

FEATURES

PRODUCT APPEARANCE

- Fully compliant with ISO 11898 standard
- > Thermally protected
- ➤ ±70V BUS protection
- > Driver (TXD) dominant time-out function
- > Silent receive mode
- > SIT1051AT/E with off mode in low power consumption
- SIT1051AT/3 I/O allows for direct interfacing with 3 V to 5 V MCU
- ➤ Undervoltage detection on pins VCC and VIO
- Timing guaranteed for data rates up to 5 Mbit/s in the (CAN FD) fast phase
- ➤ The typical loop delay from TXD to RXD is less than 100ns
- > Unpowered nodes do not interfere with the bus
- ➤ Provide DFN3*3-8, small outline, leadless package

Provide Green and Environmentally Friendly Lead-free package

DESCRIPTION

SIT1051A is an interface chip used between the CAN protocol controller and the physical bus. It can be used for in-vehicle, industrial control and other fields. It supports 5Mbps (CAN FD), and has ability to perform differential signal transmission between bus and the CAN protocol controller.

SIT1051A is an upgraded version of SIT1051 with improved bus signal symmetry and lower electromagnetic radiation performance. In addition, the SIT1051A is fully compatible with SIT1051.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	VCC		4.5	5.5	V
Maximum transmission rate	1/t _{bit}	Non-return to zero code	5		Mbaud
CANH, CANL input or output voltage	V_{can}		-70	+70	V
Bus differential voltage	V_{diff}		1.5	3.0	V
Virtual junction temperature	T_{j}		-40	150	°C

PIN CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION
1	TXD	Transmit data input.
2	GND	Ground.
3	VCC	Supply voltage.
4	RXD	Receive data output; reads out data from the bus lines.
5	N.C.	Not connected (SIT1051AT version).
5	VIO	Supply voltage for I/O level adapter (SIT1051AT/3 version).
5	EN	Enable control input, LOW-level is off mode (SIT1051AT/E version).
6	CANL	LOW-level CAN bus line.
7	CANH	HIGH-level CAN bus line.
8	S	Silent mode control input.

NOTE: The exposed pad of the DFN3*3-8 package is internal connected to the GND pin of the chip. For enhanced thermal performance, the exposed pad of the DFN3*3-8 package could be soldered to board ground.

LIMITING VALUES

Parameter	Symbol	Range	Unit
Supply voltage	VCC	-0.3~7	V
MCU side voltage	TXD, RXD, S, EN, VIO	-0.3~7	V
Bus side input voltage	CANL, CANH	-70~70	V
Bus differential breakdown voltage	V _{CANH} -CANL	-27~27	V
Storage temperature	T_{stg}	-55~150	°C
Virtual junction temperature	$T_{\rm j}$	-40~150	°C
Ambient temperature	T_{amb}	-40~1125	

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

BLOCK DIAGRAM

DRIVER ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
CANH dominant output voltage	$V_{\text{OH(D)}}$	Normal mode, TXD=0V,	2.75	3.5	4.5	V
CANL dominant output voltage	$V_{\text{OL}(D)}$	$R_L=50\Omega$ to 65Ω	0.5	1.5	2.25	V
		Normal mode, $TXD{=}0V,$ $R_L{=}50\Omega \text{ to } 65\Omega$	1.5		3	V
Bus dominant differential output voltage	V _{OD(D)}	Normal mode, $TXD{=}0V,$ $R_L{=}45\Omega \text{ to } 70\Omega$	1.4		3.3	V
		Normal mode, TXD=0V, $R_L \!\!=\!\! 2240\Omega$	1.5		5	V
Bus recessive output voltage	$V_{O(R)}$	Normal mode, TXD=VIO, no load	2	$0.5V_{\rm CC}$	3	V
Bus recessive differential output voltage	V _{OD(R)}	Normal mode, TXD=VIO, no load	-500		50	mV
Transmitter dominant voltage symmetry	$V_{\text{dom(TX)sym}}$	V _{dom(TX)sym} =VCC- CANH - CANL	-400		400	mV
Transmitter voltage symmetry	$ m V_{TXsym}$	V_{TXsym} = CANH + CANL, R_L =60 Ω , C_{SPLIT} =4.7nF, f_{TXD} =250kHZ, 1MHz, 2MHz \underline{Fig} 5	0.9V _{CC}		1.1V _{cc}	V
Dominant-recessive common-mode output voltage difference	$V_{\text{cm(step)}}$	<u>Fig 3, Fig5</u>	-150		150	mV
Dominant-recessive common-mode peak-to-peak	$V_{\text{cm}(p\text{-}p)}$	Fig 3, Fig 5	-300		300	mV
Dominant short- circuit output current	Io(sc)dom	Normal mode, TXD=0V, CANH=-15V to 40V	-100	-70	-40	mA
Dominant short- circuit output current	I _{O(SC)DOM}	Normal mode, TXD=0V, CANL=-15V to 40V	40	70	100	mA

