Tutorial 8 HT

Research Methods for Political Science - PO3110

Andrea Salvi

26 March 2019

Trinity College Dublin,

https://andrsalvi.github.io/research-methods/

Table of contents

- 1. Planning the Review
- 2. Review of HM 3
- 3. A few more things on Logistic Regression

Planning the Review

What to cover?

The next two tutorials will be all about reviewing what we did and develop some more applied knowledge through exercises and practical examples (group-works etc). Also I will be more than glad to troubleshoot issues that may arise while working on your final project.

What to cover?

The next two tutorials will be all about reviewing what we did and develop some more applied knowledge through exercises and practical examples (group-works etc). Also I will be more than glad to troubleshoot issues that may arise while working on your final project. **Tentative Candidates:**

- · Linear Regression: Theory, Applications
- Assumption of Regression and Diagnostics
- Logistic Regression
- Non-parametric Tests
- · Research Design
- BONUS: Applied text analyis with TADA?

Something we will definitely cover is **HOW TO PRESENT YOUR REGRESSION TABLES (no SPSS outputs!)**

Review of HM 3

Regression

A few more things on Logistic

 $\boldsymbol{\cdot}$ Reported in the "Variables in the equation box".

- Reported in the "Variables in the equation box".
- SPSS Reports it squared.

- Reported in the "Variables in the equation box".
- · SPSS Reports it squared.
- · As we did for the **t**, we calculate the new value as $z^2 = \frac{\beta}{SE}$

- · Reported in the "Variables in the equation box".
- · SPSS Reports it squared.
- · As we did for the **t**, we calculate the new value as $z^2 = \frac{\beta}{SE}$
- SPSS conveniently compares that to a the relevant critical value of the χ^2 distribution so to obtain a p-value.

- · Reported in the "Variables in the equation box".
- · SPSS Reports it squared.
- · As we did for the **t**, we calculate the new value as $z^2 = \frac{\beta}{SE}$
- SPSS conveniently compares that to a the relevant critical value of the χ^2 distribution so to obtain a p-value.
- As we've seen for linear regression, $H_0: \beta = 0$

- · Reported in the "Variables in the equation box".
- · SPSS Reports it squared.
- · As we did for the **t**, we calculate the new value as $z^2 = \frac{\beta}{SE}$
- SPSS conveniently compares that to a the relevant critical value of the χ^2 distribution so to obtain a p-value.
- As we've seen for linear regression, $H_0: \beta = 0$
- Might be worth double-checking with bootstrapping when you get very large β s. That leads to inflate SE, which in turns might lead to a misleading Walt statistic (smaller than it should be).

3

Model Fit

Model Summary box

Model Fit

- Model Summary box
- · -2LogLikelihood (deviance statistic): Scarcely informative in absolute therms. Very useful for comparisons between use it to compare different models.

Model Fit

- Model Summary box
- · -2LogLikelihood (deviance statistic): Scarcely informative in absolute therms. Very useful for comparisons between use it to compare different models.
- SPSS always compares that with the baseline model (Omnibus test for model coefficients box).

Pseudo R Squared

CANNOT be interpreted in terms of 'percentage variance explained

Pseudo R Squared

- CANNOT be interpreted in terms of 'percentage variance explained
- Cox Snell as well as Nagelkerke R square can be interpreted on a scale from 0 (poor fit) to 1 (best fit).

Pseudo R Squared

- CANNOT be interpreted in terms of 'percentage variance explained
- Cox Snell as well as Nagelkerke R square can be interpreted on a scale from 0 (poor fit) to 1 (best fit).

If time allows:

Let's walk through the example from the lecture again!