PROJEKT PRI PREDMETU MM

LUKA ANDRENŠEK

V tem poročilu bom predstavil rešitev težje različice projektne naloge pri predmetu Matematično modeliranje.

1. Uvod

Imamo dani dve točki v ravnini $T_1(x_1, y_1)$ in $T_2(x_2, y_2)$, pri čemer velja $x_1 < x_2$ in $y_1 > y_2$. Med vsemi kubičnimi polinomi, ki potekajo skozi točke $T_1, \frac{1}{2}(T_1 + T_2)$ in T_2 moramo najti tistega, da bo čas potovanja kroglice po njegovem grafu od točke T_1 do točke T_2 čim krajši. Pristop k nalogi bo, da najprej identificiramo vse smiselne polinome, nato definiramo funkcijo, ki bo izmerila čas potovanja kroglice in naposled bomo poiskali minimum te funkcije.

2. Formalna postavitev problema in poenostavitve

Imamo torej dani dve točki v ravnini, $T_1(x_1, y_1)$ in $T_2(x_2, y_2)$, pri čemer velja $x_1 < x_2$ in $y_1 > y_2$. Označimo še točko $S = \frac{1}{2}(T_1 + T_2)$. Iščemo tak polinom tretje stopnje, ki bo potekal skozi točke T_1, T_2 in S, da bo čas potovanja kroglice po njegovem grafu od točke T_1 do T_2 najkrajši.

Najprej bomo premaknili koordinatni sistem, in sicer bomo točko S postavili v izhodišče. To seveda lahko storimo, saj translacija ne bo vplivala na čas potovanja, saj predpostavljamo, da je težni pospešek konstanten. Točke transliramo tako, da od x komponent odštejemo vrednost $\frac{1}{2}(x_1+x_2)$, od y komponent pa vrednost $\frac{1}{2}(y_1+y_2)$. Dobimo nove točke, ki jih v novem koordinatnem sistemu označimo s T_1', T_2' in S':

$$T'_1(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}),$$

 $S'(0,0),$
 $T'_2(\frac{x_2-x_1}{2}, \frac{y_2-y_1}{2}).$

Nadalje še označimo $x_0 = \frac{x_2 - x_1}{2}$ in $y_0 = \frac{y_1 - y_2}{2}$. Konstanti x_0 in y_0 sta pozitivni in točke se sedaj prepišejo v zelo enostavno obliko:

$$T'_1(-x_0, y_0),$$

 $S'(0, 0),$
 $T'_2(x_0, -y_0).$

Sedaj pa moramo najti vse polinome tretje stopnje, ki interpolirajo te tri točke. Naj bo \mathcal{P} množica teh polinomov. Torej polinom tretje stopnje p pripada \mathcal{P} , natanko tedaj ko velja

$$p(-x_0) = y_0,$$

 $p(0) = 0,$
 $p(x_0) = -y_0.$

Date: June 30, 2025.

Naj bo sedaj $l(x) = -\frac{y_0}{x_0}x$. Očitno l interploira dane točke. Dalje, če je $p \in \mathcal{P}$, potem za polinom p-l velja, da ima ničle v točkah $-x_0$, 0 in x_0 . Ker je p-l polinom tretje stopnje, sledi da obstaja tak $a \in \mathbb{R}$, da velja

$$p(x) - l(x) = ax(x + x_0)(x - x_0) = ax(x^2 - x_0^2).$$

Od koder dobimo

$$p(x) = ax^3 - \left(\frac{y_0}{x_0} + ax_0^2\right)x.$$

Označimo s p_a polinom zgornje oblike za fiksen $a \in \mathbb{R}$, torej

$$p_a(x) = ax^3 - \left(\frac{y_0}{x_0} + ax_0^2\right)x.$$

Pokazali smo, da je $\mathcal{P} \subset \{p_a \mid a \in \mathbb{R}\}$. Obratna inkluzija je očitna, torej dobimo

$$\mathcal{P} = \{ p_a \mid a \in \mathbb{R} \}.$$

Sedaj lahko v principu za $a \in \mathbb{R}$ izračunamo čas potovanja. Dobili smo funkcijo ene spremenljivke in moramo poiskati njen minimum. To bomo v nadaljevanju naredili, a moramo biti previdni, ker ta funkcija ni dobro definirana za vse $a \in \mathbb{R}$.

