

Rod AB is bent into the shape of a circular arc and is lodged between two pegs D and E. It supports a load \mathbf{P} at end B. Neglecting friction and the weight of the rod, determine the distance c corresponding to equilibrium when a=1 in. and R=5 in.

SOLUTION

Since

$$y_{ED} = x_{ED} = a,$$

Slope of ED is $\geq 45^{\circ}$

 \therefore slope of *HC* is $\angle 45^{\circ}$

Also

$$DE = \sqrt{2}a$$

and

$$DH = HE = \left(\frac{1}{2}\right)DE = \frac{a}{\sqrt{2}}$$

For triangles DHC and EHC

$$\sin \beta = \frac{a/\sqrt{2}}{R} = \frac{a}{\sqrt{2}R}$$

Now

$$c = R\sin(45^\circ - \beta)$$

For

a = 1 in. and R = 5 in.

$$\sin \beta = \frac{1 \text{ in.}}{\sqrt{2} (5 \text{ in.})} = 0.141421$$

$$\beta = 8.1301^{\circ}$$

or
$$\beta = 8.13^{\circ} \blacktriangleleft$$

and

$$c = (5 \text{ in.})\sin(45^{\circ} - 8.1301^{\circ}) = 3.00 \text{ in.}$$

or $c = 3.00 \, \text{in}$.

A uniform rod AB of weight W and length 2R rests inside a hemispherical bowl of radius R as shown. Neglecting friction determine the angle θ corresponding to equilibrium.

SOLUTION

Based on the f.b.d., the uniform rod AB is a three-force body. Point E is the point of intersection of the three forces. Since force A passes through B O, the center of the circle, and since force C is perpendicular to the rod, triangle ACE is a right triangle inscribed in the circle. Thus, E is a point on the circle.

Note that the angle α of triangle *DOA* is the central angle corresponding to the inscribed angle θ of triangle *DCA*.

$$\therefore \alpha = 2\theta$$

The horizontal projections of AE, (x_{AE}) , and AG, (x_{AG}) , are equal.

$$\therefore x_{AE} = x_{AG} = x_A$$

or
$$(AE)\cos 2\theta = (AG)\cos \theta$$

and
$$(2R)\cos 2\theta = R\cos\theta$$

Now
$$\cos 2\theta = 2\cos^2 \theta - 1$$

then
$$4\cos^2\theta - 2 = \cos\theta$$

or
$$4\cos^2\theta - \cos\theta - 2 = 0$$

Applying the quadratic equation

$$\cos \theta = 0.84307$$
 and $\cos \theta = -0.59307$

$$\theta = 32.534^{\circ}$$
 and $\theta = 126.375^{\circ}$ (Discard)

or $\theta = 32.5^{\circ} \blacktriangleleft$

A uniform slender rod of mass m and length 4r rests on the surface shown and is held in the given equilibrium position by the force **P**. Neglecting the effect of friction at A and C, (a) determine the angle θ , (b) derive an expression for P in terms of m.

SOLUTION

The forces acting on the three-force member intersect at D.

(a) From triangle ACO

$$\theta = \tan^{-1} \left(\frac{r}{3r} \right) = \tan^{-1} \left(\frac{1}{3} \right) = 18.4349^{\circ}$$
 or $\theta = 18.43^{\circ} \blacktriangleleft$

(b) From triangle DCG

$$\tan\theta = \frac{r}{DC}$$

and

$$DC = \frac{r}{\tan \theta} = \frac{r}{\tan 18.4349^{\circ}} = 3r$$

$$DO = DC + r = 3r + r = 4r$$

$$\alpha = \tan^{-1} \left(\frac{y_{DO}}{x_{AG}}\right)$$

where $y_{DO} = (DO)\cos\theta = (4r)\cos 18.4349^{\circ}$

= 3.4947r

and $x_{AG} = (2r)\cos\theta = (2r)\cos 18.4349^{\circ}$

= 1.89737r

$$\therefore \quad \alpha = \tan^{-1} \left(\frac{3.4947r}{1.89737r} \right) = 63.435^{\circ}$$

where

$$90^\circ + \left(\alpha - \theta\right) = 90^\circ + 45^\circ = 135.00^\circ$$

Applying the law of sines to the force triangle,

$$\frac{mg}{\sin[90^\circ + (\alpha - \theta)]} = \frac{R_A}{\sin \theta}$$

$$\therefore R_A = (0.44721)mg$$

Finally, $P = R_A \cos \alpha$

 $= (0.44721mg)\cos 63.435^{\circ}$

$$= 0.20000mg$$

or
$$P = \frac{mg}{5}$$

A uniform slender rod of length 2L and mass m rests against a roller at D and is held in the equilibrium position shown by a cord of length a. Knowing that L = 200 mm, determine (a) the angle θ , (b) the length a.

