1η Εργαστηριακή άσκηση

Ανάλυση Κοινωνικών Δικτύων (Social Network Analysis)

Συμεών Παπαβασιλείου (papavass@mail.ntua.gr)

Ειρήνη Κοιλανιώτη (eirinikoilanioti@mail.ntua.gr)

Μαργαρίτα Βιτοροπούλου (mvitoropoulou@netmode.ntua.gr)

Βασίλειος Καρυώτης (vassilis@netmode.ntua.gr)

Κωνσταντίνα Σακκά (nsakka@cn.ntua.gr)

Ιωάννης Τζανεττής (gtzane@gmail.com)

Επισκόπηση

- Κατασκευή και οπτικοποίηση σύνθετων τύπων δικτύων
- Μετρικές δικτύου
 - Συντελεστής ομαδοποίησης (clustering coefficient)
 - Μήκος ελάχιστου μονοπατιού
 - Εκκεντρότητα (eccentricity) κόμβου
 - Διάμετρος, ακτίνα, περιφέρεια, κέντρο
- Μετρικές κεντρικότητας κόμβων
 - Κεντρικότητα βαθμού (degree)
 - Κεντρικότητα εγγύτητας (closeness)
 - Ενδιαμεσική κεντρικότητα (betweenness)
 - Κεντρικότητα Katz
 - Εφαρμογή PageRank σε πραγματικό δίκτυο
- Μελέτη συνεκτικότητας (connectivity) και ευρωστίας (robustness) δικτύων
- Μελέτη εξελικτικής μετατροπής δικτύου
- Μελέτη πραγματικών δικτύων

Τύποι σύνθετων δικτύων

- Πλέγμα (REG)
 - Πεπερασμένος γράφος G(n,d)
- Τυχαίος γράφος
 - Erdos-Renyi (RG-ER) G(n,M)
 - Gilbert (RG-G) G(n,p)
- Τυχαίος γεωμετρικός γράφος (RGG)
 - Επίπεδος G(n,R,I)
- Scale-free (SF)
 - Barabasi-Albert G(n,d)
- Small-world (SW)
 - Watts-Strogatz G(n,d)

Μετρικές δικτύου

Συντελεστής ομαδοποίησης (Clustering coefficient)

τριγώνων που συμμετέχει ο κόμβος u / # τριπλετών με κέντρο τον κόμβο u

- Μήκος ελάχιστου μονοπατιού
 - Στον γράφο G(V,E) με $u,v \in V$, η απόσταση dist(u,v) είναι το μήκος του ελάχιστου (u,v)-μονοπατιού στο G.
 - **Εκκεντρότητα** κόμβου $u \in V$: $ecc(u) = max_v dist(u,v)$
 - Διάμετρος γράφου G: diam(G)=max_u ecc(u)
 - Ακτίνα γράφου G: rad(G)=min_u ecc(u)
 - Περιφέρεια γράφου G: $P = \{u \in V: ecc(u) = diam(G)\}$
 - Κέντρο γράφου G: C={u ∈ V: ecc(u)=rad(G)}

Μετρικές κεντρικότητας κόμβων

- Κεντρικότητα βαθμού
- Κεντρικότητα εγγύτητας
- Ενδιαμεσική κεντρικότητα
 - λαμβάνει υπόψη τα ελάχιστα μονοπάτια μεταξύ των κόμβων.
- Κεντρικότητα Katz
 - λαμβάνει υπόψη όλους τους δυνατούς περίπατους μεταξύ των κόμβων.
 - Για τον κόμβο i, η **κεντρικότητα Katz** δίνεται από τη σχέση:

```
x_i = \alpha \sum_j a_{ij} x_j + \beta, όπου \mathbf{A} = (a_{ij}) ο πίνακας γειτνίασης του γράφου.
```

Θεωρήστε: $\alpha = (\lambda_{max})^{-1} - 0.01$, $\beta = 1$ όπου λ_{max} η μεγαλύτερη ιδιοτιμή του **A**.

PageRank

 αλγόριθμος της Google για την κατάταξη ιστοσελίδων: πιο σημαντικές είναι οι ιστοσελίδες στις οποίες καταλήγει ένας χρήστης μέσω άλλων ιστοσελίδων.

