# Towards functorial chemistry

Completeness and universality for reaction representation

Leo Lobski

UCL

Birmingham Theory Seminar 15 March 2024

### Outline

Reactions

Retrosynthetic analysis

Disconnection rules

From disconnections to reactions

# Chemical graphs and morphisms

Molecular entities are represented by labelled graphs:

# Chemical graphs and morphisms

Molecular entities are represented by labelled graphs:

A morphism is a "matter non-decreasing" function:

# Vertex embeddings and matchings

► A *vertex embedding* is a bijective morphism which preserves the atom labels:



# Vertex embeddings and matchings

► A *vertex embedding* is a bijective morphism which preserves the atom labels:

► A *matching* is a morphism which strictly preserves the charge and the number of bonds:



# Vertex embeddings and matchings

► A *vertex embedding* is a bijective morphism which preserves the atom labels:

$$^4lpha$$
  $^4lpha^ ^3lpha^{-1}$ C  $^5lpha$   $^3lpha^{-1}$ C  $^5lpha$   $^2$ H  $^2$ H  $^2$ H  $^2$ H  $^2$ g is a morphism which strictly preserves t

► A *matching* is a morphism which strictly preserves the charge and the number of bonds:



#### **Theorem**

The category of chemical graphs is  $(\mathcal{E},\mathcal{M})$ -adhesive.

#### Reaction schemes

A *reaction scheme* is a terminal span of vertex embeddings whose boundary graphs have the same net charge and are valence complete:

#### Reaction schemes

### Proposition

The diagram below left, where the top span is a reaction scheme and  $m \in \mathcal{M}$ , can be uniquely completed to the one on the right, with  $f', g' \in \mathcal{E}$  and  $m', m'' \in \mathcal{M}$ 





Moreover, if C is valence complete, then so is E.

### Reactions

A reaction between valence complete chemical graphs is a partial bijection such that the domain and the image have the same net charge, atom labels are preserved and boundary vertices are mapped to boundary vertices:

### Reactions

A *reaction* between valence complete chemical graphs is a partial bijection such that the domain and the image have the same net charge, atom labels are preserved and boundary vertices are mapped to boundary vertices:

We denote the category of reactions by **React**.

(1) Start with the target molecule(s)

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons
- (3) Search for synthetic equivalents

- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons
- (3) Search for synthetic equivalents
- (4) Search for a reaction whose reactants contain the synthetic equivalents, and whose products contain the target



- (1) Start with the target molecule(s)
- (2) Cut the target along some bond, creating synthons
- (3) Search for synthetic equivalents
- (4) Search for a reaction whose reactants contain the synthetic equivalents, and whose products contain the target
- (5) Check whether the synthetic equivalents are known molecules: if yes, terminate, if no, return to (1) taking them as the target













# Disconnection category

We define the set of terms with types as follows

- ightharpoonup id :  $A \rightarrow A$ ,
- ▶ if  $u \in \text{Chem}(A)$ , let  $S^u : A \to A$ ,
- ▶ if  $v \notin V_A \setminus \{u\}$ , let  $R^{u \mapsto v} : A \to A(u \mapsto v)$ ,
- $lacksquare d_{ab}^{uv}:A
  ightarrow d_{ab}^{uv}(A)$  and  $ar{d}_{ab}^{uv}:d_{ab}^{uv}(A)
  ightarrow A$ ,
- ▶ if  $t: A \rightarrow B$  and  $s: B \rightarrow C$ , then  $t; s: A \rightarrow C$ ,
- ▶ if  $t : A \rightarrow B$  and  $s : C \rightarrow D$ , then  $t + s : A + C \rightarrow B + D$ .

# Disconnection category

We define the set of terms with types as follows

- ightharpoonup id :  $A \rightarrow A$ ,
- ▶ if  $u \in \text{Chem}(A)$ , let  $S^u : A \to A$ ,
- ▶ if  $v \notin V_A \setminus \{u\}$ , let  $R^{u \mapsto v} : A \to A(u \mapsto v)$ ,
- $lacksquare d_{ab}^{uv}:A o d_{ab}^{uv}(A)$  and  $ar d_{ab}^{uv}:d_{ab}^{uv}(A) o A$ ,
- ▶ if  $t: A \rightarrow B$  and  $s: B \rightarrow C$ , then  $t; s: A \rightarrow C$ ,
- ▶ if  $t : A \rightarrow B$  and  $s : C \rightarrow D$ , then  $t + s : A + C \rightarrow B + D$ .

