# CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

# Dynamic Programming

# **Dynamic Programming**

Prelude

• Similarity: optimal substructure

- Similarity: optimal substructure
- Difference: greedy choice property

- Similarity: optimal substructure
- Difference: greedy choice property

A greedy algorithm makes the greedy choice and it leaves a subproblem to solve

- Similarity: optimal substructure
- Difference: greedy choice property

A greedy algorithm makes the greedy choice and it leaves a subproblem to solve

Sometimes, the greedy choice won't work — we need to check many subproblems to find the optimal solution

- Similarity: optimal substructure
- Difference: greedy choice property

A greedy algorithm makes the greedy choice and it leaves a subproblem to solve

Sometimes, the greedy choice won't work — we need to check many subproblems to find the optimal solution  $\rightarrow$  **Dynamic programming** 

# **General steps for Dynamic Programming**

Break problem into smaller subproblems

# General steps for Dynamic Programming

- Break problem into smaller subproblems
- Solve smaller subproblems first (bottom-up)

# **General steps for Dynamic Programming**

- Break problem into smaller subproblems
- Solve smaller subproblems first (bottom-up)
- Use information from smaller subproblems to solve a larger subproblem

Problem (Longest increasing subsequence)

Mar 31, 2022

#### Problem (Longest increasing subsequence)

Given  $a_1, \ldots, a_n \in \mathbb{R}$ ,

Mar 31, 2022

#### Problem (Longest increasing subsequence)

Given  $a_1, \ldots, a_n \in \mathbb{R}$ , find the longest subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ 

#### Problem (Longest increasing subsequence)

Given  $a_1, \ldots, a_n \in \mathbb{R}$ , find the longest subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  s.t.  $i_1 < i_2 < \cdots < i_k$  and  $a_{i_1} < a_{i_2} < \cdots > a_{i_k}$ 

Mar 31, 2022

#### Problem (Longest increasing subsequence)

Given  $a_1, \ldots, a_n \in \mathbb{R}$ , find the longest subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  s.t.  $i_1 < i_2 < \cdots < i_k$  and  $a_{i_1} < a_{i_2} < \cdots a_{i_k}$ 

Example:  $\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \\ 5 & 2 & 8 & 6 & 3 & 6 & 9 & 7 \end{pmatrix}$ 

#### Problem (Longest increasing subsequence)

Given  $a_1, \ldots, a_n \in \mathbb{R}$ , find the longest subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  s.t.  $i_1 < i_2 < \cdots < i_k$  and  $a_{i_1} < a_{i_2} < \cdots a_{i_k}$ 

Example:  $\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \\ 5 & 2 & 8 & 6 & 3 & 6 & 9 & 7 \end{pmatrix}$ 

#### Problem (Longest increasing subsequence)

Given  $a_1, \ldots, a_n \in \mathbb{R}$ , find the longest subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  s.t.  $i_1 < i_2 < \cdots < i_k$  and  $a_{i_1} < a_{i_2} < \cdots > a_{i_k}$ 

Example: 
$$\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \\ 5 & 2 & 8 & 6 & 3 & 6 & 9 & 7 \end{pmatrix}$$

$$i_1 = 2, i_2 = 5, i_3 = 6, i_4 = 7$$

We can model the longest increasing subsequence problem as a directed acyclic graph

We can model the longest increasing subsequence problem as a directed acyclic graph

$$a_8 = 7$$
 $a_7 = 9$ 
 $a_6 = 6$ 
 $a_5 = 3$ 
 $a_4 = 6$ 
 $a_3 = 8$ 
 $a_2 = 2$ 
 $a_1 = 5$ 

We can model the longest increasing subsequence problem as a directed acyclic graph

 $\blacksquare \ \, \text{There is a linke} \,\, i \to j \,\, \text{if} \,\, a_i < a_j \,\,$ 

$$a_8 = 7$$
 $a_7 = 9$ 
 $a_6 = 6$ 
 $a_5 = 3$ 
 $a_4 = 6$ 
 $a_3 = 8$ 
 $a_2 = 2$ 
 $a_1 = 5$ 

We can model the longest increasing subsequence problem as a directed acyclic graph

 $\blacksquare \ \, \text{There is a linke} \,\, i \to j \,\, \text{if} \,\, a_i < a_j \,\,$ 



We can model the longest increasing subsequence problem as a directed acyclic graph

- There is a linke  $i \rightarrow j$  if  $a_i < a_j$
- Find the longest path in the DAG:



We can model the longest increasing subsequence problem as a directed acyclic graph

- There is a linke  $i \rightarrow j$  if  $a_i < a_j$
- Find the longest path in the DAG:



We can model the longest increasing subsequence problem as a directed acyclic graph

- There is a linke  $i \rightarrow j$  if  $a_i < a_j$
- Find the longest path in the DAG:

**def** LIS\_DAG(
$$DAG G = (V, E)$$
 for  $a_1, \ldots, a_n$ ):



We can model the longest increasing subsequence problem as a directed acyclic graph

- There is a linke  $i \rightarrow j$  if  $a_i < a_j$
- Find the longest path in the DAG:

