计算机体系结构实验报告 LAB04

题目: _____ 动态分支预测_____

学号: PB16020923

实验目的

在给定 RISC-V 32I 的 CPU 核心代码上,对于 Branch 类指令实现:

- 1. 基于 BTB (Branch Target Buffer) 的动态分支预测
- 2. 在 BTB 的基础上实现 2bit **BHT**(**Branch History Table**)的动态分支预测

实验平台

EDA 工具为 Vivado 2017.4

实验设计与过程

-, BTB

BTB 模块中的 buffer 结构如上图,与 Cache 类似。第一部分 Branch PC 是缓存的地址(tag)列表,采用直接映射策略。第二部分 Predicted PC 是预测的跳转地址。第三部分为 1 位宽,表示该项是否有效。

输入的 PC 低位寻址到对于表项,对 tag 部分进行比较,如果相

等,并且该项是有效的,则认为命中,然后使用 Predicted PC 作为输出,表示根据历史信息,这是一个分支指令并且预测跳转。

BTB 工作流程如上图。

BTB 模块介于 IF 和 ID 段寄存器之间,对于 IF 段寄存器输出的 PCF,输入到 BTB 中,BTB 查找 Buffer,如果命中,则输出地址向 NPC 模块输入,NPC 模块选择预测 PC 作为下一个 PC,如果不命中,直接使用 PCF+4 作为下一个 PC,同时,命中的状态位(1表示进行了预测且预测跳转,0表示不预测)和预测 PC 也随流水段流到 EX 段。

等到当前指令到达了EX段,就可以确定当前指令是否跳转,如果实际跳转但之前未预测跳转或者实际不跳转但之前预测跳转,都需要清空ID和EX段的寄存器,NPC模块重新生成下一个PC。在实际跳转但之前未预测跳转的情况下,需要把当前PC和跳转的PC更新写入

BTB 的 buffer 中。在实际不跳转但之前预测跳转的情况下,需要把 BTB 的 buffer 中的对应项的有效位置为 0。

二、 BHT

分支策略采用 BHT 时,分支 PC 和预测的 PC 仍然保存在 BTB 模块的 buffer 中,但 BTB 的 buffer 不再决定是否预测跳转,BTB 模块的命中与否只决定是否进行预测(或者说当前指令是否为分支指令)。 预测的状态位(0 表示不预测,1 表示预测)和预测的 PC 也随流水线流到 EX 段。BTB 的更新方法同上(不再使用有效位,只更新地址)。

BHT 模块则进行预测是否跳转。维护一个表,每个表项为 2bit 的状态,查表同样采用直接映射,但不再维护和比较 tag。BHT 模块对于输入的 PC,查到对应表项后,如果 2bit 的值为 0 或 1,则预测跳转,如果为 2 或 3,则预测不跳转,预测结果 (0 表示不跳转,1 表示跳转)也随流水线流到 EX 段。

等到当前指令到达了 EX 段,就可以确定当前指令是否实际跳转。 根据之前传过来的是否预测的状态位 (BTB hit)、是否预测跳转状态位 (BHT taken)为以及当前的实际跳转结果,我们可以决定是否清空流水线的 ID 和 EX 段进行重新取指令、是否对 BTB 进行更新 (见下面的真值表),以及 BHT 如何更新 (见下面的状态转换图)。

BHT 的每一项本质是一个 2bit 的状态机,每次执行分支指令都要更新。如果 EX 段实际跳转,则对应表项状态按 0->1->2->3->...->3 更新,如果 EX 段实际不跳转,则状态按 3->2->1->0->...->0 更新。

真值表如下, 左边3列为8种情况组合输入, 右边为输出

BTB hit	BHT taken	REAL	NPC_PRED flush NPC_REAL		BTB update	
Y	Y	Y	BTB_BUF	N	BRANCH_PC (= BTB_BUF = NPC_PRED)	N
Y	Y	N	BTB_BUF	Y	PC_EX + 4 (!= NPC_PRED)	N
Y	N	Y	PC_IF+4	Y	BRANCH_PC (= BTB_BUF != NPC_PRED)	N
Y	N	N	PC_IF+4	N	PC_IF + 4 (= NPC_PRED)	N
N	Y	Y	PC_IF+4	Y	BRANCH_PC (!= NPC_PRED)	Y
N	Y	N	PC_IF+4	N	PC_IF + 4 (= NPC_PRED)	N
N	N	Y	PC_IF+4	Y	BRANCH_PC (!= NPC_PRED)	Y
N	N	N	PC_IF+4	N	PC_IF + 4 (= NPC_PRED)	N

