Interval Analysis

Michel Kieffer

Laboratoire des Signaux et Systèmes CNRS - SUPELEC - Univ Paris-Sud Institut Universitaire de France kieffer@lss.supelec.fr

22 janvier 2013

Sommaire

Interval analysis

Interval arithmetic primer

Interval of real numbers

Basic operations Inclusion function

Example

Centred form

Example

Extension to vectors of intervals

Parameter estimation

Problem formulation

Parameter bounding

Robust parameter bounding

Sivia

Sivia with contractors

Example

Interval analysis

Provides efficient techniques to

- perform guaranteed deterministic global optimization,
- evaluate all solutions of a set of nonlinear equations
- compute inner and outer approximation of the set of vectors consistent with a set of inequalities
- **.**.

Interval analysis

Has lead to numerous applications

- ▶ Bounded-error parameter and state estimation of nonlinear systems
- ▶ Robust bounded-error parameter and state estimation
- Parameter estimation by global optimization
- Structural identifiability study
- Distributed estimation
- **.**..

Interval arithmetic primer

Introduced by Sunaga in Japan and by Moore in the USA.

Limited impact until beginning of the 90s \Longrightarrow various reasons, among which implementation issues

Many books, code libraries, lists

http://www.cs.utep.edu/interval-comp/main.html

Ongoing standardization process IEEE P1788.

Interval of real numbers

Closed and bounded subset of \mathbb{R}

$$[x] = [\underline{x}, \overline{x}] = \{x \in \mathbb{R} | \underline{x} \le x \le \overline{x}\}.$$

It is a set \Longrightarrow notions such as

$$=,\in,\subset,\cap$$

are well defined.

When considering \cup

$$[x] \cup [y] = [\min(\underline{x}, \underline{y}), \max(\overline{x}, \overline{y})].$$

Interval of real numbers

Other characteristics of an interval

Width

$$w([x]) = \overline{x} - \underline{x},$$

Midpoint

$$m([x])=\frac{\underline{x}+\overline{x}}{2}.$$

Basic operations

Extended to intervals

$$\circ \in \{+,-,\times,/\} \,, \,\, [x]\circ [y] = \{x\circ y | x\in [x] \,\,\text{ and } y\in [y]\} \,.$$

More specifically

$$\left\{ \begin{array}{l} [x] + [y] = \left[\underline{x} + \underline{y}, \overline{x} + \overline{y}\right], \\ [x] - [y] = \left[\underline{x} - \overline{y}, \overline{x} - \underline{y}\right], \\ [x] \times [y] = \left[\min\left(\underline{x}.\underline{y}, \overline{x}.\underline{y}, \underline{x}.\overline{y}, \overline{x}.\overline{y}\right), \max\left(\underline{x}.\underline{y}, \overline{x}.\underline{y}, \underline{x}.\overline{y}, \overline{x}.\overline{y}\right)\right], \\ [x] / [y] = [x] \times \left[1/\overline{y}, 1/\underline{y}\right], \text{ if } 0 \notin [y] \text{ and undefined else.}. \end{array} \right.$$

Inclusion function

Range of a function over an interval

$$f([x]) = \{f(x) | x \in [x]\}$$

⇒ difficult to obtain in general

⇒ sometimes even not an interval

Inclusion function [f](.) of f(.) satisfies

$$\forall [x] \subset \mathbb{R}, \ f([x]) \subset [f]([x]).$$

Inclusion function is minimal if \subset may be replaced by =.

Convergent inclusion function

if
$$w([x]) \rightarrow 0$$
, then $w([f]([x])) \rightarrow 0$.

Inclusion function

Inclusion function easy to build for monotone functions

$$\begin{array}{rcl} \sqrt{[x]} & = & \left[\sqrt{\underline{x}},\sqrt{\overline{x}}\right], \text{ if } \underline{x} \geq 0, \\ \exp\left([x]\right) & = & \left[\exp\left(\underline{x}\right),\exp\left(\overline{x}\right)\right], \\ \tan\left([x]\right) & = & \left[\tan\left(\underline{x}\right),\tan\left(\overline{x}\right)\right], \text{ if } \left[x\right] \subseteq \left[-\pi/2,\pi/2\right]. \end{array}$$

More complicated for other elementary functions

⇒ algorithm required for sin, cos, . . .

