Intervalles de confiance - tests statistiques

G. Marot-Briend

guillemette.marot@univ-lille.fr

2021-2022

Estimation ponctuelle

Vocabulaire:

• écart-type de l'échantillon

$$s_{\text{ech}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

déviation standard (anglicisme)

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• erreur standard de la moyenne

$$\mathsf{esm} = \frac{\sigma}{\sqrt{n}}$$

Plan

Intervalles de confiance

2 Tests statistiques

Estimation par intervalle

L'estimation par intervalle associe à un échantillon aléatoire un intervalle $[\widehat{\theta_1}, \widehat{\theta_2}]$ qui recouvre θ avec une certaine probabilité. Cet intervalle est appelé intervalle de confiance.

On appelle risque d'erreur la probabilité α que l'intervalle de confiance ne contienne pas la vraie valeur du paramètre. On appelle niveau de confiance la probabilité $1-\alpha$ que l'intervalle de confiance contienne la vraie valeur du paramètre.

$$P(\widehat{\theta_1} < \theta < \widehat{\theta_2}) = 1 - \alpha$$

Estimation par intervalle

Exercice:

On cherche l'intervalle de confiance à 95% du poids des bébés. $X \sim \mathcal{N}(3,3;0,6)$

Estimation par intervalle

Exercice:

On cherche l'intervalle de confiance à 95% du poids des bébés. $X \sim \mathcal{N}(3,3;0,6)$

On veut P(a < X < b) = 0.95. En centrant réduisant, on cherche a* et b* tels que $P(a^* < X^* < b^*) = 0.95$ $\Rightarrow a^* = -u_{1-0.05/2}$; $b^* = u_{1-0.05/2}$

$$-u_{1-\alpha/2} < \frac{X - \mu}{\sigma} < u_{1-\alpha/2}$$

$$\mu - u_{1-\alpha/2}\sigma < X < \mu + u_{1-\alpha/2}\sigma$$

$$3, 3 - 1, 96 * 0, 6 < X < 3, 3 + 1, 96 * 0, 6$$

$$IC_{95\%} = [2, 1; 4, 5]$$

Intervalles de confiance

Intervalles de confiance d'une moyenne

• si σ est connu (rare)

$$IC(\mu) = \left[\bar{x} - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}; \bar{x} + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

• si σ est inconnu

$$\mathsf{IC}(\mu) = \left[\bar{x} - t_{1-\alpha/2;n-1} \frac{s}{\sqrt{n}}; \bar{x} + t_{1-\alpha/2;n-1} \frac{s}{\sqrt{n}}\right]$$

 $n \le 30$ petits échantillons : on doit supposer que X suit une loi normale

n > 30 grands échantillons : l'intervalle de confiance est valable quelle que soit la loi de X.

Intervalles de confiance

Intervalle de confiance d'une proportion

si
$$n\widehat{\pi} \geq 10$$
 et $n(1-\widehat{\pi}) \geq 10$, alors

$$\mathsf{IC}(\pi) = \left[\widehat{\pi} - u_{1-\alpha/2}\sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}; \widehat{\pi} + u_{1-\alpha/2}\sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}\right]$$

Plan

1 Intervalles de confiance

2 Tests statistiques

Tests

Question fréquente :

Est-ce que deux variables sont liées?

Tests

Question fréquente :

Est-ce que deux variables sont liées?

La réponse dépend du type des variables.

- ullet deux variables qualitatives : test du χ_2
- deux variables quantitatives : test du coefficient de corrélation
- une quantitative, une qualitative : t-test ou ANOVA

Tout comme les intervalles de confiance, les tests sont utilisés pour généraliser des résultats dans une population à partir d'observations d'un échantillon.

Principe d'un test statistique

- Définir l'hypothèse nulle H_0 et l'hypothèse alternative H_1
- Choisir une statistique de test appropriée T et sa distribution sous l'hypothèse nulle
- Choisir un niveau de signification α , un seuil de probabilité en dessous duquel l'hypothèse nulle est rejetée.
- Calculer la réalisation de la statistique de test à partir des données observées et le degré de signification associé.
- Conclure au rejet ou non rejet de l'hypothèse nulle.

Remarque : H_0 est toujours l'hypothèse préférée (comme la présomption d'innocence). Pas de preuve suffisante \Rightarrow pas de rejet. Quand on ne peut pas rejeter H0, cela ne veut pas dire qu'H0 est vraie.

Exemples de tests statistiques

On pose souvent comme hypothèse nulle le contraire de ce que l'on cherche à prouver.

