

Python Session 5

Install SciPy now!

Use the PyCharm terminal

python -m pip install --user numpy scipy matplotlib ipython jupyter

Download files from google drive and save them together into your CFG folder:

'book_analysis_code.py' and 'book_dataset.csv'

All work will be done in the 'book_analysis_code.py' file.

Part 1 (today):

- 1. String operations and using counter
- 2. What is SciPy?
- 3. How to use documentation and searching for answers
- 4. Try out plotting with Matplotlib

Part 2 (optional session next week):

1. Introduction to numpy & more Matplotlib

Dataset-Bookshop sales

We will all work with the book dataset which can be downloaded from Google Drive.

1	Α	В	С	D	E	F	G	Н	1	J
1	Book	Genre	Num_copies_stock	Price	Jan	Feb	March	April	May	Jun
2	Blue Moon	Crime	3	6.32	33	14	4	10	15	18
3	Cat in the hat	Children	2	3.45	14	15	20	10	19	1
4	City of Bones	Teen	3	3.73	32	10	4	5	8	20
5	Death on the nile	Crime	3	6.78	24	13	18	8	6	21
6	Dracula	Horror	7	5.5	21	7	22	6	12	19
7	Frankenstein	Horror	3	4.75	33	16	18	6	17	14
8	Game of Thrones	Fantasy	18	6.27	14	10	25	7	7	3
9	Harry Potter	Children	22	6.23	15	15	15	10	5	28

Loading in the dataset

- -The dataset will be read in as a list, where each element in the list is a dictionary.
- -Each dictionary contains the data of a single book.
- -This includes the name, genre, stock, price and sales for each month.

The file book_analysis_code.py will load the .csv data in for you.

Run this now.

```
In [16]:
          """Workbook for data analysis session """
          import csv
         # Open the dataset
         with open('book dataset.csv', newline='') as csvfile:
              reader = csv.DictReader(csvfile)
             # read the headers of the csv
             headers = reader.fieldnames
             # create list to store the book data
             book data = []
             # add book data dictionaries to list from .csv
             for row in reader:
                  book data.append(row)
         # display the book data list
         print(book data[0])
         OrderedDict([('Book', 'Blue Moon'), ('Genre', 'Crime'), ('Num copies stock', '3'),
         ('Price', '6.32'), ('Jan', '33'), ('Feb', '14'), ('March', '4'), ('April', '10'), ('M
         ay', '15'), ('Jun', '18')])
In [17]:
         print(book data[1])
         OrderedDict([('Book', 'Cat in the hat'), ('Genre', 'Children'), ('Num_copies_stock',
```

'2'), ('Price', '3.45'), ('Jan', '14'), ('Feb', '15'), ('March', '20'), ('April', '1

0'), ('May', '19'), ('Jun', '1')])

Questions about our dataset:

- How many books of each genre are there?
- What is the current value of all out stock?
- How much revenue did we make each month?

How many books of each genre are there?

Solution: Count number of occurrences of each 'genre' string for all the books.

	Α	В	c	D	E	F	G	Н	1	J
1	Book	Genre	Num_copies_stock	Price	Jan	Feb	March	April	May	Jun
2	Blue Moon	Crime	3	6.32	33	14	4	10	15	18
3	Cat in the hat	Children	2	3.45	14	15	20	10	19	1
4	City of Bones	Teen	3	3.73	32	10	4	5	8	20
5	Death on the nile	Crime	3	6.78	24	13	18	8	6	21
6	Dracula	Horror	7	5.5	21	7	22	6	12	19
7	Frankenstein	Horror	3	4.75	33	16	18	6	17	14
8	Game of Thrones	Fantasy	18	6.27	14	10	25	7	7	3
9	Harry Potter	Children	22	6.23	15	15	15	10	5	28

How do we do this?

