

SEQUENCE LISTING

<110> Waldman, Scott A.
Pearlman, Joshua M.
Barber, Michael T.
Schulz, Stephanie
Parkinson, Scott J.

<120> Compositions that Specifically Bind to Colorectal Cancer Cells and Methods of Using the Same

<130> 08321-0152 CT1 (TJU0007-103)

<140> 10/656,895
<141> 2003-09-05

<150> US 09/649,697
<151> 2000-08-28

<150> US 08/908,643
<151> 1997-08-07

<160> 82

<170> PatentIn version 3.3

<210> 1
<211> 1636
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 1
gggcacaagg agtatggttc taacgtgatt ggggtcatga agacgttgct gttggacttg
60

gcttgtggc cactgctctt ccatcccggt tggctgtcct ttagttccca ggcctaaatg
120

tgactgtgaa cgctactttc atgtattcgg atggctgtat tcataactca ggcgactgcc
180

ggagtagcac ctgtgaaggc ctcgacctac tcagggaaat ttcaaattgca caacggatgg
240

gctgtgcct catagggccc tcatgtacat actccacctt ccagatgtac cttgacacag
300

aatttagctt ccccatgatc tcagctggaa gttttggatt gtcatgtgac tataaagaaa
360

ccttaaccag gctgatgtct ccagctagaa agttgatata cttcttggtt aacttttggaa
420

aaaccaacga tctgcccttc aaaacttatt cctggagcac ttcgtatgtt tacaagaatg
480

gtacagaaac tgagggactg tttctggta cttaatgctc tggaggctag cgtttcctat
540

ttctccacg aactcggttt taaggtggtg ttaagacaag ataaggagtt tcaggatatc
600

ttaatggacc acaacaggaa aagcaatgtg attattatgt gtgggtggcc agagttcctc
660

tacaagctga agggtgaccg agcagtggct gaagacatttgc tcattatttttctt agtggatctt
720

ttcaatgacc agtacttgaa ggacaatgtc acagccccctg actatatgaa aaatgtcctt
780

gttctgacgc tgtctccctgg ggaattccct tctaaatagc tctttctcca ggaatctatc
840

accaacaaaa cgagacttttgc ctcttgccata tttgaatggaa atcctgtctt ttggacatata
900

gctgaagata tttcttgaaa atggagaaaa tattaccacc cccaaatttg ctcatgcttt
960

caggaatctc acttttgaag ggtatgacgg tccagtgacc ttggggatgac tggggggatg
1020

ttgacagtac catggtgctt ccgttataacc ctctgtggac accaagaaat acaaggttct
1080

ttggacctat gataccacg ttaataagaa ctatcctgtg gatatgagcc ccacattcac
1140

ttggaagaac tctaaacttc ctaatgatat tacaggccgg ggccctcaga tcctgatgat
1200

tgcagtcttc accctcaactg gagctgtggt gctgctcctg ctcgtcgctc tcctgatgct
1260

cagaaaatat agaaaagatt atgaacttcg tcagaaaaaa tggtcccaca ttccctcctga
1320

aaatatctt cctctggaga ccaatgagac caatcatgtt agcctaaga tcgatgatga
1380

caaaagacga gatacaatcc agagactacg acagtgc当地 tacgacaaaaa agcgagtgtat
1440

tctcaaagat ctcaagcaca atgatggtaa tttcaactgaa aaacagaaga tagaattgaa
1500

caagttgctt cagaaagact attacaacct gaccaagttc tacggcacag tgaaacttga
1560

taccatgatc ttcgggtga tagaataactg tgagagagga tcccctccgg gaagttttaa
1620

atgacacaat ttccta
1636

<210> 2
<211> 78
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 2
atgaagacgt tgctgttgaa cttggctttg tggtaactgc tcttccatcc cgggtggctg
60

tccttagtt cccaggcc
78

<210> 3
<211> 26

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 3

Met Lys Thr Leu Leu Leu Asp Leu Ala Leu Trp Ser Leu Leu Phe His
1 5 10 15

Pro Gly Trp Leu Ser Phe Ser Ser Gln Ala
20 25

<210> 4
<211> 372
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 4
atgtatttcgg atggtctgat tcataactca ggcgactgcc ggagtagcac ctgtgaaggc
60

