

ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО АППАРАТА

«たわごと»

Выполнила команда №7

Разработчики: Краснов Александр - Радиоинженер Казаков Даниил - Программист Толкачев Федор – Конструктор

Оглавление

Глоссарий	3
Конструктивные особенности	4
Рекомендации к сборке	4
Карта эскизов	4
Система расчиковки	5
Кинематическая схема системы раскрытия и управления поворотом солнечных батарей (БС)	5
Кинематическая схема системы раскрытия и управления поворотом рефлектора	5
Чертеж и спецификация	6
Таблица масс устанавливаемых модулей МКА	8
Логика функционирования (логические и алгоритмические блок-схемы)	9
Используемые материалы	10
Крепеж	10
Средства индивидуальной защиты	10
Технологические машины для изготовления	11
Оборудование для сборки МКА	12
Оборудование для испытаний МКА	12
Инструменты для сборки МКА	12
Электронные компоненты и модули МКА для сборки	13
Набор письменных принадлежностей	15
Пайка печатной платы стабилизатора напряжения	15
Список электронных компонентов	15
Таблица шлейфов	16
Полная электрическая схема всех систем и устройств МКА	17
Перечень контрольных операций	18
Входной контроль	18
Промежуточный контроль	18
Времянные затраты	18
Алгоритм сборки (техпроцесс) с использованием параллельных операций	19
Блок-схема алгоритма сборки с разделением трудовых процессов на многопоточность	20

		Краснов		04.03.21
		Толкачев		04.03.21
Nº	Изм.	Разраб.	Подп.	Дата

ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ
ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО
ΑΠΠΑΡΑΤΑ «たわごと»

Глоссарий

МКА - Малый космический аппарат

Контрольные операции – технологические операции, выполняющиеся перед началом работ и после их выполнения для контроля проделанной работ и подготовки к ней

WorldSkills - формат международных конкурсов профессионального мастерства

Техкарта – технологическая карта

«ОрбиКрафт» - конструктор из модулей которого собирается МКА

Arduino – плата с микроконтроллером

Полунатурные испытания – воссоздание условий работы МКА в космическом пространстве на конкурсной площадке

СЭП - Система энергопитания

СБ - солнечная батарея

БКУ - бортовой компьютер управления

Магнитометр - датчик магнитного поля

ДУС - датчик угловой скорости

RAW - «сырые» данные - данные, выдаваемые датчиком и не прошедшие обработку

Солнечный датчик - датчик направления на Солнце

УДМ - Управляющий двигатель-маховик - электромеханическое устройство, представляющий собой электромотор с насаженным на его ось вращения колесом, служит для ориентации и стабилизации спутника

Ориентация - поворот спутника в нужную сторону

Стабилизация - остановка беспорядочного вращения спутника

ДЗЗ - дистанционное зондирование Земли - получение фотографий Земли из космоса

Шлейф - плоский ленточный кабель

ВЧ - высокочастотный

УКВ - ультракороткие радиоволны

ЦУП - центр управления полетом

ПО - программное обеспечение

ПК - персональный компьютер

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	3 из 20
Nº	Изм.	Разраб.	Подп.	Дата	AΠΠΑΡΑΤΑ «たわごと»	

• Уголки крепятся перед креплением стенок

Рекомендации к сборке

- 1. Соблюдать технику безопасности при проведении работ
- 2. Сборку осуществлять в комнате с ограничением доступа и требованием соблюдать правила работ и условия нахождения в чистой комнате класса 100000
- 3. Использовать инструмент по назначению
- 4. Не повреждать компоненты МКА
- 5. Содержать рабочее место в чистоте

Карта эскизов

			Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
Ī			Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	4 из 20
Γ	Nō	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Кинематическая схема системы раскрытия и управления поворотом солнечных батарей (БС)

Кинематическая схема системы раскрытия рефлектора

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	5 из 20
Nο	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	6 из 20
Nº	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	<u> </u>