其中,

- BTB hit 为 Y 表示在 BTB 根据当前 PC 的低位在 Buffer 中命中(Tag 部分匹配)了,说明可以进行预测(历史信息表明这是分支指令)
- BHT taken 为 Y 表示 BHT 根据 PC 低位直接映射到 Table 中的一项, 该项的 2bit 状态机预测该跳转
- REAL 为 Y 表示该分支指令实际发生了跳转
- NPC_PRED 表示下一个 PC 的预测值(或来源)
- NPC REAL 表示下一个 PC 的实际值
- Flush 为 Y 表示对流水线 ID 和 EX 段进行清空
- BTB update 为 Y 表示需要对 BTB 进行更新

实验结果

注: 测试使用的 BTB 的 buffer 大小为 32 项(buffer 地址长为 5 位)

			表 1				
		宁时	间 (起始时间 1643	31000ps	s)		
			BTB.S/ps		BHT.S/ps		
Е	ВТВ		17059000		17195000		
В	BHT		17063000		17167000		
青	争态	17451000		17503000			
			表 2				
运	行周期(每周期	2000ps)			与静态分支预测的差值		
	BTB.S		BHT.S		BTB.S BHT.S		
BTB	314		382		196	154	
BHT	HT 316		368	194		168	
静态	510		536		-	-	
			表 3				
			总指令数				
测证	式文件	BTB.S			BHT.S		
指	令数	307			335		
		表 4					
			分支指令数				
测证	式文件	BTB.S			BHT.S		
指	令数	101			110		
	表 5						
			正确次数				
预测策略		BTB.S		BHT.S			
E	BTB	99			88		
В	BHT	98		95			
青	争态	1		11			
			表 6				
			错误次数				
预测策略		BTB.S			BHT.S		
E	ВТВ	2			22		
В	BHT	3			15		

100

99

静态

回答问题

1. 对于一条分支指令,当动态分支预测命中,实际命中时,比不用分支预测少用几个周期?

答: 2 个周期,因为无需清空流水线的 ID 和 EX 段重新取指。

2. 对于一条分支指令,动态分支预测失败比非跳转指令多用几个周期?

答: 2 个周期,因为需要清空流水线的 ID 和 EX 段重新取指。

- 3. 统计未使用分支预测和使用分支预测的总周期数及差值。答: 见上面的实验结果的表 1、2。
- 4. 统计分支指令数目、动态分支预测正确次数和错误次数。答: 见上面的实验结果表 4、5、6。
- 5. 对比不同策略并分析以上几点的关系答:
 - (1)总体而言,对于执行两个测试文件使用的周期数和预测正确次数,使用动态分支预测(BTB,BHT)的效果明显好于使用静态分支预测(直接预测不跳转),因为两个测试文件主体都是循环,实际跳转的情况较多,静态预测几乎总是会预测错误。
 - (2) BTB. s 这段代码使用 BTB 策略的效果最好,因为它只有一个单层循环,除了首尾两次,分支结果稳定为跳转,使用 BTB 一个状态位进行简单的预测就足够了。BHT. s 这段代码使用 BHT 策略的效果最好,因为它有一个两层循环,内层循环分支结果变化较大,上一次外循环的最后一次内循环不跳转,本次外循环的第一次内循

环跳转,如果只使用 BTB 一个状态位进行预测,内循环就会在每次外循环跳转前后出现 2 次预测错误,而使用 BHT 的 2 个状态位只会有 1 次预测错误。

(3) 实际运行时间并不完全取决于预测正确的次数,因为分支指令只是代码的一部分,还有算术逻辑指令在总时间中也占很大一部分。预测正确率提高只能带来有限度的总时间减少(加速)。

6. 计算整体 CPI 和加速比

答:由上面实验结果的表 2 的运行周期数除以表 3 的总指令数即可得 CPI,如下面表 7。由上面实验结果的表 2 的 BTB 和 BHT 策略的运行周期除以静态分支预测策略的运行周期即可得加速比,如下面表 8。

表 7

N I						
СРІ						
	BTB.S	BHT.S				
ВТВ	1.022801	1.140299				
BHT	1.029316	1.098507				
静态	1.661238	1.600000				
表 8						
	加速比					

加速比					
	BTB.S	BHT.S			
ВТВ	1.6242038	1.4031414			
ВНТ	1.6139241	1.4565217			

附: 部分截图

BTB. s 的运行结果

BHT.s 的运行结果

BTB. s 使用 BTB 策略统计结果

BTB. s 使用 BHT 策略统计结果

> 🛂 [4][31:0]	00000000		00000000		
> 📷 [3][31:0]	00000000		00000000		
> 🛂 [2][31:0]	00000000		00000000		
> 🛂 [1][31:0]	00000000		00000000		
all_instr_count[31:0]	308	Х 30	6 X 30	7	308
> www.branch_instr_count[31:0]	101	X	101		
> sight_predict_count[31:0]	98		98		
> signature > > signature > si	3	X	3		

BHT.s 使用 BTB 策略统计结果

BHT.s 使用 BHT 策略统计结果