Exemples:

- les variables taille et poids ne sont pas corrélées
- l'âge moyen des personnes malades et celui des personnes saines sont égaux
- la proportion de fumeurs est la même dans le groupe sain et le groupe malade

Vocabulaire:

Risque de 1ère espèce (niveau de significativité) :

$$\alpha = P(\text{rejet H0/H0 vraie})$$

Risque de 2ème espèce :

$$\beta = P(\text{non rejet H0/H1 vraie})$$

Puissance (capacité à obtenir un résultat statistiquement significatif dans le cas d'une réelle différence) :

$$1 - \beta = P(\text{rejeter H0/H1 vraie})$$

Notion de risques (α, β) - Rappel

	Réalité		
Décision	H_{O}	H_1	
non rejet H_0	conclusion correcte	risque de 2ème espèce (β)	
rejet H ₀	risque de 1ère espèce $(lpha)$	conclusion correcte	

	Réalité		
Décision	H ₀	H_1	
non rejet H_0	Niveau de confiance $1-\alpha$	β	
rejet H_0	α	Puissance $1-\beta$	

Degré de signification (p-value)

Ne pas confondre niveau de signification (risque de 1ère espèce α), niveau de confiance $(1-\alpha)$ et degré de signification (p-value).

Degré de signification ou p-value p(t):

pour une réalisation t d'une statistique de test T, probabilité (calculée sous l'hypothèse nulle) d'obtenir une statistique de test au moins aussi extrême que celle réellement observée.

Autrement dit, la p-value correspond à la plus petite valeur de risque α accepté pour cette réalisation.

p-value $< \alpha \Rightarrow$ on rejette H_0

p-value $\geq \alpha \Rightarrow$ on ne rejette pas H_0

Degré de signification (p-value)

Plus la réalisation de la statistique de test est grande en valeur absolue, plus la p-value est petite.

Cas bilatéral :
$$p(t) = P_{H0}(|T| \ge |t| = 2.(1 - F(|t|))$$

Cas unilatéral à droite : $p(t) = P_{H0}(T \ge |t|) = 1 - F(t)$
Cas unilatéral à gauche : $p(t) = P_{H0}(T \le t) = F(t)$

Lien avec la région critique R : $P_{H0}(T \in R) = P(p(t) \le \alpha)$

Degré de signification (p-value)

Plus la réalisation de la statistique de test est grande en valeur absolue, plus la p-value est petite.

Cas bilatéral :
$$p(t) = P_{H0}(|T| \ge |t| = 2.(1 - F(|t|))$$

Cas unilatéral à droite : $p(t) = P_{H0}(T \ge |t|) = 1 - F(t)$
Cas unilatéral à gauche : $p(t) = P_{H0}(T \le t) = F(t)$

Lien avec la région critique R : $P_{H0}(T \in R) = P(p(t) \le \alpha)$

Explications détaillées et rappel des formules sur les tests usuels dans le cours disponible en ligne de M. Genin (Univ Lille, METRICS) : https://pro.univ-lille.fr/michael-genin/enseignements/

Test de comparaison de moyennes pour échantillons indépendants

• Si $\sigma_1^2 = \sigma_2^2 = \sigma^2$, alors sous H_O (test de Student) :

$$T = rac{ar{X_1} - ar{X_2}}{S\sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim \mathcal{T}_{n_1 + n_2 - 2}$$
 ddl

Avec S^2 l'estimateur de la variance commune σ^2 .

$$S^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$

② Si $\sigma_1^2 \neq \sigma_2^2$, alors sous H_0 :

$$\mathcal{T} = rac{ar{X_1} - ar{X_2}}{\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}}} \sim \mathcal{T}_
u \; \mathsf{ddl}$$

Test de Student pour échantillons appariés

$$T = rac{ar{D}}{\mathcal{S}_D/\sqrt{n}} \sim \mathcal{T}_{n-1 \; ddl}$$

Avec

$$\bar{D} = \bar{X_1} - \bar{X_2}$$

et

$$S_D = \sqrt{\frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} D_i^2 - (\bar{D})^2 \right]}$$

Comparaison de deux proportions / échantillons indépendants

Conditions de validité :

$$Z = rac{\widehat{\pi_1} - \widehat{\pi_2}}{\sqrt{rac{\widehat{\pi_1}(1-\widehat{\pi_1})}{n_1} + rac{\widehat{\pi_2}(1-\widehat{\pi_2})}{n_2}}} \sim \mathcal{N}(0,1)$$

Tests du χ^2 : variables qualitatives

Test du χ^2 d'ajustement (1 variable qualitative / 1 échantillon)

Objectif : comparaison d'une distribution observée à une distribution théorique

<u>Exemple</u>: Soit un échantillon de 100 français. La distribution observée (sur l'échantillon) de l'âge regroupé en classes est-elle identique à celle de la population française?

