MR Inversion Recovery Calculation

Simulering og optimalisering av inversjonssekvenser i MatLab

Øystein B Gadmar & Wibeke Nordhøy

FLAIR – Fluid Attenuated Inv. Recovery

$$E_t \stackrel{\text{def}}{=} e^{-\frac{t}{T1}}$$
 ; $M_t = M_0 - (M_0 - M_1)E_t$

$$S \stackrel{\text{def}}{=} \frac{M_{TI}}{M_0} = 1 - (1 - -1)E_{TI} = 1 - 2E_{TI}$$

1

$$S_0 = 0 \implies E_{TI} = e^{-\frac{TI}{T1}} = \frac{1}{2}$$
$$\Rightarrow TI = T1 \cdot \ln(2)$$

Q.E.D.

Our IR Calculator for MatLab

Fluid Attenuated Inversion Recovery

- One IR pulse, then a TI delay before readout
- Ours: 3D T2-weighted readout (SPACE/CUBE/VIEW)
- T1 weighting from IR counteracts the desired T2 contrast...

"Simple" FLAIR

Notes On Noise

- S = Signal strength at TE
- C = Difference between S_{WM} and S_{WM} (usually)
- N = Noise ∞ sqrt(t)
- CNR = $C/N \propto t/sqrt(t) = sqrt(t)$
- CNR/t a good end point (but also look to SNR/t)

Realistic 3D FLAIR

"Vendor" 3D FLAIR w/ short TR???

"Vendor" 3D FLAIR w/ T2 Prep.!

T2 prep. – How?

- $90^{\circ}x [180^{\circ}y]_{n} -90^{\circ}x$ to achieve spin lock
- T2P and inversion are interchangeable
- Pure T2 decay used for Mz preparation
- CSF hardly affected (long T2), but tissues relax much

IR-Calc (0th: In Real Time)

IR-Calc (1st: Effective TR)

O.E.D.

The efficiency of inversion efficiency?

IR-Calc (2nd: Inefficient Inversion)

$$E_{t} \stackrel{\text{def}}{=} e^{-\frac{t}{TI}} \; ; \; \alpha \stackrel{\text{def}}{=} -\cos\left(FA_{inv}\right)$$

$$\frac{M_{1}}{M_{0}} = 1 - E_{(TR-TI)} = 1 - \frac{E_{TR}}{E_{TI}} \; ; \; \left(TR \rightarrow TR_{eff}\right)$$

$$S_{0} \stackrel{\text{def}}{=} \frac{M_{TI}}{M_{0}} = 1 - \left(1 + \alpha \frac{M_{1}}{M_{0}}\right) E_{TI} = \left(1 + \alpha E_{TR}\right) - \left(1 + \alpha\right) E_{TI}$$

$$S_0 = 0 \Rightarrow E_{TIn} = e^{-\frac{TIn}{T1}} = \frac{1 + \alpha E_{TR}}{1 + \alpha}$$
$$\Rightarrow TI_n = \underline{T1} \Big[\ln(1 + \alpha) - \ln(1 + \alpha E_{TR}) \Big]$$

Q.E.D.

IR-Calc (3rd: Be T2 Prepared!)

$$E_{t} \stackrel{\text{def}}{=} e^{-\frac{t}{T_{1}}} \; ; \; \alpha \stackrel{\text{def}}{=} -\cos(FA_{inv}) \; ; \; E_{T2P} \stackrel{\text{def}}{=} e^{-\frac{T2P}{T2}}$$

$$\frac{M_{1}}{M_{0}} = 1 - E_{(TR-TI)} = 1 - \frac{E_{TR}}{E_{TI}} \; ; \; (TR \rightarrow TR_{eff})$$

$$S_{0} \stackrel{\text{def}}{=} \frac{M_{TI}}{M_{0}} = 1 - \left(1 + \alpha \frac{M_{1}}{M_{0}}\right) E_{TI} = \frac{(1 + \alpha E_{TR}) - (1 + \alpha) E_{TI}}{(1 + \alpha) E_{TI}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{0} = 0 \Rightarrow E_{TIn} = e^{-\frac{TIn}{T_{1}}} = \frac{1 + \alpha E_{TR}}{1 + \alpha}$$

$$\Rightarrow TI_{n} = \underline{T1} \left[\ln(1 + \alpha) - \ln(1 + \alpha E_{TR})\right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\alpha \rightarrow \alpha E_{T2P} \Rightarrow TI_{n} = \underline{T1} \left[\ln(1 + \alpha E_{T2P}) - \ln(1 + \alpha E_{T2P} E_{TR})\right]$$

$$O. E. D.$$

3D TSE readout – How?

