Introduction to Optimization

CO 255

Prof. Ricardo Fukasawa

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 255 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface				
0	Info	•		3
1	1 Introduction			
	1.1	Linear	Optimization (Programming)	. 5
		1.1.1	Determining Feasibility	. 7
		1.1.2	Fourier-MotzKin Elimination	. 7
	1.2	Certify	ying Optimality	. 12

0

Info

Ricardo: MC 5036. OH: M $1{:}30$ - $3\mathrm{pm}$

TA: Adam Brown: MC 5462. OH: F 10-11am

Books (not required)

• Intro to Linear Opt. Bertsimas

• Int Programming. Conforti

Grading

• assns: 20% (≈ 5)

• mid: 30% (Feb 11 in class)

• final: 50%

Introduction

Given a set S, and a function $f: S \to \mathbb{R}$. An optimization problem is:

$$\max_{s.t.} f(x)$$
subject to (OPT)

- \bullet S feasible region
- A point $\overline{x} \in S$ is a feasible solution
- f(x) is objective function

(OPT) means: "Find a feasible solution x^* such that $f(x) \leq f(x^*), \forall x \in S$ "

- Such x^* is an optimal solution
- $f(x^*)$ is optimal value

Other ways to write (OPT):

$$\max\{f(x), x \in S\}$$
$$\max_{x \in S} f(x)$$

Analogous problem

$$\min f(x)$$

$$s.t. \ x \in S$$

Note

$$\max_{s.t.} f(x) = -1 \begin{pmatrix} \min -f(x) \\ s.t. & x \in S \end{pmatrix}$$

Problem x^* may not exist

a) Problem is unbounded:

$$\forall M \in \mathbb{R}, \exists \overline{x} \in S, \ s.t. \ f(\overline{x}) > M$$

- b) $S = \phi$, i.e. (OPT) is **INFEASIBLE**
- c) There may not exist x^* achieving supremum.

$$\begin{array}{ll} \max & x \\ \text{s.t} & x < 1 \end{array}$$

supremum

$$\sup\{f(x): x \in S\} = \begin{cases} +\infty & \text{if OPT unbounded} \\ -\infty & \text{if } S = \emptyset \\ \min\{x: x \geq f(x), \forall x \in S\} & \text{otherwise} \end{cases}$$

always exist and are well-defined

infimum

$$\inf\{f(x) : x \in S\} = -1 \cdot \sup\{-f(x) : x \in S\}$$

From this point on, we will abuse notation and say $\max\{f(x):x\in S\}$ is $\sup\{f(x):x\in S\}$.

One way to specify that I want an opt. sol. (if exists) is

$$x^* \in \operatorname{argmax}\{f(x) : x \in S\}$$

1.1 Linear Optimization (Programming)

or (LP).

$$S = \{x \in \mathbb{R}^n : Ax \le b\}$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $f(x) = c^T x, c \in \mathbb{R}^n$.

$$\max_{x \in T} c^T x$$

$$s.t. \ Ax \le b \tag{LP}$$

Note

$$A = \begin{pmatrix} | & & | \\ A_1 & \cdots & A_n \\ | & & | \end{pmatrix} \qquad A = \begin{pmatrix} - & a_1^T & - \\ & \vdots & \\ - & a_m^T & - \end{pmatrix}$$

Clarifying

$$u, v \in \mathbb{R}^n$$
, $u \le v \iff u_j \le v_j, \forall j \in 1, \dots, n$

Note

 $u \not\leq v$ is not the same as u > v

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \not \leq \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Example:

$$\begin{array}{cccc} \max & 2x_1 + & 0.5x_2 \\ s.t. & x_1 & & \leq 2 \\ & x_1 + & x_2 \leq 2 \\ & x & & \geq 0 \end{array}$$

• Strict ineq. not allowed

halfspace, hyperplane, polyhedron

Let $h \in \mathbb{R}^n$, $h_0 \in \mathbb{R}$.

 ${x \in \mathbb{R}^n : h^T \le h_0}$ is a halfspace.

 $\{x \in \mathbb{R}^n : h^T = h_0\}$ is a hyperplane.

 $Ax \leq b$ is a **polyhedron** (i.e. intersection of finitely many halfspaces).

Example:

n products, m resources. Producing $j \in \{1, ..., n\}$ given c_j profit/unit and consumes a_{ij} units of resource $i, \forall i \in \{1, ..., m\}$. There are b_i units available $\forall i \in \{1, ..., m\}$.

