

AULA 02 REDES NEURAIS PROFUNDAS DE ALIMENTAÇÃO DIRETA (FEEDFORWARD)

PROF. DR. DENIS HENRIQUE PINHEIRO SALVADEO

AULA ANTERIOR

• O que é Aprendizado Profundo?

Perspectiva Histórica

O Básico de Aprendizado de Máquina

Desafios/Motivações para o Aprendizado Profundo

Aplicações de Aprendizado Profundo

AULA DE HOJE

- Redes FF
- Gradiente descendente
- Camadas de saída
- Camadas ocultas
- Backpropagation

DEFINIÇÃO

- Também chamadas de Redes Neurais de Alimentação Direta (Feedforward) ou Perceptrons Multicamadas (MLPs)
- Têm como objetivo aproximar alguma função f^*
 - Esta função pode representar qualquer tarefa
- Ex. para um <u>classificador</u>:

$$f^*$$
 mapeia uma entrada x em uma classe y $y = f^*(x)$

• Define um mapeamento $y = f(x; \theta)$ e aprende o valor dos parâmetros θ dos dados, de tal forma que resulte na melhor aproximação da função (critério)

$$f \approx f^*$$

DEFINIÇÃO

- Estes modelos são chamados FF, pois a informação flui apenas no sentido x o y
 - A função é avaliada a partir das entradas x, com a realização de computações intermediárias que definem f, gerando a saída y.
- Não há conexões de retroalimentação (feedback)
 - As saídas não servirão como entrada para nenhuma parte do modelo
 - Extensão para incluir feedback definem as <u>redes recorrentes</u> (a serem vistas mais adiante no curso)
- Redes FF são de extrema importância, sendo a base para muitas aplicações comerciais
 - Redes convolucionais s\(\tilde{a}\) uma tipo especializado de rede FF usadas para reconhecimento de objetos em imagens (p. ex.)
 - São uma pedra fundamental conceitual para a definição das redes recorrentes, que empoderaram as aplicações de PLN (p. ex.)

Definição

 São chamadas redes porque são representadas pela composição de diferentes funções

 Modelo FF é associado a <u>dígrafos acíclicos</u> descrevendo como as funções são compostas

• P. ex. pode-se ter três funções $f^{(1)}$, $f^{(2)}$ e $f^{(3)}$ conectadas em uma cadeia para formar $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$

Estruturas de cadeias são comuns em NN:

- $-f^{(1)}$ seria a primeira camada da rede
- $-f^{(2)}$ seria a segunda camada da rede

– ...

DEFINIÇÃO

- O comprimento da cadeia define a profundidade (D) do modelo
 - Daí surge o nome deep learning
 - -D = n 1 (número de camadas uma camada de entrada)
- No treinamento da rede temos exemplos aproximados, ruidosos de $f^*(x)$, avaliados em pontos de treinamento diferentes (caso supervisionado)
 - Todo x é acompanhando por um rótulo $y \approx f^*(x)$
- O conjunto de treinamento não especifica o que cada camada deve fazer (apenas a camada de saída, dada uma entrada)
 - O algoritmo de treinamento deve decidir como usar $f^{(2)},\dots,f^{(n-1)}$ para produzir a saída desejada
 - i.e, como usar estas camadas para melhor implementar uma aproximação de f^st
 - Por isso, $f^{(2)}$, ..., $f^{(n-1)}$ são chamadas <u>camadas ocultas ou escondidas</u>

Representação Visual

Relação com a Neurociência

- São chamadas de **neurais** por serem inspiradas pela neurociência
- Camadas ocultas são normalmente <u>vetorizadas</u>
 - A largura do modelo é definida pela <u>dimensionalidade</u> das camadas ocultas (maior camada)
 - Cada elemento do vetor representa uma função análoga a um neurônio
 - Constituídas de unidades que agem em paralelo representando uma função de um vetor para escalar
 - Isto se assemelha a um neurônio que recebem entrada de muitas outras unidades e computa seu próprio valor de ativação
 - A escolha de $f^{(i)}(x)$ é inspirada por observações neurocientíficas de como os neurônios biológicos computam
- Mas o objetivo <u>não é modelar perfeitamente</u> o cérebro
 - É obter generalização estatística das funções de aproximação, baseado no funcionamento biológico

Modelos Lineares

- Redes FF podem ser modeladas como modelos lineares
- Modelos lineares tal como regressão logística ou regressão linear podem se ajustar de modo confiável e eficiente, usando uma fórmula fechada ou por meio de uma otimização convexa
- Mas tem capacidade limitada para funções lineares
 - Não podem entender qualquer interação entre duas variáveis de entrada
- Para estender os modelos lineares para representar **funções não lineares** de x, podemos aplicar o modelo linear para uma entrada transformada $\phi(x)$, onde ϕ é uma **transformação não linear**
 - Podemos pensar ϕ como fornecendo um conjunto de atributos descrevendo x, ou como fornecendo uma nova representação para x

MODELOS LINEARES

- ϕ pode ser definido implicitamente usando um truque do kernel (como faz o SVM)
 - P. ex. em uma regressão linear, uma função $f(x) = b + \sum_{i=1}^{m} \alpha_i x^T x^{(i)}$, em que podemos substituir $x^T x^{(i)}$ por um kernel $k(x, x^{(i)}) = \phi(x)$. $\phi(x^{(i)})$

(produto interno)

– Relacionamento entre f(x) e $\phi(x)$ é linear

- Custo elevado, com maior número de exemplos $oldsymbol{x}^{(i)}$

Input Space

Feature Space

Esta Foto de Autor Desconhecido está licenciado em <u>CC BY-SA-NC</u>

Como Escolher o Mapeamento ϕ ?

1. Usando um ϕ muito genérico,

- Ex. kernel de base radial (RBF): $k(\boldsymbol{u}, \boldsymbol{v}) = \mathcal{N}(\boldsymbol{u} \boldsymbol{v}; 0, \sigma^2 \boldsymbol{I})$
- Se $\phi(x)$ tem dimensão bastante alta, possuem boa capacidade de ajuste ao conjunto de treinamento, mas generalização pobre ao conjunto de teste
- Muitos mapeamentos genéricos são baseados somente no princípio de suavização local, não codificando informação a priori para resolver problemas mais complexos

2. Projetar manualmente

- Prática dominante antes do deep learning
- Esforço humano especializado e específico de domínio
- Pouca transferência entre os domínios

Esta Foto de Autor Desconhecido está licenciado em CC BY-SA

Como Escolher o Mapeamento ϕ ?

3. Aprender ϕ (estratégia do deep learning)

- Modelo: $y = f(x; \theta, \omega) = \phi(x; \theta)^T \omega$
- θ são parâmetros que usamos para aprender ϕ de uma classe ampla de funções θ
- $-\omega$ são parâmetros que mapeiam de $\phi(x)$ para a saída desejada
- Em redes FF, ϕ define uma camada oculta
- Única abordagem que abandona a questão da convexidade do problema de treinamento
 - Mas os benefícios superam os danos
- A representação é parametrizada como $\phi(x; \theta)$, sendo que um algoritmo de otimização é usado para encontrar $oldsymbol{ heta}$ que correspondem a uma boa representação
- Se beneficia de ambas as abordagens anteriores
 - É altamente genérica: $\phi(x; \theta)$
 - Pode codificar o conhecimento de especialistas para ajudar na generalização, por projetar funções $\phi(x;\theta)$ que são esperadas funcionar bem (necessita encontrar a família certa de funções gerais, mais do que a função certa)
- Seguem o princípio geral de melhorar os modelos por aprender atributos

COMO PROJETAR UMA REDE FF?

- Para treinar uma rede FF devemos escolher (mesmas decisões para um modelo linear):
 - Otimizador (método para encontrar os parâmetros adequados)
 - Função de custo (medida de erro de saída)
 - Forma das unidades de saída (depende do tipo do problema ou tipo de dado esperado)
- Redes FF introduziram o conceito de camada oculta
 - Exigirá a escolha de funções de ativação para realizar o cálculo dos valores destas camadas
- Definir a arquitetura da rede
 - Quantas camadas na rede
 - Como estas camadas estão conectadas
 - Quantas unidades em cada camada
- Para aprender em redes profundas, precisaremos calcular gradientes de funções complicadas
 - Algoritmo de backpropagation e suas generalizações ajudarão nesta tarefa, fazendo estes cálculos de modo eficiente

