Versuch 521 γ -Spektroskopie mit Szintillations- und Halbleiterdetektoren

Wenjie Wu, Lars

24. Juni 2020

Zusammenfassung

1 Einleitung

Ziel dieses Versuchs ist es, sich mit der Detektion von γ -Spektrum. Dazu wird zwei Detektoren benutzen: Szintillationsspektrometer und Halbleiterdetektor.

Photoeffekt Beim Photoeffekt löst das Photon ein Elektron aus. Das gelöste Elektron hat die kinetische Energie von der Energie des Photon. Um das Photoeffekt zu passiert, muss das Photon hat die Energie größer als die Austrittsarbeit.

2 Theorie

2.1 Radioaktiver Zerfall

Ionisierende Strahlung stammt entweder aus natürlicher Umwelt oder aus künstlichen Strahlungsquellen. Die primäre Strahlung besteht aus massiven geladenen Teilchen oder aus masselosen neutralen Quanten wie Photonen oder Neutrinos. Die Strahlung aus der natürlichen Umwelt stammt aus zwei verschiedenen Quellen: die eine ist die kosmische und solare Teilchenstrahlung, die andere ist die natürliche Radioaktivität. Dabei entsteht α -, β -, oder γ -Strahlung, die jeweils aus dem radioaktiven Zerfall α -, β -, oder γ -Zerfall kommt. Überwiegend in diesem Versuch ist der γ -Zerfall, welche Reaktionsgleichung besagt:

$$_{Z}^{A}X_{N}^{\ast }\rightarrow _{Z}^{A}X_{N}+\gamma$$

Die instabile Kerne kann durch mehrere radioaktive Zerfälle in den stabilen Zustand kommen, das ist sogenannte Zerfallsreihen.

2.2 Wechselwirkung von γ -Photon mit Matrie

Strahlung kann auf verschiedene Arten mit Materie wechselwirken. Folgende Prozesse sind die Möglichkeiten:

Compton-Effekt Nach die Teilchen-Wellen-Dualismus, das Photon kann als Teilchen mit Materie wechselwirken. Bein Compton-Effekt wird das Photon von einem Elektron in der Atom gestreut. Dabei überträgt das Photon einen Teil seiner Energie an das Elektron und die Wellenlänger der einfallenden Strahlung vergrößert sich.

Wirkungsquerschnitt Die Wirkungsquerschnitten von verschiedener Wechselwirkungen sind nicht gleich. Die Abhängigkeit des Wirkungsquerschnittes von der Energie das Photon E_{γ} und der Ordnungszahl Z des Absorbermaterials lauten:

Effekte	Proportionalitäten
Compton-Effekt	$\propto ZE_{\gamma}^{-1}$
Photoeffekt	$\propto Z^5 E_{\gamma}^{-\frac{7}{2}}$, für $E_{\gamma} < m_e c^2$.
Paarbildung	$\propto Z^2 \ln E_{\gamma}$

Die gesamt Wechselwirkung ist die Summe der Wirkungsquerschnitten von verschiedenen Wechselwirkungen.

2.3 Szintillationsspektrometer und Halbleiterdetektor

Ein Szintillationsspektrometer (Abb. 1)² nutzt aus, dass bei einige Materialien Licht entsteht, wenn diese mit Teilchen oder Photonen bestrahlt werden. Mit Hilfe eines Photomultipliers wird dieses Signal in ein elektrisches Signal umgewandelt.

Paarbildung Wenn die Energie des Photons größer als die Ruheenergie eines Elektron-Positron-Paars (e^+-e^--Paar) ist, kann aus dem Photon ein e^+-e^--Paar erzeugen. Damit wird e^+-e^--Paar weiter mit Materie(Detektor) wechselwirken, und das Photon existiert nicht mehr.

¹In diesem Versuch wird nur an diese Bedingung betrachtet.

