Automata on Infinite Structure Fall 2018

Exercice Sheet 7

Author: Sylvain Julmy

Professor: Ultes-Nitsche Ulrich Assistant: Stammet Christophe

Exercise 1

Theorem. PSPACE is closed under union, intersection and complement.

Proof. Assume $L_1, L_2 \in \mathcal{PSPACE}$, hence there exist TM M_1 and M_2 that are using polynomial space, such that M_1 decides L_1 in nondeterministic time $O(n^k)$ and in polynomial space $O(n^{k'})$, and M_2 decides L_2 in nondeterministic time $O(n^l)$ and in polynomial space $O(n^{l'})$. We show that

- 1. there exist a decider M in nondeterministic polynomial time and polynomial space such that $L(M) = L_1 \cup L_2$.
- 2. there exist a decider M in nondeterministic polynomial time and polynomial space such that $L(M) = L_1 \cap L_2$.

The constructions are standard ones.

- 1. Intersection: we run the word ω on M_1 , if M_1 reject it, then M reject it too, else we run ω on M_2 , if M_2 reject it, then M reject it too, else M accept ω . Clearly, M is a poly-time nondeterministic decider and a poly-space decider for $L_1 \cap L_2$, for the input ω of length n, the time complexity is $O(n^{\max(k,l)})$ and the space complexity is $O(n^{\max(k',l')})$.
- 2. Union: we run the word ω on M_1 , if M_1 accept it, then M accept it too, else we run ω on M_2 , if M_2 accept it, then M accept it too, else M reject ω . Clearly again, M is a poly-time nondeterministic decider and a poly-space decider for $L_1 \cap L_2$, for the input ω of length n, the time complexity is $O(n^{\max(k,l)})$ and the space complexity is $O(n^{\max(k',l')})$. We could also choose non-deterministically either M_1 or M_2 and use only the selected machine.

To prove that \mathcal{PSPACE} is closed under complement, we use the fact that every language $L \in \mathcal{PSPACE}$ has a deterministic poly-space TM M, we can swap the accepting and non-accepting states in M in polynomial time and get a poly-space decider for \bar{L} , hence $\bar{L} \in \mathcal{PSPACE}$.

Exercise 2

$$\begin{array}{c} w_1 \\ q_01010 \longrightarrow 1q_0010 \longrightarrow 10q_010 \longrightarrow 101q_00 \longrightarrow 1010q_0 \longrightarrow 101q_10 \longrightarrow 10q_111 \longrightarrow 101q_21 \\ \\ w_2 \\ q_00100 \longrightarrow 0q_0100 \longrightarrow 01q_000 \longrightarrow 010q_00 \longrightarrow 0100q_0 \longrightarrow 010q_10 \longrightarrow 01q_101 \longrightarrow 0q_1111 \longrightarrow 01q_211 \\ \end{array}$$