Group 31 Modeling Notebook

- Ana Margarida Valente, nr 20240936
- Eduardo Mendes, nr 20240850
- Julia Karpienia, nr 20240514
- Marta Boavida, nr 20240519
- Victoria Goon, nr 20240550

Table of Contents

- 0. Import
- 1. Import Datasets
 - 1.1 Encoding Target
- 2. Sampling Datasets
 - 2.1 Undersampling
 - 2.2 Oversampling
- 3. Model
 - 3.1. Logistic Regression
 - 3.2. Decision Tree
 - 3.3. K Nearest Neighbors
 - 3.4. Gaussian Naive Bayes
 - 3.5. Neural Networks
- 4. Ensemble Models
 - [4.1. Boosted Models]
 - 4.1.1. RandomForest
 - o 4.1.2. XGBoost
 - 4.1.3. Gradient Boosted Decision Trees
 - [4.2. BaggingClassifier Models]
 - 4.2.1. Bagging XGBoost
 - 4.2.2. Bagging MLP
 - 4.2.3. Bagging Logistic Regression
 - 4.3. StackingClassifier Models
- 5. Kaggle Submission

O. Import Packages

```
In [1]: ## Import standard data processing libraries
import numpy as np
import pandas as pd
import seaborn as sns
```

```
# Importing encoder
        from sklearn.preprocessing import LabelEncoder
        ## Import models
        from sklearn.model_selection import GridSearchCV
        from sklearn.linear model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from sklearn.neural network import MLPClassifier
        ## Import ensemble models
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.ensemble import BaggingClassifier
        from sklearn.ensemble import StackingClassifier
        import xgboost as xgb
        # Import Cross Validation methods
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f
        from sklearn.model_selection import RandomizedSearchCV
        # Import imbalanced data methods
        from imblearn.over_sampling import SMOTE
        # Settings
        sns.set()
        pd.set_option('display.max_rows', None) # Show all rows
        pd.set_option('display.max_colwidth', None) #Show all columns
        ## Supress warnings
        import warnings
        warnings.filterwarnings('ignore')
In []: # Code to import imbalaned—learn package for xgboost
        # import sys
        # !{sys.executable} -m pip install imbalanced-learn
```

1. Import Datasets

Importing the datasets that were created and saved from the preprocessing dataset.

```
In [2]: # # Import the training, valaidation, and test datasets that were saved from
# train_data = pd.read_csv("train_encoded.csv", low_memory=False)
# validation_data = pd.read_csv("validation_encoded.csv", low_memory=False)
# test_data = pd.read_csv("test_encoded.csv")

# Import the training, valaidation, and test datasets that were saved from t
train_data = pd.read_csv("train_encoded_std_agg_out.csv", low_memory=False)
validation_data = pd.read_csv("validation_encoded_std_agg_out.csv", low_memor
test_data = pd.read_csv("test_encoded_std_agg_out.csv")
```

```
In [3]: # Set the Claim Identifiers as the index
    train_data = train_data.set_index("Claim Identifier")
    validation_data = validation_data.set_index("Claim Identifier")
    test_data = test_data.set_index("Claim Identifier")

In [4]: # Seperate target variable from the features in both train and validation
    X_train = train_data.drop('Claim Injury Type', axis = 1)
    y_train = train_data['Claim Injury Type']

X_val = validation_data.drop('Claim Injury Type', axis = 1)
    y_val = validation_data['Claim Injury Type']
```

1.1 Encode Target Variable

Label Encoder for target variable (training and validation):

(This needs to be done in both the proprocessing notebook as well as this modeling notebook to be able to interpret the results properly when a model is tested with the KaggleSubmission csv.)

```
In [5]: #Initiate Label encoder
label_encoder = LabelEncoder()

#Fit the encoder on the training target variable
Y_train_encoded = label_encoder.fit_transform(y_train)

#Transform the training and validation target variable
Y_val_encoded = label_encoder.transform(y_val)

# create a copy of the unencoded target to use when assessing the data - mak
y_val_unencoded = y_val.copy()

#Convert the results back to DataFrames while overriding the previous variable
y_train = pd.DataFrame(Y_train_encoded, columns=['encoded_target'], index=pc
y_val = pd.DataFrame(Y_val_encoded, columns=['encoded_target'], index=pd.Ser
```

2. Sampling Techniques

Below is the WCB dataset class distribution:

CANCELLED: 8723
 NON-COMP: 203607
 MED ONLY: 48132
 TEMPORARY: 100810
 PPD SCH LOSS: 33570
 PPD NSL: 2759

7. PTD: 49 8. DEATH: 328

Class 7 is significantly lower than the others which will cause the models to not fully train. The following cells is to help address this issue.

