DINAMIKA

Materialaus taško ir kieto kūno

Dinamikos struktūra ir turinys

Dinamika

Aprašoma

Pagrindinėmi s sąvokomis (masė, jėga, atskaitos sistema)

Nagrinėja greičio kitimo priežastį

Judėjimo dėsniais (Niutono dėsniais)

Sąveiką

Pagrindinį mechanikos uždavinį Jėgų dėsnius (traukos, tamprumo, trinties)

SLENKAMOJO JUDĖJIMO DINAMIKA

Gamtoje egzistuoja keturios sąveikos rūšys

Nr.		Sąveika	Šaltinis	Santykinis sąveikos intensyvum as	Veikimo spindulys
1.	Gı	ravitacinė	Kūnų masės	10-38	Tolisiekė
2.	Sil	pnoji	Elementariosios dalelės	10-25	Artisiekė 10 ⁻¹⁵ m
3.	El	ektromagnetinė	Elektros krūviai	10-2	Tolisiekė
4.	Br	anduolinė	Protonai ir neutronai	1	Artisiekė 10 ⁻¹⁵ m

neutronai

Pagrindinės slenkamojo judėjimo dinaminės charakteristikos:

 $oldsymbol{\cdot}$ Jėga F

• Kūno masė *m*

• Kūno impulsas \vec{p}

JĖGA \vec{F}

 Jėga – tai sąveikos intensyvumo kiekybinis matas.

 Jėga – tai fizikinis dydis, nusakantis vieno kūno poveikį kitam kūnui.

• Tai vektorinis dydis. Veiksmai su jėgomis atliekami, kaip su vektoriais.

• Jėgos matavimo vienetas – $[F] = N = kg \cdot m/s^2$.

Mechaninės jėgos

Mechaninės jėgos

Visuotinės traukos jėga

Tamprumo jėga Trinties jėga

Visuotinės traukos jėga

Tamprumo jėga

Trinties jėga

Kūno masė m ("inertinė")

 Masė - tai kūno inertiškumo matas slenkamajame judėjime.

• Inertiškumas – tai kūno savybė priešintis staigiam jo greičio (*būvio*) pakitimui.

Kuo didesnė kūno masė, tuo jis inertiškesnis.

• Masė matuojama: [m] = kg.

Kūno impulsas p

- Tai viena iš pagrindinių dinaminių charakteristikų.
- Tai vektorinis dydis lygus judančio kūno masės ir jo judėjimo greičio sandaugai:

$$\vec{p} = m \cdot \vec{v}$$
.

• Impulso vektoriaus kryptis sutampa su kūno judėjimo greičio vektoriaus kryptimi.

$$p = m \cdot v$$

• Impulso matavimo vienetai: $[p] = kg \cdot m/s$.

Klasikinė dinamika yra pagrįsta Niutono dėsniais

- Šie dėsniai buvo suformuluoti 1687 metais.
- Niutonas surišo jėgos ir "inertinės" masės sąvokas šių dėsnių pagalba:
 - 1. inercijos dėsnio;
 - 2. pagrindinio dinamikos dėsnio;
 - 3. veiksmo ir atoveiksmio lygybės dėsnio.

Niutono dėsnių taikymo ribos

Inercinės atskaitos sistemos

Makropasaulis ir megapasaulis

Judėjimas greičiais daug mažesniais už šviesos greitį vakuume

I-as Niutono dėsnis

<u>Fizikinė sistema</u> – makroskopinis kūnas

Modelis – materialus taškas

<u>Aprašomasis reiškinys</u> – rimtis arba tolyginis tiesiaeigis judėjimas

<u>Dėsnio esmė</u> – inercinės atskaitos sistemos būvimas

<u>Pasireiškimo pavyzdžiai</u> – kosminio laivo judėjimas toli nuo traukiančių kūnų

I-sis Niutono dėsnis (inercijos dėsnis)

 Pastovios masės kūnas juda tiesiai ir tolygiai arba yra rimties būvyje tol, kol kitų kūnų poveikis neprivers jo pakeisti šio būvio.

- Šis dėsnis galioja tik inercinėse atskaitos sistemose.
- Eksperimentiškai šio dėsnio Žemėje patikrinti negalime.

Inercine vadinama atskaitos sistema x'y'z' judanti be pagreičio kitos atskaitos sistemos xyz atžvilgiu.

x'y'z'- inercinė atskaitos sistema

II-as Niutono dėsnis

<u>Fizikinė sistema</u> – makroskopinis kūnas

Modelis – materialus taškas

<u>Aprašomasis reiškinys</u> – judėjimas su pagreičiu

<u>Dėsnio esmė</u> – sąveika lemia greičio pokytį, t.y. pagreitį

<u>Pasireiškimo pavyzdžiai</u> – planetų judėjimas, kūnų kritimas ant Žemės, automobilio stabdymas ir įsibėgėjimas

II-asis Niutono dėsnis Pagrindinis dinamikos dėsnis slenkamajam judėjimui

 Materialaus taško impulso išvestinė skaitine verte yra lygi materialų tašką veikiančiai jėgai:

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m \cdot \vec{v})}{dt}$$

• Kūno impulsą gali pakeisti, tik kūną veikianti išorinė jėga arba jėgų atstojamoji.

