Classificação de sinais de ECG sintéticos

Eduardo P. L. Jaqueira, Renato Candido e Magno T. M. Silva

Resumo—Neste artigo, sinais de eletrocardiograma sintéticos foram gerados utilizando dois modelos gerativos: um baseado na rede adversária gerativa e outro no autocodificador variacional. Os sinais sintéticos foram classificados por uma rede perceptron multicamada treinada com sinais reais. A taxa de acerto de classificação dos sinais sintéticos foi superior a 80%, o que indica que esses sinais podem ser usados para melhorar as métricas de classificação de arritmias cardíacas.

Palavras-Chave—Aprendizado de máquina, rede adversária gerativa, autocodificador variacional, eletrocardiograma, aumento de dados.

Abstract—In this paper, synthetic electrocardiogram signals were generated using two generative models: one based on the generative adversarial network and other on the variational autoencoder. The synthetic signals were classified by a multilayer perceptron network trained with real signals. The correct classification rate of synthetic signals was superior to 80%, which indicates that these signals can be used to improve cardiac arrhythmia classification metrics.

Keywords—Machine learning, generative adversarial network, variational autoencoder, electrocardiogram, data augmentation.

I. Introdução

Técnicas de aprendizado de máquina [1] têm sido amplamente estudadas para a classificação de arritmias cardíacas por meio do sinal de eletrocardiograma (ECG) [2], [3]. Entretanto, altas taxas de erro dessas técnicas fazem com que elas ainda estejam longe de serem empregadas na prática. Em [3], foram propostas soluções baseadas em redes pecerptron multicamada (multilayer perceptron - MLP), redes neurais recorrentes, análise de discriminante linear e combinações desses modelos para classificação automática de arritmias cardíacas. Foram utilizados sinais de ECG do banco de dados MIT-BIH Arrhythmia Database (MITDB) [4], levandose em conta quatro classes: batimentos do nó sinoatrial (N), supraventriculares ectópicos (S), ventriculares ectópicos (V) e fusão de batimentos normais e ventriculares ectópicos (F). Dentre as soluções propostas, a combinação da MLP com a LDA apresentou o melhor desempenho e alcançou métricas de classificação superiores às da literatura para as classes S e V.

Apesar de terem sido consideradas técnicas usuais para lidar com classes desbalanceadas em [3], acredita-se que métricas de classificação superiores só possam ser alcançadas com um banco de dados balanceado. Na classificação de arritmias cardíacas, a técnica de *data augmentation* com modelos gerativos também tem sido usada para gerar sinais de ECG sintéticos com o objetivo de balancear os bancos de dados [5], [6]. Neste

Eduardo P. L. Jaqueira, Renato Candido e Magno T. M. Silva, Depto de Engenharia de Sistemas Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brasil, emails: eduardo.jaqueira@usp.br; renatocan@lps.usp.br; magno.silva@usp.br. Este trabalho foi financiado pela CAPES (código de financiamento 001), pelo CNPq (127301/2023-2, 303826/2022-3 e 404081/2023-1) e pela FAPESP (2021/02063-6).

trabalho, são utilizados uma rede adversária gerativa (*gerative adversarial network* – GAN) [5]–[7] e um autocodificador variacional (*variational autoencoder* – VAE) [6], [8] para gerar sinais de ECG sintéticos da classe N. 92% dos batimentos do MITDB são dessa classe. Apesar de ser mais importante gerar batimentos das classes menos representativas na busca do balanceamento do banco de dados, decidiu-se iniciar com a classe N neste estudo preliminar já que há mais dados para o treinamento dos modelos gerativos.

O artigo está organizado da seguinte forma. Na Seção II, são descritos os modelos gerativos propostos. Na Seção III, são mostrados os resultados de simulação e a Seção IV fecha o artigo com as principais conclusões e trabalhos futuros.

II. MODELOS PROPOSTOS

A GAN conta com duas redes neurais: o gerador e o discriminador [7]. Um vetor de espaço latente x de tamanho 100 é gerado a partir de uma distribuição normal de média zero e variância unitária. O vetor x é então fornecido ao gerador, produzindo um sinal sintético x_G de tamanho 320. Em seguida, \mathbf{x}_G é transmitido ao discriminador, onde é classificado como "real" ou "sintético". Como o objetivo da pesquisa é gerar sinais próximos dos reais, idealmente o discriminador não deve ser capaz de diferenciar sinais reais do banco de dados de sinais sintéticos gerados pelo gerador treinado. No gerador da GAN, utilizou-se uma rede neural recorrente bidirecional composta por blocos BiLSTM (bidirectional long short-term memory) [10]. Especificamente, foram utilizadas duas camadas BiLSTM com vetor de estados de tamanho 100 e tamanho do mini-batch igual a 22, sendo então a saída dessa rede submetida a uma camada linear e à função tangente hiperbólica. No discriminador, foi utilizada uma rede MLP composta de 6 camadas ocultas, diminuindo gradualmente o número de neurônios de cada camada $(320, 2^8, 2^7, \dots, 2^4)$, e uma camada de saída com 1 neurônio. O esquema da arquitetura descrita para a rede GAN pode ser observado na Figura 1. Consideraram-se ainda a entropia cruzada binária como função custo, ReLU e sigmoidal como funções de ativação nas camadas ocultas e de saída, respectivamente, otimizador Adam, minibatch de 22, passo de adaptação de 5×10^{-5} , dropout e treinamento por 400 épocas.

