

SEQUENCE LISTING <110> Vogeli, Gabriel Lind, Peter Wood, Linda S. Parodi, Luis A. <120> Novel G Protein Coupled Receptor <130> 411USPHRM311 <150> 60/165,838 <151> 1999-11-16 <150> 09/714,449 <151> 2000-11-16 <150> 60/198,568 <151> 2000-04-20 <150> 60/166,071 <151> 1999-11-17 <150> 60/166,678 <151> 1999-11-19 <150> 60/173,396 <151> 1999-12-28 <150> 60/184,129 <151> 2000-02-22 <150> 60/185,421 <151> 2000-02-28 <150> 60/185,554 <151> 2000-02-28 <150> 60/186,530 <151> 2000-03-02 <150> 60/186,811 <151> 2000-03-03 <150> 60/188,114

<150> 60/201,190 <151> 2000-05-02 <150> 60/203,111 <151> 2000-05-08 <150> 60/207,094 <151> 2000-05-25

<151> 2000-03-09 <150> 60/190,310 <151> 2000-03-17 <150> 60/190,800 <151> 2000-03-21

<160> 192

١Ū

ij IU

ŧΩ

Ш

Į = .

d.

<170> PatentIn version 3.0

<211> 118 <212> DNA <213> Home	_					
<400> 1 gtctgggggt	gggggatgct	gggacagggg	tcaattgcct	gaagcaagtg	ctctcatccc	60
cctagctcct	gctgatctag	ttggggctcc	agagtgggga	ggagaaaggc	actttgaaac	120
ttctctgccc	ttaccgtctt	agccatcaaa	ctctgagctg	gagatagtga	cgatgtgaca	180
ggaactttcc	ctgggcctct	ctgggccaca	attcctggcc	gagagaaaga	ggaggaatga	240
ggtgagcacc	ttcttcactc	ctagggccat	gtggtagagc	tgcagtcgca	cctccttctg	300
ccaataggca	tagatgagtg	ggttgagcag	ggagttgccc	acgccgagca	gccacaggta	360
ccgttccagc	actaggtaga	ggtgacactc	ctggcaggcc	acctgcacaa	tgccagtgat	420
aaggaagggg	gtccaggata	gagcaaagct	cccaatgaga	acagacacag	tacggagagc	480
tttgaagtcg	ctgggagtcc	gtggggatcg	ataacctcca	gccatggctc	ctgcatgttc	540
catctttcga	atctgctggc	tgtgcatgga	ggcaatcttg	agcatgtcgc	agtagaagaa	600
gacaaagagg	agcatggctg	ggaagaagcc	aacgcaggag	agggtcagca	cgaagtgagg	660
gtgaaataca	gcaaagaagc	tgcactgccc	tttgtaggca	gtctgctgga	acatggggat	720
tccgagtggg	aggaagccaa	tgaggtaaga	cactaaccac	agcccggcaa	tgcaggcccc	780
ggccacgaac	ccactcatga	tcttcaagta	gcggaagggc	tgcttgatgg	caaggtacct	840
gtcaaaggtg	atcagcatga	ccgtgaggac	agaggcagct	gcggaggaag	tgacaaatgc	900
catccgcagg	ctgcacaggg	tcttctgtgt	gggccgagaa	gggctggaga	gctggtctgt	960
gagtaggcca	gagatggcca	caccaatcaa	ggtgtcagcc	acagccagat	tcaaggtgaa	1020
gcagagactg	acaccatcat	tcttgtggat	caacagcagc	acagccacag	ccactagtgt	1080
gttagtagca	atgatgaggg	aggccaggac	agcaaggatc	actccaaatg	agaaagatga	1140
ttccatgtct	cgaagtggca	ggacttcact	taccagggca	tg		1182

<210> 2

<210> 1

<211> 335 <212> PRT <213> Homo sapiens

<400> 2

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser 1 5 10 15

Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu

Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp Page 2

	50					55			4	11US:	PHRM: 60	311.	ST25		
Gln 65	Leu	Ser	Ser	Pro	Ser 70	Arg	Pro	Thr	Gln	Lys 75	Thr	Leu	Cys	Ser	Leu 80
Arg	Met	Ala	Phe	Val 85	Thr	Ser	Ser	Ala	Ala 90	Ala	Ser	Val	Leu	Thr 95	Val
Met	Leu	Ile	Thr 100	Phe	Asp	Arg	Tyr	Leu 105	Ala	Ile	Lys	Gln	Pro 110	Phe	Arg
Tyr	Leu	Lys 115	Ile	Met	Ser	Gly	Phe 120	Val	Ala	Gly	Ala	Cys 125	Ile	Ala	Gly
Leu	Trp 130	Leu	Val	Ser	Tyr	Leu 135	Ile	Gly	Phe	Leu	Pro 140	Leu	Gly	Ile	Pro
Met 145	Phe	Gln	Gln	Thr	Ala 150	Tyr	Lys	Gly	Gln	Cys 155	Ser	Phe	Phe	Ala	Val 160
Phe	His	Pro	His	Phe 165	Val	Leu	Thr	Leu	Ser 170	Суѕ	Val	Gly	Phe	Phe 175	Pro
Ala	Met	Leu	Leu 180	Phe	Val	Phe	Phe	Tyr 185	Суѕ	Asp	Met	Leu	Lys 190	Ile	Ala
Ser	Met	His 195	Ser	Gln	Gln	Ile	Arg 200	Lys	Met	Glu	His	Ala 205	Gly	Ala	Met
Ala	Gly 210	Gly	Tyr	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220	Phe	Lys	Ala	Leu
Arg 225	Thr	Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240
Phe	Leu	Ile	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250	Суз	Gln	Glu	Суз	His 255	Leu
Tyr	Leu	Val	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270	Asn	Ser
Leu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280	Tyr	Trp	Gln	Lys	Glu 285	Val	Arg	Leu
Gln	Leu 290	Tyr	His	Met		Leu 295		Val	Lys		Val 300		Thr	Ser	Phe
Leu 305	Leu	Phe	Leu	Ser	Ala 310	Arg	Asn	Суз	Gly	Pro 315	Glu	Arg	Pro	Arg	Glu 320
Ser	Ser	Суѕ	His	Ile 325	Val	Thr	Ile	Ser	Ser 330	Ser	Glu	Phe	Asp	Gly 335	
<210		3 65 <i>7</i>													

<210> 3 <211> 657 <212> DNA <213> Homo sapiens

cagegegage geetteatgg tgaeggtgte catgegetgg eagtgtetge gtgeeaceeg 60 gtgeacetgg agegaggtga ggeagageae egeeaggge ageaegaage eeaeggeatg 120 gagegtggeg gtgaaggetg egaagegegg acgeteagge tegggeggea ggegeagega 180

acaggacgcg	aaggcgctgc	tgtagccaag	ccacgagcag	ccaagtgcag	cgcctgagaa	240
ggccagcgac	tgtccccagg	cacagcccag	cagcaggccg	gcatagcgcg	gtcgcaggcg	300
tccggcgtag	cgcagtggga	agcccactgc	cagccactgg	tctgcgctca	gcgccgccac	360
gctcagcgcc	gcgttggacg	ccaggaaggt	gtccaggaag	ccaatgactt	ggcatgcgcc	420
gggcgccgac	ggtgtccgcc	cgcgcatcac	accgagcagc	gtgaagggca	tgtccagcgc	480
cgccagcagc	aggtggccca	gagacagatt	caccaggagg	acgcctgagg	ctcgagtgcg	540
gagctcagcg	ctgtaggcgc	aacaaagcag	caccagtgcg	ttggatagca	gcgccacggc	600
cagtaccatc	accaggagac	ccgccagcag	cgcctcgccg	gggcccatgg	cgctagc	657

<210> 4 <211> 217 <212> PRT <213> Homo sapiens

<400> 4

Ser Ala Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met 1 5 10 15

Val Leu Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Cys Cys 20 25 30

Ala Tyr Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val 35 40 45

Asn Leu Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe 50 60

Thr Leu Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala 65 70 75 80

Cys Gln Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala 85 90 95

Leu Ser Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe 100 105 110

Pro Leu Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly Leu Leu 115 120 125

Leu Gly Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu 130 135 140

Gly Cys Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu 145 150 155 160

Arg Leu Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala 165 170 175

Thr Leu His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu 180 185 190

Thr Ser Leu Gln Val His Arg Val Ala Arg Arg His Cys Gln Arg Met 195 200 205

Asp Thr Val Thr Met Lys Ala Leu Ala 210 215

411USPHRM311.ST25

<210> 5 <211> 222 <212> DNA <213> Homo sapiens	
<400> 5 tgtgcaggtg tgatctccat tcctttgtac atccctcaca cgctgttcga atgggatttt	60
ggaaaggaaa tetgtgtatt ttggeteact aetgaetate tgttatgtae ageatetgta	120
tataacattg tcctcatcag ctatgatcga tacctgtcag tctcaaatgc tgtaagtcga	180
acacattaat ttatcccct tagaagatta tgtaaatgta ta	222
<210> 6 <211> 73 <212> PRT <213> Homo sapiens <400> 6	
Cys Ala Gly Val Ile Ser Ile Pro Leu Tyr Ile Pro His Thr Leu Phe 1 10 15	
Glu Trp Asp Phe Gly Lys Glu Ile Cys Val Phe Trp Leu Thr Thr Asp 20 25 30	
Tyr Leu Leu Cys Thr Ala Ser Val Tyr Asn Ile Val Leu Ile Ser Tyr 35 40 45	
Asp Arg Tyr Leu Ser Val Ser Asn Ala Val Ser Arg Thr His Phe Ile 50 55 60	
Pro Leu Arg Arg Leu Cys Lys Cys Ile 65 70	
<210> 7 <211> 507 <212> DNA <213> Homo sapiens	
<400> 7 gacgtcgaag caggtgatga tgcccagggc gtgcaccggg taggtgagat cggtgcgcgc	60
cagcggggac agggcggtca ggagcagcag ccaggtccct gcacacgcgg ccaccgcgta	120
acgacggcgg cgccagcgct tggagctgag cgggtacagg atccccagga agcgctccac	180
gctgatacag gtcatggtga ggatgctgga atacatgttt gcgtaaaagg ccacggtcac	240
cacgttgcaa agcagcaccc cgaataccca gtggtggcgg ttgcaatggt agtagatttg	300
gaaaggcaac acgctggcca gcatcaggtc cgtgacgctc aggttgatca tgaagatgac	360
cgacggggat ctgggcccca tgcgccggca cagcacccac agagagaaga ggttgcccgg	420
gatgctgacc gccgccacca gcgagtacac cacgggcagg gccaccgcga tcgccgggtt	480
ccgcagcatc tgcagcgtcg cgttgtc	507

<210> 8 <211> 169

411USPHRM311.ST25

411USPHRM311.ST25 <212> PRT <213> Homo sapiens	
<400> 8	
Asp Asn Ala Thr Leu Gln Met Leu Arg Asn Pro Ala Ile Ala Val Ala 1 5 10 15	
Leu Pro Val Val Tyr Ser Leu Val Ala Ala Val Ser Ile Pro Gly Asn 20 25 30	
Leu Phe Ser Leu Trp Val Leu Cys Arg Arg Met Gly Pro Arg Ser Pro 35 40 45	
Ser Val Ile Phe Met Ile Asn Leu Ser Val Thr Asp Leu Met Leu Ala 50 55 60	
Ser Val Leu Pro Phe Gln Ile Tyr Tyr His Cys Asn Arg His His Trp 65 70 75 80	
Val Phe Gly Val Leu Cys Asn Leu Val Val Thr Val Ala Phe Tyr Ala 85 90 95	
Asn Met Tyr Ser Ser Ile Leu Thr Met Thr Cys Ile Ser Val Glu Arg	
Phe Leu Gly Ile Leu Tyr Pro Leu Ser Ser Lys Arg Trp Arg Arg 115 120 125	
Arg Tyr Ala Val Ala Ala Cys Ala Gly Thr Trp Leu Leu Leu Thr 130 135 140	
Ala Leu Ser Pro Leu Ala Arg Thr Asp Leu Thr Tyr Pro Val His Ala 145 150 155 160	
Leu Gly Ile Ile Thr Cys Phe Asp Val 165	
<210> 9 <211> 270 <212> DNA <213> Homo sapiens	
<400> 9 cccatgttcc tgctcctggg cagcctcacg ttgtcggatc tgctggcagg cgccgcctac	60
geegecaaca tectactgte ggggeegete aegetgaaae tgteeceege getetggtte	120
gcacgggagg gaggcgtctt cgtggcactc actgcgtccg tgctgagcct cctgggcatc	180
gegetggage geageeteae catggegege agggggeeeg egeeegtete eagteggggg	240
cgcacgctgg cgatggcagc cgcggcctgg	270
<210> 10 <211> 90 <212> PRT <213> Homo sapiens <400> 10 Pro Met Phe Leu Leu Gly Ser Leu Thr Leu Ser Asp Leu Leu Ala	
1 5 10 15	

60

Gly Ala	Ala	Tyr	Ala	Ala	Asn	Ile	Leu	Leu	Ser	Gly	Pro	Leu	Thr	Leu
-		20					25			_		30		

Lys Leu Ser Pro Ala Leu Trp Phe Ala Arg Glu Gly Gly Val Phe Val 35 40 45

Ala Leu Thr Ala Ser Val Leu Ser Leu Leu Gly Ile Ala Leu Glu Arg
50 60

Ser Leu Thr Met Ala Arg Arg Gly Pro Ala Pro Val Ser Ser Arg Gly 65 70 75 80

ctgctcattg tggcctttgt gctgggcgca ctaggcaatg gggtcgccct gtgtggtttc

Arg Thr Leu Ala Met Ala Ala Ala Trp 85 90

<210> 11

<211> 888

<212> DNA

<213> Homo sapiens

<400> 11

tgcttccaca tgaagacctg gaagcccagc actgtttacc ttttcaattt ggccgtggct 120 gatttcctcc ttatgatctg cctgcctttt cggacagact attacctcag acgtagacac 180 tgggcttttg gggacattcc ctgccgagtg gggctcttca cgttggccat gaacagggcc 240 gggagcatcg tgttccttac ggtggtggct gcggacaggt atttcaaagt ggtccacccc 300 caccacgegg tgaacactat ctccaccegg gtggcggctg gcatcgtctg caccetgtgg 360 qccctqqtca tcctqqqaac agtqtatctt ttqctqqaqa accatctctq cqtqcaaqaq 420 acggccgtct cctgtgagag cttcatcatg gagtcggcca atggctggca tgacatcatg 480 ttccagctgg agttctttat gcccctcggc atcatcttat tttgctcctt caagattgtt 540 tggagcctga ggcggaggca gcagctggcc agacaggctc ggatgaagaa ggcgacccgg 600 ttcatcatgg tggtggcaat tgtgttcatc acatgctacc tgcccagcgt gtctgctaga 660 ctctatttcc tctggacggt gccctcgagt gcctgcgatc cctctgtcca tggggccctg 720 cacataaccc tcagcttcac ctacatgaac agcatgctgg atcccctggt gtattatttt 780 tcaagcccct cctttcccaa attctacaac aagctcaaaa tctgcagtct gaaacccaag 840 888 cagccaggac actcaaaaac acaaaggccg gaagagatgc caatttcg

<210> 12

<211> 296

<212> PRT

<213> Homo sapiens

<400> 12

Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly Asn Gly Val Ala 1 5 10 15

Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys Pro Ser Thr Val 20 25 30

Tyr Leu	Phe	Asn	Leu	Ala	Val	Ala	Asp	Phe	Leu	Leu	Met	Ile	Cys	Leu
_	35					40					45			

Pro Phe Arg Thr Asp Tyr Tyr Leu Arg Arg Arg His Trp Ala Phe Gly 50 55 60

Asp Ile Pro Cys Arg Val Gly Leu Phe Thr Leu Ala Met Asn Arg Ala 65 70 75 80

Gly Ser Ile Val Phe Leu Thr Val Val Ala Ala Asp Arg Tyr Phe Lys 85 90 95

Val Val His Pro His His Ala Val Asn Thr Ile Ser Thr Arg Val Ala 100 105 110

Ala Gly Ile Val Cys Thr Leu Trp Ala Leu Val Ile Leu Gly Thr Val

Tyr Leu Leu Glu Asn His Leu Cys Val Gln Glu Thr Ala Val Ser 130 135 140

Cys Glu Ser Phe Ile Met Glu Ser Ala Asn Gly Trp His Asp Ile Met 145 150 155 160

Phe Gln Leu Glu Phe Phe Met Pro Leu Gly Ile Ile Leu Phe Cys Ser 165 170 175

Phe Lys Ile Val Trp Ser Leu Arg Arg Gln Gln Leu Ala Arg Gln 180 185 190

Ala Arg Met Lys Lys Ala Thr Arg Phe Ile Met Val Val Ala Ile Val 195 200 205

Phe Ile Thr Cys Tyr Leu Pro Ser Val Ser Ala Arg Leu Tyr Phe Leu 210 215 220

Trp Thr Val Pro Ser Ser Ala Cys Asp Pro Ser Val His Gly Ala Leu 225 230 235 240

His Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met Leu Asp Pro Leu 245 250 255

Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Lys Phe Tyr Asn Lys Leu 260 265 270

Lys Ile Cys Ser Leu Lys Pro Lys Gln Pro Gly His Ser Lys Thr Gln 275 280 285

Arg Pro Glu Glu Met Pro Ile Ser 290 295

<210> 13

<211> 510

<212> DNA

<213> Homo sapiens

<400> 13

tggagctgtg ccaccaccta tctggtgaac ctgatggtgg ccgacctgct ttatgtgcta 60
ttgcccttcc tcatcatcac ctactcacta gatgacaggt ggcccttcgg ggagctgctc 120
tgcaagctgg tgcacttcct gttctatatc aacctttacg gcagcatcct gctgctgacc 180
tgcatctctg tgcaccagtt cctaggtgtg tgccacccac tgtgttcgct gccctaccgg 240

acccgcaggc	atgcctggct	gggcaccagc	accacctggg	ccctggtggt	cctccagctg	300
ctgcccacac	tggccttctc	ccacacggac	tacatcaatg	gccagatgat	ctggtatgac	360
atgaccagcc	aagagaattt	tgatcggctt	tttgcctacg	gcatagttct	gacattgtct	420
ggctttcttt	ccctccttgg	tcattttggt	gtgctattca	ctgatggtca	ggagcctgat	480
caagccagag	gagaacctca	tgaggacagg				510

<210> 14 <211> 170 <212> PRT

<213> Homo sapiens

<400> 14

Trp Ser Cys Ala Thr Thr Tyr Leu Val Asn Leu Met Val Ala Asp Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Tyr Val Leu Leu Pro Phe Leu Ile Ile Thr Tyr Ser Leu Asp Asp 20 25 30

Arg Trp Pro Phe Gly Glu Leu Leu Cys Lys Leu Val His Phe Leu Phe 35 40 45

Tyr Ile Asn Leu Tyr Gly Ser Ile Leu Leu Leu Thr Cys Ile Ser Val 50 55 60

His Gln Phe Leu Gly Val Cys His Pro Leu Cys Ser Leu Pro Tyr Arg 65 70 75 80

Thr Arg Arg His Ala Trp Leu Gly Thr Ser Thr Thr Trp Ala Leu Val 85 90 95

Val Leu Gln Leu Leu Pro Thr Leu Ala Phe Ser His Thr Asp Tyr Ile 100 105 110

Asn Gly Gln Met Ile Trp Tyr Asp Met Thr Ser Gln Glu Asn Phe Asp 115 120 125 $\dot{}$

Arg Leu Phe Ala Tyr Gly Ile Val Leu Thr Leu Ser Gly Phe Leu Ser 130 $$135\$

Leu Leu Gly His Phe Gly Val Leu Phe Thr Asp Gly Gln Glu Pro Asp 145 150 155 160

Gln Ala Arg Gly Glu Pro His Glu Asp Arg 165 170

<210> 15 <211> 894

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (431)..(461)

<223> n is any nucleotide

<400> 15

ccaccacgcg cagcacgccg acagggcctc tccctcccat tctcccgcag gcccggacga

			41100	1111113777.012.	J	
ccacgctgcc	tccagccggt	cggcaaacta	gggcagctcg	cagcccacga	acagcagccc	120
cagcagctgg	ctcatcttca	ggctctgcac	cttggcgcgg	ggcatcgcgc	tgggcgcacg	180
ggctccacct	gggctcgccg	accaggccgc	tgcacccgct	ggggccttca	gccggtgccg	240
ccaccagacg	gagagtaggt	ggccacaagc	gacacccatg	atcttaacag	gcgcgacgaa	300
gcccgcgacg	gcctcataga	acgcgtacac	ctgcacgtgc	cagcgctgca	ggagcgcgaa	360
gatccagtgg	cagcgacgca	tccccggcca	ggctcgggcg	gagagtggcg	cgcctggctg	420
cagagacgtt	nnnnnnnn	nnnnnnnn	nnnnnnnn	nagtactagc	gcaccacaaa	480
ccccgacccc	cgcgccagca	gcagtgccag	cagccagccc	agggcggcga	gggcacgcgc	540
gggcagcggc	cggccgtgcg	gaagacgcac	cgcgcgccgg	cgctcgaggg	cgatgagcac	600
cacgaggtgg	gccgaggcgc	cccgcccgga	tgcctgcagc	agctgcagga	agcggcacgc	660
caggtccccc	gtggccgcgc	ggggctcgcc	cagcagttcc	caggccagct	gtgacagcgc	720
cgtgcccccg	cacgcgtaca	ggtccgccag	ggccagctgc	accagcagga	agtccatctt	780
gcgacgcttn	nnnnnnnn	nnnnnnnn	nnnnnnnac	aggcggcaca	gcactgtggt	840
gttgcctgcc	accgccacca	ccaggatgac	ccccaggaac	accaggcgga	cgcg	894

<210> 16 <211> 296 <212> PRT <213> Homo sapiens <220>

<221> UNSURE

<222> (26)..(35) <223> Xaa is unknown

<220>

<221> UNSURE

<222> (144)..(154) <223> Xaa is Unknown

<400> 16

Arg Val Arg Leu Val Phe Leu Gly Val Ile Leu Val Val Ala Val Ala 1 5 10 15

Gly Asn Thr Thr Val Leu Cys Arg Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30

Xaa Xaa Lys Arg Arg Lys Met Asp Phe Leu Leu Val Gln Leu Ala 35 40 45

Leu Ala Asp Leu Tyr Ala Cys Gly Gly Thr Ala Leu Ser Gln Leu Ala 50 60

Trp Glu Leu Leu Gly Glu Pro Arg Ala Ala Thr Gly Asp Leu Ala Cys 65 70 75 80

Arg Phe Leu Gln Leu Leu Gln Ala Ser Gly Arg Gly Ala Ser Ala His $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

411USPHRM311.5125
Leu Val Val Leu Ile Ala Leu Glu Arg Arg Arg Ala Val Arg Leu Pro 100 105 110
His Gly Arg Pro Leu Pro Ala Arg Ala Leu Ala Ala Leu Gly Trp Leu 115 120 125
Leu Ala Leu Leu Leu Ala Arg Gly Ser Gly Phe Val Val Arg Tyr Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Thr Ser Leu Gln Pro Gly 145 150 155 160
Ala Pro Leu Ser Ala Arg Ala Trp Pro Gly Met Arg Arg Cys His Trp 165 170 175
Ile Phe Ala Leu Leu Gln Arg Trp His Val Gln Val Tyr Ala Phe Tyr 180 185 190
Glu Ala Val Ala Gly Phe Val Ala Pro Val Lys Ile Met Gly Val Ala 195 200 205
Cys Gly His Leu Leu Ser Val Trp Trp Arg His Arg Leu Lys Ala Pro 210 215 220
Ala Gly Ala Ala Ala Trp Ser Ala Ser Pro Gly Gly Ala Arg Ala Pro 225 230 235 240
Ser Ala Met Pro Arg Ala Lys Val Gln Ser Leu Lys Met Ser Gln Leu 245 250 255
Leu Gly Leu Leu Phe Val Gly Cys Glu Leu Pro Phe Ala Asp Arg Leu 260 265 270
Glu Ala Ala Trp Ser Ser Gly Pro Ala Gly Glu Trp Glu Gly Glu Ala 275 280 285
Leu Ser Ala Cys Cys Ala Trp Trp 290 295
<210> 17 <211> 801 <212> DNA <213> Homo sapiens
<pre>- <400> 17 tctaagtttt tctctgaact ttgagcctgt gaaaaaagaa gggatgctgc ctcaggccac</pre>
cccagcctag atactcactc tgagtgccat gaggtagtag aggacactga tgacagtcat
ggggaggagg tagaatagga aggaggtgac ctggatgatg aaattgtaga tccacatggg
cttgatgacc gtacaggtgg ccgaacctgg gaccagggac ccattgggga agtagtggaa

