

Ingeniería informática

Calidad en los sistemas de información

Por Sergio Efrain Chuc Keb. Miercoles, 24 de septiembre de 2025.

Introducción

La calidad en los sistemas de información se refiere a la capacidad de un sistema para cumplir con los requisitos de los usuarios, ser confiable, eficiente y entregar información precisa y oportuna.

- Objetivo principal: Asegurar que los sistemas apoyen de manera efectiva los procesos de negocio y la toma de decisiones.
- Importancia: Un sistema de información con baja calidad puede generar pérdidas económicas, errores operativos y desconfianza.

Funcionalidad

Cumplimiento de funciones especificadas y adecuación al propósito.

Fiabilidad

Capacidad de operar sin fallos bajo condiciones específicas.

Usabilidad

Facilidad de uso y aprendizaje para el usuario final.

Dimensiones de la Calidad en los Sistemas de Información (Modelo ISO 25010)

Mantenibilidad

Facilidad para realizar cambios y correcciones.

Portabilidad

Adaptabilidad a diferentes entornos y plataformas.

Compatibilidad

Capacidad de interactuar con otros sistemas.

Eficiencia

Rendimiento y uso adecuado de recursos (tiempo, memoria, etc.).

Seguridad

Protección de la información y control de accesos.

Actividades para medir la calidad

Revisiones y

Auditorías

- Inspecciones de código:
 Análisis manual o automático del código fuente.
- Auditorías de cumplimiento: Verificación de estándares internos y normativas (ej. ISO 9001, ISO/IEC 25010).

Pruebas de

Software

- Pruebas
 unitarias:
 Validación de
 componentes
 individuales.
- Pruebas de integración: Comprobación de la interacción entre módulos.
- Pruebas de sistema y aceptación: Evaluación global y validación por parte del usuario.

Métricas de

Calidad

- Tasa de errores: Número de defectos por módulo o por tiempo.
- Tiempo medio entre fallos (MTBF): Indicador de confiabilidad.
- Satisfacción del usuario:
 Mediante encuestas o entrevistas.

Pruebas de

Software

- Uso de herramientas como Dashboards en tiempo real para métricas de rendimiento.
- Análisis de logs y reportes automáticos de incidentes.

Herramientas para la Gestión de la Calidad

ACTUALIDAD

- Plataforma de código abierto para inspección continua de la calidad del código fuente.
- CARCTERISTICAS
- Detección de
 bugs: Identifica
 errores
 potenciales en el
 código (ej: null
 pointers,
 recursos no
 cerrados).

SELENIUM

- Permite crear scripts que simulan la interacción de usuarios reales.
- COMPONENTES
- Selenium WebDriver:

 API para controlar

 navegadores

 directamente.
- Selenium IDE:
 Extensión de
 navegador para
 grabar y reproducir
 pruebas.
- Selenium Grid:
 Ejecución paralela
 en múltiples
 máquinas.

JIRA

- Herramienta de gestión de proyectos y seguimiento de issues desarrollada por Atlassian.
- FUNCIONALIDAD
- Seguimiento de bugs: Reportar, asignar y monitorear defectos.

GOOGLE ANALYTICS

- Proporciona datos reales de cómo los usuarios interactúan con el sistema.
- Calidad
- Flujo de
 comportamiento:
 Identifica donde
 los usuarios
 abandonan procesos
 clave.

Ejemplo de Aplicación Práctica: Sistema de Gestión Académica

IMAGINEMOS UN SISTEMA UNIVERSITARIO (COMO EL QUE
USAS EN TU CURSO):

CALIDAD ESPERADA:

Puntos Claves

- Acceso rápido y estable.
- Interfaz intuitiva.
- Información actualizada y sin errores.
- Protección de datos personales.

MEDICIONES
APLICABLES:

Ideas

- Encuesta de satisfacción a estudiantes y docentes.
- Tiempo de respuesta del servidor (< 3 segundos).
- Número de incidencias reportadas en un mes.

Conclusion

La calidad en los sistemas de información no es un paso único, sino un ciclo continuo de evaluación y mejora. Invertir en calidad reduce costos a largo plazo, aumenta la satisfacción del usuario y fortalece la confiabilidad del sistema.

Bibliografia

- ISO/IEC 25010:2011 Calidad de producto de software.
- Pressman, R. S. (2010). Ingeniería del Software: Un Enfoque Práctico.
- Instituto de Ingeniería del Software (SEI) Modelos de Capacidad y Madurez (CMMI).

i Gracias!

¿Tienes alguna pregunta?

Ingeniero

Julian David Tun Ortiz

Ingeniero

José Eduardo Puc Dzib

Ingeniero

Sergio Efrain Chuc Keb