

The (Small/Relational) Database Approach

Dr. Deepak Saxena, SME IIT Jodhpur

"Guide us, Oh Database Manager!"

Data, Information, and Metadata

- Data: Stored representations of objects and events that have meaning and importance in the users' environment.
 - Objects: Customer, Items
 - Events: Booking, Payment, Delivery
- Information: Data that have been processed (e.g. averages, trends etc.) in such as way as to increase the knowledge of the person who uses the data.
- Metadata: Data that describes the properties of the end-user data and the context of that data.
- Database: an organized collection of logically-related data

Information Systems for DIKW Model

Traditional File Processing Systems

- Program-file dependence
- Duplication of data
- Limited data sharing
- Lengthy development times
- Excessive program maintenance

Customer	Meal1	Date1	Cost1	Meal2	Date2	Cost2
J. Smith	Steak	2/1/2013	\$ 20.00	Lobster	2/3/2013	\$ 25.00
Jan						
R. Doyle	Veal	3/1/2013	\$ 30.00	Shrimp	5/10/2013	\$ 20.00
E. Pengler	Steak	2/5/2013	\$ 20.00	Steak	7/8/2013	\$ 20.00

Relational Data Model

- The relational data model represents data in the form of tables.
- Consists of the following three components:
 - 1. Data structure Data are organized in the form of tables, with rows and columns.
 - **2. Data manipulation** Powerful operations (typically implemented using SQL) are used to manipulate data stored in the relations.
 - 3. Data integrity The model includes mechanisms to specify business rules that maintain the integrity of data when they are manipulated.

Relation

- A named, two-dimensional table of data.
- Each relation (or table) consists of a set of named columns and an arbitrary number of unnamed rows.
- An attribute is a named column of a relation.
- Each row of a relation corresponds to a record that contains data (attribute) values for a single entity.
- Example: EMPLOYEE1(EmpID, Name, DeptName, Salary)

Properties of Relations

- 1. Each relation (or table) in a database has a unique name.
- 2. An entry at the intersection of each row and column is atomic (or single valued). There can be only one value associated with each attribute on a specific row of a table; no multivalued attributes are allowed in a relation.
- 3. Each row is unique; no two rows in a relation can be identical.
- 4. Each attribute (or column) within a table has a unique name.
- 5. The sequence of columns (left to right) is insignificant. The order of the columns in a relation can be changed without changing the meaning or use of the relation.
- 6. The sequence of rows (top to bottom) is insignificant. As with columns, the order of the rows of a relation may be changed or stored in any sequence.

No multivalued attributes in a relation

EmplD	repeating groups	DeptName	Salary	CourseTitle	DateCompleted	
Ешью	Ivaille	Deptivame	Odiary	CourseTitle	DateCompleted	
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/2015	
				Surveys	10/7/2015	
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/2015	
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/2015	
				C++	4/22/2015	
190	Lorenzo Davis	Finance	55,000			
150	Susan Martin	Marketing	42,000	SPSS	6/16/2015	
				Java	8/12/2015	
(b) EMPLOYEE2 relation						

EmpID	Name	DeptName	Salary	CourseTitle	DateCompleted
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/2015
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/2015
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/2015
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/2015
110	Chris Lucero	Info Systems	43,000	C++	4/22/2015
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/2015
150	Susan Martin	Marketing	42,000	Java	8/12/2015
			,		

Anomalies

- An error or inconsistency that may result when a user attempts to update a table that contains redundant data.
- Indication that your table design is not proper.
- Three types:
 - Insertion anomalies
 - Deletion anomaly
 - Modification anomaly

EMPLOYEE2

EmpID	Name	DeptName	Salary	CourseTitle	DateCompleted
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/2015
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/2015
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/2015
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/2015
110	Chris Lucero	Info Systems	43,000	C++	4/22/2015
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/2015
150	Susan Martin	Marketing	42,000	Java	8/12/2015

