Parallel Conjugate Gradient for Dense Matrices

Federico Betti

MATH-454, Parallel and High Performance Computing

EPFL — January 12, 2023

MPI – Hard scaling

Profiling/Hard scaling analysis

- Matrix vector products takes majority of running time.
- Amdahl's Law: $S(p) \leq \frac{1}{\alpha}$.

N	1024	2048	4096	8192
α	0.0247	0.0090	0.0050	0.0019

Parallelization strategy

- Row-wise domain decomposition.
- Reduction on α_k and r_k and collective gathering for solution vector p_k .
- Computation cost $\mathcal{O}\left(\frac{N^2}{\rho}\right)$.
- Communication cost $\mathcal{O}(\beta \frac{p-1}{p} N + \alpha \log_2 p)$ [2].

Hard scaling results

- Speedup suffers from communications and synchronization overhead [1].
- Increasing the problem size boosts performance and mitigates drop with network communications (p > 36).

MPI - Weak scaling

Weak scaling analysis

- For weak scaling, we fix the number of iterations for a fair comparison.
- To keep the workload $\frac{N^2}{p}$ constant, from a serial problem size N_0 , we then take $N(p) = N_0 \sqrt{p}$.
- $\beta(N)$ is always rather small.

Weak scaling results

- Gustafson's Law is too optimistic for relatively small starting points.
- There is evidence for improvement when increasing N₀.

MPI Conclusions

- Synchronization overhead deteriorates parallelization potential. Hybrid OpenMP-MPI may provide benefits.
- Improvement for massively large problems.

CUDA

One thread per row approach

- Low GPU occupancy.
- Block-wise problem is too big to use shared memory.

Key observation

Computing equivalently A^Tx favours memory coalescing.

Multiple threads per row approach

$$\begin{pmatrix} - & a_1 - \\ - & a_2 - \\ & & & \end{pmatrix} A = A^T \begin{pmatrix} | & | & \\ a_1 & a_2 & \\ | & | & \\ & & & \end{pmatrix}$$

- Small block width gives queuing blocks. Large block width gives previous results.
- Can be improved using shared memory for *x*.

References and appendix

- [1] R Oguz Selvitopi and Cevdet Aykanat. Reducing Synchronization Overheads in CG-type Parallel Iterative Solvers by Embedding Point-to-point Communications into Reduction Operations.
- [2] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. *Optimization of collective communication operations in MPICH*.

N	α
1024	0.0247
1448	0.0148
2048	0.0090
2896	0.0065
4096	0.0050
5792	0.0034
8192	0.0019
11585	0.0012
16384	0.0004