The disconnection category **Disc** has valence complete chemical graphs as objects, and the terms (up to some equations) as morphisms.

Define the translation  $R : \mathbf{Disc} \to \mathbf{React}$  by

- $ightharpoonup R(E_{ab}^u) := (\{u\}, \{u, a, b\}),$
- $ightharpoonup R(E^{uv}) := (\{u,v\},\{u,v\}),$
- $ightharpoonup R(I^{uv}) := (\{u\}, \{u\}),$
- $ightharpoonup R(C_{ab}^{uv}) := (\{u\}, \{u, a, b\}),$
- $ightharpoonup R(id_A) := (\varnothing, \varnothing),$
- $R(S^u) := (\{u\}, \{u\}),$
- $R(R^{u\mapsto v}) := (\varnothing, \varnothing),$
- $\blacktriangleright R\left(\bar{d}_{ab}^{uv}\right) := \overline{R\left(d_{ab}^{uv}\right)},$
- ightharpoonup R(t;s) := R(t); R(s),
- R(t+s) := R(t) + R(s).

Proposition (Soundness)

R: **Disc**  $\rightarrow$  **React** is a monoidal dagger functor.

Proposition (Soundness)

R: **Disc**  $\rightarrow$  **React** is a monoidal dagger functor.

Theorem (Completeness)

 $R: \mathbf{Disc} \to \mathbf{React}$  is faithful.

Proposition (Soundness)

R: **Disc**  $\rightarrow$  **React** is a monoidal dagger functor.

Theorem (Completeness)

 $R: \mathbf{Disc} \to \mathbf{React}$  is faithful.

**Theorem** 

The composite functor

$$\mathbf{Disc} \xrightarrow{R} \mathbf{React} \xrightarrow{[-]} \mathbf{React}_{\sim}$$

is an opfibration.

### Proposition (Soundness)

R: **Disc**  $\rightarrow$  **React** is a monoidal dagger functor.

## Theorem (Completeness)

 $R: \mathbf{Disc} \to \mathbf{React}$  is faithful.

#### **Theorem**

The composite functor

$$\mathsf{Disc} \xrightarrow{R} \mathsf{React} \xrightarrow{[-]} \mathsf{React}_{\sim}$$

is an opfibration.

## Corollary (Universality)

Given a reaction  $r: A \to B$ , there is a sequence of (dis)connection rules  $d: A \to B'$  such that  $B \simeq B'$ .

 Connected reaction representation with retrosynthetic (dis)connection rules

- Connected reaction representation with retrosynthetic (dis)connection rules
- Showed that all (formal) reactions can be decomposed into (dis)connection rules

- Connected reaction representation with retrosynthetic (dis)connection rules
- Showed that all (formal) reactions can be decomposed into (dis)connection rules

#### Future work:

- Connected reaction representation with retrosynthetic (dis)connection rules
- Showed that all (formal) reactions can be decomposed into (dis)connection rules

#### Future work:

What about reactions that are not valence complete?

- Connected reaction representation with retrosynthetic (dis)connection rules
- Showed that all (formal) reactions can be decomposed into (dis)connection rules

#### Future work:

- What about reactions that are not valence complete?
- Incorporate chirality into the model

- Connected reaction representation with retrosynthetic (dis)connection rules
- Showed that all (formal) reactions can be decomposed into (dis)connection rules

#### Future work:

- What about reactions that are not valence complete?
- Incorporate chirality into the model
- Implement the algorithm that turns reactions into disconnection rules in normal form

### References

- Andersen, Flamm, Merkle, Stadler. Inferring chemical reaction patterns using rule composition in graph grammars. Journal of Systems Chemistry. 2013.
- ► Clayden, Greeves, Warren. *Organic chemistry*. Oxford University Press. 2012.
- Gale, Lobski, Zanasi. A categorical approach to synthetic chemistry. International Colloquium on Theoretical Aspects of Computing. 2023.
- ► Habel, Plump.  $\mathcal{M}$ ,  $\mathcal{N}$ -Adhesive Transformation Systems. International Conference on Graph Transformation. 2012.
- Warren, Wyatt. Organic synthesis: the disconnection approach. Wiley. 2008.

Thank you for your attention!