Circus Modelling Language in Isabelle/UTP

Simon Foster James Baxter Ana Cavalcanti Jim Woodcock Samuel Canham

March 7, 2018

${\bf Contents}$

1	Introduction				
2	Circ 2.1 2.2 2.3	Cus Core Types Circus Alphabet Basic laws Unrestriction laws	3 3 4		
3	Circus Reactive Relations				
	3.1	Healthiness Conditions	5		
	3.2	Closure Properties	6		
	3.3	Introduction laws	10		
	3.4	Trace Substitution	10		
	3.5	Initial Interaction	12		
	3.6	Enabled Events	13		
	3.7	Completed Trace Interaction	14		
4	Circ	cus and CSP Healthiness Conditions	16		
5	Definitions 1				
	5.1		17		
	5.2		28		
	5.3	Algebraic laws	29		
6	Rea	active Contracts for CSP/Circus with refusals	2 9		
7	External Choice				
	7.1	Definitions and syntax	31		
	7.2	Basic laws	31		
	7.3	Algebraic laws	31		
	7.4	Reactive design calculations	31		
	7.5	Productivity and Guardedness	39		
	7.6	Algebraic laws	40		

8	Circ	cus and CSP Actions	43
	8.1	Conditionals	43
	8.2	Guarded commands	43
	8.3	Alternation	43
	8.4	Assignment	44
	8.5	Assignment with update	44
	8.6	State abstraction	45
	8.7	Assumptions	46
	8.8	Guards	46
	8.9	Basic events	49
	8.10	Event prefix	51
	8.11	Guarded external choice	53
	8.12	Input prefix	53
	8.13	Algebraic laws	55
9	Syn	tax and Translations for Event Prefix 5	56
10	Rec	ursion in Circus	59
	10.1	Fixed-points	59
			60
11	Circ	cus Trace Merge	31
		<u> </u>	61
			61
		9	61
12	Circ	cus Parallel Composition	32
			63
			73
	12.3	Parallel Laws	74
13	Link	king to the Failures-Divergences Model 7	78
			78
			80
			88
14	Met	a theory for Circus	38

1 Introduction

This document contains a mechanisation in Isabelle/UTP [1] of Circus [2].

2 Circus Core Types

 $\begin{array}{c} \textbf{theory} \ utp\text{-}circus\text{-}core \\ \textbf{imports} \ UTP-Reactive-Designs.utp\text{-}rea\text{-}designs \\ \textbf{begin} \end{array}$

2.1 Circus Alphabet

```
alphabet '\varphi csp-vars = '\sigma rsp-vars + ref :: '\varphi set declare csp-vars.defs [lens-defs] declare csp-vars.splits [alpha-splits]
```

The following two locale interpretations are a technicality to improve the behaviour of the automatic tactics. They enable (re)interpretation of state spaces in order to remove any occurrences of lens types, replacing them by tuple types after the tactics *pred-simp* and *rel-simp* are applied. Eventually, it would be desirable to automate preform these interpretations automatically as part of the **alphabet** command.

```
interpretation alphabet-csp-prd:
  lens-interp \lambda(ok, wait, tr, m). (ok, wait, tr, ref_v m, more m)
apply (unfold-locales)
apply (rule injI)
apply (clarsimp)
done
interpretation alphabet-csp-rel:
  lens-interp \lambda(ok, ok', wait, wait', tr, tr', m, m').
    (ok, ok', wait, wait', tr, tr', ref<sub>v</sub> m, ref<sub>v</sub> m', more m, more m')
apply (unfold-locales)
apply (rule injI)
apply (clarsimp)
done
lemma circus-var-ords [usubst]:
  \$ref \prec_v \$ref
  \$ok \prec_v \$ref \ \$ok \ ' \prec_v \$ref \ ' \ \$ok \ \prec_v \ \$ref \ ' \ \$ok \ ' \prec_v \ \$ref
  \$ref \prec_v \$wait \$ref' \prec_v \$wait' \$ref \prec_v \$wait' \$ref' \prec_v \$wait
  \$ref \prec_v \$st \$ref' \prec_v \$st' \$ref \prec_v \$st' \$ref' \prec_v \$st
  \$ref \prec_v \$tr \$ref' \prec_v \$tr' \$ref \prec_v \$tr' \$ref' \prec_v \$tr
  by (simp-all add: var-name-ord-def)
type-synonym ('\sigma,'\varphi) st-csp = ('\sigma,'\varphi list, ('\varphi,unit) csp-vars-scheme) rsp
type-synonym (\sigma, \varphi) action = (\sigma, \varphi) st-csp hrel
type-synonym '\varphi csp = (unit, '\varphi) st-csp
type-synonym '\varphi rel-csp = '\varphi csp hrel
```

There is some slight imprecision with the translations, in that we don't bother to check if the trace event type and refusal set event types are the same. Essentially this is because its very difficult to construct processes where this would be the case. However, it may be better to add a proper ML print translation in the future.

translations

```
(type) ('\sigma,'\varphi) st\text{-}csp <= (type) ('\sigma, '\varphi \text{ list, '}\varphi 1 \text{ } csp\text{-}vars) \text{ } rsp (type) ('\sigma,'\varphi) action <= (type) ('\sigma, '\varphi) st\text{-}csp hrel

notation csp\text{-}vars\text{-}child\text{-}lens_a (\Sigma_c)

notation csp\text{-}vars\text{-}child\text{-}lens (\Sigma_C)
```

2.2 Basic laws

```
lemma R2c-tr-ext: R2c (tr' =_u tr_u \langle [a]_{S<} \rangle = (tr' =_u tr_u \langle [a]_{S<} \rangle)
```

```
by (rel-auto)
lemma circus-alpha-bij-lens:
  bij-lens (\{\$ok,\$ok',\$wait,\$wait',\$tr,\$tr',\$st,\$st',\$ref,\$ref'\}_{\alpha} :: - \Longrightarrow ('s,'e) st-csp \times ('s,'e) st-csp)
  by (unfold-locales, lens-simp+)
         Unrestriction laws
2.3
lemma pre-unrest-ref [unrest]: ref \sharp P \Longrightarrow ref \sharp pre_R(P)
  by (simp add: pre_R-def unrest)
lemma peri-unrest-ref [unrest]: ref \sharp P \Longrightarrow ref \sharp peri_R(P)
  by (simp add: peri_R-def unrest)
lemma post-unrest-ref [unrest]: ref \sharp P \Longrightarrow ref \sharp post_R(P)
  by (simp\ add:\ post_R-def\ unrest)
lemma cmt-unrest-ref [unrest]: $ref $$ P \Longrightarrow $ref $$ cmt_R(P)$
  by (simp add: cmt_R-def unrest)
lemma st-lift-unrest-ref' [unrest]: ref' \sharp [b]_{S<}
  by (rel-auto)
lemma RHS-design-ref-unrest [unrest]:
  \llbracket\$ref \ \sharp \ P; \$ref \ \sharp \ Q \ \rrbracket \Longrightarrow \$ref \ \sharp \ (\mathbf{R}_s(P \vdash Q)) \llbracket false / \$wait \rrbracket
  by (simp add: RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
lemma R1-ref-unrest [unrest]: ref \ \sharp \ P \Longrightarrow ref \ \sharp \ R1(P)
  by (simp add: R1-def unrest)
lemma R2c\text{-ref-unrest} [unrest]: $ref \mu P \Longrightarrow $ref \mu R2c(P)
  by (simp add: R2c-def unrest)
lemma R1-ref'-unrest [unrest]: ref' \sharp P \Longrightarrow ref' \sharp R1(P)
  by (simp add: R1-def unrest)
lemma R2c\text{-ref'-unrest} [unrest]: ref' \sharp P \Longrightarrow ref' \sharp R2c(P)
  by (simp add: R2c-def unrest)
lemma R2s-notin-ref': R2s([\ll x \gg]_{S < \notin u} \$ref') = ([\ll x \gg]_{S < \notin u} \$ref')
  by (pred-auto)
lemma unrest-circus-alpha:
  fixes P :: ('e, 't) \ action
  assumes
    \$ok \ \sharp \ P \ \$ok' \ \sharp \ P \ \$wait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$tr \ \sharp \ P
    tr' \ddagger P $st \ddagger P $st' \ddagger P $ref \ddagger P $ref' \ddagger P 
  shows \Sigma \sharp P
  by (rule bij-lens-unrest-all[OF circus-alpha-bij-lens], simp add: unrest assms)
lemma unrest-all-circus-vars:
  fixes P :: ('s, 'e) \ action
  assumes \$ok \sharp P \$ok \' \sharp P \$wait \sharp P \$wait \' \sharp P \$ref \sharp P \Sigma \sharp r' \Sigma \sharp s \Sigma \sharp s' \Sigma \sharp t \Sigma \sharp t'
  shows \Sigma \sharp [\$ref' \mapsto_s r', \$st \mapsto_s s, \$st' \mapsto_s s', \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  using assms
```

by (simp add: bij-lens-unrest-all-eq[OF circus-alpha-bij-lens] unrest-plus-split plus-vwb-lens)

```
(simp add: unrest usubst closure)
lemma unrest-all-circus-vars-st-st':
  fixes P :: ('s, 'e) \ action
  assumes \$ok \sharp P \$ok' \sharp P \$wait \sharp P \$wait' \sharp P \$ref \sharp P \$ref' \sharp P \Sigma \sharp s \Sigma \sharp s' \Sigma \sharp t \Sigma \sharp t'
  shows \Sigma \sharp [\$st \mapsto_s s, \$st' \mapsto_s s', \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  by (simp add: bij-lens-unrest-all-eq[OF circus-alpha-bij-lens] unrest-plus-split plus-vwb-lens)
     (simp add: unrest usubst closure)
lemma unrest-all-circus-vars-st:
  fixes P :: ('s, 'e) \ action
  \mathbf{assumes} \ \$ok \ \sharp \ P \ \$vait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$ref \ \sharp \ P \ \$st' \ \sharp \ P \ \Sigma \ \sharp \ s \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows \Sigma \sharp [\$st \mapsto_s s, \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  using assms
  by (simp add: bij-lens-unrest-all-eq[OF circus-alpha-bij-lens] unrest-plus-split plus-vwb-lens)
      (simp add: unrest usubst closure)
lemma unrest-any-circus-var:
  fixes P :: ('s, 'e) \ action
  assumes \$ok \ \sharp \ P \ \$ok' \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P \ \$ref' \ \sharp \ P \ \Sigma \ \sharp \ s' \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows x \sharp [\$st \mapsto_s s, \$st' \mapsto_s s', \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  by (simp add: unrest-all-var unrest-all-circus-vars-st-st' assms)
lemma unrest-any-circus-var-st:
  fixes P :: ('s, 'e) \ action
  \mathbf{assumes} \ \$ok \ \sharp \ P \ \$vait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$ref \ \sharp \ P \ \$ref \ \sharp \ P \ \$st' \ \sharp \ P \ \Sigma \ \sharp \ s \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows x \sharp [\$st \mapsto_s s, \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  by (simp add: unrest-all-var unrest-all-circus-vars-st assms)
end
       Circus Reactive Relations
3
theory utp-circus-rel
  \mathbf{imports}\ \mathit{utp-circus-core}
begin
3.1
        Healthiness Conditions
CSP Reactive Relations
definition CRR :: ('s, 'e) \ action \Rightarrow ('s, 'e) \ action where
[upred-defs]: CRR(P) = (\exists \$ref \cdot RR(P))
lemma CRR-idem: CRR(CRR(P)) = CRR(P)
  by (rel-auto)
lemma Idempotent-CRR [closure]: Idempotent CRR
  by (simp add: CRR-idem Idempotent-def)
lemma CRR-intro:
  assumes ref \ \sharp PP \ is \ RR
  shows P is CRR
```

by (simp add: CRR-def Healthy-def, simp add: Healthy-if assms ex-unrest)

```
CSP Reactive Conditions
definition CRC :: ('s, 'e) \ action \Rightarrow ('s, 'e) \ action \ where
[upred-defs]: CRC(P) = (\exists \$ref \cdot RC(P))
lemma CRC-intro:
 assumes ref \ PP  is RC
 shows P is CRC
 by (simp add: CRC-def Healthy-def, simp add: Healthy-if assms ex-unrest)
lemma ref-unrest-RR [unrest]: ref \ \sharp \ P \Longrightarrow ref \ \sharp \ RR \ P
 by (rel-auto, blast+)
lemma ref-unrest-RC1 [unrest]: ref \ \sharp \ P \Longrightarrow ref \ \sharp \ RC1 \ P
 by (rel-auto, blast+)
lemma ref-unrest-RC [unrest]: ref \ \sharp \ P \Longrightarrow ref \ \sharp \ RC \ P
 by (simp add: RC-R2-def ref-unrest-RC1 ref-unrest-RR)
lemma RR-ex-ref: RR (\exists $ref • RR P) = (\exists $ref • RR P)
 by (rel-auto)
lemma RC1-ex-ref: RC1 (\exists \$ref \cdot RC1 \ P) = (\exists \$ref \cdot RC1 \ P)
 by (rel-auto, meson dual-order.trans)
lemma ex-ref'-RR-closed [closure]:
 assumes P is RR
 shows (\exists \$ref' \cdot P) is RR
proof -
 have RR \ (\exists \$ref' \cdot RR(P)) = (\exists \$ref' \cdot RR(P))
   by (rel-auto)
 thus ?thesis
   by (metis Healthy-def assms)
qed
lemma CRC-idem: CRC(CRC(P)) = CRC(P)
 apply (simp add: CRC-def ex-unrest unrest)
 apply (simp add: RC-def RR-ex-ref)
 apply (metis (no-types, hide-lams) Healthy-def RC1-RR-closed RC1-ex-ref RR-ex-ref RR-idem)
done
lemma Idempotent-CRC [closure]: Idempotent CRC
 by (simp add: CRC-idem Idempotent-def)
3.2
       Closure Properties
lemma CRR-implies-RR [closure]:
 assumes P is CRR
 shows P is RR
proof -
 have RR(CRR(P)) = CRR(P)
```

by (rel-auto) thus ?thesis

qed

by (metis Healthy-def' assms)

```
lemma CRC-implies-RR [closure]:
 assumes P is CRC
 shows P is RR
proof -
 have RR(CRC(P)) = CRC(P)
   by (rel-auto)
     (metis (no-types, lifting) Prefix-Order.prefixE Prefix-Order.prefixI append.assoc append-minus)+
 thus ?thesis
   by (metis Healthy-def assms)
qed
lemma CRC-implies-RC [closure]:
 assumes P is CRC
 shows P is RC
proof -
 have RC1(CRC(P)) = CRC(P)
   by (rel-auto, meson dual-order.trans)
 thus ?thesis
   by (simp add: CRC-implies-RR Healthy-if RC1-def RC-intro assms)
\mathbf{qed}
lemma CRR-unrest-ref [unrest]: P is CRR \Longrightarrow \$ref \sharp P
 by (metis CRR-def CRR-implies-RR Healthy-def in-var-uvar ref-vwb-lens unrest-as-exists)
lemma CRC-implies-CRR [closure]:
 assumes P is CRC
 shows P is CRR
 apply (rule CRR-intro)
  apply (simp-all add: unrest assms closure)
 apply (metis CRC-def CRC-implies-RC Healthy-def assms in-var-uvar ref-vwb-lens unrest-as-exists)
 done
lemma unrest-ref'-neg-RC [unrest]:
 assumes P is RR P is RC
 shows ref' \sharp P
proof -
 have P = (\neg_r \neg_r P)
   by (simp add: closure rpred assms)
 also have ... = (\neg_r \ (\neg_r \ P) \ ;; \ true_r)
   by (metis Healthy-if RC1-def RC-implies-RC1 assms(2) calculation)
 also have $ref' \mu ...
   by (rel-auto)
 finally show ?thesis.
lemma rea-true-CRR [closure]: true_r is CRR
 by (rel-auto)
lemma rea-true-CRC [closure]: true_r is CRC
 by (rel-auto)
lemma false-CRR [closure]: false is CRR
 by (rel-auto)
lemma false-CRC [closure]: false is CRC
```

```
by (rel-auto)
lemma st-pred-CRR [closure]: [P]_{S<} is CRR
  by (rel-auto)
lemma st-cond-CRC [closure]: [P]_{S<} is CRC
 by (rel-auto)
lemma conj-CRC-closed [closure]:
  \llbracket P \text{ is } CRC; Q \text{ is } CRC \rrbracket \Longrightarrow (P \land Q) \text{ is } CRC
  by (rule CRC-intro, simp-all add: unrest closure)
lemma disj-CRC-closed [closure]:
  \llbracket P \text{ is } CRC; Q \text{ is } CRC \rrbracket \Longrightarrow (P \lor Q) \text{ is } CRC
  by (rule CRC-intro, simp-all add: unrest closure)
lemma shEx-CRR-closed [closure]:
 assumes \bigwedge x. P x is CRR
  shows (\exists x \cdot P(x)) is CRR
proof -
  have CRR(\exists x \cdot CRR(P(x))) = (\exists x \cdot CRR(P(x)))
   by (rel-auto)
  thus ?thesis
   by (metis Healthy-def assms shEx-cong)
lemma USUP-ind-CRR-closed [closure]:
 assumes \bigwedge i. P i is CRR
 shows (| i \cdot P(i)) is CRR
 by (rule CRR-intro, simp-all add: assms unrest closure)
lemma UINF-ind-CRR-closed [closure]:
 assumes \bigwedge i. P i is CRR
 shows (   i \cdot P(i) ) is CRR
 by (rule CRR-intro, simp-all add: assms unrest closure)
lemma cond-tt-CRR-closed [closure]:
  assumes P is CRR Q is CRR
  shows P \triangleleft \$tr' =_u \$tr \triangleright Q \text{ is } CRR
 by (rule CRR-intro, simp-all add: unrest assms closure)
lemma rea-implies-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \Rightarrow_r Q) \text{ is } CRR
 by (simp-all add: CRR-intro closure unrest)
lemma conj-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \land Q) \text{ is } CRR
 by (simp-all add: CRR-intro closure unrest)
lemma disj-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \lor Q) \text{ is } CRR
  by (rule CRR-intro, simp-all add: unrest closure)
lemma rea-not-CRR-closed [closure]:
  P \text{ is } CRR \Longrightarrow (\neg_r P) \text{ is } CRR
```

```
using false-CRR rea-implies-CRR-closed by fastforce
lemma disj-R1-closed [closure]: [P \text{ is } R1; Q \text{ is } R1] \implies (P \vee Q) \text{ is } R1
  by (rel-blast)
lemma st-cond-R1-closed [closure]: [P \text{ is } R1; Q \text{ is } R1] \implies (P \triangleleft b \triangleright_R Q) \text{ is } R1
  by (rel-blast)
lemma cond-st-RR-closed [closure]:
  assumes P is RR Q is RR
  shows (P \triangleleft b \triangleright_R Q) is RR
  apply (rule RR-intro, simp-all add: unrest closure assms, simp add: Healthy-def R2c-condr)
  apply (simp add: Healthy-if assms RR-implies-R2c)
  apply (rel-auto)
done
lemma cond-st-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \triangleleft b \triangleright_R Q) \text{ is } CRR
  by (simp-all add: CRR-intro closure unrest)
lemma tr-extend-seqr-lit [rdes]:
  fixes P :: ('s, 'e) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
  shows (\$tr' =_u \$tr \hat{\ }_u \langle \ll a \gg \rangle \wedge \$st' =_u \$st) ;; P = P[\![\$tr \hat{\ }_u \langle \ll a \gg \rangle / \$tr]\!]
  using assms by (rel-auto, meson)
lemma tr-assign-comp [rdes]:
  fixes P :: ('s, 'e) action
  \mathbf{assumes} \ \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
  shows (\$tr' =_u \$tr \land \lceil \langle \sigma \rangle_a \rceil_S) ;; P = \lceil \sigma \rceil_{S\sigma} \dagger P
  using assms by (rel-auto, meson)
lemma RR-msubst-tt: RR((P\ t)[t \rightarrow \&tt]) = (RR\ (P\ t))[t \rightarrow \&tt]
  by (rel-auto)
lemma RR-msubst-ref': RR((P r) \llbracket r \rightarrow \$ ref' \rrbracket) = (RR (P r)) \llbracket r \rightarrow \$ ref' \rrbracket
  by (rel-auto)
lemma msubst-tt-RR [closure]: \llbracket \bigwedge t. P t is RR \rrbracket \Longrightarrow (P t) \llbracket t \rightarrow \&tt \rrbracket is RR
  by (simp add: Healthy-def RR-msubst-tt)
lemma msubst-ref'-RR [closure]: \llbracket \land r. P r is RR \rrbracket \Longrightarrow (P r) \llbracket r \rightarrow \$ref' \rrbracket is RR
  by (simp add: Healthy-def RR-msubst-ref')
lemma conj-less-tr-RR-closed [closure]:
  assumes P is CRR
  shows (P \land \$tr <_u \$tr') is CRR
  have CRR(CRR(P) \land \$tr <_u \$tr') = (CRR(P) \land \$tr <_u \$tr')
    apply (rel-auto, blast+)
    using less-le apply fastforce+
    done
  thus ?thesis
    by (metis Healthy-def assms)
qed
```

```
 \begin{array}{l} \textbf{lemma} \ conj\text{-}eq\text{-}tr\text{-}RR\text{-}closed \ [closure]:} \\ \textbf{assumes} \ P \ is \ CRR \\ \textbf{shows} \ (P \land \$tr' =_u \$tr) \ is \ CRR \\ \textbf{proof} \ - \\ \textbf{have} \ CRR(CRR(P) \land \$tr' =_u \$tr) = (CRR(P) \land \$tr' =_u \$tr) \\ \textbf{by} \ (rel\text{-}auto, \ blast+) \\ \textbf{thus} \ ?thesis \\ \textbf{by} \ (metis \ Healthy\text{-}def \ assms) \\ \textbf{qed} \\ \end{array}
```

3.3 Introduction laws

Extensionality principles for introducing refinement and equality of Circus reactive relations. It is necessary only to consider a subset of the variables that are present.

```
lemma CRR-refine-ext:
 assumes
  P is CRR Q is CRR
 shows P \sqsubseteq Q
proof -
 have \bigwedge t \ s \ s' \ r'. (CRR \ P)[[\langle \rangle, \ll t \gg, \ll s \gg, \ll s' \gg, \ll r' \gg /\$tr, \$tr', \$st, \$st', \$ref']]
             \sqsubseteq (CRR\ Q) \llbracket \langle \rangle, \ll t \gg, \ll s \gg, \ll s' \gg, \ll r' \gg / \$tr, \$tr', \$st, \$st', \$ref' \rrbracket
  by (simp add: assms Healthy-if)
 hence CRR \ P \sqsubseteq CRR \ Q
  by (rel-auto)
 thus ?thesis
  by (metis\ Healthy-if\ assms(1)\ assms(2))
qed
lemma CRR-eq-ext:
 assumes
  P is CRR Q is CRR
 shows P = Q
proof -
 have \bigwedge t s s' r'. (CRR P) \llbracket \langle \rangle, \ll t \gg, \ll s' \gg, \ll r' \gg / \$tr, \$tr', \$st, \$st', \$ref' \rrbracket
             by (simp add: assms Healthy-if)
 hence CRR P = CRR Q
  by (rel-auto)
 thus ?thesis
  by (metis\ Healthy-if\ assms(1)\ assms(2))
qed
lemma CRR-refine-impl-prop:
 assumes P is CRR Q is CRR
 shows P \sqsubseteq Q
 by (rule CRR-refine-ext, simp-all add: assms closure unrest usubst)
   (rule refine-prop-intro, simp-all add: unrest unrest-all-circus-vars closure assms)
```

3.4 Trace Substitution

definition trace-subst $(-[-]_t [999,0] 999)$

```
where [upred-defs]: P[v]_t = (P[\&tt - \lceil v \rceil_{S < / \&tt}] \land \$tr + \lceil v \rceil_{S < \le_u} \$tr')
lemma unrest-trace-subst [unrest]:
  \llbracket mwb\text{-}lens\ x;\ x\bowtie (\$tr)_v;\ x\bowtie (\$tr')_v;\ x\bowtie (\$st)_v;\ x\ \sharp\ P\ \rrbracket \Longrightarrow x\ \sharp\ P\llbracket v\rrbracket_t
 by (simp add: trace-subst-def lens-indep-sym unrest)
lemma trace-subst-RR-closed [closure]:
  assumes P is RR
 shows P[v]_t is RR
proof
 have (RR \ P)[\![v]\!]_t is RR
    apply (rel-auto)
    apply (metis diff-add-cancel-left' trace-class.add-left-mono)
    apply (metis le-add minus-cancel-le trace-class.add-diff-cancel-left)
    using le-add order-trans apply blast
  done
  thus ?thesis
    by (simp add: Healthy-if assms)
qed
lemma trace-subst-CRR-closed [closure]:
  assumes P is CRR
 shows P[v]_t is CRR
 by (rule CRR-intro, simp-all add: closure assms unrest)
lemma tsubst-nil [usubst]:
  assumes P is \overrightarrow{CRR}
 shows P[\![\langle\rangle]\!]_t = P
proof -
 have (CRR \ P)[\![\langle \rangle ]\!]_t = CRR \ P
    by (rel-auto)
  \mathbf{thus}~? the sis
    by (simp add: Healthy-if assms)
qed
lemma tsubst-false [usubst]: false[y]]_t = false
 by rel-auto
lemma cond-rea-tt-subst [usubst]:
  (P \triangleleft b \triangleright_R Q) \llbracket v \rrbracket_t = (P \llbracket v \rrbracket_t \triangleleft b \triangleright_R Q \llbracket v \rrbracket_t)
 by (rel-auto)
lemma tsubst-conj [usubst]: (P \land Q)[v]_t = (P[v]_t \land Q[v]_t)
 by (rel-auto)
lemma tsubst-disj [usubst]: (P \lor Q) \llbracket v \rrbracket_t = (P \llbracket v \rrbracket_t \lor Q \llbracket v \rrbracket_t)
 by (rel-auto)
lemma rea-subst-R1-closed [closure]: P[v]_t is R1
  apply (rel-auto) using le-add order.trans by blast
lemma tsubst-UINF-ind [usubst]: (<math>\bigcap i \cdot P(i))[v]_t = (\bigcap i \cdot (P(i))[v]_t)
 by (rel-auto)
```

3.5 Initial Interaction

[upred-defs]: $\mathcal{I}(s,t) = (\lceil s \rceil_{S <} \land \$tr + \lceil t \rceil_{S <} \leq_u \$tr')$

```
\mathcal{I}(s,t) is a predicate stating that, if the initial state satisfies state predicate s, then the trace t
is an initial trace.
lemma unrest-rea-init [unrest]:
  \llbracket x \bowtie (\$tr)_v; x \bowtie (\$tr')_v; x \bowtie (\$st)_v \rrbracket \Longrightarrow x \sharp \mathcal{I}(s,t)
 by (simp add: rea-init-def unrest lens-indep-sym)
lemma rea-init-R1 [closure]: \mathcal{I}(s,t) is R1
  apply (rel-auto) using dual-order.trans le-add by blast
lemma rea-init-R2c [closure]: \mathcal{I}(s,t) is R2c
  apply (rel-auto)
 apply (metis diff-add-cancel-left' trace-class.add-left-mono)
 apply (metis le-add minus-cancel-le trace-class.add-diff-cancel-left)
done
lemma rea-init-R2 [closure]: \mathcal{I}(s,t) is R2
  by (metis Healthy-def R1-R2c-is-R2 rea-init-R1 rea-init-R2c)
lemma csp-init-RR [closure]: \mathcal{I}(s,t) is RR
  apply (rel-auto)
 apply (metis diff-add-cancel-left' trace-class.add-left-mono)
 apply (metis le-add minus-cancel-le trace-class.add-diff-cancel-left)
 apply (metis le-add less-le less-le-trans)
done
lemma csp-init-CRR [closure]: \mathcal{I}(s,t) is CRR
 by (rule CRR-intro, simp-all add: unrest closure)
lemma rea-init-impl-st [closure]: (\mathcal{I}(b,t) \Rightarrow_r [c]_{S<}) is RC
  apply (rule RC-intro)
 apply (simp add: closure)
 apply (rel-auto)
 using order-trans by auto
lemma rea-init-RC1:
  \neg_r \ \mathcal{I}(P,t) is RC1
 apply (rel-auto) using dual-order.trans by blast
lemma init-acts-empty [rpred]: \mathcal{I}(true,\langle\rangle) = true_r
  by (rel-auto)
lemma rea-not-init [rpred]:
  (\neg_r \ \mathcal{I}(P,\langle\rangle)) = \mathcal{I}(\neg P,\langle\rangle)
 by (rel-auto)
lemma rea-init-conj [rpred]:
  (\mathcal{I}(P,t) \wedge \mathcal{I}(Q,t)) = \mathcal{I}(P \wedge Q,t)
  by (rel-auto)
lemma rea-init-empty-trace [rpred]: \mathcal{I}(s,\langle\rangle) = [s]_{S<}
 by (rel-auto)
```

definition rea-init :: 's upred \Rightarrow ('t::trace, 's) uexpr \Rightarrow ('s, 't, '\alpha, '\beta) rel-rsp (\mathcal{I}'(-,-')) where

```
lemma rea-init-disj-same [rpred]: (\mathcal{I}(s_1,t) \vee \mathcal{I}(s_2,t)) = \mathcal{I}(s_1 \vee s_2, t)
  by (rel-auto)
lemma rea-init-impl-same [rpred]: (\mathcal{I}(s_1,t) \Rightarrow_r \mathcal{I}(s_2,t)) = (\mathcal{I}(s_1,t) \Rightarrow_r [s_2]_{S \leq s})
  apply (rel-auto) using dual-order.trans le-add by blast+
lemma tsubst-st-cond [usubst]: [P]_{S<}[\![t]\!]_t = \mathcal{I}(P,t)
  by (rel-auto)
lemma tsubst-rea-init [usubst]: (\mathcal{I}(s,x))[\![y]\!]_t = \mathcal{I}(s,y+x)
  apply (rel-auto)
  apply (metis add.assoc diff-add-cancel-left' trace-class.add-le-imp-le-left trace-class.add-left-mono)
 apply (metis add.assoc diff-add-cancel-left' le-add trace-class.add-le-imp-le-left trace-class.add-left-mono)+
done
lemma tsubst-rea-not [usubst]: (\neg_r P) \llbracket v \rrbracket_t = ((\neg_r P \llbracket v \rrbracket_t) \land \mathcal{I}(true, v))
  apply (rel-auto)
  using le-add order-trans by blast
lemma tsubst-true [usubst]: true_r[v]_t = \mathcal{I}(true,v)
  by (rel-auto)
3.6
        Enabled Events
definition csp-enable :: 's upred \Rightarrow ('e list, 's) uexpr \Rightarrow ('e set, 's) uexpr \Rightarrow ('s, 'e) action (\mathcal{E}'(-,-,-'))
where
[upred-defs]: \mathcal{E}(s,t,E) = (\lceil s \rceil_{S <} \land \$tr' =_u \$tr \upharpoonright_u \lceil t \rceil_{S <} \land (\forall e \in \lceil E \rceil_{S <} \cdot \ll e \gg \notin_u \$ref'))
Predicate \mathcal{E}(s,t,E) states that, if the initial state satisfies predicate s, then t is a possible
(failure) trace, such that the events in the set E are enabled after the given interaction.
lemma csp-enable-R1-closed [closure]: \mathcal{E}(s,t,E) is R1
  by (rel-auto)
lemma csp-enable-R2-closed [closure]: \mathcal{E}(s,t,E) is R2c
  by (rel-auto)
lemma csp-enable-RR [closure]: \mathcal{E}(s,t,E) is CRR
  by (rel-auto)
lemma tsubst-csp-enable [usubst]: \mathcal{E}(s,t_2,e)[\![t_1]\!]_t = \mathcal{E}(s,t_1 \hat{\ }_u t_2,e)
  apply (rel-auto)
  apply (metis append.assoc less-eq-list-def prefix-concat-minus)
  apply (simp add: list-concat-minus-list-concat)
done
lemma csp-enable-unrests [unrest]:
  \llbracket x \bowtie (\$tr)_v; x \bowtie (\$tr')_v; x \bowtie (\$st)_v; x \bowtie (\$ref')_v \rrbracket \Longrightarrow x \sharp \mathcal{E}(s,t,e)
  by (simp add: csp-enable-def R1-def lens-indep-sym unrest)
lemma csp-enable-tr'-eq-tr [rpred]:
  \mathcal{E}(s,\langle\rangle,r) \triangleleft \$tr' =_u \$tr \triangleright false = \mathcal{E}(s,\langle\rangle,r)
  by (rel-auto)
lemma csp-enable-st-pred [rpred]:
```

```
([s_1]_{S<} \wedge \mathcal{E}(s_2,t,E)) = \mathcal{E}(s_1 \wedge s_2,t,E)
  by (rel-auto)
lemma csp-enable-tr-empty: \mathcal{E}(true, \langle \rangle, \{v\}_u) = (\$tr' =_u \$tr \land \lceil v \rceil_{S \leqslant \psi_u} \$ref')
  by (rel-auto)
lemma csp-enable-nothing: \mathcal{E}(true, \langle \rangle, \{\}_u) = (\$tr' =_u \$tr)
  by (rel-auto)
lemma msubst-nil-csp-enable [usubst]:
  \mathcal{E}(s(x),t(x),E(x))[x\rightarrow\langle\rangle] = \mathcal{E}(s(x)[x\rightarrow\langle\rangle],t(x)[x\rightarrow\langle\rangle],E(x)[x\rightarrow\langle\rangle])
  by (pred-auto)
lemma msubst-csp-enable [usubst]:
  \mathcal{E}(s(x),t(x),E(x))[x\rightarrow \lceil v\rceil_{S\leftarrow}] = \mathcal{E}(s(x)[x\rightarrow v],t(x)[x\rightarrow v],E(x)[x\rightarrow v])
  by (rel-auto)
lemma csp-enable-false [rpred]: \mathcal{E}(false,t,E) = false
  by (rel-auto)
lemma USUP-csp-enable [rpred]:
  (\bigsqcup x \cdot \mathcal{E}(s, t, A(x))) = \mathcal{E}(s, t, (\bigvee x \cdot A(x)))
  by (rel-auto)
3.7
          Completed Trace Interaction
definition csp\text{-}do :: 's \ upred \Rightarrow ('s \Rightarrow 's) \Rightarrow ('e \ list, 's) \ uexpr \Rightarrow ('s, 'e) \ action \ (\Phi'(-,-,-')) \ \textbf{where}
[\textit{upred-defs}] \colon \Phi(s,\sigma,t) = (\lceil s \rceil_{S<} \, \wedge \, \$\textit{tr'} =_{u} \, \$\textit{tr } \, \hat{}_{u} \, \lceil t \rceil_{S<} \, \wedge \, \lceil \langle \sigma \rangle_{a} \rceil_{S})
Predicate \Phi(s,\sigma,t) states that if the initial state satisfies s, and the trace t is performed, then
afterwards the state update \sigma is executed.
lemma unrest-csp-do [unrest]:
  \llbracket x \bowtie (\$tr)_v; x \bowtie (\$tr')_v; x \bowtie (\$st)_v; x \bowtie (\$st')_v \rrbracket \Longrightarrow x \sharp \Phi(s,\sigma,t)
  by (simp-all add: csp-do-def alpha-in-var alpha-out-var prod-as-plus unrest lens-indep-sym)
lemma csp-do-CRR [closure]: \Phi(s,\sigma,t) is CRR
  by (rel-auto)
lemma trea-subst-csp-do [usubst]:
  (\Phi(s,\sigma,t_2))[t_1]_t = \Phi(s,\sigma,t_1 \hat{u} t_2)
  apply (rel-auto)
  apply (metis append.assoc less-eq-list-def prefix-concat-minus)
  apply (simp add: list-concat-minus-list-concat)
done
lemma st-subst-csp-do [usubst]:
  [\sigma]_{S\sigma} \dagger \Phi(s,\varrho,t) = \Phi(\sigma \dagger s,\varrho \circ \sigma,\sigma \dagger t)
  by (rel-auto)
lemma csp-init-do [rpred]: (\mathcal{I}(s1,t) \wedge \Phi(s2,\sigma,t)) = \Phi(s1 \wedge s2, \sigma, t)
  by (rel-auto)
lemma csp\text{-}do\text{-}false [rpred]: \Phi(false,s,t) = false
```

by (rel-auto)

```
lemma csp-do-assign [rpred]:
  assumes P is CRR
  shows \Phi(s, \sigma, t) ;; P = ([s]_{S <} \land ([\sigma]_{S \sigma} \dagger P)[\![t]\!]_t)
proof -
  have \Phi(s,\sigma,t) ;; CRR(P) = ([s]_{S<} \wedge ([\sigma]_{S\sigma} \dagger CRR(P))[\![t]\!]_t)
    by (rel-blast)
  thus ?thesis
    by (simp add: Healthy-if assms)
qed
lemma subst-state-csp-enable [usubst]:
  [\sigma]_{S\sigma} \dagger \mathcal{E}(s,t_2,e) = \mathcal{E}(\sigma \dagger s, \sigma \dagger t_2, \sigma \dagger e)
  by (rel-auto)
lemma csp-do-assign-enable [rpred]:
  \Phi(s_1, \sigma, t_1) :: \mathcal{E}(s_2, t_2, e) = \mathcal{E}(s_1 \wedge \sigma \dagger s_2, t_1 \hat{u}(\sigma \dagger t_2), (\sigma \dagger e))
  by (simp add: rpred closure usubst)
lemma csp-do-assign-do [rpred]:
  \Phi(s_1,\sigma,t_1) :: \Phi(s_2,\varrho,t_2) = \Phi(s_1 \wedge (\sigma \dagger s_2), \varrho \circ \sigma, t_1 \hat{u}(\sigma \dagger t_2))
  by (rel-auto)
lemma csp-do-skip [rpred]:
  assumes P is CRR
  shows \Phi(true,id,t) ;; P = P[t]_t
  have \Phi(true,id,t) ;; CRR(P) = (CRR \ P)[\![t]\!]_t
    by (rel-auto)
  thus ?thesis
    by (simp add: Healthy-if assms)
\mathbf{qed}
lemma wp-rea-csp-do-lemma:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
  \mathbf{shows} \; (\lceil \langle \sigma \rangle_a \rceil_S \; \wedge \; \$tr \; \hat{} \; =_u \; \$tr \; \hat{} \; _u \; \lceil t \rceil_{S <}) \; ;; \; P = (\lceil \sigma \rceil_{S \sigma} \; \dagger \; P) \llbracket \$tr \; \hat{} \; _u \; \lceil t \rceil_{S <} / \$tr \rrbracket
  using assms by (rel-auto, meson)
lemma wp-rea-csp-do[wp]:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes P is CRR
  shows \Phi(s,\sigma,t) wp_r P = (\mathcal{I}(s,t) \Rightarrow_r (\lceil \sigma \rceil_{S\sigma} \dagger P) \llbracket t \rrbracket_t)
proof -
  have \Phi(s,\sigma,t) wp_r CRR(P) = (\mathcal{I}(s,t) \Rightarrow_r (\lceil \sigma \rceil_{S\sigma} \dagger CRR(P)) \llbracket t \rrbracket_t)
    by (rel-blast)
  thus ?thesis
    by (simp add: assms Healthy-if)
lemma csp-do-power-Suc [rpred]:
  \Phi(true, id, t) \hat{\ } (Suc i) = \Phi(true, id, iter[Suc i](t))
  by (induct\ i, (rel-auto)+)
lemma csp-power-do-comp [rpred]:
  assumes P is CRR
```

```
shows \Phi(true, id, t) \hat{i} ;; P = \Phi(true, id, iter[i](t)) ;; P
  apply (cases i)
  apply (simp-all add: rpred usubst assms closure)
  done
lemma wp-rea-csp-do-skip [wp]:
  fixes Q :: ('\sigma, '\varphi) \ action
  assumes P is CRR
  shows \Phi(s,id,t) wp_r P = (\mathcal{I}(s,t) \Rightarrow_r P[\![t]\!]_t)
proof
  have \Phi(s,id,t) wp_r P = \Phi(s,id,t) wp_r P
    by (simp\ add:\ skip-r-def)
  thus ?thesis by (simp add: wp assms usubst alpha)
lemma msubst-csp-do [usubst]:
  \Phi(s(x), \sigma, t(x)) \llbracket x \to \lceil v \rceil_{S \leftarrow} \rrbracket = \Phi(s(x) \llbracket x \to v \rrbracket, \sigma, t(x) \llbracket x \to v \rrbracket)
  by (rel-auto)
end
```

