الاشتقاق و تطبيقاته

الاستعال و تطبيعات						
1 ع ریاضیات	القدرات المنتظرة					
الدرس 1 الدورة الثانية	. تفريب دالة بجوار نفطة بدالة تآلفية؛					
12 ساعة	التعرف على أن العدد المشتق لدالة في x_0 هو المعامل الموجه لمماس منحناها في النقطة التي أقصوفا .					
	• x ₀					
1 ع تجريبية	. التعرف على الشنقة الأولى للدوال المرجعية					
الدرس 3 الدورة الثانية 10 ساعات	. التمكن من تفنيات حساب مشتقة دالة					
10 ساعات	. تحديد معادلة المماس لمتحنى دالة في نقطة وإنشاؤه؟					
	. تحديد رتابة دالة انطلاقا من دراسة إشارة مشتقتها؛					
	. تحديد إشارة دالة انطلاقا من جدول تغيراتها أو من تمثيلها المبياني؟					
	. حل مسائل تطبيقية حول التيم الدنوية والقيم القصوية ؛					
	. تطبيق الاشتقاق في حساب بعض النهايات					

1- الاشتقاق في نقطة أ/نشاط

t=0 في اللحظة $v_0=0$ في اللحظة و $v_0=0$ في اللحظة و $v_0=0$ تكون حركته متغيرة بانتظام و محددة بالدالة الزمنية $f(t) = 5t^2$ حيث t هي المدة بالثانية و المسافة بالمتر d = f(t)

10t+5h و 0 + h > 0 و 0 + t + h هي 10t+5h هي 10t+5h هي 10t+5ht = 0.55 2 -2

أ/ أملم: الحدول التالم .

					ار اسی انجدون اسای		
0,01	0,001	0,0001	-0,0001	-0,001	-0,01	h	
1 - 1 1 1				1.6		t+h	
						السرعة لمتوسطة بين t و t+h	

-1باستعمال الجدول تضنن نهاية السرعة المتوسطة عندما يؤول -1 الى -1

ج/ أحسب
$$\frac{f(0,5+h)-f(0,5)}{h}$$
 ثم قارنها مع نتيجة ب

t=0.5s العدد اللحظة اللحظية للجسم عند اللحظة ال

 $t_0 = 0.5$ عي النقطة العدد المشتق للدالة f عي النقطة

$$\lim_{h\to 0} \frac{f(0,5+h)-f(0,5)}{h} = f'(0,5)$$
 نكتب في هذه الحالة

I عنصرا من f دالة عددية معرفة في مجال مفتوح f

 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = l$ عدد حقيقي الدالة f قابلة للاشتقاق في x_0 اذا وجد عدد حقيقي الدالة f

 $f'(x_0)$ ب ونرمز له بf في x_0 ونرمز له بالعدد المشتق لـ f

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$
 نکتب
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f(x) = x^2 + 2x$ مثال: نعتبر

بين أن f قابلة للاشتقاق في 1 و حدد العدد المشتق في 1

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = \lim_{x \to 1} x + 3 = 4$$

f'(1) = 4 و الله للاشتقاق في 1 و 4

ج) <u>الدالة التألفية المماسة لدالة</u> x_0 قابلة للاشتقاق في f

$$\lim_{x\to x_0} \varepsilon(x) = 0 \text{ , } \varepsilon(x) = \frac{f(x)-f(x_0)}{x-x_0} - f'(x_0) \text{ ids } f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \Leftrightarrow f(x) = f'(x_0)(x - x_0) + f(x_0) + (x - x_0)\varepsilon(x) \qquad / \lim_{x \to x_0} \varepsilon(x) = 0$$

 $f(x) \simeq f'(x_0)(x-x_0) + f(x_0)$ أي أنه بحوار x_0 لدينا

 x_0 الدالة f الدالة f في النقطة $x o f'(x_0)(x-x_0)+f(x_0)$ الدالة التألفية المماسة لدالة

 x_0 دالة عددية معرفة في مجال مفتوح مركزه f

 x_0 إذا كانت الدالة f قابلة للاشتقاق في x_0 فان الدالة التألفية المماسة لدالة f في النقطة

$$g: x \to f'(x_0)(x - x_0) + f(x_0)$$
 هي الدالة

 $f(x) = \sqrt{x}$ نعتبر نعتبر

لنقطة 1 أحدد الدالة التألفية المماسة لدالة f في النقطة 1 التألفية الماسة لدالة f

$$\sqrt{1,001}$$
 و $\sqrt{0,99}$ و 2) استنتج قيمة مقربة لكل من

الجواب

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$
 \(\text{Lequility}\) \(\text{/1}

