МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ И ДИНАМИЧЕСКИМ СИСТЕМАМ

Тезисы докладов

Суздаль 3 – 8 июля 2020 года

Математический институт имени В. А. Стеклова РАН

Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых Московский государственный университет имени М.В. Ломоносова

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ И ДИНАМИЧЕСКИМ СИСТЕМАМ

Тезисы докладов

Суздаль

3 – 8 июля 2020 года

Электронное издание

ISBN 978-5-9984-1244-8 \bigcirc ВлГУ, 2020 \bigcirc Коллектив авторов, 2020

Редакционная коллегия:

- **В. В. Козлов**, доктор физико-математических наук, академик РАН (ответственный редактор)
- Д.В. Трещёв, доктор физико-математических наук, академик РАН
- А. А. Давыдов, доктор физико-математических наук, профессор

Мероприятие проведено при финансовой поддержке Российского фонда фундаментальных исследований, проект № 20-01-22009

Международная конференция по дифференциальным уравнениям и динамическим системам [Электронный ресурс]: тез. докл. / Суздаль, 3 – 8 июля 2020 г.; Мат. ин-т им. В. А. Стеклова РАН; Владим. гос. ун-т им. А. Г. и Н. Г. Столетовых; Моск. гос. ун-т им. М. В. Ломоносова. – Владимир: Изд-во ВлГУ, 2020. – 163 с. – ISBN 978-5-9984-1244-8. – Электрон. дан. (2,89 Мб). – 1 электрон. опт. диск (CD-ROM). – Систем. требования: Intel от 1,3 ГГц; Windows XP/7/8/10; Adobe Reader; дисковод CD-ROM. – Загл. с титул. экрана

В сборник включены тезисы докладов, представленных на международной конференции по дифференциальным уравнениям и динамическим системам.

Издание представляет интерес для научных работников, студентов и аспирантов.

Организаторы конференции благодарны

Российскому фонду фундаментальных исследований,

 $OOO~H\Pi\Pi$ «Технофильтр»

за помощь в подготовке и проведении конференции.

Программный комитет

- ♦ В. В. Козлов (председатель), Математический институт имени В.А. Стеклова РАН, Москва, Россия.
- А. А. Давыдов (зам. председателя), Московский государственный университет им.
 М.В. Ломоносова, Москва, Россия.
- ♦ Д. В. Трещев (зам. председателя), Математический институт имени В.А. Стеклова РАН, Москва, Россия.
- ◆ А. А. Шкаликов (зам. председателя), Московский государственный университет им. М.В. Ломоносова, Москва, Россия.
- ♦ А.А. Аграчев, Международная школа высших исследований (SISSA), Триест, Италия.
- А.И. Аптекарев, Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия.
- ⋄ С. М. Асеев, Математический институт имени В.А. Стеклова РАН, Москва, Россия.
- В.З. Гринес, Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия.
- ♦ В.И. Максимов, Институт математики и механики им. Н.Н. Красовского Уральского отделения РАН, Екатеринбург, Россия.
- ★ Е.И. Моисеев, Московский государственный университет им. М.В. Ломоносова, Москва, Россия.
- ⋄ Г. П. Панасенко, Университет Жана Монне, Сен Этьен, Франция.
- Н. И. Попиванов, Софийский университет имени святого Климента Охридского, София, Болгария.
- ♦ Ф. Л. Черноусько, Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, Россия.
- ♦ А. А. Чесноков, Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск, Россия.
- ♦ А.П. Чупахин, Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск, Россия.
- ◆ А.И. Шафаревич, Московский государственный университет им. М.В. Ломоносова, Москва, Россия.
- С. Янечко, Центр перспективных исследований, Варшава, Польша.

Организационный комитет

- А.А. Давыдов (сопредседатель), Московский государственный университет им. М.В. Ломоносова, Москва, Россия.
- ♦ А. М. Саралидзе (сопредседатель), Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, Владимир, Россия.
- ♦ Ю. А. Алхутов (заместитель председателя), Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, Владимир, Россия.
- А. В. Егорова (заместитель председателя), Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, Владимир, Россия.
- ♦ А.Д. Изаак, Математический институт имени В.А. Стеклова РАН, Москва, Россия.
- ⋄ И. А. Петренко, Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, Владимир, Россия.
- ♦ С. А. Поликарпов, Математический институт имени В.А. Стеклова РАН, Москва, Россия.
- ⋄ Л.И. Родина, Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, Владимир, Россия.
- В.А. Тимофеева, Математический институт имени В.А. Стеклова РАН, Москва, Россия.
- ♦ Е. В. Шелепова, Московский государственный университет им. М.В. Ломоносова, Москва, Россия.