SOLUTION

(a) The forces acting on the three-force member AB intersect at E. Since triangle DBC is isosceles, DB = a.

From triangle BDE

$$ED = DB \tan 2\theta = a \tan 2\theta$$

From triangle *GED*

$$ED = \frac{\left(L - a\right)}{\tan \theta}$$

$$\therefore a \tan 2\theta = \frac{L - a}{\tan \theta} \quad \text{or} \quad a(\tan \theta \tan 2\theta + 1) = L \quad (1)$$

From triangle
$$BCD$$
 $a = \frac{\frac{1}{2}(1.25L)}{\cos \theta}$ or $\frac{L}{a} = 1.6\cos \theta$ (2)

Substituting Equation (2) into Equation (1) yields

$$1.6\cos\theta = 1 + \tan\theta\tan2\theta$$

Now
$$\tan \theta \tan 2\theta = \frac{\sin \theta}{\cos \theta} \frac{\sin 2\theta}{\cos 2\theta}$$
$$= \frac{\sin \theta}{\cos \theta} \frac{2\sin \theta \cos \theta}{2\cos^2 \theta - 1}$$
$$= \frac{2(1 - \cos^2 \theta)}{2\cos^2 \theta - 1}$$

Then
$$1.6\cos\theta = 1 + \frac{2(1 - \cos^2\theta)}{2\cos^2\theta - 1}$$

or
$$3.2\cos^3\theta - 1.6\cos\theta - 1 = 0$$

Solving numerically

(b) From Equation (2) for $L = 200 \,\mathrm{mm}$ and $\theta = 23.5^{\circ}$

$$a = \frac{5}{8} \frac{(200 \text{ mm})}{\cos 23.515^{\circ}} = 136.321 \text{ mm}$$

or $a = 136.3 \, \text{mm}$

 $\theta = 23.515^{\circ}$ or $\theta = 23.5^{\circ} \blacktriangleleft$

or

or

or

or

Gears A and B are attached to a shaft supported by bearings at C and D. The diameters of gears A and B are 150 mm and 75 mm, respectively, and the tangential and radial forces acting on the gears are as shown. Knowing that the system rotates at a constant rate, determine the reactions at C and D. Assume that the bearing at C does not exert any axial force, and neglect the weights of the gears and the shaft.

SOLUTION

Assume moment reactions at the bearing supports are zero. From f.b.d. of shaft

$$\Sigma F_{x} = 0: \quad \therefore \quad D_{x} = 0$$

$$\Sigma M_{D(z\text{-axis})} = 0: \quad -C_{y} (175 \text{ mm}) + (482 \text{ N}) (75 \text{ mm})$$

$$+ (2650 \text{ N}) (50 \text{ mm}) = 0$$

$$\therefore \quad C_{y} = 963.71 \text{ N}$$

$$\mathbf{C}_{y} = (964 \text{ N}) \mathbf{j}$$

$$\Sigma M_{D(y\text{-axis})} = 0: \quad C_{z} (175 \text{ mm}) + (1325 \text{ N}) (75 \text{ mm})$$

$$+ (964 \text{ N}) (50 \text{ mm}) = 0$$

$$\therefore \quad C_{z} = -843.29 \text{ N}$$

$$\mathbf{C}_{z} = (843 \text{ N}) \mathbf{k}$$
and
$$\mathbf{C} = (964 \text{ N}) \mathbf{j} - (843 \text{ N}) \mathbf{k} \blacktriangleleft$$

$$\Sigma M_{C(z\text{-axis})} = 0: \quad -(482 \text{ N}) (100 \text{ mm}) + D_{y} (175 \text{ mm})$$

