13

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-114317

(43)公開日 平成9年(1997)5月2日

(51) Int.Cl.6	識別記号 庁内盟	理番号 F I	技術表示箇所
G 0 3 G 15/20	109	G03G 1	5/20 1 0 9
	102	•	102
G01K 1/18		G01K	1/18
5/62		!	5/62
H01H 37/34		H01H 3	7/34
		宋 間 企 審	未請求 請求項の数1 FD (全 6 頁)
(21)出願番号	特願平7-296027	(71)出顧人	000005496
			富士ゼロックス株式会社
(22)出顧日	平成7年(1995)10月20日		東京都港区赤坂二丁目17番22号
		(72)発明者	上原 康博
			神奈川県足柄上郡中井町境430 グリーン
			テクなかい 富士ゼロックス株式会社内
		(72)発明者	庄子 佳男
			神奈川県足柄上郡中井町境430 グリーン
	•		テクなかい 富士ゼロックス株式会社内
		(72)発明者	松本 充博
			神奈川県足柄上郡中井町境430 グリーン
•			テクなかい 富士ゼロックス株式会社内
		(74)代理人	弁理士 宮川 清 (外1名)
		L	

(54) 【発明の名称】 サーモスタット

(57)【要約】

【課題】 温度管理の対象となる物体又は物質の温度変 化を素早く適確に検知し、異常な温度変動を回避するこ とができるサーモスタットを得る。

【解決手段】 温度管理の対象となる物体等と接触又は 近接して配置される受熱部4aと、この受熱部4aと対 向して配置されるバイメタル3との間にシリコーングリ ースなどの高熱伝導性物質5を充填する。これにより、 温度管理の対象となる物体等から受熱部4 a に吸収され た熱が高熱伝導性物質5を介して素早くバイメタル3に 伝達される。バイメタル3の温度がある設定値以上に上 昇すると、バイメタル3が変形して移動ピン6を押圧 し、これに応動して板バネ7の可動側接点9が固定側接 点8と遮断される。このため、サーモスタットの応答性 が著しく向上し、異常な温度変動が防止される。

される。

特開平9-114317

【特許請求の範囲】

【請求項1】 温度が管理される対象と接触又は近接 して配置される受熱部と、

この受熱部の背面と近接又は一部が接触するように配置 され、温度の変化によって変形を生じるバイメタル部材 と、

このバイメタル部材の変形に応動して電気的接点の接続 又は遮断を行なうスイッチング部とを有するサーモスタ

前記受熱部と前記バイメタル部材との間に髙熱伝導性物 10 質が充填されていることを特徴とするサーモスタット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、温度の変動が管理 される物体又は物質の温度が許容範囲を越えたときに給 電の開始又は停止を行うサーモスタットに関し、例えば 電子写真式の画像形成装置における定着装置の異常な温 度上昇を防止するために用いられるサーモスタットに関 する。

[0002]

【従来の技術】電子写真方式を利用した複写機等の画像 形成装置においては、記録シート上に転写されたトナー 像を定着して、永久画像にする。この定着方法として、 従来より溶剤定着法、圧力定着法および加熱定着法が用 いられている。このうち溶剤定着法は、溶剤が蒸発して 発散し、その臭気が不快感を感じさせるという欠陥があ る。また、圧力定着法は、他の定着法に比べて定着性が 悪く、さらにカプセルトナーのような高価な圧力感応性 トナーを使用しなければならないという経済上の問題が ある。このため、現状では上記溶剤定着法・圧力定着法 30 はともに、広く普及するには至っておらず、加熱によっ てトナーを記録シート上に融着させる加熱定着法が広く 採用されている。

【0003】この加圧定着法を実施する装置としては種 々のものがあるが、一般には加熱ローラ方式のものが利 用されている。この種の装置は、図4に示すように加熱 ローラ101と加圧ローラ102とを備えており、加熱 ローラ101は、金属製の円筒状のコア103と、この 内部に設けられた赤外線ランプ等のヒーター104と、 コア103の外周面を被覆する離型層105とで主要部 40 が構成されている。この離型層105は、コア103の 外周面に用紙上のトナーが付着しないように設けられて いるものであって、その材料としては、フッ素樹脂、H TV (High Temperature Volcanization) シリコーンゴ ムまたはRTV (Room Temperature Volcanization) シ リコーンゴムなどの耐熱性材料が用いられる。また上記 コア103は、アルミニウム、アルミニウム合金、鋼、 鋼合金、銅もしくは銅合金等によって形成される。ま た、加熱ローラ101と対向する位置には、加熱ローラ

