Cours logique - Mémo n°5

Logique du premier ordre

Emmanuel Coquery

1 Syntaxe

1.1 Formules

Définition 1 Un alphabet pour un langage du premier ordre consiste en un ensemble de symboles spécifiés par :

- Des connecteurs logiques :
 - les connecteurs du calcul propositionnel \land , \lor , \Rightarrow , \Leftrightarrow , \neg , \top et \bot ;
 - les quantificateurs \forall ("pour tout") et \exists ("il existe");
 - et enfin le symbole d'égalité ≐.
- Des variables : un ensemble infini dénombrable $\mathcal{V} = \{x, y, z, \ldots\}$.
- Des parenthèses (et).
- Des symboles de fonction : un ensemble dénombrable éventuellement vide $\mathcal{S}_{\mathcal{F}} = \{f, g, h, \ldots\}$, ainsi qu'une fonction d'arité $ar : \mathcal{S}_{\mathcal{F}} \to \mathbb{N}^*$ spécifiant le nombre d'arguments de chaque symbole de fonction.
- Des symboles de constantes : un ensemble dénombrable éventuellement vide $S_{\mathcal{C}} = \{a, b, c, \ldots\}$ de constantes. Si a est une constante, alors on défini ar(a) = 0.
- Des symboles de prédicats : un ensemble dénombrable éventuellement vide $\mathcal{S}_{\mathcal{P}} = \{P, Q, R, \ldots\}$, ainsi qu'une fonction $ar : \mathcal{S}_{\mathcal{P}} \to \mathbb{N}$ donnant le nombre d'arguments de chaque prédicat.

L'égalité est notée avec le symbole \doteq pour la distinguer de l'égalité utilisée par hors des formules (notamment dans le métalangage).

Par la suite, on supposera que $\mathcal{S}_{\mathcal{F}}$, $\mathcal{S}_{\mathcal{C}}$ et $\mathcal{S}_{\mathcal{P}}$ sont finis.

Notation: On notera f/n le symbole f si son arité est n.

Définition 2 L'ensemble des termes, notés t, u, v, ..., est défini inductivement comme suit :

- Les variables et les constantes sont des termes.
- $Si t_1, \ldots, t_n$ sont des termes, si f est un symbole de fonction tel que ar(f) = n alors $f(t_1, \ldots, t_n)$ est un terme.

Définition 3 L'ensemble des formules est inductivement défini par :

- $\top et \perp sont des$ formules atomiques.
- $Si\ t_1, \ldots, t_n$ sont des termes et $si\ P$ est un symbole de prédicat tel que ar(P) = n alors $P(t_1, \ldots, t_n)$ est une formule atomique.
- $Si \ t_1 \ et \ t_2 \ sont \ des \ termes$, alors $t_1 \doteq t_2 \ est \ une$ formule atomique.
- $Si\ A\ est\ une\ formule\ alors\ \neg(A)\ est\ une\ formule.$
- Si A et B sont des formules, alors $A \wedge B$, $A \vee B$, $A \Rightarrow B$ et $A \Leftrightarrow B$ sont des formules.
- Si A est une formule et si x est une variable, alors $\forall xA$ et $\exists xA$ sont des formules.

L'ensemble des sous-formules sf(A) d'une formule A est défini de manière similaire au calcul propositionnel.

1.2 Variables libres et liées

Définition 4 L'ensemble V(t) des variables d'un terme t est défini par :

- $-V(x) = \{x\}$ si x est une variable.
- $V(a) = \emptyset$ si a est une constante.
- $-V(f(t_1,\ldots,t_n))=V(t_1)\cup\ldots\cup V(t_n)$ si f est un symbole de fonction.

