Corrigé du TD : Résolution des équations non-linéaires f(x)=0

Exercice 1 (Méthode de Bissection)

 $1/f(x) = x^3 - 4x - 8,95$ dans l'intervalle [2,3] avec une précision de 10^{-2} :

$$x^k = \frac{a_k + b_k}{2}$$

On vérifie que f(a). $f(b) < 0 \Leftrightarrow f(2)$. f(3) = -(8,95). (6,05) < 0 Condition vérifiée!

k	a_k	x_k	b_k	F(a)	F(x)	F(b)
1	2,00	2,50	3,00	(-)	(-)	(+)
2	2,50	2,75	3,00	(-)	(+)	(+)
3	2,50	2,63	2,75	(-)	(-)	(+)
4	2,63	2,69	2,75	(-)	(-)	(+)
5	2,69	2,72	2,75	(-)	(+)	(+)
6	2,69	2,70	2,72	(-)	(-)	(+)
7	2,70	2,71	2,72	(-)	(+)	(+)
8	2,70	2,70	2,71	(-)	(+)	(+)

La solution est donc:

x = 2,70

$$2/f(x) = -5x^3 + 39x^2 - 43x - 39$$
 dans l'intervalle [1,5] avec une précision de 10^{-2} :

k	a_k	x_k	b_k	F(a)	F(x)	F(b)
1	1,00	3,00	5,00	(-)	(+)	(+)
2	1,00	2,00	3,00	(-)	(-)	(+)
3	2,00	2,50	3,00	(-)	(+)	(+)
4	2,00	2,25	2,50	(-)	(+)	(+)
5	2,00	2,13	2,25	(-)	(-)	(+)
6	2,13	2,19	2,25	(-)	(+)	(+)
7	2,13	2,16	2,19	(-)	(-)	(+)
8	2,16	2,17	2,19	(-)	(+)	(+)
9	2,16	2,16	2,17	(-)	(+)	(+)

La solution est donc :

x = 2,16

La solution peut être obtenue d'une manière graphique : $f(x) = -5x^3 + 39x^2 - 43x - 39$

X	f(x)
1	-48,00
2	-9,00
3	48,00
4	93,00
5	96,00

en divisant les valeurs par (-f(x=1) = 48) on obtient \Rightarrow

Exercice 2 (Méthode de Point fixe)

Résoudre avec la méthode de point fixe

$$1/f(x) = x - x^{\frac{4}{5}} - 2 = 0$$
 et $x_0 = 8$ avec une précision de 10^{-4}

$$g_1(x) = x = x^{\frac{4}{5}} + 2$$
 ou $g_2(x) = x = (x - 2)^{\frac{5}{4}}$

<u>a/Si on choisit</u> $g_1(x) = x_{n+1} = x_n^{\frac{4}{5}} + 2$:

k	x_n	x_{n+1}	k	x_n	x_{n+1}
0	8,0000	7,2780	9	6,4408	6,4376
1	7,2780	6,8934	10	6,4376	6,4359
2	6,8934	6,6854	11	6,4359	6,4349
3	6,6854	6,5720	12	6,4349	6,4344
4	6,5720	6,5098	13	6,4344	6,4341
5	6,5098	6,4756	14	6,4341	6,4339
6	6,4756	6,4568	15	6,4339	6,4339
7	6,4568	6,4465	16	6,4339	6,4338
8	6,4465	6,4408	17	6,4338	6,4338

La solution est donc : x=6,4338

<u>b/Si on choisit</u> $g_2(x) = (x - 2)^{\frac{5}{4}}$:

k	x_n	x_{n+1}
0	8,0000	9,3905
1	9,3905	12,1855
2	12,1855	18,1961
3	18,1961	32,4909
4	32,4909	71,6494
5	71,6494	201,2086

La fonction $g_2(x)$ ne converge pas ; les valeurs sont croissantes

 $\frac{5 - 71,6494 - 201,2086}{2 - 2x^{\frac{4}{5}} + 2} = 0 \text{ et } x_0 = 1 \text{ avec une précision de } 10^{-2}$:

$$g_1(x) = x = 2(x^{\frac{4}{5}} - 1)$$
 ou $g_2(x) = x = (\frac{x+2}{2})^{\frac{5}{4}}$

a/Si on choisit $g_1(x) = x_{n+1} = 2(x_n^{\frac{4}{5}} - 1)$: La solution ne converge pas !

