PCG Part 4: Pseudorandom Correlation Functions from Paillier

Peter Scholl

26 January 2022, Bar-Ilan University Winter School

Based on joint work with:

Claudio Orlandi and Sophia Yakoubov

This week's talks

VOLE 1: introduction, basic protocols & applications

VOLE 2: application to efficient zero knowledge

PCG 1-2

PCG 3: PCGs from LPN: the gory details

PCG 4: PCFs from number-theoretic assumptions

Peter Scholl 2

Outline

- ➤ PCFs: recap
- >A blueprint for PCFs from oblivious ciphertext sampling and share decryption
- ➤ Share conversion
 - \circ DDH
 - o Paillier & QR
- ➤ Public-key PCFs for VOLE and OT
- ➤ Non-interactive setup for PCFs

Peter Scholl .

Secure Computation with Preprocessing

[Beaver '91]

Peter Scholl Peter Scholl

[BCGIKS20]

Correctness: $(R_0, R_1) \cong$ fresh sample of correlation

Security: against insiders

[BCGIKS20]

Assumption	Correlations	Setup?

[BCGIKS20]

Assumption	Correlations	Setup?
LWE (via multi-key FHE)	additively shared	CRS + public keys

[BCGIKS20]

Assumption	Correlations	Setup?
LWE (via multi-key FHE)	additively shared	CRS + public keys
Variable-density LPN [BCGIKS 20]	OT, VOLE, constant deg.	trusted Gen

[BCGIK**\$**20]

Assumption	Correlations	Setup?
LWE (via multi-key FHE)	additively shared	CRS + public keys
Variable-density LPN [BCGIKS 20]	OT, VOLE, constant deg.	trusted Gen
Quadratic residuosity [OSY 21]	ОТ	CRS + public keys
DCR (Paillier) [OSY 21]	VOLE	CRS + public keys

Warm-up: PCFs from FHE with share decryption

Can we optimize FHE-based PCF?

Instead of generating Enc(a), Enc(b) inside FHE, can we sample them directly?

- ➤ Seems hard with LWE
 - Inefficient candidates used in iO schemes [WW 21, DQVWW 21]
- ➤ What about other schemes?
 - Paillier and Goldwasser-Micali have dense ciphertext space
 - Problem: only additive homomorphism

Blueprint for efficient PCF: oblivious sampling + share decryption

Paillier encryption 101

$$\triangleright$$
 Paillier group: $Z_{N^2}^*$, $N=pq$

$$\triangleright g \coloneqq 1 + N$$
 is special:

 \circ Generates easy DLog subgroup with order N:

$$(1+N)^x = 1 + Nx \mod N^2$$
 \longrightarrow $DLog_{1+N}(y) = \frac{y-1}{N}$

≻Isomorphism

$$\mathbb{Z}_{N^2}^* \cong \mathbb{Z}_N \times \mathbb{Z}_N^*$$
 Implies oblivious sampling! Enc $(x; r) = g^x r^N$

 \triangleright Secret key: $d \in \mathbb{Z}$ such that

$$\operatorname{Enc}(x)^d = g^x$$

Paillier: local decryption to shares

Paillier: local decryption to shares

Paillier: decryption to shares + multiplication

Paillier: decryption to shares + multiplication

Distributed Discrete Log

(DDH) _[Boyle Gilboa Ishai 16]

$$>g_0/g_1=g^{xy}$$

$$\triangleright (xy)_1 - (xy)_0 = xy$$

- Problem: what if $(xy)_0$, $(xy)_1$ are large?
 - O Have many h's
 - Poly-size message space
- ➤ Problem: error if parties hit different h
 - O Gives 1/poly error!

DDLog for DDH: state of the art

➤ Various optimizations for reducing error etc.

[BGI 16, BGI 17, BCGIO 17, DKK 18]

- Still computationally heavy
- 1/poly correctness error
- Limited to small message spaces

➤ Variant in Paillier groups: same limitations [FGJS 17]

Q: Can we do better?

➤ Cannot do better without solving variant of discrete log [DKK 18]

DDLog for Paillier

- $> g_0/g_1 = (1+N)^{xy} \mod N^2$
- \triangleright Use just one h:

$$0 h/g_i = (1+N)^{(xy)_i} \rightarrow (xy)_i$$

$$0 \text{ Use } h := g_1 \text{ mod } N = g_0 \text{ mod } N$$

- $(in Z_{N^2})$
- $\triangleright h$ is in the same coset!
- Large message space, negl error!

DDLog for Paillier: formally

Private Inputs: $g_0 \in Z_{N^2}^*$ $g_1 = g_0(1 + N)_{Z_N \times Z_N^*}^Z \cong Z_{N^2}^*$ **Goal:** common output $h \in Z_{N^2}^*$, in the same coset

Claim: If $h = g_0 \mod N = g_1 \mod N$, then lies in the coset $\{g_0(1+N)^i\}_i$.

