MAT157 Lecture 6 Notes

Anatoly Zavyalov

September 23, 2020

1 Consequences of the field axioms P1-P9

Let F be a field, and $a, b, c, ... \in F$.

1.1 Proposition

• For $a, b \in F$, there is a unique $x \in F$ s.t.

$$a + x = b$$

• for $a, b \in F$ with $a \neq 0$, there is a unique $x \in F$ with

$$a \cdot x = b$$
.

Proof. Given $a, b \in F$, by P3 (additive inverse) there is $-a \in F$ with a + (-a) = 0. The calculation

$$a + ((-a) + b) = (a + (-a)) + b$$
 By P1
= 0 + b By P3
= b By P2

So x = (-a) + b is a solution to a + x = b.

Conversely, if x is **any** solution then

$$x = 0 + x$$
 By P2

$$= ((-a) + a) + x$$
 By P3

$$= (-a) + (a + x)$$
 By P1

$$= (-a) + b$$
 by assumption

So, x = (-a) + b.

The second part is very similar (left as an exercise). \Box

1.2 Special Cases

- If a + x = a, then x = 0 (uniqueness of additive neutral element).
- If a + x = 0, then x = -a (uniqueness of additive inverse).
- If $a \neq 0$, ax = a, then x = 1 (uniqueness of multiplicative neutral element).
- If $a \neq 0$, ax = 1 then $x = a^{-1}$ (uniqueness of multiplicative inverse).

1.3 Proposition

For all $a \in F$,

$$a \cdot 0 = 0 = 0 \cdot a$$

Proof.

$$a \cdot 0 = 0 \cdot a$$
 By P8
= $a \cdot (0+0)$ By P2
= $a \cdot 0 + a \cdot 0$

So, $x = a \cdot 0$ solves $a \cdot 0 + x = a \cdot 0$, but so does x = 0. So $a \cdot 0 = 0$.

1.4 Proposition

For $a, b, c \in F$:

$$-(-a) = a$$

$$(-a) + (-b) = -(a+b)$$

$$(a^{-1})^{-1} = a$$

$$(if a \neq 0)$$

$$a^{-1} \cdot b^{-1} = (a \cdot b)^{-1}$$

$$(-a) \cdot (-b) = a \cdot b$$

$$a \cdot (-b) = -(a \cdot b)$$

Proof. We show both sides solve $a \cdot b + x = 0$.

$$a \cdot b + a \cdot (-b) = a \cdot (b + (-b))$$
 By P9
 $= a \cdot 0$ By P3
 $= 0$ by proposition
 $a \cdot b + (-(a \cdot b)) = 0$ By P3

So,
$$a \cdot (-b) = -a \cdot b$$
.

1.5 Proposition

A product is equal to 0 if an only if one of the factors is 0, that is

$$(a \cdot b = \mathbf{0}) \Leftrightarrow (a = 0 \text{ or } b = \mathbf{0}).$$

Proof. We prove both directions. $(\Leftarrow=)$

If
$$a=0$$
, then $a\cdot b=0\cdot b=0$. Similarly, for $b=0$. (\Longrightarrow)

Suppose $a \cdot b = 0$. If a = 0, then we're done (nothing to prove). If $a \neq 0$, then a^{-1} is defined by P6 (?).

$$a \cdot b = 0 \implies a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 = 0$$
$$\implies (a^{-1} \cdot a) \cdot b = 0$$
$$\implies \mathbf{1} \cdot b = 0$$
$$\implies b = 0.$$

2 Notational conventions

- Omitting dots: $ab = a \cdot b$
- Omitting parentheses: a+b+c=(a+b)+c=a+(b+c), abc=(ab)c=a(bc)
- Multiplication comes before addition: $ab + c = (a \cdot b) + c$
- a b = a + (-b)
- $\bullet \ \ \frac{a}{b} = ab^{-1}$
- $a^2 = a \cdot a, a^3 = a \cdot a^2$, etc.

You're used to this for real numbers, but we'll use the conventions for **any** field. E.g. \mathbb{Z}_7 . Something like

$$\frac{[2]_7}{[5]_7} = [2]_7 \cdot ([5]_7)^{-1} = [2]_7 \cdot [3]_7 = [6]_7$$

 $[3]_7$ is the multiplicative inverse of $[5]_7$ because

$$[5]_7 \cdot [3]_7 = [15]_7$$

= $[1]_7$
= $\mathbf{1}$