

(1) Publication number: 0 263 667 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 14.12.94 Bulletin 94/50

(51) Int. Cl.5: H04R 25/02, H04R 25/00

(21) Application number: 87308815.7

(22) Date of filing: 05.10.87

- (54) Modular hearing aid with lid hinged to faceplate.
- (30) Priority: 07.10.86 CA 520021
- (43) Date of publication of application : 13.04.88 Bulletin 88/15
- (45) Publication of the grant of the patent: 14.12.94 Bulletin 94/50
- (84) Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) References cited: EP-A- 0 085 032 DE-A- 3 505 390 GB-A- 2 144 366 US-A- 3 496 306 US-A- 4 532 649

- (73) Proprietor: UNITRON INDUSTRIES LTD. 20 Beasley Drive Kitchener Ontario N2G 4J3 (CA)
- (72) Inventor: Arndt, Horst
 6 Old Forest Crescent
 Kitchener Ontario, N2N 2A3 (CA)
 Inventor: Kroetsch, Edward S.
 68 Wheatfield Crescent
 Kitchener Ontario, N2P 1P7 (CA)
- (4) Representative: Johnson, Terence Leslie et al Edward Evans & Co. Chancery House 53-64 Chancery Lane London WC2A 1SD (GB)

63 667 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

15

20

25

30

35

40

45

50

Description

FIELD OF THE INVENTION

This invention relates to a compact hearing aid of the kind generally referred to as an in-the-ear (or ITE) hearing aid.

BACKGROUND OF THE INVENTION

In-the-ear or ITE hearing aids have been manufactured for some time. Such aids include full concha aids, low profile full concha aids, half concha aids, canal aids, and semi-canal aids. In all cases there exists a need to build smaller hearing aids which will fit more ears. There is also a need to build such hearing aids with better performance and more features.

Traditional custom ITE hearing aids have been constructed by creating a shell which anatomically duplicates the relevant parts of the user's ear canal and concha. A receiver is placed in this shell, and then the open end of the shell is closed with a faceplate subassembly. The faceplate subassembly consists of an arrangement of individual components, typically an amplifier, microphone, volume control, battery compartment and potentiometers for adjusting the hearing aid performance to the user's individual needs. Adjustment or repair of the internal parts requires the faceplate to be cut away from the shell. This is an awkward procedure, and after repair or adjustment, subsequent buffing or polishing is needed to restore the hearing aid to an acceptable cosmetic appearance.

These difficulties have motivated the construction of modular hearing aids in which an electroacoustic module (consisting of a receiver, which is simply a miniature loudspeaker, a microphone, an amplifier, a battery compartment, a volume control and other optional controls) is mated into a faceplate with a matching opening. The module can be inserted into and removed from a faceplate-shell subassembly to make the building and repair of the hearing aid more efficient. However a detrimental consequence of modularity has been an increase in the size of finished hearing aid.

In all existing modular ITE hearing aids, the module contains a battery compartment with a battery compartment lid attached to the module. The size of the lid is determined by the dimensions of the battery and the space required to provide a hinge to fasten the battery lid to the modular insert. The hinged lid is opened frequently to exchange batteries, thus exerting wear and tear on the module. In current modular hearing aids, the module must fit snugly into the faceplate and must be securely attached to the faceplate by a suitable snap or fastening detail. Usually latches or the like are used to provide a secure fastening. Both the hinge and the fastening detail add consider-

ably to the size of the module and thus to the size of the finished aid. As a result, modular ITE hearing aids which are presently available are not suitable for more than 40 to 50 percent of all ears which could be candidates for such hearing aids.

US-A-3496306 discloses a hearing aid which comprises a shell adapted to fit within a user's ear and having an outer rim with an opening, a face plate fixed to the outer rim and an electronic module being removably fitted in the opening. Such a construction occupies a relatively large amount of critical space, and any attempt at removing a battery compartment lid of the module will place undue stress on the module.

DE-A-350390 discloses a printed circuit board on which the electrical components are mounted. This is not removable through an opening in the face plate.

It is an object of the invention to seek to mitigate these disadvantages.

In one of its aspects the present invention provides a hearing aid, characterised by a shell adapted to fit within a user's ear and having an outer rim, a faceplate fixed to said outer rim and having an opening therein, an electronic module comprising a microphone, an amplifier connected to said microphone to amplify sound therefrom, a receiver connected to said amplifier to produce sound for said user, and a battery compartment to house a battery for said amplifier, said module being fitted within said opening of said faceplate and being removably attached to said faceplate, said battery compartment having an open outer end, a lid for said faceplate, said lid being adapted substantially to cover said module, there being no other lid to cover said module, said lid having an inside surface, said inside surface defining a closure for said open outer end of said battery compartment, hinge means connected between said lid and said faceplate for said lid to be opened and closed, said lid when closed substantially covering said module, and said lid when closed being aligned for said closure for said battery compartment to close said battery compartment, said lid when open uncovering said battery compartment for removal of said battery and also uncovering said module so that said module can be removed from said faceplate, and detent means for retaining said lid in a closed position.

