Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Portas lógicas fundamentais

RELATÓRIO DA DISCIPLINA LABORATÓRIO DE ELETRÇONICA 1 COM O PROF. GILBERTO CUARELLI E O PROF. HAROLDO GUIBU.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SÃO PAULO

2020

SUMÁRIO

1	INTRODUÇÃO TEÓRICA	5
1.1	Objetivos	5
1.2	Materiais e equipamentos utilizados	Ę
2	PROCEDIMENTOS EXPERIMENTAIS	6
2.1	Esquema interno do display	6
2.2	Decodificador de 3 bits para o display	6
3	QUESTÕES	13
4	CONCLUSÃO	16
	REFERÊNCIAS	17

LISTA DE FIGURAS

igura 1 – Esquema interno dos display de 7 segmentos catodo comum
igura 2 – Mapa de Karnaugh da saída a
igura 3 – Mapa de Karnaugh da saída b
igura 4 – Mapa de Karnaugh da saída c
igura 5 – Mapa de Karnaugh da saída d
igura 6 – Mapa de Karnaugh da saída e
igura 7 – Mapa de Karnaugh da saída f
igura 8 – Mapa de Karnaugh da saída g
igura 9 — Circuito da saída a
igura 10 – Circuito da saída b
igura 11 – Circuito da saída c
igura 12 – Circuito da saída d
igura 13 – Circuito da saída e
igura 14 — Circuito da saída f
igura 15 — Circuito da saída g $\dots\dots\dots\dots\dots\dots$ 1
igura 16 — Teste do decodificador criado $\dots \dots \dots$
igura 17 – Mapa de Karnaugh da questão proposta
igura 18 – Circuito da questão proposta

LISTA DE TABELAS

Tabela 1 –	Tabela verdade do decodificador	7
Tabela 2 –	Tabela para quando a entrada de controle vale $0 \dots \dots \dots \dots$	13
Tabela 3 –	Tabela para quando a entrada de controle vale 1	14

1 INTRODUÇÃO TEÓRICA

Já trabalhamos em experimentos anteriores com o código BCD e o circuito integrado 4511 que converte esse código em um que pode ser lido por um display de 7 segmentos. Esse tipo de decodificação é extremamente comum já que uma das formas mais simples de apresentar dados para o usuário é por meio de um display desse tipo.

Os displays de 7 segmentos são capazes de mostrar os números de 0 a 9 além de algumas letras do alfabeto latino e além disso são muito simples de serem implementados utilizados e geralmente são mais baratos do que os displays de cristal líquido (REIS, 2016). Como o próprio nome já diz esses displays são compostos por 7 LED's que acendem para mostrar o número desejado.

Há dois tipos de displays de 7 segmentos, os catodo comum e os anodo comum. No primeiro deles o terminal comum deve ser ligado ao GND e o terminal de cada um dos LED's deve receber nível lógico 1 para que o LED acender, já no segundo o terminal comum é ligado ao V_{cc} e para que os LED's acendam os seus terminais devem receber 0V (BRAGA, 2010).

1.1 Objetivos

Utilizar os métodos de simplificação por mapas de Karnaugh em projetos de circuitos combinacionais.

1.2 Materiais e equipamentos utilizados

- 1 Circuito integrado 7408 (Porta AND);
- 1 Circuito integrado 7432 (Porta OR);
- 1 Circuito integrado 7404 (Porta NOT);
- 1 display de 7 segmentos catodo comum;
- LED's e resistores;
- 1 fonte de alimentação DC;
- Software de simulação Proteus

2 PROCEDIMENTOS EXPERIMENTAIS

Como nesse experimento estudamos principalmente o funcionamento dos displays, a primeira etapa dele foi entender o esquema interno desse tipo de dispositivo e, em seguida, criar um circuito decodificador de 3 bits para esse display.

2.1 Esquema interno do display

O display utilizado foi o catodo comum, isso significa que os seus dois terminais comuns se ligam ao GND. As outras oito entradas servem para controlar os LED's (sete segmentos e ponto decimal). Dessa forma um display desses possuí seu circuito interno como o esquema mostrado na figura 1.

