Exact Inference: Clique Trees

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. Overview
- 2. Variable Elimination and Clique Trees
- 3. Message Passing: Sum-Product
 - VE in a Clique Tree
 - Clique-Tree Calibration
- 4. Message Passing: Belief Update
- 5. Constructing a Clique Tree

Overview

• Two methods of inference using factors Φ over variables χ

1. Variable elimination (VE) algorithm

 uses factor representation and local operations instead of generating entire distribution (See next slide)

2.Clique Trees: alternative implementation of same insight

Use a more global data structure for scheduling operations

Sum-product VE

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

 $P(C,D,I,G,\overline{S,L,J,H}) = P(C)P(D/C)P(I)P(G/I,D)P(S/I)P(L/G)P(J/L)P(H/G,J) = P(C,D,I,G,\overline{S,L,J,H}) = P(C)P(D/C)P(I)P(G/I,D)P(S/I)P(L/G)P(J/L)P(H/G,J) = P(C)P(D/C)P(I)P(G/I,D)P(S/I)P(L/G)P(J/L)P(I/G)P(I/G)$ $\phi_{C}(C) \phi_{D}(D,C) \phi_{I}(I) \phi_{G}(G,I,D) \phi_{S}(S,I) \phi_{I}(L,G) \phi_{I}(J,L,S) \phi_{H}(H,G,J)$

Elimination ordering *C,D,I,H.G,S,L*

1.Eliminating *C*:

$$\left| \psi_{_{\! 1}}\!\left(C, D \right) = \phi_{_{\! C}}\!\left(C \right) \! \phi_{_{\! D}}\!\left(D, C \right) \qquad \tau_{_{\! 1}}\!\left(D \right) = \sum \psi_{_{\! 1}}\!\left(C, D \right) \right|$$

Each step involves factor product and factor marginalization

Compute the factors

Eliminating *D*:

$$\psi_{\scriptscriptstyle 2}(G,I,D) = \phi_{\scriptscriptstyle G}(G,I,D) \tau_{\scriptscriptstyle 1}(D) \qquad \tau_{\scriptscriptstyle 2}\Big(G,I\Big) = \sum_{\scriptscriptstyle D} \psi_{\scriptscriptstyle 2}\Big(G,I,D\Big)$$

Note we already eliminated one factor with D, but introduced τ_I involving D

Eliminating *I*: 3.

$$\left| \psi_{_{3}}\!\left(G,I,S\right) = \phi_{_{I}}\!\left(I\right) \phi_{_{S}}\!\left(S,I\right) \tau_{_{2}}\!\left(G,I\right) \quad \tau_{_{3}}\!\left(G,S\right) = \sum_{I} \psi_{_{3}}\!\left(G,I,S\right) \right|$$

Eliminating *H*:

$$\psi_4(G,J)$$

$$\bigg|\psi_{\!_{\, 4}}\!\left(G,J,H\right) = \phi_{\!_{\, H}}\!\left(H,G,J\right) \qquad \tau_{\!_{\, 4}}\!\left(G,J\right) = \sum_{\!_{\, H}} \psi_{\!_{\, 4}}\!\left(G,J,H\right)$$

5. Eliminating *G*:

Note $\tau_{\Delta}(G,J)=1$

$$\bigg|\psi_{\scriptscriptstyle 5}\!\left(G,J,L,S\right) = \tau_{\scriptscriptstyle 4}\!\left(G,J\right)\tau_{\scriptscriptstyle 3}\!\left(G,S\right)\phi_{\scriptscriptstyle L}\!\left(L,G\right) \qquad \tau_{\scriptscriptstyle 5}\!\left(J,L,S\right) = \sum_{\scriptscriptstyle G}\psi_{\scriptscriptstyle 5}\!\left(G,J,L,S\right)$$

6. Eliminating *S*:

$$\boxed{\psi_{\scriptscriptstyle 6}\!\left(J,L,S\right) = \tau_{\scriptscriptstyle 5}\!\left(J,L,S\right) \cdot \phi_{\scriptscriptstyle J}\!\left(J,L,S\right) \quad \tau_{\scriptscriptstyle 6}\!\left(J,L\right) = \sum_{S} \psi_{\scriptscriptstyle 6}\!\left(J,L,S\right)}$$

