Principe de la dynamique - Les lois de Newton

P2 - Chapitre 4

I. Première loi de Newton

• Système isolé: $\vec{F} = \vec{0}$ (système soumis à aucune force)

• Système pseudo-isolé: $\Sigma \vec{F} = \vec{0}$ (résultante des forces appliqués au système nulle)

• Référentiel galiléen \mathcal{R}_0 : Référentiel dans lequel un point matériel isolé est au repos est animé d'un mouvement rectiligne uniforme.

II. Deuxième loi de Newton

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 $\vec{F} = m\overline{a_{M/\mathcal{R}_0}}$

III. Troisième loi de Newton

$$\overrightarrow{F_{A \to B}} = -\overrightarrow{F_{B \to A}}$$

IV. Exemples de systèmes en interaction

1. Tension d'un fil - poulie

- Fil idéal : transmet intégralement les forces (masse négligeable, inextensible)
- <u>Poulie idéale</u>: Transmet intégralement les forces en modifiant leurs directions (masse et frottement négligeables)

2. Frottements solides - réaction du support

Soit M un objet sur un plan sur lequel s'exerce une force \vec{F} . Il est soumis à :

- $\overrightarrow{R_N}$ la réaction normale du support
- $\overrightarrow{R_T}$ force de frottements solides. Sans glissement, $R_T = F$ Avec glissement, $R_T = fR_N$ f: coeficient de frottements.

3. Frottements fluides

• Faible vitesse : $\vec{F} = -k\vec{v}$

• Forte vitesse : $\vec{F} = -kv\vec{v}$

• Poussée d'Archimède : $\overline{\vec{\pi} = -\rho V \vec{g}}$

4. Tension élastique d'un ressort

$$\vec{T} = -k \overline{M_0 M}$$