Esta Foto de Autor Desconhecido está licenciado em CC BY-SA

- Lembrando que o modelo tenta tornar $f(x; \theta) \approx f^*(x)$
- Mais do que generalização estatística vamos focar em que a rede gere exatamente os resultados esperados
- Vamos usar uma função de custo (função de perda) MSE, avaliada sobre o conjunto todo

$$J(\boldsymbol{\theta}) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbb{X}} (f^*(\mathbf{x}) - f(\mathbf{x}; \boldsymbol{\theta}))^2$$

Exemplo: Aprendendo a Operação XOR (ou exclusivo)

• Vamos escolher o modelo $f(x; \theta)$ como linear, com $\theta = \{\omega, b\}$ $f(\mathbf{x}; \boldsymbol{\omega}, b) = \mathbf{x}^T \boldsymbol{\omega} + b$

• Usando equações normais (mostrar), nós podemos minimizar $I(\theta)$ em uma

fórmula fechada com relação a ω e b

$$- \omega = 0 e b = \frac{1}{2}$$

O modelo sempre resulta em 0,5

(para qualquer entrada)

$$X = \begin{cases} 0 & 0.1 \\ 0 & 1.1 \\ 1 & 0.1 \\ 1 & 1.1 \end{cases}$$

XOR is not linearly separable

 Uma forma de resolver este problema é usar um modelo que aprende em um espaço de atributos diferente no qual um modelo linear permite representar a solução

Utilizaremos uma rede FF com 1 camada oculta com 2 unidades ocultas

$$\boldsymbol{h} = f^{(1)}(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c})$$

• A camada de saída (regressão linear aplicada a h)

$$y = f^{(2)}(\boldsymbol{h}; \boldsymbol{\omega}, b)$$

Funções encadeadas resultando em

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \boldsymbol{\omega}$$
$$f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\omega}', \text{ em que } \boldsymbol{\omega}' = \mathbf{W} \boldsymbol{\omega}$$

- Devemos usar uma função não linear para descrever os atributos
- Em NN é comum usarmos transformações afins controladas por parâmetros aprendidos, seguido por uma função não linear fixa g (função de ativação)

$$\boldsymbol{h} = g(\boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{c})$$

- W fornece os pesos de uma transformação linear e c são os vieses (bias)
- Normalmente, a função de ativação é aplicada por elementos

$$h_i = g(\mathbf{x}^T \mathbf{W}_{:,i} + c_i)$$

Atualmente, uma escolha padrão é usar as rectified linear unit (ReLU)

$$g(z) = \max\{0, z\}$$

O modelo de rede FF completa neste exemplo seria

$$f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \boldsymbol{\omega}, b) = \boldsymbol{\omega}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$$

Rectified Linear Activation

(Con

$$f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \boldsymbol{\omega}, b) = \boldsymbol{\omega}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$$

$$b = 0$$

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad x = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

$$c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \qquad x = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \qquad x = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Exemplo: Aprendendo a Operação XOR (ou exclusivo)

- Neste exemplo simples, cuja solução foi especificada diretamente, o erro obtido foi 0
- No mundo real, podemos ter bilhões de parâmetros do modelo e bilhões de exemplos de treinamento
 - Isto inviabiliza enxergar uma solução direta
- Na prática, um algoritmo de otimização baseado em gradiente pode encontrar parâmetros que produzam pouco erro
 - No exemplo do XOR, a solução atinge o mínimo global da função de perda
 - O gradiente descendente poderia convergir para este ponto
 - O ponto de convergência do gradiente depende os valores iniciais dos parâmetros
 - Gradiente descendente <u>não encontra solução normalmente clara</u>, de fácil entendimento, avaliada em valores inteiros como visto no exemplo do XOR

