

如果
$$\sum_{n=1}^{\infty} a_n + a_n > 0, n = 1, 2, 3, \dots,$$
则称 $\sum_{n=1}^{\infty} a_n$ 为**正项级数**。

⇔ 正项级数 $\sum a_n$ 收敛⇔ 部分和数列 $\{S_n\}$ 有界。

比较判别法 设
$$\sum_{n=1}^{\infty} u_n$$
 和 $\sum_{n=1}^{\infty} v_n$ 为正项级数,满足 $u_n \leq v_n$, $n=1,2,3,\cdots$,那么

例题 判别下列级数的收敛性:

$$\sum_{n=1}^{\infty} \left(\frac{2n}{5n+3}\right)^{2n}, \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin \frac{1}{n}, \qquad \sum_{n=1}^{\infty} \left(\sqrt[n]{n}-1\right)$$

比较判别法极限形式: 设 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 为正项级数,

(I) 若
$$\lim_{n\to\infty} \frac{u_n}{v_n} = l > 0$$
,则 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 同时收敛或同时发散。

(II) 若
$$\lim_{n\to\infty}\frac{u_n}{v_n}=0$$
,那么若 $\sum_{n=1}^{\infty}v_n$ 收敛,则 $\sum_{n=1}^{\infty}u_n$ 收敛。

(III) 若
$$\lim_{n\to\infty} \frac{u_n}{v_n} = +\infty$$
,那么若 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散。

例题 判别下列级数的收敛性:

$$\sum_{n=1}^{\infty} \frac{\ln(n+1) - \ln(n-1)}{\sqrt{n}}, \qquad \sum_{n=1}^{\infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n} \right)$$

比值判别法(达朗贝尔): 设 $\sum_{n=1}^{\infty}a_n$ 为正项级数, $D_n \triangleq \frac{a_{n+1}}{a_n}$, 那么

(I) 若
$$D_n < q < 1$$
, $n \ge N \in \mathbb{Z}^+$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

(II) 若
$$D_n \ge 1$$
, $n \ge N \in \mathbb{Z}^+$, 则 $\sum_{n=1}^{\infty} a_n$ 发散。

例题

判别下列级数的收敛性:

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}, \qquad \sum_{n=1}^{\infty} \frac{4^n}{5^n - 3^n}, \qquad \sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$$

达朗贝尔比值判别法极限形式: 设 $\sum_{n=1}^{\infty} a_n$ 为正项级数,那么

(I) 若
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r < 1$$
,则 $\sum_{n=1}^{\infty} a_n$ 收敛;

(II) 若
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r > 1$$
,则 $\sum_{n=1}^{\infty} a_n$ 发散。此时有 $\lim_{n\to\infty} a_n = +\infty$.

例题 判别下列级数的收敛性:

$$\sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n}, \qquad \sum_{n=1}^{\infty} \frac{2 + (-1)^n}{3^n}, \qquad \sum_{n=1}^{\infty} \frac{e^n \cdot n!}{n^n}$$

【注】 当
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r = 1$$
 或 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 不存在时, $\sum_{n=1}^{\infty} a_n$ 收敛与否须另行判别.

根值判别法(柯西):设 $\sum_{n=1}^{\infty}a_n$ 为正项级数, $C_n=\sqrt[n]{a_n}$,那么

(I) 若
$$C_n < q < 1$$
, $n \ge N \in \mathbb{Z}^+$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

(II) 若
$$C_n \ge 1$$
, $n \ge N \in \mathbb{Z}^+$, 则 $\sum_{n=1}^{\infty} a_n$ 发散。

判别下列级数的收敛性:

$$\sum_{n=1}^{\infty} n \left(\frac{2}{3}\right)^n, \quad \sum_{n=1}^{\infty} \frac{n}{\left(1+\frac{1}{n}\right)^{n^2}}$$

柯西根值判别法极限形式:
$$\bigcup_{n=1}^{\infty} a_n$$
 为正项级数,那么

(I) 若
$$\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$$
,则 $\sum_{n=1}^{\infty} a_n$ 收敛;

(II) 若
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$$
,则 $\sum_{n=1}^{\infty} a_n$ 发散。此时有 $\lim_{n\to\infty} a_n = +\infty$.

积分判别法(柯西)设 f(x) 在 $[1, +\infty)$ 上恒正且单调递减, $a_n \triangleq f(n), n = 1, 2, 3, \cdots$, 则

(I) 若
$$\int_{1}^{+\infty} f(x)dx$$
 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛; (II) 若 $\int_{1}^{+\infty} f(x)dx$ 发散,则 $\sum_{n=1}^{\infty} a_n$ 发散。

证:
$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n f(n)$$
, 所以有 $S_n - f(1) \le \int_1^n f(x) dx \le S_n$, 因此

$$(I) 若 \int_{1}^{+\infty} f(x) dx 收敛, 则 S_{n} \leq f(1) + \int_{1}^{+\infty} f(x) dx, \{S_{n}\} 有界, \sum_{n=1}^{+\infty} a_{n} 收敛。$$

判别下列级数的收敛性:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}, \quad \sum_{n=1}^{\infty} \frac{1}{n \ln^p n}, \quad \sum_{n=1}^{\infty} \frac{1}{n \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)^2}, \quad \sum_{n=1}^{\infty} \frac{1}{n \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)},$$

