Week 7: Shor's Algorithm for RSA

SHOR'S ALGORITHM

Shor's algorithm is a **quantum algorithm** that can factor large integers **exponentially faster** than the best-known classical algorithms.

STEPS

Step 1: Pick a Random Integer

Pick a random number a, such that:

- 1 < a < N
- gcd(a,N) = 1 (if $gcd(a,N) \neq 1$, we already found a factor)

Step 2: Period Finding (Quantum Step)

Use a quantum computer to find the **period** r of the function: $f(x) = a^x \mod N$

That means: $a^r \equiv 1 \mod N$

This step is what Shor's algorithm does efficiently using **Quantum Fourier Transform (QFT)**.

Step 3: Check r

If r is **even** and $a^{r/2} \neq -1 \mod N$, continue.

Step 4: Compute GCDs (Back to Classical)

Now compute:

 $gcd(a^{r/2} - 1, N)$ and $gcd(a^{r/2} + 1, N)$

At least one of them should give a **nontrivial factor** of N — which is either p or q.

Why This Breaks RSA

If you can factor N, you can compute $\phi(N)$, then compute the private key d, and **break the encryption**.

Shor's algorithm reduces the time to factor N from exponential to polynomial — which is why RSA is insecure against quantum computers.