GRADIENTE DESCENDENTE

- Muitos algoritmos de aprendizado profundo envolvem otimização
 - Otimização refere-se à tarefa de minimizar ou maximizar uma função f(x) por alterar x
 - Maximização pode ser executada via um algoritmo de minimização por minimizar -f(x)
 - -f(x) é chamada de **função objetivo** ou **critério**
- Normalmente estamos interessados em minimizar f(x)
 - Neste caso, podemos chamá-la também como função de custo (cost function), função de perda (loss function) ou função de erro
- O interesse é encontrar $x^* = \arg\min f(x)$
- Suponha que temos y = f(x)
 - A **derivada** da função (denotada f'(x) ou $\frac{dy}{dx}$) fornecem a inclinação de f(x) no ponto x
 - Nos permite medir como uma pequena mudança na entrada afeta a saída $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
 - Útil para minimização, pois nos diz como mudar x para fazer um pequeno melhoramento em y
 - $f(x \epsilon \operatorname{sign}(f'(x))) < f(x)$ para um ϵ bastante pequeno
 - Assim, podemos reduzir f(x) movendo x em pequenos passos com o sinal oposto da derivada (gradiente descente)

GRADIENTE DESCENDENTE

Figure 4.1

Ideally, we would like to arrive at the global minimum, but this might not be possible.

This local minimum performs poorly and should be avoided.

x

GRADIENTE DESCENDENTE

- Para funções com múltiplas entradas, devemos usar o conceito de derivada parcial
 - A derivada parcial $\frac{\partial}{\partial x_i} f(x)$ mede como f muda quando a variável x_i muda no ponto x
- O gradiente generaliza para a noção de derivada com relação a um vetor
 - O gradiente de f é o vetor que contém todas as derivadas parciais, denotado por $\nabla_x f(x)$
 - Em múltiplas dimensões, pontos críticos são pontos onde todo elemento do gradiente é igual
 a 0
- Pelo **método da descida do gradiente**, um novo ponto é obtido <u>iterativamente</u> a cada passo

$$x' = x - \in \nabla_x f(x)$$

Em que ∈ é a taxa de aprendizado (tamanho do passo)

Aula 02

GRADIENTE DESCENDENTE ESTOCÁSTICO (SGD)

- É uma extensão do algoritmo do gradiente descendente
- Um problema comum em aprendizado de máquina é que grandes conjuntos de treinamento são necessários para boa generalização
 - Isto implica em maior custo computacional para treinamento
- Tradicionalmente, as funções de custo são decompostas em uma soma sobre as amostras de treinamento de alguma função de perda aplicada para cada exemplo de treinamento

- P. ex:
$$J(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}, y \sim \hat{p}_{dados}} L(\boldsymbol{x}, y, \boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta})$$
$$L(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\log p(y|\boldsymbol{x}; \boldsymbol{\theta})$$

Para estes exemplos aditivos, o gradiente descente é calculado como

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}, \boldsymbol{\theta})$$

• SGD acredita que o gradiente está em uma esperança, que pode ser estimada aproximadamente usando um pequeno conjunto de exemplo (minibatch de tamanho m' << m) escolhido aleatoriamente

$$\mathbf{g} = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \boldsymbol{\theta})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \in \mathbf{g}$$

APRENDIZADO BASEADO EM GRADIENTE

- Projetar e treinar uma rede neural, não é muito diferente de qualquer outro modelo de aprendizado de máquina com gradiente descendente
- Basicamente, para construir um algoritmo de aprendizado de máquina precisamos definir:
 - Conjunto de dados
 - Função de custo
 - Procedimento de otimização
 - Família de Modelo
- A maior diferença entre NN e os modelos lineares é que a não linearidade das NN causa que as funções de perda mais interessantes tornam-se não convexas
 - NN são normalmente treinadas iterativamente
 - Otimizadores baseados em gradiente dirigem a função de custo para um valor muito baixo
 - Não garantem o mínimo global e são sensíveis aos valores dos parâmetros iniciais
 - Otimização convexa (modelos lineares) não dependem dos valores iniciais dos parâmetros (mas na prática podem sofrer com problemas numéricos)
 - Em redes FF é importante inicializar todos os pesos para pequenos valores aleatórios e os vieses para zero ou pequeno inteiro

Funções de Custo

- Basicamente as mesmas usadas para outros modelos paramétricos, tais como modelos lineares
- Normalmente, o modelo paramétrico define uma distribuição $p(y|x;\theta)$ e usamos o princípio da Máxima Verossimilhança.

$$\boldsymbol{\theta}_{MV} = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{modelo}(\boldsymbol{x}^{(i)}|\boldsymbol{\theta})$$

