

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

04 02 2004

Bescheinigung

Certificate

Attestati∳₩IPO

REC'D 23 APR 2004

PCT

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

03075331.3

SUBMITTED UK IKANSNII I EU IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; **Im Auftrag**

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Anmeldung Nr:

Application no.:

03075331.3

Demande no:

Anmeldetag:

Date of filing:

04.02.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

CropDesign N.V. Technologiepark 3 9052 Zwijnaarde-Gent BELGIQUE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Plant promoters

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

EP/23.12.02/EP 02080651

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C12N15/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

5

10

15

20

25

30

PLANT PROMOTERS

The present invention relates to the field of plant molecular biology, more particularly to promoter sequences useful for gene expression in plants. The isolation of these promoter sequences from rice and barley, as well as their use for regulating the expression of a gene is disclosed.

Initiation of transcription is generally understood to be the predominant controlling factor in determining expression of a gene. The transcriptional control elements, which may interact with DNA binding proteins, are generally embedded in the sequence 5'-flanking or upstream of the transcribed gene. These DNA sequence elements promote the formation of transcriptional regulatory complexes that either activate or repress the expression of the 3' downstream gene. Therefore these regulatory sequences are called "promoters".

Within the sequence of the promoter, many regulatory sequence elements can be embedded that control the promoter activity. Some of them are called control elements or "boxes" and are recognition sites to which regulatory transcription factors can bind.

Transformation of a DNA sequence into a host cell and expression of a transgene in a host cell, tissue or organism is common practice in recombinant DNA technology. The choice of promoter, operably linked to the transgene, will determine when, where or how strong the transgene is expressed in the host cell or host organism. Frequently those skilled in the art desire to limit the expression of the transformed DNA sequence to a certain time-period, or during certain environmental circumstances, or to a defined tissue or organ of the host, or to a certain expression level. Especially in the field of plant molecular biology, controlled expression of genes in transgenic plants may have several advantages over ubiquitous and constitutive expression and may contribute to obtaining a useful phenotype of the transgenic plant. There is a broad need for divers transcriptional control elements capable of regulating specific expression of genes in plants. It is therefore important that such regulatory elements are isolated and that their specific transcriptional features are characterized.

Known procedures to identify new regulatory elements are based on in silico studies of the genomic sequences that are provided in public databases. However, the determination of the actual location of these elements, using only computer-assisted methods, is highly error prone, even for the best-characterized promoter control elements such as TATA box and transcription

5

10

15

20

25

30

initiation element (INR). Also the determination of the exact prediction of the coding sequence and the correct start codon, using only computer-assisted methods, is error-prone. Visual investigation of the sequence, by the skilled person, can help for defining the position of the coding sequence, but the prediction of the specificity and regulation of the promoter is to date extremely speculative and almost bound to fail.

In silico and in vitro investigation of a promoter, to determine its specificity and/or regulation, can be performed for example by the following steps (i) investigation of the expression of the corresponding mRNA, by Northern blotting, RT-PCR or micro-array etc.; (ii) investigation of the expression of the corresponding protein, by Western blotting or protein analysis etc. (iii) data mining of EST libraries (in silico Northern blot) (iv) expression of a reporter gene under the control of the isolated promoter of interest, in a transgenic organism. The last step is susceptible to give unambiguous data about the expression pattern of a promoter, on different levels such as the type of organism, cell type or tissues type, during the complete life cycle of the organism or under which different conditions.

In biotechnology, the expression of a gene of interest into a transgenic organism can give different results depending of the promoter used. Thus, the choice of an adequate promoter can be critical for obtaining the desired effect in the transgenic organism. Therefore, the identification, isolation and precise characterization of promoters are of great importance in genetic engineering.

In the present invention it is now described how new promoters were isolated and characterized. More particularly, the isolation and characterization of a collection of promoters originating from rice (Oryza sativa) and from Barley (Hordeum vulgare), with various expression patterns, are described. In this invention, the promoters are isolated as DNA regions spanning about 1.2 kb of the sequence upstream of the translation initiation codon (i.e. first ATG), this codon excluded, from various rice or barley genes.

Many of these isolated nucleic acids were not isolated before and/or their sequence, i.e. the functional region that comprised the promoter activity, was not revealed before. Further, for many of these isolated nucleic acids, their functionality and use as a promoter has not been described and/or their precise expression pattern when used as a promoter to drive an operably linked nucleic acid was not described before.

This isolated nucleic acids of approximately 1.2kb are Isolated from the upstream region of the genes and include therefore the 5'UTR of the pre-messenger RNA, the transcription initiation element (INR) and the core or minimal promoter and likely contain most of the critical regulatory elements situated more upstream.

5

10

20

25

30

35

Therefore the sequences as well as fragment thereof are subject of the present invention and these fragments are useful in practicing the methods of the present invention.

Accordingly; in a first embodiment, the present invention provides an isolated nucleic acid, capable of regulating transcription of an operably linked nucleic acid, comprising a sequence or a fragment thereof, said sequence being selected from the group consisting of:

- (a)a nucleic acid comprising the DNA sequence as given in any of SEQ ID NOs 1 to 69 or the complement thereof,
- (b) a nucleic acid specifically hybridizing with the nucleotide sequence as defined in (a),
- 15 (c)a nucleic acid which is diverging, due to the differences between alleles, to a nucleotide sequence as defined in (a) or (b),
 - (d) a nucleic acid as defined in any one of (a) to (c), said nucleic acid interrupted by intervening DNA,
 - (e) a nucleic acid, which is obtainable from plant DNA, said plant DNA comprising a plant gene, which plant gene hybridizes specifically with a sequence as represented by any one of SEQ ID NO 208 to 276;
 - (f) a nucleic acid, which is obtainable from plant DNA, said plant DNA comprising a plant gene, which plant gene is homologues to a sequence as represented by any one of SEQ ID NO 208 to 276, preferably said plant gene is 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% homologous;
 - (g) a nucleic acid, which is obtainable from plant DNA, said plant DNA comprising a plant gene, which plant gene is encoding a protein which is homologous to a protein encoded by any one of the sequences represented by SEQ ID NO 208 to 276, preferably said plant protein is 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% homologous;
 - provided that said isolated nucleic acid is not one of the nucleic acids as deposited in the Genbank database under any of the Genbank Accession numbers which are listed in Table 1.

Regulating transcription comprises increasing or decreasing the level of transcription of a nucleic acid, such as a gene. In a particular embodiment of the invention regulation of expression results in increased transcription of the operably linked nucleic acid. This may result in ectopic expression

and/or overexpression of an operably linked nucleic acid, whereby the level of expression of the operably linked nucleic acid is increased compared to the natural level of expression. This increase of expression level compared to the natural expression level is not necessary throughout the whole organism and at any time, but it can be limited to certain cell types, tissues or organs, or during a certain period of time or in response to certain environmental conditions. Furthermore the results of this regulation of transcription, for example ectopic expression and/or overexpression of a nucleic acid, can be the increased activity of the protein encoded by the operably linked nucleic acid, or alternatively, it can be the reduced activity of the protein encoded by the operably linked nucleic acid. The latter situation will occur when from example the operably linked nucleic acid initiates cosuppression or when the operably linked nucleic acid is an antisense nucleic acid.

The term "operably linked" to a nucleic acid of the present invention means connected in such a way that it can be influenced by the function of the nucleic acid of the present invention. More particularly, "operably linking" according to the present invention means, being controlled by the promoter of the present invention. For the purposes of genetic engineering of a host cell, the promoter of the present invention is introduced into the host cell and it is operably linked to a nucleic acid, which can be an introduced transgene or which can be an endogenous gene from the host.

A fragment as used herein means any part, region or portion of the nucleic acid sequence. Preferably, these fragments contain a certain functional element of the nucleic acid according to the present invention. Such fragments can be identified by standard techniques well known by the skilled person e.g. by the following method. The nucleic acid of the present invention, can be randomly mutated to block the function of certain regulatory element in the nucleic acid. Alternatively, deletion mutants can be made, whereby the nucleic is shortened by for example 10 bp or any multiple of 10bp, starting from the 5' end of the nucleic acid. Subsequently the mutated promoters are operably linked to a reporter gene and the expression pattern in analyses in a host cell. If the mutated version shows a changed expression pattern, than the mutated or deleted portion was responsible for the changed expression pattern. In a particular embodiment of the present invention, such a fragment is a regulatory element or a box, or such fragment is the minimal promoter. With minimal promoter is meant, a smaller fragment of the promoter, which is still capable of promoting the initiation of transcription of the operably linked DNA. In a particular embodiment of the present invention, the fragments as described above are used to make hybrid or chimeric promoters.

5

10

15

20

25

30

35

A nucleic acid sequence as used and described in the present invent is an (isolated) DNA, cDNA, genomic DNA, synthetic DNA, or RNA wherein T is replaced by U.

Differences between alleles are naturally occurring differences between the genes of different plants of the same species. These differences can be substitution and/or addition and/or deletion of 1, 2, 3 or more base pairs.

Nucleic acid molecules as defined in the current invention can be interrupted by intervening sequences. With "intervening sequences" is meant any nucleic acid sequence which disrupts the sequence of the present invention or which disrupts the functional format of a nucleic acid molecule according to the present invention, for example disrupting the operably linkage of the operably linked nucleic acid. Removal of the intervening sequence may restore the sequence or the functional format thereof. Examples of intervening sequences comprise introns, mobilizable nucleic acids sequences such as transposons or nucleic acid tags such as e.g. a T-DNA or nucleic acids that can be mobilized as the result of a recombination event.

The present invention also encompasses promoters of homologous plant gene. These promoters can be isolated from a plant DNA that comprises a sequence which sequence hybridises with the nucleic acid sequence which is naturally under the control of a promoter of the present invention, meaning the sequences as presented by any of SEQ ID NO 208 to 276 or fragments thereof. These promoters of homolgous genes of the same plant species or from different plant species are also useful in practicing the methods according to the invention. The term "hybridisation" as defined herein is a process wherein substantially homologous complementary nucleotide sequences anneal to each other. Tools in molecular biology relying on such a process include the polymerase chain reaction (PCR; and all methods based thereon), subtractive hybridisation, random primer extension, nuclease S1 mapping, primer extension, reverse transcription, cDNA synthesis, differential display of RNAs, and DNA sequence determination, Northern blotting (RNA biotting), Southern blotting (DNA blotting). The hybridisation process can also occur with one of the complementary nucleic a cids immobilised to a matrix such as magnetic beads, Sepharose beads or any other resin. Tools in molecular biology relying on such a process include the isolation of poly (A+) mRNA. The hybridisation process can furthermore occur with one of the complementary nucleic acids immobilised to a solid support such as a nitro-cellulose or nylon membrane or immobilised by e.g. photolithography to, for example, a siliceous glass support (the latter known as nucleic acid arrays or microarrays or as nucleic acid chips). Tools in molecular biology relying on such a process include RNA and DNA gel blot analysis, colony hybridisation,

5

10

15

20

25

30

35

plaque hybridisation, in situ hybridisation and microarray hybridisation. In order to allow hybridisation to occur, the nucleic acid molecules are generally thermally or chemically denatured to melt a double strand into two single strands and/or to remove hairpins or other secondary structures from single stranded nucleic acids. The stringency of hybridisation is influenced by conditions such as temperature, salt concentration and hybridisation buffer composition. High stringency conditions for hybridisation include high temperature and/or low sodium/salt concentration (salts include the sodium as for example in NaCl and Na₃-citrate) and/or the inclusion of formamide in the hybridisation buffer and/or lowering the concentration of compounds such as SDS (sodium dodecyl sulphate detergent) in the hybridisation buffer and/or exclusion of compounds such as dextran sulphate or polyethylene glycol (promoting molecular crowding) from the hybridisation buffer. Conventional hybridisation conditions are described in, for example, Sambrook (2001) Molecular Cloning: a laboratory manual, 3rd Edition Cold Spring Harbor Laboratory Press, CSH, New York, but the skilled craftsman will appreciate that numerous different hybridisation conditions can be designed in function of the known or the expected homology and/or length of the nucleic acid sequence. Specifically hybridising refers to hybridising under stringent conditions, i.e. at a temperature of 60°C followed by washes in 2XSSC, 0.1XSDS, and 1X SSC, 0.1X SDS. Sufficiently low stringency hybridisation conditions are particularly preferred for the isolation of nucleic acids heterologous to the DNA sequences of the invention defined supra. Elements contributing to heterology include allelism, degeneration of the genetic code and differences in preferred codon usage.

The invention also relates to a nucleic acid molecule of at least 15 nucleotides in length hybridizing specifically with any of the nucleic acids of the invention. The invention also relates to a nucleic acid molecule of at least 15 nucleotides in length specifically amplifying a nucleic acid of the invention by polymerase chain reaction.

According to another embodiment of the present invention there is also provided the promoters of homologous plant gene. These promoters can be isolated from a plant DNA that comprises a sequence which is homologous to the nucleic acid sequence which is naturally under the control of a promoter of the present invention, meaning homologous the sequences as presented by any of SEQ ID NO 208 to 276 or fragments thereof. These promoters of homologous genes, originating from the same or different plant species, are useful in practicing the methods according to the invention. Methods for the search and identification of such homologues genes, would be well within the realm of a person skilled in the art. Such methods involve alignment and comparison sequences using softwares or algoritms such as GAP, BESTFIT, BLAST, FASTA and TFASTA.

5

10

15

20

25

30

35

GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Center for Biotechnology Information.

In a particular embodiment of the present invention, the homologous genes as described above belong to the same gene family as the gene corresponding to the any of the sequences SEQ ID NO 208 to 276. The analysis of a gene family can be carried out by sequence similarity analysis. To perform this analysis one can use standard programs for multiple alignments e.g. Clustal W. This analysis can be done on the full-length sequence or based on a comparison of certain regions such as conserved domains.

Within the same gene family, the promoters may have sufficient sequence homology so to search for homologous promoters immediately with the promoter sequence according to the present invention, i.e. SEQ ID NO 1 to 69, instead of with the sequence of the gene naturally controlled by these promoters, i.e. SEQ ID NO 208 to 276. This method is particularly useful to isolated promoters of the same pant species, but a different variety.

The genome sequences of *Arabidopsis* and rice are now available in public databases such as Genbank and other genomes are currently being sequenced. Therefore, it is expected that as more sequences of genomes of other plants will become available, many other promoters of homologues genes will be identifiable by sequences alignment with any one of SEQ ID NO 208 to SEQ ID NO 276. Therefore the skilled person will be in the possibility to find the promoters of the homologous genes from other plant species. The promoters of homologues genes of crop plants are especially useful for practicing the methods of the present invention in crop plants.

Alternatively or additionally, homologous genes may be found, based on the sequence comparison of the proteins of fragments thereof, which they encode, with the protein sequence encoded by the nucleic acid sequences represented by any of SEQ ID 208 to 276. "Homologues" of protein encoded or partially encoded by any of the sequences SEQ ID NO 208 to 276 or fragments thereof, encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to that encoding protein corresponding to SEQ ID NO 208 to 276 and having similar biological and functional activity as the unmodified protein from which they are derived. This method for finding promoters, allows

identification and isolation of promoters of the same gene in relatively distant organism, meaning organisms having large genetic divergence due to evolution. Therefore this method allows the identification of promoters of orthologous and paralogous to nucleic acids as represented by any of SEQ ID NO 208 to 276.

5

10

15

20

25

30

35

Two special forms of homology, orthologous and paralogous, are evolutionary concepts used to describe ancestral relationships of genes. The term "paralogous" relates to gene-duplications within the genome of a species leading to paralogous genes. The term "orthologous" relates to homologous genes in different organisms due to ancestral relationship. The term "homologues" as used herein also encompasses paralogues and orthologues of the proteins useful in the methods according to the invention.

The gene or protein homologues useful in the method according to the invention have at least 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 56, 58, % sequence identity or similarity (functional identity) to the gene or protein corresponding to any of SEQ ID NO 208 to 276, alternatively at least 60, 62, 64, 66, 68,% sequence identity or similarity to the gene or protein corresponding to any of SEQ ID NO 208 to 276, or alternatively at least 70, 72, 74, 76, 78% sequence identity or similarity to the gene or protein corresponding to any of SEQ ID NO 208 to 276. Typically, the homologues have at least 80, 82, 84% sequence identity or similarity, preferably at least 85, 86, 88% sequence identity or similarity, further preferably at least 90, 92, 94, 96, 98% sequence identity or similarity the gene or protein corresponding to any of SEQ ID NO 208 to 276, most preferably at least 95% sequence identity or similarity to the gene or protein corresponding to any of SEQ ID NO 208 to 276.

These levels homologies can be calculated by using a pairwise alignment such as the program Align X (December 8, 1999) a component of the vector NTI suite 5.5 (Informax, Inc.) using the standard parameters or using the parameters gap opening penalty 15 and gap extension penalty 6.66.

It is obvious for the person skilled in the art that the promoters according to the present invention, i.e. SEQ ID NO 1 to 69 or the promoters of homologous genes, can be used for the regulation of expression of an operably linked gene as such, in part, or as comprised into a larger DNA fragment. A promoter sequence according to the invention cannot easily be defined in number of basepairs and therefore the present invention extends to nucleic acids comprising a sequence essentially similar to as sequence as presented by any of SEQ ID NO 1 to 69 or a part thereof. However, some sequences comprising SEQ ID NO 1 to 69 or a part thereof are already known,

8

5

10

15

20

25

30

35

such as the very large BAC clones available in the public Genbank databases, or such as the cloned genes available in the Genbank database. It is to be understood that these publicly available sequences are not part of the invention, since these large sequences, or the cloned genes cannot be functional for regulation of the expression of a nucleic acid, when said nucleic acid is operably linked to those public (large) sequences.

Further the present invention encompasses an isolated nucleic acid according as mentioned above, capable of regulating transcription of an operably linked nucleic acid in a plant.

The term "plant" as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and plant cells, tissues and organs. The term "plant" also Therefore encompasses suspension cultures, embryos, meristematic regions, callus tissue, leaves, seeds, roots, shoots, gametophytes, sporophytes, pollen, and microspores. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp, Areca catechu, Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp, Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chaenomeles spp.,Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Diheteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehrartia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalyptus spp., Euclea schimperi, Eulalia villosa, Fagopyrum spp., Feijoa sellowiana, Fragaria spp., Flemingia spp, Freycinetia banksii, Geranium thunbergii, Ginkgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemarthia altissima, Heteropogon contortus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hyperthelia dissoluta, Indigo incarnata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesii, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago sativa, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia s pp., Phaseolus s pp., Phoenix c anariensis, Phormium cookianum, Photinia

spp., Picea glauca, Pinus spp., Pisum sativum, Podocarpus totara, Pogonarthria fleckli, Pogonarthria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys verticillata, Sequoia sempervirens. Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp.Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, brussel sprout, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugarbeet, sugar cane, sunflower, tomato, squash, and tea, trees and algae amongst others. According to a preferred feature of the present invention, the plant is a monocotyledonous plant, further preferably a cereal, most preferably a plant selected from rice, maize, wheat, millet, barley, rye, oat.

15

20

25

35

10

5

Further the invention encompasses the isolated nucleic acid as mentioned above, wherein the Isolated nucleic acid is a promoter.

Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of eukaryotic genes, with or without the classical TATA box, with or without a CCAAT box sequence and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner.

The term "promoter" may also include the transcriptional regulatory sequences of a classical prokaryotic gene, in which case it may include a -35 box sequence and/or a -10 box transcriptional regulatory sequences.

The term "promoter" is also used to describe a synthetic or fusion molecule, or derivative capable of regulating transcription of a nucleic acid molecule in a cell, tissue or organ.

In the context of the present invention, the promoter preferably is a plant-expressible promoter 30 sequence. Promoters, however, that also function or solely function in non-plant cells such as bacteria, yeast cells, insect cells and animal cells are not excluded from the invention. By "plantexpressible" is meant that the promoter sequence, including any additional regulatory elements added thereto or contained therein, is at least capable of regulating expression of an operably linked DNA in a plant cell, tissue or organ.

In the present invention, the particular expression patterns of the promoters according to the present invention are revealed and therefore contribute to the art by providing tools to specifically regulate transcription of genes. Accordingly, the invention encompasses, an isolated nucleic acid as mentioned above, capable of regulating transcription of an operably linked DNA sequence in one or more particular cells, tissues or organs of a plant. In a more specific embodiment of the invention the expression is regulated in the seed, embryo, scutellum, aleurone, endosperm, leaves, flower, calli, meristem, discriminating centre, shoot, shoot meristem and root.

A discriminating centre includes the meristematic zone, from where root and shoot originate.

10

15

5

Distinct classes of promoters can be defined. There are promoters that are active in all parts of the organism, and not much responsive to regulations by endogenous or exogenous signals, such as aging, stresses, nutritional status etc. Alternatively, there are regulated promoters that are active only in specific organs, tissues or cell types of the organism, and/or sensitive to regulation signals. Such regulation of promoters can be on different levels and more particularly on the level of specificity of expression (spatial specificity) or on the level of specificity of regulation (temporal specificity). Some promoters are regulated on only one of these levels in a certain tissue or on both levels, for example in a certain issue under certain circumstance. Even more, one promoter can be regulated only on one level in one tissue and on both levels in another tissue.

20

Therefore, included within the scope of the term "promoters" are regulated promoters. Examples of regulated promoters are cell-specific promoter sequences, tissue-specific promoter sequences, organ-specific promoter sequences, cell cycle specific gene promoter sequences, inducible promoter sequences and constitutive promoter sequences that have been modified to confer expression in a particular part of the plant at any one time, such as by integration of said constitutive promoter within a transposable genetic element (*Ac, Ds, Spm, En*, or other transposon).

25

Alternatively and/or additionally, the expression is regulated ubiquitously throughput the whole plant. Alternatively and/or additionally, the expression is constitutive. The skilled craftsman will understand that a "constitutive promoter" is a promoter that is transcriptionally active in an organism, preferably a plant, during most, but not necessarily all phases of its growth and development. Similarly, the skilled craftsman will understand that a "ubiquitous promoter" is a promoter that is transcriptionally active throughout most, but not necessarily all parts of an organism, preferably a plant.

35

30

5

10

20

35

The strength of a promoter is also an important parameter when selecting a suitable promoter for regulating expression of a gene. Depending on the type of gene and/or the type of effect of expression, one my want to choose a weak or a strong promoter. Accordingly, the present invention relates to the nucleic acids as described above regulating the expression of the operably linked nucleic acid in a weak or in a strong manner. For example a standard of a strong promoter active in plant is CaMV 35S promoter.

The term "cell-specific" shall be taken to indicate that expression is predominantly in a particular cell or cell-type, preferably of plant origin, albeit not necessarily exclusively in said cell or cell-type. Similarly, the term "tissue-specific" shall be taken to indicate that expression is predominantly in a particular tissue or tissue-type, preferably of plant origin, albeit not necessarily exclusively in said tissue or tissue-type.

Similarly, the term "organ-specific" shall be taken to indicate that expression is predominantly in a particular organ, preferably of plant origin, albeit not necessarily exclusively in said organ.

Those skilled in the art will be aware that an "inducible promoter" is a promoter the transcriptional activity of which is increased or induced in response to a developmental, chemical, environmental, or physical stimulus.

Alternatively or additionally, a promoter can be regulated by differential methylation of its DNA sequences. Different sites of methylation are described and these different sites are each differentially regulated by a set of different enzymes. Again these enzymes are differentially regulated during development of the organism, resulting in a very specific and dynamic mechanism to control promoter activity.

Operably linking a nucleic acid molecule under the regulatory control of a promoter sequence, or in operable connection with a promoter sequence, means positioning said nucleic acid molecule such that expression is controlled by the promoter sequence. A promoter is positioned upstream, or at the 5'-end, and comprises sequences that are in front of the start site of transcription, of the nucleic acid molecule, which it regulates. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control may be defined by the positioning of the element in its natural setting (i.e., the gene from which it is derived). Again, as is known in the art, some variation in this distance can also occur.

Promoters may contain additional copies of one or more specific regulatory elements, to further enhance expression and/or to alter the spatial expression and/or temporal expression of a nucleic

5

10

15

20

25

acid molecule to which it is operably connected. Such regulatory elements may be placed adjacent to regulatory sequences (e.g. regulatory boxes or minimal promoter) of a heterologous promoter, to form a hybrid promoter capable of regulating expression of a nucleic acid molecule and combining the functional properties of its composing fragments. Further, functional fragments of the promoters of the present invention, for example some regulatory boxes or the minimal promoters, can be placed in the background of another promoter to form a hybrid promoter.

Accordingly, the invention further extends to the isolated nucleic acid as mentioned above, wherein the isolated nucleic acid is a hybrid promoter.

In a particular embodiment of the invention, the hybrid promoter comprises a minimal promoter of one promoter and one or more regulatory element(s) of another promoter, at least one of these promoters being a promoter of the present invention. One example of such a hybrid promoter is, the minimal promoter of a strong constitutive promoter, such as CaMV35S promoter, and the regulatory elements of the promoter of the present invention. The minimal promoter, or core promoter is comprising the minimal sequences to promote expression of a gene. For example the minimal promoter comprises a TATA box and a transcription initiation site. Another example of a hybrid promoter according to the present invention is a promoter consisting of fragments if a sequence as given in any of SEQ ID NO 1 to 69 and at least one fragment of a strong constitutive promoter sequence such as a ubiquitin promoter.

A further embodiment of the invention encompasses a method for conferring tissue-specificity, and/or constitutive expression to another promoter sequences, comprising the fusion of a promoter according to the present invention or a fragment thereof, to a second promoter sequence normally not exhibiting said tissue specificity and/or constitutive expression. Such modifications and fusions can be achieved by routine experimentation by those skilled in the art.

Further, the invention encompasses a genetic construct comprising a nucleic acid sequence of the present invention as described above. In one particular embodiment, the invention encompasses a genetic construct, comprising a nucleic sequence as represented by any of SEQ ID NO 1 to 69, or a fragment thereof, said isolated nucleic acid being capable of regulating transcription of an operably linked nucleic acid.

Further, the invention relates to a genetic construct as mentioned above comprising

(a) said nucleic acid sequence capable of regulating transcription of an operably linked nucleic acid

30

10

15

20

25

30

35

- (b) an operably linked nucleic acid sequence
- (c) a 3' transcription terminator

A genetic construct encompasses a nucleic acid molecule that that has been manipulated or that is made by genetic engineering.

According to a more particular embodiment of the invention, the genetic construct as mentioned above is a plant expression vector.

With "vector" is meant a DNA sequence which can be introduced in an organism by transformation and can be stably maintained in said organism. Vector maintenance is possible in e.g. cultures of *Escherichia coli*, *A. tumefaciens*, *Saccharomyces cerevisiae* or *Schizosaccharomyces pombe*. Other vectors such as phagemids and cosmid vectors can be maintained and multiplied in bacteria and/or viruses. Vector sequences generally comprise a set of unique sites recognized by restriction enzymes, the multiple cloning site (MCS), wherein one or more non-vector sequence(s) can be inserted. "Expression vectors" form a subset of vectors which, by virtue of comprising the appropriate regulatory sequences enabling the creation of an expressible format for the inserted non-vector sequence(s), thus allowing expression of the protein encoded by said non-vector sequence(s). Expression vectors are known in the art enabling protein expression in organisms including bacteria (e.g. *E. coli*), fungi (e.g. *S. cerevisiae*, *S. pombe*, *Pichia pastoris*), insect cells (e.g. baculoviral expression vectors), animal cells (e.g. COS or CHO cells) and plant cells (e.g. potato virus X-based expression vectors, see e.g. Vance et al. 1998 – WO 98/44097).

Typically, a plant expression vector according to the present invention is to be transformed in plants to achieve a certain effect in the transformed plant, for example the expression of a nucleic acid operably linked to the introduced promoter. Typically, a plant expressible vector according to the present invention, comprises next to the promoter according to the present invention, further elements necessary to successfully achieve transformation and to successfully achieve the objective of introducing the promoter of the present invention into the plant examples of such further elements are a selectable marker, a screenable marker, T-DNA for stable integration of the introduced nucleic acids, origin of replication, operably linked nucleic acids, 5' untranslated regions, 3' untranslated regions comprising 3' transcription terminator etc.

As used herein, the term "selectable marker gene" or "selectable marker" or "marker for selection" includes any gene which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells which are transfected or transformed with a gene construct of the invention or a derivative thereof. Suitable selectable marker genes contemplated herein

5

10

15

20

25

30

include the ampicillin resistance (Amp'), tetracycline resistance gene (Tc'), bacterial kanamycin resistance gene (Kan'), phosphinothricin resistance gene, neomycin phosphotransferase gene (nptll), hygromycin resistance gene, β-glucuronidase (GUS) gene, chloramphenicol acetyltransferase (CAT) gene, green fluorescent protein (gfp) gene (Haseloff et al, 1997), and luciferase gene, amongst others.

"Operably linked" refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences. In case the control sequence is a promoter, it is obvious for a skilled person that double-stranded nucleic acid is preferably used. The term "terminator" refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription. Terminators are 3'-non-translated DNA sequences containing a polyadenylation signal, which facilitates the addition of polyadenylate sequences to the 3'-end of a primary transcript. Terminators active in cells derived from viruses, yeasts, moulds, bacteria, insects, birds, mammals and plants are known and described in the literature. They may be isolated from bacteria, fungi, viruses, animals and/or plants.

Examples of terminators particularly suitable for use in the gene constructs of the present invention include the *Agrobacterium tumefaciens* nopaline synthase (NOS) gene terminator, the *Agrobacterium tumefaciens* octopine synthase (OCS) gene terminator sequence, the Cauliflower mosaic virus (CaMV) 35S gene terminator sequence, the *Oryza sativa* ADP-glucose pyrophosphorylase terminator sequence (t3'Bt2), the *Zea mays* zein gene terminator sequence, the *rbcs-1A* gene terminator, and the *rbcs-3A* gene terminator sequences, amongst others.

Further the present invention encompasses a host cell containing an isolated nucleic acid molecule according to the invention and as described above or a genetic construct as described above. In a particular embodiment, the host a bacterial cell, insect, fungal, plant or animal cell.

According to another embodiment of the invention, there is provided a transgenic plant containing an isolated nucleic acid or a genetic construct as mentioned above.

As stated previously "plant" as used herein means encompasses whole plants, ancestors and progeny of the plants and plant parts, plant cells, tissues and organs. Preferred plants are also described above.

The invention further extends to harvestable parts of said transgenic plants, such as seeds, leaves, fruits, stem cultures, rhizomes, flowers, roots, tubers and bulbs. Also the invention extends to the progeny derived from any of the plants or plant parts thereof according to the present invention.

Preferably, in the transgenic plant the nucleic acid of the invention is stably integrated into the genome of said plant cell.

The invention also encompasses a method for regulating the expression of a nucleic acid, comprising operably linking said nucleic acid sequence to an isolated nucleic acid as described above.

More specifically, in one embodiment, the invention provides a method for regulating the expression of a nucleic acid, comprising operably linking said nucleic acid sequence to a promoter comprising a nucleic acid sequence as presented in any of SEQ ID NO 1 to SEQ ID NO 69, or a fragment thereof.

Further, according to a preferred embodiment, the expression of the operably linked nucleic acid is regulated in a plant.

Further there is provided a method, wherein the expression of said nucleic acid is regulated in one or more particular cells, tissues or organs of a plant.

According to yet another embodiment, the invention provides a method for the production of a transgenic plant, comprising the introduction into the plant of an isolated nucleic acid or a genetic construction mentioned above.

The invention also relates to a method for the production of a transgenic plant, comprising the transformation of a plant cell or plant tissue and further comprising regenerating a plant from said plant cell or plant tissue. The plants may also be able to grow, or even reach maturity or even to set seeds or even progeny is produced from these seeds or even further, that progeny is fertile. Alternatively or additionally, the transformed and regenerated plants may also produce progeny by non-sexual propagation such as cloning, grafting.

30

15

20

5

10

15

20

25

30

35

Accordingly, the invention provides a method for the production of a transgenic plant, comprising introduction into a plant a genetic construct comprising a nucleic acid sequence as presented in any of SEQ ID NO 1 to SEQ ID NO 69, or a fragment thereof.

The person skilled in the art will recognize that the provision of the sequences SEQ ID NO 1 to 276, readily makes available the tools to isolate useful promoter with homologous sequence to any of SEQ ID ID NO 1 to 69 or to isolate promoters from genes that are homologous to any of SEQ ID NO 208 to 276. Therefore the present invention also encompasses a method for isolating a 5' regulatory sequence, capable of regulating expression of an operably linked nucleic acid, comprising the step of screening nucleic acid sequences for sequences that are homologous to any of the sequences represented by SEQ ID NO 1 to 69 or SEQ ID NO 208 to 276.

Further the invention relates to a method as described above, comprising the additional steps chosen from the group consisting of

- (a) Using the identified homologues sequence as described above to screen a genomic library prepared from the organism of origin of said homologous sequence, identifying the transcription initiation site on the identified the genomic DNA and/or
- (b) Finding the translation initiation site on the genomic sequence as available in silico, and further designing specific primers for amplification of DNA region 5' upstream of said transcription initiation site.

Also the invention relates to the use of an isolated nucleic acid as mentioned above to regulate the expression of an operably linked nucleic acid.

The present invention extends to the identification of regulatory proteins that are involved in the regulation of the activity of the promoters according to the present invention. Such identification can be achieved by using a One hybrid system. In such a one hybrid system the sequences according to any one of SEQ ID NO 1 to 69 are operably linked to the GAL transcription activator and transfected to a yeast cell culture. That yeast cell culture is again transformed with a library of constructs encoding candidate regulatory factors. In the yeast cell, which contains the matching regulatory factor, the promoter will become active and a reporter gene will be transcribed. Subsequently, the coding sequence for the regulatory factor of the promoter can be isolated from the yeast cell and further characterized. The one hybrid system (Li JJ and Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system, Science. 1993 Dec 17;262(5141):1870-4) is a variant of original two hybrid system described by Chien et

5

10

15

20

25

30

al. (The two-hybrid system: a method to identify and clone genes for proteins that Interact with a protein of Interest, Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578-82).

According to yet another embodiment of the present invention, there is provided a computer readable medium having stored thereon computer executable instructions for performing a method comprising: a) receiving data on expression in a cell of a plant of a nucleic acid molecule having at least 70% sequence identity to a nucleotide sequence comprising any of SEQ ID NO 208-276; and b) identification of the translation initiation site of these nucleic acid molecules © identification of the upstream nucleic cid region, comprising the promoter of these nucleic acid molecules. Also there is provided by the present invention a computer-readable medium having stored thereon a data structure comprising sequence data for at least one nucleic acid molecule having at least 70% nucleic acid sequence identity to a nucleotide having a nucleotide sequence as set forth in any of SEQ ID NO. 1 to 276 or a nucleotide sequence complementary thereto; and optionally a module receiving the nucleic acid molecule sequence data, which compares the nucleic acid molecule sequence data to a least one other nucleic acid sequence.

The present invention will now be described with reference to the following figures in which:

Figure 1. shows a schematic representation of a promoter. Regulatory elements (boxes), can be for example responsive for tissue specificity and spatio-temporal activity. The minimal promoter or core promoter, including an eventual TATA box, is the place where the RNA polymerase II is fixed. The transcription initiation element (INR) includes the initiation start. The 5' untranslated region (5'UTR) will be present in the transcribed pre-messenger RNA and eventually in the mRNA but not in the translated protein. The translation initiation codon is presented as ATG.

Figure 2 shows a binary vector, suitable for the recombination cloning of the β-glucuronidase gene under the control of any of the promoters of the present invention and the T-zein - T-rbcS-deltaGA double terminator sequence, via the Gateway recombination cassette. This vector is then suitable for the transformation and the expression of the promoter-GUS cassette in plants. This vector contains a T-DNA derived from the Ti Plasmid, limited by a left border (LB repeat, LB Ti C58) and a right border (RB repeat, RB Ti C58). From the left border to the right border, this T-DNA contains: a 'constitutive promoter – selectable marker gene – terminator' cassette for antiblotic selection of transformed plants; a 'constitutive promoter – s creenable marker gene – terminator' cassette for visual screening of transformed plants; the Gateway LR recombinantion cassette, containing a chloramphenicol resistance gene and the ccdB suicide gene for counter selection of non-recombined plasmids, were the promoter according to the present invention will

5

15

25

30

be inserted; the Escherichia coli b-glucuronidase coding sequence, interrupted by the second intron of the potato light-inducible tissue-specific ST-LS1 gene and the zein and rbcS-deltaGA double terminator. This vector also contains an origin of replication from pBR322 for bacterial replication and a selectable marker (Spe/SmeR) for bacterial selection with spectinomycin and streptomycin.

Figure 3 shows the results of the GUS staining of plants or plant parts and shows the activity of the promoter PRO0005 as represented by SEQ ID NO 1;

Figure 4 shows the expression pattern of PRO0058 as represented by SEQ ID NO 8;

Figure 5 shows the expression pattern of PRO0061 as represented by SEQ ID NO 9;

Figure 6 shows the expression pattern of PRO0063 as represented by SEQ ID NO 10 calli (A) and plant parts, young leaves, old leaves and seeds of A plants (B) are shown, there is expression in young tissues;

Figure 7 shows the expression pattern of PRO0081 as represented by SEQ ID NO 14, the picture of a positive C plant having expression in the shoot, is shown;

Figure 8 shows the expression pattern of PRO0087 as represented by SEQ ID NO 15, endosperm specific expression is visible;

Figure 9 shows the expression pattern of PRO0095 as represented by SEQ ID NO 17, expression in the embryo of the seed is visible;

Figure 10 shows the expression pattern of PRO0111 as represented by SEQ ID NO 23, , expression in root and more particularly in meristem, is visible;

Figure 11 shows the expression pattern of PRO0116 as represented by SEQ iD NO 24, weak constitutive and/or weak expression in the meristem is visible;

Figure 12 shows the expression pattern of PRO0117 as represented by SEQ ID NO 25, expression in endosperm is visible;

Figure 13 shows the expression pattern of PRO0123 as represented by SEQ ID NO 27, strong shoot specific expression is visible;

Figure 14 shows the expression pattern of PRO0170 as represented by SEQ ID NO 35, strong constitutive expression is visible (A) are B plants, (B) are a old and young leaves and seeds from A plants and (C) are calli;

Figure 15 shows the expression pattern of PRO0171 as represented by SEQ ID NO 36, constitutive expression is visible and

Figure 16 shows the expression pattern of PRO0173 as represented by SEQ ID NO 37, constitutive or shoot specific expression is visible;

5

10

15

Example 1. Identification and isolation of the promoters

Results of the expression-pattern of these newly isolated promoters are represented in Table 1.

Table 1: list of promoters isolated and characterised in the present invention. The promoter sequences are given a SEQ ID NO and a promoter number (PRO NO). The coding sequence which is controlled by the promoter is annotated by its gene name. A published sequence that contains the sequence of the promoter or that contains the closest variant of the promoter of the present invention is named by its Genbank accession number (gene/BAC, Genbank). Sequences for which such a BAC or gene Genbank accession number is not available are cloned via Genome walking and constitute a sequence which is not part of a published sequence. Also the length of the promoter sequence is given. The TC (tentative contig) number is the accession number from the TIGR rice transcribed sequence database (http://www.tigr.org/tdb/e2k1/osa1/) The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850), that refers to the transcribed sequence that is naturally under the control of the corresponding promoter of the present invention. Said transcribed regions can be sequence predictions based on contig building from all known EST, plus known cDNA, plus reconstructed mRNA from gene sequences plus translations of proteins. The TC number, and the sequence deposited hereunder, is useful to position on the genome a gene of interest and Therefore also its promoter.

SEQ	PRO NO	Gene name	Expression	TC NO	Genbank	length
ID						
NO						
1	PRO0005	putative beta-amylase	scutellum	TC90358	AC022457	1215
2	PRO0012	lipase (putative)	not detected	TC83463	AP001633	1188
3	PRO0014	transferase (putative)	not detected	TC84853 + TC90672	AP002482	889
4	PRO0016	peptidyl prolyl cis-trans lsomerase (putative)	not detected	TC52979	AP000559	1492
5	PRO0019	unknown	not detected	TC53511 .	AP003105	1217
6	PRO0020	prp protein (putative)	not detected	TC45098	AP001383	1215
7	PRO0029	noduline (putative)	not detected	TC39230	AP002747	1259
8	PRO0058	proteinase inhibitor Rgpi9	seed	TC83117	AF044059	1301
9	PRO0061	beta expansine	weak in	TC89913	AC020666	1243

		EXPB9	young			
			flowers			
0	PRO0063	structural protein	young .	TC89985	AP001278	1019
			tissues +			
			calli +			
			embryo			
1	PRO0069	xylosidase (putative)	not detected	TC48746	AP002538	1144
2	PRO0078	CBP80	to come	TC82961+TC956	AAAA01015	1178
				21	493+AAAA0	
•					1017897	
13	PRO0079	starch branching	not detected	TC52500	D10838	1204
		enzyme I				
14	PRO0081	putative caffeoyl-CoA	shoot	TC89891	AP000364	1212
		3-O-methyltransferase				
15	PRO0087	prolamine RM9	strong in	TC82719	none	1204
•			endosperm			
16	PRO0092	allergen RA5	to come	TC62788	AP003963	1242
17	PRO0095	putative methionine	embryo	TC89883+TC842	AC027133	1216
		aminopeptidase		01 (likely) +		
				TC89883 (likely)		
18	PRO0098	ras-related GTP	not detected	TC56737	AP003686	1229
		binding protein				
19	PRO0104	beta expansine	to come	TC63273	AY039023	1294
		EXPB1				
20	PRO0105	Glycine rich protein	not detected	TC63395	AC091090	1343
21	PRO0108	metallothionein like	not detected	TC56720	AL731784	1283
		protein (putative)				
22	PRO0109	metallothioneine	not detected	TC56718	AL731784	1208
		(putative)				
23	PRO0111	uclacyanin 3-like	weak	TC90434	AJ307662	1237
		protein	discrimination			
			n centre /			
			shoot			
			meristem			
<u> </u>			21			

24	PRO0116	26S proteasome	very weak	TC83072	AP000969	1100
		regulatory particle	meristem			
		non-ATPase subunit	specific			
		11				
25	PRO0117	putative 40S ribosomal	weak in	TC90038	AC090871	1216
		protein	endosperm			
26	PRO0122	chlorophyll a/b-binding	to come	TC56736	AP004700	1210
		protein presursor				
		(Cab27)				
27	PRO0123	putative	strong	TC89839	AL606456	1179
		protochlorophyllide	leaves			
		reductase				
28	PRO0131	GOS9	not detected	TC61377	X51909	1226
29	PRO0138	cyclin A2	not detected	TC60065	AP002481	1196
30	PRO0139	Cyclin D2	to come	NO TC	AAAA01016	1252
					424	
31	PRO0140	Cyclin D3	to come	NO TC	AL607098	1307
32	PRO0156	HVA22 homologue	not detected	TC85840	AP002899	1274
ĺ		(putative)				
33	PRO0157	EL2	to come	TC65908	AC113930	1241
34	PRO0169	aquaporine	to come	TC56634	AP005108	1267
35	PRO0170	High mobility group	strong	TC89846	AP004004	1130
		protein	constitutive			
36	PRO0171	reversibly glycosylated	weak	TC82935	AC090874	1230
		protein RGP1	constitutive			
37	PRO0173	cytosolic MDH	shoot	TC82977	AC037425	1234
38	PRO0176	CDPK7	to come	TC90377	AL662987	1314
39	PRO0177	Cdc2-1	to come	TC63522	AP004765	1087
40	PRO0197	sucrose synthase 3	not detected	TC56770	AP004988	704
41	PRO0198	OsVP1	not detected	TC64259	AP003436	1121
42	PRO0200	OSH1	to come	TC64419	D16507	1042
43	PRO0208	putative chlorophyllase	to come	NO TC	AC027658	1216
44	PRO0210	OsNRT1	to come	TC91931	AAAA01004	2559

	[·			908	
5	PRO0211	EXP3	to come	TC65369	AAAA01011 511	1248
6	PRO0216	phosphate transporter OjPT1	to come	TC90666	AC025907	1186
7	PRO0220	RFL	to come	TC96414	AF397034	1221
8	PRO0009	putative cellulose	weak in	TC83635	AC022457	1038
		synthase	roots			
19	PRO0075	prolamine 10 Kda	strong in endosperm	TC82859	AF294580	838
50	PRO0076	allergen RA2	strong in endosperm	TC89681+TC896 80	D11434	978
51	PRO0110	RCc3	strong root	TC89946	AC037426	1264
52	PRO0133	chitinase Cht-3	very weak meristem specific	TC85888	D16223	1808
53	PRO0141	cyclophyllin 2	shoot and seed	TC89848	L29469	1139
54	PRO0091	prolamine RP5	strong in endosperm	TC89670	AF156714	1052
55	PRO0001	Metallothionein Mte	scutellum +	TC82827	AF048750	883
56	PRO0077	prolamine RP7	strong in endosperm	TC89636	AF194115	688
57	PRO0080	Metallothioneine-like ML2	scutellum + calli	TC82749	AP003197	1258
58	PRO0090	prolamine RP6	strong endosperm	TC89674	X65064	668
59	PRO0126	metallothionein RiCM	T strong discrimination centre / shoot meristem	TC82826	AB041032	1245
60	PRO0129	GOS2	strong	TC89792 +	X51910	2195

			constitutive	TC89796		Ţ
61	PRO0135	alpha-globulin	strong in	TC82833	D50643	1008
			endosperm			
62	PRO0136	alanine	weak in	TC90370	AB007404	1395
		aminotransferase	endosperm			
63	PRO0146	sucrose synthase SS1	medium	TC27215	X73221	2115
		(barley)	constitutive			
64	PRO0147	trypsin inhibitor ITR1	weak in	TC27238	X65875	342
		(barley)	endosperm			
65	PRO0149	ubiquitine 2 with intron	strong	TC82803	AF184280	2753
			constitutive			
66	PRO0151	WSI18	embryo +	TC84300	AP003023	1828
			stress?			
67	PRO0175	RAB21	embryo +	TC83646	Y00842	1553
			stress?			
68	PRO0218	oleosin 18kd	aleurone +	TC83046	AF019212	1236
			embryo			
69	PRO0219	ubiquitine 2 without	to come	TC82803	AF184280	1488
		intron				

Public domain databases were searched for families of rice expressed sequence tags (ESTs) with interesting distribution among source cDNA libraries. For each family, the number of ESTs represented in each organ was normalized. This procedure is equivalent to an "in silico" Northernblot, and allowed to identify sequences that are strongly expressed or specific for a particular organ. By sequence homology with annotated sequences in public databases and based on literature searches, these genes were identified and a (putative) function and corresponding name was given. Sequence homology is found using standard computer programs such as Blast N using standard parameters (G Cost to open a gap [Integer] default = 5, E Cost to extend a gap [Integer] default = 2, q Penalty for a mismatch in the blast portion of run [Integer] default = -3, r Reward for a match in the blast portion of run [Integer] default = 1, e Expectation value (E) [Real] default = 10.0, W Word size, default is 11 for blastn, 3 for other programs, v Number of one-line descriptions (V) [Integer] default = 100, b Number of alignments to show (B) [Integer] default = 100, Matrix = BLOSUM62) or by using the program BLASTX using standard parameters (Frameshift penalty = No O OF, Query genetic code = standard (1), Matrix = BLOSUM62). The

10

15

20

ESTs sequences were positioned on genomic BACs (for example rice BACs) using the result of such a BLAST search and the corresponding coding regions were annotated. Starting from the sequence information of the gene and its location in the genome, the promoter of these genes was isolated as the DNA region spanning about 1.2 kb of sequence upstream the translation initiation codon (i.e. first ATG), this codon excluded. In the case when a large intervening sequence such a san intron, was present in the 5' transcribed non-translated region of the gene, the isolated DNA region was spanning about 1.2 kb plus the length of that intervening sequence. Practically, this was done by PCR amplification of the promoter sequences from genomic DNA of Japonica or exceptionally indica rice plants using specific primers with AttB recombination sites, for cloning into the pDONR201 entry plasmid of the GatewayTM system (Life Technologies) using the "BP reaction". These specific primers used for each of the isolated promoters are herein included as SEQ ID NO 70 to 207 and are listed in Table 2. Conditions for PCR were as follows: 1 cycle of 2 minutes denaturation at 94°C, 35 cycles of 1 minute denaturation at 94°C, 1 minute annealing at 58°C and 2 minutes amplification at 68°C, and 1 cycle of 5 minutes at 68°C. The expected size of the fragment is indicated in table 1. A prominent fragment of about the expected size was isolated from gel and purified using the Zymoclean Gel DNA Recovery Kit (Zymo Research, Orange, California).

The purified PCR fragment was used in a standard GatewayTM BP reaction (Invitrogen) using pDONR201 as a recipient vector. The identity and base pair composition of the insert was confirmed by sequencing. The resulting plasmid was quality tested using restriction digests.

Table 2: Overview of the primers usd to isolate the promoters of the present invention.

SEQ	PRO NO	Gene name	Genbank	fwd	SEQ ID	rev	SEQ ID NO
ID NO				primer	NO FWD	primer	REV PRM
PROM				NO	PRM	ИО	
1	PRO0005	putative beta- amylase	AC022457	prm2768	70	prm2769	71
2	PRO0012	lipase (putative)	AP001633	prm2422	72	prm2423	73
3	PRO0014	transferase (putative)	AP002482	prm2424	74	prm2425	75
4	PRO0016	peptidyl prolyl cis- trans isomerase (putative)	AP000559	prm2851	76	prm2852	77
5	PRO0019	unknown	AP003105	prm2770	78	prm2771	79

6	PRO0020	prp protein (putative)	AP001383	prm2772	80	prm2773	81
7	PRO0029	noduline (putative)	AP002747	prm2774	82	prm2775	83
8	PRO0058	proteinase inhibitor Rgpi9	AF044059	prm2853	84	prm2854	85
9	PRO0061	beta expansine EXPB9	AC020666	prm2426	86	prm2427	87
10	PRO0063	structural protein	AP001278	prm2855	88	prm2856	89
11	PRO0069	xylosidase (putative)	AP002538	pm2857	90	prm2858	91
12	PRO0078	CBP80	AAAA01015 493+AAAA0 1017897	prm5126	92	prm5127	93
13	PRO0079	starch branching enzyme l	D10838	prm3023	94	prm3024	95
14	PRO0081	putative caffeoyl-CoA 3-O- methyltransferase	AP000364	prm3025	96	prm3026	97
15	PRO0087	prolamine RM9	none	prm3006	98	prm2158	99
16	PRO0092	allergen RA5	AP003963	prm3778	100	prm2163	101
17	PRO0095	putative methionine aminopeptidase	AC027133	prm3061	102	prm3062	103
18	PRO0098	ras-related GTP binding protein	AP003686	prm3779	104	prm2166	105
19	PRO0104	beta expansine EXPB1	AY039023	prm4503	106	prm4504	107
20	PRO0105	Glycine rich protein	AC091090	prm2937	108	prm2938	109
21	PRO0108	metallothionein like protein (putative)	AL731784	prm3270	110	prm2940	111
22	PRO0109	metallothioneine (putative)	AL731784	prm2939	112	prm2940	113
23	PRO0111	uclacyanin 3-like protein	AJ307662	prm3031	114	prm3032	115
24	PRO0116	26S proteasome regulatory particle	AP000969	prm3051	116	prm3052	117

[non-ATPase subunit					
		11					
25	PRO0117	putative 40S	AC090871	prm3592	118	prm3049	119
		ribosomal protein			ŀ		
26	PRO0122	chlorophyll a/b-	AP004700	prm5131	120	prm2195	121
		binding protein					
		presursor (Cab27)					
27	PRO0123	putative	AL606456	prm3782	122	prm2197	123
ļ		protochlorophyllide					
		reductase					
28	PRO0131	GOS9	X51909	prm2840	124	prm2841	125
29	PRO0138	cyclin A2	AP002481	prm3037	126	prm3038	127
30	PRO0139	Cyclin D2	AAAA01016	prm5133	128	prm3040	129
			424				
31	PRO0140		AL607098	prm5166	130	prm3065	131
32	PRO0156	HVA22 homologue	AP002899	prm3011	132	prm3012	133
		(putative)					
33	PRO0157	EL2	AC113930	prm5167	134	prm5168	135
34	PRO0169	aquaporine	AP005108	prm3770	136	prm3771	137
35	PRO0170	High mobility group	AP004004	prm3772	138	prm3773	139
		protein					
36	PRO0171	reversibly	AC090874	prm3774	140	prm3775	141
		glycosylated protein					
		RGP1					
37		cytosolic MDH	AC037425	prm3776		prm3777	143
38	PRO0176	CDPK7	AL662987	prm5169	144	prm5170	145
39	PRO0177	Cdc2-1	AP004765	prm5135	146	prm5136	147
40	PRO0197	sucrose synthase 3	AP004988	prm4585	148	prm4586	149
41	PRO0198	OsVP1	AP003436	prm5071	150	prm5072	151
42	PRO0200	OSH1	D16507	prm5075	152	pm5076	153
43	PRO0208	putative	AC027658	prm5753	154	prm5754	155
		chlorophyllase					
44	PRO0210	OsNRT1	AAAA01004	prm6153	156	pm6154	157

			908			A	
5	PRO0211	EXP3	AAAA01011	prm5175	158	prm5176	159
			511				
6	PRO0216	phosphate	AC025907	prm5717	160	prm5718	161
		transporter OjPT1		1			
7	PRO0220	RFL	AF397034	prm6231	162	prm6232	163
18	PRO0009	putative cellulose	AC022457	prm2420	164	prm2421	165
		synthase					
19	PRO0075	prolamine 10 Kda	AF294580	prm3017	166	prm3018	
50	PRO0076	allergen RA2	D11434	prm3019	168	prm3020	
51	PRO0110	RCc3	AC037426	prm3780	170	prm3781	
52	PRO0133	chitinase Cht-3	D16223	prm2844	172	prm2845	
53	PRO0141	cyclophyllin 2	L29469	prm2848	174	prm2849	
54	PRO0091	prolamine RP5	AF156714	prm3029	176	prm3030	
55	PRO0001	Metallothionein Mte	AF048750	prm2766	178	prm2767	
56	PRO0077	prolamine RP7	AF194115	prm3021	180	prm3022	181
57	PRO0080	Metallothioneine-like	AP003197	prm3512	182	prm3066	183
		ML2					
58	PRO0090	prolamine RP6	X65064	prm3027	184	prm3028	<u> </u>
59	PRO0126	metallothionein	AB041032	prm3007	186	prm3008	187
		RICMT					
60	PRO0129	GOS2	X51910	prm2200		prm2419	
61	PRO0135	alpha-globulin	D50643	prm3033		prm3034	
62	PRO0136	alanine	AB007404	prm2846	192	prm2847	193
	:	aminotransferase					
63	PRO0146	sucrose synthase	X73221	prm2962	194	prm2963	195
		SS1 (barley)					
64	PRO0147	trypsin inhibitor ITR1	X65875	pm3075	196	prm2966	197
		(barley)					
65	PRO0149	ubiquitine 2 with	AF184280	prm2969	198	prm2970	199
		intron					
66	PRO015	1 WSI18	AP003023			prm2974	
67	PRO017	5 RAB21	Y00842	prm3800	202	prm380	1 203

68	PRO0218	oleosin 18kd	AF019212	prm5755	204	prm5756	205
69	PRO0219	ubiquitine 2 without	AF184280	prm6041	206	prm6042	207
		intron					

Example 2. Vector construction for transformation with a promoter-GUS cassette

Subsequently the isolated promoter was coupled to a reporter gene and expressed in a host plant. The entry clone was subsequently used in an "LR" reaction with p4581, a destination vector used for rice transformation. This vector contains as functional elements within the T-DNA borders: a plant selectable marker; a GFP expression cassette; and a Gateway cassette intended for LR in vivo recombination with the sequence of interest already cloned in the entry clone (Fig. 2). An Escherichia coli beta-glucuronidase coding sequence, interrupted by the second intron of the potato light-inducible tissue-specific ST-LS1 gene, is located downstream of this Gateway cassette.

After the LR recombination step, the resulting expression vector can be transformed into Agrobacterium strain LBA4044 and subsequently to rice plants.

Example 3. Transformation of rice with promoter-GUS expression vectors

Calli preparation

10

15

20

25

30

Mature dry seeds of the rice japonica cultivar Nipponbare were dehusked. Sterilization was done by incubating for one minute in 70% ethanol, followed by 30 minutes in 0.2% HgCl2, followed by a 6 times 15 minutes wash with sterile distilled water. The sterile seeds were then germinated on a medium containing 2,4-D (callus induction medium). After incubation in the dark for four weeks, embryogenic, scutellum-derived calli were excised and propagated on the same medium. After two weeks the calli were multiplied or propagated by subculture on the same medium for another 2 weeks. Embryogenic callus pieces were sub-cultured on fresh medium 3 days before co-cultivation (boost of cell division activity).

Agrobacterium preparation

Agrobacterium strain LBA4404 harboring binary T-DNA vectors were used for cocultivation. Agrobacterium was inoculated on AB medium with the appropriate antibiotics and cultured for 3 days at 28°C. The bacteria were then collected and suspended in liquid co-cultivation medium to a density (OD600) of about 1. The suspension was then transferred to a petri dish and the calli immersed in the suspension for 15 minutes. The callus tissues were then blotted dry on a filter paper and transferred to solidified co-cultivation medium and incubated for 3 days in the dark at 25°C.

5

10

15

20

25

30

Plant regeneration

Co-cultivated callus was grown on 2,4-D-containing medium for 4 weeks in the dark at 28°C in the presence of a suitable concentration of the selective agent. During this period, rapidly growing resistant callus islands develop. After transfer of this material to a regeneration medium and incubation in the light, the embryogenic potential was released and shoots developed in the next four to five weeks. Shoots were excised from the callus and incubated for 2 to 3 weeks on an auxin-containing medium from which they were transferred to soil. Hardened shoots were grown under high humidity and short days in a greenhouse. Seeds were then harvested three to five months after transplanting. The method yielded single locus transformants at a rate of over 50 %. The transformation method used to transform rice is previously described in more detail by (Aldemita and Hodges, Planta, 199 612-617, 1996; Chan *et al.*, Plant Mol. Biol. 22 (3) 491-506, 1993, Hiei *et al.*, Plant J., 6 (2) 271-282, 1994).

Example 4. Evaluation of the first generation of transgenic plants

Transgenic plant growth

Three T0 transgenic rice plants were generated from each callus during transformation. One was sacrificed for GUS staining at the ~5 cm size (C plants), another one was sacrificed for GUS staining at the ~10 cm size, at the time of transplanting in soil (B plants), and one was kept for seed production (A plants). GUS staining was performed on complete C and B plants. On A plants, GUS staining was performed on leaf pieces, flowers and section of seeds at various developmental stages. A plants were allowed to set seed, that were used after harvest for confirmation of the expression pattern in T1 plants if needed.

GUS staining

The material was covered with 90 % ice-cold acetone and incubated for 30 min at 4 °C. After 3 washes of 5 minutes with Tris buffer [15,76 g Trizma HCI (Sigma T3253) + 2,922 g NaCl in 1 l bidi, adjust pH to 7,0 with NaOHJ, the material was covered by a Tris/ferricyanate/X-Gluc solution [9,8 ml Tris buffer + 0,2 ml ferricyanate stock (0,33 g Potassium ferricyanate (Sigma P3667) in 10 ml Tris buffer)+ 0,2 ml X-Gluc stock (26,1 mg X-Gluc (Europa Bioproducts ML 113A) in 500 µl DMSO)]. Vacuum infiltration was applied for 15 to 30 minutes. The samples were incubated for up to 16 hours at 37 °C until development of blue color. The samples were washed 3 X 5 minutes with Tris buffer. Chlorophyll was extracted in ethanol series of 50 %, 70 % and 90 % (each for 30 minutes) with refreshments of the 90 % if necessary.

Expression patterns of the promoters of the present invention

5

10

15

20

25

30

35

Digital pictures of the stained plants were taken and analyzed by eye. The following paragraphs describe in more detail the observed expression patterns of the promoters of the present invention. It is to be understood that when a certain tissue is not mentioned in the describing paragraph below, no expression in that tissue was observed or the tissue was not analysed. For example, if constitutive expression is observed and the constitutive expression was described for the shoot, it is then to be understood that the constitutive expression is absent in all other analysed tissues other than shoot, for example it is then to be understood that the constitutive expression is absent in the roots. Alternatively, the tissue was not analysed.

Further, when such weak or no expression is detected in a certain tissue for any of the promoters of the present invention, it is possibly an inducible promoter, active under circumstances other than the circumstances of these experiments. Other conditions could be tested to evaluate the promoter activity.

