

Tratamiento de Señales

Version 2022-I

Transformaciones geométricas & Interpolación

[Capítulo 3]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Coordinate Transformation: $i_0 = f_i(i,j)$

$$j_0 = f_j(i,j)$$

Coordinate Transformation: $i_0 = i + 1$ (Example: Translation)

$$j_0 = j + 2$$

- 1) For each (i,j) of J compute (i_0,j_0) .
- 2) $J(i,j) = I(i_0,j_0)$

Coordinate Transformation: $i_0 = i + 1$ (Example: Translation)

$$j_0 = j + 2$$

Coordinate Transformation: $i_0 = i + 1.25$ (Example: Translation)

$$j_0 = j + 2.75$$

- 1) For each (i,j) of J compute (i_0,j_0) .
- 2) $J(i,j) = \text{interpolation } \{I(i_0,j_0)\}$

Coordinate Transformation: $i_0 = i + 1.25$ (Example: Translation)

$$j_0 = j + 2.75$$

- 1) For each (i,j) of J compute (i_0,j_0) .
- 2) $J(i,j) = \text{interpolation } \{I(i_0,j_0)\}$

Coordinate Transformation: $i_0 = i + 1.25$ (Example: Translation)

$$j_0 = j + 2.75$$

Nearest pixel

 $J(i,j) = \text{interpolation } \{I(i_0,j_0)\} = I_2$

Nearest pixel

 $J(i,j) = \text{interpolation } \{I(i_0,j_0)\} = I_2$

Bilinear interpolation

$$J(i,j)$$
 = interpolation $\{I(i_0,j_0)\}$ =

$$AI_4+BI_3+CI_2+DI_1$$

$$A+B+C+D=1$$

Bilinear interpolation

$$J(i,j)$$
 = interpolation $\{I(i_0,j_0)\}$ =

$$AI_4+BI_3+CI_2+DI_1$$

$$A+B+C+D=1$$

- 1) For each (i,j) of J compute (i_0,j_0) .
- 2) $J(i,j) = \text{interpolation } \{I(i_0,j_0)\}$

Coordinate Transformation:

(Example: Rotation &Translation)

$$i_0 = i \cos \Theta + j \sin \Theta + a$$

$$j_0 = -i \sin \Theta + j \cos \Theta + b$$

- 1) For each (i,j) of J compute (i_0,j_0) .
- 2) $J(i,j) = \text{interpolation } \{I(i_0,j_0)\}$

$$i_0 = s i \cos \Theta + s j \sin \Theta + a$$

$$j_0 = -s i \sin \Theta + s j \cos \Theta + b$$