 $g: x \to \frac{1}{2}(x-1)+1$ ومنه الدالة التألفية المماسـة لدالة f في النقطة 1 هي الدالة

$$g: x \to \frac{1}{2}x + \frac{1}{2}$$
 أي

$$\sqrt{0,99} = f(0,99) \simeq g(0,99) = 0,5 \times 099 + 0,5 = \dots$$
 ومنه $099 \approx 1$ ومنه $\sqrt{1,001} = f(1,001) \simeq g(1,001) = 0,5 \times 1,001 + 0,5 = \dots$ ومنه $1,001 \approx 1$ لدينا $1 \approx 1$

2 – الاشتقاق على اليمين - الاشتقاق على اليسار

 $\alpha \succ 0$ حيث $[x_0; x_0 + \alpha]$ حيث مجال من شکل الله معرفة على مجال من

نقول إن f قابلة للاشتقاق على اليمين في x_0 إذا كانت للدالة $\frac{f(x)-f(x_0)}{x-x_0}$ نهاية t على

. $f_d^{'}(x_0)$ و نرمز لها بـ x_0

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
 العدد x_0 نكتب على اليمين في x_0 على اليمين في x_0 على اليمين في العدد المشتق ل

lphaلتكن f دالة معرفة على مجال من شكل $[x_0-lpha;x_0]$ حيث *

نقول إن f قابلة للاشتقاق على اليسار في x إذا كانت للدالة $\frac{f(x)-f(x_0)}{x-x_0}$ نهاية lعلى . $f_{arrho}^{'}(x_{0})$ ب نرمز لها ب x_{0} نرمز لها

 $f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ العدد f على اليسار في x_0 على اليسار في العدد المشتق ل

ملاحظة

$$f'_{g}(x_{0}) = \lim_{h \to 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h}$$
 o $f'_{d}(x_{0}) = \lim_{h \to 0^{+}} \frac{f(x_{0} + h) - f(x_{0})}{h}$

تكون f^- قابلة للاشتقاق في x_0 إذا وفقط إذا كانت f^- قابلة للاشتقاق على اليمين وعلى اليسار في x_0 والعدد المشتق على اليمين يساوي العدد المشتق على اليسار.

$$f$$
 في f في المتقاق $f(x) = x^2 + |x|$ تمرين نعتبر

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x^{2} + x}{x} = \lim_{x \to 0^{+}} x + 1 = 1$$

 $f_d(0) = 1$ اذن f قابلة للاشتقاق على يمين 0 و

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} - x}{x} = \lim_{x \to 0^{-}} x - 1 = -1$$

 $f_{\sigma}'(0) = -1$ اذن f قابلة للاشتقاق على يسار

0لدينا $f_d^{'}\left(0\right)
eq f_d^{'}\left(0\right)$ ومنه وابلة للاشتقاق في

 C_f نقطتین من $M\left(x;f(x)\right)$ و $M_0\left(x_0;f(x_0)\right)$

$$\frac{f(x)-f(x_0)}{x-x_0}$$
 المعامل الموجه للمستقيم (MM_0) هو

و بالتالي المستقيم (MM_0) يدور حول M_0 إلى أن ينطبق مع المستقيم (T) ذا المعامل الموجه $f'(x_0)$

 C_f المستقيم (T) مماس للمنحنى

$$y = f'(x_0)(x - x_0) + f(x_0)$$
 معادلة (T) هي

لتكن f دالة معرفة على مجال مفتوح مركزه $x_{\scriptscriptstyle 0}$ و منحناها

 $x_{\scriptscriptstyle 0}$ قابلية اشتقاق f في $x_{\scriptscriptstyle 0}$ تؤول هندسيا بوجود مماس لـ وجود مناس لـ ويانقطة ذات الأفصول

$$y = f'(x_0)(x - x_0) + f(x_0)$$
 معادلته

$$f(x) = x^3$$
 تمرین: نعتبر

أدرس قابلية اشتقاق f في 2 و حدد معادلة المماس للمنحنى عند النقطة ذات الأفصول المنحنى ال