られ、検知された温度に基づき制御装置111でヒータ ー104のON/OFFが制御されるようになってい る。これにより、加熱ローラ101が所定の温度に制御

【0004】一方、加圧ローラ102は、加熱ローラ1 01と圧接することができるようにほぼ平行に配置され ており、金属からなる円筒状のコア106と、コア10 6の外周に被覆された耐熱性弾性体層107とを備えて いる。そして、加熱ローラ101と加圧ローラ102と が圧接され、少なくともいずれか一方が回転駆動され る。これにより、未定着トナー像108を担持した記録 シート109は双方のローラの間に挟持され、搬送され る。このとき、加熱ローラ101から伝達される熱でト ナーが溶解し、圧接力によって記録シート109上に圧 着される。

【0005】この加熱ローラ方式は、他の加熱定着方 式、例えば熱風定着方式やオーブン定着方式と比べて熱 効率が高く、使用電力が少なくて済むとともに、高速で 定着を行うことができる。また、紙詰まりが生じたとき 20 でも、加熱ローラの温度よりも記録シート109が高温 にならず、火災の危険性が少ないという利点があり、現 在では最も広く利用されている。

【0006】上記のような定着装置では、加熱ローラ1 01の表面温度を室温から定着に必要な温度にまで上昇 させる必要があるために、複写機の電源を入れても直ち に複写の作業ができず、所定のウォーミングアップタイ ムを必要としている。この時間は比較的に長く、一般的 には1~10分程度必要である。この対策として、加熱 ローラの熱容量を小さくするとともに、最初にできる限 りの大電流を投入することにより、ウォーミングアップ タイムを10~30秒に短縮することが可能となる。と ころが、このようにウォーミングアップタイムを短縮す ると、加熱ローラの温度が急激に上昇し、その温度上昇 速度が5~15℃/secと非常に急激なものとなる。

【0007】また、上記のような定着装置では、温度制 御回路の動作不良や、センサー110の断線・短絡・設 定位置不良により、加熱ローラ101が制御温度以上に 加熱される場合がある。かかる場合に周辺装置が高温で 損壊したり、火災が発生するといった事態を回避するた め、加熱ローラ101の温度が許容範囲を超えて上昇す るのを防止する必要がある。

【0008】従来より、この種の装置として、ヒーター と直列にサーモスタットや温度ヒューズ等の異常温度防 止装置を接続しているのが一般的である。ところが、前 記した如く加熱ローラの温度上昇が急激に行われると、 異常温度防止装置の応答性等が影響して正確にその動作 が行われないことがある。すなわち、加熱ローラが異常 に高温になっていても、異常温度防止装置がその温度に 追従できず、加熱ローラが紙の燃える温度まで上昇した 101の表面温度を検知する温度センサー110が設け 50 後で、異常温度防止装置が作動するという問題が発生す

15

る。このような問題は、特にコピー開始時のウォーミン グアップタイムに際して発生しやすいという傾向を持っ ている。

【0009】上記のような異常温度上昇に対する応答性 を考えると、ほとんどの温度ヒューズは、その充電部が 露出しているために、加熱ローラから適当な距離だけ離 して設置しなければならない。また露出していないもの では、絶縁性部材により熱伝導性が悪くなるという欠点 がある。このため、一般にはサーモスタットの方が優れ ている。

【0010】上記定着装置では、図4に示すように、サ ーモスタット120がヒーター104と直列に接続され ており、加熱ローラ101の周面と対向する位置に設置 されている。このサーモスタット120は、図5に示す ように、ディスク保持部材112を覆うように固定キャ ップ114が設けられており、その固定キャップ114 に凸状の受熱部114aが形成されている。また、固定 キャップ114に隣接してディスク状バイメタル113 が設けられ、このディスク状バイメタルと当接して進退 可能に支持される移動ピン116が設けられている。そ 20 われるものであればよく、接続又は遮断が行なわれた時 して、受熱部114aが加熱ローラ101と近接するよ うに設置されている。

【0011】このようなサーモスタットでは、加熱ロー ラ101から受熱部114aを介してディスク状バイメ タル113に熱が伝達される。そして、ディスク状バイ メタルの温度が上昇すると、凸状に湾曲したディスク状 バイメタルに線膨張率の差に起因する内部応力が蓄積さ れ、ある設定温度となると湾曲方向を反転するように変 形する。その形状の変化によって移動ピンが稼働され、 スイッチング部の電気的接点を遮断する。これにより、 ヒーター104への給電が停止され、加熱ローラ101 がそれ以上加熱されるのが防止される。

[0012]

【発明が解決しようとする課題】しかしながら、上記サ ーモスタット110では、ディスク状バイメタルの形状 を変形を生じやすいものとしなければならず、受熱部1 14aとの間には空隙ができてしまう。受熱部114a の温度は加熱ローラ101からの熱を受けて比較的急激 に上昇するが、空隙が存在しているためにこの空隙が断 熱層として作用し、受熱部114aからディスク状バイ 40 スタットは、円筒状のハウジング1と、この一端に固着 メタル113への熱伝達が効率良く行われない。このた め、ディスク状バイメタル113の温度上昇は、受熱部 より非常に遅くなり、サーモスタットの応答性を悪くし ているという問題がある。

