LABORBUCH IM PHYSIKPRAKTIKUM

Milena Mensching

Justus Weyers

23. November 2022

Inhaltsverzeichnis

Dehnbare Stoffe	3
Versuch 1	3
Ziel	3
Materialien	3
Versuchsaufbau	3
Durchführung	3
Fehlerquellen	4
Messung	5
Auswertung und Interpretation	5
Berechnung der Gewichts- und Zugkraft	5
Berechnung der Federkonstanten	7
Messwerte und errechnete Größen	9
Versuch 2	11
Ziel	11
Materialien	
Versuchsaufbau	
Durchführung	
Fehlerquellen	
Messung	
Auswertung	
Interpretation	
•	15

Dehnbare Stoffe

Versuch 1

Ziel

Testi Überprüfung der Anwendbarkeit des Hookeschen Modells auf ein Gummiband durch Bestimmung der Federkonstante

Materialien

- Stativ
- Gummiband
- Gewichte
- Maßband
- Haken
- Klebeband

Versuchsaufbau

- Aufstellung des Stativs, Befestigung am Tisch
- Befestigung des Hakens am Stativ
- Befestigung des Maßbandes am Stativ mit Hilfe von Klebeband
- Aufhängung des Gummibandes am Haken
- In das Gummiband aufgehangen werden die Gewichte daran aufgehängt

Abbildung 1: Versuchsaufbau 1

Abbildung 2: Versuchsaufbau 1, Nahansicht

Durchführung

Die Gewichte werden gewogen und die Messunsicherheiten berechnet. Die 10g und die 100g Gewichte lagen doppelt vor und waren jeweils gleich schwer. Sämtliche Gewichte stellten sich als zu leicht heraus. Nur die zwei 10g Gewichte wogen exakt 10,0g.

Tabelle 1: Verwendete Gewichte

Nominalgewicht	Einzelmasse_g
5g	4.8
10g(2x)	10.0
20g	19.8
50g	49.9
100g(2x)	99.5
200g	198.5

Die Gesamtmasse m_{ges} einer Gewichtskombination wird durch Addition der Teilmassen berechnet.

Die Geräteungenauigkeit berechnet sich zu: $u_{Gerät} = \sqrt{u_{Skala}^2 + u_{Waage}^2}$. Dabei ist u_{Skala} konstant bei $u_{Skala} = \frac{0,0001kg}{2\sqrt{3}} = 2,9*10^{-5}kg$. Für u_{Waage} wurde eine Messunsicherheit von 0,02g am Gerät abgelesen. Damit errechnet sich eine Geräteungenauigkeit von $u_{Gerät} = \sqrt{(2,9*10^{-5})^2 + (2*10^{-5})^2}kg = 3,5*10^{-5}kg$.

Für die Unsicherheit der aus n Gewichten kombinierten Masse M u_m gilt, da für alle Messungen dieselbe Waage benutzt wurde, der Zusammenhang:

$$u_m = \sum_{i=1}^n u_{m,i} = n * u_{Ger\"{a}t}$$

Mit n: Anzahl der kombinierten Gewichte

```
# Skalenunsicherheit der Waage
u_Skala = (1*10**(-4))/(2*sqrt(3)) #kg
# Wagenunsicherheit
u_Waage = 0.02*10**(-3) # kg
# Geräteunsicherheit
u_Gerät = sqrt((u_Skala)^2+(u_Waage)^2)
# Massenunsicherheit
u_m = Gewichte$n_Gewichte*u_Gerät #kg
```

Zunächst wird die Länge des Gummibandes ohne zusätzliches Gewicht gemessen. Die Länge betrug 11,2 cm. Diese Länge muss später von allen Messwerten abgezogen werden, um nur die Auslenkung aus dem Nullzustand als Datensatz aufzunehmen.

Danach werden verschiedene Gewichte an das Gummiband gehängt und die entsprechende Elongation gemessen. Diese wird an der Unterkante des Gummibandes, sobald dieses nach dem Anbringen der Gewichte nicht mehr schwingt, abgelesen. Unsere Gruppe entschied sich zunächst dafür, eine Messreihe mit Intervallen von 5g durchzuführen. Nach den ersten 20 Messungen (bis 100g) entschieden wir uns dafür, die Intervalle auf 10g zu erhöhen, da wir zunächst den Aufwand unterschätzten und Daten mit einem Abstand von 10g immer noch zur Beurteilung der Federkonstante ausreichen.

