Chapter 7. Quicksort

Joon Soo Yoo

April 9, 2025

Assignment

- ► Read §7
- ► Problems
 - ► §7.1 #2, 4
 - ► §7.2 #3, 6
 - ► §7.3 #2
 - ► §7.4 #1, 4

Chapter 7: Quicksort

- ► Chapter 7.1: Description of quicksort
- ► Chapter 7.2: Performance of quicksort
- Chapter 7.3: A randomized version of quicksort
- Chapter 7.4: Analysis of quicksort

Chapter 7: Quicksort — Introduction

- Quicksort is a divide-and-conquer sorting algorithm
- ▶ Worst-case time: $\Theta(n^2)$
- **Expected time (distinct elements):** $\Theta(n \log n)$
- Despite its worst case, it is often the most practical sorting algorithm in practice
- Advantages over merge sort:
 - ► In-place sorting (no extra memory)
 - Performs well even in virtual memory environments
 - ▶ Small hidden constants in the $\Theta(n \log n)$ bound

Quicksort is a Divide-and-Conquer Algorithm

Quicksort applies the **divide-and-conquer** paradigm introduced in Section 2.3.1:

- **Divide:** Partition the subarray $A[p \dots r]$ into two sides:
 - ▶ Elements $\leq A[q]$ go to the left (**low side**)
 - ► Elements $\geq A[q]$ go to the right (**high side**)
 - q is the final position of the pivot
- ► **Conquer:** Recursively apply quicksort to both subarrays
- Combine: Do nothing the two sides are already sorted

Why No Combine Step in Quicksort?

Unlike Merge Sort, Quicksort has a trivial combine step.

After partitioning:

$$A[p \dots q-1] \leq A[q] \leq A[q+1 \dots r]$$

- Recursive calls sort each side independently
- Since all elements on the left are $\leq A[q]$, and those on the right are $\geq A[q]$,

The full subarray $A[p \dots r]$ becomes sorted

No merging step is needed!

QUICKSORT(A, p, r) Pseudocode

```
\begin{array}{lll} \text{QUICKSORT}(A,\ p,\ r\,): \\ & \textbf{if}\ p < r: \\ & q = \text{PARTITION}(A,\ p,\ r\,) \\ & // \ \text{Recursively sort left}\ \ \textbf{and}\ \ \text{right parts} \\ & \text{QUICKSORT}(A,\ p,\ q-1) \\ & \text{QUICKSORT}(A,\ q+1,\ r\,) \end{array}
```

Initial call: QUICKSORT(A, 1, n) to sort the entire array.

Partitioning the Array

PARTITION(A, p, r) is the key subroutine in Quicksort.

- ▶ It rearranges the subarray A[p...r] in-place
- ▶ The pivot is chosen as x = A[r]
- After execution:
 - ightharpoonup All elements $\leq x$ appear to the left of the pivot
 - ightharpoonup All elements > x appear to the right of the pivot
 - ► The pivot is placed in its final sorted position
- Returns index q, the pivot's final position

PARTITION(A, p, r) Pseudocode

Partitioning: Four Regions

- The array $A[p \dots r]$ is divided into four regions during PARTITION:
 - ▶ Brown region A[p ... i]: All values $\leq x$
 - ▶ Blue region A[i+1...j-1]: All values > x
 - ▶ White region A[j ... r 1]: Values not yet examined
 - ightharpoonup Yellow cell A[r] = x: The pivot
- ► These regions form the loop invariant for the for loop in PARTITION

Visualization

Loop Invariant for PARTITION

At the beginning of each iteration of the for loop:

- 1. If $p \le k \le i$, then $A[k] \le x$ the tan region
- 2. If $i + 1 \le k \le j 1$, then A[k] > x the blue region
- 3. If k = r, then A[k] = x the yellow region (pivot)

Goal: Prove the loop invariant holds:

- ▶ Before the first iteration (Initialization)
- Maintained during each iteration (Maintenance)
- Guarantees correctness at the end (Termination)

Loop Invariant — Initialization

Before the first iteration:

- i = p 1, j = p
- lackbox There are no elements between p and i, or between i+1 and j-1
- Therefore:
 - ► Conditions 1 and 2 of the invariant are trivially satisfied
 - Line 1 sets x = A[r], so condition 3 is satisfied

The invariant holds before the loop starts.