⇒ natural inclusion function

Inclusion function

Usually, an inclusion function is not minimal

 \implies some overestimation of the range (pessimism).

Natural inclusion function

Remplace each real variable by its interval counterpart

$$x \longrightarrow [x]$$

$$\begin{split} f_1(x) &= x(x+1), & f_3(x) = x^2 + x, \\ f_2(x) &= x \times x + x, & f_4(x) = (x + \frac{1}{2})^2 - \frac{1}{4}. \end{split}$$
 Results for $[x] = [-1,1]$
$$\begin{bmatrix} f_1 \end{bmatrix}([x]) &= [x] ([x]+1) = [-2,2], \\ [f_2]([x]) &= [x] \times [x] + [x] = [-2,2], \\ [f_3]([x]) &= [x]^2 + [x] = [-1,2], \\ [f_4]([x]) &= ([x]+\frac{1}{2})^2 - \frac{1}{4} = [-\frac{1}{4},2]. \end{split}$$

Only $[f_4]$ (.) is minimal \iff minimum number of occurrences of the interval variable

Centred form

For $f: \mathcal{D} \longrightarrow \mathbb{R}$, differentiable over $[x] \subset \mathcal{D}$, one has $\forall x, m \in [x]$, $\exists \xi \in [x]$ such that

$$f(x) = f(m) + (x - m) f'(\xi).$$

Then

$$f(x) \in f(m) + (x - m) f'([x]),$$

and

$$f([x]) \subseteq f(m) + ([x] - m)[f']([x]).$$

Centred form is the inclusion function defined by

$$[f]_{c}([x]) = f(m) + ([x] - m)[f']([x])$$

Centred form

Interpretation of the centred form

Consider

$$f(x) = x^2 \exp(x) - x \exp(x^2).$$

Compare the natural inclusion fonction and the centred form

[x]	f([x])	[f]([x])	$[f]_{c}([x])$
[0.5, 1.5]	[-4.148, 0]	[-13.82, 9.44]	[-25.07, 25.07]
[0.9, 1.1]	[-0.05380, 0]	[-1.697, 1.612]	[-0.5050, 0.5050]
[0.99, 1.01]	[-0.0004192, 0]	[-0.1636, 0.1628]	[-0.004656, 0.004656]

Extension to vectors of intervals

Vector of intervals or box

$$[\mathbf{x}] = [x_1] \times \cdots \times [x_n].$$

Vector inclusion function

Parameter estimation

 \boldsymbol{y} : vector of experimental data

 \boldsymbol{p} : vector of $\boldsymbol{unknown},$ $\boldsymbol{constant}$ parameters

 $\mathbf{y}_{m}\left(\mathbf{p}\right)$: vector of model output

Parameter estimation : Determination of $\widehat{\boldsymbol{p}}$ from $\boldsymbol{y}.$

Problem formulation

1. Minimisation of a cost function, e.g.,

$$\widehat{\mathbf{p}} = \arg\min_{\mathbf{p}} j\left(\mathbf{p}\right) = \left(\mathbf{y} - \mathbf{y}_{\mathrm{m}}\left(\mathbf{p}\right)\right)^{\mathrm{T}} \left(\mathbf{y} - \mathbf{y}_{\mathrm{m}}\left(\mathbf{p}\right)\right)$$

- Local techniques : Gauss-Newton, Levenberg-Marquardt...
- ► Random search : simulated annealing, genetic algorithms...
- ► Global guaranteed techniques : Hansen's algorithm

2.

