

Physics Inspired Al

Shawn Rosofsky
UIUC Department of Physics
NCSA Gravity group
ALCF AI for Science Training Series

Introduction

- Deep learning has expanded in recent years
 - Availability of big data
 - Improvements in hardware (GPU/TPU)
 - Open source libraries
- Data is not always available in all cases
 - Expensive
 - Time consuming

Karniadakis et al 2021

- But may have good physical understanding of system
 - Scientific experiments
 - Hardware design
- Solution: Include physics of problem into neural networks to train with much less data

How Can Physics Help?

- Neural networks retain bias of its training data
 - Gender bias in NLP (Sun et al 2019)
 - Racial and age bias in image recognition
 (Nagpal et al 2019)
- Some bias can be removed
 - Data augmentation
 - Increase data quantity
- Physics knowledge can remove data biases system with well understood physics
 - Symmetries
 - Conservation laws
 - Partial differential equations (PDEs)

Karniadakis et al 2021

How to Encode Physics into Neural Networks

- Add known physical laws into loss function
 - Introduces soft constraints
 - Improves with more training
- Encode derivatives by employing automatic differentiation
 - Accurate
 - Fast
- Weight data and physical laws to improve training
- May need second derivatives → No ReLU activation function
- Normalize equations

$$\mathcal{L} = w_{\text{data}} \mathcal{L}_{\text{data}} + w_{\text{PDE}} \mathcal{L}_{\text{PDE}},$$

where

$$\mathcal{L}_{\text{data}} = \frac{1}{N_{\text{data}}} \sum_{i=1}^{N_{\text{data}}} (u(x_i, t_i) - u_i)^2 \quad \text{and} \quad$$

$$\mathcal{L}_{PDE} = \frac{1}{N_{PDE}} \sum_{j=1}^{N_{PDE}} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} \right)^2 |_{(x_j, t_j)}$$

Karniadakis et al 2021

Traditional Physics Informed Neural Networks (PINNs)

- PINNs are the most well known type of physics informed deep learning models
- Inputs
 - Coordinates (space and/or time)
 - May add auxiliary variables to input
- Outputs
 - PDE solution fields
 - May add other outputs (inverse problems)
- Train by constraining encoded physics
 - Randomly sample domain
 - May add known data
- Trained for a single case
 - 1 set of ICs/BCs
 - 1 set of PDEs → cannot modify source terms

Types of Problems for PINNs

- Forward problems
 - Solve PDEs within specified domain
 - We will look at using PINNs to solve various forward problems
- Inverse problems
 - Given data that obeys a known (or partially known) PDE
 - Compute quantities of interest
 - Flow field from sensors at a few locations
 - Unknown PDE coefficients from data
 - We will look at finding unknown coefficients for a Lorenz system

Correct PDE	$u_t + uu_x + 0.0025u_{xxx} = 0$
Identified PDE (clean data)	$u_t + 1.000uu_x + 0.0025002u_{xxx} = 0$
Identified PDE (1% noise)	$u_t + 0.999uu_x + 0.0024996u_{xxx} = 0$

Data

Exact

0

Applications of PINNs Forward Problems

Optimize PDE over auxiliary variables

• FPGA design optimization of heatsink geometric configurations (Hennigh et al 2021)

Simulations over very complex geometries

• Brain aneurysm blood flow (Hennigh et al 2021)

• Use transfer learning to reduce training (a) Geometry

time

(c) Velocity magnitude comparison

Hennigh et al 2021 (d) Pressure comparison

Applications of PINNs Inverse Problems

- Reconstruct fields from limited sensor data in ill-posed problems
 - Construct fluid flow from a coffee cup (Cai et al. 2021)
 - Used temperature measurements to construct velocity and pressure data
- Analysis of scientific experiments
 - Well understood models
 - Controlled environments

