Proj1markdown

Jared Yu

November 13, 2017

```
#set working directory to where the file can be found
setwd("C:/Users/jyqq9/Desktop/STA 108/Project 1")
#read the data file and place in a variable
mydata = read.table("UN.txt", header = T) #header=F if no first row.
#Display some of the data
head(mydata)
##
        Locality Fertility PPgdp
## 1 Afghanistan
                      6.80
                               98
## 2
         Albania
                      2.28 1317
## 3
         Algeria
                      2.80 1784
## 4
                      7.20
                              739
          Angola
## 5
       Argentina
                      2.44
                             7163
## 6
       Australia
                      1.70 18788
#Display all of the data
mydata
##
                      Locality Fertility PPgdp
## 1
                  Afghanistan
                                    6.80
                                             98
## 2
                      Albania
                                    2.28 1317
## 3
                      Algeria
                                    2.80 1784
## 4
                        Angola
                                    7.20
                                           739
## 5
                                    2.44 7163
                    Argentina
## 6
                    Australia
                                    1.70 18788
                      Austria
## 7
                                    1.28 23260
## 8
                                    2.10
                   Azerbaijan
                                           695
## 9
                       Bahamas
                                    2.29 14856
## 10
                       Bahrain
                                    2.66 12012
## 11
                   Bangladesh
                                    3.46
                                            345
## 12
                      Barbados
                                    1.50 9255
## 13
                      Belgium
                                    1.66 22351
## 14
                        Belize
                                    3.15 3123
## 15
                         Benin
                                    5.66
                                            361
## 16
                       Bermuda
                                    1.67 44579
## 17
                        Bhutan
                                    5.02
                                           241
## 18
                       Bolivia
                                    3.82
                                           935
## 19
                      Botswana
                                    3.70
                                          2872
## 20
                        Brazil
                                    2.21
                                          2888
                                    2.48 12435
## 21
                        Brunei
```

	22	Burkina.Faso	6.68	203
	23	Burundi	6.80	107
	24	Cambodia	4.77	233
	25	Cameroon	4.61	557
##	26	Canada	1.48	22385
##	27	Cape.Verde	3.30	1259
##	28	Central.African.Rep	4.92	242
##	29	Chad	6.65	127
##	30	Chile	2.35	3992
	31	China	1.83	918
	32	Hong.Kong		23499
	33	Macao		14281
	34	Colombia	2.62	1900
	35	Comoros	4.90	278
	36			
		Congo	6.29	779
	37	Cook.Islands	3.50	4388
	38	Costa.Rica	2.28	4148
	39	Cote.dIvoire	4.73	637
	40	Croatia	1.65	4558
	41	Cuba	1.55	2545
	42	Cyprus		11449
##	43	Czech.Rep	1.16	5501
##	44	Dem.Rep.Congo	6.70	138
##	45	Denmark	1.77	30265
##	46	Djibouti	5.70	819
	47	Dominican.Rep	2.71	2500
	48	Ecuador	2.76	1425
	49	Egypt	3.29	1390
	50	El.Salvador	2.88	2189
	51	Equatorial.Guinea	5.89	3940
	52	Eritrea	5.43	3940 177
	53	Estonia	1.22	4010
	54	Ethiopia	6.14	90
	55	Fiji	2.88	2046
	56	Finland		23456
	57	France		21990
##	58	Fr.Guiana	3.33	7737
##	59	Fr.Polynesia	2.44	13891
##	60	Gabon	3.99	3379
	61	Gambia	4.70	300
	62	Germany		22418
	63	Ghana	4.11	265
	64	Greece		10727
	65	Guadeloupe		10323
	66	Guatemala	4.41	1717
		Guatemaia Guinea		
	67		5.82	375 174
	68	Guinea-Bissau	7.10	174
	69	Guyana	2.31	936
	70	Haiti	3.98	431
##	71	Honduras	3.72	960

