Slide Set 3 Densità, ECDF e Quantili

Pietro Coretto

pcoretto@unisa.it

Corso di

Analisi e Visualizzazione dei Dati (Parte I)

Corso di Laurea in "Statistica per i Big Data" (L-41) Università degli Studi di Salerno

Versione: 14 marzo 2022 (h08:39)

Pietro Coretto @

Densità, ECDF e Quanti

か々で 1/30

Notes

Nozioni locali: massa e densità

Massa

- In un particolare punto $X = x_0$ ci sono più osservazioni, diremo che in x_0 esiste una massa di dati
- tipicamente con dati discreti X assume $K \leq n$ livelli distinti $\{x_1, x_2, \dots, x_K\}$, ognuno dei quali viene osservato più di una volta.
- lacksquare la grandezza di questa massa in $X=x_k$ misura n_k oppure f_k

Densità

- se X è continua finisce per esprimere troppi livelli distinti. Al limite, quando $n\to\infty$, ci saranno tanti livelli distinti ciascuno con frequenza $n_k\approx 1/n\to 0$
- lacktriangle non ha senso misurare la massa di dati in un punto X=x'
- la densità dei dati in X = x' misura quanta la massa di dati in un intervallo contenente x'

Notes		

Come possiamo misurare la densità per dati univariati? Costruiamo una funzione di densità:

$$\operatorname{densità}(x') = \frac{\operatorname{massa di dati intorno a } x'}{\operatorname{grandezza dell'intervallo che contiene } x'}$$

Scegliendo opportunamente numeratore e denominatore otteniamo funzioni di densità alternative.

Definizione (Istogramma)

Sia X una variabile continua, e siano $(x_{k-1},x_k]$ per $k=1,2,\ldots,K$ le classi di livelli di X. L'istrogramma è la funzione di densità dei dati che associa ad ogni punto x'

$$h(x') := egin{cases} rac{f_k}{x_k - x_{k-1}} & ext{se } x' \in (x_{k-1}, x_k] ext{ per qualche } k \ 0 & ext{altrimenti} \end{cases}$$

Pietro Coretto ©

Densità, ECDF e Quantili

か q C 3 / 30

Notes

Esempio: consideriamo X =famino dal data set bw.csv

- n = 1388, range(fminc) = [0.5, 65]
- lacktriangle windowing dei dati con K=3 classi non uniformi
- lacksquare $\Delta_k = x_k x_{k-1}$: ampiezza dell'intervallo della k-ma classe

$\mathrm{famic} \; [10^3 \times \; \mathrm{USD}]$	n_i	f_i	Δ_k	$Densit\grave{\mathtt{a}}_k$
[0, 15]	348	0.25	15 (=15-0)	0.0167 (=0.25/15)
(15, 30]	466	0.34	15 (=30-15)	$0.0227 \ (=0.34/15)$
[30, 65]	574	0.41	35 (=65-30)	0.0137 (=0.41/35)

NI .		
Notes		

Rappresentazione della funzione h(x): è un grafico comunemente chiamato istogramma

Pietro Coretto ⓒ Densità, ECDF e Quantili グ ९ 🤄 5 / 3

... solitamente lo rappresentiamo così

⚠ In generale: la scala verticale del grafico = densità (non frequenze)

INOTES			
-			

Notes

Ogni classe k è rappresentata da un rettangolo che ha

Base
$$= \Delta_k = x_k - x_{k-1}$$

Altezza =
$$f_k/\Delta_k$$

$$egin{aligned} \mathsf{Area} &= \mathsf{Base}{ imes}\mathsf{Altezza} = \Delta_k imes rac{f_k}{\Delta_k} = f_k \end{aligned}$$

Quindi, la somma delle aree dei rettangoli è data da

$$\sum_{k=1}^{K} \mathsf{Area}_k = \sum_{k=1}^{K} f_k = 1$$

Interpretazione corretta (esempio precedente):

- \blacksquare l'intervallo (30,65] è meno denso di dati di (0,15]
- la classe (30,65] contiene più dati di tutte le altre... anche se questo non è facile da *vedere*, non trovi?