- Complex flip angle sweep to preserve magnetization
- Complex profile ordering to avoid artefacts/blurring
- TE_{eff} estimated; much shorter than zero crossing time!
- Contrast mainly T2 some T1?!
- Mz probably used up over T_{Ro}?
- We're working to understand it...!

TR 6 s – "One up" on the vendor

TR 9 s – FLAIR And Back Again?!

Fluid Attenuated IR ... by how much?

"Images that computers like"

Dual IR: Two for the price of WM (and SNR)

DIR-WM – A Pulse Too Far?

CNR/t bad. Better at low TE – at the cost of WML–GM CNR

T1-nulled DIR – A New Hope

T1-nulled DIR – How?

- Find the TI₁/TI₂ pair that null the difference between the DIR signal for T1 times of WM and WML
- Find the T1 that is nulled at these TI₁/TI₂
- WM will be brighter, but SNR/CNR better
- Optimal TE will be free of T1 effects

[Madhuranthakam et al, Mag Res Med 2012 67(1):81-88]

DIR-Calc (Inversion juggling)

DIR-Calc (Oh My T2P... version)

TrueT2-DIR – From Zero To Hero!

TrueT2-DIR – From Zero To Hero!

TrueT2-DIR vs FLAIR images

CNR/t at least as good as FLAIR; better WML–GM CNR?!

DIR 4 Dummies!

Accessible spreadsheet tools, based on simulation regressions

DIR 4 Dummies!?

Measuring WM and WML T1 values w/ MP2RAGE MRI

DIR 4 Dummies???

T1_WM	T1_WML	TR	T1n	TI1	TI2	rS≈rC	r[S C]NR/t		
600	1000	8000	169	2520	133	122	122		
660	1000	8000	193	2549	150	117	117		
750	1000	8000	229	2593	175	110	110		
850	1000	8000	270	2642	203	102	102		
600	1200	8000	218	2579	167	104	104		
660	1200	8000	247	2614	187	100	100	(standard)	
750	1200	8000	289	2665	216	94	94		
850									
850 600 660 750	275	0	Sie 1.5 T sim. @ std. parameters						
850	270 265 260 255	0 - 0 - 0 -		0.20 404	2040.00				
	250 245		-	= 0.30 WML +	-	500 1600	0 1700		
				T1_WML					

Regression	WM8	WML&TR vs.	TI1	@ T1_GM 140	00 ms; T1_CS	F 5000 ms						
Regression Statis	gression Statistics LINEST raw output											
R^2	1.000	Regression №	Logarithmic	1377.191	226.070	372.295	-13990.063					
Standard Error	4.26	Confidence le	0.950	3.059	5.405	13.211	100.987					
Count of X vari≯	3	TINV ± factor	2.02	1.000	4.26	#N/A	#N/A					
Observations	45			68425.1	41	#N/A	#N/A					
Adjusted R^2	1.000			3728656.1	744.7	#N/A	#N/A					
Analysis of Variance (ANOVA) Sim. Est												
	df	SS	MS	F	Signific. F	2375	2373.3					
Regression	3	3728656.1	1242885.4	68425.1	7.47E-76	2516	2513.4					
Residual	41	744.7	18.2			2537	2536.0					
Total	44	3729400.8				2559	2557.2					
	Coefficients	Standard Ere	t-Statistic	P-value	Lower 95%	Upper 95%	±					
Intercept	-13990	101	-138.5	2.2E-56	-14194	-13786	204					
LN(T1_WM)	372.3	13.2	28.2	1.9E-28	345.6	399.0	26.7					
LN(T1_WML)	226.1	5.4	41.8	3.0E-35	215.2	237.0	10.9					
LN(TR)	1377.2	3.1	450.3	2.3E-77	1371.0	1383.4	6.2					

TI1 residuals from logarithmic regression, sorted by T1 WML - TR - T1 WM

- Good regressions may be hard to get right, but...
- Their results are easy to use!

