Faculté des Sciences Exactes & Informatique

Département de Mathématiques

Support de cours et d'exercices

Théorie des Opérateurs

Présenté par

Dr. Aissa NASLI BAKIR

Première Année Master

Année Universitaire: 2019/2020

Table des matières

1	Esp	aces de	e Hilbert	4
	1.1	Espa	ces pré-Hilbertiens	4
		1.1.1	Produit scalaire	4
		1.1.2	Inégalité de Cauchy-Bunyakowski-Schwartz	6
		1.1.3	Norme associée à un produit scalaire	6
	1.2	Propr	iétés	8
		1.2.1	Continuité du produit scalaire	9
	1.3	Espac	e de Hilbert	9
	1.4	Feuill	e de TD 1	12
2	Syst	tèmes c	orthogonaux et orthonormaux	15
2	Syst	tèmes o	orthogonaux et orthonormaux Procédé d'orthogonalisation de Gram-Schmidt	15
2	Syst			
2	Syst	2.0.1	Procédé d'orthogonalisation de Gram-Schmidt	18
2	Syst 2.1	2.0.12.0.22.0.3	Procédé d'orthogonalisation de Gram-Schmidt	18 19
2	·	2.0.12.0.22.0.3	Procédé d'orthogonalisation de Gram-Schmidt	18 19 22
2	·	2.0.12.0.22.0.3Espace	Procédé d'orthogonalisation de Gram-Schmidt	18 19 22 24
2	·	2.0.1 2.0.2 2.0.3 Espac 2.1.1	Procédé d'orthogonalisation de Gram-Schmidt	18 19 22 24 24 25

	2.2 Orthogonalité et projection orthogonale			
		2.2.1 Orthogonalié et complément orthogonal	28	
		2.2.2 Théorème de la projection orthogonale	30	
		2.2.3 Théorème de la décomposition orthogonale	32	
	2.3	Feuille de TD 2		
3	Op	pérateurs linéaires bornés sur un espace de Hilbert		
	3.1	Opérateurs linéaires bornés	36	
		3.1.1 Définitions - continuité	36	
	3.2	Fonctionnelles linéaires bornées		
		3.2.1 Théorème de représentation de Riesz	41	
	3.3	Opérateurs inversibles	44	
	3.4	Adjoint d'un opérateur linéaire	47	
	3.5	Opérateurs auto-adjoints	51	
	3.6	Orthoprojecteur sur un espace de Hilbert		
	27	Equille de TD 2	E 4	

Chapitre 1

Espaces de Hilbert

1.1 Espaces pré-Hilbertiens

1.1.1 Produit scalaire

Soit E un espace vectoriel sur le corps \mathbb{C} .

Définition 1.1. (Rappel) Une application $f: E \times E \to \mathbb{C}$ est dite bilinéaire si pour tous $x, x', y, y' \in E$, et tout $\lambda \in \mathbb{C}$:

$$f(\lambda x + x', y) = \lambda f(x, y) + f(x', y)$$

et

$$f(x, \lambda y + y) = \lambda f(x, y) + f(x, y')$$

Définition 1.2. Un produit scalaire sur E, est une application bilinéaire $\langle .,. \rangle : E \times E \to \mathbb{C}$ et vérifiant :

- *i.* $\forall x \in E : \langle x, x \rangle \ge 0$ (Positivité)
- ii. $\forall x \in E : \langle x, x \rangle = 0 \Leftrightarrow x = 0$ (Séparation)
- iii. $\forall x,y \in E: \overline{\langle x,y \rangle} = \langle y,x \rangle$ (Anti-symétrie)

iv. $\forall x, y \in E, \forall \lambda \in \mathbb{C} : \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ (Homogénéité)

$$v. \ \forall x, y, z \in E : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

Définition 1.3. Un espace vectoriel muni d'un produit scalaire est dit espace pré-Hilbertien.

Exemples 1. $E = \mathbb{C}^n$. L'application $(x,y) \mapsto \langle x,y \rangle = \sum_{i=1}^n x_i \overline{y_i}$ pour tous $x = (x_i)_{i=1}^n, y = (y_i)_{i=1}^n \in E$, définit bien un produit scalaire sur E. $(E,\langle\cdot,\cdot\rangle)$ est donc un espace pré-Hilbertien.

2. Considérons l'espace

$$\ell_2 := \left\{ x = (x_n)_n \subset \mathbb{C} : \sum_{n=1}^{+\infty} |x_n|^2 < +\infty \right\}$$

et l'application $\langle .,. \rangle$ sur $\ell_2 \times \ell_2$ définie par

$$\langle x, y \rangle = \sum_{i=1}^{+\infty} x_i \overline{y_i}, \ x = (x_i)_{i=1}^{+\infty}, \ y = (y_i)_{i=1}^{+\infty} \in \ell_2$$

Cette application est bien définie sur ℓ_2 . En effet, si $x=(x_i)_{i=1}^n,\,y=(y_i)_{i=1}^n\in$ ℓ_2 , alors

$$|\langle x, y \rangle| = \left| \sum_{i=1}^{+\infty} x_i \overline{y_i} \right| \le \sum_{i=1}^{+\infty} |x_i \overline{y_i}| \le \frac{1}{2} \left(\sum_{i=1}^{+\infty} |x_i|^2 + \sum_{i=1}^{+\infty} |y_i|^2 \right) < +\infty$$

car $x,y\in \ell_2$. Il est facile de montrer que $\langle .,.\rangle$ est un produit scalaire sur ℓ_2 , et $(\ell_2,\langle .,.\rangle)$ est donc un espace pré-Hilbertien.

3. De même pour l'espace

$$E = L_2([a, b], \mathbb{C}) = \left\{ f \colon [a, b] \to \mathbb{C} : \int_a^b |f(t)|^2 dt < +\infty \right\}$$

muni de l'application $\langle ., . \rangle$ où

$$\langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt, \ f, g \in E$$

.

Exercice Montrer que dans un espace pré-Hilbertien $(E,\langle.,.\rangle)$:

$$\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$$

pour tous $x, y \in E$ et tout $\lambda \in \mathbb{C}$.

1.1.2 Inégalité de Cauchy-Bunyakowski-Schwartz

Théorème 1.1. Soit $(E, \langle ., . \rangle)$ un espace pré-Hilbertien, et soient $x, y \in E$. Alors,

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle} \tag{1.1}$$

Preuve. Si $\langle x,y\rangle=0$, l'inégalité (1.1) est triviale. On suppose que $\langle x,y\rangle\neq0$. Soit $\lambda\in\mathbb{C}.$ On a

$$0 \le \langle x - \lambda y, x - \lambda y \rangle = \langle x, x \rangle - 2Re(\lambda \langle y, x \rangle) + |\lambda|^2 \langle y, y \rangle$$
 (1.2)

Pour $\lambda = \frac{\langle x, x \rangle}{\langle y, x \rangle}$, on aura dans (1.2)

$$\langle x, x \rangle - 2 \langle x, x \rangle + \frac{\langle x, x \rangle^2}{\left| \langle y, x \rangle \right|^2} \langle y, y \rangle \ge 0$$

Comme $\langle x, x \rangle \ge 0$,

$$\frac{\langle x, x \rangle}{\left| \langle y, x \rangle \right|^2} \left\langle y, y \right\rangle - 1 \ge 0$$

et l'inégalité (1.1) est vérifiée.

1.1.3 Norme associée à un produit scalaire

Proposition 1.1. Soit $(E, \langle ., . \rangle)$ un espace pré-Hilbertien. L'application $\|.\| : E \to \mathbb{R}_+$ définie par

$$||x|| = \sqrt{\langle x, x \rangle}, \ x \in E$$

est une norme sur E.

Preuve. En effet,

i. Si $x \in E$ et ||x|| = 0, alors $\sqrt{\langle x, x \rangle} = 0$. Donc $\langle x, x \rangle = 0$. Par suite x = 0 (propriété du produit scalaie). De même, $||0|| = \sqrt{\langle 0, 0 \rangle} = 0$.

ii. Pour tous $x \in E$ et tout $\lambda \in \mathbb{C}$:

$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda \overline{\lambda} \langle x, x \rangle} = \sqrt{|\lambda|^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle}$$
$$= |\lambda| \|x\|$$

iii. Soient $x, y \in E$. Par l'inégalité de Cauchy-Schwartz, on aura

$$||x + y||^{2} = \langle x + y, x + y \rangle = ||x||^{2} + ||y||^{2} + 2Re \langle x, y \rangle$$

$$\leq ||x||^{2} + ||y||^{2} + 2|\langle x, y \rangle|$$

$$\leq ||x||^{2} + ||y||^{2} + 2\sqrt{\langle x, x \rangle}\sqrt{\langle y, y \rangle}$$

$$\leq ||x||^{2} + ||y||^{2} + 2||x|| ||y|| = (||x|| + ||y||)^{2}$$

$$\leq (||x|| + ||y||)^{2}$$

Définition 1.4. La norme $\|.\|$ ainsi définie est dite norme associée au produit scalaire $\langle .,. \rangle$ sur E. (Ou norme issue du produit scalaire)

Exemples Exprimer les normes associées aux produits scalaires sur les espaces définis dans les exemples 1,2 et 3 précédents.

Conséquences

1. Soient $x=(x_i)_{i=1}^{+\infty}, y=(y_i)_{i=1}^{+\infty}\in\ell_2$. Pour $a=(|x_i|)_{i=1}^{+\infty}, b=(|y_i|)_{i=1}^{+\infty}\in\ell_2$, on aura par l'inégalité de Cauchy-Schwartz que

$$\sum_{i=1}^{+\infty} |x_i y_i| \le \left(\sum_{i=1}^{+\infty} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{+\infty} |y_i|^2\right)^{\frac{1}{2}}$$

i.e.

$$||ab||_1 \le ||a||_2 ||b||_2$$

Autrement dit, l'inégalité de Cauchy-Schwartz coïncide avec l'inégalité de Hölder.

2. Si $x=(x_i)_{i=1}^n,y=(y_i)_{i=1}^n\in\mathbb{C}^n$. Pour $a=(|x_i|)_{i=1}^n,b=(|y_i|)_{i=1}^n\in\mathbb{C}^n$, on pourra avoir toujours par l'inégalité de Cauchy-Schwartz que

$$\sum_{i=1}^{n} |x_i| \le \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

D'où,

$$||x||_1 \le \sqrt{n} \, ||x||_2$$

1.2 Propriétés

Soit $(E,\langle.,.\rangle)$ un espace pré-Hilbertien, et soit $\|.\|$ la norme associée à son produit scalaie. Pour tous $x,y\in E,$ on a

1. Identité du parallélogramme

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

2. **Identité de polarisation (** On suppose que le corps de E est \mathbb{R})

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 + \|x - y\|^2)$$

Preuve. Calcul direct.

1.2.1 Continuité du produit scalaire

Proposition 1.2. Soit $(E, \langle ., . \rangle)$ un espace pré-Hilbertien. Le produit scalaire $\langle ., . \rangle$ est une fonction continue sur $E \times E$.

Preuve. Soient $(x_n)_n, (y_n)_n$ deux suites de E convergeant respectivement vers x, y dans E. On a donc

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &\leq |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \\ &\leq \|x_n\| \|y_n - y\| + \|x_n - x\| \|y\| \underset{n \to +\infty}{\to} 0 \end{aligned}$$

$$\operatorname{car} \|x_n\| \to \|x\|, (n \to +\infty).$$

1.3 Espace de Hilbert

Définition 1.5. Une suite $(x_n)_n$ d' un espace pré-Hilbertien E est dite de Cauchy dans E si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}/\forall n, m \in \mathbb{N} : (n > N \land m > N) \Rightarrow (\sqrt{\langle x_n - x_m, x_n - x_m \rangle} < \epsilon)$$

Définition 1.6. La suite $(x_n)_n$ est dite convergente vers un élément $x \in E$, si

$$\lim_{n \to +\infty} ||x_n - x|| = 0$$

i.e., si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} / \forall n \in \mathbb{N} : (n \ge N) \Rightarrow (\|x_n - x\| < \epsilon)$$

et l'on écrit

$$\lim_{n \to +\infty} x_n = x$$

Définition 1.7. Soit E un espace pré-Hilbertien. Si toute suite de Cauchy dans E est convergente dans E, l'espace E est dit complet.