3. Dovoljeni polinomi

V tem razdelku bomo poiskali potrebne in zadostne pogoje za $a \in \mathbb{R}$, da bo kroglica sploh uspela prepotovati pot po grafu polinoma p_a od točke T'_1 do točke T'_2 .

1. pogoj Najočitnejši pogoj je pogoj na odvod polinoma p_a v točki $-x_0$, in sicer $p'_a(-x_0) < 0$. Seveda se sicer kroglica sploh ne bi premaknila iz začetne lege. Računamo:

$$p_a'(x) = 3ax^2 - \frac{y_0}{x_0} - ax_0^2.$$

Pogoj $p'_a(-x_0) < 0$ je tako ekvivalenten pogoju

$$a < \frac{y_0}{2x_0^3}.$$

 $\underline{2. \text{ pogoj}}$ Drugi pogoj je to, da ima kroglica spočetka dovolj potencialne energije. Z drugimi besedami, rabimo poskrbeti, da funkcija p_a na intervalu $[-x_0, x_0]$ ne preseže vrednosti y_0 . Torej moramo poskrbeti, da je maksimalna vrednost p_a na $[-x_0, x_0]$ manjšsa ali kvečjemu enaka y_0 , na intervalu $(-x_0, x_0)$ pa ne sme niti doseči vrednosti y_0 .

Kandidati za maksimum so stacionarne točke na intervalu $(-x_0, x_0)$ in robni točki $-x_0$ in x_0 . V robnih točkah p_a seveda ne preseže vrednosti y_0 , tako da moramo preveriti le še vrednosti v stacionarnih točkah, če le te obstajajo. Zato ločimo par primerov. Pred tem pa še opazimo, da je p_a liha funkcija, torej je p'_a soda funkcija. Poleg tega je p'_a kvadratna funkcija s temenom v točki 0.

(1) $p'_a(0) < 0$ V tem primeru kar velja $p'_a(x) < 0$ na $(-x_0, x_0)$, saj je p'_a kvadratna funkcija s temenom pri x = 0 in zaradi pogoje (1) velja $p'_a(-x_0) = p'_a(x_0) < 0$. Torej je v tem primeru izpolnjen drugi pogoj, saj je p_a padajoča funkcija na intervalu $[-x_0, x_0]$. Pogoj $p'_a(0) < 0$ pa je ekvivalenten

$$a > -\frac{y_0}{x_0^3}.$$

Če pa še upoštevamo prvi pogoj dobimo v tem primeru pogoj

$$-\frac{y_0}{x_0^3} < a < \frac{y_0}{2x_0^3}.$$

(2) $p'_a(0) = 0$ V tem primeru ima p_a le eno stacionarno točko na \mathbb{R} , saj je v tem primeru 0 dvojna ničla za p'_a , saj je 0 teme za p'_a . Ker pa je 0 edina stacionarna točka za p_a , in ker je $p_a(0)=0$, funkcija p_a spet izpolni drugi pogoj. Zahteva $p_a'(0)=0$ pa se prepiše v

(3)
$$a = -\frac{y_0}{x_0^3}.$$

(3) $p_a'(0) > 0$ V tem primeru ima p_a' natanko eno ničlo na $(-x_0,0)$ in natanko eno ničlo na $\overline{(0,x_0)}$, saj je p'_a kvadratna funkcija s temenom v točki 0 in zaradi zahteve $p'_a(-x_0) < 0$. Pogoj $p'_a(0) > 0$ se prepiše v

$$a < -\frac{y_0}{x_0^3}.$$

V tem primeru imamo točki $x_1 \in (-x_0, 0)$ in $x_2 \in (0, x_0)$, v katerih velja $p'_a(x_1) = p'_a(x_2) = 0$

0. Drugi pogoj bo izpolnjen, če bo $p_a(x_1) < y_0$ in $p_a(x_2) < y_0$.

Sedaj rešimo enačbo $p'_a(x) = 0$ in dobimo rešitvi

$$x_1 = -\sqrt{\frac{y_0}{3ax_0} + \frac{x_0^2}{3}}, \quad x_2 = \sqrt{\frac{y_0}{3ax_0} + \frac{x_0^2}{3}}.$$

