半导体探测器与 α 粒子能损实验 (α 粒子的能量损失)

一. 实验目的

- 1. 了解α粒子通过物质时的能量损失及其规律。
- 2. 学习从能损测量求薄箔厚度的方法。

二. 实验原理

- 1. 天然放射性物质放出的 α 粒子,能量范围是 3-8MeV。在这个能区内,可以忽略。
- 2. α 粒子与物质的相互作用主要是与核外电子的相互作用
- 3. α 粒子与电子碰撞,将使原子电离、激发而损失其能量。在一次碰撞中,具有质量为 m,能量为 E 的带电粒子,转移给电子(质量为 m0)的最大能量约为 4EmO/m。
- 4. α 粒子的质量比电子大得多,所以每碰撞一次,只有能量的一小部分转移给电子。当它通过吸收体时,经过多次碰撞后,才损失较多能量。每一次碰撞后, α 粒子的运动方向基本上不发生偏转,因而它通过物质的射程几乎接近直线。带电粒子在吸收体内单位路程上的能量损失即能量损失率 α dE/dx,称为线性阻止

本领 S; 有
$$S = -\frac{dE}{dr}$$
。而阻止截面 $\sum_{e} = \frac{1}{N}S$

当速度远小于光速,即: v << c 时,我们有:

$$-\frac{\mathrm{dE}}{\mathrm{d}x} = \frac{4\pi Z^2 e^4 NZ}{m_0 v^2} \ln \frac{2m_0 v^2}{I}$$

上式中 \ln 项随能量缓慢变化,因此有 $-\frac{dE}{dx} \propto -\frac{C}{E}$, C 为一常数

当粒子穿过厚度为 ΔX 的薄吸收体后,能量变化可以写成:

$$\Delta E = -(\frac{dE}{dx})_{\text{This}} \Delta X$$

进一步可得:

$$\Delta X = \frac{\Delta E}{-\left(\frac{dE}{dx}\right)_{\text{THS}}} \approx \frac{\Delta E}{\left(-dE/dx\right)_{E1}}$$

当能量损失较大时,表达式应该为:

$$\Delta X = \int_{E_2}^{E_1} \frac{dE}{-dE/dx} \approx \sum_{E_1}^{E_2} \frac{\delta E}{-(\frac{dE}{dx})_{E_1}}$$

把 S 看做常量, δE 去 10Kev, 我们利用拟合知识可得:

$$\sum_{e} = \frac{A_{1}E^{A_{2}}(\frac{A_{3}}{E/1000}\ln[1+\frac{A_{4}}{E/1000}+\frac{A_{5}E}{1000}])}{A_{1}E^{A_{2}}+\frac{A_{3}}{E/1000}\ln[1+\frac{A_{4}}{E/1000}+\frac{A_{5}E}{1000}]}$$

对于化合物组成的薄箔,可将化合物各组成份的阻止本领相加得到:

$$\left(\frac{dE}{dx}\right)_{e} = \frac{1}{A_{e}} \sum Y_{i} A_{i} \left(\frac{dE}{dx}\right)_{i} \left(KeV / \mu g \cdot cm^{-2}\right)$$

三. 实验内容

- 1. 测量 ²⁴¹Am 及 ²³⁹Pu 的α粒子的能谱,做能量刻度。
- 2. 测量²⁴¹Am的α粒子通过铝箔及 Mylar 薄箔后的能谱。
- 3. 从所测各条能谱,确定峰位、半宽度、及 α 粒子通过待测样品后的能量损失,计算阻止本领 $(\frac{\mathrm{d}E}{\mathrm{d}x})$ 平均及薄箔的厚度 $(\mu\mathrm{g}/\mathrm{cm}^2)$ 。

四. 实验结果分析及数据处理

1. 将测量的 $^{241}Am \alpha$ 谱以多道的道数为横坐标,以计数为纵坐标描绘在坐标纸上,算出能量分辨率。

则能量分辨率为: 10.69/5443.54=0.1962%

2. 以放射源 ²⁴¹ *A*m 、 ²³⁹ *P*u 等放射源的能量为横坐标,以全能峰道址为纵坐标在坐标纸上作能量和幅度校准曲线。

能量和幅度校准曲线

由图我们发现校准曲线斜率接近与1,可见在实验允许了,刻度做的已经足够了

3. 计算铝箔对于放射源 α 粒子的阻止能力 $(\frac{dE}{dx})$ 平均及薄箔的厚度,

并以铝箔层数为横坐标,厚度为纵坐标,进行线性拟合,计算铝箔的单片厚度。 【注:为方便理解计算,本虚拟实验中,每种薄膜的单片厚度严格相等,在实际工作中单片厚度必然有所偏差。】

$$\Delta X = \frac{\Delta E}{-\left(\frac{dE}{dx}\right)_{\text{TM}}} \approx \frac{\Delta E}{\left(-dE/dx\right)_{E1}}$$

由:

$$\sum_{e} = \frac{A_{1}E^{A_{2}}(\frac{A_{3}}{E/1000}\ln[1+\frac{A_{4}}{E/1000}+\frac{A_{5}E}{1000}])}{A_{1}E^{A_{2}}+\frac{A_{3}}{E/1000}\ln[1+\frac{A_{4}}{E/1000}+\frac{A_{5}E}{1000}]}$$

我们先不考虑 S 的变化;我们可计算得只有一片时,厚度为 1.97um

我们利用校准曲线可得, 当片数为 2 片、3 片、4 片、5 片、6 片、7 片时厚度依次为: 4.12um、

6.27um、 8.42um、 10.57 um、 12.72 um、 14.88um.

