Capacité entre 2 fils conducteurs

Comme vu en classe, la méthode des moments peut être utilisée pour calculer la densité de charge d'un conducteur maintenu à un certain potentiel. En divisant le conducteur en K petites régions de densité uniforme, le potentiel au centre d'un segment i peut s'exprimer comme:

$$V_i = \sum_{j=1}^K \frac{1}{4\pi\epsilon_0} \int \frac{\rho_j}{r_{ij}}$$

où r_{ij} est la distance du segment i au segment j. Cette équation peut s'exprimer sous forme matricielle:

$$V = A\rho$$

Il est à noter que les éléments diagonaux de **A** doivent être calculés avec soins afin d'éviter les problèmes. La densité de charge s'obtient alors en inversant **A**:

$$\rho = \mathbf{A}^{-1}\mathbf{V}$$

Sachant cela, il est relativement simple d'utiliser cette méthode pour calculer la capacité électrique d'un système:

- 1. Calcul de la densité de charge ho sur les éléments du système en supposant un potentiel V_0 sur un des éléments et un potentiel $-V_0$ sur l'autre
- 2. Calcul de la charge totale: $Q = \int \rho d\tau$
- 3. Calcul de la capacité: C = Q/V

Deux fils parallèles

Calculez la capacité de deux fils identiques de 1 m de long et de 1 mm de rayon placés un au dessus de l'autre tel qu'illustré çi-bas:

Utilisez la méthode des moments pour répondre aux questions suivantes

Question 1

En assumant que chaque fil est divisé en N segments aux coordonnées (x_i, y_i) , déterminez la matrice \mathbf{A} ainsi que le vecteur \mathbf{V} . Exprimez votre réponse en utilisant les symboles L, N, a plutôt que de leur valeurs numériques

Réponse:

Question 2

En utilisant N=10, calculez la capacité de ce système. Refaite ensuite le calcul avec N=20. Comparez la différence entre les deux résultats

Réponse

```
[1] N = 10

L = 1  # [m]

s = 0.5  # [m]

a = 0.001 # [m]
```

```
[2] N = 20

L = 1  # [m]

s = 0.5  # [m]

a = 0.001 # [m]

# calcul ...
```

Question 3

On déplace maintenant le fil supérieur de 40 cm par rapport au fil du bas tel qu'illustré sur la figure suivante:

Tracez la densité de charge en fonction de la position pour chacun des fils et calculez la capacité de ce nouveau système

Réponse

```
[4] # Figure fil du haut
```

Question 4

On place maintenant le fil du haut dans la position illustrée çi-bas:

Calculez la capacité de ce nouveau système