Die Auslenkung wird am Maßband abgelesen (Messskala in mm). Dies bedeutet eine Ungenauigket der Elongation von:

$$u_x = \frac{a}{2\sqrt{6}} = \frac{0,001m}{2\sqrt{6}} = 2,0 * 10^{-4}m$$

```
# Auslenkungsungenauigkeit
u_x = 2.0*10**(-4) #m
```

Fehlerquellen

Bei den Fehlerquellen ist zunächst der **personenbezogene Ablesefehler** zu erwähnen. Diesen versuchten wir weitestgehend zu eliminieren, indem nur eine Person eine vollständige Datenreihe aufnahm.

Eine weitere Fehlerquelle kann die **Zeitabhängigkeit der Auslenkung** sein. Ein Gummiband kann nach einer gewissen Zeit mehr nachgeben, als bei der direkten Messung. Wir haben uns bemüht, die Messungen sehr direkt und ohne Verzug vorzunehmen. Die Zeitanghängigkeit haben wir jedoch nicht näher untersucht.

Besonders wichtig ist zu erwähnen, dass die Länge x_0 am Anfang und am Ende nicht übereinstimmten (11,2cm am Anfang zu 11,6cm am Ende). Dies ist auf die **konstante Dehnung des Gummibandes** zurückzuführen und wurde ebenfalls bei der Messung vernachlässigt.

Neben diesen Versuchsbezogenen Fehlerquellen sind Annahmen zu nennen, die das Hooksche Gesetz trifft. Diese können sich aber in der Realität anders darstellen. Dabei sind zu nennen:

- Vernachlässigung von Energieumwandlung (z.B.: durch Reibung, $W = F_s * s$)
- Lineare Kraft-Auslenkungs-Beziehung (Speziell im Falle des Gummibandes nur eingeschränkt anwendbar)
- Der Stoff soll dehnbar sein, die Elastizitätsgrenze darf jedoch nicht überschritten werden.
- Gleiches Verhalten bei und Dehnung und Entspannung der Feder/des Gummibandes

Messung

Mittels Excel werden die Daten aufgenommen und als csv-Datei exportiert. An dieser Stelle können die erhobenen Messwerte zum Zwecke der Interpretation aus dieser csv-Datei eingelesen werden. Die Werte sind auf der letzten Seite aufgeführt, zusammen mit errechneten Größen und zugehörigen Unsicherheiten.

Auswertung und Interpretation

Berechnung der Gewichts- und Zugkraft

Zur Interpretation der Messergebnisse wird die Elongation x_i normiert, indem die Nullauslenkung, diese beträgt 11,2cm auf dem Maßband, von den anderen Messwerten subtrahiert wird, siehe entsprechenden Messwert für ein Gewicht von 0g im Abschnitt Messwerte und errechnete Größen.

Zudem wird, wie bei allen anderen Messgrößen auch, die Einheit in eine SI-Einheit umgerechnet, um den Einheitenbezug korrekt zu halten. In diesem Falle also in Meter.

Im Anschluss wird die Kraft $F_{G,i} = m_i * g$ in Newton berechnet, die für das Gewicht m_i auf das Gummiband wirkt. Die Erdbeschleunigung g wird auf $9,81\frac{m}{s^2}$ festgesetzt. Im Folgenden wird, wenn die Unterscheidung zwischen Gewichts- und Zugkraft aufgrund der Betragsgleichheit im zu untersuchenden Ruhezustand unsinnig ist, von einer sematischen Unterscheidung von F_G und F_{Zug} abgesehen und stattdessen verallgemeinernd von der wirkenden Kraft F gesprochen. Neben der Kraft F wird auch die Unsicherheit der Kraft u_F berechnet.