²https://de.wikibooks.org/wiki/Physikalische_Grundlagen_der_Nuklearmedizin/_Szintillationszähler

Abbildung 1: Schematischer Aufbau eines Szintillator mit Photomultiplier

Szintillator Hier wird einen anorganischen Szintillator verwendet, in dem die Prozesse durch das Bändermodell beschrieben werden können. Das Elektron wird entweder von der Strahlung vom Valenzband ins Leitungsband angeregt, sodass ein freies Elektron und ein Loch entstehen. Wenn das Elektron ins Valenzband zurückfallen, wird dann Photon emittiert. Die Energiedifferenz zwischen Valenzband und Leitungsband ist zu groß, sodass das emittierte Photon nicht in sichtbar Bereich legen. Wenn das Szintillator mit andere Atom dotiert, gibt es noch Exzitionband zwischen Valenzband und Leitungsband. Wenn das Elektron ins Exzitionband fallen, das emittierte Photon hat ein Wellenlänge in sichtbar Bereich. Das emittiert Photon(in sichtbar Bereich) kann durch Photomultiplier detektiert werden.

Photomultiplier Im Photomultiplier treffen die Photonen auf die Photokathode. Hier wird mittels des Photoeffekts ein freies Elektron erzeugt. Diese wird von der Dynode beschleunigt. Beim Auftreffen auf die Dynode überträgt das Elektron seine Energie an andere Elektroden, sodass weitere freie Elektronen entstehen. Dieser Prozess wiederholt sich an jeder Dynode, sodass immer mehr Elektronen beschleunigt werden. Zum Schluss werden alle Elektronen von der Anode aufgenommen und erzeugen einen Strom.

Halbleiterdetektor Die Halbleiterdetektoren sind meist als dünne Halbleiterplättchen, die einen pn-Übergang enthalten, in der Sperrrichtung ausgebildet. Ionisierende Strahlung erzeugt darin Paare von Elektronen und Löchern, und zwar mit viel geringerem Energieaufwand als für die Ionisierung eines Gasmoleküls. Die im rein p- oder rein n-leitenden Bereich erzeugten Paare rekombinieren bald wieder. In der pn-PBergangsschicht aber werden Elektronen und Löcher durch das dort herrschende starke Raumladungsfeld getrennt. Je größer die äußere Sperrspannung liegt, desto dicker ist die Zone. [gerthsen] Zur Detektion von γ -Strahlung wird Germanium aufgrund seiner höheren Massenzahl gegenüber Silizium bevorzugt. Wegen der kleineren Bandlücke ist jedoch der Leckstrom in Germanium bei normalen Temperaturen zu hoch, muss den Halbleiterdetektor von flüssigem Stickstoff gekühlt werden.

Vergleich von Szintillations- und Halbleiterdetektor Die Bandlücke im Halbleiter ist wesentlich kleiner als die im Kristall des Szintillators. Deswegen bietet der Halbleiterdetektor eine höhere Energieauflösung. Das Szintillator kann großsein. Deswegen kann das Szintillationsdetektor mehr Photon aufnehmen. Beispielhaft wird die Gamma-Spektroskopie in der Abb. 2 dargestellt. Man kann deutlich die geringere Energieauflösung des Szintillationsdetektors erkennen.

Abbildung 2: Gammalinien der beiden Detektoren. [techniques]

2.4 Impulshöhenspektrum

Abbildung 3: Energiespektrum eines Szintillators [teilchen]

Die Abbildung (3) zeigt schematisch das Energiespektrum eines Szintillators. Es lassen sich drei charakteristischen Merkmale erkennen. Diese sind in der Reihenfolge der für den erzeugenden Effekt benötigten Energie aufgezählt.

Photopeak Dieser Peak entsteht durch die Absorption eines Photons und das dadurch emittierte Elektron. Dieses Elektron spiegelt die Gesamtenergie der einfallenden γ-Strahlung wieder. Dieses Elektron wiederum ionisiert das Szintillator-Material und führt zur Emission eines Photons.