PRO0005 - SEQ ID NO1

1 construct was investigated (OS1365) and 28 calli, 0 C, 24 B plants, 22 A plants were analysed: Occasional expression in calli (7%) was observed. Furthermore occasional weak expression in root (4%) and shoot (12%) of B plants was observed. Expression in the scutellum of embryos (43%) and occasional expression in leaves (5%) of A plants was observed. This promoter is embryo/scutellum specific with some leakiness in other tissues.

PRO0012 - SEQ ID NO2

2 constructs were investigated (OS1443 and OS1454) and 30 calli, 28 C, 28 B plants and 11 A plants were analysed. No expression in any part of any plants or calli was observed. Therefore it is concluded that this promoter is a weak promoter and/or the promoter is expressed below the detection level of the reported gene activity.

PRO0014 - SEQ ID NO3

1 construct was investigated (OS1444) and 24 calli, 23 C, 25 B plants and 23 A plants were analysed. There was a weak expression in calli (33%), but no expression was observed in C plant, in B plants and in A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reported gene activity.

PRO0016 - SEQ ID NO4

1 construct was Investigated (OS1445) and 19 calli, 18 C, 18 B plants and 17 A plants were analysed. No expression was observed in calli, C, B or A plants. Therefore it was concluded that

31

the promoter is very weak and/or the promoter is expressed below the detection level of the reported gene activity.

PRO0019 - SEQ ID NO5

1 construct was investigated (OS1366) and 10 calli, 0 C, 0 B plants and 10 A plants were analysed. A weak expression was observed in calli (50%). In A plants, no expression in shoot and weak expression in the scutellum of embryo (30%) was observed. Therefore it was concluded that in certain tissues the promoter is very weak. This promoter could be specific to the scutellum. Alternatively, in some tissues the promoter is expressed below the detection level of the reported gene activity.

PRO0020 - SEQ ID NO6

15

20

1 construct was investigated (OS1427) and 9 calli, 8 C, 8 B plants and 6 A plants were analysed. No expression was observed in calli, C, B or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reported gene activity.

PRO0029 - SEQ ID NO 7

1 construct was investigated (OS1367) and 0 calli, 0 C, 12 B plants and 12 A plants were analysed. No expression was observed in B or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reported gene activity.

PRO0058 - SEQ ID NO 8

1 construct was investigated (OS1370) and 0 calli, 0 C, 13 B plants and 12 A plants were analysed. No expression was observed in B plants. In A plants, there was no expression in the leaves, but strong expression in endosperm and embryo (58-42%) was observed. Therefore it is concluded that promoter PRO0058 is seed-specific.

30 **PRO0061 - SEQ ID NO 9**

2 constructs were investigated (OS1441 and OS1460) and 20 calli, 32 C, 32 B plants and 32 A plants were analysed. No expression was observed in C and B plants. In A plants expression in the flowers was observed (44%). More particularly expression in lemma of young spikelets was detected. Therefore it was concluded that the promoter is active in lemma of young spikelet and/or

35 the promoter is lemma –specific.

5

10

15

25

30

35

PRO0063 - SEQ ID NO 10

1 construct was investigated (OS1446) and 13 calli, 13 C, 13 B plants and 12 A plants were analysed. In calli weak expression was detected (92%). In C plants, there was no expression in roots and weak expression in some leaves (46%). In B plants, there was no expression in roots and weak expression in young tillers (78%) or young leaves (54%) but no expression in old leaves. In A plants, there was occasional expression in young leaves (17%) and expression in embryo and scutellum (42%) was observed. Therefore it is concluded that this promoter is active in the above ground tissues, such as leaf, stem and seed. Together with the good expression in calli, these data are demonstrating that the promoter is possibly specific for young developing tissues.

PRO0069 - SEQ ID NO 11

1 construct was investigated (OS1485) and 11 calli, 9 C, 10 B plants and 10 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

.

PRO0079 - SEQ ID NO 13

1 construct was investigated (OS1559) and 0 calli, 11 C, 1 B plants and 15 A plants were analysed. No expression was observed C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PRO0081 - SEQ ID NO - SEQ ID NO 14

1 construct was investigated (OS1419) and 20 calli, 20 C, 20 B plants and 20 A plants were analysed. No expression was observed in Calli. Expression was observed in C plants, more particularly very weak expression in root cylinder (40%) and weak expression in young leaves (80%), fainter in old leaves. Expression was also observed in B plants, more particularly very weak expression in root (25%) and weak expression in young leaves (80%). Further expression was observed in A plants, more particularly expression in young leaves (50%). No expression was observed in old leaves and seeds of A plants. Therefore it was concluded that promoter PRO0081 is preferential for above ground tissue and possibly has some leakage in root.

PRO0087 - SEQ ID NO 15

1 construct was investigated (OS1450) and 14 calli, 14 C, 14 B plants and 14 A plants were analysed. No expression was observed in calli, C plants or B plants. In A plants no expression was observed in leaves, but strong expression was observed in seed endosperm (64%). Therefore it was concluded that promoter PRO0087 is endosperm specific.

5

10

15

PRO0095 - SEQ ID NO 17

1 construct was investigated (OS1423) and 16 calli, 14 C, 14 B plants and 16 A plants were analysed. In calli no expression was observed. In C plants there was some expression in root-tips (36 %) but no expression in other parts was observed. In B plants no expression was observed. In A plants expression was observed in embryo (38%) but no expression in leaves, roots, endosperm. Therefore it is concluded that PRO0095 is a good promoter for embryo-specific expression.

PRO0098 - SEQ ID NO 18

1 construct was investigated (OS1430) and 7 calli, 7 C, 7 B plants and 8 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

20 PRO0105 - SEQ ID NO 20

1 construct was investigated (OS1459) and 21 calli, 21 C, 21 B plants and 20 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

25

30

PRO0108 - SEQ ID NO 21

1 construct was investigated (OS1428) and 10 calli, 8 C, 8 B plants and 9 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PRO0109 - SEQ ID NO 22

2 construct were investigated (OS1439 and OS1483) and 21 calli, 40 C, 40 B plants and 40 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was

concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PRO0111 - SEQ ID NO 23

1 construct was investigated (OS1421) and 22 calli, 21 C, 22 B plants and 21 A plants were analysed. In C plants no expression was observed. In B plants very weak expression was observed in discrimination centre and meristems (77%). In A plants no expression was observed. Therefore it was concluded that promoter PRO0111 is a weak meristem / discrimination centre specific promoter.

10

15

20

25

30

35

5

PRO0116 - SEQ ID NO 24

1 construct was investigated (OS1679) and 0 calli, 13 C, 14 B plants and A plants were analysed. In C plants, a weak expression was observed in discrimination centre (38%) and young leave sheath (77%). In B plants a weak expression was observed in discrimination centre/meristem (71%) and young leave sheath (21%). In A plants no expression was observed. Promoter PRO0116 is therefore is a weak meristem specific promoter.

PRO0117 - SEQ ID NO 25

1 construct was investigated (OS1425) and 9 calli, 9 C, 9 B plants and 9 A plants were analysed. In calli no expression was observed. In C plants there was occasional weak expression in roots (22%) and in young leave blade (44%), in B plants there was no expression. In A plants there was a weak expression in endosperm (37%). Therefore promoter PRO117 is weak endosperm specific, with so leakiness in very young leaves.

PRO0123 - SEQ ID NO 27

1 construct was investigated (OS1433) and 21 calli, 18 C, 19 B plants and 18 A plants were analysed. In calli there was no expression. In C plants there was no expression in roots but there was strong expression in shoot (33-68%). In B plants there was occasional expression in root and strong expression in shoot (63-79%). In A plants there was very strong expression in young leaves (73%), and an occasional expression in old leaves (39%), but no expression in seeds. Therefore it is concluded that promoter PRO0123 is strong leave-specific.

PRO0131 - SEQ ID NO 28

1 construct was investigated (OS1482) and 16 calli, 16 C, 16 B plants and 16 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that

the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PRO0138 - SEQ ID NO 29

1 construct was investigated (OS1422) and 14 calli, 14 C, 14 B plants and 14 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

10 PRO0156 - SEQ ID NO 32

1 construct was investigated (OS1451) and 14 calli, 14 C, 14 B plants and 13 A plants were analysed. No expression was observed in calli, C, B, or A plants. Therefore it was concluded that the promoter is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PR0170 - SEQ ID NO 35

15

20

30

35

1 construct was investigated (OS1434) and 23 calli, 21 C, 21 B plants and 14 A plants were analysed. There was expression in most of the calli (52%). In C plants there was weak expression in roots (51%) and strong expression in young leaves (81%). In B plants there was a strong expression in roots (86%) and strong expression in young leaves (86%). In A plants there was strong expression in young (75%) and old (43%) leaves as well as strong expression in embryo, aleurone, and a weaker expression in endosperm (82%). Therefore promoter PRO170 is a good strong constitutive promoter in rice.

25 **PRO0171 - SEQ ID NO 36**

1 construct was investigated (OS1762) and 18 calli, 11 C, 13 B plants and no A plants were analysed. In calli there is strong expression (44%), in C plants there is expression in all tissues (27%), and in B plants there is some expression in all tissues (16%), mainly in discrimination centres (46%). Therefore it is concluded that promoter PRO0171 is a constitutive promoter. Possibly promoter PRO0171 is a weak constitutive promoter.

PRO0173 - SEQ ID NO 37

1 construct was investigated (OS1435) and 17 calli, 17 C, 17 B plants and 15 A plants were analysed. In calli there was occasional expression (12%) In C plants there was weak expression in upper parts (24-69%). In B plants there was weak expression in young leaves (41%). In A plants

there was expression in leaves (33%) and strong expression in seeds (38%)? No activity of the promoter could be detected in the root. Therefore it is concluded that the promoter 0173 is active in the above ground tissues. Further promoter 0173 is constitutively active in the shoot.

5 **PRO0197 - SEQ ID NO 40**

1 construct investigated (OS1437) was investigated and 18 calli, 15 C plants, 15 B plants and 16 A plants. No expression was observed in calli, C, B or A plants. Therefore it is concluded that promoter PRO0197 is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PRO198 - SEQ ID NO 41

10

15

20

25

30

1 construct was investigated (OS1557) and 0 calli, 14 C plants, 14 B plants and 14 A plants were analysed. In C plants there was no expression. In B plants there was occasional very weak expression in discrimination centre (29%). In A plants there was occasional very weak expression in seeds (21%). Therefore it is concluded that promoter PRO0198 is very weak and/or the promoter is expressed below the detection level of the reporter gene activity.

PRO 0009 - SEQ ID NO 48

1 construct was investigated (OS1461) and 20 calli, 20 C, 20 B plants and 20 A plants were analysed. In calli there was occasional expression (20 %). In C plants there was a weak expression in root (55%) and an occasional expression in young leaves (10%). In B plants there was weak expression in root (25%) and no expression in leaves. In A plants there was no expression in leaves. Therefore this promoter is a weak root specific promoter with slight leakiness in leaves.

PRO 0075 - SEQ ID NO 49

2 constructs were investigated (OS1453 + OS1685) 43 calli, 41 C, 43 B plants and 32 A plants were analysed. Occasional weak expression was observed in calli (33%). Weak expression was observed in discrimination centre/meristem of C plants (56%) and in young leave sheath (46%). Occasional weak expression was observed in young leave blade of B plants (21%). In A plant no expression in leaves and strong expression was observed in endosperm (42%). Therefore this promoter is an endosperm specific promoter, with some leakiness in the leaves.

PRO 0076 - SEQ ID NO 50

5

10

20

25

30

35

1 construct was investigated (OS1418) and 20 calli, 18 C, 18 B plants and 19 A plants were analysed. Expression was not detected in calli and in C plants. In B plants very weak expression in young leaves (89%) was observed. In A plants no expression in leaves but a strong expression in seed endosperm (68%) was observed. In was therefore concluded that promoter PRO0076 is a strong promoter in endosperm, with leakiness in the leaves.

PRO0110 - SEQ ID NO 51

1 construct investigated (OS1432) was investigated and 25 calli, 14 C, 21 B plants and 21 A plants were analysed. There was no expression in calli, but a strong expression in roots (93%) of C plants and a strong expression in roots (81%) of B plants. A plants were investigated only in the shoots. In the analysed tissues of A plants no expression was observed. It was concluded therefore that promoter PRO0110 is a strong root specific promoter.

PRO0133 - SEQ ID NO 52

15 1 construct was investigated (OS1687) 15 calli, 12 C, 16 B plants and 12 A plants were analysed. There was a weak expression in calli (66%), but no expression observed in C plants. In B plants a weak expression in discrimination centre/meristem (50%) was observed. No expression was observed in A plants. Based on these results it was concluded that promoter PRO0133 is a weak promoter in meristems and dividing cells.

PRO141 - SEQ ID NO 53

1 construct was investigated (OS1369) and 0 calli, 0 C, 13 B plants and 12 A plants were analysed. In B plants weak expression in young leaves (69%) was observed and no expression in old leaves or in roots. In A plants expression in leaves (75%) was observed and expression in embryo and endosperm (58-67%). Based on these results it was concluded that promoter PRO0141 is a constitutive promoter in shoot, especially this promoter is active in seed.

PRO0091 - SEQ ID NO 54

1 construct was investigated (OS1558) and 0 calli, 12 C, 12 B plants and 12 A plants were analysed. The C plants showed weak expression in discrimination centre (50%). B plants showed weak expression in discrimination centre (58%). A plants showed strong expression in endosperm (55%) and no expression in leaves. This promoter is useful for strong expression in endosperm, with leakiness in discrimination centre/meristems.

5

10

15

20

25

30

PRO0001 - SEQ ID NO 55

1 construct was investigated (OS1364) and 10 calli, 0 C, 8 B plants and 8 A plants were analysed. In calli strong expression (100%) was observed. In B plants very weak expression in young tillers (38%) was observed and no expression in old leaves or in roots. In A plants occasional expression leaves (13%) was observed and strong expression in embryo, especially in the scutellum (88%). Further in A plants, no expression in endosperm was observed. Therefore it was concluded that this promoters is weak in young aerial tissues and is presumably embryo/scutellum-specific.

PRO0077 - SEQ ID NO 56

1 construct investigated (OS1560) and 0 calli, 11 C, 12 B and 12 A plants were analysed. No expression was observed in C and B plants. In A plants no expression was observed in leaves but there was expression in endosperm (83%). Therefore, this promoter is useful for endosperm specific expression.

PRO0080 - SEQ ID NO 57

1 construct was investigated (OS1429) and 13 calli, 11 C, 12 B plants and 13 A plants were analysed. In calli there was a strong expression (62%). In C plants there was occasional very weak expression in young leaves (33%). In B plants there was occasional very weak expression in young leaves (33%). In A plants there was no expression observed in leaves, but there was a strong expression in scutellum (54%). Therefore, it is concluded that this promoter is embryo/scutellum specific.

PRO0090 - SEQ ID NO 58

12 constructs were investigated (OS0224, OS1329OS1330, OS1331, OS1333,OS1334,OS1335, OS1420, OS1591, OS1668, OS1700, OS1665) and 24 calli, 24 C, 24 B plants and 194 A plants were analysed. In calli no expression was observed. In C plants there was occasional very weak expression in shoot (17%). In B plants there was occasionally very weak expression in shoot meristems/discrimination centre (25%). In A plants there was strong expression in endosperm (83%) and aleurone (79%), but no or weak expression in embryo and no expression in very early seeds could be observed. It is concluded that promoter PRO0090 is a good promoter for strong expression in endosperm and aleurone with some leakiness in meristems and shoots.

PRO123 - SEQ ID NO 59

5

10

15

20

1 construct was investigated (OS1433) and 21 calli, 18 C, 19 B plants and 18 A plants were analysed. In calli no expression could be observed. In C plants no expression in roots was observed, but there was strong expression in shoot (33-68%). In B plants there was occasional expression in root and strong expression in shoot (63-79%). In A plants there was very strong expression in young leaves (73%), occasional expression in old leaves (39%) and no expression in seeds was observed. Therefore, this promoter can be used as a strong leave-specific promoter.

PRO126 - SEQ ID NO 59

1 construct was investigated (OS1532) and 24 calli, 12 C, 12 B plants and 13 A plants were analysed. In calli there was strong expression of the promoter (46%). In C plants no expression was observed in roots, but there was a weak expression in discrimination centre (92%) and in leaves sheath (92%). In B plants there was a weak expression in discrimination centre (100%) corresponding to a strong expression in meristems (100%). There was also weak expression in young leave sheath (67%) an occasional expression in root (8%) and shoots. In A plants no expression was observed. Therefore this promoter is meristem/calli specific.

PRO0129 - SEQ ID NO 60 - GOS 2

6 constructs were investigated (OS0550, OS1201, OS1348, OS1447 OS1580 OS1699). 37 calli, 59 C, 30 B plants and 69 A plants were analysed. There was strong expression in calli (89%), strong expression in all parts of most of the C and B plants (>50%). In A plants there was low or no expression in old leaf blades, but strong expression in the young leaves (65%) and in the seeds (57%). Thus it was concluded that this promoter is a strong constitutive promoter.

PRO0135 - SEQ ID NO 61

1 construct was investigated (OS1452) and 6 calli, 5 C, 5 B and 6 A plants were analysed. No expression was observed in calli, C and B plants. In A plants no expression in leaves was observed, but there was occasionally very strong expression in endosperm (17%). This promoter is seed/endosperm specific.

PRO0136 - SEQ ID NO 62

1 construct was Investigated (OS1368) and 0 calli, 0 C, 16 B plants and 16 A plants were analysed. Occasional expression was observed in young leaves of B plants (6%). In A plants there was a strong expression in endosperm (31%). This promoter is a seed/endosperm specific promoter.

30

5

15

20

25

30

PRO0146 - SEQ ID NO 63 (sucrose synthetase SS1 from Barley)

1 construct was investigated (OS1484) and 7 calli, 7 C, 7 B plants and 7 A plants were analysed. In calli there was a strong expression (71%), in C plants there was expression in shoot tissues (57%) and some expression in root tips (43%). In B plants expression in young leaves (57%) was observed but no expression in old leaves or in root. In A plants there was expression in young leaves (67%), occasionally in old leaves (17%) and a very strong expression in aleurone and endosperm (50%) was observed. This promoter is a constitutive promoter and is especially strong in seed and shoot.

10 PRO0147 - SEQ ID NO 64

1 construct was investigated (OS1426) and 11 calli, 9 C, 9 B plants and 11 A plants were analysed. There was no expression observed in calli, C and B plants. In A plants there is weak expression in endosperm (50%). This promoter is a weak endosperm specific promoter.

PRO0149 - SEQ ID NO 65

1 construct was investigated (OS1457) and 24 calli, 20 C, 21 B plants and 21 A plants were analysed. There was strong expression in calli (92%) and strong expression in all tissues of most C plants (55%). In B plants strong expression in roots (81%) and young leaves (76%) was observed, but no expression in old leaves. In A plants very strong expression in leaves (62-72%) and very strong expression in seeds (65%) was observed. This promoter is a good strong constitutive promoter.

PRO0151 - SEQ ID NO 66

1 construct was investigated (OS1458) and 22 calli, 16 C, 16 B plants and 13 A plants were analysed. There was strong expression in calli (91%) and weak expression in shoot of C plants (62%). In B plants no expression was observed. In A plants no expression in leaves was observed, but there was very strong expression in aleurone and embryo (46%). Therefore it was concluded that promoter PRO0151 is a strong promoter in calli and in seed, more particularly in the aleurone layer and in the embryo.

PRO0175 - SEQ ID NO 67

1 construct was investigated (OS1436) and 16 calli, 12 C, 15 B plants and 15 A plants were analysed. There was expression in some the calli (31%). In C plants there was expression in discrimination centre (42%) and expression in young leaves (25-58%). In B plants no expression was observed. In A plants there was an occasional expression in young leaves (15 %), and no

5

10

15

20

25

30

35

observation of expression in flowers. In A plants there was a very strong expression in aleurone and embryo (60%). This promoters seems to be naturally expressed in developing/maturing seeds, especially in embryo/aleurone. Therefore it was concluded that promoter can be used as a strong promoter in calli and in seed, more particularly in the aleurone layer and in the embryo.

PRO0218 - SEQ ID NO 68

1 construct was investigated (OS0225) and 0 calli, 4 C, 4 B and 4 A plants were analysed. In C plants, weak expression was detected in shoot (50 %). In B plant, no expression was detected. In A plants, there was no expression in leaves, and a strong expression was detected in aleurone (100%), with weaker expression in embryo. No expression was observed in endosperm. This promoters is a good aleurone /embryo specific promoter.

From the evaluation data it is clear that there was a variation between the different transformed plants (different plants e ach transformed with the genetic construct comprising the promoter — GUS cassette). It is well known to persons skilled in the art, that the expression of transgenes in plants, and hence also the phenotypical effect due to expression of such transgene, can differ dramatically among different independently obtained transgenic plant or transformation events, and progeny thereof. The transgenes present in different independently obtained transgenic plants or transformation events, differ from each other by the chromosomal insertion locus as well as by the number of transgene copies inserted in that locus and the configuration of those transgene copies in that locus. Differences in expression levels can be ascribed to influence from the chromosomal context of the transgene (the so-called position effect) or from silencing mechanisms triggered by certain transgene configurations (e.g. inwards facing tandem insertions of transgenes are prone to silencing at the transcriptional or post-transcriptional level). The exact configuration and insertion loci of the different transformation events have not yet been determined, and expression levels have not been measured.

Stability of the activity of the promoters of the present invention

The above-mentioned analysis were performed on To plants immediately originating from the transformed calli. The stability of the promoter activity in the next generations or progeny plants of the original T0 plant, the so-called T1 and T2 plants, is now being evaluated.

The T1 plant transformed with promoter170 – GUS were already evaluated. The seeds of the To plants transformed with prom0170-GUS were harvested and these T1 seeds were sowed. The C plants were already evaluated and showed exactly the same expression pattern as the C plants of the T0 generation.

5

10

15

20

25

The promoter PRO0090 was studied in T0 plants, T1 seeds, T1 plants and T2 seeds. In all the tissues (including seeds and seed tissues) of these following generations, the seed-specific expression pattern, similar to the expression pattern reported herein, was observed.

In conclusion, it has been demonstrated for promoter 170 and promoter PRO0090, that the expression pattern of the promoter in the original transformed plants is stably inherited in plants of subsequent generations. It is expected that the activity of the other promoters of the present invention are also stably inherited in plants of further generations. This feature considerably increased the value of the promoters of the present invention for their use in plant genetic engineering.

Stability of the expression pattern of the promoters of the present invention in Arabidopsis thaliana.

The above mentioned plant analysis were performed on rice plants. This choice was based on the practical consideration that plant genetic engineering is most profitable for crop plants. However, for many other purposes such as research and horticulture, (small) herbs are being genetically modified, involving the use of particular promoter. Therefore the activity of the promoters of the present invention is being a nalysed and the stability of the expression pattern a mong different plant species is being demonstrated. The constructs comprising the expression cassettes promoter-GUS, for example promoter0170 – GUS, are introduced in *Arabidopsis thaliana* and C, B and A plant are being evaluated as mentioned above.

Accordingly, the promoter PRO0129 was studied in *Arabidopsis thaliana* as a promoter-GUS fusion, and strong constitutive expression was observed in all plant tissues (data not shown). Therefore the regulation of this promoter is conserved in monocots and dicots and the promoter has a stable expression pattern in different types of plant.

Claims

5

10

15

20

25

- 1. An isolated nucleic acid, capable of regulating transcription of an operably linked nucleic acid, comprising a sequence or a fragment thereof, said sequence being selected from the group consisting of:
 - (a) a nucleic acid comprising the DNA sequence as given in any of SEQ ID NOs 1 to 69 or the complement thereof,
 - (b) a nucleic acid specifically hybridizing with the nucleotide sequence as defined in (a)
 - (c) a nucleic acid which is diverging, due to the differences between alleles, to a nucleotide sequence as defined in (a) or (b),
 - (d) a nucleic acid as defined in any one of (a) to (c), said nucleic acid interrupted by intervening DNA,
 - (e) a nucleic acid, which is obtainable from plant DNA, said plant DNA comprising a plant gene, which plant gene hybridizes specifically with a sequence as represented by any one of SEQ ID NO 208 to 276;
 - (f) a nucleic acid, which is obtainable from plant DNA, said plant DNA comprising a plant gene, which plant gene is homologues to a sequence as represented by any one of SEQ ID NO 208 to 276, preferably said plant gene is 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% homologous;
 - (g) a nucleic acid, which is obtainable from plant DNA, said plant DNA comprising a plant gene, which plant gene is encoding a protein which is homologous to a protein encoded by any one of the sequences represented by SEQ ID NO 208 to 276, preferably said plant protein is 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% homologous; provided that said isolated nucleic acid is not one of the nucleic acids as deposited in the Genbank database under any of the Genbank Accession numbers which are listed in Table 1 or any other publicly available sequence that is not capable of regulating the expression of an operably linked nucleic acid..
 - 2. An isolated nucleic acid according to claim 1, capable of regulating transcription of an operably linked nucleic acid in a plant.
 - 3. An isolated nucleic acid according to claim 1 or 2, capable of regulating transcription of an operably linked DNA sequence in one or more particular cells, tissues or organs of a plant.

15

20

35

- 4. The isolated nucleic acid according to any of claim 1 to 3, wherein the isolated nucleic acid is a promoter
- 5. The isolated nucleic acid according to any of claim 1 to 4, wherein the isolated nucleic acid is a hybrid promoter
 - 6. A genetic construct comprising a nucleic acid sequence according to any of claims 1 to 6.
- 7. A genetic construct, comprising a nucleic sequence as represented by any of SEQ ID NO 1 to 69, or a fragment thereof, said isolated nucleic acid being capable of regulating transcription of an operably linked nucleic acid.
 - 8. A genetic construct according to any of claims 7 or 8 comprising
 - (a) said nucleic acid sequence capable of regulating transcription of an operably linked nucleic acid
 - (b) an operably linked nucleic acid sequence
 - (c) a 3' transcription terminator
 - 9. A genetic construct according to any of claim 6 to 8, which is a plant expression vector.
 - 10. A host cell containing an isolated nucleic acid molecule according to any of claim 1 to 5 or a genetic construct according to any of claims 6 to 9.
- 11. The host cell according to claim 10, wherein said host cell is a bacterial cell, insect, fungal,plant or animal cell.
 - 12. A transgenic plant containing an isolated nucleic acid according to any of claim 1 to 7 or a genetic construct according to any of claims 10 to 12.
- 13. Method for regulating the expression of a nucleic acid, comprising operably linking said nucleic acid sequence to an isolated nucleic acid according to any one or more of claims 1 to 6.
 - 14. Method for regulating the expression of a nucleic acid, comprising operably linking said nucleic acid sequence to a promoter comprising a nucleic acid sequence as presented in any of SEQ ID NO 1 to SEQ ID NO 69, or a fragment thereof.

lo '

15

20

25

30

initiation site.

- 15. Method according to claim 13 or 14, wherein the expression of said nucleic acid is regulated in a plant.
- 5 16. Method according to any of claim 13 to 15, wherein the expression of said nucleic acid is regulated in one or more particular cells, tissues or organs of a plant.
 - 17. Method for the production of a transgenic plant, comprising the introduction into the plant of an isolated nucleic acid according to any of claim 1 to 7 or a genetic construct according to any of claims 10 to 12.
 - 18. Method for the production of a transgenic plant, comprising introduction into a plant a genetic construct comprising a nucleic acid sequence as presented in any of SEQ ID NO 1 to SEQ ID NO 69, or a fragment thereof.
 - 19. Method for isolating a 5' regulatory sequence, capable of regulating expression of an operably linked nucleic acid, comprising the step of screening nucleic acid sequences for sequences that are homologous to any of the sequences represented by SEQ ID NO 1 to 69 or SEQ ID NO 208 to 276.
 - 20. Method according to claim 19, comprising the additional steps chosen from the group consisting of
 - (a) Using the homologues sequence according to claim 19 to screen a genomic library prepared from the organism of origin of said homologous sequence, identifying the transcription initiation site on the identified genomic DNA, and/or
 - (b) Finding the translation initiation site on the available genomic sequence as available in silico, and designing specific primers for amplification of DNA region 5' upstream of said transcription
 - 21. Use of an isolated nucleic acid according to any of claims 1 to 5 to regulate the expression of an operably linked nucleic acid.

22. Use of a an isolated nucleic acid to regulate the expression of an operably linked nucleic acid, said isolated nucleic acid having a sequence as presented in any one of SEQ ID NO 1 to SEQ ID NO 69 or a fragment thereof.

Abstract

Plant promoters

The present invention relates to gene expression in plants and provides several nucleic acids suitable for controlling the expression of a gene in one or more particular tissues or organs, and/or during certain developmental stages of the plant, and/or during certain environmental conditions and/or throughout the whole plant.

FIGURE 1

FIGURE 2

2/7

FIGURE 3

PRO 0058

FIGURE 4

PRO 0061

FIGURE 5

3/7

FIGURE 6

PRO 0081

FIGURE 7

BEST AVAILABLE COPY

FIGURE 8

FIGURE 9

FIGURE 10

5/7 PRO 0116

FIGURE 11

PRO 0123

FIGURE 13

BEST AVAILABLE COPY

FIGURE 14

PRO 0171

FIGURE 15

FIGURE 16

BEST AVAILABLE COPY

071-prom-prov.ST25.txt SEQUENCE LISTING

<110>	CropDesign N.V.	
<120>	Plant promoters	
<130>	071-Prom-PROV	
<160>	276	
<170>	PatentIn version 3.1	
<210>	1	
<211>	1215	
<212>	DNA	
<213>	Oryza sativa	
<220>		
<221>	misc_feature	
<223>	PRO0005 - putative beta-amylase	
<400> cccgat	1 ttag tagaccacat tttggcatca aaccaaaata gaccctctcc cagaatttgt	60
aaatg	cttt gtggttcgtg atatcactga acctgctggg tgaataaagt aaaaaaaaa	120
accca	aaat tggccttctg caagatctcg tcgtcttgcc caaactatag ccttcgatct	180
ttcca	cagg accgcatggg gggagagcag gggcaagtat gaaatggagt tcagattcag	240
attct	gaac agtotgaaca tgogaogaog aogatggoga tgtatotgaa caatotggto	300
ctctc	ectet ceteceggge gggettecae geggetgagt tteaggetee caatetgeag	360
ctcct	eccag aaccttactc tgattgattg gttcatcgtt tecatggetc caatgaatge	420
	gttgt tcagattttc tgaatcttgt tctcaatccg gagtacgtgc tgtagcagca	480
	ctgtc cctgatctga gaattttaga cactcgtaga ttcgctgatc aatcattccg	540
_	togag tggtotagat tgagottaat catootgota otogaatoaa atottoagoa	600
	gagct agataattca gaagaaatca acatattctt cgcgaaaaaa agaaataacc Page 1	660

gatgaaacca	cggtaattag	gttcttcgaa	tcaccgggag	agtaggaaaa	aacgagctaa	720
aatcccacat	aggaggaaac	ggttaaaaac	ggccactccg	cgtctccgcc	gcgagactag	780
ctctcgccag	tccacgtagc	ccaatccaca	accgccacgt	gctccgacaa	tecegecegt	840
ccatcgccgc	ggccccggcc	tcatctcgac	cactcgtttc	ctcccttcac	accagccacg	900
tggcactctc	tcgagagctc	ccgcccgcct	atataaactt	gttegegete	ggataataat	960
cctcatcgac	ctccacccca	cattgaataa	ttatttttaa	taattttagt	ttttttttg	1020
gctttagata	tattcccaat	ccccaacctc	ccaataatcc	gatctctccc	agttctgttc	1080
ggatcaaggc	tgtgtcgatc	gcaaaaaaga	aaaaaaaac	aatttccttt	tggggtggtt	1140
catctgttga	tcacttcttt	gtttcccgcg	ttttgttggg	gattcgattt	tcgggttaag	1200
attttctaca	cgacc					1215

<210> 2

<211> 1188

<212> DNA

<213> Oryza sativa

<220>

<221> misc feature

<223> PRO0012 - lipase (putative)

<400> 2 ttcccaagat aagcacacag attggccgtc ctgccagcca agcaggtgta acatgaactg 60 cagaggacca actaeatcaa acacaaatca accggggagt acatatgatg agtacattag 120 tacatacaaa aaaaaatcat ttagagacat gatacacaca tttgcagagc aacccagcag 180 cagagaactc caaaggcagg gcggcggagc tccctgtgca cggctgcgcg gcggctttcg 240 gacggcggcg gatcgccgga ctaggaatgt gacggcggtg aagggcggcc ggcgacgcca 300 tggtaccgga aagacgacgg gaaacaacgc ggcgaagacc ggtggaaaag ggccggcgat 360 gtcgtatcag gcgggcagtg aaacctgaac tcaaatggaa caaccatagc atttttaat 420 agctgggtat ttctgtttta aaaaaatgaa agatactaca tatgtagacc acgcatatca 480 caggaaagga gatctactgt atatatatcc tctatcttta attattatta tctctgttct 540 aaaataatta gcgttctaga ttatttagga aagattaata tttaaaaaga aataaccata 600 taaagtatcc tctattaaat gaaatgaggt ggtagttggg gtaggatata gaaaagtttg 660 aattagaata attgatatga caaaacgtac tctaaagtaa taagttttgg gagataaatt 720

1	ttgaatcata	caatgacaac	taattttaag	atggagggag	tatgttagta	tgcaacaaac	780
•	cgtgaatcaa	ctagaagaga	gctaacttga	tggtaccaat	acaaataaaa	aaaatattag	840
•	caataacagt	tctttaagat	ttgttaaaaa	tgagagccct	aaacattcaa	tcaaaaacca	900
	ttcaattaaa	aaataccgtt	cttttaattt	acacttaatt	tgttaattaa	atatattttc	960
	caaacaaatt	tgacatacct	cctttctaga	taatcaagag	atgattgata	attgtttata.	1020
	tggatgaatt	aaaaacaagt	acggtactct	caactcgcta	gtctcaactt	actacacatg	1080
	gttgtctata	taacctgaag	gatctaatta	gtggtggcaa	ccagcctgaa	ttcctgaagt	1140
	cctaagctat	agctagcact	agcagctagt	tgctccaaag	cccaaacc		1188

<210> 3

<211> 889

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0014 - transferase (putative)

<400> 3 ccattgtgcc aaacaagctg agatggttaa ttgtttatgt agatcattag ttagtactag 60 taccttcttt ttaaaatatg tgacgccctt gaattttttc aataatattt gatttttta 120 tttaaaaatt tagtaaaaat atataaaaat ataagttaag attatatttt atttgacgat 180 aaaaaaagtc attacaaaat aaatgatata tatttttta aaaaatacga ataatcaatc 240 300 tttatgcgaa acatcaacgg tatcatttat tttaaaatgg aggaaataca tgattacata ttgattatta taaattggaa aatagatata ttttctctta agaaactttt aattacgtac 360 tataattatt tttattagaa aaatcaccgt ttaagtatat taggaagcgt taaaaaaaat 420 gagagaaagt agcccgtaga aagaaagtac tcgtagctgg taggctttta gtcaatcatc 480 aactacaatt ttaatctgtt aaaaatactc cggatgaaca ggagtatata tgttaatttg 540 aacagttgta cacacacaaa aaataatacg ctcgtcatct acataccaac tcctccaaca 600 aatcaacgag tecattttge tegategaaa gegaeteeaa caaaaattaa taateeacae 660 attggatcac catctaccta gctagccacc aaactaatta atccactcgc taattaatta 720 ataattacaa gctgatccac gtcgccggcc tatatatacc ccccgcctcc acgcaccacc 780 840 accaccacca tcaccaccac ctcgaaggtc ttgagctcca tctccggcga cggcggcgac Page 3

<210> 4

<211> 1492

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0016 - peptidyl prolyl cis-trans isomerase (putative)

<400> aaactcagga gctgacaaac cgtgaagaaa taaataaagg agttagaagt agtttataga 60 taaaattata tttatgttta tatgaaaaga taacttatca ataatttatt ataggtaaac 120 ttttatatcc tgttattaat ggtttaaaaa caaatgctga aaaatagaat atgagaagac 180 cttaaaatca aattacaatt gaagttttat aatttaacta taactgataa gctactaata 240 agtactactt tttttagaga taatgagagg ctaaaaactt tttcagaggt aaagaggcta 300 aaaactcgaa agatacaaat caaatttgtt agctacctcc gtctctaaat atttgacgct 360 gttgattttt tttaaaaaat atgtttaagt gttatttaaa aattttataa aatatgtaaa 420 actatatgta tatattaaca ataaattaaa taataagaaa aaaataatta cttaatttt 480 ttaaagagta aatttcactt tggtcaacct ttatttacca aaatttcaca ttggactaga 540 gttagacttg tattttcact taacaccata tatagttacc atcatttaca ctttggactg 600 ggtttcacaa atcacacata gtataatgat tatagatctg atctcatttc ttttttgtgt 660 tagaaaactt agaattcaac aatttgtact aacactacaa ttgggtattg taaaacatgt 720 aatatatttt ctaaaaaaat agttettaaa eteaatattt eteeaatttt gtetetagta 780 taagggttgt gaatgttcat atgtagtagt aatgaagtcc cattaatctg ataggatatc 840 ctgtaacatg ttacaatcat tgttcttgcg ctaagcatat ttgcatggca aaaatttcca 900 tatcattgtt tcttgtaaaa tactaagcac ctagacaaca actcgtgtga tggtaactat 960 aaaaccaggt ctaaagtgca aagaacggta attatacgtg gtgttaagtg aagacatgag 1020 cttagcccta gcccaatgtg aaattttggt caataaacat gatccaaagt gaaatttaat 1080 cttttttaaa taaaacgaag gtcaaacata atggagtact ccctccgttt tttaatagat 1140 gacgccgttg actttttatc acatgtttaa ccattcgtct tattcaaaaa atttatgtaa 1200 ttataattta ttttgttatg agttgtttta tcactcatag tactttaagt atgatttata 1260

tcatatacat ttgcataaaa tttttgaata agacgaatgg tcaaatatgt gagaaaaggt 1320
taacggcgtc atctattaaa aaacggaggt agtatttgtc agtgcgaatt ctcgatccat 1380
aaaaatggcg gcccagccca acccaccaaa ccgtcttccc caaagactcg agacttctct 1440
acgcttctcc tcgccgccga aacgaagcaa cccgtcgcct cgccgccgcc gc 1492

<210> 5

<211> 1217

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0019 - unknown

<400> tgttcgccct gggtattagc ttgccaaaca gaaataaata taccctgaaa gcaactaggc 60 acagecacet geaacttgea gaactagaag etteetetga etetegatet etgtegagga 120 agtttccaaa tacgccggca attaagctcg ccgtccgtcc ggccggcagg caggcggcgg 180 cgacggcgac cgaactccaa atttcaattc cggcacggtt tcaatatttc catcggattt 240 gaatcgcatt ccccctcgtt ttccttttcc tacacagtag catcttagta cattttgtac 300 tctagcccet ctcgtttgac tcgattcccc tgttctacgg ggacgcacca ttgtcgcaca 360 cgtagggggt agtactaagc actagttttt gacgaggacg gtggttaaca agtcagggtc 420 cqtctaatag agccgaggcc gtactcgcta ttcctttgca tgatttttgg gttaacaagt 480 cagggtctaa tagtctttag gctatgttct tcccctcttt tttcaactca cttctctcgt 540 tttccttgta cacgttttcc aatttgttaa acaatatgtt tttctaaaag tttatatacg 600 aaaattgcat aaaaatcata ttgatccctt ttttttaaaa gaagctaata cttaattaat 660 cacatattaa tagattgctc tgttttccgt gcgcagcaca tgggttccta acccaggttg 720 ccaaacatag cctaatcaat tagcatagct ctgtttctaa ttaagataaa ccttttacct 780 cggtattttg ttgtcacgat atttgaacta ctacacggta tatttcatat aaaaaattta 840 900 tqtaqaagtt acttttcaaa atatcagtta aatctatttt taattttata ataactagaa 960 gttaattagt cgtacattaa cgattttctc gttttatgtg ttcgtaaaaa aatctttata ttcaqtqaac tcaaacggga ccataatqac gtggcaaaac aatcgaaatq ccggctagat 1020 tegegggeac tggggeaacg actageatet ectectette atcetectet teetetgeet 1080

ataaatatgc	tctgctatct	ccttctcctg	cacgagccaa	acacaagaat	tcagctgtac	1140
aacctgatca	atcttacaca	agaattcagc	catagctagc	cctgatcgat	ccaattctga	1200
gttcttgacc	gacaacc					1217

<210> 6

<211> 1215

<212> DNA

<213> Oryza sativa

<220>

<221> misc feature

<223> PRO0020 - prp protein (putative)

<400> 6 gaggtgtaac tactgtgcaa gtggctgaaa aaaaatcgac tgtagcatat ggcgccatat 60 ttctagcaaa tccgatgttt tatctcgaga tggagggaat actttttaac tctaggggta 120 ataacgactt ggcattgtca ttctactcat ttttaaaagt tcttctaatg aaaatgtgga 180 ttttaacaat accaaatttt tgaaaggtga attttggtaa taaattgtac aggtccttca 240 tatttatggc aagtttccag tcatatttt aaggaagttc cagtcatgtt taggctgtgt 300 totttactcc tatotttcca actttcactc totcattttt cacacgcatg tttttcaaaa 360 agaaaaacta atttgttttt ataaaaaact tatataggaa agttctaaaa aaatatatta 420 atctgttttt ttattttta ctaacaactc ataattaatc atatatcact ccatcgctca 480 atgttgcact agagatgaaa gattctcaac ccctgcaaaa ccatgcagcc aggtccctgt 540 gttctctccc acgataactt acatccttat ttttcgcttg tacgcttttt aaagtgctaa 600 acggaatatt tttttaagtt tctataaaaa attgttttaa aaaatcataa taatttattt 660 ttttaagttt tctttagcta atacttaatt agttatgtgt taatgcatca ctccgtttta 720 tgctcgaagg aaagaggttt ctaacaccac atccaataga acaccacctc caagagaacc 780 cagcccaaaa ggcctatcat ccacggccca cgtagtagga caaaagctcg gaaaggccca 840 cgtggcgcac cgcctcacgt cgccaccgtc ccaccgactt gtgatttcca atccctcaaa 900 tactgtaacg ccacgtcgcc caacttttag taacggcacc aatctttccc acccccccc 960 ccccacccc cacaaacctg aaaaacgccg tcgccggctc gccgccggga tggtgttcct 1020 ccgcgcgccg gacggcacga cgcgccacgt cgacctcgac cccaccaccg ccacgctcgc 1080 cgacctcaca gcctccgcct ccctcgtctc tacctctccc accgccgcct cctcccggcc 1140

gtgccg	tece etetectgge	gtcccttcgg	gtctcgccct	cctcctcgct	gctcgtccac	1200
ctcccc	ctcc tcgga					1215
<210>	7					
<211>	1259					
<212>	DNA					

•

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0029 - noduline (putative)

<400> ttataggagt ggatggaaat gttgtgtatg cttttttgtg acatttgaag aggtatgttt 60 tttctttcct taggatcaaa aattatttat tcaggattgc tgaattatgg ttgaaaatgt 120 ggatgccaag gttgtgagtt aaacctgatt ttttacattt gtgtgctgaa atagtgtctt 180 gtotgccatc agatagcotg aatttttttt ggcaaccaat cccaacctgg ctcatttagt 240 tctgatttct gaatccagca tatatacttg catttcccat tttctaaaaa taatcatgaa 300 cacgagccat ttttttgctg tccatctcat caatcaaaca ggtcgtgatc aagatagctt 360 gagagaatca caatatggtg agcaaaaata aactaaaaaa gaaataacga gaaagatgta 420 agaagcatcg catttaagtc gacatggatg gaacagggat acaagggagc cctcctcact 480 gattgcatgt ttgaaactca ggacactcca gcccagcagg cttacctgtc aggagcccac 540 tacccatata tatatcaaac atatgcatat ttccaaatta ttcccccata ccatacagta 600 atccaaatcc accaagaaga tcaagtcaaa ttgcccacac atatgtcata acgacagagg 660 gaagaaatta aaagggaaag gacatgatca gcattcaaca tataggaaac taggatgttc 720 ttctgatgtt gccttaactg catagcctgc ttatatgatg ggtgtaactt ttggttttta 780 tgcttcctgt aggtcacagt taagtctgtt ccaatgaatc aatgatatgt atgataaaaa 840 tgagttctga acagttcctg aaaatttttt gctgcagtat ctctattaca atgacgtgtg 900 catgcataca gcaaaaaata catgtggtac taattaacac ttgttctgtt gttgctaata 960 tggcacaaat atgatgtaat aaagcactac accatgtgct gcaattaggc aattgtactg 1020 aaactactat tagcgcattg cattcatgca attgagaggt ctctatagtc tatagtctat 1080 aggaaccata tecetteatg aactteagga gtaacaaaac cetetatata taegeacaeg 1140 ccctgcactc ctctcaaaaa cacaagcaac agcttagcta gtaacagtag gccactacta 1200

gcatcactgc atttctagtt aagtaacaac actagagaga gtaaggagta gtgagacca 1259 <210> 8 <211> 1301 <212> DNA <213> Oryza sativa <220> <221> misc_feature <223> PRO0058 - proteinase inhibitor Rgpi9

<400> 8						
	agctgaagcc	ctgcgaaata	ggcctttaaa	cgctttaagg	ttactggatg	60
atcatatcgg	cgtaagaccg	gtttaaacat	ggtttcgctt	tgtgaatcca	atgtgagtca	120
cgacgtgaca	catggcacgt	ccttggagct	ttagacatat	cgaatctgag	cactggagtg	180
gccgagtggg	tgagcggcca	aatccgtttt	agacagatcg	cactgacacg	atgttgatca	240
ttgatactaa	taccatttta	tcaagcagta	gtgttgaaaa	aaaaacttat	gttctcttca	300
actgtgagat	ttcatcccgt	ttcaagatga	acaagccatg	catgtgagat	gtgaacagaa	360
ggcagaagac	agtggaaaga	caggacaaat	aagtgaagag	ggatcaaatc	aatgggcctg	420
acggtttctg	aaagttgaca	tggaaatcgc	cggtgatcac	cggtttatac	gttatttaaa	480
tctgcgattt	ccactttcgt	ttgctttcgg	ggttccaatt	tgagtcacgc	acatattctt	540
catcgtgctt	tggatctcag	caccgtagta	acttttggac	aaattgcatt	cgccgacact	600
aataacatgt	tctttttatg	ctgctttaca	tatactgctt	atccacaccc	aatcccatgt	660
tcatatatta	tgagatggag	ggagtaaact	ttgttaacag	caacattttt	tatattaaag	720
catcaactaa	ttaaagcaca	agatacgcat	gttatctcaa	taaatcttcc	agtgcatgta	780
taaagaagat	gtcgccgcta	acttagataa	tttttgtgac	ttttatcctg	gccggcataa	840
ttaattcttc	cggaaattaa	aagctagttt	ttccatattc	atcagtacag	acaagacagc	900
atagtaagcg	aagcatacct	gacgtgttag	ctcattgtaa	ctcgatctgg	aacactcgat	960
gctagataca	gacagacact	cctcgtgatg	aacgttagca	tttagcaaca	tacggtgata	1020
aagcagctgg	ggatcgatcc	atccatccat	cgtctttaca	cgtacttacc	ttgctaaccg	1080
cactgtcgac	tcttgcatgt	ttgcatgtaa	tccaaatgga	ccccacgtgg	aacatgctca	1140
cagtgctttg	cagctgcttt	ccaaaatgct	ttctttcact	tcttccattc	ctctgtccac	1200
aaaaaaagta	gtgtgttctt	gagcctatat	aagagagggt	cacacgctcc	agtcgactca	1260

Page 8

<210> 9

<211> 1243

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0061 - beta-expansine EXPB9

	<400> 9						
	<400> 9 aaaaccaccg	agggacctga	tctgcaccgg	ttttgatagt	tgagggaccc	gttgtgtctg	60
,	gttttccgat	cgagggacga	aaatcggatt	cggtgtaaag	ttaagggacc	tcagatgaac	120
	ttattccgga	gcatgattgg	gaaggagga	cataaggccc	atgtcgcatg	tgtttggacg	180
	gtccagatct	ccagatcact	cagcaggatc	ggccgcgttc	gcgtagcacc	cgcggtttga	240
	tteggettee	cgcaaggcgg	cggccggtgg	ccgtgccgcc	gtagcttccg	ccggaagcga	300
	gcacgccgcc	gccgccgacc	cggctctgcg	tttgcaccgc	cttgcacgcg	atacatcggg	360
	atagatagct	actactctct	ccgtttcaca	atgtaaatca	ttctactatt	ttccacattc	420
	atattgatgt	taatgaatat	agacatatat	atctatttag	attcattaac	atcaatatga	480
	atgtaggaaa	tgctagaatg	acttacattg	tgaattgtga	aatggacgaa	gtacctacga	540
	tggatggatg	caggatcatg	aaagaattaa	tgcaagatcg	tatctgccgc	atgcaaaatc	600
	ttactaattg	cgctgcatat	atgcatgaca	gcctgcatgc	gggcgtgtaa	gcgtgttcat	660
	ccattaggaa	gtaaccttgt	cattacttat	accagtacta	catactatat	agtattgatt	720
	tcatgagcaa	. atctacaaaa	ctggaaagca	ataaggaata	cgggactgga	aaagactcaa	780
	cattaatcac	caaatatttc	gccttctcca	gcagaatata	tatctctcca	tcttgatcac	840
	tgtacacact	gacagtgtac	gcataaacgc	agcagccagc	ttaactgtcg	tctcaccgtc	900
	gcacactgg	cttccatctc	aggctagctt	tctcagccac	ccatcgtaca	tgtcaactcg	960
	gcgcgcgcac	aggcacaaat	tacgtacaaa	acgcatgacc	aaatcaaaac	caccggagaa	1020
	gaatcgctcc	c cgcgcgcggc	ggcggcgcgc	acgtacgaat	gcacgcacgc	acgcccaacc	1080
	ccacgacac	g atcgcgcgcg	acgccggcga	caccggccat	ccacccgcgc	cctcacctcg	1140
	ccgactata	a atacgtaggo	atctgcttga	tettgtcate	catctcacca	ccaaaaaaaa	1200
	aggaaaaaa	a aacaaaaca	accaagccaa	ataaaagcga Page S	ı caa 9		1243

- <210> 10
 <211> 1019
 <212> DNA
 <213> Oryza sativa
- <220>
 <221> misc_feature
- <223> PRO0063 structural protein
- <400> 10 cctagctata tgcagaggtt gacaggttgt ctcttagatc gattaataat atcacattga 60 tgcaattaat tatctgagat caataaagtt tttctttatg ttaaattaat atcagtaata 120 gatgctaagt ccttcattag tagtatccca catttaatca cagttggaca cacaaaaaaa 180 aaggcaatgc cattaatatg ccatctctct tgttttccat tgcctaccaa gtgccatatg 240 atatcatcat caggcacacc aatccataac tagttcatta gagcaagttt aataatagag 300 ctaactataa gcttataatt tatattggag taaacatgta tagtaaatga gctataaggt 360 tatttetttt ttteteetee tetetetate tettacetat atatttaatg tatttgtett 420 gaagtatgtg aatagctagc tettgtatga gagccaatec tetgcatttt ttaaattete 480 tttcctccac ataagcatat agttggctta tagcctgcta ttatacttgg tcttagtaca 540 ctaacccccc ttacatgcaa tgcaagctgt ctaattaaaa gggtttcaca acattttgaa 600 tgccactact agctcccaac cacaaccaca gatctagcta gggtttgttc atttctctc 660 tctctcctcc tcctcctttc cgttgtgcca attcatccaa agtcattgag agccatacta 720 ctccatatca tattactcct acatgtgtac tacatttata ttgatgatct gtaagagcaa 780 aagtattaat ggggatcaca ggattgcagt aacagcagca ggtaccccct cctttaacat 840 ccgcagttac gcctcccacc taccgtcttc tctgccgatc gatgacgatg agcttctcct 900 ccgctataaa tcctctcccc tcctctccc ctcctcctcc aactccacat cgatcagcag 960 cagcagcagc ttgcacactc gagcttagct tagcttttgc aagagagatc gagctagag 1019
- <210> 11
- <211> 1144
- <212> DNA
- <213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0069 - xylosidase (putative)

<400> 11 ggtaaggtcc tctcggtcat cctggtatgc cttccaattg ttacatactc ctctcttctt 60 cgaaactata gttagatcca atttgttcgg tcgttggcgc aattgtggaa cacgtggcaa 120 agogacgaag ctacacaaca agatgotoag gocatgtoto tactoactac gtgtatgtgt 180 240 cgaggetate atgeetteta taagacaega gaaacetttg caagecatte getttttee 300 ctctctcctc cacgtcaact cttcgccaac gtggctgagc gaggtcacac gttagcagga agagttgttt attcccttat gtcattaaca atgtggtgca aaaatagtac ataggtaata 360 ctccatccgc cccaaaatgt aaggattttt ttagggttgg acaagagtta taagaaagta 420 cgtagaatta aatgagagaa tattatgctt ggtagagaag gggaggtagg taagaagatt 480 540 gaacagtgga gggttgtaat tgattgagaa aataatgttg gtgaataaat tgttatattt tqqqataaac cqtaagggct aaaatttgtt atattttggg accgatagag cgagtaatat 600 tttattcagc catctaataa tattatgtaa gagaaataat aaaagatacc catataaagt 660 aaacaatatt atctatatct acttttcttt tcttttttgc ctaatactac tttgtatata 720 tatatatata tattgcgagg attgttataa taaaagttga tttatttaaa tctaataccc 780 840 cgattggtga tgcgctagta tcacagtatc actcagctgg accccctgtc agtcatagcg 900 acagagcact ccgattggat atggggccta taaaacagag aaaaaaagcg ccccatccaa tgaacatgca tgccactcaa tgcatgcagt gcagtagagg aggagtactg acactgctca 960 1020 gegteeetet ecetgeacat ttaetegtat geacageaca acacacacte eteteetete 1080 ctatctccag gctcacagat gagctgtgag ctgtgtgtgt gacacagtct actgctctct ctgtacaaag ggagaggtg agaggaaatt aacagaggaa ggagggagaa gaaatgcgag 1140 1144 aaac

<210> 12

<211> 1178

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0078 - CBP80

<400> 12 aagcaggete aaatcateet teeetttace gattgeaace geeteaacaa aagettetat 60 tecaacaaca gattteaaat aaaaacaaaa tecattageg atgtttggee gtegttgaaa 120 gatttgaaca tctgcaacat gaaaaaggca atgaaacttt cgatcactag ggtttggagg 180 aagatgttgg ttgctatggg cttcattgtc gcgtagagtg gtgactggtc ttcgagtcca 240 tgattggttg cagatgttac ggagatgtta ggaggtgttg tggtgaacgg gtctatatta 300 cgatgagagg ccctggtggg tgcgcctcct ttgctcccaa gggagaatac tggtgtccta 360 aaatgaaatt agctctagga gggagttata tagagatcaa agttatcagc ttgacggttg 420 gatctatctc aaatggctat caaaagtgag taaaatttag caattaataa atgggcacat 480 accgtccata aatacccaat ttcatataat ttatacttct aaaagctaag tagcttacca 540 tgtagctttg tatcccgcga ctcttataca aggcggtgtc caatctttag gtataatacg 600 660 ttagtgacat atctataaca aatttaagta ccatataatt cacacatatc tattacgttt 720 gagtccgcgt atttaatcga tgacatcttt ttacaaaagt taatcagctt agcagagtgt 780 atttgatttg tgatcatcct ttatgtgtat cacggaaacc tacgctagtg ctatatatat 840 gtcacataca caattatttt gttttgagtt ggactagtca cacaaattac cgtgcttcat 900 caacgacact ttaatacgca aacttaacac aaaccccctc ggcgaccggc cgcccacacg 960 catctcccaa ctcgactcga cccaacgtcc caacccaagc cggtcgagtt cgcgttcgcg 1020 tegeacegeg teaegtgacg aaccegatat caaaaccece geegegeeg eteecgaace 1080 aaaacceteg aaccegaega gtatecegae caccaetete tetetetete taeteteeet 1140 cctcgccgcg ccgccgccg cccagctt 1178

<210> 13

<211> 1204

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0079 - starch branching enzyme I

```
<400>
ttctgtaaca tcccagttaa cgcaaataca tttcaagtgg ctacttttta tcaagaagac
                                                                       60
aataaattto aagcagatta aagttgaaga ggaaaataaa tatgcagtto ttttcttato
                                                                      120
ttttcttcaa ggtttcatcc agatgtcctt gaatcctttt tttttttctt tttgacaaga
                                                                      180
aaacatatgc ctttgtgccg ggaattaatg gaaaaagaac cttagttaag ctgatcacgc
                                                                      240
gacagatttg gcacaatcac gttgtgctac ataacacgca tacaaagtga ttatcctcct
                                                                      300
aggatgctat gagtcaccaa aagcaactga taacaagacg tgagagtagg ccctgtttag
                                                                      360
atgggactaa aacttttaag tccctatcac atcggatgtt tgaaaattaa ttataaatat
                                                                      420
taaacgtaga ctattaataa aacccatcca taatcttgga ctaatttgcg agacgaatct
                                                                      480
aatgageeta attaateeat gattageeta tgtgatgeta cagtaaacat tetetaatta
                                                                      540
tagattaatt aggettaaaa aatttgtete gtgaattage ttttatttat gtaattagtt
                                                                      600
ttgtaagtag totatattta atactotaaa ttagtgtota aagacaggga ctaaagttaa
                                                                      660
gtccctggat ctaaacacca ccaagctgat cgagcaacaa atacgtttta ttcccccact
                                                                      720
gctttagcta tcaaaaaggc cacataatta cacattttga cagaaatcaa agctgctttt
                                                                      780
accttgtatg catttgcttt actgacagct aacagcagca agcaacctca tttggatgaa
                                                                       840
acaagcaaca gtgtcagcac agaaatctca ttacctttcg cttttgtctt gtattatgat
                                                                       900
ttacaggaat tcggtttgta tttatttgcg tctggaaaaa gaaaaggaag gagagacacg
                                                                       960
tgaaggccca tggccaattg gcccaaaggc tcctgggcac ctcctggccg tccacgtggc
                                                                     1020
                                                                     1080
aggtgtccac gtcagcactt tggctttgtt ttctcctttt tttttctccc aattttcact
ccactgetge acaagetttt ccgtgettee tegeegeete eggeeteege teeggegeta
                                                                      1140
taaatcgccg ccgatttcga agctgtggaa atgggagtcg cctccacggc caccgacatc
                                                                      1200
                                                                      1204
 cgcc
```

<210> 14

<211> 1212

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0081 - putative caffeinoyl-CoA 3-O-methyltransferase

<pre><400> 14</pre> 071-prom-prov.ST25.txt	
atggtgccat gtcaataaga catcataata gaaactacac tccacaaccc atagtttctt	60
aaagtgggtc attaataaat acatcatcta tcttttctat caatcatatt tattctttat	120
ctattatgac ggcactattt tctcccaatg taaaacttga taatgtctag tgcataggtt	180
ctcgtgttga agctgtttct tacatgagac ccagtttctt cttctctcca ctctctcta	240
attaatataa tgtcacataa gttaaaagtt ctagtaaata ataatatagt taatgacata	300
gacaacatcc tagatgtagg gttaggagtc ttcggacagt agcaaccctg ttttgactcc	360
ttttttggct gcccatccac agtcgccacc agaaaattca ctgtgcccaa atcaatggaa	420
gcgcctacta gatccatcca tcttcgtgac agctccgagc tttctcctgg ttatttttct	480
cccaaaaata cattcagaac acgatctcaa atttaaacta atggagtgct actgcatttc	540
ttaattataa gtcgcagcac cactcattaa tcatttccat cacaggtaaa tcgtggtgag	600
ctggtggttg ctactgtact actagtacta cctgtcgcag ctttgtagaa gccgttttcg	660
ctgaagette ttettettee etgggeaaaa taattttaag eaggeggaat aatattggga	720
taaacagggt ggacaaaagc gtgcgatccc tttctttaac caaaccacga cgaaagcagg	780
ttaggtcgcg gcaggtggtg gtggtaggaa gaagaagaaa gagaggggaa aaaaaacaaa	840
aatttcacat gcatcatgca tgaagtagta catgtagtac tgagtactgt aataatgttc	900
agtttactgg accgtctcaa cgggaagacc aaattaacgc ttataaaata ccctttttt	960
	1020
	1080
	1140
	1200
gateteateg ee	l212

