Covarianu And Correlation

Covariance

$$Cov(x,y) = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$n-1$$

$$Var(x) = \sum_{j=1}^{h} \frac{(x_{j} - \overline{x})^{2}}{n_{-1}}$$

$$= \sum_{j=1}^{h} \frac{(x_{j} - \overline{x})}{n_{-1}} (x_{j} - \overline{x})$$

$$=$$
 (ov(x,x) =) Spread

$$(ov(x,y) = \sum_{i=1}^{n} (n_i - \overline{x}) (y_i - \overline{y})$$

$$n - 1$$

$$= \left[(2 - y)(3 - y) + (y - y)(5 - r) + (6 - y)(7 - \overline{s}) \right]$$

$$h - 1$$

X & y are having a positive Covariance

Advantages

Disadvantagus

Relationship between X and y tre or -ve value

1) Covariance does not have a Specific fimit value

- 1) The more the value towards +1 the more tve Correlated it is (x,y)
- 1) The more the value towards -1 the more -ve (orrelated it is (x,4)
- 3) Spearman Rank Correlation [-1 to 1]

	Covariance	Correlation
Aim	Both indeces are used to get an idea of how two random variables change together.	
Domain	Defined between -∞ and +∞	Defined between -1 and 1
Measurement Unit	Depends on the measurement units of the random variables	Unitless number
Scale change/Normalization	Affects covariance	Does not affect correlation

Key	Covariance	Correlation
Meaning	Covariance is a measure indicating the extent to which two random variables change in tandem.	Correlation is a statistical measure that indicates how strongly two variables are related.
What is it?	Measure of correlation	Scaled version of covariance
Values	Lie between -00 and +00	Lie between -1 and +1
Change in scale	Affects covariance	Does not affects correlation
Unit free measure	No	Yes