282

2018-2019学年第一学期期终考试试题

考试科目: 线性代数B1	考试时间: 2019.01.14	得分:
学生所在系:		学号:
一、填空题【每空4分,共24		
$1. \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}^4 = \underline{\hspace{1cm}}$	•	
2. 向量组 $\alpha_1 = (1, 1, 1, 1), \alpha_2$ 秩=。	= $(1,2,3,4)$, $\alpha_3 = (2,3,4,5)$	$, \alpha_4 = (1, -2, 2, -1)$ 的
3. 己知非齐次线性方程组		
	$\int \lambda x_1 + x_2 + x_3 = 1$	
	$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$	
	$x_1 + x_2 + \lambda x_3 = \lambda^2$	
有无穷多解,则λ=	0	
	字在可逆矩阵 P ,使得 $B = P^{-1}$	
$\mathcal{R}\lambda_1, \lambda_2, \cdots, \lambda_n$ 为 B 的 n 个特征	正值,则 $\sum\limits_{1\leq i\leq n}\lambda_i=$	•
5. 实二次型 $x_1^2 + x_2^2 + x_3^2 + 4x_1$	$x_2 + 4x_1x_3 + 4x_2x_3$ 的正惯性指	数为。
6. 设实二次型 $Q(x_1, x_2, x_3) = x_3$	$x_1^2 + 4x_2^2 + 2x_3^2 - 2tx_1x_2 - 2x_1x$	3 是正定的,则t的取值

- 二、 判断题 【判断下列命题是否正确,并简要说明理由。每题5分,共20分】
- 1. 若0为矩阵A的特征值,则A一定不可逆。
- - 3. 设 $V = \{a_0 + a_1x + a_2x^2 | a_i \in \mathbf{R}, i = 0, 1, 2\}$, 即次数不超过2的实系数多项式构成的 \mathbf{R} 上的线性空间。若对任意 $f(x), g(x) \in V$ 定义

$$(f(x), g(x)) = f(0)g(0),$$

则此二元运算(,)可以成为V上的一个内积。

4. 设2n 阶实对称矩阵 $A=\begin{pmatrix}A_1&B\\C&A_2\end{pmatrix}$,其中 A_1 , A_2 均为n阶方阵。若A正定,则 A_1+A_2 也正定。

三、【10分】

设
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 为非齐次线性方程组 $\mathbf{AX} = \mathbf{b}$ 的3个解。

- 1. 求AX = 0的通解;
- 2. 求AX = b的通解;
- 3. 求出满足题设条件的一个非齐次线性方程组。

四、【15分】

设(I):
$$\alpha_1 = (1, 0, 0)^T$$
, $\alpha_2 = (0, 1, 0)^T$, $\alpha_3 = (0, 0, 1)^T$;
(II): $\beta_1 = (-1, 0, 1)^T$, $\beta_2 = (0, 1, 1)^T$, $\beta_3 = (2, -1, -2)^T$
分别为**R**³的两组基。设*σ*为**R**³上的一个线性变换,并且
 $\sigma(\beta_1) = (1, 0, -3)^T$, $\sigma(\beta_2) = (0, -1, -1)^T$, $\sigma(\beta_3) = (-5, -1, 0)^T$ 。
请分别求出 σ 在(I)、(II)这两组基下的矩阵。

五、【15分】

设实二次型

$$Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3 + 2bx_2x_3$$

可以经过正交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{P} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
化为标准型 $y_2^2 + 2y_3^2$.

- 1. 确定a和b的取值;
- 2. 求出满足题设条件的一个正交变换。

六、【8分】

设A为n阶复方阵,且 $A^2=2A$ 。求证:A相似于对角阵。

七、【8分】

设A 为n阶正定矩阵, $\alpha_1,\,\alpha_2,\,\cdots,\,\alpha_s$ 为 $\mathbf{R^n}$ 中的s个非零向量,且满足 $\alpha_i^T A \alpha_j = 0,\ 1 \le i < j \le s$

求证: $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关。