COL 106: Data-structures

Course coordinators:

Parag Singla (parags@cse.iitd.ac.in)
Amit Kumar (amitk@cse.iitd.ac.in)

Data-structures

Teaching assistants:

Two TAs will be available during lab hours.

Make use of TAs for resolving any problems regarding the course :

coding, understanding a particular concept, assignments, etc.

Evaluations components

Quiz: 15%

Minor Exam: 25%

Assignments: 25% (5-6 assignments)

Major exam: 35%

Assignments

You will be expected to program in Python

One programming assignment every 2 weeks

NO late submission (strictly enforced, reasons like illness will not be accepted)

NO COPYING FROM ANY SOURCE

(if caught copying, expect an "F" grade)

Course Information

Make sure you can access the course information from moodle.

Check course web-page for announcements.

Textbook: Data-structures and Algorithms, by Goodrich, Tamassia, Goldwasser.

Topics

Arrays

Lists

Abstract Data Types, object oriented concepts

Stacks, Queues

Trees: Binary trees, Balanced trees, B-trees

Strings: Tries, Matching algorithms

Sorting

Hashing

Graphs

Data Structures and Algorithms

- Algorithm: Outline, the essence of a computational procedure, step-by-step instructions
- □ Program: an implementation of an algorithm in some programming language
- Data structure: Organization of data needed to solve the problem

Algorithmic problem

Specification of input

Specification of output as a function of input

- □ Infinite number of input *instances* satisfying the specification. For eg: A sorted, non-decreasing sequence of natural numbers of non-zero, finite length:
 - □ 1, 20, 908, 909, 100000, 100000000.
 - □3.

Algorithmic Solution

Input instance, adhering to the specification

Output related to the input as required

Infinitely many correct algorithms for the same algorithmic problem

What is a Good Algorithm?

- □ Efficient:
 - □ Running time
 - □ Space used
- □ Efficiency as a function of input size:
 - □ The number of bits in an input number
 - Number of data elements (numbers, points)

Measuring the Running Time

How should we measure the running time of an algorithm?

Experimental Study

- □ Write a program that implements the algorithm
- Run the program with data sets of varying size and composition.
- Use a system call to get an accurate measure of the actual running time.

Limitations of Experimental Studies

- □ It is necessary to implement and test the algorithm in order to determine its running time.
- Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
- □ In order to compare two algorithms, the same hardware and software environments should be used.

Beyond Experimental Studies

We will develop a general methodology for analyzing running time of algorithms. This approach

- Uses a high-level description of the algorithm instead of testing one of its implementations.
- □ Takes into account all possible inputs.
- □ Allows one to evaluate the efficiency of any algorithm in a way that is independent of the hardware and software environment.

Pseudo-Code

- A mixture of natural language and high-level programming concepts that describes the main ideas behind a generic implementation of a data structure or algorithm.
- □ Eg: **Algorithm** arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

currentMax \leftarrow A[0]

for $i \leftarrow 1$ to n-1 do

if currentMax < A[i] then currentMax ← A[i]</pre>

return currentMax

Pseudo-Code

It is more structured than usual prose but less formal than a programming language

- □ Expressions:
 - use standard mathematical symbols to describe numeric and boolean expressions
 - □ use ← for assignment ("=" in Java)
 - □ use = for the equality relationship ("==" in Java)
- Method Declarations:
 - □ **Algorithm** name(param1, param2)

Pseudo Code

- □ Programming Constructs:
 - decision structures: if ... then ... [else ...]
 - while-loops: while ... do
 - □ repeat-loops: **repeat ... until ...**
 - □ for-loop: **for ... do**
 - □ array indexing: A[i], A[i,j]
- Methods:
 - □ calls: object method(args)
 - □ returns: return value

Analysis of Algorithms

- Primitive Operation: Low-level operation independent of programming language.
 Can be identified in pseudo-code. For eg:
 - □ Data movement (assign)
 - □ Control (branch, subroutine call, return)
 - □ arithmetic an logical operations (e.g. addition, comparison)
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.

