COSC 290 Discrete Structures

Lecture 22: Algorithm Analysis

Prof. Michael Hay Wednesday, Oct. 25, 2017 Colgate University

Properties of Big-Oh

Plan for today

- 1. Properties of Big-Oh
- 2. Algorithm Analysis
- 3. Analysis exercises

Recall: Big Oh Notation

Let
$$f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$$
 and $g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

We say f(n) = O(g(n)) when there exists some $n_0 \in \mathbb{R}^{\geq 0}$ and some $c \in \mathbb{R}^{>0}$ such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

$$\exists n_0 \in \mathbb{R}^{\geq o}: \exists c \in \mathbb{R}^{> o}: \forall n \in \mathbb{R}^{\geq o}: (n \geq n_0) \implies (f(n) \leq c \cdot g(n))$$

A graphical view

Figure 1: f(n) = O(g(n)). For $n \ge n_0$, f(n) grows no faster than $c \cdot g(n)$.

Exercise

Recall definition of big-Oh: we say f(n) = O(g(n)) when there exists some $n_0 \in \mathbb{R}^{\geq 0}$ and some $c \in \mathbb{R}^{> 0}$ such that for all $n \geq n_0$, $f(n) < c \cdot q(n)$.

$$\exists n_o \in \mathbb{R}^{\geq o}: \exists c \in \mathbb{R}^{> o}: \forall n \in \mathbb{R}^{\geq o}: (n \geq n_o) \implies (f(n) \leq c \cdot g(n))$$

Exercise: Use this to prove that if $f(n) = O(h_1(n))$ and $g(n) = O(h_2(n))$, then $f(n) \cdot g(n) = O(h_1(n) \cdot h_2(n))$.

Work in small groups. Raise your hand when you have an answer.

Useful properties

Let ϵ be arbitrary constant.

- (Log slower than polynomial) If f(n) = log n, f(n) = O(n^e).
- (Polynomial bounded by degree) If f(n) is a degree k polynomial, f(n) = O(nk).
- (Polynomial slower than exponential)If $f(n) = n^k$, $f(n) = O((1 + \epsilon)^n)$.
- (Transitivity) If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
- If $f(n) = O(h_1(n))$ and $g(n) = O(h_2(n))$, then
 - (Addition) $f(n) + g(n) = O(h_1(n) + h_2(n))$, and
 - (Multiplication) $f(n) \cdot g(n) = O(h_1(n) \cdot h_2(n))$.
- (Equivalence of addition/max)
 f(n) = O(g(n) + h(n)) ← f(n) = O(max(g(n), h(n)))

Big Omega

We say $f(n) = \Omega(g(n))$ when there exists some $n_0 \in \mathbb{R}^{\geq 0}$ and some $c \in \mathbb{R}^{>0}$ such that for all $n \geq n_0$, $f(n) \geq c \cdot g(n)$.

$$\exists n_o \in \mathbb{R}^{\geq o}: \exists c \in \mathbb{R}^{>o}: \forall n \in \mathbb{R}^{\geq o}: (n \geq n_o) \implies (f(n) \geq c \cdot g(n))$$

Whereas Big Oh is is an (asymptotic) $\frac{1}{2}$ upper bound, big Omega is an (asymptotic) $\frac{1}{2}$ lower bound.

Big Theta and the rest

```
1. f(n) = O(g(n)) says f grows no faster than g(n)

2. f(n) = \Omega(g(n)) says f grows no slower than g(n)

3. f(n) = O(g(n)) says f grows at the same rate as g(n)

• In other words, f(n) = \Omega(g(n)) and f(n) = O(g(n))

• f(n) = o(g(n)) says f grows (strictly) slower faster than g(n)

• In other words, f(n) = O(g(n)) but f(n) \neq \Omega(g(n))

5. f(n) = \omega(g(n)) says f (strictly) faster than g(n)
```

• In other words, $f(n) = \Omega(q(n))$ but $f(n) \neq O(q(n))$

You are expected to become familiar with this notation, especially first three!

Analyzing runtime

- · Let f(n) be exact runtime on input of size n.
- . f(n) is number of "primitive steps" required
- Typically, analyze runtime for worst-case inputs. Alternatives: best-case, average-case.
- Aim to identify asymptotic upper bounds f(n) = O(g(n)) and asymptotic lower bounds $f(n) = \Omega(g(n))$.