No codificador e decodificador do VAE [8], foram utilizadas redes MLP com duas e três camadas, respectivamente. Na saída do codificador, foi feita uma reparametrização do sinal [9]. Em ambas as redes, consideraram-se uma combinação do erro quadrático médio e da divergência de Kullback-Leibler [1], [9] como função custo, LeakyReLU como função de ativação, normalização de *batch*, 600 épocas, *minibatch* de 22 e passo de adaptação de 10^{-4} . No treinamento do VAE, um sinal de ECG real x de tamanho 320 é fornecido ao codificador

Fig. 1: Arquitetura esquemática da GAN com blocos BiLSTM no gerador e rede MLP no discriminador.

com 320 neurônios na camada de entrada. Esse sinal é então expandido para a camada seguinte contendo 512 neurônios e em seguida comprimido, produzindo três vetores de tamanho 10: \mathbf{z} , $\boldsymbol{\mu}$ e $\boldsymbol{\varphi}$. O vetor \mathbf{z} é fornecido ao decodificador que procura "recuperar" o sinal anterior, expandindo esse vetor ao longo das camadas. Primeiramente para uma camada de 512 neurônios e chegando a uma camada de 320 neurônios, obtendo a saída \mathbf{y} . O esquema da arquitetura descrita para essa rede pode ser observada na Figura 2.

Fig. 2: Arquitetura esquemática do VAE.

III. SIMULAÇÕES E RESULTADOS

Os modelos gerativos foram treinados com batimentos da classe N do MITDB. Como entrada, foram consideradas amostras de batimentos individuais centralizados em seus picos, normalizadas para o intervalo [-1,1] e organizadas em vetores de tamanho 320. Após o treinamento, os sinais sintéticos gerados foram comparados com um modelo representativo da classe N (template) [6], utilizando dynamic time warping (DTW) [11]. Calculou-se então a menor distância entre os batimentos gerados e o template, denotada por s_3 . A partir dessa distância, baseando-se nos métodos definidos em [6], definiu-se um limiar $(2,5 \times s_3)$ empiricamente, de modo a obter batimentos condizentes com o sinal de classe N esperado. Foram considerados como aceitáveis apenas os sinais com valores de s_3 inferiores ao limiar, o que levou a taxas de aproveitamento de 26,5% e 8,8% dos sinais gerados para a GAN e para o VAE, respectivamente.

Os batimentos aceitos foram unidos de modo a gerar sinais com três batimentos em vetores de tamanho 960, permitindo assim que o sinal seja classificado utilizando a rede definida em [3]. Esses sinais foram então classificados com a rede MLP treinada com sinais de ECG reais de [3]. Os resultados da classificação estão na Tabela I. A taxa de acerto na classificação dos batimentos gerados pela GAN foi de 85% enquanto para o VAE essa taxa ficou em torno de 81%. Houve erros de classificação divididos entre as classes S e V. Cabe observar que a acurácia geral da rede MLP de [3] é de 77,2%, sendo que para a classe N, ela apresentou sensibilidade de

82,4%, precisão de 88,7% e F₁-score de 85,4%. Comparando essas métricas com as taxas de acerto obtidas, conclui-se que os sinais sintéticos gerados são adequados.

TABELA I: Percentual da classificação - ECGs sintéticos (N).

	N	S	V	F
GAN	85,0%	6,3%	8,7%	0,0%
VAE	80,6%	7,2%	12,2%	0,0%

IV. CONCLUSÃO

A geração de sinais de ECG sintéticos é uma solução promissora para o balanceamento de bancos de dados e obtenção de melhores métricas de classificação de arritmias cardíacas. O estudo preliminar realizado neste artigo indica que, para as configurações propostas, a GAN apresenta vantagem quanto à "qualidade" dos sinais sintéticos gerados em relação ao VAE. Entretanto, o tempo de treinamento e o custo computacional do VAE é cerca de cinco vezes menor que o da GAN. Por isso, vale a pena buscar configurações do VAE que levem a resultados semelhantes aos da GAN em temos de aproveitamento dos sinais gerados e taxa de acerto de classificação. Dando continuidade à pesquisa, pretende-se utilizar os mesmos métodos aqui apresentados para gerar sinais de ECG sintéticos das classes menos representativas. Em seguida, pretende-se retreinar a rede MLP de [3] com um banco de dados sintético balanceado e validar com dados reais.

REFERÊNCIAS

- [1] C. Bishop, Deep Learning: Foundations and Concepts, Springer, 2023.
- [2] S. K. Berkaya et al., "A survey on ECG analysis," Biomedical Signal Processing and Control, vol. 43, pp. 216–235, 2018.
- [3] N. Nagata, R. Candido, M. T. M. Silva, "Combinaçõoes de redes neurais e discriminantes lineares para classificação de arritmias cardíacas," in Anais do SBrT, Fortaleza, CE, 2021.
- [4] G. B. Moody, R. G. Mark, "The impact of the MIT-BIH arrhythmia database," IEEE Eng. Med. Biol. Mag., vol. 20, pp. 45–50, 2001.
- [5] A. M. Delaney, E. Brophy, T. E. Ward, "Synthesis of realistic ECG using generative adversarial networks," disponível em https://arxiv.org/abs/1909.09150, arXiv, 2019.
- [6] E. Adib, F. Afghah, J. J. Prevost, "Synthetic ECG signal generation using generative neural networks," dispnível em https://arxiv. org/abs/2112.03268, arXiv, 2021.
- [7] I. Goodfellow et al., "Generative adversarial networks," Communications of the ACM, vol. 63, pp. 139–144, 2020.
- [8] D. P. Kingma, M. Welling, An Introduction to Variational Autoencoders, Now Publishers, Norwell, MA, 2019.
- [9] L. Dinh, Reparametrization in deep learning, Tese de Doutorado, Univ. Montréal, 2018.
- [10] A. Sherstinsky, "Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network", *Physica D: Nonlinear Phenomena*, vol. 404, 2020.
- [11] P. Senin, *Dynamic time warping algorithm review*, Tecnhical report, University of Hawaii, 2008.