الجواب

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^3 - 2^3}{x - 2} = \lim_{x \to 2} x^2 + 2x + 4 = 12$$

f'(2) = 12 اذن f قابلة للاشتقاق في 2 و

y=12ig(x-2ig)+8 ومنه معادلة المماس هي y=f'(2)ig(x-2ig)+fig(2ig) أي y=12x-16

ب- نصف المماس

$$\begin{cases} (T): y = f_g'(x_0)(x - x_0) + f(x_0) \\ x \le x_0 \end{cases}$$

$$\begin{cases} (T): y = f_d'(x_0)(x - x_0) + f(x_0) \\ x \ge x_0 \end{cases}$$

نقطة مزواة M_0

$$\begin{cases} (T): y = f_d'(x_0)(x - x_0) + f(x_0) & x \ge x_0 \\ (T'): y = f_g'(x_0)(x - x_0) + f(x_0) & x \le x_0 \end{cases}$$

خاصىة

يقبل (أو على اليسار في x_0 فان C_f يقبل) إذا كانت f قابلة للاشتقاق على اليمين في x_0 معامله الموجه $f_d^{'}(x_0)$ أو $f_d^{'}(x_0)$

خاصية

 $g(x) = \sqrt{x}$ و $f(x) = |x^2 - 1|$ تمرین نعتبر

أدرس قابلیة اشتقاق f علی یمین ویسار 1 و أول النتائج هندسیا أدرس قابلیة اشتقاق g علی یمین 0 و أول النتیجة هندسیا

الجواب

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{\left| x^{2} - 1 \right|}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{2} - 1}{x - 1} = \lim_{x \to 1^{+}} x + 1 = 2 *$$

 f_d '(1) = 2 ومنه f قابلة اشتقاق على يمين

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\left| x^2 - 1 \right|}{x - 1} = \lim_{x \to 1^{-}} \frac{1 - x^2}{x - 1} = \lim_{x \to 1^{-}} -x - 1 = -2$$

 $f_{m{g}}$ '(1) = -2 ومنه f قابلة اشتقاق على يسارf و

1 نلاحظ f_d ' $(1) \neq f_g$ اذن f_d اذن

$$y=2(x-1)$$
 یقبل نصف مماس علی یمین 1 معادلته C_f

$$y=-2\left(x-1
ight)$$
 يقبل نصف مماس على يسار 1 معادلته $\left(C_{f}
ight)$

$$\lim_{x \to 0^{+}} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{x} = \lim_{x \to 0^{+}} \frac{1}{\sqrt{x}} = +\infty *$$

0 مين على على يمين ومنه $\left(C_{g}\right)$ و مين على على يمين ومنه f

5- الد الـــة المشتقة

- تعاریف

<u>تعرىف1</u>

نقول إن f قابلة للاشتقاق على المجال المفتوح I إذا كانت f قابلة للاشتقاق في كل نقطة من I .

تعریف2

و على a;b[و على المجال a;b[و على المجال a;b[و على المجال a;b[و على يسار a;b[و على يسار a;b[و على يسار a;b[

[a;b[و على]a;b[و على الاشتقاق على المثل نعرف الاشتقاق على المثل المثل المثل نعرف الاشتقاق على المثل

<u>تعريف3</u>

لتكن قابلة للاشتقاق على المجال I

. f' بالعدد f'(x) تسمى الدالة المشتقة نرمز لها بالعدد الدالة الf'(x)

 $f(x) = x^2$ مثال: نعتبر

ندرس قابلیة اشتقاق f و نحدد الدالة المشتقة

 $x_0 \in \mathbb{R}$ ليكن

 $f'(x_0) = 2x_0$ و منه قابلة لاشتقاق في $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} x + x_0 = 2x_0$

 $\forall x \in \mathbb{R}$ f'(x) = 2x و \mathbb{R} و أبلة للاشـقاق في

ملاحظة:

یکون للمنحنی الممثل لدالة f قابلة للاشتقاق علی مجال مفتوح I مماس عند کل نقطة من هذا المنحنی

