MATH 131 Homework 5

Jesse Cai

304634445

1. Let $t_1 = 1$ and $t_{n+1} = \left[1 - \frac{1}{(n+1)^2}\right](t_n)$

(a) t_n is bounded from below and decreasing so the limit must exist

Proof via induction: Let $P(n) = (t_n \le 1) \land (t_{n+1} < t_n)$

Base Case: Consider $P(1) = (t_1 < 1) \land (t_2 < t_1)$. Clearly $1 \le 1$, and $t_2 = \le 1 = t_n$ So P(1) is TRUE.

Inductive Step: Assume P(n), so $(t_n \le 1) \land (t_{n+1} < t_n)$

Since
$$n \in \mathbb{N} \implies n \ge 0 \implies (n+1)^2 > 1 \implies \frac{1}{(n+1)^2} < 1 \implies 1 - \frac{1}{(n+1)^2} < 1$$

Then since $\left[1 - \frac{1}{(n+1)^2}\right] < 1$ and $t_n \le 1 \implies t_{n+1} \le 1$.

But also $\left[1 - \frac{1}{(n+1)^2}\right] < 1 \implies t_n \left[1 - \frac{1}{(n+1)^2}\right] = t_{n+1} < 1(t_n) = t_n \text{ so } P(n) \implies P(n+1).$

- (b) I think $\lim t_n$ is $\frac{1}{2}$
- (c) Let $P(n) = t_n = \frac{n+1}{2n}$

Base Case: Consider P(1), then $t_1 = 1 = \frac{1+1}{2(1)}$ is TRUE by inspection.

Inductive Step: Assume P(n), so $t_n = \frac{n+1}{2n}$. Multiplying by $\left[1 - \frac{1}{(n+1)^2}\right]$ yields

$$\left[1 - \frac{1}{(n+1)^2}\right]t_n = t_{n+1} = \frac{n+1}{2n}\left[1 - \frac{1}{(n+1)^2}\right] = \frac{(n+1)^3}{2n(n+1)^2} - \frac{n+1}{2n(n+1)^2} = \frac{(n+1)(n)(n+2)}{2n(n+1)^2} = \frac{n+2}{2(n+1)^2}$$

so
$$P(n) \implies P(n+1)$$
.

- (d) After proving this, I think $\lim t_n$ is $\frac{1}{2}$
- 2. Prove that $\lim \frac{a_{n+1}}{a_n}$ exists and identify it's value

$$a_0 = 1 \land a_1 = a \land (\forall n \in \mathbb{N} : a_{n+2} = 2a_n + a_{n+1})$$

Let $x = \frac{a_{n+1}}{a_n}$ then $\forall n \in \mathbb{N} : \frac{a_{n+2}}{a_n+1} = \frac{2a_n}{a_{n+1}} + 1$

Taking the limit of both sides yields

$$\lim \frac{a_{n+2}}{a_{n+1}} = \lim \left(2 \frac{a_n}{a_{n+1}} + 1 \right) = 2 \lim \frac{a_n}{a_{n+1}} + 1$$

So $L=\frac{2}{L}+1$ and solving for L we get L=2,-1, but L cannot be negative because this sequence is strictly increasing and starts greater than 0, so $L=\lim\frac{a_{n+1}}{a_n}=2.$

3. Show every subsequence of a subsequence is a subsequence of the original sequence.

Let s_n be a sequence and t_k be a subsequence, and u_j be a subsequence of t_k . Then by definition of subsequence, $t = s(\sigma(k))$ and $u = t(\gamma(j))$. We can then define a new function, $\sigma(\gamma(j))$, which is a mapping from $\mathbb N$ to s. But by definition, this means that u_j is a subsequence of s_n , as $u = s(\sigma(\gamma(j)))$.

So a subsequence of a subsequence is a subsequence of the original sequence.

4. Find the set S of subsequential limits.

Note that each column is a monotone sequence, which is just $\frac{1}{i}$ repeated infinitely, so for each column, we can define a subsequence whose limit is $\frac{1}{n}$.

But also along each row, we can define a subsequence $(s_n) = \frac{1}{n}$ which converges to 0.