$$+ (2650 \text{ N}) (225 \text{ mm}) = 0$$

$$\therefore \quad D_{y} = -3131.7 \text{ N}$$

$$\mathbf{D}_{y} = -(3130 \text{ N}) \mathbf{j}$$

$$\Sigma M_{C(y\text{-axis})} = 0: \quad -(1325 \text{ N}) (100 \text{ mm}) - D_{z} (175 \text{ mm})$$

$$+ (964 \text{ N}) (225 \text{ mm}) = 0$$

$$\therefore \quad D_{z} = 482.29 \text{ N}$$

$$\mathbf{D}_{z} = (482 \text{ N}) \mathbf{k}$$
and
$$\mathbf{D} = -(3130 \text{ N}) \mathbf{j} + (482 \text{ N}) \mathbf{k} \blacktriangleleft$$

or

or

or

or

Solve Problem 4.96 assuming that for gear A the tangential and radial forces are acting at E, so that $\mathbf{F}_A = (1325 \text{ N})\mathbf{j} + (482 \text{ N})\mathbf{k}$.

P4.96 Gears A and B are attached to a shaft supported by bearings at C and D. The diameters of gears A and B are 150 mm and 75 mm, respectively, and the tangential and radial forces acting on the gears are as shown. Knowing that the system rotates at a constant rate, determine the reactions at C and D. Assume that the bearing at C does not exert any axial force, and neglect the weights of the gears and the shaft.

SOLUTION

Assume moment reactions at the bearing supports are zero. From f.b.d. of shaft

$$\Sigma F_{x} = 0: \quad \therefore \quad D_{x} = 0$$

$$\Sigma M_{D(z-axis)} = 0: \quad -C_{y}(175 \text{ mm}) - (1325 \text{ N})(75 \text{ mm})$$

$$+ (2650 \text{ N})(50 \text{ mm}) = 0$$

$$\therefore \quad C_{y} = 189.286 \text{ N}$$

$$\mathbf{C}_{y} = (189.3 \text{ N})\mathbf{j}$$

$$\Sigma M_{D(y-axis)} = 0: \quad C_{z}(175 \text{ mm}) + (482 \text{ N})(75 \text{ mm})$$

$$+ (964 \text{ N})(50 \text{ mm}) = 0$$

$$\therefore \quad C_{z} = -482.00 \text{ N}$$

$$\mathbf{C}_{z} = -(482 \text{ N})\mathbf{k}$$
and
$$\mathbf{C} = (189.3 \text{ N})\mathbf{j} - (482 \text{ N})\mathbf{k} \blacktriangleleft$$

$$\Sigma M_{C(z-axis)} = 0: \quad (1325 \text{ N})(100 \text{ mm}) + D_{y}(175 \text{ mm})$$

$$+ (2650 \text{ N})(225 \text{ mm}) = 0$$

$$\therefore \quad D_{y} = -4164.3 \text{ N}$$

$$\mathbf{D}_{y} = -(4160 \text{ N})\mathbf{j}$$

$$\Sigma M_{C(y-axis)} = 0: \quad -(482 \text{ N})(100 \text{ mm}) - D_{z}(175 \text{ mm})$$

$$+ (964 \text{ N})(225 \text{ mm}) = 0$$

$$\therefore \quad D_{z} = 964.00 \text{ N}$$

$$\mathbf{D}_{z} = (964 \text{ N})\mathbf{k}$$

and $\mathbf{D} = -(4160 \text{ N})\mathbf{j} + (964 \text{ N})\mathbf{k} \blacktriangleleft$

Two transmission belts pass over sheaves welded to an axle supported by bearings at B and D. The sheave at A has a radius of 50 mm, and the sheave at C has a radius of 40 mm. Knowing that the system rotates with a constant rate, determine (a) the tension T, (b) the reactions at B and D. Assume that the bearing at D does not exert any axial thrust and neglect the weights of the sheaves and the axle.

