Advanced Quantitative Research Methodology, Lecture Notes: Model Dependence in Counterfactual Inference¹

Gary King

March 26, 2016

 King, Gary and Langche Zeng. "The Dangers of Extreme Counterfactuals," Political Analysis, 14, 2, (2007): 131-159.

- King, Gary and Langche Zeng. "The Dangers of Extreme Counterfactuals," Political Analysis, 14, 2, (2007): 131-159.
- King, Gary and Langche Zeng. "When Can History be Our Guide?
 The Pitfalls of Counterfactual Inference," International Studies
 Quarterly, 2006, 51 (March, 2007): 183–210.

- King, Gary and Langche Zeng. "The Dangers of Extreme Counterfactuals," Political Analysis, 14, 2, (2007): 131-159.
- King, Gary and Langche Zeng. "When Can History be Our Guide?
 The Pitfalls of Counterfactual Inference," International Studies
 Quarterly, 2006, 51 (March, 2007): 183–210.
- Related Software: WhatIf, MatchIt, Zelig, CEM

- King, Gary and Langche Zeng. "The Dangers of Extreme Counterfactuals," Political Analysis, 14, 2, (2007): 131-159.
- King, Gary and Langche Zeng. "When Can History be Our Guide?
 The Pitfalls of Counterfactual Inference," International Studies
 Quarterly, 2006, 51 (March, 2007): 183–210.
- Related Software: WhatIf, MatchIt, Zelig, CEM

http://j.mp/causalinference

• Three types:

- Three types:
 - Forecasts Will the U.S. be in Afghanistan in 2016?

- Three types:
 - Forecasts Will the U.S. be in Afghanistan in 2016?
 - Whatif Questions What would have happened if the U.S. had not invaded Iraq?

- Three types:
 - Forecasts Will the U.S. be in Afghanistan in 2016?
 - Whatif Questions What would have happened if the U.S. had not invaded Iraq?
 - Causal Effects What is the causal effect of the Iraq war on U.S. Supreme Court decision making? (a factual minus a counterfactual)

- Three types:
 - Forecasts Will the U.S. be in Afghanistan in 2016?
 - Whatif Questions What would have happened if the U.S. had not invaded Iraq?
 - Causal Effects What is the causal effect of the Iraq war on U.S. Supreme Court decision making? (a factual minus a counterfactual)
- Counterfactuals are some part of most social science research

• How do you conduct empirical analyses?

- How do you conduct empirical analyses?
 - collect the data over many months or years.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.
 - end up with 100 or 1000 different estimates.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.
 - end up with 100 or 1000 different estimates.
 - put 1 or maybe 5 regression results in the paper.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.
 - end up with 100 or 1000 different estimates.
 - put 1 or maybe 5 regression results in the paper.
- What's the problem?

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.
 - end up with 100 or 1000 different estimates.
 - put 1 or maybe 5 regression results in the paper.
- What's the problem?
 - Some specification is designated as the "correct" one, only after looking at the estimates.

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.
 - end up with 100 or 1000 different estimates.
 - put 1 or maybe 5 regression results in the paper.
- What's the problem?
 - Some specification is designated as the "correct" one, only after looking at the estimates.
 - Is this a true test of an ex ante hypothesis or merely a demonstration that it is *possible* to find results consistent with your favorite hypothesis?

• Compare prediction at x = 1.5 to prediction at x = 5

- Compare prediction at x = 1.5 to prediction at x = 5
- How do you choose a model?

- Compare prediction at x = 1.5 to prediction at x = 5
- How do you choose a model? R^2 ?

- Compare prediction at x = 1.5 to prediction at x = 5
- How do you choose a model? R²? Some "test"?

- Compare prediction at x = 1.5 to prediction at x = 5
- How do you choose a model? R²? Some "test"? "Theory"?

- Compare prediction at x = 1.5 to prediction at x = 5
- How do you choose a model? R²? Some "test"? "Theory"?
- The bottom line: answers to some questions don't exist in the data.

- Compare prediction at x = 1.5 to prediction at x = 5
- How do you choose a model? R²? Some "test"? "Theory"?
- The bottom line: answers to some questions don't exist in the data.
- Same for what if questions, predictions, and causal inferences

Model Dependence Proof

Model Dependence Proof

Model Free Inference

Model Free Inference

To estimate E(Y|X=x) at x, average many observed Y with value x

Model Free Inference

To estimate E(Y|X=x) at x, average many observed Y with value x

Assumptions (Model-Based Inference)

Model Free Inference

To estimate E(Y|X=x) at x, average many observed Y with value x

Assumptions (Model-Based Inference)

• Definition: model dependence at x is the difference between predicted outcomes for any two models that fit about equally well.

