Rotate your networks: better weight consolidation and less catastrophic forgetting

X. Liu, M. Masana, L. Herranz, J. van de Weijer, A. M. Lopez, A. D. Bagdanov Computer Vision Center (Barcelona) ICPR 2018

Lifelong learning

Joint learning

Sequential learning

Sequential learning

Catastrophic forgetting tabby Task 2

Sequential learning

Catastrophic forgetting cardinal Task 3

Preventing catastrophic forgetting

- Memories, replay and retrain
 - A few real samples (exemplars) from previous tasks
 - A generative model for previous data and sample
- Regularization
 - Weights
 - Activations
- Develop modularity
 - Enforce using different weights/neurons for different tasks

Elastic weight consolidation

Rotated elastic weight consolidation

Size of the diagonal of F_A is # θ

Elastic weight consolidation in practice (with diagonal approx. of F_A) Rotated elastic weight consolidation (R-EWC)

Rotating fully connected layers

Computing the rotations

$$F_{W} = \mathbb{E}_{p \sim \pi} \left[\left(\frac{\partial L}{\partial \mathbf{y}} \right) \mathbf{x} \mathbf{x}^{\mathsf{T}} \left(\frac{\partial L}{\partial \mathbf{y}} \right)^{\mathsf{T}} \right]$$

$$F_{W} \approx \mathbb{E}_{\substack{x \sim \pi \\ y \sim p}} \left[\left(\frac{\partial L}{\partial \mathbf{y}} \right) \left(\frac{\partial L}{\partial \mathbf{y}} \right)^{\mathsf{T}} \right] \mathbb{E}_{x \sim \pi} \left[\mathbf{x} \mathbf{x}^{\mathsf{T}} \right]$$

$$\mathbb{E}_{x \sim \pi} \left[\mathbf{x} \mathbf{x}^{\mathsf{T}} \right] = \begin{bmatrix} U_{1} S_{1} V_{1}^{\mathsf{T}} \\ U_{2} S_{2} V_{2}^{\mathsf{T}} \end{bmatrix}$$

$$\mathbb{E}_{x \sim p} \left[\left(\frac{\partial L}{\partial \mathbf{y}} \right) \left(\frac{\partial L}{\partial \mathbf{y}} \right)^{\mathsf{T}} \right] = \begin{bmatrix} U_{2} S_{2} V_{2}^{\mathsf{T}} \\ U_{3} S_{2} V_{2}^{\mathsf{T}} \end{bmatrix}$$

$$\mathbb{E}_{x \sim p} \left[\left(\frac{\partial L}{\partial \mathbf{y}} \right) \left(\frac{\partial L}{\partial \mathbf{y}} \right)^{\mathsf{T}} \right] = \begin{bmatrix} U_{2} S_{2} V_{2}^{\mathsf{T}} \\ U_{3} S_{4} V_{2}^{\mathsf{T}} \end{bmatrix}$$

$$\mathbb{E}_{x \sim p} \left[\left(\frac{\partial L}{\partial \mathbf{y}} \right) \left(\frac{\partial L}{\partial \mathbf{y}} \right)^{\mathsf{T}} \right] = \begin{bmatrix} U_{3} S_{4} V_{3}^{\mathsf{T}} \\ U_{3} S_{4} V_{3}^{\mathsf{T}} \end{bmatrix}$$

Rotating convolutional layers

Fisher Information matrix

No rotation (i.e. EWC)

Energy in the diagonal: 40%

After rotation (i.e. R-EWC)

Energy in the diagonal: 74%

Experimental results

MNIST dataset. Two tasks: 0-4 and 5-9

	$\lambda = 1$		$\lambda = 10$		$\lambda = 100$		$\lambda = 1000$		$\lambda = 10000$	
	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2
FT	6.1	97.6	6.1	97.6	6.1	97.6	6.1	97.6	6.1	97.6
EWC [5]	66.8	90.9	75.3	95.6	85.8	92.8	78.4	93.7	81.0	88.8
R-EWC - conv only	62.7	89.2	67.5	96.1	80.4	91.4	84.7	93.1	75.5	93.7
R-EWC - fc only	78.9	95.3	79.0	95.8	87.4	93.5	93.0	82.3	94.3	88.0
R-EWC - all	77.2	96.7	91.7	91.2	86.9	95.9	96.3	81.1	92.1	86.0
R-EWC - all no last	71.5	91.8	84.9	97.0	91.6	94.5	94.6	88.4	97.9	79.4

Several datasets

	EWC [5] (T1 / T2)	R-EWC (T1 / T2)
MNIST	89.3 (85.8 / 92.8)	93.1 (91.6 / 94.5)
CIFAR-100	37.5 (23.5 / 51.5)	42.5 (30.2 / 54.7)
CUB-200 Birds	45.3 (42.3 / 48.6)	48.4 (53.3 / 45.2)
Stanford-40 Actions	50.4 (44.3 / 58.4)	52.5 (52.3 / 52.6)

Results on 4 tasks

THANK YOU!

