1 Derivate

1.1 Rapporto incrementale e derivate

Per poter comprendere le derivate è essenziale comprendere il concetto di rapporto incrementale

Definizione 1 (Rapporto Incrementale):

Premettiamo: $A \subseteq \mathbb{R}, f: A \to \mathbb{R}, x_0 \in A \cap D(A)$

 x_0 è un punto di accumulazione, non isolato e f una funzione con dominio A e codominio \mathbb{R} .

$$R_f(x_0): A \setminus \{x_0\} \to \mathbb{R}, \quad R_f(x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}$$
 (1)

Una funzione si dice **derivabile** in x_0 se esiste il limite, ed è finito:

$$\lim_{x \to x_0} R_f(x_0) : A \setminus \{x_0\} \to \mathbb{R}, = \lim_{x \to x_0} R_f(x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}$$
 (2)

Il limito che abbiamo appena definito si chiama derivata di f in x_0

$$f'(x_0) = \lim_{x \to x_0} R_f(x_0)(x) = \frac{f(x) - f(x_0)}{x - x_0}, \ f'(x_0) \in \mathbb{R}$$
(3)

Se il limite, del rapporto incrementale, non appartiene ai numeri reali ed è $\pm \infty$, allora la funzione è derivabile in senso esteso.

Il limite del rapporto incrementale si può riscrivere come:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \qquad (h = x - x_0)$$
 (4)

Definizione 2:

Se una funzione f è derivabile in un punmto x_0 allora:

$$\exists \lambda \in \mathbb{R}, \exists \omega : A \to \mathbb{R} \ \omega(x) \to \omega(x_0) = 0 | x \to x_0$$
 (5)

Allora:

$$f(x) = f(x_0) + \lambda \cdot (x - x_0) + \omega(x)(x - x_0) \ \forall x \in A$$

$$\lambda = \frac{f(x) - f(x_0)}{x - x_0} \qquad w(x) \hat{e} \text{ infinitesima (=0)}$$

$$\lambda = f'(x_0)$$
(6)

Definizione 3:

Premettiamo: $A \subseteq \mathbb{R}, f: A \to \mathbb{R}, x_0 \in A \cap D(A)$

 x_0 è un punto di accumulazione, non isolato e f una funzione con dominio A e codominio \mathbb{R} .

Se f è derivabile in x_0 allora f è continua in x_0 .

Questa nozione è dimostrabile sapendo che: $\lim_{x\to x_0} f(x) = f(x_0)$, e la tesi viene provata dal fatto che x_0 è un punto di accumulazione del suo dominio A.

Esempio 1.

Non è vero l'opposto di quanto abbiamo appena affermato: esistono infatti funzioni continue non derivabili, come per esempio la funzione **modulo**:

$$f(x) = |x| \tag{7}$$

DIMOSTRAZIONE 1.

Lo si può facilmente dimostrare per il limite destro e sinistro in 0:

$$\nexists \lim_{x \to x_0} |x| : \begin{cases} \lim_{x \to x_0^+} |x|, & 1 \\ \lim_{x \to x_0^-} |x|, & -1 \end{cases}$$
(8)

Dato che i due limiti non coincidiono il limite, nel punto x_0 non esiste.

Esempio 2.

La derivata di $f'(e^x) = e^x$

Alcune proprietà delle derivate:

• La somma delle derivate è la derivata della somma, ed è derivabile in x_0 :

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$
(9)

• La regola di Leibniz: $(f \cdot g \text{ è derivabile in } x_0)$

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$
(10)

• La derivata del quoziente (ponendo $g(x_0) \neq 0$), $\frac{f}{g}$ è derivabile in x_0 ;

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)} \tag{11}$$

• La derivata della composta è:

Prendiamo due funzioni tali che:

 $A, B \subseteq \mathbb{R}, f: A \to \mathbb{R}, g: B \to \mathbb{R}, f(A) \subseteq B; \ x_0 \in A \cap D(A), f \text{ derivabile in } x_0, \ f(x_0) \in D(B), g \text{ derivabile in } f(x_0)$:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0) \tag{12}$$

• L'inversa della derivata è la complementare della derivata:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} \tag{13}$$

Definizione 4 (Estremanti massimo, minimi e relativi):

Sia $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$ derivabile, sia $x_0 \in \dot{A}$ (che vuol dire che esiste un intorno di x_0 tutto dentro a ad A).

Se x_0 è un punto **estremante relativo** (min o max realtivo) allora $f'(x_0)=0$

DIMOSTRAZIONE 2.

Prendiamo come esempio x_0 max relativo, allora sarà vero:

$$\exists \rho > 0 : f(x) - f(x_0) \le 0 \ \forall x \in]x_0 - \rho, x_0 + \rho[$$
 (14)

Sapendo che x_0 è tutto interno, supponiamo che sia tutto incluso in A:

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0 \ \forall x \in]x_0, x_0 + h[$$

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \ \forall x \in]x_0 - h, x_0[$$

Dalla derivabilità della funzione possiamo capire che:

$$\begin{cases} f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0\\ f'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \end{cases}$$
(15)

Quindi $f'(x_0)$ deve essere uguale a 0

1.2 Teoremi Fondamentali delle derivate

Definizione 5 (Rolle):

Prendiamo due numeri naturali, di cui uno strettamente maggiore dell'altro: $a,b \in \mathbb{R}; a < b$ e una funzione continua nell'intervallo formato da questi due numeri: $f \in C([a,b])$, e questa funzione è derivabile nell'insieme formato dai due numeri, estremi esclusi:]a,b[Se l'immagine del primo elemento è uguale a quella dell'altro f(a) = f(b) allora è vero che:

$$\exists c \in]a, b[: f'(c) = 0 \tag{16}$$

Esiste un elemento all'interno dell'intervallo formato dai due punti, la cui derivata è uguale a 0.

