Assignment -1 Python Programming

Assignment Date	8 September 2022
Student Name	Mr. Lavan R P
Student Roll Number	910619104042
Maximum Marks	2 Marks

Out[8]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3
3	4	15701354	Boni	699	France	Female	39	1	0.00	2
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1

In [9]:

df.dtypes

Out[9]:

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64

```
Exited
                     int64
dtype: object
                                                                          In [10]:
df.columns
                                                                         Out[10]:
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
       'IsActiveMember', 'EstimatedSalary', 'Exited'],
      dtype='object')
Univariate analysis
                                                                          In [34]:
df['EstimatedSalary'].mean()
                                                                          Out[34]:
100090.2398809998
                                                                          In [35]:
df['EstimatedSalary'].std()
                                                                         Out[35]:
57510.49281769822
                                                                          In [36]:
df['EstimatedSalary'].value counts()
                                                                         Out[36]:
24924.92
101348.88
            1
55313.44
             1
72500.68
            1
182692.80
            1
120893.07
            1
188377.21
            1
55902.93
            1
4523.74
             1
38190.78
            1
Name: EstimatedSalary, Length: 9999, dtype: int64
                                                                          In [37]:
df.hist(column='EstimatedSalary',grid=False,edgecolor="red")
                                                                         Out[37]:
```

array([[<AxesSubplot:title={'center':'EstimatedSalary'}>]], dtype=object)

df.boxplot(column=['EstimatedSalary'], grid=False, color='red')

In [38]:

Out[38]:

EstimatedSalary

sns.kdeplot(df['EstimatedSalary'])

In [39]:

Out[39]:

<AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>

Bivariate analysis

```
In [41]:
# Scatterplots
plt.scatter(df.EstimatedSalary, df.Age)
plt.title('Estimated Salary vs Age')
plt.xlabel('Estimated Salary')
plt.ylabel('Age')

Out[41]:
Text(0, 0.5, 'Age')
```


In [42]:

Correlation Coefficients
df.corr()

Out[42]:

							Ծաւ[42].	
	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCar
RowNumber	1.000000	0.004202	0.005840	0.000783	0.006495	0.009067	0.007246	0.000599
CustomerId	0.004202	1.000000	0.005308	0.009497	0.014883	0.012419	0.016972	-0.014025
CreditScore	0.005840	0.005308	1.000000	- 0.003965	0.000842	0.006268	0.012238	-0.005458
Age	0.000783	0.009497	-0.003965	1.000000	0.009997	0.028308	-0.030680	-0.011721
Tenure	-0.006495	-0.014883	0.000842	- 0.009997	1.000000	0.012254	0.013444	0.022583
Balance	-0.009067	-0.012419	0.006268	0.028308	- 0.012254	1.000000	-0.304180	-0.014858
NumOfProducts	0.007246	0.016972	0.012238	- 0.030680	0.013444	0.304180	1.000000	0.003183
HasCrCard	0.000599	-0.014025	-0.005458	- 0.011721	0.022583	- 0.014858	0.003183	1.000000
IsActiveMember	0.012044	0.001665	0.025651	0.085472	0.028362	0.010084	0.009612	-0.011866
EstimatedSalary	-0.005988	0.015271	-0.001384			0.012797		-0.009933

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCar
				0.007201				
Exited	-0.016571	-0.006248	-0.027094	0.285323	0.014001	0.118533	-0.047820	-0.007138

In [43]:

Simple Linear Regression
sns.barplot(x='Gender', y='Balance', data=df)

Out[43]:

In [44]:

Out[44]:

sns.boxplot(x='Gender',y='Age',data=df)

<AxesSubplot:xlabel='Gender', ylabel='Age'>

sns.violinplot(x='Gender',y='Age',data=df, palette='coolwarm_r')

In [45]:

Out[45]:

Multivariate Analysis

Pair Plot
sns.pairplot(data=df,aspect=.85);

Scatter Plot
sns.set(font_scale=1.3)

```
sns.scatterplot(x='EstimatedSalary',y='Age',data=df)
plt.xlabel('EstimatedSalary')
plt.ylabel('Age')
```

Text(0, 0.5, 'Age')

Out[47]:

In [49]:

- 1.00 - 0.75

- 0.25 - 0.00

Heat Map
sns.set(font_scale=1.15)
plt.figure(figsize=(30,4))
sns.heatmap(df.corr(),cmap='RdBu_r',annot=True,vmin=-1, vmax=1);

