Shortest Paths (1/11)

• If there is more than one path from A to B, which path is the shortest?

Shortest Paths (2/11)

- Single source/All destinations: nonnegative edge cost
 - Problem: given a directed graph G = (V, E), a length function length(i, j), length(i, j) ≥ 0, for the edges of G, and a source vertex v.
 - Need to solve: determine a shortest path from v to each of the remaining vertices of G.

Shortest Paths (2/11)

 Single source/All destinations: nonnegative edge cost

Shortest Paths (2/11)

- Single source/All destinations: nonnegative edge cost
 - Idea:
 - Let S denote the set of vertices
 - dist[w]: the length of shortest path starting from v, going through only the vertices that are in S, ending at w.

Shortest Paths (3/11)

Dijkastra's Algorithm

```
S \leftarrow \{v_0\};
dist[v_0] \leftarrow 0;
for each v in V - \{v_0\} do dist[v] \leftarrow e(v_0, v);
while S≠V do
    choose a vertex w in V-S such that dist[w] is a minimum;
    add w to S;
    for each v in V-S do
        dist[v] \leftarrow min(dist[v], dist[w] + e(w, v));
```

$$O(N^2)$$

Declarations for the Shortest Path Algorithm

```
#define MAX_VERTICES 6
int cost[ ][MAX_VERTICES]=
{ { 0, 50, 10, 1000, 45, 1000},
   {1000, 0, 15, 1000, 10, 1000},
   { 20, 1000, 0, 15, 1000, 1000},
   {1000, 20, 1000, 0, 35, 1000},
   {1000, 1000, 30, 1000, 0, 1000},
   {1000, 1000, 1000, 3, 1000, 0}};
int dist[MAX_VERTICES];
short int found{MAX_VERTICES];
int n = MAX_VERTICES;
```


Single Source Shortest Paths Program (v=0) visited

Shortest Paths (5/11)

Choosing the least cost edge

```
int choose(int distance[], int n, short int found[])
/* find the smallest distance not yet checked */
  int i, min, minpos;
  min = INT_MAX;
  minpos = -1;
  for (i = 0; i < n; i++)
     if (distance[i] < min && !found[i]) {</pre>
       min = distance[i];
      minpos = i;
  return minpos;
```

Single Source Shortest Paths Program (v=0)

```
visited
                                                                   [0] [1] [2] [3] [4] [5]
void shortestpath(int v, int cost[][MAX_VERTICES],
int distance[], int n, short int found[])
   int i,u,w;
   for (i = 0; i < n; i++) {
                                                      50
                                                                      10
     found[i] = FALSE;
     distance[i] = cost[v][i];
                                                               20
                                           20
   found[v]
             = TRUE
   distance[v] =
   for (i = 0; i < n-2; i++)
     u = choose(distance, n, found);
     found[u] = TRUE;
                                   dist:
                                                             102050
                                                                         1000
                                                  46
                                                         10
                                                                     45
          (w = 0; w < n; w++
         if (!found[w])
                distance|u|
                            + cost u
                           = distance[u]
                                           + cost[u][w];
              distance[w]
                                                                u
Program 6.10: Single source shortest paths
```

Shortest Paths (7/11)

All Pairs Shortest Paths

- we could solve this problem using shortestpath with each of the vertices in V(G) as the source. (O(n³))
- we can obtain a conceptually simpler algorithm that works correctly even if some edges in G have negative weights, require G has no cycles with a negative length (still O(n³))

Shortest Paths (10/11)

- Graph with Negative Cycle
 - The length of the shortest path from vertex 0 to vertex
 2 is -∞

Shortest Paths (8/11)

- Another solution
 - Use dynamic programming method.
 - Let A^k[i][j] be the cost of shortest path from i to j, using only those intermediate vertices with an index ≤ k.
 - The shortest path from i to j is Aⁿ⁻¹[i][j] as no vertex in G has an index greater than n 1.
 - Represent the graph G by its cost adjacency matrix with cost[i][j].
 - If i = j, cost[i][j] = 0.
 - If <*i*, *j*> is not in *G*, *cost*[*i*][*j*] is set to some sufficiently large number.

