Corso di Laurea: Ingegneria Informatica

Testo n.xx - Esame di Fisica Generale sessione del 12/2/2025

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

(Figura qualitativa a solo scopo illustrativo)

Con riferimento alla figura, un punto materiale, di massa m=5~kg scende su di un piano inclinato di angolo $\alpha=30^{0}$, partendo dal punto A posto a un'altezza h=3~m rispetto al punto B del piano, in cui è posto l'estremo superiore di una molla ideale e di costante elastica K, allineata con il piano, il cui altro estremo (quello inferiore) è fisso. Il tratto di piano tra i punti A e B presenta attrito dinamico, con coefficiente di attrito dinamico $\mu=0.2$. Il tratto di piano sotto la molla, tra i punti B e C è privo di attrito. Si calcoli:

1. il modulo della velocità v_B del punto materiale quando esso raggiunge l'estremo superiore della molla

 $v_B = \dots$

2 la costante elastica K della molla, sapendo che la massima compressione della molla, a seguito dell'urto con il punto materiale, è $\Delta x = 10~cm$

 $K = \dots$

3 la quota massima h_D rispetto al punto B raggiunta dal punto materiale, una volta che esso risale sul piano inclinato, e il lavoro complessivo \mathcal{L}_a fatto dalle forze di attrito dall'inizio del moto sino a quando il corpo è risalito alla quota massima.

 $h_D = \dots \mathcal{L}_a = \dots$

Nota Bene: assumere per i calcoli $g = 9.81 \text{ m/s}^2$

ESERCIZIO.2 - Elettromagnetismo

(Figura qualitativa a solo scopo illustrativo)

Con riferimento alla figura, un guscio sferico di raggio interno $R_i = 0.75~m$ e raggio esterno $R_e = 1~m$ è uniformemente carico con densità di carica $\rho = 10^{-9}~C/m^3$. All'interno del guscio sferico si trova una sfera di raggio $R_s = R_e/6$ uniformemente carica con densità di carica $-\rho$. La sfera ha centro nel punto $(-R_e/2, 0, 0)$.

1. determinare le coordinate cartesiane (x_1, y_1, z_1) di un punto in cui il campo elettrico è nullo (escludendo punti a distanza infinita dal centro del guscio), spiegando perchè in quel punto il campo elettrico è sicuramente nullo

$$(x_1, y_1, z_1) = \dots$$

2. Determinare il vettore campo elettrico $\overrightarrow{E}(0,0,0)$ in coordinate cartesiane nel punto di coordinate (0,0,0) e calcolarne il modulo.

$$\overrightarrow{E}(0,0,0) = \qquad |\overrightarrow{E}(0,0,0)| = \qquad |\overrightarrow{E}(0,0,0)$$

3. Calcolare il flusso del campo elettrico $\phi(\overrightarrow{E})$ attraverso una superficie sferica di raggio $r>R_e$ centrata in (0,0,0)

$$\phi(\overrightarrow{E}) = \dots$$

Costanti Utili: $\varepsilon_0 = 8.85 \ 10^{-12} \ \mathrm{F/m}$

(Figura qualitativa a solo scopo illustrativo)

Domanda 1

Scomponendo il moto del corpo nella direzione parallela (x) e perpendicolare (y) al piano otteniamo:

$$\begin{cases} ma_x = mgsin\alpha - f_a \\ 0 = N - mgcos\alpha \Rightarrow N = mgcos\alpha \end{cases}$$

per cui $N = mq\cos\alpha$, di conseguenza, il modulo della forza di attrito dinamico è dato da:

$$f_a = \mu N = \mu mgcos\alpha$$

Durante la discesa lungo il piano inclinato, parte dell'energia viene dissipata dal lavoro delle forze di attrito. Il lavoro delle forze di attrito nel tratto AB dato da:

$$\mathcal{L}_a(AB) = -\mu mg \cos \alpha \cdot s \tag{1}$$

dove s è la lunghezza del tratto AB, calcolabile come:

$$s = \frac{h}{\sin \alpha} \tag{2}$$

Prendendo l'origine dell'energia potenziale in B vale:

$$E_B - E_A = \mathcal{L}_a(AB) = \frac{1}{2} m v_B^2 - mgh = -\mu mg \cos \alpha s \quad \Rightarrow \quad \frac{1}{2} m v_B^2 = mgh - \mu mg \cos \alpha \cdot \frac{h}{\sin \alpha} \quad \Rightarrow \quad v_B = \sqrt{2g \left(h - \mu \frac{h \cos \alpha}{\sin \alpha}\right)} = 6.2 \, m/s$$

Dove con E_A e E_B abbiamo indicato l'energia meccanica in A e in B del pm e con $\mathcal{L}_a(AB)$ il lavoro fatto dalla forza di attrito tra da A a B. $E_B = \frac{1}{2}mv_B^2 = 96$ J è l'energia meccanica del pm in B nella discesa, che coincide con l'energia cinetica del pm in B nella discesa.

