Universidade Federal do Maranhão DEEE0189 - Laboratório de aplicações de microcomputadores

Sistema de assistência ao motorista (ADAS) para deteccão de aproximação de veículos utilizando fotosensor (atualizado 8 de Junho de 2017)

1 Problema

Considere o cenário representado na Figura 1. Os carros A e B estão em movimento em uma rodovia. O motorista do carro A adormece ao volante fazendo com que o carro A acelere diminuindo a distância entre o carro A e o carro B. Deseja-se construir um sistema de assitência ao motorista, também conhecido como ADAS, para detectar que a distância entre o carro A e o carro B diminuiu e alertar o motorista do carro B.

Figura 1: Dois carros em movimento em uma rodovia. Deseja-se construir um ADAS para detectar que a distância entre o carro A e o carro B diminuiu e alertar o motorista do carro B.

Figura 2: Dashboard do carro B com array de LED para alerta ao motorista de duas funç oes.

2 Especificações

2.1 Método

No cenário ilustrado na Figura 1, vamos assumir que os faróis do carro A estão sempre ligados. Além disso, vamos assumir que inicialmente os carros A e B tem mesma velocidade. E que a aceleração do carro do carro B é sempre zero. Neste caso, a distância entre o carro A e o carro B é apenas função da acelereção do carro A.

Note que a medida que o carro A acelera, a distância entre os carros diminuirá. Uma vez que a distância entre os carros A e B diminui, espera-se que a intesidade de luz recebida no foto-sensor do carro B aumente. Dessa forma, talvez seja possível detectar a aproximação do carro A baseado na variação de intensidade de luz no foto-sensor.

Para alertar o motorista do carro B sobre a possível aproximação, deve-se utilizar um array de LED que poderia ser instalado no dashboard do carro. O sistema de alerta deve possuir duas funcionalidades. A primeira função do sistema de alerta é indicar a distância entre os carros A e B. Esta função pode ser realizada ligando de um a três LED de acordo com a intensidade de luz recebida no foto-sensor. Especificamente, quanto maior a intensidade de luz recebida, maior o número de LED ligados.

A segunda função do sistema de alerta é indicar que a distância entre os dois carros está diminuindo. Especificamente, o sistema deve acender um quarto LED se e somente a intensidade de luz em um instante é menor que no instante de medição anterior.

O sistema de alerta descrito acima é ilustrado na Figura 2.

Figura 3: Simule os pedais acelerador e freio utilizando os botões do kit NXP.

2.2 Upgrade 1 (25 de Maio de 2017)

Após perceber uma aproximação, o motorista do carro B decide acelerar o veículo, aumentando a distância entre o carro A e o carro B. Neste caso, os LED do dashboard devem responder adquedamente a mudança de distância. Utilizando uma botão do kit NXP, simule um acelerador (Figura 3). Reescreva o controle dos LED para que o sistema de alerta ao motorista funcione adequadamente.

2.3 Upgrade 2 (8 de Junho de 2017)

Implemente um o pedal de freio do carro B utilizando o segundo botão do Kit NXP (Figura 3). Note que o funcionamento do pedal de freio deve ser independente do acelerador. Mais uma vez os LED do dashboard devem responder adequadamente quando o carro sofrer uma redução de velocidade causada pelo pedal de freio. É importante que essa a resposta do dashboard seja gradual para que seja possível efetuar verificação visual.

2.4 Materiais

- Simulador dos faróis do carro A: utilizar laterna.
- Simulador do acelerador: utilizar um botão.
- Foto-sensor do carro B: utilizar o foto-sensor do kit NXP com micro-controlador HCS12C.
- Temporização e amostragem: utilizar o módulo timer do HCS12C em conjunto com o conversor AD.

- Processamento aritmético: realizar no HCS12C utilizando linguagem C.
- Interface de alerta ao motorista no dashboard do carro B: array de LED do kit com microcontrolador HCS12C.

2.5 Métodos (19 de Abril de 2018)

Para implementar as funcionalidades acima utilize um modelo matemático para calcular distância entre os carros como exemplo

$$distancia = aceleracao - (luz + freio), \tag{1}$$

no qual distancia entre A e B aumenta quando o carro A acelera e diminui caso o carro A freie, ou o carro B se aproxima.

3 Relatório

Após execução em laboratório, o aluno deve escrever um relatório descrevendo e discutindo o sucesso ou falha em desenvolver o projeto. Em caso de falha, o aluno deve explicitar as razões para o desenolvimento sem sucesso. O relatório a ser produzido será utilizado como primeira avaliação da disciplina. A entrega do relatório é portanto obrigatória. O relatório deve ser entregue por email em PDF até à proxíma aula apos finalização do projeto.