Capitolo 3

Gruppi di omotopia delle sfere

3.1 Metodo generale

Definizione 3.1. Uno spazio topologico X si dice uniformemente localmente contrattile (ULC) se esiste un intorno U della diagonale $\Delta \subseteq X \times X$ tale che le due applicazioni da U in X definite rispettivamente da $(x,y) \mapsto x$ e $(x,y) \mapsto y$ sono omotope mediante un'omotopia che fissa Δ .

Si può mostrare che, se X è connesso per archi e ULC, allora X ammette un rivestimento universale ULC; inoltre, se X è ULC, allora anche ΩX (lo spazio dei cammini chiusi su X) è ULC.

Sia X uno spazio connesso per archi ULC. Definiamo ricorsivamente:

- \bullet $X_0 = X_1$
- T_{n+1} è il rivestimento universale di X_n per $n \ge 0$;
- $X_n = \Omega T_n \text{ per } n \geq 1.$

Osserviamo che si tratta di buone definizioni: X_0 è connesso per archi e ULC, dunque T_0 è ULC; inoltre T_0 è semplicemente connesso, pertanto X_1 è connesso per archi e ULC, e la costruzione si può ripetere indefinitamente.

Possiamo ora ricavare una relazione interessante fra i gruppi di omotopia di X e i gruppi di omologia di X_n .

Proposizione 3.1. Per ogni
$$n \ge 0, i \ge 1$$
 vale $\pi_i(X_n) = \pi_{i+n}(X)$.

Dimostrazione. La relazione è banalmente vera per n=0. Ragionando per induzione, possiamo supporre che sia vera per n-1. Poiché T_n è il rivestimento universale di X_{n-1} , vale $\pi_1(T_n)=0$ e $\pi_i(T_n)=\pi_i(X_{n-1})=\pi_{i+n-1}(X)$ per

 $i \geq 2$. Consideriamo la fibrazione $X_n \to E_{x,T_n} \to T_n$ e la successione esatta lunga dei gruppi di omotopia

$$\pi_{i+1}(E_{x,T_n}) \longrightarrow \pi_{i+1}(T_n) \longrightarrow \pi_i(X_n) \longrightarrow \pi_i(E_{x,T_n})$$

Ma E_{x,T_n} è contrattile, pertanto per ogni $i \geq 1$ vale $\pi_i(X_n) = \pi_{i+1}(T_n) = \pi_{i+n}(X)$.

Corollario 3.2. Per ogni $n \ge 1$ vale $H_1(X_n) = \pi_{n+1}(X)$.

Dimostrazione. Sappiamo che $\pi_1(X_n) = \pi_n(X)$; in particolare $\pi_1(X_n)$ è abeliano. Per il teorema di Hurewicz, $\pi_1(X_n) = H_1(X_n)$.

Osserviamo che, per $n \geq 1$, X_n è un H-spazio, dunque il suo gruppo fondamentale, ossia $\pi_{n+1}(X)$, agisce banalmente sui gruppi di omologia e coomologia di T_n (\blacksquare).

Proposizione 3.3. Supponiamo che X sia semplicemente connesso, e che i gruppi $H_i(X)$ siano finitamente generati per ogni $i \geq 0$. Allora i gruppi $\pi_i(X)$ sono finitamente generati per ogni $i \geq 0$.

Dimostrazione. Per il Corollario 3.2 è sufficiente mostrare che i gruppi di omologia di X_n e di T_n sono finitamente generati per ogni $n \geq 0$. Ciò è sicuramente vero per X_0 per ipotesi e per T_1 poiché $T_1 = X_0$. Inoltre da \blacksquare segue che anche i gruppi di omologia di X_1 sono fintamente generati. Ragioniamo ora per induzione, supponendo di aver dimostrato che i gruppi di omologia di T_{n-1} e X_{n-1} sono finitamente generati. Sia $\pi = \pi_1(X_{n-1})$. Consideriamo la successione spettrale $E_r^{p,q}$ associata al rivestimento $T_n \to X_{n-1}$ data da \blacksquare . Vale $E_2^{p,q} = H_p(\pi; H_q(T_n))$, e E_∞ è il gruppo graduato associato a $H(X_{n-1})$. Poiché π agisce banalmente su $H_q(T_n)$, per il teorema dei coefficienti universali vale

$$E_2^{p,q} = (H_p(\pi) \otimes H_q(T_n)) \oplus \operatorname{Tor}(H_{p-1}(\pi), H_q(T_n)).$$

I gruppi di omologia di X_{n-1} sono finitamente generati per ipotesi induttiva, e π è finitamente generato poiché $\pi = H_1(X_{n-1})$. (?) Ripetendo il ragionamento di \blacksquare si ottiene che i gruppi di omologia di T_n sono finitamente generati. Applicando di nuovo \blacksquare troviamo che anche i gruppi di omologia di X_n sono finitamente generati.

Proposizione 3.4. Supponiamo che X sia semplicemente connesso, e che i gruppi $H_i(X)$ siano finitamente generati per ogni $i \geq 0$. Sia K un campo. Supponiamo inoltre che $H_i(X;K) = 0$ per 0 < i < n. Allora $\pi_i(X) \otimes K = H_i(X;K)$ per $2 \leq i \leq n$.

Dimostrazione. Dimostriamo inizialmente il seguente fatto: dati $i>0, j\le n-i$ vale $H_i(X_j;K)=H_{i+j}(X;K)$. Mostriamolo per induzione su j. Per j=0 la tesi è ovvia. Sia ora $j\ge 1$. Abbiamo $\pi_1(X_{j-1})\otimes K=H_1(X_{j-1})\otimes K=H_1(X_{j-1};K)=0$. $\pi_1(X_{j-1})=\pi_j(X)$ è un gruppo abeliano finitamente generato, dunque è in realtà finito, e il suo ordine è coprimo con la caratteristica

di K. Per \blacksquare vale $H_i(T_j;K) = H_i(X_{j-1};K)$ per ogni $i \ge 0$. Per concludere è sufficiente ricordare che $X_j = \Omega T_j$ è applicare \blacksquare .

La tesi della proposizione segue ora banalmente. Se $2 \leq i \leq n$ vale

$$\pi_i(X) \otimes K = H_1(X_{i-1}) \otimes K = H_i(X) \otimes K = H_i(X;K).$$

3.2 Sfere di dimensione dispari

Lemma 3.5. Sia X uno spazio topologico connesso per archi e semplicemente connesso, $\Omega = \Omega X$; sia inoltre K un campo. Supponiamo che $H^*(X;K)$ sia isomorfa a un'algebra di polinomi K[u] generata da un elemento u di grado $n \geq 2$ pari. Allora $H^*(\Omega;K)$ è isomorfa a un'algebra esterna generata da un elemento v di grado n-1.