Solution: Normalization

EmplD	CourseTitle	DateCompleted
100	SPSS	6/19/2015
100	Surveys	10/7/2015
140	Tax Acc	12/8/2015
110	Visual Basic	1/12/2015
110	C++	4/22/2015
150	SPSS	6/19/2015
150	Java	8/12/2015

Relational Keys

- **Primary key:** An attribute or a combination of attributes that uniquely identifies each row in a relation.
- Example: EMPLOYEE1(EmpID, Name, DeptName, Salary)
- Composite key: A primary key that consists of more than one attribute.
- Example: DEPENDENT1 (EmpID, DependentName, Relationship)

Relational Keys

- **Foreign key:** An attribute in a relation that serves as the primary key of another relation in the same database.
- DEPARTMENT(<u>DeptID</u>, DeptName, Location, Fax)
- EMPLOYEE1(EmpID, Name, DeptID, Salary)

The database approach: Data models

The database approach: Relational database

Zip

Customers		Orders		Order Items		Products
CustomerID PK	:	OrderID PK]	OrderID FK	:	ProductID PK
CustFirstName	i	CustomerID FK]	ProductID FK	:	ProductName
CustLastName		OrderDate		QtyOrdered		ProductDescription
Street		OrderAmount]	PricePaid		ProductPrice
City			-			
State						

Integrity Constraints

Domain Constraints

- All of the values that appear in a column of a relation must be from the same domain.
- A domain is the set of values that may be assigned to an attribute.

Entity Integrity

- No primary key attribute (or component of a primary key attribute) may be null.
- Referential Integrity
 - Either each foreign key value must match a primary key value in another relation or the foreign key value must be null.

Domain Constraints

• A domain definition usually consists of the following components: domain name, meaning, data type, size (or length), and allowable values or allowable range (if applicable).

TΔRIF 4.1	Domain Definitions	for INVOICE Attributes
IMDLL +- I	Dullialli Dellillillolis i	IOI IIVVOICE ALLIIDULES

Attribute	Domain Name	Description	Domain
CustomerID	Customer IDs	Set of all possible customer IDs	character: size 5
CustomerName	Customer Names	Set of all possible customer names	character: size 25
CustomerAddress	Customer Addresses	Set of all possible customer addresses	character: size 30
CustomerCity	Cities	Set of all possible cities	character: size 20
CustomerState	States	Set of all possible states	character: size 2
CustomerPostalCode	Postal Codes	Set of all possible postal zip codes	character: size 10
OrderID	Order IDs	Set of all possible order IDs	character: size 5
OrderDate	Order Dates	Set of all possible order dates	date: format mm/dd/yy
ProductID	Product IDs	Set of all possible product IDs	character: size 5
ProductDescription	Product Descriptions	Set of all possible product descriptions	character: size 25
ProductFinish	Product Finishes	Set of all possible product finishes	character: size 15
ProductStandardPrice	Unit Prices	Set of all possible unit prices	monetary: 6 digits
ProductLineID	Product Line IDs	Set of all possible product line IDs	integer: 3 digits
OrderedQuantity	Quantities	Set of all possible ordered quantities	integer: 3 digits

Entity Integrity

- The entity integrity rule is designed to ensure that every relation has a primary key and that the data values for that primary key are all valid.
- In particular, it guarantees that every primary key attribute is non-null.
- Null Values
 - A null is a value that may be assigned to an attribute when no other value applies or when the applicable value is unknown.
 - In reality, a null is not a value, but rather it indicates the absence of a value.
 - The inclusion of nulls in the relational model is somewhat controversial, because it sometimes leads to anomalous results.
 - However, Codd, the inventor of the relational model, advocates the use of nulls for missing values.

Referential Integrity

- Referential integrity constraint is a rule that maintains consistency among the rows of two relations.
- If there is a foreign key in one relation, either each foreign key value must match a primary key value in another relation or the foreign key value must be null.

Hence...