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$

$$s.t. \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad \forall i = 1, \dots, m$$

$$x > 0$$

which is an LP.

1.1.1 Determining Feasibility

Given a polyhedron

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}$$

either find $\overline{x} \in P$ or show $P = \emptyset$.

Idea In 1-d, easy. \rightarrow Reduce problem in dimension n to one in dimension n-1.

Notation Let
$$S = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^p : Ax + Gy \leq b\}$$
, then $\operatorname{proj}_x S := \{x \in \mathbb{R}^n : \exists y \text{ so that } (x, y) \in S\}$

is the (orthogonal) projection if S onto x.

We will find if $P = \emptyset$ by looking at $\operatorname{proj}_{x_1, \dots, x_{n-1}}$ (P)

1.1.2 Fourier-MotzKin Elimination

Call a_{ij} entries of A. Let

$$M := \{1, 2, \dots, m\}$$

$$M^{+} := \{i \in M : a_{in} > 0\}$$

$$M^{-} := \{i \in M : a_{in} < 0\}$$

$$M^{0} := \{i \in M : a_{in} = 0\}$$

For $i \in M^+$ (1):

$$a_i^T \le b_i \iff \sum_{j=1}^n a_{ij} x_j \le b_i \iff \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} x_j + x_n \le \frac{b_i}{a_{in}}, \quad \forall i \in M^+$$

For $i \in M^-$ (2):

$$a_i^T x \le b_i \iff \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} x_j - x_n \le \frac{b_i}{-a_{in}}, \quad \forall i \in M^-$$

For $i \in M^0$ (3):

$$a_i^T x \le b_i \iff \sum_{j=1}^{n-1} a_{ij} x_j \le b_i, \qquad \forall i \in M^0$$

$$P = \{x \in \mathbb{R}^n : (1)(2)(3)\}$$

Define (4):

$$\sum_{j=1}^{n-1} \left(\frac{a_{ij}}{a_{in}} - \frac{a_{kj}}{a_{kn}} \right) x_j \le \frac{b_i}{a_{in}} - \frac{b_i}{a_{kn}}, \qquad \forall i \in M^+, \forall k \in M^-$$

Theorem 1.1

$$(\overline{x}_1, \dots, \overline{x}_{n-1})$$
 satisfies (3), (4) $\iff \exists \overline{x}_n : (\overline{x}_1, \dots, \overline{x}_n) \in P$

Proof:

 $\iff \text{If } (\overline{x}_1, \dots, \overline{x}_n) \text{ satisfies } (1), \ (2), \ (3) \text{ then } (\overline{x}_1, \dots, \overline{x}_{n-1}) \text{ satisfies } (3) \text{ and } \\ \text{adding } (1), \ (2) \implies (\overline{x}_1, \dots, \overline{x}_{n-1}) \text{ satisfies } (4) \\ \implies \text{If } (\overline{x}_1, \dots, \overline{x}_{n-1}) \text{ satisfies } (4)$

$$\sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \overline{x}_j - \frac{b_i}{a_{in}} \le \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} \overline{x}_j - \frac{b_k}{a_{kn}}, \quad \forall i \in M^+, k \in M^-$$

$$\overline{x}_n := \max_{i \in M^+} \left\{ \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \overline{x}_j - \frac{b_i}{a_{in}} \right\}$$

$$\implies \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \overline{x}_j - \frac{b_i}{a_{in}} \le -\overline{x}_n, \quad \forall i \in M^+$$

and

$$-\overline{x}_n \le \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} \overline{x}_j - \frac{b_k}{a_{kn}}, \quad \forall k \in M^-$$

$$\implies (\overline{x}_1, \dots, \overline{x}_n) \in P$$

Note

Proof assumes M^+, M^- are nonempty. But statement holds regardless.

(if M^+ or $M^- = \emptyset$ then (4) yields no constraints)

Fourier-MotzKin

- $A^n = A, b^n = b$
- given A^i, b^i obtain A^{i-1}, b^{i-1} (A^{i-1} has one less column than A^i column than A^{i}) by applying the steps described

$$P_i := \{ x \in \mathbb{R}^i : A^i x \le b^i \}$$

then

$$P_{i-1} = \operatorname{proj}_{r_1} P_i$$

and $P_{i-1} = \emptyset \iff P_i = \emptyset$.

