Supplementary File for "A Global and Local Search-Assisted Evolutionary Algorithm for Large-Scale Constrained Multi-Objective Optimisation"

CONTENTS

LIST OF TABLES

S-I	The IGD results obtained by GLCMEA and six compared algorithms on LIRCMOP test suite	2
S-II	The HV results obtained by GLCMEA and six compared algorithms on LIRCMOP test suite	3
S-III	The IGD results obtained by GLCMEA and six compared algorithms on MW test suite	4
S-IV	The HV results obtained by GLCMEA and six compared algorithms on MW test suite	5
S-V	The IGD results obtained by GLCMEA and six compared algorithms on (D)C_DTLZ test suite	6
S-VI	The HV results obtained by GLCMEA and six compared algorithms on (D)C_DTLZ test suite	7
S-VII	The IGD results of GLCMEA with $\delta = 0.05$ and different g values	8
S-VIII	The IGD results of GLCMEA with $g = 35$ and different δ values	9
S-IX	The IGD results of GLCMEA and GLCMEA-LMEA	10
S-X	The IGD results of GLCMEA and GLCMEA-UPF	11
S-XI	The IGD results of GLCMEA, GLCMEA-random1, and GLCMEA-random2	12
S-XII	The IGD results of GLCMEA and six compared algorithms on CLSMOP test suite	13
	LIST OF FIGURES	
S-I	The population distribution of seven algorithms on 1000-dimensional MW3	14
S-II	The population distribution of median IGD values obtained by seven algorithms on 1000-dimensional	
	DC1 DTLZ3	14

5 1	The population distribution of seven distribution on 1000 dimensional 1414 3	1
S-II	The population distribution of median IGD values obtained by seven algorithms on 1000-dimensional	
	DC1_DTLZ3	14

D1-1	D	CCMO	MTCMO	CIMEA	C I MOCCO	DDCEA	DOCEA	CLCMEA
Problem	D 100	CCMO 3.1383e-1 (2.40e-2) -	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA 4.9748e-2 (1.83e-2) =	GLCMEA
	200	3.2046e-1 (1.73e-2) -		NaN (0.00%) -			5.2148e-2 (2.81e-2) +	
LIRCMOP1	500	3.2950e-1 (9.60e-3) -	, ,	NaN (0.00%) -		, ,	1.7252e-1 (9.24e-2) -	` ,
	1000	3.3847e-1 (7.17e-3) -		NaN (0.00%) -		3.2414e-1 (7.30e-3) -	` '	1.8303e-1 (4.53e-2)
	100	2.3702e-1 (2.69e-2) -	2.1987e-1 (3.11e-3) -	3.0652e-1 (5.42e-3) -		2.5229e-1 (1.95e-2) -		3.0733e-2 (4.39e-3)
LIDCMODA	200	2.6288e-1 (1.68e-2) -	2.5035e-1 (2.33e-3) -	NaN (0.00%) -	1.5545e-2 (1.37e-3) +	2.5905e-1 (1.74e-2) -	5.0823e-2 (1.77e-2) -	3.9048e-2 (5.96e-3)
LIRCMOP2	500	2.8846e-1 (1.17e-2) -	2.7735e-1 (1.40e-3) -	NaN (0.00%) -	1.5886e-2 (1.30e-3) +	2.7338e-1 (1.10e-2) -	7.9303e-2 (5.29e-2) =	6.6126e-2 (1.78e-2)
	1000	2.8913e-1 (7.13e-3) -	2.9092e-1 (1.25e-3) -	NaN (0.00%) -	2.7834e-1 (1.10e-2) -	2.8292e-1 (4.60e-3) -	3.1309e-1 (9.64e-3) -	7.7415e-2 (2.08e-2)
	100	3.0266e-1 (2.83e-2) -	, ,	3.4134e-1 (4.35e-3) -	,	3.0355e-1 (4.01e-2) -	NaN (96.67%) -	2.4964e-2 (1.01e-2)
LIRCMOP3		3.2079e-1 (2.14e-2) -	, ,	NaN (0.00%) -	` '	3.3256e-1 (9.74e-3) -	NaN (96.67%) -	3.5257e-2 (1.23e-2)
Enteriors		3.4013e-1 (1.04e-2) -	, ,	NaN (0.00%) -		3.3312e-1 (1.34e-2) -	NaN (96.67%) -	5.1600e-2 (1.52e-2)
		3.4106e-1 (7.54e-3) -		NaN (0.00%) -	. ,	3.3311e-1 (4.35e-3) -		8.3270e-2 (4.54e-2)
	100	2.8471e-1 (3.19e-2) -	, ,	3.1629e-1 (4.97e-3) -	,	2.8112e-1 (3.03e-2) -	NaN (93.33%) -	2.4573e-2 (7.63e-3)
LIRCMOP4		3.0092e-1 (2.08e-2) -		NaN (0.00%) -	, ,	3.0492e-1 (1.43e-2) -	NaN (96.67%) -	4.0084e-2 (1.63e-2)
		3.1079e-1 (1.63e-2) -	, ,	NaN (0.00%) -	` '	3.1118e-1 (9.22e-3) -	NaN (86.67%) -	7.3788e-2 (3.10e-2)
		3.1518e-1 (5.83e-3) -		NaN (0.00%) -		3.1023e-1 (3.25e-3) -		8.2616e-2 (2.71e-2)
	100	, ,	8.1975e-1 (4.35e-1) -	` ′	, ,	, ,	1.1973e+0 (1.61e-1) -	
LIRCMOP5	200						1.2256e+0 (4.61e-3) - 1.2252e+0 (3.07e-3) -	
							1.2274e+0 (3.26e-3) =	
	1000	. ,	. ,	. ,	. ,	. ,	1.3497e+0 (3.20e-3) =	
							1.3496e+0 (1.31e-3) -	
LIRCMOP6			, ,	, ,	, ,	, ,	1.3491e+0 (1.75e-3) -	. ,
							1.3488e+0 (1.52e-3) -	
	100	. /	. ,	. ,		. ,	9.8008e-1 (7.70e-1) -	
							1.4386e+0 (5.67e-1) -	
LIRCMOP7			, ,	, ,	, ,	, ,	1.6382e+0 (2.75e-1) -	. ,
							1.6876e+0 (2.71e-3) -	
	100	2.5314e-1 (2.30e-2) -			· · · · · ·		1.4066e+0 (5.74e-1) -	
1 1D CL 10 DO							1.6876e+0 (2.46e-3) -	
LIRCMOP8							1.6873e+0 (2.67e-3) -	
	1000	2.5626e-1 (8.55e-3) =	2.8308e-1 (7.58e-3) -	2.2202e+0 (6.91e-1) -	1.6831e+0 (5.99e-4) -	2.6162e-1 (6.67e-3) =	1.6867e+0 (2.41e-3) -	2.3934e-1 (8.75e-2)
	100	1.1733e+0 (1.35e-1) -	1.0410e+0 (1.32e-1) -	4.3870e-1 (9.33e-2) -	5.2134e-1 (9.36e-2) -	6.9502e-1 (1.73e-1) -	9.9688e-1 (3.10e-1) -	1.0477e-1 (2.91e-2)
LIRCMOP9	200	1.2838e+0 (1.37e-2) -	1.1947e+0 (1.33e-1) -	4.6378e-1 (9.76e-2) -	4.8488e-1 (4.76e-2) -	1.0173e+0 (1.95e-1) -	1.2671e+0 (6.81e-2) -	1.3141e-1 (4.32e-2)
LIKCMOP9	500	1.2938e+0 (7.13e-4) -	1.2891e+0 (1.56e-3) -	5.6564e-1 (1.78e-1) -	7.6122e-1 (3.36e-1) -	1.2918e+0 (2.45e-3) -	1.2985e+0 (2.46e-3) -	2.6483e-1 (1.05e-1)
	1000	1.2940e+0 (6.52e-4) -	1.2901e+0 (1.81e-3) -	6.6682e-1 (2.51e-1) -	1.2014e+0 (2.37e-1) -	1.2940e+0 (5.84e-4) -	1.2394e+0 (6.62e-2) -	4.4066e-1 (1.90e-1)
-	100	2.8239e-1 (1.27e-2) -	4.1256e-1 (1.29e-1) -	3.4595e-1 (1.37e-1) -	6.3813e-1 (9.65e-2) -	4.0118e-1 (7.59e-2) -	8.1466e-1 (2.24e-1) -	2.9075e-2 (1.93e-2)
LIRCMOP10		4.5481e-1 (1.51e-1) -						5.9388e-2 (2.90e-2)
LIKCMOI 10							7.9970e-1 (1.44e-1) -	
		6.0599e-1 (1.98e-1) -						
	100	1.5742e-1 (7.78e-2) -	4.9603e-1 (3.24e-1) -		5.3729e-1 (1.22e-1) -			6.0970e-3 (2.36e-3)
LIRCMOP11	200						1.1080e+0 (9.30e-2) -	
Direction 11	500						1.1472e+0 (8.60e-2) -	
							1.1753e+0 (1.03e-1) -	
	100	8.5846e-1 (1.11e-1) -	, ,	, ,	2.6524e-1 (2.31e-2) -	, ,	` '	4.5125e-2 (1.78e-1)
LIRCMOP12	200				2.7412e-1 (3.61e-2) -			6.0073e-2 (1.42e-1)
							9.7364e-1 (1.95e-2) -	
							9.8014e-1 (2.00e-2) -	