Model Free Inference

To estimate E(Y|X=x) at x, average many observed Y with value x

Assumptions (Model-Based Inference)

- Definition: model dependence at x is the difference between predicted outcomes for any two models that fit about equally well.
- The functional form follows strong continuity (think smoothness, although it is less restrictive)

Model Free Inference

To estimate E(Y|X=x) at x, average many observed Y with value x

Assumptions (Model-Based Inference)

- Definition: model dependence at x is the difference between predicted outcomes for any two models that fit about equally well.
- The functional form follows strong continuity (think smoothness, although it is less restrictive)

Result

Model Free Inference

To estimate E(Y|X=x) at x, average many observed Y with value x

Assumptions (Model-Based Inference)

- Definition: model dependence at x is the difference between predicted outcomes for any two models that fit about equally well.
- The functional form follows strong continuity (think smoothness, although it is less restrictive)

Result

The maximum degree of model dependence: solely a function of the distance from the counterfactual to the data

A (Hypothethical) Research Design

• Randomly select a large number of infants

- Randomly select a large number of infants
- Randomly assign them to 0,6,8,10,12,16 years of education

- Randomly select a large number of infants
- Randomly assign them to 0,6,8,10,12,16 years of education
- Assume 100% compliance, and no measurement error, omitted variables, or missing data

- Randomly select a large number of infants
- Randomly assign them to 0,6,8,10,12,16 years of education
- Assume 100% compliance, and no measurement error, omitted variables, or missing data
- Regress cumulative salary in year 17 on education

- Randomly select a large number of infants
- Randomly assign them to **0,6,8,10,12,16** years of education
- Assume 100% compliance, and no measurement error, omitted variables, or missing data
- Regress cumulative salary in year 17 on education
- We find a coefficient of $\hat{\beta}=\$1,000$, big t-statistics, narrow confidence intervals, and pass every test for auto-correlation, fit, normality, linearity, homoskedasticity, etc.

 A Factual Question: How much salary would someone receive with 12 years of education (a high school degree)?

- A Factual Question: How much salary would someone receive with 12 years of education (a high school degree)?
- The model-free estimate: mean(Y) among those with X = 12.

- A Factual Question: How much salary would someone receive with 12 years of education (a high school degree)?
- The model-free estimate: mean(Y) among those with X = 12.
- The model-based estimate: $\hat{Y} = X\hat{\beta} = 12 \times \$1,000 = \$12,000$

 How much salary would someone receive with 14 years of education (an Associates Degree)?

- How much salary would someone receive with 14 years of education (an Associates Degree)?
- Model free estimate: impossible

- How much salary would someone receive with 14 years of education (an Associates Degree)?
- Model free estimate: impossible
- ullet Model-based estimate: $\hat{Y}=X\hat{eta}=14 imes\$1,000=\$14,000$

 How much salary would someone receive with 24 years of education (a Ph.D.)?

- How much salary would someone receive with 24 years of education (a Ph.D.)?
- $\hat{Y} = X\hat{\beta} = 24 \times \$1,000 = \$24,000$

• How much salary would someone receive with 53 years of education?

- How much salary would someone receive with 53 years of education?
- $\hat{Y} = X\hat{\beta} = 53 \times \$1,000 = \$53,000$

- How much salary would someone receive with 53 years of education?
- $\hat{Y} = X\hat{\beta} = 53 \times \$1,000 = \$53,000$
- Recall: the regression passed every test and met every assumption; identical calculations worked for the other questions.

- How much salary would someone receive with 53 years of education?
- $\hat{Y} = X\hat{\beta} = 53 \times \$1,000 = \$53,000$
- Recall: the regression passed every test and met every assumption; identical calculations worked for the other questions.
- What's changed? How would we recognize it when the example is less extreme or multidimensional?

• Suppose Y is starting salary; X is education in 10 categories.

- Suppose Y is starting salary; X is education in 10 categories.
- To estimate E(Y|X): we need 10 parameters, $E(Y|X=x_j)$, $j=1,\ldots,10$.

- Suppose Y is starting salary; X is education in 10 categories.
- To estimate E(Y|X): we need 10 parameters, $E(Y|X=x_j)$, $j=1,\ldots,10$.
- Model-free method: average 50 observations on Y for each value of X

- Suppose Y is starting salary; X is education in 10 categories.
- To estimate E(Y|X): we need 10 parameters, $E(Y|X=x_j)$, $j=1,\ldots,10$.
- Model-free method: average 50 observations on Y for each value of X
- Model-based method: regress Y on X, summarizing 10 parameters with 2 (intercept and slope).