Définition 5 L'ensemble FV(t) des variables libres d'une formule A est inductivement défini par :

- $-FV(\top) = FV(\bot) = \emptyset$
- $FV(P(t_1,...,t_n)) = V(t_1) \cup ... \cup V(t_n)$ si P est un symbole de prédicat et si $t_1,...,t_n$ sont des termes.
- $FV(t_1 \doteq t_2) = V(t_1) \cup V(t_2)$ si t_1 et t_2 sont des termes.
- $FV(\neg A) = FV(A)$ si A est une formule.
- $-FV(A \wedge B) = FV(A) \cup FV(B)$ si A et B sont des formules.
- De même, $FV(A \lor B) = FV(A \Rightarrow B) = FV(A \Leftrightarrow B) = FV(A) \cup FV(B)$.
- $FV(\forall xA) = FV(A) \setminus \{x\}$ si x est une variable et A une formule.
- $FV(\exists xA) = FV(A) \setminus \{x\}$ si x est une variable et A une formule.

Définition 6 L'ensemble BV(t) des variables liées d'une formule A est inductivement défini par :

- $-BV(\top) = BV(\bot) = \emptyset$
- $BV(P(t_1,...,t_n)) = \emptyset$ si P est un symbole de prédicat et si $t_1,...,t_n$ sont des termes. De même, $BV(t_1 = t_2) = \emptyset$.
- $BV(\neg A) = BV(A)$ si A est une formule.
- $-BV(A \wedge B) = BV(A) \cup BV(B)$ si A et B sont des formules.
- De même, $BV(A \lor B) = BV(A \Rightarrow B) = BV(A \Leftrightarrow B) = BV(A) \cup BV(B)$.
- $-BV(\forall xA) = BV(A) \cup \{x\}$ si x est une variable et A une formule.
- $-BV(\exists xA) = BV(A) \cup \{x\}$ si x est une variable et A une formule.

1.3 Substitutions

Définition 7 Une substitution est une fonction σ d'un ensemble fini de variables dans les termes. Le domaine d'une substitution est noté $dom(\sigma)$.

Notation: On note $\sigma_{|_W}$ la substitution σ' telle que $dom(\sigma') = W$ et telle que pour toutes les variables x dans W, $\sigma(x) = \sigma'(x)$.

Remarque : $W \subseteq \sigma$ et si $W = dom(\sigma)$ alors $\sigma = \sigma_{|_W}$

Notation: On note $[t_1/x_1, \ldots, t_n/x_n]$ la substitution de domaine $\{x_1, \ldots, x_n\}$ qui pour $1 \le i \le n$ à x_i associe t_i .

Définition 8 L'application d'une substitution σ sur un terme t, notée $t\sigma$ est définie inductivement comme suit :

- $-a\sigma = a$ si a est une constante.
- $x\sigma = \sigma(x)$ si x est dans $dom(\sigma)$
- $-y\sigma = y \text{ si } y \text{ n'est pas } dans \ dom(\sigma)$
- $f(t_1, \dots, t_n)\sigma = f(t_1\sigma, \dots, t_n\sigma)$

Son application sur une formule A, notée $A\sigma$, est définie inductivement comme suit :

- $-\perp \sigma = \perp \ et \ \top \sigma = \top$
- $-P(t_1,\ldots,t_n)\sigma=P(t_1\sigma,\ldots,t_n\sigma)$
- $-(t_1 \doteq t_2)\sigma = t_1\sigma \doteq t_2\sigma$
- $(\neg A)\sigma = \neg (A\sigma)$

```
 \begin{array}{l} - (A \wedge B)\sigma = A\sigma \wedge B\sigma \\ (A \vee B)\sigma = A\sigma \vee B\sigma \\ (A \Rightarrow B)\sigma = A\sigma \Rightarrow B\sigma \\ (A \Leftrightarrow B)\sigma = A\sigma \Leftrightarrow B\sigma \\ - Si\ x\ est\ une\ variable\ et\ si\ W = dom(\sigma\backslash\{x\})\ et\ si\ x\ n'est\ pas\ dans\ \bigcup_{y\in W} V(\sigma(y))\ : \\ (\forall xA)\sigma = \forall x(A\sigma|_W) \\ (\exists xA)\sigma = \exists x(A\sigma|_W) \end{array}
```

Appliquer une substitution $[t_1/x_1, \ldots, t_n/x_n]$ revient donc à remplacer par t_i les occurrences de x_i non "protégées" par un $\exists x_i$ ou un $\forall x_i$.

