LUMINESCENT SCREEN MADE FROM LUMINESCENT NITRIDE

Patent application number: JP60-206889

Publication date: 1985-10-18

Inventor: POPMA THEO, JOHAN AUGUST

Applicant: PHILIPS NV

Classification:

- international: C09K11/64; H01J29/20; H01J61/44

- european: C09K11/30D; C09K11/36D; C09K11/44J; C09K11/46D

Application number: JP19850036681 19850227 Priority number(s): NL19840000660 19840301

Abstract not available for JP60-206889

Abstract of corresponding document: EP0155047

A luminescent screen provided with a luminescent oxynitride according to the formula Si6-xAlxOxN8-x:Ay, in which A represents at least one activator from the group Cu, Ag, Zr, Mn, In, Bi and the lanthanides. Up to 75 mol.% of the Al can be replaced by B and/or Ga, whereas y</=x</=4.5 and 0.01</=y</=1.5.

Data supplied from the esp@cenet database - Worldwide

① 特許出願公開

◎ 公 開 特 許 公 報 (A) 昭60 - 206889

· @Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和60年(1985)10月18日

C 09 K 11/64 H 01 J 29/20 61/44 7215-4H 6680-5C 6722-5C

6722-5C 審査請求 未請求 発明の数 1 (全 4 頁)

図発明の名称 発光窒化物からなる発光スクリーン

②特 願 昭60-36681

❷出 願 昭60(1985)2月27日

優先権主張 図1984年3月1日図オランダ(NL)図8400660

砂発 明 者 テオ・ヨハン・アウフ オランダ国7531 ハーカー エンスヘデ ヴアールウエル

スト・ポプマ クホルスト 25

⑪出 顋 人 エヌ・ベー・フイリツ オランダ国5621 ベーアー アインドーフエン フルーネ

プス・フルーイランペ . ヴアウツウエツハ1

ンフアブリケン

砂代 理 人 弁理士 杉村 暁秀 外1名

44 AB 1

1.発明の名称 発光器化物からなる発光スクリ

2. 特許請求の範囲

1 選化物として、式:

Sia-xAlxOxNa-x:Ay

(式中、A II Al を置換する Ou, Ag, Z_T , k_n , I_n , B_1 かよびランタニドからなる群から選択した少なくとも 1 種の活性剤元素を示し、 および Al の 7 5 モルラまでを B および/または G_8 で置換できる)で扱わされ、 $y \le x$ ≤ 4.5 および $0.01 \le y \le 1.5$ の要件を瀕した オキン登化物を用いたことを特徴とする発光 図化物からなる発光スクリーン。

1 オキシ登化物を式:

S16-xAex-p-qAp+Aq+Ox-pN6-x-p

(式中、 A^{8+} t M_{n} Z_r および二価のランタェドからなる評から選択した少なくとも1種

の活性剤元素を示し、および A³⁺ は In, B 1 および三価のランタニドからなる群から選択した少なくとも 1 種の活性剤元素を示す)で 扱わされ、

 $0.01 \le x \le 4.5$, $0.01 \le p+q \le 1.5$,

0≤p≤1.5 および0≤q≤1.5 の要件を 適した留化物とした特許額求の範囲第1項記 数の発光スクリーン。

- ま オキシ鼠化物はタシアロン結晶構造を有する特許額束の範囲第1または®項配敷の発光スクリーン。
- 要件として1≤×≤4または0.05≤p+q≤
 0.50を満した特許請求の範囲第1または8項 記載の発光スクリーン。
- 8 要件として1≤×≤4 および 0.05 ≤ p+q ≤ 0.60 を満した特許請求の範囲第 3 または 8 項配数の発光スクリーン。
- a p=0および A⁸⁺ は三価のランタニドの少 なくとも1種の元素を示す特許請求の範囲第

