

BC

Query/Command : prt fu 1-2

1 / 2 WPAT - ©Thomson Derwent

AN - 1972-50620T [32]

TI - Thermoplastic moulding material - consisting of mixt of linear and branched or crosslinked polyoxymethylene

DC - A25 A32

PA - (FARH) HOECHST AG

(KERN/) KERN R

NP - 21

NC - 13

PN - NL7200398 A 0 DW1972-32 *

BE-778135 A 0 DW1972-34

JP47014249 A 0 DW1972-34

ZA7200075 A 0 DW1972-41

FR2121879 A 0 DW1972-50

DE2101817 A 0 DW1973-16

DE2150038 A 0 DW1973-19

DE2166377 A 0 DW1973-45

DE2101817 B 19740124 DW1974-05

SU-416953 A 19740724 DW1975-02

GB1382472 A 19750205 DW1975-06

CH-562286 A 19750530 DW1975-25

RO--59380 A 19751130 DW1976-25

CA-992238 A 19760629 DW1976-29

DE2166377 B 19760923 DW1976-40

NL-151421 B 19761115 DW1976-51

US4070415 A 19780124 DW1978-06

DE2150038 B 19780810 DW1978-33

US4181685 A 19800101 DW1980-03

JP80019942 B 19800529 DW1980-26

CS7200199 A 19810630 DW1981-37

PR - 1971DE-2150038 19711007; 1971DE-2101817 19710115

IC - C08G-037/02 C08L-059/00 C08L-063/00

AB - NL7200398 A

Thermoplastic moulding materials consist of a mixt. of 99.999-90 wt % linear polyoxymethylene and 0.001-10 wt % branched or crosslinked polyoxymethylene. The branched or crosslinked polymer causes a large reduction in the size of the spherulites. The material is then more uniform in structure, and has better physical properties. The branched polyoxymethylene is pref. a copolymer of trioxane with a polyfunctional reactive cpd.

MC - CPI: A05-H02A A07-A03

UP - 1972-32

UE - 1972-34; 1972-41; 1972-50; 1973-16; 1973-19; 1973-45; 1974-05; 1975-02; 1975-06; 1975-25; 1976-25; 1976-29; 1976-40; 1976-51; 1978-06; 1978-33; 1980-03; 1980-26; 1981-37

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

(10)

Offenlegungsschrift 2101817

(11)

Aktenzeichen: P 21 01 817.7

(21)

Anmeldetag: 15. Januar 1971

(22)

Offenlegungstag: 5. April 1973

(43)

Ausstellungsriorität: —

(30)

Unionspriorität

(32)

Datum: —

(33)

Land: —

(31)

Aktenzeichen: —

(54)

Bezeichnung: Thermoplastische Formmassen auf Polyoxymethylenbasis

(61)

Zusatz zu: —

(62)

Ausscheidung aus: —

(71)

Anmelder: Farbwerke Hoechst AG, vorm. Meister Lucius & Brüning
6230 Frankfurt-Höchst

Vertreter gem. § 16 PatG: —

(72)

Als Erfinder benannt: Kern, Rudolf. Dipl.-Chem. Dr., 6500 Mainz;
Schmidt, Heinz. Dipl.-Chem. Dr., 6000 Frankfurt;
Burg, Karl-Heinz. Dipl.-Chem. Dr., 6239 Langenhain;
Wolters, Ernst. Dipl.-Chem. Dr., 6230 Frankfurt-Zeilsheim

Prüfungsantrag gemäß § 28b PatG ist gestellt

DT 2101817

2101817

FARBWERKE HOECHST AG. vormals Meister Lucius & Brüning

Aktenzeichen:

HOE 71/F 016

Datum: 14. Januar 1971

Dr. Eg/mm

Thermoplastische Formmassen auf Polyoxymethylenbasis

Es ist bekannt, daß Polyacetale (Polyoxymethylene POM) eine stark ausgeprägte Neigung zur Kristallisation besitzen. Bereits bei geringer Unterkühlung ihrer Schmelze beobachtet man ein rasches Wachsen von Sphärolithen, die meist weit größer als die Lichtwellenlänge sind und die dem Material eine erhebliche Opazität verleihen. Außerdem entstehen als Folge des Kristallisationsprozesses im Innern und an der Oberfläche des Materials zahlreiche mikroskopisch kleine Risse sowie innere Spannungen. Durch diese Risse und inneren Spannungen werden die mechanischen Eigenschaften von Formkörpern, z.B. Spritzgußteilen, aus Polyoxymethylen nachteilig beeinflußt. Die vorgenannten Fehlstellen sind um so stärker ausgeprägt, je größer die einzelnen Sphärolithe sind.

