Show all work neatly for partial credit.

1. Solve for x and y.

$$3x + 2y = 10$$
 $6x + 4y = 20$ $2x = 3 - 5(-1) = 8$
 $2x + 5y = 3$ $6x + 15y = 9$ $y = -1$
 $y = -1$

1. x = 4, y = -1

2. Solve for x and y.

$$2x - y^{2} = 0$$

$$x - y = 4$$

$$x = y + 4$$

$$2y + 8 - y^{2} = 0$$

$$y = 4, -2$$

$$x = 8, -2$$

$$y = 4, -2$$

$$y = 8, -2$$

$$y = 4, -2$$

$$y = 8, -2$$

$$y = 4, -2$$

$$y$$

2. (8.4) (+2.-2)

3. Graph $f(x) = 5^{-x} - 3$. State domain and range.

3. domain: <u>all real x's</u>
range: <u>y > -3</u> (-3,∞)

4. Solve for x in the equations and give exact answers. Be sure to check your answers.

(a)
$$-14+3e^{x} = 11$$
$$3e^{x} = 25$$
$$e^{x} = \frac{25}{3}$$
$$x = \ln^{29}3$$

(a)
$$X = In^{25/3}$$

(b)
$$\log_2 x + \log_2(x+2) = \log_2(x+6)$$
 $x = \frac{1}{2}, 2$

$$\log_2 x + \log_2(x+2) = 0$$

$$\frac{x^2 + 2x}{x + 6} = 1 = \frac{x + 6}{x + 6}$$

$$\frac{x^2 + x - 6}{x + 6} = 0$$

$$(x + 3)(x - 2) = 0$$

$$(c) \log_4 x - \log_4(x - 1) = \frac{1}{2}$$

$$(b) \underline{\qquad X = 2}$$

$$\log_4 \left(\frac{x}{x-1}\right) = \frac{1}{2}$$

$$\frac{x}{x-1} = \pm 2 = \pm \left(\frac{2x-2}{x-1}\right)$$

Casel:
$$x=2x-2$$
 Case 2: $x=-2x+2$
 $2=x$ $3x=2$
 $x=\frac{2}{3}$
extraneas, doesn't we doesn't we have a set of the contract of t

(c) _____

(d)
$$e^{2x} - 4e^{x} + 3 = 0$$

 $(e^{x} - 3)(e^{x} - 1) = 0$
 $e^{x} = 3$ $e^{x} = 1$
 $x = \ln 3$ $x = \ln 1 = 0$

(d)
$$x = \ln 3$$
, $x = 0$

Rewrite as the logarithm of a single quantity.

5.
$$\ln 5 + \frac{1}{2} \ln (3 - x^2) - 2 \ln y$$

(4) In
$$\left(\frac{5(3-x^2)^{1/2}}{y^2}\right)$$

$$5. \frac{\text{ln} \left(5\left(\sqrt{3-x^2}\right)}{y^2}\right)$$

Expand-write as a sum, difference or multiple of logarithms.

(4)
$$\log \sqrt[4]{\frac{a^2b}{c^3}}$$

= $\frac{1}{4} (\log a^2b - \log c^3)$
= $\frac{1}{4} \log a + \frac{1}{4} \log b - \frac{3}{4} \log c$

For problems 7-8. Given: $\log_a 2 \approx .308$

$$\log_a 3 \approx .488 \quad \log_a 5 \approx .715$$

7. Find
$$\log_a \left(\frac{15}{2}\right)^2$$
. = $2\log_a 15 - 2\log_a 2$

=
$$2(\log_a 3 + \log_a 5) - 2\log_a 2$$

= $2(.488 + .715) - 2(.308)$
= 1.19

8. Find
$$\log_a\left(\frac{5a}{3}\right)$$
. = $\log_a 5 + \log_a a - \log_a 3$

For problems 9-16, match the function with the proper graph. (16)

$$\underline{E}_{9}$$
. $y = \log_3 x$

$$\underline{G}_{10}. \quad y = \log_3 x - 1$$

$$A 11. \quad y = \log_3(-x)$$

$$B_{12}$$
. $y = \log_3(x-1)$

$$H_{14}$$
. $y = \log_3(1-x)$

17. Graph the system. Label all intercepts and label boundary lines of A, B, C.

A.
$$2x + y \le 4$$
 (0.4), (2.0)

B.
$$2x + y \ge 4$$
 $(0,0)$ $(1,2)$

B.
$$2x-y \ge 0$$
 (0,0) (0,5)

18. Find the equation of the parabola $y = ax^2 + bx + c$ passing through the points (0,-4), (-1,1) and (2,-2).

$$-4=C$$

$$1=a-b+c \longrightarrow 1=a-b-4 \longrightarrow a-b=5$$

$$-2=4a+2b+C \longrightarrow -2=4a+2b-4 \longrightarrow 4a+2b=2a+b=1$$

$$a-b=5$$

$$3a=6$$

$$a=2$$

$$b=-3$$

7.
$$y = 2x^2 - 3x - 4$$

19. Evaluate $\frac{12(\ln 31)}{\ln 5 - \ln 3}$ to nearest 3 decimal places.

20. Use your calculator to solve the following equation. Give your answer to 3 decimal places.

20. Ose your calculator to so.

(4)
$$7^{x} = 18$$

$$x \ln 7 = \ln 18$$

$$x = \frac{\ln 18}{\ln 7}$$

(4)

21. Find the value at the end of 4 years for \$2,600 invested at $5\frac{1}{4}\%$ with continuous compounding

(use
$$A = Pe^{rt}$$
). $A = 2600 e^{.0525}$ (4)
= $^{*}3207.5$