Loop Invariant — Maintenance Case 1: A[j] > x

What happens: A[j] > x

- ▶ We do not increment *i*, no swap is performed
- ▶ We increment *j*

All loop invariant conditions continue to hold

ightharpoonup A[j-1] (just examined) now belongs in the blue region

Loop Invariant — Maintenance Case 2: $A[i] \le x$

What happens: $A[j] \le x$

- ▶ We increment *i*
- \triangleright Swap A[i] and A[i]
- ► Then increment *i*

Why it's correct:

- ▶ The new $A[i] \le x \to \text{condition 1 satisfied}$
- ▶ A[j-1] > x (from blue region) was just moved \rightarrow condition 2 holds

Loop Invariant — Termination

At termination:

- ▶ Loop runs for r p iterations \rightarrow ends with j = r
- ▶ The unexamined region A[j ... r 1] is now empty
- ► All values are partitioned into three regions:
 - $ightharpoonup A[p \dots i] \leq x$
 - ► A[i+1...r-1] > x
 - ightharpoonup A[r] = x

The final swap places x at position i+1, and we return that index. Loop invariant guarantees correctness of the partition.

Running Time of PARTITION

Claim: The running time of PARTITION on a subarray of size n is $\Theta(n)$

- ▶ The for loop runs from j = p to $r 1 \rightarrow$ exactly n 1 iterations
- Each iteration performs a constant number of operations:
 - ▶ A comparison: $A[j] \le x$
 - ► Maybe an increment of *i*
 - Maybe a swap between A[i] and A[j]
- One final swap after the loop (pivot placement)

Conclusion: The total work is proportional to n, so the running time is:

 $\Theta(n)$

Chapter 7: Quicksort

- ► Chapter 7.1: Description of quicksort
- Chapter 7.2: Performance of quicksort
- Chapter 7.3: A randomized version of quicksort
- Chapter 7.4: Analysis of quicksort

Quicksort Performance Depends on Pivot Balance

- The running time of Quicksort depends on how well the pivot splits the array.
- ▶ **Balanced partition:** Both sides of the partition are roughly equal in size
 - Quicksort behaves like Merge Sort: $\Theta(n \log n)$
- Unbalanced partition: One side is much larger than the other
 - Quicksort degrades to $\Theta(n^2)$, similar to Insertion Sort

Key Insight: The choice of pivot greatly affects performance

Best vs. Worst Case Intuition

Balanced Partitioning:

- Each pivot splits the array into two halves
- Recursion tree is roughly of height log n
- ▶ Total time is $\Theta(n \log n)$

Unbalanced Partitioning:

- ▶ Each pivot gives a 1-element side and n-1 element side
- Recursion tree becomes a long chain
- ▶ Total time is $\Theta(n^2)$

Quicksort Memory Usage

In-place sorting:

- Quicksort sorts the array in place (no extra arrays)
- ► This satisfies the definition of in-place sorting

But it still uses stack memory:

- Each recursive call uses stack space
- ► Stack depth = maximum depth of recursion tree
- ▶ In worst case (unbalanced), recursion depth = $\Theta(n)$
- ▶ In best case (balanced), depth = $\Theta(\log n)$

Worst-Case Partitioning in Quicksort

Worst case: Partitioning produces:

One subproblem of size n-1, the other of size 0

- ▶ This occurs when the pivot is the smallest or largest element
- Happens consistently if input is already sorted (ascending or descending)

Time per partition: $\Theta(n)$

Recursive pattern:

$$T(n) = T(n-1) + \Theta(n)$$

Solving the Worst-Case Recurrence

Given:

$$T(n) = T(n-1) + \Theta(n)$$

Unrolling:

$$= T(n-2) + \Theta(n-1) + \Theta(n)$$

$$=\cdots=T(1)+\sum_{k=2}^n\Theta(k)=\Theta(n^2)$$

Result: Worst-case time is:

$$T(n) = \Theta(n^2)$$

Best-Case Partitioning in Quicksort

Best case: Every call to PARTITION splits the array into two equal halves.