Parameter bounding

```
Experimental data : y(t_i), t_i, i=1\dots,N, known measurement times [\varepsilon_i]=[\underline{\varepsilon}_i,\overline{\varepsilon}_i], i=1,\dots,N, known acceptable errors \mathbf{p}\in\mathcal{P}_0 \text{ deemed acceptable if for all } i=1,\dots,N, \underline{\varepsilon}_i\leqslant y(t_i)-y_{\mathrm{m}}(\mathbf{p},t_i)\leqslant \overline{\varepsilon}_i. \Longrightarrow Bounded-error parameter estimation : Characterize \mathbb{S}=\{\mathbf{p}\in\mathcal{P}_0\mid y(t_i)-y_{\mathrm{m}}(\mathbf{p},t_i)\in [\varepsilon_i,\overline{\varepsilon}_i],\ i=1,\dots,N\}
```

Parameter bounding

- ▶ When $y_m(\mathbf{p}, t_i)$ is linear in \mathbf{p}
 - exact description by polytopes (Walter and Piet-Lahanier, 1989...)
 - outer approximation by ellipsoids, polytopes, ... (Schweppe, 1973; Fogel ang Huang, 1982...)
- When $y_m(\mathbf{p}, t_i)$ is non-linear in \mathbf{p}
 - outer approximation by polytopes, ellipsoids...
 (Norton, 1987; Clément and Gentil, 1988; Cerone, 1991...)
 - ▶ approximate but guaranteed enclosure of S by SIVIA (Moore, 1992; Jaulin and Walter 1993)

Robust parameter bounding

$$\mathbb{S} = \bigcap_{\ell=1\dots N} \mathbb{S}_\ell,$$

with

$$\mathbb{S}_{\ell} = \left\{ \mathbf{p} \in \mathcal{P}_0 \mid y_{\ell}^{\mathsf{m}} \left(\mathbf{p} \right) - y_{\ell} \in \left[\underline{\varepsilon}_{\ell}, \overline{\varepsilon}_{\ell}\right] \right\}$$

Interval analysis [2, 3], [1] allows to get

$$\underline{\mathbb{S}}\subset\mathbb{S}\subset\overline{\mathbb{S}}$$

No consistent \mathbf{p} is missed \Longrightarrow guaranteed set estimate.

Robust parameter bounding

When the solution set is empty

$$\mathbb{S} = \bigcap_{\ell=1...N} \mathbb{S}_{\ell} = \emptyset.$$

Hypothesis on model or noise violated

Robust parameter bounding

Estimator robust against *n* outliers

$$\mathbb{S}_n^r = \bigcup_{1 \leqslant \ell_1 < \dots < \ell_n \leqslant N} \bigcap_{\ell \neq \ell_1, \dots, \ell \neq \ell_N} \mathbb{S}_{\ell}.$$

Intersection of N - n sets among NInterval analysis \implies non-combinatorial solution

$$\mathbb{S}_{n}^{\mathsf{r}} = \left\{ \mathbf{p} \in \mathcal{P}_{0} \mid \sum_{\ell=1}^{N} t_{\ell}\left(\mathbf{p}\right) \geq N - n
ight\}$$

with

$$t_{\ell}\left(\mathbf{p}\right)=\left(y_{\ell}^{\mathsf{m}}\left(\mathbf{p}\right)-y_{\ell}\in\left[\underline{\varepsilon}_{\ell},\overline{\varepsilon}_{\ell}\right]\right)$$

 \mathbb{S}_n^r evaluated with a complexity of the order of that of \mathbb{S}

Set to be characterized

$$S = \{ \mathbf{p} \in \mathcal{P}_0 \mid y(t_i) - y_m(\mathbf{p}, t_i) \in [\underline{\varepsilon}_i, \overline{\varepsilon}_i], i = 1, \dots, N \}$$
$$= \{ \mathbf{p} \in \mathcal{P}_0 \mid y_m(\mathbf{p}) \subset \mathcal{Y} \},$$

with

$$\mathcal{Y} = [y(t_1) - \overline{\varepsilon}_1, y(t_1) - \underline{\varepsilon}_1] \times \cdots \times [y(t_N) - \overline{\varepsilon}_N, y(t_N) - \underline{\varepsilon}_N]$$

