

Zhou Shuigeng

June 10, 2007

Zhou Shuigeng

May 28, 2006

Text Databases and IR

- Text databases (document databases)
 - Large collections of documents from various sources: news articles, research papers, books, digital libraries, e-mail messages, and Web pages, library database, etc.
 - Data stored is usually semi-structured
- Information retrieval
 - A field developed in parallel with database systems
 - Information is organized into (a large number of) documents
 - Information retrieval problem: locating relevant documents based on user input, such as keywords or example documents

Information Retrieval

- Typical IR systems
 - Online library catalogs
 - Online document management systems
- Information retrieval vs. database systems
 - Some DB problems are not present in IR, e.g.,
 update, transaction management, complex objects
 - Some IR problems are not addressed well in DBMS, e.g., unstructured documents, approximate search using keywords and relevance

IR Techniques(1)

- Basic Concepts
 - A document can be described by a set of representative keywords called index terms.
 - Different index terms have varying relevance when used to describe document contents.
 - This effect is captured through the assignment of numerical weights to each index term of a document. (e.g.: frequency, tf-idf)
- DBMS Analogy
 - Index Terms → Attributes
 - Weights → Attribute Values

IR Techniques(2)

- Index Terms (Attribute) Selection:
 - Term extraction
 - Stop list
 - Word stem
 - Index terms weighting methods
- Terms × Documents Frequency Matrices
- Information Retrieval Models:
 - Boolean Model
 - Vector Model
 - Probabilistic Model

Keyword Extraction

Goal:

- given N documents, each consisting of words,
- extract the most significant subset of words → keywords
- Example
 - [All the students are taking exams] -- >[student, take, exam]

Keyword Extraction Process

- remove stop words
- stem remaining terms
- collapse terms using thesaurus
- build inverted index
- extract key words build key word index
- extract key phrases build key phrase index

- From a given Stop Word List
 - [a, about, again, are, the, to, of, ...]
 - Remove them from the documents
- Or, determine stop words
 - Given a large enough corpus of common English
 - Sort the list of words in decreasing order of their occurrence frequency in the corpus
 - Zipf's law: Frequency * rank ≈ constant
 - most frequent words tend to be short
 - most frequent 20% of words account for 60% of usage

Zipf's Law -- An illustration

Rank(R)	Term	Frequency (F)	R*F (10**6)
1	the	69,971	0.070
2	of	36,411	0.073
3	and	28,852	0.086
4	to	26,149	0.104
5	a	23,237	0.116
6	in	21,341	0.128
7	that	10,595	0.074
8	is	10,009	0.081
9	was	9,816	0.088
10	he	9,543	0.095
			_

Resolving Power of Word

Words in decreasing frequency order

Simple Indexing Scheme Based on Zipf's Law

Use term frequency information only:

- © Compute frequency of term k in document i, Freq_{ik}
- ① Determine total collection frequency $TotalFreq_k = \sum Freq_{ik}$ for i = 1, 2, ..., n
- Arrange terms in order of collection frequency
- Set thresholds eliminate high and low frequency terms
- Use remaining terms as index terms

4

Stemming

- The next task is stemming: transforming words to root form
 - Computing, Computer, Computation → comput
- Suffix based methods
 - Remove "ability" from "computability"
 - "..."+ness, "..."+ive, → remove
- Suffix list + context rules

Thesaurus Rules

- A thesaurus aims at
 - classification of words in a language
 - for a word, it gives related terms which are broader than, narrower than, same as (synonyms) and opposed to (antonyms) of the given word (other kinds of relationships may exist, e.g., composed of)
- Static Thesaurus Tables
 - [anneal, strain], [antenna, receiver], ...
 - Roget's thesaurus
 - WordNet at Preinceton

Thesaurus Rules can also be Learned

- From a search engine query log
 - After typing queries, browse...
 - If query1 and query2 leads to the same document
 - Then, Similar(query1, query2)
 - If query1 leads to Document with title keyword K,
 - Then, Similar(query1, K)
 - Then, transitivity...
- Microsoft Research China's work in WWW10 (Wen, et al.) on Encarta online