Eliminating *L*:

$$\boxed{\psi_{\scriptscriptstyle 7}\!\left(J,L\right) = \tau_{\scriptscriptstyle 6}\!\left(J,L\right) \qquad \tau_{\scriptscriptstyle 7}\!\left(J\right) = \sum_L \psi_{\scriptscriptstyle 7}\!\left(J,L\right)}$$

Unnormalized Measure with Factors

1. We deal with unnormalized measure here

$$\tilde{P}_{\!\scriptscriptstyle{\Phi}}\!\left(\chi\right)\!=\prod_{\phi_{i}\in\Phi}\!\phi_{i}\!\left(\boldsymbol{X}_{\!\scriptscriptstyle{i}}\right)$$

2. For a BN

- 1. without evidence
 - factors are CPDs and $ilde{P}_{\!\scriptscriptstyle \Phi}(\chi)$ is a normalized distribution
- 2. with evidence E=e,
 - 1. factors are CPDs restricted to e and $\tilde{P}_{B}(\chi) = P_{B}(\chi, e)$
- 3. For a Gibbs distribution,
 - 1. factors are potentials
 - 2. $\tilde{P}_{\Phi}(\chi)$ is the unnormalized Gibbs measure

Marginalize with Unnormalized

Unnormalized Conditional Measure equivalent to Normalized Conditional Probability

$$\begin{split} \tilde{P}_{\Phi}\left(X\mid Y\right) &= P_{\Phi}\left(X\mid Y\right) \quad \text{since} \\ \tilde{P}_{\Phi}\left(\boldsymbol{X}\mid \boldsymbol{Y}\right) &= \frac{\tilde{P}_{\Phi}\left(\boldsymbol{X}, \boldsymbol{Y}\right)}{\tilde{P}_{\Phi}\left(\boldsymbol{Y}\right)} = \frac{\prod\limits_{\phi_{i}\in\Phi}\phi_{i}\left(D_{i}\right)}{\sum\limits_{X}\prod\limits_{\phi_{i}\in\Phi}\phi_{i}\left(D_{i}\right)} \\ P_{\phi}\left(\boldsymbol{X}\mid \boldsymbol{Y}\right) &= \frac{P_{\Phi}(X, Y)}{P_{\Phi}\left(Y\right)} = \frac{\frac{1}{Z}\prod\limits_{\phi_{i}\in\Phi}\phi_{i}\left(D_{i}\right)}{\frac{1}{Z}\sum\limits_{X}\prod\limits_{\phi_{i}\in\Phi}\phi_{i}\left(D_{i}\right)} \end{split}$$

Factor Product

- Let X, Y and Z be three disjoint sets of variables and let $\Phi_1(X,Y)$ and $\Phi_2(Y,Z)$ be two factors.
- The factor product is the mapping $Val(X,Y,Z) \rightarrow R$ as follows

$$\psi(X,Y,Z) = \Phi_1(X,Y) \Phi_2(Y,Z)$$

An example:

$$\Phi_1$$
: 3 x 2 = 6 entries

$$\Phi_2$$
: 2 x 2= 4 entries

$$\psi = \Phi_1 \times \Phi_2$$
 has $3 \times 2 \times 2 = 12$ entries

VE and Factor Creation

- In variable elimination
 - each step creates a factor ψ_i by multiplying existing factors
 - A variable is then eliminated to create a factor τ_I which is then used to create another factor

$$\begin{split} &P(C,D,I,G,S,L,J,H) = \\ &P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L)P(H|G,J) = \\ &\Phi_{C}(C)\;\Phi_{D}(D,C)\;\Phi_{I}(I)\;\Phi_{G}(G,I,D)\;\Phi_{S}(S,I)\;\Phi_{L}(L,G)\;\Phi_{J}(J,L,S)\;\Phi_{H}(H,G,J) \end{split}$$

