

Naïve Bayes

Semester 1, 2023 Kris Ehinger

Outline

- Probabilistic learning
- Bayes' Rule
- Naïve Bayes classifier
- Practical issues, assumptions, etc.

This is a "tufa" Are there any more tufas in the set below?

"Fribbles" dataset: P. Williams (1998)

Concept learning

- People can grasp a "class" concept from very limited data:
 - One (or few) examples
 - Noisy features
 - Diverse data set
 - Ambiguity about what features might be important
- How to get this generalisation performance from machines?

Why probabilistic models?

- Framework for modelling systems that are noisy/uncertain
- Rules that let you generalise from limited observations
- Based on laws of probability, so gives an optimal prediction given the available data
 - and the assumptions built into the model

Probabilistic learner

- Goal is classification, so we'll build a <u>supervised</u> model
- We need to build a probabilistic model of the training data, and then use that to predict the class of the test data
- In probability terms: given an instance T, which class c is most likely?
- $\hat{c} = arg max_{c \in C} P(c|T)$

Probabilistic learner

- How to do this?
- For each class c:
 - Find all examples of c in the training data
 - Count the number of times T has been observed
- Choose class ĉ with the greatest frequency of observed T

What if you've never seen this specific instance before?

Probabilistic learner

- Unfortunately, this requires a massive amount of data!
- We need to have seen every possible combination of attributes in the training set, ideally at least a few times per class, to have a good estimate of frequency
- For m attributes with k possible values and C classes, this mean O(Ckm) instances
 - 2 classes, 20 binary attributes: >2 million
 - 2 classes, 10 attributes with 10 values: 20 trillion

Naïve Bayes solution

- Assume <u>different attributes are statistically</u> <u>independent</u>, <u>conditional on class</u>
- Compute P(c|T) from P(T|c) using Bayes rule

$$P(G|T) = \frac{P(T|G)P(G)}{P(T)}$$
 all same for G
Max $P(G|T) \rightarrow max P(T|G)P(G)$

Bayes' Rule

Bayes' Rule example

Consider this situation:

You go to a shop that you're pretty <u>sure is open</u> today. When you get close, however, you notice all the lights are off inside and the <u>windows</u> are dark.

What do you conclude?

Bayesian mental model

 When a shop is open, it usually doesn't turn the lights off:

$$P(off \mid open) = 0.01$$

• When a shop is closed, it <u>usually does turn the</u> lights off:

| Voltogen |

 $P(off \mid closed) = 0.85$

• So what are the chances the shop is open given that the lights are off?

Bayes' Rule

- For hypothesis H and evidence x
 - P(H), the prior, is the initial degree of belief in H
 - P(H|x), the posterior, is the degree of belief in H, given x
 - P(x|H) is the likelihood of observing evidence x given that H is true

Updating beliefs

- What are the chances the shop is open given that the lights are off? $P(H|x) = \frac{P(x|H)P(H)}{P(x)}$
- Depends on prior P(open)...

P(open | off) =
$$\frac{P(\text{off | open) P(open)}}{P(\text{off | open)P(open)} + P(\text{off | closed})P(\text{closed})}$$

$$\frac{P(\text{open | off)} = 0.95}{P(\text{open}) = 0.95}$$

P(open | off) =
$$\frac{0.01 \times 0.95}{0.001 + 0.043} = 0.183$$

Bayes' Rule

- Bayes' Rule allows us to compute P(H|x) when P(x|H) can be estimated
 - In many situations, it's fairly easy to estimate P(x|H) from real world observations or a theoretical model
- Powerful tool to represent a model's (or person's) beliefs, and how those beliefs are updated through experience with the world

Naïve Bayes classifier

Bayes' Rule

$$P(C,X) = P(C|X)P(X) = P(X|C)P(C)$$

Naïve Bayes learner

 Task: classify an <u>instance T into one of the possible</u> classes c_i∈C

$$\hat{c} = \arg\max_{c_j \in C} P(c_j | T)$$

$$= \arg\max_{c_j \in C} \frac{P(T | c_j) P(c_j)}{P(T)}$$

$$= \arg\max_{c_j \in C} \frac{P(T | c_j) P(c_j)}{P(T)}$$
Same for all $c_j \in C$, so we can ignore it

Naïve Bayes learner

 Task: classify an instance T into one of the possible classes c_i∈C

$$\hat{c} = \arg\max_{c_j \in C} P(c_j | T)$$

$$= \arg \max_{c_j \in C} P(T|c_j)P(c_j)$$

- Each class generates instances
- Each class could have generated this instance, with some likelihood
- Which class is most likely to have generated this instance?