							4.9351e-1 (5.68e-1) -	
LIRCMOP13							4.9141e-1 (5.72e-1) -	
							1.9442e-1 (3.15e-1) - 1.5361e-1 (2.78e-1) -	
	1000	. ,	· /	. ,	. ,	. ,	5.2538e-1 (5.66e-1) -	
	200						4.3785e-1 (5.36e-1) -	
LIRCMOP14		, ,	, ,	, ,	, ,	, , ,	1.0795e-1 (1.50e-2) -	, ,
							1.0793e-1 (1.30e-2) - 1.0006e-1 (1.33e-3) -	
+/-/=	1000	5/46/5	1/54/1	4/52/0	6/49/1	12/42/2	1/52/3	7.10030-2 (7.030-4)
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Duohlom	D	CCMO	MTCMO	C LMEA	C LMOCSO	DPSEA	DOCE A	GLCMEA
Problem	100		MTCMO 1.2794e-1 (3.85e-3) -	_			POCEA 2.0879e-1 (1.16e-2) +	
	200	, ,	1.1681e-1 (2.99e-3) -	NaN (0.00%) -			2.06/9e-1 (1.10e-2) + 2.0643e-1 (1.51e-2) +	
LIRCMOP1	500	1.0378e-1 (3.00e-3) -	, ,	NaN (0.00%) -		` ,	1.5264e-1 (3.15e-2) -	, ,
		1.0149e-1 (2.12e-3) -	, ,	NaN (0.00%) -			9.6458e-2 (2.80e-3) -	
	100	` /	2.4714e-1 (4.84e-3) -	2.0950e-1 (5.14e-3) -			3.3116e-1 (1.18e-2) -	· /
LIDGMODA	200	2.2511e-1 (9.26e-3) -		NaN (0.00%) -		` ,	3.3411e-1 (8.51e-3) -	, ,
LIRCMOP2	500	2.1679e-1 (5.20e-3) -	2.2159e-1 (2.52e-3) -	NaN (0.00%) -	3.5196e-1 (7.95e-4) +	2.2328e-1 (5.56e-3) -	3.2174e-1 (2.45e-2) =	3.2153e-1 (1.08e-2)
	1000	2.1651e-1 (3.55e-3) -	2.1588e-1 (1.58e-3) -	NaN (0.00%) -	2.2201e-1 (4.93e-3) -	2.1943e-1 (3.14e-3) -	2.1235e-1 (3.66e-3) -	3.1380e-1 (1.58e-2)
	100	, ,	1.1837e-1 (7.12e-3) -	9.1012e-2 (3.18e-3) -	1.4465e-1 (4.50e-2) -	` ,	NaN (96.67%) -	1.9898e-1 (3.53e-3)
LIRCMOP3	200	, ,	9.7035e-2 (2.15e-3) -	NaN (0.00%) -	, ,	9.5320e-2 (2.93e-3) -	NaN (96.67%) -	1.9358e-1 (4.97e-3)
Lincinors	500	9.3192e-2 (2.41e-3) -	, ,	NaN (0.00%) -	` ′	9.4745e-2 (3.66e-3) -	NaN (96.67%) -	1.8547e-1 (6.50e-3)
		9.3056e-2 (3.28e-3) -	. ,	NaN (0.00%) -	. ,	9.6041e-2 (1.60e-3) -	. ,	1.7196e-1 (1.28e-2)
	100 200	1.9367e-1 (1.41e-2) - 1.8778e-1 (9.64e-3) -	, ,	1.8105e-1 (3.95e-3) - NaN (0.00%) -	2.2524e-1 (3.59e-2) -	1.9521e-1 (1.32e-2) - 1.8578e-1 (7.21e-3) -	NaN (93.33%) - NaN (96.67%) -	3.0767e-1 (3.24e-3) 2.9983e-1 (7.42e-3)
LIRCMOP4	500	1.8397e-1 (7.72e-3) -	, ,	NaN (0.00%) - NaN (0.00%) -	, ,	1.8290e-1 (4.04e-3) -	NaN (86.67%) -	2.8471e-1 (1.68e-2)
		1.8144e-1 (1.74e-3) -		NaN (0.00%) -			1.7668e-1 (2.79e-3) -	,
	100	` /	6.1797e-2 (6.75e-2) -	1.1443e-1 (8.23e-2) -	. ,	· /	. ,	2.2938e-1 (1.99e-2)
1 ID 61 10D5			5.2137e-2 (6.53e-2) -		0.0000e+0 (0.00e+0) -			
LIRCMOP5	500			1.1512e-2 (4.38e-2) -				
	1000	1.2941e-1 (4.71e-3) +	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	1.2959e-1 (3.64e-3) +	0.0000e+0 (0.00e+0) -	4.7506e-2 (8.07e-2)
	100	9.1261e-2 (1.65e-3) -			0.0000e+0 (0.00e+0) -			
LIRCMOP6		, ,	3.8562e-2 (4.49e-2) -	, ,	0.0000e+0 (0.00e+0) -			
LINCHIOLO				1.0841e-2 (2.82e-2) -				
				1.6741e-2 (3.49e-2) =	. ,	. ,	. ,	
	100	2.4070e-1 (5.08e-3) -			0.0000e+0 (0.00e+0) -			
LIRCMOP7	200 500	, , ,		8.4208e-2 (7.34e-2) -			, ,	
				3.5301e-2 (6.11e-2) - 0.0000e+0 (0.00e+0) -				
	100	2.1979e-1 (8.88e-4) -			0.0000e+0 (0.00e+0) -			
		,	2.1912e-1 (9.82e-4) -		0.0000e+0 (0.00e+0) -			
LIRCMOP8			2.1567e-1 (7.06e-4) -		0.0000e+0 (0.00e+0) -			
	1000	2.1879e-1 (1.39e-4) -	2.1380e-1 (3.98e-4) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	2.1897e-1 (1.65e-4) -	0.0000e+0 (0.00e+0) -	2.3215e-1 (1.61e-2)
	100	1.9768e-1 (2.45e-2) -	1.9590e-1 (3.75e-2) -	4.1199e-1 (4.55e-2) -	3.4332e-1 (6.58e-2) -	2.8938e-1 (5.42e-2) -	2.0212e-1 (7.96e-2) -	5.2700e-1 (1.16e-2)
LIRCMOP9	200		1.7591e-1 (8.36e-3) -	3.9211e-1 (5.42e-2) -			1.5313e-1 (2.26e-3) -	5.1558e-1 (1.53e-2)
LIKEMOI		, ,	1.6203e-1 (1.55e-3) -	3.3918e-1 (8.94e-2) -	, ,	1.5683e-1 (9.31e-4) -	, ,	4.6309e-1 (4.23e-2)
			1.5986e-1 (6.18e-4) -	2.8599e-1 (1.16e-1) -			1.1339e-1 (1.82e-2) -	
	100	` ′	4.7049e-1 (1.01e-1) -	5.1292e-1 (4.42e-2) -		4.9003e-1 (4.68e-2) -		6.8969e-1 (7.72e-3)
LIRCMOP10	200	4.4473e-1 (1.25e-1) -	, ,	4.3007e-1 (6.88e-2) -	1.3491e-1 (4.92e-2) -			6.7170e-1 (1.31e-2)
	500	3.8439e-1 (1.62e-1) -	3.4525e-1 (1.18e-1) - 2.4177e-1 (1.24e-1) -	3.2644e-1 (1.28e-1) - 2.9057e-1 (8.25e-2) -		4.6718e-1 (7.00e-2) -	2.0848e-1 (7.21e-2) - 2.2916e-1 (4.93e-2) -	5.9973e-1 (6.09e-2)
	1000	5.9549e-1 (4.03e-2) -	. ,	4.1722e-1 (6.51e-2) -	. ,	. ,	1.7273e-1 (7.54e-2) -	
	200	, ,	4.5306e-1 (1.39e-1) -	4.5053e-1 (4.68e-2) -		5.3177e-1 (6.75e-2) -		6.8773e-1 (4.55e-3)
LIRCMOP11	500	2.8817e-1 (1.89e-1) -	,	3.7770e-1 (8.54e-2) -	, ,	4.6478e-1 (1.20e-1) -	, ,	6.3315e-1 (9.05e-2)
		2.5348e-1 (1.74e-1) -		3.3627e-1 (1.09e-1) -			2.0236e-1 (1.00e-1) -	
	100	3.8220e-1 (1.66e-2) -	3.8672e-1 (1.39e-2) -	3.8749e-1 (7.85e-2) -	4.9672e-1 (1.54e-2) -	4.3294e-1 (2.11e-2) -	3.8633e-1 (2.88e-2) -	6.0622e-1 (5.14e-2)
LIRCMOP12	200	3.6686e-1 (3.95e-3) -	3.7483e-1 (3.05e-3) -	3.7568e-1 (8.21e-2) -	4.8879e-1 (2.47e-2) -	3.7701e-1 (1.08e-2) -	3.6677e-1 (9.85e-3) -	5.9937e-1 (3.82e-2)
LIKCMOF 12	500	3.6421e-1 (4.18e-3) -		3.7522e-1 (9.72e-2) -	4.5871e-1 (5.90e-2) -		3.6022e-1 (4.89e-3) -	
		3.6353e-1 (1.78e-3) -		3.3244e-1 (9.75e-2) -			3.5637e-1 (6.14e-3) -	
	100	, ,	1.3419e-4 (1.28e-4) -	5.6032e-1 (1.88e-3) +			3.5841e-1 (2.40e-1) -	
LIRCMOP13			1.7608e-4 (1.35e-4) -	5.6062e-1 (1.10e-3) +			3.6275e-1 (2.42e-1) -	
		, ,	1.3507e-4 (1.09e-4) -	5.6085e-1 (9.83e-4) +	. ,	, ,	4.9657e-1 (1.37e-1) -	, ,
		. ,	1.7362e-4 (1.17e-4) - 6.4007e-4 (2.63e-4) -		4.5413e-4 (1.87e-9) - 1.0066e-3 (7.17e-7) -			
		(/	6.4007e-4 (2.63e-4) - 6.6733e-4 (3.23e-4) -		1.0066e-3 (7.17e-7) - 1.0069e-3 (9.87e-8) -			
LIRCMOP14		, ,	4.7685e-4 (3.64e-4) -		1.0070e-3 (1.47e-8) -			
				5.2998e-1 (8.94e-3) -				
+/-/=		3/50/3	0/56/0	4/51/1	6/49/1	11/44/1	2/53/1	