Tests du χ^2 : variables qualitatives

Test du χ^2 d'ajustement (1 variable qualitative / 1 échantillon)

Objectif : comparaison d'une distribution observée à une distribution théorique

Exemple : Soit un échantillon de 100 français. La distribution observée (sur l'échantillon) de l'âge regroupé en classes est-elle identique à celle de la population française?

Test du χ^2 d'homogénéité (1 variable qualitative / plusieurs échantillons)

Objectif : comparaison de $k \ge 2$ distributions observées sur k échantillons

Exemple : Soient trois échantillons de 100 français, 100 belges et 100 anglais. La distribution observée de l'âge regroupé en classes est-elle différente entre les populations?

Test du χ^2 d'indépendance (2 variables qualitatives / 1 échantillon)

Objectif: Etudier la liaison entre deux variables qualitatives

Exemple: Soit un échantillon de 100 français. Existe-t-il un lien entre le sexe (Homme / Femme) et la couleur des yeux (Marrons, Bleus, Vert, ...)?

$$K = \sum \frac{(O_{ij} - T_{ij})^2}{T_{ij}}$$

Les tests paramétriques nécessitent des conditions de validité :

- Hypothèses sur la distribution des observations (ex : $X \sim \mathcal{N}(\mu, \sigma)$)
- Distributions caractérisées par des paramètres (moyenne, variance, . . .)
- Ces paramètres sont estimés

Les tests paramétriques nécessitent des conditions de validité :

- Hypothèses sur la distribution des observations (ex : $X \sim \mathcal{N}(\mu, \sigma)$)
- Distributions caractérisées par des paramètres (moyenne, variance, . . .)
- Ces paramètres sont estimés

Question:

Que faire lorsque les conditions de validité ne sont pas respectées?

Les tests paramétriques nécessitent des conditions de validité :

- Hypothèses sur la distribution des observations (ex : $X \sim \mathcal{N}(\mu, \sigma)$)
- Distributions caractérisées par des paramètres (moyenne, variance, . . .)
- Ces paramètres sont estimés

Question:

Que faire lorsque les conditions de validité ne sont pas respectées?

- **⇒ Tests non-paramétriques**
 - Pas d'hypothèse sur la distribution
 - La plupart du temps : tests basés sur la notion de rangs

Avantages

- Pas d'hypothèse sur la distribution ⇒ champ d'application a priori plus large, tests notamment adaptés aux petits échantillons (n < 30)
- Tests adaptés aux variables ordinales (ex : degré de satisfaction), pas seulement aux variables quantitatives
- Tests peu sensibles aux valeurs extrêmes

Inconvénients

- Lorsque les conditions d'applications sont vérifiées :
 Tests non paramétriques moins puissants que les tests paramétriques
- Difficultés d'interprétation : on ne compare plus des paramètres (moyenne, proportion, variance, . . .)

Comparaison de 2 échantillons

Test de Mann-Whitney-Wilcoxon (échantillons indépendants) ou test des rangs signés de Wilcoxon (échantillons appariés) :

Soient

 $F_1(X)$ la fonction de répartition de X dans la population 1 $F_2(X)$ la fonction de répartition de X dans la population 2

Hypothèses

$$\begin{cases} H_0: F_1(X) = F_2(X + \theta); \theta = 0 & \text{Distributions identiques} \\ H_1: F_1(X) = F_2(X + \theta); \theta \neq 0 & \text{Distributions différentes} \end{cases}$$

 θ paramètre de translation : décalage entre les fonctions de répartition

Comparaison de plus de 2 échantillons indépendants Test de Kruskal-Wallis

Objectif: comparer la distribution d'une variable quantitative X entre K groupes indépendants (Equivalent non paramétrique de l'ANOVA à un facteur).

Hypothèses

$$\begin{cases} H_0: F_1(X) = F_2(X+\theta) = \ldots = F_K(X+\theta) \; ; \; \theta = 0 \\ \text{Distributions identiques} \\ H_1: \exists i \neq j/F_i(X) = F_j(X+\theta); \; \theta \neq 0 \\ \text{Distributions différentes} \end{cases}$$

$$H_1: \exists i \neq j/F_i(X) = F_j(X+\theta); \ \theta \neq 0$$

 θ paramètre de translation : décalage entre les fonctions de répartition

Tests paramétrique vs. test non paramétrique

Remarques : Les tests de Wilcoxon, Mann-Whitney-Wilcoxon sont plus facilement interprétables quand les distributions sont symétriques, de même forme et nécessitent des amplitudes ou des rangs disponibles.