<210> 15

<211> 1204

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0087 - prolamine RM9

<400> 15 gtaagtatcg atgggaccat ttgccatatc attgttaatt cgatcttacc ttgtcaccgg Page 14

addaadacdc	tececetaae	atgaagttaa	aattttcata	tttgaaggc	taatcacaaa	120
			•			
aatatcaatt	tagaagttaa	aaacattaag	cattgctgcc	tcaataaaat	tcatatatgc	180
gtaatagtcc	acgttaatac	ccatgcatat	cggtttcatt	tgttttcacc	caaagtcaca	240
aaatatagct	gctgctctat	cctgagagtg	agtaggtagg	cattttgttc	tttactgtta	300
tcgttgatca	ccgccgtgat	acaatcggtc	aatggtttga	tgctagcaag	gggctatttt	360
catttatgtt	ctgcctccta	aatgttcttt	cattcttaca	cctagtaccg	tgagaaaaat	420
ctagctagtt	ctataggcaa	atcgttgtca	atacgtgcta	gctgaactgt	tatgagaaac	480
aatgtctctt	aagtcacgat	ttcgtttcct	ttcgtgattt	tttctttcta	acgtgtttt	540
taactcctcg	gcaaaataaa	cgcaagctaa	tctttcaaat	ttttctccaa	agtggtcata	600
aaatcgatga	cgttattaaa	ggctatccta	agatttttgt	cacggaatgc	ctaaccgttg	660
tagtattaga	catgtcgttg	taaaggcact	ttactacata	tctcatttga	acataagcag	720
ttattgataa	ctaatatatt	tgtcataact	cactttacac	atacaaatat	atttctacat	780
atatcattaa	agttccacgc	gcccttgaca	tgtaaagtgc	atttgtaaac	caatagctta	840
caatacataa	caaacttagt	ttgaaaagga	cagcaatcca	tgtcacacta	aaatataaag	900
tgagtgagga	gtcataacat	tatctatctt	gctaaccatc	aagtatctgt	gatgggcaat	960
aaagttactt	tgaagatggt	ctacaaggac	atctgtggag	gcacatcatg	taacatccaa	1020
acgacatgac	tcactctgat	cctaatagaa	tatccaacca	aaacaaacac	tctaaagcaa	1080
ccgataagga	attcaaagaa	aacccatcca	tcgcatctat	aaatagacaa	gcacaatgta	1140
aacccccttc	attcttctca	caactcaaac	attacagcaa	aagcataaga	actagaaacc	1200
acca						1204

<210> 16

<211> 1242

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0092 - allergen RA5

taattgttgo	tacatatggc	aacagtgaga	gtcaactttt	agcatttatc	aaaggaaatt	180
ttgatgtatg	gagtgaagaa	aagaaaacaa	gagtgataaa	aaaaattatt	teggtgeagt	240
aataattaag	aggctttgtt	gtgtcaacta	ttatagaaag	atagttttta	agtgatattt	300
attagatata	taagagcttt	cctacatgcc	ttacattaat	tctgcaagct	tggttagttt	360
ctaccctgct	caaataatta	aatataatta	aattataact	aaattaatac	ttcgttgtaa	420
aaaggatgat	gtactacagt	acagtgtgta	ggcaaacact	caaactataa	atcataaata	480
aacacaaaat	attcaggatt	taaatcacca	aatatcaaat	ccaatataaa	ttaaatgtct	540
cattttgttc	atcacaaaat	atataaatca	aaaccattga	tttcacagga	ttgagctcaa	600
tttcaagcaa	gagaaaggac	atgaagacaa	actcactcga	tcacttgtat	taatcgatta	660
ccttttcttt	tgttgtaata	gtttttttt	ttttgctttc	gtataattat	gttcgattcg	720
cttggctttg	atacggaaaa	gaacccatac	actaaaatca	cacgtttctt	aattttgtgc	780
aatctagtgt	gttaaagctt	cattgctgaa	cactttttaa	ctgccagagc	atattttcta	840
acaatatttg	ttctgagctc	ttcttttct	ttgtcttgca	aattggatca	ctatacaagc	900
catggaaata	aagatcaaca	gattttgtta	ccttgcgtaa	ctcgacgtct	gttgacagta	960
tacgcattaa	ttttcttgca	cggaagaatc	aaaacaagtt	gaaaaaatgt	ggtgcataca	1020
gtccacttta	acaaactttt	atccatatca	tgtccaaatc	gattaggtgt	gagtcacaat	1080
aaatgttcta	tgcaaacaag	ctaatcacaa	ttatgaacag	caaaaaaat	tgtgtccgtt	1140
cttgagatca	ctttagtctt	tatagctata	tatagaaacc	acccatagat	agctatccct	1200
ctcataaaca	aattgatagt	taagattttc	tgcaacaaaa	at		1242

<210> 17

<211> 1216

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0095 - putative methionine aminopeptidase

agagggtttt	ccagtttatc	ctatgcattt	gacctctggt	catgtattga	ttctgagaca	24
aagtgtagtg	atcgcttgat	gatactagta	cacattgctg	ccttctttt	tgtcctgtaa	300
aagatttatt	attggcagça	atggatggta	gagagggcaa	tctgcttctt	agttttgagt	360
ataaagtttt	aagttttgag	cagagtttcg	aaaatttgca	gtagaaagtt	tgaaatttca	420
aattggaagt	acagtttttc	aaatttccag	tataaatttt	taaacccact	gagaaaccaa	480
gagcatatgg	gcgatcaaaa	atttcttttc	taaaggaaaa	atattttta	aaaaacactt	540
agtagtatat	caaaattctg	aggtaagctc	attaggccca	ttcactgtac	ggcccatgaa	600
gcccagtctg	gtgagatggg	cctacccgtg	caggcagaga	tggatgggcc	tttaattgta	660
ggcccatgtt	ggaaagccca	ccaaagccca	ataatatatc	ctcctcacct	tcaaccctaa	720
tcctcctctt	cttctagaag	actgaaaatt	cctctccttt	cttctctcgc	cctcaccgct	780
cgccgaggtt	gccgtctcct	tgtctcctcc	gctccttgcg	ccgccgccgc	gacgagtcgc	840
ggggaggggc	ggcgatctcc	atctccatct	gaggcgagga	gagcagggga	ggtgagggga	900
tcctggtgag	gtgagcatcc	acgtcctctt	tctttttc	tgattcatct	ctctctct	960
cgcacatcgg	gactggaatt	tgcttgcgtt	cgttcgttaa	gttaacccta	gcttctcttc	1020
tagatctgga	agaaactctt	cttcttttaa	tttcagagcc	ttaaccttaa	tagtacaagt	1080
aacagtttgt	ttgttccccg	aaaagtttgg	atgccttcca	aatagagaca	catgttattt	1140
attttggaat	gtaatttgtc	cctggattta	ttcattcagg	tttgtgatta	ctggacaata	1200
gaaatattta	cacaat					1216

<210> 18

<211> 1229

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0098 - ras-related GTP binding protein

<400> 18						
aatgggcatg	acgctatgtt	cgggtgtttt	ttttaaacg	gttatgggtt	ccaaagaaac	60
ccttatgaaa	tgagacattg	taatgaattt	tgtgaaaaaa	ccagcatgag	ataagatatc	120
atggtttcta	ttgcttgagt	ctcgaatttc	tacattttta	atgtatgtta	tcaaacaaca	180
tatttttgtt	gatttatgtg	gaccacagga	ctcaacaaca	agggtgcatt	tatttaagca	240
			Dage 17			

tctcgctaaa	acttaccggc	cacacacaa	accgcacaga	acattagtgc	acgattaatt	300
aaatattaac	cgttaaaaat	tttaacaaca	aatttctttg	ttttttttt	aaaaaaattt	360
ctatataata	atttttccac	agtttgataa	acgtgctaac	tgaaaccaaa	aaaattattt	420
caagttgcta	aaaaaagaaa	aaaagaactc	attcggagtg	tcaacgaaag	ggccggacta	480
gtgtacagcg	tggtccgcca	cgaaggcaca	aaatcactcg	caatcaaaac	gtcgtcacct	540
acctactcta	ccatcaccaa	aacatatttt	aagggcatgt	ttggcacagc	tccagctcca	600
cccctcttgt	agctagagct	cagccaaaca	gtttcagctc	caccaaaact	gggagtggag	660
ctggatggag	ctctcttaca	aaatgaacta	cagttgtgga	gttgggttta	gtcagcttca	720
caattccact	ccagacccaa	ctcctagagc	taaatttaga	agttggagct	ataccaaaca	780
ggccctaaag	agattaatga	tgagagaaga	gcagcaggat	acatatttat	agctacctgt	840
agcatggact	caagacacag	tgtatgtata	acaggtggga	ccagatatta	atagtatagt	900
atgtaactat	tataggaatg	tgctattaga	ttggctatag	ataaattgaa	gctattaatt	960
ggctatacta	ttaaacttgc	tctaaaaaga	cacgagcccc	taaaaaacgt	agctccaccc	1020
cacccggccc	ggcccacatc	cgcaccccga	ccaaaacccc	ccatccgccg	cactccacgc	1080
gcacgccacc	gcccccctca	ccccgctgcc	gtgctcgtct	cgtgctcccc	ctctcctccg	1140
cctttagtca	cctttccccc	tcactctctc	cacgcgaccc	agatcgatcg	ccgagctgca	1200
cctgcacctg	caccccgagg	agaggagag				1229

<210> 19

<211> 1294

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0104 - beta-expnasin EXPB1

<400> 19
gtacaaaaaa gcaggctgac aaatgtttaa tggactaatg cggttaaaaa agttacaata 60
taatatgttt ggatttggtt tgaataaccg gacactactc tagtcaaatt tgtataatta 120
ttttagagat aatacaagaa atccattgac aagcgtctaa attcaaaaat tgccatcgta 180
gaaacggttt tgtcctaaaa atgctatcgc cgttagagtt ctttctatcc cgcgccatta 240
aatactatat atgatgaaca gtgtacttaa cagcgtgggg gtagaaggaa tcctaaccgc 300
Page 18

gatggcattt	ttgagacaaa	atcgtttgta	tgatggtaat	tcttggaatt	aacgcttgtt	360
gatatcattt	cttggattta	aacgcttgtc	aatggtattt	attgaattat	cgcattattt	420
tatggcgatg	tcatagaggt	actgttagta	aggatacatc	acaattaatg	caagtctatt	480
ggatgcaaat	agtactacct	ccgtcccaat	ataaatgcaa	ttgtgatttt	ctgtgttcaa	540
catttgaccg	tccgtcttat	ttaaaaaaat	tataaaaaaa	taaaaaaaat	cacactaaaa	600
gttttattca	tgttttatca	tctaaaaaca	acaaaaatac	taatcataat	ttttttcaa	660
ataaaatgga	tggtcaaacg	ttgtacacgg	aaactcgcaa	atgtacttat	attggggacg	720
gagttagtac	gtgtacgtat	aatctactac	cgataaatgc	tacggcaaag	gatacgtttc	780
cttcctttaa	ttttgggctg	gcgttgttta	catgtgcttg	agatatatat	actctataat	840
aatacaaatg	tgatgctagt	atatattgcg	attaaatgta	cagtaaatag	ggatgaacaa	900
tatacgattt	tttactgaga	agacatgcat	gtacctacac	tatatatatc	tggatcatct	960
gctgcagaaa	gagtgagagt	taatgtttgt	cgtgattaaa	ccattaatta	ataataattc	1020
caggttcagt	gtggttaatt	gagaaagtta	ctactagaaa	agaagaagtt	tgggatgaag	1080
cccaggccca	ccatccgaaa	ctagtagcgg	tcagcccgac	aaagtaggta	geggeegeea	1140
tgcgtccatc	gatcccccga	cgccttcctt	tgtcccgcga	teceggeggt	gctccgtcca	1200
tagctctctt	gcctccgccc	ataaatacca	cccgcattgg	cgttcagctg	tatcatccac	1260
cagcaataac	attatattgc	agcaacccag	cttt			1294

<210> 20

<211> 1343

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0105 - glycine-rich protein

<400> 20
ccacgccaag ttgaagtctg gtttcagaac agaagagccc ggtacttgca tttcattcac 60
atgcatggat tctaacttct aagacctctg aaaactgaat tcatcaagat ttatgaactg 120
cagttttct gatgattgct tttgtcgaaa attttaggac caagcataag cagatcgaag 180
aagaatgcaa gaaccgaggt ggttggaggg cctaaacaag gagaaccgaa ggctgaagat 240
ggaactgatg agggtttctc ggcctgtttt gactcccac ggcagcaccc ataatgtgtc 300
Page 19

agaggttact	gttacttgtt	tatcttgcaa	cagatettee	tacgagactt	tcacagtgtg	360
aagaacctgg	cggtaaaata	catgagggtc	aattcagtga	tctgaatata	gtttctgatc	420
aatggagaat	tctcaaaggc	ctacaagatt	ttctctttct	ttttcctttt	tacagaatgc	480
gcaaaaagac	tgtattaaga	aagggataca	acaatggtaa	caagattatt	atttttttt	540
ttgaggaaac	catggtaaca	agaaaatgct	tccaaagtga	catagtctcc	catgttaaat	600
aataaatatg	catttattt	tttaaaaaaa	gtggatgttt	cacttattca	gatttatatg	660
tcaaggggga	acaacagtaa	caaccaagga	ggaacttttt	tttttttgag	aggaaaccaa	720
ggaggaactt	gatggaataa	tttaaaagaa	agtgtcagca	ttttaagaat	tgcactccag	780
gaccatgggg	ttgaaattta	gtacctccgg	taatagaagg	tacggaaatt	tagtgcaaat	840
tttagtacat	ctcaacgacg	gtaaaatttc	tctttctctt	atgccattga	tcattgtaaa	900
atggaaagct	actaaaacaa	tatacagcaa	tatcccccgt	tataacttca	gggaataatg	960
tcttggcacc	ttcctgacag	tacagatgca	gagctgctcc	ctataaagtt	cagaaaatac	1020
caataagatt	gctctatctg	cagaaagaat	atgaactgaa	aaaaagggca	gtaactcagt	1080
ccattgcatg	catgcatatg	cgagaattcc	gaacttgacc	ttccaaaatt	gacaatgtct	1140
caccattcgc	ctactcttaa	gcaccaccac	cacaaaacaa	agcgcctccc	cttaatcctc	1200
tcctatccac	tcctctcaag	ctataaaagg	agctcccaag	aacacaaagc	atccatcgat	1260
ctccaagtct	ccacccatca	agattgcagt	aataatccaa	gctcaataaa	cgagccaatc	1320
cgtcgaagaa	ggaagcagcg	gcg				1343

<210> 21

<211> 1283

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0108 - metallothionein-like protein (putative)

<400> 21
gccctgatac gatgccgtgc gatatcgatc ccaacaatac ttcaaattca gtgaggtata 60
tgtattcgtg aagagatgat ccgatcgact acttcagtga tgtgtattta gttgtttgat 120
taaaggcaac gtattcaaa tttagttaat acatgaacat gttcagagca ggtttgattt 180
ggtcatagaa tcatcaaact caaatgcagt ctagctcatg cattaaattt aaattgaatt 240
Page 20

cgtacagcaa	gttaatagaa	ttcgatgtgt	acaagataag	tttaagtacg	tgtctggtgt	300
agctcgcgcc	atggatttga	aggagggatg	atttggtcag	tagcttgagg	gatttgaatt	360
cttggcgtat	gataaactta	agttcaaaaa	atataagaca	catcagtttt	atatttcaat	420
tcgtgtaaac	cactgaatta	aattcttgca	agaaatctga	atttgcatat	ttcaattcat	480
actcttagct	cattcaaatt	gacatttgca	cgatgatgag	tgtgcctttt	ggggtggaac	540
tgġtataagt	ttgacttttg	gggaatttaa	tctaatccag	cgtggttcaa	gcaagaaatt	600
tgaattcaac	tcgtacaaga	aacgtattca	attccaagct	gtgcaataat	gcatctatct	660
taagcaaaga	gtctgcatca	tagtacagat	gcaagattga	aacagctaag	aactttatca	720
aattctgttt	ttcgtgatga	aagtttaaat	ccagttcata	caaattcaga	ttgtttgctt	780
taaatatgag	caacaattcg	tctatcttaa	gcaaaggttg	acatcatggt	gtgaaagcaa	840
atttgaacct	ggccaaaact	tggattacat	ttgcccagaa	acttggttca	gattaacagt	900
aattaaaata	atgcaaccgt	ggtgcgtaag	caactacata	aaaatcgtca	atattttat	960
atttttcggc	acttatcaat	actatattca	actaggaatg	acacaattgc	accccaaaca	1020
aatatgcttt	tttaaaactc	caagaaatgc	atatagaaaa	ctgacgtcaa	tgaatgataa	1080
tgatttttca	aggccatttc	aaccagctac	atctttctgg	caagataatg	cttgacataa	1140
ttccgcagct	tcttctcaag	ggtactacta	ctataaatag	gagggcatat	ccgaactgag	1200
ttcatatcaa	. gctttcaatc	tctcatttca	tccaactaca	caagttcctg	aagagtttac	1260
aagagaccca	gaagatcacc	cag				1283

<210> 22

<211> 1208

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0109 - metallothioneine (putative)

	gattgtctgg	tatagatttg	actttttggg	aactgaatca	aatccagcat	gattcatgca	300
	agaaacttga	attcaactca	tacaagaaac	atattcaatt	tcaagctgtg	caataatgca	360
1	cgtatcttaa	gcaaagagta	gtacgtctgc	atcatatagt	actcatgcaa	gattgaaaca	420
•	gctaagaact	tgatcaaatt	caaagttttt	ttgtgatcga	agtttaaatc	cagttcatac	480
i	aagaaacgca	ttaaaaataa	tcgatttaaa	tatgagcaat	aatgcatcta	ctttaagcat	540
ć	agggtttgac	atcacggtat	ggaagcaaat	ttgaattaga	cgcaaacttg	gatctcattt	600
1	ttccagaaac	tttgttcgat	tggtaattaa	aacagtgcaa	cctttgcacg	caaccaaata	660
1	tataaaaatc	cctggttgct	aggactgttg	taatcctgac	aaatttcctc	taatcttaaa	720
ć	acacttgggt	cggctttctt	tgccaacccg	gcgaaaaaaa	actatataaa	aatcataatt	780
ć	attactacct	tcatttcagg	ttataagact	ttctaacatt	gtccatattt	atatatatgt	840
ŧ	aatgaatct	agacatatat	ttgtgtctgg	attcattaac	atctatatga	atgtggacaa	900
t	gctagaaag	ttttataacc	tgaaacggag	aagtatattt	ttttgggtac	ttgtgtcata	960
t	tgtcatgtc	atcaatgtgt	atagtactaa	ggttcaatga	gaaatgatac	aattgcaagc	1020
		gccgttacag					1080
		gcagctatgc					1140
а	gttcatatc	aagctttcaa	tctctcattg	catacaagtc	cctgaagagt	ttacaagaga	1200
С	ccagaag						1208

<210> 23

<211> 1237

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0111 - uclacyanin 3-like protein

<400> 23
tcgttaagtt tgatgattc tgatgaccca tggtcaccta gcggctagca gtaccatgca 60
tgatcaccct ccacaaagaa atggtacagt acatctccgt cccaaaataa gtgcagccat 120
gtatatccat gcctaacgtt tgaccgtccg tcttatttaa aaaaattatg aaaaatttaa 180
aaatatttag tcacacataa agtattattc atgtttatc atctaatagc aacaaaaaat 240
actaatcata aaatttttt taataagata aacggttaaa cgttgaacgt gaatagtgca 300

aaacttattt	tagaacggag	ggagtacgaa	gtaactccgg	aactacatat	agggcaatta	360
ttgccctatg	tatgcatata	gtcaatcaat	taactgctga	caatggaaaa	gctaatcaat	420
caatcaatgg	tttgattaat	caaattaagc	caggtcagtc	cgtcagtgta	cattcactaa	480
ttaaattaac	aggtttgttc	aacggttcaa	ccaacatctg	ccatcaacat	cttttcgttg	540
cacctttctt	gactctttat	gctattttgc	taaaaaaaaa	cttctcttta	catcacttat	600
aacaatatat	atttctgctt	taatttgtaa	tctttttt	ctgcgttgca	acggaaatca	660
cgagcgatat	atggtgaaga	ctgatgataa	tcgtatttct	gatgacccat	gattccgcgg	720
tgtaccatct	gttctgtcaa	ctaaaaagtg	gagtagttcc	ttgacggaag	aagggagcaa	780
aatagaagat	attctcagtt	gatctgcagt	tgttgttagg	tcactatatt	cagaaatcgc	840
agttgctgtt	gtttaaattg	tgtgtgacag	cagacagcta	attatcagta	cacgtatatg	900
agcaatacta	gtgaatctgt	actaatttaa	cgagagtatt	ttctatatac	aaatacaaca	960
gcaaaactgt	gccactggcg	ccgaatacgt	acggacagag	ctcaggcaat	caggggagca	1020
gcaaaagagg	agagagttgg	tgccaagcac	aactaaaccc	aactgcaccc	aaaaactaat	108
cagcatttca	gttcgcttta	gttagtacta	ccacctgcat	ctctttacca	acactatata	114
acccgcagtg	gacctgcagt	catctcacta	attcagtgaa	gccaccagta	ctagtacggc	120
tctaatcagt	tegegtttge	taattaactc	tgccatc			123

<210> 24

<211> 1100

4

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0116 - 26S proteasome regulatory particle non-ATPase subunit 1

<400> 24
ctaagggcag cagccattgg gctctatagg tgtggttgca agtgcactta caagcgagca 60
acctggtaga atatccccga gatcagtagt taccgtgatt ggttcagact tgagaggcta 120
atttttcgt acctgtagct ttattacatc gcatttcctc ttattgaagt ttagccgagg 180
tggtgcggat ggatattcag tctaacagac tcaatgaacg ctttgttgta tgacttgtac 240
agtactggct gctcgaacag gatggttcag cttccagaaa tttggcaacg ctccatttca 300

		073	l-prom-prov	ST25.txt		
aagaaaatca t		gccttcttgt	tgttacatto	g atctcatata		360
gatcgttgac a	tcttgtttt	ttggttcgtt	: tgccatggta	gtttcccttg	ctgctgggag	420
gattgccgcc t	gaacttttt	cttttttgcg	ı aggatgttat	: ttttgccaga	. caagaacggg	480
aataagcaaa t	tgtttggtg	gaactaaagt	aaactcgatc	tctttccgag	aagtgtatta	540
ttttcacgtg ta	accatcaat	ttttttgaaa	gtaaatattt	: ttccccttta	actaatgttc	600
actttggacc g	gataatctt	acctttattt	aactttgggo	tatctaactc	tcttctaaag	660
catataaacg at	tcttgagta	catcgattcc	tacttatcat	ttaactctcg	tagcttaatg	720
taagattatt to	ctttgaaat	atgataaatt	ggatgcatat	gaatgaaaga	gtcaaggatt	780
aagtgattcc to	caaaaaaaa	aaaagagtga	aatttattta	tttttccct	ttcgacacga	840
agaagggctt gg	gttggagga	aaatggccca	gattcagatg	accgaggccg	agtaccatgg	900
ggcccacaag aa	ataataagc	cccgagccca	aacgctaagg	cccacgagaa	gccgtgcgct	960
ggaagaaaga aa	agaaaccgc	ggccgtcttc	acaccgaagc	ggcggacgag	acgactcgca	1020
gtcgcagcct ct	ttcctcct	ccgtctctct	ctcccctctt	cctctcctcc	gcgcggcgaa	1080
cgaagcgagc ga	geggegge					1100
<210> 25						
<211> 1216						
<212> DNA						
<213> Oryza	sativa					
<220>						
<221> misc_f	eature					
		lve 40S rik	oosomal prot	ein		
			F200			
<400> 25						
cgtgttcatg tt	cgcattta g	gattggact	tttttaggat	ggagaggata	tgtcctaacg	60
gaaatgtcat gto	ctatgete e	gatcttata	aatttgttca	atagcgttgc	aaacgcgatc	120
attaaaaagg cgg	gtaagaga a	ctaccacat	tttcgaaagc	ccattctctt	cgtgagttac	180
tggaattatt tgg	gcatagca c	atgcataaa	gatgctttag	taatgagctc	aataaaacac	240
gacagetttg cat	tgtagcca c	aatgctata	gtaaatgagt	tgtacttctt	ttgcattgca	300

360

420

480

aagtggtact gaccttgttt aggcagctag cttcattcat tttttgaatt ctatagttat

agttataaag attatcataa tttagataag aatccggtat gtttgagaag ctggagtttc

tagagaagct ataacaactc gaagctccct aaacagagcc attgaacatt gagctgtcca

gtatatcatg	acaaaatgat	acațtttgça	tgggcatatg	tgtctaagaa	aacaaacatc	540
acaattcaat	gagtcactct	aaaaaaaag	gcaaaacact	caacaaaacc	ataccgtgaa	600
agtgaaccta	taatgaaatg	aaattttgat	aagcatgctt	acccaggtgg	aaatttcaat	660
ctaagaacaa	tttccaaaac	caccgtccat	agaaatatgt	ggaattcatt	cagaattttc	720
ataccacacg	ataaaattta	tagggaattt	aacttttgcc	atttttaccg	aacaccacct	780
tttcatttgc	tcctataatg	ttatcgaaaa	gagagtgttt	gttaattatt	tgtcactttt	840
atcacgacat	gtagccgtga	caacgtggcg	ttcctcgtgg	agcccacccg	tcagccgccg	900
tacgcaccac	catcaaagaa	ttcaagacgg	agagcgtcgt	cgccgtcggc	aaggcggcgt	960
gttttgttca	ctgtacgttg	cttcggcgtg	ggcccaatct	tgttcgggcc	taactagttc	1020
ttcccagccc	aggcccatta	agcctaccaa	cccggacggc	ccgggaggag	ctagggtttc	1080
acccttcact	atataaacct	ctctctcctc	ctccggccgc	cgcctccgaa	gccctagctc	1140
ctcccgccgc	cgccgccgcc	gccgccgccg	cctctccact	cgagagaccc	agccgccgcc	1200
geegeegeeg	ccgcca					1216

<210> 26

<211> 1210

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0122 - chlorophyl a/b binding protein precursor (Cab27)

<400> 26 cagatgccac agtatggtgt accaccagct gctccacacc atgctccacc ggctggccaa 60 120 ccaatgtatt tcccgaaata atctatcttt atccgatgta caagcaatta gagcaattgc aaatgttgcc tgcaatactc gggtctgggt atcttctctt caaattttgg gttgtaactc 180 gtctatgcag ctattcatat tgtaactcag tgagctccct gtcgcaaatg tgcctctgcg 240 tragtregetg trtgtaaact gtreggraat tagaaattee cateettage atgeetggta 300 ttgttcagct cgaaactgaa atttttcttc gtgccctata ttttttcggt gtagataagt 360 gttccgctgg aattttatgc aggtgctgta ccctatgtgc tgcttttttt ttgtgtgggg 420 cgccccccg ggggggggg ggggtttcct ggcatgattg caaataagaa ccccggggca 480 aatctgctgg ttggttgcaa ataataaccc ctccaaatct gcgcagatga aaccccattc 540

071-prom-prov.ST25.txt aggacatgaa ttacgattgt tcatgagcta tttggatcat ggaaagattg gaaacaaaca	600
cttacgtcaa ggtttctact aattacgtga ttccgatttc agagtcagcc atggctatac	660
tgcctttgct ccagtaaaca tcgctgctct agtaacaac attgcagtaa acatcacaac	720
tatccaattc ccttgttgct gctctagtaa aaaacattgc aattatccaa ttcccagata	780
ttttctttca ctactccaaa acctaaagta catatacgtg agttgagtga tccagcaaca	840
taaaaatccg aggctccgag cgatctgcac caaccatctc acccgtccga cgtggcagca	900
gcaaccagcc acagctgaga cctccatcca atagaaaccc tccctttgat tcccccgtat	
cccggcatcc ggataacgct ggataagagg cgacgcctcc cattggccac acccacccaa	960
	1020
caacgcatec tggccgtccg atccaccccc accgccgate tccgccgtcc gtcgccgccc	1080
tegecacegt ggecaeetgg eagegeegge caeteeegga eagtttaata caagecaege	1140
ctttgctccg tgccggccaa aacgtaccct tgtgactaca cccgcttcgc ttcctcccct	1200
ctctaagccg	1210
<210> 27	
<210> 27	
<211> 1179	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<223> PRO0123 - putative protochlorophyllide reductase	
<400> 27	
ttgcagttgt gaccaagtaa gctgagcatg cccttaactt cacctagaaa aaagtatact	60
tggcttaact gctagtaaga catttcagaa ctgagactgg tgtacgcatt tcatgcaagc	120
cattaccact ttacctgaca ttttggacag agattagaaa tagtttcgta ctacctgcaa	180
gttgcaactt gaaaagtgaa atttgttcct tgctaatata ttggcgtgta attcttttat	240

300

360

420

480

540

600

gcgttagcgt aaaaagttga aatttgggtc aagttactgg tcagattaac cagtaactgg

ttaaagttga aagatggtct tttagtaatg gagggagtac tacactatcc tcagctgatt

taaatcttat tccgtcggtg gtgatttcgt caatctccca acttagtttt tcaatatatt

cataggatag agtgtgcata tgtgtgttta tagggatgag tctacgcgcc ttatgaacac

ctacttttgt actgtatttg tcaatgaaaa gaaaatctta ccaatgctgc gatgctgaca

ccaagaagag gcgatgaaaa gtgcaacgga tatcgtgcca cgtcggttgc caagtcagca

cagacccaat ggg	cctttcc tacgtgtctc	ggccacagcc	agtcgtttac	cgcacgttca	660
catgggcacg aac	tegegte atetteceae	gcaaaacgac	agatctgccc	tatctggtcc	720
cacccatcag tgg	cccacac ctcccatgct	gcattatttg	cgactcccat	cccgtcctcc	780
acgcccaaac acc	gcacacg ggtcgcgata	gccacgaccc	aatcacacaa	cgccacgtca	840
ccatatgtta cgg	gcagcca tgcgcagaag	atcccgcgac	gtcgctgtcc	cccgtgtcgg	900
ttacgaaaaa ata	tcccacc acgtgtcgct	ttcacaggac	aatatctcga	aggaaaaaaa	960
tcgtagcgga aaa	tccgagg cacgagetge	gattggctgg	gaggcgtcca	gcgtggtggg	1020
gggcccaccc cct	tateett agecegtgge	gctcctcgct	cctcgggtcc	gtgtataaat	1080
acceteegga act	cactett getggteace	aacacgaagc	aaaaggacac	cagaaacata	1140
gtacacttga gct	cactcca aactcaaaca	ctcacacca			1179

<210> 28

<211> 1226

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0131 - GOS9

<400> 28 cagtggcatt acaattatga aaagggaaaa ttgcaaaaac catcccatag gtcacttgaa 60 attttacatt ccactccata agtcatttgt tgcaaatgtc cacccaccca ctcagttttc 120 ttgaaaaacc atatcagtaa acattaaaca catacttaac caaatcaaca tgttttcata 180 aagtgtgagc tgtcaatgtg atatttacca aaactaaata cttacagagt attattgata 240 tttttttagt gagattccac aaataaaatt gtcgatgaga gcttaaacat tgtcgctttg 300 agtttcgcta tatgccaaaa aaaaagttca atcaaatatg aaaaataagt ccaataaagc 360 tcttggacaa gattgacttg gctagcttag cctgtggtaa ccctacatca gtgataacaa 420 actgattcgg ttaagcacat gcgtattggg atgattttc aacaaaacta aatagggagt 480 540 aagtatttgc aataaaataa cttatggagt ggaatgtcaa atttcaagtg acttacggga tggtctttgc aattttccct tatgaaaatg ttaacagaga tattgtcggc cccacatgcc 600 agtgagacat attaaacatg ctcaaagtgt gcatctcgac actacagtca tatatacagt 660 ataggcacct agctgatcat tagttttgat cacagactac gaatttaacg cagagtggat 720

taattagccc tcagtttatg attagagtaa aggtttggta ggggagcagg taatggattg 780 attgcagggt tgggatttga cccaggataa acctcaggca aacggcagat gcttgcatcg 840 atgaagtaca tcgtcaggta tatatcgtta agatcagaca ttagtccaaa atatagcaga 900 taatctgtct aaatggacgt gatgccgttt ttatgaacag attaagctag ccacaaagga 960 agatattaag gtcaactatg tatcacaaca gtaaaaaagg tttgtggaat gaggtgagaa 1020 aaatgttgct tctaaggaag aagctagtaa accttcacaa ttcgcaagtt gataaaacaa 1080 aattttgctt tgttgtttcg gataagattt gttatgtctg catgcttata tatccagcac 1140

tataaatagg aggcgctcac tggttgcaac catagcagta caactagtca cagatacata 1200 gtaggacaga ggctacaaat taaaac 1226

<210> 29

<211> 1196

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PR00138 - cyclin A2

<400> 29 taaactttcc gaccgttgga cgttatttta aacttctcaa ccgttagtta taaatatatg 60 gtattatatc atggtactcc ctcaaatatt aaaaacatgt cgtttttgac acattttgaa 120 ctttcagact gttgtacaca ttttaaactc ctcgaccgtt agttataaat atccggcatg 180 tatggagtaa cagagtaacg ccttcaatct ttaaaacacg tcgttttgca caaagttcca 240 gaccttcctg teegtttgta ataaatetee ggtatgatae teatageget eegteeaeta 300 tcgaaaaaca aagttatttt ggacacactc caagctaaaa acatgaatat ctaagcatca 360 atatcatgtt aaatatccgt taccgtccac gaacaaaaga agtaacacat tgcaatcaat 420 tcagctctac atccacaata tccataaaaa aacggtcgga aacataataa cccaccacg 480 aggtgaccga ataactaaaa accgtttacg gataaaataa ccgcaaccca acccgatgat 540 tattagggcc tgtttggttt ccagggactt tttccaagtc catgtcacat cggatgtttg 600 gatactaatc tggagtatta aacatacact aattacaaaa cacattccat atccttggac 660 taattcacga gacgaatctt ttgagtctaa ttatgtcatg attttgacaa tgtgatgcta 720 cagtaaactt tttataatta tagattaatt aggcttaaaa aattcgtctc gcggattagc 780

071-prom-prov.ST25.txt tctcatttat gaaattagtt ttttattag tctatgttta atactccaaa ttagcgtcca aacatccgat atgacatggg ctaaaaagtt ttaaccccat ctaaacaccc ccttagtagc aaggttgaag cacatgccac tgcttgaaat ttgaacaact gaactgctta ccagtacaac cctagaagaa aatgtgagta gaatggtagg cccaaaactg caaagaatcg aaagtacagg

ggtgtattct taaagtagca ctcctccccc ttttctttca tcccctaccc tcccctctcc 1080 tcccaatccc cctggcctct gtcgggaaga gcacccaaac cctcgcttcc gccctcgcaa 1140

840

900

960

1020

1196

accctagege eeggaggagg aggaggtggg ttgeggtggt agtttgeegt eegeeg

<210> 30

<211> 1252

<212> . DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0139 - cyclin D2

<400> 30 ggagacaaac cgaggaatag ttggccaaac atattctctt ttcatataat gcaatttcct 60 gaggcatctt tttagatggc gagaatttta cttatttcca cgaaatctga attgattttg 120 acgaaaactc tacatttttt taacaaaaaa tacgatgttt tatattgata tagcaggaaa 180 aaatacacga atataatcat aggaggctat aaccagggaa aaaatagaaa aacacacagc 240 cacatgtaaa aactcctaaa cacaaaatcg agggaaaagc attagaccga tcgctgctat 300 gcgtgaccgg ccaatgcttg atcaacgaaa acttagatct aggggtgaaa atttttaccg 360 tgtcacatcg gatatacgga catacatttg aagtattaaa cgtagtctaa taacaaaaca 420 aattacagat teegettgta aactgeaaga egaatttatt aageetaatt aatteateat 480 tagcaaatgt ttactgtagc accacattgt caaattatgg agcaattagg cttaaaagat 540 togtotcaca atttacacgo aatotgtgta aattagtttt ttttgtattt aatacttcat 600 acatgtatcc aaacattcga tatacatact gaaaaaactt gccagagaat gtaagcaggc 660 cctaagttcc aaatagtctt gaatcttttc aagcaggtta gctgatgctg aggtcctgag 720 gaggccggaa gtgagctcag tttgatcata tggtcattaa agttttcatt atcttaagaa 780 aaaaaaggtg gtgttgaggt ggagaagaat atatgaaaaa ggaaagggat aaaagtgcat 840 gcaactaatg ctcagactcc ataaaaaaat acatttaaaa gctctattaa aagtgagtag 900

tattactcct	ccaccagcaa	agtacagaca	agaaaataaa	agaaaaagag	agccaaagtg	960
ccatgaaaaa	aagagcaatt	tttttttcta	gtcagcgtca	ccctcctccc	ttcccgcttc	1020
agttggcacc	tgccctgttt	ctgcttcatg	tcctgcccaa	aatgccctcc	tcctaccctc	1080
cacgcggctg	tgtatacaaa	gagaacgcat	cccccattg	ctcacttgcc	ccctcctcct	1140
ctttcacacc	tcacctccca	ccaagataaa	gagcaagaac	agcaagagca	agaagaggag	1200
gagggagacc	acacaatcta	tcacaagctt	agcaagattt	atcagcaagg	aa	1252

<210> 31

<211> 1307

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0140 - cyclin D3

<400> 31 gtacaaaaaa gcaggctcag tagtatgcta ttacgcacgg gagcatgcaa ctaggccagc 60 ggagcagcgc agagacgcta ctcgtgtgtt actaaaatac cttagagtat atttattaat 120 tttggacatc taaacttgtc acacggeggt tgatcttata gtagtgtgga gcatggagta 180 aaacacatat aaaatgtgta caaacgtatg aagtatgtgc ggtaagacga gacgagagga 240 gagcagatcc tgcaagtcac acgacacgag cgttaccacc agtagtacat tgctacacac 300 gegageagac ggctaggeea acgcagagga gaggegeeac tegegtgteg tteectatag 360 gaaaaccctc tttatcaatt ttggacctct aaactttcac atatatcagt ttatcttaca 420 gtagaaatag accgtgaagc gaaacacaca agatgcatgc atacgtacag agtactcccc 480 tgtcccaagc tataagggat tttaagtttt tcctacaacg tttgatcatt cgtcttattc 540 aatttttttt aaattattat ttattttatt tatgacttat tttattatct ataactttaa 600 acacaacttt tcgtttttta tatttgtaaa aaaaatttga ataagacgag tggtcaaaag 660 720 ttaccagaaa aatttaaaat ttcttatact gtgggaacgg agggagtaca tgtggtgaga 780 cgagacgaga gaagagccga gtcctagcag ccatcacacg agacgagctt taccacgagt agtatgetae taetaetaeg eaegegagea egeaegeage eageeaggea ggeeageega 840 900 gcaccgcaga gagcaggcag gcgccaactc gcgcgcgcgc gtcgtctaaa aaaacctctc coteccett etecegegaa acceegegeg egegeateca ecaccateca acceeceae 960

geggeeacte	ctccacgcac	acacctctct	crererer	ctctctctct	ctctattcca	1020
atccagtcct	gaatcagtcc	acccctttcc	ttcgctctct	ctctctaact	gcagatttcc	1080
ctcccctttc	aacgcgcgcg	cgggtggtgg	ggggaggcac	ggcacgaggc	ggaggcggcg	1140
gaggaggtgg	tgggaatcga	tecetttetg	ttccggccgc	ctcgatcgcc	cgctacccgc	1200
acgccgcctt	ttcgtcccgg	tggatttctg	cctccctttt	ctcgattctt	tcctttttct	1260
tcttcttctg	catgcgcggc	gggctgtgac	gccgaccacc	cagcttt		1307

<210> 32

<211> 1274

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0156 - HVA22 homologue (putative)

<400> 32 agtggaaagc aagaaataaa acagccaagt gttctcgttc cagtttcagt tatggagttt 60 ttggtatatg aatagtcgca aggatactgc tagcgcaaga gagttgtatc agctgttcga 120 catttctaca tgttagttta gctattactg gattacttct attttgtaac ttctccggtc 180 aaatttggag aatactcatt acgatattaa atatacatat catgccatat ctgacacaag 240 caaggtaaca cttgatttgt aaaaagtgtg acaaattgtg tatttcggag gcgttctgtc 300 tcgcaggtta tgttttcttc ggaccattct gtgctgcggc ttttgatccg ggaggagcgg 360 aaagtaaaag tagagtaatc agtttgtaca gggtttgttt tgtctctttt ttttttcttt 420 tgttggtatc agttactact acaacatttg ttttgttttt gaacgtgagc ggcgtacgat 480 ttgtaccact ggagcaatta tcactactag ttggatactt agatcagtaa tgtcagtgag 540 acattgctgc tgaaaatggc cgcttgcttt gctttgaact ctttgctagt ttacctttga 600 gettgecegt etgecactet gecegtgttg tectacttte aattgaaagt ggetatagtg 660 aaagtgtctc tcttactatt agattcatcc gtcttgcctt cagctaatta gcacgggtga 720 gacaaaagca gatgctggaa aaagtactgg cttcttccag aaagccgcgc catttctgaa 780 ccgagcccac taaacttgag ttcagatgcc tctcctctgt agtcttctga ttatggaaac 840 tttgacaagg tgcagatgca cgcagttgct tgagaacctc ccaaaatcca gcccagtttt 900 gttctttctt tccttggatc aagagtaaag aagacttcgc acagtatctg caaggatgcc 960

ttccttctgc	tactttaatc	ccatatttaa	aatccactgc	agaagtataa	aaccatctag	1020
cctatcgctc	gctatctaca	ccttagtaca	acggctcatc	gaggacatcg	agaaaattca	1080
gaacaaagct	cttcaccgat	cgcaacagcg	gatcatgggt	gttctaggtg	cccttgctag	1140
gcacatggat	gcccttgttg	ggtaagaaca	tgctgcaata	tcttctcatt	atgtgcctta	1200
tgtttttctt	ataagagttt	tcagacagca	attgctgttc	tgttcattct	gctttcatga	1260
gttacttccc	atac					1274

<210> 33

<211> 1241

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0157 - EL2

<400> ggcaaagtac agtggttgtc gatgagaaag acaaataaag ccggccgcct gtatacttgc 60 gattgtcgcc ccccgcaccg cacctaaatt gattgattat taatttaact gccgctcgct 120 aaactgtagt gctccgtaac atgtagtttg tggcattttc ctgcaccgaa taataatact 180 aacaatagtg atacactatc attagtacac ctccagatgg gttagtccta catgagcatg 240 ggatgcaaag cagcagatgg ttttgtgaat gcagtcatca tataataagg ctgcgttctt 300 360 ttcaggctag tagtcctcgt tttccgttag cacgtttttc aaactactaa acggtgcatt tttctgtaaa aagtttctat acgaaagtta cttaaaaaaa tcatattagt ccatttttt 420 aaaaaagaat agcagatact taattaatta tgtgctaata gatcgctccg ttttccgtaa 480 tcactgttga gggtgggaaa gaacgcagcc taaataaacg tgcaataatt gaggaggaag 540 catgcagctt ceteetteet actacaggaa agcagataga cagacggega ggeccagttt 600 gcaggttgca gggcaaaaca cacaggttcg ctgacaagtg agatcgatcg tcggtgaggt 660 gccgtgggtc attttttgtg tctgtgagct tatcttcttg tccagcatga gaagcttagc 720 tggacctaca tccaatccaa caccacca caccattttt ttactatgta ctcatagggt 780 tattttgttt tgagagagtg agataatgag aggagacaag cataatggca ggacaccttt 840 tagtaacttt tatataaaaa gttgtttttt acaaaataca ctttttagca atttagaaaa 900 gatgctaaca taaattaaga taaaatttgt atcttaatgg ggaaaaaaaa agggtgttag 960

ctgctgaaaa gttcctcctt gcttacttta ccttctgctt cctttccttg ctagggaaga 1020
agaagaagag gaagctgtgg gtcaggtggg tttccgcca tgaggagtgg tgtctctcgg 1080
tttccttcct tccggtgcac tgcacgcgtc ttctccattt cccatcacat ttcacacgcc 1140
cgcaccgcca ttcccctcta caaatacctc ctccaccttc cccttttcct cccttgtcac 1200
actccaatcc atcctccctc tccacctcc aggctccagc t 1241

<210> 34

<211> 1267

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0169 - aquaporine

<400> 34 cgtcctcctt ttgtaacggc tcgcaaatac aatgggttgt ttagattcat gtcattttaa 60 atcatattat tttttataaa gttatcaaaa tgtacatata tttatttatt tttaccaaac 120 tttactaaat gagataatcc aacaaatggc atttaaagcg ttcaaatcca agaaatgcca 180 togoogttat gottoogtoo gtttcacgco gttaaaaatac aatgttcato ctataacact 240 taatggtgtg gaatggacgg aaccctaacg gcgatggcat ttttgggata aagtcgtttg 300 tacgatggca tttcttagaa ctcatatttg tcgatggcat tttttgaatt tggatgattg 360 tcaatggtat tttttggatt atctcttagt aaatacataa ggaatcatgc caaaacttga 420 caatattgtc aacttatcaa aatttaattg ggattatttt ggcgataata tgaacagccc 480 540 ttacatttct gaagaattat agctcaaata tggctatggc cctgtttgga ttcggagggc tatttaatag ccctccggaa tcttgctatt taagagtatt aaacgtagat tactgataaa 600 actcattcca taacccctac gctattctac gagacgaatc taacgaggta tattaatcca 660 tgatttgcta cagtaatcag ccgctaatcg tggattaata tacatcatta gattcgtctc 720 gtaaaatagg ctagggatta tggaatcggt tttatcggta atctatgttt aatacttcta 780 840 aatagcaaga ttccgaaggg ctatttaata gctcggagca tccaaacaag gcctatgttt 900 agatccaaac ttccaacttt ttctatcaca ttaaactgtc atacatacat aacttttcag tcacatcgta ccaatttcaa cccaaacttt caactttgga agaactaaac acagcatatg 960 1020

atttggataa ggctatgaat aaactcaaaa aagcatccaa cctaaccacc acactggccc 1080
accagggccc acgetccact cccgtgatca tcacctcctt ccctttccag aaccaccttc 1140
tccttccttc ctcctcttct tcttcagtgt actctgcctt tataacaccc tactcctctc 1200
tctcacctcc accatctage tcactcacac agtctccact cacacgcatt gcagaggaga 1260
ggcgaca

<210> 35

<211> 1130

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0170 - High Mobility Group protein

<400> 35

catgoggota atgtagatgo toactgogot agtagtaagg tactocagta cattatggaa 60 tatacaaagc tgtaatactc gtatcagcaa gagagaggca cacaagttgt agcagtagca 120 caggattaga aaaacgggac gacaaatagt aatggaaaaa caaaaaaaa caaggaaaca 180 catggcaata taaatggaga aatcacaaga ggaacagaat ccgggcaata cgctgcgaaa 240 gtactcgtac gtaaaaaaa gaggcgcatt catgtgtgga cagcgtgcag cagaagcagg 300 gatttgaaac cactcaaatc caccactgca aaccttcaaa cgaggccatg gtttgaagca 360 tagaaagcac aggtaagaag cacaacgccc tcgctctcca ccctcccacc caatcgcgac 420 gcacctegeg gateggtgae gtggeetege eccecaaaaa tateeegegg egtgaagetg 480 acaccccggg cccacccacc tgtcacgttg gcacatgttg gttatggttc ccggccgcac 540 caaaatatca acgcggcgcg gcccaaaatt tccaaaatcc cgcccaagcc cctggcgcgt 600 gccgctcttc cacccaggtc cctctcgtaa tccataatgg cgtgtgtacc ctcggctggt 660 tgtacgtggg cgggttaccc tgggggtgtg ggtggatgac gggtgggccc ggaggaggtc 720 cggccccgcg cgtcatcgcg gggcggggtg tagcgggtgc gaaaaggagg cgatcggtac 780 gaaaattcaa attaggaggt ggggggggg gcccttggag aataagcgga atcgcagata 840 tgcccctgac ttggcttggc tcctcttctt cttatccctt gtcctcgcaa ccccgcttcc 900 ttctctcctc tcctcttctc ttctcttctc tggtggtgtg ggtgtgtccc tgtctccct 960 ctccttcctc ctctcctttc ccctcctctc ttccccctc tcacaagaga gagagcgcca 1020

071-prom-prov.ST25.txt gacteteece aggtgaggtg agaceagtet ttttgetega ttegaegege ettteaegee 1080. geetegegeg gatetgaeeg etteeetege eettetegea ggatteagee 1130

<210> 36

<211> 1230

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0171 - reversibly glycosylated protein RGP1

<400> 36 tagtaccatt cttccctcgt gagcataaat gtattcatac aaaatagtaa aatgtatcct 60 cacaaagatt gtaagtatat ctcgcaacta taaatatgtt gtcattttag taacaattgt 120 tcataaaata gtaatcatgt tctccataac agtaaatgac gaggcgttaa tagtggttta 180 ggttctcatg attgtaaatg ttgagtcgct tgtagcggct taagatatag tagagagtat 240 atctagtttt atcaagacaa acattgcgta atgcctcgga cctaatataa aagtaggaat 300 tttaaccttt gagaaactgt aaccaattga aactgcaagc tttaaaaaaaa catctattgg 360 aagtgatatt atatagacaa aataagtttc ttactcttac tctctcagtt tcaagttata 420 aaatgttttg getttggtca aaatcaaact tettcaagtt taatcaagtt tatagaaaaa 480 540 taatttggta atgtaaatat tactatattt gtctataaac ttagtcaaat ttaaaacagt 600 ttaactttga ccaaagtcaa aacatcttat aacctgaaat ggatggagta tttgtttgtt 660 tctattttag gaaacggccg tttctttcca ttgattttga gataagcaga gctttaaacc 720 actgccacta ttgtgcattt catttgattt aacactttta ccccttatct ccaataaaaa 780 cgatattaag atacccctat cttttatcca ccgcttggaa caaaccaaaa aaaataaaaa 840 ttcaaacctt ctacactggt acacacgttc tctctttcca tgcaccgaca ggtctctccc 900 agatccaacc caaaataaat ttggacgcat cccaaaattc ggcaaacata tgacgcaaac 960 caaaacaaaa taggcacaaa ataatataat actcctatct aattaattat acacaatttt 1020 ttttaaaaaa aaagcaaggc aagcgaagca aagcaaagaa ggaaacgaat aacaaagtcg 1080 togtoctocc ggageteceg etetataaat egeteeteet ecceaeceae ecaaaceeae 1140 acacacetea caceteacea ceateacete etecteetee tectetteet cegegegege 1200 <210> 37

<211> 1234

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0173 - cytosolic MDH

<400> 37 gtttggttgg tgaccgcaat ttgctatacc aaaatcttag acacagttga attaagctac 60 actitattag cacattggcc cgtgcgttat attgtcattt tctagccaaa gtttgccata 120 attgtggcta acaaattgtt ggccacattt tggctacgtt cgataggaca tgttcccaac 180 ttctccttct cgtttttcgc gcgtacgctt tttcaaactg ttaaacggtg tgttttttgc 240 300 gtagctaaaa cttaattaat ctcacgctag acgctgcttc gttttacgtg tcgggtaccc 360 aaccctcact cccgaacaca gcctttgtgt ggtttactac agttatagta aagctagtct 420 ccatccaaac aatcetttag tecatataac ttegtatact ecaaaattec aetegtteta 480 cggacatcac taatacgaag atcaagtgga agatagatat ttttaatgac atgttatttt 540 cagtgaacac ttgaggtcct cacgatccac aaacacacat tttcgtagat aagttctgaa 600 atactecata eggeggttgt caegatgtea tgategtegt tacceaagga agaagaaaag 660 agtggcatct tetecaegee agtgtteeca aeggageate ttttetteee ecacaeggea 720 togacgtoac actttotggt gcaaacttta ataattagto caaaaacaaa aaaagaattt 780 eggecaeate ttetecegaa aegecaggtg ggececaeet geateaetga cageetgtee 840 ccacaacgcg cagtcgtgtc cccacctgtc aggatgttag cgtctccgtt gcaggtttcc 900 cagateceat egeogatetg tgggecageg cecaeggtgt caegecegeg caeacetgge 960 tecaacecae ceacecaeg egeteegtgg cegacagegt ggacecaect aggtggggee 1020 caccgtcagt gggagatggg taggggagcc cccacgtggg agcaacgggg gttctccggg 1080 eteccegteg eegegaggtt aaataaegge caccegttte eeectetete geaaaactea 1140 cccaaaagag cagcgtcgcc tctcctcctc ccccctaacc cctacgcttc cagaaccttc 1200 tcgaagetcc cgctccccc ccccttccgc tcca 1234

<210> 38

<211> 1314

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0176 - CDPK7

<400> 38 gtacaaaaaa	gcaggctgct	tcctcgcagt	tggagtgatg	tcaatagaaa	acgtgcgcga	60
gaaagagttt	tttctttcct	gtggtgtgcg	tgacatcggt	ttttctttct	tgtggtgtgc	120
gttgtgacat	cctctctgct	cgctcgcttt	cctcagtcac	acactctagt	agtactctac	180
agtctacact	cacacttgcc	ttttctcctc	tagtcttctc	aattctcata	tctagctgta	240
cgcagctctc	accaacaaaa	gcgatgcaga	cgccgcaaac	ggcagccata	tggggcagtt	300
gggcaccgag	ccaccgaatg	gtaagcaggt	gtgcagcacg	ctactccgtt	cctcggaccc	360
gcgagacagc	gagaggctcc	gggtgaaggc	ggatgtgggg	tgagaagcat	ccgcgcagcc	420
gcgcgcgtac	gttgcccctc	gcgacaaaaa	tgccgcgccg	agccgcgccg	cgaaccgcgg	480
ttggcagtta	caacaggcga	gcggagctac	ccaactccgc	gcggctcgcg	cgcgggcgca	540
cggcgggttg	gttgccccgg	tgcgtcccct	cctcaccggc	tcggcgggtc	caccccaac	600
ccacgcctgc	cctgcacggc	agagttcagt	gtacccatcc	gcttcgcaga	aacagatgcg	660
ggggcaacga	gacgaaaccc	gctgccgact	tcgcctcacc	ttccccgctc	caccccccg	720
tccttacgtg	caaaaatcca	aaatcacgcc	aagtactccc	cacaagccca	tcaacgagac	780
gggggagcct	ctctttcacc	cgcagccgca	eggetetege	ctcggcgagt	cggcgtctcg	840
cgtcgtttga	tggtatcgca	ctgaccggca	cgatacgaag	cataaaatag	gtcgtagcgt	900
ccaataattt	ctagcctatc	tactcatcaa	ccgcacacga	aagaacaagg	gccgccaagt	960
tgcagttagc	tagctgttgc	gctcgctttc	ccccaaacgt	gacccggccg	ggagggagaa	1020
gtcgccatga	. agcagcctcc	cgctgctgct	ttctctctct	cgcctcgtta	aaatctctct	1080
tccaccccga	acccatcca	gttcagttcc	ctctcgatcg	cttcccgtgc	tetegetete	1140
tcgcttgcta	gatcagagat	teceetetge	ggcggttgtg	aggtttccgc	ttcggctcgc	1200
tagctagctc	tgctgtttct	gtgagagccg	ggagcaccaa	cegegegtgg	ggtgggtgcc	1260
cggagctttg	atgcgcgtgg	tegeeggttt	: ctccccgtcg	tttgacccag	cttt	1314

- <210> 39
 <211> 1087
 <212> DNA
 <213> Oryza sativa
 <220>
 <221> misc_feature
- -<223> PRO0177 - cdc2-1

<400> 39 cagacaccta gaatatagac attcccaaaa aataatcact atgcatcagc atcactatac 60 atgacttggg tctagtgatg gaagtggata gttccactac ctacataaaa acccactact 120 agtttattac ttttcacatg atagcataaa atttaaagaa aaaataaaca gaagtggaat 180 aagegaaaaa ceeegettae eegeeeeatt tacateeeta ettggateet geatgteagt 240 aagatatcag aattatatgt tttagaatta tatgtttttt tggaaggtgg aaatcggatt 300 attagacgca acataccaag tggcgtatac ttggcttcac tctttccatc agagcaagcg 360 taaaagatca cgtattcacg tcacatggag taactgagcg aatttttttc atttttaaat 420 ttttgttttt taatatttac ataaatatta taccggcgaa aatatttaca aaagtagacc 480 ctgctgccct tctccttctc gagaagagcg gcagggtgat gtcagggaca gaaataaact 540 ccaaaaatgc atttttggct gggcgaaaat tgcacttacc cccttgctgc cctctacaaa 600 ggttgcaagg gacctcagtg caaaatacgc acaccttgcc gtcctccact tggacggcat 660 gggctatttc tgtaaatatt ttggatggta taatatttct gtaaatatta aaaaataaaa 720 atttaaaaat gaaaaaattc tatctgggct cccttctctc atctcacacg qcccaccaca 780 caatcccggc ccacatattt cctgggccca tttccgtgtg aatggagacg gcccattggc 840 gcgcacatgc ggaaaagcgt acacacgatt cgaaatttga aatctcaaaa agcgcccgtt 900 agagogogto coctocaacg gotatococa atacaaaaga toactogaat coccoccaaa 960 tegaceaaac cetaaateea egegeattee acaceacea accagegaga gagagatgge 1020 ggcgctccac caccaggcgg cggcggcgcc ggtgacgacg acgacggacg ggggcgagct 1080 gcgggcg 1087

<210> 40

<211> 704

<212> DNA

		•	,				
<213>	Oryz	a sativa		٠.			••
•					•		
<220>			•				
<221>	misc	_feature					
<223>	PRO)197 - sucro	se synthase	e 3			
					•		
<400>	40				1 -1 1 t -t		
		tcagcttggg					60
		atttgtttgt					120
		caggtcctgc					180
tgggct	tatg	gtttctcttt	tggagttctt	cttcttgcat	gatctgtgtt	ctctaacaaa	240
ggaagc	aaga	tttagcaact	ttactcagag	acaagaaaag	gatctggcaa	ccttttgttt	300
ctgttt	tatc	ctactcgtaa	agattgttat	ttaagcaaaa	atttcccaaa	agttttaaat	360
ataatt	tcca	tgatgtgcca	ctctcatgtc	cttgaacctg	gcactcatta	tgggctcctc	420
agaagt	gctg	tagctaatgt	cactaatctt	ttgtatcttt	gttcatagtc	ttgtatttta	480
tgatgc	ttat	ccctttgtgc	tttccatgtt	tgatgtccaa	atgtcatggc	aatgtttttg	540
acttct	agta	ggggttttag	tacctttttg	ttagataagt	acatccaaat	tctgtttatt	600
tattca	aaaa	tcattctgtt	tattcactga	aaacatttgt	ccattcaatg	gactcataaa	660
ctgtct	gtgt	ttttcaggct	tgaggatcca	tctagaagat	agca		704
-0.7.0-	43						
<210>	41						
<211>	112						
<212>	DNA						
<213>	ory	za sativa					
<220>							
<221>	mis	c_feature					
<223>	PRO	0198 - OsVP	1				
<400>	41 attt	tagagaacta	tetateatt	tcaaatocat	ttgttgcgaa	gcaaacaagc	60
						tagccgcatc	120
							180
cccega	accya	. acaayacaaa	. gcaaatgctc	Jacobacago	. cccacacyca	acggccagaa	70

caagatcacg	tatgccatgg	cattgccatg	cctctgctta	gcgcttacgc	ttcccggctg	240
ctggtgatcg	atcgagctgg	geegtteget	gcatgtgttc	acacgggcca	cctccactgc	300
aaccaatggt	aaaatcccac	gtcatcgtaa	ccaaggtgcg	acccacacct	ccacgtcatc	360
atctccagct	cgtgtaggtt	tcgtacgtgc	gcgtagaaaa	aacgcacccc	atattcctaa	420
tccagacagc	acacaggtct	cctcccgaag	atggcgtccg	ttcgatcacg	cggtggttcg	480
gatcggacgg	ctcggaaaca	ccggacgcgt	agccccttag	tcggcgcgga	cgcgacacgg	540
acatcctacg	gcgcgcataa	atcgctacgc	gcacacgacc	ctaccactct	atggttttcc	600
ttttgggtcc	cacatgtcat	tggaccacag	gcaagaacgc	tcctctccct	cccctctgc	660
cgcggcggtc	aaaaccagca	cgcgccgaaa	tcccgtactt	cccactgaca	cgtaggcccc	720
actgtcattg	accgttacaa	ctcaggaaaa	aaaaggggaa	cccacccac	cagaaacgca	780
gcccccagca	atgataagtg	ggcccagagg	aaatgtgggg	cccacgggtc	agtgggacgt	840
ggccgtgccg	tgcggggggc	gaaaggtacg	gtcgctgagg	agaggctggc	gtgggcggtg	900
gagcgcttcc	cacageeete	ggcggccgcc	acgtgtgggc	cgcagccgca	tctcttctct	960
ctctactctc	ccaccctcca	cctcccgctg	cttctcctgt	tegteteett	tctcagtaac	1020
tgcacccacc	tccacaccta	cacgcacaca	gacaaacaaa	gccaaacccc	cegcetegee	1080
tacatctcgc	gatataagaa	ccccgcccgc	ctccactctg	c		1121