СОДЕРЖАНИЕ (CONTENTS)

Аваков Е. Р., Магарил-Ильяев Г. Г.	14
Локальный инфимум и семейство принципов максимума в оптимальном управлении	
Адлай С. Ф.	15
Обобщённая ось симметрии твёрдого тела – ось Галуа	
Алтынбеков Ш.А.	16
Влияние вибрации на осадок фундаментов турбоагрегатов	
Алхутов Ю. А., Крашенинникова О. В., Тихомиров Р. Н	17
О неравенстве Харнака для эллиптического (p,q) -лапласиана с частично макенхауптовым весом	
Алхутов Ю. А., Сурначёв М. Д.	18
Гёльдеровская непрерывность и неравенство Харнака для	10
многофазного $p(x)$ -лапласиана	20
Алхутов Ю. А., Сурначёв М. Д.	20
Оценки фундаментального решения уравнения конвекции- диффузии	
Антипов А. А., Бардин Б. С.	21
Построение периодических движений спутника, рождающихся из его конической прецессии, в случае внешнего резонанса	
Апушкинская Д. Е.	22
Лемма о нормальной производной для уравнений дивергентного	
вида	
Артамонов Д.В.	23
Антисимметризация систем Гельфанда-Капранова- Зелевинского	
Барабанова Л. П.	24
О математическом обеспечении измерительных комплексов позиционирования подвижных объектов	
Бардин Б. С., Рачков А. А.	25
О движении тела с подвижной внутренней массой по наклонной	20
ШЕРОХОВАТОЙ ПЛОСКОСТИ	
Безяев В. И.	26
О спектре гипоэллиптических почти-периодических систем	
Богаевский И. А.	27
Внутреннее рассеяние Арнольда в графене	
Бойков И.В., Бойкова А.И. Численные методы решения гиперсингулярных интегральных	28
УРАВНЕНИЙ	
Бойков И.В., Кривулин Н.П.	29
Методы управления динамическими системами с задержками	
Бортаковский А.С., Урюпин И.В.	30
Многокритериальная оптимизация маршрутов плоского движе-	
ния переключаемых систем	
Буланов С.Г.	31
Компьютерная схема анализа устойчивости систем нелинейных дифференциальных уравнений	

Булатов В. В., Владимиров Ю. В.	32
Волновая динамика стратифицированных сред с течениями	
Бут И.И., Гайфуллин А.М., Жвик В.В.	33
Дальнее поле трёхмерной пристенной ламинарной струи	
Бырдин В. М.	35
Дисперсионные уравнения, функции и кривые в общей теории	
ВОЛН И В МАТЕМАТИЧЕСКОЙ ФИЗИКЕ	
Быков В. В. Спектры показателей Ляпунова непрерывных семейств линейных дифференциальных систем с неограниченными коэффициентами	38
Васильев В.Б	40
Об интегральном представлении решения нелокальной краевой задачи для эллиптического уравнения в конусе	
Васильченкова Д. Г.	41
Вещественные h-суммы в задачах аппроксимации	
Вельмисов П. А., Покладова Ю. В., Тамарова Ю. А Математическое моделирование одного класса аэрогидроупругих систем	42
	49
Ветохин А. Н. О дескриптивном типе множества точек полунепрерывности снизу топологической энтропии семейств динамических систем, непрерывно зависящих от параметра	43
Власов В. В.	44
Корректная разрешимость и представление решений интегро-	
дифференциальных уравнений, возникающих в наследственной механике	
Воронин С. М	45
Гаджиев Д. А., Гайфуллин А. М. Взаимодействие плоской звуковой волны с квазипотенциальным вихрем	46
Гладышев Ю. А.	47
О построении некоторых классов решений обобщенной системы Коши-Римана	
Гладышев Ю. А., Калманович В. В.	49
О РЕШЕНИИ НЕСТАЦИОНАРНОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ В МНОГО- СЛОЙНОЙ СРЕДЕ МЕТОДОМ ФУРЬЕ	
Гологуш Т.С., Остапенко В.В., Петренко И.А., Черев-	50
ко А. А.	
Задача оптимального управления эмболизацией артериовенозной мальформации	
Гуревич Е. Я. О включении в поток и топологической классификации каскадов Морса-Смейла	51
Гусейнов С. Т. Об априорной оценке нормы Гельдера решений равномерно эллиптического уравнения с $p(x)$ -лапласианом	52
Данченко В. И. Алгебраический аналог неравенства Фейера	53

