Azzolini Riccardo 2020-04-23

Calcolo a tableaux – Alcune proprietà dei tableaux

1 Insieme associato a un ramo

Definizione: L'insieme delle formule associato a un ramo $\rho = N_1, \dots, N_k$ è

$$\Delta_{\rho} = \bigcup_{N \in \{N_1, \dots, N_k\}} \Gamma_N$$

cioè l'unione degli insieme di formule associati ai nodi che compaiono sul ramo.

Nota: Per semplicità, nel seguito della discussione, si identificheranno i nodi e i rami di un tableau con gli insiemi di formule a essi associati. Ad esempio, si potrà dire:

- H appartiene al nodo N, intendendo che $H \in \Gamma_N$;
- H appartiene al ramo ρ , intendendo che $H \in \Delta_{\rho}$.

1.1 Esempio

Ramo
$$\rho$$
 Δ_{ρ} $\{N_1, N_2, N_3, N_4\}$ $\{(\neg B \rightarrow A) \lor \neg (C \land B \rightarrow \neg A), \neg B \rightarrow A, \neg \neg B, B\}$ $\{N_1, N_2, N_5\}$ $\{(\neg B \rightarrow A) \lor \neg (C \land B \rightarrow \neg A), \neg B \rightarrow A, A\}$ $\{N_1, N_6, N_7, N_8, N_9\}$ $\{(\neg B \rightarrow A) \lor \neg (C \land B \rightarrow \neg A), \neg (C \rightarrow B \rightarrow \neg A$

2 Proprietà sulle formule in un ramo di un tableau

Proposizione (PT1¹): Sia $\rho = N_1, \dots, N_k$ un ramo di un tableau \mathcal{T} (non necessariamente completo). Per ciascuna formula $H \in \Delta_{\rho}$ valgono le seguenti proprietà:

- 1. Se H è un letterale, allora $H \in \Gamma_{N_k}$, cioè appartiene alla foglia del ramo.
- 2. Se invece H è composta, allora:
 - o $H \in \Gamma_{N_k}$,
 - oppure deve esistere un indice $i \in \{1, ..., k-1\}$ l'indice di un nodo del ramo che non sia la foglia per cui $H \in \Gamma_{N_i}$ ma $H \notin \Gamma_{N_{i+1}}$, e N_{i+1} è ottenuto da N_i scomponendo la formula H.

A livello intuitivo, questa proposizione afferma che, se si trova una formula H in un nodo del ramo, nei nodi seguenti del ramo si hanno due possibilità:

- o non si applicano mai regole su H, e allora questa si ritrova in tutti i nodi fino alla foglia;
- oppure c'è un punto in cui si applica una regola su H, e quindi H non è più presente nei nodi successivi (a partire dalle conclusioni della regola).

Dimostrazione: Per prima cosa, guardando le regole, si fa un'osservazione sulla loro forma:

Osservazione generale: Se H appartiene alla premessa di una regola e non è la formula principale della regola (ovvero $H \in \Gamma$), allora appartiene anche a ogni sua conclusione (ancora $H \in \Gamma$). Quindi, se $H \in \Delta_{\rho}$ e non è la formula principale di nessuna delle regole applicate sul ramo, $H \in \Gamma_{N_k}$.

Adesso si procede alla dimostrazione delle due proprietà:

- 1. Per dimostrare il caso in cui H è un letterale, è sufficiente osservare che nessuna delle regole del calcolo opera sui letterali. Si deduce quindi dall'osservazione generale che ogni letterale in Δ_{ρ} compare anche in Γ_{N_k} .
- 2. Se $H \in \Delta_{\rho}$ è composta, e se si suppone che $H \notin \Gamma_{N_k}$, allora, per l'osservazione generale, H è stata decomposta nello sviluppo del ramo. Formalmente, ciò significa che esiste un nodo N_i per cui $H \in \Gamma_{N_i}$ e $H \notin \Gamma_{N_{i+1}}$, in quanto H è la formula principale della regola applicata per generare N_{i+1} a partire da N_i (e nessuna delle regole riporta la formula principale nelle sue conclusioni).

