

Chapter 5: CTL Model Checking

CTL Model Checking

The model-checking problem and algorithms for CTL

Wang Qirui 1W202047 5/22/2023

5/22/2023 2 / 36

Table of Contents

- 1. Introduction to CTL Model Checking
- 2. Explicit-State CTL Model Checking
 - 1. Introduction
 - 2. Example: $g = \mathbf{E}(f_1\mathbf{U}f_2)$
 - 3. Example: $g = \mathbf{EG} f_1$
 - 4. General Approach
 - 5. Example: Microwave oven

3. Model-Checking CTL with Fairness

Constraints

- 1. Example: Microwave Oven
- 4. CTL Model Checking via Fixpoint Computation
 - 1. Introduction
 - 2. Background on Fixpoint Theory
- 5. Problem
 - 1. Problem 5.1

5/22/2023 3 / 36

Introduction

What is CTL model checking?

Is $M=(AP,S,R,S_0,L)$ a model of CTL formula f (i.e., $M\models f$)? Find the set $[\![f]\!]_M$ of all states in M that satisfy f:

$$\llbracket f
rbracket_M \models \{s \in S \mid M, s \models f\}$$

- lacksquare Problem can be solved by checking $S_0\subseteq \llbracket f
 rbracket$.
 - S_0 is not needed during model checking.
- We fix AP for the rest of the chapter.
 - AP is not needed too.

Represented as a directed graph (S, R) with labeling L.

Explicit-State CTL Model Checking

A model-checking algorithm for CTL

5/22/2023 5 / 36

Explicit-State CTL Model Checking

Introduction

How to determine which states in S satisfy f?

Labeling each state s with label(s), which is a set of subformulas that are true in s.

- 1. Let label(s) be L(S).
- 2. Then a sub-routine with multiple stages
 - 1. During the i-th stage, subformulas with i-1 nested CTL operators are processed.
 - 2. Subformula that is processed is added to the labeling of each state that in which it is true.
- 3. Terminated with $M,s\models f\iff f\in label(s)$.

Explicit-State CTL Model Checking

Introduction

As mentioned in 4.3.1, any CTL formula can be expressed in terms of

$$\neg, \lor, \mathbf{EX}, \mathbf{EU}, \mathbf{EG}.$$

The intermediate stages of the algorithm is able to handle 6 cases:

- lacksquare g is atomic
- ullet g has one of the forms: $\neg f_1$, $f_1 \lor f_2$, $\mathbf{EX} f_1$, $\mathbf{E}(f_1 \mathbf{U} f_2)$, $\mathbf{EG} f_1$.

For example:

- $\neg f_1$: states that are not labeled by f_1 .
- $f_1 \lor f_2$: states that is labeled by f_1 or f_2 .
- **EX** f_1 : states that has some successor labeled by f_1 .

Example

Handling formula of form $g=\mathbf{E}(f_1\mathbf{U}f_2)$

- 1. Find all states that are labeled with f_2 .
- 2. Search backward using converse of R for all states that can be reached by a path that all states are labeled with f_1 .
- 3. All such states are labeled with g.

Example-1.1

```
procedure CheckEU(f_1, f_2)
    T := \{ s \mid f_2 \in label(s) \};
    for all s \in T do label(s) := label(s) \cup \{ \mathbf{E}(f_1 \mathbf{U} f_2) \};
     while T \neq \emptyset do
         choose s \in T:
         T := T \setminus \{s\};
         for all t such that R(t,s) do
              if \mathbf{E}(f_1 \mathbf{U} f_2) \not\in label(t) and f_1 \in label(t) then
                   label(t) := label(t) \cup \{ \mathbf{E}(f_1 \mathbf{U} f_2) \};
                   T := T \cup \{t\};
              end if
         end for all
     end while
end procedure
```

Figure 5.1

Procedure for labeling the states satisfying $g = \mathbf{E}(f_1 \mathbf{U} f_2)$

The case of $g=\mathbf{EG}f_1$

Based on the decomposition of the graph into nontrivial strongly connected components.

- 1. **Strongly connected component (SCC)** is a subgraph such that every node is reachable from every other node along a directed path.
- 2. Maximal SCC (MSCC) is a SCC that is not a subset of any other SCC.
- 3. Nontrivial SCC is a SCC with more than one node or with only one node with a self-loop.

