Lenguajes de Programación Tarea 4

Karla Ramírez Pulido Alan Alexis Martínez López

Semestre 2023-1 **Fecha de inicio:** 17 de marzo 2023 Facultad de Ciencias UNAM **Fecha de entrega:** 24 de marzo 2023

Integrantes:

Dania Paula Gongora Ramírez Salgado Tirado Diana Laura

Instrucciones

Resolver los siguientes ejercicios de forma clara y ordenada de acuerdo a los lineamientos de entrega de tareas disponibles en la página del curso.

Ejercicios

- 1. Currifica cada uno de los siguientes términos.
 - a. λxyz.xyz
 - $\rightarrow \lambda x.\lambda y.\lambda z.xyz$
 - b. λuvw.λwxy.uwvxwy
 - $\rightarrow \lambda u.\lambda v.\lambda w.\lambda w.\lambda x.\lambda y.uwvxwy$
 - c. $\lambda x.((\lambda xy.y)(\lambda zw.w))(\lambda uv.v)$
 - $\rightarrow \lambda x.((\lambda x.\lambda y.y)(\lambda z.\lambda w.w))(\lambda u.\lambda v.v)$
- 2. Aplica α -conversiones en cada expresión para cambiar los términos de las variables de ligado.
 - a. $\lambda u.\lambda v.((\lambda u.v) (\lambda v.u))$
 - $\rightarrow \lambda u.\lambda v.((\lambda a.v) (\lambda b.u))$
 - b. $\lambda u.(u(\lambda v.((\lambda u.u) v)u))$
 - $\rightarrow \lambda a.(a(\lambda b.((\lambda c.c) b)a))$
 - c. $\lambda x.((\lambda y.x) \lambda y.(\lambda x.x y))$
 - $\rightarrow \lambda x.((\lambda y.x) \lambda a.(\lambda b.b a))$

3. Aplica β -reducciones a las siguientes expresiones para llegar a una Forma Normal, en caso de que no se pueda justifica. Además indica en cada paso el *reducto* y el *redex*.

$$I = _{def} \Lambda a.a$$
 $K = _{def} \Lambda a. \Lambda b.a$
 $\Omega = _{def} (\Lambda a.aa)(\Lambda a.aa)$

a. $\lambda a.((aK)\Omega)$

Redex

Reducto

Sustituyendo por las definiciones dadas:

 $\rightarrow \lambda a.((a\lambda a. \lambda b.a)(\lambda a.aa)(\lambda a.aa))$

Redex: $(a\lambda a. \lambda b.a)(\lambda a.aa)$

Reducto: $(a\lambda a. \lambda b.a)(\lambda a.aa)$ [a:= $(\lambda a.aa)$]

Aplicando

 $\rightarrow \lambda a.((a\lambda a. \lambda b.a)((\lambda a.aa)(\lambda a.aa)))$

Redex: $(\lambda a.aa)$

Reducto: $(\lambda a.aa)[a:=(\lambda a.aa)]$

Reducto: $(\lambda a.aa)[a:=(\lambda a.aa)]$

Aplicando.

 $\rightarrow \lambda a.((a\lambda a. \lambda b.a)((\lambda a.aa)(\lambda a.aa)))$

Redex: $(\lambda a.aa)$

Redex: $(\lambda a.aa)$

Reducto: $(\lambda a.aa)[a:=(\lambda a.aa)]$

Pero por lo visto en clase sabemos que si tenemos algo de la forma
(λ a.aa)(λ a.aa) No podemos seguir reduciendo, por lo que no se pueden seguir las β -reducciones.
b. (λa.a(II))c
Redex
Reducto
Sustituyendo con las definiciones dadas:
\rightarrow (λ a.a(λ a.a λ a.a))c
Redex: (λa.a(λa.aλa.a))
Reducto(λa.a(λa.aλa.a))[a:=c]
Aplicando:
\rightarrow (c(($\lambda a.a$)($\lambda a.a$))) Redex: ($\lambda a.a$)($\lambda a.a$)
Reducto: $(\lambda a.a)(\lambda a.a)[a:=(\lambda a.a)]$
Anticondo
 → Aplicando: (c(\lambda a.a)) el cual es nuestro resultado final

```
c. (\lambda d.\lambda e.(\lambda f.f(\lambda a.ad))e)b(\lambda c.\lambda b.cb)
```

Paso 1 – beta reducción de λd

 $(\lambda d.\lambda e.(\lambda f.f(\lambda a.ad))e)b(\lambda c.\lambda b.cb)$

Redex

 $(\lambda d.\lambda e.(\lambda f.f(\lambda a.ad))e)(\lambda c.\lambda b.cb)$

Reducto

- \rightarrow (λ e. (λ f.f(λ a.ad))e)(λ c. λ b.cb) [d:= b]
- = $(\lambda e. (\lambda f. f(\lambda a. ab))) e) (\lambda c. \lambda b. cb)$

Paso 2 – beta reducción de λf

 $(\lambda e.(\lambda f.f(\lambda a.ab))e)(\lambda c.\lambda b.cb)$

Redex

 $(\lambda e. (\lambda f. f(\lambda a.ab)))(\lambda c. \lambda b.cb)$

Reducto

- \rightarrow (λ e.f(λ a.ab))(λ c. λ b.cb) [f:= e]
- = $(\lambda e.e(\lambda a.ab))(\lambda c.\lambda b.cb)$

Paso 3 – beta reducción de λe

 $(\lambda e.e(\lambda a.ab))(\lambda c.\lambda b.cb)$

Redex

 $(\lambda e.e(\lambda a.ab))$

Reducto

- \rightarrow e($\lambda a.ab$) [$e:=(\lambda c.\lambda b.cb)$]
- = $(\lambda c. \lambda b. cb)(\lambda a.b)$

Paso 4 – beta reducción de λc

 $(\lambda c. \lambda b. cb)(\lambda a.ab)$

Redex

 $(\lambda c. \lambda b. cb)$

Reducto

- $\rightarrow \lambda b. cb \ [c:=(\lambda a. ab)]$
- $= \lambda b. (\lambda a. ab)b$

Paso 5 – beta reducción de λb

 $\lambda b. (\lambda a. ab)b$

Redex

 $\lambda b. (\lambda a. ab)$

Reducto

- $\rightarrow \lambda b. ab [a:=b]$
- $= \lambda b. bb$