

第九屆全國私立大專校院程式競賽

National Contest for Private Universities (NCPU), 2019

Problem A

Minimum Factorial as a Multiple

(Time Limit: 1 second)

Let k be a positive integer. The factorial of k, denoted by k!, is equal to $1 \times 2 \times \cdots \times k$. Given an input number n, we want to find the smallest positive integer k such that k! is a multiple of n.

Input Format

The input begins with a single positive integer m, which specifies the number of test cases. Then, each of the following m lines corresponds to a test case, which contains a single positive integer n.

Output Format

For each test case, output, on a separate line, the smallest positive integer k such that its factorial k! is a multiple of n. (Note: For all test cases, it is guaranteed that the corresponding output k would be at most 12.)

Technical Specification

- $1 \le m \le 100$
- $1 \le n \le 10^7$
- For each integer n in the input test cases, there exists some k with $1 \le k \le 12$ such that k! is a multiple of n

Example

Sample Input:	Sample Output:
3	1
1	5
40	12
136080	