Let's retain only states that satisfy f_1 :

$$egin{aligned} M' &= (S',R',L') \ S' &= \{s \in S \mid M,s \models f_1\} \ R' &\models R|_{S' imes S'} \ L' &\models L|_{S'} \end{aligned}$$

Note: R' may not be left-total in this case.

The case of $g=\mathbf{EG}f_1$

Lemma 5.1

 $M, s \models \mathbf{EG} f_1$ if and only if the following conditions are satisfied:

- 1. $s \in S'$.
- 2. There exists a path in M' that leads from s to some node t in a nontrivial MSCC C of the graph (S',R').

Proof.

Sufficiency

It's clearly that:

$$M,\ s\models \mathbf{EG}f_1\implies s\in S'.$$

Proof to Lemma 5.1

Let π be an infinite path in M starting at s, then:

$$M, \ \pi \models \mathbf{G} f_1 \implies \pi \in S'.$$

Since M is finite, it's possible to write π as $\pi = \pi_0 \pi_1$, where π_0 is a finite initial segment and π_1 is an infinite suffix of π . Then we will show that C is a nontrivial SCC.

Let C be the set of all states in π_1 , and take states $s_1, s_2 \in C$, since π_1 is an infinite path, then the segment from s_1 to s_2 is a finite path from s_1 to s_2 within C. So C is a nontrivial SCC.

Note: if C is not maximal, then it's contained in an MSCC C' and π_0 leads to C' since it leads to C.

Proof to Lemma 5.1

Necessity

Let π_0 be the path from s to t in M' and π_1 be the path of length at least 1 from t back to t.

- Since t is in a nontrivial MSCC, then π_1 's existence is guaranteed.
- All the states on the infinite path $\pi=\pi_0\pi_1^\omega$ satisfy $f_1.$

Since π is a path from s in M, then M, $s \models \mathbf{EG}f_1$. \square

Lemma 5.1 shows that the search of infinite paths can be reduced to the search of an MSCC.

- ullet The search of SCCs is exponential. (they might include all subsets of S)
- The search of MSCCs can be done in linear time.

The case of $g=\mathbf{EG}f_1$

Then the algorithm for the case of $g = \mathbf{EG}f_1$, with the help of Lemma 5.1, turns out to be:

- 1. Construct the Kripke structure M'=(S',R',L').
- 2. Partition the graph (S',R') into its MSCCs using Tarjan's algorithm¹.
- 3. Find those states belonging to nontrivial ones.
- 4. Work backward using the converse of R' like the case of $\mathbf{E}(f_1\mathbf{U}f_2)$.

```
S' := \{ s \mid f_1 \in label(s) \};
    MSCC := \{C \mid C \text{ is a nontrivial maximal SCC of } S'\};
    T := \bigcup_{C \in MSCC} \{ s \mid s \in C \};
    for all s \in T do label(s) := label(s) \cup \{ EG f_1 \};
    while T \neq \emptyset do
         choose s \in T;
         T := T \setminus \{s\};
         for all t such that t \in S' and R(t,s) do
             if EG f_1 \not\in label(t) then
                  label(t) := label(t) \cup \{ \mathbf{EG} f_1 \};
                  T := T \cup \{t\};
             end if
         end for all
    end while
end procedure
```

procedure $CheckEG(f_1)$

Figure 5.2

Procedure for labeling the states satisfying $g=\mathbf{EG}f_1$

 $^{^1}$ Tarjan's algorithm (will be introduced in 5.5) finds the set of all MSCCs with time complexity O(|S'|+|R'|).

Explicit-State CTL Model Checking

General approach

How to handle arbitrary CTL formula f?

- Decompose the formula into subformulas and apply the state-labeling algorithm to them.
- Start with the shortest and most deeply nested subformulas, and work outward.
 - All subformulas of formula currently processing are guaranteed to be processed.

Since each pass takes time O(|S|+|R|) and f has at most |f| different subformulas, the total pass requires time:

$$O(|S| + |R|) \cdot |f| = O(|f| \cdot (|S| + |R|)).$$

Theorem 5.2

There is an algorithm for determining $\llbracket f \rrbracket$ that runs in time $O(|f| \cdot (|S| + |R|))$.

