Name:

Signature:

Student Id:

1. (10 points) Prove by induction that

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

for all $n \in \mathbb{N}$.

For n = 0, we see that $\sum_{i=0}^{0} i^2 = 0^2 = 0$ and $\frac{0(0+1)(2\cdot 0+1)}{6} = 0$. So the result is true for n = 0. Let k be a

natural number. Assume that the result is true for n = k. That is, we assume that $\sum_{i=0}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$.

Consider now the result for n = k + 1. Note that

$$\sum_{i=0}^{k+1} i^2 = \left(\sum_{i=0}^k i^2\right) + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k+1}{6} \left(k(2k+1) + 6(k+1)\right)$$

$$= \frac{(k+1)\left((k+1) + 1\right)\left(2(k+1) + 1\right)}{6}$$

where in the second equilative we used the induction hypothesis $\sum_{i=0}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$. So the result is true for n = k+1

Hence, the result follows from the principle of mathematical induction.

2. (10 points) Given the relation

$$p = \{(x, y) \in \mathbb{Z} \times \mathbb{N} \mid y = \max(0, x)\}\$$

from \mathbb{Z} to \mathbb{N} , show that:

(a) p is a function.

For any element x of \mathbb{Z} , it is clear that the maximum of 0 and x exists and unique (indeed, it is 0 if x < 0 and it is x if $x \ge 0$). In other words, for each $x \in \mathbb{Z}$ there is a unique $y \in \mathbb{N}$ such that $(x, y) \in p$. So, p is a function from \mathbb{Z} to \mathbb{N} , and it is given by

$$p(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

(b) p is not one to one.

For instance, $-1 \neq -2$ but p(-1) = 0 = p(-2). So p is not one to one.

(c) p is onto.

For any $x \in \mathbb{N}$, note that $x \in \mathbb{Z}$ and p(x) = x because $x \geq 0$. So p is onto.

3. (10 points) Let A be a set and $f: A \to A$ be a function, and let R be the relation on A defined for any elements a and b of A by

aRb if and only if b = f(a).

Prove that:

(a) If f(f(x)) = x for all $x \in A$, then R is symmetric.

Let $(r, s) \in R$ for some $r, s \in A$. (We want to justify that $(s, r) \in R$). Then s = f(r) by the definition of R. From s = f(r), we see that f(s) = f(f(r)). Using the condition "f(f(x)) = x for all $x \in A$ ", we see that f(f(r)) = r, and so f(s) = r. It now follows from the definition of R that $(s, r) \in R$. Hence, R is symmetric.

(b) If f(f(x)) = f(x) for all $x \in A$, then R is transitive.

Let $(r,s) \in R$ and $(s,t) \in R$ for some $r,s,t \in A$. (We want to justify that $(r,t) \in R$). Then s = f(r) and t = f(s) by the definition of R. From s = f(r), we see that f(s) = f(f(r)). Using the condition "f(f(x)) = f(x) for all $x \in A$ ", we see that f(f(r)) = f(r), and so f(s) = f(r). As t = f(s), we see that t = f(r). It now follows from the definition of R that $(r,t) \in R$. Hence, R is transitive.

4. (10 points) Let \sim be the relation on $(\mathbb{N} - \{0\}) \times \mathbb{N}$ defined for any elements (a, b) and (c, d) of $(\mathbb{N} - \{0\}) \times \mathbb{N}$ by

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$.

Prove that:

(a) \sim is an equivalence relation.

Let $(a,b) \in (\mathbb{N} - \{0\}) \times \mathbb{N}$. As ab = ba, we see that $(a,b) \sim (a,b)$. So \sim is reflexive.

Let $(x,y),(z,t) \in (\mathbb{N}-\{0\}) \times \mathbb{N}$. Assume that $(x,y) \sim (z,t)$. Then xt=yz. So zy=tx, implying that $(z,t) \sim (x,y)$. So \sim is symmetric.

Let $(a,b), (c,d), (e,f) \in (\mathbb{N} - \{0\}) \times \mathbb{N}$. Assume that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then ad = bc and cf = de. From cf = de, we see that acf = ade. Using ad = bc, we see from acf = ade that acf = bce. As $c \neq 0$, canceling c we see that af = be, implying that $(a,b) \sim (e,f)$. So \sim is transitive.

