7-11-2018

Tema4: Protocolo IP y encaminamiento

Escenario 2

Manuel Lora Román MANUEL LORA ROMÁN

INDICE

Ejercicio	3
Configuración	4
	5
Configuración encaminamiento	7
Verificación de conectividad	8
Captura de tráfico en RO	11

Ejercicio

Disponemos de Tres Host conectados a un router Linux.

Redes:

- 192.168.100.0/24
- 172.32.0.0/16
- 10.1.0.0/7

Tarea:

- Configurar los hosts y el router de forma que todos sean alcanzables.

Entrega:

- Esquema gráfico de la configuración.
- Comandos de configuración de cada nodo.
- Verificación de conectividad (ping) entre nodos.
- Captura de tráfico en el router durante una comunicación entre h1 y h3.

Configuración

Para hacernos una idea del ejercicio, lo plasmaremos en un diagrama, indicando las partes y su conexión:

R0 \rightarrow Router S1, S2, S3 \rightarrow Switches H1, H2, H3 \rightarrow Host

Configuración de cada nodo

En primer lugar, necesitamos configurar las direcciones Ip de cada Host y para ello usaremos el siguiente comando:

Ip a add {dirección Ip /máscara de red} dev {interfaz de red}

Por ejemplo, para el H1 sería:

```
root@mininet-vm:"# ip a add 192.168.100.2/24 dev h1-eth0
root@mininet-vm:"# ip a
1: lo: <L00PBACK,UP,L0WER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
2: h1-eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
tup group default qlen 1000
    link/ether 16:88:63:ee:81:04 brd ff:ff:ff:ff:
    inet 192.168.100.2/24 scope global h1-eth0
        valid_lft forever preferred_lft forever
root@mininet-vm:"#
```

Ilustración 2

Y para H2 Y H3:

Ilustración 3

```
root@mininet-vm:~# ip a add 10.1.0.2/7 dev h3-eth0
root@mininet-vm:~# ip a
1: lo: <L00PBACK,UP,L0WER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
2: h3-eth0@if8: <BROADCAST,MULTICAST,UP,L0WER_UP> mtu 1500 qdisc pfifo_fast stat
e UP group default qlen 1000
    link/ether 1e:b9:12:dd:03:9d brd ff:ff:ff:ff:ff
inet 10.1.0.2/7 scope global h3-eth0
    valid_lft forever preferred_lft forever
root@mininet-vm:~# | | | |
```

Ilustración 4

Y, por último, necesitamos configurar las diferentes interfaces de red que tiene el router RO. Usaremos el mismo comando:

Ilustración 5

Configuración encaminamiento

A continuación, con el siguiente comando crearemos la tabla de encaminamiento de cada nodo:

Ip r add {Ip de destino} via {Ip de origen}

En el caso de las tablas de encaminamiento de los Hosts, es mucho más cómodo usar:

Ip r add default via {Ip de destino}

Para H1:

```
root@mininet-vm:"# ip r add default via 192.168.100.1
root@mininet-vm:"# ip r
default via 192.168.100.1 dev h1-eth0
192.168.100.0/24 dev h1-eth0 proto kernel scope link src 192.168.100.2
root@mininet-vm:"# |
```

Ilustración 6

Y para H2 y H3 será:

```
root@mininet-vm:~# ip r add default via 172.32.0.1
root@mininet-vm:~# ip r
default via 172.32.0.1 dev h2-eth0
172.32.0.0/12 dev h2-eth0 proto kernel scope link src 172.32.0.2
root@mininet-vm:~#
```

Ilustración 7

```
root@mininet-vm:~# ip r add default via 10.1.0.1
root@mininet-vm:~# ip r
default via 10.1.0.1 dev h3-eth0
10.0.0.0/7 dev h3-eth0 proto kernel scope link src 10.1.0.2
root@mininet-vm:~#
```

Ilustración 8

Verificación de conectividad (ping)

Una vez hecha la tabla de encaminamiento, usaremos el comando:

Ping {Ip de destino}

Para comprobar que, efectivamente, nos llegan los paquetes de datos, usaremos el comando:

Tcpdump -i {interfaz de red}

En primer lugar, mandaremos ping de H1 Y H2 hacia H3:

Ilustración 8

Ahora, de H1 y H3 hacia H2:

Ilustración 9

Y, por último, de H2 y H3 a H1:

Ilustración 10

Captura de tráfico en RO

Para comprobar la conectividad, vamos a hacer un Tcpdump en el router para comprobar la entrada y salida de los paquetes de datos:

Ilustración 11