Теорема

Пусть дана непрерывная функция f(x), определенная на отрезке [a,b]. Пусть $M=\sup f(x)$, $m=\inf f(x)$. Тогда эти значения конечны $-\infty < m \le M < \infty$ и достигаются, т.е. существуют такие x_m, x_M , что $f(x_m)=m, \ f(x_M)=M$.

Доказательство

Пусть f(x) — функция, отвечающая условиям теоремы. $M = \sup f(x)$. Возьмем последовательность чисел a_m таких, что $\lim a_m = M$ и $a_m < M$. Для каждого m найдется точка x_m такая, что $a_m < f(x_m)$. По теореме Больцано-Вейерштрасса из последовательности x_m можно выделить сходящуюся последовательность $\{x_{m_k}\}$, предел которой лежит на нашем отрезке. Для любого x_m справедливо $a_m < f(x_{m_k}) < M$. По теореме о трех последовательностях $\lim f(x_{m_k}) = M$ и в силу непрерывности функции существует точка x_0 такая, что $\lim f(x_{m_k}) = f(x_0)$, и, следовательно, $M = f(x_0)$. Таким образом функция f(x) ограничена и достигает своей верхней грани при $x = x_0$. Аналогично для нижней грани.