

COE-C2004 - Materials Science and Engineering

Prof. Junhe Lian Wenqi Liu (Primary teaching Assistant) Rongfei Juan (Teaching Assistant)

Updates:

- Computational training for week 4-5 will be either optional or omitted.
- Q/A session on Tuesday will be merged with the exercise session on Thursday.
- The two case studies will be open this week.

Previously

Introduction

- What is diffusion?
- What is the diffusion mechanism?
- What is diffusion used for?
- What equations describe diffusion?
- What factor influences diffusion?

https://science.sciencemag.org/content/366/6469/1091.1

Learning Objectives

After this chapter you should be able to do the following:

- Name and describe the two atomic mechanisms of diffusion.
- Distinguish between steady-state and non-steady-state diffusion.
- Write Fick's first and second laws in equation form, define all parameters and note their applicability.
- Write the solution to Fick's second law for diffusion into a semiinfinite solid when the concentration of diffusing species at the surface is held constant. Define all parameters.
- Calculate the diffusion coefficient for some material at a specified temperature, given the appropriate diffusion constants.

Diffusion - Mass transport by atomic motion

Diffusion Mechanisms

- Gases & Liquids random (Brownian) motion
- Solids vacancy diffusion and interstitial diffusion

Two Diffusion Types

- Interdiffusion diffusion of atoms of one material into another material
- Self-diffusion atomic migration in a pure metal

 Interdiffusion: Atoms tend to migrate from regions of high concentration to regions of low concentration.

Self-diffusion: Migration of host atoms in pure metals

Locations of 4 labeled atoms before diffusion

Locations of 4 labeled atoms after diffusion

Diffusion Mechanism I

Vacancy Diffusion

- Atoms and vacancies exchange positions
- Applies to host and substitutional impurity atoms
- Diffusion rate depends on:
 - Number of vacancies
 - Activation energy to exchange.

increasing elapsed time

Diffusion Mechanism II

Interstitial Diffusion

- Small, interstitial atoms move from one interstitial position to an adjacent one
- More rapid than vacancy diffusion

Fig. 5.2 (b), Callister & Rethwisch 10e.

Processing Using Diffusion

Case Hardening:

- Example of interstitial diffusion
- Outer surface selectively hardened by diffusing carbon atoms into surface
- Presence of C atoms makes iron (steel) harder

Example: Case hardened gear

- Case hardening improves wear resistance of gear
- Resulting residual compressive stresses improve resistance to fatigue failure

Case hardened region

Chapter-opening photograph, Chapter 5, Callister & Rethwisch 10e. (Courtesy of Surface Division, Midland-Ross.)

Rate of Diffusion

- Diffusion is a time-dependent process.
- Rate of Diffusion expressed as diffusion flux, J

$$J \equiv \text{Flux} \equiv \frac{\text{mass of diffused species}}{\text{(area)(time)}} = \frac{M}{At} \left(\frac{\text{kg}}{\text{m}^2 - \text{s}} \right)$$

- Measured experimentally
 - Use thin sheet (or membrane) cross-sectional area A
 - Impose concentration gradient across sheet
 - Measure mass of diffusing species (M) that passes through the sheet over time period (t)

$$J = \frac{M}{At} = \frac{I}{A} \frac{dM}{dt}$$

Steady-State Diffusion

Rate of diffusion (or flux) independent of time

Flux (J) proportional to concentration gradient:

if linear
$$\frac{dC}{dx} @ \frac{DC}{Dx} = \frac{C_2 - C_1}{x_2 - x_1}$$

Fick's first law of diffusion

$$J = -D \frac{dC}{dx}$$

D = diffusion coefficient

C = concentration

x = diffusion direction

Non-steady State Diffusion

- □ The concentration of diffusing species is a function of both time and position C = C(x,t)
- For non-steady state diffusion, we seek solutions to Fick's Second Law

This form of the equation assumes *D* is independent of concentration

Non-steady State Diffusion

Consider the diffusion of copper into a bar of aluminum

Surface conc., C_S of Cu atoms

Boundary/Initial Conditions

at
$$t = 0$$
, $C = C_o$ for $0 \le x \le \infty$

at
$$t > 0$$
, $C = C_S$ for $x = 0$ (constant surface conc.)

