10

WO 99/30458

1. A method for producing an elliptic curve point multiplication product, Q = eP, using an arbitrary integer e, a point P on an elliptic curve group G defined over a field F, where $G \subset F$

constructing a set G';

 $\times F$, comprising the steps of:

constructing a mapping T from G into the set G', constructing a mapping T^{-1} from G' onto G, and constructing an operation \oplus defined on G', such that (a) given $P \in G$, $T^{-1}(T(P)) = P$, and (b) $P + P = T^{-1}(P' \oplus P')$, where P' = T(P);

producing an elliptic curve point multiplication product Q by transforming the point P to the point P' using the mapping T, performing the operation \oplus on the point P' to determine the point Q' = e P', transforming the point Q' to the product Q using the mapping T', and using the product Q in a cryptographic operation.

- The method of claim 1 wherein the set G, the set G', the mapping T, the operation \oplus , and the mapping T^{-1} are constructed such that given $P_1, P_2, ..., P_N \in G$, where N is an integer, the computation of $T^{-1}(T(P_1) \oplus T(P_2) \oplus ... \oplus T(P_N))$ is more efficient than the computation of $P_1 \oplus P_2 + ... + P_N$.
 - 3. The method of claim 1 wherein:

the mapping T is constructed by selecting any element r of the field F, and defining T as T: $(x, y) \to (x \cdot r, y \cdot r), \text{ where } P = (x, y) \in G, \text{ and } \cdot \text{ is the multiplication operator in } F; \text{ and}$ $\text{the mapping } T \text{ is constructed by defining } T: (u, v) \to (u \cdot r^{-l}, v \cdot r^{-l}), \text{ where } P' = (u, v) \in F$

5 ⋅ G′.

4.

[]

5

- The method of claim 3 wherein the field F is a member of GF(p).
- The method of claim 4 wherein the element r is selected as the smallest power of 2 5. that is larger than p.
- The method of claim 4 wherein the element r is selected as the product of prime 6. numbers.
- The method of claim 4 wherein the operation \oplus is constructed such that the 7. addition of two points in the set G' is given by:

$$(x_3, y_3) = (x_1, y_1) \oplus (x_2, y_2),$$

$$z' = (x_2' - x_1)^{-1} \cdot r^2$$
;

$$L' = (y_2' - y_1') \cdot z' \cdot r^{-l};$$

$$x_3' = L' \cdot L' \cdot r^{-1} - x_1' - x_2'$$
, and

$$y_3' = L' \cdot (x_1' - x_3') \cdot r^{-1} - y_1'.$$

The method of claim 4 wherein the operation \oplus is constructed such that the 8. doubling of a point in the set G' is given by:

$$(x_1',y_1') \oplus (x_1',y_1') = (x_3',y_3');$$

$$z' = (y_l' + y_l)^{-l} \cdot r^2$$
;

$$L' = ((x_1' + x_1' + x_1') \cdot x_1' \cdot r^{-1} + a) \cdot z' \cdot r^{-1};$$

$$x_3' = L' \cdot L' \cdot r^{-l} - x_1' - x_1'$$
, and

$$y_3' = L' \cdot (x_1' - x_3') \cdot r^{-1} - y_1'$$

5

- The method of claim 4 wherein the Montgomery Algorithm in GF(p) is utilized to perform the operation \oplus on the point P' to determine the point Q' = e P'.
 - 10. The method of claim 3 wherein the field F is a member of GF(2^k).
- The method of claim 10, wherein the operation \oplus is constructed such that the addition of two points in the set G' is given by:

$$(x_{3}',y_{3}) = (x_{1}',y_{1}) \oplus (x_{2}',y_{2}');$$

$$z' = (x_{1}' + x_{2})^{-l} \cdot r^{2};$$

$$L' = (y_{1}' + y_{2}') \cdot z' \cdot r^{-l};$$

$$x_{3}' = (L' \cdot L' \cdot r^{-l}) + L' + x_{1}' + x_{2}' + \alpha'; \text{ and}$$

$$y_{3}' = (L' \cdot (x_{1}' + x_{3}') \cdot r^{-l}) + x_{3}' + y_{1}'.$$

12. The method of claim 10, wherein the operation \oplus is constructed such that the doubling of a point is given by:

$$(x_{1}',y_{1}') \oplus (x_{1}',y_{1}') = (x_{3}',y_{3}');$$

$$z' = (x'_{1})^{-1} \cdot r^{2};$$

$$x_{3}' = x_{1}' \cdot x_{1}' \cdot r^{-1} + (z' \cdot z' \cdot r^{-1}) \cdot b \cdot r^{-1}; \text{ and}$$

$$y_{3}' = x_{1}' \cdot x_{1}' \cdot r^{-1} + (x_{1}' + y_{1}' \cdot z' \cdot r^{-1}) \cdot x_{3}' \cdot r^{-1} + x_{3}'.$$

- 13. The method of claim 10 wherein the element r is selected as $x^k \mod n(x)$, where n(x) is the irreducible polynomial generating the field $GF(2^k)$.
 - 14. The method of claim 10 wherein the Montgomery Algorithm in GF(2^k) is utilized

10

WO 99/30458 PCT/US98/25824

to perform the operation \oplus on the point P' to determine the point Q' = e P'.