	72	Hungary	1.20	5209
	73	Iceland		27281
	74	India	3.01	467
##	75	Indonesia	2.35	678
##	76	Iran	2.33	5645
##	77	Ireland	1.90	26725
##	78	Israel	2.70	18816
##	79	Italy	1.23	18928
	80	Jamaica	2.36	2990
	81	Japan		32540
	82	Jordan	3.57	1726
	83	Kazakhstan	1.95	1441
	84	Kazaknistan	4.00	367
	85	Kiribati	3.80	468
	86	S.Korea	2.02	8955
	87	Kuwait		16782
	88	Kyrgyzstan	2.64	306
	89	Laos	4.78	324
	90	Latvia	1.10	3212
	91	Lebanon	2.18	5087
	92	Lesotho	3.84	419
	93	Liberia	6.80	256
##	94	Libya	3.02	5099
##	95	Liechtenstein	1.64	34504
##	96	Lithuania	1.25	3442
##	97	Luxembourg		43041
	98	Madagascar	5.70	278
	99	Malawi	6.10	129
	100	Malaysia	2.90	3748
	101	Maldives	5.33	1947
	102	Mali	7.00	200
	103	Malta	1.77	
	104	Marshall.Is	3.68	1938
	105	Martinique 		10723
	106	Mauritania	5.79	353
	107	Mauritius	1.95	3787
	108	Mexico	2.50	6150
	109	Micronesia	3.80	2215
##	110	Mongolia	2.42	417
##	111	Morocco	2.75	1145
##	112	Mozambique	5.63	196
	113	Namibia	4.56	1639
	114	Nepal	4.26	226
	115	Netherlands		23785
	116	Neth.Antilles		12149
	117	New.Caledonia		15750
	118	New.Zealand		13185
	119		3.75	489
		Nicaragua		
	120	Niger	8.00	176
##	121	Nigeria	5.42	435

	122	Norway		36445
##	123	Oman	4.96	7421
##	124	Pakistan	5.08	418
##	125	Palau	3.00	6179
##	126	Panama	2.70	3391
##	127	Papua.New.Guinea	4.09	545
##	128	Paraguay	3.84	1286
##	129	Peru	2.86	2053
##	130	Philippines	3.18	924
	131	Poland	1.26	4657
##	132	Portugal		10944
##	133	Puerto.Rico		19083
	134	Qatar		30493
	135	Reunion	2.30	9188
	136	Russia	1.14	2139
	137	Rwanda	5.74	205
	138	Saint.Kitts.and.Nevis	2.41	8426
				4994
	139	Saint.Lucia	2.27	
	140	St.Vincent/Grenadines	2.23	2940
	141	Samoa	4.12	1402
	142	Sao.Tome.and.Principe	3.99	312
	143	Saudi.Arabia	4.53	7724
	144	Senegal	4.97	479
		Serbia.and.Montenegro.	1.65	1008
	146	Seychelles	2.00	7850
##	147	Sierra.Leone	6.50	164
##	148	Singapore	1.36	20755
##	149	Slovakia	1.28	3767
##	150	Slovenia	1.14	9463
	151	Solomon.Islands	4.42	760
	152	Somalia	7.25	110
	153	South.Africa	2.61	2550
	154	Spain		14234
	155	Sri.Lanka	2.01	827
		Sudan		376
	156 157		4.39	
	157	Suriname	2.45	1965
	158	Swaziland	4.54	1204
	159	Sweden		23680
	160	Switzerland		34449
	161	Syria	3.32	4976
	162	Tajikistan	3.06	172
##	163	Thailand	1.93	1858
##	164	Macedonia	1.90	1723
##	165	Timor-Leste	3.85	438
##	166	Togo	5.33	273
	167	Tonga	3.71	1284
	168	Trinidad.and.Tobago	1.55	6817
	169	Tunisia	2.01	2077
	170	Turkey	2.43	2136
	171	Turkmenistan	2.70	1263
##	T/T	i di Kilicii 13 Cali	2.70	1203

```
## 172
                      Uganda
                                  7.10
                                         239
## 173 United.Arab.Emirates
                                  2.82 19816
## 174
              United.Kingdom
                                  1.60 24186
                    Tanzania
## 175
                                  5.11
                                         263
                         USA
## 176
                                  2.11 34788
## 177
                                  2.30 5514
                     Uruguay
## 178
                  Uzbekistan
                                  2.44
                                         418
## 179
                     Vanuatu
                                  4.13 1085
## 180
                   Venezuela
                                  2.72 5009
## 181
                                  2.30
                    Viet.Nam
                                         416
## 182
                       Yemen
                                  7.01
                                         431
## 183
                      Zambia
                                  5.64
                                         345
                    Zimbabwe
                                  3.90
## 184
                                         703
#Set x and y to mydata's height and weight
x=mydata$PPgdp
y=mydata$Fertility
#Display some of the data for mydata
str(x)
## int [1:184] 98 1317 1784 739 7163 18788 23260 695 14856 12012 ...
str(y)
## num [1:184] 6.8 2.28 2.8 7.2 2.44 1.7 1.28 2.1 2.29 2.66 ...
str(mydata)
## 'data.frame':
                   184 obs. of 3 variables:
## $ Locality : Factor w/ 184 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10
## $ Fertility: num 6.8 2.28 2.8 7.2 2.44 1.7 1.28 2.1 2.29 2.66 ...
## $ PPgdp
             : int 98 1317 1784 739 7163 18788 23260 695 14856 12012 ...
#1
#plot x and y, label the axes
plot(x,y,xlab="PPgdp",ylab="Fertility",main="Fertility vs. PPgdp")
```