SOLUTION

Assume moment reactions at the bearing supports are zero. From f.b.d. of shaft

(a)
$$\Sigma M_{x-\text{axis}} = 0$$
: $(240 \text{ N} - 180 \text{ N})(50 \text{ mm}) + (300 \text{ N} - T)(40 \text{ mm}) = 0$

T = 375 N

(b)
$$\Sigma F_x = 0: \quad B_x = 0$$

$$\Sigma M_{D(z-axis)} = 0: \quad (300 \text{ N} + 375 \text{ N})(120 \text{ mm}) - B_y(240 \text{ mm}) = 0$$

$$\therefore \quad B_y = 337.5 \text{ N}$$

$$\Sigma M_{D(y-axis)} = 0: \quad (240 \text{ N} + 180 \text{ N})(400 \text{ mm}) + B_z(240 \text{ mm}) = 0$$

$$\therefore \quad B_z = -700 \text{ N}$$

or
$$\mathbf{B} = (338 \text{ N})\mathbf{j} - (700 \text{ N})\mathbf{k} \blacktriangleleft$$

$$\Sigma M_{B(z\text{-axis})} = 0$$
: $-(300 \text{ N} + 375 \text{ N})(120 \text{ mm}) + D_y(240 \text{ mm}) = 0$

$$D_v = 337.5 \text{ N}$$

$$\Sigma M_{B(y-axis)} = 0$$
: $(240 \text{ N} + 180 \text{ N})(160 \text{ mm}) + D_z(240 \text{ mm}) = 0$

$$\therefore D_z = -280 \text{ N}$$

or
$$\mathbf{D} = (338 \text{ N})\mathbf{j} - (280 \text{ N})\mathbf{k} \blacktriangleleft$$

For the portion of a machine shown, the 4-in.-diameter pulley A and wheel B are fixed to a shaft supported by bearings at C and D. The spring of constant 2 lb/in. is unstretched when $\theta = 0$, and the bearing at C does not exert any axial force. Knowing that $\theta = 180^{\circ}$ and that the machine is at rest and in equilibrium, determine (a) the tension T, (b) the reactions at C and D. Neglect the weights of the shaft, pulley, and wheel.

SOLUTION

First, determine the spring force, \mathbf{F}_E , at $\theta = 180^\circ$.

$$F_E = k_s x$$

where

$$k_s = 2 \text{ lb/in.}$$

$$x = (y_E)_{\text{final}} - (y_E)_{\text{initial}} = (12 \text{ in.} + 3.5 \text{ in.}) - (12 \text{ in.} - 3.5 \text{ in.}) = 7.0 \text{ in.}$$

$$F_E = (2 \text{ lb/in.})(7.0 \text{ in.}) = 14.0 \text{ lb}$$

(a) From f.b.d. of machine part

$$\Sigma M_x = 0$$
: $(34 \text{ lb})(2 \text{ in.}) - T(2 \text{ in.}) = 0$

$$T = 34 \text{ lb}$$

or
$$T = 34.0 \, \text{lb} \, \blacktriangleleft$$

(b)
$$\Sigma M_{D(z-\text{axis})} = 0$$
: $-C_y(10 \text{ in.}) - F_E(2 \text{ in.} + 1 \text{ in.}) = 0$

$$-C_y(10 \text{ in.}) - 14.0 \text{ lb}(3 \text{ in.}) = 0$$

:.
$$C_y = -4.2 \text{ lb}$$
 or $C_y = -(4.20 \text{ lb}) \mathbf{j}$

$$\Sigma M_{D(y-\text{axis})} = 0$$
: $C_z(10 \text{ in.}) + 34 \text{ lb}(4 \text{ in.}) + 34 \text{ lb}(4 \text{ in.}) = 0$

:.
$$C_z = -27.2 \,\text{lb}$$
 or $C_z = -(27.2 \,\text{lb}) \mathbf{k}$

and
$$C = -(4.20 \text{ lb})\mathbf{j} - (27.2 \text{ lb})\mathbf{k} \blacktriangleleft$$

PROBLEM 4.99 CONTINUED

$$\Sigma F_x = 0$$
: $D_x = 0$

or

$$\Sigma M_{C(z-\text{axis})} = 0$$
: $D_y (10 \text{ in.}) - F_E (12 \text{ in.} + 1 \text{ in.}) = 0$

$$D_y$$
 (10 in.) – 14.0 (13 in.) = 0

:.
$$D_y = 18.2 \text{ lb}$$
 or $\mathbf{D}_y = (18.20 \text{ lb})\mathbf{j}$

$$\Sigma M_{C(y-\text{axis})} = 0: -2(34 \text{ lb})(6 \text{ in.}) - D_z(10 \text{ in.}) = 0$$

:.
$$D_z = -40.8 \,\text{lb}$$
 or $\mathbf{D}_z = -(40.8 \,\text{lb})\mathbf{k}$

and
$$\mathbf{D} = (18.20 \, \text{lb}) \mathbf{j} - (40.8 \, \text{lb}) \mathbf{k} \blacktriangleleft$$

Solve Problem 4.99 for $\theta = 90^{\circ}$.