Undersampling

The below code takes the size of the minority class + half of the minority class and randomly creates subsamples of each of the majority classes along with all of the minority class and creates a new dataset from the amalgamation of those datapoints.

```
In [6]: # add the encoded variables back to the x set
        training_data_undersampled = pd.concat([X_train, y_train], axis=1)
        # Separate majority and minority classes
        majority_classes = {}
        for x in range(0,8):
            if x != 6:
                majority_classes[x] = training_data_undersampled[training_data_under]
        minority class = training data undersampled[training data undersampled["enco
        size = int(len(minority_class) + (len(minority_class) * 0.5))
        print(size)
        # Perform undersampling
        undersampled majority 0 = majority classes[0].sample(n=size, random state=42
        undersampled_majority_1 = majority_classes[1].sample(n=size, random_state=42
        undersampled majority 2 = majority classes[2].sample(n=size, random state=42
        undersampled_majority_3 = majority_classes[3].sample(n=size, random_state=42
        undersampled_majority_4 = majority_classes[4].sample(n=size, random_state=42
        undersampled_majority_5 = majority_classes[5].sample(n=size, random_state=42
        undersampled_majority_7 = majority_classes[7].sample(n=size, random_state=42
        # undersampled majority.head()
        balanced data = pd.concat([undersampled majority 0, undersampled majority 1,
                                   undersampled majority 3, undersampled majority 4,
                                   minority_class, undersampled_majority_7])
        # Separate features and target
        X train = balanced data.drop(columns='encoded target')
        y_train = balanced_data['encoded_target']
        # Check class distribution after undersampling
        print("Class distribution after undersampling:", y_train.value_counts())
```

```
Class distribution after undersampling: encoded_target
     73
0
     73
1
2
     73
3
     73
     73
4
5
     73
7
     73
     49
Name: count, dtype: int64
```

Oversampling

The below cell takes the minority class(es) and created synthetic data for it to match the remaining majority class(es). It uses SMOTE (Synthetic Minority Oversampling TEchnique).

https://imbalanced-

learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

```
In []: # # Initialize SMOTE
    # # sampling_strategy=auto : 'not majority' - specifies the class targeted b
    # # k_neighbors default set to 5. Tried 3 and 10, but 5 had best f1 scores.
    # smote = SMOTE(sampling_strategy='auto', random_state=42) #k_neighbors=3

# # Fit and resample the dataset
    # X_train, y_train = smote.fit_resample(X_train, y_train)

# print("Class distribution after oversampling each at:", y_train.value_cour.
```

Class distribution after oversampling each at: 203607

3. Model

Type of Problem: Multiclassification Problem

Metric used:

As a classification problem, we observed the following metrics to determine the effectiveness of our model: - accuracy - precision - recall - macro f1 score Each point is measured in a different and observing them all allows us to get an accurate view of our model's results.

```
# displays the scores for Precision, Recall, and F1
def score_model(y_actual, y_predicted, score_train, score_test):
   print("-----")
   f1_per_class = f1_score(y_actual, y_predicted, average=None)
   print scores(f1 per class)#, y actual)
   f1_per_weighted = f1_score(y_actual, y_predicted, average='macro')
   print("\nMacro f1: " + str(round(f1_per_weighted, 3)) + "\n")
   print("---- Individual Score Comparisons ---- ")
   print("Train Score: " + str(score_train))
   print("Test Score: " + str(score_test))
   diff = np.abs(score_train - score_test)
   print("Difference: " + str(diff))
   print("-----\n")
   acc_score = accuracy_score(y_actual, y_predicted)
   print("Accuracy Score: " + str(acc_score) + "\n")
   print("----")
   precision_per_class = precision_score(y_actual, y_predicted, average=Nor
   print scores(precision per class)#, y actual)
   precision weighted = precision score(y actual, y predicted, average='mac
   print("\nMacro precision: " + str(round(precision_weighted, 3)) + "\n")
   print("----")
   recall_per_class = recall_score(y_actual, y_predicted, average=None)
   print scores(recall per class)#, y actual)
   recall per weighted = recall score(y actual, y predicted, average='macro
   print("\nMacro recall: " + str(round(recall_per_weighted, 3)) + "\n")
```

Logistic Regression

Grid Search - Logistic Regression:

Model - Logistic Regression:

```
In [9]: # Create the model
lr_model = LogisticRegression(multi_class='multinomial', solver='lbfgs', C=1
# Fit the model to the training set
lr_model.fit(X_train, y_train)
```

```
# Determine the scores for the model for both train and validation sets
 score train = lr model.score(X train, y train)
 score_test = lr_model.score(X_val, y_val)
 # Use the model to predict on the validation set
 lr_y_pred = lr_model.predict(X_val)
 # Display the model metrics using the score model function
 score_model(y_val, lr_y_pred, score_train, score_test)
----- F1 -----
[1. CANCELLED]:
                      0.24
[2. NON-COMP]:
                      0.65
[3. MED ONLY]:
                      0.22
[4. TEMPORARY]:
                      0.44
[5. PPD SCH LOSS]:
                      0.47
[6. PPD NSL]:
                      0.09
[7. PTD]:
                      0.01
[8. DEATH]:
                      0.06
Macro f1: 0.273
----- Individual Score Comparisons -----
Train Score: 0.9964285714285714
Test Score: 0.4553214717086314
Difference: 0.5411070997199401
----- Accuracy -----
Accuracy Score: 0.4553214717086314
----- Precision -----
[1. CANCELLED]:
                      0.15
[2. NON-COMP]:
                      0.86
[3. MED ONLY]:
                     0.17
[4. TEMPORARY]:
                      0.59
[5. PPD SCH LOSS]:
                      0.46
[6. PPD NSL]:
                      0.05
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.03
Macro precision: 0.289
----- Recall -----
[1. CANCELLED]:
                      0.66
[2. NON-COMP]:
                      0.52
[3. MED ONLY]:
                      0.32
[4. TEMPORARY]:
                      0.35
[5. PPD SCH LOSS]:
                     0.48
[6. PPD NSL]:
                      0.52
[7. PTD]:
                      0.45
[8. DEATH]:
                      0.78
```

