Definitions

Vector Space

A vector space is a set V with the following properties:

Commutativity:

$$u + v = v + u$$
 for all $u, v \in V$

Associativity:

$$(u+v)+w=u+(v+w)$$
 and $(ab)v=a(bv)$ for all $u,v,w\in V$

Additive Identity:

there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Multiplicative Identity:

for all $v \in V$, there exists $w \in V$ such that v + w = 0

Distributive Properties:

$$a(u+v)=au+av$$
 and $(a+b)v=av+bv$ for all $a,b\in\mathbb{R}$ and $u,v\in V$

Linear Combination

A linear combination of a list of vectors v_1, \ldots, v_n is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , or $\mathrm{Span}(v_1, \ldots, v_n)$. Defined as:

$$\mathrm{span}(v_1, \dots, v_n) = \{a_1v_1 + \dots + a_nv_n : a_1, \dots, a_m \in \mathbb{R}\}\$$

If the span is equal to some space $\operatorname{span}(v_1, \ldots, v_n) = V$, then you could say that v_1, \ldots, v_n spans V.

Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \dots + a_nv_n = 0$$

The list of vectors v_1, \ldots, v_n is called **linearly independent** when

$$a_1 = \dots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

Inner Product

TODO

Proofs

Law of Cosines

TODO

Triangle Inequality

TODO

Cauchy-Schwartz Inequality

TODO