Analog IC Design – Xschem/Ngspice and ADT

Lab 05

Simple vs Wide Swing (Low Compliance) Cascode Current Mirror

Part 1: Exploring Sizing Tradeoffs Using SA

Parameter	
Current direction (source/sink)	Sink
Input Current	$10\mu A$
Output Current	20μΑ
% Change in Current for $\Delta V_{out} = 1V$	< 10%
Percent mismatch: $\sigma(I_{out})/I_{out}$	≤ 2%
Compliance voltage	≤ 150 <i>mV</i>
Area	Minimize

LAMBDA = 42.5m lam Using 40m

Part 2: Current Mirror Simulation

 $VDS6 \approx VDS3 \approx V* + 50mV$

 $RB = VGS5 + VDS6 - VGS6 / IB \approx VDS6 / IB = (150 + 50) \text{ m} / 10\text{u} = 20 \text{ k}$ L= 990n W=9.8u, 2*9.8=19.6u

lo. of Data Rows	: 31		
inary raw file '	"CM_TB_final.ra⊎"		
BSIM4v5: Berkele	ey Short Channel IGFET	Model-4	
device	m.×m1.m0	m.×m2.m0	m.×m3.m0
mode1	nmos_3p3.9	nmos_3p3.9	nmos_3p3.9
id	1e-05	1e-05	1e-05
vgs	0.765733	0.846678	0.76935
vds	0.765732	0.546677	0,222669
vdsat	0.124265	0.126922	0,125793
vth	0,688097	0.768275	0.689375
9m	0.000134164	0.000134107	0.000133041
9ds	4.08393e-07	4.5574e-07	1.37809e-06
amps	5.13466e-05	4.60414e-05	5.08999e-05
BSIM4v5: Berkeley Short Channel IGFET Model-4			
device	m.×m4.mO	m.×m5.m0	m.×m6.m0
model	nmos_3p3.13	nmos_3p3.13	nmos_3p3,13
id	2.00318e-05	1.99506e-05	1.99506e-05
vgs	0.765733	0.847988	0.76935
vds	0.899997	0,678635	0.22136
vdsat	0.124031	0.126473	0.125626
vth	0,688482	0,770272	0.689656
á⊌	0.000268778	0.000267974	0.000265721
9ds	7.79918e-07	8.27203e-07	2.78732e-06
gmbs	0.000102881	9,2073e-05	0.000101664

3) Simulate the OP point. Report a snapshot clearly showing the following parameters.

4) Do all transistors operate in saturation?

No, M3, M6 not saturation VDS > Vdsat*1.2.

2. DC Sweep (*Iout* vs VOUT)

1) Perform DC sweep (not parametric sweep) using VOUT = 0:10m: VDD. Report I out vs VOUT for the two CMs overlaid in the same plot.

o Comment on the difference between the two circuits.

- M1 and M4 have the same *VGS* and both work in saturation. They will have the same current (if they are MATCHED).
- in Cascode Current Mirror Note that the mirroring action is performed by M3 and M6 only, the role of M2 and M5 is to guarantee *VDS*3 = *VDS*6.

o *lout* of the simple CM is exactly equal to IB*2 at a specific value of VOUT. Why?

VDS of output transistor is almost equal to VDS of the mirroring transistor so the two transistors are totally matched, and the mirroring is perfect.

2) For the simple current mirror, calculate the percent change in *Iout* when VOUT changes from 0.5V to 1.5V (i.e., 1V change). Compare the result to the value expected from Part 1

$$\frac{i_{0.5}}{i_1} = \frac{1.91u}{1.95u} = 0.979 = 97.94\%$$
 the i(vout2) current is constant in the range between (0.3 to end)

Error = (100-97.94)/100 = 0.0205 = 2.05%

o Comment on the difference between the two circuits.

The WS CM maintains almost 0% error in the operation region even though VOUT is changing while the Simple CM error is changing with the sweep of VOUT. (For the same reasons explained in previous comment).

(abs(i(vout2))-20u)*100/20u

4) Report Rout vs VOUT (take the inverse of the derivative of Iout plot) for the two CMs in the current mirror operating region (VOUT $\approx V*$ to VDD) overlaid in the same plot. Use log scale on the y-axis. Add a cursor at VOUT = VDD/2.

o Comment on the difference between the two circuits.

WS CM has very high output impedance compared to the SIMPLE CM.

o Does Rout change with VOUT? Why?

Yes, Increasing Vout decreases VDS of the output transistor which decreases Rout, hence decreasing the output impedance.

