11.2 习题

张志聪

2024年12月24日

11.2.1

划分 P' 比 P 更细,由命题 11.1.14 可知,任意 $J \subseteq P'$,都存在 $K \subseteq P$ 使得 $J \subseteq K$ 。此时 $J \subseteq K \subseteq P$,由于 f 是关于 P 上的分段常数函数,那么 f 在 K 上是常值的,于是 f 在 J 上也是常值的。

由 J 的任意性可知,f 也是关于 P' 上的分段常数函数。

11.2.2

由于 f,g 都是 I 上的分段常数函数,于是存在 I 上的划分 P_f,P_g 分别 使得 f 是关于 P_f 上的分段常数函数,g 是关于 P_g 上的分段常数函数。

由引理 11.1.18 可知, $P:=P_f\#P_g$ 是 I 的划分,且比 P_f 和 P_g 更细。由引理 11.2.7 可知,f,g 都是关于 P 的分段常数函数,那么,由定义 11.2.3,对任意 $J\subseteq P$, $f|_J$ 是常数函数, $g|_J$ 是常数函数,于是 $(f-g)|_J$ 也是常量函数,由 J 的任意性可知,f-g 是关于 P 的分段常数函数,由定义 11.2.5可知,f-g 是 I 上的分段函数。

其他情况类似。

11.2.3

令 Q := P # P', 由引理 11.2.7 可知, f 是关于 Q 上的分段常数函数。

接下来证明:

$$p.c. \int_{[P]} f = p.c. \int_{[Q]} f$$
 (1)

$$p.c. \int_{[P']} f = p.c. \int_{[Q]} f$$
 (2)

对任意 $K \in P$, 定义

$$Q_K := \{X \in Q : X \subseteq K\}$$

证明 $K=Q_K$ 。反证法,假设 $K\neq Q_K$ 。由 Q_K 的构造方式,易知 $Q_K\subseteq K$,如果假设成立,那么,存在 $x\in K$, $x\notin Q_K$ 。

Q 中一定存在 J 使得 $x \in J$,由 Q 比 P 更细,可知存在 $W \in P$ 使得 $J \subseteq W$,由划分的定义可知 W = K,因为如果 $W \ne K$,则与定义 11.1.10 (划分)中每个元素恰好属于 P 中的一个有界区间矛盾,存在了两个区间都包含 x。于是可知 $J \in Q_K$,与假设矛盾。

由 $K=Q_K$ 可知, $p.c.\int_{[K]}f=p.c.\int_{[Q_K]}f$,由 K 的任意性,可知(1)式成立。

类似地,可证(2)式成立。

11.2.4

设 P_f, P_g 是满足条件的划分,即 f, g 分别是关于 P_f, P_g 的分段常数函数。令 $P := P_f \# P_g$,由引理 11.1.18 和命题 11.2.13 可知,

$$p.c. \int_{I} f = p.c. \int_{[P]} f$$

$$p.c. \int_{I} g = p.c. \int_{[P]} g$$

• (a)

由定义 11.2.9 可知,

$$p.c. \int_{I} (f+g) = \sum_{J \in P} (F_J + G_J)|J|$$

其中 F_J , G_J 表示 f, g 分别在 J 上的常数值。由命题 7.1.11 可知,

$$p.c. \int_{I} (f+g) = \sum_{J \in P} (F_{J} + G_{J})|J|$$

$$= \sum_{J \in P} F_{J}|J| + \sum_{J \in P} G_{J}|J|$$

$$= p.c. \int_{[P]} f + p.c. \int_{[P]} g$$

$$= p.c. \int_{I} f + p.c. \int_{I} g$$

- (b)证明与 (a) 类似,略
- (c) 利用 (a),(b) 可证,略
- (d) 由定义 11.2.9 可知,

$$p.c. \int_{I} f = \sum_{I \in P} F_{J} |J|$$

其中 F_J 表示 f 在 J 上的常数值。

由题设可知, $F_J \geq 0$, 又由定义 11.1.8 可知 $|J| \geq 0$, 于是, 任意 $J \in P$ 都有 $F_J|J| \geq 0$, 所以,

$$\sum_{J \in P} F_J|J| \ge 0$$

即:

$$p.c. \int_I f \ge 0$$

- (e)
 证明框架:对 P 的基数 n 进行归纳。略
- (f)

由定义 11.2.9 可知,

$$p.c. \int_{I} f = \sum_{I \in P} F_{J} |J|$$

其中 F_J 表示 f 在 J 上的常数值,又 f 是常量函数 f(x)=c,所以总是 $F_J=c$,于是,

$$p.c. \int_{I} f = \sum_{J \in P} F_{J} |J|$$
$$= \sum_{J \in P} c|J|$$
$$= c \sum_{J \in P} |J|$$
$$= c|I|$$

最有一个等式利用了定理 11.1.13

• (g)

$$J_L := \{ x \in J : x \le \min(P); x \notin P \}$$

$$J_R := \{ x \in J : x \ge \max(P); x \notin P \}$$

 $\{J_L, P, J_R\}$ 划分是符合定义 11.1.10 (划分) 的。 于是,

$$p.c. \int_{J} F = \sum_{K \in J} C_{K}|K|$$

$$= \sum_{K \in J_{L}} C_{K}|K| + \sum_{K \in P} C_{K}|K| + \sum_{K \in J_{R}} C_{K}|K|$$

$$= 0 + \sum_{K \in P} C_{K}|K| + 0$$

$$= \sum_{K \in P} C_{K}|K|$$

$$= p.c. \int_{J} f$$

其中, $K\in J, C_K$ 表示 F 在 K 上的常数值。而 $x\in J_L$ 时, $C_K=0$,即此时的 $C_J=0$; $x\in J_R$ 时, $C_K=0$,即此时的 $C_J=0$ 。

• (h)

0

$$J_P := \{ J \cap X : X \in P \}$$
$$K_P := \{ K \cap X : X \in P \}$$

可见 J_P, K_P 分别是 J, K 的划分。

对任意 $X \in J_P$,按照 J_P 的构造方式存在 $Y \in P$ 使得 $X \subseteq Y$,因为 f 是关于 P 的分段常数函数,所以 f 在 Y 上都是常值的,那么在 X 上也是常值的,由定义 11.2.3 可得 $f|_J$ 是关于 J_P 的分段常数函数。于是 $f|_J$ 是 J 上的分段常数函数。

类似地, $f|_K$ 是 K_P 上的分段常数函数。

。定义

$$F(x) := \begin{cases} f|_J(x) & x \in J \\ 0 & x \in I \setminus J \end{cases}, G(x) := \begin{cases} f|_K(x) & x \in K \\ 0 & x \in I \setminus K \end{cases}$$

于是 f = F + G, 利用 (a)(g) 可得,

$$\begin{aligned} p.c. \int_I f &= p.c. \int_I (F+G) \\ &= p.c. \int_I F + p.c. \int_I G \\ &= p.c. \int_J f|_J + p.c. \int_K f|_K \end{aligned}$$