Import libraries ¶

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.regressionplots import influence_plot
import statsmodels.formula.api as smf
import numpy as np
```

In [2]:

```
#Read the data
cars = pd.read_csv("Cars.csv")
cars.head()
```

Out[2]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149

In [3]:

```
cars.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 81 entries, 0 to 80
Data columns (total 5 columns):
    Column Non-Null Count Dtype
             _____
0
    HP
            81 non-null
                             int64
 1
    MPG
            81 non-null
                             float64
 2
    VOL
            81 non-null
                             int64
 3
    SP
            81 non-null
                             float64
    WT
            81 non-null
                             float64
dtypes: float64(3), int64(2)
memory usage: 3.3 KB
```

In [4]:

```
#check for missing values
cars.isna().sum()
```

Out[4]:

HP 0 MPG 0 VOL 0 SP 0 WT 0 dtype: int64

Correlation Matrix

In [5]:

```
cars.corr()
```

Out[5]:

	HP	MPG	VOL	SP	WT
НР	1.000000	-0.725038	0.077459	0.973848	0.076513
MPG	-0.725038	1.000000	-0.529057	-0.687125	-0.526759
VOL	0.077459	-0.529057	1.000000	0.102170	0.999203
SP	0.973848	-0.687125	0.102170	1.000000	0.102439
WT	0.076513	-0.526759	0.999203	0.102439	1.000000

Scatterplot between variables along with histograms

In [6]:

```
#Format the plot background and scatter plots for all the variables
sns.set_style(style='darkgrid')
sns.pairplot(cars)
```

Out[6]:

<seaborn.axisgrid.PairGrid at 0x1ebfca0d970>

Preparing a model

```
In [7]:
#Build model
import statsmodels.formula.api as smf
model = smf.ols('MPG~WT+VOL+SP+HP',data=cars).fit()
In [8]:
#Coefficients
model.params
Out[8]:
Intercept
             30.677336
              0.400574
WT
VOL
             -0.336051
SP
              0.395627
HP
             -0.205444
dtype: float64
In [9]:
#t and p-Values
print(model.tvalues, '\n', model.pvalues)
Intercept
             2.058841
WT
             0.236541
V0L
            -0.590970
SP
             2.499880
ΗP
            -5.238735
dtype: float64
Intercept
              0.042936
WT
             0.813649
V0L
             0.556294
SP
             0.014579
             0.000001
HP
dtype: float64
In [10]:
#R squared values
(model.rsquared_adj)
```

(0.7705372737359842, 0.7584602881431413)

Out[10]:

Simple Linear Regression Models

```
In [11]:
```

```
ml_v=smf.ols('MPG~VOL',data = cars).fit()
#t and p-Values
print(ml_v.tvalues, '\n', ml_v.pvalues)
Intercept
             14.106056
             -5.541400
dtype: float64
Intercept
              2.753815e-23
             3.822819e-07
VOL
dtype: float64
In [12]:
ml_w=smf.ols('MPG~WT',data = cars).fit()
print(ml_w.tvalues, '\n', ml_w.pvalues)
Intercept
             14.248923
             -5.508067
dtype: float64
              1.550788e-23
Intercept
             4.383467e-07
dtype: float64
In [13]:
ml_wv=smf.ols('MPG~WT+VOL',data = cars).fit()
print(ml_wv.tvalues, '\n', ml_wv.pvalues)
Intercept
             12.545736
WT
              0.489876
VOL
             -0.709604
```

dtype: float64

Intercept 2.141975e-20 WT 6.255966e-01 4.800657e-01 VOL

dtype: float64

Calculating VIF

In [14]:

```
rsq_hp = smf.ols('HP~WT+VOL+SP',data=cars).fit().rsquared
vif_hp = 1/(1-rsq_hp) # 16.33

rsq_wt = smf.ols('WT~HP+VOL+SP',data=cars).fit().rsquared
vif_wt = 1/(1-rsq_wt) # 564.98

rsq_vol = smf.ols('VOL~WT+SP+HP',data=cars).fit().rsquared
vif_vol = 1/(1-rsq_vol) # 564.84

rsq_sp = smf.ols('SP~WT+VOL+HP',data=cars).fit().rsquared
vif_sp = 1/(1-rsq_sp) # 16.35