Naïve Bayes learner

at tributes

 Task: classify an instance T = < x₁, x₂, ..., x_n > into one of the possible classes c_j∈C

$$\hat{c} = \arg\max_{c_j \in C} P(c_j | x_1, x_2, \dots, x_n)$$

$$= \arg\max_{c_j \in C} \frac{P(x_1, x_2, \dots, x_n | c_j) P(c_j)}{P(x_1, x_2, \dots, x_n)}$$
Same for all $c_j \in C$, so we can ignore it
$$= \arg\max_{c_j \in C} P(x_1, x_2, \dots, x_n | c_j) P(c_j)$$

$$\downarrow_{c_j \in C}$$
Mars to compute

What makes it "naïve"?

 Naïve Bayes assumes <u>all attributes are</u> independent, conditional on the class:

$$P(x_1, x_2, ..., x_n | c_j) \approx P(x_1 | c_j) P(x_2 | c_j) ... P(x_n | c_j)$$

$$= \prod_i P(x_i | c_j)$$

- Makes the problem tractable easy to compute these probabilities
- But it's almost always untrue in real-world data
- But naïve Bayes (usually) works pretty well anyway

Complete naïve Bayes learner

• Task: classify an instance $T = \langle x_1, x_2, ..., x_n \rangle$ into one of the possible classes $c_j \in C$ $\hat{c} = \underset{c_j \in C}{\operatorname{log}(C_j | x_1, x_2, ..., x_n)} \hat{c}_j \in C$ $= \underset{c_j \in C}{\operatorname{log}(C_j | x_1, x_2, ..., x_n | c_j)} P(c_j)$ $= \underset{c_j \in C}{\operatorname{log}(C_j | x_1, x_2, ..., x_n | c_j)} P(c_j)$

Complete naïve Bayes learner

 Task: classify an instance T = < x₁, x₂, ..., x_n > into one of the possible classes c_j∈C

$$\hat{c} = \arg \max_{c_j \in C} P(c_j | x_1, x_2, \dots, x_n)$$

$$= \arg \max_{c_j \in C} P(c_j) \prod_i P(x_i | c_j)$$

- Each class generates attributes, with some likelihood
- Which class is most likely to have generated these attributes?

Bayesian prior

- The prior P(c_j) can be estimated from the frequency of classes in the training set (maximum likelihood estimate)
- Naïve Bayes learns the priors from the training set and uses them in prediction
 - Good if the <u>training set correctly reflects the real-world</u> / <u>test set distribution of classes</u> (or is close)
 - But potentially a problem if you want to apply the classifier to a new situation with new priors

new class

Computing probability

Outlook	Temp	Humidity	Windy	Play?	P(yes)
sunny	cool	normal	false	yes	100%
sunny	cool	normal	false	yes	
sunny	cool	normal	false	yes	
sunny	cool	normal	false	yes	
sunny	cool	normal	false	yes	50%
sunny	cool	normal	false	yes	
sunny	cool	normal	false	yes	
sunny	cool	normal	false	yes	
overcast	hot	high	true	no	0%

Today it's sunny, cool, normal, false. What's the class?

 $P(L_i \mid X_i, X_i, X_4) \Rightarrow yes p=1$

Computing probability

Outlook	Temp	Humidity	Windy	Play?	P(yes)
rainy	hot	normal	true	yes	100%
rainy	hot	normal	true	no	
rainy	hot	normal	true	yes	
rainy	hot	normal	true	no	
rainy	hot	normal	true	yes	50%
rainy	hot	normal	true	no	
sunny	cool	normal	false	yes	
sunny	mild	high	false	no	
overcast	cool	high	true	no	0%

Today it's rainy, hot, normal, true. What's the class?