Денисов В. Н.	54
Теоремы о равностабилизации для решений параболических уравнений	
Дмитрук А.В., Осмоловский Н.П.	55
Вариации у-замены времени в задачах с фазовыми ограничени-	55
SAL MAGNO V-SAMENDI DI EMEMI DI SAZA IAX O VASOBBIMI OTTANIA NEMI-	
Доброславский А.В.	56
Эволюция орбит спутников в пространственной задаче трёх тел	50
С УЧЁТОМ СВЕТОВОГО ДАВЛЕНИЯ	
Довбыш С. А.	57
Ветвление решений с точки зрения символической динамики и	
НЕИНТЕГРИРУЕМОСТЬ МНОГОМЕРНЫХ СИСТЕМ	
Евдокимова Е. А.	58
Оптимальное выстродействие гибридной системы переменной	
РАЗМЕРНОСТИ НА ПЛОСКОСТИ	
Егоров И. Н., Немонтов В. А.	59
Управление динамической системой робота подачи тепловыде-	
ЛЯЮЩИХ СБОРОК НА ОСНОВЕ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ	
С РАЗРЫВНОЙ ПРАВОЙ ЧАСТЬЮ	
Жданов О. Н.	60
Решение смешанной задачи для системы дифференциальных	
УРАВНЕНИЙ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ ПЛАСТИЧЕСКОЙ	
Зубова С. П., Раецкая Е. В.	61
Построение программного управления для одной динамической	
СИСТЕМЫ В ЧАСТНЫХ ПРОИЗВОДНЫХ	
Ильина А.В.	62
Конечномерные гамильтоновые редукции иерархии двумеризо-	~ -
ванной цепочки Тода	
Иноземцев А.И., Ляхов Л.Н.	63
О линейных операторах с многомерными частными интегралами	00
в анизотропных классах Лебега	
Казаков А. Л.	65
О точных решениях нелинейных параболических уравнений,	00
имеющих тип тепловой волны	
	cc
Калитвин В. А.	66
О численном решении некоторых классов линейных уравнений	
С ЧАСТНЫМИ ИНТЕГРАЛАМИ МЕХАНИКИ СПЛОШНЫХ СРЕД	
Калманович В.В., Серегина Е.В., Степович М.А., Тур-	67
тин Д.В.	
Использование метода интегральных представлений для реше-	
ния нестационарной задачи теплопроводности в многослойной	
СРЕДЕ	
Кащенко А. А.	68
Релаксационный цикл в кольце осцилляторов с запаздывающей	
ОБРАТНОЙ СВЯЗЬЮ	
Кащенко И.С.	69
Динамика сингулярно возмущенной системы второго порядка с	
ЗАПАЗДЫВАНИЕМ	

Кащенко И. С., Маслеников И. Н. Асимптотическое исследование уравнения второго порядка с запаздыванием	69
Киселев О. М.	70
Стохастические свойства сигвея на мягкой поверхности	• •
Клово А. Г., Куповых Г. В., Ляпунова И. А.	72
О возможности синтеза оптимального управления колебаниями струны	12
Кобзев А. А. Парирование внутренних и внешних возмущений в системах с комплементарным управлением	73
Козлов В. В. Квадратичные законы сохранения уравнений математической физики	74
Коптев А. В.	74
Потенциальные решения уравнений Навье-Стокса	
Корчемкина Т. А. О поведении решений с положительными начальными данными уравнения третьего порядка с нелинейностями общего вида	76
Кочергин А. В.	78
О скорости роста сумм Биркгофа над поворотом окружности	
Крайко А. Н. Новая модель Большого взрыва и расширения Вселенной в ОТО с разлетом в пустоту газа, сжатого в точку	79
Круглов Е. В. О топологической классификации диффеоморфизмов с растягивающимся аттрактором на замкнутом трехмерном многообразии	81
Кудрявцева И. А., Рыбаков К. А. Привлиженное решение задачи оптимальной фильтрации по МАП-критерию в системах с дискретным временем	82
Кулагин Н. Е. , Лерман Л. М. , Малкина А. И. Солитоны и кавитоны в нелокальном уравнении типа Уизема	83
Куликов А. Н., Куликов Д. А. Периодическая краевая задача для конвективного уравнения Кана-Хиллиарда в случае двух пространственных переменных	84
Лексин В. П. Функция Лауричеллы и решения систем Веселова	85
Ляпидевский В. Ю., Чесноков А. А. Слои смешения и струи в мелкой воде и течениях Хеле-Шоу	86
Ляхов Л. Н., Трусова Н. И. Оценка смешанных норм частных интегралов	87
Максимов В. И. Обратная связь в задачах слежения при меняющейся информации	88
Маркеев А.П. О субгармонических движениях маятника на подвижной платформе	89
Матюков М. Ю., Паршин Д. В., Хе А. К., Чупахин А. П. Энергия гидроупругой системы: моделирование и приложения в гемодинамике	90