Pietro Coretto ©

Densità, ECDF e Quanti

୬**୯୯ 7/3**0

Notes

Caso particolare: classi uniformi

 $\Delta_k = \Delta$ è uguale per tutte le classi. Per ogni classe k la densità di classe è misurata da

$$\frac{f_k}{\Delta} \implies \mathsf{Area}_k = f_k { imes} \Delta$$

i valori di densità, e le aree dei rettangoli, sono tutti proporzionali alle frequenze

In tal caso si usa spesso riscalare l'asse verticale dell'istogramma in modo da ottenere le frequenze assolute $n_k.$

Infatti moltiplicando tutti valori di densità (asse verticale del grafico) per la costante $n\Delta$

$$\frac{f_k}{\Delta} \times n\Delta = f_k \times n = n_k$$

NI .		
Notes		

Esempio: consideriamo X=famino dal data set bw.csv.

- \blacksquare fissiamo K=3, con classi uniformi
- $\Delta = (x_{\text{max}} x_{\text{min}})/3 = 21.667$
- $n\Delta = 1388 \times 21.667 = 30073.33$

${\rm famic}\;[10^3\times\;{\rm USD}]$	n_i	f_i	Δ	$Densit\grave{\mathtt{a}}_k$	$n\Delta imes Densit\grave{\mathtt{a}}_k$
[0, 21.67]	526	0.38	21.667	0.0175	526
(21.67, 43.33]	602	0.43	21.667	0.0198	602
(43.33, 65]	260	0.19	21.667	0.0088	260

Pietro Coretto © Densità, ECDF e Quantili 🔊 🤉 🤄 9 / 3

Notes

Notes

Osservazioni finali sull'istogramma/densità

 \triangle Lo scaling verticale dell'istogramma in termini di frequenze assolute n_k , ha senso solo quando le classi sono uniformi

Quando non si ha nessuna intuizione circa le classi, è meglio affidarsi ad un metodo di windowing "automatico". Ci sono molti metodi (es: Sturges) che determinano un numero "ottimale" K (in seguito ne vedremo altri)

L'istogramma è una delle tante possibili misure di densità:

- (+): facile da costruire, l'interpretazione grafica è semplice (soprattutto con classi uniformi)
- (-): approssima la densità in modo omogeneo/costante per tutti i punti all'interno della classe è una funzione discontinua che produce una transizione "brusca" tra una classe e quelle adiacenti (fra qualche lezione introdurremo la densità kernel).

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Pietro Coretto ©

Densità, ECDF e Quantil

ク^Q ○ 11 / 30

Funzione indicatrice e conteggio

Data una variabile X definiamo la seguente funzione indicatrice

$$\mathbf{1}\{X \le t\} = \begin{cases} 1 & \text{se } X \le t \\ 0 & \text{altrimenti} \end{cases}$$

Ad esempio fissato t=10, la funzione indicatrice vale 1 ogni per ogni $X\in (-\infty,10]$, e vale 0 per ogni $X\in (10,+\infty)$

Dati $\{x_1, x_2, \dots, x_n\}$, la seguente somma conta il numero di osservazioni minori o uguali di t

$$\sum_{i=1}^{n} \mathbf{1}\{x_i \le t\}$$

Esempio: si osserva $\{x_1, x_2, x_3, x_4\} = \{-3, 4, 0, 10\}$, fissiamo t = 7.5

$$\sum_{i=1}^{n} \mathbf{1}\{x_i \le 7.5\} = 1 + 1 + 1 + 0 = 3$$

Notes		
Notes		

Frequenze cumulate

Nel nostro campione esistono $K \leq n$ livelli distinti $\{x_1, x_2, \dots, x_K\}$. Fissiamo l'attenzione su un particolare livello x_k e definiamo:

Frequenza cumulata assoluta di x_k

$$N_k = (\text{numero di osservazioni } \leq x_k) = \sum_{i=1}^n \mathbf{1}\{x_i \leq x_k\}$$

Frequenza cumulata relativa di x_k

$$F_k = ext{(proporzione di osservazioni } \leq x_k) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{x_i \leq x_k\} = \frac{N_k}{n}$$

Osserva

per ottenere le F_k in scala percentuale calcoliamo $F_k \times 100$

Densità, ECDF e Quantili

ク۹ペ 13 / 30

Esempio: consideriamo nuovamente il data set bw.csv, sia X=parity="numero di figli"

X	n_k	$f_k(\%)$	N_k	$F_k(\%)$
1	795	57.3	795	57.3
2	389	28.0	1184	85.3
3	146	10.5	1330	95.8
4	39	2.8	1369	98.6
5	15	1.1	1384	99.7
6	4	0.3	1388	100.0

Interpretazioni

- 1330 famiglie hanno al massimo 3 figli
- l'85.3% delle famiglie campionate hanno non più di 2 figli
- il 95.8% delle osservazioni esprime valori tra 1 e 3
- etc . . .

