Datakommunikation Lab 1 - assignments

Axel Alvin, Lukas Axelborn

- 1. Delay components:
 - Processing delay, constant
 - Transmission delay, constant
 - Propagation delay, constant
 - Queueing delay, variable
- 2. Total time = transmission delay + propagation delay

Transmission delay $\frac{L}{R}$ where L = 8 * 1000 bits and R = 2000000 bps $\rightarrow \frac{8000}{2000000}$ = 4 ms

Propagation delay $\frac{d}{s}$ where d = 2500 m and s = 2.5 * 105 $\rightarrow \frac{2500}{2.5*105}$ = 10 ms

Total time = 4 ms + 10 ms = 14 ms

The delay does **not** depend on package length **nor** the transmission rate.

3.

- a) Throughput given by the smallest rate amongst the three, given there's no other traffic.
 - \rightarrow 500 kbps < 1 mbps < 2 mbps \rightarrow **500 kbps**
- b) 4 million bytes in bits = 4 million * 8 = 32 million bits

A
$$\rightarrow$$
 B, throughput = 500 kbps
Time = $\frac{file\ size}{throughput}$ = $\frac{32000000}{500000}$ = **64 s**

- c) R2 now has the smallest throughput (100 kbps) \rightarrow a) **100 kbps** Time = $\frac{file\ size}{thorughput}$ = $\frac{32000000}{100000}$ = **320 s** (b)
- 4. **Application layer message -** Where the application choses the appropriated protocol to send the message tex HTTP or FTP

Transport layer segment - transport the application layer message, between the clients and server. Transport layer utilizes the protocol TCP or UDP for transfor

Network layer datagram - sends the packages containing the message to the network.

Link-layer frame - provides the mean of transferring data packages between nodes on a network.

5.

a) Propagation delay = $\frac{d}{s}$ where d = distance (m) = 3600 * 1000 = 36 000 000 m and s = speed (m/s) = 240 000 000 m/s $\rightarrow \frac{36000000}{2400000000}$ = **0,15** s

b) R = transmission rate = 10 Mbps \rightarrow convert to bits \rightarrow 10 * 10 ⁶ = 10 ⁷ bits

Propagation delay = 0,15 s (from a)

R * propagation delay = $10^7 * 0.15 = 1 500 000 bits$

c) Interval = 60 sec

Transmission rate = 10⁷

Min value of x = transmission rate * interval = $10^7 * 60 =$

600 000 000 bits