

Рис. 14

то все они пересекутся в одной точке, над которой велась съемка. В правильных калейдоскопах вдоль этих линий изображения сливаются, в неправильных на них появляется «излом».

Упражнения

- 9. Образует ли пара параллельных зеркал «правильный калейдоскоп» (хотя он и не подходит под наше определение калейдоскопа, можно проверить, удовлетворяет ли эта оптическая система определению правильности, данному выше)?
- 10. Каково максимальное число изображений одной точки можно увидеть в двух зеркалах, поставленных под углом α друг к другу, если $\frac{180^{\circ}}{\alpha}=r$ и а) r целое; б) r не целое?
- 11. Опять два зеркала образуют угол α . Каково наибольшее число точек фундаментального «двуугольника» (угла), изображения которых можно увидеть в некоторой фиксированной точке А картинной плоскости такого калейдоскопа, меняя точку наблюдения? Изображения скольких точек фундаментального многоугольника накладываются в точке А с точки зрения геометрии? Рассмотрите три случая: $\alpha = \frac{180^{\circ}}{r}$ и а) r иррационально; б) $r = \frac{p}{q}$ (несократимая дробь), $q \neq 1$; в) r натуральное число.
- 12. Что видно в «цилиндрический калейдоскоп», если глаз расположить на оси цилиндра?
- 13. Два плоских зеркала расположены под углом 40° друг к другу. Какое максимальное число отражений светового луча возможно в этой оптической системе?
- 14. В задаче 7 есть решение $n_1 = \infty$, $n_2 = 2$, $n_3 = 2$ ($\frac{180^{\circ}}{\infty}$ мы считаем равным нулю). Какому «калейдоскопу» соответствует это решение (каков физический смысл этого решения)?

Описанная трапеция и средние

Взгляните на рисунок. Описанная трапеция, в которой проведены высота *ВН* и отрезок 4, перпендикулярный стороне *АВ*. Казалось бы, ничего особенно примечательного в этой фигуре нет, однако этот чертеж обладает удивительным свойством. На нем вместе с верхним основанием а и нижним основанием а и нижним основанием в уже содержатся все три средние этих отрезков: среднее арифметическое, сред нее геометрическое и среднее гармоническое, а именно:

$$AB = \frac{a+b}{2},$$

$$BN = \sqrt{ab},$$

$$BG = \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

Попробуйте самостоятельно доказать эти утверждения.

А теперь достаточно одного взгляда на чертеж, чтобы убедиться, что между средними выполнены следующие соотношения:

$$\frac{a+b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

Действительно, AB и BH являются наклонной и перпендикуляром, проведенным к прямой AD из точки B, а BH и BG — наклонная и перпендикуляр из точки B к прямой HG.

А. Савин, В. Сендеров

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
P(n)	3	5	7	8	10	11	13	14	15	17	18	19	20	21	23	24	25	26
I(n)	3	5	7	9	10	11	13	14	16	17	18	19	20	21	23	24	25	26
Q(n)	4	5	8	9	10	11	14	15	16	17	18	19	20	21	24	25	26	27