

Introduction to Software Systems

Comp-206: Introduction to Software Systems
Lecture Week 1

Joseph Vybihal

Computer Science

McGill University

Introduction

Lecture 1

Coordinates

- Joseph Vybihal
- McConnell 323
- jvybihal@cs.mcgill.ca
- www.cs.mcgill.ca/~jvybihal
- Facebook group
 - Probably the best way to contact me for quick answers
 - Please tag me when you post and I will try to respond quickly
- Office hours:
 - Tuesday and Wednesday 3PM to 4PM
 - Or by appointment

Bash

GNU

Systems

Research

Intelligent Systems

- Artificial intelligence
- Group intelligent interactions (simulated & robotic)
- What is intelligence and thought?
- Inserting intelligent algorithms into every day software

Undergraduate student opportunities

- COMP 400 or COMP 396
- ____396
 - ECSE
 - COG
 - PHYS
 - Biology, neurology, studies in multi-agent systems

Teaching Method

Laptop

You might want to have yours handy

Slides

 They serve as both lecture outline, basic notes, and contain links to further readings

Digital Ink

Some notes will be written digitally during class

Lecture recordings?

- Yes, if possible, however...
- Students who attend class do better

Prerequisites

It is not required but it is recommended to take this course only after you have taken 2 programming courses

GNU

Systems

Course Contents

- Introduction to "under the hood" development
 - Command-line interfacing (next level after GUI)
 - The Unix operating system (we will use Linux)
 - Bash programming within a system's context
 - Low-level system's programming using the C language
 - Basic software engineering techniques
 - Git, gprof, gdb, make, gcc
 - Multi-language and systems integration programming

Bash

GNU

Systems

Course Usefulness

Science Students

- Introduction to systems
- Teaches intermediate programming techniques
- Learn algorithms that help in data capture and analysis
- Opens doors to further programming and science courses

Software Engineers

- Combines programming with operating systems
- Introduction to basic software engineering techniques
- Introduces holistic and integrated thinking of the computer for software development

McGill

Course Evaluation

- 6 assignments . . . 30%
- 2 class tests . . . 20% (10% each)
- 1 final exam. . . . 50% (during final exam period)
- Deferred exam possible (no supplemental)
- 70% final exam option possible
 - Replaces class tests only
- Final exam tutorial
- Linux, Bash, C and advanced C tutorials

Systems

Course Reading Material

Primary text

Software Systems
 Vybihal & Azar
 Kendall/Hunt
 ISBN 978-0-7575-9514-1

(https://www.kendallhunt.com/vybihal/)

Other texts:

- Free on web
 - GNU Software; Louksides & Oram; O'Reilly; ISBN 1565921127
 - Drive into Python; Mark Pilgrim; Apress; ISBN 1590593561
- Just Enough Unix; P.K. Anderson; McGraw Hill; ISBN 0697131726
- C Programming Language; Kernighan & Ritchie; Prentice-Hall; ISBN 0131101633

Special Instructions

Late work: You will be notified in advance of assignment due dates. All assignments are due on My Courses at the indicated time and date. Late assignments will lose 5% of its grade per day late. Assignments beyond 2 days late will not be accepted. You may not submit assignments via e-mail without permission.

Additional Work: Students with grades of D, F or J will not be given the opportunity to complete additional work to upgrade their grade.

Re-grading: Mistakes can occur when grading. Not surprisingly, requests for regrading always involve those mistakes in which the student received fewer points than they deserved, rather than more points than they deserved. With that in mind: if you wish me to re-grade a question on an exam or assignment, I will do so. I reserve the right to re-grade other questions as well.

Cheating/Collaboration: Collaboration is encouraged but your discussions should be public in the sense that anyone including the professor should be allowed to listen in. Assignments are original works created by the student alone.

Grading: All software solutions must compile with zero errors and must run to be graded. It does not need to run correctly for grading but it must run. The grader will not fix your code or look at the source code to give you partial grades. McGill

Systems

Course Resources

- Detailed course outline
- Course website
- MyCourses
 - Assignments
 - Discussion board
 - Grades
 - TA information
 - Lecture slides

Bash

GNU

Systems

Labs

Labs

- Trottier 3rd floor (any unlocked room and hallway)
- Assistance:
 - help@cs.mcgill.ca
 - Office: McConnell 209N
 - Phone: 514-398-7087

Lab accounts

- <u>DO NOT</u> use your McGill account! <u>First.last@mail.mcgill.ca</u>
- You must use a SOCS account
 - https://newuser.cs.mcgill.ca
 - You must be on campus for this to work or on a VPN
 - Forgot your Username and/or Password?
 - Reset it at https://newpassword.cs.mcgill.ca/

GNU

Systems

What is a software system?

