	We want to find the joint probability, distribution of x,t
J	indip p(x,t) is very difficult to find, since we
	have limited data points
	The moment we figure of t $\rho(Z)$, where z is your data
	we can predict anything
	Now if we, while finding p(Z), we find 9(Z) Thou different is 9(Z) from 6(Z)
	How different is 9(2) from 6(2)
	We assumed initially that to N(y(0), -2)
	We assumed initially that to N(y(x), -2) (outlie assumpthat vay
	A When & tokes a very likely value, it
	U wont have
	* But if it contains a value unlikely much info
	to happen
	o-hcx=x) & P(x=x)
	(x-h(x-x)(x-y)=h(x-x)+h(x-y)
	(x + x + x + x + x + x + x + x + x + x +
	independent exects
	3 = P(x=x1 x=y)= b(x=y) = (x=y)

f(x) = -(op(p(x))) $h(x,y) = -\left(\log(p(x))\right)$ $= -\left(g(x(x)) - (og(p(y))\right)$ = h(x)h(y) -> 3) sotisfied h(x) ~ isnt completely Solvefied but kinda h(x) = -(og(p(x))Uniform non-uniform

1 0 X 1 0

0.52 0.48 P(K) 0.1 0.9 X= 1,2,3---,100 we need the's To understand Decision Tue 10 Our average informationis Echrefo(x))=-Spiloppi Which is Entropy