授業コンテンツを担当教員に無断で他者に 配信することを固く禁じます。

光科学1 第8回

東京理科大学先進工学部 マテリアル創成工学科 曽我 公平

1

第7回のまとめ

- ・ 多原子分子の振動
 - ・基準振動=独立な振動要素
 - ・基準振動の線形結合で表される
 - ・振動の自由度:基準振動の数
 - 直線状分子以外 3N 6個
 - 直線状分子
- 3N 5個
- ラマン散乱
 - エネルギーhv励起光の励起光
 - → hvのレイリー散乱光+ $hv + \hbar\Delta\omega$ のラマン散乱光
 - 選択則の違い
 - ・ 赤外活性:原子の振動によって分極pが変化する。
 - ラマン活性:原子の振動によって分極率αが変化する。

第7回の課題

【課題1】

フェノールの 16 〇- 1 H伸縮振動数が 36 10 cm $^{-1}$ であるとする。この水素を重水素 2 Dに置換したとき、振動数はどのように変わるか調べなさい。ただし、重水素置換によって力の定数は変わらないとする。

$$\begin{split} m_{\rm eff}({\rm OH}) &= \frac{16u \cdot 1u}{16u + 1u} = \frac{16}{17}u \\ m_{\rm eff}({\rm OD}) &= \frac{16u \cdot 2u}{16u \cdot 2u} = \frac{32}{18}u \\ \frac{m_{\rm eff}({\rm OH})}{m_{\rm eff}({\rm OD})} &= \frac{\frac{16}{17}u}{\frac{32}{18}u} = 0.52941 \\ \frac{\nu_{\rm OD}}{\nu_{\rm OH}} &= \frac{\frac{1}{2\pi}\sqrt{\frac{k}{m_{\rm eff}({\rm OD})}}}{\frac{1}{2\pi}\sqrt{\frac{k}{m_{\rm eff}({\rm OH})}}} = \sqrt{\frac{m_{\rm eff}({\rm OH})}{m_{\rm eff}({\rm OD})}} = \sqrt{0.52941} = 0.72761 \end{split}$$

振動数と波数は比例するので $(\overline{v} = \frac{v}{})$

 $\overline{\nu}_{\rm OD} = 0.72761 \times \overline{\nu}_{\rm OH} = 0.72761 \times 3610 {\rm cm}^{-1} = 2626.7 = \underline{2627 {\rm cm}^{-1}}$

3

第7回の課題

【課題 2】

ハロゲン分子の力の定数 kは次の表のとおりである。また、原子質量単位は $u=1.661\times 10^{-27}{\rm kg}$ 、円周率は3.142、光速は $2.998\times 10^8{\rm m/s}$ とする。

- (1) 各々のハロゲン分子の基本振動の波数を求めなさい。
- (2) ハロゲン原子間で比較すると、原子番号が大きいほど力の定数が小さくなる理由を考察しなさい。

	¹⁷ F ₂	35Cl ₂	⁷⁹ Br ₂
k [Nm ⁻¹]	445	322	240

第7回の課題

$$\bar{v} = \frac{\omega}{2\pi c} = \frac{1}{2\pi c} \sqrt{\frac{k}{m_{\text{eff}}}}$$

$$m_{\text{eff}} = \frac{m \times m}{m + m} = \frac{m}{2}$$

	¹⁷ F ₂	³⁵ Cl ₂	$^{79}\mathrm{Br}_2$
k [Nm ⁻¹]	445	322	240
$m_{\rm eff} [10^{-27} {\rm kg}]$	1.41E-26	2.91E-26	6.56E-26
$\bar{v} = \frac{1}{2\pi c} \sqrt{\frac{k}{m_{\rm eff}}} [\rm cm^{-1}]$	942. ₄ =942	558. ₇ =559	321. ₀ =321

2原子分子において、負の電荷を担う価電子は2原子の中間点付近に局在している。正の電荷は核の近傍に局在していることから、原子半径が大きくなると正と負の電荷の距離が離れ、クーロン力が弱くなると考えられる。

5

第7回の課題

【課題3】

次の分子には基準振動はいくつあるか答えなさい。

(1) H_2O_x (2) $H_2O_2_x$ (3) C_2H_4

3N - 6 = 12

第7回の課題

【課題4】

(1) 赤外活性とラマン活性の違いを述べよ。

赤外活性は分子内の振動の**分極が**原子の振動によって変化する ときに活性なのに対し、ラマン活性では分子の**分極率が**原子の 振動によって変化することが活性の条件となる。