4 Circus and CSP Healthiness Conditions

theory utp-circus-healths imports utp-circus-rel begin

5 Definitions

```
We here define extra healthiness conditions for Circus / CSP processes.
abbreviation CSP1 :: (('\sigma, '\varphi) \ st\text{-}csp \times ('\sigma, '\varphi) \ st\text{-}csp) \ health
where CSP1(P) \equiv RD1(P)
abbreviation CSP2 :: (('\sigma, '\varphi) \ st\text{-}csp \times ('\sigma, '\varphi) \ st\text{-}csp) health
where CSP2(P) \equiv RD2(P)
abbreviation CSP :: (('\sigma, '\varphi) \ st\text{-}csp \times ('\sigma, '\varphi) \ st\text{-}csp) \ health
where CSP(P) \equiv SRD(P)
definition STOP :: '\varphi rel\text{-}csp where
[upred-defs]: STOP = CSP1(\$ok' \land R3c(\$tr' =_u \$tr \land \$wait'))
definition SKIP :: '\varphi rel\text{-}csp where
[upred-defs]: SKIP = \mathbf{R}_s(\exists \$ref \cdot CSP1(II))
definition Stop::('\sigma, '\varphi) \ action \ {\bf where}
[upred-defs]: Stop = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr \land \$wait'))
definition Skip :: ('\sigma, '\varphi) \ action \ \mathbf{where}
[upred-defs]: Skip = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr \land \neg \$wait' \land \$st' =_u \$st))
definition CSP3 :: (('\sigma, '\varphi) \ st\text{-}csp \times ('\sigma, '\varphi) \ st\text{-}csp) \ health where
[upred-defs]: CSP3(P) = (Skip ;; P)
```

```
definition CSP4 :: (('\sigma, '\varphi) \ st\text{-}csp \times ('\sigma, '\varphi) \ st\text{-}csp) health where [upred\text{-}defs]: CSP4(P) = (P \ ;; \ Skip)

definition NCSP :: (('\sigma, '\varphi) \ st\text{-}csp \times ('\sigma, '\varphi) \ st\text{-}csp) health where [upred\text{-}defs]: NCSP = CSP3 \circ CSP4 \circ CSP

Productive and normal processes abbreviation PCSP \equiv Productive \circ NCSP

Instantaneous and normal processes abbreviation ICSP \equiv ISRD1 \circ NCSP
```

5.1 Healthiness condition properties

SKIP is the same as Skip, and STOP is the same as Stop, when we consider stateless CSP processes. This is because any reference to the st variable degenerates when the alphabet type coerces its type to be empty. We therefore need not consider SKIP and STOP actions.

```
theorem SKIP-is-Skip: SKIP = Skip
 by (rel-auto)
theorem STOP-is-Stop: STOP = Stop
 by (rel-auto)
theorem Skip-UTP-form: Skip = \mathbf{R}_s(\exists \$ref \cdot CSP1(II))
 by (rel-auto)
lemma Skip-is-CSP [closure]:
  Skip is CSP
 by (simp add: Skip-def RHS-design-is-SRD unrest)
lemma Skip-RHS-tri-design:
  Skip = \mathbf{R}_s(true \vdash (false \diamond (\$tr' =_u \$tr \land \$st' =_u \$st)))
 by (rel-auto)
lemma Skip-RHS-tri-design' [rdes-def]:
  Skip = \mathbf{R}_s(true_r \vdash (false \diamond \Phi(true, id, \langle \rangle)))
 by (rel-auto)
lemma Stop-is-CSP [closure]:
  Stop is CSP
 by (simp add: Stop-def RHS-design-is-SRD unrest)
lemma Stop-RHS-tri-design: Stop = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr) \diamond false)
 by (rel-auto)
lemma Stop-RHS-rdes-def [rdes-def]: Stop = \mathbf{R}_s(true_r \vdash \mathcal{E}(true,\langle\rangle,\{\}_u) \diamond false)
 by (rel-auto)
lemma preR-Skip [rdes]: pre_R(Skip) = true_r
 by (rel-auto)
lemma periR-Skip [rdes]: peri_R(Skip) = false
 by (rel-auto)
```

```
lemma postR-Skip [rdes]: post_R(Skip) = \Phi(true, id, \langle \rangle)
  by (rel-auto)
lemma Productive-Stop [closure]:
  Stop is Productive
  by (simp add: Stop-RHS-tri-design Healthy-def Productive-RHS-design-form unrest)
lemma Skip-left-lemma:
  assumes P is CSP
 shows Skip :: P = \mathbf{R}_s ((\forall \$ref \cdot pre_R P) \vdash (\exists \$ref \cdot cmt_R P))
proof -
 have Skip;; P =
       \mathbf{R}_s \ ((\$tr' =_u \$tr \land \$st' =_u \$st) \ wp_r \ pre_R \ P \vdash
           (\$tr' =_u \$tr \land \$st' =_u \$st) ;; peri_R P \diamond
           (\$tr' =_u \$tr \land \$st' =_u \$st) ;; post_R P)
   by (simp add: SRD-composition-wp alpha rdes closure wp assms rpred C1, rel-auto)
  also have ... = \mathbf{R}_s ((\forall \$ref \cdot pre_R P) \vdash
                     (\$tr' =_u \$tr \land \neg \$wait' \land \$st' =_u \$st) ;; ((\exists \$st \cdot \lceil H \rceil_D) \triangleleft \$wait \triangleright cmt_R P))
   by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s ((\forall \$ref \cdot pre_R P) \vdash (\exists \$ref \cdot cmt_R P))
   by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  finally show ?thesis.
qed
lemma Skip-left-unit:
  assumes P is CSP ref <math> P[false/wait]
  shows Skip;; P = P
 using assms
  by (simp add: Skip-left-lemma)
   (metis SRD-reactive-design-alt all-unrest cmt-unrest-ref cmt-wait-false ex-unrest pre-unrest-ref pre-wait-false)
lemma CSP3-intro:
  \llbracket P \text{ is } CSP; \$ref \sharp P \llbracket false / \$wait \rrbracket \rrbracket \Longrightarrow P \text{ is } CSP3
  by (simp add: CSP3-def Healthy-def' Skip-left-unit)
lemma ref-unrest-RHS-design:
  assumes ref \ P \ ref \ Q_1 \ ref \ Q_2
  shows ref \sharp (\mathbf{R}_s(P \vdash Q_1 \diamond Q_2)) f
 by (simp add: RHS-def R1-def R2c-def R2s-def R3h-def design-def unrest usubst assms)
lemma CSP3-SRD-intro:
  assumes P is CSP ref \ pre_R(P) \ ref \ peri_R(P) \ ref \ post_R(P)
 shows P is CSP3
proof -
  have P: \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) = P
   by (simp add: SRD-reactive-design-alt assms(1) wait'-cond-peri-post-cmt[THEN sym])
 have \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) is CSP3
   by (rule CSP3-intro, simp add: assms P, simp add: ref-unrest-RHS-design assms)
  thus ?thesis
   by (simp \ add: P)
qed
lemma Skip-unrest-ref [unrest]: $ref \pm Skip[false/$wait]
  by (simp add: Skip-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
```

```
lemma Skip-unrest-ref' [unrest]: $ref' \models Skip [false/$wait]
 by (simp add: Skip-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
lemma CSP3-iff:
 assumes P is CSP
 shows P is CSP3 \longleftrightarrow (\$ref \sharp P[false/\$wait])
proof
 assume 1: P is CSP3
 have ref \sharp (Skip ;; P) \llbracket false / \$wait \rrbracket
   by (simp add: usubst unrest)
 with 1 show ref \ || P[false/\wait]|
   by (metis CSP3-def Healthy-def)
\mathbf{next}
 assume 1:ref \ \sharp \ P[false/\$wait]
 show P is CSP3
   by (simp add: 1 CSP3-intro assms)
lemma CSP3-unrest-ref [unrest]:
 assumes P is CSP P is CSP3
 shows \$ref \sharp pre_R(P) \$ref \sharp peri_R(P) \$ref \sharp post_R(P)
proof -
 have a:(\$ref \ \sharp \ P[false/\$wait])
   using CSP3-iff assms by blast
  from a show ref \sharp pre_R(P)
   by (rel-blast)
 from a show ref \sharp peri_R(P)
   by (rel-blast)
 from a show ref \sharp post_R(P)
   by (rel-blast)
\mathbf{qed}
lemma CSP3-rdes:
 assumes P is RR Q is RR R is RR
 shows CSP3(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s((\forall \$ref \cdot P) \vdash (\exists \$ref \cdot Q) \diamond (\exists \$ref \cdot R))
 by (simp add: CSP3-def Skip-left-lemma closure assms rdes, rel-auto)
lemma CSP3-form:
 assumes P is CSP
 shows CSP3(P) = \mathbf{R}_s((\forall \$ref \cdot pre_R(P)) \vdash (\exists \$ref \cdot peri_R(P)) \diamond (\exists \$ref \cdot post_R(P)))
 by (simp add: CSP3-def Skip-left-lemma assms, rel-auto)
lemma CSP3-Skip [closure]:
  Skip is CSP3
 by (rule CSP3-intro, simp add: Skip-is-CSP, simp add: Skip-def unrest)
lemma CSP3-Stop [closure]:
  Stop is CSP3
 by (rule CSP3-intro, simp add: Stop-is-CSP, simp add: Stop-def unrest)
lemma CSP3-Idempotent [closure]: Idempotent CSP3
 by (metis (no-types, lifting) CSP3-Skip CSP3-def Healthy-if Idempotent-def seqr-assoc)
lemma CSP3-Continuous: Continuous CSP3
 by (simp add: Continuous-def CSP3-def seq-Sup-distl)
```

```
lemma Skip-right-lemma:
  assumes P is CSP
  shows P :: Skip = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot cmt_R \ P)))
  have P :: Skip = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash (\exists \$st' \cdot peri_R \ P) \diamond post_R \ P :: (\$tr' =_u \$tr \land \$st')
    by (simp add: SRD-composition-wp closure assms wp rdes rpred, rel-auto)
  also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) wp_r \ false \vdash
                           ((cmt_R\ P\ ;;\ (\exists\ \$st\ \cdot\ \lceil II\rceil_D)) \mathrel{\triangleleft} \$wait' \mathrel{\triangleright} (cmt_R\ P\ ;;\ (\$tr'=_u\ \$tr\ \land\ \neg\ \$wait\ \land\ \$st')
=_{u} \$st))))
    by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) wp_r \ false \vdash
                          ((\exists \$st' \cdot cmt_R P) \triangleleft \$wait' \triangleright (cmt_R P ;; (\$tr' =_u \$tr \land \neg \$wait \land \$st' =_u \$st))))
    by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \land \$wait' \rhd (\exists \$ref' \cdot cmt_R \ P)))
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  finally show ?thesis.
qed
lemma Skip-right-tri-lemma:
  assumes P is CSP
  shows P :: Skip = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \ \$st' \cdot peri_R \ P) \diamond (\exists \ \$ref' \cdot post_R \ P)))
  have ((\exists \$st' \cdot cmt_R P) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot cmt_R P)) = ((\exists \$st' \cdot peri_R P) \diamond (\exists \$ref' \cdot post_R P))
P))
    by (rel-auto)
  thus ?thesis by (simp add: Skip-right-lemma[OF assms])
lemma CSP4-intro:
  assumes P is CSP (\neg_r \ pre_R(P)) ;; R1(true) = (\neg_r \ pre_R(P))
            st' \ddagger (cmt_R P) \llbracket true / swait' \rrbracket \ ref' \ddagger (cmt_R P) \llbracket false / swait' \rrbracket
  shows P is CSP4
proof -
  have CSP_4(P) = \mathbf{R}_s \ ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \land \$wait' \rhd (\exists \$ref' \cdot cmt_R \ P)))
    by (simp add: CSP4-def Skip-right-lemma assms(1))
   also have ... = \mathbf{R}_s (pre<sub>R</sub>(P) \vdash ((\exists $st' \cdot cmt<sub>R</sub> P)[[true/$wait']] \triangleleft $wait' \triangleright (\exists $ref' \cdot cmt<sub>R</sub>
P)[false/\$wait'])
    by (simp add: wp-rea-def assms(2) rpred closure cond-var-subst-left cond-var-subst-right)
   also have ... = \mathbf{R}_s (pre_R(P) \vdash ((\exists \$st' \cdot (cmt_R P) \llbracket true / \$wait' \rrbracket) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot (cmt_R P) \llbracket true / \$wait' \rrbracket)
P)[false/\$wait']))
    by (simp add: usubst unrest)
  \textbf{also have} \ ... = \mathbf{R}_s \ (pre_R \ P \vdash ((cmt_R \ P) \llbracket true / \$wait' \rrbracket \triangleleft \$wait' \blacktriangleright (cmt_R \ P) \llbracket false / \$wait' \rrbracket))
    by (simp add: ex-unrest assms)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> P \vdash cmt_R P)
    by (simp add: cond-var-split)
  also have \dots = P
    by (simp\ add:\ SRD\text{-reactive-}design\text{-}alt\ assms(1))
  finally show ?thesis
    by (simp add: Healthy-def')
qed
lemma CSP4-RC-intro:
  assumes P is CSP pre_R(P) is RC
```

```
st' \sharp (cmt_R P)[true/swait'] \$ref' \sharp (cmt_R P)[false/swait']
 shows P is CSP4
proof -
 have (\neg_r \ pre_R(P)) \ ;; \ R1(true) = (\neg_r \ pre_R(P))
  by (metis (no-types, lifting) R1-seqr-closure assms(2) rea-not-R1 rea-not-false rea-not-not wp-rea-RC-false
wp-rea-def)
 thus ?thesis
   by (simp add: CSP4-intro assms)
qed
lemma CSP4-rdes:
 assumes P is RR Q is RR R is RR
 shows CSP4(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s ((\neg_r P) \ wp_r \ false \vdash ((\exists \$st' \cdot Q) \diamond (\exists \$ref' \cdot R)))
 by (simp add: CSP4-def Skip-right-lemma closure assms rdes, rel-auto, blast+)
lemma CSP4-form:
 assumes P is CSP
 shows CSP4(P) = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R \ P) \diamond (\exists \$ref' \cdot post_R \ P)))
 by (simp add: CSP4-def Skip-right-tri-lemma assms)
lemma Skip-srdes-right-unit:
  (Skip :: ('\sigma, '\varphi) \ action) ;; II_R = Skip
 by (rdes-simp)
lemma Skip-srdes-left-unit:
  II_R;; (Skip :: ('\sigma, '\varphi) \ action) = Skip
 by (rdes-eq)
lemma CSP4-right-subsumes-RD3: RD3(CSP4(P)) = CSP4(P)
 by (metis (no-types, hide-lams) CSP4-def RD3-def Skip-srdes-right-unit seqr-assoc)
lemma CSP4-implies-RD3: P is CSP4 \Longrightarrow P is RD3
 by (metis CSP4-right-subsumes-RD3 Healthy-def)
lemma CSP4-tri-intro:
 assumes P is CSP (\neg_r \ pre_R(P));; R1(true) = (\neg_r \ pre_R(P)) $st' \sharp \ peri_R(P) $ref' \sharp \ post_R(P)
 shows P is CSP4
 using assms
 by (rule-tac CSP4-intro, simp-all add: pre_R-def peri_R-def post_R-def usubst\ cmt_R-def)
lemma CSP4-NSRD-intro:
 assumes P is NSRD ref' \sharp post_R(P)
 shows P is CSP4
 by (simp add: CSP4-tri-intro NSRD-is-SRD NSRD-neg-pre-unit NSRD-st'-unrest-peri assms)
lemma CSP3-commutes-CSP4: CSP3(CSP4(P)) = CSP4(CSP3(P))
 by (simp add: CSP3-def CSP4-def seqr-assoc)
lemma NCSP-implies-CSP [closure]: P is NCSP \Longrightarrow P is CSP
 by (metis (no-types, hide-lams) CSP3-def CSP4-def Healthy-def NCSP-def SRD-idem SRD-segr-closure
Skip-is-CSP comp-apply)
lemma NCSP-elim [RD-elim]:
  \llbracket X \text{ is } NCSP; P(\mathbf{R}_s(pre_R(X) \vdash peri_R(X) \diamond post_R(X))) \rrbracket \Longrightarrow P(X)
 by (simp add: SRD-reactive-tri-design closure)
```

```
lemma NCSP-implies-CSP3 [closure]:
 P \text{ is } NCSP \Longrightarrow P \text{ is } CSP3
 by (metis (no-types, lifting) CSP3-def Healthy-def' NCSP-def Skip-is-CSP Skip-left-unit Skip-unrest-ref
comp-apply seqr-assoc)
lemma NCSP-implies-CSP4 [closure]:
 P \text{ is } NCSP \Longrightarrow P \text{ is } CSP4
  by (metis (no-types, hide-lams) CSP3-commutes-CSP4 Healthy-def NCSP-def NCSP-implies-CSP
NCSP-implies-CSP3 comp-apply)
lemma NCSP-implies-RD3 [closure]: P is NCSP \Longrightarrow P is RD3
 by (metis CSP3-commutes-CSP4 CSP4-right-subsumes-RD3 Healthy-def NCSP-def comp-apply)
lemma NCSP-implies-NSRD [closure]: P is NCSP \Longrightarrow P is NSRD
 by (simp add: NCSP-implies-CSP NCSP-implies-RD3 SRD-RD3-implies-NSRD)
lemma NCSP-subset-implies-CSP [closure]:
 A \subseteq [NCSP]_H \Longrightarrow A \subseteq [CSP]_H
 using NCSP-implies-CSP by blast
lemma NCSP-subset-implies-NSRD [closure]:
 A \subseteq [\![NCSP]\!]_H \Longrightarrow A \subseteq [\![NSRD]\!]_H
 using NCSP-implies-NSRD by blast
lemma CSP-Healthy-subset-member: [P \in A; A \subseteq [CSP]_H] \implies P is CSP
 by (simp add: is-Healthy-subset-member)
lemma CSP3-Healthy-subset-member: [P \in A; A \subseteq [CSP3]_H] \implies P is CSP3
 by (simp add: is-Healthy-subset-member)
lemma CSP4-Healthy-subset-member: [P \in A; A \subseteq [CSP4]_H] \implies P is CSP4
 by (simp add: is-Healthy-subset-member)
lemma NCSP-Healthy-subset-member: [P \in A; A \subseteq [NCSP]_H] \implies P is NCSP
 by (simp add: is-Healthy-subset-member)
lemma NCSP-intro:
 assumes P is CSP P is CSP3 P is CSP4
 shows P is NCSP
 by (metis Healthy-def NCSP-def assms comp-eq-dest-lhs)
lemma NCSP-NSRD-intro:
 assumes P is NSRD ref \sharp pre_R(P) \hat pre_R(P) \hat pre_R(P) \hat pre_R(P) \hat pre_R(P) \hat pre_R(P)
 shows P is NCSP
 by (simp add: CSP3-SRD-intro CSP4-NSRD-intro NCSP-intro NSRD-is-SRD assms)
\mathbf{lemma} \ \mathit{CSP4-neg-pre-unit}\colon
 assumes P is CSP P is CSP4
 shows (\neg_r \ pre_R(P)) \ ;; \ R1(true) = (\neg_r \ pre_R(P))
 by (simp add: CSP4-implies-RD3 NSRD-neg-pre-unit SRD-RD3-implies-NSRD assms(1) assms(2))
lemma NSRD-CSP4-intro:
 assumes P is CSP P is CSP4
 shows P is NSRD
```

```
lemma NCSP-form:
     NCSP\ P = \mathbf{R}_s\ ((\forall\ \$ref\ \cdot\ (\neg_r\ pre_R(P))\ wp_r\ false) \vdash ((\exists\ \$ref\ \cdot\ \exists\ \$st'\ \cdot\ peri_R(P)) \diamond (\exists\ \$ref\ \cdot\ \exists
ref' \cdot post_R(P)))
proof -
    have NCSP P = CSP3 (CSP4 (NSRD P))
        by (metis (no-types, hide-lams) CSP4-def NCSP-def NSRD-alt-def RA1 RD3-def Skip-srdes-left-unit
o-apply)
    also
    have ... = \mathbf{R}_s ((\forall \$ref \cdot (\neg_r pre_R (NSRD P)) wp_r false) \vdash
                                            (\exists \$ref \cdot \exists \$st' \cdot peri_R (NSRD P)) \diamond
                                            (\exists \$ref \cdot \exists \$ref' \cdot post_R (NSRD P)))
         by (simp add: CSP3-form CSP4-form closure unrest rdes, rel-auto)
    also have ... = \mathbf{R}_s ((\forall \$ref \cdot (\neg_r \ pre_R(P)) \ wp_r \ false) <math>\vdash ((\exists \$ref \cdot \exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref \cdot \exists
ref' \cdot post_R(P))
         by (simp add: NSRD-form rdes closure, rel-blast)
    finally show ?thesis.
qed
lemma CSP4-st'-unrest-peri [unrest]:
    assumes P is CSP P is CSP4
    shows \$st' \sharp peri_R(P)
    by (simp add: NSRD-CSP4-intro NSRD-st'-unrest-peri assms)
lemma CSP4-healthy-form:
    assumes P is CSP P is CSP4
    shows P = \mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \ \$st' \cdot peri_R(P))) \diamond (\exists \ \$ref' \cdot post_R(P))))
proof -
    \mathbf{have}\ P = \mathbf{R}_s\ ((\neg_r\ pre_R\ P)\ wp_r\ false \vdash ((\exists\ \$st'\cdot cmt_R\ P) \triangleleft \$wait' \rhd (\exists\ \$ref'\cdot cmt_R\ P)))
         by (metis\ CSP4\text{-}def\ Healthy\text{-}def\ Skip\text{-}right\text{-}lemma\ assms}(1)\ assms(2))
    \mathbf{also\ have}\ ... = \mathbf{R}_s\ ((\lnot_r\ pre_R\ P)\ wp_r\ false \vdash ((\exists\ \$st'\cdot cmt_R\ P)[[true/\$wait']] \triangleleft \$wait' \rhd (\exists\ \$ref'\cdot cmt_R\ P)[[true/\$wait']] \triangleleft \$wait' \rhd (\exists\ \$vait') \vdash (\exists\ \$vait')
cmt_R P)[false/\$wait'])
         by (metis (no-types, hide-lams) subst-wait'-left-subst subst-wait'-right-subst wait'-cond-def)
    also have ... = \mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref' \cdot post_R(P))))
         by (simp add: wait'-cond-def usubst peri_R-def post_R-def cmt_R-def unrest)
    finally show ?thesis.
qed
lemma CSP4-ref'-unrest-pre [unrest]:
    assumes P is CSP P is CSP4
    shows ref' \not\equiv pre_R(P)
proof -
    have pre_R(P) = pre_R(\mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref' \cdot post_R(P)))))
         using CSP4-healthy-form assms(1) assms(2) by fastforce
    also have ... = (\neg_r \ pre_R \ P) \ wp_r \ false
         by (simp add: rea-pre-RHS-design wp-rea-def usubst unrest
                   CSP4-neg-pre-unit R1-rea-not R2c-preR R2c-rea-not assms)
    also have $ref' \mu ...
         by (simp add: wp-rea-def unrest)
    finally show ?thesis.
qed
lemma NCSP-set-unrest-pre-wait':
    assumes A \subseteq [NCSP]_H
```

by (simp add: CSP4-implies-RD3 SRD-RD3-implies-NSRD assms(1) assms(2))

```
shows \bigwedge P. P \in A \Longrightarrow \$wait' \sharp pre_R(P)
proof -
 \mathbf{fix} P
 assume P \in A
 hence P is NSRD
   using NCSP-implies-NSRD assms by auto
 thus wait' \sharp pre_R(P)
   using NSRD-wait'-unrest-pre by blast
qed
lemma CSP4-set-unrest-pre-st':
 assumes A \subseteq [\![CSP]\!]_H \ A \subseteq [\![CSP4]\!]_H
 shows \bigwedge P. P \in A \Longrightarrow \$st' \sharp pre_R(P)
proof -
 \mathbf{fix} P
 assume P \in A
 hence P is NSRD
   using NSRD-CSP4-intro assms(1) assms(2) by blast
 thus st' \not\equiv pre_R(P)
   using NSRD-st'-unrest-pre by blast
qed
lemma CSP4-ref'-unrest-post [unrest]:
 assumes P is CSP P is CSP4
 shows ref' \sharp post_R(P)
proof -
 \mathbf{have} \ post_R(P) = post_R(\mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref' \cdot post_R(P)))))
   using CSP4-healthy-form assms(1) assms(2) by fastforce
 also have ... = R1 (R2c ((\neg_r \ pre_R \ P) \ wp_r \ false \Rightarrow_r (\exists \ \$ref' \cdot post_R \ P)))
   by (simp add: rea-post-RHS-design usubst unrest wp-rea-def)
 also have $ref' \mu ...
   by (simp add: R1-def R2c-def wp-rea-def unrest)
 finally show ?thesis.
qed
lemma CSP3-Chaos [closure]: Chaos is CSP3
 by (simp add: Chaos-def, rule CSP3-intro, simp-all add: RHS-design-is-SRD unrest)
lemma CSP4-Chaos [closure]: Chaos is CSP4
 by (rule CSP4-tri-intro, simp-all add: closure rdes unrest)
lemma NCSP-Chaos [closure]: Chaos is NCSP
 by (simp add: NCSP-intro closure)
lemma CSP3-Miracle [closure]: Miracle is CSP3
 by (simp add: Miracle-def, rule CSP3-intro, simp-all add: RHS-design-is-SRD unrest)
lemma CSP4-Miracle [closure]: Miracle is CSP4
 by (rule CSP4-tri-intro, simp-all add: closure rdes unrest)
lemma NCSP-Miracle [closure]: Miracle is NCSP
 by (simp add: NCSP-intro closure)
lemma NCSP-seqr-closure [closure]:
 assumes P is NCSP Q is NCSP
```

```
shows P ;; Q is NCSP
 by (metis (no-types, lifting) CSP3-def CSP4-def Healthy-def' NCSP-implies-CSP NCSP-implies-CSP3
    NCSP-implies-CSP4 NCSP-intro SRD-segr-closure assms(1) assms(2) segr-assoc)
lemma CSP4-Skip [closure]: Skip is CSP4
 apply (rule CSP4-intro, simp-all add: Skip-is-CSP)
 apply (simp-all add: Skip-def rea-pre-RHS-design rea-cmt-RHS-design usubst unrest R2c-true)
done
lemma NCSP-Skip [closure]: Skip is NCSP
 by (metis CSP3-Skip CSP4-Skip Healthy-def NCSP-def Skip-is-CSP comp-apply)
lemma CSP4-Stop [closure]: Stop is CSP4
 apply (rule CSP4-intro, simp-all add: Stop-is-CSP)
 apply (simp-all add: Stop-def rea-pre-RHS-design rea-cmt-RHS-design usubst unrest R2c-true)
done
lemma NCSP-Stop [closure]: Stop is NCSP
 by (metis CSP3-Stop CSP4-Stop Healthy-def NCSP-def Stop-is-CSP comp-apply)
lemma CSP4-Idempotent: Idempotent CSP4
 by (metis (no-types, lifting) CSP3-Skip CSP3-def CSP4-def Healthy-if Idempotent-def seqr-assoc)
lemma CSP4-Continuous: Continuous CSP4
 by (simp add: Continuous-def CSP4-def seq-Sup-distr)
lemma preR-Stop [rdes]: pre_R(Stop) = true_r
 by (simp add: Stop-def Stop-is-CSP rea-pre-RHS-design unrest usubst R2c-true)
lemma periR-Stop [rdes]: peri_R(Stop) = \mathcal{E}(true,\langle\rangle,\{\}_u)
 by (rel-auto)
lemma postR-Stop [rdes]: post_R(Stop) = false
 by (rel-auto)
lemma cmtR-Stop [rdes]: cmt_R(Stop) = (\$tr' =_u \$tr \land \$wait')
 by (rel-auto)
lemma NCSP-Idempotent [closure]: Idempotent NCSP
 by (clarsimp simp add: NCSP-def Idempotent-def)
    (metis (no-types, hide-lams) CSP3-Idempotent CSP3-def CSP4-Idempotent CSP4-def Healthy-def
Idempotent-def\ SRD-idem\ SRD-seqr-closure\ Skip-is-CSP\ seqr-assoc)
lemma NCSP-Continuous [closure]: Continuous NCSP
 by (simp add: CSP3-Continuous CSP4-Continuous Continuous-comp NCSP-def SRD-Continuous)
lemma preR-CRR [closure]: P is NCSP \Longrightarrow pre_R(P) is CRR
 by (rule CRR-intro, simp-all add: closure unrest)
lemma periR-CRR [closure]: P is NCSP \Longrightarrow peri_R(P) is CRR
 by (rule CRR-intro, simp-all add: closure unrest)
lemma postR-CRR [closure]: P is NCSP \Longrightarrow post_R(P) is CRR
 by (rule CRR-intro, simp-all add: closure unrest)
```

```
{f lemma} NCSP-rdes-intro:
 assumes P is CRC Q is CRR R is CRR
        \$st' \sharp Q \$ref' \sharp R
 shows \mathbf{R}_s(P \vdash Q \diamond R) is NCSP
 apply (rule NCSP-intro)
   apply (simp-all add: closure assms)
  apply (rule CSP3-SRD-intro)
     apply (simp-all add: rdes closure assms unrest)
 apply (rule CSP4-tri-intro)
    apply (simp-all add: rdes closure assms unrest)
 apply (metis (no-types, lifting) CRC-implies-RC R1-seqr-closure assms(1) rea-not-R1 rea-not-false
rea-not-not wp-rea-RC-false wp-rea-def)
 done
lemma NCSP-preR-CRC [closure]:
 assumes P is NCSP
 shows pre_R(P) is CRC
 by (rule CRC-intro, simp-all add: closure assms unrest)
lemma CSP3-Sup-closure [closure]:
 apply (auto simp add: CSP3-def Healthy-def seq-Sup-distl)
 apply (rule\ cong[of\ Sup])
  apply (simp)
 using image-iff apply force
 done
lemma CSP4-Sup-closure [closure]:
 apply (auto simp add: CSP4-def Healthy-def seq-Sup-distr)
 apply (rule cong[of Sup])
  apply (simp)
 using image-iff apply force
 done
lemma NCSP-Sup-closure [closure]: A \subseteq NCSP_H; A \neq \{\} \Longrightarrow (\square A) is NCSP
 apply (rule NCSP-intro, simp-all add: closure)
  apply (metis (no-types, lifting) Ball-Collect CSP3-Sup-closure NCSP-implies-CSP3)
 apply (metis (no-types, lifting) Ball-Collect CSP4-Sup-closure NCSP-implies-CSP4)
 done
lemma NCSP-SUP-closure [closure]: \llbracket \bigwedge i. P(i) \text{ is NCSP}; A \neq \{\} \rrbracket \Longrightarrow (\prod i \in A. P(i)) \text{ is NCSP}
 by (metis (mono-tags, lifting) Ball-Collect NCSP-Sup-closure image-iff image-is-empty)
lemma PCSP-implies-NCSP [closure]:
 assumes P is PCSP
 shows P is NCSP
proof -
 have P = Productive(NCSP(NCSP|P))
   by (metis (no-types, hide-lams) Healthy-def' Idempotent-def NCSP-Idempotent assms comp-apply)
 also have ... = \mathbf{R}_s ((\forall \$ref \cdot (\neg_r \ pre_R(NCSP \ P)) \ wp_r \ false) <math>\vdash
                   (\exists \$ref \cdot \exists \$st' \cdot peri_R(NCSP\ P)) \diamond
                   ((\exists \$ref \cdot \exists \$ref' \cdot post_R (NCSP P)) \land \$tr <_u \$tr'))
   by (simp add: NCSP-form Productive-RHS-design-form unrest closure)
```

```
also have ... is NCSP
       apply (rule NCSP-rdes-intro)
              apply (rule CRC-intro)
                apply (simp-all add: unrest ex-unrest all-unrest closure)
       done
   finally show ?thesis.
qed
lemma PCSP-elim [RD-elim]:
   assumes X is PCSP P (\mathbf{R}_s ((pre_R X) \vdash peri_R X \diamond (post_R X \land \$tr <_u \$tr')))
   by (metis Healthy-if NCSP-implies-CSP PCSP-implies-NCSP Productive-form assms comp-apply)
lemma ICSP-implies-NCSP [closure]:
   assumes P is ICSP
   shows P is NCSP
proof -
   have P = ISRD1(NCSP(NCSP|P))
       by (metis (no-types, hide-lams) Healthy-def' Idempotent-def NCSP-Idempotent assms comp-apply)
   also have ... = ISRD1 (\mathbf{R}_s ((\forall \$ref \cdot (\neg_r pre_R (NCSP P)) wp_r false) <math>\vdash
                                                       (\exists \$ref \cdot \exists \$st' \cdot peri_R (NCSP P)) \diamond
                                                       (\exists \$ref \cdot \exists \$ref' \cdot post_R (NCSP P))))
       \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{NCSP}\text{-}\mathit{form})
   also have ... = \mathbf{R}_s ((\forall $ref \cdot (\neg_r pre_R(NCSP\ P)) wp_r false) \vdash
                                          false \diamond
                                          ((\exists \$ref \cdot \exists \$ref' \cdot post_R (NCSP P)) \land \$tr' =_u \$tr))
           by (simp-all add: ISRD1-RHS-design-form closure rdes unrest)
   also have ... is NCSP
       apply (rule NCSP-rdes-intro)
              apply (rule CRC-intro)
                apply (simp-all add: unrest ex-unrest all-unrest closure)
       done
   finally show ?thesis.
qed
lemma ICSP-implies-ISRD [closure]:
   assumes P is ICSP
   shows P is ISRD
  by (metis (no-types, hide-lams) Healthy-def ICSP-implies-NCSP ISRD-def NCSP-implies-NSRD assms
comp-apply)
lemma ICSP-elim [RD-elim]:
   \textbf{assumes} \ X \ \textit{is} \ \textit{ICSP} \ P \ (\mathbf{R}_s \ ((\textit{pre}_R \ X) \vdash \textit{false} \diamond (\textit{post}_R \ X \ \land \$tr' =_u \$tr)))
   shows PX
   by (metis Healthy-if NCSP-implies-CSP ICSP-implies-NCSP ISRD1-form assms comp-apply)
lemma ICSP-Stop-right-zero-lemma:
    (P \wedge (\$tr' =_u \$tr)) \ ;; \ true_r = true_r \Longrightarrow (P \wedge (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr) = (\$tr' =_u \$tr)) \ ;; \ (\$tr' =_u \$tr' =_u \$tr) = (\$tr' =_u \$tr' =
   by (rel-blast)
lemma ICSP-Stop-right-zero:
   assumes P is ICSP pre_R(P) = true_r post_R(P);; true_r = true_r
   shows P :: Stop = Stop
proof -
   from assms(3) have 1:(post_R P \land \$tr' =_u \$tr) ;; true_r = true_r
```

```
by (rel-auto, metis (full-types, hide-lams) dual-order.antisym order-refl)
 show ?thesis
  by (rdes-simp cls: assms(1), simp add: csp-enable-nothing assms(2) ICSP-Stop-right-zero-lemma[OF
1])
qed
lemma ICSP-intro: [P \text{ is NCSP}; P \text{ is ISRD1}] \implies P \text{ is ICSP}
 using Healthy-comp by blast
lemma seq-ICSP-closed [closure]:
 assumes P is ICSP Q is ICSP
 shows P;; Q is ICSP
 by (meson ICSP-implies-ISRD ICSP-implies-NCSP ICSP-intro ISRD-implies-ISRD1 NCSP-segr-closure
assms seq-ISRD-closed)
lemma Miracle-ICSP [closure]: Miracle is ICSP
 by (rule ICSP-intro, simp add: closure, simp add: ISRD1-rdes-intro rdes-def closure)
5.2
       CSP theories
typedecl TCSP
abbreviation TCSP \equiv UTHY(TCSP, ('\sigma, '\varphi) st\text{-}csp)
overloading
  tcsp-hcond = utp-hcond :: (TCSP, ('\sigma, '\varphi) st-csp) uthy \Rightarrow (('\sigma, '\varphi) st-csp \times ('\sigma, '\varphi) st-csp) health
begin
 definition tcsp-hcond :: (TCSP, ('\sigma, '\varphi) \ st-csp) \ uthy \Rightarrow (('\sigma, '\varphi) \ st-csp \times ('\sigma, '\varphi) \ st-csp) \ health where
 [upred-defs]: tcsp-hcond T = NCSP
end
interpretation csp-theory: utp-theory-continuous UTHY(TCSP, (\sigma, \varphi) \text{ st-csp})
 rewrites \bigwedge P. P \in carrier (uthy-order\ TCSP) \longleftrightarrow P\ is\ NCSP
 and P is \mathcal{H}_{TCSP} \longleftrightarrow P is NCSP
 and carrier (uthy-order TCSP) \rightarrow carrier (uthy-order TCSP) \equiv [NCSP]_H \rightarrow [NCSP]_H
 and A \subseteq carrier (uthy\text{-}order\ TCSP) \longleftrightarrow A \subseteq [\![NCSP]\!]_H
 and le (uthy\text{-}order\ TCSP) = op \sqsubseteq
 by (unfold-locales, simp-all add: tcsp-hcond-def NCSP-Continuous Healthy-Idempotent Healthy-if NCSP-Idempotent)
declare csp-theory.top-healthy [simp del]
declare csp-theory.bottom-healthy [simp del]
lemma csp-bottom-Chaos: \perp_{TCSP} = Chaos
proof -
 have 1: \perp_{TCSP} = CSP3 (CSP4 (CSP true))
   by (simp add: csp-theory.healthy-bottom, simp add: tcsp-hcond-def NCSP-def)
 also have 2:... = CSP3 (CSP4 Chaos)
   by (metis srdes-hcond-def srdes-theory-continuous.healthy-bottom)
 also have 3:... = Chaos
   by (metis CSP3-Chaos CSP4-Chaos Healthy-def')
 finally show ?thesis.
qed
lemma csp-top-Miracle: \top_{TCSP} = Miracle
 have 1: \top_{TCSP} = CSP3 \ (CSP4 \ (CSP \ false))
```

```
by (simp add: csp-theory.healthy-top, simp add: tcsp-hcond-def NCSP-def)
  also have 2:... = CSP3 (CSP4 Miracle)
    by (metis srdes-hcond-def srdes-theory-continuous.healthy-top)
  also have 3:... = Miracle
    by (metis CSP3-Miracle CSP4-Miracle Healthy-def')
  finally show ?thesis.
qed
5.3
         Algebraic laws
lemma Stop-left-zero:
 assumes P is CSP
 shows Stop ;; P = Stop
 by (simp add: NSRD-seq-post-false assms NCSP-implies-NSRD NCSP-Stop postR-Stop)
end
6
       Reactive Contracts for CSP/Circus with refusals
theory utp-circus-contracts
 imports utp-circus-healths
begin
definition mk-CRD :: 's upred \Rightarrow ('e \ list \Rightarrow 'e \ set \Rightarrow 's \ upred) \Rightarrow ('e \ list \Rightarrow 's \ hrel) \Rightarrow ('s, 'e) action
mk-CRD\ P\ Q\ R = \mathbf{R}_s([P]_{S<} \vdash [Q\ x\ r]_{S<} \llbracket x \rightarrow \&tt \rrbracket \llbracket r \rightarrow \$ref\ \' \rrbracket \diamond [R(x)]_S \' \llbracket x \rightarrow \&tt \rrbracket)
syntax
  -ref-var :: logic
  -mk-CRD :: logic \Rightarrow logic \Rightarrow logic \Rightarrow logic ([-/ \vdash -/ \mid -]_C)
parse-translation \langle \! \langle
 fun \ ref-var-tr \ [] = Syntax.free \ refs
    | ref-var-tr - = raise Match;
[(@{syntax-const - ref-var}, K ref-var-tr)]
end
\rangle\rangle
translations
 [P \vdash Q \mid R]_C = > CONST \ mk\text{-}CRD \ P \ (\lambda \text{-}trace\text{-}var \text{-}ref\text{-}var. \ Q) \ (\lambda \text{-}trace\text{-}var. \ R)
 [P \vdash Q \mid R]_C <= CONST \ mk\text{-}CRD \ P \ (\lambda \ x \ r. \ Q) \ (\lambda \ y. \ R)
lemma CSP-mk-CRD [closure]: [P \vdash Q \text{ trace refs} \mid R(\text{trace})]_C \text{ is CSP}
```

