Exercise 1 Use the given pair of functions to find and simplify expressions for the following functions and state the domain of each using interval notation.

Problem 1.1 For $f(x) = x^2 - x + 1$ and g(x) = 3x - 5

•
$$(g \circ f)(x) = 3x^2 - 3x - 2$$
 with domain $(-\infty, \infty)$

•
$$(f \circ g)(x) = 9x^2 - 33x + 31$$
 with domain $(-\infty, \infty)$

•
$$(f \circ f)(x) = x^4 - 2x^3 + 2x^2 - x + 1$$
 with domain $(-\infty)$, ∞

Problem 1.2 For $f(x) = x^2 - 4$ and g(x) = |x|

•
$$(g \circ f)(x) = |x^2 - 4|$$
 with domain $(-\infty, \infty)$

•
$$(f \circ g)(x) = x^2 - 4$$
 with domain $(-\infty, \infty)$

•
$$(f \circ f)(x) = x^4 - 8x^2 + 12$$
 with domain $(-\infty, \infty)$

Problem 1.3 For f(x) = 3x - 5 and $g(x) = \sqrt{x}$

•
$$(g \circ f)(x) = \sqrt{3x-5}$$
 with domain $\left[\frac{5}{3}, \infty \right]$

•
$$(f \circ g)(x) = 3\sqrt{x} - 5$$
 with domain $[0, \infty)$

•
$$(f \circ f)(x) = 9x - 20$$
 with domain $(-\infty, \infty)$

Problem 1.4 For $f(x) = \frac{x}{2x+1}$ and $g(x) = \frac{2x+1}{x}$

$$\bullet \ \ (g \circ f)(x) = \boxed{\frac{4x+1}{x}} \ \text{with domain} \left(\boxed{-\infty}, \boxed{-\frac{1}{2}} \right) \cup \left(\boxed{-\frac{1}{2}}, \boxed{0} \right), \cup \left(\boxed{0}, \boxed{\infty} \right)$$

•
$$(f \circ g)(x) = \boxed{\frac{2x+1}{5x+2}}$$
 with domain $\left(\boxed{-\infty}, \boxed{-\frac{2}{5}}\right) \cup \left(-\boxed{\frac{2}{5}}, \boxed{0}\right) \cup \left(\boxed{0}, \boxed{\infty}\right)$

•
$$(f \circ f)(x) = \boxed{\frac{x}{4x+1}}$$
 with domain $\left(\boxed{-\infty}, \boxed{-\frac{1}{2}}\right) \cup \left(\boxed{-\frac{1}{2}}, \boxed{-\frac{1}{4}}\right) \cup \left(\boxed{-\frac{1}{4}}, \boxed{\infty}\right)$

Problem 1.5 For f(x) = |x| and $g(x) = \sqrt{4 - x}$

- $(g \circ f)(x) = \sqrt{4 |x|}$ with domain [-4], [4]
- $(f \circ g)(x) = \boxed{|\sqrt{4-x}|}$ with domain $(\boxed{-\infty},\boxed{4}]$
- $(f \circ f)(x) = |x|$ with domain $(-\infty, \infty)$