Pietro	Coretto ($^{\circ}$

Densità, ECDF e Quantili

୬^९ 0 14 / 30

Votes			
lotes			

Esempio: consideriamo famino dal data set bw.

$\mathrm{famic} \; [10^3 \times \; \mathrm{USD}]$	n_k	$f_k(\%)$	N_k	$F_k(\%)$
[0.435, 22]	526	37.9	526	37.9
(22, 43.5]	602	43.4	1128	81.3
(43.5, 65.1]	260	18.7	1388	100

Interpretazioni

- l'81.3% del campione ha un reddito famigliare inferiore o uguale a 43500 USD
- il 37.9% del campione più povero dispone di un reddito non più grande di 22000 USD
- etc . . .

Pietro Coretto ©

Densità, ECDF e Quantili

୬^९ (* 15 / 30

Uno strumento potentissimo per descrivere moltissimi aspetti di una $\mathsf{D}\mathsf{U}$:

Definizione (ECDF)

Sia X una variabile quantitativa, e sia $\{x_1,x_2,\ldots,x_n\}$ una campione osservato. Fissato $t\in\mathbb{R}$ la Funzione di Distribuzione Empirica Cumulata (ECDF) nel punto t è

$$\mathbb{F}(t) = \text{(proporzione delle osservazioni } \leq t) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{x_i \leq t\} \quad (3.1)$$

Osserva

- \blacksquare nella (3.1) l'argomento t non è necessariamente un valore osservato
- se x_k è uno dei livelli osservati, per $t=x_k$ otteniamo $\mathbb{F}(x_k)=F_k$

Votes			
otes			
otes			

Rappresentazione grafica dell'ECDF

Esempio: osserviamo $\{-2,1,4,10,4\}$. Immaginiamo di calcolare $\mathbb{F}(t)$ facendo *scorrere* t da $-\infty$ verso $+\infty$

Osserva

per costruire $\mathbb{F}(t)$ basta calcolare $\mathbb{F}(x_k) = F_k$ per tutti i livelli distinti osservati

Pietro Coretto ©

Densità, ECDF e Quantil

ク^Q ○ 17 / 30

Alcune proprietà di $\mathbb{F}(t)$

- è non decrescente
- il suo grafico ha una struttura a gradini: è costante tra ogni coppia di livelli distinti
- è continua a destra, "salta" su ogni valore distinto del campione
- \blacksquare $\lim_{t\to-\infty} \mathbb{F}(t) = 0$ e $\lim_{t\to+\infty} \mathbb{F}(t) = 1$

A cosa serve

- da informazioni circa le frequenze cumulate (...e quantili, vedi dopo)
- descrive come la massa di dati si accumula lungo il range
- nei tratti in cui l'ECDF ha una pendenza forte (≈derivata grande),
 ⇒ zona del range ad alta densità di dati
- nei tratti in cui l'ECDF è piuttosto piatta (≈derivata piccola) ⇒ zona del range a bassa densità di dati
- ... molto altro ancora! In pratica

ECDF in statistica ≡ "sega e martello in falegnameria"

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Pietro Coretto ©

Densità, ECDF e Quantili

୬^९ 0 18 / 30

Notes			
Notes			

Quantili e loro approssimazioni numeriche

Definizione (Quantile)

Sia X una variabile quantitativa, e siano $\{x_1,x_2,\ldots,x_n\}$ i suoi valori osservati. Fissato $\alpha\in[0,1]$, il quantile di livello α è il valore X_α tale che

- (i) $\alpha\%$ dei valori osservati sono $\leq X_{\alpha}$
- (ii) $(1-\alpha)\%$ dei valori osservati sono $> X_{\alpha}$

Esempio: si osservano n=5 valori per la variabile $Y\colon\{10,-1,7,2,0\}.$ Fissiamo $\alpha=0.4$ (40%). Chi è $Y_{0.4}$?

