Dairy Calf Action Recognition and Analysis Based on Spatio-Temporal Convolutional Neural Network

Po-Lin Chen, Ta-Te Lin *

Department of Biomechatronics Engineering, National Taiwan University

Introduction

Dairy calf behavior, which reflects their health and welfare, has traditionally been assessed through visual observation. Leveraging imaging and deep learning, our study has established a system using a spatiotemporal Convolutional Neural Network based on consecutive frames. Our study aims to enhance livestock management strategies, thereby ensuring the optimal well-being and health of dairy calves.

Materials and Methods

data collection

- A Wireless Imaging Device
 with a top-down perspective
 was used to capture dairy calf
 images.
- For action recognition network training, a sequence of 32 consecutive frames at 10 FPS is utilized.

Figure 1. Wireless Imaging Device.

model training

- In this study, we used R(2+1)D, a Convolutional Neural Network based on ResNet. The network combines 2D and 1D convolutional operations to effectively capture spatio-temporal relationships (Tran et al., 2018).
- With this deep learning methodology, we trained on video datasets consisting of 32 frames, each with a resolution of 224 x 224. Subsequently, we categorized dairy calf behavior into six distinct classes: *Non-active Lying*, *Active Lying*, *Non-active Standing*, *Active Standing*, and *Drinking*.

data sampling and inference

- Data was periodically recorded in segments of 3.2 seconds at 1-minute intervals. The collected data was then processed with a trained spatio-temporal Convolutional Neural Network.
- The daily behavioral distribution was mapped, and further analysis was performed to quantify the total duration, number of bouts, and duration of each bout for every class.

Results

action recognition

- About 2,000 video segments were used for training and validation, with additional 450 reserved for the independent testing dataset.
- After training, the model achieved a top-1 accuracy of 0.94 and an F1-score of 0.93.

Figure 2. Evaluation of Behavior Recognition Model. (a) Confusion Matrix, (b) Performance Metrics.

behavior analysis

- As shown in Figure 3, for most of the time, calves exhibit a predominant state of *Non-active Lying*, with a total duration of 15 hours.
- The frequent incidence of *Standing*, *Feeding*, and *Drinking* behaviors at 06:00 and 18:00 corresponds with the schedule provided by the caretaker for their feeding and cleaning operations.

Figure 3. Behavior Analysis Results. (a) Daily Behavioral Distribution, (b) Total Duration Proportions for Each Behavior.

Conclusion

In this study, a spatio-temporal Convolutional Neural Network was utilized for dairy calf action recognition, achieving a top-1 accuracy of 0.94 and an F1-score of 0.93. The model was then utilized to analyze behavior patterns over time, providing valuable insights for both calf behavior research and farm management decision-making.