De los problemas 26 al 29, utilice el resultado del problema 25 para encontrar la distancia entre la recta L (que contiene a P y es paralela a \mathbf{v}) y el origen.

26.
$$P = (1, -5, 6); \quad \mathbf{v} = -4\mathbf{i} - \mathbf{j} - \mathbf{k}$$

27.
$$P = (-3, 1, 2); \quad \mathbf{v} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$$

28.
$$P = (-9, 3, 3)$$
; $\mathbf{v} = -6\mathbf{i} + 4\mathbf{j} - \mathbf{k}$

29.
$$P = (-2, -5, -4); \quad \mathbf{v} = 3\mathbf{i} + 2\mathbf{k}$$

De los problemas 30 al 35, encuentre una recta L ortogonal a las dos rectas dadas y que pase por el punto dado.

30.
$$\frac{x+1}{2} = \frac{y-2}{4} = \frac{z+1}{-3}$$
; $\frac{x-1}{-2} = \frac{y+2}{5} = \frac{z+3}{6}$; (0, 0, 0)

31.
$$\frac{x+1}{-4} = \frac{y+9}{-6} = \frac{z+5}{-8}$$
; $\frac{x+5}{-6} = \frac{y-2}{2} = \frac{z+8}{5}$; (0, 1, 0)

32.
$$x = 3 - 2t$$
, $y = 4 + 3t$, $z = -7 + 5t$; $x = -2 + 4s$, $y = 3 - 2s$, $z = 7 + s$; $(-2, 3, 4)$

33.
$$x = 4 + 10t$$
, $y = -4 - 8t$, $z = 3 + 7t$; $x = -2t$, $y = 1 + 4t$, $z = -7 - 3t$; (4, 6, 0)

34.
$$x = \frac{y}{6} = z + 6$$
; $x = 4$, $\frac{y+3}{-2} = \frac{z+3}{7}$; (0, 1, 1)

35.
$$\frac{x+2}{6} = \frac{y-7}{6} = \frac{z-1}{-7}$$
; $x = 4, 2-y = \frac{z-1}{3}$; $(-10, -1, -2)$

*36. Calcule la distancia entre las rectas

$$L_1: \frac{x-2}{3} = \frac{y-5}{2} = \frac{z-1}{-1}$$
 y $L_2: \frac{x-4}{-4} = \frac{y-5}{4} = \frac{z+2}{1}$

[Sugerencia: La distancia se mide a lo largo del vector \mathbf{v} que es perpendicular a L_1 y a L_2 . Sea P un punto en L_1 y Q un punto en L_2 . Entonces la longitud de la proyección de \overrightarrow{PQ} sobre \mathbf{v} es la distancia entre las rectas, medida a lo largo del vector que es perpendicular a ambas.]

*37. Encuentre la distancia entre las rectas

$$L_1: \frac{x+2}{3} = \frac{y-7}{-4} = \frac{z-2}{4}$$
 y $L_2: \frac{x-1}{-3} = \frac{y+2}{4} = \frac{z+1}{1}$

De los problemas 38 al 55, encuentre la ecuación del plano.

38.
$$P = (0, 0, 0); \quad \mathbf{n} = \mathbf{i}$$

39.
$$P = (0, 0, 0); \mathbf{n} = \mathbf{j}$$

40.
$$P = (-9, 3, 3);$$
 $\mathbf{n} = -6\mathbf{i} + 4\mathbf{j} - \mathbf{k}$

41.
$$P = (1, 2, 3);$$
 $\mathbf{n} = \mathbf{i} + \mathbf{j}$

42.
$$P = (1, 2, 3); \mathbf{n} = \mathbf{i} + \mathbf{k}$$

43.
$$P = (1, -1, 6);$$
 $\mathbf{n} = 2\mathbf{i} - 5\mathbf{j} - 5\mathbf{k}$

44.
$$P = (1, 2, 3); \quad \mathbf{n} = \mathbf{j} + \mathbf{k}$$

45.
$$P = (2, -1, 6);$$
 $\mathbf{n} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$

46.
$$P = (5, -5, 0);$$
 $\mathbf{n} = 4\mathbf{i} + 8\mathbf{j} + 10\mathbf{k}$

47.
$$P = (-3, 11, 2);$$
 $\mathbf{n} = 4\mathbf{i} + \mathbf{j} - 7\mathbf{k}$

48.
$$P = (2, 7, -1);$$
 $\mathbf{n} = 3\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$

49.
$$P = (1, -8, -7);$$
 $\mathbf{n} = -5\mathbf{i} + 7\mathbf{j} - 5\mathbf{k}$

51. Contiene a
$$(-5, -5, -3)$$
, $(2, -7, -1)$ y $(4, -4, 0)$

52.
$$(7, -5, 9), (-3, -6, -5), (2, -1, -3)$$