Cerchiamo un valore osservato $Y_{0.4}$ tale che il 40% delle osservazioni $\leq Y_{0.4}$. Il (40% di $n)=(0.4\times5)=2$. Ordiniamo i dati

$$-1$$
, $\frac{0}{0}$, 2, 7, 10

Quindi $Y_{0.4} = 0$, infatti esattamente 2 osservazioni (pari al 40%n) sono ≤ 0 , mentre 3 osservazioni (60%n) sono >0

Pietro Coretto ©

Densità, ECDF e Quanti

��� 19 / 3

Esempio: consideriamo gli stessi dati, ma questa volta fissiamo $\alpha=25\%n$, e vogliamo calcolare $Y_{0.25}$.

Cerchiamo $Y_{0.25}$ tale che *un quarto delle osservazioni* (il 25%) è $\leq Y_{0.25}$. $\Delta 25\% n = 0.25 \times 5 = 1.25$

$$-1, \downarrow 0, 2, 7, 10$$

Teoricamente $Y_{0.25}$ sarebbe collocato tra -1 e 0. Impossibile applicare la definizione esatta di Y_{α} .

Approssimazioni numeriche dei quantili

La funzione quantile() di R consente di lavorare con circa 9 diversi metodi di approssimazione. Metodi più comuni:

- quantili empirici
 - \rightarrow in R è quantile(..., type = 1)
- smoothing (interpolazione) basata sui ranks
 - \rightarrow in R è quantile(..., type = 7), dove type=7 è default

Densità, ECDF e Quantili

少 < C ≥ 20 / 30

Votes			

Quantili empirici

I quantili empirici sono ottenuti costruendo una sorta di *inversa* dell ECDF (l'ECDF non è invertibile)

Dati precedenti: $\{-2,1,4,10,4\}$, l'ECDF era

 $\alpha=0.2$, quanto vale $X_{0.2}?$ $\mathbb{F}(-2)=0.2$ \implies il 20% dei valori osservati ≤ -2 \implies $X_{0.2}=-2$

Se $\alpha = 0.5$, quanto vale $X_{0.5}$?

Pietro Coretto ©

Densità, ECDF e Quanti

少 Q C 21 / 3C

Definizione (Approssimazione 1: quantili empirici)

Sia X una variabile quantitativa, e siano $\{x_1, x_2, \ldots, x_K\}$ i suoi $K \leq n$ livelli distinti osservati. Sia $\mathbb{F}(t)$ la ECDF per il campione osservato. Il quantile empirico di livello α è

$$X_{\alpha} := \min \left\{ x_k : \mathbb{F}(x_k) \ge \alpha \right\} \tag{3.2}$$

L'informazione necessaria per calcolare i quantili empirici è tutta contenuta nell'ECDF. È necessario calcolcolare $\mathbb{F}(t)$ per ogni $t \in \mathbb{R}?\dots$ NO!

Poichè $\mathbb{F}(x_k)=F_k \implies$ basta trovare il più piccolo valore osservato tale che la corrispondente frequenza cumulata è $\geq \alpha$

Pietro Coretto ©

Densità, ECDF e Quantili

୬⁹ (22 / 30

lotes				
Notes				
Notes				
Votes				
Notes				

Esempio: dati precedenti: $\{-2, 1, 4, 10, 4\}$, vogliamo calcolare $X_{0.5}$ usando l'approssimazione.

Applichiamo la definizione alla lettera:

- 1 troviamo l'insieme dei valori osservati tali che $F_k \geq 50\%$
- 2 prendiamo il minimo di questo insieme

$$X_{0.5} = \min\{x_k : F_k \ge 0.5\} = \min\{4, 10\} = 4$$

Pietro Coretto ©

୬^९ ²³ / 30

Notes

Notes

Esempio: consideriamo il data set bw.csv, e X=parity="numero di figli"

$F_k(\%)$
57.3
85.3
95.8
98.6
99.7
100.0

Calcoliamo il quantile empirico $X_{0.75}$. Applichiamo la definizione (3.2)

$$X_{0.75} = \min\{x_k : F_k \ge 0.75\} = \min\{2, 3, 4, 5, 6\} = 2$$

Calcoliamo il quantile empirico $X_{0.1}$. Applichiamo la (3.2)

$$X_{0.1} = \min\{x_k : F_k \ge 0.1\} = \min\{1\} = 1$$

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Questo tipo di approssimazione funziona bene quando

- lacksquare n sufficientemente grande
- dati sono misurati in modo "poco discretizzato", ovvero non ci sono troppe ripetizioni
- lacktriangleq lpha non troppo vicino al limite inferiore/superiore (lpha o 0 e lpha o 1)