 $b/On \ choisit \ g_2(x) = x_{n+1} = \left(\frac{x_{n+2}}{2}\right)^{\frac{5}{4}}$:

k	x_n	x_{n+1}	k	x_n	x_{n+1}	k	x_n	x_{n+1}
0	1,00	1,66	8	3,32	3,39	16	3,64	3,66
1	1,66	2,13	9	3,39	3,46	17	3,66	3,67
2	2,13	2,47	10	3,46	3,51	18	3,67	3,68
3	2,47	2,74	11	3,51	3,55	19	3,68	3,68
4	2,74	2,94	12	3,55	3,58	20	3,68	3,69
5	2,94	3,09	13	3,58	3,60	21	3,69	3,70
6	3,09	3,22	14	3,60	3,63	22	3,70	3,70
7	3,22	3,32	15	3,63	3,64	23	3,70	3,70

La solution est donc : x=3.70

Avec une précision de 10^{-4} le nombre d'itérations s'élève à **53** est une solution x=3,7161

Exercice 3 (Ordre de convergence de la méthode de point fixe)

$$f(x) = x^2 - 5x + 6 = 0$$

La solution numérique de cette équation donne deux racines $(x_1 = 2 \text{ et } x_2 = 3)$

1/ Choix de la fonction g(x):

a.
$$f(x) = x^2 - 2x - 3x + 6 = 0$$
 \Rightarrow $g(x) = x = \frac{1}{2}(x^2 - 3x + 6)$
 $g(x) = x = \frac{1}{3}(x^2 - 2x + 6)$
b. $f(x) = x^2 - x - 4x + 6 = 0$ \Rightarrow $g(x) = x = x^2 - 4x + 6$
 $g(x) = x = x^2 - 4x + 6$
 $g(x) = x = \frac{1}{4}(x^2 - x + 6)$
c. $f(x) = x^2 - 5x + 6 = 0$ \Rightarrow $g(x) = x = \frac{1}{5}(x^2 + 6)$
d. $f(x) = x^2 - 5x + 6 = 0$ \Rightarrow $g(x) = x = \sqrt{5x - 6}$
e. $f(x) = x(x - 5) + 6 = 0$ \Rightarrow $g(x) = x = \frac{6}{5 - x}$

2/ Si on prend $g(x) = \frac{1}{2}(x^2 - 3x + 6)$:

En appliquant le théorème d'OSTROWDKI : $g'(x) = x - \frac{3}{2}$

Pour $s=2 \Rightarrow |g'(2)| = \frac{1}{2} < 1 \Rightarrow$ la méthode du point fixe converge.

$$\varepsilon_{n+1} = x_{n+1} - s \Leftrightarrow \varepsilon_{n+1} = \varepsilon_n g'(s) + \frac{1}{2} \varepsilon_n^2 g''(s) + O(\varepsilon_n^3)$$

Si on néglige les termes d'ordre $\geq 2 \Rightarrow \varepsilon_{n+1} = \varepsilon_n g'(s) = \frac{\varepsilon_n}{2}$

L'ordre de convergence : $\varepsilon_{n+1} = C \varepsilon_n^P$

 \blacksquare Pour un $x_0=1,5$:

$$x_{n+1} = \frac{1}{2}(x_n^2 - 3x_n + 6)$$
; $\varepsilon_{n+1} = x_{n+1} - s$; $\varepsilon_n = x_n - s$

k	$\overline{x_n}$	x_{n+1}	$\epsilon_{n+1}/\epsilon_n$	k	x_n	x_{n+1}	$\epsilon_{n+1}/\epsilon_n$	k	x_n	x_{n+1}	$\epsilon_{n+1}/\epsilon_n$	
1	1,5000	1,8750	0,2500	5	1,9874	1,9938	0,4937	9	1,9992	1,9996	0,4996	
2	1,8750	1,9453	0,4375	6	1,9938	1,9969	0,4969	10	1,9996	1,9998	0,4998	C=0 P=1
3	1,9453	1,9742	0,4727	7	1,9969	1,9985	0,4985	11	1,9998	1,9999	0,4999	
4	1,9742	1,9874	0,4871	8	1,9985	1,9992	0,4992	12	1,9999	2,0000	0,5000	

$$3/g(x) = x^2 - 4x + 6$$
: $\Rightarrow g'(x) = 2x - 4$ et $g''(x) = 2$

Pour $s=2 \Rightarrow |g'(2)| = 0 < 1 \Rightarrow$ la méthode du point fixe converge.

