Package 'RemixAutoML'

November 5, 2020

Title Remix Automated Machine Learning

Version 0.2.7

Date 2020-11-04

Maintainer Adrian Antico <adrianantico@gmail.com>

Description R package for the automation of machine learning, forecasting, feature engineering, model evaluation, model interpretation, data generation, and recommenders. Build using data.table for all tabular data-related tasks.

License MPL-2.0 | file LICENSE

URL https://github.com/AdrianAntico/RemixAutoML

BugReports https://github.com/AdrianAntico/RemixAutoML/issues

Depends R (>= 3.5.0)

Imports arules, bit64, catboost, combinat, data.table, doParallel, e1071, fBasics, foreach, forecast, ggplot2, grid, h2o, itertools, lime, lubridate, methods, MLmetrics, monreg, nortest, parallel, pROC, RColorBrewer, recommenderlab, scatterplot3d, stats, stringr, timeDate, tsoutliers, wordcloud, xgboost

Suggests knitr, rmarkdown, sde, testthat, fpp, gridExtra

VignetteBuilder knitr

Additional_repositories https://github.com/catboost/catboost/tree/master/catboost/R-package

Contact Adrian Antico

Encoding UTF-8

Language en-US

LazyData true

NeedsCompilation no

RoxygenNote 7.1.1

SystemRequirements Java (>= 7.0)

Author Adrian Antico [aut, cre], Douglas Pestana [ctb]

ByteCompile TRUE

2 R topics documented:

R topics documented:

RemixAutoML-package	5
AutoBanditNNet	5
AutoBanditSarima	7
AutoCARMA_QA	9
	13
	20
AutoCatBoostFreqSizeScoring	26
	28
	31
	37
AutoCatBoostScoring	13
	17
	50
AutoDataDictionaries	56
AutoDataPartition	57
	58
	59
	54
	57
	59
	72
	75
	78
	30
	33
	36
· ·	38
	90
	92
AutoH2oGBMSizeFreqDist	95
AutoH2oGLMClassifier	
AutoH2oGLMMultiClass	
AutoH2oGLMRegression	
AutoH2oMLClassifier	
AutoH2oMLMultiClass	
AutoH2oMLRegression	
AutoH2OMLScoring	
AutoH2OModeler	
AutoH2OScoring	
AutoH2OTextPrepScoring	
AutoHierarchicalFourier	
AutoHurdleCARMA	
AutoHurdleScoring	
AutoKMeans	
AutoLagRollStats	
AutoLagRollStatsScoring	
AutoLimeAid	
AutoMarketBasketModel	
AutoNLS	
AutoRecomDataCreate	
10:01:00011111111111111111111111111111	1

AutoRecommender
AutoRecommenderScoring
AutoTBATS
AutoTransformationCreate
AutoTransformationScore
AutoTS
AutoWord2VecModeler
AutoWordFreq
AutoXGBoostCARMA
AutoXGBoostClassifier
AutoXGBoostHurdleModel
AutoXGBoostMultiClass
AutoXGBoostRegression
AutoXGBoostScoring
CarmaCatBoostKeepVarsGDL
CarmaH2OKeepVarsGDL
CarmaHoldoutMetrics
CarmaXGBoostKeepVarsGDL
CARMA_Define_Args
CARMA_Get_IndepentVariablesPass
CARMA_GroupHierarchyCheck
CatBoostClassifierParams
CatBoostMultiClassParams
CatBoostParameterGrids
CatBoostRegressionParams
ChartTheme
ClassificationMetrics
CLForecast
CLTrainer
ColumnSubsetDataTable
Continuous Time Data Generator
CreateCalendarVariables
CreateHoliday Variables
CreateProjectFolders
DataDisplayMeta
DifferenceData
DifferenceDataReverse
DownloadCSVFromStorageExplorer
DT_BinaryConfusionMatrix
DT_GDL_Feature_Engineering
DummifyDT
EvalPlot
FakeDataGenerator
FinalBuildArfima
FinalBuildArima
FinalBuildETS
FinalBuildNNET
FinalBuildTBATS
FinalBuildTSLM
FullFactorialCatFeatures
GenerateParameterGrids
GenTSAnomVars

4

H2oAutoencoder
H2oIsolationForest
ID_BuildTrainDataSets
ID_MetadataGenerator
ID_TrainingDataGenerator
ID_TrainingDataGenerator2
IntermittentDemandScoringDataGenerator
· · · · · · · · · · · · · · · · · · ·
LimeModel
1
multiplot
OptimizeArfima
OptimizeArima
OptimizeETS
OptimizeNNET
OptimizeTBATS
OptimizeTSLM
ParallelAutoArfima
ParallelAutoARIMA
ParallelAutoETS
ParallelAutoNNET
ParallelAutoTBATS
ParallelAutoTSLM
ParDepCalPlots
Partial_DT_GDL_Feature_Engineering
PredictArima
PrintObjectsSize
ProblematicFeatures
QA_WALMARTDATAGENERATOR
RedYellowGreen
Regular_Performance
RemixClassificationMetrics
RemixTheme
ResidualOutliers
RL_Initialize
RL_ML_Update
RL_Performance
RL_Update
RPM_Binomial_Bandit
SimpleCap
SQL_ClearTable
SQL_DropTable
SQL_Query
SQL_Query_Push
SQL_SaveTable
SQL_Server_DBConnection
SQL_UpdateTable
StackedTimeSeriesEnsembleForecast
tempDatesFun
threshOptim
TimeSeriesDataPrepare
TimeSeriesFill
TimeSeriesMelt

	TimeSeriesPlotter	09
	tokenizeH2O	1
	WideTimeSeriesEnsembleForecast	12
	XGBoostClassifierParams	13
	XGBoostMultiClassParams	14
	XGBoostParameterGrids	13
	XGBoostRegressionMetrics	16
	XGBoostRegressionParams	16
Index	3	18
Remix	AutoML-package Automated Machine Learning Remixed	_

Description

Automated Machine Learning Remixed for real-world use-cases. The package utilizes data.table under the hood for all data wrangling like operations so it's super fast and memory efficient. All ML methods are available in R or Python. The forecasting functions are unique and state of the art. There are feature engineering functions in this package that you cannot find anywhere else.

Details

See the github README for details and examples www.github.com/AdrianAntico/RemixAutoML

Author(s)

Adrian Antico, adrianantico@gmail.com, Douglas Pestana

|--|

Description

AutoBanditNNet is a multi-armed bandit model testing framework for AR and SAR NNets. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic nnetar model from the forecast package. Depending on how many lags, seasonal lags, and fourier pairs you test the number of combinations of features to test begins to approach 10,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags, seasonal lags, and fourier pairs. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

6 AutoBanditNNet

Usage

```
AutoBanditNNet(
  data,
  TargetVariableName,
  DateColumnName,
  TimeAggLevel = "week",
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 5L,
  NumFCPeriods = 5L,
  MaxLags = 5L,
  MaxSeasonalLags = 1L,
  MaxFourierPairs = 2L,
  TrainWeighting = 0.5,
  MaxConsecutiveFails = 12L,
  MaxNumberModels = 100L,
  MaxRunTimeMinutes = 10L
)
```

Arguments

data Source data.table

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to test

MaxSeasonalLags

A single value of the max number of seasonal lags to test

MaxFourierPairs

A single value of the max number of fourier pairs to test

TrainWeighting Model ranking is based on a weighted average of training metrics and out of sample metrics. Supply the weight of the training metrics, such as 0.50 for 50

percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

MaxNumberModels

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result.

Author(s)

Adrian Antico

AutoBanditSarima 7

See Also

Other Automated Time Series: AutoBanditSarima(), AutoCatBoostFreqSizeScoring(), AutoH2oGBMFreqSizeScorAutoTBATS(), AutoTS()

AutoBanditSarima

AutoBanditSarima

Description

AutoBanditSarima is a multi-armed bandit model testing framework for SARIMA. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic auto arima from the forecast package. Depending on how many lags, moving averages, seasonal lags and moving averages you test the number of combinations of features to test begins to approach 100,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags and moving averages. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

Usage

```
AutoBanditSarima(
  data,
 ByDataType = TRUE,
  TargetVariableName,
 DateColumnName,
  TimeAggLevel = "week",
  EvaluationMetric = "MAE",
 NumHoldOutPeriods = 5L,
 NumFCPeriods = 5L,
 MaxLags = 5L,
 MaxSeasonalLags = 0L,
 MaxMovingAverages = 5L,
 MaxSeasonalMovingAverages = 0L,
 MaxFourierPairs = 2L,
  TrainWeighting = 0.5,
 MaxConsecutiveFails = 25L,
 MaxNumberModels = 100L,
 MaxRunTimeMinutes = 10L,
 NumberCores = max(1L, parallel::detectCores()),
 DebugMode = FALSE
)
```

8 AutoBanditSarima

Arguments

data Source data.table

ByDataType TRUE returns the best model from the four base sets of possible models. FALSE

returns the best model.

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to test

MaxSeasonalLags

A single value of the max number of seasonal lags to test

MaxMovingAverages

A single value of the max number of moving averages to test

MaxSeasonalMovingAverages

A single value of the max number of seasonal moving averages to test

MaxFourierPairs

A single value of the max number of fourier pairs to test

TrainWeighting Model ranking is based on a weighted average of training metrics and out of

sample metrics. Supply the weight of the training metrics, such as 0.50 for 50

percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

 ${\tt MaxNumberModels}$

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result.

NumberCores Number of cores to use in parallelism. E.g. if you have a 4 core CPU then

supply 4 if you want to utilize all four cores

DebugMode Set to TRUE to get print outs of particular steps helpful in tracing errors

Value

data.table containing historical values and the forecast values along with the grid tuning results in full detail, as a second data.table

Author(s)

Adrian Antico

See Also

Other Automated Time Series: AutoBanditNNet(), AutoCatBoostFreqSizeScoring(), AutoH2oGBMFreqSizeScorin AutoTBATS(), AutoTS()

Examples

```
## Not run:
# Build model
data <- RemixAutoML::FakeDataGenerator(</pre>
  TimeSeries = TRUE, TimeSeriesTimeAgg = "1min")
# Pimping
Output <- RemixAutoML::AutoBanditSarima(</pre>
  data = data,
  ByDataType = FALSE,
  TargetVariableName = "Weekly_Sales",
  DateColumnName = "Date",
  TimeAggLevel = "1min",
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 12L,
  NumFCPeriods = 16L,
  MaxLags = 10L
  MaxSeasonalLags = 0L,
  MaxMovingAverages = 3L,
  MaxSeasonalMovingAverages = 0L,
  MaxFourierPairs = 2L,
  TrainWeighting = 0.50,
  MaxConsecutiveFails = 50L,
  MaxNumberModels = 100L,
  MaxRunTimeMinutes = 10L,
  NumberCores = 12,
  DebugMode = FALSE)
# Output
Output$ForecastPlot
Output$Forecast
Output$PerformanceGrid
{\tt Output\$ErrorLagMA2x2}
## End(Not run)
```

AutoCARMA_QA

AutoCARMA_QA

Description

AutoCARMA_QA

Usage

```
AutoCARMA_QA(
  ModelName = "catboost",
  FeatureGridTune = FALSE,
  MaxMem_ = "28G",
  NThreads_ = max(1, parallel::detectCores() - 2),
  TreeMethod__ = "hist",
  TestRows = "ALL",
  DataPath = "C:/Users/Bizon/Documents/GitHub/QA_DataSets",
```

dataForecastX = "CARMA-WALMART-2GroupVars_FC.csv",

dataX = "OneGroup-Eval-Walmart.csv",

MaxMem_ NThreads_

TestRows

TreeMethod__

```
XREGSX = "CARMA-WALMART-2GroupVars-XREGS_2Var.csv",
     TargetColumnName_ = "Weekly_Sales",
     DateColumnName_ = "Date",
     HierarchGroups_ = c("Store", "Dept"),
     GroupVariables_ = c("Store", "Dept"),
     TimeUnit_ = "week",
      TimeGroups_ = c("week", "month", "quarter"),
     ZeroPadSeries_ = NULL,
     DataTruncate_ = FALSE,
      SplitRatios_ = c(1 - 3/143, 3/143),
     PartitionType_ = "timeseries",
      TrainOnFull_ = FALSE,
     FC_Periods_ = 4,
     EvalMetric_ = "RMSE",
     GridTune_ = FALSE,
     GridEvalMetric_ = "mae",
     ModelCount_ = 5,
     TaskType_ = "GPU",
     Timer_ = TRUE,
     TargetTransformation_ = TRUE,
     Difference_ = TRUE,
     CalendarVariables_ = TRUE,
     HolidayVariable_ = TRUE,
     HolidayLags_ = 1,
     HolidayMovingAverages_ = 1:2,
     Lags_{-} = c(1:5),
     MA_Periods_ = c(1:5),
      SD_Periods_ = c(2:5),
      Skew_Periods_ = c(3:5),
     Kurt_Periods_ = c(4:5),
      Quantile_Periods_ = c(3:5),
     Quantiles_Selected_ = c("q5", "q95"),
     FourierTerms_ = 4,
     TimeTrendVariable_ = TRUE,
     NTrees_ = 150,
     DebugMode_ = TRUE,
     OptionsWarn = 1
   )
Arguments
   ModelName
                    Choose from 'catboost', 'h2odrf', 'h2ogbm', 'h2oglm', 'h2oautoml', 'xgboost'
   FeatureGridTune
                    Set to TRUE to only run in evaluation model opposed to TrainOnFull model
                    which does not return model performance measures
                    = "28G"
```

= parallel::detectCores() - 2

= "hist" or "gpu_hist" for xgboost carma

row numbers from the test list (see example)

= "ALL" to run all tests (see example for all tests), or a numeric vector with the

DataPath In quotes, provide the file path to where your data is stored

dataForecastX = "RawDataXREG.csv" Use quotes. # Be aware that grouped data and using

XREGS_ requires that your joining group variables have the same name. MUST

SUPPLY VALUE

dataX = "RawDataXREG.csv" Use quotes. # Be aware that grouped data and using

XREGS_ requires that your joining group variables have the same name. MUST

SUPPLY VALUE

XREGSX = "XREG.csv" Use quotes. # data.table with ONLY 3 COLUMN TYPES: 1: -

GroupVariables_ and DateColumnName_ join-by variables with matching join column names and data types compared to data_ and; 2 - features - needs to exist for all historical periods matching data_ along with a sufficient amount of data to cover the forecast period as defined by FC_Periods_. OR Supply NULL to

arg.

TargetColumnName_

= "Weekly_Sales" # WalmartData target column name.

DateColumnName_

= "Date" # Name of data date column name.

HierarchGroups_

= c("Store","Dept") # NULL otherwise

GroupVariables_

= c("Store","Dept") #

TimeUnit_ = "week" # Choices include "1min", "5min", "10min", "15min", "30min", "hour",

"day", "week", "month", "quarter", "year"

TimeGroups_ = c("weeks","months","quarter") # These will tell GDL to build gdl features

along the time aggregation dimension

ZeroPadSeries_ = c('NULL', 'all', 'inner') ZeroPadSeries choose "all", "inner", or NULL. 'Outer'

grows missing dates by group to the largest of all groups size. 'Inner' fills in series by using the group level's own max and min values (versus filling all group

levels to the max value of the groups level with the widest time gap)

DataTruncate_ = FALSE # TRUE will truncate all rows where GDL columns produced a -1

(remove all rows where ID < max(rolling stats)). FALSE otherwise.

SplitRatios_ = $c(1 - 10 / 143, 10 / 143) \# If you have GroupVariables_then base it on number$

of records in a group, like default

 ${\tt PartitionType_} = {\tt "timeseries"} \ \# \ always \ time \ series \ for \ this \ function. \ Place \ holder \ for \ other \ time$

series options down the road.

TrainOnFull_ = FALSE # Set to TRUE put in Forecase mode. FALSE to put in Evaluation

mode. Forecast mode generates forecasts based on a model built using all of data_, and no evaluation metrics are collected when set to TRUE. Evaluation mode will build a forecast for your validation periods and collect the holdout metrics and other evaluation objects, but no future forecast beyond max date of

data_. as specified in SplitRatios_.

FC_Periods_ = 4 # Self explanatory

EvalMetric_ = "RMSE" # "RMSE" only with catboost 17.5

GridTune_ = FALSE # NEEDS TO BE UPDATED ONCE BANDIT GRID TUNING WORKS.

GridEvalMetric

= "mae" # 'poisson', 'mae', 'mape', 'mse', 'msle', 'kl', 'cs', 'r2'. If metric computation fails then no output is generated in final metric evaluation data.table

ModelCount_ = 5 # NEEDS TO BE UPDATED ONCE BANDIT GRID TUNING WORKS.

TaskType_ = "GPU" # Set to "CPU" to train on CPU versus GPU. Must supply a value.

Timer_ = TRUE # Print out the forecast step the function is currently working on. If it

errors on the first run scoring the model then it is likely a very different error

then if has printed "Forecasting 1:"

TargetTransformation_

= TRUE # Set to TRUE to have every available numeric transformation compete for best normalization fit to normal distribution

Difference_ = TRUE # The I in ARIMA. Works for single series and grouped series a.k.a.

panel data.

CalendarVariables_

= TRUE # This TURNS ON procedure to create numeric calendar variables that your TimeUnit_ directs. FALSE otherwise.

HolidayVariable_

= TRUE # This TURNS ON procedure to create a numeric holiday count variable. FALSE otherwise.

HolidayLags_ = c(1:2) # Supply a numeric vector of lag periods

HolidayMovingAverages_

= c(1:2) # Supply a numeric vector of Moving Average periods

Lags_ = c(1:5) # Numeric vector of lag periods MA_Periods_ = c(1:5) # Numeric vector of lag periods SD_Periods_ = c(2:5) # Numeric vector of lag periods Skew_Periods_ = c(3:5) # Numeric vector of lag periods

 $Kurt_{Periods} = c(4:5) \# Numeric vector of lag periods$

Quantile_Periods_

= c(3:5) # Numeric vector of lag periods

Quantiles_Selected_

= c("q5","q95") # Select the quantiles you want calculated. "q5", "q10", ..., "q95".

FourierTerms_

= 2 # (TECHINICALLY FOURIER PAIRS) Hierarchy grouping (full group variable interaction set) is ran by default (MAKE INTO OPTIOn). Uses parallelization to loop through the unique set of all GroupVariables levels and computes fourier terms as if the group level's are a single series; just for all groups and it's parallelized.

TimeTrendVariable_

= TRUE # Set to TRUE to have a sequence created from 1 to nrow by group or single series

NTrees_ = 150 # Number of trees to have trained. Can be 10000 or more depending on group level size.

DebugMode_ = TRUE # When TRUE it will print every comment section header line. When it crashes, you can get a print out of the last N steps that were ran, depending on

the print max limit.

