Permit Numbers 9476 and PSDTX886

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission Point	Source Name (2)	Air Contaminant	Emission Rates		
No. (1)		Name (3)	lbs/hour	TPY (4)	
001	RODECS Baghouse Stack	PM	0.46	1.48	
	Stack	PM ₁₀	0.46	1.48	
		PM _{2.5}	0.46	1.48	
		VOC	0.31	0.99	
		NO _x	4.01	11.43	
		SO ₂	0.02	0.08	
		СО	2.47	10.82	
		HCI	1.54	4.94	
		D/F	1.54E-08	4.94E-08	
011	Well Furnace Hood Baghouse No. 1 Stack	PM	4.29	18.77	
	Dagnouss No. 2 Stack	PM ₁₀	4.29	18.77	
		HCI	0.25	1.10	
		HF	0.01	0.04	
		Pb	0.04	0.14	
		Cr	<0.01	0.01	
		D/F	2.28E-07	9.99E-07	

011A	Well Furnace Hood Baghouse No. 2 Stack	PM	2.60	11.39
	Bagnouse No. 2 Stack	PM ₁₀	2.60	11.39
		HCI	0.25	1.10
		HF	0.01	0.04
		Pb	0.04	0.14
		Cr	<0.01	0.01
		D/F	2.28E-07	9.99E-07
026	Sow Dryer	PM	0.07	0.31
		PM ₁₀	0.07	0.31
		NO _x	0.95	4.14
		СО	0.79	3.47
		VOC	0.05	0.23
		SO ₂	<0.01	<0.03
031	Well Furnace No. 1	PM	1.31	5.74
		PM ₁₀	1.31	5.74
		VOC	0.50	2.19
		NO _x	1.09	4.77
		SO ₂	0.20	0.88
		СО	2.88	12.61
		HCI	0.05	0.22
		HF	<0.01	0.02
031A	Well Furnace No. 3	PM	1.31	5.74
		PM ₁₀	1.31	5.74

i	i			
		VOC	0.50	2.19
		NO _x	1.09	4.77
		SO ₂	0.20	0.88
		СО	2.88	12.61
		HCI	0.05	0.22
		HF	<0.01	0.02
041	Well Furnace No. 2	PM	1.31	5.74
		PM ₁₀	1.31	5.74
		VOC	0.50	2.19
		NO _x	1.09	4.77
		SO ₂	0.20	0.88
		СО	2.88	12.61
		HCI	0.05	0.22
		HF	<0.01	0.02
041A	Well Furnace No. 4	PM	1.31	5.74
		PM ₁₀	1.31	5.74
		VOC	0.50	2.19
		NO _x	1.09	4.77
		SO ₂	0.20	0.88
		СО	2.88	12.61
		HCI	0.05	0.21
		HF	<0.01	0.02
051	Dome Furnace	PM	9.11	39.90

_	<u> </u>			
		PM ₁₀	9.11	39.90
		VOC	0.19	0.83
		NO _x	2.44	10.69
		SO ₂	0.02	0.09
		СО	2.49	10.91
061	Holding Furnace No. 1	PM	0.44	1.93
		PM ₁₀	0.44	1.93
		VOC	0.04	0.17
		NO _x	0.98	4.29
		SO ₂	<0.01	0.02
		СО	0.58	2.52
		HCI	1.00	4.38
061A	Holding Furnace No. 3	PM	0.44	1.93
		PM ₁₀	0.44	1.93
		VOC	0.04	0.17
		NO _x	0.98	4.29
		SO ₂	<0.01	0.02
		СО	0.58	2.52
		HCI	1.00	4.38
071	Holding Furnace No. 2	PM	0.44	1.93
		PM ₁₀	0.44	1.93
		VOC	0.04	0.17
		NO _x	0.98	4.29

		SO ₂	<0.01	0.02
		СО	0.58	2.52
		HCI	1.00	4.38
076	Casting Area Cooling Tower	PM	1.68	7.37
		PM ₁₀	1.68	7.37
		VOC	<0.01	<0.01
081	Scalper Baghouse - Stack	PM	1.11	4.86
		PM ₁₀	1.11	4.86
091	Preheat Furnace No. 1	PM	0.84	3.68
		PM ₁₀	0.84	3.68
		VOC	0.18	0.79
		NO _x	9.10	39.86
		SO ₂	0.04	0.18
		СО	2.28	9.99
091A	Preheat Furnace No. 3	PM	0.88	3.85
		PM ₁₀	0.88	3.85
		VOC	0.35	1.51
		NO _x	4.22	18.50
		SO ₂	0.04	0.17
		СО	4.70	20.59
101	Preheat Furnace No. 2	PM	0.84	3.68
		PM ₁₀	0.84	3.68

