Lot 4 : Grille d'aubes de compresseur

1 Introduction

Validation réalisée par : G. ETIEVENT. Rapport généré le 26/11/2007.

1.1 Description

Validation de Trio_U sur une grille d'aubes de compresseur.

Grandeurs caracteritisques:

-corde (c) = 12.725cm

-pas d'aube (s) = 7.62cm

-angle de calage = 14.4

1.2 Paramètres Trio_U

• Version Trio_U: 1.5.4_beta build 051007

• Dimension: 2D

• Discretisation : VEFPre1B

• Modèle de turbulence : kEpsilon

• Convection QDM : EF_Stab

• Convection kEpsilon : EF_Stab

 \bullet Lois de Paroi : standard & TBLE

1.3 Liste des cas test

- ./CasNominal/0CalculGrossier/2CalculEFStab/aube.data : angle d'attaque 40, loi de paroi standard, maillage grossier.
- ./CasNominal/1CalculFin/2CalculEFStab/aube.data : angle d'attaque 40, loi de paroi standard, maillage fin.
- ./CasHorsNominal/0CalculGrossier/2CalculEFStab/aube.data : angle d'attaque 46, loi de paroi standard, maillage grossier.
- ./CasHorsNominal/1CalculFin/2CalculEFStab/aube.data : angle d'attaque 46, loi de paroi standard, maillage grossier.

1.4 Références :

- 1. 'Viscous flow in controlled diffusion compressor cascade with increasing indidence', Y. Elazar, R.P. Shreeve, Journal of turbomachinery, april 1990, vol. 112, pp 256-266.
- 2. 'Computational prediction of flow around highly loaded compressors-cascade blades with non-linear eddy viscosity models', W.L. Chen, F.S. Lien, M.A. Leschziner, Internation journal of heat and fluid flow 19 (1998), pp307-319.

- 3. 'One- and two-equation turbulence models for the prediction of complex cascade flows using unstructured grids', D.G. Koubogiannis, A.N. Athanasiadis, K.C. Giannakoglou, Computers & fluids 32 (2003), pp403-430.
- 4. 'A mapping of the viscous flow behaviour in a controlled diffusion compressor cascade using laser doppler velocimetry and preliminary evaluation of codes for the prediction of stall.', Y. Elazar, Naval Postgraduate School thesis, March 1988.

2 Cas nominal

Angle d'attaque : 40

Nombre de Reynolds: 740000 (soit une vitesse d'entrée: 66.8220 56.0703, norme = 87.2299).

2.1 Cp sur l'aube

Cp=(P-Pref)/(0.5*rho*Uref2)

- Référence : [2], fig 3a, p311 fichier ./Reference/Chen_Cp_40.csv
- PS G : Pressure side Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDEPSP.points

2 CAS NOMINAL

2.2 Vitesse tangente sur l'aube - Extrados

- SS G : Suction side Maillage grossier
 Trio_U 1.5.4beta051007
 fichier ./CasNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDESSP.points
- PS F : Pressure side Maillage fin Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDEPSP.points
- SS F : Suction side Maillage fin Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDESSP.points
- PS F TBLE : Pressure side Maillage fin, loi de paroi TBLE Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/3CalculTBLE/ReprisePost/aube_SONDEPSP.points
- SS F TBLE : Suction side Maillage fin Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/3CalculTBLE/ReprisePost/aube_SONDESSP.points

2.2 Vitesse tangente sur l'aube - Extrados

Tracé de u/Uref, pour les sondes 2 à 15 sur l'extrados de l'aube (Suction Side) Remarque : les courbes sont décalées de 0.25 à chaque sonde.

2.3 Vitesse normale sur l'aube - Extrados

Tracé de v/Uref, pour les sondes 2 à 15 sur l'extrados de l'aube (Suction Side) Remarque : les courbes sont décalées de 0.25 à chaque sonde.

2.4 Intensité turbulente sur l'aube - Extrados

Tracé de u'/Uref, pour les sondes 2 à 15 sur l'extrados de l'aube (Suction Side) u' = $\mathrm{sqrt}(2/3~\mathrm{k})$

Remarque : les courbes sont décalées de 0.25 à chaque sonde.

2.5 Vitesse tangente sur l'aube - Intrados

Tracé de u/Uref, pour les sondes 2 à 15 sur l'intrados de l'aube (Pressure Side) Remarque : les courbes sont décalées de 0.25 à chaque sonde.

2.6 Vitesse normale sur l'aube - Intrados

Tracé de u/Uref, pour les sondes 2 à 15 sur l'intrados de l'aube (Pressure Side) Remarque : les courbes sont décalées de 0.25 à chaque sonde.

2.7 Intensité turbulente sur l'aube - Intrados

Tracé de u'/Uref, pour les sondes 2 à 15 sur l'intrados de l'aube (Pressure Side) u' = $\mathrm{sqrt}(2/3~\mathrm{k})$

Remarque : les courbes sont décalées de 0.25 à chaque sonde.

