Microprocessadores e Computadores Pessoais

Ficha 1 - Memória cache

1. Um CPU tem endereços de 18 bits e uma memória *cache* de mapeamento direto para palavras (32 bits). A memória *cache* tem 16 posições. A política de escrita em memória é *write-through*. O conteúdo inicial da memória *cache* está indicado na tabela (em hexadecimal).

conteúdo	etiqueta	v
12345678	abc	1
6548feab	123	1
3c1f56fd	678	1
afd12498	567	0
6198fa34	b7c	1
1929aaaa	8d1	0
bbabeedd	cd3	1
1123aa56	456	1
7611432a	001	1
ffffeffe	877	1
ddedd556	777	0
4444ccc	198	1
7627abed	fdf	1
8768888a	479	1
71672912	655	0
22256733	111	1
	12345678 6548feab 3c1f56fd afd12498 6198fa34 1929aaaa bbabeedd 1123aa56 7611432a ffffeffe ddedd556 4444cccc 7627abed 8768888a 71672912	12345678 abc 6548feab 123 3c1f56fd 678 afd12498 567 6198fa34 b7c 1929aaaa 8d1 bbabeedd cd3 1123aa56 456 7611432a 001 ffffeffe 877 ddedd556 777 4444cccc 198 7627abed fdf 8768888a 479 71672912 655

- a) Indique qual é o espaço de endereçamento de um sistema baseado neste CPU e determine a capacidade máxima de memória.
- **b)** Determine o número de bits da etiqueta e do índice, assim como a capacidade de armazenamento da *cache*.
- c) Indique as alterações da memória *cache* para a seguinte sequência de acessos (L=leitura, E=escrita):

tipo	endereço	valor
L	2df10	-
L	23454	_
L	3f7b0	_
\mathbf{E}	048c4	1212abab
\mathbf{E}	3f7d0	00001111
\mathbf{E}	1dde8	aaaabbbb

2. Assuma que o CPU do problema anterior é usado com uma memória *cache* também semelhante à anterior, mas que usa a política de escrita *write-back*. O conteúdo inicial da memória *cache* está indicado na tabela (em hexadecimal).

AJA, BMC, JCF Pág. 1 de 4

MPCP (MIEIC), 2020/21 Ficha 1 – Memória cache

	conteúdo	etiqueta	v	d
0	12345678	abc	1	1
1	6548feab	123	0	0
2	3c1f56fd	678	1	0
3	afd12498	567	0	0
4	6198fa34	b7c	1	0
5	1929aaaa	8d1	0	1
6	bbabeedd	cd3	1	1
7	1123aa56	456	1	0
8	7611432a	001	1	1
9	ffffeffe	877	1	1
10	ddedd556	777	0	0
11	4444ccc	198	1	1
12	7627abed	fdf	0	1
13	8768888a	479	1	0
14	71672912	655	0	0
15	22256733	111	1	0

- a) Explique a finalidade do campo d.
- **b)** Indique as alterações da memória *cache* para a seguinte sequência de acessos (L=leitura, E=escrita):

tipo	endereço	valor
L	2df10	-
E	2df10	33334444
E	10c64	9999aaaa
L	23454	_
L	3f7b0	_
\mathbf{E}	21de4	bbbb7777
\mathbf{E}	2afdc	1212abab
E	3f7b0	00001111

3. Uma memória *cache* do tipo *write-through* com 4 blocos de 8 bytes é usada como *D-cache* num processador ARMv8.

O conteúdo da memória *cache* é o seguinte (em hexadecimal):

bloco		conteúdo							etiqueta	v
	7	6	5	4	3	2	1	0		
0	2a	5d	04	aa	78	00	9c	23	2900002	1
1	1b	b2	34	bb	7a	10	9f	a3	0000893	1
2	99	52	36	сс	88	b0	3c	2b	7bcd001	1
3	42	15	90	cd	71	ab	3f	6d	65abfff	0

Assuma que X0 = 0x52000044 e X1=0xf79a0034.

AJA, BMC, JCF Pág. 2 de 4

- a) Qual é o comprimento da etiqueta?
- b) Qual é o valor lido de memória por uma operação de 32 bits que use o endereço guardado em XO?
- c) Que alterações da memória *cache* são causadas pela escrita de um valor de 4 bytes da posição especificada por [X0, -4]?
- **d)** Qual é o valor obtido por uma instrução de leitura de 1 byte do endereço da posição de memória especificada pelo conteúdo de X1?
- **4.** Para cada um dos sistemas indicados a seguir considere que o tempo de acesso a memória principal é de 70 ns e que 36% das instruções acedem a dados em memória. O acesso a memória principal tem início após falta de acesso à memória *cache*.