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	7 из 20
Nō	Изм.	Разраб.	Подп.	Дата	AΠΠΑΡΑΤΑ «たわごと»	

ПОЗИЦИЯ **ОБОЗНАЧЕНИЕ** ОПИСАНИЕ K-BO готовая стена 8 Бортовой 2 компьютер управления_WS16 1 CE 3 1 передатчик_WS16 4 ДУС_WS16 1 Имитатор солнечной батареи_WS16 1 5 6 Камера WS16 1 Marнитометр_WS1 7 1 8 1 Маховик WS16 Система энергопитания WS 9 1 УКВ_бортовой_WS1 10 1 1 11 Деталь6^Сборка5 Солнечный 12 4 датчик_WS16 13 1 Пол с отверстием 2 14 пол 1 1 15 Подпожка ардуино 16 Подложка реле 1 17 Полка 1 18 Система раскр 3 19 PART-SG90 servo-DESC 2 SG90 servo.stp 20 1 рефлектор панель панели 2 21 22 Стабил 1 Cnpae. No 23 обтек 1 1 24 обтек 2 1 Таблица масс устанавливаемых модулей МКА Укв-Передатчик 90 г. Сэп 635 г. Крыша 300г. Подп. и дата Магнитометр 95 г. Дус 90 г. Палуба 285 г. Вч-передатчик 90 г. Стена 1-4 40 г. Камера 85 г. Солнечный-датчик 1-4 90 г. Стена 5-8 145 г. B38M, NHB. NP MHB. NP AYON. Солнечная-батарея 90 г. Уголок-большой 15 г. Бку 335 г. Уголок-маленький 5 г. Маховик 545 г. Рейка 50 г. Пол с отверстием 305 г. Подп. и дата СБ Лит. Масса Масштаб Изм. Лист № докум. Подп. Дата Разраб. Инв. № подл. Т. контр. Листов 3 Н. контр.

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	8 из 20
No	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Копировал

Формат АЗ

Логика функционирования (логические и алгоритмические блоксхемы)

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	9 из 20
No	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Используемые материалы

Наименование	Тех. описание позиции	Ед.	Кол-
		измерения	во
Акриловое стекло	3 мм	лист	1
		1,52X152	
Нить для 3D принтера	ABS	упаковка	2
Клей для 3D принтера	без запаха, с распылителем	шт	1
Алюминиевый профиль	Сплав D16 (уголок или П-образный) 25X30 мм	М	1

Крепеж

Наименование	Тех. описание позиции	Ед.	Кол-
		измерения	во
Винт М4х30 для контровки	С осевым сверлением в шляпке винта	шт	2
Гайка М4 для контровки	С осевым сверлением в гранях	шт	2
Шпилька диаметр 3 мм	Резьба M3, длина 1 метр	ШТ	2
Проволока контровочная диаметр	мягкая, оцинкованная	М	1
0,8 мм			
Крепеж	Шайба 1x10	ШТ	80
Крепеж	Гайка м3	ШТ	40
Крепеж	Винт м3х30	ШТ	40
Клей секундный	типа космофен	ШТ	1
Изолента	белая	ШТ	1
Стяжки нейлоновые	150 мм (белые, черные), 100 штук в упаковке	упаковка	-
Скотч бумажный (малярный)	50 мм	ШТ	1
Скотч обычный,	50 мм	ШТ	1
Скотч двусторонний,	50 мм	ШТ	1

Средства индивидуальной защиты

Наименование	Тех. описание позиции	Ед.	Кол-
		измерения	во
Антистатический комбинезон	одноразовый	шт	3
Антистатический халат	белый	ШТ	3
Антистатические перчатки	перчатки для проведения мелких работ по электрике	пары	3
Аптечка оказания первой медицинской помощи	Критические характеристики отсутствуют	шт	-
Огнетушитель углекислотный ОУ-1	Критические характеристики отсутствуют	ШТ	-
Респираторы	одноразовые	ШТ	3
Шапочка одноразовая	одуванчик	ШТ	3
Очки защитные	Прозрачные	ШТ	3
Бахилы	одноразовые	упаковка	1
Антистатический браслет	С креплением быстрого соединения	ШТ	1

