežične mreže kratkog dosega

 - · Trafo stanice
 - Izvori napajanja
 - Baterijski izvori napajanja
- Izvori napajanja iz okoline

Bežične mreže osjetila - Wireless Sensor Networks (WSN)

- sastoje se od prostorno raspoređenih autonomnih računala (čvorova) s različitim vrstama osjetila
- računala povezana u ad-hoc mrežu koristeći radiokomunikaciju
- mreža prati parametre okoline u kojoj je smještena, obrađuje ih i prosljeđuje korisnicima (izvan mreže ili ostalima u mreži)
- WSAN mreža ima sposobnost djelovati na okolinu koju promatra (A actuator)

Osnovna svojstva WSN

- niski horizont
 - pojedini čvor vidi samo mali dio promatrane pojave

- za stvaranje cjelovite slike potrebna je suradnja čvorova u mreži
- nije potrebna infrastruktura
- svaki čvor ima ograničenu količinu energije bez mogućnosti obnavljanja
- primjene WSN-a
 - o promatranje pojava u prirodi, životinja na nepristupačnim terenima
 - o praćenje proizvodnje i transporta dobara
 - o detekcija i lokalizacija kvarova na infrastrukturi (naftovod, plinovod)
 - o pametna poljoprivreda (upravljanje navodnjavanjem)
 - o razmjena podataka za pametan promet
- izazovi pred WSN
 - o produljenje životnog vijeka mreže štednjom energije
 - na čvoru dodati programsku podršku
 - na razini mreže poboljšati suradnju čvorova
 - mreža mora raditi nenadzirano radi velikog broja čvora, pa mreža mora imati svojstva:
 - samoorganizacija
 - samocijeljenje
 - prilagodljivost

Vrste čvorova

- opće namjene
 - modularna građa
 - srednja veličina i cijena
 - duplex komunikacija

specijalizirani

- jednostavna građa, građa određuje ulogu
- male dimenzije, mala potrošnja, niska cijena
- samoodašiljanje

snažni čvorovi

• slični kao i čvorovi opće namjene, ali dosta veća veličina i visoka cijena

poveznici

- priključeni na infrastrukturu
- poveznici vanjskog svijeta i mreže osjetila

Kanonski model čvora WSN

- CPU/MCU
- aktuatori
- osjetila
- komunikacijski podsustav
- trajna memorija
- izvor energije

Osnovne karakteristike čvorova

- količina raspoložive energije je ograničena i teško nadoknadiva
- broj čvorova velik, izravno održavanje čvorova u pravilu nije moguće

- čvor sam za sebe ne znači ništa, pa je nužna suradnja sa susjednim čvorovima
 - o nije nužna visoka pouzdanost jer se kolektiv može nadoknaditi grešku
- samokonfiguracija, adaptacija rada čvora
- MCU/CPU radi na 3 5 V
- radi procjenu kompleksnosti zadataka čvora
 - preslab dugo izvršavanje, veća ukupna potrošnja energije ili nemogućnost izvršavanja zadatka u zadanom roku
 - prejak prevelika potrošnja, kompleksnost popratnog sklopovlja
- načini rada: active i idle
- dva aspekta programske podrške ključna
 - ograničenost resursa
 - potrošnja energije
- programska podrška temeljena na paradigmi događaja (engl. event-based)
- asimetričnost veličina programske i podatkovne memorije 100 : 1
 - veličina programskog koda nije ograničavajući faktor
 - korišteni algoritmi su takvi da imaju minimalnu potrošnju podatkovne memorije i omogućuju ponovno korištenje istih područja
 - o samo statička alokacija memorije
- MCU u sleep modeu kad god je moguće (pasivno čeka na događaj)
 - vanjske komponente po potrebi bude MCU, (dižu prekide), obavlja se obrada i nakon toga se vraća u sleep mode
 - o dakle, postoje vremenski okidači za (a)periodičke poslove
- izvođenje algoritma ima svoju cijenu u energiji
 - veća točnost i kompleksnost zahtijevaju više energije, a ona je ograničena
- energija potrebna za prijenos jednog bita podataka na udaljenost r proprcionalna je s r^2 do r^4
- radio male snage osjetljiv na smetnje, zapreke, blizinu tla, atmosferske prilike, kretanje...
 - o prijenos zahtijeva čak 1000 puta više energije nego obrada
- zato se radi strategija
 - što više obrade za što manje prijenosa
 - komunikacija na što manju udaljenost, korištenje više skokova za prijenos na veće udaljenosti
- potrebna je i dodatna energija i vrijeme za promjenu moda rada
- vrste osjetila
 - digitalna spojena na vanjske sabirnice MCU
 - analogna spojena na AD pretvornik (u MCU ili dodatni)
- sva osjetila mogu biti uključena/isključena programski
- odabir osjetila prema
 - energiji potrebnoj za obavljanje mjerenja
 - razlučivosti nužnoj za željenu primjenu
- trajna memorija čuva mjerene podatke i ima veći kapacitet od podatkovne memorije

