

7° Laboratório de Eletrônica Básica para Mecatrônica

Título: Aplicações Lineares do Amplificador Operacional

Objetivo:

- Entender o funcionamento de circuitos com amplificadores operacionais
- Conhecer as principais aplicações de amplificadores operacionais
- Usar o osciloscópio para observar e medir formas de onda
- Consultar folha de dados de um amplificador operacional

Teoria:

O amplificador operacional é um elemento ativo integrado cujas características são:

- alto ganho
- alta impedância de entrada
- baixa impedância de saída
- entradas inversora e não inversora
- larga faixa de frequência

O amplificador operacional pode ser modelizado como:

Onde:

V+ é a entrada não inversora.

V- é a entrada inversora.

Av é o ganho de tensão. Ideal $Av = \infty$.

Vo é a saída.

Os amplificadores operacionais possuem como principais aplicações lineares:

Amplificador inversor:

O sinal de saída (Vo) é invertido em relação ao sinal de entrada (Vi) com um ganho (Vo/Vi) dado por Rf/R1.

Amplificador não inversor:

O sinal de saída (Vo) é igual ao sinal de entrada (Vi), porém com um ganho (Vo/Vi) dado por Rf/R1 + 1.

Somador inversor:

Nesta configuração, a saída é invertida e igual a soma dos sinais de entrada, multiplicados por um ganho.

Subtrator:

O amplificador operacional é utilizado nesta configuração para subtrair dois sinais e fornecer o resultado em sua saída multiplicado por um ganho (R2/R1).

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA

$$V_0 = \frac{R2}{R1}.(V_1 - V_2)$$

Prática:

1 – Consultar a folha de dados do amplificador operacional 741 e anotar as seguintes características:

Ganho em malha aberta	
Impedância de saída	
Impedância de entrada	
Razão de rejeição de modo comum	
Tensão diferencial de entrada máxima	
Corrente de saída máxima	
Tensão de offset de entrada	
Corrente offset de entrada	
Tensão de alimentação máxima	
Potência máxima de dissipação	

2 — Montar os seguintes circuitos utilizando o amplificador operacional 741. Consultar a folha de dados para identificação das pinagens do C.I. Alimentar os circuitos com tensão de \pm 15V.

Circuito 1:

Circuito 2:

<u>Circuito 3:</u> <u>Circuito 4:</u>

3 – Observar e medir com o osciloscópio as formas de onda de saída (Vo) para os circuitos do item 1, considerando os seguintes sinais de tensão de entrada para cada circuito. Utilizar o gerador de sinais. Desenhar as formas de onda de entrada e saída.

Circuito 1:

Vi = onda senoidal, 1Vp, 1kHz

Circuito 2:

Vi = onda senoidal, 1,0Vp, 1kHz

<u>Circuito 3</u>:

 $\overline{V1 = \text{onda}}$ triangular, 2Vp, 60Hz

V2 = V1

Circuito 4:

V1 = onda quadrada, 3Vp, 200Hz

V2 = V1

5 – Conclusões: