Optimal Spatial Policies, Geography and Sorting

Pablo D. Fajgelbaum Cecile Gaubert

UCLA and NBER UC Berkeley and NBER

September 2019

Motivation

Spatial concentration of economic activity leads to spillovers

- ProductivityAmenities
- Different across workers (e.g. by skill)
- Relevant to explain geographic distribution of economic activity
 - Wages and city size
 - Sorting by skill (college graduates)
- Governments routinely shape the spatial distribution through policies
 - Place-based policies
 - Taxes and transfers

- Research questions
 - Is the observed spatial allocation inefficient?
 - What policies (taxes and transfers) would restore efficiency?
 - Are spatial income disparities and sorting too strong?

This Paper

- Spatial equilibrium model with various dimensions of heterogeneity
 - Flexible economy geography, e.g. Allen and Arkolakis (2014)-Redding (2016)
 - Worker sorting and spillovers, e.g. Diamond (2016)
 - Key generalization: transfers across regions and workers
- Characterization of optimal spatial transfers and policies
 - Homogeneous workers and constant elasticities: generically inefficient
 - Additional source of inefficiency due to sorting
- Quantification on U.S. data across MSA's using existing spillover estimates
 - Welfare gains 3%-6% due to inefficient sorting
 - Observed urban premia (wages, sorting, returns to skill) too strong

Literature Background

- Optimal policies with externalities: Sandmo (1975), Dixit (1985), Brown and Heal (1983)
- Optimal city sizes: Henderson (1974), Helpman (1980), Albouy et al. (2017), Eeckhout and Guner (2017)
- Quantitative Economic Geography: Eaton and Kortum (2002), Krugman (1991),
 Helpman (1998), Allen and Arkolakis (2014), Caliendo et al. (2014), Redding (2016),
 Ahlfeldt et al. (2015), Desmet and Rossi-Hansberg (2014), Monte et al. (2018),...
- Spatial Sorting: Combes at al. (2008), Moretti (2013), Baum-Snow and Pavan (2013), De la Roca and Puga (2017), Diamond (2016), Giannone (2017), Behrens et al. (2014), Davis and Dingel (2016), Helsley and Strange (2014), Eeckhout at al. (2014)
- Spatial Misallocation:
 - Wedges: Brandt et al. (2013), Desmet and Rossi-Hansberg (2013), Hsieh and Moretti (2015)
 - Policies: Fajgelbaum et al. (2018), Gaubert (2018), Ossa (2015)
- Place-based Policies: Glaeser and Gottlieb (2008), Kline and Moretti (2014), Neumark and Simpson (2015), Duranton and Venables (2018),..

Simple Example

- $j \in 1,...,N$ city sites, homogeneous workers
 - L_i : population in city j
- Utility of a worker in city j: $u_j = a_j (z_j + t_j)$
 - $a_j = A_j L_j^{\gamma_A}$: amenity
 - $z_j = Z_j L_i^{\gamma_P}$: output per worker
 - t_i : transfer
- Free mobility: $u_j = u$
- Starting from no transfers, reallocate dL from i to j then:

$$\frac{du}{u} \propto \left(\gamma^P + \gamma^A\right) (z_i - z_j) dL$$

- ullet Welfare gains from transfers \longleftrightarrow there are compensating differentials
- Even if elasticities are constant

Simple Example

- $j \in 1,...,N$ city sites, homogeneous workers
 - L_j : population in city j
- Utility of a worker in city j: $u_j = a_j (z_j + t_j)$
 - $a_j = A_j L_j^{\gamma_A}$: amenity
 - $z_j = Z_j L_j^{\gamma_P}$: output per worker
 - t_j : transfer
- Free mobility: $u_j = u$
- Starting from no transfers, reallocate dL from i to j then:

$$\frac{du}{u} \propto \left(\gamma^P + \gamma^A\right) (z_i - z_j) dL$$

- ullet Welfare gains from transfers \longleftrightarrow there are compensating differentials
- Even if elasticities are constant

Quantitative Model

- Add:
 - ullet Multiple types θ with asymmetric spillovers
 - Production of differentiated tradeable goods and non-tradeables
 - Land, labor and intermediate inputs in production
 - City-type specific productivities and amenities
 - Trade frictions
- Characterize transfers that implement global optimum

