Computational Graphics: Lecture 5

The CVDIab Team

Tue, Mar 11, 2014

Outline: Algebra2

Affine spaces

Affine combinations

Convex combinations

Affine spaces

Affine space

The idea of affine space corresponds to that of a set of points where the displacement from a point \mathbf{x} to another point \mathbf{y} is obtained by summing a vector \mathbf{v} to the \mathbf{x} point.

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}: (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A} : (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A} : (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

- $\mathbf{v} \times \mathbf{v} = \mathbf{v}$ for each $\mathbf{v} \in \mathcal{A}$, where $\mathbf{v} \in \mathcal{V}$ is the null vector;

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}: (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

- **1** $(\mathbf{x} + \mathbf{v}) + \mathbf{w} = \mathbf{x} + (\mathbf{v} + \mathbf{w})$ for each $\mathbf{x} \in \mathcal{A}$ and each $\mathbf{v}, \mathbf{w} \in \mathcal{V}$;
- 2 $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in \mathcal{A}$, where $\mathbf{0} \in \mathcal{V}$ is the null vector;
- lacktriangledown for each pair $\mathbf{x},\mathbf{y}\in\mathcal{A}$ there is a unique $(\mathbf{y}-\mathbf{x})\in\mathcal{V}$ such that

$$\mathbf{x} + (\mathbf{y} - \mathbf{x}) = \mathbf{y}.$$

Dimension

The affine space A is said of dimension n if modeled on a vector space V of dimension n.

Vector sum vs affine action

Figure: (a) Vector sum and difference are given by the parallelogram rule (b) associativity of displacement (point and vector sum) in an affine space

• The addition of vectors is a primitive operation in a vector space.

- The addition of vectors is a primitive operation in a vector space.
- The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

- The addition of vectors is a primitive operation in a vector space.
- The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

 Addition and difference of vectors are geometrically produced by the parallelogram rule

- The addition of vectors is a primitive operation in a vector space.
- The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

- Addition and difference of vectors are geometrically produced by the parallelogram rule
- notice also the associative property of the affine action on a point space.

The sum of a set $\{\mathbf{v}_i\}$ of vectors $(i=1,\ldots,n)$ can be geometrically obtained, in an affine space:

ullet by setting ${f p}_0={f 0}$

The sum of a set $\{\mathbf{v}_i\}$ of vectors $(i=1,\ldots,n)$ can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\bullet \ \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$

The sum of a set $\{\mathbf{v}_i\}$ of vectors $(i=1,\ldots,n)$ can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $p_i = p_{i-1} + v_i$,
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

The sum of a set $\{\mathbf{v}_i\}$ of vectors $(i=1,\ldots,n)$ can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\bullet \ \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

Remark: operations on points

1 the addition of points is not defined;

9 / 20

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $p_i = p_{i-1} + v_i$,
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

- the addition of points is not defined;
- 2 the difference of two points is a vector;

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $p_i = p_{i-1} + v_i$,
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

- 1 the addition of points is not defined;
- 2 the difference of two points is a vector;
- 3 the sum of a point and a vector is a point.

Positive, affine and convex combinations

Three types of combinations of vectors or points can be defined. They lead to the concepts of cones, hyperplanes and convex sets, respectively.

Positive combination

Let $\mathbf{v}_0, \dots, \mathbf{v}_d \in \mathbb{R}^n$ and $\alpha_0, \dots, \alpha_d \in \mathbb{R}^+ \cup \{0\}$.

The vector

$$\alpha_0 \mathbf{v}_0 + \dots + \alpha_d \mathbf{v}_d = \sum_{i=0}^d \alpha_i \mathbf{v}_i$$

is called a positive combination of such vectors.

The set of all the positive combinations of $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ is called the positive hull of $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ and denoted $\mathrm{pos}\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$.

This set is also called the cone generated by the given vectors

Let $\mathbf{p}_0, \dots, \mathbf{p}_d \in \mathbb{E}^n$ and $\alpha_0, \dots, \alpha_d \in \mathbb{R}$, such that $\alpha_0 + \dots + \alpha_d = 1$.

The point

$$\sum_{i=0}^d \alpha_i \mathbf{p}_i := \mathbf{p}_0 + \sum_{i=1}^d \alpha_i (\mathbf{p}_i - \mathbf{p}_0)$$

is called an affine combination of the points $\mathbf{p}_0, \dots, \mathbf{p}_d$.

The set of all affine combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is an affine subspace, denoted by $\inf\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$

It is easy to verify that:

$$\inf \{ \mathbf{p}_0, \dots, \mathbf{p}_d \} = \mathbf{p}_0 + \lim \{ \mathbf{p}_1 - \mathbf{p}_0, \dots, \mathbf{p}_d - \mathbf{p}_0 \}.$$

The dimension of an affine subspace is the dimension of the corresponding linear vector space.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- Affine subspaces are also called flats.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- Affine subspaces are also called flats.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- Affine subspaces are also called flats.

Double description

Every affine subspace can be described either as

• the intersection of affine hyperplanes, or as

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- Affine subspaces are also called flats.

Double description

Every affine subspace can be described either as

- the intersection of affine hyperplanes, or as
- the affine hull of a finite set of points.

Convex combinations

Convex combination

Let $\mathbf{p}_0, \dots, \mathbf{p}_d \in \mathbb{E}^n$ and $\alpha_0, \dots, \alpha_d \geq 0$, with $\alpha_0 + \dots + \alpha_d = 1$.

The point

$$\alpha_0 \mathbf{p}_0 + \dots + \alpha_d \mathbf{p}_d = \sum_{i=0}^d \alpha_i \mathbf{p}_i$$

is called a convex combination of points $\mathbf{p}_0, \dots, \mathbf{p}_d$.

A convex combinations is both positive and affine.

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\operatorname{conv} \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\mathrm{conv}\,\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Properties

 the convex hull of a set of points is the intersection of all convex sets that contain them

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\mathrm{conv}\,\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Properties

- the convex hull of a set of points is the intersection of all convex sets that contain them
- the convex hull of a set of points is the smallest set that contains them

EXERCISE

• Produce (and draw) 100 random points within the unit square $[0,1]^2$;

EXERCISE

- Produce (and draw) 100 random points within the unit square [0, 1]²;
- Produce (and draw) 1000 random points within S_1 , the 1D sphere (circle) of unit radius centered at the origin (0,0);

References

GP4CAD book

