MC558 — Análise de Algoritmos II

Cid C. de Souza Cândida N. da Silva Orlando Lee

15 de março de 2023

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando Lee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Denote por c(G) o número de componentes de um grafo G.

Proposição. Seja G um grafo e seja $e \in E(G)$. Então $c(G) \le c(G-e) \le c(G)+1$.

Denote por c(G) o número de componentes de um grafo G.

Proposição. Proposição. Seja G um grafo e seja $e \in E(G)$. Então $c(G) \le c(G-e) \le c(G)+1$.

Prova. Considere o grafo G - e obtido pela remoção de e. Se c(G - e) = c(G), então o resultado segue.

Senão, necessariamente temos que c(G - e) > c(G). Quando devolvemos a aresta e a G - e, temos que reduzir o número de componentes de volta ao valor c(G). Assim, existem dois componentes C_1 e C_2 de G - e, cada um contendo um extremo de e e c(G - e) = c(G) + 1.

Sejam G um grafo e $e \in E(G)$. Se c(G - e) = c(G) + 1, então dizemos que e é uma aresta-de-corte de G. No caso em que G é conexo, dizemos que a remoção de e desconecta G.

Como seria uma condição necessária e suficiente para *e* ser uma aresta-de-corte de um grafo *G*?

Proposição. Seja G um grafo e seja $e \in E(G)$. Então e é uma aresta-de-corte de G se, e somente se, e não pertence a nenhum ciclo de G.

Prova. Podemos supor que G é conexo. (Por quê?)

- \Rightarrow : suponha que e=uv seja uma aresta-de-corte. Então u e v pertencem a componentes distintos de G-e. Se e pertencesse a um ciclo C de G, então C-e seria um caminho de u a v em G-e, uma contradição.
- \Leftarrow : pela contrapositiva, suponha que e=uv não é uma aresta-de-corte. Então G-e é conexo e existe um caminho P de u a v em G-e. Então P+e é um ciclo em G.

Vértice-de-corte

Seja G um grafo e seja $v \in V(G)$. Se c(G - v) > c(G), então dizemos que v é um vértice-de-corte de G.

Se G for conexo, então dizemos que a remoção de V desconecta G.

Figura: Vértice-de-corte v em um grafo.

Vértice-de-corte

Proposição. Sejam G um grafo e seja $v \in V(G)$. Então $c(G) \le c(G-v) \le c(G) + d_G(v) - 1$.

Exercício. Seja G um grafo e seja $e \in E$. Se e = uv é uma aresta-de-corte, então u ou v é um vértice-de-corte de G, a menos que $\{u,v\}$ induza um componente de G.

Exercício. Seja G um grafo e seja $v \in V(G)$. Então v é um vértice-de-corte de G se, e somente se, existem dois vértices x e y distintos de v pertencentes a um mesmo componente de G tais que todo caminho de x a y em G passa por v.

Árvores

Proposição. Todo grafo conexo G possui pelo menos n(G) - 1 arestas.

Prova. Seja G = (V, E) e considere o seguinte algoritmo.

- 1. $H \leftarrow (V, \emptyset)$
- 2. seja e_1, \ldots, e_m uma ordenação das arestas de G
- 3. para $i \leftarrow 1$ até m faça
- 4. $H \leftarrow H + e_i$

Note que na linha 1, temos que c(H) = n := n(G) e após a última execução da linha 4, temos que H = G e portanto, c(H) = 1. Na iteração i, a aresta e_i só pode conectar dois componentes distintos de H, reduzindo o número de componentes de no máximo uma unidade. Portanto, devemos ter m > n - 1.

Árvores

O argumento anterior mostra que se G é conexo e tem exatamente n-1 arestas, então toda aresta é uma aresta-de-corte (e portanto, não pertence a um ciclo).

Árvores

Um grafo G é acíclico se não contém ciclos. Também dizemos que G é uma floresta.

Uma árvore é um grafo conexo e acíclico.

- Um caminho é uma árvore com grau máximo dois.
- Uma estrela é uma árvore isomorfa a $K_{1,r}$ para algum $r \ge 1$.
- Cada componente de uma floresta é uma árvore.