Example: Sorting

INPUT

sequence of numbers

$$a_1, a_2, a_3, \dots, a_n$$
2 5 4 10 7

OUTPUT

a permutation of the sequence of numbers

$$b_1,b_2,b_3,\ldots,b_n$$

$$2 \quad 4 \quad 5 \quad 7 \quad 10$$

Correctness (requirements for the output)

For any given input the algorithm halts with the output:

- $b_1 < b_2 < b_3 < \dots < b_n$
- b₁, b₂, b₃,, b_n is a permutation of a₁, a₂, a₃,....,a_n

Running time

Depends on

- number of elements (n)
- how (partially) sorted they are
- algorithm

Insertion Sort

Strategy

- Start "empty handed"
- Insert a card in the right position of the already sorted hand
- Continue until all cards are inserted/sorted

INPUT: A[1..n] – an array of integers OUTPUT: a permutation of A such that $A[0] \le A[1] \le ... \le A[n-1]$

```
for j←0 to n-1 do
    key ← A[j]
    Insert A[j] into the sorted sequence
    A[1..j-1]
    i←j-1
    while i>=0 and A[i]>key
        do A[i+1]←A[i]
        i--
    A[i+1]←key
```

Analysis of Insertion Sort

```
times
                                           cost
                                             C_1
for j\leftarrow 1 to n-1 do
                                             C_2
                                                      n-1
 key←A[j]
                                                      n-1
 Insert A[j] into the sorted
 sequence A[1..j-1]
                                                      n-1
                                             C_3
 i←j-1
                                                     \sum_{j=2}^{n} t_{j}
                                             C_4
 while i \ge 0 and A[i] \ge key
                                             C_5 \qquad \sum_{j=2}^n (t_j - 1)
    do A[i+1] \leftarrow A[i]
                                             C_6 \qquad \sum_{j=2}^n (t_j - 1)
                                                      n-1
                                             C_7
 A[i+1] \leftarrow key
```

Total time =
$$n(c_1+c_2+c_3+c_7) + \sum_{j=2}^{n} t_j (c_4+c_5+c_6)$$

- $(c_2+c_3+c_5+c_6+c_7)$

Best/Worst/Average Case

Total time =
$$n(c_1+c_2+c_3+c_7) + \sum_{j=1}^{n-1} t_j (c_4+c_5+c_6) - (c_2+c_3+c_5+c_6+c_7)$$

- Best case: elements already sorted; t_j=1, running time = f(n), i.e., *linear* time.
- Worst case: elements are sorted in inverse order; t_j=j, running time = f(n²), i.e., quadratic time
- □ **Average case**: $t_j = j/2$, running time = $f(n^2)$, i.e., *quadratic* time

Best/Worst/Average Case (2)

For a specific size of input n, investigate running times for different input instances:

Best/Worst/Average Case (3)

For inputs of all sizes:

Best/Worst/Average Case (4)

- Worst case is usually used: It is an upperbound and in certain application domains (e.g., air traffic control, surgery) knowing the worstcase time complexity is of crucial importance
- For some algorithms worst case occurs fairly often
- Average case is often as bad as the worst case
- □ Finding average case can be very difficult

Asymptotic Analysis

- Goal: to simplify analysis of running time by getting rid of "details", which may be affected by specific implementation and hardware
 - □ like "rounding": $1,000,001 \approx 1,000,000$
 - $\square 3n^2 \approx n^2$
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit.
 - Asymptotically more efficient algorithms are best for all but small inputs

Asymptotic Notation

- □ The "big-Oh" O-Notation
 - asymptotic upper bound
 - \Box f(n) is O(g(n)), if:

Asymptotic Notation

- □ The "big-Oh" O-Notation
 - asymptotic upper bound
 - \square f(n) is O(g(n)), if there exists constants c and n_0 , s.t. **f(n)** ≤ **c g(n)** for n_0

Asymptotic Notation

- □ The "big-Oh" O-Notation
 - □ asymptotic upper bound
 - \Box f(n) is O(g(n)), if there exists constants c and n_0 , s.t. **f(n)** ≤ **c g(n)** for n_0
 - f(n) and g(n) are functions over nonnegative integers
- Used for worst-case analysis

Asymptotic Notation (terminology)