Weiterhin ist bekannt, daß man durch Zusatz von 0,0001 bis 0,5 Gewichtsprozent Talkum zu hochmolekularen Polyoxymethylenen und gleichmäßige Verteilung des anorganischen Nukleierungsmittels in dem organischen Material die Kristallstruktur von spritzgegossenen Formteilen vereinheitlichen und so von einem grob-sphärolithischen Gefüge mit mittleren Sphärolithdurchmessern von 100 Mikron zu homogenen Strukturen mit Sphärolithdurchmessern von 4 bis 8 Mikron gelangen kann (vgl. Deutsche Auslegeschrift 1.247.645). Da es sich hierbei um spritzgegossene Proben handelt, beziehen sich die vorstehenden Größenangaben auf Präparate, die

309814/0965

unter Druck bei Temperaturen zwischen 50 und 100°C kristallisiert worden waren.

Es ist ferner bekannt, daß die Sphärolithgröße von Polyoxy-methylenen verringert werden kann, wenn die Polyoxyxymethylene vor dem Aufschmelzen mit bestimmten organischen Nukleierungsmitteln, die in der Polyoxyxymethylenschmelze nicht oder nur wenig löslich sind, z.B. hydroxylgruppenhaltigen Imidazol- oder Pyrazinderivaten, vermischt werden (vgl. Britische Patentschrift 1,193,708).

Gegenstand der Erfindung sind nun thermoplastische Formmassen, die aus einer Mischung von 99,9 bis 90 Gewichtsprozent eines linearen Polyoxyxymethylene und 0,1 bis 10 Gewichtsprozent eines verzweigten oder vernetzten Polyoxyxymethylene bestehen.

Insbesondere eignen sich Mischungen, die dadurch gekennzeichnet sind, daß das lineare Polyoxyxymethylen ein Homopolymerisat des Formaldehyds oder des Trioxans oder ein Copolymerisat aus Trioxan und einer mit Trioxan copolymerisierbaren, monofunktionell reagierenden Verbindung ist und daß das verzweigte oder vernetzte Polyoxyxymethylen ein Copolymerisat aus Trioxan und einer mit Trioxan copolymerisierbaren, mehrfunktionell reagierenden Verbindung und gegebenenfalls einer mit Trioxan copolymerisierbaren, monofunktionell reagierenden Verbindung ist.

Als erfindungsgemäße Formmassen sind vorzugsweise Mischungen aus

A) 99,1 bis 90 Gewichtsprozent

- a) eines Homopolymerisates des Formaldehyds oder des Trioxans oder
- b) eines linearen Copolymerisates aus 99,9 bis 80 Gewichtsprozent Trioxan und 0,1 bis 20 Gewichtsprozent eines cyclischen Äthers mit 3 bis 5 Ringgliedern oder eines von Trioxan verschiedenen cyclischen Acetals mit 5 bis 11 Ringgliedern oder eines linearen Polyacetals und

309814/0965

B) 0,1 bis 10 Gewichtsprozent eines Polymerisates aus 99,99 bis 80 Gewichtsprozent Trioxan und 0 bis 20 Gewichtsprozent eines cyclischen Äthers mit 3 bis 5 Ringgliedern oder eines von Trioxan verschiedenen cyclischen Acetals mit 5 bis 11 Ringgliedern oder eines linearen Polyacetals und 0,01 bis 5 Gewichtsprozent eines Alkylglycidylformals, eines Polyglycoldiglycidyläthers, Alkandioldiglycidyläthers oder eines Bis-(alkantriol)-triformals geeignet.