Folhas

Uma folha em um grafo G é um vértice de grau um.

Lema. Toda árvore G com pelo menos dois vértices possui pelo menos duas folhas.

Prova. Seja P um caminho maximal em G. Seja v o término de P e seja v^- o predecessor de v em P. Pela maximalidade de P, v não pode ter nenhum vizinho em V-V(P). Como G é acíclico, v não pode ter nenhum vizinho u distinto de v^- em P. Portanto, v é uma folha. De modo análogo, o início de P também é uma folha.

Folhas

Lema. Se v é uma folha de uma árvore G, então G - v é uma árvore.

Prova. Seja v uma folha de G. Claramente G-v é conexo e acíclico. Portanto, G-v é uma árvore.

O lema acima fornece uma ferramenta conveniente para se fazer provas por indução (em n(G) ou m(G)) sobre uma árvore G.

Propriedades de árvores

Considere as seguintes propriedades relativas a um grafo G:

- G é conexo
- G é acíclico

Por definição G é uma árvore se satisfaz (A) e (B). Mostraremos que quaisquer duas condições em $\{A,B,C\}$ implicam na outra e caracterizam árvores.

$A + B \Rightarrow C$

Proposição. Se G é um grafo conexo e acíclico (i.e., uma árvore), então m(G) = n(G) - 1.

Prova. Provaremos o resultado por indução em n(G).

Base: n(G) = 1. O resultado é óbvio.

Hipótese de indução: para toda árvore G' de ordem n' < n temos que m(G') = n(G') - 1.

Seja G uma árvore de ordem $n \ge 2$. Pelo lema, G possui uma folha v. Assim, G' := G - v é uma árvore. Pela HI, temos que m(G') = n(G') - 1. Como m(G') = m(G) - 1 e n(G') = n(G) - 1, segue que m(G) = n(G) - 1.

$A + C \Rightarrow E$

Proposição. Se G é um grafo conexo tal que m(G) = n(G) - 1, então G é acíclico.

Prova. Considere o seguinte algoritmo.

- 1. $H \leftarrow G$
- 2. **enquanto** H contiver um ciclo **faça**
- 3. seja e uma aresta pertencente a um ciclo de H
- 4. $H \leftarrow H e$

Ao final do algoritmo, H é uma árvore. De fato, H é obviamente acíclico e também é conexo, pois o algoritmo nunca remove uma aresta-de-corte. Pela Proposição 1, m(H) = n(H) - 1. Como n(G) = n(H), segue que m(G) = m(H) e portanto, H = G. Logo, G é acíclico.

$B+C \Rightarrow A$

Proposição. Se G é um grafo acíclico tal que m(G) = n(G) - 1, então G é conexo.

Prova. Sejam G_1, \ldots, G_k os componentes de G. Mostraremos que k = 1.

Cada componente de G é uma árvore. Pela Proposição 1, $m(G_i) = n(G_i) - 1$ para $i \in \{1, \dots, k\}$. Somando para todo i, temos que

$$m(G) = \sum_{i=1}^{k} m(G_i) = \sum_{i=1}^{k} [n(G_i) - 1] = n(G) - k.$$

Por hipótese, m(G) = n(G) - 1 e portanto, k = 1 e G é conexo.

Teorema. As seguintes afirmações são equivalentes:

- G é conexo e m(G) = n(G) 1,
- G é acíclico e m(G) = n(G) 1,
- G é conexo e toda aresta é uma aresta-de-corte,
- **③** G não tem laços e para todo par $u, v \in V(G)$, existe um **único** caminho de u a v em G, e
- **③** G é acíclico e para todo par de vértices não-adjacentes $u, v \in V(G)$, o grafo G + uv contém exatamente um ciclo.

Prova. Já vimos que (a), (b) e (c) são equivalentes. Além disso, (a) e (d) são equivalentes, pois uma aresta é uma aresta-de-corte se, e somente se, não pertence a nenhum ciclo.

Provaremos agora que (a) \Rightarrow (e) \Rightarrow (f) \Rightarrow (a).

