4.1b How To Use Ecological Models

Jelena H. Pantel

Faculty of Biology University of Duisburg-Essen

jelena.pantel@uni-due.de

Step 1. Evaluate potential model equations

$$y = mx + b$$

 $weight = m(gestation period) + b$

Estimated baby weights during pregnancy

Step 2. State clearly the model parameters you wish to estimate

weight = m(gestation period) + b

gestation	weight
30	1.6
32	1.7
34	2.5
36	2.8
38	3.2
40	3.5

Example 1. Linear causal model (linear regression)

$$y = mx + b$$

 $weight = m(gestation period) + b$

Estimated baby weights during pregnancy

Estimated baby weights during pregnancy

 $weight = m(gestation \ period) + b$ Least squares regression (line that minmizes sum of squared distances from observed points to model-fit

Estimated baby weights during pregnancy

Residual Sum of Squares

Residual Sum of Squares measures the extent of variability of observed data not predicted by the regression model.

- predicted observed predicted_minus_observed 1.528571 1.6 -0.07142857 1.937143 1.7 0.23714286 2.5 -0.15428571 2.345714 2.754286 2.8 -0.04571429 3.2 3.162857 -0.03714286 0.07142857 3.571429 3.5
- > model = lm(weight ~ gestation,data=baby)
- > sum(dat\$predicted_minus_observed^2)

[1] 0.09371429

> deviance(model)

[1] 0.09371429

 $weight = m(gestation \ period) + b$ Least squares regression (line that minmizes sum of squared distances from observed points to model-fit

Estimated baby weights during pregnancy

Gestation period (weeks)

Residual Sum of Squares

esidual Sum of Squares measures the extent of variability of observed data not predicted by the regression model.

time

Lotka Volterra model

$$\frac{dn_i}{dt} = rn_i \left(1 - \frac{n_i + \alpha_{ij}n_j}{K_i} \right) \qquad \frac{dn_j}{dt} = rn_j \left(1 - \frac{n_j + \alpha_{ji}n_i}{K_j} \right)$$

Non-linear least squares regression – find parameter values that minimize sum of squared distances from observed points to model-fit line

Lotka Volterra model

$$\frac{dn_i}{dt} = rn_i \left(1 - \frac{n_i + \alpha_{ij}n_j}{K_i} \right) \qquad \frac{dn_j}{dt} = rn_j \left(1 - \frac{n_j + \alpha_{ji}n_i}{K_i} \right)$$

Non-linear least squares regression – find parameter values that minimize sum of squared distances from observed points to model-fit line

Nonlinear least squares fit

Fitting data to models: probability distributions and statistical models

Key link between data and models - estimating model parameter

values given the observed data

What is a statistical model?

Definition

- a mathematical model that embodies a set of statistical assumptions concerning the generation of data sampled from a larger population
- A statistical model represents, often in considerably idealized form, the data-generating process Réale & Festa-Bianchet, 2000

is drawn from /

is distributed as

	0		
		L	if
		A	(
		y_i	
		Longevity of sheep	
Bighorn sheep,			
Ovis canadensis	A STATE OF THE STA	is di	

trait	mean	variance (σ^2)
Longevity (L,year)	7.06	19.08
Lifetime fecundity (F,no. offspring produced)	5.33	14.88
Adult body mass (m,kg)	71.1	20

 $y_i \sim N(\mu, \sigma)$ $\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$ Longevity a normal

Calculate variance for: 3, 6, 9

$$L_i \sim N(7.06, \sqrt{19.08})$$
 $m_i \sim N(71.1, \sqrt{20})$
 $F_i \sim N(5.33, \sqrt{14.88})$

What is a statistical model?

Definition

- a mathematical model that embodies a set of statistical assumptions concerning the generation of data sampled from a larger population

- A statistical model represents, often in considerably idealized

form, the data-generating process

probability distribution of O. canadensis body mass (kg)

Probability distribution: Normal (Gaussian)

```
> dnorm(74,mean=71.1,sd=(sqrt(20)))
[1] 0.07229107
> dnorm(90,mean=71.1,sd=(sqrt(20)))
[1] 1.180421e-05
> dnorm(71,mean=71.1,sd=(sqrt(20)))
[1] 0.08918391
>
```


probability distribution of O. canadensis body mass (kg)

What is a statistical model?

Definition

a mathematical model that embodies a set of statistical assumptions concerning the generation of data sampled from a larger population

A statistical model represents, often in considerably idealized $f_i \sim Bernoulli(0.1)$

form, the data-generating process $y_i \sim Bernoulli(p)$

Probability distribution: Bernoulli (n=1), Binomial (n > 1)

Godfrey & Mrosovsky, 2006

Probability distribution: Poisson

 $g_i \sim Poisson(\lambda)$

 $g_i \sim Poisson(\lambda = 1.819)$

Probability distributions: diverse

families