(2) 分極と分極率の違いを述べよ。

分極は外部電場の有無にかかわらず存在できるが、分極率は外 部電場によって誘起された分極の変化率である。

7

地球温暖化係数 (global warming potential: GWP)

- •二酸化炭素を基準にして、ほかの温室効果ガスがどれだけ温暖 化する能力があるか表した数字
- 気候変動に関する政府間組織 (IPCC) が公表
- 濃度当たりの太陽光からのエネルギー吸収率や、大気中の寿命 を考慮して決定。

地球温暖化係数 (global warming potential: GWP)

表1 CO2と微量温室効果ガスの濃度、大気寿命、地球温暖化係数 (IPCC第4次評価報告書第1作業部会報告(第2章、第7章)及び同第5次評価 報告書第1作業部会報告)

	化学式	大気濃度 (2011年/ppb)	大気寿命/年	100年GWP
二酸化炭素	CO2	390000	-	1
メタン	CH4	1803	12	28
一酸化二窒素	N20	324	121	265
CFC-11	CCI3F	0.239	45	4660
CFC-12	CCI2F2	0.527	100	10200
HCFC-22	CHCIF2	0.213	12	1760
六フッ化硫黄	SF6	0.007	3200	23500

国立環境研究所地球環境研究センター https://www.cger.nies.go.jp/ja/library/qa/15/15-1/qa_15-1-j.html

9

メタン

分子の種類と	原子間結合	換算質量	波数	結合定数	吸収エネルギー
振動のタイプ		μ (kg/mol)	$\overline{v}(cm^{-1})$	k (N∕m)	E _{mol} (kJ/mol)
H ₂ O(逆対称 伸縮振動)	0 – H	0.000948	3756	789	44.939
H ₂ O(全対称 伸縮振動)	0 – H	0.000948	3657	748	43.755
CH ₄ (伸縮振動)	C – H	0.00093	3000	493	35.894
CO ₂ (逆対称 伸縮振動)	C = O	0.00686	2349	2234	28.105

 $h\nu = \hbar\omega$

Tossy's homepage http://sciencetips.web.fc2.com/onshitsu_gas.html

CO₂の4つの振動モード

- ・基準振動(お互いに独立な振動モード)は4個(自由度)
- ν_2 (667 cm⁻¹) • 伸縮振動2個 変角振動2個

- ★実際の振動は基準振動の<u>線形結合</u>で表される
 - L+R
 - R-L

11

 $\cancel{X} \cancel{g} \nearrow \mathbf{CH_4}$ $x^2 - 4x + 4 = 0$; $(x - 2)^2 = 0$

- 3×5-6=**自由度9** 対称性を考慮す ると4
- 基準振動の数が多いが、実際の基準 振動は対称性を考慮すると少なくな る→群論と既約表現
- • T_d 対称性の既約表現は A_1,A_2,E,F_1,F_2
- $\rightarrow A_1 + E + 2F_2$ の4つの基準振動 • A_1, A_2 1次元、 E 2次元、 F_1, F_2 3次元
- $v_1 = 2914 \text{ cm}^{-1}$, $v_2 = 1526 \text{ cm}^{-1}$,

 $v_3 = 3020 \text{ cm}^{-1}$, $v_4 = 1306 \text{ cm}^{-1}$

阿部真志、慶應義塾大学大学院理工学研究科2014年度博士論文 https://www.researchgate.net/figure/Representations-of-the-CH-4-normal-modes_fig16_37421721

- Methane 分子振動とIRスペクトル (ous.ac.jp)
- https://www.chem.ous.ac.jp/~waka/spectra/vibration/index2.php?file=modata/CH4.out&title1=CH%3Csub%3E4%3C/sub%3E&title2=Methane&option="https://www.chem.ous.ac.jp/">https://www.chem.ous.ac.jp/
- ・若松 寛(WAKAMATSU, Kan)氏のHP