60 120 180 240 cttgatgcca tggatgctgg tgttgggcag ggagaagac acggagaagc cccagacgat 300 gccgaggatc ctgagggccc ggcgccgggt gctctgcagt ttggcgcgga acgggtgtag 360 gatggccacg tagcgctcca cgctgacggt ggtgatgctg aggatggagg cgaagcacac 420 ggtctcaaag agggccgtct tgaagtagca gcccacgggc ccgaacaaga aagggtagtt 480 gcgccacatc tcatagacct ccaggggcat tccaaggagc aggaccagga ggtcagagac 540 600 cgccaggctg aagaggtagt agttggtggg cgtcttcata gcctggtgct gcagaatcac

gctgttcagg tgtttctgga atggatcttc tagtttctgc tggtagatcc aggaagcatt 78	caggcacacc	aggacattgc	caatgacccc	caccacaaaa	attggcacat	acaccacaga	660
	cacggggagg	aagaagtggc	tgcgccgagg	tccgcagagg	aaggccagat	actcctcggt .	720
ctgaagtttt tccatccctg a	gctgttcagg	tgtttctgga	atggatcttc	tagtttctgc	tggtagatcc	aggaagcatt	780
organization controlled in	ctgaagtttt	tccatccctg	a				801

<210> 18 <211> 249 <212> PRT <213> Homo sapiens

<400> 18

Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln Lys 1 5 10 15

Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr Leu 20 25 30

Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val Ser 35 40 45

Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val Leu 50 55 60

Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Asn Thr 65 70 75 80

Tyr Tyr Leu Phe Ser Leu Ala Val Ser Asp Leu Leu Val Leu Leu Leu 85 90 95

Gly Met Pro Leu Glu Val Tyr Glu Met Trp Arg Asn Tyr Pro Phe Leu 100 105 110

Phe Gly Pro Val Gly Cys Tyr Phe Lys Thr Ala Leu Phe Glu Thr Val 115 120 125

Val Ala Ile Leu His Pro Phe Arg Ala Lys Leu Gln Ser Thr Arg Arg 145 $$ 150 $$ 155 $$ 160

Arg Ala Leu Arg Ile Leu Gly Ile Val Trp Gly Phe Ser Val Leu Phe $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Ser Leu Pro Asn Thr Ser Ile His Gly Ile Lys Phe His Tyr Phe Pro 180 185 190

Asn Gly Ser Leu Val Pro Gly Ser Ala Thr Cys Thr Val Ile Lys Pro $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm}$

Met Trp Ile Tyr Asn Phe Ile Ile Gln Val Thr Ser Phe Leu Phe Tyr 210 220

Leu Leu Pro Met Thr Val Ile Ser Val Leu Tyr Tyr Leu Met Ala Leu 225 230 235 240

Arg Val Ser Ile Ala Gly Val Ala Gly 245

411USPHRM311.ST25	
<210> 19 <211> 222 <212> DNA <213> Homo sapiens	
<400> 19 atcaagatga tttttgctat cgtgcaaatt attggatttt ccaactccat ctgtaatccc	60
attgtctatg catttatgaa tgaaaacttc aaaaaaaatg ttttgtctgc agtttgttat	120
tgcatagtaa ataaaacctt ctctccagca caaaggcatg gaaattcagg aattacaatg	180
atgcggaaga aagcaaagtt ttccctcaga gagaatccag tg	222
<210> 20 <211> 73 <212> PRT <213> Homo sapiens	
<400> 20	
Ile Lys Met Ile Phe Ala Ile Val Gln Ile Ile Gly Phe Ser Asn Ser 1 5 10 15	
Ile Cys Asn Pro Ile Val Tyr Ala Phe Met Asn Glu Asn Phe Lys Lys 20 25 30	
Asn Val Leu Ser Ala Val Cys Tyr Cys Ile Val Asn Lys Thr Phe Ser 35 40 45	
Pro Ala Gln Arg His Gly Asn Ser Gly Ile Thr Met Met Arg Lys Lys 50 55 60	
Ala Lys Phe Ser Leu Arg Glu Asn Pro	
65 70	
<210> 21 <211> 447 <212> DNA <213> Homo sapiens	
<400> 21	
gccacagcat gcagttttct gtagaattcc actttgtctt tgcacttgaa gaagatgagg	60
tatctggtga ccaggatcac cacatagaat aggaaccgtg aggtacatgt ggatgtgcag	120
catggcactc acaaatttgc agaagggcag cccaaacatc caagtcttct tgatgaggta	180 240
ggtcaagcga aatggcactg tcagcagaaa aacgctgtgg accaccacca agttaatgac	300
cgccatggtg gtcactgacc gggtgttcat tttcaccagg aggaaaagaa tggaaatgac	360
acceaceage cegecaataa geactatgaa gtagaggetg attaagtggg gtgteactat aggategeaa gaggaattee tggaggtatt gtggeeagge atacttggga agteacetgg	420
·	447
aggagaaaaa gcaccagagt aactgac	74/
<210> 22 <211> 149 <212> PRT <213> Homo sapiens	

<400>	22															
Val Ser 1	Tyr	Ser	Gly 5	Ala	Phe	Ser	Pro	Pro 10	Gly	Asp	Phe	Pro	Ser 15	Met		
Pro Gly	His	Asn 20	Thr	Ser	Arg	Asn	Ser 25	Ser	Cys	Asp	Pro	Ile 30	Val	Thr		
Pro His	Leu 35	Ile	Ser	Leu	Tyr	Phe 40	Ile	Val	Leu	Ile	Gly 45	Gly	Leu	Val		
Gly Val 50	Ile	Ser	Ile	Leu	Phe 55	Leu	Leu	Val	Lys	Met 60	Asn	Thr	Arg	Ser		
Val Thr 65	Thr	Met	Ala	Val 70	Ile	Asn	Leu	Val	Val 75	Val	His	Ser	Val	Phe 80		
Leu Leu	Thr	Val	Pro 85	Phe	Arg	Leu	Thr	Tyr 90	Leu	Ile	Lys	Lys	Thr 95	Trp		
Met Phe	Gly	Leu 100	Pro	Phe	Cys	Lys	Phe 105	Val	Ser	Ala	Met	Leu 110	His	Ile		
His Met	Tyr 115	Leu	Thr	Val	Pro	Ile 120	Leu	Cys	Gly	Asp	Pro 125	Gly	His	Gln		
Ile Pro 130	His	Leu	Leu	Gln	Val 135	Gln	Arg	Gln	Ser	Gly 140	Ile	Leu	Gln	Lys		
Thr Ala 145	Cys	Суѕ	Gly													
<211> 2 <212> 1	23 222 DNA Homo	sapi	iens													
<400> 2	23 aag q	gtcag	gggca	at co	gacto	gaggo	c tag	gaago	gcca	cago	gaaat	gc (cagto	caaggt		60
gttggcg	cct q	gcaat	tcgca	ac ct	cacca	acaaa	a ctt	gaco	cggg	ggca	aggg	ggg (caggo	ccgcc	1	20
agcgaaca	acg q	gtcag	gcago	ca co	cagto	ccatt	gca	agago	cacg	gaga	agcaa	aca (cgate	ggccca	1	80
cacggcca	agg (cggat	gcc	cc aq	gctti	caaa	a gaq	ggtad	ctca	ca					2	22
<211>	24 74 PRT															

<212> PRT <213> Homo sapiens

<400> 24

Cys Glu Tyr Leu Phe Glu Ser Trp Gly Ile Arg Leu Ala Val Trp Ala

Ile Val Leu Leu Ser Val Leu Cys Asn Gly Leu Val Leu Leu Thr Val

Phe Ala Gly Gly Pro Ala Pro Leu Pro Pro Val Lys Phe Val Val Gly

Ala Ile Ala Gly Ala Asn Thr Leu Thr Gly Ile Ser Cys Gly Leu Leu 55

Ala Ser Val Asp Ala Leu Thr Leu Val Ser 65 70		
<210> 25 <211> 246 <212> DNA <213> Homo sapiens		
<400> 25 aaccccatca tctacacgct caccaaccgc gacctgcgcc acgcgctcct gcgcctggtc	60	
tgctgcggac gccactcctg cggcagagac ccgagtggct cccagcagtc ggcgagcgcg	120	
gctgaggctt ccgggggcct gcgccgctgc ctgccccgg gccttgatgg gagcttcagc	180	
ggctcggagc gctcatcgcc ccagcgcgac gggctggaca ccagcggctc cacaggcagc	240	
cccggt	246	
<210> 26 <211> 82 <212> PRT <213> Homo sapiens		
<400> 26		
Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg His Ala Leu 1 5 10 15		
Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg Asp Pro Ser 20 25 30		
Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly Gly Leu Arg 35 40 45		
Arg Cys Leu Pro Pro Gly Leu Asp Gly Ser Phe Ser Gly Ser Glu Arg 50 55 60		
Ser Ser Pro Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser Thr Gly Ser 65 70 75 80		
Pro Gly		
<210> 27 <211> 420 <212> DNA <213> Homo sapiens		
<220> <221> misc_feature <222> (81)(106) <223> n is any nucleic acid		
<400> 27 cgtgaagaac agcgccacca tgaccagcat gtgcaccacg cgcgctctgc gccgcgatgc	60	
togogggtcc gcagcetect nnnnnnnnn nnnnnnnnn nnnnnntggc agagettgcg	120	
cgcgatgcgg gcgtacatga ccacgatgag cgccagcggc gccaggtaga tgtgcgagaa	180	
	240	
gagcacagtg gtgtagaccc tgcgcatgcc cttctcgggc caggcctccc agcaggagta Page 15	240	

411USPHRM311.ST25														
gagagggtag ga	gcggttgc gggcgt	ccac catgaagtgg	tgctcctcac gggtgacggt	300										
cagegtgaeg ge	cgagggac acatga	tgag cagcgccagg	gcccagatga cggcgatggt	360										
gacgagcgcc tt	ccgcaggg tcagct	tctc gcggaaaggg	tgcacgatgc agcggaacct	420										
<210> 28 <211> 139 <212> PRT <213> Homo sapiens <220> <221> UNSURE <222> (104)(113) <223> Xaa is Unknown														
<223> Xaa is	Unknown													
<400> 28														
Phe Arg Cys I	le Val His Pro : 5	Phe Arg Glu Lys 10	Leu Thr Leu Arg Lys 15											
Ala Leu Val Ti 20		Ile Trp Ala Leu 25	Ala Leu Leu Ile Met 30											
Cys Pro Ser A		Thr Val Thr Arg 40	Glu Glu His His Phe 45											
Met Val Asp A	la Arg Asn Arg : 55	Ser Tyr Pro Leu	Tyr Ser Cys Trp Glu 60											
Ala Trp Pro G	lu Lys Gly Met 7 70	Arg Arg Val Tyr 75	Thr Thr Val Leu Phe 80											
Ser His Ile T	yr Leu Ala Pro 1 85	Leu Ala Leu Ile 90	Val Val Met Tyr Ala 95											
	rg Lys Leu Cys 2 00	Xaa Xaa Xaa Xaa 105	Xaa Xaa Xaa Xaa 110											
Xaa Glu Ala A 115		Ala Ser Arg Arg 120	Arg Ala Arg Val Val 125											

His Met Leu Val Met Val Ala Leu Phe Phe Thr $130\,$

<210> 29 <211> 318

<212> DNA

<213> Homo sapiens

<400> 29

gcagggggg tgagtcctca ggcacttctt gaggtccttg ttgagcagga agcagacaat 60
tgggttgacg gcagcctggg cgaagctcat ccaaacagca gtggccaggt agcggtgggg 120
cacagcacag gcttcacaa acactcgcca gtagcaggcc acgatgtagg gtgaccagag 180
gagcagaaag agcagtgtga tcgcgtagaa catgcggccc agctgcttt cacccttgac 240
ctcgtccatg cccagtagcc gccggctggc tgcatgcca ttctgccgga tacccagcag 300
ggttggtggc atgggccc 318

	<21: <21: <21: <21:	1> 2>	30 106 PRT Homo	sap:	iens													
	<40	0>	30															
	Gly 1	Pro) Met	Pro	Pro 5	Thr	Leu	Leu	Gly	Ile 10	Arg	Gln	Asn	Gly	His 15	Ala		
	Ala	Ser	Arg	Arg 20	Leu	Leu	Gly	Met	Asp 25	Glu	Val	Lys	Gly	Glu 30	Lys	Gln		
	Leu	Gly	Arg 35	Met	Phe	Tyr	Ala	Ile 40	Thr	Leu	Leu	Phe	Leu 45	Leu	Leu	Trp		
	Ser	Pro 50) Tyr	Ile	Val	Ala	Cys 55	Tyr	Trp	Arg	Val	Phe 60	Val	Lys	Ala	Cys		
	Ala 65	Val	Pro	His	Arg	Tyr 70	Leu	Ala	Thr	Ala	Val 75	Trp	Met	Ser	Phe	Ala 80		
	Gln	Ala	a Ala	Val	Asn 85	Pro	Ile	Val	Суз	Phe 90	Leu	Leu	Asn	Lys	Asp 95	Leu		
	Lys	Lys	s Cys	Leu 100	Arg	Thr	His	Ala	Pro 105	Cys								
•	<21: <21: <21: <21:	1> 2>	31 354 DNA Homo	sap	iens					•								
	<400		31 gtaa	tgaaq	gaato	gt ca	attca	acact	t gco	catto	ggca	cato	ccagi	tgg (cctca	acctag		60
	cat	tgto	gaaa (gccci	tcg	gt to	ggtgt	atto	g cca	actto	catt	ttaa	aaag	gat q	gcaca	agtcc	:	120
	ctg	gtgo	ctt	tcca	cagca	aa to	gcago	gtcat	t agt	gag	gatt	tct	gtca	caa o	cagc	ggtaga	;	180
	ctg	gaca	aat (ggca	ccato	ct to	gcaaa	atgaa	a ago	cacct	tgca	gtaa	aggaa	aat a	aggat	taaatc	:	240
	ata	cato	caaa .	acaa	aaaga	aa ta	aaag	gttt	c ato	ctgtg	gtct	ttgi	taat	tat o	cacta	atcagt	:	300
	cca	ttct	gag	cctc	tgcca	aa aa	aagtt	tgat	t aat	tgta	aatt	acto	ctgta	aga (caca		;	354
	<21: <21: <21: <21:	1> 2>	32 117 PRT Homo	sap:	iens													
	<40	0>	32															
	Val 1	Туг	Arg	Val	Ile 5	Thr	Ile	Ile	Lys	Leu 10	Phe	Gly	Arg	Gly	Ser 15	Glu		

Phe Val Leu Met Tyr Asp Leu Ser Tyr Phe Leu Thr Ala Gly Ala Phe 35 40 45

Trp Thr Asp Ser Asp Asn Tyr Lys Asp Thr Asp Glu Thr Phe Ile Leu 20 25 30

Ile	Cys	Lys	Met	Val	Pro	Phe	Val	Gln	Ser	Thr	Ala	Val	Val	Thr	Glu
	50	_				55					60				

Ile Leu Thr Met Thr Cys Ile Ala Val Glu Arg His Gln Gly Leu Val 65 70 75 80

His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg Arg Ala Phe Thr 85 90 95

Met Leu Gly Glu Ala Thr Gly Cys Ala Asn Gly Ser Val Asn Asp Ile 100 105 110

Leu His Tyr Arg Ile 115

<210> 33

<211> 621

<212> DNA

<213> Homo sapiens

<400> 33

gagcaacatg atctttttga agtacttgac ggtgtcgttc ttgacqgtca cgaaqcacaq 60 agtgttgatc atgctgttgc tcatggcgat gcactcgacg atgtagaagg cagtgaggta 120 gtgcttctcc ttcacaaaca cggtggggaa gaagtcgcgc acgatggtga agccgtagaa 180 gggcgcccag catagcacgt aggcggtgag gatgcacatg agcaccagga ccgtcttcct 240 gcggcagcgc agcctcttgc ggatctgctc tgtctggaat ccagggaccg ccttqaacca 300 gageteeegg gagateetgg catageacag ggteatggtg accaegggge ceaegaatte 360 tatgccaaag ataaagagga agtaggactt gtagtagagc tgctggtcca caggccagat 420 ctggccgcag aagatctttt cctggctctt gacaatgacg aggaccgtct cggtggtgaa 480 qtaqqcqqaa qqqatqqcqa tcaqqatqqa caccqtccac accaaqqcaa tcaqqccaqt 540 ggctgtttgg cacttcattc gtggtctcag cggatggaca atagccagat acctagggca 600 621 agaacacaag tggaggcagc c

<210> 34

<211> 207

<212> PRT

<213> Homo sapiens

<400> 34

Gly Cys Leu His Leu Cys Ser Cys Pro Arg Tyr Leu Ala Ile Val His 1 5 10 15

Pro Leu Arg Pro Arg Met Lys Cys Gln Thr Ala Thr Gly Leu Ile Ala 20 25 30

Leu Val Trp Thr Val Ser Ile Leu Ile Ala Ile Pro Ser Ala Tyr Phe 35 40 45

Thr Thr Glu Thr Val Leu Val Ile Val Lys Ser Gln Glu Lys Ile Phe 50 60

Cys Gly Gln Ile Trp Pro Val Asp Gln Gln Leu Tyr Tyr Lys Ser Tyr 65 70 75 80

Phe Leu Phe Ile Phe Gly Ile Glu Phe Val Gly Pro Val Val Thr Met 85 90 95	
Thr Leu Cys Tyr Ala Arg Ile Ser Arg Glu Leu Trp Phe Lys Ala Val 100 105 110	
Pro Gly Phe Gln Thr Glu Gln Ile Arg Lys Arg Leu Arg Cys Arg Arg 115 120 125	
Lys Thr Val Leu Val Leu Met Cys Ile Leu Thr Ala Tyr Val Leu Cys 130 135 140	
Trp Ala Pro Phe Tyr Gly Phe Thr Ile Val Arg Asp Phe Phe Pro Thr 145 150 155 160	
Val Phe Val Lys Glu Lys His Tyr Leu Thr Ala Phe Tyr Ile Val Glu 165 170 175	
Cys Ile Ala Met Ser Asn Ser Met Ile Asn Thr Leu Cys Phe Val Thr 180 185 190	
Val Lys Asn Asp Thr Val Lys Tyr Phe Lys Lys Ile Met Leu Leu 195 200 2,05	
<210> 35 <211> 483 <212> DNA <213> Homo sapiens	
<400> 35 cagccacact gcagtgatga aatcaaatgt ccaacaccaa ccatagtcac cattactaac	60
taagaagcca caaaacttcc cttccagggt gttcagcagc agggacaggg cccagggcag	120
ggcacacatg acagttgaca ggtttcttgg gcagcagcag cagtaccaga taggccgcag	180
gacagacagg cagcactcag tactgatggc actcagcatg ctcaggccta caaggtaggc	240
aaaggtcatc acgctggtga agaagctagg gaaattgatg gagatggaac agaagaagtt	300
actgaggtac accaggcaat ttataatctg gaagcagagg aagaggaagt cggccccggc	360
caggetgagg aegtagacag agaaggegtt eetgegeatg eggaageeea ggageeagag	420
cacaaacccg tttcctacca gcccgaccag ggcaatgaaa aggatcagga agaccgggat	480
cag	483
<pre> <210> 36 <211> 161 <212> PRT <213> Homo sapiens </pre>	
<400> 36	
Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala Leu Val Gly Leu Val 1 5 10 15	
Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe Arg Met Arg Arg Asn 20 25 30	
Ala Phe Ser Val Tyr Val Leu Ser Leu Ala Gly Ala Asp Phe Leu Phe 35 40 45	

Leu Cys Phe Gln Ile Ile Asn Cys Leu Val Tyr Leu Ser Asn Phe Phe 50 55 60	
Cys Ser Ile Ser Ile Asn Phe Pro Ser Phe Phe Thr Ser Val Met Thr 65 70 75 80	
Phe Ala Tyr Leu Val Gly Leu Ser Met Leu Ser Ala Ile Ser Thr Glu 85 90 95	
Cys Cys Leu Ser Val Leu Arg Pro Ile Trp Tyr Cys Cys Cys Cys Pro 100 105 110	
Arg Asn Leu Ser Thr Val Met Cys Ala Leu Pro Trp Ala Leu Ser Leu 115 120 125	
Leu Leu Asn Thr Leu Glu Gly Lys Phe Cys Gly Phe Leu Val Ser Asn 130 135 140	
Gly Asp Tyr Gly Trp Cys Trp Thr Phe Asp Phe Ile Thr Ala Val Trp 145 150 155 160	
Leu	
<210> 37 <211> 330 <212> DNA <213> Homo sapiens	
<400> 37 gagagtetga ttetgaetta cateacatat gtaggeetgg geatttetat ttgeageetg	60
atcetttget tgtccgttga ggtcctagtc tggagccaag tgacaaagac agagatcacc	120
tatttacgcc atgtgtgcat tgttaacatt gcagccactt tgctgatggc agatgtgtgg	180
ttcattgtgg cttcctttct tagtggccca ataacacacc acaagggatg tgtggcagcc	240
acattttttg gtcatttctt ttacctttct gtatttttct ggatgcttgc caaggcactc	300
cttatcctct atggaatcat gattgttttc	330
<210> 38 <211> 110 <212> PRT <213> Homo sapiens	
<400> 38	
Glu Ser Leu Ile Leu Thr Tyr Ile Thr Tyr Val Gly Leu Gly Ile Ser 1 5 10 15	
Ile Cys Ser Leu Ile Leu Cys Leu Ser Val Glu Val Leu Val Trp Ser 20 25 30	
Gln Val Thr Lys Thr Glu Ile Thr Tyr Leu Arg His Val Cys Ile Val 35 40 45	
Asn Ile Ala Ala Thr Leu Leu Met Ala Asp Val Trp Phe Ile Val Ala 50 55 60	
Ser Phe Leu Ser Gly Pro Ile Thr His His Lys Gly Cys Val Ala Ala 65 70 75 80	

Thr	Phe	Phe	Gly	His	Phe	Phe	Tyr	Leu	Ser	Val	Phe	Phe	Trp	Met	Leu
			_	85					90					95	

Ala	Lys	Ala	Leu	Leu	Ile	Leu	Tyr	Gly	Ile	Met	Ile	Val	Phe
	_		100					105					110

<210> 39

<211> 628

<212> DNA

<213> Homo sapiens

<400> 39

ttgtgtggca gtagagagat gtcaggcttc agagtcaaca agaactggat ttcaaactgg 60 atttgaggac ccccaccttt ggtaagtgac ttattatctg cgagcctctg tttctctctt 120 ctttaaatga ggacagtaaa tcccatacgg cagggtggtg gggagaatca gagatgatac 180 agctggtgat cacatctggt ttgtgttccc aggggcacca gactagggtt tctgagcatg 240 qatccaaccq tcccagtctt cggtacaaaa ctgacaccaa tcaacggacg tgaggagact 300 ccttgctaca atcagaccct gagcttcacg gtgctgacgt gcatcatttc ccttgtcgga 360 ctgacaggaa acgcggtagt gctctggctc ctgggctacc gcatgcgcag gaacgctgtc 420 tocatotaca tootcaacot ggoogcagoa gaottootot tootcagott coagattata 480 cqttcqccat tacqcctcat caatatcaqc catctcatcc qcaaaatcct cqtttctqtq 540 atgacettte cetaetttae aggeetgagt atgetgageg ceateageae egagegetge 600 628 ctgtctgttc tgtggcccat ctggtacc

<210> 40

<211> 205

<212> PRT

<213> Homo sapiens

<400> 40

Leu Cys Gly Ser Arg Glu Met Ser Gly Phe Arg Val Asn Lys Asn Trp $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Ser Asn Trp Ile Gly Pro Pro Pro Leu Val Ser Asp Leu Leu Ser 20 25 30

Ala Ser Leu Cys Phe Ser Leu Leu Met Arg Thr Val Asn Pro Ile Arg 35 40 45

Gln Gly Gly Glu Asn Gln Arg Tyr Ser Trp Ser His Leu Val Cys 50 55 60

Val Pro Arg Gly Thr Arg Leu Gly Phe Leu Ser Met Asp Pro Thr Val 65 70 75 80

Pro Val Phe Gly Thr Lys Leu Thr Pro Ile Asn Gly Arg Glu Glu Thr 85 90 95

Pro Cys Tyr Asn Gln Thr Leu Ser Phe Thr Val Leu Thr Cys Ile Ile 100 105 110

Ser Leu Val Gly Leu Thr Gly Asn Ala Val Val Leu Trp Leu Leu Gly Page 21

Tyr Arg Met Arg Arg Asn Ala Val Ser Ile Tyr Ile Leu Asn Leu Ala 130 135 140	
Ala Ala Asp Phe Leu Phe Leu Ser Phe Gln Ile Ile Arg Ser Pro Leu 145 150 155 160	
Arg Leu Ile Asn Ile Ser His Leu Ile Arg Lys Ile Leu Val Ser Val 165 170 175	
Met Thr Phe Pro Tyr Phe Thr Gly Leu Ser Met Leu Ser Ala Ile Ser 180 185 190	
Thr Glu Arg Cys Leu Ser Val Leu Trp Pro Ile Trp Tyr 195 200 205	
<210> 41 <211> 319 <212> DNA <213> Homo sapiens	
<400> 41 acagaaaqca aggccaccag gaccttaggc atagtcatgg gagtgtttgt gttgtgctgg	60
ctgcccttct ttgtcttgac gatcacagat cctttcatta attttacaac ccttgaagat	120
ctgtacaatg tcttcctctg gctaggctat ttcaactctg ctttcaatcc cattttatat	180
ggcatgcttt atccttggtt tcgcaaggca ttgaggatga ttgtcacagg catgatcttc	240
caccetgact ettecaccet aageetgttt tetgeecatg ettaggetgt gtteateatt	300
caataggact ctttctgg	319
<210> 42 <211> 103 <212> PRT <213> Homo sapiens	
<400> 42	
Thr Glu Ser Lys Ala Thr Arg Thr Leu Gly Ile Val Met Gly Val Phe 1 10 15	
Val Leu Cys Trp Leu Pro Phe Phe Val Leu Thr Ile Thr Asp Pro Phe 20 25 30	
Ile Asn Phe Thr Thr Leu Glu Asp Leu Tyr Asn Val Phe Leu Trp Leu 35 40 45	
Gly Tyr Phe Asn Ser Ala Phe Asn Pro Ile Leu Tyr Gly Met Leu Tyr 50 55 60	
Pro Trp Phe Arg Lys Ala Leu Arg Met Ile Val Thr Gly Met Ile Phe 65 70 75 80	
His Pro Asp Ser Ser Thr Leu Ser Leu Phe Ser Ala His Ala Ala Val 85 90 95	
Phe Ile Ile Gln Asp Ser Phe 100	