$$\psi_{_{1}}\!\left(C,D\right) = \phi_{_{C}}\!\left(C\right) \phi_{_{D}}\!\left(D,C\right)$$

$$\tau_{_{1}}\!\left(D\right) = \sum_{C} \psi_{_{1}}\!\left(C,D\right)$$

Step	Variable	Factors	Variables	New	
o to p	eliminated	used	involved	factor	
1	C	$\phi_C(C), \phi_D(D,C)$	C,D	$ au_1(D)$	
2	D	$\phi_G(G,I,D), au_1(D)$	G, I, D	$ au_2(G,I)$	
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$	
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$	
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$	
6	S	$\tau_5(J,L,S),\phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$	
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$	

VE Alternative View

Alternative view

- We take ψ_i to be a data-structure
 - takes messages au_i generated by other factors ψ_i
 - and generates message τ_i used by another factor ψ_I

Step	Variable	Factors	Variables	New	
J. J.	eliminated	used	involved	factor	
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$	
2	D	$\phi_G(G,I,D), au_1(D)$	G, I, D	$ au_2(G,I)$	
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$	
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$	
5	\overline{G}	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$	
6	$\stackrel{\smile}{S}$	$ au_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$	
7	$\stackrel{\sim}{L}$	$ au_6(J,L)$	J, L	$ au_7(J)$	

$$\begin{aligned} \psi_{_{1}}\!\left(C,D\right) &= \phi_{_{C}}(C)\phi_{_{D}}\!\left(D,C\right) \\ \tau_{_{1}}\!\left(D\right) &= \sum_{C} \psi_{_{1}}\!\left(C,D\right) \end{aligned}$$

$$\overline{\psi_1(C,D)} = \phi_C(C)\phi_D(D,C) \qquad \overline{\tau_I(D)} \qquad \overline{\tau_I(D)$$

$$\tau_2(G,I)$$

$$\psi_{3}\left(G,I,S\right) = \phi_{I}\left(I\right)\phi_{S}\left(S,I\right)\tau_{2}\left(G,I\right)$$

$$\tau_{3}\left(G,S\right) = \sum_{I}\psi_{3}\left(G,I,S\right)$$

$$\tau_{\beta}(G,S)$$

$$\begin{array}{c}
\psi_{4}\left(G,J,H\right) = \phi_{H}(H,G,J) \\
\tau_{4}\left(G,J\right) = \sum_{H} \psi_{4}\left(G,J,H\right)
\end{array}$$

Example of Cluster Graph

- VE execution defines cluster graph (a flow-chart)
 - A cluster for each factor ψ_i

Draw edge between clusters C_i and C_j if message τ_i produced by eliminating a variable in ψ_i is used in the computation of τ_i

$$\boxed{\psi_1\Big(C,D\Big) = \phi_C(C)\phi_D\Big(D,C\Big) \qquad \tau_1\Big(D\Big) = \sum_C \psi_1\Big(C,D\Big)} \qquad \boxed{\psi_2(G,I,D) = \phi_G(G,I,D)\tau_1(D) \qquad \tau_2\Big(G,I\Big) = \sum_D \psi_2\Big(G,I,D\Big)}$$

– Edge between C_1 and C_2 since message $\tau_1(D)$ produced by eliminating C is used for $\tau_2(G,I)$

Arrows indicate flow of messages $\tau_I(D)$ generated from $\psi_I(C,D)$ participates In the computation of ψ_2

Cluster Graph Definition

- Cluster graph U for factors Φ over χ is an undirected graph
 - 1. Each of whose nodes i is associated with a subset $C_i \subseteq \chi$
 - Cluster graph is family-preserving
 - Each factor $\pmb{\phi}$ must be associated with a cluster $C_{i,}$ denoted $\alpha(\pmb{\phi})$ such that $Scope(\phi)\subseteq C_i$
 - 2. Each edge between pair of clusters C_i and C_j is associated with a sepset $S_{i,j} \subseteq C_i \cap C_j$
 - **E.g.**, $D \subseteq \{C, D\} \cap (D, I, G\}$

```
\begin{array}{c|c}
\hline
1: C,D & \xrightarrow{D} & 2: G,I,D & \xrightarrow{G,I} & 3: G,S,I \\
& \downarrow G,S & \\
\hline
5: G,J,S,L & \xrightarrow{J,S,L} & 6: J,S,L & \xrightarrow{J,L} & 7: J,L \\
& \uparrow G,J & \\
\hline
4: H,G,J & \\
\end{array}
```

