64-041 Übung Rechnerstrukturen

Aufgabenblatt 5 Ausgabe: 25.11., Abgabe: 02.12. 12:00

Gruppe	
Name(n)	Matrikelnummer(n)

Aufgabe 5.1 (Punkte 20)

Die 26 Großbuchstaben des Alphabets sollen in einem zyklischen-einschrittigen Binärcode "durchgezählt" werden, konstruieren sie so einen Code.

Benutzen Sie dazu das in der Vorlesung vorgestellte rekursive Verfahren.

Aufgabe 5.2 (Punkte 20)

Erläutern Sie, warum es keinen zyklisch-einschrittigen (Binär-) Code mit ungerader Zahl von Codewörtern geben kann.

Aufgabe 5.3 (Punkte 15+5)

Optimale Codierung: Die folgenden 12 Symbole a_i sind mit ihren Wahrscheinlichkeiten $p(a_i)$ in der Tabelle angegeben:

$\mathfrak{a}_{\mathfrak{i}}$	a	b	c	d	e	f	g	h	i	j	k	1
$\overline{p(a_i)}$	0,12	0,03	0,05	0,3	0,05	0,02	0,1	0,02	0,03	0,1	0,12	0,06

- (a) Bestimmen Sie einen Fano-Code für die Codewörter.
- (b) Wie groß ist der mittlere Informationsgehalt des erzeugten Codes.

Aufgabe 5.4 (Punkte 10+10+20)

Informationstheorie: Die Dezimalziffern (0...9) werden neu codiert...

- (a) Im ersten Ansatz sollen Sie eine Coderung wählen, die die Ziffern auf 4-bit Binärwörter (Tetraden) abbildet.
 - Geben Sie Ihren Code, den Entscheidungsgehalt H₀ und die Redundanz R an.
- (b) Versuchen Sie, die Redundanz zu verkleinern, indem Sie jeweils zwei Dezimalziffern zu einem Codewort zusammenfassen. Die Menge der Ausgangs-Codewörter ist deshalb $\{00,01,02,\ldots\,10,11,\ldots\,97,98,99\}$.
 - Wie viele Bits werden für die Codewörter benötigt? Geben Sie Ihren Code, den Entscheidungsgehalt H₀ und die Redundanz R an. Wie groß ist jetzt die Redundanz bezogen auf eine einzelne Dezimalziffer?
- (c) Reduzieren Sie die Redundanz, indem Sie die Dezimalziffern (0...9) auf einen Code mit variabler Länge (Fano oder Huffman) abbilden. Nehmen Sie für die Codierung gleiche Wahrscheinlichkeiten der einzelnen Ziffern an.
 - Geben Sie Ihren Code, den Entscheidungsgehalt H₀ und die Redundanz R an. Wie könnte man die den Code noch effizienter machen?