Nota: Per come è costruito l'albero, $\Gamma_{N_{i+1}}$ è appunto una delle conclusioni della regola applicata a Γ_{N_i} con H come formula principale.

¹PT1 è un nome "sintetico" dato alla proprietà, per poterla citare quando sarà necessario usarla.

3 Proprietà sulle formule composte nei tableaux completi

Proposizione (PT2): Siano $\rho = N_1, \dots, N_k$ un ramo di un tableau completo \mathcal{T} e H una formula composta. Valgono le seguenti proprietà:

- 1. Se $H = \neg \neg A \in \Delta_{\rho}$, cioè se compare sul ramo una formula del tipo $\neg \neg A$, allora $A \in \Delta_{\rho}$, cioè sul ramo compare anche A.
- 2. Se, invece, sul ramo è presente un' α -formula $H \in \Delta_{\rho}$, con ridotti H_1, H_2 , allora $H_1, H_2 \in \Delta_{\rho}$.
- 3. Se $H \in \Delta_{\rho}$ è una β -formula con ridotti H_1, H_2 , allora compare sul ramo anche (almeno) uno dei due ridotti: $H_1 \in \Delta_{\rho}$ o $H_2 \in \Delta_{\rho}$.

Dimostrazione: Innanzitutto, siccome \mathcal{T} è completo, l'insieme Γ_{N_k} (associato alla foglia di ρ) è un insieme di letterali, e perciò $H \notin \Gamma_{N_k}$ (in quanto formula composta). Dalla PT1, si ha quindi che H è stata scomposta lungo il ramo; formalmente, $\widetilde{\exists} i \in \{1, \ldots, k-1\}$ tale che $H \in \Gamma_{N_i}$ è la formula principale della regola applicata per costruire i successori (figli) di N_i , e $\Gamma_{N_{i+1}}$ è una delle conclusioni di tale regola.

Si può allora usare la forma della regola per determinare in che modo le componenti di H abbiano contribuito alla costruzione di $\Gamma_{N_{i+1}}$:

- 1. se $H = \neg \neg A$, allora $A \in \Gamma_{N_{i+1}}$, e quindi anche $A \in \Delta_{\rho}$;
- 2. se H è un' α -formula, entrambi i suoi ridotti appartengono alla singola conclusione, cioè $H_1, H_2 \in \Gamma_{N_{i+1}}$, che implica $H_1, H_2 \in \Delta_{\rho}$;
- 3. se H è una β -formula, ciascuna delle due conclusioni contiene uno dei ridotti, e $\Gamma_{N_{i+1}}$ è appunto una delle conclusioni, quindi $H_1 \in \Gamma_{N_{i+1}}$ oppure $H_2 \in \Gamma_{N_{i+1}}$, da cui $H_1 \in \Delta_{\rho}$ o $H_2 \in \Delta_{\rho}$.

4 Proprietà dei rami dei tableaux completi

Proposizione (PT3): Sia $\rho = N_1, \dots, N_k$ un ramo di un tableau completo \mathcal{T} per Γ . Se Δ_{ρ} contiene una coppia complementare, allora anche Γ_{N_k} contiene una coppia complementare.

Osservazioni:

- La coppia complementare in Δ_{ρ} può essere basata su una qualunque formula H, potenzialmente composta, mentre quella in Γ_{N_k} è sicuramente basata su un letterale, poiché \mathcal{T} è completo.
- Il fatto che Δ_{ρ} contenga una coppia complementare non dice nulla sui nodi in cui compaiono le due formule della coppia. In particolare, non è detto che entrambe le formule siano presenti in uno stesso nodo.

Dimostrazione: Per ipotesi, Δ_{ρ} contiene una coppia complementare, cioè $\widetilde{\exists} H$ tale che $H, \neg H \in \Delta_{\rho}$. L'asserto si dimostra per induzione sul rango di H.