The Vector-Space Model

- The distinct terms are available; call them index terms or the vocabulary
- The index terms represent important terms for an application → a vector to represent the document
 - <T1,T2,T3,T4,T5> or <W(T1),W(T2),W(T3),W(T4),W(T5)>

computer science collection

T1=architecture T2=bus

T3=computer

T4=database

T5=xml

index terms or vocabulary of the collection

The Vector-Space Model

Assumptions: words are uncorrelated

Given:

- 1. N documents and a Query
- 2. Query considered a document too
- 2. Each represented by t terms
- 3. Each term j in document i has weight d_{ii}
- 4. We will deal with how to compute the weights later

Graphic Representation

Example:

$$D_{1} = 2T_{1} + 3T_{2} + 5T_{3}$$
$$D_{2} = 3T_{1} + 7T_{2}$$

$$Q = OT_1 + OT_2 + 2T_3$$

$$D_2 = 3T_1 + 7T_2 + T_3 -$$

 T_2

- Is D_1 or D_2 more similar to Q?
- How to measure the degree of similarity? Distance? Angle? Projection?

Similarity Measure - Inner Product

Similarity between documents D; and query Q can be computed as the inner vector product:

$$sim(D_i, Q) = \sum_{k=1}^{\infty} (D_i \cdot Q)$$

$$= \sum_{j=1}^{t} d_{ij} * q_j$$

- Binary: weight = 1 if word present, 0 o/w
- Non-binary: weight represents degree of similary
 - Example: TF/IDF we explain later

Inner Product -- Examples

Size of vector = size of vocabulary = 7

$$\rightarrow$$
 sim(D, Q) = 3

Weighted

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

$$sim(D_1, Q) = 2*0 + 3*0 + 5*2 = 10$$

Properties of Inner Product

- The inner product similarity is unbounded
- Favors long documents
 - long document ⇒ a large number of unique terms, each of which may occur many times
 - measures how many terms matched but not how many terms not matched

Cosine Similarity Measures

- Cosine similarity measures the cosine of the angle between two vectors
- Inner product normalized by the vector lengths

$$CosSim(D_i, Q) = \frac{\sum_{k=1}^{t} (d_{ik} \cdot q_k)}{\sqrt{\sum_{k=1}^{t} d_{ik}^2 \cdot \sum_{k=1}^{t} q_k^2}}$$

Cosine Similarity: an Example

$$D_1 = 2T_1 + 3T_2 + 5T_3$$
 $CosSim(D_1, Q) = 5 / \sqrt{38} = 0.81$
 $D_2 = 3T_1 + 7T_2 + T_3$ $CosSim(D_2, Q) = 1 / \sqrt{59} = 0.13$
 $Q = 0T_1 + 0T_2 + 2T_3$

 D_1 is 6 times better than D_2 using cosine similarity but only 5 times better using inner product

Document and Term Weights

Document term weights are calculated using frequencies in documents (*tf*) and in collection (*idf*)

```
tf_{ij} = frequency of term j in document i
df_j = document frequency of term j
= number of documents containing term j
idf_j = inverse document frequency of term j
= log_2 (N/df_j) (N: number of documents in collection)
```

 Inverse document frequency -- an indication of term values as a document discriminator.

Term Weight Calculations

Weight of the jth term in ith document:

$$d_{ij} = tf_{ij} \bullet idf_j = tf_{ij} \bullet \log_2(N/df_j)$$

- TF → Term Frequency
 - A term occurs frequently in the document but rarely in the remaining of the collection has a high weight
 - Let $max\{tf_{ij}\}$ be the term frequency of the most frequent term in document j
 - Normalization: term frequency = tf_{ij}/max_{ij}

4

An example of TF

- Document=(A Computer Science Student Uses Computers)
- Vector Model based on keywords (Computer, Engineering, Student)

```
Tf(Computer) = 2

Tf(Engineering)=0

Tf(Student) = 1

Max(Tf)=2

TF weight for:

Computer = 2/2 = 1

Engineering = 0/2 = 0

Student = \frac{1}{2} = 0.5
```

