EMERGING DISPLAY ISSUE: JAN.24,2000 TOTAL PAGE: 8	Jony Chen OVED BY: David Chang		FILE NO . CAS- 10077 ISSUE: JAN.24,2000 TOTAL PAGE: 8
OVED BY: TECHNOLOGIES CORPORATION TOTAL PAGE: 8 VERSION: 4 CUSTOMER ACCEPTANCE SPECIFICATIONS MODEL NO.: 24B00(LED TYPES) FOR MESSRS: CUSTOMER'S APPROVAL DATE:	OVED BY:		
TECHNOLOGIES CORPORATION VERSION: 4 CUSTOMER ACCEPTANCE SPECIFICATIONS MODEL NO.: 24B00(LED TYPES) FOR MESSRS: CUSTOMERS APPROVAL DATE:		TECHNOLOGIES CORPORATION	TOTAL PAGE: 8
CUSTOMER ACCEPTANCE SPECIFICATIONS MODEL NO.: 24B00(LED TYPES) FOR MESSRS: CUSTOMER'S APPROVAL DATE:	Pavid Chang		
CUSTOMER ACCEPTANCE SPECIFICATIONS MODEL NO.: 24B00(LED TYPES) FOR MESSRS: CUSTOMERS APPROVAL DATE:			VERSION: 4
24B00(LED TYPES) FOR MESSRS: CUSTOMER'S APPROVAL DATE:	CUSTOMER	ACCEPTANCE SPEC	CIFICATIONS
	FO	24B00(LED TYPES) R MESSRS:	
	DATE :		
BY:	DAIL .		
	BY:		

MODEL NO. VERSION 24B00(LED TYPES) 4

DOC . FIRST ISSUE

			DOC . FII	RST ISSUE		
RECORDS	OF RE	VISION				NOV.28,1997
	REVISED					
DATE	PAGE			SUMM	ARY	
NOV. 11. 1000	NO.	4 FLECTRIC	I CILLD I C			
NOV.11, 1998	3	4. ELECTRICA			ED LCD DRIVING	G VOLTAGE"
		REVISED A			ED LCD DRIVING	O VOLTAGE
			$= -20 ^{\circ}\text{C}$	10.8 →	12.0	
			= 25 °C	9.6 →		
			= 70 °C	$8.8 \rightarrow$	12.0	
MAR.25,1999	3	4. ELECTRICA				
					ED LCD DRIVING	G VOLTAGE"
		REVISED A W.T. Ta	$= -20 ^{\circ}\text{C}$: 12.0 →	12.0	
			$= 20^{\circ} \text{C}$ = 25 °C			
			$= 20 ^{\circ}\text{C}$ $= 70 ^{\circ}\text{C}$			
JAN.24,2000	1~4	THE ENTIRE I			·	

MODEL NO. VI 24B00(LED TYPES)

VERSION

4

NUMBERING SYSTEM

Backlight	Code
Color	Value
Yellow-Green	Y

E W 24 B 00 G L Y

LCD type + LCD color	Code Value
STN + Yellow-Green	Y
STN + Gray	G
STN + Blue	В
FSTN + White	F
FSTN + Black	N

MODEL NO.

24B00(LED TYPES)

VERSION

4

TABLE OF CONTENTS

NO.	ITEM	PAGE
1.	GENERAL SPECIFICATIONS	. 1
2.	MECHANICAL SPECIFICATIONS	. 1
3.	ABSOLUTE MAXIMUM RATINGS	. 2
4.	ELECTRICAL CHARACTERISTICS	. 3
5.	OPTICAL CHARACTERISTICS	. 4
6.	OUTLINE DIMENSION	. 5
7.	DETAIL DRAWING OF DOT MATRIX	. 6
8.	BLOCK DIAGRAM	. 6
9.	INTERFACE SIGNALS	. 7
10.	POWER SUPPLY	. 8

EMERGING DISPLAY	MODEL NO.	VERSION	PAGE
TECHNOLOGIES CORPORATION	24B00(LED TYPES)	4	1
GENERAL SPECIFICATIONS 1.1 QUALITY SPECIFICATION PLEASE REFER TO: CUSTOMER ACCEPTANCE	CE STANDARD SPECIFICAT	TONS :	
Е	U - 0 0 2 A		
1.2 APPLICATION NOTES FOR PLEASE REFER TO:	OR CONTROLLER / DRIVER :		