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Recessive short- circuit output current	I _{O(SC)REC}	Normal mode, TXD=VIO, CANH=CANL= -27V to 32V	-3		3	mA

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=25$ °C, supply voltage VCC=5V, VIO=5V (if applicable), RL=60 Ω .

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Propagation delay time, low-to-high level output	$t_{d(TXD ext{-}busdom)}$	Normal mode, Fig 1, Fig 4		45		ns
Propagation delay time, high-to-low level output	$t_{d(TXD ext{-busrec})}$	Normal mode, Fig 1, Fig 4		55		ns
Differential output signal rise time	$t_{r(\mathrm{BUS})}$			45		ns
Differential output signal fall time	$t_{ m f(BUS)}$			45		ns

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=$ 25°C, supply voltage VCC=5V, VIO=5V (if applicable), RL=60 Ω .

RECEIVER ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver threshold voltage	$V_{\text{th(RX)dif}}$	Normal mode and silent mode, -30V <v<sub>CM<30V</v<sub>	0.5		0.9	V
Receiver threshold voltage hysteresis range	V _{hys(RX)dif}	Normal mode and silent mode, -30V <v<sub>CM<30V</v<sub>	50	120	400	mV
Receiver recessive voltage range	$V_{\text{rec}(RX)}$	Normal mode and silent mode, -30V <v<sub>CM<30V</v<sub>	-3		0.5	V
Receiver dominant voltage range	$V_{\text{dom}(RX)}$	Normal mode and silent mode, -30V <v<sub>CM<30V</v<sub>	0.9		8	V

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Bus leakage current	I_{L}	VCC=VIO=0V, CANH=CANL=5V	-10		10	μΑ
CANH, CANL input resistance	R _{IN}	-2V≤CANH≤7V -2V≤CANL≤7V	9	15	28	kΩ
CANH, CANL differential-input resistance	$R_{ m ID}$	-2V≤CANH≤7V -2V≤CANL≤7V	19	30	52	kΩ
CANH, CANL input resistance mismatch	$\triangle R_{\mathrm{IN}}$	0V≤CANH≤5V 0V≤CANL≤5V	-2		2	%
CANH, CANL input capacitance to ground	C _{IN}	TXD=VIO		24		pF
CANH, CANL differential-input capacitance	C_{ID}	TXD=VIO		12		pF
Bus slew rate	SR	Bus differential voltage dominant to recessive edge			70	V/µs

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=25$ °C, supply voltage VCC=5V, VIO=5V (if applicable), RL=60 Ω .

RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay time,	t _{d(busdom-RXD)}	Normal mode,		45		ns
low-to-high level output		<u>Fig 1, Fig 4</u>				
Propagation delay time,	tia nym	Normal mode,		45		ns
high-to-low level output	td(busrec-RXD)	<u>Fig 1, Fig 4</u>		73		115
RXD signal rise time	$t_{r(RXD)}$			8		ns
RXD signal fall time	$t_{f(RXD)}$			8		ns

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}$ =25°C, supply voltage VCC=5V, VIO=5V (if applicable), R $_{L}$ =60 Ω .

DEVICE SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Loop delay 1, TXD falling	4	Normal mode,	40		160	***
edge to RXD falling edge	t_{loop1}	<u>Fig 1</u> , <u>Fig 4</u>	40		100	ns

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Loop delay 2, TXD rising edge to RXD rising edge	t _{loop2}	Normal mode, Fig 1, Fig 4	40		175	ns
Dit time of DUC output air	4	t _{bit(TXD)} =500ns	435		530	ns
Bit time of BUS output pin	t _{bit(BUS)}	t _{bit(TXD)} =200ns	155		210	ns
Dit time of DVD output nin	4	$t_{bit(TXD)}=500ns$	400		550	ns
Bit time of RXD output pin	t _{bit(RXD)}	t _{bit(TXD)} =200ns	120		220	ns
Time difference between		$\Delta t_{rec} = t_{bit(RXD)}$. $t_{bit(BUS)}$; $t_{bit(TXD)} = 500 ns$	-65		40	ns
BUS and RXD output bits	$\Delta m t_{rec}$	$\Delta t_{rec} = t_{bit(RXD)}.$ $t_{bit(BUS)};$ $t_{bit(TXD)} = 200ns$	-45		15	ns
TXD dominant timeout	t _{dom_TXD}		0.8	2	4	ms

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=$ 25°C, supply voltage VCC=5V, VIO=5V (if applicable), R $_{L}=$ 60 Ω .

TXD PIN CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
HIGH-level input current	I _{IH} (TXD)	TXD=VIO	-5		5	μΑ
LOW-level input current	I _{IL} (TXD)	TXD=0V	-260	-150	-30	μΑ
Leakage current of TXD without power	I _O (off)	VCC=VIO=0V, TXD=5.5V	-1		1	μΑ
HIGH-level input voltage	$V_{ m IH}$	SIT1051AT/3	0.7VIO ⁽¹⁾		VIO+0.3	V
LOW-level input voltage	V_{IL}	SIT1051AT/3	-0.3		0.3VIO	V
HIGH-level input voltage	$ m V_{IH}$	SIT1051AT	2		VCC+0.	V
LOW-level input voltage	V_{IL}	SIT1051AT	-0.3		0.8	V
Open voltage on TXD pin	TXDo			Н		logic

⁽¹⁾ SIT1051AT/E version, VIO=VCC;

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=25$ °C, supply voltage VCC=5V, VIO=5V (if applicable), RL=60 Ω .

S PIN CHARACTERISTICS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
HIGH-level input current	I _{IH} (S)	S=VIO	1		10	μΑ
LOW-level input current	I _{IL} (S)	S=0V	-1		1	μΑ
Leakage current of S without power	I _O (off)	VCC=VIO=0V, S=5.5V	-1		1	μΑ
HIGH-level input voltage	$V_{ m IH}$	SIT1051AT/3	0.7VIO (1)		VIO+0.3	V
LOW-level input voltage	V_{IL}	SIT1051AT/3	-0.3		0.3VIO	V
HIGH-level input voltage	V_{IH}	SIT1051AT	2		VCC+0.3	V
LOW-level input voltage	$V_{\rm IL}$	SIT1051AT	-0.3		0.8	V
Open voltage on S pin	So			L		logic

⁽¹⁾ SIT1051AT/E version, VIO=VCC;

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=25$ °C, supply voltage VCC=5V, VIO=5V (if applicable), R $_{L}=60\Omega$.

EN PIN CHARACTERISTICS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
HIGH-level input current	I _{IH} (EN)	EN=VCC	1		10	μΑ
LOW-level input current	I _{IL} (EN)	EN=0V	-1		1	μΑ
HIGH-level input current	$ m V_{IH}$		0.7VCC		VCC+0.3	V
LOW-level input current	$ m V_{IL}$		-0.3		0.3VCC	V
Leakage current of EN without power	I _O (off)	VCC=0V, EN=5.5V	-1		1	μΑ
Open voltage on EN pin	EN_{O}			L		logic

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}$ =25°C, supply voltage VCC=5V, VIO=5V (if applicable), RL=60 Ω .

RXD PIN CHARACTERISTICS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
HIGH-level input	I _{OH} (RXD)	VIO=VCC,	-8	-3	-1	mA
current	IOH(KAD)	RXD=VIO-0.4V				
LOW-level input	I (DVD)	RXD=0.4V,	2	5	12	mA
current	$I_{OL}(RXD)$	Bus dominant				
Leakage current of	I (aff)	VCC=VIO=0V,	-1		1	4
RXD without power	$I_{O}(off)$	RXD=5.5V			1	μΑ

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=25$ °C, supply voltage VCC=5V, VIO=5V (if applicable), R $_{L}=60\Omega$.

