Evaluating the Effectiveness of Axiomatic Approaches in Web Track

TREC 2013 Web Track

Peilin Yang and Hui Fang University of Delaware

Semantic term matching is important.

Q:car

D1: driver

D2: fish

$$S(D_1,Q) > S(D_2,Q)$$

 $S(D_1,Q) = S(D_2,Q)$ in most of existing keyword matching based functions

How to integrate term semantic relationship?

Basic Idea of Axiomatic Approach

[Fang et. al. 04, Fang and Zhai 05, Fang and Zhai,06]

Basic Retrieval Constraints

Constraints	Intuitions	
TFC1	To favor a document with more occurrences of a query term	
TFC2	To ensure that the amount of increase in score due to adding a query term repeatedly must decrease as more terms are added	
TFC3	To favor a document matching more distinct query terms	
TDC	To penalize the words popular in the collection and assign higher weights to discriminative terms	
LNC1	To penalize a long document (assuming equal TF)	
LNC2, TF-LNC	To avoid over-penalizing a long document	
TF-LNC	To regulate the interaction of TF and document length	

Derived Basic AX Retrieval Function

Semantic Term Matching Constraints (STMC1)

Semantic Term Matching Heuristic I:

Give a higher score to a document with a term that is more semantically related to a query term

STMC1

Let $Q=\{q\}$ be a query.

Let $D_1 = \{d_1\}$, $D_2 = \{d_2\}$ be two documents.

If
$$s(q,d_1) > s(q,d_2)$$

then $S(Q, D_1) > S(Q, D_2)$

Q: "car"

D1: "driver"

D2: "fish"

s(q,d) is any given semantic similarity function between two terms q and d.

Moreover, s(t,t)>s(t,u)

Semantic Term Matching Constraints

(STMC2 & STMC3)

Semantic Term Matching heuristic II:

Favor semantically similar terms(SMTC3);

Avoid over-favoring semantically similar terms (SMTC2).

SMTC3

Let $Q = \{q_1, q_2\}$ be a query and d be non-query term such that $s(d, q_2) > 0$. $S(\{q_1\}, \{q_1\}) = S(\{q_2\}, \{q_2\})$

If $|D_1| = |D_2| > 1$, $c(q_1, D_1) = |D_1|$ and $c(d_1, D_2) = |D_2| - 1$

then $S(Q,D_1) \leq S(Q,D_2)$

Q: "safety car"

D1: "safety safety"

D2: "safety driver"

 $S(Q, D_1) \leq S(Q, D_2)$

SMTC2

Let $Q=\{q\}$ be a query and d be non-query term such that s(q,d)>0.

If $|D_1|=1$, $c(q,D_1)=1$, $|D_2|=k$, and $c(d,D_2)=k$

then $S(Q, D_1) \ge S(Q, D_2)$

Q: "car"

D1: "car"

D2: "driver driver"

$$S(Q, D_1) \ge S(Q, D_2)_{10}$$

Incorporate Semantic Term Matching

$$S(\lbrace q \rbrace, \lbrace d \rbrace) = \begin{cases} weight(q) & q = d \\ 0 & q \neq d \end{cases}$$

$$S(\{q\},\{d\}) = \begin{cases} weight(q) \times s(q,d) \\ s(q,q) \\ 0 \end{cases} \quad d \in TopKSim(q)$$

$$otherwise$$

STMCs can provide an upper bound and a lower bound.

Term Semantic Similarity Function

Term co-occurrence → semantic relationships

$$s(q,d) \approx MI(q,d,C)$$

Documents can be either from collection or external resource (i.e. Web).

Top ranked documents can be returned by any retrieval function.

TSSCs provide an upper bound and a lower bound for r

Results of Submitted Runs

Run IDs	Expansion Source	beta	ERR@20	ERR-IA@20
UDInfolabWEB1	Internal	0.1	0.1149	0.4943
UDInfolabWEB2	External	1.7	0.1755	0.5819

	UDInfolabWEB1	UDInfolabWEB2
ERR (alpha=0)	0.0185	0.0793
ERR (alpha=1)	-0.0172	0.0604
ERR (alpha=5)	-0.1606	-0.0149
ERR (alpha=10)	-0.3399	-0.1090

	UDInfolabWEB1	UDInfolabWEB2
ERR-IA (alpha=0)	0.1419	0.2295
ERR-IA (alpha=1)	0.0465	0.1682
ERR-IA (alpha=5)	-0.3352	-0.0771
ERR-IA (alpha=10)	-0.8123	-0.3837

Conclusions and Future Work

Conclusions

- Axiomatic approaches are effective.
- But its effective varies for different queries.
 - Easier → riskier
 - Faceted queries → riskier

Future work

 Applying different sets of constraints for different queries for risk minimization

Thank you!

Questions?