Définition 1.8. *Un espace pré-Hilbertien complet est dit espace de Hilbert.* ¹

Exemples 1. Les espaces \mathbb{C}^n , $n \geq 1$ et $L_2([a,b],\mathbb{C})$ sont des espaces de Hilbert.

2. Montrons que l'espace ℓ_2 est de Hilbert. Soit donc

$$x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \xi_3^{(n)}, \dots, \xi_n^{(n)}, \dots) \in \ell_2$$

une suite de Cauchy. Pour k fixé, on a

$$\left|\xi_k^{(n)} - \xi_k^{(m)}\right| \le \|x_n - x_m\| \to 0$$
 (1)

quand $n,m\to +\infty$. La suite $\left(\xi_k^{(n)}\right)_{n\geq 1}$ est donc de Cauchy dans $\mathbb C$. Elle est donc convergente. Soit $\xi_k=\lim_{n\to +\infty}\xi_k^{(n)}$, et posons $x=(\xi_1,\xi_2,,...\xi_n,..)$. Montrons que $x\in \ell_2$, et que $\lim_{n\to +\infty}x_n=x$.

Pour tout entier $j, j \ge 1$, on a

$$\sum_{k=1}^{j} |\xi_k|^2 = \lim_{n \to +\infty} \sum_{k=1}^{j} |\xi_k^{(n)}|^2 \qquad (2)$$

et

$$\sum_{k=1}^{j} \left| \xi_k^{(n)} \right|^2 \le \|x_n\|^2 \qquad (3)$$

De plus, $\sup_{n\geq 1}\|x_n\|=M<+\infty$ car

$$|||x_n|| - ||x_m||| \le ||x_n - x_m|| \to 0, n, m \to +\infty$$

^{1.} David Hilbert (1862-1943) est un grand mathématicien allemand, connu par ses 23 fameux problèmes en Analyse mathématique présentés en 1900, et dits Hilbert Open Problems.

Il s'ensuit donc de (2) et (3) que

$$\sum_{k=1}^{+\infty} \left| \xi_k^{(n)} \right|^2 \le M^2$$

, i.e., $x\in \ell_2$. D'autre part, pour $\epsilon>0$, il existe $N_\epsilon\in\mathbb{N}$ tel que pour tous n,m, n>N et $m>N_\epsilon$, et tout $p\in\mathbb{N}$:

$$\sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2 \le \|x_n - x_m\|^2 < \epsilon \tag{4}$$

Fixons $n \geq N_{\epsilon}$ et faisons tendre m vers $+\infty$. De (1) et (4), on obtiendra pour tout p

$$\sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k \right|^2 = \lim_{m \to +\infty} \sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2 \le \epsilon$$

Par conséquent,

$$||x_n - x||^2 = \sum_{k=1}^{+\infty} |\xi_k^{(n)} - \xi_k|^2 \le \epsilon$$

1.4 Feuille de TD 1

Exercice 1.1.

i. Soit $E = \mathbb{R}[X]$, l'espace vectoriel des polynômes de la variable réelle X et à coefficients réels. Les applications suivantes définissent-elles des produits scalaires sur E?

$$\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx, \quad P, Q \in \mathbb{R}[X]$$
$$\langle P, Q \rangle = P(1)Q'(0) + P'(0)Q(1), \quad P, Q \in \mathbb{R}[X]$$

Exercice 1.2.

Soit $(\mathcal{H}, \langle ., . \rangle)$ un espace de Hilbert réel.

a. Montrer l'identité de polarisation

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2), \ x, y \in \mathcal{H}$$

b. Une application linéaire $u \colon \mathcal{H} \to \mathcal{H}$ est dite une isométrie si u conserve la norme, i.e.

$$\forall x \in \mathcal{H} : ||u(x)|| = ||x||$$

où $\|.\|$ est la norme issue du produit scalaire $\langle .,. \rangle$. Montrer que u est une isométrie si et seulement si u conserve le produit scalaire, c-à-d

$$\forall x, y \in \mathcal{H} : \langle u(x), u(y) \rangle = \langle x, y \rangle$$

N.B. Pour (\Rightarrow) , utiliser l'identité de polarisation ,et pour (\Leftarrow) , le développement de $\|u(x+\lambda y)-u(x)-\lambda u(y)\|^2 \text{ pour tous } x,y\in\mathcal{H} \text{ et }\lambda\in\mathbb{R}.$

Exercice 1.3.

Dans l'espace $\mathcal{M}_n(\mathbb{R})$ des matrices carrées d'ordre $n, (n \ge 1)$ et à coefficients réels, on définit la trace d'une matrice $\mathcal{A} = (a_{ij})_{1 \le i,j \le n}$ par $tr(\mathcal{A}) = \sum_{i=1}^n a_{ii}$.

1. Montrer que

$$\langle \mathcal{A}, \mathcal{B} \rangle = tr(\mathcal{A}^t \mathcal{B}), \ \mathcal{A}, \mathcal{B} \in \mathcal{M}_n(\mathbb{R})$$

définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, où \mathcal{A}^t est la matrice transposée de la matrice A.

2. Montrer que la norme associée à ce produit scalaire vérifie

$$\|\mathcal{A}\mathcal{B}\| \leq \|\mathcal{A}\| \|\mathcal{B}\|, \, \mathcal{A}, \mathcal{B} \in \mathcal{M}_n(\mathbb{R})$$

3. En déduire que $\|\mathcal{A}^p\| \leq \|\mathcal{A}\|^p$, $\mathcal{A} \in \mathcal{M}_n(\mathbb{R})$, $p \in \mathbb{N}$, $p \geq 1$.

Exercice 1.4.

(Produit scalaire sur $\mathbb{R}[X]$ et $\mathbb{R}_n[X]$)

a. Montrer que la relation

$$\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx, \ P, Q \in \mathbb{R}[X]$$

définit un produit scalaire sur $\mathbb{R}[X]$ et sur $\mathbb{R}_n[X]$ pour tout $n \in \mathbb{N}$.

- b. Montrer que $(\mathbb{R}_n[X], \langle ., . \rangle)$ est un espace de Hilbert.
- c. 1. Soit $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}, x \in \mathbb{R}$. Montrer que la suite $(P_n)_n$ converge uniformément sur [0,1] vers la fonction $x \mapsto \exp(x)$.
- 2. En déduire que P_n converge vers la fonction $x \mapsto \exp(x)$ pour la norme associée au produit scalaire.
 - 3. En déduire que $(\mathbb{R}[X], \langle ., . \rangle)$ n'est pas un espace de Hilbert.

Exercice 1.5.

(**) Montrer que l'espace vectoriel $\mathcal{E}=\mathcal{C}^0\left(\left[-1,1\right],\mathbb{R}\right)$ des fonctions réelles continues sur [-1,1], muni du produit scalaire

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt, \ f, g \in \mathcal{E}$$

n'est pas de Hilbert. Utiliser la suite (f_n) $_{n\geq 1}$ où

$$f_n(t) = \begin{cases} 0, & -1 \le t \le \frac{-1}{n} \\ nt + 1, & \frac{-1}{n} \le t \le 0 \\ 1 & 0 \le t \le 1 \end{cases}, (n \ge 1)$$

Chapitre 2

Systèmes orthogonaux et orthonormaux

Définition 2.1. Soit E un espace pré-Hilbertien. Une famille de vecteurs non nuls $(e_i)_{i>1}$ est dite orthogonale si

$$\langle e_i, e_i \rangle = 0, i, j \ge 1, i \ne j$$

Si de plus $\langle e_i, e_i \rangle = 1$, $i \geq 1$, la famille $(e_i)_{i \geq 1}$ est dite système orthonormal dans E.

- . Tout système orthogonal est orthonormalisable. En effet, si $(e_i)_{i\geq 1}$ est un système orthogonal dans E, le système $\left\{\frac{e_i}{\|e_i\|}\right\}_{i>1}$ est orthonormal dans E.
- . La condition d'orthonormalisation est exprimée par le symbole de Kronecker

$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, i, j \ge 1$$

Exemples 1. La famille $(e_i)_{i\geq 1}$ où

$$e_1 = (1, 0, 0, ..., 0, ...), e_2 = (0, 1, 0, ..., 0, ...), ...$$

est orthonormale dans l'espace ℓ_2 .

2. La famille $(\varphi_n)_{n\geq 1}$ où $\varphi_n(x)=\frac{e^{inx}}{\sqrt{2\pi}}$, forme un système orthonormal dans l'espace de Hilbert $H=L_2\left([-\pi,\pi]\right)$ muni du produit scalaire défini par

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt, \quad f, g \in H$$

En effet, on a pour tous $n, m \ge 1$

$$\langle \varphi_n, \varphi_m \rangle = \int_{-\pi}^{\pi} \varphi_n(t) \overline{\varphi_m(t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)t} dt$$

$$= \begin{cases} \frac{e^{i\pi(m-n)} - e^{-i\pi(m-n)}}{2\pi i(m-n)}, & n \neq m \\ \frac{1}{2\pi} \int_{-\pi}^{\pi} dt, & n = m \end{cases}$$

$$= \delta_{n,m}$$

Proposition 2.1. Tout système orthogonal dans un espace pré-Hilbertien E est libre dans E.

Preuve. Soit $(e_i)_{i\geq 1}$ un système orthogonal dans E, et soit $(\lambda_i)_{i\geq 1}$ une suite dans $\mathbb C$ telle que $\sum\limits_{i=1}^{+\infty}\lambda_ie_i=0$. D'où

$$\forall k; k \ge 1 : \left\langle \sum_{i=1}^{+\infty} \lambda_i e_i, e_k \right\rangle = 0$$

i.e.,

$$\forall k; k \geq 1: \lambda_k = 0$$

Tout espace de Hilbert de dimension finie admet une base orthonormale.

Théorème de Pythagore généralisé

Théorème 2.1. Si $\{e_i\}_{i\geq 1}^n$, $n\geq 1$ est un système orthogonal dans un espace pré-Hilbertien, alors

$$\left\| \sum_{i=1}^{n} e_i \right\|^2 = \sum_{i=1}^{n} \|e_i\|^2 \qquad (*)$$

Preuve. Par récurrence sur n.

i. Pour n=2: $e_1 \perp e_2$ alors

$$||e_1 + e_2||^2 = \langle e_1 + e_2, e_1 + e_2 \rangle$$

$$= ||e_1||^2 + ||e_2||^2 + \langle e_1, e_2 \rangle + \langle e_2, e_1 \rangle$$

$$= ||e_1||^2 + ||e_2||^2$$

ii. On suppose que (*) est vraie pour le rang $p-1, p \ge 2$, i.e.,

$$\left\| \sum_{i=1}^{p-1} e_i \right\|^2 = \sum_{i=1}^{p-1} \|e_i\|^2$$

Soient $x = \sum_{i=1}^{p-1} e_i$ et $y = e_p$. On a $\langle x, y \rangle = 0$. D'où

$$\left\| \sum_{i=1}^{p} e_i \right\|^2 = \|x + y\|^2 = \|x\|^2 + \|y\|^2$$

$$= \left\| \sum_{i=1}^{p-1} e_i \right\|^2 + \|e_p\|^2$$

$$= \sum_{i=1}^{p-1} \|e_i\|^2 + \|e_p\|^2$$

$$= \sum_{i=1}^{p} \|e_i\|^2$$

Donc, l'égalité (*) est vraie pour $p, p \ge 2$. De (i) et (ii), (*) est vraie pour tout n, $n \ge 2$.

2.0.1 Procédé d'orthogonalisation de Gram-Schmidt

12

Théorème 2.2. Etant donnée une suite $(y_n)_n$ de vecteurs linéairement indépendants dans un espace pré-Hilbertien E. Alors $(y_n)_n$ engendre un système orthonormal $(x_n)_n$ dans E.

