Projekt nr 1

Krzysztof Kosz

December 13, 2022

Contents

2	Opi	is metody
	2.1	Metoda Goertzela
	2.2	Kwadratura prosta Simpsona
	2.3	Kwadratura złożona Simpsona
,	Opi	is programu
	3.1	Funkcja goertzel
	3.2	Funkcja obliczSin
	3.3	Funkcja metodaSimpsona
	3.4	Funkcja bladW
	3.5	Funkcja sprawdzacz
	Prz	ykłady
	4.1	Funkcja nr 1
	4.2	Funkcja nr 2
	4.3	Funkcja nr 3
	4.4	Funkcja nr 4
	4.5	Funkcja nr 5
	4.6	Funkcja nr 6
	4.7	Funkcja nr 7

1 Treść zadania

Metoda Simpsona obliczania przybliżonej wartości całki $\int_a^b f(x)\,dx,$ gdzie

$$f(x) = \sum_{k=1}^{n} a_k \sin kt.$$

Do obliczania wartości f(x) zastosować metodę Goertzela.

2 Opis metody

Do zrealizowania projektu korzystam z metody Goertzela oraz z złożonej kwadratury Simpsona(opartej na prostej kwadraturze Simpsona).

2.1 Metoda Goertzela

Algorytm Goertzela możemy wykorzystać do obliczenia wartości wielomianu

$$w(\lambda) = \sum_{n=0}^{N} a_n \lambda^n$$

dla punktu $z = x + iy \in \mathbb{C}$, gdzie $a_n \in \mathbb{C}$, n = 0, 1, ..., N. Jeśli podzielimy ten wielomian przez trójmian $(\lambda - z)(\lambda - \overline{z}) = \lambda^2 - p\lambda - q$. Współczynniki tego trójmianiu to p = 2x i $q = -|z|^2$. Są to liczby rzeczywiste dla każdego z. Możemy więc zapisać:

$$w(\lambda) = (\lambda - z)(\lambda - \overline{z}) \sum_{n=2}^{N} b_n \lambda^{n-2} + b_0 + b_1 \lambda$$

Więc $w(z) = b_0 + b_1 z$, czyli wartość wielomianu w w punkcie z jest rówa wartości z dzielenia tego wielomianu przez trójmian $\lambda^2 - p\lambda - q$ w punkcie z. W naszym algorytmie wyznaczamy wartości współczynników $b_N, b_{N-1}, \ldots, b_1, b_0$, a następnie liczymy wartość tej reszty. Algorytm wygląda następująco:

$$\begin{aligned} p &:= 2x \\ q &:= -(x^2 + y^2) \\ b_{N+1} &:= 0 \\ b_N &:= a_N \\ \text{for } n &= N - 1, \dots, 1 \\ b_n &:= a_n + pb_{n+1} + qbn + 2 \\ \text{end} \\ u &:= a_0 + xb_1 + qb_2 \\ v &:= yb_1 \\ w(z) &:= u + iv \end{aligned}$$

Aby obliczyć tym algorytmem wartość potrzebnej nam funkcji $f(t)=\sum_{n=0}^N a_n\sin nt$, należy zastować ten algorytm do wielomianu $w(\lambda)=\sum_{n=0}^N a_n\lambda^n$, obliczając jego wartość w punkcie $z=\cos t+isint$. Wtedy f(t)=Imw(z)

2.2 Kwadratura prosta Simpsona

W kwadraturze prostej Simpsona mamy 3 węzły a, b oraz $\frac{a+b}{2}$. Funkcja f jest wtedy przybliżana wielomianem stopnia 2. Kwadratura ma wtedy postać:

$$S(f) = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$

2.3 Kwadratura złożona Simpsona

Nasz przedział [a, b] dzielimy na N podprzedziałów, długości $H = \frac{b-a}{N}$ i na każdym z nim stosujemy kwadraturę prostą Simpsona. Złożony wzór Simpsona ma wtedy postać

$$S(f) = \sum_{k=1}^{N} \frac{H}{6} (f(x_{k-1}) + 4f(x_{k-1} + \frac{H}{2}) + f(x_k)).$$

Natomiast po przekształceniu:

$$S(f) = \frac{H}{6}(f(a) + f(b) + 2\sum_{k=1}^{N-1} f(a+kH) + 4\sum_{k=0}^{N-1} f(a+kH + \frac{H}{2})).$$

Błąd złożonej kwadratury Simspona jest równy

$$E(f) = -\frac{1}{180 \cdot 2^4} H^4(b-a) f^{(4)}(\mu)$$

dla pewnego $\mu \in (a, b)$.