2.8 Vitesse, x = fuite + 0.66cm

- Référence : [2], fig 5a, p312 fichier ./Reference/Chen_Usortie_40_0.66.csv
- u G : u/U Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDESORTIEV0.66.coupe
- u F : u/U Maillage fin Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDESORTIEV0.66.coupe
- u F TBLE : u/U Maillage fin, loi de paroi TBLE
 Trio_U 1.5.4beta051007
 fichier ./CasNominal/1CalculFin/3CalculTBLE/ReprisePost/aube_SONDESORTIEV0.66.coupe

2.9 Vitesse, x = fuite + 2.70cm

Description des courbes :

- Référence : [2], fig 5b, p312 fichier ./Reference/Chen_Usortie_40_2.7.csv
- u G : u/U Maillage grossier
 Trio_U 1.5.4beta051007
 fichier ./CasNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDESORTIEV2.70.coupe
- u F : u/U Maillage fin Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDESORTIEV2.70.coupe
- u F TBLE : u/U Maillage fin, loi de paroi TBLE Trio_U 1.5.4beta051007 fichier ./CasNominal/1CalculFin/3CalculTBLE/ReprisePost/aube_SONDESORTIEV2.70.coupe

3 Cas hors nominal

Angle d'attaque : 46

Nombre de Reynolds : 700000 (soit une vitesse d'entrée : 57.3196 59.3561, norme = 82.5147).

3.1 Cp sur l'aube

 $\mathrm{Cp}{=}(\mathrm{P}\text{-}\mathrm{Pref})/(0.5^*\mathrm{rho}^*\mathrm{Uref}\hat{2})$

- Référence : [2], fig 3a, p311 fichier ./Reference/Chen_Cp_46.csv
- PS G : Pressure side Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDEPSP.points
- SS G : Suction side Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDESSP.points
- PS F : Pressure side Maillage fin Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDEPSP.points
- SS F : Suction side Maillage fin Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDESSP.points

3.2 Vitesse, fluctuation de vitesse et intensité turbulente sur l'aube - Sonde 2

$$I = u'/U$$

$$u' = sqrt(2/3 k)$$

- u G : u/U Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDEPS02V.coupe
- \bullet v G : v/U Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDEPS02V.coupe
- u' G : I=u'/U Maillage grossier
 Trio_U 1.5.4beta051007
 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDEPS02K.coupe
- u F : u/U Maillage fin Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDEPS02V.coupe
- v F : v/U Maillage fin Trio_U 1.5.4beta051007

 $fichier \ ./ Cas Hors Nominal/1 Calcul Fin/2 Calcul EFS tab/Reprise Post/aube_SOND EPS 02 V. coupe the composition of the com$

 \bullet u' F : I=u'/U - Maillage fin Trio_U 1.5.4beta
051007 fichier ./CasHorsNominal/1Calcul Fin/2Calcul
EFStab/ReprisePost/aube_SONDEPS02K.coupe

3.3 Vitesse, x = fuite + 0.66cm

- Référence : [2], fig 5a, p312 fichier ./Reference/Chen_Usortie_46_0.66.csv
- \bullet G : u/U Maillage grossier Trio_U 1.5.4beta051007 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDESORTIEV0.66.coupe
- F: u/U Maillage fin
 Trio_U 1.5.4beta051007
 fichier ./CasHorsNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDESORTIEV0.66.coupe

3.4 Vitesse, x = fuite + 2.70cm

Description des courbes :

- Référence : [2], fig 5b, p312 fichier ./Reference/Chen_Usortie_46_2.7.csv
- G: u/U Maillage grossier
 Trio_U 1.5.4beta051007
 fichier ./CasHorsNominal/0CalculGrossier/2CalculEFStab/ReprisePost/aube_SONDESORTIEV2.70.coupe
- F: u/U Maillage fin
 Trio_U 1.5.4beta051007
 fichier./CasHorsNominal/1CalculFin/2CalculEFStab/ReprisePost/aube_SONDESORTIEV2.70.coupe

4 Grandeurs communes

Vérification des grandeurs calculées pour l'ensemble des cas étudiés :

4.1 Coefficient global de perte de pression totale (w)

Le coefficient global de perte de pression totale est donné par w = (Pe-Ps)/(Pe-Pdyn).

- Référence : Chen, fig 9, p315 fichier ./Reference/Chen_CoeffPertePression.csv
- G Sortie : w Maillage grossier X=Sortie Trio_U 1.5.4beta051007 fichier pertePression.data
- G 0.66cm : w Maillage grossier X=0.66cm Trio_U 1.5.4beta051007 fichier pertePression.data
- G 2.70cm : w Maillage grossier X=2.70cm Trio_U 1.5.4beta051007 fichier pertePression.data
- F Sortie : w Maillage fin X=Sortie Trio_U 1.5.4beta051007 fichier pertePression.data
- F 0.66cm : w Maillage fin X=0.66cm Trio_U 1.5.4beta051007 fichier pertePression.data

4 GRANDEURS COMMUNES

- 4.1 Coefficient global de perte de pression totale (w)
 - F 2.70cm : w Maillage fin X=2.70cm Trio_U 1.5.4beta051007 fichier pertePression.data
 - F TBLE Sortie : w Maillage fin X=Sortie Trio_U 1.5.4beta051007 fichier pertePression.data
 - F TBLE 0.66cm : w Maillage fin X=0.66cm Trio_U 1.5.4beta051007 fichier pertePression.data
 - F TBLE 2.70cm : w Maillage fin X=2.70cm Trio_U 1.5.4beta051007 fichier pertePression.data