Shortest Paths (9/11)

Algorithm concept

- The basic idea in the all pairs algorithm is begin with the matrix A⁻¹ and successively generated the matrices A⁻¹, A⁰, A², ..., Aⁿ
- A⁻¹[i][j]=cost[i][j]
- Calculate the A⁰, A¹, A², ..., Aⁿ⁻¹ from A⁻¹ iteratively
- $A^{k}[i][j]=\min\{A^{k-1}[i][j], A^{k-1}[i][k]+A^{k-1}[k][j]\}, k>=0$

Shortest Paths (11/11)

All pairs shortest paths program

cost:

0	4	11
6	0	2
3	1000	0

final

dist[i][j] < dist[i][k] + dist[k][j] ????

Shortest Paths (11/11)

All pairs shortest paths program

```
final

disjance: 11

6 0 2

3 7 0
```

```
11
1000
```

cost

```
void allcosts(int cost[][MAX_VERTICES],
                  int distance[][MAX_VERTICES], int n)
  int i, j, k;
  for (i = 0; i < n; i++)
     for (j = 0; j < n; j++)
       distance[i][j] = cost[i][j];
  for (k = 0; k < n; k++)
     for (i = 0; i < n; i++)
       for (j = 0; j < n; j++)
          if (distance[i][k] + distance[k][j] <</pre>
                                         distance[i][j]
             distance[i][j] =
             distance[i][k] + distance[k][j];
```

Program 6.12: All pairs, shortest paths function

Topological Sorts (1/19)

- Activity on vertex (AOV) networks
 - All but the simplest of projects can be divided into several subprojects called activities.
 - The successful completion of these activities results in the completion of the entire project

Topological Sorts (1/19)

- Activity on vertex (AOV) networks
 - Example: A student working toward a degree in computer science must complete several courses successful

Decaramina I	
Programming I	None
Discrete Mathematics	None
Data Structures	C1, C2
Calculus I	None
Calculus II	C4
Linear Algebra	C5
Analysis of Algorithms	C3, C6
Assembly Language	C3
Operating Systems	C7, C8
Programming Languages	C7
Compiler Design	C10
Artificial Intelligence	C7
Computational Theory	C7
Parallel Algorithms	C13
Numerical Analysis	C5
	Data Structures Calculus I Calculus II Linear Algebra Analysis of Algorithms Assembly Language Operating Systems Programming Languages Compiler Design Artificial Intelligence Computational Theory Parallel Algorithms

Topological Sorts (3/19)

Topological Sorts (2/19)

Definition:

- Activity On Vertex (AOV) Network:

 a directed graph in which the vertices represent tasks
 or activities and the edges represent precedence
 relations between tasks.
- predecessor (successor):
 vertex i is a predecessor of vertex j iff there is a directed path from i to j. j is a successor of i.

Topological Sorts (2/19)

Definition:

partial order:
 a precedence relation which is both transitive
 (∀i, j, k, i · j & j · k → i · k) and irreflexive

acylic graph:
 a directed graph with no directed cycles

Topological Sorts (3/19)

- Definition: Topological order
 - linear ordering of vertices of a graph
 - ▼ i, j if i is a predecessor of j, then i precedes j in the linear ordering

Topological Sorts (4/19)

Topological sort Algorithm

```
for (i = 0; i < n; i++)
  if every vertex has a predecessor {
   fprintf (stderr, "Network has a cycle. \n");
   exit(1);
  pick a vertex v that has no predecessors;
  output v;
  delete v and all edges leading out of v from the network;
```

Topological Sorts (4/19)

Topological order generated:v₁ v₄

Topological Sorts (5/19)

data representation

```
typedef struct node *node pointer;
typedef struct node {
         int vertex;
         node pointer link;
typedef struct {
         int count;
                                      decide whether a vertex
         node pointer link;
                                      has any predecessors
         } hdnodes;
hdnodes graph[max vertices];
```

Topological Sorts (5/19)

Topological sort Program

Time complexity: O(n+e)

