Artificial Intelligence

Lecture 1 supplement: What you should know about probability

IN4010 Artificial Intelligence Techniques
Prof. dr. C.M. Jonker, dr. F. Oliehoek, ir. Rolf Starre
4-9-2019

Short answer: All of Russel&Norvig(v3) Chap 13

- events, random variables
- joint probability
- inference by enumeration
- independence
- conditional independence
- Bayes Rule

Short answer: All of Russel&Norvig(v3) Chap 13

- So, for example:
 - o sample space Ω ={(1,1), (1,2), ...}
 - o $\Sigma_{\omega} P(\omega)=1$
 - o events: **subsets** of sample space
 - "dice-1-odd", "at least one odd", or "both even"
 - P("dice-1-odd" ∧ "dice-2-even")
 - o inclusion-exclusion:

$$P(avb) = P(a) + P(b) - P(a \wedge b)$$

- RN notation:
 - ^o (boolean) random variable: *Even*
 - o values: {*true,false*} also written {*even,* ¬*even*}

More notation

- Prior probability
 - O Weather can be {sunny,rain,cloudy,snow}
 - o probability: P(Weather=sunny) = 0.2
 - o prob. distribution: *P*(*Weather*) = [0.2, 0.3, 0.45, 0.05]
- Joint probability

'product rule'

- scalar \longrightarrow 0 P(toothache, cavity) = P(toothache | cavity) P(cavity)
 - o **P**(Toothache, Cavity) = **P**(Toothache | Cavity) **P**(Cavity)

More notation

- Prior probability
 - O Weather can be {sunny,rain,cloudy,snow}
 - o probability: P(Weather=sunny) = 0.2
 - o prob. distribution: *P*(*Weather*) = [0.2, 0.3, 0.45, 0.05]
- Joint probability

'product rule'

- scalar 0 P(toothache, cavity) = P(toothache | cavity) P(cavity)
 - table O P(Toothache, Cavity) = P(Toothache | Cavity) P(Cavity)

Conditional Probability

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$

Marginal Probability

$$P(b) = \sum_{a} P(a \wedge b)$$

Joint Probability Tables

• E.g.:

Can be use to compute all kinds of probabilities

Inference by enumeration

Start with the joint distribution:

	toothache		¬ toothache		
	catch	¬ catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Normalization

• Compute:
$$P(Cavity | toothache) = \frac{P(Cavity, toothache)}{P(toothache)}$$

Denominator can be viewed as a normalization constant α

	toothache			¬ toothache		
	catch	¬ catch		catch	¬ catch	
cavity	.108	.012		.072	.008	
¬ cavity	.016	.064		.144	.576	

$\mathbf{P}(Cavity toothache) = \alpha \mathbf{P}(Cavity, toothache)$	
$= \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$)]
$= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right]$	
$= \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$	

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Independence

A and B are independent iff

$$\mathbf{P}(Toothache, Catch, Cavity, Weather)$$

= $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional Independence

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity:

 $\mathbf{P}(Catch|Toothache,Cavity) = \mathbf{P}(Catch|Cavity)$

Again: why probability?

De Finetti's argument

- 1) (Non-negativity) $P(A) \ge 0$, for all $A \in F$.
- 2) (Normalization) $P(\Omega) = 1$.
- 3) (Finite additivity) P(A \vee B) = P(A) + P(B) for all A, B \in F such that A \cap B = \emptyset .

Bruno de Finetti:

If agent's beliefs violate the axioms of probability, then there exists a combination of bets against it which it is willing to accept that guarantees it will lose money, every time.

Example

u(6:4 against a) = -6 * bel(a) + 4 * bel(
$$\neg$$
a)
= -6 * 0.4 + 4 * 0.6 = 0

A Dutch book:

prop.	belief	taken bet	/ a,b	a,¬b	¬a,b	¬a,¬b
a	0.4	6:4 against a	-6	-6	4	4
b	0.3	7:3 against b	-7	3	-7	3
avb	0.8	8:2 on a v b	2	2	2	-8
			-11	-1	-1	-1

Cox' Theorem (See Jaynes 2003)

- Desiderata:
 - Degrees of plausibility: represented by real numbers
 - Qualitative correspondence how humans reason
 - Consistency: If a conclusion can reached in more ways, then every possible way must lead to the same result
 - → Need to use probability to represent plausibility
- "Probability theory is nothing but common sense reduced to calculation." — Laplace, 1819

Bayes rule

"One rule to rule them all"

If you are going to remember just one thing...

…remember Bayes' rule:

$$P(A \mid B) = P(B \mid A)P(A) / P(B)$$

directly from product rule:

- $\Leftrightarrow P(A \mid B) P(B) = P(B \mid A)P(A)$
- \Leftrightarrow P(A,B) = P(B,A)

Generalized form given background evidence *e*:

$$P(A \mid B, e) = P(B \mid A, e)P(A \mid e) / P(B \mid e)$$

Important why..?
 (What is its importance for an intelligent agent?)

It allows to update a belief

Rewrite with State and a particular observation o:

$$P(State \mid o) = P(o \mid State)P(State) / P(o)$$

- *P(State)* is our prior belief
- o so we can update our belief, based on observations!

Many observations...

How to deal with many observations?

$$P(State | o_1, o_2, o_3, ...) = \alpha P(o_1, o_2, o_3, ... | State) P(State)$$

- o we don't know the observation sequence in advance...
- o representing $P(o_1, o_2, o_3, ... | State)$ with a table does not scale...
- Solution:
 - o conditional independence can help significantly

Many observations...

How to deal

P(State
$$| o_1, o_2, o_3, ...$$

- o we don't kr
- o representir scale...

 $\mathbf{P}(Cavity|toothache \land catch)$ = $\alpha \mathbf{P}(toothache \land catch|Cavity)\mathbf{P}(Cavity)$ = $\alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$

Total number of parameters is linear in n

- Solution:
 - o conditional independence can help significantly

It allows to maintain a belief

- Given conditional independent observations $P(o_1,o_2|State) = P(o_1|State)P(o_2|State)$
- ...we can also sequentially update:

$$P'(State) := P(o_1 | State)P(State) / P(o_1)$$

 $P''(State) := P(o_2 | State)P'(State) / P(o_2)$

- o then $P''(State) = P(o_1, o_2 | State)$
- 0 (Exercise!)
- We will see later how to incorporate robot movement over time