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	10 из 20
Nº	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Технологические машины для изготовления

Наименование	Тех. описание позиции
Станок лазерной резки	Тип излучателя Отпаянный СО2 лазер
	Тип охлаждения излучателя Воздушное
	Производитель излучателя Synrad 48-series, США,
	Synrad FireStar, США или аналог
	Рабочая область 458 x 309мм
	Максимальный размер загружаемого материала 505 х 309 х 170мм
	Габариты станка (без упаковки) 0,72 x 0,64 x 0,38м
	Вес станка (без упаковки) 44кг
	Макс. скорость двигателей 1 м/с
Станок фрезерный	в комплектации:
стапок фрезерпыл	стандартный комплект принадлежностей к станку (1
	компл.) + стол-подставка RNS-540 сварной стальной
	конструкции со стальной столешницей толщиной не
	менее 9 мм (1 шт) + цанга ER16x3 мм (1 шт) + цанга
	ER16x4 мм (1 шт) + цанга ER16x6 мм (1 шт)
	Рабочая область: 500 x 400 x 155 мм;
	·
	Мощность шпинделя: 400 Вт;
	Частота вращения: 400 - 12.000 об/мин;
	Встроенный датчик Z0;
	Возможность установки поворотной оси для 4D
	фрезеровки;
	Возможность установки автоматической смены
	инструмента;
	Программа Roland SRP Player для механобработки в комплекте;
	Станок поддерживает работу с промышленными G- кодами.
Принтер для 3D печати	Кол-во головок: 1 (возможность апгрейда до 2х)
1 111	Область печати: 200х200х210 мм
	Расходники: ABS, PLA, PVA - 1.75 мм
	Толщина слоя: 50 микрон
	Скорость перемещения ПГ: 150 мм/сек
	Скорость: 30 см ³ /час
	Подогреваемая платформа: да
	Поддерживаемая ОС: Win
	Программное обеспечение: Polygon
	Формат файлов: .STL .OBJ .thing
	' ' '
	Энергопотребление: 220 В, 50-60 Гц, 300 Вт
	Вес, кг: 10
	Габариты, см: 365×386×452 мм

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	11 из 20
Nº	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Оборудование для сборки МКА

Наименование	Тех. описание позиции	Ед.	Кол-
		измерения	во
Подвес для макетов спутников	Из алюминиевого профиля (или другого	ШТ	1
	профиля, не магнитного)		
Стол монтажный	Рабочая поверхность 550 х 1500 Высота	ШТ	1
	столешницы 700 - 1200 Допустимая нагрузка		
	150 кг		

Оборудование для испытаний МКА

Наименование	Тех. описание позиции
Имитатор магнитного поля Земли	Имитатор магнитного поля Земли 1500X1500 ммс
	локализацией магнитного поля в центре
Имитатор Земли	Шар, диаметром 1200 мм, с встроенными станциями
	УКВ диапазона
Имитатор Солнца	Прожектор не менее 1000 Вт
Аэродинамический подвес для моделей	Подшипник диаметром 75-350 мм
спутников	
Компрессор воздушный 50-100 литров	давление 2-6 Атм
Удлинитель для имитатора Солнца	Электрический провод в катушке сечением не менее
	2,54 мм^2