Cluster Graph is a Directed Tree

- In a tree there are no cycles
- Directions for this tree are specified by messages
 - Since intermediate factor τ_i is used only once
 - Otherwise there would be more than one link for a node
- Called Clique Tree (or Junction Tree or Join Tree)

Definition of Tree

Tree

- a graph with only one path between any pair of nodes
- Such graphs have no loops
- In directed graphs a tree has a single node with no parents called a *root*
- Directed to undirected will not add moralization links since every node has only one parent

Polytree

- A directed graph has nodes with more than one parent but there is only one path between nodes (ignoring arrow direction)
- Moralization will add links

Undirected tree

Directed tree

Directed polytree

1. Definition

- If $X \in C_i \& X \in C_j$ then X is in every clique inbetween
 - In a clique, every pair of nodes is connected
 - In a maximal clique no more nodes can be added
- Ex: in cluster graph below, G is present in C_2 and C_4 and also present in clique inbetween: C_3 and C_4

```
\begin{array}{c|c}
\hline
1: C,D & \xrightarrow{D} & 2: G,I,D & \xrightarrow{G,I} & 3: G,S,I \\
& \downarrow & G,S \\
\hline
5: G,J,S,L & \xrightarrow{J,S,L} & 6: J,S,L & \xrightarrow{J,L} & 7: J,L \\
& \uparrow & G,J \\
\hline
4: H,G,J
\end{array}
```

2. A VE generated cluster graph satisfies running intersection property

Clique Tree

1. BN

2. Induced Graph

3. Some Cliques: {*C*,*D*}, {*G*,*I*,*D*},{*G*,*S*,*I*},{*GI*,*S*,*L*},{*H*,*G*,*J*}

4. A clique Tree that satisfies running intersection

Clique Tree Definition

- A tree T is a clique tree for graph H if
 - Each node in T corresponds to a clique in H and each maximal clique in H is a node in T

```
\begin{array}{c|c}
\hline
1: C,D & \xrightarrow{D} & 2: G,I,D & \xrightarrow{G,I} & 3: G,S,I \\
& \downarrow & G,S & \\
\hline
5: G,J,S,L & \xrightarrow{J,S,L} & 6: J,S,L & \xrightarrow{J,L} & 7: J,L \\
& \uparrow & G,J & \\
\hline
4: H, G,J & \\
\end{array}
```

- Each sepset $S_{i,j}$ separates $W_{\langle Ij,j\rangle}$ and $W_{\langle j,i\rangle}$ in H
 - Edge $S_{2,3}=\{G,I\}$ separates $W_{<(2,3)}=\{G,I,D\}$ and $W_{<(3,2)}=\{G,S,I\}$

Message Passing: Sum Product

- Proceed in opposite direction of VE algorithm:
 - Starting from a clique tree, how to perform VE
- Clique Tree is a very versatile Data Structure

Variable Elimination in a Clique Tree

- Clique Tree can be used as guidance for VE
- Factors are computed in the cliques and messages are sent along edges

Variable Elimination in a Clique Tree

- A Clique Tree for Student Network
 - This tree satisfies Running Intersection Property
 - i.e., If $X \in C_i \& X \in C_j$ then X is in every clique inbetween
 - Family Preservation property
 - i.e., each factor is associated with a cluster

Example of VE in a Clique Tree

- A Clique Tree for Student Network
 - Non-maximal cliques C_6 and C_7 are absent

