Solutions to PS#2 Math 355 Summer 1, 2009

p.37 #5. Let ℓ and m be the lines with respective equations X + Y - 2 = 0 and Y = 3.

- a. Compose the equations of σ_m and σ_ℓ and show that the composition $\sigma_m \circ \sigma_\ell$ is a rotation.
- b. Find the center C and the angle of rotation Θ and compare Θ with the directed angle from ℓ to m. **Proof:** The equations of σ_{ℓ} and σ_{m} are

$$\sigma_{\ell}: \left\{ \begin{array}{l} x' = x - (x + y - 2) = 2 - y \\ y' = y - (x + y - 2) = 2 - x \end{array} \right. \text{ and } \sigma_{m}: \left\{ \begin{array}{l} x' = x \\ y' = y - 2(y - 3) = 6 - y. \end{array} \right.$$

The equations of the composition $\sigma_m \circ \sigma_\ell$ are

$$\sigma_m \circ \sigma_\ell : \left\{ \begin{array}{l} x'' = x' = -y + 2 \\ y'' = 6 - y' = 6 - (2 - x) = x + 4. \end{array} \right.$$

Line ℓ and m intersect at $C = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ with respective slopes -1 and 0, and the undirected angle from ℓ to m measures 45°. The equations for $\rho_{C,90}$ are

$$\rho_{C,90}: \left\{ \begin{array}{l} x'=(x+1)\cos 90 - (y-3)\sin 90 - 1 = -y+2 \\ y'=(x+1)\sin 90 + (y-3)\cos 90 + 3 = x+4. \end{array} \right.$$

Therefore $\sigma_m \circ \sigma_\ell = \rho_{C,90}$.

p.37 # 6. Let P and R be distinct points and let Q be the midpoint of \overline{PR} . Let c be a line such that $\tau_{\mathbf{PR}}(c) = c$. Then $\sigma_c \circ \tau_{\mathbf{PR}} = \tau_{\mathbf{PR}} \circ \sigma_c$.

Proof: Note that $\overrightarrow{PQ} \parallel c$ since Q is the midpoint of \overline{PR} and $\tau_{\mathbf{PR}}(c) = c$. Let p and q be the lines perpendicular to c at P and Q, respectively. Then $\sigma_c \circ \tau_{\mathbf{PR}} = \sigma_c \circ \varphi_Q \circ \varphi_P = \sigma_c \circ (\sigma_c \circ \sigma_q) \circ (\sigma_p \circ \sigma_c) = \sigma_q \circ (\sigma_c \circ \sigma_c) \circ \sigma_p \circ \sigma_c = \varphi_Q \circ \varphi_P \circ \sigma_c = \tau_{\mathbf{PR}} \circ \sigma_c$.

p.48 #6. Let C be a point on line ℓ . Prove that $\sigma_{\ell} \circ \rho_{C,\Theta} \circ \sigma_{\ell} = \rho_{C,-\Theta}$.

Proof: By Corollary 85, there is a unique line m passing through C such that $\rho_{C,\Theta} = \sigma_m \circ \sigma_\ell$. Hence $\sigma_\ell \circ \rho_{C,\Theta} \circ \sigma_\ell = \sigma_\ell \circ (\sigma_m \circ \sigma_\ell) \circ \sigma_\ell = \sigma_\ell \circ \sigma_m = (\sigma_m \circ \sigma_\ell)^{-1} = \rho_{C,\Theta}^{-1} = \rho_{C,\Theta}^{-1} = \rho_{C,\Theta}^{-1}$.

p.48 #7. If $\sigma_p = \sigma_n \circ \sigma_m \circ \sigma_\ell$, prove that lines ℓ , m and n are either concurrent or mutually parallel. **Proof:** By assumption $\sigma_p = \sigma_n \circ \sigma_m \circ \sigma_\ell$; multiplication on the left by σ_n gives $\sigma_n \circ \sigma_p = \sigma_m \circ \sigma_\ell$. Lines ℓ and m are either parallel or intersect at some point C. If $\ell \cap m = C$, then $\sigma_m \circ \sigma_\ell = \sigma_n \circ \sigma_p$ is a rotation by Theorem 83, in which case $p \cap n = C$ and ℓ, m, n and p are concurrent at C. On the other hand, if $\ell \parallel m$, then $\sigma_m \circ \sigma_\ell = \sigma_n \circ \sigma_p$ is a translation by Theorem 78 and ℓ, m, n and p are mutually parallel.

