Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas and François Fleuret

ICML, July 2020

https://linear-transformers.com/

Funded by FNSNF

Transformers are performant

Transformer models have demonstrated impressive performance on

- NLP (Vaswani et al., 2017; Devlin et al., 2019; Dai et al., 2019; Yang et al., 2019; Radford et al., 2019)
 - Neural Machine Translation
 - Question Answering
 - ► Textual Entailment

Transformers are performant

Transformer models have demonstrated impressive performance on

- NLP (Vaswani et al., 2017; Devlin et al., 2019; Dai et al., 2019; Yang et al., 2019; Radford et al., 2019)
 - Neural Machine Translation
 - Question Answering
 - Textual Entailment
- Speech & audio processing (Sperber et al., 2018)
- Autoregressive image generation and general computer vision (Child et al., 2019; Parmar et al., 2019; Carion et al., 2020; Cordonnier et al., 2020)

Transformers are hard to scale

Self-attention **computation and memory scales** as $\mathcal{O}(N^2)$ with respect to the sequence length.

A single self-attention layer in an NVIDIA GTX 1080 Ti

Our contributions in a nutshell

A transformer model with **linear complexity** both for memory and computation during training

Our contributions in a nutshell

- ► A transformer model with **linear complexity** both for memory and computation during training
- ► A transformer model with linear computational complexity and constant memory for autoregressive inference

Our contributions in a nutshell

- ► A transformer model with **linear complexity** both for memory and computation during training
- ► A transformer model with linear computational complexity and constant memory for autoregressive inference
- Unrayel the relation between transformers and RNNs.

Definition of a transformer

Definition of a transformer

Definition of a transformer

Self-Attention

The commonly used attention mechanism is the scaled dot product attention

$$Q = XW_Q$$
 $K = XW_K$
 $V = XW_V$
 $A_I(X) = V' = \operatorname{softmax}\left(rac{QK^T}{\sqrt{D}}
ight)V$

Self-Attention

The commonly used attention mechanism is the scaled dot product attention

$$Q = XW_Q$$
 $K = XW_K$
 $V = XW_V$
 $A_I(X) = V' = \operatorname{softmax}\left(rac{QK^T}{\sqrt{D}}
ight)V$

Self-Attention

The commonly used attention mechanism is the scaled dot product attention

$$Q = XW_Q$$
 $K = XW_K$
 $V = XW_V$
 $A_I(X) = V' = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{D}}\right)V$
 $Quadratic\ complexity$

Linear Attention

What if we write the self-attention using an arbitrary similarity score?

$$V_{i}' = \frac{\sum_{j=1}^{N} sim(Q_{i}, K_{j}) V_{j}}{\sum_{j=1}^{N} sim(Q_{i}, K_{j})}$$

Linear Attention

What if this similarity is a kernel, namely $sim(a, b) = \phi(a)^T \phi(b)$?

$$V_i' = \frac{\sum_{j=1}^{N} \operatorname{sim}\left(Q_i, K_j\right) V_j}{\sum_{j=1}^{N} \operatorname{sim}\left(Q_i, K_j\right)}$$

$$= \frac{\sum_{j=1}^{N} \phi\left(Q_i\right)^T \phi\left(K_j\right) V_j}{\sum_{j=1}^{N} \phi\left(Q_i\right)^T \phi\left(K_j\right)}$$
Kernelization

Linear Attention

Matrix products are associative which makes the attention computation $\mathcal{O}(N)$ with respect to the sequence length.

$$V_{i}' = \frac{\sum_{j=1}^{N} \operatorname{sim}(Q_{i}, K_{j}) V_{j}}{\sum_{j=1}^{N} \operatorname{sim}(Q_{i}, K_{j})}$$

$$= \frac{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j})}$$

$$= \frac{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$
Associativity property
$$= \frac{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$

Causal masking is used to efficiently train autoregressive transformers.

Causal masking is used to efficiently train autoregressive transformers.