4

Inverse Document Frequency

- Df_j gives the number of times term j appeared among N documents
- IDF = 1/DF
- Typically use $log_2(N/df_j)$ for IDF
- Example: given 1000 documents, computer appeared in 200 of them,
 - IDF= $\log_2 (1000/200) = \log_2(5)$

TF IDF

- $d_{ij} = (tf_{ij}/max_{i}\{tf_{ij}\}) \bullet idf_{j}$ $= (tf_{ij}/max_{i}\{tf_{ij}\}) \bullet \log_{2}(N/df_{j})$
- Can use this to obtain non-binary weights
- Used in the SMART Information Retrieval System by the late Gerald Salton and MJ McGill, Cornell University to tremendous success, 1983

Implementation based on Inverted Files

- In practice, document vectors are not stored directly; an inverted organization provides much better access speed.
- The index file can be implemented as a hash file, a sorted list, or a B-tree.

A Simple Search Engine

Now we have got enough tools to build a simple Search engine (documents == web pages)

- Starting from well known web sites, crawl to obtain N web pages (for very large N)
- 2. Apply stop-word-removal, stemming and thesaurus to select K keywords
- 3. Build an inverted index for the K keywords
- For any incoming user query Q,
 - For each document D
 - Compute the Cosine similarity score between Q and document D
 - Select all documents whose score is over a certain threshold T
 - 3. Let this result set of documents be M
 - 4. Return M to the user

Remaining Questions

- How to crawl?
- How to evaluate the result
 - Given 3 search engines, which one is better?
 - Is there a quantitative measure?

-

Measurement

- Let M documents be returned out of a total of N documents;
- N=N1+N2
 - N1 total documents are relevant to query
 - N2 are not
- M=M1+M2
 - M1 found documents are relevant to query
 - M2 are not
- Precision = M1/M
- Recall = M1/N1

Retrieval effectiveness: recall & precision

 $recall = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ relevant\ documents}$ $precision = \frac{Number\ of\ relevant\ documents\ retrieved}{total\ Number\ of\ documents\ retrieved}$

Precision and Recall

Precision

- evaluates the correlation of the query to the database
- an indirect measure of the completeness of indexing algorithm

Recall

- the ability of the search to find all of the relevant items in the database
- Among three numbers,
 - only two are always available
 - total number of items retrieved
 - number of relevant items retrieved
 - total number of relevant items is usually not available

Relationship between Recall and Precision

Fallout Rate

- Problems with precision and recall:
 - A query on "Hong Kong" will return most relevant documents but it doesn't tell you how good or how bad the system is!
 - number of irrelevant documents in the collection is not taken into account
 - recall is undefined when there is no relevant document in the collection
 - precision is undefined when no document is retrieved

$$Fallout = \frac{no.\,of\,\,nonrelevant\,\,items\,\,retrieved}{total\,\,no.\,of\,\,nonrelevant\,\,items\,\,in\,\,the\,\,collection}$$

Fallout can be viewed as the inverse of recall. A good system should have high recall and low fallout

Total Number of Relevant Items

- In an uncontrolled environment (e.g., the web), it is unknown.
- Two possible approaches to get estimates
 - Sampling across the database and performing relevance judgment on the returned items
 - Apply different retrieval algorithms to the same database for the same query. The aggregate of relevant items is taken as the total relevant algorithm

Computation of Recall and Precision

n	doc #	relevant	Recall	Precision
1	588	X	0.2	1.00
2	589	X	0.4	1.00
3	576		0.4	0.67
4	590	X	0.6	0.76
5	986		0.6	0.60
6	592	X	8.0	0.67
7	984		0.8	0.57
8	988		0.8	0.50
9	578		0.8	0.44
10	985		0.8	0.40
11	103		0.8	0.36
12	591		0.8	0.33
13	772	X	1.0	0.38
14	990		1.0	0.36

Suppose: total no. of relevant docs = 5 R=1/5=0.2; p=1/1=1 R=2/5=0.4; p=2/2=1 R=2/5=0.4; p=2/3=0.67