OptionsWarn Set to 1 to print warnings immediately to screen versus after a function finishes;

2 to kill processes if a warning occurs. See options(warn =)

Author(s)

Adrian Antico

AutoCatBoostCARMA

AutoCatBoostCARMA

Description

AutoCatBoostCARMA Mutlivariate Forecasting with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

Usage

```
AutoCatBoostCARMA(
  data,
  TimeWeights = NULL,
 NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
 DateColumnName = "DateTime",
 HierarchGroups = NULL,
 GroupVariables = NULL,
 FC_Periods = 30,
 TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
 NumOfParDepPlots = 10L,
  TargetTransformation = FALSE,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 AnomalyDetection = NULL,
 XREGS = NULL,
 Lags = c(1L:5L),
 MA_Periods = c(2L:5L),
  SD_Periods = NULL,
  Skew_Periods = NULL,
 Kurt_Periods = NULL,
  Quantile_Periods = NULL,
 Quantiles_Selected = c("q5", "q95"),
 Difference = TRUE,
 FourierTerms = 6L,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
    "isoweek", "month", "quarter", "year"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
 HolidayLags = 1L,
 HolidayMovingAverages = 1L:2L,
 TimeTrendVariable = FALSE,
  ZeroPadSeries = NULL,
 DataTruncate = FALSE,
  SplitRatios = c(0.7, 0.2, 0.1),
  TaskType = "GPU",
```

```
NumGPU = 1,
      EvalMetric = "RMSE",
      EvalMetricValue = 1.5,
      LossFunction = "RMSE",
      LossFunctionValue = 1.5,
      GridTune = FALSE,
      PassInGrid = NULL,
      ModelCount = 100,
      MaxRunsWithoutNewWinner = 50,
      MaxRunMinutes = 24L * 60L,
      Langevin = FALSE,
      DiffusionTemperature = 10000,
      NTrees = 1000,
      L2\_Leaf\_Reg = 3,
      RandomStrength = 1,
      BorderCount = 254,
      Depth = 6,
      BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
      PartitionType = "timeseries",
      Timer = TRUE,
      DebugMode = FALSE
    )
Arguments
    data
                     Supply your full series data set here
                     Supply a value that will be multiplied by he time trend value
    TimeWeights
   NonNegativePred
                     TRUE or FALSE
    RoundPreds
                     Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE
                     Set to TRUE to train on full data
    TrainOnFull
    TargetColumnName
                     List the column name of your target variables column. E.g. "Target"
   DateColumnName List the column name of your date column. E.g. "DateTime"
   HierarchGroups Vector of hierarchy categorical columns.
    GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-
                     Variables when you have a series for every level of a group or multiple groups.
    FC_Periods
                     Set the number of periods you want to have forecasts for. E.g. 52 for weekly
                     data to forecast a year ahead
    TimeUnit
                     List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",
                     "15min", "30min", "hour", "day", "week", "month", "quarter", "year".
    TimeGroups
                     Select time aggregations for adding various time aggregated GDL features.
   NumOfParDepPlots
                     Supply a number for the number of partial dependence plots you want returned
    TargetTransformation
```

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Methods Transformation options to test which include "BoxCox", "Asinh", "Asin", "Log",

"LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

 $list("tstat_high" = 4, tstat_low = -4)$

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52)

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52)

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52)

Quantiles_Selected

Select from the following "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40",

"q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup",

"OtherEcclesticalFeasts"

HolidayLags Number of lags to build off of the holiday count variable.

 ${\tt Holiday Moving Averages}$

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments

by one for each success time point.

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

TaskType Default is "GPU" but you can also set it to "CPU"

NumGPU Defaults to 1. If CPU is set this argument will be ignored.

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuan-

tile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError"

EvalMetricValue

Used when EvalMetric accepts an argument. See AutoCatBoostRegression

LossFunction Used in model training for model fitting. Select from 'RMSE', 'MAE', 'Quan-

tile', 'LogLinQuantile', 'MAPE', 'Poisson', 'PairLogitPairwise', 'Tweedie', 'QueryRMSE'

LossFunctionValue

Used when LossFunction accepts an argument. See AutoCatBoostRegression

GridTune Set to TRUE to run a grid tune

PassInGrid Defaults to NULL

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Default is 50

MaxRunMinutes Default is 60*60

Langevin Enables the Stochastic Gradient Langevin Boosting mode. If TRUE and Task-

Type == "GPU" then TaskType will be converted to "CPU"

DiffusionTemperature

Default is 10000

NTrees Select the number of trees you want to have built to train the model

L2_Leaf_Reg 12 reg parameter

RandomStrength Default is 1

BorderCount Default is 254

Depth of catboost model

BootStrapType Select from Catboost list

PartitionType Select "random" for random data partitioning "timeseries" for partitioning by

time frames

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostVectorCARMA(), AutoH20CARMA(), AutoHurdleCARMA(), AutoXGBoostCARMA()

Examples

```
## Not run:
 # Single group variable and xregs ----
 # Load Walmart Data from Dropbox----
 data <- data.table::fread(</pre>
   "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
 # Subset for Stores / Departments With Full Series
 data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
   , Counts := NULL]
 # Subset Columns (remove IsHoliday column)----
 keep <- c("Store", "Dept", "Date", "Weekly_Sales")</pre>
 data <- data[, ..keep]</pre>
 data <- data[Store == 1][, Store := NULL]</pre>
 xregs <- data.table::copy(data)</pre>
 data.table::setnames(xregs, "Dept", "GroupVar")
 data.table::setnames(xregs, "Weekly_Sales", "Other")
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
 # Build forecast
 CatBoostResults <- RemixAutoML::AutoCatBoostCARMA(</pre>
  # data args
  data = data, # TwoGroup_Data,
  TimeWeights = NULL,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Dept"),
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
  TrainOnFull = FALSE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "random",
  FC_Periods = 4,
  Timer = TRUE,
  DebugMode = TRUE,
  # Target transformations
  TargetTransformation = TRUE,
  Methods = c("BoxCox", "Asinh", "Asin", "Log",
  "LogPlus1", "Logit", "YeoJohnson"),
  Difference = FALSE,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  # Date features
  CalendarVariables = c("week", "month", "quarter"),
  HolidayVariable = c("USPublicHolidays",
    "EasterGroup",
    "ChristmasGroup", "OtherEcclesticalFeasts"),
```

```
HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  # Time series features
  Lags = list("weeks" = seq(2L, 10L, 2L),
    "months" = c(1:3)),
  MA_Periods = list("weeks" = seq(2L, 10L, 2L),
    "months" = c(2,3)),
  SD Periods = NULL.
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5","q95"),
  # Bonus features
  AnomalyDetection = NULL,
  XREGS = xregs,
  FourierTerms = 2,
  TimeTrendVariable = TRUE,
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  # ML Args
  NumOfParDepPlots = 100L,
  EvalMetric = "RMSE",
  EvalMetricValue = 1.5,
 LossFunction = "RMSE",
  LossFunctionValue = 1.5,
  GridTune = FALSE.
  PassInGrid = NULL,
  ModelCount = 5,
  TaskType = "GPU",
  NumGPU = 1,
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 60*60,
  Langevin = FALSE,
  DiffusionTemperature = 10000,
  NTrees = 2500,
  L2\_Leaf\_Reg = 3.0,
  RandomStrength = 1,
  BorderCount = 254,
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
  Depth = 6)
# Two group variables and xregs
# Load Walmart Data from Dropbox----
data <- data.table::fread(</pre>
 "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store","Dept")][Counts == 143][
  , Counts := NULL]
# Subset Columns (remove IsHoliday column)----
keep <- c("Store", "Dept", "Date", "Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
```

```
data <- data[Store %in% c(1,2)]</pre>
xregs <- data.table::copy(data)</pre>
xregs[, GroupVar := do.call(paste, c(.SD, sep = " ")), .SDcols = c("Store","Dept")]
xregs[, c("Store","Dept") := NULL]
data.table::setnames(xregs, "Weekly_Sales", "Other")
xregs[, Other := jitter(Other, factor = 25)]
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
# Build forecast
CatBoostResults <- RemixAutoML::AutoCatBoostCARMA(</pre>
  # data args
  data = data, # TwoGroup_Data,
  TimeWeights = NULL,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
  TrainOnFull = TRUE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "random",
  FC_Periods = 4,
  Timer = TRUE,
  DebugMode = TRUE,
  # Target transformations
  TargetTransformation = TRUE,
  Methods = c("BoxCox", "Asin", "Asin", "Log",
              "LogPlus1", "Logit", "YeoJohnson"),
  Difference = FALSE,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  # Date features
  CalendarVariables = c("week", "month", "quarter"),
  HolidayVariable = c("USPublicHolidays",
                       "EasterGroup",
                       "ChristmasGroup", "OtherEcclesticalFeasts"),
  HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  # Time series features
  Lags = list("weeks" = seq(2L, 10L, 2L),
              "months" = c(1:3)),
  MA_Periods = list("weeks" = seq(2L, 10L, 2L),
                     "months" = c(2,3)),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5","q95"),
```

```
# Bonus features
  AnomalyDetection = NULL,
  XREGS = xregs,
  FourierTerms = 2,
  TimeTrendVariable = TRUE,
  ZeroPadSeries = NULL,
 DataTruncate = FALSE,
  # ML Args
  NumOfParDepPlots = 100L,
  EvalMetric = "RMSE",
  EvalMetricValue = 1.5,
  LossFunction = "RMSE",
  LossFunctionValue = 1.5,
  GridTune = FALSE,
  PassInGrid = NULL,
  ModelCount = 5,
  TaskType = "GPU",
  NumGPU = 1.
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 60*60,
  Langevin = FALSE,
  DiffusionTemperature = 10000,
  NTrees = 2500,
  L2\_Leaf\_Reg = 3.0,
  RandomStrength = 1,
  BorderCount = 254,
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
  Depth = 6
## End(Not run)
```

AutoCatBoostClassifier

AutoCatBoostClassifier is an automated catboost model grid-tuning classifier and evaluation system

Description

AutoCatBoostClassifier is an automated modeling function that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train, validation, and test sets (if not supplied). Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions (on test data), an ROC plot, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')

Usage

```
AutoCatBoostClassifier(
  data,
```

```
TrainOnFull = FALSE.
  ValidationData = NULL.
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 PrimaryDateColumn = NULL,
 ClassWeights = c(1, 1),
  IDcols = NULL,
  task_type = "GPU",
 NumGPUs = 1,
 eval_metric = "MCC",
 loss_function = NULL,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 0L,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
 PassInGrid = NULL,
 GridTune = FALSE,
 MaxModelsInGrid = 10L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
  Shuffles = 1L,
 BaselineComparison = "default",
 MetricPeriods = 10L,
  langevin = FALSE,
  diffusion_temperature = 10000,
  Trees = 50L,
 Depth = 6,
 LearningRate = NULL,
 L2\_Leaf\_Reg = 3,
 RandomStrength = 1,
 BorderCount = 128,
 RSM = NULL,
 BootStrapType = NULL,
 GrowPolicy = NULL
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data and skip over evaluation steps

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters. Catboost using both training and validation data in the training process so

you should evaluate out of sample performance with this data set.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located, but not mixed types. Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target is located, but not mixed types. Also, not zero-indexed.

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis for handling categorical features, instead of random shuffling

ClassWeights Supply a vector of weights for your target classes. E.g. c(0.25, 1) to weight your

0 class by 0.25 and your 1 class by 1.

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

NumGPUs Numeric. If you have 4 GPUs supply 4 as a value.

eval_metric This is the metric used inside catboost to measure performance on validation

data during a grid-tune. "AUC" is the default. 'Logloss', 'CrossEntropy', 'Precision', 'Recall', 'F1', 'BalancedAccuracy', 'BalancedErrorRate', 'MCC', 'Accuracy', 'CtrFactor', 'AUC', 'BrierScore', 'HingeLoss', 'HammingLoss', 'ZeroOneLoss', 'Kappa', 'WKappa', 'LogLikelihoodOfPrediction', 'TotalF1', 'PairLogit', 'PairLogitPairwise', 'PairAccuracy', 'QueryCrossEntropy', 'QuerySoft-Max', 'PFound', 'NDCG', 'AverageGain', 'PrecisionAt', 'RecallAt', 'MAP'

loss_function Default is NULL. Select the loss function of choice. c("MultiRMSE", 'Logloss', 'CrossEntropy', 'Lq', '

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects. E.g. plots and evaluation metrics

 ${\tt Save Model Objects}$

Set to TRUE to return all modeling objects to your environment

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a

data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

Shuffles Numeric. List a number to let the program know how many times you want to

shuffle the grids for grid tuning

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MetricPeriods Number of trees to build before evaluating intermediate metrics. Default is 10L

langevin TRUE or FALSE. TRUE enables

diffusion_temperature

Default value is 10000

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

Depth Bandit grid partitioned Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

L2_Leaf_Reg Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

RandomStrength A multiplier of randomness added to split evaluations. Default value is 1 which

adds no randomness.

BorderCount Number of splits for numerical features. Catboost defaults to 254 for CPU and

128 for GPU

RSM CPU only. Random testing. Supply a single value for non-grid tuning cases.

Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.80, 0.85, 0.90,

0.95, 1.0)

BootStrapType Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

Value

Saves to file and returned in list: VariableImportance.csv, Model (the model), ValidationData.csv, ROC_Plot.png, EvaluationPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoH2oDRFClassifier(), AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

Examples

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 10000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = TRUE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostClassifier(</pre>
    # GPU or CPU and the number of available GPUs
    task\_type = "GPU",
    NumGPUs = 1,
    # Metadata arguments:
        'ModelID' is used to create part of the file
            names generated when saving to file'
    #
        'model_path' is where the minimal model objects
            for scoring will be stored
        'ModelID' will be the name of the saved model object
    #
        'metadata_path' is where model evaluation and model
    #
            interpretation files are saved
         objects saved to model_path if metadata_path is null
         Saved objects include:
         'ModelID_ValidationData.csv' is the supplied or generated
    #
            TestData with predicted values
    #
         'ModelID_ROC_Plot.png' and 'Model_ID_EvaluationPlot.png'
             calibration plot
         'ModelID_VariableImportance.csv' is the variable importance.
    #
             This won't be saved to file if GrowPolicy is either
               "Depthwise" or "Lossguide" was used
    #
         'ModelID_ExperimentGrid.csv' if GridTune = TRUE.
    #
    #
             Results of all model builds including parameter settings,
    #
               bandit probs, and grid IDs
    #
         \verb|'ModelID_EvaluationMetrics.csv'| which contains all confusion
                matrix measures across all thresholds
    ModelID = "Test_Model_1",
    model_path = normalizePath("./"),
    metadata_path = file.path(normalizePath("./")),
    SaveModelObjects = FALSE,
    ReturnModelObjects = TRUE,
    # Data arguments:
       'TrainOnFull' is to train a model with 100 percent of
    #
           vour data.
       That means no holdout data will be used for evaluation
       If ValidationData and TestData are NULL and TrainOnFull
           is FALSE then data will be split 70 20 10
       'PrimaryDateColumn' is a date column in data that is
           meaningful when sorted.
         CatBoost categorical treatment is enhanced when supplied
```

```
'IDcols' are columns in your data that you don't use for
#
                      modeling but get returned with ValidationData
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %chin%
            c("IDcol_1","IDcol_2","Adrian")],
PrimaryDateColumn = NULL,
ClassWeights = c(1L, 1L),
IDcols = c("IDcol_1","IDcol_2"),
# Model evaluation:
             'eval_metric' is the measure catboost uses when evaluting
#
                         on holdout data during its bandit style process
             'loss_function' the loss function used in training optimization % \left( 1\right) =\left( 1\right) \left( 
#
             \verb|'NumOfParDepPlots'| Number of partial dependence calibration plots
#
                         generated.
                  A value of 3 will return plots for the top 3 variables based
                         on variable importance
                   Won't be returned if GrowPolicy is either "Depthwise" or
                         "Lossguide" is used
                   Can run the RemixAutoML::ParDepCalPlots() with the outputted
                            ValidationData
eval_metric = "AUC",
loss_function = "Logloss",
MetricPeriods = 10L,
NumOfParDepPlots = ncol(data)-1L-2L,
# Grid tuning arguments:
             'PassInGrid' is for retraining using a previous grid winning args
             'MaxModelsInGrid' is a cap on the number of models that will run
#
            'MaxRunsWithoutNewWinner' number of runs without a new winner
#
                      before exiting grid tuning
           'MaxRunMinutes' is a cap on the number of minutes that will run
#
          'Shuffles' is the number of times you want the random grid
#
#
                      arguments shuffled
#
           'BaselineComparison' default means to compare each model build
#
                      with a default built of catboost using max(Trees)
             'MetricPeriods' is the number of trees built before evaluting
#
                     holdoutdata internally. Used in finding actual Trees used.
PassInGrid = NULL,
GridTune = FALSE,
MaxModelsInGrid = 100L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 24L*60L,
Shuffles = 4L,
BaselineComparison = "default",
# Trees, Depth, and LearningRate used in the bandit grid tuning
# Must set Trees to a single value if you are not grid tuning
# The ones below can be set to NULL and the values in the example
# GrowPolicy is turned off for CPU runs
# BootStrapType utilizes Poisson only for GPU and MVS only for CPU
langevin = FALSE,
```

```
diffusion_temperature = 10000,
    Trees = seq(100L, 500L, 50L),
    Depth = seq(4L, 8L, 1L),
    LearningRate = seq(0.01, 0.10, 0.01),
    L2\_Leaf\_Reg = seq(1.0, 10.0, 1.0),
    RandomStrength = 1,
    RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
    BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
    GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"))
# Output
TestModel$Model
TestModel$ValidationData
TestModel$ROC_Plot
TestModel$EvaluationPlot
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$ShapValuesDT
TestModel$VI_Plot
TestModel$PartialDependencePlots
TestModel$GridMetrics
TestModel$ColNames
## End(Not run)
```

AutoCatBoostFreqSizeScoring

AutoCatBoostFreqSizeScoring is for scoring the models build with AutoCatBoostSizeFreqDist()

Description

AutoCatBoostFreqSizeScoring is for scoring the models build with AutoCatBoostSizeFreqDist(). It will return the predicted values for every quantile model for both distributions for 1 to the max forecast periods you provided to build the scoring data.

Usage

```
AutoCatBoostFreqSizeScoring(
   ScoringData,
   TargetColumnNames = NULL,
   FeatureColumnNames = NULL,
   IDcols = NULL,
   CountQuantiles = seq(0.1, 0.9, 0.1),
   SizeQuantiles = seq(0.1, 0.9, 0.1),
   ModelPath = NULL,
   ModelIDs = c("CountModel", "SizeModel"),
   KeepFeatures = TRUE
)
```

Arguments

ScoringData The scoring data returned from IntermittentDemandScoringDataGenerator()

TargetColumnNames

A character or numeric vector of the target names. E.g. c("Counts", "TARGET_qty")

FeatureColumnNames

A character vector of column names or column numbers

IDcols ID columns you want returned with the data that is not a model feature

CountQuantiles A numerical vector of the quantiles used in model building

SizeQuantiles A numerical vector of the quantiles used in model building

ModelPath The path file to where you models were saved

ModelIDs The ID's used in model building

KeepFeatures Set to TRUE to return the features with the predicted values

Value

Returns a list of CountData scores, SizeData scores, along with count and size prediction column names

Author(s)

Adrian Antico

See Also

Other Automated Time Series: AutoBanditNNet(), AutoBanditSarima(), AutoH2oGBMFreqSizeScoring(), AutoTBATS(), AutoTS()

Examples

```
## Not run:
FinalData <- AutoCatBoostFreqSizeScoring(
    ScoringData,
    TargetColumnNames = c("Counts","TARGET_qty"),
    FeatureColumnNames = 1:ncol(ScoringData),
    IDcols = NULL,
    CountQuantiles = seq(0.10,0.90,0.10),
    SizeQuantiles = seq(0.10,0.90,0.10),
    ModelPath = getwd(),
    ModelIDs = c("CountModel","SizeModel"),
    KeepFeatures = TRUE)
## End(Not run)</pre>
```

AutoCatBoostHurdleModel

AutoCatBoostHurdleModel for generalized hurdle modeling

Description

AutoCatBoostHurdleModel for generalized hurdle modeling. Check out the Readme.Rd on github for more background.

