Appendices ACES Technical Reference

APPENDICES

The following pages contain the miscellaneous material referenced in the main body of the Technical Reference. Appendix A consists of various tables of coefficients.

Appendices

APPENDIX A - TABLES

TABLE OF CONTENTS

Table A-1: K _D Values for Use in Determining Armor Unit Weight	A-I
Table A-2: Layer Coefficient and Porosity for Various Armor Units	
Table A-3: Rough Slope Run-up Coefficients	
Table A-4: Grain-Size Scales (Soil Classification)	A-3
Table A-5: Major Tidal Constituents	
References and Bibliography	A-5

Appendix A - Tables

Appendices ACES Technical Reference

APPENDIX A - TABLES

Table A-1

К _D	Values	for Use in Det	ermining Armo	r Unit Weight (So	ource: EM 111	0-2-2904)		
			Structure Trunk ⁽⁷⁾			Structure Head		
Armor Units	n ⁽²⁾	Placement	Breaking Wave	Nonbreaking Wave	Breaking Wave	Nonbreaking Wave	Slope cot θ	
Quarrystone								
Smooth rounded	2	Random	1.2(1)	2.4	1.1(1)	1.9	1.5-3.0 ⁽⁸⁾	
Smooth rounded	>3	Random	1.6(1)	3.2(1)	1.4(1)	2.3(1)	1.5-3.0 ⁽⁸⁾	
Rough angular	1	Random ⁽³⁾	(3)	2.9(1)	(3)	2.3(1)	1.5-3.0 ⁽⁸⁾	
Rough angular	2	Random	2.0	4.0	1.9 ⁽¹⁾ 1.6 ⁽¹⁾ 1.3	3.2 2.8 2.3	1.5 2.0 3.0	
Rough angular	>3	Random	2.2(1)	4.5(1)	2.1(1)	4.2(1)	1.5-3.0 ⁽⁸⁾	
Rough angular	2	Special ⁽⁴⁾	5.8	7.0	5.3(1)	6.4	1.5-3.0(8)	
Parallelepiped ⁽⁹⁾	2	Special	7.0 - 20.0	8.5 - 24.0(1)			1.0-3.0	
Tetrapod and Quadripod	2	Random	7.0	8.0	5.0 ⁽¹⁾ 4.5 ⁽¹⁾ 3.5 ⁽¹⁾	6.0 5.5 4.0	1.5 2.0 3.0	
Tribar	2	Random	9.0(1)	10.0	8.3 ⁽¹⁾ 7.8 ⁽¹⁾ 6.0	9.0 8.5 6.5	1.5 2.0 3.0	
Dolos	2	Random	15.0(6)	31.0 ⁽⁶⁾	8.0 ⁽¹⁾ 7.0	16.0 ⁽¹⁾ 14.0 ⁽¹⁾	2.0 ⁽⁵⁾ 3.0	
Modified cube	2	Random	6.5(1)	7.5		5.0(1)	1.5-3.0(8)	
Hexapod	2	Random	8.0(1)	9.5	5.0(1)	7.0(1)	1.5-3.0 ⁽⁸⁾	
Toskane	2	Random	11.0(1)	22.0			1.5-3.0(8)	
Tribar	1	Uniform	12.0	15.0	7.5(1)	9.5(1)	1.5-3.0(8)	
Quarrystone - graded angular riprap	-	Random	2.2	2.5				

- (1) <u>CAUTION</u>: These KD values are unsupported and are provided only for preliminary design.
- (2) n is the number of units comprising the thickness of the armor layer.
- (3) The use of single layer of quarrystone armor units is not recommended for structures subject to breaking waves, and only under special conditions for structures subject to nonbreaking waves. When it is used, the stone should be carefully placed.
- (4) Special placement with long axis of stone placed perpendicular to structure face.
- (5) Stability of dolosse on slopes steeper than 1 on 2 should be substantiated by site-specific tests.
- (6) Refers to no-damage criteria (<5 percent displacement, rocking, etc.); if no rocking (<2 percent) is desired, reduce KD 50 percent (Zwamborn and Van Niekerk, 1982).
- (7) Applicable to slopes ranging from 1 on 1.5 to 1 on 5.
- (8) Until more information is available, the use of K_D should be limited to slopes ranging from 1 on 1.5 to 1 on 3. Some armor units tested on a structure head indicate a K_D-slope dependence.
- (9) Parallelepiped-shaped stone: long slab-like stone with long dimension approximately three times the shortest dimension (Markle and Davidson, 1979).