Compton-Kante Die Compton-Kante und das Compton-Kontinuum lassen sich auf die Wechselwirkung zwischen

Photon und dem Szintillator durch den Compton-Effekt zurückführen. Bei diesem Effekt gibt das Photon nicht seine gesamte Energie an das Elektron weiter. Dem entsprechend findet man die Compton-Kante bei einer geringeren Energie als den Photopeak. Das Maximum des Compton-Kontinuums befindet sich bei einem Streuwinkel von 180°. Dieser sogenannte Rückstreupeak ist in der Abbildung (3) allerdings nicht vorhanden.

Escape Peaks Bei diesem Peak ist die Paarbildung von entscheidender Rolle. Das so erzeugte Positron verbindet sich anschließend mit einem Kristall Elektron. Hierbei entstehen zwei Photonen von denen eines (single escape peak) oder beide (double escape peak) vom Detektor registriert werden können.

Rückstreupeak Die Photonen, die durch die Materie ohne Wechselwirkung passieren, werden mit verringerter Energie in den Szintillator zurückgestreut. Trifft das Photon nach einer Streuung um ungefähr 180° auf den Photomultiplier, so erzeugt es ein Signal bei $E_{rck} = E_{\gamma} - E_{max}$.

2.4.1 Vielkanalanalysatoren (MCA)

Ein Vielkanalanalysator (*Multi Channel Analyzer*) zählt Impulse innerhalb verschiedener Amplitudenintervalle. Die Signale werden mit einem Analog-Digital-Wandler digitalisiert, die als Adresse eines Speicherplätze fungieren und bei jedem Zugriff den Zählerstand erhöht. Das Ergebnis dieser Zählweise ist ein Histogramm. Durch eine Energiekalibration kann den Kanalen ein Energieintervall zugeordnet und das Histogramm representiert das Energiespektrum. [messelektronik]

2.5 Eigenschaften des Detektors

Peak-to-Total-Verhältnis Diese Größe gibt an, welcher Anteil der im Detektor registrierten γ -Quanten eines bestimmten Übergangs im Photopeak enthalten sind. Die Definition des Peak-to-Total-Verhältnis lautet:

Anzahl des Ergebnis im Photonpeak
Gesamtzahl aller Ergebnisse im Spektrum

Absolute Peakeffizienz Zur Kalibrierung der Effizienz der photoelektrische Umwandlung benötigt die absolute Peakeffizienz: [techniques]

gesamte Zählrate im Photopeak gesamte Zählrate im Detektor

Nachweiswahrscheinlichkeit(Efficiency)

Bei der allgemeinen Diskussion werden zwei Arten von Efficiency genannt: Die absolute Nachweiswahrscheinlichkeit ϵ und die interne Nachweiswahrscheinlichkeit ϵ_i . Die absolute Nachweiswahrscheinlichkeit ist definiert als: [**techniques**]

Teilchen im Detektor registriert
Teilchen aus Quelle emmitiert

2.6 Termschemata

Für diesen Versuch werden drei verschiedene Quellen verwendet, die Zerfallsschemata werden in Abb.(4)(5) (6) dargestellt.

Abbildung 4: Termschema des ⁶⁰Co-Zerfalls. ¹

Abbildung 5: Termschema des ¹³⁷Cs-Zerfalls. ²

Abbildung 6: Termschema des ¹⁵²Eu-Zerfalls[kern]

https://de.wikipedia.org/wiki/Zerfallsschema

²http://archive.is/XAO5R

3 Aufbau

Der Versuchsaufbau wird in Abbildung (7) dargestellt. Die wesentlischen verwendeten Bauteile waren die Detektoren mit Vorverstärker, der Hauptverstärker und der Computer mit der Software MCDWIN. Man kann die Detektoren wählen. Es gab zwei verschiedene Detektoren: Germanium-Detektor(Halbleiterdetektor) und Szintillationsdetektor. Die Probe befand sich im Abstand d zum Detektor.