• Keep applying projection until i = 1.

$$P_0 = \varnothing \iff P_n = P = \varnothing$$

Let

$$P_i^n = P_i \times \mathbb{R}^{n-i} = \{x \in \mathbb{R}^n (A^i, 0) | x \le b^i \}$$

not hard to see $P_i^n = \emptyset \iff P_i = \emptyset$

Notice that

$$P_0 = \varnothing \iff P_0^n = \varnothing, P_0^n = \{0 \le b^0\}$$

$$P_2 = \begin{cases} x_1 & +x_2 & \le 1 \\ x \in \mathbb{R}^2 : & -x_1 & \le 0 \\ & -x_2 & \le -2 \\ & -3x_1 & -3x_2 & \le -6 \end{cases}$$

$$M^+$$
: $\frac{1}{2}x_1 + x_2 \le \frac{1}{2}$

$$M^-: -x_2 \le -2 \qquad -x_1 - x_2 \le -2$$

$$M^0$$
: $-x_1 \le 0$

draw the graph, clearly empty
$$M^+\colon \tfrac{1}{2}x_1+x_2 \leq \tfrac{1}{2}$$

$$M^-\colon -x_2 \leq -2 \qquad -x_1-x_2 \leq -2$$

$$M^0\colon -x_1 \leq 0$$

$$P_1 = \begin{cases} & -x_1 & \leq 0 \\ x_1 \in \mathbb{R} : \tfrac{1}{2}x_1 & \leq -\tfrac{3}{2} \\ & -\tfrac{1}{2}x_1 & \leq -\tfrac{3}{2} \end{cases}$$

$$M^+\colon x_1 \leq -3$$

$$M^-\colon -x_1 \leq 0 \text{ and } -x_1 \leq -3$$

$$M^+: x_1 \le -3$$

$$M^-$$
: $-x_1 \le 0$ and $-x_1 \le -3$

$$P_0^2 = \left\{ x \in \mathbb{R}^2 : \quad 0 \le -3 \\ 0 \le -6 \right\} = \emptyset$$

Here
$$b^0 = \binom{-3}{-6}$$

Remark:

Inequality in P_i^n :

- All inequalities are obtained by a nonnegative combination of inequality in P_{i+1}^n \Longrightarrow all nonnegative combination of inequalities in P.
- $\bullet \:$ If all A,b are rational then so are all A^i,b^i
- If $b = 0, b_i = 0, \forall i$

Theorem 1.2: Farkas' Lemma

$$u^{T}A = 0$$

$$P = \{x \in \mathbb{R}^{n} : Ax \le b\} = \varnothing \iff \exists u \in \mathbb{R}^{m} : u^{T}b < 0$$

$$u \ge 0$$

Proof:

=) Suppose \overline{x} satisfies $A\overline{x} \leq b$.

$$0 = u^T A \overline{x} \le u^T b < 0$$

which is impossible. $\Longrightarrow) \ \ \text{If} \ P = \varnothing. \ \text{Apply Fourier-Motzkin until we get}$

$$P_0^n = \varnothing = \{x \in \mathbb{R}^n : 0x \le b^0\}$$

i.e. there exists j for which $b_i^0 < 0$.

If we look at corresponding constraint in P_0^n is

$$0^T x \leq b_i^0$$

which can be obtained by a vector u such that $u^TA=0, u^Tb=b_j^0, u\geq 0.$

Farkas' Lemma (alternate statement)

Exactly one of the following has a solution:

a)
$$Ax \leq b$$

$$u^T A = 0$$

b)
$$u^T b < 0$$

$$u \ge 0$$

Farkas' Lemma (Different Form)

Exactly one of the following has a solution:

$$Ax = b$$

$$x > 0$$

b)
$$u^T A \ge 0$$

 $u^T b < 0$

(Sketch)

$$P = \left\{ x : Ax = b \\ x \ge 0 \right\} = \left\{ x : \underbrace{\begin{pmatrix} A \\ -A \\ -I \end{pmatrix}}_{A'} x \le \underbrace{\begin{pmatrix} b \\ -b \\ -0 \end{pmatrix}}_{b'} \right\}$$

Apply original Farkas' Lemma to get $P = \emptyset \iff \exists u_1 \in \mathbb{R}^m, u_2 \in \mathbb{R}^m, v \in \mathbb{R}^n$:

$$u_1^T A - u_2^T A - v = 0$$
$$u_1^T b - u_2^T b < 0$$
$$u_1, u_2, v > 0$$

$$u_1, u_2, v \ge 0$$
 Let $u = (u_2 - u_2)$
$$u^T A - v = 0 \implies u^T A \ge 0, \quad u^T b < 0$$

Consider a linear programming (LP):

$$\max_{s.t.} c^T x$$

$$s.t. Ax \le b$$
(LP)

Theorem 1.3: Fundamental Theorem of Linear Programming

- (LP) has exactly one of 3 outcomes:
- a) Infeasible
- b) Unbounded
- c) There exists an optimal solution.

