Apresentação da Disciplina

Lis Custódio

- Busca determinar o que pode e o que não pode ser computado, quão rapidamente, com quanto de memória e sobre que tipo de modelo computacional.
- Nos mostra um lado mais simples e mais elegante dos computadores, os quais normalmente consideramos como máquinas complicadas.

Por que estudar teoria da computação?

Por que estudar teoria da computação?

- Os melhores projetos e aplicações de computadores são concebidos com elegância em mente.
- A tecnologia de computadores muda rapidamente. O conhecimento técnico específico, embora útil hoje, fica desatualizado em apenas poucos anos.
- Os computadores reais são bastante complicados para nos permitir construir uma teoria matemática sobre eles. Em vez disso, utilizamos um computador idealizado chamado modelo computacional.

Por que estudar teoria da computação?

Aplicações em:

- Compiladores (gramáticas e autômatos)
- **Criptografia** (problemas difíceis e complexidade)
- Inteligência Artificial (aprendizado computacional e lógica formal)

Objetivo e motivação

A Teoria da Computação tem como motivação tentar responder às seguintes questões:

- Quais são as propriedades matemáticas do hardware e software do computador?
- O que é uma computação e o que é um algoritmo? Podemos dar definições matemáticas rigorosas dessas noções?
- Quais são as limitações dos computadores? Pode "tudo" ser computado? (Como veremos, a resposta a esta pergunta é "não".)

Objetivo e motivação

A Teoria da Computação tem como motivação tentar responder às seguintes questões:

- Quais são as propriedades matemáticas do hardware e software do computador?
- O que é uma computação e o que é um algoritmo? Podemos dar definições matemáticas rigorosas dessas noções?
- Quais são as limitações dos computadores? Pode "tudo" ser computado? (Como veremos, a resposta a esta pergunta é "não".)

O **objetivo** da Teoria da Computação é desenvolver modelos matemáticos formais de computação que reflitam computadores do mundo real.

- Linguagens formais e autômatos: Trata de definições e propriedades de diferentes tipos de modelos de computacionais;
- Computabilidade: Classifica os problemas como solucionáveis ou insolúveis;
- Complexidade: Classificar os problemas de acordo com o seu grau de "dificuldade".
 Forneça uma prova rigorosa de que problemas que parecem "difíceis" são realmente "difíceis".

Tipos de Problemas

Passos para resolver um problema com o auxílio de um computador:

- Computadores somente executam comandos previamente definidos.
- Logo, para que os computadores resolvam um determinado problema, é preciso que exista um algoritmo para ele.
- Ou seja, temos de saber se o problema é ou não computável.

Computabilidade: refere-se à existência ou não de um procedimento que resolve um determinado problema em um número finito de passos.

Computabilidade: refere-se à existência ou não de um procedimento que resolve um determinado problema em um número finito de passos.

Computabilidade: refere-se à existência ou não de um procedimento que resolve um determinado problema em um número finito de passos.

Não existe um algoritmo para decidir sobre a **computabilidade** de qualquer problema bem formulado.

Saber que um problema é computável é suficiente?

Complexidade

- Saber que um problema é computável é suficiente?
- É importante que o algoritmo termine, isto é, execute o número finito de passos, em um tempo razoável.

Livro Texto:

Uma introdução à teoria da computação. Michael Sipser

Critério de Avaliação:

Duas provas parciais (P1 e P2), uma prova de reposição (PR) e uma prova final (PF):

Média =
$$(P1 + P2)/2$$

- Se Média < 4, o/a aluno/a está reprovado/a;
- Se Média ≥7, aluno/a aprovado/a por média
- Se 4 ≤ Média< 7, o/a aluno/a segue para a prova final;
 - Se Mf=(Média+PF)/2 ≥ 5, aluno/a é aprovado(a), caso contrário é reprovado(a).

PR e PF incluem a matéria toda.

Datas Importantes

- Prova 1:
- Prova 2:
- Prova de reposição:
- Prova final:

Contato: liscustodio@ime.uerj.br

Classroom: t4wrx3b

Introdução aos Modelos Computacionais

Modelos Computacionais

Computadores reais são demasiado complicados para nos permitir estabelecer uma teoria matemática manuseável sobre eles diretamente. Ao invés, usamos um computador idealizado chamado um modelo computacional.

Autômatos finitos

- São bons modelos para computadores com uma quantidade de memória extremamente limitada.
- O que pode um computador fazer com uma memória tão pequena? Muitas coisas úteis! Na verdade, interagimos com tais computadores o tempo todo, pois eles residem no coração de vários dispositivos eletromecânicos.

Aplicações de Autômatos Finitos

Controlador de porta automática

Frequentemente encontradas em entradas e saídas de supermercados, portas automáticas abrem deslizando quando uma pessoa está se aproximando.

Uma porta automática tem um tapete na frente para detectar a presença de uma pessoa que está próxima a atravessar a passagem.

Um outro tapete está localizado atrás da passagem de modo que o controlador pode manter a porta aberta um tempo suficiente para que a pessoa atravesse toda a passagem e também de modo que a porta não atinja alguém que está atrás no momento que ela abre.

Aplicações de Autômatos Finitos

Controlador de comportamento de personagens secundários em um jogo de video-game

Considere o comportamento de um personagem secundário em um jogo.

- O estado inicial desse personagem é o estado "ocioso", e permanecerá neste estado até que o inimigo seja percebido.
- Ao encontrar o inimigo, o personagem irá perseguí-lo até que esteja próximo para atacá-lo.
- Durante o ataque, o personagem irá perder forças, dessa forma quando a "saúde" estiver baixa, ele abandonará o ataque, e irá descansar para se recuperar.