Bottom-up parsing

Clase 25

IIC 2223

Prof. Cristian Riveros

Dos estrategias para hacer parsing

$$E \rightarrow E + E \mid E * E \mid n$$

Top-down parsing

Bottom-up parsing

Outline

Advertencias

Bottom-up parsing

Prefijos viables

Outline

Advertencias

Bottom-up parsing

Prefijos viables

Cambio en la notación de stack

Notación (desde ahora y hasta el término del curso)

Para un stack $q_0 \dots q_{n-1} q_n$, usaremos a q_n como el **tope de stack** y $q_0 \dots q_{n-1}$ como la cola de stack.

Para un PDA $\mathcal P$ y una transición $(p_0 \dots p_i, a, q_0 \dots q_j)$ de $\mathcal P$, p_i es el símbolo en el tope del stack y q_j será el símbolo del tope del stack resultante.

La relación $\vdash_{\mathcal{P}}$ de siguiente-paso quedará como:

$$(\gamma \cdot \alpha, \mathbf{a} \cdot \mathbf{u}) \vdash_{\mathcal{P}} (\gamma \cdot \beta, \mathbf{u})$$

Como recordatorio, (algunas veces) marcaremos el tope del stack:

$$q_0 \dots q_{n-1} q_n^{\downarrow}$$

Gramática aumentada

Sea $G = (V, \Sigma, P, S)$ una gramática libre de contexto reducida.

Definición

Se define la gramática aumentada de \mathcal{G} como:

$$\mathcal{G}' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S\}, S')$$

tal que S' es una variable nueva con $S' \notin V$.

"Usaremos S' para saber cuando hemos llegado al final de una derivación."

Desde ahora, trabajaremos siempre con una gramática aumentada.

Outline

Advertencias

Bottom-up parsing

Prefijos viables

Derivación por la derecha y parsing

$$E \underset{rm}{\Rightarrow} E + E \underset{rm}{\Rightarrow} E + n \underset{m}{\Rightarrow} E * E + n \underset{rm}{\Rightarrow} E * n + n \underset{rm}{\Rightarrow} n * n + n$$

 $n*n+n \leftarrow E*n+n \leftarrow E*E+n \leftarrow E+n \leftarrow E+E \leftarrow E$

Derivación por la derecha y parsing

Stack	Input	Operación
	n * n + n	
n	*n+n	shift
Ε	*n+n	reduce $E \rightarrow n$
E*	n + n	shift
E * n	+ n	shift
E * E	+ n	reduce $E \rightarrow n$
Ε	+ n	reduce $E \rightarrow E * E$
E +	n	shift
E + n	•	shift
E + E	•	reduce $E \rightarrow n$
Ε		reduce $E + E$

Los reduce nos entregan una derivación por la derecha (invertida).

Bottom-up parser

Sea $\mathcal{G}' = (V, \Sigma, P, S')$ una gramática libre de contexto aumentada.

Definición

El apilador bottom-up de ${\mathcal G}$ (bottom-up-PDA) es un PDA alternativo:

$$\mathcal{P}_{\uparrow} \ = \ \left(\,Q, \Sigma, \Delta, q_0, F\,\right)$$

- $Q = V \cup \Sigma \cup \{\$\}$
- $q_0 =$ \$
- $F = \{S'\}$

Bottom-up parser

Sea $\mathcal{G}' = (V, \Sigma, P, S')$ una gramática libre de contexto aumentada.

Definición

El apilador bottom-up de $\mathcal G$ (bottom-up-PDA) es un PDA alternativo:

$$\mathcal{P}_{\uparrow} = (\underbrace{V \cup \Sigma \cup \{\$\}}_{Q}, \Sigma, \Delta, \underbrace{\$}_{q_0}, \underbrace{\{S'\}}_{F})$$

Tres tipos de transiciones en $\Delta \subseteq Q^+ \times (\Sigma \cup \{\epsilon\}) \times Q^*$:

Shift:
$$q \stackrel{a}{\rightarrow} q a$$
 para $q \in V \cup \Sigma \cup \{\$\}$ y $a \in \Sigma$

Reduce:
$$\alpha \stackrel{\epsilon}{\to} X$$
 si $X \to \alpha \in P$

Termino: $\$S' \stackrel{\epsilon}{\rightarrow} S'$

Bottom-up parser

Shift: $q \stackrel{a}{\rightarrow} q a$ para $q \in V \cup \Sigma \cup \{\$\}$ y $a \in \Sigma$ Reduce: $\alpha \stackrel{\epsilon}{\rightarrow} X$ si $X \rightarrow \alpha \in P$