$$C = C_0$$
 for $x = \infty$

Non-steady State Diffusion (cont.)

$$\frac{C\left(\mathbf{x},\mathbf{t}\right)-C_{o}}{C_{s}-C_{o}}=1\left(\operatorname{erf}\left(\frac{\mathbf{x}}{2\sqrt{Dt}}\right)\right)$$

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-y^2} dy$$

C(x,t) = Conc. at point x at time t

erf(z) = error function

z and erf(z) values are given in Table 5.1

Distance from interface, x

Fig. 5.5, Callister & Rethwisch 10e.

Non-steady State Diffusion (cont.)

Suppose that it is desired to achieve some specific concentration of solute, C_1 , in an alloy

$$\frac{C_1 - C_0}{C_s - C_0} = \text{constant}$$

$$\frac{x}{2\sqrt{Dt}} = \text{constant}$$

Or

$$\frac{x^2}{Dt}$$
 = constant

Distance from interface, x

Fig. 5.5, Callister & Rethwisch 10e.

Influence of Temperature on Diffusion

Diffusion coefficient increases with increasing T

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right)$$

D = diffusion coefficient $[m^2/s]$

 D_o = pre-exponential [m²/s]

Q_d = activation energy [J/mol]

R = gas constant [8.314 J/mol-K]

T = absolute temperature [K]

Influence of Temperature on Diffusion (cont.)

$$O = D_0 \exp\left(-\frac{Q_d}{RT_0}\right)$$

take natural log of both sides

$$\ln D = \ln D_0 - \frac{Q_d}{RT}$$

Influence of Temperature on Diffusion (cont.)

D has exponential dependence on T

Adapted from Fig. 5.6, Callister & Rethwisch 10e. (Data for Fig. 5.7 taken from E.A. Brandes and G.B. Brook (Ed.) Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, 1992.)

Summary

- Solid-state diffusion is mass transport within solid materials by stepwise atomic motion.
- Two diffusion mechanisms:
 - Vacancy diffusion
 - Interstitial diffusion
- Fick's First Law of Diffusion

$$J = -D\frac{dC}{dx}$$

Fick's Second Law of Diffusion

- non-steady state diffusion

$$\frac{\P C}{\P t} = D \frac{\P^2 C}{\P x^2}$$

Diffusion coefficient

- Effect of temperature

$$D = D_0 \exp\left(-\frac{Q_d}{RT}\right)$$

Phase Diagram

resumes at 11:25

Introduction

- When we combine two elements, diffusion will take place, but...
 what is the resulting equilibrium state?
- In particular, if we specify...
 - -- the composition (e.g., wt% Cu wt% Ni), and
 - -- the temperature (T)

then...

How many/phases form?

What is the composition of each phase?

What is the amount of each phase?

Learning Objectives

After this chapter you should be able to do the following:

- Schematically sketch isomorphous and eutectic phase diagrams.
- Given a binary phase diagram, determine phase(s), the composition(s) and the mass fraction(s) of the phase(s).
- Given a binary phase diagram, locate all eutectic, eutectoid, peritectic, and congruent phase transformations; and write reactions for them.
- Given the composition of an iron—carbon alloy, specify hypoeutectoid or hypereutectoid, compute the mass fractions of proeutectoid phase and pearlite, and make a schematic diagram of the microstructure during transformation.

Unary Phase (Equilibrium) Diagram

Binary Phase Diagram: Solubility Limit

- Solution solid, liquid, or gas solutions, single phase
- Mixture more than one phase

Adapted from Fig. 9.1, Callister & Rethwisch 10e.

Solubility Limit:

Maximum concentration for which only a single phase solution exists.

Question: What is the solubility limit for sugar in water at 20°C?

Answer: 65 wt% sugar.

At 20°C, if C < 65 wt% sugar: syrup At 20°C, if C > 65 wt% sugar: syrup + sugar

Sugar/Water Phase Diagram

Effect of Temperature & Composition

Altering T can change # of phases: path A to B.

