Exercise II.10 (Resistance wire \star):

A long homogeneous resistance wire is used to heat the air in a room by the passage of an electric current. Heat is generated in the wire uniformly at a constant rate $\dot{\Phi}'''$ as a result of resistance heating.

 $r_0 = 5 \text{ mm}$

Given parameters:

- Outer radius of the wire:
- Heat generation in the wire: $\dot{\Phi}^{\prime\prime\prime} = 5 \cdot 10^7 \text{ W/m}^3$
- Temperature of the outer surface of the wire: $T_{\rm s} = 180~{\rm ^{\circ}C}$
- Thermal conductivity of the wire: $\lambda = 6 \text{ W/mK}$

Hints:

- The problem is one-dimensional in radial direction.
- Assume steady-state conditions.

Tasks:

- a) Derive the heat conduction equation by setting up an energy balance.
- b) Determine the temperature at $r_1 = 3.5$ mm.

Exercise II.11 (Multi-layer walls with source $\star\star)$:

Tasks:

a) Complete the temperature profiles in the three-layered walls.

Exercise II.12 (Copper rod $\star \star \star$):

Both ends of a copper rod with a length L and a diameter d are kept at the same temperature $T_{\rm O}$. The left half of the rod is insulated against all radial heat losses. An electric heating element generates Joule's heat of heat flux density $\dot{\Phi}'''$. The right half of the rod is subjected to a flow of the ambient air with an air temperature of $T_{\rm A}$, yielding a heat transfer coefficient α . The thermal conductivity of the rod is given as λ .

Given parameters:

• Length of the rod:	L = 1 m

• Diameter of the rod:
$$d = 5.2 \text{ mm}$$

• Temperature of the ends of both rods:
$$T_{\rm O} = 120~{\rm ^{\circ}C}$$

• Temperature of the ambient:
$$T_{\rm A} = 100~{\rm ^{\circ}C}$$

• Heat transfer coefficient:
$$\alpha = 6 \text{ W/m}^2 \text{K}$$

• Thermal conductivity of the rod:
$$\lambda = 372 \text{ W/mK}$$

Hint:

- Place the origin of the coordinate system in the middle of the rod.

Tasks:

- a) Derive the equation for the temperature profile in the rod by setting up an energy balance.
- b) Determine an expression for $\dot{\Phi}'''$ such that the temperature in the center of the rod is also $T_{\rm O}$, similar to the temperatures at its ends.
- c) Calculate the value for $\dot{\Phi}^{\prime\prime\prime}$ for the conditions postulated in b).
- d) Determine the extremes of the temperature distribution for the given values. Give their position and values, additionally, sketch the temperature profile.

