Principes des Systèmes de Gestion de Bases de Données #2 – Modèle et Algèbre Relationnels

Équipe pédagogique BD

Ensimag 2ème année

Objectifs du cours

Ce que vous avez vu jusqu'ici...

- ▶ Définition d'un SGBD
- ► Architecture, fonctions d'un SGBD
- ► Au centre d'un SGBD : le modèle de données

Aujourd'hui, nous allons parler du

Modèle relationnel

(NB : ce cours sera peut-être une redite)

Vision globale du cours

- ► Introduction SGBD et modèles de données ✓
- Bases de données relationnelles
 - Modèle relationnel
 - Algèbre relationnelle
 - ► SQL X
- ► Transactions X
- ► Conception de bases de données X
 - Analyse, dépendances, normalisation X
 - ▶ Modèle entité-associations, traduction en relationnel X

Le modèle relationnel

- Introduit par Edgar Franck Codd en 1970
- Malgré la percée des approches NoSQL, ce modèle est utilisé dans une grande majorité des SGBD utilisés aujourd'hui dans les Systèmes d'Information
- ► Forces du modèle relationnel :
 - Simplicité (le « tableau »)
 - Formalisme mathématique clair (théorie des ensembles)
 - Opérateurs d'interrogation puissants
 - Structuré (séparation schéma / données)
- ► Faiblesses du modèle relationnel :
 - ▶ Plat (pas de structure imbriquée, pas d'héritage)
 - Structuré (séparation schéma / données)

Relation

Notion centrale du modèle relationnel : la relation...

R	$att_1:\mathcal{D}_1$	 $att_{j}:\mathcal{D}_{j}$	 $att_n:\mathcal{D}_n$
	$t_{1,1}$	 $t_{1,j}$	 $t_{1,n}$
	$t_{i,1}$	 $t_{i,j}$	 $t_{i,n}$
	$t_{m,1}$	 $t_{m,j}$	 $t_{m,n}$

Relation : détails

R	$att_1:\mathcal{D}_1$	 $att_{j}:\mathcal{D}_{j}$	 $att_n:\mathcal{D}_n$
	$t_{1,1}$	 $t_{1,j}$	 $t_{1,n}$
	$t_{i,1}$	 $t_{i,j}$	 $t_{i,n}$
	$t_{m,1}$	 $t_{m,j}$	 $t_{m,n}$

Relation: détails

R	$att_1:\mathcal{D}_1$	 $att_j:\mathcal{D}_j$	 $att_n:\mathcal{D}_{n}$
	$t_{1,1}$	 $t_{1,j}$	 $t_{1,n}$
	$t_{i,1}$	 $t_{i,j}$	 $t_{i,n}$
	$t_{m,1}$	 $t_{m,j}$	 $t_{m,n}$

- ► Ensemble de n-uplets = extension de la relation (données)
- ▶ Une relation est un ensemble de n-uplets. Conséquences :
 - lignes non ordonnées
 - pas de doublons
- ightharpoonup m = cardinal de la relation (= nombre de n-uplets)

Relation: détails

R	$att_1:\mathcal{D}_1$	 $att_{j}:\mathcal{D}_{j}$	 $att_n:\mathcal{D}_n$
	$t_{1,1}$	 $t_{1,j}$	 $t_{1,n}$
	$t_{i,1}$	 $t_{i,j}$	 $t_{i,n}$
	$t_{m,1}$	 $t_{m,j}$	 $t_{m,n}$

 \rightarrow schéma de relation

- ► Schéma = intension de la relation (définition abstraite)
- ▶ R = nom de la relation (et du schéma)
- ightharpoonup n = arité de la relation (relation <math>n-aire)
- contraintes d'intégrité

Relation: détails

- ▶ att_i : \mathcal{D}_i = nom et domaine d'attribut ;
- att_j précise le rôle du domaine dans la relation; tous les noms sont différents; l'ordre est sans importance;
- $\{t_{1,j},\ldots,t_{m,j}\}$ = projection de **R** sur l'attribut att_j (extension)

Exemple

Élèves	prénom	nom	e-mail	filière
	Luke	Skywalker	skywalker@imag.fr	MMIS
	Dark	Vador	vador@imag.fr	IF
	Han	Solo	solo@falcon.com	IF
	Leia	Solo	princess@falcon.com	MMIS
	Jabba	The Hut	jabba@imag.fr	ISSC

dont le schéma est...

