

CE 311S: PROBABILITY AND STATISTICS

Week 8 – Class 2

03/11/2020

PRIYADARSHAN PATIL

Teaching Assistant, The University of Texas at Austin

Administrative stuff

- Online assignment 4 is due tomorrow
- Spring break

Agenda

- Jointly distributed random variables
 - Multiple discrete random variables
 - Multiple continuous random variables
 - Covariance and correlation

Learning goals

- By the end of this class, you should be able to:
 - Understand a joint PMF (PDF) and CDF
 - Calculate marginal PMF (PDF)
 - Calculate expected values for the RV and functions of the RV
 - Compute covariance and correlation coefficient

Introduction to joint random variables

- Random variables are often linked with each other
- Examples: Years in college and Credits completed, Years of work experience and salary, Auto and Renters insurance
- We are interested in understanding how random variables behave when studied together

Example: Insurance

- Some customers purchase both auto and homeowner's insurance from the same company.
- Let X and Y represent the deductibles of the auto and homeowners' policies for a randomly selected customer. X and Y follow the joint PMF shown in the table:

		Υ				
		0	50	150		
	0	0.25	0.06	0.15		
X	100	0.07	0.15	0.04		
	200	0.14	0.05	0.09		

Joint random variables

- In general, PMF $P_{XY}(x, y)$ is the probability of X = x and Y = y
- For a valid PMF, $P_{XY}(x,y) \ge 0 \ \forall \ (x,y) \ and \ \sum_{X} \sum_{Y} P_{XY}(x,y) = 1$
- The marginal PMF of X provides us the distribution of X when we aren't concerned with Y

$$P_X(x) = \sum_{y \in R_Y} P_{XY}(x, y)$$

Things to note:

- Sum of all entries equals 1
- Each value is non-negative
- Sum of all values in the first row is P(X=0) when not considering Y
- Applies to all rows and columns
- Joint CDF is written as: $F_{XY}(x,y) = P(X \le x \cap Y \le y)$

	0	50	150	Sum
0	0.25	0.06	0.15	0.46
100	0.07	0.15	0.04	0.26
200	0.14	0.05	0.09	0.28
Sum	0.46	0.26	0.28	1

Example: Insurance

Calculate the marginal PMFs of X and Y

•
$$P_X(0) = 0.46$$

•
$$P_X(100) = 0.26$$

•
$$P_X(200) = 0.28$$

•
$$P_Y(0) = 0.46$$

•
$$P_{Y}(50) = 0.26$$

•
$$P_Y(150) = 0.28$$

	0.46			1
200	0.14	0.05	0.09	0.28
100	0.07	0.15	0.04	0.26
0	0.25	0.06	0.15	0.46
	0	50	150	Sum

Independence

- Two RVs are independent if $P_{XY}(x,y) = P_X(x)P_Y(y)$ for all (x,y)
- Are X and Y independent?

	0	50	150	Sum
0	0.25	0.06	0.15	0.46
100	0.07	0.15	0.04	0.26
200	0.14	0.05	0.09	0.28
Sum	0.46	0.26	0.28	1

Expected value

- The expected value of any function h_{XY} is $\sum_{X} \sum_{Y} h(x,y) P_{XY}(x,y)$
- What is the expected value of the total X deductible (X+Y)?

	0	50	150	Sum
0	0.25	0.06	0.15	0.46
100	0.07	0.15	0.04	0.26
200	0.14	0.05	0.09	0.28
Sum	0.46	0.26	0.28	1

Expected value

- Create two tables, one with $P_{XY}(x, y)$ and one with h(x, y) values
- Take the product of corresponding values and add
- E[h(x,y)] = 0*0.25 + 50*0.06+...
- E[h(x, y)] = 137

	0	50	150
0	0.25	0.06	0.15
100	0.07	0.15	0.04
200	0.14	0.05	0.09

Υ				
	0	50	150	
0	0	50	150	
100	100	150	250	
200	200	250	350	

Expected value

- Two ways to calculate E[X] and E[Y]:
- Take the product of corresponding values and add.
- Solve it using the marginal PMF
- E[X] = 82 and E[Y] = 55

	0	50	150
0	0.25	0.06	0.15
100	0.07	0.15	0.04
200	0.14	0.05	0.09

	Y				
	0	50	150		
0	0	0	0		
100	100	100	100		
200	200	200	200		

\/

Joint continuous random variables

- All the concepts we studied apply to continuous distributions
- Similar changes as applied to single random variables
- Mass changes to density, summation to integration, etc.