CUSTOMER ACCEPTANCE STANDARD SPECIFICATIONS:

EU-T6963C

1.3 THIS INDIVIDUAL SPECIFICATIONS IS PRIOR TO GENERAL SPECIFICATIONS.

2. MECHANICAL SPECIFICATIONS

* PLEASE REFER TO NUMBERING SYSTEM

(1) NUMBER OF DOTS	240W * 64H DOTS
(2) MODULE SIZE	180.0W * 65.0H * 16.0D (max .) mm
(3) EFFECTIVE AREA	133.0W * 40.0H mm
(4) ACTIVE AREA	127.16W * 33.88H mm
(5) DOT SIZE	0.49W * 0.49H mm
(6) DOT PITCH	0.53W * 0.53H mm
(7) LCD TYPE *	
(8) DRIVING METHOD	1/64 DUTY MULTIPLEX DRIVE
(9) BACK LIGHT	LED, COLOR : YELLOW-GREEN

MODEL NO.	VERSION	PAGE
24B00(LED TYPES)	4	2

3. ABSOLUTE MAXIMUM RATINGS

3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS. (AT $Ta = 25 \degree C$)

PARAMETER	SYMBOL	MIN .	MAX .	UNIT	REMARK
POWER SUPPLY FOR LOGIC	VDD – VSS	0	7.0	V	
POWER SUPPLY FOR LCD DRIVE	VDD – VEE	0	22.0	V	
INPUT VOLTAGE	VI	VSS	VDD	V	
STATIC ELECTRICITY	_	_	100	V	NOTE (1)
LED POWER DISSIPATION	PD	_	7.4	W	
LED FORWARD CURRENT	IF	_	1625	mA	
LED REVERSE VOLTAGE	VR	_	8	V	

NOTE (1): TEST METHOD AND CONDITIONS:

AFTER CHARGING UP 200 PF CAPACITOR BY STATED VOLTAGE, THE CAPACITOR IS CONNECTED WITH INTERFACE PINS OF THE MODULE .

3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS.

ITEM	OPERATING		STORAGE		REMARK
	MIN .	MAX .	MIN .	MAX .	
AMBIENT TEMPERATURE	- 2 0 °C	7 0 °C	- 3 0 °C	8 0 °C	NOTE (2), (3)
HUMIDITY		85 % RH	_	85 % RH	WITHOUT CONDENSATION
VIBRATION		4.9 m/s ² (0.5G)	_	19.6 m/s ² (2G)	10~300 HZ XYZ DIRECTIONS 1 Hr EACH
SHOCK	_	29.4 m/s ² (3G)	_	490.0 m/s ² (50G)	10 m SEC XYZ DIRECTIONS 1 TIME EACH
CORROSIVE GAS	NOT ACC	EPTABLE	NOT ACCE	PTABLE	

NOTE (2): Ta AT -30°C: 48HR MAX.

80°C: 168HR MAX.

NOTE (3) : BACKGROUND COLOR CHANGES SLIGHTLY DEPENDING ON AMBIENT

TEMPERATURE THIS PHENOMENON IS REVERSIBLE.

MODEL NO.	VERSION	PAGE
24B00(LED TYPES)	4	3

4. ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN .	TYP.	MAX .	UNIT
POWER SUPPLY VOLTAGE FOR LOGIC	VDD-VSS	_	4.75	5.0	5.25	V
POWER SUPPLY VOLTAGE FOR LCD DRIVE	VEE-VSS	_	- 2.0	_	- 10 . 0	V
INPUT VOLTAGE	VIH	H LEVEL	VDD-2.2		VDD	V
NOTE (1)	VIL	L LEVEL	0	_	0.8	V
OUTPUT VOLTAGE	VOH	H LEVEL	VDD-0.3	_	VDD	
NOTE (1)	VOL	L LEVEL	0	_	0.3	
POWER SUPPLY CURRENT FOR LOGIC NOTE (2)	IDD	VDD – VSS = 5.0 V VDD – VEE = 8.7 V	_	9.0	_	mA
RECOMMENDED	VDD-VEE	Ta = -20 °C		8.7		V
LCD DRIVING VOLTAGE	\emptyset = 10° θ = 0°	Ta = 25 °C		8.7		V
NOTE (3)	DUTY=1/64	Ta = 70 °C		7.9		V
CLOCK OSCILLATION FREQUENCY	f OSC			3.58	_	MHZ
LED FORWARD VOLTAGE	VF	IF = 650 mA		4.2	4.6	V
LED FORWARD CURRENT	IF			650		mA
LED REVERSE CURRENT	IR	VR = 8 V			200	μΑ

