Appendix of "Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting"

Table 1: Best parameters for the optical flow estimator in ROVER.

Parameter	Meaning	Value
L_{max}	Coarsest spatial scale level	6
L_{start}	Finest spatial scale level	0
n_{pre}	Number of pre-smoothing steps	2
n_{post}	Number of post-smoothing steps	2
ρ	Gaussian convolution parameter for local vector field smoothing	1.5
α	Regularization parameter in the energy function	2000
σ	Gaussian convolution parameter for image smoothing	4.5

Figure 1: (Larger Version) Comparison of different models based on four precipitation nowcasting metrics over time.

Figure 2: (Larger Version) Two prediction examples for the precipitation nowcasting problem. All the predictions and ground truths are sampled with an interval of 3. From top to bottom: input frames; ground truth; prediction by ConvLSTM network; prediction by ROVER2.

Figure 3: An illustrative example showing the in-domain prediction results of different models. From top to bottom: input frames; ground truth; FC-LSTM; ConvLSTM-5X5-5X5-1-layer; ConvLSTM-5X5-5X5-2-layer; ConvLSTM-9X9-1X1-2-layer; ConvLSTM-9X9-1X1-3-layer.

Figure 4: (Larger Version) An illustrative example showing an out-domain run. From top to bottom: input frames; ground truth; predictions of the 3-layer network.

Figure 5: Comparison of the 3-layer ConvLSTM and FC-LSTM in the online setting. In each iteration, we generate a new set of training samples and record the average cross entropy of that mini-batch. The x-axis is the number of data cases (starting from 25600) and the y-axis is the average cross entropy of the mini-batches. We can find that the loss of ConvLSTM decreases faster than FC-LSTM.