Computation of Recall and Precision

n	Recall	Precision
1	0.2	1.00
2	0.4	1.00
3	0.4	0.67
4	0.6	0.76
5	0.6	0.60
6	0.8	0.67
7	0.8	0.57
8	0.8	0.50
9	0.8	0.44
10	0.8	0.40
11	0.8	0.36
12	0.8	0.33
13	1.0	0.38
14	1.0	0.36

Compare Two or More Systems

- Computing recall and precision values for two or more systems
- Superimposing the results in the same graph
- The curve closest to the upper right-hand corner of the graph indicates the best performance

The TREC Benchmark

TREC: Text Retrieval Conference

Originated from the TIPSTER program sponsored by Defense Advanced Research Projects Agency (DARPA)

Became an annual conference in 1992, co-sponsored by the National Institute of Standards and Technology (NIST) and DARPA

Participants are given parts of a standard set of documents and queries in different stages for testing and training Participants submit the P/R values on the final document and query set and present their results in the conference

http://trec.nist.gov/

- Aims to improve their search results incrementally,
 - often applies to query "Find all sites with certain property"
 - Content based Multimedia search: given a photo, find all other photos similar to it
 - Large vector space
 - Question: which feature (keyword) is important?
- Procedure:
 - User submits query
 - Engine returns result
 - User marks some returned result as relevant or irrelevant, and continues search
 - Engine returns new results
 - Iterates until user satisfied

4

Query Reformulation

- Based on user's feedback on returned results
 - Documents that are relevant D_R
 - Documents that are irrelevant D_N
 - Build a new query vector Q' from Q
 - <w1, w2, ... wt> → <w1', w2', ... wt'>
 - Best known algorithm: Rocchio's algorithm
 - Also extensively used in multimedia search

Query Modification

- Using the previously identified relevant and nonrelevant document set D_R and D_N to repeatedly modify the query to reach optimality
- Starting with an initial query in the form of

$$Q' = \alpha * Q + \left(\frac{1}{R} \sum_{i \in D_R} D_i\right) - \gamma \left(\frac{1}{N} \sum_{j \in D_N} D_j\right)$$

where Q is the original query, and α , β , and γ are suitable constants

An Example

Q: original query

D1: relevant doc.

D2: non-relevant doc.

$$\alpha = 1$$
, $\beta = 1/2$, $\gamma = 1/4$

Assume: dot-product similarity measure

$$S(Q, \mathbf{D}_i) = \sum_{j=1}^t (\mathbf{Q}_j \mathbf{x} \mathbf{D}_{ij})$$

$$Sim(Q,D1) = (5 \cdot 2) + (0 \cdot 1) + (3 \cdot 2) + (0 \cdot 0) + (1 \cdot 0) = 16$$

 $Sim(Q,D2) = (5 \cdot 1) + (0 \cdot 0) + (3 \cdot 0) + (0 \cdot 0) + (1 \cdot 2) = 7$

T1 T2 T3 T4 T5

Q = (5, 0, 3, 0, 1)

D1 = (2, 1, 2, 0, 0)

D2 = (1, 0, 0, 0, 2)

Example (Cont.)

$$Q' = Q + \frac{1}{2} \left(\sum_{i \in D_{R'}} D_i \right) - \frac{1}{4} \left(\frac{1}{N'} \sum_{i \in D_{N'}} D_i \right)$$

$$Q' = (5,0,3,0,1) + \frac{1}{2} (2,1,2,0,0) - \frac{1}{4} (1,0,0,0,2)$$

$$Q' = (5.75,0.5,4,0,0.5)$$

New Similarity Scores:

 $Sim(Q', D1)=(5.75 \cdot 2)+(0.5 \cdot 1)+(4 \cdot 2)+(0 \cdot 0)+(0.5 \cdot 0)=20$ $Sim(Q', D2)=(5.75 \cdot 1)+(0.5 \cdot 0)+(4 \cdot 0)+(0 \cdot 0)+(0.5 \cdot 2)=6.75$

Latent Semantic Indexing (1)

Basic idea

- Similar documents have similar word frequencies
- Difficulty: the size of the term frequency matrix is very large
- Use a singular value decomposition (SVD) techniques to reduce the size of frequency table
- Retain the K most significant rows of the frequency table

