M57962L

HYBRID IC FOR DRIVING IGBT MODULES

Hybrid Integrated Circuit For Driving IGBT Modules

Description:

M57962L is a hybrid integrated circuit designed for driving n-channel IGBT modules in any gate amplifier application. This device operates as an isolation amplifier for these modules and provides the required electrical isolation between the input and output with an opto-coupler. Short circuit protection is provided by a built in desaturation detector. A fault signal is provided if the short circuit protection is activated.

Features:

- Built in high CMRR optocoupler (V_{CMR}: Typical 30kV/μs, Min. 15kV/μs)
- □ Electrical Isolation between input and output with opto-couplers (V_{iso} = 2500, V_{RMS} for 1 min.)
- ☐ TTL compatible input interface
- Two supply drive topology
- ☐ Built in short circuit protection circuit with a pin for fault output

Application:

To drive IGBT modules for inverter, AC Servo systems, UPS, CVCF inverter, and welding applications.

Recommended Modules:

V_{CES} = 600V Series (up to 400A Class)

V_{CES} = 1200V Series (up to 200A Class)

V_{CES} = 1400V Series (up to 200A Class)

HYBRID IC FOR DRIVING IGBT MODULES

Absolute Maximum Ratings, $T_a = 25^{\circ}C$ unless otherwise specified

Item	Symbol	Test Conditions	Limit	Units
Supply Voltage*	V _{CC}	DC	18	Volts
	V _{EE}	DC	-15	Volts
Input Voltage	VI		-1 ~ 7	Volts
Output Voltage	V _O	Output Voltage "H"	V _{CC}	Volts
Output Current	I _{OHP}	Pulse Width 2μs, f = 20kHz	-5	Amperes
	I _{OLP}	Pulse Width 2μs, f = 20kHz	5	Amperes
Output Current	Іон	f = 20kHz, 50% Duty Cycle	0.5	Amperes
Isolation Voltage	V _{RMS}	Sinewave Voltage 60Hz, 1 min.	2500	Volts
Junction Temperature	Tj		85	°C
Operating Temperature	T _{opr}	(Differs from H/C Condition)	-20 ~ 60	°C
Storage Temperature	t _{stg}		-25 ~ 100	°C
Fault Output Current	I _{FO}		20	mA
Input Voltage	V _{R1}		50	Volts
+001/1/ 1// 1// 1001/1//		·		

^{*20} Volts ≤ V_{CC} + V_{EE} ≤ 28 Volts

Electrical Characteristics, T_a = 25°C, V_{CC} = 15V, $-V_{EE}$ = 10V unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V _{CC}	Recommended Range	14	15	_	Volts
	V _{EE}	Recommended Range	-7	_	-10	Volts
Pull-up Voltage on Input Side	V _{IN}	Recommended Range	4.75	5.00	5.25	Volts
"H" Input Current	lін	$V_{IN} = 5V$, $R = 185\Omega$	_	16	_	mA
"H" Output Voltage	V _{OH}		13	14	_	Volts
"L" Output Voltage	V_{OL}		-8	-9	_	Volts
Internal Power Dissipation	P_{D}	f = 20kHz,	_	2.38	_	Watts
		Module 400A, 1200V IGBT				
"L-H" Propagation Time	t _{PLH}	$V_I = 0$ to 4V, $T_j \pm 85^{\circ}C$	_	1.0	1.5	μs
"L-H" Rise Time	t _r	V_I = 0 to 4V, $T_j \pm 85^{\circ}C$	_	0.6	1.0	μs
"H-L" Propagation Time	t _{PHL}	$V_I = 0$ to 4V, $T_j \pm 85^{\circ}C$	_	1.0	1.5	μs
"H-L" Rise Time	t _r	$V_I = 0$ to 4V, $T_j \pm 85^{\circ}C$	_	0.4	1.0	μs
Reset Time of Protection	t _{RESET}		1	_	2	ms
Fault Output Current	I _{FO}		_	5		mA
SC Voltage	V _{SC}		15	_	_	Volts