Der Anteil des linearen Polyoxymethylens in den erfindungsgemäßen Formmassen beträgt vorzugsweise 99,9 bis 95 Gewichtsprozent, während der Anteil des verzweigten oder vernetzten Polyoxymethylens vorzugsweise zwischen 0,1 und 5 Gewichtsprozent liegt. Besonders gute Eigenschaften zeigen Formmassen, die sich aus 99,9 bis 98,0 Gewichtsprozent des linearen Polymerisates und 0,1 bis 2,0 Gewichtsprozent des verzweigten oder vernetzten Polymerisates zusammensetzen.

Unter Homopolymerisaten von Formaldehyd oder Trioxan werden solche Formaldehyd- oder Trioxan-Homopolymerivate verstanden, deren OH-Endgruppen, z.B. durch Veresterung oder Verätherung, gegen Abbau stabilisiert sind.

Bei Verwendung von linearen Trioxan-Copolymerisaten kommen als Comonomere für Trioxan cyclische Äther mit 3 bis 5, vorzugsweise 3 Ringgliedern und von Trioxan verschiedene cyclische Acetale mit 5 bis 11, vorzugsweise 5 bis 8 Ringgliedern und lineare Polyacetale, jeweils in Mengen von 0,1 bis 20, vorzugsweise 0,5 bis 10 Gewichtsprozent, in Frage. Am besten eignen sich Copolymerisate aus 99 bis 95 Gewichtsprozent Trioxan und 1 bis 5 Gewichtsprozent einer der vorgenannten Cokomponenten.

Als cyclische Äther und cyclische Acetale werden Verbindungen der Formel (I)

309814/0965

verwendet, in der R_1 und R_2 gleich oder verschieden sind und jeweils ein Wasserstoffatom, einen aliphatischen Alkylrest mit 1 bis 6, vorzugsweise 1 bis 3 Kohlenstoffatomen, der 1 bis 3 Halogenatome, vorzugsweise Chloratome, enthalten kann, oder einen Phenylrest bedeuten, x entweder eine ganze Zahl von 1 bis 3 und y gleich Null ist oder x gleich Null, y eine ganze Zahl von 1 bis 3 und z gleich 2 ist oder x gleich Null, y gleich 1 und z eine ganze Zahl von 3 bis 6, vorzugsweise 3 oder 4 darstellt, oder in der R_1 einen Alkoxyethylrest mit 2 bis 6, vorzugsweise 2 bis 4 Kohlenstoffatomen oder einen Phenoxyethylrest bedeutet, wobei x gleich 1 und y gleich Null ist und R_2 die obengenannte Bedeutung hat.

Insbesondere eignen sich als cyclische Äther und cyclische Acetale Verbindungen der Formel (II)

in der R ein Wasserstoffatom, einen aliphatischen Alkylrest mit 1 bis 6, vorzugsweise 1 bis 3 Kohlenstoffatomen, der 1 bis 3 Halogenatome, vorzugsweise Chloratome, enthalten kann, oder einen Phenylrest bedeutet, x entweder eine ganze Zahl von 1 bis 3 und y gleich Null ist oder x gleich Null, y eine ganze Zahl von 1 bis 3 und z gleich 2 ist oder x gleich Null, y gleich 1 und z eine ganze Zahl von 3 bis 6, vorzugsweise 3 oder 4 darstellt, oder in der R einen Alkoxyethylrest mit 2 bis 6, vorzugsweise 2 bis 4 Kohlenstoffatomen oder einen Phenoxyethylrest bedeutet, wobei x gleich 1 und y gleich Null ist.

Vorzugsweise werden als cyclische Äther und cyclische Acetale Verbindungen der Formel (III)

309814/0965

BAD ORIGINAL

verwendet, in der x entweder eine ganze Zahl von 1 bis 3 und y gleich Null ist, oder in der x gleich Null, y eine ganze Zahl von 1 bis 3 und z gleich 2 ist oder in der x gleich Null, y eine ganze Zahl von 3 bis 6, vorzugsweise 3 oder 4 darstellt.

Als cyclische Äther eignen sich vor allem solche mit 3 Ringgliedern, z.B. Äthylenoxid, Styroloxid, Propylenoxid und Epichlorhydrin sowie Phenylglycidyläther.