1.4 Fermetures

Notation: Si A est une formule et si x_1, \ldots, x_n sont des variables, $\forall x_1 \ldots x_n A$ est une notation pour $\forall x_1 \ldots \forall x_n A$ et $\exists x_1 \ldots x_n A$ est une notation pour $\exists x_1 \ldots \exists x_n A$

Définition 9 Soit A une formule et soit $\{x_1, \ldots, x_n\} = FV(A)$ l'ensemble de ses variables libres. La formule $\forall x_1 \ldots \forall x_n A$ est appelée fermeture universelle de A. La formule $\exists x_1 \ldots \exists x_n A$ est appelée fermeture existentielle de A.

Notation: On notera parfois $\forall A$ la fermeture universelle de A et $\exists A$ sa fermeture existentielle.

On remarquera que les variables ne sont pas précisées lorsque l'on utilise \forall et \exists pour indiquer les fermetures.

2 Sémantique

2.1 Structures d'interprétations

Définition 10 Une structure d'interprétation $\mathcal{SI} = (E, I)$ pour un langage du premier ordre est la donnée d'un ensemble E appelé domaine et d'une fonction d'interprétation I associant des fonctions et des prédicats sur E aux symboles de fonctions et de prédicats de ce langage, et telle que :

- Pour chaque symbole de fonction f d'arité $n, I(f): E^n \to E$
- Pour chaque constante $c, I(c) \in E$
- Pour chaque symbole de prédicat P d'arité n; $I(P): E^n \to \mathcal{B}$

On se retrouve donc avec des symboles d'un côté, donnés par l'alphabet, et des fonctions de l'autre, données par la structure d'interprétation, qui permettent de donner une signification à ces symboles.

On peut remarquer que, étant donné un symbole de fonction f, I(f) est une fonction ayant le même nombre d'arguments. De même si P est un symbole de prédicat, I(P) est une fonction ayant le même nombre d'arguments que P.

2.2 Valeurs de termes et de formules

Définition 11 Une affectation de valeurs aux variables est une fonction $\zeta: \mathcal{V} \to E$. On note $\zeta[x := e]$ l'affectation de valeurs aux variables définie par :

```
\begin{array}{l} -\zeta[x:=e](y)=\zeta(y) \ si \ x\neq y \\ -\zeta[x:=e](x)=e \end{array}
```

Lors de l'évaluation d'une formule, ζ permet de fixer la valeur des variables (libres) qui apparaissent dans la formule. $\zeta[x:=e]$ est identique à ζ sauf pour la variable x à qui on fait correspondre la valeur e.

Définition 12 La valeur d'un terme t par rapport à une structure d'interprétation $\mathcal{SI} = (E, I)$ et à une affectation de valeurs aux variables ζ , notée $[t]_{\mathcal{SI},\zeta}$ est définie inductivement par:

- $[x]_{\mathcal{SI},\zeta} = \zeta(x)$ si x est une variable
- $[a]_{\mathcal{SI},\zeta} = I(a)$ si a est une constante
- $-[f(t_1,\ldots,t_n)]_{\mathcal{SI},\zeta}=I(f)([t_1]_{\mathcal{SI},\zeta},\ldots,[t_n]_{\mathcal{SI},\zeta})$ si f/n est un symbole de fonc-

L'interprétation I sert donc ici à évaluer les symboles de fonctions et les constantes, alors que l'affectation de valeur aux variables ζ sert à évaluer les variables.