3 Opis programu

W moim programie stosuję 5 funkcji. 2 do obliczania wartości wielomianu: goertzel.m oraz obliczSin.m, 1 do obliczania przybliżonej wartości całki metodą Simpsona: metodaSimpsona.m oraz 2 do sprawdzania poprawności wyników w skrypcie: bladW.m oraz sprawdzacz.m

3.1 Funkcja goertzel

Jako argumenty tej funkcji podajemy z, dla którego chcemy obliczyć $w(\lambda) = \sum_{n=0}^{N} a_n \lambda^n$, oraz wspołczynniki naszego wielomianu jako wektor.

Figure 1: Implementacja algorytu Goertzela function [wynik] = goertzel(z, wspolczynniki) %funkcja zwraca wartosc wielomianu o w punkcie z % z - argument dla ktorego obliczamy wartosc funkcji % wspołczynniki - wspołczynniki funkcji p = 2*real(z);q = -(real(z).*real(z) + imag(z).*imag(z));n = length(wspolczynniki); b = zeros(n+1, 1);b(n) = wspolczynniki(n); for k = n-1 : -1 : 1b(k)=wspolczynniki(k) + p.*b(k+1) + q.*b(k+2);u = wspolczynniki(1) + real(z)*b(2) + q*b(3);v = imag(z)*b(2);wynik = u + 1i*v; end

Następnie na naszej funkcji wykonujemy wcześniej opisany algorytm.

3.2 Funkcja obliczSin

Jako argumenty tej funkcji podajemy t
, dla którego chcemy obliczyć $f(t) = \sum_{k=1}^{n} a_k \sin kt$ oraz wspołczynniki naszego wielomianu jako wektor.

```
Figure 2: Funkcja obliczSin
function wynik = obliczSin(t, wspolczynniki)
%funkcja zwraca wartosc wielomianu ktory jest postaci
%sumy sinusow ze wspolczynnikami
%parametry
%t - argument dla ktorego wyliczamy wartosc
%wspolczynniki
wspolczynniki=[0 wspolczynniki];
z = goertzel(cos(t) + 1i*sin(t), wspolczynniki);
wynik = imag(z);
end
```

W ciele naszej funckji dodajemy do naszego wektora wspolczynnikow 0 na samym początku. Musimy to zrobić, bo w funkcji, którą chcemy obliczyć zaczynamy liczenie sumy od k=1, natomiast w algorytmie goertzela następuje to od k=0. Następnie wywołujemy funkcję goertzel, w której podajemy jako argumenty $\cos t + i \sin t$ oraz zmodyfikowaną tablicę współczynników. Aby otrzymać poprawny wynik bierzemy część urojoną naszego wyniku.

3.3 Funkcja metodaSimpsona

Jako argumenty tej funkcji przyjmujemy wspolczynniki naszego wielomianu oraz a i b czyli przedział naszego całkowania, a także N czyli liczbe podprzedziałów, na które dzielimy przedział(a,b)

Figure 3: Obliczanie wartości całki metodą Simpsona

W ciele naszej funkcji obliczamy więc kolejne wartości potrzebne do podstawienia do wzoru czyli f(a), f(b) oraz $\sum_{k=1}^{N-1} f(a+kH)$, a także $\sum_{k=0}^{N-1} f(a+kH+\frac{H}{2})$ (używając wcześniej napisanych funkcji), a następnie podstawiamy do naszego wzoru na kwadraturę złożoną Simpsona. Dzięki temu otrzymujemy przybliżoną wartość całki.

3.4 Funkcja bladW

Jako argumenty tej funkcji przyjmujemy wartość całki wyznaczoną przez funkcję wbudowaną w matlabie oraz wartość wyznaczoną przy pomocy metody Simpsona.

```
Figure 4: Obliczanie wartości błędu względnego 
|function [wynik] = bladW(wartosc,wartosc2) 
%funkcja oblicza wartość błędu względnego wartości podanych 
wynik=abs(wartosc-wartosc2)./abs(wartosc); 
end
```

Funkcja ta służy wyznaczeniu błędu względnego naszej metody. Korzystamy do tego z wzoru $bladWzgledny = \frac{|x_1 - x_2|}{|x_1|}$. Użyjemy tej funkcji do sprawdzania poprawności metody.

3.5 Funkcja sprawdzacz

Funkcja ta służy do porównania wartości całki oraz jej przybliżonej wartości dla 7 różnych funkcji matematycznych oraz 6 różnych przedziałów całkowania, w zależności od wartości N(argument wejścia). Dla każdej funkcji wypisujemy wtedy tabelę porównującą. W następnej sekcji skupimy się na tej funkcji i sprawdzimy poprawność naszej metody.

