Titre: Théorème de Weierstrass (par la convolution)

Recasages: 201, 203, 209, 228, 241

Thème: Analyse réelle, intégration, convolution.

Références : Gourdon analyse (chapitre 6, problème 18, p.284)

Théorème 1. (Weierstrass)

Soit $I = [a, b] \subset \mathbb{R}$ un segment, et $f : I \to \mathbb{R}$ continue, alors f est limite uniforme de polynômes sur [a, b]. Autrement dit, les polynômes sur [a, b] sont denses dans $(\mathcal{C}([a, b]), ||.||_{\infty})$.

Démonstration. On fixe $E = \mathcal{C}_c(\mathbb{R})$ l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} à support compact. Fixons $\varepsilon > 0$, $f \in E$, et $(\chi_n)_{n \in \mathbb{N}}$ une approximation de l'unité, c'est à dire :

- χ_n est positive pour tout $n \in \mathbb{N}$.
- Pour tout $n \in \mathbb{N}$, $\int_{\mathbb{R}} \chi_n(t) dt = 1$.
- Pour tout $\alpha > 0$, on a $\lim_{n \to \infty} \int_{|t| > \alpha} \chi_n(t) dt = 0$.

Étape 1 : Montrons que la suite $(f * \chi_n)$ converge uniformément vers f. Comme f est à support compact, elle est uniformément continue par le théorème de Heine. Il existe donc $\delta > 0$ tel que pour $x, y \in \mathbb{R}$, $|x - y| < \delta$ entraı̂ne $|f(x) - f(y)| < \varepsilon$. Par ailleurs, on peut choisir $N \in \mathbb{N}$ tel que pour $n \geq N$, on ait $\int_{|t| > \delta} \chi_n(t) dt < \varepsilon$. On a alors

$$|\chi_n * f(x) - f(x)| = \left| \int_{\mathbb{R}} \chi_n(t) f(x - t) dt - f(x) \right|$$

$$= \left| \int_{\mathbb{R}} \chi_n(t) f(x - t) dt - f(x) \int_{\mathbb{R}} \chi_n(t) dt \right|$$

$$= \left| \int_{\mathbb{R}} \chi(t) (f(x - t) - f(x)) dt \right|$$

$$\leqslant \int_{\mathbb{R}} |\chi(t)| |f(x - t) - f(x)| dt$$

$$= \int_{-\delta}^{\delta} \chi_n(t) |f(x - t) - f(x)| dt + \int_{|t| > \delta} \chi_n(t) |f(x - t) - f(x)| dt$$

$$\leqslant \int_{-\delta}^{\delta} \chi_n(t) \varepsilon dt + \int_{|t| > \delta} \chi_n(t) 2 ||f||_{\infty} dt$$

$$\leqslant \varepsilon \int_{\mathbb{R}} \chi_n(t) dt + 2 ||f||_{\infty} \varepsilon = \varepsilon (1 + 2 ||f||_{\infty})$$

Ainsi, $\|\chi_n * f - f\|_{\infty} < (1 + 2 \|f\|_{\infty}) \varepsilon$ d'où la convergence uniforme. <u>Étape 2</u>: On suppose que f est à support dans [-1/2, 1/2]. On considère, pour $n \in \mathbb{N}$, $a_n := \int_{-1}^1 (1 - t^2)^n dt$ et P_n la fonction définie par

$$P_n(t) = \begin{cases} \frac{1}{a_n} (1 - t^2)^n & \text{si } |t| \leqslant 1\\ 0 & \text{sinon} \end{cases}$$

On admet que P_n est une approximation de l'unité On le montre au cas où, mais en situation c'est trop long : que P_n soit positive et d'intégrale 1 est clair par définition de a_n . Ensuite, pour $1 \ge \delta > 0$, on a

$$a_n = 2 \int_0^1 (1 - t^2)^n dt \ge \int_0^1 2t (1 - t^2)^n dt = -\left[\frac{(1 - t^2)^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}$$

et donc

$$\int_{|t|>\delta} P_n(t)dt = \frac{2}{a_n} \int_{\delta}^{1} (1-t^2)^n dt$$

$$\leq 2(n+1) \int_{\delta}^{1} (1-t^2)^n dt$$

$$\leq 2(n+1)(1-\delta^2)^n$$

Qui tends vers 0 quand $n \to +\infty$

Montrons que $f * P_n$ est un polynôme sur [-1/2, 1/2] : on a

$$(f * P_n)(x) = \int_{-1/2}^{1/2} P_n(x - t) f(t) dt$$

Pour $x \in [-1/2, 1/2]$, on a ainsi $|x - t| \le 1$ et

$$P_n(x-t) = \frac{(1-(x-t)^2)^n}{a_n} = \sum_{k=0}^{2n} q_k(t)x^k$$

avec $t\mapsto q_k(t)$ un polynôme. D'où

$$(f * P_n)(x) = \sum_{k=0}^{2n} x^k \int_{-1/2}^{1/2} q_k(t) f(t) dt$$

est bien un polynôme en x sur [-1/2, 1/2].

<u>Étape 3</u>: Soit $f:[a,b] \to \mathbb{R}$ continue, on considère $c < d \in \mathbb{R}$ tels que $[a,b] \subset]c,d[$, on prolonge f par

- Une fonction affine sur [c, a], valant 0 en c et f(a) en a.
- Une fonction affine sur [b,d], valant 0 en d et f(b) en b.

On obtient ainsi une fonction continue à support dans [c,d], donc dans E. Par un changement de coordonnées

$$\varphi: \begin{bmatrix} -1/2, 1/2 \end{bmatrix} \longrightarrow \begin{bmatrix} c, d \end{bmatrix}$$
$$x \longmapsto (d - c)x + \frac{c+d}{2}$$

On obtient que $f \circ \varphi^{-1}$ est limite uniforme d'une suite de polynômes ψ_n par les étapes précédentes, donc f est limite uniforme de la suite de $\psi_n \circ \varphi$, qui est bien une suite de polynômes car φ est affine.