DECISION TREE

Gridsearch - decision tree:

```
In [10]: # # Initialize the Decision Tree Classifier
         # dt classifier = DecisionTreeClassifier(random state=42)
         # # Define the parameter grid to search
         # param grid = {
                'criterion': ['gini', 'entropy'],
               'splitter': ['best', 'random'],
                'max depth': [None, 10, 20, 30],
         #
               'min_samples_split': [2, 5, 10],
               'min_samples_leaf': [1, 2, 4],
         #
                'max_features': [None, 'sqrt', 'log2'],
         #
               'max leaf nodes': [None, 10, 20, 30],
                'min_impurity_decrease': [0.0, 0.1, 0.2]
         # }
         # # Initialize GridSearchCV:
         # grid search = GridSearchCV(estimator=dt classifier, param grid=param grid,
         # # Fit GridSearchCV on the training data
         # grid search.fit(X train, y train)
         # print("Best Parameters:", grid_search.best_params_)
         # print("Best Score:", grid_search.best_score_)
         # best model = grid search.best estimator
         # #Best Parameters: {'criterion': 'gini', 'max_depth': 10, 'max_features': N
         # #Best Score: 0.7769977245887005
```

Model - Decision Tree:

```
In [11]: # Test History
         # 0.366
         # (oversampling) - 0.343 - 21s
         # Initialize the Decision Tree Classifier
         decision tree = DecisionTreeClassifier(
             criterion='gini',
             max depth=10,
             max features=None,
             max leaf nodes=None,
             min impurity decrease= 0.0,
             min_samples_leaf= 1,
             min_samples_split=2,
             splitter='best',
             random state=42
         # Train the model
         decision_tree.fit(X_train, y_train)
```

```
# Determine the scores for the model for both train and validation sets
 score train = decision tree.score(X train, y train)
 score_test = decision_tree.score(X_val, y_val)
 # Make predictions
 dt_y_pred = decision_tree.predict(X_val)
 # Display the model metrics using the score model function
 score_model(y_val, dt_y_pred, score_train, score_test)
----- F1 -----
[1. CANCELLED]:
                      0.21
                      0.7
[2. NON-COMP]:
[3. MED ONLY]:
                      0.18
[4. TEMPORARY]:
                     0.52
[5. PPD SCH LOSS]:
                      0.42
[6. PPD NSL]:
                      0.08
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.02
Macro f1: 0.267
----- Individual Score Comparisons -----
Train Score: 0.8607142857142858
Test Score: 0.48069195391619435
Difference: 0.3800223317980914
----- Accuracy -----
Accuracy Score: 0.48069195391619435
----- Precision -----
[1. CANCELLED]:
                      0.12
[2. NON-COMP]:
                     0.87
[3. MED ONLY]:
                     0.16
[4. TEMPORARY]:
                      0.7
[5. PPD SCH LOSS]:
                      0.44
[6. PPD NSL]:
                      0.04
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.01
Macro precision: 0.295
----- Recall -----
[1. CANCELLED]:
                      0.6
[2. NON-COMP]:
                      0.59
[3. MED ONLY]:
                      0.2
[4. TEMPORARY]:
                      0.42
[5. PPD SCH LOSS]:
                      0.4
[6. PPD NSL]:
                      0.7
[7. PTD]:
                      0.21
[8. DEATH]:
                      0.72
```

K Nearest Neighbors

Grid Search - KNN

```
In [12]: # # Define the parameter grid for Randomized Search
         # param distributions = {
               'n_neighbors' : [5,10],
               'leaf_size': [30, 50],
               'metric': ['euclidean', 'manhattan'],
         # }
         # # Initialize RandomizedSearchCV with KNN classifier
         # random search = RandomizedSearchCV(
               estimator=KNeighborsClassifier(),
         #
               param distributions=param distributions,
               n iter=5,
               cv=2,
               scoring='f1 macro',
               verbose=2,
               random_state=42,
               n jobs=-1
         # )
         # # Fit the random search to the training data
         # random_search.fit(X_train, y_train)
         # print("Best Parameters:", random_search.best_params_)
         # print("Best Score:", random search.best score )
         # # Best Parameters: {'n_neighbors': 5, 'metric': 'euclidean', 'leaf_size':
         # # Best Score: 0.328445945439427
```