P(G) rainy, hot, normal, true), yes: 1=0.5

COMP30027 Machine Learning

Computing probability

Outlook	Temp	Humidity	Windy	Play?
overcast	mild	normal	true	yes
sunny	mild	normal	false	yes
overcast	hot	high	true	yes
sunny	cool	high	false	yes
rainy	cool	normal	true	no
overcast	hot	normal	true	no
sunny	hot	normal	false	no
sunny	mild	normal	true	no
overcast	cool	high	true	no

Today it's overcast, mild, high, false. What's the class?

COMP30027 Machine Learning to Mhon in yes

This is naive bases, consider each feature independently

 Given a training data set, what probabilities do we need to estimate?

Headache	Sore	Temperature	Cough	Diagnosis
severe	mild	high	yes	Flu
no	severe	normal	yes	Cold
mild	mild	normal	yes	Flu
mild	no	normal	no	Cold
severe	severe	normal	yes	Flu

We need $P(c_j)$, $P(x_i | c_j)$ for every x_i , c_j

Headache	Sore	Temperature	Cough	Diagnosis
severe	mild	high	yes	Flu
no	severe	normal	yes	Cold
mild	mild	normal	yes	Flu
mild	no	normal	no	Cold
severe	severe	normal	yes	Flu

```
P(Flu) = 3/5
P(Headache = severe | Flu) = 2/3
P(Headache = mild | Flu) = 1/3
P(Headache = no | Flu) = 0/3
P(Sore = severe | Flu) = 1/3
P(Sore = mild | Flu) = 2/3
P(Sore = no | Flu) = 0/3
P(Temp = high | Flu) = 1/3
P(Temp = normal | Flu) = 2/3
P(Cough = yes | Flu) = 3/3
P(Cough = no | Flu) = 0/3
```

```
P(Cold) = 2/5

P(Headache = severe | Cold) = 0/2

P(Headache = mild | Cold) = 1/2

P(Headache = no | Cold) = 1/2

P(Sore = severe | Cold) = 1/2

P(Sore = mild | Cold) = 0/2

P(Sore = no | Cold) = 1/2

P(Temp = high | Cold) = 0/2

P(Temp = normal | Cold) = 2/2

P(Cough = yes | Cold) = 1/2

P(Cough = no | Cold) = 1/2
```

 A patient comes to the clinic with mild headache, severe soreness, normal temperature, and no cough. Are they more likely to have cold or flu? $p(x_1, y_2) p(x_1, y_2) p(x_1, y_2) p(x_2, y_3) p(x_1, y_2, y_3) p(x_2, y_3) p(x_1, y_2, y_3) p(x_2, y_3) p(x_3, y_3) p(x_3, y_3) p(x_3$ Cold: P(C)P(H=m|C)P(S=s|C)P(T=n|C)P(C=n|C) $\frac{2}{5} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{2}{2}\right) \left(\frac{1}{2}\right) = 0.05 \quad \text{not probability}$ Flu: P(F)P(H = m|F)P(S = s|F)P(T = n|F)P(C = n|F) $\frac{3}{5} \left(\frac{1}{3}\right) \left(\frac{1}{3}\right) \left(\frac{2}{3}\right) \left(\frac{0}{3}\right) = 0$

 A patient comes to the clinic with severe headache, mild soreness, high temperature, and no cough. Are they more likely to have cold or flu?

Cold:
$$P(C)P(H = s|C)P(S = m|C)P(T = h|C)P(C = n|C)$$

$$\frac{2}{5} \left(\frac{0}{2}\right) \left(\frac{0}{2}\right) \left(\frac{1}{2}\right) = 0$$
Training detaset is too shall combination

Flu:
$$P(F)P(H = s|F)P(S = m|F)P(T = h|F)P(C = n|F)$$

$$\frac{3}{5} \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) \left(\frac{1}{3}\right) \left(\frac{0}{3}\right) = 0$$

Zero values

- Problem: if any $P(x_i|c_j) = 0$, the final value will be zero
 - This means we need to see every possible pairing of attributes to class, which means a lot of data; likely to miss some pairings in a real-world data set
 - The 0s are actually informative the fact that we never observed a pairing means it's probably rare
- Solution: treat unobserved events as possible but unlikely (all probabilities > 0)

Probabilistic smoothing I

- Simple option: whenever you encounter $P(x_i | c_j) = 0$, just replace 0 with a small positive constant ε
- ε should be very small, much less than (1/N) (N = number of instances), given the class Flux N=3, loll N=2.
- Since ε is tiny, assume all probabilities still sum to 1 (no need to scale other values)
- In practice, tends to reduce to comparisons to the cardinality of ε (meaning, whichever class has fewest εs wins)

Probabilistic smoothing example

 A patient comes to the clinic with severe headache, mild soreness, high temperature, and no cough.
 Are they more likely to have cold or flu?

