

Ecole d'ingénierie

Contrôle d'analyse numérique

Durée (2h)

Prof. A.Ramadane, Ph.D.

Exercice 1 (6 points)

On considère le système linéaire

$$\begin{pmatrix} 1 & 5 \\ 1.0001 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6.0000 \\ 6.0005 \end{pmatrix}$$

Dont la solution exacte est $X = (5 \ 0.2)^T$.

- a) Calculer les résidus r_1 et r_2 correspondant respectivement aux solutions approximatives $x_1 = \begin{pmatrix} 5.1 & 0.3 \end{pmatrix}^T$ et $x_2 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ et en déduire les quantités $||r_1||_{inf}$ et $||r_2||_{inf}$. Commenter les résultats obtenus.
- b) Si on perturbe le membre de droite du système en le remplacant par
 (6 6)⁷, on obtient la solution (0 1.2)^T. Quelle conclusion peut-on tirer de ce résultat ?
- c) Expliquer les résultats obtenus en (a) et (b) en calculant toutes les quantités pertinentes . Effectuer les calculs en norme || . || inf
- d) Comment povons traiter ce problème pour eviter des erreurs numériques

Exercice 2 (6 points)

Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 3 & 0 & -4 \end{array}\right)$$

(a) Calculer la décomposition LU de A par la méthode de Doolitle sans permutation de lignes.

N.B.: Le calcul de chaque coefficient de cette matrice doit être indiqué clairement et en détail.

- (b) Sans calculer de déterminant, comment savez-vous que A n'est pas singulière?
- (c) L'inverse de A est une matrice telle que $AA^{-1} = I$. Si le vecteur $\vec{c_i}$ représente la i^{ieme} colonne de A^{-1} , expliquer comment trouver A^{-1} sur base de L et U. Écrire les systèmes linéaires qui correspondent.
- (d) Pour une matrice $n \times n$, sachant que le nombre d'opérations à effectuer pour calculer L et U est environ $\frac{1}{3}n^3$ et que celui des résolutions $L\vec{y} = \vec{b}$ puis $U\vec{x} = \vec{y}$ est environ n^2 , quel est le coût du calcul de A^{-1} par la méthode que vous avez décrite ?

Problème (8 points)

L'équation $x^3 + 4x^2 - 10 = 0$ possède une seule racine dans l'intervalle [1,2]. On peut obtenir différents problèmes de points fixes de cette équation:

•
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
;

•
$$x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{\frac{1}{2}};$$

•
$$x = g_3(x) = \frac{1}{2} (10 - x^3)^{\frac{1}{2}}$$
;

•
$$x = g_4(x) = \left(\frac{10}{4+x}\right)^{\frac{1}{2}};$$

•
$$x = g_5(x) = \frac{2x^3 + 4x^2 + 10}{3x^2 + 8x}$$
.

L'algorithme des points fixes nous donne les résultats suivants:

n	g1(xn)	g2(xn)	g3(xn)	g4(xn)	g5(xn)
0	1.500000000E+00	1.5000000000E+00	1.5000000000E+00	1.5000000000E+00	1.5000000000E+00
1	-8.750000000E-01	8.1649658093E-01	1.2869537676E+00	1.3483997249E+00	1.373333333E+00
2	6.7324218750E+00	2.9969088058E+00	1.4025408035E+00	1.3673763720E+00	1.3652620149E+00
3	-4.6972001200E+02	NaN	1.3454583740E+00	1.3649570154E+00	1.3652300139E+00
4	1.0275455519E+08		1.3751702528E+00	1.3652647481E+00	1.3652300134E+00
5	-1.0849338705E+24		1.3600941928E+00	1.3652255942E+00	1.3652300134E+00
6	1.2770555914E+72		1.3678469676E+00	1.3652305757E+00	
7			1.3638870039E+00	1.3652299419E+00	
8			1.3659167334E+00	1.3652300225E+00	
9			1.3648782172E+00	1.3652300123E+00	
10			1.3654100612E+00	1.3652300136E+00	
15			1.3652236802E+00	1.3652300134E+00	
20			1.3652302362E+00		
25			1.3652300056E+00		
30			1.3652300137E+00		

- (a) Expliquer pourquoi on n'a pas eu convergenge avec la méthode des points fixes associée à $g_1(x)$ mais que la fonction $g_3(x)$ nous a donné un algorithme convergent.
- (b) Que s'est-il passé avec $g_2(x)$?
- (c) *i)* Expliquer pourquoi $g_3(x)$ a mené à une méthode des points fixes qui a convergée moins vite que $g_4(x)$.
 - ii) Expliquer pourquoi $g_4(x)$ a mené à une méthode des points fixes qui a convergée moins vite que $g_5(x)$.
- (d) Donner l'ordre de convergence des méthodes des points fixes associées à $g_3(x)$, $g_4(x)$ et $g_5(x)$.
 - (e) On remarque que pour les méthodes associées à $g_3(x)$ et $g_4(x)$, les valeurs de x_n semblent supérieures à la racine à une itération et inférieures à la racine à l'autre itération. Expliquer pourquoi on observe ce comportement.
 - (f) Pour la méthode associée à fonction $g_5(x)$, donner une approximation de l'erreur absolue $|e_{n+1}|$ que l'on obtiendrait à l'itération n+1 si on suppose que la valeur absolue de l'erreur à l'itération n est $|e_n|=10^{-3}$.