Государственное бюджетное профессиональное образовательное учреждение города Москвы

«Московский государственный колледж электромеханики и информационных технологий» (ГБПОУ МГКЭИТ)

Отчет по практической работе №1 Работа с официальной документации различных СУБД

Выполнил студент группы ЗИП-11-19 Петряев И.Н.

ВВЕДЕНИЕ

Цель – получить актуальные знания по разным СУБД.

Актуальность – важность выбора СУБД при разработке программного продукта.

Задачи:

- 1) Анализ назначения СУБД,
- 2) анализ основных возможностей СУБД,
- 3) анализ типов данных в СУБД;
- 4) анализ языка запроса в СУБД.

Предмет исследования – исследования СУБД.

Объекты исследования – Mysql, MongoDB, Neo4j.

ОСНОВНАЯ ЧАСТЬ

1 MongoDB

1.1 Назначение СУБД

MongoDB — это ориентированная на документы база данных NoSQL с открытым исходным кодом, которая использует для хранения структуру JSON. Модель данных MongoDB позволяет представлять иерархические отношения, проще хранить массивы и другие более сложные структур.

1.2 Основные возможности

Это кроссплатформенная документоориентированная база данных NoSQL с открытым исходным кодом. Она не требует описания схемы таблиц, как в реляционных БД. Данные хранятся в виде коллекций и документов.

Между коллекциями нет сложных соединений типа JOIN, как между таблицами реляционных БД. Обычно соединение производится при сохранении данных путем объединения документов.

Данные хранятся в формате BSON (бинарные JSON-подобные документы) У коллекций не обязательно должна быть схожая структура. У одного документа может быть один набор полей, в то время как у другого документа — совершенно другой (как тип, так и количество полей).

1.3 Типы данных

Основные типы данных приведены в таблице 1.

Таблица 1— типы данных.

Тип данных	описание
String	строковый тип данных
Аггау (массив)	тип данных для хранения массивов
	элементов
Binary data	тип для хранения данных в
	бинарном формате

Boolean	булевый тип данных, хранящий		
	логические значения TRUE или		
	FALSE		
Date	хранит дату в формате времени Unix		
Double	числовой тип данных для хранения		
	чисел с плавающей точкой		
Integer	используется для хранения		
	целочисленных значений		

4 Язык запросов

СУБД MongoDB относится к NoSQL базам данных, основной чертой которых является нереляционный характер и соответственно язык запросов, отличный от SQL. В MongoDB в качестве язык запросов используется JavaScript и JSON-структуры. Выбор столь нехарактерного языка запроса объясняется тем, что эта документ-ориентированная СУБД использует JSON-формат для представления документов и вывода результатов. Физически JSON-структуры хранятся в бинарном BSON-формате. Некоторые примеры запросов изображены на рисунке 1, рисунке 2.

```
db.mybase.insert({title: "MySQL"})
db.mybase.insert({title: "PostreSQL"})
db.mybase.insert({title: "MongoDB"})
db.mybase.insert([{title: "MS SQL"}, {title: "Oracle"}])
```

Рисунок 1—вставка нового документа.

```
db.mybase.find({title: /^M/});
{ "_id" : ObjectId("51f4dae823d2a4ef32d25ec4"), "title" : "MySQL" }
{ "_id" : ObjectId("51f4dae823d2a4ef32d25ec6"), "title" : "MongoDB" }
{ "_id" : ObjectId("51f4dae923d2a4ef32d25ec7"), "title" : "MS SQL" }
```

Рисунок 2—регулярные выражения.

2 Neo4j

2.1 Назначение СУБД

Neo4j является ведущей в мире графической базой данных с открытым исходным кодом, которая разработана с использованием технологии Java. Он легко масштабируется и не содержит схем (NoSQL).

Граф представляет собой графическое представление набора объектов, где некоторые пары объектов связаны ссылками. Он состоит из двух элементов — узлов (вершин) и отношений (ребер). База данных графиков — это база данных, используемая для моделирования данных в форме графиков. Здесь узлы графа изображают сущности, в то время как отношения изображают ассоциацию этих узлов.

2.2 Основные возможности

Основные возможности СУБД Neo4j:

- 1)Связанные данные легко представить,
- 2)получение/просмотр/навигация по большему количеству подключенных данных очень просто и быстро,
- 3) команды языка запросов Neo4j CQL это удобный и читаемый формат, очень простой в освоении,
 - 4) он использует простую и мощную модель данных,
- 5)не требуется сложных подключений для получения связанных / связанных данных, потому что легко получить его соседние узлы или детали отношений без подключений или индексов.

