Foresight: Remote Sensing For Driverless Cars Using Small Unmanned Aerial Vehicles

Alex Wallar

Javier Alonso-Mora

Raphael Chang

Daniela Rus

Abstract—

Definition 1. A laser scan is a sequence of points, $L \subset \mathbb{R}^2$, such that if a polygon, P, is constructed with these points, there exists a point, $c \in \mathbb{R}^2$, such that $\forall x \in L$, the line segment from c to x is entirely contained in P.

Definition 2. A break in the laser scan is a line segment (L_i, L_{i+1}) such that $||L_i - L_{i+1}||_2 > \delta$ where δ is the break threshold. The set of all these breaks will be referred to as \tilde{L} .

Definition 3. A blind spot, $B(L_i, L_{i+1})$, is the set of points contained between the line segments, (L_i, L_{i+1}) and $(L_i + \epsilon \cdot \hat{n}, L_{i+1} + \epsilon \cdot \hat{n})$ where \hat{n} is the unit normal of the line segment (L_i, L_{i+1}) , ϵ is a parameter governing the size of the region, and (L_i, L_{i+1}) is a break in the laser scan.

Definition 4. The blind region, \mathcal{B} , for a laser scan, L, is defined as $\mathcal{B} = \bigcup_{(i,j) \in \tilde{L}} B(i,j)$.

Definition 5. The sensor projection for our robot, $\psi(x,\theta)$ is defined as the set of points that the robot is able to observe from configuration x with yaw, θ . The optimal sensor projection for a given configuration and blind region is defined as $\psi^*(x,\mathcal{B}) = \psi(x,\theta^*(x,\mathcal{B}))$ with $\theta^*(x,\mathcal{B}) = \arg\max_{0 < \theta < 2\pi} \text{AREA}(\mathcal{B} \cap \psi(x,\theta))$

Definition 6. A path, $\rho \subset V \times [0, 2\pi]$, is a sequence of tuples, (x, θ) , consisting of state and yaw, such that $\forall i : (\rho_{i,x}, \rho_{i+1,x}) \in E$, where G = (V, E) is a finite sampled graph within the polygon constructed using the laser scan, L, that represents the connectivity of the free space.

Lemma 1. If a path is returned from Algo. 1, it will have a total cost less than C.

Proof. At each iteration, the cost to reach each neighbour of x is computed. This is added to the total cost of current path. If the cost of the path from x_0 to x' is larger than C, it is discarded from the search. Thus only path with cost less than C, can be returned from Algo. 1.

Lemma 2. Algo. 1 will finish in a finite number of steps if $\forall (i,j) \in E : \mathsf{CostToGo}(i,j) \geq 1 \text{ and } C < \infty$

Proof. Since the cumulative cost being added to search is monotonically increasing, if a given path is not returned, its cost will eventually be greater than C in a finite amount of time since, $C<\infty$ and all individual costs must be greater than 1. If no path is returned by the algorithm, it means that

Algorithm 1

Input:

- x_0 : The initial position of the robot
- B: The blind region
- G = (V, E): The finite sampled graph within the laser scan polygon
- γ , C: The optimality and cumulative cost thresholds respectively for the algorithm's termination

Output:

• $\rho \subset V \times [0, 2\pi]$: A sequence of tuples representing the path

```
1: Q \leftarrow \{(x_0, \mathcal{B} \setminus \psi^*(x_0, \mathcal{B}), 0)\}
 2: while |Q| > 0 do
           (x, \mathcal{B}', c) \leftarrow \arg\min \mathsf{AREA}(q_{\mathcal{B}'})
           if AREA(\mathcal{B} \setminus \mathcal{B}') > \gamma \cdot AREA(\mathcal{B}) then
 4:
                 \rho \leftarrow \{\}, \hat{x} \leftarrow x', \hat{\mathcal{B}} \leftarrow \mathcal{B}', \hat{c} \leftarrow c
 5:
                 while HASPARENT(\hat{x}, \hat{B}, \hat{c}) do
 6:
                     \rho \leftarrow \{(\hat{x}, \theta^*(\hat{x}, \mathcal{B}))\} \cup \rho
 7:
                     (\hat{x}, \hat{\mathcal{B}}, \hat{c}) \leftarrow \text{PARENT}(\hat{x}, \hat{\mathcal{B}}, \hat{c})
 8:
 9:
                 return \rho
           for all x' where (x, x') \in E do
10:
                c' \leftarrow c + \text{CostToGo}(x, x')
11:
                if c' < C then
12:
                     Q \leftarrow Q \cup \{(x', \mathcal{B}' \setminus \psi^*(x', \mathcal{B}'), c')\}
13:
                     PARENT(x', \mathcal{B}' \setminus \psi^*(x', \mathcal{B}'), c') \leftarrow (x, \mathcal{B}', c)
14:
15:
            Q \leftarrow Q \setminus (x, \mathcal{B}', c)
16: return false
```

all paths in G have not reached the optimality threshold with their costs being less than C. Since G is a finite graph, there are a finite amount of paths and therefore, to determine if no path will be returned takes a finite number of steps. If a path is returned, Algo. 1 is returning the first path that meets the optimality threshold which would occur before all paths in G are exhausted, thus returning in a finite number of steps.

Lemma 3. At each iteration, the residual blind region, $\mathcal{B}_n = \mathcal{B} \setminus \bigcup_{(x_i,\theta_i) \in \rho} \psi(x_i,\theta_i)$ where ρ is the path from x_0 to x_n .

Proof. At the $n^{\rm th}$, the blind region in the tuple being added to Q is

$$\mathcal{B}_n = \mathcal{B} \setminus \psi^*(x_0, \mathcal{B}) \setminus \psi^*(x_1, \mathcal{B}_0) \setminus \dots \setminus \psi^*(x_n, \mathcal{B}_{n-1})$$

where \mathcal{B}_i is the residual blind region for the i^{th} step in path. Now we can rearrange to produce

$$\mathcal{B}_n = \mathcal{B} \setminus \bigcup_{i=0}^{n-1} \psi^*(x_i, \mathcal{B}_{i-1})$$

Now since $\psi^*(x_i, \mathcal{B}_{i-1}) = \psi(x_i, \theta^*(x_i, \mathcal{B}_{i-1})) = \psi(x_i, \theta_i)$, because the optimal yaw is added to the path for a given residual blind region,

$$\mathcal{B}_n = \mathcal{B} \setminus \bigcup_{(x_i, \theta_i) \in \rho} \psi(x_i, \theta_i)$$

Theorem 1. If there exists a path, ρ , such that AREA($\mathcal{B} \cap \bigcup_{(x,\theta)\in\rho} \psi(x,\theta)$) $> \gamma \cdot \text{AREA}(\mathcal{B})$ and ρ can be executed by the robot with a total cost less than C, Algo. 1 will return such a path in a finite number of steps.

Proof. Using Lemmas 1 and 2, we know that any path returned from Algo. 1 will have a total cost less than C and it will be returned in a finite number steps. We also know from Lemma 3, that the blind region at the n^{th} iteration is $\mathcal{B} \setminus \bigcup_{(x_i,\theta_i) \in \rho} \psi(x_i,\theta_i)$. Now, note that,

$$\mathcal{B} \setminus \mathcal{B}_n = \mathcal{B} \setminus (\mathcal{B} \setminus \bigcup_{\substack{(x_i, \theta_i) \in \rho}} \psi(x_i, \theta_i))$$
$$= \mathcal{B} \cap \bigcup_{\substack{(x_i, \theta_i) \in \rho}} \psi(x_i, \theta_i)$$

Now since, the algorithm only returns a path if $AREA(\mathcal{B} \backslash \mathcal{B}_n) > \gamma \cdot AREA(\mathcal{B})$ and using the result above, the algorithm will only return a path such that $AREA(\mathcal{B} \cap \bigcup_{(x_i,\theta_i) \in \rho} \psi(x_i,\theta_i)) > \gamma \cdot AREA(\mathcal{B})$

REFERENCES