In tutti gli altri casi, i quantili empirici introducono delle *distorsioni* che saranno chiare nei corsi successivi

Per ridurre questi effetti distorsivi, sono state introdotte una serie di varianti. La più comune è la seguente approssimazione (3.3)

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Pietro Coretto ©

Densità, ECDF e Quantili

少 Q C 25 / 3C

Ordinamento dei dati e ranks

Date le osservazioni $\{x_1, x_2, \dots, x_n\}$ consideriamo l'ordinamento (non-decrescente)

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

- $x_{(j)}$ è il valore osservato di X che occupa il j-mo posto nella lista ordinata (non decrescente) dei dati
- $\mathbf{z}_{(j-1)} \leq x_{(j)}$ per ogni $j = 1, 2, \dots, n$
- gergo tecnico: la posizione nell'ordinamento si chiama rank.

Esempio: si rileva la temperatura Z (in C°) in n=6 celle, dati osservati: $\{2,3,0,-3,9,3\}\,,$

Ordinamento	-3	0	2	3	3	9
Posizione/rank	(1)	(2)	(3)	(4)	(5)	(6)

Notes			
Notes			
Notes			
Votes			
Notes			

I valori osservati ripetuti in gergo si chiamano ties.

In questi casi il rank non è unico, esistono opportune correzioni (vedi esempi in R)

L'ordinamento dei dati è un task molto rilevante nell'analisi numerica indipendentemente dal calcolo di ranks, quantili, etc

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file

Pietro Coretto ©

Densità, ECDF e Quantili

少Q[™] 27 / 3

L'ordinamento dei dati ed i ranks sono alla base di una delle approssimazioni numeriche dei quantili più popolari

Definizione (Approssimazione 2: smoothing su dati ordinati)

Sia X una variabile quantitativa, e siano $\{x_1, x_2, \ldots, x_n\}$ i suoi valori osservati. Il quantile di livello α ottenuto per interpolazione (smoothing) basata sui ranks è

$$X_{\alpha} = (1 - \gamma) \ x_{(i)} + \gamma \ x_{(i+1)} \tag{3.3}$$

dove γ e j sono definiti come segue

$$j^* = 1 + \alpha(n-1)$$
 (rank ottimale)
$$j = \lfloor j^* \rfloor$$
 (parte intera di j^*)
$$\gamma = (j^* - j)$$
 (parte decimale di j^*)

Votes			
lotes			

Esempio: ritorniamo alle temperature Z. Vogliamo calcolare $Z_{\frac{1}{3}}$. Dati ordinati:

Ordinamento	-3	0	2	3	3	9
Posizione	(1)	(2)	(3)	(4)	(5)	(6)

- $j^* = 1 + \alpha(n-1) = 1 + \frac{1}{3} \times 5 = 2.67$
- $j = |j^*| = |2.67| = 2$
- $\gamma = j^* j = 0.67$

$$Z_{\frac{1}{2}} = 0.33 \times x_{(2)} + 0.67 \times x_{(3)} = 0.33 \times 0 + 0.67 \times 2 = 1.34$$

Interpretazione del risultato

- "in circa un terzo delle celle di rilevazione abbiamo temperature non superiori a 1.34C"
- "approssimativamente il 66.66% (pari a 2/3) delle celle nelle posizioni più calde, riportano temperature superiori ai 1.34°C"
- "circa un terzo delle celle nelle posizioni più fredde misurano temperature al massimo pari a 1.34 C°"

Pietro Coretto ©

Densità, ECDF e Quantili

� Q C ≥ 29 / 30

Notes

Notes

L'approssimazione (3.3)

- può essere considerata una correzione dei quantili empirici
- corregge, almeno in parte, gli artifici introdotti dalla discontinuità (salti) dell'ECDF
- introduce un'approssimazione/smoothing chiara e semplice da implementare
- è il metodo di approssimazione default di R

Osservazione finale

Se i dati sono tutti distinti, ovvero in assenza di ties (es: X continua e misurata senza discretizzare eccessivamente), allora è facile verificare che dalla lista ordinata

$$x_{(1)} < x_{(2)} < \cdots < x_{(j)} < \cdots < x_{(n)}$$

Possiamo ottenere facilmente $\mathbb{F}(x_{(j)}) = \frac{j}{n}$

Esempi/Applicazioni $\longrightarrow \mathbb{R}$ script file