

Análise de dados de amplicons (ITS-Fungos) a partir de sequenciamento em larga escala

Autores:

Doutorando Victor Borin Centurion Biruel Doutoranda MsC. Kelly Hidalgo Martinez

IDENTIFICAÇÃO DE FUNGOS

- Principalmente baseada em características fenotípicas e fisiológicas.
- Só pessoal com alta experiencia é capaz de identificar corretamente um fungo baseado na morfologia
- Identificação passo a passo com chaves taxonômicas
- Foram desenvolvidos métodos moleculares como FISH, hibridação de DNA, DGGE, T-RFLP e sequenciamento de DNA.
- Atualmente o <u>DNA Barcoding</u> é considerado o mais acurado e rápido

DNA BARCODING

- Sequencia curta
- Deve ser suficientemente variável ao nível interespecífico (diferentes espécies), mas pouco variável ao nível intraespecífico (membros da mesma espécie)
- Padronizada
- Aproximadamente 700 bp
- Padrão único para identificar diferentes espécies
- É acurado, rápido, universalmente accessível
- Não precisa ser um experto taxonomista

- Região intergênica do DNA ribossômico
- É a região mais sequenciada para identificar taxonomia de fungos
- É uma região não codificante
- Alto grau de variação comparado com as SSU e LSU
- Sequencias disponivéis em bases de dados públicos tem aumentado

- Organizados em unidades repetitivas, multiplás cópias ao longo do genoma
- Inicialmente são transcritos pela RNA pol I, mas depois sofrem edição e são eliminados (não codificantes)
- ITS em fungos aproximadamente 400 800 bp

Primers

- Essenciais para o sucesso do barcode
- Devem ser tão universais para abranger um grande grupo de taxas, mas ao mesmo tempo tem que produzir aplicons que são suficientemente variados para distinguir entre espécies muito relacionadas
- Tem primers especificos para fungos

Primers

- Os mais usados
- Tem reportes de inespecificidad em amostras ambientais
- Melhor para Ascomycetes que para Basidiomycetes (ITS2)
- Resolve com primers só para a região ITS1 (Bellemain et al., 2010)
- Combinações de primers é sugerido.

Primers

- Os mais usados
- Tem reportes de inespecificidad em amostras ambientais
- Melhor para Ascomycetes que para Basidiomycetes (ITS2)
- Resolve com primers só para a região ITS1 (Bellemain et al., 2010)
- Combinações de primers é sugerido.

Workflow Preparação de **Amostras** → Extração DNA bibliotecas Sequenciamento Análises bioinformático

Correlação com variáveis físico-químicas, ambientais (CCA)

Eliminação de barcodes e primers

Sequencias para diferenciar entre amostras

Eliminação de barcodes e primers

Controle de qualidade

Q phred: Está definido pela probabilidade que uma base este corretamente nomeada, baseado em uma série de preditores calibrados com dados reais

Eliminação de barcodes e primers

→ Controle de qualidade

Filtragem

Phred = 20 = 99% Phred = 30 = 99,9%

Tipo de arquivos

Fasta = .fa, .fasta, .fna

Tipo de arquivos

FastaQ = .fq, .fastq

sequence

- Line 1 the name, starts with @
- Line 2 the sequence, starts at new line
- Line 3 some other stuff, optional, starts with +
- Line 4 the quality scores, starts at new line

base = T

score = F = 37

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0	000	32	20	40	[space]	64	40	100	@	96	60	140	
1	1	1		33	21	41	1	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	C
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	
10	Α	12		42	2A	52	*	74	4A	112		106	6A	152	i
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54		76	4C	114	L	108	6C	154	
13	D	15		45	2D	55		77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Υ	121	79	171	У
26	1A	32		58	3A	72		90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73		91	5B	133	1	123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	ì	124	7C	174	ì
29	1D	35		61	3D	75		93	5D	135	i	125	7D	175	1
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137		127	7F	177	
31	41	37		1 03	31			33	51	137		127	7.	1,,	

Hibridos formados entre duas sequências de dois espécies diferentes

Clusterização: OTU (qiime1) vs ASV (qiime2)

Alfa e beta diversidade

Composição da comunidade

Análises Ordenação (PCoA, PCA, NMDS)

Correlação com variáveis físico-químicas, ambientais (CCA)

Afiliação taxonômica

Classificação usando base da dados

Alfa e beta diversidade

Composição da comunidade

Análises Ordenação (PCoA, PCA, NMDS)

Correlação com variáveis físico-químicas, ambientais (CCA)

Análises

Alfa e beta diversidade

Composição da comunidade

Análises Ordenação (PCoA, PCA, NMDS)

Correlação com variavéis físico-químicas, ambientais (CCA)

Alfa diversidade: Índices de diversidade (Shannon, Simpson, Dominância) e estimadores de riqueza (Chao1, ACE, espécies observadas)

Beta diversidade: Índices de similaridade
Bray-Curtis e Jaccard
Unifrac (distâncias filogenéticas)

Tipos de arquivos em Qiime2

- qza (artefato): contém dados e metadados. Os metadados descrevos dados, como tipo, formato e como foram gerados (provenance). Pode ser arquivo de entrada o saída.
- qzv (visualização): contém metadados similares aos artefatos, incluindo informações de proveniência. São saídas terminais de uma análise por exemplo uma tabela com resultados estatísticos, uma visualização interativa, gráficos.
 Não podem ser usados como entradas para outras análises no qiime2

Quantitative Insights Into Microbial Ecology

Primer comando

git clone https://github.com/khidalgo85/qiime2.git

- ✓ Analysis fungal ITS amplicon from Illumina sequencing by qiime2.html (*Pipeline* detalhado)
- ✓ workflow_its_qiime2.pdf (*Pipeline* em esquema)
- ✓ summary_stats.xlsx (template em excel para seguimento do número de reads em cada etapa)
- ✓treinamento_its.pdf (estes slides)