Complexidade teórica de algoritmos¹²

1 Complexidade teórica

A análise teórica da complexidade de algoritmos parte de alguns princípios básicos:

- 1. **Modelo abstrato** para uma análise idônea, é necessário o uso de modelos que abstraiam detalhes técnicos como (i) a capacidade do programador que implementa o algoritmo, (ii) o nível de velocidade oferecido pela linguagem adotada para a implementação do algoritmo³ e (iii) o poder de processamento oferecido pelo hardware onde se executa o algoritmo. Para atender a estes requisitos, a análise teórica de complexidade é feita com pseudocódigos, simulando sua execução em uma máquina abstrata⁴.
- 2. **Equivalência de instruções** a principal característica do modelo de máquina abstrata adotada na análise teórica de complexidade é a equivalência entre os tempos de instrução. Especificamente, supõe-se que operações que na prática apresentam variações consideráveis de duração apresentem tempos similares no modelo teórico. Assim, operações como atribuição, comparação e aritmética podem ser analisadas como equivalentes em termos de tempo computacional.
- 3. Análise em função da entrada uma segunda característica do modelo de máquina adotado é a abstração do tempo computacional necessário para uma instrução. Mais precisamente, o alvo da análise teórica não é mensurar o tempo computacional necessário para a execução de um algoritmo, mas descrever a quantidade de instruções necessárias em função do tamanho da entrada apresentada. Além disso, é importante considerar os diferentes tipos de entrada aos quais um mesmo algoritmo pode ser apresentado. Assim, a análise téorica de complexidade é feita para diferentes casos, conhecidos como o melhor, o pior e o caso médio⁵.

2 Complexidade assintótica

A análise da complexidade teórica de algoritmos faz uso da noção matemática de crescimento assintótico de funções. Em síntese, dados dois algoritmos A_1 e A_2 e um dos casos que se deseja analisar (melhor ou pior), identifica-se primeiro as funções que descrevem a quantidade de instruções que cada um requer para sua execução, parametrizadas pelo tamanho da entrada (isto é, $f_{A_1}(n)$ e $f_{A_2}(n)$). Em seguida, adota-se a noção de crescimento assintótico para comparar a velocidade com a qual estas funções crescem à medida que o valor de n aumenta.

As principais notações assintóticas utilizadas neste tipo de análise são descritas a seguir.

Notação O (limite superior), utilizada para delimitar superiormente o crescimento de funções. Diz-se que uma função $f \in O(g)$, isto é, que ela tem seu crescimento limitado superiormente por g, se, e somente se, existirem uma constante c e um limite positivo n_0 tais que, para quaisquer valores $n > n_0$, $f(n) \le c \cdot g(n)$.

¹Roteiro de estudo fornecido na disciplina de Estruturas de Dados Básicas 1 (EDB1) da Universidade Federal do Rio Grande do Norte (UFRN).

²Autor: Leonardo Bezerra.

 $^{^3}$ Linguagens compiladas tradicionalmente executam mais rápido que linguagens interpretadas, uma vez que o processo de tradução para a linguagem de máquina é feito separadamente da execução do algoritmo.

⁴O modelo RAM, que será estudado em mais detalhes em outras disciplinas.

⁵A análise de caso médio será tópico de outras disciplinas, dadas as ferramentas matemáticas necessárias para sua execução.

Notação Ω (limite inferior), utilizada para delimitar inferiormente o crescimento de funções. Diz-se que uma função $f \in \Omega(g)$, isto é, que ela tem seu crescimento limitado inferiormente por g, se, e somente se, existirem uma constante c e um limite positivo n_0 tais que, para quaisquer valores $n > n_0$, $f(n) \ge c \cdot g(n)$.

Notação Θ (crescimento equivalente), utilizada quando uma função tem seu crescimento similar à outra, isto é, ela pode ser delimitada superiormente e inferiormente pela mesma função. Diz-se que uma função $f \in \Theta(g)$, isto é, que ela tem seu crescimento limitado superiormente e inferiormente por g ($f \in O(g)$) e $f \in \Omega(g)$), se, e somente se, existirem constantes c_1 e c_2 e limites positivos n_1 e n_2 tais que, para quaisquer valores $n > n_1$, $f(n) \le c_1 \cdot g(n)$ e, para quaisquer valores $n > n_2$, $f(n) \ge c_2 \cdot g(n)$.

3 Padrões de crescimento de funções

A análise da complexidade assintótica de algoritmos é particularmente importante para o projeto e análise comparativa de algoritmos. Uma vez que os padrões de crescimento de funções mais comuns são bem conhecidos, torna-se possível examinar a eficiência de algoritmos e prever seu comportamento em diferentes tamanhos de instâncias. A Tabela 1.1 mostra as principais ordens de crescimento em ordem crescente, sendo a complexidade constante a ideal e a fatorial a mais elevada.

Função	Ordem
1	Constante
log n	Logarítmica
n	Linear
$n \log n$	Logarítmica linear
n^2	Quadrática
n^3	Cúbica
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Exponencial
n!	Fatorial

Table 1.1: Padrões de crescimento de funções.

4 Utilizando os conceitos de complexidade assintótica

Neste roteiro, você deverá por em prática os conhecimentos discutidos em sala e neste documento. Mais especificamente, solicita-se que você apresente a análise de complexidade pro pior e pro melhor caso dos algoritmos trabalhados no roteiro passado.