

CS2032 - Cloud Computing (Ciclo 2024-2) Multi-tenancy Semana 9 - Taller 1b: Base Datos No SQL Multi-tenancy

ELABORADO POR: GERALDO COLCHADO

- 1. Objetivo del taller 1b
- 2. DynamoDB: Clave de Partición
- 3. DynamoDB: Clave de Ordenamiento
- 4. Ejercicio 1: Sistema Académico
- 5. Ejercicio 2: Red Social (Ejercicio propuesto)
- 6. Cierre

Objetivo del taller 1b: Base Datos No SQL Multi-tenancy

- Aprender buenas prácticas para definir Clave de Partición
- Aprender buenas prácticas para definir Clave de Ordenamiento
- Diseñar tablas en DynamoDB de Microservicios Multi-tenancy

- 1. Objetivo del taller 1b
- 2. DynamoDB: Clave de Partición
- 3. DynamoDB: Clave de Ordenamiento
- 4. Ejercicio 1: Sistema Académico
- 5. Ejercicio 2: Red Social (Ejercicio propuesto)
- 6. Cierre

DynamoDB: Clave de Partición

Concepto

DynamoDB utiliza el valor de la clave de partición como parámetro de entrada para una función hash interna. El resultado de la función hash determina la partición en la que se almacena el elemento. La ubicación de cada elemento viene determinada por el valor hash de su clave de partición.

Los elementos se distribuyen entre unidades de almacenamiento de 10 GB cada una, denominadas particiones (almacenamiento físico interno de DynamoDB). Cada tabla tiene una o más particiones.

DynamoDB: Clave de Partición

Buena práctica

Recomendaciones para claves de partición:

Utilice atributos de cardinalidad alta (gran cantidad de valores únicos). Se trata de atributos que tienen valores distintos para cada elemento como, por ejemplo:

- dirección de correo electrónico
- código de empleado
- código de cliente
- número de sesión
- número de orden

The following is a comparison of the provisioned throughput efficiency of some common partition key schemas.

Partition key value	Uniformity
User ID, where the application has many users.	Good
Status code, where there are only a few possible status codes.	Bad
Item creation date, rounded to the nearest time period (for example, day, hour, or minute).	Bad
Device ID, where each device accesses data at relatively similar intervals.	Good
Device ID, where even if there are many devices being tracked, one is by far more popular than all the others.	Bad

If a single table has only a small number of partition key values, consider distributing your write operations across more distinct partition key values. In other words, structure the primary key elements to avoid one "hot" (heavily requested) partition key value that slows overall performance.

- 1. Objetivo del taller 1b
- 2. DynamoDB: Clave de Partición
- 3. <u>DynamoDB: Clave de Ordenamiento</u>
- 4. Ejercicio 1: Sistema Académico
- 5. Ejercicio 2: Red Social (Ejercicio propuesto)
- 6. Cierre

DynamoDB: Clave de Ordenamiento Concepto y Buenas Prácticas

En DynamoDB una clave primaria puede ser:

- Clave de partición
- Clave de partición + Clave de ordenamiento

La clave primaria debe ser **única en toda la tabla**.

La **clave de ordenamiento** permite organizar los datos

Best practices for using sort keys to organize data in DynamoDB

PDF RSS

In an Amazon DynamoDB table, the primary key that uniquely identifies each item in the table can be composed of a partition key and a sort key.

Well-designed sort keys have two key benefits:

- They gather related information together in one place where it can be queried efficiently. Careful
 design of the sort key lets you retrieve commonly needed groups of related items using range
 queries with operators such as begins_with, between, >, <, and so on.
- Composite sort keys let you define hierarchical (one-to-many) relationships in your data that you can query at any level of the hierarchy.

For example, in a table listing geographical locations, you might structure the sort key as follows.

[country]#[region]#[state]#[county]#[city]#[neighborhood]

This would let you make efficient range queries for a list of locations at any one of these levels of aggregation, from country, to a neighborhood, and everything in between.

DynamoDB: Clave de Ordenamiento

Ejemplo

La Clave de ordenamiento es útil para ampliar las opciones de consulta de datos. Ejemplo Tabla ChatMessages:

- Clave de Partición: chatroomID
- Clave de Ordenamiento: user name#datetime

Referencia: https://aws.amazon.com/es/blogs/aws-spanish/using-sort-keys-to-organize-data-in-amazon-dynamodb/

DynamoDB: Clave de Ordenamiento

Ejemplo

- 1. Objetivo del taller 1b
- 2. DynamoDB: Clave de Partición
- 3. DynamoDB: Clave de Ordenamiento
- 4. Ejercicio 1: Sistema Académico
- 5. Ejercicio 2: Red Social (Ejercicio propuesto)
- 6. Cierre

Ejercicio 1: Sistema Académico

Propuesta de diseño Multi-tenancy con DynamoDB - Alternativa 1

Microservicio Alumnos

Clave Partición tenant_id	Clave Ordenamiento alumno_id	Datos
UTEC	202310424	{"ape_pat": "Castro", "ape_mat": "Coa",}
UNIV2	F202400123	{"ape_pat": "Seminario", "ape_mat": "Lezama",}

Microservicio Cursos

Clave Partición tenant_id	Clave Ordenamiento curso_id	Datos
UTEC	CS2032	{"nombre": "Cloud Computing"}
UTEC	CS2033	{"nombre": "Base de Datos"}
UTEC	CS2034	{"nombre": "Machine Learning"}

