

SRM Institute of Science and Technology

College of Engineering and Technology

B.Tech - Mechanical Engineering

Academic Year: 2022-23 Even Semester: VI Mark: 50

Subject Code: 18MEO113T Title: Design of Experiments Duration: 90 min

Type of Test: CLAII

Q.					
No.	Part A Question	M	BL	CO	РО
1	It is advisable to ensure that the measurement system is capable, stable, robust and to environmental changes. (A) Sensitive (B) Insensitive (C) Scalable (D) Usable	1	1	2	1
2	In plots, inactive main and interaction effects tend to fall roughly along a straight line. (A) Cube (B) Normal Probability for residuals (C) Pareto (D) Normal Probability for factors	1	2	2	1
3	If a line is considered as best regression line, the should be minimal. (A) Sum of squares of error (B) Square of error (C) Sum of error (D) Error	1	2	2	1
4	From the experiments, we got the results as follows: 53.48; 52.69; 53.88; 54.12; 54.36. What is the Standard deviation? (A) 53.706 (B) 0.428 (C) 1.713 (D) 0.654	1	2	2	2
5	In Resolution III design, effects are aliased with any other main effect, but main effects are confounded with two-factor interactions. (A) Main (B) Interaction (C) Mixed (D) Anti-aliased	1	2	2	2
6	The Taguchi approach is most closely associated with: (A) Total quality management (B) Standardization (C) Robust design (D) Quality function deployment	1	1	3	1
7	Japanese quality guru who developed new concepts in response to the American gurus	1	1	3	1

		ı		T	, ,
	(A) Walter Shewhart				
	(B) Philip Crosby				
	(C) Genichi Taguchi				
	(D) Shuji Nakamura				
8	What is the quality loss function for smaller-the-better	1	1	3	1
	conditions?				
	(A) $L(y) = ky^2$ (B) $L(y) = k(1/y^2)$				
	(B) $L(y) = k(1/y^2)$ (C) $L(y) = k/\Delta^2$				
	$(D) L(y) = km^2$				
9	Under this condition, the Loss is A_0 if the quality	1	2	3	1
	characteristics are above the upper limit Δ .	'	_		'
	(A) Smaller-the-better				
	(B) Larger-the-better				
	(C) Nominal-the-best				
	(D) No loss				
10	is delivered if a product or service	1	1	3	1
	tangible performs its intended function throughout its				
	projected life under reasonable operating conditions				
	without harmful side effects.				
	(A) Interchangeability				
	(B) Selective assembly				
	(C) Taguchi quality function (D) Ideal quality				
	Part B Question				
	Answer any two				
11	Explain the Pareto plot with an example.	4	2	2	2
12	Explain the Normal Probability Plot for residuals.	4	2	2	2
13	List eight factorial design types.	4	2	2	1
	Answer any two	· ·	_	_	
14	Explain, with an example, how the Taguchi	4	2	3	2
'4	method is quite different from conventional	¬	_		_
	methods followed in the industry.				
15		4	2	3	1
15	Explain the Interchangeability concept with an	4	~	3	'
16	List & stops followed in Tagushi Methodology	4	2	2	1
16	List 8-steps followed in Taguchi Methodology	4		3	
17	Part C Question (Unit 2)	12	2	2	2
17	Explain the following plots in detail:	12	3	2	3
	i. Main effects plots				
	ii. Interactions plots				
	iii. Cube plots				
	iv. Pareto plots for factor effects				
	v. Normal probability plot for factor effects				
	vi. Normal probability plot for residuals				
4.0	Or	40			
18	An experimenter wants to know the effect of	12	4	2	3
	agriculture spray and stimulants on growth. The				
	spray has two levels 50 and 100 ml. The				
	stimulants also have two levels, 35 and 70 grams.				
	The experiment was repeated in three trials. The				
	experimenter wants to know if adjustments to				

	either agriculture spray or stimulants would increase the growth.									
	Factors Trails									
		Stimulants	1 11 111							
	50	35	27	28	25					
	100	35	32	32	36					
	50	70	23	18	19					
	100	70	30	29	31					
	133									
	Part C Question (Unit 3)									
19	The objective of the research is an experimental investigation to find the optimization of machining parameters of EDM machine for machining steel material EN-8 using Taguchi's DOE. Ra values obtained according to the experiment sequence are: 2.625; 1.905; 2.5275; 2.99; 4.4325; 4.10; 3.38; 3.015; 3.312. Find the Main effect, draw the factor effect diagram, and identify the optimum process parameters. Column Factors Units Level -1 Level -2 Level -3 Peak current Amps 3 5 7 Pulse on time μ-sec 25 52 100 3 Gap voltage Volts 45 50 55 4 Fluid pressure Kg/cm² 0.5 0.75 1.0							4	3	3
20	Determine which process parameters have the greatest impact on the hardness of the steel components. Hardness values (HV) are 57; 59; 65; 45; 67; 73; 51; 48.						4	3	3	
	Paramete r number	Para	meters		Level 1	Level 2				
	1	Temperature(°C)			760	900				
	2 Quenching ra		rate(⁰ 0	C/s)	35	140				
	3	3 Cooling time(sec)			1	300				
	4 Carbon contents (Wt% 1 6 c) 5 Co 2concentration (%) 5 20									