

Lecture 5

Functional Test (功能性测试)

提纲

• 边界值测试

• 等价类测试

• 基于决策表的测试

• 测试的效率

5.1 边界测试

5.1.1 边界值

对于函数:

$$Y = f(x_1, x_2)$$

若

$$a \le x_1 \le b$$

 $\mathbf{c} \leq \mathbf{x}_2 \leq \mathbf{d}$

有效输入区域

- 边界值测试的取值:最小值、略高于最小值、正常值、 略低于最高值、最高值。
- 单缺陷假设:失效极少是由2个(或更多)缺陷同时 发生引起的。

N个变量的测试用例数:4N+1!

健壮性测试

除了5个边界值,再增加一个略小于最小值(min-),一个略大于最大值(max+)。

即:要考虑无效值的输入!

N个变量的测试用例数:6N+1!

最坏情况测试

- 拒绝单缺陷假设,考虑全部边界输入的组合,即
 各个变量输入的笛卡儿积(多缺陷)。
- 最坏情况测试: N个变量的测试用例: 5N。
- 健壮(增加2个无效输入)最坏情况测试: N个变量的测试用例: 7^N

事例:

- 三角形问题 边界值测试: a、b、c三个变量
- 一般法(边界值):测试用例=4×3+1=13个
- 最坏情况: 5³=125个

随机测试

即使完成边界值的全部测试,也不能发现程序的全部错误,有些错误会存在于非边界值之中。使用随机函数取出测试值,避免了人为的测试偏见。但是多少测试用例才是充分的?(后面再说明)何时停止用例生成? 保证每类输出至少有一个。

5.2 等价类测试

划分:互不相交的一组子集,这些子集的并是全集。

1)弱(单缺陷)一般等价类

对于函数:

$$Y = f(x_1, x_2)$$

若 a ≤ x₁ ≤ d 等价区间:[a,b), [b,c), [c,d]; N=3;

e ≤ x₂ ≤g 等价区间:[e,f), [f,g];

M=2;

覆盖单缺陷

测试数:取N、 M中的大者。

2) 强一般等价类 基于多缺陷假设,考虑不同划分的笛卡儿积。

覆盖多缺陷:测试数N×M。

3) 弱健壮等价类测试

弱: 单缺陷

健壮:考虑无效值

测试数:取N、M的大者(3)再加无效值(2)。

3) 弱健壮等价类测试

弱:单缺陷!

健壮:考虑无效值

测试数:取N、M的大者(3)再加无效值(2X)变量个数)。

4) 强健壮等价类测试

强:多缺陷组合(笛卡儿积)

健壮:考虑无效值

测试数: (N+2)×(M+2)。

总结

- ◉ 两种软件缺陷特征假设:
 - —单缺陷假设(弱)
 - —多缺陷假设(强)
- 考虑无效输入
 - —健壮性
- ●最坏情况
 - —基于多缺陷假设

三角形问题:

- 输入: a,b,c三个边长
- 输出:三角形类型

输出等价类:

- R1={等边三角形}
- R2={等腰三角形}
- R3={不等边三角形}
- R4={非三角形}

四个弱一般等价类测试用例

测试用例	а	b	С	预期输出
1	5	5	5	等边三角形
2	2	2	3	等腰三角形
3	3	4	5	不等边三角形
4	4	1	2	非三角形

考虑无效值的弱健壮等价类测试所增加的用例

测试用例	a	b	c	预期输出
1	-1	5	5	a取值小于最小值
2	5	-1	5	b取值小于最小值
3	5	5	-1	c取值小于最小值
4	201	5	5	a取值大于最大值
5	5	201	5	b取值大于最大值
6	5	5	201	c取值大于最大值

强健壮等价类测试,还要考虑无效值的组合,再增加的用例:

测试用例	a	b	c	预期输出
1	-1	-1	5	a、b取值小于最小值
2	5	-1	-1	b、c取值小于最小值
3	-1	5	-1	a、c取值小于最小值
4	-1	-1	-1	a、b、c取值小于最 小值

大于最大值,再增加的用例类似,不再说明。

说明:6个问题实例是需要大家自己阅读理解的。

- 1. 三角形问题
- 2. NextDate
- 3. 佣金问题
- 4. SATM系统
- 5. 货币转换
- 6. 挡风玻璃雨刷

问题?

