Master Universitario en Sistemas Espaciales

PROPULSIÓN ESPACIAL Y LANZADORES

EXAMEN EXTRAORIDNARIO PROBLEMAS

(Tiempo máximo 60 minutos) NOMBRE Y APELLIDOS:

Problema 2:

Se dispone de un motor cohete químico de propulsante líquido que emplea un ciclo abierto de generador de gas como sistema de alimentación de los propulsantes. La turbina está acoplada a las dos bombas con un rendimiento mecánico (η_{mec}) de 0.94. La presión del depósito del fuel (P_1) es de 0.2 MPa, mientras que la presión del depósito del oxidante (P_{11}) es de 0.15 MPa. Las características del sistema son las siguientes:

Presión de cámara principal	$P_6 = 60 MPa$	Presión de cámara secundaria	$P_5 = 4 MPa$
Pérdida de carga en el generador de gas	$\frac{P_3}{P_2} = \frac{P_3}{P_{12}} = 0.9$	Caída de presión de inyección en el motor secundario	$\frac{P_5}{P_4} = 0.85$
	P_2 P_{12}		P_4
Rendimiento de la bomba fuel	$\eta_{bF} = 0.79$	Rendimiento de la bomba	$\eta_{b0} = 0.78$
		oxidante	
Rendimiento de la turbina	$\eta_{turb} = 0.9$	Coeficiente de descarga fuel	$C_D A_{iny} F = 1.5 cm^2$
		en cámara principal	•
Densidad de fuel	$\rho_F = 800 \ kg/m^3$	Densidad del oxidante	$\rho_0 = 1200 kg/m^3$
Coeficiente calorífico turbina	$C_P = 800 J/(kgK)$	Gamma turbina	$\gamma_{turb} = 1.3$
Temperatura entrada turbina	$T_{et} = 1800 K$	Gasto másico total fuel	$\dot{m}_{F_total} = 27 \ Kg/s$
Gasto másico fuel tobera	$\dot{m}_{F_tob} = 25.3 Kg/s$	Gasto másico oxidante tobera	$\dot{m}_{O_tob} = 65.2 Kg/s$
Gamma tobera principal	$\gamma_{tob_p} = 1.28$	Gamma tobera secundaria	$\gamma_{tob_s} = 1.3$
Velocidad característica	$c^*_p = 1200 m/s$	Velocidad característica	$c^*_{s} = 800 m/s$
tobera principal	,	tobera secundaria	

Los gases que salen de la turbina son aprovechados para expandirlos en una tobera secundaria. Ambas toberas se han diseñado para que estén adaptadas a una presión ambiente de 101325 Pa.

Se pide:

- a) La presión P₂ a la salida de la bomba del fuel, la presión P₃ a la salida del generador de gas y la presión P₄ a la salida de la turbina.
- b) El coeficiente de descarga del oxidante en la cámara principal (C_DA_{iny}|O), para que la presión P₁₂ a la salida de la bomba del oxidante coincida con la presión P₂ a la salida de la bomba del fuel.
- c) Los trabajos específicos de las bombas (τ_{bF} y τ_{bO}).
- d) La relación de expansión de la turbina (P_3/P_4) y el trabajo específico de la turbina (τ_{turb}).
- e) Los gastos másicos de cada línea: \dot{m}_{O_total} , \dot{m}_{F_qq} , \dot{m}_{O_qq} y \dot{m}_t .
- f) Las relaciones de área de cada tobera.
- g) Los impulsos específicos de cada tobera y el impulso específico medio del sistema.
- h) El empuje de cada tobera y el empuje total del sistema.
- i) Las áreas de salida de cada tobera.

SOLUCION

a) La presión P_2 a la salida de la bomba del fuel, la presión P_3 a la salida del generador de gas y la presión P_4 a la salida de la turbina.

$$P_{12} = P_2 = P_6 + \frac{1}{2} \frac{m_{F_tob}^2}{\rho_F (c_D A_{iny} | F)^2} = 77780278 Pa = 77.78 MPa$$

$$P_4 = P_5 \frac{1}{P_5/P_4} = 4705882 Pa = 4.706 MPa$$

$$P_3 = \frac{P_3}{P_2} P_2 = 70002250 Pa = 70.002 MPa$$

b) El coeficiente de descarga del oxidante en la cámara principal ($C_DA_{iny}|O)$.

$$C_D A_{iny} | O = \frac{m_{O_{-tob}}}{\sqrt{2\rho_O(P_{12} - P_6)}} = 0.0003156 \, m^2 = 3.156 \, cm^2$$

c) Los trabajos específicos de las bombas (τ_{bF} y τ_{bO}).

$$\begin{split} &\Delta P_{bF} = P_2 - P_1 = 77580278 \, Pa = 77.58 \, MPa \\ &\Delta P_{bO} = P_{12} - P_{11} = 77630278 \, Pa = 77.63 \, MPa \\ &\tau_{bF} = \frac{\Delta P_{bF}}{\eta_{bF}\rho_F} = 122753.6 \frac{J}{kgK}, \quad \tau_{bO} = \frac{\Delta P_{bO}}{\eta_{bO}\rho_O} = 82938.3 \frac{J}{kg} \end{split}$$

d) La relación de expansión de la turbina (P_3/P_4) y el trabajo específico de la turbina (τ_{turb}) .