Als cyclische Acetale eignen sich vor allem cyclische Formale von aliphatischen oder cycloaliphatischen α, ω -Diolen mit 2 bis 8, vorzugsweise 2 bis 4 Kohlenstoffatomen, deren Kohlenstoffkette in Abständen von 2 Kohlenstoffatomen durch ein Sauerstoffatom unterbrochen sein kann, z.B. Glykolformal (1,3-Dioxolan), Butandiolformal (1,3-Dioxepan) und Diglykolformal (1,3,6-Trioxocan) sowie 4-Chlormethyl-1,3-dioxolan und Hexandiolformal (1,3-Dioxinan).

Ebenfalls geeignet sind Copolymerisate des Trioxans mit linearen Polyacetalen. Als lineare Polyacetale werden dabei sowohl Homopolymerisate der vorstehend definierten cyclischen Acetale verstanden als auch lineare Kondensate aus aliphatischen oder cycloaliphatischen α, ω -Diolen mit aliphatischen Aldehyden oder Thioaldehyden, vorzugsweise Formaldehyd. Insbesondere werden Homopolymerisate linearer Formale von aliphatischen α, ω -Diolen mit 2 bis 8, vorzugsweise 2 bis 4 Kohlenstoffatomen verwendet.

Die Werte für die reduzierte spezifische Viskosität (RSV-Werte) der erfundungsgemäß eingesetzten linearen Polyoxymethylene (gemessen in Butyrolacton, das 2 Gewichtsprozent Diphenylamin enthält, bei 140°C in einer Konzentration von 0,5 g/100 ml) liegen zwischen 0,07 und 2,50 dl·g⁻¹, vorzugsweise zwischen 0,14 und 1,20 dl·g⁻¹. Die Kristallschmelzpunkte der Polyoxymethylene liegen im Bereich von 140 bis 170°C, ihre Dichten zwischen 1,38 und 1,45 g·ml⁻¹ (gemessen nach DIN 53 479).

309814/0965

BAD ORIGINAL

Als verzweigtes oder vernetztes Polyoxymethylen der erfindungsgemäßen Formmassen wird ein Polyoxymethylen verwendet, das sich von den linearen Polymerisaten durch den Einbau einer Komponente mit mehreren polymerisierbaren Gruppen im Molekül, d.h. einer mit Trioxan copolymerisierbaren, mehrfunktionell reagierenden Verbindung, unterscheidet.

Die mehrfunktionellen Verbindungen werden im allgemeinen in einer Menge von 0,01 bis 5, vorzugsweise 0,05 bis 2 Gewichtsprozent verwendet. Als mehrfunktionelle Verbindungen werden vor allem Alkylglycidylformale, Polyglykoldiglycidyläther, Alkandioldiglycidyläther und Bis(alkantriol)-triformale eingesetzt.

Unter Alkylglycidylformalen sind Verbindungen der Formel (IV) zu verstehen,

in der R einen aliphatischen Alkylrest mit 1 bis 10, vorzugsweise 1 bis 5 Kohlenstoffatomen bedeutet. Besonders gut geeignet sind Alkylglycidylformale der obigen Formel, in der R einen linearen, niederen aliphatischen Alkylrest bedeutet, z.B. Methylglycidylformal, Äthylglycidylformal, Propylglycidylformal und Butylglycidylformal.

Als Polyglykoldiglycidyläther werden Verbindungen der Formel (V) bezeichnet,

in der n eine ganze Zahl von 2 bis 5 bedeutet. Insbesondere eignen sich Polyglykoldiglycidyläther der vorstehenden Formel, in der n 2 oder 3 bedeutet, z.B. Diäthylenglykol-diglycidyläther und Triäthylenglykol-diglycidyläther.

309814/0965

BAD ORIGINAL

Als Alkandioldiglycidyläther werden Verbindungen der Formel (VI) bezeichnet,

in der w eine ganze Zahl von 2 bis 6, vorzugsweise 2 bis 4 bedeutet. Insbesondere geeignet ist Butandioldiglycidyläther.

Unter Bis(alkantriol)-triformalen werden Verbindungen mit einer linearen und zwei cyclischen Formalgruppen verstanden, insbesondere Verbindungen der Formel (VII)

in der p und q jeweils eine ganze Zahl von 3 bis 9, vorzugsweise 3 oder 4 bedeuten. Es eignen sich vor allem symmetrische Bis(alkantriol)-triformale der vorgenannten Formel, in der p und q die gleiche Zahl bedeuten, z.B. Bis(1,2,5-pantantriol)-triformal und vorzugsweise Bis(1,2,6-hexantriol)-triformal.