8, 8または 8 項記載の発光スクリーン。 8. 発明の静細な説明

本発明に発光度化物を有する発光スクリーンに関する。

発光材料に関する広範囲にわたる文献には、多数の材料が記載されており、発光強化物は付随的に見出されている。ドイツ特許第 9 8 9 0 号明 細帯にはマンガン・活性理化アルミニウム (A&N) が記載されている。文献「Izv.Akad.Nauk SSSR, Neorg.Mater.」17 (8), 1681~5 (1981)にはランタニドで活性化した強化シリコン マグネッウム (MgSiNg) が記載されている。この発光器化物は、例えば放電灯または隣極線管の発光スクリーンに、実際上利用されていない。

本発明の目的は極めて安定な結晶格子を有する 新規な発光材料をよび適当な活性剤元素からなる 発光スクリーンを提供することである。

本発明の発光窒化物からなる発光スクリーンは、 窒化物として式 Si_{6-X}Al_XO_XN_{8-X}: Ay (式中、A は Al を 置換する Ou. Ag. Zr. Nn, In. Bi かよび ランタニドからなる肝から選択した少なくとも1種の活性剤元素を示し、および Ae の7 5 モル 5 までを B および / または Ga で世換できる)で扱わされ、 y ≤ x ≤ 4.5 および 0.01 ≤ y ≤ 1.5 の要件を消したオキン量化物 (oxynitride)を用いたことを特徴とする。

S1 および Al のオキシ 選化物 口上述する括性剤 元素に対して侵れたホスト格子 (Nost lattices) を形成することは確められている。これらのオキシ 選化物格子はそれ自体知られている。「Boi.」 11、1185~58(1078))。 S1-Al-O-N 系の材料はシアロン (Sialon) と命名されている。このシアロンは Mi をラミンク材料である。また、このシアロンは Si を Al に、 および Nを O に 同時に 置換することにより 鍵化速無 (Si N 4) から形成される。 Si N 4 の構造と 同様に (α相かよび A 相において生ずる)、 ンプロンは α および A 相において生ずる)、 ンプロンは α および A 相において生ずる。このために、 α シアロンとして示されている。上記式から明らかなように、S1 の大体 7 5 モルチを Al で 世換す

るととができる(X ≤ 6.5)。これより高い Al 含有量では、もはヤシアロン結晶構造が得られない。 更に、シアロンにかいて、Al を B かよび Ga で大体? 5 モル多まで置換することができる。これ以上のB かよび Ga 含有量は、シアロン構造を失い、かつ発光効率を著しく低下するために用いることができない。発光オキシ鼠化物における活性剤含有量 y は上述する規定の範囲で適択する。 y の数値が 0.01 以下では、励起エネルギーの吸収があまり小さくなり、これに対して y の数値が 1.5 以上では発光効率が集中急冷(concentration quenching)により低下する。

本発明の発光スクリーンにおける発光オキシ盤化物は架外線により、電子によりまたはよー線により満足に励起することができる。 放射する輻射線は活性剤として用いる元素で特徴づけられる。それ故、例えば発光オキシ盤化物を用いる中ャリャーからなるスクリーンは放電灯、 陰極線管およびメー級スクリーンに有利に用いることができる。

本発明の発光スクリーンの大きい利点は使用す

・るオキン盤化物が極めて安定であるととである。 このために、実際上、高温および高励起エネルギー密度を受けることができる。勿顧、この群は、 例をば重負荷放電灯および重負荷路極級管におい て重要である。また、発光オキン盤化物は O: N 比によりホスト格子の吸収端および活性剤中心の 吸収パンドをある制限内に調節できる利点を有す る。それ故、与えられた用途において使用する励 起に対してある適用を得ることができる。

活性剤元業 A が三価でない 場合、 A & を A で 酸換する場合には、 その割合を O : N 比を適当に調査をは、 定位 が することによつて 補債 する。 二価 および / 三価 の 活性剤を 含有する 発光 オキン 短化物 が 好ましい。この ために、 本 発明 の 発光 スクリーン は、

式 $S1_{6-x}A\ell_{x-p-q}A_p^{a+}A_q^{a+}O_{x+p}N_{8-x-p}$ (式中、 A^{a+} t M_n , Z_r および二颌ランタニトからなる 野から選択する少なくとも1種の活性 刻元 案を示し、 および A^{a+} t I_n , B_1 および三価 ランタニトから なる 静から 選択する 少なくとも 1種 の 活性 剤元 累