**def** LIS\_DAG(
$$DAG G = (V, E)$$
 for  $a_1, \ldots, a_n$ ):

| for  $j = 1, \ldots, n$ :



We can model the longest increasing subsequence problem as a directed acyclic graph

- There is a linke  $i \rightarrow j$  if  $a_i < a_j$
- Find the longest path in the DAG:

Use L(j) to denote the length of the longest path (longest increasing subsequence) ending with  $a_j$ 



We can model the longest increasing subsequence problem as a directed acyclic graph

- There is a linke  $i \rightarrow j$  if  $a_i < a_j$
- Find the longest path in the DAG:



#### Running example



# Running example

```
\begin{aligned} & \textbf{def LIS\_DAG}(\textit{GAG G} = (V, E) \; \textit{for} \\ & a_1, \dots, a_n) \text{:} \\ & & \textbf{for } j = 1, \dots, n \text{:} \\ & & & L(j) = \\ & & & \left\{ 1 + \max\{L(i) : (i, j) \in E\} \\ 1 \; \text{if no such edge} \right\} \end{aligned} ;
& \textbf{return } \max_j L(j);
```

```
    aj
    5
    2
    8
    6
    3
    6
    9
    7

    j
    1
    2
    3
    4
    5
    6
    7
    8

    L
```

# Running example

```
 \begin{aligned} \textbf{def LIS\_DAG}(\textit{GAG G} = (V, E) \; \textit{for} \\ a_1, \dots, a_n) & : \\ & \quad \textbf{for } j = 1, \dots, n \text{:} \\ & \quad L(j) = \\ & \quad \left\{ 1 + \max\{L(i) : (i, j) \in E\} \\ 1 \; \text{if no such edge} \right. \end{aligned} ;   \begin{aligned} \textbf{return } \max_j L(j); \end{aligned}
```

$$a_j \begin{vmatrix} 5 & 2 & 8 & 6 & 3 & 6 & 9 & 7 \\ j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ L & 1 & 1 & 2 & 2 & 2 & 3 & 4 & 4 \end{vmatrix}$$



Do we really need to work on a DAG?

Do we really need to work on a DAG?

A more direct approach:

```
def LIS(a_1, ..., a_n):

for j = 1, ..., n:

L(j) = \begin{cases} 1 + \max\{L(i) : a_i < a_j\} \\ 1 \text{ if no such } i \end{cases};
return \max_i L(j);
```

Do we really need to work on a DAG?

A more direct approach:

Running time:  $O(n^2)$ 

Do we really need to work on a DAG?

A more direct approach:

def LIS
$$(a_1, ..., a_n)$$
:  
for  $j = 1, ..., n$ :  

$$L(j) = \begin{cases} 1 + \max\{L(i) : a_i < a_j\} \\ 1 \text{ if no such } i \end{cases}$$
;  
return  $\max_i L(j)$ ;

Running time:  $O(n^2)$ 

Costs more than greedy: need to check more subproblems

The above dynamic programming algorithm only computes the length of the longest increasing subsequence, but how to find the subsequence?

The above dynamic programming algorithm only computes the length of the longest increasing subsequence, but how to find the subsequence? We use an additional table to keep track of the subsequence

The above dynamic programming algorithm only computes the length of the longest increasing subsequence, but how to find the subsequence? We use an additional table to keep track of the subsequence

```
def LIS(a_1, ..., a_n):

for j = 1, ..., n:

L(j) = 1, \text{ prev}(j) = \cdot;
for i = 1, ..., j:

if a_i < a_j \text{ and } L(i) + 1 > L(j):

L(j) = L(i) + 1, \text{ prev}(j) = i;
return \max_j L(j);
```

The above dynamic programming algorithm only computes the length of the longest increasing subsequence, but how to find the subsequence? We use an additional table to keep track of the subsequence

```
def LIS(a_1, \ldots, a_n):
    for j = 1, ..., n:
         L(i) = 1, prev(i) = \cdot;
        for i = 1, ..., j:
        if a_i < a_i and L(i) + 1 > L(j):
         L(j) = L(i) + 1, prev(j) = i;
    return max<sub>i</sub> L(i);
  a_j | 5 2 8 6 3 6 9 7 j | 1 2 3 4 5 6 7 8
```

prev

The above dynamic programming algorithm only computes the length of the longest increasing subsequence, but how to find the subsequence? We use an additional table to keep track of the subsequence

```
def LIS(a_1, ..., a_n):

for j = 1, ..., n:

L(j) = 1, \text{ prev}(j) = \cdot;
for i = 1, ..., j:

if a_i < a_j \text{ and } L(i) + 1 > L(j):

L(j) = L(i) + 1, \text{ prev}(j) = i;
return \max_j L(j);
```

# Key steps to design DP algorithms

1. Identify subproblems

#### Key steps to design DP algorithms

- 1. Identify subproblems
- 2. Recurrence

e.g. 
$$L(j) = 1 + \max\{L(i) : a_i < a_j\}$$

#### Key steps to design DP algorithms

- 1. Identify subproblems
- 2. Recurrence

e.g. 
$$L(j) = 1 + \max\{L(i) : a_i < a_j\}$$

3. Base case