SUPPLY CURRENT

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{CC_D}	Normal mode, dominant		45	70	mA
	I_{CC_R}	Normal mode, recessive		5	10	mA
VCC supply current	I_{CC_S}	Silent mode		1.5	3	mA
	I_{CC_OFF}	Off mode (SIT1051AT/E version)		5	8	μΑ
VIO gunnly gumont	I _{IO_D}	TXD=0V		170	300	μΑ
VIO supply current	I _{IO_R}	TXD=VIO		15	30	μΑ

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}$ =25°C, supply voltage VCC=5V, VIO=5V (if applicable), R $_{L}$ =60 Ω .

OVERTEMPERATURE PROTECTION

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Shutdown junction	Т., ,,			190		°C
temperature	I j(sd)			190		

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}$ =25°C, supply voltage VCC=5V, VIO=5V (if applicable), RL=60 Ω .

UNDERVOLTAGE PROTECTION

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
VCC undervoltage protection	V_{uvd_VCC}		3.7	4	4.3	V
VIO undervoltage protection	V_{uvd_VIO}		1.7	2	2.3	V

Unless otherwise stated, -40°C \leq T $_{j}\leq$ 150°C, all typical values are measured at T $_{amb}=25$ °C, supply voltage VCC=5V, VIO=5V (if applicable), R $_{L}=60\Omega$.

ESD PERFORMANCE

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
CAN bus pin contact discharge model (IEC)	V_{ESD_IEC}	IEC 61000-4-2: contact discharge (CANH, CANL)	-4		+4	kV
Human body model (HBM)	V _{ESD_HBM}	All ports	-8		+8	kV
Charged device model (CDM)	V _{ESD_CDM}		-750		+750	V
Machine model (MM)	V _{ESD_MM}		-300		+300	V

FUNCTION TABLE

Table 1 CAN TRANSCEIVER TRUTH TABLE

TXD (1)	S ⁽¹⁾	CANH (1)	CANL (1)	BUS STATE	RXD (1)
L	L or open	Н	L	Dominant	L
H or open	L or open	0.5VCC	0.5VCC	Recessive	Н
X	Н	0.5VCC	0.5VCC	Recessive	Н

(1) H=high level; L=low level; X=irrelevant.

Table 2 RECEIVER FUNCTION TABLE

V _{ID} =CANH-CANL	BUS STATE	RXD (1)
V _{ID} ≥0.9V	Dominant	L
0.5 <v<sub>ID<0.9V</v<sub>	?	?
V _{ID} ≤0.5V	Recessive	Н

(1) H=high level; L=low level; X=irrelevant.

Table 3 UNDERVOLTAGE PROTECTION STATUS TABLE

VCC	VIO (1)	BUS STATE	BUS OUTPUT (2)	RXD (2)
VCC>V _{uvd_VCC}	VIO>V _{uvd_VIO}	Normal	According go S and TXD	Follow the bus
VCC <v<sub>uvd_VCC</v<sub>	VIO>Vuvd_VIO	Protected status	Z	Н
VCC>V _{uvd_VCC}	VIO <v<sub>uvd_VIO</v<sub>	Protected status	Z	Н
VCC <v<sub>uvd_VCC</v<sub>	VIO <v<sub>uvd_VIO</v<sub>	Protected status	Z	Н

- (1) SIT1051AT/3 and SIT1051ATK/3 version;
- (2) H=high level; Z=high ohmic.

TIMING WAVEFORM

Fig 1 Transceiver transmission delay

Fig 2 tbit delay

Fig 3 Bus common-mode voltage (SAE 1939-14)

TEST CIRCUIT

Fig 4 Transceiver timing sequence test circuit

Fig 5 Transceiver bus symmetry test circuit

TYPICAL APPLICATION DIAGRAM

Fig 6 SIT1051AT/E (or SIT1051AT) and 5V MCU typical application diagram

Fig 7 SIT1051AT/3 and 3.3V MCU typical application diagram

ADDITIONAL DESCRIPTION

1 Sketch

SIT1051A is an interface chip applied between the CAN protocol controller and the physical bus. It can be used for in-vehicle, industrial control and other fields. It supports 5 Mbps flexible data rate (CAN FD) and has ability to transmit differential signal between the bus and the CAN protocol controller. Fully compatible with ISO 11898 standard.