Инструменты для сборки МКА

Наименование	Тех. описание позиции	Ед.	Кол-	
		измерения	во	
Набор отверток	7 шт. SL25x75, 4x100, 6,5x125, PH0x60, PH1x80,	набор	1	
	PH2x100, PZ1x80, PZ2x100			
	Материал наконечника: сталь			
Набор инструментов	Набор рожковых, торцовых ключей ключей от	набор	1	
	3 до 12, набор отверток шлиц +			
	крестообразная от 2 мм до 4 мм			
Штангенциркуль электронный	Ширина, мм: 90. Длина, мм: 125	ШТ	1	
	Материал: инструментальная сталь			
	Марка: Fit или аналог			
Металлическая линейка	500-1000 мм	шт	1	
Шуруповерт акккумуляторный	Li-lon 14,4 -18 B, 2 Au	шт	1	
Плоскогубцы	комбинированные, пластиковая ручка, 180 м	шт	1	
Набор пинцетов	материал: нержавеющая сталь	набор	1	
Рулетка	3-5м	шт	1	
Весы 0 - 6 кг электронные	Разрешение 0,1 г. Имеют функцию счета .	шт	1	
	Автоотключение питания Размер 125x75x25			

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	12 из 20
No	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Электронные компоненты и модули МКА для сборки

Наименование	Тех. описание позиции	Ед. измерения	Кол- во
Набор компонент конструктора спутника "Орбикрафт"	Компоненты конструктора: Вычислитель; Система электропитания; Набор датчиков; Фото-камера; Маховик. www.sputnix.ru или аналог	набор	1
Система энергопитания из набора компонент "Орбикрафт"	из набора компонент конструктора спутника "ОрбиКрафт"	шт	1
Набор компонент "Arduino - Shield Орбикрафт" для работы с микроконтроллером Ардуино	Шилды для подключения Arduino к OrbiCraft, макетки для шилдов, Arduino Mega 2560 или аналог	набор	1
Аккумуляторы 18650 Li-ion 3500 мА·ч	Тип аккумулятор Типоразмер 18650 Технология Li-lon Емкость 3500 мА·ч Рабочее напряжение 3.7 В	шт	4
Солнечные батареи	60x110 мм, 6 Вольт, 1 Ватт	ШТ	4
4-канальный релейный модуль (5В, управление низким уровнем)	Ток обмотки: 80 мА Максимальное коммутируемое напряжение: 30 В постоянного тока; 250 В переменного тока Максимальный коммутируемый ток: 5 А (NO), 3 А (NC) Рекомендованная частота переключения: до 1 Гц Время жизни: не менее 50 000 переключений	шт	1
Mini360 модуль преобразователя напряжения	Габариты: 69×53×18 мм на базе SG125-SZ (от 4.75-23 В до 1-17 В) RC- 1012 Входное напряжение: от 4.75 до 23 В Выходное напряжения: от 1 до 17 В	шт	1
Макетная плата	Вгеаdboard панель типа MB-102 или аналог Общее количество контактов: 830 точек Количество контактов питания: 200 точек Количество контактов для монтажа: 630 точек Диаметр контакта: 0,8 мм Шаг точек: 2,54 мм, Размер: 165x55x10 мм	ШТ	1
Набор соединительных проводов с разъемами для макетной платы, типа male-male 63шт	Jumper Wire 125mm (50pcs pack), Набор проводов соединительных (М-М) 50 штук или аналог	набор	1
Набор соединительных проводов с разъемами для макетной платы, типа male-famale	Jumper Wire 125mm (50pcs pack), Набор проводов соединительных (М-F) 50 штук или аналог	набор	1
Power Bank для Arduino	с аккумулятором Рабочее напряжение: 5 В Ёмкость: 2000 мА·ч Максимальная сила тока: 900 мА	шт	1

