ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

ESS 411/511 Geophysical Continuum Mechanics Class #9

For Wednesday

Please read Mase, Smelser, and Mase, Ch 3 through Section 3.6

For Friday

• ESS 511 Students will give a 1 minute presentation about their class projects on Friday.

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

Problem Sets

- Problem Set #2 due in Canvas on Wednesday
- Problem Set #3 in Thursday session

ESS 411/511 Geophysical Continuum Mechanics Class #9

Warm-up Finding the eigenvalues and eigenvectors of a 3x3 tensor is complicated and "mathy".

• Explain in words why anyone would want to find the eigenvalues and eigenvectors of a 3x3 tensor. Why bother?

Class-prep questions

We said earlier this week that stress s_{ij} can't be represented by a vector, it is a second-order tensor, because there are two directions involved in defining stress.

Yet our text (page 55) talks about a "stress vector"! Something strange is going on here!

In math, and in words, what exactly is this vector $t_i^{(n)}$? Hint – what is n?

Principal values and directions (Eigenvalues and eigenvectors)

A 2nd order tensor s_{ij} maps a vector u_j onto another vector v_i $s_{ij}u_j = v_i$ In general u_i and v_i point in different directions.

It would be nice if we could find some special vectors u_j that mapped onto vectors v_i that were parallel to u_j . That could help us to find a coordinate system in which s_{ij} could be expressed more simply.

For example, stress in the rocks on a mountain side.

We know that there is no shear stress on the sloping surface.

 Maybe the stress tensor would be simpler using a coordinate system aligned with the mountain surface.

Finding eigenvectors

When t_{ij} is symmetric with real components, there will be some vectors n_i that do map onto a parallel vector.

$$t_{ij}n_j = \lambda n_i$$
 or $T \cdot \hat{\mathbf{n}} = \lambda \hat{\mathbf{n}}$

When n_j is a unit vector, it defines a principal direction or **eigenvector** of the tensor t_{ij} , and λ is called a principal value or **eigenvalue** of t_{ij} .

$$t_{ij} n_j - \lambda n_i = 0$$

Since $n_i = \delta_{ij} n_j$

$$t_{ij} n_j - \lambda \delta_{ij} n_j = 0$$

or

$$(t_{ij} - \lambda \delta_{ij}) n_j = 0$$
 or in symbolic form, $(\mathbf{T} - \lambda \mathbf{I}) \cdot \mathbf{n} = 0$

Example 2.14

Determine the principal values and principal directions of the second-order tensor T whose matrix representation is

$$[t_{ij}] = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Example 2.14

Determine the principal values and principal directions of the second-order tensor T whose matrix representation is

$$[t_{ij}] = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

In order for n_i to be an eigenvector, n_i and t_{ij} n_j must be parallel

$$t_{ij} n_j - \lambda n_i = 0$$

Since
$$n_i = \delta_{ij} n_j$$

$$t_{ij} n_j - \lambda \delta_{ij} n_j = 0$$

Factor out
$$n_j$$
: $(t_{ij} - \lambda \delta_{ij}) n_j = 0$

$$(t_{11} - \lambda) n_1 + t_{12}n_2 + t_{13}n_3 = 0$$

$$t_{21}n_1 + (t_{22} - \lambda) n_2 + t_{23}n_3 = 0$$

$$t_{31}n_1 + t_{32}n_2 + (t_{33} - \lambda) n_3 = 0$$

Obviously these equations are satisfied if $n_1 = n_2 = n_3 = 0$. But that is no help because we said n_i is a unit vector

Nontrivial solutions can exist (the equations are not independent) $|t_{ij}-\lambda\delta_{ij}|=0$ if the determinant = 0

$$\begin{vmatrix} 5-\lambda & 2 & 0 \\ 2 & 2-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{vmatrix} = 0$$