TABLE S-III THE IGD RESULTS OBTAINED BY GLCMEA AND SIX COMPARED ALGORITHMS ON MW TEST SUITE

Problem	D	CCMO	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	GLCMEA
	100	NaN (0.00%) -	1.6091e-3 (1.09e-5)					
MW1	200	NaN (0.00%) -	NaN (83.33%)					
IVI VV I	500	NaN (0.00%) -	NaN (3.33%)					
	1000	NaN (0.00%) =	NaN (0.00%)					
	100	NaN (80.00%) -	NaN (66.67%) -	NaN (0.00%) -	NaN (0.00%) -	8.8841e-2 (5.46e-2) -	NaN (0.00%) -	5.6942e-3 (5.97e-4)
MWZ	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (50.00%) -	NaN (0.00%) -	5.7855e-3 (9.75e-4)
MW2	500	NaN (0.00%) -	6.2154e-3 (1.16e-3)					
	1000	NaN (0.00%) -	6.8191e-3 (1.14e-3)					
	100	7.0578e-3 (9.58e-4) -	7.9312e-3 (1.22e-3) -	NaN (0.00%) -	1.4690e-2 (2.02e-3) -	7.2705e-3 (7.27e-4) -	1.8451e-2 (3.58e-3) -	5.4699e-3 (2.24e-4)
MWZ	200	9.8846e-3 (1.63e-3) -	1.0881e-2 (1.50e-3) -	NaN (0.00%) -	1.6454e-2 (1.76e-3) -	8.7406e-3 (1.05e-3) -	2.1332e-2 (4.01e-3) -	6.3542e-3 (3.28e-4)
MW3	500	1.8566e-2 (2.06e-3) -	2.2926e-2 (7.77e-3) -	NaN (0.00%) -	2.0030e-2 (2.09e-3) -	1.5012e-2 (1.66e-3) -	3.8745e-2 (3.62e-3) -	1.0816e-2 (1.01e-3)
	1000	4.6083e-2 (3.40e-3) -	4.8049e-2 (4.45e-3) -	NaN (0.00%) -	2.6688e-2 (3.39e-3) -	3.0400e-2 (9.76e-3) -	5.2365e-2 (5.69e-3) -	1.6374e-2 (8.37e-4)
	100	NaN (0.00%) -	4.8342e-2 (1.61e-3)					
MW4	200	NaN (0.00%) -	4.7882e-2 (2.02e-3)					
MW4	500	NaN (0.00%) -	NaN (13.33%)					
	1000	NaN (0.00%) =	NaN (0.00%)					
	100	NaN (0.00%) -	NaN (93.33%)					
MW5	200	NaN (0.00%) -	NaN (73.33%)					
IVI W 3	500	NaN (0.00%) -	NaN (26.67%)					
	1000	NaN (0.00%) -	NaN (6.67%)					
	100	NaN (93.33%) -	NaN (83.33%) -	NaN (0.00%) -	NaN (0.00%) -	3.8659e-1 (1.99e-1) -	NaN (0.00%) -	2.7454e-3 (2.80e-5)
MW6	200	NaN (10.00%) -	NaN (10.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (70.00%) -	NaN (0.00%) -	2.7541e-3 (2.68e-5)
IVI W O	500	NaN (0.00%) -	2.7484e-3 (2.36e-5)					
	1000	NaN (0.00%) -	2.7600e-3 (3.02e-5)					
	100	5.4022e-3 (5.55e-4) -	7.0863e-3 (6.75e-4) -	NaN (0.00%) -	7.8428e-3 (8.97e-4) -	5.0785e-3 (4.42e-4) -	1.5554e-2 (2.48e-3) -	4.5148e-3 (2.16e-4)
MW7	200	6.8534e-3 (6.70e-4) -	9.8548e-3 (1.43e-3) -	NaN (0.00%) -	1.0513e-2 (1.06e-3) -	6.2077e-3 (6.23e-4) -	1.5912e-2 (2.57e-3) -	5.5500e-3 (3.50e-4)
IVI VV /	500	1.0466e-2 (1.07e-3) =	1.6645e-2 (1.25e-3) -	NaN (0.00%) -	1.0978e-2 (6.29e-4) -	9.9133e-3 (9.22e-4) =	1.6512e-2 (2.25e-3) -	1.0011e-2 (7.52e-4)
	1000	1.4672e-2 (9.02e-4) +	2.2940e-2 (8.09e-4) -	NaN (0.00%) -	1.2272e-2 (8.15e-4) +	1.5266e-2 (1.19e-3) =	1.7964e-2 (6.65e-3) =	1.9258e-2 (6.81e-3)
	100	NaN (36.67%) -	NaN (40.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (96.67%) -	NaN (0.00%) -	4.2930e-2 (5.77e-4)
MW8	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (30.00%) -	NaN (0.00%) -	4.2961e-2 (6.06e-4)
IVI VV O	500	NaN (0.00%) -	4.2944e-2 (6.34e-4)					
	1000	NaN (0.00%) -	4.2906e-2 (4.70e-4)					
	100	NaN (0.00%) -	NaN (93.33%)					
MW9	200	NaN (0.00%) -	NaN (50.00%)					
IVI VV 9	500	NaN (0.00%) -	NaN (16.67%)					
	1000	NaN (0.00%) =	NaN (0.00%)					
	100	NaN (10.00%) -	NaN (3.33%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (86.67%) -	NaN (0.00%) -	3.4078e-3 (4.88e-5)
MW10	200	NaN (0.00%) -	3.4148e-3 (3.45e-5)					
IVI W 10	500	NaN (0.00%) -	NaN (83.33%)					
	1000	NaN (0.00%) -	NaN (63.33%)					
	100	5.9070e-3 (1.06e-4) =	5.8588e-3 (9.42e-5) =	NaN (0.00%) -	3.3560e-2 (6.32e-3) -	5.8175e-3 (9.02e-5) +	4.6217e-2 (1.04e-2) -	
MW11	200	5.9304e-3 (8.64e-5) =	5.8693e-3 (9.97e-5) =	NaN (0.00%) -	3.9370e-2 (8.83e-3) -	5.8561e-3 (9.46e-5) =	4.9159e-2 (1.10e-2) -	5.8960e-3 (6.08e-5)
101 00 1 1		5.9261e-3 (8.44e-5) =		NaN (0.00%) -	5.7857e-2 (8.92e-3) -	5.8925e-3 (9.97e-5) =	5.1242e-2 (1.26e-2) -	5.8888e-3 (1.07e-4)
	1000	5.9424e-3 (1.22e-4) =	5.8853e-3 (1.14e-4) =	NaN (0.00%) -	7.0396e-2 (6.95e-3) -	5.8937e-3 (8.21e-5) =	8.8258e-2 (2.29e-2) -	5.8880e-3 (1.17e-4)
	100	NaN (0.00%) -	NaN (93.33%)					
MW12	200	NaN (0.00%) -	NaN (63.33%)					
IVI VV 12	500	NaN (0.00%) -	NaN (33.33%)					
	1000	NaN (0.00%) -	NaN (3.33%)					
	100	7.4912e-1 (3.32e-1) -	7.8854e-1 (3.72e-1) -	NaN (0.00%) -	3.2219e+0 (7.01e-1) -	2.1370e-1 (9.45e-2) -	2.9857e+0 (1.02e+0) -	1.0715e-2 (1.66e-4)
MW13	200	1.6380e+0 (3.75e-1) -	1.7183e+0 (4.50e-1) -	NaN (0.00%) -	6.3719e+0 (1.35e+0) -	7.0694e-1 (2.98e-1) -	NaN (96.67%) -	1.0810e-2 (5.31e-4)
IVI VV 13	500	4.8775e+0 (8.93e-1) -	5.2530e+0 (1.41e+0) -	NaN (0.00%) -	NaN (0.00%) -	2.4917e+0 (5.95e-1) -	NaN (0.00%) -	1.1046e-2 (9.41e-4)
	1000	NaN (30.00%) -	NaN (3.33%) -	NaN (0.00%) -	NaN (0.00%) -	7.0470e+0 (1.19e+0) -	NaN (0.00%) -	1.1175e-2 (6.08e-4)
	100	3.3012e-1 (1.17e-1) -	3.1556e-1 (1.22e-1) -	1.5484e+0 (2.65e-1) -	1.7470e+0 (3.61e-1) -	2.7052e-1 (1.04e-1) -	3.7976e-1 (2.01e-1) -	9.7530e-2 (2.06e-3)
) (TV/1 4	200		` ,	2.1627e+0 (5.47e-1) -	2.3821e+0 (4.30e-1) -	5.3764e-1 (5.42e-2) -	9.7991e-1 (3.14e-1) -	9.8581e-2 (1.57e-3)
MW14		1.0047e+0 (1.11e-1) -		NaN (93.33%) -	2.4374e+0 (4.20e-1) -			
	1000	1.5418e+0 (1.29e-1) -	1.4643e+0 (8.47e-2) -	NaN (0.00%) -	2.4618e+0 (3.75e-1) -	1.3727e+0 (1.07e-1) -	1.5457e+0 (9.60e-1) -	3.3623e-1 (1.10e-1)
+/-/=	=	1/47/8	0/49/7	0/53/3	1/52/3	1/47/8	0/52/4	
		***	***		**		<u> </u>	

TABLE S-IV THE HV RESULTS OBTAINED BY GLCMEA AND SIX COMPARED ALGORITHMS ON MW TEST SUITE

D 11		CCMO	MEGMO	CINE	G I MOGGO	DDGE 4	POCE 4	CI CI III
Problem	D	CCMO	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	GLCMEA
	100 200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) -	4.9012e-1 (2.76e-5)
MW1		NaN (0.00%) -	NaN (0.00%) -	(,	NaN (0.00%) -	(,	NaN (0.00%) -	NaN (83.33%)
	500 1000	NaN (0.00%) -	NaN (0.00%) -	NaN (3.33%)				
		NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%)				
	100	NaN (80.00%) -	NaN (66.67%) -	NaN (0.00%) -	NaN (0.00%) -	4.6209e-1 (6.60e-2) -	NaN (0.00%) -	5.8002e-1 (7.15e-4)
MW2	200 500	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (50.00%) - NaN (0.00%) -	NaN (0.00%) -	5.7986e-1 (1.27e-3)
	1000	(,	(,	NaN (0.00%) -	(,	(,	NaN (0.00%) -	5.7934e-1 (1.44e-3)
		NaN (0.00%) -	NaN (0.00%) -	5.7859e-1 (1.43e-3)				
	100	5.4010e-1 (1.44e-3) -	5.3866e-1 (1.94e-3) -	NaN (0.00%) -	5.3014e-1 (2.71e-3) -	5.4044e-1 (1.38e-3) -		5.4334e-1 (3.70e-4)
MW3	200 500	5.3571e-1 (2.41e-3) -	5.3416e-1 (2.19e-3) -	NaN (0.00%) -	5.2722e-1 (2.59e-3) -	5.3765e-1 (1.58e-3) -	` '	
		5.2325e-1 (2.89e-3) -	5.1545e-1 (1.39e-2) -	NaN (0.00%) -	5.2152e-1 (3.35e-3) -	5.2832e-1 (2.36e-3) -	` '	
	1000	4.7621e-1 (4.77e-3) -	4.7344e-1 (6.27e-3) -	NaN (0.00%) -	5.0935e-1 (5.91e-3) -	5.0217e-1 (1.76e-2) -	. ,	
		NaN (0.00%) -	NaN (0.00%) -	8.3514e-1 (1.56e-3)				
MW4	200 500	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	8.3555e-1 (1.83e-3)				
	1000	` ′	` ′	, ,	· /	` '	` ′	NaN (13.33%)
	1000	NaN (0.00%) = NaN (0.00%) -	NaN (0.00%) = NaN (0.00%) -	NaN (0.00%) NaN (93.33%)				
	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (73.33%)
MW5	500	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (0.00%) - NaN (0.00%) -	NaN (26.67%)
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (6.67%)				
-	1000	NaN (93.33%) -	NaN (83.33%) -	NaN (0.00%) -	NaN (0.00%) -	1.4668e-1 (6.36e-2) -	NaN (0.00%) -	3.2851e-1 (1.85e-5)
	200	NaN (10.00%) -	NaN (10.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (70.00%) -	NaN (0.00%) -	3.2848e-1 (1.32e-4)
MW6	500	NaN (0.00%) -	NaN (0.00%) -	3.2845e-1 (1.41e-4)				
	1000	NaN (0.00%) -	NaN (0.00%) -	3.2840e-1 (1.42e-4)				
	100	4.0960e-1 (1.07e-3) -	4.0654e-1 (1.16e-3) -	NaN (0.00%) -	4.0463e-1 (1.69e-3) -	4.1024e-1 (8.50e-4) -	3.9744e-1 (2.76e-3) -	4.1158e-1 (3.93e-4)
	200	4.0700e-1 (1.16e-3) -	4.0189e-1 (2.33e-3) -	NaN (0.00%) -	4.0023e-1 (1.88e-3) -	4.0811e-1 (1.06e-3) -	3.9684e-1 (3.76e-3) -	
MW7	500	4.0088e-1 (1.78e-3) =	` ′	NaN (0.00%) -	3.9967e-1 (1.15e-3) -	4.0180e-1 (1.50e-3) =		, ,
	1000	3.9406e-1 (1.42e-3) +	3.8161e-1 (1.18e-3) -	NaN (0.00%) -		3.9318e-1 (1.83e-3) =		
	100	NaN (36.67%) -	NaN (40.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (96.67%) -	NaN (0.00%) -	5.5212e-1 (9.56e-4)
	200	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (30.00%) -	NaN (0.00%) -	5.5227e-1 (8.80e-4)
MW8	500	NaN (0.00%) -	NaN (0.00%) -	5.5218e-1 (8.62e-4)				
	1000	NaN (0.00%) -	NaN (0.00%) -	5.5234e-1 (8.67e-4)				
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (93.33%)				
	200	NaN (0.00%) -	NaN (0.00%) -	NaN (50.00%)				
MW9	500	NaN (0.00%) -	NaN (0.00%) -	NaN (16.67%)				
	1000	NaN (0.00%) =	NaN (0.00%) =	NaN (0.00%)				
	100	NaN (10.00%) -	NaN (3.33%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (86.67%) -	NaN (0.00%) -	4.5492e-1 (2.89e-4)
	200	NaN (0.00%) -	NaN (0.00%) -	4.5499e-1 (2.16e-4)				
MW10	500	NaN (0.00%) -	NaN (0.00%) -	NaN (83.33%)				
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (63.33%)				
	100	4.4833e-1 (5.01e-5) +	· /	NaN (0.00%) -	4.3857e-1 (2.57e-3) -	4.4830e-1 (6.35e-5) +	· /	
	200	4.4841e-1 (3.86e-5) +		NaN (0.00%) -	4.3588e-1 (3.41e-3) -	4.4839e-1 (6.11e-5) =		
MW11	500	4.4843e-1 (2.91e-5) =		NaN (0.00%) -	4.2966e-1 (3.03e-3) -	4.4846e-1 (3.08e-5) +		
	1000	4.4844e-1 (3.63e-5) =		NaN (0.00%) -		4.4847e-1 (2.75e-5) =		
	100	NaN (0.00%) -	NaN (0.00%) -	NaN (93.33%)				
	200	NaN (0.00%) -	NaN (0.00%) -	NaN (63.33%)				
MW12	500	NaN (0.00%) -	NaN (0.00%) -	NaN (33.33%)				
	1000	NaN (0.00%) -	NaN (0.00%) -	NaN (3.33%)				
	100	1.6228e-1 (7.01e-2) -	1.5393e-1 (9.00e-2) -	NaN (0.00%) -		3.5447e-1 (5.36e-2) -	· /	4.7665e-1 (1.89e-4)
) (XXXX	200	9.3544e-3 (2.44e-2) -	1.6457e-2 (4.16e-2) -	NaN (0.00%) -	0.0000e+0 (0.00e+0) -		NaN (96.67%) -	4.7656e-1 (3.13e-4)
MW13	500		0.0000e+0 (0.00e+0) -	NaN (0.00%) -	NaN (0.00%) -	0.0000e+0 (0.00e+0) -	NaN (0.00%) -	4.7643e-1 (6.12e-4)
	1000	NaN (30.00%) -	NaN (3.33%) -	NaN (0.00%) -	NaN (0.00%) -	0.0000e+0 (0.00e+0) -	NaN (0.00%) -	4.7642e-1 (3.45e-4)
	100	3.8477e-1 (5.61e-2) -			5.5107e-2 (7.04e-2) -	4.1199e-1 (4.08e-2) -		
	200	2.5228e-1 (2.37e-2) -	2.8674e-1 (3.06e-2) -		,	2.7876e-1 (3.41e-2) -		
MW14	500	1.5783e-1 (1.92e-2) -	1.7736e-1 (1.57e-2) -	NaN (93.33%) -	1.7245e-2 (1.52e-2) -	1.8491e-1 (1.13e-2) -		
		6.7415e-2 (3.26e-2) -	4.7315e-2 (2.04e-2) -	NaN (0.00%) -	1.6203e-2 (1.43e-2) -	` ,	1.0272e-1 (6.86e-2) -	
+/-/=		3/47/6	3/49/4	0/53/3	1/52/3	2/47/7	1/52/3	(2.22.2)
.,,-,-		27.770	5, 1, 2, 1	0,00,0	1,02,0		1,545	