Termino: $\$S' \xrightarrow{\epsilon} S'$

```
Ejemplo: E \rightarrow E + E \mid E * E \mid n
                      n \times n + n
                      n \times n + n shift
                      $E *n+n reduce n \stackrel{\epsilon}{\to} E
                      E * n+n  shift
                      E * n + n shift
                      E * E + n \mid \text{reduce } n \xrightarrow{\epsilon} E
                               + n | reduce E * E \xrightarrow{\epsilon} E
                      $E
                      $F+
                                             shift
                                   n
                      E + n
                                             shift
                                          . reduce n \stackrel{\epsilon}{\to} E
                      E + E
                                             reduce E + E \stackrel{\epsilon}{\rightarrow} E
                      $E
                                              reduce E \stackrel{\epsilon}{\to} S'
                      $5'
                      S'
                                              termino
```

Correctitud de bottom-up parser

Teorema

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto. Entonces:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{P}_{\uparrow})$$

Demostración (⊆)

PD: Si $S' \stackrel{\star}{\Rightarrow} \alpha Ay \stackrel{\star}{\Rightarrow} xy$, entonces $(\$, xy) \vdash_{\mathcal{P}_{\uparrow}}^{*} (\$\alpha A, y)$.

Inducción en el largo de la derivación $\alpha Ay \stackrel{\star}{\Rightarrow} xy$.

Caso inductivo: Suponemos que $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha Ay \overset{\star}{\underset{m}{\longrightarrow}} \alpha \beta y \overset{\star}{\underset{m}{\longrightarrow}} xy$.

Suponga que $\beta = \gamma Bv$ y x = uv. Entonces:

$$(\$, \underbrace{\mathit{uv}}_{\times} y) \quad \vdash_{\mathcal{P}_{\uparrow}}^{*} \quad (\$\alpha \gamma B, \mathit{vy}) \quad (\mathsf{por} \; \mathsf{HI})$$

$$\vdash_{\mathcal{P}_{\uparrow}}^{*} \quad (\$\alpha \gamma B \mathit{v}, \mathit{y}) \quad (\mathsf{con} \; \mathsf{shift})$$

$$\vdash_{\mathcal{P}_{\uparrow}}^{*} \quad (\$\alpha A, \mathit{y}) \qquad (\mathsf{con} \; \mathsf{reduce} \; A \to \overbrace{\gamma B \mathit{v}})$$

Correctitud de bottom-up parser

Teorema

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto. Entonces:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{P}_{\uparrow})$$

Demostración (⊇)

PD: Si $(\$, xy) \vdash_{\mathcal{P}_{\uparrow}}^{*} (\$\alpha A, y)$, entonces $\alpha Ay \stackrel{\star}{\Rightarrow} xy$.

Inducción en el largo de pasos $(\$, xy) \vdash_{\mathcal{P}_{\uparrow}}^{*} (\$\alpha A, y)$.

 $\textbf{Caso inductivo:} \ \, \mathsf{Suponemos} \ \, \mathsf{que} \ \, (\$,xy) \vdash^*_{\mathcal{P}_{\uparrow}} (\$\alpha\beta,y) \vdash_{\mathcal{P}_{\uparrow}} (\$\alpha A,y).$

Sea $\alpha \cdot \beta = \gamma B w$ con $w = a_1 \dots a_k \in \Sigma^*$. Entonces:

$$(\$, xy) \vdash^* \overbrace{(\$\gamma B, a_1 \dots a_k y) \vdash (\$\gamma B a_1, a_2 \dots a_k y) \vdash \dots}^{\text{shifts}} \\ \vdash (\$\gamma B a_1 \dots a_k, y) \vdash (\$\alpha A, y)$$

Por HI: $\gamma B \cdot wy = \alpha \beta y \overset{\star}{\underset{m}{\Rightarrow}} xy$. Como $A \to \beta$, entonces $\alpha Ay \overset{\star}{\underset{m}{\Rightarrow}} \alpha \beta y \overset{\star}{\underset{m}{\Rightarrow}} xy$.

Correctitud de bottom-up parser

Teorema

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto. Entonces:

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{P}_{\uparrow})$$

Corolarios

- 2. Si $(\$, w) \vdash_{\mathcal{P}_{\uparrow}}^{*} (\$S', \epsilon)$ y $\alpha_1 \xrightarrow{\epsilon} X_1, \ldots, \alpha_n \xrightarrow{\epsilon} X_n \in \Delta$ son las **transiciones "reduce"** durante la ejecución, entonces:

$$X_n \to \alpha_n, \ldots, X_1 \to \alpha_1$$

es la secuencia de reglas de una deriv. por la derecha de \mathcal{G} sobre w.