ctcgacctac tcagaaaaat ttcaaattgca caacggatgg gctgtgtcct catagggccc
120

tcatgtacat actccacctt ccagatgtac cttgacacag aattgagcta ccccatgatc
180

tcagctggaa gttttggatt gtcatgtgac tataaagaaa ccttaaccag gctgatgtct
240

ccagctgaga agttgatata cttcttggtt aactttgga aaacccaacga tctgccctc
300

aaaacttatt cctggagcac ttcgtatgtt tacaagaatg gtacagaaac tgagggactg
360

tttctggta c
372

<210> 5
<211> 124
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 5

Met Tyr Ser Asp Gly Leu Ile His Asn Ser Gly Asp Cys Arg Ser Ser
1 5 10 15

Thr Cys Glu Gly Leu Asp Leu Leu Arg Lys Ile Ser Asn Ala Gln Arg
20 25 30

Met Gly Cys Val Leu Ile Gly Pro Ser Cys Thr Tyr Ser Thr Phe Gln
35 40 45

Met Tyr Leu Asp Thr Glu Leu Ser Tyr Pro Met Ile Ser Ala Gly Ser
50 55 60

Phe Gly Leu Ser Cys Asp Tyr Lys Glu Thr Leu Thr Arg Leu Met Ser
65 70 75 80

Pro Ala Arg Lys Leu Ile Tyr Phe Leu Val Asn Phe Trp Lys Thr Asn
85 90 95

Asp Leu Pro Phe Lys Thr Tyr Ser Trp Ser Thr Ser Tyr Val Tyr Lys
100 105 110

Asn Gly Thr Glu Thr Glu Gly Leu Phe Leu Val Pro
115 120

<210> 6
<211> 276
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 6

atgggctgtg tcctcatagg gccctcatgt acatactcca cttccagat gtaccttgac
60

acagaattga gctacccat gatctcagct ggaagtttg gattgtcatg tgactataaa
120

gaaaccttaa ccaggctgat gtctccagct agaaagttga tatacttctt ggtaacttt
180

tggaaaacca acgatctgcc cttcaaaact tattcctgga gcacttcgta tgtttacaag
240

aatggtacag aaactgaggg actgtttctg gtacct
276

<210> 7

<211> 92

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 7

Met Gly Cys Val Leu Ile Gly Pro Ser Cys Thr Tyr Ser Thr Phe Gln
1 5 10 15

Met Tyr Leu Asp Thr Glu Leu Ser Tyr Pro Met Ile Ser Ala Gly Ser
20 25 30

Phe Gly Leu Ser Cys Asp Tyr Lys Glu Thr Leu Thr Arg Leu Met Ser
35 40 45

Pro Ala Arg Lys Leu Ile Tyr Phe Leu Val Asn Phe Trp Lys Thr Asn
50 55 60

Asp Leu Pro Phe Lys Thr Tyr Ser Trp Ser Thr Ser Tyr Val Tyr Lys
65 70 75 80

Asn Gly Thr Glu Thr Glu Gly Leu Phe Leu Val Pro
85 90

<210> 8
<211> 228
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 8
atgtaccttg acacagaatt gagctacccc atgatctcag ctggaagttt tggattgtca
60

tgtgactata aagaaaacctt aaccaggctg atgtctccag ctagaaagtt gatataacttc
120

ttggtaact tttggaaaac caacgatctg cccttcaaaa cttattcctg gagcacttcg
180

tatgtttaca agaatggtagc agaaaactgag ggactgtttc tggtacct
228

<210> 9
<211> 76
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 9

Met Tyr Leu Asp Thr Glu Leu Ser Tyr Pro Met Ile Ser Ala Gly Ser
1 5 10 15

Phe Gly Leu Ser Cys Asp Tyr Lys Glu Thr Leu Thr Arg Leu Met Ser
20 25 30

Pro Ala Arg Lys Leu Ile Tyr Phe Leu Val Asn Phe Trp Lys Thr Asn
35 40 45

Asp Leu Pro Phe Lys Thr Tyr Ser Trp Ser Thr Ser Tyr Val Tyr Lys
50 55 60

Asn Gly Thr Glu Thr Glu Gly Leu Phe Leu Val Pro
65 70 75

<210> 10

<211> 198

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 10

atgatctcag ctggaagttt tggattgtca tgtgactata aagaaacctt aaccaggctg
60

atgtctccag ctagaaaagtt gatatacttc ttggtaact tttggaaaaac caacgatctg
120

cccttcaaaa cttattcctg gagcacttcg tatgtttaca agaatggtag agaaaactgag
180

ggactgtttc tggtacct

198

<210> 11

<211> 66

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 11

Met Ile Ser Ala Gly Ser Phe Gly Leu Ser Cys Asp Tyr Lys Glu Thr
1 5 10 15

Leu Thr Arg Leu Met Ser Pro Ala Arg Lys Leu Ile Tyr Phe Leu Val
20 25 30

Asn Phe Trp Lys Thr Asn Asp Leu Pro Phe Lys Thr Tyr Ser Trp Ser
35 40 45

Thr Ser Tyr Val Tyr Lys Asn Gly Thr Glu Thr Glu Gly Leu Phe Leu
50 55 60

Val Pro
65

<210> 12
<211> 138
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 12
atgtctccag ctagaaaagt tataacttc ttggtaact ttggaaaaac caacgatctg
60