by (simp add: mk-CRD-def closure unrest)

lemma preR-mk-CRD [rdes]: $pre_R([P \vdash Q trace refs \mid R(trace) \mid_C) = [P]_{S < P}$ by (simp add: mk-CRD-def rea-pre-RHS-design usubst unrest R2c-not R2c-lift-state-pre rea-st-cond-def, rel-auto)

 $\mathbf{lemma} \ periR-mk-CRD \ [rdes]: peri_R([P \vdash Q \ trace \ refs \mid R(trace) \mid_C) = ([P]_{S<} \Rightarrow_r ([Q \ trace \ refs]_{S<}) \mathbb{I}(trace, refs) \rightarrow (\&tt,\$refs)$ by (simp add: mk-CRD-def rea-peri-RHS-design usubst unrest R2c-not R2c-lift-state-pre impl-alt-def R2c-disj R2c-msubst-tt R1-disj, rel-auto)

```
\mathbf{lemma} \ postR-mk-CRD \ [rdes]: post_R([P \vdash Q \ trace \ refs \mid R(trace)]_C) = ([P]_{S <} \Rightarrow_r ([R(trace)]_S') \llbracket trace \rightarrow \&tt \rrbracket)
  by (simp add: mk-CRD-def rea-post-RHS-design usubst unrest R2c-not R2c-lift-state-pre
                     impl-alt-def R2c-disj R2c-msubst-tt R1-disj, rel-auto)
Refinement introduction law for contracts
lemma CRD-contract-refine:
  assumes
     Q \text{ is } CSP \text{ `}\lceil P_1 \rceil_{S<} \Rightarrow pre_R Q \text{`}
     \lceil P_1 \rceil_{S<} \land peri_R Q \Rightarrow \lceil P_2 \ t \ r \rceil_{S<} \llbracket t \rightarrow \&tt \rrbracket \llbracket r \rightarrow \$ref \ \rceil \rfloor
     \lceil P_1 \rceil_{S<} \land post_R \ Q \Rightarrow \lceil P_3 \ x \rceil_S \llbracket x \rightarrow \&tt \rrbracket
  shows [P_1 \vdash P_2 \ trace \ refs \mid P_3(trace)]_C \sqsubseteq Q
proof -
   have [P_1 \vdash P_2 \ trace \ refs \mid P_3(trace)]_C \sqsubseteq \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond post_R(Q))
     using assms by (simp add: mk-CRD-def, rule-tac srdes-tri-refine-intro, rel-auto+)
  thus ?thesis
     by (simp\ add:\ SRD\text{-}reactive\text{-}tri\text{-}design\ assms}(1))
qed
lemma CRD-contract-refine':
  assumes
     Q \text{ is } CSP \text{ `} \lceil P_1 \rceil_{S<} \Rightarrow pre_R Q \text{`}
     \lceil P_2 \ t \ r \rceil_{S<} \llbracket t \rightarrow \& tt \rrbracket \llbracket r \rightarrow \$ ref \, ' \rrbracket \sqsubseteq (\lceil P_1 \rceil_{S<} \wedge peri_R \ Q)
     [P_3 \ x]_S[x \rightarrow \&tt] \sqsubseteq ([P_1]_{S <} \land post_R \ Q)
  shows [P_1 \vdash P_2 \ trace \ refs \mid P_3(trace)]_C \sqsubseteq Q
   using assms by (rule-tac CRD-contract-refine, simp-all add: refBy-order)
lemma CRD-refine-CRD:
  assumes
     \lceil P_1 \rceil_{S<} \Rightarrow (\lceil Q_1 \rceil_{S<} :: ('e, 's) \ action)
     (\lceil P_2 \times r \rceil_{S < \llbracket x \to \&tt \rrbracket \llbracket r \to \$ref' \rrbracket}) \sqsubseteq (\lceil P_1 \rceil_{S < \land} \lceil Q_2 \times r \rceil_{S < \llbracket x \to \&tt \rrbracket \llbracket r \to \$ref' \rrbracket} :: ('e,'s) \ action)
     [P_3 \ x]_S[x \rightarrow \&tt] \sqsubseteq ([P_1]_{S <} \land [Q_3 \ x]_S[x \rightarrow \&tt] :: ('e,'s) \ action)
  shows ([P_1 \vdash P_2 \ trace \ refs \mid P_3 \ trace]_C :: ('e,'s) \ action) \sqsubseteq [Q_1 \vdash Q_2 \ trace \ refs \mid Q_3 \ trace]_C
  using assms
  by (simp add: mk-CRD-def, rule-tac srdes-tri-refine-intro, rel-auto+)
lemma CRD-refine-rdes:
  assumes
      [P_1]_{S<} \Rightarrow Q_1
     ([P_2 \ x \ r]_{S<}[x\rightarrow\&tt][r\rightarrow\$ref']) \sqsubseteq ([P_1]_{S<} \land Q_2)
     [P_3 \ x]_S'[x \rightarrow \&tt] \sqsubseteq ([P_1]_{S<} \land Q_3)
  shows ([P_1 \vdash P_2 \ trace \ refs \mid P_3 \ trace]_C :: ('e,'s) \ action) \sqsubseteq
            \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3)
  using assms
  by (simp add: mk-CRD-def, rule-tac srdes-tri-refine-intro, rel-auto+)
end
```

7 External Choice

```
\begin{array}{c} \textbf{theory} \ utp\text{-}circus\text{-}extchoice\\ \textbf{imports}\\ \ utp\text{-}circus\text{-}healths\\ \ utp\text{-}circus\text{-}rel\\ \textbf{begin} \end{array}
```

7.1 Definitions and syntax

```
definition ExtChoice ::
  ('\sigma, '\varphi) action set \Rightarrow ('\sigma, '\varphi) action where
[upred-defs]: ExtChoice A = \mathbf{R}_s((\bigcup P \in A \cdot pre_R(P)) \vdash ((\bigcup P \in A \cdot cmt_R(P)) \triangleleft \$tr' =_u \$tr \land \$wait'
syntax
  -ExtChoice :: pttrn \Rightarrow 'a \ set \Rightarrow 'b \Rightarrow 'b \ ((3\Box - \in - \cdot / -) [0, 0, 10] \ 10)
  -ExtChoice-simp :: pttrn \Rightarrow 'b \Rightarrow 'b ((3\square - \cdot/ -) [0, 10] 10)
translations
  \Box P \in A \cdot B \implies CONST \ ExtChoice \ ((\lambda P. B) \cdot A)
                \Rightarrow CONST ExtChoice (CONST range (\lambda P. B))
\mathbf{definition} extChoice ::
  ('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action \ (infixl \square 65) \ where
[upred-defs]: P \square Q \equiv ExtChoice \{P, Q\}
Small external choice as an indexed big external choice.
lemma extChoice-alt-def:
  P \square Q = (\square i :: nat \in \{0,1\} \cdot P \triangleleft \ll i = 0 \gg \triangleright Q)
  by (simp add: extChoice-def ExtChoice-def, unliteralise, simp)
7.2
         Basic laws
7.3
         Algebraic laws
lemma ExtChoice-empty: ExtChoice \{\} = Stop
  by (simp add: ExtChoice-def cond-def Stop-def)
lemma ExtChoice-single:
  P \text{ is } CSP \Longrightarrow ExtChoice \{P\} = P
  by (simp add: ExtChoice-def usup-and uinf-or SRD-reactive-design-alt)
7.4
         Reactive design calculations
lemma ExtChoice-rdes:
  assumes \bigwedge i. \$ok' \sharp P(i) A \neq \{\}
  shows (\Box i \in A \cdot \mathbf{R}_s(P(i) \vdash Q(i))) = \mathbf{R}_s((\bigcup i \in A \cdot P(i)) \vdash ((\bigcup i \in A \cdot Q(i)) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright P(i)
(\prod i \in A \cdot Q(i)))
proof -
  have (\Box i \in A \cdot \mathbf{R}_s(P(i) \vdash Q(i))) =
        \mathbf{R}_s ((| i \in A \cdot pre_R (\mathbf{R}_s (P i \vdash Q i))) \vdash
             (( \sqsubseteq i \in A \cdot cmt_R (\mathbf{R}_s (P i \vdash Q i))))
               \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
              (\prod i \in A \cdot cmt_R (\mathbf{R}_s (P i \vdash Q i)))))
    by (simp add: ExtChoice-def)
  also have ... =
        \mathbf{R}_s (( \sqsubseteq i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i)))) \vdash
             \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
              (\prod i \in A \cdot R1(R2c(cmt_s \dagger (P(i) \Rightarrow Q(i)))))))
    by (simp add: rea-pre-RHS-design rea-cmt-RHS-design)
  also have ... =
        \mathbf{R}_s ((| | i \in A \cdot R1 (R2c (pre_s \dagger P(i))))) \vdash
```

```
R1(R2c
                                 \triangleleft \$tr' =_{u} \$tr \land \$wait' \triangleright
                                    (\prod i \in A \cdot R1(R2c(cmt_s \dagger (P(i) \Rightarrow Q(i)))))))
          by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c)
      also have \dots =
                     \mathbf{R}_s (( \sqsubseteq i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i))))) \vdash
                                 R1(R2c)
                                 (( \sqsubseteq i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i))))
                                      \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
                                   (\prod i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i))))))
          by (simp add: R2c-UINF R2c-condr R1-cond R1-idem R1-R2c-commute R2c-idem R1-UINF assms
R1-USUP R2c-USUP)
     also have ... =
                     \mathbf{R}_s (( \bigsqcup i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i)))) \vdash
                                 cmt_s †
                                 ((| | i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i)))))
                                     \triangleleft \$tr' =_{u} \$tr \land \$wait' \triangleright
                                    (\bigcap i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i)))))
          by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c rdes-export-cmt)
     also have \dots =
                     \mathbf{R}_s (( \bigsqcup i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i))))) \vdash
                                 cmt_s †
                                 ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))))
                                      \triangleleft \$tr' =_{u} \$tr \land \$wait' \triangleright
                                   (\prod i \in A \cdot (P(i) \Rightarrow Q(i))))
          by (simp add: usubst)
     also have ... =
                     \mathbf{R}_s ((| | i \in A \cdot R1 (R2c (pre_s \dagger P(i))))) \vdash
                                 ((\bigsqcup i \in A \, \cdot \, (P(i) \, \Rightarrow \, Q(i))) \, \lhd \, \$tr \, ' =_u \$tr \, \wedge \, \$wait \, ' \, \rhd \, (\bigcap i \in A \, \cdot \, (P(i) \, \Rightarrow \, Q(i)))))
          by (simp add: rdes-export-cmt)
     also have ... =
                     \mathbf{R}_s ((R1(R2c(\mid i \in A \cdot (pre_s \dagger P(i)))))) \vdash
                                 ((||i \in A \cdot (P(i) \Rightarrow Q(i)))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\prod i \in A \cdot (P(i) \Rightarrow Q(i)))))
          by (simp add: not-UINF R1-UINF R2c-UINF assms)
     also have ... =
                     \mathbf{R}_s ((R2c(||i \in A \cdot (pre_s \dagger P(i))))) \vdash
                                 ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\prod i \in A \cdot (P(i) \Rightarrow Q(i)))))
          by (simp add: R1-design-R1-pre)
     also have ... =
                     \mathbf{R}_s (((| i \in A \cdot (pre_s \dagger P(i))))) \vdash
                                 ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\prod i \in A \cdot (P(i) \Rightarrow Q(i)))))
          by (metis (no-types, lifting) RHS-design-R2c-pre)
      also have \dots =
                     \mathbf{R}_s (([\$ok \mapsto_s true, \$wait \mapsto_s false] \dagger (\bigsqcup i \in A \cdot P(i))) \vdash
                                ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i)))))
     proof -
          from assms have \bigwedge i. pre_s \dagger P(i) = [\$ok \mapsto_s true, \$wait \mapsto_s false] \dagger P(i)
                by (rel-auto)
          thus ?thesis
                by (simp add: usubst)
     qed
     also have \dots =
                        \mathbf{R}_s \ ((\bigsqcup i \in A \cdot P(i)) \vdash ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) \land (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i))) 
 Q(i)))))
```

```
by (simp add: rdes-export-pre not-UINF)
          also have ... = \mathbf{R}_s \; (( \sqsubseteq i \in A \cdot P(i)) \vdash (( \sqsubseteq i \in A \cdot Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd ( \sqsubseteq i \in A \cdot Q(i))))
                   by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto, blast+)
         finally show ?thesis.
qed
lemma ExtChoice-tri-rdes [rdes-def]:
          assumes \bigwedge i . \$ok' \sharp P_1(i) A \neq \{\}
         shows (\Box i \in A \cdot \mathbf{R}_s(P_1(i) \vdash P_2(i) \diamond P_3(i))) =
                                                     P_3(i))))
proof -
         have (\Box i \in A \cdot \mathbf{R}_s(P_1(i) \vdash P_2(i) \diamond P_3(i))) =
                                            \mathbf{R}_s \; ((\mid \mid i \in A \cdot P_1(i)) \vdash ((\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \mathrel{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' =_u \$tr' \wedge \$wait' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$tr' \wedge \mathsf{\triangleright} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} (\mid \mid i \in A \cdot P_2
 P_3(i))))
                  by (simp add: ExtChoice-rdes assms)
         also
         have \dots =
                                             \mathbf{R}_s \; (( \ | \ i \in A \cdot P_1(i)) \vdash (( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \ | \ i \in A \cdot P_2(i) ) {
                   by (simp add: conj-comm)
          also
         have ... =
                                           \mathbf{R}_s \; ((\mid \mid i \in A \cdot P_1(i)) \vdash (((\mid \mid i \in A \cdot P_2(i) \diamond P_3(i)) \diamond \$tr' =_u \$tr \rhd (\mid \mid i \in A \cdot P_2(i) \diamond P_3(i))) \diamond 
 by (simp add: cond-conj wait'-cond-def)
          also
        P_3(i))))
                  by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
         finally show ?thesis.
lemma ExtChoice-tri-rdes-def [rdes-def]:
          assumes A \subseteq [\![CSP]\!]_H
          shows ExtChoice\ A = \mathbf{R}_s\ ((|\ |\ P \in A \cdot pre_R\ P) \vdash (((|\ |\ P \in A \cdot pri_R\ P) \triangleleft \$tr' =_u \$tr \rhd (\bigcap\ P \in A \cdot P))
proof -
         (((\bigcup P \in A \cdot cmt_R P)) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap P \in A \cdot cmt_R P)) \diamond (\bigcap P \in A \cdot cmt_R P))
                   by (rel-auto)
          also have ... = ((( | | P \in A \cdot peri_R P)) \diamond \$tr' =_u \$tr \triangleright (| P \in A \cdot peri_R P)) \diamond (| P \in A \cdot post_R P))
                 by (rel-auto)
         finally show ?thesis
                   by (simp add: ExtChoice-def)
qed
lemma extChoice-rdes:
          assumes \$ok' \sharp P_1 \$ok' \sharp Q_1
         \mathbf{shows} \ \mathbf{R}_s(P_1 \vdash P_2) \ \Box \ \mathbf{R}_s(Q_1 \vdash Q_2) = \mathbf{R}_s \ ((P_1 \land Q_1) \vdash ((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \rhd (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \rhd (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \rhd (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u \$tr \land \$wait' \Rightarrow (P_2 \land Q_2) \land \$tr' =_u 
\vee Q_2)))
proof -
         \mathbf{have} \ (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s \ (P_1 \vdash P_2) \triangleleft \ll i = \theta \gg \mathsf{R}_s \ (Q_1 \vdash Q_2)) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s \ ((P_1 \vdash Q_2)) \vdash (\neg P_1) \vdash \neg P_2) \vee \neg P_2 
P_2) \triangleleft \ll i = 0 \gg (Q_1 \vdash Q_2))
```

```
by (simp only: RHS-cond R2c-lit)
  also have ... = (\Box i :: nat \in \{0, 1\} \cdot \mathbf{R}_s \ ((P_1 \triangleleft \ll i = \theta \gg \rhd Q_1) \vdash (P_2 \triangleleft \ll i = \theta \gg \rhd Q_2)))
    by (simp add: design-condr)
  also have ... = \mathbf{R}_s ((P_1 \wedge Q_1) \vdash ((P_2 \wedge Q_2) \triangleleft \$tr' =_u \$tr \wedge \$wait' \triangleright (P_2 \vee Q_2)))
    apply (subst ExtChoice-rdes, simp-all add: assms unrest)
    apply unliteralise
    apply (simp add: uinf-or usup-and)
    done
  finally show ?thesis by (simp add: extChoice-alt-def)
\mathbf{lemma}\ extChoice\text{-}tri\text{-}rdes:
  assumes \$ok' \sharp P_1 \$ok' \sharp Q_1
  shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
          \mathbf{R}_s \ ((P_1 \land Q_1) \vdash (((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \triangleright (P_2 \lor Q_2)) \diamond (P_3 \lor Q_3)))
proof -
  have \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
         \mathbf{R}_s \ ((P_1 \land Q_1) \vdash ((P_2 \diamond P_3 \land Q_2 \diamond Q_3) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)))
    by (simp add: extChoice-rdes assms)
  also
  \mathbf{have} \dots = \mathbf{R}_s \ ((P_1 \land Q_1) \vdash ((P_2 \diamond P_3 \land Q_2 \diamond Q_3)) \triangleleft \$wait' \land \$tr' =_u \$tr \rhd (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)))
    by (simp add: conj-comm)
  also
  have ... = \mathbf{R}_s ((P_1 \wedge Q_1) \vdash
                (((P_2 \diamond P_3 \land Q_2 \diamond Q_3)) \diamond \$tr' =_u \$tr \rhd (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)) \diamond (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)))
    by (simp add: cond-conj wait'-cond-def)
  also
  have ... = \mathbf{R}_s ((P_1 \land Q_1) \vdash (((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \triangleright (P_2 \lor Q_2)) \diamond (P_3 \lor Q_3)))
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  finally show ?thesis.
qed
lemma extChoice-rdes-def [rdes-def]:
  assumes P_1 is RR Q_1 is RR
  shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
          \mathbf{R}_s ((P_1 \wedge Q_1) \vdash (((P_2 \wedge Q_2) \triangleleft \$tr' =_u \$tr \triangleright (P_2 \vee Q_2)) \diamond (P_3 \vee Q_3)))
  by (subst extChoice-tri-rdes, simp-all add: assms unrest)
lemma CSP-ExtChoice [closure]:
  ExtChoice A is CSP
  by (simp add: ExtChoice-def RHS-design-is-SRD unrest)
lemma CSP-extChoice [closure]:
  P \square Q \text{ is } CSP
  by (simp add: CSP-ExtChoice extChoice-def)
lemma preR-ExtChoice [rdes]:
  assumes A \neq \{\} A \subseteq [CSP]_H
  shows pre_R(ExtChoice\ A) = (|\ |\ P \in A \cdot pre_R(P))
proof -
  have pre_R (ExtChoice A) = (R1 (R2c ((| | P \in A \cdot pre_R P))))
    by (simp add: ExtChoice-def rea-pre-RHS-design usubst unrest)
  also from assms have ... = (R1 \ (R2c \ (| \ | \ P \in A \cdot (pre_R(CSP(P))))))
    by (metis USUP-healthy)
  also from assms have ... = ( \bigsqcup P \in A \cdot (pre_R(CSP(P))) )
```

```
by (rel-auto)
    also from assms have ... = ( || P \in A \cdot (pre_R(P)) |)
        by (metis USUP-healthy)
    finally show ?thesis.
qed
lemma preR-ExtChoice-ind [rdes]:
    assumes A \neq \{\} \land P. P \in A \Longrightarrow F(P) \text{ is } CSP
    shows pre_R(\Box P \in A \cdot F(P)) = (\Box P \in A \cdot pre_R(F(P)))
    using assms by (subst preR-ExtChoice, auto)
\mathbf{lemma}\ periR\text{-}ExtChoice\ [rdes]:
    assumes A \subseteq [NCSP]_H A \neq \{\}
    \mathbf{shows} \ \mathit{peri}_R(\mathit{ExtChoice} \ A) = ((\bigsqcup \ P \in A \ \cdot \ \mathit{pre}_R(P)) \Rightarrow_r (\bigsqcup \ P \in A \ \cdot \ \mathit{peri}_R \ P)) \ \triangleleft \ \$tr' =_u \ \$tr \rhd (\sqcap P) = (\sqcup P \cap A \ \cdot \ \mathit{peri}_R \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot \ P) = (\sqcup P \cap A \ \cdot
P \in A \cdot peri_R P
proof -
    have peri_R (ExtChoice A) = peri_R (\mathbf{R}_s ((| | P \in A \cdot pre_R P) \vdash
                                                                                  ((| P \in A \cdot peri_R P) \triangleleft \$tr' =_u \$tr \triangleright ( P \in A \cdot peri_R P)) \diamond
                                                                                   ( \bigcap P \in A \cdot post_R P)))
        \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{ExtChoice-tri-rdes-def}\ \mathit{assms}\ \mathit{closure})
    also have ... = peri_R (\mathbf{R}_s ((\bigcup P \in A \cdot pre_R (NCSP P)) \vdash
                                                         ((\bigsqcup P \in A \cdot peri_R (NCSP P)) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap P \in A \cdot peri_R (NCSP P))) \diamond
                                                                (   P \in A \cdot post_R P) )
        by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
    also have ... = R1 (R2c (( | | P \in A \cdot pre_R (NCSP P)) \Rightarrow_r 
                                                           (| P \in A \cdot peri_R (NCSP P))
                                                             \triangleleft \$tr' =_u \$tr \triangleright
                                                           ( \bigcap P \in A \cdot peri_R (NCSP P))))
    proof -
        have (\bigcup P \in A \cdot [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false, \$wait' \mapsto_s true] \dagger pre_R (NCSP P)
                   = (| | P \in A \cdot pre_R (NCSP P))
            by (rule USUP-cong, simp add: closure usubst unrest assms)
        thus ?thesis
            by (simp add: rea-peri-RHS-design Healthy-Idempotent SRD-Idempotent usubst unrest assms)
    also have ... = R1 (( | P \in A \cdot pre_R (NCSP P) ) \Rightarrow_r 
                                                ( \bigsqcup \ P{\in}A \ \cdot \ peri_R \ (NCSP \ P))
                                                       \triangleleft \$tr' =_u \$tr \triangleright
                                                 ( \bigcap P \in A \cdot peri_R (NCSP P) ) )
        by (simp add: R2c-rea-impl R2c-condr R2c-UINF R2c-preR R2c-periR R2c-tr'-minus-tr R2c-USUP
closure)
    also have ... = ((( | P \in A \cdot pre_R (NCSP P))) \Rightarrow_r ( | P \in A \cdot peri_R (NCSP P)))
                                               \triangleleft \$tr' =_u \$tr \triangleright
                                          by (simp add: R1-rea-impl R1-cond R1-USUP R1-UINF assms Healthy-if closure, rel-auto)
    also have ... = (((| \mid P \in A \cdot pre_R (NCSP P))) \Rightarrow_r (| \mid P \in A \cdot peri_R (NCSP P)))
                                               \triangleleft \$tr' =_{u} \$tr \triangleright
                                          (( \bigcap P \in A \cdot pre_R (NCSP P) \Rightarrow_r peri_R (NCSP P))))
        by (simp add: UINF-rea-impl[THEN sym])
    also have ... = (((| \mid P \in A \cdot pre_R (NCSP P))) \Rightarrow_r (| \mid P \in A \cdot peri_R (NCSP P)))
                                              \triangleleft \$tr' =_u \$tr \triangleright
                                           by (simp add: SRD-peri-under-pre closure assms unrest)
```

```
\triangleleft \$tr' =_u \$tr \triangleright
                                       (( \bigcap P \in A \cdot peri_R P)))
       by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
    finally show ?thesis.
qed
lemma periR-ExtChoice-ind [rdes]:
    assumes \land P. P \in A \Longrightarrow F(P) is NCSP A \neq \{\}
   \mathbf{shows} \ \mathit{peri}_R(\square \ P \in A \cdot F(P)) = ((\bigsqcup \ P \in A \cdot \mathit{pre}_R(F \ P)) \Rightarrow_r (\bigsqcup \ P \in A \cdot \mathit{peri}_R \ (F \ P))) \mathrel{\triangleleft} \$\mathit{tr}' =_u \mathsf{tr}' =
\triangleright ( \bigcap P \in A \cdot peri_R (F P) )
    using assms by (subst periR-ExtChoice, auto simp add: closure unrest)
lemma postR-ExtChoice [rdes]:
    assumes A \subseteq [NCSP]_H A \neq \{\}
    shows post_R(ExtChoice\ A) = (\bigcap\ P \in A \cdot post_R\ P)
proof -
    have post_R (ExtChoice A) = post_R (\mathbf{R}_s ((\bigcup P \in A \cdot pre_R P) \vdash
                                                                            ((\bigsqcup P \in A \cdot peri_R P) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap P \in A \cdot peri_R P)) \diamond
                                                                            ( \bigcap P \in A \cdot post_R P)))
       by (simp add: ExtChoice-tri-rdes-def closure assms)
    also have ... = post_R (\mathbf{R}_s ((\bigsqcup P \in A \cdot pre_R (NCSP P)) \vdash
                                                        ((\bigsqcup P \in A \cdot peri_R P) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap P \in A \cdot peri_R P)) \diamond
                                                          (   P \in A \cdot post_R (NCSP P)))
       by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
    also have ... = R1 (R2c ((| | P \in A \cdot pre_R (NCSP P)) \Rightarrow_r (| P \in A \cdot post_R (NCSP P))))
    proof -
       have (| | P \in A \cdot [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false, \$wait' \mapsto_s false] \dagger pre_R (NCSP P)
                 = ( \bigsqcup P \in A \cdot pre_R (NCSP P) )
           by (rule USUP-cong, simp add: usubst closure unrest assms)
       thus ?thesis
           by (simp add: rea-post-RHS-design Healthy-Idempotent SRD-Idempotent usubst unrest assms)
    qed
    also have ... = R1 ((| | P \in A \cdot pre_R (NCSP P)) \Rightarrow_r ( | P \in A \cdot post_R (NCSP P))
       by (simp add: R2c-rea-impl R2c-condr R2c-UINF R2c-preR R2c-postR
                                   R2c-tr'-minus-tr R2c-USUP closure)
    also from assms(2) have ... = (( | | P \in A \cdot pre_R (NCSP P))) \Rightarrow_r ( | P \in A \cdot post_R (NCSP P)) )
       \mathbf{by}\ (simp\ add\colon R1\text{-}rea\text{-}impl\ R1\text{-}cond\ R1\text{-}USUP\ R1\text{-}UINF\ assms\ Healthy\text{-}if\ closure)
    also have ... = (\bigcap P \in A \cdot pre_R (NCSP P)) \Rightarrow_r post_R (NCSP P))
       by (simp add: UINF-rea-impl)
    also have ... = ( \bigcap P \in A \cdot post_R (NCSP P) )
       by (simp add: SRD-post-under-pre closure assms unrest)
    finally show ?thesis
       by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
qed
lemma postR-ExtChoice-ind [rdes]:
    assumes \bigwedge P. P \in A \Longrightarrow F(P) is NCSP A \neq \{\}
    shows post_R(\square P \in A \cdot F(P)) = (\bigcap P \in A \cdot post_R(F(P)))
    using assms by (subst postR-ExtChoice, auto simp add: closure unrest)
lemma preR-extChoice:
    assumes P is CSP Q is CSP wait' \not\equiv pre_R(P) \cdot \vec{pre}_R(Q)
```

```
shows pre_R(P \square Q) = (pre_R(P) \land pre_R(Q))
    by (simp add: extChoice-def preR-ExtChoice assms usup-and)
lemma preR-extChoice' [rdes]:
    assumes P is NCSP Q is NCSP
   shows pre_R(P \square Q) = (pre_R(P) \land pre_R(Q))
   by (simp add: preR-extChoice closure assms unrest)
lemma periR-extChoice [rdes]:
   assumes P is NCSP Q is NCSP
   \mathbf{shows} \ peri_R(P \ \square \ Q) = ((pre_R(P) \land pre_R(Q) \Rightarrow_r peri_R(P) \land peri_R(Q)) \triangleleft \$tr' =_u \$tr \triangleright (peri_R(P) \land peri_R(Q)) \triangleleft \$tr' =_u \$tr'
\vee peri_R(Q))
   using assms
    by (simp add: extChoice-def, subst periR-ExtChoice, auto simp add: usup-and uinf-or)
lemma postR-extChoice [rdes]:
   assumes P is NCSP Q is NCSP
    shows post_R(P \square Q) = (post_R(P) \lor post_R(Q))
    using assms
    by (simp add: extChoice-def, subst postR-ExtChoice, auto simp add: usup-and uinf-or)
lemma ExtChoice-cong:
    assumes \bigwedge P. P \in A \Longrightarrow F(P) = G(P)
    shows (\Box P \in A \cdot F(P)) = (\Box P \in A \cdot G(P))
    using assms image-cong by force
lemma ref-unrest-ExtChoice:
    assumes
        \bigwedge P. P \in A \Longrightarrow \$ref \sharp pre_R(P)
        \bigwedge P. P \in A \Longrightarrow \$ref \sharp cmt_R(P)
   shows ref \sharp (ExtChoice A) \llbracket false / \$wait \rrbracket
proof -
    have \bigwedge P. P \in A \Longrightarrow \$ref \sharp pre_R(P[0/\$tr])
        using assms by (rel-blast)
   with assms show ?thesis
        by (simp add: ExtChoice-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
qed
lemma CSP4-ExtChoice:
   assumes A \subseteq [NCSP]_H
   shows ExtChoice A is CSP4
proof (cases\ A = \{\})
    case True thus ?thesis
        by (simp add: ExtChoice-empty Healthy-def CSP4-def, simp add: Skip-is-CSP Stop-left-zero)
next
    case False
   have 1:(\neg_r \ (\neg_r \ pre_R \ (ExtChoice \ A)) \ ;;_h \ R1 \ true) = pre_R \ (ExtChoice \ A)
        have \bigwedge P. P \in A \Longrightarrow (\neg_r \ pre_R(P)) \ ;; \ R1 \ true = (\neg_r \ pre_R(P))
            by (simp add: NCSP-Healthy-subset-member NCSP-implies-NSRD NSRD-neg-pre-unit assms)
        thus ?thesis
        apply (simp add: False preR-ExtChoice closure NCSP-set-unrest-pre-wait' assms not-UINF seq-UINF-distr
not-USUP)
            apply (rule USUP-cong)
            apply (simp add: rpred assms closure)
```

```
done
 qed
 have 2: \$st' \sharp peri_R (ExtChoice A)
 proof -
   have a: \land P. P \in A \Longrightarrow \$st' \sharp pre_R(P)
     by (simp add: NCSP-Healthy-subset-member NCSP-implies-NSRD NSRD-st'-unrest-pre assms)
   have b: \bigwedge P. P \in A \Longrightarrow \$st' \sharp peri_R(P)
     by (simp add: NCSP-Healthy-subset-member NCSP-implies-NSRD NSRD-st'-unrest-peri assms)
   from a b show ?thesis
     apply (subst periR-ExtChoice)
        apply (simp-all add: assms closure unrest CSP4-set-unrest-pre-st' NCSP-set-unrest-pre-wait'
False)
     done
 qed
 have 3: ref' \not\equiv post_R \ (ExtChoice \ A)
 proof -
   have a: \bigwedge P. P \in A \Longrightarrow \$ref' \sharp pre_R(P)
      by (simp add: CSP4-ref'-unrest-pre CSP-Healthy-subset-member NCSP-Healthy-subset-member
NCSP-implies-CSP4 NCSP-subset-implies-CSP assms)
   have b: \bigwedge P. P \in A \Longrightarrow \$ref' \sharp post_R(P)
      by (simp add: CSP4-ref'-unrest-post CSP-Healthy-subset-member NCSP-Healthy-subset-member
NCSP-implies-CSP4 NCSP-subset-implies-CSP assms)
   from a b show ?thesis
    by (subst postR-ExtChoice, simp-all add: assms CSP4-set-unrest-pre-st' NCSP-set-unrest-pre-wait'
unrest False)
 ged
 show ?thesis
   by (rule CSP4-tri-intro, simp-all add: 1 2 3 assms closure)
      (metis 1 R1-seqr-closure rea-not-R1 rea-not-not rea-true-R1)
qed
lemma CSP4-extChoice [closure]:
 assumes P is NCSP Q is NCSP
 shows P \square Q is CSP4
 by (simp add: extChoice-def, rule CSP4-ExtChoice, simp-all add: assms)
lemma NCSP-ExtChoice [closure]:
 assumes A \subseteq [NCSP]_H
 shows ExtChoice A is NCSP
proof (cases A = \{\})
 then show ?thesis by (simp add: ExtChoice-empty closure)
next
 case False
 show ?thesis
 proof (rule NCSP-intro)
   from assms have cls: A \subseteq [CSP]_H A \subseteq [CSP3]_H A \subseteq [CSP4]_H
     using NCSP-implies-CSP NCSP-implies-CSP3 NCSP-implies-CSP4 by blast+
   have wu: \bigwedge P. P \in A \Longrightarrow \$wait' \sharp pre_R(P)
     using NCSP-implies-NSRD NSRD-wait'-unrest-pre assms by force
   show 1:ExtChoice A is CSP
     by (metis (mono-tags) Ball-Collect CSP-ExtChoice NCSP-implies-CSP assms)
   from cls show ExtChoice A is CSP3
   by (rule-tac CSP3-SRD-intro, simp-all add: CSP-Healthy-subset-member CSP3-Healthy-subset-member
closure rdes unrest wu assms 1 False)
```

```
from cls show ExtChoice A is CSP4
     by (simp add: CSP4-ExtChoice assms)
 qed
\mathbf{qed}
lemma NCSP-extChoice [closure]:
 assumes P is NCSP Q is NCSP
 shows P \square Q is NCSP
 by (simp add: NCSP-ExtChoice assms extChoice-def)
7.5
      Productivity and Guardedness
lemma Productive-ExtChoice [closure]:
 assumes A \neq \{\} A \subseteq [NCSP]_H A \subseteq [Productive]_H
 shows ExtChoice A is Productive
proof -
 have 1: \bigwedge P. P \in A \Longrightarrow \$wait' \sharp pre_R(P)
   using NCSP-implies-NSRD NSRD-wait'-unrest-pre assms(2) by blast
 show ?thesis
 proof (rule Productive-intro, simp-all add: assms closure rdes 1 unrest)
   by (rel-auto)
    moreover have ( \bigcap P \in A \cdot (pre_R P \land post_R P)) = ( \bigcap P \in A \cdot ((pre_R P \land post_R P) \land \$tr <_u)
$tr'))
   by (rule UINF-cong, metis (no-types, lifting) 1 Ball-Collect NCSP-implies-CSP Productive-post-refines-tr-increase
assms utp-pred-laws.inf.absorb1)
   ultimately show (\$tr' >_u \$tr) \sqsubseteq ((| P \in A \cdot pre_R P) \land ((| P \in A \cdot post_R P)))
     by (rel-auto)
 qed
qed
lemma Productive-extChoice [closure]:
 assumes P is NCSP Q is NCSP P is Productive Q is Productive
 shows P \square Q is Productive
 by (simp add: extChoice-def Productive-ExtChoice assms)
lemma ExtChoice-Guarded [closure]:
 assumes \bigwedge P. P \in A \Longrightarrow Guarded P
 shows Guarded (\lambda X. \Box P \in A \cdot P(X))
proof (rule GuardedI)
 have \bigwedge Y. ((\Box P \in A \cdot P \ Y) \land gvrt(n+1)) = ((\Box P \in A \cdot (P \ Y \land gvrt(n+1))) \land gvrt(n+1))
 proof -
   \mathbf{fix} \ Y
  let ?lhs = ((\Box P \in A \cdot P \ Y) \land gvrt(n+1)) and ?rhs = ((\Box P \in A \cdot (P \ Y \land gvrt(n+1))) \land gvrt(n+1))
   have a:?lhs[false/\$ok] = ?rhs[false/\$ok]
     by (rel-auto)
   have b:?lhs[true/\$ok][true/\$wait] = ?rhs[true/\$ok][true/\$wait]
     by (rel-auto)
   have c:?lhs[true/\$ok][false/\$wait]] = ?rhs[true/\$ok][false/\$wait]]
     by (simp add: ExtChoice-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest,
rel-blast)
   show ?lhs = ?rhs
```