- (a) G é uma árvore
- (e) G não tem laços e para todo par $u, v \in V(G)$, existe um **único** caminho de u a v em G
- (a) \Rightarrow (e) Seja G uma árvore. Então G não tem laços. Suponha por contradição que existem vértices em G que são ligados por dois caminhos distintos. Entre todos estes pares escolha um par u,v com caminhos distintos P e Q de u a v tal que |P|+|Q| seja o menor possível. Pela escolha de u e v, P e Q não tem vértices internos em comum. Isto implica que $C:=P \bullet Q^{-1}$ é um ciclo, uma contradição.

- (e) G não tem laços e para todo par $u, v \in V(G)$, existe um **único** caminho de u a v em G
- (f) G é acíclico e para todo par de vértices não-adjacentes $u, v \in V(G)$, o grafo G + uv contém exatamente um ciclo
- (e) \Rightarrow (f) Seja G um grafo sem laços tal que para todo par $u, v \in V(G)$, existe um **único** caminho de u a v em G. Claramente G é acíclico. Seja u, v um par de vértices não-adjacentes e seja P o único caminho de u a v em G. Então G + uv contém o ciclo $P \bullet (v, u)$. Note que todo ciclo C de G + uv deve conter uv. Assim, C uv é um caminho de u a v em G. Por hipótese, segue que P = C uv e portanto, G + uv contém um único ciclo.

- (a) G é uma árvore
- (f) G é acíclico e para todo par de vértices não-adjacentes $u, v \in V(G)$, o grafo G + uv contém exatamente um ciclo
- (f) \Rightarrow (a) Seja G um grafo acíclico tal que para todo par de vértices não-adjacentes $u,v\in V(G)$, o grafo G+uv contém exatamente um ciclo. Assim G é acíclico. Resta mostrar que G é conexo. Suponha por contradição que G não seja conexo. Sejam u e v vértices em componentes distintos de G. Considere o grafo G+uv. Claramente uv não pertence a nenhum ciclo de G+uv, uma contradição. Portanto, G é conexo.

Isto termina a prova do teorema.

Exemplo

Proposição. Todo grafo simples G com $\delta(G) \ge k$ contém uma cópia de qualquer árvore T com k arestas (i.e., |V(T)| = k + 1).

Exemplo

Proposição. Todo grafo simples G com $\delta(G) \ge k$ contém uma cópia de qualquer árvore T com k arestas (i.e., |V(T)| = k + 1).

Prova. A prova é por indução em k.

Base: k = 0. Todo grafo simples contém uma cópia de $T = K_1$ e o resultado é óbvio.

Hipótese de indução: suponha que k>0 e que todo grafo simples com $\delta(G)\geq k-1$ contém uma cópia de qualquer árvore com k-1 arestas.

Como k>0, então T possui uma folha, digamos v; seja u o único vizinho de v em T. Seja T':=T-v. Pela HI, G contém uma cópia de T' já que $\delta(G)\geq k>k-1$.

Exemplo

Seja x o vértice da cópia de T' correspondente a u. Como V(T') tem apenas k-1 vértices distintos de u e $d_G(x) \geq k$, segue que x tem algum vizinho y que não pertence à cópia de T'. Então podemos adicionar xy a esta cópia para obter uma cópia de T (com y fazendo o papel de v).

Conjectura de Erdős-Sós

- A condição $\delta(G) \ge k$ é a melhor possível; o grafo K_k tem grau mínimo k-1, mas não contém nenhuma árvore com k arestas.
- Uma consequência da proposição é que todo grafo simples com mais do que n(k-1) arestas contém uma cópia de qualquer árvore com k arestas (Exercício!).
- Erdős e Sós (1964) conjecturaram o seguinte: um grafo simples com mais do que n(k-1)/2 arestas contém uma cópia de qualquer árvore T com k arestas. Esta conjectura está quase provada no sentido de que é verdadeira para n suficientemente grande.

Dizemos que um subgrafo H de um grafo G é um subgrafo gerador se V(H) = V(G).

Se H for uma árvore, então dizemos que H é uma árvore geradora de G.