cccttcaaaa cttattcctg gagcacttcg tatgttaca agaatggtag agaaacttag
120

ggactgtttc tggtacct
138

<210> 13
<211> 46
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 13

Met Ser Pro Ala Arg Lys Leu Ile Tyr Phe Leu Val Asn Phe Trp Lys
1 5 10 15

Thr Asn Asp Leu Pro Phe Lys Thr Tyr Ser Trp Ser Thr Ser Tyr Val
20 25 30

Tyr Lys Asn Gly Thr Glu Thr Glu Gly Leu Phe Leu Val Pro
35 40 45

<210> 14

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 14

atgcacaacg gatgggctgt gtcctca
27

<210> 15

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 15

Met His Asn Gly Trp Ala Val Ser Ser
1 5

<210> 16

<211> 30

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 16
atgtacatac tccacc ttcc agatgtac ct
30

<210> 17
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 17

Met Tyr Ile Leu His Leu Pro Asp Val Pro
1 5 10

<210> 18
<211> 351
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 18
atgtttacaa gaatggtaca gaaaactgagg gactgttct ggtacacctaa tgctctggag
60

gctagcgtt cctatttctc ccacgaactc ggctttaagg tggtgttaag acaagataag
120

gagtttcagg atatcttaat ggaccacaac aggaaaagca atgtgattat tatgtgtgg
180

ggtccagagt tcctctacaa gctgaagggt gaccgagcag tggctgaaga cattgtcatt
240

attctagtgg atctttcaa tgaccagtac ttggaggaca atgtcacagc ccctgactat
300

atgaaaaatg tccttgttct gacgctgtct cctggggaat tcccttctaa a
351

<210> 19
<211> 117
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 19

Met Phe Thr Arg Met Val Gln Lys Leu Arg Asp Cys Phe Trp Tyr Leu
1 5 10 15

Asn Ala Leu Glu Ala Ser Val Ser Tyr Phe Ser His Glu Leu Gly Phe
20 25 30

Lys Val Val Leu Arg Gln Asp Lys Glu Phe Gln Asp Ile Leu Met Asp
35 40 45

His Asn Arg Lys Ser Asn Val Ile Ile Met Cys Gly Gly Pro Glu Phe
50 55 60

Leu Tyr Lys Leu Lys Gly Asp Arg Ala Val Ala Glu Asp Ile Val Ile
65 70 75 80

Ile Leu Val Asp Leu Phe Asn Asp Gln Tyr Leu Glu Asp Asn Val Thr
85 90 95

Ala Pro Asp Tyr Met Lys Asn Val Leu Val Leu Thr Leu Ser Pro Gly
100 105 110

Glu Phe Pro Ser Lys

<210> 20
<211> 339
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 20
atggtagcaga aactgaggga ctgtttctgg taccttaatg ctctggaggc tagcgttcc
60

tatttctccc acgaaactcgg ctttaaggtg gtgttaagac aagataagga gtttcaggat
120

atcttaatgg accacaacag gaaaagcaat gtgattatta tgtgtggtgg tccagagttc
180

ctctacaagc tgaagggtga ccgagcagtg gctgaagaca ttgtcattat tctagtggat
240

ctttcaatg accagtactt ggaggacaat gtcacagccc ctgactatat gaaaaatgtc
300

cttggctctga cgctgtctcc tggggattc cttctaaa
339

<210> 21
<211> 113
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 21

Met Val Gln Lys Leu Arg Asp Cys Phe Trp Tyr Leu Asn Ala Leu Glu
1 5 10 15

Ala Ser Val Ser Tyr Phe Ser His Glu Leu Gly Phe Lys Val Val Leu

20

25

30

Arg Gln Asp Lys Glu Phe Gln Asp Ile Leu Met Asp His Asn Arg Lys
35 40 45

Ser Asn Val Ile Ile Met Cys Gly Gly Pro Glu Phe Leu Tyr Lys Leu
50 55 60

Lys Gly Asp Arg Ala Val Ala Glu Asp Ile Val Ile Ile Leu Val Asp
65 70 75 80

Leu Phe Asn Asp Gln Tyr Leu Glu Asp Asn Val Thr Ala Pro Asp Tyr
85 90 95

Met Lys Asn Val Leu Val Leu Thr Leu Ser Pro Gly Glu Phe Pro Ser
100 105 110

Lys

<210> 22
<211> 213
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 22
atggaccaca acagggaaaag caatgtgatt attatgtgtg gtggccaga gttcctctac
60