Als mehrfunktionell reagierende Verbindungen zur Herstellung der erfahrungsgemäß verwendeten verzweigten oder vernetzten Polyoxymethylene lassen sich auch oligomere Formale einsetzen, die durch Umsetzung von 1 Mol eines 1,2,(5-11)-Triols mit 0 bis 1 Mol eines α, ω -Diols mit einem Molgewicht von 62 bis 1000, 0 bis 1 Mol eines einwertigen Alkohols mit 1 bis 11 Kohlenstoffatomen und 1 Mol Formaldehyd auf je 2 Mol OH-Gruppen des Reaktionsgemisches erhalten werden (vgl. Deutsche Patentschrift 1.238.889).

Die verzweigten oder vernetzten Polyoxyethylene besitzen Schmelzindices i_2 von 0,1 bis 50 g/min, vorzugsweise von 0,5 bis 20 g/min. Ganz besonders geeignet sind Produkte mit Schmelzindices zwischen 1 und 2 g/min. Der Schmelzindex i_2 wird nach DIN 53 735 bei einer Temperatur von 190°C und einer Belastung von 2,16 kg gemessen.

Zur Herstellung der erfindungsgemäßen Formmassen werden die Komponenten in Pulver- oder Granulatform miteinander vermischt und anschließend in der Schmelze homogenisiert.

Das Mischen und Homogenisieren erfolgt in beliebigen heizbaren Mischwerken, z.B. Walzen, Kalandern, Knetern oder Extrudern. Die Mischtemperaturen liegen zweckmäßigerweise oberhalb des Kristallitschmelzpunktes der Komponenten und betragen 150 bis 250°C, vorzugsweise 170 bis 200°C.

Anstelle der Herstellung der erfindungsgemäßen Formmassen durch Mischer der getrennt synthetisierten linearen bzw. verzweigten oder vernetzten Polyoxyethylene kann die Herstellung auch in einem Arbeitsgang erfolgen, und zwar durch Modifikation der bekannten Herstellung der linearen Polyoxyethylene: Gegen Ende der Polymerisation, d.h. bei einem Umsatz von mindestens 80 Prozent, wird das Reaktionsgemisch mit der benötigten Menge der mehrfunktionellen Verbindung versetzt, und nach Beendigung der Polymerisation liegt dann ein Gemisch aus linearem und verzweigtem oder vernetztem Polyoxyethylen vor.

Die erfindungsgemäß verwendeten binären oder ternären Trioxan-Copolymerivate werden in bekannter Weise durch Polymerisieren der Monomeren in Gegenwart kationisch wirksamer Katalysatoren bei Temperaturen zwischen 0 und 100°C, vorzugsweise zwischen 50 und 90°C, hergestellt (vgl. z.B. Deutsche Auslegeschrift 1.420.283). Als Katalysatoren werden hierbei Protonensäuren, z.B. Perchlorsäure, oder Lewis-Säuren, z.B. Bortrifluorid und dessen Komplexe, verwendet, und die Polymerisation

309814/0905

kann in Masse, Suspension oder Lösung erfolgen. Zur Entfernung instabiler Anteile werden die Copolymerisate zweckmäßigerweise einem thermischen oder hydrolytischen kontrollierten, partiellen Abbau bis zu primären Alkoholendgruppen unterworfen (vgl. z.B. Deutsche Auslegeschriften 1.445.273 und 1.445.294).

Die erfindungsgemäß verwendeten Homopolymerisate des Formaldehyds oder des Trioxans werden ebenfalls in bekannter Weise durch katalytisches Polymerisieren des Monomeren hergestellt (vgl. z.B. Deutsche Auslegeschrift 1.037.705 und Deutsche Patentschrift 1.137.215).