Special classes of algorithms: □ Logarithmic: Linear: Quadratic: □ Polynomial: **Exponential:** "Relatives" of the Big-Oh $\square \Omega$ (f(n)): Big Omega -asymptotic *lower* bound $\square \Theta$ (f(n)): Big Theta -asymptotic *tight* bound

Asymptotic Notation (terminology)

- Special classes of algorithms:
 - □ Logarithmic: O(log n)
 - ☐ Linear: O(n)
 - □ Quadratic: O(n²)
 - □ Polynomial: $O(n^k)$, $k \ge 1$
 - \square Exponential: O(aⁿ), a > 1

Asymptotic Notation (terminology)

- Special classes of algorithms:
 - □ Logarithmic: O(log n)
 - □ Linear: O(n)
 - □ Quadratic: O(n²)
 - □ Polynomial: $O(n^k)$, $k \ge 1$
 - \square Exponential: O(aⁿ), a > 1
- "Relatives" of the Big-Oh
 - $\square \Omega$ (f(n)): Big Omega -asymptotic *lower* bound
 - $\square \Theta$ (f(n)): Big Theta -asymptotic *tight* bound

Example

For functions f(n) and g(n) there are positive constants c and n_0 such that: $f(n) \le c$ g(n) for $n \ge n_0$

2n+6 is _____

Example

For functions f(n) and g(n) there are positive constants c and n_0 such that: $f(n) \le c$ g(n) for $n \ge n_0$

conclusion:

2n+6 is O(n).

Another Example

```
On the other hand...
n^2 is not O(n) because there is
```

Another Example

```
On the other hand...

n^2 is not O(n) because there is no c and n_0 such that:

n^2 \le cn for n \ge n_0
```

Another Example

On the other hand... n^2 is not O(n) because there is no c and n_0 such that:

$$n^2 \le cn$$
 for $n \ge n_0$

The graph to the right illustrates that no matter how large a c is chosen there is an n big enough that $n^2 > cn$)

- Simple Rule: Drop lower order terms and constant factors.
 - □ 50 *n* log *n* is _____
 - □7*n* 3 is _____
 - $\square 8n^2 \log n + 5n^2 + n \text{ is } ___$

- Simple Rule: Drop lower order terms and constant factors.
 - \square 50 $n \log n$ is $O(n \log n)$
 - \square 7*n* 3 is O(*n*)
 - $\square 8n^2 \log n + 5n^2 + n \text{ is } O(n^2 \log n)$
- □ Note: Even though (50 n log n) is O(n5), it is expected that such an approximation be of as small an order as possible

Asymptotic Analysis of Running Time

- □ Use O-notation to express number of primitive operations executed as function of input size.
- Comparing asymptotic running times
 - \square an algorithm that runs in O(n) time is better than one that runs in $O(n^2)$ time
 - □ similarly, O(log n) is better than O(n)
 - \Box hierarchy of functions: log n < n < n² < n³ < 2ⁿ

Asymptotic Analysis of Running Time

- □ Use O-notation to express number of primitive operations executed as function of input size.
- Comparing asymptotic running times
 - \square an algorithm that runs in O(n) time is better than one that runs in $O(n^2)$ time
 - □ similarly, O(log n) is better than O(n)
 - □ hierarchy of functions: $log n < n < n^2 < n^3 < 2^n$
- □ Caution! Beware of very large constant factors.
 An algorithm running in time 1,000,000 n is still O(n) but might be less efficient than one running in time 2n², which is O(n²)

Example of Asymptotic Analysis

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

for
$$i \leftarrow 0$$
 to n-1 do $a \leftarrow 0$

return array A

Example of Asymptotic Analysis

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

```
for i \leftarrow 0 to n-1 do
a \leftarrow 0
for j \leftarrow 0 to i do
a \leftarrow a + X[j] \longleftarrow 1 \text{ step}
A[i] \leftarrow a/(i+1)
return array A
```

Analysis: running time is O(n²)

A Better Algorithm?

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

for
$$i \leftarrow 0$$
 to n-1 do $a \leftarrow 0$

return array A

A Better Algorithm

Algorithm prefixAverages2(X):

Input: An *n*-element array X of numbers.

Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n do

$$s \leftarrow s + X[i]$$

A[i] $\leftarrow s/(i+1)$

return array A

Analysis: Running time is O(n)

Asymptotic Notation (terminology)

- Special classes of algorithms:
 - □ Logarithmic
 - □ Linear:
 - □ Quadratic:
 - □ Polynomial:
 - □ Exponential:

Asymptotic Notation (terminology)

- Special classes of algorithms:
 - □ Logarithmic: O(log n)
 - □ Linear: O(n)
 - □ Quadratic: O(n²)
 - □ Polynomial: $O(n^k)$, $k \ge 1$
 - □ Exponential: O(aⁿ), a > 1

Asymptotic Notation (terminology)

- Special classes of algorithms:
 - □ Logarithmic: O(log n)
 - □ Linear: O(n)
 - □ Quadratic: O(n²)
 - □ Polynomial: $O(n^k)$, $k \ge 1$
 - \square Exponential: O(aⁿ), a > 1
- "Relatives" of the Big-Oh
 - $\square \Omega$ (f(n)): Big Omega -asymptotic *lower* bound
 - $\square \Theta$ (f(n)): Big Theta -asymptotic *tight* bound

□ The "big-Omega" Ω– Notation

- □ The "big-Omega" Ω– Notation
 - asymptotic lower bound
 - □ f(n) is Ω(g(n)) if there exists constants c and n_0 , s.t. c g(n) ≤ f(n) for $n ≥ n_0$

- The "big-Omega" Ω−
 Notation
 - asymptotic lower bound
 - □ f(n) is Ω(g(n)) if there exists constants c and n_0 , s.t. c g(n) ≤ f(n) for $n ≥ n_0$
- Used to describe bestcase running times or lower bounds for algorithmic problems
 - \square E.g., lower-bound for searching in an unsorted array is $\Omega(n)$.

- □ The "big-Theta" Θ–Notation
 - asymptotically tight bound

- □ The "big-Theta" ⊕-Notation
 - asymptotically tight bound
 - □ $f(n) = \Theta(g(n))$ if there exists constants c_1 , c_2 , and n_0 , s.t. c_1 $g(n) \le f(n) \le c_2$ g(n) for $n \ge n_0$

- □ The "big-Theta" Θ–Notation
 - asymptotically tight bound
 - □ $f(n) = \Theta(g(n))$ if there exists constants c_1 , c_2 , and n_0 , s.t. c_1 $g(n) \le f(n) \le c_2$ g(n) for $n \ge n_0$
- □ f(n) is $\Theta(g(n))$ if and only if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$
- \square O(f(n)) is often misused instead of $\Theta(f(n))$

Two more asymptotic notations

- □ "Little-Oh" notation f(n) is o(g(n)) non-tight analogue of Big-Oh
 - □ For every c, there should exist n_0 , s.t. f(n) $\leq c g(n)$ for $n \geq n_0$
 - Used for **comparisons** of running times. If f(n)=o(g(n)), it is said that g(n) dominates f(n).
- □ "Little-omega" notation f(n) is $\omega(g(n))$ non-tight analogue of Big-Omega

 \Box $f(n) = \omega(g(n))$

Analogy with real numbers

```
\Box f(n) = O(g(n)) \qquad \cong \qquad f \leq g

\Box f(n) = \Omega(g(n)) \qquad \cong \qquad f \geq g

\Box f(n) = \Theta(g(n)) \qquad \cong \qquad f = g

\Box f(n) = o(g(n)) \qquad \cong \qquad f < g
```

□ Abuse of notation: f(n) = O(g(n)) actually means $f(n) \in O(g(n))$

 \cong

f > g

Comparison of Running Times

Running Time	Maximum problem size (n)		
	1 second	1 minute	1 hour
400 <i>n</i>	2500	150000	9000000
20 <i>n</i> log <i>n</i>	4096	166666	7826087
2 <i>n</i> ²	707	5477	42426
n ⁴	31	88	244
2 ⁿ	19	25	31

Correctness of Algorithms

- The algorithm is correct if for any legal input it terminates and produces the desired output.
- Automatic proof of correctness is not possible
- But there are practical techniques and rigorous formalisms that help to reason about the correctness of algorithms