Aplicar o logaritmo não afeta o arg max

$$\boldsymbol{\theta}_{MV} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{m} \log p_{modelo}(\boldsymbol{x}^{(i)}|\boldsymbol{\theta})$$

Dividindo por 1/m

$$\boldsymbol{\theta}_{MV} = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim \hat{p}_{dados}} \log p_{modelo}(\boldsymbol{x}; \boldsymbol{\theta})$$

 Podemos interpretar o MaxVer como minimizar a dissimilaridade entre a distribuição empírica (pelo conjunto de treinamento) e distribuição do modelo, medido pela divergência de Kullback-Leibler (KL)

$$D_{KL}(\hat{p}_{dados}||p_{modelo}) = \mathbb{E}_{\boldsymbol{x} \sim \hat{p}_{dados}}[\log \hat{p}_{dados}(\boldsymbol{x}) - \log p_{modelo}(\boldsymbol{x})]$$

Parte esquerda n\u00e3o depende do modelo

$$D_{KL}(\hat{p}_{dados}||p_{modelo}) = -\mathbb{E}_{x \sim \hat{p}_{dados}}[\log p_{modelo}(x)]$$

 Isso significa que nós utilizamos a entropia cruzada entre os dados de treinamento e as predições do modelo como função de custo

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim \hat{p}_{dados}} \log p_{modelo}(\boldsymbol{y}|\boldsymbol{x})$$

Funções de custo total envolvem ainda um termo de regularização

Funções de Custo

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim \hat{p}_{dados}} \log p_{modelo}(\boldsymbol{y}|\boldsymbol{x})$$

• Por exemplo, se usamos
$$p_{modelo}(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}; f(\mathbf{x}; \boldsymbol{\theta}), \mathbf{I})$$

$$J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{dados}} ||\mathbf{y} - f(\mathbf{x}; \boldsymbol{\theta})||^2 + \text{const}$$

- Uma vantagem é que remove o custo de projetar funções de custo para cada modelo
 - Especificando um modelo p(y|x) automaticamente determina uma função de custo $\log p(y|x)$
- O gradiente da função de custo deve ser largo e previsível para servir como um bom guia para o algoritmo de aprendizado
 - Funções que saturam (tornam-se muito planos) tornam o gradiente muito pequeno
 - Muitas vezes ocorre devido às funções de ativação saturarem
 - Negativo do log da verossimilhança ajuda a evitar este problema (várias funções envolvem um exp que satura quando o argumento é muito negativo)

- A escolha da função de custo está ligada com a escolha da unidade de saída
 - Determina a forma da função de entropia cruzada
- Qualquer tipo de unidade NN que pode ser usado como uma saída pode também ser usado como uma unidade oculta
- Vamos supor que uma rede FF fornece um conjunto de atributos ocultos $h = f(x; \theta)$
 - O papel da camada de saída é fornecer alguma transformação adicional dos atributos para completar a tarefa que a rede deve realizar
- 1. Unidades lineares para distribuições de saída gaussiana (contínuas)
 - Um tipo de saída baseado em transformação afim sem não linearidade
 - Uma camada de unidades de saída linear produz

$$\widehat{\mathbf{y}} = \mathbf{W}^T \mathbf{h} + \mathbf{b}$$

- Frequentemente são usadas para produzir a média de uma distribuição Gaussiana condicional $p(y|x) = \mathcal{N}(y; \hat{y}, I)$

- 2. Unidades sigmóide para distribuições de saída Bernoulli (binárias)
 - Bernoulli:

$$P(x = x) = \phi^{x} (1 - \phi)^{1-x}$$

— Uma camada de unidades de saída sigmóide para definir o parâmetro ϕ de Bernoulli \rightarrow intervalo [0,1]

$$\widehat{\mathbf{y}} = \sigma(\boldsymbol{\omega}^T \boldsymbol{h} + b)$$

$$\underline{\sigma(x)} = \frac{1}{1 + \exp(-x)}$$

- Considerando $z = \boldsymbol{\omega}^T \boldsymbol{h} + b$ como uma camada linear $J(\boldsymbol{\theta}) = -\log P(y|\boldsymbol{x})$

$$= -\log r(y|x)$$

$$= -\log \sigma((2y-1)z)$$

$$= \varsigma((1-2y)z)$$

Função softplus → intervalo (0, ∞)
 $\varsigma(x) = \log(1 + \exp(x))$

Logistic Sigmoid

Softplus Function

- 3. Unidades softmax para distribuições de saída Multinoulli (discretas em n classes)
 - Generalização da função sigmóide

$$z = W^T h + b$$
$$z_i = \log \tilde{P}(y = i | x)$$

- Exponenciar e normalizar z para obter a saída desejada $\widehat{oldsymbol{y}}$

$$\operatorname{softmax}(\mathbf{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

