Herausforderungen und Chancen von stochastischen Sterblichkeitsmodellen in der PKV

Bernd Feldkamp und Dr. Nicolai Stammeier LVM Versicherung

DGVFM
DEUTSCHE GESELLSCHAFT
FÜR VERSICHERUNGS- UND
FINANZMATHEMATIK e.V.

DAV/DGVFM e-Herbsttagung, 17. November 2020

Agenda

- 1. Welche stochastischen Sterblichkeitsmodelle werden eingesetzt?
- 2. Was lässt sich aus den ersten Modellierungen schlussfolgern?
- 3. Wie verhalten sich diese Modelle zur PKV-Sterbetafel?
- 4. Was wären die Effekte auf einen ambulanten Vollkostentarif?
- 5. Welche Herausforderungen und Chancen ergeben sich?

Agenda

> Welche stochastischen Sterblichkeitsmodelle werden eingesetzt?

Generalized – Age – Period – Cohort – Modelle von Villegas, Millossovich und Kaishev [StMoMo 2018]

- 1. Zufallskomponente (Verteilung der Totenanzahl $Q_{x,t}$)
- 2. Systemische Komponente (Schätzerstruktur)

$$\eta_{x,t} = \alpha_x + \sum_{i=1}^N \beta_x^{(i)} \kappa_t^{(i)} + \gamma_{t-x}$$
 x: Alter t: Jahr N: Index

- > Stochastisch: κ_t und γ_{t-x} (ARIMA-Prozesse, z.B. (multivariate) zufällige Irrfahrten mit Drift)
- 3. Link-Funktion
 - $> g(E[\mathbf{Q}_{x,t}]) = \eta_{x,t}$ bisher nur kanonischer Link zu 1.
- 4. Parametereinschränkungen (Eindeutigkeit von $\eta_{x,t}$)

2. Systemische Komponente (Schätzerstruktur)

$$\eta_{x,t} = \alpha_x + \sum_{i=1}^N \beta_x^{(i)} \kappa_t^{(i)} + \gamma_{t-x}$$

x: Alter

t: Jahr

N: Index

> Stochastisch: κ_t und γ_{t-x} (ARIMA-Prozesse, z.B. zufällige Irrfahrt mit Drift)

- Wie hätten Sie Ihr GAPC Modell denn gerne?
- a) Das Modell $\alpha_x + \beta_x \kappa_t$ mit zufälliger Irrfahrt κ_t ist genug.
- b) Eher einfach, bei akzeptabler Leistungsfähigkeit (\leq 6 Parameter).
- c) Eher komplexer, sofern die Leistungsfähigkeit signifikant besser ist.
- d) Mehr Komplexität bietet einen Mehrwert und ist heute kein Hindernis.

Eine Auswahl prominenter Vertreter der GAPC – Familie

1. Lee - Carter (1992)

 $\log(q_{xt}) = \alpha_x + \beta_x k_t$

2. Renshaw - Haberman

(2006, Version von 2011)

- - $\log(q_{x\,t}) = \alpha_x + \beta_x k_t + \gamma_{t-x}$

Konvergenzprobleme

- 3. Cairns Blake Dowd
 - (2006, Version von 2009)

- $\log(q_{x,t}) = k_t^{(1)} + (\bar{x} x)k_t^{(2)}$
- für hohe Alter konzipiert

4. Plat (2009, reduzierte Version) $\log(q_{x,t}) = \alpha_x + k_t^{(1)} + (\bar{x} - x)k_t^{(2)} + \gamma_{t-x}$

Ablauf des Modellierungsprozesses

- **1. Festlegung der Rahmendaten** (Zeiträume, Modelle, Parameter)
- 2. Einlesen der PKV-Daten
- 3. Generierung von StMoMo-Datensätzen
- 4. Modellanpassung und -projektion
- **5. Simulation zukünftiger Pfade** (und Bootstrapping)
- **6. Erzeugung von Analyseprodukten** (Residuen, Parameter, Lebenserwartungen, Alterungsrückstellung)
- 7. Auswertung, ggf. Fehleranalyse und Modifikation

Technische Umsetzung mit dem Paket "StMoMo" in RStudio

- Entwicklungsumgebung: RStudio (Variablenverwaltung, Komfort, Git)
- Programmstruktur: R Notebook (modularer Aufbau, Literate Programming, knitr: offen für C++, Python, SQL, Julia,...)
- nützliche Pakete: demography, forecast, ggplot2, gnm, knitr, plotly, xlsx,...
- Human Mortality Database: hmd.mx (Import-Funktion für StMoMo)
- Transformation der PKV-Daten: demogdata und StMoMoData

Agenda

- ✓ Welche stochastischen Sterblichkeitsmodelle werden eingesetzt?
- > Was lässt sich aus den ersten Modellierungen schlussfolgern?

