Министерство образования и науки Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики

Методы оптимизации Лабораторная работа №3

Факультет ПМИ

Группа ПМ-01

Студенты Александров М.Е.

Жигалов П.С.

Преподаватели Черникова О.С.

Чимитова Е.В.

Вариант 4

1. Цель работы

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения задачи нелинейного программирования от величины коэффициента штрафа.

2. Задание

- 1. Применяя методы поиска 0-го порядка на основании исходных текстов программ, реализующих соответствующие алгоритмы, построить программу для решения задачи нелинейного программирования с использованием барьерных и штрафных функций.
- 2. Исследовать сходимость методов штрафных и барьерных функций в зависимости от выбора штрафных и барьерных функций соответственно и стратегии выбора коэффициентов штрафа, осуществляя спуск из различных исходных точек. Исследовать сходимость, фиксируя точность определения минимума, количество итераций метода и степень нарушения ограничений в зависимости от задаваемой величины коэффициента штрафа.

Целевая функция:
$$f(x,y) = \frac{2}{1 + \frac{1}{4}(x-1)^2 + (y-2)^2} + \frac{1}{1 + \frac{1}{9}(x-3)^2 + \frac{1}{9}(y-1)^2}$$

Ограничение: $3x + y \le 3$

Задача без ограничений: Q(x, y, r) = f(x, y) + rG[g(x, y)].

3. Результаты исследований метода штрафных функций

3.1. Зависимость от начального приближения

$$\varepsilon = 10^{-7}$$
, $r_0 = 1$, $r_{k+1} = 10r_k$, $G[g(x,y)] = \left[\frac{1}{2}\{g(x,y) + |g(x,y)|\}\right]^2$

\overline{x}_0	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
0.25, 1,75	9	662	3.73558640e-01, 1.87932422e+00	-2.33732491e+00
-2, -2	9	746	3.62768002e-01, 1.91169616e+00	-2.33907174e+00
-10, -10	10	679	3.66841268e-01, 1.89947620e+00	-2.33882178e+00

При прочих равных условиях начальное приближение не особо влияет на результат. Однако, при неудачном подборе штрафных параметров можно добиться эффекта, когда начальное приближение будет значительно влиять на результат.

3.2. Зависимость от стратегии выбора коэффициентов штрафа

$$\varepsilon = 10^{-7}$$
, $r_0 = 1$, $\overline{x}_0 = (-2, -2)$, $G[g(x, y)] = \left[\frac{1}{2}\{g(x, y) + |g(x, y)|\}\right]^2$

Стратегия	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
$r_{k+1} = 2r_k$	19	1284	3.62393762e-01, 1.91281951e+00	-2.33906980e+00
$r_{k+1} = 5r_k$	10	756	3.62654174e-01, 1.91203771e+00	-2.33907157e+00
$r_{k+1} = 10r_k$	9	746	3.62768002e-01, 1.91169616e+00	-2.33907174e+00
$r_{k+1} = 20r_k$	6	451	1.63508916e+00, -1.90526716e+00	-5.88544872e-01
$r_{k+1} = r_k + 1$	74	3732	3.63266877e-01, 1.91174474e+00	-2.33942518e+00
$r_{k+1} = (r_k + 1)^2$	7	669	3.31005551e-01, 2.00698354e+00	-2.32382546e+00
$r_{k+1} = (r_k + 1)^3$	6	585	3.62765978e-01, 1.91170201e+00	-2.33907169e+00
$r_{k+1} = (r_k + 1)^4$	4	338	1.63465328e+00, -1.90395916e+00	-5.88777190e-01

Прибавление к коэффициентам константы дает самый плохой эффект, линейная зависимость дает эффект намного лучший, но до определенного момента, дальше метод не сходится к верному ответу. Степенная зависимость дает наиболее выраженный эффект до определенной степени.

3.3. Зависимость от выбора начального коэффициента штрафа

$$\varepsilon = 10^{-7}$$
, $\overline{x}_0 = (-2, -2)$, $r_{k+1} = 10r_k$, $G[g(x, y)] = \left[\frac{1}{2}\{g(x, y) + |g(x, y)|\}\right]^2$

r_0	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
0.001	11	900	3.62831447e-01, 1.91150572e+00	-2.33907165e+00
0.1	10	795	3.62376261e-01, 1.91287132e+00	-2.33906945e+00
1	9	746	3.62768002e-01, 1.91169616e+00	-2.33907174e+00
10	7	611	3.62763827e-01, 1.91170869e+00	-2.33907174e+00
100	7	536	3.62765440e-01, 1.91170384e+00	-2.33907174e+00

Наблюдается зависимость: чем выше начальный коэффициент штрафа, тем меньше производится итераций и вычислений функции.

3.4. Зависимость от выбора функции штрафа

$$\varepsilon = 10^{-7}$$
, $r_0 = 1$, $\overline{x}_0 = (-2, -2)$, $r_{k+1} = 10r_k$, $G[g(x, y)] = \left[\frac{1}{2}\{g(x, y) + |g(x, y)|\}\right]^{\xi}$

ξ	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
1	2	106	1.66666660e+00, -1.99999979e+00	-5.71939332e-01
2	9	746	3.62768002e-01, 1.91169616e+00	-2.33907174e+00
4	20	1600	3.50437747e-01, 1.94868849e+00	-2.33677468e+00
6	31	2560	3.62878382e-01, 1.91136690e+00	-2.33907198e+00
8	42	3055	3.62766549e-01, 1.91170344e+00	-2.33907241e+00

При $\xi=1$ метод сошелся не туда, при $\xi\geq 2$ с возрастанием ξ возрастало число итераций и вычислений функции.