In another aspect the invention provides a method of assembling an in-the-ear hearing aid of the kind including a shell adapted to fit within a user's ear, a faceplate fixed to said shell and having an opening therein, and an electronic module fitted within said faceplate and shell and having a lower surface and being removable through an opening in said faceplate, including the steps of fixing said faceplate to said shell and then removing excess material from said faceplate so that the exterior contour of said faceplate blends smoothly into the exterior contour of said shell, and then connecting said module to said face-

15

20

25

30

35

40

45

50

plate, characterised by selecting a transparent plastic gauge having a lower surface simulating the shape of the lower surface of said module, by inserting said gauge through said opening in said faceplate, by positioning said faceplate on said shell with said gauge extending through said faceplate into said shell, said gauge serving to facilitate proper positioning of said faceplate on said shell, and by then fixing said faceplate to said shell.

3

Thus using the invention it is possible to provide a modular ITE hearing aid in which the battery compartment lid and hinge are removed from the module itself and are placed instead on the faceplate which is attached to a custom or stock shell. The stresses which arise from opening and closing the battery compartment lid are now exerted on the faceplate ring rather than on the modular insert. Consequently the module is not required to be as securely fastened in the faceplate. The space which is saved by not having to provide a hinge on the module, and by not having to provide as strong a fastening in the faceplate for the module, can therefore be used to provide features such as controls while still retaining a very small overall size for the finished aid. Tests have shown that a large percentage of adult ears in North America can be fitted with the modular hearing aid of this invention.

Further objects and advantages of the invention will appear from the following description, taken together with the accompanying drawings.

Fig. 1 is an exploded perspective view of a hearing aid according to the present invention with the electronic module removed from the aid and with the lid in open position;

Fig.2 is a perspective view similar to Fig.1 but with the electronic module installed in the hearing aid;

Fig.3 is a perspective view similar to Fig.2 but with the lid closed;

Fig.4 is a perspective view of a faceplate used to form the faceplate ring of the invention, before material has been removed therefrom;

Fig.5 is a top view of a portion of the faceplate of

Fig. 6 is an exploded sectional view showing a faceplate, shell, and the plastic housing of the electronic module:

Fig. 7 is a sectional view similar to that of Fig. 6 but showing the module housing inserted in the faceplate:

Fig. 8 is a sectional view showing the complete electronic module in the faceplate and shell;

Fig. 9 is another sectional view showing the electronic module in the faceplate and shell;

Fig. 10 is a side view of a conventional battery used in the hearing aid of the invention;

Fig. 11 is an exploded perspective view of the hinge between the lid and faceplate;

Fig. 12 is a top view showing a plastic gauge used to facilitate the assembly of the faceplate of Fig. 4 to the shell;

Fig. 13 is a sectional view along lines 13-13 of Fig. 12;

Fig. 14 is a sectional view along lines 14-14 of Fig. 12;

Fig. 15 is a sectional view along lines 15-15 of Fig. 12;

Fig. 16 is a sectional view along lines 16-16 of Fig. 12; and

Fig. 17 is a view similar to that of Fig. 9 but showing a modification of the invention.

DESCRIPTION OF PREFERRED EMBODIMENT

Reference is first made to Figs. 1 to 3, which show a hearing aid 10 comprising a shell 12, a faceplate 14 and a lid 16. The shell 12 can be a stock (i.e. standard) shell or it can be custom molded to fit the customer's ear. The shell 12 includes an aperture 18 in its lower surface for sound from the hearing aid transducer (to be described) to enter the user's ear canal.

The particular hearing aid shown and described is a canal hearing aid for the right ear. An aid for the left ear would be the mirror image of that shown.

The faceplate 14 begins life as a rectangular plate 14a as shown in Fig. 4. As will be described, the plate 14a is glued to the shell 12, and the excess material is then removed leaving the faceplate 14 as shown in Figs. 1 to 3.

Housed within the faceplate 14 and shell 12 is an electronic module 20. The module 20 comprises a plastic housing 22 which defines a battery compartment 24. The plastic housing 22 also supports a volume control 26 and various electronic components to be described. These components include a receiver 28 which is suspended from the module 20 by a pair of wires 30 and which produces the sound which is transmitted onto the user's ear canal.

The lid 16 is connected by a hinge 32 to the faceplate 14 (as will be described in more detail) and includes in its lower surface a circular compartment 34 which forms a closure for the battery compartment 24. The lid 16 further includes an opening 36 through which the volume control 26 may project, and a small opening 37 to allow sound to reach the microphone (to be described) in the module 20. A plastic latch 38 on the lid 16 serves to latch the lid closed (as will be described).

The construction of the hearing aid 10 will now be described in more detail. Firstly, the shell 12 is conventionally molded of a suitable plastic, either in a standard (stock) shape or by using a casting of the user's ear canal. The resultant shell 12 has an upper edge 40 and an interior opening 42.

