# Comparação do desempenho de modelos propostos para o ajuste de dados de esportes coletivos

Mariana de Castro Pasqualini

2022-05-16

# 1. Introdução

Modelos estatísticos podem ser aplicados em diferentes áreas do conhecimento. Uma delas, que tem crescido nos últimos anos, é a análise de dados de competições e eventos esportivos. O número de gols marcados, por exemplo, pode ser tratado como dados de contagem e representados por modelos discretos. Estes modelos são vastamente representados na literatura desde a década de 80, como em Pollard (1985) que utiliza a distribuição Binomial Negativa, enquanto Baxter (1988) apresentam as diferenças entre a Binomial Negativa e Poisson para modelar o placar de partidas de futebol. Tais modelos desconsideram uma estrutura de correlação entre os gols de cada oponente. Karlis (2003) sugere a distribuição Poisson bivariada, que permite uma correlação entre o número de gols marcados pelo mandante e visitante e, ainda, há uma proposta de um modelo bayesiano hierárquico com efeitos aleatórios como definido por Baio (2010). Neste trabalho, são implementados, ajustados e comparados modelos baseados na distribuição Poisson para dados do Campeonato Brasileiro de 2019, 2020 e 2021, obtido em Gomide (2022) utilizando o software Stan e RStan para inferência bayesiana.

# 2. Modelos

#### Modelo 1

Baio (2010) sugerem um modelo bayesiano hierárquico para os gols marcados na partida. No modelo proposto, o número de gols marcados segue uma distribuição Poisson condicionalmente independentes, em que a correlação é incluída por meio dos hiperparâmetros. A distribuição Poisson é vastamente utilizada para problemas de contagem e amplamente aplicada à análises esportivas como sugerem M. Dixon and S. Coles (2007) e D. Karlis and I. Ntzoufras (2003), dentre outros autores.

O vetor  $\mathbf{y} = (y_{g1}, y_{g2})$  como um vetor de contagens, podemos tomar

$$y_{qj}|\theta_{qj} \sim Poisson(\theta_{qj})$$

o vetor tendo uma distribuição Poisson condicional aos parâmetros  $\theta = (\theta_{g1}, \theta_{g2})$ , que representam a taxa de pontuação no g-ésimo jogo para o mandante, representado por j = 1 e o visitante j = 2.

Assumindo um modelo log-linear de efeitos aleatórios, tem-se

$$\log \theta_{g1} = home + att_{h(g)} + def_{a(g)}$$

$$\log \theta_{g2} = att_{a(g)} + def_{h(g)}$$

em que o parâmetro *home* é um efeito fixo representando a vantagem de ter um jogo em casa e a taxa de pontuação considera o *ataque* e a *defesa* dos dois times que estão jogando. Os índices representam o time que da casa h(g) e o time visitante a(g) no g-ésimo jogo.

#### Priori

Considerando que o modelo proposto segue a abordagem bayesiana, os efeitos aleatórios são objetos aleatórios de interesse e é apropriado definir uma distribuição à priori para cada um deles. As prioris sugeridas pelos autores são:

$$home \sim Normal(0, 0.0001)$$
  
 $att_t \sim Normal(\mu_{att}, \tau_{att})$   
 $def_t \sim Normal(\mu_{def}, \tau_{def})$ 

Sendo t<br/> cada um dos times do campeonato. A Normal é definida pela média e precisão. O modelo original foi implementado no WinBUGS, que utiliza a mesma parametrização apresentada no artigo. Como priori para  $\mu$  é definida uma Normal(0,0.0001) tanto para o ataque quanto defesa, e Gamma(0.1,0.1) para os  $\tau$  de ataque e defesa.