<u>ب- المشتقة الثانية – المشتقات المتتالية</u>

 I لتكن f قابلة للاشتقاق مجال

إذا الدالة f' قابلة للاشتقاق المجال I فان دالتها المشتقة تسمى الدالة المشتقة الثانية و نرمز لها بالرمز f'

إذا كانت "f قابلة للاشتقاق المجال I فان دالتها المشتقة تسمى الدالة المشتقة الثالثة أو المشتقة من الرتبة f و نرمز لها بالرمز $f^{(3)}$ أو $f^{(3)}$

و هكذا

 $f^{(n)}$ نرمز للدالة المشتقة من الرتبة $n\in\mathbb{N}^*$ حيث $n\in\mathbb{N}^*$ بالرمز

 $f(x) = x^2$ مثال: نعتبر

 $\forall x \in \mathbb{R}$ f'(x) = 2 فان $\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = 2$ وحيث $\forall x \in \mathbb{R}$ f'(x) = 2x فان $\forall x \in \mathbb{R}$

<u>6- عمليات على الدوال المشتقة</u>

 $n\in \mathbb{N}^*-\{1\}$ و g دالتين قابلتين للاشتقاق على مجال g و f دالتين قابلتين للاشتقاق على مجال g

I دوال قابلة للاشتقاق على المجال f^n و $f \times g$ و $f \times g$

I المجال I فان $\frac{f}{g}$ و أذا كانت $\frac{f}{g}$ لا تنعدم على I فان أي المجال المجال

$$\forall x \in I \quad (f+g)'(x) = f'(x) + g'(x)$$
$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$(\lambda f)' = \lambda f'(x)$$

بحيث
$$g$$
 لا تنعدم $\forall x \in I$ $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$ $\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{g^2(x)}$

 $n\in \mathbb{N}^*-ig\{1ig\}$ - لتكن f دالة قابلة للاشتقاق على مجال I و I

(نبین ذلك بالترجع)
$$\forall x \in I$$
 $\left(f^{n}\right)'(x) = n\left(f(x)\right)^{n-1} \times f'(x)$

$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$(f \times g)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} f(x+h) \frac{g(x+h) - g(x)}{h} + \frac{f(x+h) - f(x)}{h} g(x)$$

$$\lim_{h \to 0} f(x+h) = f(x) \text{ g. } \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = g'(x) \text{ g. } \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

$$e \subset \mathcal{L}$$

$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$e \subset \mathcal{L}$$

$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$e \subset \mathcal{L}$$

7- الدوال المشتقة ليعض الدوال الاعتبادية

 $\forall x \in \mathbb{R}$ f(x) = k :الدالة الثانتة

$$\forall x \in \mathbb{R}$$
 $f'(x) = 0$ و \mathbb{R} و $f(x) = 0$ قابلة للاشتقاق على $f(x) = 0$ إذن $f(x) = 0$ قابلة للاشتقاق على $f(x) = 0$

 $f: x \to x$ الدالة

$$\forall x \in \mathbb{R}$$
 $f'(x) = 1$ و \mathbb{R} و الشتقاق على $\int \sin \frac{f(x) - f(x_0)}{x - x_0} = 1$

 $f: x \to ax + b$ الدالة

$$\forall x \in \mathbb{R}$$
 $f'(x) = a$ و \mathbb{R} و $f(x) = a$ و أذن f قابلة للاشتقاق على $\frac{f(x) - f(x_0)}{x - x_0} = a$

 $n \in \mathbb{N}^*$ $f: x \to x^n$ lkill *

$$\forall x \in \mathbb{R}$$
 $f'(x) = nx^{n-1}(x)' = nx^{n-1}$ و ابلة للاشتقاق على f

 $f: x \to \frac{1}{r}$ الدالة *

$$\mathbb{R}^*$$
 إذن f قابلة للاشتقاق على $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{-1}{x \times x_0} = -\frac{1}{x_0^2}$

$$\forall x \in \mathbb{R}^*$$
 $f'(x) = -\frac{1}{x^2}$ g

 $x_0 \in \mathbb{R}_+^*$ لتكن $f: x \to \sqrt{x}$ *

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}} = -\frac{1}{2\sqrt{x_0}}$$

 $\forall x \in \mathbb{R}_+^*$ و $f'(x) = \frac{1}{2\sqrt{x}}$ و \mathbb{R}_+^* و أيان f

