# Comparison of IC Implementation Technologies



#### **Outline**

- Full-Custom Design
- Cell-based Design
- Gate Array
- Structured ASIC
- FPLD



#### **Introduction to Integrated Circuits**

- *Integrated circuits* combine dozens (SSI) to millions (VLSI) of transistors into a single chip.
- The locations and connections of the transistors are defined by several *masks* in the *fabrication* process.



#### **IC Implementation Options**



### Full-Custom Layout Example



Intel 4004 ('71)

#### **Full-Custom Design**

- Designers determine and draw all device geometries.
- All mask layers are customized.
- E.g. microprocessor, memory
- Pros: complete design flexibility, high degree of optimization in performance and area.
- Cons: large amount of design effort and time, expensive to design and manufacture.
- For applications that require high volume, cost can be amortized over the high volume.

## How can we shorten the time from design to a physical IC?

#### M

#### **Cell-Based Design**

- Reuse!
- Large complex cells/blocks e.g. marcos, IPs.
- Small cells e.g. standard cells.



#### Standard Cell-Based Design Example



cell library





#### Standard-Cell-Based Design

- Use *predesigned*, *pretested* and *precharacterized* logic cells from standard-cell library as building blocks.
- Standard cells are of the same height.
- Cells are laid out in rows.
- Chip layout (placement and routing) are much easier than in full-custom design.
- All masks need to be customized to fabricate a new chip.
- Pros: save design time and money, reduce risk compared to full-custom ICs.
- Cons: somewhat less efficient in size and performance than full-custom ICs.



#### **Mask Programmable Gate-Array**



Source: NEC Corp.



#### **Mask Programmable Gate-Array**

- A gate-array is partly pre-fabricated.
- Identical base cells are pre-fabricated in the form of a 2-D array
- Wires between transistors inside the cells or across the cells are custom fabricated for each customer.
- So custom masks are made for wiring only.
- Pros: cost saving (fabrication cost of a large number of identical template wafers is amortized over different customers), shorter manufacture lead time.
- Cons: performance not as good as full-custom or standard-cell-based ICs.

#### **Structured ASIC**

- Like gate-array, an array of tiles is pre-fabricated.
- Unlike gate-array, the majority of the metal layers are also pre-fabricated to form local and global interconnect.
- Power, clock and test structures are predefined in most structured ASICs.
- Structured ASICs may also have "built-in" macros common for certain applications.
- Customize only upper metal layers for customers.

#### **Structured ASIC Example**







Figure 2: Structured ASIC Metal Utilization

#### Field Programmable Logic Device (FPLD)

- Off-the-shelf
- Contains programmable logic blocks + programmable interconnect network





#### Field Programmable Logic Device

- General-purpose chip for implementing logic circuitry.
- Logic cells and interconnect can be programmed by end-user to implement specific circuitry.
- Transistors and wires are already prefabricated on a PLD.
- Already packaged and fully tested.
- No need to create custom masks for each customer.
- Pros: low non-recurring-engineering cost (ideal for low-volume production), fast turnaround time.
- Cons: lower performance and larger chip size.



#### **IC Economics**

- Total cost = Variable cost per unit \* Volume + Fixed cost
- Fixed cost: independent of volume produced e.g. costs of design and simulation, masks, equipments, etc.
- Variable cost: dependent on volume e.g. cost of the parts, assembly costs, other manufacturing costs, testing costs, etc.

#### Ŋė.

#### Cost vs Design Volume Example



**Comparison of Technologies** 

|                       | Full-<br>custom | Standard cell-based | Gate<br>array             | FPLD              |  |  |  |
|-----------------------|-----------------|---------------------|---------------------------|-------------------|--|--|--|
| Cell size             | variable        | fixed<br>height     | fixed                     | fixed             |  |  |  |
| Cell type             | variable        | variable            | fixed                     | program-<br>mable |  |  |  |
| Cell placement        | variable        | in row              | fixed                     | fixed             |  |  |  |
| Inter-<br>connections | variable        | variable            | variable                  | program-<br>mable |  |  |  |
| Custom<br>layers      | all layers      | all<br>layers       | routing<br>layers<br>only | none              |  |  |  |



#### **Comparison of Technologies**

|                     | Full-<br>custom | Standard cell-based | Gate<br>array | FPLD |
|---------------------|-----------------|---------------------|---------------|------|
| Performance         | +++             | ++                  | +             | _    |
| Area                | +++             | ++                  | +             |      |
| High-volume cost    | ++              | ++                  | +             | +    |
| Low-volume cost     |                 |                     | +             | +++  |
| Fabrication time    |                 |                     | -             | +++  |
| Time to market      |                 |                     | ++            | +++  |
| Risk reduction      |                 |                     | -             | +++  |
| Design modification |                 |                     | -             | +++  |



#### **Summary**

- Different implementation options cater for different needs and concerns.
- IC design trend: going more regular to cope with increasing design complexity.
- Going more cell-based/array-based.