Теорема Безу

Если $f(x) \in F[x]$ и $c \in F$, то остаток от деления f(x) на (x-c) равен f(c)

Доказательство

f(x)=q(x)(x-c)+r. Остаток имеет степень меньше, чем $\deg q(x)$. Подставим вместо x c:

$$f(c) = q(c)(c-c) + r = r$$

Корень многочлена

Число $c \in F$ называется корнем многочлена $f(x) \in F[x]$, если f(x) = 0

Основная теорема алгебры

Любой многочлен $f(x) \in \mathbb{C}[x]$ степени не меньше, чем I, имеет корень.

Следствие из основной теоремы алгебры

Если $f(x) \in F[x]$ имеет степень n, то f(x) имеет ровно n корней над полем $\mathbb C$ (с учетом кратности).

Теорема о виде рациональных корней

Число $rac{p}{q}$ является корнем многочлена $f(x)=a_nx^n+\cdots+a_1x+a_0$, если $q\mid a_n$ и $p\mid a_0$

Доказательство

Пусть $\frac{p}{q}$ является корнем (p и q - взаимно просты). Подставим $f\left(\frac{p}{q}\right)=a_n(\frac{p}{q})^n+\cdots+a_1\left(\frac{p}{q}\right)+a_0=0.$

Заметим, что правая часть делится на $p \implies a_0$ делится на p. Домножим на q^n , a_n аналогично делится на q.