# Storing vif values in a data frame
d1 = {'Variables':['Hp','WT','VOL','SP'],'VIF':[vif_hp,vif_wt,vif_vol,vif_sp]}
Vif_frame = pd.DataFrame(d1)
Vif_frame
```

Out[14]:

	Variables	VIF
0	Нр	19.926589
1	WT	639.533818
2	VOL	638.806084
3	SP	20.007639

Residual Analysis

Test for Normality of Residuals (Q-Q Plot)

In [15]:

```
import statsmodels.api as sm
qqplot=sm.qqplot(model.resid,line='q') # line = 45 to draw the diagnoal line
plt.title("Normal Q-Q plot of residuals")
plt.show()
```


In [16]:

```
list(np.where(model.resid>10))
```

Out[16]:

[array([0, 76], dtype=int64)]

Residual Plot for Homoscedasticity

In [17]:

```
def get_standardized_values( vals ):
    return (vals - vals.mean())/vals.std()
```

In [18]:

Residual Vs Regressors

In [19]:

```
fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, "VOL", fig=fig)
plt.show()
```


In [20]:

```
fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, "SP", fig=fig)
plt.show()
```


In [21]:

```
fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, "HP", fig=fig)
plt.show()
```


In [22]:

```
fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, "WT", fig=fig)
plt.show()
```


Model Deletion Diagnostics

Detecting Influencers/Outliers

Cook's Distance

In [23]:

```
model_influence = model.get_influence()
(c, _) = model_influence.cooks_distance
```

In [24]:

```
#Plot the influencers values using stem plot
fig = plt.subplots(figsize=(20, 7))
plt.stem(np.arange(len(cars)), np.round(c, 3))
plt.xlabel('Row index')
plt.ylabel('Cooks Distance')
plt.show()
```


In [25]:

```
#index and value of influencer where c is more than .5
(np.argmax(c),np.max(c))
```

Out[25]:

(76, 1.0865193998179823)

High Influence points

In [26]:

```
from statsmodels.graphics.regressionplots import influence_plot
influence_plot(model)
plt.show()
```



```
In [27]:
```

```
k = cars.shape[1]
n = cars.shape[0]
leverage_cutoff = 3*((k + 1)/n)
```

From the above plot, it is evident that data point 70 and 76 are the influencers

In [28]:

```
cars[cars.index.isin([70, 76])]
```

Out[28]:

		HP	MPG	VOL	SP	WT
7	70	280	19.678507	50	164.598513	15.823060
7	76	322	36.900000	50	169.598513	16.132947

In [29]:

```
#See the differences in HP and other variable values cars.head()
```

Out[29]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149

Improving the model

In [30]:

```
#Load the data
cars_new = pd.read_csv("Cars.csv")
```

In [31]:

#Discard the data points which are influencers and reasign the row number (reset_index())
car1=cars_new.drop(cars_new.index[[70,76]],axis=0).reset_index()

In [32]:

```
#Drop the original index
car1=car1.drop(['index'],axis=1)
```

```
In [33]:
```

car1

Out[33]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
74	175	18.762837	129	132.864163	42.778219
75	238	19.197888	115	150.576579	37.923113
76	263	34.000000	50	151.598513	15.769625
77	295	19.833733	119	167.944460	39.423099
78	236	12.101263	107	139.840817	34.948615

79 rows × 5 columns

Build Model

```
In [34]:
```

```
#Exclude variable "WT" and generate R-Squared and AIC values
final_ml_V= smf.ols('MPG~VOL+SP+HP',data = car1).fit()
```

```
In [35]:
```

```
(final_ml_V.rsquared,final_ml_V.aic)
```

Out[35]:

(0.8161692010376007, 446.1172263944772)

In [36]:

```
#Exclude variable "VOL" and generate R-Squared and AIC values
final_ml_W= smf.ols('MPG~WT+SP+HP',data = car1).fit()
```

In [37]:

```
(final_ml_W.rsquared,final_ml_W.aic)
```

Out[37]:

(0.8160034320495304, 446.1884323575032)

Comparing above R-Square and AIC values, model 'final_ml_V' has high R- square and low AIC value hence include variable 'VOL' so that multi collinearity problem would be resolved.

Cook's Distance

```
In [38]:
```

```
model_influence_V = final_ml_V.get_influence()
(c_V, _) = model_influence_V.cooks_distance
```

In [39]:

```
fig= plt.subplots(figsize=(20,7))
plt.stem(np.arange(len(car1)),np.round(c_V,3));
plt.xlabel('Row index')
plt.ylabel('Cooks Distance');
```


In [40]:

```
#index of the data points where c is more than .5
(np.argmax(c_V),np.max(c_V))
```

Out[40]:

(76, 1.1629387469135357)

In [41]:

```
#Drop 76 and 77 observations
car2=car1.drop(car1.index[[76,77]],axis=0)
```

In [42]:

car2

Out[42]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
72	140	19.086341	160	124.715241	52.997752
73	140	19.086341	129	121.864163	42.618698
74	175	18.762837	129	132.864163	42.778219
75	238	19.197888	115	150.576579	37.923113
78	236	12.101263	107	139.840817	34.948615

77 rows × 5 columns

In [43]:

```
#Reset the index and re arrange the row values
car3=car2.reset_index()
```

In [44]:

```
car4=car3.drop(['index'],axis=1)
```

In [45]:

car4

Out[45]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
72	140	19.086341	160	124.715241	52.997752
73	140	19.086341	129	121.864163	42.618698
74	175	18.762837	129	132.864163	42.778219
75	238	19.197888	115	150.576579	37.923113
76	236	12.101263	107	139.840817	34.948615

77 rows × 5 columns

In [46]:

```
#Build the model on the new data
final_ml_V= smf.ols('MPG~VOL+SP+HP',data = car4).fit()
```

In [47]:

```
#Again check for influencers
model_influence_V = final_ml_V.get_influence()
(c_V, _) = model_influence_V.cooks_distance
```

In [48]:

```
fig= plt.subplots(figsize=(20,7))
plt.stem(np.arange(len(car4)),np.round(c_V,3));
plt.xlabel('Row index')
plt.ylabel('Cooks Distance');
```



```
In [49]:
```

```
#index of the data points where c is more than .5
(np.argmax(c_V),np.max(c_V))
Out[49]:
(65, 0.8774556986296798)
```

Since the value is <1, we can stop the diagnostic process and finalize the model

```
In [50]:
#Check the accuracy of the mode
final_ml_V= smf.ols('MPG~VOL+SP+HP',data = car4).fit()
In [51]:
```

```
(final_ml_V.rsquared,final_ml_V.aic)
```

```
Out[51]:
(0.8669636111859063, 409.41530627195084)
```

Predicting for new data

```
In [52]:
#New data for prediction
new_data=pd.DataFrame({'HP':40,"VOL":95,"SP":102,"WT":35},index=[1])
```

```
new_data=pd.DataFrame({ HP :40, VOL :95, SP :102, WT :35},Index=[1])
```

```
final_ml_V.predict(new_data)
```

```
Out[53]:
1 46.035594
```

dtype: float64

In [53]:

In [54]:

```
final_ml_V.predict(cars_new.iloc[0:5,])
```

Out[54]:

```
0 45.428872
1 43.992392
2 43.992392
3 43.508150
4 44.085858
dtype: float64
```

```
In [55]:
```

```
pred_y = final_ml_V.predict(cars_new)
```

In [56]:

```
pred_y
```

Out[56]:

```
45.428872
1
      43.992392
2
      43.992392
3
      43.508150
4
      44.085858
76
       7.165876
77
      12.198598
78
      14.908588
79
       4.163958
80
       9.161202
```

Length: 81, dtype: float64