Lee - Carter

Männer Gesamt

Projektion: 2025 Referenz: PKV-2021

Daten: 1999 – 2018

Plat

Lee – Carter: $\beta_x \kappa_t$

Trends für Frauen Gesamt

(Best Estimate)

Alter: 0 - 102

Zeitraum: 1999 - 2025

Daten: 1999 – 2018

Plat: $\kappa_t^{(1)} + (51 - x)\kappa_t^{(2)}$

Residuenplots (1999 - 2018)

Lee - Carter

Der Jahrgangsparameter in Aktion!

Beihilfeberechtigte Frauen im Alter 25 – 75

Der Jahrgangsparameter im Modell PLAT der Jahrgänge 1900 – 2000 für Männer (Gesamt/Beihilfe) und Frauen (Gesamt/Beihilfe):

Wertebereiche bei PLAT

$$\log q_{x,t} = \alpha_x + k_t + (\bar{x} - x)\tilde{k}_t + \gamma_{t-x}$$
[-11; -0,7] [-0,2; 0,2] [-0,2; 0,2]

Daten: 1999 - 2018

Agenda

- ✓ Welche stochastischen Sterblichkeitsmodelle werden eingesetzt?
- √ Was lässt sich aus den ersten Modellierungen schlussfolgern?
- Wie verhalten sich diese Modelle zur PKV-Sterbetafel?

Strukturelle Unterschiede von Modellkurven und PKV-Sterbetafel

GAPC – Modellierung

- Produziert eine BE-Kurve mit Verteilung für Trend
- Bietet ein breites Ansatzspektrum
- Berücksichtigt das Trendrisiko

Erlaubt die Quantifizierung von Parameterunsicherheiten im Modell mittels Bootstrapping

PKV - Sterbetafel

- Produziert eine Tafel als Werkzeug für die Kalkulation
- \triangleright Verwendet $\log(q_{x,t}) = \alpha_x + \beta_x t$
- Berücksichtigt das Zufallsrisiko

- > Gleicht Trendfaktoren über die Alter aus
- > Schränkt sich auf die Vorläufer-Tafel ein
- Daten: seit 1996 verfügbar; seit PKV-2019 rollierender 20-Jahreszeitraum
- Projektion um 7 Jahre ergibt eine5-Jahresprognose ab Verwendungsjahr

Lebenserwartungen für 2014 – 2018 – 2025 (Best Estimate)

Projektion auf 2014 mit Daten von 1996 - 2007

	Männer				Frauen			
Alter	PKV 2010	Q_x^{roh} G – B	Lee-Carter BE G - B	Plat BE G - B	PKV 2010	Q_x^{roh} G - B	Lee-Carter BE G - B	Plat BE G – B
0	83,9	82,8 - 83,7	83,5 - 84,7	83,8 - 84,9	87,3	86,5 - 87,0	87,1 – 87,7	87,2 - 87,9
20	64,1	63,1 - 64,0	63,9 - 64,9	64,1 - 65,1	67,5	66,8 - 67,3	67,4 - 67,9	67,6 - 68,2
40	44,5	43,7 - 44,4	44,3 - 45,2	44,6 - 45,4	47,7	47,1 - 47,5	47,7 - 48,1	48,0 - 48,4
60	25,6	25,0 - 25,5	25,5 - 26,3	25,7 - 26,4	28,6	28,1 - 28,3	28,6 - 28,8	28,8 - 29,0
80	9,6	9,5 - 9,7	9,4 - 9,6	9,9 - 10,1	11,3	11,1 - 11,0	11,3 - 11,3	11,7 - 11,7