Method

- Create a term x document weighted frequency matrix A
- SVD construction: A = U * S * V'
- Define K and obtain U_k, S_k, and V_k.
- Create query vector q'.
- Project q' into the term-document space: Dq = $q' * U_k * S_{k-1}$
- Calculate similarities: Dq . D / ||Dq|| * ||D||

Latent Semantic Indexing (2)

Weighted Frequency Matrix

Query Terms:

- Insulation
- Joint

Types of Text Data Mining

- Keyword-based association analysis
- Automatic document classification
- Similarity detection
 - Cluster documents by a common author
 - Cluster documents containing information from a common source
- Link analysis: unusual correlation between entities
- Sequence analysis: predicting a recurring event
- Anomaly detection: find information that violates usual patterns
- Hypertext analysis
 - Patterns in anchors/links
 - Anchor text correlations with linked objects

Keyword-Based Association Analysis

Motivation

- Collect sets of keywords or terms that occur frequently together and then find the association or correlation relationships among them
- Association Analysis Process
 - Preprocess the text data by parsing, stemming, removing stop words, etc.
 - Evoke association mining algorithms
 - Consider each document as a transaction
 - View a set of keywords in the document as a set of items in the transaction
 - Term level association mining
 - No need for human effort in tagging documents
 - The number of meaningless results and the execution time is greatly reduced

Text Classification(1)

Motivation

 Automatic classification for the large number of on-line text documents (Web pages, e-mails, corporate intranets, etc.)

Classification Process

- Data preprocessing
- Definition of training set and test sets
- Creation of the classification model using the selected classification algorithm
- Classification model validation
- Classification of new/unknown text documents
- Text document classification differs from the classification of relational data
 - Document databases are not structured according to attribute-value pairs

Text Classification(2)

- Classification Algorithms:
 - Support Vector Machines
 - K-Nearest Neighbors
 - Naïve Bayes
 - Neural Networks
 - Decision Trees
 - Association rule-based
 - Boosting

			#1	#2	#3	#4	#5
		# of documents	21,450	14,347	13,272	12,902	12,90
		# of training documents	14,704	10,667	9,610	9,603	9,603
		# of test documents	6,746	3,680	3,662	3,299	3,299
		# of categories	135	93	92	90	10
System	Type	Results reported by					
Word	(non-learning)	[Yang 1999]	.150	.310	.290		
	probabilistic	[Dumais et al. 1998]				.752	.815
	probabilistic	[Joachims 1998]					.720
	probabilistic	[Lam et al. 1997]	$.443 \text{ (M}F_1)$				
PropBayes	probabilistic	[Lewis 1992a]	.650				
Вім	probabilistic	[Li and Yamanishi 1999]				.747	
	probabilistic	[Li and Yamanishi 1999]				.773	
NB	probabilistic	[Yang and Liu 1999]				.795	
	decision trees	[Dumais et al. 1998]					.884
C4.5	decision trees	[Joachims 1998]					.794
Ind	decision trees	[Lewis and Ringuette 1994]	.670				
SWAP-1	decision rules	[Apté et al. 1994]		.805			
RIPPER	decision rules	[Cohen and Singer 1999]	.683	.811		.820	
SLEEPINGEXPERTS	decision rules	[Cohen and Singer 1999]	.753	.759		.827	
DL-Esc	decision rules	[Li and Yamanishi 1999]				.820	
Charade	decision rules	[Moulinier and Ganascia 1996]		.738			
Charade	decision rules	[Moulinier et al. 1996]		$.783~(F_1)$			
LLSF	regression	[Yang 1999]		.855	.810		
Llsf	regression	[Yang and Liu 1999]				.849	
BalancedWinnow	on-line linear	[Dagan et al. 1997]	.747 (M)	.833 (M)			
Widrow-Hoff	on-line linear	[Lam and Ho 1998]				.822	
Rocchio	batch linear	[Cohen and Singer 1999]	.660	.748		.776	
FINDSIM	batch linear	[Dumais et al. 1998]				.617	.646
Rocchio	batch linear	[Joachims 1998]					.799
Rocchio	batch linear	[Lam and Ho 1998]				.781	
Rocchio	batch linear	[Li and Yamanishi 1999]				.625	
Classi	neural network	[Ng et al. 1997]		.802			
NNET	neural network	[Yang and Liu 1999]				.838	
	neural network	[Wiener et al. 1995]			.820		
Gis-W	example-based	[Lam and Ho 1998]				.860	
k-NN	example-based	[Joachims 1998]					.823
k=NN	example-based	[Lam and Ho 1998]				.820	
k-NN	example-based	[Yang 1999]	.690	.852	.820		
k-NN	example-based	[Yang and Liu 1999]				.856	
	SVM	[Dumais et al. 1998]				.870	.920
SVMLIGHT	SVM	[Joachims 1998]					.864
SVMLIGHT	SVM	[Li and Yamanishi 1999]				.841	l
SVMLIGHT	SVM	[Yang and Liu 1999]				.859	
AdaBoost.MH	committee	[Schapire and Singer 2000]		.860			
	committee	[Weiss et al. 1999]				.878	L
	Bayesian net	[Dumais et al. 1998]				.800	.850
	Bayesian net	[Lam et al. 1997]	.542 (MF ₁)			I	ı