Cold:
$$P(C)P(H = s|C)P(S = m|C)P(T = h|C)P(C = n|C)$$

 $\frac{2}{5}(\varepsilon)(\varepsilon)(\varepsilon)\left(\frac{1}{2}\right) = \frac{\varepsilon^3}{5}$

Flu:
$$P(F)P(H = s|F)P(S = m|F)P(T = h|F)P(C = n|F)$$
$$\frac{3}{5} \left(\frac{2}{3}\right) \left(\frac{2}{3}\right) \left(\frac{1}{3}\right) (\varepsilon) = \frac{4\varepsilon}{45}$$

Probabilistic smoothing II

- Slightly more complicated option: increase all counts by 1 (Laplace smoothing)
 - Unseen events get a count of 1
 - Events seen once become 2, twice 3, etc.
 - A more general version: increase all counts by α , which is a value between 0 and 1
 - Formula for an attribute X with d values:

$$P_i = \frac{x_i}{N}$$

Smoothed:

$$P_i = \frac{x_i + \alpha}{N + \alpha d}$$

Probabilistic smoothing example

Headache	Sore	Temperature	Cough	Diagnosis
severe	mild	high	yes	Flu
no	severe	normal	yes	Cold
mild	mild	normal	yes	Flu
mild	no	normal	no	Cold
severe	severe	normal	yes	Flu

P(Headache = severe | Flu) = (1+2) / (3+3) = 3/6P(Headache = mild | Flu) = (1+1) / (3+3) = 2/6P(Headache = no | Flu) = (1+0) / (3+3) = 1/6P(Headache = severe | Cold) = (1+0) / (3+2) = 1/5P(Headache = mild | Cold) = (1+1) / (3+2) = 2/5P(Headache = no | Cold) = (1+1) / (3+2) = 2/5

Probabilistic smoothing II

• Most common method of Laplace smoothing is add-one smoothing (α =1, all counts increase by 1)

Probabilities are changed drastically when there are few instances, but the changes are smaller with more instances (mimics confidence)

- Add-one smoothing is known to <u>overestimate the</u> likelihood of rare events
 - But ε or lower values of α can underestimate
 - Hard to choose the right α in practice

Probabilistic smoothing III

- Even more options:
 - Add-k smoothing: like Laplace smoothing, but adds a value k > 1 overestimate likelihood of rare events
 - Good-Turing estimation: uses the observed counts of different events to estimate how likely you are to see a never-before-seen event use observed data to predict unobserved data
 - Regression

Missing values

- What if an instance is missing some attribute?
- Missing values at test can simply be ignored compute the likelihood of each class from the nonmissing values
- Missing values in training can also be ignored –
 don't include them in the <u>attribute-class counts</u>,
 and the <u>probabilities will be based on the nonmissing values</u>

- Simple shapes dataset: • Tall or Wide
 - Oval or Rectangle
 - Red, Yellow, Green, or Blue

Naïve Bayes summary

- Why does it (usually) work, despite the wrong assumption of conditional independence?
 - We don't need a perfect estimate of P(c|T) for every class – we just need to know which class is most likely
 - Ignoring the fact that some attributes are correlated tends to make all the class probabilities higher, but doesn't typically change their rank
 - Naïve Bayes is also robust to small errors in estimating $P(x_i | c_j)$ these can change class probabilities but typically don't change class rank

Naïve Bayes

• Strengths:

- Simple to build, fast
- Computations scale well to high-dimensional datasets (1000s of attributes)
- Explainable generally easy to understand why the model makes the decision it does

Weaknesses:

- Inaccurate when there are many missing $P(x_i | c_i)$ values
- Conditional independence assumption becomes problematic for complex systems