# COSC76/276 Artificial Intelligence Fall 2022 Constraint Satisfaction Problems

Soroush Vosoughi
Computer Science
Dartmouth College
Soroush@Dartmouth.edu

#### **Reminders**

- SA4 due on Oct 21st
- PA3 due Oct 24th

#### **Additional Late Days**

• 5 more free late days for everyone!

#### **Overview**

- Model problems as Constraint Satisfaction Problems
- Solve them through "backtracking" (depthfirst search)

### **Outline**

- CSP model
- CSP search

#### **Example: Map coloring**

- Variables: WA, NT, SA, Q, NSW, V, T
- Domains: Di: r, g, b
- Constraints:
  - Explicit
    - (WA,NT)∈{(r,g),(r,b),(g,r),(g,b),(b,r),(b,g)}
    - (NT,SA)∈{(r,g),(r,b),(g,r),(g,b),(b,r),(b,g)}
    - ...
  - Implicit
    - WA != NT
    - WA != SA
    - ...
- Assignment: {WA=r, NT=g, Q=r,

NSW=g, V=r, SA=b, T=g}





#### **CSP definition**

- n variables:  $X_1, ..., X_n$
- For each variable, a domain Di of possible values. Example:  $D_1: X_1 \in v_1, v_2, v_3$
- m constraints  $C_1$ , ...,  $C_n$ , each specifying allowable combinations of values for some set of variables
- An assignment of values to variables is the state of the problem.
  - We want to find a complete assignment (all variables with a value) consistent with the constraints

#### **Constraint graphs**

- Binary CSP: each constraint relates at most two variables
- Nodes are variable, arcs show constraints



#### Varieties of constraints

- Unary constraints involve a single variable (equivalent to reducing domains)
  - E.g., in the map coloring problem SA != g
- Binary constraints involve pairs of variables, e.g.:
  - E.g., in the map coloring problem SA != WA
- Higher-order constraints involve 3 or more variables (alldiff):
  - e.g., Sudoko
- Preferences (soft constraints):
  - E.g., red is better than green
  - Often representable by a cost for each variable assignment
  - Gives constrained optimization problems
  - We won't include them in the CSP

#### **Example: 4-Queens**

- Formulation 1:
  - Variables: Q1, Q2, Q3, Q4
  - Domains:  $Qi = \{(x,y) \mid x \text{ in } [0,3] \text{ and } y \text{ in } [0,3]\}$



- Any queen not in the same x
  - x1!=x2, x1!=x3, ...
- Any queen not in the same y
  - y1!=y2 ...
- Any queen not on the diagonal
  - abs(y2-y1) != abs(x2-x1) ...



#### **Example: N-Queens**

#### Formulation 2:

- Variables:  $X_{ij}$
- **– Domains:**  $\{0,1\}$
- Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$
  
 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$   
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$   
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$ 



$$\sum_{i,j} X_{ij} = N$$

#### **Example: N-Queens**

Formulation 3:

– Variables:  $Q_k$ 





#### – Constraints:

Implicit:  $\forall i,j$  non-threatening $(Q_i,Q_j)$ 

Explicit:  $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$ 

• • •

#### **Example: Sudoku**



- Variables:
  - Each (open) square
- Domains:
  - **1**,2,...,9
- Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)

#### **Example: Assignment problem**

- Assign four workers W1,W2,W3,W4 to four products such that each worker works on one product and each product is produced by one worker.
- Effectiveness of production is given by the following table (e.g., worker W1 produces P1 with effectiveness 7) and the total effectiveness must be 19 at least

|    | P1 | P2 | P3 | P4 |
|----|----|----|----|----|
| W1 | 7  | 1  | 3  | 4  |
| W2 | 8  | 2  | 5  | 1  |
| W3 | 4  | 3  | 7  | 2  |
| W4 | 3  | 1  | 6  | 3  |

#### **Example: assignment problem**

- Variables
  - W1, W2, W3, W4
- Domains:
  - {P1, P2, P3, P4}
- Constraints
  - All\_diff(W1, W2, W3, W4)
  - -E1(W1)+E2(W2)+E3(W3)+E4(W4)>=19

|    | P1 | P2 | P3 | P4 |
|----|----|----|----|----|
| W1 | 7  | 1  | 3  | 4  |
| W2 | 8  | 2  | 5  | 1  |
| W3 | 4  | 3  | 7  | 2  |
| W4 | 3  | 1  | 6  | 3  |

#### **Implementation notes**



We want to write general code.

#### An example of assignment:

- state = {0, 1, 1, 2, 0, 1, 0}
- variables order: WA, NT, SA, Q, NSW, V, T
- Domains can be represented by sets of numbers
  - So WA=0 (red); NT has the value 1 (green); Q has value 2 (blue)
- The CSP model should be separate from the solver, as we have seen for the search problems

### **Outline**

- CSP model
- CSP search

#### Standard search formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
  - Initial state: the empty assignment, {}
  - Successor function: assign a value to an unassigned variable
  - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

#### **Search Methods**

• What would BFS do?

$$\{WA=g, NT=g\} \{WA=g, NT=r\} \dots$$



• • •

#### **Search Methods**

- What about DFS?
  - Expand in depth
- What problems does naïve search have?
  - With n number of variables and d domain size, the branching factor nd at the first level, (n-1)d at the second level, ... and so on for n levels
    - n!d^n leaves however, d^n assignments



#### **Backtracking Search**

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
  - Variable assignments are commutative, so fix ordering -> better branching factor!
    - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
  - Only need to consider assignments to a single variable at each step
  - Then there are only d^n paths. We have eliminated the n! redundancy by arbitrarily choosing an order in which to assign variables.
- Idea 2: Check constraints as you go
  - i.e. consider only values which do not conflict previous assignments
  - Might have to do some computation to check the constraints
- Depth-first search with these two improvements is called backtracking search
- Can solve n-queens for n ≈ 25

### **Backtracking Example**



#### Video of Demo Coloring – Backtracking



[video: Al Berkeley]

#### **Backtracking Search**

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable (Variables[csp], assignment, csp) for each value in Order-Domain-Values (var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

• What are the choice points?