Terminal 10

Terminal 10

Terminal 9

Terminal 7

Terminal 7

Terminal 6

Terminal 6

Terminal 8

Terminal 8

Figura 1 – Esquema interno dos display de 7 segmentos catodo comum

Fonte: Elaborada pelos autores

2.2 Decodificador de 3 bits para o display

Para realizar a construção desse decodificador foi necessário inicialmente montar a tabela verdade dele contendo as sete saídas desejadas para cada uma das 7 possíveis combinações de entradas. A tabela 1 evidencia essas relações.

Em seguida, utilizando essa tabela obtivemos as expressões booleanas das 7 saídas utilizando a técnica de simplificação dos mapas de Veich-Karnaugh. Os mapas podem ser vistos nas figuras 2 até 8 e as expressões nas equações 2.1 até 2.7.

Tabela 1 – Tabela verdade do decodificador

Entradas			Saídas						
A	В	C	g	f	е	d	С	b	a
0	0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	0	1	1	0
0	1	0	1	0	1	1	0	1	1
0	1	1	1	0	0	1	1	1	1
1	0	0	1	1	0	0	1	1	0
1	0	1	1	1	0	1	1	0	1
1	1	0	1	1	1	1	1	0	0
1	1	1	0	0	0	0	1	1	1

Figura 2 – Mapa de Karnaugh da saída a

Fonte: Elaborada pelos autores

$$a = \bar{A}\bar{C} + \bar{A}B + AC = \bar{A}(B + \bar{C}) + AC \tag{2.1}$$

Figura 3 – Mapa de Karnaugh da saída b

$$b = \bar{A} + \bar{B}\bar{C} + BC \tag{2.2}$$

Figura 4 – Mapa de Karnaugh da saída c

$$c = A + C + \bar{A}\bar{B} \tag{2.3}$$

Figura 5 – Mapa de Karnaugh da saída d

Fonte: Elaborada pelos autores

$$d = \bar{A}\bar{C} + \bar{A}B + B\bar{C} + A\bar{B}C = \bar{C}(\bar{A} + B) + \bar{A}B + A\bar{B}C \tag{2.4}$$

Figura 6 – Mapa de Karnaugh da saída e

$$e = \bar{A}\bar{C} + B\bar{C} = \bar{C}(\bar{A} + B) \tag{2.5}$$

Figura 7 – Mapa de Karnaugh da saída f

$$f = A\bar{C} + A\bar{B} + \bar{B}\bar{C} = A(\bar{B} + \bar{C}) + \bar{B}\bar{C} \tag{2.6}$$

Figura 8 – Mapa de Karnaugh da saída g

Fonte: Elaborada pelos autores

$$g = \bar{A}B + A\bar{B} + A\bar{C} = \bar{A}B + A(\bar{B} + \bar{C})$$
 (2.7)

Por fim, utilizando as expressões booleanas obtidas, montamos os circuitos que podem ser vistos nas figuras 9 a 15 que indicam cada uma das saídas do decodificador. Além disso a figura 16 é o circuito desse decodificador ligado à um display e sendo testado.

A partir do circuito montado pudemos aferir os níveis lógicos das saídas para todas as entradas confirmando assim o funcionamento correto do decodificador já que elas equivalem as saídas teóricas vistas na tabela 1.

Figura 9 – Circuito da saída a

Figura 10 – Circuito da saída b

Fonte: Elaborada pelos autores

Figura 11 – Circuito da saída c

Figura 12 – Circuito da saída d

Figura 13 – Circuito da saída e

Fonte: Elaborada pelos autores

Figura 14 – Circuito da saída f

Input 2 D

Figura 15 – Circuito da saída g

Figura 16 – Teste do decodificador criado

3 QUESTÕES

Além dos trabalhos com o display de LED de 7 segmentos foi proposta a construção de um circuito combinacional de 5 entradas e 1 saída. Quatro dessas entradas formam um número hexadecimal e a quinta é uma entrada de controle. Caso a entrada de controle seja 1 a saída do circuito deve ser 0 exceto quando o número for múltiplo de 3, caso controle seja 0 a saída é 0 exceto quando o número for impar.