Diese berechnet sich als:

$$u_F = \frac{\partial F}{\partial m} * u_m$$
$$= g * u_m$$

Nach der Rechnung wird ein Kraft-Auslenkung Schaubild erstellt.

```
# Nullwerte(x_0 = 11,2cm) abziehen
Messreihe$Auslenkung1_x0 <- Messreihe$Auslenkung1_cm - 11.2

# Einheitenbezug
Messreihe$Gewicht_kg <- Messreihe$Gewicht_g/1000 #g -> kg
Messreihe$Auslenkung1_x0_m <- Messreihe$Auslenkung1_x0/100 #cm -> m

# ERDBESCHLEUNIGUNG
g = 9.81 #m/s^2

# Berechnung von Kraft und u_Kraft
Messreihe$Kraft <- Messreihe$Gewicht_kg * g #N
Messreihe$U_Kraft <- g*u_m #N</pre>
```


Wird F gegen x_i aufgetragen, ergibt sich optisch ab einer Auslenkung von 5cm ein etwa linearer Zusammenhang. Fehlerbalken sind sowohl für die Auslenkung, als auch für die Kraft vorhanden, fallen aber sehr klein aus. Im Bereich zwischen einer Elongation von 0cm und 5cm kann das Ausdehnungsverhalten des Gummibandes unter einer Gewichtsbelastung nicht als linear betrachtet und nicht durch eine Federkonstante beschrieben werden. Für die Berechnung der Federkonstanten haben wir uns daher entschieden, die Werte für $x_i < 0,05m$ auszuschließen. Zugleich müssen wir dann allerdings feststellen, dass die errechnete Federkonstante nur im Intervall $x \in (0,05m,\ x_{max}]$ gilt.

Berechnung der Federkonstanten

Da die Gewichtskraft $F_G = m * g$ und die Zugkraft des Gummibandes $F_{Zug} = x * D$ im Ruhezustand im Gleichgewicht zueinander stehen, gilt folgende Formel:

$$F_G = m * g = D * x = F_{Zuq}$$

Mit:

- D: Federkonstante
- m: Masse des Gewichtes,
- x: Auslenkung,
- g: Erdbeschleunigung $(9, 81\frac{m}{s^2})$.

Daraus ergibt sich für die Federkonstante D:

$$D = \frac{m * g}{x} \tag{1}$$

Diese wird für jede Auslenkung x_i berechnet.

```
Messreihe$Federkonstante <- Messreihe$Gewicht_kg*g/Messreihe$Auslenkung1_x0_m
```

Die Unsicherheit der einzelnen Werte der Federkonstanten u_D ergibt sich gemäß der Gaussschen-Fehlerfortpflanzung aus folgender Formel:

$$u_D = \sqrt{\left(\frac{\partial D}{\partial m} * u_m\right)^2 + \left(\frac{\partial D}{\partial x} * u_x\right)^2}$$

$$u_D = \sqrt{\left(\frac{g}{x} * u_m\right)^2 + \left(-\frac{m * g}{x^2} * u_x\right)^2}$$
(2)

Berechnung in R:

Wird die Federkonstante über die Elongation geplottet, zeigt sich wieder, dass diese erst ab einer Auslenkung von etwa 5 cm einen vergleichsweise stabilen Wert annimmt.

Daher haben wir uns entschieden, nur in dem beschriebenen Intervall $x \in (0,05m,\ x_{max}]$ zu mitteln. Dort wird nach GUM der Mittelwert und die Standardabweichung des Mittelwertes berechnet, um ein Messergebnis und dessen Unsicherheit zu erhalten.

Mittelwert:

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i \tag{3}$$

Standardabweichung:

$$\sigma_D = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2}$$
(4)

Standardabweichung des Mittelwertes:

$$\sigma_{\overline{D}} = \frac{\sigma_D}{\sqrt{n}} \tag{5}$$

Tabelle 2: Statistische Größen zur bestimmten Federkonstante

	Werte
Mittelwert_MW	30.8162757
Standardabweichung_SD	0.9579652
SD_von_MW	0.1667603

Die bestimmte Federkonstante, für eine Auslenkung des Gummibandes im Bereich von 5,0 bis 26.8cm, beträgt also $D_1=(30,82\pm0,17)\frac{N}{m}$

Hier wird die Federkonstante als Gerade nocheinmal im Kraft-Auslenkungsschaubild dargestellt. Die in Blau eingefärbten Punkte sind diejenigen Punkte, die nicht in die Berechnung eingingen.