<210> 42

<211> 1042

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0200 - OSH1

<400> 42
ggggagttag gaaccttgac atacaaccaa tgataccatt ttttttcaag cagctagagg 60
tacagaggtt catattttt agatggctca ttagtgatat tttagtcaaa aatttcagaa 120
gtacggccac gggtgatggc ctgaactaat attttattcg aggtgccgct acatcatcgt 180
ctaaagtaca cgcaagattc aacggaaaaa agaaaccgat cgatcgagat cagttagtta 240
atgaaataac tagatcaact catgtcgtca aaaacaaaag atgctcatct atggacaaca 300
cacgctgatg attcgatcat caaacaaagg tggtagtagt agtaaagcgt atcgtgttc 360

tcatcagaaa	gaagaattaa	agaaaaaact	aatcccgtct	cgcgagccag	agaaaattcc	420
ctacaaaagc	cactcctttg	atttgacatg	caaaagcaag	gctccactcc	tctactaccc	480
tacaactaca	caacactgtc	tctctatctc	caaaggcagt	agctgtattg	gcttccagct	540
tttcctctct	acctctaatg	atagcttgga	gcaagttcaa	tagtatagct	aactactagc	600
tctaattcat	ctataatcaa	tctaatagct	tattcataca	atagttatat	actacattat	660
taatatctgg	tcccatctat	catacacact	gagtctgtgc	tatagctgac	tacaaatctg	720
tagecegetg	ctcttctctc	ttcatttatc	ttcttaaaat	atatttgcag	ctggcttatg	780
gcttatagct	tgatattgag	agggagagga	gtgagagcta	gctcagctca	gctcaaggta	840
aacaacaagg	cacactcttc	ctacctcttc	tccggttctt	cctttttcct	ctttctcttc	900
gtccaagaac	ttcacctcaa	tagctcgagc	tacggcctaa	cttttgcgtt	gcgcaggaga	960
gctcgatcgc	tgcaccaata	cttcactgga	gatcgcctag	ctgcagctag	ctagcttatc	1020
ctgcgtgtct	tgagcttctc	tc				1042

<210> 43

<211> 1216

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0208 - putative chlorophyllase

<400> 43 60 gatataaatc acactttagg tactatgagt gataaaacaa ctcgtagcaa aataaattat aattacgtaa attttttgaa taagacgaat ggtcaaacat gtgagaaaaa gtcaacggcg 120 tcatctatta aaaaacggaa gtagtacata ggaaaaaaaa ggaaatttag agggaaaaac 180 gtcttagaaa ttatgaagtt tgttgagaat tgaatatgag acttcaaagt tgaaataata 240 caccecttat caatatacta tcaagtecte ectecatact cataaagtaa gtegtttagg 300 acatcgacac ggtctacaaa acacaacttt gacttcttat ttctataaaa atattcattg 360 aaaagtgata tatgtatact tttatgaaag catttttaa gacaaatcta ttcatataat 420 ttttacattt tcaaactcaa caaattaagg gttattcatg atttatattc ccatgacttc 480 ctttacgagt acggagggag tacatctcta cgtaggcaga ctatgtactt gaggccccat 540 600 cgtttggctt tttccctaat aaacaaaaac gatttattag ggaataaaaa taaatttata

ggtaaaactt	ttatgtatgt	gttttttgtg	acttaaaagc	caatgctgaa	aaagaaacta	660
cgttgaaaat	atctcaaaat	caatctcaaa	ättaaatttg	aaaatttggc	tttttttgg	720
ctgattaagc	catccgatgg	gaggdttgat	taacatggta	aattgatatt	ttgataaata	780
aacttcacga	ctaactcaga	acaactggtc	taaatgatgc	aataggagaa	tattttttta	840
gaagcatgca	agaaataatc	cgtggacaaa	aaatgtggac	caaaaaaaag	tagactttct	900
ccggtgaact	tcccagcaag	caactgggac	atatgtaatc	gcgtccagag	tccagacact	960
tcactacgaa	gaaaaataat	cagcgaaact	ctgaactttc	tgaagataag	aaagctacga	1020
cactctctga	acacacac	acggccatca	agcagccaca	cgaacgcccc	cccccccc	1080
ccccaaaaaa	aaaaaaaaa	ctaattaagc	tgcaagatat	ccattcttgg	ttatgaacat	1140
gatcgcattt	gcggcgcaaa	tcttggcgtt	ctgcctcctc	ctgctgctgc	tgttgctgct	1200
ccagttgcag	acaacc					1216

<210> 44

<211> 2559

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0210 - OsNRT1

<400> 44 gaaaggggag agaaagagag agaagggaga gagagagag gagaaggatg aggaagaaga 60 agggatgggg cgctggcgag ctcctctctg cgggtgaacg gccgacaagc tcctccccg 120 cgcgtggacg gccagcgacc tccttccctg tgcgttgtcg ccgccgcccc gcgctctagt 180 gattgaaggt gagaggagag gaaaagatga gagaggggg agaggggtga gaatgatacg 240 tggggccata tgtcggtggg tcccactatt tttttttgtt aatgacatgt tggtcctaca 300 aatttttgtt tttactctaa tgccacctaa gcgacacgtc gacgacacgt ggaacgaaga 360 ccgggtcaac accgccacgt aggtgccacg tcagccaaaa ccaattccaa aaccacctag 420 gatatagttt gcaccggttt tgttagttag aagagtcgat atatccggtt ttgtggttgg 480 aggtcatgaa tcgtactctg gccatagttg agggagttaa agtatatttt ttccaaggaa 540 aaaatgaatc gagtgtgtca aactgaactg aagacttaaa aaggttgaat ggcagtttga 600 ctgctagtgc attaatcaga tttaaactta caatactact tattttttc cctctcgagg 660

071-prom-prov.ST25.txt aatgtctagc agtatatttg cttgacagct caaaaatata aaggatttgc agtaccatcc 720 aaatttagga acaacataca tggaaaagac aaatcgcctg gcgcatgagg cgcttacgtg 780 caggaaaaat aaaaggaaac tgaagctgga aaaaagagag acattataat ttgccgttgc 840 900 tcattttcta ttttagtgag agttacatgc gggtgcagtg gtgcgtgtga gttgtgactc 960 tccacttccg tgtaatcggg aaaagaagta aaaaagaaaa gaaaagggga gtcggagaga gcaccggtag cattattcca agcaggtgga cccgcgtgtc atccccactc tacaaagcgc 1020 aaaatcatca agggccttcg cctcggcgtg gaggagagtg aggacggccc acgcggagca 1080 gcagagagtc gggaggtggc tccgcttcca cagctctact ccatctctct cagtgtcggg 1140 ctcgccggag tccggccaat ccagccggtt catgettcat tctctcggtg cgtgatttct 1200 ccgattttcg tctccatcta gtacctgaag cgaggcaaat ttaattgccc ccttttcggt 1260 gcaaactate tegteagatt agtegeatge atgtteette gttgaatttt gcaaagttag 1320 ttgtagagag aagttettgg gagggtggat getaeggtet catettetet etttteecee 1380 aacaagcgag ctagcgaagg ggaaaatggg gggagcagaa gaatatccat gttaggttcg 1440 cgtgcttgcc tctcggctga gctctagctg ttacggcgtt cgtcaggatg gctaatccgt 1500 ctcgccaatt agaagatgga taggtcgtag cgttagatgg attacttgat ggttgatgcg 1560 ctgcccattt attgttctta gcaggttctg tcttctcagt ccgtgtgagt gtttcatcat 1620 attggctacc aagatgatca ctcttcgttt atcaagagag tagggtgaga tctcaatccg 1680 ttgcaactga tgagtacttc ctttgtctca gaatgtaagt atttttgagt tagacacaga 1740 tattaagaaa gtaggtagag atgattggag gagagttgtg attgatgggg aagagaaagt 1800 aggtgaaaaa aaatggttgt gattggttaa gaggacagag taggtgaata aatagcttca 1860 1920 ttttgagaca agttactgtg ctaaaaatag ctacattttg agacggagat agtagtatac ttcacttact accgagtacg gctttagttt tgctacctcc gtcctaaaat atagcaacct 1980 aggateggat gtageatgtt actaetaate tagataggea geatgtetaa atteatagta 2040 atatggtgac tcgtttagta gaatgttgat atattttagg atggaagaaa tatataaata 2100 ctgttttttt attcgaagta gttggcccat catttctgaa atagatgatt gatgccatga 2160 egeegettge tttetagaac tactagtaat tttaggtgag agetagtaet gatgegteag 2220 tctaagataa tggacaaaaa agggctacag gctactattg attatcacat taaaactctg 2280 tacgacagat ttttctgatt aaatgatagc catatgccca acgtgctgct tgtctaaact 2340 gaaacctgac atcactcaca gtatgcccag ttgttgggtg gtctattatt atttataaat 2400 tataactetg geattttttt tattgtaggg caatatgttt tecattattt tecattaaaa 2460 cetetaatet geaetteeae tatetgetea aaateteagg etaetttett teetetteet 2520

2559

caggacatta acctggttta cttgtaagaa agtaaagcc

<210> 45

<211> 1248

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0211 - EXP3

<400> 45 tgcacaatgt tactgcaaat ggtcgttaag aaatcgtgac attaatcagg cagggctagc 60 tatgaggata ttcaaaccct gttcattgta tacttaattt tttaaataat ggaaagatcg 120 atagatetet eacetetgea aageaggaet eactattttt ttetagaggg aggatteaet 180 aaattaatat ataaaacttt caaggggtga aaagaaattc cccgcaaaaa aaaggggtga 240 aaagaaattg aattttaata aattttgtga tattaaaata ttaattttct tttttgccag 300 gaggacatcc tacaatttgg atgtaggttc aatattgtga acccctgcta gattcatcat 360 aaaatgctaa ctgtgaatat atgaattatc gtaaggctgt gttcaagagg agttagagac 420 ttctctgttc atgacaatga ggtaactcat tagcgcatga ttaattaatt tttagttaaa 480 aacttaaaaa taaatcaata tagttttttt aaaacaaatt ttctatagtt ttttaaaaag 540 ctatagaaaa tttgtataga aaatgagaga gtaggagatg ggaaagggga atgccgaacg 600 caacctaaat catcteggaa gaaggtttta ttgccctgta caagcttgca aattttgcat 660 gcccgctgtg ttcaaactga catattgtca accgcacaat taggcacaca acacagaaga 720 atattggtgc tagaaaaatt agatcctaag acgacatgtc attaattact aagacattct 780 tggcaaccaa gtagaaagtc atccatccag aaataagcac atcaatcagt tatccttttg 840 ggacttctta atggaaaaac tgcacatggc caggcttgtt gatcaagaga acaaatgata 900 tgcagtgctg attccaccat gtttcaatca ttagggaaat ccgtgtacgc tgtgtgtgaa 960 gtcagcaaga acgaatgcca tcaaatatgt atgcttgttt ccattattat cagctgagac 1020 caattccacg cgaactcgat tataatgaga gagaaaaaaa atcttcaaag cagatatgat 1080 gaagagttcg ggatgtggtt taagcagcaa ccgcccggta gccaaattat tctacgccaa 1140 gagtacccta taaataggga cgctgtgatg cgtcggcaca acacaaaacg aaaacctaaa 1200 gaatcaccag ccttgcaaac caatcaacct gtctagatta atttttgc 1248

<211> 1186

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0216 - phosphate transporter OjPT1

<400> 46 60 ccttgtagcg ttaatcagta gtgcttgcta ataactctga agaacctaag acaaaactat atttttggag ggaaagaaac taatttcgcg atagctttag ctagtgtgtc atccacactc 120 180 ctaagaatta tatcctacat atgctacttg gagatactaa gcagagccgc tgcaagcttc 240 aagetteaag accagaagat caagettgga tgtettggat cacatteact atgaettgga atgcaaaaca cttacaagaa atgaaaaaga aagatgctcc ctttcacaaa attgataaaa 300 ctttattttc ttgtgagtgt gcaagtagtg ctgggaacta acttgttaag gtacatgtaa 360 cacggcattg ggaatagttg actaggatta aacaacatcc aaatggagga gacttctcga 420 480 gatcaggtat attcctagga tcaaaccata gtacaaataa ccaaatacta caattttaga 540 ttatttgggc agttaggaat aataattttc agtgtccttt gcaaaacctt agctccaagc 600 tcattaacat aatcgtctaa ccatataaat gtttttaatt tgaagaaatt caatattatc 660 atttacaatt tagatcattt ggacagttaa ttcctaacat gaaaggggtt aaaaaatata 720 ttttattcca aaaaacacaa cacaaatgta gacactcata acgcgtatac tcaacgcaca catggatatc cctctaaaag gatggaccgg caaatcatga aattgacgtg tcaccatggg 780 cgtcacactg tcaataggta tatagtctac cactgaaaaa tttaatagcc ataaatacga 840 900 ttacatatat caagtotata acttgaacot agatgggtta gttccaccat atataacgaa tctaaccaat tgagctactc tatcatttgg aagtttttaa tttgaagaaa tttaaaatgt 960 tctttcggaa atagaatttt aaatcgagcc tatctctcgt tgactcagat cactccaatc 1020 1080 atcatgtccc taagccggga agcagcatta accaataaaa tcttaagcaa gtgcatctag ctcacacgta ctagtacatt aattctctag ggttatatat atttgcactg cagctagttg 1140 1186 ccttgctagc tcggcgagga gcaagacgaa caacgaggct acgtac

<210> 47

<211> 1221

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0220 - RFL

<400> 47						
aagcaggctg	gtgcatgaat	ttgtctggta	tgtgcaaact	aagactaaaa	tggtgcgaca	60
agaccgattt	ttcttagatt	ccactttatc	tttctttgtt	tctgtccctt	gcatcattac	120
tcaaattttt	attttttat	acaatcatta	tgccttatta	tatgtttatc	cttcttagac	180
taatgtttac	atagagttta	aatcaaccac	agaatcaaca	agattaacct	tgcagtgcga	240
ttttgacatt	attcgcacgc	atcaaacaag	ctcgtgcaca	gaaacgagcg	ttttagaagt	300
tcatgtacta	gattgcacca	acctgacaag	ttcgtgtacc	gctgatgcaa	tttactcttt	360
tgtttatctc	aaaatacaca	gtatctaaaa	gtattaagtt	ttatattaaa	aaaatacggt	420
gtctctcgat	acattaatta	tccagaatgg	taaaataatt	cttaaaaagt	atattttcgc	480
cctcggaatc	aaaaacattt	ttgagttgcc	ctagcgtggg	gaaaatctgc	agaatgacac	540
gctaatcttc	tgcccccacc	gctcacacga	ttacatggac	aaccgccacg	tacgataatt	600
aagggcacaa	ggctacggcc	tcacccgtgt	tcaccgtgta	cgcaacaaca	gtacgcatgc	660
aggagtatct	tttttcttcg	gaagaggaac	agtgacgccg	ttgctacctc	caaggagaga	720
cgggacgaaa	agatcgaagg	acacttgaga	cgtgcgccac	attacaaatg	cacgtacgcc	780
gtgacaggac	aacacaatgt	gtgggtgtat	tactcctata	aggcttactg	tgcctacttt	840
ttatgtaccg	gcacgtaata	gggcttacta	gaatctagac	tatcaaatcg	tgtgtgctct	900
agcgacgcat	gcagctttct	acaggacagg	tcgttttcac	gtagtatcga	tcggtagctc	960
gctcccttcc	tccaagtatt	ggacaaaaac	caaaagctag	cgtgaatgca	gatacatcga	1020
tccggaccaa	tgcaacgagc	tatggagatt	tgtcaagtca	accgcgtgca	gcaactatag	1080
cccaacacta	cagtggccgc	tatataacga	gcccaacgcg	acgcacagag	gtgtgtgggc	1140
gaaacacaag	aaacaaccgg	agaaaccgag	cccggccgac	cgcaaggaca	gcaagctagt	1200
agccatcctc	gcacccagct	t				1221

<210> 48

<211> 1038

<212> DNA

<213> Oryza sativa

<220>

<223>

PRO0075 - prolamine 10 kDa

```
<221>
       misc_feature
<223>
       PRO0009 - putative cellulose synthase
<400>
       48
gccatcgagt ggtgtgccga taccggcgcc tgttctttac agcctcagct agtgttgttg
                                                                       60
tccgaggcaa tttttccgac ctattgtgtt gctttcctct ctgatagctt atggtaaaag
                                                                      120
atacaaagat gttgaggagt ttgtacgcca cttaattttg ctcgtaacat acattgacaa
                                                                      180
tcaagaggag ccatggcatt gcgatctgct tacacggcat attcttactg gatggtgtac
                                                                      240
actacttacc ctttttaatg caagcatcaa tccattgctt ttctcactgc acacctgatt
                                                                      300
cgtactgaaa acgtgaaaca taaaaaaaaa acaaaaatct agctgatgtt ggctctcggg
                                                                      360
gcctcgagtc tagtttgtcc tagatggcta acctgatatg tgttggtcac gctcacgttt
                                                                      420
gaaccgagaa agagtgtgtg tgtgtgtgt tcggcgtgct gctacaccag agcctccctg
                                                                      480
aatcgcaatg cgtgttaacg ccagcatcgc aggatttcat ctcacttgac aggttcagat
                                                                      540
ggccttcctc ctaccgtctg ccatttatac acgcagtgac ttaacgctta cacgagccgg
                                                                      600
atggcccgga tctccccct gcaccatctc accagaaaaa cggtgaggcg tcaccgcaac
                                                                      660
ccacccacca aacacatcca cgtcccttca ccgttggcct tcgattttgc ttcagctgca
                                                                      720
ctacgacccc tecaacacat ttecetegeg tetegttgeg ateteacett acgacgatet
                                                                      780
cgttccagca gcagcagcat cggcagcggc ggcttgcttc cgaagcgagc aatgcatggc
                                                                      840
gcgcgcggcc gcgtgcgtgc gtgccttggc ttgcgctcta atcaaaccgg gacgcccaa
                                                                      900
ctcacggttg gtgcgggacg ccacccgcc accttaccgc ccccgcctcc ctgcatctga
                                                                     960
tcatcaacca gctgctatat cacctagcta gccgccgcct cctcctcgcc caccaacgtc
                                                                    1020
gcttccccgg cacctcac
                                                                    1038
<210>
      49
<211>
       838
<212>
      DNA
<213> Oryza sativa
<220>
<221>
      misc_feature
```

<400> 49 cagtgatcgc	tgcactggat	aattataata	tcagttaaaa	ttgaaaataa	tgcaacttca	60
tacttgcatg	gtgtcagtag	tgcctgccta	agaaatgtgt	cttgtcataa	tatgattaca	120
tgaaatatgt	ttacttcctc	gtttctcttt	atttgtaaga	taaagaacta	gatatgtgga	180
aagtaggata	gcaaagagta	tggccaaact	ctaatctttg	ctttatttt	tgggatggac	240
ccaaaatttg	tttctccttt	acttctttcc	ctttacaaca	atgttcttta	cttccaattc	300
ttattaacaa	aactccaaat	acatgccaaa	ctgcatatgt	atgtatgcta	ttaaggcaca	360
tttacaaagc	tccaagttta	cctactcaat	cattcacata	tggcgatgac	tcaaactctt	420
aattgttatc	tggtaagctg	tgacttgtgt	aacacattct	acaagtccca	tacgaattct	480
gttcacaaaa	gtttctttgt	ccagctcata	atttacaaaa	ctgcaaaatg	ccaaagcaat	540
ctggcacaac	cttatcatca	tattttcttt	ccacgcatta	aagcactggc	agaattatct	600
ttgtgtagat	attccaaaag	tattggttga	ataaatgtcc	aaataaattc	catgcctcat	660
gatttccagc	ttatgtggcc	tccactaggt	ggttttgcaa	aggccaaact	ctttcctggc	720
ttacacagct	accagcatgt	ataaataggc	ccctaggcaa	ccattattcc	atcatcctca	780
acaatattgt	ctacaccatc	tggaatcttg	tttaacacta	gtattgtaga	atcagcaa	838

<210> 50

<211> 978

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0076 - allergen RA2

<400> 50
aattaatgaa tgcgagagag actatgtcgt gattgtacaa ataaaaagaa cacaagaagt 60
atagtatatt ttgcaaaaac taaggtcatt catatggtca aaccaacaat tccaaataaa 120
tatagatttt gaaggacatt aaactcacac cccatgctaa caaccctcta gctgtttctt 180
tttcctttgt cacgaaataa aaaacctctt ccttccacct cacataatac ctatattta 240
acctcacgta tttttactt tattacaagt cgacaaagtt atagcacaaa atattcctaa 300
catttaattt gtatcattaa tttttaaaca aagtgattat gcgtgcgtac ttctcctggc 360

catatataat	gccgtgcctt	gttaatataa	ccctgttatc	caacgtgcgc	gtaaagctat	420
ctatatatat	gatatttgtg	tttcagaaaa	ctccaatact	tatatgcttc	atcaggcacg	480
ttaatttctt	aattttctga	aatctagtga	tgcagctttc	gttactgcag	cttccagagc	540
attcttttta	aagtatttgt	tcagaactat	tctttttatt	gttccacaat	ttggatcact	600
atacaagcca	tggaaataaa	gatgaactga	ttttgttacc	ttgcatgcaa	aactatatat	660
gtctgttgac	attatgtgca	tttctttaat	tttcttccac	ggaaggttca	aattaataaa	720
gagtgtggtg	catatcaatc	cacttttacc	aactttagtc	catatgatgc	ccacattagg	780
cgtggatcac	aattaatatt	ttatatgtct	acaaaaccac	aagttaatct	attagctcat	840
gaacagctaa	aacttttatg	tcccttctta	aatcacttta	gtctttatag	ctatatataa	900
aaccaccaat	agatgaagac	cttaaaccta	tccctctcat	acaaattcag	actaaagatt	960
ttctgcaaac	aaaaagcc					978

<210> 51

<211> 1264

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0110 - RCc3

<400> 51

tegacgetae teaagtggtg ggaggeeace geatgtteea aegaagegee aaagaaagee 60 ttgcagactc taatgctatt agtcgcctag gatatttgga atgaaaggaa ccgcagagtt 120 tttcagcacc aagagettee ggtggetagt etgatageca aaattaagga ggatgecaaa 180 acatgggtct tggcgggcgc gaaacacctt gataggtggc ttacctttta acatgttcgg 240 gccaaaggcc ttgagacggt aaagttttct atttgcgctt gcgcatgtac aattttattc 300 ctctattcaa tgaaattggt ggctcactgg ttcattaaaa aaaaaagaat ctagcctgtt 360 420 gaaggaggag gaggattttc aggcttcgca ttgcccaacc tctgcttctg ttggcccaag 480 aagaatccca ggcgcccatg ggctggcagt ttaccacgga cctacctagc ctaccttagc 540 tatctaagcg ggccgaccta gtagccacgt gcctagtgta gattaaagtt gccgggccag 600 caggaagcca cgctgcaatg gcatcttccc ctgtccttcg cgtacgtgaa aacaaaccca 660

071-prom-prov.ST25.txt ggtaagetta gaatettett gecegttgga etgggacace caccaatece accatgeece 720 gatatteete eggteteggt teatgtgatg teetetettg tgtgateaeg gageaageat 780 tettaaaegg caaaagaaaa teaceaaett geteaegeag teaegetgea cegegegaag 840 cgacgcccga taggccaaga tcgcgagata aaataacaac caatgatcat aaggaaacaa 900 gcccgcgatg tgtcgtgtgc agcaatcttg gtcatttgcg ggatcgagtg cttcacagct 960 aaccaaatat toggoogatg atttaacaca ttatcagogt agatgtacgt acgatttgtt 1020 aattaatcta cgagccttgc tagggcaggt gttctgccag ccaatccaga tcgccctcgt 1080 atgcacgctc acatgatggc agggcagggt tcacatgagc tctaacggtc gattaattaa 1140 tcccggggct cgactataaa tacctcccta atcccatgat caaaaccatc tcaagcagcc 1200 taatcatctc cagctgatca agagctctta attagctagc tagtgattag ctgcgcttgt 1260 gatc 1264 <210> 52 <211> 1808 <212> DNA <213> Oryza sativa <220> <221> misc_feature <223> PRO0133 - chitinase Cht-3 <400> 52 tttggcgcgg ggcagaagag tggactttaa ctttctttt aataaaatct ccaattaata 60 tgtaattata atatactttt aatcaaaaca tgcaaagcta gcagtattta catcactaga 120 agtaaatctt tcttgctcat gatgcttcag ccggacggaa ccctaaaata tagatggggc 180 ggatacactc gattaaaaca gctaattgca acacatatca tataaggttt tggaattcat 240 accaaatgct ccgaaattcg tctatttcga tgaggcccaa gacatgacct cctgtttcgc 300 ccatagttta tggtgtttgg taaaatttgg ttaaaatctg tctattttag taggtcccga 360

420

480

540

600

660

aattottatg caattgaatc ctagaaccct atcatattta tattgcaatt gcacaaaaat

aatgtgcaat caatatattc caattgcaat acatatcaag catgaggtgt aatacatatc

cagccgctag cactgggtct gttgaggtgc ttcttgcagc aacagctgca atctgtttgg

ctaggetgtt ggegeeagge actgetgteg tgetgeaaca atggeacatt cgtegageac

acaaccgcgc ctatgcacag cgcaagctcg ctgccttgga ccgtggttcc agtgttgcat

caaggcttag	tggattgagc	gagaagacga	actgacaatg	ccaaagatgc	gatgctgcga	720
gtgtggactg	cggaagatga	atcgagatca	atcaattcgt	tatgcttgaa	aggctggaat	780
aactgatcag	ttggctggat	cgatggtatg	tactagataa	tatgcggtct	aggcctagac	840
caagaagcag	aagaggagtc	gggtcgggag	tgtggggcga	cgtaggctgt	agctgggccg	900
gccgccccag	gccgcctaat	gagtgtgtcc	geceetggee	tgacacgatg	ggtaattaaa	960
tagttatgca	tgtccctctt	tgtctaaaca	atatgtataa	aattgacgat	atcttgggca	1020
aaatcactgg	gcatggcaca	caggagagct	actttagcga	catgaatcta	ggcgaaaatc	1080
tattgaacca	aaaatcgact	gtaatctcat	gaaaattttc	gtcataatta	tagcaaaatc	1140
gttgttggat	tgattgcacg	agaaaacaga	agaagggagc	taggtgatat	tatattgttt	1200
tgttgcctac	ataaatctta	aagcaatcga	atggtctaaa	atttacaaga	tttttaaaga	1260
ggttttcgta	ccgtatagac	cccggccggg	tcaaacttat	ttggtcgtcg	ctggttgttt	1320
gtagcacgcc	agctccatat	atgtggattg	cagctggtct	atgataagtt	cggtcgatct	1380
gagatcaatc	tatcaatcgt	caaccctttg	cctttgttag	cgagctagcg	tgtacacatt	1440
tcaattatat	atggtgcatg	catggcatcc	acgcctccac	ggtcaacgtg	gaaatatctc	1500
tggaaactta	ctttttctaa	ataactgaac	ggattggagg	caggagacaa	atttgaccaa	1560
cacaatatat	ccacgacggc	tagacaatac	tagtagatgc	atgcatggaa	ggatatagta	1620
gtacttgtta	atcgtggaaa	ctttggtaat	gcgaatgcat	ttcaattcgt	tgctgaagat	1680
cgatgcacca	tgcatatcca	tctctatata	aagccatgcg	atcccaccga	ttcttgcaca	1740
cacactagct	acttctactt	ctatcatacc	aaacaaacta	gcttaatttg	cattgcatca	1800
cattgccg						1808

<210> 53

<211> 1139

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0141 - cyclophilin 2

<400> 53
tgacaaaata atactctatc catcctaaaa tataaggaat tttatgtgga tgtgacgtat 60
cttatacttt gggtgagagg aagaggtact aataccacta ttatattgta ctccctccat 120

071-prom-prov.ST25.txt actogtaaaa gaaatogttt aggacagoga cacggtttcc aaaacacaac tttgacttct 180 tatttctata aaagtattta ttgaaaagtg atatatgtat acttttataa aattatttt 240 caagacaaat ctatatatat aatttttata ttttcaaact caacaactta aaagttattt 300 atgatttata ttcctaagat ttgatttaag cattgtccta aactactttc tttataagta 360 tggagtaata tgtattggta acagtacagt atatacagca gtagtagtag aatatactgt 420 actgtagggg gaggtttggg ccggcagagg aatgggccag tcgcacatgc cgtctgcgtg 480 cgcttcccgc gacctagaat atcgcccact cgctcaaccg catatccctt cctaataacc 540 tetecgatee gtaaaceteg cecatgegee acgtecece tagtgteeta ceteceggae 600 cacceggtet tggtagacca cgtccacctc cccaactaaa atatcctccc taacccaacc 660 accccacggt aacccacgta cttaacgcga gttacccccc gcaaagatcc aaccgcctct 720 egeacegece geetgteeac ecaegeetac tgacgaacce ggeecaecte teegggeece 780 accatgtcgt caccacgcag gccaaaatcg gggagagcgt gtcgtggtcc cacctgtcat 840 tggcttcgtg ggtgggagcg ggtcacgtgc atctcgacat gactcgagga ggtaaccatg 900 gttatggtaa ccccaccgcc ttgacacccg tggttagggg tggggggcgcg cgatgccgcc 960 acgtgtgacg atcggacggc tgcggagggc atcggggttg ggcgacccgc ctatttaacc 1020 gcgggggcct cgtcttcctc aggccacgca gcgatctgaa gtgaaacagc aaaaaaaatc 1080 aaacaaaaag aaaaaatatt ccccatctgt gaaattcgca aaaccctagc gcggcggcg 1139 <210> 54 <211> 1052 <212> DNA <213> Oryza sativa <220> <221> misc_feature PRO0091 - prolamine RP5 <223> <400> 54 gtttttctat gaaccggtca ttaaaccgtc cccggttaga ccgaacaagc cacaataatc 60 ttgaaatggg cettgatgtg geceaattgg tetgeetaga gegttttggt tggeaaaaat 120 caatctccta ttctcggcac gtgtgatata caatggtaag tgagatatac aattctcggc 180

240

300

acggctacat tacaaggtgt cgcattgtgt caatgtttgg ttaatttgct agattcacat

aatacatgcc aggaagttca gaacaatgtg ttgcctttca ccggaaaact ttgttggagc

aaatgccttc	ttcttttttg	cttctgcttc	ttgagtccat	gtggaggaag	cagtagatag	360
ctgatgatat	caggattcct	tctgtgtctg	tgtaggtgta	gcaacaccac	tataattttt	420
atttagcaac	acaatatcaa	tttggtctat	aaaagtatga	attaaatcaa	tccccaacca	480
caattagagt	aagttggtga	gttattgtaa	agctctgcaa	agttaattta	aaagttattg	540
cattaactta	tttcgtatca	caaacaagtt	ttcacaagag	tattaatgga	acaatgaaaa	600
ccattgaaca	tactataatt	ttttttctta	ctgaaattat	ataattcaaa	gagcataaac	660
ccacacagtc	gtaaagttcc	acgtgtagtg	cattatcaaa	ataatagctt	acaaaacata	720
acaaacttag	tttcaaaagt	tgcaatcctt	atcacattga	cacataaagt	gagcgatgag	780
tcatgtcatt	atttttttgc	tcaccatcat	gtatatatga	tgggcataaa	agttactttg	840
atgatgatat	caaagaacat	ttttaggtgc	acctaacaga	atatccaaat	aatatgactc	900
acttagatcc	taatatagca	tcaagcaaaa	ctaacactct	aaagcaaccg	atagggaaac	960
atctataaat	agacaagcat	aatgaaaacc	ctcctcatcc	ttcacacaat	tcaaacatta	1020
tagttgaagc	atagtagtag	aatcctacaa	aa			1052

<210> 55

<211> 883

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0001 - metallothionein Mte

<400> 55 gtatcacgag ggaatatcct ggagggatta taattcatct ccttattatt tagcactttt 60 ttttatctac agagttgaaa ggacatggca tcacaattac tttcatcttt catgctcagc 120 180 ctcagacgtc taattggcta gtatactagc ttgttaggtg caaagtcaag caagagaatt 240 tcaactgtgg cggtgtttaa ttctctttaa acttctaaaa attccgtcac atcaaatgtt taaatgtgga caaaaaaaaa taattgcaca gtttgtatgt aaattgcgaa acgaatcttg 300 tgagtctaat tacgccatga tttgacaatg ttgtgctaca gtaaacatgt gctaatgatg 360 tattaattag atttaataga ttcatctcgc agtttatatg tggaatctat atattttgtt 420 attaatctat atttaatact taatactttt gtccgtgtat gtaaaaaaat tttgaccaaa 480 caactgaaca cggcctgtat atgtaaccaa agaaagatca aaggagagga ggtagctact 540

071-prom-prov.ST25.txt cctacaaaga aagaagaaac gatgagattt gattgcctac tactccag	ct agctagtata 600
cagtactcat acgtgtctat ccatattcct gctcccaatg caaaaatg	ca atggcgagat 660
tgcaaggttg tgtgggtggt ggaccctgga tcgatcacct ccattett	tc tccgcatctc 720
gccacagtac gcttcgctgc tctcccgcct atatatacca cctcctcc	tc gatcatcagt 780
tcatcagcaa ccaaagcaag aagcaattct tgagctcaat cagcaaca	ac atctatctcc 840
ttcttgctta gttaagtcct tcgccctccc aagaagaaga aga	883
<210> 56	
<211> 688	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<223> PRO0077 - prolamine RP7	
<223> PRO0077 - prolamine RP7	
<400> 56	
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca	
<400> 56	
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca	at ttaagatgca 120
<pre><400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa</pre>	at ttaagatgca 120 at agctcacaaa 180
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 cc cgatcccaaa 300
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca cgatgagtca tatcattatc tcccgcctgc taaccatcgt gtacaccaa	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 ac cgatcccaaa 300 ag aatctggaca 360
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca cgatgagtca tatcattatc tcccgcctgc taaccatcgt gtacaccaa aatgacaact tctagggatg aacctggaca aggtttaggg tttagggat	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 ac cgatcccaaa 300 ag aatctggaca 360 gg agggagtata 420
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca cgatgagtca tatcattatc tcccgcctgc taaccatcgt gtacaccaa aatgacaact tctagggatg aacctggaca aggtttaggg tttagggata aatgattgtt caggttcatc cctagatgtt ggtttctcct tacgggaca	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 ac cgatcccaaa 300 ag aatctggaca 360 gg agggagtata 420 at ggggcaccta 480
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca cgatgagtca tatcattatc tcccgcctgc taaccatcgt gtacaccaa aatgacaact tctagggatg aacctggaca aggtttaggg tttagggaa aatgattgtt caggttcatc cctagatgtt ggtttctcct tacgggaca tgtgatggac acaaaagtta ctttcatgat gaaaccaaag gggatttga	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 cc cgatcccaaa 300 cg aatctggaca 360 gg agggagtata 420 ct ggggcaccta 480 at ccaagaaaaa 540
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca cgatgagtca tatcattatc tcccgcctgc taaccatcgt gtacaccaa aatgacaact tctagggatg aacctggaca aggtttaggg tttagggat aatgattgtt caggttcatc cctagatgtt ggtttctcct tacgggaca tgtgatggac acaaaagtta ctttcatgat gaaaccaaag gggatttga atagaacatc tgtccaaatg gcatgactca cttatatcct aataggaca	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 ac cgatcccaaa 300 ag aatctggaca 360 ag agggagtata 420 at ggggcaccta 480 at ccaagaaaaa 540 ac ggatctataa 600
<400> 56 tcagtgcaaa ccaaatcctt gctataatca aatgttcggt accgcatca aaaagcgcct ggcgtaccat aattttgtta ttcttgttga aatttgtaa tgagaccaca cgaccttaat gttcaacgtg tcatgcatta gtgaaataa acgcaacaaa tatagctaga taacggttgc aatccttacc aaactaaca cgatgagtca tatcattatc tcccgcctgc taaccatcgt gtacaccaa aatgacaact tctagggatg aacctggaca aggtttaggg tttagggaa aatgattgtt caggttcatc cctagatgtt ggtttctcct tacgggaca tgtgatggac acaaaagtta ctttcatgat gaaaccaaag gggatttga atagaacatc tgtccaaatg gcatgactca cttatatcct aataggaca ctaacactct aaagcaaccg atgaggaatt gaaagaaaat acgtgccaa	at ttaagatgca 120 at agctcacaaa 180 gt ataaagtgag 240 ac cgatcccaaa 300 ag aatctggaca 360 ag agggagtata 420 at ggggcaccta 480 at ccaagaaaaa 540 ac ggatctataa 600

<210> 57

<211> 1258

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0080 - metallothioneine-like ML2

						<400> 57
60	ttctttttt	cactttaagt	cgtgttaggt	ctctccattt	cgcagatgct	tgaagcaact
120	cacttatagc	aatataacaa	tataaaaaaa	taatcaagtt	tttgaaagtt	aatcattttt
180	gttaaaaata	gatatttct	aacatatttt	tcttacattg	tttcattacg	cttaaattag
240	atagacatag	ataatatgaa	aaacgacttt	tcaaacctca	attaatttag	tcgtctataa
300	aaagttgatg	aaaatgataa	tatgtaatgg	gctgaaaaaa	aacgtgagtt	taaataggaa
360	atttttttc	taagatgtct	gaataaatcc	atgttgacat	tgttttactt	ttagagaaaa
420	gagttgctag	tattcttcct	tttaactgtg	gcatatgtga	ggttttcgct	cacaatagtt
480	gtagctagta	gactagctaa	tcttggctac	tctaaaaaca	ttttttaaac	ctgctacttt
540	cttttctccg	aactgtgagg	tcttatattt	tatagtatcc	cccagtaaac	taaaaaaaaa
600	ttcagttctt	gaatgcattt	ctcccataaa	ctccctctat	aaacgagcta	tttctcgtga
660	ttttactgtt	taattaatat	aaaataatta	acttatttaa	tgactctcca	atataacgtt
720	attttataaa	ttttaaattt	atgcgactat	taataattat	aaaatatgaa	attagatgat
780	tcaggaagtt	aaatttagct	ttcaactcct	ttggtagagt	aatggcttgt	ttttttaagt
840	gcttatttta	cacctctcta	aactcaggtc	aagctgttta	tggagttgtg	agatctggag
900	aagaagaggt	gctttagctt	ttttagccga	ctgctcgtat	ctacacaact	tgagagagtt
960	gacgcattcc	tcggaaagtt	caacaaatat	agtttacccc	ttctccgtga	ggagccgata
1020	gtttcgtgag	ctagagattc	tgtgggggag	cattatccgg	taaagcttgg	agacgggacc
1080	ctccatccag	gtgtgtcctc	cgatcgaggc	gcgtgcctct	cctttggagc	gcggatggcg
1140	tgtcgtcttc	tttggttaat	ttcttcttcc	gatatgattc	tccagaagat	ctgctacgtc
1200	attgctcctc	cgaagcagcc	taccaccagc	ccgatatata	ctgcatccag	ttatatatat
1258	tcacttag	aactcatcac	acaagggatt	cataagcaac	cacaagaaag	accaccagag

<210> 58

<211> 668

<212> DNA

<213> Oryza sativa

071-prom	n-prov.ST25.txt
<220>	
<221> misc_feature	
<223> PRO0090 - prolamine RP6	
<400> 58 ccttctacat cggcttaggt gtagcaacac gact	
attattttac aaaaatataa aatagatcag tccc	
gttattgtaa agttctacaa agctaattta aaag	
caaacaagag tgtcaatgga acaatgaaaa ccat	_
tattgaaatt atataattca aagagaataa atcc	acatag ccgtaaagtt ctacatgtgg 300
tgcattacca aaatatatat agcttacaaa acat	gacaag cttagtttga aaaattgcaa 360
tccttatcac attgacacat aaagtgagtg atga	gtcata atattatttt tcttgctacc 420
catcatgtat atatgatagc cacaaagtta cttt	gatgat gatatcaaag aacattttta 480
ggtgcaccta acagaatatc caaataatat gact	cactta gatcataata gagcatcaag 540
taaaactaac actctaaagc aaccgatggg aaag	catcta taaatagaca agcacaatga 600
aaatcctcat catccttcac cacaattcaa atat	tatagt tgaagcatag tagtagaatc 660
caacaaca	668
<210> 59	
<211> 1245	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<223> PRO0126 - metallothionein RiCM	r
<400> 59	
cttgttgttg atctgtgccc ccaagaagaa taaca	
atagtattag caaccacgca tatgcaaatt ttaa	tgcagt aataataaga gatggatcga 120
tegttttcca getettgtat atgtgaetgg ceets	gottta tgtgtgtagt gttaatttca 180

240

300

gctttagcag tacgtgatta gtgatggaca ataattgtcg cagacgtatc tatcaattgc

tcctgttgtg tgatgcttta actgttggaa tcaaagttgc gttgcctttg ttgttatgag

gaggaatata	tatgttgggg	caggaaaaga	atggaggaga	gatcgttctc	catatcctta	360
tcatcggcct	cgtcactgct	cgcagtttaa	ctttttggtg	atgcgagcga	tggtcagcca	420
tatatatact	cccatgctgc	atgctagtaa	tcaatatacg	ccttgtaaaa	gtaaacgatc	480
gtctagtaat	tgcaatatca	taggggtagc	cattgacaga	gatctacata	gatagagggg	540
gaacaagaat	tgacactcca	cagatgctcc	actcattcac	ctttactaat	ttatatcttt	600
tgatgtttga	tcgatcgatc	gatccgtccg	tcggtgtctc	gacgaataaa	aactgcaaat	660
cgaactgtat	gtatataata	tagcgtcgta	aattaaatta	aattaaatcg	aactgaatac	720
tacatgtcga	agcaagaatt	agttcaacta	aaagatttag	tttttccggt	tgcaatatct	780
gtgaaattaa	ttgaagaaat	taagaagaaa	actggagaga	tatatatatg	gatgagacaa	840
aatgagataa	gacgcatgat	ggtccctcgg	atgatgtcgt	ccgttcctta	tttccattcc	900
atggcagctg	ctatcgctat	ctagtgcgcg	cggcatctcc	aatcccatcc	attctagtgg	960
tcgatctagc	tactactgag	tattgttttt	tcttctttt	actactgttg	attattctgc	1020
aactgcagtt	agatgcttgc	tactcctaca	tcgatctctc	tcgcgcgggc	gtatgcattg	1080
cattcactac	tgatgatccg	tgggtgtagt	gtgggtggct	ataaataggg	cagggtgcgg	1140
ttgccattgc	tcctcaggcc	agcaactgag	aagctccata	caagtaagca	gcagctagtt	1200
gccgacaagg	ccagagaagg	aagaagaagc	tctcatcatc	atcac		1245

<210> 60

<211> 2195

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0129 - GOS2

<400> 60

aatccgaaaa gtttctgcac cgttttcacg tcctaactaa caatataggg aacgtgtgct 60
aaatataaaa tgagacctta tatatgtagc gctgataact agaactatgt aagaaaaact 120
catccaccta ctttagtggc aatcgggcta aataaaaaag agtcgctaca ctagtttcgt 180
tttccttagt aattaagtgg gaaaatgaaa tcattattgc ttagaatata cgttcacatc 240
tctgtcatga agttaaatta ttcgaggtag ccataattgt catcaaactc ttcttgaata 300
aaaaaatctt tctagctgaa ctcaatggt aaagagagat attttttt aaaaaaaaa 360

agaatgaaga	tattctgaac	071- gtatcggcaa	-prom-prov.s agatttaaac	ST25.txt atataattat	ataattttat	420
agtttgtgca	ttcgttatat	cgcacgtcat	taaggacatg	tcttactcca	tctcaatttt	480
tatttagtaa	ttaaagacaa	ttgacttatt	tttattattt	atctttttc	gattagatgc	540
aaggtactta	cgcacacact	ttgtgctcat	gtgcatgtgt	gagtgcacct	cctcatacac	600
gttcaactag	cgacacatct	ccaatatcac	tcgcctattt	aatacattta	ggtagcaata	660
tctgaattca	agcacttcac	catcaccaga	ccacttttaa	taatatctaa	aatacaaaaa	720
ataattttac	agaatagcat	gaaaagtatg	aaacgaacta	tttaggtttt	tcacatacaa	780
aaaaaaaag	aattttgctc	gtgcgcgagc	gccaatctcc	catattgggc	acacaggcaa	840
caacagagtg	gctgcccaca	gaacaaccca	caaaaaacga	tgatctaacg	gaggacagca	900
agtccgcaac	aaccttttaa	cagcaggctt	tgcggccagg	agagaggagg	agaggcaaag	960
aaaaccaagc	atcctcctcc	tcccatctat	aaattcctcc	cccttttcc	cctctctata	1020
taggaggcat	ccaagccaag	aagagggaga	gcaccaagga	cacgcgacta	gcagaagccg	1080
agcgaccgcc	ttcttcgatc	catatcttcc	ggtcgagttc	ttggtcgatc	tcttccctcc	1140
tccacctcct	cctcacaggg	tatgtgccct	teggttgtte	ttggatttat	tgttctaggt	1200
tgtgtagtac	gggcgttgat	gttaggaaag	gggatctgta	tctgtgatga	ttcctgttct	1260
tggatttggg	atagaggggt	tcttgatgtt	gcatgttatc	ggttcggttt	gattagtagt	1320
atggttttca	atcgtctgga	gagctctatg	gaaatgaaat	ggtttagggt	acggaatctt	1380
gcgattttgt	gagtaccttt	tgtttgaggt	aaaatcagag	caccggtgat	tttgcttggt	1440
gtaataaaag	tacatttgtt	tggtcctcga	ttctggtagt	gatgcttctc	gatttgacga	1500
agctatcctt	tgtttattcc	ctattgaaca	aaaataatcc	aactttgaag	acggtcccgt	1560
tgatgagatt	gaatgattga	ttcttaagcc	tgtccaaaat	ttcgcagctg	gcttgtttag	1620
atacagtagt	ccccatcacg	aaattcatga	aaacagttat	aatcctcagg	aacaggggat	1680
tecetgttet	tccgatttgc	tttagtccca	gaatttttt	tcccaaatat	cttaaaaagt	1740
cactttctgg	ttcagttcaa	tgaattgatt	gctacaaata	atgcttttat	agcgttatcc	1800
tagctgtagt	tcagtttata	ggtaataccc	ctatagttta	gtcaggagaa	gaacttatcc	1860
gatttctgat	ctccattttt	aattatatga	aatgaactgt	agcataagca	gtattcattt	1920
ggattatttt	ttttattagc	tttcacccct	tcattattct	gagctgaaag	tctggcatga	1980
actgtcctca	attttgtttt	caaattcaca	tcgattatct	atcgattatc	ctcttgtatc	2040
tacctgtaga	agtttctttt	tggttattcc	ttgactgctt	gattacagaa	agaaatttat	2100
gaagctgtaa	tcgggatagt	tatactgctt	gttcttatga	ttcatttcct	ttgtgcagtt	2160
cttggtgtag	cttgccactt	tcaccagcaa	agttc			2195

<211> 1008

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0135 - alpha-globulin

<400> 61 gccccccgcc ggacctcccg tggccccgtg gcgcctggag ggaggagagg ggagagatgg 60 tgagagagga ggaagaagag gaggggtgac aatgatatgt ggggccatgt gggcccacc 120 attttttaat teattettt gttgaaactg acatgtgggt cecatgagat ttattatttt 180 teggategaa ttgecaegta agegetaegt caatgetaeg teagatgaag acegagteaa 240 attagccacg taagcgccac gtcagccaaa accaccatcc aaaccgccga gggacctcat 300 ctgcactggt tttgatagtt gagggacccg ttgtatctgg tttttcgatt gaaggacgag 360 aatcaaattt gttgacaagt taagggacct taaatgaact tattccattt caaaatattc 420 tgtgagccat atataccgtg ggcttccaat cctcctcaaa ttaaagggcc tttttaaaat 480 agataattgc cttctttcag tcacccataa aagtacaaaa ctactaccaa caagcaacat 540 gcgcagttac acacattttc tgcacatttc caccacgtca caaagagcta agagttatcc 600 ctaggacaat ctcattagtg tagatacatc cattaatctt ttatcagagg caaacgtaaa 660 gccgctcttt atgacaaaaa taggtgacac aaaagtgtta tctgccacat acataacttc 720 agaaattacc caacaccaag agaaaaataa aaaaaaatct ttttgcaagc tccaaatctt 780 ggaaaccttt ttcactcttt gcagcattgt actcttgctc tttttccaac cgatccatgt 840 caccctcaag cttctacttg atctacacga agetcaccgt gcacacaacc atggccacaa 900 aaaccctata aaaccccatc cgatcgccat catctcatca tcagttcatc accaacaaac 960 aaaagaggaa aaaaaacata tacacttcta gtgattgtct gattgatc 1008

<210> 62

<211> 1395

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0136 - alanine aminotransferase

<400> 62						
gcaaaatgta	tgcgttaaac	cgacctcata	tatatccaag	tgcacaagca	gtatcacaca	60
atacaccata	aaaaagacat	agaaaaaata	acagcatttg	aggtttggtg	agtaaagtat	120
tagatatata	attgttttca	tctggaatct	tcatcactaa	gtacatgcat	atattcatca	180
acacaaattc	tgtcagcgtg	ataggaatag	ataaataaca	aaaagtttct	acatcatgcc	240
atttggattg	tccctagcta	ggtgacaaaa	gccattaacc	ttatttccca	acctaactct	300
caaaagaaaa	aaaaataaag	aaaaacaaaa	cataatataa	agattagatg	aaaaagaaaa	360
tgcaaacaac	aatcctccta	attaatcgag	ctgcacatga	cacaaggccc	caagagtgat	420
gtataaacga	cttccagaaa	atcaagaaga	aaaagaaaaa	aaatgaagca	acaaacgtat	480
tctaattttg	atagataatt	tcacttgttt	tactcctaga	taaactcagt	tacaacctgg	540
ctcatcttat	catcattgca	tcacaacaaa	tctacatggc	atcacaaatc	gatcgaaaca	600
atcgaagagc	aaccatctca	cagtccaccc	aatttagatt	ctttttccag	gtgaccaaag	660
aacaaaggaa	atttattttg	gaagaaagaa	aagaaacata	tatcacaaaa	atgcataaaa	720
ccacttccag	ggaaaaaaaa	ggtaaaggag	aaaaacaac	aaaaactgag	caacaacaaa	780
ctcaccgaat	tttgatagat	aaactcactt	tacaacgtgg	ctcatctaat	catcgttgca	840
ttacaacaaa	tctatgtgtc	atcacacaca	tcgatcaaag	aaaaaaaccc	aagagccaac	900
cacctcatcc	tccaccctat	ttggactctt	tccatgcgac	gaaaccaatt	tacaaacctt	960
acacaaagtc	acacagaaag	aagaaaaaaa	aagaacgaaa	gaaacaaaaa	ggcaaaactg	1020
aaatcctcct	cctaattaaa	cacacacgta	atctaatcca	gccactggta	gtcacaatac	1080
gatgacgtgc	ccaccgctct	aacactgtca	ctaaaaggtt	agacttttt	gggttcttgt	1140
gcagagagag	agagagag	agagagag	agagagattg	tggatgcgaa	aaccgcagct	1200
gggggcggcg	gttctgcgtc	ctcggtcgct	ttccatccgg	tgggcgcatc	gcgtttttgc	1260
ggtttttgct	tctcttc	tttataagga	gcagccaatt	tggtgcgggg	agccgtcgat	1320
tcgccacgaa	acccaacccg	tcaacgctgc	cgctgaatct	cactttctct	ctctgttctt	1380
ggtgcttccg	ccgcc					1395

<210> 63

<211> 2115

<212> DNA

<213> Hordeum vulgaris

<220>

<221> misc_feature

<223> PRO0146 - sucrose synthase SS1 (barley)

<400> 63 ggttatcttg	gctgttttat	catctgttct	gtccagtgca	atgccggcca	ttagagagtt	60
cgtatttgta	tgtaacaagg	gcaccgatgc	tggggcttag	tgtgggcgcg	tgtttgttta	120
ttcctgcgat	gcaaaagacg	gttttacctt	tgcatcttct	tcttctagta	tggttttatg	180
attaataatt	tctagcggac	ggaagagatg	cgatgccctc	tettgttett	cttcttgttc	240
ggaacgtagg	gctctcgcgg	catcgccgac	gccagctgct	gtcgcgtcgc	acgggcattg	300
caaagcgcat	cttggcaagg	aacaagagcc	gctgcttttc	cccgcacaag	gattattccc	360
accagetttt	cgttatcccc	catcatttcc	agattactta	tacactacta	ctcccgtagt	420
atagtgataa	ccacctccct	gcttataagc	tcgccaaaga	attgccactt	ggccgggatg	480
cgttaaaaac	gagctcacca	cctccttggt	tgtttcccct	tggttccggc	acatgagctt	540
tacactctct	ccctcggata	cccacacctt	ctagaagcag	ggagtgcgtt	ttctgcggca	600
cggtcccact	cgccagcgat	gattttctac	gtggtgaagg	agcccgcttg	ttagctaggc	660
taggtaggtt	ttgctttttc	ttggacgaca	aactgtcgtt	gatagctagg	ctaggtaaac	720
caggccggtc	gccgtcaaac	ccgccaacca	ttttcccgtg	ttcccccacc	taataatcca	780
ctttgatatt	tgctcccagt	cccacccttt	cattcccatc	cagtccccga	gtgcactgta	840
cctacatgca	cccgtccaaa	tccatcgaac	tgcgccgtgc	ggcttatgct	atcgggccgc	900
agctttaccc	aaagcagcca	gcatatgcta	atcggatccg	tgcgtaatta	gtgacaccaa	960
tccatcagct	aatggacggg	cacagcattt	ctattttatc	cggcaagaat	ggaatagaat	1020
agttttcggt	gttatccact	gctatgtcgg	ctccggggag	ctgaggcccc	caccaacacc	1080
aacaccgcgc	tcgctagcca	ccacctgtcc	tgctcaccag	tcaccaccgg	gggtgggggt	1140
ttgggtttgg	gttttgccta	tttatttgtc	ctcctggatc	ttgcacaaac	cctcctctcc	1200
teccetecce	teceetecee	tcccctgcac	cctgcactgc	tccccgactg	gtatgtccgg	1260
tgtcacccag	ctccttccat	cctcccgtgc	gctcgtcttg	ggcgtgcttt	tgctttggtt	1320
cccggctagt	ctcaccgcaa	atcttgtttc	ttggcggctc	cgagtagtca	ttcattcacc	1380
ttgatcgctc	gctagttttc	ttgctccgct	ccttttctcg	gggggtttct	tgcggtgttc	1440
gtgtttggtg	ggtcgccacc	gcaatcccgc	gcgggttctt	ggatattgat	ggcgcgtttc	1500
tegggetete	tcctccgaat	caacctcctg	ggttccttgt	cctgtttatt	atgagcggag	1560

071-prom-prov.ST25.txt tottetttee eccettggte aattttagtg etceegeagt cagatttttt ggtcaaggtg 1620 gaggttettg acgactaget tgggatettg ccggagaaat gtgtgtgggg tttttttttg 1680 ctgccattta gcagcctaaa tcacatccat gatctgaaaa gtaatcacca aacccgcttg 1740 ctgaagcctg cccccttttt tttctctctc tctagaaaca tcttcagaga gcgactggtt 1800 tggtgcggaa tcagtactgc tagattaagt tgtgggtgca agattaatgc ttgctttacc 1860 tttccgttac ttttgatttc ttccatctgt cagattatta ttactggcct tggtgaatgt 1920 ttegeetetg attagteace tagettgatt tttgaggggg ttaaatteca gtttttttt 1980 ttttttttt ttgcgtgctg cagtggtatg accagtgttg ttaatatcct agtggttctt 2040 gegeaagtaa geggeetgat tetecaagge egactgetaa tetettacet egetetgeag 2100 ttttgtgtcc tgagc 2115 <210> 64 <211> 342 <212> DNA <213> Hordeum vulgaris <220> <221> misc_feature <223> PRO0147 - trypsin inhibitor ITR (barley) <400> 64 gatgaaccag ggatgtagcg tagtatgata agataactca tgccaagcac actgagaaag 60 gtaggaaccg aggaaatatg gttattcttc tactcaaacc ccaacttttg cattccctc 120 cgaatattgt tagcacaaag ctccaaattc tgtcagcaaa aaaggttatc aaagctaccc 180 tttaatcaaa atttccatgc agcggcactc caacaactaa cagaaagtca gaaagcactt 240 cggtacttac gatgccagct gcttgtcact tcacatttca ctatatatat acatgtgata 300 cgcctcgctt gctccaacaa catcccttca atttgataac aa 342 <210> 65

<211> 2753

<212> DNA

<213> Oryza sativa

<221> misc_feature

<223> PRO0149 - ubiquitin 2 with intron

<400> 65				•		
	ttgttcattg	gtcttatcca	aaacttagcc	actgcaacaa	gttcttgacc	60
cttagcacaa	tcatattgtg	catgcacttg	tttattgcaa	agaatggtgc	gtagggaaca	120
cgcatgattt	ttgaattgct	ggcacataat	tttatcatta	gaaactggaa	tgcaacatgt	180
accctttgtc	atggtttctt	tccgagacat	tgcactgttt	ttttaatcc	tatcattatc	240
ataatgccaa	gaactggtca	ccaaccagca	atttgcatca	tggttagttg	agctgtcccc	300
atgtatcaat	aggtgcattg	tattggtccg	aaatataaat	gcagtggatg	caaacctatc	360
tcatggccgt	caacaaaaga	aatcaaaagg	gaaatgcacc	atcttatatc	tccagtttat	420
atgaacagat	tggataagat	cataagatca	agtggtttat	attattttga	ggaatataac	480
atggattcat	cctaatcact	cgtctaggca	gtatgtgtat	tcatgatgga	tatggtacta	540
tactacggag	ttttttcttc	acaaaataac	ctgttatttt	gacctccaac	caaacacgaa	600
ttataccaaa	aattgggtta	tttcatctat	agtacaactc	tattataaac	atgcagtaaa	660
ttatcctaca	catataccaa	aattcaagtg	taataatcct	aatacacaga	cttaaaaaac	720
aaactatttc	ctttttaaga	aaaggaaaac	cattttttta	acggaaggaa	aacaaattcg	780
ggtcaaggcg	gaagccagcg	cgccacccca	cgtcagcgaa	tacggaggcg	cggggttgac	840
ggcgtcaccc	ggtcctaacg	gcgaccaaca	aaccagccag	aagaaattac	agtaaaaaaa	900
agtaaattgc	actttgaccc	accttttatt	acccaaagtt	tcaatttgga	ccacccttaa	960
acctatcttt	tcaaattggg	ccgggttgtg	gtttggacta	ccatgaacaa	cttttcgtca	1020
tgtctaactt	ccctttcggc	aaacatatga	accatatata	gaggagatcg	gccgtatact	1080
agagctgatg	tgtttaaggt	cgttgattgc	acgagaaaaa	aaaatccaaa	tcgcaacaat	1140
agcaaattta	tctagttcaa	agtgaaaaga	tatgtttaaa	ggtagtccaa	agtaaaactt	1200
aggggctgtt	tggttcccag	ccatacttta	ccattacttg	ccaacaaaag	ttgccacacc	1260
ttgtctaagg	tgaggtgatc	aaattgttag	ccacaactta	ctaagcctaa	gggaatcttg	1320
ccacactttt	ttgagccatt	gacacgtggg	acttaatttg	ttagagggaa	atcttgccac	1380
aactgtggct	acaaccaaac	acctgtcaaa	tttgcctaac	cttaggcgtg	gcaaactgtg	1440
gcaaagtgtg	gcttacaacc	aaacacaccc	ttagataata	aaatgtggtc	caaagcgtaa	1500
ttcactaaaa	aaaaatcaac	gagacgtgta	ccaaacggag	acaaacggca	tcttctcgaa	1560
atttcccaac	cgctggctgg	cccgcctcgt	cttcccggaa	accgcggtgg	tttcagcgtg	1620
gcggattctc	caagcagacg	gagacgtcac	ggcacggact	cctcccacca	cccaaccgcc	1680

ataaatacca	gccccctcat	ctcctctcct	cgcatcagct	ccacccccga	aaaatttctc	1740
cccaatctcg	cgaggctctc	gtcgtcgaat	cgaatcctct	cgcgtcctca	aggtacgctg	1800
cttctcctct	cctcgcttcg	tttcgattcg	atttcggacg	ggtgaggttg	ttttgttgct	1860
agatccgatt	ggtggttagg	gttgtcgatg	tgattatcgt	gagatgttta	ggggttgtag	1920
atctgatggt	tgtgatttgg	gcacggttgg	ttcgataggt	ggaatcgtgg	ttaggttttg	1980
ggattggatg	ttggttctga	tgattggggg	gaatttttac	ggttagatga	attgttggat	2040
gattcgattg	gggaaatcgg	tgtagatctg	ttggggaatt	gtggaactag	tcatgcctga	2100
gtgattggtg	cgatttgtag	cgtgttccat	cttgtaggcc	ttgttgcgag	catgttcaga	2160
tctactgttc	cgctcttgat	tgagttattg	gtgccatggg	ttggtgcaaa	cacaggettt	2220
aatatgttat	atctgttttg	tgtttgatgt	agatctgtag	ggtagttctt	cttagacatg	2280
gttcaattat	gtagcttgtg	cgtttcgatt	tgatttcata	tgttcacaga	ttagataatg	2340
atgaactctt	ttaattaatt	gtcaatggta	aataggaagt	cttgtcgcta	tatctgtcat	2400
aatgatctca	tgttactatc	tgccagtaat	ttatgctaag	aactatatta	gaatatcatg	2460
ttacaatctg	tagtaatatc	atgttacaat	ctgtagttca	tctatataat	ctattgtggt	2520
aatttctttt	tactatctgt	gtgaagatta	ttgccactag	ttcattctac	ttatttctga	2580
agttcaggat	acgtgtgctg	ttactaccta	tctgaataca	tgtgtgatgt	gcctgttact	2640
atctttttga	atacatgtat	gttctgttgg	aatatgtttg	ctgtttgatc	cgttgttgtg	2700
tccttaatct	tgtgctagtt	cttaccctat	ctgtttggtg	attatttctt	gca	2753