- ▶ One subarray of size $\left\lfloor \frac{n-1}{2} \right\rfloor \leq \frac{n}{2}$
- ▶ One subarray of size $\left\lceil \frac{n-1}{2} \right\rceil \leq \frac{n}{2}$
- ▶ Partitioning work per level: $\Theta(n)$

Running time recurrence:

$$T(n) = 2T(n/2) + \Theta(n)$$

Apply Master Theorem (Case 2):

$$T(n) = \Theta(n \log n)$$

Conclusion: When Quicksort always partitions evenly, its runtime matches Merge Sort: $\Theta(n \log n)$

Balanced Partitioning in Quicksort

Idea: Even when partitioning is *not perfectly even*, Quicksort performs well.

- ► Example: PARTITION always splits the array in a 9-to-1 ratio
- This seems unbalanced but Quicksort still achieves:

$$T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

▶ The cost at each level is $\Theta(n)$

Goal: Understand how such a split leads to $O(n \log n)$ time

Recursion Tree for a 9-to-1 Partitioning

- \triangleright Each level of the recursion tree does O(n) total work
- ► The depth of the tree is:

$$\Theta(\log_{10/9} n) = \Theta(\log n)$$

► Total work:

$$O(n) \cdot \Theta(\log n) = O(n \log n)$$

Constant Proportional Splits Yield $O(n \log n)$

- ▶ Even a 99-to-1 partition gives $O(n \log n)$ time
- As long as each partition is reduced by a constant factor at every level
- ▶ The key: tree depth is still $\Theta(\log n)$, and each level does O(n) work

Therefore:

$$T(n) = O(n \log n)$$
 for any constant-ratio split

The split ratio affects only the constant factor, not the asymptotic growth

Intuition for the Average Case

Goal: Understand why Quicksort is fast *on average*, despite some bad splits.

- ▶ Input is modeled as a random permutation of distinct elements
- Quicksort's performance depends on the relative ordering, not values
- ► Like the hiring problem (Chapter 5), we assume all orderings are equally likely

Key idea: Average-case behavior is a mix of good and bad splits, but still leads to efficient sorting.

Alternating Splits

- ▶ First level: worst-case split \rightarrow sizes n-1 and 0
- ▶ Second level: good split \rightarrow halves of n-1
- ► Total work for two levels:

$$\Theta(n) + \Theta(n-1) = \Theta(n)$$

Even though the first split was bad, the good split catches up

Conclusion: Average Case is $O(n \log n)$

- ▶ In the average case, good and bad splits are randomly mixed
- ▶ Even alternating between worst-case and best-case still gives:

$$\Theta(n \log n)$$

- Bad splits get "absorbed" by good ones
- So average-case cost is close to best case with only a slightly larger constant

Result: Quicksort is fast on average, even with occasional bad pivots!

Chapter 7: Quicksort

- ► Chapter 7.1: Description of quicksort
- Chapter 7.2: Performance of quicksort
- Chapter 7.3: A randomized version of quicksort
- Chapter 7.4: Analysis of quicksort

Why Randomize Quicksort?

Problem: Our average-case analysis assumes the input is a random permutation

- In real-world scenarios, input may be sorted, reverse-sorted, or adversarial
- ▶ In such cases, deterministic Quicksort can degrade to $\Theta(n^2)$
- ► **Solution:** Use randomization to guard against worst-case inputs

Benefit: With random pivot selection, all inputs behave like "random" inputs on average

How Randomized Quicksort Works

Idea: Instead of always choosing the last element A[r] as the pivot:

- ▶ Choose a random index $i \in [p, r]$
- Swap A[i] with A[r]
- Then proceed with normal partitioning

Effect: Every element in $A[p \dots r]$ has equal probability of being the pivot

RANDOMIZED-QUICKSORT and PARTITION

```
RANDOMIZED-PARTITION (A, p, r)

1 i = \text{RANDOM}(p, r)

2 exchange A[r] with A[i]

3 return Partition (A, p, r)

RANDOMIZED-QUICKSORT (A, p, r)

1 if p < r

2 q = \text{RANDOMIZED-PARTITION}(A, p, r)

3 RANDOMIZED-QUICKSORT (A, p, q - 1)

4 RANDOMIZED-QUICKSORT (A, q + 1, r)
```

Only change: one random swap before partitioning

Why Randomization Helps

- Avoids dependence on input order
- lackbox Every pivot has equal probability o partitions are likely balanced on average
- All inputs behave like random permutations
- Prevents adversarial inputs from triggering worst-case behavior

