CMMI

Lecturer: Ngo Huy Bien Software Engineering Department Faculty of Information Technology VNUHCM - University of Science Ho Chi Minh City, Vietnam nhbien@fit.hcmus.edu.vn

Objectives

- To present what is CMMI.
- > To present why use CMMI.
- To present *CMMI structure*.

References

- Margaret K. Kulpa and Kent A.
 Johnson. Interpreting the CMMI: A
 Process Improvement Approach. 2003.
- Tim Kasse. Practical Insight into CMMI.
 2nd Edition. Artech House. 2008.

Why Use a Process? [1]

- A process is a series of steps that help to solve a problem.
- A process *helps* us do things consistently.
- Why do we want to do things consistently?
- Are we promoting turning the workers into *robots*?
- > No. What focusing on process does for your organization is to reduce redundant work.

Why is Process Important?

- Why not focus on the product, or the people, or the technology used?
 - Give guidelines to the people responsible for doing this work on how to do it.
 - Rather than having people work harder, have them work smarter.
 - Most of those companies sold quick-fix technologies without any underlying analysis of the problems organizations faced.
- Is process the only answer?
 - No. Process is *part of the answer*.
 - Process, when supported by training, enough money, enough skilled people, proper tools, and management commitment, can help your organization.

Defining Process Steps

- The steps must be defined in such a way as to be unambiguous — that is, readily understood and capable of being followed in a consistent manner by anyone using the process.
- Example: A risk management process
 - Identify the risks
 - Analyze the risks
 - Categorize the seriousness and probability of the r
 - Mitigate the risks
- · What is the problem with this process?
- > It is too general.
- Each manager would have interpreted how to do this process differently.

Procedures

- · Clarify how we do the steps in your process?

- · Identify the risk.
 - Track the problems they have in delivering products and then find trends

 From the list of trends, greate a list of the ten most frequently accurring.
 - From the list of trends, create a list of the ten most frequently occurring problems on the projects.
- Categorize the seriousness and probability of the risk.
 - Define risks as 1 most critical and most likely to occur; 2 critical but work
 may continue; and 3 not critical, work may continue, fix this problem during
 the next phase or release.
 - Define procedures for how to determine what would put a risk into category 1, 2, or 3.

Procedures vs. Processes

- Procedures are step-by-step instructions on how to perform a task.
 - Procedures are a subset of processes.
- The process is what to do; the procedures are how to do the steps in the process.

Procedure Template

Document Number:	Date:	
	Revision Number	
Description:		
This procedure involves The activity's	primary aim is to	
Entry Criteria/Inputs:	Exit Criteria/Outputs:	
Roles: Role Name: What does s/he do?		
Assets: Standards, reference material, deliverab	eles, previous process descriptions	
Summary of Tasks (list major tasks/proc	ess steps):	
Task 1		
Task 2		
Task 3		
Task 4		
Procedure Steps:		
Task 1		
Detail Step 1		
Detail Step 2		
Detail Step 3		
Detail Step 4		

Our Process Does Not Work!

SUCCESS REPRESENTS THE 1% OF YOUR WORK WHICH RESULTS FROM THE 99% THAT IS CALLED FAILURE.

Improve Your Process

How to Improve a Process?

- Problem: We cannot keep up with the number of requirements changes.
- Goal: To improve our requirements change process.
- Question: How can we improve our requirements change process?
- Metric:
 - Number of requirements changes submitted, approved, implemented, or
 - cancelled versus the number of original requirements documented.
 - Time it takes to implement a change in requirements.
- > Solution (What should we do?): Trial and Error?

Models

- · A model is considered a guideline of best practices found by studying other, highly functioning and successful organizations.
 - A model does not contain the steps needed or the sequence of steps needed to implement a process improvement program.
 - The model used simply says, "this is a good thing to do."
- Why use a model?
 - Without using a model as your basis of reference, you have nothing around which to plan your improvement, and nothing against which to measure your results.

PA: Requirements Management

SG1: Managed Requirements

SP1.1: Obtain an understanding of requirements

SP1.2: Obtain commitment to requirements

SP1.3: Manage requirements changes

SP1.4: Maintain bi-directional traceability of

SP1.5: Identify inconsistencies between project work and requirements

requirements

Why Don't Create Your Own Model?

- It takes a long time and it costs a lot of money.
- Most models allow an organization to substitute alternative practices for those practices in the chosen model that do not fit the organization.
- ISO stands for International Standards Organization.
 - The ISO 9000/9001 series generates a fundamental quality management framework.
- The CMM stands for the Capability Maturity Model.
 - The CMM was created by analyzing the activities of highly functioning software organizations; that is, those organizations that consistently delivered software systems to their customers on time, within budget, and that actually worked.

Specific Goals • Specific goals (SG): activities that relate to the specific PA under study. • Practices are activities that must be performed to satisfy the goals for each PA. Each practice relates to only one goal. SP1: Estimate the scope of the project Specific Goal 1: Establish estimates Project Planning

Generic Goals • Generic goals (GG): goals that are common to multiple PAs throughout the model; they help determine whether the PA has been institutionalized. • Generic practices (GP): are associated with the generic goals for institutionalization. GP2: Provide resources GP3: Assign responsibility Generic Goal 2: Institutionalize a Managed Process

Generic Practices Functions (I)

- Commitment to Perform (CO) is shown through
 - senior management commitment and
 - written policies.
- Ability to Perform (AB) is shown through
 - training personnel in their duties,
 - providing adequate resources and funding,
 - assigning responsibility,
 - planning the process, and
 - establishing a tailored and defined process.

Generic Practices Functions (II)

- Directing Implementation (DI) is demonstrated by
 - managing configurations,
 - identifying and involving relevant stakeholders,
 - monitoring and controlling the process, and
 - collecting improvement information.
- Verifying Implementation (VE) is demonstrated via
 - objectively evaluating adherence (both process and product adherence to organizational policies, procedures, and standards) and by
 - reviewing status with higher-level management.

Common Features Common features group together the generic practices within a PA, according to the function that the practices fulfill. Commitment to Perform (CO) Ability to Perform (AB) Directing Implementation (DI)

CMMI Other Terms

- Typical Work Products: each process area gives examples of typical
 - documents,
 - deliverables, or
 - other outputs produced within the process area.
- Sub-practices: lower-level practices that provide more information about the practice.
 - For example, the Practice may be to write a project plan.
 - The sub-practice would offer information as to what should go into the project plan itself.

CMMI Other Terms (cont.)

- Discipline Amplifications: simple guidance offered to direct the user as to which discipline is more relevant for specific practices, or to offer some guidance in applying the PA to the discipline.
 - The disciplines are Systems Engineering, Software Engineering, Supplier Sourcing, and Integrated Product and Process Development (IPPD).
- Elaborations: more information and examples concerning generic practices.
- ٠..

Level Characteristic 5 Improvement fed back Info process and Institutional Process analysis Process analysis Process analysis Repeatable 1 (qualitative) Process analysis Process analysis Repeatable 1 (ad hoc/chaotic) Project Management 1 (ad hoc/ch

ISO 21500

- ISO 21500 is the standard that governs project management.
- · This standard builds on a number of existing standards, and is applicable to organizations of all sizes and natures.
- Benefits of the ISO 21500 Standard for project management include:
 - a higher level of quality management
 - encouraging transfer of knowledge between projects and organizations for improved
 - Facilitating efficient tendering processes through the use of consistent project management terminology
 - enabling the flexibility of project management employees and their ability to work on international projects

 - providing a framework as the basis for certification programs providing universal project management principles and processes

Thank You for Your Time