Observação. Note que um subgrafo gerador não precisa ser conexo. Por exemplo, o subgrafo gerador vazio $H = (V, \emptyset)$ de um grafo G = (V, E) com $n(G) \ge 2$ não é conexo.

Proposição. Todo grafo conexo contém uma árvore geradora.

Prova. Isto segue da prova da proposição $A+C\Rightarrow B$, mas apresentamos aqui outra prova. Seja T um subgrafo gerador conexo minimal de G. Claramente T é acíclico, pois senão poderíamos remover uma aresta em um ciclo. Logo, T é uma árvore geradora de G.

A seguir apresentamos dois resultados que descrevem operações de trocas de arestas entre árvores geradoras T e T'.

Proposição. Sejam T,T' árvores geradoras de um grafo G e seja $e \in E(T) - E(T')$. Então existe $e' \in E(T') - E(T)$ tal que T - e + e' é uma árvore geradora de G.

Prova. Sejam U e U' os (conjuntos de vértices dos) componentes de T-e. Como T' é conexo, existe alguma aresta $e' \in E(T')-E(T)$ com extremos em U e U'. Assim, T-e+e' é conexo e tem exatamente n(G)-1 arestas. Portanto, T-e+e' é uma árvora geradora de G.

Proposição. Sejam T, T' árvores geradoras de um grafo G e seja $e \in E(T) - E(T')$. Então existe $e' \in E(T') - E(T)$ tal que T' - e' + e é uma árvore geradora de G.

Prova. Seja C o único ciclo de T'+e. Como T é acíclico, alguma aresta e' de C pertence a E(T')-E(T). Assim, T'-e'+e é conexo e tem exatamente n(G)-1. Portanto, T'-e'+e é uma árvore geradora de G.

Grafos bipartidos de novo...

A ideia do seguinte exercício é obter uma nova prova do Teorema de König: um grafo G é bipartido, se e somente se, G não contém um ciclo ímpar.

Exercício 1A. Prove que toda árvore é um grafo bipartido por indução.

Exercício 1B. Seja G um grafo e seja T uma árvore geradora de G. Usando o resultado anterior prove que G é bipartido se, e somente se, para toda aresta $e \in E(G) - E(T)$, o (único) ciclo de T + e é par.

Árvore geradora mínima

Problema da Árvore Geradora de Peso Mínimo: dado um grafo conexo G=(V,E) e uma função peso $\omega: E\mapsto \mathbb{R}$, encontrar uma árvore geradora T cujo peso $\omega(T):=\sum_{e\in E(T)}\omega(e)$ seja mínimo.

Este é um problema clássico de Otimização Combinatória. Veremos depois no curso como resolver eficientemente este problema.

Representação de árvores

Uma árvore enraizada é uma árvore com um vértice especial chamado raiz.

raiz c

Representação de árvores

Vetor π ($\pi[v]$ é pai de v):

V	r	5	t	и	V	W	X	у	Z
$\pi[v]$	Ν	r	5	5	r	r	W	W	y

N é um símbolo usado para indicar não existência.

raiz r

Enumeração de árvores

Seja $V := \{1, 2, ..., n\}$ ($n \ge 2$). Quantas árvores com conjunto de vértices igual a V existem?

- n = 2. Existe $1 = 2^0$ árvore.
- n = 3. Existem $3 = 3^1$ árvores.

• n = 4. Existem $16 = 4^2$ árvores (4 estrelas e 12 caminhos).

- n = 5. Existem $125 = 5^3$ árvores (por verificação).
- n arbitrário. Existem n^{n-2} árvores?

Fórmula de Cayley

Teorema (Fórmula de Cayley). Existem n^{n-2} árvores com conjunto de vértices $\{1, 2, ..., n\}$ $(n \ge 2)$.

Várias pesquisadores encontraram (diferentes) provas deste resultado. Apresentamos aqui a prova devida a Prüfer (1918).

Seja S um conjunto qualquer e seja n um inteiro positivo. Denotamos por S^n o conjunto das n-uplas formadas por elementos de S.