2.3 Типы данных

Типы данных: boolean, byte, short, int, long, float, double, char, string,

2.4 Язык запросов

Сурћег является декларативным графовым языком запросов, который позволяет писать выразительные и эффективные запросы на получение данных из хранилища графов и их изменение. Сурћег является относительно простым, но весьма мощным языком. Очень сложные запросы к базе данных могут быть легко выражены посредством Сурћег. Это позволяет вам

сфокусироваться на предметной области, не тратя время на доступ к базе данных.

Язык запросов CQL расшифровывается как Cypher Query Language. Как база данных Oracle имеет язык запросов SQL, Neo4j имеет CQL в качестве языка запросов. Пример запроса CREATE (<node-name>:<label-name>).

3 MySQL

3.1 Назначение СУБД

MySQL— система управления реляционными базами данных с открытым исходным кодом. MySQL является решением для малых и средних приложений. Входит в состав серверов WAMP, AppServ, LAMP и в портативные сборки серверов Денвер, XAMPP, VertrigoServ. Обычно MySQL используется в качестве сервера, к которому обращаются локальные или удалённые клиенты, однако в дистрибутив входит библиотека внутреннего сервера, позволяющая включать MySQL в автономные программы.

3.2 Основные возможности

Основные возможности СУБД MySQL является:

- 1) очень быстрые дисковые таблицы на основе В-деревьев со сжатием индексов,
- 2) простота в работе установить MySQL довольно просто. Дополнительные приложения, например GUI, позволяет довольно легко работать с БД,
- 3) хеш-таблицы в памяти, используемые как временные таблицы,
- 4) безопасность большое количество функций обеспечивающих безопасность, которые поддерживается по умолчанию,
- 5) скорость упрощение некоторых стандартов позволяет MySQL значительно увеличить производительность
- 6) масштабируемость MySQL легко работает с большими объемами данных и легко масштабируется.

3.3 Типы данных

Основные типы данных СУБД MySQL отображены в таблице 2.

Таблица 2 — типы данных.

Символьные типы	Char, varchar
Числовые типы	Int, decimal, float, double
Типы для работы с датой и	Date, time, datetime, year, timestamp
временем	
Составные типы	Enum, set

Бинарные типы	tinyblob,	blob,	mediumblom,
	largeblom		

3.4 Язык запросов

Основные операторы, которые используются в запросе представлены в таблице 3.

Команда	Описание		
CREATE	Создает новую таблицу,		
	представление таблицы или другой		
	объект в БД		
ALTER	Модифицирует существующий в БД		
	объект, такой как таблица		
DROP	Удаляет существующую таблицу,		
	представление таблицы или другой		
	объект в БД		
SELECT	Извлекает записи из одной или		
	нескольких таблиц		
INSERT	Создает записи		
UPDATE	Модифицирует записи		
DELETE	Удаляет записи		
GRANT	Наделяет пользователя правами		
REVOKE	Отменяет права пользователя		

Ниже представлен пример использования запроса(Рисунок 3).

```
SELECT `phone_book` FROM `test` ORDER BY `surname`;

INSERT INTO `phone_book` ('id', 'surname', `name', `patronymic', `phone')

VALUES ('1', 'Aбрамов', 'Максим', 'ВИКТОРОВИЧ', '555-55-55');

UPDATE `phone_book`
SET `surname' = 'Абрамович'
WHERE `id`=1;

DELETE FROM `phone_book`
WHERE `id`=1;
```

Рисунок 3 — пример запроса.

ЗАКЛЮЧЕНИЕ

В процессе выполнения работы были полученные знания о разных видах СУБД. В ходе выполнения были выполнены следующие задачи: анализ назначения СУБД, анализ основных возможностей СУБД, анализ типов данных СУБД, анализ языка запросов.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1) https://dev.mysql.com/doc/
- 2) https://www.opennet.ru/docs/RUS/mysqlcli/glava01.html#Features
- 3) https://docs.mongodb.com/
- 4) https://salatpower.ru/?p=5
- 5) https://ru.wikipedia.org/wiki/MySQL
- 6) https://evilinside.ru/neo4j/#
- 7) https://neo4j.com/docs/