PageRank

Τυχαίος περίπατος στον κατευθυνόμενο γράφο G(V, E), με V το σύνολο των ιστοσελίδων και E το σύνολο των υπερσυνδέσμων.

Ο χρήστης πλοηγείται σε ιστοσελίδες επιλέγοντας με πιθανότητα ε έναν από τους υπερσυνδέσμους της ιστοσελίδας που βρίσκεται και με πιθανότητα 1-ε οποιαδήποτε διαθέσιμη ιστοσελίδα.

PageRank κόμβου u, PR(u,k): η πιθανότητα, ξεκινώντας από οποιοδήποτε κόμβο, ο τυχαίος περίπατος να σταματήσει, μετά από k βήματα, στον κόμβο u.

Επαναληπτικός τρόπος υπολογισμού PageRank

- 1. Όλοι οι κόμβοι ξεκινούν με PageRank ίσο με 1/ n, όπου n=|V|.
- 2. Update Rule: O PageRank κάθε κόμβου επαναϋπολογίζεται k φορές ως εξής:

$$\begin{split} PR(u,t) &= (1-\epsilon)/|V| + \epsilon \sum_{v:(v,u)\in E} PR(v,t-1) \ / \ d_{out}(v), \\ \text{όπου } &\epsilon \in [0,1], \text{συνήθως λαμβάνει την τιμή } 0.85 \ \text{και } d_{out}(v) \text{ είναι ο } \text{έξω-βαθμός του κόμβου } v, \ t=1,...,k. \end{split}$$

Στα περισσότερα δίκτυα, ο PageRank συγκλίνει για $k \to \infty$ σε μια τιμή που εξαρτάται από το ε.

Μελέτη συνεκτικότητας και ευρωστίας δικτύων

Ποσοστό συνεκτικότητας

```
# συνδεδεμένων τοπολογιών
# παραγόμενων τοπολογιών
```

Μελέτη συνεκτικότητας

- 1. Κατασκευή τοπολογίας για διάφορες τιμές παραμέτρων
- 2. Έλεγχος συνεκτικότητας
- 3. Επανάληψη βημάτων (1), (2) (k=100)
- 4. Υπολογισμός ποσοστού συνεκτικότητας

Μελέτη ευρωστίας δικτύου

Υπολογισμός του ελάχιστου αριθμού κόμβων/ακμών σε ένα συνδεδεμένο δίκτυο, η αφαίρεση των οποίων έχει ως αποτέλεσμα μη συνδεδεμένο δίκτυο.

Μελέτη συνεκτικότητας

Ευρος Παραμέτρων	
$n = \{100, 200\}$	$d \in [2, 10]$ με βήμα 2
	$M \in [100, 800]$ με βήμα 100
	$p \in [0.01, 0.1]$ με βήμα 0.01
	$R \in [0.025, 0.25]$ με βήμα 0.025
	$d \in [2, 10]$ με βήμα 2
	$d \in [2, 10]$ με βήμα 2 και $g_p \in [0.1, 0.7]$ με βήμα 0.1

Εξελικτική μετατροπή δικτύου

Μελέτη του **εξελικτικού χαρακτήρα** του μοντέλου *Watts – Strogatz* για διάφορες τιμές της πιθανότητας ανασύνδεσης των ακμών.

Πραγματικά δίκτυα

Εκτέλεση PageRank σε μια συνδεδεμένη συνιστώσα του κατευθυνόμενου δικτύου web-Stanford: Οι κόμβοι αναπαριστούν ιστοσελίδες από τον ιστότοπο του Stanford University (stanford.edu). Οι ακμές αναπαριστούν υπερσυνδέσμους μεταξύ τους.

(https://snap.stanford.edu/data/web-Stanford.html)

- Ανάλυση του δικτύου που σχηματίζεται από τις αλληλεπιδράσεις των χαρακτήρων της σειράς Game of Thrones στον πρώτο κύκλο επεισοδίων (https://github.com/mathbeveridge/gameofthrones).
 Αναγνώριση του τύπου του υπό εξέταση δικτύου με βάση:
 - την κεντρικότητα του βαθμού κόμβων
 - τον συντελεστή ομαδοποίησης
 - το μέσο μήκος μονοπατιού