QUANTITAT DE MOVIMENT

Quantitat de moviment d'una partícula: $\vec{P} = m \vec{v}$

La segona llei de Newton es pot escriure en funció de la quantitat de moviment, sempre que es conservi la massa (Ex per velocitats properes a la de la llum la massa canvia):

$$\overrightarrow{F} = m \overrightarrow{a} = m \frac{d\overrightarrow{v}}{dt} = \frac{d(m \overrightarrow{v})}{dt} = \frac{d\overrightarrow{P}}{dt}$$

Impuls:

Suposem una força que actua sobre una partícula durant un temps molt curt, entre t₁ i t₂.

$$\int_{\vec{P}_1}^{\vec{P}_2} d\vec{P} = \int_{t_1}^{t_2} \vec{F} dt = \text{Impuls} \qquad \overrightarrow{P}_2 - \overrightarrow{P}_1 = \vec{I}$$

Si representem la força en funció del temps, el mòdul de l'impuls és l'àrea de sota la corba.

Teorema de la quantitat de moviment: L'impuls de la força resultant que actua sobre una partícula, és igual a la variació de la quantitat de moviment d'aquesta partícula.

TREBALL

Una força aplicada a un objecte realitza un treball si es produeix un desplaçament de l'objecte i hi ha una component de la força en la direcció del moviment.

$$W_{AB} = \int_{A}^{B} \vec{F} \cdot d\vec{r}$$

El treball és un producte escalar de dos vectors, el vector força i el vector desplaçament.

El treball és un escalar

Unitats de treball en el S.I. d'unitats: Joules (J).

1 J = 1 N.m

PRODUCTE ESCALAR DE DOS VECTORS

$$\vec{A} \cdot \vec{B} = A B \cos \varphi$$

$$\overrightarrow{A} \cdot \overrightarrow{B} = 0$$
 si $\overrightarrow{A} = 0$ o bé $\overrightarrow{B} = 0$ o bé $\overrightarrow{A} \perp \overrightarrow{B}$

En components:

$$\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$$

$$\vec{B} = B_x \vec{i} + B_y \vec{j} + B_z \vec{k}$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\vec{i} \cdot \vec{i} = 1$$

$$\vec{j} \cdot \vec{j} = 1$$

$$\vec{k} \cdot \vec{k} = 1$$

$$\vec{A} \cdot \vec{A} = A^2$$

TEOREMA DE L'ENERGIA CINÈTICA O TEOREMA DE LES FORCES VIVES

$$W_{AB} = \int_{r_A}^{r_B} \vec{F} \cdot d\vec{r} = \int_{r_A}^{r_B} m \frac{d\vec{v}}{dt} \cdot d\vec{r} = \int_{v_A}^{v_B} m \vec{v} \cdot d\vec{v} = \int_{v_A}^{v_B} m v dv = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

$$\frac{d\vec{v}}{dt} = \frac{d\vec{v}}{d\vec{r}} \cdot \frac{d\vec{r}}{dt} = \frac{d\vec{v}}{d\vec{r}} \cdot \vec{v} \qquad \vec{v} \cdot \vec{v} = v^2 \implies \vec{v} \cdot d\vec{v} = v \, dv$$

$$W_{AB} = \frac{1}{2} \text{ m } v_B^2 - \frac{1}{2} \text{ m } v_A^2 = \Delta E_{cinètica}$$

El treball realitzat per una força sobre una partícula és igual a la variació de la seva energia cinètica

FORCES CONSERVATIVES

Una força és conservativa si el treball fet per aquesta força sobre una partícula no depèn del camí seguit, només depèn dels punts inicial i final.

Si la partícula descriu un camí tancat i torna a la posició inicial, el treball fet per la força conservativa és nul.

FUNCIÓ ENERGIA POTENCIAL

Com que el treball fet per les forces conservatives no depèn del camí seguit, es pot definir una funció energia potencial associada a la força conservativa.

Considerant l'origen d'energia potencial a \vec{r}_o , calculem el treball fet per la força conservativa sobre una partícula, des de l'origen d'energia potencial \vec{r}_o fins al punt de vector de posició \vec{r} .

Aquest treball fet per una força conservativa sobre una partícula, canviat de signe, l'anomenem energia potencial de la partícula.

FUNCIÓ ENERGIA POTENCIAL

Si volem calcular el treball fet per la força conservativa entre un punt inicial de vector de posició \vec{r}_1 i un punt final de vector de posició \vec{r}_2

El treball fet per una força conservativa sobre una partícula és igual a la disminució d'energia potencial de la partícula.

CONSERVACIÓ DE L'ENERGIA MECÀNICA

Per una banda, hem trobat que el treball realitzat per una força sobre una partícula entre el punt inicial 1 i el punt final 2 és igual a la variació de l'energia cinètica de la partícula.

$$W_{1\to 2} = \frac{1}{2} \text{ m } v_2^2 - \frac{1}{2} \text{ m } v_1^2 = \Delta E_{\text{cinètica}} = E_{\text{cin}_2} - E_{\text{cin}_1}$$

També hem vist que, si la força és conservativa, es compleix:

$$W_{1\to 2} = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r} = U(\vec{r}_1) - U(\vec{r}_2) = U_1 - U_2$$

D'aquestes dues igualtats es dedueix la conservació de l'energia mecànica quan sobre la partícula només actuen forces conservatives.

$$E_{cin_2} - E_{cin_1} = U_1 - U_2$$

$$E_{mec} = E_{cin} + U = constant$$

Si només actuen forces conservatives, l'energia mecànica de la partícula es conserva

VARIACIÓ DE L'ENERGIA MECÀNICA QUAN TAMBÉ ACTUEN FORCES NO CONSERVATIVES

El treball fet per una força no conservativa si que depèn del camí seguit entre el punt inicial i el punt final.

Si sobre una partícula actuen forces conservatives i forces no conservatives:

$$\vec{F}_{Total} = \vec{F}_{conser.} + \vec{F}_{no conser.}$$

Per una banda tenim que el treball fet per la \vec{F}_{Total} entre el punt 1 i el punt 2 és:

$$W_{1\rightarrow 2} = \Delta E_{cinètica} = E_{cin_2} - E_{cin_1}$$

Aquest mateix treball es pot expressar com:

$$W_{1\to 2} = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_{Total} \cdot d\vec{r} = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_{conser} \cdot d\vec{r} + \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_{no \ conser} \cdot d\vec{r} = U_1 - U_2 + \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_{no \ conserv} \cdot d\vec{r}$$

$$E_{cin_2} - E_{cin_1} = U_1 - U_2 + W_{Forces no conservatives}$$
 $\Delta E_{mec} = W_{Forces no conservatives}$

$$\Delta E_{\text{mec}} = W_{\text{Forces no conservatives}}$$

POTÈNCIA

Potència: És el treball realitzat o energia transferida per unitat de temps.

Unitats en el S.I.: Watts (W). 1W = 1J/s

$$P = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$$

La potència és un escalar. El treball fet per unitat de temps (potència) per la força \vec{F} sobre una partícula que es mou amb velocitat instantània \vec{v} es pot expressar com el producte escalar del vector força pel vector velocitat.

Una altra unitat de potència molt utilitzada: 1 C.V. = 735,5 W

1 Kw.h = $1000 \text{ W} \times 3600 \text{ s} = 3.6 \cdot 10^6 \text{ J}$ (Kw.h és una unitat d'energia)