Math137 - October 29'th, 2015

L'Hopitals Rule - Examples:

i) Evaluate
$$\lim_{x\to 0} \frac{\ln \cos x}{\sin x}$$

Let
$$f(x) = \ln \cos x$$

Let
$$g(x) = \sin x$$

Then,
$$f(0) = g(0) = 0$$

$$f'(x) = \frac{-\sin x}{\cos x}$$
 (Chain rule)
 $g'(x) = \cos x$

$$g'(x) = \cos x$$

Since
$$\lim_{x\to 0} \frac{f'(x)}{g'(x)} = -\lim_{x\to 0} \frac{\sin x}{\cos^2 x} = 0$$
 (By Quotient Rule) $\implies \lim_{x\to 0} \frac{\ln\cos x}{\sin x} = 0$ (By L'Hopitals Rule)

$$\implies \lim_{x\to 0} \frac{\ln \cos x}{\sin x} = 0$$
 (By L'Hopitals Rule)

ii) Evaluate
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$$

Rewrite
$$\left(\frac{1}{\sin x} - \frac{1}{x}\right) = \frac{x - \sin x}{x \sin x}$$
 (This is an indeterminate limit $(0/0)$ so we apply L'Hoptials Rule)

Let
$$f(x) = x - \sin x$$

Let
$$g(x) = x \sin x$$

$$f'(x) = 1 - \sin x$$

$$g'(x) = \sin x + x \cos x$$

But,
$$\lim_{x\to 0} f'(x) = 0$$
, $\lim_{x\to 0} g'(x) = 0$

Our limit is still indeterminate, so we apply L'Hopitals rule again.

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{f''(x)}{g''(x)}$$

$$f''(x) = sinx$$

$$g''(x) = 2\cos x - x\sin x$$

$$\lim_{x\to 0} \frac{f''(x)}{g''(x)} = \lim_{x\to 0} \frac{\sin x}{2\cos x \sin x} = \frac{0}{2} = 0$$
 (Limit Quotient Rule)

$$\therefore \lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right) = 0$$
 (By L'Hoptials Rule)

iii) Evaluate $\lim_{x\to 0^+} x \ln x$

Rewrite
$$x \ln x = \frac{\ln x}{\frac{1}{x}} \left(\frac{-\infty}{\infty} \right)$$
 Indeterminate limit, so we use L'Hopitals rule

Let
$$f(x) = \ln x$$

Let
$$g(x) = \frac{1}{x}$$

Let
$$g(x) = \frac{1}{x}$$

So, $f'(x) = \frac{1}{x}$
and $g'(x) = \frac{-1}{x^2}$

and
$$g'(x) = \frac{x}{x^2}$$

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-1}{x}} = \lim_{x \to 0^+} \frac{x^2}{-x} = \lim_{x \to 0^+} -x = 0$$

$$\therefore \lim_{x\to 0^+} x \ln x = 0$$
 (By L'Hopitals Rule)

Note: Similarly, we can show that for any a > 0, $\lim_{x\to 0^+} x^a \ln x = 0$

iv) Evaluate $\lim_{x\to\infty} x^{\frac{1}{x}}$

$$Simplify: x^{\frac{1}{x}} = e^{\ln x^{\frac{1}{x}}}$$
$$= e^{\frac{1}{x} \ln x}$$
$$= e^{\frac{\ln x}{x}}$$

$$\begin{split} \lim_{x \to \infty} x^{\frac{1}{x}} &= \lim_{x \to \infty} e^{\frac{\ln x}{x}} \\ &= e^{\lim_{x \to \infty} \frac{\ln x}{x}} \end{split}$$

So, we must find $\lim_{x\to\infty}\frac{\ln x}{x}$ This is an indeterminate limit, so we use L'Hopitals Rule. Let $f(x)=\ln x$

Let
$$g(x) = x$$

 $f'(x) = \frac{1}{x}$
 $g'(x) = 1$

$$g'(x) = 1$$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{x}}{x}$$

$$= 0 \text{ (By L'Hopitals Rule)}$$

$$\lim_{x \to \infty} x^{\frac{1}{x}} = e^{\lim_{x \to \infty} \frac{\ln x}{x}}$$

$$= e^{0}$$

$$= 1$$

Extreme Value Theorem (EVT)

If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some points $c, d \in [a, b]$