'を示す)で扱わされ、かつ 0.01 ≤×≤ 4.8。 $0.01 \le p+q \le 1.8$, $0 \le p \le 1.8$ \$ \$ \$ \$ 0 $\le q \le$ 1.5 の要件を消すオキシ母化物を用いるのが好す

一般に、最大効率はメシアロン結晶構造を有す るオキシ盘化物からなる発光スクリーンによつて 得ることができる。このために、このスクリーン が好ましい。

発光スクリーンが、1≤×≤4を満し、かつ活 性剤含有量を 0.05 以上とし、しかも 0.50 以下と する、すなわち 0.08 ≤ y ≤ 0.80 または 0.08 ≤ P + Q ≤ 0.50 を満ナオキシ盤化物を含有する場合に、 最適な結果を得ることができる。

本発明の発光スクリーンの好適な例では、活性 剤元素を1種または3種以上の三価のランタニド にする。とれらの活性剤によつて、実際使用にも つとも適当な放射を得ることができる。

一般に、発光オキシ登化物は高温で固態反応に より得ることができる。それ故、極めて純粋な出 発材料(例えば SiaNa AlaOa およびAlN)を使

中1800~1800℃の範囲の温度で数時間にわた つて行う。 次に本発明を本発明の発光スクリーンに適当な

'用する。反応は、例えば中性または弱型元券囲気'

多数の発光オキシ窒化物についての例を挙げて既ご 明する。

突施例 1

温合物を次に示す成分から作つた:

S1,N 0.7014 8 0.4888 9 AC,O, ALN 0.2080 8 Tb O, 0.0561 9 0.2065 8 CeO,

.上記混合物を手で圧縮して小球体にした。この 小球体を炉内の AlaO。るつぼで1550 C の温度で 8時間にわたり加熱した。加熱中、炉内に純粋單、 素(1 ppm 以下の散素機度)の流れ(100cc/分) を消して、炉内を中性雰囲気に維持した。冷却後、 生成物を粉砕した。得られた粉末は式 SigAeg.

'Ce_{0.24}Tb_{0.08}O₈Na に相当するセリウムおよびテル ピゥムで活性したオキシ盤化物であつた。この粉 宋は、例えば紫外線で励起して特有の Tb 放射を 示した。更に、この得られたオヤン質化物粉末を X 一般回折分析したところ、この粉末はβシアロ ン構造を有し、他の相の存在は痕跡にすぎないこ とを確めた。

実施例 8

本例を実施例1に配敷すると全く同様に行つた。 しかし、この場合、加熱中に黒鉛粉末を炉に入れ た。この結果、炉内を弱湿元努囲気にした。得ら れた生成物は実施例1で得た生成物と同じ式を有 し、殆んど间様の発光特性を有していた。また、 生成物はβシアロン構造を有していることを確め Æ.

突始例8~87

実施例lおよびiのそれぞれに記載されている と同様に反応を行つて、異なる活性剤元素を有す る多数の発光オキシ壁化物を得た。得られた発光 オキン選化物を表1に示す。長1には得られた各、 盤化物の分子式を示している。また、袋1の「跳」 製」の項目の欄の1は上記実施例1(中性雰囲気) による方法を示し、また2は実施例 8 (對磁元器 囲気)による方法を示している。更に、恐しには 得られた各発光オキシ壁化物の例定結果を示して、 いる。「Amax放射」の側は放射バンドの敏大スペ クトル (n.□) の位置を示しており、「lexc」の枷 は励起祭外線の波長(nm)を示し、また「7re/」 の欄は彼長 lexc で励起した朕に生する発光の相 対効率を示している(任意単位)。その故、実施・ 例1の「vree」を100になるようにした。 4つ の実施例(1、5、24 および26)において 854 nm で励起した際の絶対量子効率(多)を測定し、 これらの測定値を「V₂₅₄」の欄に示す。