Model - KNN

- KNN will be commented out
- KNN is not appropriate for too large datasets. Too computational expensive due to memorization requirements.
- KNN takes too long to process due to our large dataset.

```
In [13]: # Test History
    # # 0.334
    # # Initialize the KNN Classifier
    # knn_model = KNeighborsClassifier(n_neighbors=5, leaf_size=30, metric='eucl

# # Train the model
    # knn_model.fit(X_train, y_train)

# # Determine the scores for the model for both train and validation sets
# score_train = knn_model.score(X_train, y_train)
# score_test = knn_model.score(X_val, y_val)

# # Predict on the validation set
# y_pred = knn_model.predict(X_val)
```

```
# # Display the model metrics using the score_model function
# score_model(y_val, y_pred, score_train, score_test)
```

Model - Gaussian Naive Bayes:

- Will be commented out
- Assumes normality, independence, Homogeneity of Variance (Homoskedasticity):

```
In [14]: # # create the model
# model = GaussianNB()

# # fit the model to the training set
# model.fit(X_train, y_train)

# # determine the scores for the model for both train and validation
# score_train = model.score(X_train, y_train)
# score_test = model.score(X_val, y_val)

# # use model to predict on validation set
# y_pred = model.predict(X_val)

# # display the model metrics
# score_model(y_val, y_pred, score_train, score_test)
```

Neural Network (MLPClassifier):

GridSearch - MLPClasssifer:

```
In [15]: # # Define the parameter grid
          # param grid = {
                'hidden_layer_sizes': [
                             # Larger single-layer model
          #
                    (50),
                    (50, 30), # Moderate two-layer model (100, 50), # Larger two-layer model
                    (128, 64, 32) # Complex three-layer model
                'activation': ['relu', 'logistic'],
          #
                'solver': ['adam', 'sgd'],
                'alpha': [0.0001, 0.001],
                'learning rate': ['adaptive', 'invscaling']
          # }
          # # Initialize the Neural Network model
          # mlp = MLPClassifier(random state=42)
          # # Initialize Random Search for hyperparameter tuning
          # random search = RandomizedSearchCV(
                estimator=mlp,
```

```
# param_distributions=param_grid, # Using param_distributions for rando
# n_iter=10, # Number of random combinations to try
# cv=2, # 3-fold cross-validation
# scoring='f1_macro', # Evaluation metric
# verbose=2, # Display progress logs
# n_jobs=-1, # Use all available processors for parallel computation
# random_state=42 # For reproducibility
# )

# # Fit the randomized search to the training data
# random_search.fit(X_train, y_train)

# print("Best Parameters:", random_search.best_params_)
# print("Best Score:", random_search.best_score_)

# # Best Parameters: {'solver': 'adam', 'learning_rate': 'adaptive', 'hidder
# # Best Score: 0.4192846184298069
```

MODEL - MLPClassifier:

```
In [16]: # with agreement reached - 0.389 - 14m 57s
         # # Initialize the Neural Network model
         model = MLPClassifier(hidden layer sizes=(50, 30),
                               activation='logistic',
                               solver='adam',
                               alpha=0.0001,
                               learning_rate='adaptive',
                               max iter=200.
                               random state=42)
         # Train the model
         model.fit(X train, y train)
         # Determine the scores for the model for both train and validation sets
         score_train = model.score(X_train, y_train) # Accuracy on training data
         score_test = model.score(X_val, y_val) # Accuracy on validation data
         # Use the model to predict on the validation set
         y pred = model.predict(X val)
         # Display the model metrics using the score model function
         score_model(y_val, y_pred, score_train, score_test)
```

```
----- F1 -----
[1. CANCELLED]:
                     0.2
[2. NON-COMP]:
                     0.61
[3. MED ONLY]:
                     0.22
[4. TEMPORARY]:
                     0.27
[5. PPD SCH LOSS]:
                     0.48
[6. PPD NSL]:
                     0.09
[7. PTD]:
                     0.01
[8. DEATH]:
                     0.04
```

Macro f1: 0.241

```
----- Individual Score Comparisons -----
```

Train Score: 0.7964285714285714
Test Score: 0.3998304376103317
Difference: 0.39659813381823966
------ Accuracy ------

Accuracy Score: 0.3998304376103317

	Precision	
[1.	CANCELLED]:	0.12
[2.	NON-COMP]:	0.83
[3.	MED ONLY]:	0.16
[4.	TEMPORARY]:	0.54
[5.	PPD SCH LOSS]:	0.43
[6.	PPD NSL]:	0.05
[7.	PTD]:	0.0
[8.	DEATH]:	0.02

Macro precision: 0.27

	Recall -	
[1.	CANCELLED]:	0.71
[2.	NON-COMP]:	0.49
[3.	MED ONLY]:	0.33
[4.	TEMPORARY]:	0.18
[5.	PPD SCH LOSS]:	0.54
[6.	PPD NSL]:	0.61
[7.	PTD]:	0.34
[8.	DEATH]:	0.79