• Jei kūno masė yra pastovi (*m*=const), tai

kūno įgytas pagreitis yra tiesiog proporcingas kūną veikiančiai jėgai (*arba veikiančių jėgų atstojamajai*) ir atvirkščiai proporcingas jo masei:

$$\vec{a} = \frac{\sum \vec{F_i}}{m} .$$

Kūnas juda greitėjančiai tik veikiamas jėgos:

$$\vec{F} = m \cdot \vec{a}$$
.

Kūną veikianti jėga jam suteikia pagretį.

III-as Niutono dėsnis

Fizikinė sistema – dviejų kūnų sistema

Modelis – dviejų materialių taškų sistema

Aprašomasis reiškinys – kūnų sąveika

<u>Dėsnio esmė</u> – veikimo ir atoveikio jėgų moduliai lygūs, jos priešingų krypčių, tos pačios prigimties ir veikia skirtingus kūnus

<u>Pasireiškimo pavyzdžiai</u> – kūnų sąveika: Žemės ir Mėnulio, automobilio ir Žemės paviršiaus ir t.t.

III-asis Niutono dėsnis

 Du kūnai veikia vienas kitą vienodo didumo, bet priešingų krypčių jėgomis, t.y. veiksmas yra lygus atoveiksmiui:

$$\vec{F}_{12} = -\vec{F}_{21}$$

 Trečiojo Niutono dėsnio atveju jėgos viena kitos neatsveria, nes kiekvieną kūną veikia tik viena jėga.

 Norint, kad jėgos kompensuotų viena kitą, reikia, kad jos abi veiktų tą patį kūną.

Išorinės ir vidinės jėgos

 Jėgos, veikiančios tarp tos pačios sistemos kūnų, yra vadinamos vidinėmis jėgomis

$$ec{F}_{vid}$$

 Jėgos, kuriomis sistemos kūnus veikia tai sistemai nepriklausantys kūnai, yra vadinamos išorinėmis jėgomis

$$ec{F}_{i\check{s}or}$$

Uždara (izoliuota) sistema

 Uždara yra vadinama tokia sistema, kurios neveikia išorinės jėgos arba šių jėgų atstojamoji yra lygi nuliui:

$$\sum_{i=1}^{n} \vec{F}_{i\check{s}or_{i}} = 0.$$

Impulso tvermės dėsnis

Dėsnis galioja tik uždaroje kūnų sistemoje

Nagrinėjame uždarą sistemą, sudarytą iš dviejų, skirtingais greičiais judančių materialių taškų.

- 1-ojo masė m_1 , greitis iki sąveikos \vec{v}_1 , po sąveikos \vec{v}_1 ;
- 2-ojo masė m_2 , greitis iki sąveikos \vec{v}_2 , po sąveikos $-\vec{v}_2$.
- Pasinaudojame II-ju ir III-ju Niutono dėsniais.

Prieš susidūrimą

Po susidūrimo

$$\vec{F}_{1} = \frac{d(m_{1} \cdot \vec{v})}{dt};$$

$$\vec{F}_{2} = \frac{d(m_{2} \cdot \vec{v})}{dt};$$

$$\vec{F}_{\scriptscriptstyle 1}\cdot dt = m_{\scriptscriptstyle 1}\cdot \vec{v}_{\scriptscriptstyle 1}' - m_{\scriptscriptstyle 1}\cdot \vec{v}_{\scriptscriptstyle 1};$$

$$\vec{F}_{2} \cdot dt = m_{2} \cdot \vec{v}_{2} - m_{2} \cdot \vec{v}_{2};$$

$$\vec{F}_{_1} = -\vec{F}_{_2}$$

$$m_{1} \cdot \vec{v}_{1} - m_{1} \cdot \vec{v}_{1} = -(m_{2} \cdot \vec{v}_{2} - m_{2} \cdot \vec{v}_{2})$$

 Sąveikaujant dviem materialiems taškams, jų impulsų pokyčiai yra vienodo didumo, bet priešingų krypčių:

$$\Delta \vec{p}_1 = -\Delta \vec{p}_2.$$

Impulso tvermės dėsnis teigia:

• uždaroje sistemoje $(\sum \vec{F}_{i\breve{s}or} = 0)$ pilnutinis sistemos impulso vektorius laikui bėgant nekinta:

$$\sum_{i} \vec{p}_{i} = const.$$

Reaktyvinis judėjimas

• Jis paaiškinamas impulso tvermės dėsniu.

- Reaktyvinio judėjimo pavyzdžiai:
 - kosminio laivo kilimas į erdvę;
 - aštuonkojo ir kalmaro judėjimas vandenyje ir t.t.

Sistemos masių centras

• Tai taškas, kurio koordinatės užduodamos lygtimis:

$$x_{c} = \frac{m_{1} \cdot x_{1} + m_{2} \cdot x_{2} + \dots + m_{n} \cdot x_{n}}{m_{1} + m_{2} + \dots + m_{n}}$$

$$y_{c} = \frac{m_{1} \cdot y_{1} + m_{2} \cdot y_{2} + \dots + m_{n} \cdot y_{n}}{m_{1} + m_{2} + \dots + m_{n}}$$

$$z_{c} = \frac{m_{1} \cdot z_{1} + m_{2} \cdot z_{2} + \dots + m_{n} \cdot z_{n}}{m_{1} + m_{2} + \dots + m_{n}}$$

Izoliuotos sistemos masių centras juda tiesiai ir tolygiai:

$$\vec{v}_c = const.$$