Non-autoregressive

$$V_i' = \frac{\sum_{j=1}^{\mathbf{N}} \operatorname{sim}(Q_i, K_j) V_j}{\sum_{j=1}^{\mathbf{N}} \operatorname{sim}(Q_i, K_j)}$$

Autoregressive

$$V_{i}' = \frac{\sum_{j=1}^{1} sim(Q_{i}, K_{j}) V_{j}}{\sum_{j=1}^{1} sim(Q_{i}, K_{j})}$$

Causal masking is used to efficiently train autoregressive transformers.

Non-autoregressive

$$V_i' = \frac{\phi(Q_i)^T \sum_{j=1}^N \phi(K_j) V_j^T}{\phi(Q_i)^T \sum_{j=1}^N \phi(K_j)}$$

Autoregressive

$$V'_{i} = \frac{\phi(Q_{i})^{T} \sum_{j=1}^{i} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{i} \phi(K_{j})}$$

Causal masking is used to efficiently train autoregressive transformers.

Non-autoregressive

$$V_i' = rac{\phi\left(Q_i
ight)^T \overbrace{\sum_{j=1}^N \phi\left(K_j
ight) V_j^T}^S}{\phi\left(Q_i
ight)^T \underbrace{\sum_{j=1}^N \phi\left(K_j
ight)}_Z}$$

Autoregressive

$$V_i' = rac{\phi\left(Q_i
ight)^T \overbrace{\sum_{j=1}^i \phi\left(K_j
ight) V_j^T}^{S_i}}{\phi\left(Q_i
ight)^T \underbrace{\sum_{j=1}^i \phi\left(K_j
ight)}_{Z_i}}$$

Causal masking is used to efficiently train autoregressive transformers.

Non-autoregressive

$V_{i}' = \frac{\phi\left(Q_{i}\right)^{T} \overbrace{\sum_{j=1}^{N} \phi\left(K_{j}\right) V_{j}^{T}}^{S}}{\phi\left(Q_{i}\right)^{T} \underbrace{\sum_{j=1}^{N} \phi\left(K_{j}\right)}_{Z}}$

Autoregressive

$$V_i' = \frac{\phi\left(Q_i\right)^T \overbrace{\sum_{j=1}^i \phi\left(K_j\right) V_j^T}^{S_i}}{\phi\left(Q_i\right)^T \underbrace{\sum_{j=1}^i \phi\left(K_j\right)}^{S_i}}_{Z_i}$$

Naive computation of S_i and Z_i results in quadratic complexity.

Autoregressive transformers can be written as a function that receives an input x_i , modifies the internal state $\{s_{i-1}, z_{i-1}\}$ and predicts an output y_i .

Autoregressive transformers can be written as a function that receives an input x_i , modifies the internal state $\{s_{i-1}, z_{i-1}\}$ and predicts an output y_i .

Autoregressive transformers can be written as a function that **receives an input** x_i , modifies the internal state $\{s_{i-1}, z_{i-1}\}$ and predicts an output y_i .

Autoregressive transformers can be written as a function that **receives an input** x_i , **modifies the internal state** $\{s_{i-1}, z_{i-1}\}$ and **predicts an output** y_i .

Autoregressive inference with linear complexity and constant memory.

Practical implications

Our theoretical analysis holds for all transformers even when using infinite dimensional feature maps

Practical implications

- Our theoretical analysis holds for all transformers even when using infinite dimensional feature maps
- ▶ We need a simple finite dimensional feature map to speed up computation

Practical implications

- Our theoretical analysis holds for all transformers even when using infinite dimensional feature maps
- ▶ We need a simple **finite dimensional feature map** to speed up computation
- We derive the gradients as cumulative sums which allows for a significant speed-up

Experimental setup

Baselines

- ► Softmax transformer (Vaswani et al., 2017)
- LSH attention from Reformer (Kitaev et al., 2020)

Experiments

- Artificial benchmark for computational and memory requirements
- Autoregressive image generation on MNIST and CIFAR-10
- Automatic speech recognition on Wall Street Journal

Experimental setup

Baselines

- ► Softmax transformer (Vaswani et al., 2017)
- LSH attention from Reformer (Kitaev et al., 2020)

Experiments

- Artificial benchmark for computational and memory requirements
- Autoregressive image generation on MNIST and CIFAR-10
- Automatic speech recognition on Wall Street Journal

