Задача S08. Да се докаже, че за всеки три множества A , B и C е изпълнено, че $A \setminus (B \cup C) = (A \setminus C) \setminus (B \setminus C)$.

Доказателство:

Нека A, B и C са произволни множества.

(\subseteq) Нека $x \in A \setminus (B \cup C)$. Следователно $x \in A \land x \notin B \cup C \Rightarrow x \notin B \land x \notin C$. Ще докажем, че $A \setminus (B \cup C) = (A \setminus C) \setminus (B \setminus C)$.

OT
$$x \in A \land X \notin C \Rightarrow x \in A \backslash C$$
 (1)
OT $x \notin B \land x \notin C \Rightarrow x \notin B \backslash C$ (2)

От (1) и (2)
$$\Rightarrow x \in (A \setminus C) \setminus (B \setminus C)$$
.

$$(\supseteq)$$
 Нека $x \in (A \setminus C) \setminus (B \setminus C) \Rightarrow x \in A \setminus C \land x \notin B \setminus C$. От (3) следва, че $x \in A \land x \notin C$.

От (4) следва, че $x \notin B \lor (x \in B \land x \in C)$, но от (3) следва, че $x \notin C \Rightarrow x \notin B$. Имаме, че $x \in A, x \notin C$ и $x \notin B \Rightarrow x \notin B \cup C \Rightarrow x \in A \backslash (B \cup C)$.

github.com/andy489