Mécanique quantique – L2

Antoine Bourget – Alain Comtet - Antoine Tilloy Séance du 21 Novembre 2014

TD de contrôle

Etant donné que le formalisme du spin n'a pas encore été étudié en cours, on pourra dans les deux exercices considérer que « particule de spin 1/2 » est synonyme de « système à deux niveaux ». On rappelle en outre que les protons et les neutrons sont des particules de spin 1/2. Les deux exercices sont indépendants.

1 Précession d'un spin

Une particule de spin 1/2 et de moment magnétique $\vec{M} = \gamma \vec{S}$ est plongée dans un champ magnétique uniforme $\vec{B} = B\vec{n}$ où \vec{n} est un vecteur unitaire de \mathbb{R}^3 . On rappelle l'expression du hamiltonien d'interaction

$$H = -\vec{M}.\vec{B} = -\gamma B\hbar \frac{\vec{\sigma}.\vec{n}}{2}$$

On pose $\omega = -\gamma B$.

Le vecteur d'état du système, défini à un facteur de phase près

$$|\psi\rangle = \cos(\theta/2)|+\rangle + \sin(\theta/2)e^{i\phi}|-\rangle$$

est repéré par les angles θ et ϕ sur la sphère de Bloch. $|+\rangle$ et $|-\rangle$ sont les états propres de S_z .

- 1. On suppose le champ magnétique \vec{B} dirigé selon Oz. Écrire l'opérateur d'évolution.
- 2. En déduire l'expression de $|\psi(t)\rangle$ pour un état initial quelconque.
- 3. On considère l'état initial $\theta(0) = \pi/2, \phi(0) = 0$. Dessiner la trajectoire correspondante sur la sphère de Bloch.
- 4. Dessiner la trajectoire lorsque le champ \vec{B} est dirigé selon Ox et l'état initial est $\theta(0) = \pi/2, \phi(0) = \pi/2$.
- 5. Pendant combien de temps faut-il appliquer ce champ pour obtenir l'état $|+\rangle$?
- 6. On considère l'état initial

$$|\psi(0)\rangle = \frac{\sqrt{2}}{2}|+\rangle + \frac{(1+i)}{2}|-\rangle$$

Déterminer géométriquement la direction du champ magnétique pour obtenir l'état |+>.

2 Diffusion proton-neutron

- 1. Quelle est l'action des matrices de Pauli $\sigma_x, \sigma_y, \sigma_z$ sur la base des états propres $|\pm\rangle$ de σ_z ?
- 2. On considère 2 particules de spin 1/2. Exprimer l'action de l'opérateur $\vec{\sigma}^1.\vec{\sigma}^2 = \sigma_x^1 \otimes \sigma_x^2 + \sigma_y^1 \otimes \sigma_y^2 + \sigma_z^1 \otimes \sigma_z^2$ sur la base des états $\{|\epsilon,\epsilon'\rangle, \epsilon=\pm,\epsilon'=\pm\}$.
- 3. On pose $|\phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|+-\rangle \pm |-+\rangle)$. Montrer que

$$\vec{\sigma}^{1}.\vec{\sigma}^{2}|\phi_{+}\rangle = |\phi_{+}\rangle$$

$$\vec{\sigma}^{1}.\vec{\sigma}^{2}|\phi_{-}\rangle = -3|\phi_{-}\rangle$$

4. On étudie l'évolution de l'état de spin d'un proton et d'un neutron entrant en collision. Les spins des deux particules sont notés σ^1 et σ^2 . Le hamiltonien d'interaction est

$$H = \hbar \alpha(t) \vec{\sigma}^1 \cdot \vec{\sigma}^2$$

où la fonction $\alpha(t)$ est non-nulle sur l'intervalle de temps [0,T] correspondant à la durée de la collision. Elle est prise constante sur cet intervalle.

Sachant que les deux spins sont dans l'état initial $|\psi_i\rangle = |+-\rangle$, calculer l'état de spin après collision.

5. En déduire la probabilité de retournement des deux spins en fonction du temps d'interaction.