MCU

- sačuvana i ako čvor ostane bez energije
- nedostaci
 - veća potrošnja energije kod čitanja i pisanja
 - sporije čitanje i pisanje od SRAM-a
 - blokovski način rada s podacima

Izvori energije

- najsporije razvijani aspekt WSN-a; još uvijek nedovoljna gustoća pakiranja energije
- neobnovljivi izvori ili prikupljanje energije iz okoline (engl. energy harvesting)
- raspoloživost informacija o raspoloživoj energiji na razini aplikacijskog koda
 - o zato da aplikacija može donositi "energetski svjesne" odluke
- posebni čvorovi temeljeni na prikupljanju energije

Scenarij korištenja sustava

- 1. postavljanje mreže osjetila
 - o ad-hoc bez planiranja
 - o determinističko planirano
- 2. pokretanje sustava
 - o aktiviranje sustava
 - samodijagnostika
 - o podešavanja
- 3. samoorganizacija
 - uspostava komunikacije s okolnim čvorovima
 - formiranje logičke komunikacijske mreže
 - o sinkronizacija satova
 - lokalizacija čvorova i podjela poslova
- 4. diseminacija i adaptacija
 - o koordinacija rada, kooperativno prikupljanje i obrada informacija
 - o prilagodba mreže unutarnjim i vanjskim čimbenicima
- **graf povezanosti** određuje moguće dvosmjerne komunikacijske kanale između čvorova mreže
 - ne moraju nužno sve veze biti dvosmjerne, graf je idealan slučaj
 - o temelj samo-organizacije mreže osjetila
- do **statičkih** problema povezanosti dolazi zbog:
 - različitosti radio podsustava
 - kvarovi tijekom rada čvora
 - zapreke širenju radio signala u mreži osjetila
- do dinamičkih dolazi zbog
 - atmosferskih prilika
 - gibanja čvorova
 - iscrpljivanja energije čvorova
 - o dinamičke zapreke unutar mreže osjetila
- posljedice statičkih i dinamičkih:

- nepostojanje očekivanih veza
- pojava neočekivanih veza
- asimetrične veze
- tipična organizacija mreže
 - čvorovi mreže
 - odvod
 - poveznica između mreže i vanjskog svijeta (jedan ili više u mreži)
 - uloga: veća raspoloživa energija i snaga
 - komunikacijska sredstva dugog dometa ili trajna povezanost

Tokovi podataka u mreži

- čvorovi mreže → odvod
 - o podaci o promatranoj pojavi ili o stanju mreže
- odvod → čvorovi mreže
 - o naredbe za upravljanje mrežom
 - o programski kod
- između čvorova mreže
 - o koordinacija rada čvorova

Pouzdanost komunikacije

- tradicionalno se u mrežama pouzdanost smatra pouzdanošću od točke do točke
 - o primatelj detektira gubitak paketa i šalje zahtjev za retransmisijom
- ovdje bi taj pristup bio jako energetski neučinkovit, potrebno je iskorisiti lokalizirane mehanizme retransmisije i specifičnosti mreža osjetila
- prenošenje podataka iz mreže (event to sink)
 - pouzdanost prijenosa podataka o događaju određena pouzdanosti prepoznavanja događaja
 - pouzdanost prijenosa pojedinih paketa je nebitna jer, ako je dovoljno susjednih čvorova došlo do odvoda, informacija se može rekonstruirati
 - također, detekcija događaja uzrokuje istovremeno slanje velikog broja paketa, što uzorkuje zagušenje, gubitak paketa... čak je i bolje da se ne šalju ponovno izgubljeni
- pouzdanost prijenosa podataka do čvora (sink to sensor)
 - o prenošenje naredbi, novih inačica programskog koda
 - o pouzdanost na razini paketa je bitna
 - korištenje negativnih potvrda prijama paketa
 - o moguće je priuštiti to zato što je odvod stalno spojen na izvor energije
 - ako nije, onda se koristi single-hop komunikacija
- sve odluke o usmjeravanju poruka temelje se na isključivo lokalno dostupnim podacima
 - tradicionalan pristup s tablicama usmjeravanja je neizvediv zbog velikog broja čvorova, ograničene radne memorije i mogućnosti da nemaju svi čvorovi jedinstven identifikator