Preferences and Labor Aggregate

• Utility of a type- θ worker in city j:

$$u_j^{\theta} = U\left(c_j^{\theta}, h_j^{\theta}\right) a_j^{\theta}\left(L_j^1, ..., L_j^{\Theta}\right)$$

- $U(c_i^{\theta}, h_i^{\theta})$: traded and non-traded ("housing") consumption
- $a_j^{\theta}(L_j^1,..,L_j^{\Theta})$: local amenities of type θ city j
- Labor aggregate:

$$N_j \equiv N\left(\mathbf{z}_j^1 L_j^1, ..., \mathbf{z}_j^{\Theta} L_j^{\Theta}\right)$$

- Imperfect substitution
- $z_j^{\theta} = z_j^{\theta} (L_j^1, ..., L_j^{\Theta})$: productivity of type θ in city j
- Spillover Elasticities:
 - Productivity: $\gamma_{\theta,\theta'}^{P,j} \equiv \frac{L_j^{\theta}}{z_i^{\theta'}} \frac{\partial z_j^{\theta'}}{\partial L_j^{\theta}}$
 - Amenities: $\gamma_{\theta,\theta'}^{A,j} = \frac{L_j^{\theta}}{a_{\theta'}^{\theta'}} \frac{\partial a_j^{\theta'}}{\partial L_j^{\theta}}$

Preferences and Labor Aggregate

• Utility of a type- θ worker in city j:

$$u_j^{\theta} = U\left(c_j^{\theta}, h_j^{\theta}\right) a_j^{\theta}\left(L_j^1, ..., L_j^{\Theta}\right)$$

- $U(c_i^{\theta}, h_i^{\theta})$: traded and non-traded ("housing") consumption
- $a_j^{\theta}\left(L_j^1,..,L_j^{\Theta}\right)$: local amenities of type θ city j
- Labor aggregate:

$$N_j \equiv N\left(\mathbf{z}_j^1 L_j^1, ..., \mathbf{z}_j^{\Theta} L_j^{\Theta}\right)$$

- Imperfect substitution
- $z_j^{\theta} = z_j^{\theta} (L_j^1, ..., L_j^{\Theta})$: productivity of type θ in city j
- Spillover Elasticities:
 - Productivity: $\gamma_{\theta,\theta'}^{P,j} \equiv \frac{L_j^{\theta}}{z_i^{\theta'}} \frac{\partial z_j^{\theta'}}{\partial L_j^{\theta}}$
 - Amenities: $\gamma_{\theta,\theta'}^{A,j} = \frac{L_j^{\theta}}{a_j^{\theta'}} \frac{\partial a_j^{\theta'}}{\partial L_j^{\theta}}$

Sector Level Production and Trade

- Differentiated traded good produced in j: $Y_j = Y_j \left(N_i^Y, I_i^Y \right)$
 - Q_{ji} exported to city i
 - ullet trade cost $d_{ji} \geq 1$
- ullet Bundle of traded goods consumed in j: $Q\left(Q_{1j,...},Q_{Nj}
 ight)=C_{j}+I_{j}^{Y}+I_{j}^{H}$
- Non Traded good: $H_j = H_j(N_i^H, I_i^H)$
 - decreasing returns in $H_j \rightarrow$ housing supply elasticity

Competitive Equilibrium

• Type- θ worker:

$$u^{\theta} = \max_{j,c,h} U(c,h) a_{j}^{\theta}$$

$$s.t. P_{j}c + R_{j}h = x_{j}^{\theta}$$

- Expenditure: $\mathbf{x}_{j}^{\theta} = \mathbf{w}_{j}^{\theta} + \mathbf{b}^{\theta} \Pi + \mathbf{t}_{j}^{\theta}$
- Producers
 - Maximize profits in each sector
 - Wage: $w_j^{\theta} = W_j \frac{\partial N(z_j^1 L_j^1, ..., z_j^{\Theta} L_j^{\Theta})}{\partial L_j^{\theta}}$.
- Government budget balance = zero net transfers
- + Market clearing conditions

