

ELEMENTOS DE ÁLGEBRA

(2do cuatrimestre de 2022)

TRABAJO PRÁCTICO N°2: Conjuntos.

- a) Enumerar, si es posible, cinco elementos de cada conjunto:
 - I) $A = \{x \in \mathbb{Q} : x = \frac{1}{n}, n \text{ primo}\}.$ III) $C = \{x \in \mathbb{Q}/x^2 = 7\}.$ IV) $D = \{x : x \text{ es letra de la palabra BANANA}\}.$
 - II) $B = \{x \in \mathbb{Z} : 6 < x < 10\}.$
- b) Definir por extensión los siguientes conjuntos:
 - I) $A = \{n \in \mathbb{N} : n^2 = 49\}.$
 - II) $B = \{x \in \mathbb{Z} : x = 5n + 1, n \in \mathbb{N}, n < 5\}.$
 - III) $C = \{z \in \mathbb{Z} : z = x + y, x, y \in X\}$, siendo $X = \{0, 1, 2\}$.
 - IV) $D = \{z \in \mathbb{Z} : z^2 \in X\}$, siendo $X = \{0, 1, 2\}$.
- 2. Definir por comprensión los siguientes conjuntos:
 - a) Números naturales mayores que 12, menores que 18 y diferentes de 15
 - b) Números enteros múltiplos de 11, mayores ó iguales que -13 y menores que 23
 - c) Números reales positivos cuyo cubo es menor que 30
- 3. Dados los siguientes conjuntos, indicar cuáles son vacíos y cuáles son unitarios.
 - a) $A = \{x \in \mathbb{R} : x^2 1 = 0\}$
- c) $C = \{x \in \mathbb{R} : x = 2x + 1\}$ d) $D = \{x \in \mathbb{R} : x = x + 1\}$
- b) $B = \{x \in \mathbb{R} : x^2 + 1 = 0\}$
- 4. ¿Cuáles de los siguientes conjuntos son iguales a $A = \{1, 2, 3, 4, 5\}$?

- a) $B = \{2, 3, 1, 4, 5\}$ b) $C = \{2, 1, 3\}$ c) $D = \{x \in \mathbb{Z} : x^2 \le 25\}$ d) $E = \{x \in \mathbb{Z} : 1 \le x^2 \le 25\}$
- 5. Sean los conjuntos

$$\begin{array}{ll} A = \{x \in \mathbb{Z} : x = 3k, k \in \mathbb{Z}\} & C = \{3, 6, 9, a, b, \{c\}\} \\ B = \{x \in \mathbb{Z} : x = 6k, k \in \mathbb{Z}\} & D = \{6, b, \{c\}\} \end{array}$$

Reemplazar \square por \subseteq , \nsubseteq , \in \circ \notin según corresponda:

- $3 \square A$
- $A \square B$
- $a \square D \qquad \qquad D \square C$
- $6 \square D$

- $3 \square C$
- $\emptyset \square C$
- $\{\emptyset\} \square D$
- $\{-3,6\}$ \square A
- $\{6\} \square D$

- $-8 \square B$
- $C \square D$
- $A \square A$
- $B \square A$
- $\{\{c\}\}$ \square D

- 6. Probar que X = Y, para cada uno de los siguientes incisos:
 - a) $X = \{x \in \mathbb{Z} : x \text{ es impar}\}\$ e $Y = \{x \in \mathbb{Z} : x^2 + 1 \text{ es par}\}.$
 - b) $X = \{x \in \mathbb{Z} : x + 2 \text{ es par}\}\$ e $Y = \{x \in \mathbb{Z} : x \text{ es par}\}.$
 - c) $X = \{x \in \mathbb{Z} : x \text{ es impar}\}\$ e $Y = \{x \in \mathbb{Z} : x^3 \text{ es impar}\}.$

7. Sean

$$\begin{array}{ll} U=\{x\in\mathbb{N}:x\leq20\}\\ A=\{x\in\mathbb{N}:x=2n,n\in\mathbb{N},n<11\} \end{array} \qquad \begin{array}{ll} B=\{x\in\mathbb{N}:x=4n,n\in\mathbb{N},x\leq20\}\\ C=\{x\in\mathbb{N}:x=5n,n\in\mathbb{N},n<5\} \end{array}$$

Hallar:

 $a) A \cup B$

- $c) \ (A-B)\cap C$
- $e) (A' \cup B')$

- b) $A \cap B \cap C$
- $d) A \cap C'$
- f) $(A-B) \cup (B-A)$

8. Expresar las regiones sombreadas como operaciones entre $A,\ B\ y\ C$:

9. Demostrar las siguientes propiedades

- a) Si $A \cap B = A$ entonces $A \subseteq B$
- b) Si $A \subseteq C$ y $B \subseteq C$ entonces $A \cup B \subseteq C$
- c) $A \cap C \subseteq B \cap D$, si $A \subseteq B$ y $C \subseteq D$
- $d) \ B \cap (A B) = \emptyset$
- e) Si $A \subseteq C$ y $B \subseteq C$ entonces $C' \subseteq A' \cap B'$
- f) A y B son disjuntos, si $(A \cup B) \cap B' = A$

EJERCICIOS ADICIONALES

1. Utilizando el diagrama de Venn adjunto, marcar cada uno de los siguientes conjuntos.

- a) $A \cap (B \cup C)$
- $c) \ (A \cap B) \cup C$
- b) $(B \cup C) \cap A'$
- $d) (A' \cap B) \cup (A \cap C)$
- 2. Dados los conjuntos:

$$A = \{x \in \mathbb{N} : x = 2n + 1, \ n \in \mathbb{N}\} \qquad D = \{x \in \mathbb{N} : x = 2n + 1 \ \text{y} \ n < 10\}$$

- a) Decir qué elementos forman los conjuntos A y D
- b) Indicar, justificando las respuestas, si las siguientes afirmaciones son verdaderas o falsas

I)
$$A \subseteq D$$

iv)
$$2 \in A$$

VII)
$$\{2\} \subset A'$$

II)
$$D \subseteq A$$

$$v) 9 \in D$$

VIII)
$$\{23\} \subseteq A \cap D'$$

III)
$$D' \subseteq A$$

VI)
$$21 \in D$$

IX)
$$20 \in A \cup D'$$

3. Dados los conjuntos $A = \{n \in \mathbb{N} : n < 12\}, B = \{n \in \mathbb{N} : n \text{ es par y } n < 22\}$ y $E = \{n \in \mathbb{N} / n \text{ es par } \}$. Hallar:

$$a) A \cup B$$

b)
$$A \cap B$$

$$d) B - E$$

4. Sean los conjuntos:

$$A = \{ \text{ divisores positivos de } 18 \}$$

$$C = \{ \text{ divisores positivos de } 30 \}$$

$$B = \{ \text{ divisores positivos de 24} \}$$

 $A = \{ \text{ divisores positivos de 18} \}$ $C = \{ \text{ divisores positivos de 30} \}$ $D = \{ \text{ divisores positivos comunes de 18, 24 y 30} \}$

- a) Calcular, mediante diagramas de Venn, $(A \cap B) C$ y $(B \cap C) A$
- b) Calcular A' y B' siendo el referencial $U = \{n \in \mathbb{N} : n < 25\}$
- c) Expresar a D como una operación entre los conjuntos A, B y C.
- 5. Demostrar:

$$a) (A')' = A.$$

c)
$$(A \cap D)' = A' \cup D'$$

d) $A \cap (A \cup C) = A$

e) Si
$$A \subseteq B$$
 entonces $A' \cup B = U$

- b) $A \cup \emptyset = A$.
- 6. Sean $X = \{x \in \mathbb{Z} : x \text{ es par}\}\$ e $Y = \{x \in \mathbb{Z} : x^2 + 1 \text{ es impar}\}.$ Probar que X = Y.

LEYES DEL ÁLGEBRA DE CONJUNTOS

1. Leyes conmutativas:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

2. Leyes asociativas:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

3. Leyes distributivas:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4. Leyes de absorción:

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

5. Leyes de idempotencia:

$$A \cup A = A$$

$$A \cap A = A$$

6. Leyes de identidad:

$$A \cup \emptyset = A$$
$$A \cup U = U$$
$$A \cap \emptyset = \emptyset$$
$$A \cap U = A$$

7. Complementación doble:

$$(A')' = A$$

- 8. $A \cup A' = U$ $A \cap A' = \emptyset$
- 9. $U' = \emptyset$ $\emptyset' = U$
- 10. Leyes de De Morgan:

$$(A \cup B)' = A' \cap B'$$
$$(A \cap B)' = A' \cup B'$$