TABLE S-V THE IGD results obtained by GLCMEA and six compared algorithms on (D)C_DTLZ test suite

Problem	D	ССМО	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	GLCMEA
	100	4.8380e-2 (1.46e-2) -	3.2521e-2 (7.76e-3) -	NaN (0.00%) -	NaN (0.00%) -	8.1080e-2 (2.53e-2) -	NaN (0.00%) -	2.1656e-2 (7.64e-4)
C1 DEL 71	200	5.2708e-2 (1.31e-2) -	3.9471e-2 (8.62e-3) -	NaN (0.00%) -	NaN (0.00%) -	1.1994e-1 (2.12e-2) -	NaN (0.00%) -	2.1434e-2 (1.44e-3)
C1_DTLZ1	500	8.8865e-2 (2.54e-2) -	6.7772e-2 (1.11e-2) -	NaN (0.00%) -	NaN (0.00%) -	2.4212e-1 (3.73e-2) -	NaN (0.00%) -	3.5113e-2 (6.74e-3)
	1000	6.9024e-2 (1.75e-2) =	7.3195e-2 (9.41e-3) -	NaN (0.00%) -	NaN (0.00%) -	2.1988e-1 (1.92e-2) -	NaN (0.00%) -	6.3585e-2 (1.69e-2)
-	100	5.4839e-2 (2.02e-3) -	8.0063e+0 (1.74e-3) -	5.4655e-2 (1.02e-3) -	5.6286e+1 (1.44e+1) -	9.4026e-2 (5.71e-2) -	8.0712e+0 (6.40e-2) -	5.3401e-2 (8.39e-4)
G1 DET 72	200	5.5669e-2 (1.03e-3) -	8.0051e+0 (1.18e-3) -	5.5442e-2 (1.94e-3) -	9.5789e+1 (2.24e+1) -	8.7840e-1 (2.42e+0) -	8.0772e+0 (5.80e-2) -	5.3179e-2 (4.90e-4)
C1_DTLZ3	500	1.6942e-1 (1.03e-1) -	8.0040e+0 (6.05e-4) -	5.5173e-2 (1.53e-3) -	2.0815e+2 (6.25e+1) -	8.0038e+0 (6.11e-4) -	8.1531e+0 (1.01e-1) -	5.3299e-2 (5.48e-4)
	1000	1.5511e-1 (1.04e-1) -	8.0036e+0 (6.52e-4) -	5.5117e-2 (1.19e-3) -	3.9325e+2 (8.42e+1) -	8.0032e+0 (5.06e-4) -	8.1251e+0 (7.17e-2) -	5.3515e-2 (5.97e-4)
	100	4.2972e-2 (6.02e-4) -	4.2625e-2 (5.94e-4) =	NaN (13.33%) -	5.0247e-2 (4.92e-4) -	4.2499e-2 (3.98e-4) =	5.1179e-2 (1.77e-3) -	4.2478e-2 (3.72e-4)
C2 DEL 72	200	4.2938e-2 (4.80e-4) =	4.2487e-2 (5.43e-4) =	NaN (0.00%) -	4.9934e-2 (4.45e-4) -	4.2500e-2 (4.34e-4) =	5.0682e-2 (9.58e-4) -	4.2751e-2 (6.37e-4)
C2_DTLZ2	500	4.2787e-2 (5.54e-4) =	4.2721e-2 (4.86e-4) =	NaN (0.00%) -	4.9938e-2 (4.17e-4) -	4.2424e-2 (5.36e-4) =	5.1508e-2 (1.16e-3) -	4.2707e-2 (7.36e-4)
	1000	4.3175e-2 (6.31e-4) -	4.2513e-2 (5.60e-4) =	NaN (0.00%) -	4.9715e-2 (1.37e-5) -	4.2316e-2 (5.05e-4) =	5.1174e-2 (1.18e-3) -	4.2555e-2 (4.91e-4)
	100	2.1883e-1 (2.83e-1) =	1.4424e-1 (1.89e-1) =	5.9380e-1 (1.96e-1) -	1.2434e-1 (9.97e-2) -	9.3634e-2 (1.07e-3) +	1.0771e-1 (3.49e-3) +	1.1941e-1 (1.36e-1)
C2 DEL 74	200	2.1841e-1 (2.83e-1) =	1.4381e-1 (1.90e-1) =	4.6771e-1 (1.65e-1) -	9.1358e-2 (1.72e-4) +	9.4151e-2 (1.30e-3) =	1.3030e-1 (1.36e-1) -	9.4402e-2 (1.69e-3)
C3_DTLZ4	500	1.4355e-1 (1.90e-1) -	1.4419e-1 (1.89e-1) =	2.9512e-1 (1.20e-1) -	1.4180e-1 (1.92e-1) -	9.4243e-2 (1.27e-3) =	1.0317e-1 (4.13e-3) -	9.4733e-2 (1.11e-3)
	1000	1.1870e-1 (1.36e-1) +	1.1961e-1 (1.36e-1) =	2.6308e-1 (2.07e-1) -	9.1303e-2 (2.81e-6) +	9.4470e-2 (1.27e-3) =	1.2501e-1 (1.36e-1) +	1.4473e-1 (1.89e-1)
	100	6.5956e-2 (7.58e-2) -	2.8166e-2 (4.89e-3) -	1.2184e-2 (3.37e-4) -	3.1874e+2 (1.02e+2) -	8.9337e-2 (1.36e-1) -	1.5082e+1 (6.08e+0) -	1.1516e-2 (1.60e-4)
DC1 DTI 71	200	1.2111e-1 (9.52e-2) -	4.7926e-2 (8.07e-3) -	1.2475e-2 (4.85e-4) -	6.6111e+2 (1.81e+2) -	2.5446e-1 (2.16e-1) -	2.6997e+1 (1.12e+1) -	1.1974e-2 (3.84e-4)
DC1_DTLZ1	500	8.0617e+0 (3.71e+0) -	1.5092e-1 (5.74e-2) -	1.3573e-2 (7.45e-4) +	1.1473e+3 (5.33e+2) -	2.1202e+1 (4.38e+0) -	5.7459e+1 (2.83e+1) -	1.4393e-2 (1.19e-3)
	1000	2.7221e+1 (7.96e+0) -	2.2840e-1 (1.26e-1) -	1.5282e-2 (8.57e-4) +	9.5067e+2 (9.48e+2) -	8.6331e+1 (7.85e+0) -	1.8237e+2 (2.14e+2) -	1.7596e-2 (2.36e-3)
	100	3.5138e-2 (6.71e-4) -	3.4453e-2 (4.35e-4) -	3.3810e-2 (5.22e-4) =	5.9933e+1 (1.66e+1) -	3.5069e-2 (7.01e-4) -	2.0374e+0 (8.18e-1) -	3.3915e-2 (4.04e-4)
DC1 DTLZ3	200	3.6939e-2 (8.63e-4) -	3.5170e-2 (4.55e-4) -	3.3919e-2 (5.90e-4) =	1.2332e+2 (2.49e+1) -	3.6989e-2 (1.26e-3) -	2.2421e+0 (9.68e-1) -	3.3790e-2 (2.46e-4)
DC1_D1LZ3	500	7.0257e-2 (2.89e-2) -	4.0591e-2 (1.33e-3) -	3.4039e-2 (7.17e-4) =	2.4231e+2 (5.82e+1) -	1.4155e-1 (1.07e-1) -	3.3708e+0 (1.34e+0) -	3.3864e-2 (3.60e-4)
	1000	9.7723e-2 (4.22e-2) -	3.9980e-2 (1.03e-3) -	3.4180e-2 (7.57e-4) =	4.1627e+2 (8.21e+1) -	4.2521e-1 (2.33e-1) -	1.9359e+0 (8.47e-1) -	3.3846e-2 (3.68e-4)
	100	NaN (20.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	2.0216e-2 (1.84e-4)
DC2_DTLZ1	200	NaN (0.00%) -	2.0603e-2 (3.21e-4)					
DC2_DTLLI	500	NaN (0.00%) -	1.2141e-1 (6.62e-2)					
	1000	NaN (0.00%) -	1.6398e-1 (1.94e-4)					
	100	4.1283e-1 (2.32e-1) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.2633e-2 (3.42e-4)
DC2 DTLZ3	200	NaN (33.33%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.2674e-2 (4.44e-4)
Dez_DTEE3	500	NaN (0.00%) -	5.2804e-2 (4.45e-4)					
	1000	NaN (0.00%) -	5.2837e-2 (4.12e-4)					
	100	4.5814e+0 (2.36e+0) -	1.7307e+1 (3.60e+0) -	5.6079e+2 (5.95e+1) -	5.4316e+2 (9.94e+1) -	6.1011e+0 (2.07e+0) -	2.2074e+2 (6.19e+1) -	6.9864e-3 (1.65e-4)
DC3_DTLZ1	200	1.4855e+1 (3.34e+0) -	4.3550e+1 (5.81e+0) -	1.4169e+3 (1.33e+2) -	8.8930e+2 (1.45e+2) -	2.7380e+1 (4.85e+0) -	4.7231e+2 (1.09e+2) -	7.8867e-3 (5.85e-4)
DC3_DTELT	500	9.9467e+1 (1.51e+1) -	1.6255e+2 (1.64e+1) -	4.3200e+3 (1.60e+2) -	1.9999e+3 (4.37e+2) -	1.9848e+2 (2.49e+1) -	1.6911e+3 (6.17e+2) -	1.2158e-2 (1.70e-3)
	1000	3.2620e+2 (2.72e+1) -	3.0403e+2 (1.82e+1) -	9.3868e+3 (2.52e+2) -	3.8449e+3 (8.26e+2) -	6.2159e+2 (4.32e+1) -	6.6872e+3 (1.70e+3) -	7.1628e-2 (7.53e-2)
	100	7.9799e-1 (4.26e-1) -	1.9068e+1 (1.62e+0) -	1.7100e+2 (2.44e+1) -	1.6583e+2 (2.74e+1) -	2.4009e+0 (6.48e-1) -	7.6898e+1 (2.33e+1) -	1.9924e-2 (2.12e-4)
DC3 DTLZ3	200	2.4942e+0 (9.34e-1) -	3.9659e+1 (2.84e+0) -	4.7417e+2 (3.48e+1) -	2.7107e+2 (4.61e+1) -	9.6011e+0 (1.31e+0) -	1.6271e+2 (3.62e+1) -	1.9921e-2 (2.22e-4)
203_01003	500	2.2277e+1 (2.45e+0) -	1.0119e+2 (3.81e+0) -	1.4057e+3 (6.88e+1) -	5.8381e+2 (7.72e+1) -	5.1936e+1 (4.91e+0) -	5.7897e+2 (2.63e+2) -	2.0060e-2 (2.21e-4)
	1000	6.7820e+1 (5.22e+0) -	2.0480e+2 (6.99e+0) -	3.1090e+3 (1.02e+2) -	1.0893e+3 (1.69e+2) -	1.4967e+2 (7.07e+0) -	2.0081e+3 (5.26e+2) -	2.0343e-2 (2.77e-4)
+/-/=		1/34/5	0/32/8	2/34/4	2/38/0	1/32/7	2/38/0	