Angemerkt sei, dass für die Steigung der Federkonstanten der Mittelwert und die Mittelwerte ab- bzw. zuzüglich der Standardabweichung des Mittelwertes angenommen wurden. Die drei Geraden überlagern sich sehr stark. Ebenso wurde ein Nulldurchgang festgelegt, da bei keiner Krafteinwirkung keine Elongation stattfindet. Ebenso sei angemerkt, dass auf Fehlerbalken verzichtet wurde, da diese bereits im ersten Kraft-Auslenkungs Schaubild eingezeichnet wurden und zudem, aufgrund der kleinen Unsicherheiten, keinen graphischen Mehrwert bieten. Die Fehlerwerte könne außerdem im Abschnitt Messwerte und errechnete Größen nachgeschlagen werden.

Messwerte und errechnete Größen

Im Folgenden eine Auflistung der in diesem Versuch erhobenen Messwerte und der daraus errechneten Größen: Mit:

- n_m[-]: Anzahl kombinierter Gewichte
- m[kg]: Masse der kombinierten Gewichte in Kilogramm
- u_m[kg]: Unsicherheit der Masse in Kilogramm
- L[cm]: Abgelesener Wert an Maßband in Zentimeter
- El[m]: Elongation des Gummibandes in Meter
- F[N]: Kraft F in Newton
- u_F[N]: Unsicherheit der Kraft in Newton
- D[N/m]: Federkonstante D in Newton pro Meter
- u_D[N/m]: Unsicherheit der Federkonstante in Newton pro Meter