Result: Expected runtime becomes $O(n \log n)$ for all inputs

Chapter 7: Quicksort

- ► Chapter 7.1: Description of quicksort
- Chapter 7.2: Performance of quicksort
- Chapter 7.3: A randomized version of quicksort
- Chapter 7.4: Analysis of quicksort

Formal Analysis of Quicksort

Goal: Prove that the worst-case running time of Quicksort is $\Theta(n^2)$

- Section 7.2 gave an intuition for how bad partitioning leads to $\Theta(n^2)$
- ▶ Now we'll use the **substitution method** to formally prove:

$$T(n) = O(n^2)$$

► This worst-case applies to both QUICKSORT and RANDOMIZED-QUICKSORT

Worst-Case Recurrence for Quicksort

Let T(n) be the worst-case time for QUICKSORT on input of size n. In the worst case:

- The pivot causes a maximally unbalanced split: q = 0 or q = n 1
- ▶ PARTITION does $\Theta(n)$ work

Worst-case recurrence:

$$T(n) = \max_{0 \le q \le n-1} \{ T(q) + T(n-1-q) \} + \Theta(n)$$
 (Equation 7.1)

Using the Substitution Method

Goal: Prove $T(n) = O(n^2)$ using substitution.

Step 1: Guess the bound (inductive hypothesis)

Assume:

$$T(m) \le cm^2$$
 for all $m < n$, where $c > 0$

Step 2: Apply the recurrence to T(n)

From the recurrence:

$$T(n) = \max_{0 \le q \le n-1} \{ T(q) + T(n-1-q) \} + \Theta(n)$$

Apply the inductive hypothesis to the recursive calls:

$$T(n) \le \max_{0 < q < n-1} \left\{ cq^2 + c(n-1-q)^2 \right\} + \Theta(n)$$

Now simplify and bound the maximum to complete the proof.

Bounding the Maximum

Focus on the inner term:

$$q^2 + (n-1-q)^2$$

Expand:

$$= q^{2} + (n-1)^{2} - 2q(n-1) + q^{2} = (n-1)^{2} + 2q(q-(n-1))$$

The second term is always ≤ 0 , so:

$$q^2 + (n-1-q)^2 \le (n-1)^2$$

So:

$$T(n) \le c(n-1)^2 + \Theta(n) \le cn^2 - c(2n-1) + \Theta(n) \le cn^2$$

(for large enough c)

Conclusion: Worst-Case is $\Theta(n^2)$

- ▶ We showed $T(n) = O(n^2)$ via substitution method
- We also know that $T(n) = \Omega(n^2)$ in the worst-case input (exercise 7.4-1)

Therefore:

$$T(n) = \Theta(n^2)$$

Running Time and Comparisons in Quicksort

Observation: Quicksort's total running time is primarily due to comparisons in the PARTITION procedure.

Focus: Count comparisons of elements (not indices)

- Occur in line 4 of PARTITION
- Each compares an element to the current pivot

Let: X = Total number of element comparisons Then the total running time is tied to X

Lemma 7.1 – Running Time in Terms of Comparisons

Lemma 7.1: The running time of QUICKSORT on an *n*-element array is:

$$O(n+X)$$

where X is the number of element comparisons made in line 4 of PARTITION

This lemma applies to both:

- QUICKSORT (deterministic)
- ► RANDOMIZED-QUICKSORT

Proof Idea of Lemma 7.1

- Each call to PARTITION removes the pivot from future calls
- There are at most n calls to PARTITION (one per pivot)
- ▶ Each QUICKSORT call can make up to 2 recursive calls \rightarrow at most 2*n* total calls

For each PARTITION call:

- ▶ Outside the loop: O(1)
- ▶ Loop iterations: one comparison per iteration

Total time:

$$O(n)$$
 (overhead) $+ O(X)$ (comparisons) $= O(n + X)$

Goal: Expected Number of Comparisons in Quicksort

Let X= total number of element comparisons made by PARTITION **Goal:** Compute $\mathbb{E}[X]$

- Each comparison happens in line 4 of PARTITION
- ▶ To understand $\mathbb{E}[X]$, we must ask:
 - ▶ When are two elements compared?
 - How many such comparisons occur?

Tool: Analyze using the order of elements in the sorted array $z_1 < z_2 < \cdots < z_n$

Lemma 7.2 – When Are Two Elements Compared?