- Assign α: initial factors (CPDs) to cliques
- First step: Generate initial set of potentials by multiplying out the factors
 - E.g., $\psi_5(J,L,G,S) = \phi_L(L,G) * \phi_J(J,L,S)$
- Root is selected to have variable J, since we are interested in determining P(J), e.g., C_5

Message Propagation in a Clique Tree

Root= C_5 To compute P(J)

> In C_I : eliminate C by performing $\left[\sum_{c} \psi_1(C,D)\right]$ The resulting factor has scope D. We send it as a message $\delta_{I-2}(D)$ to C_2

In C_2 : We define $\beta_2(G,I,D) = \delta_{I-2}(D)\psi_2(G,I,D)$. We then eliminate D to get a factor over G,I. The resulting factor is $\delta_{2-3}(G,I)$ which is sent to C_3 .

Message Propagation in a Clique Tree

Root= C_5 To compute P(J)

Root= C_3 To compute P(G)

VE as Clique Tree Message Passing

- 1. Let T be a clique tree with Cliques $C_1,...C_k$
- 2. Begin by multiplying factors assigned to each clique, resulting in initial potentials $\psi_j(C_j) = \prod_{\phi: \alpha(\phi)=j} \phi$
- 3. Begin passing messages between neighbor cliques sending towards root node

$$\boxed{\boldsymbol{\delta}_{i \to j} = \sum_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \boldsymbol{\psi}_i \cdot \prod_{\boldsymbol{k} \in \left(\boldsymbol{N}\boldsymbol{b}_i - \left\{j\right\}\right)} \boldsymbol{\delta}_{\boldsymbol{k} \to i}}$$

- 4. Message passing culminates at root node
 - Result is a factor called *beliefs* denoted $\beta_r(C_r)$ which is equivalent to

$$ilde{P}_{\!\scriptscriptstyle{\phi}}\!\left(\!C_{\!\scriptscriptstyle{r}}^{}
ight)\!=\sum_{\chi-C_{\!\scriptscriptstyle{r}}}\prod_{\phi}\phi\!\left|\!\!\!\!\!$$

Algorithm: Upward Pass of VE in Clique Tree

```
Procedure Ctree-SP-Upward (
                                       \Phi, // Set of factors
                                               // Clique tree over \Phi
                                               // Initial assignment of factors to cliques
                                                // Some selected root clique
                                     Initialize-Cliques
                                    while C_r is not ready
                                        Let C_i be a ready clique
                                    \begin{array}{c} \delta_{i \rightarrow p_r(i)}(\boldsymbol{S}_{i,p_r(i)}) \leftarrow \text{SP-Message}(i,p_r(i)) \\ \beta_r \leftarrow \psi_r \cdot \prod_{k \in \text{Nb}_{\boldsymbol{C}_r}} \delta_{k \rightarrow r} \end{array}
                                     return \beta_r
                                Procedure Initialize-Cliques (
                                    for each clique C_i
                       1
                                        \psi_i(\boldsymbol{C}_i) \leftarrow \prod_{\phi_j : \alpha(\phi_j)=i} \phi_j
                                Procedure SP-Message (
                                      i, // sending clique
                                           // receiving clique
                            \psi(oldsymbol{C}_i) \leftarrow \psi_i \cdot \prod_{k \in (\mathrm{Nb}_i - \{j\})} \delta_{k 
ightarrow i} \ 	au(oldsymbol{S}_{i,j}) \leftarrow \sum_{oldsymbol{C}_i - oldsymbol{S}_{i,j}} \psi(oldsymbol{C}_i)
return 	au(oldsymbol{S}_{i,j})
```

Clique Tree Calibration

- We have seen how to use the same clique tree to compute probability of any variable
- We wish to compute the probability of a large number of variables
 - Consider task of computing the posterior distribution over every random variable in network
 - As with HMMs with several latent variables

Ready Clique

- C_i is *ready* to transmit to neighbor C_j
 - when C_i has messages from all of its neighbors except from C_j
- Sum-product belief propagation algorithm
 - Uses yet another layer of dynamic programming
 - Defined asynchronously