Offensichtlich erfolgt durch das Vorhandensein von verzweigtem oder vernetztem Polyoxymethylen eine Nukleierung der erfindungsgemäßen Formmassen, die sich in einer Verkleinerung der Sphärolithe dokumentiert und eine Verbesserung der mechanischen Eigenschaften von Formkörpern, hergestellt aus den erfindungsgemäßen Formmassen, bewirkt. Beispielsweise wird eine Erhöhung der Kugeldruckhärte, der Streckspannung, der Reißfestigkeit und der Torsionssteifheit gegenüber einem nicht modifizierten, linearen Polyoxymethylen beobachtet (vgl. Tabelle 1). Eine weitere Folge der Nukleierung ist eine Erhöhung der Kristallisationsgeschwindigkeit, die eine Erhöhung der Verarbeitungsgeschwindigkeit ermöglicht. Diese schnellere Verarbeitbarkeit macht sich besonders in kürzeren Zykluszeiten beim Spritzgießen und in engeren Toleranzen von spritzgegossenen Teilen bemerkbar.

Die erfindungsgemäße Verwendung von verzweigtem oder vernetztem Polyoxymethylen als Nukleierungsmittel für lineares Polyoxymethylen ist besonders dadurch vorteilhaft, daß die verzweigten oder vernetzten Polyoxymethylene mit gleichbleibender Qualität synthetisiert werden können, ohne daß eine Reinigung des Produktes erforderlich ist, wie sie z.B. bei natürlich vorkommenden Mineralien, die als Nukleierungsmittel geeignet sind, nötig ist.

309814/0965

BAD ORIGINAL

Die beiden Komponenten der erfindungsgemäßen Formmassen können zur Stabilisierung gegen den Einfluß von Wärme, Sauerstoff und Licht mit Stabilisatoren vermischt und anschließend in der Schmelze homogenisiert werden. Als Wärmestabilisatoren eignen sich z.B. Polyamide, Amide mehrbasiger Carbonsäuren, Amidine, Hydrazine, Harnstoffe und Poly(N-vinyl-lactame), als Oxydationsstabilisatoren werden Phenole, insbesondere Bisphenole, und aromatische Amine und als Lichtstabilisatoren α -Hydroxybenzophenon- und Benzotriazolderivate verwendet, wobei die Stabilisatoren in Mengen von insgesamt 0,1 bis 10, vorzugsweise 0,5 bis 5 Gewichtsprozent, bezogen auf die Gesamtmasse, eingesetzt werden.

Die erfindungsgemäßen Formmassen lassen sich mechanisch, z.B. durch Zerhacken oder Mahlen, zu Granulaten, Schnitzeln, Flocken oder Pulver zerkleinern. Sie können thermoplastisch, z.B. durch Spritzgießen oder Strangpressen, zu Formkörpern, z.B. Barren, Stäben, Platten, Filmen, Bändern und Rohren, verarbeitet werden.

Beispiele 1 bis 7

Ein lineares Copolymerisat aus 98 Gewichtsprozent Trioxan und 2 Gewichtsprozent Äthylenoxid mit einer Dichte von $1,41 \text{ g.ml}^{-1}$, einem RSV-Wert von $0,73 \text{ dl.g}^{-1}$ und einem Kristallitschmelzpunkt von 166°C wird in Pulverform mit 0,5 Gewichtsprozent Bis(2-hydroxy-3-tert.butyl-5-methyl-phenyl)methan und 0,1 Gewichtsprozent Di-cyandiamid, bezogen auf die Menge des linearen Polyoxymethylen, sowie mit verschiedenen Mengen eines vorher in gleicher Weise stabilisierten, vernetzten Terpolymerisates aus 98 Gewichtsprozent Trioxan, 1,95 Gewichtsprozent Äthylenoxid und 0,05 Gewichtsprozent 1,4-Butandioldiglycidyläthers mit einem Schmelzindex von $I_2 = 1,0 \text{ g/10 min}$ in Granulatform vermischt und in einem Ein-schneckenextruder bei 200°C homogenisiert. Die Verweilzeit im

309814/0965

Zylinder des Extruders beträgt etwa 4 Minuten.

An den erhaltenen Produkten wird die Sphärolithgröße gemessen, indem aus dem Polyoxymethylen-Granulat durch Aufschmelzen zwischen zwei Glasplatten bei 180°C und anschließendes Kristallisieren bei 150°C unter Atmosphärendruck ein Film mit einer Stärke von 10 Mikron hergestellt wird, der mikroskopisch untersucht wird.

