Review of probability and statistics

Machine Learning I (2023-2024)
UMONS

Exercise 1

An economics consulting firm has created a model to predict recessions. The model predicts a recession with probability 80% when a recession is indeed coming and with probability 10% when no recession is coming. The (unconditional) probability of falling into a recession is 20%. If the model predicts a recession, what is the probability that a recession will indeed come?

Answer the questions for the following joint distributions between random variables X and Y.

2.1

Given the following joint PMF:

$$\begin{array}{ccc} X = 0 & X = 1 \\ \hline Y = 0 & 0.14 & 0.26 \\ Y = 1 & 0.21 & 0.39 \end{array}$$

- a) Compute the marginal PMF of X and the marginal PMF of Y.
- b) Compute the conditional PMF of Y given X = 0.
- c) Given $s_1(X,Y) = X^2 + 3Y + 1$, compute the joint expectation $\mathbb{E}_{XY}[s_1(X,Y)]$ and the conditional expectation $\mathbb{E}_{Y|X}[s_1(X,Y)|X=0]$.
- d) Given $s_2(X,Y) = XY^3 4X + 2Y$, compute the joint expectation $\mathbb{E}_{XY}[s_2(X,Y)]$ and the conditional expectation $\mathbb{E}_{XY}[s_2(X,Y)|Y=1]$.
- e) Are *X* and *Y* independent?

2.2

Given the following joint PMF:

$$X = 0$$
 $X = 1$ $X = 2$
 $Y = 1$ 0.1 0.2 0.3
 $Y = 2$ 0.05 0.15 0.2

- a) Compute the marginal PMF of X and the marginal PMF of Y.
- b) Compute the conditional PMF of Y given X = 1.
- c) Are *X* and *Y* independent?

Alex and Bob each flip a different fair coin twice. Denote "1" as head, and "0" as tail. Let *X* be the maximum of the two numbers Alex gets, and let *Y* be the minimum of the two numbers Bob gets.

- a) Find the marginal PMF $p_X(x)$ and $p_Y(y)$.
- b) Find the joint PMF $p_{X,Y}(x,y)$.
- c) Find the conditional PMF $p_{X|Y}(x|y)$. Does $p_{X|Y}(x|y) = p_X(x)$? Why?

We have a population of people, 47% of whom were men and the remaining 53% were women. Suppose that the average height of the men was 70 inches, and the women was 71 inches. What is the average height of the entire population? [Hint: Use the law of total expectation]

Let $X_1, X_2, \dots, X_n \in \mathbb{R}$ be a collection of n random variables, and a_1, a_2, \dots, a_n , a set of constants, we have

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}(X_{i}, X_{j}).$$

Prove the above fact. You can use the fact that, for a set of numbers e_1, e_2, \dots, e_n ,

$$\left(\sum_{i=1}^{n} e_{i}\right)^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} e_{i}e_{j}.$$

We observe a sample of real values y_1, y_2, \dots, y_n where $y_i \ge 0$ for $i = 1, 2, \dots, n$. Let us assume they are all i.i.d. observations of a random variable Y with an exponential distribution:

$$p(y; \alpha) = \alpha e^{-\alpha y}$$

where $\alpha > 0$ is called the rate.

- a) Write down the formula of the likelihood function as a function of the observed data and the unknown parameter α .
- b) Write down the formula of the log-likelihood
- c) Compute the maximum likelihood estimate (MLE) of α .

We observe a sample of i.i.d. pairs $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ where $(x_i, y_i) \in \mathcal{X} \times \mathbb{R}$ for $i = 1, 2, \dots, n$. We assume that the conditional PDF p(y; x) is normally distributed with a variance fixed at σ^2 . Given an input x, the mean $\mu_{\theta}(x)$ is determined by a model μ_{θ} with parameters $\theta \in \Theta$. More specifically, the conditional PDF is given by:

$$p(y;x,\theta) = \mathcal{N}(y;\mu_{\theta}(x),\sigma^{2})$$
$$= \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{y-\mu_{\theta}(x)}{\sigma}\right)^{2}}.$$

Note that the specific sets \mathcal{X} and Θ are not relevant to our problem. For example, we could have $\mathcal{X} = \mathbb{R}$ and $\Theta = \mathbb{R}^2$ for a uni-dimensional linear regression task with one coefficient and one bias.

- a) Write down the formula of the likelihood function as a function of the observed data and parameters θ .
- b) Write down the formula of the log-likelihood.
- c) Can you prove that maximizing the likelihood is equivalent to minimizing the mean squared error $\frac{1}{n}\sum_{i=1}^{n}(\mu_{\theta}(x_i)-y_i)^2$ (with respect to θ)?

Complementary exercise

Find the marginal PDF $f_X(x)$ if the joint PDF $f_{XY}(x,y)$ is defined as:

$$f_{XY}(x,y) = \frac{e^{-|y-x|-x^2/2}}{2\sqrt{2\pi}}$$

Complementary exercise

Let p_X be a normal distribution $\mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$, and $\sigma > 0$. Consider the two scenarios where n = 10 or n = 1000. For each scenario,

- 1. repeat the following procedure 1000 times:
 - (a) Generate *n* i.i.d. realizations $X_1, X_2, ..., X_n$ where $X_i \sim p_X$.
 - (b) Compute $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- 2. compute the mean and variance of the 1000 values computed in 1(b)
- 3. plot a histogram of these 1000 values, and add vertical lines at the true mean and the computed mean.

Experiment with different values of μ and σ , and confirm that you obtain $E[\bar{X}_n] = \mu$ and $Var(\bar{X}_n) = \frac{\sigma^2}{n}$.