We claim:

5

A Hall offen deed for the form

115

IJ

F R R grad grad from

20

- A process for manufacturing a solid oxide fuel cell, the process comprising: forming a plastic mass comprising a mixture of an electrolyte substance and an electrochemically active substance;
- extruding the plastic mass through a die to form an extruded tube; and sintering the extruded tube to form a tubular anode capable of supporting the solid oxide fuel cell.
- 2. A process according to claim 1, further comprising, after sintering the extruded tube, layering an electrolyte onto the tubular anode.
 - 3. A process according to claim 2, further comprising, after layering the electrolyte, layering a cathode onto the electrolyte.
 - 4. A process according to claim 3, further comprising: reducing an oxide of an electrochemically active substance in the anode, to form pores.
 - 5. A process according to claim 4, wherein reducing the oxide of the electrochemically active substance comprises flowing a reducing gas over a surface of the anode.
 - 6. A process according to claim 5, wherein reducing the oxide of the electrochemically active substance comprises flowing hydrogen gas over the surface of the anode at a temperature between 800°C and 1000°C.
 - 7. A process according to claim 3, further comprising:

- 8. A process according to claim 7, wherein the catalyst comprises a material chosen from the group consisting of: CeO₂, ruthenium, rhodium, rhenium, palladium, scandia, titania, vanadia, chromium, manganese, iron, cobalt, nickel, zinc, and copper.
 - 9. A process according to claim 8, wherein the catalyst comprises CeO₂ in a proportion of between 1% and 3% by weight.
 - 10. A process according to claim 3, wherein forming a plastic mass comprises forming a mass comprising a mixture of stabilized zirconia and nickel oxide.
 - 11. A process according to claim 10, wherein layering the electrolyte comprises spraying a stabilized zirconia electrolyte onto the tubular anode.
 - 12. A process according to claim 10, wherein layering the electrolyte comprises dipcoating a stabilized zirconia electrolyte onto the tubular anode.
- 20 13. A process according to claim 10, wherein layering the cathode comprises spraying a strontia-doped lanthanum manganite cathode onto the electrolyte.
 - 14. A process according to claim 10, wherein the layering the cathode, after layering the electrolyte, and after sintering the anode, comprises forming a tubular fuel cell in which a thickness of the anode comprises over 50% of a total thickness of the anode, the electrolyte, and the cathode.

I I spell doll

- 16. A process according to claim 3, wherein the tubular anode comprises a uniform
 5 ratio of electrochemically active substance to electrolyte substance.
 - 17. A process according to claim 16, wherein the anode comprises a volume percentage of nickel of between 40% and 50%.
- 10 18. A process according to claim 3, wherein the process further comprises coextruding more than one anode layer to form the tubular anode.

Hong H. II.

A I soul men

- 19. A process according to claim 18, wherein each of the anode layers comprises a ratio of electrochemically active substance to electrolyte substance, and wherein such ratios are higher for layers that are layered further from a surface of the anode that contacts a fuel gas than for layers that are layered closer to the fuel gas.
- 20. A process according to claim 19, wherein the electrochemically active substance is nickel and the electrolyte substance is stabilized zirconia.
- 21. A process according to claim 19, wherein there are two anode layers.
- 22. A process according to claim 19, wherein there are more than two anode layers.
- 25 23. A process according to claim 18, wherein the more than one anode layers comprise a thicker support layer and a thinner active layer, the support layer being in contact with a fuel gas.

24. A process according to claim 23, wherein the support layer comprises a higher ratio of stabilized zirconia to nickel, and wherein the active layer comprises a lower such ratio.

5

10

20

25

- 25. A process according to claim 23, wherein the support layer comprises from 0% to 50% nickel by volume.
- 26. A process according to claim 23, wherein the active layer comprises from 40% to 45% nickel by volume.
 - 27. A process according to claim 23, wherein the process comprises extruding the active layer around a current-collecting wire.
 - 28. A process according to claim 23, wherein the support layer comprises aluminum oxide.
 - 29. A process according to claim 1, wherein the extruded tube has a non-circular cross-section.
 - 30. A process for manufacturing a solid oxide fuel cell, the process comprising: forming first and second plastic masses, each plastic mass comprising a mixture of an electrolyte substance and an electrochemically active substance, the first plastic mass having a higher relative content ratio of electrochemically active substance to electrolyte substance, and the second plastic mass having a lower relative content ratio of electrochemically active substance to electrolyte substance;

extruding the first plastic mass through a die to form a first extruded tube;

sintering the combined tube to form a tubular anode capable of supporting the solid oxide fuel cell.