Élèves : {prénom : String, nom : String, e-mail : String,

 $\label{eq:filliere} \mbox{fillière}: \mbox{\{MMIS, IF, ISSC, SLE, ISI\}} \mbox{\}.}$

(Remarque : pour simplifier on peut omettre le domaine des attributs)

Contraintes d'intégrité

- ▶ Dans le modèle relationnel, le concepteur d'une base de données peut définir des contraintes ;
- La définition d'une contrainte se fait sur le schéma de la base,i.e., les schémas (intensions) de ses relations;
- ► Les données (les n-uplets, les extensions des relations) doivent se conformer aux contraintes
- Trois types de contraintes :
 - valeur ou domaine;
 - unicité (clé ou autres attributs);
 - intégrité référentielle (contrainte de référence).

Contraintes de valeur / domaine

- ▶ Définition : une condition booléenne sur les attributs d'une relation.
- **Exemple**: note ≥ 0 et note ≤ 20 .
- Sémantique : tous les n-uplets de la relation doivent vérifier la condition booléenne.

Contrainte d'unicité de clé

- ▶ Définition : un sous-ensemble {att₁,...,attk} d'attributs d'un schéma de relation R qui identifie de manière unique un n-uplet.
- ▶ Sémantique formelle : pour tout $(t_1, t_2) \in \mathbf{R}$, si t_1 et t_2 coïncident sur $\{\mathsf{att}_1, \dots, \mathsf{att}_k\}$ alors $t_1 = t_2$.
 - \sim on dit que $\{\mathsf{att}_1,\ldots,\mathsf{att}_k\}$ est une clef de R.
- ▶ Sémantique informelle : Il n'existe pas deux n-uplets de la relation possédant des valeurs identiques sur tous les $\{att_1, \ldots, att_k\}$. Les valeurs des att_i ne peuvent pas être nulles.
 - Un n-uplet est identifié de manière unique par sa / ses clés. Toute relation a au moins une clé.

Contrainte d'unicité de clé : exemple

Élèves	prénom	nom	e-mail	filière
\rightarrow	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS
	Han	Solo	solo@falcon.com	IF
\rightarrow	Dark	Vador	vador@blackstar.com	IF

→ ne respecte pas la contrainté d'unicité de clé!

Contraintes de référence

Élèves	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS
	Han	Solo	solo@falcon.com	IF

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
\rightarrow	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

Comment imposer le fait que tout élève apparaissant dans la table **Notes** apparaisse aussi dans la table **Élèves** ? → Contrainte de référence

Contraintes de référence

- ▶ Définition : une correspondance entre des attributs {att₁,...,att_k} d'un schéma R et des attributs {att'₁,...,att'_k} d'un autre schéma R'.
- Exemple : Notes(prénom, nom) référence Élèves(prénom, nom)
- ► Sémantique formelle :
 - 1. Pour tout tuple $t \in \mathbf{R}$, il existe un tuple $t' \in \mathbf{R}'$ tel que $t[\mathsf{att}_1, \dots, \mathsf{att}_k] = t'[\mathsf{att}_1', \dots, \mathsf{att}_k']$.
 - 2. $\{\mathsf{att}_1', \dots, \mathsf{att}_k'\}$ est une clef de **R'**
- Sémantique informelle : tout « objet » de R correspond à un et un seul « objet » de R'.

Base de données relationnelle

Schéma d'une base de données relationnelle

- Un ensemble de schémas de relations
- Un ensemble de contraintes de valeur par schéma de relation
- ▶ Un ensemble de contraintes d'unicité de clé par schéma de relation
- Un ensemble de contraintes de référence

Base de données relationnelle

- Un schéma de base de données relationnelle
- ▶ Des données ensembles de n-uplets respectant le schéma et vérifiant toutes les contraintes d'intégrité.

Exemple de schéma

 $\textbf{Notes}: \{\mathsf{cours}: \mathsf{String}, \, \mathsf{pr\acute{e}nom_\acute{e}l\grave{e}ve^\dagger}: \mathsf{String}, \, \mathsf{nom_\acute{e}l\grave{e}ve^\dagger}: \mathsf{String}, \, \mathsf{note}: \, \mathbb{Q}\}$

Notes vérifie (note ≥ 0) \land (note ≤ 20)

† Notes(prénom_élève, nom_élève) référence Élèves(prénom, nom)

Des opérateurs pour le modèle relationnel

Algèbre relationnelle : une algèbre au sens large (mathématique) du terme...

- un ensemble : l'ensemble \mathcal{R} des relations
- des opérateurs : des lois internes sur les relations :
 - ▶ Opérateurs unaires $(f : \mathcal{R} \to \mathcal{R})$: projection, sélection
 - ▶ Opérateurs binaires $(f: \mathcal{R} \times \mathcal{R} \to \mathcal{R})$: union, intersection, différence, produit, jointure, division.