(b) Find the equivalence classes of (1,0) and (1,1).

$$[(1,0)] = \{(x,y) \in (\mathbb{N} - \{0\}) \times \mathbb{N} \mid (x,y) \sim (1,0)\} = \{(x,y) \in (\mathbb{N} - \{0\}) \times \mathbb{N} \mid x0 = y1\}$$

$$= \{(x,0) \mid x \in \mathbb{N} - \{0\}\}$$

$$[(1,1)] = \{(x,y) \in (\mathbb{N} - \{0\}) \times \mathbb{N} \mid (x,y) \sim (1,1)\} = \{(x,y) \in (\mathbb{N} - \{0\}) \times \mathbb{N} \mid x1 = y1\}$$

$$= \{(z,z) \mid z \in \mathbb{N} - \{0\}\}$$

- 5. (15 points) Let $A = \{a, b, c\}$.
 - (a) Write as a set of ordered pairs the equivalence relation on A induced by the following partition of A

$$\{\{a,b\},\{c\}\}.$$

Recall that $(x, y) \in A \times A$ is in the induced equivalence relation if and only if x and y are both in $\{a, b\}$ or in $\{c\}$. Hence, the induced equivalence relation is

$$\{(a,a),(b,b),(c,c),(a,b),(b,a)\}.$$

(b) How many different equivalence relations can be defined on A?

Recall that there is a bijection between equivalence classes on a set S and the partitions of the set S. So the number of different equivalence relations on A is the number of different partitions of A. As |A| = 3, the cardinalities of the sets in a partition of A must be 1,1,1 or 2,1 or 3. That is, the partitions of A are

$$\{\{x\},\{y\},\{z\}\}, \{x,y\},\{z\}\}, \{\{x,y,z\}\}$$

where x, y, z are distinct elements of A. So there are $1 + {3 \choose 2} + 1 = 5$ partitions of A. Hence, 5 different equivalence relations can be defined on A.

6. (10 points) Let A be a subset of \mathbb{Z} . Consider the relation R on \mathbb{Z} defined for any elements m and n of \mathbb{Z} by

$$(m,n) \in R$$
 if and only if $m-n \in A$.

Show that if R is an equivalence relation on \mathbb{Z} , then A is a subgroup of the group $(\mathbb{Z}, +)$ where + is the usual addition.

As R is an equivalence relation on \mathbb{Z} , it is reflexive. In particular, $(1,1) \in R$. Thus $1-1 \in A$. So $0 \in A$. In particular, A is not empty.

Let $a \in A$. Since a = a - 0, we see from the definition of R that $(a, 0) \in R$. As R is symmetric, $(0, a) \in R$ and so $0 - a \in A$. Thus $-a \in A$. Consequently, A is closed under taking inverse.

Let $x, y \in A$. As x = x - 0 and y = 0 - (-y), it follows from the definition of R that $(x, 0) \in R$ and $(0, -y) \in R$. Using the fact that R is transitive, we get $(x, -y) \in R$. The definition of R implies now that $x + y \in A$. Consequently, A is closed under the addition.

- 7. (15 points)
 - (a) Let H be any simple undirected graph with n vertices. For any vertex v, what is the sum of the degree of v in H and the degree of v in the complement of H?

It follows from the definition of the complement of a graph that the sum of the degree of v in H and the degree of v in the complement of H is equal to the degree of v in K_n where K_n is the complete graph on the vertices of H. As in a complete graph with n vertices each vertex is adjacent to every other vertex, the sum we want to determine is n-1.

(b) Let G be a simple undirected graph with vertex set $\{a, b, c, d, e\}$ such that

$$deg(a) = 3$$
, $deg(b) = 1$, $deg(c) = deg(d) = deg(e) = 2$.

Show that G is not isomorphic to its complement.

Using the previous part we see that

$$\deg_{G^c}(a) = 1$$
, $\deg_{G^c}(b) = 3$, $\deg_{G^c}(c) = \deg_{G^c}(d) = \deg_{G^c}(e) = 2$

where subscript G^c means that the degrees are in the complement G^c of G. As a graph isomorphism preserves the degrees (i.e., the degrees of a vertex and its image under a graph isomorphism are the same), any graph isomorphism $f: G \to G^c$ must satisfy f(a) = b and f(b) = a. Recalling the definition of the complement, note that a and b are adjacent in exactly one of G and its complement G^c . As f(a) = b and f(b) = a, we see that f does not preserve adjacency. Consequently, f can not be a garph isomorphism.

8. (10 points) Give an example of a bijective function $\mathbb{N} \to \mathbb{Z}$

For instance, we may use even naturals to map onto nonnegative integers and use odd naturals to map onto negative integers. Consider the map

9. (10 points) Let E be an equivalence relation on \mathbb{R} such that the quotient set \mathbb{R}/E (i.e., the set of equivalence classes) is countable. Prove that there is an $r \in \mathbb{R}$ such that the equivalence class $[r]_E$ of r is uncountable.

Recall that if R is an equivalence relation on a set A, then A is the (disjoint) union of the distinct equivalence classes. That is

$$A = \bigcup_{[a] \in A/R} [a].$$

As the union of countably many countable sets is countable, it follows that if A/R is countable and each $[a] \in A/R$ is countable, then A is countable. The result follows because \mathbb{R} is uncountable and it is given that \mathbb{R}/E is countable.