Fertility vs. PPgdp


```
#create variables for the log transformations
xlog = 1/log(x)
plot(xlog, y, xlab="1/logx",ylab="y")
#3a
#xbar and ybar
ybar=mean(y)
xbar=mean(xlog)
#n, the number of variables
n=length(x)
#betahat1 and betahat0
betahat1=sum((xlog-xbar)*(y-ybar))/sum((xlog-xbar)^2)
betahat0=ybar-betahat1*xbar
betahat0
## [1] -2.560345
betahat1
## [1] 42.57107
#plot a straight line for the data using slope and intercept
abline(a = betahat0, b = betahat1)
```



```
#yhat
yhat = betahat0+betahat1*xlog
#SSR
SSR = sum((yhat-ybar)^2)
#SSE
SSE = sum((y-yhat)^2)
#SSTO
SSTO = sum((y-ybar)^2)
#R^2 and rsquared
R2 = SSR/SSTO
R2
## [1] 0.6360678
rsquared = (1 - SSE/SSTO)
rsquared
## [1] 0.6360678
#3b
#lm function
model = lm(y\sim xlog)
summary(model)
```

```
##
## Call:
## lm(formula = y \sim xlog)
## Residuals:
##
                1Q Median
       Min
                                3Q
                                       Max
## -2.6499 -0.5764 -0.0475 0.5886 3.3154
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.5603
                            0.3363 -7.612 1.41e-12 ***
## xlog
               42.5711
                            2.3869 17.835 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.031 on 182 degrees of freedom
## Multiple R-squared: 0.6361, Adjusted R-squared: 0.6341
## F-statistic: 318.1 on 1 and 182 DF, p-value: < 2.2e-16
plot(xlog,y)
#plot fitted line
abline(model$coefficients)
```