411USPHRM311.ST25 <211> 515 <212> DNA
<212> DNA <213> Homo sapiens
<400> 43 taggaatete agagaagaaa gtaaggaace agaaaaceat aaaagaatgt aaatggaaaa
gaatcagcaa atcttattca cttatcacta aatctaaaat atgtcaaaat acatgaagac
aacaaatgct ttagaacaac tgttgaatgt attgtcctac aacttggcat atgatcatgc
ttgcctctct atgtccaagt gtttattttt gcagttgacc ttaatttcaa gttagttttg
aggtetetae agtaatgttt ttaatetgte tetaettett cagaaaataa attagttgtt
gacgaatcag tccttaagac cttgccgctt acaataagtt ttattgcctt cccaaaccat
tggtaaaaga aagcataaat caaggggttc atagctgaat tataataaac acaccaaact
aaaatctcat aaacataagg aggagttata aaattcatat aagcatcaat cactgcatca
acgaggtatg gtagccaaga gacaagaaat gctgc
.010
<210> 44 <211> 148
<212> PRT <213> Homo sapiens
<400> 44
Leu His Gln Arg Gly Met Val Ala Lys Arg Gln Glu Met Leu Ala Ala 1 10 15
Phe Leu Val Ser Trp Leu Pro Tyr Leu Val Asp Ala Val Ile Asp Ala 20 25 30
Tyr Met Asn Phe Ile Thr Pro Pro Tyr Val Tyr Glu Ile Leu Val Trp 35 40 45
Cys Val Tyr Tyr Asn Ser Ala Met Asn Pro Leu Ile Tyr Ala Phe Phe 50 60
Tyr Gln Trp Phe Gly Lys Ala Ile Lys Leu Ile Val Ser Gly Lys Val 65 70 75 80
Leu Arg Thr Asp Ser Ser Thr Thr Asn Leu Phe Ser Glu Glu Val Glu 85 90 95
Thr Asp Lys His Tyr Cys Arg Asp Leu Lys Thr Asn Leu Lys Leu Arg 100 105 110
Ser Thr Ala Lys Ile Asn Thr Trp Thr Arg Gly Lys His Asp His Met 115 120 125
Pro Ser Cys Arg Thr Ile His Ser Thr Val Val Leu Lys His Leu Leu 130 135 140
Ser Ser Cys Ile 145
<210> 45 <211> 726 <212> DNA <213> Homo sapiens

<400	0> 4	45														
ctg	gaaa	gag (gtcc	tcga [.]	tc ta	atcc	tcta	c gc	cgtc	cttg	gtt	ttgg	ggc	tgtg	ctggca	60
gcgi	tttg	gaa a	actta	actg	gt ca	atga	ttgc	t at	cctt	cact	tct	aacaa	act	gcac	acacct	120
acaa	aacti	ttc	tgati	tgcg [,]	tc g	ctgg	cctg	t gc	tgac	ttct	tgg [.]	tggg	agt	cact	gtgatg	180
ccct	ttca	gca (cagt	gagg	tc to	gtgga	agago	c tg	ttgg	tact	ttg	ggga	cag	ttac	tgtaaa	240
ttc	cata	cat (gttti	tgac	ac a	tctt	tctg	t tt	tgct	tctt	tat	ttca	ttt	atgc	tgtatç	300
tct	gttga	ata (gata	catt	gc to	gtta	ctgai	t cc	tctg	acct	atc	caac	caa	gttt	actgtg	360
tca	gttt	cag (ggata	atgc	at to	gttc	tttc	c tg	gttc	tttt	ctg	tcaca	ata	cagc [.]	ttttcg	420
atc	tttta	aca (cggga	agcca	aa c	gaaga	aagga	a ati	tgag	gaat	tag	tagt	tgc	tcta	acctgt	480
gtag	ggag	gct	gcca	ggct	cc a	ctgaa	atcaa	a aa	ctgg	gtcc	tac	tttg	ttt	tctt	ctattc	540
ttta	ataco	cca a	atgto	cgcca	at g	gtgt	ttata	a tao	cagt	aaga	tat	tttt	ggt	ggcc	aagcat	600
cag	gctag	gga a	agata	agaa	ag ta	acago	ccago	c caa	agct	cagt	cct	tctca	aga	gagt	tacaag	660
gaaa	agagt	tag (caaaa	aaga	ga ga	agaaa	aggci	t gc	caaa	acct	tgg	gaat	tgc	tatg	gcagca	720
ttt	ctt															726
<210 <210 <210 <210	1> 2 2> 1	46 241 PRT Homo	sap	iens												
<400)> 4	46														
Leu 1	Glu	Arg	Gly	Pro 5	Arg	Ser	Ile	Leu	Tyr 10	Ala	Val	Leu	Gly	Phe 15	Gly	
Ala	Val	Leu	Ala 20	Ala	Phe	Gly	Asn	Leu 25	Leu	Val	Met	Ile	Ala 30	Ile	Leu	
His	Phe	Gln 35	Leu	His	Thr	Pro	Thr 40	Asn	Phe	Leu	Ile	Ala 45	Ser	Leu	Ala	
Суѕ	Ala 50	Asp	Phe	Leu	Val	Gly 55	Val	Thr	Val	Met	Pro 60	Phe	Ser	Thr	Val	
Arg 65	Ser	Val	Glu	Ser	Cys 70	Trp	Tyr	Phe	Gly	Asp 75	Ser	Tyr	Cys	Lys	Phe 80	
His	Thr	Суѕ	Phe	Asp 85	Thr	Ser	Phe	Суз	Phe 90	Ala	Ser	Leu	Phe	His 95	Leu	
Суѕ	Cys	Ile	Ser 100	Val	Asp	Arg	Tyr	Ile 105	Ala	Val	Thr	Asp	Pro 110	Leu	Thr	
Tyr	Pro	Thr 115	Lys	Phe	Thr	Val	Ser 120	Val	Ser	Gly	Ile	Cys 125	Ile	Val	Leu	
Ser	Trp 130	Phe	Phe	Ser	Val	Thr 135	Tyr	Ser	Phe	Ser	Ile 140	Phe	Tyr	Thr	Gly	
Ala 145	Asn	Glu	Glu	Gly	Ile 150	Glu	Glu	Leu	Val	Val 155	Ala	Leu	Thr	Cys	Val 160	

411USPHRM311.ST25	
Gly Gly Cys Gln Ala Pro Leu Asn Gln Asn Trp Val Leu Leu Cys Phe 165 170 175 '	
Leu Leu Phe Phe Ile Pro Asn Val Ala Met Val Phe Ile Tyr Ser Lys 180 185 190	
Ile Phe Leu Val Ala Lys His Gln Ala Arg Lys Ile Glu Ser Thr Ala 195 200 205	
Ser Gln Ala Gln Ser Phe Ser Glu Ser Tyr Lys Glu Arg Val Ala Lys 210 220	
Arg Glu Arg Lys Ala Ala Lys Thr Leu Gly Ile Ala Met Ala Ala Phe 225 230 240	
Leu	
<210> 47 <211> 660 <212> DNA <213> Homo sapiens	
<400> 47 aaccaggtgg ccttactcct aagacccctg gccttgtcta tggcctttat caacagctgt	60
ctcaatccag ttctctatgt cttcattggg catgacttct gggagcactt gctccactcc	120
ctgctagctg ccttagaacg ggcacttagc gaggagccag atagtgcctg aatcccagct	180
cccaggcaga tgagtccttt ataacatgac ccaatttcct actccatttt cccaccactc	240
aatcctcttc ccaaacagct ctaccataat ccaacatcca acagaattta agagaataaa	300
ccacaacttt taagtgagct ctatgtgcta ggtcatgttt tagaatacaa ccttaagtgc	360
ctggaagatg gaggcaagaa acaaacaagg tctcattctt tagaggaaga cagttcacca	420
agactcaaac agaaaaaaag atagttatct tgtgacaaaa caagtcataa aattgggtca	480
ggacctgcag caatgacttt atgctagaat ccagagcact agcaggaaac tgcttaaatt	540
ttacttaatc aaagtcaagt ttggacatac atgtcaggta aaacctagca gagatgagct	600
accttgattt taaaacttca agggatagct caatgtcatc aagatccttt tgatgacttg	660
<210> 48 <211> 211 <212> PRT <213> Homo sapiens	
<400> 48 '	
Asn Gln Val Ala Leu Leu Leu Arg Pro Leu Ala Leu Ser Met Ala Phe 1 5 10 15	
Ile Asn Ser Cys Leu Asn Pro Val Leu Tyr Val Phe Ile Gly His Asp 20 25 30	
Phe Trp Glu His Leu Leu His Ser Leu Leu Ala Ala Leu Glu Arg Ala 35 40 45	
The Grandle Charles And Grandle The Day Ale Day Charles Grandle	

Leu Ser Glu Glu Pro Asp Ser Ala Ile Pro Ala Pro Arg Gln Met Ser

	50					55			4:	11US	PHRM:	311.	ST25			
Pro 65	Leu	His	Asp	Pro	Ile 70	Ser	Tyr	Ser	Ile	Phe 75	Pro	Pro	Leu	Asn	Pro 80	
Leu	Pro	Lys	Gln	Leu 85	Tyr	His	Asn	Pro	Thr 90	Ser	Asn	Arg	Ile	Glu 95	Asn	
Lys	Pro	Gln	Leu 100	Leu	Ser	Glu	Leu	Tyr 105	Val	Leu	Gly	His	Val 110	Leu	Glu	
Tyr	Asn	Leu 115	Lys	Cys	Leu	Glu	Asp 120	Gly	Gly	Lys	Lys	Gln 125	Thr	Arg	Ser	
His	Ser 130	Leu	Glu	Glu	Asp	Ser 135	Ser	Pro	Arg	Leu	Lys 140	Gln	Lys	Lys	Arg	
Leu 145	Ser	Cys	Asp	Lys	Thr 150	Ser	His	Lys	Ile	Gly 155	Ser	Gly	Pro	Ala	Ala 160	

Met Thr Leu Cys Asn Pro Glu His Gln Glu Thr Ala Ile Leu Leu Asn

Gln Ser Gln Val Trp Thr Tyr Met Ser Gly Lys Thr Gln Arg Ala Thr

Leu Ile Leu Lys Leu Gln Gly Ile Ala Gln Cys His Gln Asp Pro Phe

Asp Asp Leu 210

<210> 49 <211> 465

<212> DNA <213> Homo sapiens

<400> 49

60 gcttgttcac ggccaccatc ctcaagctgt tgcgcacgga ggaggcgcac ggccgggagc agcggaggcg cgcggtgggc ctggccgcgg tggtcttgct ggcctttgtc acctgcttcg 120 cccccaacaa cttcgtgctc ctggcgcaca tcgtgagccg cctgttctac ggcaagagct 180 actaccacgt gtacaagctc acgctgtgtc tcagctgcct caacaactgt ctggacccgt 240 ttgtttatta ctttgcgtcc cgggaattcc agctgcgcct gcgggaatat ttgggctgcc 300 qccqqqtqcc caqaqacacc ctqqacacqc gccqcqaqaq cctcttctcc gccaqqacca 360 cgtccgtgcg ctccgaggcc ggtgcgcacc ctgaagggat ggagggagcc accaggcccg 420 465 gcctccagag gcaggagagt gtgttctgag tcccgggggc gcagc

<210> 50 <211> 160

<212> PRT

<213> Homo sapiens

<400> 50

Leu Phe Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu Glu Ala His 5

Gly	Arg	Glu	Gln	Arg	Arg	Arg	Ala	Val	Gly	Leu	Ala	Ala	Val	Val	Leu
20								25					30		

Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val Leu Leu Ala 35 40 45

His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr His Val Tyr 50 55 60

Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu Asp Pro Phe 65 70 75 80

Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu Arg Glu Tyr 85 90 95

Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr Arg Arg Glu 100 105 110

Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu Ala Gly Ala 115 120 125

His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu Gln Arg Gln 130 135 140

Glu Ser Val Phe Val Pro Gly Ala Gln Ala Ala Pro Pro Gly Leu Arg 145 150 155 160

<210> 51

<211> 603

<212> DNA

<213> Homo sapiens

<400> 51

ttacttattc tgccctttat ccaactttta attccctttg ctattctcct gcctcatttt 60 ctggcctcat tttccctatt atcctgcctc acattgatca agggatgagg ctggcaggat 120 ccggaaccca cagggccccg tgggccatga gaggctcctg gacttgaacc tcaggacact 180 cccactctgg ctgccggcag ggatggaagc tggatgagca ggcaggagct ggcagtgggg 240 gtggagagcc ataggctatt ggggtggaca ggcttgggtg cctcatggga gctccccatg 300 ggagctgtgg ccccttgggg cctcttattt ctcaccccag gctttcccgg gagaggttca 360 agtcagaaga tgccccaaag atccacgtgg ccctgggtgg cagcctgttc ctcctgaatc 420 tggccttctt ggtcaatgtg gggagtggct caaaggggtc tgatgctgcc tgctgggccc 480 540 ggggggctgt cttccactac ttcctgctct gtgccttcac ctggatgggc cttgaagcct 600 tecaceteta cetgeteget gteagggtet teaacaceta ettegggeae taetteetga 603 agc

<210> 52

<211> 198

<212> PRT

<213> Homo sapiens

<400> 52

Glu Thr Tyr Ser Ala Leu Tyr Pro Thr Phe Asn Ser Leu Cys Tyr Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

111001111111111111111111111111111111111	
Pro Ala Ser Phe Ser Gly Leu Ile Phe Pro Ile Ile Leu Pro His Ile 20 25 30	
Asp Gln Gly Met Arg Leu Ala Gly Ser Gly Thr His Arg Ala Pro Trp 35 40 45	
Ala Met Arg Gly Ser Trp Thr Thr Ser Gly His Ser His Ser Gly Cys 50 60	
Arg Gln Gly Trp Lys Leu Asp Glu Gln Ala Gly Ala Gly Ser Gly Gly 65 70 75 80	
Gly Glu Pro Ala Ile Gly Val Asp Arg Leu Gly Cys Leu Met Gly Ala 85 90 95	
Pro His Gly Ser Cys Gly Pro Leu Gly Pro Leu Ile Ser His Pro Arg 100 105 110	
Leu Ser Arg Glu Arg Phe Lys Ser Glu Asp Ala Pro Lys Ile His Val 115 120 125	
Ala Leu Gly Gly Ser Leu Phe Leu Leu Asn Leu Ala Phe Leu Val Asn 130 140	
Val Gly Ser Gly Ser Lys Gly Ser Asp Ala Ala Cys Trp Ala Arg Gly 145 150 155 160	
Ala Val Phe His Tyr Phe Leu Leu Cys Ala Phe Thr Trp Met Gly Leu 165 170 175	
Glu Ala Phe His Leu Tyr Leu Leu Ala Val Arg Val Phe Asn Thr Tyr 180 185 190	
Phe Gly His Tyr Phe Leu 195	
<210> 53	
<211> 335 <212> DNA	
<213> Homo sapiens	
<400> 53 aattggtcgg agagtgcagc tgcttgaaat ggaggattga aatcatcacc aggaggtttc	60
caaacacage cageacagee ccaaageeaa acaetatgta cagaateace egggateeeg	120
gcgagaaggg gattttcaca caggacccat tcacgttcgc gtagcacagc tgcacagcca	180
ccagcaggga tgaattgctg ctcataacgc tggtatttac atatggagaa attttgtcct	240
tgttgattat cacaaaaaat acaggattgt teetgatttt cattgeteet geggaaaaaa	300
acacatattc accaggatgc cagaggaaat gatca	335
<210> 54 <211> 111 <212> PRT	
<213> Homo sapiens	
<400> 54	
Asp His Phe Leu Trp His Pro Gly Glu Tyr Val Phe Phe Ser Ala Gly 1 5 10 15	

Ala Met Lys Ile Arg Asn Asn Pro Val Phe Phe Val Ile Ile Asn Lys 20 25 30	
Asp Lys Ile Ser Pro Tyr Val Asn Thr Ser Val Met Ser Ser Asn Ser 35 40 45	
Ser Leu Leu Val Ala Val Gln Leu Cys Tyr Ala Asn Val Asn Gly Ser 50 55 60	
Cys Val Lys Ile Pro Phe Ser Pro Gly Ser Arg Val Ile Leu Tyr Ile 65 70 75 80	
Val Phe Gly Phe Gly Ala Val Leu Ala Val Phe Gly Asn Leu Leu Val 85 90 95	
Met Ile Ser Ile Leu His Phe Lys Gln Leu His Ser Pro Thr Asn 100 105 110	
<210> 55 <211> 586 <212> DNA <213> Homo sapiens	
<400> 55 cacatcttaa caagactgaa aaacattgat ttgtttttaa tttgaagagc aatttatttg	60
ctattcattc atagtcttac ttgattttta aaaactcatt tcgcttggta attttaaagg	120
tatcctgaac ttcgtctatc caactgctta tatatgttca gaaaacaaat tcatggttgc	180
tgaactgttc tttaaaacct gaccagttac aataactttt attgctttcc taaaccatgg	240
gtaaaataaa gcataaatca aaggattcat ggctgagtta taataagcac accaacagca	300
tcataaatac aggcaggggt tataaagccc ataaaggcat caattaatga atcaatgcta	360
tatggtaacc atgaaatcat aaatgctacc actgtgaccc ccagggtttt agctgctttt	420
ctctctctcc tggccactct ggctttgtaa ctctctgagg atgattctgt cttgctacca	480
gtattttcta tctttttcgc ctgtcgtcta gccacaagaa atatgttacc atacagaatt	540
atcataataa aggtaggtat aaagaaggat agaaaatctg tcaaca	586
<210> 56 <211> 190 <212> PRT <213> Homo sapiens	
<400> 56	
Leu Thr Asp Phe Leu Ser Phe Phe Ile Pro Thr Phe Ile Met Ile Ile 1 5 10 15	
Leu Tyr Gly Asn Ile Phe Leu Val Ala Arg Arg Gln Ala Lys Lys Ile 20 25 30	
Glu Asn Thr Gly Ser Lys Thr Glu Ser Ser Ser Glu Ser Tyr Lys Ala 35 40 45	
Arg Val Ala Arg Arg Glu Arg Lys Ala Ala Lys Thr Leu Gly Val Thr 50 55 60	

411USPHRM311.ST25 Val Val Ala Phe Met Ile Ser Trp Leu Pro Tyr Ser Ile Asp Ser Leu Ile Asp Ala Phe Met Gly Phe Ile Thr Pro Ala Cys Ile Tyr Glu Ile 90 Cys Cys Trp Cys Ala Tyr Tyr Asn Ser Ala Met Asn Pro Leu Ile Tyr Ala Leu Phe Tyr Pro Trp Phe Arg Lys Ala Ile Lys Val Ile Val Thr Gly Gln Val Leu Lys Asn Ser Ser Ala Thr Met Asn Leu Phe Ser Glu

His Ile Ala Val Gly Thr Lys Phe Arg Ile Pro Leu Lys Leu Pro Ser

Glu Met Ser Phe Lys Ser Ser Lys Thr Met Asn Glu Gln Ile Asn Cys 165 170

Ser Ser Asn Lys Gln Ile Asn Val Phe Gln Ser Cys Asp Val 185

<210> 57 976 <211> <212> DNA

<213> Homo sapiens

tttgtggcaa ggagaccctg atcccggtct tcctgatcct tttcattgcc ctggtcgggc 60 tggtaggaaa cgggtttgtg ctctggctcc tgggcttccg catgcgcagg aacgccttct 120 ctgtctacgt cctcagcctg gccggggccg acttcctctt cctctgcttc cagattataa 180 attgcctggt gtacctcagt aacttcttct gttccatctc catcaatttc cctagcttct 240 teaceactgt gatgaeetgt geetaeettg eaggeetgag eatgetgage aeegteagea 300 ecgageqetg cetgteegte etgtggeeca tetggtateg etgeegeege eccagacace 360 tgtcagcggt cgtgtgtgtc ctgctctggg ccctgtccct actgctgagc atcttggaag 420 qgaagttctg tggcttctta tttagtgatg gtgactctgg ttggtgtcag acatttgatt 480 tcatcactgc agcgtggctg atttttttat tcatggttct ctgtgggtcc agtctggccc 540 tgctggtcag gatcctctgt ggctccaggg gtctgccact gaccaggctg tacctgacca 600 tectgeteae agtgetggtg teceteetet geggeetgee etttggeatt eagtggttee 660 taatattatq gatctggaaq gattctgatg tcttattttg tcatattcat ccagtttcag 720 ttgtcctgtc atctcttaac agcagtgcca accccatcat ttacttcttc gtgggctctt 780 ttaggaagca gtggcggstg cagcacccga tcctcaagct ggctctccag agggctctgc 840 aggacattqc tgaggtggat cacagtgaag gatgcttccg tcagggcacc cggagattca 900 960 aagaagcatt ctggtgtagg gatggacccc tctacttcca tcatatatat gtggctttga 976 gaggcaactt tgcccc

- <210> 58
- <211> 324
- <212> PRT
- <213> Homo sapiens
- <220>
- <221> UNSURE
- <222> (266)..(266)
- <223> Xaa is Unknown
- <400> 58
- Cys Gly Lys Glu Thr Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala 1 5 10 15
- Leu Val Gly Leu Val Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe
 20 25 30
- Arg Met Arg Arg Asn Ala Phe Ser Val Tyr Val Leu Ser Leu Ala Gly
 35 40
- Ala Asp Phe Leu Phe Leu Cys Phe Gln Ile Ile Asn Cys Leu Val Tyr 50 60
- Leu Ser Asn Phe Phe Cys Ser Ile Ser Ile Asn Phe Pro Ser Phe Phe 65 70 75 80
- Thr Thr Val Met Thr Cys Ala Tyr Leu Ala Gly Leu Ser Met Leu Ser 85 90 95
- Thr Val Ser Thr Glu Arg Cys Leu Ser Val Leu Trp Pro Ile Trp Tyr 100 105 110
- Arg Cys Arg Arg Pro Arg His Leu Ser Ala Val Val Cys Val Leu Leu 115 120 125
- Trp Ala Leu Ser Leu Leu Leu Ser Ile Leu Glu Gly Lys Phe Cys Gly 130 135 140
- Phe Leu Phe Ser Asp Gly Asp Ser Gly Trp Cys Gln Thr Phe Asp Phe 145 150 155 160
- Ile Thr Ala Ala Trp Leu Ile Phe Leu Phe Met Val Leu Cys Gly Ser 165 170 175
- Ser Leu Ala Leu Leu Val Arg Ile Leu Cys Gly Ser Arg Gly Leu Pro 180 185 190
- Leu Thr Arg Leu Tyr Leu Thr Ile Leu Leu Thr Val Leu Val Ser Leu
 195 200 205
- Leu Cys Gly Leu Pro Phe Gly Ile Gln Trp Phe Leu Ile Leu Trp Ile 210 215 220
- Trp Lys Asp Ser Asp Val Leu Phe Cys His Ile His Pro Val Ser Val 225 230 235 240
- Val Leu Ser Ser Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr Phe Phe 245 250 255
- Val Gly Ser Phe Arg Lys Gln Trp Arg Xaa Gln His Pro Ile Leu Lys 260 265 270
- Leu Ala Leu Gln Arg Ala Leu Gln Asp Ile Ala Glu Val Asp His Ser Page 31

275

411USPHRM311.ST25 285

Glu Gly Cys Phe Arg Gln Gly Thr Arg Arg Phe Lys Glu Ala Phe Trp 295

Cys Arg Asp Gly Pro Leu Tyr Phe His His Ile Tyr Val Ala Leu Arg

Gly Asn Phe Ala

<210> 59

578 <211>

<212> DNA

<213> Homo sapiens

ctttqcatct cactqttgag cagacagcct gctgaaagtt gtcgctgacc accacatata 60 gtaacaggtt accaaaggtg ttcagagcag cataatggtc tagaaacgat gtaagcttca 120 tqqatctqat tctcaatqqa acaactqatt qaaaqcaqqc tqaqattcqa tcctqaatqa 180 ccctcaagat atggaagggt aaaaaacata cgtaaaatgc aaggagtagc agaatggtta 240 gccttcgtgc tttctgctta aggcagctgt cagtttgcag tccatgggtc aaagtgtgga 300 taatcgtggt atagcaaagt gtcactatca ccaaggggag gcagaaagta cttgcagtca 360 aaatcaggtt gtaccactta atagtattga gttcatccga actggtgagg tcgagacagg 420 ctgatctgtt ggtcctgttg gttgatgtga tcaagaaggt catcggaatg acagctacca 480 gtgaaatgat ccacaccaca gcacaggcta caactgcaca tcgagttttg tgaatggaaa 540 agcagctcat tgggtgaatg atcacacagt agcggaag 578

