Home Compiler Automata AWS IoT Computer Fundamentals Control System Java HTML CSS

Eliminating ε Transitions

NFA with ϵ can be converted to NFA without ϵ , and this NFA without ϵ can be converted to DFA. To do this, we will use a method, which can remove all the ϵ transition from given NFA. The method will be:

- 1. Find out all the ε transitions from each state from Q. That will be called as ε -closure{q1} where qi ε Q.
- 2. Then δ' transitions can be obtained. The δ' transitions mean a ϵ -closure on δ moves.
- 3. Repeat Step-2 for each input symbol and each state of given NFA.
- 4. Using the resultant states, the transition table for equivalent NFA without ϵ can be built.

Example:

Convert the following NFA with ϵ to NFA without ϵ .

Solutions: We will first obtain ε -closures of q0, q1 and q2 as follows:

```
\epsilon-closure(q0) = {q0}

\epsilon-closure(q1) = {q1, q2}

\epsilon-closure(q2) = {q2}
```

Now the δ' transition on each input symbol is obtained as:

```
\delta'(q0, a) = \epsilon\text{-closure}(\delta(\delta^{\wedge}(q0, \epsilon), a))
= \epsilon\text{-closure}(\delta(\epsilon\text{-closure}(q0), a))
= \epsilon\text{-closure}(\delta(q0, a))
= \epsilon\text{-closure}(q1)
= \{q1, q2\}
\delta'(q0, b) = \epsilon\text{-closure}(\delta(\delta^{\wedge}(q0, \epsilon), b))
= \epsilon\text{-closure}(\delta(\epsilon\text{-closure}(q0), b))
```

```
= \epsilon-closure(\delta(q0, b))
= \Phi
```

Now the δ' transition on q1 is obtained as:

```
\delta'(q1, a) = \epsilon\text{-closure}(\delta(\delta^{\wedge}(q1, \epsilon), a))
= \epsilon\text{-closure}(\delta(\epsilon\text{-closure}(q1), a))
= \epsilon\text{-closure}(\delta(q1, q2), a)
= \epsilon\text{-closure}(\delta(q1, a) \cup \delta(q2, a))
= \epsilon\text{-closure}(\Phi \cup \Phi)
= \Phi
\delta'(q1, b) = \epsilon\text{-closure}(\delta(\delta^{\wedge}(q1, \epsilon), b))
= \epsilon\text{-closure}(\delta(\epsilon\text{-closure}(q1), b))
= \epsilon\text{-closure}(\delta(q1, q2), b)
= \epsilon\text{-closure}(\delta(q1, b) \cup \delta(q2, b))
= \epsilon\text{-closure}(\Phi \cup q2)
= \{q2\}
```

The δ' transition on q2 is obtained as:

```
\delta'(q2, a) = \epsilon \text{-closure}(\delta(\delta^{\wedge}(q2, \epsilon), a))
= \epsilon \text{-closure}(\delta(\epsilon \text{-closure}(q2), a))
= \epsilon \text{-closure}(\delta(q2, a))
= \epsilon \text{-closure}(\Phi)
= \Phi
\delta'(q2, b) = \epsilon \text{-closure}(\delta(\delta^{\wedge}(q2, \epsilon), b))
= \epsilon \text{-closure}(\delta(\epsilon \text{-closure}(q2), b))
= \epsilon \text{-closure}(\delta(q2, b))
= \epsilon \text{-closure}(q2)
= \{q2\}
```

Now we will summarize all the computed δ' transitions:

```
\delta'(q0, a) = \{q0, q1\}
\delta'(q0, b) = \Phi
\delta'(q1, a) = \Phi
\delta'(q1, b) = \{q2\}
\delta'(q2, a) = \Phi
\delta'(q2, b) = \{q2\}
```

The transition table can be:

States a b

→q0	{q1, q2}	Ф
*q1	Ф	{q2}
*q2	Ф	{q2}

State q1 and q2 become the final state as ε -closure of q1 and q2 contain the final state q2. The NFA can be shown by the following transition diagram:

← Prev

 $Next \rightarrow$

SYoutube For Videos Join Our Youtube Channel: Join Now

Feedback

• Send your Feedback to feedback@javatpoint.com

Help Others, Please Share

Learn Latest Tutorials

Preparation

Trending Technologies

B.Tech / MCA

DBMS tutorial DBMS	Data Structures tutorial Data Structures	DAA tutorial	Operating System tutorial Operating System	Computer Network tutorial Computer Network
Compiler Design tutorial Compiler Design	Computer Organization and Architecture Computer Organization	Discrete Mathematics Tutorial Discrete Mathematics	Ethical Hacking Tutorial Ethical Hacking	Computer Graphics Tutorial Computer Graphics
Software Engineering Tutorial Software Engineering	html tutorial Web Technology	Cyber Security tutorial Cyber Security	Automata Tutorial Automata	C Language tutorial C Programming
C++ tutorial	⊋ Java tutorial Java	.Net Framework tutorial .Net	Python tutorial Python	List of Programs Programs
Control Systems tutorial Control System	Data Mining Tutorial Data Mining	Data Warehouse Tutorial		

Data Warehouse