Мирзоев К. А. Интегральное представление сумм некоторых рядов, связанных со значениями $\zeta(2n+1)$	91
	0.0
Морозов А. Д., Морозов К. Е. О квазипериодических возмущениях двумерных гамильтоновых систем с немонотонным вращением	93
	0.4
Николаев В. Г. О задаче Шварца в эллипсе для диагонализируемых матриц	94
Овсянников В. М.	94
Учет членов второго порядка малости уравнения неразрывности в теории функций комплексного переменного	01
Омонов А. А., Очилов С., Раджабов Ш. Б	96
Панов Е. Ю.	98
О наибольших и наименьших энтропийных решениях задачи Коши для вырождающегося нелинейного параболического уравнения	
Постнов С. С.	99
Оптимальное управление линейными системами дробного порядка с сосредоточенными и распределёнными параметрами	
Преображенская М. М	100
Раутиан Н. А	101
Родина Л.И., Хаммади А.Х. Оптимизация среднего дохода для вероятностной модели эксплуатируемой популяции	102
Рудаков И.А. О периодических решениях квазилинейного уравнения колебаний двутавровой балки с жестко заделанными концами в случае резонанса	103
Руденко Е. А. Оптимальный рекуррентный логико-динамический фильтр воль- шого порядка и его ковариационные привлижения	104
Рыбаков К. А. К задаче управления стохастическими системами со случайным периодом квантования	105
Савчук А. М. Существование и оценки решения нестационарного уравнения Дирака	106
Садовничая И.В. Равносходимость спектральных разложений для обыкновенных дифференциальных операторов второго порядка с коэффициентами — распределениями	107
Сафонова Т. А. Вокруг теоремы Гаусса о значениях дигамма-функции Эйлера в рациональных точках	109

Сачков Ю. Л.	110
Периодические оптимальные управления на двухступенных свободных нильпотентных группах Ли	
Седов А. И. Об одной модели управления	111
Семенов М. Е., Соловьев А. М	111
Сивкин В. Н., Шкаликов А. А. Базисные свойства корневых векторов локально р-возмущенных самосопряженных операторов	113
Сиражудинов М. М., Тихомирова С. В. Оценки погрешности усреднения периодической задачи для обобщенного уравнения Бельтрами	114
Сухов Е. А. Исследование орбитальной устойчивости семейств долгопериодических движений, рождающихся из конической прецессии спутника в случае резонанса третьего порядка	115
Тайманов И. А.	116
Магнитные геодезические потоки Таташев А. Г., Яшина М. В. О предельных циклах дискретных динамических систем Буслаева с марковскими свойствами	116
Таташев А. Г., Яшина М.В. О свойствах динамических систем на регулярной цепочке с симметричными конфликтными точками	117
Толченников А. А. Решение двумерного уравнения Дирака с линейным потенциалом и локализованным начальным условием	119
Толстоногов А. А. ВV РЕШЕНИЯ В СМЫСЛЕ ДИФФЕРЕНЦИАЛЬНОЙ МЕРЫ ВЫПУКЛОГО ПРОЦЕССА ВЫМЕТАНИЯ С ЛОКАЛЬНЫМИ УСЛОВИЯМИ	119
Усков В. И. Об одной сингулярно возмущенной задаче в банаховом про- странстве	119
Филимонов А.М. Корректность постановки краевых условий в смешанной задаче для гиперболических систем квазилинейных уравнений	121
Хачатрян Х. А. О качественных свойствах решения одной граничной задачи для интегрального уравнения типа свертки с выпуклой нелинейностью	122
Холостова О.В.	122
К динамике твердого тела с вибрирующим подвесом в случае Гесса	
Чуркина Т. Е. Об устойчивости одного частного случая движения спутника на эллиптической орбите	123
Шамолин М.В. Интегрируемые динамические системы нечетного порядка с диссипацией	124