Demostración: ejercicio.

Outline

Advertencias

Bottom-up parsing

Prefijos viables

Problemas

1. Conflicto Shift-Reduce.

Ejemplo: ; hacemos shift o reduce?

$$S \rightarrow ab \mid A$$

 $A \rightarrow a$

Stack	Input	Operaciones
\$	ax	_
\$ <i>a</i>	X	shift
?	?	?

Problemas

- 1. Conflicto Shift-Reduce.
- 2. Conflicto Reduce-Reduce.

Ejemplo: ¿con cuál regla hacemos reduce?

$$S \rightarrow Ac \mid aBd$$

$$A \rightarrow ab$$

$$B \rightarrow b$$

Stack	Input	Operaciones
\$	abx	
\$ <i>a</i>	bx	shift
\$ab	X	shift
?	?	?

Problemas

- 1. Conflicto Shift-Reduce.
- 2. Conflicto Reduce-Reduce.
- 3. Configuraciones no-viables.

(Prefijos viables, reducibles y handles)

Sea $G = (V, \Sigma, P, S)$ una gramática y G' su gramática aumentada.

Definiciones

■ $\alpha \in (V \cup \Sigma)^*$ es un prefijo viable de \mathcal{G} ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha \beta w$ tal que $\beta \in (V \cup \Sigma)^*$ y $w \in \Sigma^*$.

¿cuáles son prefijos viables de \mathcal{G} ? $E \rightarrow E + E \mid E * E \mid n$ $\bullet E + E * E$ $\bullet E + E *$ $\bullet n + n *$ $\bullet E E$ $\bullet E + n * E$

(Prefijos viables, reducibles y handles)

Sea $G = (V, \Sigma, P, S)$ una gramática y G' su gramática aumentada.

Definiciones

- $\alpha \in (V \cup \Sigma)^*$ es un prefijo viable de \mathcal{G} ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha \beta w$ tal que $\beta \in (V \cup \Sigma)^*$ y $w \in \Sigma^*$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es reducible a $\alpha \cdot X$ ssi existe una derivación $S' \underset{m}{\overset{\star}{\Rightarrow}} \alpha Xw \underset{m}{\Rightarrow} \alpha \beta w$ con $w \in \Sigma^*$.

En cuyo caso, decimos que $X \to \beta$ es un handle de $\alpha\beta$.

¿cuáles son reducciones válidas con sus resp. handles?

$$E \rightarrow E + E \mid E * E \mid n$$

- E + E * E es reducible a E + E.
- E + E + n es reducible a E + E + E.
- n + E + E es reducible a n + E.

(Prefijos viables, reducibles y handles)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática y \mathcal{G}' su gramática aumentada.

Definiciones

- $\alpha \in (V \cup \Sigma)^*$ es un **prefijo viable** de \mathcal{G} ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha \beta w$ tal que $\beta \in (V \cup \Sigma)^*$ y $w \in \Sigma^*$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es reducible a $\alpha \cdot X$ ssi existe una derivación $S' \overset{\star}{\underset{m}{\longrightarrow}} \alpha Xw \underset{m}{\Longrightarrow} \alpha \beta w$ con $w \in \Sigma^*$. En cuyo caso, decimos que $X \to \beta$ es un handle de $\alpha \beta$.
- $\alpha \cdot \beta \in (V \cup \Sigma)^*$ es un prefijo reducible ssi $\alpha \cdot \beta$ es un prefijo viable y existe X tal que $\alpha \cdot \beta$ es reducible a $\alpha \cdot X$.

Si $\alpha\beta$ es un prefijo viable y $X \to \beta$, j es $\alpha\beta$ reducible a αX ?

Problemas

- 1. Conflicto Shift-Reduce.
- 2. Conflicto Reduce-Reduce.
- 3. Configuraciones no-viables.

Ejemplo: ¿es esta configuración viable?

$$S \rightarrow ab \mid B$$
$$B \rightarrow b$$

Stack	Input	Operaciones
\$	ab	
\$ <i>a</i>	Ь	shift
\$ab		shift
\$aB	•	reduce $b \stackrel{\epsilon}{\rightarrow} B$
×	X	×

Problemas

- 1. Conflicto Shift-Reduce.
- 2. Conflicto Reduce-Reduce.
- 3. Configuraciones no-viables.

¿cómo determinamos si tenemos una configuración/prefijo viable?