The Answer of Assignment 2

WEI SHUANG

31/8/2025

Problem 1 Solution

$\sum_{i,j=0}^{1}$	(1) 根据线性空间的同构理论,	任何维数相同的线性空间都是同构的。	因此可知
	$c_{ij} i,j\rangle = \{(x_1,x_2,x_3,x_4)\}, x \in C$	C 同构。即 $v_1 = (c_{00}, c_{01}, c_{02}, c_{03})^*, v_2 = (d_{00}, c_{01}, c_{02}, c_{03})^*$	$(d_{01}, d_{10}, d_{11})^*$
	(2) $\langle \psi_1 \psi_2 \rangle = v_1^{\dagger} v_2$ 成立, 这是因	为	
	(3)		

Problem 2 Solution

- (1)
- (2)

(4)

- (3)
- (4)

Problem 3 Solution

- (1)
- (2)
- (3)
- (4) how should the Pauli operators σ_i^+ and σ_i^z can be written in terms of the f operators? we have the definition that:

$$f_i^\dagger = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^+$$