Cálculo Diferencial e Integral 2 Respostas à Ficha de Trabalho 1

- 1. (a) Interior: $]0,\pi[;$ Exterior: $]-\infty,0[\ \cup\]\pi,+\infty[;$ Fronteira: $\{0,\pi\};$ Fecho: $[0,\pi].$ O conjunto é aberto, não é fechado, é limitado e não é compacto.
 - (b) Interior: \varnothing ; Exterior: $]-\infty,0[\ \cup\]1,+\infty[$; Fronteira = Fecho = [0,1]. O conjunto não é aberto, não é fechado, é limitado e não é compacto.
 - (c) Interior: \emptyset ; Exterior: \emptyset ; Fronteira = Fecho = \mathbb{R} . O conjunto não é aberto, não é fechado, não é limitado e não é compacto.
 - (d) Interior: $\{(x,y)\colon |x|+|y|<1\}$; Exterior: $\{(x,y)\colon |x|+|y|>1\}$; Fronteira: $\{(x,y)\colon |x|+|y|=1\}$; Fecho: $\{(x,y)\colon |x|+|y|\leq 1\}$. O conjunto não é aberto, é fechado, é limitado e é compacto.
 - (e) Interior: $\{(x,y)\colon (x>0 \text{ e } 0 < y < \frac{1}{x}) \text{ ou } (x<0 \text{ e } \frac{1}{x} < y < 0)\};$ Exterior: $\{(x,y)\colon (x>0 \text{ e } (y<0 \text{ ou } y>\frac{1}{x})) \text{ ou } (x<0 \text{ e } (y>0 \text{ ou } y<\frac{1}{x}))\};$ Fronteira: $\{(x,y)\colon x=0 \text{ ou } y=0 \text{ ou } xy=1\};$ Fecho: $\{(x,y)\colon (x>0 \text{ e } (0 \le y \le \frac{1}{x})) \text{ ou } (x<0 \text{ e } (\frac{1}{x} \le y \le 0) \text{ ou } x=0 \text{ ou } y=0\}.$ O conjunto não é aberto, não é fechado, não é limitado e não é compacto.
 - (f) Interior: $\{(x,y,z)\colon x^2+y^2 < z < 1\}$; Exterior: $\{(x,y,z)\colon x^2+y^2 > z \text{ ou } z > 1\}$; Fronteira: $\{(x,y)\colon (z=x^2+y^2 \in z \le 1) \text{ ou } (z=1 \text{ e } x^2+y^2 \le 1)\}$; Fecho: $\{(x,y,z)\colon x^2+y^2 \le z \le 1\}$. O conjunto não é aberto, não é fechado, é limitado e não é compacto.
 - (g) Interior: \varnothing ; Exterior: $\{(x,y,z)\colon x^2+y^2+z^2>1 \text{ ou } y\neq x\}$; Fronteira = Fecho = $\{(x,y,z)\colon x^2+y^2+z^2\leq 1 \text{ e } y=x\}$. O conjunto não é aberto, é fechado, limitado e compacto.
 - (h) Interior: \emptyset ; Exterior: \emptyset ; Fronteira = Fecho = \mathbb{R}^2 . O conjunto não é aberto, não é fechado, não é limitado e não é compacto.
 - (i) Interior: \varnothing ; Exterior: $\mathbb{R}^2\setminus\{(x,y)\in\mathbb{R}^2:y=\sin x;\,x\geq 0\}$; Fronteira = Fecho = $\{(x,y)\in\mathbb{R}^2:y=\sin x;\,x\geq 0\}$. O conjunto não é aberto, não é fechado, não é limitado e não é compacto.
 - (j) Interior: \varnothing ; Exterior: $\mathbb{R}^2 \setminus \{\text{pontos fronteiros}\}$; Fronteira = Fecho = $\{(x,y) \in \mathbb{R}^2 : 0 < x \le 1; \ y = \sin(\frac{1}{x})\} \cup \{(0,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$. O conjunto não é aberto, não é fechado, é limitado e não é compacto.
- 2. (a) O limite é 0.
 - (b) O limite é 0.
 - (c) O limite não existe.

- (d) O limite é 0.
- (e) O limite é 0.
- (f) O limite não existe.
- (g) O limite não existe.
- (h) O limite é 0.
- 3. (a) A função é contínua em \mathbb{R}^2 .
 - (b) A função é contínua em $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (c) A função é contínua em $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (d) A função é contínua em \mathbb{R}^2 .
 - (e) A função é contínua em \mathbb{R}^2 .
 - (f) A função é contínua em $\mathbb{R}^2\setminus\{(x,y)\in\mathbb{R}^2:y=x^2\}.$
- 4. A função f não é necessariamente contínua em (0,0) ver exercício 3(f).
- 5. A função f não é necessariamente contínua em (0,0) ver exercício 3(f).