Usage

```
AutoCatBoostHurdleModel(
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  PrimaryDateColumn = NULL,
  IDcols = NULL,
  TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
  ClassWeights = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  task_type = "GPU",
  ModelID = "ModelTest",
  Paths = NULL,
  MetaDataPaths = NULL,
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  NumOfParDepPlots = 10L,
  PassInGrid = NULL,
  GridTune = FALSE,
  BaselineComparison = "default",
  MaxModelsInGrid = 1L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 60L * 60L,
  Shuffles = 2L,
  MetricPeriods = 25L,
 Trees = list(classifier = seq(1000, 2000, 100), regression = seq(1000, 2000, 100)),
  Depth = list(classifier = seq(6, 10, 1), regression = seq(6, 10, 1)),
  RandomStrength = list(classifier = seq(1, 10, 1), regression = seq(1, 10, 1)),
 BorderCount = list(classifier = seq(32, 256, 16), regression = seq(32, 256, 16)),
 LearningRate = list(classifier = seq(0.01, 0.25, 0.01), regression = seq(0.01, 0.25,
  L2_Leaf_Reg = list(classifier = seq(3, 10, 1), regression = seq(1, 10, 1)),
 RSM = list(classifier = c(0.8, 0.85, 0.9, 0.95, 1), regression = c(0.8, 0.85, 0.9, 0.95, 1)
    0.95, 1)),
 BootStrapType = list(classifier = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
    regression = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")),
```

AutoCatBoostHurdleModel 29

```
GrowPolicy = list(classifier = c("SymmetricTree", "Depthwise", "Lossguide"),
    regression = c("SymmetricTree", "Depthwise", "Lossguide"))
)
```

Arguments

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

TrainOnFull Set to TRUE to use all data

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-

DateColumn)

PrimaryDateColumn

Supply a date column if the data is functionally related to it

IDcols Includes PrimaryDateColumn and any other columns you want returned in the

validation data with predictions

 ${\it TransformNumeric Columns}$

Transform numeric column inside the AutoCatBoostRegression() function

Methods Choose transformation methods
ClassWeights Utilize these for the classifier model

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

task_type Set to "GPU" or "CPU"

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths TA character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

ReturnModelObjects

TRUE to return the models

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

GridTune Set to TRUE if you want to grid tune the models

BaselineComparison

= "default",

MaxModelsInGrid

= 1L,

```
MaxRunsWithoutNewWinner
                 = 20L,
                 =60L*60L,
MaxRunMinutes
Shuffles
                 = 2L,
MetricPeriods
                 = 25L.
Trees
                 Provide a named list to have different number of trees for each model. Trees =
                 list("classifier" = seq(1000,2000,100), "regression" = seq(1000,2000,100))
Depth
                 = seq(4L, 8L, 1L),
RandomStrength 1
BorderCount
                  128
LearningRate
                 = seq(0.01, 0.10, 0.01),
L2_Leaf_Reg
                 = seq(1.0, 10.0, 1.0),
RSM
                 = c(0.80, 0.85, 0.90, 0.95, 1.0),
                 = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
BootStrapType
                 = c("SymmetricTree", "Depthwise", "Lossguide")
GrowPolicy
```

Value

Returns AutoCatBoostRegression() model objects: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and catboost-grid

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoCatBoostSizeFreqDist(), AutoH2oDRFHurdleModel(), AutoH2oGBMHurdleModel(), AutoH2oGBMSizeFreqDist(), AutoXGBoostHurdleModel()

Examples

```
## Not run:
Output <- RemixAutoML::AutoCatBoostHurdleModel(

# Operationalization
  task_type = "GPU",
  ModelID = "ModelTest",
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,

# Data related args
  data = data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,</pre>
```

```
PrimaryDateColumn = NULL,
 IDcols = NULL,
 # Metadata args
 Paths = normalizePath("./"),
 MetaDataPaths = NULL,
 TransformNumericColumns = NULL,
 Methods =
    c("BoxCox", "Asinh", "Asin", "Log",
      "LogPlus1", "Logit", "YeoJohnson"),
 ClassWeights = NULL,
 SplitRatios = c(0.70, 0.20, 0.10),
 NumOfParDepPlots = 10L,
 # Grid tuning setup
 PassInGrid = NULL,
 GridTune = FALSE,
 BaselineComparison = "default",
 MaxModelsInGrid = 1L.
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 60L*60L,
 Shuffles = 2L,
 MetricPeriods = 25L,
 # Bandit grid args
 Trees = list("classifier" = seq(1000,2000,100),
             "regression" = seq(1000, 2000, 100)),
 Depth = list("classifier" = seq(6,10,1),
             "regression" = seq(6,10,1)),
 RandomStrength = list("classifier" = seq(1,10,1),
                    "regression" = seq(1,10,1),
 BorderCount = list("classifier" = seq(32,256,16),
                  "regression" = seq(32, 256, 16)),
 LearningRate = list("classifier" = seq(0.01,0.25,0.01),
                  "regression" = seq(0.01, 0.25, 0.01)),
 L2\_Leaf\_Reg = list("classifier" = seq(3.0,10.0,1.0),
                "regression" = seq(1.0, 10.0, 1.0)),
 RSM = list("classifier" = c(0.80, 0.85, 0.90, 0.95, 1.0),
           "regression" = c(0.80, 0.85, 0.90, 0.95, 1.0)),
 ## End(Not run)
```

AutoCatBoostMultiClass

AutoCatBoostMultiClass is an automated catboost model grid-tuning multinomial classifier and evaluation system

Description

AutoCatBoostMultiClass is an automated modeling function that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the

function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, variable importance, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package').

Usage

```
AutoCatBoostMultiClass(
  data,
  TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 PrimaryDateColumn = NULL,
 ClassWeights = NULL,
  IDcols = NULL,
  task\_type = "GPU",
  eval_metric = "MultiClassOneVsAll",
  loss_function = "MultiClassOneVsAll",
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
 PassInGrid = NULL,
 GridTune = FALSE,
 MaxModelsInGrid = 10L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
  grid_eval_metric = "Accuracy",
  Shuffles = 1L,
 BaselineComparison = "default",
 MetricPeriods = 10L,
  Trees = 50L.
 Depth = 6,
 LearningRate = NULL,
 L2_Leaf_Reg = NULL,
 RandomStrength = 1,
 BorderCount = 128,
 RSM = NULL,
 BootStrapType = NULL,
 GrowPolicy = NULL
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data and skip over evaluation steps

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters. Catboost using both training and validation data in the training process so

you should evaluate out of sample performance with this data set.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located, but not mixed types. Note that the target column needs to be a $0 \mid 1$ numeric variable.

numeric val

FeatureColNames

Either supply the feature column names OR the column number where the target is located, but not mixed types. Also, not zero-indexed.

PrimaryDateColumn

ClassWeights

Supply a date or datetime column for catboost to utilize time as its basis for handling categorical features, instead of random shuffling

Supply a vector of weights for your target classes. E.g. c(0.25, 1) to weight your

0 class by 0.25 and your 1 class by 1.

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

eval_metric Internal bandit metric. Select from 'MultiClass', 'MultiClassOneVsAll', 'AUC',

'TotalF1', 'MCC', 'Accuracy', 'HingeLoss', 'HammingLoss', 'ZeroOneLoss',

'Kappa', 'WKappa'

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects. E.g. plots and evaluation metrics

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a

data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

grid_eval_metric

For evaluating models within grid tuning. Choices include, "accuracy", "mi-

croauc", "logloss"

Shuffles Numeric. List a number to let the program know how many times you want to

shuffle the grids for grid tuning

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MetricPeriods Number of trees to build before evaluating intermediate metrics. Default is 10L

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

Depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

L2_Leaf_Reg Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

RandomStrength A multiplier of randomness added to split evaluations. Default value is 1 which

adds no randomness.

BorderCount Number of splits for numerical features. Catboost defaults to 254 for CPU and

128 for GPU

RSM CPU only. Random testing. Supply a single value for non-grid tuning cases.

Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested $c(0.80,\ 0.85,\ 0.90,$

0.95, 1.0)

BootStrapType Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

Value

Saves to file and returned in list: VariableImportance.csv, Model (the model), ValidationData.csv, EvaluationMetrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoH2oDRFMultiClass(), AutoH2oGAMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

Examples

Not run:

Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>

35

```
Correlation = 0.85,
  N = 10000L
  ID = 2L,
  ZIP = 0L,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostMultiClass(</pre>
    # GPU or CPU and the number of available GPUs
    task_type = "GPU",
   # Metadata arguments:
        'ModelID' is used to create part of the file
            names generated when saving to file'
   #
        'model_path' is where the minimal model objects
    #
            for scoring will be stored
        'ModelID' will be the name of the saved model object
        'metadata_path' is where model evaluation and model
            interpretation files are saved
         objects saved to model_path if metadata_path is null
         Saved objects include:
         'ModelID_ValidationData.csv' is the supplied or generated
            TestData with predicted values
    #
         'ModelID_ROC_Plot.png' and 'Model_ID_EvaluationPlot.png'
    #
             calibration plot
         'ModelID_VariableImportance.csv' is the variable importance.
             This won't be saved to file if GrowPolicy is either
               "Depthwise" or "Lossguide" was used
         'ModelID_ExperimentGrid.csv' if GridTune = TRUE.
             Results of all model builds including parameter settings,
   #
               bandit probs, and grid IDs
         'ModelID_EvaluationMetrics.csv' which contains all confusion
                matrix measures across all thresholds
   ModelID = "Test_Model_1",
   model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"), "R_Model_Testing"),
    SaveModelObjects = FALSE,
   ReturnModelObjects = TRUE,
   # Data arguments:
        'TrainOnFull' is to train a model with 100 percent of
   #
       That means no holdout data will be used for evaluation
   #
       If ValidationData and TestData are NULL and TrainOnFull
           is FALSE then data will be split 70 20 10
        'PrimaryDateColumn' is a date column in data that is
           meaningful when sorted.
        CatBoost categorical treatment is enhanced when supplied
        'IDcols' are columns in your data that you don't use for
           modeling but get returned with ValidationData
   data = data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
```

```
TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin%
     c("IDcol_1", "IDcol_2", "Adrian")],
   PrimaryDateColumn = NULL,
   ClassWeights = c(1L, 1L, 1L, 1L, 1L),
   IDcols = c("IDcol_1","IDcol_2"),
   # Model evaluation:
        'eval_metric' is the measure catboost uses when evaluting
            on holdout data during its bandit style process
       'loss_function' the loss function used in training optimization
    eval_metric = "MCC",
   loss_function = "MultiClassOneVsAll",
    grid_eval_metric = "Accuracy",
   MetricPeriods = 10L,
   # Grid tuning arguments:
        'PassInGrid' is for retraining using a previous grid winning args
   #
        'MaxModelsInGrid' is a cap on the number of models that will run
        'MaxRunsWithoutNewWinner' number of runs without a new winner
           before exiting grid tuning
       'MaxRunMinutes' is a cap on the number of minutes that will run
        'Shuffles' is the number of times you want the random grid
           arguments shuffled
      'BaselineComparison' default means to compare each model build
   #
          with a default built of catboost using max(Trees)
   #
      'MetricPeriods' is the number of trees built before evaluting
   #
          holdoutdata internally. Used in finding actual Trees used.
   PassInGrid = NULL.
   GridTune = FALSE,
   MaxModelsInGrid = 100L,
   MaxRunsWithoutNewWinner = 20L,
   MaxRunMinutes = 24L*60L,
   Shuffles = 4L,
   BaselineComparison = "default",
   # Trees, Depth, and LearningRate used in the bandit grid tuning
   # Must set Trees to a single value if you are not grid tuning
    # The ones below can be set to NULL and the values in the example
   # will be used
   # GrowPolicy is turned off for CPU runs
    # BootStrapType utilizes Poisson only for GPU and MVS only for CPU
   Trees = seq(100L, 500L, 50L),
   Depth = seq(4L, 8L, 1L),
   LearningRate = seq(0.01, 0.10, 0.01),
   L2\_Leaf\_Reg = seq(1.0, 10.0, 1.0),
   RandomStrength = 1,
   BorderCount = 254,
   RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
   BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
   GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"))
# Output
TestModel$Model
TestModel$ValidationData
TestModel$EvaluationMetrics
TestModel$Evaluation
```

```
TestModel$VI_Plot
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$GridMetrics
TestModel$ColNames = Names,
TestModel$TargetLevels
## End(Not run)
```

AutoCatBoostRegression

AutoCatBoostRegression is an automated catboost model grid-tuning classifier and evaluation system

Description

AutoCatBoostRegression is an automated modeling function that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')

```
AutoCatBoostRegression(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Weights = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  PrimaryDateColumn = NULL,
  DummifyCols = FALSE,
  IDcols = NULL,
  TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
  task_type = "GPU",
  NumGPUs = 1,
  eval_metric = "RMSE",
  eval_metric_value = 1.5,
  loss_function = "RMSE",
  loss_function_value = 1.5,
  model_path = NULL,
  metadata_path = NULL;
  ModelID = "FirstModel",
  NumOfParDepPlots = 0L,
  EvalPlots = TRUE,
  ReturnModelObjects = TRUE,
```

```
SaveModelObjects = FALSE,
 PassInGrid = NULL.
 GridTune = FALSE,
 MaxModelsInGrid = 10L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
  Shuffles = 1L,
 BaselineComparison = "default",
 MetricPeriods = 10L,
  langevin = FALSE,
  diffusion_temperature = 10000,
  Trees = 50L,
 Depth = 6,
 L2\_Leaf\_Reg = 3,
  RandomStrength = 1,
 BorderCount = 128,
  LearningRate = NULL,
 RSM = NULL,
 BootStrapType = NULL,
  GrowPolicy = NULL
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data and skip over evaluation steps

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters. Catboost using both training and validation data in the training process so

you should evaluate out of sample performance with this data set.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

Weights Weights vector for train.pool in catboost

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis for handling categorical features, instead of random shuffling

DummifyCols Logical. Will coerce to TRUE if loss_function or eval_metric is set to 'Multi-

RMSE'.

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

NumGPUs Set to 1, 2, 3, etc.

eval_metric Select from 'RMSE', 'MAE', 'MAPE', 'R2', 'Poisson', 'MedianAbsoluteEr-

ror', 'SMAPE', 'MSLE', 'NumErrors', 'FairLoss', 'Tweedie', 'Huber', 'LogLin-

Quantile', 'Quantile', 'Lq', 'Expectile'

eval_metric_value

Used with the specified eval_metric. See https://catboost.ai/docs/concepts/loss-

functions-regression.html

loss_function Used in model training for model fitting. 'MAPE', 'MAE', 'RMSE', 'Poisson',

'Tweedie', 'Huber', 'LogLinQuantile', 'Quantile', 'Lq', 'Expectile'

loss_function_value

Used with the specified loss function if an associated value is required. 'Tweedie',

'Huber', 'LogLinQuantile', 'Quantile' 'Lq', 'Expectile'. See https://catboost.ai/docs/concepts/loss-

functions-regression.html

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

EvalPlots Defaults to TRUE. Set to FALSE to not generate and return these objects.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a

data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxModelsInGrid

Number of models to test from grid options

MaxRunsWithoutNewWinner

Number of models built before calling it quits

 ${\tt MaxRunMinutes} \quad Maximum \ number \ of \ minutes \ to \ let \ this \ run$

Shuffles Number of times to randomize grid possibilities

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MetricPeriods Number of periods to use between Catboost evaluations

langevin Set to TRUE to enable

diffusion_temperature

Defaults to 10000

Trees Bandit grid partitioned. The maximum number of trees you want in your models

Depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

L2_Leaf_Reg Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

RandomStrength A multiplier of randomness added to split evaluations. Default value is 1 which

adds no randomness.

BorderCount Number of splits for numerical features. Catboost defaults to 254 for CPU and

128 for GPU

LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

RSM CPU only. Random testing. Supply a single value for non-grid tuning cases.

Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.80, 0.85, 0.90,

0.95, 1.0)

BootStrapType Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, catboostgrid, and a transformation details file.

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGBMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoKGBoostRegression()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,</pre>
```

```
N = 10000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostRegression(</pre>
    # GPU or CPU and the number of available GPUs
    task_type = "GPU",
   NumGPUs = 1,
   # Metadata arguments:
        'ModelID' is used to create part of the file
            names generated when saving to file'
   #
        'model_path' is where the minimal model objects
   #
   #
            for scoring will be stored
    #
        'ModelID' will be the name of the saved model object
        'metadata_path' is where model evaluation and model
            interpretation files are saved
         objects saved to model_path if metadata_path is null
    #
         Saved objects include:
         'ModelID_ValidationData.csv' is the supplied or generated
    #
            TestData with predicted values
    #
         'ModelID_ROC_Plot.png' and 'Model_ID_EvaluationPlot.png'
    #
             calibration plot
    #
         'ModelID_VariableImportance.csv' is the variable importance.
    #
             This won't be saved to file if GrowPolicy is either
               "Depthwise" or "Lossguide" was used
         'ModelID_ExperimentGrid.csv' if GridTune = TRUE.
             Results of all model builds including parameter settings,
   #
               bandit probs, and grid IDs
   #
         'ModelID_EvaluationMetrics.csv' which contains all confusion
                matrix measures across all thresholds
   ModelID = "Test_Model_1",
   model_path = normalizePath("./"),
   metadata_path = NULL,
    SaveModelObjects = FALSE,
   ReturnModelObjects = TRUE,
   # Data arguments:
        'TrainOnFull' is to train a model with 100 percent of
   #
        That means no holdout data will be used for evaluation
   #
       If ValidationData and TestData are NULL and TrainOnFull
           is FALSE then data will be split 70 20 10
        'PrimaryDateColumn' is a date column in data that is
           meaningful when sorted.
        CatBoost categorical treatment is enhanced when supplied
        'IDcols' are columns in your data that you don't use for
           modeling but get returned with ValidationData
   data = data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
```

```
Weights = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %chin%
  c("IDcol_1", "IDcol_2","Adrian")],
PrimaryDateColumn = NULL,
DummifyCols = FALSE,
IDcols = c("IDcol_1", "IDcol_2"),
TransformNumericColumns = "Adrian",
Methods = c("BoxCox", "Asinh", "Asin", "Log",
  "LogPlus1", "Logit", "YeoJohnson"),
# Model evaluation:
    'eval_metric' is the measure catboost uses when evaluting
        on holdout data during its bandit style process
    'loss_function' the loss function used in training optimization
#
    'NumOfParDepPlots' Number of partial dependence calibration plots
#
        generated.
      A value of 3 will return plots for the top 3 variables based
#
        on variable importance
#
      Won't be returned if GrowPolicy is either "Depthwise" or
        "Lossguide" is used
      Can run the RemixAutoML::ParDepCalPlots() with the outputted
        ValidationData
eval_metric = "RMSE",
eval_metric_value = 1.5,
loss_function = "RMSE",
loss_function_value = 1.5,
MetricPeriods = 10L,
NumOfParDepPlots = ncol(data)-1L-2L,
EvalPlots = TRUE,
# Grid tuning arguments:
    'PassInGrid' is for retraining using a previous grid winning args
#
    'MaxModelsInGrid' is a cap on the number of models that will run
#
   'MaxRunsWithoutNewWinner' number of runs without a new winner
#
       before exiting grid tuning
    'MaxRunMinutes' is a cap on the number of minutes that will run
#
#
    'Shuffles' is the number of times you want the random grid
#
       arguments shuffled
#
    'BaselineComparison' default means to compare each model build
       with a default built of catboost using max(Trees)
    'MetricPeriods' is the number of trees built before evaluting
       holdoutdata internally. Used in finding actual Trees used.
PassInGrid = NULL,
GridTune = FALSE,
MaxModelsInGrid = 100L,
MaxRunsWithoutNewWinner = 100L,
MaxRunMinutes = 60*60,
Shuffles = 4L,
BaselineComparison = "default",
# Trees, Depth, and LearningRate used in the bandit grid tuning
# Must set Trees to a single value if you are not grid tuning
# The ones below can be set to NULL and the values in the example
  will be used
# GrowPolicy is turned off for CPU runs
# BootStrapType utilizes Poisson only for GPU and MVS only for CPU
```

AutoCatBoostScoring 43

```
langevin = FALSE,
   diffusion_temperature = 10000,
   Trees = 1000,
   Depth = 6,
   L2\_Leaf\_Reg = 3.0,
   RandomStrength = 1,
   BorderCount = 128,
   LearningRate = seq(0.01, 0.10, 0.01),
   RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
   BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
   GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"))
# Output
TestModel$Model
 TestModel$ValidationData
 TestModel$EvaluationPlot
 TestModel$EvaluationBoxPlot
 TestModel$EvaluationMetrics
 TestModel$VariableImportance
 TestModel$InteractionImportance
 TestModel$ShapValuesDT
 TestModel$VI_Plot
 TestModel$PartialDependencePlots
 TestModel$PartialDependenceBoxPlots
 TestModel$GridList
 TestModel$ColNames
 TestModel$TransformationResults
## End(Not run)
```

AutoCatBoostScoring AutoCatBoostScoring

Description

AutoCatBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() to prepare your features for catboost data conversion and scoring.

