

9. how the data is skewed?

Left Skewed mean < median (-)

Long left tail (small observations on the left of the chart)

10. Below is a result for the equal variance test to perform two-sample t-test. State which test you choose (pooled t-test? Or Satterthwaith test?)

F test to compare two variances

data: July\$Wind and Aug\$Wind F = 0.8857, num df = 30, denom df = 30, p-value = 0.7418 alternative hypothesis: true ratio of variances is not equal to 1

Recult

- After conducting an F test (var.test), the results indicated a p-value of 0.7418. This high p-value means we can't reject the null hypothesis, indicating that the two groups have an equal variance.
- Based on these findings (equal variance), the next step is to conduct a Pooled T-test
- 11. Below is a result for the equal variance check (Levene's test) for ANOVA. State which test you choose between ANOVA and Welch's ANOV.

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 2 0.6457 0.003 Result

Small p-value means we reject the null, therefore, there does not exist an equal variance. There is heteroscedascitiy of variance.

Large p-value means we can't reject the null, therefore, there exists

an equal variance. There is homogeneity of variance.

Alternate Result

12. 4 assumptions of ANOVA

Model Assumption

1. Y = continuous; X = Categorical

- **2.** Data follows the normal distribution (each group follows the normal distribution)
 - 3. Equal variance (Homoscedasticity)
 - a. No equal variance means we conduct a Welch's ANOVA
 - 4. Independent samples

1) The response (dependent) variable is continuous

- Populations from which samples were drawn follow normal distribution
 - o i.e., Each group should be normally distributed
 - ✓ Note: ANOVA relatively robust to violations of normality
- 3) Populations from which samples were drawn must have equal variances (Homogeneity of Variance)
 - \checkmark Need to perform equal variance test before applying ANOVA
- 4) Observations must be independent of one another

13. What is the goal of ANOVA?

Goal

Analyze the difference among groups and study the behaviors of response variable depending on grouping variable

- 14. Why we perform post-hoc test?
- Making many comparisons at once!!
- Need correction in calculating p-value from t-test
 - o Scheffe method, Tukey's Method, etc.

15. Interpretation of post-hoc test result

• Should know how to interpret the result. What is null hypothesis and what kind of conclusion can we make?

- 16. Check quiz questions
- 17. Able to Interpret R outputs in HW.

```
Hypothesis is for the first comparison (Dose 1 and 0.5)
One-way ANOVA example:
                                        Pairwise t-test with modified p-values:
ScheffeTest(aov.res)
                                        H0: \mu_1 = \mu_{0.5} vs. H1: \mu_1 \neq \mu_{0.5}
##
##
      Posthoc multiple comparisons of means: Scheffe Test
##
        95% family-wise confidence level
                                                   '>' means significantly different
##
## $Dose Dose 1 mean > Dose 0.5 mean; Dose 2 mean > Dose 0.5 mean; Dose 2 mean > Dose 1 mean
             diff
                       lwr.ci
                                    upr.ci
##
                                               🕨 pval
## 1-0.5 | 9.130 | 5.758155 12.501845 4.3e-08 ***
## 2-0.5 | 15.495 | 12.123155 | 18.866845 | 1.2e-15 *** Ho: \mu2 = \mu0.5 vs. H1: \mu2! = \mu0.5
            6.365 2.993155 9.736845 7.6e-05 *** Ho: \mu2 = \mu1 vs. H1: \mu2!= \mu1
## 2-1
              diff: the estimated difference between the mean values of first group and second group
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   All dose groups have significantly different mean values of tooth length.
   Able to get information which pairs are significantly different
   Final conclusion:
   All three different Dose have different effect on tooth length and
   specifically, Dose 2 > Dose 1 > Dose 0.5
```