The faceplate 14 is molded with a central up-

15

20

30

35

45

standing annular rim 44 (Fig. 4) which encircles an opening 46 in the faceplate. The opening 46 is the same in all faceplates and is designed to receive the module housing 22 with a snap fit. For this purpose the interior wall 48 of the opening 46 includes two shallow recesses 50 therein, one in each end thereof (see Figs. 1, 4, 6 and 7). The recesses 50 terminate below the upper edge of rim 44, forming upper lateral surfaces or ledges 52 which retain the plastic housing 22. As shown in Figs. 6 and 7, the plastic housing 22 has outwardly projecting tapered ends 54 which can be forced into the opening 46 and snap into the recesses 50.

The faceplate 14 also includes four sectors-shaped lower stops 56 (Fig. 5) which project laterally inwardly from its interior wall 48, adjacent the bottom of the faceplate. The stops 56 limit movement of the module housing 22 into the faceplate opening.

The faceplate 14 also includes four upper posts 58 and four lower posts 60, one at each corner thereof. The posts are used for stacking and handling. For this purpose the upper posts 58 are narrowed and their tips fit into corresponding openings 62 in the lower posts 60.

After the shell 12 has been formed, it is glued or ultrasonically welded to the faceplate 14 as shown in Fig. 6. While different shells may differ in contour, there is only one standardized faceplate 14 which is used for all shells. After the shell and faceplate are secured together, the excess plastic is then removed from the faceplate 14 as shown by dotted lines 14a in Fig. 6, so that the remaining portion of the faceplate and the shell 12 form a smooth contour.

The hearing aid is now ready to receive the module 20. As discussed, module 20 includes a plastic housing 22. Secured to the bottom of housing 22 is a printed circuit board 66. The electronic components of the module 20 (including volume control 26) are all mounted on or connected to the circuit board 66.

The electronic components include a conventional amplifier 68 mounted on the bottom of circuit board 66, a microphone 70 located below the amplifier 68, and an adjustment potentiometer 72 mounted on the top of the circuit board 66. The top of the potentiometer 72 is accessible for adjustment through opening 74 in the housing 22.

The microphone 70 is held in place by an elbowshaped rubber tube 76 (Fig. 9), which extends through a notch (not shown) in the side of the circuit board 66 and is then wedged into a hole 78 in the bottom of the plastic housing 22. The hole 78 extends upwardly into an opening 79 in the top of housing 22, for sound to reach the microphone.

The battery compartment 24 includes a bottom wall 80 which supports a battery bottom contact spring 82. Spring 82 includes a side tab 84 which extends downwardly to and is soldered to the circuit board 66. Spring 82 contacts the narrowed bottom

portion 86 of a conventional battery 88 (Fig. 10).

The battery compartment 24 further includes a curved sidewall 90 located between the battery compartment and the volume control 26. Mounted on the curved sidewall 90 is a battery side contact spring 92. The curvature of the spring 92 is very slightly sharper than that of the upper sidewall 94 of the battery. Thus spring 92 firmly contacts battery sidewall 94. A tab 96 extends downwardly from spring 92 to the circuit board 66.

Before the module 20 is inserted into the faceplate 14, the receiver 28 (the wires 30 of which are also soldered to the circuit board 66) is lowered into the shell 12, so that it faces the aperture 18 in shell 12. The receiver 28 is normally surrounded by a rubber sleeve 98 (Fig. 1) with small rubber stand-offs (not shown) thereon, to provide vibration isolation between the receiver and the wall of the shell 12. The module 20 may then be snapped into the faceplate 14, where it is retained between the recesses 50 and the stops 56 of the faceplate, as described. The module 20 helps to hold the receiver in position in the shell.

Next the lid 16 may be assembled to the faceplate 14. The lid 16 is also a molded plastic piece, shaped to match in outline that of the upper rim 44 of the faceplate 14. One edge of the lid 16 has a slot 100 molded therein (see Figs. 1, 11). Cylindrical pins 102 extend one from each end of the slot 100 toward each other. The pins 102 and slot 100 together form half of the hinge 32.

The other half of hinge 32 is formed by an upstanding formation 104 molded in the faceplate upper rim 44. The formation 104 contains two slots 106 therein, one at each end thereof, to accomodate the pins 102 in a snap fit. The formation 104 does not extend laterally outwardly beyond the rim 44, so that it is less likely to be damaged when excess material is being removed from faceplate 14. Similarly it does not extend laterally inwardly into the faceplate opening 46, so as not to interfere with the module 20.

The plastic latch 38 of the lid 16 is molded integrally therewith. The latch catches in a recess 110 in the faceplate interior wall 48, to hold the lid closed. A conventional notch 112 (Fig. 3) in the lid allows the user to pry the lid open. The interior battery closure 34 of the lid also includes a recess 113 to accommodate the spring 92.

Because the lid 16 holds the battery 88 in position but does not itself contain any metal contacts, the lid 16 can easily be replaced should it become physically or cosmetically damaged. In addition the entire module 20 can readily be removed, without removing the lid, simply by pulling it out of the faceplate 14. Because the stresses acting in the module 20 are normally small, the snap fit detail (the recesses 50 and projections 52) used to hold it in the faceplate can be of very light construction, so that only a modest force

is needed to remove the module.