Projection

Notation

$$\pi_{\mathsf{att}_1,\ldots,\mathsf{att}_\mathsf{n}}(\mathsf{R})$$

- **R** une relation;
- ▶ att₁,..., att_n un sous-ensemble d'attributs de **R**.

Résultat: La projection d'une relation sur un ensemble d'attributs construit une relation possédant les attributs de cet ensemble (att_1, \ldots, att_n)

Projection: exemple

Projection sur l'attribut nom de la relation Élèves...

Élèves	prénom	nom	e-mail	filière
	Luke	Skywalker	skywalker@imag.fr	MMIS
	Dark	Vador	vador@imag.fr	IF
	Han	Solo	solo@falcon.com	IF
	Leia	Solo	princess@falcon.com	MMIS
	Jabba	The Hut	jabba@imag.fr	ISSC

Sélection

Notation

$$\sigma_P(\mathbf{R})$$

- **R** une relation :
- ▶ P une condition booléenne (un critère) sur les attributs de R.

Résultat : La sélection d'une relation R selon un critère construit une relation dont l'extension contient les tuples de R satisfaisant ce critère.

Sélection : exemple

Sélection dans la relation ${f Notes}$ des tuples dont la note est inférieure à 10.

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

$\sigma_{note < 10}(Notes)$	cours	prénom	nom	note
	sport	Jabba	The Hut	3

Passage à la pratique

Exercice	(R1)	
Exercice	(LT)	

Quelles sont les adresses e-mail des élèves de la filière ISSC?

F	A vous de jouer						
Γ							
l							
l							
l							
l							
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı							

Passage à la pratique

Exercice	(R2)
LXEICICE	(1\4)

Quels sont les élèves (prénom et nom) ayant eu moins de 10 à une matière ?

A vous de jouer					

Opérateurs ensemblistes

Notation

$$R_1 \cup R_2$$
 ; $R_1 \cap R_2$; $R_1 - R_2$

 \mathbf{R}_1 et \mathbf{R}_2 deux relations de même schéma.

Résultat :

- ▶ Union : tous les tuples contenus dans R₁ ou R₂
- ▶ Intersection : tous les tuples contenus dans R_1 et R_2
- ▶ Différence : tous les tuples contenus dans R₁ mais pas dans R₂

Différence : exemple

Différence entre Élèves et Élèves 2...

Élèves	s prénom nom		e-mail	filière
	Luke	Skywalker	skywalker@imag.fr	MMIS
	Dark	Vador	vador@imag.fr	IF
	Han	Solo	solo@falcon.com	IF
	Leia	Solo	princess@falcon.com	MMIS

Élèves 2	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS

Élèves – Élèves 2	prénom	nom	e-mail	filière
	Luke	Skywalker	skywalker@imag.fr	MMIS
	Han	Solo	solo@falcon.com	IF
	Leia	Solo	princess@falcon.com	MMIS

Passage à la pratique

À vous de jouer

Quels sont les élèves (prénom et nom) n'ayant que des notes supérieures (ou égales) à 10?

Produit cartésien

Notation

$$\textbf{R}_1 \times \textbf{R}_2$$

 \mathbf{R}_1 et \mathbf{R}_2 deux relations (de schémas quelconques).

Résultat : Toutes les combinaisons possibles (t_1, t_2) de tuples $t_1 \in \mathbf{R}_1$ et $t_2 \in \mathbf{R}_2$.

Produit cartésien : exemple

Élèves 2	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

R	Él2 .pré	Él2.nom	e-mail	filière	cours	N .pré	N.nom	note
	Dark	Vador	va[]fr	IF	sport	Dark	Vador	20
	Dark	Vador	va[]fr	IF	sport	Jabba	The Hut	3
	Dark	Vador	va[]fr	IF	pilotage	Han	Solo	15
	Obi-Wan	Kenobi	ke[]fr	MMIS	sport	Dark	Vador	20
	Obi-Wan	Kenobi	ke[]fr	MMIS	sport	Jabba	The Hut	3
	Obi-Wan	Kenobi	ke[]fr	MMIS	pilotage	Han	Solo	15

Produit cartésien : remarques

- Produit cartésien possible entre relations ayant des attributs communs (de mêmes noms)
- ▶ Auto-produit (**R** × **R**) possible aussi.

Usage : renommer les attributs pour éviter la confusion.

