Подготовка за изпит по Логическо

Иво Стратев

14 ноември 2020 г.

1 Изпълнимост

1.1 Директен модел

Докажете, че е изпълнимо множеството от формули $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6\}$, където

$$\varphi_{1} = \forall x (\neg p(x, x) \& \exists y \ p(x, y))
\varphi_{2} = \forall x \forall y (p(x, y) \lor p(y, x) \lor x \doteq y)
\varphi_{3} = \forall x \forall y (p(x, y) \Longrightarrow \exists z (p(x, z) \& p(z, y)))
\varphi_{4} = \forall x \forall y (p(x, y) \Longrightarrow f(x, y) \doteq y)
\varphi_{5} = \exists x \forall y (\neg x \doteq y \Longrightarrow p(x, y))
\varphi_{6} = \forall x \forall y (f(x, y) \doteq y \Longrightarrow (p(x, y) \lor x \doteq y))$$

1.1.1 Решение

Нека с \mathcal{S} означим структурата $\langle \mathbb{Q}_{\geq 0}, \, \max, \, \langle \rangle$. Тя е модел за множеството от затворени формули $\{\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6\}$. Това, че в \mathcal{S} формулите ϕ_1, ϕ_2, ϕ_4 са истина оставяме за упражнение. Ще покажем, че \mathcal{S} е модел за останалите формули.

Първо ще покажем за ϕ_3 . Семантиката на формулата е:

за всяко $\mathfrak{a} \in \mathbb{Q}_{\geqslant 0}$, за всяко $\mathfrak{b} \in \mathbb{Q}_{\geqslant 0}$ ако $\mathfrak{a} < \mathfrak{b}$, то съществува $\mathfrak{c} \in \mathbb{Q}_{\geqslant 0}$, такова че $\mathfrak{a} < \mathfrak{c}$ и $\mathfrak{c} < \mathfrak{b}$.

Нека $\mathfrak{a}\in\mathbb{Q}_{\geqslant 0}$. Нека $\mathfrak{b}\in\mathbb{Q}_{\geqslant 0}$. Нека $\mathfrak{a}<\mathfrak{b}$. Да означим с \mathfrak{c} елемента $\frac{\mathfrak{a}+\mathfrak{b}}{2}$. Тогава в сила са

$$\bullet \ \ a = \frac{a+a}{2} < \frac{a+b}{2} = c$$

$$\bullet \ c = \frac{a+b}{2} < \frac{b+b}{2} = b$$

Така показахме, че $\mathfrak{a} < \mathfrak{c}$ и $\mathfrak{c} < \mathfrak{b}$. След обобщение на разсъждението, следва че \mathcal{S} е модел за ϕ_3 .

Сега ще покажем за ϕ_5 . Семантиката на формулата е:

съществува $\mathfrak{a} \in \mathbb{Q}_{\geqslant 0}$, такова, че за всяко $\mathfrak{b} \in \mathbb{Q}_{\geqslant 0}$ ако $\mathfrak{a} \neq \mathfrak{b}$, то $\mathfrak{a} < \mathfrak{b}$.

Очевидно $0 \in \mathbb{Q}_{\geqslant 0}$. Нека $b \in \mathbb{Q}_{\geqslant 0}$ и нека b е произволно. Нека $0 \neq b$, тогава $b \in \mathbb{Q}_{\geqslant 0} \setminus \{0\} = \mathbb{Q}_{> 0}$ и значи b > 0 от където следва, че 0 < b. Следователно \mathcal{S} е модел за ϕ_5 .

Остава да видим за ϕ_6 . Семантиката на формулата е:

за всяко $a \in \mathbb{Q}_{\geqslant 0}$, за всяко $b \in \mathbb{Q}_{\geqslant 0}$ ако $\max(a,b) = b$, то a < b или a = b.

Нека $a \in \mathbb{Q}_{\geqslant 0}$. Нека $b \in \mathbb{Q}_{\geqslant 0}$. Нека $\max(a,b) = b$. Тогава $a \leqslant b$ и значи a < b или a = b. Следователно S е модел за ϕ_6 .

За упражнение: Докажете, че е изпълнимо множеството от формули $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5\}$, където

$$\varphi_{1} = \exists x \forall y \forall z \ f(y, z, x) \doteq f(z, y, x)
\varphi_{2} = \forall z \ f(a, z, b) \doteq z
\varphi_{3} = \forall z \exists t \ f(a, z, t) \doteq b
\varphi_{4} = \forall z (\neg z \doteq b \implies \exists t \ f(t, z, b) \doteq a)
\varphi_{5} = \exists x \exists y \exists z \ (\neg x \doteq y \& \neg y \doteq z \& \neg z \doteq x)$$

1.2 Метод на крайните графи

Докажете, че е изпълнимо множеството от формули $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6\}$, където

$$\varphi_{1} = \exists x \forall y \ \neg p(x,y)
\varphi_{2} = \exists x \forall y \ \neg p(y,x)
\varphi_{3} = \exists x \forall y \ (x \neq y \implies p(x,y))
\varphi_{4} = \exists x \forall y \ (x \neq y \implies p(y,x))
\varphi_{5} = \exists x \exists y \exists z \ (\neg x \doteq y \& \neg y \doteq z \& \neg z \doteq x)
\varphi_{6} = \neg \exists x \exists y (p(x,y) \& p(y,x))$$

1.2.1 Решение

Да означим с \mathcal{T} структурата

$$\langle \{0,1,2,3\}, \{\langle 0,1\rangle,\langle 0,2\rangle,\langle 2,3\rangle,\langle 1,3\rangle,\langle 0,3\rangle\} \rangle$$

Кратка аргуметация, защо тя е модел.