Algorithm Analysis

Bubble Sort

```
1: function BUBBLESORT(A)

2: for i := 0 to n - 1 do

3: for j := 0 to n - 1 - (i + 1) do

4: if A[j] > A[j + 1] then

5: Swap A[j] and A[j + 1]
```

Suppose line 4 has cost t_4 and line 5 has cost t_5 (when executed).

```
If f(n) is the worst-case runtime on array of size n, then let's show f(n) = O(n^2) and f(n) = \Omega(n^2). In other words, f(n) = \Theta(n^2).
```

Shown on board

Analysis

$$\begin{split} f(n) &= \sum_{i=0}^{n-1} \sum_{j=0}^{(n-1-(i+1))} c(i_i) & t_4 \leq c(i,j) \leq t_k + t_5 \\ &\leq (t_i + t_5) \sum_{i=0}^{n-1} \sum_{j=0}^{(n-1-(i+1))} 1 & \text{assume a swap every time} \\ &= (t_4 + t_5) \sum_{i=0}^{n-1} ((n-1-(i+1))-o+1) & \text{because } \sum_{k=0}^{b} 1 = b-a+1 \\ &= (t_4 + t_5) \sum_{i=0}^{n-1} (n-1)-i & \text{simplify} \\ &= (t_4 + t_5) \sum_{k=0}^{n-1} k & \text{change of variable, } k = n-1-i \\ &= (t_4 + t_5) \frac{(n-1)n}{2} = O(n^2) \end{split}$$

Analysis exercises

A similar analysis can show it's $\Omega(n^2)$, and thus $\Theta(n^2)$.

Useful identities

$$\begin{array}{l} \sum_{i=1}^{n}i=\frac{n(n+1)}{2} \text{ (Example 5.4)} \\ \sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6} \text{ (Exercise 5.1)} \\ \sum_{i=0}^{n}(n-i)=\sum_{i=0}^{n}i \text{ (Example 2.15, p.213-214)} \\ \text{And others from Ch. 2.2. Ch. 5.2. 6.3.} \end{array}$$

Poll: Bubble Sort

10

1:	function BUBBLESORTVARIANT(A)
2:	for $i := 0$ to $n - 1$ do
3:	madeSwap := False
4:	for $j := 0$ to $n - 1 - (i + 1)$ do
5:	if $A[j] > A[j+1]$ then
6:	Swap $A[j]$ and $A[j+1]$
7:	madeSwap := True
8:	if $madeSwap = False$ then
9:	return A

Let f(n) denote runtime on a best-case input. Which of the following are true?

- 1. f(n) = O(n)2. $f(n) = \Omega(n)$
- 3. $f(n) = O(n^2)$
- 4. $f(n) = \Omega(n^2)$ 5. More than on
- More than one / None of the above

11

12

Poll: worst-case analysis

i = i + 1

9: return found

Input: Arrays A and B, both of size n Output: True if $\exists i, i : A[i] = B[i]$, False otherwise 1: i = 0, found = False 2: while i < n and found = False do i = 0while i < n do if A[i] = B[i] then 6: found = True j = j + 1

Let f(n) denote runtime on worst-case input. Which of the following are true? 1. f(n) = O(n)2. $f(n) = \Omega(n)$ 3. $f(n) = O(n^2)$ 4. $f(n) = \Omega(n^2)$ 5. More than one

/ None of the

13

above

Poll: best-case analysis

Input: Arrays A and B, both of size n Output: True if $\exists i, i : A[i] = B[i]$, False otherwise 1: i = 0, found = False2: while i < n and found = False do i = 0

while i < n do if A[i] = B[i] then 5: 6: found = True

j = j + 17: i - i + 19: return found

Let f(n) denote runtime on best-case input. Which of the following are true?

1. f(n) = O(1)2. f(n) = O(n)3. $f(n) = \Omega(n)$

4. $f(n) = \Omega(n^2)$ 5. More than one

/ None of the above

Poll: sort and compare simulation

Input: Arrays A and B, both of size n Output: Number of elements of A that appear in B

1: A := sort(A) 2: B := sort(B) 3: i := 0, i := 0, count := 04: while i < n and j < n do print A[i], B[i]

111

13: return count

if A[i] < B[j] then i := i + 17: else if A[i] > B[i] then j := j + 1Q: else count := count + 1

i := i + 1, i := i + 1

On a piece of paper, simulate execution on A = [1, 6, 2]and B = [4, 2, 6]. Which of the following pairs is not printed? 1. 12 2. 14 3, 22 4.64 5.66

Poll: sort and compare runtime analysis

Input: Arrays A and B, both of size n Output: Number of elements of A that

appear in B 1: A := sort(A) 2: B := sort(B)

9:

3: i := 0, i := 0, count := 0

4: while i < n and j < n do print A[i], B[i]

if A[i] < B[i] then i := i + 17: else if A[i] > B[i] then

j := j + 110: else count := count + 11111

j := j + 1, j := j + 113: return count

Assuming that the cost of sorting is h(n), what is the worst-case runtime of this algorithm?

1. $\Theta(n + h(n))$

2. $\Theta(n+2\cdot h(n))$ 3. $\Theta(n^2 + h(n))$

4. $\Theta(n^2 + 2 \cdot h(n))$

5 More than one / None of above