When the faceplate 14 is being glued or welded to the shell 12, it is important to ensure that the positioning is such that the amplifier 68 and microphone 70, both of which project below the faceplate 14 will not interfere with the inside of the shell 12. For this purpose a plastic gauge 114 is used as shown in Figs. 12 to 16. The plastic gauge 114 is a transparent molded plastic part having a circumferential outline which is the same as that of the housing 22 of the electronic module 20. The bottom contour 116 of the gauge 114 is shaped to simulate that of the module, including the circuit board 66, amplifier 68 and microphone 70. A plastic pin 118 extends upwardly from the gauge 114 and serves as a handle to allow the gauge to be grasped.

In use, before the faceplate 14 is glued or welded to the shell 12, the gauge 114 is first inserted into the faceplate opening 46. Then the faceplate 14 may be applied to the shell 12 and glued or welded in position. The fabricator may look through the transparent gauge 114 during the assembly process in order better to view the operation. After the fastening process is completed (or before if the faceplate 14 and shell 12 are each held in a jig, as will often be the case), the gauge 114 is removed by pulling on its upwardly projecting pin 118.

While in the embodiment shown, the volume control projects through the lid, if desired the volume may be preset and the volume control (if any) may be covered by the lid. Alternatively a push-button volume control may be used. The lid can cover part of the push-button or twist volume control and can expose part for access by a user.

If it is desired to provide wind noise protection for the hearing aid, then a foam insert (not shown) can be placed in hole 37 in the lid 16. Alternatively, a wind noise hood of standard configuration may be placed on the lid 16, extending part way over the hole 37 from one side thereof to provide protection against wind noise.

If desired, the shape either of the hole 37 in the lid 16 or of the opening 79 in the plastic housing 22 can be modified as desired to provide acoustic emphasis or de-emphasis in specific frequency bands. For example, if desired the hole 37 may be made funnel-shaped, being enlarged at its top and narrowed at its bottom, in order to gather additional sound over a broad frequency range.

Further, if it is desired to make the hearing aid directional, then an additional opening can be provided in lid 16 and a matching opening can be formed in housing 22 so that there will be two sound ports, one front and one rear. From the additional opening in the housing 22, a rubber tube can be directed to an additional port on the microphone 70.

If desired, a thin shelled replica of the bottom contour of the gauge 114 can be molded integrally with the faceplate 14, forming a basket to provide the necessary gauging function and also to help retain the receiver 28 in position. This arrangement is shown in Fig. 17, where primed reference numerals indicate parts corresponding to those of Figs. 1 to 16. As shown in Fig. 17, the gauge 114' is molded, of as thin plastic as possible, integrally with the faceplate 14. The gauge 114' is molded at the bottom of the faceplate 14, in effect replacing the stops 56, and is contoured to follow approximately the shape of the bottom of the module 20'. The module 20' snaps as before into the recesses 50' in the faceplate. An opening 120 in the bottom of the gauge 114' accommodates and helps to locate the sleeve 98' for the receiver.

Claims

15

20

25

35

40

45

50

1. A hearing aid, with

- (a) a shell (12) adapted to fit within a user's ear and having an outer rim (40),
- (b) a faceplate (14) fixed to said outer rim and having an opening (46) therein,
- (c) an electronic module (20) comprising a microphone (70), an amplifier (68) connected to said microphone to amplify sound therefrom, a receiver (28) connected to said amplifier to produce sound for said user, and a battery compartment (24) to house a battery for said amplifier, said module (20) being fitted within said opening (46) of said faceplate (14) and being removably attached to said faceplate (14),
- (d) said battery compartment (24) having an open outer end,

characterized by:

- (e) a lid (16) for said faceplate, said lid (16) being adapted substantially to cover said module (20), there being no other lid to cover said module (20), said lid (16) having an inside surface, said inside surface defining a closure for said open outer end of said battery compartment (24),
- (f) hinge means (32) connected between said lid (16) and said faceplate (14) for said lid to be opened and closed, said lid (16) when closed substantially covering said module (20), and said lid when closed being aligned for said closure for said battery compartment to close said battery compartment, said lid (16) when open uncovering said battery compartment (24) for removal of said battery and also uncovering said module (20) so that said module can be removed from said faceplate, and
- (g) detent means (38) for retaining said lid (16) in a closed position.

