EV Battery Charging Control Using DSP Controller

Motilal Nehru National Institute of Technology, Allahabad End Semester Evaluation

Oct, 2024

Under the supervision of Prof. Rajesh Gupta MNNIT Allahabad

Group No.19 Pratham Raj Bhatt (20212048) Ashish Kumar Verma (20212031) Pratiksha Anuragi (20212093)

CONTENTS

1	Introduction
2	Problem formulation
3	Motivation and Objective
4	Methodology
5	Conclusions
6	References
7	Work Plan

Introduction

- Project Goal
- Key Technology
- Software Development
- Safety Focus
- Advanced Features

Problem Formulation

The problem formulation involves addressing several key challenges:

- Need for Efficient Charging
- Precise Control
- Safety Concerns
- Adaptability
- Complexity

Motivation

- Growing EV Market
- Need for Efficiency
- Safety Concerns
- Technological Advancement

Objectives

The primary objective is to develop an efficient and sustainable EV battery charging system to enhance energy conversion:

- Develop a Functional Charger
- Master ePWM Module
- Utilize Code Composer Studio
- Prioritize Safety

METHODOLOGY

ePWM Dead-Band Module


```
32
33 interrupt_void cpu_timer0_isr(void){
34
35
36
37
       static int up_down =1;
       CpuTimer0.InterruptCount++;
38
       EALLOW;
39
       SysCtrlRegs.WDKEY = 0xAA;
40
       EDIS;
41
       if(up_down){
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
            if(EPwm1Regs.CMPA.half.CMPA<EPwm1Regs.TBPRD){
                 EPwm1Regs.CMPA.half.CMPA++;
            else{
                 up down =0;
       else(
            if(EPwm1Regs.CMPA.half.CMPA>0){
                 EPwm1Regs.CMPA.half.CMPA--;
            else{
                 up_down =1;
            PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
61
62
63 }
64
```

```
void applyPhaseShift(float* input, float* output, int bufferSize, float phaseShiftRadians) {
   float delaySamples = (phaseShiftRadians / (2 * PI)) * SAMPLE RATE;
   int integerDelay = (int)delaySamples;
   float fractionalDelay = delaySamples - integerDelay;
   for (int i = 0; i < bufferSize; i++) {
       int delayedIndex = (bufferIndex - integerDelay + 1024) % 1024;
       float delayedSample = input[delayedIndex];
      //LI
       int nextIndex = (delayedIndex + 1) % 1024;
       delayedSample += fractionalDelay * (input[nextIndex] - input[delayedIndex]);
       output[i] = delayedSample:
       bufferIndex = (bufferIndex + 1) % 1024;
```

```
void UpdatePWMDutyCycle(float dutyCycle) {
    EALLOW;
    if (dutyCycle > 100.0) dutyCycle = 100.0;
    if (dutyCycle < 0.0) dutyCycle = 0.0;</pre>
   EPwm1Regs.CMPA.bit.CMPA = (uint16_t)((dutyCycle / 100.0) * EPwm1Regs.TBPRD);
    EDIS;
```

```
EALLOW;

EPwm1Regs.TBF
EPwm1Regs.TBF
EPwm1Regs.TBF
EPwm1Regs.TBF
```

EPwm1Regs.TBPRD = TB_CLK / PWM_FREQUENCY; EPwm1Regs.TBPHS.bit.TBPHS = 0; EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; / EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;

EPwm1Regs.CMPA.bit.CMPA = EPwm1Regs.TBPRD / 2;

EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;

EDIS;

Name	Description	Structure
DBCTL	Dead-Band Control	EPwmxRegs.DBCTL.all =
DBRED	10-bit Rising Edge Delay	EPwmxRegs.DBRED =
DBFED	10-bit Falling Edge Delay	EPwmxRegs.DBFED =

Rising Edge Delay = T_{TBCLK} x DBRED

Falling Edge Delay = T_{TBCLK} x DBFED

ePWM Dead-Band Module Block Diagram

Simulation Model


```
function [PWM3,PWM1] = fcn(time, frequency, phase)
Tswitching = 1/frequency;
PWM1 =0;
PWM3 =0;
y1 = mod(time, Tswitching);
if y1 < Tswitching/2
    PWM1 = 1;
end
t phi = Tswitching*phase/360;
y2 = mod(time+t phi, Tswitching);
```

if y2 < Tswitching/2

PWM3 = 1;

end

Results

ii) phase 90 degree at Kp= Ki = 1

iii) phase 150 degree at Kp=5 and Ki=1

CONCLUSION

This project successfully designed and implemented an EV battery charger using a DSP controller and Code Composer Studio. By harnessing the advanced features of the ePWM module, we achieved precise control over the charging process, ensuring both efficiency and safety.

Key Takeaways

- ePWM Expertise
- Algorithm Implementation
- Safety Focus
- Advanced Techniques

REFERENCES

1Soumya Ranjan Meheí and Rajeev Kumaí Singh, "A Standaíd I'wo Stage On-Boaíd Chaígeí With Single Contíolled PWM and Minimum Switch Count" IEEE I'RANSACI'IONS ON INDUSI'RY APPLICAI'IONS, VOL. 59, NO. 4, JULY/AUGUSI' 2023

2D. Boweímasteí, M. Alexandeí and M. Duvall, "I'he need foí chaíging: evaluating utility infíastíuctuíes foí electíic vehicles while píoviding customeí suppoít," IEEE Electíification Magazine, vol. 5, no. 1, pp. 59- 67, Maích 2017.

3A. K. Singh., K. A. Chinmaya, and M. Badoni, "Solaí PV and gíid based isolated conveíteí foí plug-in electíic vehicles". IEľ Poweí Electíonics, no.

12, pp. 3707-3715, 2019.

4A. K. Singh, A. K. Mishra, K. K. Gupta, P. Bhatnagar and T. Kim, "An integrated converter with reduced components for electric vehicles utilizing solar and grid power sources," IEEE Trans. on Transp. Electrification, vol. 6, no. 2, pp. 439-452, June 2020.

WORK PLAN

- Literature survey
- Data collection of necessary specifications, IEEE standards and parameters
- Modelling and Simulation
- Data analysis
- Optimization

THANK YOU