Sum-Product Belief Propagation

Algorithm: Calibration using sum-product message passing in a clique tree

Procedure CTree-SP-Calibrate (

```
\Phi, // Set of factors T // Clique tree over \Phi )

1 Initialize-Cliques

2 while exist i,j such that i is ready to transmit to j

3 \delta_{i 	o j}(S_{i,j}) \leftarrow \text{SP-Message}(i,j)

4 for each clique i

5 \beta_i \leftarrow \psi_i \cdot \prod_{k \in \text{Nb}_i} \delta_{k 	o i}

7 return \{\beta_i\}
```

Result at End of Algorithm

- Computes beliefs of all cliques by
 - Multiplying the initial potential with each of the incoming messages
- For each clique i, β_i is computed as

$$\boxed{\beta_{i}\!\left(\boldsymbol{C}_{i}\right)\!=\!\sum_{\boldsymbol{\chi}-\boldsymbol{C}_{i}}\!\tilde{P}_{\!\scriptscriptstyle{\Phi}}\!\left(\boldsymbol{\chi}\right)}$$

 Which is the unnormalized marginal distribution of variables in C_i

Calibration Definition

- If X appears in two cliques they must agree on its marginal
 - Two adjacent cliques C_i and $C_k=j$ are said to be calibrated if $\sum_{C_i=S_{i,j}} \beta_i(C_i) = \sum_{C_j=S_{i,j}} \beta_j(C_j)$
- Clique tree T is calibrated if all adjacent pairs of cliques are calibrated
- Terminology:
 - Clique Beliefs: $\beta_i(C_i)$
 - Sepset Beliefs: $\mu_{i,j}(S_{i,j}) = \sum_{C_i S_{i,j}} \beta_i(C_i) = \sum_{C_j S_{i,j}} \beta_j(C_j)$

Calibration Tree as a Distribution

- A calibrated clique tree
 - Is more than a data structure that stores results of probabilistic inference
 - It can be viewed as an alternative representation of P_{ϕ}
- At convergence of clique tree calibration algorithm

$$\tilde{P}_{\!\scriptscriptstyle{\Phi}}\left(\chi\right) = \frac{\prod\limits_{i \in V_T} \beta_i\left(C_i\right)}{\prod\limits_{\left(i-j\right) \in E_T} \mu_{i,j}\left(S_{i,j}\right)}$$

Misconception Markov Network

 $\phi_1[A, B]$ $a^0 \quad b^0 \quad 30$ $a^0 \quad b^1 \quad 5$ $a^1 \quad b^0 \quad 1$ $a^1 \quad b^1 \quad 10$

Factors in terms of potentials

ϕ	$_3[C,$	D]
c^0 c^0 c^1 c^1	d^0 d^1 d^0 d^1	$100 \\ 100 \\ 1$

$\phi_2[B,C]$								
b^{0} b^{0}	c^0 c^1	100						
b^1 b^1	c^0 c^1	100						

Gibbs Distribution

$$P(a,b,c,d) = \frac{1}{Z}\phi_1(a,b)\cdot\phi_2(b,c)\cdot\phi_3(c,d)\cdot\phi_4(d,a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b) \cdot \phi_2(b,c) \cdot \phi_3(c,d) \cdot \phi_4(d,a)$$

$$Z=7,201,840$$

Assignment					Unnormalized	Normalized
	a^0	b^0	c^0	d^0	300000	0.04
1	a^0	b^0	c^0	d^1	300000	0.04
	a^0	b^0	c^1	d^0	300000	0.04
1	a^0	b^0	c^1	d^1	30	$4.1 \cdot 10^{-6}$
	a^0	b^1	c^0	d^0	500	$6.9 \cdot 10^{-5}$
	a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$
	a^0	b^1	c^1	d^0	5000000	0.69
	a^0	b^1	c^1	d^1	500	$6.9 \cdot 10^{-5}$
	a^1	b^0	c^0	d^0	100	$1.4 \cdot 10^{-5}$
	a^1	b^0	c^0	d^1	1000000	0.14
	a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$
	a^1	b^{0}	c^1	d^1	100	$1.4 \cdot 10^{-5}$
	a^1	b^1	c^0	d^0	10	$1.4 \cdot 10^{-6}$
	a^1	b^1	c^0	d^1	100000	0.014
	a^1	b^1	c^1	d^0	100000	0.014
	a^1	b^1	c^1	d^1	100000	0.014