aagctgaagg gtgaccgagc agtggctgaa gacattgtca ttattctagt ggatcttttc
120

aatgaccagt acttggagga caatgtcaca gcccctgact atataaaaaa tgccttggt
180

ctgacgctgt ctcctgggaa attcccttct aaa

213

<210> 23
<211> 71
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 23

Met Asp His Asn Arg Lys Ser Asn Val Ile Ile Met Cys Gly Gly Pro
1 5 10 15

Glu Phe Leu Tyr Lys Leu Lys Gly Asp Arg Ala Val Ala Glu Asp Ile
20 25 30

Val Ile Ile Leu Val Asp Leu Phe Asn Asp Gln Tyr Leu Glu Asp Asn
35 40 45

Val Thr Ala Pro Asp Tyr Met Lys Asn Val Leu Val Leu Thr Leu Ser
50 55 60

Pro Gly Glu Phe Pro Ser Lys
65 70

<210> 24
<211> 180
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 24
atgtgtggtg gtccagagtt cctctacaag ctgaagggtg accgagcagt ggctgaagac
60

attgtcatta ttcttagtgga tctttcaat gaccagtact tggaggacaa tgtcacagcc

120

cctgactata tgaaaaatgt ccttgttctg acgctgtctc ctgggaaatt cccttctaaa
180

<210> 25
<211> 60
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 25

Met Cys Gly Gly Pro Glu Phe Leu Tyr Lys Leu Lys Gly Asp Arg Ala
1 5 10 15

Val Ala Glu Asp Ile Val Ile Ile Leu Val Asp Leu Phe Asn Asp Gln
20 25 30

Tyr Leu Glu Asp Asn Val Thr Ala Pro Asp Tyr Met Lys Asn Val Leu
35 40 45

Val Leu Thr Leu Ser Pro Gly Glu Phe Pro Ser Lys
50 55 60

<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 26
atgaaaaatg tccttgttct gacgctgtct cctgggaaat tcccttctaa a
51

<210> 27

<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 27

Met Lys Asn Val Leu Val Leu Thr Leu Ser Pro Gly Glu Phe Pro Ser
1 5 10 15

Lys

<210> 28
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 28

atgctctgga ggctagcggtt tcctattttct cccacgaact cggctttaag gtgggtgt
57

<210> 29
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 29

Met Leu Trp Arg Leu Ala Phe Pro Ile Ser Pro Thr Asn Ser Ala Leu
1 5 10 15

Arg Trp Cys

<210> 30
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 30
atgaccagta cttggaggac aatgtcacag cccctgacta ta
42

<210> 31
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 31

Met Thr Ser Thr Trp Arg Thr Met Ser Gln Pro Leu Thr Ile
1 5 10

<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 32
atgtcacagc ccctgactat a
21

<210> 33
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 33

Met Ser Gln Pro Leu Thr Ile
1 5

<210> 34
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 34
atggaatcct gctctttgga catatgc
27

<210> 35
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 35

Met Glu Ser Cys Ser Leu Asp Ile Cys
1 5

<210> 36
<211> 108
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 36

atgctgaaga tatttcttga aaatggagaa aatattacca ccccaaatt tgctcatgct
60

ttcaggaatc tcactttga agggtatgac ggtccagtga cttggga
108

<210> 37
<211> 36
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 37

Met Leu Lys Ile Phe Leu Glu Asn Gly Glu Asn Ile Thr Thr Pro Lys
1 5 10 15

Phe Ala His Ala Phe Arg Asn Leu Thr Phe Glu Gly Tyr Asp Gly Pro
20 25 30

Val Thr Leu Gly
35

<210> 38
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 38
atggagaaaa tattaccacc cccaaatttg ctcatgcttt caggaatctc acttttgaag
60

ggtatgacgg tccag
75

<210> 39

<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 39

Met Glu Lys Ile Leu Pro Pro Pro Asn Leu Leu Met Leu Ser Gly Ile
1 5 10 15

Ser Leu Leu Lys Gly Met Thr Val Gln
20 25

<210> 40
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 40
atgccttcag gaatctcaact tttgaagggt atgacggtcc ag
42

