Chapter 1 Functions and Limits

1.3 New Functions from Old Functions

Translation.

Vertical and Horizontal Shifts Suppose c > 0. To obtain the graph of

y = f(x) + c, shift the graph of y = f(x) a distance c units upward y = f(x) - c, shift the graph of y = f(x) a distance c units downward y = f(x - c), shift the graph of y = f(x) a distance c units to the right y = f(x + c), shift the graph of y = f(x) a distance c units to the left

Stretching and reflecting.

Vertical and Horizontal Stretching and Reflecting Suppose c>1. To obtain the graph of

y=cf(x), stretch the graph of y=f(x) vertically by a factor of c y=(1/c)f(x), shrink the graph of y=f(x) vertically by a factor of c y=f(cx), shrink the graph of y=f(x) horizontally by a factor of c y=f(x/c), stretch the graph of y=f(x) horizontally by a factor of c y=-f(x), reflect the graph of y=f(x) about the x-axis y=f(-x), reflect the graph of y=f(x) about the y-axis

EXAMPLE 1 Given the graph of $y = \sqrt{x}$, use transformations to graph $y = \sqrt{x} - 2$, $y = \sqrt{x - 2}$, $y = -\sqrt{x}$, $y = 2\sqrt{x}$, and $y = \sqrt{-x}$.

(a)
$$y = \sin 2x$$

(b)
$$y = 1 - \sin x$$

Addina.

Substracting. (f-g)(x) = f(x) - g(x)

Domain: commun to bon(4) & Dom(g) Dom (f) n Dom (g)

Multiplying.

Dom(1) n Dom(g) Domain:

Don(f) / (x: g(x)=of

remove Zero of g.

Example. Find the domain of the function

$$f(x) = \sqrt{x} + \sqrt{2-x} \ .$$
 Is a constant of the constant of t

Example Find the domain of the function $f(x) = \frac{x^2}{x-1}$.

$$Derm(f) = (-\infty, \infty) / \{i\} \qquad \qquad 2-i=$$

$$= (-\infty, \infty) \text{ except } \{1\}.$$

Composite of two functions (Composition).

Definition Given two functions f and g, the **composite function** $f \circ g$ (also called the **composition** of f and g) is defined by

$$(f \circ g)(x) = f(\underline{g(x)})$$

Domain:

(remove values of glas which don't go in f(x))

EXAMPLE 6 If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

EXAMPLE 7 If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find each of the following functions and their domains.

- (a) $f \circ g$
- (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$

EXAMPLE 8 Find $f \circ g \circ h$ if f(x) = x/(x + 1), $g(x) = x^{10}$, and h(x) = x + 3.

EXAMPLE 9 Given $F(x) = \cos^2(x + 9)$, find functions f, g, and h such that $F = f \circ g \circ h$.