Topological sort Program

```
headnode V_0 V_1 V_2 V_3 V_4 V_5 count link node 1 \ 4 \ 4 \ 5 \ 3
```

```
void topsort(hdnodes graph[], int n)
  int i, j, k, top;
  node-pointer ptr;
  /* create a stack of vertices with no predecessors */
  top = -1;
  for (i = 0; i < n; i++)
     if (!graph[i].count) {
       graph[i].count = top;
       top = i;
  for (i = 0; i < n; i++)
    if (top == -1) {
       fprintf(stderr,"\nNetwork
      terminated. \n");
       exit(1);
     else {
       i = top; /* unstack a vertex */
       top = graph[top].count;
       printf("v%d, ",j);
       for (ptr = graph[j].link; ptr; ptr = ptr->link)
       /* decrease the count of the successor vertices
       of j */
          k = ptr->vertex;
          graph[k].count--;
          if (!graph[k].count) {
          /* add vertex k to the stack */
            graph[k].count = top;
            top = k;
```

Topological sort Program

top: -4 j: 4 k: 4

output:

v0 v3 v2 v5 v1 v4

```
void topsort(hdnodes graph[], int n)
  int i, j, k, top;
  node_pointer ptr;
  /* create a stack of vertices with no predecessors */
  top = -1;
  for (i = 0; i < n; i++)
     if (!graph[i].count)
       graph[i].count = top;
       top = i;
  for (i = 0; i < n; i++)
     if (top == -1) {
       fprintf(stderr,"\nNetwork
      terminated. \n");
       exit(1);
     else {
                   /* unstack a vertex */
       printf("v%d, ",j);
           (ptr = graph[j].link; ptr; ptr = ptr->link
       of i */
          graph[k].count--;
             (!graph[k].count
            add vertex k to the stack */
            graph[k].count = top;
            top = k;
                        Time complexity: O(n+e)
```

Topological Sorts (7/19)

- Activity on Edge (AOE) Networks
 - AOE networks have proved very useful for evaluating the performance of many types of projects.
- What is the least amount of time in which the project may be complete (assuming there are no cycle in the network)?
- Which activities should be speeded to reduce project length?

Topological Sorts (8/19)

- An AOE network
 - directed edge: tasks or activities to be performed
 - vertex: events which signal the completion of certain activities
 - number: associated with each edge (activity) is the time required to perform the activity

Topological Sorts (8/19)

An AOE network

(a) AOE network. Activity graph of a h

interpretation start of project completion of activity a_0 completion of activities a_3 and a_4 completion of activities a_7 and a_8 completion of project

VI

 v_4

V7

V8

Topological Sorts (9/19)

- Application of AOE Network
 - Evaluate performance
 - minimum amount of time
 - activity whose duration time should be shortened
 - ...
 - Critical path
 - a path that has the longest length
 - minimum time required to complete the project

Topological Sorts (9/19)

Critical path

$$V_0$$
, V_1 , V_4 , V_6 , V_8 or V_0 , V_1 , V_4 , V_7 , V_8

(a) AOE network. Activity graph of a hypothetical project

Topological Sorts (10/19)

Critical-path analysis

- The purpose of critical-path analysis is to identify critical activities so that resource may be concentrated on these activities in an attempt to reduce a project finish time.
- Critical-path analysis can also be carried out with AOV network

Determine Critical Paths

- Delete all noncritical activities
- Generate all the paths from the start to finish vertex

Topological Sorts (11/19)

- Various Factors
 - The earliest time of an event v_i
 - the length of the longest path from v_0 to v_i (Ex. 7 for v_4)
 - early(i): Earliest activity time,
 i.e., earliest start time of activity a,
 - late(i): Latest activity time,
 - i.e., latest start time of activity a_i
 - late(i)-early(i)
 - measure of how critical an activity is (ex. *late*(5)-*early*(5)=8-5=3)
 - Critical activity
 - an activity for which early(i)=late(i) (ex. early(7)=late(7))

Topological Sorts (12/19)

- Various Factors (cont'd)
 - earliest[j]:
 earliest event occurrence time for event j (vertex j)
 - latest[j]: latest event occurrence time for event j (vertex j) in the network
 - If activity a_i is represented by edge <k, j>
 - early(i) = earliest[k]
 - late(i) = latest[j] duration of activity a;

We compute the times earliest[j] and latest[j] in two stages:
 a forward stage and a backward stage

Topological Sorts (13/19)