Appendix A - Tables A-1

ACES Technical Reference Appendices

Table A-2

Layer Coefficient and Porosity for Various Armor Units (Source: SPM)						
Armor Unit	n	Placement	Layer Coefficient	Porosity %		
Quarrystone (smooth)	2	Random	1.02	38		
Quarrystone (rough)	2	Random	1.00	37		
Quarrystone (rough)	>3	Random	1.00	40		
Quarrystone (parallelepiped)	2	Special		27		
Cube (modified)	2	Random	1.10	47		
Tetrapod	2	Random	1.04	50		
Quadripod	2	Random	0.95	49		
Hexipod	2	Random	1.15	47		
Tribar	2	Random	1.02	54		
Dolos	2	Random	0.94	56		
Toskane	2	Random	1.03	52		
Tribar	1	Uniform	1.13	47		
Quarrystone	Graded	Random	-	37		

Table A-3

Rough Slope Run-Up Coefficients (Source: Smith, 1986)					
Armor Material	a	ь			
Riprap	0.956	0.398			
Rubble (Permeable - No Core)	0.692	0.504			
Rubble (2 Layers - Impermeable Core)	0.775	0.361			
Modified Cubes	0.950	0.690			
Tetrapods	1.010	0.910			
Quadripods	0.590	0.350			
Hexapods	0.820	0.630			
Tribars	1.810	1.570			
Dolosse	0.988	0.703			

Table A-4

Grain-Size Scales (Soil Classification)						
	Unified Soils Classification	ASTM Mesh	РНІ	ММ	Wentworth Classification	
	Cobble		-8.00 -7.00 -8.75 -8.50 -6.25	256.00 128.00 107.60 90.51 76.11	Cobble	
_	Coarse Gravel		-6.00 -5.75 -5.50 -5.25 -5.00 -4.75 -4.50 -4.25	64.00 53.82 45.26 38.06 32.00 26.91 22.63 19.00		G R A
_	Fine Gravel	2.5 3 3.5 4	-4.00 -3.75 -3.50 -3.25 -3.00 -2.75 -2.50 -2.25	16.00 13.45 11.31 9.51 8.00 6.73 5.66 4.76	Pebble	V E L
	Coarse	5 6 7 8	-2.00 -1.75 -1.50 -1.25	4.00 3.36 2.83 2.38	Granule	
c	Madia	10 12 14 16	-1.00 -0.75 -0.50 -0.25	2.00 1.68 1.41 1.19	Very Course	
S A N	Medium	18 20 25 30 35	0.00 0.25 0.50 0.75 1.00	1.00 0.84 0.71 0.59 0.50	Coarse	s
D		40 45 50 60	1.25 1.50 1.75 2.00	0.42 0.35 0.30 0.25	Medium	A N
	Fine	70 80 100 120	2.25 2.50 2.75 3.00	0.21 0.177 0.149 0.125	Fine	D
_		140 170 200	3.25 3.50 3.75	0.105 0.088 0.074	Very Fine	
	Silt	230 270 325 400	4.00 4.25 4.50 4.75 5.00 6.00 7.00	0.0625 0.0526 0.0442 0.0372 0.0313 0.0156 0.0078	Silt	M U
	Clay		8.00 9.00 10.00 12.00	0.0039 0.0020 0.0009 0.0002	Clay	D

ACES Technical Reference Appendices

Table A-5

Symbol	Constituent Name	Frequency (degrees/hour	
M ₂	Lunar semidiurnal	28.984	
S ₂	Principal solar semidiurnal	30.000	
N ₂	Larger lunar elliptic semidiurnal	28.439	
K ₁	Lunisolar diurnal	15.041	
M ₄	Shallow-water overtide of principal lunar	57.968	
o_1	Principal lunar diurnal	13.943	
M ₆	Shallow-water overtide of principal lunar	86.952	
MK3	Shallow-water compound	44.025	
S ₄	Shallow-water overtide of principal solar	60.000	
MN_4	Shallow-water compound	57.423	
√2	Larger lunar evectional	28.512	
s ₆	Shallow-water overtide of principal solar	90.000	
μ 2	Variational	27.968	
2N ₂	Lunar elliptic semidiurnal (second order)	27.895	
001	Lunar diurnal (second order)	16.139	
λ2	Smaller lunar evectional	29.455	
s ₁	Solar diurnal	15.000	
М1	Smaller lunar elliptic diurnal	14.496	
J ₁	Smaller lunar elliptic diurnal	15.585	
M _m	Lunar monthly	0.544	
Ssa	Solar semidiurnal	0.082	
Sa	Solar annual	0.041	
M _{sf}	Lunisolar synodic fortnightly	1.015	
M _f	Lunar fortnightly	1.098	
ρ1	Larger lunar evectional diurnal	13.471	
Q_1	Larger lunar elliptic diurnal	13.398	
T ₂	Larger solar elliptic	29.958	
R ₂	Smaller solar elliptic	30.041	
2Q1	Lunar elliptic diurnal (second order)	12.854	
P ₁	Solar diurnal	14.958	
2SM ₂	Shallow-water compound	31.015	
М3	Lunar terdiurnal	43.476	
L ₂	Smaller lunar elliptic semidiurnal	29.528	
2MK ₃	Shallow-water compound	42.927	
K ₂	Lunisolar semidiurnal	30.082	
M ₈	Shallow-water overtide of principal lunar	115.936	
MS ₄	Shallow-water compound	58.984	