Projektion auf 2025 mit Daten von 1999 - 2018

	Männer				Frauen				
Alter	PKV 2021		Lee-Carter BE G - B	Plat BE G – B	PKV 2021		Lee-Carter BE G - B	Plat BE G – B	
0	84,8		84,0 - 84,7	84,1 - 84,7	87,9		87,3 - 87,8	87,4 - 87,9	
20	65,0		64,3 - 64,9	64,3 - 64,9	68,1		67,5 - 68,0	67,6 - 68,1	
40	45,4		44,8 - 45,3	44,9 - 45,3	48,4		47,9 - 48,2	48,0 - 48,2	
60	26,4		25,9 - 26,3	25,9 - 26,2	29,1		28,7 - 28,9	28,8 - 28,9	
80	10,1		9,9 - 10,0	10,3 - 10,3	11,7		11,4 - 11,5	11,7 - 11,6	

Projektion auf 2018 mit Daten von 1996 - 2011

	Männer				Frauen			
Alter	PKV 2014	Q_x^{roh} G – B	Lee-Carter BE G - B	Plat BE G – B	PKV 2014	Q_x^{roh} G – B	Lee-Carter BE G - B	Plat BE G – B
0	84,3	82,7 - 83,7	83,9 - 84,8	84,3 - 85,1	87,6	86,4 - 87,1	87,2 - 87,6	87,6 - 87,9
20	64,6	63,1 - 64,0	64,2 - 65,1	64,7 - 65,4	67,8	66,7 - 67,3	67,5 - 67,9	67,9 - 68,1
40	44,9	43,7 - 44,4	44,6 - 45,4	45,2 - 45,7	48,0	47,1 - 47,5	47,8 - 48,0	48,3 - 48,3
60	26,1	24,9 - 25,4	25,8 - 26,4	26,3 - 26,7	28,8	28,0 - 28,3	28,7 - 28,8	29,1 - 29,1
80	9,8	9,5 - 9,6	9,6 - 9,8	10,3 - 10,6	11,5	11,1 - 11,1	11,3 - 11,3	12,0 - 11,8

Mögliche Ursachen der Entwicklung:

- a) Ausweitung des Beobachtungszeitraums (Zeitraum in Jahren: 12 < 16 < 20)
- b) Verschiebung des Beobachtungsbeginns von 1996 auf 1999

Rekursive Formel für die Restlebenserwartung: $e_{x,t} = (1 - q_{x,t})(e_{x+1,t} + 1) + 0.5q_{x,t}$ für Alter x im Jahr t bei Startwert $e_{103,t} = 0.5$.

Lebenserwartungen für 2010 – 2014 (90%-Trendrisiko)

Plat (Männer Gesamt)										
Alter	PKV 2010	Q 2014	2010	2011	2012	2013	2014			
0	83,9	82,8	83,2	83,6	84,0	84,3	84,7			
20	64,1	63,1	63,5	63,9	64,2	64,6	64,9			
40	44,5	43,7	43,9	44,3	44,6	45,0	45,3			
60	25,6	25,0	25,2	25,5	25,8	26,1	26,3			
80	9,6	9,5	9,5	9,7	9,9	10,1	10,3			

Maßgeblicher Altersbereich der Unterschreitung: 70 – 95

Die 90%-Trendrisiko-Kurve $q_{,t}^{90\%}$ erfüllt $P[q_{x,t} \ge q_{x,t}^{90\%}$ für alle Alter $x] \ge 90\%$ für jedes t. Daten: 1996 – 2007

Lebenserwartungen für 2014 – 2018 (90%-Trendrisiko)

Plat (Männer Gesamt)										
Alter	PKV 2014	Q 2018	2014	2015	2016	2017	2018			
0	84,3	82,7	83,7	84,0	84,4	84,8	85,1			
20	64,6	63,1	64,0	64,4	64,8	65,1	65,4			
40	44,9	43,7	44,5	44,9	45,2	45,6	45,8			
60	26,1	24,9	25,7	26,0	26,3	26,6	26,8			
80	9,8	9,5	10,0	10,2	10,4	10,7	10,9			

Maßgeblicher Altersbereich der Unterschreitung: 75 – 95

Die 90%-Trendrisiko-Kurve $q_{,t}^{90\%}$ erfüllt $P[q_{x,t} \ge q_{x,t}^{90\%}$ für alle Alter $x] \ge 90\%$ für jedes t. Daten: 1996 – 2011

Lebenserwartungen für 2021 – 2025 (90%-Trendrisiko)

Plat (Männer Gesamt)										
Alter	PKV 2021	Q 2025	2021	2022	2023	2024	2025			
0	84,8		84,0	84,3	84,5	84,8	85,0			
20	65,0		64,3	64,5	64,8	65,0	65,2			
40	45,4		44,8	45,0	45,2	45,5	45,7			
60	26,4		25,8	26,1	26,3	26,5	26,7			
80	10,1		10,2	10,4	10,5	10,6	10,8			

Maßgeblicher Altersbereich der Unterschreitung: 85 – 95

Die 90%-Trendrisiko-Kurve $q_{,t}^{90\%}$ erfüllt $P[q_{x,t} \ge q_{x,t}^{90\%}$ für alle Alter $x] \ge 90\%$ für jedes t.