<210> 41
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 41

Met Leu Ser Gly Ile Ser Leu Leu Lys Gly Met Thr Val Gln
1 5 10

<210> 42
<211> 84

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 42
atgactgggg gnatgttgac agtaccatgg tgcttcgtt ataccctctg tggacaccaa
60

gaaatacaag gttctttgga ccta
84

<210> 43
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 43

Met Thr Gly Gly Met Leu Thr Val Pro Trp Cys Phe Arg Tyr Thr Leu
1 5 10 15

Cys Gly His Gln Glu Ile Gln Gly Ser Leu Asp Leu
20 25

<210> 44
<211> 72
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 44
atgttgacag taccatggtg cttccgttat accctctgtg gacaccaaga aataacaaggt
60

tctttggacc ta
72

<210> 45
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 45

Met Leu Thr Val Pro Trp Cys Phe Arg Tyr Thr Leu Cys Gly His Gln
1 5 10 15

Glu Ile Gln Gly Ser Leu Asp Leu
20

<210> 46
<211> 93
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 46
atggtgcttc cgttataccc tctgtggaca ccaagaaata caaggttctt tggacctatg
60

atacccacgt taataagaac tattcctgtgg ata
93

<210> 47
<211> 31
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 47

Met Val Leu Pro Leu Tyr Pro Leu Trp Thr Pro Arg Asn Thr Arg Phe
1 5 10 15

Phe Gly Pro Met Ile Pro Thr Leu Ile Arg Thr Ile Leu Trp Ile
20 25 30

<210> 48
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 48
atgataccca cgttaataag aactatcctg tggata
36

<210> 49
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 49

Met Ile Pro Thr Leu Ile Arg Thr Ile Leu Trp Ile
1 5 10

<210> 50
<211> 498
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 50
atgagcccca cattcacttg gaagaactct aaacttccta atgatattac aggccggggc
60

