Lexicalization of PCFGs

The model of Charniak (1997)

Charniak (1997)

- A very straightforward model of a lexicalized PCFG
- Probabilistic conditioning is "top-down" like a regular PCFG
 - But actual parsing is bottom-up, somewhat like the CKY algorithm we saw

Charniak (1997) example

a.
$$h = profits$$
; $c = NP$

b.
$$ph = rose$$
; $pc = S$

c.
$$P(h|ph,c,pc)$$

d.
$$P(r|h,c,pc)$$

Lexicalization models argument selection by sharpening rule expansion probabilities

 The probability of different verbal complement frames (i.e., "subcategorizations") depends on the verb:

Local Tree	come	take	think	want
$VP \rightarrow V$	9.5%	2.6%	4.6%	5.7%
$VP \rightarrow V NP$	1.1%	32.1%	0.2%	13.9%
$VP \rightarrow V PP$	34.5%	3.1%	7.1%	0.3%
VP → V SBAR	6.6%	0.3%	73.0%	0.2%
$VP \rightarrow VS$	2.2%	1.3%	4.8%	70.8%
$VP \rightarrow V NP S$	0.1%	5.7%	0.0%	0.3%
VP → V PRT NP	0.3%	5.8%	0.0%	0.0%
$VP \rightarrow V PRT PP$	6.1%	1.5%	0.2%	0.0%

Lexicalization sharpens probabilities: Predicting heads

"Bilexical probabilities"

- P(prices | n-plural) = .013
- P(prices | n-plural, NP) = .013
- P(prices | n-plural, NP, S) = .025
- P(prices | n-plural, NP, S, v-past) = .052
- P(prices | n-plural, NP, S, v-past, fell) = .146

Charniak (1997) linear interpolation/shrinkage

```
\hat{P}(h|ph,c,pc) = \lambda_1(e)P_{\mathsf{MLE}}(h|ph,c,pc) \\ + \lambda_2(e)P_{\mathsf{MLE}}(h|C(ph),c,pc) \\ + \lambda_3(e)P_{\mathsf{MLE}}(h|c,pc) + \lambda_4(e)P_{\mathsf{MLE}}(h|c)
```

- $\lambda_i(e)$ is here a function of how much one would expect to see a certain occurrence, given the amount of training data, word counts, etc.
- \blacksquare C(ph) is semantic class of parent headword
- Techniques like these for dealing with data sparseness are vital to successful model construction

Charniak (1997) shrinkage example

```
P(\mathsf{prft}|\mathsf{rose},\mathsf{NP},\mathsf{S}) P(\mathsf{corp}|\mathsf{prft},\mathsf{JJ},\mathsf{NP}) P(h|ph,c,pc) 0 0.245 P(h|C(ph),c,pc) 0.00352 0.0150 P(h|c,pc) 0.000627 0.00533 P(h|c) 0.000557 0.00418
```

- Allows utilization of rich highly conditioned estimates, but smoothes when sufficient data is unavailable
- One can't just use MLEs: one commonly sees previously unseen events, which would have probability 0.

Lexicalization of PCFGs

The model of Charniak (1997)