15

20

25

30

35

40

45

50

- A hearing aid according to Claim 1, characterised in that said module includes an adjustment potentiometer (72), said potentiometer being covered by said lid (16) when said lid is closed.
- A hearing aid according to Claim 1, characterised in that said module (20) includes a volume control (26) projecting outwardly therefrom, said lid (16) having an aperture (36) therein to expose at least a portion of said volume control when said lid is closed.
- A hearing aid according to Claim 1, 2 or 3, characterised in that said lid (16) includes an opening (37) therein for sound to to pass therethrough to reach said microphone.
- 5. A hearing aid according to Claim 1, characterised in that said faceplate (14) includes an outer edge (44), an interior wall (48), and recesses (50) formed in said interior wall inwardly of said outer edge, said module (20) including a plastic housing (22) contoured to snap fit into said recesses.
- 6. A hearing aid according to Claim 1, characterised in that said faceplate (14) includes an inner edge contacting said outer rim of said shell, and stop means (56) projecting laterally into said opening from said interior wall adjacent said inner edge to limit movement of said plastic housing inwardly into said shell.
- 7. A hearing aid according to Claim 1, characterised in that said faceplate (14) comprises a plastic body, an annular rim (44) extending outwardly from said body and encircling said opening (46), and a half-hinge (104) formed on said rim and constituting a portion of said hinge means.
- 8. A hearing aid according to Claim 1, characterised in that said module comprises a plastic housing (22), a printed circuit board (66) secured to the bottom of said housing, an amplifier secured to said printed circuit board and extending downwardly therefrom, and a microphone connected to said housing and located below said amplifier.
- 9. A hearing aid according to Claim 1, characterised in that said battery compartment includes a bottom wall (80) having a first spring contact (82) thereon to contact the bottom of a battery and a sidewall having a second spring contact (92) therein to contact the sidewall of a battery.
- A hearing aid according to Claim 9, characterised in that said module comprises a plastic housing (22), said battery compartment being formed in said housing, a printed circuit board (66) secured

- to the bottom of said housing, said first and second spring contacts (82, 92) being connected to said circuit board (66).
- 11. A hearing aid according to Claim 1, characterised in that there is a gauge (114) moulded integrally with said faceplate (14) and extending inwardly into said shell, said gauge (114) having a lower surface shaped to simulate approximately the shape of the lower surface of said module.
- 12. A hearing aid according to Claim 1, characterised in that said rim (44) has an upper edge, a first hinge portion (104) located on said upper edge of said rim, said first hinge portion not extending laterally outwardly beyond said rim and also not extending laterally inwardly into said opening (46), said lid (16) having a second hinge portion (100, 102) connected to said first hinge portion (104) to hingedly attach said lid (16) to said rim, said faceplate (14) including retaining means (50, 52, 56) separate from said first and second hinge portions for releasably retaining said module (20) within said opening, said retaining means being substantially the sole means connecting said module to said faceplate.
- 13. A hearing aid according to Claim 12, characterised in that said faceplate includes an interior wall (48) encircling said opening (46), said wall having recesses (50, 52) formed therein below said upper edge for providing a snap fit for said module (20).
- 14. A hearing aid according to Claim 13, characterised in that said retaining means comprises stop means (56) extending laterally into said opening from said interior wall (48) to limit movement of said module (20) inwardly into said opening.
- 15. A method of assembling an in-the-ear hearing aid of the kind including a shell (12) adapted to fit within a user's ear, a faceplate (14) fixed to said shell (12) and having an opening therein, and an electronic module (20) fitted within said faceplate and shell and having a lower surface and being removable through an opening (46) in said faceplate, including the steps of fixing said faceplate to said shell and then removing excess material from said faceplate so that the exterior contour of said faceplate blends smoothly into the exterior contour of said shell, and then connecting said module to said faceplate, characterised by selecting a transparent plastic gauge (114) having a lower surface simulating the shape of the lower surface of said module, by inserting said gauge through said opening in said faceplate, by positioning said faceplate on said shell with said

10

15

20

25

30

35

40

45

gauge extending through said faceplate into said shell, said gauge serving to facilitate proper positioning of said faceplate on said shell, and by then fixing said faceplate to said shell.

Patentansprüche

- Modul-Hörgerät, mit einem durch ein Gelenk an einer Frontplatte gehalterten Deckel
 - (a) einem Gehäuse (12), das einem Benutzerohr angepaßt ist und einen Außenrand (40) hat.
 - (b) der Frontplatte (14), die an einem äußeren Rand befestigt ist und eine Öffnung (46) hat, (c) einem Elektronik-Modul (20), der ein Mikrophon (70), einen mit dem Mikrophon verbundenen Verstärker (68) zum Verstärken des Tons, einen mit dem Verstärker verbundenen Empfänger (28), um Ton für den Benutzer zu erzeugen, und ein Batteriefach (24) aufweist, um eine Batterie für den Verstärker unterzubringen, wobei der Modul (20) in die Öffnung (46) der Frontplatte (14) eingepaßt ist und herausnehmbar an der Frontplatte (14) angebracht ist,
 - (d) wobei das Batteriefach (24) ein offenes, äußeres Ende hat,

