

Rapid Solution Exchange to Neuronal Cultures Grown on Multi Electrode Arrays

by Nitzan Herzog

Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy, January 2017

Contents

Li	List of Figures 5					
A	Abstract 8					
\mathbf{A}	Acknowledgements 9					
1 Introduction			ion	10		
	1.1	The e	nterprise of experimental neuroscience	10		
	1.2	The M	MEA culture model for network activity in neuronal ensembles	12		
		1.2.1	Notable achievements and advantages of neuronal cultures on MEAs $$.	15		
	1.3	Volum	ne transmission in neuronal systems	17		
		1.3.1	Neuromodulator transmission and plasticity	19		
		1.3.2	The Izhikevic thought experiment	21		
	1.4	Propo	sed system and how it addresses present experimental gaps	24		
	1.5	Rapid	solution exchange with microfluidics	25		
		1.5.1	Microfluidics in neuroscience	27		
		1.5.2	Neurons and flow	28		
	1.6	Ph.D	objectives	29		
2	Met	thods		30		
	2.1	Basic	fabrication elements	30		
		2.1.1	PDMS preparation	30		
		2.1.2	Thin film spinning	30		
		2.1.3	Soft lithography	31		
		2.1.4	PDMS extraction	31		
	2.2	Bondi	ng techniques	31		
		2.2.1	Plasma bonding	31		
		2.2.2	Double sided silicone tape	31		
	2.3	Surfac	ee coating	32		
		2.3.1	Open surface	32		
		2.3.2	Devices - Bond-then-PLL	32		
		2.3.3	Devices - PEI-then-bond	32		
	2.4	Seedir	ng and maintaining of Neuronal cultures	32		

	2.5	MEA recording and stimulation	32
		2.5.1 Spike detection and noise removal \dots	32
		2.5.1.1 Automatic quantification of active channels	32
		2.5.2 Electrical stimulation	33
		2.5.2.1 Automatic detection of responsive channels	33
		2.5.3 Correlation maps	33
		2.5.4 Burst detection	33
		2.5.5 Functional connectivity analysis	33
	2.6	Plasticity protocol	33
	2.7	Conditioned media production	33
	2.8	Flow experiments	34
		2.8.1 Heated chamber	34
		2.8.2 Steady flow	34
		2.8.3 Pulsing	34
	2.9	Immunohistochemistry	34
3	Esta	ablishment of a culture model for network activity in neuronal ensem-	
	bles		40
	3.1	Introduction	40
	3.2	Development of spontaneous activity in Mouse cultures	41
		3.2.1 Statistics of activity and synchronicity measures	44
		3.2.2 Comparison between mouse and rat cultures	48
	3.3	Evoked activity	49
	3.4	Plasticity induction in the presence of dopamine	52
		3.4.1 Examining changes in response to stimulation	54
		3.4.2 Examining changes in functional connectivity	57
	3.5	Chapter conclusion	60
4		bility of neuronal cultures in microfluidic devices in static conditions	
		under steady flow	62
	4.1	Introduction	62
	4.2	Long term neuronal cultures in microfluidic devices	64
		4.2.1 Development of protocol	64
		4.2.1.1 Evaporation and surface chemistry considerations	66
		4.2.1.2 Considerations of factor circulation	66
		4.2.1.3 Alternative bonding methods	70
		4.2.1.4 Extraction of PDMS	71
	4.0	4.2.2 Growing microcultures in plasma bonded devices	74 70
	4.3	Viability of neuronal cultures under steady microfluidic flow	78 70
		4.3.1 Pilot flow study	78
		2	
		Δ	

		4.3.2	Quantitative viability analysis	. 80
	4.4	Chapt	er conclusion	. 83
5	Act	ivity u	under steady microfluidic flow	86
	5.1	Introd	luction	. 86
	5.2	Neuro	nal cultures in cross flow devices on MEAs	. 87
	5.3	Activi	ty under flow for young cultures	. 88
		5.3.1	Effect of flow rate	. 90
		5.3.2	The semi-permeable membrane approach for shear reduction \dots	. 92
		5.3.3	Considerations of diffusive flux	. 94
	5.4	Activi	ty under flow for old cultures	. 97
		5.4.1	The effect of the media source	. 100
		5.4.2	How old conditioned media performs on young cultures	. 102
	5.5	Interp	retation of the activity under flow results	. 104
	5.6	Chapt	er conclusion	. 109
6	Rap	oid pro	ogrammatic agonist delivery to a neuronal microculture	110
	6.1	Introd	luction	. 110
	6.2	Fabric	eation and establishment of long term Neuronal microcultures	. 111
		6.2.1	PEI-then-all-tape devices	. 112
		6.2.2	PEI-then-PDMS-tape device	. 113
		6.2.3	Network Activity in microcultures	. 116
	6.3	Pulsin	g performance in microculture devices	. 118
		6.3.1	Analysis of pulsing visualized by fluorescein	. 119
		6.3.2	Numerical simulation of drug pulsing	. 120
		6.3.3	Shortening of the transient time scales by changing microfluidic pa-	
			rameters	. 125
	6.4	Gluta	mate pulsing	. 127
	6.5	Dopar	nine pulses	. 129
	6.6	Chapt	er conclusion	. 137
7	Disc	cussior	1	140
	7.1	The u	tility of the culture model	. 140
	7.2	The sl	hear protection vs. conditioning protection issue	. 140
		7.2.1	Limitation uncovered by the conducted experiments $\ \ldots \ \ldots$. 140
		7.2.2	Avenues for further expansion of the model	. 140
	7.3	Impor	tance of extrasynaptic environment	. 140
	7.4	Prosp	ects of the <i>in vitro</i> volume transmission model	. 141

