

Assessment Report

on

"Problem Statement"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

Artificial Intelligence and Machine Learning

By

Radhey Pal (202401100400149)

Under the supervision of

"Abhishek Shukla"

KIET Group of Institutions, Ghaziabad 18/04/2025

INTRODUCTION

- Definition: Customer segmentation in e-commerce refers to dividing customers into distinct groups based on shared characteristics, such as purchasing habits and browsing behavior.
- Purpose: The goal of customer segmentation is to understand customer preferences and tailor marketing strategies, product offerings, and customer interactions to meet the specific needs of each segment.
- 3. **Importance**: Proper segmentation enhances personalized marketing, improves customer satisfaction, boosts conversion rates, and increases customer loyalty.
- 4. **Data-Driven Approach**: E-commerce businesses collect vast amounts of customer data, including purchase history, browsing patterns, and engagement metrics, which are analyzed to identify key customer clusters.
- 5. **Business Impact**: By identifying and targeting specific customer segments, businesses can improve their overall marketing efficiency.

Methodology

- **1. Data Collection**: Gather customer data including purchasing habits (e.g., frequency, spend) and browsing behavior (e.g., pages visited, search keywords).
- **2. Data Preprocessing**: Clean the data by handling missing values and standardizing numerical features to ensure consistency across different scales.
- **3. Feature Engineering**: Derive relevant features such as recency, frequency, and monetary value (RFM), and browsing metrics like time spent on site.
- **4. Clustering**: Apply K-Means or MiniBatchKMeans clustering algorithms to segment customers based on the derived features.
- **5. Evaluation**: Use the Elbow Method and Silhouette Score to determine the optimal number of clusters and assess the quality of the segmentation.

CODE

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import MiniBatchKMeans # MiniBatchKMeans instead of KMeans

from sklearn.metrics import silhouette_score

import matplotlib.pyplot as plt

import seaborn as sns

from google.colab import files

```
# Upload file
```

uploaded = files.upload()

Load dataset

df = pd.read_csv("9. Customer Segmentation in E-commerce.csv")

Keep only numeric columns

df = df.select_dtypes(include=['float64', 'int64'])

Drop missing values

df.dropna(inplace=True)

Standardize data

scaler = StandardScaler()

scaled = scaler.fit_transform(df)

Elbow method + Silhouette Scores

inertia = []

```
silhouette_scores = []
k_range = range(2, 6) # Reduced k range for faster results
for k in k_range:
  kmeans = MiniBatchKMeans(n_clusters=k, random_state=42, batch_size=100) # Use
MiniBatchKMeans
  labels = kmeans.fit_predict(scaled)
  inertia.append(kmeans.inertia_)
  silhouette_scores.append(silhouette_score(scaled, labels))
# Plot Elbow Method
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
plt.plot(k_range, inertia, '-o')
plt.title('Elbow Method')
plt.xlabel('k')
plt.ylabel('Inertia')
# Plot Silhouette Scores (Accuracy-like)
plt.subplot(1,2,2)
plt.plot(k_range, silhouette_scores, '-o', color='green')
plt.title('Silhouette Scores')
plt.xlabel('k')
plt.ylabel('Score')
plt.tight_layout()
plt.show()
```

Use best k based on silhouette (or manually choose)

```
best_k = k_range[silhouette_scores.index(max(silhouette_scores))]

print(f"  Best k based on silhouette score: {best_k}")

# Fit KMeans with best k

kmeans = MiniBatchKMeans(n_clusters=best_k, random_state=42, batch_size=100) #

Use MiniBatchKMeans

df['Cluster'] = kmeans.fit_predict(scaled)

# Optional: Plot just the cluster centers instead of pairplot

centroids = pd.DataFrame(scaler.inverse_transform(kmeans.cluster_centers_),

columns=df.columns)

print("  Cluster Centers:\n", centroids)

# Optional: show silhouette score

print(f"  Silhouette Score for k={best_k}: {max(silhouette_scores):.4f}")
```

OUTPUT

REFRENCE

- UCI Machine Learning Repository: Online Retail
 Dataset
- 2. scikit-learn documentation
- **3.** "Customer Segmentation Using RFM and KMeans" Kaggle Notebooks
- **4.** Tan, P.-N., Steinbach, M., & Kumar, V. *Introduction to Data Mining*