COMPUTER SYSTEMS FUNDAMENTALS (4COSCO04W)

Lecture: Week 3. Part 3 of 3

In this video we will cover:

- Representation of Real values in Binary
 - Fixed Point representation
 - Floating Point representation

REAL NUMBERS

Bicimal & IEEE754

By the end of this unit, you will:

- Understand the representation of Real values in Binary form
 - Bicimal
- Be able to represent Decimal real values in Bicimal form
- Be able to represent Bicimal values in Decimal
- Appreciate the limitations of fixed point representations
- Be able to represent Decimal Real values using IEEE754
- Be able to convert from IEEE754 to a real Decimal value

Real values

- Not all values are Integers
 - 1, 2, 3, 77,
- Real (Fractional) values
 - 1.5
 - 1.25
 - 2.75
 - *.....*

Bicimal

- Binary format for representing fractional values
 - Fixed point

	2^{-1}	2^{-2}	2^{-3}	2^{-4}	
	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	
	0.5	0.25	0.125	0.0625	
•					

Bicimal 0.5

- Binary format for representing fractional values
 - Fixed point

	Bicim	nal 0.5		
2^{-1}	2^{-2}	2^{-3}	2^{-4}	
1_	1_	<u>1</u>	1	
2	4	8	16	
0.5	0.25	0.125	0.0625	

Bicimal 0.25

- Binary format for representing fractional values
 - Fixed point

	Bicim	al 0.25		
2-1	2^{-2}	2^{-3}	2^{-4}	
1_	1_	1_	1	
2	4	8	16	
0.5	0.25	0.125	0.0625	

Bicimal 0.75

- Binary format for representing fractional values
 - Fixed point

	Bicim	al 0.75		
2^{-1}	2^{-2}	2^{-3}	2^{-4}	
1_	1_	1	1	
2	4	8	16	
0.5	0.25	0.125	0.0625	

Bicimal 1.625

- Binary format for representing fractional values
 - Fixed point

	Bicimal	1.62	5	
2^{-1}	2^{-2}	2^{-3}	2^{-4}	
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	
0.5	0.25	0.125	0.0625	

Decimal of Bicimal 1.101

		D	ecimal	1		
1	•	1	0	1		
		2^{-1}	2^{-2}	2^{-3}	2^{-4}	
		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	
1		0.5	0.25	0.125	0.0625	

Limitations of Bicimal Fixed Point values

- Only positive values
- Not suitable for storing very small or very large real numbers
 - Avogardo's number $6.0221367 \times 10^{+23}$
 - Would require about 80 bits for the integer part
 - Mass of Hydrogen atom 1.6733 \times 10⁻²⁴
 - Would require well over 80 bits for the fractional part
- Hence fixed point format is of limited use for computer representation of different numbers.

Exact values may require a high resolution:

■ With 4 Bicimal Bits:

```
0 \ 0 \ 0 \ 0 = 0
    0 0 1 = 0.0625
    0 1 0 = 0.125
    0 1 1 = 0.1875
  0 1 0 0 = 0.25
    1 0 1 = 0.3125
    1 \quad 1 \quad 0 = 0.375
    1 1 1 = 0.4375
  1 0 0 0 = 0.5
  1 0 0 1 = 0.5625
  1 0 1 0 = 0.625
  1 0 1 1 = 0.6875
  1 1 0 0 = 0.75
  1 1 0 1 = 0.8125
  1 1 1 0 = 0.875
1 1 1 1 = 0.9375
```

IEEE754

Floating Point representation

Floating point format

- Very large or very small numbers
- Before IEEE754 standard, different manufacturers used different methods.
- IEEE754 standardised the method of Floating Point representation
- Now adopted by all computer manufacturers
- IEEE754 is simple and efficient method to represent Floating Point format

A few concepts first:

- Normalized format
 - Mantissa
 - Exponent

Normalised Format - Decimal

- 3 parts to a normalised representation:
 - The integer part (single digit)
 - The part beyond the decimal point
 - The power part (Exponent)

Examples:

- 10.0 in normalised form is 1.0×10^{1}
- 312.0 in normalised form is 3.12×10^2
- 3.15 in normalised form is 3.15×10^{0}
- 0.0004 in normalised form is 4.0×10^{-4}
- -400.0 in normalised form is -4.0×10^2