gekennzeichnet durch

- (e) den Deckel (16) für die Frontplatte, der (16) im wesentlichen dazu verwendet wird, den Modul (20) abzudecken, da es keinen weiteren Deckel zum Abdecken des Moduls (20) gibt, und der Deckel (16) eine Innenfläche hat, die einen Abschluß für das offene äußere Ende des Batteriefachs (24) festlegt; (f) eine Gelenkeinheit (32), die zwischen dem Deckel (16) und der Frontplatte (14) vorgesehen ist, wodurch der Deckel zu öffnen und zu schließen ist, der Deckel (16) im geschlossenen Zustand im wesentlichen den Modul (20) abdeckt und der Deckel im geschlossenen Zustand mit dem Abschluß für das Batteriefach ausgerichtet ist, um das Batteriefach zu verschließen, und wobei der Deckel (16) im geöffneten Zustand das Batteriefach (24) nicht bedeckt, um die Batterie herausnehmen zu können, und auch den Modul (20) nicht abdeckt, so daß der Modul von der Frontplatte abgenommen werden kann, und
- (g) eine Arretiervorrichtung (38), um den Deckel (16) in einer geschlossenen Stellung zu halten.
- Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Modul ein Einstellpotentiometer (72) enthält, das von dem Deckel (16) bedeckt wird, wenn der Deckel geschlossen ist.

- 3. Hörgerät nach Anspruch 1, dadurch gekennzelchnet, daß der Modul (20) einen Lautstärkeregler (26) enthält, der von diesem nach außen vorsteht, da der Deckel (16) eine Öffnung (36) aufweist, um zumindest einen Teil des Lautstärkereglers freizugeben, wenn der Deckel geschlossen ist.
- Hörgerät nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß der Deckel (16) eine Öffnung (37) aufweist, um Ton durchzulassen, damit dieser das Mikrophon erreicht.
- 5. Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Frontplatte (14) einen äußeren Rand (44), eine Innenwandung (48) und Ausnehmungen (50) aufweist, die in der Innenwandung im Inneren des äußeren Randes ausgebildet sind, und der Modul (20) ein Plastikgehäuse (22) aufweist, das entsprechend profiliert ist, um durch Einschnappen in die Ausnehmungen zu passen.
- 6. Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Frontplatte (14) einen inneren Rand, welcher an dem Außenrand des Gehäuses anliegt, und einen Anschlag (56) aufweist, der seitlich in die Öffnung von der Innenwandung aus, angrenzend an den inneren Rand, vorsteht, um eine Bewegung des Plastikgehäuses ins Innere des Gehäuses zu begrenzen.
- 7. Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Frontplatte (14) einen Plastikkörper, einen ringförmigen Rand (44), der außerhalb des Körpers verläuft und die Öffnung (46) umgibt, und ein Halbgelenk (104) aufweist, das an dem Rand ausgebildet und einen Teil der Gelenkeinheit bildet.
- 8. Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Modul ein Plastikgehäuse (22), eine Leiterplatte (26), die am Boden des Gehäuses befestigt ist, einen Verstärker, der an der Leiterplatte befestigt ist und sich von dieser aus nach unten erstreckt, und ein Mikrophon aufweist, das mit dem Gehäuse verbunden und unter dem Verstärker festgelegt ist.
- 9. Hörgerät nach Anspruch 1, dadurch gekennzelchnet, daß das Batteriefach eine Bodenwandung (80) mit einem ersten Federkontakt (82), der am Boden einer Batterie anliegt, und eine Seitenwandung mit einem zweiten Federkontakt (92) aufweist, der an der Seitenwand einer Batterie anliegt.
 - 10. Hörgerät nach Anspruch 9, dadurch gekenn-

10

15

20

25

35

40

45

50

zelchnet, daß der Modul ein Plastikgehäuse (22), in welchem das Batteriefach ausgebildet ist, und eine an dem Boden des Gehäuses befestigte Leiterplatte (66) aufweist, mit welcher (66) die ersten und zweiten Federkontakte (82, 92) verbunden sind.

- 11. Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß es eine Schablone (114) gibt, die mit der Frontplatte (14) als Einheit ausgebildet ist und in das Gehäuse vorsteht, wobei die Schablone (114) eine untere Fläche hat, die entsprechend geformt ist, um annähernd der Form der unteren Fläche des Moduls zu gleichen.
- 12. Hörgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Rand (44) eine obere Kante hat, ein erster Gelenkteil (104), der an der oberen Kante des Randes festgelegt ist, nicht seitlich nach außen über den Rand und auch nicht seitlich nach innen in die Öffnung (46) vorsteht, der Deckel (16) einen zweiten Gelenkteil (100, 102) hat, der mit dem ersten Gelenkteil (104) verbunden ist, um den Deckel (16) an dem Rand schwenkbar zu halten, die Frontplatte (14) eine Rückhalteeinrichtung (50, 52, 56) aufweist, die von den ersten und zweiten Gelenkteilen getrennt ist, um den Modul (20) lösbar in der Öffnung zu halten, wobei die Rückhalteeinrichtung im wesentlichen die einzige Einrichtung ist, die den Modul mit der Frontplatte verbindet.
- 13. Hörgerät nach Anspruch 12, dadurch gekennzeichnet, daß die Frontplatte eine Innenwandung (48) aufweist, welche die Öffnung (46) umgibt, und die Wandung Ausnehmungen (50, 52) hat, die in ihr unter der oberen Kante ausgebildet sind, um eine Schnapp-Passung für den Modul (20) zu schaffen.
- 14. Hörgerät nach Anspruch 13, dadurch gekennzeichnet, daß die Rückhalteeinrichtung einen Anschlag (56) aufweist, der seitlich in die Öffnung von der Innenwandung (48) aus vorsteht, um die Bewegung des Moduls (20) ins Innere der Öffnung zu begrenzen.
- 15. Verfahren zum Zusammenbauen eines im Ohr zu tragenden Hörgeräts der Art, das ein Gehäuse (12), welches einem Benutzerohr angepaßt ist, eine Frontplatte (14), die an dem Gehäuse (12) befestigt ist und eine Öffnung hat, und einen Elektronik-Modul (20) aufweist, welcher in die Frontplatte und das Gehäuse eingepaßt ist und eine untere Fläche hat, und über die Öffnung (46) in der Frontplatte herausnehmbar ist, bei welchem Verfahren die Frontplatte an dem Gehäuse gehaltert wird, dann überschüssiges Material von