4 Przykłady

Przedziały, dla których sprawdzamy naszą funkcję są następujące: $(0, \frac{1}{10}), (0, \frac{9}{10}), (0, 1), (0, \pi), (0, 10), (0, 100),$ natomiast funkcje, które będziemy testować są podane w następnych podrozdziałach.

Kolumny w każdej tabelce oznaczają:

```
a - wartość a b - wartość b
```

Wart
Funkcji Wbudowanej - Wartość całki wyznaczona za pomocą funkcji wbudowanej w matlabie
 Wart
Simpsona - Przybliżona wartość całki wyznaczona za pomocą metody Simpsona

bladWzgl - Błąd względny metody Simpsona (w odniesieniu do wartości wyznaczonej przez funkcję wbudowana)

4.1 Funkcja nr 1

$$f_1(x) = 3\sin x$$

Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-8} , więc jest pomijalny. Zajmiemy się więc N=100 i N=10.

Figure 5: Funkcja nr 1 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	0.014988	0.014988	0
0	0.9	1.1352	1.1352	2.2784e-12
0	1	1.3791	1.3791	3.4726e-12
0	3.1416	6	6	3.3824e-10
0	10	5.5172	5.5172	3.4733e-08
0	100	0.41304	0.41319	0.00035783

Figure 6: Funkcja nr 1 porównanie dla N=10

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	0.014988	0.014988	3.472e-12
0	0.9	1.1352	1.1352	2.2787e-08
0	1	1.3791	1.3791	3.4733e-08
0	3.1416	6	6	3.3922e-06
0	10	5.5172	5.5192	0.00035783
0	100	0.41304	-1.6394	4.9691

4.2 Funkcja nr 2

$$f_2(x) = 2\sin x + 0, 5\sin 2x$$

Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-7} , więc jest pomijalny. Zajmiemy się więc N=100 i N=10.

Figure 7: Funkcja nr
2 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	0.014975	0.014975	1.8535e-15
0	0.9	1.0636	1.0636	1.2136e-11
0	1	1.2734	1.2734	1.7953e-11
0	3.1416	4	4	3.3824e-10
0	10	3.8261	3.8261	5.4902e-08
0	100	0.40357	0.40447	0.0022437

Figure 8: Funkcja nr 2 porównanie dla N=10

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	0.014975	0.014975	2.0804e-11
0	0.9	1.0636	1.0636	1.2146e-07
0	1	1.2734	1.2734	1.7971e-07
0	3.1416	4	4	3.3922e-06
0	10	3.8261	3.8284	0.00058743
0	100	0.40357	-2.0049	5.9679

4.3 Funkcja nr 3

$$f_3(x) = \sin x - 4\sin 2x + 0, 3\sin 3x$$

Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-7} , więc jest pomijalny. Zajmiemy się więc N=100 i N=10.

Figure 9: Funkcja nr 3 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.030405	-0.030405	2.8527e-15
0	0.9	-1.8856	-1.8856	2.8355e-11
0	1	-2.1736	-2.1736	4.5908e-11
0	3.1416	2.2	2.2	2.7987e-09
0	10	0.73981	0.73981	4.8133e-07
0	100	-0.78573	-0.78826	0.0032142

Figure 10: Funkcja nr 3 porównanie dla N=10

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.030405	-0.030405	3.0959e-11
0	0.9	-1.8856	-1.8856	2.836e-07
0	1	-2.1736	-2.1736	4.5925e-07
0	3.1416	2.2	2.2001	2.8664e-05
0	10	0.73981	0.73623	0.0048419
0	100	-0.78573	7.7238	10.83

4.4 Funkcja nr 4

 $f_4(x) = 6\sin x + 13\sin 2x - 345\sin 3x + 2\sin 4x$

Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-6} , więc jest pomijalny. Zajmiemy się więc N=100 i N=10.

Figure 11: Funkcja nr 4 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.030405	0.14765	1.861e-14
0	0.9	-1.8856	9.0059	4.941e-11
0	1	-2.1736	10.501	5.8306e-11
0	3.1416	2.2	9.7	6.0793e-09
0	10	0.73981	14.743	4.9004e-07
0	100	-0.78573	3.8462	0.026586

Figure 12: Funkcja nr 4 porównanie dla N=10

a	a	WartFunkcjiWbudowanej	WartSimpsona	pladWzgl
-				
0	0.1	-0.030405	0.14765	1.8924e-10
0	0.9	-1.8856	9.0059	4.958e-07
0	1	-2.1736	10.501	5.8532e-07
0	3.1416	2.2	9.6994	6.2522e-05
0	10	0.73981	14.868	0.0085205
0	100	-0.78573	-24.788	7.6161

4.5 Funkcja nr 5

 $f_5(x) = 17\sin x + 0, 12\sin 2x + \sin 3x - 3\sin 4x - 5\sin 5x$

Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-4} , więc jest pomijalny. Zajmiemy się więc N=100, N=10.

