2015 S2 • Time A	llowed: 4	5 mir		ΓEST	1			VERSION A
For mu each m For wr	ultiple cho ultiple ch itten ansv	oice qu noice q wer qu	nestions, cinestion is estions, usther when	$rac{\mathbf{vorth}}{\mathbf{se}}$	mark a pape	ζ.	swer;	
	ere may b			e check d	ligit in	the ISI	3N num	hber 0-19-861133- X .
	(a)	1	(b) 4	(c)	7 (d) X	(e)	None of these
								where errors in different is sen from the binary
			x = 6p(S one or strategy is	$\frac{(1-p)^5}{20}$ more er	y =	$ \begin{array}{c} 15p^2 \\ 1 \\ \text{er} \end{array} $	$(-p)^4$	$z = 20p^3(1-p)^3$ rected using a minimum
(a)	x (b	Ad	d W	e C h	at 1	pov	ÆO	$\det(\mathbf{e}) w + x + y + z$
3. Let	C be the	binar	y linear co	ode with	genera	ator ma	trix	
			G =	$= \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$	1 0 0 0 1 0 0 1	1 0 0 1 0 0 0 0	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$	
How	v many co	odewoi	rds are the	ere in C	?			
	((a) 4	(b)	16 (e) 64	(d)	256	(e) 1024

4. For the code C of Question 4, assume that the first four bits are check bits.

(c) 11101011

The codeword that encodes $\mathbf{m} = 1011$ is then

(a) 11001011 (b) 10011011

Student ID:

(e) 10101011

(d) 11011011

UNSW SCHOOL OF MATHEMATICS AND STATISTICS

MATH3411 Information Codes and Ciphers

5. Let C be the code of all vectors $\mathbf{x} = x_1 x_2 x_3 x_4 \in \mathbb{Z}_5^4$ satisfying the check equations

$$x_1$$
 + x_3 + $x_4 \equiv 0 \pmod{5}$
 $2x_2$ + $3x_3$ + $2x_4 \equiv 0 \pmod{5}$

Which, if any, of the following is a valid code word?

(a) 1212

(b) 1221

(c) 3434

(d) 3443

(e) None of these

6. Consider a compression code with codewords $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 10$, $\mathbf{c}_3 = 100$, $\mathbf{c}_4 = ?$ where \mathbf{c}_4 is to be chosen from the list of four possibilities below.

Which choice, if any, of \mathbf{c}_4 makes the resulting code uniquely decodable?

(a) $\mathbf{c}_4 = 0$ (b) $\mathbf{c}_4 = 011$ (c) $\mathbf{c}_4 = 000$ (d) $\mathbf{c}_4 = 1010$ (e) None of these

7. The minimum radix that would be needed to create a UD-code for the source

$$S = \{s_1, s_2, \dots, s_9\}$$

with codeword lengths 1, 1, 1, 2, 2, 2, 2, 3, 4, respectively, is

(a) 2 (b) 3 (c) 4

(d) 5

(e) 6

8. Consider the standard binary I-code with codeword lengths 2, 2, 3, 3, 4, 4.

The codeword \mathbf{c}_6 corresponding to symbol s_6 is given by

Assignment Project Exam Helpor

9. Let $S = \{s_1, s_2\}$ be a source with probabilities $p_1 = \frac{5}{7}$, $p_2 = \frac{2}{7}$. The average length of a radix 3 Huffman code for the second extension $S^{(2)}$ of this source is

(a) $\frac{73}{7}$ (b) $\frac{73}{7}$ (c) $\frac{73}{7}$ (d) $\frac{73}{49}$

10. A Markov source $f = \{c_1, c_2, s_3\}$ has transition matrix M_1 . The Huffman code for the equilibrium distribution is that f = (1, 0, 0) with f = (0, 0, 0) and f = (0, 0, 0). The Huffman codes for the columns of M are given by

 $Huff_1 = (01, 00, 1)$ $Huff_2 = (10, 0, 11)$ $Huff_3 = (11, 0, 10)$

The Markov Huffman encoding of the string of source symbols $s_2s_1s_3s_2s_3$ is

(a) 00101011

(b) 000110010

(c) 00101101

(d) 00110011

(e) 00100111

11. [5 marks] Let C be the binary linear code with check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

- (i) Find a generator matrix G for the code C.
- (ii) Write down all the codewords in C.
- (iii) Find Hamming weights of each codeword in C.
- (iv) Find the Hamming distances between each pair of distinct codewords in C.
- (v) What are the error correcting and error detecting capabilities of C?