Шейпак И.А.	1
Точные константы вложения в пространствах Соболева	
Шкаликов А. А.	1
Асимптотика решений по спектральному параметру обык-	
новенных дифференциальных уравнений с коэффициентами-	
РАПРЕДЕЛЕНИЯМИ	
Эгамов А. И.	1
Об одной начально-краевой задаче для квазилинейного интегро-	
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ	
Abdrakhmanova N. T., Astashov E. A.	1
SIMPLE SINGULARITIES OF FUNCTIONS THAT ARE EVEN OR ODD IN EACH	
VARIABLE	
Ardentov A., Lokutsievskiy L., Sachkov Yu.	1
Optimal control of yachts	
Arkhipova A. A., Grishina G. V.	1
ON THE REGULARITY OF WEAK SOLUTIONS TO NONDIAGONAL ELLIPTIC	
SYSTEMS WITH COMPOSITE BOUNDARY CONDITIONS	
Aseev S. M	1
On an optimal control problem with a risk zone	
Astashova I. V.	1
On Uniqueness of Solutions to Second-Order Emden-Fowler Type	
EQUATIONS WITH GENERAL POWER-LAW NONLINEARITY	
Belyakov A. O., Seyranian A. P.	1
On asymptotic approximation of stability boundaries for Meissner	_
EQUATION	
Bobkov V., Kolonitskii S.	1
SECOND-ORDER DERIVATIVE OF DOMAIN-DEPENDENT FUNCTIONALS ALONG	_
Nehari manifold trajectories	
Buchstaber V., Glutsyuk A., Tertychnyi S	1
DYNAMICAL SYSTEMS ON TORUS WITH MÖBIUS POINCARÉ MAPS AND A	-
MODEL OF JOSEPHSON JUNCTION	
Davydov A. A.	1
EXISTENCE OF OPTIMAL STATIONARY STATE OF EXPLOITED POPULATION	1
WITH DIFFUSION	
Diening L., Kh.Balci A., Surnachev M.	1
NEW EXAMPLES ON LAVRIENTIEVS PHENOMENON USING FRACTAL CONTACT	1
SETS	
Dobrokhotov S. Yu.	1
LAGRANGIAN MANIFOLDS AND A CONSTRUCTIVE "NAIVE" METHOD	1
COMPUTATION OF THE WAVE FIELDS ASYMPTOTICS IN THE NEIGHBORHOOD	
OF A CAUSTICS	
Dudnikova T. V.	1
Large-time behavior of an infinite chain of harmonic oscillators	1
WITH DEFECTS	
	1
Dyshaev M. M., Fedorov V. E.	1
THE ACCOUNTING OF ILLIQUIDITY AND TRANSACTION COSTS DURING THE	
DELTA HEDGING	_
Glutsyuk A.	1
DENSITY OF THIN FILM PLANAR BILLIARD REFLECTION PSEUDOGROUP IN HAMILTONIAN SYMPLECTOMORPHISM PSEUDOGROUP	
TLAMILLONIAN SYMPLECTOMORPHISM PSEUDOGROUP	