5) Analytically calculate Rout of both circuits at VOUT = VDD/2. Compare with simulation results in a table.

at
$$Vout=V_{DD}/2$$
, $RoutWS=(g_{m5}+g_{mb5})/(g_{ds5}*g_{ds6})=78.22 \text{M}\ \Omega$ at $Vout=V_{DD}/2$, $RoutSimple=1/g_{ds4}=2.56 \text{M}\Omega$

	Analytically	simulation
RoutSimple	2.56M Ω	1.25M Ω
RoutWS	78.22M Ω	40.2M Ω

The numbers coming out of the simulation contain errors and do not match the numbers coming out of the calculations.

3. Mismatch

v(v-sweep)

1) Perform DC sweep for VMIS1 and VMIS2 from 0 to sqrt (1.5)*3.5m/sqrt(W*L*1e12) using the code below and set VMIS3 = 0. This models the standard deviation of the mismatch in VTH for the current mirror devices. Find the percent change in Iout.

simple current mirror

1.48

Wide swing CM

No. of Data Rows			
	ey Short Channel IGFET		
device	m.×m1.m0	m.×m2.mQ	m.×m3.m0
model	nmos_3p3.9	nmos_3p3.9	nmos_3p3.9
id	1e-05	1e-05	1e-05
vgs	0.767647	0.821386	0.769033
vdsat	0.124276	0,126058	0.126947
vth	0.689995	0.743282	0.687299
vds	0.767646	0,621385	0.147645
9m	0.00013415	0.000134121	0.000128635
9ds	4.08035e-07	4.33233e-07	7.43595e-06
gmbs	5.13433e-05	4.7653e-05	4.92635e-05
RSIM4u5: Berkel	ey Short Channel IGFET	Model-4	
device	m.×m4.m0	m.×m5.m0	m.×m6.m0
model	nmos_3p3.13	nmos_3p3.13	nmos_3p3.13
id	2.07283e-05	1.97239e-05	1.97239e-05
vas	0.767647	0.822271	0.769033
vdsat	0.125698	0.12507	0.126223
vth	0.687842	0.745685	0.688428
vds	0.899997	0.753235	0.14676
am	0.000275054	0.000265893	0.000254951
9ds	7.9889e-07	7.97966e-07	1.48151e-05
amps	0.000105282	9.45314e-05	9.76423e-05
320	***************************************	0	2

2) Analytically calculate the percent change in *Iout* and compare it to the simulation result.

Percent Change =
$$\frac{i2-i1}{i1} = \frac{19.6u-19.2u}{19.2u} = 2.08\%$$

No. of Data Rows :	1		
	Short Channel IGFET	Model-4	
device	m.×m1.m0	m.×m2.m0	0m.×m3.m0
model	nmos_3p3.9	nmos_3p3.9	nmos_3p3.9
id	1e-05	1e-05	1e-05
vgs	0.764885	0.822633	0.771921
vdsat	0.12426	0,126077	0.126911
vth	0.687256	0.744524	0.690243
vds	0.764883	0,622632	0.149285
9m	0.00013417	0.000134116	0.000128884
9ds	4.08552e-07	4.32773e-07	7.02755e-06
gmbs	5,13481e-05	4.76154e-05	4.93585e-05
BSIM4v5: Berkeley	Short Channel IGFET	Model-4	
device	m.×m4.mO	m.×m5.m0	m.×m6.m0
mode1	nmos_3p3.13	nmos_3p3.13	nmos_3p3.13
id	1.98638e-05	2.01469e-05	2,01469e-05
vgs	0.764885	0.823293	0.771921
vdsat	0.123622	0.126119	0.127247
vth	0,688263	0.745136	0.68976
vds	0,899997	0.75137	0.148625
9m	0.000267254	0.000269759	0.000258831
gds	7.75325e-07	8.1089e-07	1.46087e-05
gmbs -	0.000102297	9.58183e-05	9,91286e-05

5) Which mismatch contribution is more pronounced? Why?

The mismatch is more noticeable in small devices due to its new effect on operations. Therefore, larger devices are used in analog circuits to improve the matching and mismatches.

6) Which design decision is better: setting the same W and L for the mirror and cascode devices? Or using larger W and L for the current mirror devices? Why?

- Using the same W and L for reflectors and cascodes simplifies the design and improves matching,
- While larger W and L for reflectors improves matching performance and copy accuracy but consumes more space.
- The choice depends on the application requirements, balance and space.