果 海 海	. ₩	ተ	忧	33	And	(00)	.re	3
-	Si, AC,, C	S13462., CB6.24TD6.0603N6	3 N C SI	7	543	810	100	18
04	SigAC 8.7C	SisAle., Och. St Tbo.ocos No	3 N S O S O	sa .	245	810	9	
.60	Si, 468.70	SigAlg., Geo. 84 Tb 0.0604 N4	. ***0ac	49	5 + 5	310	11	
•	Si,461.7	Si, A.C., Ceo. 2, Tbo. 06 0 8 N6	94 8 0 90	*	9.45	810	8	
•	St. A 60.7	Sishto, Coo. 24 Tbo. 04 ON	*NO PO		245	810	102	* .
•	St. A.C., G	S1346 2.7 Gd 0.08 TD 0.24 0 8 N 5	84043	~	545	880	088	
- -	81,468.FI	S13A6 8. 7 Dy 0. 06 TO 0. 24 0 3 N	*KO**	-	545	830	8.	
6 0	S1, A6, 8.94	S13A4 3.94 Cu 9.06 O 3.18 N 4.88	8 4.88.	~	855	300	•	
a	Sight 2.84	SigA. 2.94 TD 0.06 0 3 Hg		-	92 93	870	20	
10	SigAlg. 04	S13 & C 2.04 Yb 0.00 O 3 M 5	, 4	**	38.0	870	18	
11	Si, A & 1.94	Si3A& 2.95 Zr 0.00 02.00 H 4.04	N 4.94	-	855	815	. 0	
13	S1,462.94	S13 AC 2,94 MD 0,06 O 3.06 N 4.94	4.94 B	<u>.</u>	415	800	ko.	
18	S1, A & 2.94	SigA & 2.94 In 6.06 Os Ng		-	8 5 5	800	•	
*	S18448.94	S18 A & 8.94 AP 9.04 O 8.18 N 4.88	8N 4.88	-	848	88	ю	
25	S1, A.C. 8.94	S1, AL s. 94 Bio. 96 Os N	•	-	855	800	•	
16	S1,44,8	S13421.8B11.8O8Ne		~	413	870	2	
11	SigA. 2.07	SigArsnorSmo.osOaNe	۰	•	988	800	8	
18	Si, A. 2.04	SisA£2.04SB0.00OBN4	_•	_	4.0	800	\$	
8	S18 46 3.94	S18 AC 8.04 Sno.08 03 Ne		44	4.0	300	11	
0	S1846 8.97	S13463.97Ce0.0303Ns	. 49		. 450	815	. 80	
18	S18A68.94	S18A88.94Ce0.04O3N6	_•	_	0++	800	5.	
eq 00	Sishes. 81	SisAfs. 88 Ceo.13 Og Na	_•	-	094	815	80	
65 65	SisACs. 91	SisAfr. 97 Eug. 03 0 8.03 N 4.97	08 N 4.97		410	270	*	
*	Sis 4 (3.9,	SisAt 3.94 Su 0.06 O 3.06 N	96.4 N 90		0,,	860	÷ .	88
8	31,462.81	S1, A£ 2.88 Eu 6, 12 0 8.12 N	13 N 4.68		110	265	80	
98	Stable.p.	SisAfr.paTbo.osOsNs	ور		548	8 45	2	99
69	94 40	N C 45 97 50		_	848	3 7 6	;	_

宴旅纲 28~81

実施例1(中性加熱雰囲気)に配敷していると同様にして発光オキン鍵化物を作つた。たいし、この場合、アルミニウムを研究またはガリウムで1配分置換した。かよりにして得たる種の材料の分子式を数 8 に示す。これらのも種の材料はTbで活性化し、 5 + 8 nm で 1 max を有する特有のTb 放射を示した。表中、「1 exc」の概は側定において使用した励起輻射線の放長を示しており、また「1」は放長「1exc」で励起した際の量子効率に(5)を示している。

272 S

契施例	Я	子	式	dexo (nm)	η (\$)
28	Bi, Al	Tb 0.5 B	1.5 O 8 N 5	840	5.8
8,9	SigAd	o.98 Tb o	.o1BgOaNa	288	87
80	Si,Aé	0. 87 Tb	.os BO s N s	880	8.0
81	SiA	0.7 Tb 0	.sGaOaNs	885	10