Planner's problem

 \bullet Planner chooses $\{L_j^\theta, c_j^\theta, h_j^\theta, Q_{ji}, l_j^Y, l_j^H\}$ to solve

$$\begin{array}{l} \max \, u^{\theta} \\ \text{s.t.} \, : \, u^{\theta'} = \underline{u}^{\theta'} \ \, \textit{for} \, \theta' \neq \theta \\ \\ + \text{feasibility constraints} \\ + \text{spatial mobility constraint} \end{array}$$

 \bullet for arbitrary $\underline{u}^{\theta'}$ (traces out the Pareto frontier)

Optimal Expenditure Distribution

Proposition

If the competitive equilibrium is efficient, then, $\forall j$ with $L_j^{\theta} > 0$:

$$w_j^{\theta} + \sum_{\theta'} \frac{L_j^{\theta'}}{L_j^{\theta}} w_j^{\theta'} \gamma_{\theta,\theta'}^{P,j} + \sum_{\theta'} \frac{L_j^{\theta'}}{L_j^{\theta}} x_j^{\theta'} \gamma_{\theta,\theta'}^{A,j} = x_j^{\theta} + E^{\theta}$$

where \mathbf{E}^{θ} are multipliers of the type- θ labor market clearing constraint.

- ullet Equalization of marginal welfare effect of worker heta across j
 - Marginal output + spillovers
 - Consumes locally
- Extension of familiar "MPL=constant" efficiency condition to a spatial economy
 - Information about x_j^{θ} needed to assess efficiency, on top of w_j^{θ}
- Condition is sufficient if planner's problem is concave

First-Best Implementation

Proposition

Assume constant elasticity spillovers:

$$\gamma_{\theta,\theta'}^{P,j} = \gamma_{\theta,\theta'}^{P} \text{ and } \gamma_{\theta,\theta'}^{A,j} = \gamma_{\theta,\theta'}^{A}.$$

Then the optimal allocation can be implemented by the transfers

$$t_{j}^{ heta}= extstyle{s_{j}^{ heta}}w_{j}^{ heta}+ extstyle{T}^{ heta}$$

where

$$\mathbf{s}_{j}^{ heta} = rac{\gamma_{ heta, heta}^{P} + \gamma_{ heta, heta}^{A}}{1 - \gamma_{ heta, heta}^{A}} + \sum_{ heta'
eq heta} rac{\gamma_{ heta, heta'}^{P} w_{j}^{ heta'} + \gamma_{ heta, heta'}^{A} z_{j}^{ heta'}}{1 - \gamma_{ heta, heta}^{A}} rac{L_{j}^{ heta'}}{w_{j}^{ heta} L_{j}^{ heta}}$$

and $T^{\theta} = b^{\theta} \Pi + \frac{E^{\theta}}{1 - \gamma_{A, \theta}^{\theta}}$ targets the planner's Pareto weights.

- Global optimum implemented by city-type specific subsidy: s_i^{θ} (**w**, **x**, **L**; γ)
 - Regardless of micro details (e.g. production functions, fundamentals, trade elasticity,..)

Special cases

• Single worker type: $t_j^* = sw_j^* + T$ where

$$s=rac{\gamma^P+\gamma^A}{1-\gamma^A}$$

- If $-\gamma^A > \gamma^P$: s < 0, redistribution to low-wage cities
- tax policy (s, T) constant over space
- Two worker types, only cross-productivity spillovers:

$$\mathbf{s}_{j}^{\theta} = \gamma_{\theta,\theta'}^{P} \left(\frac{w_{j}^{\theta'} L_{j}^{\theta'}}{w_{j}^{\theta} L_{j}^{\theta}} \right)$$

- If $\gamma_{\theta,n}^{P} > 0$, type θ subsidized more where "scarce"
- Gains from transfers even without compensating differentials

Special cases

• Single worker type: $t_j^* = sw_j^* + T$ where

$$s=rac{\gamma^P+\gamma^A}{1-\gamma^A}$$

- If $-\gamma^A > \gamma^P$: s < 0, redistribution to low-wage cities
- tax policy (s, T) constant over space
- Two worker types, only cross-productivity spillovers:

$$\mathbf{s}_{j}^{\theta} = \gamma_{\theta,\theta'}^{P} \left(\frac{w_{j}^{\theta'} L_{j}^{\theta'}}{w_{j}^{\theta} L_{j}^{\theta}} \right)$$