So S contains $\{\forall n \in \mathbb{N} : k\frac{1}{n}\} \cup \{0\}$

Determine $\limsup s_n$ and $\liminf s_n$.

We know from Theorem 8 that $\sup S = \limsup s_n$ and $\inf S = \liminf s_n$. So $\limsup s_n = 1$ and $\liminf s_n = 0$

1

5. Let r_n be an enumeration of \mathbb{Q} . Show there is a subsequence whose limit is ∞ .

Take r_n as a sequence of \mathbb{Q} . Then $\forall a \in \mathbb{R} \exists (r_{n_k})$ that converges to a based on the density of \mathbb{Q} on \mathbb{R} . Then the subsequential limits of $(r_n) = \mathbb{R} \cup \{-\infty, \infty\} \implies \limsup r_n = \infty$. Then by Theorem 11.7 there exists a monotonic subsequence whose limit is $\limsup r_n = \infty$.

6. Show $\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$ for bounded sequences (s_n) and (t_n)

Let $\sup(s_n + t_n)$, $\sup(s_n)$, $\sup(t_n)$ be z, x, y respectively. Since all the sequences are bounded, $x, y, z \in \mathbb{R}$ and by definition of $\sup \forall n \in \mathbb{N} s_n < x, t_n < y$.

But this implies that $\forall n \in \mathbb{N} : s_n + t_n \leq x + y$ so x + y is an upper bound, but this means that $z \leq x + y$, since it is the least upper bound.

So $\sup(s_n + t_n) \leq \sup s_n + \sup t_n$ and taking the limit on both sides yields

$$\limsup (s_n + t_n) < \limsup s_n + \limsup t_n$$

7. Show $\limsup (s_n + t_n) \le (\limsup s_n)(\limsup t_n)$ for bounded sequences of nonegative numbers (s_n) and (t_n)

Let $\sup(s_n t_n), \sup(s_n), \sup(t_n)$ be z, x, y respectively. Since all the sequences are bounded, $x, y, z \in \mathbb{R}$ and by definition of $\sup \forall n \in \mathbb{N} s_n < x, t_n < y$.

But also since $(s_n), (t_n)$ are nonnegative $\implies \sup(s_n) > 0, \sup(t_n) > 0$.

But this means that that $\forall n \in \mathbb{N} : s_n t_n \leq (x)(y)$ so (x)(y) is an upper bound, but this means that $z \leq x + y$, since it is the least upper bound.

So $\sup(s_n t_n) \leq (\sup s_n)(\sup t_n)$ and taking the limit on both sides yields

$$\limsup (s_n t_n) \le (\limsup s_n)(\limsup t_n)$$

8. Prove (s_n) is bounded if and only if $\limsup |s_n| < +\infty$

Proof by contradiction, suppose $\limsup |s_n| = +\infty$ and (s_n) is bounded. Then we know that $\limsup |s_n| = +\infty = \lim |s_n|$

A sequence (s_n) is said to be bounded if $\exists M \in \mathbb{R}$ such that $\forall n \in \mathbb{N} : |s_n| \leq M$. so $(|s_n|)$ is bounded $\Longrightarrow \exists M \in \mathbb{R}$ such that $\forall n \in \mathbb{N} : ||s_n|| \leq M$ but $||s_n|| = |s_n|$. But if $|s_n|$ is bounded by M then so must $\lim |s_n|$, but this is a contradiction, because by definition $\forall x \in \mathbb{R} : +\infty > x$. So therefore (s_n) is bounded if $\lim \sup |s_n| < +\infty$.

9. Calculate $\lim_{n \to \infty} (n!)^{\frac{1}{n}}$

Let $(s_n) = n!$, then

$$\lim \left| \frac{s_{n+1}}{s_n} \right| = \lim \frac{(n+1)!}{n!} = \lim n + 1 = \infty$$

The by Corollary 12.3 if $\lim \left| \frac{s_{n+1}}{s_n} \right| = L \implies \lim |s_n|^{\frac{1}{n}} = L$

So $\lim n!^{\frac{1}{n}} = \infty$.