Daten: 1999 - 2018

Lebenserwartungen für 2021 – 2025 (90%-Trendrisiko)

Lee – Carter (Männer Gesamt)										
Alter	PKV 2021	Q 2025	2021	2022	2023	2024	2025			
0	84,8		83,8	84,0	84,3	84,5	84,7			
20	65,0		64,1	64,3	64,5	64,7	64,9			
40	45,4		44,6	44,8	45,0	45,2	45,4			
60	26,4		25,7	25,9	26,1	26,3	26,4			
80	10,1		9,8	9,9	10,0	10,1	10,2			

Entwicklung von 2010 zu 2025: analog zu Plat mit niedrigeren LE-Schätzwerten

Die 90%-Trendrisiko-Kurve $q_{,t}^{90\%}$ erfüllt $P[q_{x,t} \ge q_{x,t}^{90\%}$ für alle Alter $x] \ge 90\%$ für jedes t. Daten: 1999 – 2018

Agenda

- ✓ Welche stochastischen Sterblichkeitsmodelle werden eingesetzt?
- √ Was lässt sich aus den ersten Modellierungen schlussfolgern?
- ✓ Wie verhalten sich diese Modelle zur PKV-Sterbetafel?
- Was wären die Effekte auf einen ambulanten Vollkostentarif?

Was wären die Effekte auf einen ambulanten Vollkostentarif?

Neugeschäftsbeiträge relativ zur PKV-2021 für Männer mit SB 551-700 €

Kalkulationsdaten:

Kopfschaden: BaFin Krawatte 2017:

KKV_amb_N_M_551-700

Storno: Normal (BaFin 2017)

Stückkosten: 335 Rechnungszins: 2,0%

Zillmerung: 0

Zuschläge(Δ): 6,3% (ohne Umstufungen)

Modellkurven:

Lee - Carter (Best Estimate)

Lee - Carter (90%-Trendrisiko)

Lee – Carter (10%-Trendrisiko)

Projektionsjahr: 2025

Daten: 1999 - 2018

Was wären die Effekte auf einen ambulanten Vollkostentarif?

Neugeschäftsbeiträge relativ zur PKV-2021 für Männer mit SB 551-700 €

Kalkulationsdaten:

Kopfschaden: BaFin Krawatte 2017:

KKV amb N M 551-700

Storno: Normal (BaFin 2017)

Stückkosten: 335 Rechnungszins: 2,0%

Zillmerung: 0

Zuschläge(Δ): 6,3% (ohne Umstufungen)

Modellkurven:

Plat (Best Estimate)

Plat (90%-Trendrisiko)

Plat (10%-Trendrisiko)

Projektionsjahr: 2025 Daten: 1999 – 2018

Was wären die Effekte auf einen ambulanten Vollkostentarif?

Kalkulationsdaten:

Kopfschaden: BaFin Krawatte 2017:

KKV amb N M 551-700

Storno: Normal (BaFin 2017)

Stückkosten: 335 Rechnungszins: 2,0%

Zillmerung: 4

Zuschläge(Δ): 6,3% (ohne Umstufungen)

Modellkurven:

Plat (Best Estimate)

Plat (90%-Trendrisiko)

Plat (10%-Trendrisiko)

Projektionsjahr: 2025 Daten: 1999 – 2018

Agenda

- ✓ Welche stochastischen Sterblichkeitsmodelle werden eingesetzt?
- √ Was lässt sich aus den ersten Modellierungen schlussfolgern?
- ✓ Wie verhalten sich diese Modelle zur PKV-Sterbetafel?
- ✓ Was wären die Effekte auf einen ambulanten Vollkostentarif?
- > Welche Herausforderungen und Chancen ergeben sich?

Welche Herausforderungen (und Chancen) ergeben sich?

