Presenting Multiagent Challenges in Team Sports Analytics

David Radke, PhD UW '23

Senior Research Scientist dradke@blackhawks.com

University of Waterloo October 24, 2024

Hockey Strategy & Analytics (HSA)

Hockey Strategy & Analytics (HSA)

Stakeholders

<u>Leadership</u>

GM, AGMs, Advisors

Coaching Staffs

NHL, AHL, Skills Coaches

Player Development

Skills Coaches, PD Staff

Players

NHL, AHL, Reserve List

HSA

- Hockey Systems
- Hockey Strategy
- Data Science
- Research Science

Hockey Strategy & Analytics (HSA)

Stakeholders

Leadership

GM, AGMs, Advisors

Coaching Staffs

NHL, AHL, Skills Coaches

Player Development

Skills Coaches, PD Staff

<u>Players</u>

NHL, AHL, Reserve List

HSA

- Hockey Systems
- Hockey Strategy
- Data Science
- Research Science

13 total + interns!

Overview

Al and Games

Multiagent Challenges

Example Projects

Overview

Al and Games

Multiagent Challenges Example Projects

Reinforcement Learning

- Machine learning technique where agents take actions to maximize reward
- Temporal decision making, Markov Decision Processes
- Function approximation with neural networks

Multiagent Systems

- The study of multiple interacting intelligent agents within an environment
- Interconnectivity and many types of environments
- Relevant areas: Game Theory, Economics, and Marketplaces

Al's Relationship With Games

• Games are often used as yardsticks to benchmark progress

Al's Relationship With Games

• Games are often used as yardsticks to benchmark progress

Al's Relationship With Games

• Learning in simulated environments, sometimes sports related

Al in Sports

- Lots of computer vision problems
- Analyses formations and performance

BAYERN 1-0 HAMBURG

DA ZN

Overview

Al and Games

Multiagent Challenges Example Projects

Types of Games (Sports), Ellis [1983]

Striking games:

- Players strike objects into open spaces and place fielders strategically to prevent runs from being scored
- Baseball, Cricket

Invasion games:

- Teams intermingle and attempt to outscore the opponent by invading the opponent's territory
- Ice Hockey, Football (soccer), and Basketball

Analytics in Baseball, a Striking Game

- Sabermetrics (i.e., Moneyball [James, 1985; Lewis, 2003])
 - Using empirical statistics as a basis for roster management
 - On base %, slugging percentage, and batting average

Types of Games (Sports), Ellis [1983]

Striking games:

- Players strike objects into open spaces and place fielders strategically to prevent runs from being scored
- Baseball, Cricket

Invasion games:

- Teams intermingle and attempt to outscore the opponent by invading the opponent's territory
- Ice Hockey, Football (soccer), and Basketball

Why Invasion Games Are Different

- More interaction, coordination, and teamwork
- Data is complex, more actions, more strategic freedom
- Not just who is good, but good together and in what scenarios

Multiagent Systems

Invasion Games

Statistics

Striking Games

Multiagent Systems

Invasion Games

Statistics

Striking Games

Why Multiagent Systems and Invasion Games?

- Enclosed environments governed by rules
- Examples of cooperation and coordination (both good and bad!)
- Team structures and hierarchies
- Multiple timescales (i.e., coaching vs. management)
- Marketplaces
- DATA
 - Event data
 - Tracking data

Example Play

Event Data

- Shots, passes, carries, possession gain, etc...
 - (x, y) coordinates on surface, players involved, time of game, etc...
- ~3500 events per-NHL game (2022-2023)

Tracking Data

- Position data for all players (x, y, z), multiple times per-second
- Annotated with event data
- Hardware or computer vision systems

Coaching – Short-term

- Team Arrangement
- Player and Group Valuation
- Opponent Prediction and Strategy

<u>Management – Long-term</u>

- Roster Analysis
- Roster Construction
- Economic Strategies

<u>Coaching – Short-term</u>

- Team Arrangement
- Player and Group Valuation
- Opponent Prediction and Strategy

<u>Management – Long-term</u>

- Roster Analysis
- Roster Construction
- Economic Strategies

<u>Coaching – Short-term</u>

- Team Arrangement
- Player and Group Valuation
- Opponent Prediction and Strategy

<u>Management – Long-term</u>

- Roster Analysis
- Roster Construction
- Economic Strategies

Coaching – Short Term

- Timescale: Before/within match
- Common problems:

Which players play well together?

Coaching – Short Term

- Timescale: Before/within match
- Common problems:

Which players play well together?

How much do players/groups contribute?

Coaching – Short Term

- Timescale: Before/within match
- Common problems:

Which players play well together?

How much do players/groups contribute?

Devise
(and update)
strategies to
beat opponents

Coaching – Related Multiagent Topics

Devise (and update) strategies to beat opponents

Coaching – Related Multiagent Topics

Coaching – Related Multiagent Topics

Coaching - Short-term

- Team Arrangement
- Player and Group Valuation
- Opponent Prediction and Strategy

<u>Management – Long-term</u>

- Roster Analysis
- Roster Construction
- Economic Strategies

Management – Long Term

- Timescale: Across an entire season/multiple seasons
- Common problems:

Analyze a roster and identify areas for improvement

Management – Long Term

- Timescale: Across an entire season/multiple seasons
- Common problems:

Analyze a roster and identify areas for improvement

Construct team through drafting, signing, and trading

Management – Long Term

- Timescale: Across an entire season/multiple seasons
- Common problems:

Analyze a roster and identify areas for improvement

Construct team through drafting, signing, and trading

Operate within economic constraints

Management – Related Multiagent Topics

Management – Related Multiagent Topics

Management – Related Multiagent Topics

Overview

Al and Games

Multiagent Challenges

Example Projects

Passing Lanes in Ice Hockey

- Goal: Measure the available space between a passer p and receiver r
- Insight into players' risk, skill level, and decisions
- Euclidean Geometry

Real Game Scenario

Real Game Video

Real Game Video

Learning Value Functions in Ice Hockey

- Goal: Learn the value of game states from offline event data
- Challenge: Events come from two adversarial teams/agents (zero-sum)

Q-Values

Policy

Learning Value Functions in Ice Hockey

Overview

Al and Games

Multiagent Challenges Example Projects

Multiagent Systems for Team Sports Analytics

- No shortage of multiagent problems
- Advancements will improve both domains
- Real data for cooperation, development, and financial transactions
- Multi-level planning required for success

Multiagent Systems for Team Sports Analytics

- No shortage of multiagent problems
- Advancements will improve both domains
- Real data for cooperation, development, and financial transactions
- Multi-level planning required for success
- Rewards for success!

Summer 2025 Internships (3 total)

- Software Engineering Intern
 - Supports Hockey Strategy group (salary cap/roster management)
- Data Science Intern
 - Supports Data Science group
- Research Science Intern
 - Supports Research Science group

Research Interests

- Value-based RL in sports
- Policy evaluation for groups
- Player/Agent Types
- Team formation
- Empirical Game Theory

David Radke, PhD dradke@blackhawks.com