Mreže bez usmjeravanja Mreža jednog skoka (single-hop)

• čvorovi međusobno unutar komunikacijskog dosega

- čvorovi čine jedan grozd vođa ima izravnu komunikaciju sa svim čvorovima grozda
- nepostojeća infrastruktura usmjeravanja, paketi se šire broadcastom (tzv. plavljenje)
- pokretni čvorovi
 - sakupljači podataka
- plavljenje (engl. *flooding*) se koristi za slanje podataka čvoru ili grupi čvorova bez infrastrukture usmjeravanja, poruke se šalju svima
- karakteristike plavljenja
 - velika potrošnja energije na razini čitave mreže svaki čvor šalje paket bez obzira na korisnost tog slanja
 - o nema garancije prijenosa, ali je vjerojatnost primitka poruke velika jer svaki čvor na nailazak svake nove poruke ju šalje svima

Multi-hop mreže

- središnji čvor nema kontakt sa svima, već se poruke prenose posrednicima
- koristi se plošno usmjeravanje
 - o bilo koja dva čvora mogu komunicirati
 - o svi čvorovi su ravnopravni u izgradnji infrastrukture

• gradijentalno polje

- o aciklički usmjereni graf koji se stvara tijekom faze samoorganizacije mreže
- o svaki odljev inicira stvaranje svog gradijentnog polja
- o razina čvora proporcionalna broju skokova poruke do čvora
 - poruke se spuštaju po polju
 - u praski nepraktično zbog asimetričnih veza

• stablsta organizacija

- o organizacija razgranatog stabla
- o svaki čvor ima čvor roditelj kojem prosljeđuje poruke
 - postoje lokalne tablice usmjeravanja
- o tablice se stvaraju tijekom faze samoorganizacije ili u prilagođavaju u diseminaciji
- o čvor roditelj se bira prema blizini odljevu, količini preostale energije i kvaliteti veze
- alternativno, moguće je i nepostojanje stabilne strukture mreže
 - o pokretni čvorovi sakupljači podataka (data mules)
- prikupljeni podaci su prostorno i vremenski korelirani ne trebaju nužno svi
- podaci se agregiraju tijekom puta, tj. obrađuju se unutar mreže da se ne šalju svi van
- moraju postojati dijeljeni segmenti puta od čvorova prema odljevu
- obrada podataka unosi kašnjenje u isporuku paketa
- mora postojati infrastruktura usmjeravanja
- usklađenost satova je bitna zbog usklađivanja akcija čvorova i obrade podataka
- nemoguće uskladiti satove svih čvorova u mreži
 - o koriste se lokalizirane metode usklađivanja ili bilježenje razlike u satovima
- primjer relativne sinkronizacije
 - čvorovi B, C i D od čvora A istovremeno primaju podatak, bilježe lokalna vremena u kojima su dobili taj podatak i zatim uspoređuju razlike u vremenima
- lokalizacija čvorova važna je zbog

- o određivanja konteksta prikupljenih podataka
- korištenje usmjeravanja temeljenog na lokaciji
- ne može se koristiti GPS jer zahtijeva puno energije, ne treba cijelo vrijeme nego samo u fazi samoorganizacije i ne radi u zatvorenom prostoru
- metode lokalizacije
 - o temeljene na apsolutnoj udaljenosti
 - procjena udaljenosti dvaju čvorova temeljem mjerenja vremena putovanja signala
 - procjena na temelju jačine radio signala
 - o temeljene na relativnoj udaljenosti
 - grube procjene udaljenosti na npr. određivanju broja skokova poruke između dva čvora

Sigurnost u mrežama osjetila

- osim komunikacijskog kanala, nesigurna su i osjetila i njihova okolina
- štićenje povjerljivosti, integriteta i dostupnosti komunikacije i obrade podataka
 - o ključ pohranjen u čvoru nije siguran
 - o šifriranje s kraja na kraj onemogućuje agregaciju
 - o šifriranje od čvora do čvora troši energiju i vrijeme