- ϕ_1 : връх 3 не сочи никой връх;
- ϕ_2 : връх 0 не е сочен от никой връх;
- ϕ_3 : връх 0 сочи всеки друг връх;
- ϕ_4 : връх 3 е сочен от всеки друг връх;
- φ₅: има поне 3 върха;
- ϕ_6 : няма два върха, които да се сочат един друг.

2 Определимост

Нека \mathcal{L} е ЕПСПР с формално равенство и единствен триместен функционален символ f. Разглеждаме структурата \mathcal{S} за езика \mathcal{L} , която е с универсум \mathbb{Z}_3 и в която интерпретацията на f се задава с правилото $f^{\mathcal{S}}(\mathfrak{a},\mathfrak{b},\mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{c}$.

Докажете, че за всяко естествено число \mathbf{n} , което е по-голямо от $\mathbf{2}$, всяко подмножество на $\mathbb{Z}_3^{\mathbf{n}}$ е определимо множество.

2.1 Решение

Първо ще покажем, че всеки елемент е определим. Тоест всеки синглетон е определимо множество.

2.1.1 $\overline{0}$

$$\varphi_{\overline{0}}(x) \leftrightharpoons x \doteq f(x, x, x)$$

Коректност на формулата:

$$S \models \phi_{\overline{0}}[a] \longleftrightarrow$$

$$a = f^{S}(a, a, a) \longleftrightarrow$$

$$a = aa + a \longleftrightarrow$$

$$a^{2} = \overline{0} \longleftrightarrow$$

$$a = \overline{0} \longleftrightarrow$$

$$a \in \{\overline{0}\}$$

2.1.2 $\overline{1}$

$$\phi_{\overline{1}}(x) \leftrightharpoons \exists y (\phi_{\overline{0}}(y) \& \forall z \ z \doteq f(x, z, y))$$

Коректност на формулата: Нека $\mathfrak{a} \in \mathbb{Z}_3$ и $\mathcal{S} \models \phi_{\overline{1}}[\mathfrak{a}]$. Тогава е в сила $\overline{1} = \mathfrak{a}.\overline{1} + \overline{0}$ и значи $\mathfrak{a} = \overline{1}$. Тоест $\mathfrak{a} \in \{\overline{1}\}$. Сега ще видим и че $\mathcal{S} \models \phi_{\overline{1}}[\overline{1}]$. Нека $\mathfrak{b} \in \mathbb{Z}_3$. Тогава $\mathfrak{f}^{\mathcal{S}}(\overline{1},\mathfrak{b},\overline{0}) = \overline{1}.\mathfrak{b} + \overline{0} = \mathfrak{b}$. Така $\mathcal{S} \models \phi_{\overline{1}}[\overline{1}]$.

2.1.3 $\overline{2}$

$$\varphi_{\overline{0}}(x) \leftrightharpoons \exists y \exists z (\varphi_{\overline{0}}(y) \& \varphi_{\overline{1}}(z) \& z \doteq f(x, x, y) \& \neg x \doteq z)$$

Коректност на формулата:

$$\begin{split} \mathcal{S} &\models \phi_{\overline{2}}[\alpha] \longleftrightarrow \\ \overline{1} &= f^{\mathcal{S}}(\alpha, \alpha, \overline{0}) \; \&\& \; \alpha \neq \overline{1} \longleftrightarrow \\ \overline{1} &= \alpha\alpha + \overline{0} \; \&\& \; \alpha \neq \overline{1} \longleftrightarrow \\ \alpha^2 &= \overline{1} \; \&\& \; \alpha \neq \overline{1} \longleftrightarrow \\ \alpha &\in \{\overline{1}, \overline{2}\} \; \&\& \; \alpha \notin \{\overline{1}\} \longleftrightarrow \\ \alpha &\in \{\overline{2}\} \end{split}$$

Нека $n \in \mathbb{N}$ и нека $\geqslant 3$. Нека $M \in \mathcal{P}(\mathbb{Z}_3^n)$. Възможни са три случая.

2.1.4 $M = \emptyset$

Тогава една формула, с която можем да го определим е формулата

$$\neg x_1 \doteq x_1 \lor \neg x_2 \doteq x_2 \lor \ldots \lor \neg x_n \doteq x_n$$

2.1.5 $M = \mathbb{Z}_3^n$

Тогава една формула, с която можем да го определим е формулата

$$x_1 \doteq x_1 \& x_2 \doteq x_2 \& \dots \& x_n \doteq x_n$$

$2.1.6 \quad \varnothing \subset M \subset \mathbb{Z}_3^n$

Понеже $M \subset \mathbb{Z}_3^n$, то M е крайно. Нека $\mathbf{t} = |M|$ и нека $M = \{\langle a_{1,1}, a_{1,2}, \ldots, a_{1,n} \rangle, \ldots, \langle a_{t,1}, a_{t,2}, \ldots, a_{t,n} \rangle\}$. Тогава една формула, с която можем да определим M е формулата

3 Prolog

3.1 Разпознавател

Да се дефинира на Prolog двуместен предикат canEval, който по даден списък от цели числа $[A_1, A_2, \ldots, A_N]$ и цяло число Z проверява дали е възможно в редицата от числа A_1, A_2, \ldots, A_N да се вмъкнат по такъв начин символи

- (
-)
- -

че да се получи коректен аритметичен израз със стойност Z.

3.2 Генератор

Да се дефинира на Prolog четириместен предикат genVectors, който по дадени две положителни цели числа N и K генерира два N-елементни списъка A и B, от цели числа в интервала [-K,K],

такива че
$$\sum_{I=1}^N (A_I \cdot B_I) = 0$$
 и $\prod_{I=1}^N |B_I| \cdot \sum_{I=1}^N A_I^2$ е максимално.