- Funciona bem com o MaxVer
- Deve somar 1

4. Outros tipos (contínuas)

- P. ex. regressão multimodal (pode ter vários picos em y para o mesmo valor de x)
- Saída de uma mistura de Gaussianas com n componentes

$$p(\mathbf{y}|\mathbf{x}) = \sum_{i=1}^{n} p(c = i|\mathbf{x}) \mathcal{N}\left(\mathbf{y}; \boldsymbol{\mu}^{(i)}(\mathbf{x}), \boldsymbol{\Sigma}^{(i)}(\mathbf{x})\right)$$

– A rede neural deve gerar:

- p(c = i | x) é o peso dos componentes associados à variável latente c, forma uma distribuição multinoulli
- $\mu^{(i)}(x)$
- $\Sigma^{(i)}(x)$

Mixture Density Outputs

Esta Foto de Autor Desconhecido está licenciado em CC BY-SA

Output Type	Output Distribution	Output Layer	$egin{array}{c} ext{Cost} \ ext{Function} \end{array}$
Binary	Bernoulli	Sigmoid	Binary cross- entropy
Discrete	Multinoulli	Softmax	Discrete cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)
Continuous	Mixture of Gaussian	Mixture Density	Cross-entropy
Continuous	Arbitrary	See part III: GAN, VAE, FVBN	Various

Unidades Ocultas

- Representam uma escolha que é específica das redes FF
 - Como escolher o tipo de unidade oculta para usar nas camadas ocultas do modelo
 - É uma área extremamente ativa de pesquisa
- Por padrão, ReLU é uma escolha excelente
 - Predizer qual funcionará melhor previamente é impossível
 - Tentativa e erro (intuição, treinamento e avaliação)
- Algumas não são diferenciáveis em todos os pontos de entrada
 - P. ex, a ReLU $(g(z) = \max\{0, z\})$ no ponto z = 0
 - Isto parece invalidar o uso com algoritmo de aprendizado baseado em gradiente
 - Na prática, o gradiente descendente ainda executa bem (não atinge o mínimo na função de custo, mas reduz o seu valor significativamente)
 - É improvável que o treinamento atinja um ponto onde o gradiente é 0
 - São não diferenciáveis normalmente em somente um pequeno número de pontos
 - Funções usadas para NN normalmente tem derivadas esquerda e direita definidas
 - Métodos computacionais estão sujeitos a erros numéricos de qualquer modo (g(0)) é provável ser em $g(\epsilon)$, com ϵ pequeno)
- Maioria das unidades ocultas aceita entradas x, calcula uma transformação afim $z = W^T x + b$ e aplica uma função não linear por elemento g(z)
 - Se distinguem pela escolha da forma da função de ativação $g(\mathbf{z})$

Rectified Linear Activation

(Goodfellow 20

RELU

$$g(z) = \max\{0, z\}$$

- Similares a unidades lineares
 - Difere por metade de seu domínio resultar em zero
 - Derivada e gradientes restam grandes quando a unidade está ativa (g'(x) = 1)
 - -g''(x) = 0 em quase todo lugar

$$\boldsymbol{h} = g(\boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b})$$

- Inicializar $\bf b$ para um pequeno valor positivo (ex. 0,1) faria as unidades inicialmente ativas (permitindo a passagem das derivadas)
- Uma desvantagem de ReLU é não podem aprender de exemplos onde sua ativação é zero
 - Algumas generalizações garantem sempre receber um gradiente
 - Ex. $g(z) = \max\{0, z\} + \alpha \min\{0, z\}$ (α é uma pequena inclinação quanto z < 0)
- Se baseiam no princípio de que modelos são mais fáceis otimizar se o seu comportamento é próximo do linear

RELU

- Unidades Maxout
 - Generalização da ReLU
 - Divide ${\bf z}$ em grupos de tamanho k (conjuntos de índices) ${\mathbb G}^{(i)}=\{(i-1)k+1,...,ik\}$ $g({\bf z})_i=\max_{j\in {\mathbb G}^{(i)}}z_j$
 - Reduz o número de pesos para a próxima camada em k
 - Semelhante a um max pooling?

