Série 2

Exercice 1. Placer deux points A et B sur une feuille. Ensuite, construire, à la règle et au compas, sur la droite (AB), les points C et D d'abscisses respectives $\frac{5}{2}$ et $-\frac{2}{5}$ dans le repère (A, \overrightarrow{AB}) .

Exercice 2. Soient ABCD un parallélogramme, M le milieu du côté CD et I le point d'intersection des segments AM et BD. On note α (resp. β) l'abscisse de I dans le repère (A, \overrightarrow{AM}) (resp. (B, \overrightarrow{BD})). Calculer α et β en utilisant la marche à suivre suivante :

- a. Sachant que \overrightarrow{AI} est colinéaire à \overrightarrow{AM} , exprimer \overrightarrow{AI} en fonction de α , \overrightarrow{AB} et \overrightarrow{AD} .
- b. Sachant que \overrightarrow{BI} est colinéaire à \overrightarrow{BD} , exprimer le vecteur \overrightarrow{AI} en fonction de β , \overrightarrow{AB} et \overrightarrow{AD} .
- c. Utiliser l'indépendance linéaire des vecteurs \overrightarrow{AB} et \overrightarrow{AD} pour conclure.

Exercice 3. Soient ABCD un parallélogramme, P le point d'abscisse $\frac{2}{3}$ dans le repère (A, \overrightarrow{AC}) de la droite (AC) et E le point d'intersection des droites (BP) et (DC). A l'aide du calcul vectoriel, montrer que E est le milieu de CD.

Exercice 4. Soient OAB un triangle, I le milieu de OA, J défini par $\overrightarrow{JO} = -3\overrightarrow{JB}$, et K le point d'intersection des droites (IJ) et (AB). À l'aide du calcul vectoriel, calculer l'abscisse de K dans le repère (B, \overrightarrow{BA}) de la droite (AB).

Exercice 5. On donne un triangle ABC dans le plan.

a. Montrer qu'il existe un unique point G dans le plan vérifiant :

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}.$$

Indication : pour montrer l'existence, chercher à exprimer \overrightarrow{AG} en fonction de vecteurs connus.

b. Montrer que G se trouve à l'intersection des médianes du triangle ABC. On rappelle que, dans un triangle, une médiane joint un sommet au milieu du côté opposé.

Le point G défini dans cet exercice s'appelle le centre de gravité du triangle ABC, ou encore l'isobary-centre ou centre de masse.

Éléments de réponse :

Ex. 2: a.
$$\overrightarrow{AI} = \alpha \overrightarrow{AD} + \frac{\alpha}{2} \overrightarrow{AB}$$
. b. $\overrightarrow{AI} = (1 - \beta) \overrightarrow{AB} + \beta \overrightarrow{AD}$. c. $\alpha = \beta = \frac{2}{3}$. **Ex. 4**: $-\frac{1}{2}$.