Lezione di Informatica Teorica: Decidibilità e Indecidibilità

Appunti da Trascrizione Automatica

30 giugno 2025

Indice

1	Introduzione e Ripasso 1.1 Macchina Universale (MU)	
2	Linguaggio Universale (LU) 2.1 Il Complemento del Linguaggio Diagonale (\overline{LD})	2 4
3	Problema dell'Arresto (HALT)	4
4	Problema dell'Arresto su Stringa Vuota (HAL T_{ϵ})	7
5	Riepilogo e Conclusioni	8

1 Introduzione e Ripasso

Ripassiamo i concetti fondamentali della scorsa lezione, chiarendo alcuni punti sulla Macchina Universale (MU) e introducendo nuovi linguaggi e problemi legati alla decidibilità.

1.1 Macchina Universale (MU)

La Macchina Universale è una Macchina di Turing programmabile, capace di simulare il comportamento di qualsiasi altra Macchina di Turing. Sebbene la sua funzione di transizione sia complessa, la sua progettazione è fattibile e si può realizzare con un numero limitato di stati.

1.2 Linguaggio Diagonale (LD)

La scorsa lezione abbiamo introdotto il linguaggio diagonale *LD*:

Definizione 1.1 (Linguaggio Diagonale (LD)). Il linguaggio diagonale LD è l'insieme delle codifiche di Macchine di Turing M_i tali che M_i non accetta la propria codifica $\langle M_i \rangle$.

$$LD = \{ \langle M_i \rangle \mid M_i \text{ non accetta } \langle M_i \rangle \}$$

Abbiamo dimostrato che LD non appartiene alla classe dei linguaggi ricorsivamente enumerabili (R_e).

Teorema 1.1. $LD \notin R_e$.

Dimostrazione. La dimostrazione si basa sulla tecnica di diagonalizzazione di Cantor, già vista in precedenza. Assumendo per assurdo l'esistenza di una Macchina di Turing M_D che accetta LD, si può costruire una contraddizione nel comportamento di M_D sulla propria codifica.

Una conseguenza diretta di questo teorema è che LD non può appartenere nemmeno alla classe dei linguaggi ricorsivi (R).

Proposizione 1.1. *Se* $L \in R$, *allora* $L \in R_e$. *Poiché* $LD \notin R_e$, *allora* $LD \notin R$.

2 Linguaggio Universale (LU)

Introduciamo il Linguaggio Universale.

Definizione 2.1 (Linguaggio Universale (LU)). Il linguaggio universale LU è l'insieme delle coppie $\langle M, w \rangle$, dove M è una Macchina di Turing e w è una stringa, tali che M accetta w. L'operatore "accetta" (indicato anche con \models) implica che M si arresta in uno stato accettante su w.

$$LU = \{ \langle M, w \rangle \mid M \text{ accetta } w \}$$

Teorema 2.1. $LU \in R_e$.

Dimostrazione. Per dimostrare che $LU \in R_e$, dobbiamo mostrare l'esistenza di una Macchina di Turing che lo accetti. Tale macchina è la Macchina Universale (MU).

- 1. La MU prende in input la codifica $\langle M, w \rangle$.
- 2. La MU simula passo-passo il comportamento di M su w.

- 3. Se M si arresta in uno stato accettante su w, la MU si arresta e accetta (risponde "sì").
- 4. Se *M* si arresta in uno stato non accettante su *w*, la MU si arresta e rifiuta (risponde "no").
- 5. Se M non si arresta su w (entra in un loop infinito), la MU simulerà all'infinito e non si arresterà (non darà risposta "sì").

Poiché la MU accetta tutte le istanze di LU e non accetta quelle che non vi appartengono, LU è ricorsivamente enumerabile.

Ora, la domanda cruciale: $LU \in R$? Intuitivamente, se M va in loop su w, la MU non si arresterà per dare una risposta "no". Questo suggerisce che LU non sia decidibile.