SIGMÓIDE LOGÍSTICA E TANGENTE HIPERBÓLICA

- Eram as mais usadas antes de ReLU
- Sigmóide logística

$$g(z) = \sigma(z)$$

Tangente hiperbólica

$$g(z) = tanh(z)$$

$$tanh(z) = 2\sigma(2z) - 1$$

SIGMÓIDE LOGÍSTICA E TANGENTE HIPERBÓLICA

- Saturam para valores altos (muito positivos ou muito negativos)
 - Muitos sensíveis à entrada quando z próximo de 0
 - Dificultam o aprendizado por gradiente
 - Atualmente, seu uso é desencorajado como camada oculta
 - Normalmente tanh funciona melhor que sigmóide (pois tanh(0) = 0 e $\sigma(0) = 1/2$)
 - Treinar uma rede $\hat{y} = \boldsymbol{\omega}^T \tanh(\boldsymbol{U}^T \tanh(\boldsymbol{V}^T \boldsymbol{x}))$ se assemelha a treinar um modelo linear $\hat{y} = \boldsymbol{\omega}^T \boldsymbol{U}^T \boldsymbol{V}^T \boldsymbol{x}$ quando as ativações da rede são mantidas pequenas
 - Mais usadas em outras redes
 - Recorrentes, autoenconders...

Design de Arquitetura

- Em geral, usamos uma estrutura encadeada
 - Definir profundidade da rede e largura da rede
 - Primeira camada

$$\boldsymbol{h}^{(1)} = g^{(1)} (\boldsymbol{W}^{(1)T} \boldsymbol{x} + \boldsymbol{b}^{(1)})$$

Segunda camada

$$\mathbf{h}^{(2)} = g^{(2)} (\mathbf{W}^{(2)T} \mathbf{h}^{(1)} + \mathbf{b}^{(2)})$$

- Como as unidades devem ser conectadas a cada outra?
- Podemos ter arquiteturas mais especializadas para tarefas específicas
 - CNN para visão computacional
 - Recorrentes para processamento de sequências
- Arquiteturas podem
 - adicionar atalhos nas conexões (skip connections)
 - Entradas estarem conectadas a um pequeno subconjunto de unidades na camada de saída
 - Reduzindo conexões, reduz parâmetros
 - Entre outras decisões de projeto ("não há receita de bolo")

Width

Propriedades de Aproximação Universal e Profundidade

- O teorema de aproximação universal estabelece que, independente de qual função (contínua) nós estamos tentando apresentar, uma MLP grande seria capaz de representá-la
 - Mas não há garantia que o algoritmo de treinamento conseguirá aprender a função
 - Otimizador pode não conseguir encontrar parâmetros que representam a função desejada
 - Overfitting pode levar a uma escolha errada de parâmetros
 - Não diz o quão grande deve ser
- Em resumo, uma rede FF com uma única camada é suficiente para representar qualquer função
 - Mas pode ser impraticável treiná-la adequadamente
 - O número de unidades poderia ser exponencial
- Usar modelos mais profundos pode reduzir o número de unidades exigidas para representar a função desejada e pode reduzir a quantidade de erro de generalização

Propriedades de Aproximação Universal e Profundade

Resultados empíricos

Better Generalization with Greater Depth

Large, Shallow Models Overfit More

- O processamento de uma entrada \boldsymbol{x} na rede produz a saída $\widehat{\boldsymbol{y}}$ (propagação para frente)
 - Nesta propagação, durante o treinamento podemos calcular um custo escalar $J(\boldsymbol{\theta})$
 - O algoritmo backpropagation permite a informação do custo fluir no sentido oposto da rede a fim de calcular os gradientes da função de custo $\nabla_{\theta} J(\theta)$ (em algoritmos de aprendizado)
- Cálculo analítico de gradiente é direto, mas avaliar numericamente é computacionalmente caro
 - O algoritmo de backpropagation simplifica e barateia este procedimento

Compute activations

Não é o algoritmo de aprendizado!