Figure 13: Funkcja nr 5 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.080609	-0.080609	3.8943e-13
0	0.9	4.5076	4.5076	5.3671e-10
0	1	6.6066	6.6066	3.6914e-10
0	3.1416	32.667	32.667	1.2041e-08
0	10	30.296	30.296	3.3111e-07
0	100	-0.31577	-1.7472	4.5329

Figure 14: Funkcja nr 5 porównanie dla N=10

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.080609	-0.080609	3.8924e-09
0	0.9	4.5076	4.5076	5.3966e-06
0	1	6.6066	6.6066	3.7159e-06
0	3.1416	32.667	32.662	0.00013031
0	10	30.296	30.094	0.0066973
0	100	-0.31577	328.42	1041.1

4.6 Funkcja nr 6

 $f_6(x) = 11\sin x - 3\sin 2x - 8\sin 3x + 0, 11\sin 4x - 2\sin 5x + \sin 6x - 3, 5\sin 7x$

Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-5} , więc jest pomijalny. Zajmiemy się więc N=100, N=10.

Figure 15: Funkcja nr 6 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.22931	-0.22931	4.3102e-13
0	0.9	-3.1274	-3.1274	4.7145e-10
0	1	-2.7317	-2.7317	1.1607e-09
0	3.1416	14.867	14.867	7.5417e-08
0	10	17.26	17.26	3.915e-07
0	100	-3.2783	2.3399	1.7138

Figure 16: Funkcja nr 6 porównanie dla N=10

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	-0.22931	-0.22931	4.3115e-09
0	0.9	-3.1274	-3.1274	4.729e-06
0	1	-2.7317	-2.7317	1.1692e-05
0	3.1416	14.867	14.854	0.00085486
0	10	17.26	20.01	0.15929
0	100	-3.2783	136.33	42.585

4.7 Funkcja nr 7

 $f_7(x)=0,1\sin x-2\sin 2x+10\sin 3x+23\sin 4x-0,18\sin 5x+0,12\sin 6x-15\sin 7x+3\sin 8x+13\sin 9x$ Dla N=1000 i większych błąd jest rzędu co najwyżej 10^{-5} , więc jest pomijalny. Zajmiemy się więc N=100, N=10.

Figure 17: Funkcja nr 7 porównanie dla N=100

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
_				
0	0.1	0.73882	0.73882	1.3966e-12
0	0.9	17.97	17.97	1.9849e-09
0	1	17.409	17.409	4.2968e-09
0	3.1416	5.3978	5.3978	5.7582e-07
0	10	13.756	13.757	4.1954e-05
0	100	9.6014	22.34	1.3268

Figure 18: Funkcja nr 7 porównanie dla N=10

a	b	WartFunkcjiWbudowanej	WartSimpsona	bladWzgl
-				
0	0.1	0.73882	0.73882	1.397e-08
0	0.9	17.97	17.971	2.0169e-05
0	1	17.409	17.41	4.3905e-05
0	3.1416	5.3978	5.4424	0.0082543
0	10	13.756	9.9712	0.27515
0	100	9.6014	392.93	39.924

5 Analiza uzyskanych wyników

Pamiętamy wzór na błąd złożonej kwadratury Simpsona:

$$E(f) = -\frac{1}{180 \cdot 2^4} H^4(b-a) f^{(4)}(\mu)$$

Więc tak jak już wcześniej można było z niego wywnioskować im większa wartość (b-a) w odniesieniu do N tym większy będzie błąd. Wiemy, że $H=\frac{b-a}{N}$, więc tak naprawdę we wzorze wystepuje $\frac{(b-a)^5}{N^4}$, więc w największym stopniu błąd rośnie w miarę coraz większego przedziału całkowania. Widzimy również, że w miarę coraz większej ilości składników sumy, dla której liczymy całkę, powoli otrzymujemy większe błędy względne. Końcowe wnioski są więc następujące:

- -Im więcej składników sumy tym większy błąd względny,
- -Im mniejsze N tym większy błąd względny
- -Im większe H tym większy błąd względny.

Używać metody Simpsona można więc na jak najmniejszych przedziałach dla jak największych N