

MBA⁺

ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

MODELOS DE MACHINE LEARNING COM R

Prof. Elthon Manhas de Freitas elthon@usp.br

2018

Como funciona a predição

$$f(\circ) = \langle$$

Função de predição

Matriz de confusão

Será visto com detalhes em Machine Learning / Deep Learning

Acurácia

<u>Total de acertos</u> <u>População</u>

Sensibilidade (Precisão)

Acertos Positivos
Total de Positivos

- Acertos Negativos
Total de Negativos

Eficiência

__ Sensibilidade+Especificidade

2

Recall

Acertos Positivos

Acertos Positivos+Falso Negativo

Técnicas e algoritmos de predição

Pacote Caret

The caret package (short for <u>C</u>lassification <u>A</u>nd <u>REgression <u>T</u>raining) is a set of functions that attempt to streamline the process for creating predictive models. The package contains tools for:

237 modelos (jun/2018)</u>

- data splitting
- pre-processing
- feature selection
- model tuning using resampling
- variable importance estimation
 - http://topepo.github.io/caret/index.html
 - http://cran.r-project.org/web/packages/caret/index.html

Regressão linear com PCA

- Vamos continuar com o dadaset spam visto há pouco
- Etapas para a modelagem de uma predição:
 - Definir entradas
 - (Feature Engineering)
 - Definir saída(s)
 - Definir processamento
 - Avaliação
- Entrada:
 - PCA
 - Saída: Spam ou Not-Spam
 - Processamento: Regressão linear
 - Avaliação: Matriz de confusão

THE MNIST DATABASE (Exploração)

http://yann.lecun.com/exdb/mnist/

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 19

28 x 28 = 784

THE MNIST DATABASE (Exploração)

- Carregar o dataset: mnist.RData
- Explorar o dataset
 - Função de consulta:

```
display number <- function(x = NA, dataset = train){
  if (is.na(x)) \{x < -sample(seq len(dataset$n), size = 1)\}
  image ( matrix ( datasetx[x, ] , ncol = 28),
         axes = F, col= gray(255:1/255))
 box()
  title( paste0(x, ':', dataset$y[x]) )
#Exemplos:
display number()
display number (x=3189)
display number(dataset = test)
display number (dataset = test, x=3189)
```

THE MNIST DATABASE (Predição)

- O professor já preparou o dataset ©
- Faremos:

Bônus!! Predição simples

- Notebook com exemplo de predição de salário em função da idade
 - Utilizando regressão linear simples: lm

- Utiliza composição de características
 - (feature engineering)

PCA – Principal Component Analysis

PCA – Principal Component Analysis

 A técnica mais popular de seleção de características

Inventado em 1901 por Karl Pearson

Calculado por Autovetores e Autovalores de uma matriz de covariância

Muito usado em Computer Vision

PCA de uma distribuição Gaussiana multivariada centrada em (1,3) com um desvio padrão de 3 aproximadamente na direção (0.878, 0.478) e desvio padrão 1 na direção ortogonal. Os vetores na figura são os **autovetores** da **matriz de covariância** multiplicados pela raiz quadrada do **autovalor** correspondente, e transladados de forma a iniciarem na média.

Fonte: Wikipedia

https://pt.wikipedia.org/wiki/An%C3%A1lise_de_componentes_principais

PCA no R

Consultar Rmarkdown de PCA

Como o autovetor consegue representar diversos valores

rosto <- read.csv("data/elthon.csv", header = FALSE) %>% as.matrix()

Como a imagem é 32x32 teremos:

32 linhas representando as observações

32 colunas representando as características

Criando o modelo PCA

Exibir a imagem

```
rosto <- read.csv("data/elthon.csv", header = FALSE) %>% as.matrix()
cinzas = grey(seq(0, 1, length = 256))
image( rosto )
image( rosto, col = cinzas )
```

Extrair as principais características

Quantos auto-vetores teremos?

```
pca.rosto <- prcomp( rosto, scale. = TRUE )</pre>
```

Cada autovetor fica armazenado em uma coluna do atributo rotarion do modelo (ex.: pca.rosto\$rotation)

Restaurando os dados originais

3 dimensões

5 dimensões

15 dimensões

Análise da quantidade de vetores

Um alternativa ao PCA → SVD

singular value decomposition

PCA

 As principais características são extraídas e mantidas em autovetores complementares

SVD

- mantém todos os vetores e valores originais para uma extração perfeita
- Necessita de um vetor complementar para armazenar as perdas (erros)

Código em R-Mark, apenas demonstração

PCA na Prática!

Carregar o dataset spam

```
library(caret)
library(kernlab)
data(spam)
```

- A coluna type (coluna 58) possui o tipo (é ou não spam)
- Identificar as colunas com correlação acima de 80%
- Criar um mini-dataset com duas colunas que serão comprimidas
- Criar um modelo de compressão com a função preomp
- Plotar cada coluna do modelo criado

IRIS Dataset

setosa versicolor virginica

Iris Versicolor

Iris Setosa

Iris Virginica

Árvores de decisão

Processo da árvore de decisão ID3

Árvores de decisão para classificação

- iris.modelo <- tree(data = iris, formula = Species ~ Sepal.Width + Petal.Width)
- summary(iris.modelo)
- plot(iris.modelo)
- text(iris.modelo)

Árvores de decisão serão vistas com mais profundidade nas aulas de estatística.

Nosso objetivo: RANDOM FORESTS

Exercício

- Fazer uma árvore de decisão para o dataset iris utilizando todos os atributos disponíveis.
 - O resultado melhora ou piora?
 - É um algoritmo determinístico?

- Precisa de normalização?
 - O que é normalização?

Random Forest

Prática

- Ver R Markdown (de classificação)
- Usar o random forest para regressão! Ohhhh

Dataset MASS::Boston

Campo a descobrir: medv (média de venda)

 Copyright © **2018**Prof. Elthon Manhas de Freitas

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).