- 31. A process according to claim 30, wherein the process comprises forming first and second plastic masses, each plastic mass comprising a mixture of stabilized zirconia and nickel oxide, the first plastic mass having a higher relative content ratio of nickel oxide to stabilized zirconia, and the second plastic mass having a lower relative content ratio of nickel oxide to stabilized zirconia.
- 32. A tubular solid oxide fuel cell comprising:a cathode;an electrolyte; anda tubular anode capable of supporting the fuel cell.

5

10

trees there is not that they have

aria trini trini (mar. 1100) Andi trini trini (110)

[]

- 33. A fuel cell according to claim 32, wherein the anode comprises a mixture of stabilized zirconia and nickel.
- 34. A fuel cell according to claim 33, wherein the electrolyte comprises stabilized zirconia.
- 35. A fuel cell according to claim 32, wherein the cathode comprises a strontia-doped lanthanum manganite.
 - 36. A fuel cell according to claim 33, wherein the cathode comprises a strontia-doped

lanthanum manganite.

5

Just This I G

IJ

- 37. A fuel cell according to claim 34, wherein the cathode comprises a strontia-doped lanthanum manganite.
- 38. A fuel cell according to claim 32, wherein a thickness of the anode comprises over 50% of a total thickness of the anode, the electrolyte, and the cathode.
- 39. A fuel cell according to claim 32, wherein the anode has a thickness in the range
 of 300μm to 400μm.
 - 40. A fuel cell according to claim 32, wherein the anode comprises a catalyst material chosen from the group consisting of: CeO₂, ruthenium, rhodium, rhenium, palladium, scandia, titania, vanadia, chromium, manganese, iron, cobalt, nickel, zinc, and copper.
 - 41. A fuel cell according to claim 40, wherein the catalyst comprises CeO₂ in a proportion of between 1% and 3% by weight.
- 20 42. A fuel cell according to claim 32, wherein the anode comprises a volume percentage of nickel of between 40% and 50%.
 - 43. A fuel cell according to claim 32, wherein the anode comprises more than one anode layer, each layer having a different composition.
 - 44. A fuel cell according to claim 43, wherein each of the anode layers comprises a ratio of electrochemically active substance to electrolyte substance, and wherein such

ratios are higher for layers that are layered further from a surface of the anode that contacts a fuel gas than for layers that are layered closer to the fuel gas.

- 45. A fuel cell according to claim 44, wherein the electrochemically active substance is nickel and the electrolyte substance is stabilized zirconia.
 - 46. A fuel cell according to claim 44, wherein there are two anode layers.

10

H H steel speek board one.

15

- 47. A fuel cell according to claim 44, wherein there are more than two anode layers.
- 48. A fuel cell according to claim 43, wherein the more than one anode layers comprise a thicker support layer and a thinner active layer, the support layer being in contact with a fuel gas.
- 49. A fuel cell according to claim 48, wherein the support layer comprises a higher ratio of stabilized zirconia to nickel, and wherein the active layer comprises a lower such ratio.
- 50. A fuel cell according to claim 48, wherein the support layer comprises from 0% to 50% nickel by volume.
- 51. A fuel cell according to claim 48, wherein the active layer comprises from 40% to 45% nickel by volume.
- 25 52. A fuel cell according to claim 48, wherein the active layer comprises an embedded current-collecting wire.

- 54. A fuel cell according to claim 32, wherein the tubular anode has a non-circular cross-section.
 - 55. An electrode-supported oxygen pump, the oxygen pump comprising: a first tubular electrode layer capable of supporting the oxygen pump; an electrolyte layer, layered on the first electrode layer; and a second tubular electrode layer layered on the electrolyte layer.