using $a \ b \ c$

```
by (rule-tac\ bool-eq-splitI[of\ in-var\ ok],\ simp,\ rule-tac\ bool-eq-splitI[of\ in-var\ wait],\ simp-all)
  qed
  gvrt(n+1))) \wedge gvrt(n+1)
  proof -
   have (\Box P \in A \cdot (P \mid X \land qvrt(n+1))) = (\Box P \in A \cdot (P \mid (X \land qvrt(n)) \land qvrt(n+1)))
   proof (rule ExtChoice-cong)
     fix P assume P \in A
     thus (P X \land gvrt(n+1)) = (P (X \land gvrt(n)) \land gvrt(n+1))
       using Guarded-def assms by blast
   qed
   thus ?thesis by simp
  ultimately show ((\Box P \in A \cdot P \ X) \land gvrt(n+1)) = ((\Box P \in A \cdot (P \ (X \land gvrt(n)))) \land gvrt(n+1))
   by simp
qed
lemma extChoice-Guarded [closure]:
 assumes Guarded P Guarded Q
 shows Guarded (\lambda X. P(X) \square Q(X))
proof -
  have Guarded (\lambda X. \Box F \in \{P,Q\} \cdot F(X))
   by (rule ExtChoice-Guarded, auto simp add: assms)
  thus ?thesis
   by (simp add: extChoice-def)
qed
7.6
        Algebraic laws
lemma extChoice-comm:
  P \square Q = Q \square P
 by (unfold extChoice-def, simp add: insert-commute)
lemma extChoice-idem:
  P \text{ is } CSP \Longrightarrow P \square P = P
 by (unfold extChoice-def, simp add: ExtChoice-single)
lemma extChoice-assoc:
  assumes P is CSP Q is CSP R is CSP
  shows P \square Q \square R = P \square (Q \square R)
 have P \square Q \square R = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \square \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)) \square \mathbf{R}_s(pre_R(R) \vdash cmt_R(R))
   by (simp\ add:\ SRD\text{-}reactive\text{-}design\text{-}alt\ assms(1)\ assms(2)\ assms(3))
  also have \dots =
   \mathbf{R}_s (((pre_R \ P \land pre_R \ Q) \land pre_R \ R) \vdash
         (((cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q) \land cmt_R \ R)
             \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
          ((cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q) \lor cmt_R \ R)))
   by (simp add: extChoice-rdes unrest)
  also have \dots =
   \mathbf{R}_s (((pre_R \ P \land pre_R \ Q) \land pre_R \ R) \vdash
         (((cmt_R \ P \land cmt_R \ Q) \land cmt_R \ R)
             \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
           ((cmt_R \ P \lor cmt_R \ Q) \lor cmt_R \ R)))
   by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have \dots =
```

```
\mathbf{R}_s \ ((pre_R \ P \land pre_R \ Q \land pre_R \ R) \vdash
           ((cmt_R \ P \land (cmt_R \ Q \land cmt_R \ R)))
               \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
            (\mathit{cmt}_R\ P\ \lor\ (\mathit{cmt}_R\ Q\ \lor\ \mathit{cmt}_R\ R))))
    by (simp add: conj-assoc disj-assoc)
  also have \dots =
    \mathbf{R}_s ((pre_R \ P \land pre_R \ Q \land pre_R \ R) \vdash
           ((cmt_R \ P \land (cmt_R \ Q \land cmt_R \ R) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ Q \lor cmt_R \ R))
               \triangleleft \ \$tr' =_u \ \$tr \land \ \$wait' \rhd
            (cmt_R \ P \lor (cmt_R \ Q \land cmt_R \ R) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (cmt_R \ Q \lor cmt_R \ R))))
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \square (\mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)) \square \mathbf{R}_s(pre_R(R) \vdash cmt_R(R)))
    by (simp add: extChoice-rdes unrest)
  also have ... = P \square (Q \square R)
    by (simp\ add:\ SRD\text{-reactive-design-alt}\ assms(1)\ assms(2)\ assms(3))
  finally show ?thesis.
qed
lemma extChoice-Stop:
  assumes Q is CSP
  shows Stop \square Q = Q
  using assms
proof -
  have Stop \square Q = \mathbf{R}_s \ (true \vdash (\$tr' =_u \$tr \land \$wait')) \square \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q))
    by (simp add: Stop-def SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> Q \vdash (((\$tr' =_u \$tr \land \$wait') \land cmt_R Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\$tr')
=_u \$tr \land \$wait' \lor cmt_R \ Q)))
    by (simp add: extChoice-rdes unrest)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> Q \vdash (cmt_R \ Q \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright cmt_R \ Q))
    by (metis (no-types, lifting) cond-def eq-upred-sym neg-conj-cancel1 utp-pred-laws.inf.left-idem)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> Q \vdash cmt_R Q)
    by (simp add: cond-idem)
  also have \dots = Q
    by (simp add: SRD-reactive-design-alt assms)
  finally show ?thesis.
qed
lemma extChoice-Chaos:
  assumes Q is CSP
  shows Chaos \square Q = Chaos
  have Chaos \square Q = \mathbf{R}_s (false \vdash true) \square \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q))
    by (simp add: Chaos-def SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s (false \vdash (cmt<sub>R</sub> Q \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright true))
    by (simp add: extChoice-rdes unrest)
  also have ... = \mathbf{R}_s (false \vdash true)
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have \dots = Chaos
    by (simp add: Chaos-def)
  finally show ?thesis.
qed
lemma extChoice-Dist:
  assumes P is CSP S \subseteq [\![CSP]\!]_H S \neq \{\}
  shows P \square (\square S) = (\square Q \in S. P \square Q)
```

```
proof -
  let ?S1 = pre_R 'S and ?S2 = cmt_R 'S
  have P \square (\bigcap S) = P \square (\bigcap Q \in S \cdot \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)))
  by (simp add: SRD-as-reactive-design[THEN sym] Healthy-SUPREMUM UINF-as-Sup-collect assms)
  also have ... = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \square \mathbf{R}_s((\bigcup Q \in S \cdot pre_R(Q)) \vdash (\bigcap Q \in S \cdot cmt_R(Q)))
   by (simp add: RHS-design-USUP SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s ((pre_R(P) \land (\bigsqcup Q \in S \cdot pre_R(Q))) \vdash
                      ((cmt_R(P) \land (   Q \in S \cdot cmt_R(Q) ))
                        \triangleleft \ \$tr' =_u \ \$tr \land \ \$wait' \rhd
                       (cmt_R(P) \vee (   Q \in S \cdot cmt_R(Q)))))
   by (simp add: extChoice-rdes unrest)
  also have ... = \mathbf{R}_s ((\bigcup Q \in S \cdot pre_R P \land pre_R Q) \vdash
                      ( \bigcap Q \in S \cdot (cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q)))
   by (simp add: conj-USUP-dist conj-UINF-dist disj-UINF-dist cond-UINF-dist assms)
  also have ... = (   Q \in S \cdot \mathbf{R}_s ((pre_R P \land pre_R Q) \vdash 
                                 ((cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q))))
   by (simp add: assms RHS-design-USUP)
  also have ... = (\bigcap Q \in S \cdot \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \Box \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)))
   by (simp add: extChoice-rdes unrest)
  also have ... = (   Q \in S. P \square CSP(Q) )
     by (simp add: UINF-as-Sup-collect, metis (no-types, lifting) Healthy-if SRD-as-reactive-design
assms(1)
  also have ... = (   Q \in S. P \square Q )
   by (rule SUP-cong, simp-all add: Healthy-subset-member[OF assms(2)])
 finally show ?thesis.
ged
\mathbf{lemma}\ extChoice\text{-}dist:
  assumes P is CSP Q is CSP R is CSP
  shows P \square (Q \sqcap R) = (P \square Q) \sqcap (P \square R)
  using assms extChoice-Dist[of P \{Q, R\}] by simp
lemma ExtChoice-seq-distr:
  assumes \bigwedge i. i \in A \Longrightarrow P i is PCSP Q is NCSP
  shows (\Box i \in A \cdot P i) ;; Q = (\Box i \in A \cdot P i ;; Q)
proof (cases\ A = \{\})
  case True
  then show ?thesis
   by (simp add: ExtChoice-empty NCSP-implies-CSP Stop-left-zero assms(2))
next
  case False
  show ?thesis
  proof -
   have 1:(\Box i \in A \cdot P \ i) = (\Box i \in A \cdot (\mathbf{R}_s \ ((pre_R \ (P \ i)) \vdash peri_R \ (P \ i) \diamond (post_R \ (P \ i) \wedge \$tr <_u \$tr'))))
     (is ?X = ?Y)
    by (rule ExtChoice-cong, metis (no-types, hide-lams) Healthy-if NCSP-implies-CSP PCSP-implies-NCSP
Productive-form \ assms(1) \ comp-apply)
    have 2: (\Box i \in A \cdot P i ;; Q) = (\Box i \in A \cdot (\mathbf{R}_s ((pre_R (P i)) \vdash peri_R (P i)) \diamond (post_R (P i) \land \$tr <_u))
tr'))) :: Q)
     (is ?X = ?Y)
    by (rule ExtChoice-cong, metis (no-types, hide-lams) Healthy-if NCSP-implies-CSP PCSP-implies-NCSP
Productive-form assms(1) comp-apply)
   show ?thesis
     apply (simp \ add: 1\ 2)
     apply (rdes-simp cls: assms False cong: ExtChoice-cong)
```

end

8 Circus and CSP Actions

```
theory utp-circus-actions
imports
utp-circus-extchoice
begin
```

8.1 Conditionals

```
lemma NCSP\text{-}cond\text{-}srea\ [closure]:
assumes P is NCSP Q is NCSP
shows P \triangleleft b \triangleright_R Q is NCSP
by (rule\ NCSP\text{-}NSRD\text{-}intro,\ simp\text{-}all\ add:\ closure\ rdes\ assms\ unrest})
```

8.2 Guarded commands

```
lemma GuardedCommR-NCSP-closed [closure]: assumes P is NCSP shows g \rightarrow_R P is NCSP by (simp\ add: gcmd-def\ closure\ assms)
```

8.3 Alternation

```
lemma AlternateR-NCSP-closed [closure]:
   assumes \bigwedge i. i \in A \Longrightarrow P(i) is NCSP Q is NCSP
   shows (if_R i \in A \cdot g(i) \to P(i) else Q fi) is NCSP
   proof (cases A = \{\})
   case True
   then show ?thesis
   by (simp add: assms)
   next
   case False
   then show ?thesis
   by (simp add: AlternateR-def closure assms)
   qed
```

8.4 Assignment

```
definition AssignsCSP :: '\sigma \ usubst \Rightarrow ('\sigma, '\varphi) \ action \ (\langle - \rangle_C) \ where
[upred-defs]: Assigns CSP \sigma = \mathbf{R}_s(true \vdash false \diamond (\$tr' =_u \$tr \land [\langle \sigma \rangle_a]_S))
  -assigns-csp :: svids \Rightarrow uexprs \Rightarrow logic ('(-') :=_C '(-'))
  \textit{-assigns-csp} :: \textit{svids} \Rightarrow \textit{uexprs} \Rightarrow \textit{logic} \ (\mathbf{infixr} :=_{C} 90)
translations
  -assigns-csp \ xs \ vs => CONST \ AssignsCSP \ (-mk-usubst \ (CONST \ id) \ xs \ vs)
  -assigns-csp x \ v \le CONST \ AssignsCSP \ (CONST \ subst-upd \ (CONST \ id) \ x \ v)
  -assigns-csp \ x \ v \le -assigns-csp \ (-spvar \ x) \ v
  x,y :=_C u,v <= CONST \ Assigns CSP \ (CONST \ subst-upd \ (CONST \ subst-upd \ (CONST \ id) \ (CONST \ id)
svar x) u) (CONST svar y) v)
lemma preR-AssignsCSP [rdes]: pre_R(\langle \sigma \rangle_C) = true_r
  by (rel-auto)
lemma periR-Assigns CSP [rdes]: peri_R(\langle \sigma \rangle_C) = false
  by (rel-auto)
lemma postR-Assigns CSP [rdes]: post_R(\langle \sigma \rangle_C) = \Phi(true, \sigma, \langle \rangle)
  by (rel-auto)
lemma AssignsCSP-rdes-def[rdes-def]: <math>\langle \sigma \rangle_C = \mathbf{R}_s(true_r \vdash false \diamond \Phi(true, \sigma, \langle \rangle))
  by (rel-auto)
lemma Assigns CSP-CSP [closure]: \langle \sigma \rangle_C is CSP
  by (simp add: AssignsCSP-def RHS-tri-design-is-SRD unrest)
lemma Assigns CSP-CSP3 [closure]: \langle \sigma \rangle_C is CSP3
  by (rule CSP3-intro, simp add: closure, rel-auto)
lemma AssignsCSP-CSP4 [closure]: \langle \sigma \rangle_C is CSP4
  by (rule CSP4-intro, simp add: closure, rel-auto+)
lemma AssignsCSP-NCSP [closure]: \langle \sigma \rangle_C is NCSP
  by (simp add: AssignsCSP-CSP AssignsCSP-CSP3 AssignsCSP-CSP4 NCSP-intro)
lemma AssignsCSP-ICSP [closure]: \langle \sigma \rangle_C is ICSP
  apply (rule ICSP-intro, simp add: closure, simp add: rdes-def)
  apply (rule ISRD1-rdes-intro)
 apply (simp-all add: closure)
  apply (rel-auto)
done
```

8.5 Assignment with update

There are different collections that we would like to assign to, but they all have different types and perhaps more importantly different conditions on the update being well defined. For example, for a list well-definedness equates to the index being less than the length etc. Thus we here set up a polymorphic constant for CSP assignment updates that can be specialised to different types.

 $\mathbf{definition}\ \mathit{AssignCSP-update}\ ::$

```
('f \Rightarrow 'k \ set) \Rightarrow ('f \Rightarrow 'k \Rightarrow 'v \Rightarrow 'f) \Rightarrow ('f \Rightarrow '\sigma) \Rightarrow
('k, '\sigma) \ uexpr \Rightarrow ('v, '\sigma) \ uexpr \Rightarrow ('\sigma, '\varphi) \ action \ where
[upred-defs,rdes-def]: \ AssignCSP-update \ domf \ updatef \ x \ k \ v =
\mathbf{R}_s([k \in_u \ uop \ domf \ (\&x)]_{S<} \vdash false \diamond \Phi(true,[x \mapsto_s trop \ updatef \ (\&x) \ k \ v], \ \langle\rangle))
All different assignment updates have the same syntax; the type resolves which implementation to use.

syntax
-csp\text{-}assign\text{-}upd :: svid} \Rightarrow logic \Rightarrow logic \Rightarrow logic \ (-[-] :=_C - [\theta, \theta, 72] \ 72)

translations
x[k] :=_C v == CONST \ AssignCSP\text{-}update \ (CONST \ udom) \ (CONST \ uupd) \ x \ k \ v
```

 $\mathbf{lemma}\ Assign CSP\text{-}update\text{-}CSP\ [closure]:$

AssignCSP-update domf updatef $x \ k \ v$ is CSP

 $\mathbf{by}\ (simp\ add:\ AssignCSP\text{-}update\text{-}def\ RHS\text{-}tri\text{-}design\text{-}is\text{-}SRD\ unrest})$

```
lemma preR-AssignCSP-update [rdes]: pre_R(AssignCSP-update domf updatef x k v) = [k \in_u uop domf (\&x)]_{S < by} (rel-auto)
```

lemma periR-AssignCSP-update [rdes]: $peri_R(AssignCSP$ -update domf updatef x k $v) = [k \notin_u uop domf$ $(\&x)]_{S < by}$ (rel-simp)

```
lemma post-AssignCSP-update [rdes]:

post_R(AssignCSP-update domf updatef x k v) =

(\Phi(true,[x \mapsto_s trop \ updatef \ (\&x) \ k \ v],\langle\rangle) \triangleleft k \in_u uop \ domf \ (\&x) \triangleright_R R1(true))

by (rel-auto)
```

```
lemma AssignCSP-update-NCSP [closure]:

(AssignCSP-update domf updatef x k v) is NCSP

proof (rule NCSP-intro)

show (AssignCSP-update domf updatef x k v) is CSP

by (simp add: closure)

show (AssignCSP-update domf updatef x k v) is CSP3

by (rule CSP3-SRD-intro, simp-all add: csp-do-def closure rdes unrest)

show (AssignCSP-update domf updatef x k v) is CSP4

by (rule CSP4-tri-intro, simp-all add: csp-do-def closure rdes unrest, rel-auto)

qed
```

8.6 State abstraction

8.7 Assumptions

```
definition AssumeCircus (\{-\}_C) where
[rdes-def]: \{b\}_C = \mathbf{R}_s(\mathcal{I}(b,\langle\rangle)) \vdash (false \diamond \Phi(true,id,\langle\rangle)))
           Guards
8.8
definition GuardCSP ::
   '\sigma \ cond \Rightarrow
   ('\sigma, '\varphi) \ action \Rightarrow
   ('\sigma, '\varphi) action (infixr &<sub>u</sub> 70) where
[upred-defs]: g \&_u A = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r pre_R(A)) \vdash ((\lceil g \rceil_{S <} \land cmt_R(A)) \lor (\lceil \neg g \rceil_{S <}) \land \$tr' =_u \$tr \land Tr
$wait'))
lemma Guard-tri-design:
   g \&_u P = \mathbf{R}_s((\lceil g \rceil_{S \leqslant} \Rightarrow_r pre_R P) \vdash (peri_R(P) \triangleleft \lceil g \rceil_{S \leqslant} \triangleright (\$tr' =_u \$tr)) \diamond (\lceil g \rceil_{S \leqslant} \land post_R(P)))
proof -
  have (\lceil g \rceil_{S<} \land cmt_R \ P \lor \lceil \neg g \rceil_{S<} \land \$tr' =_u \$tr \land \$wait') = (peri_R(P) \triangleleft \lceil g \rceil_{S<} \triangleright (\$tr' =_u \$tr)) \diamond
(\lceil g \rceil_{S <} \land post_R(P))
     by (rel-auto)
  thus ?thesis by (simp add: GuardCSP-def)
qed
lemma Guard-rdes-def [rdes-def]:
  assumes P is RR Q is RR R is RR
  shows g \&_u \mathbf{R}_s(P \vdash Q \diamond R) = \mathbf{R}_s(([g]_{S <} \Rightarrow_r P) \vdash (Q \triangleleft g \triangleright_R (\$tr' =_u \$tr)) \diamond ([g]_{S <} \wedge R))
  by (simp add: Guard-tri-design rdes assms, rel-auto)
lemma Guard-rdes-def':
  assumes \$ok' \sharp P
  shows g \&_u (\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r P) \vdash (\lceil g \rceil_{S <} \land Q \lor \lceil \neg g \rceil_{S <} \land \$tr' =_u \$tr \land \$wait'))
  have g \&_u (\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r pre_R (\mathbf{R}_s (P \vdash Q))) \vdash (\lceil g \rceil_{S <} \land cmt_R (\mathbf{R}_s (P \vdash Q))) \lor
\lceil \neg g \rceil_{S<} \land \$tr' =_u \$tr \land \$wait')
     by (simp add: GuardCSP-def)
 also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash (\lceil g \rceil_{S <} \land R1(R2c(cmt_s \dagger (P \Rightarrow Q))) \lor \lceil \neg g \rceil_{S <})
\wedge \$tr' =_u \$tr \wedge \$wait')
     by (simp add: rea-pre-RHS-design rea-cmt-RHS-design)
  also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P)))) \vdash R1(R2c(\lceil g \rceil_{S <} \land R1(R2c(cmt_s \dagger (P \Rightarrow Q))))
\vee \lceil \neg g \rceil_{S<} \wedge \$tr' =_u \$tr \wedge \$wait')))
     by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c)
   \textbf{also have} \ ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash R1(R2c(\lceil g \rceil_{S <} \land (cmt_s \dagger (P \Rightarrow Q)) \lor \lceil \neg g \rceil_{S <})) 
\wedge \$tr' =_{u} \$tr \wedge \$wait')))
      by (simp add: R1-R2c-commute R1-disj R1-extend-conj' R1-idem R2c-and R2c-disj R2c-idem)
   also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P)))) \vdash (\lceil g \rceil_{S <} \land (cmt_s \dagger (P \Rightarrow Q)) \lor \lceil \neg g \rceil_{S <} \land \$tr'
=_u \$tr \land \$wait'))
      by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c)
   \textbf{also have} \ ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash cmt_s \dagger (\lceil g \rceil_{S <} \land (cmt_s \dagger (P \Rightarrow Q)) \lor \lceil \neg g \rceil_{S <})
\wedge \$tr' =_u \$tr \wedge \$wait')
      by (simp add: rdes-export-cmt)
   also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash cmt_s \dagger (\lceil g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land \$tr'
=_u \$tr \land \$wait'))
      by (simp add: usubst)
    also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P)))) \vdash (\lceil g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land \$tr' =_u \$tr
\land \$wait'))
```

by (simp add: rdes-export-cmt)

```
also from assms have ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r (pre_s \dagger P)) \vdash (\lceil g \rceil_{S<} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S<} \land \$tr' =_u
tr \wedge wait')
            by (rel-auto)
        also have ... = \mathbf{R}_s((\lceil g \rceil_{S \le r} pre_s \dagger P) \llbracket true, false / \$ok, \$wait \rrbracket \vdash (\lceil g \rceil_{S \le r} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \le r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S \ge r} \land (P
tr' =_u tr \wedge wait')
            by (simp add: rdes-export-pre)
      \textbf{also from } \textit{assms } \textbf{have } ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r P)[\![\textit{true}, \textit{false}/\$\textit{ok}, \$\textit{wait}]\!] \vdash (\lceil g \rceil_{S<} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S<})
\wedge \$tr' =_u \$tr \wedge \$wait')
            by (rel-auto)
        also from assms have ... = \mathbf{R}_s((\lceil g \rceil_{S \le r} P) \vdash (\lceil g \rceil_{S \le r} A) \lor \lceil \neg g \rceil_{S \le r} A \
$wait'))
            by (simp add: rdes-export-pre)
       also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r P) \vdash (\lceil g \rceil_{S <} \land Q \lor \lceil \neg g \rceil_{S <} \land \$tr' =_u \$tr \land \$wait'))
            by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
       finally show ?thesis.
qed
lemma CSP-Guard [closure]: b \&_u P is CSP
     by (simp add: GuardCSP-def, rule RHS-design-is-SRD, simp-all add: unrest)
lemma preR-Guard [rdes]: P is CSP \Longrightarrow pre_R(b \&_u P) = ([b]_{S <} \Rightarrow_r pre_R P)
     by (simp add: Guard-tri-design rea-pre-RHS-design usubst unrest R2c-preR R2c-lift-state-pre
               R2c-rea-impl R1-rea-impl R1-preR Healthy-if, rel-auto)
lemma periR-Guard [rdes]:
     assumes P is NCSP
    shows peri_R(b \&_u P) = (peri_R P \triangleleft b \triangleright_R \mathcal{E}(true, \langle \rangle, \{\}_u))
     have peri_R(b \&_u P) = ((\lceil b \rceil_{S \le p} pre_R P) \Rightarrow_r (peri_R P \triangleleft \lceil b \rceil_{S \le p} (\$tr' =_u \$tr)))
         by (simp add: assms Guard-tri-design rea-peri-RHS-design usubst unrest R1-rea-impl R2c-rea-not
                    R2c-rea-impl R2c-preR R2c-periR R2c-tr'-minus-tr R2c-lift-state-pre R2c-condr closure
                   Healthy-if R1-cond R1-tr'-eq-tr)
     also have ... = ((pre_R P \Rightarrow_r peri_R P) \triangleleft \lceil b \rceil_{S <} \triangleright (\$tr' =_u \$tr))
         by (rel-auto)
     also have ... = (peri_R P \triangleleft \lceil b \rceil_{S <} \triangleright (\$tr' =_u \$tr))
         by (simp add: SRD-peri-under-pre add: unrest closure assms)
     finally show ?thesis
         by rel-auto
qed
lemma postR-Guard [rdes]:
     assumes P is NCSP
    shows post_R(b \&_u P) = ([b]_{S<} \land post_R P)
proof -
     have post_R(b \&_u P) = ((\lceil b \rceil_{S <} \Rightarrow_r pre_R P) \Rightarrow_r (\lceil b \rceil_{S <} \land post_R P))
        by (simp add: Guard-tri-design rea-post-RHS-design usubst unrest R2c-rea-not R2c-and R2c-rea-impl
                   R2c-preR R2c-postR R2c-tr'-minus-tr R2c-lift-state-pre R2c-condr R1-rea-impl R1-extend-conj'
                   R1-post-SRD closure assms)
     also have ... = (\lceil b \rceil_{S <} \land (pre_R P \Rightarrow_r post_R P))
         by (rel-auto)
     also have ... = (\lceil b \rceil_{S <} \land post_R P)
         by (simp add: SRD-post-under-pre add: unrest closure assms)
     also have ... = ([b]_{S<} \land post_R P)
         by (metis CSP-Guard R1-extend-conj R1-post-SRD calculation rea-st-cond-def)
     finally show ?thesis.
```

```
\mathbf{qed}
```

```
lemma CSP3-Guard [closure]:
 assumes P is CSP P is CSP3
 shows b \&_u P is CSP3
proof -
 from assms have 1:$ref \mu P[false/$wait]
   by (simp add: CSP-Guard CSP3-iff)
 hence ref \ pre_R \ (P[0/\t^n]) \ ref \ pre_R \ P \ ref \ cmt_R \ P
   by (pred-blast)+
 hence ref \sharp (b \&_u P) \llbracket false / \$wait \rrbracket
   by (simp add: CSP3-iff GuardCSP-def RHS-def R1-def R2c-def R2s-def R3h-def design-def unrest
usubst)
 thus ?thesis
   by (metis CSP3-intro CSP-Guard)
qed
lemma CSP4-Guard [closure]:
 assumes P is NCSP
 shows b \&_u P is CSP4
proof (rule CSP4-tri-intro[OF CSP-Guard])
 show (\neg_r \ pre_R \ (b \ \&_u \ P)) \ ;; \ R1 \ true = (\neg_r \ pre_R \ (b \ \&_u \ P))
 proof -
   have a:(\neg_r \ pre_R \ P) \ ;; \ R1 \ true = (\neg_r \ pre_R \ P)
     by (simp add: CSP4-neg-pre-unit assms closure)
   have (\neg_r ([b]_{S<} \Rightarrow_r pre_R P)) ;; R1 true = (\neg_r ([b]_{S<} \Rightarrow_r pre_R P))
   proof -
     have 1:(\neg_r ([b]_{S<} \Rightarrow_r pre_R P)) = ([b]_{S<} \land (\neg_r pre_R P))
      by (rel-auto)
     also have 2:... = ([b]_{S <} \land ((\neg_r \ pre_R \ P) \ ;; R1 \ true))
      by (simp \ add: \ a)
     also have 3:... = (\neg_r ([b]_{S <} \Rightarrow_r pre_R P)) ;; R1 true
      by (rel-auto)
     finally show ?thesis ..
   \mathbf{qed}
   thus ?thesis
     by (simp add: preR-Guard periR-Guard NSRD-CSP4-intro closure assms unrest)
 qed
 show \$st' \sharp peri_R (b \&_u P)
   by (simp add: preR-Guard periR-Guard NSRD-CSP4-intro closure assms unrest)
 show ref' \sharp post_R (b \&_u P)
   by (simp add: preR-Guard postR-Guard NSRD-CSP4-intro closure assms unrest)
qed
lemma NCSP-Guard [closure]:
 assumes P is NCSP
 shows b \&_u P is NCSP
proof -
 have P is CSP
   using NCSP-implies-CSP assms by blast
 then show ?thesis
  by (metis (no-types) CSP3-Guard CSP3-commutes-CSP4 CSP4-Guard CSP4-Idempotent CSP-Guard
Healthy-Idempotent Healthy-def NCSP-def assms comp-apply)
qed
```

```
lemma Productive-Guard [closure]:
     assumes P is CSP P is Productive wait' <math>\sharp pre_R(P)
     shows b \&_u P is Productive
proof -
     have b \&_u P = b \&_u \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr'))
          by (metis\ Healthy-def\ Productive-form\ assms(1)\ assms(2))
     also have \dots =
                     \mathbf{R}_s ((\lceil b \rceil_{S <} \Rightarrow_r pre_R P) \vdash
                            ((pre_R \ P \Rightarrow_r peri_R \ P) \triangleleft \lceil b \rceil_{S<} \triangleright (\$tr' =_u \$tr)) \triangleleft (\lceil b \rceil_{S<} \wedge (pre_R \ P \Rightarrow_r post_R \ P \wedge \$tr' >_u
\$tr)))
          by (simp add: Guard-tri-design rea-pre-RHS-design rea-peri-RHS-design rea-post-RHS-design unrest
assms
                usubst R1-preR Healthy-if R1-rea-impl R1-peri-SRD R1-extend-conj' R2c-preR R2c-not R2c-rea-impl
                      R2c-periR R2c-postR R2c-and R2c-tr-less-tr' R1-tr-less-tr')
     \textbf{also have} \ ... = \mathbf{R}_s \ ((\lceil b \rceil_{S<} \Rightarrow_r pre_R P) \vdash (peri_R \ P \mathrel{\triangleleft} \lceil b \rceil_{S<} \mathrel{\triangleright} (\$tr' =_u \$tr)) \mathrel{\Diamond} ((\lceil b \rceil_{S<} \land post_R \ P)) \mathrel{\Diamond} ((\lceil b \rceil_{S<} \land post_R \ P))
\wedge \$tr' >_u \$tr)
          by (rel-auto)
     also have ... = Productive(b \&_u P)
          by (simp add: Productive-def Guard-tri-design RHS-tri-design-par unrest)
     finally show ?thesis
          by (simp add: Healthy-def')
\mathbf{qed}
8.9
                      Basic events
definition do_u ::
     ('\varphi, '\sigma) \ uexpr \Rightarrow ('\sigma, '\varphi) \ action \ where
[upred-defs]: do_u \ e = ((\$tr' =_u \$tr \land \lceil e \rceil_{S <} \notin_u \$ref') \triangleleft \$wait' \triangleright (\$tr' =_u \$tr \land_u \langle \lceil e \rceil_{S <}) \land \$st' =_u \land (\lVert e \rceil_{S <}) \land (\lVert
\$st)
definition DoCSP :: ('\varphi, '\sigma) \ uexpr \Rightarrow ('\sigma, '\varphi) \ action \ (do_C) \ where
[upred-defs]: DoCSP \ a = \mathbf{R}_s(true \vdash do_u \ a)
lemma R1-DoAct: R1(do_u(a)) = do_u(a)
     by (rel-auto)
lemma R2c\text{-}DoAct: R2c(do_u(a)) = do_u(a)
     by (rel-auto)
lemma DoCSP-alt-def: do_C(a) = R3h(CSP1(\$ok' \land do_u(a)))
      \mathbf{apply}\ (simp\ add:\ DoCSP\text{-}def\ RHS\text{-}def\ design\text{-}def\ impl\text{-}alt\text{-}def\ }\ R1\text{-}R3h\text{-}commute\ R2c\text{-}R3h\text{-}commute\ }
R2c-disj
                                                    R2c-not R2c-ok R2c-ok' R2c-and R2c-DoAct R1-disj R1-extend-conj' R1-DoAct)
     apply (rel-auto)
done
lemma DoAct-unrests [unrest]:
     \$ok \sharp do_u(a) \$wait \sharp do_u(a)
     by (pred-auto)+
lemma DoCSP-RHS-tri [rdes-def]:
      do_C(a) = \mathbf{R}_s(true_r \vdash (\mathcal{E}(true, \langle \rangle, \{a\}_u) \diamond \Phi(true, id, \langle a \rangle)))
     by (simp add: DoCSP-def do_u-def wait'-cond-def, rel-auto)
lemma CSP-DoCSP [closure]: do_C(a) is CSP
```

```
by (simp add: DoCSP-def do_u-def RHS-design-is-SRD unrest)
lemma preR-DoCSP [rdes]: pre_R(do_C(a)) = true_r
    by (simp add: DoCSP-def rea-pre-RHS-design unrest usubst R2c-true)
lemma periR-DoCSP [rdes]: peri_R(do_C(a)) = \mathcal{E}(true, \langle \rangle, \{a\}_u)
    by (rel-auto)
lemma postR-DoCSP [rdes]: post_R(do_C(a)) = \Phi(true,id,\langle a \rangle)
    by (rel-auto)
lemma CSP3-DoCSP [closure]: do_C(a) is CSP3
    by (rule CSP3-intro[OF CSP-DoCSP])
          (simp add: DoCSP-def do<sub>u</sub>-def RHS-def design-def R1-def R2c-def R2s-def R3h-def unrest usubst)
lemma CSP4-DoCSP [closure]: do_C(a) is CSP4
      \mathbf{by} \ (\mathit{rule} \ \mathit{CSP4-tri-intro}[\mathit{OF} \ \mathit{CSP-DoCSP}], \ \mathit{simp-all} \ \mathit{add:} \ \mathit{preR-DoCSP} \ \mathit{periR-DoCSP} \ \mathit{postR-DoCSP} \ \mathit{p
unrest)
lemma NCSP-DoCSP [closure]: do_C(a) is NCSP
    by (metis CSP3-DoCSP CSP4-DoCSP CSP-DoCSP Healthy-def NCSP-def comp-apply)
lemma Productive-DoCSP [closure]:
    (do_C \ a :: ('\sigma, '\psi) \ action) \ is \ Productive
proof -
    have ((\Phi(true,id,\langle a\rangle) \land \$tr' >_u \$tr) :: ('\sigma, '\psi) \ action)
                  = (\Phi(true, id, \langle a \rangle))
        by (rel-auto, simp add: Prefix-Order.strict-prefixI')
    hence Productive(do_C \ a) = do_C \ a
        by (simp add: Productive-RHS-design-form DoCSP-RHS-tri unrest)
    thus ?thesis
        by (simp add: Healthy-def)
lemma PCSP-DoCSP [closure]:
    (do_C \ a :: ('\sigma, '\psi) \ action) \ is \ PCSP
    by (simp add: Healthy-comp NCSP-DoCSP Productive-DoCSP)
\mathbf{lemma}\ wp\text{-}rea\text{-}DoCSP\text{-}lemma:
    fixes P :: ('\sigma, '\varphi) \ action
    assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P
    \mathbf{shows} \ (\$tr' =_u \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \$st' =_u \$st) \ ;; \ P = (\exists \ \$ref \cdot P \llbracket \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle / \$tr \rrbracket)
    using assms
    by (rel-auto, meson)
lemma wp-rea-DoCSP:
    assumes P is NCSP
    shows (\$tr' =_u \$tr \ \hat{}_u \ \langle [a]_{S<} \rangle \wedge \$st' =_u \$st) wp_r \ pre_R \ P =
                   (\neg_r \ (\neg_r \ pre_R \ P)[\$tr \ \hat{}_u \ \langle \lceil a \rceil_{S<} \rangle / \$tr])
    by (simp add: wp-rea-def wp-rea-DoCSP-lemma unrest usubst ex-unrest assms closure)
\mathbf{lemma}\ \textit{wp-rea-DoCSP-alt}\colon
    assumes P is NCSP
    shows (\$tr' =_u \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \$st' =_u \$st) wp_r \ pre_R \ P =
                   (\$tr' \geq_u \$tr \hat{u} \langle [a]_{S<} \rangle \Rightarrow_r (pre_R P) \llbracket \$tr \hat{u} \langle [a]_{S<} \rangle / \$tr \rrbracket)
```