Tabelle 3: Messwerte

n_m[-]	m[kg]	$u_m[kg]$	L[cm]	$\mathrm{El}[\mathrm{m}]$	F[N]	$u_F[N]$	D[N/m]	$u_D[N/m]$
0	0.0000	0.0000000	11.2	0.000	0.0000	0.00000	NaN	NaN
1	0.0048	0.0000351	13.0	0.018	0.0471	0.00034	2.6160	0.0348
1	0.0100	0.0000351	13.3	0.021	0.0981	0.00034	4.6714	0.0474
2	0.0148	0.0000702	13.5	0.023	0.1452	0.00069	6.3125	0.0625
1	0.0198	0.0000351	13.6	0.024	0.1942	0.00034	8.0932	0.0690
2	0.0246	0.0000702	13.8	0.026	0.2413	0.00069	9.2818	0.0762
2	0.0298	0.0000702	13.8	0.026	0.2923	0.00069	11.2438	0.0905
3	0.0346	0.0001054	13.9	0.027	0.3394	0.00103	12.5713	0.1007
3	0.0398	0.0001054	14.0	0.028	0.3904	0.00103	13.9442	0.1062
4	0.0446	0.0001405	14.1	0.029	0.4375	0.00138	15.0871	0.1144
1	0.0499	0.0000351	14.0	0.028	0.4895	0.00034	17.4828	0.1255
2	0.0547	0.0000702	14.1	0.029	0.5366	0.00069	18.5037	0.1298
2	0.0599	0.0000702	14.2	0.030	0.5876	0.00069	19.5873	0.1326
3	0.0647	0.0001054	14.3	0.031	0.6347	0.00103	20.4744	0.1362
2	0.0699	0.0000702	14.4	0.032	0.6857	0.00069	21.4287	0.1356
3	0.0747	0.0001054	14.5	0.033	0.7328	0.00103	22.2063	0.1382
3	0.0797	0.0001054	14.5	0.033	0.7819	0.00103	23.6926	0.1470
4	0.0845	0.0001405	14.6	0.034	0.8289	0.00138	24.3807	0.1490
4	0.0897	0.0001405	14.6	0.034	0.8800	0.00138	25.8811	0.1575
5	0.0945	0.0001756	14.7	0.035	0.9270	0.00172	26.4870	0.1592
1	0.0995	0.0000351	14.8	0.036	0.9761	0.00034	27.1137	0.1509
2	0.1095	0.0000702	15.1	0.039	1.0742	0.00069	27.5435	0.1423
2	0.1193	0.0000702	15.3	0.041	1.1703	0.00069	28.5447	0.1403
3	0.1293	0.0001054	15.4	0.042	1.2684	0.00103	30.2008	0.1459
4	0.1393	0.0001405	15.6	0.044	1.3665	0.00138	31.0576	0.1446
2	0.1494	0.0000702	15.8	0.046	1.4656	0.00069	31.8612	0.1393
3	0.1594	0.0001054	16.0	0.048	1.5637	0.00103	32.5774	0.1374
3	0.1692	0.0001054	16.4	0.052	1.6599	0.00103	31.9202	0.1244
4	0.1792	0.0001405	16.6	0.054	1.7580	0.00138	32.5547	0.1232
5	0.1892	0.0001756	16.9	0.057	1.8561	0.00172	32.5623	0.1182
1	0.1985	0.0000351	17.3	0.061	1.9473	0.00034	31.9227	0.1048
2	0.2085	0.0000702	17.5	0.063	2.0454	0.00069	32.4664	0.1036
2	0.2183	0.0000702	17.8	0.066	2.1415	0.00069	32.4473	0.0989
3	0.2283	0.0001054	18.2	0.070	2.2396	0.00103	31.9946	0.0926
4	0.2383	0.0001405	18.5	0.073	2.3377	0.00138	32.0236	0.0897
2	0.2484	0.0000702	18.9	0.077	2.4368	0.00069	31.6468	0.0827
3	0.2584	0.0001054	19.3	0.081	2.5349	0.00103	31.2951	0.0783
3	0.2682	0.0001054	19.8	0.086	2.6310	0.00103	30.5935	0.0722
4	0.2782	0.0001405	20.0	0.088	2.7291 2.8272	0.00138	31.0130	0.0722
5	0.2882	0.0001756 0.0000702	20.3	0.091		0.00172	31.0686 30.1379	0.0709
$\frac{2}{3}$	$0.2980 \\ 0.3080$	0.0000702 0.0001054	$20.9 \\ 21.2$	0.097	2.9234	0.00069 0.00103	30.1379	0.0625 0.0613
3	0.3080 0.3178	0.0001054 0.0001054	$\frac{21.2}{21.5}$	$0.100 \\ 0.103$	$3.0215 \\ 3.1176$	0.00103 0.00103	30.2148	0.0596
3 4	0.3178 0.3278	0.0001034 0.0001405	$\frac{21.5}{22.0}$	0.103 0.108		0.00103 0.00138	29.7752	0.0566
5	0.3278 0.3378	0.0001405 0.0001756	$\frac{22.0}{22.3}$	0.108 0.111	3.2157 3.3138	0.00138 0.00172	29.7732	0.0560
3	0.3479	0.0001750 0.0001054	$\frac{22.3}{22.7}$	0.111 0.115	3.4129	0.00172	29.6774	0.0500 0.0524
3 4	0.3479 0.3579	0.0001034 0.0001405	$\frac{22.7}{23.0}$	0.113 0.118	3.4129 3.5110	0.00103 0.00138	29.0714 29.7542	0.0524 0.0518
4	0.3379 0.3777	0.0001405 0.0001405	23.0 23.3	0.118 0.121	3.7052	0.00138	30.6218	0.0518 0.0519
5	0.3777	0.0001405 0.0001756	23.6	0.121 0.124	$\frac{3.7032}{3.8033}$	0.00138 0.00172	30.6721	0.0519 0.0514
6	0.3977	0.0001730	23.9	0.124 0.127	3.9014	0.00172 0.00207	30.721	0.0514 0.0510
$\frac{3}{4}$	0.3990	0.0002107	24.5	0.133	3.9142	0.00138	29.4300	0.0455
-	0.0000	0.0001400	21.0	0.100	3.0174	0.00100	20.1000	0.0400

