

Computational Astrophysics

Violeta González Pérez

2023

Computational Astrophysics

Introduction to Computational Astrophysics Gravity Solver, Tree codes

Concepts of High-Performance Computing

Numerical methods

Summary of Astrophysical processes

Boltzman equation for a system of

N-bodies

Gravity

(Magneto-)Hydrodynamics

Direct simulation

Eulerian methods: PM, AMR

Lagrangian methods: trees and multiple

expansions

Hybrid methods: TreePM, (A)P3M

Gravity Solver, Grid codes
Fulerian methods: AMR

Lagrangian methods: AMR

agrangian methods: SPH

What is your background?

Have you programmed before? What about C? and in parallel? What do you want out of this course? (the coding tutorials are highly adaptable!)

1

Computational Astrophysics: Lecturers

- Dr. Daniel Ceverino, Mod. 8 303, daniel.ceverino@uam.es
- Dr. Weiguang Cui, Mod. 8 312, weiguang.cui@uam.es (coordinator).
- Dr. Violeta González Pérez, Mod. 8 314, violeta.gonzalez@uam.es
- Prof. Gustavo Yepes, Mod. 8 307, gustavo.yepes@uam.es

Computational Astrophysics: Summary guide

Course material in Moodle and for information from previous years:

```
http://popia.ft.uam.es/ACO/
```

- Theory on Thursdays (15pm to 17pm).
- Coding Tutorials on Fridays (12 to 14pm), except the first week.
- Classes will take place in Aula 01.15.SS.201
- Evaluation in 2 parts that need to be passed independently:
 - Attempt to solve 3 problems (needed to be able to present the project):
 - 1. The Mandelbrot series.
 - The difference between two distinct integration schemes for the equations of motion for two self gravitating bodies.
 - 3. A 1D code for solving the equations of gas dynamics using the Lagrangian SPH method.
 - Individual project (description to be uploaded **28th April**;
 - 12 min. presentation 25th May), it can consist of:
 - a) Using an existing professional code for the study of an astrophysical system (solar system, galaxy collision, cosmic structure formation).
 - b) Write your own code for approaching a physical phenomenon.
 - c) Literature research about one of the topics of the course.

Computational Astrophysics: Schedule

Secretaría Virtual

32566-ACO classes 2022/23

day	date	time	teacher	topic	comments	
Thu	23/03/2023	15-17	VGP	Introduction		
Fri	24/03/2023	10-12	VGP	HPC		
Thu	30/03/2023	15-17	VGP	Numerics Review		
Fri	31/03/2023	10-12	wc	Coding Tutorial		
Thu	06/04/2023				semana santa	
Fri	07/04/2023				semana santa	
Thu	13/04/2023	15-17	VGP	Physical Processes		
Fri	14/04/2023	10-12	WC	Coding Tutorial	Mandelbrot handout, Project discussion	
Thu	20/04/2023	15-17	DC	Tree Codes		
Fri	21/04/2023	10-12	wc	Coding Tutorial	Kepler handout, Mandelbrot solution	
Thu	27/04/2023	15-17	DC	grid N-body		
Fri	28/04/2023	10-12	WC	Coding Tutorial	SPH handout, Kepler solution	
Thu	04/05/2023	15-17	GY	Hydrodynamics		
Fri	05/05/2023	10-12	wc	Coding Tutorial		
Thu	11/05/2023	15-17	GY	Hydrodynamics		
Fri	12/05/2023	10-12	wc	Coding Tutorial		
Thu	18/05/2023	15-17	GY	Hydrodynamics		
Fri	19/05/2023	10-12	WC	Coding Tutorial	SPH discussion	
Thu	25/05/2023	10-14	WC+VGP+GY+DC	project presentations		
teachers	VGP: Violeta Gonzal DC: Daniel Ceverir					

Coding tutorials: weekly excersises

Evaluation: attempt to write code for 3 problems (50%)

In order to pass this subject you need to attempt the following 3 excersises:

Evaluation: individual projects

Presentations: 25th May

Deadline to upload to Moodle a paragraph describing your chosen project: 28th April.

You can also come up with your own project. Talk to us!

Evaluation: retake exams

Students will only be permitted to attend the retake exam if they fail one or both of the evaluable parts (excersises and project).

The retake exam will be a written exam, lasting 2 hours. No books will be permitted.