Calculation of Earliest Times

• During the forwarding stage, we start with *earliest*[0] = 0 and compute the remaining start times using the formula: $[j] = \max_{i \in p(j)} \{earliest [i] + \text{duration of } \langle i, j \rangle \}$

Earliest	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
initial	0	0	0	0	0	0	0	0	0
output v_0	0	6	4	5	0	0	0	0	0
output v_3	0	6	4	5	0	7	0	0	0
output v_5	0	6	4	5	0	7_	0	11	0

Calculation of Earliest Times (cont'd)

Calculation of Earliest Times (cont'd)

```
for (ptr=graph[j].link;ptr;ptr=ptr->link){
    k=ptr->vertex;
    graph[k].count--;
    if(!graph[k].count){
        graph[k].count=top;
        top=k;}
    if(earliest[k]<
        earliest[j]+ptr->duration)
        earliest[j]+ptr->duration;
}
```

NULL

Earliest	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Stack
initial	0	0	0	0	0	0	0	0	0	[0]
output v_0	0	6	4	5	0	0	0	0	0	[3, 2, 1]
output v_3	0	6	4	5	0	7	0	0	0	[5, 2, 1]
output v_5	0	6	4	5	0	7	0	11	0	[2, 1]
output v_2	0	6	4	5	5	7	0	11	0	[1]
output v ₁	0	6	4	5	7	7	0	11	0	[4]
output v ₄	0	6	4	5	7	7	16	14	0	[7, 6]
output v ₇	0	6	4	5	7	7	16	14	16	[6]
output v ₆	0	6	4	5	7	7	16	14	18	[8]
output v ₈										

Topological Sorts (15/19)

Calculation of latest times

- In the backward stage, we compute the values of latest[i] using a procedure analogous to that used in the forward stage.
- We start with latest[n-1] = earliest[n-1] and use the formula:

```
latest[j] = \min_{i \in S(j)} \{latest[i] - duration of < j, i > \}
```

Where S(j) is the set of vertices adjacent from vertex j

Latest	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	-
initial	18	18	18	18	18	18	18	18	18	+
output v ₈	18	18	18	18	18	18	16	14	18	Ī
output v ₇	18	18	18	18	7	10	16	14	18	
output v ₅	18	18	18	8	7	10	16	14	18	
output v ₃	3	18	18	8	7	10	16	14	18	
output v ₆	3	18	18	8	7	10	16	14	18	
output v ₄	3	6	6	8	7	10	16	14	18	
	2	-	,	0	7	10	16	1.4	10	

Calculation of latest Times (cont'd)

```
for (ptr=graph[j].link;ptr;
    ptr=ptr->link){
    k=ptr->vertex;
    graph[k].count--;
    if(!graph[k].count){
        graph[k].count=top;
        top=k;}
    if(latest[k]>
        latest[j]-ptr->duration)
        latest[j]-ptr->duration;
```


Latest	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Stack
initial	18	18	18	18	18	18	18	18	18	[8]
output v ₈	18	18	18	18	18	18	16	14	18	[7, 6]
output v ₇	18	18	18	18	7	10	16	14	18	[5, 6]
output v ₅	18	18	18	18	7	10	16	14	18	[3, 6]
output V ₃	3	18	18	8	7	10	16	14	18	[6]
output v_6	3	18	18	8	7	10	16	14	18	[4]
output v_4	3	6	6	8	7	10	16	14	18	[2, 1]
output v_2	2	6	6	8	7	10	16	14	18	[1]
output v ₁	0	6	6	8	7	10	16	14	18	[0]

Activity	Early	Late	Late - Early	Critical
a_0	0	0	0	yes
a_1	0	2	2	no
a_2	0	3	3	no
a_3	6	6	0	yes
a_4	4	6	2	no
a ₅	5	8	3	no
a_6	7	7	0	yes

(a) AOE network. Activity graph of

Activity	Early	Late	Late - Early	Critical
a_0	0	0	0	yes
a_1	0	2	2	no
a_2	0	3	3	no
a_3	6	6	0	yes
a_4	4	6	2	no
a_5	5	8	3	no
a_6	7	7	0	yes
a_7	7	7	0	yes
a_8	7	10	3	no
a_9	16	16	0	yes
a_{10}	14	14	0	yes