Relación de expansión turbina: $\frac{P_3}{P_4} = 14.88$

$$\tau_{turb} = \eta_{tur} C_P T_{et} \left[1 - \left(\frac{P_4}{P_3} \right)^{\frac{\gamma_{tur} - 1}{\gamma_{tur}}} \right] = 600920 \frac{J}{kg}$$

e) Los gastos másicos de cada línea: $\dot{m}_{O_total}, \dot{m}_{F_gg}, \dot{m}_{O_gg}$ y \dot{m}_t .

$$\begin{split} \dot{m}_{g} &= \dot{m}_{F_tob} + \dot{m}_{O_tob} = 90.5 \; kg/s \\ \eta_{mec} \tau_{turb} \dot{m}_{t} &= \dot{m}_{F_total} \tau_{bF} + \dot{m}_{O_total} \tau_{bO} => \eta_{mec} \tau_{turb} \left(\dot{m}_{total} - \dot{m}_{g} \right) = \\ \dot{m}_{F_total} \tau_{bF} + \left(\dot{m}_{total} - \dot{m}_{F_total} \right) \tau_{bO} => \\ \dot{m}_{total} &= \frac{\eta_{mec} \tau_{turb} \dot{m}_{g} + \dot{m}_{F_total} (\tau_{bF} - \tau_{bO})}{\eta_{mec} \tau_{turb} - \tau_{bO}} = 108.31 \; kg/s \\ \dot{m}_{t} &= \dot{m}_{total} - \dot{m}_{g} = 17.81 \; kg/s \\ \dot{m}_{O_total} &= \dot{m}_{total} - \dot{m}_{F_{total}} = 81.31 \; kg/s \\ \dot{m}_{F_gg} &= \dot{m}_{F_{total}} - \dot{m}_{F_{tob}} = 1.7 \; kg/s \\ \dot{m}_{O_gg} &= \dot{m}_{O_{total}} - \dot{m}_{O_{tob}} = 16.11 \; kg/s \end{split}$$

f) Las relaciones de área de cada tobera.

$$\varepsilon_{prin} = \frac{A_s}{A_g} = \frac{\Gamma(\gamma)}{\left(\frac{P_s}{P_c}\right)^{1/\gamma} \sqrt{\frac{2\gamma}{\gamma - 1}} \left[1 - \left(\frac{P_s}{P_c}\right)^{\frac{\gamma - 1}{\gamma}}\right]} = 37.08$$

$$\varepsilon_{secun} = \frac{A_s}{A_g} = \frac{\Gamma(\gamma)}{\left(\frac{P_s}{P_c}\right)^{1/\gamma} \sqrt{\frac{2\gamma}{\gamma - 1}} \left[1 - \left(\frac{P_s}{P_c}\right)^{\frac{\gamma - 1}{\gamma}}\right]} = 6.07$$

g) Los impulsos específicos de cada tobera y el impulso específico medio del sistema.

$$\begin{split} C_{E_prin} &= \Gamma(\gamma) \sqrt{\frac{2\gamma}{\gamma - 1}} \left[1 - \left(\frac{P_S}{P_C} \right)^{\frac{\gamma - 1}{\gamma}} \right] = 1.74 \\ C_{E_sec} &= \Gamma(\gamma) \sqrt{\frac{2\gamma}{\gamma - 1}} \left[1 - \left(\frac{P_S}{P_C} \right)^{\frac{\gamma - 1}{\gamma}} \right] = 1.49 \\ I_{SP_prin} &= c^*_{P} C_{E_prin} = 2088.8 \frac{m}{s} = 212.9 \ s \\ I_{SP_sec} &= c^*_{S} C_{E_sec} = 1188.4 \frac{m}{s} = 121.1 \ s \\ I_{SP_med} &= I_{SP_prin} - \left(I_{SP_prin} - I_{SP_sec} \right) \frac{\dot{m}_{Fgg} + \dot{m}_{Ogg}}{\dot{m}_{total}} = 1940.8 \frac{m}{s} = 197.8 \ s \end{split}$$

h) El empuje de cada tobera y el empuje total del sistema.

$$\begin{split} E_P &= I_{SP_prin} \dot{m}_g = 189039 \ N = 189.04 \ kN \\ E_S &= I_{SP_sec} \dot{m}_t = 21159 \ N = 21.16 \ kN \\ E_{Total} &= E_P + E_S = I_{SP_med} \dot{m}_{total} = 210199 \ N = 210.2 \ kN \end{split}$$

i) Las áreas de salida de cada tobera.

$$\begin{split} A_{g_prin} &= \frac{c^*_P \dot{m}_g}{P_6} = 0.00181 \ m^2 = 18.1 \ cm^2 => A_{s_prin} = A_{g_prin} \varepsilon_{prin} = 0.0671 \ m^2 \\ A_{g_sec} &= \frac{c^*_S \dot{m}_{gg}}{P_5} = 0.00356 \ m^2 = 35.61 \ cm^2 => A_{s_sec} = A_{g_sec} \varepsilon_{sec} = 0.0180 \ m^2 \end{split}$$