【0013】本発明は、上記のような問題点に鑑みてな されたものであり、その目的は、受熱部の温度が変動し たときに、その温度変動を素早くバイメタルに伝達する ことができ、温度管理の対象となる物体又は物質等の温 度が許容できる範囲以上に変動するのを回避することが できるサーモスタットを提供することである。

[0014]

【課題を解決するための手段】上記の課題を解決するた めに、本願に係る発明は、 温度が管理される対象と接 触又は近接して配置される受熱部と、 この受熱部の背 面と近接又は一部が接触するように配置され、温度の変 化によって変形を生じるバイメタル部材と、このバイメ タル部材の変形に応動して電気的接点の接続又は遮断を 行なうスイッチング部とを有するサーモスタットにおい て、 前記受熱部と前記バイメタル部材との間に高熱 10 伝導性物質が充填されているものとする。

【0015】前配温度が管理される対象とは、サーモス タットの動作による制御を行なうための熱伝達源となる 物体・物質等であり、様々な装置・機器における部材・ 部分等を含むものである。前記バイメタル部材は温度変 化にともなって徐々に変形が進行するもの、湾曲した形 状を有し、所定の温度変化があったときに湾曲方向が反 転するもの等を含むものである。前記スイッチング部 は、バイメタル部材が温度変化によって変形したとき に、電気的接点の接続又は遮断の少なくとも一方が行な の復帰が、外部からの動作によって行なわれるものであ ってもよい。また、バイメタル部材の温度変化による変 形によって接続・遮断の双方が行なわれるものであって もよい。前記髙熱伝導性物質は、髙粘性流体、グリース 状材料、極めてわずかの力で変形を生じる軟弾性部材等 を用いることができる。

【0016】本願発明は、上記のような構成を有してい るので、以下のように作用する。上記サーモスタットで は、受熱部とバイメタル部材との間に髙熱伝導性物質が 充填されているので、加熱される対象からの熱によって 受熱部が加熱されると、高熱伝導性物質を介して素早く 熱がバイメタル部材に伝達される。このため、サーモス タットの熱応答性が向上され、温度が管理される対象の 温度変化を適確に検知することができ、過度に温度が変 動する前に給電の開始又は停止を行い得るものとなる。

[0017]

【発明の実施の形態】以下、本発明の実施の形態を図に 基づいて説明する。図1は、本発明に係るサーモスタッ トの実施の一形態を示す概略断面図である。このサーモ されたディスク保持部材2と、このディスク保持部材を 覆うように取り付けられる固定キャップ4と、この固定 キャップ4と上記ディスク保持部材2との間に保持さ れ、中央部付近が凸状に形成されたディスク状バイメタ ル3と、このディスク状パイメタル3の背面と接触し、 軸心方向に進退可能に支持される移動ピン6とを備えて いる。さらに、上記固定キャップ4は中央部付近に突出 した受熱部4aを有しており、この受熱部4aとバイメ タル3の凸状部とが位置を合わせるように配置されると 50 共に、この受熱部4aとバイメタル3との間には髙熱伝 (4)

特開平9-114317

5

導性物質5が充填されている。

【0018】また、上記移動ピン6の他端部と接触する位置には、一端で固定されたU字状の板パネ7が配設されており、この板パネ7の非固定端側に上記移動ピンが当接され、端部には可動側接点9が設けられている。一方、ハウジング1の内部には固定側接点8が固着され、板パネ7の付勢力によって固定側接点8と可動側接点9とが圧接されるようになっている。この板パネ7および固定側接点8は接続端子11,12を介して図示しない電源等に接続されている。板パネ7の背面側には復帰用10作動部材10が設けられており、先端部10aが板パネ7の固定端側を貫通し、板パネ7の非固定端側を介して移動ピン6に当接されている。これにより、移動ピン6を押圧して元の状態に移動させることができるようになっている。。

【0019】上記ディスク状バイメタル3は、温度がある設定値以上に上昇すると、受熱部側に凸状となっている湾曲面が反転し、受熱部側が凹状となるように変形するものであり、この温度は150℃に設定されている。 上記固定キャップ4は、アルミニウムやステンレスチー 20ル等のような錆が発生しにくく、高熱伝導性を有する金属材料で形成されている。

【0020】上記高熱伝導性物質5としては、熱伝導率が 5×10^{-4} cal/ \mathbb{C} ・sec・cm以上、望ましくは 15×10^{-4} cal/ \mathbb{C} ・sec・cm以上の耐熱性グリースまたは低硬度の耐熱性ゴムなどが良い。本例では、高熱伝導性物質5として熱伝導率が 20×10^{-4} cal/ \mathbb{C} ・sec・cmのシリコーングリース(信越化学社製 商品名G746)を用いている。