- If $\gamma^P_{\theta \; \theta'} > 0$, type θ subsidized more where "scarce"
- Gains from transfers even without compensating differentials

Other Applications

- Monopolistic competition and economic geography models

Quantitative Implementation

Data Requirements

- Impose constant elasticity (CES or CD) functional forms for all functions
 - Derive condition to ensure sufficiency of optimality condition functions

- Solving for optimal allocation requires:
 - Elasticities (production, preferences, spillovers)
 - City-type distributions of: wages, employment, expenditures + trade flows

 Calibrate city-type specific shifters of utility and output to match observed distributions (Dekle et al, 2008)

Data and Calibration

- U.S. data across MSA's in 2007
 - 2 worker types: college and non-college workers
- By MSA: BEA Regional Economic Accounts
 - Labor Income, Capital Income, Taxes, Transfers → Disposable Income
 - Construct expenditure as disposable income
- Breakdown by skill: IPUMS-ACS (income and transfers) and March CPS (taxes)
 - Control for observable characteristics (age, education, sector, race)
- Use spillover elasticities $\left(\gamma_{\theta',\theta}^A,\gamma_{\theta',\theta}^P\right)$ from Diamond (2016) and Ciccone and Hall (1996) \checkmark details
 - High skill: $\gamma_{S,\theta}^P>$ 0, $\gamma_{S,\theta}^A>$ 0
 - Low skill: $\gamma_{U,\theta}^{P} \approx 0$, $\gamma_{U,\theta}^{A} << 0$

Data: Correlations with City Size

Utility Frontier

- Gains of 4%
 - $\bullet~3\%$ 6% across a range of spillovers and specifications
 - o ther gammas other specs
- Driven by inefficient sorting:
 - With homogeneous workers: 0.06%
 - With heterogeneous workers but without sorting: 0.25%

Actual vs. Optimal Transfers

- Optimal redistribution is stronger than in the data
 - Low skill: $\gamma_{U,U}^A, \gamma_{U,S}^A < 0 \rightarrow \text{tax}$ in high-wage (bigger) cities
 - High skill: $\gamma_{S,S}^A, \gamma_{S,S}^P > 0 \rightarrow subsidy$ in high-wage cities,
 - offset by $\gamma_{S,U}^{\rm A}, \gamma_{S,U}^{\rm P} > 0$

Reallocation away From Large Cities

On average, smaller cities grow more...

Slope (SE): -0.16 (0.03)

Stronger Reallocation for High Skill Workers

...in particular through reallocation of high skill workers...

High skill: -0.25 (0.03)

Low Skill: -0.15 (0.03)

Reduction in Skill Premium

...leading to a reduction of the skill premium in more unequal cities.

Weakening of Urban Premia

Which Elasticities Matter?

- Calibrated vs "revealed-optimal" elasticities
- Optimal transfer rule from planner:

$$t_j^{\theta} = a_0^{\theta} + a_1^{\theta} w_j^{\theta} + a_2^{\theta} \frac{w_j^{\theta'} L_j^{\theta'}}{L_j^{\theta}} + a_3^{\theta} \frac{x_j^{\theta'} L_j^{\theta'}}{L_j^{\theta}} + \varepsilon_j^{\theta}$$

for $\theta = U, S$

 $\bullet \ \ \text{If data is efficient:} \ \ \gamma^A_{\theta,\theta} = \tfrac{a^\theta_1 - \gamma^P_{\theta,\theta}}{1 + a^\theta_1}, \ \ \gamma^P_{\theta,\theta'} = a^\theta_2 \left(1 - \gamma^A_{\theta,\theta}\right), \ \gamma^A_{\theta,\theta'} = a^\theta_3 \left(1 - \gamma^A_{\theta,\theta}\right)$

- Efficient elasticities vs. calibration
 - Similar order of magnitude
 - \bullet But calibrated has $\bar{\gamma}_{S,\theta}^A>0$, "revealed-optimal" $\gamma_{S,\theta}^A<0$