Altering C can change # of phases: path B to D.

Components and Phases

Components:

The elements or compounds which are present in the alloy (e.g., Al and Cu)

Phases:

The *physically* and *chemically* distinct material regions that form (e.g., α and β).

Aluminum-Copper Alloy

Adapted from chapter-opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

Criteria for Solid Solubility

Simple system (e.g., Ni-Cu solution)

	Crystal Structure	electroneg	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally soluble in one another for all proportions.

Phase Diagram

- Indicate phases as a function of T, C, and P.
- For this course:
 - binary systems: just 2 components.
 - independent variables: T and C (P = 1 atm is almost always used).

Isomorphous Binary Phase Diagram

- Phase diagram:
 Cu-Ni system.
- System is:
 - -- binary
 i.e., 2 components:
 Cu and Ni.
 - -- isomorphous
 i.e., complete
 solubility of one
 component in
 another; α phase
 field extends from
 0 to 100 wt% Ni.

Fig. 9.3(a), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Phase Diagrams: Determination of phase(s) present

- Rule 1: If we know T and Co, then we know:
 - -- which phase(s) is (are) present.

A(1100°C, 60 wt% Ni):

1 phase: α

B(1250°C, 35 wt% Ni):

2 phases: $L + \alpha$

Phase Diagrams: Determination of phase compositions

• Rule 2: If we know T and C₀, then we can determine:

-- the composition of each phase.

Examples:

Consider
$$C_0 = 35$$
 wt% Ni

At
$$T_A = 1320^{\circ}C$$
:

Only Liquid (L) present

$$C_L = C_0 \ (= 35 \text{ wt}\% \text{ Ni})$$

At
$$T_D = 1190^{\circ}C$$
:

Only Solid (α) present

$$C_{\alpha} = C_0 \ (= 35 \text{ wt}\% \text{ Ni})$$

At
$$T_B = 1250^{\circ}C$$
:

Both α and L present

$$C_L = C_{liquidus}$$
 (= 32 wt% Ni)

$$C_{\alpha} = C_{SOlidus}$$
 (= 43 wt% Ni)

Fig. 9.3(b), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Cu-Ni

Phase Diagrams: Determination of phase weight fractions

• Rule 3: If we know T and C_0 , then can determine:

-- the weight fraction of each phase.

Fig. 9.3(b), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

The Lever Rule

Tie line – connects the phases in equilibrium with each other - also sometimes called an isotherm

$$W_{L} = \frac{M_{L}}{M_{L} + M_{a}} = \frac{S}{R + S} = \frac{C_{a} - C_{0}}{C_{a} - C_{L}}$$

What fraction of each phase? Think of the tie line as a lever (teeter-totter)

$$M_{a} \times S = M_{L} \times R$$

$$W_{a} = \frac{R}{R+S} = \frac{C_0 - C_L}{C_a - C_L}$$

Phase Diagrams: Determination of phase weight fractions

• Rule 3: If we know T and C_0 , then can determine:

-- the weight fraction of each phase.

• Examples:

Consider
$$C_0 = 35$$
 wt% Ni

At T_A : Only Liquid (L) present

$$W_L = 1.00, W_{\Omega} = 0$$

At T_D : Only Solid (α) present

$$W_I = 0, W_{CI} = 1.00$$

At T_B : Both α and L present

$$W_L = \frac{S}{R+S} = \frac{43-35}{43-32} = 0.73$$

$$W_{\alpha} = \frac{R}{R+S} = 0.27$$

Fig. 9.3(b), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Microstructure during Cooling of a Cu-Ni Alloy

Phase diagram: Cu-Ni system.

 Consider microstuctural changes that accompany the cooling of a

Cored vs Equilibrium Structures

- C_{α} changes as we solidify.
- Cu-Ni case: First α to solidify has $C_{\alpha} = 46$ wt% Ni. Last α to solidify has $C_{\alpha} = 35$ wt% Ni.
- Slow rate of cooling:
 Equilibrium structure

Fast rate of cooling:
 Cored structure

To be continued...

Questions?