Seja $S \subseteq \mathbb{N}$ de tamanho n. Nosso objetivo é exibir uma bijeção (código de Prüfer) f entre o conjunto \mathcal{T} de todas as árvores T com V(T) = S e o conjunto S^{n-2} . Como $|S^{n-2}| = n^{n-2}$, isto implica a Fórmula de Cayley.

$$f(T) = a := (a_1, a_2, \dots, a_{n-2}) \in S^{n-2}$$

Código de Prüfer

Entrada: árvore T com $V(T) = S \subseteq \mathbb{N}$ e $|S| = n \ge 2$.

SAÍDA: uma
$$(n-2)$$
-upla $f(T) = (a_1, a_2, ..., a_{n-2})$.

- 1. para $i \leftarrow 1$ até n-2 faça
- 2. seja v a menor folha de T
- 3. seja a_i o **único vizinho** de v em T
- 3. $T \leftarrow T v$
- 4. **devolva** $(a_1, a_2, \dots, a_{n-2})$

Dizemos que $f(T) = (a_1, \ldots, a_{n-2})$ é o código de Prüfer da árvore T.

$$f(T) = ?$$

 $a_1 = 7$ (vizinho da menor folha 2)

$$f(T) = (7,$$

$$f(T) = (7,$$

 $a_2 = 4$ (vizinho da menor folha 3)

$$f(T) := (7, 4)$$

$$f(T) = (7, 4)$$

$$a_3 = 4$$
 (vizinho da menor folha 5)

$$f(T) = (7, 4, 4)$$

$$f(T) = (7, 4, 4)$$

 $a_4 = 1$ (vizinho da menor folha 4)

$$f(T) = (7, 4, 4, 1)$$

$$f(T) = (7, 4, 4, 1)$$

 $a_5 = 7$ (vizinho da menor folha 6)

$$f(T) = (7, 4, 4, 1, 7)$$

$$f(T) = (7, 4, 4, 1, 7)$$

 $a_6 = 1$ (vizinho da menor folha 7)

$$f(T) = (7, 4, 4, 1, 7, 1)$$

$$f(T) = (7, 4, 4, 1, 7, 1)$$

Algoritmo para.

$$f(T) = (7, 4, 4, 1, 7, 1)$$

$$f(T) = (7, 4, 4, 1, 7, 1)$$

Código de Prüfer – versão recursiva

Código de Prüfer

ENTRADA: árvore T com $V(T) = S \subseteq \mathbb{N}$ e $|S| = n \ge 2$. SAÍDA: uma (n-2)-upla $f(T) = (a_1, a_2, \dots, a_{n-2})$.

- 1. se |S| = 2 então devolva ()
- 2. seja v a menor folha de T
- 3. seja a_1 o **único vizinho** de v em T
- 3. $(a_2, \ldots, a_{n-2}) \leftarrow \text{C\'odigo de Pr\"ufer}(T v)$
- 4. **devolva** $(a_1, a_2, \dots, a_{n-2})$

Note que o algoritmo pode ser visto como um **método recursivo**: o algoritmo escolhe a_1 como o vizinho da menor folha v, recursivamente determina o código de Prüfer $a' := (a_2, \ldots, a_{n-2})$ de T - v e devolve $f(T) := (a_1, a_2, \ldots, a_{n-2})$.

Lema. Os vértices que aparecem em f(T) são exatamente as não-folhas de T.

Prova. Note que o algoritmo só para quando a árvore tem apenas dois vértices. Assim, em cada iteração do algoritmo, o vértice escolhido a_i é necessariamente uma não-folha. Como em cada iteração o algoritmo remove uma folha, toda não-folha aparece em f(T).

Teorema (Prüfer, 1918). Seja $S \subseteq \mathbb{N}$ com |S| = n e seja \mathcal{T} o conjunto das árvores T com V(T) = S. Então para cada $a := (a_1, \ldots, a_{n-2}) \in S^{n-2}$, existe uma **única** árvore $T \in \mathcal{T}$ tal que f(T) = a. Em particular, temos que $|\mathcal{T}| = n^{n-2}$.

Prova. Provaremos o resultado por indução em n.

Base: n=2. Neste caso, a é a sequência vazia (), \mathcal{T} contém uma única árvore T com V(T)=S e f(T)=a.