Teorema 2.2. $LU \notin R$.

Dimostrazione. La dimostrazione procede per assurdo, utilizzando una riduzione da LD (di cui sappiamo la non appartenenza a R_e , e quindi a R).

Assunzione per assurdo: Supponiamo che $LU \in R$.

- 1. Se $LU \in R$, allora per le proprietà delle classi di linguaggi, anche il suo complemento $\overline{LU} \in R$.
- 2. Se $\overline{LU} \in R$, allora esiste una Macchina di Turing $M_{\overline{LU}}$ che **decide** \overline{LU} . Ciò significa che $M_{\overline{LU}}$ si arresta sempre (su ogni input) e dà una risposta corretta (sì/no).
- 3. Costruiamo una nuova Macchina di Turing M' che prende in input una codifica di macchina $\langle M_i \rangle$. Il comportamento di M' è il seguente:
 - (a) Riceve $\langle M_i \rangle$ come input.
 - (b) Crea una copia di $\langle M_i \rangle$ e la usa come stringa w. Forma la coppia $\langle M_i, \langle M_i \rangle \rangle$. (Quindi l'input per la fase successiva è $\langle M_i, w \rangle$ dove $w = \langle M_i \rangle$).
 - (c) Dà in input la coppia $\langle M_i, \langle M_i \rangle \rangle$ alla macchina $M_{\overline{LU}}$ (la cui esistenza è garantita dalla nostra assunzione).
 - (d) M' adotta la risposta di $M_{\overline{III}}$:
 - Se $M_{\overline{LU}}$ risponde "sì", allora M' risponde "sì".
 - Se $M_{\overline{III}}$ risponde "no", allora M' risponde "no".

Ora analizziamo il linguaggio deciso da M', L(M'):

- Se M' risponde "sì": Ciò significa che $M_{\overline{LU}}$ ha risposto "sì" sull'input $\langle M_i, \langle M_i \rangle \rangle$. Poiché $M_{\overline{LU}}$ decide \overline{LU} , la risposta "sì" implica che $\langle M_i, \langle M_i \rangle \rangle \in \overline{LU}$. Per definizione di \overline{LU} , ciò significa che M_i non accetta $\langle M_i \rangle$.
- Se M' risponde "no": Ciò significa che $M_{\overline{LU}}$ ha risposto "no" sull'input $\langle M_i, \langle M_i \rangle \rangle$. Poiché $M_{\overline{LU}}$ decide \overline{LU} , la risposta "no" implica che $\langle M_i, \langle M_i \rangle \rangle \notin \overline{LU}$, ovvero $\langle M_i, \langle M_i \rangle \rangle \in LU$. Per definizione di LU, ciò significa che M_i accetta $\langle M_i \rangle$.

Il comportamento di M' è esattamente quello di una macchina che decide LD. Infatti, M' risponde "sì" se M_i non accetta $\langle M_i \rangle$, e "no" se M_i accetta $\langle M_i \rangle$. Dunque, L(M') = LD.

Poiché M' è costruita usando $M_{\overline{LU}}$ (che è un decider e si arresta sempre), M' è anch'essa una Macchina di Turing che si arresta sempre, ovvero un decider. Questo implicherebbe che $LD \in R$.

Contraddizione: Sappiamo che $LD \notin R_e$, e quindi $LD \notin R$. L'assunzione iniziale ($LU \in R$) deve essere falsa.

Conclusione: $LU \notin R$.

2.1 Il Complemento del Linguaggio Diagonale (\overline{LD})

Consideriamo ora il complemento di *LD*:

Definizione 2.2 (Complemento del Linguaggio Diagonale (\overline{LD})). Il complemento del linguaggio diagonale \overline{LD} è l'insieme delle codifiche di Macchine di Turing M_i tali che M_i accetta la propria codifica $\langle M_i \rangle$.

$$\overline{LD} = \{ \langle M_i \rangle \mid M_i \text{ accetta } \langle M_i \rangle \}$$

Teorema 2.3. $\overline{LD} \in R_e$.