Macro recall: 0.499

Ensemble Models

Random Forest

Fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

```
In [17]: # 0.379
# (oversampling) - 0.433 (overfitting w/ 0.23 diff) - 6m 5s

# Initialize the Random Forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

# Train the model
rf_model.fit(X_train, y_train)

# Determine the scores for the model for both train and validation sets
score_train = rf_model.score(X_train, y_train) # Accuracy on training data
score_test = rf_model.score(X_val, y_val) # Accuracy on validation data

# Use the model to predict on the validation set
rf_y_pred = rf_model.predict(X_val)

# Display the model metrics using the score_model function
score_model(y_val, rf_y_pred, score_train, score_test)
```

```
----- F1 -----
[1. CANCELLED]:
                     0.29
[2. NON-COMP]:
                     0.76
[3. MED ONLY]:
                    0.2
[4. TEMPORARY]:
                   0.44
[5. PPD SCH LOSS]:
                   0.53
[6. PPD NSL]:
                   0.09
[7. PTD]:
                    0.01
[8. DEATH]:
                    0.05
Macro f1: 0.296
----- Individual Score Comparisons -----
Train Score: 1.0
Test Score: 0.525126591099136
Difference: 0.47487340890086405
----- Accuracy -----
Accuracy Score: 0.525126591099136
----- Precision -----
[1. CANCELLED]:
                     0.18
[2. NON-COMP]:
                    0.85
[3. MED ONLY]:
                   0.19
```

[1. CANCELLED]: 0.18
[2. NON-COMP]: 0.85
[3. MED ONLY]: 0.19
[4. TEMPORARY]: 0.72
[5. PPD SCH LOSS]: 0.5
[6. PPD NSL]: 0.05
[7. PTD]: 0.0
[8. DEATH]: 0.03

Macro precision: 0.315

----- Recall -----[1. CANCELLED]: 0.76 [2. NON-COMP]: 0.69 [3. MED ONLY]: 0.22 [4. TEMPORARY]: 0.31 [5. PPD SCH LOSS]: 0.56 [6. PPD NSL]: 0.76 [7. PTD]: 0.24 [8. DEATH]: 0.9

Macro recall: 0.555

XGBoost

Also using decision trees

```
In [18]: # 0.442
# (oversampling) 0.453 (overfit by 0.10 diff) 4m 18s
# (oversampling) 0.469 (overfit by 0.09 diff) 3m 28s - with agreement reache
# max_depth = 19, n_estimators = 150, lr = 0.6 -> overfitting
xgb_model = xgb.XGBClassifier(
    n estimators=110, # Number of trees
```

```
learning_rate=0.2, # Step size shrinkage
   max_depth=7, # Maximum depth of a tree
   random_state=42, # For reproducibility
   use_label_encoder=False, # Avoid warning for encoding
   eval_metric='mlogloss' # Evaluation metric for multi-class classifica
)

# Train the model
   xgb_model.fit(X_train, y_train)

# Determine the scores for the model for both train and validation sets
   score_train = xgb_model.score(X_train, y_train) # Accuracy on training data
   score_test = xgb_model.score(X_val, y_val) # Accuracy on validation dat

# Use the model to predict on the validation set
   xgb_y_pred = xgb_model.predict(X_val)

# Display the model metrics using the score_model function
   score_model(y_val, xgb_y_pred, score_train, score_test)
```

```
----- F1 -----
[1. CANCELLED]:
                     0.25
[2. NON-COMP]:
                     0.72
[3. MED ONLY]:
                    0.19
[4. TEMPORARY]:
                   0.55
[5. PPD SCH LOSS]:
                   0.52
[6. PPD NSL]:
                    0.1
[7. PTD]:
                    0.01
[8. DEATH]:
                    0.04
Macro f1: 0.298
----- Individual Score Comparisons -----
Train Score: 1.0
Test Score: 0.5199700362352504
Difference: 0.4800299637647496
----- Accuracy -----
Accuracy Score: 0.5199700362352504
----- Precision -----
                     0.15
[1. CANCELLED]:
[2. NON-COMP]:
                    0.88
[3. MED ONLY]:
                   0.17
[4. TEMPORARY]:
                    0.72
[5. PPD SCH LOSS]:
                   0.49
[6. PPD NSL]:
                    0.05
[7. PTD]:
                    0.0
[8. DEATH]:
                    0.02
Macro precision: 0.311
----- Recall -----
[1. CANCELLED]:
                     0.68
[2. NON-COMP]:
                   0.61
[3. MED ONLY]:
                   0.23
[4. TEMPORARY]:
                   0.45
[5. PPD SCH LOSS]:
                   0.54
[6. PPD NSL]:
                    0.57
[7. PTD]:
                    0.52
[8. DEATH]:
                     0.84
```