PINN Software

- Deepxde (https://github.com/lululxvi/deepxde) → Will use deepxde for our tutorials
- NVIDIA Modulus/SimNet (<u>Modulus | NVIDIA Developer</u>)
- SciANN (https://github.com/sciann/sciann)
- Elvet (<u>https://gitlab.com/elvet/elvet</u>)
- TensorDiffEq (https://github.com/tensordiffeq/TensorDiffEq)
- NeuroDiffEq (https://github.com/analysiscenter/pydens)
- NeuralPDE (https://github.com/SciML/NeuralPDE.jl)
- Universal Differential Equations for Scientific Machine Learning (https://github.com/ChrisRackauckas/universal differential equations)
- IDRLnet (https://github.com/idrl-lab/idrlnet)

Limitations of PINNs

- Only trained for a single set of ICs/BCs/source terms → need to retrain for each new configuration
- Pure PINNs make poor surrogate models
- Will look at operator networks for solving PDEs with variable input fields

PINNs Exercises

- 07 physics inpiredAl
 - Burgers Equation
 - Poisson Lshape
 - Complex Geometry
 - Lorenz Inverse System

Operator Networks

- Learn output field for a given input field
- Can learn variable ICs, BCs, and/or source terms
- Need to generate data for many input fields
- May use physics information to improve performance
- Examples
 - DeepONets (Lu et al 2021)
 - Physics Informed DeepONets (Wang et al 2021)
 - Graph Operator Networks (Li et al 2020)
 - Fourier Operator Networks (Li et al 2020)
 - PINOs (Li et al 2021)

Neural Operator (zongyi-li.github.io)

Ground Truth

Prediction

Initial Condition

Physics Informed DeepONets

- DeepONets can generalize PDE solutions (<u>Lu et al 2021</u>)
 - Input field $u \rightarrow$ Initial conditions, source terms, and/or boundary conditions
 - Input coordinate $y \rightarrow$ space and time
 - Output operator $G(u)(y) \rightarrow PDE$ solution
 - Difference between data s and operator G(u)(y) is our loss \mathcal{L}_{data}
- Physics informed DeepONets improve performance with less data (Wang et al 2021)
 - Incorporate PDE into loss $\mathcal{L}_{physics}$
 - Incorporate ICs into loss \mathcal{L}_{IC}
 - Incorporate BCs into loss \mathcal{L}_{BC}

Training Physics Informed DeepONets

- Generate u using Gaussian random fields (GRF)
 - Use RBF or Matérn kernel to obtain spatially correlated random data
 - ullet Apply length scale l associated with typical spatial deviations
 - Expand in Fourier components to obey boundary conditions
- ullet Run simulations for each u to generate training data
- Sample the solution space during training

Matern GRF Dirichlet BC

Physics Informed DeepONet Tests

- 1D Diffusion Reaction Equation
 - $\partial_t s = D \partial_{xx} s + k s^2 + u(x)$
 - *u* is a source term
 - Homogenous Dirichlet BC
 - Zero IC $\rightarrow s(x,0) = 0$
 - k = D = 0.01

1D Viscous Burgers Equation

•
$$\partial_t s + s \, \partial_x s - \nu \, \partial_{xx}^2 s = 0$$

- *u* is the IC
- Periodic BC
- $\nu = 0.01$

- 1D Wave Equation
 - $\partial_{tt}s c^2\partial_{xx}^2s = 0$
 - *u* is the IC
 - Periodic BC
 - c = 1

Diffusion Reaction Equation Results on Test Data: $\partial_t s = D \ \partial_{xx} s + k \ s^2 + u(x)$

Viscous Burgers Equation Results on Test Data $\partial_t s + s \partial_x s - v \partial_{xx}^2 s = 0$

Wave Equation Results on Test Data

$$\partial_{tt}s - c^2 \partial_{xx}^2 s = 0$$

Physics Informed DeepONet Excercise

• Physics Informed DeepONet Diffusion Reaction