4

Document Clustering

Motivation

- Automatically group related documents based on their contents
- No predetermined training sets or taxonomies
- Generate a taxonomy at runtime

Clustering Process

- Data preprocessing: remove stop words, stem, feature extraction, lexical analysis, etc.
- Hierarchical clustering: compute similarities applying clustering algorithms.
- Model-Based clustering (Neural Network Approach): clusters are represented by "exemplars". (e.g.: SOM)

Part II: Web Mining

Zhou Shuigeng

May 28, 2004

- The WWW is huge, widely distributed, global information service center for
 - Information services: news, advertisements, consumer information, financial management, education, government, e-commerce, etc.
 - Hyper-link information
 - Access and usage information
- WWW provides rich sources for data mining
- Challenges
 - Too huge for effective data warehousing and data mining
 - Too complex and heterogeneous: no standards and structure

Growing and changing very rapidly

- Broad diversity of user communities
- Only a small portion of the information on the Web is truly relevant or useful
 - 99% of the Web information is useless to 99% of Web users
 - How can we find high-quality Web pages on a specified topic?

Web search engines

- Index-based: search the Web, index Web pages, and build and store huge keyword-based indices
- Help locate sets of Web pages containing certain keywords
- Deficiencies
 - A topic of any breadth may easily contain hundreds of thousands of documents
 - Many documents that are highly relevant to a topic may not contain keywords defining them (polysemy)

Searches for

- Web access patterns
- Web structures
- Regularity and dynamics of Web contents

Problems

- The "abundance" problem
- Limited coverage of the Web: hidden Web sources, majority of data in DBMS
- Limited query interface based on keyword-oriented search
- Limited customization to individual users

Web Mining Taxonomy

Web Mining

Web Content Mining

Web Page Content Mining

Web Page Summarization

WebLog (Lakshmanan et.al. 1996),

WebOQL(Mendelzon et.al. 1998) ...:

Web Structuring query languages; Can identify information within given web pages

- •Ahoy! (Etzioni et.al. 1997):Uses heuristics to distinguish personal home pages from other web pages
- •ShopBot (Etzioni et.al. 1997): Looks for product prices within web pages

Web Structure Mining

Web Mining

Using Links

- •PageRank (Brin et al., 1998)
- •CLEVER (Chakrabarti et al., 1998)

Use interconnections between web pages to give weight to pages.

Using Generalization

•MLDB (1994), VWV (1998)

Uses a multi-level database representation of the Web. Counters (popularity) and link lists are used for capturing structure.