Conclusion

- Quantitative framework combining flexible economic geography, heterogeneous workers, and spillovers
- Characterization of first best allocation and optimal transfers
 - Scope for welfare-enhancing transfers even with common spillovers
 - Additional source of inefficiency from sorting

Quantification

- Optimal spatial transfers feature stronger redistribution to low-income cities
- Weaker patterns of urban premia
- Losses from inefficient sorting

Caveats

- Static model, invariant worker types
- First best policies, no fiscal competition

Parametrization of Spillover Elasticities

- Spillovers set to match Diamond (2016) estimates
 - Productivities:

$$\begin{bmatrix} \gamma_{UU}^P & \gamma_{US}^P \\ \gamma_{SU}^P & \gamma_{SS}^P \end{bmatrix} = \begin{bmatrix} 0.003 & 0.02 \\ 0.044 & 0.053 \end{bmatrix}$$

- Level matches elasticity of 0.06 (Ciccone and Hall, 1996)
- Also multiply by 2
- Amenities:

$$\begin{bmatrix} \gamma_{UU}^A & \gamma_{US}^A \\ \gamma_{SU}^A & \gamma_{SS}^A \end{bmatrix} = \begin{bmatrix} -0.43 & -1.24 \\ 0.18 & 0.77 \end{bmatrix}$$

Also:

- Divide all by 2
- ullet Scale $\gamma_{ heta, heta'}$ by +/- 1 SD around Diamond (2016) estimates

Other Parameters

- $(\alpha_C, \rho) = (0.38, 0.39)$
- $\{d_{H,i}\} = 0.13$ (average)
- $\sigma = 5$ (Head and Mayer, 2014)

Optimal Imbalances in Quantitative Spatial Models

- Standard quantitative geography models are a special case
 - Single worker type, no intermediate inputs, fixed housing supply
 - Cobb-Douglas utility: $U(c,h) = c^{\alpha c} h^{1-\alpha c}$
 - Constant spillover elasticities (γ^P, γ^A)
- Optimal Expenditures:

$$x_j = w_j(1-\eta) + \eta \bar{w}$$

- \bullet Composite elasticity $\eta \equiv 1 \frac{\alpha_{\it C} \left(1 + \gamma^{\it P}\right)}{1 \gamma^{\it A}}$
- Efficiency→Optimal imbalances:

$$t_j = \eta \left(\bar{w} - w_j \right)$$

- Uniqueness region $(\eta > 0)$: net transfers to
- Optimal Policies across models given η
 - Helpman (1998): transfers from low to high income cities
 - Allen and Arkolakis (2014), Redding (2016): transfers from high to low income cities

Commuting

- Homogeneous workers with commuting (Ahlfeldt et al. 2015; Monte et al. 2018):
 - Allocation determines commuters L_{ji} from residence j to workplace i
- Utility and output:

$$u_{ji} = a_j \left(L_j^R \right) U_{ji} \left(c_{ji}, h_{ji} \right)$$

 $z_i = z_i \left(L_i^W \right)$

• Optimal transfers separable into a residence-based and a workplace-based tax:

$$t_{ji}^* = t_i^W + t_j^R - T$$

where

$$\begin{aligned} t_i^W &= \gamma_i^P w_i^* \\ t_j^R &= \gamma_j^A \sum_{i'} \frac{L_{ji'}^* X_{ji'}^*}{L_j^R} \end{aligned}$$

Spillovers Across Locations

 Homogeneous workers with spillovers across locations (Rossi-Hansberg, 2005; Ahlfeldt et al. 2015):

$$\gamma^{P,j,j'} = \frac{\partial z_{j'}}{\partial L_j} \frac{L_j}{z_{j'}}$$

Optimal transfers:

$$t_j = \frac{\gamma^{P,j,j} + \gamma^A}{1 - \gamma^A} w_j + \sum_{j' \neq j} \frac{\gamma^{P,j,j'}}{1 - \gamma^A} \frac{L_{j'} w_{j'}}{L_j} + T$$