Ishikawa G.	142
TANGENTIAL AND NORMAL MAPS TO FRONTALS	
Kanygin G. V., Poltinnikova M. S. The algorithm of building the terminological graph of CO- ontology	143
Krasil'nikov P. S. Coupled Orbit-Attitude Motions of the Rod in Sitnikov Circular Three-Body Problem	143
Kruglov V. THE CONDITION OF MODULI FINITENESS FOR SURFACE MORSE-SMALE FLOWS	145
Lerbet J	146
Lokutsievskiy L. V. Convex trigonometry with applications to problems with 2-dim control	147
Malkin M. I., Safonov K. A. CONFORMAL AND MAXIMAL MEASURES FOR PIECEWISE CONTINUOUS MAPS	147
Mashtakov A. ON EXTREMAL CONTROLS IN THE SUB-RIEMANNIAN PROBLEM ON THE GROUP OF RIGID BODY MOTIONS	148
Mashtakov A., Popov A. Asymptotics of Extremal Controls in the Sub-Riemannian Problem on the Group of Rigid Body Motions	149
Miller B. GENERALIZED SOLUTIONS OF DIFFERENTIAL EQUATION WITH LIE ALGEBRA STRUCTURE	150
Nazarov A. I. Various inequalities for fractional Laplacians	151
Pastukhova S. E. RESOLVENT APPROXIMATIONS IN HOMOGENIZATION OF HIGH ORDER ELLIPTIC OPERATORS	152
Pavlova N. G., Remizov A. O. Hyperbolic Roussarie vector fields	153
Pechen A. UNCOMPUTABILITY OF SOME CLASS OF QUANTUM CONTROL PROBLEMS	154
Piskarev S. Approximation of Inverse Problems for Fractional Equations	155
Podobryaev A. V. Coadjoint orbits of three-step free nilpotent Lie groups	156
Remizov A.O. OSCILLATING SOLUTIONS OF SINGULAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER	157
Sachkov Yu. L., Sachkova E. SYMMETRIES AND PARAMETERIZATION OF ABNORMAL EXTREMALS IN SUB-RIEMANNIAN PROBLEM WITH THE GROWTH VECTOR (2; 3; 5; 8)	158
Semenov V. I. THE 3D NAVIER-STOKES EQUATIONS: INVARIANTS LOCAL AND GLOBAL REGULAR SOLUTIONS	159

Shafarevich A.	159
Lagrangian Manifolds and Modifications of the Maslov Canonical	
OPERATOR, CORRESPONDING TO LOCALIZED SOLUTIONS OF HYPERBOLIC	
Systems	
Shcheglova A	160
Multiplicity of positive solutions for the generalized Hénon	
EQUATION WITH FRACTIONAL LAPLACIAN	
Treschev D	160
Entropy of an operator	
Tunitsky D. V	161
On multivalued simple waves	
Ustinov N.	162
On solvability of a critical problem with the spectral Neumann	
FRACTIONAL LAPLACIAN	

Динамика сингулярно возмущенной системы второго порядка с запаздыванием³¹

Кащенко И.С. (Россия, Ярославль)

Ярославский государственный университет им. П.Г. Демидова iliyask@uniyar.ac.ru

Рассмотрим систему двух дифференциально-разностных уравнений

$$\gamma^{-1}\dot{x} + x = x(t - T)(a + d_1y + d_2y^2),$$

$$\dot{y} = by + cx^2.$$
(1)

Эта задача представляет собой несколько упрощенную модель FDML-лазера (см. [1]). Поставим задачу исследовать динамику (1) в окрестности состояния равновесия в фазовом пространстве $C_{[-T:0]} \times \mathbb{R}$.

Главное предположение состоит в том, что значение γT достаточно велико, т.е. $0 < \varepsilon = (\gamma T)^{-1} \ll 1$. Таким образом система (1) является сингулярно возмущенной. Это может быть выполнено в одном из трех основных случаев:

- 1) γ велико, а T фиксировано;
- 2) T велико, а γ фиксировано;
- 3) оба параметра γ и T велики (при этом, возможно, различно по порядку).

В ситуации, когда состояние равновесия теряет устойчивость, асимптотически большое количество корней соответствующего характеристического уравнения (точек спектра) лежит сколь угодно близко к мнимой оси. Таким образом критические случаи имеют бесконечную размерность.

В случаях близких к критическим построены специальные нелинейные уравненияквазинормальные формы, – которые не зависят от малого параметра либо зависят от него регулярно. Решения квазинормальных форм определяют главные части асимптотического разложения решений (1).

Литература

[1] Vladimirov, A and Turaev, D., Model for passive mode locking in semiconductor lasers // Physical Review A, 2005. Vol. 72. P. 033808.

