Intervals, Transformations, and Slope Solution (version 100)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -5) \cup (-2, 2)$
Negative	$(-5, -2) \cup (2, 5)$
Increasing	$(-9, -7) \cup (-3, -1)$
Decreasing	$(-7, -3) \cup (-1, 5)$
Domain	(-9,5)
Range	(-3,3)

Intervals, Transformations, and Slope Solution (version 100)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=33$ and $x_2=47$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 33 & 56 \\ 40 & 33 \\ 47 & 40 \\ 56 & 47 \\ \hline \end{array}$$

$$\frac{g(47) - g(33)}{47 - 33} = \frac{40 - 56}{47 - 33} = \frac{-16}{14}$$

The greatest common factor of -16 and 14 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-8}{7}$$

2