Appendices ACES Technical Reference

REFERENCES AND BIBLIOGRAPHY

Headquarters, Department of the Army. 1986. "Design of Breakwaters and Jetties," Engineer Manual 1110-2-2904, Washington, DC, Chapter 4, p. 10.

- Hobson, R. D. 1977. "Review of Design Elements for Beach Fill Evaluation," Technical Paper 77-6, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Krumbein, W. C. 1957. "A Method for Specification of Sand for Beach Fills," Technical Memorandum No. 102, Beach Erosion Board, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Markle, D. G., and Davidson, D. D. 1979. "Placed-Stone Stability Tests, Tillamook, Oregon; Hydraulic Model Investigation," Technical Report HL-79-16, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Schureman, P. 1971 (reprinted). "Manual of Harmonic Analysis and Prediction of Tides," Coast and Geodetic Survey Special Publication No. 98, Revised (1940) Edition, US Government Printing Office, Washington, DC.
- Shore Protection Manual. 1984. 4th ed., 2 Vols., US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, US Government Printing Office, Washington, DC, Chapter 7, pp. 202-242.
- Smith, O. P. 1986. "Cost-Effective Optimization of Rubble-Mound Breakwater Cross Sections," Technical Report CERC-86-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS, p. 48.
- Zwamborn, J. A., and Van Niekerk, M. 1982. Additional Model Tests--Dolos Packing Density and Effect of Relative Block Density, CSIR Research Report 554, Council for Scientific and Industrial Research, National Research Institute for Oceanology, Coastal Engineering and Hydraulics Division, Stellenbosch, South Africa.

Appendix A - Tables A-5

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 2053.

4 ACTUCK LICE CALLY (Laws blank	O Is propos pass	To proope ever aug	DATES COVERED
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE September 1992	3. REPORT TYPE AND Final report	DATES COVERED
4. TITLE AND SUBTITLE	Вересивет 1992		5. FUNDING NUMBERS
Automated Coastal Eng Reference			
6. AUTHOR(S)			
David A. Leenknecht, Ann R. Sherlock	Andre Szuwalski,		
7. PERFORMING ORGANIZATION NA USAE Waterways Expert Coastal Engineering 1 3909 Halls Ferry Road Vicksburg, MS 39180		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES))	10. SPONSORING / MONITORING
US Army Corps of Eng Washington, DC 2031	AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES Available from Nation Springfield, VA 221		ation Service, 5	285 Port Royal Road,
12a. DISTRIBUTION / AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
Approved for public unlimited.	release; distribution	n is	
13. ABSTRACT (Maximum 200 words	:)		
The Automated computer-based designed and tools that will incomputed corps coastal engine engineering, method in this release of the contents range empirical in origin increasing power and range from classical from tests of structions.	Coastal Engineering gn and analysis syst the ACES is to prov rease the accuracy, eering endeavors. R ologies (called "app the ACES are richly from simple algebrai, to numerically int d affordability of c	em in the field ide state-of-the reliability, and eflecting the na lications" in th diverse in sophic expressions, be ense algorithms omputers. Histowave motion, to, and to recent	of coastal engineeringart computer-based cost-effectiveness of ture of coastal is guide) contained stication and origin. oth theoretical and spawned by the rically, the methods expressions resulting numerical models
14. SUBJECT TERMS			15. NUMBER OF PAGES
ACES			218
Automated Coastal E	ngineering System		16. PRICE CODE
17. SECURITY CLASSIFICATION 19 OF REPORT UNCLASSIFIED	8. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT

19. (Concluded).

In a general procedural sense, much has been taken from previous individual programs on both mainframes and microcomputers. The ACES is designed for a current base of PC-AT (including compatibles) class of personal computers resident at many Corps coastal offices. While expected to migrate to more powerful hardware technologies, this current generation of ACES is designed for the above environemnt and is written in FORTRAN 77.

The documentation set for the ACES comprises two manuals: <u>User's Guide</u> and <u>Technical Reference</u>. The <u>User's Guide</u> contains instructions for using the individual applications within the ACES software package. The <u>Technical Reference</u> contains theory and discussion of the various methodologies contained in the ACES.