Domanda 2

Vale la conservazione dell'energia meccanica nel tratto privo di attrito dove avviene la compressione della molla:

$$\frac{1}{2}mv_B^2 = \frac{1}{2}K\left(\Delta x\right)^2 - mg\Delta x sin\alpha \quad \Rightarrow \quad K = \frac{mv_B^2 + 2mg\Delta x sin\alpha}{(\Delta x)^2} = 19.7 \ kN/m \tag{3}$$

Domanda 3

Si noti che quando la molla si espande per ritornare alla lunghezza di equilibrio, agiscono solo forze conservative, essendo il coefficiente di attrito nullo nel tratto Δx per cui l'energia meccanica nel punto B è la stessa calcolata nella domanda 1 nella discesa del punto materiale.

$$E_{\Delta x} = \frac{1}{2}K(\Delta x)^2 - mg\Delta x sin\alpha = \frac{1}{2}mv_B^2$$

Dove con $E_{\Delta x}$ abbiamo indicato l'energia meccanica nel punto in cui la compressione della molla è massima. Ripetendo quindi il ragionamento fatto nella domanda 1, fino ad un punto generico D distante s' da B, si ottiene:

$$E_D - E_{\Delta x} = -f_a s' = \mathcal{L}_a(BD) = E_D - E_B \quad \Rightarrow \quad -\mu mg cos \alpha \frac{h_D}{sin\alpha} = mgh_D - E_B$$

dove con $\mathcal{L}_a(BD)$ abbiamo indicato il laforo fatto dalla forza di attrito nel moto da B a D. Dalla quale:

$$h_D mg \left(1 + \mu \frac{cos\alpha}{sin\alpha}\right) = E_B \quad \Rightarrow \quad h_D = \frac{E_B}{mg \left(1 + \mu \frac{cos\alpha}{sin\alpha}\right)} = 1.46 \ m$$

Il lavoro complessivo fatto dalla forza di attrito è dato da:

$$\mathcal{L}_a = \mathcal{L}_a(AB) + \mathcal{L}_a(BD) = E_B - E_A + E_D - E_B = mgh_D - mgh = -75.7 J$$

Soluzione Esercizio 2

(Figura qualitativa a solo scopo illustrativo)

Domanda 1

All'interno del guscio sferico l'unico campo presente è quello dovuto alla sfera carica. Se utilizziamo il teorema di Gauss troviamo immediatamente che nel centro della sfera il campo dovuto a quest'ultima è nullo. Una possibile risposta alla domanda è quindi data dal punto di coordinate (-Re/2, 0, 0)

Domanda 2

Come specificato sopra, il campo all'interno della cavità è dato unicamente dalla sfera. Per un punto all'esterno della sfera uniformemente carica, a distanza r_s dal suo centro, e all'interno della cavità:

$$\overrightarrow{E}_s(\overrightarrow{r}) = \frac{q}{4\pi\varepsilon_0 r_s^2} \hat{r}_s$$

Nel nostro caso $r_s=R_e/2=0.5\ m$ è la distanza calcolata rispetto al centro della sfera e vale:

$$q = -\frac{4}{3}\pi \left(\frac{R_e}{6}\right)^3 \rho = -1.94 \times 10^{-11} \ C$$

Pertanto, in coordinate cartesiane, in (0,0,0), il campo elettrico è dato da:

$$\overrightarrow{E}(0,0,0) = (-0.697,0,0) \ V/m$$

inoltre $|\overrightarrow{E}(0,0,0)| = 0.697 \ V/m$

Domanda 3

L'espressione del flusso si può ottenere immediatamente tramite il teorema di Gauss:

$$\phi(\overrightarrow{E}) = \frac{q+Q}{\varepsilon_0}$$

dove q e Q sono rispettivamente la carica della sfera e del guscio. q è stata calcolata nella risposta alla domanda 2, mentre per Q vale:

$$Q = \frac{4}{3}\pi\rho \left(R_e^3 - R_i^3\right) = 2.42 \times 10^{-9} \ C$$

per cui:

$$\phi(\overrightarrow{E}) = 271 \ Nm^2/C$$