Définition 13 La valeur de vérité d'une formule A par rapport à une structure d'interprétation $\mathcal{SI} = (E, I)$ et à une affectation de valeurs aux variables ζ , notée $[A]_{\mathcal{SI},\zeta}$ est définie inductivement comme suit :

- $-[P(t_1,\ldots,t_n)]_{\mathcal{SI},\zeta} = I(P)([t_1]_{\mathcal{SI},\zeta},\ldots,[t_n]_{\mathcal{SI},\zeta})$ si P/n est un symbole de
- $-[t_1 \doteq t_2]_{\mathcal{SI},\zeta} = V \ si \ [t_1]_{\mathcal{SI},\zeta} = [t_2]_{\mathcal{SI},\zeta}$
- $-[t_1 \doteq t_2]_{\mathcal{SI},\zeta} = F \ si \ [t_1]_{\mathcal{SI},\zeta} \neq [t_2]_{\mathcal{SI},\zeta}$
- $[\neg B]_{\mathcal{SI},\zeta} = f_{\neg}([B]_{\mathcal{SI},\zeta})$
- $-[B \wedge C]_{\mathcal{SI},\zeta} = f_{\wedge}([B]_{\mathcal{SI},\zeta}, [C]_{\mathcal{SI},\zeta})$
- $-[B \lor C]_{\mathcal{SI},\zeta} = f_{\lor}([B]_{\mathcal{SI},\zeta}, [C]_{\mathcal{SI},\zeta})$

- $-[B\Rightarrow C]_{\mathcal{SI},\zeta} = f_{\Rightarrow}([B]_{\mathcal{SI},\zeta}, [C]_{\mathcal{SI},\zeta})$ $-[B\Leftrightarrow C]_{\mathcal{SI},\zeta} = f_{\Leftrightarrow}([B]_{\mathcal{SI},\zeta}, [C]_{\mathcal{SI},\zeta})$ $-[\forall xB]_{\mathcal{SI},\zeta} = V \text{ si pour tout \'el\'ement e de } E, [B]_{\mathcal{SI},\zeta}[x:=e] = V. \text{ Sinon } [\forall xB]_{\mathcal{SI},\zeta} = V$
- $[\exists x B]_{\mathcal{SI},\zeta} = V$ si il y a un élément e de E, tel que $[B]_{\mathcal{SI},\zeta[x:=e]} = V$. Sinon $[\exists x B]_{\mathcal{SI},\zeta} = F.$

Pour une formule de la forme $\forall xA$, on peut remarquer que si E est infini, un algorithme naïf devrait tester un nombre infini de valeurs pour savoir si $[\forall x A]_{\mathcal{SI},\zeta}$

Propriété 1 Soit A une formule, SI = (E, I) une structure d'interprétation, et ζ_1 et ζ_2 deux affectations de valeurs aux variables, telles que pour toute variable x dans FV(A), $\zeta_1(x) = \zeta_2(x)$. Alors $[A]_{\mathcal{SI},\zeta_1} = [A]_{\mathcal{SI},\zeta_2}$.

Cette propriété permet de justifier la notation suivante :

Notation: Soit A une formule, et (E,I) une structure d'interprétation. $[A]_{\mathcal{SI},[x_1:=e_1,\ldots,x_n:=e_n]}$ est une notation pour $[A]_{\mathcal{SI},\zeta}$ si $FV(A)=\{x_1,\ldots,x_n\}$ et si pour tout $1 \le i \le n$, $\zeta(x_i) = e_i$. En particulier, si $FV(A) = \emptyset$ alors on peut noter $[A]_{\mathcal{SI}}$ la valeur de vérité de A, puisqu'elle ne dépend pas d'un quelconque ζ .

2.3 Satisfiabilité, validité, conséquence logique

Définition 14 On dit qu'une formule A est vraie par rapport à une structure d'interprétation $\mathcal{SI} = (E, I)$ si pour toute affectation de valeurs aux variables ζ , $[A]_{\mathcal{SI},\zeta} = V$. On dit alors que \mathcal{SI} est un modèle de A, que l'on note $\mathcal{SI} \models A$.

On peut remarquer que \mathcal{SI} est un modèle de A si et seulement si c'est un modèle de sa fermeture universelle ($\mathcal{SI} \models A$ si et seulement si $\mathcal{SI} \models \forall A$).

Définition 15

 Une formule A est satisfiable si il existe une structure d'interprétation SI qui est un modèle de A ($\mathcal{SI} \models A$).