Parameter space

Data space

Yellow box is undetermined

Red box proven to be outside ${\mathcal S}$

Green box proven to be included in ${\mathcal S}$

Sivia with contractors

Reduce the size of undetermined boxes without any bisection

Contractors (Jaulin et al, 2001) based on

- ▶ interval constraint propagation (Walz)
- ▶ linear programming
- parallel linearization

Sivia with contractors

Example of interval constraint propagation

$$y_{m}(\mathbf{p}) = p_{1} \exp(-p_{2}),$$

 $p_{1} \in [p_{1}]^{0} = [-2, 2], \ p_{2} \in [p_{2}]^{0} = [-2, 2].$

One want to characterize the set

$$\mathbb{S} = \left\{ \mathbf{p} \in \left[p_1 \right]^0 \times \left[p_2 \right]^0 \mid \mathbf{y}_{\mathsf{m}} \left(\mathbf{p} \right) \subset \left[1, 2 \right] \right\}.$$

Sivia with contractors

One may write that

$$p_1 \exp(-p_2) \in [1,2]$$
,

thus

$$p_1 \in [-2,2] \cap \left(\frac{[1,2]}{\exp(-[-2,2])}\right) = [-2,2] \cap [0.1353,14.78]$$

 $\in [0.1353,2].$

Similarly for p_2 , one has

$$p_2 \in [-2,2] \cap \left(-\ln\left(\frac{[1,2]}{[0.1353,2]}\right)\right) = [-2,2] \cap [-2.6932,0.6932]$$
 $\in [-2,0.6932]$

Estimation of the parameters of a compartmental model

State equation

$$\left\{ \begin{array}{l} x_1' = -\left(k_{01} + k_{21}\right)x_1 + k_{12}x_2 \\ x_2' = k_{21}x_1 - k_{12}x_2 \end{array} \right. \text{ with } \left\{ \begin{array}{l} x_1\left(0\right) = 0 \\ x_2\left(0\right) = 0 \end{array} \right.$$

Observation equation

$$y(t_i) = x_2(t_i) + b(t_i), i = 1,..., 16$$

Model

$$y_{m}(\mathbf{p}, t_{i}) = p_{1}(\exp(p_{2}t_{i}) - \exp(p_{3}t_{i})), i = 1, ..., 16,$$

where the macroparameters

$$\mathbf{p} = (p_1, p_2, p_3)^\mathsf{T}$$

depends on the microparameters

$$(k_{01}, k_{12}, k_{21}).$$

Simulated noisy experimental data

Macroparameter estimation with

$$\underline{\varepsilon}_i = -0.09, \ \overline{\varepsilon}_i = 0.09, \ i = 1, \dots, 16$$

Results

	Sivia	SIVIA + ICP	ICP only
Comp. time (s)	8	6.2	0.63
	[0.49, 1.06]	[0.49, 1.06]	[0.52, 0.98]
Bounding box	[-0.293, -0.141]	[-0.293, -0.141]	[-0.282, -0.156]
	[-5, -1.054]	[-5, -1.054]	[-5, -1.167]

Conclusions

- Interval techniques provide guaranteed solution to bounded-error parameter estimation
- ▶ Robust estimation possible
- ightharpoonup ICP or $\operatorname{SIVIA} + \operatorname{ICP}$ allows more unknown parameters than SIVIA

Also possible

- ▶ Bounded-error state estimation
- ▶ Parameter estimation via deterministic global optimization

Bibliography

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter.

Applied Interval Analysis.

Springer-Verlag, London, 2001.

R. E. Moore.

Interval Analysis.

Prentice-Hall, Englewood Cliffs, NJ, 1966.

A. Neumaier.

Interval Methods for Systems of Equations.

Cambridge University Press, Cambridge, UK, 1990.