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	13 из 20
Nº	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Провод т	icro USB			Тип: USB A — Micro-USB;	шт	1
				Длина: 80 см.		
Диод				КД 522 или аналог	ШТ	4
				Максимальное постоянное обратное		
				напряжение, В 30		
				Максимальное импульсное обратное		
				напряжение, В 40		
				Максимальный прямой(выпрямленный за		
				полупериод) ток,А 0.1		
				Максимальный обратный ток,мкА 25гр 5		
				Максимальное прямое напряжение,В 1.1		
				при Іпр.,А 0.1		
Нить нихр	омовая Х20Н	80 (0.2-0,	4	диаметр нити 0,4 мм	М	1
мм)						
Шаговый д	двигатель			36НТ20-0504МА или аналог	ШТ	2
				Шаг: 0,9°±5% (400 на оборот)		
				Номинальное напряжение питания: 6,5 В		
				Номинальный ток фазы: 500 мА		
				Крутящий момент (holding torque): не менее		
				0,95 кг×см		
				Крутящий момент покоя (detent torque): 0,05		
				KL×CW		
				Максимальная скорость старта: 1500 шагов/сек		
				Диаметр вала: 5 мм		
				Длина вала: 20 мм		
				Габариты корпуса: 51×36×20 мм		
				Вес: 0,16 кг		
Мотор-Shi	ield			плата расширения для Arduino на базе чипа	шт	2
Wordp Sin	icia			L298P, которая позволяет управлять моторами	<u></u>	_
				с напряжением 5–24 В в режиме раздельного		
				питания и 7–12 В в режиме объединённого		
				питания.2 канала, 2 Ампера		
				или аналог		
Лрайвор и	цагового двиг	-270.00		или аналог (Troyka-модуль) на микросхеме L293D	ШТ	2
драивер ц	цагового двиг	ателя		(поука-модуль) на микросхеме 1293D Напряжение питания двигателя: 4,5–25 В	Ш	2
				папряжение питания двигателя. 4,5–25 в Пиковое напряжение на контактах Vin: 35 В		
				никовое напряжение на контактах vin. 55 в Напряжение питания логической части: 3,3–5 В		
				·		
				Длительно допустимый ток: до 600 мА Пиковый ток: 1200 мА		
Maries				Габариты: 50,8×25,4 мм	 	1
•	еспроводной	приемни	ік на	Напряжение питания: 5 В	ШТ	1
433 МГц				Несущая частота: 433 МГц		
				Максимальная пропускная способность: 5		
				кб/сек		
				Потребляемый ток: 4,5 мА		
				Чувствительность: –106110 дБм		
				Диапазон рабочих температур: -20+80 °C	1	
Модуль Драйвер шагового двигателя (Troyka-модуль) (на микросхеме ULN			l l	Напряжение питания двигателя: 4,5–25 В	ШТ	2
			ULN	Пиковое напряжение на контактах Vin: 35 В		
2003, 2PH6	54011A)			Напряжение питания логической части: 3,3–5 В		
				Длительно допустимый ток: до 600 мА		
				Пиковый ток: 1200 мА		
				Габариты: 50,8×25,4 мм		
	Краснов		04.03	21 ТЕХНОЛОГИЧЕСКАЯ КАРТА С	БОРКИ Л.	4CT

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	14 из 20
Nō	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Набор письменных принадлежностей

Наименование	Тех. описание позиции	Ед. измерения
Блокнот для записей, 25 листов, на пружине	Критические характеристики отсутствуют	ШТ
Карандаш с ластиком	Критические характеристики отсутствуют	упаковка
Набор письменных принадлежностей настольный	В наборе: скобы для степлера, ластик, скрепки канцелярские, линейка, карандаш, ножницы, нож канцелярский, ручка, бумага для заметок, точилка Количество предметов: 14 пр. Материал: металл, пластик	комплект

Пайка печатной платы стабилизатора напряжения

04.03.21

04.03.21

Дата

Подп.

Краснов

Толкачев

Разраб.

№ Изм.

ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ

ΑΠΠΑΡΑΤΑ «たわごと»

ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО

Лист

15 из 20

Таблица шлейфов

Nº	Наименование блоков	Длина в мм	Длина с допуском 40, мм	Маркировка
□ 1	Камера-БКУ	160	200	□ 1-200
□ 2	СЭП-БКУ	370	410	□ 2-410
□ 3	БКУ-Маховик	396	436	□ 3-436
□ 4	Маховик-ВЧ Передатчик	266	306	□ 4-306
□ 5	ВЧ Передатчик-Солнечный датчик 1	196	236	□ 5-236
□ 6	Солнечный датчик 1-Солнечный датчик 2	281	321	□ 6-321
□ 7	Солнечный датчик 2-Магнитометр	234	274	□ 7-274
□ 8	Магнитометр-ДУС	259	299	□ 8-299
□ 9	ДУС-УКВ Передатчик	122	162	□ 9-162
□ 10	УКВ Передатчик-Солнечная батарея	150	190	□ 10-190
□ 11	Солнечная батарея-Солнечный датчик 3	210	250	□ 11-250
□ 12	Солнечный датчик 3-Солнечный датчик 4	320	360	□ 12-360
□ 13	Солнечный датчик 4-Arduino	150	190	□ 13-190
□ 14	Arduino-Радиомодуль 433 отправляющий	43	83	□ 14-83
□ 15	Arduino-Радиомодуль 433 принимающий	43	83	□ 15-83
□ 16	Arduino-Солнечная панель 1	573	613	□ 16-613
□ 17	Arduino-Солнечная панель 2	573	613	□ 17-613
□ 18	Arduino-Сервопривод 1	573	613	□ 18-613
□ 19	Arduino-Сервопривод 2	573	613	□ 19-613
□ 20	Arduino-Драйвер шагового двигателя	43	83	□ 20-83
□ 21	Драйвер шагового двигателя-Шаговый дви	208	248	□ 21-248
□ 22	СЭП-Резервый СЭП	630	670	□ 22-670
□ 23	Резервный СЭП-Реле	215	255	□ 23-255
□ 24	Arduino-Реле	373	413	□ 24-413
□ 25	Реле-Плата стабилизатора	75	115	□ 25-115
□ 26	Плата стабилизатора-Нихромовая нить	230	270	□ 26-270

Маркировка каждого жгута проводов согласно составленной конкурсантами блок-схеме и данным из таблицы длин шлейфов. Маркировка производится нанесением перманентным маркером или шариковой ручкой черного или синего цвета на изоляционную ленту светлого оттенка, цифрами, где через дефис указывается номер жгута и длина его в мм (Пример: 1 – 195). Изоляционная лента используется светлого оттенка (белого или желтого цвета). Ее необходимо обернуть вокруг шлейфа несколько раз посередине жгута с последующей маркировкой.

Распиновка	Arduino:
□ D2	Реле
□ D3	Радиомодуль отправка
□ D4	Радиомодуль прием
□ D5	Сервопривод 1
□ D 6	Сервопривод 2
□ D7	
□ D 8	Е Драйвер шаговик
□ D9	D Драйвер шаговик
□ D10	S Драйвер шаговик
□ D13	
□ A0	Солнечная панель 1
□ A1	Солнечная панель 2
	 □ D2 □ D3 □ D4 □ D5 □ D6 □ D7 □ D8 □ D9 □ D10 □ D13

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	16 из 20
No	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Полная электрическая схема всех систем и устройств МКА

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	17 N3 ZU
Nº	Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Перечень контрольных операций

- Входной контроль
- Промежуточный контроль

Входной контроль

Выполняется перед работой в чистой комнате и после получения изготовленных экспертами деталей

- 1. Визуальный осмотр деталей и компонентов на наличие физических повреждений
- 2. Визуальный контроль геометрии деталей и компонентов
- 3. Контроль соответствия материала заданному при изготовлении
- 4. Контроль габаритных размеров
- 5. Контроль присоединительных размеров
- 6. Контроль расположения отверстий и присоединительных элементов
- 7. Контроль размеров отверстий и присоединительных элементов
- 8. Контроль массовых характеристик (взвешивание)