5/22/2023

Explicit-State CTL Model Checking

General approach

- lacktriangle Theorem 5.2 holds for every CTL formula over ${f EX}$, ${f E(U)}$, and ${f EG}$.
 - Every other CTL formula can be expressed by means of these three operators. (Chapter 4)
 - lacktriangle Preprocess the CTL formula to obtain a formula containing only ${f EX}$, ${f E}({f U})$, and ${f EG}$.
 - All translations are linear in the size of the original formula, except for $\mathbf{A}(\mathbf{U})$.

Recall that:

$$\mathbf{A}(f\mathbf{U}g) \equiv \neg \mathbf{E}(\neg g\mathbf{U}(\neg f \wedge \neg g)) \wedge \neg \mathbf{E}\mathbf{G} \neg g.$$

There are only 8 different subformulas, so the overall time complexity is **preserved**.

5/22/2023

Example: Microwave oven

Model-checking algorithm for CTL

Let's check the following CTL formula:

$$\mathbf{AG}(Start o \mathbf{AF}Heat) \ \equiv
eg \mathbf{EF}(Start \wedge \mathbf{EG}
eg Heat).$$

We start by computing the set of states satisfying the APs:

$$[Start] = \{2, 5, 6, 7\}$$

 $[Heat] = \{4, 7\}$

To compute $[\![\mathbf{EG}\neg Heat]\!]$, we first find the set of nontrivial SCC in $S'=[\![\neg Heat]\!]$.

We have $MSCC = \{\{1, 2, 3, 5\}\}.$

Then, we set the set of states that should be labeled by $\mathbf{EG} \neg Heat$ to:

$$T = igcup_{C \in MSCC} \{s | s \in C\} = \{1, 2, 3, 5\}.$$

No other states in S' can reach state in T along a path **in** S', so the computation terminates with:

$$[\![\mathbf{EG} \neg Heat]\!] = \{1, 2, 3, 5\}.$$

Therefore:

$$\llbracket Start \wedge \mathbf{EG} \neg Heat
rbracket = \{2, 5\}.$$

For $\llbracket \mathbf{EF}(Start \wedge \mathbf{EG} \neg Heat)
rbracket$, we set

$$T = \llbracket Start \wedge \mathbf{EG} \neg Heat
rbracket.$$

And find states that can reach T:

$$[\![\mathbf{EF}(Start \wedge \mathbf{EG} \neg Heat)]\!] = \{1, 2, 3, 4, 5, 6, 7\}.$$

Finally, we have:

$$\llbracket \neg \mathbf{EF}(Start \wedge \mathbf{EG} \neg Heat)
\rrbracket = \emptyset.$$

The initial state 1 is not in the set, so the system described by the Kripke structure **does not** satisfy the given specification.

Extend the CTL model-checking algorithm to handle fairness constraints.

5/22/2023

Introduction

Let M=(S,R,L,F) be a fair Kripke structure, and $F=\{P_1,\ldots,P_k\}$ be the set of fairness constraints.

A SCC C of the graph of M is fair with respect to F if and only if $\forall P_i \in F, \exists t_i \in (C \cap P_i)$.

We will give an algorithm for checking $\mathbf{EG}f_1$ with respect to a fair structure. To ensure that the algorithm is correct, a lemma similar to Lemma 5.1 is required.

Similarly, we obtain a set M' from M by removing from S all states that f_1 does not fairly hold in.

$$egin{aligned} M' &= (S', R', L', F') \ S' &= \{s \in S \mid M, s \models_F f_1\} \ R' &= R|_{S' imes S'} \ L' &= L|_{S'} \ F' &= \{P_i \cap S' \mid P_i \in F\} \end{aligned}$$

Describe CheckFairEG algorithm

Lemma 5.3

 $M, s \models_F \mathbf{E}_f \mathbf{G} f_1$ if and only if the following conditions are satisfied:

- 1. $s \in S'$.
- 2. There exists a path in S' that leads from s to some node t in a nontrivial maximal strongly connected component of C of the graph (S', R').

The proof of this lemma is also similar, and we omit it here.

For CheckFairEG (f_1) , who adds $\mathbf{E}_f \mathbf{G} f_1$ to the label of s for every s such that $M, s \models_F \mathbf{E} \mathbf{G} f_1$, we assume likewise that:

$$f_1 \in label(s) \iff M, s \models_F f_1.$$

5/22/2023 20 / 36

Describe CheckFairEG algorithm

The procedure body is the same as CheckEG shown in **Figure 5.1**, except that *MSCC* now consists of the set of nontrivial **fair** MSCCs.

