$\overline{3.1}$

- 6. (a) Let U and V
- 8. Let $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and let $\mathbf{v} \in \mathbb{R}^n$. Prove that $\mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k) = \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v})$ if and only if $\mathbf{v} \in \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$.

Define
$$A = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$$
 and $B = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v})$

- 9. Determine the intersection of the subspaces \mathcal{P}_1 and \mathcal{P}_2 in each case:
 - (b) $\mathcal{P}_1 = \operatorname{Span}((1, 2, 2), (0, 1, 1)), \mathcal{P}_2 = \operatorname{Span}((2, 1, 1), (1, 0, 0))$
 - (c) $\mathcal{P}_1 = \text{Span}((1,0,-1),(1,2,3)), \mathcal{P}_2 = \{\mathbf{x}: x_1 x_2 + x_3 = 0\}$
- 11. Suppose V and W are orthogonal subspaces of \mathbb{R}^n , i.e., $\mathbf{v} \cdot \mathbf{w} = 0$ for every $\mathbf{v} \in V$ and every $\mathbf{w} \in W$. Prove that $V \cap V^{\perp} = \{\mathbf{0}\}$
- 15. Let A be an $m \times n$ matrix. Let $V \subset \mathbb{R}^n$ and $W \subset \mathbb{R}^m$ be subspaces.
 - (a) Show that $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \in W\}$ is a subspace of \mathbb{R}^n .
 - (b) Show that $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x} \in V\}$ is a subspace of \mathbb{R}^m
- 16. Suppose A is a symmetric $n \times n$ matrix. Let $V \subset \mathbb{R}^n$ be a subspace with the property that $A\mathbf{x} \in V$ for every $\mathbf{x} \in V$.