11. Računarstvo na rubu

- omogućuje izvođenje računanja na rubu mreže, blizu izvora podataka
- prikuplja podatke i sa clouda i s IoT servisa
- prednosti
 - o fleksibilno rješenje za povezivanje u udaljenim područjima
 - podaci se mogu čuvati u blizini izvora i unutar granica zakona o suverenitetu podataka
 - nudi sigurnost podatka
- mane
 - o opseg i svrha implementacije moraju biti jasno unaprijed definirani
 - o rješenja se moraju prilagoditi lošoj ili nestalnoj vezi
 - potrebne kompleksne aplikacije kako bi se iskoristio puni potencijal
 - o potrebno je podijeliti aplikacije između ruba i oblaka
 - ne postoji standard za imenovanje aplikacija i uređaja
 - o privatnost i sigurnost
- primjene
 - o trgovine, zdravstvo, udaljene farme, proizvodnja, naftne platforme
- **rubni uređaj** (engl. *edge device*): bilo koji računalni ili mrežni resurs koji se nalazi između izvora podataka i podatkovnih centara u oblaku (*cloud data centers*)
 - o npr. smartphone
 - istovremeno konzumira i proizvodi podatke

Edge-cloud arhitektura sustava

 rubni uređaj može prenijeti komplicirane zadatke na rubni poslužitelj preko određen

- bazne stanice u njegovoj blizini
- na temelju zahtjeva zadatka, rubni poslužitelj može u potpunosti obaviti zadatak ili izvršiti dio zadatka a dio prebaciti na poslužitelj u oblaku

Izazovi integracije CPS-a s rubnim računarstvom

- kašnjenje usluga
- potrošnja energije
- sigurnost i privatnost
- pouzdanost sustava

Računarstvo u magli (fog computing)

- fokusirano na područje podatkovnog prostora između izvora i oblaka
- arhitektura se sastoji od niza čvorova u kojima IoT uređaji mogu primati podatke u stvarnom vremenu
- prednosti
 - može prenositi veće količine podataka, što rezultira smanjenjem propusnosti
 - o poboljšava vremena kašnjenja
 - o računanje se bazira na LAN mreži, te mreža može biti povezana žičano ili preko WiFi ili 5G mreže
- mane
 - o računanje je vezano za fizičku lokaciju
 - o podložno napadima spoofinga ili čovjeka u sredini
 - troškovi pokretanja su veliki
- primjene
 - o uređaji za kontrolu prometa, autonomna vozila

Fog arhitektura sustava

12. Kontekst

Vrste konteksta

- računalni kontekst
 - o dostupni procesori, uređaji za unos i prikaz podataka, periferni

uređaji, kapacitet mreže, povezanost...

- korisnički kontekst
 - o lokacija korisnika, ljudi koji se nalaze u blizini, korisnički profil...
- fizički kontekst
 - o osvjetljenje, temperatura, buka...

Točke gledišta konteksta

- konceptualno gledište
 - o opisuje kontekstualni prostor pomoću aktora, radnji i odnosa između njih
- mjerno gledište
 - o sadrži razne kontekste: kontinuirani, enumerativni, stanja, deskriptivni...
- minimalni skup informacija koje pruža kontekst tko, što, kada, gdje i zašto
- svijest o kontekstu (context awareness)
 - sposobnost programa ili računalnog uređaja da otkrije, osjeti, tumači i reagira na aspekte okoline
 - aktivna aplikacija se automatski prilagođava kontekstu
 - pasivna aplikacija predstavlja novi ili ažurirani kontekst korisniku ili kreira trajni kontekst koji kasnije može dohvatiti

• komponente sustava svjesnosti o kontekstu

- 1. sustav prikuplja informacije o kontekstu kroz korisničko sučelje i pohranjuje ih
- 2. sustav pretvara prikupljene informacije u smisleni kontekst koji je moguće koristiti (modeliranje konteksta)
- 3. sustav koristi stvoreni kontekst i prikazuje ga korisniku
- prikupljanje podatka o kontekstu (engl. context acquisition)
 - senzorski (sensed) kontekst informacije se skupljaju fizičkim ili programskim senzorima
 - o izvedeni (derived) kontekst informacije koje se mogu se izračunati u hodu
 - o izričito navedeni (explicitly provided) kontekst npr. korisničke preferencije
- modeliranje konteksta radi se na dvije razine
 - o različiti konteksti koriste istu strukturu podataka za izražavanje
 - o semantički jedinstvene strukture za izražavanje
- kako bi se formirao vrijedan i jasan semantički kontekst, potrebno je razviti unutarnji odnos između elemenata konteksta i napraviti fuziju prema specifičnoj primjeni