cctcagatcc tgatgattgc agtcttcacc ctcactggag ctgtggtgct gtcctgctc
120

gtcgctctcc tgatgctcag aaaatataga aaagattatg aacttcgtca gaaaaaaatgg
180

tcccacattc ctcctgaaaa tatcttcctt ctggagacca atgagaccaa tcatagttagc
240

ctcaagatcg atgatgacaa aagacgagat acaatccaga gactacgaca gtgcaaatac
300

gacaaaaagc gagtgattct caaagatctc aagcacaatg atggtaattt cactgaaaaa
360

cagaagatag aattgaacaa gttgcttcag aaagactatt acaacctgac caagttctac
420

ggcacagtga aacttgatac catgatctc ggggtgatag aatactgtga gagaggatcc
480

cctccgggaa gttttaaa

498

<210> 51

<211> 166

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 51

Met Ser Pro Thr Phe Thr Trp Lys Asn Ser Lys Leu Pro Asn Asp Ile
1 5 10 15

Thr Gly Arg Gly Pro Gln Ile Leu Met Ile Ala Val Phe Thr Leu Thr
20 25 30

Gly Ala Val Val Leu Leu Leu Val Ala Leu Leu Met Leu Arg Lys
35 40 45

Tyr Arg Lys Asp Tyr Glu Leu Arg Gln Lys Lys Trp Ser His Ile Pro
50 55 60

Pro Glu Asn Ile Phe Pro Leu Glu Thr Asn Glu Thr Asn His Val Ser
65 70 75 80

Leu Lys Ile Asp Asp Asp Lys Arg Arg Asp Thr Ile Gln Arg Leu Arg
85 90 95

Gln Cys Lys Tyr Asp Lys Lys Arg Val Ile Leu Lys Asp Leu Lys His
100 105 110

Asn Asp Gly Asn Phe Thr Glu Lys Gln Lys Ile Glu Leu Asn Lys Leu
115 120 125

Leu Gln Lys Asp Tyr Tyr Asn Leu Thr Lys Phe Tyr Gly Thr Val Lys
130 135 140

Leu Asp Thr Met Ile Phe Gly Val Ile Glu Tyr Cys Glu Arg Gly Ser
145 150 155 160

Pro Pro Gly Ser Phe Lys
165

<210> 52

<211> 426

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 52

atgattgcag tcttcaccct cactggagct gtggtgctgc tcctgctcgt cgctctccctg
60

atgctcagaa aatataaaaa agattatgaa ctgcgtcaga aaaaatggtc ccacattcct
120

cctgaaaata tctttcctct ggagaccaat gagaccaatc atgttagcct caagatcgat
180

gatgacaaaa gacgagatac aatccagaga ctacgacagt gcaaatacga caaaaagcga
240

gtgattctca aagatctcaa gcacaatgtat ggttaattca ctgaaaaaca gaagatagaa
300

ttgaacaagt tgcttcagaa agactattac aacctgacca agttctacgg cacagtgaaa
360

cttgataccca tgatcttcgg ggtgatagaa tactgtgaga gaggatcccc tccgggaagt
420

tttaaa
426

<210> 53
<211> 142
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 53

Met Ile Ala Val Phe Thr Leu Thr Gly Ala Val Val Leu Leu Leu Leu
1 5 10 15

Val Ala Leu Leu Met Leu Arg Lys Tyr Arg Lys Asp Tyr Glu Leu Arg
20 25 30

Gln Lys Lys Trp Ser His Ile Pro Pro Glu Asn Ile Phe Pro Leu Glu
35 40 45

Thr Asn Glu Thr Asn His Val Ser Leu Lys Ile Asp Asp Asp Lys Arg
50 55 60

Arg Asp Thr Ile Gln Arg Leu Arg Gln Cys Lys Tyr Asp Lys Lys Arg
65 70 75 80

Val Ile Leu Lys Asp Leu Lys His Asn Asp Gly Asn Phe Thr Glu Lys
85 90 95

Gln Lys Ile Glu Leu Asn Lys Leu Leu Gln Lys Asp Tyr Tyr Asn Leu
100 105 110

Thr Lys Phe Tyr Gly Thr Val Lys Leu Asp Thr Met Ile Phe Gly Val
115 120 125

Ile Glu Tyr Cys Glu Arg Gly Ser Pro Pro Gly Ser Phe Lys
130 135 140

<210> 54

<211> 366

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 54

atgctcagaa aatatagaaa agattatgaa cttcgtcaga aaaaatggtc ccacattcct
60

cctgaaaata tcttcctct ggagaccaat gagaccaatc atgttagcct caagatcgat
120

gatgacaaaa gacgagatac aatccagaga ctacgacagt gcaaatacga caaaaagcga
180

gtgattctca aagatctcaa gcacaatgtat ggtaatttca ctgaaaaaca gaagatagaa
240

ttgaacaagt tgcttcagaa agactattac aacctgacca agttctacgg cacagtgaaa
300

cttgataccatgatcttcgg ggtgatagaa tactgtgaga gaggatcccc tccgggaagt
360

ttaaaa
366

<210> 55
<211> 122
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 55

Met Leu Arg Lys Tyr Arg Lys Asp Tyr Glu Leu Arg Gln Lys Lys Trp
1 5 10 15

Ser His Ile Pro Pro Glu Asn Ile Phe Pro Leu Glu Thr Asn Glu Thr
20 25 30

Asn His Val Ser Leu Lys Ile Asp Asp Asp Lys Arg Arg Asp Thr Ile
35 40 45

Gln Arg Leu Arg Gln Cys Lys Tyr Asp Lys Lys Arg Val Ile Leu Lys
50 55 60

Asp Leu Lys His Asn Asp Gly Asn Phe Thr Glu Lys Gln Lys Ile Glu
65 70 75 80

Leu Asn Lys Leu Leu Gln Lys Asp Tyr Tyr Asn Leu Thr Lys Phe Tyr
85 90 95

Gly Thr Val Lys Leu Asp Thr Met Ile Phe Gly Val Ile Glu Tyr Cys
100 105 110

Glu Arg Gly Ser Pro Pro Gly Ser Phe Lys

115

120

<210> 56
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 56
atgatcttcg gggtgataga atactgtgag agaggatccc ctccgggaag ttttaaa
57

<210> 57
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 57

Met Ile Phe Gly Val Ile Glu Tyr Cys Glu Arg Gly Ser Pro Pro Gly
1 5 10 15

Ser Phe Lys

<210> 58
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 58
atgatattac aggccggggc cctcagatcc
30

<210> 59
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 59

Met Ile Leu Gln Ala Gly Ala Leu Arg Ser
1 5 10

<210> 60
<211> 156
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 60
atgaacttcg tcagaaaaaa tggtcccaca ttccctcctga aaatatcttt cctctggaga
60

ccaatgagac caatcatgtt agcctaaga tcgatgatga caaaagacga gatacaatcc
120

agagactacg acagtgcaaa tacgacaaaaa agcgag
156

<210> 61
<211> 52
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 61

Met Asn Phe Val Arg Lys Asn Gly Pro Thr Phe Leu Leu Lys Ile Ser
1 5 10 15

Phe Leu Trp Arg Pro Met Arg Pro Ile Met Leu Ala Ser Arg Ser Met
20 25 30

Met Thr Lys Asp Glu Ile Gln Ser Arg Asp Tyr Asp Ser Ala Asn Thr
35 40 45

Thr Lys Ser Glu
50

<210> 62
<211> 93
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 62
atgagaccaa tcatgttagc ctcaagatcg atgatgacaa aagacgagat acaatccaga
60

gactacgaca gtgcaaatac gacaaaaagc gag
93

<210> 63
<211> 31
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 63

Met Arg Pro Ile Met Leu Ala Ser Arg Ser Met Met Thr Lys Asp Glu
1 5 10 15

Ile Gln Ser Arg Asp Tyr Asp Ser Ala Asn Thr Thr Lys Ser Glu
20 25 30

<210> 64
<211> 81
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 64
atgttagcct caagatcgat gatgacaaaa gacgagatac aatccagaga ctacgacagt
60