13

5. マイクロ波吸収スペクトル

★マイクロ波吸収

分子が<u>**永久分極(永久双極子モーメント)を持つ</u>場合**に 分子の**回転運動**を誘起することにより**マイクロ波吸収**は起こる。</u>

双極子モーメントの変化 と赤外吸収

永久双極子モーメント とマイクロ波吸収

19

5-1. 回転運動

慣性運動:力を与えなければまっすぐ進もうとする 円運動:中心に向かって引き戻そうとする力が必要 ★慣性モーメント:円運動に引き戻そうとする力

慣性運動の記述と回転運動の記述の比較

慣性運動	回転運動	
位置 x	角度 θ	
速度 $v = \frac{dx}{dt}$	角速度 $\omega = \frac{d\theta}{dt}$	
質量 m	慣性モーメント $I = mr^2$	
運動量 p = m v	角運動量 $J=I\omega$	
運動エネルギー $\frac{1}{2}mv^2$	運動エネルギー $\frac{1}{2}I\omega^2$	
カ F	カのモーメント $T = Fr$ (トルク) $T = r \times F$	
運動方程式 $m \frac{d^2x}{dt^2} = F$ $\frac{dp}{dt} = F$	運動方程式 $I rac{d^2 heta}{dt^2} = T rac{dJ}{dt} = T$	

21

慣性モーメント

★慣性モーメント: 質量のようなもの→**運動の重さ**

(直感的に: ひもが長いほうが重い) $I = mr^2$

角運動量

慣性運動	回転運動	
位置 x	角度 0	
速度 $v = \frac{dx}{dt}$	角速度 $\omega = \frac{d\theta}{dt}$	
質量 加	慣性モーメント $I=mr^2$	
運動量 p = mv	角運動量 $J = I\omega$	

$$J = I\omega = r \times mv = r \times p$$

運動方程式

$$m\frac{d^2\mathbf{x}}{dt^2} = \frac{d\mathbf{p}}{dt} = \mathbf{F}$$

$$\frac{d\mathbf{J}}{dt} = \frac{d\mathbf{r}}{dt} \times \mathbf{p} + \mathbf{r} \times \frac{d\mathbf{p}}{dt} = \mathbf{v} \times m\mathbf{v} + \mathbf{r} \times \mathbf{F} = \mathbf{r} \times \mathbf{F} = \mathbf{T}$$
 たいり (力のモーメント)

23

角運動量

慣性運動	回転運動	
運動量 p = m v	角運動量 $J = I\omega$	
運動エネルギー $\frac{1}{2}mv^2 = \frac{p^2}{2m}$	運動エネルギー $\frac{1}{2}I\omega^2 = \frac{J^2}{2I}$	

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}(t)$$

$$I\frac{d\omega}{dt} = T(t)$$

$$W_{t_0 \to t_1} = \int_{t_0}^{t_1} \mathbf{F}(t) \frac{d\mathbf{x}}{dt} dt$$

$$W_{t_0 \to t_1} = \int_{t_0}^{t_1} T(t) \frac{d\theta}{dt} dt$$

$$W_{t_0 \to t_1} = \int_{t_0}^{t_1} T(t) \frac{d\theta}{dt} dt$$

$$= \int_{t_0}^{t_1} \frac{d\omega}{dt} \omega dt$$

$$= \int_{t_0}^{t_1} \frac{d\omega}{dt} \left(\frac{1}{2}I\omega^2\right) dt$$

$$= \int_{t_0}^{t_1} \frac{d\omega}{dt} \left(\frac{1}{2}I\omega^2\right) dt$$

5-2. 分子の回転における慣性モーメント

慣性モーメント I:N原子分子で

$$I = \sum_{i=1}^{N} m_i r_i^2$$

 m_i :i番目の原子の質量

 r_i : i番目の原子の回転軸からの距離

全角運動量]

$$J = \sum_{i=1}^{N} j_i = \sum_{i=1}^{N} m_i r_i^2 \omega_i = I\omega$$

 ω_i : i番目の原子の角速度 ω : 分子全体の角速度

25

慣性モーメント、角運動量と 運動のエネルギー

- ★慣性モーメントと角運動量が決まる: I, J
 - →角速度が決まる: ω
 - →運動エネルギーが決まる: $E = \frac{1}{2}I\omega^2$
 - →共鳴吸収の振動数が決まる: E = hv

5-3. 回転軸の取り方と回転子

回転軸:分子の回転の特性を表す

 $I_a \le I_b \le I_c$

となるように3つの軸を設定する。

 $(-番「軽く回る」軸を<math>I_a$ にする)

27

5-3. 回転軸の取り方と回転子

- ・回転子の種類
 - 直線回転子 $I_a = 0$, $I_b = I_c$
 - 球状回転子 $I_a = I_b = I_c$
 - 対称回転子 $I_a < I_b = I_c$, $I_a = I_b < I_c$
 - 非対称回転子 $I_a < I_b < I_c$