- p. 60 #3. Let $A = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$.
- a. Find equations of lines ℓ , m, and n such that $\rho_{A,90} = \sigma_m \circ \sigma_\ell$ and $\rho_{B,120} = \sigma_n \circ \sigma_m$.
- b. Find xy coordinates for the point C and the angle of rotation Θ such that $\rho = \rho_{B,120} \circ \rho_{A,90}$.
- c. Find xy coordinates for the point D and the angle of rotation Φ such that $\rho = \rho_{A,90} \circ \rho_{B,120}$.

Solutions

- a) $\ell: X = 4$; m: X + Y 4 = 0; $n: Y = (2 \sqrt{3})X + 4$.
- b) $C = \ell \cap n = \begin{bmatrix} 4 \\ 12 4\sqrt{3} \end{bmatrix}$; $\Theta = 210^{\circ}$.
- c) Let $\ell: Y = (2+\sqrt{3})X + 4$; m: Y = -X + 4; and n: Y = 0. Then $D = \ell \cap n = {4\sqrt{3} 12 \brack 0}$; $\Phi = 210^{\circ}$.

p. 60 #4. Given $\triangle ABC$, let ℓ , m, and n be the respective angle bisectors of $\angle A$, $\angle B$, and $\angle C$, and let p be the unique line such that $\sigma_p = \sigma_n \circ \sigma_m \circ \sigma_\ell$. Then $p \perp \overline{AC}$.

Proof: Let $\Theta^{\circ} = m \angle A$, $\Phi^{\circ} = m \angle B$, and $\Psi^{\circ} = m \angle C$. Multiply both sides of $\sigma_p = \sigma_n \circ \sigma_m \circ \sigma_\ell$ on the left by σ_n . Then for $\Theta \in \Theta^{\circ}$ and $\Phi \in \Phi^{\circ}$ we have $\sigma_n \circ \sigma_p = \sigma_m \circ \sigma_\ell = \sigma_m \circ \sigma_c \circ \sigma_c \circ \sigma_\ell = \rho_{B,\Phi} \circ \rho_{A,\Theta} = \rho_{P,\Theta+\Phi}$ by the Angle Addition Theorem, and the directed angle from ℓ to m and from p to n is $\frac{1}{2}(\Theta + \Phi)$. Note that m passes through the interior of $\triangle APC$ and cuts side \overline{AC} . Furthermore, side $\overline{AP} \subset \ell$ and side $\overline{PC} \subset n$. Thus the directed angle measure from ℓ to n is the sum of the directed angle measures from ℓ to m and from m to n, and it follows that p cuts \overline{AC} at some point D. Finally, in $\triangle CDP$ we have $m \angle PDC = 180^{\circ} - m \angle CPD - m \angle DCP = 180^{\circ} - \frac{1}{2}(\Theta + \Phi)^{\circ} - \frac{1}{2}\Psi^{\circ} = 90^{\circ}$.

p.66 #9. Prove that an even isometry fixing two distinct points is the identity.

Proof: Theorem 101 tells that an even isometry α can be expressed as a product of two reflections. Thus α is either the identity, a non-identity rotation or a non-identity translation by Theorem 88. But neither of the later two possibilities fix more than one fixed point, so $\alpha = \iota$.

p.66 #10. Prove that a translation preserves orientation.

Proof: Choose an ordered basis $\{\mathbf{v}_1, \mathbf{v}_2\}$, i.e., an orientation, then linear independence implies $\det [\mathbf{v}_1 \mid \mathbf{v}_2] \neq 0$. Position $\mathbf{v}_1 = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} c \\ d \end{bmatrix}$ in standard position and consider a translation $\tau_{\mathbf{w}}$ with $\mathbf{w} = \begin{bmatrix} e \\ f \end{bmatrix}$. Then $\tau_{\mathbf{w}} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} e \\ f \end{bmatrix}$, $\tau_{\mathbf{w}} \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a+e \\ b+f \end{bmatrix}$ and $\tau_{\mathbf{w}} \left(\begin{bmatrix} c \\ d \end{bmatrix} \right) = \begin{bmatrix} c+e \\ d+f \end{bmatrix}$ so that $\tau_{\mathbf{w}} \left(\mathbf{v}_1 \right) = \begin{bmatrix} e \\ b+f \end{bmatrix} - \begin{bmatrix} e \\ f \end{bmatrix} = \mathbf{v}_1$ and $\tau_{\mathbf{w}} \left(\mathbf{v}_2 \right) = \begin{bmatrix} c+e \\ d+f \end{bmatrix} - \begin{bmatrix} e \\ f \end{bmatrix} = \mathbf{v}_2$. Thus $\det [\tau_{\mathbf{w}} \left(\mathbf{v}_1 \right) \mid \tau_{\mathbf{w}} \left(\mathbf{v}_2 \right)] = \det [\mathbf{v}_1 \mid \mathbf{v}_2]$ and sign of the determinant is preserved.

p.66 #11. Prove that a reflection in a line through the origin reverses orientation.

Proof: Choose an ordered basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ of \mathbb{R}^2 , i.e., an orientation, then $\det [\mathbf{v}_1 \mid \mathbf{v}_2] \neq 0$ by linear independence. A general line ℓ through the origin has equation aX + bY = 0 with $a^2 + b^2 > 0$. The equations for σ_{ℓ} are

$$\sigma_{\ell}: \left\{ \begin{array}{l} x' = x - \frac{2a}{a^2 + b^2} \left(ax + by \right) = \frac{1}{a^2 + b^2} \left[\left(b^2 - a^2 \right) x - 2aby \right] \\ y' = y - \frac{2b}{a^2 + b^2} \left(ax + by \right) = \frac{1}{a^2 + b^2} \left[-2abx + \left(a^2 - b^2 \right) y \right] \end{array} \right.$$

Since σ_{ℓ} is a linear map, we may express σ_{ℓ} in the matrix form $\mathbf{x}' = A\mathbf{x}$, where

$$A = \frac{1}{a^2 + b^2} \begin{bmatrix} b^2 - a^2 & -2ab \\ -2ab & a^2 - b^2 \end{bmatrix}.$$

Note that $\det A = \frac{1}{(a^2+b^2)^2} \det \begin{bmatrix} b^2-a^2 & -2ab \\ -2ab & a^2-b^2 \end{bmatrix} = \frac{1}{(a^2+b^2)^2} \left(-\left(a^2-b^2\right)^2-4a^2b^2\right)$

$$=\frac{-1}{\left(a^2+b^2\right)^2}\left(a^4-2a^2b^2+b^4+4a^2b^2\right)=\frac{-1}{\left(a^2+b^2\right)^2}\left(a^2+b^2\right)^2=-1.$$

Therefore $\det \left[\sigma_{\ell}\left(\mathbf{v}_{1}\right)\mid\sigma_{\ell}\left(\mathbf{v}_{2}\right)\right] = \det \left[A\mathbf{v}_{1}\mid A\mathbf{v}_{2}\right] = \det \left(A\cdot\left[\mathbf{v}_{1}\mid\mathbf{v}_{2}\right]\right) = \left(\det A\right)\left(\det\left[\mathbf{v}_{1}\mid\mathbf{v}_{2}\right]\right) = -\det\left[\mathbf{v}_{1}\mid\mathbf{v}_{2}\right].$ Since the determinant reverses sign, σ_{ℓ} reverses orientation.