Hipótese de indução: suponha que se \mathcal{T}' é o conjunto das árvores T' com V(T')=S', onde $S'\subseteq\mathbb{N}$ e |S'|=n-1, então para cada $a'\in(S')^{n-3}$, existe uma única árvore $T'\in\mathcal{T}'$ tal que f(T')=a'.

Suponha que $n \ge 3$ e seja $a = (a_1, \dots, a_{n-2}) \in S^{n-2}$. Provaremos que existe uma única árvore T tal que f(T) = a.

Para isto é preciso mostrar que:

- existe alguma árvore $T \in \mathcal{T}$ tal que f(T) = a e
- se $f(T_1) = f(T_2) = a \text{ com } T_1, T_2 \in \mathcal{T}$, então $T_1 = T_2$.

O que podemos dizer sobre uma árvore hipotética T tal que f(T) = a?

Pela definição do código de Prüfer, a_1 deve ser o vizinho da menor folha de T. Pelo Lema, $a_1, a_2, \ldots, a_{n-2}$ são as não-folhas de T. Logo, $v := \min(S - \{a_1, \ldots, a_{n-2}\})$ tem que ser a menor folha de T; logo $va_1 \in E(T)$. Além disso, pela definição do código de Prüfer, temos que $f(T - v) = (a_2, \ldots, a_{n-2})$.

Hipótese de indução: suponha que se \mathcal{T}' é o conjunto das árvores T' com V(T')=S', onde $S'\subseteq\mathbb{N}$ e |S'|=n-1, então para cada $a'\in(S')^{n-3}$, existe uma única árvore $T'\in\mathcal{T}'$ tal que f(T')=a'.

Seja S':=S-v e seja \mathcal{T}' o conjunto das árvores T' com V(T')=S'. Seja $a':=(a_2,\ldots,a_{n-2})$. Assim, $a'\in(S')^{n-3}$. Pela HI existe uma **(única) árvore** T' tal que $f(T')=a'=(a_2,\ldots,a_{n-2})$.

Seja
$$T = (V(T') \cup \{v\}, E(T') \cup \{va_1\})$$
. Claramente, $f(T) = a$.

Agora resta mostrar que T é a única árvore em T tal que f(T) = a.

Hipótese de indução: suponha que se \mathcal{T}' é o conjunto das árvores T' com V(T')=S', onde $S'\subseteq\mathbb{N}$ e |S'|=n-1, então para cada $a'\in(S')^{n-3}$, existe uma única árvore $T'\in\mathcal{T}'$ tal que f(T')=a'.

Sejam $T_1, T_2 \in \mathcal{T}$ tais que $f(T_1) = f(T_2) = a$. Pelo mesmo argumento anterior, segue que v é uma folha de T_i e va_1 é uma aresta de T_i . Além disso, $f(T_1 - v) = f(T_2 - v) = a'$. Por HI segue que $T_1 - v = T_2 - v$. Portanto, $T_1 = T_2$. Isto termina a prova.

Código de Prüfer (inversa)

INVERSA DO CÓDIGO DE PRÜFER ⊳ versão recursiva

ENTRADA:
$$a = (a_1, ..., a_{n-2}) \in S^{n-2}$$
 e S onde $|S| = n$ e $n \ge 2$.

SAÍDA: árvore
$$T$$
 com $V(T) = S$ tal que $f(T) = a$.

- 1. **se** $S = \{x, y\} \rhd i.e., n = 2 e a = ()$
- 2 então devolva $T = (S, \{xy\})$
- 3. $v \leftarrow \min(S \{a_1, a_2, \dots, a_{n-2}\})$
- 4. $a' \leftarrow (a_2, \ldots, a_{n-2})$
- 5. $T' \leftarrow \text{Inversa do C\'odigo de Pr\"ufer}(a', S \{v\})$
- 6. $T \leftarrow (V(T') \cup \{v\}, E(T') \cup \{va_1\})$
- 7. devolva T

Exercício. Mostre que o algoritmo é de fato a inversa do Código de Prüfer.