Joint continuous random variables

- The joint density function $f_{XY}(x,y)$ is valid if $f_{XY}(x,y) \ge 0 \ \forall x,y$ and if $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) \ dy \ dx = 1$
- The marginal density functions are:

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$

Joint continuous random variables

- X and Y are independent if $f_{XY}(x,y) = f_X(x)f_Y(y) \forall x,y$
- $E(h(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{XY}(x,y) f_{XY}(x,y) dy dx$

- A test column you built for your materials class can either fail via the rebars rusting, or by the concrete flaking off.
- Let X be the years before the rebars rust to failure, and Y be the years before the concrete flakes off.
- The joint pdf is: $f_{XY}(x,y) = ce^{-x}e^{-2y}$ for $x \ge 0, y \ge 0$

- $f_{XY}(x, y) = 2e^{-x}e^{-2y}$ for $x \ge 0, y \ge 0$
- What is the marginal distribution of X? This is the pdf for years till rebar rusting
- What is the marginal distribution of Y? This is the pdf for years till concrete flaking

- $f_{XY}(x, y) = 2e^{-x}e^{-2y}$ for $x \ge 0, y \ge 0$
- X and Y are independent if $f_{XY}(x,y) = f_X(x)f_Y(y) \forall x,y$
- Are X and Y independent?

- $f_{XY}(x,y) = 2e^{-x}e^{-2y}$ for $x \ge 0, y \ge 0$
- What is the expected time till the rebars rust to failure?

Covariance and correlation

- When two RVs are not independent, we require a measure of how dependent they are.
- Covariance of RVs X and Y is defined as Cov(X,Y) = E[X E[X]]E[Y E[Y]]
- Equivalently,

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

Covariance

- Recall, E[X] = 82 and E[Y] = 55
- E[XY] = 4550
- Cov(X,Y) = 4550 82 * 55 = 40

		•	
	0	50	150
0	0.25	0.06	0.15
100	0.07	0.15	0.04
200	0.14	0.05	0.09

X

V

			•	
		0	50	150
X	0	0	0	0
	100	0	5000	15000
	200	0	10000	30000

Covariance

Interpretation

- If covariance is positive, when X is above average, Y usually is too; and when X is below average, Y usually is too.
- If covariance is negative, when X is above average, Y is usually below average, and vice versa.
- If X and Y are independent, their covariance is zero. (The converse is **not** true).
- The magnitude does not mean much (depends on units of X and Y)

Correlation

 To gain more insight from the magnitude, we define the correlation coefficient as follows:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- The correlation coefficient is always between [-1, +1]
- It quantifies the strength of the linear relationship between X and Y

Correlation

- If $\rho_{XY} = 1$, then Y = aX + b for some a > 0
- If $\rho_{XY} = -1$, then Y = aX + b for some a < 0
- If $\rho_{XY} = 0$, there is no linear relationship between X and Y
- If ρ_{XY} =0, it does not imply that X and Y are independent

Covariance - properties

- Cov(X,X) = Var[X]
- If X and Y are independent, Cov(X,Y) = 0
- Cov(X,Y) = Cov(Y,X)
- Cov(aX,Y) = aCov(X,Y)
- Cov(X + c, Y) = Cov(X, Y)
- Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

Covariance – special formulae

•
$$Cov(\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j Cov(X_i, Y_j)$$

•
$$Var(aX + bY) = a^2Var(x) + b^2Var(Y) + 2abCov(X, Y)$$

Covariance - examples

- $Cov(X_1 + 2X_2, 3Y_1 + 4Y_2) = 3Cov(X_1, Y_1) + 6Cov(X_2, Y_1) + 4Cov(X_1, Y_2) + 8Cov(X_2, Y_2)$
- Let X and Y be independent standard normal random variables. What is $Cov(1 + X + XY^2, 1 + X)$

Summary

- Joint discrete (continuous) random variables have a joint PMF (PDF) and CDF
- Marginal distributions for each of the RVs can be calculated by summing (integrating) across the other random variable
- Expected values for functions of joint random variables are like expected values for single random variables
- Covariance and correlation coefficient are measures for determining the linear relation between two RVs

Any Questions?

- Thank you for attending
- Have a fun (and safe) spring break