Readings: chapter 1, https://en.wikipedia.org/wiki/System_software

McGill Joseph Vybihal © 2017

Systems Programming

software

Operating System

Writing software that directly interacts with either the operating system or the machine.

System's Programming

Software Systems

Database

DB Server

Your browser or phone app

Your OS

Your PC

Facebook Load balancer **Application**

OS

Server

ISP

Joseph Vybihal © 2017

McGill

17

Bash

GNU

Systems

Software Development

Building software is a group effort

GIT, gProf, GDB, Make, GCC

Command-line Development

```
himanshu@himanshu:~$ ls -l
total 116
-rw---x--x 1 himanshu himanshu
                                  41 Jul 3 23:23 anotherfile
drwxr-xr-x 3 himanshu himanshu
                                4096 Jul 3 14:26 Desktop
drwxr-xr-x 2 himanshu himanshu
                                4096 Mar 31 17:54 Documents
drwxr-xr-x 2 himanshu himanshu
                                4096 Jul 3 21:53 Downloads
-rw-r--r-- 1 himanshu himanshu
                                8980 Mar 31 17:32 examples.desktop
rw-r--r-- 1 himanshu himanshu
                                         4 14:42 file1
rw-r--r-- 1 himanshu himanshu
                                  22 Jul 4 14:42 file2
-rw-r--r-- 1 himanshu himanshu
                                 179 Jul 4 14:38 ls-dump
drwxr-xr-x 3 himanshu himanshu
                                4096 May 10 20:00 Music
-rw-r--r-- 1 himanshu himanshu
                                   0 Jul 3 21:48 newfil
drwxr-xr-x 2 himanshu himanshu
                                4096 Jul 4 15:56 Pictures
drwxr-xr-x 3 himanshu himanshu
                                4096 Jul
                                         4 15:13 practice
-rw-r--r-- 1 himanshu himanshu 20480 Jul
                                         4 15:09 practice.tar
-rw-r--r-- 1 himanshu himanshu
                                2703 Jul
                                         4 15:19 practice.tar.gz
drwxr-xr-x 2 himanshu himanshu
                                4096 Mar 31 17:54 Public
-rw---x--x 1 himanshu himanshu
                                  52 Jul 3 23:22 somefile
drwxr-xr-x 2 himanshu himanshu
                                4096 Mar 31 17:54 Templates
drwxr-xr-x 2 himanshu himanshu
                                4096 Jul 3 21:31 test
-rw-r--r-- 1 himanshu himanshu
                                         3 21:32 test.tar.gz
-rw-r--r-- 1 himanshu himanshu
                                 310 Jul 3 21:45 test.ztp
-rw-r--r-- 1 himanshu himanshu
                                  36 Jul 4 15:56 textfile
drwxrwxr-x 2 himanshu himanshu
                                4096 Apr 21 12:47 Ubuntu One
-rw-r--r-- 1 himanshu himanshu
                                 101 Jul 4 14:30 uname-output
drwxr-xr-x 2 himanshu himanshu
                               4096 Mar 31 17:54 Videos
himanshu@himanshu:~$
```

A lot of systems development occurs here. This course focuses on this interface.

How to do well

- Program everything yourself
- Get used to using all the computer resources
 - Experiment
- Do the readings from the course outline
- Use the Help Desk for technical issues
- Use the TA for class & assignment help
- Use Facebook and Tag me for questions
 - Or the myCourses discussion board

Questions?

Bash

GNU

Systems

Lecture 2

What is an operating system? Unix

Readings: chapter 2, https://www.tutorialspoint.com/operating-system/os-linux.htm

Outline

- Why is an operating system important?
- The Unix story
- The Unix architecture
- Remote access to the SOCS servers
- The SOCS server architecture
- Login, file transfer, basic working method
- Be careful of...

Why is an OS important?

What is an Operating System?

- •An operating system is a piece of software that allows us to **interact** with a computer without having to know the inner working of a computer.
- •Its primary function is to **manage** the computer's resources.
- •An operating system also provides us with **libraries** to interact with these resources.

Bash

GNU

Systems

From the POV of the application

McGill

Joseph Vybihal © 2017

GNU

Systems

Why so many operating systems?

- •DOS
- Windows
- Solaris
- •Linux
- •FreeBSD
- •BeOS
- •FreeDos
- •HP-UX
- •AIX
- MacOs X

A little bit of history...