拟合可得:

则我们可得厚度为 2.15um。

下面考虑 S 的变化, 我们从新求铝箔厚度。

能量	片数	$(\frac{\mathrm{d}E}{\mathrm{d}x})$ \\pi\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ΔE	ΔX
5166. 34	1	159. 68	314. 55	1. 97
4835. 26	2	166. 42	645. 63	3. 88
4487. 26	3	174. 22	993. 63	5. 70
4118.2	4	183. 42	1362. 69	7. 43
3723. 21	5	194. 50	1757. 68	9.04
3293. 78	6	208. 31	2187. 11	10. 50
2829.6	7	225. 78	2651. 29	11.74

上述中,能量单位为 KeV, $(\frac{\mathrm{d}E}{\mathrm{d}x})_{\mathrm{PH}}$ 为 e $V/10^{15}$ $atom.cm^2$ 。

进行拟合可得:

则此时单片铝箔厚度为 1.64um.

4. 以同样方法计算 Mylar 薄箔的单片厚度。Mylar 为 $C_{10}H_8O$, 下面计算 Mylar 的厚度

我们先不考虑 S 的变化,利用校准曲线求其厚度,可得当片数从 0-7 时,厚度 依次为:

片数	1	2	3	4	5	6	7
厚度/um	2. 11	4.39	6.68	8.97	11.26	13.55	15.84

则单片厚度为 2.28um

下面我们考虑 S 的变化, 重新求其厚度

下表为不同能量不同能量损失中的总厚度

能量	Mylar膜 片数	$(\frac{dE}{dx})c$	$\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{H}$	$(\frac{\mathrm{d}E}{\mathrm{d}x})o$	$(\frac{\mathrm{d}E}{\mathrm{d}x})$ \\pi\tag{5}	ΔE	ΔX
5480. 89	0	164. 71	0.0173	0. 0956	130. 05	0	0.00
5196. 43	1	170. 67	0.0178	0. 0998	134. 75	284. 46	2. 11
4897. 16	2	177. 49	0.0186	0. 1027	140. 14	583. 73	4. 17
4 585. 05	3	185. 31	0.0193	0. 107	146. 31	895. 84	6. 12
4253. 54	4	194. 58	0. 0202	0. 1122	153. 63	1227. 35	7. 99
3898. 27	5	205. 80	0. 0213	0. 1849	162. 50	1582. 62	9. 74
3506. 71	6	220. 10	0. 0227	0. 1265	173. 78	1974. 18	11. 36
3091.39	7	238. 10	0.0246	0. 1366	187. 99	2389. 50	12.71

进行拟合

由拟合的数据可知 Mylar 厚度为 1.83um.

五. 思考题

- 1. 试定性讨论 α 粒子穿过吸收体后,能谱展宽的原因。
- 答: 粒子穿过吸收体后,由于箔片的阻挡作用, α 粒子具有能量损失,且片数越多,能量损失越大。所以,当片数较多时,能谱也比较宽。
- 2. 设组织本领为 S, 薄箔厚度为 ΔX , 试计算 α 粒子倾斜入射, 与表面法线 交角为 4° 、 6° 时能量损失为多少?
- 答: 当倾斜入射时,我们只需要除以一个相应角度的正弦或者余弦值就好,我们有 $\Delta E = (-\Delta X \frac{\mathrm{d}E}{\mathrm{d}x})/\cos\theta = -\Delta XS/\cos\theta$,当角度为 4 度时,能量损失为 $\Delta E = 1.0024\Delta XS$,当角度为 6 度时, $\Delta E = 1.0056\Delta XS$ 。

- 3. 探测器金层厚 100A,试计算 $_{241}$ Am 的 α 粒子进入灵敏区时的能量。已知金的密度为 19. 31 $_{g\cdot cm-3}$,阻止本领 dE/dx=0. 228 $_{KeV}$ / $_{\mu g\cdot cm-2}$ 。
- 答:我们有 $\Delta E = -\Delta X$ ($\frac{\mathrm{d}E}{\mathrm{d}x}$) 平均,则带入计算有: $\Delta E = 4.39\,\mathrm{KeV}$,取开始能量为 5480.89 KeV ,则灵敏区能量为: 5476.5 KeV .
- 4. 从所测到的 Mylar 膜($C_{10}H_8O_1$)的能量损失,试计算其厚度。已知碳、氢、氧的原子密度分别: $N(C)=1.136\times10_{23}$ atm·cm -3, $N(H)=5.376\times10_{19}$ atm·cm -3, $N(H)=5.376\times10_{19}$ atm·cm -3, $N(H)=5.376\times10_{19}$ atm·cm -3, $N(H)=5.367\times10_{19}$ atm·cm -3。 质量密度为 $\rho_0=2.267$ g·cm -3, $\rho_0=0.001428$ g·cm -3。

答: 前面已经处理过该问题。

5. 从所测到的铝箔的能损,若考虑 S 的变化,试用 (6) 式计算厚度。 答: 在之前的处理中,我们已经由数据拟合对于不同的能量分别求出了厚度 从前面两种方法的计算中,我们发现考虑 S 变化时,单片铝箔厚度拟合为 1. 64um. 而由校准曲线得到的厚度为 2. 15um, 在实验误差允许范围内,已经足够精确