Let's assume a), b) don't hold.

If n = 1, then (LP) has an optimal solution. (Why?)

Else, define

$$\max z$$

$$s.t. \ z - c^T x \le 0 \qquad (LP')$$

$$Ax \le b$$

(LP') is also not in case a) or b). (Why?)

Also if (x^*, z^*) is an optimal solution to (LP'), then x^* is an optimal solution to (LP). (Why?)

Apply Fourier-Motzkin to

$$\left\{ (x,z) : \begin{array}{c} z - c^T x \le 0 \\ Ax \le b \end{array} \right\}$$

Until we are left with a polyhedron

$$\{z \in \mathbb{R} : A'z \le b'\}$$

Now max z s.t $A'z \le b'$ is not cases a) or b). (Why?)

 \rightarrow can get an optimal solution z^* to such problem. Apply Fourier-Motzkin back to get (x^*, z^*) optimal solution to (LP'). (Why?)

1.2 Certifying Optimality

$$\max_{s.t} c^T x \\ s.t \quad Ax \le b$$
 (LP)

and let $\overline{x} \in P = \{x : Ax \le b\}$

Question Can we certify that \overline{x} is optimal?

Example:

$$\max 2x_1 + x_2$$

$$x_1 + 2x_2 \le 2$$

$$s.t. \quad x_1 + x_2 \le 2$$

$$x_1 - x_2 \le 0.5$$

Consider $\overline{x} = (0,1)^T$ is clearly NOT optimal.

 $x^* = (1, 0.5)^T$ and $c^T x^* = 2.5$. Any feasible solution satisfies

$$\begin{array}{rrrr} x_1 + 2x_2 & \leq 2 & \times 1/3 \\ x_1 + x_2 & \leq 2 & \times 1 \\ + & x_1 - x_2 & \leq 0.5 & \times 2/3 \\ \hline & 2x_1 + x_2 & \leq 3 & \end{array}$$

Instead do $1 \times 1st$ constraint $+ 1 \times 3rd$ constraint $\implies 2x_1 + x_2 \le 2.5$

In general:

$$x_1 + 2x_2 \leq 2 \qquad \times y_1$$

$$x_1 + x_2 \leq 2 \qquad \times y_2$$

$$+ x_1 - x_2 \leq 0.5 \qquad \times y_3$$

$$(y_1 + y_2 + y_3)x_1 + (2y_1 + y_2 - y_3)x_2 \leq 2y_1 + 2y_2 + 0.5y_3$$

As long as $y_1, y_2, y_3 \ge 0$ and

$$y_1 + y_2 + y_3 = 2$$
$$2y_1 + y_2 - y_3 = 1$$

This leads to the following linear program:

min
$$2y_1 + 2y_2 + 0.5y_3$$

 $y_1 + y_2 + y_3 = 2$
 $s.t.$ $2y_1 + y_2 - y_3 = 1$
 $y_1, y_2, y_3 \ge 0$

This is called the dual LP.

In general:

$$\max_{s.t.} c^T x \\ s.t. \quad Ax \le b$$
 (LP)

Dual of (LP)

$$\min b^{T} y$$

$$s.t. \quad y^{T} A = c^{T} \qquad (D)$$

$$y > 0$$

Theorem 1.4: Weak Duality

Let \overline{x} feasible for (LP), \overline{y} feasible for (D). Then $c^T x \leq b^T y$.

$$c^T \overline{x} = \overline{y}^T (A \overline{x}) \le \overline{y}^T b$$

where we used $A\overline{x} \leq b$ and $\overline{y} \geq 0$.

Theorem 1.5: Strong Duality

 x^* is optimal for (LP) $\iff \exists y^*$ feasible for (D) such that

$$c^T x^* = b^T y^*$$

Index

Н	S
halfspace, hyperplane, polyhedron 6	supremum 5
infimum 5	