February 7, 2023 2:36 PM

1. Implement the logic function f given in the truth table below, using only NOT gates and one 4-to-1 multiplexer.

w_1	w_2	w_3	$\mid f \mid$
0	0	0	0 W3
0	0	1	0 U3
0	1	0	0 W3
0	1	1	1ω3
1	0	0	1 03
1	0	1	0 📆
1	1	0	1 📆
1	1	1	1 W3

2. Give a (minimized) gate-level implementation of a circuit that converts a 3-bit binary number to the corresponding 3-bit Gray code representation. If you have not seen it before, you may need to look up what Gray codes are.

- 3. We wish to implement a circuit that has input w and output z. The circuit must generate z=1 when the previous four values of w were 1001 or 1111; otherwise z=0.
 - (a) Give a Moore FSM model for the system.
 - (b) Give a circuit implementation of this using D flip-flops and necessary logic gates.
 - (c) Give an implementation of this system in Verilog.

(b) Give a circuit implementation of this using D flip-flops and necessary logic gates.

(c) Give an implementation of this system in Verilog.

```
module four_values(input w, clk, output reg z);
  reg P0, P1, P2, P3;

always @(posedge clk) begin
    P3 <= P2;
    P2 <= P1;
    P1 <= P0;
    P0 <= w;
  end

assign z = (P3 & P2 & P1 & P0)|(P3 & ~P2 & ~P1 & P0);
endmodule</pre>
```

4. Consider the following Moore FSM, with input x and output z. Derive an equivalent state machine with the minimum number of states.

Present State	Next State		Output
	x = 0	x = 1	
\overline{A}	B	C	0
B	D	E	0
C	F	G	0
D	A	A	0
E	A	A	1
F	A	A	0
G	A	A	1