- The **complexity** of the algorithm is $O((|S| + |R|) \cdot |F|)$
 - It's necessary to determine which components are fair
 - Involves examining every component to see if it has a state from each fairness constraint.

How to generalize the algorithm to check other CTL formulas?

- Introduce an additional atomic proposition fair.
 - ullet Holds true at state s if and only if there is a fair path starting from s, so,

$$\mathit{fair} \equiv \mathbf{E}_{\mathrm{f}}\mathbf{G}\mathit{true}$$

• Procedure CheckFairEG can be used to label states with fair.

Generalization of the algorithm

- lacksquare To determine if $M,s\models_F \mathbf{E}_{\mathrm{f}}\mathbf{X}f_1$, check $M,s\models\mathbf{E}\mathbf{X}(f_1\wedge fair)$
- lacksquare To determine if $M,s\models_F \mathbf{E}_{\mathrm{f}}(f_1\mathbf{U}f_2)$, check $M,s\models \mathbf{E}(f_1\mathbf{U}(f_2\wedge fair))$
 - lacksquare By calling CheckEU $(f_1,f_2\wedge fair)$

Also, the total time complexity of the algorithm is $O(|f| \cdot (|S| + |R|) \cdot |F|)$.

Theorem 5.4

There is an algorithm for determining whether a CTL formula f is true with respect to the fair semantics in a state s of the structure M=(S,R,L,F) that runs in time $O(|f|\cdot(|S|+|R|)\cdot|F|)$

Similarly, this theorem's correctness can be proved like **Theorem 5.2**.

5/22/2023 22 / 36

Example: Microwave Oven

Illustrating the use of fairness constraints

We check the formula below with the same model as Figure 5.3:

$$\mathbf{A}_{\mathrm{f}}\mathbf{G}(Start
ightarrow \mathbf{A}_{\mathrm{f}}\mathbf{F}Heat) \equiv
eg \mathbf{E}_{\mathrm{f}}\mathbf{F}(Start \wedge \mathbf{E}_{\mathrm{f}}\mathbf{G}
eg Heat)$$

We only look at the paths where **the user always uses the microwave oven correctly** and keep other variables unchanged:

$$F = \{P\}, \quad P = \{s \mid s \models Start \land Close \land \neg Error\}.$$

For $S' = \llbracket \neg Heat \rrbracket$, we have $MSCC = \{1, 2, 3, 5\}$, which is *not fair*, since no state in MSCC satisfies $Start \wedge Close \wedge \neg Error$.

So we have $\llbracket \mathbf{E}_{\mathrm{f}}\mathbf{G} \neg Heat
rbracket = \llbracket \mathbf{E}_{\mathrm{f}}\mathbf{F}(Start \wedge \mathbf{E}_{\mathrm{f}}\mathbf{G} \neg Heat)
rbracket = \emptyset.$

Finally, we have $[\neg(\mathbf{E}_f\mathbf{F}(Start \wedge \mathbf{E}_f\mathbf{G}\neg Heat))] = \{1, 2, 3, 4, 5, 6, 7\}$. So all states of the program satisfy the formula under the given fairness constraints.

5/22/2023 23 / 36

Algorithm that manipulates entire sets

5/22/2023

Introduction

In section 5.1, we discussed the explicit model-checking algorithm, which manipulates individual states and transitions.

Symbolic model-checking algorithms manipulate entire sets of states and transitions.

- Based on fixpoint characterization of the temporal logic operators.
- Use ordered binary decision diagrams (OBDDs) to represent sets of states and transitions.
- Quadratic time complexity, while explicit model-checking is linear.
- Significantly reduced space complexity.
 - Enables verification of systems with very large state spaces.

5/22/2023 25 / 36

Background on Fixpoint Theory

Let M=(S,R,L) be a finite Kripke structure. The power set $\mathcal{P}(S)$ is a lattice under the inclusion order.

A poset (L, \leq) is called a **lattice** if for every pair of elements $a, b \in L$, there exists a **least upper bound** $a \vee b$ and a **greatest lower bound** $a \wedge b$.

- Each element S' of the lattice can be viewed as a *predicate* on S, where the predicate is true for a state s if and only if $s \in S'$.
- lacktriangle The least element of the lattice is the empty set \emptyset ,we denote it by false.
- The greatest element of the lattice is the set S itself, we denote it by true.