<210> 66

<211> 1828

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0151 - WSI18

<400> 66

gcttgagtca	tagggagaaa	acaaatcgat	catatttgac	tctttccct	ccatctctct	60
taccggcaaa	aaaagtagta	ctggtttata	tgtaaagtaa	gattctttaa	ttatgtgaga	120
tccggcttaa	tgcttttctt	ttgtcacata	tactgcattg	caacaattgc	catatattca	180
cttctgccat	cccattatat	agcaactcaa	gaatggattg	atatatcccc	tattactaat	240

•	ctagacatgt	taaggctgag	ttgggcagtc	catcttccca	acccaccacc	ttegttttte	300
•	gcgcacatac	ttttcaaact	actaaatggt	gtgttttta	aaaatatttt	caatacaaaa	360
•	gttgctttaa	aaaattatat	tgatccattt	ttttaaaaaa	aatagctaat	acttaattaa	420
	tcacgtgtta	aaagaccgct	ccgttttgcg	tgcaggaggg	ataggttcac	atcctgcatt	480
	accgaacaca	gcctaaatct	tgttgtctag	attcgtagta	ctggatatat	taaatcatgt	540
	tctaagttac	tatatactga	gatgaataga	ataagtaaaa	ttagacccac	cttaagtctt	600
	gatgaagtta	ctactagctg	cgtttgggag	gacttcccaa	aaaaaaagt	attagccatt	660
	agcacgtgat	taattaagta	ctagtttaaa	aaacttaaaa	aataaattaa	tatgattctc	720
	ttaagtaact	ctcctataga	aaacttttac	aaaattacac	cgtttaatag	tttggaaaat	780
	atgtcagtaa	aaaataagag	agtagaagtt	atgaaagtta	gaaaaagaat	tgttttagta	840
	gtatacagtt	ataaactatt	ccctctgttc	taaaacataa	gggattatgg	atggattcga	900
	catgtaccag	taccatgaat	cgaatccaga	caagttttt	atgcatattt	attctactat	960
	aatatatcac	atctgctcta	aatatcttat	atttcgaggt	ggagactgtc	gctatgtttt	1020
	tctgcccgtt	gctaagcaca	cgccaccccc	gatgcgggga	cgcctctggc	cttcttgcca	1080
	cgataattga	atggaacttc	cacattcaga	ttcgataggt	gaccgtcgac	tccaagtgct	1140
	ttgcacaaaa	caactccggc	ctcccggcca	ccagtcacac	gactcacggc	actaccaccc	1200
	ctgactccct	gaggcggacc	tgccactgtt	ctgcatgcga	agctatctaa	aattctgaag	1260
	caaagaaagc	acagcacatg	ctccgggaca	cgcgccaccc	ggcggaaaag	ggctcggtgt	1320
	ggcgatctca	cagccgcata	tcgcatttca	caagccgccc	atctccaccg	gcttcacgag	1380
	gctcatcgcg	gcacgaccgc	gcacggaacg	cacgcggccg	acccgcgcgc	ctcgatgcgc	1440
	gagcccatcc	gccgcgtcct	ccctttgcct	ttgccgctat	cctctcggtc	gtatcccgtt	1500
	tetetgtett	ttgctccccg	gcgcgcgcca	gttcggagta	ccagcgaaac	ccggacacct	1560
	ggtacacctc	cgccggccac	aacgcgtgtc	cccctacgt	ggccgcgcag	cacatgccca	1620
	tgcgcgacac	gtgcacctcc	tcatccaaac	tctcaagtct	caacggtcct	ataaatgcac	1680
	ggatagcctc	aagctgctcg	tcacaaggca	agaggcaaga	ggcaagagca	tccgtattaa	1740
	ccagcctttt	gagacttgag	agtgtgtgtg	actcgatcca	gcgtagtttc	agttcgtgtg	1800
	ttggtgagtg	attccagcca	. agtttgcg				1828

<210> 67

<211> 1553

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0175 - RAB21

<400> 67						
					gcgtctcccg	60
	tacaagaaga					120
taacctatca	ttcccacaat	ctaatccact	tatttctctt	cccatgatct	tatcctctca	180
tttctcctca	ctacttttgc	atttgtagga	aacacaatga	caccgtcgaa	gaaagctggt	240
ggagcaccgt	agccagcaat	caccaaaaca	cagaggggag	gaggtcggca	gcggccatgc	300
ggacggcgat	gagacaacgc	gacgcaaaga	gggaggagga	cgttggcgat	catgctggtg	360
ttggcggagg	aggtcactgg	ccatgcgaat	gacagcgggg	cagcgcaaca	caaaaagggg	420
ggaggatgcc	ggcgaccacg	ctagtaccat	gaagcaagat	gatgtgaaag	ggaggaccgg	480
acgagggttg	gacctctgcc	gccgacgtga	agagcgtgat	gtgtagaagg	agatgttaga	540
ccagatgccg	acgcaactta	gccctgcaag	tcacccgact	gcatatcgct	gcttgccctc	600
gtcctcatgt	acacaatcag	cttgcttatc	tctccatact	tgtcgtttgt	ttcccgtggc	660
cgaaatagaa	gaagacagag	gtgggttttg	ttggagagtt	ttagtggtat	tgtaggccta	720
tttgtaattt	tgttgtactt	tattgtatta	atcaataaag	gtgtttcatt	ctattttgac	780
tcaatgttga	atccattgat	ctcttggtgt	tgcactcagt	atgttagaat	attcattccg	840
ttgaaacaat	cttggttaag	ggttggaaca	tttttatctg	ttcggtgaaa	catccgtaat	900
attttcgttg	aaacaatttt	tatccgacag	caccgtccaa	caatttacac	caatttggac	960
gtgtgataca	tagcagtccc	caagtgaaac	tgaccaccag	ttgaaaggta	tacaaagtga	1020
acttattcat	ctaaaagacc	gcagagatgg	gccgtggccg	tggctgcgaa	acgacagcgt	1080
tcaggcccat	gagccattta	tttttaaaa	aaatatttca	acaaaaaaga	gaacggataa	1140
aatccatcga	aaaaaaaaa	ctttcctacg	catcctctcc	tatctccatc	cacggcgagc	1200
actcatccaa	accgtccatc	cacgcgcaca	gtacacacac	atagttatcg	tatatacaca	1260
cgatgagtca	ccacccgtgt	cttcgagaaa	cgcctcgccc	gacaccgtac	gtgcgccacc	1320
gccgcgcctg	ccgcctggac	acgtccggct	catatacaga	cgcgctggcc	accgtccacc	1380
ggctcccgca	cacgtctccc	tgtctccctc	cacccatgcc	gtggcaatcg	agctcatctc	1440
ctcgcctcct	ccggcttata	aatggcggcc	accaccttca	cctgcttgca	caccacagca	1500
agagctaagt	gagctagcca	ctgatcagaa	gaacacctcg	atctctgaga	gtg	1553

<211> 1236

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> PRO0218 - oleosin 18 kDa

<400> 68 ggtcagccaa tacattgatc cgttgccaat catgcaaagt attttggctg tggccgagtg 60 ccggaattga taattgtgtt ctgactaaat taaatgacca gaagtcgcta tcttccaatg 120 tatccgaaac ctggattaaa caatcctgtt ctgttctcta gcccctcctg catggccgga 180 ttgttttttt gacatgtttt cttgactgag gcctgtttgt tctaaacttt ttcttcaaac 240 ttttaacttt ttcatcacat cagaactttt ctacacatat aaacttttaa cttttccgtc 300 acatcgttcc aatttcaatc aaactttcaa ttttggcgtg aactaaacac accctgagtc 360 ttttattgct cctccgtacg ggttggctgg ttgagaatag gtattttcag agagaaaatc 420 tagatattgg gaggaacttg gcatgaatgg ccactatatt tagagcaatt ctacggtcct 480 tgaggaggta ccatgaggta ccaaaatttt agtgtaaatt ttagtatctc attataacta 540 ggtattatga ggtaccaaat ttacaataga aaaaatagta cttcatggta ctttcttaag 600 taccgtaaaa ttgctcctat atttaagggg atgtttatat ctatccatat ccataatttg 660 attttgataa gaaaaaatgt gagcacacca agcatgtcca tgaccttgca ctcttggctc 720 actogtoaac tgtgaagaac ctcaaaaatg ctcaatatag ctacaggtgc ctgaaaaaaat 780 840 aactttaaag ttttgaacat cgatttcact aaacaacaat tattatctcc ctctgaaaga 900 tgatagttta gaactctaga atcattgtcg gcggagaaag taaattattt tccccaaatt 960 tccagctatg aaaaaaccct caccaaacac catcaaacaa gagttcacca aaccgcccat geggecatge tgtcaegeaa egeacegeat tgeetgatgg cegetegatg catgeatget 1020 teccegtgea catatecgae agaegegeg tgteagegag etectegaee gaeetgtgta 1080 gcccatgcaa gcatccaccc ccgccacgta cacccctcc tcctccctac gtgtcaccgc 1140 totetecace tatatatgee cacetggeee etetectece atetecactt cacecgateg 1200 1236 cttcttcttc ttcttcgttg cattcatctt gctagc

<210> 69

<211> 1488

- <212> DNA
- <213> Oryza sativa

<220>

- <221> misc_feature
- <223> PRO0219 ubiquitin 2 without intron

<400> 69						
cttagccact	gcaacaagtt	cttgaacctt	agcacaatca	tattgtgcat	gcacttgttt	60
attgcaaaga	atggtgcgta	gggaacacgc	atgatttttg	aattgctggc	acataatttt	120
atcattagaa	actggaatgc	aacatgtacc	ctttgtcatg	gtttctttcc	gagacattgc	180
actgttttt	ttaatcctat	cattatcata	atgccaagaa	ctggtcacca	accagcattt	240
tgcatcatgg	ttagttgagc	tgtccccatg	tatcaatagg	tgcattgtat	tggtccaaaa	300
tataaatgca	gtggatgcaa	cctatctcat	ggccgtcaac	aaaagaaatc	aaaagggaaa	360
tgcaccatct	tatatctcca	gtttatatga	acagattgga	taagatcata	agatcaagtg	420
gtttatatta	ttttgaggaa	tataacatgg	attcatccta	atcactcgtc	taggcagtat	480
gtgtattcat	gatggatatg	gtactatact	acggagtttt	ttcttcacaa	aataacctgt	540
tattttgacc	tccaaccaaa	cacgaattat	accaaaaatt	gggttatttc	atctatagta	600
caactctatt	ataaacatgc	agtaaattat	cctacacata	taccaaaatt	caagtgtaat	660
aatcctaata	cacagactta	aaaatcaaac	tatttccttt	ttaagatatg	gaaaaccatt	720
tttttaacgg	aaggaaaaca	aattcgggtc	aaggcggaag	ccagcgcgcc	accccacgtc	780
agcgaatacg	gaggcgcggg	gttgacggcg	tcacccggtc	ctaacggcga	ccaacaaacc	840
agccagaaga	aattacagta	aaaaaagta	aattgcactt	tgacccacct	tttattaccc	900
aaagtttcaa	tttggaccac	ccttaaacct	atcttttcaa	attgggccgg	gttgtggttt	960
ggactaccat	gaacaacttt	tcgtcatgtc	taacttccct	ttcggcaaac	atatgaacca	1020
tatatagagg	agatcggccg	tatactagag	ctgatgtgtt	taaggtcgtt	gattgcacga	1080
gaaaaaaaaa	tccaaatcgc	aacaatagca	aatttatcta	gttcaaagtg	aaaagatatg	1140
tttaaaggta	gtccaaagta	aaacttatag	ataataaaat	gtggtccaaa	gcgtaattca	1200
ctaaaaaaaa	atcaacgaga	cgtgtaccaa	acggagacaa	acggcatctt	ctcgaaattt	1260
cccaaccgct	ggctggcccg	cctcgtcttc	ccggaaaccg	cggtggtttc	agcgtggcgg	1320
attctccaag	cagacggaga	cgtcacggca	cgggactcct	cccaccaccc	aaccgccata	1380
aataccagcc	ccctcatctc	ctctcctcgc	atcagctcca	ccccgaaaa	atttctccc	1440

071-prom-prov.ST25.txt aatotogoga ggototogto gtogaatoga atoototogo gtootoaa	1488
<210> 70	
<211> 55	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM2768	
<400> 70 ggggacaagt ttgtacaaaa aagcaggctc ccgatttagt agaccacatt ttggc	55
<210> 71	
<211> 57	
<212> DNA	
<213> Artificial sequence	
·	
<220>	
<223> reverse primer PRM2769	
<400> 71 ggggaccact ttgtacaaga aagctgggtc gtgtagaaaa tcttaacccg aaaatcg	57
<210> 72	
<211> 54	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM2422	
<400> 72 ggggacaagt ttgtacaaaa aagcaggctt tcccaagata agcacacaga ttgg	54
<210> 73	
<211> 56	
<212> DNA	
<213> Artificial sequence	

<220>		
<223>	reverse primer PRM2423	
<400> ggggac	73 cact ttgtacaaga aagctgggtg gtttgggctt tggagcaact agctgc	56
<210>	74	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2424	
<400> ggggaca	74 aagt ttgtacaaaa aagcaggete cattgtgeca aacaagetga gatgg	55
<210>	75	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2425	
<400> ggggaco	75 cact ttgtacaaga aagctgggtg ctgtctggct cagctagcta ctagctcc	58
<210>	76	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2851	
<400> ggggaca	76 aagt ttgtacaaaa aagcaggctt cacattggac tagagttaga cttg	54

<210>	77	
<211>	52 - ,	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2852	
<400> ggggac	77 cact ttgtacaaga aagctgggtg gcggcggcgg cgaggcgacg gg	52
<210>	78	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
	·	
<220>		
<223>	forward primer PRM2770	
<400>	78 aagt ttgtacaaaa aagcaggctt gttcgccctg ggtattagct tgcc	54
5555		
<210>	79	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	reverse primer PRM2771	
<400> ggggac	79 cact ttgtacaaga aagctgggtg gttgtcggtc aagaactcag aattgg	56
<210>	80	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	

<220>		
<223>	forward primer PRM2772	
<400> ggggaca	80 aagt ttgtacaaaa aagcaggctg aggtgtaact actgtgcaag tggc	54
<210>	81	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	reverse primer PRM2773	
<400> ggggaco	81 cact ttgtacaaga aagctgggtt ccgaggaggg ggaggtggac gagc	54
<210>	82	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2774	
<400> ggggaca	82 aagt ttgtacaaaa aagcaggctt tataggagtg gatggaaatg ttgtg	55
<210>	83	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2775	
<400> ggggace	83 cact ttgtacaaga aagctgggtg gtctcactac tccttactct ctctag	56
<210>	84	

<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2853	
<400> ggggac	84 aagt ttgtacaaaa aagcaggott otottotgaa gotgaagooo tgog	54
<210>	85	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2854	
<400> ggggac	85 cact ttgtacaaga aagctgggtt tettetttee ettggaacta accg	54
<210>	·	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	forward primer PRM2426	
<400>		
ggggad	caagt ttgtacaaaa aagcaggcta aaaccaccga gggacctgat ctg	53
<210>	87	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
12205		

<223>	reverse primer	PRM2427				
<400>		_ 10.12.12./				
	cact ttgtacaaga	aagctgggtt	gtcgctttta	tttggcttgg	tgtg	54
<210>	88					
<211>	55					
<212>	DNA					
<213>	Artificial sequ	ence				
<220>						
<223>	forward primer	PRM2855			•	
<400>	88					
ggggac	aagt ttgtacaaaa	aagcaggctc	ctagctatat	gcagaggttg	acagg	55
<210>	89					
<211>	56					
<212>	DNA					
<213>	Artificial sequ	ence				
<220>						
<223>	reverse primer	PRM2856				
<400>	89 Sact ttgtacaaga	aagctgggtc	tctagctcga	tetetettae	aaaaac	56
5555		5-555			uaaage	30
<210>	90					
<211>	54					
	DNA					
<213>	Artificial sequ	ence				
<220>						
	forward primer	PRM2857				
<400> ggggaca	90 wagt ttgtacaaaa	aagcaggctg	gtaaggteet	ctcggtcatc	ctgg	54
.01.5	0.1					
<210>	91					
SZIIS	22					

<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2858	
<400> ggggaco		55
<210>	92	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5126	
<400> ggggac	92 aagt ttgtacaaaa aagcaggctc aaatcatcct tccctttacc gattgc	56
<210>	93	
<211>	53	
<212>	DNA	, <u>.</u>
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM5127	
<400>	93 cact ttgtacaaga aagctgggtg gcggcggcgg cggcgcggcg	53
<210>	94	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3023	

<400> ggggac	94 caagt ttgtacaaaa aagcaggctt tetgtaacat eecagttaac gcaa	54
<210>	95	
<211>	53	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3024	
	95 cact ttgtacaaga aagctgggtt gcggcggatg tcggtggccg tgg	53
<210>	96	
<211>	53	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3025	
<400>	96 aagt ttgtacaaaa aagcaggeta tggtgecatg teaataagae atc	53
3333	and any any and any any and any any and any and any	33
<210>	97	
<211>	49	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	reverse primer PRM3026	
<400>	97 cact ttgtacaaga aagctgggtg gcgatgagat cttcctccg	49
<210>	98	
<211>	54	
<212>	DNA	

<213> Artificial sequence <220> <223> forward primer PRM3006 <400> ggggacaagt ttgtacaaaa aagcaggctg taagtatcga tgggaccatt tgcc 54 <210> 99 <211> 58 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2158 <400> 99 ggggaccact ttgtacaaga aagctgggtt ggtgggtttc tagttcttat gcttttgc 58 <210> 100 <211> 56 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM3778 <400> 100 ggggacaagt ttgtacaaaa aagcaggctg gatgtggttc accgcatttc atgggc 56 <210> 101 <211> 58 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2163 <400> 101

071-prom-prov.ST25.txt ggggaccact ttgtacaaga aagctgggta tttttgttgc agaaaatctt aactatca	58
<210> 102	
<211> 55	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM3061	
<400> 102 ggggacaagt ttgtacaaaa aagcaggete etgatggatg atgaateaet gateg	55
<210> 103	
<211> 62	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> reverse primer PRM3062	
<400> 103 ggggaccact ttgtacaaga aagctgggta ttgtgtaaat atttctattg tccagtaatc	60
ac	62
<210> 104	
<211> 55	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM3779	
<400> 104 ggggacaagt ttgtacaaaa aagcaggcta atgggcatga cgctatgttc gggtg	55
<210> 105	
<211> 58	
<212> DNA	

<213> Artificial sequence <220> <223> reverse primer PRM2166 <400> 105 58 <210> 106 <211> 55 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM4503 <400> 106 55 ggggacaagt ttgtacaaaa aagcaggctg acaaatgttt aatggactaa tgcgg <210> 107 <211> 57 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM4504 <400> 107 ggggaccact ttgtacaaga aagctgggtt gctgcaatat aatgttattg ctggtgg 57 <210> 108 <211> 56 DNA <212> Artificial sequence <213> <220> forward primer PRM2937 <223>

<400>

108

071-prom-prov.ST25.txt ggggacaagt ttgtacaaaa aagcaggctc cacgccaagt tgaagtctgg tttcag	56
<210> 109	
<211> 56	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> reverse primer PRM2938	
<400> 109	
ggggaccact ttgtacaaga aagetgggte geegetgett eettettega eggatt	56
<210> 110	
<211> 49	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM3270	
<400> 110 ggggacaagt ttgtacaaaa aagcaggctg ccctgatacg atgccgtgc	49
<210> 111	
<211> 57	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> reverse primer PRM2940	
<400> 111 ggggaccact ttgtacaaga aagctgggtg atcttctggg tctcttgtaa actcttc	57
<210> 112	
<211> 55	
<212> DNA	
<213> Artificial sequence	

		•		•		
<220>						
<223>	forward primer	PRM2939				
	112 agt ttgtacaaaa	aagcaggctc	gtagtggctg	gctgggcgac	gtggg	55
<210>	113					
<211>	57					
<212>	DNA					
<213>	Artificial sequ	ience				
<220>						
<223>	reverse primer	PRM2940				
<400> ggggaco	113 cact ttgtacaaga	aagctgggtg	atcttctggg	tctcttgtaa	actcttc	57
<210>	114					
<211>	57					
<212>	DNA					
<213>	Artificial sequ	uence				
<220>						
<223>	forward primer	PRM3031				
<400> ggggac	114 aagt ttgtacaaaa	aagcaggctt	cgttaagttt	gatgatttct	gatgacc	57
<210>	115					
<211>	54					
<212>	DNA					
<213>	Artificial seq	uence				
				•		
<220>						
<223>	reverse primer	PRM3032				
<400> ggggad	115 cact ttgtacaaga	aagctgggtg	g atggcagagt	: taattagcaa	a acgc	54

Page 81

```
<210> 116
<211> 53
<212> DNA
<213> Artificial sequence
<220>
<223> forward primer PRM3051
<400> 116
ggggaccact ttgtacaaga aagctgggtg ccgccgctcg ctcgcttcgt tcg
                                                                     53
<210> 117
<211> 50
<212> DNA
<213> Artificial sequence
<220>
<223> reverse primer PRM3052
<400> 117
ggggacaagt ttgtacaaaa aagcaggctc taagggcagc agccattggg
                                                                     50
<210> 118
<211> 58
<212> DNA
<213> Artificial sequence
<220>
<223> forward primer PRM3592
ggggacaagt ttgtacaaaa aagcaggctc gtgttcatgt tcgcatttag gattggac
                                                                     58
<210> 119
<211> 60
<212> DNA
<213> Artificial sequence
```

<220>		
<223>	reverse primer PRM3049	
<400> ggggaco	119 cact ttgtacaaga aagetgggtg geggeggegg eggeggegge ggetgggtet	60
<210>	120	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5131	
<400> ggggac	120 aagt ttgtacaaaa aagcaggctc agatgccaca gtatggtgta ccacc	55
<210>	121	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2195	
<400> ggggac	121 cact ttgtacaaga aagctgggtc ggcttagaga ggggaggaag cgaa	54
<210>	122	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3782	
<400> gggga	122 caagt ttgtacaaaa aagcaggctt tgcagttgtg accaagtaag ctgagc	56
<210>	123	

Page 83

<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2197	
<400> ggggac	123 cact ttgtacaaga aagctgggtt ggtgtgagtg tttgagtttg gagtgagc	58
<210>	124	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2840	
<400> ggggac	124 aagt ttgtacaaaa aagcaggctc agtggcatta caattatgaa aagg	54
<210>	125	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2841	
<400> ggggac	125 cact ttgtacaaga aagctgggtt ttaatttgta gcctctgtcc tact	54
<210>	126	
<211>	52	
<212>	AND	
<213>	Artificial sequence	

<220>

	Samuel and Private Pri	
<223>	forward primer PRM3037	
<400> ggggaca	126 . agt ttgtacaaaa aagcaggott aaactttoog accgttggac gt	52
<210>	127 ·	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3038	
<400>	127	55
ggggac	cact ttgtacaaga aagctgggtc ggcggacggc aaactaccac cgcaa	
<210>	128	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5133	
<400>	128	54
ggggad	aagt ttgtacaaaa aagcaggctg gagacaaacc gaggaatagt tggc	24
<210>	129	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3040	
<400>	129	55
gggga	ccact ttgtacaaga aagctgggtt tccttgctga taaatcttgc taagc	33
<210>	130	
-211 \	56	

Page 85

<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5166	
	130 aagt ttgtacaaaa aagcaggete agtagtatge tattaegeae gggage	56
ggggaca	adge eegeacadaa aageaggeee ageageaege caccacgeae gggage	50
<210>	131	
<211>	46	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3065	
<400>	131 cact ttgtacaaga aagctgggtg gtcggcgtca cagccc	46
393340	0000 0030000030 0030033003 30033000 003000	
<210>	132	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3011	
<400>	132 aagt ttgtacaaaa aagcaggcta gtggaaagca agaaataaaa cagc	54
5555		
<210>	133	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3012	

<400> 133 ggggaccact ttgtacaaga aagctgggta tgggaagtaa catacatgaa agcag	55
<210> 134	
<211> 55	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM5167	
<400> 134 ggggacaagt ttgtacaaaa aagcaggctg gcaaagtaca gtggttgtcg atgag	55
<210> 135	
<211> 55	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> reverse primer PRM5168	
<400> 135 ggggaccact ttgtacaaga aagctgggta gctggagcct ggagggtgga gaggg	55
<210> 136	
<211> 53	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM3770	
<400> 136 ggggacaagt ttgtacaaaa aagcaggctc gtcctccttt tgtaacggct cgc	53
ggggacaagt ttgtacaaaa aagcaggeec geeceeeee egeacoggee og	
<210> 137	
<211> 54	
<212> DNA	

<213> Artificial sequence <220> <223> reverse primer PRM3771 <400> 137 ggggaccact ttgtacaaga aagctgggtt gtcgcctctc ctctgcaatg cgtg 54 <210> 138 <211> 56 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM3772 ggggacaagt ttgtacaaaa aagcaggctc atgcggctaa tgtagatgct cactgc 56 <210> 139 <211> 52 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM3773 <400> 139 ggggaccact ttgtacaaga aagctgggtg gctgaatcct gcgagaaggg cg 52 <210> 140 <211> 53 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM3774 <400> 140

071-prom-prov.ST25.txt ggggacaagt ttgtacaaaa aagcaggctt agtaccattc ttccctcgtg agc	53
<210> 141 _:	
<211> 54	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> reverse primer PRM3775	
<400> 141 ggggaccact ttgtacaaga aagctgggtg atctctccct ctccctctcc ctgg	54
<210> 142	
<211> 53	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> forward primer PRM3776	
<400> 142 ggggacaagt ttgtacaaaa aagcaggctg tttggttggt gaccgcaatt tgc	53
<210> 143	
<211> 52	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> reverse primer PRM3777	
<400> 143 ggggaccact ttgtacaaga aagctgggtt ggagcggaag ggggggggga gc	52
<210> 144	
<211> 54	
<212> DNA	
<213> Artificial sequence	

<220>		
<223>	forward primer PRM5169	
<400> ggggaca	144 agt ttgtacaaaa aagcaggctg cttcctcgca gttggagtga tgtc	54
<210>	145	
<211>	53	
<212>	AND	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM5170	
<400> ggggaco	145 cact ttgtacaaga aagctgggtc aaacgacggg gagaaaccgg cgg	53
<210>	146	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5135	
<400> ggggac	146 aagt ttgtacaaaa aagcaggctc agacacctag aatatagaca ttccc	55
<210>	147	
<211>	52	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM5136	
<400> ggggad	147 ccact ttgtacaaga aagctgggtc gcccgcagct cgcccccgtc cg	52

<210>	148	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM4585	
<400> ggggaca	148 aagt ttgtacaaaa aagcaggctt ctggttgcat cagcttgggt ttctgg	56
<210>	149	
<211>	59	
<212>	AND	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM4586	
<400> ggggad	149 cact ttgtacaaga aagctgggtt gctatcttct agatggatcc tcaagcctg	59
<210>	150	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5071	
<400> gggga	150 caagt ttgtacaaaa aagcaggcta atctgatttt gggggcctgt ctgtc	55
<210>	151	
<211>	49	
<212>	DNA	
2212s	Artificial companse	

<220>		
<223>	reverse primer PRM5072	
<400> ggggace	151 cact ttgtacaaga aagctgggtg cagagtggag gegggeggg	49
<210>	152	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5075	
<400> ggggac	152 aagt ttgtacaaaa aagcaggctg gggagttagg aaccttgaca tacaacc	57
<210>	153	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM5076	
<400> ggggac	153 cact ttgtacaaga aagctgggtg agagaagctc aagacacgca ggataagc	58
<210>	154	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5753	
<400> gggga	154 ccact ttgtacaaga aagctgggtg gttgtctgca actggagcag caac	54
-210-	155	

<211>	60	
<212>	DNA .	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM5754	
<400> ggggaca	155 aagt ttgtacaaaa aagcaggctg atataaatca cactttaggt actatgagtg	60
<210>	156	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>	•	
<223>	forward primer PRM6153	
<400> aaatcg	156 Jacgo tactcaagtg gtgggaggo	29
<210>	157	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM6154	
<400>	157 atcac aagegeaget aateaetage	30
<210>	158	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	

<220>

<223>	forward primer	PRM5175				
<400> ggggaca	158 aagt ttgtacaaaa	aagcaggctt	gcacaatgtt	actgcaaatg	gtcg	54
<210>	159					
<211>	58					
<212>	DNA					
<213>	Artificial sequ	ience				
<220>						
<223>	reverse primer	PRM5176				
<400> ggggac	159 cact ttgtacaaga	aagctgggtg	caaaaattaa	tctagacagg	ttgattgg	58
<210>	160					
<211>	57					
<212>	DNA					
<213>	Artificial sequ	ience				
<220>					•	
<223>	forward primer	PRM5717				
<400> ggggac	160 aagt ttgtacaaaa	aagcaggctc	cttgtagcgt	taatcagtag	tgcttgc	57
<210>	161					
<211>	59					
<212>	DNA					
<213>	Artificial sequ	neuce				
<220>						
<223>	reverse primer	PRM5718				
<400> ggggac	161 cact ttgtacaaga	aagctgggtt	gtcgccggtg	tacgtagcct	cgttgttcg	59
<210>	162					

<212>	DNA	
<213>	Artificial sequence	
	•	
<220>		
<223>	forward primer PRM6231	
<400> ggggac		55
<210>	163	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>	•	
<223>	reverse primer PRM6232	
<400>	163 cact ttgtacaaga aagctgggtg cgaggatggc tactagcttg ctgtcc	56
3335		
<210>	164	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	-	
<400> ggggac	164 aagt ttgtacaaaa aagcaggcta tgccatcgag tggtgtgccg atac	54
<210>	165	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	reverse primer PRM2421	

Page 95

<400> ggggaco	165 act ttgtacaaga aagctgggtg gtgaggtgcc ggggaagcga cgttg	55
<210>	166	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3017	
<400> ggggac	166 aagt ttgtacaaaa aagcaggctc agtgatcgct gcactggata attataat	58
<210>	167	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3018	
<400> ggggad	167 cact ttgtacaaga aagctgggtt tgctgattct acaatactag tgttaaac	58
<210>	168	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3019	
<400> gggga	168 caagt ttgtacaaaa aagcaggcta attaatgaat gcgagagaga ctatgtcg	58
<210>	169	
<211>	58	
<212>	ANG	

<213> Artificial sequence

<220> <223> reverse primer PRM3020 <400> 169 ggggaccact ttgtacaaga aagctgggtg gctttttgtt tgcagaaaat ctttagtc 58 <210> 170 <211> 55 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM3780 <400> 170 ggggacaagt ttgtacaaaa aagcaggctt cgacgctact caagtggtgg gaggc 55 <210> 171 <211> 55 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM3781 <400> 171 ggggaccact ttgtacaaga aagctgggtg atcacaagcg cagctaatca ctagc 55 <210> 172 <211> 54 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM2844 <400> 172

Page 97

	071-prom-prov.ST25.txt	E 1
ggggaca	aagt ttgtacaaaa aagcaggett ttggcgeggg gcagaagagt ggac	54
<210>	173	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2845	
<400> ggggac	173 cact ttgtacaaga aagctgggtc ggcaatgtga tgcaatgcaa	57
<210>	174	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2848	
<400> ggggac	174 eaagt ttgtacaaaa aagcaggett gacaaaataa tactetatee atee	54
<210>	175	
<211>	52	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2849	
<400> gggga	175 ccact ttgtacaaga aagctgggtc gccgccgcgc tagggttttg cg	52
<210>	176	
<211>	56	
<212>	DNA .	
<213>	Artificial sequence	

<220>		
<223>	forward primer PRM3029	
<400> ggggaca	176 agt ttgtacaaaa aagcaggctg tttttctatg aaccggtcat taaacc	56
<210>	177	
<211>	59	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3030	
<400> ggggac	177 cact ttgtacaaga aagctgggtt tttgtaggat tctactacta tgcttcaac	59
<210>	178	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2766	
<400> ggggad	178 caagt ttgtacaaaa aagcaggctg tatcacgagg gaatatcctg gaggg	55
<210>	179	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2767	
<400> gggga	179 ccact ttgtacaaga aagetgggte ttettettet tgggagggeg aagg	54

<210>	180	
<211>	51	
<212>	AND	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3021	
<400> ggggaca	180 aagt ttgtacaaaa aagcaggctt cagtgcaaac caaatccttg c	51
<210>	181	
<211>	52	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3022	
<400> ggggace	181 cact ttgtacaaga aagctgggtt gctgcgggac actagatctt tc	52
<210>	182	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3512	
<400> ggggac	182 aagt ttgtacaaaa aagcaggctt gaagcaactc gcagatgctc tctcc	55
<210>	183	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	

<220>	s ·	
<223>	reverse primer PRM3066	
<400> ggggaco	183 . cact ttgtacaaga aagctgggtg gtcgaagatt taattatcta agtgagtg	58
<210>	184	
<211>	54	
<212>	DNA	
<213> ,	Artificial sequence	
<220>		
<223>	forward primer PRM3027	
<400> ggggac	.184 aagt ttgtacaaaa aagcaggctc cttctacatc ggcttaggtg tagc	54
<210>	185	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3028	
<400> ggggac	185 cact ttgtacaaga aagctgggtt gttgttggat tctactacta tgcttc	56
<210>	186	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3007	
<400> ggggad	186 caagt ttgtacaaaa aagcaggctc ttgttgttga tctgtgcccc caagaag	57
<210>	187	

Page 101

<pre><212> DNA <213> Artificial sequence <220> <223> reverse primer PRM3008 <400> 187 ggggaccact ttgtacaaga aagctgggtg gtgatgatga tgagagcttc ttcttc. <210> 188 <211> 52 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM2200 <400> 188 ggggaccaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <221> forward primer PRM2200 <400> 189 gggaccact ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <211> 49 <211> DNA</pre>	
<pre><220> <223> reverse primer PRM3008 <400> 187 ggggaccact ttgtacaaga aagctgggtg gtgatgatga tgagagcttc ttcttc <210> 188 <211> 52 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence </pre> <pre><220> <223 forward primer PRM2200 <400> 189 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c </pre> <pre><210> 190 <211> 49 </pre> <211> 49	
<pre><223> reverse primer PRM3008 <400> 187 ggggaccact ttgtacaaga aagctgggtg gtgatgatga tgagagcttc ttcttc. <210> 188 <211> 52 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> forward primer PRM2200 <400> 188 gggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence </pre> <pre><220> <221> tgagagacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt </pre> <pre><210> 189 <211> 51 <212> DNA </pre> <pre><213> Artificial sequence </pre> <pre><220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c </pre> <pre><210> 190 <211> 49 </pre> <211> 49	
<pre><400> 187 ggggaccact ttgtacaaga aagctgggtg gtgatgatga tgagagcttc ttctcc <210> 188 <211> 52 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag ttctgcacc gt </pre> <pre><210> 189 <211> 51 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c </pre> <pre><220> <221> 189 <400> 189 <211> 51 <212> DNA <213> Artificial sequence </pre>	
ggggaccact ttgtacaaga aagctgggtg gtgatgatga tgagagette ttettee <210> 188 <211> 52 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM2200 <400> 188 ggggaccact ttgtacaaaa aagcaggeta atccgaaaag tttetgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <221> tgaaaget ttgtacaaaa aagcaggeta atccgaaaag tttetgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <211> 49 <212> DNA	
<pre><211> 52 <212> DNA <213> Artificial sequence <220> <223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggacact ttgtacaaga aagctggtg aactttgctg gtgaaagtgg c <210> 189 <211> Artificial sequence</pre>	cc 57
<pre><212> DNA <213> Artificial sequence <220> <223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 189 <211</pre>	
<pre><213> Artificial sequence <220> <223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA</pre>	
<pre><220> <223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA</pre>	
<pre><223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggacact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA</pre>	
<pre><223> forward primer PRM2200 <400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggacact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA</pre>	
<pre><400> 188 ggggacaagt ttgtacaaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA</pre>	
ggggacagt ttgtacaaa aagcaggcta atccgaaaag tttctgcacc gt <210> 189 <211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggacact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<pre><211> 51 <212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA</pre>	52
<212> DNA <213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<213> Artificial sequence <220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<220> <223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<223> reverse primer PRM2419 <400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<400> 189 ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
ggggaccact ttgtacaaga aagctgggtg aactttgctg gtgaaagtgg c <210> 190 <211> 49 <212> DNA	
<211> 49 <212> DNA	51
<212> DNA	
<213> Artificial sequence	

<220>

<223>	forward primer PRM3033	
<400> ggggaca	190 agt ttgtacaaaa aagcaggctg ccccccgccg gacctcccg	49
<210>	191	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3034	
<400> ggggac	191 cact ttgtacaaga aagctgggtt gatgatcaat cagacaatca ctagaag	57
<210>	192	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2846	
<400> ggggad	192 aagt ttgtacaaaa aagcaggctg caaaatgtat gcgttaaacc gacctc	56
<210>	193	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2847	
<400> gggga	193 ccact ttgtacaaga aagctgggtg gcggcggaag caccaagaac agagag	56
<210>	194	
<211>	55	

Page 103

<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2962	
<400> ggggaca	194 aagt ttgtacaaaa aagcaggctg gttatettgg etgttttate atetg	55
<210>	195	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2963	
<400>	195 cact ttgtacaaga aagctgggtg ctcaggacac aaaactgcag agcaagg	57
999940	ouce regulating augmenting relating additional and agreeding and agreeding a	<i>J</i> ,
<210>	196	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
	-	
<220>		
<223>	forward primer PRM3075	
<400>	196 aagt ttgtacaaaa aagcaggotg atgaaccagg gatgtagogt agtatg	56
3333		
<210>	197	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2966	

<400> ggggac	197 Cact ttgtacaaga aagctgggtt gttatcaaat tgaagggatg ttgttgg	57
<210>	198	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2969	
<400> ggggac	198 aagt ttgtacaaaa aagcaggctc tagtactgtt tgttcattgg tcttatcc	58
<210>	199	
<211>	58	
<212>	AND	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2970	
<400> ggggac	199 cact ttgtacaaga aagctgggtc tgcaagaaat aatcaccaaa cagatagg	58
<210>	200	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM2973	
<400> ggggaca	name blade	57
<210>	201	
<211>	55	
<212>	DNA	

<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM2974	
<400> ggggaco	201 cact ttgtacaaga aagctgggtc gcaaacttgg ctggaatcac tcacc	55
<210>	202	
<211>	55	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM3800	
<400> ggggac	202 aagt ttgtacaaaa aagcaggctg tcaccaccgt catgtacgag gctgc	55
<210>	203	
<211>	57	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	reverse primer PRM3801	
<400> ggggad	203 ccact ttgtacaaga aagctgggtc actctcagag atcgaggtgt tcttctg	57
<210>	204	
<211>	56	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	forward primer PRM5755	
<400>	204	

Page 106

		071-prom-prov.ST25.txt	
	gggga	caagt ttgtacaaaa aagcaggctg gtcagccaat acattgatcc gttgcc	56
	<210>	205	
	<211>	56	
١	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	reverse primer PRM5756	
	<400>	205	
	ggggac	cact ttgtacaaga aagctgggtg ctagcaagat gaatgcaacg aagaag	56
	<210>	206	
	<211>	57	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	forward primer PRM6041	
	<400>	206	
	555540	aagt ttgtacaaaa aagcaggctc ttagccactg caacaagttc ttgaacc	57
	<210>	207	
	<211>	55	
!	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	reverse primer PRM6042	
	<400> ggggac	207 cact ttgtacaaga aagctgggtt tgaggacgcg agaggattcg attcg	55
	<210>	208	
	<211>	704	
	<212>	DNA	
	<213>	Oryza sativa	

<220>	
<221> misc_feature	
<223> TC clone TC90358	
<220>	
<221> misc_feature	
<222> (23)(23)	
<223> unknown nucleotide	
<400> 208 ccccctcaag ttcgacccca ggngtcccgc aagaagcaat tcttgagctc aatcagcaac	60
aacatctatc tccttcttgc ttagttaagt ccttcgccct cccaagaaga agaagatgtc	120
ttgctgcggc ggcaactgcg gctgcggcag cggctgccag tgcggcggcg gctgcggcgg	180
atgcaagatg ttccctgatg tggaggccac agccaccacc aagaccttcg tcctcgctgc	240
tccatccaac aaggcgagct ctggaggaat ggagatggcg gtggagagcg gcgagaacgg	300
eggetgegge tgeaacaeet geaagtgtgg caceagetge ageggetget eetgetgete	360
ctgcaactga atctatcgtc gtcgtcgccc ggctgcatga ggatttatcg tatggatgct	420
gctactgtcg atcagagctt tgatcgaggc cttaatttgc ttgcattagt acccagctta	480
tatgtaggca ggccttgcct tttgctctga cgcctaaata aaaccgtcgt cgtcgttgtc	540
agtgtgtgcg tgtgtcgatc aatgttggat ggatccctag ctagcttgga tggatcatct	600
atcatcatgg tgatctcatc atgtactcct gctccatctc ctcatgcgtg ccaggcttct	660
taatataatc tacctctgct ttcatcccaa aaaaaaaaaa	704
222	
<210> 209	
<211> 2425	
<212> DNA <213> Oryza sativa	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<223> TC clone TC983463	

<220>

<221> misc_feature

<222> (1558)..(1558)

<223> unknown nucleotide

						<400> 209
att 60	tagatatatt	tttttggctt	aagtttttt	taaataattt	ataattattt	cccacattga
gtg 120	caaggctgtg	ctgttcggat	tctcccagtt	taatccgatc	aacctcccaa	cccaatcccc
cac 180	tgttgatcac	gtggttcatc	tccttttggg	aaaaacaatt	aaaagaaaaa	tcgatcgcaa
gat 240	tctacacgat	gttaagattt	cgattttcgg	gttggggatt	cccgcgtttt	ttctttgttt
tgc 300	ccggtgatgc	ttcgcgaccg	ggcagcgtgc	gcgccgcggc	ttggctcaga	ggccttgaac
cct 360	cgacgagcct	tcgtcggcca	gtcgtcgtcg	tcgccatgcc	gcttcggtgg	gcggcgagct
cgt 420	ccaggcacgt	cgggcggtgg	ggtggcgtgc	cgtgcgagcc	aggcaggcgg	gaggatgaag
gct 480	tgatgccgct	gtgttcgtga	cggcgtgccg	gcaggaggaa	gcggcgagca	ggcggcggcg
cct 540	cggcgagcct	aaggcggtgg	gaaccggagg	ggagcgcgct	agcaagtgcg	ggacacggtg
cgt 600	ggggcatcgt	gacgtgtggt	gatcatggtg	gcgtggaggg	aagagcgccg	ggcggcgctg
ggc 660	tggagatggc	gtggagctca	cgacggctac	ggtacaactt	ggccccggcc	ggagagcgag
cgt 720	gcggcaacgt	caccagtgcg	catgtccttc	tccaggccgt	ggcctcaagg	ccgcaagacc
caa 780	agaaggacaa	gaggagatgg	gtgggtggtg	cgctcccgag	gtcaacatcc	cggcgactcc
ctg 840	ccctcggctg	gagtacatct	ccgcaacttc	aatggggacg	tacaccgacc	cgacctcgcc
gcg 900	acttcatgcg	tgctacaccg	gcccgtcgag	agggccgcac	cccgtcttca	cgacgccatg
cgg 960	tccaagtcgg	atcgtcgaaa	cggcgacacc	cctccttcct	gaccacttcg	cgccttccgc
gag 1020	gcacctggag	gagagcaacg	gtcctacccg	ttcggtaccc	gccggcgagc	catgggcccc
ggc 1080	gcctgaaggc	atgcgtagca	cgacaggtac	tccaatgcaa	atcggcgcct	gttccccggc
gcg 1140	gacgccggcg	cgggccgacg	ggggccacgg	agccggtagt	gcgaggggca	ggcggcggag
gca 1200	gggtggagca	cgactgcggc	tcttccgcgg	gacacggtgt	ctggccggaa	gctacaacaa
agc 1260	cacggcgagc	gctgctggag	attcgcagat	ctgtcgtggt	cgagttcttc	ccgagtacgg
tca 1320	atctcggtca	cggcgccaag	gcgacggcgc	tccgtgttcg	gggcgcgacg	gcgtgctgtc
cgg 1380	ctcacggcgg	cgcgccggag	cgcggtcgca	cactacggca	catccactgg	aggtggccgg
cgc 1440	gctggcgcgc	tcgcgcgcat	tacctcccga	cgcgagcggc	cacgcggcac	ggtactacaa
gag 1500	gccgcaggag	accacgagca	gagatgcgcg	cacctgcgtg	tgctcaactt	cacggcgccg
nga 1560	cgcggcgnga	ccgcggcgcg	caggtggccg	gctcgtcagg	tgcccgaggc	gcgcagtgca

071-prom-prov.ST25.txt cgtcgggctc gccggggaga acgcgctgcc gcggtacgac ggcacggcgc acgaccaggt 1620 ggtcgccgcc gccgccgacc gcgcggcgaa ggaccggatg gtcgccttca cctacctccg 1680 gatggggccc gacctettec acceggacaa etggegeegg ttegtegeet tegteegeeg 1740 1800 catgtccgag tccggctcgc cgcgggaggc cgccgagagc gccgcgcacg gcgtcgcgca ggccaccggc tcgctcgtgc acgaggccgc ggtcgcgctc cggagctagc accggtcaga 1860 cgctcatata caccgtcgcc tcgaggtcgg attccgatgt gggatcattc gatctccctt 1920 tttttttttt tctttttgcc attttgtaca gccttttggg gagctttgga tttgtgcttt 1980 ttgtctcggg aggaaaaccg ctctggaggt cgaagagagc gtcattttcc tcccgttgaa 2040 2100 acacactggc actcaaaagt tgttgtcacg cttggggaat atatccattt ccagccaaaa 2160 aaaaaacgca gaaatgcgtt gtgttcttgc gctctggttc gttgctgctg tgggtcagat 2220 tcagctggtg aaaaaactac agtactactg aaactgaaac tactagagcc tagagggaga 2280 ttaagctaag ttaattgcac gagtaattac tccacggttg tgtttagggt ctacgtcggc 2340 agattttgct ttctggtaga tccctaacct tatgtttgtt gggaatttta taaaggagct 2400 2425 aagtttgcct attgatttgc aatct <210> 210 3410 <211> <212> DNA <213> Oryza sativa <220> misc_feature <221> TC clone TC84853 + TC90672 <223> <400> 210 60 ccatggacac cgcctccgtc accggtggcg agcacaaggg gaaggagaag acgtgccggg tgtgcggcga ggaggtggcg gcgagggagg acgggaagcc gttcgtggcg tgcgccgagt 120 gcggcttccc ggtgtgcaag ccctgctacg agtacgagcg cagcgagggc acccagtgct 180 gcccccagtg caacacccgc tacaagcgcc acaaagggtg cccacgggtg gaaggcgacg 240

300

360

420

aggacgacgg cggcgacatg gacgacttcg aggaggagtt ccagatcaag agccccacca

agcagaaacc cccccacgag cccgtcaact tcgacgtcta ctcggagaac ggcgagcagc

cggcacagaa gtggcgccct ggaggcccgg cgctctcttc cttcaccgga agcgtggctg

•			-prom-prov.		,	
ggaaggatct	ggagcaggag	agggagatgg	agggtggcat	ggagtggaag	gacaggatcg	. 480
acaagtggaa	gacgaagcag	gagaagcggg	gcaagctcaa	ccgcgacgac	agcgacgacg	540
acgacgacaa	gaacgacgac	gagtacatgc	tgctcgcgga	ggcgaggcag	ccgctgtgga	600
ggaaggtgcc	gatcccgtcg	agcaagatca	acccgtaccg	gatcgtgatc	gtgctccggc	660
tggtggtgct	ctgcttcttc	ctcaagttcc	ggatcacgac	gccggcgatg	gacgcggtgc	720
cgctgtggct	ggcctcggtg	atctgcgagc	tgtggttcgc	gctgtcgtgg	atcctcgacc	780
agctgcccaa	gtggtcgccg	gtgacgaggg	agacgtacct	ggaccggctg	gccctccggt	840
acgagcgcga	cggcgagccg	tgccgcctgg	ccccgatcga	tttcttcgtc	agcacggtgg	900
acccgctcaa	ggagccgccc	atcatcaccg	ccaacaccgt	gctgtccatc	ctcgccgtcg	960
actaccccgt	cgaccgcgtc	tcctgctacg	tctccgacga	cggcgcgtcc	atgctgctct	1020
tcgacacgct	ctccgagacc	gccgagttcg	cccgccggtg	ggtccccttc	tgcaagaagt	1080
tcaccatcga	gccccgcgcc	cccgagttct	acttctccca	gaagatcgac	tacctcaagg	1140
acaaggtcca	gcccaccttc	gtcaaagaac	gccgcgccat	gaagagagag	tatgaggagt	1200
tcaaggtgag	gataaacgcg	ctggtggcga	aggcgcagaa	gaagccggag	gaagggtggg	1260
tgatgcagga	cgggacgcca	tggccgggga	acaacacgag	ggaccacccg	gggatgatcc	1320
aggtgtacct	gggcagccag	ggcgcgctcg	acgtcgaggg	cagcgagctg	ccgcggctgg	1380
tgtacgtgtc	ccgcgagaag	cggcccggct	acaaccacca	caagaaggcc	ggcgccatga	1440
actccctcgt	tegegtetee	gccgtgctta	ccaacgcccc	cttcatcctc	aacctcgact	1500
gcgaccacta	cgtcaacaac	agcaaggccg	tccgcgaggc	catgtgcttc	ctcatggaca	1560
agcagctcgg	caagaagctg	tgctacgtcc	agttccccca	gcgcttcgac	ggcatcgacc	1620
gccacgatcg	ctacgccaac	cgcaacaccg	tcttcttcga	catcaacatg	aaggggctgg	1680
acgggataca	ggggccggtg	tacgtgggga	cggggacggt	gttcaacagg	caggcgctgt	1740
acggatacga	cccgccgcgg	ccggagaaga	ggccgaagat	gacgtgcgac	tgctggccgt	1800
cgtggtgctg	ctgctgctgc	tgcttcggcg	ggggaagcg	cggcaagtcg	cacaagaaca	1860
agaagggcgg	cggcggcggc	gagggcggcg	gcctcgacga	gccgcgccgc	gggctgctcg	1920
ggttctacaa	gaagaggagc	aagaaggaca	agctcggcgg	cggcgcggcg	tegetegeeg	1980
gagggaagaa	agggtaccgg	aagcaccagc	gcgggttcga	gctggaggag	atcgaggagg	2040
gcctcgaggg	gtacgacgag	ctggagcgct	cgtcgctcat	gtcgcagaag	agcttcgaga	2100
agcggttcgg	ccagtcgccg	gtgttcatcg	cctccaccct	cgtcgaggac	ggcggcctcc	2160
cccagggcgc	cgccgccgac	cccgccgccc	tcatcaagga	ggccatccac	gtcatcagct	2220
gcggctacga	ggagaagacc	gagtggggca	aggagattgg	gtggatctac	gggtcggtga	2280
cggaggacat	cttaacgggg	ttcaagatgc	attgccgtgg	gtggaagtcg	gtgtactgca	2340

071-prom-prov.ST25.txt cgccggcgag ggcggcattc aaggggtcgg cgcccatcaa cctgtcggat cgtctgcacc 2400 2460 aggtgeteeg gtgggegete ggeteegteg agatetteat gageegeeat tgeeegetet 2520 ggtaccetat ggcggccgcc tcaagtggct cgagcgcttc gcctacacca acaccategt ctacccttc acctccattc ccctcctcgc ctactgcacc atccccgccg tctgcctcct 2580 2640 caccggcaag ttcatcatcc ccacgcttaa caatttggcg agcatatggt tcatagcgct tttcctgtcg atcatcgcga cgggggtgct ggagctgcgg tggagcgggg tgagcatcga 2700 ggactggtgg aggaacgagc agttctgggt gatcggcggc gtgtcggcgc acctgttcgc 2760 cgtgttccaa ggcctcctca aggtgctcgg cggcgtggac accaacttca cggtgacgtc 2820 caaagccgcc gccgacgaag accgacgcgt tcggcgagct ctaactgttc aagtggacga 2880 cgctgctggt gccgccgacg acgctgatca tcatcaacat ggtggggatc gtcgccggcg 2940 3000 tgtcggacgc cgtgaacaac gggtacgggt cgtggggccc gctgttcggg aagctcttct 3060 teteettetg ggteateete cacetetace cetteeteaa ggggeteatg gggaggeaga accggacgcc cacaattgtc gtgctctggt ccaacctcct cgcctccatc ttctccctcg 3120 3180 tctgggtcag gatcgacccc ttcatcccca agcccaaggg ccccgtcctc aagccatgcg gggtetegtg etgagetget getgetaett etetgtgtet etgeattttg caagagggat 3240 gaccggatgg atgattcttg ttgtatggag tattttgact tgttcatgta caagtttttg 3300 3360 tgagtgggat aaaagtgttt tgggggtaaa atttgtaaga actgaggtgg agattatact

cqaatttaag aacaattgtt tttgaatttt cttttaagat ttttgggagt

- <210> 211
- <211> 1569
- <212> DNA
- <213> Oryza sativa
- <220>
- <221> misc_feature
- <223> TC clone TC52979
- <220>
- <221> misc_feature
- <222> (1005)..(1005)
- <223> unknown nucleotide

3410

	<400> 211 aattcctgaa	gtcctaagct	atagctagca	ctagcagcta	gttgctccaa	agcccaaacc	60
	atgcagcact	caccttcaaa	cgaaatgacc	ctccttctcc	ttctcttcct	ccttggatgc	120
	acacactacg	gtcacgccgg	ctcagaccgt	cccaagatcg	actccatctt	cagcttcggc	180
	aactcgtacg	ccgacaccgg	caacttcgtc	aagctggcgg	cgccggtgtt	ccccggcatc	240
	cctttcaaca	acctccccta	cggcgagacc	ttcttcggcc	accccaccgg	ccgcgcctcc	300
	aatggccgcc	tcaacgtcga	cttcatcgct	gagggccttg	gagtcccctt	gatagaaaag	360
	taccatggcg	agtcgcagga	cttcagccat	ggcgccaact	tcgccgtcgt	cggcgccacg	420
	gcgctcgatc	tcgccttctt	ccagaagaac	aacatcacca	gcgtgccccc	gttcaacaac	480
	tcactgagcg	tgcaggtcga	gtggttccaa	aagctcaagc	ctaccttgtg	ctcgacaacc	540
	caagggtgca	aagactactt	cgagagatcg	ctcttcttca	tgggcgagat	aggcggtaac	600
	gactacgtct	tcctctatgc	cgccggcaag	accgtcgacg	aggccatgtc	atacgtgcca	660
	aaggtcgtcc	aagccatctc	tgccggcgtc	gaggcggtga	tcaaggaggg	agccaggtac	720
	gtggtggtgc	cgggccagct	gccgacgggc	tgcctcccga	tcatcctcac	gctgtacgcg	780
	agcccggccg	cggcggacta	cgacgccggc	accggctgcc	tgtggcggtt	caacgcgctc	840
	gcacgctacc	acaacgcggt	gctgttcgcg	gcggtgtcgc	tgctccgggc	caagcacccg	900
	teggtegeea	tcgtcttcgc	ggactactac	cgcccggtga	tcaagttcgt	gcaaaaccca	960
	gacgaattcg	ggttcagcga	gtcgtcgaag	ctccgggcgt	gctgncggcg	gcggcggcgg	1020
	ggcgtacaac	tacgacgtgg	cggcggcgtg	cggcttcccc	ggcgcggcgg	cgtgcccgga	1080
	ccccgacgcg	gcgatcaact	gggacggcat	ccacctcacg	gaggcggcct	acggccaggt	1140
	cgccgccggc	tggctccgcg	gcccgtacgc	gcatccgccc	atcctcgcgg	ccgtgcaacg	1200
	atctgacgaa	ggaaacccca	tccaaatggc	tacgtcgatg	cctgcctctt	tctgatacgc	1260
	tctccttttg	agtcactttg	tctctgttat	tcttaatcca	agagtacccc	agctgttaat	1320
	tgtatatgct	cctttaaaaa	ggagtccata	agtgacagtt	actggaagtc	ggagctgctt	1380
	catcgattgc	gatgagtttg	gcagcgatat	ataaccggtg	acgagtctga	gtagttgcgt	1440
ĺ	tgttctgggg	ttttgcttat	gctttctgtg	tggtttttgc	tggtttttca	taaatgaacc	1500
	gtgtggttgt	atggttctgt	gcatgaatgg	ttgtagtacc	ttttaaaaac	tgatcatgta	1560
	gaatatctt						1569

<210> 212

<211> 410

<212> DNA

<213> Oryza sativa

<220>	
<221> misc_feature	
<223> TC clone TC53511	
<400> 212	60
ggccgcagcg gcggacgagg gcgagctgaa ggagacgttc gcggtgttcg acgccgacgg	60
ggacgggagg atctccgccg aggagctccg cgccgtgctc gcctcgctcg gcgacgagct	120
ctgctccgtc gacgactgcc gccgcatgat cggcggcgtg gacaccgacg gcgacgggtt	180
cgtctgcttc gacgagttcg cccgcatgat gatgtgtggc cgcgcgtgat tatatatagg	240
ttattaggtt ttgatcgatg tacgtgatgc atgttaatcg atcgtctcct gtatctacgt	300
gtegttegtt tgetgtteat egteteeact gatttetttt gttetetttg taegtagtae	360
gagtttcaca gaagaaatga acagaacggt cagtttagat cggtaacgtt	410
<210> 213	
<211> 799	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<223> TC clone TC45098	
<400> 213 aagactcgag acttctctac gcttctcctc gccgccgaaa cgaagcaacc cgtcgcctcg	60
ccgccgccgc catgtcggtg acgctgcaca cgaatctcgg ggacatcaag tgcgaggtgt	120
totgogacca ggcgccgcgg acggcggaga acttcctggc gctgtgcgcg agcggctact	180
acgacggcac catcttccac cgcaacatca aggggttcat gatccagggc ggcgacccga	240
cgggcacggg gaagggggc acctcgatct gggggaagaa gttcgccgac gagttcaggg	300
	360
agtogotoaa goacaacgoo cgcggggtga tgtcgatggo gaacagcggg cccaacacca	
acgggageca gttetteate acetaegeca ageageetea ceteaacgge cactaeaceg	420

