Sets, Relations, Functions

- Q1. Let R_1, R_2, R_3 be relations on a set A. Prove or disprove the following statements.
 - (a) $(R_1.R_2)^{-1} = R_2^{-1}.R_1^{-1}$.
 - (b) If R_1 and R_2 are both symmetric then so is $R_1.R_2$. What about the converse? Consider the same statement for other properties of a relation such as reflexive, transitive, antisymmetric, being a function etc.
 - (c) $(R_1 \cup R_2).R_3 = (R_1.R_3) \cup (R_2.R_3)$. What if union is replaced by intersection?
 - (d) Suppose $R_1.R_1^{-1} = I$. Prove that if A is a finite set, then R_1 must be a bijection from A to A. Give an example to show this is not true for arbitrary sets A.
- Q2 Prove that the set of all finite subsets of natural numbers is countable. Similarly, the set of all finite sequences of natural numbers is countable.
- Q3 Let A_0, A_1, \ldots , be a sequence of sets such that for all i,

$$\bigcap_{j=0}^{i} A_j \neq \emptyset.$$

Does this imply $\exists x \forall i \ x \in A_i$? If so, prove it, else give examples of sets for which it is false. Suppose n_0, n_1, \ldots is a sequence of numbers such that for all $i, \gcd(n_0, n_1, \ldots, n_i) > 1$. Prove that there exists a prime p such that $p|n_i$ for all i.

Q4. The transitive closure of a relation R defined on a set A, denoted R^+ , is defined as

$$R^+ = \bigcup_{i=1}^{\infty} R^i$$

where R^i is defined inductively as $R^1 = R$ and $R^{i+1} = R^i.R$. Prove that R^+ is transitive. Prove that if R' is any transitive relation that contains R, then $R^+ \subseteq R'$. R^+ is thus the smallest transitive relation that contains R.

Q5. Let A be the set of bit strings of length n. Define a relation R on A by s_1Rs_2 iff s_2 can be obtained by shifting s_1 circularly by some number of places. Show that R is an equivalence relation. What is the size of the smallest and largest equivalence class of R? How many different equivalence classes are there?

1