Preuve. Posons

$$\begin{array}{rclcrcl} w_1 & = & y_1 & \text{et } x_1 = \frac{w_1}{\|w_1\|} \\ w_2 & = & y_2 - \langle y_2, x_1 \rangle \, x_1 & \text{et } & x_2 = \frac{w_2}{\|w_2\|} \\ w_3 & = & y_3 - \langle y_3, x_1 \rangle \, x_1 - \langle y_3, x_2 \rangle \, x_2 & \text{et } & x_2 = \frac{w_2}{\|w_2\|} \\ & & \cdot \\ & & \cdot \\ w_n & = & y_n - \sum_{i=1}^{n-1} \langle y_n, x_i \rangle \, x_i & \text{et } & x_n = \frac{w_n}{\|w_n\|}, & n \geq 2 \end{array}$$

La suite $(w_n)_n$ est orthogonale dans E. En effet, par récurrence sur n:

i. Pour n = 2:

$$\langle w_2, w_1 \rangle = \langle y_2 - \langle y_2, x_1 \rangle x_1, y_1 \rangle = \langle y_2, y_1 \rangle - \langle y_2, x_1 \rangle \langle x_1, y_1 \rangle$$

$$= \langle y_2, y_1 \rangle - \frac{\langle y_2, y_1 \rangle \langle y_1, y_1 \rangle}{\|y_1\|^2}$$

$$= 0$$

ii. On suppose maintenant que les vecteurs $w_k, 1 \leq k \leq p-1$ sont deux à deux

- 1. Jørgen Pedersen Gram, 1850-1916, est un mathématicien danois.
- 2. Erhard Schmidt, 1876-1959, est un mathématicien allemand.

orthogonaux pour certain rang $p, p \ge 2$. Pour tout m, m < k:

$$\langle w_k, w_m \rangle = \langle y_k, w_m \rangle - \frac{\sum\limits_{p=1}^{k-1} \langle y_k, w_p \rangle \langle w_p, w_m \rangle}{\|w_m\|^2}$$

$$= \langle y_k, w_m \rangle - \frac{\langle y_k, w_m \rangle \langle w_m, w_m \rangle}{\|w_m\|^2}$$

$$= 0$$

D'où, les vecteurs w_k , $1 \le k \le p$ sont deux à deux orthogonaux. De (i) et (ii), la suite $(w_n)_n$ est orthogonale dans E, et $\{x_k\}_{k\ge 1}$ est donc un système orthonormal dans E.

Remarque Il est clair que $\overline{\{x_k\}_{k=1}^n} = \overline{\{y_k\}_{k=1}^n}$.

Exemple Polynômes de Legendre $U_n(x) = x^n$, $(n \in \mathbb{N})$, dans l'espace de Hilbert $L_2([-1,1])$???

Définition 2.2. Une série de la forme $\sum_{k=1}^{+\infty} x_k$ dans un espace de Hilbert \mathcal{H} est dite convergente vers un vecteur $x \in \mathcal{H}$, et l'on écrit $x = \sum_{k=1}^{+\infty} x_k$, si la suite $(S_n)_n$ où $S_n = \sum_{k=1}^n x_k$, $n \ge 1$ est convergente vers x.

Exemple $x = (\lambda_i)_{i>1} \in \ell_2$. Soit $(e_k)_{k\geq 1}$ la base standard de ℓ_2 . Alors

$$\left\|x - \sum_{k=1}^{n} \lambda_k e_k\right\|^2 = \sum_{k=n+1}^{+\infty} \left|\lambda_k\right|^2 \underset{n \to +\infty}{\longrightarrow} 0$$

car $x \in \ell_2$. (le reste de la série $\sum\limits_{k=1}^{+\infty} |\lambda_k|^2$). D'où, $x = \sum\limits_{k=1}^{+\infty} \lambda_k e_k$.

2.0.2 Inégalité de Bessel

Théorème 2.3. Soit \mathcal{H} un espace de Hilbert, et soit $(\varphi_i)_{i\geq 1}$ un système orthonormal dans \mathcal{H} . Alors, pour tout $x, x \in \mathcal{H}$:

1. $\sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle| \le ||x||^2$ (Inégalité de Bessel³)

- 2. La série $\sum_{k=1}^{+\infty} \langle x, \varphi_k \rangle \varphi_k$ converge.
- 3. $\sum_{k=1}^{+\infty} \lambda_k \varphi_k$ converge dans \mathcal{H} si et seulement si $(\lambda_k)_{k\geq 1} \in \ell_2$.
- 4. Si $y = \sum_{k=1}^{+\infty} \lambda_k \varphi_k$, alors $\lambda_k = \langle y, \varphi_k \rangle$, $k \geq 1$.

Preuve 1. Comme le système $(\varphi_i)_{i\geq 1}$ est orthonormal dans \mathcal{H}

$$0 \leq \left\langle x - \sum_{k=1}^{n} \left\langle x, \varphi_k \right\rangle \varphi_k, x - \sum_{k=1}^{n} \left\langle x, \varphi_k \right\rangle \varphi_k \right\rangle$$
$$= \|x\|^2 - 2\sum_{k=1}^{n} \left| \left\langle x, \varphi_k \right\rangle \right|^2 + \sum_{k=1}^{n} \left| \left\langle x, \varphi_k \right\rangle \right|^2$$
$$= \|x\|^2 - \sum_{k=1}^{n} \left| \left\langle x, \varphi_k \right\rangle \right|^2$$

D'où,

$$\sum_{k=1}^{n} |\langle x, \varphi_k \rangle|^2 \le ||x||^2, \quad n \ge 1 \qquad (*)$$

La série à termes positifs $\sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle|$ est donc convergente, car sa suite des sommes partielles définie par $U_n = \sum_{k=1}^n |\langle x, \varphi_k \rangle|^2$ est majorée d'après (*). D'où

$$\sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle| \le ||x||^2$$

2. Soit $S_n = \sum_{k=1}^n \langle x, \varphi_k \rangle \varphi_k$, $n \ge 1$. Pour tous n, m avec n > m on aura d'après (1)

$$||S_n - S_m||^2 = \left\langle \sum_{k=m+1}^n \langle x, \varphi_k \rangle \varphi_k, \sum_{k=m+1}^n \langle x, \varphi_k \rangle \varphi_k \right\rangle$$
$$= \sum_{k=m+1}^n |\langle x, \varphi_k \rangle|^2 \underset{n,m \to +\infty}{\longrightarrow} 0$$

3. Friedrich Wilhelm Bessel, 1784-1846, est un astronome, mathématicien, géodésiste et physicien allemand.

D'où, la suite $(S_n)_n$ est de Cauchy dans \mathcal{H} . Comme \mathcal{H} est complet, $(S_n)_n$ est convergente. Donc, la série $\sum\limits_{k=1}^{+\infty} \langle x, \varphi_k \rangle \, \varphi_k$ converge également.

3. Soit $V_n = \sum_{k=1}^n \lambda_k \varphi_k$, $n \ge 1$, et soit $W_n = \sum_{k=1}^n |\lambda_k|^2$, $n \ge 1$. Alors pour tous n, m tels que n > m:

$$||V_n - V_m||^2 = \left\langle \sum_{k=m+1}^n \lambda_k \varphi_k, \sum_{k=m+1}^n \lambda_k \varphi_k \right\rangle = \sum_{k=m+1}^n |\lambda_k|^2$$
$$= W_n - W_m$$

D'où, $(V_n)_n$ est de Cauchy dans \mathcal{H} si et seulement si $(W_n)_n$ l'est. Donc $(V_n)_n$ converge si et seulement si $(W_n)_n$ converge également dans \mathcal{H} .

4. Soit $y = \sum_{k=1}^{+\infty} \lambda_k \varphi_k$. Comme le système $\{\varphi_k\}_{k\geq 1}$ est orthonormal dans \mathcal{H} , et par la continuité du produit scalaire, on aura pour tout $j, j \geq 1$:

$$\langle y, \varphi_j \rangle = \left\langle \sum_{k=1}^{+\infty} \lambda_k \varphi_k, \varphi_j \right\rangle = \lim_{n \to +\infty} \left\langle \sum_{k=1}^{n} \lambda_k \varphi_k, \varphi_j \right\rangle$$

$$= \lambda_j$$

Définition 2.3. Soit \mathcal{H} un espace de Hilbert. Un système orthonormal $\{\varphi_k\}_{k\geq 1}$ est dit base orthonormale de \mathcal{H} si :

$$\forall x \in \mathcal{H} : x = \sum_{k=1}^{+\infty} \lambda_k \varphi_k, \ \lambda_k \in \mathbb{C}, \ (k \ge 1)$$

Par le Théorème précédent, $\lambda_k = \langle x, \varphi_k \rangle$, $k \ge 1$.

Définition 2.4. Les scalaires $\langle x, \varphi_k \rangle$, $k \geq 1$ sont dits coefficients de Fourier du vecteur x.

Exemples. 1. La base standard $(e_i)_{i\geq 1}$ de ℓ_2 est orthonormale.

2. Le système $\{\varphi_k\}_{k\geq 1}$ où $\varphi_k=\frac{e^{ikx}}{\sqrt{2\pi}}, k\in\mathbb{Z}$ est une base orthonormale de $L_2\left([-\pi,\pi]\right)$.

- 3. Le système $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}\right\}, n \geq 1$ est une base orthonormale de $L_2\left([-\pi, \pi]\right)$ également.
- 4. On suppose que $\dim \mathcal{H} = n < +\infty$. Soit $\{\varphi_k\}_{1 \leq k \leq p}$ un système orthonormal dans \mathcal{H} . Comme $\{\varphi_k\}_{1 \leq k \leq p}$ est linéairement indépendant, $\{\varphi_k\}_{1 \leq k \leq p}$ est une base de \mathcal{H} si et seulement si n = p.

2.0.3 Egalité de Parseval

Définition 2.5. Une suite d'éléments $(e_i)_{i\geq 1}$ d'un espace de Hilbert \mathcal{H} est dite totale (complète) si

$$\forall i, i \geq 1 : \langle x, e_i \rangle = 0 \Rightarrow x = 0$$

Autrement dit, le vecteur unique orthogonal au système $(e_i)_{i\geq 1}$ est le vecteur nul.

On donnera par la suite, un résultat présentant des conditions nécesssaires et suffisantes pour qu'un système orthonormal dans $\mathcal H$ soit une base orthonormale de $\mathcal H$.

Théorème 2.4. (Egalité de Parseval) Soit $\{\varphi_k\}_{k\geq 1}$ un système orthonormal dans un espace de Hilbert \mathcal{H} . Les assertions suivantes sont équivalentes :

- *i.* $\{\varphi_k\}_{k\geq 1}$ est une base orthonormale de \mathcal{H} .
- ii. $\{\varphi_k\}_{k>1}$ est une suite totale dans \mathcal{H} .
- iii. $Vect\{\varphi_k\}_{k\geq 1}$ est dense dans \mathcal{H} , i.e.,

$$\forall x \in \mathcal{H}, \exists (x_n)_n \subset \overline{\{\varphi_k\}_{k \ge 1}} : x = \lim_{n \to +\infty} x_n$$

iv.
$$\forall x \in \mathcal{H} : \sum_{k=1}^{+\infty} |\langle x, \varphi_k \rangle|^2 = ||x||^2$$
 (Egalité de Parseval)
v. $\forall x, y \in \mathcal{H} : \langle x, y \rangle = \sum_{k=1}^{+\infty} \langle x, \varphi_k \rangle \overline{\langle y, \varphi_k \rangle}$

Preuve. $(i) \Rightarrow (v)$ Soient $u_n = \sum_{k=1}^n \langle x, \varphi_k \rangle \varphi_k, v_n = \sum_{k=1}^n \langle y, \varphi_k \rangle \varphi_k, n \ge 1$. Alors

$$\langle x, y \rangle = \lim_{n \to +\infty} \langle u_n, v_n \rangle = \lim_{n \to +\infty} \sum_{k=1}^n \langle x, \varphi_k \rangle \, \overline{\langle y, \varphi_k \rangle} \, \langle \varphi_k, \varphi_k \rangle$$
$$= \sum_{k=1}^{+\infty} \langle x, \varphi_k \rangle \, \overline{\langle y, \varphi_k \rangle}$$

 $(v) \Rightarrow (iv)$ On pose x = y dans (v).