Dimostrazione. Per dimostrare che $\overline{LD} \in R_{\ell}$, dobbiamo costruire una Macchina di Turing $M_{\overline{LD}}$ che accetti \overline{LD} .

Costruzione di $M_{\overline{LD}}$:

- 1. $M_{\overline{LD}}$ prende in input la codifica di una Macchina di Turing $\langle M_i \rangle$.
- 2. $M_{\overline{LD}}$ crea una copia di $\langle M_i \rangle$ per usarla come stringa w. Forma quindi la coppia $\langle M_i, \langle M_i \rangle \rangle$.
- 3. $M_{\overline{LD}}$ simula M_i su $\langle M_i \rangle$ usando una Macchina Universale (MU).
- 4. Se la simulazione di M_i su $\langle M_i \rangle$ si arresta e accetta, allora $M_{\overline{ID}}$ accetta (risponde "sì").
- 5. Se la simulazione di M_i su $\langle M_i \rangle$ si arresta e rifiuta, o entra in loop, allora $M_{\overline{LD}}$ non accetta (risponde "no" o va in loop).

Analisi del comportamento di $M_{\overline{LD}}$:

- Se $\langle M_i \rangle \in \overline{LD}$: Per definizione, M_i accetta $\langle M_i \rangle$. La simulazione della MU si arresterà e accetterà. Di conseguenza, $M_{\overline{LD}}$ accetterà.
- Se $\langle M_i \rangle \notin \overline{LD}$: Per definizione, M_i non accetta $\langle M_i \rangle$. Ciò significa che M_i o rifiuta o va in loop su $\langle M_i \rangle$.
 - Se M_i rifiuta $\langle M_i \rangle$, la simulazione della MU si arresterà e rifiuterà. $M_{\overline{ID}}$ non accetterà.
 - Se M_i va in loop su $\langle M_i \rangle$, la simulazione della MU andrà in loop. $M_{\overline{LD}}$ non accetterà.

Poiché $M_{\overline{LD}}$ accetta esattamente le stringhe che appartengono a \overline{LD} , si conclude che $\overline{LD} \in R_e$.

Proposizione 2.1. $\overline{LD} \notin R$.

Dimostrazione. Se \overline{LD} fosse in R, allora per la proprietà che R è chiusa rispetto al complemento, anche LD sarebbe in R. Ma sappiamo che $LD \notin R_e$, e quindi $LD \notin R$. Questo è una contraddizione.

3 Problema dell'Arresto (HALT)

Introduciamo il famoso Problema dell'Arresto.

Definizione 3.1 (Problema dell'Arresto (HALT)). Il linguaggio HALT è l'insieme delle coppie $\langle M, w \rangle$, dove M è una Macchina di Turing e w è una stringa, tali che M si arresta su w (indipendentemente dal fatto che accetti o rifiuti).

$$HALT = \{ \langle M, w \rangle \mid M \text{ si arresta su } w \}$$

Figura 1: Relazioni tra classi di linguaggi R e R_e e posizione di alcuni linguaggi

La differenza con LU è sottile ma cruciale: LU richiede l'accettazione, HALT richiede solo l'arresto.

Teorema 3.1. $HALT \in R_e$.

Dimostrazione. Per dimostrare che $HALT \in R_e$, dobbiamo costruire una Macchina di Turing M_{HALT} che accetti HALT.

Costruzione di M_{HALT} :

- 1. M_{HALT} prende in input la coppia $\langle M, w \rangle$.
- 2. M_{HALT} simula M su w usando una Macchina Universale (MU).
- 3. Se la simulazione di M su w si arresta (sia in uno stato accettante che non accettante), allora M_{HALT} accetta (risponde "sì").
- 4. Se la simulazione di M su w entra in loop infinito, allora M_{HALT} entra in loop (non risponde "sì").