Microservicio Matriculas (Incluye evaluaciones con sus notas)

Patrón de acceso para consultas por alumno_id

Clave Partición tenant_id#alumno_id	Clave Ordenamiento ciclo#curso_id#seccion_id#eval_id	Datos
UTEC#202310424	2024-2#CS2032#1	{"fecha_matricula": "2024-07-24"}
UTEC#202310424	2024-2#CS2032#1#PA1	{"fecha_registro": "2024-10-13", "registrado_por": "gcolchado", "nota": 18}
UTEC#202310424	2024-2#CS2032#1#TP	{"fecha_registro": "2024-10-14", "registrado_por": "gcolchado", "nota": 15}
UTEC#202310424	2024-2#CS2032#1#EP	{"fecha_registro": "2024-10-10", "registrado_por": "gcolchado", "nota": 13}

Ejercicio 1: Sistema Académico

Propuesta de diseño Multi-tenancy con DynamoDB - Alternativa 2

Microservicio Alumnos

Clave Partición tenant_id	Clave Ordenamiento alumno_id	Datos
UTEC	202310424	{"ape_pat": "Castro", "ape_mat": "Coa",}
UNIV2	F202400123	{"ape_pat": "Seminario", "ape_mat": "Lezama",}

Microservicio Cursos

Clave Partición tenant_id	Clave Ordenamiento curso_id	Datos
UTEC	CS2032	{"nombre": "Cloud Computing"}
UTEC	CS2033	{"nombre": "Base de Datos"}
UTEC	CS2034	{"nombre": "Machine Learning"}

Microservicio Matriculas (Incluye evaluaciones con sus notas)

Patrón de acceso para consultas por curso_id

Clave Partición tenant_id#curso_id	Clave Ordenamiento ciclo#seccion_id#alumno_id#eval_id	Datos
UTEC#CS2032	2024-2#1#202310424	{"fecha_matricula": "2024-07-24"}
UTEC#CS2032	2024-2#1#202310424#PA1	{"fecha_registro": "2024-10-13", "registrado_por": "gcolchado", "nota": 18}
UTEC#CS2032	2024-2#1#202310424#TP	{"fecha_registro": "2024-10-14", "registrado_por": "gcolchado", "nota": 15}
UTEC#CS2032	2024-2#1#202310424#EP	{"fecha_registro": "2024-10-10", "registrado_por": "gcolchado", "nota": 13}

Ejercicio 1: Sistema Académico Propuesta de diseño Multi-tenancy con DynamoDB - Alternativa 3

Amazon DynamoDB supports two types of secondary indexes:

- Global secondary index (GSI) An index with a partition key and a sort key that can be different from those on the base table.
- Local secondary index (LSI) An index that has the same partition key as the base table, but a different sort key.

Microservicio Matriculas (Incluye evaluaciones con sus notas)

Patrón de acceso para consultas por alumno_id y por curso_id con Global secondary index (GSI)

Clave Partición tenant_id#alumno_id	Clave Ordenamiento ciclo#curso_id#seccion_id#eval_id	Clave Partición 2 (GSI) tenant_id#curso_id	Clave Ordenamiento 2 (GSI) ciclo#seccion_id#alumno_id#eval_id	Datos
UTEC#202310424	2024-2#CS2032#1	UTEC#CS2032	2024-2#1#202310424	{"fecha_matricula": "2024-07-24"}
UTEC#202310424	2024-2#CS2032#1#PA1	UTEC#CS2032	2024-2#1#202310424#PA1	{"fecha_registro": "2024-10-13", "registrado_por": "gcolchado", "nota": 18}
UTEC#202310424	2024-2#CS2032#1#TP	UTEC#CS2032	2024-2#1#202310424#TP	{"fecha_registro": "2024-10-14", "registrado_por": "gcolchado", "nota": 15}
UTEC#202310424	2024-2#CS2032#1#EP	UTEC#CS2032	2024-2#1#202310424#EP	{"fecha_registro": "2024-10-10", "registrado_por": "gcolchado", "nota": 13}

Referencia: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-indexes-general.html

- 1. Objetivo del taller 1b
- 2. DynamoDB: Clave de Partición
- 3. DynamoDB: Clave de Ordenamiento
- 4. Ejercicio 1: Sistema Académico
- 5. <u>Ejercicio 2: Red Social (Ejercicio propuesto)</u>
- 6. Cierre

Ejercicio 2: Red Social

Ejercicio propuesto

Elabore una propuesta de diseño Multi-tenancy con DynamoDB para una red social (Ejemplo: Instagram, TikTok)

El tenant de una Red Social es el usuario identificado por su correo.

- 1. Objetivo del taller 1b
- 2. DynamoDB: Clave de Partición
- 3. DynamoDB: Clave de Ordenamiento
- 4. Ejercicio 1: Sistema Académico
- 5. Ejercicio 2: Red Social (Ejercicio propuesto)
- 6. <u>Cierre</u>

Cierre: Base Datos No SQL Multi-tenancy - Qué aprendimos?

- Aprender buenas prácticas para definir Clave de Partición
- Aprender buenas prácticas para definir Clave de Ordenamiento
- Diseñar tablas en DynamoDB de Microservicios Multi-tenancy

Gracias

Elaborado por docente: Geraldo Colchado