 $(iv) \Rightarrow (iii) \text{ Soit } x \in \mathcal{H}.$

$$\left\| x - \sum_{k=1}^{n} \langle x, \varphi_k \rangle \varphi_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |\langle x, \varphi_k \rangle|^2 \underset{n \to +\infty}{\longrightarrow} 0$$

 $(iii)\Rightarrow (ii) \ \ {\rm Si}\ \langle x,\varphi_k\rangle=0, k\geq 1, {\rm alors}\ x\perp \{\varphi_k\}_{k\geq 1}$. Par conséquent, $x\perp \overline{\{\varphi_k\}_{k\geq 1}}=\mathcal{H}$ (Exercice de TD). Donc $x\perp x$. D'où, x=0.

 $(ii) \Rightarrow (i)$ Pour tout $z, z \in \mathcal{H}$, la série $w = \sum\limits_{k=1}^{+\infty} \langle z, \varphi_k \rangle \varphi_k$ converge par le Théorème précédent. D'où

$$\forall j, j \geq 1 : \langle z - w, \varphi_j \rangle = \langle z, \varphi_j \rangle - \lim_{n \to +\infty} \left\langle \sum_{k=1}^n \langle z, \varphi_k \rangle \varphi_k, \varphi_j \right\rangle$$

$$= \langle z, \varphi_j \rangle - \sum_{k=1}^{+\infty} \langle z, \varphi_k \rangle \langle \varphi_k, \varphi_j \rangle$$

$$= \langle z, \varphi_j \rangle - \langle z, \varphi_j \rangle$$

$$= 0$$

Par
$$(ii)$$
, on aura $z-w=0$. D'où, $z=w=\sum\limits_{k=1}^{+\infty}\left\langle z,\varphi_{k}\right\rangle \varphi_{k}$.

Autrement dit, une base orthonormale de \mathcal{H} est un système orthonormal total dans \mathcal{H} , ou bien, un système qui vérifie l'égalité de Parseval.

Exemple On verra plus tard que le système $\{\varphi_k\}_{k\geq 1}$ où $\varphi_k=\frac{e^{ikx}}{\sqrt{2\pi}}, k\in\mathbb{Z}$ est total dans l'espace de Hilbert $L_2\left([-\pi,\pi]\right)$. Il forme donc une base orthonormale de $L_2\left([-\pi,\pi]\right)$.

Par conséquent, tout élément $f \in L_2\left([-\pi,\pi]\right)$ s'écrit sous la forme

$$f = \sum_{k=-\infty}^{+\infty} \langle f, \varphi_k \rangle \varphi_k$$

soit donc

$$f(x) = \sum_{k=-\infty}^{+\infty} \int_{-\pi}^{\pi} f(t)e^{-ikt}e^{ikx}dt, \quad x \in [-\pi, \pi]$$

2.1 Espaces de Hilbert séparables

2.1.1 Définitions et propriétés

Définition 2.6. *Un espace de Hilbert est dit séparable s'il contient une suite orthonormale totale.*

On a donc le résultat suivant

Théorème 2.5. *Un espace de Hilbert est séparable si et seulement s'il admet une base orthonormale.*

Preuve. Conséquence directe du Théorème précédent.

Exemples. 1. Un espace de Hilbert de dimension finie est séparable.

2. Les espaces ℓ_2 et $L_2([a,b])$ sont séparables.

Théorème 2.6. Soit \mathcal{H} un espace de Hilbert séparable. Alors, \mathcal{H} admet un sous-ensemble dénombrable et dense.

Preuve. Soit $(x_n)_n$ une suite orthonormale totale dans \mathcal{H} , et soit

$$S = \left\{ \sum_{k=1}^{n} (\alpha_k + i\beta_k) x_k, \ \alpha_k, \beta_k \in \mathbb{Q}, 1 \le k \le n, \ n \ge 1 \right\}$$

S est dénombrable. De plus

$$\forall x \in \mathcal{H} : \left\| \sum_{k=1}^{n} \langle x, x_k \rangle x_k - x \right\| \underset{n \to +\infty}{\to} 0$$

 $\operatorname{car}(x_n)_n$ est totale dans \mathcal{H} . Ce qui montre que S est dense dans \mathcal{H} .

2.1.2 Exemple d'un espace de Hilbert non séparable

L'espace des fonctions presque périodiques :

Définition 2.7. Une fonction à valeurs complexes et continue sur \mathbb{R} , est dite presque périodique si elle est limite uniforme sur \mathbb{R} d'une suite de polynômes trigonométriques de la forme $\sum_{k=1}^{n} a_k e^{i\lambda_k t}$, $\lambda_k \in \mathbb{R}$, $k \geq 1$.

Soit E un tel espace. On définit

$$\langle f, g \rangle = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} f(t) \overline{g(t)} dt$$

où

$$f(t) = \sum_{k=1}^{n} a_k e^{i\lambda_k t}, \ g(t) = \sum_{k=1}^{n} b_k e^{i\mu_k t} \in E$$

On a donc

$$\langle f, g \rangle = \lim_{T \to +\infty} \sum_{k,s=1}^{n} a_k \overline{b_k} \frac{1}{2T} \int_{-T}^{T} e^{i(\lambda_k - \mu_s)t} dt$$
$$= \sum_{k,s=1}^{n} \delta(\lambda_k, \mu_s) a_k \overline{b_k}$$

où

$$\delta(\lambda_k, \mu_s) = \begin{cases} 1, & \lambda = \mu \\ 0, & \lambda \neq \mu \end{cases} \dots$$

Donc $\langle .,. \rangle$ existe et définit un produit scalaire sur E. Comme l'ensemble $\left\{e^{i\lambda t}, \lambda \in \mathbb{R}\right\}$ est orthonormal et non dénombrable dans E, l'espace E n'est donc pas séparable.

Remarque L'espace E est la source d'une recherche active pour plus d'une cinquantaine d'années.

2.1.3 Espaces isomorphes

Définition Deux espaces de Hilbert \mathcal{H}_1 et \mathcal{H}_2 sont dits isomorphes s'il existe une bijection $T \colon \mathcal{H}_1 \to \mathcal{H}_2$ vérifiant

$$\langle Tx, Ty \rangle = \langle x, y \rangle, \ x, y \in \mathcal{H}_1$$

L'application T est linéaire et est dite isomorphisme de \mathcal{H}_1 dans \mathcal{H}_2 .

Remarque ||T|| = 1.

Théorème 2.7. *Soit* \mathcal{H} *un espace de Hilbert séparable.*

i. Si dim $\mathcal{H} < +\infty$, alors \mathcal{H} est isomorphe à \mathbb{C}^n ou \mathbb{R}^n , (selon le corps de \mathcal{H})

ii. Si dim $\mathcal{H} = +\infty$, alors \mathcal{H} est isomorphe à ℓ_2 .

Preuve. i. On suppose que dim $\mathcal{H} = n, n \geq 1$. Soit $(e_k)_{1 \leq k \leq n}$ une base de \mathcal{H} . L'application $T \colon \mathcal{H} \to \mathbb{C}^n$ où

$$Tx = T(\sum_{k=1}^{n} \lambda_k e_k) = (\lambda_1, \lambda_1, ..., \lambda_n), \ x \in \mathcal{H}$$

est un isomorphisme.

ii. Soit $(e_k)_{k\geq 1}$ une base orthonormale de $\mathcal{H}.$ On définit l'application $T\colon \mathcal{H}\to \ell_2$ par

$$Tx = (\langle x, e_k \rangle e_k)_{k \ge 1}$$

On montre facilement que T est un isomorphisme de \mathcal{H} dans ℓ_2 , et que

$$||Tx||^2 = \sum_{k=1}^{+\infty} |\langle x, e_k \rangle|^2 = ||x||^2, \ x \in \mathcal{H}$$

par l'égalité de Parseval car $(e_k)_{k\geq 1}$ est une base orthonormale de \mathcal{H} .

Remarque Du Théorème précédent, découle que les espaces de Hilbert séparables de dimension finie (resp. dimension infinie) sont isomorphes. Cela veut dire qu'en réalité, il n'existe qu'un seul espace de Hilbert séparable de dimension finie (resp. dimension infinie) qui est \mathbb{C}^n . (resp. ℓ_2)

2.1.4 L'espace $L_2([a,b])$

L'espace des fonctions Lebesgue mesurables à carré intégrable sur [a, b], i.e.,

$$\mathcal{L}_2([a,b]) = \left\{ f : [a,b] \to \mathbb{C}, \ f \text{ mesurable et } \int\limits_a^b |f|^2 < +\infty \right\}$$

et l'espace

$$L_2([a,b]) = \{\{f\}, f \in \mathcal{L}_{\in}([a,b])\}$$

formé des classes d'équivalences pour la relation d'égalité p.p sur [a,b] .

. $L_2([-\pi,\pi])$ muni du produit scalaire

$$\langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt, \quad f, g \in L_2([-\pi, \pi])$$

est un espace de Hilbert séparable, admettant le système $\{\varphi_k\}_{k\in\mathbb{Z}}$ où

$$\varphi_k(t) = \frac{e^{ikt}}{\sqrt{2\pi}}, t \in [-\pi, \pi]$$

comme une base orthonormale [1] (voir Appendix)

Théorème 2.8. [6] L'espace de Hilbert $L_2([a,b])$ est séparable.

2.2 Orthogonalité et projection orthogonale

2.2.1 Orthogonalié et complément orthogonal

Définition 2.8. Soit \mathcal{H} un espace de Hilbert. Deux vecteurs $x, y \in \mathcal{H}$ sont dits orthogonaux, et l'on écrit $x \perp y$, si $\langle x, y \rangle = 0$.

Définition 2.9. *Soit* $\mathcal{M} \subset \mathcal{H}$, $\mathcal{M} \neq \emptyset$, *et soit* $x \in \mathcal{H}$. *Alors*

$$x \perp M \Leftrightarrow \langle x, y \rangle = 0, \forall y \in \mathcal{M}$$

Définition 2.10. *Soient* $\mathcal{M}, \mathcal{N} \subset \mathcal{H}$. *Alors*

$$\mathcal{M} \perp \mathcal{N} \Leftrightarrow \langle x, y \rangle = 0, \forall x \in \mathcal{M}, \forall y \in \mathcal{N}$$

Définition 2.11. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$. Le complément orthogonal de \mathcal{M} dans \mathcal{H} est l'ensemble noté \mathcal{M}^{\perp} et défini par

$$\mathcal{M}^{\perp} = \{x \in \mathcal{H} : x \perp \mathcal{M}\}$$

= $\{x \in \mathcal{H} : \langle x, y \rangle = 0, \forall y \in \mathcal{M}\}$

Proposition 2.2. \mathcal{M}^{\perp} est un sous-espace vectoriel fermé de \mathcal{H} .

Preuve. i. Soient $x_1, x_2 \in \mathcal{M}^{\perp}$, et soit $\lambda \in \mathbb{C}$. On a pour tout $y \in \mathcal{M}$:

$$\langle \lambda x_1 + x_2, y \rangle = \lambda \langle x_1, y \rangle + \langle x_2, y \rangle = \lambda . 0 + 0 = 0$$

car $x_1 \perp y$ et $x_2 \perp y$. D'où $(\lambda x_1 + x_2) \perp y$. Par suite, $(\lambda x_1 + x_2) \in \mathcal{M}^{\perp}$. L'espace \mathcal{M}^{\perp} est donc un sous-espace vectoriel de \mathcal{H} .

ii. Montrons que \mathcal{M}^{\perp} est fermé de \mathcal{H} . Soit $(x_n)_n$ une suite dans \mathcal{M}^{\perp} qui converge vers $x, x \in \mathcal{H}$. Pour tout $y \in \mathcal{M}$, on a par la continuité du produit scalaire (Proposition 1.2.) :

$$\langle x, y \rangle = \left\langle \lim_{n \to +\infty} x_n, y \right\rangle = \lim_{n \to +\infty} \left\langle x_n, y \right\rangle = \lim_{n \to +\infty} 0 = 0$$

 $\operatorname{car} x_n \in \mathcal{M}^{\perp}, n \in \mathbb{N}. \text{ D'où } x \in \mathcal{M}^{\perp}.$

Propriétés. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$. Alors

1. $\mathcal{M} \subset (\mathcal{M}^{\perp})^{\perp} = \mathcal{M}^{\perp \perp}$. (On montrera plus tard que si \mathcal{M} est un sous-espace vectoriel fermé de \mathcal{H} , alors $\mathcal{M} = \mathcal{M}^{\perp \perp}$)

2.
$$\mathcal{M}^{\perp} = \overline{\mathcal{M}}^{\perp}$$
 (TD)

3.
$$\mathcal{H}^{\perp} = \{0\} \ et \ \{0\}^{\perp} = \mathcal{H}.$$

Preuve. 1. Soit $x \in \mathcal{M}$. Alors $x \perp \mathcal{M}^{\perp}$. Donc

$$\langle x, y \rangle = 0, \forall y \in \mathcal{M}^{\perp}$$

D'où $x \in \mathcal{M}^{\perp \perp}$ par définition du complément orthogonal.