Analisi del comportamento di M_{HALT} :

- Se $\langle M, w \rangle \in HALT$: Per definizione, M si arresta su w. La simulazione della MU si arresterà. Di conseguenza, M_{HALT} accetterà.
- **Se** $\langle M, w \rangle \notin HALT$: Per definizione, M non si arresta su w (va in loop). La simulazione della MU andrà in loop. Di conseguenza, M_{HALT} non accetterà.

Poiché M_{HALT} accetta esattamente le istanze di HALT, si conclude che $HALT \in R_e$.

Teorema 3.2. $HALT \notin R$.

Dimostrazione. La dimostrazione procede per assurdo, utilizzando una riduzione da LU (di cui sappiamo la non appartenenza a R).

Assunzione per assurdo: Supponiamo che $HALT \in R$.

- 1. Se $HALT \in R$, allora esiste una Macchina di Turing M^*_{HALT} che **decide** HALT. Ciò significa che M^*_{HALT} si arresta sempre e dà una risposta corretta (sì/no).
- 2. Costruiamo una nuova Macchina di Turing M' che prende in input una coppia $\langle M, w \rangle$. Il comportamento di M' è il seguente:
 - (a) Riceve $\langle M, w \rangle$ come input.
 - (b) Dà in input $\langle M, w \rangle$ alla macchina M^*_{HALT} (la cui esistenza è garantita dalla nostra assunzione).
 - (c) M' verifica la risposta di M^*_{HALT} :
 - **Se** M^*_{HALT} **risponde "no"**: (Significa che M non si arresta su w). Allora M' risponde "no". (In questo caso, M non può accettare w, quindi $\langle M, w \rangle \notin LU$).
 - **Se** M_{HALT}^* **risponde** "sì": (Significa che M si arresta su w). Allora M' simula M su w usando una Macchina Universale (MU).
 - Se la simulazione di M su w si arresta e accetta, allora M' risponde "sì".
 - Se la simulazione di M su w si arresta e rifiuta, allora M' risponde "no".

Ora analizziamo il linguaggio deciso da M', L(M'):

- Se M' risponde "sì": Ciò accade solo se M^*_{HALT} ha risposto "sì" (cioè M si arresta su w) e la simulazione di M su w ha accettato. Questo significa che M accetta w. Quindi, $\langle M, w \rangle \in LU$.
- **Se** *M'* **risponde** "**no**": Ciò può accadere in due scenari:
 - Scenario 1: M^*_{HALT} ha risposto "no". Questo significa che M non si arresta su w. Se M non si arresta, non può accettare w. Quindi, $\langle M, w \rangle \notin LU$.
 - Scenario 2: M_{HALT}^* ha risposto "sì", ma la simulazione di M su w ha rifiutato. Questo significa che M si è arrestata su w ma non ha accettato w. Quindi, $\langle M, w \rangle \notin LU$.

In entrambi gli scenari, M' risponde "no" se $\langle M, w \rangle \notin LU$.

Il comportamento di M' è esattamente quello di una macchina che decide LU. Dunque, L(M') = III

Poiché M' è costruita usando M^*_{HALT} (che è un decider e si arresta sempre), e la parte di simulazione dopo la risposta "sì" di M^*_{HALT} è garantita arrestarsi, M' è anch'essa una Macchina di Turing che si arresta sempre, ovvero un decider. Questo implicherebbe che $LU \in R$.

Contraddizione: Sappiamo che $LU \notin R$. L'assunzione iniziale ($HALT \in R$) deve essere falsa. **Conclusione:** $HALT \notin R$.

Proposizione 3.1. *Il complemento di HALT,* \overline{HALT} , non appartiene a R.

Dimostrazione. Se \overline{HALT} fosse in R, allora per la proprietà che R è chiusa rispetto al complemento, anche HALT sarebbe in R. Ma abbiamo appena dimostrato che $HALT \notin R$. Questo è una contraddizione.