<210> 60

<211> 192

<212> PRT

<213> Homo sapiens

<400> 60

Phe Arg Tyr Cys Val Ile Ile His Pro Met Ser Cys Phe Ser Ile His

Lys Thr Arg Cys Ala Val Val Ala Cys Ala Val Val Trp Ile Ile Ser

Leu Val Ala Val Ile Pro Met Thr Phe Leu Ile Thr Ser Thr Asn Arg 40

Thr Asn Arg Ser Ala Cys Leu Asp Leu Thr Ser Ser Asp Glu Leu Asn

Thr Ile Lys Trp Tyr Asn Leu Ile Leu Thr Ala Ser Thr Phe Cys Leu

Pro Leu Val Ile Val Thr Leu Cys Tyr Thr Thr Ile Ile His Thr Leu

Thr His Gly Leu Gln Thr Asp Ser Cys Leu Lys Gln Lys Ala Arg Arg 105

Page 32

IJ IU Q 1 II. Q.... IL.II

									4.	1 1			amo F		
									4.	LIUS.	PHRM.	311.	ST25		
Leu T	Chr	Ile 115	Leu	Leu	Leu	Leu	Ala 120	Phe	Tyr	Val	Cys	Phe 125	Leu	Pro	Phe
His]	[le [30	Leu	Arg	Val	Ile	Gln 135	Asp	Arg	Ile	Ser	Ala 140	Cys	Phe	Gln	Ser
Val V 145	/al	Pro	Leu	Arg	Ile 150	Arg	Ser	Met	Lys	Leu 155	Thr	Ser	Phe	Leu	Asp 160
His T	ſyr	Ala	Ala	Leu 165	Asn	Thr	Phe	Gly	Asn 170	Leu	Leu	Leu	Tyr	Val 175	Val
Val S	Ser	Asp	Asn 180	Phe	Gln	Gln	Ala	Val 185	Cys	Ser	Thr	Val	Arg 190	Cys	Lys
<210><211><211><212><213>	> E	51 872 DNA Homo	sapi	iens											
<400>	> (51													

60 atctqtttct catqqtctcc tgtctgtctc tctctctct ccctctttct ctctcctcgc 120 totttotcat cocctocatt totgtgtcaa totcaatcca tttatatogg tggccacttt 180 totatotott tgttotatot ototototot ototttocca otttgtotot gcacgootgt 240 tgtgtttttc tgcctgtctc tctcttgccc tcatctctct gtctctctct tgccctcatc 300 tototgtoto totgtgtotg tgtotococo gotoattoco atttgcaggt gcaatgtago 360 aggacaactc atggagcccc cccgggccca tcgagtaccg gactggctga ccccctaggg 420 ttggcagtag cccctgaccc tcagtatggc caacactacc ggagagcctg aggaggtgag 480 cggcgctctg tccccaccgt ccgcatcagc ttatgtgaag ctggtactgc tgggactgat 540 tatgtgcgtg agcctggcgg gtaacgccat cttgtccctg ctggtgctca aggagcgggc 600 660 cctgcacaag gctccttact acttcctgct ggacctgtgc ctggccgatg gcatacgctc tgccgtctgc ttcccctttg tgctggcttc tgtgcgccac ggctcttcat ggaccttcag 720 780 tgcactcagc tgcaagattg tggcctttat ggccgtgctc ttttgcttcc atgcggcctt catgctgttc tgcatcagcg tcacccgcta catggccatc gcccaccacc gcttctacgc 840 caagcgcatg acactctgga catgcgcggc tg 872

<210> 62 <211> 143

<212> PRT

<213> Homo sapiens

<400> 62

Met Ala Asn Thr Thr Gly Glu Pro Glu Glu Val Ser Gly Ala Leu Ser 1 5 10 15

Pro Pro Ser Ala Ser Ala Tyr Val Lys Leu Val Leu Leu Gly Leu Ile 20 25 30

Met C	ys Val 35	Ser	Leu	Ala	Gly	Asn 40	Ala	Ile	Leu	Ser	Leu 45	Leu	Val	Leu
Lys G 5	lu Arg O	Ala	Leu	His	Lys 55	Ala	Pro	Tyr	Tyr	Phe 60	Leu	Leu	Asp	Leu
Cys L 65	eu Ala	Asp	Gly	Ile 70	Arg	Ser	Ala	Val	Cys 75	Phe	Pro	Phe	Val	Leu 80
Ala S	er Val	Arg	His 85	Gly	Ser	Ser	Trp	Thr 90	Phe	Ser	Ala	Leu	Ser 95	Cys
Lys I	le Val	Ala 100	Phe	Met	Ala	Val	Leu 105	Phe	Cys	Phe	His	Ala 110	Ala	Phe

Met Leu Phe Cys Ile Ser Val Thr Arg Tyr Met Ala Ile Ala His His 115

Arg Phe Tyr Ala Lys Arg Met Thr Leu Trp Thr Cys Ala Ala Glu 135

<210> 63 <211> 962 <212> DNA <213> Homo sapiens

aaaaattgct gtactgaact attgaatgga acttggaaat aaagtccctt ccaaaataac 60 tattcttcaa cagagagtaa taggtaaatg ttttagaagt gagaggactc aaattgccaa 120 tgatttactc ttttattttt cctcctaggt ttctgggata agtatgtgca aataaaaaat 180 aaacatgaga aggaactgta acctgattat ggatttggga aaaagataaa tcaacacaca 240 aagggaaaag taaactgatt gacagccctc aggaatgatg cccttttgcc acaatataat 300 taatatttcc tgtgtgaaaa acaactggtc aaatgatgtc cgtgcttccc tgtacagttt 360 aatggtgctc ataattctga ccacactcgt tggcaatctg atagttattg tttctatatc 420 acacttcaaa caacttcata ccccaacaaa ttggctcatt cattccatgg ccactgtgga 480 ctttcttctg gggtgtctgg tcatgcctta cagtatggtg agatctgctg agcactgttg 540 gtattttgga gaagtettet gtaaaattea cacaageace gacattatge tgageteage 600 ctccattttc catttqtctt tcatctccat tgaccgctac tatgctgtgt gtgatccact 660 gagatataaa gccaagatga atatcttggt tatttgtgtg atgatcttca ttagttggag 720 tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga 780 agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat 840 900 atctggggta ctgaccttta tgacttcttt ttatatacct ggatctatta tgttatgtgt ctattacaga atatatctta tcgctaaaga acaggcaaga ttaattagtg atgccaatca 960 962 ga

<210> 64 <211> 238 <212> PRT

	<213	3> I	Homo	sapi	iens													
	<400	0> (64															
	Arg 1	Glu	Lys	Thr	Asp 5	Gln	Pro	Ser	Gly	Met 10	Met	Pro	Phe	Суз	His 15	Asn		
	Ile	Ile	Asn	Ile 20	Ser	Cys	Val	Lys	Asn 25	Asn	Trp	Ser	Asn	Asp 30	Val	Arg		
	Ala	Ser	Leu 35	Tyr	Ser	Leu	Met	Val 40	Leu	Ile	Ile	Leu	Thr 45	Thr	Leu	Val		
	Gly	Asn 50	Leu	Ile	Val	Ile	Val 55	Ser	Ile	Ser	His	Phe 60	Lys	Gln	Leu	His		
	Thr 65	Pro	Thr	Asn	Trp	Leu 70	Ile	His	Ser	Met	Ala 75	Thr	Val	Asp	Phe	Leu 80		
	Leu	Gly	Суѕ	Leu	Val 85	Met	Pro	Tyr	Ser	Met 90	Val	Arg	Ser	Ala	Glu 95	His		
	Cys	Trp	Tyr	Phe 100	Gly	Glu	Val	Phe	Cys 105	Lys	Ile	His	Thr	Ser 110	Thr	Asp		
	Ile	Met	Leu 115	Ser	Ser	Ala	Ser	Ile 120	Phe	His	Leu	Ser	Phe 125	Ile	Ser	Ile		
	Asp	Arg 130	Tyr	Tyr	Ala	Val	Cys 135	Asp	Pro	Leu	Arg	Tyr 140	Lys	Ala	Lys	Met		
-	Asn 145	Ile	Leu	Val	Ile	Cys 150	Val	Met	Ile	Phe	Ile 155	Ser	Trp	Ser	Val	Pro 160		
	Ala	Val	Phe	Ala	Phe 165	Gly	Met	Ile	Phe	Leu 170	Glu	Leu	Asn	Phe	Lys 175	Gly		
	Ala	Glu	Glu	Ile 180	Tyr	Tyr	Lys	His	Val 185	His	Cys	Arg	Gly	Gly 190	Суѕ	Ser		
	Val	Phe	Phe 195	Ser	Lys	Ile	Ser	Gly 200	Val	Leu	Thr	Phe	Met 205	Thr	Ser	Phe		
	Tyr	Ile 210	Pro	Gly	Ser	Ile	Met 215	Leu	Cys	Val	Tyr	Tyr 220	Arg	Ile	Tyr	Leu		
	Ile 225	Ala	Lys	Glu	Gln	Ala 230	Arg	Leu	Ile	Ser	Asp 235	Ala	Asn	Gln				
	<210 <211 <212 <213	1> : 2> :	65 1018 DNA Homo	sapi	iens													
	<400 aaca		65 ccg (ggtgg	gaaco	ct go	ggcat	gtat	c att	ttga	attg	ttt	atgo	cat a	actco	ctagtg		60
	aaga	aacca	aat q	gtctt	tgcto	ca ga	ataga	aagca	a aga	atact	cag	actt	agtt	tc 1	tctgt	agctc	1	.20
	ctg	ettt	tta 1	tatt	tcct	gg tt	tggat	tgca	a cca	actad	ctca	gtt	ctat	tt 1	tataa	atactg	1	.80
	atta	ataa	aac a	atgg	gagg	ga aa	ataad	ctttq	g tai	tggt	ttt	tato	ggata	aat 1	ttati	atgtg	2	240
	tcct	tagad	ctc 1	ggc	cttgt	tc aa	aaaga	aagga	a cgt	aaga		caco Page		cat 1	tatad	cttggg	3	300

aatacaggaa tccagcagat ggcatcagag aacactataa aaaagaaacg atttgcaaca gccacctctc ttccaaaaca attccttact tctgtggtct gcaaggcggt tttttgaatg gaacagaaca	aatgatagaa	gagactgacc	tggtatttcc	acccggaaga	gggaaaggat	tttaactaca	360
gaacagaaca tagtaatata ggaaaacaca atgatgagaa aagccagcaa gttcacacct gttggggaaa agcacacttt taacatctca ggcgtaaaag tcaacagtaa aattactgtg gtacaggttg agtatccctt acccaaaatg tttgaaacca gaaatgtttt ggatttcgga tttcggaata tttacacatt cataatgata tatcttggaa atggttccca agtctaaaca caaaatttat ttatgttca tatacacctt atacacatag tctgaaagta attttgtaca atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat atttagagc atttcaaatt ttggatttc aaattacaaa tgcttaacct gtacttagat	aatacaggaa	tccagcagat	ggcatcagag	aacactataa	aaaagaaacg	atttgcaaca	420
gttggggaaa agcacacttt taacatctca ggcgtaaaag tcaacagtaa aattactgtg gtacaggttg agtatccctt acccaaaatg tttgaaacca gaaatgtttt ggatttcgga tttcggaata tttacacatt cataatgata tatcttggaa atggttccca agtctaaaca caaaatttat ttatgttca tatacacctt atacacatag tctgaaagta attttgtaca atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat atttagagc atttcaaatt ttggatttc aaattacaaa tgcttaacct gtacttagat	gccacctctc	ttccaaaaca	attccttact	tctgtggtct	gcaaggcggt	tttttgaatg	480
gtacaggttg agtatcctt acccaaaatg tttgaaacca gaaatgttt ggatttcgga tttcggaata tttacacatt cataatgata tatcttggaa atggttccca agtctaaaca caaaatttat ttatgtttca tatacacctt atacacatag tctgaaagta attttgtaca atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat atttagagc atttcaaatt ttggatttc aaattacaaa tgcttaacct gtacttagat	gaacagaaca	tagtaatata	ggaaaacaca	atgatgagaa	aagccagcaa	gttcacacct	540
tttcggaata tttacacatt cataatgata tatcttggaa atggttccca agtctaaaca caaaatttat ttatgtttca tatacacctt atacacatag tctgaaagta attttgtaca atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat atttagagc atttcaaatt ttggatttc aaattacaaa tgcttaacct gtacttagat	gttggggaaa	agcacacttt	taacatctca	ggcgtaaaag	tcaacagtaa	aattactgtg	600
caaaatttat ttatgtttca tatacacctt atacacatag tctgaaagta attttgtaca atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat attttagagc atttcaaatt ttggattttc aaattacaaa tgcttaacct gtacttagat	gtacaggttg	agtatccctt	acccaaaatg	tttgaaacca	gaaatgtttt	ggatttcgga	660
atatttaaa taatttggg catgaaacaa agtttgcata cattgaacca tcagacagca aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat atttagagc atttcaaatt ttggattttc aaattacaaa tgcttaacct gtacttagat	tttcggaata	tttacacatt	cataatgata	tatcttggaa	atggttccca	agtctaaaca	720
aaagcttcag gtgtggaatt ttccacttgt ggcatcatgt tgatgctcaa aaagttccat attttagagc atttcaaatt ttggattttc aaattacaaa tgcttaacct gtacttagat	caaaatttat	ttatgtttca	tatacacctt	atacacatag	tctgaaagta	attttgtaca	780
attttagagc atttcaaatt ttggattttc aaattacaaa tgcttaacct gtacttagat	atattttaaa	taattttggg	catgaaacaa	agtttgcata	cattgaacca	tcagacagca	840
	aaagcttcag	gtgtggaatt	ttccacttgt	ggcatcatgt	tgatgctcaa	aaagttccat	900
gttaaataca gtgcctcttc cacgggcact ttcaggaagc attctttat ataagccc 1	attttagagc	atttcaaatt	ttggattttc	aaattacaaa	tgcttaacct	gtacttagat	960
	gttaaataca	gtgcctcttc	cacgggcact	ttcaggaagc	attcttttat	ataagccc	1018

<210> 66 <211> 327 <212> PRT <213> Homo sapiens

<400> 66

Tyr Ile Lys Glu Cys Phe Leu Lys Val Pro Val Glu Glu Ala Leu Tyr

Leu Thr Ser Lys Tyr Arg Leu Ser Ile Cys Asn Leu Lys Ile Gln Asn

Leu Lys Cys Ser Lys Ile Trp Asn Phe Leu Ser Ile Asn Met Met Pro

Gln Val Glu Asn Ser Thr Pro Glu Ala Phe Ala Val Trp Phe Asn Val

Cys Lys Leu Cys Phe Met Pro Lys Ile Ile Asn Ile Val Gln Asn Tyr

Phe Gln Thr Met Cys Ile Arg Cys Ile Asn Ile Asn Lys Phe Cys Val

Thr Trp Glu Pro Phe Pro Arg Tyr Ile Ile Met Asn Val Ile Phe Arg

Asn Pro Lys Ser Lys Thr Phe Leu Val Ser Asn Ile Leu Gly Lys Gly

Tyr Ser Thr Cys Thr Thr Val Ile Leu Leu Thr Phe Thr Pro Glu 135

Met Leu Lys Val Cys Phe Ser Pro Thr Gly Val Asn Leu Leu Ala Phe 155

Leu Ile Ile Val Phe Ser Tyr Ile Thr Met Phe Cys Ser Ile Gln Lys 170

Thr Ala Leu Gln Thr Thr Glu Val Arg Asn Cys Phe Gly Arg Glu Val	
Ala Val Ala Asn Arg Phe Phe Phe Ile Val Phe Ser Asp Ala Ile Cys 195 200 205	
Trp Ile Pro Val Phe Val Val Lys Ile Leu Ser Leu Phe Arg Val Glu 210 215 220	
Ile Pro Gly Gln Ser Leu Leu Ser Phe Pro Ser Ile Ile His Arg Ala225230235240	
Phe Leu Arg Pro Ser Phe Asp Lys Ala Arg Val Asp Thr Ile Ile His 245 250 255	
Lys Asn Gln Tyr Lys Val Ile Ser Leu Pro Cys Phe Ile Ile Ser Ile 260 265 270	
Ile Lys Lys Leu Ser Ser Gly Ala Ile Gln Pro Gly Ile Ile Lys Ser 275 280 285	
Arg Ser Tyr Arg Glu Thr Lys Ser Glu Tyr Leu Ala Ser Ile Ala Arg 290 295 300	
His Trp Phe Phe Thr Arg Ser Met His Lys Thr Ile Lys Ile Tyr Met 305 310 315 320	
Pro Arg Phe His Pro Gly Leu 325	
<210> 67	
<211> 1251 <212> DNA <213> Homo sapiens	
<211> 1251 <212> DNA	60
<211> 1251 <212> DNA <213> Homo sapiens <400> 67	60 120
<211> 1251 <212> DNA <213> Homo sapiens <400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat	
<211> 1251 <212> DNA <213> Homo sapiens <400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt	120
<pre><211> 1251 <212> DNA <213> Homo sapiens <400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct</pre>	120 180
<pre><211> 1251 <212> DNA <213> Homo sapiens <400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca</pre>	120 180 240
<pre><211> 1251 <212> DNA <213> Homo sapiens </pre> <pre><400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catggggac actggccgct ggggacagct</pre>	120 180 240 300
<pre><211> 1251 <212> DNA <213> Homo sapiens </pre> <pre><400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catggggac actggccgct ggggacagct gcctgccgct tctactactt cctatggggc gtgtcctact cctccggcct cttcctgctg</pre>	120 180 240 300 360
<pre><211> 1251 <212> DNA <213> Homo sapiens </pre> <pre><400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catgggggac actggccgct ggggacagct gcctgccgct tctactactt cctatggggc gtgtcctact cctccggcct cttcctgctg gccgccctca gcctcgaccg ctgcctgctg gcgctgtgcc cacactggta ccctgggcac</pre>	120 180 240 300 360 420
<pre><211> 1251 <212> DNA <213> Homo sapiens </pre> <pre><400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catgggggac actggccgct ggggacagct gcctgccgct tctactactt cctatgggc gtgtcctact cctccggcct cttcctgctg gccgccctca gcctcgaccg ctgcctgctg gcgctgtgcc cacactggta ccctgggcac cgcccagtcc gcctgcccct ctgggtctgc gccggtgtct gggtgctggc cacactcttc</pre>	120 180 240 300 360 420 480
<pre><211> 1251 <212> DNA <213> Homo sapiens <400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct accccaagg tggctgggac acggtcttcc tggtggccct gctgctctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catgggggac actggccgct ggggacagct gcctgccgct tctactactt cctatgggc gtgtcctact cctccggcct cttcctgctg gccgccctca gcctcgaccg ctgcctgct gcggtgtcc cacactggta ccctgggcac cgcccagtcc gcctgcccct ctgggtctgc gccggtgtct gggtgctggc cacactcttc agcgtgccct ggctggtctt ccccgaggct gccgtctggt ggtacgacct ggtcatctgc</pre>	120 180 240 300 360 420 480 540
<pre><211> 1251 <212> DNA <213> Homo sapiens </pre> <pre><400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctcctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catgggggac actggccgct ggggacagct gcctgccgct tctactactt cctatgggc gtgtcctact cctccggcct ctcctgctg gccgccctca gcctcgaccg ctgcctgctg gcgctgtgcc cacactggta ccctgggcac cgcccagtcc gcctgcccct ctgggtctgc gccggtgtct gggtgctggc cacactcttc agcgtgccct ggctggtctt ccccgaggct gccgtctggt ggtacgacct ggtcatctgc ctggacttct gggacagcga ggagctgtcg ctgaggatgc tggaggtcct ggggggcttc</pre>	120 180 240 300 360 420 480 540
<pre><211> 1251 <212> DNA <213> Homo sapiens </pre> <pre><400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat gaggactcct acccccaagg tggctgggac acggtcttcc tggtggccct gctgctctt gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca gcagcggcct tccagatcct agagatccgg catgggggac actggccgct ggggacagct gcctgccgct tctactactt cctatggggc gtgtcctact cctccggcct cttcctgctg gccgccctca gcctcgaccg ctgcctgctg gcgctgtgcc cacactggta ccctgggcac cgcccagtcc gcctgccct ctgggtctgc gccggtgtct gggtgctggc cacactcttc agcgtgccct ggctggtctt ccccgaggct gccgtctgt ggtacgacct ggtcatctgc ctggacttct gggacagcga ggagctgtcg ctgaggatgc tggaggtcct ggggggcttc ctgcctttcc tcctgctgct cgtctgccac gtgctcaccc aggccacagc ctgtcgaccc</pre>	120 180 240 300 360 420 480 540 600 660

ctgatcctac	tcaacagctg	cctcagcccc	ttcctctgcc	tcatggccag	tgccgacctc	900
cggaccctgc	tgcgctccgt	gctctcgtcc	ttcgcggcag	ctctctgcga	ggagcggccg	960
ggcagcttca	cgcccactga	gccacagacc	cagctagatt	ctgagggtcc	aactctgcca	1020
gagccgatgg	cagaggccca	gtcacagatg	gatcctgtgg	cccagcctca	ggtgaacccc	1080
acactccagc	cacgatcgga	tcccacagct	cagccacagc	tgaaccctac	ggcccagcca	1140
cagtcggatc	ccacagccca	gccacagctg	aacctcatgg	cccagccaca	gtcagattct	1200
gtggcccagc	cacaggcaga	cactaacgtc	cagacccctg	cacctgctgc	С	1251

<210> 68 <211> 417 <212> PRT

<213> Homo sapiens

<400> 68

Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro Arg Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp Thr Val 20 25 30

Phe Leu Val Ala Leu Leu Leu Gly Leu Pro Ala Asn Gly Leu Met 35 40 45

Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr Arg Leu 50 60

Ala Leu Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe Leu Ala 65 70 75 80

Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His Gly Gly His Trp Pro $85 \hspace{1cm} 90 \hspace{1cm} 95$

Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe Leu Trp Gly Val Ser 100 105 110

Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu Ser Leu Asp Arg Cys 115 120 125

Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly His Arg Pro Val Arg 130 135 140

Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val Leu Ala Thr Leu Phe 145 150 155 160

Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp Tyr Asp 165 170 175

Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser Leu Arg 180 185 190

Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu Val 195 200 205

Cys His Val Leu Thr Gln Ala Thr Ala Cys Arg Thr Cys His Arg Gln 210 215 220

Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg Thr Ile Page 38

411USPHRM311.ST25 225 230 235 240 Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu Ala Gln Leu 245 250 255 Leu Tyr Leu Ala Phe Leu Typ Asp Val Tyr Ser Gly Tyr Leu Leu Typ

Leu Tyr Leu Ala Phe Leu Trp Asp Val Tyr Ser Gly Tyr Leu Leu Trp 260 265 270

Glu Ala Leu Val Tyr Ser Asp Tyr Leu Ile Leu Leu Asn Ser Cys Leu 275 280 285

Ser Pro Phe Leu Cys Leu Met Ala Ser Ala Asp Leu Arg Thr Leu Leu 290 295 300

Arg Ser Val Leu Ser Ser Phe Ala Ala Ala Leu Cys Glu Glu Arg Pro 305 310 315 320

Gly Ser Phe Thr Pro Thr Glu Pro Gln Thr Gln Leu Asp Ser Glu Gly 325 330 335

Pro Thr Leu Pro Glu Pro Met Ala Glu Ala Gln Ser Gln Met Asp Pro 340 345 350

Val Ala Gln Pro Gln Val Asn Pro Thr Leu Gln Pro Arg Ser Asp Pro 355 360 365

Thr Ala Gln Pro Gln Leu Asn Pro Thr Ala Gln Pro Gln Ser Asp Pro 370 375 380

Thr Ala Gln Pro Gln Leu Asn Leu Met Ala Gln Pro Gln Ser Asp Ser 385 390 395 400

Val Ala Gln Pro Gln Ala Asp Thr Asn Val Gln Thr Pro Ala Pro Ala 405 410 415

Ala

<210> 69 <211> 659

<212> DNA

<213> Homo sapiens

<400> 69

tacaggectg ageatgetgg getecateag caceaageae tgeetgteea teetgtggee 60 catctagtac cgctgccacc accccacaca cctgtcagca gtcgtgtgtc ctgctctggg 120 ccctgtccct gctgcagagc atcctggaat ggatgttctg tggcttcctg tctagtggtg 180 ctgattctgt ttggtgtgaa acatcagatt tcatcacagt cacatggctg attttttat 240 gtgtggttct ctgcgggtcc agcccggttc tgctggtcag gatcctttgt ggatcccgga 300 agatgccctt gaccaggctg tacatgacca tcctgctcag agtgctggtc ttcctcctct 360 gtgacctgcc ctttggcatt cagtgattcc tatttttctg gatccacgtg gatttgtcac 420 gttcgtctag tttccatttt cctgtccact cttaacagca gtgccaaccc cattatttac 480 540 ttcttcatgg gctcctttag gcagcttcaa aacaggaaga ctctctagct ggttctccag 600 agggctctgc aggacacgcc tgaggtggaa gaaggcagat ggcggctttc tgaggaaacc ctggagctgt catgaagcag attggggcca tgaggaagag cctctgccct gtcagtcag 659