4. On a

$$\mathcal{H}^{\perp} = \{x \in \mathcal{H} : \langle x, y \rangle = 0, \forall y \in \mathcal{H}\}$$

= $\{0\}$

et comme \mathcal{H} est un espace vectoriel, on aura par (2) que

$$\{0\}^{\perp} = \mathcal{H}^{\perp \perp} = \mathcal{H}$$

Définition 2.12. *Soit* \mathcal{H} *un espace de Hilbert, et soit* $\mathcal{M} \subset \mathcal{H}$. *La distance d'un point* $a \in \mathcal{H}$ à \mathcal{M} *est le nombre réel positif*

$$d(a, \mathcal{M}) = \inf_{y \in M} \|a - y\|$$

Exercice Montrer que

$$d(a, \mathcal{M}) = 0 \Leftrightarrow a \in \overline{\mathcal{M}}$$

On a donc le résultat important suivant

2.2.2 Théorème de la projection orthogonale

Théorème 2.9. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$ un sous-ensemble convexe et fermé. Pour tout $x \in \mathcal{H}$, il existe $w \in \mathcal{M}$ unique tel que

$$d(x, \mathcal{M}) = ||x - w||$$

Définition 2.13. Le vecteur w est dit projection orthogonale de x sur \mathcal{M} .

Preuve du Théorème. Soit

$$d = d(x, \mathcal{M}) = \inf_{z \in \mathcal{M}} ||x - z||$$

Il existe donc une suite $(z_n)_n \subset \mathcal{M}$ telle que

$$||x - z_n|| \to d, (n \to +\infty)$$

On doit montrer que $\lim_{n\to+\infty}z_n=w$. Appliquons l'identité du parallélogramme sur les vecteurs $x-z_n, z-z_m, n,m\in\mathbb{N}$:

$$2(\|x - z_n\|^2 + \|x - z_m\|^2) = \|2x - (z_n + z_m)\|^2 + \|z_n - z_m\|^2$$
 (1)

 \mathcal{M} étant convexe, $\frac{1}{2}(z_n+z_m)\in\mathcal{M}$ et

$$||2x - (z_n + z_m)|| = 2||x - \frac{1}{2}(z_n + z_m)|| \ge 2d$$
 (2)

Combinant les relations (1) et (2), on obtient

$$||z_n - z_m||^2 \le 2(||x - z_n||^2 + ||x - z_m||^2) - 4d^2 \underset{n \to +\infty}{\longrightarrow} 4d^2 - 4d^2 = 0$$

La suite $(z_n)_n$ est donc de Cauchy dans \mathcal{M} . Comme \mathcal{H} est complet, et \mathcal{M} est fermé, \mathcal{M} est aussi complet. Il existe donc $w \in \mathcal{M}$ tel que $\lim_{n \to +\infty} z_n = w$. D'où, et par la continuité du produit scalaire

$$d = \lim_{n \to +\infty} ||x - z_n|| = ||x - w||$$

Montrons maintenant l'unicité de w. Supposons qu'il existe $y \in \mathcal{M}$ tel que

$$d = ||x - y||$$

On aura donc

$$d^{2} \le \left\| x - \frac{1}{2}(y + w) \right\|^{2} = \left\| \frac{1}{2}(x - y) + \frac{1}{2}(x - w) \right\|^{2}$$

D'où, et par l'identité du parallélogramme sur les vecteurs $\frac{1}{2}(x-y)$ et $\frac{1}{2}(x-w)$, on obtiendra

$$d^{2} \leq \left\| \frac{1}{2}(x-y) + \frac{1}{2}(x-w) \right\|^{2} =$$

$$= 2\left(\left\| \frac{1}{2}(x-y) \right\|^{2} + \left\| \frac{1}{2}(x-w) \right\|^{2} \right) - \left\| \frac{1}{2}(y-w) \right\|^{2}$$

$$= d^{2} - \frac{1}{4} \left\| (y-w) \right\|^{2}$$

D'où
$$y = w$$
.

De ce théorème, découle le résultat important suivant

2.2.3 Théorème de la décomposition orthogonale

Théorème 2.10. Soit \mathcal{H} un espace de Hilbert, et soit $\mathcal{M} \subset \mathcal{H}$ un sous-espace vectoriel fermé. Alors, tout vecteur $x \in \mathcal{H}$ admet une décomposition unique $x = x_1 + x_2$ où $x_1 \in \mathcal{M}$ et $x_2 \in \mathcal{M}^{\perp}$.

Autrement dit, $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ (somme directe orthogonale)

 x_1 est la projection orthogonale de x sur \mathcal{M} et x_2 est la projection orthogonale de x sur \mathcal{M}^{\perp} .

Preuve. i. Si $x \in \mathcal{M}$ alors x = x + 0.

ii. Si $x \notin \mathcal{M}$. Soit y le point unique de \mathcal{M} vérifiant

$$||x - y|| = d(x, \mathcal{M}) = \inf_{w \in M} ||x - w||$$

y existe d'après le théorème de la projection orthogonale. Montrons que

$$x = y + (x - y)$$

est la décomposition demandée. On a

$$\forall w \in \mathcal{M}, \forall \lambda \in \mathbb{C} : y + \lambda w \in \mathcal{M}$$

car \mathcal{M} est un sous-espace vectoriel de \mathcal{H} . De plus

$$||x - y||^2 \le ||x - y - \lambda w||^2$$

= $||x - y||^2 - 2Re(\lambda \langle w, x - y \rangle) + |\lambda|^2 ||w||^2$

D'où

$$-2Re(\lambda \langle w, x - y \rangle) + |\lambda|^2 ||w||^2 \ge 0$$

Si $\lambda > 0$, on divise par λ et on fait tendre λ vers 0, on aura

$$Re(\lambda \langle w, x - y \rangle) \le 0$$
 (1)

De même, en remplaçant λ par $-i\lambda, (\lambda>0)$, et on divise par λ , puis on fait tendre λ vers 0, on obtiendra

$$Im(\lambda \langle w, x - y \rangle) \le 0$$
 (2)

comme $y \in \mathcal{M}, -y \in \mathcal{M}$. Alors, (1) et (2) demeurent vraies pour -w, i.e. :

$$\langle w, x - y \rangle = 0, \forall w \in \mathcal{M}$$

Donc $(x-y) \in \mathcal{M}^{\perp}$.

L'unicité. posons

$$x = y_1 + z_1, y_1 \in \mathcal{M}, z_1 \in \mathcal{M}^{\perp}$$

Alors $(y-y_1) \in \mathcal{M}$ et $(z-z_1) \in \mathcal{M}^{\perp}$. Comme $y-y_1=z_1-z$, on aura forcément $y-y_1=z_1-z=0$ car $\mathcal{M}\cap\mathcal{M}^{\perp}=\{0\}$.

2.3 Feuille de TD 2

Exercice 2.1.

. Soit $\mathcal H$ un espace de Hilbert et soit $\mathcal V$ un sous-espace vectoriel de $\mathcal H$.

- 1. Montrer que $\mathcal{V}^{\perp} = \overline{\mathcal{V}}^{\perp}$.
- 2. On suppose que $\mathcal V$ est fermé (Uniquement dans cette question). Montrer que $\left(\mathcal V^\perp\right)^\perp=\mathcal V.$
 - 3. En déduire que $(\mathcal{V}^{\perp})^{\perp} = \overline{\mathcal{V}}$.
 - 4. En déduire que $\mathcal V$ est dense dans $\mathcal H$ si et seulement si $\mathcal V^\perp=\{0\}$.

Exercice 2.2.

a. 1. Montrer que

$$\langle P, Q \rangle = \sum_{k=0}^{4} P(k)Q(k), \ P, Q \in \mathbb{R}_2[X]$$

définit bien un produit scalaire sur $\mathbb{R}_2[X]$.

- 2. Trouver une base orthonormale de $\mathbb{R}_2[X]$ pour ce produit scalaire.
- b. On cherche à calculer

$$I = \inf_{a,b,c \in \mathbb{R}} \int_{0}^{+\infty} (x^{3} + ax^{2} + bx + c)^{2} e^{-x} dx$$

1. Montrer que

$$\langle P, Q \rangle = \int_{0}^{+\infty} P(x)Q(x)e^{-x} dx, \ P, Q \in \mathbb{R}_3[X]$$

définit un produit scalaire sur $\mathbb{R}_3[X]$.

- 2. Montrer que le problème du calcul de I revient à trouver la distance de X^3 à $\mathbb{R}_2[X]$ pour la norme induite par ce produit scalaire.
 - 3. Trouver I.

Exercice 2.3.

Soit $(e_i)_{i\in\mathbb{N}}$ une suite orthonormale dans un espace de Hilbert $\mathcal{H}.$ Soient

$$F_n = Vect \{e_i\}_{i=\overline{0.n}}, \ (n \in \mathbb{N}) \ \text{ et } F = Vect \{e_i\}_{i\in\mathbb{N}}$$

On considère la projection orthogonale P_n de \mathcal{H} sur $F_n, (n \in \mathbb{N})$. Montrer que

$$P_n(x) = \sum_{i=0}^n \langle x, e_i \rangle e_i, \ x \in \mathcal{H}, \ (n \in \mathbb{N})$$

2. Montrer que pour tout $x \in \mathcal{H}$:

$$\sum_{i=0}^{n} |\langle x, e_i \rangle|^2 + ||x - \pi_n(x)||^2 = ||x||^2$$

3. En déduire l'inégalité de Bessel

$$\sum_{i=0}^{+\infty} |\langle x, e_i \rangle|^2 \le ||x||^2, \ x \in \mathcal{H}$$

4. On définit $d(x,F) = \inf_{y \in F} \|x - y\|$. Montrer l'identité de Parseval

$$\sum_{i=0}^{+\infty} |\langle x, e_i \rangle|^2 + (d(x, F))^2 = ||x||^2, \ x \in \mathcal{H}$$

Exercice 2.4.

Soit \mathcal{H} un espace de Hilbert, et soit a un vecteur non nul dans \mathcal{H} . Posons $\mathcal{M} = \overline{\{a\}}$, le sous-espace vectoriel de \mathcal{H} engendré par a.

- a. Montrer que $\mathcal{H}=\mathcal{M}\oplus\mathcal{M}^{\perp}.$ (Somme directe orthogonale)
- b. Soit $x \in \mathcal{H}$. Calculer $(d(x, \mathcal{M}))^2 + (d(x, \mathcal{M}^{\perp}))^2$.
- c. Exprimer $d(x, \mathcal{M}^{\perp})$ en fonction du vecteur a.
- d. Montrer que pour tout $x, x \in \mathcal{H}$:

$$d(x, \mathcal{M}^{\perp}) = \frac{|\langle x, a \rangle|}{\|a\|}$$

Chapitre 3

Opérateurs linéaires bornés sur un espace de Hilbert

3.1 Opérateurs linéaires bornés

3.1.1 Définitions - continuité

Dans ce chapitre, \mathcal{H}_1 et \mathcal{H}_2 désignent deux espaces de Hilbert séparables complexes .

