POI	SKO-JAPOŃSKA WYŻSZA TECHNIK KOMPUTEROW	LABORATORIUM PODSTAW ELEKTRONIKI				
Ćw. 1	POMIARY N	POMIARY NAPIĘĆ I PRĄDÓW Rok ak				
	Imię i Nazwisko	Ocena	Data wykonania	ćwiczenia		
			Prowadzący z	zajęcia		

1.3.1. Pomiar napięcia stałego

1.3.1.1. Pomiar napięć na wyjściach zasilaczy przyrządy MX-900 za pomocą multimetru i oscyloskopu

Tab.1.

	U _M	δU_{M}	а	Uosc	δUosc	
	٧	%	dz	٧	%	
Zasilacz 5V						
Zasilacz 15V						
Zasilacz reg.						
	Pomiar multimetrem		Pomiar za pomocą oscyloskopu			

<u>Uwaga:</u>

- wyniki odczytane z multimetru podać z precyzją, jaką zapewnia przyrząd
- wynik pomiaru parametru <u>a</u> podać z precyzją do 0.1 działki

Wzory i obliczenia

Dla multimetru M4650B	Dla multimetru MX-620	Dla oscyloskopu
$\delta U_{M} = 0.05\% + \frac{3}{n} \cdot 100\%$	n	$\delta U_{OSC} = \delta C_y + \frac{\Delta a}{a} \cdot 100\%$ $U_{OSC} = a \cdot C_y$

gdzie:

n – wskazanie multimetru z pominięciem kropki dziesiętnej

C_y – czułość odchylania pionowego oscyloskopu (podczas pomiarów wybrać 1 V/dz lub 2 V/dz)

w obliczeniach przyjąć:

 $\delta C_v = 2\%$

 $\Delta a=0.1 dz$

1.3.1.2. Pomiar napięć na wyjściach dzielników nisko-omowego i wysoko-omowego (zagadnienie obciążania badanego układu przez przyrząd pomiarowy)

Tab.2.

	U_{we}	U _{wyo}	U _{wy}	U _{wyobc}
	V	V V		V
dzielnik 1kΩ/1kΩ				
dzielnik 1MΩ/1MΩ				
Uwagi	Wartość zmierzona w p. 1.3.1.1.	$Wartość obliczona ze$ $wzoru:$ $U_{wyo} = U_{we} \cdot \frac{R_2}{R_1 + R_2}$	Wartość zmierzona multimetrem	Wartość zmierzona przy dołączonym na wyjściu dzielnika oscyloskopie

 $\underline{\textit{Uwaga}}$: Przy pomiarze napięcia $\pmb{U}_{\textit{wyobc}}$ oscyloskop powinien mieć wybrane wejście DC.

<u>Wnioski</u>

1.3.2. Pomiar prądu stałego

1.3.2.1. Pomiar prądu za pomocą multimetru metodą bezpośrednią

<u>Uwaga</u>: Na zasilaczu regulowanym ustawić napięcie Uwe =1.0V

Wzory i obliczenia

Dla multime	tru M4650B	Dla multimetru MX-620			
zakres 2mA	zakres 200mA	zakres 2mA	zakres 200mA		
$\delta I = 0.3\% + \frac{3}{n} \cdot 100\%$	$\delta I = 0.5\% + \frac{3}{n} \cdot 100\%$	$\delta I = 0.8\% + \frac{4}{n} \cdot 100\%$	$\delta I = 1.0\% + \frac{5}{n} \cdot 100\%$		

Wnioski

1.3.2.1. Pomiar prądu za pomocą multimetru metodą pośrednią poprzez pomiar spadku napięcia na rezystorze

Tab.4

R	δR	U	δU	I	δΙ
Ω	%	V	%	mA	%

<u>Uwaga</u>: Przy wyciśniętym przycisku I/R-U1 połączyć multimetr, ustawiony do pomiaru rezystancji, z "gorącymi" przewodami dołączonymi do gniazd koncentrycznych WE i I-U1.