Definition

A function that maps $\mathcal{P}(S)$ to $\mathcal{P}(S)$ is called a **predicate transformer**.

Background on Fixpoint Theory

Definition

A set $S'\subseteq S$ is a **fixpoint** of a function $au:\mathcal{P}(S)\to\mathcal{P}(S)$ if au(S')=S'.

Let $\tau:\mathcal{P}(S)\to\mathcal{P}(S)$ be a predicate transformer, then:

- 1. au is monotonic if $P\subseteq Q\implies au(P)\subseteq au(Q)$;
- 2. τ is \cup -continuous if $P_1 \subseteq P_2 \subseteq \ldots \implies \tau(\cup_i P_i) = \cup_i \tau(P_i)$;
- 3. au is \cap -continuous if $P_1\supseteq P_2\supseteq\ldots\implies au(\cap_i P_i)=\cap_i au(P_i)$.

We write $au^i(Z)$ to denote i applications of au to Z. That is,

$$au^0(Z)=Z \ au^{i+1}(Z)= au(au^i(Z))$$

Background on Fixpoint Theory

Theorem 5.5 (Tarski-Knaster)

Let τ be a predicate transformer on $\mathcal{P}(S)$. Then if τ is monotonic it has a greatest fixpoint, $\nu Z.\tau(Z)$, and a least fixpoint, $\mu Z.\tau(Z)$, defined as follows:

Furthermore, if τ is \cap -continuous, then $\nu Z.\tau(Z) = \bigcap \tau^i(true)$, and if τ is \cup -continuous, then $\mu Z.\tau(Z) = \bigcup \tau^i(false)$.

Proof. Let $\Gamma=\{Z\mid Z\subseteq au(Z)\}$ and $P=\cup\Gamma$. Then $\forall Z\in\Gamma, Z\subseteq P$. Thus, for $Z\in\Gamma$:

- $Z \subseteq \tau(Z) \implies \tau(Z) \subseteq \tau(\tau(Z)) \implies \tau(Z) \in \Gamma$; (monotonicity)
- $\bullet \quad \tau(Z) \subseteq \tau(P) \implies Z \subseteq \tau(Z) \subseteq \tau(P) \implies P \subseteq \tau(P);$
- lacksquare Then we have $P\in\Gamma$ and $au(P)\in\Gamma$.

Proof of Theorem 5.5

By definition of Γ , $P\subseteq \Gamma$ and $au(P)\subseteq \Gamma$. And since $P=\cup \Gamma$, we have $au(P)\subseteq P$. Thus,

$$\tau(P) = P$$
.

- Since \subseteq is reflexive (for any set $S, S \subseteq S$), then every fixpoint of τ is also in Γ .
- As P includes all sets in Γ , then P must be the **greatest** fixpoint of τ .

For the second part of the theorem, we have:

$$au(S) \subseteq S \implies au(au(S)) \subseteq au(S) \implies au^{i+1}(S) \subseteq au^i(S)$$

And by coninuity, we have:

$$au(\cap au^i(S)) = \cap au^{i+1}(S) \supseteq \cap au^i(S) \implies \cap au^i(S) \in \Gamma \implies \cap au^i(S) \subseteq P$$

29 / 36

5/22/2023

Proof of Theorem 5.5

It's obvious that $P \subseteq S$, so we have:

$$P = au(P) \subseteq au(S) \subseteq S \implies P \subseteq au^i(S) \implies P \subseteq \cap au^i(S).$$

Therefore, $P=\cap au^i(S)$, that is, $\nu Z. au(Z)=\bigcap au^i(true)$. The proof for the least fixpoint is similar so it's omitted here. \square

The Knaster Tarski theorem implies:

lacktriangledown if τ is continuous, then it can be computed by a (possibly infinite) sequence of applications of τ .

Next, some lemmas will be proved to show that:

- for $\tau:\mathcal{P}(S)\to\mathcal{P}(S)$, if S is finite, then whenever au is monotonic, it is also continuous.
- In this case, only a finite number of applications are needed.
- Finally, we obtain an algorithm for computing the fixpoints.

Background on Fixpoint Theory

Lemma 5.6

If S is finite and τ is monotonic, then τ is also \cap -continuous and \cup -continuous.