RowNumber	1	0.0042	0.0058	0.00078	-0.0065	-0.0091	0.0072	0.0006	0.012	-0.006	-0.017
Customerld	0.0042	1	0.0053	0.0095	-0.015	-0.012	0.017	-0.014	0.0017	0.015	-0.0062
CreditScore	0.0058	0.0053	1	-0.004	0.00084	0.0063	0.012	-0.0055	0.026	-0.0014	-0.027
Age	0.00078	0.0095	-0.004	1	-0.01	0.028	-0.031	-0.012	0.085	-0.0072	0.29
Tenure	-0.0065	-0.015	0.00084	-0.01	1	-0.012	0.013	0.023	-0.028	0.0078	-0.014
Balance	-0.0091	-0.012	0.0063	0.028	-0.012	1	-0.3	-0.015	-0.01	0.013	0.12
NumOfProducts	0.0072	0.017	0.012	-0.031	0.013	-0.3	1	0.0032	0.0096	0.014	-0.048
HasCrCard	0.0006	-0.014	-0.0055	-0.012	0.023	-0.015	0.0032	1	-0.012	-0.0099	-0.0071
IsActiveMember	0.012	0.0017	0.026	0.085	-0.028	-0.01	0.0096	-0.012	1	-0.011	-0.16
EstimatedSalary	-0.006	0.015	-0.0014	-0.0072	0.0078	0.013	0.014	-0.0099	-0.011	1	0.012
Exited	-0.017	-0.0062	-0.027	0.29	-0.014	0.12	-0.048	-0.0071	-0.16	0.012	1
	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited

In [51]:

#Missing values in the dataset
df.isnull().sum().sum()

Out[51]:

0

Outliers Identification

<AxesSubplot:xlabel='EstimatedSalary'>


```
In [59]:
#Skewness

df['EstimatedSalary'].skew()

Out[59]:
0.0020853576615585162

In [60]:
#Interquartile Range
Q1=df['EstimatedSalary'].quantile(0.25)
Q3=df['EstimatedSalary'].quantile(0.75)
IQR=Q3-Q1
print(IQR)
98386.1375
```

Outliers Treatment

```
In [66]:
# 1.Flooring and Capping.
# 2.Trimming.
Q1=df['EstimatedSalary'].quantile(0.25)
Q3=df['EstimatedSalary'].quantile(0.75)
IQR=Q3-Q1
whisker width = 1.5
lower whisker = Q1 -(whisker width*IQR)
upper whisker = Q3 + (whisker width*IQR)
df['EstimatedSalary']=np.where((df['EstimatedSalary'])>upper_whisker,upper_wh
isker,np.where(df['EstimatedSalary']<lower whisker,lower whisker,df['Estimate</pre>
dSalary']))
                                                                          In [67]:
sns.boxplot(df['EstimatedSalary'],data=df)
C:\Users\Ilyas\anaconda3\lib\site-packages\seaborn\ decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version
0.12, the only valid positional argument will be `data`, and passing other
arguments without an explicit keyword will result in an error or
misinterpretation.
  warnings.warn(
                                                                          Out[67]:
<AxesSubplot:xlabel='EstimatedSalary'>
```

<axessupplot:xlabel='EstimatedSalary'>

Check for Categorical Columns

In [69]:

```
data_numeric = df[['Age','Balance', 'NumOfProducts','HasCrCard',
'IsActiveMember', 'EstimatedSalary', 'Exited']]
data_categorical = df[['Surname', 'Geography', 'Gender']]
In [70]:
data_numeric.head()
```

	Age	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	42	0.00	1	1	1	101348.88	1
1	41	83807.86	1	0	1	112542.58	0
2	42	159660.80	3	1	0	113931.57	1
3	39	0.00	2	0	0	93826.63	0
4	43	125510.82	1	1	1	79084.10	0

In [71]:

Out[70]:

data_categorical.head()

Out[71]:

	Surname	Geography	Gender
0	Hargrave	France	Female
1	Hill	Spain	Female
2	Onio	France	Female
3	Boni	France	Female
4	Mitchell	Spain	Female

In [72]:

```
print(df['Surname'].unique())
print(df['Geography'].unique())
print(df['Gender'].unique())
['Hargrave' 'Hill' 'Onio' ... 'Kashiwagi' 'Aldridge' 'Burbidge']
['France' 'Spain' 'Germany']
['Female' 'Male']
```