8.10 Event prefix

```
definition PrefixCSP ::
  ('\varphi, '\sigma) \ uexpr \Rightarrow
 ('\sigma, '\varphi) \ action \Rightarrow
 (\sigma, \varphi) action (-\rightarrow_C - [81, 80] \ 80) where
[upred-defs]: PrefixCSP \ a \ P = (do_C(a) ;; CSP(P))
abbreviation Output CSP c \ v \ P \equiv Prefix CSP \ (c \cdot v)_u \ P
lemma CSP-PrefixCSP [closure]: PrefixCSP a P is CSP
 by (simp add: PrefixCSP-def closure)
lemma CSP3-PrefixCSP [closure]:
  PrefixCSP a P is CSP3
 by (metis (no-types, hide-lams) CSP3-DoCSP CSP3-def Healthy-def PrefixCSP-def seqr-assoc)
lemma CSP4-PrefixCSP [closure]:
 assumes P is CSP P is CSP4
 shows PrefixCSP a P is CSP4
 by (metis (no-types, hide-lams) CSP4-def Healthy-def PrefixCSP-def assms(1) assms(2) seqr-assoc)
lemma NCSP-PrefixCSP [closure]:
 assumes P is NCSP
 shows PrefixCSP a P is NCSP
 by (metis (no-types, hide-lams) CSP3-PrefixCSP CSP3-commutes-CSP4 CSP4-Idempotent CSP4-PrefixCSP
       CSP-PrefixCSP Healthy-Idempotent Healthy-def NCSP-def NCSP-implies-CSP assms comp-apply )
lemma Productive-PrefixCSP [closure]: P is NCSP \Longrightarrow PrefixCSP a P is Productive
 by (simp add: Healthy-if NCSP-DoCSP NCSP-implies-NSRD NSRD-is-SRD PrefixCSP-def Productive-DoCSP
Productive-seq-1)
lemma PCSP-PrefixCSP [closure]: P is NCSP \Longrightarrow PrefixCSP a P is PCSP
 by (simp add: Healthy-comp NCSP-PrefixCSP Productive-PrefixCSP)
lemma PrefixCSP-Guarded [closure]: Guarded (PrefixCSP a)
proof -
 have PrefixCSP \ a = (\lambda \ X. \ do_C(a) \ ;; \ CSP(X))
   by (simp add: fun-eq-iff PrefixCSP-def)
 thus ?thesis
   using Guarded-if-Productive NCSP-DoCSP NCSP-implies-NSRD Productive-DoCSP by auto
qed
lemma PrefixCSP-type [closure]: PrefixCSP a \in [H]_H \to [CSP]_H
 using CSP-PrefixCSP by blast
\textbf{lemma} \ \textit{PrefixCSP-Continuous} \ [\textit{closure}] : \ \textit{Continuous} \ (\textit{PrefixCSP a})
 by (simp add: Continuous-def PrefixCSP-def ContinuousD[OF SRD-Continuous] seq-Sup-distl)
lemma PrefixCSP-RHS-tri-lemma1:
  R1 \ (R2s \ (\$tr' =_u \$tr \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \lceil II \rceil_R)) = (\$tr' =_u \$tr \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \lceil II \rceil_R)
 by (rel-auto)
lemma PrefixCSP-RHS-tri-lemma2:
```

```
fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P
  \mathbf{shows} \ ((\$tr' =_u \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \$st' =_u \$st) \wedge \neg \ \$wait') \ ;; \ P = (\exists \ \$ref \cdot P[\$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle / \$tr]])
  using assms
  by (rel-auto, meson, fastforce)
lemma tr-extend-segr:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
  shows (\$tr' =_u \$tr \hat{\ }_u \langle [a]_{S<} \rangle \wedge \$st' =_u \$st) ;; P = P[\$tr \hat{\ }_u \langle [a]_{S<} \rangle / \$tr]
  using assms by (simp add: wp-rea-DoCSP-lemma assms unrest ex-unrest)
lemma trace-ext-R1-closed [closure]: P is R1 \Longrightarrow P[\$tr \hat{u} e/\$tr] is R1
  by (rel-blast)
lemma preR-PrefixCSP-NCSP [rdes]:
  assumes P is NCSP
  shows pre_R(PrefixCSP \ a \ P) = (\mathcal{I}(true,\langle a \rangle) \Rightarrow_r (pre_R \ P) \llbracket \langle a \rangle \rrbracket_t)
  by (simp add: PrefixCSP-def assms closure rdes rpred Healthy-if wp usubst unrest)
\mathbf{lemma} \ \mathit{periR-PrefixCSP} \ [\mathit{rdes}] :
  assumes P is NCSP
  shows peri_R(PrefixCSP \ a \ P) = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \lor (peri_R \ P) \llbracket \langle a \rangle \rrbracket_t)
proof -
  have peri_R(PrefixCSP \ a \ P) = peri_R \ (do_C \ a \ ;; \ P)
     by (simp add: PrefixCSP-def closure assms Healthy-if)
  also have ... = ((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r pre_R P[\![\langle a \rangle]\!]_t) \Rightarrow_r \$tr' =_u \$tr \land [\![a]\!]_{S \leqslant \notin_u} \$ref' \lor peri_R P[\![\langle a \rangle]\!]_t)
   by (simp add: assms NSRD-CSP4-intro csp-enable-tr-empty closure rdes unrest ex-unrest usubst rpred
  also have ... = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \vee ((\mathcal{I}(true, \langle a \rangle) \Rightarrow_r pre_R P \llbracket \langle a \rangle \rrbracket_t) \Rightarrow_r peri_R P \llbracket \langle a \rangle \rrbracket_t))
     by (rel-auto)
  also have ... = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \vee ((pre_R(P) \Rightarrow_r peri_R P) \llbracket \langle a \rangle \rrbracket_t))
     by (rel-auto)
  also have ... = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \vee (peri_R P) \llbracket \langle a \rangle \rrbracket_t)
     by (simp add: SRD-peri-under-pre assms closure unrest)
  finally show ?thesis.
qed
lemma postR-PrefixCSP [rdes]:
  assumes P is NCSP
  shows post_R(PrefixCSP \ a \ P) = (post_R \ P) [\![\langle a \rangle]\!]_t
proof -
  have post_R(PrefixCSP \ a \ P) = ((\mathcal{I}(true, \langle a \rangle) \Rightarrow_r (pre_R \ P) \llbracket \langle a \rangle \rrbracket_t) \Rightarrow_r (post_R \ P) \llbracket \langle a \rangle \rrbracket_t)
     by (simp add: PrefixCSP-def assms Healthy-if)
        (simp add: assms Healthy-if wp closure rdes rpred wp-rea-DoCSP-lemma unrest ex-unrest usubst)
  also have ... = (\mathcal{I}(true,\langle a \rangle) \land (pre_R \ P \Rightarrow_r post_R \ P) \llbracket \langle a \rangle \rrbracket_t)
     \mathbf{by} (rel-auto)
  also have ... = (\mathcal{I}(true,\langle a \rangle) \land (post_R P) \llbracket \langle a \rangle \rrbracket_t)
     by (simp add: SRD-post-under-pre assms closure unrest)
  also have ... = (post_R P) \llbracket \langle a \rangle \rrbracket_t
     by (rel-auto)
  finally show ?thesis.
qed
```

lemma PrefixCSP-RHS-tri:

```
assumes P is NCSP
  shows PrefixCSP \ a \ P = \mathbf{R}_s \ ((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r pre_R \ P[\![\langle a \rangle]\!]_t) \vdash (\mathcal{E}(true,\langle \rangle, \{a\}_u) \lor peri_R \ P[\![\langle a \rangle]\!]_t) \diamond
  by (simp add: PrefixCSP-def Healthy-if unrest assms closure NSRD-composition-wp rdes rpred usubst
For prefix, we can chose whether to propagate the assumptions or not, hence there are two laws.
lemma PrefixCSP-rdes-def-1 [rdes-def]:
  assumes P is CRC Q is CRR R is CRR
            \$st' \sharp Q \$ref' \sharp R
  shows PrefixCSP \ a \ (\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r P \llbracket \langle a \rangle \rrbracket_t) \vdash (\mathcal{E}(true,\langle \rangle, \{a\}_u) \lor Q \llbracket \langle a \rangle \rrbracket_t)
\diamond R[\![\langle a \rangle]\!]_t)
  apply (subst PrefixCSP-RHS-tri)
   apply (rule NCSP-rdes-intro)
         apply (simp-all add: assms rdes closure)
  apply (rel-auto)
  done
lemma PrefixCSP-rdes-def-2:
  assumes P is CRC Q is CRR R is CRR
            \$st' \ \sharp \ Q \ \$ref' \ \sharp \ R
 shows PrefixCSP\ a\ (\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r P[\![\langle a \rangle]\!]_t) \vdash (\mathcal{E}(true,\langle \rangle, \{a\}_u) \lor (P \land Q)[\![\langle a \rangle]\!]_t)
\diamond (P \wedge R) \llbracket \langle a \rangle \rrbracket_t
  apply (subst PrefixCSP-RHS-tri)
   apply (rule NCSP-rdes-intro)
        apply (simp-all add: assms rdes closure)
  apply (rel-auto)
  done
             Guarded external choice
8.11
abbreviation Guarded Choice CSP: '\vartheta set \Rightarrow ('\vartheta \Rightarrow ('\sigma, '\vartheta) action) \Rightarrow ('\sigma, '\vartheta) action where
GuardedChoiceCSP \ A \ P \equiv (\Box \ x \in A \cdot PrefixCSP \ll x \gg (P(x)))
syntax
  -GuardedChoiceCSP :: logic \Rightarrow logic \Rightarrow logic \Rightarrow logic (\Box - \in - \rightarrow - [0.0.85] 86)
translations
  \square x \in A \rightarrow P == CONST \ Guarded Choice CSP \ A \ (\lambda x. P)
lemma GuardedChoiceCSP [rdes-def]:
  assumes \bigwedge x. P(x) is NCSP A \neq \{\}
  shows (\Box x \in A \rightarrow P(x)) =
                \mathbf{R}_s (( \sqsubseteq x \in A \cdot \mathcal{I}(true, \langle \ll x \gg \rangle) \Rightarrow_r pre_R (P x) [\![\langle \ll x \gg \rangle]\!]_t) \vdash
                     ((\bigsqcup x \in A \cdot \mathcal{E}(true, \langle \rangle, \{\ll x \gg\}_u)) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap x \in A \cdot peri_R (P x)[(\ll x \gg)]_t)) \diamond
                      ( \square x \in A \cdot post_R (P x) \llbracket \langle \langle x \rangle \rangle \rrbracket_t ) )
  by (simp add: PrefixCSP-RHS-tri assms ExtChoice-tri-rdes closure unrest, rel-auto)
            Input prefix
8.12
definition InputCSP ::
  ('a, '\vartheta) \ chan \Rightarrow ('a \Rightarrow '\sigma \ upred) \Rightarrow ('a \Rightarrow ('\sigma, '\vartheta) \ action) \Rightarrow ('\sigma, '\vartheta) \ action \ \mathbf{where}
[upred-defs]: InputCSP c A P = (\Box x \in UNIV \cdot A(x) \&_u PrefixCSP (c \cdot x \gg)_u (P x))
definition Input VarCSP :: ('a, '\vartheta) chan \Rightarrow ('a \Rightarrow '\sigma \ upred) \Rightarrow ('a \Longrightarrow '\sigma) \Rightarrow ('\sigma, '\vartheta) action \Rightarrow ('\sigma, '\vartheta)
\vartheta) action where
```

```
InputVarCSP \ c \ A \ x \ P = InputCSP \ c \ A \ (\lambda \ v. \langle [x \mapsto_s \ll v \gg] \rangle_C) \ ;; \ CSP(P)
definition do_I ::
  ('a, '\vartheta) \ chan \Rightarrow
  ('a \Longrightarrow ('\sigma, '\vartheta) \ st\text{-}csp) \Rightarrow
  ('a \Rightarrow ('\sigma, '\vartheta) \ action) \Rightarrow
  ('\sigma, '\vartheta) action where
do_I \ c \ x \ P = (
  (\$tr' =_u \$tr \land \{e : \ll \delta_u(c) \gg | P(e) \cdot (c \cdot \ll e)_u\}_u \cap_u \$ref' =_u \{\}_u)
    \triangleleft \$wait' \triangleright
  ((\$tr' - \$tr) \in_u \{e : \langle \delta_u(c) \rangle \mid P(e) \cdot \langle (c \cdot \langle e \rangle)_u \rangle\}_u \wedge (c \cdot \$x')_u =_u last_u(\$tr'))
lemma InputCSP-CSP [closure]: InputCSP c A P is CSP
  by (simp add: CSP-ExtChoice InputCSP-def)
lemma InputCSP-NCSP [closure]: \llbracket \land v. P(v) \text{ is } NCSP \rrbracket \implies InputCSP \ c \ A \ P \ \text{is } NCSP
  apply (simp add: InputCSP-def)
  apply (rule NCSP-ExtChoice)
  apply (simp add: NCSP-Guard NCSP-PrefixCSP image-Collect-subsetI top-set-def)
  done
lemma Productive-InputCSP [closure]:
  \llbracket \bigwedge v. P(v) \text{ is NCSP } \rrbracket \Longrightarrow InputCSP \ x \ A \ P \ is Productive
  by (auto simp add: InputCSP-def unrest closure intro: Productive-ExtChoice)
lemma preR-InputCSP [rdes]:
  assumes \bigwedge v. P(v) is NCSP
 shows pre_R(InputCSP\ a\ A\ P) = (|\ |\ v\cdot [A(v)]_{S<} \Rightarrow_r \mathcal{I}(true, \langle (a\cdot \ll v\gg)_u\rangle) \Rightarrow_r (pre_R\ (P(v))) [\langle (a\cdot \ll v\gg)_u\rangle]_t)
  by (simp add: InputCSP-def rdes closure assms alpha usubst unrest)
lemma periR-InputCSP [rdes]:
  assumes \bigwedge v. P(v) is NCSP
  shows peri_R(InputCSP \ a \ A \ P) =
             ((\bigsqcup x \cdot [A(x)]_{S <} \Rightarrow_r \mathcal{E}(true, \langle \rangle, \{(a \cdot \ll x \gg)_u\}_u)))
                 \triangleleft \$tr' =_u \$tr \triangleright
               ([] x \cdot [A(x)]_{S <} \land (peri_R (P x)) [((a \cdot \ll x \gg)_u)]_t)
  by (simp add: InputCSP-def rdes closure assms, rel-auto)
lemma postR-InputCSP [rdes]:
  assumes \bigwedge v. P(v) is NCSP
  shows post_R(InputCSP \ a \ A \ P) =
            (\prod x \cdot [A \ x]_{S<} \land post_R \ (P \ x) \llbracket \langle (a \cdot \ll x \gg)_u \rangle \rrbracket_t)
  using assms by (simp add: InputCSP-def rdes closure assms usubst unrest)
lemma InputCSP-rdes-def [rdes-def]:
  assumes \bigwedge v. P(v) is CRC \bigwedge v. Q(v) is CRR \bigwedge v. R(v) is CRR
            \bigwedge v. \$st' \sharp Q(v) \bigwedge v. \$ref' \sharp R(v)
  shows Input CSP a A (\lambda v. \mathbf{R}_s(P(v) \vdash Q(v) \diamond R(v))) =
          \mathbf{R}_{s}(\ (|\ |\ v\cdot([A(v)]_{S<}\Rightarrow_{r}\mathcal{I}(true,\langle(a\cdot\ll v\gg)_{u}\rangle)\Rightarrow_{r}(P\ v)[\![\langle(a\cdot\ll v\gg)_{u}\rangle]\!]_{t}))
             \vdash (((\bigsqcup x \cdot [A(x)]_{S <} \Rightarrow_r \mathcal{E}(true, \langle \rangle, \{(a \cdot \ll x \gg)_u\}_u)))
                  \triangleleft \$tr' =_u \$tr \triangleright
                  (   x \cdot [A(x)]_{S<} \wedge (P x \wedge Q x) \llbracket \langle (a \cdot \ll x \gg)_u \rangle \rrbracket_t ) )
             \diamond ( [ x \cdot [A \ x]_{S<} \land (P \ x \land R \ x) [ ((a \cdot \ll x \gg)_u)]_t ) ) \text{ (is ?} lhs = ?rhs)
proof
  have 1:pre_R(?lhs) = (\bigsqcup v \cdot [A \ v]_{S <} \Rightarrow_r \mathcal{I}(true, \langle (a \cdot \ll v \gg)_u \rangle) \Rightarrow_r P \ v[\langle (a \cdot \ll v \gg)_u \rangle]_t) (is - = ?A)
```

```
by (simp add: rdes NCSP-rdes-intro assms conj-comm closure)
     \mathbf{have} \ \ 2:peri_R(?lhs) = (\bigsqcup \ x \cdot [A \ x]_{S<} \Rightarrow_r \mathcal{E}(true, \langle \rangle, \{(a \cdot \ll x \gg)_u\}_u)) \land \$tr' =_u \$tr \rhd (\bigcap \ x \cdot [A \ x]_{S<}) \land (A \ x \land x \land x) \land (A \ x \land x) \land (A 
\wedge (P x \Rightarrow_r Q x) \llbracket \langle (a \cdot \ll x \gg)_u \rangle \rrbracket_t \rangle
         (is - = ?B)
         by (simp add: rdes NCSP-rdes-intro assms closure)
     have 3:post_R(?lhs) = (\prod x \cdot [A \ x]_{S<} \land (P \ x \Rightarrow_r R \ x) [(a \cdot \langle x \rangle)_u)]_t)
          (is - ?C)
         by (simp add: rdes NCSP-rdes-intro assms closure)
     have ?lhs = \mathbf{R}_s(?A \vdash ?B \diamond ?C)
         by (subst SRD-reactive-tri-design[THEN sym], simp-all add: closure 1 2 3)
    also have \dots = ?rhs
         by (rel-auto)
    finally show ?thesis.
8.13
                         Algebraic laws
\mathbf{lemma}\ Assign CSP\text{-}conditional:
    assumes vwb-lens x
     shows x :=_C e \triangleleft b \triangleright_R x :=_C f = x :=_C (e \triangleleft b \triangleright f)
    by (rdes-eq cls: assms)
lemma AssignsCSP-id: \langle id \rangle_C = Skip
    by (rel-auto)
lemma Guard-comp:
     g \&_u h \&_u P = (g \wedge h) \&_u P
     by (rule antisym, rel-blast, rel-blast)
lemma Guard-false [simp]: false \&_u P = Stop
     by (simp add: GuardCSP-def Stop-def rpred closure alpha R1-design-R1-pre)
lemma Guard-true [simp]:
     P \text{ is } CSP \Longrightarrow true \&_u P = P
    by (simp add: GuardCSP-def alpha SRD-reactive-design-alt closure rpred)
lemma Guard-conditional:
    assumes P is NCSP
    shows b \&_u P = P \triangleleft b \triangleright_R Stop
    by (rdes-eq cls: assms)
lemma Guard-expansion:
    assumes P is NCSP
    shows (g_1 \vee g_2) \&_u P = (g_1 \&_u P) \square (g_2 \&_u P)
    by (rdes-eq cls: assms)
lemma Conditional-as-Guard:
     assumes P is NCSP Q is NCSP
    shows P \triangleleft b \triangleright_R Q = b \&_u P \square (\neg b) \&_u Q
    by (rdes-eq cls: assms)
lemma PrefixCSP-dist:
     PrefixCSP \ a \ (P \sqcap Q) = (PrefixCSP \ a \ P) \sqcap (PrefixCSP \ a \ Q)
     using Continuous-Disjunctous Disjunctuous-def PrefixCSP-Continuous by auto
lemma DoCSP-is-Prefix:
```

```
do_C(a) = PrefixCSP \ a \ Skip
 by (simp add: PrefixCSP-def Healthy-if closure, metis CSP4-DoCSP CSP4-def Healthy-def)
lemma PrefixCSP-seq:
 assumes P is CSP Q is CSP
 shows (PrefixCSP a P) ;; Q = (PrefixCSP \ a \ (P \ ;; \ Q))
 by (simp add: PrefixCSP-def segr-assoc Healthy-if assms closure)
lemma PrefixCSP-extChoice-dist:
 assumes P is NCSP Q is NCSP R is NCSP
 shows ((a \rightarrow_C P) \Box (b \rightarrow_C Q)) ;; R = (a \rightarrow_C P ;; R) \Box (b \rightarrow_C Q ;; R)
 by (simp\ add:\ PCSP-PrefixCSP\ assms(1)\ assms(2)\ assms(3)\ extChoice-seq-distr)
\mathbf{lemma}\ \mathit{GuardedChoiceCSP-dist}\colon
 assumes \bigwedge i. i \in A \Longrightarrow P(i) is NCSP Q is NCSP
 shows \square x \in A \to P(x);; Q = \square x \in A \to (P(x);; Q)
 by (simp add: ExtChoice-seq-distr PrefixCSP-seq closure assms cong: ExtChoice-cong)
Alternation can be re-expressed as an external choice when the guards are disjoint
lemma AlternateR-as-ExtChoice:
 assumes
   \bigwedge i. i \in A \Longrightarrow P(i) \text{ is NCSP } Q \text{ is NCSP}
   \bigwedge i j. [i \in A; j \in A; i \neq j] \Longrightarrow (g i \land g j) = false
 shows (if_R i \in A \cdot g(i) \rightarrow P(i) else Q fi) =
        (\Box i \in A \cdot g(i) \&_u P(i)) \Box (\bigwedge i \in A \cdot \neg g(i)) \&_u Q
proof (cases\ A = \{\})
 case True
 then show ?thesis by (simp add: ExtChoice-empty extChoice-Stop closure assms)
next
 {f case} False
 show ?thesis
 proof -
   have 1:(\bigcap i \in A \cdot g \ i \rightarrow_R P \ i) = (\bigcap i \in A \cdot g \ i \rightarrow_R \mathbf{R}_s(pre_R(P \ i) \vdash peri_R(P \ i) \diamond post_R(P \ i)))
     by (rule UINF-cong, simp add: NCSP-implies-CSP SRD-reactive-tri-design assms(1))
   have 2:(\Box i \in A \cdot g(i) \&_u P(i)) = (\Box i \in A \cdot g(i) \&_u \mathbf{R}_s(pre_R(P_i) \vdash peri_R(P_i))) \circ post_R(P_i)))
      by (rule ExtChoice-cong, simp add: NCSP-implies-NSRD NSRD-is-SRD SRD-reactive-tri-design
assms(1)
   from assms(3) show ?thesis
     by (simp add: AlternateR-def 1 2)
        (rdes-eq\ cls:\ assms(1-2)\ simps:\ False\ cong:\ UINF-cong\ ExtChoice-cong)
 qed
qed
end
      Syntax and Translations for Event Prefix
9
theory utp-circus-prefix
 imports utp-circus-actions
begin
syntax
  -simple-prefix :: logic \Rightarrow logic \Rightarrow logic (- \rightarrow - [81, 80] 80)
```

translations

```
a \rightarrow P == CONST PrefixCSP \ll a \gg P
We next configure a syntax for mixed prefixes.
nonterminal prefix-elem' and mixed-prefix'
syntax - end-prefix :: prefix-elem' \Rightarrow mixed-prefix' (-)
Input Prefix: ...?(x)
syntax -simple-input-prefix :: id \Rightarrow prefix-elem' \ (?'(-'))
Input Prefix with Constraint: ...? (x : P)
syntax -input-prefix :: id \Rightarrow ('\sigma, '\varepsilon) \ action \Rightarrow prefix-elem' (?'(-:/-'))
Output Prefix: \dots![v]e
A variable name must currently be provided for outputs, too. Fix?!
syntax -output-prefix :: ('a, '\sigma) \ uexpr \Rightarrow prefix-elem' \ (!'(-'))
syntax -output-prefix :: ('a, '\sigma) uexpr \Rightarrow prefix-elem' (.'(-'))
syntax (output) -output-prefix-pp :: ('a, '\sigma') uexpr \Rightarrow prefix-elem' (!'(-'))
syntax
  -prefix-aux :: pttrn \Rightarrow logic \Rightarrow prefix-elem'
Mixed-Prefix Action: c...(prefix) \rightarrow A
\mathbf{syntax} \text{ -}mixed\text{-}prefix :: prefix\text{-}elem' \Rightarrow mixed\text{-}prefix' \Rightarrow mixed\text{-}prefix' (--)
syntax
  -prefix-action:
  ('a, '\varepsilon) \ chan \Rightarrow mixed\text{-prefix'} \Rightarrow ('\sigma, '\varepsilon) \ action \Rightarrow ('\sigma, '\varepsilon) \ action
 ((-- \rightarrow / -) [81, 81, 80] 80)
Syntax translations
definition lconj :: ('a \Rightarrow '\alpha \ upred) \Rightarrow ('b \Rightarrow '\alpha \ upred) \Rightarrow ('a \times 'b \Rightarrow '\alpha \ upred)  (infixr \land_l \ 35)
where [upred-defs]: (P \wedge_l Q) \equiv (\lambda (x,y). P x \wedge Q y)
definition outp-constraint (infix =_0 60) where
[upred-defs]: outp-constraint v \equiv (\lambda \ x. \ \ll x \gg =_u v)
translations
  -simple-input-prefix x \rightleftharpoons -input-prefix x true
  -mixed-prefix (-input-prefix x P) (-prefix-aux y Q) \rightharpoonup
  -prefix-aux (-pattern x y) ((\lambda x. P) \wedge_l Q)
  -mixed-prefix (-output-prefix P) (-prefix-aux y Q) \rightharpoonup
  -prefix-aux (-pattern -idtdummy y) ((CONST outp-constraint P) \wedge_l Q)
  -end-prefix (-input-prefix x P) \rightharpoonup -prefix-aux x (\lambda x. P)
  -end-prefix (-output-prefix P) \rightharpoonup -prefix-aux -idtdummy (CONST outp-constraint P)
  -prefix-action c (-prefix-aux x P) A == (CONST\ InputCSP)\ c\ P\ (\lambda x.\ A)
Basic print translations; more work needed
translations
  -simple-input-prefix x <= -input-prefix x true
  -output-prefix v \le -prefix-aux p (CONST outp-constraint v)
  -output-prefix u (-output-prefix v)
```

```
<= -prefix-aux p (\lambda(x1, y1)). CONST outp-constraint u x2 \wedge CONST outp-constraint v y2)
  -input-prefix x P \le -prefix-aux \ v \ (\lambda x. \ P)
  x!(v) \rightarrow P <= CONST \ Output CSP \ x \ v \ P
\mathbf{term}\ x!(1)!(y)\to P
term x?(v) \to P
term x?(v:false) \rightarrow P
term x!(\langle 1 \rangle) \to P
term x?(v)!(1) \rightarrow P
term x!(\langle 1 \rangle)!(2)?(v:true) \rightarrow P
Basic translations for state variable communications
syntax
  -csp-input-var :: logic \Rightarrow id \Rightarrow logic \Rightarrow logic \Rightarrow logic (-?\$-:- \rightarrow -[81, 0, 0, 80] 80)
  -csp-inputu-var :: logic \Rightarrow id \Rightarrow logic \Rightarrow logic (-?\$- \rightarrow -[81, 0, 80] 80)
translations
  c?$x:A 	o P \implies CONST\ Input VarCSP\ c\ x\ A\ P
  c?\$x \rightarrow P \rightarrow CONST\ InputVarCSP\ c\ x\ (CONST\ UNIV)\ P
  c?$x 	o P <= c?$x:true 	o P
lemma outp-constraint-prod:
  (outp\text{-}constraint \ll a \gg x \land outp\text{-}constraint \ll b \gg y) =
    outp\text{-}constraint \ll (a, b) \gg (x, y)
  by (simp add: outp-constraint-def, pred-auto)
lemma subst-outp-constraint [usubst]:
  \sigma \dagger (v =_o x) = (\sigma \dagger v =_o x)
  by (rel-auto)
lemma UINF-one-point-simp [rpred]:
  \llbracket \bigwedge i. \ P \ i \ is \ R1 \ \rrbracket \Longrightarrow (\bigcap x \cdot [\ll i \gg =_o x]_{S <} \land P(x)) = P(i)
  by (rel-blast)
lemma USUP-one-point-simp [rpred]:
  \llbracket \bigwedge i. \ P \ i \ is \ R1 \ \rrbracket \Longrightarrow (\bigsqcup x \cdot [\ll i \gg =_o x]_{S<} \Rightarrow_r P(x)) = P(i)
  by (rel-blast)
lemma USUP-eq-event-eq [rpred]:
  assumes \bigwedge y. P(y) is RR
  \mathbf{shows} \; ( \bigsqcup \; y \, \boldsymbol{\cdot} \; [v =_o \; y]_{S <} \Rightarrow_r P(y) ) = P(y) \llbracket y \rightarrow \lceil v \rceil_{S \leftarrow} \rrbracket
  have ( \sqsubseteq y \cdot [v =_o y]_{S <} \Rightarrow_r RR(P(y)) ) = RR(P(y))[y \rightarrow [v]_{S \leftarrow}]
    apply (rel-simp, safe)
    apply metis
    apply blast
    apply simp
    done
  thus ?thesis
    by (simp add: Healthy-if assms)
lemma UINF-eq-event-eq [rpred]:
  assumes \bigwedge y. P(y) is RR
  \mathbf{shows} \; ( \  \, | \  \, y \, \cdot [v =_o \, y]_{S <} \wedge P(y)) = P(y) \llbracket y {\rightarrow} \lceil v \rceil_{S \leftarrow} \rrbracket
```

```
proof -
 have (   y \cdot [v =_o y]_{S <} \land RR(P(y)) ) = RR(P(y))[y \rightarrow [v]_{S \leftarrow}]
   by (rel-simp, safe, metis)
 thus ?thesis
   by (simp add: Healthy-if assms)
qed
Proofs that the input constrained parser versions of output is the same as the regular definition.
lemma output-prefix-is-OutputCSP [simp]:
 assumes A is NCSP
 shows x!(P) \rightarrow A = OutputCSP \ x \ P \ A \ (is ?lhs = ?rhs)
 by (rule SRD-eq-intro, simp-all add: assms closure rdes, rel-auto+)
lemma OutputCSP-pair-simp [simp]:
  P \text{ is } NCSP \Longrightarrow a.(\ll i \gg).(\ll j \gg) \rightarrow P = OutputCSP \ a \ll (i,j) \gg P
 \mathbf{using}\ \mathit{output-prefix-is-OutputCSP}[\mathit{of}\ P\ \mathit{a}]
 by (simp add: outp-constraint-prod lconj-def Input CSP-def closure del: output-prefix-is-Output CSP)
lemma OutputCSP-triple-simp [simp]:
  P \text{ is } NCSP \Longrightarrow a.(\ll i \gg).(\ll j \gg).(\ll k \gg) \rightarrow P = OutputCSP \ a \ll (i,j,k) \gg P
 using output-prefix-is-OutputCSP[of P a]
 by (simp add: outp-constraint-prod lconj-def InputCSP-def closure del: output-prefix-is-OutputCSP)
end
```