2 Short-Circuit protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

3 Overtemperature protection

SIT1051A has an overtemperature protection function. When the overtemperature protection is triggered, the current of the driver stage will be reduced. Because the driver tube is the main energy consuming component, the current reduction will reduce the power consumption and thus reduce the chip temperature. Meanwhile, the rest of the chip still work.

4 Undervoltage protection

SIT1051A power pin has an undervoltage detection function to place the device in protected mode, which can protect the bus (bus output high ohmic state) when VCC is below V_{uvd_VCC} or VIO is below V_{uvd_VIO} (if applicable).

5 Control mode

The control pin S allows tow modes of operation to be selected: high speed mode and silent mode.

The high-speed mode is the normal operation mode and is optional by grounding pin S or floating it. CAN

driver and the receiver can work completely normally and CAN communication is bidirectional.

Set pin S to high level to activate silent mode. The CAN driver will shut off and the receiver will continue working.

6 TXD dominant time-out function

A "TXD dominant time-out" timer circuit prevents the bus lines from being driven to a permanent dominant state (blocking all network communication) if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TXD.

If the duration of the LOW level on pin TXD exceeds the internal timer value ($t_{\text{dom_TXD}}$), the transmitter is disabled, driving the bus lines into a recessive state. The timer is reset by a positive edge on pin TXD.

SOP8 DIMENSIONS

PACKAGE SIZE **SYMBOL** MIN./mm TYP./mm MAX./mm 1.40 1.80 Α 0.10 0.25 **A**1 1.30 1.40 1.50 A2 E1 È 0.60 A3 0.65 0.70 \bigcirc 0.38 0.51 b D 4.80 4.90 5.00 E 5.80 6.00 6.20 3.80 3.90 E1 4.00 1.27BSC e 0.25 0.50 h 0.40 L 0.60 0.80 0.25 1.05REF L1 c 0.20 0.25 0° 8° θ

LAND PATTERN EXAMPLE (Unit: mm)

DFN3*3-8 DIMENSIONS

PACKAGE SIZE

	FACKAGE SIZE					
Symbol	Min./mm	Typ./mm	Max./mm			
A	0.70	0.75	0.80			
A1	0	0.02	0.05			
С		0.203 REF				
D	2.90	3.00	3.10			
Е	2.90	3.00	3.10			
D2	2.05	2.15	2.25			
Nd		1.95BSC				
E2	1.10	1.20	1.30			
b	0.25	0.30	0.35			
e		0.65 TYP				
k	0.50REF					
L	0.35	0.4	0.45			
h	0.20	0.25	0.30			

LAND PATTERN EXAMPLE (Unit: mm)

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the
A0	component width
В0	Dimension designed to accommodate the
В	component length
K0	Dimension designed to accommodate the
KU	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Package Type	Reel Diameter A (mm)	Tape Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330±1	12.4	6.60±0.1	5.30±0.10	1.90±0.1	8.00±0.1	12.00±0.1
DFN3*3-8	329±1	12.4	3.30±0.1	3.30±0.1	1.10±0.1	8.00±0.1	12.00±0.3

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING	
SIT1051AT	SOP8	Tape and reel	
SIT1051AT/E	SOP8	Tape and reel	
SIT1051AT/3	SOP8	Tape and reel	
SIT1051ATK/3	DFN3*3-8, small shape, no leads	Tape and reel	

SOP8 package is 2500 pieces/disc in braided packaging. Leadless DFN3*3-8 is packed with 6000 pieces/disc in braided packaging.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate (T _L to T _P)	3 °C/second max	
Preheat time ts (T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds	
Melting time t _L (T _L =217 °C)	60-150 seconds	
Peak temp T _P	260-265 °C	
5 °C below peak temperature t _P	30 seconds	
Ave cooling rate $(T_P \text{ to } T_L)$	6 °C/second max	
Normal temperature 25°C to peak temperature T _P time	8 minutes max	

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

Version number	Data sheet status	Revision date
V1.0~V1.1	Product datasheet.	June 2023