$$g^{\prime\prime}(2)=2$$

 $\varepsilon_{n+1} = \varepsilon_n g'(s) + \frac{1}{2} \varepsilon_n^2 g''(s) + O(\varepsilon_n^3) \Rightarrow \varepsilon_{n+1} = \frac{1}{2} \varepsilon_n^2$. $2 = \varepsilon_n^2$ Convergence est quadratique (P=2) L'ordre de convergence : $\varepsilon_{n+1} = C \varepsilon_n^{P}$

C=1 P=2

 \blacksquare Pour un $x_0=1,5$:

 $x_{n+1} = \overline{x_n^2 - 4x_n + 6}$; $\varepsilon_{n+1} = x_{n+1} - s$; $\varepsilon_n = x_n - s$

161	<u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	11	/ 11 1 1	161	<u> </u>	<u>ι 1ι</u>		_
k	x_n	x_{n+1}	$\varepsilon_{n+1}/\varepsilon_n^2$	k	x_n	x_{n+1}	$\epsilon_{n+1}/\epsilon_n^2$	
1	1,5000	2,2500	1,0000	4	2,0039	2,0000	1,0000	
2	2,2500	2,0625	1,0000	5	2,0000	2,0000	1,0000	
3	2,0625	2,0039	1,0000	6	2,0000	2,0000	0,0000	

4/ Le meilleur choix de g(x): La fonction $g(x) = x^2 - 4x + 6$ converge plus rapidement que $g(x) = \frac{1}{2}(x^2 - 3x + 6)$

Exercice 4 (Méthode de Newton)

L'algorithme de la méthode s'écrit :

$$\begin{cases} x_0 \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \\ crit en d'arr et \end{cases}$$

1/ Calcul de $\sqrt{2}$ avec la méthode de Newton :

The Calculate
$$\sqrt{2}$$
 avec la methode de Newton:
$$x = \sqrt{2} \Leftrightarrow x^2 - 2 = 0 \quad \Rightarrow \quad f(x_n) = x_n^2 - 2 = 0 \; ; f'(x_n) = 2x_n$$

$$\begin{cases} x_0 = 1 \\ x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n} = \frac{x_n}{2} + \frac{1}{x_n} \end{cases}$$

$$critère d'arrêt (4 chiffres après la virgule)$$

k	x_n	x_{n+1}	k	x_n	x_{n+1}
0	1,0000	1,5000	2	1,4167	1,4142
1	1,5000	1,4167	3	1,4142	1,4142

k	x_n	x_{n+1}
0	1,0000	0,6358
1	0,6358	0,6529
2	0.6529	0.6529

La solution est : $x_{sol} = 0, 6529$

k		x_n	x_{n+1}	k	x_n	x_{n+1}
	0	2,0000	1,7273	2	1,6737	1,6717
	1	1,7273	1,6737	3	1,6717	1,6717

3/ L'algorithme de Newton permettant de calculer la racine de l'équation
$$x = tg(x+1)$$
:
$$f(x) = x - tg(x+1) = 0 \qquad \text{avec} \qquad \left(tg(x+1)\right)' = 1 + tg^2(x+1)$$

$$\Rightarrow \begin{cases} x_0 \text{ initial} \\ x_{n+1} = x_n + \frac{x_n - tg(x_n+1)}{tg^2(x_n+1)} \\ \text{critère d'arrêt (4 chif fres après la virgule)} \end{cases}$$

$$4/x_0 = 3.4$$

k	x_n	x_{n+1}
0	3,4000	3,4317
1	3,4317	3,4286
2	3,4286	3,4286

La solution est : $x_{sol} = 3,4286$

5/ En déduire une racine de l'équation $xtg\left(\frac{x+1}{x}\right) - 1 = 0$ $xtg\left(1+\frac{1}{x}\right)-1=0 \Leftrightarrow tg\left(1+\frac{1}{x}\right)=\frac{1}{x}\Leftrightarrow tg(1+S)=S \text{ avec } s=\frac{1}{x_{sol}}=\frac{1}{3.4286}\Rightarrow s=0.2917$