Matricule:

Université Laval Professeur: Leslie Rusch

Mini-test 3

Mardi le 21 novembre 1995; Durée: 14h40 à 15h20 Aucune documentation permise; aucune calculatrice permise

Problème 1 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

Aucun crédit partiel.

b)
$$H(j\omega) = \frac{1}{3+j\omega}$$
 réponse à $\cos 3t = \frac{1}{3\sqrt{2}}\cos(3t-\frac{\pi}{4})$

$$U(t) \stackrel{R=1}{\longleftarrow} C=1 \stackrel{(1-e^{-t})U(t)}{\longleftarrow} \qquad \Longrightarrow \qquad \delta(t) \stackrel{R=1}{\longleftarrow} C=1 \stackrel{e^{-t}U(t)}{\longleftarrow}$$

Nom:

Université Laval Professeur: Leslie Rusch

Problème 2 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (C'est aussi possible que aucun énoncé est vrai...)

Aucun crédit partiel.

a)
$$x(t)*\delta(t-t_0)=x(t)$$

b)
$$\mathscr{F}^{-1}\left\{\frac{e^{-j\omega t_0}}{\beta+j\omega}\right\} = e^{-\beta t}U(t)*\delta(t-t_0)$$

c)
$$\int_{-\infty}^{\infty} \operatorname{sgn}(t-\tau) e^{-\tau} U(\tau) d\tau = \begin{cases} -\int_{0}^{\infty} e^{-\tau} d\tau & t < 0 \\ \int_{0}^{t} e^{-\tau} d\tau & t > 0 \end{cases}$$

Université Laval Professeur: Leslie Rusch

Problème 3 (3 points sur 5)

a) 1.5 points

Quelles sont les *trois* régions de *t* pour lesquelles l'expression analytique de la convolution a des équations différentes?

b) 1.5 points

Quelles sont les expressions analytiques de la convolution dans ces trois régions?

Nom: Matricule:

• Voici une table de transformées qui peuvent être utiles.

f(t)	$F(\omega)$
U(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\overline{\operatorname{Rect}\!\!\left(rac{t}{ au} ight)}$	$\tau Sa\left(\frac{\omega \tau}{2}\right)$
sgn(t)	$\frac{2}{j\omega}$
1	$2\pi\delta(\omega)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$
$e^{-\beta t}U(t)$	$\frac{1}{\beta + j\omega}$