PPKE ITK

A számítógépes grafika alapjai

Animációk/1

Előadó: Benedek Csaba

Tananyag: Szirmay-Kalos László, Benedek Csaba

ANIMÁCIÓ

Animáció = időfüggés

•kameranézet

Valós idejű animáció

Óra inicializálás (t_{start}) **do**

Legalább 15 ciklus másodpercenként

t = Óra leolvasás

Nézeti transzformáció: $T_V = T_V(t)$

for each object o:

modellezési transzf $T_{M, o} = T_{M, o}(t)$

endfor

Képszintézis

while $(t < t_{end})$

Folyamatás mozgatás - OpenGL

- Követelmények:
 - animáció folyamatosan fusson (azaz a felhasználónak ne kelljen minden lépésnél "léptetni")
 - a rendszer reagáljon a felhasználói beavatkozásra (pl leállítás, lövés...)
 - nem jó egyszerű végtelen ciklus-hurok!
- Megoldás:
 - olyan ciklus, amely felváltva hajt végre egy-egy lépést a rendszer eseménykezelő hurkából és a program szimulációs hurkából

GLUT

- Üresjárati eseménykezelő függvény:
 - glutIdleFunc (myIdleFunc)
- Idő lekérdezés:
 - glutGet (GLUT ELAPSED TIME)
- Minta program:

```
long oldTime;
void IdleFunc(void) {
  long newTime=glutGet(GLUT_ELAPSED_TIME);
  myStepFunction(newTime-oldTime);
  oldTime=newTime;
}
```

Képszintézis és megjelenítés

- Animációs hurok: képek előállítása és megjelenítése ciklikusan ismételve
 - Inkrementális képszintézis eljárások villogáshoz vezethetnek (képet fokozatosan építjük fel)
 - Megoldás: két külön rasztertár
 - Egyikben készül a kép, míg a másikat jelenítjük meg
 - Új képkocka megjelenítése: a két rasztertár gyors kicserélése

Dupla buffer animációhoz (GLUT)

Inicializálás: glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);

Valószerű mozgás

- Fizikai törvények:
 - Newton törvény
 - ütközés detektálás és válasz: impulzus megmaradás
- Fiziológiai törvények
 - csontváz nem szakad szét
 - meghatározott szabadságfokú ízületek
 - bőr rugalmasan követi a csontokat
- Energiafelhasználás minimuma

Newton törvény

Az erő rugalmas mechanizmuson keresztül hat, azaz folytonosan változik

 $T_{\rm M}(t)$ C² folytonos

T_M(t): Mozgástervezés

- Követelmény: ált. C², néha (C¹,C⁰) folytonosság
- Mozgás = a transzformációs elemek időbeli változtatása
- Tetszőleges pozíció+orientáció megadható az alábbi mátrixszal:

$$T_{M}(t)$$
= $\begin{bmatrix} a11 & a12 & a13 & 0 \\ a21 & a22 & a23 & 0 \\ a31 & a32 & a33 & 0 \\ px & py & pz & 1 \end{bmatrix}$

- De az orientáció (A mátrix) szabadsági foka csak 3!
 - szabályos orientáció: sorvektorok egymásra merőleges egységvektorok

T_M(t): Mozgástervezés

- \bullet $T_{M}(t)$ mátrixelemek nem függetlenek!
 - Tervezés független paraméterek terében

pozíció: px, py, pz orientáció: α , β , γ

$$\mathbf{p}(t)=[px, py, pz, \alpha, \beta, \gamma](t)$$

$$T_{M}(t)=$$

$$\begin{bmatrix} \cos\alpha & \sin\alpha & \\ -\sin\alpha & \cos\alpha & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} \cos\beta & -\sin\beta & \\ & 1 & \\ \sin\beta & \cos\beta & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ & \cos\gamma & \sin\gamma \\ & -\sin\gamma & \cos\gamma \end{bmatrix}$$

Orientáció tervezés – gondok...