#3c
#matrix manipulation
head(mydata)

```
Locality Fertility PPgdp
## 1 Afghanistan
                     6.80
                             98
## 2
        Albania
                     2.28 1317
## 3
        Algeria
                     2.80 1784
## 4
         Angola
                     7.20 739
## 5
      Argentina
                     2.44 7163
## 6
      Australia
                     1.70 18788
X=as.matrix(cbind(rep(1,n),1/log(mydata[,3])))
View(X)
str(X)
## num [1:184, 1:2] 1 1 1 1 1 1 1 1 1 1 ...
XTX = t(X)%*%X
XTXinv = solve(XTX)
Y = as.matrix(mydata[,2])
View(Y)
XTY = t(X)%*%Y
betahatMatrix = XTXinv%**%XTY
betahatMatrix
##
## [1,] -2.560345
## [2,] 42.571070
plot(xlog,y)
#draw fitted matrix line
abline(betahatMatrix)
```



```
Yhat = X%*%betahatMatrix
head(Yhat)
##
            [,1]
## [1,] 6.724578
## [2,] 3.366205
## [3,] 3.125947
## [4,] 3.884643
## [5,] 2.235485
## [6,] 1.765555
res = as.vector(Y - Yhat)
head(res)
## [1] 0.07542232 -1.08620457 -0.32594674 3.31535670 0.20451514 -
0.06555487
SSE = res%*%res
SSTO = sum((Y-mean(Y))^2)
Rsquaredmatrix = 1 - SSE/SSTO
Rsquaredmatrix
##
             [,1]
## [1,] 0.6360678
```


#The dispersion of the residuals seem to be smaller at first, but they spread
out as
#fitted values increase. At the end they shrink again, but the change is not
severe.
stdres=rstandard(model)
hist(stdres)

Histogram of stdres

 $\#The\ histogram\ appears\ unimodal,\ with\ the\ standard\ deviation\ of\ residuals\ \#going\ to\ -3\ and\ 3.$

qqnorm(stdres)
qqline(stdres)

Normal Q-Q Plot


```
#The QQ plot lies mostly along the line, so there is a mostly normal
distribution.
#5
#test whether beta1 = 0 at 0.05 significance Level
#H0: b1 = 0 v.s. H1: b1 = /= 0
\#T.S. t^* = (b1hat - 0)/SE(b1hat)
summary(model)
##
## Call:
## lm(formula = y \sim xlog)
##
## Residuals:
       Min
                10 Median
                                3Q
                                       Max
## -2.6499 -0.5764 -0.0475 0.5886 3.3154
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            0.3363 -7.612 1.41e-12 ***
## (Intercept) -2.5603
                            2.3869 17.835 < 2e-16 ***
## xlog
                42.5711
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.031 on 182 degrees of freedom
## Multiple R-squared: 0.6361, Adjusted R-squared: 0.6341
## F-statistic: 318.1 on 1 and 182 DF, p-value: < 2.2e-16
```

```
#for the lm model, the slope has a p-value of < 2*10^{-16}, therefore the
conclusion
#is to reject the null hypothesis
#6
MSE = summary(model)$sigma^2
Xh = 1/log(20000)
Yh=betahat0+betahat1*Xh
Yh+c(-1,1)*qt((1-0.01/2),n-2)*sqrt(MSE*(1/n + ((Xh-mean(xlog))^2)/sum((xlog-x))*sqrt(MSE*(1/n + ((Xh-mean(xlog))^2)/sqrt(MSE*(1/n + ((Xh-mean(xl
mean(xlog))^2)))
## [1] 1.438266 2.038231
#1.438266 2.038231
#7
xseq = seq(min(mydata[,3]), max(mydata[,3]), 0.1)
xlogseq = 1/log(xseq)
W = sqrt(2*qf(1-0.05, 2, n-2))
yseq=betahat0+betahat1*xlogseq
se.y.seq = sqrt(MSE*(1/n + ((xlogseq-mean(xlog))^2)/sum((xlog-
mean(xlog))^2)))
low = yseq - W*se.y.seq
high = yseq + W*se.y.seq
plot(xlog, y)
abline(betahat0, betahat1)
lines(xlogseq,low, col="red")
lines(xlogseq,high, col="blue")
```



```
#8

MSE = summary(model)$sigma^2

Xh = 1/log(25000)

Yh=betahat0+betahat1*Xh

Yh+c(-1,1)*qt((1-0.01/2),n-2)*sqrt(MSE*(1/n + 1 + ((Xh-mean(xlog))^2)/sum((xlog-mean(xlog))^2)))

## [1] -1.057710  4.344765

#-1.057710  4.344765
```