Calculus I Implicit derivatives, related rates

Todor Miley

2019

Outline

Implicit Differentiation

Related Rates

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Implicit Differentiation 4/

Implicit Differentiation

 So far, we have seen functions with formulas that express one varable explicitly in terms of the other.

- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.
- Some functions are given implicitly by a relation between x and y.
- $x^2 + y^2 = 1$ isn't the equation of any one function.
- Implicitly it gives two functions: $y = \sqrt{1 x^2}$ and $y = -\sqrt{1 x^2}$.
- How do we differentiate these functions?
- Differentiate both sides with respect to x, and then solve for y'.

Example

Find an equation of the tangent line to $(x-1)^2 + (y+2)^2 = 25$ at (-2,2).

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx}((x-1)^2) + \frac{d}{dx}((y+2)^2) = \frac{d}{dx}(25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

Plug in
$$(-2, 2)$$
:

$$\frac{dy}{dx} = \frac{1 - (-2)}{2 + 2} = \frac{3}{4}$$

Point-slope form:

$$y-2=\frac{3}{4}(x+2)$$

$$\frac{dx}{dx}(x-1) + \frac{d}{dx}(y+2) - \frac{d}{dx}(23)$$

$$\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2)\left(\frac{dy}{dx}\right) = 0$$

$$2(y+2)\left(\frac{dy}{dx}\right) = 2(1-x)$$

$$\frac{dy}{dx} = \frac{1-x}{y+2}$$

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Implicit Differentiation 6/11

(Elementary Computer algorithm for sketching graphs)

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for: $x^2 + 2v^2 = 1$

$$x^2 + 2y^2 - 1 = 0$$

Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Implicit Differentiation 6/11

(Elementary Computer algorithm for sketching graphs)

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Implicit Differentiation 6/11

(Elementary Computer algorithm for sketching graphs)

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for: $x^2 + 2v^2 = 1$

$$x^{2} + 2y^{2} - 1$$

 $x^{2} + 2y^{2} - 1 = 0$
Set $H(x, y) = x^{2} + 2y^{2} - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for: $x^2 + 2y^2 = 1$

$$x^2 + 2y^2 - 1 = 0$$

Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for: $x^2 + 2y^2 = 1$

$$x^2 + 2y^2 - 1 = 0$$

Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

Illustrate the algorithm for:

$$y^{2}(y^{2}-3)=x^{2}(x^{2}-5)$$

$$H(x,y)=y^{2}(y^{2}-3)$$

$$-x^{2}(x^{2}-5)$$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Example

Find y' as an expression of x and y.

$$\sin(2(x+y)) = y^{2}\cos(2x).$$

$$\frac{d}{dx}(\sin(2(x+y))) = \frac{d}{dx}(y^{2}\cos(2x))$$

$$\cos(2(x+y))\frac{d}{dx}(2(x+y)) = \frac{d}{dx}(y^{2})\cos(2x) + (y^{2})\frac{d}{dx}(\cos(2x))$$

$$\cos(2(x+y))(2+2y') = 2yy'\cos(2x) + y^{2}(-\sin(2x))\frac{d}{dx}(2x)$$

$$2\cos(2(x+y))(1+y') = 2yy'\cos(2x) - y^{2}\sin(2x)$$

$$\cos(2(x+y)) + y'\cos(2(x+y)) = yy'\cos(2x) - y^{2}\sin(2x)$$

$$y'\cos(2(x+y)) - yy'\cos(2x) = -\cos(2(x+y)) - y^{2}\sin(2x)$$

$$y'(\cos(2(x+y)) - y\cos(2x)) = -\cos(2(x+y)) - y^{2}\sin(2x)$$

$$y' = \frac{-\cos(2(x+y)) - y^{2}\sin(2x)}{\cos(2(x+y)) - y\cos(2x)}.$$

Example

Let
$$x^4 + y^4 = 16$$
. Find y'' .
 $4x^3 + 4y^3y' = 0$

$$y'' = -\frac{x^3}{y^3}.$$

$$y''' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{\frac{d}{dx} (x^3) y^3 - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{(3x^2)y^3 - x^3(3y^2y')}{y^6} = -\frac{3x^2y^3 - 3x^3y^2 \left(-\frac{x^3}{y^3} \right)}{y^6}$$

$$= -\frac{3x^2(y^3 + \frac{x^4}{y})}{y^6} = -\frac{3x^2 \left(\frac{y^4 + x^4}{y} \right)}{y^6}$$

$$= -\frac{3x^2(y^4 + x^4)}{y^7} = -\frac{3x^2(16)}{y^7} = -48\frac{x^2}{y^7}.$$

Related Rates 9/11

Related Rates

- Suppose we are pumping a balloon with air.
- The balloon's volume is increasing.
- The balloon's radius is increasing.
- The rates of increase of these quantities are related to one another.
- It is easier to measure the rate of increase of volume.
- In a related rates problem, we compute the rate of change of one quantity in terms of the rate of change of another (which may be more easily measured).
- Procedure:
 - Find an equation relating the two quantities.
 - 2 Use the Chain Rule to differentiate both sides with respect to time.

Related Rates 10/11

Example

Air is being pumped into a balloon such that its volume changes at a rate of 100 cm³/s. How fast is the radius of the balloon increasing when the diameter is 50 cm?

- Let V denote the balloon's volume.
- Let r denote its radius.
- Given: $\frac{dV}{dt} = 100 \text{ cm}^3/\text{s}$.
- Unknown: $\frac{dr}{dt}$ when r = 25 cm.
- Find an equation relating the two quantities.
- Use the Chain Rule to differentiate both sides.

$$V = \frac{4}{3}\pi r^3$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{4}{3} \pi r^3 \right)$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{4}{3} \pi r^3 \right) \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 4\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{4\pi r^2} \frac{\mathrm{d}V}{\mathrm{d}t}$$

$$\frac{dr}{dt} = \frac{1}{4\pi (25\text{cm})^2} 100 \frac{\text{cm}^3}{\text{s}} = \frac{1}{25\pi} \text{cm/s}$$

Related Rates 11/11

Example

10 ft ladder rests against a vertical wall. The bottom of the ladder slides away from the wall at a rate of 1 ft/s. How fast is the ladder top sliding down when the bottom is 6 ft from the wall?

- Let y= dist. from top to ground.
- Let x = dist. from bottom to wall.
- Given: $\frac{dx}{dt} = 1$ ft/s.
- Unknown: $\frac{dy}{dt}$ when x = 6 ft.
- Pythagorean Therem: $y = \sqrt{10^2 6^2} = 8$.
- Relationship b/n quantities.
- Differentiate (use Chain Rule).

$$x^{2} + y^{2} = 10^{2} = 100$$

$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$

$$\frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt}$$

$$\frac{dy}{dt} = -\frac{6}{8} \frac{ft}{ft} \cdot 1 \text{ ft/s}$$

$$= -3/4 \text{ ft/s}.$$

Therefore the top of the ladder is falling at a rate of 3/4 ft/s.