Aqui, o modelo foi implementado no Stan e uma adaptação foi necessária, considerando que a parametrização do software é diferente, com a Normal definida pela média e desvio padrão. Passamos a ter:

$$att_t \sim Normal(\mu_{att}, \sigma_{att})$$
  
 $def_t \sim Normal(\mu_{def}, \sigma_{def})$ 

Conforme demonstrado por por Gelman (2008) e comentado em Almeida Inácio (n.d.), a priori não-informativa recomendada é uma Cauchy, portanto:

$$\sigma_{att} \sim Cauchy(0, 2.5)$$
  
 $\sigma_{def} \sim Cauchy(0, 2.5)$ 

Para garantir a identificabilidade do modelo, os autores sugerem a seguinte restrição nos parâmetros específicos de cada time:

$$\sum_{t=1}^{T} att_t = 0$$

$$\sum_{t=1}^{T} def_t = 0$$

Ainda é proposto a restrição em que um dos times é definido como ataque e defesa iguais a 0, o que implica interpretar os parâmetros para os outros times utilizando como referência o time de base. A proposta foi implementada neste trabalho, então, a restrição de identificabilidade é:

$$att_T = 0$$

$$de f_T = 0$$

Tal restrição foi fundamental para que as cadeias de Markov convergissem, além de ser um método mais rápido para a execução do código.

#### Simulação

Para checar a implementação dos modelos e estimação correta dos parâmetros, foi feita uma simulação com 1000 réplicas de tamanho 380, que é o número de jogos de um campeonato com 20 times. Os parâmetros do modelo usados para simulação são definidos como:

- home = 0.13
- $\mu_{att} = 0.05$
- $\mu_{def} = 0.08$
- $\sigma_{att} = 0.56$
- $\sigma_{def} = 0.52$



Figure 1: Simulação - Modelo 1

Observa-se que as distribuições da média da distribuição a posteriori dos parâmetros estão centradas em torno dos valores reais.

**Diagnóstico de convergência da simulação** As simulações foram realizadas com apenas 01 cadeia e 5000 interações. O gráfico traceplot mostra que a cadeia converge e consegue caminhar pelo espaço paramétrico.



Outra estatística útil é o  $\hat{R}$ , que próximo de 1 é condição para convergência. Todos os parâmetros apresentaram  $\hat{R}$  próximo de 1, sendo o menor  $\hat{R}=0.9995999$  e maior  $\hat{R}=1.002963$ .

# Ajuste

Para verificar o comportamento do modelo com um conjunto de dados reais, assim como no artigo original o modelo é ajustado para dados do campeonato italiano, aqui ele será testado com dados do Campeonato Brasileiro "Brasileirão" ano de 2019.

Os dados foram disponibilizados por Gomide (2022) no Github, com o seguinte formato:

| $home\_team$ | away_team | home_score | away_score | $home\_team\_index$ | away_team_index |
|--------------|-----------|------------|------------|---------------------|-----------------|
| 282          | 314       | 2          | 1          | 10                  | 16              |
| 315          | 285       | 2          | 0          | 17                  | 13              |
| 262          | 283       | 3          | 1          | 1                   | 11              |
| 276          | 263       | 2          | 0          | 8                   | 2               |
| 293          | 267       | 4          | 1          | 15                  | 6               |
| 265          | 264       | 3          | 2          | 4                   | 3               |

As colunas *home\_team\_index* e *away\_team\_index* foram criadas atribuindo um valor inteiro ordinal para cada time, seguindo a notação do modelo.

Comparando a pontuação **acumulada** ao longo do campeonato observada e a pontuação estimada pelo modelo, tem-se o seguinte comportamento para cada time:



O desempenho do time 5 foi superestimado pelo modelo, enquanto o contrário aconteceu para o time 9, seu desempenho foi subestimado pelo modelo hierárquico. Os times 2, 12, 15 e 14 apresentam a pontuação acumulada mais próxima entre o estimado e o observado.

Santos foi time com maior pontuação atribuída pelo modelo, estimando exatamente a pontuação obtida pelo time no campeonato e, assim, sendo o campeão segundo o modelo. Porém, o campeão de 2019 foi o Flamengo e o vice-campeão o Santos.