Page 39

	<400)>
	Tyr 1	A
	His	P
	Ser	S
	Trp	A: 5
	Gly 65	V
	Trp	P
T.	Asp	P
	Trp	S
in whi	Phe	S 1
i	Leu 145	S
F. C. L.	Gly	S
	Arg	Α
5 == T.	Ser	G
	Ser	Α

70 <211> 213 <212> PRT

<213> Homo sapiens

rg Pro Glu His Ala Gly Leu His Gln His Gln Ala Leu Pro Val

ro Val Ala His Leu Val Pro Leu Pro Pro Pro His Thr Pro Val

er Arg Val Ser Cys Ser Gly Pro Cys Pro Cys Cys Arg Ala Ser

sn Gly Cys Ser Val Ala Ser Cys Leu Val Val Leu Ile Leu Phe 55

al Lys His Gln Ile Ser Ser Gln Ser His Gly Phe Phe Tyr Val

he Ser Ala Gly Pro Ala Arg Phe Cys Trp Ser Gly Ser Phe Val

ro Gly Arg Cys Pro Pro Gly Cys Thr Pro Ser Cys Ser Glu Cys

er Ser Ser Ser Val Thr Cys Pro Leu Ala Phe Ser Asp Ser Tyr

er Gly Ser Thr Trp Ile Cys His Val Arg Leu Val Ser Ile Phe

er Thr Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr Phe Phe Met

er Phe Arg Gln Leu Gln Asn Arg Lys Thr Leu Leu Val Leu Gln 170

la Leu Gln Asp Thr Pro Glu Val Glu Glu Gly Arg Trp Arg Leu

lu Glu Thr Leu Glu Leu Ser Ser Arg Leu Gly Pro Gly Arg Ala 200

la Leu Ser Val 210

<210> 71

<211> 559 <212> DNA

<213> Homo sapiens

<400> 71

atgccgaagg caggccgcag aagagaagag gaggacggtg aggaggatga gcccagggaa 60 gccccqqqqt qqqqqccqct qqqqqcctcq ctccacccqc aqcaqcaqca taaqqctqqc 120 cccacacatg gtgcaacaca gcagagccag cagcaccgct gccaccagcc acagcgtccg 180 gcacaagtgg cggctgggct ccccgaagaa ctgggtgcag gcgccgctga gcagcaggtg 240

cagcagcagg	cagagggccc	aggtgagggc	gcacacacag	gtggtcaggt	ggcgtgggcg	300
gcggcacgag	taccaggctg	ggaagaggc	ggccaggcac	tgctccacgc	tgacggccgc	360
caggagactc	aggcccacga	tgtagcagaa	gaagcgcagc	gttgccaggc	tggtctgcac	420
gaagcccggg	aagtccagcc	ggccttgcag	caagtcgggg	acgatggcca	ccatgtggca	480
gccaaggaag	atgagatccg	cgcaggccac	gtccaggagg	tagatggcga	aagggtttct	540
gtagacattg	gagctgagc					559

<210> 72 <211> 211

<212> PRT

<213> Homo sapiens

<400> 72

Leu Ser Ser Asn Val Tyr Arg Asn Pro Phe Ala Ile Tyr Leu Leu Asp
1 5 10 15

Val Ala Cys Ala Asp Leu Ile Phe Leu Gly Cys His Met Val Ala Ile 20 25 30

Val Pro Asp Leu Leu Gln Gly Arg Leu Asp Phe Pro Gly Phe Val Gln 35 40 45

Thr Ser Leu Ala Thr Leu Arg Phe Phe Cys Tyr Ile Val Gly Leu Ser 50 60

Leu Leu Ala Ala Val Ser Val Glu Gln Cys Leu Ala Ala Leu Phe Pro 65 70 75 80

Ala Trp Tyr Ser Cys Arg Arg Pro Arg His Leu Thr Thr Cys Val Cys 85 90 95

Ala Leu Thr Trp Ala Leu Cys Leu Leu Leu His Leu Thr Thr Cys Val

Cys Ala Leu Thr Trp Ala Leu Cys Leu Leu Leu His Leu Leu Ser 115 120 125

Gly Ala Cys Thr Leu Leu Ser Gly Ala Cys Thr Gln Phe Phe Gly 130 135 140

Glu Pro Ser Arg His Leu Cys Arg Thr Leu Trp Leu Val Ala Ala Val 145 150 155 160

Leu Leu Ala Leu Leu Cys Cys Thr Met Cys Gly Ala Ser Leu Met Leu 165 170 175

Pro Gly Leu Ile Leu Leu Thr Val Leu Leu Phe Ser Ser Ala Ala Cys 195 200 205

Leu Arg His 210

<210> 73 <211> 1008 <212> DNA

<213> Homo sapiens

<400> 73						
	ctttctcatt	tggagtgatc	cttgctgtcc	tggcctccct	catcattgct	60
actaacacac	tagtggctgt	ggctgtgctg	ctgttgatcc	acaagaatga	tggtgtcagt	120
ctctgcttca	ccttgaatct	ggctgtggct	gacaccttga	ttggtgtggc	catctctggc	180
ctactcacag	accagctctc	cagcccttct	cggcccacac	agaagaccct	gtgcagcctg	240
cggatggcat	ttgtcacttc	ctccgcagct	gcctctgtcc	tcacggtcat	gctgatcacc	300
tttgacaggt	accttgccat	caagcagccc	ttccgctact	tgaagatcat	gagtgggttc	360
gtggccgggg	cctgcattgc	cgggctgtgg	ttagtgtctt	acctcattgg	cttcctccca	420
ctcggaatcc	ccatgttcca	gcagactgcc	tacaaagggc	agtgcagctt	ctttgctgta	480
tttcaccctc	acttcgtgct	gaccctctcc	tgcgttggct	tcttcccagc	catgctcctc	540
tttgtcttct	tctactgcga	catgctcaag	attgcctcca	tgcacagcca	gcagattcga	600
aagatggaac	atgcaggagc	catggctgga	ggttatcgat	ccccacggac	tcccagcgac	660
ttcaaagctc	tccgtactgt	gtctgttctc	attgggagct	ttgctctatc	ctggaccccc	720
ttccttatca	ctggcattgt	gcaggtggcc	tgccaggagt	gtcacctcta	cctagtgctg	780
gaacggtacc	tgtggctgct	cggcgtgggc	aactccctgc	tcaacccact	catctatgcc	840
tattggcaga	aggaggtgcg	actgcagctc	taccacatgg	ccctaggagt	gaagaaggtg	900
ctcacctcat	tcctcctctt	tctctcggcc	aggaattgtg	gcccagagag	gcccagggaa	960
agttcctgtc	acatcgtcac	tatctccagc	tcagagtttg	atggctāa		1008

<210> 74 <211> 335 <212> PRT

<213> Homo sapiens

<400> 74

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser

Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu

Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp

Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu

Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val

Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg

Tyr	Leu	Lys 115	Ile	Met	Ser	Gly	Phe 120	Val	Ala	Gly	Ala	Cys 125	Ile	Ala	Gly		
Leu	Trp 130	Leu	Val	Ser	Tyr	Leu 135	Ile	Gly	Phe	Leu	Pro 140	Leu	Gly	Ile	Pro		
Met 145	Phe	Gln	Gln	Thr	Ala 150	Tyr	Lys	Gly	Gln	Cys 155	Ser	Phe	Phe	Ala	Val 160		
Phe	His	Pro	His	Phe 165	Val	Leu	Thr	Leu	Ser 170	Cys	Val	Gly	Phe	Phe 175	Pro		
Ala	Met	Leu	Leu 180	Phe	Val	Phe	Phe	Tyr 185	Cys	Asp	Met	Leu	Lys 190	Ile	Ala		
Ser	Met	His 195	Ser	Gln	Gln	Ile	Arg 200	Lys	Met	Glu	His	Ala 205	Gly	Ala	Met		
Ala	Gly 210	Gly	Туr	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220	Phe	Lys	Ala	Leu		
Arg 225	Thr	Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240		
Phe	Leu	Ile	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250	Cys	Gln	Glu	Суѕ	His 255	Leu		
Tyr	Leu	Val	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270	Asn	Ser		
Leu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280	Tyr	Trp	Gln	Lys	Glu 285	Val	Arg	Leu		
Gln	Leu 290	Tyr	His	Met	Ala	Leu 295	Gly	Val	Lys	Lys	Val 300	Leu	Thr	Ser	Phe		
Leu 305	Leu	Phe	Leu	Ser	Ala 310	Arg	Asn	Cys	Gly	Pro 315	Glu	Arg	Pro	Arg	Glu 320		
Ser	Ser	Cys	His	Ile 325	Val	Thr	Ile	Ser	Ser 330	Ser	Glu	Phe	Asp	Gly 335	,		•
<210 <211 <212 <213	L> 2 2> [75 2137 DNA Homo	sap:	iens													
<400 aact		75 agg q	gcago	ccgto	ct go	ccgc	ccac	g aad	cacct	tct	caaç	gcact	tt (gagto	gaccac	:	60
ggct	tgca	aag o	ctggi	egget	tg go	cccc	ccgaç	g tco	ccgg	gctc	tgag	ggcad	gg (ccgt	cgactt	. 1	.20
aago	gtt	gca t	tcct	gttad	cc to	ggaga	accct	cto	gagct	ctc	acct	gcta	act f	tctg	ccgctg	r 1	80
ctto	ctgca	aca ç	gagc	ccgg	gc ga	aggad	ccct	cca	aggat	gca	ggt	cccga	aac a	agcad	ccggcc	: 2	240
cgga	acaad	ege (gacgo	ctgca	ag at	gct	gcgga	a acc	ccgg	cgat	cgc	ggtg	gcc (ctgc	ccgtgg	1 3	300
tgta	actc	gct (ggtg	gcggd	eg gt	cago	catco	c cg	ggcaa	acct	ctto	ctct	ctg :	tggg1	gctgt	: 3	360
gcc	ggcgd	cat q	gggg	cca	ga to	cccq	gtcg	g tca	atcti	cat	gato	caaco	ctg a	agcgt	cacgo	r 4	120

acctgatgct ggccagcgtg ttgcctttcc aaatctacta ccattgcaac cgccaccact

480

gggtattcgg	ggtgctgctt	tgcaacgtgg	tgaccgtggc	cttttacgca	aacatgtatt	540
ccagcatcct	caccatgacc	tgtatcagcg	tggagcgctt	cctgggggtc	ctgtacccgc	600
tcagctccaa	gcgctggcgc	cgccgtcgtt	acgcggtggc	cgcgtgtgca	gggacctggc	660
tgctgctcct	gaccgccctg	tccccgctgg	cgcgcaccga	tctcacctac	ccggtgcacg	720
ccctgggcat	catcacctgc	ttcgacgtcc	tcaagtggac	gatgctcccc	agcgtggcca	780
tgtgggccgt	gttcctcttc	accatcttca	tcctgctgtt	cctcatcccg	ttcgtgatca	840
ccgtggcttg	ttacacggcc	accatcctca	agctgttgcg	cacggaggag	gcgcacggcc	900
gggagcagcg	gaggcgcgcg	gtgggcctgg	ccgcggtggt	cttgctggcc	tttgtcacct	960
gcttcgcccc	caacaacttc	gtgctcctgg	cgcacatcgt	gagccgcctg	ttctacggca	1020
agagctacta	ccacgtgtac	aagctcacgc	tgtgtctcag	ctgcctcaac	aactgtctgg	1080
acccgtttgt	ttattacttt	gcgtcccggg	aattccagct	gcgcctgcgg	gaatatttgg	1140
gctgccgccg	ggtgcccaga	gacaccctgg	acacgcgccg	cgagagcctc	ttctccgcca	1200
ggaccacgtc	cgtgcgctcc	gaggccggtg	cgcaccctga	agggatggag	ggagccacca	1260
ggcccggcct	ccagaggcag	gagagtgtgt	tctgagtccc	gggggcgcag	cttggagagc	1320
cgggggcgca	gcttggagga	tccaggggcg	catggagagg	ccacggtgcc	agaggttcag	1380
ggagaacagc	tgcgttgctc	ccaggcactg	cagaggcccg	gtggggaagg	gtctccaggc	1440
tttattcctc	ccaggcactg	cagaggcacc	ggtgaggaag	ggtctccagg	cttcactcag	1500
ggtagagaaa	caagcaaagc	ccagcagcgc	acagggtgct	tgttatcctg	cagagggtgc	1560
ctctgcctct	ctgtgtcagg	ggacagcttg	tgtcaccacg	cccggctaat	ttttgtattt	1620
tttttagtag	agctgggctg	tcacccccga	gctccttaga	cactcctcac	acctgtccat	1680
acccgaggat	ggatattcaa	ccagccccac	cgcctacccg	actcggtttc	tggatatcct	1740
ctgtgggcga	actgcgagcc	ccattcccag	ctcttctccc	tgctgacatc	gtcccttagc	1800
acacctgtcc	atacccgagg	atggatattc	aaccagcccc	accgcctacc	cgactcggtt	1860
tctggatatc	ctctgtgggc	gaactgcgag	ccccattccc	agctcttctc	cctgctgaca	1920
tcgtccctta	gttgtggttc	tggccttctc	cattctcctc	caggggttct	ggtctccgta	1980
gcccggtgca	cgccgaaatt	tctgtttatt	tcactcaggg	gcactgtggt	tgctgtggtt	2040
ggaattcttc	tttcagagga	gcgcctgggg	ctcctgcaag	tcagctactc	tccgtgccca	2100
cttcccctca	cacacacacc	cccctcgtgc	cgaattc			2137

<210> 76

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met Page 44

<211> 359

<212> PRT

<213> Homo sapiens

<400> 76

		411USPHRM311.	
1	5	10	15
Leu Arg Asn Pro 20	Ala Ile Ala Val	Ala Leu Pro Val Val 25	Tyr Ser Leu 30
Val Ala Ala Val 35	Ser Ile Pro Gly 40	Asn Leu Phe Ser Leu 45	Trp Val Leu
Cys Arg Arg Met 50	Gly Pro Arg Ser 55	Pro Ser Val Ile Phe 60	Met Ile Asn
Leu Ser Val Thr 65	Asp Leu Met Leu 70	Ala Ser Val Leu Pro 75	Phe Gln Ile 80
Tyr Tyr His Cys	Asn Arg His His 85	Trp Val Phe Gly Val 90	Leu Leu Cys 95
Asn Val Val Thr 100	Val Ala Phe Tyr	Ala Asn Met Tyr Ser 105	Ser Ile Leu 110
-		Arg Phe Leu Gly Val	-

Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro 115 120 125

Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys 130 135 140

Ala Gly Thr Trp Leu Leu Leu Leu Thr Ala Leu Ser Pro Leu Ala Arg 145 150 155 160

Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe 165 170 175

Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val 180 185 190

Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile 195 200 205

Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu 210 215 220

Glu Ala His Gly Arg Glu Gln Arg Arg Arg Ala Val Gly Leu Ala Ala 225 $230 \hspace{1.5cm} 235 \hspace{1.5cm} 240$

Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val 245 250 255

Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr 260 265 270

His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu 275 280 285

Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu 290 295 300

Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr 305 310 315 320

Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu 325 330 335

Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu 340 345 350

Gln	Arg	Gln	Glu	Ser	Val	Phe
	-	355				

<210> 77 <211> 1197

<212> DNA <213> Homo sapiens

<400> 77

atggagtegg ggetgetgeg geeggegeeg gtgagegagg teategteet geattacaae 60 tacaccqqca agctccgcgg tgcgcgctac cagccgggtg ccggcctgcg cgccgacgcc 120 qtqqtqtqcc tqqcqqtqtq cqccttcatc qtqctagaqa atctagccqt qttqttqqtq 180 ctcqqacqcc acccqcqctt ccacqctccc atgttcctqc tcctqqqcaq cctcacqttq 240 300 teggatetge tggeaggege egectaegee gecaacatee tactgteggg geegeteaeg ctgaaactgt cccccgcgct ctggttcgca cgggagggag gcgtcttcgt ggcactcact 360 qcqtccqtqc tqaqcctcct qqccatcqcq ctqqaqcqca qcctcaccat qqcqcqcaqq 420 qqqcccqcqc ccgtctccag tcggqggcgc acgctggcga tggcagccgc ggcctggggc 480 gtgtcgctgc tcctcgggct cctgccagcg ctgggctgga attgcctggg tcgcctggac 540 gettgeteca etgtettgee getetaegee aaggeetaeg tgetettetg egtgetegee 600 660 ttcqtqqqca tcctqqccqc tatctqtqca ctctacqcqc gcatctactq ccaqqtacqc qccaacgcgc ggcgcctgcc ggcacggccc gggactgcgg ggaccacctc gacccgggcg 720 cgtcgcaagc cgcgctcgct ggccttgctg cgcacgctca gcgtggtgct cctggccttt 780 gtggcatgtt ggggccccct cttcctgctg ctgttgctcg acgtggcgtg cccggcgcgc 840 acctgtcctg tactcctgca ggccgatccc ttcctgggac tggccatggc caactcactt 900 ctgaacccca tcatctacac gctcaccaac cgcgacctgc gccacgcgct cctgcgcctg 960 gtctgctgcg gacgccactc ctgcggcaga gacccgagtg gctcccagca gtcggcgagc 1020 geggetgagg etteeggggg eetgegeege tgeetgeeee egggeettga tgggagette 1080 ageggetegg agegeteate geeceagege gaegggetgg acaecagegg etecaeagge 1140 1197 agccccggtg cacccacagc cgcccggact ctggtatcag aaccggctgc agactga

<210> 78 <211> 398

<212> PRT <213> Homo sapiens

<400> 78

Met Glu Ser Gly Leu Leu Arg Pro Ala Pro Val Ser Glu Val Ile Val 1 5 10 15

Leu His Tyr Asn Tyr Thr Gly Lys Leu Arg Gly Ala Arg Tyr Gln Pro 20 25 30

Gly Ala Gly Leu Arg Ala Asp Ala Val Val Cys Leu Ala Val Cys Ala 35 40

Phe	Ile 50	Val	Leu	Glu	Asn	Leu 55	Ala	Val	Leu	Leu	Val 60	Leu	Gly	Arg	His
Pro 65	Arg	Phe	His	Ala	Pro 70	Met	Phe	Leu	Leu	Leu 75	Gly	Ser	Leu	Thr	Leu 80
Ser	Asp	Leu	Leu	Ala 85	Gly	Ala	Ala	Tyr	Ala 90	Ala	Asn	Ile	Leu	Leu 95	Ser
Gly	Pro	Leu	Thr 100	Leu	Lys	Leu	Ser	Pro 105	Ala	Leu	Trp	Phe	Ala 110	Arg	Glu
Gly	Gly	Val 115	Phe	Val	Ala	Leu	Thr 120	Ala	Ser	Val	Leu	Ser 125	Leu	Leu	Ala
Ile	Ala 130	Leu	Glu	Arg	Ser	Leu 135	Thr	Met	Ala	Arg	Arg 140	Gly	Pro	Ala	Pro
Val 145	Ser	Ser	Arg	Gly	Arg 150	Thr	Leu	Ala	Met	Ala 155	Ala	Ala	Ala	Trp	Gly 160
Val	Ser	Leu	Leu	Leu 165	Gly	Leu	Leu	Pro	Ala 170	Leu	Gly	Trp	Asn	Cys 175	Leu
Gly	Arg	Leu	Asp 180	Ala	Cys	Ser	Thr	Val 185	Leu	Pro	Leu	Tyr	Ala 190	Lys	Ala
Tyr	Val	Leu 195	Phe	Cys	Val	Leu	Ala 200	Phe	Val	Gly	Ile	Leu 205	Ala	Ala	Ile
Cys	Ala 210	Leu	Tyr	Ala	Arg	Ile 215	Tyr	Cys	Gln	Val	Arg 220	Ala	Asn	Ala	Arg
Arg 225	Leu	Pro	Ala	Arg	Pro 230	Gly	Thr	Ala	Gly	Thr 235	Thr	Ser	Thr	Arg	Ala 240
Arg	Arg	Lys	Pro	Arg 245	Ser	Leu	Ala	Leu	Leu 250	Arg	Thr	Leu	Ser	Val 255	Val
Leu	Leu	Ala	Phe 260	Val	Ala	Cys	Trp	Gly 265	Pro	Leu	Phe	Leu	Leu 270	Leu	Leu
Leu	Asp	Val 275	Ala	Cys	Pro	Ala	Arg 280	Thr	Cys	Pro	Val	Leu 285	Leu	Gln	Ala
Asp	Pro 290		Leu			Ala 295		Ala	Asn	Ser	Leu 300	Leu	Asn	Pro	Ile
Ile 305	Tyr	Thr	Leu	Thr	Asn 310	Arg	Asp	Leu	Arg	His 315	Ala	Leu	Leu	Arg	Leu 320
Val	Cys	Суѕ	Gly	Arg 325	His	Ser	Cys	Gly	Arg 330	Asp	Pro	Ser	Gly	Ser 335	Gln
Gln	Ser	Ala	Ser 340	Ala	Ala	Glu	Ala	Ser 345	Gly	Gly	Leu	Arg	Arg 350	Cys	Leu
Pro	Pro	Gly 355	Leu	Asp	Gly	Ser	Phe 360	Ser	Gly	Ser	Glu	Arg 365	Ser	Ser	Pro
Gln	Arg 370	Asp	Gly	Leu	Asp	Thr 375	Ser	Gly	Ser	Thr	Gly 380	Ser	Pro	Gly	Ala
Pro	Thr	Ala	Ala	Arg	Thr	Leu	Val	Ser	Glu	Pro	Ala	Ala	Asp		

390

<210>	79
<211>	1043

<212> DNA

<213> Homo sapiens

<400>

atgtacaacg ggtcgtgctg ccgcatcgag ggggacacca tctcccaggt gatgccgccg 60 ctgctcattg tggcctttgt gctgggcgca ctaggcaatg gggtcgccct gtgtggtttc 120 tgcttccaca tgaagacctg gaagcccagc actgtttacc ttttcaattt ggccgtggct 180 gatttcctcc ttatgatctg cctgcctttt cggacagact attacctcag acgtagacac 240 300 tgggcttttg gggacattcc ctgccgagtg gggctcttca cgttggccat gaacagggcc 360 qqqaqcatcq tqttccttac ggtggtggct gcggacaggt atttcaaagt ggtccacccc caccacgcgg tgaacactat ctccacccgg gtggcggctg gcatcgtctg caccctgtgg 420 480 gccctggtca tcctgggaac agtgtatctt ttgctggaga accatctctg cgtgcaagag acqqccqtct cctgtgagag cttcatcatg gagtcggcca atggctggca tgacatcatg 540 ttccagctgg agttctttat gcccctcggc atcatcttat tttgctcctt caagattgtt 600 tgqaqcctga ggcggaggca gcagctggcc agacaggctc ggatgaagaa ggcgacccgg 660 720 ttcatcatgg tggtggcaat tgtgttcatc acatgctacc tgcccagcgt gtctgctaga ctctatttcc tctggacggt gccctcgagt gcctgcgatc cctctgtcca tggggccctg 780 cacataaccc tcaqcttcac ctacatgaac agcatgctgg atcccctggt gtattatttt 840 tcaaqcccct cctttcccaa attctacaac aaqctcaaaa tctqcaqtct qaaacccaaq 900 960 cagccaggac actcaaaaac acaaaggccg gaagagatgc caatttcgaa cctcggtcgc aggagttgca tcagtgtggc aaatagtttc caaagccagt ctgatgggca atgggatccc 1020 1041 cacattgttg agtggcactg a

<210> 80

<211> 346

<212>

<213> Homo sapiens

<400> 80

Met Tyr Asn Gly Ser Cys Cys Arg Ile Glu Gly Asp Thr Ile Ser Gln

Val Met Pro Pro Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly

Asn Gly Val Ala Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys

Pro Ser Thr Val Tyr Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu

Met Ile Cys Leu Pro Phe Arg Thr Asp Tyr Tyr Leu Arg Arg Arg His Page 48

		411USPHRM311.S	T25
65	70	75	8.0

Trp Ala Phe Gly Asp Ile Pro Cys Arg Val Gly Leu Phe Thr Leu Ala 85 90 95

Met Asn Arg Ala Gly Ser Ile Val Phe Leu Thr Val Val Ala Ala Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Arg Tyr Phe Lys Val Val His Pro His His Ala Val Asn Thr Ile Ser 115 120 125

Thr Arg Val Ala Ala Gly Ile Val Cys Thr Leu Trp Ala Leu Val Ile 130 135 140

Leu Gly Thr Val Tyr Leu Leu Leu Glu Asn His Leu Cys Val Glu 145 150 155 160

Thr Ala Val Ser Cys Glu Ser Phe Ile Met Glu Ser Ala Asn Gly Trp 165 170 175

His Asp Ile Met Phe Gln Leu Glu Phe Phe Met Pro Leu Gly Ile Ile 180 185 190

Leu Ala Arg Gln Ala Arg Met Lys Lys Ala Thr Arg Phe Ile Met Val210 215 220

Val Ala Ile Val Phe Ile Thr Cys Tyr Leu Pro Ser Val Ser Ala Arg 225 230 235 240

Leu Tyr Phe Leu Trp Thr Val Pro Ser Ser Ala Cys Asp Pro Ser Val 245 250 255

His Gly Ala Leu His Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met 260 265 270

Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Lys Phe 275 280 285

Tyr Asn Lys Leu Lys Ile Cys Ser Leu Lys Pro Lys Gln Pro Gly His 290 295 300

Ser Lys Thr Gln Arg Pro Glu Glu Met Pro Ile Ser Asn Leu Gly Arg 305 310 315 320

Arg Ser Cys Ile Ser Val Ala Asn Ser Phe Gln Ser Gln Ser Asp Gly 325 330 335

Gln Trp Asp Pro His Ile Val Glu Trp His 340 345

<210> 81

<211> 2525

<212> DNA <213> Homo sapiens

<400> 81

caagaatgac aggtgacttc ccaagtatgc ctggccacaa tacctccagg aattcctctt 60 gcgatcctat agtgacaccc cacttaatca gcctctactt catagtgctt attggcgggc 120 tggtgggtgt catttccatt cttttcctcc tggtgaaaat gaacacccgg tcagtgacca 180

Page 49

ccatggcggt cattaacttg	gtggtggtcc		PHRM311.ST2: tctgctgaca		240
gcttgaccta cctcatcaag	aagacttgga	tgtttgggct	gcccttctgc	aaatttgtga	300
gtgccatgct gcacatccac	atgtacctca	cgttcctatt	ctatgtggtg	atcctggtca	360
ccagatacct catcttcttc	aagtgcaaag	acaaagtgga	attctacaga	aaactgcatg	420
ctgtggctgc cagtgctggc	atgtggacgc	tggtgattgt	cattgtggta	cccctggttg	480
tctcccggta tggaatccat	gaggaataca	atgaggagca	ctgttttaaa	tttcacaaag	540
agcttgctta cacatatgtg	aaaatcatca	actatatgat	agtcatttt	gtcatagccg	600
ttgctgtgat tctgttggtc	ttccaggtct	tcatcattat	gttgatggtg	cagaagctac	660
gccactcttt actatcccac	caggagttct	gggctcagct	gaaaaaccta	ttttttatag	720
gggtcatcct tgtttgtttc	cttccctacc	agttctttag	gatctattac	ttgaatgttg	780
tgacgcattc caatgcctgt	aacagcaagg	ttgcatttta	taacgaaatc	ttcttgagtg	840
taacagcaat tagctgctat	gatttgcttc	tctttgtctt	tgggggaagc	cattggttta	900
agcaaaagat aattggctta	tggaattgtg	ttttgtgccg	ttagccacaa	actacagtat	960
tcatatttgc ttcctttata	ttgggaataa	aaatgggtat	aggggaggta	agaatggtat	1020
ttcattactt gatcaaaacc	atgccttgat	gtacccaaaa	caaaaggact	ataaaatgca	1080
agagccctca ttgtagtcct	tatgggatcc	ctcccatctc	tgagtgatgg	ccgtacaaag	1140
accagtgttg ttgaatccac	ctggagttgc	aatattacat	tattttccag	tacagaatgt	1200
ctgtgtggcc catgaaagca	acataggttt	taagagtttt	agagtttcat	tagctcattc	1260
taagttcctc tgtttgaagc	atggtctctt	aggttttgga	ctgaactcag	acctttagtt	1320
cttttcatcc cacttcacct	taggtaagta	aattctggcc	accacccagc	tccaaagaca	1380
caaactctcc ttcgctaacc	aggttagatg	tcccattcat	ctcatgccct	gataaaaact	1440
gataagggga gagaatagtt	aaaaattttt	ctagggtatc	ataactctgg	taggaagtca	1500
tctgtctaga aatcaagaga	aaaagaacgt	gtggcctcct	gttataacaa	gggtttctag	1560
atttgtcctg tgaaaggtcg	tttaaggact	tggggatcaa	cttcctcaat	tatcaccaat	1620
tgcactgttg ctccaaaaat	catttaaaag	cttactggac	atatctacat	aatggtgaaa	1680
ctgtaattta gagactatcc	ctgactaatg	tgctggtagg	cattaaaatg	agttcccaag	1740
ggaagtgatt aaaattttt	tctcttctgt	tttttgagag	aatttctaga	tgtcctgggc	1800
cacagttaat taagattttt	aggggggaca	gaaagttata	ctgaaatctt	tagagctccc	1860
ttccgccgtt aaaattatat	atatatatat	ttaaattata	ccttaagttc	tggggtacat	1920
gtgcagaatg tgcaggtttg	ttacataggt	atacacgtgc	catggtggtt	tgcggcacct	1980
gtcaacccat ctacattagg	tatttctcct	aatgctctcc	ctcccctagc	ccccacccc	2040
tggacaggcc ccattgtgtg	atgttcccct	ccctgtgtcc	atgtgttttc	attgttcaac	2100
tcccacttct aagtgagaac	atgcggtgtt	tggttttctg	ttcctgtgtt	agtttgctga	2160

Page 50

gaatgatggt	ttccaggtta	aaattatata	tttttaaata	aatgaaaact	gtgtttttaa	2220
aagaggactt	ttgagaagta	tatagaaaaa	ccattaattt	agactctgtg	agattaggtt	2280
gcatgaagaa	ggttttctga	atatttgaag	agtggataaa	taaatgtccc	ccaaagcaat	2340
aaaatcataa	tcctttaaaa	tataggaaaa	ataactaatg	ggaactaggc	ttaatactcg	2400
ggatgaaata	atctgtacaa	caaactccca	tgacacatgt	ttacctatgt	aacaaacctg	2460
cacatgtacc	cctgaactta	aaataaaatt	taaagtataa	taataaaata	atatggattt	2520
tcttt						2525

<210> 82 <211> 312 <212> PRT

<213> Homo sapiens

<400> 82

Met Thr Gly Asp Phe Pro Ser Met Pro Gly His Asn Thr Ser Arg Asn 1 $$ 5 $$ 15

Ser Ser Cys Asp Pro Ile Val Thr Pro His Leu Ile Ser Leu Tyr Phe 20 25 30

Ile Val Leu Ile Gly Gly Leu Val Gly Val Ile Ser Ile Leu Phe Leu 35 40 45

Leu Val Lys Met Asn Thr Arg Ser Val Thr Thr Met Ala Val Ile Asn 50 60

Leu Val Val Val His Ser Val Phe Leu Leu Thr Val Pro Phe Arg Leu 65 70 75 80

Thr Tyr Leu Ile Lys Lys Thr Trp Met Phe Gly Leu Pro Phe Cys Lys 85 90 95

Phe Val Ser Ala Met Leu His Ile His Met Tyr Leu Thr Phe Leu Phe 100 105 110

Tyr Val Val Ile Leu Val Thr Arg Tyr Leu Ile Phe Phe Lys Cys Lys 115 120 125

Asp Lys Val Glu Phe Tyr Arg Lys Leu His Ala Val Ala Ala Ser Ala 130 135 140

Gly Met Trp Thr Leu Val Ile Val Ile Val Val Pro Leu Val Val Ser 145 150 155 160

Arg Tyr Gly Ile His Glu Glu Tyr Asn Glu Glu His Cys Phe Lys Phe 165 170 175

His Lys Glu Leu Ala Tyr Thr Tyr Val Lys Ile Ile Asn Tyr Met Ile 180 185 190

Val Ile Phe Val Ile Ala Val Ala Val Ile Leu Leu Val Phe Gln Val 195 200 205

Phe Ile Ile Met Leu Met Val Gln Lys Leu Arg His Ser Leu Leu Ser 210 215 220

His	Gln Glu	Phe	Trp P	łlа	GIn	Leu	Lys	Asn	Leu	Phe	Phe	шe	Gly	۷al
225			2	230					235					240

Ile Leu Val Cys Phe Leu Pro Tyr Gln Phe Phe Arg Ile Tyr Tyr Leu 245 250 255

Asn Val Val Thr His Ser Asn Ala Cys Asn Ser Lys Val Ala Phe Tyr 260 265 270

Asn Glu Ile Phe Leu Ser Val Thr Ala Ile Ser Cys Tyr Asp Leu Leu 275 280 285

Leu Phe Val Phe Gly Gly Ser His Trp Phe Lys Gln Lys Ile Ile Gly 290 295 300

Leu Trp Asn Cys Val Leu Cys Arg 305 310

<210> 83 <211> 1125

<211> 112.

<213> Homo sapiens

<400> 83

qcaqqaqcac tgaaaatcag gaacaatcct gtattttttg tgataatcaa caaggacaaa 60 acttctccat atgtaaataa cagcgttatg agcagcaatt catccctgct ggtggctgtg 120 cagctgtgct acgcgaacgt gaatgggtcc tgtgtgaaaa tccccttctc gccgggatcc 180 cgggtgattc tgtacatagt gtttggcttt ggggctgtgc tggctgtgtt tggaaacctc 240 ctqqtqatqa tttcaatcct ccatttcaag cagctgcact ctccgaccaa ttttctcgtt 300 gcctctctgg cctgcgctga tttcttggtg ggtgtgactg tgatgccctt cagcatggtc 360 aggacggtgg agagctgctg gtattttggg aggagttttt gtactttcca cacctgctgt 420 480 gatgtggcat tttgttactc ttctctcttt cacttgtgct tcatctccat cgacaggtac attgcggtta ctgaccccct ggtctatcct accaagttca ccgtatctgt gtcaggaatt 540 tgcatcagcg tgtcctggat cctgccctc atgtacagcg gtgctgtgtt ctacacaggt 600 gtctatgacg atgggctgga ggaattatct gatgccctaa actgtatagg aggttgtcag 660 accettgtaa atcaaaactg ggtgttgaca gattttctat ccttctttat acctaccttt 720 780 attatgataa ttctgtatgg taacatattt cttgtggcta gacgacaggc gaaaaagata qaaaatactq qtaqcaaqac agaatcatcc tcaqaqagtt acaaaqccaq agtggccagg 840 agagagagaa aagcagctaa aaccctgggg gtcacagtgg tagcatttat gatttcatgg 900 ttaccatata gcattgattc attaattgat gcctttatgg gctttataac ccctgcctgt 960 1020 atttatgaga tttgctgttg gtgtgcttat tataactcag ccatgaatcc tttgatttat 1080 gctttatttt acccatggtt taggaaagca ataaaagtta ttgtaactgg tcaggtttta aagaacagtt cagcaaccat gaatttgttt tctgaacata tataa 1125

<210> 84 <211> 345 <212> PRT

<213> Homo sapiens

<400> 84

Met Ser Ser Asn Ser Ser Leu Leu Val Ala Val Gln Leu Cys Tyr Ala 1 5 10 15

Asn Val Asn Gly Ser Cys Val Lys Ile Pro Phe Ser Pro Gly Ser Arg 20 25 30

Val Ile Leu Tyr Ile Val Phe Gly Phe Gly Ala Val Leu Ala Val Phe 35 40 45

Gly Asn Leu Leu Val Met Ile Ser Ile Leu His Phe Lys Gln Leu His 50 55 60

Ser Pro Thr Asn Phe Leu Val Ala Ser Leu Ala Cys Ala Asp Phe Leu 65 70 75 80

Val Gly Val Thr Val Met Pro Phe Ser Met Val Arg Thr Val Glu Ser 85 90 95

Cys Trp Tyr Phe Gly Arg Ser Phe Cys Thr Phe His Thr Cys Cys Asp 100 105 110

Val Ala Phe Cys Tyr Ser Ser Leu Phe His Leu Cys Phe Ile Ser Ile 115 120 125

Asp Arg Tyr Ile Ala Val Thr Asp Pro Leu Val Tyr Pro Thr Lys Phe 130 135 140

Thr Val Ser Val Ser Gly Ile Cys Ile Ser Val Ser Trp Ile Leu Pro 145 150 155 160

Leu Met Tyr Ser Gly Ala Val Phe Tyr Thr Gly Val Tyr Asp Asp Gly 165 170 175

Leu Glu Glu Leu Ser Asp Ala Leu Asn Cys Ile Gly Gly Cys Gln Thr 180 185 190

Val Val Asn Gln Asn Trp Val Leu Thr Asp Phe Leu Ser Phe Phe Ile 195 200 205

Pro Thr Phe Ile Met Ile Ile Leu Tyr Gly Asn Ile Phe Leu Val Ala 210 215 220

Arg Gln Ala Lys Lys Ile Glu Asn Thr Gly Ser Lys Thr Glu Ser 225 230 235 240

Ser Ser Glu Ser Tyr Lys Ala Arg Val Ala Arg Arg Glu Arg Lys Ala 245 250 255

Ala Lys Thr Leu Gly Val Thr Val Val Ala Phe Met Ile Ser Trp Leu 260 265 270

Pro Tyr Ser Ile Asp Ser Leu Ile Asp Ala Phe Met Gly Phe Ile Thr 275 280 285

Pro Ala Cys Ile Tyr Glu Ile Cys Cys Trp Cys Ala Tyr Tyr Asn Ser 290 295 300

Ala Met Asn Pro Leu Ile Tyr Ala Leu Phe Tyr Pro Trp Phe Arg Lys 305 310 315 320

Ala Ile Lys Val Ile Val Thr Gly Gln Val Leu Lys Asn Ser Ser Ala 330

Thr Met Asn Leu Phe Ser Glu His Ile 340

<210> 85 <211> 1020

<212> DNA <213> Homo sapiens

<400> 85

accatgaatg	agccactaga	ctatttagca	aatgcttctg	atttccccga	ttatgcagct	60
gcttttggaa	attgcactga	tgaaaacatc	ccactcaaga	tgcactacct	ccctgttatt	120
tatggcatta	tcttcctcgt	gggatttcca	ggcaatgcag	tagtgatatc	cacttacatt	180
ttcaaaatga	gaccttggaa	gagcagcacc	atcattatgc	tgaacctggc	ctgcacagat	240
ctgctgtatc	tgaccagcct	ccccttcctg	attcactact	atgccagtgg	cgaaaactgg	300
atctttggag	atttcatgtg	taagtttatc	cgcttcagct	tccatttcaa	cctgtatagc	360
agcatcctct	tcctcacctg	tttcagcatc	ttccgctact	gtgtgatcat	tcacccaatg	420
agctgctttt	ccattcacaa	aactcgatgt	gcagttgtag	cctgtgctgt	ggtgtggatc	480
atttcactgg	tagctgtcat	tccgatgacc	ttcttgatca	catcaaccaa	caggaccaac	540
agatcagcct	gtctcgacct	caccagttcg	gatgaactca	atactattaa	gtggtacaac	600
ctgattttga	ctgcaagtac	tttctgcctc	cccttggtga	tagtgacact	ttgctatacc	660
acgattatcc	acactttgac	ccatggactg	caaactgaca	gctgccttaa	gcagaaagca	720
cgaaggctaa	ccattctgct	actccttgca	ttttacgtat	gttttttacc	cttccatatc	780
ttgagggtca	ttcaggatcg	aatctcagcc	tgctttcaat	cagttgttcc	attgagaatc	840
agatccatga	agcttacatc	gtttctagac	cattatgctg	ctctgaacac	ctttggtaac	900
ctgttactat	atgtggtggt	cagcgacaac	tttcagcagg	ctgtctgctc	aacagtgaga	960
tgcaaagtaa	gcgggaacct	tgagcaagca	aagaaaatta	gttactcaaa	caacccttga	1020

<210> 86

<400> 86

Met Asn Glu Pro Leu Asp Tyr Leu Ala Asn Ala Ser Asp Phe Pro Asp

Tyr Ala Ala Ala Phe Gly Asn Cys Thr Asp Glu Asn Ile Pro Leu Lys

Met His Tyr Leu Pro Val Ile Tyr Gly Ile Ile Phe Leu Val Gly Phe

Pro Gly Asn Ala Val Val Ile Ser Thr Tyr Ile Phe Lys Met Arg Pro 60

<211> 336

<212> PRT <213> Homo sapiens

Trp :	Lys	Ser	Ser	Thr	Ile 70	Ile	Met	Leu	Asn	Leu 75	Ala	Cys	Thr	Asp	Leu 80	
Leu '	Tyr	Leu	Thr	Ser 85	Leu	Pro	Phe	Leu	Ile 90	His	Tyr	Tyr	Ala	Ser 95	Gly	
Glu i	Asn	Trp	Ile 100	Phe	Gly	Asp	Phe	Met 105	Cys	Lys	Phe	Ile	Arg 110	Phe	Ser	
Phe l	His	Phe 115	Asn	Leu	Tyr	Ser	Ser 120	Ile	Leu	Phe	Leu	Thr 125	Суѕ	Phe	Ser	
Ile i	Phe 130	Arg	Tyr	Cys	Val	Ile 135	Ile	His	Pro	Met	Ser 140	Суз	Phe	Ser	Ile	
His 1 145	Lys	Thr	Arg	Cys	Ala 150	Val	Val	Ala	Суѕ	Ala 155	Val	Val	Trp	Ile	Ile 160	
Ser 1	Leu	Val	Ala	Val 165	Ile	Pro	Met	Thr	Phe 170	Leu	Ile	Thr	Ser	Thr 175	Asn	
Arg '	Thr	Asn	Arg 180	Ser	Ala	Cys	Leu	Asp 185	Leu	Thr	Ser	Ser	Asp 190	Glu	Leu	
Asn '	Thr	Ile 195	Lys	Trp	Tyr	Asn	Leu 200	Ile	Leu	Thr	Ala	Ser 205	Thr	Phe	Cys	
Leu l	Pro 210	Leu	Val	Ile	Val	Thr 215	Leu	Суз	Tyr	Thr	Thr 220	Ile	Ile	His	Thr	
Leu ' 225	Thr	His	Gly	Leu	Gln 230	Thr	Asp	Ser	Cys	Leu 235	Lys	Gln	Lys	Ala	Arg 240	
Arg :	Leu	Thr	Ile	Leu 245	Leu	Leu	Leu	Ala	Phe 250	Tyr	Val	Cys	Phe	Leu 255	Pro	
Phe I	His	Ile	Leu 260	Arg	Val	Ile	Gln	Asp 265	Arg	Ile	Ser	Ala	Cys 270	Phe	Gln	
Ser '	Val	Val 275	Pro	Leu	Arg	Ile	Arg 280	Ser	Met	Lys	Leu	Thr 285	Ser	Phe	Leu	
Asp 1	His 290	Tyr	Ala	Ala	Leu	Asn 295	Thr	Phe	Gly	Asn	Leu 300	Leu	Leu	Tyr	Val	
Val V 305	Val		-		Phe 310							Thr	Val	_	Cys 320	
Lys \	Val	Ser	Gly	Asn 325	Leu	Glu	Gln	Ala	Lys 330	Lys	Ile	Ser	Tyr	Ser 335	Asn	
<210: <211: <212: <213:	> 1 > [37 1138 DNA Homo	sapi	iens												
<400: aaaaa		37 get g	gtact	tgaad	ct at	tgaa	atgga	a act	tgga	aaat	aaaç	gtcc	ctt (ccaaa	aataac	60
tatt	ctto	caa d	caga	gagta	aa ta	aggta	aaatq	g ttt	taga	agt	gaga	aggad	ctc a	aaati	tgccaa	120
tgat	ttac	ctc t	ttta	attti	tt co	ctcc1	aggt	tto	ctggg	gata	agta	atgt	gca a	aataa	aaaaat	180
aaac	atga	aga a	aggaa	actgi	ta ad	ectga	attat	gga	attt		aaaa Page	-	aaa †	tcaad	cacaca	240

aagggaaaag	taaactgatt	gacagccctc	aggaatgatg	cccttttgcc	acaatataat	300
taatatttcc	tgtgtgaaaa	acaactggtc	aaatgatgtc	cgtgcttccc	tgtacagttt	360
aatggtgctc	ataattctga	ccacactcgt	tggcaatctg	atagttattg	tttctatatc	420
acacttcaaa	caacttcata	ccccaacaaa	ttggctcatt	cattccatgg	ccactgtgga	480
ctttcttctg	gggtgtctgg	tcatgcctta	cagtatggtg	agatctgctg	agcactgttg	540
gtattttgga	gaagtcttct	gtaaaattca	cacaagcacc	gacattatgc	tgagctcagc	600
ctccattttc	catttgtctt	tcatctccat	tgaccgctac	tatgctgtgt	gtgatccact	660
gagatataaa	gccaagatga	atatcttggt	tatttgtgtg	atgatcttca	ttagttggag	720
tgtccctgct	gtttttgcat	ttggaatgat	ctttctggag	ctaaacttca	aaggcgctga	780
agagatatat	tacaaacatg	ttcactgcag	aggaggttgc	tctgtcttct	ttagcaaaat	840
atctggggta	ctgaccttta	tgacttcttt	ttatatacct	ggatctatta	tgttatgtgt	900
ctattacaga	atatatctta	tcgctaaaga	acaggcaaga	ttaattagtg	atgccaatca	960
gaagctccaa	attggattgg	aaatgaaaaa	tggaatttca	caaagcaaag	aaaggaaagc	1020
tgtgaagaca	ttggggattg	tgatgggagt	tttcctaata	tgctggtgcc	ctttctttat	1080
ctgtacagtc	atggaccctt	ttcttcacta	cattattcca	cctactttga	atgatgta	1138

<210> 88 <211> 296

<212> PRT <213> Homo sapiens

<400> 88

Met Met Pro Phe Cys His Asn Ile Ile Asn Ile Ser Cys Val Lys Asn 1 5 10 15

Asn Trp Ser Asn Asp Val Arg Ala Ser Leu Tyr Ser Leu Met Val Leu 20 25 30

Ile Ile Leu Thr Thr Leu Val Gly Asn Leu Ile Val Ile Val Ser Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ser His Phe Lys Gln Leu His Thr Pro Thr Asn Trp Leu Ile His Ser 50 60

Met Ala Thr Val Asp Phe Leu Leu Gly Cys Leu Val Met Pro Tyr Ser 65 70 75 80

Met Val Arg Ser Ala Glu His Cys Trp Tyr Phe Gly Glu Val Phe Cys 85 90 95

Lys Ile His Thr Ser Thr Asp Ile Met Leu Ser Ser Ala Ser Ile Phe 100 105 110

His Leu Ser Phe Ile Ser Ile Asp Arg Tyr Tyr Ala Val Cys Asp Pro 115 120 125

Leu Arg Tyr Lys Ala Lys Met Asn Ile Leu Val Ile Cys Val Met Ile 130 135 140

Phe 145	Ile	Ser	Trp	Ser	Val 150	Pro	Ala	Val	Phe	Ala 155	Phe	Gly	Met	Ile	Phe 160	
Leu	Glu	Leu	Asn	Phe 165	Lys	Gly	Ala	Glu	Glu 170	Ile	Tyr	Tyr	Lys	His 175	Val	
His	Суѕ	Arg	Gly 180	Gly	Cys	Ser	Val	Phe 185	Phe	Ser	Lys	Ile	Ser 190	Gly	Val	
Leu	Thr	Phe 195	Met	Thr	Ser	Phe	Tyr 200	Ile	Pro	Gly	Ser	Ile 205	Met	Leu	Cys	
Val	Tyr 210	Tyr	Arg	Ile	Tyr	Leu 215	Ile	Ala	Lys	Glu	Gln 220	Ala	Arg	Leu	Ile	
Ser 225	Asp	Ala	Asn	Gln	Lys 230	Leu	Gln	Ile	Gly	Leu 235	Glu	Met	Lys	Asn	Gly 240	
Ile	Ser	Gln	Ser	Lys 245	Glu	Arg	Lys	Ala	Val 250	Lys	Thr	Leu	Gly	Ile 255	Val	
Met	Gly	Val	Phe 260	Leu	Ile	Суѕ	Trp	Cys 265	Pro	Phe	Phe	Ile	Cys 270	Thr	Val	
Met	Asp	Pro 275	Phe	Leu	His	Tyr	Ile 280	Ile	Pro	Pro	Thr	Leu 285	Asn	Asp	Ala	
Arg	Gly 290	Ser	Arg	Ala	Asn	Ser 295	Ala									
<21 <21 <21 <21	1> 1 2> 1	39 1023 DNA Homo	sap:	iens												
<40 gga		39 tgc (cctt	ttgc	ca ca	aatat	caatt	t aat	attt	cct	gtgt	gaaa	aaa	caact	ggtca	60
aat	gatgi	tcc (gtgci	ttcc	ct gi	cacaç	gttta	a ato	ggtgo	ctca	taat	tct	gac	cacao	ctcgtt	120
ggc	aatci	tga i	tagti	tatto	gt ti	ctat	tatca	a cad	cttca	aaac	aact	tcat	cac	cccaa	acaaat	180
tgg	ctca	ttc a	attc	catg	gc ca	actgi	ggad	c ttt	ctto	etgg	ggt	gtct	ggt (catgo	ccttac	240
agt	atggi	tga (gatci	tgct	ga go	cact	gttgg	g tat	ctttç	ggag	aagt	ctt	ctg	taaaa	attcac	300
aca	agca	ccg a	acati	tatg	ct ga	agcto	cagco	c tco	catti	tcc	atti	gtc	tt.	catci	ccatt	360
															tggtt	420
att	tgtgi	rga '	tgato	cttc	at ta	agtto	ggagt	t gto	ccct	gctg	ttti	tgc	att	tggaa	atgatc	480
ttt	ctgga	agc ·	taaa	cttc	aa aq	ggcg	ctgaa	a gaç	gatat	att	acaa	aacat	tgt	tcact	gcaga	540
gga	ggtte	gct (ctgt	cttc	tt ta	agcaa	aaata	a tct	tgggg	gtac	tgad	cctt	tat ·	gacti	tctttt	600
tat	atac	ctg (gatc	tatt	at gi	ttat	gtgto	c tat	ttaca	agaa	tata	atct	tat	cgcta	aaagaa	660
cag	gcaa	gat ·	taat	tagt	ga to	gccaa	atcaç	g aaq	gata	caaa	ttg	gatto	gga .	aatga	aaaaat	720
gga	attt	cac a	aaag	caaa	ga aa	aggaa	aagci	t gto	gaaga	acat	tgg	ggat	tgt	gatg	ggagtt	780
tto	ctaa	tat (gctg	gtgc	cc t	ttct	ttato	c tgt	tacaç	gtca	tgga	accc.	ttt	tctt	cactac	840

tag						1023
tttggtaaaa	ttttccaaaa	agattcatcc	aggtgtaaat	tatttttgga	attgagttca	1020
aatccaatgg	tttatgcatt	tttctatcct	tggtttagaa	aagcactgaa	gatgatgctg	960
attattccac	ctactttgaa	tgatgtattg	atttggtttg	gctacttgaa	ctctacattt	900

