

CURSO

Análisis de expresión diferencial de genes e investigación reproducible con R

Dra. Débora Torrealba Sandoval

Doctorado en Biotecnología PUCV - UTFSM

Clase 3

Síntesis de ADNc y Diseño de primers

Plan de la clase

- Síntesis de ADNc
- Qué son y como se diseñan los cebadores
- Características de un cebador eficiente
- Actividad de aprendizaje: como diseñar cebadores

Paso a paso

Síntesis de ADNc

¿Qué es la transcripción inversa?

ARN es muy inestable para usarlo como plantilla para RT-qPCR

De ARN a ADNc

El grupo hidroxilo extra en el azúcar ribosa es altamente reactivo Guardar ARN a -80º C Tiene una columna vertebral de azúcar desoxirribosa

Guardar ADNc a -20°C

¿Cuánto ARN necesito para preparar ADNc?

Muestra ID	Concentración ng/μl	Volumen de ARN (1ug)	Volumen total de 15 μl de H ₂ 0 13,27		
1	579,4	1,73			
2	689,1	1,45	13,55		
3	880,6	1,14	13,86		

$$\frac{1000}{579.4} = 1,73\mu$$

Transcribir la misma cantidad de ARN en cada muestra

Síntesis de ADNc

En dos pasos

SuperScript III Reverse Transcriptase de Invitrogen

Promega

Master Mix 1:

oligo(dt) primer dNTP

Termociclador a 65°C por 5 min

Master Mix 2:

Buffer

DTT

Superscript III

Termociclador a 50°C por 1h, 70°C por 15 min

Síntesis de ADNc

> En un paso

iScript cDNA Synthesis Kit de BioRad

Master Mix

Component	Volume per Reaction, µ
5x iScript Reaction Mix	4
iScript Reverse Transcriptase	1
Nuclease-free water	Variable
RNA template (100 fg-1 µg total RNA)*	Variable
Total volume	20

Protocolo en termociclador

Priming	5 min at 25°C				
Reverse transcription	20 min at 46°C				
RT inactivation	1 min at 95°C				
Optional step	Hold at 4°C				

- Mantener muestras en hielo
- Sacar enzima solo para usar

Dra. Débora Torrealba – https://genomics.pucv.cl/

Cebadores

Cebadores

- También conocidos como primers, partidores o iniciadores
- Son cadenas cortas de ácido nucleico
- La ADN polimerasa necesita sintetizar una nueva hebra desde una preexistente
- Los cebadores se necesitan dos para llevar a cabo la PCR

¿Por qué necesitamos cebadores?

Alineamiento

Elongación

Tipos de cebadores para ADNc

Cebador Oligo(dt)

Se unen a las colas poli(A) complementarias del ARNm

Hexámeros aleatorios

Cebador de región específico

Los cebadores específicos de secuencia tienen la mayor especificidad para el objetivo de interés.

Obtención de cebadores para PCR real time

Cebadores publicados

Table 1Real-time qRT-PCR primer sequences, efficiencies and sources

Gene name	Primer name	Primer sequence	% Efficiency ^b
(ASAP ID number ^a)		(5' to 3', forward/reverse)	
pelX	P0779	AACAAACGCCGACCTTCC/	105
(ABF-0014783)	P0780	TCCTGATGGGTGACTAAATCC	
(ABF-0019391)	P0781	AAACACCGTCAATTACAG/	86
	P0782	AATTCAGTATCGGAAATCG	
rplU/	P0275	GTTTGACCAGGTTCTGATGGTTGC/	91
(ABF-0046905)	P0276	CCAGCCTGCTTACGGTAGTGTTTA	
gyrA/	P0791	CCACCCGTATCCCGAATC/	90
(ABF-0017293)	P0792	ACAACCGTCAATCACTTCAG	
rpoS/	P0789	CGCTGCTGGATCTGATTG/	109
(ABF-0020446)	P0790	ACGATATGGATGGGTAAACG	
ompA/	P0787	CAGACAGCCACGACAACTC/	87
(ABF-0018822)	P0788	TAGCGTATTCAACACCCACAG	
rpoD/	P0814	GCCATCACCTATCTGTTG/	85
(ABF-0019909)	P0815	TCTTCTTCGTCTTCTTCG	

^a *Dickeya dadantii* sequences can be obtained (under the former name *Erwinia chrysanthemi* 3937) from the ASAP database at https://asap.ahabs.wisc.edu/asap/logon.php.