n_m[-]	m[kg]	u_m[kg]	L[cm]	El[m]	F[N]	u_F[N]	D[N/m]	$u_D[N/m]$
5	0.4090	0.0001756	24.7	0.135	4.0123	0.00172	29.7207	0.0458
5	0.4188	0.0001756	25.0	0.138	4.1084	0.00172	29.7712	0.0449
6	0.4288	0.0002107	25.2	0.140	4.2065	0.00207	30.0466	0.0454
7	0.4388	0.0002458	25.5	0.143	4.3046	0.00241	30.1023	0.0454
5	0.4489	0.0001756	25.7	0.145	4.4037	0.00172	30.3704	0.0435
6	0.4589	0.0002107	26.1	0.149	4.5018	0.00207	30.2135	0.0429
6	0.4687	0.0002107	26.2	0.150	4.5979	0.00207	30.6530	0.0431
7	0.4787	0.0002458	26.5	0.153	4.6960	0.00241	30.6931	0.0431
8	0.4887	0.0002810	26.8	0.156	4.7941	0.00276	30.7317	0.0432

Versuch 2

Ziel

Untersuchung der Fragestellung, ob sich der Zusammenhang zwischen Kraft und Elongation verändert, wenn man die Angrifffskraft auf einen Strang des Gummibandes anstatt auf zwei verteilt.

Eine Hypothese ist, dass die Auslenkung bei gleicher Gewichtskraft doppelt so hoch ist, weil die Kraft auf nur einen Strang wirkt.

Materialien

- Stativ
- Gummiband
- Gewichte
- Maßband
- Haken
- Klebeband
- Schere

Versuchsaufbau

• Analog zu Versuch 1, aber das Gummiband wurde vorher mit einer Schere zerschnitten und durch geknotete Schlaufen an Haken und Gewicht befestigt.

Abbildung 3: Versuchsaufbau 2

Durchführung

Analog zu Versuch 1. Wir haben uns dafür entschieden bis zur Marke von 100g in 5g - Intervallen und danach in 10g- Schritten zu messen, um die Daten dieser zwei Versuche gut vergleichen können. Da das Band

Abbildung 4: Versuchsaufbau 2, Nahansicht

allerdings viel stärker durch das Anbringen von Gewicht gedehnt wurde, konnten wir ab 360g keine Messungen mehr durchführen, da die Gewichte durch ihre Länge anfingen am Tisch aufzuliegen und so die Normalkraft die Gewichtskraft verfälscht hätte. Stattdessen haben wir den aus platztechnisch noch gut messbaren Wert für 400g (nur drei Gewichte) genommen und den Rest der Tabelle nicht ausgefüllt. Die Anfangsausdehnung x_0 lag in diesem Fall bei 15,8cm.

Fehlerquellen

Ein möglicher Faktor, der die Federkonstane verfälschen kann, ist neben den im Versuch 1 genannten Problemen, die Art der Befestigung, des nun einsträngigen Gummibandes. Diese geschah in Form eines Knotens am Haken. Dabei wurde ein Teil des Gummibandes verwendet, der im folgenden Versuch dann nicht gedehnt wurde.

Die dauerhafte Verlängerung des Gummibandes, die auch in Versuch 1 festgestellt wurde, beträgt für Versuch 2 6mm, von 15,8cm auf 16,4cm.

Messung

Auch hier wurden die gemessenen Längen in die gleiche csv-Datei gespeichert, wie in Versuch 1. Die Massen der Gewichte sind ebenfalls bekannt. Die Unsicherheiten der Waage und der Skala (Maßband) können ebenfalls übernommen werden, da es sich um die selben Geräte handelt. Da die Massen dieselben sind sind auch die Gewichtskräfte und deren Unsicherheiten dieselben.

Auswertung

Die Elongation muss erneut berechnet werden. Dafür wird die Anfangsausdehnung x_0 von den Ausdehnungen x_i abgezogen und in Meter umgerechnet werden.