测试实例2: NextDate

NextDate测试

- 输入: 日、月、年
- D1(日)=1~31
- M1(月)=1~12
- Y1(年)=1812~2012

● 无效等价类:

- M2={月份<1}; M3={月份>12};
- D2={日期<1}; D 3={日期>31};
- Y2={年<1812}; Y3={年>2012}.

NextDate: 弱一般等价类

用例	月份	日期	年	预期输出
1	6	12	2001	2001年6月13日

弱健壮测试用例:

用例	月份	日期	年	预期输出
1	6	12	2001	2001年6月13日
2	-1	12	2001	无效月份(负数)
3	13	12	2001	无效月份 (>12)
4	6	-1	2001	无效日期(负数)
5	6	31	2001	无效日期 (>31)
6	6	12	1811	无效年份(<1812)
7	6	12	2013	无效年份(>2012)

NextDate: 弱一般等价类

- 强健壮等价类测试需要考虑无效值的组合,不再进一步说明.
- 但事实上,我们还可以进一步的分析,月份还有大月(31天)、小月(30天)、2月(28天)之分; 日期有29、30、31的边界;而年还有平年和闰年之分;
 - 月={6, 7, 2}; 日={14, 29, 30, 31},
 - 年={1996、2000、2002};
- 大家可以重新考虑弱等价类,强等价类,强健 壮等价类的测试用例生成。

5.3 基于决策表的测试

桩部分

决策表有四个部分:桩部分;条目部分; 条件部分;行动部分。

桩	规则1	规则2	规则3、4	规则5	规则6	规则7、8
c1	Т	Т	Т	F	F	F
c2	Т	Т	F	Т	Т	F 条目部 分
с3	Т	F	_	Т	F	
a1	X	X		X		
a2	X				X	
a3		X		X		
a4			X			X

件

行

动

部

5.3 基于决策表的测试

决策表有四个部分:桩部分;条目部分;条件部分; 行动部分。

桩	规则1	规则2	规则3、4	规则5	规则6	规则7、8
c1	Т	Т	Т	F	F	F
c2	Т	Т	F	Т	Т	F
с3	Т	F	_	Т	F	
a1	X	X		X		
a2	X				X	
a3		X		X		
a4			X			X

为了使用决策表标识测试用例,可以把条件看作输入,把行动看成输出。仍以三角形问题为例,进行说明。

c1:a,b,c 构成三角形	N	Y	Y	Y	Υ	Y	Υ	Y	Y
c2: a=b?		Y	Y	Y	Y	N	N	N	N
c3: a=c?	_	Y	Y	N	N	Y	Y	N	N
c4: b=c?	_	Y	N	Y	N	Y	N	Y	N
a1: 非三角形	X								
a2: 不等边三角形									X
a3: 等腰三角形					X		X	X	
a4: 等边三角形		X							
a5: 不可能			X	X		X			

如果条件换成:

- c1:a<b+c;
- c2:b<a+c;
- c3:c<a+b;
- c4:a=b;
- c5:a=c;
- c6:b=c;

构造决策表的方法是一样的

例2: Nextdate 函数测试

```
第一次尝试,等价类如下:
M1 ={月: 有30天};
M2 ={月: 有31天};
M3 ={月: 2月};
D1 ={日: 1~28};
D2 ={日: 29};
D3 ={日: 30};
D4 ={日: 31};
Y1 ={年: 闰年};
Y2 ={年: 平年}。
```


条件	
c1:月在M1中?	共有2 ⁸ =256
c2:月在M2中?	条规则!
c3:月在M3中?	
c4:日在D1中?	
c5:日在D2中?	
c6:日在D3中?	
c7:日在D4中?	
c8:年在Y1中?	
a1:不可能	
a2 : NextDate	

A TO TONG

第二次尝试,注意力集中在闰年问题上

- M1 ={月:有30天};
- M2 ={月:有31天};
- M3 ={月:2月};
- D1 ={日: 1~28};
- D2 ={日: 29};
- D3 ={日: 30};
- D4 ={日: 31};
- Y1 ={2000};
- Y2 ={年: 闰年,而且非世纪年};
- Y3 ={年; 平年}。

第二次测试, 主要考虑闰年问题

	1	2	3	4	5	6	7	8
c1:月份在	M1	M1	M1	M1	M2	M2	M2	M2
c2:日期在	D1	D2	D3	D4	D1	D2	D3	D4
c3:年份在	_						_	_
规则数	3	3	3	3	3	3	3	3
a1:不可能				X				
a2:日期增1	X	X			X	X	X	
a3:日期复位			X					X
a4:月份增1			X					?
a5:月份复位								?
 a6:年增1								?