0غير قابلة للاشتقاق في f

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f'(x_0)}{h} = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h}$$

$$= \lim_{h \to 0} (2\cos(x_0 + h)) \times 2 \times \frac{\sin\frac{h}{2}}{h} = \cos x_0$$

اذن

 $\forall x \in \mathbb{R}$ $\sin'(x) = \cos x$ قابلة للاشتقاق على \mathbb{R} و $x \to \sin x$

 $f: x \to \cos x$ الدالة

 $\forall x \in \mathbb{R}$ $\cos'(x) = -\sin x$ قابلة للاشتقاق على \mathbb{R} و $x \to \cos x$

 $f: x \to \tan x$ الدالة

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan x = \frac{\sin x}{\cos x}$$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = \frac{(\sin x)'(\cos x) - (\sin x)(\cos x)'}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{(\cos x)^2} = \frac{1}{\cos^2 x}$$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = 1 + \tan^2 x$$

$$\downarrow \text{i.e.}$$

$$\mathbb{R}-\left\{rac{\pi}{2}+k\pi/k\in\mathbb{Z}
ight\}$$
 قابلة للاشتقاق في كل نقطة من $x o an x$ و $x o an x$ و $x o an x$

نتائج

 * الدالة الحدودية قابلة للاشتقاق في $^{\mathbb{R}}$

ٍ * الدالة الجدرية قابلة للاشتقاق في ۖ كل نقطة من حيز تعريفها

v.

$$f(x) = \frac{2x^3 - 3x}{x^2 + x - 2}$$
 نعتبر $D_f = \mathbb{R} - \{1; -2\}$

 $\mathbb{R}-\{1;-2\}$ الدالة الجدرية ومنه f قابلة للاشتقاق في كل نقطة من f

$$\forall x \in \mathbb{R} - \{1; -2\} \qquad f'(x) = \frac{\left(3x^2 - 3\right)\left(x^2 + x - 2\right) - \left(2x + 1\right)\left(2x^3 - 3x\right)}{\left(x^2 + x - 2\right)^2} = \dots$$

 \sqrt{f} مشتقة f(ax+b) مشتقة -8

<u>سرهنة</u>

x o ax + b ليكن المجال I صورة المجال المجال

وابلة للاشتقاق على I فان $g:x \to f(ax+b)$ وانت $g:x \to f(ax+b)$ إذا كانت f

 $\forall x \in I \quad g'(x) = af'(ax + b)$

$$f(x) = \sin\left(5x - \frac{\pi}{3}\right)$$
 مثال: نعتبر

$$\forall x \in \mathbb{R}$$
 $f'(x) = 5\cos\left(5x - \frac{\pi}{3}\right)$ و \mathbb{R} قابلة للاشتقاق على f

خاصية

 ${
m I}$ لتكن f دالة موجبة قطعا و قابلة للاشتقاق على مجال

$$\forall x \in I \ \left(\sqrt{f}\right)'(x) = \frac{f'(x)}{2\sqrt{f(x)}}$$
 و الدالة \sqrt{f} قابلة للاشتقاق على ا

$$f(x) = \sqrt{-x^2 + x}$$
 مثال: نعتبر $D_f = [0;1]$

$$[0;1]$$
 دالة موجبة قطعا و قابلة للاشتقاق على مجال $x \to -x^2 + x$

$$\forall x \in]0;1[$$
 $f'(x) = \frac{-2x+1}{2\sqrt{-x^2+x}}$ و $[0;1]$ و $[0;1]$ و أيالة للاشتقاق على

جدول مشتقات بعض الدوال

$D_{f'}$	$f^{'}(x)$	f(x)
\mathbb{R}	0	а
\mathbb{R}	1	x
\mathbb{R}^*	$-\frac{1}{x^2}$	$\frac{1}{x}$
$\mathbb R$	nx^{n-1}	$n \in \mathbb{N}^* - \{1\} x^n$
\mathbb{R}^*	nx^{n-1}	$n \in \mathbb{Z}^{*-}$ x^n
\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}}$	\sqrt{x}
$\mathbb R$	$-\sin x$	$\cos x$
$\mathbb R$	$\cos x$	$\sin x$
$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$	$1 + \tan^2 x$	tan x
\mathbb{R}	$-a\sin(ax+b)$	$\cos(ax+b)$
\mathbb{R}	$a\cos(ax+b)$	$\sin(ax+b)$