		VOC	0.13	0.57
		NO _x	1.60	7.01
		SO ₂	0.04	0.17
		СО	1.14	4.99
111	Hot Rolling Mill	PM	3.00	13.14
		VOC	8.00	35.04
116	Hot Mill Cooling Tower	PM	1.68	7.37
		PM ₁₀	1.68	7.37
		VOC	<0.01	<0.01
121	Cold Rolling Mill	PM	3.00	13.14
		VOC	8.00	35.04
131	Annealing Furnace No. 1	PM	0.22	0.96
		PM_{10}	0.22	0.96
		VOC	1.53	2.63
		NO_x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
141	Annealing Furnace No. 2	PM	0.22	0.96
		PM ₁₀	0.22	0.96
		VOC	1.53	2.63
		NO _x	0.50	2.19

		SO ₂	0.01	0.04
		СО	1.32	5.77
151	Annealing Furnace No. 3	PM	0.22	0.96
		PM_{10}	0.22	0.96
		VOC	1.53	2.63
		NO_x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
161	Annealing Furnace No. 4	PM	0.22	0.96
		PM_{10}	0.22	0.96
		VOC	1.53	2.63
		NO_x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
161A	Annealing Furnace No. 5	PM	0.22	0.96
	110.0	PM_{10}	0.22	0.96
		VOC	1.53	2.63
		NO _x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
161B	Annealing Furnace No. 6	PM	0.22	0.96
	140. 0	PM ₁₀	0.22	0.96
		VOC	1.53	2.63

	<u> </u>			
		NO_x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
161C	Annealing Furnace No. 7	PM	0.22	0.96
	140. 7	PM ₁₀	0.22	0.96
		VOC	1.53	2.63
		NO _x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
161D	Annealing Furnace No. 8	PM	0.22	0.96
	140. 0	PM ₁₀	0.22	0.96
		VOC	1.53	2.63
		NO _x	0.50	2.19
		SO ₂	0.01	0.04
		СО	1.32	5.77
181	Top (Finish) Coat Thermal Oxidizer - Stack	PM	0.48	2.10
	Thermal Oxidizer Stack	PM ₁₀	0.48	2.10
		VOC	11.90	52.12
		NO _x	4.90	21.46
		SO ₂	0.02	0.09
		СО	2.88	12.62
181A	Primer Coat Thermal Oxidizer - Stack	PM	0.48	2.10
	Oxidizer - Stack	PM ₁₀	0.48	2.10

		VOC	8.60	24.53
		NO_x	4.90	21.46
		SO ₂	0.02	0.09
		СО	2.88	12.62
181B	Heater Vent	PM	0.14	0.34
		PM ₁₀	0.14	0.34
		VOC	0.06	0.25
		NO _x	1.47	6.44
		SO ₂	0.01	0.03
		СО	0.86	3.79
181C	Hot Mill Sentry	PM	0.01	0.05
		PM ₁₀	0.01	0.05
		VOC	<0.01	<0.04
		NO_x	0.14	0.60
		SO ₂	<0.001	<0.01
		СО	0.12	0.51
181D	Strip Dryer Heater Vent	PM	0.02	0.09
		PM ₁₀	0.02	0.09
		VOC	0.04	0.18
		NO _x	0.21	0.92

1	i			
		SO ₂	<0.01	<0.01
		СО	0.12	0.54
182	Rubber Roll Shop Baghouse Stack	PM	0.01	0.05
	Bagnouse Stack	PM ₁₀	0.01	0.05
		Cr	<0.01	<0.01
183	Dross Loading (5)	PM	0.02	0.09
		PM ₁₀	0.02	0.09
TNK191A	Cold Mill Coolant Tank No. 1	VOC	0.25	0.005
TNK191B	Cold Mill Coolant Tank No. 2	VOC	0.25	0.005
TNK191C	Cold Mill Coolant Tank No. 3	VOC	0.25	0.005
TNK191D	Cold Mill Coolant Tank No. 4	VOC	0.12	0.02
TNK191E	Cold Mill Coolant Tank No. 5	VOC	0.12	0.02
TNK191F	Cold Mill Coolant Tank No. 6	VOC	0.12	<0.005
TNK192A	Hot Mill Coolant Tank No. 1	VOC	<0.06	<0.01
TNK192B	Hot Mill Coolant Tank No. 2	VOC	<0.06	<0.01
TNK192C	Hot Mill Coolant Tank No. 3	VOC	<0.06	<0.01
TNK191-LL	Truck Loading (5)	VOC	0.43	<0.002

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide HCI - hydrogen chloride HF - hydrogen flouride

Pb - lead

Cr - chromium D/F - dioxins/furans

Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Dated			