```
AutoCatBoostScoring(
   TargetType = NULL,
   ScoringData = NULL,
   FeatureColumnNames = NULL,
   FactorLevelsList = NULL,
   IDcols = NULL,
   OneHot = FALSE,
   ReturnShapValues = FALSE,
   ModelObject = NULL,
   ModelPath = NULL,
   ReturnFeatures = TRUE,
```

AutoCatBoostScoring

```
MultiClassTargetLevels = NULL,
TransformNumeric = FALSE,
BackTransNumeric = FALSE,
TargetColumnName = NULL,
TransformationObject = NULL,
TransID = NULL,
TransPath = NULL,
MDP_Impute = TRUE,
MDP_CharToFactor = TRUE,
MDP_RemoveDates = TRUE,
MDP_MissFactor = "0",
MDP_MissNum = -1,
RemoveModel = FALSE
)
```

Arguments

TargetType Set this value to "regression", "classification", "multiclass", or "multiregression"

to score models built using AutoCatBoostRegression(), AutoCatBoostClassify()

or AutoCatBoostMultiClass().

ScoringData This is your data.table of features for scoring. Can be a single row or batch.

FeatureColumnNames

Supply either column names or column numbers used in the AutoCatBoostRegression() function

FactorLevelsList

List of factors levels to DummifyDT()

IDcols Supply ID column numbers for any metadata you want returned with your pre-

dicted values

OneHot Passsed to DummifyD

ReturnShapValues

Set to TRUE to return a data.table of feature contributions to all predicted values

generated

ModelObject Supply the model object directly for scoring instead of loading it from file. If

you supply this, ModelID and ModelPath will be ignored.

ModelPath Supply your path file used in the AutoCatBoost__() function

ModelID Supply the model ID used in the AutoCatBoost__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

MultiClassTargetLevels

For use with AutoCatBoostMultiClass(). If you saved model objects then this scoring function will locate the target levels file. If you did not save model objects, you can supply the target levels returned from AutoCatBoostMultiClass().

TransformNumeric

Set to TRUE if you have features that were transformed automatically from an Auto_Regression() model AND you haven't already transformed them.

BackTransNumeric

Set to TRUE to generate back-transformed predicted values. Also, if you return features, those will also be back-transformed.

TargetColumnName

Input your target column name used in training if you are utilizing the transformation service

AutoCatBoostScoring 45

TransformationObject

Set to NULL if you didn't use transformations or if you want the function to pull from the file output from the Auto_Regression() function. You can also supply the transformation data.table object with the transformation details versus

having it pulled from file.

TransID Set to the ID used for saving the transformation data.table object or set it to the

ModelID if you are pulling from file from a build with Auto_Regression().

TransPath Set the path file to the folder where your transformation data.table detail object

is stored. If you used the Auto_Regression() to build, set it to the same path as

ModelPath.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying Scor-

ingData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do so to your

ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace missing

values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace missing

values with

RemoveModel Set to TRUE if you want the model removed immediately after scoring

Value

A data.table of predicted values with the option to return model features as well.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoH2OMLScoring(), AutoH2OModeler(), AutoHurdleScoring(), AutoXGBoostScoring(), IntermittentDemandScoringDataGenerator()

```
## Not run:

# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
    Correlation = 0.85,
    N = 10000,
    ID = 2,
    ZIP = 0,
    AddDate = FALSE,
    Classification = FALSE,
    MultiClass = FALSE)

# Train a Multiple Regression Model (two target variables)
TestModel <- RemixAutoML::AutoCatBoostRegression(</pre>
```

```
# GPU or CPU and the number of available GPUs
  task_type = "GPU",
  NumGPUs = 1,
  # Metadata arguments
  ModelID = "Test_Model_1",
  model_path = normalizePath("./"),
  metadata_path = NULL,
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  # Data arguments
  data = data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = c("Adrian", "Independent_Variable1"),
  FeatureColNames = names(data)[!names(data) %in%
   c("IDcol_1","IDcol_2","Adrian")],
  PrimaryDateColumn = NULL,
  IDcols = c("IDcol_1","IDcol_2"),
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1",
   "Logit", "YeoJohnson"),
  # Model evaluation
  eval_metric = "MultiRMSE",
  eval_metric_value = 1.5,
  loss_function = "MultiRMSE",
  loss_function_value = 1.5,
  MetricPeriods = 10L,
  NumOfParDepPlots = ncol(data)-1L-2L,
  EvalPlots = TRUE,
  # Grid tuning
  PassInGrid = NULL,
  GridTune = FALSE,
  MaxModelsInGrid = 100L,
  MaxRunsWithoutNewWinner = 100L,
  MaxRunMinutes = 60*60,
  Shuffles = 4L,
  BaselineComparison = "default",
  # ML Args
  Trees = 250,
  Depth = 6,
 L2\_Leaf\_Reg = 3.0,
  RandomStrength = 1,
  BorderCount = 128,
  LearningRate = seq(0.01, 0.10, 0.01),
  RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
  GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"))
# Output
TestModel$Model
```

```
TestModel$ValidationData
TestModel$EvaluationPlot
TestModel$EvaluationBoxPlot
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$ShapValuesDT
TestModel$VI Plot
TestModel$PartialDependencePlots
TestModel$PartialDependenceBoxPlots
TestModel$GridList
TestModel$ColNames
TestModel$TransformationResults
# Score a multiple regression model
Preds <- RemixAutoML::AutoCatBoostScoring(</pre>
  TargetType = "multiregression",
  ScoringData = data,
  FeatureColumnNames = names(data)[!names(data) %in%
    c("IDcol_1", "IDcol_2", "Adrian")],
  FactorLevelsList = TestModel$FactorLevelsList,
  IDcols = c("IDcol_1","IDcol_2"),
  OneHot = FALSE,
  ReturnShapValues = TRUE,
  ModelObject = TestModel$Model,
  ModelPath = NULL, #normalizePath("./"),
  ModelID = "Test_Model_1",
  ReturnFeatures = TRUE,
  MultiClassTargetLevels = NULL,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP_MissNum = -1,
  RemoveModel = FALSE)
## End(Not run)
```

AutoCatBoostSizeFreqDist

AutoCatBoostSizeFreqDist

Description

AutoCatBoostSizeFreqDist for building size and frequency distributions via quantile regressions. Size (or severity) and frequency (or count) quantile regressions are build. Use this with the Auto-QuantileGibbsSampler function to simulate the joint distribution.

Usage

```
AutoCatBoostSizeFreqDist(
 CountData = NULL,
 SizeData = NULL,
 CountQuantiles = seq(0.1, 0.9, 0.1),
  SizeQuantiles = seq(0.1, 0.9, 0.1),
  AutoTransform = TRUE,
 DataPartitionRatios = c(0.75, 0.2, 0.05),
  StratifyColumnNames = NULL,
 NTrees = 1500,
 TaskType = "GPU",
 EvalMetric = "Quantile",
 GridTune = FALSE,
 GridEvalMetric = "mae",
 CountTargetColumnName = NULL,
  SizeTargetColumnName = NULL,
 CountFeatureColNames = NULL,
  SizeFeatureColNames = NULL,
 CountIDcols = NULL,
  SizeIDcols = NULL,
 ModelIDs = c("CountModel", "SizeModel"),
 MaxModelsGrid = 5,
 ModelPath = NULL,
 MetaDataPath = NULL,
 NumOfParDepPlots = 0
)
```

Arguments

CountData This is your CountData generated from the IntermittentDemandBootStrapper()

function

SizeData This is your SizeData generated from the IntermittentDemandBootStrapper()

function

CountQuantiles The default are deciles, i.e. seq(0.10,0.90,0.10). More granularity the better, but

it will take longer to run.

SizeQuantiles The default are deciles, i.e. seq(0.10,0.90,0.10). More granularity the better, but

it will take longer to run.

AutoTransform Set to FALSE not to have the your target variables automatically transformed

for the best normalization.

DataPartitionRatios

The default is c(0.75,0.20,0.05). With CatBoost, you should allocate a decent amount to the validation data (second input). Three inputs are required.

StratifyColumnNames

Specify grouping variables to stratify by

NTrees Default is 1500. If the best model utilizes all trees, you should consider increas-

ing the argument.

TaskType The default is set to "GPU". If you do not have a GPU, set it to "CPU".

EvalMetric Set to "Quantile". Alternative quantile methods may become available in the

future.

GridTune The default is set to FALSE. If you set to TRUE, make sure to specify MaxMod-

elsGrid to a number greater than 1.

GridEvalMetric The default is set to "mae". Choose from 'poisson', 'mae', 'mape', 'mse',

'msle', 'kl', 'cs', 'r2'.

 ${\tt CountTargetColumnName}$

Column names or column numbers

SizeTargetColumnName

Column names or column numbers

CountFeatureColNames

Column names or column numbers

SizeFeatureColNames

Column names or column numbers

CountIDcols Column names or column numbers
SizeIDcols Column names or column numbers

ModelIDs A two element character vector. E.g. c("CountModel", "SizeModel")

MaxModelsGrid Set to a number greater than 1 if GridTune is set to TRUE

ModelPath This path file is where all your models will be stored. If you leave MetaDataPath

NULL, the evaluation metadata will also be stored here. If you leave this NULL,

the function will not run.

MetaDataPath A separate path to store the model metadata for evaluation.

NumOfParDepPlots

Set to a number greater than or equal to 1 to see the relationships between your

features and targets.

Value

This function does not return anything. It can only store your models and model evaluation metadata to file.

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoH2oDRFHurdleModel(), AutoH2oGBMHurdleModel(), AutoH2oGBMSizeFreqDist(), AutoXGBoostHurdleModel()

```
## Not run:
AutoCatBoostSizeFreqDist(
   CountData = CountData,
   SizeData = SizeData,
   CountQuantiles = seq(0.10,0.90,0.10),
   SizeQuantiles = seq(0.10,0.90,0.10),
   AutoTransform = TRUE,
   DataPartitionRatios = c(0.75,0.20,0.05),
   StratifyColumnNames = NULL,
   NTrees = 1500,
   TaskType = "GPU",
   EvalMetric = "Quantile",
```

```
GridTune = FALSE,
GridEvalMetric = "mae",
CountTargetColumnName = "Counts",
SizeTargetColumnName = "Target_qty",
CountFeatureColNames = 2:ncol(CountData),
SizeFeatureColNames = 2:ncol(SizeData),
CountIDcols = NULL,
SizeIDcols = NULL,
ModelIDs = c("CountModel", "SizeModel"),
MaxModelsGrid = 5,
ModelPath = getwd(),
MetaDataPath = paste0(getwd(), "/ModelMetaData"),
NumOfParDepPlots = 1)
## End(Not run)
```

AutoCatBoostVectorCARMA

AutoCatBoostVectorCARMA

Description

AutoCatBoostVectorCARMA Multiple Regression, Mutlivariate Forecasting with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

```
AutoCatBoostVectorCARMA(
  data,
  TimeWeights = NULL,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
  DateColumnName = "DateTime",
  HierarchGroups = NULL,
  GroupVariables = NULL,
  FC_Periods = 30,
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  NumOfParDepPlots = 10L,
  TargetTransformation = FALSE,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
  AnomalyDetection = NULL,
  XREGS = NULL,
  Lags = c(1L:5L),
  MA_Periods = c(2L:5L),
  SD_Periods = NULL,
```

```
Skew_Periods = NULL,
     Kurt_Periods = NULL,
     Quantile_Periods = NULL,
     Quantiles_Selected = c("q5", "q95"),
     Difference = TRUE,
     FourierTerms = 6L,
     CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
        "isoweek", "month", "quarter", "year"),
     HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
        "OtherEcclesticalFeasts"),
     HolidayLags = 1L,
     HolidayMovingAverages = 1L:2L,
     TimeTrendVariable = FALSE,
     ZeroPadSeries = NULL,
     DataTruncate = FALSE,
     SplitRatios = c(0.7, 0.2, 0.1),
     TaskType = "GPU",
     NumGPU = 1,
     EvalMetric = "RMSE",
     EvalMetricValue = 1.5,
     LossFunction = "RMSE",
     LossFunctionValue = 1.5,
     GridTune = FALSE,
     PassInGrid = NULL,
     ModelCount = 100,
     MaxRunsWithoutNewWinner = 50,
     MaxRunMinutes = 24L * 60L,
     Langevin = FALSE,
     DiffusionTemperature = 10000,
     NTrees = 1000,
     L2\_Leaf\_Reg = 3,
     RandomStrength = 1,
     BorderCount = 254,
     Depth = 6,
     BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
     PartitionType = "timeseries",
     Timer = TRUE,
     DebugMode = FALSE
   )
Arguments
   data
                    Supply your full series data set here
   TimeWeights
                    NULL or a value.
   NonNegativePred
                    TRUE or FALSE
   RoundPreds
                    Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE
                    Set to TRUE to train on full data
   TrainOnFull
   TargetColumnName
                    List the column names of your target variables column. E.g. c("Target1", "Target2",
                    ..., "TargetN")
   DateColumnName List the column name of your date column. E.g. "DateTime"
```

HierarchGroups Vector of hierarchy categorical columns.

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year".

TimeGroups Select time aggregations for adding various time aggregated GDL features.

NumOfParDepPlots

Supply a number for the number of partial dependence plots you want returned

 ${\tt TargetTransformation}$

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Methods Transformation options to test which include "BoxCox", "Asinh", "Asin", "Log",

"LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

 $list("tstat_high" = 4, tstat_low = -4)$

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52)

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52)

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52)

Quantiles_Selected

Select from the following "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup",

"OtherEcclesticalFeasts"

HolidayLags Number of lags to build off of the holiday count variable.

HolidayMovingAverages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments

by one for each success time point.

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

TaskType Has to CPU for now. If catboost makes GPU available for "MultiRMSE" then it

will be enabled. If you set to GPU the function will coerce it back to CPU.

NumGPU Defaults to 1. If CPU is set this argument will be ignored.

EvalMetric "MultiRMSE" only. If catboost updates this I'll add more later

EvalMetricValue

Placeholder for later

LossFunction "MultiRMSE" only. If catboost updates this I'll add more later

LossFunctionValue

Placeholder for later

GridTune Set to TRUE to run a grid tune

PassInGrid Defaults to NULL

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Default is 50

MaxRunMinutes Default is 60*60 Langevin TRUE or FALSE

 ${\tt Diffusion Temperature}$

Default value of 10000

NTrees Select the number of trees you want to have built to train the model

L2_Leaf_Reg 12 reg parameter
RandomStrength Default is 1
BorderCount Default is 254

Depth Depth of catboost model
BootStrapType Select from Catboost list

PartitionType Select "random" for random data partitioning "timeseries" for partitioning by

time frames

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoH20CARMA(), AutoHurdleCARMA(), AutoXGBoostCARMA()

```
## Not run:
# Two group variables and xregs
# Load Walmart Data from Dropbox----
data <- data.table::fread(</pre>
 "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
# Filter out zeros
data <- data[Weekly_Sales != 0]</pre>
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
 , Counts := NULL]
# Subset Columns (remove IsHoliday column)----
keep <- c("Store", "Dept", "Date", "Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
data <- data[Store %in% c(1,2)]</pre>
xregs <- data.table::copy(data)</pre>
xregs[, GroupVar := do.call(paste, c(.SD, sep = " ")), .SDcols = c("Store", "Dept")]
xregs[, c("Store","Dept") := NULL]
data.table::setnames(xregs, "Weekly_Sales", "Other")
xregs[, Other := jitter(Other, factor = 25)]
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
data[, Weekly_Profit := Weekly_Sales * 0.75]
# Build forecast
CatBoostResults <- RemixAutoML::AutoCatBoostVectorCARMA(</pre>
  # data args
  data = data, # TwoGroup_Data,
  TimeWeights = NULL,
  TargetColumnName = c("Weekly_Sales","Weekly_Profit"),
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
  TrainOnFull = TRUE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "random",
  FC_Periods = 4,
  Timer = TRUE,
```

```
DebugMode = TRUE,
# Target transformations
TargetTransformation = TRUE,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
            "LogPlus1", "Logit", "YeoJohnson"),
Difference = FALSE,
NonNegativePred = FALSE,
RoundPreds = FALSE.
# Date features
CalendarVariables = c("week", "month", "quarter"),
HolidayVariable = c("USPublicHolidays",
                    "EasterGroup",
                    "ChristmasGroup", "OtherEcclesticalFeasts"),
HolidayLags = 1,
HolidayMovingAverages = 1:2,
# Time series features
Lags = list("weeks" = seq(2L, 10L, 2L),
            "months" = c(1:3)),
MA_Periods = list("weeks" = seq(2L, 10L, 2L),
                  "months" = c(2,3)),
SD_Periods = NULL,
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = c("q5","q95"),
# Bonus features
AnomalyDetection = NULL,
XREGS = xregs,
FourierTerms = 2,
TimeTrendVariable = TRUE,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
# ML Args
NumOfParDepPlots = 100L,
EvalMetric = "MultiRMSE",
EvalMetricValue = 1.5,
LossFunction = "MultiRMSE",
LossFunctionValue = 1.5,
GridTune = FALSE,
PassInGrid = NULL,
ModelCount = 5,
TaskType = "GPU",
NumGPU = 1,
MaxRunsWithoutNewWinner = 50,
MaxRunMinutes = 60*60,
Langevin = FALSE,
DiffusionTemperature = 10000,
NTrees = 2500,
L2\_Leaf\_Reg = 3.0,
RandomStrength = 1,
BorderCount = 254,
BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
```

56 AutoDataDictionaries

```
Depth = 6)
## End(Not run)
```

AutoDataDictionaries AutoDataDictionaries

Description

AutoDataDictionaries is a function to return data dictionary data in table form

Usage

