Tema 16

4.38 Definición (Límite de una función en un punto). Se dice que f tiene límite en el punto a si existe un número $L \in \mathbb{R}$ tal que se verifica lo siguiente:

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ : \begin{cases} 0 < |x - a| < \delta \\ x \in I \end{cases} \} \Longrightarrow |f(x) - L| < \varepsilon$$

Dicho número se llama **límite de** f **en** a y escribimos $\lim_{x\to a} f(x) = L$.

Observa que la existencia del límite es independiente de que f esté o no definida en a y, en caso de estarlo, del valor que f pueda tener en a. También debe advertirse que en la definición de la $igualdad \lim_{x\to a} f(x) = L$, sólo intervienen desigualdades.

4.44 Proposición. Sea f una función y sean $a, L \in \mathbb{R} \cup \{-\infty, +\infty\}$. Equivalen las afirmaciones:

$$i) \lim_{x \to a} f(x) = L$$

- ii) Para toda sucesión $\{x_n\}$ de puntos en el dominio de definición de f, tal que $x_n \neq a$ para todo $n \in \mathbb{N}$ y $\{x_n\} \to L$, se verifica que $\{f(x_n)\} \to L$.
- **4.52 Definición (Clasificación de las discontinuidades).** Sea $f: I \to \mathbb{R}$ una función definida en un intervalo y sea $a \in I$.
 - Si f tiene límite en a y $\lim_{x\to a} f(x) \neq f(a)$, se dice que f tiene en el punto a una **discontinuidad evitable**.
 - Si los dos límites laterales de f en a existen y son distintos:

$$\lim_{\substack{x \to a \\ x < a}} f(x) \neq \lim_{\substack{x \to a \\ x > a}} f(x)$$

se dice que f tiene en el punto a una discontinuidad de salto.

- Si alguno de los límites laterales no existe se dice que f tiene en el punto a una discontinuidad esencial.
- **4.53 Teorema (Límites de una función monótona).** Sea f una función creciente definida en un intervalo I.
 - i) Para todo punto $a \in I$ que no sea un extremo de I se verifica que:

$$\lim_{\substack{x \to a \\ x < a}} f(x) = \sup\{f(x) : x \in I, \, x < a\}, \qquad \lim_{\substack{x \to a \\ x > a}} f(x) = \inf\{f(x) : x \in I, \, x > a\}$$

- ii) Si $a \in \mathbb{R} \cup \{-\infty\}$ es el extremo izquierdo de I, entonces:
 - a) Si f está minorada en I es $\lim_{x\to a} f(x) = \inf\{f(x) : x \in I \setminus \{a\}\}.$
 - b) Si f no está minorada en I es $\lim_{x\to a} f(x) = -\infty$.
- iii) Si $a \in \mathbb{R} \cup \{+\infty\}$ es el extremo derecho de I, entonces:
 - a) Si f está mayorada en I es $\lim_{x\to a} f(x) = \sup\{f(x): x\in I\setminus\{a\}\}.$
 - b) Si f no está mayorada en I es $\lim_{x\to a} f(x) = +\infty$.

Demostración. Supongamos que $a \in I$ no es el extremo izquierdo de I, es decir que el conjunto $\{x \in I : x < a\}$ no es vacío. Entonces, el conjunto $B = \{f(x) : x \in I, x < a\}$ tampoco es vacío y, por ser f creciente, el número f(a) es un mayorante de B. Sea $\alpha = \sup\{f(x) : x \in I, x < a\}$. Dado $\varepsilon > 0$, el número $\alpha - \varepsilon$ no puede ser mayorante de B, es decir, tiene que haber algún punto $x_0 \in I$, $x_0 < a$ tal que $\alpha - \varepsilon < f(x_0)$. Sea $\delta = a - x_0 > 0$. Entonces para $a - \delta < x < a$, esto es, para $x_0 < x < a$, se verifica que $\alpha - \varepsilon < f(x_0) \leqslant f(x) \leqslant \alpha$, lo que claramente implica que $\alpha - \varepsilon < f(x) < \alpha + \varepsilon$, es decir, $|f(x) - \alpha| < \varepsilon$. Hemos probado así que $\lim_{\substack{x \to a \\ x < a}} f(x) = \sup\{f(x) : x \in I, x < a\}$.

Los demás casos se prueban de forma muy parecida y quedan como ejercicios. Igualmente, queda como ejercicio considerar el caso en que la función es decreciente.

- **4.54 Teorema** (**Discontinuidades de las funciones monótonas**). Sea f una función monótona en un intervalo. Entonces:
 - i) En los puntos del intervalo que no son extremos del mismo, f solamente puede tener discontinuidades de salto.
 - ii) Si el intervalo tiene máximo o mínimo, f puede tener en dichos puntos discontinuidades evitables.
 - iii) El conjunto de las discontinuidades de f es numerable.