Wzory i obliczenia

Wyliczenie błędów	pomiaru rezystancji	pomiaru napięcia	względny wyznaczenia prądu metodą pośrednią
Dla multimetru M4650B	$\delta R = 0.2\% + \frac{5}{n} \cdot 100\%$	$\delta U = 0.05\% + \frac{3}{n} \cdot 100\%$	$\delta I = \delta U + \delta R$
Dla multimetru MX-620	$\delta R = 0.8\% + \frac{4}{n} \cdot 100\%$	$\delta U = 0.6\% + \frac{4}{n} \cdot 100\%$	$I = \frac{U}{R}$

Wnioski

1.3.3. Pomiar parametrów sygnałów zmiennych

1.3.3.1. Pomiar parametrów sygnału sinusoidalnego

Tab.5

	а	Су	U_pp	b	C _x	T	f _{obl}	f _{cz}
	dz	V/dz	٧	dz	ms/dz	ms	Hz	Hz
f≈1kHz								
f≈1MHz								

<u>Uwaga</u>: Podczas pomiarów pokrętła regulacji płynnej czułości odchylania poziomego i pionowego powinny być ustawione w pozycji "kalibracja". Ze względu na dokładność pomiaru należy zadbać, aby zmierzone parametry **a** i **b** miały możliwie duże wartości. Parametry te należy odczytać z precyzją 0.1 działki. Wartość zmierzonej przez multimetr częstotliwości należy zapisać z precyzją, jaką zapewnia przyrząd.

Wzory i obliczenia

Wartość między-szczytowa napięcia:	Okres:	Obliczona wartość częstotliwości:
$U_{\mathrm{pp}} = a \cdot C_{\mathrm{y}}$ gdzie: C_{y} – czułość odchylania pionowego oscyloskopu	$T = b \cdot C_x$ gdzie: C_x – czułość odchylania poziomego oscyloskopu	$f_{obl} = \frac{1}{T}$

<u>Wnioski</u>

1.3.3.2. Pomiar parametrów sygnału prostokątnego

Tab.6

	а	Су	U_{pp}	С	C _x	τ	d	Т	3	f _{obl}	f _{cz}
	dz	V/dz	V	dz	ms/dz	ms	dz	ms	-	Hz	Hz
$\varepsilon = 0.5$											
€ ≠ 0.5											

Wzory i obliczenia

Wartość międzyszczytowa napięcia:	Czas trwania impulsu:	Okres:	Współczynnik wypełnienia:	Obliczona wartość częstotliwości:
$\mathbf{U}_{pp} = \mathbf{a} \cdot \mathbf{C}_{y}$	$\tau = c \cdot C_x$	$T = d \cdot C_x$	$\varepsilon = \frac{\tau}{T}$	$f_{obl} = \frac{1}{T}$

<u>Wnioski</u>

1.3.3.3. Pomiar parametrów sygnału trójkątnego

Tab.7

	а	Су	U_pp	g	C _x	t _n	Sn
	dz	V/dz	V	dz	ms/dz	ms	V/s
fala sym.							
fala asym.							

c.d. tabeli

	h	to	S _o	b	Т	f _{obl}	f _{cz}
	dz	ms	V/s	dz	ms	Hz	Hz
fala sym.							
fala asym.							

Wzory i obliczenia

Wartość między-szczytowa napięcia: $U_{pp} = a \cdot C_y$

Czas narastania napięcia: $t_n = g \cdot C_x$

Szybkość narastania napięcia: $\mathbf{S}_{\mathrm{n}} = \frac{\mathbf{U}_{\mathrm{pp}}}{\mathbf{t}_{\mathrm{n}}}$

Czas opadania napięcia: $t_o = h \cdot C_x$

Szybkość opadania napięcia: $\mathbf{S}_{\mathrm{o}} = \frac{\mathbf{U}_{\mathrm{pp}}}{\mathbf{t}_{\mathrm{o}}}$

Okres: $T = d \cdot C_x$

Częstotliwość: $f_{obl} = \frac{1}{T}$

Wnioski