

MAT3007 · Homework 5

Due: 11:59am, Nov. 2nd (Thursday), 2023

Instructions:

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- Please submit your assignment on Blackboard.
- The homework must be written in English.
- Late submission will not be graded.
- Each student must not copy homework solutions from another student or from any other source.

Problem 1 (50pts). Consider the following linear program:

maximize
$$3x_1 + 4x_2 + 3x_3 + 6x_4$$

subject to $2x_1 + x_2 - x_3 + x_4 \ge 12$
 $x_1 + x_2 + x_3 + x_4 = 8$
 $-x_2 + 2x_3 + x_4 \le 10$
 $x_1, x_2, x_3, x_4 \ge 0$. (1)

After transforming the problem into standard form and apply Simplex method, we obtain the final tableau as follow:

В	0	2	9	0	3	0	36
1	1	0	-2	0	-1	0	4
4 6	0	1	3	1	1	0	4
6	0	$1\\-2$	-1	0	-1	1	6

- a) Derive the dual problem of the linear program (1) and calculate a dual solution based on complementarity conditions. Given that the optimal solution to the primal solution is unique, investigate whether the dual solution is unique.
- b) Do the optimal solution and the objective function value change if we
 - decrease the objective function coefficient for x_3 to 0?
 - increase the objective function coefficient for x_3 to 9?
 - decrease the objective function coefficient for x_4 to 5?
 - increase the objective function coefficient for x_1 to 7?
- c) Find the possible range for adjusting the coefficient 8 of the second constraint such that the current basis is kept optimal.

Problem 2 (50pts). Consider the following linear program:

maximize
$$x_1 + cx_2 + 3x_3 + 8x_4$$

subject to $x_1 - x_2 + x_3 \leq 2$
 $x_3 - x_4 \leq 1$
 $2x_2 + 3x_3 + 4x_4 \leq b$
 $x_1, x_2, x_3, x_4 \geq 0$, (2)

where c = 2, b = 8. Denote $x = (x_1; x_2; x_3; x_4; s_1; s_2; s_3)$ as the decision variable to the standard form of the above problem, where s_1, s_2, s_3 are the slack variables corresponding to the three constraints. The following table gives the final simplex tableau when solving the standard form of the above problem:

В	0	1	4	0	1	0	2	18
1	1	-1	1	0	1	0	0	2
6	0	$\frac{1}{2}$	$\frac{7}{4}$	0	0	1	$\frac{1}{4}$	3
4	0	$\frac{\overline{1}}{2}$	$\frac{3}{4}$	1	0	0	$\frac{1}{4}$	2 3 2

- a) What is the current dual optimal solution? In what range can we change the coefficient c so that the current optimal basis still remains optimal?
- b) If we change c = 2 to c = -100, what will be the new optimal solution to problem (2) and the optimal value of problem (2)?
- c) In what range can we change the coefficient of the third constraint b = 8 so that the current optimal basis still remains optimal?
- d) What will be the new optimal solution to problem (2) when we change b = 8 to b = 4 and what will be the optimal value?