- Gradiente descendente é um algoritmo de aprendizado que usa os gradientes calculados pelo backpropagation
- Não é específico de redes MLP

Compute derivatives

REGRA DA CADEIA DE CÁLCULO

$$y = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$$

MLP

• Cada neurônio oculto é a saída de um Perceptron simples

$$\begin{bmatrix} h_1^1 \\ h_2^1 \\ \vdots \\ h_n^1 \end{bmatrix} = \begin{bmatrix} w_{11}^1 & w_{21}^1 & \dots & w_{n1}^1 \\ w_{12}^1 & w_{22}^1 & \dots & w_{n2}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m}^1 & w_{2m}^1 & \dots & w_{nm}^1 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

 w_{jk}^l é o peso do k-ésimo neurônio da camada l-1 para o j-ésimo neurônio na camada l

Função de Custo

$$J(\boldsymbol{W}_1, \dots, \boldsymbol{W}_L) = \sum_{i=1}^N \| \sigma(\boldsymbol{W}_L^T \dots \sigma(\boldsymbol{W}_2^T \sigma(\boldsymbol{W}_1^T \boldsymbol{x}_i))) - \boldsymbol{y}_i \|^2$$

Gradiente descendente

$$\boldsymbol{W}_{1}^{t+1} = \boldsymbol{W}_{1}^{t} \supseteq \alpha \nabla J(\boldsymbol{W}_{1}^{t})$$

Precisamos descobrir todos os parâmetros

EXEMPLO PARA MLP

• Função de Custo

$$J(\boldsymbol{W}_1, \boldsymbol{W}_2) = \| \underbrace{\sigma(\boldsymbol{W}_2^T \sigma(\boldsymbol{W}_1^T \boldsymbol{x}))}_{\boldsymbol{a}_2} - \boldsymbol{y} \|^2$$

<u>Vamos</u> obter o gradiente com relação à W₂ e W₁

• Função de Custo

• Termo do Erro

Erro na camada de saída L

$$\delta_{j}^{L} = \frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}} = \frac{\partial C}{\partial a_{j}^{L}} \sigma'(z_{j}^{L}).$$

$$2 \left(a_{j}^{L} - y_{j}^{L} \right)$$

$$3 \left(a_{j}^{L} - y_{j}^{L} \right)$$

$$4 \left(a_{j}^{L} - y_{j}^{L$$

• Erro de uma camada l em termos da camada seguinte (l+1)

$$oldsymbol{\delta}^\ell = ((oldsymbol{w}^{\ell+1})^T oldsymbol{\delta}^{\ell+1}) \odot \sigma'(oldsymbol{z}^\ell)$$

• Equação para o viés

$$\frac{\partial C}{\partial b_j^{\ell}} = \delta_j^{\ell}$$

3j= [w] x ak +5,1

Equação para os pesos (mostrar)

$$\frac{\partial C}{\partial w_{jk}^{\ell}} = (a_k^{\ell-1} \delta_j^{\ell})$$

$$\frac{\partial C}{\partial w_{jk}} = (a_k^{\ell-1} \delta_j^{\ell})$$

ALGORITMO BP

1. **Input** x: Set the corresponding activation a^1 for the input layer.

- 2. **Feedforward:** For each $l=2,3,\ldots,L$ compute $z^l=w^la^{l-1}+b^l$ and $a^l=\sigma(z^l)$.
- 3. **Output error** δ^L : Compute the vector $\delta^L = \nabla_a C \odot \sigma'(z^L)$.
- 4. Backpropagate the error: For each l = L 1, L 2, ..., 2, 1 compute $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$.
- 5. Output: The gradient of the cost function is given by

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l ext{ and } rac{\partial C}{\partial b_j^l} = \delta_j^l.$$

Usar f ao invés de sigmóide para uma MLP com qualquer função de ativação

OBS:
$$a_k^0 = x_k$$

Lembre-se que uma rede FF pode ser vista como um dígrafo, de tal forma que podemos seguir as relações de paternidade para definir qual nó afeta outro nó.