Assessment#1

Year	12
Class	Test

Integration and Induction

Teacher:

- Answer on the paper provided.
- Show all necessary working.
- Marks may be deducted for careless or untidy work.
- Marks for each question shown as: [1]

Question One: (10 marks)

Find $\int \sqrt{4x-3} dx$

- [2] b) Evaluate $\int_{0}^{x} (x^2 5) dx$

[3]

Find the area between the curve $y = x^2 - 4$ and the x-axis between the values of x = 1 and c) x = 4. [5]

Question Two: (9 marks)

- Using the Trapezoidal Rule and 2 intervals, find an approximation for the area given by a) $\int_{0}^{x} (x^3 - 1) dx$. By evaluating $\int_{0}^{x} (x^3 - 1) dx$ using normal integration techniques, calculate the percentage error in the approximation the Trapezoidal Rule makes. [5]
- Use Simpson's Rule to evaluate the area under the curve given by $f(x) = \frac{\sqrt{x-1}}{x}$ b) bounded by x=1 and x=3, using four intervals (i.e. 5 ordinates). Draw up a table of values you will use, and give your answers to 4 decimal places.

Question Three: (11 marks)

- Sketch the curves $y = x^4$ and $y = \sqrt{x}$ on the same axes. [2] a)
- Determine the area between these two curves. [3] b)
- Find the volume of the solid of revolution formed when this area is rotated about c)
 - the x-axis [3] [3] the y-axis

Question Four: (15 marks)

- Prove by Mathematical Induction that $\sum_{n=1}^{\infty} r^3 = \frac{1}{4}n^2(n+1)^2$. [5] a)
- Show, by Mathematical Induction, that 3" + 7" is divisible by 10, if n is odd. [5] b)
- Prove by Mathematical Induction that $9^n > 4^n + 5^n, n \ge 2$. [5] c)