Código de Prüfer (inversa)

Inversa do Código de Prüfer ⊳ versão iterativa

Entrada:
$$a = (a_1, ..., a_{n-2}) \in S^{n-2}$$
 onde $|S| = n$ e $n \ge 2$.

SAÍDA: árvore
$$T$$
 com $V(T) = S$ tal que $f(T) = a$.

- 1. $T \leftarrow (S, \emptyset)$
- 2. *U* ← *S*
- 3. para $i \leftarrow 1$ até n-2 faça
- 4. $v \leftarrow \min(U \{a_i, a_{i+1}, \dots, a_{n-2}\})$
- 5. $T \leftarrow T + va_i$
- 6. $U \leftarrow U \{v\}$
- 7. sejam x, y os vértices de U
- 8. $T \leftarrow T + xy$
- 9. **devolva** T

Exercício. Mostre que o algoritmo é de fato a inversa do Código de Prüfer.

Contagem de árvores geradoras

Denote por $\tau(G)$ o número de árvores geradoras de um grafo G.

Uma forma equivalente de enunciar a Fórmula de Cayley é a seguinte.

Teorema. Seja $n \ge 2$ um inteiro. Então $\tau(K_n) = n^{n-2}$.

- Considere agora o problema mais geral de determinar $\tau(G)$ para um grafo arbitrário G.
- Não se pode esperar que haja uma fórmula simples em função apenas de n(G) ou m(G).
- Mostraremos uma recorrência que permite calcular (ineficientemente) $\tau(G)$ para qualquer grafo G.

Contagem de árvores geradoras

Seja G um grafo e seja $e \in E(G)$. Note que o número de árvores geradoras de G é igual ao número de árvores geradoras de G que não contém e mais o número de árvores geradoras de G que contém e.

Identificação de vértices e contração de aresta

Identificar dois vértices não-adjacentes x e y de um grafo G é substituir x e y por um novo vértice incidente a todas as arestas que eram incidentes em G a x ou a y. Denotamos este grafo por $G/\{x,y\}$.

Contrair uma aresta e de um grafo G é remover e de G e então (se e não for um laço) identificar seus extremos. Denotamos este grafo por G/e.

Figura: (a) Identificando dois vértices e (b) contraindo uma aresta.

Contração de aresta

- Se e é um Iaço, então G e = G/e.
- Se e é um laço, então e não pertence a nenhuma árvore geradora de G.

Contração de aresta e árvores geradores

Proposição. Seja G um grafo e seja e uma aresta de G que não é um laço. Então $\tau(G/e)$ é igual ao número de árvores geradoras de G que contém e.

Contagem de árvores geradoras

Teorema. Seja G um grafo e seja e uma aresta de G que não é um laço. Então $\tau(G) = \tau(G-e) + \tau(G/e)$.

Em princípio, podemos usar este método para calcular $\tau(G)$. Entretanto, é fácil ver que isto pode gastar tempo exponencial em m(G) (árvore binária de altura m tem 2^m nós).

Aplicação da recorrência

$$\tau(K_4 - e) = 8$$

$$\tau(\bigcirc) = (\bigcirc) + (\bigcirc)$$

$$= (\bigcirc + \triangle) + (\bigcirc + \bigcirc)$$

$$= (\bigcirc + (\triangle + \bigcirc) + (\bigcirc + \bigcirc) + (\bigcirc + \bigcirc)$$

$$= (\bigcirc + (\triangle + \bigcirc) + (\bigcirc + \bigcirc) + (\bigcirc + \bigcirc)$$

$$= (\bigcirc + (\triangle + \bigcirc) + (\bigcirc + \bigcirc) + (\bigcirc + \bigcirc)$$

Referências

- Em BM06, os autores descrevem outra forma bem interessante de mostrar que $\tau(K^n) = n^{n-2}$.
- Existe um algoritmo polinomial para determinar $\tau(G)$ para qualquer grafo G. A ideia é reduzir o problema a calcular o determinante de uma certa matriz. Veja West96.
- Usei principalmente as Seções 2.1 (Subseção Property of Trees), a Seção 2.2 e a Seção 2.3 (Subseção Minimum Spanning Trees) de West96 para preparar estes slides.