Estudio de la eficiencia del algoritmo de la burbuja en C++

Noelia Escalera Mejías

1. Resumen

URL del repositorio: https://github.com/Arelaxe/proyecto_final

Para el proyecto final del curso de LaTeX y Git, he decidido hacer un estudio sobre la eficiencia del algoritmo de la burbuja, de forma tanto teórica como empírica.

2. Introducción

El algoritmo de la burbuja es uno de los primeros algoritmos de ordenación que se aprenden a programar debido a la sencillez de su implementación. Sin embargo, ¿es eficiente? Esto es lo que vamos a comprobar en el presente informe. El lenguaje de programación en el que se trabajará será C++11.

3. Eficiencia teórica

Hay varias formas de implementar el algoritmo de la burbuja. Nosotros usaremos la más sencilla:

```
void ordenar(int *v, int n) {
  for (int i=0; i<n-1; i++)
   for (int j=0; j<n-i-1; j++)
    if (v[j]>v[j+1]) {
     int aux = v[j];
     v[j] = v[j+1];
     v[j] = aux;
   }
}
```

La eficiencia teórica sería la siguiente:

-Bucle for: Se ejecuta n-1 veces

■ Línea 2: 4 operaciones, Asignación (i = 0), Resta (n - 1), Comparación (i < n - 1) e Incremento (i + +). 3 operaciones se ejecutan a la vez y otras tres se ejecutan n veces.

-Bucle for (dentro del for anterior: Se ejecuta n-i-1 veces, es una progresión aritmética)

■ Línea 3: 5 operaciones. Asignación (j = 0), Resta (n - i, (n - i) - 1), Comparación (j < n - i - 1) e Incremento (j + +). 4 operaciones se ejecutan una vez y otras 4 se ejecutan n veces.

-If (dentro del for anterior): Se ejecuta siempre, ya que estamos en el peor de los casos

- Línea 4: 4 operaciones, Acceso a vectores (v[j], v[j+1]), Suma (j+1), Comparación (v[j] > v[j+1]).
- Línea 5: 2 operaciones, Acceso a vector (v[j]), Asignación (aux = v[j]).
- **Línea 6:** 4 operaciones, Acceso a vectores (v[j], v[j+1]), Asignación (v[j] = v[j+1]), Suma (j+1).
- Línea 7: 3 operaciones, Acceso a vector (v[j+1]), Suma (j+1), Asignación (v[j+1] = aux).

Por tanto, el tiempo en el peor de los casos sería:

$$3 + \sum_{i=0}^{n+1} (3+4+\sum_{j=0}^{n-i-1} (4+4+2+4+3)) = 3+3+\sum_{i=0}^{n-1} (7+17(n-i-1)) =$$

$$= 3+(n-1)\frac{7+17(n-n+3-1)+7+17(n+1)}{2} = 3+(n+1)\frac{7+17+2+7+17n+17}{2} =$$

$$= 3+(n-1)\frac{17n+65}{2} = 3+\frac{17n^2+65n-17n-65}{2} = \frac{17n^2+48n-59}{2}$$

Luego podemos decir que tenemos una eficiencia de $O(n^2)$.