Gradient Boosted Decision Trees

```
In [19]: # 16 min = max_depth = 6 - .402 f1

gbdt_model = GradientBoostingClassifier(
    n_estimators=100,  # Number of boosting stages
    learning_rate=0.1,  # Shrinks contribution of each tree
    max_depth=6,  # Limits depth of each tree to prevent overfitti
    random_state=42  # For reproducibility
)
```

```
# Train the model
gbdt_model.fit(X_train, y_train)

# Determine the scores for the model for both train and validation sets
score_train = gbdt_model.score(X_train, y_train) # Accuracy on training dat
score_test = gbdt_model.score(X_val, y_val) # Accuracy on validation da

# Use the model to predict on the validation set
gbdt_y_pred = gbdt_model.predict(X_val)

# Display the model metrics using the score_model function
score_model(y_val, gbdt_y_pred, score_train, score_test)
```

```
----- F1 -----
[1. CANCELLED]:
                     0.27
[2. NON-COMP]:
                     0.74
[3. MED ONLY]:
                   0.19
[4. TEMPORARY]:
                   0.56
[5. PPD SCH LOSS]:
                   0.53
[6. PPD NSL]:
                   0.1
[7. PTD]:
                    0.01
[8. DEATH]:
                   0.06
Macro f1: 0.306
----- Individual Score Comparisons -----
Train Score: 1.0
Test Score: 0.538319938678807
Difference: 0.461680061321193
----- Accuracy -----
Accuracy Score: 0.538319938678807
----- Precision -----
[1. CANCELLED]:
                     0.17
[2. NON-COMP]:
                    0.88
```

[1. CANCELLED]: 0.17 [2. NON-COMP]: 0.88 [3. MED ONLY]: 0.17 [4. TEMPORARY]: 0.69 [5. PPD SCH LOSS]: 0.52 [6. PPD NSL]: 0.05 [7. PTD]: 0.0 [8. DEATH]: 0.03

Macro precision: 0.314

----- Recall -----[1. CANCELLED]: 0.69 0.64 [2. NON-COMP]: [3. MED ONLY]: 0.23 [4. TEMPORARY]: 0.47 [5. PPD SCH LOSS]: 0.54 [6. PPD NSL]: 0.54 [7. PTD]: 0.34 [8. DEATH]: 0.83

Macro recall: 0.534

Bagging XGBoost

```
use_label_encoder=False, # Avoid warning for encoding
    eval_metric='mlogloss' # Evaluation metric for multi-class classifica
 ), n estimators=10, random state=42)
 bagging_model_xgb.fit(X_train, y_train)
 bagging_y_pred = bagging_model_xgb.predict(X_val)
 score_train = bagging_model_xgb.score(X_train, y_train)
 score_test = bagging_model_xgb.score(X_val, y_val)
 score_model(y_val, bagging_y_pred, score_train, score_test)
----- F1 -----
[1. CANCELLED]:
                      0.24
                     0.75
[2. NON-COMP]:
[3. MED ONLY]:
                    0.18
[4. TEMPORARY]:
                    0.55
[5. PPD SCH LOSS]:
                     0.52
[6. PPD NSL]:
                     0.1
[7. PTD]:
                     0.01
[8. DEATH]:
                      0.04
Macro f1: 0.299
----- Individual Score Comparisons -----
Train Score: 0.9714285714285714
Test Score: 0.532809161014587
Difference: 0.43861941041398445
----- Accuracy -----
Accuracy Score: 0.532809161014587
----- Precision -----
[1. CANCELLED]:
                      0.15
[2. NON-COMP]:
                    0.88
[3. MED ONLY]:
                    0.17
[4. TEMPORARY]:
                     0.73
[5. PPD SCH LOSS]:
                      0.49
[6. PPD NSL]:
                     0.06
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.02
Macro precision: 0.312
----- Recall -----
[1. CANCELLED]:
                      0.74
[2. NON-COMP]:
                      0.65
[3. MED ONLY]:
                      0.19
[4. TEMPORARY]:
                     0.44
[5. PPD SCH LOSS]:
                    0.57
[6. PPD NSL]:
                    0.63
[7. PTD]:
                      0.52
[8. DEATH]:
                      0.84
```