Außerdem werden aus den erhaltenen Formmassen Platten mit den Abmessungen 60 x 60 x 2 mm bei einer MasseTemperatur von 200°C und einer Formtemperatur von 80°C gespritzt, die zur Prüfung der Kugeldruckhärte nach VDE 0302 (Belastungszeit 10 Sekunden) verwendet werden.

Die Streckspannung und Reißfestigkeit wird an 1 mm dicken Zugstäben (1/4 Proportionalstab) nach DIN 53 455 ermittelt.

Die Torsionssteifheit wird an Prüfstäben aus 2 mm starken Preßplatten nach DIN 53 447 bei einer Temperatur von 20°C und einer Belastungszeit von 60 Sekunden gemessen.

Die Sphärolithgrößen und mechanischen Eigenschaften von Formkörpern aus erfindungsgemäßen Formmassen sind aus Tabelle 1 ersichtlich. Zum Vergleich sind die entsprechenden Daten von nicht nukleiertem, linearem Polyoxymethylen angeführt.

309814/0965

Beispiele 8 bis 12

Ein lineares Copolymerisat aus 96 Gewichtsprozent Trioxan und 4 Gewichtsprozent Dioxolan mit einer Dichte von $1,40 \text{ g}\cdot\text{ml}^{-1}$, einem RSV-Wert von $0,68 \text{ dl}\cdot\text{g}^{-1}$ und einem Kristallitschmelzpunkt von 164°C wird in Pulverform zusammen mit den in Beispielen 1 bis 7 genannten Stabilisatoren sowie mit jeweils 1 Gewichtsprozent der in Tabelle 2 genannten pulverförmigen Terpolymerisate gemischt und wie in Beispielen 1 bis 7 homogenisiert. Als Terpolymerisate werden Terpolymerisate aus Trioxan, 2 Gewichtsprozent Äthylenoxid und wechselnden Mengen 1,4-Butandioldiglycidyläther verwendet. An den erhaltenen Produkten wird die Sphärolithgröße analog den Beispielen 1 bis 7 gemessen.

309814/0965

Tabelle 1

Bei- spiel	Ter- polymer- Menge (%)	Sphäro- lith- größe (Mikron)	Kugel- druck- härte (kp/cm ²)	Streck- spannung (kp/cm ²)	Reiß- festig- keit (kp/cm ²)	Torsions- steifheit (kp/cm ²)
a	-	230	1570	652	516	7600
1	0,5	16	1585	706	564	8180
2	1,0	14	1590	716	562	8160
3	2,0	13	1600	720	566	8140
4	3,0	12	1610	726	567	8260
5	4,0	11	1625	726	552	8300
6	5,0	9	1615	729	575	8430
7	8,0	9	1610	728	560	8450

309814/0965

Tabelle 2

Beispiel	Terpolymerisat aus			Sphärolithgröße (Mikron)
	Trioxan (Gew.%)	Athylen- oxid (Gew.%)	Butandiol- diglycidyl- äther (Gew.%)	
b		-		592
8	97,9	2	0,1	8
9	97,5	2	0,5	14
10	97,0	2	1,0	15
11	96,0	2	2,0	21
12	93,0	2	5,0	17

309814/0965

Patentansprüche

1. Thermoplastische Formmassen, bestehend aus einer Mischung von 99,9 bis 90 Gewichtsprozent eines linearen Polyoxymethylens und 0,1 bis 10 Gewichtsprozent eines verzweigten oder vernetzten Polyoxymethylens.
2. Thermoplastische Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß das lineare Polyoxymethylen ein Homopolymerisat des Formaldehyds oder des Trioxans oder ein Copolymerisat aus Trioxan und einer mit Trioxan copolymerisierbaren, monofunktionell reagierenden Verbindung ist und daß das verzweigte oder vernetzte Polyoxymethylen ein Copolymerisat aus Trioxan und einer mit Trioxan copolymerisierbaren, mehrfunktionell reagierenden Verbindung und gegebenenfalls einer mit Trioxan copolymerisierbaren, monofunktionell reagierenden Verbindung ist.
3. Verwendung von verzweigten oder vernetzten Polyoxymethylenen als Nukleierungsmittel für lineare Polyoxymethylene.

309814/0965