Mantissa & Exponent - Decimal

Number	Normalised	Mantissa	Exponent
10	1.0×10^{1}	1.0	1
312	3.12×10^2	3.12	2
0.0004	4.0×10^{-4}	4.0	-4
3.15	3.15×10^{0}	3.15	0
-400	-4.0×10^{2}	-4.0	2

Mantissa & Exponent - Decimal

Number
1002
-231
-2
-0.004
-0.12345

Floating point in Binary

- **0.00001**
 - $= 1.0 \times 2^{-5}$
 - Mantissa = 1.0
 - Exponent = -5
- **-1001.11**
 - $= 1.00111 \times 2^{+3}$
 - Mantissa = 1.00111
 - Exponent = +3
 - Sign will be dealt with separately

Converting Decimal 31.75 to Normalised Bicimal Form

Step 1	Convert the integer part (ie. 31) to Binary			11111		
Step 2	Convert the fractional part (ie. 0.75) to Bicimal				$\frac{1}{4}$	
			•	1	1	
Step 3	Combine the results from Step 1 and Step 2			11111.11 ₂		
Step 4	Normalise: Move Bicimal point till there is just a single 1 to its left			1111 ₂	× 2 ⁺⁴	
	Value of Mantissa:			1.1111	.11	
		Value of Exponent:		+4		

- Single precision
 - 32 bit in total
 - First bit : Sign Bit
 - Next 8 bits : Exponent (in excess form)
 - Last 23 bits: Mantissa

S	Exponent (Excess form)	Mantissa

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	
Step 3:	Convert 0.25 ₁₀ to Binary	
Step 4:	Combine steps 2 & 3	
Step 5:	Normalise the result of step 4	
Step 6:	Mantissa from Step 5	
Step 7:	Exponent from Step 5 in excess form	
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	
Step 4:	Combine steps 2 & 3	
Step 5:	Normalise the result of step 4	
Step 6:	Mantissa from Step 5	
Step 7:	Exponent from Step 5 in excess form	
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	
Step 5:	Normalise the result of step 4	
Step 6:	Mantissa from Step 5	
Step 7:	Exponent from Step 5 in excess form	
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	
Step 6:	Mantissa from Step 5	
Step 7:	Exponent from Step 5 in excess form	
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	
Step 7:	Exponent from Step 5 in excess form	
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	1.101
Step 7:	Exponent from Step 5 in excess form	
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	1.101
Step 7:	Exponent from Step 5 in excess form	$1 + 127 = 128 = 10000000_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

S	Exponer	nt (Exces	s form	1)		Mantissa																

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	1.101
Step 7:	Exponent from Step 5 in excess form	$1 + 127 = 128 = 10000000_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	0
	IEEE754 Exponent Bits	
	IEEE754 Mantissa Bits	

S	Exponent (Excess form)	Mantissa
0		

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	1.101
Step 7:	Exponent from Step 5 in excess form	$1 + 127 = 128 = 10000000_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	0
	IEEE754 Exponent Bits	1000000
	IEEE754 Mantissa Bits	

S	S Exponent (Excess form)								1)				Ma	antis	ssa				
0	1	1	0	0	0	0	0	0	0										

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11_2
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01 ₂
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	1.101
Step 7:	Exponent from Step 5 in excess form	$1 + 127 = 128 = 10000000_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	0
	IEEE754 Exponent Bits	1000000
	IEEE754 Mantissa Bits	1.101

S	S Exponent (Excess form)																		Ма	ntis	ssa										
0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Denary	E	3in	ar	y	Hexadecimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	А
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	E
15	1	1	1	1	F

Step 1:	Original number	3.25 ₁₀
Step 2:	Convert 3 ₁₀ to Binary	11 ₂
Step 3:	Convert 0.25 ₁₀ to Binary	0.01_{2}
Step 4:	Combine steps 2 & 3	11.01_{2}
Step 5:	Normalise the result of step 4	1.101×2^{1}
Step 6:	Mantissa from Step 5	1.101
Step 7:	Exponent from Step 5 in excess form	$1 + 127 = 128 = 10000000_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	0
	IEEE754 Exponent Bits	1000000
	IEEE754 Mantissa Bits	1.101

	S	E	хрс	ner	nt (E	хсе	ess f	orm	າ)											Ma	intis	ssa										
	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı		4	1			(0			Ę	5			()			()			()			()			()	