NOTE (1): APPLIED TO TERMINALS $(\overline{WR}, \overline{RD}, \overline{CE}, C/\overline{D}, \overline{RST}, FS, D0~D7)$

NOTE(2): THE DISPLAY PATTERN IS ALL "OFF"/"ON"

NOTE (3): RECOMMENDED LCD DRIVING VOLTAGE MAY FLUCTUATE ABOUT \pm 0.5 V BY EACH MODULE

MODEL NO.	VERSION	PAGE
24B00(LED TYPES)	4	4

5. OPTICAL CHARACTERISTICS

$Ta = 2.5 ^{\circ}C$	VDD =	5	0	V

A TO TO A CONTRACT OF THE PROPERTY OF THE PROP									
I T E M	I T E M SYMBOL CONDITION		MIN .	TYP.	MAX.	UNIT	NOTE		
VIEWING AREA	STN	\emptyset 2 - \emptyset 1	K≧ 1.4		40			deg.	1
	FSTN				50			deg.	1
CONTRAST RATIO	STN	K	Ø = 1 0 °			5			1
	FSTN		θ = 0°		5	_	_	_	1
RESPONSE TIME		tr (rise)	$\emptyset = 10^{\circ}$ $\theta = 0^{\circ}$	$Ta = -20^{\circ}C$		3982		ms	1
				$Ta = 25^{\circ}C$		228			
				$Ta = 70^{\circ}C$		83			
		tf (fall)		Ta = -20°C		3752			
				$Ta = 25^{\circ}C$	—	176			
				$Ta = 70^{\circ}C$		94			
THE BRIGHTNESS		L	IF = 650 mA			30		cd/m ²	1, 2
OF BACK-LIGHT		L				65		Cu/III ²	1, 3
PEAK EMISSION WAVELENGTH		λΡ	IF = 650 mA		_	572	_	nm	1

NOTE (1): PLEASE REFER TO:

CUSTOMER ACCEPTANCE STANDARD SPECIFICATIONS.

EU-002A

NOTE (2): POLARIZER MODE: TRANSFLECTIVE NOTE (3): POLARIZER MODE: TRANSMISSIVE

MODEL NO. VERSION PAGE 24B00(LED TYPES) 4 5

MODEL NO. VERSION PAGE 24B00(LED TYPES) 4 6

7. DETAIL DRAWING OF DOT MATRIX

UNIT : mm SCALE : NTS

NOT SPECIFIED TOLERANCE IS \pm 0.1

8. BLOCK DIAGRAM

MODEL NO. VERSION PAGE 24B00(LED TYPES) 4 7

9. INTERFACE SIGNALS

PIN NO.	SIGNAL	FUNCTION
1	FGND	FRAME GROUND (0V)
2	GND	GROUND
3	VDD	POWER SUPPLY FOR LOGIC (+5V)
4	VEE	POWER SUPPLY FOR LCD DRIVER
5	WR	DATA WRITE
6	RD	DATA READ
7	CE	CHIP ENABLE
8	C/D	WR = " L ", C/D = " H ": COMMAND WRITE C/D = " L ": DATA WRITE RD = " L ", C/D = " H ": STATUS READ C/D = " L ": DATA READ
9	NC	
10	RESET	CONTROLLER RESET
11~18	D0~D7	DATA INPUT/OUTPUT
19	FS	FONT SELECT: CONNECT TO VDD: 6*8 PIXEL/FONT
		CONNECT TO GND: 8*8 PIXEL/FONT
20	NC	
A	VLED	POWER SUPPLY FOR LED BACKLIGHT (ANODE)
K	VLSS	POWER SUPPLY FOR LED BACKLIGHT (CATHODE)

MODEL NO.	VERSION	PAGE
24B00(LED TYPES)	4	8

10. POWER SUPPLY

10.1 POWER SUPPLY FOR LCD MODULE

10.2 POWER SUPPLY FOR LED BACK-LIGHT

RECOMMENDED RESISTOR RL : $1.2\sim2.5\Omega$, 1 WATT (CONTROLLED BY USER) * THE BRIGHTNESS WOULD BE ALTERED SUBJECT TO DIFFERENT VALUES OF RL

10.3 POWER AND INTERFACE TIMING SEQUENCE