P4.99 For the portion of a machine shown, the 4-in.-diameter pulley A and wheel B are fixed to a shaft supported by bearings at C and D. The spring of constant 2 lb/in. is unstretched when $\theta = 0$, and the bearing at C does not exert any axial force. Knowing that $\theta = 180^{\circ}$ and that the machine is at rest and in equilibrium, determine (a) the tension T, (b) the reactions at C and D. Neglect the weights of the shaft, pulley, and wheel.

SOLUTION

First, determine the spring force, \mathbf{F}_E , at $\theta = 90^{\circ}$.

$$F_E = k_s x$$

where

$$k_s = 2 \text{ lb/in}.$$

and

$$x = L_{\text{final}} - L_{\text{initial}} = \left(\sqrt{(3.5)^2 + (12)^2}\right) - (12 - 3.5) = 12.5 - 8.5 = 4.0 \text{ in.}$$

$$F_E = (2 \text{ lb/in.})(4.0 \text{ in.}) = 8.0 \text{ lb}$$

Then

$$\mathbf{F}_E = \frac{-12.0}{12.5} (8.0 \text{ lb}) \mathbf{j} + \frac{3.5}{12.5} (8.0 \text{ lb}) \mathbf{k} = -(7.68 \text{ lb}) \mathbf{j} + (2.24 \text{ lb}) \mathbf{k}$$

(a) From f.b.d. of machine part

$$\Sigma M_x = 0$$
: $(34 \text{ lb})(2 \text{ in.}) - T(2 \text{ in.}) - (7.68 \text{ lb})(3.5 \text{ in.}) = 0$

$$T = 20.56 \, \text{lb}$$

or $T = 20.6 \, \text{lb} \, \blacktriangleleft$

(b)
$$\Sigma M_{D(z-axis)} = 0$$
: $-C_y(10 \text{ in.}) - (7.68 \text{ lb})(3.0 \text{ in.}) = 0$

:.
$$C_y = -2.304 \,\text{lb}$$
 or $C_y = -(2.30 \,\text{lb}) \,\mathbf{j}$

$$\Sigma M_{D(y-\text{axis})} = 0$$
: $C_z (10 \text{ in.}) + (34 \text{ lb})(4.0 \text{ in.}) + (20.56 \text{ lb})(4.0 \text{ in.}) - (2.24 \text{ lb})(3 \text{ in.}) = 0$

:.
$$C_z = -21.152 \text{ lb}$$
 or $C_z = -(21.2 \text{ lb}) \mathbf{k}$

and
$$C = -(2.30 \text{ lb})\mathbf{j} - (21.2 \text{ lb})\mathbf{k} \blacktriangleleft$$

PROBLEM 4.100 CONTINUED

$$\Sigma F_x = 0$$
: $D_x = 0$

$$\Sigma M_{C(z\text{-axis})} = 0$$
: $D_y (10 \text{ in.}) - (7.68 \text{ lb})(13 \text{ in.}) = 0$

$$\therefore$$
 $D_y = 9.984 \,\mathrm{lb}$ or $\mathbf{D}_y = (9.98 \,\mathrm{lb})\mathbf{j}$

$$\Sigma M_{C(y\text{-axis})} = 0: -(34 \text{ lb})(6 \text{ in.}) - (20.56 \text{ lb})(6 \text{ in.}) - D_z(10 \text{ in.}) - (2.24 \text{ lb})(13 \text{ in.}) = 0$$

:.
$$D_z = -35.648 \,\text{lb}$$
 or $\mathbf{D}_z = -(35.6 \,\text{lb})\mathbf{k}$

and **D** =
$$(9.98 \text{ lb})$$
j - (35.6 lb) **k**