Deploying Fast and Large Scale Web Applications

Thierry Sans

Users respond to speed

"Amazon found every 100ms of latency cost them 1% in sales"

"Google found an extra •5 seconds in search page generation time dropped traffic by 20%"

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

Our microservice deployment (so far)

Problems

- How to increase the throughput?
- How to scale to serve millions of users?

✓ Better scalability with load balancer and CDN

Frontend packing

The problem

Frontend Server

The solution - using a frontend packer

Frontend Server

HTTP/2

HTTP/2

HTTP/2 enables multiplexing

- → send multiple HTTP responses for a given request (a.ka push)
- Proposed by Google (called SPDY)
- Adopted as an standard in 2015 (RFC 7540)
- HTTP/2 is compatible with HTTP/I (same protocol)

HTTP I.I

HTTP 2.0

Great technology ... but nobody uses it!

Google is planning to remove the push feature from Chrome!

"Almost five and a half years after the publication of the HTTP/2 RFC, server push is still extremely rarely used. Over the past 28 days, 99.95% of HTTP/2 connections created by Chrome never received a pushed stream, and 99.97% of connections never received a pushed stream that got matched with a request. These numbers are exactly the same as in June 2019"

source https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ?pli=1

HTTP/3

(work in progress)

HTTP/3 (standard draft)

PWA Progressive Web Applications

The idea

- → A web application that can be installed on your system
 - Relies on browser local storage to store the frontend (and checks for update with the server)
 - Relies on Web-Workers for caching and communication

Backend Web Caching

How to improve response time?

Processing the request means:

I. Parse the HTTP request

2. Map the URL to the handler

DB and API accesses are expensive (time and money when your host charges you each access)

- 3. Query the database or third-party API
- 4. Compute the HTTP response

Fine-grained caching with the web application

Cache controlled by the program

- Specific for each app
- √ Good for caching database requests and storing sessions
- → Popular memory cache: Memcached

Distributed Shared Cache: Memcached

http://memcached.org/

- Store key/value pairs in memory
- Throw away data that is the least recently used

A typical cache algorithm

```
retrieve from cache
if data not in cache:
    # cache miss
    query the database or API
    update the cache
return result
```

Cache Stampede (a.k.a dog piling)

Problem:

Multiple concurrent requests doing the same request because cache was cleared

Solution:

- · update the cache instead of clearing it after an insert
- a page view will never query the database
- → Requires cache warming

Scaling The Backend

Serving multiple apps with a load balancer

Distributed Shared Cache

Database Sharding

Automatic Scaling with container Orchestration

CDN: Content Distribution Network

Example: Akamai, Cloudflare