480 540

tgttcgccaa ggtcatccat ggattcgagg tgctcgacct catggagaag gcgcagacgg

ggcccggcga ccgcccctc gccgagatca ggctcaaccg cgtcaccatc cacgccaacc

		071-	-prom-prov.	ST25.txt		
ctctcgccaa	ctaatcctat	ctactccatc			tctgattgct	⁽ 600
tttttctgtg	tggatgtgtt	gtgttctgct	gctatctgaa	tctttgttgc	aagaacaccg	660
tacaaactga	gtctgtaact	gatatcccaa	aaagtgtttg	gcttcacgat	tgatgcatct	720
gcagacttgg	gttttgtgat	tgtgttttca	tgtttcaact	ggctgtgtga	tctátggcta	780
agtacatcat	taagctact					799
<210> 214						
<211> 662						
<211> 002 <212> DNA						
	za sativa					
(213) Oly	a saciva					
<220>						
	, festure					
	c_feature clone TC392:	2.0				
(223) IC (10ne 10392.	•				
<400> 214 cccccctt	cgagtcgacc	aacgcgtccg	aacacaagaa	ttcagctgta	caacctgatc	60
aatcttacac	aagaattcag	ccatagctag	ccctgatcga	tccaattctg	agttcttgac	120
cgacaaccat	ggcgtccatg	accgccgtcg	acgacgtact	gctcctggtc	ttcttgctgc	180
tgacatcgtc	ggctccgttc	ttgcaagcca	ggatgatgcc	gggagacggc	ggggagattg	240
ttcaggaggc	cgtgacgatg	atgatgggat	cetetgeegg	cgccgccgcc	gccgccgtcg	300
caggaagaag	aagcacggcg	tegteetege	cgccggagga	ggagatgctg	ctcccgagga	360
gaccacctct	gccgctgtcg	ccgccggcgg	cgaccaccgg	agctcgcagc	agcaggatgc	420
tegggteggt	gcccagcccc	ggcgttggcc	actageggga	cgacgccggc	tgatctatag	480
ttagttaata	cagtagattc	agagtgtccc	tttttttat	acatatttga	ctttctttaa	540
aatatttatg	taaatattat	tttttagttg	ttttataaaa	tatagtttaa	gtatgatgta	600
tttgtaggaa	aaagttaaat	aggaggaatg	atcaaacatg	tgtttaaaga	cgttatttat	660
tt						662
<210> 215						
<211> 317	3					

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC83117

<220>

<221> misc_feature

<222> (2792)..(2792)

<223> unknown nucleotide

<400> 215 atggcctccc	cgaccgcgac	caccccctcg	gegeeteege	caccaccacc	gccacccgca	60
gcctgcgccg	cgcgctacga	cttcctcaac	tccaagccgc	ccccaacta	cgtggcgaga	120
ctgggacgcg	gcgccgccgg	gttcaccacc	cgctcggata	tegggeeege	catggggcgc	180
ggccgtggga	agccgcctgg	ggacgacggc	gacggcgatg	gcggtggcga	cgaggaggag	240
aaggggtacg	acgagaacca	gaagttcgac	gagttcgagg	gcaacgacgc	cggcctcttc	300
tccaacgccg	gccacgacga	cgacgacgac	gaccgcgagg	cggacgcggt	ctgggagggc	360
atcgaccgga	ggatggactc	gcgccgcaag	gactggcgag	aggcgcggct	gaagcaggag	420
atcgagaggt	accgcgcgtc	caaccctaaa	atcaccgagc	aattcgccga	tctgaagcgg	480
aaattggtcg	atttgtcagc	gcaggagtgg	gagagcatac	cggagattgg	ggattattcg	540
cttcgtcgca	acaagaagag	gcgatttgag	agctttgtcc	cggtgcctga	caccctgctc	600
gagaaggccc	ggcaggagca	ggggcatgtc	accgcattgg	accccaagag	ccgtgcagcc	660
gccgctggcg	cagagacgcc	atgggcgcag	actccggtta	ctgatctgac	agccgtcggc	720
gaaggccgtg	gcaccgtgct	ttctttgaag	ctggacaggt	tatccgattc	ggtatccggt	780
gttactattg	ttgatccaag	gggttacctg	actaacctga	agagtatgaa	gattactagt	840
gatgctgaaa	tttctgacat	aaagaaggcc	aggttgttgc	tcaagtcagt	gatacagacg	900
aacccaaagc	atccaccagg	atggattgct	gctgctaggc	ttgaagaggt	tgccggcaag	960
cttcaggttg	ctcagcagct	catccagcgt	ggctgcgagg	agtgccccac	gaatgaggat	1020
gtttggctca	aggcatgccg	gttggccagc	ccagatgagg	caaaggccgt	gattgccagg	1080
ggtgtgaagg	aaattcccaa	ttctgtgaag	ctgtggttgc	aggcagcgaa	gttggaaact	1140
agtgacttga	ataagagcag	ggttttgaga	aaagggttgg	aacacattcc	tgattcagtc	1200
aggctgtgga	aatcagtagt	agagcttgca	aatgaggagg	atgcaaggct	gttgcttcac	1260
agggctgtgg	agtgctgccc	attccatttg	gaactgtggc	ttgcactagc	gaggctggag	1320

acgtatgacc	aagcaaagaa	071 ggtacttaac	-prom-prov. aaggcaaaag	ST25.txt aaaagctccc	taaggagcct	1380
gccatctgga	ttatggctgc	aaagctggag	gaagctaatg	gaaacaccga	gtcagtaaac	1440
gaggtgattg	agagaagtat	aaaaacttta	cagggaaaag	gattgggtat	tgacagggag	1500
gcatggctaa	aggaagcaga	agctgctgag	catgctggat	ctgtgatgac	ttgccaggct	1560
attgtgaaga	acactattgg	cgttggtgtt	gatgatgaag	acagaaaacg	cacatgggtt	1620
gctgatgctg	aggaatgcaa	gaagcgtggt	tcagttgaga	cagcccctgc	catctatgca	1680
catgtgctca	gtgtcttcaa	attcaagaag	agtatttggt	tgaaagcggc	tcagcttgag	1740
aagagacatg	ggactgagga	gtctctttat	attctcctca	gtaaggctac	aacatacaat	1800
cgacatgcag	aagtgctatg	gcttatgtat	gcaaaggaga	aatggctggc	tggagatgtc	1860
cctgctgccc	aaaccattct	tcaggaagct	tacgcttatc	ttcccaattc	agaggagatc	1920
tggctagctg	ccttcaagct	tgagtttgag	aacaatgaac	cagagagagc	aagaattctt	1980
ttgtcaaagg	ccagggaaag	aggaggcact	gagagggtct	ggatgaaatc	tgccattgtt	2040
gaaagggagt	tagggaatgt	agacgaggaa	agaaagctgt	tggaggaaga	ggagaagata	2100
aatggcttga	ggaagtcacg	tgctgttctc	accatggcaa	gaaagaagaa	cccagctaca	2160
cctgaactct	ggcttgcagc	agttcgagct	gaattgaggc	ataggaacaa	gaaggaagct	2220
gatgctttac	tagccaaggc	attgcaggag	tgcccaacaa	gtggtatctt	gtgggctgca	2280
gctatagaga	tggtgccacg	tccccaacgt	aaagcaaaga	gctcggatgc	tataaaacga	2340
tgtgaccatg	atccccatgt	cattgcagcc	gtggctaaac	ttttctggca	tgataggaag	2400
tttgataaag	ctaggagttg	gttgaacaga	gctgttactc	ttgctccaga	cattggagat	2460
ttttgggcct	tgtactacaa	attcgaacta	caacatggaa	acgctgatac	acataaggat	2520
gttgtacaac	gatgtgttgc	atcagaacca	aagcatggag	agagatggca	agcaatagcg	2580
aaggctgttg	agaactcaca	cctgtcgatt	gaggcccttc	tgaagaaagc	tgtggtggct	2640
cttggccagg	atgaaaatcc	aaatgctgta	gatccctagt	ctgtatcact	tttaacttta	2700
aattaaggtc	gataaagaaa	tatgtagaga	aagaaataca	actagacagt	gaactgggat	2760
gcactcaagc	aactgcttcc	tgctacgacc	tncgcattct	ctacccaccg	aactgattgc	2820
tgcagtcccc	caaccgtgaa	gcttacctga	agaagcacca	ggcatgccat	tgctccaatg	2880
tgattggcta	tctctagtta	atgacccagg	agcatgaagc	attacaagat	caactttcag	2940
ggaaggatca	ttttcaaaca	gttttgtgta	taaatgggac	agtcccactg	ctgccttcct	3000
tggcgtcggc	agaagagctt	tgttctacat	gtaaggtata	gtgttataca	gatatcatgc	3060
catcaaatga	atgtttcttt	cggcaaagct	cttctccatt	tcatgtgact	aaattataca	3120
attctgaaga	aacttcattt	cacctagaat	tttcatgtat	tccatttcat	act	3173

<211> 1488

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC89913

						<400> 216
60	ttaagtaaca	gcatttctag	tagcatcact	aggccactac	tagtaacagt	
120	tgcagcagtg	atcaggcagc	atggggaggg	tagtgagacc	gagtaaggag	acactagaga
180	gcttgcagga	tgcagttcct	gtgctggccc	gttcatagga	aggtgaagct	atgcatgaga
240	gttcatcgtc	gcaagattgt	atgggcatca	agcactcaac	tgagcagggc	ttccacattg
300	cgagaagaaa	cctacttcct	gcgcccttcg	cgccttgctc	tcatctccct	tataggaacc
360	actgtgtggg	ttcttctagc	gtggagtttt	ctctttgctg	cactgacctt	gatagaccac
420	aacttatgct	acctttcacc	gggctgtatc	ctacctccta	accaaggttt	ataactgcaa
480	cctcaggctt	tggctgccgt	acctttgcca	tcctgccatc	agaacacagt	tctgcaatac
540	ggtggtgagc	tggtgggcac	gtggccaagg	gaggcatggg	acctaggcaa	gagcaagtag
600	tcacaatctg	cactgttcaa	aagggcctac	aactctctac	ccacagtgat	ataggtggtg
660	ctgcgtcttc	ggactctggg	atcctcaact	ctcgagcctc	ccctgtcttc	aacatcaagt
720	agttctgaag	ttcaggtgcc	tggatggttc	atggtctgga	actgcctctc	atccttggcc
780	cctccagttc	tctttgggct	ctgacctgca	agttctatca	ctaggctgtc	aggtacccag
840	ctccggaagc	ggaaggtgaa	ctgagcagat	tgaagaagac	cagccttcac	ctggtcattg
900	tgctctgcag	gcgtggcgtt	gtggcatctg	cgctggtctt	caatcctcta	gagctgttca
960	ggtccagacc	tgttccagcc	ttcaccgccg	agggccgctg	tcgacagggg	atatggtgca
1020	aggagggatc	agctatactc	ctcggagatc	cgccatcatt	ccgtcatggc	gtcgccgtcg
1080	aagcgaggag	tgtggggcaa	tacttcgtgc	gatcgggctg	ttctgattgt	atcggagcag
1140	agacgacatc	agggaggagg	cagccggtgc	cctgcaggac	agaacaacaa	aagaagagca
1200	tgcagtcact	acgaagaagc	tctcgcaaag	agaagatgca	tgctcggaca	aggaggcatc
1260	gcatgatgat	ccagtaatat	gcgttcttca	gatcgaaggg	catgacgatc	gatgaactgg
1320	tattaatcaa	ttcttaacta	gactgtactt	tgatgtcagt	gaaaatatgt	gttggagttg
1380	gtcctcactc	ctgctagctg	aaaaacagta	cagtgtaatt	ccaagcgtgc	agaagaagat

• • • • • • • • • • • • • • • • • • • •		071-	prom-prov.	ST25.txt		
accagtgata	tactatatat	aattgctacg	aatcagtctg	tgtatatctc	aagctgtata	1440
ttcagagtta	atgatataat	attgccatca	cttgaacaat	tagcacat		1488
<210> 217	,	•			•	•
<211> 602	:					
<212> DNA	\					
<213> Ory	za sativa					
<220>						
<221> mis	c_feature					
<223> TC	clone TC899	35				
<400> 21	7 c gaggttcgac	ccactcgtcc	gctgacggtt	agttccaagg	gaaagaagaa	60
	t cacgcaaggt					120
actggtgag	a tgggcgggcc	ggtgatggtg	gcggaggctc	ggacgtgcga	gtcgcagagc	180
caccggttc	a agggcccgtg	cgcccgcaag	gcgaactgcg	ccagcgtatg	caacacggag	240
ggcttcccc	g acggctactg	ccacggcgtc	cgccgccgct	gcatgtgcac	caagccctgc	300
ccctgatcg	a tgaaccagca	gctagcgcag	cagcttgtgc	cgccacctcg	cgcatgtgtc	360
atcgtgtcg	a tcgatcggat	cctagctgcc	ctatgaatga	ataaaagtgt	gtggcttatg	420
cgtggtttt	c tcttggagaa	ctttggcttt	tgtggtgtta	agttcgatcg	ttttgtgcat	480
	a tocatoctco					540
tgatgcaat	t gtgctcaaca	gtttattaat	acttcatccg	tttaaaatg	tttgaccccg	600
tt						602
<210> 23	.8					
<211> 1	.70					
<212> Di	IA .					
<213> 0	yza sativa					
1						
<220>						
<221> m	lsc_feature					

<223> TC clone TC48746

<220>
<221> misc_feature
<222> (15)..(16)
<223> uknown nucleotide
<220>
<221> misc_feature

<223> uknown nucleotide

(1162)..(1162)

<222>

<400> 218 aattoggoac gagannaaaa ggaaaaaaaa acaaaacaca ccaagccaaa taaaagcgac 60 aatgggateg eteaceacea acategteet egeegtegee gtggtggeag egetggtegg 120 cggcgggtcg tgcggcccgc ccaaggtgcc acccggcccg aacatcacga ccaactacaa 180 egeccegtgg eteccegeea gggeeaeetg gtaeggeeag eeetaegget eeggeteeae 240 cgacaatggt ggcgcgtgcg ggatcaagaa cgtcaacctg cctccctaca acggcatgat 300 ctcctgcggc aacgtcccaa tcttcaagga cggcagggga tgcggctcat gctacgaggt 360 gaagtgtgag cagccggcgg cgtgctcgaa gcagccggtg acggtgttca tcacggacat 420 gaactacgag cccatctcgg cgtaccactt cgacttctcc ggcaaggcgt tcggcgccat 480 ggcttgcccg gggaaggaga ccgagctccg caaggccggc atcatcgaca tgcagttcag 540 gagggtgcgc tgcaagtacc ccggcggcca gaaggtcacc ttccacgtcg agaagggctc 600 caaccccaac tacctcgccg tgctcgtcaa gttcgtcgcc gacgacggtg acgtcatcca 660 gatggacctc caggaggccg gattgccagc gtggaggccc atgaagctgt cgtggggcgc 720 catctggagg atggacaccg ccacgccact caaggcaccc ttctccattc gcgtcaccac 780 cgagtccggc aagagcctca tcgccaaaga cgtcatcccg gtcaactgga tgccagacgc 840 catctacgta tcaaacgtcc agttctattg agatcggacg gaaacgatcc tcctaattta 900 tttccctatt aatttgttca aatggtttcc ttctataacc tatatttttc ccgttgttag 960 aaatggttcc atttcctcct acagcttact ttaagatagt tgcgcttgta tatctgcgcc 1020 atcttgtaag ttgtaagatg ctgaagaaca ctatgaattc tgagcatctg attctccggg 1080 aagatttact atgataaaca acagtttgat ttactatgtg tgtccccttg tttattgtat 1140 gctatcctaa tacttatgaa angttttgat 1170

<211> 861 <212> DNA <213> Oryza sativa <220> <221> misc_feature <223> TC clone TC82961 + TC95621 <400> 219 60 ccacgcgtcc gcccacgcgt ccgcgatcag cagcagcagc agcttgcaca ctcgagctta gcttagcttt tgcaagagag atcgagctag agatggagaa gtcgagcaag atgatggcgg 120 180 tggcggcggt gctggtgctc gcggtggtcg gcgcggcgga ggcgaggaac atcaaggcgg 240 cggcggcggc ggcggcggag agcaaggaca cggtggtgca gccgacgacg ttcccgccgt tcgaccgctt cgggagcgcg gtgccggcgt tcggcggcat gcccggcagc agcatcccgg 300 ggttcagcct ccccggcagc agcggctcca cccccggcgg cctcggcggc ttcggcagca 360 tgcccatgtt cggcggcctc ggcggcggct cacctggcct cggcggcggc atgcccggct 420 cccccgccgc cgccgacaag caggccaaga agccatgaga gacctcgccg tcgccggcgg 480 cgtcgccgct gctgcgcggg taatgtgctc tatgtagcgc acggcgttgc atgcaatatg 540 600 gatggctata tgacgcgcgc gcgttatatc ttcatatgtg cagttagctt gcactgtgtc 660 tagctagcgt totattatga gtagtgtoto ttotatotot tttotttaca tgcatttgga 720 ggaggattat tctatctgtt tgttggttgg ttgtgtttgt ttgttttaat taggtccctt cttatatttt gtgttttaat taagttcgtg atcatgtagt agtactacca ctgtttcgag 780 ctcgaggcat gaataatgct aaatgtgatc attattgtgt tattgtatgg tgatggctat 840 861 atatattact atctctgctt c <210> 220

<211> 2957

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC52500

<400> 220		•				
atgctggcgt	ctctctctc	ttcgtcccgt	gcggccatct	cctgcatccc	gttgtgtctc	60
ctcttcctga	ccttggcgag	cagcaatggc	gtgtttgccg	cagcaccacc	caaggttggg	120
tccgggtaca	agcttgtgtc	cctggtcgag	caccccgagg	gaggagctct	cgttggatac	180
ctgcaggtga	agcagcgcac	ctccacctac	ggcccggaca	tccctctcct	caggetetat	240
gtcaagcacg	agaccaagga	caggatacga	gtccagatca	cggacgcaga	caagccgagg	300
tgggaggtcc	cctacaacct	tctccagagg	gagccagccc	cgcccgtcac	cggcgggagg	360
atcaccggcg	tgcccttcgc	cgccggcgag	tacccgggtg	aggagctcgt	gttcacctac	420
ggccgcgacc	cgttctggtt	cgcggtgcac	cggaagtcca	gccgcgaggc	gctcttcaac	480
accagctgcg	gcgcgctggt	gttcaaggac	cagtacatcg	aggcgtcgac	gtcgctgccc	540
agggacgcgg	cgctgtacgg	cctcggcgag	aacacgcagc	cgggcggcat	ccggctgcgc	600
cccaacgacc	cgtacaccat	ctacaccacg	gacatctcgg	cgatcaacct	caacaccgac	660
ctctacggct	cgcacccggt	gtacgtggac	ctcaggagcc	gtggcggcca	tggcgtcgcg	720
cacgccgtgc	tgctgctgaa	cagcaacggc	atggacgtgt	tctacagggg	gacgtcgctg	780
acgtacaagg	tcatcggtgg	cctcctcgat	ttctacctct	tctccgggcc	gacgccgttg	840
gccgtggtgg	atcagtacac	gtccatgatc	ggacgaccag	ccccaatgcc	gtactgggca	900
tttgggttcc	accaatgcag	atggggatac	aagaacttgt	cagtggtcga	gggcgtcgtg	960
gagggctacc	ggaacgcgca	aatccccctc	gacgtgatct	ggaacgacga	cgatcacatg	1020
gacgccgcga	aggatttcac	ccttgatccc	gtgaactacc	cgcgtcccaa	gctgctggaa	1080
ttccttgaca	agatccatgc	acagggcatg	aagtacattg	tcctcatcga	ccccggcatc	1140
gccgtgaaca	acacctatgg	cgtgtaccag	cgcggcatgc	agggcgacgt	cttcatcaag	1200
ctggacggga	agccatacct	ggcgcaggtg	tggcccggcc	ccgtctactt	cccggacttc	1260
ctcaacccca	atggcgtctc	gtggtggatc	gacgaggtga	ggaggtttca	tgaccttgtg	1320
cccgtggatg	gcctctggat	cgacatgaac	gaggcatcca	acttctgcac	cgggaaatgc	1380
gagatcccga	cgacgcacct	gtgccctctg	cccaacacga	cgacgccatg	ggtgtgctgc	1440
ttggactgca	agaacctgac	gaacaccagg	tgggacgagc	cgccgtacaa	gatcaacgcc	1500
tccggccaga	cggcgcggct	cggcttcaac	accatcgcca	ccagcgcgac	gcactacaat	1560
ggcatcctgg	agtacaatgc	gcacagcctg	tatggattct	cgcaggccat	cgcgacgcac	1620
caggcgctgc	aggggctcca	gggcaagcgg	ccgttcatcc	tgacgcgctc	tacgttcgtc	1680
gggtcgggcg	cctacgccgc	gcactggacc	ggcgacaaca	agggcacctg	ggagaatctc	1740
cgctactcca	tctccaccat	gctcaacttc	ggcatcttcg	gcatgccgat	ggtcggcgcc	1800

gacatctgcg	ggttctaccc	gcagccgacg	gaggagctct	gcaaccggtg	gatcgagctc	1860
ggcgcgttct	acccgttctc	cagggaccat	gccaacttcg	cgtcgccgag	gcaggagctg	1920
tatgtgtggg	agtccgtggc	caagtcggct	cggaacgcgc	teggeatgeg	gtacaggctg	1980
ctcccttacc	tgtacacgct	caactaccag	gcgcatctca	ccggcgctcc	ggtggcgcgg	2040
ccggtgttct	tctcgttccc	ggacttcacg	ccgtgctacg	ggctgagcac	gcagtacctg	2100
ctcggcgcga	gcgtccatgg	tgtcgccggt	gctcgagcag	ggcgccacct	cggtgagcgc	2160
aatgtttccc	gccggggaag	ctggtacaac	ctgttcgaca	cgaccaaggt	ggtggtgtcc	2220
aggggcgaag	ggcgccgtga	agctggacgc	gccgctcaac	gagatcaacg	tgcacgtgtt	2280
ccagaacacg	atcctcccga	tgcagcgcgg	cgggacgatc	tccaaggagg	cccgcgcgac	2340
gccgttcacg	ctggtggtcg	cgttcccgtt	cggcgccacc	gaggcggagg	ccgagggcgc	2400
cgtgtacgtc	gacgacgacg	agcggccgga	gatggtgctc	gcggagggc	aggcgacgta	2460
cgtccgcttc	tacgcgacgg	tgcgcggcaa	ggcggtgacg	gtgaggtcgg	aggtggagct	2520
aggcagctac	agcttgcaga	aggggctcct	catcgagaag	ctgtccgtgc	teggaetgga	2580
gggaacaggc	agggacctcg	ccgtccatgt	cgatggcgcg	aacgcaccgc	cattgcaacg	2640
tcgaggccgt	actttgcagg	tgccgaggcg	gagctgcacg	ggcaccgcga	cgtggaggga	2700
cacaagaaga	gcgtgatggt	ggaggtggga	gggctggcat	tgccgctggg	caagagette	2760
accatgactt	ggaacatgca	gatcgaagca	tagatcgaag	ctttcttatg	ctttcatctg	2820
catttctcca	ttctgtctct	ctgattattt	taggttctag	atcagcaagg	ttatgtcaac	2880
gtgttcaacg	acacaccacc	atctctgatt	ctcttctgca	tttgaatcct	tgtggaaata	2940
aaacatgatt	ctaaaca			•		2957

<210> 221

<211> 773

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC89891

<220>

<221> misc_feature

<222> (9)..(9)

<223> unknown nucleotide

<222> (13)..(13)

<221> misc_feature

<223> unknown nucleotide

<400> 221						
ggctgcagnc	ctnggaacga	gacaatattg	tctacaccat	ctggaatctt	gtttaacact	60
agtattgtag	aatcagcaat	ggcagcatac	accagcaaga	tetttgeeet	gtttgcctta	120
attgctcttt	ctgcaagtgc	cactactgca	atcaccacta	tgcagtattt	cccaccaaca	180
ttagccatgg	gcaccatgga	tccgtgtagg	cagtacatga	tgcaaacgtt	gggcatgggt	240
agctccacag	ccatgttcat	gtcgcagcca	atggcgctcc	tgcagcagca	atgttgcatg	300
cagctacaag	gcatgatgcc	tcagtgccac	tgtggcacca	gttgccagat	gatgcagagc	360
atgcaacaag	ttatttgtgc	tggactcggg	cagcagcaga	tgatgaagat	ggcgatgcag	420
atgccataca	tgtgcaacat	ggcccctgtc	aacttccaac	tctcttcctg	tggttgttgt	480
tgatcaaacg	ttggttacat	gtactctagt	aataaggtgt	tgcatactat	cgtgtgcaaa	540
cactagaaat	aagaaccatt	gaataaaata	tcaatcattt	tcagacttgc	aaatattggg	600
tatttggatt	tctgtcccat	gtccctcttg	aaagccatgc	tgtacatgtt	ggagttcccc	660
cttggaccca	acctactcca	tgctcccatg	ttgatcttaa	attccctgtt	ccccagagc	720
atgtaaattt	tcttatgcta	atcagagcaa	gctcgatgtc	tcattaacat	atc	773

<210> 222

<211> 686

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82719

<220>

<221> misc_feature

<222> (15)..(15)

<223> unknown nucleotide

		•			
<pre><400> 222 aggtcgaccc aaggn</pre>	gtccg gtacaaattc	cagaactaaa	gatttttctg	caaacaaaaa	60
acccatgggc tttcc	aacaa aggtagtgtt	ctcggcgttg	ctccctcatc	atcgtctccg	120
tgctcgccgc gacgg	cgacc atggcggacc	accccaaaga	ccaggtggtg	tacageeteg	180
gcgagcgttg tcagc	cagga atgggctacc	cgatgtactc	gctgccacgc	tgccgggcgg	240
tggtgaagcg ccagt	gcgtg ggccacggcg	cacccggcgg	cgccgtggac	gagcaactcc	300
ggcaggactg ctgcc	ggcag ctcgccgcgg	tcgacgacag	ctggtgcagg	tgctcggcgc	360
tcaaccacat ggttg	gaggc atctacaggg	agctcggcgc	caccgatgtt	gggcacccca	420
tggccgaggt gttcc	ccggc tgccggagag	gggacttgga	gcgcgcggcg	gcgagcctcc	480
cggcgttctg caacg	stggac atccccaatg	ggacaggtgg	tgtctgctac	tggctaggtt	540
atcctaggac cccga	agaact ggtcactagg	ctactaaagc	tagctgtgtg	tatgactctg	600
tggggttgct aaata	actag tgctttcatt	tgtcaggaag	catatataca	tatggtgaat	660
aaatgatgaa cttca	atgtt cttctg				686

<210> 223

<211> 989

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC62788

<220>

<221> misc_feature

<222> (11)..(11)

<223> unknown nucleotide

<400> 223 ttgeteette neegteetee eegettggge tettgggege eegtteeggg egeeeetee 60

071-prom-prov.ST25.txt etectecete egeggtaece ggeegeetea etectetget ggacceeegg eegeeeeggg 120 ccgcgcccca tcccggtgcg cgacccatcg ttcacacagt tcaagcatta tacagcaaaa 180 tagaaagatc tagtgtcccg cagcaatgaa gatcattttc gtctttgctc tccttgctat 240 tgctgcatgc agcgcctctg cgcagtttga tgttttaggt caaagttata ggcaatatca 300 gctgcagtcg cctgtcctgc tacagcaaca ggtgcttagc ccatataatg agttcgtaag 360 gcagcagtat ggcatagcgg caagcccctt cttgcaatca gctgcgtttc aactgagaaa 420 caaccaagtc tggcaacatc tcgcgctggt ggcgcaacaa tctcactatc aggacattaa 480 cattgttcag gccatagcgc agcagctaca actccagcag tttggtgatc tctactttga 540 teggaatetg geteaagete aagetetatt ggettttaac gtgecateta gatatggtat 600 ctaccctagg tactatggtg cacccagtac cattaccacc cttggcggtg tcttgtaatg 660 agttttaaca gtatagtggt tcggaagtta aaaataagct cagatatcat catatgtgac 720 atgtgaaact ttgggtgata taaatagaaa taaagttgtc tttcatattt aaataccaag 780 ctctattggc ttttaacgtg ccatctagat atggtatcta ccctaggtac tatggtgcac 840 ccagtaccat taccaccctt gcggtgtctt gtaatgagtt ttacaagtat agtggttcgg 900 aagttaaaaa taagctcaga tatcatcata tgtgacatgt gaaactttgg gtgatataaa 960 tagaaaaaa gttgtctttc atatttaaa 989 <210> 224 <211> 826 <212> DNA <213> Oryza sativa <220> <221> misc feature <223> TC clone TC89883 + TC84201 (likely) + TC89883 (likely) <220> <221> misc_feature <222> (692)..(692) <223> unknown nucleotide <220> <221> misc_feature

- <222> (719)..(719)
- <223> unknown nucleotide
- <220>
- <221> misc_feature
- <222> (723)..(723)
- <223> unknown nucleotide
- <220>
- <221> misc_feature
- <222> (764)..(764)
- <223> unknown nucleotide
- <220>
- <221> misc_feature
- <222> (789)..(789)
- <223> unknown nucleotide
- <220>
- <221> misc_feature
- <222> (792)..(792)
- <223> unknown nucleotide
- <220>
- <221> misc_feature
- <222> (796)..(796)
- <223> unknown nucleotide
- <220>
- <221> misc_feature
- <222> (807)..(807)
- <223> unknown nucleotide

<220>	
<221>	misc_feature
<222>	(816)(816)
<223>	unknown nucleotide
<220>	
<221>	misc_feature
<222>	(819)(819)
<223>	unknown nucleotide

<400> 224 ttacgtgctg ggagacccgg aatgtgtaaa ttcttaagcc cgttgaccct gaagcaacaa 60 ccatggaaat agacaatgaa aatggaggag ataacgatag tcagctgaat ggtcaaaaca 120 agaaaatcag tcacaatgtt ggagagcttg agcaatggtg tctctgcaca ttgggctatc 180 tcaagtcgtt ttctcgtcaa tatgctactg agatctggtc ccatattgcc atgttggatc 240 aggagatttt cgttgggaat attcaccctc ttatccggaa agctgctttc tccggtttgt 300 gcagacctac cagtgaaggg tctcaccttt gattttgacc cttccagtga gttggagttt 360 acctgtatta tacgcgacaa atttttcatc atgcttcact aactggacat gcccaaaagt 420 actotgatgt gtactcagga actocatoga ttotcotgta atootggccc cgaggaacac 480 ccttggtgga aagcactgta acgactttag gtgattaaat tatcagttag gtttatttga 540 attgtagtgg actaattttc ttgggtgagt aattgctatg gtctagcttt cttaattccc 600 totgootgtg ttaggacaac googtgttta ttgataagct gatotgaaac ogtoattact 660 ttacaaaaaa aaaaaaaaa aaaaactcca angggggggc ccggtaccca attcccccna 720 tantgaattc tattacaatt cactgggccg tccgttttac aacntcctga ctggggaaaa 780 acctgggent tncccnactt taatccncct tggcancana tccccc 826

<210> 225

<211> 2739

<212> DNA

<213> Oryza sativa

<221> misc_feature

<223> TC clone TC56737

9	<400> 225 gccaccgaca	teegeegeaa	tgctgtgtct	cacctcctct	tcctcctccg	cgcccgctcc	60
9	getecttece	tctctcgctg	atcgaccgag	cccgggaatc	gcgggcgggg	gtggcaatgt	120
1	tcgcctgagc	gtggtttctt	cgccgcgccg	gtcgtggcct	ggaaaggtca	agaccaattt	180
•	ctcagttcct	gcgactgcgc	gaaaaaacaa	aaccatggtg	actgttgtgg	aggaggtcga	240
•	ccaccttcct	atatatgatc	tggaccctaa	gttggaggaa	ttcaaggatc	acttcaacta	300
	taggataaaa	agatacctcg	accagaaatg	cctgattgaa	aaacatgagg	ggggccttga	360
	agaattttct	aaaggctatt	tgaagtttgg	gattaataca	gttgatggtg	ccacaatata	420
	tcgtgaatgg	gcgcctgctg	cacaagaagc	acagctcatt	ggtgagttca	ataactggaa	480
	tggtgcaaaa	cacaagatgg	agaaggataa	atttggcatt	tggtcaatca	agatttcaca	540
	tgtcaatggg	aagcctgcca	tccctcacaa	ttccaaggtt	aaatttcgct	ttaggcatgg	600
	gggtggagca	tgggttgatc	gtattcccgc	atggattcgt	tatgcaactt	ttgatgcctc	660
	taaatttgga	gctccatatg	atggtgtaca	ctgggatcct	ccagcctgtg	aaaggtacgt	720
	gtttaagcat	cctcgacctc	caaaacctga	tgctccacgc	atctatgagg	ctcatgtggg	780
	gatgagtggt	gaagagccag	aagtaagcac	atacagagaa	tttgcagaca	atgtgttacc	840
	acgcatacgg	gcaaataact	acaacacagt	tcagttaatg	gcaatcatgg	aacattccta	900
	ctatgcttct	tttgggtatc	acgtgacaaa	ttttttcgca	gtcagcagca	gatcaggaac	960
	accagaggat	ctgaaatatc	ttgttgacaa	ggcacatagt	ttaggattac	gagttctgat	1020
	ggatgttgtc	catagccatg	cgagtaataa	tgtgaccgat	ggtctaaatg	gctatgacgt	1080
	tggacaaaac	actcatgagt	cttattttca	tacaggagat	aggggctacc	ataaactctg	1140
	ggatagtcgt	ctgttcaact	atgccaattg	ggaggtctta	agatttcttc	tttctaattt	1200
	gagatattgg	, atggacgaat	tcatgtttga	tggcttccga	tttgatgggg	ttacatcaat	1260
	gctataccat	: caccatggta	tcaataaggg	g atttactgga	. aactacaagg	agtatttcag	1320
	tttggataco	gatgtggatg	caattgttta	a catgatgcto	gcaaaccatt	: taatgcataa	1380
	actettgees	g gaagcaacta	ttgttgctga	a agatgtttcg	ggcatgccag	tgctttgtcg	1440
	gccagttgat	gaaggtggag	g tagggtttga	a cttccgcctg	g gcaatggcca	ttcctgatag	1500
	atggattgad	c tacctgaaga	a acaaagagg	a ccgcaaatgg	tcaatgagtg	g aaatagtgca	1560
	aactttgac	z aacaggagat	: atacagaaa	a atgcattgco	tatgccgaga	a gccatgatca	1620
	gtccattgt	t ggtgacaaga	a ctatagcati	t totottgate	g gacaaggaaa	a tgtacactgg	1680

catgtcagac	ttgcagcctg	cttcacctac	catcaaccgt	ggcattgcac	tccaaaagat	1740
gattcacttc	attacgatgg	cccttggagg	tgatggctac	ttaaatttta	tgggcaatga	1800
gtttggccat	ccagaatgga	ttgactttcc	aagagaaggc	aacaactgga	gctatgataa	1860
atgcagacgt	cagtggagcc	ttgtcgacac	tgatcacctt	cgatacaagt	atatgaatgc	1920
atttgatcaa	gcaatgaatg	cactcgagga	ggaattttcc	ttcctgtcat	catcaaagca	1980
gattgttagc	gacatgaacg	agaaagataa	ggttattgtc	tttgaacgtg	gagatttggt	2040
ttttgttttc	aattttcatc	ccaacaaaac	ttacaagggt	tacaaagtcg	gatgtgactt	2100
gcccgggaag	tacagagtag	ctctggactc	tgatgctttg	gtctttggtg	gccatggaag	2160
agttggccat	gatgtggatc	acttcacgtc	tcccgaggga	atgccaggag	taccagaaac	2220
aaatttcaac	aaccgcccta	actcattcaa	agtcctttcc	ccgccccgta	cctgtgtggc	2280
ttactatcgc	gttgatgaag	atcgtgaaga	gctcaggagg	ggtggagcag	ttgattatgg	2340
aaagattgtt	acagagtata	tcgatgttga	agcaacaagt	ggggagacta	tetetggtgg	2400
ctggaagggc	tccgagaagg	acgattgtgg	caagaaaggg	atgaagtttg	tgtttcggtc	2460
ttctgacgaa	gactgcaaat	gaagcatcag	atttcttgat	caggagcaac	tgttggtgcc	2520
cttgtaatct	ggagatcctg	gcttgccttg	gacttggttg	tggttcttta	gcagttgcta	2580
tgtacctatc	tatgatatga	actttatgta	tagttcgcct	taaagaaaga	ataagcagtg	2640
atgatgtggc	cttaaacctg	agctgcacaa	gcctaatgta	aaaataaagt	ttcaggcttt	2700
catccagaat	aaaacagctg	ttcatttacc	atctcaaaa			2739

<210> 226

<211> 612

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC63273

<400> 226

ggcacgagga acaccaacgg cgaaagcact ctgctgggcc gacactgaca ctcagagcac 60
aagaaagcat aagcaacaca agggattaac tcatcactca cttagctaat taaatcttcg 120
accatgtcgg acaagtgcgg caactgcgac tgtgctgaca agagccagtg cgtgaagaaa 180
ggtaccagct atggcgtcgt catagttgaa gccgagaaga gccacttcga ggaggtcgcc 240

071-prom-prov.ST25.txt gccggcgagg agaacggcgg ctgcaagtgc ggcaccagct gctcctgcac cgactgcaag 300 tgcggcaagt gaagtcacga agcaaccgaa cactcgccgc cggcgagtca cctaccttaa 360 ttagtccaca ataaaaacca cccatatgag tgtggtttgt gtgtgtgctg attattgctg 420 aattaaaccc gtgtgttatc gattaattaa gcagctggtc gcttcggcga ctatgcgtgt 480 atcaacgtat gaatttgtgt gatgtgatgt acccgtgcta ttctcagtga aattaatcaa 540 tcgtgtattc gtgtggtttg cctagtaaaa aggtctatca tactcaatcg aacttcaaca 600 612 atttcttggt ct <210> 227 <211> 1252 <212> DNA <213> Oryza sativa <220> <221> misc_feature <223> TC clone TC63395 <220> <221> misc_feature <222> (5)..(5) unknown nucleotide <223> <400> 227 cccangcgtc cgaaccaatc gactcgcacc accaccagca gctcaagcag caacagctca 60 aacggaggaa gatctcatcg ccatgacgac cggcaatggc gacgcaccgg tgatcaagaa 120 cgcccacage gacategaca gcaccaacaa gaegetgete aagagegaeg ceetgtacaa 180 gtatgtcctg gacacgacgg tgctgccacg ggagccggag tgcatgcgcg atctgcgcct 240 catcacggac aagcaccagt gggggttcat gcagtcgtcg gcggatgagg cgcagtgctg 300 360 gggatgctgc tgaagatggc cggagcgaag aggacaatcg aggtgggtgt cttcaccggc

420

480 540

600

tactcgctgc tggcgacggc gctggcgctg ccggaggacg ggaaggtggt ggcgatcgac

ccggacaggg agagctacga gatcgggcgg ccgttcttgg agaaggccgg ggtggcgcac

aaggtggact toogogaggg gaaggggotg gagaagotgg acgagotgot cgccgaggag

gcggcggcgg ggcgcgaggc ggcgttcgac ttcgcgttcg tggacgcgga caagcccaac

tacgtcaagt	accacgagca	gctgctgcag	ctggtgcgcg	tcggcgggca	catcgtgtac	660
gacaacacgc	tgtgggccgg	cacggtggcg	ctgccgccgg	acacgccgct	gtcggacctg	720
gaccggaggt	tctccgtcgc	catcagggac	ctcaactcca	ggctcgccgc	cgacccgcgc	780
atcgacgtct	gccagctcgc	catcgccgac	ggcatcacca	tetgeegeeg	cctcgtgtga	840
ggtcgagacc	gagaccttac	cggccgatcc	atccatcgct	ctcgcgtgat	taattaacgt	900
gtgttgctgt	actcttctac	tgctacaact	atactattac	ttccttaatt	gccgcttaaa	960
ttttcctata	cgtgtttcaa	tcaatgagat	tattatattc	ttcgagcatg	agagagacgg	1020
agttgtaggg	acatttgatg	atggttgtta	ctgtactaca	tgttgataag	tgcaacatct	1080
ctttccatgg	ttgctactct	actcaccgtg	tcatgttggt	tgcggatttt	gatctcatct	1140
gcaagatgga	ctactggggc	ccaaaatgga	acagactggt	ccctcgatcc	tgcaggagct	1200
tgcacctgtt	gcaagggcct	ttttaactgg	ctaactaggt	gggtaagtag	aa	1252

<210> 228

<211> 750

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC56720

<400> 228 ggcacgagct caaacattac agcaaaagca taagaactag aaacccacca caatgaagat 60 cattttette tttgetetee ttgetattge tgeatgeage geetetgege agtttgatge 120 tgttactcaa gtttacaggc aatatcagct gcagccgcat ctcatgctgc agcaacagat 180 gcttagccca tgcggtgagt tcgtaaggca gcagtgcagc acagtggcaa cccccttctt 240 ccaatcaccc gtgtttcaac tgagaaactg ccaagtcatg cagcagcagt gctgccaaca 300 gctcaggatg atcgcgcaac agtctcactg ccaggccatt agcagtgttc aggcgattgt 360 gcagcagcta cagctacaac agtttgctgg cgtctacttc gatcaggctc aagctcaagc 420 ccaagctatg ttggccctaa acttgccgtc aatatgcggt atctacccaa gctacaacac 480 tgctccctgt agcattccta ccgtcggtgg tatctggtat tgaattgtag cagtatagta 540 gtacaggaga gaaaaataaa gtcatgcatc atcgtgtgtg acaagttgaa acatcggggt 600 gatacaaatc tgaataaaaa tgtcatgcaa atttaaacat aatgcctctg taaggataaa 660

071-prom-prov.ST25.txt	40.
tectagtaca ttgttgaaat taattateat cacegtetae tatggttgea tttacaettt	720
acgatgtgtt cctacatttg gttctaagct	750
<210> 229	
<211> 743	
<212> DNA	
<213> Oryza sativa	
	٠
<220>	
<221> misc_feature	
<223> TC clone TC56718	
<400> 229 tcaacccacg cgtccccaca attcaaatat tatagttgaa gcatagtagt agaatccaac	60
aacaatgaag atcattttcg tatttgctct ccttgctatt gttgcatgca atgcctctgc	120
gcggtttgat cctcttagtc aaagttatag gcaatatcaa ctacagtcgc atctcctact	180
acagcaacaa gtgctcagcc catgcagtga gttcgtaagg caacagtata gcatagtggc	240
aaccccttc tggcaaccag ctacgtttca attgataaac aaccaagtca tgcagcagca	300
gtgttgccaa cagctcaggc tggtagcaca acaatctcac taccaggcca ttagtattgt	360
tcaagcgatt gtgcaacagc tacaactgca gcaatttagt ggtgtctact ttgatcagac	420
tcaagctcaa gcccaaactc tgttgacctt caacttgcca tccatatgtg gtatctaccc	480
taactactat agtgctccca ggagcattgc cactgttggt ggtgtctggt actgaattgt	540
aacaatataa tagttogtat gttaaaaata aagtoataca toatoatgtg tgaotgttga	600
aacttagggt catataaatc taaataaaat catcttacct atttaaatag cattcctcta	660
tgaggataaa tcctattaca ttatcgtagc taattaccat cacagggact ttacaatttt	720
actatatcca tgcatttgat cct	743
<210> 230	
<211> 671	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	

<223>	TC clone TC90434	
<220>		
<221>	misc_feature	
<222>	(3)(3)	
<223>	unknown nucleotide	
<220>		
<221>	misc_feature	
<222>	(14)(14)	
<223>	unknown nucleotide	
<400>	230	
	ttcg gcangagttc aaacattata gttgaagcat agtagtagaa tcctacaaaa	60
	atca ttttcgtatt tgctctcctt gctattgttg catgcaacgc ttctgcacgg	120
	gctc ttagtcaaag ttatagacaa tatcaactac aatcgcatct cctgctacag	180
	gtgc tcagcccatg cagtgagttc gtaaggcaac agcatagcat	240
	tggc aaccagctac gtttcaattg ataaacaacc aagtcatgca gcaacagtgt	300
	cage teaggetggt agegeaacaa teteaetace aggeeattag tagegtteag	360
	gtgc agcaactaca gctgcagcag gtcggtgttg tctactttga tcagactcaa	420
	gete aagetttget ggeettaaae ttgeeateea tatgtggtat etateetaae	480
	attg ctccgaggag cattcccacc gttggtggtg tctggtactg aattgtaata	540
	tggt tcaaatgtta aaaataaagt catgcatcat catgcgtgac agttgaaact	600
tgatgto	cata taaatctaaa taaaatcacc tatttaaata gcattcatgt atgagttcca	660
ttatcat	tage t	671
<210>	231	
<211>	709	
<212>	DNA	
<213>	Oryza sativa	
<220>		
<221>	misc_feature	

<223> TC clone TC83072

<400> 231						
	gtctttatag	ctatatatag	aaaccaccca	tagatagcta	tccctctcat	60
aaacaaattg	atagttaaga	ttttctgcaa	caaaaatatg	gcttccaaca	aggtagtgtt	120
ctcagtgttg	cttctcgccg	tcgtctccgt	gctcgcggcg	acggcgacca	tggcggagta	180
ccaccaccaa	gaccaggtgg	tctacacccc	gggcccgctc	tgtcagccag	gaatgggcta	240
cccgatgtac	ccgctccggg	ttgccggggt	tggggaggcg	ccattgctcg	gccgggcacg	300
ccccgccgc	cgagcagttc	cgggagactg	ctgccggcag	ttcccgcccg	tcgactacag	360
ttggtgcagg	tgcgaggcga	tcagccacat	gctgggaggc	atctacaggg	agctcggcgc	420
cccggatgtc	gggcacccca	tgtccgaggt	gttccgcggc	tgccggagag	ggacttggag	480
cgcgcggcgg	cgagctcccg	gcgttctgca	agtggacatc	cccaacggcg	gaggtggtgt	540
ctgctactgg	ctggcgagat	ctggctacta	gctaggctac	tgtagctagc	tgtgcactat	600
gtggtgtggt	actaaaataa	tagtgttttc	cttttgtttg	gaagcatatg	tgtggtgaat	660
aaatgatgaa	ctccgatgtt	cctctctaaa	aaaaaaaaa	aaaaaaaa		709

<210> 232

<211> 436

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC90038

<400> 232
cctcgagggt cgacccacgc gtccgctctc ctctcttctc tcgccctcac cgctcgccga 60
ggttgccgtc tccttgtctc ctccgctcct tgcgccgccg ccgcgacgag tcgcggggag 120
gggcggcgat ctccatctcc atctgaggcg aggaggcag gggaggtgag gggatcctgg 180
tgaggtttgt gattactgga caatagaaat atttacacaa tatggctggc ggctctgctg 240
atgcagtgac caaggagatg gaggcgctac tcgttggaca aaatccaaat gcggttagtg 300
gagaaacatg cgagacctca tcaaaagaag gcaaagttgc agatagcaat ggatctcatt 360
cttcaccacc agaagatgat gatgatgaag cgcaagggga tggtccatct caagattgga 420

<210> 233

<211> 3180

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC56736

<400> 233	agaagggatg	aattcccttg	tececaacte	taatctctac	atgaggtagg	60
gccacaaaag	agaagecace	aaccccccg	ccccagccc	caaccccac	acgaggcagg	00
ggctccaggc	ttcaaaatgt	ttcacagete	caggccctcc	taatctctct	gaagatgatt	120
caccacaatt	ccattgccat	ttgacgatat	catcggtagc	cagcattcaa	ttcaatctac	180
agcggctggc	aattctcctt	ggattcagat	tatggtgttc	ttacattaca	gcttgaaaat	240
gagggtaagg	gggaagacat	gccagtgcat	tattgtgacg	gacggattgc	aaatacaaca	300
cttctgtcag	tttctgaaag	tacactacat	gaactggcaa	cgccattggc	gggctaaatc	360
tagatcacac	cgcagcgctg	gctgtcacgg	cgatccacat	ctaagtagtc	ggccacaaca	420
taacttccaa	cagagtgctg	gttggctgca	atgttcatca	ggccatcgtt	tecttctgcg	480
aaggccgcaa	cttgctgctg	gtgaatccat	cagcaacaag	cttattgaca	gcatccctca	540
gcttctcata	atcctccgtt	acattgtaaa	cttggtgtga	gatcctaaca	taccctgtga	600
ctgcatcacc	attcttatcc	tttgccattt	cttgagcttc	tactcttctc	gaattgtagt	660
atattggcac	ctccaccata	aaatccttcc	tcaacattgt	tctcattctc	atcacatcat	720
catcactttc	aacaccaagg	caaccgggaa	gaccaaccat	aaccatgcta	ccgcacagct	780
ctggtggtgt	gccaagaaaa	gtcccccatg	cctcagcaag	catcttaccc	atctcgatca	840
ctttttcatg	gttacggctc	cttattccct	cgatgccacc	ttcaaatcgg	ttaacaaaat	900
caatagattc	aggcactaca	agctgtgcac	tgtaatccct	tgtcccaatc	catccactct	960
ccatgggaag	cccattgccg	tactcgtgcg	acaccacagg	atggtggagc	tgggaggcta	1020
toggatcato	ctttcgggtg	tgcaagaaag	ccacggcagg	cgggcagaag	aaccacttgt	1080
ggagattgct	ggtgtaaaaa	tcggccccaa	tatcgcgcac	atcaacaggg	acctgcccaa	1140
tggagtgcgc	ggcatctata	aacaccttat	cgacaccctc	ttctcggcag	atggcaacga	1200
gctccttcac	cgggatgaca	acgctaggca	tggaggtgat	gtggtcgatg	accgcgaggc	1260

ggaccttgcg cccccggcc ttggccacat cgagcgcggc gcggaactcg gcgatgatgg 1320 catccacada cacacadaa arcaadaaca acretcare arcaataac ccaacacada 1380 cgacgtaggc gtggatggac ttcttgacgg cgccgtacgc gtagtggagc atgagcacgg 1440 cgtccccgcg ggagaacctc ccctcggcga agctccacgc ggcgtgctgc agcacgatgg 1500 cggcggcggt ggtggcgttg tcgacgaggg agacctcggc gacgtccccg gcgttgacga 1560 ggcccgcgac ggcagcccgc gagcggcgga gccccggctg gagggcgtgg aagtagaagt 1620 cgtcgggctg ggcgatgaag aggcgctgcc accgcgcctg cgcgtcgagg agggaggacg 1680 ggcagcaccc gaagctgccg ttgttgacgc gcgccacccc ggcctcgtgg tgctcgaact 1740 cegeceggat etgegeegee gagateaceg aceteggeeg ettegeegge ggegggegeg 1800 1860 gegeeggeee gttgeegtte ceetteeegt teeegtaeee gtteteggee geeceegeeg cegcegeege egecgegteg teateeggeg ggategaege categetege egegeegeeg 1920 cgttagggtt tggttggttg gtttggttgg attggattgg agaggtggtg gaggtggaga 1980 tttggggaga ggagagaagt gaatttgegg attgggaatg ggggettete gegtegegag 2040 2100 2160 gcggcgggt accgggcgga ggacgactac gactactct tcaaggtggt cctcatcggc 2220 gactccggcg tcggcaagtc caacctcctc tcccgcttca cccgcaacga gttcagcctc 2280 gagtccaagt ccaccategg cgtcgagttc gccacccgct ccctccaggt cgacggcaag 2340 gtcgtcaagg cccagatttg ggacaccgcc ggccaggagc gataccgtgc tattactagt 2400 gcatattacc gaggtgctgt tggagcgttg cttgtctatg atgtcacccg gcactcaacc 2460 tttgagaatg ttgagcgctg gttgaaggaa ttgagggacc atacagaccc aaacatagtt 2520 gtcatgctag ttggcaacaa gtctgatctg cgccatcttg tagcggttca aaccgatgaa 2580 gggaaggcat tegeggagag agaategete tattteatgg agaeetetge getegagtee 2640 accaacgttg agaatgcatt tgcagaggtc ttgacccaga tctaccgcat cgtgagcaag 2700 aggtcagtcg aagcaggtga tgatgcaggt tetggteetg gcaagggtga gaagatcaat 2760 ataaaggatg atgtttcggc ggtgaagaag ggcggctgct gctcgggcta agctcttgct 2820 gtattttttt tgggacctgt gtgagcttgt gttatcgccg ttccagcgac tgagaaattg 2880 ttagtagtat tagcaacttc tatgttacgt agagagttta ttgctataac tgaaaggttt 2940 3000 ggccagatca gtttagatct tectattgtt gtatggtete egeggcaact ggggcatggt 3060 gttggttttc atgtgaatcc attgcagcca tgcttgaact gttgaatcaa gtagaaatat gttttacgct tgcaccgctg ttgatttggt aaaaggggaa atgataagca gagtgtacac 3120 ttgtactaca tggtgggatg catttggcac gcaagcaaat aaataactta catttttagt 3180

<210> 234

<211> 1254

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC89839

<400> 234 caataacatt	atattgcagc	aatggcatcc	tcctcccttc	tactcgcctg	tgttgtggtg	60
gcggctatgg	tgtccgccgt	ctcctgcggg	ccacccaagg	tgccaccggg	ccccaacatc	120
acgacaagct	acggcgacaa	gtggctggaa	gccaaggcca	cctggtatgg	tgcgcccaag	180
ggtgctggcc	ccaaggacaa	cggcggcgcc	tgcgggtaca	aggatgtcga	caaggctccc	240
ttcctcggca	tgaactcctg	cggcaacgac	cccatcttca	aggacggcaa	gggctgcggc	300
tcatgcttcg	agatcaagtg	ctccaagccg	gaggcctgct	ccgacaagcc	cgcccttatc	360
cacgtcaccg	acatgaacga	cgagcccatc	gctgcctacc	actttgacct	ctccggcctt	420
gccttcggcg	ccatggctaa	ggatggcaag	gacgaagagc	tccgtaaggc	cggcatcatc	480
gacacgcagt	tccgccgcgt	caagtgcaag	tatcctgccg	acaccaagat	caccttccac	540
atcgagaagg	cctccaaccc	caactacctt	gcgctgctag	tcaagtacgt	cgctggtgat	600
ggtgacgtcg	tggaggtgga	aatcaaggag	aagggctccg	aggagtggaa	ggcgctcaag	660
gagtcatggg	gtgccatttg	gaggatagac	accccaagc	cgctcaaggg	ccccttctcc	720
gtccgcgtca	ccaccgaggg	tggcgagaag	atcatcgccg	aggacgccat	ccctgatggc	780
tggaaggccg	acagcgtgta	caagtccaac	gtccaggcca	agtgagcatt	wtaagcaagg	840
aagaaaccag	cgtacgtacg	atccggcgcg	gctgcctata	tatatatata	tatatata	900
tatatatata	tattatatac	tatatatgtg	ttgctgcatg	cttgcatgca	tgcacatata	960
tatccagaga	aatattttt	aaacgaaata	atctataaat	ttctgagcta	ggattgtgga	1020
gcatatacac	gccagcacta	taatggcgtc	tgctctccca	tcgaactggc	cctgtgacaa	1080
tggggtcatt	tgtttttgcc	cmcaatattt	tctgctaaat	tcattctctg	attttgcgtg	1140
agattatcat	gagaagcagt	aaccatgttg	tgtatccttt	tcttcacgtc	aaattgcact	1200
gcgctattta	tttaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa	1254

<211>	463	•					
<212>	DNA	•	•				
<213>	Oryz	a sativa		,			
<220>							
<221>	misc	_feature					
<223>	TC C	lone TC6137	7				
	•						
<400> caagtc	235 tcca	cccatcaaga	ttgcagtaat	aatccaagct	caataaacga	gccaatccgt	60
cgaaga	agga	agcagcggcg	atggcggcga	ggtccggcga	ggtgcgggcg	acggtgctgg	120
gcatgg	cggt	gctggcgctg	cttctgctgc	tcggccacca	cgcggcggcc	atcgaggcca	180
acgtcg	gcgt	cacccgccag	gccagcttca	gcctgaacgg	cggcgccggc	accaacacaa	240
ttgctc	gcgc	tggcgctggt	gctggcgctg	gcgctggcgt	cggcgctggc	atcggagcta	300
acgtcg	gcgt	tggcgctcgc	gccggcgtcg	gtgctggcgt	cggcgctggc	gtaggtgcga	360
aggtcg	gtgc	tggcgtcggt	gcgaaggtcg	gtgctggcgc	cggcgttgga	gcacgcgctg	420
gcgttg	gtgc	gaacgtcggt	gctggcgtcg	gtgcgaaggt	tgg		463
<210>	236						
<211>	549						
<212>	DNA						
		za sativa					
,	4						
<220>							
	mis	c_feature					
		clone TC600	65				
<400>	236	;					60
•						aagagaccca	60
						geggeggtgg	120
						ctactgcaac	180
						aggcagctga	240
Inter-	rannar	- actacceta	r actacaacta	r tagatacaga	: tacaqqtqca	acccctgcaa	300

	071.	-prom-prov.	2T25 tvt		
ctgctaaggc caaggcgatc				ctacatgatg	360
aataaataaa gagtccatcc	agtgtgatgg	ctcatgcctg	tgtgagtgtg	actgaatcca	420
tcagtgtgtg tgtgtgtttg	tgtcaaccat	gtgtgaatca	ggtgtcaaaa	atcgtggctg	480
gaaatccatg tggtttctag	ctttatgtaa	atgttgtttg	tgaaatataa	atattgtttt	540
gtgtatgtg					549
<210> 237					
<211> 515					
<212> DNA					
<213> Oryza sativa					
-					
<220>					
<221> misc_feature					
<223> new sequence					
<400> 237 ctctcattgc atacaagttc	ctgaagagtt	tacaagagac	ccagaagatc	aagatgtcgt	60
gcggtggaag ttgcaactgc	ggttcttgcg	gctgcggcgg	tggctgtgga	aagatgtacc	120
ctgacctggc tgagaagatc	aacaccacca	tcactactgc	aaccactgtc	ctcggtgttg	180
cacctgagaa ggggcatttt	gaggtgatgg	ttggcaaggc	aggtgagtct	ggtgaggctg	240
cccatggctg cagctgtggc	tccagctgca	agtgcaaccc	ctgcaactgc	taaggccaag	300
atgatctatg actgaattgc	caatgcacca	gcctgtctac	atgatgaata	aataaagagt	360
ccatccagtg tgatggctca	tgcctgtgtg	tgtgtgtgtt	tgtctcaacc	atgtgcgaat	420
caggtgtcaa aagtccgtgg	ctggaaatca	atgtggtttc	tggctttatg	taaatgttgt	480
ttgtgaaata taaatattgg	tttgtctatg	aattt			515
<210> 238					
<211> 1272					
<212> DNA					
<213> Oryza sativa					
<220>					
<221> misc_feature					
<223> new sequence		Page 14	_		