续表,共36个测试规则!

	9	10	11	12	13	14	15	16
	M3	М3	М3	М3	М3	М3	M3	М3
c2:日期在	D1	D1	D1	D2	D2	D2	D3	D4
c3:年份在	Y1	Y2	Y3	Y1	Y2	Y3	_	_
规则数	1	1	1	1	1	1	3	3
a1:不可能						X	X	X
a2:日期增1	X	X						
a3:日期复位			X	X	X			
a4:月份增1			X	X	X			
a5:月份复位								
a6:年增1								

第三次尝试,对2月的27进行特别划分:

- M1 ={月:只有30天};
- M2 ={月:有31天,12月除外};
- M3 ={月: 12月};
- M4 ={月:2月};
- D1 ={日: 1~27};
- D2 ={日: 28};
- D3 ={日: 29};
- D4 ={日: 30};
- D5 ={日: 31}
- Y1 ={年: 闰年};
- Y2 ={年; 平年}。

	1	2	3	4	5	6	7	8	9	10
c1:月份在	M1	M1	M1	M1	M1	M2	M2	M2	M2	M2
c2:日期在	D1	D2	D3	D4	D5	D1	D2	D3	D4	D5
c3:年份在	_	_	_	_	_	_		_	_	_
行为										
a1:不可能					X					
a2:日期增1	X	X	X			X	X	X	X	
a3:日期复位				X						X
a4:月份增1				X						X
a5:月份复位										
a6:年增1										

共22条测试规则

	11	12	13	14	15	16	17	18	19	20	21	22
c1:月份在	М3	М3	М3	М3	М3	M4	M4	M4	M4	M4	M4	M4
c2:日期在	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
c3:年份在	_	_	_	_	_		Y1	Y2	Y1	Y2	_	_
行为												
a1:不可能										X	X	X
a2:日期增1	X	X	X	X		X	X					
a3:日期复位					Х			X	X			
								X	X			
a5:月份复位					Х							
a6:年增1					X							

进一步,我们考虑等价类的合并

	1~3	4	5	6~9	10	11~14
c1:月份在	M1	M1	M1	M2	M2	М3
c2:日期在	D1,D2,D3	D4	D5	D1,D2,D3,D4	D5	D1,D2,D3,D4
c3:年份在						
行为						
a1:不可能			X			
a2:日期增1	X			X		X
a3:日期复位		X			X	
a4:月份增1		Х			Х	
a5:月份复位						
a6:年增1						

共13个测试规则,具体测试用例(略)

	15	16	17	18	19	20	21,22
c1:月份在	M3	M4	М4	M4	M4	M4	M4
c2:日期在	D5	D1	D2	D2	D3	D3	D4,D5
c3:年份在	_	_	Y1	Y2	Y1	Y2	_
行为							
a1:不可能						X	X
a2:日期增1		X	X				
a3:日期复位	X			X	X		
a4:月份增1				X	X		
a5:月份复位	X						
a6:年增1	X						

- 从第一次的256个测试规则到现在的13个测试规则, 测试等价类的完备性是一样的。
- 换言之,从决策表测试方法,我们可以充分地认识到,测试用例越多,并不能增加测试的完备性。而通过分析与合并,使用尽可能少的测试用例来达到测试完备性要求,正是测试技术研究的核心内容和目标。

5.4 测试的效率

从前面的介绍,我们显然可以得到以下的结论:

精细程

 软件测试技术研究的目标:使用尽可能少的测试 用例,发现尽可能多的软件错误。提高测试的效 率。

有关测试效率的问题,在后续的章节中还要多次 提到。

功能测试的指导方针

- 如果变量引用的是物理量,可采用边界值分析和等价类测试;
- 如果变量是独立的,可采用边界值分析和等价类测试;
- 如果变量不是独立的,可采用决策表测试;
- 如果可保证是单缺陷假设,可采用边界值分析和健壮 性测试;
- 如果可保证是多缺陷假设,可采用最坏情况测试、健 壮最坏情况测试和决策表测试;
- 如果程序包含大量例外处理,可采用健壮性测试和决策表测试;
- 如果变量引用的是逻辑量,可采用等价类测试和决策表测试。