♦ back

Spillovers Across Locations

- \bullet Idiosyncratic draws. Utility of worker I of type θ in j: $u_j^\theta \epsilon_j^I$
 - Extreme value (Fréchet) draws: $\Pr\left(\epsilon_i^l < x\right) = e^{-x^{-1/\sigma_{\theta}}}$
 - Higher $\sigma_{\theta} \rightarrow$ lower labor supply elasticity
- Optimal transfers exactly as before with $\gamma_{\theta,\theta}^{A,j}-\sigma_{\theta}$ instead of $\gamma_{\theta,\theta}^{A,j}$
 - σ_{θ} isomorphic to congestion
- ullet Without spillovers, optimal subsidy: $s^{ heta} = -rac{\sigma_{ heta}}{1+\sigma_{ heta}}$
 - Tackle distributional concerns (rather than inefficiencies)

Quantitative Implementation

Functional Forms and Uniqueness

- Preferences: $U(c,h) = c^{\alpha_C} h^{1-\alpha_C}$
- Varieties: $Q = \left(\sum_i Q_{ji}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$
- Labor: $N_j = \left(\sum_{\theta} \left(z_j^{\theta} L_j^{\theta}\right)^{\rho}\right)^{1/\rho}$
- Output in Y: $z_j^Y (N_j^Y)^{1-b_{Y,j}^l} (I_j^Y)^{b_{Y,j}^l}$
- $\bullet \ \, \mathsf{Output} \, \, \mathsf{H} \colon \, \underline{z_j^H} \left(\left(N_j^H \right)^{1-b_{H,j}^I} \left(I_j^H \right)^{b_{H,j}^I} \right)^{1/\left(1+d_{H,j}\right)} \\$
- Spillovers: $a_{j}^{\theta} = A_{j}^{\theta} \prod_{\theta'} \left(L_{j}^{\theta'} \right)^{\gamma_{\theta',\theta}^{A}}$ and $z_{j}^{\theta} = Z_{j}^{\theta} \prod_{\theta'} \left(L_{j}^{\theta'} \right)^{\gamma_{\theta',\theta}^{P}}$

Proposition

The planning problem is concave if

$$\min_{\boldsymbol{\theta}} \left\{ -\sum_{\boldsymbol{\theta'}} \gamma_{\boldsymbol{\theta'},\boldsymbol{\theta}}^{\boldsymbol{A}} \right\} > \max \left\{ \max_{\boldsymbol{\theta}} \left\{ \sum_{\boldsymbol{\theta'}} \gamma_{\boldsymbol{\theta'},\boldsymbol{\theta}}^{\boldsymbol{P}} \right\}, 0 \right\}$$

and $\gamma_{\theta,\theta'}^{A} > 0$ for $\theta \neq \theta'$.

Utility Frontiers under Alternative Parametrizations

Spillovers	Welfare Gain (%)
Benchmark	4.0
High efficiency spillover	4.3
Low amenity spillover	2.8
High cross-amenity spillover	5.6
Low cross-amenity spillover	3.1

Welfare Gains Under Other Specifications

	Welfare Gain (%)
Benchmark	4.0
Land Regulations, keeping distortions	3.7
Land Regulations, removing distortions	8.6
Three skill groups	3.9
Imperfect Mobility	4.3
${\sf Expenditures} = {\sf Income}$	6.3
Local land rents distribution	4.9

Model With Land Regulations

- Benchmark: housing supply elasticity is a technological constraint
- Introduce tax in problem of housing producers:

$$\Pi_{j}^{H} = \max_{N_{j}^{H}, I_{j}^{H}} (1 - t_{H,j}) R_{j} H_{j} \left(N_{j}^{H}, I_{j}^{H} \right) - W_{j} N_{j}^{H} - P_{j} I_{j}^{H}, \tag{1}$$

where
$$t_{H,j}=1-rac{1}{1- au_{H,j}}\left(R_jH_j
ight)^{- au_{H,j}}$$

Housing supply elasticity:

$$\frac{\partial \ln H_j}{\partial \ln R_j} = \frac{1 - \tau_{H,j}}{d_{H,j} + \tau_{H,j}}$$

• Define $\tau_{H,j}$ as land-use regulations

Growth in Skill Share vs. Initial Skill Share

Regional Patterns

Red = (+) change, Red = (-) change; Red