- The history of Unix begins in a failed operating system by AT&T Bell Laboratories called **Multics**.
- Ken Thompson who was working on this project, wrote a game called Space Travel.
- When the project was cancelled, he decided to port the game to the PDP-7 computer.
- He wrote Unix as an operating system to make it easier to port the game.

Types of Unix

- System V UNIX: Operating Systems based on the original AT&T UNIX code fit in this category. These include most commercial UNIX distribution.
 - AIX, Iris, Solaris, UnixWare, etc.
- BSD UNIX: These Operating Systems are based on the Berkeley Software Distribution (BSD) version of UNIX.
 - FreeBSD, OpenBSD, NetBSD and MacOS X.
- UNIX-like systems: Several Operating Systems behave like UNIX, but are not based on the original AT&T code.
 - Linux, Hurd, Minix

Systems

Unix is...

- Optimized and simple
- Password-based security
- Command-line driven
- Network capable
- Client-server architecture

Client-Server Architecture

The model assumes that there is data or software on a server that needs to be shared with a remote computer (client).

Unix OS Components

Kernel

- Login
- Knows how to run programs
- Basic common interface
- Memory management

Part in RAM Part IS disk

File System

- Defines the way the disk drive is formatted
- The file allocation table (FAT)
- The data structure on disk that makes files real
- Reading and writing to disk and peripherals
- User commands to interact with files

- A user interface
- Has a global memory
- Has commands to interact with OS
- Additional OS commands and programs
- Third party commands and programs
- Drivers and managers

Joseph Vybihal © 2017

33

Systems

SOCS Unix Server Access

Labs

- Trottier 3rd floor (any unlocked room and hallway)
- Assistance:
 - help@cs.mcgill.ca
 - Office: McConnell 209N
 - Phone: 514-398-7087

Lab accounts

- DO NOT use your McGill account! <u>First.last@mail.mcgill.ca</u>
- You must use a SOCS account
 - https://newuser.cs.mcgill.ca
 - You must be on campus for this to work or on a VPN
 - Forgot your Username and/or Password?
 - Reset it at https://newpassword.cs.mcgill.ca/

Get your account

SOCS Server Architecture

Your assignments must run on linux.cs.mcgill.ca

Your PC

There are many SOCS web servers that connect to your data. IMPORTANT: each server is configured differently.

mimi.cs.mcgill.ca (server)

ubuntu.cs.mcgill.ca (server)

freebsd.cs.mcgill.ca (server)

linux.cs.mcgill.ca (server)

Hard drive with student account

There is only one hard drive containing all your account information

McGill Jose

Remote Access

WINDOWS

WinSCP (file transfer)

Putty (command line)

MAC

Viper ftp light (file transfer)

ssh (command line) LINUX

FileZilla (file transfer)

ssh (command line)

https://filezilla-project.org/index.php

Windows, Mac, and Linux

https://winscp.net/eng/download.php

Windows

http://www.putty.org/

Windows

Joseph Vybihal © 2017

Software Systems COMP 206 - Joseph Vybihal

Login

Login

Failed login is logged

Login

On success

Command Line Shell

RAM Kernel File System bash -Disk Shell Utilities

```
6 6 6
                            Terminal - bash - 80×24
            bash
                                        bash
prana@[/Library/Application Support/Apple]
$ ls
total 0
            9 root
                    admin 306 23 Jan 23:48 ./
                    admin 544 27 Jan 01:05
drwxrwxr-x 16 root
                    admin 102 24 Sep 09:44 Automator/
            3 root
                    admin 102 27 Sep 09:31
            3 root
                    admin 102 29 Sep 12:51 Installer/
                           102 10 Oct 13:14
            3 root
                           170 10 Oct 13:09 ParentalControls/
                           102 23 Jan 23:39
drwxrwxr-x 11 root admin 374 23 Jan 23:59 iChat Icons/
prana@[/Library/Application Support/Apple]
```


Systems

Demo & Procedures

- Logging in
 - mimi.cs.mcgill.ca or linux.cs.mcgill.ca
- File transfer
 - WinSCP file transfer example
 - Putty command-line example
- Basic working method
 - Do not use your computer to complete the assignments because they will not run the same way on the SOCS servers
 - Login to the command-line
 - Do your work
 - If you want to make a backup of your work then use the File
 Transfer software to copy your work to your laptop
 - Logout

Systems

Be careful of...

- Each web server is installed with different libraries. This means that if you compile or create on one server it might not run the same on another server.
- Text file formats are not exactly the same between Windows, OS X, and Linux. If you develop on your laptop then transfer the file to the server, the file will probably not work correctly.

