AMENDMENTS TO THE CLAIMS

- 1. (currently amended) A process for preparing a supported cocatalyst for olefin polymerization, which comprises <u>first</u> reacting
 - A) a-support bearing functional groups, with
 - B) triethylaluminum, thereby producing a reaction product; and subsequently reacting the reaction product with
 - C) a compound of the formula (I),

$$(R^1)_{x} - A - (OH)_{y}$$
 (I)

where

- A is an atom of group 13 or 15 of the Periodic Table;
- are identical or different and are each, independently of one another, hydrogen, halogen, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalky, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-haloalkylaryl or an OSiR₃² group, where
- R² are identical or different and are each hydrogen, halogen, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or C₇-C₄₀-haloalkylaryl;
- y is 1 or 2; and
- x is 3 minus y.
- 2. (canceled).

- 3. (currently amended) A<u>The</u> process as claimed in claim 1-or 2, wherein A in formula (I) is boron.
- 4. (currently amended) A<u>The</u> process as claimed in claim 3, wherein R¹ in formula (I) is C₆-C₁₀-haloaryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-haloalkylaryl.
- 5. (currently amended) A supported cocatalyst obtainable obtained by a process as claimed in any of claims 1 to 4comprising

first reacting

- A) support bearing functional groups, with
- B) triethylaluminum, thereby producing a reaction product and subsequently reacting the reaction product with
- C) a compound of the formula (I),

$$(R^1)_{x} - A - (OH)_{y} \tag{I}$$

where where

- A is an atom of group 13 or 15 of the Periodic Table;
- R¹ are identical or different and are each, independently of one another, hydrogen, halogen, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalky, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-haloarylalkylaryl or an OSiR₃² group, where
- are identical or different and are each hydrogen, halogen, C₁-C₂₀-alkyl,

 C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy,

 C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or

 C₇-C₄₀-haloalkylaryl;

y is 1 or 2; and

x is 3 minus y.

6. (currently amended) The use of a supported cocatalyst prepared as claimed in any of claims 1 to 4 for preparing a catalyst system for the polymerization of olefins A process comprising preparing a catalyst system for the polymerization of olefins with a supported cocatalyst, the supported cocatalyst being prepared by

first reacting

- A) support bearing functional groups, with
- B) triethylaluminum, thereby producing a reaction product and subsequently reacting the reaction product with
- C) a compound of the formula (I),

$$(R^1)_x - A - (OH)_y \tag{I}$$

where

- A is an atom of group 13 or 15 of the Periodic Table;
- are identical or different and are each, independently of one another, hydrogen, halogen, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalky, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-haloalkylaryl or an OSiR₃² group, where
- R² are identical or different and are each hydrogen, halogen, C₁-C₂₀-alkyl,

 C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy,

 C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or

 C₇-C₄₀-haloalkylaryl;

y is 1 or 2; and

x is 3 minus y.

7. (currently amended) A catalyst system for the polymerization of olefins,

obtainableobtained by bringing at least one supported cocatalyst as claimed in

elaim 5 obtained by a process comprising

first reacting

- A) support bearing functional groups, with
- B) triethylaluminum, thereby producing a reaction product and subsequently reacting the reaction product with
- C) a compound of the formula (I),

$$(R^1)_{x} - A - (OH)_{y} \tag{I}$$

where

- A is an atom of group 13 or 15 of the Periodic Table;
- are identical or different and are each, independently of one another, hydrogen, halogen, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl,

 C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalky, C₇-C₄₀-haloarylalkyl,

 C₇-C₄₀-alkylaryl, C₇-C₄₀-haloalkylaryl or an OSiR₃² group, where
- are identical or different and are each hydrogen, halogen, C₁-C₂₀-alkyl,

 C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy,

 C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or

 C₇-C₄₀-haloalkylaryl;
- y is 1 or 2; and

x is 3 minus y

into contact with

- D) at least one organic transition metal compound.
- 8. (currently amended) A<u>The</u> catalyst system for the polymerization of olefins as claimed in claim 7, wherein
 - E) at least one organometallic compound is additionally added in its preparation.
- 9. (currently amended) A<u>The</u> catalyst system for the polymerization of olefins as claimed in claim 8 which is prepared by:

firstly preparing a catalyst solid by bringing the at least one supported cocatalyst as elaimed in claim 5 into contact with the at least one organic transition metal compound D), then

bringing thisthe catalyst solid into contact with the at least one organometallic compound E) in a second step, thereby forming a mixture, and then using thisthe mixture without further work-up for the polymerization.

10. (currently amended) A process for the polymerization of olefins using a catalyst system as claimed in any of claims 7 to 9comprising polymerizing olefins with a catalyst system obtained by bringing at least one supported cocatalyst obtained by a process comprising

first reacting

- A) support bearing functional groups, with
- B) triethylaluminum, thereby producing a reaction product and subsequently reacting the reaction product with
- C) a compound of the formula (I),

$$(R^1)_x - A - (OH)_y \tag{I}$$

where

- A is an atom of group 13 or 15 of the Periodic Table;
- R¹ are identical or different and are each, independently of one another, hydrogen, halogen, C₁-C₂₀-alkyl, C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy, C₇-C₄₀-arylalky, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-haloarylalkyl or an OSiR₃² group, where
- R² are identical or different and are each hydrogen, halogen, C₁-C₂₀-alkyl,

 C₁-C₂₀-haloalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₂₀-haloaryl, C₆-C₂₀-aryloxy,

 C₇-C₄₀-arylalkyl, C₇-C₄₀-haloarylalkyl, C₇-C₄₀-alkylaryl or

 C₇-C₄₀-haloalkylaryl;

y is 1 or 2; and

x is 3 minus y

into contact with

D) at least one organic transition metal compound.