Асимптотическое исследование уравнения второго порядка с запаздыванием 32

Кащенко И.С. (Россия, Ярославль)

Ярославский государственный университет им. П.Г. Демидова iliyask@uniyar.ac.ru

Маслеников И. Н. (Россия, Ярославль)

Ярославский государственный университет им. П.Г. Демидова igor.maslenikov16@yandex.ru

Рассмотрим дифференциально-интегральное уравнение с запаздыванием

$$\varepsilon \frac{d^2 y}{dt^2} + \frac{dy}{dt} + \delta y = F\left(\frac{dy}{dt}(t-\tau)\right). \tag{1}$$

Здесь $\tau > 0$, функция F достаточно гладкая, не ограничивая общности можно считать, что F(0) = 0. Таким образом, уравнение (1) имеет нулевое состояние равновесия.

 $^{^{31}}$ Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 18-29-10043.

³²Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 18-29-10043.

Главным предположением является то, что параметры ε и δ малы (0 < $\varepsilon \ll 1$, 0 < $\delta \ll 1$), таким образом уравнение (1) является сингулярно возмущенным. Будем считать, что параметры ε и δ пропорциональны:

$$0 < \varepsilon \ll 1, \quad \delta = k\varepsilon.$$

Поставим задачу исследовать поведение решений (1) в некоторой малой (но фиксированной) окрестности нуля в фазовом пространстве $C^1_{[-\tau,0]}$ при достаточно малых ε и построить асимптотику его решений.

Характеристический квазиполином линеаризованной в нуле задачи (1) имеет вид

$$\varepsilon \lambda^2 + \lambda + k\varepsilon = \lambda \beta e^{-\lambda}, \quad \beta = F'(0).$$

Показано, что при $|\beta|<1$ все его корни имеют отрицательные вещественные части, следовательно нулевое состояние равновесия устойчиво, все решения из некоторой его окрестности (малой, но не зависящей от ε) стремятся к нулю; при $|\beta|>1$ у характеристического уравнения есть корень с положительной вещественной частью, т.е. нулевое решение неустойчиво, в его окрестности нет устойчивых режимов. В оставшихся случаях $\beta=\pm 1$ характеристическое уравнение имеет бесконечное количество корней, стремящихся к мнимой оси при $\varepsilon\to 0$, таким образом, критические случаи имеют бесконечную размерность.

В критических случаях уравнение (1) сведено к квазинормальным формам – специальным нелинейным эволюционным уравнениям, не содержащие малых параметров, решения которых дают главную часть асимптотических по невязке равномерно по $t \geq 0$ решений уравнения (2).

Стохастические свойства сигвея на мягкой поверхности

Киселев О. М. (Россия, Уфа) Институт математики с ВЦ УФИЦ РАН
$$ok@ufanet.ru$$

Будем рассматривать уравнения движения для механической конструкции перевернутого маятника на колесе с управляющим моментом на колесе u. Примем, что движение происходит по мягкой поверхности с углом наклона, который зависит от пройденного расстояния – угла поворота колеса $z=z(\beta)$ [1]:

$$\ddot{\alpha} = \sin(\alpha) - (\cos(\alpha - z)\ddot{\beta} + \sin(\alpha - z)\dot{\beta}^2)\rho - 2\frac{\rho}{\zeta}u,$$

$$(\zeta + 2)\rho\ddot{\beta} \in F(\alpha, \dot{\alpha}, \ddot{\alpha}, \dot{\beta}). \tag{1}$$

Обозначим

$$f = -\sin(z) - \left(\ddot{\alpha}\cos(\alpha - z) - \dot{\alpha}^2\sin(\alpha - z)\right)\zeta + \frac{2}{\rho}u.$$

В (1) отображение $F(\alpha, \dot{\alpha}, \ddot{\alpha}, \dot{\beta})$ устроено следующим образом:

$$F(\alpha, \dot{\alpha}, \ddot{\alpha}, \dot{\beta}) = \begin{cases} f - \nu \operatorname{sgn}(\dot{\beta}), & \{\forall \dot{\beta} \neq 0\}; \\ (-\nu, \nu), & \{\dot{\beta} = 0\} \cup \{|f| \leqslant \nu\}; \\ f, & \{\dot{\beta} = 0\} \cup \{\{\alpha, \dot{\alpha}, \ddot{\alpha}\} \in \{|f| > \nu\}\}. \end{cases}$$

Здесь параметры модели: α — угол поворота маятника, β — угол поворота колеса, z — текущий угол подъёма мягкой поверхности, ν — момент трения качения по мягкой поверхности, ρ = r/l — отношение радиусу окружности колеса к длине рычага маятника, ζ — отношение массы маятника к массе обода колеса.