- Un ensemble de formules $\{A_1, \ldots, A_n\}$ est satisfiable si il existe une structure d'interprétation SI qui est un modèle de toutes les formules A_1, \ldots, A_n (pour tout $1 \le i \le n$, $SI \models A$).
- Une formule A est valide si toute structure d'interprétation SI est un modèle de A.
- Un ensemble de formules est valides si toutes les formules qui le composent sont valides.

Remarque: Un ensemble de formules $\{A_1, \ldots, A_n\}$ est donc satisfiable (resp. valide) si la conjonction $\bigwedge_{i=1}^n A_i$ est satisfiable (resp. valide).

Définition 16 Soit $\{A_1, \ldots, A_n\}$ un ensemble de formules et B une formule. B est une conséquence logique de $\{A_1, \ldots, A_n\}$, noté $A_1, \ldots, A_n \models B$ si pour toute structure d'interprétation $S\mathcal{I}$ et toute affectation de valeurs aux variables ζ la condition suivante est vérifiée :

$$si [A_1 \wedge \ldots \wedge A_n]_{\mathcal{SI},\zeta} = V \ alors [G]_{\mathcal{SI},\zeta} = V.$$

Deux formules A et B sont dite logiquement équivalentes, noté $A \equiv B$, si elles sont conséquences logiques l'une de l'autre $(A \models B \text{ et } B \models A)$.

Remarque: Attention aux variables libres ici : en présence de variables libres, on a bien que si $A_1, \ldots, A_n \models B$, alors tout modèle de $\{A_1, \ldots, A_n\}$ est modèle de B, mais la réciproque est fausse (si tout modèle de $\{A_1, \ldots, A_n\}$ est modèle de B on a pas forcément $A_1, \ldots, A_n \models B$). En effet, $\forall x \ a = x$ n'est pas une conséquence logique de a = x. Par exemple, si on prend comme structure d'interprétation $\mathcal{SI} = (\mathbf{N}, I)$, avec I(a) = 0, et que l'on considère une affectation de valeurs aux variables ζ telle que $\zeta(x) = 0$, on a bien $[a = x]_{\mathcal{SI},\zeta} = V$, par contre $[\forall x \ a = x]_{\mathcal{SI},\zeta} = F$ (prendre par exemple [x := 1]). Cependant, si une structure d'interprétation \mathcal{SI}' est un modèle de a = x, alors c'est aussi un modèle de $\forall x \ a = x$.

2.4 Equivalences remarquables

Les équivalences remarquables vu pour le calcul propositionnel restent valables en calcul de prédicats. On ajoute les équivalences suivantes :

- $\ \forall x A \equiv \neg \exists x \neg A$
- $-\exists xA \equiv \neg \forall x \neg A$
- Si une variable y n'appartient pas aux variables libres d'une formule A, alors : $\forall x A \equiv \forall y (A[^y/_x])$ et $\exists x A \equiv \exists y (A[^y/_x])$.
- Si une variable x n'appartient pas aux variables libres d'une formule B, alors :
 - $(\exists x A) \lor B \equiv \exists x (A \lor B)$
 - $(\forall x A) \lor B \equiv \forall x (A \lor B)$
 - $-(\exists x A) \land B \equiv \exists x (A \land B)$
- $(\forall x A) \land B \equiv \forall x (A \land B)$

De plus, pour toute formule A, $\exists y \forall x A \models \forall x \exists y A$.

Cependant, on a pas toujours $\forall x \exists y A \models \exists y \forall x A$. Par exemple, si on regarde les formules construites avec 0/0 et </2 et que l'on regarde l'interprétation naturelle $\mathcal{SI} = (\mathbf{N}, I)$ avec I(0) = 0 et $I(<)(n_1, n_2) = V$ si $n_1 < n_2$, alors on a bien $\mathcal{SI} \models \forall x \exists y < (x, y)$, en revanche, $\mathcal{SI} \not\models \exists y \forall x < (x, y)$. Intuitivement, la première formule dit que pour tout élément x, il existe un élément y qui est plus grand, alors que la seconde dit qu'il existe un élément y qui est plus grand que tous les autres.