classy - The Python wrapper

Thomas Tram

Institute of Gravitation and Cosmology

October 27, 2014

Compiled and interpreted languages

Compiled languages

- The code must be **compiled** before it can be executed.
- It will often be faster...
- but less flexible since some decisions can not be made at runtime.
- C, C++, Fortran, ...

Interpreted languages

- The code is **interpreted** during execution.
- It can be slower but is very flexible.
- MATLAB, Octave, IDL, Python, ...

Interfacing C with Python

Cython

- Cython is a compiled language.
- It understands most Python syntax.
- It can directly call external C libraries, such as libclass.a.
- It produces a Python module.

classy, the CLASS wrapper

- Written in Cython.
- Automatically compiled and installed when you type make.
- Needed for MONTE PYTHON and when using CLASS from **Python**.

T. Tram (ICG) Lecture 7: Wrapper October 27, 2014 3

classy, the CLASS wrapper

- All the functionality of classy is found in the Python class called Class.
- In Python import Class by: from classy import Class

Running CLASS from Python

```
from classy import Class
import numpy as np
import matplotlib.pyplot as plt

cosmo = Class()
cosmo.set({'output':'tCl,pCl,lCl','lensing':'yes','
    modes':'s,t','r':'0.2'})
cosmo.compute()
cosmo.cleanup()
```

Solving exercise 1b in Python

```
from classy import Class
import numpy as np
import matplotlib.pyplot as plt
cosmo = Class()
cosmo.set({'output':'tCl,pCl,lCl','lensing':'yes','
    modes':'s,t','r':'0.2'})
cosmo.compute()
cosmo.cleanup()
l = np.array(range(2,2501))
factor = 1*(1+1)/(2*np.pi)
raw_cl = cosmo.raw_cl(2500)
lensed cl = cosmo.lensed cl(2500)
raw_cl.viewkeys()
```

Solving exercise 1b in Python

T. Tram (ICG) Lecture 7: Wrapper October 27, 2014

Interactive mode

IPython Notebook

IPython Notebook is a Mathematica style (cell) interface to IPython.

- Has Tab-completion of variables and function names.
- Nicely presents the documentation of each function.
- Easy way to get started on Python.

T. Tram (ICG) Lecture 7: Wrapper October 27, 2014 7 / 15

Launching IPython Notebook

```
Write the following command to launch the notebook:
ipython notebook --pylab=inline
--InlineBackend.figure_format=svg
You probably want to alias this command to e.g. inote.
You can open an existing notebook by
inote MyFirstCLASSNotebook.ipynb
```

Aliasing

```
To make an alias, open your shell {bash, zsh, ...} startup script: {~\.bashrc, ~\.zshrc, ...}
At the bottom of the file, add the line alias inote="some command"
```

The notebook

Tab: Available class methods

Shift+Tab: Help on method

Shift+Tab: More help

What is available in the wrapper?

- get_background() returns the information normally found in _background.dat.
- get_thermodynamics() returns the information of _thermodynamics.dat.
- get_primordial() corresponds to _primordial_Pk.dat.
- get_perturbations() returns everything found in _perturbations*.dat
- get_transfer(z,format) returns the density and velocity transfer functions at any* redshift z. (Format can be either 'camb' or 'class').

And even more...

What is available in the wrapper?

- raw_cl() returns unlensed C_{ℓ} .
- lensed_cl() returns lensed C_{ℓ} .
- density_cl() returns density C_{ℓ} .
- pk(k, z) returns the P(k) at redshift z.
- Many other small functions.

Exercise!

IPython Notebook exercise

Try to solve some or all of exercise 1a-1d from yesterday using the IPython Notebook.

Example notebooks

Play around with some of the example notebooks found in IPythonNotebooks folder on Dropbox.

T. Tram (ICG) Lecture 7: Wrapper October 27, 2014 15 / 15