OR—Logical Inclusive OR

Opcode	Instruction	64-Bit Mode	Compat/ Leg Mode	Description
OC ib	OR AL, i <i>mm8</i>	Valid	Valid	AL OR imm8.
OD iw	OR AX, imm16	Valid	Valid	AX OR imm16.
OD id	OR EAX, i <i>mm32</i>	Valid	Valid	EAX OR imm32.
REX.W + OD id	OR RAX, imm32	Valid	N.E.	RAX OR imm32 (sign-extended).
80 /1 <i>ib</i>	OR r/m8, imm8	Valid	Valid	r/m8 OR imm8.
REX + 80 /1 ib	OR r/m8*, imm8	Valid	N.E.	r/m8 OR imm8.
81 /1 iw	OR <i>r/m16, imm16</i>	Valid	Valid	r/m16 OR imm16.
81 /1 id	OR <i>r/m32, imm32</i>	Valid	Valid	r/m32 OR imm32.
REX.W + 81 /1 id	OR r/m64, imm32	Valid	N.E.	r/m64 OR imm32 (sign- extended).
83 /1 <i>ib</i>	OR r/m16, imm8	Valid	Valid	r/m16 OR imm8 (sign- extended).
83 /1 ib	OR <i>r/m32, imm8</i>	Valid	Valid	r/m32 OR imm8 (sign- extended).
REX.W + 83 /1 ib	OR <i>r/m64, imm8</i>	Valid	N.E.	r/m64 OR imm8 (sign- extended).
08 /r	OR <i>r/m8, r8</i>	Valid	Valid	r/m8 OR r8.
REX + 08 /r	OR r/m8*, r8*	Valid	N.E.	r/m8 OR r8.
09 /r	OR r/m16, r16	Valid	Valid	r/m16 OR r16.
09 /r	OR <i>r/m32, r32</i>	Valid	Valid	r/m32 OR r32.
REX.W + 09 /r	OR <i>r/m64, r64</i>	Valid	N.E.	r/m64 OR r64.
0A /r	OR <i>r8, r/m8</i>	Valid	Valid	r8 OR r/m8.
REX + 0A /r	OR <i>r8*, r/m8*</i>	Valid	N.E.	r8 OR r/m8.
0B /r	OR <i>r16, r/m16</i>	Valid	Valid	r16 OR r/m16.
0B /r	OR <i>r32, r/m32</i>	Valid	Valid	r32 OR r/m32.
REX.W + 0B /r	OR <i>r64, r/m64</i>	Valid	N.E.	r64 OR r/m64.

NOTES:

^{*} In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second) operands and stores the result in the destination operand location. The source operand can be an immediate, a register, or a memory location; the destination operand can be a register or a memory location. (However, two memory operands cannot be used in one instruction.) Each bit of the result of the OR instruction is set to 0 if both corresponding bits of the first and second operands are 0; otherwise, each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST \leftarrow DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory

operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS

segment limit.

#UD If the LOCK prefix is used but the destination is not a memory

operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

#UD If the LOCK prefix is used but the destination is not a memory

operand.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory

operand.