The method of claim 1 wherein the step of performing the operation \oplus on the point P' utilizes a binary method.

- 16. The method of claim 1 wherein the step of performing the operation \oplus on the point P' utilizes an M-ary method.
- The method of claim 1 wherein the elements of sets G and G' are implemented using Projective Coordinates.
- 18. A method for optimizing the calculation of an expression $f = f(x_1, ..., x_i, ..., x_n)$, wherein the expression f is comprised of a finite number of arbitrary field operations over any finite field F, and $x_1, ..., x_i, ..., x_n$ are all elements of F, comprising the steps of:

selecting an element r, a constant, from the field F;

transforming the expression $f = f(x_1, ..., x_i, ..., x_n)$ to the $f' = f'(x_1' ..., x_i', ..., x_n')$ by

replacing all occurrences of x in the expression f with x, giving f_l , where x denotes a variable or constant of f;

replacing all occurrences of $x \cdot y$ in the expression f_1 with $x \otimes y$, giving f_2 , where x and y denote subexpressions of f_1 ;

replacing all occurrences of x^{-l} in the expression f_2 with $x^{-l} + r^2$, giving f_3 , where x denotes a subexpression of f_2 ;

replacing all occurrences of $x \otimes y$ in the expression f_3 with $x \cdot y \cdot r^{-1}$, giving f_4 , where x and y denote subexpressions of f_3 ; and

5

replacing all occurrences of x' in the expression f_4 with $x \cdot r$, giving f',

where x denotes a primed variable or primed constant in f_4 ; 15

determining $f = f' \cdot m^{-1}$; and

using $f' \cdot m^{-l}$ to calculate f in a cryptographic operation.

- The method of claim 18 wherein each instance of $x' \cdot y' \cdot m^{-l}$ is computed using the 19. Montgomery Algorithm when the set F is a member of GF(p).
- The method of claim 18 wherein each instance of $x' \cdot y' \cdot m^{-1}$ is computed using the 20. Montgomery Algorithm in $GF(2^k)$ when the set F is a member of $GF(2^k)$.
- A method for producing an elliptic curve point addition product, Q = P + P, using 21. a point P on an elliptic curve group G defined over a field F, where $G \subset F \times F$, comprising the steps of:

constructing a set G';

constructing a mapping T from G into the set G', constructing a mapping T' from G' onto G, and constructing an operation \oplus defined on G', such that (a) given $P \in G$, $T^{-l}(T(P)) = P$, and (b) $P+P = T^{-1}(P' \oplus P')$, where P' = T(P); and

producing an elliptic curve point addition product Q by transforming the point P to the point P' using the mapping T, performing the operation \oplus on the point P' and the point P' to 10 determine the point Q', transforming the point Q' to the product Q using the mapping T^{-l} ; and using the product Q in a cryptographic operation.

> A method for producing an elliptic curve point addition product, Q + P = S, using 22.

10

: A

5

points P and S on an elliptic curve group G defined over a field F, where $G \subset F \times F$, comprising the steps of:

constructing a set G';

constructing a mapping T from G into the set G', constructing a mapping T^{-l} from G' onto G', and constructing an operation \oplus defined on G', such that (a) given $P \in G$, $T^{-l}(T(P)) = P$, and (b) $P+S=T^{-l}(P'\oplus S')$, where P'=T(P) and S'=T(S); and

producing an elliptic curve point addition product Q by transforming the point P to the point P' using the mapping T, by transforming the point S to the point S' using the mapping T, performing the operation \oplus on the point P' and the point S' to determine the point Q', transforming the point Q' to the product Q using the mapping T', and using the product Q in a cryptographic operation.

Apparatus for producing an elliptic curve point multiplication product, Q = eP, using an arbitrary integer e, a point P on an elliptic curve group G defined over a field F, where $G \subset F \times F$, comprising:

means for constructing a set G';

means for constructing a mapping T from G into the set G', constructing a mapping T^{-l} from G' onto G, and constructing an operation \oplus defined on G', such that (a) given $P \in G$, $T^{-l}(T(P)) = P$, and (b) $P + P = T^{-l}(P' \oplus P')$, where P' = T(P); and

means for producing an elliptic curve point multiplication product Q by transforming the point P to the point P' using the mapping T, performing the operation \oplus on the point P' to determine the point Q' = e P', transforming the point Q' to the product Q using the mapping T'; and

means for using the product Q in a cryptographic operation.