Search Engine Topics

- Text-based Search Engines
 - Document based
 - Ranking: TF-IDF, Vector Space Model
 - No relationship between pages modeled
 - Cannot tell which page is important without query
- Link-based search engines: Google, Hubs and Authorities Techniques
 - Can pick out important pages

The PageRank Algorithm

- Fundamental question to ask
 - What is the importance level of a page P,I(P)
- Information Retrieval
 - Cosine + TF IDF → does not give related hyperlinks
- Link based
 - Important pages (nodes) have many other links point to it
 - Important pages also point to other important pages

The Google Crawler Algorithm

- "Efficient Crawling Through URL Ordering",
 - Junghoo Cho, Hector Garcia-Molina, Lawrence Page, Stanford
 - http://www.www8.org
 - http://www-db.stanford.edu/~cho/crawler-paper/
- "Modern Information Retrieval", BY-RN
 - Pages 380—382
- Lawrence Page, Sergey Brin. The Anatomy of a Search Engine. The Seventh International WWW Conference (WWW 98). Brisbane, Australia, April 14-18, 1998.
 - http://www.www7.org

4

Back Link Metric

- IB(P) = total number of backlinks of P
- IB(P) impossible to know, thus, use IB'(P) which is the number of back links crawler has seen so far

Page Rank Metric

Let 1-d be probability that user randomly jump to page P;

"d" is the damping factor

Let C_i be the number of out links from each T_i

$$IR(P) = (1-d) + d * \sum_{i=1}^{N} IR(T_i) / C_i$$

Matrix Formulation

- Consider a random walk on the web (denote IR(P) by r(P))
 - Let B_{ij} = probability of going directly from i to j
 - Let r_i be the limiting probability (page rank) of being at page i

$$\begin{pmatrix}
b_{11} & b_{21} & \dots & b_{n1} \\
b_{12} & b_{22} & \dots & b_{n2} \\
\dots & \dots & \dots & \dots \\
b_{1n} & b_{2n} & \dots & b_{nn}
\end{pmatrix}
\begin{pmatrix}
r_1 \\
r_2 \\
\dots \\
r_n
\end{pmatrix} = \begin{pmatrix}
r_1 \\
r_2 \\
\dots \\
r_n
\end{pmatrix}$$

$$\mathbf{B}^T \mathbf{r} = \mathbf{r}$$

Thus, the final page rank r is a principle eigenvector of \mathcal{B}^T

How to compute page rank?

- For a given network of web pages,
 - Initialize page rank for all pages (to one)
 - Set parameter (d=0.90)
 - Iterate through the network, L times

Example: iteration K=1

IR(P)=1/3 for all nodes, d=0.9

node	IP
Α	1/3
В	1/3
С	1/3

Example: k=2

 $IR(P) = 0.1 + 0.9 * \sum_{i=1}^{t} IR(T_i) / C_i$

/is the in-degree of P

node	IP
Α	0.4
В	0.1
С	0.55

Note: A, B, C's IP values are
Updated in order of A, then B, then C
Use the new value of A when calculating B, etc.

Example: k=2 (normalize)

node	IP
Α	0.38
В	0.095
С	0.52

Crawler Control

- All crawlers maintain several queues of URL's to pursue next
 - Google initially maintains 500 queues
 - Each queue corresponds to a web site pursuing
- Important considerations:
 - Limited buffer space
 - Limited time
 - Avoid overloading target sites
 - Avoid overloading network traffic

Crawler Control

- Thus, it is important to visit important pages first
- Let G be a lower bound threshold on I(P)
- Crawl and Stop
 - Select only pages with IP>G to crawl,
 - Stop after crawled K pages

Test Result: 179,000 pages

Percentage of Stanford Web crawled vs. P_{ST} – the percentage of hot pages visited so far

Google Algorithm (very simplified)

- First, compute the page rank of each page on WWW
 - Query independent
- Then, in response to a query q, return pages that contain q and have highest page ranks
- A problem/feature of Google: favors big commercial sites

How powerful is Google?

- A PageRank for 26 million web pages can be computed in a few hours on a medium size workstation
- Currently has indexed a total of 1.3
 Billion pages

Hubs and Authorities 1998

- Kleinburg, Cornell University
- http://www.cs.cornell.edu/home/kleinber/
- Main Idea: type "java" in a text-based search engine
 - Get 200 or so pages
 - Which one's are authoritive?
 - http://java.sun.com
 - What about others?
 - www.yahoo.com/Computer/ProgramLanguages

Hubs and Authorities

H&A Search Engine Algorithm

- First submit query Q to a text search engine
- Second, among the results returned
 - select ~200, find their neighbors,
 - compute Hubs and Authorities
- Third, return Authorities found as final result
- Important Issue: how to find Hubs and Authorities?