【0021】このようなサーモスタットでは、受熱部430 a が図示しない温度管理が行われる対象、例えば加熱ロ ーラに接触又は近接して配置され、この受熱部 4 a から 高熱伝導性物質5を介してディスク状パイメタル3に熱 が伝達される。このディスク状バイメタル3の温度が設 定値(150℃)以上に上昇すると、図2に示すように 凸状の湾曲部が凹状の変形し、その形状の変化によって 移動ピン6が応動して板バネ7を押圧する。これによ り、板バネ7の可動側接点9が固定側接点8と離れ、電 源(図示しない)と接続される電気的接点が遮断され る。このため、温度管理の対象が許容範囲以上の温度に 40 上昇するのが防止され、火災等の危険性が回避される。 【0022】一方、温度管理の対象の温度がある程度低 くなったら、復帰用作動部材10を押下する。これによ り、先端部10aが板バネ7を介して移動ピン6を押圧 し、さらに移動ピン6の先端部がディスク状バイメタル 3を押圧することになり、バイメタル3の湾曲方向が反 転して図1に示す元の状態に戻る。このような動作によ り、サーモスタットが元の状態に復帰し、通電が可能と なる。

【0023】このようなサーモスタットの効果を確認す 50

るため、図4に示す定着装置の加熱ローラに上記図1に示すサーモスタットと従来のセーモスタットとを装備して行った温度上昇試験の結果を示す。ここで、加熱ローラとしては、直径20mm、肉厚0.2mmの鉄製コアに30μmの厚さでフッ素樹脂(テフロン:デュポン社の登録商標)を被覆し、その内部に熱源として石英ラン

プを配設したものが用いられている。上記サーモスタットはこの加熱ローラの周面と近接するように配設されている。

【0024】図3は、上記温度上昇試験において加熱ローラの表面温度と通電時間及びサーモスタットの作動時の時間との関係を示したものである。この図に示すように、本願発明に係るサーモスタットが作動したのは約25秒後であり、その際の加熱ローラの表面温度は280℃であった。これに対し、図5に示すような従来のサーモスタットを用いて同様に加熱ローラの温度上昇試験を行ったところ、サーモスタットが動作したのは、通電後約35秒後であり、この時の加熱ローラの表面温度は350℃に達していた。

【0025】このように加熱ローラの表面温度が350℃に上昇した場合には、発煙したり、紙が燃焼する危険性があり、また加熱ローラの周辺の部品が熱変形してしまい、部品の交換を行う必要があった。一方、加熱ローラの表面温度が280℃程度では、発煙等を生じることはなく、全ての部品が再使用可能であった。従って、上記サーモスタットでは加熱ローラを適切な温度に維持し、異常温度に加熱することによる発煙や紙の燃焼等が生じないように加熱温度の制御を適切に行うことが可能となる。

【0026】なお、上記温度上昇試験では、サーモスタットを電子写真複写機等の定着装置において異常温度上昇を防止するために用いたが、電子写真複写機のみに限定されるものではなく、その他の温度制御を行う装置の全般に使用することが可能である。さらに、このサーモスタットは温度管理の対象となる物体又は物質の温度を一定に保持するために、加熱源をオン・オフコントロールする温度センサーとして用いることも可能であり、上記サーモスタットを用いて精密な制御を行うことができる。

0 [0027]

【発明の効果】本発明のサーモスタットは、加熱体からの熱を受熱部からバイメタル部材に素早く正確に伝達させることができ、バイメタル部材の応答性を大幅に向上することができる。従って、温度管理の対象となるものの温度を制御温度に対して誤差の小さい範囲で正確にコントロールすることができ、異常な温度変動を阻止することができる。このため、火災等の危険性を素早く適確に阻止することや周囲の他の部材の熱による損傷を確実に防止することもできる。

【図面の簡単な説明】

17

7

【図1】本発明に係るサーモスタットの一例を示す概略 断面図である。

【図2】図1に示すサーモスタットの作動したときの状態を示す概略断面図である。

【図3】図1に示すサーモスタットの作動温度を従来のサーモスタットと比較したグラフである。

【図4】図1に示すサーモスタットを用いることができる定着装置を示す概略構成図である。

【図5】従来のサーモスタットを示す部分構成図である。

【符号の説明】

(b)

1 ハウジング

- 2 ディスク保持部材
- 3 ディスク状パイメタル
- 4 固定キャップ
- 5 髙熱伝導性物質
- 6 移動ピン
- 7 板バネ
- 8 固定側接点
- 9 可動側接点
- 10 復帰用作動部材
- 11 接続端子
- 12 接続端子

(a)

【図1】

【図2】

【図5】

(6)

特開平9-114317