### Heuristics for making backtracking search more efficient

- Heuristics that choose the next variable to assign:
  - Minimum Remaining Values (MRV)
  - Degree heuristic
- Heuristic that chooses a value for that variable:
  - Least Constraining Value (LCV)

# Which variable should be assigned next?

- Minimum Remaining Values (MRV) Heuristic:
  - Choose the variable with the fewest legal values



#### Degree heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
  - choose the variable with the most constraints on remaining variables



### Given a variable, in which order should its values be tried?

- Least Constraining Value (LCV) Heuristic:
  - Try the following assignment first: to the variable you're studying, the value that rules out the fewest values in the remaining variables



#### **Summary**

- CSP model
  - Variables, domains, constraints
- Formulated as search problem
  - Standard formulation though high complexity
- Backtracking search:
  - Fix order of variables at specific level
  - Check constraints
- Heuristics to improve backtracking search:
  - Variable selection: Minimum Remaining Value (MRV) and Degree heuristics
  - Value selection: Least Constraining Value (LCV)

#### **Next**

- What can we do to be able to further improve CSP?
  - Early detection of failure

```
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
if value is consistent with assignment given CONSTRAINTS[csp]
add {var = value} to assignment
result ← RECURSIVE-BACKTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var = value} from assignment
return failure

Apply inference to reduce the space of possible
assignments and detect failure early
```

# Early detection of failure: forward checking

- Idea: Keep track of remaining legal values for unassigned variables
  - Terminate search when any variable has no legal values
- Forward Checking:
  - Check to make sure that every variable still has at least one possible assignment

# Early detection of failure: forward checking

- Forward Checking:
  - Check to make sure that every variable still has at least one possible assignment

Example



# Early detection of failure: forward checking

- Forward Checking:
  - Check to make sure that every variable still has at least one possible assignment



### Early detection of failure: forward checking problem

Example

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:





- NT and SA cannot both be blue!
- Forward checking does not detect that

# Early detection of failure: Constraint propagation

- Constraint propagation
  - Check to make sure that every PAIR of variables still has a pair-wise assignment that satisfies all constraints

 Apply inference to detect failure early and reduce the space of possible assignments and

#### **Constraint propagation algorithm:**

#### **Consistency of A Single Arc**

Example

- Simplest form of propagation makes each pair of variables consistent:
  - An arc X → Y is consistent iff for every value of X there is some allowed value of Y



- Simplest form of propagation makes each pair of variables consistent:
  - An arc X → Y is consistent iff for every value of X there is some allowed value of Y



- Simplest form of propagation makes each pair of variables consistent:
  - An arc X → Y is consistent iff for every value of X there is some allowed value of Y
  - When checking X ->Y, throw out any values of X for which there isn't an allowed value of Y



- Simplest form of propagation makes each pair of variables consistent:
  - An arc X → Y is consistent iff for every value of X there is some allowed value of Y
  - When checking X ->Y, throw out any values of X for which there isn't an allowed value of Y
  - If X loses a value, all pairs Z -> X need to be rechecked



- Simplest form of propagation makes each pair of variables consistent:
  - An arc X → Y is consistent iff for every value of X there is some allowed value of Y
  - When checking X ->Y, throw out any values of X for which there isn't an allowed value of Y
  - If X loses a value, all pairs Z -> X need to be rechecked



- Simplest form of propagation makes each pair of variables consistent:
  - An arc X → Y is consistent iff for every value of X there is some allowed value of Y
  - When checking X ->Y, throw out any values of X for which there isn't an allowed value of Y
  - If X loses a value, all pairs Z -> X need to be rechecked



- Arc consistency detects failure earlier than forward checking
- Can be run before or after each assignment

#### **Enforcing Arc Consistency in a CSP**

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>j</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

#### **Limitations of Arc Consistency**

- After enforcing arc consistency:
  - Can have one solution left
  - Can have multiple solutions left
  - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!



#### **Backtracking-search with inference**

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable(Variables[<math>csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(<math>assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

**function** BACKTRACKING-SEARCH(csp) **returns** a solution, or failure **return** BACKTRACK( $\{\}, csp$ )

```
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment then
        add {var = value} to assignment
        inferences ← INFERENCE(csp, var, value)
        if inferences ≠ failure then
        add inferences to assignment
        result ← BACKTRACK(assignment, csp)
        if result ≠ failure then
        return result
    remove {var = value} and inferences from assignment
    return failure
```

### Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph



[video: Al Berkeley]

### <u>Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph</u>



[video: Al Berkeley]

#### **Summary**

- Early detection of failure to improve backtracking
  - Forward checking
  - Constraint propagation
  - Still some failure cannot be detected early

### **Next**

Logical agents