- Suppose Y is starting salary; X is education in 10 categories.
- To estimate E(Y|X): we need 10 parameters, $E(Y|X=x_j)$, $j=1,\ldots,10$.
- Model-free method: average 50 observations on Y for each value of X
- Model-based method: regress Y on X, summarizing 10 parameters with 2 (intercept and slope).
- The difference between the 10 we need and the 2 we estimate with regression is pure assumption.

- Suppose Y is starting salary; X is education in 10 categories.
- To estimate E(Y|X): we need 10 parameters, $E(Y|X=x_j)$, $j=1,\ldots,10$.
- Model-free method: average 50 observations on Y for each value of X
- Model-based method: regress Y on X, summarizing 10 parameters with 2 (intercept and slope).
- The difference between the 10 we need and the 2 we estimate with regression is pure assumption.
- (If X were continuous, we would be reducing ∞ to 2, also by assumption)

Variables: X (education) and Z, parent's income, both with 10 categories

• How many parameters do we now need to estimate?

Variables: X (education) and Z, parent's income, both with 10 categories

How many parameters do we now need to estimate? 20?

Variables: X (education) and Z, parent's income, both with 10 categories

How many parameters do we now need to estimate? 20? Nope.

Variables: X (education) and Z, parent's income, both with 10 categories

• How many parameters do we now need to estimate? 20? Nope. Its $10 \times 10 = 100$.

Variables: X (education) and Z, parent's income, both with 10 categories

• How many parameters do we now need to estimate? 20? Nope. Its $10 \times 10 = 100$. This is the curse of dimensionality: the number of parameters goes up geometrically, not additively.

- How many parameters do we now need to estimate? 20? Nope. Its $10 \times 10 = 100$. This is the curse of dimensionality: the number of parameters goes up geometrically, not additively.
- If we run a regression, we are summarizing 100 parameters with 3 (an intercept and two slopes).

- How many parameters do we now need to estimate? 20? Nope. Its $10 \times 10 = 100$. This is the curse of dimensionality: the number of parameters goes up geometrically, not additively.
- If we run a regression, we are summarizing 100 parameters with 3 (an intercept and two slopes).
- But what about including an interaction? Right, so now we're summarizing 100 parameters with 4.

- How many parameters do we now need to estimate? 20? Nope. Its $10 \times 10 = 100$. This is the curse of dimensionality: the number of parameters goes up geometrically, not additively.
- If we run a regression, we are summarizing 100 parameters with 3 (an intercept and two slopes).
- But what about including an interaction? Right, so now we're summarizing 100 parameters with 4.
- The difference: an enormous assumption based on convenience, not evidence or theory.

• Suppose: 15 explanatory variables, with 10 categories each.

- Suppose: 15 explanatory variables, with 10 categories each.
 - need to estimate 10^{15} (a quadrillion) parameters with how many observations?

- Suppose: 15 explanatory variables, with 10 categories each.
 - need to estimate 10^{15} (a quadrillion) parameters with how many observations?
 - Regression reduces this to 16 parameters; quite an assumption!

- Suppose: 15 explanatory variables, with 10 categories each.
 - need to estimate 10^{15} (a quadrillion) parameters with how many observations?
 - Regression reduces this to 16 parameters; quite an assumption!
- Suppose: 80 explanatory variables.

- Suppose: 15 explanatory variables, with 10 categories each.
 - need to estimate 10^{15} (a quadrillion) parameters with how many observations?
 - Regression reduces this to 16 parameters; quite an assumption!
- Suppose: 80 explanatory variables.
 - \bullet 10⁸⁰ is more than the number of atoms in the universe.

- Suppose: 15 explanatory variables, with 10 categories each.
 - need to estimate 10^{15} (a quadrillion) parameters with how many observations?
 - Regression reduces this to 16 parameters; quite an assumption!
- Suppose: 80 explanatory variables.
 - 10⁸⁰ is more than the number of atoms in the universe.
 - Yet, with a few simple assumptions, we can still run a regression and estimate only 81 parameters.

- Suppose: 15 explanatory variables, with 10 categories each.
 - need to estimate 10^{15} (a quadrillion) parameters with how many observations?
 - Regression reduces this to 16 parameters; quite an assumption!
- Suppose: 80 explanatory variables.
 - 10⁸⁰ is more than the number of atoms in the universe.
 - Yet, with a few simple assumptions, we can still run a regression and estimate only 81 parameters.
- The curse of dimensionality introduces huge assumptions, often recognized.

 Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change
- An alternative "Convex Hull" approach:

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change
- An alternative "Convex Hull" approach:
 - Specify your explanatory variables, X.

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change
- An alternative "Convex Hull" approach:
 - Specify your explanatory variables, X.
 - Assume E(Y|X) is (minimally) smooth in X

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change
- An alternative "Convex Hull" approach:
 - Specify your explanatory variables, X.
 - Assume E(Y|X) is (minimally) smooth in X
 - No need to specify models (or a class of models), estimators, or dependent variables.

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide *empirical* answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, its too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change
- An alternative "Convex Hull" approach:
 - Specify your explanatory variables, X.
 - Assume E(Y|X) is (minimally) smooth in X
 - No need to specify models (or a class of models), estimators, or dependent variables.
 - Results of one run apply to the class of all models, all estimators, and all dependent variables.

Interpolation vs Extrapolation in one Dimension

Years of Education

Figure: The Convex Hull

Interpolation: Inside the convex hull

Figure: The Convex Hull

- Interpolation: Inside the convex hull
- Extrapolation: Outside the convex hull

- Interpolation: Inside the convex hull
- Extrapolation: Outside the convex hull
- ullet Works mathematically for any number of X variables

Figure: The Convex Hull

- Interpolation: Inside the convex hull
- Extrapolation: Outside the convex hull
- Works mathematically for any number of X variables
- Software to determine whether a point is in the hull (which is all we need) without calculating the hull (which would take forever), so its fast; see http://GKing.harvard.edu/whatif

Replication: Doyle and Sambanis, APSR 2000

Replication: Doyle and Sambanis, APSR 2000

Data: 124 Post-World War II civil wars

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- ullet Treatment variable: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- ullet Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control variables: war type, severity, and duration; development status; etc...

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- ullet Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control variables: war type, severity, and duration; development status; etc...
- Counterfactuals: UN intervention switched (0/1 to 1/0) for each observation

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- ullet Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control variables: war type, severity, and duration; development status; etc...
- Counterfactuals: UN intervention switched (0/1 to 1/0) for each observation
- Percent of counterfactuals in the convex hull:

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- ullet Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control variables: war type, severity, and duration; development status; etc...
- Counterfactuals: UN intervention switched (0/1 to 1/0) for each observation
- Percent of counterfactuals in the convex hull: 0%

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- ullet Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control variables: war type, severity, and duration; development status; etc...
- Counterfactuals: UN intervention switched (0/1 to 1/0) for each observation
- Percent of counterfactuals in the convex hull: 0%
- Thus, without estimating any models, we know inferences will be model dependent; for illustration, let's find an example....

Doyle and Sambanis, Logit Model

	Original Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4	<u> </u>	_	_	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N		122			122	

Log-likelihood -45.649 -44.902
Pseudo *R*² .423 .433

Doyle and Sambanis: Model Dependence

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

$$\mathsf{bias} \equiv E(d) - \theta$$

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

$$\mathsf{bias} \equiv E(d) - \theta = \Delta_o + \Delta_p + \Delta_i + \Delta_e$$

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

bias
$$\equiv E(d) - \theta = \Delta_o + \Delta_p + \Delta_i + \Delta_e$$

• Δ_o Omitted variable bias (ignorability) (you know this!)

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

bias
$$\equiv E(d) - \theta = \Delta_o + \Delta_p + \Delta_i + \Delta_e$$

- Δ_o Omitted variable bias (ignorability) (you know this!)
- Δ_p Post-treatment bias (check this with theory!)

$$d = \mathsf{mean}(Y|D=1) - \mathsf{mean}(Y|D=0)$$

bias
$$\equiv E(d) - \theta = \Delta_o + \Delta_p + \Delta_i + \Delta_e$$

- Δ_o Omitted variable bias (ignorability) (you know this!)
- Δ_p Post-treatment bias (check this with theory!)
- Δ_i Interpolation bias (Usually not so bad; use models or matching)

$$d = \operatorname{mean}(Y|D=1) - \operatorname{mean}(Y|D=0)$$

bias
$$\equiv E(d) - \theta = \Delta_o + \Delta_p + \Delta_i + \Delta_e$$

- Δ_o Omitted variable bias (ignorability) (you know this!)
- Δ_p Post-treatment bias (check this with theory!)
- \bullet Δ_i Interpolation bias (Usually not so bad; use models or matching)
- Δ_e Extrapolation bias (check this with data!)

Interpolation vs Extrapolation Bias

Causal Effect of Multidimensional UN Peacekeeping Operations