gcaaatacga caaaaagcga g
81

<210> 65
<211> 27
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 65

Met Leu Ala Ser Arg Ser Met Met Thr Lys Asp Glu Ile Gln Ser Arg
1 5 10 15

Asp Tyr Asp Ser Ala Asn Thr Thr Lys Ser Glu
20 25

<210> 66
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 66
atgatgacaa aagacgagat acaatccaga gactacgaca gtgcaaatac gacaaaaagc

60

gag
63

<210> 67
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 67

Met Met Thr Lys Asp Glu Ile Gln Ser Arg Asp Tyr Asp Ser Ala Asn
1 5 10 15

Thr Thr Lys Ser Glu
20

<210> 68
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 68
atgacaaaag acgagataca atccagagac tacgacagtg caaatacgac aaaaagcggag
60

<210> 69
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 69

Met Thr Lys Asp Glu Ile Gln Ser Arg Asp Tyr Asp Ser Ala Asn Thr
1 5 10 15

Thr Lys Ser Glu
20

<210> 70
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 70
atggtcccac attcctcc
18

<210> 71
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 71

Met Val Pro His Ser Ser
1 5

<210> 72
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 72
atgatggtaa tttcactgaa aaacagaaga

30

<210> 73
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 73

Met Met Val Ile Ser Leu Lys Asn Arg Arg
1 5 10

<210> 74
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 74
atggtaattt cactgaaaaa cagaaga
27

<210> 75
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 75

Met Val Ile Ser Leu Lys Asn Arg Arg
1 5

<210> 76
<211> 42

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 76
atggcggccg ggagcatgcg acgtcggccc attgcgccta ta
42

<210> 77
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 77

Met Ala Ala Gly Ser Met Arg Arg Arg Pro Ile Arg Pro Ile
1 5 10

<210> 78
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 78
atgcgacgtc ggcccatcg ccctata
27

<210> 79
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 79

Met Arg Arg Arg Pro Ile Arg Pro Ile
1 5

<210> 80
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 80
atgacacaat ttcct
15