10 Recursion in Circus

```
theory utp-circus-recursion
imports utp-circus-prefix utp-circus-contracts
begin
```

10.1 Fixed-points

The CSP weakest fixed-point is obtained simply by precomposing the body with the CSP healthiness condition.

```
healthiness condition.

abbreviation mu\text{-}CSP :: (('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action) \Rightarrow ('\sigma, '\varphi) \ action \ (\mu_C) where \mu_C \ F \equiv \mu \ (F \circ CSP)

syntax

-mu\text{-}CSP :: pttrn \Rightarrow logic \Rightarrow logic \ (\mu_C - \cdot \cdot - [0, 10] \ 10)

translations

\mu_C \ X \cdot P == CONST \ mu\text{-}CSP \ (\lambda \ X. \ P)

lemma mu\text{-}CSP\text{-}equiv :

assumes Monotonic \ F \ F \in \llbracket CSP \rrbracket_H \to \llbracket CSP \rrbracket_H

shows (\mu_R \ F) = (\mu_C \ F)

by (simp \ add : srd\text{-}mu\text{-}equiv \ assms \ comp\text{-}def)

lemma mu\text{-}CSP\text{-}unfold :

P \ is \ CSP \implies (\mu_C \ X \cdot P \ ;; \ X) = P \ ;; \ (\mu_C \ X \cdot P \ ;; \ X)

apply (subst \ gfp\text{-}unfold)

apply (simp\text{-}all \ add : closure \ Healthy\text{-}if)

done
```

```
lemma mu-csp-expand [rdes]: (\mu_C \ (op \ ;; \ Q)) = (\mu \ X \cdot Q \ ;; \ CSP \ X)
 by (simp add: comp-def)
lemma mu-csp-basic-refine:
  assumes
    P is CSP Q is NCSP Q is Productive pre_R(P) = true_r \ pre_R(Q) = true_r
    peri_R P \sqsubseteq peri_R Q
    peri_R P \sqsubseteq post_R Q ;; peri_R P
 shows P \sqsubseteq (\mu_C \ X \cdot Q \ ;; \ X)
proof (rule SRD-refine-intro', simp-all add: closure usubst alpha rpred rdes unrest wp seq-UINF-distr
assms)
  proof (rule UINF-refines')
    show peri_R P \sqsubseteq post_R Q \hat{i};; peri_R Q
    proof (induct i)
      case \theta
      then show ?case by (simp add: assms)
    next
      case (Suc\ i)
      then show ?case
        by (meson\ assms(6)\ assms(7)\ semilattice-sup-class.le-sup-iff\ upower-inductl)
    qed
 qed
qed
lemma CRD-mu-basic-refine:
  fixes P :: 'e \ list \Rightarrow 'e \ set \Rightarrow 's \ upred
  assumes
    Q is NCSP Q is Productive pre_R(Q) = true_r
    [P\ t\ r]_{S<}[(t,\ r)\rightarrow(\&tt,\ ref')_u] \sqsubseteq peri_R\ Q
    [P\ t\ r]_{S<}\llbracket(t,\ r)\rightarrow(\&tt,\ \$ref')_u\rrbracket\sqsubseteq post_R\ Q\ ;;_h\ [P\ t\ r]_{S<}\llbracket(t,\ r)\rightarrow(\&tt,\ \$ref')_u\rrbracket
 shows [true \vdash P trace refs \mid R \mid_C \sqsubseteq (\mu_C \ X \cdot Q \ ;; \ X)
proof (rule mu-csp-basic-refine, simp-all add: msubst-pair assms closure alpha rdes rpred Healthy-if
R1-false)
  show [P \ trace \ refs]_{S < [[trace \rightarrow \&tt]][refs \rightarrow \$ref']] \sqsubseteq peri_R \ Q
    using assms by (simp add: msubst-pair)
 \mathbf{show} \ [P \ trace \ refs]_{S <} \llbracket trace \rightarrow \& tt \rrbracket \llbracket refs \rightarrow \$ref \ \'] \sqsubseteq post_R \ Q \ ;; \ [P \ trace \ refs]_{S <} \llbracket trace \rightarrow \& tt \rrbracket \llbracket refs \rightarrow \$ref \ \'] \rrbracket
    using assms by (simp add: msubst-pair)
qed
10.2
          Example action expansion
lemma mu-example1: (\mu \ X \cdot a \to X) = (\prod i \cdot do_C(\ll a \gg) \hat{\ } (i+1));; Miracle
 by (simp add: PrefixCSP-def mu-csp-form-1 closure)
lemma preR-mu-example1 [rdes]: pre_R(\mu \ X \cdot a \rightarrow X) = true_r
 by (simp add: mu-example1 rdes closure unrest wp)
lemma periR-mu-example1 [rdes]:
  peri_R(\mu \ X \cdot a \to X) = (\bigcap \ i \cdot \mathcal{E}(true, iter[i](\langle \ll a \gg \rangle), \{\ll a \gg \}_u))
 by (simp add: mu-example1 rdes rpred closure unrest wp seq-UINF-distr alpha usubst)
lemma postR-mu-example1 [rdes]:
  post_R(\mu \ X \cdot a \rightarrow X) = false
```

end

11 Circus Trace Merge

theory utp-circus-traces imports utp-circus-core begin

11.1 Function Definition

```
fun tr-par ::
  '\vartheta set \Rightarrow '\vartheta list \Rightarrow '\vartheta list set where
tr\text{-}par\ cs\ []\ []\ =\ \{[]\}\ |
tr-par cs (e \# t) [] = (if e \in cs then {[]} else {[e]} \cap (tr-par cs t [])) |
tr-par cs \ [ \ (e \# t) = (if \ e \in cs \ then \ \{[]\} \ else \ \{[e]\} \ \widehat{\ } \ (tr-par cs \ [] \ t)) \ |
tr-par\ cs\ (e_1\ \#\ t_1)\ (e_2\ \#\ t_2) =
  (if e_1 = e_2
     then
       if e_1 \in cs \ (* \land e_2 \in cs \ *)
          then \{[e_1]\} \cap (tr\text{-par } cs \ t_1 \ t_2)
            (\{[e_1]\} \cap (tr\text{-par } cs \ t_1 \ (e_2 \ \# \ t_2))) \cup
            (\{[e_2]\} \cap (tr\text{-par } cs \ (e_1 \# t_1) \ t_2))
     else
       if e_1 \in cs \ then
          if e_2 \in cs \ then \ \{[]\}
          else
            \{[e_2]\} \cap (tr\text{-par } cs \ (e_1 \ \# \ t_1) \ t_2)
       else
          if e_2 \in cs \ then
            \{[e_1]\} \cap (tr\text{-par } cs \ t_1 \ (e_2 \# t_2))
            \{[e_1]\} \cap (tr\text{-par } cs \ t_1 \ (e_2 \ \# \ t_2)) \cup
            \{[e_2]\} \cap (tr\text{-par } cs \ (e_1 \ \# \ t_1) \ t_2))
```

abbreviation tr-inter :: ' ϑ list \Rightarrow ' ϑ list set (infixr $||\cdot|_t$ 100) where $x ||\cdot|_t y \equiv tr$ -par $\{\} x y$

11.2 Lifted Trace Merge

```
syntax -utr-par :: logic \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic ((- \star_-/ -) [100, 0, 101] 100)
```

The function trop is used to lift ternary operators.

translations

```
t1 \star_{cs} t2 == (CONST trop) (CONST tr-par) cs t1 t2
```

11.3 Trace Merge Lemmas

```
lemma tr-par-empty: tr-par cs t1 [] = \{take While (\lambda x. x \notin cs) t1\} tr-par cs [] t2 = \{take While (\lambda x. x \notin cs) t2\} — Subgoal 1
```

```
apply (induct\ t1;\ simp)
— Subgoal 2
apply (induct t2; simp)
done
lemma tr-par-sym:
tr-par cs t1 t2 = tr-par cs t2 t1
apply (induct t1 arbitrary: t2)
— Subgoal 1
apply (simp add: tr-par-empty)
— Subgoal 2
apply (induct-tac t2)
— Subgoal 2.1
apply (clarsimp)
— Subgoal 2.2
apply (clarsimp)
apply (blast)
done
lemma tr-inter-sym: x \mid \mid \mid_t y = y \mid \mid \mid_t x
  by (simp add: tr-par-sym)
lemma trace-merge-nil [simp]: x \star_{\{\}_u} \langle \rangle = \{x\}_u
  by (pred-auto, simp-all add: tr-par-empty, metis takeWhile-eq-all-conv)
lemma trace-merge-empty [simp]:
  (\langle\rangle \star_{cs} \langle\rangle) = \{\langle\rangle\}_u
  by (rel-auto)
lemma trace-merge-single-empty [simp]:
  a \in cs \Longrightarrow \langle \ll a \gg \rangle \star_{\ll cs \gg} \langle \rangle = \{\langle \rangle\}_u
  by (rel-auto)
lemma trace-merge-empty-single [simp]:
  a \in cs \Longrightarrow \langle \rangle \star_{\ll cs \gg} \langle \ll a \gg \rangle = \{\langle \rangle\}_u
  by (rel-auto)
lemma trace-merge-commute: t_1 \star_{cs} t_2 = t_2 \star_{cs} t_1
  by (rel-simp, simp add: tr-par-sym)
lemma csp-trace-simps [simp]:
  v \hat{u} \langle \rangle = v \langle \rangle \hat{u} v = v
  v + \langle \rangle = v \langle \rangle + v = v
  bop\ (op\ \#)\ x\ xs\ \hat{\ }_u\ ys = bop\ (op\ \#)\ x\ (xs\ \hat{\ }_u\ ys)
  \mathbf{by} \ (rel-auto) +
```

12 Circus Parallel Composition

```
\begin{array}{c} \textbf{theory} \ utp\text{-}circus\text{-}parallel \\ \textbf{imports} \\ utp\text{-}circus\text{-}prefix \\ utp\text{-}circus\text{-}traces \\ utp\text{-}circus\text{-}recursion \end{array}
```

end

12.1 Merge predicates

```
definition CSPInnerMerge :: ('\alpha \Longrightarrow '\sigma) \Rightarrow '\psi \ set \Rightarrow ('\beta \Longrightarrow '\sigma) \Rightarrow (('\sigma, '\psi) \ st\text{-}csp) \ merge \ (N_C) where
  [upred-defs]:
  CSPInnerMerge\ ns1\ cs\ ns2=(
    ref' \subseteq_u ((s0-ref \cup_u s1-ref) \cap_u \ll cs \gg) \cup_u ((s0-ref \cap_u s1-ref) - \ll cs \gg) \land (s)
    \$tr_{<} \leq_{u} \$tr' \ \land
    (\$tr' - \$tr_<) \in_u (\$0 - tr - \$tr_<) \star_{\ll cs \gg} (\$1 - tr - \$tr_<) \land
    (\$\theta - tr - \$tr_<) \upharpoonright_u \ll cs \gg =_u (\$1 - tr - \$tr_<) \upharpoonright_u \ll cs \gg \land
    \$st' =_u (\$st_{<} \oplus \$0 - st \ on \ \&ns1) \oplus \$1 - st \ on \ \&ns2)
definition CSPInnerInterleave :: ('\alpha \Longrightarrow '\sigma) \Rightarrow ('\beta \Longrightarrow '\sigma) \Rightarrow (('\sigma, '\psi) \text{ st-csp}) \text{ merge } (N_I) where
  [upred-defs]:
  N_I \ ns1 \ ns2 = (
    ref' \subseteq_u (\$0-ref \cap_u \$1-ref) \land
    tr < \leq_u tr' \land
    (\$tr' - \$tr_<) \in_u (\$0 - tr - \$tr_<) \star_{\{\}_u} (\$1 - tr - \$tr_<) \wedge
    \$st' =_u (\$st_{<} \oplus \$0 - st \ on \ \&ns1) \oplus \$1 - st \ on \ \&ns2)
An intermediate merge hides the state, whilst a final merge hides the refusals.
definition CSPInterMerge where
[upred-defs]: CSPInterMerge P ns1 cs ns2 Q = (P \parallel_{(\exists \$st' \cdot N_C \ ns1 \ cs \ ns2)} Q)
definition CSPFinalMerge where
[upred-defs]: CSPFinalMerge P ns1 cs ns2 Q = (P \parallel_{(\exists \$ref' \cdot N_C \ ns1 \ cs \ ns2)} Q)
syntax
  -cinter-merge :: logic \Rightarrow salpha \Rightarrow logic \Rightarrow salpha \Rightarrow logic \Rightarrow logic (- [-|-|-]^I - [85,0,0,0,86] 86) -cfinal-merge :: logic \Rightarrow salpha \Rightarrow logic \Rightarrow salpha \Rightarrow logic \Rightarrow logic (- [-|-|-]^F - [85,0,0,0,86] 86)
  -wrC :: logic \Rightarrow salpha \Rightarrow logic \Rightarrow salpha \Rightarrow logic \Rightarrow logic (-wr[-]-]-]_C - [85,0,0,0,86] 86)
translations
  -cinter-merge P ns1 cs ns2 Q == CONST \ CSPInterMerge P \ ns1 cs ns2 Q
  -cfinal-merge P ns1 cs ns2 Q == CONST \ CSPFinalMerge P \ ns1 \ cs \ ns2 \ Q
  -wrC \ P \ ns1 \ cs \ ns2 \ Q == P \ wr_R(N_C \ ns1 \ cs \ ns2) \ Q
lemma CSPInnerMerge-R2m [closure]: N<sub>C</sub> ns1 cs ns2 is R2m
  by (rel-auto)
lemma CSPInnerMerge-RDM [closure]: N<sub>C</sub> ns1 cs ns2 is RDM
  by (rule RDM-intro, simp add: closure, simp-all add: CSPInnerMerge-def unrest)
lemma ex-ref'-R2m-closed [closure]:
  assumes P is R2m
  shows (\exists \$ref' \cdot P) is R2m
proof -
  have R2m(\exists \$ref' \cdot R2m \ P) = (\exists \$ref' \cdot R2m \ P)
    by (rel-auto)
  thus ?thesis
    by (metis Healthy-def' assms)
```

lemma CSPInnerMerge-unrests [unrest]:

```
\$ok < \sharp N_C \ ns1 \ cs \ ns2
  wait < 1 N_C ns1 cs ns2
  by (rel-auto)+
lemma CSPInterMerge-RR-closed [closure]:
  assumes P is RR Q is RR
  shows P [ns1|cs|ns2]^I Q is RR
 by (simp add: CSPInterMerge-def parallel-RR-closed assms closure unrest)
lemma CSPInterMerge-unrest-st' [unrest]:
  st' \ddagger P [ns1|cs|ns2]^I Q
 by (rel-auto)
lemma CSPFinalMerge-RR-closed [closure]:
  assumes P is RR Q is RR
 shows P [ns1|cs|ns2]^F Q is RR
 by (simp add: CSPFinalMerge-def parallel-RR-closed assms closure unrest)
{f lemma} CSPInnerMerge-empty-Interleave:
  N_C ns1 {} ns2 = N_I ns1 ns2
  by (rel-auto)
definition CSPMerge :: ('\alpha \Longrightarrow '\sigma) \Rightarrow '\psi \ set \Rightarrow ('\beta \Longrightarrow '\sigma) \Rightarrow (('\sigma, '\psi) \ st\text{-}csp) \ merge \ (M_C) where
[upred-defs]: M_C ns1 cs ns2 = M_R(N_C ns1 cs ns2) ;; Skip
definition CSPInterleave :: ('\alpha \Longrightarrow '\sigma) \Rightarrow ('\beta \Longrightarrow '\sigma) \Rightarrow (('\sigma, '\psi) \text{ st-csp}) \text{ merge } (M_I) where
[upred-defs]: M_I ns1 ns2 = M_R(N_I ns1 ns2) ;; Skip
lemma swap-CSPInnerMerge:
  ns1 \bowtie ns2 \implies swap_m ; (N_C \ ns1 \ cs \ ns2) = (N_C \ ns2 \ cs \ ns1)
 apply (rel-auto)
 using tr-par-sym apply blast
 apply (simp add: lens-indep-comm)
 using tr-par-sym apply blast
 apply (simp add: lens-indep-comm)
done
lemma SymMerge\text{-}CSPInnerMerge\text{-}NS [closure]: N_C \theta_L cs \theta_L is SymMerge
 by (simp add: Healthy-def swap-CSPInnerMerge)
lemma SymMerge-CSPInnerInterleave [closure]:
  N_I \ \theta_L \ \theta_L  is SymMerge
  by (metis CSPInnerMerge-empty-Interleave SymMerge-CSPInnerMerge-NS)
lemma SymMerge-CSPInnerInterleave [closure]:
  AssocMerge\ (N_I\ \theta_L\ \theta_L)
 apply (rel-auto)
 apply (rename-tac tr tr<sub>2</sub>' ref<sub>0</sub> tr<sub>0</sub>' ref<sub>0</sub>' tr<sub>1</sub>' ref<sub>1</sub>' tr' ref<sub>2</sub>' tr<sub>i</sub>' ref<sub>3</sub>')
oops
\mathbf{lemma}\ \mathit{CSPInterMerge-false}\ [\mathit{rpred}] \colon P\ [\![\mathit{ns1}\,|\,\mathit{cs}\,|\,\mathit{ns2}\,]\!]^I\ \mathit{false} = \mathit{false}
 by (simp add: CSPInterMerge-def)
lemma CSPFinalMerge\text{-}false\ [rpred]:\ P\ [[ns1|cs|ns2]]^F\ false\ =\ false
```

```
by (simp add: CSPFinalMerge-def)
lemma CSPInterMerge-commute:
  assumes ns1 \bowtie ns2
  shows P [ns1|cs|ns2]^I Q = Q [ns2|cs|ns1]^I P
proof -
 have P~[\![ns1|cs|ns2]\!]^I~Q=P~\|_{\exists~\$st'} . N_C~ns1~cs~ns2~Q
    by (simp add: CSPInterMerge-def)
 also have ... = P \parallel_{\exists \$st' \cdot (swap_m ;; N_C \ ns2 \ cs \ ns1)} Q
by (simp \ add : swap-CSPInnerMerge \ lens-indep-sym \ assms)
  also have ... = P \parallel_{swap_m \ ;; \ (\exists \ \$st' \cdot N_C \ ns2 \ cs \ ns1)} Q
    by (simp add: seqr-exists-right)
  also have ... = Q \parallel_{(\exists \$st' \cdot N_C \ ns2 \ cs \ ns1)} P
    by (simp add: par-by-merge-commute-swap[THEN sym])
  also have ... = Q [ns2|cs|ns1]^I P
    by (simp add: CSPInterMerge-def)
 finally show ?thesis.
qed
{f lemma} CSPFinalMerge-commute:
  assumes ns1 \bowtie ns2
  shows P [ns1|cs|ns2]^F Q = Q [ns2|cs|ns1]^F P
 have P \ [\![ ns1 \ | cs | ns2 ]\!]^F \ Q = P \ \|_{\exists \ \$ref'} \cdot N_C \ ns1 \ cs \ ns2 \ Q
    by (simp add: CSPFinalMerge-def)
  also have ... = P \parallel_{\exists \$ref' \cdot (swap_m ;; N_C ns2 cs ns1)} Q
    by (simp add: swap-CSPInnerMerge lens-indep-sym assms)
  also have ... = P \parallel_{swap_m \ ;; \ (\exists \ \$ref' \cdot N_C \ ns2 \ cs \ ns1)} Q
by (simp \ add: \ seqr-exists-right)
  also have ... = Q \parallel_{\left(\exists \$ref' \cdot N_C \ ns2 \ cs \ ns1\right)} P
    by (simp add: par-by-merge-commute-swap[THEN sym])
  also have ... = Q [ns2|cs|ns1]^F P
    by (simp add: CSPFinalMerge-def)
 finally show ?thesis.
Important theorem that shows the form of a parallel process
lemma CSPInnerMerge-form:
  fixes P Q :: ('\sigma, '\varphi) \ action
  assumes vwb-lens ns1 vwb-lens ns2 P is RR Q is RR
  shows
  P \parallel_{N_C \ ns1 \ cs \ ns2} Q =
        (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
         P[\![ \ll ref_0 \gg, \ll st_0 \gg, \langle \rangle, \ll tt_0 \gg /\$ ref ', \$ st ', \$ tr, \$ tr ']\!] \land Q[\![ \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ ref ', \$ st ', \$ tr, \$ tr ']\!]
           \land \&tt \in_{u} \ll tt_0 \gg \star_{\ll cs \gg} \ll tt_1 \gg
           \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
           \land \$st' =_u (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2)
  (is ?lhs = ?rhs)
proof -
  have P:(\exists \{\$ok',\$wait'\} \cdot R2(P)) = P \text{ (is } ?P' = -)
    by (simp add: ex-unrest ex-plus Healthy-if assms RR-implies-R2 unrest closure)
  have Q:(\exists \{\$ok',\$wait'\} \cdot R2(Q)) = Q \text{ (is } ?Q' = -)
```

```
by (simp add: ex-unrest ex-plus Healthy-if assms RR-implies-R2 unrest closure)
  from assms(1,2)
  have ?P' \parallel_{N_C \ ns1 \ cs \ ns2} ?Q' =
         (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
           ?P'[\ll ref_0 \gg, \ll st_0 \gg, \langle \rangle, \ll tt_0 \gg /\$ ref', \$ st', \$ tr, \$ tr']] \land ?Q'[\ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ ref', \$ st', \$ tr, \$ tr']]
             \wedge \$ref' \subseteq_u ((\ll ref_0 \gg \cup_u \ll ref_1 \gg) \cap_u \ll cs \gg) \cup_u ((\ll ref_0 \gg \cap_u \ll ref_1 \gg) - \ll cs \gg)
             \wedge \$tr \leq_u \$tr
             \land \&tt \in_u \ll tt_0 \gg \star_{\ll cs \gg} \ll tt_1 \gg
             \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
             \land \$st' =_u (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2)
    apply (simp add: par-by-merge-alt-def, rel-auto, blast)
    apply (rename-tac ok wait tr st ref tr' ref' ref_0 ref_1 st_0 st_1 tr_0 ok_0 tr_1 wait_0 ok_1 wait_1)
    apply (rule-tac x=ok in exI)
    apply (rule-tac x=wait in exI)
    apply (rule-tac x=tr in exI)
    apply (rule-tac \ x=st \ in \ exI)
    apply (rule-tac \ x=ref \ \mathbf{in} \ exI)
    apply (rule-tac x=tr @ tr_0 in exI)
    apply (rule-tac x=st_0 in exI)
    apply (rule-tac x=ref_0 in exI)
    apply (auto)
    apply (metis Prefix-Order.prefixI append-minus)
  done
  thus ?thesis
    by (simp \ add: P \ Q)
ged
lemma CSPInterMerge-form:
  fixes P Q :: ('\sigma, '\varphi) \ action
  assumes vwb-lens ns1 vwb-lens ns2 P is RR Q is RR
  shows
  P [ns1|cs|ns2]^I Q =
         (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
           P[\![ \ll ref_0 \gg, \ll st_0 \gg, \langle \rangle, \ll tt_0 \gg /\$ ref^{'}, \$ st^{'}, \$ tr, \$ tr^{'}]\!] \wedge Q[\![ \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ ref^{'}, \$ st^{'}, \$ tr, \$ tr^{'}]\!]
             \wedge \$ref' \subseteq_u ((\ll ref_0 \gg \cup_u \ll ref_1 \gg) \cap_u \ll cs \gg) \cup_u ((\ll ref_0 \gg \cap_u \ll ref_1 \gg) - \ll cs \gg)
             \wedge \$tr \leq_u \$tr
             \land \&tt \in_{u} \ll tt_0 \gg \star \ll cs \gg \ll tt_1 \gg
             \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg)
  (is ?lhs = ?rhs)
proof -
  have ?lhs = (\exists \$st' \cdot P \parallel_{N_C \ ns1 \ cs \ ns2} Q)
    by (simp add: CSPInterMerge-def par-by-merge-def seqr-exists-right)
  also have ... =
       (∃ $st'·
          (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
            P[\![ \ll ref_0 \gg, \ll st_0 \gg, \langle \rangle, \ll tt_0 \gg /\$ ref ', \$ st ', \$ tr, \$ tr ']\!] \land Q[\![ \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ ref ', \$ st ', \$ tr, \$ tr ']\!]
             \wedge \$ref' \subseteq_u ((\ll ref_0 \gg \cup_u \ll ref_1 \gg) \cap_u \ll cs \gg) \cup_u ((\ll ref_0 \gg \cap_u \ll ref_1 \gg) - \ll cs \gg)
             \wedge \$tr \leq_u \$tr
             \land \&tt \in_{u} \ll tt_0 \gg \star_{\ll cs \gg} \ll tt_1 \gg
             \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
             \land \$st' =_u (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2))
    by (simp add: CSPInnerMerge-form assms)
  also have \dots = ?rhs
    by (rel-blast)
  finally show ?thesis.
```

```
lemma CSPFinalMerge-form:
     fixes P Q :: ('\sigma, '\varphi) \ action
     assumes vwb-lens ns1 vwb-lens ns2 P is RR Q is RR \$ref \' \sharp P \$ref \' \sharp Q
     shows
     (P [ns1|cs|ns2]^F Q) =
                   (\exists (st_0, st_1, tt_0, tt_1) \cdot
                                 P[\![\ll st_0\gg,\langle\rangle,\ll tt_0\gg/\$st',\$tr,\$tr']\!] \wedge Q[\![\ll st_1\gg,\langle\rangle,\ll tt_1\gg/\$st',\$tr,\$tr']\!]
                           \wedge \$tr \leq_u \$tr'
                           \land \&tt \in_u \ll tt_0 \gg \star_{\ll cs \gg} \ll tt_1 \gg
                           \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
                           \land \$st' =_u (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2)
     (is ?lhs = ?rhs)
proof -
    \mathbf{have}~?lhs = (\exists~\$\mathit{ref'} \cdot P \parallel_{N_C~\mathit{ns1}~\mathit{cs}~\mathit{ns2}} Q)
         by (simp add: CSPFinalMerge-def par-by-merge-def seqr-exists-right)
     also have ... =
              (∃ $ref'•
                   (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                        P[\neg ref_0 \gg, \neg st_0 \gg, \langle \rangle, \neg tt_0 \gg /\$ ref', \$ st', \$ tr, \$ tr'] \land Q[\neg ref_1 \gg, \neg st_1 \gg, \langle \rangle, \neg tt_1 \gg /\$ ref', \$ st', \$ tr, \$ tr']
                           \wedge \ \$\mathit{ref} \ ' \subseteq_u ((\ll \mathit{ref}_0 \gg \cup_u \ \ll \mathit{ref}_1 \gg) \ \cap_u \ \ll \mathit{cs} \gg) \ \cup_u \ ((\ll \mathit{ref}_0 \gg \cap_u \ \ll \mathit{ref}_1 \gg) \ - \ \ll \mathit{cs} \gg)
                           \wedge \$tr \leq_u \$tr
                           \land \&tt \in_u \ll tt_0 \gg \star \ll cs \gg \ll tt_1 \gg
                           \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
                           \land \$st' =_{u} (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2))
         by (simp add: CSPInnerMerge-form assms)
     also have ... =
              (∃ $ref'•
                   (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                       (\exists \$ref' \cdot P) \llbracket \ll ref_0 \gg, \ll st_0 \gg, \langle \rangle, \ll tt_0 \gg /\$ref', \$st', \$tr, \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll ref_1 \gg, \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$ref', \$st', \$tr', \$tr'
                           \wedge \$ref' \subseteq_u ((\ll ref_0 \gg \cup_u \ll ref_1 \gg) \cap_u \ll cs \gg) \cup_u ((\ll ref_0 \gg \cap_u \ll ref_1 \gg) - \ll cs \gg)
                           \wedge \$tr \leq_u \$tr
                           \land \ \&tt \in_{u} \ll tt_{0} \gg \star_{\ll cs \gg} \ll tt_{1} \gg
                           \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
                           \land \$st' =_u (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2))
         by (simp add: ex-unrest assms)
     also have ... =
                   (\exists (st_0, st_1, tt_0, tt_1) \cdot
                                 (\exists \$ref' \cdot P) \llbracket \ll st_0 \gg, \langle \rangle, \ll tt_0 \gg /\$st', \$tr, \$tr' \rrbracket \wedge (\exists \$ref' \cdot Q) \llbracket \ll st_1 \gg, \langle \rangle, \ll tt_1 \gg /\$st', \$tr, \$tr' \rrbracket
                           \wedge \$tr \leq_u \$tr
                           \wedge \ \&tt \in_{u} \ll tt_{0} \gg \star_{\ll cs \gg} \ll tt_{1} \gg
                           \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg
                           \land \$st' =_u (\$st \oplus \ll st_0 \gg on \& ns1) \oplus \ll st_1 \gg on \& ns2)
         by (rel-blast)
     also have \dots = ?rhs
         by (simp add: ex-unrest assms)
     finally show ?thesis.
qed
lemma merge-csp-do-left:
     assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2 P is RR
     shows \Phi(s_0,\sigma_0,t_0) \parallel_{N_C \ ns1 \ cs \ ns2} P =
            (\exists (ref_1, st_1, tt_1) \cdot
                   [s_0]_{S<} \wedge
```

```
[\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger P \wedge
                                                 ref' \subseteq_u \ll cs \cup_u (\ll ref_1 \gg - \ll cs \gg) \land
                                                 [\ll trace \gg \in_u t_0 \star_{\ll cs \gg} \ll tt_1 \gg \land t_0 \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg ]_t \land t_0 \upharpoonright_u \ll trace \gg t_1 \gg t_1 \gg t_2 \ll trace \gg t_1 \gg t_2 \ll trace \gg t_1 \gg t_2 \ll trace \gg t_2 \gg t_2 \gg t_3 \gg t_2 \gg t_3 \gg t_
                                                  \$st' =_u \$st \oplus \ll \sigma_0 \gg (\$st)_a \text{ on } \&ns1 \oplus \ll st_1 \gg \text{ on } \&ns2)
              (is ?lhs = ?rhs)
proof -
            have ?lhs =
                               (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                                                  [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger \Phi(s_0, \sigma_0, t_0) \land \Phi(s_0, \tau_0, 
                                                   [\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger P \wedge
                                                 ref' \subseteq_u (ref_0 \supset \cup_u ref_1 \supset ) \cap_u ref_0 \supset \cup_u (ref_0 \supset \cup_u ref_1 \supset - ref
                                                 tr \leq_u tr' \land
                                             \&tt \in_u \ll tt_0 \gg \star_{\ll cs \gg} \ll tt_1 \gg \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg \wedge \$st' =_u \$st \oplus \ll st_0 \gg on \ \&ns1 \gg tt_0 
\oplus \ll st_1 \gg on \& ns2)
                        by (simp add: CSPInnerMerge-form assms closure)
            also have ... =
                               (\exists (ref_1, st_1, tt_1) \cdot
                                                   [s_0]_{S<} \wedge
                                                   [\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger P \wedge
                                                 ref' \subseteq_u \ll cs \cup_u (\ll ref_1 \gg - \ll cs \gg) \land
                                                  [ \ll trace \gg \in_u \ t_0 \ \star_{\ll cs \gg} \ \ll tt_1 \gg \wedge \ t_0 \ \upharpoonright_u \ \ll cs \gg =_u \ \ll tt_1 \gg \ \upharpoonright_u \ \ll cs \gg ]_t \ \wedge \ 
                                                  \$st' =_u \$st \oplus \ll\sigma_0 \gg (\$st)_a \text{ on } \&ns1 \oplus \ll st_1 \gg \text{ on } \&ns2)
                        by (rel-blast)
            finally show ?thesis.
qed
lemma merge-csp-do-right:
            assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2 P is RR
            shows P \parallel_{N_C ns1 cs ns2} \Phi(s_1, \sigma_1, t_1) =
                               (\exists (ref_0, st_0, tt_0) \cdot
                                                  [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger P \land 
                                                   [s_1]_{S<} \wedge
                                                  ref' \subseteq_u \ll cs \cup_u (\ll ref_0 \gg - \ll cs \gg) \land
                                                  [\ll trace \gg \in_u \ll tt_0 \gg \star_{\ll cs \gg} t_1 \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u t_1 \upharpoonright_u \ll cs \gg]_t \wedge 
                                                  \$st' =_u \$st \oplus \ll st_0 \gg on \&ns1 \oplus \ll \sigma_1 \gg (\$st)_a \ on \&ns2
              (is ?lhs = ?rhs)
proof -
            have ?lhs =
                        (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                                                                                 [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger P \wedge
                                                                                 [\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg ] \dagger \Phi(s_1, \sigma_1, t_1) \wedge 
                                                                                \$\mathit{ref}' \subseteq_u (\ll \mathit{ref}_0 \gg \cup_u \ll \mathit{ref}_1 \gg) \cap_u \ll \mathit{cs} \gg \cup_u (\ll \mathit{ref}_0 \gg \cap_u \ll \mathit{ref}_1 \gg - \ll \mathit{cs} \gg) \wedge
                                                                                tr \leq_u tr' \land
                                                                              \&tt \in_u «tt_0 » \star_{«cs} » «tt_1 » \wedge «tt_0 » \upharpoonright_u «cs » =_u «tt_1 » \upharpoonright_u «cs » \wedge \$st' =_u \$st \oplus «st_0 » on
&ns1 \oplus \ll st_1 \gg on \& ns2)
                        by (simp add: CSPInnerMerge-form assms closure)
            also have \dots = ?rhs
                        by (rel-blast)
           finally show ?thesis.
qed
```