Let $z_i < z_j$ be two elements in the sorted array. Then: **I emma 7.2**:

 z_i and z_j are compared if and only if

either z_i or z_j is the first pivot chosen from $Z_{ij} = \{z_i, \ldots, z_j\}$

Consequences:

- ▶ If any z_k with i < k < j is chosen first $\rightarrow z_i$ and z_j fall into different sides \rightarrow no comparison
- ► Comparison happens only once when the pivot is chosen

No Two Elements Are Compared Twice

Lemma 7.2 (continued): Once two elements z_i and z_j are compared, they are never compared again.

Why?

- ▶ The comparison happens only if one of z_i or z_j is chosen first as pivot in Z_{ij}
- After that pivot is chosen, it is removed from the array
- So z_i and z_j can never appear together in the same recursive call again

Example: Comparing Elements in Randomized Quicksort

Suppose the input is $\{1, 2, \dots, 10\}$ (random order)

ightharpoonup First pivot chosen is 7 ightharpoonup PARTITION splits array into:

$$\{1, 2, 3, 4, 5, 6\}$$
 and $\{8, 9, 10\}$

- ▶ 7 is compared with every element it's the first pivot in each Z_{ij}
- 2 and 9 will never be compared because 7 splits them
- ▶ 7 and 9 **are compared** because 7 is the first pivot in $Z_{7,9}$

Takeaway: A pair (z_i, z_j) is only compared if no element in between was chosen as pivot first.

Lemma 7.3 – Probability of Comparing Two Elements

Let $z_1 < z_2 < \cdots < z_n$ be distinct elements in sorted order.

Lemma 7.3: For any i < j, the probability that z_i and z_j are compared during Randomized Quicksort is:

Why Are z_i and z_j Compared?

- ► Let $Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$
- $ightharpoonup z_i$ and z_j are compared **iff** one of them is chosen first as pivot from Z_{ij}
- Each element in Z_{ij} has equal chance to be the first pivot

$$Pr[first pivot is z_i] = Pr[first pivot is z_j] = \frac{1}{j-i+1}$$

$$\Pr[z_i \text{ and } z_j \text{ are compared}] = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \boxed{\frac{2}{j-i+1}}$$

Theorem 7.4 – Expected Time of Randomized Quicksort

Theorem 7.4: The expected running time of RANDOMIZED-QUICKSORT on *n* distinct elements is:

$$O(n \log n)$$

Strategy: We'll compute the expected number of comparisons $\mathbb{E}[X]$, and use:

Total time =
$$O(n + X)$$
 (Lemma 7.1)

Step 1: Define Indicator Random Variables

Let elements be sorted: $z_1 < z_2 < \cdots < z_n$ Define:

$$X_{ij} = egin{cases} 1 & ext{if } z_i ext{ is compared with } z_j \ 0 & ext{otherwise} \end{cases}$$
 for $1 \leq i < j \leq n$

Then the total number of comparisons:

$$X = \sum_{1 \le i < j \le n} X_{ij}$$

We will compute $\mathbb{E}[X]$ using linearity of expectation.

Step 2: Apply Linearity of Expectation

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{1 \le i < j \le n} X_{ij}\right] = \sum_{1 \le i < j \le n} \mathbb{E}[X_{ij}]$$

From Lemma 5.1 (Chapter 5), $\mathbb{E}[X_{ij}] = \Pr[z_i \text{ compared with } z_j]$ And from Lemma 7.3:

$$\mathbb{E}[X_{ij}] = \frac{2}{j-i+1}$$

So:

$$\mathbb{E}[X] = \sum_{1 \le i \le j \le n} \frac{2}{j - i + 1}$$

Step 3: Change of Variables to Simplify the Sum

Change variable: let k = j - i, so:

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

The inner sum is a harmonic series:

$$\sum_{k=1}^{n} \frac{1}{k} = O(\log n)$$

So the total becomes:

$$\mathbb{E}[X] = O(n \log n)$$

Conclusion: Expected Running Time

We proved:

$$\mathbb{E}[X] = O(n \log n)$$
 (expected number of comparisons)

And from Lemma 7.1:

Expected running time of Quicksort =
$$O(n + X) = O(n \log n)$$

Quicksort is fast on average for any input!

Question?