#### Diagnóstico de convergência do ajuste

## Modelo 2

A distribuição Poisson é um dos modelos mais utilizados na literatura para análises do número de gols marcados em uma partida de futebol. As variáveis-resposta são usualmente modeladas como duas Poisson independentes, considerando que o número de gols de um time não afeta o número de gols do outro time. Tal suposição não é muito razoável, considerando, por exemplo, que a força de defesa de um time interfere nas oportunidades para a marcação de gols do oponente. A partir disso, Karlis (2003) sugerem a modelagem do número de gols a partir de uma Poisson bivariada, que permite a inclusão de uma covariância positiva que faz o papel da dependência entre as duas variáveis Poisson que, marginalmente, são independentes.

Sendo  $X = X_1 + X_3$  e  $Y = X_2 + X_3$ , duas variáveis aleatórias com  $X_i \sim Poisson(\lambda_i)$ , então X e Y seguem conjuntamente uma Poisson bivariada  $\mathbf{BP}(\lambda_1, \lambda_2, \lambda_3)$ .

Conforme mencionado anteriormente, tem-se duas Poisson independentes marginalmente com  $E(X) = \lambda_1 + \lambda_3$  e  $Y = \lambda_2 + \lambda_3$ . Além disso,  $cov(X, Y) = \lambda_3$ . Se  $\lambda_3 = 0$ , então temos simplesmente duas Poisson independentes.

| team_name     | $score\_obs$ | score_est_m1 |
|---------------|--------------|--------------|
| Atlético-MG   | 48           | 45           |
| Atlético-PR   | 64           | 52           |
| Avaí          | 20           | 27           |
| Bahia         | 49           | 57           |
| Botafogo      | 43           | 55           |
| Ceará-SC      | 39           | 57           |
| Chapecoense   | 32           | 31           |
| Corinthians   | 56           | 65           |
| Cruzeiro      | 36           | 37           |
| CSA           | 32           | 41           |
| Flamengo      | 90           | 70           |
| Fluminense    | 46           | 44           |
| Fortaleza     | 53           | 52           |
| Goiás         | 52           | 41           |
| Grêmio        | 65           | 59           |
| Internacional | 57           | 40           |
| Palmeiras     | 74           | 77           |
| Santos        | 74           | 80           |
| São Paulo     | 63           | 47           |
| Vasco         | 49           | 52           |

Os autores sugerem que o parâmetro  $\lambda_3$  representam as condições de jogo comuns aos dois times da partida, como ritmo do jogo e condições climáticas.

Contudo, tal modelagem tem uma limitação: levando em conta que a covariância entre X e Y também é o parâmetro da Poisson e o espaço paramétrico está definido em  $(0, +\infty)$ , a covariância também está limitada em  $(0, +\infty)$ . Isso significa que à medida que o número de gols de um dos times aumenta, o do outro time não tende a seguir a relação inversa e, por isso, a interpretação de condições favoráveis aos dois times simultaneamente. Porém, é razoável pensar que essa relação pode ser negativa, com o aumento do comportamento ofensivo de um time e a outra equipe sem muitas oportunidades de marcar gols.

Definindo diretamente o modelo aplicado à futebol, temos que para cada jogo i

$$X_i \sim Poisson(\lambda_{1i})$$

$$Y_i \sim Poisson(\lambda_{2i})$$

e usando a função de ligação log para os preditores lineares, tem-se:

$$\log(\lambda_{1i}) = \mu + home + att_{h_i} + def_{g_i}$$

$$\log(\lambda_{2i}) = \mu + att_{q_i} + def_{h_i}$$

Para a inclusão da covariância como  $\lambda_3$ , Karlis (2003) apresenta o preditor linear que permite combinar diferentes modelos:

$$\log(\lambda_{3i}) = \alpha^{con} + \gamma_1 \alpha_{h_i}^{home} + \gamma_2 \alpha_{g_i}^{away}$$

No qual  $\gamma_j$  é uma variável dummy, indicando quais parâmetros serão incluídos no modelo de interesse. Para o modelo 2,  $\gamma_1 = \gamma_2 = 0$ , ou seja, tem-se apenas uma covariância constante.