TABLE S-VI THE HV RESULTS OBTAINED BY GLCMEA AND SIX COMPARED ALGORITHMS ON (D)C_DTLZ TEST SUITE

Problem	D	ССМО	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	GLCMEA
	100	6.9274e-1 (4.22e-2) -	7.4228e-1 (2.91e-2) -	NaN (0.00%) -	NaN (0.00%) -	6.1280e-1 (5.66e-2) -	NaN (0.00%) -	8.0829e-1 (8.19e-3)
C1 DTI 71	200	6.7855e-1 (3.35e-2) -	7.1666e-1 (2.76e-2) -	NaN (0.00%) -	NaN (0.00%) -	5.3075e-1 (4.11e-2) -	NaN (0.00%) -	8.0191e-1 (1.40e-2)
C1_DTLZ1	500	5.9413e-1 (5.23e-2) -	6.3908e-1 (2.61e-2) -	NaN (0.00%) -	NaN (0.00%) -	3.1865e-1 (5.99e-2) -	NaN (0.00%) -	7.3110e-1 (2.41e-2)
	1000	6.3699e-1 (3.91e-2) =	6.2589e-1 (2.14e-2) -	NaN (0.00%) -	NaN (0.00%) -	3.5388e-1 (3.16e-2) -	NaN (0.00%) -	6.5063e-1 (4.25e-2)
	100	5.4992e-1 (3.61e-3) -	0.0000e+0 (0.00e+0) -	5.5996e-1 (7.71e-4) -	0.0000e+0 (0.00e+0) -	4.7306e-1 (9.75e-2) -	0.0000e+0 (0.00e+0) -	5.6085e-1 (1.04e-3)
C1 DTI 72	200	5.4436e-1 (3.57e-3) -	0.0000e+0 (0.00e+0) -	5.5966e-1 (1.01e-3) -	0.0000e+0 (0.00e+0) -	4.4823e-1 (1.85e-1) -	0.0000e+0 (0.00e+0) -	5.6128e-1 (8.10e-4)
C1_DTLZ3	500	3.5571e-1 (1.46e-1) -	0.0000e+0 (0.00e+0) -	5.5888e-1 (8.74e-4) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	5.6084e-1 (8.57e-4)
	1000	3.7705e-1 (1.44e-1) -	0.0000e+0 (0.00e+0) -	5.5777e-1 (8.60e-4) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	5.6040e-1 (1.14e-3)
	100	5.1581e-1 (1.44e-3) -	5.1732e-1 (1.54e-3) =	NaN (13.33%) -	5.1260e-1 (1.16e-4) -	5.1859e-1 (8.54e-4) +	5.0110e-1 (5.89e-3) -	5.1665e-1 (1.62e-3)
C2_DTLZ2	200	5.1402e-1 (1.63e-3) -	5.1684e-1 (1.14e-3) =	NaN (0.00%) -	5.1273e-1 (9.69e-5) -	5.1852e-1 (1.29e-3) +	5.0287e-1 (4.10e-3) -	5.1683e-1 (1.69e-3)
C2_D1LZ2	500	5.1403e-1 (1.93e-3) -	5.1650e-1 (1.40e-3) =	NaN (0.00%) -	5.1252e-1 (8.92e-5) -	5.1800e-1 (1.21e-3) +	4.9977e-1 (3.83e-3) -	5.1607e-1 (1.68e-3)
	1000	5.1244e-1 (2.17e-3) -	5.1574e-1 (1.35e-3) =	NaN (0.00%) -	5.1275e-1 (7.66e-5) -	5.1781e-1 (9.17e-4) +	5.0119e-1 (3.19e-3) -	5.1607e-1 (1.44e-3)
	100	7.4864e-1 (9.55e-2) =	7.7376e-1 (6.39e-2) =	6.0206e-1 (1.15e-1) -	7.8432e-1 (3.58e-2) +	7.9133e-1 (1.01e-3) +	7.8221e-1 (2.22e-3) +	7.8187e-1 (4.60e-2)
C3_DTLZ4	200	7.4870e-1 (9.56e-2) =	7.7412e-1 (6.40e-2) =	6.7760e-1 (8.13e-2) -	7.9617e-1 (3.70e-5) +	7.9094e-1 (1.14e-3) =	7.7461e-1 (4.86e-2) -	7.9072e-1 (1.21e-3)
CS_DTLLT	500	7.7406e-1 (6.40e-2) =	7.7370e-1 (6.39e-2) =	7.1675e-1 (4.74e-2) -	7.7740e-1 (7.15e-2) -	7.9090e-1 (1.15e-3) =	7.8454e-1 (1.66e-3) -	7.9045e-1 (1.28e-3)
	1000	7.8278e-1 (4.61e-2) +	7.8136e-1 (4.58e-2) =	7.2646e-1 (8.28e-2) -	7.9622e-1 (6.91e-6) +	7.9070e-1 (1.12e-3) +	7.7738e-1 (4.86e-2) +	7.7328e-1 (6.38e-2)
	100	4.8560e-1 (1.27e-1) -	5.7072e-1 (1.43e-2) -	6.2468e-1 (4.37e-3) -	0.0000e+0 (0.00e+0) -	4.6785e-1 (1.78e-1) -	1.2698e-2 (6.96e-2) -	6.3044e-1 (2.01e-3)
DC1_DTLZ1	200	3.6143e-1 (1.31e-1) -	5.1224e-1 (2.36e-2) -	6.2121e-1 (7.08e-3) -	0.0000e+0 (0.00e+0) -	2.3408e-1 (1.92e-1) -	6.2132e-3 (3.40e-2) -	6.2670e-1 (3.07e-3)
DCI_DTELI	500	7.8289e-4 (4.29e-3) -	2.8187e-1 (6.08e-2) -	6.1458e-1 (6.88e-3) =	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	6.1456e-1 (5.36e-3)
	1000	0.0000e+0 (0.00e+0) -	1.8078e-1 (6.70e-2) -	6.0665e-1 (8.70e-3) +	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	0.0000e+0 (0.00e+0) -	6.0305e-1 (8.53e-3)
	100	4.6358e-1 (2.95e-3) -	4.6710e-1 (2.46e-3) -	4.7199e-1 (9.31e-4) -	0.0000e+0 (0.00e+0) -	4.6413e-1 (3.41e-3) -	0.0000e+0 (0.00e+0) -	4.7466e-1 (7.10e-4)
DC1 DTLZ3	200	4.5583e-1 (2.99e-3) -	4.6272e-1 (2.58e-3) -	4.7134e-1 (1.39e-3) -	0.0000e+0 (0.00e+0) -	4.5582e-1 (4.42e-3) -	3.2155e-4 (1.76e-3) -	4.7465e-1 (8.26e-4)
D 01_D 1220	500	3.8320e-1 (5.12e-2) -	4.4431e-1 (3.53e-3) -	4.7070e-1 (8.75e-4) -	0.0000e+0 (0.00e+0) -	2.8424e-1 (1.28e-1) -	0.0000e+0 (0.00e+0) -	4.7383e-1 (8.67e-4)
	1000	3.3438e-1 (7.12e-2) -	4.4573e-1 (2.87e-3) -	4.6906e-1 (9.08e-4) -	0.0000e+0 (0.00e+0) -	7.8475e-2 (1.04e-1) -	2.7269e-4 (1.42e-3) -	4.7292e-1 (9.38e-4)
	100	NaN (20.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	8.4095e-1 (1.17e-3)
DC2 DTLZ1	200	NaN (0.00%) -	8.3799e-1 (1.72e-3)					
- -	500	NaN (0.00%) -	5.8544e-1 (1.64e-1)					
	1000	NaN (0.00%) -	4.8013e-1 (9.96e-4)					
	100	1.6713e-1 (2.38e-1) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.6149e-1 (5.74e-4)
DC2 DTLZ3	200	NaN (33.33%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	NaN (0.00%) -	5.6125e-1 (9.73e-4)
	500	NaN (0.00%) -	5.6033e-1 (1.10e-3)					
	1000	NaN (0.00%) -	5.5913e-1 (1.03e-3)					
	100	0.0000e+0 (0.00e+0) -	5.3353e-1 (2.29e-3)					
DC3 DTLZ1	200	0.0000e+0 (0.00e+0) -	5.2664e-1 (3.94e-3)					
_		` ′	0.0000e+0 (0.00e+0) -	` ′	` ′	` ′	` ,	` '
		` ′	0.0000e+0 (0.00e+0) -			` ′		` /
	100	9.8107e-3 (5.37e-2) -	0.0000e+0 (0.00e+0) -	3.6891e-1 (5.82e-4)				
DC3_DTLZ3	200	0.0000e+0 (0.00e+0) -	3.6865e-1 (8.12e-4)					
		, , ,	0.0000e+0 (0.00e+0) -		, , , , ,	, , ,	1	
	1000	0.0000e+0 (0.00e+0) -	3.6429e-1 (1.76e-3)					
+/-/=		1/35/4	0/32/8	1/38/1	3/37/0	6/32/2	2/38/0	

TABLE S-VII The IGD results of GLCMEA with $\delta = 0.05$ and different g values