10

ži

Gen III

- 56. An oxygen pump according to claim 55, wherein the first tubular electrode layer comprises an electrolyte substance mixed with a precious metal.
- 57. An oxygen pump according to claim 56, wherein the precious metal is chosen from the group consisting of: platinum, palladium, silver, rhodium, and rhenium.
- 58. An oxygen pump according to claim 56, wherein the electrolyte substance comprises stabilized zirconia.
- 59. An oxygen pump according to claim 55, wherein the first tubular electrode layer comprises a porous perovskite substance.
- 60. An oxygen pump according to claim 59, wherein the perovskite substance is chosen from doped LaCoO₃ and doped La[CoFe]O₃.
 - 61. An oxygen pump according to claim 55, wherein the electrolyte layer comprises

stabilized zirconia.

5

10

The state that they are the sour

C 15

H D good gold

- 62. An oxygen pump according to claim 55, wherein the electrolyte layer comprises a thinner layer of stabilized zirconia and a thicker porous support layer.
- 63. An oxygen pump according to claim 62, wherein the support layer comprises alumina.
- 64. An oxygen pump according to claim 55, wherein the electrolyte layer comprises a doped oxide, the oxide being chosen from the group consisting of: cerium oxide, lanthanum oxide, bismuth oxide, yttrium oxide, and lead oxide.
 - 65. An oxygen pump according to claim 55, wherein the electrolyte layer comprises a porous perovskite.
 - 66. An oxygen pump according to claim 65, wherein wherein the perovskite substance is chosen from doped LaCoO₃ and doped La[CoFe]O₃.
- 67. An electrode-supported oxygen sensor, the oxygen sensor comprising: a first tubular electrode layer capable of supporting the oxygen sensor; an electrolyte layer, layered on the first electrode layer; and a second tubular electrode layer layered on the electrolyte layer.
- 68. An oxygen sensor according to claim 67, wherein the first tubular electrode layer comprises an electrolyte substance mixed with a precious metal.
 - 69. An oxygen sensor according to claim 68, wherein the precious metal is chosen

- 70. An oxygen sensor according to claim 68, wherein the electrolyte substance comprises stabilized zirconia.
- 71. An oxygen sensor according to claim 67, wherein the first tubular electrode layer comprises a porous perovskite substance.
- 72. An oxygen sensor according to claim 71, wherein the perovskite substance is chosen from doped LaCoO₃ and doped La[CoFe]O₃.
 - 73. An oxygen sensor according to claim 67, wherein the electrolyte layer comprises stabilized zirconia.
 - 74. An oxygen sensor according to claim 67, wherein the electrolyte layer comprises a thinner layer of stabilized zirconia and a thicker porous support layer.
 - 75. An oxygen sensor according to claim 74, wherein the support layer comprises alumina.
 - 76. An oxygen sensor according to claim 67, wherein the electrolyte layer comprises a doped oxide, the oxide being chosen from the group consisting of: cerium oxide, lanthanum oxide, bismuth oxide, yttrium oxide, and lead oxide.
- 25 77. An oxygen sensor according to claim 67, wherein the electrolyte layer comprises a porous perovskite.

- 79. A method of manufacturing an oxygen pump, the method comprising:

 extruding a first tubular electrode, capable of supporting the oxygen pump;
 layering an electrolyte layer on the first tubular electrode; and
 layering a second tubular electrode on the electrolyte layer.
 - 80. A method according to claim 79, wherein the first tubular electrode comprises a precious metal chosen from the group consisting of: platinum, palladium, silver, rhodium, and rhenium.

- 81. A method according to claim 79, wherein the first tubular electrode comprises a porous perovskite.
- 82. A method of manufacturing an oxygen pump, the method comprising: extruding a tubular electrolyte layer comprising cerium oxide; and reducing an outside and an inside surface of the electrolyte layer.
- 20 83. A method of manufacturing an oxygen sensor, the method comprising:
 extruding a first tubular electrode, capable of supporting the oxygen sensor;
 layering an electrolyte layer on the first tubular electrode; and
 layering a second tubular electrode on the electrolyte layer.
- 25 84. A method according to claim 83, wherein the first tubular electrode comprises a precious metal chosen from the group consisting of: platinum, palladium, silver, rhodium, and rhenium.

- 85. A method according to claim 83, wherein the first tubular electrode comprises a porous perovskite.
- 5 86. A method of manufacturing an oxygen sensor, the method comprising: extruding a tubular electrolyte layer comprising cerium oxide; and reducing an outside and an inside surface of the electrolyte layer.

[157313]