WHAT HAVE I LEARNED TODAY?

SIXUAN LOU

1. 2019 May

05-21: Today I learned the degree theory of smooth maps between compact, oriented n-manifolds. We first investigate the case of proper maps between \mathbb{R}^n . Let $f:\mathbb{R}^n\to\mathbb{R}^n$ be a proper map, the pullback $f^*:H^n_{dR}(\mathbb{R}^n)\to H^n_{dR}(\mathbb{R}^n)$ maps compactly supported n-forms to compactly supported forms, hence $f^*:H^n_c(\mathbb{R}^n)\to H^n_c(\mathbb{R}^n)$. Let ω be a generator of $H^n_c(\mathbb{R}^n)$ (this means $\int_{\mathbb{R}^n}\omega=1$, this is possible by the Poincaré Lemma that $H^n_c(\mathbb{R}^n)\cong\mathbb{R}$), we define the degree $\deg(f):=\int_M f^*\omega$. To prove this is an integer, pick a regular value $q\in\mathbb{R}^n$ of f by Sard's Theorem. Since f is proper, $f^{-1}(q)$ is a finite set of points $\{p_1,\ldots,p_K\}$. Since q is a regular value, the map f is locally a diffeomorphism when restricted to small neighborhoods V_i of each p_i such that V_i are disjoint and $f(V_i)=W$ for all i. By partition of unity we may pick a generator ω of $H^n_c(\mathbb{R}^n)$, with $\mathrm{Supp}\,\omega\subseteq W$. Then $\int_M f^*\omega=\sum_i\int_{V_i}f^*\omega$ and each $\int_{V_i}f^*\omega$ is +1 if df_{p_i} is orientation preserving and -1 if df_{p_i} is orientation reversing. To prove the case of smooth maps between compact, oriented n-manifolds, we assume the fact that $H^n(M)\cong\mathbb{R}$ as well. This fact could be proved from Poincaré Duality.

2 SIXUAN LOU

References