Partial and Total Correctness

□ Partial correctness

□ Total correctness

Loop Invariants

```
for j ← 1 to length(A)-1
    do

        key ← A[j]
        i ← j-1
        while i>0 and A[i]>key
        do A[i+1] ← A[i]
        i--
        A[i+1] ← key
```

Example of Loop Invariants (1)

□ Invariant: at the start of each for loop, A[0...j-1] consists of elements originally in A[0...j-1] but in sorted order

```
for j ← 1 to length(A)-1
    do

        key ← A[j]
        i ← j-1
        while i>0 and A[i]>key
        do A[i+1] ← A[i]
        i--
        A[i+1] ← key
```

Example of Loop Invariants (2)

□ Invariant: at the start of each for loop, A[0...j-1] consists of elements originally in A[1...j-1] but in sorted order

```
for j ← 1 to length(A)-1
  do

  key ← A[j]
  i ← j-1
  while i>0 and A[i]>key
   do A[i+1] ← A[i]
    i--
  A[i+1] ← key
```

□ **Initialization**: j = 1, the invariant trivially holds because A[0] is a sorted array \odot

Example of Loop Invariants (3)

□ Invariant: at the start of each for loop, A[0...j-1] consists of elements originally in A[0...j-1] but in sorted order

```
for j ← 1 to length(A)-1
    do

        key ← A[j]
        i ← j-1
        while i>0 and A[i]>key
        do A[i+1] ← A[i]
        i--
        A[i+1] ← key
```

■ **Maintenance**: the inner **while** loop moves elements A[j-1], A[j-2], ..., A[j-k] one position right without changing their order. Then the former A[j] element is inserted into k-th position so that $A[k-1] \le A[k] \le A[k+1]$.

A[0...j-1] sorted + $A[j] \rightarrow A[0...j]$ sorted

Example of Loop Invariants (4)

□ **Invariant**: at the start of each **for** loop, A[0...j-1] consists of elements originally in A[0...j-1] but in sorted order

```
for j ← 1 to length(A)-1
    do

        key ← A[j]
        i ← j-1
        while i>0 and A[i]>key
        do A[i+1] ← A[i]
        i--
        A[i+1] ← key
```

□ **Termination**: the loop terminates, when j=n. Then the invariant states: "A[0...n-1] consists of elements originally in A[0...n-1] but in sorted order" ©

Assertions

- □ To prove correctness we associate a number of assertions (statements about the state of the execution) with specific checkpoints in the algorithm.
 - □ E.g., A[1], ..., A[k] form an increasing sequence
- Preconditions assertions that must be valid before the execution of an algorithm or a subroutine
- Postconditions assertions that must be valid after the execution of an algorithm or a subroutine

Loop Invariants

- □ Invariants assertions that are valid any time they are reached (many times during the execution of an algorithm, e.g., in loops)
- We must show three things about loop invariants:
 - □ Initialization it is true prior to the first iteration
 - Maintenance if it is true before an iteration, it remains true before the next iteration
 - □ Termination when loop terminates the invariant gives a useful property to show the correctness of the algorithm

Math You Need to Review

□ Properties of logarithms:

```
log_b(xy) = log_bx + log_by

log_b(x/y) = log_bx - log_by

log_b x^a = a log_b x

log_b a = log_x a/log_x b
```

□ Properties of exponentials:

```
a^{(b+c)} = a^b a^c; a^{bc} = (a^b)^c
a^b / a^c = a^{(b-c)}; b = a^{log_a b}
```

- □ Floor: $\lfloor x \rfloor$ = the largest integer $\leq x$
- □ Ceiling: $\lceil x \rceil$ = the smallest integer ≥ x

Math Review

- □ Geometric progression
 - \square given an integer n_0 and a real number $0 < a \ne 1$

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$

- geometric progressions exhibit exponential growth
- Arithmetic progression

$$\sum_{i=0}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n^2 + n}{2}$$

Summations

The running time of insertion sort is determined by a nested loop

```
for j←1 to length(A)-1
    key←A[j]
    i←j-1
    while i>=0 and A[i]>key
        A[i+1]←A[i]
        i←i-1
        A[i+1]←key
```

■ Nested loops correspond to summations

$$\sum_{j=1}^{n-1} j = O(n^2)$$