2015	5 S2	$\mathbf{TEST} 1$	VERSION B
• Tir	me Allowed: 45 minut	es	
ea Fo	or multiple choice questi ch multiple choice quest or written answer questi- aple all papers together	ons, use extra paper.	aswer;
1.	There may be an error The correct check digit	in the check digit in the IS is	BN number 0-245-58345-9.
	$(a) 0 \qquad (b)$	o) 3 (c) 6 (d) 9	(e) None of these
2.	Let C be the code of a	ll vectors $\mathbf{x} = x_1 x_2 x_3 x_4 \in \mathbb{Z}$	$\frac{4}{5}$ satisfying the check equations
		$ ent_{3x_2} \text{Project}_{2x_4} = $	
	Which, if any of the form (a) 1122 (b)	ollowing is a valid code word silver (c) 4343 (d)	1? COM 3344 (e) None of these
3.			whele errors in different po- is sent from a binary repetition that undetected error(s) occur is
	(a) $4p^3(1-p)$ (b) $6p^2(1-p)^2$ (c) p^4	(d) $4p^3(1-p) + p^4$ (e) 0
4.	Let C be the binary lin	near code with generator ma	atrix
		$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
	How many codewords	are there in C ?	
	(a) 8	(b) 16 (c) 32 (d	d) 64 (e) 128
5.	For the code C of Quest The codeword that end	stion 4, assume that the first codes $\mathbf{m} = 011$ is then	et four bits are check bits.
	(a) 0101011 (b)	0010011 (c) 0110011	(d) 1100011 (e) 0100011

Name: Student ID:

MATH3411 Information Codes and Ciphers

UNSW SCHOOL OF MATHEMATICS AND STATISTICS

6.	Consider a code with codewords $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 01$, $\mathbf{c}_3 = 001$, $\mathbf{c}_4 = ?$ where \mathbf{c}_4 is to be chosen from the list of four possibilities below. Which choice, if any, of \mathbf{c}_4 makes the resulting code not uniquely decodable?						
	(a) $\mathbf{c}_4 = 0001$ (b) $\mathbf{c}_4 = 000$ (c) $\mathbf{c}_4 = 00$ (d) $\mathbf{c}_4 = 0000$ (e) None of these						
7.	. The minimum radix that would be needed to create a UD-code for the source						
	$S = \{s_1, s_2, s_3, s_4, \dots, s_{10}\}$						
	with codeword lengths $1, 1, 1, 2, 2, 2, 3, 3, 3, 3$, respectively is						
	(a) 2 (b) 3 (c) 4 (d) 5 (e) 6						

8. Consider the standard binary I-code with codeword lengths 1, 3, 3, 4, 4, 4. The codeword \mathbf{c}_6 corresponding to symbol s_6 is given by

- (a) 0011 (b) 1110 (c) 1100 (d) 1101 (e) 1111
- 9. Let $S = \{s_1, s_2\}$ be a source with probabilities $p_1 = \frac{4}{7}$, $p_2 = \frac{3}{7}$. The average length of a radix 3 Huffman code for the second extension $S^{(2)}$ of this source is ASSIGNMENT (a) $\frac{82}{49}$ (b) $\frac{14}{14}$ (c) $\frac{7}{7}$ (d) $\frac{7}{7}$ (e) $\frac{7}{7}$

10. A Markov sorting s_1 is s_2 in the Huffman code for the equilibrium distribution is $\operatorname{Huff}_E = (1, 00, 01)$ (so $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 00$ and $\mathbf{c}_3 = 01$). The Huffman codes for the columns of M are given by

$\mathbf{Huff}_1\mathbf{Add}_0, \mathbf{We Cuthat}_0\mathbf{powcode}(\mathbf{1}11,\,0,\,10)\,.$

The Markov Huffman encoding of the string of source symbols $s_3s_2s_1s_2s_3$ is

 $\hbox{ (a) } 010100001 \qquad \hbox{ (b) } 010100011 \qquad \hbox{ (c) } 10001010 \qquad \hbox{ (d) } 01001011 \qquad \hbox{ (e) } 01010001$

11. [5 marks] Let C be the binary linear code with parity check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- (i) Find a generator matrix G for the code C.
- (ii) Write down all the codewords in C.
- (iii) Find Hamming weights of each codeword in C.
- (iv) Find the Hamming distances between each pair of distinct codewords in C.
- (v) What are the error correcting and error detecting capabilities of C?