<210> 81
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 81

Met Thr Gln Phe Pro
1 5

<210> 82
<211> 3787
<212> DNA
<213> Homo sapiens

<400> 82
tggagtgggc tgagggactc cactagaggc tgtccatctg gattccctgc ctcccttagga
60

gcccaacaga gcaaagcaag tgggcacaag gagtatggtt ctaacgtgat tgggtcatg
120

aagacgttgc tggactt ggctttgtgg tcactgctct tccagcccg gtggctgtcc

180

ttagttccc aggtgagtca gaactgccac aatggcagct atgaaatcag cgtcctgatg
240

atggcaact cagccttgc agagccctg aaaaacttgg aagatgcggt gaatgagggg
300

ctgaaaatag tgagaggacg tctgcaaaat gctggcctaa atgtgactgt gaacgctact
360

ttcatgtatt cgatggtct gattcataac tcaggcgact gccggagtag cacctgtgaa
420

ggcctcgacc tactcaggaa aatttcaaat gcacaacgga tggctgtgt cctcataggg
480

ccctcatgta catactccac cttccagatg taccttgaca cagaatttag ctacccatg
540

atctcagctg gaagtttgg attgtcatgt gactataaag aaaccttaac caggctgatg
600

tctccagcta gaaagttgat gtacttcttg gttaacttt ggaaaaccaa cgatctgccc
660

ttcaaaactt attcctggag cacttcgtat gttacaaga atggcacaga aactgaggac
720

tgttctggc accttaatgc tctggaggct agcgttcct atttctccca cgaactcggc
780

tttaaggtgg tgttaagaca agataaggag ttccaggata tcttaatgga ccacaacagg
840

aaaagcaatg tgattattat gtgtggtggt ccagagttcc tctacaagct gaagggtgac
900

cgagcagtgg ctgaagacat tgtcattatt ctatggatc tttcaatga ccagtacttg
960

gaggacaatg tcacagcccc tgactatatg aaaaatgtcc ttgttctgac gctgtctcct
1020

ggaaattccc ttctaaatag ctcttctcc aggaatctat caccaacaaa acgagacttt
1080

cgcttcgcct atttgaatgg aatcctcgac tttggacata tgctgaagat atttcttcaa
1140

aatggagaaa atattaccac ccccaaattt gctcatgcct tcaggaatct cactttgaa
1200

gggtatgacg gtccagtgac cttggatgac tggggggatg ttgacagtagc catggtgctt
1260

ctgtatacct ctgtggacac caagaaatac aaggttctt tgacctatga tacccacgta
1320

aataagacct atcctgtgga tatgagcccc acattcactt ggaagaactc taaacttcct
1380

aatgatatta caggccgggg ccctcagatc ctgatgattt cagtctcac cctcaactgga
1440

gctgtggtgc tgctcctgct cgtcgctctc ctgatgctca gaaaatatacg aaaagattat
1500

gaacttcgtc agaaaaaaatg gtcccacatt cctcctgaaa atatcttcc tctggagacc
1560

aatgagacca atcatgttag cctcaagatc gatgatgaca aaagacgaga tacaatccag
1620

agactacgac agtcaaata cgtaaaaag cgagtgattt tcaaagatct caagcacaat
1680

gatggtaatt tcactgaaaa acagaagata gaattgaaca agttgcttca gattgactat
1740

tacaccctaa ccaagttcta cgggacagtg aaactggata ccatgatctt cgggggtgata
1800

gaatactgtg agagaggatc cctccgggaa gtttaaatg acacaatttc ctaccctgat
1860

ggcacattca tggattggga gtttaagatc tctgtcttgt atgacattgc taaggaaatg
1920

tcatatctgc actccagtaa gacagaagtc catggtcgtc tgaaatctac caactgcgtt
1980

gtggacagta gaatggtggt gaagatcaact gattttggct gcaattccat tttgcctcca
2040

aaaaaggacc tgtggacagc tccagagcac ctccgccaag ccaacatctc tcagaaagga
2100

gatgtgtaca gctatggat catcgacacag gagatcattc tgccgaaaga aaccttctac
2160

actttgagct gtcgggaccg gaatgagaag attttcagag tggaaaattc caatggaatg
2220

aaacccttcc gcccagattt attcttggaa acagcagagg aaaaagagct agaagtgtac
2280

ctacttgtaa aaaactgttg ggaggaagat ccagaaaaga gaccagattt caaaaaaatt
2340

gagactacac ttgccaagat atttggactt tttcatgacc aaaaaaatga aagctataatg
2400

gataccttga tccgacgtct acagctatat tctcgaaacc tgAACATCT ggttagaggaa
2460

aggacacagc tgtacaaggc agagagggac agggctgaca gacttaactt tatgttgctt
2520

ccaaggctag tggtaaagtc tctgaaggag aaaggcttg tggagccgga actatatgag
2580

gaagttacaa tctacttcag tgacattgta gtttcacta ctatctgcaa atacagcacc
2640

cccatggaag tggtgacat gcttaatgac atctataaga gtttgacca cattgttcat
2700

catcatgatg tctacaaggt ggaaaccatc ggtgatgcgt acatggtggc tagtggtttg
2760

cctaagagaa atggcaatcg gcatgcaata gacattgcca agatggcctt gggaaatcctc
2820

agcttcatgg ggaccttga gctggagcat cttcctggcc tcccaatatg gattcgcatt
2880

ggagttcaact ctggccctg tgctgctgga gttgtggaa tcaagatgcc tcgttattgt

2940

ctatggag atacggtaa cacaggctt agatggaa ctactggct cccttgaga
3000

attcacgtga gtggctccac catagccatc ctgaagagaa ctgagtgcctt gttcctttat
3060

gaagtgagag gagaaacata cttaaaggaa agagggaaatg agactaccta ctggctgact
3120

gggatgaagg accagaaatt caacctgcca acccctccta ctgtggagaa tcaacagcgt
3180

ttgcaagcag aatttcaga catgattgcc aactctttac agaaaagaca ggcagcaggg
3240

ataagaagcc aaaaacccag acggtagcc agctataaaa aaggcactct ggaataacttg
3300

cagctgaata ccacagacaa ggagagcacc tattttaaa cctaaatgag gtataaggac
3360

tcacacaaat taaaatacag ctgcactgag gccaggcacc ctcaggtgtc ctgaaagcct
3420

acttcctga gacctcatga ggcagaaatg tcttaggctt ggctgccctg tttggaccat
3480

ggactttctt tgcatgaatc agatgtgttc tcagtggaaat aactacccctc cactctggaa
3540

ccttattcca gcagttgttc cagggagctt ctacctggaa aagaaaagaa tttcattttat
3600

ttttgtttg tttatttta tcgttttgt ttactggctt tccttctgtt ttcataagat
3660

tttttaatt gtcataatta tattttaaat acccatcttc attaaagtat atttaactca
3720

taattttgc agaaaatatg ctatataatggcaagaata aaagctaaag gtttcccaa
3780

aaaaaaa

3787