Unterschiedlicher Kohortenansatz

(Darstellung im Lexis-Diagramm)

Unerheblich bei adäquater Homogenität der Daten

Lebensjahre der x-Jährigen im Jahr t

(Verwendung von $PERS_{x.t}$ (PKV-Daten))

Theoretisch: initial exposed to risk

Empirisch: central exposed to risk

[signifikant bessere Resultate in hohen Altern]

Männer Gesamt (Daten: 1997 – 2011)

Welche Herausforderungen und Chancen ergeben sich?

Herausforderungen

Datenkompatibilität – Homogenitätsannahme / Theorie – Empirie Konflikt

Modellwahl – Leistungsfähigkeit / Komplexität / Robustheit, siehe Salfeld (2019)

Vertrauenswürdigkeit – die Tragweite der Rechnungsgrundlage Sterblichkeit erfordert ein hohes Maß an Zuverlässigkeit von etwaigen Anwendungen auf StMoMo-Basis

Chancen (für die PKV-Sterbetafel)

Überprüfung und Quantifizierung der Sicherheit der PKV-Sterbetafel auf Basis eines repräsentativen GAPC-Modellportfolios

Früherkennung von Sterblichkeitstrends durch Parameteranalyse

Sicherheitskriterien auf Basis von tariflichen Kennzahlen für repräsentative Tarife

Welche (Herausforderungen und) Chancen ergeben sich?

Chancen (für PKV-Unternehmen)

Stochastische Quantifizierung der Angemessenheit der Verwendung der PKV-Sterbetafel für den eigenen Bestand (mit/ohne eigener stochastischer Modellierung)

Analyse abweichender Sterblichkeitstrends im eigenen Bestand (vgl. SAINT-Modell)

Solvenzquoten: Berechnung der Sterblichkeitsschocks mit internen Modellen

Stochastische Bilanzprojektionen (ALM)

Sagen Sie uns Ihre Meinung! Welche dieser Anwendungen wäre für Sie reizvoll?

Referenzen I

Stochastische Sterblichkeitsmodelle und ihre Modellierung in R

- Villegas, Millossovich, & Kaishev (2018). "StMoMo: An R Package for Stochastic Mortality Modeling". Journal of Statistical Software **84**.
- Cairns, Blake, & Dowd (2006). "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration". *Journal of Risk and Insurance*, **73**(4), 687–718.
- Cairns, Blake, Dowd, Coughlan, Epstein, Ong, & Balevich (2009). "A Quantitative Comparison of Stochastic Mortality Models Using Data from England and Wales and the United States". *North American Actuarial Journal*, **13**(1), 1–35.
- Haberman & Renshaw (2011). "A Comparative Study of Parametric Mortality Projection Models". Insurance: Mathematics and Economics, **48**(1), 35–55.
- Lee & Carter (1992). "Modeling and Forecasting the Time Series of U.S. Mortality". *Journal of the American Statistical Association*, **87**(419): 659–671.
- Plat (2009). "On Stochastic Mortality Modeling". Insurance: Mathematics and Economics, 45(3), 393–404.
- Renshaw & Haberman (2006). "A Cohort-Based Extension to the Lee-Carter Model for Mortality Reduction Factors". *Insurance: Mathematics and Economics*, **38**(3), 556–570.
- Saalfeld (2019). "Stochastic Mortality Modelling with Cointegrated Vector Autoregressive Processes and Characterizations of Logistic-type Hazard Rate Distributions". Dissertation. Universität Hannover.

Referenzen II

Lexis Diagramm

• Vandeschrick (2001). "The Lexis diagram, a misnomer". *Demographic Research*, **4**, 97-124.

Weiteres Themenumfeld

Spread-Adjusted International Trend Modell

Jarner & Kryger (2011). "Modelling Adult Mortality in Small Populations: The Saint Model". ASTIN Bulletin, 41(2), 377-418.

Actuarial Data Science

Anwendungsfall "Neuronale Netze treffen auf Mortalitätsprognose" der DAV-AG "Statistische Methoden" (15.09.2020), siehe <u>DAV-Seite</u> bzw. <u>Kaggle-Projektseite</u> basierend auf

• Richman & Wüthrich (2019), "A Neural Network Extension of the Lee-Carter Model to Multiple Populations", *Annals of Actuarial Science*, First View, 1-21.

mit Verweis auf potentiell bessere Netzwerkarchitekturen (LCLSTM bzw. LCCONV) in

• Perla, Richman, Scognamiglio, & Wuthrich, "Time-Series Forecasting of Mortality Rates using Deep Learning" (06.05.2020), SSRN, DOI:10.2139/ssrn.3595426.