رين f و حدد الدالة المشتقة في الحالات التالية: f أدرس اشتقاق f و حدد الدالة المشتقة في الحالات التالية:

$$f(x) = \frac{x^2 + 3}{x^2 - x} * f(x) = \frac{3x - 1}{2x - 2} * f(x) = \frac{5}{x^2} * f(x) = 5x^4 + 3x^2 + 4 *$$

$$f(x) = \frac{\sin x}{\cos x - \sin x} * f(x) = (\cos x)^5 * f(x) = (x^2 + x)^5 *$$

$$f(x) = x^2 + x|x| *$$

$$\begin{cases} f(x) = x^2 + x & x \le 0 \\ f(x) = x^3 - x^2 & x > 0 \end{cases}$$

$$f(x) = \frac{x^2 - 3x + 6}{x - 1} \text{ with } -2$$

y = -3x أ- بين أن منحنى f يقبل مماسين موازيين للمستقيم الذي معادلته

ب- أكتب معادلتي هذين المماسين.

9- تطبيقات الدالة المشتقة

a- قابلية الاشتقاق و المطراف

 $x_0 \in I$ و التكن f دالة معرفة على مجال مفتوح

 x_0 نعتبر f قابلة للاشتقاق في x_0 و تقبل مطرافا في

 x_0 لنفترض أن f تقبل قيمة قصوى نسبية عند

 $\forall x \in J \quad f(x) \le f(x_0)$ ومنه یوجد مجال مفتوح J مرکزه x_0 ضمن مغتوح

 $f'(x_0) = f_d'(x_0) = f_g'(x_0)$ وابلة للاشتقاق في x_0 ومنه $f'(x_0) = f_d'(x_0)$

$$f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 j

$$\forall x \leq x_0$$
 $\forall x \leq x_0$ $\frac{f(x) - f(x_0)}{x - x_0} \geq 0$ و حيث $\forall x \geq x_0$ $\frac{f(x) - f(x_0)}{x - x_0} \leq 0$ فان $\forall x \in J$ $f(x) \leq f(x_0)$

 $f'(x_0) = 0$ ومنه $f'(x_0) \le 0$; $f'(x_0) \ge 0$ أي أن $f_d'(x_0) \le 0$; $f_g'(x_0) \ge 0$ ومنه $f'(x_0) \le 0$; $f_g'(x_0) \ge 0$) ومنه $f'(x_0) = 0$. (إذا كانت f تقبل قيمة دنيا نسبية عند $f(x_0) = 0$ نتبع نفس الخطوات للحصول على نفس النتائج)

مبرهنة

 $x_0 \in I$ و I ل يكن f دالة معرفة على مجال فتوح

 $f'(x_0)\!=\!0$ اذا كانت f قابلة للاشتقاق في النقطة x_0 و تقبل مطرافا في النقطة وان الاشتقاق في النقطة و

ملاحظة:

المبرهنة لا تقبل المبرهنة العكسية

$$x_0 = 0 \quad ; \quad f(x) = x^3$$
 مثال

f'(0) = 0 قابلة للاشتقاق في x_0 =0 قابلة للاشتقاق في f

0 و مع ذلك f لا تقبل مطرافا عند

<u>b- الاشتقاق ورتابة دالة</u>

مبرهنة

 ${
m I}$ لـتكن f قابـلة للاشـتـــقاق على مجال ${
m I}$

I إذا وفقط اذا كانت الدالة المشتقة f' موجبة على I تكون f تزايدية

($\forall x \in I \quad f'(x) \succ 0$ اً أي $f'(x) \succ 0$ موجبة قطعا على $f'(x) \rightarrow 0$

I اذا وفقط إذا كانت الدالة المشتقة f' سالبة على I اذا وفقط إذا كانت الدالة المشتقة

 $(\forall x \in I \ f'(x) \prec 0$ أي $f'(x) \prec 0$ سالبة قطعا على $f'(x) \prec 0$ أي $f'(x) \prec 0$

 $\forall x \in I$ f'(x) = 0 أي I أي I تكون f ثابتة على I أي I إذا كانت الدالة المشتقة أ