Beliefs for Misconception example

 One clique tree consists cliques {A,B,D} and {B,C,D} with sepset {B,D}

- Tree obtained either from (i) VE or from (ii) triangulation (constructing a chordal graph)
- Final clique potentials and sepset

ſ											
١	Acci	anment	\max_C					A cc	ionr	nent	
- 1									ngm.		
١		$b^{0} \mid d^{0} \mid$	600,000					b^0	c^0	d^0	300.1
١		$b^0 \mid d^1 \mid$	300,030		Assignment	$\max_{A,C}$		b^0	c^0	d^1	1,300.
١		$b^1 \mid d^0 \mid$	5,000,500		$b^0 \mid d^0$	600,200		b^0	c^1	d^0	300,1
١		$b^1 \mid d^1 \mid$	1,000	1	$b^0 \mid d^1$	1,300,130		b^0	c^1	d^1	
١		$b^0 \mid d^0 \mid$	200	1	$b^1 \mid d^0$	5, 100, 510		b^1	c^0	d^0	
١		$b^0 \mid d^1 \mid$	1,000,100	1	$b^1 \mid d^1$	201,000		b^1	c^0	d^1	100.3
١	a^1	$b^1 \mid d^0 \mid$	100,010					b^1	c^1	d^0	5, 100,
١	a^1	$b^1 \mid d^1$	200,000					b^1	c^1	d^1	100.3
١	$\beta_1(A,B,D)$			$\mu_{1,2}(B,D)$			$\beta_2(B,C,\mathbf{D})$				
- 1					,						

• Potential from Gibbs and Clique Tree are same: $\tilde{P}_{\Phi}(a^1,b^0,c^1,d^0)=100$

$$\begin{split} \tilde{P}_{\Phi}\left(a^{1},b^{0},c^{1},d^{0}\right) &= 100 \\ \frac{\beta_{1}\left(a^{1},b^{0},d^{0}\right)\beta_{2}\left(b^{0},c^{1},d^{0}\right)}{\mu_{1,2}\!\left(b^{0},d^{0}\right)} &= \frac{200\cdot300\cdot100}{600\cdot200} = 100 \end{split}$$

Message Passing: Belief Update

- Alternative Message Passing Scheme
- Involves operations on reparameterized distribution in terms of
 - cliques $\{\beta_i(C_i)\}$, $i\varepsilon V_T$ and
 - sepset beliefs $\{\mu_{i,j}(S_{i,j})\}$, $(i--j) \in V_T$

Message Passing with Division

• Multiply all the messages and then divide the resulting factor by $\delta_{i\rightarrow i}$

Factor Division

- Message Passing with Division
- An example of factor division

Constructing a Clique Tree

- Two approaches to construct a clique tree from a graph
 - From Variable Elimination
 - From Chordal Graphs

Clique Tree from VE

- Execution of Variable Elimination can be associated with a cluster graph
 - Satisfies running intersection property and is hence a clique tree

Unambitious Student

Variable Elimination with ordering J,L,S,H,C,D,I,G results in clique tree:

Clique Tree from Chordal Graphs

• There exists a clique tree for Φ whose cliques are precisely the maximal cliques in $I_{\Phi,<}$

Triangulation: construct chordal graph subsuming

existing graph

1. Undirected factor graph

- 2. A triangulation
- 3. Cluster graph
 - With edge weights

Algorithm: Clique Tree from Chordal Graph

- Given a set of factors, construct the undirected graph H_{Φ}
- Triangulate H_{ϕ} to construct Chordal Graph H^*
- Find cliques in H*, and make each one a node in a cluster graph
- Run the maximal spanning tree algorithm on the cluster graph to construct a tree