Proof. Let $P_1 \subseteq P_2 \subseteq \ldots$ be a sequence of subsets of S, then we have $\tau(P_1) \subseteq \tau(P_2) \subseteq \ldots$ Since S is finite,

$$\exists j_0, (orall j \geq j_0, P_j = P_{j_0}) \wedge (orall j < j_0, P_j \subseteq P_{j_0}) \implies \cup_i P_i = P_{j_0} \implies au(\cup_i P_i) = au(P_{j_0}).$$

Also we have:

$$\exists j_0, (\forall j \geq j_0, \tau(P_i) = \tau(P_{i_0})) \land (\forall j < j_0, \tau(P_i) \subseteq \tau(P_{i_0})) \implies \cup_i \tau(P_i) = \tau(P_{i_0}).$$

Therefore au is \cup -continuous. The proof that au is \cap -continuous is similar, so omitted here. \Box

Lemma 5.7

If τ is monotonic, then for every $i, \tau^i(false) \subseteq \tau^{i+1}(false)$ and $\tau^i(true) \supseteq \tau^{i+1}(true)$.

Recall that:

$$egin{aligned} S \supseteq au(S) \implies au(S) \supseteq au(T(S)) \implies au^i(S) \supseteq au^{i+1}(S) \ \emptyset \subseteq au(\emptyset) \implies au(\emptyset) \subseteq au(au(\emptyset)) \implies au^i(\emptyset) \subseteq au^{i+1}(\emptyset) \end{aligned}$$

Lemma 5.8

If τ is monotonic and S is finite, then there is an integer i_0 such that for every $j \geq i_0$, $\tau^j(false) = \tau^{i_0}(false)$. Similarly, there is an integer j_0 such that for every $j \geq j_0$, $\tau^j(true) = \tau^{j_0}(true)$.

Lemma 5.9

If τ is monotonic and S is finite, then there is an integer i_0 such that $\mu Z.\tau(Z) = \tau^{i_0}(\mathit{false})$. Similarly, there is an integer j_0 such that $\nu Z.\tau(Z) = \tau^{j_0}(\mathit{true})$.

Background on Fixpoint Theory

With these lemmas, we can compute the least fixpoint of τ if τ is monotonic.

And the **invariant** of the while loop is given by assertion:

$$(Q'= au(Q))\wedge (Q'\subseteq \mu Z. au(Z)).$$

We can see that at the i-th iteration of the loop, $Q= au_{i-1}(false)$ and $Q'= au_i(false)$. Lemma 5.7 implies that

$$\mathit{false} \subseteq \tau(\mathit{false}) \subseteq \tau^2(\mathit{false}) \subseteq \dots$$

```
Set Lfp(std::function<Set(Set&)> const &tau)
{
    Set Q{false};
    Set Q_p{tau(Q)};
    while (Q != Q_p) {
        Q = Q_p;
        Q_p = tau(Q_p);
    }
    return Q;
}
```

Procedure to compute the least fixpoint of au.

Background on Fixpoint Theory

Therefore, the maximum number of iterations of the loop is bounded by |S|. When the loop terminates, we have Q= au(Q) and hence $Q=\mu Z. au(Z)$.

Similarly, we can compute the greatest fixpoint also in a finite number of iterations, and it returns $\nu Z.\tau(Z)$:

```
Set Gfp(std::function<Set(Set&)> const &tau)
{
    Set Q{true};
    Set Q_p{tau(Q)};
    while (Q != Q_p) {
        Q = Q_p;
        Q_p = tau(Q_p);
    }
    return Q;
}
```

5/22/2023 34 / 36

Problem

5/22/2023

Problem 5.1

Disjointness of MSCCs

Let C_1 and C_2 be two MSCCs. Prove that they are disjoint. Conclude that the sum of states over all MSCCs of M is bounded by the size of S.

Proof. Assume that $C_1 \cap C_2 \neq \emptyset$. Let $C_3 = C_1 \cup C_2$. Then any state that is reachable from C_3 is also reachable from either C_1 or C_2 .

Therefore, C_3 is an MSCC that is strictly larger than both C_1 and C_2 , which contradicts the assumption that C_1 and C_2 are maximal. Hence, $C_1 \cap C_2 = \emptyset$.

Since MSCCs are disjoint to each other, and the union of all MSCCs is S, the sum of states over all MSCCs of M is bounded by the size of S. \square

5/22/2023 36 / 36