<220>

misc_feature <221> <222> (17)..(17)unknown nucleotide <223> <220> misc_feature <221> <222> (50) .. (50) <223> unknown nucleotide <400> 238 tttgacgact gaatcgnggc tcgcctctgc ggcggccgct ctagattagn gtttcccctg 60 tctgttgtaa ttcggcacga gggctgatca agagctctta attagctagc tagtgattag 120 ctgcgcttgt gatcgatcga tctcgggtac gtagcaatgg cgtccaaggc gttcgctctg 180 ttcctggccg tgaacctcgt cgtgctcggg gtggcaagcg cctgcggcgg cagcccgtcg 240 tgcccgacgc cgacgccgtc gaccccgaca ccgtcaacgc cgacgccgac gccgtcggcg 300 360 ttcgggaggt gccccgcga cgcgctgaag ctgggcgtgt gcgccaacgt gctgggcctg atcaaggcca aggtgggcgt gcctccggcg gagccgtgct gcccgctgct ggaggggctc 420 gtcgacctcg aggcggcggt gtgcctctgc acggccatca ggggcaacat cctcggaatc 480 aacctcaacc tccccatcga cctcagcctc atcctcaact actgcggcaa gaccgtcccc 540 600 accggcttca agtgctaagc agcgtgcata tgcaatgcct gcatgggttg atcctacgta cggtgattag ttggctttga cgactcttga tttgatttgc ttgctgctct gtttatttgc 660 tactacgtta cgtacgtact ttgcatgcaa cgcaacgcat gatcgatcgt gcatgctggc 720

tgtttgtacg tatcacggta ccagtttgga ttctctctgt actctctct ttgtcttctt

tgtagtactc ttattcccgc tatccgtacg tgcgcatttg ttgtaagggc cggtgctagc

ttgtgtgccg gtaccaactt ctaataaagc tatgggtgga acttcaaaaa aaataaaaaa

aaaactggag ggggggcccg ggtccaattt agactataat gagtttaaca ccccgctcat

cggccgaaga taacaacac gggcttggaa aacctagact gcccaactaa tggacggaag acagactctt ggactgaaac tgaacgaaac aagaccaccc accccatcta accacagcca

cctaccgcca aagattccaa taatgtgaat cagtcggtaa tagaacactc ctcttgtacg

attttactgc ccgcgccacc cctcggtacg cacttatata tatcgggccg tagtaatttc

780

900

960

1020

1080

1140 1200

071-prom-prov.ST25.txt 1260 ctggttccgt cacttccctc atcgcacctg ctagtcgtgg cttacatacg tgcgtcctct 1272 tattatcgag cg <210> 239 <211> 860 <212> DNA <213> Oryza sativa <220> <221> misc feature TC clone TC85840 <223> <220> <221> misc_feature <222> (1)..(1)unknown nucleotide <223> <220> <221> misc feature <222> (10)..(10) <223> unknown nucleotide <400> 239 nagggctaan attaccggag tatttttgca aagggagtaa tcaaagttcc aatacgaaat 60 120 cgcggtcgta gtagtacaat acaaagacga gttcacggag cgcgtaaact aataaggaaa aattaaacgt cgcggagaaa taatagccga actggatgaa gatgagcagc actgcctctt 180 gectagecta geccateatg gegaggeega eggeceegae cageaggeee ateacegaae 240 gggcctcgct gccgctggcc ccgccggtgc tgcccgtcga cttcgtcgtc gtcgtcgtcg 300 gegtegtggt egegteegge gtegaegagg gegtgteeat geeggggtee gatgaeggeg 360 420 tggcgggcgt cgcggtggac ggcggggacg acgacgccgt cggggtgggg gtggtgccgg ccgccgcgga gaccgtgacg gcgagcttca tgccgccgga gcagtggccg ctggtgccgc 480 agatgaagta gcgggtgccg ggcttggtga gcgcgatctt ggtgttctgg tcgctgtagg 540

600

actggatcga gttgctggcg gacacgcgct gtagtcagcc gagctcacct ccgccaccgt

gtgcatcatg ctgtactgga acacgagcga gtcaccaacg ctgaaggttt tgctcttcgc 660 ccaggtatcg tagtccacgc cactgctcca gccggatgtg tcgccgacgg tgtagtccac 720 ggcgaaagcc ggcgcaacgg cggcgaggag tagcaccacc agacctgcag ctgcaagtcc 780 atgtactcca gccatgatgg cagagttaat tagcaaacgc gaactgatta gagccgtact 840 agtactggtg gccctcgtgc 860

<210> 240

<211> 1167

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC65908

<400> 240 aggaaaagaa gaaaaaagat cctgtgaacc ctacgaaact accgaagcga acggaaggca 60 120 ggaatcggcg gcggcggcgg cggcggcggt ggggagaagc catggagcgg ctgcagcgga tetteggege etceggeatg gggeageege egteggaete geegetgete gaeteeteeg 180 240 agcaggtcta catctcctcc ctcgccctcc tcaagatgct caagcacggg agggccggcg tgccgatgga ggtgatgggg ctgatgctgg gggagttcgt cgacgactac acggtcaggg 300 tggtcgacgt cttcgccatg ccgcagagcg ggaccggggt cagcgtcgag gccgtcgacc 360 atgtcttcca gaccaacatg ctcgacatgc tcaagcagac cgggaggcca gaaatggtgg 420 taggttggta ccattcccat cctggatttg gttgctggct ttcaggagtt gacatcaata 480 ctcaacagag ttttgaagct ttaaacccca gggcagttgc cgtcgtgata gatcccatcc 540 aaagtgtcaa ggggaaagtt gtcattgatg catttcgcct tattaaccct cagaccatga 600 tgcttggtca ggagccacga cagacaacat caaatgttgg gcacctaaat aagccatcta 660 720 ttcaggetet tattcatggg etgaacagge actaetatte aattgeaate aattaeegga aaaatgagct tgaggaaaag atgttactga acttgcacaa aaagaaatgg accgatggat 780 tgattctgaa gaggtttgac actcattcaa agaccaatga gcagactgtt caggaaatgc 840 900 tgaacettge tateaagtae aacaaggegg tgeaagagga ggatgagetg eegeetgaga aattagcgat agcaaatgtg ggacggcaag atgctaagaa gcacttggaa gagcatgtct 960 ccaatttgat gtcatcaaac atagttcaga cgctaggaac catgctcgat acagttgtat 1020

tttagatcac tactgctgtt atcccaacac tgtacccaga gctcgtttat tttttatttt 1080
tttatgttta tcgaagccta ccataattca gtgaacttaa cgccagttac atttgggtta 1140
tgaaagctta ccacttgaca acttcat 1167

<210> 241

<211> 871

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC56634

<400> 241 cctagetect ecegeegeeg eegeegeege egeegeegee tetecaeteg agagaceeag 60 cegeegeege egeegeegee gecatgtege tgategeegg ggaggaette eageacatee 120 tgcgtctgct gaacaccaac gtcgatggga agcagaagat catgttcgcg ctcacctcca 180 240 tcaagggtgt cggccgcagg ttctccaaca tcgcctgcaa gaaggccgac atcgacatga 300 acaagagggc cggtgagctt acgccggagg agctggagcg gctgatgacc gtggtggcga accegeggea gttcaaggtg ceegactggt teetcaacag gaagaaggae tacaaggaeg 360 ggaggttete ccaggttgte tecaacgege tegacatgaa geteagggat gatettgaga 420 ggctcaagaa gatcaggaac caccgtggtc tgaggcacta ctggggcctc cgtgtgcgtg 480 ggcagcacac caagacaacc ggaaggaggg gtaagactgt cggtgtgtcc aagaagcgat 540 aagcctaaga accacccgag acttgatgaa gcgtttcgtt gggtgatgtt ttgccctagg 600 ataatatttt gcagctatgg aaccttgtcg taatgtatct tgaagagtgt ctttgggaac 660 taagagtaat ttacttttct tgaaactatt gcagtattga ctccttgttt attgcttttc 720 tccactttct tctacccact taaaactatt gcagtatcga ctccttgttt attgctattc 780 tccactggct tctgccttaa ttttggatgt tgcatgcgct gtgtatctgg ttcatgtgat 840 871 gtacccatgg cagctttgat gcattgggat t

<210> 242

<211> 1245

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC89846

	.400- 040						
	<400> 242 acgcggccaa	aacgtaccct	tgtgactaca	cccgcttcgc	ttcctcccct	ctctaagccg	60
,	gggaagctaa	gccatggcgt	ccgtcaccgc	ccgcaccccg	gtcgcagccc	tccgctcgtc	120
	ggcgtcgctc	aagtctacct	tcctagggca	atcctccacc	cgcctcgccc	gcgcaccgac	180
	tacgaggcgt	aatgttcggg	cggaggccaa	gggagagtgg	ctcccggcc	teeettetee	240
	cacctacctc	aacggcagct	tgccaggcga	taacgggttc	gacccgttgg	gtctggcgga	300
	ggacccggag	aacctgcggt	ggttcgtgca	ggcggagtgg	tgaacgggcg	gtgggcgatg	360
	ctgggggtgg	ccgggatgct	gctgcctgag	gtgctgacga	agatcgggtt	gatcgacgcg	420
	ccgcagtggt	acgacgccgg	caaggccacc	tacttcgcgt	cgtcgtcgac	gctgttcgtc	480
	atcgagttca	tcctgttcca	ctacgtggag	atccggcggt	ggcaggacat	caagaaccct	540
	ggctgcgtca	accaggaccc	catcttcaag	agctacagcc	tcccgccgca	cgagtgcggc	600
	taccccggca	gcgtcttcaa	cccctcaac	ttcgagccca	ccctcgaggc	caaggagaag	660
	gagctcgcca	acgggaggct	ggcgatgctg	gcgttcttgg	ggttcctggt	gcagcacaac	720
	gtgacgcaga	aggggccctt	cgacaacctg	ctgcagcacc	tgtctgaccc	gtggcacaac	780
	accatcatcc	agacgctgtc	aggctgagcg	tgtgatcgat	ttcatcaggg	ccagggcatc	840
	tcaaggagct	tgatgagttc	aggctggtga	aaccgatgat	tgggcgatgg	aagatgttct	900
	cttcttgttt	cttcttttt	tttttgtgga	gtatgcatgt	ataagatgtt	aatgaattgg	960
	ggggaggaga	gagagagaga	tggatgtgat	gagattcaga	cttactgtgt	gtgttgtggt	1020
	aattgtttco	tgcatgcatg	gatctggatg	catgggtgag	ggggtgagtt	gagtggtgaa	1080
	tttctgatgt	: acagtactac	agggggataa	actatctcat	ggtagcagca	gtgttctagc	1140
	tatctcatgg	g tctcgatctt	: aattatggtg	gataaactac	gcttaattg	ttgtcaagtg	1200
	cttcatttg	gcattgatt	agtattgcgt	atcgattcaa	a agacc		1245

<210> 243

<211> 1416

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82935

<400> 243					
cccacgcgtc cgccca	acgcg tccgggacac	cagaaacata	gtacacttga	gctcactcca	60
aactcaaaca ctcaca	accaa tggctctcca	agttcaggcc	gcactcctgc	cctctgctct	120
ctctgtcccc aagaag	gggta acttgagcgc	ggtggtgaag	gagccggggt	tccttagcgt	180
gagcagaagg ccaaga	aagcc gtcgctggtg	gtgagggcgg	tggcgacgcg	gcgggccggt	240
ggcgagcccc ggcgcg	gggca cgtcgaaggc	ggacgggaag	aagacgctgc	ggcagggggt	300
ggtggtgatc accgg	cgcgt cgtcggggct	cgggctcgcg	gcggcgaagg	cgcttggcgg	360
agacggggaa gtggc	acgtg gtgatggcgt	tccgcgactt	tcctgaaggc	ggcgacggcg	420
gcgaaggcgg cgggg	atggc ggcggggagc	tacaccgtca	tgcacctgga	cctcgcctcc	480
ctcgacagcg tccgc	cagtt cgtggacaac	tteeggeget	ccggcatgcc	gctcgacgcg	540
ctggtgtgca acgcc	gcaca tctaccggcc	gacggcgcgg	caaccgacgt	tcaacgccga	600
cgggtacgag atgag	cgtcg gggtgaacca	cctgggccac	ttcctcctcg	cccgcctcat	660
gctcgacgac ctcaa	gaaat ccgactaccc	gtcgcggcgg	ctcatcatcc	teggetecat	720
caccggcaac accaa	cacct tcgccggcaa	cgtccctccc	aaggccgggc	taggcgacct	780
ccgggggctc gccgg	cgggc tccgcgggca	gaacgggtcg	gcgatgatcg	acggcgcgga	840
gagettegae ggegee	caagg cgtacaagga	cagcaagatc	tgtaacatgc	tgacgatgca	900
ggagttccac cggaga	attcc acgaggagac	cgggatcacg	ttcgcgtcgc	tgtacccggg	960
gtgcatcgcg acgac	gggct tgttccgcga	gcacatcccg	ctgttccggc	tgctgttccc	1020
gccgttccag cggtt	cgtga cgaaggggtt	cgtgtcggag	gcggagtccg	ggaagcggct	1080
ggcgcaggtg gtggg	cgacc cgagcctgac	caagtccggc	gtgtactgga	gctggaacaa	1140
ggactcggcg tcgtt	cgaga accagctctc	gcaggaggcc	agcgacccgg	agaaggccag	1200
gaagctctgg gacct	cagcg agaagctcgt	cggcctcgtc	tgagtttatt	atttacccat	1260
tcgtttcaac tgtta	atttc ttcggggttt	agggggtttc	agctttcagt	gagagaggcc	1320
tgtcaagtga tgtac	aatta gtaattttt	tttacccgac	aaatcatgca	ataaaaccac	1380
aggettacat tateg	atttg tccacctaaa	ttaagt			1416

<210> 244

<211> 545

<212> DNA

				071	-prom-prov.	ST25.txt		
	<213>	Ory:	za sativa					
	<220>							
	<221>	misc	_feature					
	<223>	TC o	clone TC829	77				
	<400> gaggati	244 tcgg	cacgaggaga	actccataca	agtaagcagc	agctagttgc	cgacaaggcc	60
	agagaag	ggaa	gaagaagctc	tcatcatcat	caccatgtcg	tgctgcggtg	gcaactgcgg	120
	atgcgg	ctcc	agctgccagt	gcggcaacgg	ctgcggcgga	tgcaagtact	ctgaggtgga	180
	acccac	gacc	acgaccacct	tccttgccga	tgcaaccaac	aaggggtctg	gtgctgcttc	240
	cggagga	atca	gagatggggg	cggagaacgg	cagctgcggc	tgcaacacct	gcaagtgcgg	300
	caccag	ctgc	ggctgctcct	gctgcaactg	caactagaag	aaacttatct	ccatccaatt	360
	catcac	ctga	tcaacgagct	accagtacca	ctacatatgc	catgtactag	ctacctagct	420
	tgcatg	caag	tccttaattt	gctgctagct	agctagctac	ctaccttagc	gtctcatgta	480
	tgtcat	gttg	cegeetggee	cctaaataaa	attccttact	taatcgcaaa	atcttattta	540
	tatac							545
į	<210>	245						
	<211>	978						
	<212>	DNA						
	<213>	Oryz	za sativa					
	<220>							
	<221>	misc	_feature					
i	<223>	TC o	clone TC903	77				
	<400>	245	***					
				agcaccaagg				60
	CTCCTC	gatc	catatcttcc	ggtcgagttc	rrggrcgatc	tetteeetee	tccacctcct	120

180

240

300

cctcacaggt tcttggtgta gcttgccact ttcaccagca aagtttcatg tctgatctcg

acattcagat cccaactgcc ttcgatccct ttgctgaggc caatgctgga gactctggtg

cggctgcagg atcaaaggac tacgttcatg tacgcatcca gcagcgtaat ggccgtaaga

071-prom-prov.ST25.txt gcctgaccac tgtccaggga ttgaagaagg aattcagcta caacaagatc ctcaaagatc	360
	420
tcaagaaaga gttttgctgc aatggtactg ttgtccagga cccagagctt ggccaggtca	480
ttcaacttca gggtgatcag aggaaaaacg tatcaaattt tcttgttcag gccggcattg	
tgaagaagga acacatcaag attcatggtt tctgagcaac tgccaaaacc attgcaaaga	540
ctatagtttg gggtggagta tacttggttg tgtacatgcc tgcgtgttcc attgtacaca	600
caaaacctag ccacctcttg actcttgagt gtatgcttgt tacccgtgtg ttgaagtttg	660
taagaggcac catcactata gatgatggct tgtgtccctc tttcatcaag attgaataat	720
atatgctact ttgagagege tetecettaa attacetgat accettttga attettgggg	780
ggggtgtgcc ccctttcttt tttggggggc cccggaccac ccccccttg tttttttgta	840
taccccccc tcaagccaca ctgtatcacc tgcccatatg tgaaaccctc cccttcccca	900
attgageeet ttgecaaaet eeccatttte geeeeegggt aeteteaaaa aggeeegeee	960
ctatgccttt tccgttgt	978
<210> 246	
<211> 362	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<223> TC clone TC63522	
2205	
<220> <221> misc_feature	
<222> (83)(83)	
<223> unknown nucleotide	
<220>	
<221> misc_feature	
<222> (205)(205)	
and well-and and and a	

<223> unknown nucleotide

```
<221> misc_feature
<222> (236)..(236)
<223> unknown nucleotide
<220>
<221> misc_feature
<222> (273)..(274)
<223> unknown nucleotide
<220>
<221> misc_feature
<222> (287)..(287)
<223> unknown nucleotide
<220>
<221> misc_feature
<222> (304)..(304)
<223> unknown nucleotide
<220>
 <221> misc_feature
 <222> (313)..(313)
 <223> unknown nucleotide
 <220>
 <221> misc_feature
 <222> (323)..(323)
 <223> unknown nucleotide
 <220>
 <221> misc_feature
       (329)..(329)
 <222>
```

<223>	unknown nucleotide	
000		
<220>		
<221>	misc_feature	
<222>	(332)(332)	
<223>	unknown nucleotide	
<220>		
<221>	misc_feature	
<222>	(338)(338)	
<223>	unknown nucleotide	
<220>		
<221>	misc_feature	
<222>	(346)(347)	
<223>	unknown nucleotide	
<220>		
<221>	misc_feature	
<222>	(357)(357)	
<223>	unknown nucleotide	
<400>	246	
attaca	agga aatttaagcg accacgaaga gtatgacgct ggtgaagatt ggtccgtggg	60
gcggaa	atgg agggtcagct cangacatca gtgtgccacc caagaagctg ttaggcgtga	120
caatct	acag ctcagatgca atcagatcca ttgccttcaa ctacatcggt gtggatggac	180
aggaat	atgc cattggtcca tgggntgggg gcgaaggcac ctctacagag attaanactg	240
ggctcc	tctg agcagatcaa ggaggatttt ctnngaaccc catgggnccc agtcttatga	300
tctngg	ctga canttgtcaa ccnattctna angatttngg acaaanngcc tgattgntac	360
at		362
<210>	247	

<211> 1149

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC56770

·						
<400> 247 cttctacttc	tatcatacca	aacaaactag	cttaatttgc	attgcatcac	attgccggcc	60
gccatgagag	ctctcgctct	cgcggtggtg	gccatggcgg	tggtggccgt	gcgcggcgag	120
cagtgcġgca	gccaggccgg	cggcgcgctc	tgccccaact	gcctctgctg	cagccagtac	180
ggctggtgcg	gctccacctc	cgattactgc	ggcgccggct	gccagagcca	gtgctccggc	240
ggctgcggcg	gcggcccgac	cccgccctcc	agcggtggcg	gcagcggcgt	cgcctccatc	300
atatcgccct	cgctcttcga	ccagatgctg	ctccaccgca	acgaccaggc	gtgcgccgct	360
aagggcttct	acacctacga	cgccttcgtc	gccgccgcca	acgcctaccc	ggacttcgcc	420
accacccgcg	acgccgacac	ctgcaagcgc	gaggtcgccg	ccttcctggc	gcagacgtcc	480
cacgagacca	ccggcggctg	geceaeggeg	cccgacggcc	cctactcctg	gggctactgc	540
ttcaaggagg	agaacaacgg	caacgccccc	acatactgcg	agcccaagcc	ggagtggccg	600
tgcgccgccg	cgaagaagta	ctacggccgg	ggacccatcc	agatcaccta	caactacaac	660
tacggccgcg	gggcaggcat	cggctccgac	· ctgctcaaca	acceggacet	ggtggcgtcg	720
gacgccagtc	tccttcaaga	cggcgttctg	gttctggatg	acgccgcagt	cgcccaagcc	780
gtcgtgccac	gcggtgatca	ccggccagtg	gacgccgtcc	gccgacgacc	aggcggcggg	840
gcgcgttccg	ggctacggcg	agatcaccaa	catcatcaac	ggcggtgtgg	agtgcgggca	900
cggcgcggac	gacaaggtgg	ccgaccggat	cgggttctac	aagcgctact	gcgacatgct	960
gggcgtcago	: tatggcgata	acctggattg	ctacaaccag	aggccctacc	cgccttccta	1020
gttgatattt	: gatccgagca	. gacgaataaa	atacaatgca	cacgagattg	tgagactcga	1080
gaaaacatat	actacctctg	aattttaata	catatctcta	aaacaaaaa	. aaaaaaaaaa	1140
aaaatatac						1149

<210> 248

<211> 824

<212> DNA

<213> Oryza sativa

<220>					
<221> misc_fe	ature				
<223> TC clon	ne TC64259				
<400> 248 ggagggaacg cga	agacagaa caaaaga	gga aaaaaaacat	: atacacttct	agtgattgtc	60
tgattgatca tca	aatggcta gcaaggt	cgt cttcttcgcg	g geggegetea	tggcggccat	120
ggtggccatc tcc	eggegege agtgage	gag tcggagatga	ggttcaggga	caggcagtgc	180
cagegggagg tge	caggacag cccgctg	gac gcgtgccggc	aggtgctcga	ccggcagctc	240
accggccggg aga	aggttcca gccgatg	ttc cgccgcccg	g gegegetegg	cctgcggatg	300
cagtgctgcc ago	cagctgca ggacgtg	agc cgcgagtgc	getgegeege	catccgccgg	360
atggtgagga gct	tacgagga gagcatg	ccg atgcccctg	g agcaaggctg	gtcgtcgtcg	420
tegteggagt act	tacggcgg cgagggg	tcg tcgtcggag	c aggggtacta	cggcgagggg	480
tcgtcggagg agg	ggctacta cggcgag	cag caacagcag	c cggggatgac	ccgcgtgagg	540
ctgaccaggg cga	aggcagta cgcggcg	cag ctgccgtcg	a tgtgccgggt	tgagccccag	600
cagtgcagca to	ttegeege eggeeag	tac taggctagc	t ggcttgcctc	atagctagta	660
ggatcacacc gt	tgctgtgt tgcatgc	aac gagatagtg	a tcaaaacaaa	taatgaataa	720
tgaaatgttt tga	aaaacaaa atagctg	gtg ataaagtac	t atatatgatt	ttgtgcgttc	780
tggacaattt ta	ttcttcaa tactact	gca ataatcccc	t ggat		824
<210> 249					
<211> 1962					
<211> 1302					
<213> Oryza	sativa				
(112)					
<220>					
<221> misc_f	eature				
<223> TC clo					
					
<400> 249 attcgccacg aa	acccaacc cgtcaa	cgct gccgctgaa	t ctcactttct	ctctctgttc	60

120

ttggtgcttc cgccgccatg gctgctccca gcgtcgccgt cgacaacctc aaccccaagg

ttttgaattg tgagtatgca gtgcgtggag agattgtgat ccatgctcag cgcctgcagc 180 aacagctaca gactcaacca gggtctcttc cttttgatga gatcctatac tgcaacattg 240 300 ggaatcccca gtctcttggt cagaagccag ttacattctt cagggaggtt attgctcttt gtgatcatcc atgcttgttg gaaaaggagg aaaccaaatc attgttcagt gctgatgcca 360 tttctcgagc aacaacaatt cttgcctcga ttcctggaag agcaactgga gcatacagcc 420 acagccaggg catcaaaggg ctgcgtgatg caattgctgc tggaattgca tcacgtgacg 480 gataccctgc aaatgcagac gacattttcc ttactgacgg agcaagccct ggagttcaca 540 tgatgatgca gttactgata aggaacgaga aagatggcat tctctgccca attcctcaat 600 660 atcetttgta etcageetee attgetette atggtggage tettgteeeg tattatetta 720 atgaatcaac aggctggggt ttggagatct ctgaccttaa gaagcaactc gaagattctc 780 ggttgaaagg cattgatgtt agggctttgg tagttatcaa tccaggaaat ccaactgggc **B40** aggttcttgc tgaggaaaac caacgggaca tagtgaagtt ctgcaaaaat gagggacttg 900 ttcttctggc tgatgaggtg taccaagaga acatctatgt tgacaacaag aaatttaact 960 ctttcaagaa gatagcgaga tccatgggat acaacgagga tgatctccct ttagtatcat ttcaatctgt ttctaaggga tattatggtg aatgtggcaa aagaggaggc tacatggaga 1020 ttactggctt cagtgctcca gttagagagc agatctacaa agtggcgtca gtgaacttat 1080 gttccaatat cactggccag atccttgcca gcctcgtcat gaatccacca aaggctggag 1140 1200 atgcatcata tgcttcatac aaggcagaga aagatggaat cctccaatca ttagctcgcc 1260 gtgcaaaggc attggagaat gctttcaaca gtcttgaggg aattacatgc aacaaaactg 1320 aaggagcaat gtacctcttc cctcagctta gtctgccaca aaaggcaatt gacgctgcta 1380 aagctgctaa caaagcacct gatgctttct atgcccttcg tctcctcgag gcaaccggaa ttgttgttgt ccctggatct ggatttggcc aagttcctgg cacatggcac atcagatgca 1440 caatcctgcc acaggaggag aagatccccg cgatcatctc ccgcttcaag gcattccatg 1500 1560 agggetteat ggeagegtae egegaetgaa ttgeeattea eeattgaaca gatggggagt tctatacaag cctgatggat tttccccagg ccttctttt ttttgtcccc atgatagcat 1620 catcgtgtag accaaaacaa aataaatcaa agccagacat gctttttttt agtgtgctaa 1680 tcacagaggg tactgaaaaa ctgatgcctt cgatggcaaa ttgaggagaa atttacctgc 1740 catttcgttg ttgtgcctgt tactgtataa atgttaagat tttggtgcag aggcagctat 1800 1860 agttttgaga tgttggagtt ggctgaactg tatgagaatg gcttgatctg attgtgagac 1920 ccaccaagct attcatctct gatttgaata gcgttggttg gtaggagtgc tgctgaacaa 1962 aatgctctga ataaaatgag acctttcagt gtcttttact ct

<211> 2004

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> new sequence

						-100- 250
60	ccggaggagg	accctagcgc	gccctcgcaa	cctcgcttcc	gcacccaaac	<400> 250 gtcgggaaga
120	agcagcctcc	cgagcaacct	ccgccgatgt	agtttgccgt	ttgcggtggt	aggaggtggg
180	acccgcggtg	cggcgaagcg	gcggcggcgg	ctcggtggcg	cgtcgtcgtc	cgccgctcgt
240	ggcaaagaag	gegeegeege	gcggcagcgg	aggagggaag	gaggaggagg	ggggagggag
300	agggaaggcc	gtggcgcccc	gccgctggtg	cagcaacgtc	ttagcaacat	cgcgtggcgc
360	atctttggcc	tgaagaaggg	gctgcaccag	agctgcctca	agttgaattt	ggcaatgcga
420	cgccaagccg	aatcggcttc	tcggcggtga	gaatcgggcc	atgtgggcac	agtggccgca
480	tcctcctaaa	agtctgttct	acacagaagg	tgagagcgcc	tatcccgcca	gctccggcca
540	cagcagcttc	ctgtaccctg	gcacctgtca	tgctgcactg	ttgtgccgac	gtgcctagca
600	gacgtgtgac	agacgatgtc	tcggttgacg	agattcagtt	tgcattcagg	gtctccccta
660	agttctaggt	attcctcctc	gataatgggg	tgagtacatt	gcccagaatt	tcaatgaaaa
720	tgtcgaagaa	aggatagaga	cgtatctcag	cgaaaacctg	gaagagcaaa	tccttgcagc
780	tgatgttgac	accaaatttg	atggaaatcg	tccttcccca	agaaggatgc	actaagtgga
840	catgcacttg	ctgatatcta	actcttgctt	gttgtgtgct	aggatccgca	aataactacg
900	ccaaaaggat	tggaaacaat	actgatttta	acgtccatca	agaccaggaa	cgcgaggctg
960	tgaagaatat	tggaagtcgc	gactggcttg	gatcctgata	gcatgagagc	gtaaacccaa
1020	tetttetgge	ttgatcgtta	gttaactaca	atacctgaca	ctgatacatt	cgtcttgttc
1080	tattgctgca	cttgtatgct	cttggagttg	actgcaatta	atcgtcaaag	aatgagatca
1140	tgacaacaca	gctatataac	gaagaattct	acctcaagta	agatatgtgc	aaatacgagg
1200	gaagtttgaa	tgaattacct	gattatgtaa	ggaaatggaa	atgaggtttt	tacttcagag
1260	acaagtatcg	tccgtgttgc	aggagatttg	atgctttttg	ctacagcaaa	gtgactgcac
1320	gctatcactg	atgttgctga	ctagccaatt	tcttgagttc	cagcattgca	gatgaggatc
1380	tattttcttg	cggcatcggc	tcactagtag	ttaccctcct	atctactttc	ctggagtaca

071-prom-prov.ST25.txt gccaaattca tactgcagcc aacaaagcac ccttggaatt ccacccttgc tcactacaca 1440 caatacaagt cgtcagagtt aagcgactgt gtaaaggcat tgcaccgcct ttttagcgtt 1500 ggtcccggga gtaaccttcc tgcaatcagg gagaagtata cccaacataa gtacaaattt 1560 gtggcgaaga agccctgccc accctcaata ccgaccgaat tctttcgcga cgcaacatgc 1620 tgaactagaa aaataaacca aggattagtt acagttgctg actgaattct tcctccagag 1680 gcacctatgc caggttgtgc cgtagaccgt tcagataacc ttgatgcaag gcatgctgct 1740 tgccccccc cccccccc ctggttcttt caggcggttt ggctgagtgt agatagatcg 1800 atgcttctgc tgtgtgtggt aacttttatg gtactgatgt gctttcttct atcttctttt 1860 ccctgtacct agatgatcca tggttttcag tactttgtac atcggagtcc tgcagcaaag 1920 ctttaaacat cttgtttgat attagctgcc aacctgggcg tctcctaggt tgatgtatga 1980 2004 tagagtetet gttegtgttg ettt <210> 251 <211> 1745 <212> DNA <213> Oryza sativa <220> misc_feature <221> TC clone TC91931 <223> <220> <221> misc_feature (1719) .. (1719) <222> <223> unknown nucleotide <400> 251 gaattoggca cgaggotcac ttgccccctc ctcctctttc acacctcacc tcccacccaa 60 gataaagagc aagaacagca agagcaagaa gaggaggagg gagaccacac aatctatcac 120 aagcttagca agatttatca gcaaggaaat ggcagctctg acgagctacg agatggcggc 180

240300

360

ctccatcttg ctctgcgccg aggacagcag cagcgtcctc ggcttcggcg gcgaggaaga

ggaagaggag gaggacgtcg tggctgggaa gagggccagg tgcgctggtc cgccgccgcc gccgtgcgtg gacgtcgctg gcgtggattt cgccgtgccg tcggaggaat gcgtcgcccg

cctggtggag	acggaggcgg	accacatgcc	gagggaggac	tacgccgaga	ggctgcgcgc	420
cggcggcggc	gacggcgacc	tggatcttcg	cgtcaggatg	gatgccatcg	attggatttg	480
gaaggttcac	tcctactaca	gcttcgctcc	tctcactgcc	tgcttggccg	tcaactactt	540
ggaccgcttc	ctctcactct	accagcttcc	ggatggcaag	gattggatga	cgcagctgct	600
agcagtagcg	tgcttgtcgc	ttgctgccaa	gatggaggaa	accgatgtgc	ctcaatcgct	660
ggacctgcag	gtcggggaag	aacggtacgt	gttcgaggcg	aagacgatcc	agaggatgga	720
gctgctggtc	ctgagcaccc	tcaaatggag	gatgcaggcc	gtcactccct	tctcctacgt	780
cgactacttc	ctccgcgagc	tcaacggcgg	cgatccgccg	tcgggacgct	cggcgctgct	840
gtcttcagag	ctcatcttgt	gcatagctag	aggaacagaa	tgcttgggat	tcaggccgtc	900
ggagatcgcc	gccgcggtcg	ccgccgccgt	ggtcggagaa	gaacacgccg	ctttctccca	960
tgtaaataag	gagaggatgt	cgcattgcca	ggaagtgatt	caggccatgg	agttgataca	1020
tccaaaacct	gcaagcccca	gcagagtctt	cgtctcctcc	tccattccac	ggagccctac	1080
tggggtgttg	gatgcagcag	gctgcctcag	ctacaggagt	gacgattcag	ctgttgcctc	1140
acactacgca	gcaagcagct	ggggatatga	acatgatagc	tccccggtta	gcagcaagag	1200
gaggaagatt	agcagatgat	gcagccaatg	atggatcaat	taaaagtctg	tttatatgtg	1260
ttgcgaaact	gatcgtgcat	ctctcttct	tgggaaagtc	aaatggtttt	gattgcaaat	1320
gactgtggag	cctttctatg	ccgtatggga	gctagagcct	gaaaggcgat	gaaggaccaa	1380
aagcaaggca	ttttcgacat	ggcaacagag	caaagatact	gatggataaa	gagagtctga	1440
ggtagacatg	tgctccaata	ttttcatgtg	ctttagcgtt	agttgctagg	aggcaggcag	1500
ccacaaaaga	gtagaggatt	tgtgggaaga	gagccgggcg	agatgaaaat	gagatgacca	1560
aaataaaggc	agagacgagg	tgacagtggc	acaaggcaaa	gcgagctagg	cactgacact	1620
ccagatgtcc	tgcgtgtgtt	tcagttttgc	gttgttctgt	aatttcccct	gcttaattcc	1680
tttgtgaaga	aaaatcataa	aaaagaagga	gagaaacana	caaaaaaaaa	aaaaaaaac	1740
tcgag						1745

<210> 252

<211> 1659

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC65369

cgaattagga toototgota goagagatt cggcacgagg cgggtggtgg gggaggacac ggcacgaggc ggaggcgc gaggaggtgg tgggaatcga toototgota goagagatt cggcacgagg cgggtggtgg ggggaggcac ggcacgaggc ggaggcgcg gaggaggtgg tgggaatcga tootottotg theogaccac ctcgatcgcc cgctaccccc acgccct the tootototg catgcgcgcg gaggattct tootottotg catgcgcgc ggggtggac ggcgacactg ggggattct tootottotg catgcgcgc ggggtggac gccactg ggggattct tootototg catgcgcgc ggggtggac gccactg ggggattcac cgcaccact tootogcgcc gcgacgcaca cgtccacggt catctgcgg aggattgac acgacctct tootototg catgcgcgga acgatggcgg cggggaagc ggggggacac ggggggacac ggggggattac cattgctgac gacgaccatg tgttgccat ggacgggac ggggggac gggggggac gggggggac gggggggac gggggggac gggggggac gggggggac gggggggac gggggggac gggggggg	050						
ggcacgaggc ggaggccgcg gaggaggtgg tgggaatcga tcccttctctg ttccggcccctccgatcgcc cgctacccgc acgccgctt ttcgtcccgg tggattctt cctcttttct tcctcttctg catggcgcgc gggctgtgac gccgaccatg ggggacgcct cggcatccac ctccgacgcc gcgcaccac cgtccacgct catctgccgg gaggatggac acgactctt tcctctctctg catggcgcgc gggctgtgac gcgcgacgacg gaggatggac cggcagcact ctccgacgac cccgccgacg acgatggag cggcggaagc ggggggagac ggaggttatc cattgctgac gacgaccatg tgttgctcat ggaccgggac gagggggacgac ggaggggagac gcggggagac ggaggggagac ggagggag	<400> 252 agatgtatat	aactatctat	tcgatgatga	agatacccca	ccaaacccaa	aaaaagagat	60
ctcgatcgcc cgctacccgc acgccgcctt tecgtccgg tggatteteg cetccetttt ctcgattctt tccttttct tcctcttctg catgcgcgcc gggctgtgac gccgaccatg ggggacgcct cggcatccac ctccgcgccc gcgacgccca cgtccacgct catctgcgg gaggatggca acgacctctt ctccgccgac cccgcgacg acgatggcgg cggcggacg ggcggcgact gggattatc cattgctgac gacgaccatg tgttgctcat ggaccgggac gatgagtacc tcgcgctgat gctgtccaag gagaggtgg ccggcgggcg gagcgtgggg atgaggagga ggaggagatg gtggaggagt ggatgaagaa cgcgcggcg tggtgtgtcg gctggattgt taagacgaac gcgggattcc ggttcagctt gaagacagg gagtggggc tgcgatct ctgggtgct ttggcgccc ggttgtgca tagggacaag gagtgggcgc tgcagctcc ctcggtgcg tgcctgtcg tggcggcgac ggagtgaggc cggatggagc tgcagctcc ctcggtgcg tgcctgtcg tggcggcgaa ggtggaggag cggatggagc tcctcgtcc ggagttcaag ctggacatgt acgactgcg gtccttgatg cggatggagc tcctcgtcc caccacgctc aagtggcaga tgatcaccga gacacccttc tcctacctga actgcttcac cgcgaaattc cggcacacg agcggaaggc gacacccttc tcctacctga actgcttcac cgcgaaattc cggcacaca agcggaagg gacacccttc tcctacctga actgcttcac gggctcgtta tggcagcaa agcggaagg gacacccttc tcctacctga actgcttcac gggctcgtta tggcagcaa agggaaggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaa tagacaccgg gcctaatcta tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcga gacggaggc gccaatcata acaagatgat gattcaagag gacaggtcga tgcaatcga gacggaggc gccaatcatg caccacctt ggaggcaacc ccggacaaga aggacaacg catggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcaagcca agtaraggga ggagctggag gctggaacga agaggaaaag gttgcactcg cctcaagcca agtaraggga ggagctggag gctggaacga agaggaaaag gttgcactcg cccaagcacca agtaraggga ggagctggag gctggagctg gacagcatgt tggttgagt ccaacacttc gaaggcaacc ccggacaaaga agaggaaaag gttgcactcg cctcaagcca agtaraggga ggagctggag gctggaacgac acagacactt tagtcaggc tcttgcaagt tcaagggggg ttggccaaat ggaggggca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga acagttctgg tttttgtggaa aaaaaaaaaa aaaaaaaaaa aaaaaagatat agtcgactca agagccctat	cgaattagga	tcctctgcta	gcagagaatt	cggcacgagg	cgggtggtgg	ggggaggcac	120
ctcqattett tocttttet tectettetg catgogge gggctgtaa geogacetg ggggacgect eggcatecae etecgegece gegacgeca egtecaeget catetgeegg gaggatggaa acgacetett etecgegae eeegecgaeg acgatggeg eggeggaage ggeggegaet gggagttate cattgetgae gacgaceatg tgttgeteat ggaceggae gatgagtace tegegetgat getgecaaag gagaggtgg eeggeggeg eggeggege gagegtgggg atgaggaag ggaggaagt gtgagagagt gatgaagaa eggeggegge tatgtegggg tgtegtatet egateggte ttggeggee ggtgtgtega taggacaag gagtgggeg tgeagatett eegateggte ttggeggee ggtgtgtega taggacaag gagtgggeg tgeagatet eeeggtee ttggeggee ggtgtgtega taggacaag gagtgggee tgeagetee eteggtee ttggeggee ggtgtgtega taggacaag egeeggeege egeggetgee ggagtteaag etggacatgt aegactgee gteettgatg eggatggage teetegteet eaeeaegete aagtggeaga tgateaeega gacaceette teetaeetga actgetteae egegaaatte eggeacgae ageggaagge gategteetg eggecateg aatgeatett egeetegate aaagteatta geteggtggg gtaceagea teaaegaateg etetageage aateeteate geteggaaea aggagaagge geteateta gacgagetea agteggteg gggetegtta teggeagaae tagacaeegg geetaateta gacgagetea agteggteg gggetegtta teggeagaae tagacaeegg geetaateta teetaeetga acaagatgat gatteaagag gacaggtega tgeaategae gacggaggta getteetegg gtgtetetgt tgeecaatt gggggatega tgeaategae gacggaggta gecaataatg ceaceaeett ggaggeaaee eeggaaagae gacagagee eatgggagge gecaataatg ceaceaeett ggaggeaaee eeggaaagae gacagaaaga gttgeaeteg ececaageee agtaraggga ggagetggag getggagetg gacageaage eatgggagge ececaataatg ceaceaeett ggaggeaaee eeggaaaaga ggaggaaaaag gttgeaeteg ececaageee agtaraggga ggagetggag getggagetg gacageatgt tggttggagt ecaagetetge aatttttagt tgateatttt eaeeetttt ettttgtte agetgageee tagteagtge tettgeaagt teaggggggg ttggecaaat ggaggggeea acatttgatt ettttttgtggaa aaaaaaaaaa aaaaaaaaaa aaaaaagatat agtegaateg aagaceetat	ggcacgaggc	ggaggccgcg	gaggaggtgg	tgggaatcga	tecetttetg	ttccggccgc	180
ggggacgcct cggcatccac ctccgcgccc gcgacgccac cgtccacgct catctgccgg gaggatggca acgacctott ctccgccgac cccgccgacg acgatggcga cggcggcagc ggcggcgact gggagttatc cattgctgac gacgaccatg tgttgctcat ggacgggacg	ctcgatcgcc	cgctacccgc	acgccgcctt	ttcgtcccgg	tggatttctg	cctccctttt	240
gaggatggca acgacctctt ctccgccgac cccgccgacg acgatggcgg cggcggcagc ggcggcgact gggggttatc cattgctgac gacgaccatg tgttgctcat ggaccgggacc gatgagtacc tcgcgctgat gctgtccaag gagaggtgg ccggcggggg cggcgggggggggg	ctcgattctt	tcctttttct	tcctcttctg	catgcgcggc	gggctgtgac	gccgaccatg	300
ggcggcgact gggagttate cattgctgac gacgaccatg tgttgctcat ggacgggac gatgagtace tegeggtgat getgtccaag gagaggtgtg ceggeggggg cagegggcggggggggggggggggggg	ggggacgcct	cggcatccac	ctccgcgccc	gcgacgccca	cgtccacgct	catctgccgg	360
gatgagtace tegegetgat getgtecaag gagaggtgtg eeggeggegg eggeggeggegggggggggg	gaggatggca	acgacctctt	ctccgccgac	cccgccgacg	acgatggcgg	cggcggcagc	420
gagcgtgggg atgaggagga ggaggagatg gtggaggagt ggatgaagaa cgcgcgctcc tggtgtgtcg gctggattgt taagacgaac gcgggattcc ggttcagctt gaagacggcg tatgtcgcgg tgtcgtatct cgatcggttc ttggcgcgcc ggtgtgtcga tagggagag gagtgggcgc tgcagctcct ctcggtggcg tgcctgtcgc tggcggcgaa ggtggaggag cgccggccgc cgcggctgcc ggagttcaag ctggacatgt acgactgcgc gtccttgatg cggatggagc tcctcgtcct caccacgctc aagtggcaga tgatcaccga gacacccttc tcctacctga actgcttcac cgcgaaattc cggcacgacg agcggaaggc gatcgtcctg cgcgccatcg aatgcatctt cgcctcgatc aaagtcatta gctcggtggg gtaccagca tcaacgatcg ctctagcagc aatcctcatc gctcggaaca aggagacggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaac tagacaccgg gcatgtgtat tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcgc catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagtg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcattt caccctttt cttttgttc agctgagcc tagtcagtgc tcttgcaagt tcagggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg tttttgtggaa aaaaaaaaaa aaaaaaaaa aaaaaaaa	ggcggcgact	gggagttatc	cattgctgac	gacgaccatg	tgttgctcat	ggaccgggac	480
tagtgtgteg getggattgt taagacgaac gegggattee ggtteagett gaagacggeg tatgteggg tgtegtatet egateggtee ttggegegee ggtgtgtega tagggacaag gagggggege tgcageteet eteggtggeg tgcetgtege tggeggegaa ggtggaggag egeeggeege egeggetgee ggagtteaag etggacatgt aegactgege gtcettgatg eggatggage teetegeet eaceacgete aagtggeaga tgateacega gacaccette teetacetga aetgetteae egegaaatte eggeacgaeg ageggaagge gategteetg eggegeateg aatgeatett eggeacgaeg ageggaagge gategteetg eggegeateg aatgeatett eggeacgaeg ageggaagge gategteetg eggegeateg aatgeatett eggeagaaca aggaggaegge geetaateta gacggagetea agteggtegt gggetegtta tggeageaae tagacacegg geatgtgtat teeteggaaca acaagatgat gatteaagag gacaggtega tgeaategae gaeggaggta geetaateta geteggaaca acaagatgat gatteaagag gacaggtega tgeaategae gaeggaggta geetaateata getegeege agtaragga ggaggeaace eegggaatga aggacaageg eatgggagge geetaateta geeteggaa acaaccett ggagggaace eegggaggta ggaaataatg eeaceacett ggaggeaace eeggacaaga aggacaageg eatgggagge eetegageeg agtaraggga ggagetggaa getggagetg gacagcatgt tggttggagt eeagetetge aattttagt tgateattt eaceettttt ettttgtte agetgagee tagteagteg tettgeaagt teaggggggg ttggecaaat ggaggggeea acatttgatt ettettetga ttatgeaatt gttacagttg attgattagt tagcaatgga aagattetgg tttttggaaa aaaaaaaaaa aaaaaaaaaa	gatgagtacc	tcgcgctgat	gctgtccaag	gagaggtgtg	ccggcggcgg	cggcggcggc	540
tatgtcgcgg tgtcgtatct cgatcggttc ttggcgcgc ggtgtgtcga tagggacaag gagtgggcgc tgcagctcct ctcggtggcg tgcctgtcgc tggcggcgaa ggtggaggag cgccggccgc cgcggctgcc ggagttcaag ctggacatgt acgactgcgc gtccttgatg cggatggagc tcctcgtcct caccacgctc aagtggcaga tgatcaccga gacaccettc tcctacctga actgcttcac cgcgaaattc cggcacagac agcggaaggc gatcgtcctg cgcgccatcg aatgcatctt cgcctcgatc aaagtcatta gctcggtggg gtaccagcca tcaacgatcg ctctagcagc aatcctcatc gctcggaaca aggagacggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaac tagacaccgg gcatgtgtat tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcgc catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcattt caccctttt cttttgttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggagggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg tttttgtggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	gagcgtgggg	atgaggagga	ggaggagatg	gtggaggagt	ggatgaagaa	cgcgcgctcc	600
gagtgggcgc tgcagctcct ctcggtggcg tgcctgtcgc tggcggcgaa ggtggaggag cgccggccgc cgcggctgcc ggagttcaag ctggacatgt acgactgcgc gtccttgatg cggatggagc tcctcgtcct caccacgctc aagtggcaga tgatcaccga gacaccettc tcctacctga actgcttcac cgcgaaattc cggcacgacg agcggaaggc gatcgtcctg cgcgccatcg aatgcatctt cgcctcgatc aaagtcatta gctcggtggg gtaccagcca tcaacgatcg ctctagcage aatcctcatc gctcggaaca aggagacggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaac tagacaccgg gcatgtgtat tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcg catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcattt cacccttttt cttttgttc agctgagccc taggcagtg tctctctga tcatgcaatt gttacagttg attgatagt tagcaatgga aagattctgg ttattcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg tttttgtggaat aaaaaaaaaa	tggtgtgtcg	gctggattgt	taagacgaac	gcgggattcc	ggttcagctt	gaagacggcg	660
eggetggeege egeggetgee eggagtteaag etggacatgt acgactgege egteettgatg eggatggage teetegteet eaccacegete aagteggaga tegateacega gacaceette teetacetga actgetteae egegaaatte eggeacegae ageggaagge egategteetg egegeeateg aatgeatett egeetegate aaagteatta egeteggtggg egateetaateta egacgagetea agteggteet eggeteetgt eggeteetgta tegeageaae tagacacege egetaateta eeteteete egetegetae agteggteet eggeteetgta tegeageaae tagacacege eatgegtat teetegetaea acaagatgat egateeaate eggeggateega egetaateta egeteeteeg eggeteetgta tegeageaae tagacacege eatgegaggta egeteeteetge eggeteetetgt tegeeacatt eggeggateega egeaateega eatgegagge eatgegagge eeteaateeg eeteagegee agtaragga eggageaaee eeggaaaga agaggaaaa egtegaateeg eeteagegee agtaraggga eggagetega eeteggagete eeteageee aattettagt tegateattt eaccettttt etttettet eggaggeee tagteeateg teagteegge teetegaagt teagteggggg tegeeaaat eggagggeea acattegatt etteetetga teategeaatt egttacagtte atteetetga tagteaatte etteetetga aaaaaaaaa aaaaaaaaaa	tatgtcgcgg	tgtcgtatct	cgatcggttc	ttggcgcgcc	ggtgtgtcga	tagggacaag	720
cggatggagc tectegteet caccacgete aagtggcaga tgatcaccga gacaccette tectacetga actgetteae egegaaatte eggeacgaeg ageggaagge gategteetg egegecateg aatgeatett egeetegate aaagteatta geteggtggg gtaccageea teaacgateg etetageage aateeteate geteggaaca aggagaegge geetaateta gacgagetea agteggtegt gggetegtta tggeageaae tagacaeegg geatgtgat teetagetae acaagatgat gattcaagag gacaggtega tgeaategae gaeggaggta getteetegg gtgeteetet tgeecacatt gggggategg aggacagege eatgggagge gecaataatg eeaceacett ggaggeaace eeggacaaga agaggaaaag gttgeaeteg eeteagegee agtaraggga ggagetggag getggagetg gacageatgt tggttggagt eeagetetge aattttagt tgatcattt eaceetttt etttgtte agetgageee tagteagtge tettgeaagt teaggggggg ttggeeaaat ggaggggeea acatttgatt ettetetega ttatgeaatt gttacagttg attgattagt tagcaatgga aagattetgg tttttgtggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtegaetet agaccetat	gagtgggcgc	tgcagctcct	ctcggtggcg	tgcctgtcgc	tggcggcgaa	ggtggaggag	780
tcctacctga actgcttcac cgcgaaattc cggcacgacg agcggaaggc gatcgtcctg cgcgccatcg aatgcatctt cgcctcgatc aaagtcatta gctcggtggg gtaccagcca tcaacgatcg ctctagcagc aatcctcatc gctcggaaca aggagacggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaac tagacaccgg gcatgtgtat tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gccaataatg ccaccactt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggaa ggagctggag gctgaacga gacagcatgt tggttggagt ccagctctgc aattttagt tgatcattt caccetttt cttttgttc agctgagccc tagtcagtg tcatgcaatt gttacagttg attgatcatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagatctgg tttttgtgaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	agaaggaaga	cgcggctgcc	ggagttcaag	ctggacatgt	acgactgcgc	gtccttgatg	840
cgcgccatcg aatgcatctt cgcctcgatc aaagtcatta gctcggtggg gtaccagcca tcaacgatcg ctctagcagc aatcctcatc gctcggaaca aggagacggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaac tagacaccgg gcatgtgtat tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcgc catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcattt cacccttttt cttttgtttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	cggatggagc	tectegtect	caccacgctc	aagtggcaga	tgatcaccga	gacacccttc	900
tcaacgatcg ctctagcagc aatcctcatc gctcggaaca aggagacggc gcctaatcta gacgagctca agtcggtcgt gggctcgtta tggcagcaac tagacaccgg gcatgtgtat tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcgc catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcatttt caccettttt cttttgtttc agctgagccc tagtcagtgc tcttgcaagt tcagggggg ttggccaaat ggaggggca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	tcctacctga	actgcttcac	cgcgaaattc	cggcacgacg	agcggaaggc	gategteetg	960
gacgagetca agteggtegt gggetegtta tggcageac tagacacegg gcatgtgtat tectgetaca acaagatgat gatteaagag gacaggtega tgeaategae gaeggaggta getteetegg gtgtetetgt tgeecacatt gggggategg aggacagege catgggagge gecaataatg ccaccacett ggaggeaace ceggacaaga agaggaaaag gttgeaeteg ecteagegee agtaraggga ggagetggag getggagetg gacageatgt tggttggagt ecagetetge aatttttagt tgateattt caccetttt ettttgtte agetgageee tagteagtge tettgeaagt teaggggggg ttggecaaat ggaggggeea acatttgatt ettettetga ttatgeaatt gttacagttg attgattagt tagcaatgga aagattetgg ttttgggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtegaetet agageeetat	cgcgccatcg	aatgcatctt	cgcctcgatc	aaagtcatta	gctcggtggg	gtaccagcca	1020
tcctgctaca acaagatgat gattcaagag gacaggtcga tgcaatcgac gacggaggta gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcgc catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcattt cacccttttt cttttgttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgtggaa aaaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	tcaacgatc	g ctctagcagc	aatcctcato	gctcggaaca	aggagacggc	gcctaatcta	1080
gcttcctcgg gtgtctctgt tgcccacatt gggggatcgg aggacagcgc catgggaggc gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aatttttagt tgatcatttt cacccttttt cttttgtttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	gacgagctca	agtcggtcgt	gggctcgtta	tggcagcaac	tagacaccgg	gcatgtgtat	1140
gccaataatg ccaccacctt ggaggcaacc ccggacaaga agaggaaaag gttgcactcg cctcagcgcc agtaraggga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aatttttagt tgatcatttt cacccttttt cttttgtttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	tcctgctaca	a acaagatgat	gattcaagag	g gacaggtcga	tgcaatcgac	gacggaggta	1200
cctcagcgcc agtaragga ggagctggag gctggagctg gacagcatgt tggttggagt ccagctctgc aattttagt tgatcatttt cacccttttt cttttgtttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgtggaa aaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	gcttcctcg	g gtgtctctgt	tgcccacatt	gggggatcgg	aggacagcgc	catgggaggc	1260
ccagctctgc aatttttagt tgatcatttt cacccttttt cttttgtttc agctgagccc tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgtggaa aaaaaaaaaa	gccaataat	g ccaccacctt	ggaggcaaco	c ccggacaaga	agaggaaaag	gttgcactcg	1320
tagtcagtgc tcttgcaagt tcaggggggg ttggccaaat ggaggggcca acatttgatt cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgtggaa aaaaaaaaaa	cctcagcgc	c agtaraggga	ggagctggag	g gctggagctg	gacagcatgt	tggttggagt	1380
cttcttctga ttatgcaatt gttacagttg attgattagt tagcaatgga aagattctgg ttttgtggaa aaaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	ccagctctg	c aatttttagt	: tgatcattt	caccetttt	cttttgtttc	: agctgagccc	1440
ttttgtggaa aaaaaaaaaa aaaaaaaaa aaaaagtatt agtcgactct agagccctat	tagtcagtg	c tcttgcaagt	tcaggggggg	g ttggccaaat	: ggaggggcca	acatttgatt	1500
	cttcttctg	a ttatgcaatt	gttacagtt	g attgattagt	: tagcaatgga	a aagattctgg	1560
agtgagtcgt attactgcag agatctatga atcgtagat	ttttgtgga	a aaaaaaaaa	a aaaaaaaaa	a aaaaagtatt	agtcgactct	agagccctat	1620
	agtgagtcg	t attactgca	g agatctatg	a atcgtagat			1659

<210> 253

<211> 912

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC90666

<400> 253						
	gagcggcacg	aggaaacagc	aaaaaaatc	aaacaaaaag	aaaaaatatt	60
ccccatctgt	gaaattcgca	aaaccctagc	gcggcggcga	tgtcgaacac	gagggtgttc	120
ttcgacatga	ccgtcggcgg	agctccggcg	gggcggatcg	tgatggagct	gtacgcgaag	180
gacgtgccgc	ggacggcgga	gaacttccgc	gcgctctgca	ccggcgagaa	gggcgtgggc	240
aagagcggca	agccgctgca	ctacaagggg	agcaccttcc	accgcgtgat	cccggagttc	300
atgtgccagg	geggegaett	cacccgcggc	aacggcacgg	gaggggagtc	gatctacggc	360
gagaagttcg	ccgacgaggt	gttcaagttc	aagcacgaca	gccccggcat	cctgtccatg	420
gcgaacgccg	ggcccaacac	taacgggtcc	cagttcttca	tctgcaccgt	gccctgcagc	480
tggctggacg	ggaagcacgt	cgtgttcggc	cgcgtcgtcg	agggcatgga	cgtcgtcaag	540
gccatcgaga	aggtgggatc	ccgcggcggg	agcaccgcca	agccggtcgt	catcgccgac	600
tgcggccagc	tctcctagat	ctgtgctgtt	cccttcgcc	tttcgccagt	atcagtcgtc	660
ttgagtcgtc	gagtccctaa	ataaggagga	ggtggtggtg	gtgttagtct	ttttatgagt	720
tcgtgtcgtg	ttggtgagat	gagatcgccc	atggtttggt	tggattaggc	ggagttcttg	780
gatcgattcg	gtggagttgg	atctgcgatc	cttcttgggg	ttggttttaa	atcttaattc	840
gtgtcgctgc	ttctatgata	tcgctatcaa	tcaatgagaa	catttgggat	ccgtggattt	900
tctgtgaatc	tt					912

<210> 254

<211> 683

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC96414

< t	400> 254 gtaagata	4 t tgcacatact	gctcaccaga	gcagtgagaa	ttttctctat	tcatttgctc	60
g	agttctgc	t tcagaaaaca	ctgttctgtt	tgatacacat	aaaaaaata	ttettetett	120
а	ttgtaaaa	c tagcgaaaca	acgtgcagtt	catcttgtta	ttccagctcc	agctagcgtc	180
t	ccatgggt	t ccaagaagga	tgccccaacc	tgggcagacc	agtggggctc	atctggtggc	240
9	acggaagc	t tcaagaaagg	aggaggagga	ggaggcagca	gcgggaacag	cgagaagaag	300
a	cggtggcc	g gcaacgtgaa	ggccgcggcg	tcggagggcc	tcgtgaaggc	gaaggcggcg	360
ç	gegetggte	g gagegeacaa	ggtgaagtcc	gggacgagca	gtggcatcaa	gtgggtcaag	420
ç	gccagtac	c agaagagggc	tggaaagtga	ttggatttct	gatgcgtttg	cctggttgct	480
é	tgccatcg	t ctcactagct	gttgctcctt	tagcttgaag	cattgaagaa	agtatcgacc	540
ĕ	agagacggg	a ggttatgtct	ttggcgctat	tcatttggat	gatcttgtga	gcaattaatt	600
έ	aactgttg	c tgattttaat	acaagagagt	gtcttttggt	gcaacgattt	ttgttcgatt	660
é	atattaagg	t tgacgttgtt	aat				683
	.010. 05	· 					
	<210> 25						
	<211> 47						
		VA					
	<213> O	ryza sativa					
	-2205					•	
	<220>	ica fostura					
		isc_feature	225				
	<223> TC clone TC83635						
	<220>	des forturo					
		isc_feature					
		399)(399)					
	<223> u	nknown nucle	otide				
	<400> 2 agagagag	155 Jag agagaaacc	a ccccaaaat	t agcgaggcg	a ggaggagga	g gcggaggagg	60
	ggagccgc	ag gaatggcgg	c gatgcagag	c tggcgcaag	g cgtacggcg	c gctcaaggac	120
						a tgtggcgatc	180

gtgaaggcga	ctaaccacgt	ggagtgccct	cccaaggagc	gccacctgcg	aaagatttgt	240
tgccgcgacg	tccatcgctc	ggcctcgggc	agacgtcgcc	tattgtatcc	acgcgctttc	300
ccgccggctt	gcaaaaacac	gcaattggat	tgtagccttg	aaaacacttg	tagtgatcca	360
tagacttctt	cgagagggtg	acctactttt	tcgagaagng	cttcttaatt	ttgcacagag	420
ggggcgtatt	ttgcagctct	caaacttcaa	ggatgactcc	agtccaattg	cttgggat	478