der Frontplatte entfernt wird, so daß die Außenkontur der Frontplatte glatt in die Außenkontur des Gehäuses paßt, und dann der Modul mit der Frontplatte verbunden wird, dadurch gekennzelchnet, daß eine transparente Plastikschablone (114) gewählt wird, die eine untere Fläche hat, die der Form der unteren Fläche des Moduls angeglichen ist, die Schablone durch die Öffnung in die Frontplatte eingeführt wird, die Frontplatte an dem Gehäuse mit Hilfe der Schablone positioniert wird, welche durch die Frontplatte in das Gehäuse vorsteht, wobei die Schablone dazu dient, ein richtiges Positionieren der Frontplatte an dem Gehäuse zu erleichtern, und dann die Frontplatte an dem Gehäuse befestigt wird.

Revendications

- 1. Appareil auditif comportant
 - (a) une coque (12) conçue de manière à s'ajuster dans l'oreille d'un utilisateur et ayant un bord extérieur (40),
 - (b) une plaque frontale (14) fixée audit bord extérieur et présentant une ouverture (46),
 - (c) un module électronique (20) comprenant un microphone (70), un amplificateur (68) connecté audit microphone pour amplifier le son provenant de celui-ci, un récepteur (28) connecté audit amplificateur pour produire du son pour ledit utilisateur, et un compartiment à pile (24) pour loger une pile pour ledit amplificateur, ledit module (20) étant ajusté dans ladite ouverture (46) de ladite plaque frontale (14) et étant fixé, de manière amovible, à ladite plaque frontale (14),
 - (d) ledit compartiment à pile (24) ayant une extrémité extérieure ouverte

caractérisé par :

- (e) un couvercle (16) pour ladite face frontale, ledit couvercle (16) étant sensiblement apte à couvrir ledit module (20), aucun autre couvercle n'étant prévu pour couvrir ledit module (20), ledit couvercle (16) ayant une surface intérieure, ladite surface intérieure définissant une fermeture pour ladite extrémité extérieure ouverte dudit compartiment à pile (24),
- (f) un moyen formant charnière (32) connecté entre ledit couvercle (16) et ladite plaque frontale (14) pour permettre l'ouverture et la fermeture dudit couvercle, ledit couvercle (16), lorsqu'il est fermé, couvrant sensiblement ledit module (20), et étant placé de telle sorte que ladite fermeture dudit compartiment à pile ferme ce dernier, ledit couvercle (16), lorsqu'il est ouvert, découvrant ledit compartiment à pile (24) pour permettre de retirer ladite pile et découvrant également ledit module

10

15

20

25

30

35

40

45

50

- (20) de sorte que ce dernier peut être retiré de ladite plaque frontale, et
- (g) un moyen d'encliquetage (38) pour maintenir ledit couvercle (16) dans une position fermée.
- Appareil auditif selon la revendication 1, caractérisé en ce que ledit module inclut un potentiomètre de réglage (72), ledit potentiomètre étant couvert par ledit couvercle (16) lorsque ce dernier est fermé.
- 3. Appareil auditif selon la revendication 1, caractérisé en ce que ledit module (20) inclut un dispositif de réglage du volume (26), faisant saillie vers l'extérieur depuis celui-ci, ledit couvercle (16) présentant une ouverture (36) pour exposer au moins une partie dudit dispositif de réglage du volume lorsque le couvercle est fermé.
- 4. Appareil auditif selon la revendication 1, 2 ou 3, caractérisé en ce que ledit couvercle (16) présente une ouverture (37) pour que le son puisse passer à travers celle-ci pour atteindre ledit microphone.
- 5. Appareil auditif selon la revendication 1, caractérisé en ce que ladite plaque frontale (14) comporte un bord extérieur (44), une paroi intérieure (48) et des évidements (50) formés dans ladite paroi intérieure à l'intérieur par rapport audit bord extérieur, ledit module (20) comprenant un boîtier en plastique (22) configuré de manière à s'ajuster par encliquetage dans lesdits évidements.
- 6. Appareil auditif selon la revendication 1, caractérisé en ce que ladite plaque frontale (14) comportant un bord intérieur en contact avec ledit bord extérieur de ladite coque, et un moyen d'arrêt (56) faisant saillie latéralement dans ladite ouverture depuis ladite paroi intérieure adjacente audit bord intérieur pour limiter vers l'intérieur le mouvement dudit boîtier en plastique dans ladite coque.
- 7. Appareil auditif selon la revendication 1, caractérisé en ce que ladite plaque frontale (14) comprend un corps en plastique, un bord annulaire (44) s'étendant vers l'extérieur depuis ledit corps et encerclant ladite ouverture (46), et une demi-charnière (104) formée sur ledit bord et constituant une partie dudit moyen formant charnière.
- 8. Appareil auditif selon la revendication 1, caractérisé en ce que ledit module comprend un boîtier en plastique (22), une carte à circuits imprimés (66) fixée au fond dudit logement, un amplificateur fixé à ladite carte à circuits imprimés et