Link Analysis: weights

- Let $B_{ij}=1$ if *i* links to *j*, 0 otherwise
 - h=hub weight of page i
 - a_i = authority weight of page i
 - Weight normalization

$$\sum_{i=1}^{N} (h_i)^2 = 1$$

$$\sum_{i=1}^{N} (a_i)^2 = 1$$
(3)

But, for simplicity, we will use

$$\sum_{i=1}^{N} h_i = 1$$

$$\sum_{i=1}^{N} a_i = 1$$
(3')

Link Analysis: update aweight

Link Analysis: update hweight

$$h_i \leftarrow \sum_{B_{ij} \neq 0} a_j = \sum B_{ij} a_j = Ba \tag{2}$$

H&A: algorithm

- 1. Set value for K, the number of iterations
- 2. Initialize all a and h weights to 1
- 3. For I=1 to K, do
 - a. Apply equation (1) to obtain new a weights
 - Apply equation (2) to obtain all new h_i weights, using the new a_i weights obtained in the last step
 - Normalize a_i and h_i weights using equation (3)

DOES it converge?

- Yes, the Kleinberg paper includes a proof
- Needs to know Linear algebra and eigenvector analysis
- We will skip the proof but only using the results:
 - The a and h weight values will converge after sufficiently large number of iterations, K.

Example: K=1

node	a	h
A	1	1
В	1	1
С	1	1

Example: k=1 (update a)

node	a	h
Α	1	1
В	0	1
С	2	1

Example: k=1 (update h)

node	a	h
Α	1	2
В	0	2
C	2	1

Example: k=1 (normalize)

Use Equation (3')

node	a	h
Α	1/3	2/5
В	0	2/5
С	2/3	1/5

Example: k=2 (update a, h,normalize)

Use Equation (1)

node	a	h
Α	1/5	4/9
В	0	4/9
С	4/5	1/9

If we choose a threshold of $\frac{1}{2}$, then C is an Authority, and there are no hubs.

Search Engine Using H&A

- For each query q,
 - Enter q into a text-based search engine
 - Find the top 200 pages
 - Find the neighbors of the 200 pages by one link, let the set be S
 - Find hubs and authorities in S
 - Return authorities as final result

Summary

- Link based analysis is very powerful in find out the important pages
- Models the web as a graph, and based on in-degree and out-degree
- Google: crawl only important pages
- H&A: post analysis of search result

Automatic Classification of Web Documents

- Assign a class label to each document from a set of predefined topic categories
- Based on a set of examples of preclassified documents
- Example
 - Use Yahoo!'s taxonomy and its associated documents as training and test sets
 - Derive a Web document classification scheme
 - Use the scheme classify new Web documents by assigning categories from the same taxonomy
- Keyword-based document classification methods
- Statistical models

Web Usage Mining

- Mining Web log records to discover user access patterns of Web pages
- Applications
 - Target potential customers for electronic commerce
 - Enhance the quality and delivery of Internet information services to the end user
 - Improve Web server system performance
 - Identify potential prime advertisement locations
- Web logs provide rich information about Web dynamics
 - Typical Web log entry includes the URL requested, the IP address from which the request originated, and a timestamp

Techniques for Web usage mining

- Construct multidimensional view on the Weblog database
 - Perform multidimensional OLAP analysis to find the top Nusers, top Naccessed Web pages, most frequently accessed time periods, etc.
- Perform data mining on Weblog records
 - Find association patterns, sequential patterns, and trends of Web accessing
 - May need additional information, e.g., user browsing sequences of the Web pages in the Web server buffer
- Conduct studies to
 - Analyze system performance, improve system design by Web caching, Web page prefetching, and Web page swapping

- Design of a Web Log Miner
 - Web log is filtered to generate a relational database
 - A data cube is generated form database
 - OLAP is used to drill-down and roll-up in the cube
 - OLAM is used for mining interesting knowledge