```
AutoDataDictionaries(
   Type = "sqlserver",
   DBConnection,
   DDType = 1L,
   Query = NULL,
   ASIS = FALSE,
   CloseChannel = TRUE
)
```

Arguments

Type = "sqlserver" is currently the only system supported

DBConnection This is a RODBC connection object for sql server

DDType Select from 1 - 6 based on this article

Query Supply a query

ASIS Set to TRUE to pull in values without coercing types

CloseChannel Set to TRUE to disconnect

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

AutoDataPartition 57

AutoDataPartition AutoDataPartition

Description

This function will take your ratings matrix and model and score your data in parallel.

Usage

```
AutoDataPartition(
  data,
  NumDataSets = 3L,
  Ratios = c(0.7, 0.2, 0.1),
  PartitionType = "random",
  StratifyColumnNames = NULL,
  StratifyNumericTarget = NULL,
  StratTargetPrecision = 3L,
  TimeColumnName = NULL
)
```

Arguments

data Source data to do your partitioning on

NumDataSets The number of total data sets you want built

Ratios A vector of values for how much data each data set should get in each split. E.g.

c(0.70, 0.20, 0.10)

PartitionType Set to either "random", "timeseries", or "time". With "random", your data will

be paritioned randomly (with stratified sampling if column names are supplied). With "timeseries", you can partition by time with a stratify option (so long as you have an equal number of records for each strata). With "time" you will have data sets generated so that the training data contains the earliest records in time,

validation data the second earliest, test data the third earliest, etc.

StratifyColumnNames

Supply column names of categorical features to use in a stratified sampling procedure for partitioning the data. Partition type must be "random" to use this

option

 ${\tt StratifyNumericTarget}$

Supply a column name that is numeric. Use for "random" PartitionType, you can stratify your numeric variable by splitting up based on percRank to ensure a proper allocation of extreme values in your created data sets.

StratTargetPrecision

For "random" PartitionType and when StratifyNumericTarget is not null, precision will be the number of decimals used in the percentile calculation. If you supply a value of 1, deciles will be used. For a value of 2, percentiles will be used. Larger values are supported.

TimeColumnName Supply a date column name or a name of a column with an ID for sorting by time such that the smallest number is the earliest in time.

58 AutoFourierFeatures

Value

Returns a list of data.tables

Author(s)

Adrian Antico and Douglas Pestana

See Also

```
Other Feature Engineering: AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGen CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()
```

Examples

```
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Run data partitioning function
dataSets <- RemixAutoML::AutoDataPartition(</pre>
  data,
  NumDataSets = 3L,
  Ratios = c(0.70, 0.20, 0.10),
  PartitionType = "random",
  StratifyColumnNames = NULL,
  StratifyNumericTarget = NULL,
  StratTargetPrecision = 1L,
  TimeColumnName = NULL)
# Collect data
TrainData <- dataSets$TrainData</pre>
ValidationData <- dataSets$ValidationData</pre>
TestData <- dataSets$TestData
```

AutoFourierFeatures AutoFourierFeatures

Description

#' AutoFourierFeatures

Usage

```
AutoFourierFeatures(
  data,
  FourierPairs = NULL,
  FCPeriods = NULL,
  Time_Unit = NULL,
  TargetColumn = NULL,
  DateColumn = NULL,
  GroupVariable = NULL,
  xregs = NonGroupDateNames
)
```

Arguments

data The source data

FourierPairs A number indicating the max number of fourier pairs that will be built

FCPeriods Number of periods

Time_Unit Agg level

TargetColumn The name of your target column

DateColumn The name of your date column

GroupVariable The name of your group variable

xregs Extra data to merge in

Author(s)

Adrian Antico

See Also

Other Feature Engineering Helper: ID_BuildTrainDataSets(), ID_MetadataGenerator(), ID_TrainingDataGenerator() ID_TrainingDataGenerator()

AutoH2OCARMA AutoH2OCARMA

Description

AutoH2OCARMA Automated Panel Data and Time Series Forecasting using H2O algorithms, Calendar and Holiday variables, ARIMA features, Fouier variables, time trend, and transformations.

```
AutoH2OCARMA(
  AlgoType = "drf",
  ExcludeAlgos = "XGBoost",
  data,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
```

```
TargetColumnName = "Target",
 DateColumnName = "DateTime",
 HierarchGroups = NULL,
 GroupVariables = NULL,
 FC_Periods = 30,
 TimeUnit = "week",
 TimeGroups = c("weeks", "months"),
 TargetTransformation = FALSE,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 XREGS = NULL,
 Lags = c(1:5),
 MA_Periods = c(1:5),
  SD_Periods = NULL,
  Skew_Periods = NULL,
 Kurt_Periods = NULL,
 Quantile_Periods = NULL,
  Quantiles_Selected = NULL,
 AnomalyDetection = NULL,
 Difference = TRUE,
 FourierTerms = 6,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
    "isoweek", "month", "quarter", "year"),
 HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
 HolidayLags = 1,
 HolidayMovingAverages = 1:2,
 TimeTrendVariable = FALSE,
 DataTruncate = FALSE,
  ZeroPadSeries = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
 EvalMetric = "MAE",
 GridTune = FALSE,
 ModelCount = 1,
 NTrees = 1000,
 PartitionType = "timeseries",
 MaxMem = "32G",
 NThreads = max(1, parallel::detectCores() - 2),
 Timer = TRUE,
 DebugMode = FALSE
)
```

Arguments

AlgoType Select from "dfr" for RandomForecast, "gbm" for gradient boosting, "glm" for

generalized linear model, "automl" for H2O's AutoML algo, and "gam" for

H2O's Generalized Additive Model.

ExcludeAlgos For use when AlgoType = "AutoML". Selections include "DRF", "GLM", "XGBoost", "GBM", "DeepL

and "Stacke-dEnsemble"

data Supply your full series data set here

NonNegativePred

TRUE or FALSE

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column name of your target variables column. E.g. "Target"

DateColumnName List the column name of your date column. E.g. "DateTime"

HierarchGroups Vector of hierarchy categorical columns.

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year".

TimeGroups Select time aggregations for adding various time aggregated GDL features.

TargetTransformation

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52)

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52)

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52)

Quantiles_Selected

tod

Select from the following c("q5","q10","q15","q20","q25","q30","q35","q40","q45","q50","q55","q6

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

 $list("tstat_high" = 4, tstat_low = -4)$

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup",

"OtherEcclesticalFeasts"

HolidayLags Number of lags to build off of the holiday count variable.

HolidayMovingAverages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments

by one for each success time point.

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuan-

tile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError"

GridTune Set to TRUE to run a grid tune

ModelCount Set the number of models to try in the grid tune

NTrees Select the number of trees you want to have built to train the model

PartitionType Select "random" for random data partitioning "time" for partitioning by time

frames

MaxMem Set to the maximum amount of memory you want to allow for running this

function. Default is "32G".

NThreads Set to the number of threads you want to dedicate to this function.

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostVectorCARMA(), AutoHurdleCARMA(), AutoXGBoostCARMA()

```
## Not run:
# Load Walmart Data from Dropbox----
data <- data.table::fread(
   "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")</pre>
```

```
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
  , Counts := NULL]
# Subset Columns (remove IsHoliday column)----
keep <- c("Store","Dept","Date","Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
data <- data[Store == 1][, Store := NULL]</pre>
xregs <- data.table::copy(data)</pre>
data.table::setnames(xregs, "Dept", "GroupVar")
data.table::setnames(xregs, "Weekly_Sales", "Other")
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
# Build forecast
Results <- RemixAutoML::AutoH2OCARMA(</pre>
  # Data Artifacts
  AlgoType = "drf",
  ExcludeAlgos = NULL,
  data = data,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Dept"),
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  # Data Wrangling Features
  ZeroPadSeries = NULL.
  DataTruncate = FALSE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "random",
  # Productionize
  FC_Periods = 4L,
  TrainOnFull = FALSE,
  EvalMetric = "RMSE",
  GridTune = FALSE,
  ModelCount = 5,
  MaxMem = "28G",
  NThreads = parallel::detectCores(),
  Timer = TRUE,
  # Target Transformations
  TargetTransformation = FALSE,
  Methods = c("BoxCox", "Asinh", "Asin", "Log",
    "LogPlus1", "Logit", "YeoJohnson"),
  Difference = FALSE,
  NonNegativePred = FALSE,
  RoundPreds = FALSE.
  # Features
  AnomalyDetection = NULL,
  HolidayLags = 1:7,
  HolidayMovingAverages = 2:7,
  Lags = list("weeks" = c(1:4), "months" = c(1:3)),
  MA_Periods = list("weeks" = c(2:8), "months" = c(6:12)),
```

64 AutoH2oDRFClassifier

```
SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = NULL,
  XREGS = NULL,
  FourierTerms = 2L,
  CalendarVariables = c("week", "month", "quarter", "year"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup",
    "ChristmasGroup", "OtherEcclesticalFeasts"),
  TimeTrendVariable = TRUE,
  NTrees = 1000L
  DebugMode = TRUE)
UpdateMetrics <-</pre>
  Results$ModelInformation$EvaluationMetrics[
    Metric == "MSE", MetricValue := sqrt(MetricValue)]
print(UpdateMetrics)
# Get final number of trees actually used
Results$Model@model$model_summary$number_of_internal_trees
# Inspect performance
Results$ModelInformation$EvaluationMetricsByGroup[order(-R2_Metric)]
Results$ModelInformation$EvaluationMetricsByGroup[order(MAE_Metric)]
Results$ModelInformation$EvaluationMetricsByGroup[order(MSE_Metric)]
Results$ModelInformation$EvaluationMetricsByGroup[order(MAPE_Metric)]
## End(Not run)
```

AutoH2oDRFClassifier AutoH2oDRFClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oDRFClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

```
AutoH2oDRFClassifier(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
```

AutoH2oDRFClassifier 65

```
eval_metric = "auc",
  Trees = 50L.
 GridTune = FALSE,
 MaxMem = "32G",
 NThreads = max(1, parallel::detectCores() - 2),
 MaxModelsInGrid = 2,
 model_path = NULL,
 metadata_path = NULL;
 ModelID = "FirstModel",
 NumOfParDepPlots = 3L,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
 H2OShutdown = FALSE,
 HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create.

66 AutoH2oDRFClassifier

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O after running the function

HurdleModel Leave it set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oGAMClassifier() AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000L
  ID = 2L,
  ZIP = 0L,
  AddDate = FALSE,
  Classification = TRUE,
  MultiClass = FALSE)
TestModel <- RemixAutoML::AutoH2oDRFClassifier(</pre>
    # Compute management
    MaxMem = "32G",
    NThreads = max(1L, parallel::detectCores() - 2L),
    IfSaveModel = "mojo",
    H2OShutdown = FALSE,
    # Metadata arguments:
    eval_metric = "auc",
    NumOfParDepPlots = 3L,
    # Data arguments:
    model_path = normalizePath("./"),
    metadata_path = NULL,
    ModelID = "FirstModel",
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
```

AutoH2oDRFHurdleModel

```
# Model evaluation:
    data,
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %chin%
        c("IDcol_1", "IDcol_2","Adrian")],

# Model args
    Trees = 50L,
    GridTune = FALSE,
    MaxModelsInGrid = 10L)

## End(Not run)
```

AutoH2oDRFHurdleModel AutoH2oDRFHurdleModel is generalized hurdle modeling framework

Description

AutoH2oDRFHurdleModel is generalized hurdle modeling framework

```
AutoH2oDRFHurdleModel(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  TransformNumericColumns = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  ModelID = "ModelTest",
  Paths = NULL,
  MetaDataPaths = NULL,
  SaveModelObjects = TRUE,
  IfSaveModel = "mojo",
  MaxMem = "28G",
  NThreads = max(1L, parallel::detectCores() - 2L),
  Trees = 1000L,
  GridTune = TRUE,
  MaxModelsInGrid = 1L,
  NumOfParDepPlots = 10L,
  PassInGrid = NULL
)
```

Arguments

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

TrainOnFull Set to TRUE to train on full data

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-

DateColumn)

TransformNumericColumns

Transform numeric column inside the AutoCatBoostRegression() function

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

IfSaveModel Save as "mojo" or "standard"

MaxMem Set the maximum memory your system can provide

NThreads Set the number of threads you want to dedicate to the model building

Trees Default 1000

GridTune Set to TRUE if you want to grid tune the models

MaxModelsInGrid

Set to a numeric value for the number of models to try in grid tune

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

Value

Returns AutoXGBoostRegression() model objects: VariableImportance.csv, Model, Validation-Data.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and the grid used

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoCatBoostSizeFreqDist(), AutoH2oGBMHurdleModel(), AutoH2oGBMSizeFreqDist(), AutoXGBoostHurdleModel()

AutoH2oDRFMultiClass 69

Examples

```
## Not run:
Output <- AutoH2oDRFHurdleModel(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 1L,
  TargetColumnName = "Target_Variable",
  FeatureColNames = 4:ncol(data),
  TransformNumericColumns = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  NThreads = max(1L, parallel::detectCores()-2L),
  ModelID = "ModelID",
  Paths = NULL,
  MetaDataPaths = NULL,
  SaveModelObjects = TRUE,
  IfSaveModel = "mojo",
  MaxMem = "28G",
  NThreads = max(1L, parallel::detectCores()-2L),
  Trees = 1000L,
  GridTune = FALSE,
  MaxModelsInGrid = 1L,
  NumOfParDepPlots = 10L,
  PassInGrid = NULL)
## End(Not run)
```

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

```
AutoH2oDRFMultiClass(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  eval_metric = "logloss",
  Trees = 50,
  GridTune = FALSE,
```

70 AutoH2oDRFMultiClass

```
MaxMem = "32G",
NThreads = max(1, parallel::detectCores() - 2),
MaxModelsInGrid = 2,
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = FALSE,
HurdleModel = FALSE
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to $model_path$.

ModelID A character string to name your model and output

 ${\tt Return Model Objects}$

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to have H2O shutdown after running this function

HurdleModel Leave set to FALSE

AutoH2oDRFMultiClass 71

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oGAMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oMLMultiClass(), AutoXGBoostMultiClass()

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000L
 ID = 2L,
 ZIP = 0L,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oDRFMultiClass(</pre>
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin%
     c("IDcol_1", "IDcol_2", "Adrian")],
   eval_metric = "logloss",
   Trees = 50,
   GridTune = FALSE,
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10,
   model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"),
     "MetaData"),
   ModelID = "FirstModel",
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
## End(Not run)
```

AutoH2oDRFRegression AutoH2oDRFRegression is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oDRFRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oDRFRegression(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
  eval_metric = "RMSE",
  Trees = 50,
  GridTune = FALSE,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores() - 2),
  MaxModelsInGrid = 2,
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  NumOfParDepPlots = 3,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = TRUE,
  HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown For use in other functions.
HurdleModel Leave it set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oGAMRegression(), AutoH2oGBMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoXGBoostRegression()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oDRFRegression(</pre>
    # Compute management
    MaxMem = "32G",
    NThreads = max(1, parallel::detectCores()-2),
    H2OShutdown = TRUE,
    IfSaveModel = "mojo",
    # Model evaluation:
    eval_metric = "RMSE",
    NumOfParDepPlots = 3,
    # Metadata arguments:
    model_path = normalizePath("./"),
    metadata_path = NULL,
    ModelID = "FirstModel",
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
    # Data arguments:
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %chin%
     c("IDcol_1", "IDcol_2", "Adrian")],
    TransformNumericColumns = NULL,
    Methods = c("BoxCox", "Asinh", "Asin", "Log",
      "LogPlus1", "Logit", "YeoJohnson"),
    # Model args
    Trees = 50,
    GridTune = FALSE,
    MaxModelsInGrid = 10)
## End(Not run)
```

AutoH2oGAMClassifier 75

AutoH2oGAMClassifier AutoH2oGAMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGAMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGAMClassifier(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  GamColNames = NULL,
  Distribution = "binomial",
  link = "logit",
  eval_metric = "auc",
  GridTune = FALSE,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores() - 2),
  MaxModelsInGrid = 2,
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  NumOfParDepPlots = 3,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

76 AutoH2oGAMClassifier

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

GamColNames GAM column names. Up to 9 features

Distribution "binomial", "quasibinomial"

link identity, logit, log, inverse, tweedie

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O after running the function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier(), AutoH2oDRFClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoKGBoostClassifier()

AutoH2oGAMClassifier 77

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000,
 ID = 2,
 ZIP = 0,
  AddDate = FALSE,
  Classification = TRUE,
 MultiClass = FALSE)
# Define GAM Columns to use - up to 9 are allowed
GamCols <- names(which(unlist(lapply(data, is.numeric))))</pre>
GamCols <- GamCols[!GamCols %in% c("Adrian","IDcol_1","IDcol_2")]</pre>
GamCols <- GamCols[1L:(min(9L,length(GamCols)))]</pre>
# Run function
TestModel <- RemixAutoML::AutoH2oGAMClassifier(</pre>
  # Compute management
 MaxMem = "32G",
  NThreads = max(1, parallel::detectCores()-2),
  H2OShutdown = TRUE,
  IfSaveModel = "mojo",
  # Model evaluation:
  eval_metric = "RMSE",
  NumOfParDepPlots = 3,
  # Metadata arguments:
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel"
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  # Data arguments:
  data = data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %chin%
    c("IDcol_1", "IDcol_2", "Adrian")],
  GamColNames = GamCols,
  # Model args
  GridTune = FALSE,
  MaxModelsInGrid = 10,
  Distribution = "binomial",
  link = "Family_Default",
  HurdleModel = FALSE)
```

78 AutoH2oGAMMultiClass

AutoH2oGAMMultiClass $A\iota$

AutoH2oGAMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGAMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oGAMMultiClass(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  GamColNames = NULL,
  eval_metric = "logloss",
  GridTune = FALSE,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores() - 2),
  MaxModelsInGrid = 2,
  model_path = NULL,
  metadata_path = NULL.
  ModelID = "FirstModel".
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

AutoH2oGAMMultiClass 79

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

GamColNames GAM column names. Up to 9 features

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to have H2O shutdown after running this function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000L,
   ID = 2L,
   ZIP = 0L,
   AddDate = FALSE,</pre>
```

```
Classification = FALSE,
  MultiClass = TRUE)
\# Define GAM Columns to use - up to 9 are allowed
GamCols <- names(which(unlist(lapply(data, is.numeric))))</pre>
GamCols <- GamCols[!GamCols %in% c("Adrian", "IDcol_1", "IDcol_2")]</pre>
GamCols <- GamCols[1L:(min(9L,length(GamCols)))]</pre>
# Run function
TestModel <- RemixAutoML::AutoH2oGAMMultiClass(</pre>
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %in%
     c("IDcol_1", "IDcol_2", "Adrian")],
   GamColNames = GamCols,
   eval_metric = "logloss",
   GridTune = FALSE,
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10,
   model_path = normalizePath("./"),
   metadata_path = NULL,
   ModelID = "FirstModel"
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
```

AutoH2oGAMRegression is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGAMRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oGAMRegression(
data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = NULL,
```

```
FeatureColNames = NULL,
 GamColNames = NULL.
 Distribution = "gaussian",
 link = "identity",
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 eval_metric = "RMSE",
 GridTune = FALSE,
 MaxMem = "32G",
 NThreads = max(1, parallel::detectCores() - 2),
 MaxModelsInGrid = 2,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 3,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
 IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

GamColNames GAM column names. Up to 9 features

Distribution "binomial", "quasibinomial"

link identity, logit, log, inverse, tweedie

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown For use in other functions.

