CSCI 2011 HW 9

Fletcher Gornick

November 9, 2020

1 Chapter 7.3 Problem 18

Let $n \in \mathbb{Z}$. Prove that $3 \mid (2n^2 + 1)$ if and only if $3 \nmid n$.

First, we show that if $3 \mid (2n^2 + 1)$, then $3 \nmid n$. We will use the contrapositive for this proof. We show that $3 \mid n \Rightarrow 3 \nmid (2n^2 + 1)$. By definition, n = 3s for some $s \in \mathbb{Z}$. Therefore... $2n^2 + 1 = 2(3s)^2 + 1 = 18s^2 + 1 = 3(6s^2) + 1$, and since $6s^2$ is an integer, $3 \nmid (2n^2 + 1)$.

Next, we show that if $3 \nmid n$, then $3 \mid (2n^2+1)$. We can break this up into two separate cases, either n=3t+1 or n=3t+2 for some $t \in \mathbb{Z}$. Let's look at the first case, where n=3t+1... $2n^2+1=2(3t+1)^2+1=18t^2+12t+3=3(6t^2+4t+1)$, and since $6t^2+4t+1$ is an integer, $3 \mid (2n^2+1)$.

Now we look at the case where n = 3t + 2... $2n^2 + 1 = 2(3t + 2)^2 + 1 = 18t^2 + 24t + 9 = 3(6t^2 + 8t + 3)$, and since $6t^2 + 8t + 3$ is an integer, $3 \mid (2n^2 + 1)$. Therefore the biconditional must be true.

2 Chapter 7.4 Problem 14

Let $a \in \mathbb{Z}$. Prove that if $a^2 \not\equiv a \pmod{3}$, then $a \not\equiv 0 \pmod{3}$ and $a \not\equiv 1 \pmod{3}$.

Let's look at the contrapositive. If $a \equiv 0 \pmod{3}$ or $a \equiv 1 \pmod{3}$, then $a^2 \equiv a \pmod{3}$. Now all we must do is prove that the implication is true for either $a \equiv 0 \pmod{3}$ or $a \equiv 1 \pmod{3}$, for this instance, I'll choose $a \equiv 0 \pmod{3}$. We show that $0^2 \equiv 0 \pmod{3}$. Therefore $3 \mid (0^2 - 0)$ by definition, and since $0^2 - 0 = 0$ and $3 \mid 0$ we know this statement must be true.

3 Chapter 7.6 Problem 6

Let a and b be integers not both 0, and let d = gcd(a, b). Prove that if a = da' and b = db' for some integers a' and b', then gcd(a', b') = 1.

By definition, d = sa + tb for some integers $s, t \in \mathbb{Z}$. And since a = da' and b = db', it must be the case that d = sda' + tdb', factoring out d, we get sa' + tb' = 1. By Theorem 7.47 of the textbook, we know that gcd(a',b') is the smallest positive integer that's a linear combination of a' and b', and since 1 is a linear combination of a' and b', it must follow that gcd(a',b') = 1, because 1 is the smallest positive integer in the set of all integers.

4 Chapter 7 Problem 12

Let x and y be integers such that $x+y\equiv 0 \pmod 3$. Prove that if $a,b\in\mathbb{Z}$ such that $a\equiv b\pmod 3$, then $ax+by\equiv 0\pmod 3$.

By definition, $x + y \equiv 0 \pmod{3}$ implies that x + y = 3q for some $q \in \mathbb{Z}$. Also a = 3r + b for some $r \in \mathbb{Z}$.

```
Since x + y = 3q, we know x = 3q - y, now solving for ax + by, we have... ax + by = (3r + b)(3q - y) + by = 9rq - 3ry + 3bq - by + by = 9rq - 3ry + 3bq = 3(3rq - ry + bq), and since 3rq - ry + bq is an integer, it follows that 3 \mid (ax + by), and therefore ax + by \equiv 0 \pmod{3} by definition.
```

5 Chapter 8.1 Problem 14

A man leaves for work on a rainy morning. He has a choice of three raincoats, four umbrellas and two hats. Assuming that he must take a coat and an umbrella (but not necessarily a hat), how many possibilities for raingear does he have?

If he chooses not to bring a hat, then he has $3 \cdot 4 = 12$ options, and if he does choose to bring a hat, then he has $3 \cdot 4 \cdot 2 = 24$ options. All together, he has 12 + 24 = 36 options.