4 Problema dell'Arresto su Stringa Vuota (HALT_ε)

Questa è una variante specifica del problema dell'arresto.

Definizione 4.1 (Problema dell'Arresto su Stringa Vuota (HALT $_{\epsilon}$)). Il linguaggio HALT $_{\epsilon}$ è l'insieme delle codifiche di Macchine di Turing M tali che M si arresta quando le viene data in input la stringa vuota ϵ .

$$HALT_{\epsilon} = \{\langle M \rangle \mid M \text{ si arresta su } \epsilon\}$$

Teorema 4.1. $HALT_{\epsilon} \in R_{e}$.

Dimostrazione. Per dimostrare che $HALT_{\epsilon} \in R_{e}$, dobbiamo costruire una Macchina di Turing $M_{HALT_{\epsilon}}$ che accetti $HALT_{\epsilon}$.

Costruzione di M_{HALT_e} :

- 1. M_{HALT_c} prende in input la codifica $\langle M \rangle$.
- 2. $M_{HALT_{\epsilon}}$ simula M sulla stringa vuota ϵ usando una Macchina Universale (MU).
- 3. Se la simulazione di M su ϵ si arresta (sia accettando che rifiutando), allora $M_{HALT_{\epsilon}}$ accetta (risponde "sì").
- 4. Se la simulazione di M su ϵ entra in loop infinito, allora $M_{HALT_{\epsilon}}$ entra in loop (non risponde "sì").

Analisi del comportamento di $M_{HALT_{\epsilon}}$:

- Se $\langle M \rangle \in HALT_{\epsilon}$: Per definizione, M si arresta su ϵ . La simulazione della MU si arresterà. Di conseguenza, $M_{HALT_{\epsilon}}$ accetterà.
- Se $\langle M \rangle \notin HALT_{\epsilon}$: Per definizione, M non si arresta su ϵ (va in loop). La simulazione della MU andrà in loop. Di conseguenza, $M_{HALT_{\epsilon}}$ non accetterà.

Poiché M_{HALT_e} accetta esattamente le istanze di $HALT_e$, si conclude che $HALT_e \in R_e$.

Teorema 4.2. $HALT_{\epsilon} \notin R$.

Dimostrazione. La dimostrazione procede per assurdo, utilizzando una riduzione da HALT (di cui sappiamo la non appartenenza a R).

Assunzione per assurdo: Supponiamo che $HALT_{\epsilon} \in R$.

- 1. Se $HALT_{\epsilon} \in R$, allora esiste una Macchina di Turing $M^*_{HALT_{\epsilon}}$ che **decide** $HALT_{\epsilon}$. Ciò significa che $M^*_{HALT_{\epsilon}}$ si arresta sempre e dà una risposta corretta (sì/no).
- 2. Costruiamo una nuova Macchina di Turing M' che prende in input una coppia $\langle M, w \rangle$. Il comportamento di M' è il seguente:
 - (a) Riceve $\langle M, w \rangle$ come input.
 - (b) M' costruisce (mediante un "modulo di reshaping") una nuova Macchina di Turing, che chiamiamo $M_{M,w}$ (o $M_w^{\rm tilde}$), la cui codifica $\langle M_{M,w} \rangle$ viene passata al passo successivo.
 - (c) La Macchina $M_{M,w}$ è definita come segue:
 - Quando $M_{M,w}$ viene avviata su un qualsiasi input (ad esempio, la stringa vuota ϵ), ignora l'input.

- Cancella il suo nastro di input.
- Scrive la stringa w (ottenuta dalla coppia $\langle M, w \rangle$ iniziale) sul proprio nastro.
- Simula la Macchina di Turing M (ottenuta dalla coppia $\langle M, w \rangle$ iniziale) sul contenuto attuale del nastro, ovvero su w.
- $M_{M,w}$ accetta se M accetta w, rifiuta se M rifiuta w, va in loop se M va in loop su w. In sintesi, $M_{M,w}$ si arresta su ε se e solo se M si arresta su w.
- (d) M' dà in input la codifica $\langle M_{M,w} \rangle$ alla macchina $M^*_{HALT_e}$.
- (e) M' adotta la risposta di $M^*_{HALT_e}$:
 - Se $M_{HALT_c}^*$ risponde "sì", allora M' risponde "sì".
 - Se $M^*_{HALT_{\varepsilon}}$ risponde "no", allora M' risponde "no".