^b Primer efficiencies were determined by the MyiQ Cycler software from a standard dilution curve of target DNA as described in Materials and methods.

Primers pre-diseñados

Comprar primers pre-diseñados

Predesigned qPCR Assays

Diseño de cebadores

Antes de comenzar...

Nucleótidos	Probabilidad
A, C, G, T	1/4
Dinucleótido (ej: AT)	1/16
Tetranucleótido (ej: AATG)	1/256
Cebador de 16 pb	1/4294967296

Características de un primer eficiente

Longitud entre 17 - 28 pb

Contenido de GC en un rango de 50 a 60%

Tm entre 59 y 65ºC

Producto PCR de 80 a 200 pb

Características de un primer eficiente

Contener una abrazadera de GC

- 5'-CTCTGTAGGGTCGCGACTAC-3'
- 5'-CGCTACCACCATCGATTGAT-3'
- 5'-GGATCTGGCTGCATGCTATG-3'

Evitar tres o mas citocinas o guaninas en el 3`terminal

Evitar repeticiones de nucleótidos

Características de un primer eficiente

Cebadores específicos para el gen de interés

Si usa Oligo(dT)s diseñar cebadores cerca del 3' del gen

Cebadores separados por un intrón

Software para el diseño de cebadores

Primer3web

PRIMEGENS-w3

Quant Prime

Primer-BLAST

GenBank -Send to: ▼ Change region shown Salmo salar hemoglobin subunit alpha (hba), mRNA Customize view NCBI Reference Sequence: NM 001123662.1 Graphics FASTA Analyze this sequence Go to: 🗹 LOCUS NM 001123662 556 bp linear VRT 10-JAN-2022 Pick Primers DEFINITION Salmo salar hemoglobin subunit alpha (hba), mRNA. Highlight Sequence Features ACCESSION NM 001123662 VERSION NM 001123662.1 Find in this Sequence **KEYWORDS** RefSea. SOURCE Salmo salar (Atlantic salmon) Show in Genome Data Viewer ORGANISM Salmo salar Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; Neopterygii; Teleostei; Protacanthopterygii; Articles about the hba gene Salmoniformes; Salmonidae; Salmoninae; Salmo. REFERENCE 1 (bases 1 to 556) Salmo salar and Esox lucius full-length cDNA Leong JS, Jantzen SG, von Schalburg KR, Cooper GA, Messmer AM, Liao **AUTHORS** sequences reveal change [BMC Genomics. 2010] NY, Munro S, Moore R, Holt RA, Jones SJ, Davidson WS and Koop BF. cDNA and deduced amino acid sequence of the TITLE Salmo salar and Esox lucius full-length cDNA sequences reveal Salmo salar (Atlantic se [Nucleic Acids Res. 1989] changes in evolutionary pressures on a post-tetraploidization genome

20433749

BMC Genomics 11, 279 (2010)

JOURNAL

PUBMED

See all...

Primer-BLAST

Diseño de cebadores

Exon/intron selection	A refseq mRNA sequence as PCR template input is required for options in the section 😯
Exon junction span	No preference 🗸
Exon junction match	Min 5' match Min 3' match Max 3' match 7 4 8 Minimal and maximal number of bases that must anneal to exons at the 5' or 3' side of the junction 3
Intron inclusion	Primer pair must be separated by at least one intron on the corresponding genomic DNA 😯
Intron length range	Min Max 200 10000 ?

Diseño de cebadores

Resultados

Resultados

Primer pair 1

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	AGAGTGGCACCAGAGGAGCA	Plus	20	283	302	63.03	60.00	5.00	1.00
Reverse primer	ACATGGCGGGGGTGTTGAAG	Minus	20	397	378	63.05	60.00	4.00	1.00
Product length	115								
Total intron size	518 (between pos. 101424830 and 101425349 on NC 059444.1)								

Products on intended targets

>XM_014194536.2 PREDICTED: Salmo salar beta actin (LOC100136352), transcript variant X1, mRNA

Actividad de aprendizaje

Diseño de cebadores en Primer-BLAST (Drive)

Clase 3: Diseño de Primers

PCR en tiempo real e Investigación reproducible con R

Primer-BLAST

Resumen de la clase

- Síntesis de ADNc en reacciones de 1 y 2 pasos
- Conocimos que es un cebador y cuales son las características de cebador eficiente
- Diseño de cebadores a través del software Primer-Blast de NCBI
- Análisis de los cebadores con los software Oligoanalizer y Blast

Próxima clase

Eficiencia de los cebadores y optimización de qPCR

