

Course Specialist Test 2 Year 12

Student name:	Teacher name:	
Task type:	Response/Investigation	
Reading time for this test	t: 5 mins	
Working time allowed fo	r this task: 40 mins	
Number of questions:	7	
Materials required:	Upto 3 classpads/calculators	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper SINGLE SIDED, and up to three calculators approved for use in the WACE examinations	
Marks available:	40 marks	
Task weighting:	13%	
Formula sheet provided: no but formulae stated on page 2		
Note: All part questions worth more than 2 marks require working to obtain full marks.		

Useful formulae

Complex numbers

Cartesian form			
z = a + bi	$\overline{z} = a - bi$		
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$Arg(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$		
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$		
$arg(z_1 z_2) = arg(z_1) + arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$		
$z\overline{z} = z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$		
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$		
Polar form			
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$		
$z_1 z_2 = r_1 r_2 cis \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} \left(\theta_1 - \theta_2\right)$		
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis \theta}$		
De Moivre's theorem			
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$		
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$			

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

Q1 (3 marks)

Consider the inequality $|3x - 7| \le a$ which is only true for $b \le x \le 9$ where a & b are constants. Determine the values of a & b.

$$3\left|x-\frac{7}{3}\right| \le a$$

$$\left|x - \frac{7}{3}\right| \le \frac{a}{3}$$

$$9 - \frac{7}{3} = \frac{20}{3} = \frac{a}{3}$$

$$a = 20$$

$$9 - \frac{40}{3} = -\frac{13}{3} = b$$

Specific behaviours

- ✓ rearranges inequality by taking out factor of 3 or sketches and shows reasoning ✓ determines a
- ✓ determines b

Q2 (4 marks)

C

$$r_{A} = \begin{pmatrix} 2 \\ -18 \end{pmatrix} + t \begin{pmatrix} 2 \\ 7 \end{pmatrix}$$

$$r_{B} = \begin{pmatrix} -6 \\ 44 \end{pmatrix} + (t - \frac{1}{2}) \begin{pmatrix} 4 \\ -6 \end{pmatrix}$$

$$r_{A} = r_{B}$$

$$2 + 2t = -6 + (t - \frac{1}{2})4$$

$$2 + 2t = -6 + 4t - 2$$

$$10 = 2t$$

$$t = 5$$

$$-18 + 7t = 44 + (t - \frac{1}{2})(-6)$$

$$-18 + 7t = 44 - 6t + 3$$

$$13t = 65$$

$$t = 5$$

$$collide(12,17) at 4 pm$$

Specific behaviours

- ✓ takes into account different starting times
- ✓ sets up two equations for time
 ✓ solves for position of collision
- \checkmark solves for time of collision in clock time

Q3 (2, 3 & 3 = 8 marks)

a) Sketch |f(x)| on the axes below.

- ✓ shape
- correct x & y intercepts

c) Sketch $\overline{f(x)}$ on the axes below.

- ✓ vertical and horizontal asymptotes
- ✓ approx. y intercept
 ✓ shape in all 3 sections

Q4 (2, 3, 1 & 3 = 9 marks)

Consider $g(x) = 3x^2 - 12x + 13$ for $x \le 2$ which is plotted below.

a) Sketch $g^{-1}(x)$ on the axes above.

Specific behaviours

- ✓ contains endpoint (1,2)
- ✓ appears reflected in line y=x
- b) Determine the rule for $g^{-1}(x)$ showing full working and the domain.(Simplify)

C

$$x = 3y^{2} - 12y + 13$$

$$3y^{2} - 12y + 13 - x = 0$$

$$y = \frac{12 \pm \sqrt{144 - 4(3)(13 - x)}}{6}$$

$$f^{-1}(x) = 2 - \sqrt{\frac{x - 1}{3}}, x \ge 1$$

Specific behaviours

- ✓ swaps x and y
- ✓ solves for y with reasoning
- ✓ uses minus in rule and states domain

Q4 cont-

c) Determine $g^{-1} \circ g(x)$.

C

$$g^{-1} \circ g(x) = x$$

Specific behaviours

 \checkmark states x

d) Determine all value(s) of x such that $g(x) = g^{-1}(x)$

Note: 2 marks max if using classpad to solve function=inverse without reasoning

Q5 (5 marks)

Determine the minimum distance between them **using vectors** and the time that this occurs.

- ✓ uses dot product and equates to zero
 ✓ solves for time stating in seconds
 ✓ solves for distance stating in metres
 Note: max -1 if units not stated

Max 3 out of 5 if vector method not used

Q6 (5 marks)

- i) The line will be a tangent to the circle.
- ii) The line crosses the circle at two points.
- iii) The line will never meet the circle.

- ✓ sets up a quadratic equation for lambda
- ✓ determines an expression for discriminant in terms of alpha
- ✓ states values for tangent with discriminant = zero (stated)
- ✓ states values for intersecting at two points AND no intersection and states conditions for discriminant.

Note: max -1 if discriminant values not stated

Q7 (2 & 4 = 6 marks)

a) Represent this information on the Argand Diagram below.

b) Determine a simplified expression for $\,^k\,$ in terms of $\,^\theta$. Justify your answer.

$$k^{2} = 10^{2} + 10^{2} - 200 \cos(2\theta - \pi)$$

 $k^{2} = 200 + 200 \cos 2\theta = 200(1 + \cos 2\theta)$
 $k^{2} = 200(2\cos^{2}\theta)$
 $k = -20\cos\theta$

Specific behaviours

- ✓ identifies symmetry of triangles
 ✓ uses cosine rule or other trig identity
- ✓ obtains expression for k squared
- ✓ states simplified expression for k in terms of theta with a negative