Промежуточный контроль

- 1. Визуальный осмотр деталей и компонентов на наличие физических повреждений
- 2. Визуальный контроль правильности установки присоединительных элементов
- 3. Контроль габаритных размеров
- 4. Контроль присоединительных размеров
- 5. Контроль расположения отверстий и присоединительных элементов
- 6. Контроль соответствия последовательности выполнения резьбовых соединений
- 7. Контроль прочности резьбовых соединений
- 8. Контроль прочности клеевых соединений
- 9. Контроль правильности выполнения контровки

Времянные затраты

Технологическая операция №	Затраченное врем в минутах		
1	5		
2	15		
3	5		
4	15		
5	15		
6	5		
Общее время на сборку МКА	<u>60</u>		

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	18 из 20
N	2 Изм.	Разраб.	Подп.	Дата	ΑΠΠΑΡΑΤΑ «たわごと»	

Алгоритм сборки (техпроцесс) с использованием параллельных операций

ТЕХНОЛОГИЧЕСКАЯ ОПЕРАЦИЯ 1

- •Промежуточный входной контроль
- •Сборщик 1: Прикрепить на крепёжные места к деталям «стена» уголки по системе «болт шайба шайба гайка»
- •Сборщик 2: Прикрепить на крепёжные места к детали «палуба» уголки по системе «болт шайба шайба гайка»
- •Контрольные операции

ТЕХНОЛОГИЧЕСКАЯ ОПЕРАЦИЯ 2

- •Промежуточный входной контроль
- •Сборщик 1: Прикрепить детали «стена» на крепёжные места к детали «пол с отверстием» по системе «болт шайба шайба гайка»
- •Сборщик 2: Прикрепить на крепёжные места к детали «пол» детали «стена» по системе «болт шайба шайба гайка»
- •Контрольные операции

ТЕХНОЛОГИЧЕСКАЯ ОПЕРАЦИЯ 3

- •Промежуточный входной контроль
 - •Сборщик 1: Прикрепить деталь «палуба» на крепёжные места на детали «стена» по системе «болт шайба шайба гайка»
 - •Сборщик 2: Прикрепить на деталь «палуба» модуль «Маховик» по системе «болт шайба шайба гайка»
 - •Контрольные операции

ТЕХНОЛОГИЧЕСКАЯ ОПЕРАЦИЯ 4

- •Промежуточный входной контроль
- •Сборщик 1: Прикрепить модули «солнечная панель 4шт» по углам спутника по 45 градусов относительно осей с каждой стороны по системе «болт шайба шайба гайка»
- •Сборщик 2: Прикрепить модули «Дус» «ВЧ передатчик» «Магнитометр» на «стена» по системе «болт шайба шайба гайка»
- Контрольные операции

ТЕХНОЛОГИЧЕСКАЯ ОПЕРАЦИЯ 5

- •Промежуточный входной контроль
- •Сборщик 1: Прикрепить модули «Солнечная батарея» «Камера» «укв бортовой» по системе «болт шайба шайба гайка»
- •Сборщик 2: Прикрепить модуль «Сэп» «Бку» по системе «болт шайба шайба гайка
- •Контрольные операции

ТЕХНОЛОГИЧЕСКАЯ ОПЕРАЦИЯ 6

- •Промежуточный входной контроль
- •Сборщик 1: Прикрепить все кабели на места согласно таблице сборщика 2.
- •Контрольные операции »

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	19 из 20
N	2 Изм.	Разраб.	Подп.	Дата	AΠΠΑΡΑΤΑ «たわごと»	

Блок-схема алгоритма сборки с разделением трудовых процессов на многопоточность

		Краснов		04.03.21	ТЕХНОЛОГИЧЕСКАЯ КАРТА СБОРКИ	Лист
		Толкачев		04.03.21	ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОСМИЧЕСКОГО	20 из 20
Nº	Изм.	Разраб.	Подп.	Дата	АППАРАТА «たわごと»	