Bagging MLPClassifier

```
In [21]: \# (hidden layer sizes=(13,), max iter=500, random state=42) - 0.395 (no over
         # (hidden_layer_sizes=(15,), max_iter=500, random_state=42) - 0.407 (no over
         # (hidden_layer_sizes=(20,), max_iter=500, random_state=42) - 0.407 (no over
         # (hidden layer sizes=(10,), max iter=500, random state=42) - 0.389 (no over
         # (hidden layer sizes=(10,), max iter=1000, random state=42) - 0.389 (no ove
         base_model = MLPClassifier(hidden_layer_sizes=(64, 32), # Two hidden layers
                                                             # ReLU activation function
                               activation='relu',
                               solver='adam',
                                                            # Adam optimizer
                                                             # Regularization term (L2
                               alpha=0.0001,
                               learning_rate_init=0.001,
                                                           # Initial learning rate
                                                             # Maximum number of itera
                               max iter=200,
                               random state=42)
                                                             # For reproducibility)
         bagging_model_mlpc = BaggingClassifier(estimator=base_model, n_estimators=10)
         bagging_model_mlpc.fit(X_train, y_train)
         bagging_y_pred = bagging_model_mlpc.predict(X_val)
         score train = bagging model mlpc.score(X train, y train)
         score_test = bagging_model_mlpc.score(X_val, y_val)
         score_model(y_val, bagging_y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                     0.25
[2. NON-COMP]:
                     0.65
[3. MED ONLY]:
                     0.22
[4. TEMPORARY]:
                     0.36
[5. PPD SCH LOSS]:
                     0.49
[6. PPD NSL]:
                     0.1
[7. PTD]:
                     0.01
[8. DEATH]:
                     0.05
Macro f1: 0.267
----- Individual Score Comparisons -----
Train Score: 0.9696428571428571
Test Score: 0.44556002044039766
Difference: 0.5240828367024595
----- Accuracy -----
Accuracy Score: 0.44556002044039766
----- Precision -----
[1. CANCELLED]:
                     0.16
[2. NON-COMP]:
                     0.83
[3. MED ONLY]:
                    0.17
[4. TEMPORARY]:
                     0.62
[5. PPD SCH LOSS]:
                    0.45
[6. PPD NSL]:
                     0.05
[7. PTD]:
                     0.0
[8. DEATH]:
                     0.02
Macro precision: 0.288
----- Recall -----
[1. CANCELLED]:
                     0.7
[2. NON-COMP]:
                    0.54
[3. MED ONLY]:
                    0.33
[4. TEMPORARY]:
                    0.26
[5. PPD SCH LOSS]:
                    0.55
[6. PPD NSL]:
                     0.6
[7. PTD]:
                     0.48
```

[8. DEATH]:

Bagging Logistic Regression

```
In [22]: # 13m - 0.372 - overfit by 0.1 diff
base_model_lr = LogisticRegression(multi_class='multinomial', solver='lbfgs'
bagging_model_lr = BaggingClassifier(estimator=base_model_lr, n_estimators=1
bagging_model_lr.fit(X_train, y_train)
bagging_y_pred = bagging_model_lr.predict(X_val)

score_train = bagging_model_lr.score(X_train, y_train)
score_test = bagging_model_lr.score(X_val, y_val)
```

0.81

```
score_model(y_val, bagging_y_pred, score_train, score_test)
        ----- F1 -----
        [1. CANCELLED]:
                               0.28
        [2. NON-COMP]:
                               0.68
        [3. MED ONLY]:
                               0.23
        [4. TEMPORARY]:
                               0.44
        [5. PPD SCH LOSS]:
                               0.49
        [6. PPD NSL]:
                               0.1
        [7. PTD]:
                               0.01
        [8. DEATH]:
                               0.06
       Macro f1: 0.285
       ----- Individual Score Comparisons -----
       Train Score: 0.9571428571428572
       Test Score: 0.47292228003344794
       Difference: 0.48422057710940924
       ----- Accuracy -----
       Accuracy Score: 0.47292228003344794
        ----- Precision -----
        [1. CANCELLED]:
                               0.18
        [2. NON-COMP]:
                               0.86
        [3. MED ONLY]:
                               0.17
        [4. TEMPORARY]:
                               0.65
        [5. PPD SCH LOSS]:
                               0.46
        [6. PPD NSL]:
                               0.06
        [7. PTD]:
                               0.0
        [8. DEATH]:
                               0.03
       Macro precision: 0.301
        ----- Recall -----
        [1. CANCELLED]:
                               0.68
        [2. NON-COMP]:
                               0.56
        [3. MED ONLY]:
                               0.34
        [4. TEMPORARY]:
                               0.33
        [5. PPD SCH LOSS]:
                               0.51
        [6. PPD NSL]:
                               0.6
        [7. PTD]:
                               0.45
        [8. DEATH]:
                               0.84
       Macro recall: 0.539
         Stacking
In [23]: \# 0.440 - LR -> XGB -> MLP w/ a 0.015 difference in scores (3m 55s)
         # 0.425 - LR -> MLP -> XGB w/ a 0.0099 difference in scores (37m)
         # 0.410 - MLP -> XGB -> GBC w/ a 0.011 difference in scores (93m 35s)
         base_models = [
```