<210> 256

<211> 1854

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82859

256 <400> 60 120 tectetegeg tecteaagat geagatettt gtgaagaeat tgaeeggeaa gaetateace ctcgaggtgg agtcctctga caccatcgat aatgtcaagg ctaagatcca agataaggag 180 ggcatccccc cggaccagca gcgtctcatc ttcgctggca agcagctgga ggatggcagg 240 accettgetg actacaacat ccagaaggag tegaccette accttgteet cegeeteegt 300 ggtggcatgc agatctttgt caagactctg accggcaaga ctatcaccct tgaggtggag 360 tottotgaca ccatcgacaa cgtcaaggcc aagatccagg acaaagaggg catcccccca 420 gaccagcagc gtctcatctt cgccggcaag cagctggagg atggcaggac ccttgctgac 480 tacaacatcc agaaggagtc caccctccac cttgtcctcc gcctccgtgg tggcatgcag 540 atctttgtca agacactgac cggcaagacc atcaccctcg aggtggaatc ttctgacacc 600 atcgacaacg tcaaggccaa gatccaggac aaggaggca ttcccccgga ccagcagcgt 660 ctcatctttg ccggcaagca gcttgaggac ggcaggaccc ttgctgacta caacatccag 720 aaggagtcaa cgcttcacct tgtcctccgt ctcaggggag gcatgcaaat cttcgtgaag 780 actotgaccg gcaagaccat caccotcgag gtggagtott ctgataccat cgacaatgtc 840 aaggccaaga tccaggacaa ggagggcatt cccccggacc agcagcgcct catctttgct 900 ggcaagcagc tggaggatgg caggaccctt gctgactaca acatccagaa ggagtccacc 960 ctccaccttg tgctccgcct tcgtggtggt atgcagatct ttgtcaagac cctcacaggc 1020

aagaccatca	ccctggaggt	tgagagctcg	gacaccatcg	acaacgtcaa	ggccaagatc	1080
caggacaagg	agggcatccc	cccagaccag	cagcgtctca	tcttcgccgg	caagcagete	1140
gaggatggcc	gcaccctcgc	cgactacaac	atccagaagg	agtctaccct	ccacctggtg	1200
cttcgtctcc	gtggtggtat	gcagatcttc	gtgaagacct	tgactgggaa	gaccatcact	1260
ttggaggttg	agagctccga	caccattgat	aatgtgaagg	ccaagatcca	ggacaaggag	1320
gggattcccc	cagaccagca	gcgtctgatc	ttcgctggca	agcagctgga	ggatggacgc	1380
accctcgccg	actacaacat	ccagaaggag	tccaccctcc	acctggtgct	ccgcctccgt	1440
ggtggtcagt	aatcagccag	tttggtggag	ctgccgatgt	gcctggtcat	cccgagcctc	1500
tgttcgtcaa	gtatttgtgg	tgctgatgtc	tacttgtgtc	tggtttaatg	gaccatcgag	1560
tccgtatgat	atgttagttt	tatgaaacag	tttcctgtgg	gacagcagta	tgctttatga	1620
ataagttgga	tttgaaccta	aatatgtgct	caatttgctc	atttgcatct	cattcctgtt	1680
gatgttttat	ttgagttgca	agtttgaaaa	tgctgcatat	tcttattaaa	tccacactta	1740
ctcataaagc	atactgctgt	cccacaggaa	actgtttcat	aaaactaaca	tatcatacgg	1800
actcgatggt	ccattaaacc	agacacaagt	agacatcagc	accacaaata	cttg	1854

<210> 257

<211> 981

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC89681 + TC89680

<400> 257 aagaggcaag agcatccgta ttaaccagcc ttttgagact tgagagtgtg tgtgactcga 60 tccagcgtag tttcagttcg tgtgttggtg agtgattcca gccaagtttg cgatggcttc 120 teageaggaa egggetaget accaegeegg egagaceaag geeegegeeg aggagaagae 180 ggggcgcatg atgggcacgg cgcaggagaa ggcgcgggag gccaaggaca cggcgtccga 240 cgccgcggg cgcgcgatgg gcaggggaca cggcgccaag gaggcgacca aggagaaggc 300 gtacgagacc aaggacgcga ccaaggagaa ggcgtacgag gcaaaggacg cggcctccga 360 cgccaccggc cgcgccatgg acaagggccg cggcgccgcg ggcgccacga gggacaaggc 420 gtacgatgcc aaggacaggg cggctgacac ggcgcagtcc gccgccgacc gcgcccgcga 480

071-prom-prov.ST25.txt cggcgccggg cagaccggga gctacattgg acagaccgcc gaggccgcca agcagaaagc 540 ggccggcgcc gcgcagtacg ccaaggagac cgcgatcgcc ggcaaggaca agaccggcgc 600 cgtgctccag caggcagggg agcaggtgaa gagcgtggcg gtggggggga aggacgcggt 660 gatgtacacg ctcgggatgt caggcgataa caagaacaac gccgctgccg gcaaggacac 720 cagcacctac aagcctggaa ctgggagtga ctaccagtaa tacggtagaa gaagcatgtg 780 tegtetttgg cactgatgee aaagtgtaeg tgttgtatee tetttttaa gttteagete 840 gacttcgacg tgttcggtgt cacactttgg tttttcagtt gtgctcaact gttcatgttt 900 ctggttccat ggagggccag tgtggaggtc aatgtttaag ctttcgtttt aaaatctgat 960 981 aataaagttg gttaagacct g <210> 258 <211> 694 DNA <212> Oryza sativa <213> <220> misc_feature <221> TC clone TC89946 <223> <220> <221> misc_feature <222> (413)..(413) unknown nucleotide <223> <400> 258 60 atgcgtgcga tagagagccc ttctaccctg gatgatcagc aatggctcac ctactgggtc ctctactccc tgatcaccct ctttgagctc tcatgctgga aagttctcca atggtttcct 120 ctgtggccgt acatgaagct cctcttctgc tgttggctgg tgctgccaat cttcaacggc 180 geggeetaca tetacgagae ecaegtgege egetaettea agateggeea gtacgtgage 240 cccaactaca acgaacggca gcggaaggcg ctccagatga tgagcctcga cgcgcgcaag 300

360

420

480

tccgtcgaac gattcatcga gtcgcacggc cctgacgccc tcgacaagat catccgagct

gctgaagagg aggcaaagag agcgtaacga tggttaagat tgtggtgaac tgnaaggcat

totttocaac ggggagaagt aaatggaatt gtgtaatggc tgccgtgtat tgcaggcttg

		071	-prom-prov.	ST25.txt		
cagctcactt	cacctcgtct	gtacttgtgt	gtgccgtgtg	tctgaaatgt	tegttggett	540
ggcaatggca	aagatacctc	tcctacaaaa	ctggcaagat	acttggatac	ttgagaaaaa	600
ggttgccatg	catacaaaga	atgaggaata	catctattcg	ggtgtacagt	tgtatgaaaa	660
atctccgaat	ctaaaatatg	tcttgtctga	acaa			694

<210> 259

<211> 732

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC85888

<400> 259 ttttcctccc ttctcacact ccaatccatc ctccctctcc accctccagg ctccagctat 60 gtccgcctcg cccgagttct acaggccctc gccgccggcc ttctcgccct cctgcgccgc 120 cggtaccagt accacggagg tcgacgagta cagctgctgc cggacgccaa cgccgggaat 180 caagggagee agecacetge eegeeggege eeeggaagee eaggeeggtg getgeaggaa 240 getectette gacccagete ageageaggg gaaggggaag gecateagee tgegtetega 300 cgagctggag cgcctcttcc gccccatcac caataatgcc aaccttcacc tccaaaccaa 360 caageceace catacetgae etcactgeae ttcaacttca ttcateegag tgcatactag 420 tactattata tactaaatgc ttcttcttct tcttctttgg ataatcaatc tcttttcgct 480 ttaatttcct cttactacta ggattagtag tagtaggatt ttagtctagg agtaatcgtt 540 600 ttcacgtaag atcgagcagt gatttcagtc agtatgtatg ctcaaaatga tttagttgta 660 caatgaatca aaagcttaat ttgcttacac ttatgtagta tactcctgtc taatgataaa 720 732 attattacta tt

<210> 260

<211> 1203

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC89848

<400> 260 tactcctctc	tctcacctcc	accatctagc	tcactcacac	agtctccact	cacacgcatt	60
gcagaggaga	ggcgacaatg	gaggggaagg	aggaggacgt	gcggctgggg	gcgaacaggt	120
actcggagag	gcagccgata	gggacggcgg	cgcagggcgc	gggggacgac	aaggactaca	180
aggagccgcc	gccgggccgc	tgttcgagcc	aggggagctc	aagtcgtggt	ctttctaccg	240
ggccgggatc	gccgagttcg	tcgccacctt	cctcttcctc	tacatcacca	tcctcaccgt	300
catgggggtc	tccaagtcct	cctccaagtg	cgccaccgtc	ggcatccagg	gcatcgcctg	360
gtccttcgga	ggcatgatct	tegegetegt	ctactgcacc	gccggcatct	ccggaggaca	420
catcaaccca	gcagttactt	ttgggctgtt	cttggccagg	aagctgtccc	tgacccgggc	480
catcttctac	atagtgatgc	aatgcctagg	ggccatctgc	ggagctggag	ttgtgaaggg	540
cttccagcag	ggtctgtaca	tgggcaatgg	cggtggtgcc	aatgtagttg	ccagtggcta	600
caccaagggt	gacggtcttg	gtgctgagat	tgttggcacc	ttcatcctgg	tctacaccgt	660
cttctcagcc	actgatgcca	agaggaatgc	cagggactca	catgttccta	tccttgcccc	720
actgccaatt	ggttttgcgg	tgttcctggt	ccacctggcc	accatcccca	tcaccggtac	780
tggcatcaac	ccagccagga	gccttggcgc	tgccatcatc	tacaacaagg	accatgcctg	840
gaatgaccat	tggatcttct	gggttggtcc	cttcgttggc	gctgccctgg	ctgccatcta	900
ccaccaggtg	atcatcaggg	cgatcccatt	caagagcagg	tcttaagccc	cgcgccgccg	960
ctgcgcagcc	gacgacatgc	aacgcaatcg	tgatgtcctg	tttcccgcgc	gctactgctg	1020
cgcatctgtc	gattccctct	atctctagtc	cccaagatgt	ttttcctatc	tgaaccctga	1080
acaactcaat	cgtgtaatcc	agtactcagt	cactgtatgt	ttttatgtga	tggagatctt	1140
aattcttaag	ttatcatctc	tgttgctgga	aatccggttt	cctcttcgtg	catgaaccgc	1200
gcc						1203

<210> 261

<211> 964

<212> DNA

<213> Oryza sativa

<221> misc_feature

<223> TC clone TC89670

<400> 261						
	cgcccacggt	ccgcccacgg	teegettete	ttctctggtg	gtgtgggtgt	60
gtccctgtct	ccctctcct	tectectete	ctticccctc	ctctcttccc	ccctctcaca	120
agagagagag	cgccagactc	tccccaggtg	aggattcagc	catgaagggg	gccaaatcca	180
agggcgccgc	caagcccgac	gccaagttgg	ctgtgaagag	taagggcgcg	gagaagcccg	240
ccgccaaggg	caggaagggg	aaggccggca	aggaccccaa	caagcccaag	agggctccct	300
ccgctttctt	cgtttttatg	gaggagttcc	gtaaggagtt	caaggagaag	aaccccaaga	360
ataaatctgt	cgctgctgta	ggaaaagcag	ccggtgatag	gtggaaatcc	ctgaccgaag	420
cggacaaggc	tccctatgta	gccaaggcca	acaagctcaa	ggccgagtac	aacaaggcca	480
ttgctgccta	caacaagggc	gagagcactg	ccaagaaggc	acccgccaag	gaggaagagg	540
aggacgacga	ggaggaatct	gacaagtcca	agtccgaggt	caatgatgag	gatgacgacg	600
agggcagcga	agaggatgaa	gacgatgacg	agtgagcctt	ccagtggaca	agatgggagc	660
agcaagacgc	taagggcggc	gggcgtccta	aggagcctat	ccatcatcat	catcgtctac	720
tagaattatt	cagtttcact	tcacatcgtg	atgttttact	ttttctctcg	tcctataacg	780
gatagcgctc	cttgttggcg	ccactggtgg	gtgttgtggt	gcagccaatg	tettgtetee	840
accgtcaatg	atccgcttgt	acctagatta	ctctttccat	tgtcatcggc	taacattgtg	900
ataatatcag	tttgcgtatg	ttagattaaa	ttgtttctaa	ttccgtcgtt	ttcttcttcc	960
ttgc						964

<210> 262

<211> 1542

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82827

<400> 262
cacaceteae aceteaecae cateaectee tecteeteet cetetteete egegegegeg 60

		071.	-prom-prov.S	rr25.txt		
agatccaggg	agagggagag	ggagagatca	tggcggggac	ggtgacggtg	ccgtcggcgt	120
cggtgccgtc	gacgccgctg	ctcaaggacg	agctggacat	cgtgatcccg	acgatccgca	180
acctggactt	cctggagatg	tggcggccct	tcttccagcc	ctaccacctc	atcatcgtgc	240
aggacggcga	cccgaccaag	accatccgcg	tccccgaggg	cttcgactac	gagctctaca	300
accgcaacga	catcaaccgg	atcctcggcc	ccaaggcctc	ctgcatctcc	ttcaaggact	360
ccgcatgccg	ctgcttcggc	tacatggtct	ccaagaagaa	gtacgtcttc	accatcgacg	420
acgactgctt	cgttgccaag	gacccatctg	gcaaggacat	caatgctctt	gagcagcaca	480
tcaagaacct	cctcagcccg	tccaccccgt	tcttcttcaa	caccttgtat	gatccctacc	540
gcgaaggcgc	tgactttgtc	cgtggttacc	ccttcagcct	cagggaggga	gccaagactg	600
ctgtctctca	cggcctgtgg	cttaacatcc	ctgactatga	tgctcctact	cagatggtca	660
agcctcgtga	gaggaactcc	aggtatgttg	atgctgtcat	gactgtgccc	aagggaacct	720
tgttccccat	gtgtggcatg	aaccttgctt	ttgaccgtga	tctcatcggt	cctgcaatgt	780
actttggtct	catgggtgat	ggccagccta	ttggtcgcta	cgacgacatg	tgggctggat	840
ggtgcatgaa	ggtcatctgt	gaccacctga	gcctgggagt	gaagactgga	ctgccgtaca	900
tctggcacag	caaggctagc	aaccccttcg	tgaacttgaa	gaaggaatac	aagggcatct	960
tctggcagga	ggacatcatc	cccttcttcc	agaacgccac	catccccaag	gagtgcgaca	1020
ccgtccagaa	gtgctacctc	tecetegeeg	agcaggtcag	ggagaagctc	ggcaagatcg	1080
acccctactt	cgtcaagctt	gccgatgcca	tggtcacctg	gatcgaggcc	tgggatgagc	1140
tgaacccctc	gactgctgct	gtcgagaacg	gcaaggccaa	gtagattgat	cctgggagct	1200
tgtgtgtcgc	aggatggaaa	gtacccttta	agtgaaagtg	ttgctgtggc	ctaggccccc	1260
tagatatago	tctttttgag	atgaagggag	agattactta	agcaacttta	taattctttg	1320
ttgttatgct	ggttcttttg	tagctggaaa	aggatttgtt	atcatcgttt	acataattca	1380
agacaataat	aattttatca	tgtaattttg	atagtcgtgc	tttggttgct	aaatggtgtt	1440
attgtattta	ataacctttg	caaatcacta	tacctgttgg	ttgttctgag	aattgtatgc	1500

<210> 263

<211> 1432

<212> DNA

<213> Oryza sativa

actaccatat tatatttcta aatcatttcg taggcattat gg

<220>

<221> misc_feature

1542

<223> TC clone TC89636

<220>

<221> misc_feature

<222> (1429)..(1429)

<223> unknown nucleotide

<400> 263						
	cgtcgcctct	cctcctccct	aacccctacg	cttccagaac	cttctcgaag	60
ctcccgctcc	ccccccctt	ccgctccaat	ggcgaaggaa	ccgatgcgcg	tgctcgtcac	120
cggcgccgca	ggacaaattg	gatatgctct	tgtccccatg	attgctaggg	gtgtgatgtt	180
gggtgctgac	cagcctgtta	ttctacacat	gcttgacatt	ccaccageta	ctgaatctct	240
taatggcctt	aagatggagc	tggttgatgc	tgcatttcct	cttttgaagg	gaattgtcgc	300
aacaactgat	gttgtggagg	cctgcactgg	tgtgaatgtt	gcggttatgg	ttggtgggtt	360
ccccaggaag	gagggaatgg	aaaggaagga	tgttatgtca	aaaaatgtct	ccatctacaa	420
atcccaagct	tetgetettg	aggctcatgc	agcccctaac	tgcaaggttc	tggtagttgc	480
caatccagca	aacaccaacg	ctctcatctt	aaaagaattc	gctccatcca	tccctgagaa	540
gaacattact	tgcctcaccc	gtcttgacca	caacagggca	cttggccaga	tctctgaaaa	600
acttaatgtc	caagttactg	atgtgaagaa	tgcgatcatc	tggggcaacc	actcatccac	660
ccagtaccct	gatgttaacc	acgccactgt	gaagactccc	agtggagaga	agcctgtcag	720
ggaactcgtt	gctgatgatg	agtggttaaa	tacggaattc	atctctaccg	tccagcagcg	780
tggtgccgcc	atcatcaagg	cgaggaagca	atccagtgcc	ctatctgctg	ccagetetge	840
atgcgatcac	attcgtgact	gggttcttgg	cactcctgag	ggaacatttg	tctccatggg	900
tgtgtactct	gatggttcgt	atggtgtgcc	tgctggtctg	atctactcgt	tcccagtaac	960
atgcagtggt	ggcgaatgga	cgattgttca	gggtctcccg	atcgacgagt	tctcaaggaa	1020
gaagatggac	gcgactgccc	aggagctgtc	ggaggagaag	acgctcgctt	actcatgcct	1080
caactaaaac	taagcaatac	ccagagggac	agatagtgag	cgattgcccg	ctcccgtgtt	1140
tttgaataaa	agagactttt	aagttccatc	acatagaaac	tgtttatctc	agaccgctgc	1200
acatcgcgag	atgtggagcg	cagatgccgt	tgctggtttt	actccagtgt	gtattgaggc	1260
tttgtactag	ctccctttt	tttgcctggt	gattcgcagg	acatttgctg	aaaacattga	1320
acccatttga	catctgatgg	aatcatggac	cagtagcaag	tacatttttg	cgaaagcata	1380
atctgcatcg	ggattgggat	ggtggttgaa	ctttctgcca	catggcccnt	aa	1432

<210> 264 659 <211> <212> DNA <213> Oryza sativa <220> <221> misc_feature TC clone TC82749 <223> <400> 264 gctaagtgag ctagccactg atcagaagaa cacctcgatc tctgagagtg ttttttcagc 60 tttagcttaa gcaggatgga gcaccagggg cagcacggcc acgtgaccag ccgcgtcgac 120 gagtacggca acceggtegg caceggegee ggacaeggee agatgggeae egeeggeatg 180 gggacgcacg gcaccgccgg caccggcggc ggccagttcc agccgatgag ggaggagcac 240 aagaccggcg gcgtcctgca acgctccggc agctccagct caagctcgtc tgaggatgat 300 ggaatgggag ggaggaggaa gaaggggatc aaggagaaga tcaaggagaa gctccccggc 360 ggcaacaagg gcgagcagca gcatgccatg ggcggcaccg gcaccggcac cggcaccggc 420 accggaaccg gcggcgccta cgggcagcag ggccacggca ccgggatgac caccggcacc 480 accggcgcac acggcaccac caccaccgac accggcgaga agaagggcat catggacaag 540 atcaaggaga agctgcccgg ccagcactga gctcgacaca ccaccacacc atgtgtctgc 600 gcccccggcg accgccgcca cgtcaccttc ctgaataata agatgagcta accgagcgc 659 <210> 265 <211> 2306 <212> DNA <213> Oryza sativa <220> <221> misc_feature <223> TC clone TC89647 <220>

<221> misc_feature

```
<222> (7)..(7)
<223> unknown nucleotide
<220>
```

<221> misc_feature

<222> (96)..(96)

<223> unknown nucleotide

<220>

<221> misc_feature

<222> (2297)..(2297)

<223> unknown nucleotide

<400> 265 cggacgntgg gcggccggga gggagaagtc gccatgaagc agcctcccgc tgctgctttc	60 120
	120
tetetetege etegttaaaa tetetettee acccenaace ecatecagtt cagtteecte	
tegategett ceegtgetet egeteteteg ettgetagat cagagattee eetetgegge	180
ggttgtgagg tttccgcttc ggctcgctag ctagctctgc tgtttctgtg agagccggga	240
gcaccaaccg cgcgtggggt gggtgcccgg agctttgatg cgcgtggccg ccggtttctc	300
cccgtcgttt gatgggcaac gcatgcggcg gttcccttag atccaagtac ctgagcttca	360
agcagaccgc gtcgcagcgc cacgacaccg acgacaacaa caacgccgcc gcggccgact	420
cgccgaagaa gccctcccgc cctccagcag ccgccaagac ggacgaccac ccagtctccg	480
cgtcggcgcc ggccgccgcc atgaggcgcg gccaggcgcc cgccgacctc ggctcggtgc	540
tcggccaccc caccccaac ctccgcgacc tctacgccat gggcaggaag ctcgggcagg	600
ggcagttcgg caccacctac ctctgcaccg agctgtccac tggggtggac tacgcctgca	660
agtocattto caagogoaag otoatoacoa aggaggacat ogaagaogtt ogoogogaga	720
tccagatcat gcaccatctc tcgggccaca agaacgtcgt cgccatcaag ggcgcctacg	780
aggaccaget atacgtgcac ategtcatgg agetetgege eggeggegag etettegate	840
gcatcataca gcgcggccac tacagcgagc ggaaggccgc cgagctcacg cggatcatcg	900
ttggggtcgt cgaggcctgc cactcgctcg gggtcatgca ccgggacctc aagccagaaa	960
acttcctgct tgccaacaag gacgatgacc tctcgctcaa ggccatagat tttggtctct	1020
cagtettett caageeeggt caaaetttta eegatgttgt eggaageeea tattaegtag	1080

071-prom-prov.ST25.txt 1140 ctccagaagt gttgttgaaa cactatggac cagaagctga tgtatggact gcaggtgtca ttctctacat tttactaagt ggtgtacccc cattctgggc agagacacaa caaggaatat 1200 ttgatgctgt actaaaaggt ttcattgatt ttgattctga tccttggcct gtgatctctg 1260 1320 agagogoaaa ggatottata acaaaaatgo toaatootog cocaaaggaa cgottaacag 1380 cacatgaagt totatgccat ccatggatto gtgatcacgg agttgctcca gatcggcctc ttgatccagc tgtcctatct cgcatcaagc agttctctgc aatgaataag ttgaagaaga 1440 tggctttgcg ggtaatagct gagagtctct cagaggagga aatcgctggg ttgaaggaaa 1500 tgtttcagac tatggatgct gataacagtg gtgcgatcac atatgatgag cttaaagaag 1560 gcttgagaaa atatggctca acacttaagg acaccgagat tcgtgatctt atggatgcag 1620 cagatataga caacagcgga acaattgatt atatcgaatt cattgctgca acattgcatc 1680 tcaataaact ggagcgagag gaacatcttg tggcagcttt ttcatatttt gacaaagatg 1740 gaagtggtta catcacagtg gatgaactgc agcaagcttg caaagagcat aacatgcccg 1800 atgettttet tgatgatgte ateaatgaag etgateagga caatgatggg egeattgaet 1860 atggagaatt tgttgccatg atgaccaagg gcaatatggg agtcggacga agaacaatga 1920 gaaacagett gaatateage atgagggaeg cacetggtge actetagaet tecacgatgt 1980 acagettacg gattttaget tetteetgte tteetgeeca acgaacteet gegatttttt 2040 agogttgtca gatgtccgcg gatgtgtttt tctggtggtt ctgatttaac ttgtcaattg 2100

<210> 266

<211> 1310

<212> DNA

<213> Oryza sativa

gggcatgtga gatcccnctt tatccg

<220>

<221> misc_feature

<223> TC clone TC82826

<400> 266
ggaccagega gcaaccagec eccegecece aatggeggea gageagettt geecaceget

attccatgga atgcataaca agatgtccat gccacgctca aacgaagctg ggttgtaaat

ctctcgtacg ccattgctca actctgaagg tgttcggtga actagctcgt attctttgtg

ttgcaatgga tgaacttata ctggctgtgc tgggtgtaat tgcattgcca acatttacag

2160

2220

2280 2306

gccgcttttg	cccacctctc	ctccgattaa	tecetecee	tectettect	cccacttctc	120
cgcctcctct	tcctcccctc	gccgacccta	cctactcgcg	ccgccgccgt	cgcattgggc	180
ggcaaacgga	ggggggtta	accctgatgg	agcagtacga	gaaggaggag	aagattgggg	240
agggcacgta	cggggtggtg	tacagggcgc	gggacaaggt	caccaacgag	acgatcgcgc	300
tcaagaagat	ccggcttgag	caggaggatg	agggegteee	ctccaccgca	atccgcgaga	360
tctcgctcct	caaggagatg	catcacggca	acatcgtcag	gttacacgat	gttatccaca	420
gtgagaagcg	catatatctt	gtctttgagt	atctggatct	ggacctaaag	aagttcatgg	480
actcttgtcc	agagtttgcg	aaaaacccca	ctttaattaa	gtcatatctc	tatcagatac	540
teegeggegt	tgcttactgt	cattctcata	gagttcttca	tcgagatttg	aaacctcaga	600
atttattgat	agatcggcgt	actaatgcac	tgaagcttgc	agactttggt	ttagccaggg	660
catttggaat	tcctgtccgc	acgtttactc	acgaggttgt	aaccttgtgg	tatagagete	720
cagagatect	tcttggatca	aggcagtatt	ctacaccagt	tgatatgtgg	tcagttggtt	780
gtatctttgc	agaaatggtg	aaccagaaac	cactgttccc	tggtgattct	gagattgatg	840
aattatttaa	gatattcagg	gtactaggaa	ctccaaatga	acaaagttgg	ccaggagtta	900
gctcattacc	tgactacaag	tctgctttcc	ccaagtggca	agcacaggat	cttgcaacta	960
ttgtccctac	tcttgaccct	gctggtttgg	accttctctc	taaaatgctt	cggtacgagc	1020
caaacaaaag	gatcacagct	agacaggete	ttgagcatga	atacttcaag	gaccttgaga	1080
tggtacaatg	accctgctat	ggctttacat	tggattggca	tatgtatggg	ctgggctcct	1140
catttcattc	cttctgtgaa	cgctgtgccc	ttcgtttggg	catttttgtc	attcagctgg	1200
atatttcaaa	tcttgtgtgt	ttgatatgta	ttcaggaacg	ctaaatagat	caccgtcttg	1260
gtctctattt	gttcagagta	aatatcttcc	aatgctgcct	ttcagtttcc		1310

```
<210> 267
```

<220>

<220>

<221> misc_feature

<211> 2695

<212> DNA

<213> Oryza sativa

<221> misc_feature

<223> TC clone TC89792 + TC89796

<222> (2689)..(2690)

<223> unknown nucleotide

<400> 267 atgggggaaa	ctactggaga	acgtgccctg	aaccgtctcc	acagcatgag	ggagcgcatc	60
ggcgattccc	tctccgcgca	caccaatgag	cttgtggctg	tcttctcaag	gcttgtgaac	120
caaggaaagg	gaatgctaca	gccccaccag	atcattgctg	agtacaacgc	cgcaatccct	180
gagggcgagc	gtgagaagct	gaaggactct	gccttagagg	atgtcctgag	gggagcacag	240
gaggcgattg	tcatccctcc	atggattgcc	cttgccattc	gcccaaggcc	tggtgtctgg	300
gagtatctga	ggatcaatgt	aagccagctt	ggtgttgagg	agctgagtgt	ccctgaatac	360
ttgcagttca	aggagcagct	tgtggatgga	agcacccaga	acaactttgt	gcttgagctg	420
gactttgagc	cattcaatgc	ctccttccct	cgcccatcgt	tgtcgaagtc	tattggcaat	480
ggggtgcagt	tcttgaacag	gcacctgtcg	tcaaagctgt	tccatgacaa	agagagcatg	540
taccccctgc	tcaactttct	tegtgegeae	aactacaaag	ggatgaccat	gatgttgaac	600
gacaggattc	gcagtctcga	tgctctccaa	ggtgcattga	ggaaggcaga	aaaacatctt	660
gcaggcatta	cagctgacac	cccatattca	gagttccatc	acaggttcca	agagcttggt	720
ttggagaagg	gttggggtga	ctgcgctcag	cgagtgcgtg	agactattca	cettetettg	780
gaccttcttg	aggcccctga	geegteegee	ttggagaagt	tccttggaac	aatcccaatg	840
gtgttcaatg	ttgttatcct	ctccccgcat	ggttactttg	cacaggctaa	tgtcttgggg	900
taccctgata	ccggtgggca	ggttgtctac	attttggatc	aagtccgtgc	tatggagaat	960
gagatgctgc	tgaggatcaa	gcaacaaggt	ctaaacatca	caccaaggat	tctcattgtg	· 1020
accaggttgc	tacctgatgc	gcatggcacc	acatgtggcc	agcgccttga	gaaggtccta	1080
ggcactgagc	acactcatat	cctgcgtgtg	ccattccgaa	cagaaaatgg	gactgttcgc	1140
aaatggatct	cgcgttttga	agtctggcct	tacctggaaa	cttacaccga	tgatgtggca	1200
cacgagattt	ctggagagct	gcaggccacc	cctgacctga	tcattgggaa	ctacagtgat	1260
ggcaaccttg	ttcgatgttt	gctggcacac	aagttgggtg	tcactcattg	tacaatcgcc	1320
catgcacttg	, agaaaaccaa	gtaccccaac	tccgaccttt	actggaagaa	gtttgaggat	1380
cactatcact	: tctcctgcca	gttcacagct	gacctgattg	r caatgaacca	tgctgacttc	1440
atcatcacaa	gtaccttcca	ggagattgct	ggaaacaagg	g aaactgtggg	gcagtatgag	1500
tctcacatgg	g cattcacaat	geetggeett	tatcgtgttg	g tocatggtat	. cgatgtcttt	1560
gaccccaagt	: tcaacatcgt	: ctctcctggt	gctgacatgt	ccatctactt	cccattcacc	1620
gaatcacaga	a agaggctcac	ctctctccat	: ttagagatag	g aggagctact	cttcagtgat	1680

gttgaaaaca	ctgagcacaa	gtttgttctg	aaggacaaga	agaagccaat	catcttctcg	1740
atggctaggc	tagaccatgt	caagaatttg	actggtctgg	ttgagttgta	tggtcggaac	1800
cctcgcctgc	aagagctagt	aaaccttgtg	gttgtctgtg	gtgaccatgg	caaggaatcc	1860
aaggacaaag	aagagcaggc	tgagttcaag	aagatgttta	atctgatcaa	gcagtacaat	1920
ttgaatggcc	acatccgctg	gatctccgct	cagatgaacc	gtgtccgcaa	tggtgagctc	1980
taccgctaca	tctgcgacat	gaggggagcc	tttgtgcagc	ccgctctcta	tgaggccttt	2040
gggctaactg	tgattgaggc	catgacctgt	ggtcttccaa	catttgcaac	tgcctatggt	2100
ggtccagccg	agatcatcgt	gcacggcgtg	tctggctacc	acattgatcc	ttaccagaac	2160
gacaaggcct	cggcgctgct	cgtggagttc	tttgagaagt	gtcaggaaga	cccaaaccac	2220
tggatcaaga	tctcgcaggg	tggacttcag	cgcatcgagg	agaagtacac	atggaagctc	2280
tactctgaga	ggctgatgac	tctctccggt	gtctacggtt	tctggaagta	tgtcaccaac	2340
ctcgacaggc	gtgagacacg	ccgctacctg	gagatgctgt	acgccctcaa	gtaccgcaag	2400
atggctacca	ccgttccatt	ggccattgag	ggagaggcct	ccaccaaatg	atctggcctt	2460
acccggtgaa	aagaatgggc	aatgggtgct	ccattgttgc	agtgctgatc	caggggtgaa	2520
gaaaaacaga	aatcgaggaa	cgaatgcatc	catttagttt	ctaagggttt	agttgatttc	2580
agggccagtt	cttgtggggt	tttcaatgga	agaaattgat	gtaatgctct	ggccttttca	2640
tggatactat	gaatgaaata	aatgaataac	aagattctct	aaaaaaann	aaaaa	2695

<210> 268

<211> 2271

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82833

<220>

<221> misc_feature

<222> (59)..(59)

<223> unknown nucleotide

<400> 268

071-prom-prov.ST25.txt ctacacgcac acagacaaac aaagccaaac cccccgcctc gcctacatct cgcgctctnc 60 120 gececegee egectecaet etgeatggae geeteegeeg getegtegge geegeaeteg cacgggaacc cggggaagca gggtggcggc ggcggcggcg gcggcggacg ggggaaggcc 180 ccggcggcgg agatcagggg tgaggcggcg agggatgacg tctttttcgc tgacgatacc 240 tteccgttgc tcccggactt cccgtgcctt tcttccccgt caagetcaac cttctcgtcg 300 togtogtogt cgaactogto cagogottto accacogogg cgggaggggg ttgcggcggt 360 gagccgtccg agccggcctc ggcggcggac gggtttggtg agctcgccga catagaccag 420 480 ctectegace tegegteget gteegteeeg tgggaggeeg ageageeget gtteeeggae gacgttggca tgatgataga ggacgccatg tccgggcaac cgcatcaggc ggacgactgt 540 accggcgacg gcgatacgaa ggcggtgatg gaggcggccg ggggaggaga cgacgccggc 600 gacgcatgca tggaggggag tgatgcgccc gacgatctgc cggcgttctt catggagtgg 660 720 ctcacgagca accgtgagta catctccgcc gacgacctcc gcagcatccg cctccgccga tecaccateg aggeggegge egegggete ggegggge gecagggeae catgeagetg 780 ctcaagetea teetcaeetg ggtgeagaae caecaeetee agaagaageg eeceegeaeg 840 gcgattgacg acggcgccgc gtcgtcggac cctcagctcc ccagccccgg cgcaaacccc 900 ggctacgagt tcccctccgg tggccaggag atgggctccg ccgccgccac atcctggatg 960 ccctaccagg ccttcacgcc gccagccgcg tacggcggcg acgccatgta cccaggcgcc 1020 1080 geeggeeegt teeettteea geagagetge ageaagagea gegtggtegt gageageeag ccgttctccc cgccgaccgc ggcggcggcg ggcgacatgc atgcgtcggg cggagggaac 1140 atggcctggc cgcagcaatt cgcgccgttc cccgtctcct ccacgagctc ctacaccatg 1200 ccgtcggtcg tgccaccgcc gttcaccgcc ggattccccg ggcagtactc cggcggccac 1260 gccatgtgct ctccacgcct cgccggagtc gagccgtcct cgacaaagga ggcccggaag 1320 aagcggatgg cgaggcagcg ccgcctctcc tgcctgcagc agcaacgtag ccagcagctc 1380 aacctgagec agatecacat eteeggeeat ecacaggage ecteeceteg egeegegeae 1440 toggogoogg toaccoogto gtoggooggo tgooggagot ggggcatotg googooggog 1500 gcccagatca tccagaatcc cctatcaaac aagcccaatc ctcctcccgc cacgtcgaag 1560 cagoogaaac cotogoogga gaaacogaag cogaagoogo aggoggoggo gaoggoogga 1620 geggagagee tteagegete gaeggettea gagaagegge aggegaagae ggaeaagaae 1680 ctgcggttcc tgctgcagaa ggtgctgaag cagagcgacg tcgggagcct cggccgcatc 1740 gtgctcccca aaaaggaagc agaggttcac ctgccggagc tgaagacgag ggatggtgtc 1800 tccatcccca tggaagacat cgggacgtct caggtgtgga acatgcggta ccggttttgg 1860 cccaacaaca aaagcaggat gtatcttctc gaaaacacag gtgattttgt tcgttcaaac 1920

071-prom-prov.ST25.txt		
gagctgcagg agggtgattt cattgtgatc tactccgata tcaagtcagg	caaatatctg	1980
atacgtggtg tgaaggtgag gcgcgcggcg caggagcaag gcaactcgtc	gggggcggta	2040
ggtaagcata agcatggctc gccggagaaa cccggcgtct cgtccaatac	aaagcccgcc	2100
ggcgccgagg acggcaccgg cggcgatgac agtcccgaag ccgcagcggc	ggcggcggca	2160
ggcaaggetg aeggeggegg etgeaaggge aagteeeege aeggegtgeg	gegttetege	2220
caggaggeeg eegeegeege etecatgage cagatggegg ttageatetg	a	2271
<210> 269		ı
<211> 2599		
<212> DNA		
<213> Oryza sativa		
<220>		
<221> misc_feature		
<223> TC clone TC90370		
<220>		
<221> misc_feature		
<222> (1506)(1506)		
<223> unknown nucleotide		
<220>		
<221> misc_feature		
<222> (1687)(1687)		
<223> unknown nucleotide		
<400> 269		
gcatgctcgc gaaaaacgag gaggggagtt aggaaccttg acatacaacc		60
ttttttttca agcagctaga ggtacagagg ttcatatttt ttagatggc		120
attttagtca aaaatttcag aagtacggcc acgggtgatg gcctgaact	a atattttatt	180
cgaggtgccg ctacatcatc gtctaaagta cacgcaagat tcaacggaa	a aaagaaaccg	240
atcgatcgag atcagttagt taatgaaata actagatcaa ctcatgtcg	t caaaaacaaa	300
agatgeteat etatggacaa cacaegetga tgattegate atcaaacaa	a ggtggtagta	360

gtagtaaagc gtatcgtgtt tctcatcaga aagaagaatt aaagaaaaaa ctaatcccgt 420 ctcgcgagcc agagaaaatt ccctacaaaa gccactcctt tgatttgaca tgcaaaagca 480 aggetecaet cetetaetae cetacaaeta cacaacaetg tetetetate tecaaaggea 540 gtagetgtat tggetteeag etttteetet etacetetaa tgatagettg gageaagtte 600 aatagtatag ctaactacta gctctaattc atctataatc aatctaatag cttattcata 660 caatagttat atactacatt attaatatct ggtcccatct atcatacaca ctgagtctgt 720 gctatagctg actacaaatc tgtagcccgc tgctcttctc tcttcattta tcttcttaaa 780 atatatttgc agctggctta tggcttatag cttgatattg agagggagag gagtgagagc 840 tageteaget eageteaagg taaacaacaa ggeacactet teetacetet teteeggtte 900 ttcctttttc ctctttctct tcgtccaaga acttcacctc aatagctcga gctacggcct 960 aacttttgcg ttgcgcagga gagctcgatc gctgcaccaa tacttcactg gagatcgcct 1020 agetgeaget agetagetta teetgegtgt ettgagette teteatggag gagateteee 1080 accaettegg ggtegtegga gecageggeg tecatggegg ceaccageat cageateace 1140 accaccegtg gggttettee etgagegeea tegtegegee geegeegeeg eegeagetge 1200 ageageagea gacgeaggee ggeggeatgg egeacaegee geteacgetg aacaeggegg 1260 cggcggcggt cggcaacccg gtgctgcagc tggcgaacgg cagcctgctc gacgcgtgcg 1320 gcaaggcgaa ggaggcgtcg gcgtcggcgt cgtacgcgcc cgacgtggag gccatcaagg 1380 ccaagatcat ctcccacccc cactactcct ccctcctcgc cgcctacctc gactgccaga 1440 aggttggggc gccgccggag gtggcggcga ggctgacggc ggtggcgcag gacctggagc 1500 ttegeneage geaeggeget eggegteete ggegeegeea eggageegga getggaeeag 1560 ttcatggagg cgtaccacga gatgctggtg aagtacaggg aggagctgac gaggccgctg 1620 caggaggcca tggagttctt gaggagggtg gagacgcagc tcaacacgct ctccatctcc 1680 ggcagantcg cttcgcaata tcctttcctc cggctcttct gaggaggacc aagaaggtag 1740 cggaggagag acagagctac ctgagattga tgcacatggt gtggatcagg agctcaagca 1800 ccatttgctg aagaagtaca gtggatacct gagctccctg aagcaagaac tgtcaaagaa 1860 gaagaaaaaa gggaagetee ceaaggatge tegteaacag etecteaact ggtgggaget 1920 gcactacaaa tggccttacc cctcggagag tcagaaggtg gcactggcgg agtcgacggg 1980 gctggacctg aagcagatca acaactggtt catcaaccag aggaagcggc actggaagcc 2040 ctccgacgag atgcagttcg tgatgatgga cggctaccac ccgaccaacg ccgccgcctt 2100 ctacatggac ggccacttca tcaacgacgg cggcctctac aggctcggct agctagctag 2160 cctactcctt atccccagct accatgacct agatcgatct cgaccccaaa tcaatggtcg 2220 ctaagctact gaaaagtttg tgatgagaat tgaagaacct aggttagtct tcctggtaat 2280

ttgatgeteg egegtaegea egecatggat ggetgegtge ttattttgtt tettgeegea 2340 atatgtaatg caattgeett agetaatgea teaacteggg teggttttag etgetgetge 2400 tgegecacaa tgaggtggtt gtggttatge ttttgtgtgg tttaataege caagaegtae 2460 acattgette gaaatgtege tactettget getgetaatt aagtgegtgt ttgaataatt 2520 eggatetata tactaeetgg ttaatteeta tettetgatt atataatttg etgategtte 2580 gagtttgtga gatttttt

<210> 270

<211> 1226

<212> DNA

<213> Hordeum vulgaris

<220>

<221> misc_feature

<223> TC clone TC27215

<400> 270 atggcgggtg	attcttcttt	cagcggcgtg	ttcgaccatg	ggagccatgg	cgtcaccctt	60
gtcaaggtcg	acgaggcgcc	caggaagtgc	tcgtcggcgg	cggcggcgaa	gaagacggat	120
gatgatactg	ctccggccgg	tggagcgccg	çcgaagccgc	tgctggtggc	ggcgccgtgc	180
gacgccgggg	tgtacccggt	ggtggtgttc	ttgcatggat	acctcgccta	taattccttc	240
tactcgcagc	tgttcgagca	tgtcgcctcc	catggcttcg	tegtegttgg	ccccaggta	300
aatcaatcca	tcttaattta	ctacttctcg	tgtgaagaat	ttttggactg	attttatctg	360
acaatttgaa	tgctaaaatg	gtgtgtaaaa	actacageta	tttttgggtt	gtgaactgat	420
tttatctaac	aattttgatg	ctaaaatggt	gtgtaaaact	acagctattt	ttgagttatg	480
aactgatttt	atctatcaat	ttttgatgct	aaaatggtgt	gtaaaaactg	cagctatata	540
cgatgtctgg	accggatacc	accgacgaga	tcaactcggc	ggcggccgtc	atcaactggc	600
tegeegeegg	cggcctcacc	tcgaagctgc	cacccaacgt	ccgcgccgac	gcgaccaaga	660
tctccatctc	cggccacagc	cgcggcggca	aggtggcgtt	cgcgctggcg	ctgggccacg	720
ccaacgtctc	cctccggggc	ggcgccggcg	gcgccaccat	cgccgccctc	gtegeegteg	780
accccgtgga	cggcttcgcc	gccgggaagc	agacgccgcc	gccgatcctc	acctacggcg	840
gcgccaactc	cctgcgcgtg	ccggcgccgg	tgatggtcat	cggcacgggc	ctcggcggcc	900
tegeeeggge	ggcgccgctg	ctcccggcgt	gcgcgccgcc	cggggtgagc	cacggcgagt	960

tctacggcga	gtgcgcggcg	ccggcgtgcc	acctggtggc	gagggactac	ggccacaccg	1020
acatgatgga	cgacgtgacg	cccggggcca	ggggcctcgc	gacgcgcgcc	gtgtgcagga	1080
gcggcggcgc	cagggcgccc	atgcggcggt	tattaggagg	cgccatggtc	gcgttcgtga	1140
agaggtgggt	ggaaggggag	ccggagctcc	tggactgcgt	cagggcgcgg	ccggagacgg	1200
cgccggtggt	gctgtccgcc	gtggag				1226

<210> 271

<211> 2002

<212> DNA

<213> Hordeum vulgaris

<220>

<221> misc_feature

<223> TC clone TC27238

<400> 271 ggtggaggag agtgaggacg gcccacgcgg acgagcagag agtggcgggc tcagtgtcgg 60 getegeegga gteegegeaa teeggeegtt catgetteat teteteggae attaacetgg 120 tttacttgta agaaagtaga gccatggact cctcatacca gcatgacaag cctctgctgg 180 atgaagagaa ctcctcgcaa gtgacccttg aatatacagg tgatggatct gtttgcatcc 240 gtgggcatcc tgctttaagg aaacatacag ggaactggaa gggttcctca ttagccatcg 300 ttttttcatt ctgctcttat ctggccttta cttcaattgt aaaaaaccta gtcagttatc 360 tcacaaaagt tctacatgaa acaaacgtgg ccgctgcaag agatgttgca acttggtcag 420 gaacaagtta tottgcacct ctggttggag cottottago tgattcatat ctggggaagt 480 actgtacaat totgatotto tgcacgatot toattatogg attgatgatg ttgcttctgt 540 cagcagcagt tccattaatc tctactggtc ctcactcatg gatcatatgg acagatccag 600 tetettetea gaacateata ttetttgteg gtttgtacat ggttgettta gggtatggtg 660 cacagtgccc ctgcatatca tcatttggtg ctgatcaatt tgatgacact gatgaaaatg 720 agagaacaaa aaagagttot tttttcaatt ggacctattt cgtagccaat gcgggctcat 780 tgatctcggg gactgttatt gtgtgggtgc aagatcacaa aggttggatc tggggtttta 840 ccatttctgc actatttgtg tatttaggtt ttggtacttt tatctttggc tcctctatgt 900 atgatttcag aaacctggag gaagcccctc ttgcgagaat atgccaggtt gttgttgctg 960 ctattcacaa acgcgataaa gatttgccat gtgattcctc agttctttat gagtttctgg 1020

ggcagagttc	agcaatcgaa	ggcagccgaa	aattggagca	tacaactgga	cttaagttct	1080
ttgatagagc	tgcaatggtg	acaccatctg	attttgaatc	tgatggccta	ctaaacacat	1140
ggaagatttg	cacagtcact	caagtggagg	aactgaagat	tttgatcagg	atgttccccg	1200
tttgggcaac	gatgatatta	tttgctgcag	ttctggacaa	catgttttcg	acattcatag	1260
aacaggggat	ggtgatggag	aaacacatcg	gctctttcga	aatacctgcg	gegteettee	1320
aatccattga	tgtcattgct	gtccttatac	tagttccagt	ctatgaaaga	gteettgtte	1380
cagtgttcag	aaaattcact	ggcagagcaa	atggcattac	tccactgcag	cgaatgggga	1440
teggeetgtt	cttttccatg	ctctccatgg	tatcagcagc	attggtggag	agtaateggt	1500
tgcggattgc	gcaggatgaa	ggtttggtgc	acaggaaggt	ggctgttcca	atgagcatcc	1560
tgtggcaggg	accccagtac	ttcctgatag	gcgtgggaga	ggtgttctca	aacattgggt	1620
taactgaatt	tttctaccag	gaatcaccgg	acgccatgag	aagcttatgt	ctcgcattct	1680
cacttgctaa	cgtttcggca	ggaagttacc	tcagctcgtt	tatcgtttct	cttgtgccag	1740
tgttcacagc	cagagaaggc	agtcctggat	ggatacctga	taacttgaac	gaagggcatt	1800
tggatcggtt	cttctggatg	atggctggct	tgtgtttctt	gaatatgctg	gcctttgtgt	1860
tctgtgccat	gaggtacaaa	tgtaagaagg	cttcctgaac	cttgttaaca	ttagcaatat	1920
aatggtggtg	gaaaaggaca	attgtgttgc	aaagcatgca	cccgttttca	tatataaaag	1980
taggaaaatc	ttgctgccaa	ga				2002

<210> 272

<211> 1089

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82803

<400> 272
aagaatcacc agcettgcaa accaatcaac ctgtctagat taatttttgc atgctctctg 60
gaatggagaa acaacctgca atgcttctcg ttcttgtgac actctgcgcc ttcgcatgca 120
agcgatccgt cgcacagtct gcctttgcca cgttctacgg tggcaaggac gggtcgggca 180
ccatgggtgg cgcgtgtggg tacggtaacc tgtacaacgc cgggtacggg ctgtacaacg 240
cggcgctgag ctcggcgctg ttcaacgacg gcgccatgtg cggcgcgtgc tacaccatca 300

071-prom-prov.ST25.txt cetgegacae cagecaagae caagtggtge aageceggeg geaactecat caccateaae 360 gggccaccaa cttatgcccg cctaactggg cgctgcccag caacagcggc gggtggtgca 420 acceaecget geageactte gaeatgteae ageeggeetg ggagaacate geegtetate 480 aagccggcat tgtccccgtc aactacaaga gggttccgtg ccagaggagc ggggggatcc 540 ggttcgcgat cagcggtcac gactactttg agcttgtgac cgtgacgaac gtgggcggca 600 geggegtggt ggegeagatg tegateaagg ggteeaacae gggetggatg gegatgagea 660 ggaattgggg cgccaattgg cagagcaacg cgtacctcgc cgggcagagc ctgtccttca 720 ttgtgcagct cgacgacggc cgcaaggtca cggcctggaa cgtcgccccg tccaactggt 780 tcttcggtgc cacctactct acctcttggg tgcagttctg aagtactgca acgtacgtac 840

aggtttagtt gataaattat acacatgctg ttcatggaca taattaatta attactagcc 900 atcccggccg tttgtgcatg ttctgctagg ttgtgtgttg cgtggcatta acttgttttt 960 ctctgttacc agtcgttttt gtcaaacgcg ttggttgtgg caagcgcgat tgaatgtttt 1020

gcccaccaat taatgtaact gatcgtatgg gtgttgagtt aataaattat gtttaattat 1089 gcggatgcc

1080

273 <210>

<211> 1515

DNA <212>

<213> Oryza sativa

<220>

misc_feature <221>

<223> TC clone TC84300

<400> 273 ttttttacgg	atgcgtacga	cctcttctgc	atctccctcg	tctccaagct	geteggeege	60
atctactaca	ccgacatcgc	cagcgacacc	cccggcagcc	tgccgcccaa	cgtgtcggcg	120
gcggtgaacg	gcgtcgcgct	gtgcggcacg	ctcgcggggc	agctcttctt	cgggtggctc	180
ggcgacaagc	tcgggcggaa	gagcgtgtac	ggcttcacgc	tcgtgctcat	ggtggtgtgc	240
teegtegegt	cgggcctctc	gttcgggcgc	acggcgaagg	gcgtcgtcgc	cacgctctgc	300
ttcttccgct	tetggetegg	cttcggcatc	ggcggcgact	accegetgte	ggcgacgatc	360
atgtcggagt	acgccaacaa	gaggacgcgc	ggggcgttca	tegeegeegt	gttcgccatg	420
	gcatcctgtt					480

071-prom-prov.ST25.txt 540 aacgcgtacc cggcgccgtc gtacgccgac ggccgcgcgg cgtcgctggt gcccgaggcc gactacgtgt ggcggatcat cctcatgttc ggcaccgtcc cggcggcgct cacctactac 600 tggcgcatga agatgccgga gacggcgagg tacaccgcgc tcatcgcgcg caacgccaag 660 caggccgccg ccgacatgtc caaggtgctc gacacggaga tccaggagga cgcggaccgc 720 geegaggegg tegeegeegg eggegeegge aacgagtggg ggetettete gegteactte 780 840 gtgcggcggc acggggtgca cctggtggcg acgacgagca cgtggttcct gctcgacatc 900 gcgttctaca gccagaacct gttccagaag gacatcttct ccaaggtcgg gtggatcccg ccggcgagga cgatgaacgc cgtcgaggag gtgttccgca tcgcgcgcgc ccagacgctc 960 ategecetgt geggeacegt ecegggetae tggtteaceg tetteeteat egacategte 1020 ggccgcttcg ccatccagct gctagggttt ttcatgatga ccgtcttcat gctcggcctc 1080 1140 gccgtgccgt accaccactg gacgacgaag gggaaccaca tcggcttcgt cgtcatgtac geetteacet tettettege caacttegge eccaacteea ceaectteat egtgeeggeg 1200 gagatettee eggegagget gegtteeace tgeeacggea teteggegge ggeggggaag 1260 1320 geoggegeea teateggate gttegggtte etgtaegegg egeaggacee geacaageee gacgccgggt acaaacccgg gatcggggtg aggaactcgc tgttcgtgct cgccggatgc 1380 1440 aacctgoteg ggttcatotg cacgttcotc gtgccggagt cgaaggggaa gtcgctggag gagatgtccg gcgaggcgga ggacgacgac gacgaggtgg ccgccgccgg cggcgccgcc 1500 1515 gtgcgccgct ctaga <210> 274 <211> 939 <212> DNA <213> Oryza sativa <220> misc_feature <221> TC clone TC83646 <223> <400> 274 ttcgttgcat tcatcttgct agctagctta gcaatggcgg atcgcgaccg cgccgggcag 60 tactaccagc agcagagag gcaggtgggg gagacggtga aggggatcct gccggagaag 120 gcgccgtcgg cgtcgcaggc gctgacggtg gcgacgctgt tcccgctggg tgggctgctg 180 ctcgtgctgt ccgggctggc gctggcggcg tccgtggtgg ggctcgccgt cgacacgccg 240

•	gtgttcctga	tcttcagccc	ggtgctcgtc	acaaccacac	tgctcatcgg	getegeegte	300
•	geeggettee	tcacctccgg	cgcgctgggc	ctcggcgggc	tgtcgtcgct	caccttcctc	360
,	gccaacacgg	cgcgccaggc	gttccagcgc	acgcccgact	acgtcgagca	ggcgcggcgc	420
	aggatggccg	agccgccgcg	cacgccggcc	acaagacggc	gcaggccggc	cacgccatcc	480
	agggcagggc	cgaccaggcc	ggcaccggcg	ccggcgccgg	cggtggcgcc	ggcaccaaga	540
	catcctcgta	agcacgcgcc	gcgcgcgcga	gtggctcgcg	tcgcgtacgg	gctgggttta	600
	geetgetggg	tttcgcttcg	cttcgtagta	gtatagaaca	cgaccgaccg	agtcaagagt	660
	gtgtcccgaa	cgtgaccgtg	cctacgtgtc	gtgtgatcct	aaagtctaat	gttgtaccag	720
	ctgctgcgta	ctactgctac	taggtaagat	cgatgtagtt	ttcgatttag	agttgtgaat	780
	gataataagc	gaggtcgggg	ggagcaagcg	atctggggag	tttgtgcttg	atttgagttg	840
	atgatgatga	acatatgtat	gcattccgtg	ttcctctgta	agaaaagaat	tggtgaatga	900
	acccatgtct	ctttgctcaa	atgtcagtac	ttgaatgct			939

<210> 275

<211> 1854

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC83046

<400> 275 60 120 tcctctcgcg tcctcaagat gcagatcttt gtgaagacat tgaccggcaa gactatcacc ctcgaggtgg agtcctctga caccatcgat aatgtcaagg ctaagatcca agataaggag 180 ggcatccccc cggaccagca gcgtctcatc ttcgctggca agcagctgga ggatggcagg 240 accettgetg actacaacat ccagaaggag tegaccette accttgteet cegecteegt 300 ggtggcatgc agatctttgt caagactctg accggcaaga ctatcaccct tgaggtggag 360 tettetgaca ccategacaa egteaaggee aagateeagg acaaagaggg catececea 420 480 gaccagcagc gtctcatctt cgccggcaag cagctggagg atggcaggac ccttgctgac tacaacatcc agaaggagtc caccctccac cttgtcctcc gcctccgtgg tggcatgcag 540 atctttgtca agacactgac cggcaagacc atcaccctcg aggtggaatc ttctgacacc 600

	atcgacaacg	tcaaggccaa		aaggagggca	ttcccccgga	ccagcagcgt	660
	ctcatctttg	ccggcaagca	gcttgaggac	ggcaggaccc	ttgctgacta	caacatccag	720
	aaggagtcaa	cgcttcacct	tgtcctccgt	ctcaggggag	gcatgcaaat	cttcgtgaag	780
•	actctgaccg	gcaagaccat	caccctcgag	gtggagtctt	ctgataccat	cgacaatgtc	840
	aaggccaaga	tccaggacaa	ggagggcatt	ccccggacc	agcagcgcct	catctttgct	900
	ggcaagcagc	tggaggatgg	caggaccctt	gctgactaca	acatccagaa	ggagtccacc	960
	ctccaccttg	tgctccgcct	tcgtggtggt	atgcagatct	ttgtcaagac	cctcacaggc	1020
	aagaccatca	ccctggaggt	tgagagctcg	gacaccatcg	acaacgtcaa	ggccaagatc	1080
	caggacaagg	agggcatccc	cccagaccag	cagcgtctca	tettegeegg	caagcagctc	1140
	gaggatggcc	gcaccctcgc	cgactacaac	atccagaagg	agtctaccct	ccacctggtg	1200
	cttcgtctcc	gtggtggtat	gcagatcttc	gtgaagacct	tgactgggaa	gaccatcact	1260
	ttggaggttg	agagctccga	caccattgat	aatgtgaagg	ccaagatcca	ggacaaggag	1320
	gggattcccc	cagaccagca	gcgtctgatc	ttcgctggca	agcagctgga	ggatggacgc	1380
	accctcgccg	actacaacat	ccagaaggag	tccaccctcc	acctggtgct	ccgcctccgt	1440
	ggtggtcagt	aatcagccag	tttggtggag	ctgccgatgt	gcctggtcat	cccgagcctc	1500
	tgttcgtcaa	gtatttgtgg	tgctgatgtc	tacttgtgtc	tggtttaatg	gaccatcgag	1560
	tccgtatgat	atgttagttt	tatgaaacag	tttcctgtgg	gacagcagta	tgctttatga	1620
	ataagttgga	tttgaaccta	aatatgtgct	caatttgctc	atttgcatct	cattcctgtt	1680
	gatgttttat	ttgagttgca	agtttgaaaa	tgctgcatat	tcttattaaa	tccacactta	1740
	ctcataaagc	atactgctgt	cccacaggaa	actgtttcat	aaaactaaca	tatcatacgg	1800
	actcgatggt	ccattaaacc	agacacaagt	agacatcago	accacaaata	cttg	1854

<210> 276

<211> 1495

<212> DNA

<213> Oryza sativa

<220>

<221> misc_feature

<223> TC clone TC82803

<400> 276 ctcgaaacac aagaaacaac cggagaaact gagcccggcc gaccgcaagg acagcaagct

		071	-prom-prov.	T25.txt		
attagccatc	ctcgcatgga	tcccaacgat	gccttctcgg	ccgcgcaccc	gttccggtgg	120
gacctcggcc	cgccggcgcc	ggcgcccgtg	ccaccaccgc	caccaccacc	gccaccgccg	180
ccgccggcta	acgtgcccag	ggagctggag	gagctggtgg	cagggtacgg	cgtgcggatg	240
tcgacggtgg	cgcggatctc	ggagctcggg	ttcacggcga	gcacgctcct	ggccatgacg	300
gagcgcgagc	tcgacgacat	gatggccgcg	ctcgccgggc	tgttccgctg	ggacctgctc	360
ctcggcgagc	ggttcggcct	ccgcgccgcg	ctgcgagccg	agcgcggccg	cctgatgtcg	420
cteggeggee	gccaccatgg	gcaccagtcc	gggagcaccg	tggacggcgc	ctcccaggaa	480
gtgttgtccg	acgagcatga	catggcgggg	agcggcggca	tgggcgacga	cgacaacggc	540
aggaggatgg	tgaccggcaa	gaagcaggca	aagaagggat	ccgcggcgag	gaagggcaag	600
aaggcgagga	ggaagaaggt	ggacgaccta	aggctggaca	tgcaggagga	cgagatggac	660
tgctgcgacg	aggacggcgg	cggcgggtcg	gagtcgacgg	agtcgtcggc	cggcggcggc	720
ggcggggagc	ggcagaggga	gcatccgttc	gtggtgacgg	agcccggcga	ggtggcgagg	780
gccaagaaga	acgggctgga	ctacctgttc	catctgtacg	agcagtgccg	cctcttcctg	840
ctgcaggtgc	aatccatggc	taagctgcat	ggacacaagt	ccccaaccaa	ggtgacgaac	900
caggtgttcc	ggtacgcgaa	gaaggtcggg	gcgagctaca	tcaacaagcc	caagatgcgg	960
cactacgtgc	actgctacgc	gctgcactgc	ctggacgagg	aggcgtcgga	cgcgctgcgg	1020
cgcgcctaca	aggcccgcgg	cgagaacgtg	ggggcgtgga	ggcaggcctg	ctacgcgccg	1080
ctcgtcgaca	teteegegeg	ccacggattc	gacatcgacg	ccgtcttcgc	cgcgcacccg	1140
cgcctcgcca	tctggtacgt	gcccaccaga	ctccgccagc	tctgccacca	ggcgcggagc	1200
agccacgccg	ccgccgccgc	cgcgctcccg	ccgcccttgt	tctaagctcg	ccggagactc	1260
tgctgctgtt	cccgcgccgc	cacggcgcgt	gggagtttcc	tgtggtgttg	ggccgtgttt	1320
tcgttgtaag	gcagttaggt	cgttctaagc	tattcgatgg	gccgatcgag	gatgcgtcgt	1380
cgtgtaggaa	ctcgtcgtgt	acccatgttt	gcgatctgga	tggcccattt	gtttagctgt	1440
taccatgtta	aattcgtttc	ctttatttat	gaaatggtaa	atcctaaatg	tcgtg	1495