Définition 3.1. Une fonction $A \colon \mathcal{H}_1 \to \mathcal{H}_2$ est dite opérateur linéaire si pour tous $x, y \in \mathcal{H}_1$ et tout $\lambda \in \mathbb{C}$:

$$A(\lambda x + y) = \lambda A(x) + A(y)$$

On écrit souvent Ax au lieu de A(x) pour l'image d'un vecteur x de \mathcal{H}_1 par A.

Définition 3.2. Un opérateur linéaire $A \colon \mathcal{H}_1 \to \mathcal{H}_2$ est dit borné si

$$\sup_{\|x\| \le 1} \|Ax\| < +\infty$$

On a donc le résultat suivant

Théorème 3.1. Soit $A: \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur linéaire. Les assertions suivantes sont équivalentes

- i. A est continu.
- ii. A est continu en un point quelconque de \mathcal{H}_1 .
- iii. A est borné.

iv.
$$\exists c > 0 / \forall x \in \mathcal{H}_1 : ||Ax|| \le c ||x||$$

Preuve. $(iv) \Rightarrow (i) \Rightarrow (ii)$ est évident.

 $(ii) \Rightarrow (iv)$ Supposons que A est continu en un point $x_0, x_0 \in \mathcal{H}_1$. On a donc

$$\forall \epsilon > 0, \exists \delta > 0 / \forall x \in \mathcal{H}_1 : ||x - x_0|| < \delta \Rightarrow ||Ax - Ax_0|| < \epsilon$$

On a pour tout $x \in \mathcal{H}_1, x \neq 0$:

$$Ax = \frac{\|x\|}{\delta} A(\frac{\delta x}{\|x\|}) = \frac{\|x\|}{\delta} (A(\frac{\delta x}{\|x\|} + x_0) - Ax_0))$$

Soit $y = \frac{\delta x}{\|x\|} + x_0$. Donc $\|y - x_0\| = \delta$. D'où

$$||Ay - Ax_0|| < \epsilon \Rightarrow ||Ax|| \le \frac{||x||}{\delta} \epsilon = \frac{\epsilon}{\delta} ||x||$$

D'où, *A* est borné.

Si A est borné, la norme de A notée ||A|| est donnée par

$$||A|| = \sup_{||x|| \le 1} ||Ax||$$

Exercice Montrer que

$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{x \neq 0} \frac{||Ax||}{\|x\|} = \sup_{\|x\|=\|y\|=1} |\langle Ax, y \rangle|$$

On note par $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ à l'espace des opérateurs linéaires bornés de \mathcal{H}_1 dans \mathcal{H}_2 .

Proposition 3.1. $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ *est un espace vectoriel sur* \mathbb{C} .

Preuve. Calcul direct.

Proposition 3.2. $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est un espace de Banach.

Preuve. Comme \mathcal{H}_2 est complet, $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est complet. (Cours d'analyse fonctionnelle S5).

. Si $\mathcal{H}_1 = \mathcal{H}_2$, on note $\mathcal{L}(\mathcal{H}_1)$ à l'espace $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_1)$.

. Si $\mathcal{H}_2=\mathbb{C},\,\mathcal{L}(\mathcal{H}_1,\mathbb{C})$ est le dual topologique de \mathcal{H}_1 , et est noté \mathcal{H}_1^* . On montrera plus tard que $\mathcal{H}_1^* \cong \mathcal{H}_1$ ou bien $\mathcal{H}_1^*=\mathcal{H}_1$.

Exemples 1. Soit $A: \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur linéaire avec $\dim \mathcal{H}_1 < +\infty$. Alors, A est borné. En effet, soit $(e_i)_{1 \leq i \leq n}$ une base orthonormale de \mathcal{H}_1 . Alors

$$\forall x \in \mathcal{H}_1 : x = \sum_{k=1}^n \langle x, e_k \rangle e_k \text{ et } Ax = \sum_{k=1}^n \langle x, e_k \rangle Ae_k$$

D'où

$$||Ax|| \le \sum_{k=1}^{n} |\langle x, e_k \rangle| ||Ae_k|| \le (\sum_{k=1}^{n} |\langle x, e_k \rangle|^2)^{\frac{1}{2}} (\sum_{k=1}^{n} ||Ae_k||^2)^{\frac{1}{2}}$$
$$= (\sum_{k=1}^{n} ||Ae_k||^2)^{\frac{1}{2}} ||x||$$

D'où, A est borné et $||A|| \leq (\sum\limits_{k=1}^n ||Ae_k||^2)^{\frac{1}{2}}$. Si de plus, $\mathcal{H}_1 = \mathcal{H}_2$, A est donc une matrice carrée. On suppose qu'il existe $\lambda_k \in \mathbb{C}, 1 \leq k \leq n$ tels que

$$Ae_k = \lambda_k e_k, 1 \le k \le n$$

Alors

$$||Ax||^2 = \left\langle \sum_{k=1}^n \langle x, e_k \rangle A e_k, \sum_{k=1}^n \langle x, e_k \rangle A e_k \right\rangle$$
$$= \sum_{k=1}^n |\langle x, e_k \rangle|^2 |\lambda_k|^2 \le M^2 ||x||^2$$

où

$$M = \max_{1 \le k \le n} |\lambda_k|$$

Donc

$$||A|| \le M \tag{1}$$

D'autre part, soit $M=|\lambda_{j_0}|$, $1\leq j_0\leq n$. Comme $\|e_{j_0}\|=1$, on obtiendra par définition de $\|A\|$ que

$$||A|| \ge ||Ae_{i_0}||$$

Donc

$$||A|| \ge |\lambda_{j_0}| = M \qquad (2)$$

De (1) et (2), $\|A\| = M = \max_{1 \le k \le n} |\lambda_k|$ (maximum des valeurs propres de A en dimension finie)

2. Soit \mathcal{H} un espace de Hilbert, et soit $(\varphi_k)_{k\geq 1}$ une base orthonormale de \mathcal{H} . Soit $(\lambda_k)_{k>1}$ une suite dans \mathbb{C} . On définit l'opérateur $A\colon \mathcal{H}\to \mathcal{H}$ par

$$Ax = \sum_{k=1}^{+\infty} \lambda_k \langle x, \varphi_k \rangle \varphi_k, \ x \in \mathcal{H}$$

Alors, A est linéaire. De plus, par l'inégalité de Bessel,

$$||Ax||^2 = \sum_{k=1}^{+\infty} |\lambda_k|^2 |\langle x, \varphi_k \rangle|^2 \le m^2 ||x||^2$$

où $m = \sup_{k \ge 1} |\lambda_k|$. D'où, A est borné et $||A|| \le m$ (1)

De plus, par la définition de la borne supérieure

$$\forall \epsilon > 0, \exists j \geq 1 : |\lambda_j| > m - \epsilon$$

D'où

$$||A|| \ge ||A\varphi_i|| = |\lambda_i| > m - \epsilon$$

comme $\epsilon > 0$ est arbitraire, $||A|| \ge m$ (2)

De (1) et (2) on obtient que

$$||A|| = m = \sup_{k \ge 1} |\lambda_k|$$

3. Sur l'espace

$$\mathcal{D}(\mathcal{D}) = \{ f \in L_2 [-\pi, \pi] : f' \in L_2 [-\pi, \pi] \}$$

muni de son produit scalaire usuel

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt, \ f, g \in \mathcal{D}(\mathcal{D})$$

on définit l'opérateur différentiel D par

$$Df(x) = \frac{df}{dx}(x) = f'(x)$$

Alors D n'est pas borné. En effet, pour la suite $(f_n)_n$ où

$$f_n(x) = \sin nx, (n \ge 1)$$

on a

$$||f_n|| = \sqrt{\pi}$$
 et $||Df_n|| = n\sqrt{\pi} \underset{n \to +\infty}{\to} +\infty$

Proposition 3.3. Soient $A, B \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. On montre facilement que

$$i. \|\alpha A\| = |\alpha| \|A\|, (\alpha \in \mathbb{C})$$

$$ii. ||A + B|| \le ||A|| + ||B||$$

iii. Soient \mathcal{H}_3 un espace de Hilbert, et $C \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_3)$. Alors

$$CA \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_3)$$
 et $||CA|| \le ||C|| ||A||$

3.2 Fonctionnelles linéaires bornées

Définition 3.3. Soit \mathcal{H} un espace de Hilbert. Une fonctionnelle (forme) linéaire sur \mathcal{H} est un opérateur linéaire de \mathcal{H} dans \mathbb{C} .

Une fonctionnelle linéaire bornée sur \mathcal{H} est un élément de l'espace dual $\mathcal{L}(\mathcal{H},\mathbb{C})$.

On a donc le résultat important suivant

3.2.1 Théorème de représentation de Riesz

1

Théorème 3.2. Pour toute forme linéaire continue f sur un espace de Hilbert \mathcal{H} , il existe un élément unique $a \in \mathcal{H}$ tel que

1.
$$\forall x \in \mathcal{H} : f(x) = \langle x, a \rangle$$
 (*)

2.
$$||f|| = ||a||$$

Inversement, tout élément $a \in \mathcal{H}$ définit une forme linéaire continue f_a sur \mathcal{H} par la formule (*)

Preuve. \Rightarrow) Si $f \equiv 0$, on prend a = 0.

Soit $f \neq 0$. Il existe donc $x_0 \neq 0$ tel que $f(x_0) \neq 0$. D'où, $x_0 \notin \ker f$.

 $\ker f$ étant un sous-espace fermé de $\mathcal H$ car f est linéaire continue. De plus

$$\forall x \in \mathcal{H} : f(x_0 f(x) - x f(x_0)) = 0$$

^{1.} Frigyes Riesz, 1880-1956, est un mathématicien hongrois. Il est l'un des fondateurs de l'analyse fonctionnelle.

D'où,

$$\forall x \in \mathcal{H} : (x_0 f(x) - x f(x_0)) \in \ker f$$

Comme $x_0 \in (\ker f)^{\perp}$,

$$\langle (x_0 f(x) - x f(x_0), x_0) \rangle = 0$$

Donc

$$f(x) \langle x_0, x_0 \rangle - f(x_0) \langle x, x_0 \rangle = 0$$

ce qui implique que

$$f(x) = \langle x, x_0 \rangle = \left\langle x, \frac{\overline{f(x_0)}}{\|x_0\|^2} x_0 \right\rangle$$

Il suffit donc de prendre $a=\frac{\overline{f(x_0)}}{\|x_0\|^2}x_0$. On aura donc :

1.

$$\forall x \in \mathcal{H} : f(x) = \langle x, a \rangle$$

2. Par l'inégalité de Cauchy-Schwartz,

$$\forall x \in \mathcal{H} : |f(x)| = |\langle x, a \rangle| \le ||a|| \, ||x||$$

D'où,

$$||f|| \le ||a|| \qquad (1)$$

D'autre part

$$f(a) = \langle a, a \rangle = ||a||^2$$

et

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} \ge \frac{|f(a)|}{||a||} = ||a||$$
 (2)

De (1) et (2), on obtient que ||f|| = ||a||.

←) Evident.

Définition 3.4. L'espace $\mathcal{L}(\mathcal{H}, \mathbb{C})$ des formes linéaires continues sur \mathcal{H} est dit espace dual de l'espace \mathcal{H} , et est noté \mathcal{H}^* . (Pour le distinguer de l'espace de Banach)

Remarque 1 Le Théorème de représentation de Riesz affirme l'existence d'un isomorphisme isométrique

$$I \colon \mathcal{H}^* \to \mathcal{H}$$

 $f \mapsto I(f) = a_f$

Ce qui nous permet d'identifier isométriquement les espaces \mathcal{H} et \mathcal{H}^* , i.e., $\mathcal{H} = \mathcal{H}^*$.

Exemple
$$(\mathbb{C}^n)^* = \mathbb{C}^n$$
, $\ell_2^* = \ell_2$ et $(L_2([a,b]))^* = L_2([a,b])$.