DIMOSTRAZIONE 3.

La dimostrazione di questo teorema deriva dal fatto che:

essendo la funzione limitata, applicando il teorema di Weierstrass sappiamo che esistono due punti della funzione $x_1, x_2 \in [a, b]$ che sono punti di min, max assoluti nell'intervallo.

Quindi, o le due immagini sono uguali, se e solo se sono i due estremi $x_1, x_2 \in a, b$:

$$f(x_1) = minf, \ f(x_2) = maxf \Longrightarrow f(x_1) = f(x_2) \tag{17}$$

La funzione è costante e quindi la derivata di un qualsiasi punto:

$$f'(c) = 0 \forall c \in]a, b[\tag{18}$$

Se invece uno dei punti è all'interno dell'intervallo $x_1 \in]a,b[$, abbiamo prima dimostrato che se un elemento ha un intorno tutto all'interno di un intervallo ed esso è min,max relativo la sua derivata è 0

Definizione 6 (Valor medio o Lagrange):

Siano $a,b \in \mathbb{R}, a < b,f:[a,b] \to \mathbb{R}, f \in C([a,b]), f$ derivabile all'interno dell'intervallo dei due punti]a,b[, allora:

$$\exists c \in]a, b[: \frac{f(b) - f(a)}{b - a} = f'(c)$$
(19)

DIMOSTRAZIONE 4.

Consideriamo una funzione $g(x):[a,b]\to\mathbb{R},\ g(x)=f(x)-\frac{f(b)-f(a)}{b-a}\cdot(x-a).$ Sostituendo la variabile x con $a\vee b$, otteniamo

$$g(a) = f(a) = f(a) - \frac{f(b) - f(a)}{b - a} \cdot (a - a)$$
 (20)

Inoltre:

$$g(b) = f(b) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = \underline{f(b)} - f(b) + f(a) = f(a)$$
(21)

Quindi logicamente

$$g(a) = f(a), \ g(b) = f(a) \implies g(a) = g(b) \tag{22}$$

Un'altra nozione che abbiamo premesso è che la funzione è continua in [a,b] e derivabile in]a,b[, dalle conclusioni del teorema di Rolle:

$$\exists c \in]a, b[: g'(c) = 0 \tag{23}$$

Che non vuol dire niente di meno di quanto abbia affermato nella nostra tesi:

$$f'(c) = \frac{f(b) - f(a)}{b - a} \tag{24}$$

Definizione 7 (Cauchy):

Siano $a, b \in \mathbb{R}, a < b, f, g \in C([a, b])$ e derivabili in $]a, b[, g' \neq 0$, allora:

$$\exists c \in]a, b[: \frac{f(b) - f(a)}{b - a} = \frac{f'(c)}{g'(c)}$$
 (25)

Questo si può facilemente dimostrare applicando il teorema di Rolle

Delle brevi osservazioni:

Se abbiamo un intervallo non vuoto $I\subseteq\mathbb{R}$ e una funzione $f:I\to\mathbb{R}$ derivabile su questo intervallo, se:

$$f'(x) = 0, \ \forall x \in I \tag{26}$$

Allora la funzione è costante in tutto l'intervallo.

Se invece:

$$f'(x) \ge 0 \ \forall x \in I \tag{27}$$

La funzione è monotona crescente nell'intervallo. Viceversa se è monotona crescente allora sarà sempre minore uguale a 0 la derivata della funzione.

Definizione 8 (Darboux):

Sia $I \subseteq \mathbb{R} \neq \emptyset$ un intervallo non vuoto e sia $f: I \to \mathbb{R}$ una funzione derivabile nell'intervallo, alllora:

$$f'(I) = f'(x) : x \in I$$
 (28)

È un intervallo di \mathbb{R} .

Definizione 9 (Primitive):

Sia $I \subseteq \mathbb{R}$ un intervallo e sia una funzione $f: I \to \mathbb{R}$, diremo che la primitva di questa funzione è una qualsiasi funzione derivabile $\phi: I \to \mathbb{R}$ tale che:

$$\phi'(x) = f(x) \ \forall x \in I \tag{29}$$

In parole povere la primitiva è come se fosse "l'operazione inversa" alla derivata, ovvero la primitiva di una funzione è l'immagine di partenza f(x).

Il teorema di Darboux dice inoltre che se esiste una primitiva di una funzione f su I allora $f(I) = \phi'(I)$ è un intervallo, questa è una condizione necessaria affinchè la funzione abbia una primitiva.

Definizione 10:

ciao

1.3 Tablle Utili

Funzione $f(x)$	Derivata della funzione $f'(x_0)$
k	0
x	sgnx
x^{α}	$\alpha x^{\alpha-1}$
x	1
$\log_a x$	$\frac{1}{x}\log_a e$
$\log x$	$\frac{1}{x}$
$\log_a x $	$\frac{1}{ x }$
$\log x $	$\frac{1}{x}$
$\log f(x) $	$\frac{f'(x_0)}{f(x)}$
a^x	$a^x \log a$
e^x	e^x
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan x$	$1 + \tan^2 x$
$\arctan x$	$\frac{1}{1+x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Integrali per parti