<210> 90 <211> 339 <212> PRT

<213> Homo sapiens

<400> 90

Met Met Pro Phe Cys His Asn Ile Ile Asn Ile Ser Cys Val Lys Asn 1 5 10 15

Asn Trp Ser Asn Asp Val Arg Ala Ser Leu Tyr Ser Leu Met Val Leu 20 25 30

Ile Ile Leu Thr Thr Leu Val Gly Asn Leu Ile Val Ile Val Ser Ile 35 40 45

Ser His Phe Lys Gln Leu His Thr Pro Thr Asn Trp Leu Ile His Ser 50 55 60

Met Ala Thr Val Asp Phe Leu Leu Gly Cys Leu Val Met Pro Tyr Ser 65 70 75 80

Met Val Arg Ser Ala Glu His Cys Trp Tyr Phe Gly Glu Val Phe Cys 85 90 95

Lys Ile His Thr Ser Thr Asp Ile Met Leu Ser Ser Ala Ser Ile Phe $100 \hspace{1cm} 105 \hspace{1cm} 110$

His Leu Ser Phe Ile Ser Ile Asp Arg Tyr Tyr Ala Val Cys Asp Pro 115 120 125

Leu Arg Tyr Lys Ala Lys Met Asn Ile Leu Val Ile Cys Val Met Ile 130 135 140

Phe Ile Ser Trp Ser Val Pro Ala Val Phe Ala Phe Gly Met Ile Phe 145 150 155 160

Leu Glu Leu Asn Phe Lys Gly Ala Glu Glu Ile Tyr Tyr Lys His Val 165 170 175

His Cys Arg Gly Gly Cys Ser Val Phe Phe Ser Lys Ile Ser Gly Val $180 \,$ $185 \,$ 190

Leu Thr Phe Met Thr Ser Phe Tyr Ile Pro Gly Ser Ile Met Leu Cys 195 200 205

Val Tyr Tyr Arg Ile Tyr Leu Ile Ala Lys Glu Gln Ala Arg Leu Ile 210 215 220

Ser Asp Ala Asn Gln Lys Leu Gln Ile Gly Leu Glu Met Lys Asn Gly 225 230 235 240

Ile Ser Gln Ser Lys Glu Arg Lys Ala Val Lys Thr Leu Gly Ile Val 245 250 255

Met Gly Val Phe Leu Ile Cys Trp Cys Pro Phe Phe Ile Cys Thr Val Page 58

60

Met	Asp	Pro 275	Phe	Leu	His	Tyr	Ile 280		Pro	Pro	Thr	Leu 285	Asn	Asp	Val
Leu	Ile 290	Trp	Phe	Gly	Tyr	Leu 295	Asn	Ser	Thr	Phe	Asn 300	Pro	Met	Val	Tyr
Ala 305	Phe	Phe	Туг	Pro	Trp 310	Phe	Arg	Lys	Ala	Leu 315	Lys	Met	Met	Leu	Phe 320
Gly	Lys	Ile	Phe	Gln 325	Lys	Asp	Ser	Ser	Arg 330	Cys	Lys	Leu	Phe	Leu 335	Glu

265

Leu Ser Ser

<210> 91 <211> 1696 <212> DNA

<213> Homo sapiens

<400> 91

, i

II.

ctgtaaagta gattgtatga ggactccatg aggtcatcca cttcaagtcc ttggcatagg ataattactc aaaaggtgat gacaatggcg cagggaggga tggtgacttg cctggagatg 120 cacagcaccg tototoccat actoggtoat toacaccate attgattoac caggcaccac 180 tccgtgtcca gcaggactct ggggacccca aatggacact accatggaag ctgacctggg 240 tgccactggc cacaggcccc gcacagagct tgatgatgag gactcctacc cccaaggtgg 300 360 ctgggacacg gtcttcctgg tggccctgct gctccttggg ctgccagcca atgggttgat ggcgtggctg gccggctccc aggcccggca tggagctggc acgcgtctgg cgctgctcct 420 gctcagcctg gccctctctg acttcttgtt cctggcagca gcggccttcc agatcctaga 480 gateeggeat gggggaeact ggeegetggg gaeagetgee tgeegettet actaetteet 540 atggggcgtg tectactect eeggeetett eetgetggee geeeteagee tegacegetg 600 cctgctggcg ctgtgcccac actggtaccc tgggcaccgc ccagtccgcc tgcccctctg 660 ggtctgcgcc ggtgtctggg tgctggccac actcttcagc gtgccctggc tggtcttccc 720 cgaggctgcc gtctggtggt acgacctggt catctgcctg gacttctggg acagcgagga 780 840 gctgtcgctg aggatgctgg aggtcctggg gggcttcctg cctttcctcc tgctgctcgt 900 ctgccacgtg ctcacccagg ccacagcctg tcgcacctgc caccgccaac agcagcccgc 960 agcctgccgg ggcttcgccc gtgtggccag gaccattctg tcagcctatg tggtcctgag gctgccctac cagctggccc agctgctcta cctggccttc ctgtgggacg tctactctgg 1020 1080 ctacctgctc tgggaggccc tggtctactc cgactacctg atcctactca acagctgcct 1140 cageccette etetgeetea tggecagtge egaceteegg accetgetge geteegtget ctcgtccttc gcggcagctc tctgcgagga gcggccgggc agcttcacgc ccactgagcc 1200 acagacccag ctagattctg agggtccaac tctgccagag ccgatggcag aggcccagtc 1260

acagatggat	cctgtggccc	agcctcaggt	gaaccccaca	ctccagccac	gatcggatcc	1320
cacagctcag	ccacagctga	accctacggc	ccagccacag	tcggatccca	cagcccagcc	1380
acagctgaac	ctcatggccc	agccacagtc	agattctgtg	gcccagccac	aggcagacac	1440
taacgtccag	acccctgcac	ctgctgccag	ttctgtgccc	agtccctgtg	atgaagcttc	1500
cccaacccca	tcctcgcatc	ctaccccagg	ggcccttgag	gacccagcca	cacctcctgc	1560
ctctgaagga	gaaagcccca	gcagcacccc	gccagaggcg	gccccgggcg	caggccccac	1620
gtgagggtcc	aggaacacgc	aggcccacca	gagcagtgaa	agagcccagg	gcagacagag	1680
gaaccagcca	gtcaga					1696

<210> 92

<211> 505 \

<212> PRT

<213> Homo sapiens

<400> 92

Thr Ile Ile Asp Ser Pro Gly Thr Thr Pro Cys Pro Ala Gly Leu Trp 20 25 30

Gly Pro Gln Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly 35 40 45

His Arg Pro Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly 50 60

Gly Trp Asp Thr Val Phe Leu Val Ala Leu Leu Leu Gly Leu Pro 65 70 75 80

Ala Asn Gly Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly 85 90 95

Ala Gly Thr Arg Leu Ala Leu Leu Leu Leu Ser Leu Ala Leu Ser Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Phe Leu Phe Leu Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His 115 120 125

Gly Gly His Trp Pro Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe 130 135 140

Leu Trp Gly Val Ser Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu 145 150 155 160

Ser Leu Asp Arg Cys Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly 165 170 175

His Arg Pro Val Arg Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val 180 185 190

Leu Ala Thr Leu Phe Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala 195 200 205

Val Trp Trp Tyr Asp Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu 210 215 220

Page 60

225					230					235					240
Leu	Leu	Leu	Leu	Val 245	Cys	His	Val	Leu	Thr 250	Gln	Ala	Thr	Ala	Cys 255	Arg
Thr	Cys	His	Arg 260	Gln	Gln	Gln	Pro	Ala 265	Ala	Суз	Arg	Gly	Phe 270	Ala	Arg
Val	Ala	Arg 275	Thr	Ile	Leu	Ser	Ala 280	Tyr	Val	Val	Leu	Arg 285	Leu	Pro	Tyr
Gln	Leu 290	Ala	Gln	Leu	Leu	Tyr 295	Leu	Ala	Phe	Leu	Trp 300	Asp	Val	Tyr	Ser
Gly 305	Tyr	Leu	Leu	Trp	Glu 310	Ala	Leu	Val	Tyr	Ser 315	Asp	Tyr	Leu	Ile	Leu 320
Leu	Asn	Ser	Суѕ	Leu 325	Ser	Pro	Phe	Leu	Cys 330	Leu	Met	Ala	Ser	Ala 335	Asp
Leu	Arg	Thr	Leu 340	Leu	Arg	Ser	Val	Leu 345	Ser	Ser	Phe	Ala	Ala 350	Ala	Leu
Cys	Glu	Glu 355	Arg	Pro	Gly	Ser	Phe 360	Thr	Pro	Thr	Glu	Pro 365	Gln	Thr	Gln
Leu	Asp 370	Ser	Glu	Gly	Pro	Thr 375	Leu	Pro	Glu	Pro	Met 380	Ala	Glu	Ala	Gln
Ser 385	Gln	Met	Asp	Pro	Val 390	Ala	Gln	Pro	Gln	Val 395	Asn	Pro	Thr	Leu	Gln 400
Pro	Arg	Ser	Asp	Pro 405	Thr	Ala	Gln	Pro	Gln 410	Leu	Asn	Pro	Thr	Ala 415	Gln
Pro	Gln	Ser	Asp 420	Pro	Thr	Ala	Gln	Pro 425	Gln	Leu	Asn	Leu	Met 430	Ala	Gln
Pro	Gln	Ser 435	Asp	Ser	Val	Ala	Gln 440	Pro	Gln	Ala	Asp	Thr 445	Asn	Val	Gln
Thr	Pro 450	Ala	Pro	Ala	Ala	Ser 455	Ser	Val	Pro	Ser	Pro 460	Суз	Asp	Glu	Ala
Ser 465	Pro	Thr	Pro	Ser	Ser 470	His	Pro	Thr	Pro	Gly 475	Ala	Leu	Glu	Asp	Pro 480
Ala	Thr	Pro	Pro	Ala 485	Ser	Glu	Gly	Glu	Ser 490	Pro	Ser	Ser	Thr	Pro 495	Pro
Glu	Ala	Ala	Pro 500	Gly	Ala	Gly	Pro	Thr 505							
<210 <211 <212 <213	L> 1 2> I 3> F		sapi	iens											
<400 atgg		93 cta d	ccato	ggaag	gc to	gacct	gggt	gco	cacto	ggcc	acag	ggcc	ccg (cacaç	gagctt
gato	gatga	agg a	actco	ctaco	CC C	caago	gtgg	c tg	ggaca	acgg	tctt	cct	ggt o	ggcc	ctgctg

Glu Leu Ser Leu Arg Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe

60 120

ctccttgggc	tgccagccaa	tgggttgatg	gcgtggctgg	ccggctccca	ggcccggcat	180
ggagctggca	cgcgtctggc	gctgctcctg	ctcagcctgg	ccctctctga	cttcttgttc	240
ctggcagcag	cggccttcca	gatcctagag	atccggcatg	ggggacactg	gccgctgggg	300
acagctgcct	gccgcttcta	ctacttccta	tggggcgtgt	cctactcctc	cggcctcttc	360
ctgctggccg	ccctcagcct	cgaccgctgc	ctgctggcgc	tgtgcccaca	ctggtaccct	420
gggcaccgcc	cagtccgcct	gcccctctgg	gtctgcgccg	gtgtctgggt	gctggccaca	480
ctcttcagcg	tgccctggct	ggtcttcccc	gaggctgccg	tctggtggta	cgacctggtc	540
atctgcctgg	acttctggga	cagcgaggag	ctgtcgctga	ggatgctgga	ggtcctgggg	600
ggcttcctgc	ctttcctcct	gctgctcgtc	tgccacgtgc	tcacccaggc	cacagcctgt	660
cgcacctgcc	accgccaaca	gcagcccgca	gcctgccggg	gcttcgcccg	tgtggccagg	720
accattctgt	cagcctatgt	ggtcctgagg	ctgccctacc	agctggccca	gctgctctac	780
ctggccttcc	tgtgggacgt	ctactctggc	tacctgctct	gggaggccct	ggtctactcc	840
gactacctga	tcctactcaa	cagctgcctc	agccccttcc	tctgcctcat	ggccagtgcc	900
gacctccgga	ccctgctgcg	ctccgtgctc	tcgtccttcg	cggcagctct	ctgcgaggag	960
cggccgggca	gcttcacgcc	cactgagcca	cagacccagc	tagattctga	gggtccaact	1020
ctgccagagc	cgatggcaga	ggcccagtca	cagatggatc	ctgtggccca	gcctcaggtg	1080
aaccccacac	tccagccacg	atcggatccc	acagctcagc	cacagctgaa	ccctacggcc	1140
cagccacagt	cggatcccac	agcccagcca	cagctgaacc	tcatggccca	gccacagtca	1200
gactctgtgg	cccagccaca	ggcagacact	aacgtccaga	cccctgcacc	tgctgccagt	1260
tctgtgccca	gtccctgtga	tgaagcttcc	ccaaccccat	cctcgcatcc	taccccaggg	1320
gcccttgagg	acccagccac	acctcctgcc	tctgaaggag	aaagccccag	cagcaccccg	1380
ccagaggcgg	ccccgggcgc	aggccccacg	tga			1413

```
<210> 94
<211> 419
```

<212> PRT <213> Homo sapiens

<400> 94

Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro 1 5 10 15

Thr Val Phe Leu Val Ala Leu Leu Leu Gly Leu Pro Ala Asn Gly 35 40 45

Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr 50 60

Arg Leu Ala Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe Page 62

411USPHRM311.ST25 70 75 86

65	70		75			80
Leu Ala Ala A	Ala Ala Phe 85	Gln Ile I	Leu Glu Ile 90	Arg His	Gly Gly 95	His
Trp Pro Leu (Gly Thr Ala 100	_	Arg Phe Tyr .05	Tyr Phe	Leu Trp 110	Gly
Val Ser Tyr S 115	Ser Ser Gly	Leu Phe L 120	Leu Leu Ala	Ala Leu 125	Ser Leu	Asp
Arg Cys Leu I 130	Leu Ala Leu	Cys Pro H 135	lis Trp Tyr	Pro Gly 140	His Arg	Pro
Val Arg Leu H 145	Pro Leu Trp 150	Val Cys A	Ala Gly Val 155	-	Leu Ala	Thr 160
Leu Phe Ser V	Val Pro Trp 165	Leu Val P	Phe Pro Glu 170	Ala Ala	Val Trp 175	Trp
Tyr Asp Leu \	Val Ile Cys 180	-	Phe Trp Asp .85	Ser Glu	Glu Leu 190	Ser
Leu Arg Met I 195	Leu Glu Val	Leu Gly G 200	Sly Phe Leu	Pro Phe 205	Leu Leu	Leu
Leu Val Cys F 210	His Val Leu	Thr Gln A 215	Ala Thr Ala	Cys Arg 220	Thr Cys	His
Arg Gln Gln (225	Gln Pro Ala 230	Ala Cys A	Arg Gly Phe 235	-	Val Ala	Arg 240
Thr Ile Leu S	Ser Ala Tyr 245	Val Val I	Leu Arg Leu 250	Pro Tyr	Gln Leu 255	Ala
Gln Leu Leu 1	Tyr Leu Ala 260		Trp Asp Val 265	Tyr Ser	Gly Tyr 270	Leu
Leu Trp Glu A 275	Ala Leu Val	Tyr Ser A 280	Asp Tyr Leu	Ile Leu 285	Leu Asn	Ser
Cys Leu Ser E 290	Pro Phe Leu	Cys Leu M 295	Met Ala Ser	Ala Asp 300	Leu Arg	Thr
Leu Leu Arg S 305	Ser Val Leu 310	Ser Ser P	Phe Ala Ala 315		Cys Glu	Glu 320
Arg Pro Gly S	325		330		335	
Glu Gly Pro T	Thr Leu Pro 340		Met Ala Glu 345	Ala Gln	Ser Gln 350	Met
Asp Pro Val A	Ala Gln Pro	Gln Val A	Asn Pro Thr	Leu Gln 365	Pro Arg	Ser
Asp Pro Thr A	Ala Gln Pro	Gln Leu A 375	Asn Pro Thr	Ala Gln 380	Pro Gln	Ser
Asp Pro Thr A	Ala Gln Pro 390	Gln Leu A	Asn Leu Met 395		Pro Gln	Ser 400
Asp Ser Val A	Ala Gln Pro 405	Gln Ala A	Asp Thr Asr 410	Val Gln	Thr Pro 415	Ala

Pro Ala Ala <210> 95 49 . <211> <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence <400> 95 ttcaaagctt atggaatcat ctttctcatt tggagtgatc cttgctgtc 49 <210> 96 <211> 49 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence Ū <400> 96 ttcactcgag ttagccatca aactctgagc tggagatagt gacgatgtg 49 I <210> 97 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc feature <223> Novel Sequence]= <400> 97 gctcaaccca ctcatctatg cc 22 <210> 98 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence <400> 98 22 aaacttctct gcccttaccg tc <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220>

		misc_feature	
	<223>	Novel Sequence	
	<400>	99	
		gcac cccgaatacc	20
	aaagca	godo occigadodo	20
	<210>	100	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<0.00		
	<220>	misc_feature	
		Novel Sequence	
	12207	nover bequence	
		•	
	<400>	100	
	catgat	caac ctgagcgtca c	21
	4010s	101	
	<210> <211>	101 28	
	<212>		
ij	<213>	Artificial Sequence	
ıñ		1	
1 == 4. 1. 1.	<220>		
74 <u>.</u> 442	<221>	misc_feature	
14	<223>	Novel Sequence	
Ш			
	<400>	101	
٠		gctt atggagtcgg ggctgctg	28
_=	cccaaa	gott utggugtegg ggotgetg	20
3 4 ===	<210>	102	
	<211>	30	
		DNA	
=	<213>	Artificial Sequence	
==	<220>		
1		misc feature	
		Novel Sequence	
1-		•	
	<400>	102	
	ttcact	cgag tcagtctgca gccggttctg	30
	<210>	103	
	<211>	30	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
		misc_feature	
	<223>	Novel Sequence	
	<400>	103	
		tggc cgctatctgt gcactctacg	30
	-		-
	<210>	104	

Page 65

```
<211> 30
<212> DNA
<213> Artificial Sequence
    <220>
    <221> misc feature
    <223> Novel Sequence
    <400> 104
    cgtagagtgc acagatagcg gccaggatgc
                                                                                 30
    <210> 105
<211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
    <223> Novel Sequence
    <400> 105
                                                                                 19
    aaccccatca tctacacgc
١<u>ٿ</u>
    <210> 106
   <211> 18
<212> DNA
   <213> Artificial Sequence
Ш
ŧij.
    <220>
   <221> misc_feature
    <223> Novel Sequence
IJ
   <400> 106
Ш
                                                                                 18
   tgcctgtgga gccgctgg
14
Ę
   <210> 107
ij
   <211> 33
    <212> DNA
<213> Artificial Sequence
    <220>
    <221> misc feature
    <223> Novel Sequence
    <400> 107
    gcataagctt ccatgtacaa cgggtcgtgc tgc
                                                                                 33
    <210> 108
    <211> 33
    <212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
<223> Novel Sequence
```

	<400>	108	
	gcattc	taga tcagtgccac tcaacaatgt ggg	33
		400	
	<210>	109	
	<211>	20	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<221>	misc_feature	
	<223>	Novel Sequence	
	<400>	109	
	gaagcc	cagc actgtttacc	20
		110	
	<210>	110	
	<211>	20	
		DNA	
	<213>	Artificial Sequence	
	<220>		
:==		misc_feature	
14	<223>	Novel Sequence	
١Ū			
		110	
7: 177	<400>	110	00
165	tgaaat	acct gtccgcagcc	20
IU.			
Ð	.010	111	
 1I	<210>	111	
74	<211>	35	
= [-3.	<212>	DNA	
5	<213>	Artificial Sequence	
	.000		
:=== ::::	<220>	· Contract	
i U		misc_feature	
₫.	<223>	Novel Sequence	
pa:			
	-100>	112	
=	<400>	111	2.5
₫.	gatcaa	gctt atgacaggtg acttcccaag tatgc	35
•			
	401 OS	110	
	<210>	112	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
	*000:		
	<220>		
		misc_feature	
	<223>	Novel Sequence	
		110	
	<400>	112	~ .
	gatcct	cgag gctaacggca caaaacacaa ttcc	34
	2010s	112	
	<210>	113	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	

411USPHRM311.ST25 <220> <221> misc_feature <223> Novel Sequence <400> 113 19 cagcccaaac atccaagtc <210> 114 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence <400> 114 19 acccactta atcagcctc <210> 115 <211> 34 <212> DNA <213> Artificial Sequence :0 1 <220> (I) <221> misc_feature <223> Novel Sequence IJ ij -<400> 115 34 gatcgaattc gcaggagcaa tgaaaatcag gaac <210> 116 <211> 39 Ш <212> DNA <213> Artificial Sequence = <220> <221> misc feature $\langle 223 \rangle$ Nove $\overline{1}$ Sequence <400> 116 gatcgaattc ttatatatgt tcagaaaaca aattcatgg 39 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <400> 117 20 acagececaa agecaaacae

<210> 118 <211> 22 <212> DNA

<213> Artificial Sequence

			411USPHRM311.ST25	
	<400>	118		
	ccgcag	gagc aatgaaaatc ag		22
	<210>	119		
	<211>	19		
	<212>	DNA		
	<213>	Artificial Sequence		
		•		
	<400>	119		
		gttg tcgctgacc		19
	<210>	120		
	<211>			
	<212>			
		Artificial Sequence		
	\213/	Altiticial bequence		
	<220>			
		misc feature	,	
	<223>	Novel Sequence		
		100		
	<400>	120		
	cgatta	toca cactttgaco c		21
i]				
ıñ				
- Standill	<210>	121		
-1	<211>	25		
Ħ	<212>	DNA		
171		Artificial Sequence		
		1-1-1-1		
10	<400>	121		
÷=1		catg aatgagccac tagac		25
===	geacae	sacy aacyayoodo tayao		25
a ĝesa				
ŧ	<210>	122		
j	<211>			
1 ===1 = = 1				
I U		DNA		
l mile	<213>	Artificial Sequence		
THE THE PERSON	.000			
	<220>			
		misc_feature		
1.4	<223>	Novel Sequence		
£				
	<400>	122		
	gcatct	cgag tcaagggttg tttgagtaac		30
	<210>	123		
	<211>	20		
	<212>			
	<213>			
		THE CONTROL OF THE CONTROL		
	<220>			
		misc feature		
		Novel Sequence		
	~~~>/	MONET BENNEHICE		
	<100°	100		
	<400>	123		00
	ctgtct	etet gteetettee		20
	<210>	124		

<211> <212> <213>	22 DNA Artificial Sequence		
	misc_feature Novel Sequence	,	
	124 atct tcattgaatt tc		22
<210> <211> <212> <213>	22		
	misc_feature Novel Sequence		
<400> acttca	125 aaca acttcatacc cc		22
<210> <211> <212> <213>	18		
	misc_feature Novel Sequence		
<400> acacac	126 agca tagtagcg		18
<210> <211> <212> <213>	20		
<220> <221> <223>			
<400> cagage	127 Ettga tgatgaggac		20
<210> <211> <212> <213>	20 DNA		
<220> <221> <223>	misc_feature Novel Sequence		