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGBMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoXGBoostRegression()

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000,
   ID = 2,
   ZIP = 0,
   AddDate = FALSE,
   Classification = FALSE,
   MultiClass = FALSE)</pre>
```

AutoH2oGBMClassifier 83

```
# Define GAM Columns to use - up to 9 are allowed
GamCols <- names(which(unlist(lapply(data, is.numeric))))</pre>
GamCols <- GamCols[!GamCols %in% c("Adrian","IDcol_1","IDcol_2")]</pre>
GamCols <- GamCols[1L:(min(9L,length(GamCols)))]</pre>
# Run function
TestModel <- RemixAutoML::AutoH2oGAMRegression(</pre>
 # Compute management
 MaxMem = "32G",
 NThreads = max(1, parallel::detectCores()-2),
 H2OShutdown = TRUE,
 IfSaveModel = "mojo",
 # Model evaluation:
 eval_metric = "RMSE",
 NumOfParDepPlots = 3,
 # Metadata arguments:
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel"
 ReturnModelObjects = TRUE,
 SaveModelObjects = FALSE,
 # Data arguments:
 data = data,
 TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = "Adrian",
 FeatureColNames = names(data)[!names(data) %chin%
                                  c("IDcol_1", "IDcol_2", "Adrian")],
 GamColNames = GamCols,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log",
             "LogPlus1", "Logit", "YeoJohnson"),
 # Model args
 GridTune = FALSE,
 MaxModelsInGrid = 10,
 Distribution = "gaussian",
 link = "Family_Default")
```

AutoH2oGBMClassifier AutoH2oGBMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGBMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of

84 AutoH2oGBMClassifier

models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGBMClassifier(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
 TestData = NULL,
  TargetColumnName = NULL,
 FeatureColNames = NULL,
  eval_metric = "auc",
  Trees = 50L,
  GridTune = FALSE,
 MaxMem = "32G",
 NThreads = max(1L, parallel::detectCores() - 2L),
 MaxModelsInGrid = 2L,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 3L,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
 H2OShutdown = FALSE,
 HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

AutoH2oGBMClassifier 85

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set to the number of threads you want to use for running this function

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to shut down H2O after running the function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier() AutoH2oGAMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000L,
   ID = 2L,
   ZIP = 0L,
   AddDate = FALSE,
   Classification = TRUE,
   MultiClass = FALSE)

TestModel <- RemixAutoML::AutoH2oGBMClassifier(
   # Compute management</pre>
```

```
MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   H2OShutdown = FALSE,
   IfSaveModel = "mojo",
   # Model evaluation:
   eval_metric = "auc",
   NumOfParDepPlots = 3L,
   # Metadata arguments:
   ModelID = "FirstModel",
   model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"),
      "MetaData"),
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   # Data arguments:
   data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin%
      c("IDcol_1", "IDcol_2","Adrian")],
   # Model args
   Trees = 50,
   GridTune = FALSE,
   MaxModelsInGrid = 10L)
## End(Not run)
```

AutoH2oGBMFreqSizeScoring

AutoH2oGBMFreqSizeScoring is for scoring the models build with AutoH2oGBMSizeFreqDist()

Description

AutoH2oGBMFreqSizeScoring is for scoring the models build with AutoH2oGBMSizeFreqDist(). It will return the predicted values for every quantile model for both distributions for 1 to the max forecast periods you provided to build the scoring data.

Usage

```
AutoH2oGBMFreqSizeScoring(
   ScoringData,
   TargetColumnNames = NULL,
   CountQuantiles = seq(0.1, 0.9, 0.1),
   SizeQuantiles = seq(0.1, 0.9, 0.1),
   ModelPath = NULL,
   ModelIDs = c("CountModel", "SizeModel"),
```

```
JavaOptions = "-Xmx1g -XX:ReservedCodeCacheSize=256m",
KeepFeatures = TRUE
)
```

Arguments

 ${\tt ScoringData} \qquad {\tt The \ scoring \ data \ returned \ from \ Intermittent Demand Scoring Data Generator} ()$

TargetColumnNames

A character or numeric vector of the target names. E.g. c("Counts", "TARGET_qty")

CountQuantiles A numerical vector of the quantiles used in model building

SizeQuantiles A numerical vector of the quantiles used in model building

ModelPath The path file to where you models were saved

ModelIDs The ID's used in model building

JavaOptions For mojo scoring '-Xmx1g -XX:ReservedCodeCacheSize=256m',

KeepFeatures Set to TRUE to return the features with the predicted values

Value

Returns a list of CountData scores, SizeData scores, along with count and size prediction column names

Author(s)

Adrian Antico

See Also

Other Automated Time Series: AutoBanditNNet(), AutoBanditSarima(), AutoCatBoostFreqSizeScoring(), AutoTBATS(), AutoTS()

```
## Not run:
FinalData <- AutoH2oGBMFreqSizeScoring(
    ScoringData,
    TargetColumnNames = c("Counts","TARGET_qty"),
    CountQuantiles = seq(0.10,0.90,0.10),
    SizeQuantiles = seq(0.10,0.90,0.10),
    ModelPath = getwd(),
    ModelIDs = c("CountModel","SizeModel"),
    JavaOptions = '-Xmx1g -XX:ReservedCodeCacheSize=256m',
    KeepFeatures = TRUE)
## End(Not run)</pre>
```

 ${\it AutoH2oGBMHurdleModel is generalized hurdle modeling frame-work} \\$

Description

AutoH2oGBMHurdleModel is generalized hurdle modeling framework

Usage

```
AutoH2oGBMHurdleModel(
  data,
  ValidationData = NULL,
  TestData = NULL,
 Buckets = 0L,
  TargetColumnName = NULL,
 FeatureColNames = NULL,
  TransformNumericColumns = NULL,
 Distribution = "gaussian",
  SplitRatios = c(0.7, 0.2, 0.1),
 ModelID = "ModelTest",
 Paths = NULL,
 MetaDataPaths = NULL,
  SaveModelObjects = TRUE,
  IfSaveModel = "mojo",
 MaxMem = "28G"
 NThreads = max(1L, parallel::detectCores() - 2L),
 Trees = 1000L,
 GridTune = TRUE,
 MaxModelsInGrid = 1L,
 NumOfParDepPlots = 10L,
 PassInGrid = NULL
)
```

Arguments

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-DateColumn)

AutoH2oGBMHurdleModel 89

TransformNumericColumns

Transform numeric column inside the AutoCatBoostRegression() function

Distribution Set to the distribution of choice based on H2O regression documents.

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

IfSaveModel Save as "mojo" or "standard"

MaxMem Set the maximum memory your system can provide

NThreads Set the number of threads you want to dedicate to the model building

Trees Default 1000

GridTune Set to TRUE if you want to grid tune the models

MaxModelsInGrid

Set to a numeric value for the number of models to try in grid tune

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

Pass InGrid Pass in a grid for changing up the parameter settings for catboost

Value

Returns AutoXGBoostRegression() model objects: VariableImportance.csv, Model, Validation-Data.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and the grid used

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoCatBoostSizeFreqDist(), AutoH2oDRFHurdleModel(), AutoH2oGBMSizeFreqDist(), AutoXGBoostHurdleModel()

```
Output <- RemixAutoML::AutoH2oGBMHurdleModel(</pre>
  data,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 1L,
  TargetColumnName = "Target_Variable",
  FeatureColNames = 4L:ncol(data),
  TransformNumericColumns = NULL,
  Distribution = "gaussian",
  SplitRatios = c(0.7, 0.2, 0.1),
  NThreads = max(1L, parallel::detectCores()-2L),
  ModelID = "ModelID",
  Paths = normalizePath("./"),
  MetaDataPaths = NULL,
  SaveModelObjects = TRUE,
  IfSaveModel = "mojo",
```

90 AutoH2oGBMMultiClass

```
Trees = 1000L,
GridTune = FALSE,
MaxModelsInGrid = 1L,
NumOfParDepPlots = 10L,
PassInGrid = NULL)
```

AutoH2oGBMMultiClass

AutoH2oGBMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGBMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oGBMMultiClass(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
  eval_metric = "logloss",
  Trees = 50,
 GridTune = FALSE,
 MaxMem = "32G",
 NThreads = max(1, parallel::detectCores() - 2),
 MaxModelsInGrid = 2,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel"
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
 IfSaveModel = "mojo",
 H2OShutdown = FALSE,
 HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparameters.

AutoH2oGBMMultiClass 91

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set to the number of threads you want to use for running this function

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O when done with function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

Examples

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oGBMMultiClass(</pre>
   data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin%
     c("IDcol_1", "IDcol_2", "Adrian")],
   eval_metric = "logloss",
   Trees = 50,
   GridTune = FALSE,
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10,
   model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"),
     "MetaData"),
   ModelID = "FirstModel",
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
```

AutoH2oGBMRegression is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGBMRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

AutoH2oGBMRegression(

```
data,
  TrainOnFull = FALSE.
  ValidationData,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 Alpha = NULL,
 Distribution = "poisson",
 eval_metric = "RMSE",
 Trees = 50,
 GridTune = FALSE,
 MaxMem = "32G",
 NThreads = max(1, parallel::detectCores() - 2),
 MaxModelsInGrid = 2,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 3,
 ReturnModelObjects = TRUE,
 SaveModelObjects = FALSE,
 IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Methods

Either supply the feature column names OR the column number where the target is located (but not mixed types)

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric variables you want transformed

variables you want transformed

Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

Alpha This is the quantile value you want to use for quantile regression. Must be a

decimal between 0 and 1.

Distribution Choose from gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile",

"huber"

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set to the mamimum amount of threads you want to use for this function

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to FALSE to keep H2O running after you build your model

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoKGBoostRegression()

Examples

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oGBMRegression(</pre>
    # Compute management
    MaxMem = "32G",
    NThreads = max(1, parallel::detectCores()-2),
    H2OShutdown = TRUE,
    IfSaveModel = "mojo",
    Alpha = NULL,
    Distribution = "poisson",
    # Model evaluation:
    eval_metric = "RMSE",
    NumOfParDepPlots = 3,
    # Metadata arguments:
    model_path = NULL,
    metadata_path = NULL,
    ModelID = "FirstModel",
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
    # Data arguments:
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %chin%
      c("IDcol_1", "IDcol_2", "Adrian")],
    TransformNumericColumns = NULL,
    Methods = c("BoxCox", "Asin", "Asin", "Log",
                "LogPlus1", "Logit", "YeoJohnson"),
    # Model args
    Trees = 50,
    GridTune = FALSE,
    MaxModelsInGrid = 10)
```

 ${\tt AutoH2oGBMSizeFreqDist}$

AutoH2oGBMSizeFreqDist for building size and frequency distributions via quantile regressions

Description

AutoH2oGBMSizeFreqDist for building size and frequency distributions via quantile regressions. Size (or severity) and frequency (or count) quantile regressions are build. Use this with the ID_SingleLevelGibbsSampler function to simulate the joint distribution.

Usage

```
AutoH2oGBMSizeFreqDist(
  CountData = NULL,
  SizeData = NULL,
  CountQuantiles = seq(0.1, 0.9, 0.1),
  SizeQuantiles = seq(0.1, 0.9, 0.1),
  AutoTransform = TRUE,
  DataPartitionRatios = c(0.75, 0.2, 0.05),
  StratifyColumnName = NULL,
  StratifyTargets = FALSE,
  NTrees = 1500,
  MaxMem = "28G",
  NThreads = max(1, parallel::detectCores() - 2),
  EvalMetric = "Quantile",
  GridTune = FALSE,
  CountTargetColumnName = NULL,
  SizeTargetColumnName = NULL,
  CountFeatureColNames = NULL,
  SizeFeatureColNames = NULL,
  ModelIDs = c("CountModel", "SizeModel"),
  MaxModelsGrid = 5,
  ModelPath = NULL,
  MetaDataPath = NULL,
  NumOfParDepPlots = 0
)
```

Arguments

CountData	This is your CountData generated from the IntermittentDemandBootStrapper() function
SizeData	$This\ is\ your\ SizeData\ generated\ from\ the\ IntermittentDemandBootStrapper()$ $function$
=	The default are deciles, i.e. $seq(0.10,0.90,0.10)$. More granularity the better, but it will take longer to run.
-	The default are deciles, i.e. $seq(0.10,0.90,0.10)$. More granularity the better, but it will take longer to run.
AutoTransform	Set to FALSE not to have the your target variables automatically transformed for the best normalization.
Data Dantiti an Datina	

DataPartitionRatios

The default is c(0.75,0.20,0.05). With CatBoost, you should allocate a decent amount to the validation data (second input). Three inputs are required.

StratifyColumnName

You can specify grouping columns to stratify by

StratifyTargets

Set to TRUE to stratify by the target variables to ensure the a more even alloca-

tion for potentially highly skewed data

NTrees Default is 1500. If the best model utilizes all trees, you should consider increas-

ing the argument.

MaxMem The max memory allocation. E.g. "28G"

NThreads The max threads to use. E.g. 4

EvalMetric Set to "Quantile". Alternative quantile methods may become available in the

future.

GridTune The default is set to FALSE. If you set to TRUE, make sure to specify MaxMod-

elsGrid to a number greater than 1.

 ${\tt CountTargetColumnName}$

Column names or column numbers

SizeTargetColumnName

Column names or column numbers

CountFeatureColNames

Column names or column numbers

SizeFeatureColNames

Column names or column numbers

ModelIDs A two element character vector. E.g. c("CountModel", "SizeModel")

MaxModelsGrid Set to a number greater than 1 if GridTune is set to TRUE

ModelPath This path file is where all your models will be stored. If you leave MetaDataPath

NULL, the evaluation metadata will also be stored here. If you leave this NULL,

the function will not run.

MetaDataPath A separate path to store the model metadata for evaluation.

NumOfParDepPlots

Set to a number greater than or equal to 1 to see the relationships between your

features and targets.

Value

This function does not return anything. It can only store your models and model evaluation metadata to file.

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoCatBoostSizeFreqDist(), AutoH2oDRFHurdleModel(), AutoH2oGBMHurdleModel(), AutoXGBoostHurdleModel()

```
AutoH2oGBMSizeFreqDist(
   CountData = NULL,
   SizeData = NULL,
   CountQuantiles = seq(0.10,0.90,0.10),
   SizeQuantiles = seq(0.10,0.90,0.10),
   AutoTransform = TRUE,
```

98 AutoH2oGLMClassifier

```
DataPartitionRatios = c(0.75, 0.20, 0.05),
StratifyColumnName = NULL,
StratifyTargets = FALSE,
NTrees = 1500,
MaxMem = "28G"
NThreads = max(1, parallel::detectCores()-2),
EvalMetric = "Quantile",
GridTune = FALSE.
CountTargetColumnName = NULL.
SizeTargetColumnName = NULL,
CountFeatureColNames = NULL,
SizeFeatureColNames = NULL,
ModelIDs = c("CountModel", "SizeModel"),
MaxModelsGrid = 5,
ModelPath = NULL,
MetaDataPath = NULL,
NumOfParDepPlots = 0)
```

AutoH2oGLMClassifier AutoH2oGLMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGLMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGLMClassifier(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  Distribution = "binomial",
  link = "logit",
  eval_metric = "auc",
  GridTune = FALSE,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores() - 2),
  MaxModelsInGrid = 2,
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
```

AutoH2oGLMClassifier 99

```
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = FALSE,
HurdleModel = FALSE
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

Distribution "binomial", "quasibinomial"

link identity, logit, log, inverse, tweedie

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to shutdown H2O after running the function

HurdleModel Set to FALSE

100 AutoH2oGLMClassifier

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier() AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000L
 ID = 2L
  ZIP = 0L
  AddDate = FALSE,
  Classification = TRUE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oGLMClassifier(</pre>
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin% c("IDcol_1", "IDcol_2","Adrian")],
   Distribution = "binomial",
   link = "logit"
   eval_metric = "auc",
   GridTune = FALSE,
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10.
   model_path = NULL,
   metadata_path = NULL,
   ModelID = "FirstModel",
   NumOfParDepPlots = 3,
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
```

AutoH2oGLMMultiClass 101

AutoH2oGLMMultiClass

AutoH2oGLMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGLMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oGLMMultiClass(
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  eval_metric = "logloss",
  GridTune = FALSE,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores() - 2),
  MaxModelsInGrid = 2,
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel";
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

102 AutoH2oGLMMultiClass

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to have H2O shutdown after running this function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGAMMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGBMMultiClass(), AutoXGBoostMultiClass()

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000L,
   ID = 2L,
   ZIP = 0L,
   AddDate = FALSE,
   Classification = FALSE,
   MultiClass = TRUE)</pre>
```

```
# Run function
TestModel <- RemixAutoML::AutoH2oGLMMultiClass(</pre>
   data.
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin% c("IDcol_1", "IDcol_2", "Adrian")],
   eval_metric = "logloss",
   GridTune = FALSE,
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10,
   model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"), "MetaData"),
   ModelID = "FirstModel",
  ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
```

AutoH2oGLMRegression is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGLMRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oGLMRegression(
   data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = NULL,
   FeatureColNames = NULL,
   Distribution = "gaussian",
   link = "identity",
   TransformNumericColumns = NULL,

Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
   eval_metric = "RMSE",
   GridTune = FALSE,
   MaxMem = "32G",
```

```
NThreads = max(1, parallel::detectCores() - 2),
MaxModelsInGrid = 2,
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = TRUE,
HurdleModel = FALSE
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

Distribution "binomial", "quasibinomial"

link identity, logit, log, inverse, tweedie

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown For use in other functions.

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGBMRegression(), AutoH2oMLRegression(), AutoXGBoostRegression()

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oGLMRegression(</pre>
    # Compute management
    MaxMem = "32G",
    NThreads = max(1, parallel::detectCores()-2),
    H2OShutdown = TRUE,
    IfSaveModel = "mojo",
    # Model evaluation:
    eval_metric = "RMSE",
    NumOfParDepPlots = 3,
```

106 AutoH2oMLClassifier

```
# Metadata arguments:
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel";
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
# Data arguments:
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %chin%
  c("IDcol_1", "IDcol_2","Adrian")],
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asin", "Asin", "Log",
            "LogPlus1", "Logit", "YeoJohnson"),
# Model args
GridTune = FALSE,
MaxModelsInGrid = 10,
Distribution = "gaussian",
link = "identity")
```

AutoH2oMLClassifier

AutoH2oMLClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oMLClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oMLClassifier(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  ExcludeAlgos = NULL,
  eval_metric = "auc",
  Trees = 50,
  MaxMem = "32G",
```

AutoH2oMLClassifier 107

```
NThreads = max(1, parallel::detectCores() - 2),
MaxModelsInGrid = 2,
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = FALSE,
HurdleModel = FALSE
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

ExcludeAlgos "DRF", "GLM", "XGBoost", "GBM", "DeepLearning" and "Stacke-dEnsemble"

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

Trees The maximum number of trees you want in your models

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

108 AutoH2oMLClassifier

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O model object

H2OShutdown Set to TRUE to shutdown H2O after running the function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier() AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoKGBoostClassifier()

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000L
  ID = 2L,
  ZIP = 0L
  AddDate = FALSE,
  Classification = TRUE,
  MultiClass = FALSE)
TestModel <- RemixAutoML::AutoH2oMLClassifier(</pre>
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin%
     c("IDcol_1", "IDcol_2", "Adrian")],
   ExcludeAlgos = NULL,
   eval_metric = "auc",
   Trees = 50.
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10,
   model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"), "MetaData"),
   ModelID = "FirstModel",
   NumOfParDepPlots = 3,
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
```

AutoH2oMLMultiClass 109

AutoH2oMLMultiClass

AutoH2oMLMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oMLMultiClass(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  ExcludeAlgos = NULL,
  eval_metric = "logloss",
  Trees = 50,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores() - 2),
  MaxModelsInGrid = 2,
  model_path = NULL,
  metadata_path = NULL.
  ModelID = "FirstModel".
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

110 AutoH2oMLMultiClass

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

ExcludeAlgos "DRF", "GLM", "XGBoost", "GBM", "DeepLearning" and "Stacke-dEnsemble"

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

Trees The maximum number of trees you want in your models

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to have H2O shutdown after running this function

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000,
   ID = 2,
   ZIP = 0,
   AddDate = FALSE,
   Classification = FALSE,</pre>
```

AutoH2oMLRegression

```
MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oMLMultiClass(</pre>
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian".
   FeatureColNames = names(data)[!names(data) %chin% c("IDcol_1", "IDcol_2", "Adrian")],
   ExcludeAlgos = NULL,
   eval_metric = "logloss",
   Trees = 50,
   MaxMem = "32G",
   NThreads = max(1, parallel::detectCores()-2),
   MaxModelsInGrid = 10,
  model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./"), "MetaData"),
   ModelID = "FirstModel",
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   IfSaveModel = "mojo",
   H2OShutdown = FALSE,
   HurdleModel = FALSE)
```

AutoH2oMLRegression

AutoH2oMLRegression is an automated H2O modeling framework with grid-tuning and model evaluation

111

Description

AutoH2oMLRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oMLRegression(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  ExcludeAlgos = NULL,
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
  eval_metric = "RMSE",
```

```
Trees = 50,
MaxMem = "32G",
NThreads = max(1, parallel::detectCores() - 2),
MaxModelsInGrid = 2,
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = TRUE,
HurdleModel = FALSE
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

his data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

ExcludeAlgos "DRF", "GLM", "XGBoost", "GBM", "DeepLearning" and "Stacke-dEnsemble"

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

Trees The maximum number of trees you want in your models

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

AutoH2oMLRegression 113

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

 ${\tt Save Model Objects}$

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown For use in other functions.

