小测参考题目 2

周潇翔

2018年11月16日

1 Exercise1

可以从以下任选一题.

1. 设 \mathbb{R} 上的 Lipchitz 函数 f(x) 满足性质: 对任意 $x \in \mathbb{R}$,

$$\lim_{n \to \infty} n[f(x + \frac{1}{n}) - f(x)] = 0$$

证明 f(x) 在 \mathbb{R} 上右可导.

2. 设 f(x) 在 [a,b] 上可导. 若 $f(a) = 0, \forall x \in (a,b), f(x) > 0$, 则对任意的 $n, m \in \mathbb{N}$, 存在 $\xi, \eta \in (a,b)$, 使得

$$\frac{f'(\xi)}{f(\xi)} = \frac{m}{n} \frac{f'(\eta)}{f(\eta)}$$

3. 设 f(x) 在 \mathbb{R} 上可导. 记 Dirichlet 函数:

$$D(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{if } x \notin \mathbb{Q}; \end{cases}$$

试求函数 g(x) := f(x)D(x) 的连续点集与可导点集.

你可使用如下记号: $(a \in \mathbb{R})$

$$f^{-1}(a) = \{x \in \mathbb{R} | f(x) = a\}$$

$$(f')^{-1}(a) = \{x \in \mathbb{R} | f'(x) = a\}$$

注 1 考试时 f(x) 可取成某些具体的例子, 比如说

$$f(x) = x^3(x+1)^2(x+2)$$

4. 判断正误: 若 \mathbb{R} 上的可导函数 f 满足 $f'(0) \neq 0$, 则存在 $\delta > 0$, 使得 f(x) 于 $(-\delta, \delta)$ 单调. 如果命题正确, 请说明理由, 若不正确, 请举出具体例子.

注 2 若补充条件"导函数连续",则命题成立.

2 Exercise2

我们在这里考虑方程 $\tan x = x$ 的解.

1. 证明:

对 $\forall n \in \mathbb{N}$, 方程 $\tan x = x$ 于 $(n\pi - \pi/2, n\pi + \pi/2)$ 有且恰好只有一个解. 记这个解为 x_n .

2. 证明:

$$\lim_{n \to \infty} x_n - n\pi = \pi/2$$

3. 计算极限:

$$\lim_{n\to\infty} n(x_n - n\pi - \pi/2)$$

注 3 想考 Sard 定理的简化版本的, 但是还没有简单的做法.