Ora analizziamo il linguaggio deciso da M', L(M'):

- Se M' risponde "sì": Ciò significa che $M^*_{HALT_{\varepsilon}}$ ha risposto "sì" sull'input $\langle M_{M,w} \rangle$. Poiché $M^*_{HALT_{\varepsilon}}$ decide $HALT_{\varepsilon}$, la risposta "sì" implica che $M_{M,w}$ si arresta su ε . Per come abbiamo costruito $M_{M,w}$, questa si arresta su ε se e solo se M si arresta su w. Quindi, M si arresta su w. Ciò significa che $\langle M, w \rangle \in HALT$.
- Se M' risponde "no": Ciò significa che $M^*_{HALT_{\epsilon}}$ ha risposto "no" sull'input $\langle M_{M,w} \rangle$. Poiché $M^*_{HALT_{\epsilon}}$ decide $HALT_{\epsilon}$, la risposta "no" implica che $M_{M,w}$ non si arresta su ϵ . Per come abbiamo costruito $M_{M,w}$, questa non si arresta su ϵ se e solo se M non si arresta su w. Quindi, M non si arresta su w. Ciò significa che $\langle M, w \rangle \notin HALT$.

Il comportamento di M' è esattamente quello di una macchina che decide HALT. Dunque, L(M') = HALT.

Poiché M' è costruita usando $M^*_{HALT_{\epsilon}}$ (che è un decider e si arresta sempre), M' è anch'essa una Macchina di Turing che si arresta sempre, ovvero un decider. Questo implicherebbe che $HALT \in R$. Contraddizione: Sappiamo che $HALT \notin R$. L'assunzione iniziale ($HALT_{\epsilon} \in R$) deve essere falsa.

Conclusione: $HALT_{\epsilon} \notin R$.

Proposizione 4.1. Il complemento di $HALT_{\epsilon}$, $\overline{HALT_{\epsilon}}$, non appartiene a R.

Dimostrazione. Se $\overline{HALT_{\epsilon}}$ fosse in R, allora per la proprietà che R è chiusa rispetto al complemento, anche $HALT_{\epsilon}$ sarebbe in R. Ma abbiamo appena dimostrato che $HALT_{\epsilon} \notin R$. Questo è una contraddizione.

5 Riepilogo e Conclusioni

Abbiamo esplorato la decidibilità di diversi linguaggi fondamentali per la teoria della computazione:

- *LD*: Non ricorsivamente enumerabile ($LD \notin R_e \implies LD \notin R$).
- \overline{LD} : Ricorsivamente enumerabile ($\overline{LD} \in R_e$), ma non ricorsivo ($\overline{LD} \notin R$).
- LU: Ricorsivamente enumerabile ($LU \in R_e$), ma non ricorsivo ($LU \notin R$).
- *HALT*: Ricorsivamente enumerabile ($HALT \in R_e$), ma non ricorsivo ($HALT \notin R$).

• $HALT_{\epsilon}$: Ricorsivamente enumerabile ($HALT_{\epsilon} \in R_{\epsilon}$), ma non ricorsivo ($HALT_{\epsilon} \notin R$).

Tutti i problemi di non appartenenza a *R* sono stati dimostrati mediante riduzione ad altri problemi di cui era già nota la non decidibilità. Questo è un metodo standard in teoria della computazione per dimostrare l'indecidibilità.

Figura 2: Mappa aggiornata delle classi di linguaggi R e R_e con i linguaggi discussi.