Lecture 3

The Shell

Readings: chapter 2, https://www.tjhsst.edu/~dhyatt/superap/unixcmd.html

GNU

Systems

Outline

- The shell environment
 - Login
 - Home vs. Root directory
 - Paths
- The command line
 - Basic Commands

Readings

• Chapter 1

What is a shell?

```
himanshu@himanshu:~$ ls -l
total 116
                                 41 Jul 3 23:23 anotherfile
-rw---x--x 1 himanshu himanshu
drwxr-xr-x 3 himanshu himanshu
                               4096 Jul 3 14:26 Desktop
 rwxr-xr-x 2 himanshu himanshu
                               4096 Mar 31 17:54 Documents
lrwxr-xr-x 2 himanshu himanshu
                               4096 Jul 3 21:53 Downloads
     -r-- 1 himanshu himanshu
                               8980 Mar 31 17:32 examples.desktop
      r-- 1 himanshu himanshu
                                  22 Jul 4 14:42 file1
      r-- 1 himanshu himanshu
                                 22 Jul 4 14:42 file2
      -r-- 1 himanshu himanshu
                                179 Jul 4 14:38 ls-dump
      xr-x 3 himanshu himanshu
                               4096 May 10 20:00 Music
      -r-- 1 himanshu himanshu
                                  0 Jul 3 21:48 newfil
        -x 2 himanshu himanshu
                               4096 Jul
     -xr-x 3 himanshu himanshu
                               4096 Jul 4 15:13 practice
      r-- 1 himanshu himanshu 20480 Jul 4 15:09
      -r-- 1 himanshu himanshu
     -xr-x 2 himanshu himanshu
                               4096 Mar 31 17:54 Public
        -x 1 himanshu himanshu
                                 52 Jul 3 23:22 somefile
     xr-x 2 himanshu himanshu
                               4096 Mar 31 17:54 Templates
     xr-x 2 himanshu himanshu
                               4096 Jul 3 21:31 test
       r-- 1 himanshu himanshu
                                149 Jul
                                         3 21:32
     -r-- 1 himanshu himanshu
                                310 Jul 3 21:45
-rw-r--r-- 1 himanshu himanshu
                                 36 Jul 4 15:56 textfile
drwxrwxr-x 2 himanshu himanshu
                               4096 Apr 21 12:47 Ubuntu One
-rw-r--r-- 1 himanshu himanshu
                                101 Jul 4 14:30 uname-output
drwxr-xr-x 2 himanshu himanshu 4096 Mar 31 17:54 Videos
himanshu@himanshu:~$
```


A program that has three basics tasks: (a) get user input, (b) display OS information, (c) store session information.

Why so many shells?

- x Window
- Bash
- sh
- tsh
- csh
- tcsh
- cmd

The shell environment

Directory

- Linux "directory" is a folder
 - Synonyms: Dir, Folder, Directory
 - Def: An OS structure that contains files. This structure can be assigned a name.
- 4 special directories
 - Home
 - This is the top folder in the user's directory tree
 - Special symbol:
 - Root
 - This is the top folder of the OS
 - Special symbol:
 - Current
 - The directory you are currently within
 - Special symbol:
 - Parent
 - The directory "above" the current directory

McGill •

Special symbol: ..

Joseph Vybihal © 2017

McGill Joseph Vybihal © 2017

Path

Def: A path is a string that describes the location of a file or directory within an OS.

Two ways of expressing a path:

1. Absolute path

- Def: a string that begins at the Root
- Syntax: "/dir/dir/file" or "/dir/dir/dir"

2. Relative path

- Def: a string that begins at the current location
- Syntax: "dir/dir/file" or "../dir/dir/file" or "file"

Path examples

Absolute:

Relative: (assume from jelkner)

public_html/index.html

Relative: (assume from webappdev)

../public_html/index.html Relative: (assume from vim)

../../public_html/index.html

The command line

```
0 0
                          Terminal - bash - 80×24
           bash
                                      bash
prana@[/Library/Application Support/Apple]
$ ls
total 0
drwxrwxr-x 9 root admin 306 23 Jan 23:48 /
drwxrwxr-x 16 root admin 544 27 Jan 01:05
drwxrwxr-x 3 root admin 102 24 Sep 09:44
drwxrwxr-x 3 root admin 102 27 Sep 09:31
drwxrwxr-x 3 root admin 102 29 Sep 12:51 Installer/
           3 root admin 102 10 Oct 13:14
            5 root admin 170 10 Oct 13:09 ParentalControls/
drwxrwxr-x 3 root admin 102 23 Jan 23:39
drwxrwxr-x 11 root admin 374 23 Jan 23:59 iChat Icons/
prana@[/Library/Application Support/Apple]
```