Problem	$g = 5$ and $\delta = 0.05$	$g = 15$ and $\delta = 0.05$	$g = 25$ and $\delta = 0.05$	$g = 35$ and $\delta = 0.05$	$g = 45$ and $\delta = 0.05$
C1_DTLZ1	3.9030e-2 (9.97e-3) -	4.4978e-2 (1.34e-2) -	2.3397e-2 (6.70e-3) =	2.1656e-2 (7.64e-4)	2.1713e-2 (2.94e-4) =
C1_DTLZ3	6.6843e+0 (3.02e+0) -	5.8452e-1 (2.02e+0) =	5.3380e-2 (5.15e-4) =	5.3401e-2 (8.39e-4)	5.3316e-2 (6.19e-4) =
C2_DTLZ2	4.2617e-2 (5.32e-4) =	4.2610e-2 (6.19e-4) =	4.2674e-2 (5.37e-4) =	4.2478e-2 (3.72e-4)	4.2419e-2 (4.63e-4) =
C3_DTLZ4	1.1927e-1 (1.36e-1) =	9.4649e-2 (1.36e-3) =	1.1957e-1 (1.36e-1) =	1.1941e-1 (1.36e-1)	9.4438e-2 (1.32e-3) =
DC1_DTLZ1	2.8315e-2 (5.50e-3) -	2.1743e-2 (5.31e-3) -	1.2144e-2 (8.65e-4) -	1.1516e-2 (1.60e-4)	1.1427e-2 (1.24e-4) +
DC1_DTLZ3	3.4710e-2 (5.63e-4) -	3.4399e-2 (5.15e-4) -	3.3903e-2 (3.71e-4) =	3.3915e-2 (4.04e-4)	3.3734e-2 (4.30e-4) =
DC2_DTLZ1	NaN (0.00%) -	NaN (16.67%) -	4.9299e-2 (5.85e-2) -	2.0216e-2 (1.84e-4)	2.0132e-2 (1.34e-4) =
DC2_DTLZ3	NaN (6.67%) -	NaN (56.67%) -	8.6997e-2 (1.30e-1) -	5.2633e-2 (3.42e-4)	5.2703e-2 (4.04e-4) =
DC3_DTLZ1	9.3322e+0 (2.46e+0) -	9.1310e-1 (6.49e-1) -	8.1438e-3 (1.43e-3) -	6.9864e-3 (1.65e-4)	6.9100e-3 (1.33e-4) +
DC3_DTLZ3	9.1881e+0 (5.39e+0) -	8.1349e-1 (8.09e-1) -	1.9984e-2 (2.40e-4) =	1.9924e-2 (2.12e-4)	2.0018e-2 (2.09e-4) =
LIRCMOP1	6.4540e-2 (1.94e-2) -	5.5233e-2 (1.42e-2) =	5.6571e-2 (1.45e-2) =	4.9450e-2 (9.58e-3)	NaN (93.33%) -
LIRCMOP2	5.0605e-2 (1.77e-2) -	3.4057e-2 (5.47e-3) -	3.5638e-2 (6.21e-3) -	3.0733e-2 (4.39e-3)	3.0361e-2 (3.88e-3) =
LIRCMOP3	5.8278e-2 (2.47e-2) -	3.9536e-2 (1.46e-2) -	2.7342e-2 (8.08e-3) =	2.4964e-2 (1.01e-2)	NaN (80.00%) -
LIRCMOP4	8.0970e-2 (3.43e-2) -	3.6695e-2 (1.31e-2) -	2.5396e-2 (7.79e-3) =	2.4573e-2 (7.63e-3)	NaN (96.67%) -
LIRCMOP5	8.5466e-1 (4.92e-1) -	3.7155e-1 (3.92e-1) -	1.5868e-1 (5.36e-2) -	1.2488e-1 (3.96e-2)	1.0956e-1 (3.30e-2) =
LIRCMOP6	9.3532e-1 (5.15e-1) -	3.3357e-1 (2.41e-1) -	1.9881e-1 (9.89e-2) -	1.2337e-1 (6.38e-2)	1.2130e-1 (6.14e-2) =
LIRCMOP7	3.0643e-1 (5.49e-1) -	5.8753e-2 (2.68e-2) +	4.1953e-2 (1.82e-2) =	1.2624e-1 (4.81e-1)	NaN (96.67%) -
LIRCMOP8	1.9889e-1 (1.07e-1) -	1.0389e-1 (4.83e-2) -	8.4752e-2 (3.83e-2) -	7.2234e-2 (8.60e-2)	NaN (96.67%) -
LIRCMOP9	4.7043e-1 (2.65e-1) -	1.4956e-1 (8.74e-2) -	1.1025e-1 (3.05e-2) =	1.0477e-1 (2.91e-2)	9.9082e-2 (2.29e-2) =
LIRCMOP10	3.0497e-1 (1.33e-1) -	8.9363e-2 (6.24e-2) -	3.3781e-2 (2.03e-2) -	2.9075e-2 (1.93e-2)	2.4595e-2 (7.60e-3) =
LIRCMOP11	1.9910e-1 (2.18e-1) -	1.9535e-2 (2.23e-2) -	8.6784e-3 (6.39e-3) =	6.0970e-3 (2.36e-3)	7.7327e-2 (2.69e-1) =
LIRCMOP12	1.7780e-1 (2.15e-1) -	2.8672e-2 (1.58e-2) +	1.8059e-2 (7.63e-3) +	4.5125e-2 (1.78e-1)	7.4893e-2 (2.24e-1) =
LIRCMOP13	2.9703e-1 (4.64e-1) =	9.3074e-2 (9.05e-4) =	9.3421e-2 (9.63e-4) =	9.3096e-2 (1.16e-3)	9.3047e-2 (1.19e-3) =
LIRCMOP14	4.0903e-1 (5.29e-1) -	9.5154e-2 (1.02e-3) =	9.5119e-2 (9.94e-4) =	9.5092e-2 (1.48e-3)	9.5208e-2 (9.43e-4) =
MW1	2.5684e-3 (1.05e-3) -	1.7550e-3 (2.94e-4) -	1.6130e-3 (9.51e-6) =	1.6091e-3 (1.09e-5)	1.6131e-3 (1.17e-5) =
MW2	6.2620e-3 (2.86e-3) =	5.6069e-3 (5.37e-4) =	5.6570e-3 (9.03e-4) =	5.6942e-3 (5.97e-4)	5.6645e-3 (7.24e-4) =
MW3	6.1425e-3 (6.06e-4) -	5.7283e-3 (3.72e-4) -	5.6017e-3 (3.26e-4) =	5.4699e-3 (2.24e-4)	5.4166e-3 (3.00e-4) =
MW4	4.1991e-2 (2.68e-3) +	4.0588e-2 (1.15e-3) +	4.8852e-2 (1.46e-3) =	4.8342e-2 (1.61e-3)	4.8620e-2 (1.60e-3) =
MW5	NaN (66.67%) -	NaN (76.67%) -	NaN (90.00%) -	NaN (93.33%)	NaN (93.33%) =
MW6	1.0770e-2 (2.06e-2) -	2.7509e-3 (2.51e-5) =	2.7519e-3 (2.25e-5) =	2.7454e-3 (2.80e-5)	2.7541e-3 (1.97e-5) =
MW7	6.0524e-3 (8.55e-4) -	5.1882e-3 (3.69e-4) -	4.6162e-3 (2.49e-4) =	4.5148e-3 (2.16e-4)	4.4061e-3 (1.73e-4) +
MW8	4.3377e-2 (1.64e-3) =	4.2927e-2 (6.49e-4) =	4.2944e-2 (6.53e-4) =	4.2930e-2 (5.77e-4)	4.2852e-2 (5.70e-4) =
MW9	NaN (63.33%) -	NaN (83.33%) -	NaN (86.67%) -	NaN (93.33%)	NaN (83.33%) -
MW10	7.1587e-3 (1.01e-2) -	3.4105e-3 (4.23e-5) =	3.4176e-3 (3.31e-5) =	3.4078e-3 (4.88e-5)	3.4242e-3 (5.67e-5) =
MW11	5.8969e-3 (1.05e-4) =	5.9331e-3 (1.07e-4) =	5.8939e-3 (9.71e-5) =	5.9115e-3 (1.16e-4)	5.9404e-3 (1.12e-4) =
MW12	NaN (83.33%) -	NaN (80.00%) -	NaN (90.00%) -	NaN (93.33%)	NaN (86.67%) -
MW13	1.2660e-2 (8.92e-3) =	1.0654e-2 (1.67e-4) =	1.0816e-2 (8.91e-4) =	1.0715e-2 (1.66e-4)	1.0670e-2 (1.40e-4) =
MW14	1.2044e-1 (3.79e-2) -	9.8885e-2 (1.76e-3) -	9.8020e-2 (2.14e-3) =	9.7530e-2 (2.06e-3)	9.7031e-2 (1.96e-3) =
+/-/=	1/30/7	3/23/12	1/12/25		3/7/28

The best value in each row is marked in gray. The symbols "+", "-", and "=" indicate that the GLCMEA with $\delta=0.05$ and different g value is significantly better than, worse than, and similar to the GLCMEA with g=35 and $\delta=0.05$, respectively. "NaN" indicates that the corresponding algorithm cannot continuously obtain feasible solutions in 30 runs, and the result is represented by "NaN (FR)".

Problem	$g = 35$ and $\delta = 0.001$	$g = 35$ and $\delta = 0.01$	$g = 35$ and $\delta = 0.05$	$g = 35$ and $\delta = 0.1$	$g = 35$ and $\delta = 1$
C1_DTLZ1	2.1670e-2 (2.86e-4) =	2.1700e-2 (1.91e-4) =	2.1656e-2 (7.64e-4)	2.0476e-2 (8.80e-4) +	2.0938e-2 (1.08e-3) +
C1_DTLZ3	5.3381e-2 (7.34e-4) =	5.3282e-2 (7.49e-4) =	5.3401e-2 (8.39e-4)	5.3218e-2 (5.84e-4) =	5.3339e-2 (6.07e-4) =
C2_DTLZ2	4.2672e-2 (5.14e-4) =	4.2494e-2 (6.05e-4) =	4.2478e-2 (3.72e-4)	4.2651e-2 (5.86e-4) =	4.2604e-2 (5.65e-4) =
C3_DTLZ4	NaN (83.33%) -	2.1885e-1 (2.83e-1) =	1.1941e-1 (1.36e-1)	1.1942e-1 (1.36e-1) =	1.1943e-1 (1.36e-1) =
DC1_DTLZ1	1.1404e-2 (8.85e-5) +	1.1389e-2 (9.59e-5) +	1.1516e-2 (1.60e-4)	1.1800e-2 (3.57e-4) -	1.1589e-2 (1.84e-4) =
DC1_DTLZ3	3.3750e-2 (3.78e-4) =	3.3914e-2 (3.31e-4) =	3.3915e-2 (4.04e-4)	3.3786e-2 (3.37e-4) =	3.3724e-2 (3.13e-4) +
DC2_DTLZ1	2.0048e-2 (1.20e-4) +	2.0082e-2 (1.26e-4) +	2.0216e-2 (1.84e-4)	2.0290e-2 (2.01e-4) =	2.0254e-2 (1.52e-4) =
DC2_DTLZ3	5.2762e-2 (4.14e-4) =	5.2667e-2 (3.38e-4) =	5.2633e-2 (3.42e-4)	5.2753e-2 (4.19e-4) =	5.2717e-2 (3.92e-4) =
DC3_DTLZ1	6.8620e-3 (5.63e-5) +	6.8634e-3 (4.95e-5) +	6.9864e-3 (1.65e-4)	7.2675e-3 (3.44e-4) -	7.1961e-3 (2.36e-4) -
DC3_DTLZ3	1.9919e-2 (3.22e-4) =	1.9879e-2 (2.45e-4) =	1.9924e-2 (2.12e-4)	1.9986e-2 (2.26e-4) =	2.0009e-2 (2.96e-4) =
LIRCMOP1	NaN (0.00%) -	NaN (46.67%) -	4.9450e-2 (9.58e-3)	5.4047e-2 (1.18e-2) =	5.7387e-2 (9.83e-3) -
LIRCMOP2	NaN (3.33%) =	NaN (60.00%) -	3.0733e-2 (4.39e-3)	3.2775e-2 (4.31e-3) -	3.4528e-2 (6.34e-3) -
LIRCMOP3	NaN (0.00%) -	NaN (6.67%) -	2.4964e-2 (1.01e-2)	2.6496e-2 (8.75e-3) =	2.7442e-2 (8.72e-3) =
LIRCMOP4	NaN (0.00%) -	NaN (60.00%) -	2.4573e-2 (7.63e-3)	2.8375e-2 (1.07e-2) =	2.8771e-2 (1.07e-2) =
LIRCMOP5	6.6187e-2 (1.99e-2) +	7.7009e-2 (2.10e-2) +	1.2488e-1 (3.96e-2)	1.6062e-1 (3.23e-2) -	1.7154e-1 (3.21e-2) -
LIRCMOP6	5.5998e-2 (1.71e-2) +	5.9993e-2 (2.28e-2) +	1.2337e-1 (6.38e-2)	1.5077e-1 (6.41e-2) =	1.9798e-1 (7.38e-2) -
LIRCMOP7	NaN (66.67%) -	NaN (63.33%) -	1.2624e-1 (4.81e-1)	4.7234e-2 (1.76e-2) =	4.8294e-2 (2.21e-2) +
LIRCMOP8	NaN (66.67%) -	NaN (66.67%) -	7.2234e-2 (8.60e-2)	7.7961e-2 (3.51e-2) -	5.9238e-2 (2.90e-2) =
LIRCMOP9	1.0923e-1 (3.42e-2) =	1.0540e-1 (2.75e-2) =	1.0477e-1 (2.91e-2)	1.0461e-1 (2.55e-2) =	1.4240e-1 (4.49e-2) -
LIRCMOP10	2.4283e-2 (5.93e-3) =	2.5122e-2 (5.98e-3) =	2.9075e-2 (1.93e-2)	4.1652e-2 (2.53e-2) -	4.4582e-2 (2.58e-2) -
LIRCMOP11	NaN (90.00%) -	4.7149e-1 (5.22e-1) -	6.0970e-3 (2.36e-3)	6.5715e-3 (3.35e-3) =	8.4674e-3 (4.20e-3) -
LIRCMOP12	NaN (96.67%) -	4.7063e-1 (4.70e-1) -	4.5125e-2 (1.78e-1)	1.7796e-2 (8.02e-3) +	2.2981e-2 (1.20e-2) +
LIRCMOP13	9.3726e-2 (1.32e-3) =	9.3239e-2 (1.03e-3) =	9.3096e-2 (1.16e-3)	9.3086e-2 (1.05e-3) =	9.3240e-2 (1.01e-3) =
LIRCMOP14	9.4891e-2 (7.48e-4) =	9.5209e-2 (1.07e-3) =	9.5092e-2 (1.48e-3)	9.5400e-2 (1.14e-3) =	9.5233e-2 (9.83e-4) =
MW1	1.6130e-3 (1.40e-5) =	1.6131e-3 (1.12e-5) =	1.6091e-3 (1.09e-5)	1.6093e-3 (9.68e-6) =	1.6114e-3 (9.20e-6) =
MW2	5.4098e-3 (7.12e-4) =	5.5330e-3 (7.30e-4) =	5.6942e-3 (5.97e-4)	5.4221e-3 (6.26e-4) =	5.6099e-3 (4.37e-4) =
MW3	3.7112e-2 (2.41e-2) -	5.4801e-3 (3.65e-4) =	5.4699e-3 (2.24e-4)	5.4935e-3 (2.28e-4) =	5.4310e-3 (2.66e-4) =
MW4	4.8517e-2 (1.76e-3) =	4.8350e-2 (1.86e-3) =	4.8342e-2 (1.61e-3)	4.8778e-2 (1.64e-3) =	4.8318e-2 (1.59e-3) =
MW5	NaN (90.00%) -	NaN (86.67%) -	NaN (93.33%)	2.7636e-2 (1.34e-1) =	NaN (76.67%) -
MW6	2.7490e-3 (1.88e-5) =	2.7548e-3 (2.87e-5) =	2.7454e-3 (2.80e-5)	2.7462e-3 (2.21e-5) =	2.7504e-3 (3.16e-5) =
MW7	2.0216e-1 (8.94e-2) -	1.1077e-2 (3.62e-2) =	4.5148e-3 (2.16e-4)	4.6159e-3 (2.36e-4) =	4.5194e-3 (2.14e-4) =
MW8	4.3156e-2 (5.42e-4) =	4.3006e-2 (6.66e-4) =	4.2930e-2 (5.77e-4)	4.2962e-2 (6.04e-4) =	4.2833e-2 (5.53e-4) =
MW9	NaN (90.00%) -	NaN (80.00%) -	NaN (93.33%)	NaN (90%) -	NaN (93.33%) -
MW10	3.3965e-3 (3.73e-5) =	3.4133e-3 (8.96e-5) =	3.4078e-3 (4.88e-5)	3.4193e-3 (4.13e-5) =	3.4238e-3 (4.30e-5) =
MW11	NaN (6.67%) -	NaN (83.33%) -	5.9115e-3 (1.16e-4)	5.9215e-3 (1.07e-4) =	5.8850e-3 (9.55e-5) =
MW12	NaN (76.67%) -	NaN (93.33%) =	NaN (93.33%)	NaN (86.67%) -	NaN (96.67%) -
MW13	1.0709e-2 (1.76e-4) =	1.0703e-2 (1.41e-4) =	1.0715e-2 (1.66e-4)	1.0743e-2 (1.17e-4) =	1.1021e-2 (1.21e-3) =
MW14	1.8491e-1 (4.20e-2) -	1.1483e-1 (3.97e-2) =	9.7530e-2 (2.06e-3)	9.8019e-2 (1.51e-3) =	9.7703e-2 (1.92e-3) =
+/-/=	5/15/18	5/11/22		2/8/28	4/11/23