No artigo original, ataque e defesa são tratados como efeitos fixos, portanto o número de parâmetros é o número de times multiplicado por dois mais 1, para o parâmetro que representa a covariância. Para os dados utilizados por Karlis do Campeonato Italiano de 1991-1992, são 37 parâmetros, enquanto para o Campeonato

Brasileiro de 2019 seriam 41 parâmetros. Por isso, na adaptação do modelo, ataque e defesa foram abordados como efeitos aleatórios.

A restrição de identificabilidade dos efeitos de ataque e defesa é a mesma do modelo 1, com o efeito do último time definido como:

$$att_T = 0$$
$$de f_T = 0$$

## Priori

$$\begin{aligned} &home \sim Normal(0,10) \\ &\sigma_{att} \sim Cauchy(0,2.5) \\ &\sigma_{def} \sim Cauchy(0,2.5) \\ &\mu \sim Normal(0,10) \\ &\alpha \sim Normal(0,1) \\ &\alpha^{home} \sim Normal(0,1) \\ &\alpha^{away} \sim Normal(0,1) \end{aligned}$$

#### Simulação

Com o objetivo de verificar a estimação certa dos parâmetros, também foi feita uma simulação com 1000 réplicas de tamanho 380, representando o número de jogos de um campeonato com 20 times. Neste modelo, os parâmetros para simulação são definidos como:

- home = 0.13
- $\mu = 0.21$
- $\alpha = 0.20$
- $\sigma_{att} = 0.92$
- $\sigma_{def} = 0.80$

A partir dos resultados dos histogramas obtidos na simulação, tem-se que o modelo estima corretamente os parâmetros.

## Diagnóstico de convergência da simulação

As simulações foram realizadas com apenas 01 cadeia e 5000 interações. O gráfico traceplot mostra que a cadeia converge e consegue caminhar pelo espaço paramétrico.



Figure 2: Simulação - Modelo 2



A estatística  $\hat{R}$  para os parâmetros se mostrou próxima de 1, sendo o menor  $\hat{R}=0.9995999$  e maior  $\hat{R}=1.002963$ .

## Ajuste

Assim como o primeiro modelo, o modelo 2 foi ajustado para o Campeonato Brasileiro de 2019. Neste modelo,  $\gamma_1 = \gamma_2 = 0$ .



Figure 3: Pontuação acumulada - Modelo  $2\,$ 

| i             |              |                  |
|---------------|--------------|------------------|
| team_name     | $score\_obs$ | $score\_est\_m2$ |
| Atlético-MG   | 48           | 72               |
| Atlético-PR   | 64           | 53               |
| Avaí          | 20           | 43               |
| Bahia         | 49           | 35               |
| Botafogo      | 43           | 46               |
| Ceará-SC      | 39           | 37               |
| Chapecoense   | 32           | 33               |
| Corinthians   | 56           | 61               |
| Cruzeiro      | 36           | 37               |
| CSA           | 32           | 26               |
| Flamengo      | 90           | 75               |
| Fluminense    | 46           | 53               |
| Fortaleza     | 53           | 56               |
| Goiás         | 52           | 50               |
| Grêmio        | 65           | 73               |
| Internacional | 57           | 54               |
| Palmeiras     | 74           | 54               |
| Santos        | 74           | 73               |
| São Paulo     | 63           | 68               |
| Vasco         | 49           | 42               |

O modelo 2 tem o Flamengo como maior pontuador ao longo do campeonato, acertando o vencedor. O segundo lugar ficou entre o Santos e Grêmio, segundo e quarto colocado respectivamente.

