Série 7

Exercice 1. L'espace est muni d'un repère. Dans chacun des cas suivants, écrire des équations paramétriques et cartésiennes de la droite d définie par les données.

a.
$$A(2,0,-5)$$
 et $\vec{v} \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$.

b. A(1,-1,-3), et parallèle à :

$$g: \left\{ \begin{aligned} x &= -1 + 3t \\ y &= 3 - 2t \\ z &= 2 + 5t \end{aligned} \right., t \in \mathbb{R}.$$

c. A(1,0,1) et B(2,-1,3).

d.
$$A(3,-1,2)$$
 et $B(2,1,2)$.

e. A(-1,2,3) et parallèle à :

$$g: x = 1, \frac{y+2}{2} = \frac{z+1}{-1}.$$

f.
$$A(2,-5,3)$$
 et $\vec{v} \begin{pmatrix} 0\\1\\0 \end{pmatrix}$.

Exercice 2. On munit l'espace d'un repère. Dans chacun des cas suivants, déterminer la position relative des droites d et g. Lorsqu'elles sont sécantes, identifier le point d'intersection.

a.
$$d: -2x + 8 = -y = 2z + 4$$
 et $g: \begin{cases} x = 7 + t \\ y = -t \\ z = -2 + \frac{t}{2} \end{cases}$, $t \in \mathbb{R}$.

- b. d passe par A(-4,2,1) et B(-1,1,3), g par C(0,5,-2) et D(9,2,4).
- c. d passe par A(8,0,3) et est dirigée par $\vec{v}\left(\begin{array}{c}5\\-2\\1\end{array}\right)$ et $g:\frac{x}{8}=\frac{y}{3}=\frac{-z+5}{7}.$

Exercice 3. Soit ABCD un tétraèdre, et I, J, K, L les points milieux des arêtes AB, CD, AC, BD.

- a. Écrire les équations vectorielles des droites (IJ) et (KL) vues depuis le point A, en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
- b. Montrer que les droites (IJ) et (KL) s'intersectent en un point N.
- c. Vérifier que N est le milieu des segments IJ et KL.

Exercice 4. On donne un tétraèdre ABCD dans l'espace. Dans chacun des cas suivants, écrire une équation vectorielle de l'objet géométrique donné vu depuis le point A, en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AC} , et \overrightarrow{AD} .

- a. la droite (CD).
- b. le plan passant par B, C et D.
- c. le plan passant par les milieux des côtés AB, AD et CD.
- d. le segment BC.

Exercice 5. L'espace est muni d'un repère. Dans chacun des cas suivants, exliquer pourquoi les données permettent de définir un plan π et donner des équations paramétriques et cartésiennes de π .

a.
$$A(3,4,-5)$$
, $\vec{u} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.
b. $A(3,-1,2)$, $B(4,-1,-1)$, $C(2,0,2)$.
e. $d: \frac{x-1}{-2} = \frac{y-2}{3} = \frac{z-1}{-1}$ et:

$$\begin{array}{ll} \text{b. } A(3,-1,2), \ B(4,-1,-1), \ C(2,0,2). \\ \text{c. } A(2,-1,3), \ d: \frac{x-1}{3} = \frac{y-2}{2} = \frac{z+3}{-2}. \\ \text{d. } A(3,-2,-7), \ \text{et parallèle au plan } \rho: 2x-3z+5=0. \end{array} \qquad g: \left\{ \begin{array}{ll} x=2-t \\ y=1+2t \ , \ t \in \mathbb{R}. \\ z=5+3t \end{array} \right.$$

Éléments de réponse :

Ex. 1: a.
$$\frac{x-2}{2} = \frac{y}{-3} = \frac{z+5}{5}$$
, b. $\frac{x-1}{3} = \frac{y+1}{-2} = \frac{z+3}{5}$, c. $x-1 = -y = \frac{z-1}{2}$. d. $3-x = \frac{y+1}{2}$, $z=2$, e. $x=-1, \frac{y-2}{2} = 3-z$, f. $x=2, z=3$.

Ex. 2: a. sécantes en (5, 2, -3), b. parallèles non confondues, c. gauches.

Ex. 3: a. $(IJ): \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + t(-\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}), t \in \mathbb{R}. (KL): \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AC} + t(\frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}), t \in \mathbb{R}.$ b. $\overrightarrow{AN} = \frac{1}{4}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}).$

 $\mathbf{Ex. 4} : \mathbf{a}. \overrightarrow{AM} = \overrightarrow{AC} + t(-\overrightarrow{AC} + \overrightarrow{AD}), t \in \mathbb{R}, \text{ b. } \overrightarrow{AM} = \overrightarrow{AB} + s(\overrightarrow{AC} - \overrightarrow{AB}) + t(\overrightarrow{AD} - \overrightarrow{AB}), s, t \in \mathbb{R}, \text{ c.}$ $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{s}{2}(\overrightarrow{AD} - \overrightarrow{AB}) + \frac{t}{2}(\overrightarrow{AC} + \overrightarrow{AD} - \overrightarrow{AB}), s, t \in \mathbb{R}, \text{ d. } \overrightarrow{AM} = \overrightarrow{AB} + t(\overrightarrow{AC} - \overrightarrow{AB}), t \in [0, 1].$

Ex. 5: a. x + 4y + 7z + 16 = 0, b. 3x + 3y + z - 8 = 0, c. 6x - 20y - 11z + 1 = 0, d. 2x - 3z - 27 = 0, e. 11x + 7y - z - 24 = 0.