So, expanding on the third row,

$$(3-\lambda)\left(10-7\lambda+\lambda^2-4\right)=0$$

which factors into

$$(3 - \lambda) (6 - \lambda) (1 - \lambda) = 0$$

$$(3 - \lambda) (6 - \lambda) (1 - \lambda) = 0$$

So, the eigenvalues are: $\lambda_{(1)}=3$ $\lambda_{(2)}=6$, $\lambda_{(3)}=1$

Now, find the 3 corresponding eigenvectors n_j by solving the equations $(t_{ij} - \lambda \delta_{ij}) n_j = 0$ with each value of λ in turn:

$$\begin{aligned} &(t_{11}-\lambda)\,n_1+t_{12}n_2+t_{13}n_3=0\\ &t_{21}n_1+(t_{22}-\lambda)\,n_2+t_{23}n_3=0\\ &t_{31}n_1+t_{32}n_2+(t_{33}-\lambda)\,n_3=0 \end{aligned} \quad \text{and} \quad \begin{bmatrix} t_{ij} \end{bmatrix} = \begin{bmatrix} 5 & 2 & 0\\ 2 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix}$$

With
$$\lambda_{(1)}=3$$
: $2n_1 + 2n_2 = 0$
 $2n_1 - n_2 = 0$

The solution is: $n_1=n_2=0$ and since n_j must be a unit vector, $n_3=1$ and the first eigenvector is: $(0,0,\pm 1)$, i.e. $\hat{e}'_3=\hat{e}_3$ So the new axes are just the old axes rotated about \hat{e}_3

Similarly, using
$$\lambda_{(2)}$$
=6,
$$-n_1 + 2n_2 = 0$$

$$2n_1 - 4n_2 = 0$$

$$-3n_3 = 0$$

 $n_1 = 2n_2$ and since $n_3 = 0$,

And the unit-vector criterion gives

$$(2n_2)^2 + n_2^2 = 1$$
, or $n_2 = \pm 1/\sqrt{5}$ and $n_1 = \pm 2/\sqrt{5}$

So, the second eigenvector is: $(\pm 2/\sqrt{5}, \pm 1/\sqrt{5}, 0)$

Similarly, using
$$\lambda_{(3)} = 1$$
,

$$4n_1 + 2n_2 = 0$$

 $2n_1 + n_2 = 0$

$$n_1 = 2n_2$$
 and since $n_3 = 0$,

And the unit-vector criterion gives

$$(2n_2)^2 + n_2^2 = 1$$
, or $n_2 = \pm 1/\sqrt{5}$, and $n_1 = \pm 2/\sqrt{5}$

So, the third eigenvector is: $(\pm 1/\sqrt{5}, \mp 2/\sqrt{5}, 0)$

And the

Transformation matrix

is:

$$[\mathfrak{a}_{ij}] = \left| \begin{array}{c} \pm \frac{2}{\sqrt{5}} \end{array} \right|$$

Each row is an eigenvector

$$[a_{ij}] = \begin{bmatrix} 0 & 0 & \pm 1 \\ \pm \frac{2}{\sqrt{5}} & \pm \frac{1}{\sqrt{5}} & 0 \\ \pm \frac{1}{\sqrt{5}} & \mp \frac{2}{\sqrt{5}} & 0 \end{bmatrix}$$
or

$$[a_{ij}] = \begin{bmatrix} 0 & 0 & \pm 1 \\ \pm \frac{2}{\sqrt{5}} & \pm \frac{1}{\sqrt{5}} & 0 \\ \pm \frac{1}{\sqrt{5}} & \mp \frac{2}{\sqrt{5}} & 0 \end{bmatrix}$$

The rows provide 2 sets of eigenvectors, depending on the upper/lower +/- choices.

- How would you decide which set to use?
- Suppose in a different problem, the 2nd and 3rd eigenvalues were equal. There will be some remaining ambiguity you won't be able to find 3 eigenvectors in the same way.
- What's going on? What have you learned about the directions in which $a_{ii}n_i$ points in the same direction as n_i ?