The best value in each row is marked in gray. The symbols "+", "-", and "=" indicate that the GLCMEA with g=35 and different δ value is significantly better than, worse than, and similar to the GLCMEA with g=35 and $\delta=0.05$, respectively. "NaN" indicates that the corresponding algorithm cannot continuously obtain feasible solutions in 30 runs, and the result is represented by "NaN (FR)".

 $\label{thm:table S-IX} \mbox{The IGD results of GLCMEA and GLCMEA-LMEA}$

Problem	GLCMEA-LMEA	GLCMEA
C1_DTLZ1	2.3441e-2 (7.60e-4) -	2.1656e-2 (7.64e-4)
C1_DTLZ3	5.4406e-2 (6.64e-4) -	5.3401e-2 (8.39e-4)
C2_DTLZ2	5.6314e-2 (1.54e-3) -	4.2478e-2 (3.72e-4)
C3_DTLZ4	NaN (0.00%) -	1.1941e-1 (1.36e-1)
DC1_DTLZ1	2.0896e-2 (1.23e-3) -	1.1516e-2 (1.60e-4)
DC1_DTLZ3	5.6859e-2 (2.58e-3) -	3.3915e-2 (4.04e-4)
DC2_DTLZ1	2.1191e-2 (3.51e-4) -	2.0216e-2 (1.84e-4)
DC2_DTLZ3	5.5142e-2 (2.90e-3) -	5.2633e-2 (3.42e-4)
DC3_DTLZ1	3.0771e-2 (6.79e-3) -	6.9864e-3 (1.65e-4)
DC3_DTLZ3	6.2996e-2 (7.07e-3) -	1.9924e-2 (2.12e-4)
LIRCMOP1	NaN (0.00%) -	4.9450e-2 (9.58e-3)
LIRCMOP2	NaN (0.00%) -	3.0733e-2 (4.39e-3)
LIRCMOP3	NaN (0.00%) -	2.4964e-2 (1.01e-2)
LIRCMOP4	NaN (0.00%) -	2.4573e-2 (7.63e-3)
LIRCMOP5	1.6921e-1 (4.26e-2) -	1.2488e-1 (3.96e-2)
LIRCMOP6	1.9349e-1 (5.59e-2) -	1.2337e-1 (6.38e-2)
LIRCMOP7	NaN (0.00%) -	1.2624e-1 (4.81e-1)
LIRCMOP8	NaN (0.00%) -	7.2234e-2 (8.60e-2)
LIRCMOP9	1.5730e-1 (5.57e-2) -	1.0477e-1 (2.91e-2)
LIRCMOP10	6.7891e-2 (5.14e-2) -	2.9075e-2 (1.93e-2)
LIRCMOP11	5.6897e-1 (2.73e-1) -	6.0970e-3 (2.36e-3)
LIRCMOP12	NaN (56.67%) -	4.5125e-2 (1.78e-1)
LIRCMOP13	9.2198e-2 (1.15e-3) +	9.3096e-2 (1.16e-3)
LIRCMOP14	NaN (0.00%) -	9.5092e-2 (1.48e-3)
MW1	4.3662e-3 (1.45e-3) -	1.6091e-3 (1.09e-5)
MW2	4.2330e-3 (1.51e-4) +	5.6942e-3 (5.97e-4)
MW3	5.3557e-2 (1.84e-3) -	5.4699e-3 (2.24e-4)
MW4	4.9491e-2 (2.00e-3) -	4.8342e-2 (1.61e-3)
MW5	NaN (80.00%) -	NaN (93.33%)
MW6	5.5720e-3 (7.10e-4) -	2.7454e-3 (2.80e-5)
MW7	2.0875e-1 (4.53e-3) -	4.5148e-3 (2.16e-4)
MW8	6.0716e-2 (2.12e-3) -	4.2930e-2 (5.77e-4)
MW9	NaN (20.00%) -	NaN (93.33%)
MW10	NaN (96.67%) -	3.4078e-3 (4.88e-5)
MW11	NaN (0.00%) -	5.9115e-3 (1.16e-4)
MW12	NaN (30.00%) -	NaN (93.33%)
MW13	9.5734e-2 (4.83e-2) -	1.0715e-2 (1.66e-4)
MW14	1.1196e-1 (2.27e-2) -	9.7530e-2 (2.06e-3)
+/-/=	2/36/0	

 $\label{eq:TABLE S-X} \text{THE IGD RESULTS OF GLCMEA AND GLCMEA-UPF}$

Problem	GLCMEA-UPF	GLCMEA
C1_DTLZ1	2.1772e-2 (8.78e-4) =	2.1656e-2 (7.64e-4)
C1_DTLZ3	5.3360e-2 (7.22e-4) =	5.3401e-2 (8.39e-4)
C2_DTLZ2	4.2618e-2 (5.75e-4) =	4.2478e-2 (3.72e-4)
C3_DTLZ4	9.4637e-2 (1.63e-3) =	1.1941e-1 (1.36e-1)
DC1_DTLZ1	1.1583e-2 (2.59e-4) =	1.1516e-2 (1.60e-4)
DC1_DTLZ3	3.3798e-2 (2.68e-4) =	3.3915e-2 (4.04e-4)
DC2_DTLZ1	2.0338e-2 (3.68e-4) =	2.0216e-2 (1.84e-4)
DC2_DTLZ3	5.2709e-2 (3.25e-4) =	5.2633e-2 (3.42e-4)
DC3_DTLZ1	7.6371e-3 (2.45e-3) -	6.9864e-3 (1.65e-4)
DC3_DTLZ3	1.9947e-2 (2.32e-4) =	1.9924e-2 (2.12e-4)
LIRCMOP1	7.5703e-2 (3.08e-2) -	4.9450e-2 (9.58e-3)
LIRCMOP2	4.7472e-2 (1.46e-2) -	3.0733e-2 (4.39e-3)
LIRCMOP3	4.2959e-2 (1.52e-2) -	2.4964e-2 (1.01e-2)
LIRCMOP4	5.5334e-2 (1.25e-2) -	2.4573e-2 (7.63e-3)
LIRCMOP5	1.1445e-1 (3.27e-2) =	1.2488e-1 (3.96e-2)
LIRCMOP6	1.1883e-1 (5.95e-2) =	1.2337e-1 (6.38e-2)
LIRCMOP7	1.6780e-1 (4.45e-1) -	1.2624e-1 (4.81e-1)
LIRCMOP8	7.3040e-2 (3.94e-2) =	7.2234e-2 (8.60e-2)
LIRCMOP9	9.8108e-2 (1.76e-2) =	1.0477e-1 (2.91e-2)
LIRCMOP10	2.7911e-2 (1.64e-2) =	2.9075e-2 (1.93e-2)
LIRCMOP11	8.1480e-3 (1.20e-2) =	6.0970e-3 (2.36e-3)
LIRCMOP12	2.0741e-2 (1.83e-2) =	4.5125e-2 (1.78e-1)
LIRCMOP13	9.3184e-2 (1.10e-3) =	9.3096e-2 (1.16e-3)
LIRCMOP14	9.5146e-2 (1.09e-3) =	9.5092e-2 (1.48e-3)
MW1	1.6121e-3 (1.20e-5) =	1.6091e-3 (1.09e-5)
MW2	5.5009e-3 (3.32e-4) =	5.6942e-3 (5.97e-4)
MW3	5.3745e-3 (2.40e-4) =	5.4699e-3 (2.24e-4)
MW4	4.8631e-2 (1.73e-3) =	4.8342e-2 (1.61e-3)
MW5	NaN (86.67%) -	NaN (93.33%)
MW6	2.7523e-3 (2.64e-5) =	2.7454e-3 (2.80e-5)
MW7	4.4120e-3 (1.82e-4) =	4.5148e-3 (2.16e-4)
MW8	4.2973e-2 (4.08e-4) =	4.2930e-2 (5.77e-4)
MW9	NaN (80.00%) -	NaN (93.33%)
MW10	3.4146e-3 (4.45e-5) =	3.4078e-3 (4.88e-5)
MW11	5.9282e-3 (1.24e-4) =	5.9115e-3 (1.16e-4)
MW12	NaN (83.33%) -	NaN (93.33%)
MW13	1.0851e-2 (8.85e-4) =	1.0715e-2 (1.66e-4)
MW14	9.7588e-2 (1.85e-3) =	9.7530e-2 (2.06e-3)
+/-/=	0/9/29	

 $\label{thm:condition} TABLE~S-XI\\ The~IGD~results~of~GLCMEA,~GLCMEA-random1,~and~GLCMEA-random2$