Ker pa je p'_a kvadratna funkcija z negativnim vodilnim koefecientom, bo p'_a v točki x_2 prešla iz pozitivne vrednosti v negativno, kar pomeni, da ima p_a v x_2 lokalni maksimum. Podobno sklepamo, da ima p_a v x_1 lokalni minimum. Sledi, da mora le veljati

$$p_a(x_2) < y_0.$$

Oziroma

$$a\left(\frac{y_0}{3ax_0} + \frac{x_0^2}{3}\right)^{3/2} - \left(\frac{y_0}{x_0} + ax_0^2\right)\left(\frac{y_0}{3ax_0} + \frac{x_0^2}{3}\right)^{1/2} < y_0.$$

Torej moramo rešiti to neenakost. V zgornjo neenačbo uvedemo novo spremenljivko

$$u = -\frac{ax_0^3}{y_0}.$$

Velja, da je u > 1. Neenakost se nam poenostavi v

$$-\frac{u}{3\sqrt{3}}\left(1-\frac{1}{u}\right)^{3/2}-\frac{1}{\sqrt{3}}(1-u)\left(1-\frac{1}{u}\right)^{1/2}<1.$$

Dalje v to neeankost vpeljemo novo spremenljivko

$$s = \sqrt{1 - \frac{1}{u}}.$$

Ker je u > 1, je $s \in (0,1)$. Neenakost se nam prepiše v

$$2s^3 + 3\sqrt{3}s^2 - 3\sqrt{3} < 0.$$

Označimo

$$f(s) = 2s^3 + 3\sqrt{3}s^2 - 3\sqrt{3}.$$

Zanima nas torej, za katere $s \in (0,1)$, je f(s) < 0. Ker je $\frac{\sqrt{3}}{2}$ ničla za f, lahko f faktoriziramo kot

$$f(s) = \left(s - \frac{\sqrt{3}}{2}\right)(2s^2 + 4\sqrt{3}s + 6) = 2\left(s - \frac{\sqrt{3}}{2}\right)(s + \sqrt{3})^2.$$

Ker pa je $(s+\sqrt{3})^2 > 0$ za $s \in (0,1)$, se neenačba prevede v

$$s - \frac{\sqrt{3}}{2} < 0.$$

In končno

$$s < \frac{\sqrt{3}}{2}.$$

Sedaj pa to nazaj izrazimo z a, x_0 in y_0 in dobimo pogoj

$$a > -\frac{4y_0}{x_0^3}$$
.

Ko še upoštevamo prejšnji pogoj pri tem primeru, pa dobimo

$$-\frac{4y_0}{x_0^3} < a < -\frac{y_0}{x_0^3}.$$

Sedaj združimo pogoje iz vseh (disjunktnih) primerov, torej združimo (2), (3) in (4) in dobimo nov pogoj

(5)
$$a \in \left(-\frac{4y_0}{x_0^3}, \frac{y_0}{2x_0^3}\right),$$

ki je kajpak kompatibilen s pogojem (1). Zgornji interval označimo z I_{x_0,y_0} . Torej imamo

$$a \in I_{x_0,y_0}$$

4. Definicija časovnega funkcionala

Iz prejšnjih razdelkov je razvidno, da lahko definiramo funkcijo $T:I_{x_0,y_0}\to(0,\infty)$, s predpisom

$$T(a) = \int_{-x_0}^{x_0} \sqrt{\frac{1 + p_a'(x)^2}{2g(y_0 - p_a(x))}} dx.$$

Sedaj preostane le da implementiramo to funkcijo v Matlabu in numerično poiščemo njen minimum. To bomo storili z vgrajeno funkcijo fminbnd.

Sledijo grafični prikazi problema za določene vrednosti T_1 in T_2 . Na vsaki sliki je zrisan graf kubičnega polinoma, ki interploira zahtevane točke in po čigar grafu je potovanje kroglice najkrajše. Poleg tega grafa je še zrisan graf funkcije T na intervalu I_{x_0,y_0} in napisana vrednost parametra a, pri katerem T doseže minimum.

FIGURE 1. Graf polinoma in funkcije T za dane točke T1 in T2

FIGURE 2. Graf polinoma in funkcije T za dane točke T1 in T2

FIGURE 3. Graf polinoma in funkcije T za dane točke T1 in T2

5. Sklepi

Uspešno smo si zastavili problem in ga rešili. Nekaj pomanjkljivosti je recimo, da nismo upoštevali sile trenja. Dodatno bi lahko obogatili model, če bi dovolili, da ima kroglica spočetka neničelno hitrost.