- Változó orientáció-animálás a α , β , γ csavaró-billentő-forduló szögek független interpolációjával
 - PRO: minden pillanatban érvényes orientációt kapunk
 - KONTRA: képzeletbeli tengelyek körül forgatunk, ezért a mozgás nem lesz valósszerű ☺
 - a paraméterek egyenletes változtatása egyenetlen mozgást eredményez, a képzeletbeli tengelyek láthatóvá válnak
 - megoldás: interpoláció kvaterniókkal
 - (érdeklődőknek részletek: Szirmay-Kalos László et. al. "Háromdimenziós grafika, animáció és játékfejlesztés" 312 oldal – lásd könyvtárban)

Mozgástervezés a paramétertérben

- **p**(t) elemei ált. C², néha (C¹,C⁰) folytonosak
- p(t) elemeinek a definíciója:
 - görbével direkt módon (spline)
 - képlettel: script animation
 - pl: origóból (v_x, v_y) kezdősebességgel kilőtt lövedék mozgása $x(t)=v_x t$, $y(t)=v_v t g t^2/2$
 - kulcsokból interpolációval: keyframe animation
 - görbével indirekt módon: path animation
 - mechanikai modellből az erők alapján: physical anim.
 - mérésekből: motion capture animation

Interpoláció: 3-d rendű spline

$$r(t) = a_i (t - t_i)^3 + b_i (t - t_i)^2 + c_i (t - t_i)^4 + d_i$$
 ha $t_i \le t < t_{i+1}$

$$v_{i+1}$$

$$r(t_i) = r_i, \quad r(t_{i+1}) = r_{i+1}$$

$$r'(t_i) = v_i \quad r'(t_{i+1}) = v_{i+1}$$

$$r'(t_{i+1}) = v_{i+1}$$

- C² folytonosság követelményéből: spline
- Ismeretlen v_i -k meghatározása:
 - • \mathbf{r}_{i} " $(t_{i+1}) = \mathbf{r}_{i+1}$ " (t_{i+1}) + sebesség a kezdő és végpontban
 - •bonyolult lineáris egyenletrendszer megoldását igényli ⊗
- •Tervezési paraméterek alapján: Kohanek-Bartels, Catmull-Rom
 - •Feladjuk a C² folytonosság követelményét a görbeszegmensek kapcsolódási pontjaiban
 - Legalább szép sima legyen a pálya...

Catmull-Rom "spline"

$$r(t) = a_i (t - t_i)^3 + b_i (t - t_i)^2 + c_i (t - t_i)^4 + d_i$$
 ha $t_i \le t < t_{i+1}$

Sebességek előírása:

$$\mathbf{r}'(t_i) = \mathbf{v}_i \qquad \mathbf{r}'(t_{i+1}) = \mathbf{v}_{i+1}$$

 t_{i-1} t_i t_{i+1} t_n

$$\mathbf{a}_{i} = \frac{\mathbf{v}_{i+1} + \mathbf{v}_{i}}{(t_{i+1} - t_{i})^{2}} - \frac{2(\mathbf{r}_{i+1} - \mathbf{r}_{i})}{(t_{i+1} - t_{i})^{3}}$$

$$\mathbf{b}_{i} = \frac{3(\mathbf{r}_{i+1} - \mathbf{r}_{i})}{(t_{i+1} - t_{i})^{2}} - \frac{\mathbf{v}_{i+1} + 2\mathbf{v}_{i}}{(t_{i+1} - t_{i})}$$

 $d_i = r_i$

 $c_i = V_i$

$$\mathbf{v}_{i} = \frac{1}{2} \left(\frac{\mathbf{r}_{i+1} - \mathbf{r}_{i}}{t_{i+1} - t_{i}} + \frac{\mathbf{r}_{i} - \mathbf{r}_{i-1}}{t_{i} - t_{i-1}} \right)$$

Pálya animáció: Transzformáció

Explicit up vektor

$$zm = r'(t)$$

 $xm = zm \otimes up$
 $ym = zm \otimes xm$

Frenet keretek:

$$\mathbf{zm} = \mathbf{r}'(t)$$

 $\mathbf{xm} = \mathbf{zm} \otimes \mathbf{r}''(t) = \mathbf{r}'(t) \otimes \mathbf{r}''(t)$
 $\mathbf{ym} = \mathbf{zm} \otimes \mathbf{x}$

A függőleges, amerre az erő hat