- s'étendant vers le bas depuis celle-ci, et un microphone connecté audit boîtier et situé sous ledit amplificateur.
- 9. Appareil auditif selon la revendication 1, caractérisé en ce que ledit compartiment à pile comprend une paroi de fond (80) portant un premier contact à ressort (82) pour assurer le contact avec le fond d'une pile, et une paroi latérale portant un second contact à ressort (92) pour assurer le contact avec la paroi latérale d'une pile.
- 10. Appareil auditif selon la revendication 9, caractérisé en ce que ledit module comprend un boîtier en plastique (22), ledit compartiment à pile étant formé dans ledit logement, une carte à circuits imprimés (66) fixée au fond dudit logement, lesdits premier et second contacts à ressort (82,92) étant connectés à ladite carte à circuits imprimés (66).
- 11. Appareil auditif selon la revendication 9, caractérisé en ce qu'il y a un gabarit (114) moulé d'une seule pièce avec ladite plaque frontale (14) et s'étendant vers l'intérieur dans ladite coque, ledit gabarit (114) ayant une surface inférieure façonnée de manière à simuler approximativement la forme de la surface inférieure dudit module.
- 12. Appareil auditif selon la revendication 1, caractérisé en ce que ledit bord (44) comporte une arête supérieure, une première partie de charnière (104) située sur ladite arête supérieure dudit bord, ladite première partie de charnière ne faisant pas saillie latéralement vers l'extérieur audelà dudit bord, et ne faisant pas non plus saillie latéralement vers l'intérieur dans ladite ouverture (46), ledit couvercle (16) comportant une seconde partie de charnière (100,102) connectée à ladite première partie de charnière (104) pour relier de manière pivotante ledit couvercle (16) audit bord, ladite plaque frontale (14) comprenant un moyen de retenue (50,52,56) séparé desdites première et seconde parties de charnière pour maintenir, de manière à pouvoir le libérer, ledit module (20) dans ladite ouverture, ledit moyen de retenue étant essentiellement le seul moyen connectant ledit module à ladite plaque frontale.
- 13. Appareil auditif selon la revendication 12, caractérisé en ce que ladite plaque frontale présente une paroi intérieure (48) entourant ladite ouverture (46), ladite paroi des évidements (50,52) façonnés dans celle-ci sous ledit bord supérieur pour permettre un ajustement par encliquetage dudit module (20).
 - 14. Appareil auditif selon la revendication 13, carac-

térisé en ce que ledit moyen de retenue comprend un moyen d'arrêt (56) s'étendant latéralement dans ladite ouverture depuis ladite paroi intérieure (48) pour limiter le mouvement dudit module (20) vers l'intérieur dans ladite ouverture.

15. Procédé d'assemblage d'un appareil auditif à porter dans l'oreille du type incluant une coque (12) conçue de manière à s'ajuster dans l'oreille d'un utilisateur, une plaque frontale (14) fixée à ladite coque (12) et présentant une ouverture, et un module électronique (20) ajusté dans lesdites plaque frontale et coque, présentant une surface inférieure, et qu'on peut enlever par une ouverture (46) de ladite plaque frontale, ce procédé comprenant les étapes consistant à fixer ladite plaque frontale à ladite coque, puis à retirer le matériau en surplus de ladite plaque frontale, de sorte que le contour extérieur de ladite plaque frontale se raccorde en douceur au contour extérieur de ladite coque, et ensuite à connecter ledit module à ladite plaque frontale, caractérisé en ce qu'on choisit un gabarit (114) en plastique transparent possédant une surface inférieure simulant la forme de la surface inférieure dudit module, on insère ledit gabarit par l'ouverture dans ladite plaque frontale, on place ladite plaque frontale sur ladite coque, ledit gabarit s'étendant à travers ladite plaque frontale dans ladite coque, ledit gabarit servant à faciliter le positionnement correct de ladite plaque frontale sur ladite gaine, et on fixe ensuite ladite plaque frontale à ladite coque.

10

15

20

25

30

35

40

45

50

FIG. 17