12/15/24, 12:02 PM

```
('lr', LogisticRegression(multi_class='multinomial', solver='lbfgs', C=1
    ('xgb', xgb.XGBClassifier(
    n_estimators=110, # Number of trees
    learning_rate=0.2, # Step size shrinkage
   max_depth=7,  # Maximum depth of a tree
random_state=42,  # For reproducibility
    use_label_encoder=False, # Avoid warning for encoding
    eval_metric='mlogloss' # Evaluation metric for multi-class classifica
) )
1
nn = MLPClassifier(hidden_layer_sizes=(64, 32), # Two hidden layers: 64 and
                      activation='relu',
                                                  # ReLU activation function
                      solver='adam',
                                                  # Adam optimizer
                                                  # Regularization term (L2
                      alpha=0.0001,
                      learning_rate_init=0.001, # Initial learning rate
                      max_iter=200,
                                                  # Maximum number of itera
                      random_state=42)
stacked_model = StackingClassifier(estimators=base_models, final_estimator=r
stacked_model.fit(X_train, y_train)
y_pred = stacked_model.predict(X_val)
score_train = stacked_model.score(X_train, y_train)
score test = stacked model.score(X val, y val)
score_model(y_val, y_pred, score_train, score_test)
```

```
----- F1 ------
[1. CANCELLED]:
                      0.3
[2. NON-COMP]:
                      0.82
[3. MED ONLY]:
                      0.17
[4. TEMPORARY]:
                      0.54
[5. PPD SCH LOSS]:
                      0.53
[6. PPD NSL]:
                      0.1
[7. PTD]:
                      0.01
[8. DEATH]:
                      0.06
Macro f1: 0.315
----- Individual Score Comparisons -----
Train Score: 0.8589285714285714
Test Score: 0.5936135371179039
Difference: 0.2653150343106675
----- Accuracy -----
Accuracy Score: 0.5936135371179039
----- Precision -----
                      0.19
                      0.88
```

```
[1. CANCELLED]:
[2. NON-COMP]:
[3. MED ONLY]:
                     0.21
[4. TEMPORARY]:
                      0.68
[5. PPD SCH LOSS]:
                      0.53
[6. PPD NSL]:
                      0.05
[7. PTD]:
                      0.0
[8. DEATH]:
                      0.03
```

Macro precision: 0.321

```
----- Recall -----
[1. CANCELLED]:
                     0.7
[2. NON-COMP]:
                     0.78
[3. MED ONLY]:
                    0.14
[4. TEMPORARY]:
                     0.45
[5. PPD SCH LOSS]:
                   0.53
[6. PPD NSL]:
                     0.64
[7. PTD]:
                     0.45
[8. DEATH]:
                     0.87
```

Macro recall: 0.569

Weighted Averaging

```
In [24]: ## lr_y_pred_f1 = fl_score(y_val, lr_y_pred, average='macro')
         # # dt y pred f1 = f1 score(y val, dt y pred, average='macro')
         # # knn_y_pred_f1 = f1_score(y_val, knn_y_pred, average='macro')
         # mplc y pred f1 = f1 score(y val, mplc y pred, average='macro')
         # # rf_y_pred_f1 = f1_score(y_val, rf_y_pred, average='macro')
         # xgb_y_pred_f1 = f1_score(y_val, xgb_y_pred, average='macro')
         # gbdt_y_pred_f1 = f1_score(y_val, gbdt_y_pred, average='macro')
         # # f1_score(y_actual, y_predicted, average='macro')
```

```
# # Assign weights based on F1 scores
# #weights = [lr y pred f1, dt y pred f1, knn y pred f1, mplc y pred f1, rf
# weights = [mplc_y_pred_f1, xgb_y_pred_f1, gbdt_y_pred_f1]
# weights = np.array(weights) / np.sum(weights) # Normalize weights
# # Make weighted predictions
# # lr_probs = lr_model.predict_proba(X_val)[:, 1]
# # dt probs = decision tree.predict proba(X val)[:, 1]
# # knn probs = knn model.predict proba(X val)[:, 1]
# mplc_probs = mlpc_model.predict_proba(X_val)[:, 1]
# # rf probs = rf model.predict proba(X val)[:, 1]
# xgb_probs = xgb_model.predict_proba(X_val)[:, 1]
# gbdt_probs = gbdt_model.predict_proba(X_val)[:, 1]
# # Aggregate predictions using weights
# weighted_probs = (
                     # weights[0] * lr_probs +
                 # weights[1] * dt probs +
                     weights[2] * knn_probs +
                   weights[0] * mplc_probs +
                    weights[4] * rf probs +
                   weights[1] * xgb_probs +
                   weights[2] * gbdt_probs)
# # Final predictions (threshold = 0.5)
# final_predictions = (weighted_probs >= 0.2).astype(int)
# # Evaluate the ensemble
# final_f1 = f1_score(y_val, final_predictions, average='macro')
# print(f"Weighted Ensemble F1 Score: {final f1:.2f}")
```

5. Kaggle Submission

```
In [25]: # get the model prediction
    y_pred_test = bagging_model_lr.predict(test_data)

In [26]: # # decode the prediction labels back to their original values
    decoded_labels = label_encoder.inverse_transform(y_pred_test)

In [27]: # # combine the prediction values with their claim identifiers into a datafr
    kaggle_submission = pd.DataFrame({"Claim Identifier": test_data.index, "Claim Kaggle_submission.head()
```

Out[27]:		Claim Identifier	Claim Injury Type
	0	6165911	3. MED ONLY
	1	6166141	2. NON-COMP
	2	6165907	2. NON-COMP
	3	6166047	2. NON-COMP
	4	6166102	2. NON-COMP

In [28]: # Compile the resulting dataframe into a csv file named "Kaggle_submission.c
this will be found in the directory the file is currently running from
if a file exists with the same name, it will overwrite it with the new out
kaggle_submission.to_csv("Kaggle_Submission.csv", index=False)