3 Combinaison de transistors

 ${f Activit\'e}$: Par groupe de 2 : chacun choisit une combinaison et réalise la table de logique. Puis comparer.

3.1 Porte NAND

FIGURE 1 – Montage en série

schéma simplifié; normalement rajoute résistances pour éviter court-circuit

E1	E2	S
0	0	1
0	1	1
1	0	1
1	1	0

Tableau 1 – Fonction NAND

FIGURE 2 – Montage en parallèle

E1	E2	S
0	0	1
0	1	0
1	0	0
1	1	0

Tableau 2 – Fonction NOR

3.2 Porte NOR

4 Combinaison de fonctions logiques

à partir de nos briques élémentaires, nous pouvons construire d'autres fonctions.

4.1 Encore une fonction NOT

Il est possible de fabriquer une porte NOT en reliant les 2 entrées d'une porte NAND.

FIGURE 3 – La porte NOT

Activité: mêmes instructions que précédemment mais avec combinaison de fonctions logiques.

Figure 4 – Porte AND

A	B	out
0	0	0
0	1	0
1	0	0
1	1	1

Tableau 3 – Fonction AND

4.2 Fonction AND

4.3 Fonction OR

Figure 5 – Porte OR

A	В	out
0	0	0
0	1	1
1	0	1
1	1	1

Tableau 4 – Fonction OR