Abbildung 7: Skize für Versuchsaufbau

4 Durchführung

[wait lars]

5 Auswertung

5.1 Energiekalibrierung

Als erstes wurde nun eine Energiekalibrierung beider Detektoren vorgenommen. Dazu werde die Spektren von verschiedene Quellen und Detektoren minus die Untergrunde angetragen (siehe Abbildung (12)). Die Fehlers werden berechnet durch Gauß-Fehlerfortpflanzen. Dann werden verschiedene bekannte Energielinien mit Hilfe von Gauß-Kurven an die Daten angepasst:

$$f(x) = A \cdot \exp\left(-\ln(2) \cdot \frac{(x-\mu)^2}{\text{HWHM}^2}\right)$$

A ist die Amplitude der Kurve, μ ist der Mittelwert und HWHM ist half Bereite am half Maximum (also HWHM = $\sqrt{2 \ln 2}\sigma$, mit Standortabweichung σ). Diese Kurve ist kein klassische Gauß-Kurve, aber mit HWHM kann man einfach FWHM bestimmen, das ist für weitere Auswertung gut. Die Ergebnissen für diese Kurve-Anpassung siehe Tabelle (2) und (3). Anschließlich tragen wir Energie gegen μ und führen eine Gerade-Anpassung (siehe Abbildung (9) und (8)), dann die Energie kann durch die Funktion:

Energie =
$$a \cdot \text{Kanal} + b$$
 (1)

aus Kanal berechnen.

Abbildung 8: Geradenanpassung von Szintillationsdetektor zur Energiekalibration

Abbildung 9: Geradenanpassung von Ge-Detektor zur Energiekalibration

Die Ergebnissen und deren Fehler sind:

Detektor	Szintillator	Halbleiterdetektor
a/(keV/Kanal)	0.272	0.185
$\Delta a/(\text{keV/Kanal})$	0.005	0.006
b/(keV/Kanal)	88.728	5.558
$\Delta b/(\text{keV/Kanal})$	1.998	0.145

5.2 Halbwertsbreite

Die Halbwertsbreite kann nach HWHM bestimmen:

$$FWHM = 2 \cdot HWHM$$

Die Fehlern ist nach Gauß-Fehlerfortpflanzen $\Delta FWHM = 2 \cdot \Delta HWHM$. Aus der Halbwertbreite und der jeweiligen Energie der Linie kann man die Energieauflösung bestimmen:

Auflösung =
$$\frac{\text{FWHM}}{E}$$

Die Ergebnissen werden in Tabelle (4) dargestellt. Man kann sehen, dass die Auflösungen von Halbleiterdetektor ist deutlich kleiner (immer unter 10%) als Szintillator (größer als 20%).

5.3 Intrinsische Halbwertsbreite des Ge-Detektors

Die Halbwertbreite des Halbleiterdetektors ($\Delta E(E_{\gamma})$) besteht aus einem intrinsischen und einem elektronischen Anteil ($\Delta E(E_{\gamma})$ und ΔE_{e} , wobei hier E_{γ} ist die Energie des Photons):

$$\Delta E(E_{\gamma}) = \sqrt{(\Delta E(E_{\gamma}))^2 + \Delta E_e^2}$$

Der intrinsische Anteil basiert auf den statistischen Prozessen der Ladungssammlung im Ge-Kristall. Deswegen ist es abhängig von der Energie des Photons. Die elektronische Anteil basiert auf der Rauschen in elektronische Schaltung. Die theoretische Analyse ergibt eine Näherung von intrinsische Anteil:

$$\Delta E(E_{\gamma}) = \sqrt{c} \cdot \sqrt{E_{\gamma}}$$

wobei c ist eine Konstant. Um diese Zusammenhang zu überprüfung, wir tragen die Quadrat von beide Seit:

$$\Delta E^2 = c \cdot E_{\gamma} + \Delta E_{\rho}^2$$

dann führen wir eine Geradenanpassung (E_{γ} gegen ΔE), die Steigung ist dann c und ΔE_e^2 ist Abschnitt. Hier benutzen wir ΔE und E_{γ} in Einheit von Kanal (dann ist ΔE FWHM und E_{γ} ist μ) und ΔE_e^2 wird auch in Einheit von Kanal bestimmt. Man kann immer durch Gleichung (1) das Einheit zu keV umwandeln.

Abbildung 10: Quadrat der Halbwertsbreite des Ge-Detektors in Abhängigkeit von der Gammaenergie in Einheit Kanal.

Die Ergebnis ist $c=0,068\pm0,001$ und $\Delta E_e=(-0.607\pm1.881)$ Kanal. Das Fehler von ΔE_e ist sehr groß. Es kann sein, dass es Rauschen in unsere Messung gibt, oder ΔE_e hat noch andere Abhängigkeit, z.B. von Temperatur oder Verstärkung, und diese Parametern verändert wahrend Messung.

5.4 Peak-to-Total-Verhältnis

Um das Peak-to-Total-Verhältnis zu bestimmen, muss man die Anzahl der im Photopeak registrierten Gammaquanten berechnen nach

$$A_{nh} = \sqrt{2 * \pi} A \sigma.$$

Man muss noch das Rückstreuanteil im Niederenergiebereich berücksichtigen. Dazu wird Gauß-Kurve-Anpassung

und daraus die Anzahl der Gammaquanten bestimmt. Am Ende kann man das Verhältnis berechnen nach:

$$PT = \frac{A_{ph}}{N_{tot} - N_{rck}}$$

Für Cs wird 663keV-Linie verwendet und für Co wird die mittlere Energie der beiden Linien (1250KeV) verwendet. Daraus ergibt sich die Peak-to-Total-Verhältnis

Detektor	Element	Peak-to-Total/%	Fehler/%
Szintillator	Co	42.21	0.52
Szintillator	Cs	45.06	0.21
Ge-Detektor	Co	12.11	0. 15
Ge-Detektor	Cs	19.01	0.19

Das Peak-to-Total-Verhältnis ist für den Szintillator höher als für den Halbleiterdetektor. Das Grund dafür ist, dass der Wirkungsquerschnitt proportional zu Z^5 ist. Für Ge ist Z=32 und für Jod(Szintillator) ist Z=53. Wegen die Cs-Linie eine geringe Energie besitzt ist hier der Wirkungsquerschnitt größer und somit das Peak-to-Total.

5.5 Absolute Peakeffizienz

Die absolute Peakeffizienz ergibt sich, welcher Anteil aller von der Quelle ausgesendeten Gammaquanten eines Übergangs im Photopeak registriert wurden. Dazu muss die in der Messzeit entsendete Anzahl der Gammaquanten der Quelle berechnet werden. Hierzu kann die Aktivität zum Zeitpunkt der Versuchsdurchführung berechnet werden nach:

$$\tilde{A} = \tilde{A}_0 \exp\left(\frac{\ln(2)}{T_{1/2}}t\right)$$

Die Aktivität der Quelle betrug im April 1985 25μ Ci. Somit ergibt sich eine Aktivität von (430713±657) Bq zum Zeitpunkt der Versuchsdurchführung. Man muss noch die Wahrscheinlichkeit des zu untersuchenden Übergangs berücksichtigt. Dann ist die benutzte Aktivität (347110±544)Bq. Der Fehler stammt aus der Annahme, dass die Zerfall ein Poission-Prozess ist. Die Quelle strahlt isotrop in alle Raumrichtungen. Der Anteil der Strahlung soll mit Raumwinkel des Detektors $\Omega = \pi r^2/d^2$ berechnet werden, wobei r ist der Durchmesser des Detektors und d ist der Abstand zwischen Quelle und Detektor. Dann ist die Anzahl der Gammaquanten, der auf Detektor erreichen, gegeben durch:

