Задание 2. Принципы нелинейного кодирования и декодирования

Выполнить кодирование дискретных отсчетов методом ИКМ и декодирование кодовых комбинаций цифрового сигнала. Исходные данные приведены в таблице 1.

Таблица 1

Номер варианта	Значения дискретных отсчетов в единицах Δ		Десятичное число кодовых комбинаций			
1	-1234	456	-345	250	133	18
2	2045	765	-54	54	245	75
3	-580	904	-1874	187	80	204
4	-937	395	-1597	159	237	95
5	248	-678	700	70	248	78
6	100	-200	300	30	106	200
7	453	-900	-87	87	253	90
8	-1900	1000	345	34	190	100
9	678	-397	2000	200	78	97
10	-2010	395	-911	11	201	95
11	-345	111	578	78	245	111
12	-54	-713	222	22	54	13
13	-1874	333	-567	67	174	33
14	-1597	937	444	44	197	97
15	700	-555	664	164	70	55
16	300	-590	-666	66	30	190
17	-87	777	449	49	87	177
18	345	-404	-888	88	145	104
19	-2000	999	710	70	207	99
20	-911	409	1111	211	91	49

21	1222	-345	619	69	222	145
22	402	-54	1333	133	42	254
23	1444	-1874	55	55	144	174
24	66	-1597	1555	55	66	197
25	1666	700	-2045	45	166	70
26	2034	-300	1777	177	234	200
27	1888	-87	552	202	188	87
28	-44	345	1999	99	44	245
29	2111	-2000	489	209	211	245
30	-499	-911	2222	232	99	191
31	-111	500	-639	239	11	100
32	88	-222	-2011	211	88	22
33	55	1999	-333	33	55	199
34	-444	614	248	248	44	64
35	2003	-555	591	91	203	155
36	494	-303	-666	166	94	203
		N. //				

Методические указания к заданию 2

При кодировании дискретного отсчета используется характеристика компрессии А-закона, приведенная на рисунке 1.

В результате кодирования формируется 8-и разрядная кодовая комбинация.

Значение первого разряда определяет полярность отсчета:

- «0» отрицательная полярность;
- «1» положительная полярность.

Значения следующих трех разрядов соответствуют двоичному номеру сегмента, в котором находится дискретный отсчет.

Значения последних четырех разрядов представляют собой двоичное число уровней квантования в пределах сегмента, аппроксимирующих дискретный отсчет до

ближайшего разрешенного уровня квантования. В каждом сегменте используется 16 уровней квантования с соответствующим шагом квантования.

Рисунок 1

Формат восьмиразрядной ИКМ комбинации приведен на рисунке 2.

Величины эталонных напряжений для нижней границы каждого сегмента и при кодировании внутри сегмента приведены в таблице 2.

Таблица 2

Номер	Эталонное	Эталонные напряжения при				
сегмента	напряжение	кодировании в пределах сегмента				
N_c	нижней	$8\Delta_i(A)$	$4\Delta_i(B)$	$2\Delta_{i}I(C)$	$\Delta_{i}(D)$	
	границы					
	сегмента					
0	0	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$	
1	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$	
2	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	
3	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	
4	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	
5	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	
6	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	
7	$1024\Delta_0$	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	

Например, число **494** Δ (вариант 36) будет закодировано следующей комбинацией **11011110**.

Декодирование выполняется для 8-и разрядной кодовой комбинации, полученной из заданного десятичного числа.

В результате декодирования определяется значение дискретного отсчета в единицах Δ .

По значению первого разряда находится полярность дискретного отсчета.

По следующим трем разрядам, указывающим на номер сегмента, оценивается начальная величина дискретного отсчета.

По последним четырем разрядам, обозначающим число уровней квантования в пределах сегмента, вычисляется дополнительная величина дискретного отсчета, равная произведению числа уровней квантования на соответствующий шаг квантования.

Значение дискретного отсчета составляет сумму начальной и дополнительной величин.

Например, десятичное число кодовой комбинации **203** (вариант 36) будет декодированое в значение дискретного отсчета **216** Δ .