O circuito será montado separando o problema para ser resolvido cada possibilidade de entrada de controle de forma separada. No caso em que o controle é 1 a saída deve ser 1 apenas quando o número for par e essa situação é simples de ser tratada. Um número binário é par quando seu dígito menos significante (LSD) for 0, nesse caso como temos 4 entradas numéricas sendo A o mais significante e D o menos, quando D=1 o número é impar e, portanto, a saída deve ser 1, essa relação pode ser vista na tabela 2. Dessa forma, a expressão $\overline{C_{on}}D$ deve estar na expressão booleana do circuito completo.

Tabela 2 – Tabela para quando a entrada de controle vale 0

A	B	C	D	Saída
0	0	0	0	0
0	0	0	1	1 1
0	0	1	0	0
0	0	1	1	1 1
0	1	0	0	0
0 0	1	0	1	1
0	1	1	0	0
0	1	1	1	1 1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1 1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Fonte: Elaborada pelos autores

Para o caso em que a entrada de controle possuí nível lógico 1, a expressão ficaria um pouco mais complexa, por isso construímos a tabela verdade dessa expressão e, a partir dela montamos a expressão de saída. A tabela 3 e a expressão obtida na forma de soma de mintermos pode ser vista na equação 3.1.

Capítulo 3. Questões 14

Tabela 3 – Tabela para quando a entrada de controle vale 1

A	В	C	D	Saída
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
0	1	0	1	0
0 0 0 0 0	1	1	0	0 1 0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0 1 0
1	1	1	0	0
1	1	1	1	1

Fonte: Elaborada pelos autores

$$Saida = C_{on}AB\bar{C}\bar{D} + C_{on}\bar{A}BC\bar{D} + C_{on}\bar{A}\bar{B}CD + C_{on}ABCD$$
(3.1)

Essa expressão, deve ser somada (operação OR) com a expressão em que a entrada de controle é 0, essa soma simplificaria um pouco a expressão, por isso utilizamos o método do mapa de Karnaugh para simplifica-la. O mapa pode ser visto na figura ?? e a expressão simplificada na equação 3.2. A partir desta equação o circuito pedido foi montado, ele pode ser visto na figura 18.

Figura 17 – Mapa de Karnaugh da questão proposta

Capítulo 3. Questões

$$Sa\'ida = C_{on}AB\bar{C}\bar{D} + C_{on}\bar{A}BC\bar{D} + \overline{C_{on}}D + \bar{A}\bar{B}CD + ABCD + A\bar{B}\bar{C}D \qquad (3.2)$$

Figura 18 – Circuito da questão proposta

4 CONCLUSÃO

Nesse experimento tivemos a oportunidade de trabalhar de forma mais aprofundada com os displays de LED de 7 segmentos e saber diferenciá-los quanto ao seu tipo. Esse dispositivo eletrônico é muito importante por fazer parte de grande parte de circuitos que devem mostrar alguma informação numérica já que são baratos e simples de utilizar.

Além de compreender o funcionamento interno desses componentes, trabalhamos também com o formato que a informação é recebida por eles ao construir um decodificador que transforma um número binário em um formato que ele possa compreender e mostrar para a situação que for necessária. É interessante pensar que o circuito decodificador que construímos trata-se de um aversão simplificada do circuito integrado 4511 que já utilizamos em experimentos anteriores, a única diferença é que o 4511 recebe um número BCD como entrada, podendo variar de 0 a 9 e não apenas 0 a 7 como o que projetamos nesse experimento.

Por fim, a construção de um novo circuito lógico combinacional como feita na questão proposta é útil pois a maestria com as técnicas de construção desse tipo de sistema e de simplificação de expressões booleanas é adquirida somente com a prática.

REFERÊNCIAS

BRAGA, N. C. **Identificando Displays (ART1825)**. 2010. Disponível em: https://www.newtoncbraga.com.br/index.php/52-artigos-tecnicos/artigos-diversos/16596-identificando-displays-art1825. Acesso em: 14 de mar. de 2021. Citado na página 5.

REIS, F. dos. Como funciona um Display de LEDs de 7 Segmentos - Bóson Treinamentos em Ciência e Tecnologia. 2016. Disponível em: http://www.bosontreinamentos.com.br/eletronica/eletronica-digital/como-funciona-um-display-de-leds-de-7-segmentos/. Acesso em: 14 de mar. de 2021. Citado na página 5.