Remarque 2 Si $\{\varphi_k\}_{k\geq 1}$ est une base orthonormale de \mathcal{H} , alors l'élément a correspondant à la forme linéaire dans le Théorème 3.2 est défini par

$$a = \sum_{k=1}^{+\infty} \overline{f(\varphi_k)} \varphi_k$$

En effet, comme $f\left(\varphi_{k}\right)=\left\langle \varphi_{k},a\right\rangle ,$ $k\geq1$:

$$a = \sum_{k=1}^{+\infty} \langle a, \varphi_k \rangle \varphi_k = \sum_{k=1}^{+\infty} \overline{\langle \varphi_k, a \rangle} \varphi_k = \sum_{k=1}^{+\infty} \overline{f(\varphi_k)} \varphi_k$$

Exemples 1. $\mathcal{H} = L_2([a,b])$: Une forme linéaire T sur \mathcal{H} est continue si et seulement s'il existe $g \in \mathcal{H}$ telle que

$$\forall f \in \mathcal{H} : T(f) = \langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt$$

De plus

$$||T|| = ||g||$$

et dans ce cas

$$g(t) = \sum_{k=1}^{+\infty} \overline{T(\frac{e^{int}}{\sqrt{2\pi}})} \frac{e^{int}}{\sqrt{2\pi}}$$
$$= \frac{1}{2\pi} \sum_{k=1}^{+\infty} \overline{T(e^{int})} e^{int}, t \in [a, b]$$

2. $\mathcal{H}=\ell_2$. Une forme linéaire T sur ℓ_2 est continue si et seulement s'il existe $a=(a_k)_{k\geq 1}\in\ell_2$ tel que

$$\forall x = (x_k)_{k \ge 1} \in \ell_2 : Tx = \langle x, a \rangle = \sum_{k=1}^{+\infty} x_k \overline{a_k}$$

De plus

$$||T|| = ||a||$$

et si $(e_k)_{k\geq 1}$ est la base standard de ℓ_2 , on aura dans ce cas

$$a = \sum_{k=1}^{+\infty} \overline{T(e_k)} e_k$$

3.3 Opérateurs inversibles

Définition 3.5. Un opérateur $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est dit inversible s'il existe un opérateur noté $A^{-1} \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que

$$A^{-1}A = I_{\mathcal{H}_2}$$
 et $AA^{-1} = I_{\mathcal{H}_1}$

où $I_{\mathcal{H}_i}$ est l'opérateur identité sur \mathcal{H}_i , $(1 \leq i \leq 2)$.

Définition 3.6. L'opérateur A^{-1} est dit opérateur inverse de A.

Définition 3.7. *Soit* $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. *Le noyau de A est l'ensemble*

$$\ker A = \{x \in \mathcal{H}_1 : Ax = 0\}$$

. A est injectif si $\ker A = \{0\}$.

Définition 3.8. L'image de A est l'ensemble

$$ImA = \{Ax, x \in \mathcal{H}_1\}$$

- . A est surjectif si $ImA = \mathcal{H}_2$.
- . *A* est inversible si et seulement si *A* est injectif et surjectif à la fois.
- . S'il existe $B \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que $BA = I_{\mathcal{H}_1}$, on dit que A admet un inverse à gauche. On dit aussi que A est l'inverse droit de B.

Il est clair que dans ce cas, A est injectif.

. De même, s'il existe $C \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que $AC = I_{\mathcal{H}_2}$, on dit que A admet un inverse à droite, et que A est l'inverse gauche de C.

Il est clair dans ce cas, que A est surjectif.

. Si $\mathcal{H}_1 = \mathcal{H}_2$ et est de dimension finie, alors A est inversible si et seulement si A admet soit un inverse à gauche, soit un inverse à droite, car dans ce cas on a

$$\dim \mathcal{H}_1 = \dim \mathcal{H}_2 = \dim \ker A + \dim ImA$$

. En dimension infinie, la remarque précédente n'est pas vraie en général. En effet, l'opérateur shift (de décalage) droit S_r défini sur ℓ_2 par

$$S_r x = S_r(x_1, x_2, ...) = (x_2, x_3,)$$

est l'inverse droit du shift gauche S_l où $S_lx = S_l(x_1, x_2, ...) = (0, x_1, x_2, x_3,)$. Or, S_l n'est pas inversible car $e_1 = (1, 0, 0, ...) \in \ker S_l$. De même, S_r n'est pas inversible car $e_1 \notin ImS_r$.

Théorème 3.3. Soit $A \in \mathcal{L}(\mathcal{H})$ tel que ||A|| < 1. Alors l'opérateur I - A est inversible, et l'on a

$$(I-A)^{-1} = \sum_{k=0}^{+\infty} A^k, \ A^0 = I$$

De plus

$$\left\| (I-A)^{-1} - \sum_{k=0}^{n} A^{k} \right\| \underset{n \to +\infty}{\longrightarrow} 0$$

et

$$\left\| (I - A)^{-1} \right\| \le \frac{1}{1 - \|A\|}$$

Preuve. Soit $y \in \mathcal{H}$. La série $\sum_{k=0}^{+\infty} A^k y$ est convergente dans \mathcal{H} . En effet, si on pose $S_n = \sum_{k=0}^{n} A^k y$, on aura pour tous n, m, n > m:

$$||S_n - S_m|| \le \sum_{k=m+1}^n ||A^k y|| \le ||y|| \sum_{k=m+1}^n ||A||^k \underset{n \to +\infty}{\to} 0$$

car ||A|| < 1. La suite $(S_n)_n$ est donc de Cauchy dans \mathcal{H} . Par suite, elle est convergente (\mathcal{H} est complet). La série $\sum\limits_{k=0}^{+\infty} A^k y$ converge également. Soit $B \in \mathcal{L}(\mathcal{H})$ tel que

$$By = \sum_{k=0}^{+\infty} A^k y$$

B est linéaire, et

$$||By|| \le ||y|| \sum_{k=0}^{+\infty} ||A||^k = \frac{1}{1 - ||A||} ||y||$$

D'où *B* est borné et

$$||B|| \le \frac{1}{1 - ||A||}$$

De plus, on a pour tout $y \in \mathcal{H}$:

$$(I - A)By = (I - A)\sum_{k=0}^{+\infty} A^k y = \sum_{k=0}^{+\infty} (I - A)A^k y$$
$$= \sum_{k=0}^{+\infty} A^k (I - A)y = B(I - A)y$$
$$= \sum_{k=0}^{+\infty} A^k y - \sum_{k=0}^{+\infty} A^{k+1} y = y$$

Ce qui montre que (I-A) est inversible et $(I-A)^{-1}=B$. Finalement

$$\left\| (I - A)^{-1} - \sum_{k=0}^{n} A^{k} \right\| = \sup_{\|y\|=1} \left\| \sum_{k=n+1}^{+\infty} A^{k} y \right\|$$

$$\leq \sum_{k=n+1}^{+\infty} \|A\|^{k} \underset{n \to +\infty}{\to} 0$$

3.4 Adjoint d'un opérateur linéaire

Définition 3.9. Soit $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Il existe un opérateur unique $A^* \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que

$$\forall x \in \mathcal{H}_1, \forall y \in \mathcal{H}_2 : \langle Ax, y \rangle = \langle x, A^*y \rangle$$

De plus, on a $||A|| = ||A^*||$.

Définition 3.10. L'opérateur A^* est dit opérateur adjoint de l'opérateur A.

Preuve. Pour tout $y \in \mathcal{H}_2$, l'application

$$\varphi \colon x \mapsto \langle Ax, y \rangle$$

est linéaire et continue sur \mathcal{H}_1 par l'inégalité de Cauchy-Schwartz, et est de norme $\|\varphi\| \leq \|A\| \|y\|$. Par le Théorème de représentation de Riesz, il existe un unique élément noté $A^*y \in \mathcal{H}_1$ tel que

$$\forall x \in \mathcal{H}_1 : \varphi(x) = \langle x, A^* y \rangle$$

On vient donc de définir un opérateur $A^* \colon \mathcal{H}_2 \to \mathcal{H}_1, \ y \mapsto A^*y$. On vérifie facilement que A^* est linéaire. En effet, pour tous $x \in \mathcal{H}_1, \ y, y' \in \mathcal{H}_2$ et tout $\lambda \in \mathbb{C}$

$$\langle Ax, \lambda y + y' \rangle = \langle x, A^*(\lambda y + y') \rangle = \langle Ax, \lambda y \rangle + \langle Ax, y' \rangle$$

$$= \overline{\lambda} \langle Ax, y \rangle + \langle x, A^*y' \rangle = \overline{\lambda} \langle x, A^*y \rangle + \langle x, A^*y' \rangle$$

$$= \langle x, \lambda A^*y \rangle + \langle x, A^*y' \rangle$$

$$= \langle x, \lambda A^*y + A^*y' \rangle$$

Par unicité,

$$A^*(\lambda y + y') = \lambda A^* y + A^* y'$$

On a de même

$$\begin{split} \|A\| &= \sup_{\|x\| = \|y\| = 1} |\langle Ax, y \rangle| = \sup_{\|x\| = \|y\| = 1} |\langle x, A^*y \rangle| \\ &= \sup_{\|x\| = \|y\| = 1} |\langle A^*y, x \rangle| = \|A^*\| \end{split}$$

Exemples 1. $I^* = I$ et $0^* = 0$.

- 2. $S_r^* = S_l$ et $S_l^* = S_r$, où S_r et S_l sont respectivement les opérateurs shift droit (de décalage) et shift gauche sur ℓ_2 .
- 3. Considérons l'opérateur de multiplication M sur $L_2\left([a,b]\right)$ défini comme suit

$$(Mf)(t) = \mu(t)f(t), f \in L_2([a,b])$$

où μ est une fonction complexe continue et Lebesgue mesurable sur [a,b] . On a pour tous $f,g\in L_2\left([a,b]\right)$:

$$\langle Mf, g \rangle = \int_{a}^{b} M(f)(t)\overline{g(t)} dt = \int_{a}^{b} \mu(t)f(t) \overline{g(t)} dt$$

$$= \int_{a}^{b} f(t) \mu(t)\overline{g(t)} dt = \int_{a}^{b} f(t) \overline{\mu(t)}\overline{g(t)} dt$$

$$= \langle f, M^{*}g \rangle$$

D'où

$$(M^*g)(t) = \overline{\mu(t)}g(t), \ t \in [a, b]$$

On a donc les propriétés suivantes

Théorème 3.4. *Soient* $A, B \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. *Alors*

1.
$$(A+B)^* = A^* + B^*$$

2.
$$(\alpha A)^* = \overline{\alpha} A^*, (\alpha \in \mathbb{C})$$

$$3. (A^*)^* = A$$

4. Si $D \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_3)$ où \mathcal{H}_3 est un espace de Hilbert, alors $(DA)^* = A^*D^*$

Preuve. Soient $x \in \mathcal{H}_1$ et $y \in \mathcal{H}_2$. On a

1.

$$\langle (A+B)x, y \rangle = \langle x, (A+B)^*y \rangle = \langle Ax + Bx, y \rangle = \langle Ax, y \rangle + \langle Bx, y \rangle$$
$$= \langle x, A^*y \rangle + \langle x, B^*y \rangle = \langle x, A^*y + B^*y \rangle$$
$$= \langle x, (A^* + B^*)y \rangle$$

2.

$$\langle (\alpha A)x,y\rangle = \langle x,(\alpha A)^*y\rangle = \langle \alpha Ax,y\rangle = \langle Ax,\overline{\alpha}y\rangle = \langle x,A^*(\overline{\alpha}y)\rangle = \langle x,\overline{\alpha}A^*y\rangle$$

3.

$$\langle A^*y,x\rangle=\langle y,(A^*)^*x\rangle=\overline{\langle x,A^*y\rangle}=\overline{\langle Ax,y\rangle}=\langle y,Ax\rangle$$

4. Soit $z \in \mathcal{H}_3$:

$$\langle DAx, z \rangle = \langle x, (DA)^*z \rangle = \langle D(Ax), z \rangle = \langle Ax, D^*z \rangle = \langle x, A^*D^*z \rangle$$

Théorème 3.5. *Soit* $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. *Alors*

1.
$$\ker A = (ImA^*)^{\perp}$$

$$2. \ker A^* = (ImA)^{\perp}$$

3.
$$\overline{ImA} = (\ker A^*)^{\perp}$$

4.
$$\overline{ImA^*} = (\ker A)^{\perp}$$

Preuve. 1. Soit $x \in \ker A$ et soit $y \in \mathcal{H}_2$.

$$0 = \langle Ax, y \rangle = \langle x, A^*y \rangle$$

D'où

$$x \perp ImA^*$$

i.e.,

$$x \in (ImA^*)^{\perp}$$

D'où $\ker A \subset (ImA^*)^{\perp}$.