Problem	GLCMEA-random1	GLCMEA-random2	GLCMEA	
C1 DTLZ1	2.1630e-2 (8.13e-4) =	2.1685e-2 (7.46e-4) =	2.1656e-2 (7.64e-4)	
C1_DTLZ3	5.3464e-2 (6.16e-4) =	5.3432e-2 (8.02e-4) =	5.3401e-2 (8.39e-4)	
C2_DTLZ2	4.2592e-2 (5.73e-4) =	4.2676e-2 (4.09e-4) -	4.2478e-2 (3.72e-4)	
C3 DTLZ4	1.1910e-1 (1.36e-1) =	9.4422e-2 (1.38e-3) =	1.1941e-1 (1.36e-1)	
DC1_DTLZ1	1.1554e-2 (2.27e-4) =	1.1595e-2 (2.75e-4) =	1.1516e-2 (1.60e-4)	
DC1_DTLZ3	3.3867e-2 (3.62e-4) =	3.3940e-2 (3.88e-4) =	3.3915e-2 (4.04e-4)	
DC2 DTLZ1	, ,	2.0195e-2 (2.37e-4) =	2.0216e-2 (1.84e-4)	
_	2.0238e-2 (2.29e-4) =	` ′	` '	
DC2_DTLZ3	5.2776e-2 (3.73e-4) =	5.2682e-2 (3.28e-4) =	5.2633e-2 (3.42e-4)	
DC3_DTLZ1	7.0316e-3 (1.87e-4) =	7.0410e-3 (4.08e-4) =	6.9864e-3 (1.65e-4)	
DC3_DTLZ3	1.9939e-2 (1.82e-4) =	1.9936e-2 (1.89e-4) =	1.9924e-2 (2.12e-4)	
LIRCMOP1	6.1079e-2 (1.49e-2) -	6.3579e-2 (1.69e-2) -	4.9450e-2 (9.58e-3)	
LIRCMOP2	3.5019e-2 (5.42e-3) -	3.4410e-2 (7.96e-3) -	3.0733e-2 (4.39e-3)	
LIRCMOP3	3.1555e-2 (1.23e-2) -	3.0753e-2 (8.16e-3) -	2.4964e-2 (1.01e-2)	
LIRCMOP4	3.0828e-2 (1.12e-2) -	3.1739e-2 (8.06e-3) -	2.4573e-2 (7.63e-3)	
LIRCMOP5	1.3151e-1 (4.10e-2) =	1.3342e-1 (4.13e-2) =	1.2488e-1 (3.96e-2)	
LIRCMOP6	1.0410e-1 (5.42e-2) =	1.2622e-1 (5.51e-2) =	1.2337e-1 (6.38e-2)	
LIRCMOP7	3.7998e-2 (1.65e-2) =	5.0644e-2 (2.57e-2) =	1.2624e-1 (4.81e-1)	
LIRCMOP8	8.0821e-2 (1.20e-1) =	7.2723e-2 (3.94e-2) =	7.2234e-2 (8.60e-2)	
LIRCMOP9	1.1258e-1 (3.55e-2) =	1.4298e-1 (4.95e-2) -	1.0477e-1 (2.91e-2)	
LIRCMOP10	3.3359e-2 (2.34e-2) =	4.4116e-2 (2.81e-2) -	2.9075e-2 (1.93e-2)	
LIRCMOP11	6.7313e-3 (3.39e-3) =	1.5014e-2 (2.21e-2) -	6.0970e-3 (2.36e-3)	
LIRCMOP12	1.4594e-2 (6.83e-3) =	2.0024e-2 (1.74e-2) =	4.5125e-2 (1.78e-1)	
LIRCMOP13	9.3264e-2 (1.11e-3) =	9.3275e-2 (1.22e-3) =	9.3096e-2 (1.16e-3)	
LIRCMOP14	9.5292e-2 (7.63e-4) =	9.5245e-2 (1.01e-3) =	9.5092e-2 (1.48e-3)	
MW1	1.6153e-3 (1.51e-5) =	1.6117e-3 (1.47e-5) =	1.6091e-3 (1.09e-5)	
MW2	5.6226e-3 (7.21e-4) =	5.2578e-3 (7.21e-4) +	5.6942e-3 (5.97e-4)	
MW3	5.3507e-3 (2.58e-4) =	5.3160e-3 (2.74e-4) +	5.4699e-3 (2.24e-4)	
MW4	4.8245e-2 (1.73e-3) =	4.8400e-2 (1.74e-3) =	4.8342e-2 (1.61e-3)	
MW5	NaN (86.67%) -	NaN (86.67%) -	NaN (93.33%)	
MW6	2.7611e-3 (6.42e-5) =	2.7592e-3 (2.42e-5) =	2.7454e-3 (2.80e-5)	
MW7	4.4396e-3 (2.25e-4) =	4.4242e-3 (1.95e-4) =	4.5148e-3 (2.16e-4)	
MW8	4.2835e-2 (6.43e-4) =	4.2965e-2 (5.95e-4) =	4.2930e-2 (5.77e-4)	
MW9	NaN (90.00%) -	NaN (83.33%) -	NaN (93.33%)	
MW10	3.4290e-3 (3.49e-5) -	3.4130e-3 (4.89e-5) =	3.4078e-3 (4.88e-5)	
MW11	5.9284e-3 (1.03e-4) =	5.9170e-3 (1.26e-4) =	5.9115e-3 (1.16e-4)	
MW12 NaN (90.00%) -		NaN (83.33%) -	NaN (93.33%)	
MW13 1.0666e-2 (1.80e-4) =		1.0671e-2 (1.66e-4) =	1.0715e-2 (1.66e-4)	
MW14 9.8331e-2 (4.59e-3) =				
MW14	9.8331e-2 (4.59e-3) =	9.7107e-2 (1.42e-3) =	9.7530e-2 (2.06e-3)	

 $\label{thm:compared} \textbf{TABLE S-XII}$ The IGD results of GLCMEA and six compared algorithms on CLSMOP test suite

Problem	D	CCMO	MTCMO	C_LMEA	C_LMOCSO	DPSEA	POCEA	GLCMEA
CLSMOP1	100	9.3170e-1 (6.68e-2) -	9.2177e-1 (7.62e-2) -	6.9251e-1 (8.20e-2) =	7.0540e-1 (3.08e-4) +	9.2503e-1 (6.99e-2) -	7.0502e-1 (4.91e-3) +	7.4539e-1 (1.09e-1)
	200	9.5903e-1 (9.52e-3) -	9.5548e-1 (1.18e-2) -	7.2839e-1 (6.47e-2) =	7.0539e-1 (4.81e-4) +	9.6925e-1 (6.47e-3) -	6.9225e-1 (6.48e-2) +	7.5388e-1 (1.16e-1)
	500	9.5799e-1 (3.60e-3) -	9.5754e-1 (4.80e-3) -	6.5741e-1 (9.55e-2) =	7.0498e-1 (1.13e-3) +	9.6379e-1 (4.57e-3) -	6.8211e-1 (1.17e-1) +	7.4189e-1 (1.12e-1)
	1000	9.5693e-1 (3.90e-3) -	9.5502e-1 (3.82e-3) -	6.5053e-1 (1.21e-1) =	7.0416e-1 (7.50e-3) +	9.5408e-1 (3.64e-3) -	5.0216e-1 (1.48e-1) +	7.4160e-1 (1.09e-1)
CLSMOP2	100	4.2593e-2 (2.87e-3) =	4.1546e-2 (2.75e-3) =	9.6983e-2 (6.80e-2) -	4.6196e-2 (1.20e-2) =	4.5525e-2 (2.65e-3) -	3.1295e-2 (1.50e-2) +	3.9453e-2 (8.91e-3)
	200	4.9259e-2 (4.94e-3) -	4.8857e-2 (5.49e-3) -	7.5939e-2 (3.94e-2) -	2.0972e-2 (5.40e-3) +	3.5118e-2 (2.21e-3) =	2.6429e-2 (6.68e-3) +	3.7085e-2 (1.13e-2)
	500	2.5976e-2 (2.02e-4) =	2.5976e-2 (2.29e-4) =	5.0904e-2 (1.71e-2) -	1.5501e-2 (3.60e-3) +	2.5533e-2 (2.91e-4) =	2.1313e-2 (1.46e-3) +	2.3539e-2 (3.20e-3)
	1000	1.4932e-2 (1.21e-4) =	1.4960e-2 (1.24e-4) =	3.0629e-2 (7.89e-3) -	1.4322e-2 (1.68e-3) =	1.4452e-2 (1.28e-4) +	1.2816e-2 (5.95e-4) +	1.4933e-2 (4.77e-4)
CLSMOP3	100	1.0834e+0 (5.29e-2) -	1.0801e+0 (5.01e-2) -	8.2892e-1 (3.01e-1) =	4.7564e+0 (1.86e+1) -	1.0989e+0 (4.67e-2) -	9.9215e-1 (3.82e-2) =	7.4740e-1 (3.75e-1)
	200	1.0205e+0 (1.18e-2) =	1.0229e+0 (1.16e-2) -	2.3400e+0 (3.87e+0) -	1.4132e+0 (9.67e-1) =	1.0223e+0 (1.10e-2) -	9.7059e-1 (1.56e-1) -	8.7535e-1 (3.02e-1)
	500	1.0018e+0 (1.89e-3) =	1.0034e+0 (5.57e-3) -	1.1193e+0 (1.73e+0) -	1.5072e+1 (7.20e+1) -	1.0026e+0 (2.20e-3) -	9.8660e-1 (5.28e-2) -	9.7257e-1 (1.27e-1)
	1000	9.9904e-1 (5.30e-4) -	9.9933e-1 (1.39e-3) -	1.2454e+0 (1.40e+0) -	6.1884e+1 (2.32e+2) -	9.9967e-1 (2.36e-3) -	9.9939e-1 (1.41e-3) -	9.4428e-1 (1.67e-1)
CLSMOP4	100	6.1401e-1 (1.39e-2) =	6.1322e-1 (1.45e-2) =	5.6147e-1 (5.33e-2) +	6.8134e-1 (1.24e-3) -	6.0855e-1 (9.84e-3) =	6.9761e-1 (5.59e-3) -	6.1415e-1 (1.77e-2)
	200	6.1952e-1 (1.13e-2) +	6.2198e-1 (9.29e-3) +	6.4559e-1 (3.29e-2) -	6.9452e-1 (7.49e-4) -	6.2939e-1 (5.35e-3) +	7.0377e-1 (1.57e-3) -	6.3658e-1 (8.67e-3)
	500	6.2106e-1 (9.48e-3) +	6.2195e-1 (9.21e-3) +	6.7601e-1 (2.10e-2) -	7.0167e-1 (2.25e-4) -	6.6430e-1 (3.77e-3) =	7.0516e-1 (4.86e-4) -	6.6152e-1 (1.26e-2)
	1000	6.4849e-1 (8.64e-3) +	6.5131e-1 (9.78e-3) +	6.9131e-1 (1.26e-2) -	7.0442e-1 (1.81e-4) -	6.6447e-1 (2.43e-3) +	7.0627e-1 (2.44e-4) -	6.7345e-1 (1.40e-2)
CLSMOP5	100	3.4247e-1 (5.54e-5) -	3.4247e-1 (5.53e-5) -	4.5485e-1 (2.58e-1) -	5.4295e-2 (1.87e-1) +	3.4382e-1 (3.43e-3) -	5.3243e-1 (1.84e-1) -	1.6287e-1 (1.26e-1)
	200	3.4248e-1 (9.22e-5) -	3.4246e-1 (3.90e-5) -	4.9730e-1 (2.38e-1) -	5.3952e-2 (1.87e-1) +	3.4828e-1 (2.11e-2) -	5.9889e-1 (1.58e-1) -	2.2336e-1 (1.24e-1)
	500	3.4245e-1 (4.65e-5) -	3.4244e-1 (1.81e-5) -	4.8686e-1 (2.25e-1) -	2.5915e-1 (3.50e-1) +	3.4295e-1 (4.37e-4) -	7.4209e-1 (2.16e-5) -	2.9388e-1 (1.05e-1)
	1000	3.4240e-1 (2.24e-5) -	3.4240e-1 (1.69e-5) -	5.3818e-1 (1.81e-1) -	5.3612e-1 (3.19e-1) -	3.4252e-1 (1.04e-4) -	7.3808e-1 (2.20e-2) -	2.8330e-1 (1.14e-1)
+/-/=		3/11/6	3/13/4	1/14/5	9/8/3	3/13/4	8/11/1	

The best value in each row is marked in gray. The symbols "+", "-", and "=" indicate that the compared algorithm is significantly better than, worse than, and similar to the proposed algorithm, respectively.

Fig. S-I. The population distribution of seven algorithms on 1000-dimensional MW3.

Fig. S-II. The population distribution of median IGD values obtained by seven algorithms on 1000-dimensional DC1_DTLZ3.