Command Format:

prompt

McGill

Program switches arguments

Example Syntax:

\$ Is -I ass1.pdf

<u>Where</u>:

Program - the command

Switches - modifies behavior of command

Arguments - input passed to the command

Joseph Vybihal © 2017

The directory listing

```
[mimi] [~] ls
SummerCampEng.flv public html public html.2005 summ.tgz
[mimi] [~]
$ ls -1 /bin/ar
                  bin
                              21428 Sep 24 1983 /bin/ar
-r-xr-xr-x 1 bin
                                    size
                   owner
[mimi] [~] ls -1
total 3092
                                 1376256 Jun 5 10:44 SummerCampEng.flv
             1 summcamp 16618
drwxr-xr-x 11 summcamp 16618
                                    4096 Jun
                                             7 11:41 public html
drwxr-xr-x 3 summcamp 16618
                                    4096 Jan 4
                                                2006 public html.2005
             1 summcamp 16618
                                                2005 summ.tgz
-rwx-----
                                 1780739 Jul
[mimi] [~
                                            Modification date
                        group
            links
```

What does everything mean?

permissions

GNU

Systems

Directory Content

•See the contents of a directory (folder) ls

•See contents in long format ls –l

•See a particular file in long format ls —l letter.doc

•Display all the files and hidden files ls -a

GNU

Systems

Current Directory

• pwd (print working directory)

displays the current directory you are in (considered default)

Syntax: pwd

Usage: pwd

Result: Displays to the screen /home/jack (for example)

• cd (change directory)

allows a user to change their current directory.

Syntax : cd PATH

Usage: cd../home

Result: current working directory is now ../home

Joseph Vybihal © 2017

McGill

Unix Bash C GNU

Systems

```
$ whoami
Jvybihal
$ pwd
/jack
$ 1s
Stuff.txt
         source
$ cd source
$ 1s
F1.java f2.java f3.java
$ cd ..
$ 1s
Stuff.txt source
$ cd /
I am at the root now
$ cd/jack/source
$ mkdir docs
$ 1s
F1.java f2.java f3.java docs
```


Directory Manipulation

- •cd [directory]
- -change directory
- •ls [options] [directory or file list]
- -directory contents or file permissions
- mkdir [options] directory
- -make a directory
- •pwd
- –print working (current) directory
- •rmdir [options] directory
- -remove a directory

File Manipulation

- cp [options] file1 file2
- copy file1 into file2. This command creates or overwrites file2.
- mv [options] file1 file2
- move file1 into file2
- rm [options] file
- remove (delete) a file or directory

Copy Command

\$ cp from to

From = filename

From = path/filename

To = From syntax

To = path

\$ cp from from to

Options for cp, mv and rm

\$ cp -r /jack /mary/source

- -i : interactive (cp, mv and rm)
- prompt and wait for confirmation before proceeding
- -r or -R: recursive (cp, rm)
- recursively visits a directory, first visiting the files and subdirectories beneath it
- -f : force : (mv, rm)
- don't prompt for confirmation (overrides -i)

Cat and More

- •cat [options] files
- -file concatenate and display the concatenated result
- •more [options] file
- -page through a text file

Systems

Logout vs. Exit

• The *logout* command closes the shell and logs you out

• The *exit* command closes the shell (however, if there is no other shell to send you to then it will automatically call *logout*.

Linux Manual

- The man command allows you to access the on-line manual pages of the various commands available on the shell.
 - These pages are often referred to as "man pages".
- The man pages are your first source of information when working in the shell.
- To access a man page, simply type man and the name of the command at the prompt.

man ls

S man date date(1) date(1) Version 1.1 NAME date - print and set the date SYNOPSIS date [yymmddhhmm[.ss]] DESCRIPTION If no argument is given, the current date and time are printed. If an argument is given, the current date is set. My is the last two digits of the year; the first mm is the month number; dd is the day number in the month; hh is the hour number (24 hour system); the second mm is the minute number; ss is optional and is the seconds. For example: date 10080045 sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values being the defaults. The system operates in GMT. Date takes care of the conversion to and from local standard and daylight time. FILES /usr/adm/wtmp to record time setting SEE ALSO utmp(5) DIAGNOSTICS 'No permission' if you aren't the super-user and you try to change the date; 'bad conversion' if the date set is syntactically incorrect.

\$ man date