Proof:

PCF for VOLE: under the lens of a weak PRF

For random ciphertext $C \in \mathbb{Z}_{N^2}$ and Paillier decryption key d:

$$F(d,C) = (C^d - 1)/N$$

is a weak PRF

 \triangleright Additive shares of $d \cdot y \Rightarrow FSS$ keys for the class $\{y \cdot F(d, \cdot)\}_{y,d}$

PCF for OT from Goldwasser-Micali

➤ Goal: instead of VOLE, produce correlated OTs

$$y_{0,i} = r_i \Delta + y_{1,i} \in \mathbb{F}_2^\lambda$$
 with $r_i \in \{0,1\}, \ \Delta \in \{0,1\}^\lambda$

- Then hash to get random OT
- ➤ Goldwasser-Micali:
 - \circ Encrypts $b \in \{0,1\}$
 - \circ Secret sk $d \in \mathbb{Z}$ where

$$C^d = (-1)^b \mod N$$

PCF for OT from Goldwasser-Micali

- \triangleright DDLog for Goldwasser-Micali: on input $Y \in \mathbb{Z}_N$
 - o If Y < N/2 output 1, otherwise output 0

$$Y_0/Y_1 = (-1)^b \Rightarrow DDLog(Y_0) \oplus DDLog(Y_1) = b$$

≻PCF

- \circ For each bit Δ_j of Δ , give out shares of $d \cdot \Delta_j$
- Oblivious ciphertext \Rightarrow Enc (r_i)
- \circ Share dec + DDLog \Rightarrow one bit of $y_{0,i} = r_i \Delta \oplus y_{1,i}$
- \circ Cost: $\sim \lambda$ exponentiations

Summary: PCFs from number-theoretic assumptions

Assumption	Correlation	Setup	Cost per Eval
Paillier (DCR)	VOLE in \mathbb{Z}_N	$y_0 - y_1 = d \cdot x$	1 exp in \mathbb{Z}_N
Quadratic Residuosity	Δ-ΟΤ	$y_{0,i} - y_{1,i} = d \cdot \Delta_i$	128 exp in \mathbb{Z}_{N^2}

Summary: PCFs from number-theoretic assumptions

Assumption	Correlation	Setup	Cost per Eval	Key size
Paillier (DCR)	VOLE in \mathbb{Z}_N	$y_0 - y_1 = d \cdot x$	1 exp in \mathbb{Z}_{N^2}	~1kB
Quadratic Residuosity	Δ-ΟΤ	$y_{0,i} - y_{1,i} = d \cdot \Delta_i$	128 exp in \mathbb{Z}_N	~50kB

What about OLE instead of VOLE?

- Bootstrap setup for many x_i ?
- Challenge: setup shares are over Z

(PCG only) LPN + DCR	OLE in \mathbb{Z}_N	PCG for VOLE in $\mathbb Z$	\sim 1 exp in \mathbb{Z}_{N^2}	$O(\lambda \log m)$
----------------------	-----------------------	-----------------------------	------------------------------------	---------------------

Comparison with PCFs from VDLPN

- ➤ VDLPN [BCGIKS 20]: cons
 - More costly setup: non-constant round, many DPFs
 - \circ Key size 120kB 2MB
 - New assumption
- ➤VDLPN: pro
 - Much faster computation
 - $\circ \sim 20~000$ Eval/s on one core
 - \circ VS.
 - VOLE from Paillier: 100 eval/s
 - OT from QR: 1-2 eval/s

Bonus: HSS for Branching Programs from Paillier

[O**S**Y 21]

- ➤ HSS for "restricted multiplication" circuits ≈ log-depth circuits
 - Each multiplication must involve an input wire
 - Encrypt inputs, secret share intermediate values
 - Multiply using ShareDec

➤ Bottom line:

- Negligible correctness error
- Exponential plaintext space

Not possible with previous DDH/Paillier constructions

ovs RLWE: smaller ciphertexts, slower computation

What about PCF setup?

➤ Recall PCF keys:

VOLE: shares of $d \cdot x$ **OT:** shares of $d \cdot \Delta_i$

Both are just OLE!

Can we make this non-interactive?

i.e. one parallel message from Alice/Bob

- Yes! (Assuming a CRS...)
- Gives public-key setup

Non-interactive (but not silent!) OLE from Paillier

Goal:

Output: shares of *xy*

Public-Key Silent OT/VOLE: Protocol Flow

Conclusion

➤ Blueprint for pseudorandom correlation functions:

Oblivious ciphertext sampling + distributed decryption

Easily done with Paillier (VOLE) and Goldwasser-Micali (OT)

➤ PCFs from Paillier or QR

- Produce arbitrary quantity of OT or VOLE
- Small, one-time setup
- Expensive computation

➤ (Non-silent) OLE from Paillier

- One-round protocol
- Gives public-key PCF (with CRS)

Open problems

- ➤ Other PKE schemes with oblivious ciphertext sampling?
 - Obtain PCF from other assumptions
 - O HE or functional encryption?
 - Different properties maybe useful for more correlations
- ➤ Improve OT efficiency
 - \circ $O(\lambda)$ exponentiations
- \triangleright Remove CRS N = pq from public-key PCFs
- ➤ Public-key setup for LPN-based PCG/PCF
 - Currently: two-round setup
- ➤ Beyond two parties?

The Rise of Paillier: Homomorphic Secret Sharing and Public-Key Silent OT

Orlandi, S, Yakoubov (2021)

https://ia.cr/2021/262