Além dos campeões, os quatro últimos times são rebaixados para a segunda divisão. Nesse modelo, há um empate na pontuação final dos times Cruzeiro e Ceará e, seguindo pelo critério do maior saldo de gols, o Cruzeiro seria rebaixado juntamente com Bahia, Chapecoense e CSA. Os times rebaixados no ano foram Cruzeiro, CSA, Chapecoense e Avaí, ou seja, o modelo 2 errou apenas uma das equipes.

#### Modelo 3

O modelo três é uma extensão do modelo 2, no qual  $\gamma_1 = 1, \gamma_2 = 0$ . Não foi feita uma simulação para o modelo por limitações de memória no computador.

## Modelo 4

O modelo quatro é uma extensão do segundo modelo, no qual  $\gamma_1=1, \gamma_2=1$ . Também não foi realizada uma simulação pela mesma razão do modelo 3.

#### Modelo 5

O modelo quatro é uma extensão do segundo modelo, no qual  $\gamma_1=0, \gamma_2=1$ . Também não foi realizada uma simulação pela mesma razão do modelo 3.



Figure 4: Pontuação acumulada - Modelo 3



Figure 5: Pontuação acumulada - Modelo  $4\,$ 



Figure 6: Pontuação acumulada - Modelo  $5\,$ 

# 3. Comparação dos modelos



Como o cálculo do LOO-CV é feito baseado na log-verossimilhança de cada observação, algumas delas podem ser muito influentes. Isso é especialmente sensível quando temos distribuições com caudas longas. Para isso, é calculado o PSIS.

# 4. Outros modelos

Um possível problema com modelos hierárquicos é um efeito de encolhimento, no qual observações extremas são arrastadas para a média global. Esse efeito faz com que equipes com um desempenho muito bom, que estão no topo da tabela, têm estimativas conservadoras e os times que estão nas últimas colocações são superestimados. O encolhimento é um possível problema do modelo 1 e Baio (2010) recomenda um modelo de mistura com três componentes para contornar esse efeito.

# Exemplo Tabela

## R Markdown

```
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
```

- ## Please use `tibble()` instead.
- ## This warning is displayed once every 8 hours.
- ## Call `lifecycle::last\_lifecycle\_warnings()` to see where this warning was generated.

Table 1: Simulation parameters

| parameter                  | value |
|----------------------------|-------|
| $\lambda_1$ (old normal)   | 300   |
| N (total days)             | 400   |
| $d_2$ (time to new normal) | 12    |

# 5. Referências

- Almeida Inácio, Marco Henrique de. n.d. "Introdução Ao Stan Como Ferramenta de Inferência Bayesiana." https://marcoinacio.com/stan.
- Baio, Marta, Gianluca e Blangiardo. 2010. "Bayesian Hierarchical Model for the Prediction of Football Results." *Journal of Applied Statistics* 37 (2): 253–64. https://doi.org/10.1080/02664760802684177.
- Baxter, Richard, Mike e Stevenson. 1988. "Discriminating Between the Poisson and Negative Binomial Distributions: an Application to Goal Scoring in Association Football." *Journal of Applied Statistics* 15 (3): 347–54. https://doi.org/10.1080/02664768800000045.
- Gelman, Aleks e Pittau, Andrew e Jakulin. 2008. "A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models." *The Annals of Applied Statistics* 2 (4). https://doi.org/10.1214/08-AOAS191.
- Gomide, Arnaldo, Henrique e Gualberto. 2022. CaRtola: Extração de Dados Da API Do CartolaFC, Análise Exploratória Dos Dados e Modelos Preditivos Em r e Python. https://github.com/henriquepgomide/caRtola.
- Karlis, Ioannis, Dimitris e Ntzoufras. 2003. "Analysis of Sports Data by Using Bivariate Poisson Models." Journal of the Royal Statistical Society: Series D (The Statistician) 52 (3): 381–93. https://doi.org/10.1 111/1467-9884.00366.
- Pollard, Richard. 1985. "69.9 Goal-Scoring and the Negative Binomial Distribution." The Mathematical Gazette 69 (447): 45–47. https://doi.org/10.2307/3616453.