HurdleModel Set to FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oGLMRegression(), AutoKGBoostRegression()

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oMLRegression(</pre>
    # Compute management
    MaxMem = "32G",
    NThreads = max(1, parallel::detectCores()-2),
    H2OShutdown = TRUE,
    IfSaveModel = "mojo",
    # Model evaluation:
        'eval_metric' is the measure catboost uses when
           evaluting on holdout data during its bandit style
```

```
process
#
    'NumOfParDepPlots' Number of partial dependence
#
       calibration plots generated.
      A value of 3 will return plots for the top 3 variables
#
      based on variable importance
      Won't be returned if GrowPolicy is either
       "Depthwise" or "Lossguide" is used
      Can run the RemixAutoML::ParDepCalPlots() with
        the outputted ValidationData
eval_metric = "RMSE",
NumOfParDepPlots = 3,
# Metadata arguments:
    'ModelID' is used to create part of the file names
      generated when saving to file'
#
    'model_path' is where the minimal model objects
#
      for scoring will be stored
#
       'ModelID' will be the name of the saved model object
#
    'metadata_path' is where model evaluation and model
#
       interpretation files are saved
       objects saved to model_path if metadata_path is null
#
       Saved objects include:
          'ModelID_ValidationData.csv' is the supplied or
#
             generated TestData with predicted values
          'ModelID_VariableImportance.csv' is the variable
#
             importance.
#
             This won't be saved to file if GrowPolicy is either
#
             "Depthwise" or "Lossguide" was used
          'ModelID_ExperimentGrid.csv' if GridTune = TRUE.
             Results of all model builds including parameter
             settings, bandit probs, and grid IDs
          'ModelID_EvaluationMetrics.csv' which contains MSE,
           MAE, MAPE, R2
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel";
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
# Data arguments:
    'TrainOnFull' is to train a model with 100
       percent of your data.
      That means no holdout data will be used for evaluation
    If ValidationData and TestData are NULL and TrainOnFull
       is FALSE then data will be split 70 20 10
    'PrimaryDateColumn' is a date column in data that is
#
       meaningful when sorted.
#
      CatBoost categorical treatment is enhanced when supplied
    'IDcols' are columns in your data that you don't use for
       modeling but get returned with ValidationData
    'TransformNumericColumns' is for transforming your target
      variable. Just supply the name of it
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %chin%
```

AutoH2OMLScoring 115

```
c("IDcol_1", "IDcol_2","Adrian")],
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
   "LogPlus1", "Logit", "YeoJohnson"),

# Model args
ExcludeAlgos = NULL,
Trees = 50,
MaxModelsInGrid = 10)
```

AutoH2OMLScoring

AutoH2OMLScoring is an automated scoring function that compliments the AutoH2o model training functions.

Description

AutoH2OMLScoring is an automated scoring function that compliments the AutoH2oGBM__() and AutoH2oDRF__() models training functions. This function requires you to supply features for scoring. It will run ModelDataPrep()to prepare your features for H2O data conversion and scoring.

Usage

```
AutoH20MLScoring(
  ScoringData = NULL,
  ModelObject = NULL,
  ModelType = "mojo",
  H2OShutdown = TRUE,
  MaxMem = "28G",
  NThreads = max(1, parallel::detectCores() - 2),
  JavaOptions = "-Xmx1g -XX:ReservedCodeCacheSize=256m",
  ModelPath = NULL,
  ModelID = NULL,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP\_MissNum = -1
)
```

Arguments

ScoringData This is your data.table of features for scoring. Can be a single row or batch.

ModelObject Supply a model object from AutoH2oDRF__()

116 AutoH2OMLScoring

ModelType Set to either "mojo" or "standard" depending on which version you saved

H20Shutdown Set to TRUE is you are scoring a "standard" model file and you aren't planning

on continuing to score.

MaxMem Set to you dedicated amount of memory. E.g. "28G"

NThreads Default set to max(1, parallel::detectCores()-2)

JavaOptions Change the default to your machines specification if needed. Default is '-Xmx1g

-XX:ReservedCodeCacheSize=256m',

ModelPath Supply your path file used in the AutoH2o_() function

ModelID Supply the model ID used in the AutoH2o_() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

TransformNumeric

Set to TRUE if you have features that were transformed automatically from an Auto Regression() model AND you haven't already transformed them.

BackTransNumeric

Set to TRUE to generate back-transformed predicted values. Also, if you return features, those will also be back-transformed.

TargetColumnName

Input your target column name used in training if you are utilizing the transformation service

TransformationObject

Set to NULL if you didn't use transformations or if you want the function to pull from the file output from the Auto_Regression() function. You can also supply the transformation data.table object with the transformation details versus beging it pulled from file.

having it pulled from file.

TransID Set to the ID used for saving the transformation data.table object or set it to the

ModelID if you are pulling from file from a build with Auto_Regression().

TransPath Set the path file to the folder where your transformation data.table detail object

is stored. If you used the Auto_Regression() to build, set it to the same path as

ModelPath.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying Scor-

ingData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do so to your

ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace missing

values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace missing

values with

Value

A data.table of predicted values with the option to return model features as well.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoH2OModeler(), AutoHurdleScoring(), AutoXGBoostScoring(), IntermittentDemandScoringDataGenerator()

Examples

```
## Not run:
Preds <- AutoH20MLScoring(</pre>
  ScoringData = data,
  ModelObject = NULL,
  ModelType = "mojo";
  H2OShutdown = TRUE,
  MaxMem = "28G",
  NThreads = max(1, parallel::detectCores()-2),
  JavaOptions = '-Xmx1g -XX:ReservedCodeCacheSize=256m',
  ModelPath = normalizePath("./"),
  ModelID = "ModelTest",
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP_MissNum = -1)
## End(Not run)
```

AutoH2OModeler

An Automated Machine Learning Framework using H2O

Description

Steps in the function include: See details below for information on using this function.

Usage

```
AutoH2OModeler(
Construct,
max_memory = "28G",
ratios = 0.8,
BL_Trees = 500,
nthreads = 1,
model_path = NULL,
MaxRuntimeSeconds = 3600,
MaxModels = 30,
TrainData = NULL,
TestData = NULL,
SaveToFile = FALSE,
```

```
ReturnObjects = TRUE
)
```

Arguments

Construct Core instruction file for automation (see Details below for more information on

this)

max_memory The ceiling amount of memory H2O will utilize

ratios The percentage of train samples from source data (remainder goes to validation

set)

BL_Trees The number of trees to build in baseline GBM or RandomForest

nthreads Set the number of threads to run function

model_path Directory path for where you want your models saved

MaxRuntimeSeconds

Number of seconds of run time for grid tuning

MaxModels Number of models you'd like to have returned

TrainData Set to NULL or supply a data.table for training data

TestData Set to NULL or supply a data.table for validation data

SaveToFile Set to TRUE to save models and output to model_path

ReturnObjects Set to TRUE to return objects from functioin

Details

1. Logic: Error checking in the modeling arguments from your Construction file

- 2. ML: Build grid-tuned models and baseline models for comparison and checks which one performs better on validation data
- 3. Evaluation: Collects the performance metrics for both
- 4. Evaluation: Generates calibration plots (and boxplots for regression) for the winning model
- 5. Evaluation: Generates partial dependence calibration plots (and boxplots for regression) for the winning model
- 6. Evaluation: Generates variable importance tables and a table of non-important features
- 7. Production: Creates a storage file containing: model name, model path, grid tune performance, baseline performance, and threshold (if classification) and stores that file in your model_path location

The Construct file must be a data.table and the columns need to be in the correct order (see examples). Character columns must be converted to type "Factor". You must remove date columns or convert them to "Factor". For classification models, your target variable needs to be a (0,1) of type "Factor." See the examples below for help with setting up the Construct file for various modeling target variable types. There are examples for regression, classification, multinomial, and quantile regression. For help on which parameters to use, look up the r/h2o documentation. If you misspecify the construct file, it will produce an error and outputfile of what was wrong and suggestions for fixing the error.

Let's go over the construct file, column by column. The Targets column is where you specify the column number of your target variable (in quotes, e.g. "c(1)").

The Distribution column is where you specify the distribution type for the modeling task. For classification use bernoulli, for multilabel use multinomial, for quantile use quantile, and for regression,

you can choose from the list available in the H2O docs, such as gaussian, poisson, gamma, etc. It's not set up to handle tweedie distributions currently but I can add support if there is demand.

The Loss column tells H2O which metric to use for the loss metrics. For regression, I typically use "mse", quantile regression, "mae", classification "auc", and multinomial "logloss". For deeplearning models, you need to use "quadratic", "absolute", and "crossentropy".

The Quantile column tells H2O which quantile to use for quantile regression (in decimal form).

The ModelName column is the name you wish to give your model as a prefix.

The Algorithm column is the model you wish to use: gbm, randomForest, deeplearning, AutoML, XGBoost, LightGBM.

The dataName column is the name of your data.

The TargetCol column is the column number of your target variable.

The FeatureCols column is the column numbers of your features.

The CreateDate column is for tracking your model build dates.

The GridTune column is a TRUE / FALSE column for whether you want to run a grid tune model for comparison.

The ExportValidData column is a TRUE / FALSE column indicating if you want to export the validation data.

The ParDep column is where you put the number of partial dependence calibration plots you wish to generate.

The PD_Data column is where you specify if you want to generate the partial dependence plots on "All" data, "Validate" data, or "Train" data.

The ThreshType column is for classification models. You can specify "f1", "f2", "f0point5", or "CS" for cost sentitive.

The FSC column is the feature selection column. Specify the percentage importance cutoff to create a table of "unimportant" features.

The tpProfit column is for when you specify "CS" in the ThreshType column. This is your true positive profit.

The tnProfit column is for when you specify "CS" in the ThreshType column. This is your true negative profit.

The fpProfit column is for when you specify "CS" in the ThreshType column. This is your false positive profit.

The fnProfit column is for when you specify "CS" in the ThreshType column. This is your false negative profit.

The SaveModel column is a TRUE / FALSE indicator. If you are just testing out models, set this to FALSE.

The SaveModelType column is where you specify if you want a "standard" model object saveed or a "mojo" model object saved.

The PredsAllData column is a TRUE / FALSE column. Set to TRUE if you want all the predicted values returns (for all data).

The TargetEncoding column let's you specify the column number of features you wish to run target encoding on. Set to NA to not run this feature.

The SupplyData column lets you supply the data names for training and validation data. Set to NULL if you want the data partitioning to be done internally.

Value

Returns saved models, corrected Construct file, variable importance tables, evaluation and partial dependence calibration plots, model performance measure, and a file called grid_tuned_paths.Rdata which contains paths to your saved models for operationalization.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoH20MLScoring(), AutoHurdleScoring(), AutoXGBoostScoring(), IntermittentDemandScoringDataGenerator()

```
## Not run:
# Classification Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))^0.10]
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))^2
sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
aa[, target := as.factor(ifelse(target > 0.5,1,0))]
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                   Distribution
                                                   = c("bernoulli",
                                                       "bernoulli"
                                                       "bernoulli"),
                                                   = c("AUC", "AUC", "CrossEntropy"),
                                   Loss
                                   Ouantile
                                                   = rep(NA,3),
                                                   = c("GBM","DRF","DL"),
                                   ModelName
                                   Algorithm
                                                   = c("gbm",
                                                       "randomForest",
                                                       "deeplearning"),
                                   dataName
                                                   = rep("aa",3),
                                   TargetCol
                                                   = rep(c("1"),3),
```

```
FeatureCols
                                                   = rep(c("2:11"),3),
                                   CreateDate
                                                  = rep(Sys.time(),3),
                                               = rep(FALSE,3),
                                   GridTune
                                   ExportValidData = rep(TRUE,3),
                                   ParDep
                                                  = rep(2,3)
                                                  = rep("All",3),
                                   PD Data
                                   ThreshType
                                                 = rep("f1",3),
                                                 = rep(0.001,3),
                                   FSC
                                   tpProfit
                                                 = rep(NA,3),
                                   tnProfit
                                                 = rep(NA,3),
                                   fpProfit
                                                 = rep(NA,3),
                                   fnProfit
                                                  = rep(NA,3),
                                   SaveModel
                                                   = rep(FALSE,3),
                                   SaveModelType = c("Mojo", "standard", "mojo"),
                                   PredsAllData = rep(TRUE,3),
                                   TargetEncoding = rep(NA, 3),
                                   SupplyData
                                                   = rep(FALSE,3))
AutoH2OModeler(Construct,
              max\_memory = "28G".
              ratios = 0.75,
              BL\_Trees = 500,
              nthreads = 5,
              model_path = NULL,
              MaxRuntimeSeconds = 3600,
              MaxModels = 30,
              TrainData = NULL,
              TestData = NULL,
              SaveToFile = FALSE,
              ReturnObjects = TRUE)
# Multinomial Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10
aa[, Independent_Variable7 := (pnorm(Correl * x1 + 
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
aa[, target := as.factor(ifelse(target < 0.33,"A",ifelse(target < 0.66, "B","C")))]</pre>
```

```
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                                  = c("multinomial",
                                   Distribution
                                                      "multinomial",
                                                      "multinomial"),
                                                  = c("auc", "logloss", "accuracy"),
                                   Loss
                                                  = rep(NA,3),
                                   Ouantile
                                   ModelName
                                                  = c("GBM","DRF","DL"),
                                   Algorithm
                                                  = c("gbm",
                                                      "randomForest".
                                                      "deeplearning"),
                                   dataName
                                                 = rep("aa",3),
                                   TargetCol
                                                = rep(c("1"),3),
                                   FeatureCols = rep(c("2:11"),3),
                                   CreateDate = rep(Sys.time(),3),
                                   GridTune
                                                 = rep(FALSE,3),
                                   ExportValidData = rep(TRUE,3),
                                  tpProfit
                                                  = rep(NA,3),
                                   tnProfit
                                                 = rep(NA,3),
                                   fpProfit
                                                 = rep(NA,3),
                                   fnProfit
                                                = rep(NA,3),
                                                = rep(FALSE,3),
                                   SaveModel
                                   SaveModelType = c("Mojo","standard","mojo"),
                                   PredsAllData = rep(TRUE,3),
                                   TargetEncoding = rep(NA,3),
                                   SupplyData
                                                  = rep(FALSE,3))
AutoH2OModeler(Construct,
              max_memory = "28G",
              ratios = 0.75,
              BL\_Trees = 500,
              nthreads = 5,
              model_path = NULL,
              MaxRuntimeSeconds = 3600,
              MaxModels = 30,
              TrainData = NULL,
              TestData = NULL,
              SaveToFile = FALSE,
              ReturnObjects = TRUE)
# Regression Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                      sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
```

```
sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution = c("gaussian",
                                                        "gaussian",
                                                        "gaussian"),
                                                    = c("MSE","MSE","Quadratic"),
                                    Loss
                                                    = rep(NA,3),
                                    Quantile
                                    ModelName
                                                    = c("GBM", "DRF", "DL"),
                                    Algorithm
                                                    = c("gbm",
                                                        "randomForest",
                                                        "deeplearning"),
                                    dataName
                                                    = rep("aa",3),
                                                    = rep(c("1"),3),
                                    TargetCol
                                    FeatureCols
                                                   = rep(c("2:11"),3),
                                    CreateDate
                                                   = rep(Sys.time(),3),
                                    GridTune
                                                   = rep(FALSE,3),
                                    ExportValidData = rep(TRUE,3),
                                    ParDep
                                                   = rep(2,3),
                                    PD_Data
                                                   = rep("All", 3),
                                                  = rep("f1",3),
                                    ThreshType
                                                   = rep(0.001,3),
                                    tpProfit
                                                   = rep(NA,3),
                                    tnProfit
                                                   = rep(NA,3),
                                    fpProfit
                                                   = rep(NA,3),
                                    fnProfit
                                                   = rep(NA,3),
                                    SaveModel
                                                   = rep(FALSE, 3),
                                    SaveModelType = c("Mojo", "standard", "mojo"),
                                                   = rep(TRUE,3),
                                    PredsAllData
                                    TargetEncoding = rep(NA,3),
                                    SupplyData
                                                    = rep(FALSE,3))
AutoH2OModeler(Construct,
               max\_memory = "28G",
               ratios = 0.75,
               BL\_Trees = 500,
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600,
               MaxModels = 30,
               TrainData = NULL,
               TestData = NULL,
               SaveToFile = FALSE,
               ReturnObjects = TRUE)
# Quantile Regression Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
```

```
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10]
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4
aa[, ':=' (x1 = NULL, x2 = NULL)]
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution
                                                    = c("quantile",
                                                         "quantile"),
                                                     = c("MAE", "Absolute"),
                                    Loss
                                                    = rep(0.75,2),
                                    Ouantile
                                    ModelName
                                                    = c("GBM", "DL"),
                                    Algorithm
                                                     = c("gbm",
                                                         "deeplearning"),
                                    dataName
                                                     = rep("aa", 2),
                                    TargetCol
                                                    = rep(c("1"),2),
                                    FeatureCols
                                                    = rep(c("2:11"),2),
                                    CreateDate
                                                    = rep(Sys.time(),2),
                                    GridTune
                                                    = rep(FALSE, 2),
                                    ExportValidData = rep(TRUE,2),
                                    ParDep
                                                    = rep(4,2),
                                    PD_Data
                                                    = rep("All",2),
                                                    = rep("f1",2),
                                    ThreshType
                                    FSC
                                                    = rep(0.001, 2),
                                     tpProfit
                                                    = rep(NA, 2),
                                     tnProfit
                                                    = rep(NA, 2),
                                     fpProfit
                                                    = rep(NA, 2),
                                     fnProfit
                                                    = rep(NA, 2),
                                     SaveModel
                                                    = rep(FALSE, 2),
                                     SaveModelType = c("Mojo", "mojo"),
                                    PredsAllData
                                                    = rep(TRUE,2),
                                    TargetEncoding = rep(NA,2),
                                    SupplyData
                                                     = rep(FALSE,2))
AutoH2OModeler(Construct,
               max\_memory = "28G",
               ratios = 0.75,
               BL\_Trees = 500,
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600,
```

AutoH2OScoring 125