- 1. Extract a list of all the genres
- 2. Count the number of occurances of each book genre

Example dataset

1	А	В
1	Name	Туре
2	Spot	Dog
3	Oliver	Cat
4	Peter	Rabbit
5	Flopsy	Rabbit
6	Mopsy	Rabbit
7	Simba	Cat
8		

Step 1 example: Extracting a list from a dictionary

```
In [3]: import csv

with open('animal_data.csv', newline='') as csvfile:
    reader = csv.DictReader(csvfile)
    headers = reader.fieldnames
    animal_data = []

for row in reader:
    animal_data.append(row)

print(animal_data)
```

```
[OrderedDict([('Name', 'Spot'), ('Type', 'Dog')]), OrderedDict([('Name', 'Oliver'),
  ('Type', 'Cat')]), OrderedDict([('Name', 'Peter'), ('Type', 'Rabbit')]), OrderedDict
  ([('Name', 'Flopsy'), ('Type', 'Rabbit')]), OrderedDict([('Name', 'Mopsy'), ('Type',
  'Rabbit')]), OrderedDict([('Name', 'Simba'), ('Type', 'Cat')])]
```

```
In [4]: # Create list to hold all the animal types
    all_animals = []

# iterate through dictionary and create a list of all animal types
    for animal in animal_data:
        all_animals.append(animal['Type'])

    print(all_animals)
```

['Dog', 'Cat', 'Rabbit', 'Rabbit', 'Rabbit', 'Cat']

Exercise 5.1:

Extract a list of genres from the book data.

Step 2: Counter

```
In [7]: print(all_animals)
    ['Dog', 'Cat', 'Rabbit', 'Rabbit', 'Cat']
```

What we want the output to be:

• dog: 1

• cat: 2

• rabbit: 3

Counter() is a function in the collections package.

(1, 2, 3)

It can be used to count the number of times an item occurs in a list.

Exercise 5.2:

Count the number of books in each genre using the Counter() method

Visualising your result

How can we make a plot of the counts of genres?

Use Matplotlib in the SciPy package!

What is SciPy?

Install

Getting Started

Documentation

Report Bugs

Blogs

SciPy (pronounced "Sigh Pie") is a Python-based ecosystem of open-source software for mathematics, science, and engineering. In particular, these are some of the core packages:

NumPy Base N-dimensional array package

SciPy library Fundamental library for scientific computing

Matplotlib
Comprehensive 2D
Plotting

IPython Enhanced Interactive Console

SympySymbolic mathematics

pandasData structures & analysis

Introduction to Matplotlib

Matplotlib is a graphing package which is able to produce different types of plots. Including:

How to import matplotlib

```
import matplotlib.pyplot as plt
plt.bar(labels, values)
```

Creating a bar chart - Plotting the number of animal types

```
In [12]: import matplotlib.pyplot as plt # import matplotlib

plt.figure() # create an empty figure

plt.bar(animal_types, type_counts) # create the bar chart

plt.show() # Show the bar chart
```


Plot title ??

x axis label ??

Adding titles and axis labels

```
In [13]: plt.figure()
   plt.bar(animal_types, type_counts)

plt.ylabel('Number of animals') # Y axis Label

plt.xlabel('Animal type') # X axis Label

plt.title('Number of animals of each type') # plot title

plt.savefig('animal_count.png') # Save the figure as a .png file

plt.show()
```


Other types of plots

Line plots

What is the weight of our pet rabbit over time?

```
In [14]: # Create a line plot with weight for each month
    weight = [0.8, 1, 1.3, 1.5, 1.4, 1.5]
    months = ['Jan', 'Feb', 'March', 'April', 'May', 'June']

    plt.figure()
    plt.plot(months, weight) # use plt.plot for a line plot
    plt.xlabel('Month')
    plt.ylabel('Weight (KG)')
    plt.title('Monthly weight of Peter rabbit')
    plt.savefig('animal_weight.png')
    plt.show()
```


Scatter plots

Is there any relationship between the weight of a rabbit and how much it eats?

```
In [15]: # Create scatter plot of amount of food each rabbit eats and their weight
    weight = [0.8, 1, 1.3, 1.2, 1.5, 1.4, 1.5, 0.7, 1.1, 1.3, 1.2, 1.5, 1.4, 1.5]
    feed = [23, 25, 30, 33, 41, 31,27, 22,34,26, 46, 46,41, 50]

plt.figure()
    plt.scatter(feed, weight) # use plt.scatter for a scatter plot
    plt.xlabel('Food eaten in one day (grams)')
    plt.ylabel('Weight (KG)')
    plt.title('Weight of rabbit by daily feed amount')
    plt.savefig('animal_weight_feed.png')
    plt.show()
```


Next time: Using Numpy for data analysis