Jointure conditionnelle (θ -produit)

Notation

$$R_1 \bowtie_P R_2$$

- ▶ R₁ et R₂ deux relations (de schémas quelconques).
- ightharpoonup P une condition booléenne (un critère) sur les attributs de \mathbf{R}_1 et \mathbf{R}_2 .

Résultat : Mathématiquement¹ équivalent à un produit cartésien suivi d'une sélection : $\mathbf{R}_1 \bowtie_P \mathbf{R}_2 = \sigma_P(\mathbf{R}_1 \times \mathbf{R}_2)$.

Remarque : un θ -produit dont le prédicat est une égalité entre attributs est appelée equi-jointure.

¹ Mais pas forcément équivalent informatiquement (efficacité).

Jointure naturelle

Notation

$$\textbf{R}_1 \bowtie \textbf{R}_2$$

 $ightharpoonup R_1$ et $m R_2$ deux relations ayant des attributs en commun (de même nom).

Résultat : Toutes les combinaisons possibles (t_1, t_2) de tuples $t_1 \in \mathbf{R}_1$ et $t_2 \in \mathbf{R}_2$ pour lesquelles t_1 et t_2 ont les mêmes valeurs sur les attributs communs.

Les attributs communs sont fusionnés dans la relation résultante.

Jointure naturelle : exemple

Jointure entre \acute{E} lèves 2 et Notes: informellement, liste des élèves (avec leurs données) et leurs notes.

Élèves 2	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

Él 2 ⋈ Notes	prénom	nom	e-mail	filière	cours	note
	Dark	Vador	vador@imag.fr	IF	sport	20

Passage à la pratique

	(D 4)
Exercice	(K4)

Quelles sont les adresses e-mail des élèves ayant moins de 10 à au moins une matière ?

À vous de jouer	

Passage à la pratique

Exercice (R5)

Quels sont les élèves (prénom, nom) qui ont eu moins que Dark Vador en sport ?

La division

Notation

$R_1 \div R_2$

 ${f R}_1$ et ${f R}_2$ deux relations telles que l'ensemble des attributs de ${f R}_2$ est inclus dans l'ensemble des attributs de ${f R}_1$.

- $ightharpoonup Att_2$: ensemble des attributs de $m R_2$
- ▶ $Att_1 = Att_2 \cup Att_3$: ensemble des attributs de \mathbf{R}_1

Résultat : Tous les tuples t_3 sur Att_3 tels que : pour chaque tuple $t_2 \in \mathbf{R}_2$ (sur Att_2), le tuple (t_2, t_3) (sur Att_1) existe dans \mathbf{R}_1 .

Division: exemple

 $\label{lement:donner} \mbox{Informellement}: \mbox{donner les noms d'élèves qui apparaissent à la fois dans la filière MMIS et dans la filière IF (dans toutes les filières de R_2).}$

icic iviiviio ci	dans la liner	c ii (daii	J toutes	, 105 111	icies ac it
Élèves 3	nom	filière			
	Skywalker	MMIS		R_2	filière
	Vador	IF	÷	••2	
	Solo	IF	·		MMIS
	Solo	MMIS			IF
	The Hut	ISSC			
		—			
	Élèves	$3 \div R_2$	nom		
			Solo		

Passage à la pratique

Exercice (R6)

Quels sont les élèves (prénom, nom, e-mail) qui ont une note dans toutes les matières de l'Ensimag?

À vous de jouer		

Avant de terminer ... Un peu de logique

Par nature, les projections, sélections et jointures expriment :

de simples restrictions de domaines :

$$\{x \in \mathcal{X} \mid P(x) \text{ est vrai } \}$$

ou des quantifications existentielles :

$$\{x \in \mathcal{X} \mid \exists y \in \mathcal{Y}, \ Q(x,y) \text{ est vrai } \}$$

Certaines requêtes ne sont pas de ce type-là, les requêtes universelles :

$$\{x \in \mathcal{X} \mid \forall y \in \mathcal{Y}, \ R(x, y) \text{ est vrai } \}$$

ou:

$$\{x \in \mathcal{X} \mid \frac{1}{2}y \in \mathcal{Y}, S(x, y) \text{ est vrai } \}$$

(Remarque : la dernière requête est équivalente à : $\{x \in \mathcal{X} \mid \forall y \in \mathcal{Y}, \ \neg S(x,y) \text{ est vrai } \}$)

Comment traiter ces requêtes?

$$\{x \in \mathcal{X} \mid \forall y \in \mathcal{Y}, \ R(x, y) \text{ est vrai } \}$$

- 1. Les reconnaître
- 2. Éventuellement utiliser la logique pour les mettre sous une forme exploitable
- 3. Utiliser la différence ou la division.

