Miara i calka

by a plebanek fangirl :> 21.03.2137

Contents

1	Zbiory	4
	1.1 Wstęp o zbiorkach	4
	1.2 Funkcje zbiorów	4
	1.3 Miara Lebesgue'a I	5

1 Zbiory

1.1 Wstęp o zbiorkach

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Mówimy, że ciąg zbiorów A_n zbiega od dołu do $A, [A_n \uparrow A]$ jeżeli

$$A = \bigcup_{n=1}^{\infty} A_n$$

analogicznie zbieganie od góry $[A_n \downarrow A]$:

$$A = \bigcap_{n=1}^{\infty} A_n.$$

Granice górna i dolna:

$$\lim \sup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$$

$$\lim \inf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

i ogółem

$$A = lim \, A_n \iff lim \, sup \, A_n = lim \, inf \, A_n = A.$$

.....

Każdy niepusty otwarty U $\subseteq \mathbb{R}$ można zapisać

$$U = \bigcup_{n=1}^{\infty} (a_n, b_n),$$

gdzie $a_n, b_n \in \mathbb{Q}$.

Dla zbioru domkniętego $\mathsf{F} \subseteq \mathbb{R}$ mamy z kolei

$$\mathsf{F}\subseteq\bigcup_{\mathsf{n}=1}^{\infty}(\mathsf{a}_\mathsf{n},\mathsf{b}_\mathsf{n})$$

i istnieje wtedy takie N, że

$$F\subseteq\bigcup_{n=1}^N(a_n,b_n).$$

.....

Rodzina $\mathcal{R} \subseteq \mathcal{P}(X)$ jest pierścieniem [r(\mathcal{R})], jeśli:

$$\hookrightarrow \emptyset \in \mathscr{R}$$

 $\hookrightarrow (\forall \ A,B \in \mathscr{R}) \ A \setminus B \in \mathscr{R} \ i \ A \cup B \in \mathscr{R} \ (wnioskiem \ z \ tego \ jest, \dot{z}e \ A \cap B \in \mathscr{R}).$

Pierścień, który jest dodatkowo zamknięty na przeliczalne sumy, tzn.

$$(\forall \ \mathsf{A}_n \in \mathscr{R}) \ \big[\ \big] \mathsf{A}_n \in \mathscr{R}$$

nazywa się σ -pierścieniem [s(\Re)].

Pierścień, który jest domknięty na dopełnienia, jest nazywany ciałem [a(\mathscr{R})], natomiast σ -pierścień domknięty na dopełnienia to σ -ciało [$\sigma(\mathscr{R})$]. W σ - mamy też domknięcie na lim sup i lim inf ciągów zbiorów.

Rodzina $\mathscr R$ zbiorów A $\subseteq \mathbb R$ takich, że

$$A = [][a_n, b_n]$$

jest pierścieniem. Co więcej, każdy taki A można zaprezentować za pomocą rozłącznych przedziałów.

 σ -ciało zbiorów borelowskich $[\sigma(\mathscr{U})]$ to najmniejsze σ -ciało zawierające rodzinę \mathscr{U} wszystkich podzbiorów otwartych \mathbb{R} .

Jeśli \mathscr{F} to zbiór przedziałów postaci [p, q), p, q $\in \mathbb{Q}$ to mamy równość

$$\sigma(\mathscr{F}) = \mathsf{Bor}(\mathbb{R})$$

.....

1.2 Funkcje zbiorów

Jeśli $\mathcal R$ jest pierścieniem zbiorów i mamy funkcję

$$\mu: \mathscr{R} \to [0, \infty]$$

to μ jest addytywną funkcją zbiorów, jeśli

$$\hookrightarrow \mu(\emptyset) = 0$$

$$\hookrightarrow \mu(A \cup B) = \mu(A) + \mu(B)$$
 dla $A \cap B = \emptyset$.

Kilka fajnych własności:

$$\hookrightarrow$$
 A \subseteq B \Longrightarrow μ (A) \leq μ (B)

$$\hookrightarrow$$
 A \subseteq B i μ (A) < ∞ \Longrightarrow μ (B \ A) = μ (B) = μ (A)

$$\hookrightarrow A_1, ..., A_n$$
 parami rozłączne, to $\mu(\bigcup A_i) = \sum \mu(A_i)$.

Przeliczalnie addytywna funkcja zbioru to μ jak wyżej takie, że dla dowolnego A i A_i rozłącznych takich, że

$$A = \bigcup A_i$$

zachodzi

$$\mu(A) = \mu(\bigcup A_i) = \sum \mu(A_i)$$

Jeśli μ jest przeliczalną funkcją zbioru i A – \bigcup A_i, to zachodzi

$$\mu(\mathsf{A}) = \mu(\bigcup \mathsf{A}_{\mathsf{i}}) \leq \sum \mu(\mathsf{A}_{\mathsf{i}})$$

Addytywna funkcja zbioru jest przeliczalna \iff jest ciągła z dołu (alternatywnie z góry), tzn:

$$(\forall A)(\forall A_n) A_n \uparrow A \implies \lim \mu(A_n) = \mu(A).$$

Dla addytywnej μ następujące warunki są równoważne:

- $\hookrightarrow \mu$ przeliczalnie addytywna
- $\hookrightarrow \mu$ ciągła z góry/dołu
- $\hookrightarrow \mu$ ciągła z góry na zbiór \emptyset .

.....

1.3 Miara Lebesgue'a I

Dla A = $\bigcup_{i=1}^{n} [a_i, b_i)$, gdzie $[a_i, b_i)$ są rozłączne, definiujemy naturalną funkcję zbioru λ :

$$\lambda(A) = \sum_{i=1}^{n} [a_i, b_i).$$

Od razu warto zaznaczyć, że $[a_i,b_i)$ nie musi być ciągiem skończonym - ciągi nieskończone też śmigają, bo λ jest przeliczalną addytywną funkcją zbioru.