Chapter-8

Counter and Time Delays

8.1 COUNTER AND TIME DELAYS

Counters are used primarily to keep track of events; time delays are important in setting up reasonably accurate timing between two events.

COUNTER

A counter is designed simply by loading an appropriate number into one of the registers and using INR (for up-counter) or DCR (for down-counter) instructions. A loop is established to update the count.

TIME DELAY

The procedure used to design a specific delay is similar to that used to set up a counter. A register is loaded with a number, depending on the time delay required, and then the register is decremented until it reaches zero.

8.11 Time Delay Using One Register

<u>Label</u>	<u>Opcode</u>	<u>Operand</u>	<u>T-states</u>
LOOP:	MVI	C,FFH	7
	DCR	С	4
	JNZ	LOOP	10/7

An 8085—based microcomputer with 2 MHz clock frequency will execute the instruction MVI in $3.5~\mu s$ as follows:

Clock frequency of the system
$$f = 2 \text{ MHz}$$

Clock period T = $1/f = 1/2 \times 10^{-6} = 0.5 \mu \text{s}$
Time to execute MVI = 7 T-states x 0.5
= $3.5 \mu \text{s}$

The time delay in the loop T_L with 2 MHz clock frequency is calculated as

$$T_L = (T \times Loop T-states \times N_{10})$$

Where T_L = Time delay in the loop T = System clock period N_{10} = Decimal equivalent of the count loaded in the delay register

$$T_L = (0.5 \times 10^{-6} \times 14 \times 255)$$

= 1785 µs
 $\approx 1.8 \text{ ms}$

The T-states for JNZ instruction are 10/7. So the adjusted loop delay is

$$T_{LA} = T_{L} - (3 \text{ T-states x Clock period})$$

= 1785 µs - 1.5 µs = 1783.5 µs

Therefore, the total delay is

Total Delay = Time to execute instructions outside loop + Time to execute loop instructions

$$T_D = T_O + T_{LA}$$

= $(7 \times 0.5 \mu s) + 1783.5 \mu s = 1787 \mu s$
 $\approx 1.8 \text{ ms}$

The difference between the loop delay T_{L} and these calculations is only 2 μs and can be ignored in most cases.

8.12 <u>Time Delay Using a Register Pair</u>

Here the counter value can be a 16-bit number and maximum of FFFFH.

<u>Label</u>	<u>Opcode</u>	<u>Operand</u>	<u>T-states</u>
	LXI	B,2384H	10
LOOP:	DCX	В	6
	MOV	A,C	4
	ORA	В	4
	JNZ	LOOP	10/7

TIME DELAY

The loop includes 24 clock periods for execution. The decimal equivalent of counter value is

$$2384H = 9092_{10}$$

If the clock period of the system = $0.5 \mu s$, the delay in the loop T_L is

$$T_L = (T \times Loop T-states \times N_{10})$$

= $(0.5 \times 24 \times 9092_{10})$
 $\approx 109 \text{ ms (without adjusting for the last cycle)}$

Total Delay
$$T_D = 109 \text{ ms} + T_O$$

 $\approx 109 \text{ ms}$ (the instruction LXI adds only 5 µs)

8.13 Time Delay Using a Loop within a Loop Technique

<u>Label</u>	<u>Opcode</u>	<u>Operand</u>	<u>T-states</u>
LOOP2: LOOP1:	MVI MVI DCR JNZ DCR	B,38H C,FFH C LOOP1 B	7 7 4 10/7 4
	JNZ	LOOP2	10/7

DELAY CALCULATIONS

The delay in LOOP1 is $T_{L1} = 1783.5 \,\mu s$. The counter value of LOOP2 is 56_{10} (38H). Delay for the LOOP2 is calculated as follows:

$$T_{L2} = 56 (T_{L1} + 21 \text{ T-states x } 0.5 \text{ µs})$$

= 56 (1783.5 µs + 10.5 µs)
= 100.46 ms

8.3 ILLUSTRATIVE PROGRAM: ZERO-TO-NINE (MODULO TEN) COUNTER

PROBLEM STATEMENT

Write a program to count from 0 to 9 with a one-second delay between each count. At the count of 9, the counter should reset itself to 0 and repeat the sequence continuously. Assume the clock frequency of the microprocessor is 1 MHz.

Delay Calculations

```
Loop Delay T_L = 24 T-states x T x Count

1 second = 24 \times 1.0 \times 10^{-6} \times Count

Count = 1/(24 \times 10^{-6})

= 41666_{10}

= A2C2H
```


^{*}Enter 16-bit delay count in place of LO and HI, appropriate to the clock period in your system.

†Enter high-order address (page number) of your R/W memory.

FIGURE 8.7

Program and Flowchart for a Zero-to-Nine Counter