Perform Encoding

In [78]:

```
from sklearn.preprocessing import OneHotEncoder
Surname_encoder = OneHotEncoder()
Surname_reshaped = np.array(data_categorical['Surname']).reshape(-1, 1)
Surname_values = Surname_encoder.fit_transform(Surname_reshaped)
print(data_categorical['Surname'][:5])
print(Surname_values.toarray()[:5])
print(Surname_encoder.inverse_transform(Surname_values)[:5])
0     Hargrave
1     Hill
2     Onio
3     Boni
```

```
4    Mitchell
Name: Surname, dtype: object
[[0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
    [0. 0. 0. ... 0. 0. 0.]
[['Hargrave']
    ['Hill']
    ['Onio']
    ['Boni']
    ['Mitchell']]
```

One Hot Encoding

```
Gender_encoder = OneHotEncoder()
Gender reshaped = np.array(data categorical['Gender']).reshape(-1, 1)
Gender values = Gender encoder.fit transform(Gender reshaped)
print(data categorical['Gender'][:5])
print(Gender_values.toarray()[:5])
print(Gender encoder.inverse transform(Gender values)[:5])
    Female
1
    Female
2
   Female
   Female
   Female
Name: Gender, dtype: object
[[1. 0.]
[1. 0.]
[1. 0.]
[1. 0.]
[1. 0.]]
[['Female']
 ['Female']
 ['Female']
 ['Female']
 ['Female']]
```

In [79]:

Label Encoding

```
In [80]:
from sklearn.preprocessing import LabelEncoder

Gender_encoder = LabelEncoder()

In [81]:
Gender encoder = LabelEncoder()
```

```
Gender_values = Gender_encoder.fit_transform(data_categorical['Gender'])
print("Before Encoding:", list(data_categorical['Gender'][:5]))
print("After Encoding:", Gender_values[:5])
print("Result after inverse:",
Gender_encoder.inverse_transform(Gender_values[:5]))
Before Encoding: ['Female', 'Female', 'Female', 'Female', 'Female']
After Encoding: [0 0 0 0 0]
Result after inverse: ['Female' 'Female' 'Female' 'Female' 'Female']
```

Split the data into Dependent and Independent variables.

```
In [83]:
a=df.iloc[:, :-1].values
print(a)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
        [2 15647311 'Hill' ... 0 1 112542.58]
        [3 15619304 'Onio' ... 1 0 113931.57]
        ...

[9998 15584532 'Liu' ... 0 1 42085.58]
        [9999 15682355 'Sabbatini' ... 1 0 92888.52]
        [10000 15628319 'Walker' ... 1 0 38190.78]]

b= df.iloc[:, -1].values
print(b)
[1 0 1 ... 1 1 0]
```

In [88]:

Scale the Independent variables

```
from sklearn.preprocessing import MinMaxScaler
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
a = df[['Age', 'NumOfProducts']]
scaleda = scale.fit_transform(a)
print(scaleda)
[[ 0.29351742 -0.91158349]
  [ 0.19816383 -0.91158349]
  [ 0.29351742  2.52705662]
...
  [-0.27860412 -0.91158349]
  [ 0.29351742  0.80773656]
  [-1.04143285 -0.91158349]]
```

Split the data into Training and Testing

a test

```
In [95]:
#LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
x = df.iloc[:, :-1]
y = df.iloc[:, -1]
a_train, a_test, b_train, b_test = train_test_split(
   a, y, test size=0.05, random state=0)
                                                                        In [96]:
a train
                                                                       Out[96]:
    Age NumOfProducts
799 42
1069 40 1
8410 46
        1
9436 38 3
5099 45
...
9225 32
4859 22
3264 35
9845 38
2732 48 1
9500 rows × 2 columns
                                                                        In [97]:
b_train
                                                                       Out[97]:
799
       0
1069
       1
8410 0
9436 0
5099 1
       . .
9225 0
4859 0
3264 0
9845 0
2732 1
Name: Exited, Length: 9500, dtype: int64
                                                                        In [98]:
```

	Age	NumOfProducts
9394	35	1
898	40	1
2398	42	1
5906	32	1
2343	38	2
8938	47	1
9291	36	2
491	41	1
2021	18	1
4299	30	2

500 rows × 2 columns

b_test 9394 0 898 1 2398 0 5906 2343 0 8938 0 9291 491 0 2021 0 4299 0 Name: Exited, Length: 500, dtype: int64 In [99]:

Out[98]:

Out[99]:

In []:

In []: