Comunicação de Dados (2015/2016) Ficha de Exercícios (Teoria da Informação I + II -2 aulas-)

- 1. Uma carta é tirada de um baralho de cartas de jogo.
 - a) É informado que a carta que tirou é uma espada. Quanta informação recebeu?
 - b) Quanta informação recebe se lhe for dito que a carta que tirou é um ás?
 - c) Quanta informação recebe se lhe for dito que a carta que tirou é um ás de espadas? Verifique a relação que existe entre este resultado e os obtidos em a) e b).
- 2. Calcular o débito de informação de uma fonte telegráfica que emite pontos e traços com probabilidades de ocorrência do ponto e do traço respectivamente P_p=2/3, P_t=1/3, tendo em conta que a fonte emite, em média, 3.75 símbolos por segundo.
- 3. Uma fonte emite n mensagens distintas $\{x_1, ..., x_n\}$ com probabilidades associadas $\{p_1, ..., p_n\}$. Considere o caso em que todas mensagens ocorrem com a mesma probabilidade, i.e. $p_i=1/n$. Calcule o valor da entropia da fonte e discuta o resultado obtido.
- 4. Uma fonte emite oito símbolos distintos $\{A,B,C,D,E,F,G,H\}$ com as seguintes probabilidades: P(A)=1/2, P(B)=P(C)=P(D)=1/12, P(E)=P(F)=P(G)=P(H)=1/16.
 - a) Calcule o valor da entropia fonte.
 - b) Qual o rendimento obtido se na codificação da fonte se utilizar um código de comprimento fixo mínimo.
 - c) Codifique a fonte utilizando códigos de *Shannon-Fano* (pp. 208 da sebenta) e refira qual o rendimento e compressão obtida.
 - d) Indique de que forma poderia ainda tentar melhorar a codificação desta fonte.

5.

	Considere o enunciado do problema 4.					
A1	O valor da entropia da fonte (bits/símbolo) poderia ser superior a 3 bits/símbolo caso					
	se assumisse outros valores para as probabilidades dos símbolos.					
B2	O valor da entropia desta fonte é superior a 2 bits/símbolo.					
C3	Utilizando códigos de Shannon-Fano, a transmissão de uma qualquer mensagem com					
	Z símbolos desta fonte requer sempre um número total de dígitos binários inferior a					
	Z*3.					
D4	Com codificação por blocos de K símbolos, era possível encontrar um valor de K de					
	tal forma comprimento médio de código (\overline{N}) fosse inferior a 2.2 dígitos binários por					
	símbolo.					
Z 9	Nenhuma das opções anteriores esta correcta.					

Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

6.

	Uma fonte de informação emite dezasseis símbolos independentes entre si de um						
	alfabeto X, gerando em média 4800 símbolos cada 30 segundos. Sabe-se que o						
	débito de informação desta fonte é de 240 bits/seg.						
A1	Com os dados apresentados podemos afirmar que os dezasseis símbolos gerados						
	pela fonte não são equiprováveis.						
B2	Com codificação da fonte seria possível obter uma compressão superior a 60%.						
	Usando códigos binários de comprimento fixo mínimo, para uma codificação por						
C3	blocos de 3 símbolos (K=3) necessitávamos de um código com comprimento de 12						
	dígitos binários por cada conjunto de três símbolos _X .						
	É possível definir uma codificação binária por blocos de quatro símbolos que						
D4	permita a obtenção de um comprimento médio de código inferior a 8 dígitos						
	binários por cada conjunto de quatro símbolos _x .						
Z 9	Nenhuma das opções anteriores está correcta.						
	1;						

Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):							

- 7. Uma fonte de dados binária produz símbolos 0 e 1 com $P_0=3/8$ $P_1=5/8$ e a influência entre símbolos em grupos de dois símbolos sucessivos é tal que $P_{0|1}=1/16$ e $P_{1|0}=3/4$.
 - a) Calcule a entropia real desta fonte com memória.
 - b) Compare o valor obtido em a) com o valor da entropia se a fonte fosse considerada sem memória.
 - c) Determine um código de comprimento variável para a fonte considerando blocos de dois símbolos (k=2) e calcule o seu rendimento.
- 8. Comente a seguinte afirmação: "Através da utilização de codificações Shannon-Fano é sempre possível obter um código de rendimento superior ao obtido por um código de comprimento fixo mínimo".
- 9. Suponha que pretende desenvolver uma aplicação de compressão/descompressão de ficheiros tendo como base a utilização de códigos *Shannon-Fano*. Neste contexto, raciocine sobre os seguintes aspectos:
 - Qual seria a estrutura geral da aplicação a desenvolver e que algoritmos implementaria para as tarefas de compressão/descompressão dos ficheiros?
 - Oual seria a estrutura de um ficheiro comprimido pela sua aplicação?
 - Seria possível que, após utilizar a sua aplicação para compressão de um determinado ficheiro, o ficheiro resultante fosse maior que o ficheiro original?
 - Sugestão: Implemente um protótipo de uma aplicação deste tipo utilizando uma linguagem de programação da sua preferência. Verifique os níveis de compressão que consegue obter com essa aplicação.
- 10. Quem foi *Claude Shannon*? http://www.youtube.com/watch?v=z2Whj_nL-x8 http://www.youtube.com/watch?v=z7bVw7lMtUg