Vision globale du cours

- ► Introduction SGBD et modèles de données ✓
- ▶ Bases de données relationnelles ✓
 - ▶ Modèle relationnel ✓
 - Algèbre relationnelle
 - ► SQL X
- ► Transactions X
- ► Conception de bases de données X
 - Analyse, dépendances, normalisation X
 - ▶ Modèle entité-associations, traduction en relationnel X

Ce Qu'il Faut Retenir

- Domaine, Relation, Attribut, schéma de relation.
- Contrainte d'unicité de clé, contrainte d'intégrité référentielle (de référence).
- Schéma de base de données relationnelle et instance d'un schéma.
- ▶ Opérateurs basiques de l'algèbre relationnelle : sélection (σ) , projection (π) , produit cartésien (\times) , union (\cup) , et différence (-).
- ▶ Définition des opérateurs étendus de l'algèbre relationnelle : intersection (∩), jointure conditionnelle (⋈_F), jointure naturelle (⋈) et division (÷).

Semi-jointures

Notation

$$R_1 \ltimes R_2$$
 (gauche) $R_1 \rtimes R_2$ (droite)

▶ R₁ et R₂ deux relations (de schémas quelconques).

Résultat : Mathématiquement équivalent à une jointure naturelle suivie d'une projection sur les attributs de R_1 (\times) ou R_2 (\times)

- $\qquad \qquad \mathbf{R}_1 \ltimes \mathbf{R}_2 = \pi_{Att(\mathbf{R}_1)}(\mathbf{R}_1 \bowtie \mathbf{R}_2)$
- $\qquad \qquad \mathbf{R}_1 \rtimes \mathbf{R}_2 = \pi_{Att(\mathbf{R}_2)}(\mathbf{R}_1 \bowtie \mathbf{R}_2)$

Semi-jointure à gauche : exemple

Jointure entre Élèves 2 et Notes : informellement, les élèves qui ont une note.

Élèves 2	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

Él 2 × Notes	2 × Notes prénom		e-mail	filière
	Dark	Vador	vador@imag.fr	IF

Jointures externes

Notation

$$R_1 \bowtie R_2$$
 (gauche) $R_1 \bowtie R_2$ (droite)

 $ightharpoonup R_1$ et $m R_2$ deux relations (de schémas quelconques).

Résultat : tous les tuples de $R_1 \bowtie R_2$, auxquels on ajoute :

- ▶ pour la jointure à gauche tous les tuples $t_1 \cdot (\text{null}, ..., \text{null})$ pour tout tuple $t_1 \in \mathbf{R}_1$ n'apparaissant pas dans la jointure naturelle
- ▶ pour la jointure à droite tous les tuples $(null, ..., null) \cdot t_2$ pour tout tuple $t_2 \in R_2$ n'apparaissant pas dans la jointure naturelle

Formellement:

$$\mathsf{R}_1 \bowtie \mathsf{R}_2 = \mathsf{R}_1 \bowtie \mathsf{R}_2 \cup \bigg((\mathsf{R}_1 - \mathsf{R}_1 \ltimes \mathsf{R}_2) \times \{(\mathsf{null}, \dots, \mathsf{null})\}\bigg)$$

Jointure externe à gauche : exemple

Jointure externe à gauche entre $\acute{E}l\`{e}ves$ 2 et Notes : informellement, les élèves (avec leurs données) et leurs notes, y compris les élèves qui n'ont pas de notes

Élèves 2	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

Él 2 ⋈ Notes	prénom	nom	e-mail	filière	cours	note
	Dark	Vador	vador@imag.fr	IF	sport	20
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS	null	null

Jointure externe complète

Notation

$$R_1 \bowtie R_2$$

▶ R₁ et R₂ deux relations (de schémas quelconques).

Résultat : l'union des jointures externes à gauche et à droite de R_1 et R_2 . **Formellement :**

$$R_1 \bowtie R_2 = R_1 \bowtie R_2 \cup R_1 \bowtie R_2$$

Jointure externe complète : exemple

Jointure externe complète entre Élèves 2 et Notes

Élèves 2	prénom	nom	e-mail	filière
	Dark	Vador	vador@imag.fr	IF
	Obi-Wan	Kenobi	kenobio@imag.fr	MMIS

Notes	cours	prénom	nom	note
	sport	Dark	Vador	20
	sport	Jabba	The Hut	3
	pilotage	Han	Solo	15

