Гробов А.В. Кафедра физики элементарных частиц МИФИ

Машинное обучение

Лекция 4

- ♦ Метрики качества
- Деревья решений

Метрики качества

- ♦ Отличное описание матрицы ошибок можно найти здесь https://en.wikipedia.org/wiki/Sensitivity and specificity
- Метрики качества служат для контроля за процессом и результатом обучения алгоритма.
- Для задач классификации и регрессии используются разные метрики.

Классификация

♦ В задаче классификации в качестве меры качества удобно использовать долю верных \неверных ответов – ассигасу.

$$accuracy = \frac{1}{l} \cdot \sum_{i=1}^{l} [\hat{y}_i == y_i]$$

Проблема возникает в случае несбалансированных наборов данных.

Пример: 50 объектов класса 1 и 50 объектов класса 0, ассигасу = 0.9 будет означать, что 90 объектов правильно классифицированы.

10 объектов класса 1 и 90 объектов класса 0 – accuracy = 0.9 также означает, что 90 объектов правильно классифицированы, но это могут быть 1 объект класса 1, и 89 объектов класса 0. Модель ошибается на большинстве объектов класса 1.

А как быть в ситуации когда у нас 10 объектов класса 1 и 1000 объектов класса 0?

Матрица ошибок

		True condition		
	Total population	Condition positive	Condition negative	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	
	Predicted condition negative	False negative, Type II error	True negative	

Матрица ошибок

Type I error (false positive)

Type II error

(false negative)

Точность и полнота

- ♦ Вводят дополнительные метрики, которые называются точность (Precision, PPV) и полнота (Recall, Sensitivity, TPR, acceptance)
- ♦ Полнота показывает долю правильных ответов на сигнальных объектах, другими словами какая доля объектов класса 1 определена правильно.

$$TPR = \frac{TP}{TP + FN}$$

♦ Точность – показывает насколько мы можем доверять модели: это отношение числа верно определенных сигнальных объектов ко всем объектам, которые модель определила как сигнальные.

$$PPV = \frac{TP}{TP + FP}$$

Пример: медицинская диагностика

	$\widehat{y} = 1$	$\widehat{y} = 0$
y = 1	20	200
y = 0	180	10000

F-мера

♦ F-score

$$F = \frac{1 + \beta^2}{\beta^2} \cdot \frac{precision \cdot recall}{precision + recall}$$

ROC - кривая

♦ https://en.wikipedia.org/wiki/Receiver operating characteristic

Перерыв

Домашнее задание

- ♦ Использовать метрики на наборе данных Ирис. Оптимизировать их для выделения класса virginica. Остальные классы считать фоновыми.
- ♦ Построить ROC кривую и выбрать на ее основе критерий отбора для аксептанса (полнота) класса virginica 80%.
- ♦ Что такое решающее дерево?