- Base: rg(H) = 1, quindi H è un letterale (p oppure $\neg p$).
 - Se $H=p\in VAR$, allora, per ipotesi, $p, \neg p\in \Delta_{\rho},$ da cui, per la PT1, $p, \neg p\in \Gamma_{N_k}.$
 - Se invece $H = \neg p, \ p \in VAR$, per ipotesi si ha $\neg p, \neg \neg p \in \Delta_{\rho}$. Per la PT2, $\neg \neg p \in \Delta_{\rho}$ implica anche anche $p \in \Delta_{\rho}$ (complessivamente, si ha così $p, \neg p \in \Delta_{\rho}$), da cui, per la PT1, si deduce che $p, \neg p \in \Gamma_{N_k}$.
- Ipotesi induttiva: Per ogni A tale che $\operatorname{rg}(A) = h \geq 1$, se $A, \neg A \in \Delta_{\rho}$, allora Γ_{N_k} contiene una coppia complementare.
- Passo: Sia H tale che rg(H) = h + 1. Si procede per casi sulla forma di H.
 - Se $H = \neg \neg B$, per ipotesi, $\neg \neg B$, $\neg \neg \neg B \in \Delta_{\rho}$. Dalla PT2, si deduce che $B, \neg B \in \Delta_{\rho}$. Queste ultime formule hanno rango minore di H (rg(B) ≤ h e rg($\neg B$) ≤ h), perciò si può applicare l'ipotesi induttiva, che afferma che Γ_{N_k} contiene una coppia complementare.
 - Se $H = H_1 ∧ H_2$ (una congiunzione, cioè un caso specifico di α-formula) allora, per ipotesi,

$$(H_1 \wedge H_2), \neg (H_1 \wedge H_2) \in \Delta_{\rho}$$

Quindi, per la PT2:

$$(H_1 \wedge H_2) \in \Delta_{\rho} \implies H_1, H_2 \in \Delta_{\rho}$$
 (\$\alpha\$-formula: PT2.2)
 $\neg (H_1 \wedge H_2) \in \Delta_{\rho} \implies \neg H_1 \in \Delta_{\rho} \text{ o } \neg H_2 \in \Delta_{\rho}$ (\$\beta\$-formula: PT2.3)

Mettendo insieme i due fatti appena dedotti, si ha che $H_1, \neg H_1 \in \Delta_\rho$ oppure $H_2, \neg H_2 \in \Delta_\rho$: in entrambi i casi, Δ_ρ contiene una coppia complementare, e dunque, per ipotesi induttiva (applicabile perché $\operatorname{rg}(H_i) < h < \operatorname{rg}(H)$), Δ_ρ contiene una coppia complementare.

- Se $H = \neg (H_1 \vee H_2)$ (ancora un' α -formula), per ipotesi si ha

$$\neg (H_1 \lor H_2), \neg \neg (H_1 \lor H_2) \in \Delta_{\rho}$$

Applicando, come nel caso precedente, la PT2, si deduce

$$\neg (H_1 \lor H_2) \in \Delta_{\rho} \implies \neg H_1, \neg H_2 \in \Delta_{\rho} \qquad (\alpha\text{-formula: PT2.2})$$

$$\neg \neg (H_1 \lor H_2) \in \Delta_{\rho} \implies H_1 \lor H_2 \in \Delta_{\rho} \qquad \text{(doppia negazione: PT2.1)}$$

$$\implies H_1 \in \Delta_{\rho} \text{ o } H_2 \in \Delta_{\rho} \qquad (\beta\text{-formula: PT2.3})$$

quindi H_1 , $\neg H_1 \in \Delta_\rho$ o H_2 , $\neg H_2 \in \Delta_\rho$, e infine, per ipotesi induttiva (rg(H_i) < h < rg(H)), si conclude che Δ_ρ contiene una coppia complementare.

– Gli altri casi, cioè l' α -formula $H=\neg(H_1\to H_2)$ e le β -formule, si trattano in modo analogo.