Nota

 R_A es un subespacio de \mathbb{R}^n y C_A es un subespacio de \mathbb{R}^m .

$$R_A =$$
espacio de los renglones de $A =$ gen $\{ \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m \}$ (5.7.3)

 $C_A =$ espacio de las columnas de A =gen $\{ \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n \}$ (5.7.4)

Se ha introducido una gran cantidad de notación en tan sólo tres páginas. Antes de dar un ejemplo, se demostrará que dos de estos cuatro espacios son los mismos.

Teorema 5.7.3

у

Para cualquier matriz A, $C_A = \mathrm{im} A$. Es decir, la imagen de una matriz es igual al espacio de sus columnas.

Demostración

Para demostrar que $C_A = \text{im}A$ se demuestra que $\text{im}A \subseteq C_A$ e $\text{im}A \subseteq C_A$.

- i) Se quiere probar que im $A \subseteq C_A$. Suponga que $\mathbf{y} \in \text{im}A$. Entonces existe un vector \mathbf{x} tal que $\mathbf{y} = A\mathbf{x}$. Pero como se observó en la sección 2.2, $A\mathbf{x}$ se puede expresar como una combinación lineal de las columnas de A. Por lo tanto, $\mathbf{y} \in C_A$, de manera que im $A \subseteq C_A$.
- ii) Se quiere probar que im $A \subseteq C_A$. Suponga que $y \in C_A$. Entonces y se puede expresar como una combinación lineal de las columnas de A como en la ecuación (2.2.9). Sea x el vector columna de los coeficientes de esta combinación lineal. Entonces, igual que en la ecuación (2.2.9), y = Ax. Así, $y \in \text{im}A$, lo que prueba que im $A \subseteq C_A$.

EJEMPLO 5.7.3 Cálculo de N_A , $\nu(A)$, imA, $\rho(A)$, R_A y C_A para una matriz de 2 × 3

Sea
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$
. A es una matriz de 2 × 3.

i) El espacio nulo de $A = N_A = \{x \in \mathbb{R}^3 : Ax = 0\}$. Como se vio en el ejemplo 5.7.1,

$$N_A = \operatorname{gen}\left\{ \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\}.$$

- ii) La nulidad de $A = \nu(A) = \dim N_A = 1$.
- iii) Se sabe que im $A = C_A$. Las primeras dos columnas de A son vectores linealmente independientes en \mathbb{R}^2 y, por lo tanto, forman una base para \mathbb{R}^2 . La im $A = C_A = \mathbb{R}^2$.
- iv) $\rho(A) = \dim \operatorname{im} A = \dim \mathbb{R}^2 = 2$.
- v) El espacio de los renglones de $A = R_A = \text{gen } \{(1, 2, -1), (2, -1, 3)\}$. Como estos dos vectores son linealmente independientes, se ve que R_A es un subespacio de dimensión dos de \mathbb{R}^3 . Del ejemplo 5.5.9, se observa que R_A es un plano que pasa por el origen.

En el ejemplo 5.7.3 iv) se observa que $\rho(A) = \dim R_A = 2$, lo que no es una coincidencia.