Experimental setup

Baselines

- ► Softmax transformer (Vaswani et al., 2017)
- LSH attention from Reformer (Kitaev et al., 2020)

Experiments

- Artificial benchmark for computational and memory requirements
- Autoregressive image generation on MNIST and CIFAR-10
- Automatic speech recognition on Wall Street Journal

Benchmark

Benchmark

Autoregressive image generation

Unconditional samples after 250 epochs on MNIST

Ours (0.644 bpd)
7 5 3 5 7 3 5 6 7 3

Softmax (0.621 bpd)
5 2 9 4 7 3 7 7 7

LSH-1 (0.745 bpd)

TSH-4 (0.676 bpd)

Unconditional samples after 1 GPU week on CIFAR-10

Autoregressive image generation

Unconditional samples after 250 epochs on MNIST

Ours (0.644 bpd)
7 5 3 5 7 3 5 6 2 3

Softmax (0.621 bpd)
5 2 9 4 7 3 7 7 7

LSH-1 (0.745 bpd)

TSH-4 (0.676 bpd)

Unconditional samples after 1 GPU week on CIFAR-10

Autoregressive image generation

Unconditional samples after 250 epochs on MNIST

Ours (0.644 bpd)
7 5 3 5 7 3 5 6 2 3

Softmax (0.621 bpd)
5 2 9 4 7 3 7 7 7

LSH-1 (0.745 bpd)

TSH-4 (0.676 bpd)

Unconditional samples after 1 GPU week on CIFAR-10

Autoregressive image generation

Autoregressive image generation

Autoregressive image generation

Error rate relative to softmax

Higher is better

Error rate relative to softmax

Higher is better

Error rate relative to softmax

Higher is better

Error rate relative to softmax

Higher is better

- Kernel feature maps and matrix associativity yield an attention with linear complexity.
- Computing the key value matrix as a cumulative sum extends our efficient attention computation to the autoregressive case
- ► Using the RNN formulation to perform autoregressive inference requires **constant memory** and is **many times faster**

- Kernel feature maps and matrix associativity yield an attention with linear complexity.
- Computing the key value matrix as a cumulative sum extends our efficient attention computation to the autoregressive case
- ► Using the RNN formulation to perform autoregressive inference requires **constant memory** and is **many times faster**

- Kernel feature maps and matrix associativity yield an attention with linear complexity.
- Computing the key value matrix as a cumulative sum extends our efficient attention computation to the autoregressive case
- ► Using the RNN formulation to perform autoregressive inference requires **constant memory** and is **many times faster**

- Kernel feature maps and matrix associativity yield an attention with linear complexity.
- Computing the key value matrix as a cumulative sum extends our efficient attention computation to the autoregressive case
- ► Using the RNN formulation to perform autoregressive inference requires **constant memory** and is **many times faster**

Thank you for your time!

Check out the code at https://linear-transformers.com/.

```
from fast transformers.builders import TransformerEncoderBuilder
linear_bert = TransformerEncoderBuilder.from_kwargs(
    n_layers=12,
    n heads=12.
    query_dimensions=64,
    value dimensions=64.
    feed_forward_dimensions=3072,
    attention_type="linear",
).get()
# dummy 4000 long sequence
y = linear_bert(torch.rand(10, 4000, 768))
```

References I

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NIPS*, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length context. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 2978–2988, Florence, Italy, July 2019. Association for Computational Linguistics.

References II

- Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding. *CoRR*, abs/1906.08237, 2019.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAl Blog*, 1(8):9, 2019.
- Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stker, and Alex Waibel. Self-attentional acoustic models. In 19th Annual Conference of the International Speech Communication Association (InterSpeech 2018), Hyderabad, India, September 2018.
- Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers. *arXiv preprint arXiv:1904.10509*, 2019.

References III

- Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-attention in vision models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 68–80. Curran Associates, Inc., 2019.
- Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872, 2020.
- Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-attention and convolutional layers. In *International Conference on Learning Representations*, 2020.
- Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv preprint arXiv:2001.04451, 2020.