5-4. 慣性モーメントの計算

2原子分子の慣性モーメント

重心周りの回転

$$I = \sum_{i=1}^{N} m_i r_i^2 = m_{\rm A} \left(\frac{m_{\rm B}}{m_{\rm A} + m_{\rm B}}\right)^2 R^2 + m_{\rm B} \left(\frac{m_{\rm A}}{m_{\rm A} + m_{\rm B}}\right)^2 R^2$$
$$= \frac{m_{\rm A} m_{\rm B} (m_{\rm A} + m_{\rm B})}{(m_{\rm A} + m_{\rm B})^2} R^2 = \frac{m_{\rm A} m_{\rm B}}{(m_{\rm A} + m_{\rm B})} R^2 = \underline{m_{\rm eff} R^2}$$

29

HCI分子の慣性モーメント

【例題5-1】

 1 H 35 CI分子の慣性モーメントを求めよ。ただし、結合長は $128~\mathrm{pm}$ 、原子質量単位 $u=1.66\times10^{-27}\mathrm{kg}$ とする。

【解】

 1 H 35 Clの有効質量 $m_{\mathrm{eff}}=\frac{u\,35u}{u+35u}=\frac{35}{36}u=1.61_{4} imes10^{-27}\mathrm{kg}$ したがって、

$$I = m_{\text{eff}}R^2 = 1.61_4 \times 10^{-27} \text{kg} \times (1.28 \times 10^{-10} \text{m})$$
$$= 2.64_4 \times 10^{-47} \text{ kg m}^2$$

水分子の慣性モーメント

【例題5-2】 水分子の慣性モーメント

(1) 図のように水分子 1 H $_{2}$ 16 OのOHの結合距離をR、H-O-Hの結合角を θ とする。 1 Hの質量を m_{H} 、 16 Oの質量を m_{O} としたとき、二回対称軸まわりの水分子 1 H $_{2}$ 16 Oの慣性モーメントを表しなさい。

(2) $^1 ext{H}_2^{16} ext{O}$ の結合角が θ =104 $^\circ$ 、結合距離はR=95.8 pmとする。水分子 $^1 ext{H}_2^{16} ext{O}$ の慣性モーメントを求めなさい。

31

水分子の慣性モーメント

[解]

(1) 酸素分子は回転軸上にあるので $r_0=0$ 。軸から水素分子までの距離 $r_{\rm H}$ は $r_{\rm H}$

$$r_{\rm H} = R \sin\left(\frac{\theta}{2}\right)$$

水素原子は2個あるので

$$I = 2m_{\rm H}r_{\rm H}^2 = 2m_{\rm H}R^2\sin^2\left(\frac{\theta}{2}\right)$$

(2)

$$2m_{\rm H}R^2 \sin^2\left(\frac{\theta}{2}\right)$$
= 2 × (1.66 × 10⁻²⁷kg)(9.58 × 10⁻¹¹m)²(sin(52°))²
= 2 × 1.66 × 10⁻²⁷kg × 91.7₈ × 10⁻²⁰m² × 0.621₀
= 1.89₂ × 10⁻⁴⁷kg m²

第8回のまとめ

- 分子の回転において、慣性モーメント $I = mr^2$ は 回転運動の重さを表す量である。
- 回転の運動エネルギーは慣性モーメントIと角運動量Jを用いて $\frac{J^2}{2I}$ と表せる。
- ・慣性モーメントの定義 $I = \sum_{i=1}^{N} m_i r_i^2$
- •2原子分子の慣性モーメントは $m_{
 m eff}R^2$

33

第8回の課題

【課題1】

 12 C 1 H 35 CI $_{3}$ 分子の慣性モーメントを求めなさい。ただし、 \angle HCCI = 107 $^{\circ}$ 、C - CI結合距離はR=177 pmとする。また、回転軸はH - C結合方向とする。

【課題2】

 ${\rm CO_2}$ の ${\rm C=O}$ 結合距離を116.0pmとする。酸素の質量数を16として ${\rm CC}$ を中心とした回転の慣性モーメントを求めなさい。ただし、回転軸は ${\rm O=C=O}$ の結合方向に垂直とする。また、原子質量単位は $u=1.661\times 10^{-27}{\rm kg}$ とする。