

Compresseur universel d'images 4K

CONDE ALAZAR Arthur BONETTI Timothée

Problematique

IMAGE 4K

3840 x 2160 pixels

8,294,400 pixels pour une image.

Si image couleur RGB: 24,883,200 octets soit 24,88 Mo de memoire

Comment peut-on développer un compresseur universel capable de gérer efficacement les images 4K tout en préservant leur qualité visuelle ?

Objectifs du projet

- **Développer un compresseur universel** : Créer 2 outil pour compresser les images 4K.
- Préserver la qualité visuelle : Assurer que la compression ne dégrade pas la qualité des images contrôlée avec le PSNR.
- Optimiser les performances : Réduire le temps de compression et de décompression.
- Comparer les 2 methodes : Évaluer les performances de ces deux formats dans le contexte de la compression d'images 4K et identifier leurs avantages et inconvénients.

Etat de l'art

1992

- Quantification
- Transformée en cosinus discrète
- Codage entropique

2000

- Quantification
- Transformation en ondelettes discrète
- Codage arithmétique

2010

- Quantification adaptative
- Prédiction de blocs
- Transformée en cosinus discrète

2015

- Meilleur que JPEG
- Basé sur le codec de compression vidéo HEVC

2019

Basé sur le codec de compression vidéo AV1

Les solutions proposées

Algorithme "à la JPEG"

- Standard de compression : Largement utilisé pour les images numériques.
- Technologie : Utilise la transformée en cosinus discrète (DCT).
- Efficacité: Très efficace pour réduire la taille des fichiers.
- Qualité: Peut entraîner une perte de qualité visible à des taux de compression élevés (artefacts, blocs).
- Encodage : Codage RLE

Algorithme "à la JPEG2000"

- Évolution de JPEG : Conçu pour offrir une meilleure qualité d'image.
- **Technologie** : Utilise la transformée en ondelettes.
- Flexibilité : Supporte la compression avec et sans perte.
- Qualité : Meilleure préservation des détails et moins d'artefacts.
- Encodage : Codage LZ77

Technologies utilisées

ImGui

stb_image.h

ImageBase.h

Implémenter les méthodes proposées

Méthode avec DCT

DCT et quantification

[940.00	-54.66	0.00	-5.71	0.00	-1.70	0.00	-0.43
-36.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-3.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-1.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Matrice quantifié

Matrice de quantification

Γ16	11	10	16	24	40 58 57 87 109 104 121	51	61 7
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Γ59	-5	0	0	0	0	0	07
-3	0	0	0	0		0	0
0	0	0	0			0	
1.0	0	0	0			0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Codage RLE

Matrice quantifiée.

79	0	-1	0	0	0	0	0]
-2	-1	0	0	0	0	0	0
-1	-1		0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
	$ \begin{array}{c c} -2 \\ -1 \\ 0 \end{array} $	$\begin{array}{ccc} -2 & -1 \\ -1 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccccc} -2 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Visualisation compression DCT : Image 4k myrtilles

Taux de compression: 14.69

PSNR: 32.87 dB

Visualisation compression DCT : Image 4k myrtilles

Méthode avec Ondelettes

\mathbf{DWT}

Exemple Transformée en ondelettes

Codage LZ77


```
Original Hello friends, Hello world

Encoded Hello friends, (15,6)world
```

Visualisation compression ondelettes : Image 4k myrtilles

Taux de compression: 7.42

PSNR: 34.17 dB

Visualisation compression ondelettes : Image 4k myrtilles

Résultats

Comparaison des méthodes

Conclusion

- → Première méthode orienté compression
- Deuxième méthode orienté qualité
- → Des améliorations possibles