S	E	xpc	ner	nt (E	хсе	ess f	orm	1)											Ma	antis	ssa										
	4	4			(0			Ę	5			()			()			()			()			()	
0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 $= 128_{10}$ 128 - 127 = +1Exponent is: +1

Mantissa: 1.101₂

$$1.101_2 \times 2^{+1} = 11.01_2$$

+ 3.25₁₀

5	s	E	хрс	ner	nt (E	хсе	ess f	orm	1)											Ma	ntis	ssa										
(С	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		4	1			(0			į	5			()			C)			()			()			()	

Step 1:	Original number	-0.125_{10}
Step 2:	Convert 0_{10} to Binary	0_2
Step 3:	Convert 0.125 ₁₀ to Binary	0.001_{2}
Step 4:	Combine steps 2 & 3	0.001_{2}
Step 5:	Normalise the result of step 4	1.0×2^{-3}
Step 6:	Mantissa from Step 5	1.0
Step 7:	Exponent from Step 5 in excess form	$-3 + 127 = 124 = 011111100_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	1
	IEEE754 Exponent Bits	01111100
	IEEE754 Mantissa Bits	1.0

	S	E	Ехрс	ner	nt (E	Exce	ess f	orm	າ)											Ma	intis	ssa										
	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı		E	3				E			()			()			()			()			()			()	

S		E	хрс	ner	nt (E	Exce	ess 1	orm	1)											Ma	antis	ssa										
	B E 0 0 0 0 0 0																															
1	()	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$= 124_{10}$$
$$124 - 127 = -3$$

Mantissa: 1.0_2

Exponent is: -3

$$1.0_2 \times 2^{-3} = 0.001_2$$

 0.125_{10}

S		E	xpo	ner	nt (E	xce	ess f	orm	1)											Ma	ntis	ssa										
1	-	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		E	3				E			()			()			()			()			()			()	

Step 1:	Original number	-195 ₁₀
Step 2:	Convert 195 ₁₀ to Binary	11000011_2
Step 3:	Convert 0.0_{10} to Binary	0.0_2
Step 4:	Combine steps 2 & 3	11000011 ₂
Step 5:	Normalise the result of step 4	$1.1000011 \times 2^{+7}$
Step 6:	Mantissa from Step 5	1.1000011
Step 7:	Exponent from Step 5 in excess form	$7 + 127 = 134 = 10000110_2$
	IEEE754 Sign Bit (O Positive, 1 Negative)	1
	IEEE754 Exponent Bits	10000110
	IEEE754 Mantissa Bits	1.1000011

S	E	Ехрс	nei	nt (E	хсе	ess f	orm	1)											Ma	intis	ssa										
1	1	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		С			3	3			4	4			3	3			()			()			()			()	

5	5	E	хрс	ner	nt (E	Exce	ess f	orm	1)											Ma	antis	ssa										
		C				,	3			2	4			3	3			()			()			()			()	
1	1	1	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 $= 134_{10}$ 134 - 127 = +7

Mantissa: 1.1000011₂

Exponent is: +7

$$1.1000011_2 \times 2^7 = 11000011_2$$

- 195₁₀

S		Exponent (Excess form)							Mantissa																							
1		1	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	С				3					4			3			0			0				0				0					

IEEE754

- Further examples in tutorial
 - Try out random numbers of your choice
- This module will not cover:
 - Double precision (64-bit)
 - Zero

For this module, we will only consider 4 Bicimal Bits:

```
0 = 0
  0 0 1 = 0.0625
  0 1 0 = 0.125
      1 \quad 1 = 0.1875
      0 \quad 0 = 0.25
      0 1 = 0.3125
      1 \quad 0 = 0.375
      1 \quad 1 = 0.4375
      0 \quad 0 = 0.5
1 0 0 1 = 0.5625
  0 1 0 = 0.625
      1 \quad 1 = 0.6875
      0 \quad 0 = 0.75
      0 1 = 0.8125
   1 1 0 = 0.875
      1 \quad 1 = 0.9375
```

In this video we looked at:

- Real numbers
 - Fixed point (Bicimal)
 - Floating point (IEEE754)

Further reading:

- Computer Systems
 - 3.5

© The University of Westminster (2020)
The right of Noam Weingarten to be identified as author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988