$$N = \tilde{A} \cdot t_{Messung} \cdot \frac{r^2}{4d^2}$$

Und die absolute Peakeffizienz ist A_{ph}/N . Daraus ist die absolute Peakeffizienz für Szintillator $(1.877\pm0.003)\%$ und $(1.046\pm0.001)\%$ für Ge-Detektor. Die absolute Peakeffizienz des Szintillator ist höher als die des Ge-Detektors, da das Szintillator mehr Photonen aufnehmen kann.

5.6 Relative Effizienz als Funktiron der Gammaenergie

Zur Bestimmung die Effizienz in Abhängigkeit zur Gammaenergie werden die Intensitäten der Linien im Eu-Spektrum normiert. Dabei nehmen wir an, dass die Intensität von 1408keV-Linie ist 1000. Daraus folgt folgende Normierung für die restlichen Linien:

$$I_{norm}(E_{\gamma}) = \frac{I(E_{\gamma})}{I(1408\text{keV})} \cdot 1000$$

Man soll jetzt aus Praktikumheft die theoretischen relativen Intensitäten I_{th} entnehmen (Wir haben diese Tabelle nicht gefunden, die hier benutzt Werten von I_{th} is aus alte Protukoll), dann die relative Effizienz $I_{rel} = I_{norm}/I_{th}$ berechnen. Die Ergebnis sehe Tabelle (5). Man kann weiter I_{rel} gegen Energie tragen, und anpassen mit Funktion:

$$I_{rel} = m \cdot E_{\gamma}^{-a} + n$$

Die Ergebnis zeigt (Abbildung (11)) dass $a = 0.739 \pm 0.015$. Es ist nahe zu 1. Man kann daraus sagen, dass der Comptoneffekt bei der Wechselwirkung dominierend war.

Abbildung 11: Relative Effizienz als Funktion der Gammaenergie

Quelle	Quelle ¹⁵² Eu		⁶⁰ Co		¹³⁷ Cs	
Detektor	d/cm	t/s	d/cm	t/s	d/cm	t/s
Szintillator	$5, 3 \pm 0, 5$	601.059 ± 0.0005	$5, 5 \pm 0, 5$	613.322 ± 0.0005	$5,5 \pm 0,5$	600.479 ± 0.0005
Halbleiter	$1.5 \pm 0, 5$	608.734 ± 0.0005	$4,0 \pm 0,5$	604.075 ± 0.0005	$4,5 \pm 0,5$	589.719 ± 0.0005

Tabelle 1: Abstände d zwischen Mittelpunkt der Quelle und den Detektoren und die jeweilligen Messdauern t.

Element	Energie/keV	A	ΔA	μ	Δmu	σ	$\Delta \sigma$
Co	1173.2	3084.807	100.381	6567.571	78.482	6.62	0.126
Co	1332.5	2500.892	99.776	7462.482	91.305	7.147	0.106
Cs	661.7	56518.83	2021.929	3524.197	68.452	6.808	0.075
Eu	1408	4025.367	130.023	7530.873	103.757	11.863	0.122
Eu	1112.1	4039.113	121.73	5941.807	73.945	10.389	0.162
Eu	1085.9	3141.106	118.467	5801.954	99.248	11.48	0.139
Eu	964.1	5358.213	198.316	5147.464	95.308	9.207	0.092
Eu	778.9	6862.642	250.076	4153.157	60.589	7.823	0.086
Eu	344.3	45676.31	1418.568	1823.311	28.749	4.925	0.083
Eu	244.7	20574.34	750.483	1290.334	16.082	4.648	0.061
Eu	121.8	122673.8	4291.804	631.824	11.704	3.631	0.038

Tabelle 2: Ergebnis von Gauß-Kurven-Anpassung für die Spektren des Halbleiterdetektors.