```
<400> 128
                                                                          20
    cccataggaa gtagtagaag
    <210> 129
    <211> 9
    <212> PRT
    <213> Synthetic substrate peptide
    <220>
    <221> misc feature
    <223> Novel Sequence
    <400> 129
    Ala Pro Arg Thr Pro Gly Gly Arg Arg
                    5
    <210> 130
    <211> 52
    <212> DNA
    <213> Artificial Sequence
    <220>
   <221> misc_feature
   <223> Novel Sequence
ŧΩ
1
I
   <400> 130
   gcgtaatacg actcactata gggagaccgc gtgtctgcta gactctattt cc
                                                                          52
ıÜ
-
   <210> 131
    <211>
          20
    <212> DNA
    <213> Artificial Sequence
111
    <220>
    <221> misc_feature
<223> Novel Sequence
    <400> 131
                                                                          20
    tgccacactg atgcaactcc
    <210> 132
    <211> 48
    <212> DNA
    <213> Artificial Sequence
    <400> 132
                                                                          48
    gcgtaatacg actcactata gggagacctg ccacactgat gcaactcc
    <210> 133
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
    <223> Novel Sequence
```

	<400> gcgtgt	133 cctgc tagactctat ttcc	24
	<212>	134 50 DNA Artificial Sequence	
	<400> gcgtaa	134 tacg actcactata gggagaccgc acgccactct ttactatccc	50
	<210> <211> <212> <213>	135 24 DNA Artificial Sequence	
	<220> <221> <223>	misc_feature Novel Sequence	
	<400> gcacaa	135 maca caattccata agcc	24
	<210> <211> <212> <213>	136 52 DNA Artificial Sequence	
Ē		misc_feature Novel Sequence	
	<400> gcgtaa	136 stacg actcactata gggagaccgc acaaaacaca attccataag cc	52
	<210> <211> <212> <213>	137 23 DNA Artificial Sequence	
	<220> <221> <223>	misc_feature Novel Sequence	
	<400> gctacg	137 gccac tctttactat ccc	23
	<210> <211> <212> <213>	138 49 DNA Artificial Sequence	
	<220> <221> <223>	misc_feature Novel Sequence	

		138 tacg actcactata gggagacctt atgagcagca attcatccc	49
	<210> <211> <212> <213>	20	
		misc_feature Novel Sequence	
		139 cacc aagaaatcag	20
	<210><211><211><212><213>	48	
		misc_feature Novel Sequence	
IJ	<400> gcgtaa	140 tacg actcactata gggagaccca cacccaccaa gaaatcag	48
	<211> <212>		
		misc_feature Novel Sequence	
	<400> ttatga	141 gcag caattcatcc c	21
	<212>	49	
		misc_feature Novel Sequence	
		142 tacg actcactata gggagacccg attatccaca ctttgaccc	49
	<210> <211> <212> <213>		

	<220>		
	<221>	misc_feature Novel Sequence	
	12237	Novel bequence	
	<400>	143	
	ctgaaa	igttg tcgctgacc	19
	<210>	144	
	<211>		
	<212>		
	(213)	Artificial Sequence	
	<220>		
	<221>	misc_feature	
	<223>	Novel Sequence	
	<400>	144	
	gcgtaa	tacg actcactata gggagaccct gctgaaagtt gtcgctgacc	50
	<210>	145	
I	<211>		
ō	<212>		
	<213>	Artificial Sequence	
Ħ	<220>		
111		misc feature	
		Novel Sequence	
	<400>	145	
i ĝes.		stcca cactttgacc c	21
	-	•	
	<21.0×	146	
U	<210> <211>		
==.	<212>		
E	<213>	Artificial Sequence	
]	4000s		
æ.	<220> <221>	misc feature	
	<223>	Novel Sequence	
	44005		
	<400>	146 tacg actcactata gggagaccct gtaaaattca cacaagcacc	50
	gogeaa	tacg accountact gygagacout graduation cacaagonou	
	.04.5	4.17	
	<210> <211>	147 19	
	<211>		
	<213>		
		-	
	<220> <221>	mine feature	
	<221>		
	-220/	Joquonoo	
	<400>	147	19
	ayaaya	caga gcaacctcc	19

```
<210> 148
    <211>
           48
    <212>
          DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
<223> Novel Sequence
    <400> 148
    dgcgtaatac gactcactat agggagacca gaagacagag caacctcc
                                                                           48
    <210> 149
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc feature
    <223> Novel Sequence
   <400> 149
   ctgtaaaatt cacacaagca cc
                                                                            22
ايه "
Ü
   <210> 150
   <211>
          31
    <212> DNA
۱Ō.
   <213> Artificial Sequence
    <220>
    <221> misc_feature
Ξ
    <223> Novel Sequence
Ш
    <400> 150
31
   gcatggatcc tctttgctgt atttcaccct c
    <210> 151
    <211>
           31
    <212>
           DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
    <223>
          Novel Sequence
    <400> 151
    gcatgaattc acaatgccag tgataaggaa g
                                                                           31
    <210> 152
    <211> 31
    <212>
          DNA
    <213> Artificial Sequence
    <220>
    <221> misc feature
    <223> Nove\overline{1} Sequence
```





		152 gctt ggaatgatgc ccttttgcca c	31
		misc_feature Novel Sequence	
		153 cgag catcattcaa agtaggtgg	29
	<211> <212>	154 42 DNA Artificial Sequence	
		misc_feature Novel Sequence	
	<400> gatcct	154 cgag ctatgaactc aattccaaaa ataatttaca cc	42
	<211> <212>		
	<220> <221> <223>	misc_feature Novel Sequence	
<b>.</b>	<400> gctact	155 tgaa ctctacattt aatccaatgg tttatgcatt tttctatcc	49
	<220> <221> <223>	misc_feature Novel Sequence	
	<400> ggatag	156 aaaa atgcataaac cattggatta aatgtagagt tcaagtagc	49
	<210> <211> <212>	157 35 DNA	

# •

	<213>	Artificial Sequence											
	<220>	mine feetune											
		misc_feature Novel Sequence											
	12237	•											
		400. 157											
	<400>	157 attc atggacacta ccatggaagc tgacc	35										
	gattya	acte atyyacaeta ceacyyaaye tyace	33										
	<210>	158											
	<211> <212>												
		Artificial Sequence											
	<b>****</b>												
	<220>	misc feature											
		Novel Sequence											
		•											
	<400>	158											
		cgag tcacgtgggg cctgcgcccg g	31										
	<b>3</b>												
j maj	<21.05	159											
1	<210> <211>												
Щ.	<212>	DNA											
.1 .1	<213>	Artificial Sequence											
14	<220>												
14	<221>	misc feature											
1	<223>	Nove $\overline{1}$ Sequence											
÷þ.	<400>	159											
1	gcgtaa	tacg actcactata gggagaccgc gtgtctgcta gactctattt cc	52										
	<210>	160											
[#.	<211>	20											
E	<212>												
13	<213>	Artificial Sequence											
į mi	<220>	·											
	<221>	misc_feature											
	<223>	Novel Sequence											
	<400>												
	tgccac	cactg atgcaactcc	20										
	<210>	161											
	<211>												
	<212> <213>												
	<220>	ml Cashuur											
	<221> <223>	<b>-</b>											
	7227	notes objective											
	4400:	161											
	<400>	161 tacg actcactata gggagacctg ccacactgat gcaactcc	48										
	gogoda												
		Page 77											

	<210>	162	
	<211> <212>	24 DNA	
		Artificial Sequence	
		•	
	<220>	-ice feature	
	<221>	misc_feature Novel Sequence	
	\2237	Movel pedaetice	
	<400>	162 ctgc tagactctat ttcc	24
	gcgtgt	cigo tagactotat tico	24
	<210>	163	
	<211> <212>		
		Artificial Sequence	
	<220>	misc feature	
		Novel Sequence	
		160	
Ū	<400>	163 tacg actcactata gggagaccgc acgccactct ttactatccc	50
	gcgcaa	tacy acteuctata gygagacege acgecacter tractatese	30
П			
		164	
₫	<211> <212>	24 DNA	
-2		Artificial Sequence	
F.		•	
•	<220>	with a factoria	
]		misc_feature Novel Sequence	
H 1000	12201		
<u>.</u>			
Ξ	<400>	164 aaca caattccata agcc	24
	gcacaa	aaca caatteeata agee	24
=- ==			
		165	
		52 DNA	
		Artificial Sequence	
	.000.		
	<220>	misc feature	
	<223>	Novel Sequence	
		•	
	<400>	165	
		tacg actcactata gggagaccgc acaaaacaca attccataag cc	52
	3-3		
	4010t	100	
	<210> <211>	166 23	
	<211>		
		Artificial Sequence	
	Z220N		
	<220> <221>	misc feature	

	<223>	Novel Sequence	
	<400> gctacg	166 ccac tctttactat ccc	23
	<b>4010</b> 5	167	
		167 49	
	<211>		
		Artificial Sequence	
	<220>		
	<221>	misc_feature	
	<223>	Novel Sequence	
	<400>	167	
		tacg actcactata gggagacctt atgagcagca attcatccc	49
	<210>	168	
	<211>	20	
		DNA	
<b>;</b> = 7	<213>	Artificial Sequence	
.fi	<220>		
:≝: 1.1		misc_feature	
H	<223>	Novel Sequence	
	<400>	168	
ū		cacc aagaaatcag	20
1	cacacc	cuco uuguuuccug	20
. E	-010:	160	
:		169	
17		48	
1 <u>==</u> 4 3 ₹ 1	<213>	DNA Artificial Sequence	
14	\213/	Altilitial bequence	
=	<220>		
ı Fa	<221>	misc_feature	
	<223>	Novel Sequence	
Į±.			
	<400>	169	40
	gegtaa	tacg actcactata gggagaccca cacccaccaa gaaatcag	48
	<210>	170	
	<211>		
	<212>		
	<213>		
	<220>		
		misc feature	
		Novel Sequence	
	<400>		
	ttatga	gcag caattcatcc c	21
	<210>	171	
	<211>	49	

Page 79

```
<212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
    <223> Novel Sequence
    <400> 171
                                                                        49
    gcgtaatacg actcactata gggagacccg attatccaca ctttgaccc
    <210> 172
    <211>
          19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
    <223> Novel Sequence
    <400> 172
    ctgaaagttg tcgctgacc
                                                                        19
    <210> 173
ŧД
    <211> 50
    <212> DNA
Ħ
    <213> Artificial Sequence
IJ
    <220>
    <221> misc feature
    <223> Novel Sequence
    <400> 173
gcgtaatacg actcactata gggagaccct gctgaaagtt gtcgctgacc
                                                                        50
Ш
    <210> 174
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <221> misc feature
    <223> Novel Sequence
    <400> 174
                                                                        21
    cgattatcca cactttgacc c
    <210> 175
    <211> 50
    <212>
          DNA
    <213> Artificial Sequence
    <220>
    <221> misc_feature
    <223> Novel Sequence
    <400> 175
```

#### 411USPHRM311.ST25 gcgtaatacg actcactata gggagaccct gtaaaattca cacaagcacc 50 <210> 176 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc feature <223> Novel Sequence <400> 176 19 agaagacaga gcaacctcc <210> 177 <211> 47 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence ١Ū <400> 177 47 gcgtaatacg actcactata gggagaccag aagacagagc aacctcc ij Ш <210> 178 ١Ū <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc feature <223> Novel Sequence Щ 1 <400> 178 22 ctgtaaaatt cacacaagca cc <210> 179 <211> 31 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Novel Sequence <400> 179 31 gcatggatcc tctttgctgt atttcaccct c <210> 180 <211> 31 <212> DNA <213> Artificial Sequence <220>

	<221> <223>	misc_feature Novel Sequence	
	<400> gcatga	180 attc acaatgccag tgataaggaa g	31
	<210> <211> <212> <213>		
		misc_feature Novel Sequence	
	<400> acagcc	181 ccaa agccaaacac	20
E.H	<211> <212>		
		misc_feature Novel Sequence	
	<400> ccgcag	182 gagc aatgaaaatc ag	22
Lightly in grathing	<210> <211> <212> <213>		
		misc_feature Novel Sequence	
	<400> ctgtct	183 ctct gtcctcttcc	20
	<210> <211> <212> <213>	184 22 DNA Artificial Sequence	
	<220> <221> <223>	misc_feature Novel Sequence	
	<400> gcaccg	184 atct tcattgaatt tc	22
	<210>	185	

Page 82

411USPHRM311.ST25
<211> 1188 <212> DNA <213> Homo sapiens
<400> 185 aggctcgcgc ccgaagcaga gccatgagaa ccccagggtg cctggcgagc cgctagcgcc 60
atgggccccg gcgaggcgct gctggcgggt ctcctggtga tggtactggc cgtggcgctg 120
ctatccaacg cactggtgct gctttgttgc gcctacagcg ctgagctccg cactcgagcc 180
tcaggcgtcc tcctggtgaa tctgtctctg ggccacctgc tgctggcggc gctggacatg 240
cccttcacgc tgctcggtgt gatgcgcggg cggacaccgt cggcgcccgg cgcatgccaa 300
gtcattggct tcctggacac cttcctggcg tccaacgcgg cgctgagcgt ggcggcgctg 360
agegeagace agtggettge agtgggette ceaetgeget aegeeggacg cetgegaceg 420
cgctatgccg gcctgctgct gggctgtgcc tggggacagt cgctggcctt ctcaggcgct 480
gcacttggct gctcgtggct tggctacagc agcgccttcg cgtcctgttc gctgcgcctg 540
ccgcccgagc ctgagcgtcc gcgcttcgca gccttcaccg ccacgctcca tgccgtgggc 600
ttcgtgctgc cgctggcggt gctctgcctc acctcgctcc aggtgcaccg ggtggcacgc 660
agacactgcc agcgcatgga caccgtcacc atgaaggcgc tcgcgctgct cgccgacctg 720
caccccagtg tgcggcagcg ctgcctcatc cagcagaagc ggcgccgcca ccgcgccacc 780
aggaagattg gcattgctat tgcgaccttc ctcatctgct ttgccccgta tgtcatgacc 840
aggctggcgg agctcgtgcc cttcgtcacc gtgaacgccc agtggggcat cctcagcaag 900
tgcctgacct acagcaaggc ggtggccgac ccgttcacgt actctctgct ccgccggccg 960
ttccgccaag tcctggccgg catggtgcac cggctgctga agagaacccc gcgcccagca 1020
tccacccatg acagctctct ggatgtggcc ggcatggtgc accagctgct gaagagaacc 1080
ccgcgcccag cgtccaccca caacggctct gtggacacag agaatgattc ctgcctgcag 1140
cagacacact gagggcctgg cagggctcat cgcccccacc ttctaaga 1188
<210> 186 <211> 363 <212> PRT <213> Homo sapiens
<400> 186
Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met Val Leu 1 5 10 15
Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Leu Cys Cys Ala Tyr 20 25 30
Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val Asn Leu 35

Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe Thr Leu 50 60

Leu	Gly	Val	Met	Arg	Gly	Arg	Thr	Pro	Ser	Ala	Pro	Gly	Ala	Cys	Gln
65	-				70					75					80

Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala Leu Ser 85 90 95

Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe Pro Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly Leu Leu Gly 115 120 125

Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu Gly Cys 130 135 140

Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu Arg Leu 145 150 160

Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala Thr Leu 165 170 175

His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu Thr Ser 180 185 190

Leu Gln Val His Arg Val Ala Arg Arg His Cys Gln Arg Met Asp Thr 195 200 205

Val Thr Met Lys Ala Leu Ala Leu Leu Ala Asp Leu His Pro Ser Val 210 215 220

Arg Gln Arg Cys Leu Ile Gln Gln Lys Arg Arg Arg His Arg Ala Thr 225 230 235 240

Arg Lys Ile Gly Ile Ala Ile Ala Thr Phe Leu Ile Cys Phe Ala Pro 245  $\cdot$  250 255

Tyr Val Met Thr Arg Leu Ala Glu Leu Val Pro Phe Val Thr Val Asn 260 265 270

Ala Gln Trp Gly Ile Leu Ser Lys Cys Leu Thr Tyr Ser Lys Ala Val 275 280 285

Ala Asp Pro Phe Thr Tyr Ser Leu Leu Arg Arg Pro Phe Arg Gln Val 290 295 300

Leu Ala Gly Met Val His Arg Leu Leu Lys Arg Thr Pro Arg Pro Ala 305 310 315 320

Ser Thr His Asp Ser Ser Leu Asp Val Ala Gly Met Val His Gln Leu 325 330 335

Leu Lys Arg Thr Pro Arg Pro Ala Ser Thr His Asn Gly Ser Val Asp 340 345

Thr Glu Asn Asp Ser Cys Leu Gln Gln Thr His 355 360

<210> 187

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature <223> Novel Sequence

	<400>	187											
	gcataaq	gctt	gccatgggcc	ccggcgagg				29					
	<210>	188											
	<211>	28											
	<212>	DNA											
	<213>	Arti	ficial Sequ	ience									
	<220>												
	<221>		_feature										
	<223>	Nove	el Sequence										
	<400s	100											
	<400>	188	catacatata	tetactac			•	28					
	gcattctaga cctcagtgtg tctgctgc 28												
	<210>	189											
	<211>	20											
	<212>	DNA											
	<213>		ficial Sequ	ence									
	12137	112.03	riioidi boq										
17	<220>												
. ==	<221>	misc	feature										
1 <u>.</u>	<223>	Nove	el Sequence										
"늴													
111	<400>	189					•						
: <del>u</del>	tgctgct	tttg	ttgcgcctac					20					
<b>1</b> <u>1</u> <u>1</u> .		_											
1													
E	<210>	190											
	<211>	18											
: 	<212>	DNA											
	<213>	Arti	ficial Sequ	ience									
IU.													
l_i	<220>												
: ;==:	<221>		_feature										
: <del>[</del>	<223>	Nove	el Sequence										
J													
<b>i.</b>		100											
•	<400>	190						10					
	ttggac	geca	ggaaggtg					18					
	<210>	191											
	<211>	1644	1										
	<212>	DNA	<u>.</u>										
	<213>		sapiens										
	12137	Home	Japiens										
	<400>	191					•						
			ggaactcgta	tagacccagc	atcactcccc	acaccacctc	gcctccactt	60					
		9	55		<b>J J</b>	3-33	<b>3</b>						
	taattt	ccca	cgtcctgccc	gccctcttcg	gtgcctcctc	ttcctccggg	acaaggatgg	120					
	,,,	_	,	,	,	222	33 33						
	aggatc	tctt	tagcccctca	attctgccgc	cggcgcccaa	catttccgtg	cccatcttgc	180					
			-										
	tgggct	gggg	tctcaacctg	accttggggc	aaggagcccc	tgcctctggg	ccgcccagcc	240					
	·	-											
	cgcgtg	cggg	ggcacggcgc	tgtcacagct	ggcctgggaa	ctgctgggcg	agccccgcgc	300					
	ggccac	gggg	gacctggcgt	gccgcttcct	gcagctgctg	caggcatccg	ggcggggcgc	360					
						Page 85							
						J							

ctcggcccac	ctagtggtgc	tcatcgccct	cgagcgccgg	cgcgcggtgc	gtcttccgca	420
cggccggccg	ctgcccgcgc	gtgccctcgc	cgccctgggc	tggctgctgg	cactgctgct	480
ggcgctgccc	ccggccttcg	tggtgcgcgg	ggactccccc	tcgccgctgc	cgccgccgcc	540
gccgccaacg	tccctgcagc	caggcgcgcc	cccggccgcc	cgcgcctggc	cgggggagcg	600
tcgctgccac	gggatcttcg	cgcccctgcc	gcgctggcac	ctgcaggtct	acgcgttcta	660
cgaggccgtc	gcgggcttcg	tcgcgcctgt	tacggtcctg	ggcgtcgctt	gcggccacct	720
actctccgtc	tggtggcggc	accggccgca	ggcccccgcg	gctgcagcgc	cctggtcggc	780
gagcccaggt	cgagcccctg	cgcccagcgc	gctgccccgc	gccaaggtgc	agagcctgaa	840
gatgagcctg	ctgctggcgc	tgctgttcgt	gggctgcgag	ctgccctact	ttgccgcccg	900
gctggcggcc	gcgtggtcgt	ccgggcccgc	gggagactgg	gagggagagg	gcctgtcggc	960
ggcgctgcgc	gtggtggcga	tggccaacag	cgctctcaat	cccttcgtct	acctcttctt	1020
ccaggcgggc	gactgctggc	tccggcgaca	gctgcggaag	cggctgggct	ctctgtgctg	1080
cgcgccgcag	ggaggcgcgg	aggacgagga	ggggccccgg	ggccaccagg	cgctctaccg	1140
ccaacgctgg	ccccaccctc	attatcacca	tgctcggcgg	gaacccgctg	gacgagggcg	1200
gcttgcgccc	accccctccg	cgccccagac	ccctgccttg	ctcctgcgaa	agtgccttct	1260
aggtgcttgg	tggtcagaga	cgggtcatct	gtcgctaagg	cgcaacctcc	agggaactcg	1320
aggcctgcca	gggtctgtcc	agatcacaag	gggcaggaga	gtctgtgaga	gagtgacact	1380
gaagttgtcc	ccttcctcca	ctctcctatt	cccttctcat	gtttacattt	ccctatgctc	1440
ttccagtttc	tcttcttccc	tacagttcct	ctcatatctc	cccatttgga	gacagtgagc	1500
cactggaaag	ttgtaaaaac	aaaaacagtt	atttttgcag	ttttctttca	cgcatttata	1560
gtgctctgga	taatgccatt	tatttttgct	gattacccaa	ctttcagtat	ttgctgtgtt	1620
atcatctgta	tttacttatt	ttga				1644

<210> 192

<211> 513 <212> PRT

<213> Homo sapiens

<400> 192

Met Glu Asp Leu Phe Ser Pro Ser Ile Leu Pro Pro Ala Pro Asn Ile 5

Ser Val Pro Ile Leu Leu Gly Trp Gly Leu Asn Leu Thr Leu Gly Gln

Gly Ala Pro Ala Ser Gly Pro Pro Ser Arg Arg Val Arg Leu Val Phe

Leu Gly Val Ile Leu Val Val Ala Val Ala Gly Asn Thr Thr Val Leu



						-			4	11US	PHRM:	311.	ST25		
Cys 65	Arg	Leu	Cys	Gly	Gly 70	Gly	Gly	Pro					-	Arg	Arg 80
Lys	Met	Asp	Phe	Leu 85	Leu	Val	Gln	Leu	Ala 90	Leu	Ala	Asp	Leu	Tyr 95	Ala
Cys	Gly	Gly	Thr 100	Ala	Leu	Ser	Gln	Leu 105	Ala	Trp	Glu	Leu	Leu 110	Gly	Glu
Pro	Arg	Ala 115	Ala	Thr	Gly	Asp	Leu 120	Ala	Суѕ	Arg	Phe	Leu 125	Gln	Leu	Leu
Gln	Ala 130	Ser	Gly	Arg	Gly	Ala 135	Ser	Ala	His	Leu	Val 140	Val	Leu	Ile	Ala
Leu 145	Glu	Arg	Arg	Arg	Ala 150	Val	Arg	Leu	Pro	His 155	Gly	Arg	Pro	Leu	Pro 160
Ala	Arg	Ala	Leu	Ala 165	Ala	Leu	Gly	Trp	Leu 170	Leu	Ala	Leu	Leu	Leu 175	Ala
Leu	Pro	Pro	Ala 180	Phe	Val	Val	Arg	Gly 185	Asp	Ser	Pro	Ser	Pro 190	Leu	Pro
Pro	Pro	Pro 195	Pro	Pro	Thr	Ser	Leu 200	Gln	Pro	Gly	Ala	Pro 205	Pro	Ala	Ala
Arg	Ala 210	Trp	Pro	Gly	Glu	Arg 215	Arg	Cys	His	Gly	Ile 220	Phe	Ala	Pro	Leu
Pro 225	Arg	Trp	His	Leu	Gln 230	Val	Tyr	Ala	Phe	Tyr 235	Glu	Ala	Val	Ala	Gly 240
Phe	Val	Ala	Pro	Val 245	Thr	Val	Leu	Gly	Val 250	Ala	Cys	Gly	His	Leu 255	Leu
Ser	Val	Trp	Trp 260	Arg	His	Arg	Pro	Gln 265	Ala	Pro	Ala	Ala	Ala 270	Ala	Pro
Trp	Ser	Ala 275	Ser	Pro	Gly	Arg	Ala 280	Pro	Ala	Pro	Ser	Ala 285	Leu	Pro	Arg
Ala	Lys 290	Val	Gln	Ser	Leu	Lys 295	Met	Ser	Leu	Leu	Leu 300	Ala	Leu	Leu	Phe
Val 305	Gly	Cys	Glu	Leu	Pro 310	Tyr	Phe	Ala	Ala	Arg 315	Leu	Ala	Ala	Ala	Trp 320
Ser	Ser	Gly	Pro	Ala 325	Gly	Asp	Trp	Glu	Gly 330	Glu	Gly	Leu	Ser	Ala 335	Ala
Leu	Arg	Val	Val 340	Ala	Met	Ala	Asn	Ser 345	Ala	Leu	Asn	Pro	Phe 350	Val	Tyr
Leu	Phe	Phe 355	Gln	Ala	Gly	Asp	Cys 360	Trp	Leu	Arg	Arg	Gln 365	Leu	Arg	Lys
Arg	Leu 370	Gly	Ser	Leu	Cys	Cys 375	Ala	Pro	Gln	Gly	Gly 380	Ala	Glu	Asp	Glu
Glu 385	Gly	Pro	Arg	Gly	His 390	Gln	Ala	Leu	Tyr	Arg 395	Gln	Arg	Trp	Pro	His 400

Pro His Tyr His His Ala Arg Arg Glu Pro Ala Gly Arg Gly Arg Leu  $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$ 





Ala Pro Thr Pro Ser Ala Pro Gln Thr Pro Ala Leu Leu Leu Arg Lys 420 425 430

Cys Leu Leu Gly Ala Trp Trp Ser Glu Thr Gly His Leu Ser Leu Arg 435 440 445

Arg Asn Leu Gln Gly Thr Arg Gly Leu Pro Gly Ser Val Gln Ile Thr  $450 \,$   $\,$   $455 \,$   $\,$   $460 \,$ 

Arg Gly Arg Arg Val Cys Glu Arg Val Thr Leu Lys Leu Ser Pro Ser 465 470 475 480

Ser Thr Leu Leu Phe Pro Ser His Val Tyr Ile Ser Leu Cys Ser Ser 485 490 495

Ser Phe Ser Ser Ser Leu Gln Phe Leu Ser Tyr Leu Pro Ile Trp Arg 500 505 510

Gln