\mathbf{A}	A Appendix 142				
	A.1 MEA Data sheets	142			
	A.2 Parameters of Comsol model	142			
Bi	ibliography	142			

List of Figures

1.1	Illustration of the volume and wired transmission concepts	18
1.2	Volume transmission view of dopamine signalling	21
1.3	The Izhikevich proposal for a plasticity rule involving dopamine	23
1.4	Generating a pulse with the interface shifting method	27
2.1	profiles	30
2.2	microwell profile	31
3.1	Representative images of a cortical mouse culture developing on a planar multi	
	electrode array	42
3.2	Development of synchrony in the spontaneous activity of a representative	
	mouse culture	43
3.3	Averaged statistics of development of activity measures in mouse cultures $$	45
3.4	Averaged statistics of development of bursting measures in mouse cultures	47
3.5	Comparison between spontaneous activity in mouse and rat based cultures $$.	49
3.6	Example of responses to test stimuli applied at 2 different electrodes	51
3.7	Outline of the combined dopamine-and-tetanus-induced open bath plasticity	
	experiments	54
3.8	Example response rasters from the combined dopamine and tetanus plasticity	
	induction experiment	56
3.9	Example stimulation response maps for the combined dopamine and tetanus	
	plasticity induction experiment	57
3.10	Statistics of changes to evoked responses in the combined dopamine and	
	tetanus plasticity induction experiment	58
3.11	Statistics of Change to functional connectivity and average unit firing rate in	
	the combined dopamine and tetanus plasticity induction experiment \dots	59
4.1	Schematics of the standard single layer microfluidic devices	65
4.2	Effects of osmolarity drift in early protocol for long term culturing of neurons	
	in microfluidic devices	67
4.3	The immersion maintenance configuration	68
4.4	Demonstration of the limitations of circulation in planar microfluidic devices	69

4.5	Effect of the pre-polymer bonding approach on the development of neuronal	
	cultures in microfluidic devices	70
4.6	Comparison between cultures growing in plasma bonded devices and tape	
	based devices	72
4.7	Demonstration of PDMS related contaminations and the extraction procedure	73
4.8	Schematics of the 2-layered microfluidic devices with microwells	75
4.9	Neuronal microcultures growing without a support culture	75
4.10	Development of neuronal microcultures	76
4.11	Statistics of microculture viability over development	77
4.12	Demonstration of the microculture isolation issue with the bond-then-surface	
	approach	78
4.13	Time lapse of neuronal culture under steady microfluidic flow	79
4.14	Effect of media conditioning and flow rate on viability of neuronal cultures	
	under steady microfluidic flow	81
4.15	Example of viability curves from individual steady flow experiments \dots	82
4.16	Statistics of death rates for various steady flow conditions	84
5.1	Illustration of the cross flow devices used for measuring culture activity under	
	flow	88
5.2	Images of a neuronal culture growing in cross flow devices	89
5.3	Example for the Effect of flow rate on the activity of a young culture under	
	flow	91
5.4	Averaged time course of activity measures in young cultures placed under	
	flow at different rates	93
5.5	Bright field and staining images of a culture in a cross flow device inclusive	
	of a semi-permeable membrane \hdots	95
5.6	Averaged time course of activity measures in young cultures separated from	
	the fast flow by means of a semi-permeable membrane	96
5.7	Example for the effect of culture age on the network activity under flow $$	98
5.8	Averaged time course of activity measures in young versus old cultures under	
	flow	99
5.9	Averaged time course of activity measures in old cultures under flow with	
	different media types	101
5.10	Averaged time course of activity measures in young cultures under flow with	
	old media	103
5.11	Illustration of a synaptic cleft with flow running through it	107
6.1	Illustration of the new microwell devices used for dopamine pulsing on a microculture	112
6.2	Microcultures grown in all-tape devices exhibit bad surface adhesion 1	113

6.3	Development of microcultures is hybrid PDMS-tape devices
6.4	Immunohistochemistry of microcultures in hybrid PDMS-tape devices $$ 115
6.5	Effectiveness of surface-then-bond in maintaining an isolated microculture $$. $$. 116
6.6	Effectiveness of surface-then-bond in maintaining an isolated microculture -
	immunostaining evidence
6.7	Spontaneous and evoked activity in microcultures
6.8	Fluorescence visualization of agonist pulsing
6.9	Analysis pipeline of fluorescence pulsing data $\ \ldots \ $
6.10	Measured and model flow rate switches during an agonist pulse 122
6.11	Comparison between model predictions and measured agonist time course $$ 123
6.12	Comparison between model predictions and measured agonist time course
	including variability between devices
6.13	Spatial distributions of agonist concentration in the microwell during a pulse $\;$ 126
6.14	Shortening of the agonist transient time scales by changing the microfluidic
	parameters
6.15	Microculture electrical responses to glutamate pulses
6.16	Illustration of the dopamine pulsing experimental protocol 130
6.17	Example response rasters from the dopamine pulsing experiment $\ \ldots \ \ldots \ 131$
6.18	Channel PSTHs before and after administration of pulsing protocol with
	dopamine or control solutions - example of global increase in response intensity $\!132$
6.19	Channel PSTHs before and after administration of pulsing protocol with
	dopamine or control solutions - example of global decrease in response in-
	tensity
6.20	Timing of dopamine transient relative to reverberative stimulation response $$. 135
6.21	Global stimulation response and functional connectivity analysis of the dopamine
	pulsing experiments
6.22	Statistics of the change in evoked responses following dopamine or blank pulsing 139