Die Federkonstante wird gemäß Gleichung 1 berechnet. Ebenso deren Unsicherheiten für jeden einzelnen Wert gemäß Gleichung 2. Die Berechnung erfolgt mit Hilfe der Funktion "u_D_funktion", welche in Versuch 1 definiert wurde.

```
# Entfernen von NA-Zeilen. Die Werte werden aus dem in Versuch 1 erstellten
# Dataframe kopiert
Messreihe2 <- Messreihe[complete.cases(Messreihe[,c(5,14,15)]),]
# Normierung der Auslenkung
Messreihe2$Auslenkung2_x0 <- Messreihe2$Auslenkung2-15.8
# Umrechnung in m
Messreihe2$Auslenkung2_x0_m <- Messreihe2$Auslenkung2_x0/100 #cm -> m
```

Kraft-Auslenkung Diagramm:

Federkonstante-Auslenkung Diagramm:

Auch aus Gründen der Vergleichbarkeit werden bei der Berechnung eines Mittelwertes der Federkonstante in diesem Versuch die Werte für $x_i < 0,05m$ verworfen. Zudem wird in dem Federkonstante-Auslenkung Schaubild auch deutlich, dass für die Werte kleiner als ~5cm Auslenkung die Federkonstante ebenfalls keinen stabilen Wert annimmt, auch daher erscheint dieses Vorgehen sinnvoll. Berechnung des Mittelwertes, der Standardabweichung und der Standardabweichung des Mittelwertes gemäß der Formeln 3, 4, 5.

Tabelle 4: Statistische Größen zur zweiten bestimmten Federkonstante

	Werte
Mittelwert_MW Standardabweichung_SD SD_von_MW	13.0996077 1.6907616 0.3195239

Die in Versuch 2 bestimmte Federkonstante für eine Ausdehnung des Gummis über 5cm beträgt: $D_2 = (13, 10 \pm 0, 32) \frac{N}{m}$.

Interpretation

Damit ist die Federkonstante D_2 in etwa halb so groß wie D_1 . Für die gleiche Ausdehnung des Gummibandes aus Versuch 2 um eine Strecke x ist nur etwa die halbe Kraft vonnöten, wie sie für die gleiche Ausdehnung des ringförmign Gummibandes aus Versuch 1 nötig wäre.

Aus diesem Grund nehmen wir die aufgestellte Hypothese erstmal an.

In einem weiteren Versuch würden wir testen, ob bei einer geeigneteren Befestigung des Gummibandes am Haken bzw. am Gewicht als durch die verwendeten Knoten, die bestimmte Gewichtskraft genauer der Hälfte der Federkonstante D_1 aus Versuch 1 entspricht. Denkbar wäre z.B. eine Befestigung mit Krokodilklemmen oder Ähnlichem.

Messwerte und errechnete Größen Zusammenfassung der Werte aus Versuch 2, Spaltenbenennung analog zur Benennung in Versuch 1:

	n_m[-]	m[kg]	u_m[kg]	L2[cm]	El2[m]	F[N]	u_F[N]	D2[N/m]	$u_D2[N/m]$
2	1	0.0048	0.0000351	16.5	0.007	0.0471	0.00034	2.6160	0.1984
3	1	0.0100	0.0000351	16.7	0.009	0.0981	0.00034	4.6714	0.2452
4	2	0.0148	0.0000702	16.9	0.011	0.1452	0.00069	6.3125	0.2480
5	1	0.0198	0.0000351	17.0	0.012	0.1942	0.00034	8.0932	0.2713
6	2	0.0246	0.0000702	17.0	0.012	0.2413	0.00069	9.2818	0.3401
7	2	0.0298	0.0000702	17.3	0.015	0.2923	0.00069	11.2438	0.2639
8	3	0.0346	0.0001054	17.4	0.016	0.3394	0.00103	12.5713	0.2729
9	3	0.0398	0.0001054	17.7	0.019	0.3904	0.00103	13.9442	0.2230
10	4	0.0446	0.0001405	17.9	0.021	0.4375	0.00138	15.0871	0.2090
11	1	0.0499	0.0000351	18.0	0.022	0.4895	0.00034	17.4828	0.2029
12	2	0.0547	0.0000702	18.3	0.025	0.5366	0.00069	18.5037	0.1739
13	2	0.0599	0.0000702	18.5	0.027	0.5876	0.00069	19.5873	0.1632
14	3	0.0647	0.0001054	18.8	0.030	0.6347	0.00103	20.4744	0.1452
15	2	0.0699	0.0000702	19.0	0.032	0.6857	0.00069	21.4287	0.1356
16	3	0.0747	0.0001054	19.3	0.035	0.7328	0.00103	22.2063	0.1232
17	3	0.0797	0.0001054	19.7	0.039	0.7819	0.00103	23.6926	0.1062
18	4	0.0845	0.0001405	20.3	0.045	0.8289	0.00138	24.3807	0.0874
19	4	0.0897	0.0001405	20.5	0.047	0.8800	0.00138	25.8811	0.0849
20	5	0.0945	0.0001756	21.0	0.052	0.9270	0.00172	26.4870	0.0762
21	1	0.0995	0.0000351	21.5	0.057	0.9761	0.00034	27.1137	0.0604
22	2	0.1095	0.0000702	22.3	0.065	1.0742	0.00069	27.5435	0.0519
23	2	0.1193	0.0000702	23.4	0.076	1.1703	0.00069	28.5447	0.0415
24	3	0.1293	0.0001054	24.5	0.087	1.2684	0.00103	30.2008	0.0356
25	4	0.1393	0.0001405	25.9	0.101	1.3665	0.00138	31.0576	0.0301
26	2	0.1494	0.0000702	26.6	0.108	1.4656	0.00069	31.8612	0.0259
27	3	0.1594	0.0001054	27.9	0.121	1.5637	0.00103	32.5774	0.0230
28	3	0.1692	0.0001054	28.7	0.129	1.6599	0.00103	31.9202	0.0215
29	4	0.1792	0.0001405	30.2	0.144	1.7580	0.00138	32.5547	0.0195
30	5	0.1892	0.0001756	31.1	0.153	1.8561	0.00172	32.5623	0.0194
31	1	0.1985	0.0000351	32.2	0.164	1.9473	0.00034	31.9227	0.0146
32	2	0.2085	0.0000702	33.4	0.176	2.0454	0.00069	32.4664	0.0138
33	2	0.2183	0.0000702	34.0	0.182	2.1415	0.00069	32.4473	0.0135
34	3	0.2283	0.0001054	34.9	0.191	2.2396	0.00103	31.9946	0.0134
35	4	0.2383	0.0001405	35.8	0.200	2.3377	0.00138	32.0236	0.0136
36	2	0.2484	0.0000702	36.5	0.207	2.4368	0.00069	31.6468	0.0119
37	3	0.2584	0.0001054	37.1	0.213	2.5349	0.00103	31.2951	0.0122
38	3	0.2682	0.0001054	37.7	0.219	2.6310	0.00103	30.5935	0.0119
39	4	0.2782	0.0001405	38.1	0.223	2.7291	0.00138	31.0130	0.0126
40	5	0.2882	0.0001756	39.0	0.232	2.8272	0.00172	31.0686	0.0129
41	2	0.2980	0.0000702	39.6	0.238	2.9234	0.00069	30.1379	0.0107
42	3	0.3080	0.0001054	40.1	0.243	3.0215	0.00103	30.2148	0.0111
43	3	0.3178	0.0001054	40.7	0.249	3.1176	0.00103	30.2681	0.0109
44	4	0.3278	0.0001405	41.0	0.252	3.2157	0.00138	29.7752	0.0115
45 46	5	0.3378	0.0001756	41.8	0.260	3.3138	0.00172 0.00103	29.8542	0.0118 0.0107
	3	0.3479	0.0001054	42.0	0.262	3.4129		29.6774	
51	4	0.3990	0.0001405	44.7	0.289	3.9142	0.00138	29.4300	0.0105

Abbildungsverzeichnis

1	Versuchsaufbau 1	3
2	Versuchsaufbau 1, Nahansicht	5
3	Versuchsaufbau 2	11
4	Versuchsaufbau 2, Nahansicht	12
Tabe	ellenverzeichnis	0
1	Verwendete Gewichte	
Tabe	Verwendete Gewichte	8
1	Verwendete Gewichte	8 10