

Hydrogen Reuse

Section 1

Introduction

Why use hydrogen as an energy carrier?

Produces clean power

Can be transported

over long distances, and/or heat for transport allowing the distribution of and stationary energy between countries applications Clean Safe Versatile Can be produced Has a high energy Required as a clean without density, feedstock in industry a carbon footprint making it suitable for when recycling through electrolysis long-term storage captured CO2 or SMR + CCS

Hydrogen

Reproduced with permission Europe

Hydrogen decarbonisation role

Hydroger Europe

Hydrogen production routes

© Shell International www.shell.de/h2studie

Hydrogen as a by-product

• Chlorine and NaOH production

Hydrogen production by water electrolysis

	Temperature°C	Electrolyte	Plant size		Efficiency	Purity H ₂	System costs	Lifespan	Maturity level
Alkaline Electrolysis (AE)	60 - 80	Potassium- hydroxid	0.25 - 760 Nm³ H ₂ /h	1.8 - 5,300 kW	65 - 82%	99.5% - 99.9998%	1,000 - 1,200 €/kW	60,000 - 90,000 h	Commercially used in industry for the last 100 years
Proton Exchange Membrane Electrolysis (PEM)	60 - 80	Solid state membrane	0.01 - 240 Nm³ H ₂ /h	0.2 - 1,150 kW	65 - 78%	99.9% - 99.9999%	1,900 - 2,300 €/kW	20,000 - 60,000 h	Commercially used for medium and small applications (<300 kW)
Anion Exchange Membrane Electrolysis (AEM)	60 - 80	Polymer membrane	0.1 - 1 Nm³ H ₂ /h	0.7 - 4.5 kW	N/A	99.4%	N/A	N/A	Commercially available for limited applications
Solid Oxide Electrolysis (SOE)	700 - 900	Oxide ceramic	Until now at experimental stage in laboratories		85% (lab)	N/A	N/A	approx 1,000 h	Experimental stage

© Shell International www.shell.de/h2studie

Industry/fertiliser/fuel production refining

Transport

Stationary electricity / energy generation

© Shell International www.shell.de/h2studie

Hydrogen turbines

Fuel cells

Fuel cells

Source www.fuelcelltoday.com

The NET-Tools Project and resulting FCH2 European Educational platform has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 736648. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

