Resumo de Cálculo em uma Variável Complexa

Sumário

Números Complexos e propriedades (Week 1)

Exponencial, Limite e Derivada (Week 2)

Equações de Cauchy-Riemann (Week 3)

Números Complexos e propriedades (Week 1)

Proposition 1 As seguintes propriedades valem para quaisquer $z, w, t \in \mathbb{C}$:

(a)
$$z + (w + t) = (z + w) + t$$

(b)
$$z + w = w + z$$

(c)
$$0 + z = z$$

(d)
$$z + (-z) = 0$$

(e)
$$z \cdot (w \cdot t) = (z \cdot w) \cdot t$$

(f)
$$zw = wz$$

$$(g) 1 \cdot z = z$$

(h)
$$z \cdot z^{-1} = 1 \text{ se } z \neq 0$$

(i)
$$z \cdot (w+t) = z \cdot w + z \cdot t$$

Definição 1 Um número complexo z é da forma z = x + iy, $x, y \in \mathbb{R}$ e $i = \sqrt{-1}$, que podemos escrever como um par de variáveis de \mathbb{R}^2 de forma que z = (x, y).

Definição 2 (Soma e produto nos complexos) Seja z=(x,y) e $w=(a,b), x,y,a,b \in \mathbb{R}$, definimos soma e produto, para manter consistência com as propriedades acima, da seguinte forma

$$z + w = (x + a, y + b)$$
$$z \cdot w = (xa - yb, xb + ya)$$

Definição 3 (O Módulo) Seja z = x + iy um complexo, então o **módulo** ("tamanho") de um número complexo é definido por

$$|z| = \sqrt{x^2 + y^2}$$

Definição 4 (O Conjugado) Seja z = x + iy um complexo, então o **conjurado** de um número complexo é definido por

$$\overline{z} = x - iy$$

Proposition 2 (Propriedades do conjugado) As seguintes propriedades valem para quaisquer $z, w \in \mathbb{C}$:

(a)
$$\overline{\overline{z}} = z$$
, $\overline{z \pm w} = \overline{z} \pm \overline{w}$ $e \ \overline{zw} = \overline{zw}$

(b)
$$\overline{z/w} = \overline{z}/\overline{w} \text{ se } w \neq 0$$

(c)
$$z + \overline{z} = 2Re(z)$$
 $e z - \overline{z} = 2iImg(z)$

- (d) $z \in \mathbb{R}$ se e somente se $\overline{z} = z$
- (e) z é imaginário puro se e somente se $\overline{z} = z$

Definição 5 (A Forma Polar) Seja z = x + iy com $z \neq 0$, então podemos escrever z como

$$z = r(\cos(\theta) + \sin(\theta))$$

Com as sequintes propriedades

1.
$$r = |z|$$

2.
$$cos(\theta) = \frac{x}{|r|}$$

3.
$$sen(\theta) = \frac{y}{|x|}$$

Teorema 1 Seja $n \in \mathbb{Z}_{++}$ e $z = r(cos(\theta) + isen(\theta))$. Então

$$z^n = r^n(\cos(n\theta) + i sen(n\theta))$$

Exponencial, Limite e Derivada (Week 2)

Definição 6 (Função exponencial) Seja $z \in \mathbb{C}$ com z = x + iy, $x, y \in \mathbb{R}$, então

$$e^z := e^x(cos(y) + isen(y))$$

Definição 7 (Cosseno e seno complexo) Para $z \in \mathbb{C}$, vamos definir

$$\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$$

$$sen(z) = \frac{1}{2i}(e^{-iz} - e^{-iz})$$

Proposition 3 (Cos e sen) Seja $z = x + iz, x, y \in \mathbb{R}$. Então

(a)
$$cos(z) = cos(x)cosh(y) - isen(x)senh(y)$$

(b)
$$sen(z) = sen(x)cosh(y) + icos(x)senh(y)$$

(c)
$$|\cos z|^2 = \cos^2(x) + \sinh^2(y)$$

(d)
$$| senz |^2 = sen^2(x) + senh^2(y)$$

Definição 8 (Função logaritmo) Seja $z \in \mathbb{C}, z \neq 0^1$

$$Ln(z) = ln \mid z \mid +iArg(z)$$

$$ln(z) = ln \mid z \mid +iarg(z)$$

Definição 9 (Limite) Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de $D \subset \mathbb{C}$ e seja $f: D \to \mathbb{C}$. Dizemos que

$$\lim_{z\to z_0} f(z) = l$$

Quando para todo $\varepsilon > 0$, $\exists \delta > 0$ tal que

$$z \in D - \{z_0\} \ e \ |z - z_0| < \delta \Longrightarrow |f(z) - l| < \varepsilon$$

Definição 10 (Continuidade) Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in D$. Dizemos que $f \notin$ contínua em z_0 se para todo $\varepsilon > 0$, $\exists \delta > 0$ tal que

$$z \in D - \{z_0\} \ e \mid z - z_0 \mid < \delta \Longrightarrow \mid f(z) - f(z_0) \mid < \varepsilon$$

¹Aqui: $Arg(z) = \theta, \ \theta \in (-\pi, \pi] \ e \ Arg(z) = \theta$

Definição 11 (Diferenciabilidade) Seja $f:D\subset\mathbb{C}\to\mathbb{C}$ e $z_0\in D$ ponto de acumulação de D. Se existe o limite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

dizemos que f é diferenciável em z_0 (ou derivável) e denotamos o limite acima por $f'(z_0)$.

Definição 12 (Funções Analiticas) Seja $f:D\subset\mathbb{C}\to\mathbb{C}$, f é dita analítica no domínio D se f é diferenciável em todos os pontos de D. E também é dita analítica em um ponto $z_0\in D$ se f é analítica em uma vizinhança de z_0 .

Equações de Cauchy-Riemann (Week 3)

Teorema 2 (Cauchy-Riemann (ida)) Seja f(z) = u(x,v) + iv(x,y) definida e continua em alguma vizinhança de z = x + iy e suponha f diferenciável em z. Então, as derivadas parciais de u e v existem e satisfazem²

$$u_x(z) = v_y(z)$$
 e $u_y(z) = -v_x(z)$

Corolário 2.1 Se f é analítica em um domínio D, então as derivadas parciais de u e v existem em D e

$$u_x(z) = v_y(z)$$
 e $u_y(z) = -v_x(z)$

$$f' = u_x + iv_x \quad e \quad f' = v_y - iu_y$$

Teorema 3 (Cauchy-Riemann (volta)) Se as funções reais u(x,y) e v(x,y) de variáveis $x,y \in \mathbb{R}$ tiverem derivadas parciais contínuas satisfazem as equações de Cauchy-Riemann em algum domínio D, então a função complexa f(z) = u(x,y) + iv(x,y) é analítica em D, com z = x + iy.

²Chamadas aqui de Equações de Cauchy-Riemann