Element	Energie/keV	A	ΔA	μ	Δmu	σ	$\Delta \sigma$
Co	1173.2	97.334	3.353	4597.38	50.158	150.74	2.604
Co	1332.5	76.43	2.644	5225.95	65.186	147.238	1.678
Cs	661.7	3376.521	134.099	2608.751	34.898	103.564	1.649
Eu	1112.1	780.083	26.87	4352.501	85.235	179.351	1.829
Eu	1408	373.767	12.565	5566.75	82.859	164.062	2.47
Eu	1085.9	676.632	25.912	3816.279	47.024	166.179	1.723
Eu	964.1	1014.79	35.044	3088.018	54.518	156.29	1.841
Eu	778.9	5993.97	189.316	1355.607	14.089	87.869	1.309
Eu	344.3	4679.29	172.217	947.093	11.884	78.436	0.794
Eu	244.7	26858.79	891.59	474.656	6.97	32.993	0.403
Eu	121.8	59778.7	2142.021	132.717	2.442	21.546	0.239

Tabelle 3: Ergebnis von Gauß-Kurven-Anpassung für die Spektren des Szintillationsdetektros.

Abbildung 12: Spektren ohne Untergrunde

	Szintillator		Halbleiterdetektor		
	Auflösung/%	ΔAuflösung/%	Auflösung/%	ΔAuflösung/%	
Co	25.7	0.47	1.13	0.02	
Co	22.1	0.3	1.07	0.02	
Cs	31.3	0.45	2.06	0.04	
Eu	32.25	0.51	1.69	0.02	
Eu	23.3	0.34	1.87	0.02	
Eu	30.61	0.42	2.11	0.03	
Eu	32.42	0.63	1.91	0.03	
Eu	22.56	0.4	2.01	0.02	
Eu	45.56	0.69	2.86	0.04	
Eu	26.97	0.4	3.8	0.04	
Eu	35.38	0.42	5.96	0.06	

Tabelle 4: Energieauflösung. Hier wird die Halbwertsbreten nicht dargestellt, da man einfach aus HWHM berechnen kann.

Energie/keV	Inorm	ΔI_{norm}	I_{th}	$\frac{I_{norm}}{I_{th}}$	$\Delta \frac{I_{norm}}{I_{th}}$
1408	1000	22.482	1000	1	0.036
1112.1	1003.415	20.264	649	1.546	0.06
1085.9	780.328	17.11	475	1.643	0.051
964.1	1331.112	39.628	693.4	1.92	0.074
778.9	1704.849	40.994	621.6	2.743	0.09
344.3	11347.117	316.825	1275	8.9	0.352
244.7	5111.171	126.776	359	14.237	0.483
121.8	30475.184	685.504	1362	22.375	0.779

Tabelle 5: Relative Effizienz des Ge-Detektors.

Literatur

[detektor] Kleinknecht, Konrad, Detektoren für Teilchenstrahlung, B.G. Teubnerer Stuttgart, 1992, 19ff.

[techniques] Leo, W.R., *Techniques for Nuclear and Particle Physics Experiments*, Springer Verlag, 1994, 113, 157ff.,177ff.,192, 204ff., 313f.

[gerthsen] Meschede, D., Gerthsen Physik, Springer Verlag, 2004, 464-465,672-673,841

[messelektronik] Schmidt, H.U., *Meßelektronik in der Kernphysik*, Teubner Verlag, 1986, 21,28,38,79-80,106-107,110,119-120,184-185

[teilchen] Kolanoski, H., Teilchendetektoren: Grundlagen und Anwendungen, Springer Spektrum, 2016, 524

[kern] Amsler, Claude, Kern- und Teilchenphysik, Zürich: Vdf-Hochschulverl., 2007, 238