The result of merge two terminated stateful traces is to (1) require both state preconditions hold, (2) merge the traces using, and (3) merge the state using a parallel assignment.

```
\mathbf{lemma} \ \mathit{FinalMerge-csp-do-left}:
```

assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2 P is RR \$ref' \sharp P

```
shows \Phi(s_0, \sigma_0, t_0) [ns1|cs|ns2]^F P =
                                                     (\exists (st_1, t_1) \cdot
                                                                                 [s_0]_{S<} \wedge
                                                                                 [\$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg] \dagger P \wedge
                                                                                 [\ll trace \gg \in_u t_0 \star_{\ll cs \gg} \ll t_1 \gg \land t_0 \upharpoonright_u \ll cs \gg =_u \ll t_1 \gg \upharpoonright_u \ll cs \gg]_t \land t_0 \upharpoonright_u \ll t_1 \gg t_1 \ll t_2 \gg t_1 \gg t_2 \ll t_2 \gg t_1 \gg t_2 \ll t_2 \gg t_2 \gg t_1 \gg t_2 \ll t_2 \gg t
                                                                               \$st' =_{u} \$st \oplus (st)_{a} \text{ on } \&ns1 \oplus (st)_{a} \text{ on } \&ns2)
              (is ?lhs = ?rhs)
proof -
           have ?lhs =
                                                (\exists (st_0, st_1, tt_0, tt_1) \cdot
                                                                               [\$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger \Phi(s_0, \sigma_0, t_0) \land 
                                                                               [\$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger RR(\exists \$ref' \cdot P) \land
                                                                               \$tr \leq_u \$tr' \wedge \&tt \in_u «tt_0 » \star_{«cs} » «tt_1 » \wedge «tt_0 » \upharpoonright_u «cs » =_u «tt_1 » \upharpoonright_u «cs » \wedge v
                                                                               \$st' =_u \$st \oplus \ll st_0 \gg on \&ns1 \oplus \ll st_1 \gg on \&ns2)
                        by (simp add: CSPFinalMerge-form ex-unrest Healthy-if unrest closure assms)
            also have ... =
                                                (\exists (st_1, tt_1) \cdot
                                                                                 [s_0]_{S<} \wedge
                                                                                 [\$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger RR(\exists \$ref' \cdot P) \land 
                                                                                 [\ll trace \gg \in_u t_0 \star_{\ll cs \gg} \ll tt_1 \gg \land t_0 \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg]_t \land t_0 \upharpoonright_u \ll tt_1 \gg \upharpoonright_u \gg \upharpoonright_u \gg tt_1 \gg \upharpoonright_u \ll tt_1 \gg \upharpoonright_u \sim tt_1 \gg tt
                                                                               \$st' =_u \$st \oplus \ll \sigma_0 \gg (\$st)_a \text{ on } \&ns1 \oplus \ll st_1 \gg \text{ on } \&ns2)
                        by (rel-blast)
            also have ... =
                                                (\exists (st_1, t_1) \cdot
                                                                                [s_0]_{S<} \wedge
                                                                                 [\$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg] \dagger P \land
                                                                                 [\ll trace \gg \in_u t_0 \star_{\ll cs \gg} \ll t_1 \gg \land t_0 \upharpoonright_u \ll cs \gg =_u \ll t_1 \gg \upharpoonright_u \ll cs \gg]_t \land t_0 \upharpoonright_u \ll t_1 \gg t_1 \ll t_2 \gg t_1 \gg t_2 \ll t_2 \gg t_1 \gg t_2 \ll t_2 \gg t_2 \gg t_1 \gg t_2 \ll t_2 \gg t
                                                                               \$st' =_u \$st \oplus \ll \sigma_0 \gg (\$st)_a \text{ on } \&ns1 \oplus \ll st_1 \gg \text{ on } \&ns2)
                        by (simp add: ex-unrest Healthy-if unrest closure assms)
           finally show ?thesis.
qed
lemma FinalMerge-csp-do-right:
           assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2 P is RR $ref' \sharp P
           shows P [ns1|cs|ns2]^F \Phi(s_1,\sigma_1,t_1) =
                                                        (\exists (st_0, t_0) \cdot
                                                                                [\$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger P \land 
                                                                                 [\ll trace \gg \in_u \ll t_0 \gg \star_{\ll cs \gg} t_1 \wedge \ll t_0 \gg \upharpoonright_u \ll cs \gg =_u t_1 \upharpoonright_u \ll cs \gg]_t \wedge (\ll trace \gg t_0 \gg 
                                                                               \$st' =_u \$st \oplus \ll st_0 \gg on \& ns1 \oplus \ll \sigma_1 \gg (\$st)_a \ on \& ns2)
            (is ?lhs = ?rhs)
proof -
            have P [ns1|cs|ns2]^F \Phi(s_1,\sigma_1,t_1) = \Phi(s_1,\sigma_1,t_1) [ns2|cs|ns1]^F P
                      by (simp add: assms CSPFinalMerge-commute)
            also have \dots = ?rhs
                        apply (simp add: FinalMerge-csp-do-left assms lens-indep-sym conj-comm)
                        apply (rel-auto)
                        using assms(3) lens-indep.lens-put-comm tr-par-sym apply fastforce+
           finally show ?thesis.
qed
lemma FinalMerge-csp-do:
            assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
            shows \Phi(s_1,\sigma_1,t_1) [ns1|cs|ns2]^F \Phi(s_2,\sigma_2,t_2) =
```

```
([s_1 \land s_2]_{S <} \land [\ll trace \gg \in_u \ t_1 \ \star \ll cs \gg \ t_2 \land t_1 \ \lceil_u \ \ll cs \gg =_u \ t_2 \ \lceil_u \ \ll cs \gg \rceil_t \land [\langle \sigma_1 \ [\&ns1 | \&ns2 ]_s \rangle]_s)
\sigma_2\rangle_a]_S')
     (is ?lhs = ?rhs)
proof -
     have ?lhs =
                   (\exists (st_0, st_1, tt_0, tt_1) \cdot
                                 [\$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger \Phi(s_1, \sigma_1, t_1) \land 
                                 [\$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger \Phi(s_2, \sigma_2, t_2) \land 
                                \$tr \leq_u \$tr' \wedge \&tt \in_u «tt_0 » \star_{\ll cs »} «tt_1 » \wedge «tt_0 » \upharpoonright_u «cs » =_u «tt_1 » \upharpoonright_u «cs » \wedge v
                                \$st' =_u \$st \oplus \ll st_0 \gg on \& ns1 \oplus \ll st_1 \gg on \& ns2
         by (simp add: CSPFinalMerge-form unrest closure assms)
     also have ... =
                      ([s_1 \land s_2]_{S <} \land [\ll trace \gg \in_u t_1 \star_{\ll CS \gg} t_2 \land t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t \land [\langle \sigma_1 [\& ns1 | \& ns2]_s | v_1 \rangle]_s)
\sigma_2\rangle_a|_S'
         by (rel-auto)
    finally show ?thesis.
qed
lemma FinalMerge-csp-do' [rpred]:
     assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
     shows \Phi(s_1,\sigma_1,t_1) \| ns1|cs|ns2 \|^F \Phi(s_2,\sigma_2,t_2) =
                      \Phi(s_1 \, \wedge \, s_2 \, \wedge \, t_1 \restriction_u \, \ll\! cs \gg =_u \, t_2 \restriction_u \, \ll\! cs \gg, \, \sigma_1 \, [\&ns1 \, |\&ns2]_s \, \sigma_2, \, \ll\! trace \gg))
     by (simp add: FinalMerge-csp-do assms, rel-auto)
lemma CSPFinalMerge-UINF-ind-left [rpred]:
     (\square i \cdot P(i)) [ns1|cs|ns2]^F Q = (\square i \cdot P(i) [ns1|cs|ns2]^F Q)
     by (simp add: CSPFinalMerge-def par-by-merge-USUP-ind-left)
lemma CSPFinalMerge-UINF-ind-right [rpred]:
     P [[ns1|cs|ns2]]^F ([ i \cdot Q(i)) = ([ i \cdot P [[ns1|cs|ns2]]^F Q(i))
     by (simp add: CSPFinalMerge-def par-by-merge-USUP-ind-right)
lemma InterMerge-csp-enable:
     assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
     shows \mathcal{E}(s_1, t_1, E_1) [ns1|cs|ns2]^I \mathcal{E}(s_2, t_2, E_2) =
                        ([s_1 \wedge s_2]_{S < \wedge})
                           (\forall \ e \in \lceil (E_1 \cap_u E_2 \cap_u \ll cs \gg) \cup_u ((E_1 \cup_u E_2) - \ll cs \gg) \rceil_{S <} \cdot \ll e \gg \notin_u \$ ref') \ \land
                           [\ll trace \gg \in_u t_1 \star_{\ll cs \gg} t_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t)
     (is ?lhs = ?rhs)
proof -
    have ?lhs =
                   (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                                                  (i \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg ] \dagger \mathcal{E}(s_1, t_1, E_1) \wedge (i \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg)
                                [\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger \mathcal{E}(s_2, t_2, E_2) \land \mathcal{E}(s_1, t_2, E_2)
                                ref' \subseteq_u (ref_0 \cup_u ref_1) \cap_u ref_0 \cap_u ref_0 \cap_u ref_1 - ref_1 \wedge r
                                \$tr \leq_u \$tr' \land \&tt \in_u \ll tt_0 \gg \star_{\ll cs} \ll tt_1 \gg \land \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg)
         by (simp add: CSPInterMerge-form unrest closure assms)
     also have ... =
                   (\exists (ref_0, ref_1, tt_0, tt_1) \cdot
                                [\$ref' \mapsto_s \ll ref_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger \mathcal{E}(s_1, t_1, E_1) \wedge
                                                 \mapsto_s \ll ref_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg ] \dagger \mathcal{E}(s_2, t_2, E_2) \wedge 
                                \$ref'\subseteq_u (\ll ref_0 \gg \cup_u \ll ref_1 \gg) \cap_u \ll cs \gg \cup_u (\ll ref_0 \gg \cap_u \ll ref_1 \gg - \ll cs \gg) \land
                                \$tr \leq_u \$tr' \land \&tt \in_u \ll tt_0 \gg \star_{\ll cs \gg} \ll tt_1 \gg \land \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u \ll tt_1 \gg \upharpoonright_u \ll cs \gg)
         by (rel-auto)
```

```
also have \dots =
                                      ([s_1 \wedge s_2]_{S<} \wedge
                                                [\ll trace \gg \in_u t_1 \star_{\ll cs \gg} t_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t
                   apply (rel-auto)
                   apply (rename-tac tr st tr' ref')
                   apply (rule-tac x=-[E_1]_e st in exI)
                   apply (simp)
                   apply (rule-tac x=-[E_2]_e st in exI)
                   apply (auto)
          done
         finally show ?thesis.
lemma InterMerge-csp-enable' [rpred]:
          assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
          shows \mathcal{E}(s_1, t_1, E_1) [ns1|cs|ns2]^I \mathcal{E}(s_2, t_2, E_2) =
                                                (   | trace | \ll trace \gg \in_u [t_1 \star_{\ll cs \gg} t_2]_{S <} \cdot 
                                                                                                      \mathcal{E}(\ s_1 \land s_2 \land t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg
                                                                                                           , \ll trace \gg
                                                                                                            , (E_1 \cap_u E_2 \cap_u \ll cs \gg) \cup_u ((E_1 \cup_u E_2) - \ll cs \gg)))
         by (simp add: InterMerge-csp-enable assms, rel-auto)
lemma InterMerge-csp-enable-csp-do:
          assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
          shows \mathcal{E}(s_1, t_1, E_1) [ns1|cs|ns2]^I \Phi(s_2, \sigma_2, t_2) =
                                                      ([s_1 \land s_2]_{S<} \land (\forall e \in [(E_1 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land
                                                      [\ll trace \gg \in_u t_1 \star_{\ll cs \gg} t_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t)
           (is ?lhs = ?rhs)
proof -
         have ?lhs =
                                      (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                                                                [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger \mathcal{E}(s_1, t_1, E_1) \land (s_1, t_2, E_1) \land (s_
                                                                [\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger \Phi(s_2, \sigma_2, t_2) \land \Phi(s_1, \sigma_2, t_2) \land \Phi(s_2, \sigma_2, t_2) \land \Phi(s_1, \sigma_2, t_2) \land \Phi(s_2, t_2) \land 
                                                               \$\mathit{ref}' \subseteq_u ( \ll \mathit{ref}_0 \gg \cup_u \ll \mathit{ref}_1 \gg) \cap_u \ll \mathit{cs} \gg \cup_u ( \ll \mathit{ref}_0 \gg \cap_u \ll \mathit{ref}_1 \gg - \ll \mathit{cs} \gg) \land 
                                                               tr \leq_u tr' \land tr'
                   by (simp add: CSPInterMerge-form unrest closure assms)
           also have ... =
                                      (\exists (ref_0, ref_1, tt_0) \cdot
                                                               [\$ref' \mapsto_s \ll ref_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger \mathcal{E}(s_1, t_1, E_1) \wedge
                                                               \$ref' \subseteq_u (\ll ref_0 \gg \cup_u \ll ref_1 \gg) \cap_u \ll cs \gg \cup_u (\ll ref_0 \gg \cap_u \ll ref_1 \gg - \ll cs \gg) \land
                                                               [\ll trace \gg \in_u t_1 \star_{\ll cs \gg} t_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t)
                   by (rel-auto)
           also have ... = ([s_1 \land s_2]_{S \lt} \land (\forall e \in [(E_1 - \ll cs \gg)]_{S \lt} \cdot \ll e \gg \notin_u \$ref') \land
                                                                                                [\ll trace \gg \in_u t_1 \star_{\ll cs \gg} t_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t)
                   by (rel-auto)
         finally show ?thesis.
qed
lemma InterMerge-csp-enable-csp-do' [rpred]:
          assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
          shows \mathcal{E}(s_1, t_1, E_1) \ [\![ns1|cs|ns2]\!]^I \ \Phi(s_2, \sigma_2, t_2) =
                                           (   | trace | \ll trace \gg \in_u [t_1 \star_{\ll cs \gg} t_2]_{S <} \cdot
```

```
\mathcal{E}(s_1 \wedge s_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg, \ll trace \gg, E_1 - \ll cs \gg))
    by (simp add: InterMerge-csp-enable-csp-do assms, rel-auto)
lemma InterMerge-csp-do-csp-enable:
    assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
    shows \Phi(s_1,\sigma_1,t_1) [ns1|cs|ns2]^I \mathcal{E}(s_2,t_2,E_2) =
                        ([s_1 \land s_2]_{S<} \land (\forall e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land ([s_1 \land s_2]_{S<} \land (\forall e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \notin_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \gg)]_{S<} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot \ll e \gg \#_u \$ref') \land (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot (\exists e \in [(E_2 - \ll cs \bowtie)]_{S>} \cdot (\exists e \in [(E_2 - \ll c
                        [\ll trace \gg \in_u t_1 \star_{\ll cs \gg} t_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg]_t)
    (is ?lhs = ?rhs)
proof -
    have \Phi(s_1, \sigma_1, t_1) [ns1|cs|ns2]^I \mathcal{E}(s_2, t_2, E_2) = \mathcal{E}(s_2, t_2, E_2) [ns2|cs|ns1]^I \Phi(s_1, \sigma_1, t_1)
        by (simp add: CSPInterMerge-commute assms)
    also have \dots = ?rhs
        by (simp add: InterMerge-csp-enable-csp-do assms lens-indep-sym trace-merge-commute conj-comm
eq-upred-sym)
    finally show ?thesis.
qed
lemma InterMerge-csp-do-csp-enable' [rpred]:
    assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2
    shows \Phi(s_1, \sigma_1, t_1) [ns1|cs|ns2]^I \mathcal{E}(s_2, t_2, E_2) =
                   \mathcal{E}(s_1 \wedge s_2 \wedge t_1 \upharpoonright_u \ll cs \gg =_u t_2 \upharpoonright_u \ll cs \gg, \ll trace \gg, E_2 - \ll cs \gg))
    by (simp add: InterMerge-csp-do-csp-enable assms, rel-auto)
lemma CSPInterMerge-or-left [rpred]:
    (P \vee Q) [ns1|cs|ns2]^I R = (P [ns1|cs|ns2]^I R \vee Q [ns1|cs|ns2]^I R)
    by (simp add: CSPInterMerge-def par-by-merge-or-left)
lemma CSPInterMerge-or-right [rpred]:
    P [[ns1|cs|ns2]]^I (Q \vee R) = (P [[ns1|cs|ns2]]^I Q \vee P [[ns1|cs|ns2]]^I R)
    by (simp add: CSPInterMerge-def par-by-merge-or-right)
lemma CSPInterMerge-UINF-ind-left [rpred]:
    by (simp add: CSPInterMerge-def par-by-merge-USUP-ind-left)
lemma CSPInterMerge-UINF-ind-right [rpred]:
    P [ns1|cs|ns2]^I ([ i \cdot Q(i)) = ([ i \cdot P [ns1|cs|ns2]^I Q(i))
    by (simp add: CSPInterMerge-def par-by-merge-USUP-ind-right)
lemma par-by-merge-seq-remove: (P \parallel_M ;; R Q) = (P \parallel_M Q) ;; R
    by (simp add: par-by-merge-seq-add[THEN sym])
lemma merge-csp-do-right:
    assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2 P is RC
    shows \Phi(s_1,\sigma_1,t_1) wr[ns1|cs|ns2]_C P = undefined
    (is ?lhs = ?rhs)
proof -
    have ?lhs =
                 (\neg_r (\exists (ref_0, st_0, tt_0) \cdot
                              [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger (\neg_r RC(P)) \land
                             ref' \subseteq_u \ll cs \cup_u (\ll ref_0 \gg - \ll cs \gg) \land
                             [ \ll trace \gg \in_u \ll tt_0 \gg \star_{\ll CS \gg} \ t_1 \ \land \ \ll tt_0 \gg \upharpoonright_u \ \ll cs \gg =_u \ t_1 \ \upharpoonright_u \ \ll cs \gg \rceil_t \ \land
```

```
\$st' =_u \$st \oplus \ll st_0 \gg on \& ns1 \oplus \ll \sigma_1 \gg (\$st)_a \ on \& ns2) ;; R1 \ true)
         by (simp add: wrR-def par-by-merge-seq-remove merge-csp-do-right closure assms Healthy-if rpred)
  also have ... =
                   (\neg_r (\exists (ref_0, st_0, tt_0) \cdot
                                   [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger (\neg_r RC(P)) \land
                                   [s_1]_{S<} \wedge
                                  \$\mathit{ref} ' \subseteq_u «\mathit{cs} » \cup_u («\mathit{ref}_0 » - «\mathit{cs} ») \land
                                  [\ll trace \gg \in_u \ll tt_0 \gg \star_{\ll cs \gg} t_1 \wedge \ll tt_0 \gg \upharpoonright_u \ll cs \gg =_u t_1 \upharpoonright_u \ll cs \gg]_t ;; true_r \wedge true_
                                  \$st' =_u \$st \oplus \ll st_0 \gg on \ \&ns1 \oplus \ll \sigma_1 \gg (\$st)_a \ on \ \&ns2))
      apply (rel-auto)
oops
12.2
                          Parallel operator
syntax
                                         :: logic \Rightarrow salpha \Rightarrow logic \Rightarrow salpha \Rightarrow logic \Rightarrow logic (- [-||-||-|] - [75,0,0,0,76] 76)
     -par-circus
                                           :: logic \Rightarrow logic \Rightarrow logic \Rightarrow logic (- [-]_C - [75,0,76] 76)
     :: logic \Rightarrow logic \Rightarrow logic (infixr || 75)
translations
     -par-circus P ns1 cs ns2 Q == P \parallel_{M_C \ ns1 \ cs \ ns2} Q
     -par-csp P cs Q == -par-circus P \theta_L cs \theta_L Q
     -inter-circus P ns1 ns2 Q == -par-circus P ns1 \{\} ns2 Q
     -inter-csp\ P\ Q == -par-csp\ P\ \{\}\ Q
definition CSP5 :: ('\sigma, '\varphi) action \Rightarrow ('\sigma, '\varphi) action where
[upred-defs]: CSP5(P) = (P \parallel \mid Skip)
definition C2::('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action \ \mathbf{where}
[upred-defs]: C2(P) = (P \llbracket \Sigma \Vert \{\} \Vert \emptyset \rrbracket Skip)
lemma Skip-right-form:
    assumes P_1 is RC P_2 is RR P_3 is RR \$st' \sharp P_2
     shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) ;; Skip = \mathbf{R}_s(P_1 \vdash P_2 \diamond (\exists \$ref' \cdot P_3))
proof -
     have 1:RR(P_3) ;; \Phi(true,id,\langle\rangle) = (\exists \$ref' \cdot RR(P_3))
         by (rel-auto)
    show ?thesis
         by (rdes-simp cls: assms, metis 1 Healthy-if assms(3))
qed
lemma ParCSP-rdes-def [rdes-def]:
    fixes P_1 :: ('s, 'e) \ action
     assumes P_1 is CRC Q_1 is CRC P_2 is CRR Q_2 is CRR P_3 is CRR Q_3 is CRR
                        st' \ddagger P_2 st' \ddagger Q_2
                        ns1 \bowtie ns2
    shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) [ns1 \mid cs \mid ns2] \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
                     \mathbf{R}_s (((Q_1 \Rightarrow_r Q_2) wr[ns1|cs|ns2]_C P_1 \wedge
                                  (Q_1 \Rightarrow_r Q_3) wr[ns1|cs|ns2]_C P_1 \wedge
                                  (P_1 \Rightarrow_r P_2) wr[ns2|cs|ns1]_C Q_1 \wedge
                                  (P_1 \Rightarrow_r P_3) wr[ns2|cs|ns1]_C Q_1) \vdash
                                \begin{array}{c} (P_1 \Rightarrow_r P_2) \text{ } \llbracket ns1 \mid cs \mid ns2 \rrbracket^I \text{ } (Q_1 \Rightarrow_r Q_2) \vee \\ (P_1 \Rightarrow_r P_3) \text{ } \llbracket ns1 \mid cs \mid ns2 \rrbracket^I \text{ } (Q_1 \Rightarrow_r Q_2) \vee \\ \end{array}
```

```
(P_1 \Rightarrow_r P_2) [ns1|cs|ns2]^I (Q_1 \Rightarrow_r Q_3)) \diamond
                 ((P_1 \Rightarrow_r P_3) \ \llbracket ns1|cs|ns2 \rrbracket^F \ (Q_1 \Rightarrow_r Q_3)))
   (is ?P \llbracket ns1 \lVert cs \lVert ns2 \rrbracket ?Q = ?rhs)
proof -
  have ?P \ \llbracket ns1 \parallel cs \parallel ns2 \rrbracket \ ?Q = (?P \ \parallel_{M_R(N_C \ ns1 \ cs \ ns2)} \ ?Q) ;;_h \ Skip
     by (simp add: CSPMerge-def par-by-merge-seq-add)
  have ... = \mathbf{R}_s (((Q_1 \Rightarrow_r Q_2) wr[ns1|cs|ns2]_C P_1 \land
                          (Q_1 \Rightarrow_r Q_3) wr[ns1|cs|ns2]_C P_1 \wedge
                          (P_1 \Rightarrow_r P_2) wr[ns2|cs|ns1]_C Q_1 \wedge
                           \begin{array}{c} (P_1 \Rightarrow_r P_3) \ wr[ns2|cs|ns1]_C \ Q_1) \vdash \\ ((P_1 \Rightarrow_r P_2) \ [\![ns1|cs|ns2]\!]^I \ (Q_1 \Rightarrow_r Q_2) \lor \\ (P_1 \Rightarrow_r P_3) \ [\![ns1|cs|ns2]\!]^I \ (Q_1 \Rightarrow_r Q_2) \lor \\ \end{array} 
                            (P_1 \Rightarrow_r P_2) | [ns1|cs|ns2]^T (Q_1 \Rightarrow_r Q_3) \diamond
                          (P_1 \Rightarrow_r P_3) \parallel_{N_C \ ns1 \ cs \ ns2} (Q_1 \Rightarrow_r Q_3)) ;;_h Skip
     by (simp add: parallel-rdes-def swap-CSPInnerMerge CSPInterMerge-def closure assms)
  also
  have ... = \mathbf{R}_s (((Q_1 \Rightarrow_r Q_2) wr[ns1|cs|ns2]_C P_1 \wedge
                          (Q_1 \Rightarrow_r Q_3) wr[ns1|cs|ns2]_C P_1 \wedge
                          (P_1 \Rightarrow_r P_2) wr[ns2|cs|ns1]_C Q_1 \wedge
                          (P_1 \Rightarrow_r P_3) wr[ns2|cs|ns1]_C Q_1) \vdash
                          ((P_1 \Rightarrow_r P_2) [ns1|cs|ns2]^I (Q_1 \Rightarrow_r Q_2) \vee
                           (P_1 \Rightarrow_r P_3) \ \llbracket ns1 | cs | ns2 \rrbracket^I \ (Q_1 \Rightarrow_r Q_2) \lor
                           (P_1 \Rightarrow_r P_2) [ns1|cs|ns2]^I (Q_1 \Rightarrow_r Q_3) \diamond
                          (\exists \$ref' \cdot ((P_1 \Rightarrow_r P_3) \parallel_{N_C \ ns1 \ cs \ ns2} (Q_1 \Rightarrow_r Q_3))))
      by (simp add: Skip-right-form closure parallel-RR-closed assms unrest)
  have ... = \mathbf{R}_s (((Q_1 \Rightarrow_r Q_2) wr[ns1|cs|ns2]_C P_1 \land
                          (Q_1 \Rightarrow_r Q_3) wr[ns1|cs|ns2]_C P_1 \wedge
                          (P_1 \Rightarrow_r P_2) wr[ns2|cs|ns1]_C Q_1 \wedge
                          (P_1 \Rightarrow_r P_3) wr[ns2|cs|ns1]_C Q_1) \vdash
                          ((P_1 \Rightarrow_r P_2) [ns1|cs|ns2]^I (Q_1 \Rightarrow_r Q_2) \vee
                           (P_1 \Rightarrow_r P_3) \llbracket ns1 \mid cs \mid ns2 \rrbracket^I (Q_1 \Rightarrow_r Q_2) \lor
                            (P_1 \Rightarrow_r P_2) \lceil ns1 \mid cs \mid ns2 \rceil^I (Q_1 \Rightarrow_r Q_3)) \diamond
                          ((P_1 \Rightarrow_r P_3) \llbracket ns1 \mid cs \mid ns2 \rrbracket^F (Q_1 \Rightarrow_r Q_3)))
  proof -
    have (\exists \$ref' \cdot ((P_1 \Rightarrow_r P_3) \parallel_{N_C \ ns1 \ cs \ ns2} (Q_1 \Rightarrow_r Q_3))) = ((P_1 \Rightarrow_r P_3) \llbracket ns1 \mid_{cs \mid ns2} \rrbracket^F (Q_1 \Rightarrow_r Q_3)))
Q_3))
        by (rel-blast)
     thus ?thesis by simp
  finally show ?thesis.
qed
              Parallel Laws
12.3
lemma ParCSP-expand:
   P \ \llbracket ns1 \rVert cs \rVert ns2 \rrbracket \ Q = (P \ \rVert_{RN_C \ ns1 \ cs \ ns2} \ Q) \ ;; \ Skip
  by (simp add: CSPMerge-def par-by-merge-seq-add)
lemma parallel-is-CSP [closure]:
  assumes P is CSP Q is CSP
  shows (P \llbracket ns1 \lVert cs \lVert ns2 \rrbracket \ Q) is CSP
proof -
  have (P \parallel_{M_R(N_C \ ns1 \ cs \ ns2)} Q) is CSP
```

```
by (simp add: closure assms)
  hence (P \parallel_{M_R(N_C \ ns1 \ cs \ ns2)} Q) ;; Skip is CSP
    by (simp add: closure)
  thus ?thesis
    by (simp add: CSPMerge-def par-by-merge-seg-add)
qed
lemma parallel-is-CSP3 [closure]:
  assumes P is CSP P is CSP3 Q is CSP Q is CSP3
 shows (P [ns1||cs||ns2]] Q) is CSP3
proof -
  have (P \parallel_{M_R(N_C \ ns1 \ cs \ ns2)} Q) is CSP
    by (simp add: closure assms)
  hence (P \parallel_{M_R(N_C \ ns1 \ cs \ ns2)} Q) ;; Skip is CSP
    by (simp add: closure)
  thus ?thesis
    oops
theorem parallel-commutative:
  assumes ns1 \bowtie ns2
  shows (P [ns1||cs||ns2]] Q) = (Q [ns2||cs||ns1]] P)
 have (P \llbracket ns1 \parallel cs \parallel ns2 \rrbracket \ Q) = P \parallel_{swap_m \ ;; \ (M_C \ ns2 \ cs \ ns1)} Q
  by (simp add: CSPMerge-def seqr-assoc[THEN sym] swap-merge-rd swap-CSPInnerMerge lens-indep-sym
  also have ... = Q [ns2||cs||ns1] P
    by (metis par-by-merge-commute-swap)
 finally show ?thesis.
qed
lemma interleave-commute:
  P \mid \mid \mid Q = Q \mid \mid \mid P
  using parallel-commutative zero-lens-indep by blast
The form of C2 tells us that a normal CSP process has a downward closed set of refusals
lemma C2-form:
  assumes P is NCSP
  \mathbf{shows}\ C2(P) = \mathbf{R}_s\ (\mathit{pre}_R\ P \vdash (\exists\ \mathit{ref}_0 \cdot \mathit{peri}_R\ P[\mathit{\ll ref}_0 \mathrel{>\!\!\!>}/\$\mathit{ref}'] \land \$\mathit{ref}' \subseteq_u \mathrel{\ll ref}_0 \mathrel{>\!\!\!>}) \diamond \mathit{post}_R\ P)
 have 1:\Phi(true,id,\langle\rangle) wr[\Sigma|\{\}|\emptyset|_C pre_R P=pre_R P (is ?lhs = ?rhs)
 proof -
    have ?lhs = (\neg_r (\exists (ref_0, st_0, tt_0) \cdot
                   [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger (\exists \$ref';\$st' \cdot RR(\neg_r))
pre_R P)) \wedge
                    \$\mathit{ref}\,'\subseteq_u «\mathit{ref}_0 » \wedge [ «\mathit{trace} » =_u «\mathit{tt}_0 »]_t \wedge \\
                    \$st' =_u \$st \oplus \ll st_0 \gg on \ \Sigma \oplus \ll id \gg (\$st)_a \ on \ \emptyset) ;; R1 \ true)
        by (simp add: wrR-def par-by-merge-seq-remove rpred merge-csp-do-right ex-unrest Healthy-if
pr-var-def closure assms unrest usubst)
    also have ... = (\neg_r (\exists \$ref';\$st' \cdot RR(\neg_r pre_R P)) ;; R1 true)
      by (rel-auto)
    also have ... = (\neg_r \ (\neg_r \ pre_R \ P) \ ;; \ R1 \ true)
      by (simp add: Healthy-if closure ex-unrest unrest assms)
    also have ... = pre_R P
      by (simp add: NCSP-implies-NSRD NSRD-neg-pre-unit R1-preR assms rea-not-not)
    finally show ?thesis.
```

```
qed
  have 2: (pre_R P \Rightarrow_r peri_R P) [\Sigma | \{\} | \emptyset]^I \Phi(true, id, \langle \rangle) =
             (\exists ref_0 \cdot (peri_R P) \llbracket \ll ref_0 \gg /\$ ref' \rrbracket \land \$ ref' \subseteq_u \ll ref_0 \gg) (is ?lhs = ?rhs)
  proof -
    have ?lhs = peri_R P \llbracket \Sigma | \{\} | \emptyset \rrbracket^I \Phi(true, id, \langle \rangle)
       by (simp add: SRD-peri-under-pre closure assms unrest)
    also have ... = (\exists \ \$st' \cdot (peri_R \ P \parallel_{N_C \ 1_L \ \{\} \ \theta_L} \ \Phi(true, id, \langle \rangle)))
       by (simp add: CSPInterMerge-def par-by-merge-def segr-exists-right)
    also have ... =
          (\exists \$st' \cdot \exists (ref_0, st_0, tt_0) \cdot
              [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger (\exists \$st' \cdot RR(peri_R P)) \land (\exists \$st' \mapsto_s \ll tt_0 \gg) 
               \$ref' \subseteq_u \ll ref_0 \gg \land [\ll trace \gg =_u \ll tt_0 \gg]_t \land \$st' =_u \$st \oplus \ll st_0 \gg on \Sigma \oplus \ll id \gg (\$st)_a on \emptyset)
      by (simp add: merge-csp-do-right pr-var-def assms Healthy-if assms closure rpred unrest ex-unrest)
    also have ... =
          (\exists ref_0 \cdot (\exists \$st' \cdot RR(peri_R P))[\ll ref_0 \gg /\$ref'] \land \$ref' \subseteq_u \ll ref_0 \gg)
       by (rel-auto)
    also have \dots = ?rhs
       by (simp add: closure ex-unrest Healthy-if unrest assms)
    finally show ?thesis.
  qed
  have 3: (pre_R P \Rightarrow_r post_R P) [\![\Sigma] \{\} | \emptyset]\!]^F \Phi(true, id, \langle \rangle) = post_R(P) (is ?lhs = ?rhs)
  proof -
    have ?lhs = post_R P [\Sigma | \{\} | \emptyset]^F \Phi(true, id, \langle \rangle)
       by (simp add: SRD-post-under-pre closure assms unrest)
    also have ... = (\exists (st_0, t_0) \cdot
                             [\$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger RR(post_R P) \wedge
                             [\ll trace \gg =_u \ll t_0 \gg]_t \wedge \$st' =_u \$st \oplus \ll st_0 \gg on \Sigma \oplus \ll id \gg (\$st)_a on \emptyset)
       by (simp add: FinalMerge-csp-do-right pr-var-def assms closure unrest rpred Healthy-if)
    also have ... = RR(post_R(P))
       by (rel-auto)
    finally show ?thesis
       by (simp add: Healthy-if assms closure)
  qed
  show ?thesis
  proof -
    have C2(P) = \mathbf{R}_s \ (\Phi(true, id, \langle \rangle) \ wr[\Sigma|\{\}|\emptyset|_C \ pre_R \ P \vdash
            (pre_R \ P \Rightarrow_r peri_R \ P) \ \llbracket \Sigma | \{\} | \emptyset \rrbracket^I \ \Phi(true, id, \langle \rangle) \diamond (pre_R \ P \Rightarrow_r post_R \ P) \ \llbracket \Sigma | \{\} | \emptyset \rrbracket^F \ \Phi(true, id, \langle \rangle))
       by (simp add: C2-def, rdes-simp cls: assms, simp add: id-def pr-var-def)
    also have ... = \mathbf{R}_s (pre_R \ P \vdash (\exists \ ref_0 \cdot peri_R \ P \llbracket \langle ref_0 \rangle / \$ref' \rrbracket \land \$ref' \subseteq_u \langle ref_0 \rangle) \diamond post_R \ P)
       by (simp add: 1 2 3)
    finally show ?thesis.
  qed
qed
lemma Skip-C2-closed [closure]:
  Skip is C2
  apply (simp add: Healthy-def C2-form)
  apply (simp add: C2-form closure rdes usubst)
  apply (simp add: rdes-def)
done
lemma ref-down-CRR [closure]:
  assumes P is NCSP
  shows (\exists ref_0 \cdot peri_R P[\ll ref_0 \gg /\$ ref'] \land \$ ref' \subseteq_u \ll ref_0 \gg) is CRR
proof -
```

```
have (\exists ref_0 \cdot peri_R P[\ll ref_0 \gg /\$ ref'] \land \$ ref' \subseteq_u \ll ref_0 \gg) =
         (\exists ref_0 \cdot (CRR(peri_R P))[\ll ref_0 \gg /\$ ref']] \land \$ ref' \subseteq_u \ll ref_0 \gg)
    by (simp add: Healthy-if assms closure)
  also have ... = CRR(\exists ref_0 \cdot peri_R P[\neg ref_0 \rangle / ref'] \land ref' \subseteq_u \neg ref_0 \rangle
    by (rel-auto)
  finally show ?thesis
    by (simp add: Healthy-def')
\mathbf{qed}
lemma C2-idem:
  assumes P is NCSP
  shows C2(C2(P)) = C2(P) (is ?lhs = ?rhs)
proof -
  \mathbf{have} \ ? lhs = \mathbf{R}_s \ (\mathit{pre}_R \ P \vdash (\exists \ \mathit{ref}_0 \cdot (\mathit{pre}_R \ P \Rightarrow_r (\exists \ \mathit{ref}_0' \cdot \mathit{peri}_R \ P \llbracket \ll \mathit{ref}_0' \gg / \$\mathit{ref}' \rrbracket \ \land \ \ll \mathit{ref}_0 \gg \subseteq_u )
\ll ref_0' \gg )) \land \$ ref' \subseteq_u \ll ref_0 \gg ) \diamond post_R P)
   by (simp add: C2-form closure unrest rdes SRD-post-under-pre SRD-peri-under-pre usubst NCSP-rdes-intro
assms)
  also have
     ... = \mathbf{R}_s \ (\mathit{pre}_R \ P \vdash (\exists \ \mathit{ref}_0 \cdot (\exists \ \mathit{ref}_0' \cdot \mathit{peri}_R \ P \llbracket \ll \mathit{ref}_0' \gg /\$\mathit{ref}' \rrbracket \ \land \ \ll \mathit{ref}_0 \gg \subseteq_u \ll \mathit{ref}_0' \gg) \ \land \ \$\mathit{ref}' \subseteq_u ) 
\ll ref_0 \gg) \Leftrightarrow post_R P)
     by (rel-auto)
  also have
    \dots = \mathbf{R}_s \ (pre_R \ P \vdash (\exists \ ref_0 \cdot peri_R \ P[\llbracket \ll ref_0 \gg /\$ ref']] \land \$ ref' \subseteq_u \ll ref_0 \gg) \diamond post_R \ P)
    by (rel-auto)
  also have ... = C2(P)
    by (simp add: C2-form closure unrest assms)
  finally show ?thesis.
qed
lemma Stop-C2-closed [closure]:
  Stop is C2
  apply (simp add: Healthy-def C2-form)
  apply (simp add: C2-form closure rdes usubst)
  apply (rel-auto)
done
lemma Miracle-C2-closed [closure]:
  Miracle is C2
  apply (simp add: Healthy-def C2-form)
  apply (simp add: C2-form closure rdes usubst)
  apply (simp add: rdes-def)
done
lemma Chaos-C2-closed [closure]:
  Chaos is C2
  apply (simp add: Healthy-def C2-form)
  apply (simp add: C2-form closure rdes usubst unrest)
  apply (simp add: rdes-def)
  apply (rel-auto)
done
```

lemma

assumes vwb-lens ns1 vwb-lens ns2 ns1 \bowtie ns2 P is RR

```
shows P wr[ns1|cs|ns2]_C false = undefined (is ?lhs = ?rhs)
proof -
             have ?lhs = (\neg_r (\exists (ref_0, ref_1, st_0, st_1, tt_0, tt_1) \cdot
                                                                                                                                 [\$ref' \mapsto_s \ll ref_0 \gg, \$st' \mapsto_s \ll st_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_0 \gg] \dagger R1 \ true \land s \ll true \land 
                                                                                                                                [\$ref' \mapsto_s \ll ref_1 \gg, \$st' \mapsto_s \ll st_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger P \wedge
                                                                                                                              ref' \subseteq_u (ref_0 \cup ref_1) \cap_u ref_1 \cap (ref_0 \cap ref_1) \cap_u ref_1 \cap ref_1 \wedge ref
                                                                                                                              \&tt \in_u «tt_0 » \star_{«cs} » «tt_1 » \wedge «tt_0 » \upharpoonright_u «cs » =_u «tt_1 » \upharpoonright_u «cs » \wedge
                                                                                                                             \$st' =_u \$st \oplus \ll st_0 \gg on \& ns1 \oplus \ll st_1 \gg on \& ns2);
                                                                                                                                    R1 \ true)
                          by (simp add: wrR-def par-by-merge-seq-remove CSPInnerMerge-form assms closure usubst unrest)
             also have ... = (\neg_r (\exists (tt_0, tt_1) \cdot
                                                                                                                              [\$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger P \wedge
                                                                                                                              tr \leq_u tr' \land
                                                                                                                             \&tt \in_{u} «tt_{0}» \star_{«cs}» «tt_{1}» \land «tt_{0}» \upharpoonright_{u} «cs» =_{u} «tt_{1}» \upharpoonright_{u} «cs») ;;
                                                                                                                                     R1 true
                          by (rel-blast)
             also have ... = (\neg_r (\exists (tt_0, tt_1) \cdot
                                                                                                                                [\$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tt_1 \gg] \dagger RR(P) \land
                                                                                                                              \$tr \leq_u \$tr' \land
                                                                                                                             \&tt \in_u «tt_0 » \star_{«cs} » «tt_1 » \wedge «tt_0 » \upharpoonright_u «cs » =_u «tt_1 » \upharpoonright_u «cs ») ;;
                                                                                                                                    R1 \ true)
                          by (simp add: Healthy-if assms)
            oops
```

