Notebook	Function	Comments
Cylinder-finalversion-annotated.wl	Generate the results for the cylindrical configuration. In	The notebook can run on a cluster. The data is
	the first cells, the parameters are set. In the section	exported and can be used for analysis by different
	Chemische potential and Kt transition', the behavior of	other notebooks. The parameters are not exported so
	the environment is set, and the transition point can be	one must keep track of the parameters. It can be done
	defined.	by storing the notebook and data in the same folder.
Reading-file-data.nb	Notebook that can generate plots of all the relevant	It is a general notebook that can be applied to all data
	quantities in the system such as the volume.	exported from the Cylinder-finalversion-annotated.wl
		notebook. Notebook must be placed in the folder with
		the data. Parameters must be set manually and the
		export of the graphs must be done manually as well.
Reading-file-logscaling-export.nb	Notebook that generates the characteristic plots when	Notebook must be placed in the same folder with the
	the data must be spaced logarithmically.	data exported from Cylinder-finalversion-
		annotated.wl.
Comparison-Kt.nb	Notebook that generates the a(t), b(t) and total volume	Notebook must be placed in a folder containing the
	Vtot(t) curves for 4 different values of Kt.	folders with data for various Kt values.
GlobalScaling-KT.nb	Notebook that generated the global scaling factor for	Notebook must be placed in a folder containing the
	various values of Kt	folders with data for various Kt values.
Comparison-RHratenb	Notebook for N=5, N=10 to generate the plots for a(t),	Notebook must be placed in a folder containing the
	b(t) for various RH-rates.	folders with data for various RH rates.
Comparison-mu(0)-N5.nb	Notebook for N=5 to generate the plots for phi(0), phi(a),	Notebook must be placed in a folder containing the
	and the relative time delay	folders with data for various RH rates.
LocalScaling-model.nb	Notebook that can generate the local scaling factor as a	Notebook must be placed in the folder containing the
	function of time for a dataset	data. Can be adjusted to import the experimental data
		instead of the model data to generate the same plot
		for the experiments as for the numerical result