Processador	Tamanho	Taxa de faltas	Tempo de acerto
P1	1 KiB	11,4%	0,62 ns
P2	2 KiB	8,0%	0,66 ns

- **a)** Assumindo que é o tempo de acerto que determina o período de relógio, determine as frequências de operação dos dois sistemas.
- b) Determine o tempo médio de acesso à memória para os dois casos.
- c) Assumindo um CPI básico de 1, qual é o CPI de cada um dos processadores? Qual é o processador mais rápido?
- **5.** Um CPU (com F=1 GHz) está equipado com memórias *cache* para instruções e para dados, cujas taxas de faltas são, respetivamente, 5 % e 10 %. O tempo de acesso a memória principal é 80 ns (a acrescentar ao tempo de acesso a memória *cache*).

Em média, 40 % das instruções de um programa acedem a dados (i.e., são load ou store).

- a) Determine a taxa de faltas global da memória *cache* em número de faltas por 1000 instruções.
- **b)** Suponha que se pretendia equipar o CPU com uma memória *cache* unificada. Determine a máxima taxa de faltas desta alternativa para que ela apresente o mesmo desempenho que a versão *split cache*.
- **c)** Assuma que, na ausência de faltas de *cache*, o CPU tem CPI_{ideal}=1,2. Determine o CPI efetivo para os seguintes casos:
 - i. sistema sem memória cache;
 - ii. sistema com memória cache.

AJA, BMC, JCF Pág. 3 de 4

MPCP (MIEIC), 2020/21 Ficha 1 – Memória cache

6. A tabela seguinte apresenta o conteúdo (em hexadecimal) de uma memória *cache* do tipo *write-back* com 8 blocos de 8 bytes usada como *D-cache* num CPU com endereços de 16 bits.

bloco	conteúdo					etiqueta	V	d			
	7	6	5	4	3	2	1	0			
0	aa	сс	de	hf	34	33	11	01	235	1	0
1	bb	ad	45	4f	af	de	21	99	391	1	1
2	сс	34	ab	1f	56	cd	ff	ff	023	1	1
3	dd	67	22	2b	32	56	32	21	198	0	1
4	ee	32	11	9f	aa	ba	ab	bb	311	1	0
5	ff	10	00	04	01	02	03	04	278	0	0
6	11	03	41	32	сс	dd	ee	ff	212	1	1
7	22	01	65	01	05	06	07	08	387	0	1

- a) Como é decomposto o endereço para acesso à memória cache? Justifique.
- b) Indique (se possível) o valor (byte) em memória principal no endereço 0xc467. Justifique.
- c) Explique quais as alterações que ocorrem na *cache* e na memória principal durante a leitura do valor (byte) residente no endereço 0xe48d.
- 7. Um CPU tem endereços de 16 bits e uma memória *cache* de mapeamento direto para dados (palavras, 32 bits). A memória *cache* é do tipo *write-back*, possui uma palavra por bloco e a respetiva indexação é formada por 4 bits.

A tabela seguinte mostra parcialmente o conteúdo da cache (conteúdo e etiqueta em hexadecimal).

	conteúdo	etiqueta	v	d
	• • •	• • •		
5	7BCDBCD7	241	0	0
6	76543210	1F3	1	0
7	FFFFFFF	241	1	1
8	80000000	240	1	0
9	26E111A4	241	1	1
10	13012020	199	1	0
• • •				

- **a)** Determine quantos blocos tem a *cache* e quantas palavras em memória podem ser mapeadas em cada entrada da *cache*.
- b) Determine o conteúdo de memória nos endereços 0x9020 e 0x9024.
- c) Mostre quantos acessos a memória ocorrem como consequência das seguintes operações:
 - ler Mem[0x7CDC]
 - escrever 0x12345678 em Mem[0xE020]
- d) Assuma que a taxa de faltas da cache é 1/9 da taxa de acertos, a penalidade de falta é 80 ciclos e o CPI devido a protelamento no acesso a dados é 2. Nestas condições, determine a percentagem de instruções executadas que acedem a memória.

Fim

AJA, BMC, JCF Pág. 4 de 4