De même, si $u \in (ImA^*)^{\perp}$, alors pour tout $y \in \mathcal{H}_2$:

$$0 = \langle u, A^* y \rangle = \langle Au, y \rangle$$

Pour $y = Au \in \mathcal{H}_2$, on aura

$$0 = \langle Au, Au \rangle$$

D'où Au = 0. Donc $u \in \ker A$, et par suite, $(ImA^*)^{\perp} \subset \ker A$.

- 2. On prend A^* au lieu de A dans (1), et on utilise le fait que $A^{**}=A$.
- 3. $\overline{ImA}=\left(\overline{ImA}\right)^{\perp\perp}=(ImA)^{\perp\perp}=(\ker A)\perp$ par (2) et les propriétés du complément orthogonal.
 - 4. On applique (3) sur A^* , et on utilise le fait que $A^{**} = A$.

Comme conséquence directe du Théorème précédent, on présente un résultat important relatif à la décomposition en somme directe orthogonale d'un espace de Hilbert. On a donc

Corollaire 3.1. (*Important*) *Soit* $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. *Alors*

$$\mathcal{H}_1 = \ker A \oplus \left(\overline{ImA^*}\right) \ \ \textit{et} \ \ \mathcal{H}_2 = \ker A^* \oplus \overline{ImA}$$

3.5 Opérateurs auto-adjoints

Définition 3.11. Un opérateur $A \in \mathcal{L}(\mathcal{H})$ est dit auto-adjoint si $A^* = A$.

Théorème 3.6. Soit $A \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint. Alors $(\ker A)^{\perp} = \overline{ImA}$. De plus

$$\mathcal{H} = \ker A \oplus \left(\overline{ImA}\right)$$

Preuve. Conséquence directe du Théorème précédent.

Exemples 1. Soit M l'opérateur de multiplication sur $L_2\left([a,b]\right)$ défini par

$$Mf = \mu f, \ f \in L_2([a, b])$$

On a alors

$$M^*f = \overline{\mu}f$$

Donc M est auto-adjoint si et seulement si $\overline{\mu}(t) = \mu(t)$ p.p sur [a, b].

2. Soit $A \in \mathcal{L}(\mathcal{H})$. L'opérateur A^*A est auto-adjoint. En effet

$$(AA^*)^* = A^{**}A^* = AA^*$$

Théorème 3.7. L'opérateur $A \in \mathcal{L}(\mathcal{H})$ est auto-adjoint si et seulement si pour tout $x \in \mathcal{H}, \langle Ax, x \rangle \in \mathbb{R}.$

Preuve. \Rightarrow) Si $A = A^*$, alors pour tout $x \in \mathcal{H}$:

$$\langle Ax, x \rangle = \langle x, Ax \rangle = \overline{\langle Ax, x \rangle}$$

Donc $\langle Ax, x \rangle \in \mathbb{R}$.

 \Leftarrow) Si $\langle Ax, x \rangle \in \mathbb{R}, x \in \mathcal{H}$, alors pour tous $x, y \in \mathcal{H}$ et tout $\lambda \in \mathbb{C}$:

$$\langle A(x+\lambda y), (x+\lambda y) \rangle = \langle (x+\lambda y), A(x+\lambda y) \rangle$$

Par unicité, et l'hypothèse que $\langle Ax, x \rangle \in \mathbb{R}, x \in \mathcal{H}$, il s'ensuit que

$$Im(\lambda \langle Ay, x \rangle) = Im(\lambda \langle y, Ax \rangle)$$
 (1)

En prenant $\lambda = 1$ et $\lambda = i$ dans (1), on aura

$$\forall x, y \in \mathcal{H} : \langle Ay, x \rangle = \langle y, Ax \rangle$$

3.6 Orthoprojecteur sur un espace de Hilbert

Définition 3.12. Soit \mathcal{H} un espace de Hilbert, et soit \mathcal{M} un sous-espace vectoriel de \mathcal{H} . Un opérateur $P \in \mathcal{L}(\mathcal{H})$ est dit orthoprojecteur (Opérateur de projection orthogonale) sur \mathcal{M} si

$$\forall x \in \mathcal{M}, \forall y \in \mathcal{M}^{\perp} : P(x+y) = x$$

. Il est clair que P est linéaire sur \mathcal{H} . De plus

$$ImP = \mathcal{M}$$
 et $\ker P = \mathcal{M}^{\perp}$

et que

$$Px = x, x \in M$$

- . I-P est un orthoprojecteur sur \mathcal{M}^{\perp} de noyau $\ker(I-P)=\mathcal{M}.$
- . Si $\mathcal{M} \neq \{0\}$, alors $\|P\| = 1$. En effet

$$\forall x = u + v \in \mathcal{H}, u \in \mathcal{M}, v \in \mathcal{M}^{\perp} : ||Px||^{2} = ||u||^{2} \le ||u||^{2} + ||v||^{2} = ||x||^{2}$$

par le théorème de Pythagore. D'où $\|P\| \le 1$ (1)

D'autre part, si $u \in \mathcal{M}, u \neq 0$:

$$||P|| = \sup_{x \neq 0} \frac{||Px||}{||x||} \ge \frac{||Pu||}{||u||} = \frac{||u||}{||u||} = 1$$

 $\operatorname{car} u \in \mathcal{M}. \operatorname{Donc} ||P|| \ge 1$ (2)

De (1) et (2), découle que ||P|| = 1.

On a donc le résultat important suivant

Théorème 3.8. Un opérateur $P \in \mathcal{L}(\mathcal{H})$ est un orthoprojecteur si et seulement si $P^2 = P = P^*$.

Preuve. (\Rightarrow) Supposons que P est un orthoprojecteur de \mathcal{H} sur un sousespace vectoriel fermé \mathcal{M} de \mathcal{H} . Soit $x=u+v, u\in \mathcal{M}$ et $v\in \mathcal{M}^{\perp}$. On a

$$P^2x = P(Px) = P(u) = u = Px$$

Donc $P^2 = P$, (P est dit idempotent). De plus, on a pour tous x = u + v, $y = u' + v' \in \mathcal{H}$ avec $u, u' \in \mathcal{M}$ et $v, v' \in \mathcal{M}^{\perp}$:

$$\langle Px, y \rangle = \langle u, u' + v' \rangle = \langle u, u' \rangle = \langle u + v, u' \rangle = \langle x, Py \rangle$$

D'où $P^* = P$.

 (\Leftarrow) Posons $\mathcal{M}=ImP$. Alors, $\mathcal{M}=\ker(I-P)$ car $P^2=P$. Le sous-espace \mathcal{M} est donc fermé dans \mathcal{H} . De plus,

$$\mathcal{M}^{\perp} = (ImP)^{\perp} = \ker P^* = \ker P$$

D'où, pour tous $u \in \mathcal{M}, v \in \mathcal{M}^{\perp}$:

$$P(u+v) = Pu + Pv = Pu$$

 $\operatorname{car} u \in \mathcal{M} = \operatorname{Im} P$. Par suite, P est un orthoprojecteur sur \mathcal{M} .

3.7 Feuille de TD 3

Exercice 3.1.

Sur l'espace de Hilbert $\ell_2:=\left\{x=(x_n)_{n\in\mathbb{N}^*}\subset\mathbb{C}:\sum\limits_{n=1}^{+\infty}|x_n|^2<+\infty\right\}$, on définit l'opérateur linéaire $\mathcal A$ par

$$\mathcal{A}x = (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{n}, \dots), \ \ x = (x_i)_{i=1}^{+\infty} \in \ell_2$$

- 1. Montrer que $Ax \in \ell_2$ pour tout $x \in \ell_2$.
- 2. Montrer que A est borné.
- 3. En déduire la norme de A.
- 4. Déterminer \mathcal{A}^* l'opérateur adjoint de \mathcal{A} .
- 5. Que peut-on déduire?

Exercice 3.2.

Déterminer les opérateurs adjoints des opérateurs linéaires suivants

$$K_i: L^2([-\pi, \pi]) \to L^2([-\pi, \pi]), i = \overline{1, 2}$$

avec

$$(K_1\psi)(t) = \int_{-\pi}^{\pi} e^{i(t-s)}\psi(s)ds, \quad (K_2\psi)(t) = \int_{-\pi}^{\pi} \cos(t-s)\psi(s)ds$$

pour tout $\psi \in L^2([-\pi,\pi])$, et

$$K: L^2([0,1]) \to L^2([0,1]), (K\psi)(t) = \int_0^1 \psi(s)ds, \psi \in L^2([0,1])$$

Exercice 3.3.

 \mathcal{H} et \mathcal{K} sont deux espaces de Hilbert, et $(\varphi_k)_{k\geq 1}$ et $(\psi_k)_{k\geq 1}$ sont des suites orthonormales dans \mathcal{H} et \mathcal{K} respectivement. Soit $(\lambda_n)_{n\geq 1}$ une suite complexe bornée. Considérons l'application $T\colon \mathcal{H}\to \mathcal{K}$ définie par

$$Tx = \sum_{n=1}^{+\infty} \lambda_n \langle x, \varphi_n \rangle \psi_n, \ x \in \mathcal{H}$$

- i. Montrer que T définit un opérateur linéaire de $\mathcal H$ dans $\mathcal K$.
- ii. Montrer que T est borné, et en déduire une estimation de ||T||.
- iii. Calculer ||T||.
- vi. Déterminer l'opérateur adjoint T^* de T.

Exercice 3.4.

a. Soit k une fonction complexe Lebesgue mesurable sur $[a,b] \times [a,b]$ et telle que

$$\int_{a}^{b} \int_{a}^{b} |k(t,s)|^{2} dt ds < +\infty$$

On définit l'opérateur $K:L^2([a,b])\to L^2([a,b])$ par

$$(Kf)(t) = \int_{a}^{b} k(t,s)f(s) \ ds, f \in L^{2}([a,b])$$

- Montrer que Kf existe pour tout $f \in L^2([a,b])$.
 - Vérifier que K est linéaire et estimer sa norme.
 - Déterminer l'opérateur adjoint K^* de l'opérateur K.

Exercice 3.5.

Soit
$$A: L_2([-1,1]) \longrightarrow L_2([-1,1]), f \mapsto Af$$
 où

$$(Af)(t) = t^2 \int_{-1}^{1} sf(s)ds, \ f \in L_2([-1,1]), \ t \in [-1,1]$$

1. Montrer que *A* est bien défini, et que *A* est linéaire.

- 2. Montrer que A est borné, et estimer sa norme.
- 3. Déterminer A^* , l'opérateur adjoint de A.
- 4. Montrer que A est un opérateur de Hilbert-Schmidt.
- 5. Conclure.

Bibliographie

- [1] N.I. Akhiezer, I.M. Glazman, *Theory of linear operators in Hilbert space*, Dover Publications Inc., New York, (1993).
- [2] B. Bendoukha, *Analyse fonctionnelle et théorie des opérateurs*, Cours et exercices corrigés, (2017)????.
- [3] J. Charles, M. Mbekhta, H. Queffélec, *Analyse fonctionnelle et théorie des opérateurs*, Dunod, Paris, (2010).
- [4] J.B. Conway, A Course in Functional Analysis, Second édition, Springer-Verlag NewYork, Inc, (1990).
- [5] L. Debnath, P. Mikusinski, *Hilbert Spaces with Applications*, Elsevier Academic Press, (2005).
- [6] I. Gohberg, S. Goldberg, *Basic Operator Theory*, Birkhäuser, Boston, Basel, Berlin(1981).
- [7] W. Hengartner, M. Lambert and C. Reischer, *Introduction à l'analyse fonc-tionnelle*, Les Presses de l'Université de Québec, (1981).
- [8] A. Nasli Bakir, Mon cours d'analyse fonctionnelle, (2015-2018).
- [9] A. Nasli Bakir, Mes sujets d'examens et séries de travaux dirigés d'analyse fonctionnelle, (2015-2018).