13 Linking to the Failures-Divergences Model

theory utp-circus-fdsem imports utp-circus-parallel utp-circus-recursion begin

end

13.1 Failures-Divergences Semantics

The following functions play a similar role to those in Roscoe's CSP semantics, and are calculated from the Circus reactive design semantics. A major difference is that these three functions account for state. Each divergence, trace, and failure is subject to an initial state. Moreover, the traces are terminating traces, and therefore also provide a final state following the given interaction. A more subtle difference from the Roscoe semantics is that the set of traces do not include the divergences. The same semantic information is present, but we construct a direct analogy with the pre-, peri- and postconditions of our reactive designs.

```
definition divergences :: ('\sigma,'\varphi) action \Rightarrow '\sigma \Rightarrow '\varphi list set (dv[-]-[0,100] 100) where [upred-defs]: divergences P s = \{t \mid t. '(\neg_r \ pre_R(P))[[\ll s \gg, \langle \rangle, \ll t \gg / \$st, \$tr, \$tr']]'} definition traces :: ('\sigma,'\varphi) action \Rightarrow '\sigma \Rightarrow ('\varphi list \times '\sigma) set (tr[-]-[0,100] 100) where [upred-defs]: traces P s = \{(t,s') \mid t s'. '(pre_R(P) \land post_R(P))[[\ll s \gg, \ll s' \gg, \langle \rangle, \ll t \gg / \$st, \$st', \$tr, \$tr']]'} definition failures :: ('\sigma,'\varphi) action \Rightarrow '\sigma \Rightarrow ('\varphi list \times '\varphi set) set (fl[-]-[0,100] 100) where [upred-defs]: failures P s = \{(t,r) \mid t r. '(pre_R(P) \land peri_R(P))[[\ll r \gg, \ll s \gg, \langle \rangle, \ll t \gg / \$tr, \$tr']]'} lemma trace-divergence-disj: assumes P is NCSP (t, s') \in tr[[P]]s t \in dv[[P]]s shows False
```

```
using assms(2,3)
  by (simp add: traces-def divergences-def, rdes-simp cls:assms, rel-auto)
lemma preR-refine-divergences:
  assumes P is NCSP Q is NCSP \bigwedge s. dv \llbracket P \rrbracket s \subseteq dv \llbracket Q \rrbracket s
  shows pre_R(P) \sqsubseteq pre_R(Q)
proof (rule CRR-refine-impl-prop, simp-all add: assms closure usubst unrest)
  \mathbf{fix} \ t \ s
  assume a: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] † pre_R Q'
  with a show '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger pre_R P'
  proof (rule-tac ccontr)
    from assms(3)[of s] have b: t \in dv[P]s \Longrightarrow t \in dv[Q]s
      by (auto)
    assume \neg '[$st \mapsto_s \ll s \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t \gg] † pre_R P'
    hence \neg '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] † CRC(pre_R P)'
      by (simp add: assms closure Healthy-if)
    hence '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (\neg_r \ CRC(pre_R \ P))'
      by (rel-auto)
    hence '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (\neg_r \ pre_R \ P)'
      by (simp add: assms closure Healthy-if)
    with a b show False
      by (rel-auto)
  \mathbf{qed}
qed
lemma preR-eq-divergences:
  assumes P is NCSP Q is NCSP \bigwedge s. dv[\![P]\!]s = dv[\![Q]\!]s
  shows pre_R(P) = pre_R(Q)
  by (metis assms dual-order.antisym order-refl preR-refine-divergences)
lemma periR-refine-failures:
  assumes P is NCSP Q is NCSP \bigwedge s. fl[\![Q]\!]s \subseteq fl[\![P]\!]s
  shows (pre_R(P) \land peri_R(P)) \sqsubseteq (pre_R(Q) \land peri_R(Q))
proof (rule CRR-refine-impl-prop, simp-all add: assms closure unrest subst-unrest-3)
  fix t s r'
  assume a: `[\$ref' \mapsto_s \ll r' \gg, \$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (pre_R Q \land peri_R Q)`
  from assms(3)[of s] have b: (t, r') \in fl[Q]s \Longrightarrow (t, r') \in fl[P]s
    by (auto)
  with a show '[\$ref' \mapsto_s \ll r' \gg, \$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (pre_R P \land peri_R P)'
    by (simp add: failures-def)
qed
lemma periR-eq-failures:
  assumes P is NCSP Q is NCSP \land s. f[P]s = f[Q]s
  shows (pre_R(P) \land peri_R(P)) = (pre_R(Q) \land peri_R(Q))
  by (metis (full-types) assms dual-order.antisym order-refl periR-refine-failures)
lemma postR-refine-traces:
  assumes P is NCSP Q is NCSP \bigwedge s. tr[\![Q]\!]s \subseteq tr[\![P]\!]s
  shows (pre_R(P) \land post_R(P)) \sqsubseteq (pre_R(Q) \land post_R(Q))
proof (rule CRR-refine-impl-prop, simp-all add: assms closure unrest subst-unrest-5)
  assume a: (\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s'\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t\gg] \dagger (pre_R Q \land post_R Q)
  from assms(3)[of s] have b: (t, s') \in tr[Q]s \Longrightarrow (t, s') \in tr[P]s
    by (auto)
```

```
with a show '[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (pre_R P \land post_R P)'
    by (simp add: traces-def)
qed
lemma postR-eq-traces:
  assumes P is NCSP Q is NCSP \bigwedge s. tr[\![P]\!]s = tr[\![Q]\!]s
  shows (pre_R(P) \land post_R(P)) = (pre_R(Q) \land post_R(Q))
 by (metis assms dual-order.antisym order-refl postR-refine-traces)
lemma circus-fd-refine-intro:
 assumes P is NCSP Q is NCSP \bigwedge s. dv \llbracket Q \rrbracket s \subseteq dv \llbracket P \rrbracket s \bigwedge s. ft \llbracket Q \rrbracket s \subseteq ft \llbracket P \rrbracket s \bigwedge s. tr \llbracket Q \rrbracket s \subseteq tr \llbracket P \rrbracket s
 shows P \sqsubseteq Q
proof (rule SRD-refine-intro', simp-all add: closure assms)
  show a: 'pre<sub>R</sub> P \Rightarrow pre_R Q'
    using assms(1) assms(2) assms(3) preR-refine-divergences refBy-order by blast
  show peri_R P \sqsubseteq (pre_R P \land peri_R Q)
  proof -
    have peri_R P \sqsubseteq (pre_R Q \land peri_R Q)
      \textbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \textit{assms}(1) \ \textit{assms}(2) \ \textit{assms}(4) \ \textit{periR-refine-failures} \ \textit{utp-pred-laws.le-inf-iff})
    then show ?thesis
      by (metis a refBy-order utp-pred-laws.inf.order-iff utp-pred-laws.inf-assoc)
  qed
  show post_R P \sqsubseteq (pre_R P \land post_R Q)
  proof -
    have post_R P \sqsubseteq (pre_R Q \land post_R Q)
     by (meson\ assms(1)\ assms(2)\ assms(5)\ postR-refine-traces\ utp-pred-laws.le-inf-iff)
    then show ?thesis
      by (metis a refBy-order utp-pred-laws.inf.absorb-iff1 utp-pred-laws.inf-assoc)
  qed
qed
          Circus Operators
13.2
lemma traces-Skip:
  tr[Skip]s = \{([], s)\}
  by (simp add: traces-def rdes alpha closure, rel-simp)
lemma failures-Skip:
  fl[Skip]s = \{\}
 by (simp add: failures-def, rdes-calc)
lemma divergences-Skip:
  dv[Skip]s = \{\}
  by (simp add: divergences-def, rdes-calc)
lemma traces-Stop:
  tr[Stop]s = \{\}
 by (simp add: traces-def, rdes-calc)
lemma failures-Stop:
 fl[Stop]s = \{([], E) \mid E. True\}
 by (simp add: failures-def, rdes-calc, rel-auto)
lemma divergences-Stop:
  dv[Stop]s = \{\}
  by (simp add: divergences-def, rdes-calc)
```

```
lemma traces-AssignsCSP:
  tr[\![\langle \sigma \rangle_C]\!]s = \{([], \sigma(s))\}
  by (simp add: traces-def rdes closure usubst alpha, rel-auto)
lemma failures-Assigns CSP:
 fl[\![\langle \sigma \rangle_C]\!]s = \{\}
 by (simp add: failures-def, rdes-calc)
lemma divergences-AssignsCSP:
  dv \llbracket \langle \sigma \rangle_C \rrbracket s = \{\}
  by (simp add: divergences-def, rdes-calc)
lemma failures-Miracle: fl[Miracle]s = \{\}
 by (simp add: failures-def rdes closure usubst)
lemma divergences-Miracle: dv [Miracle] s = \{\}
  by (simp add: divergences-def rdes closure usubst)
lemma failures-Chaos: fl \| Chaos \| s = \{ \}
  by (simp add: failures-def rdes, rel-auto)
lemma divergences-Chaos: dv \llbracket Chaos \rrbracket s = UNIV
 by (simp add: divergences-def rdes, rel-auto)
lemma traces-Chaos: tr[Chaos]s = \{\}
  by (simp add: traces-def rdes closure usubst)
\mathbf{lemma}\ \mathit{divergences-cond}\colon
  assumes P is NCSP Q is NCSP
 shows dv \llbracket P \triangleleft b \triangleright_R Q \rrbracket s = (if (\llbracket b \rrbracket_e s) then <math>dv \llbracket P \rrbracket s else dv \llbracket Q \rrbracket s)
 by (rdes-simp cls: assms, simp add: divergences-def traces-def rdes closure rpred assms, rel-auto)
lemma traces-cond:
  assumes P is NCSP Q is NCSP
 shows tr[P \triangleleft b \triangleright_R Q]s = (if ([[b]]_e s) then <math>tr[P]s else tr[Q]s)
 by (rdes-simp cls: assms, simp add: divergences-def traces-def rdes closure rpred assms, rel-auto)
lemma failures-cond:
  assumes P is NCSP Q is NCSP
  shows f[P \triangleleft b \triangleright_R Q]s = (if ([b]_e s) then f[P] s else f[Q] s)
  by (rdes-simp cls: assms, simp add: divergences-def failures-def rdes closure rpred assms, rel-auto)
lemma divergences-guard:
  assumes P is NCSP
  shows dv \llbracket g \&_u P \rrbracket s = (if (\llbracket g \rrbracket_e s) \text{ then } dv \llbracket g \&_u P \rrbracket s \text{ else } \{\})
  by (rdes-simp cls: assms, simp add: divergences-def traces-def rdes closure rpred assms, rel-auto)
lemma traces-do: tr[do_C(e)]s = \{([[e]_e s], s)\}
  by (rdes-simp, simp add: traces-def rdes closure rpred, rel-auto)
lemma failures-do: fl[do_C(e)]s = \{([], E) \mid E. [e]_e s \notin E\}
 by (rdes-simp, simp add: failures-def rdes closure rpred usubst, rel-auto)
lemma divergences-do: dv \llbracket do_C(e) \rrbracket s = \{\}
```

```
by (rel-auto)
lemma nil-least [simp]:
     \langle \rangle \leq_u x = true \ \mathbf{by} \ rel-auto
lemma minus-nil [simp]:
    xs - \langle \rangle = xs by rel-auto
\mathbf{lemma}\ \textit{wp-rea-circus-lemma-1}:
    assumes P is CRR \$ref' \sharp P
    shows out\alpha \sharp P[\ll s_0\gg,\ll t_0\gg/\$st',\$tr']
proof -
    have out\alpha \sharp (CRR \ (\exists \$ref' \cdot P))[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!]
         by (rel-auto)
    thus ?thesis
         by (simp add: Healthy-if assms(1) assms(2) ex-unrest)
qed
lemma wp-rea-circus-lemma-2:
    assumes P is CRR
    shows in\alpha \sharp P[\ll s_0\gg,\ll t_0\gg/\$st,\$tr]
    have in\alpha \sharp (CRR \ P)[\![\ll s_0\gg,\ll t_0\gg/\$st,\$tr]\!]
         by (rel-auto)
    thus ?thesis
         by (simp add: Healthy-if assms ex-unrest)
qed
The meaning of reactive weakest precondition for Circus. P wp_T Q means that, whenever P
terminates in a state s_0 having done the interaction trace t_0, which is a prefix of the overall
trace, then Q must be satisfied. This in particular means that the remainder of the trace after
t_0 must not be a divergent behaviour of Q.
lemma wp-rea-circus-form:
    \mathbf{assumes}\ P\ is\ CRR\ \$ref\ '\ \sharp\ P\ Q\ is\ CRC
   shows (P \ wp_r \ Q) = (\forall \ (s_0, t_0) \cdot \ll t_0 \gg \leq_u \$tr' \land P[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!] \Rightarrow_r Q[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!])
    have (P \ wp_r \ Q) = (\neg_r \ (\exists \ t_0 \cdot P[\![ \ll t_0 \gg /\$tr' ]\!] \ ;; \ (\neg_r \ Q)[\![ \ll t_0 \gg /\$tr]\!] \land \ll t_0 \gg \leq_u \$tr'))
         by (simp-all add: wp-rea-def R2-tr-middle closure RR-implies-R2 assms)
     also have ... = (\neg_r (\exists (s_0,t_0) \cdot P[\ll s_0), \ll t_0)/\$st', \$tr'] ;; (\neg_r Q)[\ll s_0), \ll t_0)/\$st, \$tr] \land \ll t_0) \le u
$tr'))
         by (rel-blast)
    also have ... = (\neg_r (\exists (s_0,t_0) \cdot P[\ll s_0), \ll t_0)/\$st', \$tr'] \wedge (\neg_r Q)[\ll s_0), \ll t_0)/\$st, \$tr] \wedge \ll t_0) \leq u
$tr'))
      by (simp add: seqr-to-conj add: wp-rea-circus-lemma-1 wp-rea-circus-lemma-2 assms closure conj-assoc)
      also have ... = (\forall (s_0,t_0) \cdot \neg_r P[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r
\ll t_0 \gg \leq_u \$tr'
         by (rel-auto)
    also have ... = (\forall (s_0, t_0) \cdot \neg_r P[\ll s_0 >, \ll t_0 > /\$st', \$tr'] \lor \neg_r (\neg_r RR Q)[\ll s_0 >, \ll t_0 > /\$st, \$tr] \lor \neg_r (\neg_r RR Q)[\ll s_0 >, \ll t_0 > /\$st, \$tr]
```

 $\textbf{also have} \ ... = (\forall \ (s_0, t_0) \cdot \neg_r \ P[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!] \ \lor \ (RR \ Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \ \lor \ \neg_r \ \ll t_0 \gg \le_u \leq t_0 \leq t_0$

 $\textbf{also have} \ ... = (\forall \ (s_0, t_0) \cdot \ll t_0 \gg \leq_u \$tr' \land P[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!] \Rightarrow_r (RR \ Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!])$

 $\ll t_0 \gg <_u \$tr'$

by (rel-auto)

by (rel-auto)

\$tr')

by (simp add: Healthy-if assms closure)

```
also have ... = (\forall (s_0, t_0) \cdot \langle t_0 \rangle \leq_u \$tr' \land P[\langle s_0 \rangle, \langle t_0 \rangle /\$st', \$tr'] \Rightarrow_r Q[\langle s_0 \rangle, \langle t_0 \rangle /\$st, \$tr])
        by (simp add: Healthy-if assms closure)
    finally show ?thesis.
qed
lemma wp-rea-circus-form-alt:
    assumes P is CRR \$ref' \sharp P Q is CRC
    shows (P \ wp_r \ Q) = (\forall \ (s_0, t_0) \cdot \$tr \ \hat{\ }_u \ll t_0 \gg \leq_u \$tr' \land P[\ll s_0 \gg, \langle \rangle, \ll t_0 \gg /\$st', \$tr, \$tr']
                                                                  \Rightarrow_r R1(Q[\ll s_0\gg,\langle\rangle,\&tt-\ll t_0\gg/\$st,\$tr,\$tr']))
proof -
    have (P wp_r Q) = R2(P wp_r Q)
       by (simp add: CRC-implies-RR CRR-implies-RR Healthy-if RR-implies-R2 assms wp-rea-R2-closed)
   also have ... = R2(\forall (s_0, tr_0) \cdot (RR P)[(s_0), (tr_0)/(s_t)]) \Rightarrow_r (RR Q)[(s_0), (tr_0)/(s_t)]
        by (simp add: wp-rea-circus-form assms closure Healthy-if)
    also have ... = (\exists tt_0 \cdot (\forall (s_0, tr_0) \cdot \langle tr_0 \rangle \leq_u \langle tt_0 \rangle \wedge (RRP) [\langle s_0 \rangle, \langle tr_0 \rangle / \$st', \$tr, \$tr']]
                                                                                      \Rightarrow_r (RR \ Q)[\ll s_0\gg,\ll tr_0\gg,\ll tt_0\gg/\$st,\$tr,\$tr'])
                                                                                       \wedge \$tr' =_u \$tr \hat{\ }_u \ll tt_0 \gg)
        by (simp add: R2-form, rel-auto)
    also have ... = (\exists tt_0 \cdot (\forall (s_0, tr_0) \cdot \ll tr_0)) \cdot \ll tr_0 \times (RRP) [\ll s_0), \ll tr_0 \times (\$tr_0) \times tr_0 \times (RRP) [\ll s_0), \ll tr_0 \times (\$tr_0) \times tr_0 \times tr_0 \times tr_0 \times (RRPP) [\ll s_0), \ll (RRPP) [\ll s_0), \ll tr_0 \times (RRPP) [\ll s_0), \ll (RRPP) [\ll s_0), \ll tr_0 \times (RRPP) [\ll tr_0), \ll tr_0 \times (RRPP) [\ll tr_0), \ll tr_0 \times (RRPP) [\ll tr_0) (RRPP) [\ll tr_0) (RRPP) [\ll tr_0)
                                                                                      \Rightarrow_r (RR\ Q)[\ll s_0\gg,\langle\rangle,\ll tt_0-tr_0\gg/\$st,\$tr,\$tr'])
                                                                                       \wedge \$tr' =_{u} \$tr \hat{\ }_{u} \ll tt_{0} \gg)
        by (rel-auto)
    also have ... = (\exists tt_0 \cdot (\forall (s_0, tr_0) \cdot \$tr \cdot u \ll tr_0) \leq u \$tr' \wedge (RRP)[\![\ll s_0), \langle \rangle, \ll tr_0)/\![\$tr, \$tr']\!]
                                                                                      \Rightarrow_r (RR \ Q)[\ll s_0\gg, \langle\rangle, \&tt-\ll tr_0\gg/\$st, \$tr, \$tr']])
                                                                                       \wedge \$tr' =_{u} \$tr \cdot_{u} \ll tt_0 \gg
        by (rel-auto, (metis list-concat-minus-list-concat)+)
    also have ... = (\forall (s_0, tr_0) \cdot \$tr \hat{\ }_u \ll tr_0 \gg \leq_u \$tr' \land (RR\ P) \llbracket \ll s_0 \gg, \langle \rangle, \ll tr_0 \gg /\$st', \$tr, \$tr' \rrbracket
                                                                                      \Rightarrow_r R1((RR\ Q)[\ll s_0\gg,\langle\rangle,\&tt-\ll tr_0\gg/\$st,\$tr,\$tr']))
        by (rel-auto, blast+)
    also have ... = (\forall (s_0,t_0) \cdot \$tr \cdot u \ll t_0 \gg \leq_u \$tr' \wedge P[\![\ll s_0 \gg, \langle \rangle, \ll t_0 \gg / \$st', \$tr, \$tr']\!]
                                                                  \Rightarrow_r R1(Q[\ll s_0\gg,\langle\rangle,\&tt-\ll t_0\gg/\$st,\$tr,\$tr']))
        by (simp add: Healthy-if assms closure)
    finally show ?thesis.
qed
lemma divergences-seg:
    fixes P :: ('s, 'e) action
    assumes P is NCSP Q is NCSP
    shows dv \llbracket P \rrbracket; Q \rrbracket s = dv \llbracket P \rrbracket s \cup \{t_1 @ t_2 \mid t_1 \ t_2 \ s_0. \ (t_1, s_0) \in tr \llbracket P \rrbracket s \wedge t_2 \in dv \llbracket Q \rrbracket s_0 \}
    (is ?lhs = ?rhs)
    oops
lemma traces-seq:
    fixes P :: ('s, 'e) \ action
    assumes P is NCSP Q is NCSP
    \mathbf{shows}\ tr[\![P\ ;;\ Q]\!]s =
                     \{(t_1 \ @ \ t_2, \, s') \mid t_1 \ t_2 \ s_0 \ s'. \ (t_1, \, s_0) \in tr[\![P]\!] s \wedge (t_2, \, s') \in tr[\![Q]\!] s_0
                                                                              \wedge (t_1@t_2) \notin dv \llbracket P \rrbracket s
                                                                              \land (\forall (t, s_1) \in tr[P]s. \ t < t_1@t_2 \longrightarrow (t_1@t_2) - t \notin dv[Q]s_1) \}
    (is ?lhs = ?rhs)
proof
    show ?lhs \subseteq ?rhs
    proof (rdes-expand cls: assms, simp add: traces-def divergences-def rdes closure assms rdes-def unrest
rpred usubst, auto)
        fix t :: 'e \ list \ and \ s' :: 's
```

```
let ?\sigma = [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg]
         assume
             a1: '?\sigma \dagger (post_R P ;; post_R Q)' and
             a2: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] † pre_R P' and
             a3: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (post_R \ P \ wp_r \ pre_R \ Q)'
         from at have ?\sigma \dagger (\exists tr_0 \cdot ((post_R P)[\exists tr_0 > /\$tr']); (post_R Q)[\exists tr_0 > /\$tr]) \land (tr_0 > \leq_u \$tr')
             by (simp add: R2-tr-middle assms closure)
         then obtain tr_0 where p1: ?\sigma \dagger ((post_R P)[\![ < tr_0 > / \$tr' ]\!] ;; (post_R Q)[\![ < tr_0 > / \$tr]\!] ; and tr_0 : tr_0
\leq t
             apply (simp add: usubst)
             apply (erule taut-shEx-elim)
               apply (simp add: unrest-all-circus-vars-st-st' closure unrest assms)
             apply (rel-auto)
             done
      from p1 have '?\sigma \dagger (\exists st_0 \cdot (post_R P)[(st_0)/\$tr'][(st_0)/\$st'] ;; (post_R Q)[(st_0)/\$tr][(st_0)/\$st])'
             by (simp add: seqr-middle[of st, THEN sym])
        then obtain s_0 where '?\sigma \dagger ((post_R P) \llbracket \langle s_0 \rangle, \langle tr_0 \rangle / \$st', \$tr' \rrbracket;; (post_R Q) \llbracket \langle s_0 \rangle, \langle tr_0 \rangle / \$st, \$tr \rrbracket)'
             apply (simp add: usubst)
             apply (erule taut-shEx-elim)
               apply (simp add: unrest-all-circus-vars-st-st' closure unrest assms)
             apply (rel-auto)
             done
         hence '(([\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] † post_R P) ;;
                             ([\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll t \gg] \dagger post_R Q))
             by (rel-auto)
         hence '(([\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] † post_R P) \land
                             ([\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll t \gg] \dagger post_R Q))
             by (simp add: seqr-to-conj unrest-any-circus-var assms closure unrest)
         hence postP: '([\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s_0\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0\gg] † post<sub>R</sub> P)' and
                      postQ': '([\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll t \gg] † post_R Q)'
             by (rel-auto)+
           from postQ' have '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg] † [\$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll tr_0 \gg + (\ll t \gg -
\ll tr_0\gg)] † post_R Q'
             using tr\theta by (rel-auto)
         hence '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg] \dagger [\$tr \mapsto_s \theta, \$tr' \mapsto_s \ll t \gg - \ll tr_0 \gg] \dagger post_R Q'
             by (simp add: R2-subst-tr closure assms)
         hence postQ: '\{\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - tr_0 \gg \} \dagger post_R Q'
             by (rel-auto)
         have preP: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] † pre_R P'
         proof -
             have (pre_R P)[0,\ll tr_0 \gg /\$tr,\$tr'] \subseteq (pre_R P)[0,\ll t \gg /\$tr,\$tr']
                 by (simp add: RC-prefix-refine closure assms tr0)
               hence [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] \dagger pre_R P \sqsubseteq [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg tr' \mapsto_s \ll tr' \mapsto_
\ll t \gg] † pre_R P
                 by (rel-auto)
             thus ?thesis
                 by (simp add: taut-refine-impl a2)
         have preQ: '\{\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - tr_0 \gg \} \dagger pre_R Q'
         proof -
             from postP a3 have '[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll t \gg] † pre_R Q'
                 apply (simp add: wp-rea-def)
                 apply (rel-auto)
                  using tr\theta apply blast+
```

```
done
             hence '[\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll tr_0 \gg + (\ll t \gg - \ll tr_0 \gg)] \dagger pre_R Q'
                 by (rel-auto)
             hence '[\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s 0, \$tr' \mapsto_s \ll t \gg - \ll tr_0 \gg] \dagger pre_R Q'
                 by (simp add: R2-subst-tr closure assms)
             thus ?thesis
                 by (rel-auto)
        qed
        from a2 have ndiv: \neg '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \ll t \gg] † (\neg_r pre_R P)'
             by (rel-auto)
        have t-minus-tr\theta: tr_0 \otimes (t - tr_0) = t
             using append-minus tr0 by blast
        from a3
        have wpr: \bigwedge t_0 \ s_1.
                         (\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg \dagger pre_R P' \Longrightarrow
                        `[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P` \Longrightarrow
                          t_0 \leq t \Longrightarrow `[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - t_0 \gg] \dagger (\neg_r \ pre_R \ Q)` \Longrightarrow False
        proof -
             fix t_0 s_1
             assume b:
                  `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger pre_R P'
                  `[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P`
                  t_0 \leq t
                  \stackrel{\cdot -}{(st \mapsto_s \ll s_1)}, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - t_0 \gg \uparrow (\neg_r \ pre_R \ Q) 
             from a3 have c: \forall (s_0, t_0) \cdot \langle t_0 \rangle \leq_u \langle t \rangle
                                                                       \land [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P
                                                                       \Rightarrow [\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg - \ll t_0 \gg] \dagger pre_R Q'
                 by (simp add: wp-rea-circus-form-alt of post<sub>R</sub> P pre<sub>R</sub> Q closure assms unrest usubst)
                        (rel-simp)
             from c b(2-4) show False
                 by (rel-auto)
        qed
        show \exists t_1 \ t_2.
                           t = t_1 \otimes t_2 \wedge
                           (\exists s_0. \ `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg] \dagger pre_R P \land
                                            [\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s_0\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg] \dagger post_R P' \land large for the second substitution of the second su
                                           `[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger pre_R Q \land
                                            [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q' \land A
                                            \neg '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] † (\neg_r \ pre_R \ P)' \land
                                            (\forall t_0 \ s_1. \ `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger pre_R \ P \land 
                                                                [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P' \longrightarrow
                                                             t_0 \leq t_1 @ t_2 \longrightarrow \neg '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 @ t_2) - t_0 \gg] \dagger (\neg_r)
pre_R (Q)')
             apply (rule-tac x=tr_0 in exI)
             apply (rule-tac \ x=(t-tr_0) \ in \ exI)
             apply (auto)
             using tr\theta apply auto[1]
             apply (rule-tac x=s_0 in exI)
```

```
apply (auto intro:wpr simp add: taut-conj preP preQ postP postQ ndiv wpr t-minus-tr0)
       done
  qed
  show ?rhs \subseteq ?lhs
  proof (rdes-expand cls: assms, simp add: traces-def divergences-def rdes closure assms rdes-def unrest
rpred usubst, auto)
     fix t_1 t_2 :: 'e list and s_0 s' :: 's
     assume
       a1: \neg `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (\neg_r pre_R P)` and
       a2: '\{\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg \} \dagger pre_R P' and
       a3: '[\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s_0\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1\gg] \dagger post_R P' and
       a4: '[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] † pre_R Q' and
       a5: '\{\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg \} \dagger post_R Q' and
       a6: \forall t \ s_1. \ `[\$st \mapsto_s \ll s\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t\gg] \dagger pre_R \ P \land 
                      t \leq t_1 \otimes t_2 \longrightarrow \neg '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 \otimes t_2) - t \gg ] \dagger (\neg_r \ pre_R \ Q)'
     from a1 have preP: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (pre_R P)'
       by (simp add: taut-not unrest-all-circus-vars-st assms closure unrest, rel-auto)
     have '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger post_R Q'
     proof -
       have [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q =
               [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg] \dagger [\$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q
         bv rel-auto
       \textbf{also have} \ \dots = [\$st \mapsto_s «s_0 », \$st' \mapsto_s «s' »] \dagger [\$tr \mapsto_s «t_1 », \$tr' \mapsto_s «t_1 » + «t_2 »] \dagger \textit{post}_R \ \textit{Q}
         by (simp add: R2-subst-tr assms closure, rel-auto)
       finally show ?thesis using a5
         by (rel-auto)
    qed
     with a3
     have postPQ: '[\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s'\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2\gg] \dagger (post_R P ;; post_R)
Q)
       by (rel-auto, meson Prefix-Order.prefixI)
     have '[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger pre_R Q'
     proof
       have [\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger pre_R Q =
               [\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger pre_R Q
         by rel-auto
       also have ... = [\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s \theta, \$tr' \mapsto_s \ll t_2 \gg] \dagger pre_R Q
         by (simp add: R2-subst-tr assms closure)
       finally show ?thesis using a4
          by (rel-auto)
     qed
     from a6
     have a6': \land t \ s_1. \llbracket t \leq t_1 \ @ \ t_2; '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger pre_R P'; '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg]
\$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg ] \dagger post_R P' ] \Longrightarrow
                                `[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 @ t_2) - t \gg] \dagger pre_R Q`
       apply (subst (asm) taut-not)
       apply (simp add: unrest-all-circus-vars-st assms closure unrest)
       apply (rel-auto)
       done
```

```
have wpR: '[$st \mapsto_s \ll s \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t_1 @ t_2 \gg] † (post<sub>R</sub> P wp<sub>r</sub> pre<sub>R</sub> Q)'
    proof -
      have \bigwedge s_1 \ t_0. \llbracket t_0 \le t_1 \ @ \ t_2; '[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg ] \dagger post_R P
\implies '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 @ t_2) - t_0 \gg] † pre_R Q'
       proof -
         fix s_1 t_0
         assume c:t_0 \leq t_1 \otimes t_2 '[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg ] \dagger post_R P'
         have preP': '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger pre_R P'
         proof -
            have (pre_R P) \llbracket \theta, \ll t_0 \gg /\$tr, \$tr' \rrbracket \sqsubseteq (pre_R P) \llbracket \theta, \ll t_1 @ t_2 \gg /\$tr, \$tr' \rrbracket
              by (simp add: RC-prefix-refine closure assms c)
            \mathbf{hence}~[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger~pre_R~P \sqsubseteq [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg]
\ll t_1 \otimes t_2 \gg \uparrow pre_R P
              by (rel-auto)
            thus ?thesis
              by (simp add: taut-refine-impl preP)
         qed
         with c a3 preP a6' [of t_0 s_1] show '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 @ t_2) - t_0 \gg] † pre_R
Q
            by (simp)
       qed
       thus ?thesis
         apply (simp-all add: wp-rea-circus-form-alt assms closure unrest usubst rea-impl-alt-def)
         apply (simp add: R1-def usubst tcontr-alt-def)
         apply (auto intro!: taut-shAll-intro-2)
         apply (rule taut-impl-intro)
         apply (simp add: unrest-all-circus-vars-st-st' unrest closure assms)
         apply (rel-simp)
       done
    qed
    show '([\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] † pre_R P \wedge
          [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (post_R \ P \ wp_r \ pre_R \ Q)) \land 
         [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (post_R P ;; post_R Q)'
       by (auto simp add: taut-conj preP postPQ wpR)
  qed
qed
lemma Cons-minus [simp]: (a \# t) - [a] = t
  by (metis append-Cons append-Nil append-minus)
lemma traces-prefix:
  assumes P is NCSP
  shows tr[a \to P]s = \{(a \# t, s') \mid t \ s'. \ (t, s') \in tr[P]s\}
   apply (auto simp add: PrefixCSP-def traces-seq traces-do divergences-do lit.rep-eq assms closure
Healthy-if trace-divergence-disj)
  apply (meson assms trace-divergence-disj)
  done
```

13.3 Deadlock Freedom

```
definition DF :: 'e \ set \Rightarrow ('s, 'e) \ action \ \mathbf{where} DF(A) = (\mu_C \ X \cdot ( \bigcap \ a \in A \cdot a \rightarrow Skip) \ ;; \ X) lemma DF\text{-}CSP \ [closure]: A \neq \{\} \Longrightarrow DF(A) \ is \ CSP \ \mathbf{by} \ (simp \ add: \ DF\text{-}def \ closure \ unrest) end
```

14 Meta theory for Circus

```
theory utp-circus
imports
utp-circus-core
utp-circus-rel
utp-circus-healths
utp-circus-extchoice
utp-circus-actions
utp-circus-prefix
utp-circus-recursion
utp-circus-traces
utp-circus-parallel
utp-circus-fdsem
begin end
```

References

- [1] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses. In *ICTAC*, LNCS 9965. Springer, 2016.
- [2] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis, Department of Computer Science University of York, UK, 2006. YCST-2006-02.