<u>مثال</u>

$$f(x) = x^3 - 6x + 1$$
 نعتبر

أدرس تغيرات f و أعط جدول تغيرا ت f (في جدول التغيرات يجب تحديد النهايات) حدد مطاريف f ان وجدت

الجواب

$$D_f=\mathbb{R}$$
 مجموعة تعريف *

$$\forall x \in \mathbb{R}$$
 $f'(x) = (x^3)' - (6x)' + (1)' = 3x^2 - 6 = 3(x^2 - 2)$ ومنه $f(x) = x^3 - 6x + 1$ * $x^2 - 2$ اشارة $f'(x)$ هي إشارة $f'(x)$

x	$-\infty$		$-\sqrt{2}$		$\sqrt{2}$	+∞
$x^{2}-2$		+	0	-	0	+

 $\left[-\sqrt{2};\sqrt{2}
ight]$ و $\left[-\sqrt{2};+\infty
ight]$ و $\left[\sqrt{2};+\infty
ight]$ و f' موجبة على كل $\left[-\sqrt{2};\sqrt{2}
ight]$ و $\left[-\sqrt{2};\sqrt{2}
ight]$ و تناقصية على كل $\left[-\sqrt{2};\sqrt{2}
ight]$ و $\left[\sqrt{2};+\infty
ight[$ و تناقصية على f جدول التغيرات

x	-∞		$-\sqrt{2}$		$\sqrt{2}$		+∞
f'(x)		+	0	-	0	+	
f	-8		$10\sqrt{2}+1$		$-4\sqrt{2} + 1$		▼ +∞

 $\sqrt{2}$ من خلا جدول التغيرات نستنتج أن f تقبل قيمة قصوى عند

 x_0 ملاحظة لتكن f قابلة للاشتقاق في

مفتوح مطرافا في x_0 إذا و فقط إذا كانت ' f تنعدم في x_0 و تتغير إشارتها في مجال مفتوح x_0 على معلى معلى على مجال مفتوع على مخال مفتوع على مجال مفتوع على محال محال مفتوع على محا

$y''+\omega^2y=0$ المعادلة التفاضلية -10

تؤدي دراسة بعض الظواهر الفيزيائية و البيولوجية و الاقتصادية و غيرها إلى معادلات يكون فيها المجهول دالة وتحتوي على مشتقة أو مشتقات هذه الدالة.

هذا النوع من المعادلات يسمى المعادلات التفاضلية

عريف

لیکن $\, arphi \,$ عدد ا حقیقیا غیر منعدم

المعادلة $y''+\omega^2 y=0$ تسمى معادلة تفاضلية.

کل دالة f قابلة للاشتقاق مرتین علی \mathbb{R} و تحقق \mathbb{R} و تحقق $f(x)+\omega^2 f(x)=0$ تسمی حلا $y''+\omega^2 y=0$ للمعادلة y

أمثلة $y'' + \frac{3}{2}y = 0$ و $y'' + \sqrt{2}y = 0$ و y'' + 4y = 0

خاصية

لیکن ω عدد ا حقیقیا غیر منعدم

 $x \to \alpha \cos \omega x + \beta \sin \omega x$ الحل العام للمعادلة y " $+ \omega^2 y = 0$ هو مجموعة الدوال y " $+ \omega^2 y = 0$ الحل $(\alpha; \beta) \in \mathbb{R}^2$ حيث

ملاحظة

حل المعادلة $y'' + \omega^2 y = 0$ يرجع إلى تحديد الحل العام لهذه المعادلة

مثال

y"+ 4y = 0 حل المعادلة

لدينا $\omega = 2$ ومنه $\omega = 2$ يمكن أخذ $\omega = -2$ هذا لن يغير مجموعة الحلول

 $(\alpha; \beta) \in \mathbb{R}^2$ حيث $y: x \to \alpha \cos 2x + \beta \sin 2x$ الحل العام لهذه المعادلة هو مجموعة الدوال

معادلة تفاضلية خاصة

y''=0 حل المعادلة

 $y: x \to ax + b$ الدوال y'' = 0 فان y' دالة ثابتة ومنه الحل العام لهذه المعادلة هو مجموعة الدوال $y: x \to ax + b$ حيث $(a; b) \in \mathbb{R}^2$ حيث