11.3 1)
$$f(x) = x^2 - 2x = x(x-2)$$

	0	2	}
x	- o	+	+
x-2		- c	+
\overline{f}	+ 0	- 0	+

2)
$$\int_0^3 (x^2 - 2x) \, dx = \frac{1}{3}x^3 - x^2 \Big|_0^3 = \left(\frac{1}{3} \cdot 3^3 - 3^2\right) - \left(\frac{1}{3} \cdot 0^3 - 0^2\right) = 0 - 0 = 0$$

3)
$$-\int_0^2 (x^2 - 2x) \, dx + \int_2^3 (x^2 - 2x) \, dx = \left(-\frac{1}{3} x^3 + x^2 \Big|_0^2 \right) + \left(\frac{1}{3} x^3 - x^2 \Big|_2^3 \right)$$

$$= \left(\left(-\frac{1}{3} \cdot 2^3 + 2^2 \right) - \left(-\frac{1}{3} \cdot 0 + 0^2 \right) \right) + \left(\left(\frac{1}{3} \cdot 3^3 - 3^2 \right) - \left(\frac{1}{3} \cdot 2^3 - 2^2 \right) \right)$$

$$= \left(\frac{4}{3} - 0 \right) + \left(0 - \left(-\frac{4}{3} \right) \right) = \frac{4}{3} + \frac{4}{3} = \frac{8}{3}$$