3.5. Зависимость от выбора точности

$$r_0 = 1$$
, $\overline{x}_0 = (-2, -2)$, $r_{k+1} = 10r_k$, $G[g(x, y)] = \left[\frac{1}{2}\{g(x, y) + |g(x, y)|\}\right]^2$

ε	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
1E-3	6	443	3.63349161e-01, 1.91195047e+00	-2.33952861e+00
1E-6	7	617	3.62758021e-01, 1.91172713e+00	-2.33907198e+00
1E-9	10	930	3.62772155e-01, 1.91168353e+00	-2.33907171e+00
1E-12	13	1406	3.62772163e-01, 1.91168351e+00	-2.33907171e+00

От выбора точности конечный результат практически не изменяется, а количество вычислений функции сильно возрастает.

4. Результаты исследований метода барьерных функций

4.1. Зависимость от начального приближения

$$\varepsilon = 10^{-7}$$
, $r_0 = 1$, $r_{k+1} = r_k / 2$, $G[g(x, y)] = -\frac{1}{g(x, y)}$

\overline{x}_0	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
0.25, 1,75	43	2540	3.62760411e-01, 1.91171779e+00	-2.33907148e+00
-2, -2	43	2624	3.62758397e-01, 1.91172384e+00	-2.33907148e+00
-10, -10	43	3232	3.63473439e-01, 1.90957829e+00	-2.33906382e+00

При прочих равных условиях начальное приближение не особо влияет на результат.

4.2. Зависимость от стратегии выбора коэффициентов штрафа

$$\varepsilon = 10^{-7}$$
, $r_0 = 1$, $\overline{x}_0 = (-2, -2)$, $G[g(x, y)] = -\frac{1}{g(x, y)}$

Стратегия	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
$r_{k+1} = r_k / 2$	43	2624	3.62758397e-01, 1.91172384e+00	-2.33907148e+00
$r_{k+1} = r_k / 3$	12	1141	3.62705668e-01, 1.91188298e+00	-2.33907165e+00
$r_{k+1} = r_k / 4$	19	1998	1.18987043e+00, 1.97444573e+00	-2.66132564e+00
$r_{k+1} = \left(0.5r_k\right)^2$	6	509	3.60683501e-01, 1.91794955e+00	-2.33900636e+00
$r_{k+1} = \left(0.5r_k\right)^4$	3	299	3.93058819e-01, 1.82082351e+00	-2.32549669e+00
$r_{k+1} = \left(0.5r_k\right)^6$	8	886	1.18213161e+00, 1.97397179e+00	-2.66129648e+00

Использование степенной зависимости дает лучший эффект, чем использование линейной зависимости.

4.3. Зависимость от выбора начального коэффициента штрафа

$$\varepsilon = 10^{-7}$$
, $\overline{x}_0 = (-2, -2)$, $r_{k+1} = (0.5r_k)^2$, $G[g(x, y)] = -\frac{1}{g(x, y)}$

r_0	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
3	8	923	1.18968146e+00, 1.97443385e+00	-2.66132562e+00
2	3	921	4.04935683e-01, 1.78519294e+00	-2.31305983e+00
1	6	509	3.60683501e-01, 1.91794955e+00	-2.33900636e+00
0.9	5	568	1.18482694e+00, 1.97413699e+00	-2.66131325e+00

Метод сильно чувствителен к выбору начального коэффициента штрафа, в данном случае оптимальным являлся выбор коэффициента из отрезка [1,2].

4.4. Зависимость от выбора функции штрафа

$$\varepsilon = 10^{-7}$$
 , $r_0 = 1$, $\overline{x}_0 = (-2, -2)$, $r_{k+1} = (0.5r_k)^2$

G[g(x,y)]	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
-1/g(x,y)	6	509	3.60683501e-01, 1.91794955e+00	-2.33900636e+00
$-1/\ln(-g(x,y))$	8	8	-nan, -nan	nan

Наиболее подходит $G[g(x,y)] = -\frac{1}{g(x,y)}$, так как не удается вычислить логарифм отрицательного числа.

4.5. Зависимость от выбора точности

$$r_0 = 1$$
, $\overline{x}_0 = (-2, -2)$, $r_{k+1} = r_k / 2$, $G[g(x, y)] = -\frac{1}{g(x, y)}$

ε	Итераций	Вычислений	\overline{x}	$f(\overline{x})$
1E-3	15	991	3.55896064e-01, 1.91455404e+00	-2.33498269e+00
1E-6	35	2193	3.62735793e-01, 1.91177667e+00	-2.33906805e+00
1E-9	61	4329	1.18986929e+00, 1.97444550e+00	-2.66132564e+00

От выбора точности конечный результат может и ухудшиться, а количество вычислений функции сильно возрастает.

5. Общий вывод

Метод и вид функций следует выбирать исходя из задачи. В данной тестовой задаче наиболее целесообразно было применение метода штрафных функций, так как он оказался более устойчивым к различным изменениям параметров. Как это обычно бывает с менее устойчивыми методами, метод барьерных функций смог за наименьшее число итераций и вычислений функции отыскать решение среди рассмотренных параметров.