

FPGA-based True Random Number Generation

using Circuit Meta-stability with Adaptive Feedback Control

Mehrdad Majzoobi¹, Farinaz Koushanfar^{1,} and Srinivas Devadas²

¹ Rice University, ECE

² Massachusetts Institute of Technology, EECS

Random Number Generator (RNG)

- Pseudo-RNG (PRNG)
 - Seed
 - Source of entropy, i.e., a longer random number from a shorter seed
 - Algorithm
- How is the PRNG seed generated?
 - Predictable?
 - E.g., Netscape browser^[1]: srand(time(0))
- True-RNG
 - No seed
 - Based on a random physical phenomenon

Sources of Randomness

- Developed in 1996
- Generate randomness from lava lamps
- Efficiency/Cost?

Applications

- Generating
 - Keys
 - Nonce
 - Seeds
- Random numbers used in
 - Lottery
 - Gaming and Gambling
- Demand
 - Secure communication
 - Servers
 - E.g. Intel is embedding TRNGs in its new generation processors

What is the Challenge?

PFGAs, PSoC ASICs Hardware

Digital Analog Mechanical, Optical, etc

Was in Switzerland Inward Apparation on Table 10 and Table 10 and

- Source of randomness?
- Implementation cost
 - The cost of generating one (entropy) bit
 - Quantum random number generation *
 - Specialized hardware (high cost)
 - Speed/throughput
 - Power
 - Ease of implementation
- Security
 - Biasing attacks

FPGA

- More FPGA designs than ASICs
- Reconfigurable
- Shorter Time-to-Market
- Cheaper in low volume

5

Related Work

- Analog TRNGs
- Digital TRNGs
 - Clock jitter
 - Metastability

Sampling ring oscillator jitter

[1] Sunar, Martin, Stinson: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. on Computers 58, 109–119 (2007)

- Cons of popular ROs
 - Low entropy rate
 - Strong dependence on working condition
 - Can synchronize on perturbations or other ROs
 - High power consumption

This Work

- Flip-flop metastability
 - circuit/ambient noise sensor
- Fine delay tuning
 - force metastable operation
- At-speed feedback mechanism
 - automatic tuning
 - Robust operation
 - Resilient against active attacks biasing
- Simple design principle
 - Easy to observe how randomness relies on physical phenomena
- High entropy and throughput per unit area

Flip-flop Metastability

- Metastability
 - Highly sensitive to noise
- Flip-flop
 - Delay difference
 - Simultaneous arrival

Majzoobi, Koushanfar, and Potkonjak Techniques for Design and Implementation of Secure Reconfigurable PUFs. TRETS. Syst. 2, 1, Article 5, 2009

Delay tuning

- FPGA
 - Lookup table (LUT)

- Programmable delay Line (PDL)
 - Incremental changes in propagation path
 - Tree-like network
 - Resolution ~ 10 ps

Example: 3-input LUT

TRNG System Design

- Monitor bit probabilities
- Provide feedback to perform delay tuning
 - Monitor
 - Counter accumulator
 - Control
 - Linear feedback linear decoding

PI – proportional integral controller

Implementation

- Coarse and fine delay tuning knobs
 - Synthesize delay within a target range
 - Fine PDL resolution = 32 x Coarse PDL resolution
- Linear Decoding

Random Walk

- 1D random walk through counter values
 - $C \leftarrow C + x$ where $x = \{1,-1\}$, C = counter value
 - $Prob\{x = -1\} = 1 Prob\{x = 1\} = f(C)$
- The farther from the center the higher the probability of moving toward the center

Measurement setup

- Measuring PDL resolution
- External lab function generator
- Linear sweep from 10MHz to 15MHz
 - Freq * 34 by internal PLL
 - Xilinx Virtex 5 XC5VLX110
- Record error rate
- 32x32 array

Momery

PDL Delay Measurement

- Delay difference
- Coarse delay tap
 - ~10ps
- Fine delay tap
 - ~10ps/32

Tuning with PDLs

- Fine tuning stages
 - 32
- Coarse tuning stages
 - 32
- Measure probability
 - Repeat 1000 times
 - Normalize the number of 1s

Operation

- 10 bit counter (5 LSB/MSB bits control fine/coarse PDLs)
- The counter value finally settle around a constant value
 - 562
- It walks around the center values
 - Here: 564,563,562,561,560, 559

1: decrement

0: increment

Steady state statistics

- How many times a counter value appears
- What is the output bit probability associated with each counter values?

Output: 1 1 1 0 1 1 0 0 1 1 0 0

Counter: 564 563 562 561 562 561 560 561 562 561 560 561

Post-Processing

- Learning filter
 - Only output values when the counter value equals X
 - X is learned by measuring each bit probability for steady state counter values
 - In this case, X = 561
- Van Neumann correction

Cost

- Area
 - (32+32)x2 = 128 LUTs for the PDLs
 - 10 FFs = 10 bit counter
 - Decoder = 2 ROMs (5 bit address width 128 bit word)
 - XC5VLX110T
 - 17,280 Slices
 - 296 18kb ROM
 - Can fit more than 100 TRNGs
- Speed
 - Forward path delay = 61.06ns
 - 16 Mbit/sec,
 - 2Mbit/Sec after post-processing
 - Overclocking
 - Parallel cores

Statistical Test Results

- NIST suite
- After filtering and post processing

Table 1: NIST Statistical Test Suite results.

Statistical Test	Block/Template length	Lowest success ratio
Frequency	-	100%
Frequency within blocks	128	100%
Cumulative sums	-	100%
Runs	-	100%
Longest run within blocks	-	100%
Binary rank	-	100%
FFT	-	100%
Non-overlapping templates	9	90%
Overlapping templates	9	100%
Maurer's universal test	7	100%
Approximate entropy	10	100%
Random excursions	-	100%
Serial	16	100%
Linear complexity	500	90%

Conclusion

- FPGA based true random number generation
 - Flip-flop meta-stability
 - Use precise delay tuning
 - Programmable delay line
 - Single LUT
 - To generate high quality random bits
- Self adjusting mechanism
 - Resilient to active attacks
- Throughput of 2MHz with one block
 - Can have TRNG blocks run in parallel
 - Can perform overclocking