```
MaxModels = 30,
    TrainData = NULL,
    TestData = NULL,
    SaveToFile = FALSE,
    ReturnObjects = TRUE)
## End(Not run)
```

AutoH2OScoring

AutoH2OScoring is the complement of AutoH20Modeler.

Description

AutoH2OScoring is the complement of AutoH20Modeler. Use this for scoring models. You can score regression, quantile regression, classification, multinomial, clustering, and text models (built with the Word2VecModel function). You can also use this to score multioutcome models so long as the there are two models: one for predicting the count of outcomes (a count outcome in character form) and a multinomial model on the label data. You will want to ensure you have a record for each label in your training data in (0,1) as factor form.

Usage

```
AutoH2OScoring(
   Features = data,
   GridTuneRow = c(1:3),
   ScoreMethod = "Standard",
   TargetType = rep("multinomial", 3),
   ClassVals = rep("probs", 3),
   TextType = "individual",
   TextNames = NULL,
   NThreads = 6,
   MaxMem = "28G",
   JavaOptions = "-Xmx1g -XX:ReservedCodeCacheSize=256m",
   SaveToFile = FALSE,
   FilesPath = NULL,
   H2OShutDown = rep(FALSE, 3)
)
```

models.

Arguments

Features

This is a data.table of features for scoring.

Numeric. The row numbers of grid_tuned_paths, KMeansModelFile, or Store-File containing the model you wish to score

ScoreMethod

"Standard" or "Mojo": Mojo is available for supervised models; use standard for all others

"Regression", "Classification", "Multinomial", "MultiOutcome", "Text", "Clustering". MultiOutcome must be two multinomial models, a count model (the count of outcomes, as a character value), and the multinomial model predicting the labels.

ClassVals

Choose from "p1", "Probs", "Label", or "All" for classification and multinomial

126 AutoH2OScoring

TextType	"Individual" or "Combined" depending on how you build your word2vec models
TextNames	Column names for the text columns to convert to word2vec
NThreads	Number of available threads for H2O
MaxMem	Amount of memory to dedicate to H2O
JavaOptions	Modify to your machine if the default doesn't work
SaveToFile	Set to TRUE if you want your model scores saved to file.
FilesPath	Set this to the folder where your models and model files are saved
H20ShutDown	TRUE to shutdown H2O after the run. Use FALSE if you will be repeatedly scoring and shutdown somewhere else in your environment.

Value

Returns a list of predicted values. Each list element contains the predicted values from a single model predict call.

Author(s)

Adrian Antico

See Also

Other Supervised Learning: CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGr. CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParams(), XGBoostParameterGrids(), XGBoostRegressionMetrics(), XGBoostRegressionParams()

```
## Not run:
# Multinomial Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]
aa[, Independent_Variable7 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.25]
aa[, Independent_Variable8 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.75]
aa[, Independent_Variable9 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
aa[, target := as.factor(ifelse(target < 0.33,"A",ifelse(target < 0.66, "B","C")))]</pre>
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution = c("multinomial",
                                                         "multinomial",
                                                         "multinomial"),
                                 Loss
                                                = c("logloss", "logloss", "CrossEntropy"),
                                    Quantile
                                                    = rep(NA,3),
                                                    = c("GBM", "DRF", "DL"),
                                    ModelName
                                    Algorithm
                                                    = c("gbm",
```

```
"randomForest",
                                                                        "deeplearning"),
                                              dataName = rep("aa",3),
TargetCol = rep(c("1"),3),
FeatureCols = rep(c("2:11"),3),
                                              CreateDate = rep(Sys.time(),3),
GridTune = rep(FALSE,3),
                                              ExportValidData = rep(TRUE,3),
                                              ParDep = rep(NA,3),

PD_Data = rep("All",3),

ThreshType = rep("f1",3),

FSC = rep(0.001,3),
                                              FSC = rep(0.001,3),

tpProfit = rep(NA,3),

tnProfit = rep(NA,3),

fpProfit = rep(NA,3),

fnProfit = rep(NA,3),

SaveModel = rep(FALSE,3),
                                              SaveModelType = c("Mojo", "mojo", "mojo"),
                                              PredsAllData = rep(TRUE,3),
                                              TargetEncoding = rep(NA,3),
                                              SupplyData
                                                                  = rep(FALSE,3))
AutoH2OModeler(Construct,
                   max\_memory = "28G",
                   ratios = 0.75,
                   BL\_Trees = 500,
                   nthreads = 5,
                   model_path = NULL,
                   MaxRuntimeSeconds = 3600,
                   MaxModels = 30,
                   TrainData = NULL,
                   TestData = NULL,
                   SaveToFile = FALSE,
                   ReturnObjects = TRUE)
N <- 3
data <- AutoH2OScoring(Features</pre>
                                             = aa,
                             GridTuneRow = c(1:N),
                             ScoreMethod = "standard",
                             TargetType = rep("multinomial",N),
ClassVals = rep("Probs",N),
                             JavaOptions = '-Xmx1g -XX:ReservedCodeCacheSize=256m',
                             SaveToFile = FALSE,
                                           = NULL,
                             FilesPath
                             H20ShutDown = rep(FALSE,N))
## End(Not run)
```

128 AutoHierarchicalFourier

Description

This function returns prepared tokenized data for H2O Word2VecModeler scoring

Usage

```
AutoH20TextPrepScoring(
  data,
  string = NULL,
  MaxMem = NULL,
  NThreads = NULL,
  StartH20 = TRUE
)
```

Arguments

data The text data

string The name of the string column to prepare

MaxMem Amount of memory you want to let H2O utilize

NThreads The number of threads you want to let H2O utilize

StartH2O Set to TRUE to have H2O start inside this function

Author(s)

Adrian Antico

See Also

```
Other Misc: ChartTheme(), PrintObjectsSize(), RPM_Binomial_Bandit(), SimpleCap(), tempDatesFun(), tokenizeH2O()
```

Examples

AutoHierarchicalFourier

AutoHierarchicalFourier

Description

AutoHierarchicalFourier reverses the difference

Usage

```
AutoHierarchicalFourier(
  datax = data,
  xRegs = names(XREGS),
  FourierTermS = FourierTerms,
  TimeUniT = TimeUnit,
  FC_PeriodS = FC_Periods,
  TargetColumN = TargetColumn,
  DateColumN = DateColumnName,
  HierarchGroups = NULL,
  IndependentGroups = NULL
)
```

Arguments

datax data

xRegs The XREGS

FourierTermS Number of fourier pairs

TimeUniT Time unit

FC_PeriodS Number of forecast periods

TargetColumN Target column name
DateColumN Date column name

HierarchGroups Character vector of categorical columns to fully interact

IndependentGroups

Character vector of categorical columns to run independently

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGen CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

AutoHurdleCARMA

AutoHurdleCARMA

Description

AutoHurdleCARMA is an intermittent demand, Mutlivariate Forecasting algorithms with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

Usage

```
AutoHurdleCARMA(
  data,
  AlgoType = "catboost",
  NonNegativePred = FALSE,
  Threshold = NULL,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
  DateColumnName = "DateTime",
  HierarchGroups = NULL,
  GroupVariables = NULL,
  FC_Periods = 30,
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  NumOfParDepPlots = 10L,
  TargetTransformation = FALSE,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
  AnomalyDetection = NULL,
  XREGS = NULL,
  Lags = c(1L:5L),
  MA_Periods = c(2L:5L),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5", "q95"),
  Difference = TRUE,
  FourierTerms = 6L,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
    "isoweek", "month", "quarter", "year"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
  HolidayLags = 1L,
  HolidayMovingAverages = 1L:2L,
  TimeTrendVariable = FALSE,
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  SplitRatios = c(0.7, 0.2, 0.1),
  TaskType = "GPU",
  NumGPU = 1,
  EvalMetric = "RMSE",
  GridTune = FALSE,
  PassInGrid = NULL,
  ModelCount = 100,
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 24L * 60L,
 NTrees = list(classifier = seq(1000, 2000, 100), regression = seq(1000, 2000, 100)),
  Depth = list(classifier = seq(6, 10, 1), regression = seq(6, 10, 1)),
 LearningRate = list(classifier = seq(0.01, 0.25, 0.01), regression = seq(0.01, 0.25,
    0.01)),
  L2_Leaf_Reg = list(classifier = 3:6, regression = 3:6),
```

```
RandomStrength = list(classifier = 1:10, regression = 1:10),
BorderCount = list(classifier = seq(32, 256, 16), regression = seq(32, 256, 16)),
BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
PartitionType = "timeseries",
Timer = TRUE,
DebugMode = FALSE
)
```

Arguments

data Supply your full series data set here

AlgoType Set to "catboost" or "xgboost"

NonNegativePred

TRUE or FALSE

Threshold Select confusion matrix measure to optimize for pulling in threshold. Choose

from "MCC", "Acc", "TPR", "TNR", "FNR", "FPR", "FDR", "FOR", "F1_Score",

"F2_Score", "F0.5_Score", "NPV", "PPV", "ThreatScore", "Utility"

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column name of your target variables column. E.g. "Target"

DateColumnName List the column name of your date column. E.g. "DateTime"

HierarchGroups Vector of hierarchy categorical columns.

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year".

TimeGroups Select time aggregations for adding various time aggregated GDL features.

NumOfParDepPlots

Supply a number for the number of partial dependence plots you want returned

TargetTransformation

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Methods Transformation options to test which include "BoxCox", "Asinh", "Asin", "Log",

"LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

list("tstat high" = 4, tstat low = -4)

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52)

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52)

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52)

Quantiles_Selected

Select from the following "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40",

"q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

HolidayVariable

 $NULL, or \ select \ from \ "USPublicHolidays", "EasterGroup", "ChristmasGroup", "C$

"OtherEcclesticalFeasts"

HolidayLags Number of lags to build off of the holiday count variable.

HolidayMovingAverages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments

by one for each success time point.

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets TaskType Default is "GPU" but you can also set it to "CPU"

NumGPU Defaults to 1. If CPU is set this argument will be ignored.

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuan-

tile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError"

GridTune Set to TRUE to run a grid tune

PassInGrid Defaults to NULL

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Default is 50

 ${\tt MaxRunMinutes} \quad Default is \ 60*60$

NTrees Select the number of trees you want to have built to train the model

Depth Depth of catboost model

LearningRate learning_rate

L2_Leaf_Reg 12 reg parameter
RandomStrength Default is 1
BorderCount Default is 254

BootStrapType Select from Catboost list

PartitionType Select "random" for random data partitioning "timeseries" for partitioning by

time frames

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostVectorCARMA(), AutoH2OCARMA(), AutoXGBoostCARMA()

```
## Not run:
 # Single group variable and xregs ----
 # Load Walmart Data from Dropbox----
 data <- data.table::fread(</pre>
   "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
 # Subset for Stores / Departments With Full Series
 data <- data[, Counts := .N, by = c("Store","Dept")][Counts == 143][
   , Counts := NULL]
 # Subset Columns (remove IsHoliday column)----
 keep <- c("Store","Dept","Date","Weekly_Sales")</pre>
 data <- data[, ..keep]</pre>
 data <- data[Store == 1][, Store := NULL]</pre>
 xregs <- data.table::copy(data)</pre>
 data.table::setnames(xregs, "Dept", "GroupVar")
 data.table::setnames(xregs, "Weekly_Sales", "Other")
 data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
 # Add zeros for testing
 data[runif(.N) < 0.25, Weekly_Sales := 0]</pre>
 # Build forecast
 CatBoostResults <- RemixAutoML::AutoHurdleCARMA(</pre>
```

```
# data args
AlgoType = "catboost",
data = data, # TwoGroup_Data,
TargetColumnName = "Weekly_Sales",
DateColumnName = "Date",
HierarchGroups = NULL,
GroupVariables = c("Dept"),
TimeUnit = "weeks",
TimeGroups = c("weeks", "months"),
# Production args
TrainOnFull = FALSE,
SplitRatios = c(1 - 20 / 138, 10 / 138, 10 / 138),
PartitionType = "random",
FC_Periods = 4,
Timer = TRUE,
DebugMode = TRUE,
# Target transformations
TargetTransformation = TRUE,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
   "LogPlus1", "Logit", "YeoJohnson"),
Difference = FALSE,
NonNegativePred = FALSE,
RoundPreds = FALSE,
# Date features
CalendarVariables = c("week", "month", "quarter"),
HolidayVariable = c("USPublicHolidays",
  "EasterGroup",
  "ChristmasGroup", "OtherEcclesticalFeasts"),
HolidayLags = 1,
HolidayMovingAverages = 1:2,
# Time series features
Lags = list("weeks" = seq(2L, 10L, 2L),
  "months" = c(1:3)),
MA_Periods = list("weeks" = seq(2L, 10L, 2L),
  "months" = c(2,3)),
SD_Periods = NULL,
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = c("q5","q95"),
# Bonus features
AnomalyDetection = NULL,
XREGS = xregs,
FourierTerms = 2,
TimeTrendVariable = TRUE,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
# ML Args
NumOfParDepPlots = 100L,
EvalMetric = "RMSE",
```

```
GridTune = FALSE,
  PassInGrid = NULL,
  ModelCount = 5,
  TaskType = "GPU",
  NumGPU = 1,
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 60*60,
 NTrees = 2500.
 L2\_Leaf\_Reg = 3.0,
 LearningRate = list("classifier" = seq(0.01, 0.25, 0.01), "regression" = seq(0.01, 0.25, 0.01)),
  RandomStrength = 1,
  BorderCount = 254,
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
 Depth = 6
# Two group variables and xregs
# Load Walmart Data from Dropbox----
data <- data.table::fread(</pre>
 "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
  , Counts := NULL]
# Put negative values at 0
data[, Weekly_Sales := data.table::fifelse(Weekly_Sales < 0, 0, Weekly_Sales)]</pre>
# Subset Columns (remove IsHoliday column)----
keep <- c("Store","Dept","Date","Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
data <- data[Store %in% c(1,2)]</pre>
xregs <- data.table::copy(data)</pre>
xregs[, GroupVar := do.call(paste, c(.SD, sep = " ")), .SDcols = c("Store","Dept")]
xregs[, c("Store","Dept") := NULL]
data.table::setnames(xregs, "Weekly_Sales", "Other")
xregs[, Other := jitter(Other, factor = 25)]
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
# Add some zeros for testing
data[runif(.N) < 0.25, Weekly_Sales := 0]</pre>
# Build forecast
Output <- RemixAutoML::AutoHurdleCARMA(
  # data args
  AlgoType = "catboost",
  data = data,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
```

```
TrainOnFull = TRUE,
SplitRatios = c(1 - 20 / 138, 10 / 138, 10 / 138),
PartitionType = "random",
FC_Periods = 4,
Timer = TRUE,
DebugMode = TRUE,
# Target transformations
TargetTransformation = TRUE,
Methods = c("BoxCox", "Asin", "Asin", "Log",
             "LogPlus1", "Logit", "YeoJohnson"),
Difference = FALSE,
NonNegativePred = FALSE,
Threshold = NULL,
RoundPreds = FALSE,
# Date features
CalendarVariables = c("week", "month", "quarter"),
HolidayVariable = c("USPublicHolidays",
                     "EasterGroup",
                     "ChristmasGroup", "OtherEcclesticalFeasts"),
HolidayLags = 1,
HolidayMovingAverages = 1:2,
# Time series features
Lags = list("weeks" = seq(2L, 10L, 2L),
             "months" = c(1:3)),
MA_Periods = list("weeks" = seq(2L, 10L, 2L),
                   "months" = c(2,3)),
SD_Periods = NULL,
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = c("q5","q95"),
# Bonus features
AnomalyDetection = NULL,
XREGS = xregs,
FourierTerms = 2,
TimeTrendVariable = TRUE,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
# ML Args
NumOfParDepPlots = 100L,
EvalMetric = "RMSE",
GridTune = FALSE,
PassInGrid = NULL,
ModelCount = 5,
TaskType = "GPU",
NumGPU = 1,
MaxRunsWithoutNewWinner = 50,
MaxRunMinutes = 60*60,
NTrees = list("classifier" = seq(1000,2000,100), "regression" = seq(1000,2000,100)),
Depth = list("classifier" = seq(6,10,1), "regression" = seq(6,10,1)),
LearningRate = list("classifier" = seq(0.01, 0.25, 0.01), "regression" = seq(0.01, 0.25, 0.01)),
L2_Leaf_Reg = list("classifier" = 3.0:6.0, "regression" = 3.0:6.0),
```

AutoHurdleScoring 137

```
RandomStrength = list("classifier" = 1:10, "regression" = 1:10),
BorderCount = list("classifier" = seq(32,256,16), "regression" = seq(32,256,16)),
BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"))
## End(Not run)
```

AutoHurdleScoring

AutoHurdleScoring()

Description

AutoHurdleScoring() can score AutoCatBoostHurdleModel() and AutoXGBoostHurdleModel()

Usage

```
AutoHurdleScoring(
  TestData = NULL,
  Path = NULL,
  ModelID = NULL,
  ModelClass = "catboost",
  ArgList = NULL,
  ModelList = NULL,
  Threshold = NULL
)
```

Arguments

TestData	scoring data.table
Path	Supply if ArgList is NULL or ModelList is null.
ModelID	Supply if ArgList is NULL or ModelList is null. Same as used in model training.
ModelClass	Name of model type. "catboost" is currently the only available option
ArgList	Output from the hurdle model
ModelList	Output from the hurdle model
Threshold	NULL to use raw probabilities to predict. Otherwise, supply a threshold

Value

A data.table with the final predicted value, the intermediate model predictions, and your source data

Author(s)

Adrian Antico

See Also

```
Other Automated Model Scoring: AutoCatBoostScoring(), AutoH20MLScoring(), AutoH20Modeler(), AutoXGBoostScoring(), IntermittentDemandScoringDataGenerator()
```

138 AutoHurdleScoring

```
## Not run:
# XGBoost----
# Define file path
Path <- "C:/Users/aantico/Documents/Package/GUI_Package"
# Create hurdle data with correlated features
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70,
 N = 25000,
 ID = 3,
 FactorCount = 2L,
  AddDate = TRUE,
  ZIP = 1,
  Classification = FALSE,
 MultiClass = FALSE)
# Define features
Features <- names(data)[!names(data) %chin%</pre>
  c("Adrian","IDcol_1","IDcol_2","IDcol_3","DateTime")]
# Build hurdle model
Output <- RemixAutoML::AutoXGBoostHurdleModel(</pre>
  # Operationalization args
  TreeMethod = "hist",
  TrainOnFull = FALSE,
 PassInGrid = NULL,
  # Metadata args
  NThreads = max(1L, parallel::detectCores()-2L),
  ModelID = "ModelTest",
  Paths = normalizePath(Path),
  MetaDataPaths = NULL,
  ReturnModelObjects = TRUE,
  # data args
  data,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = c(0),
  TargetColumnName = "Adrian",
  FeatureColNames = Features,
  IDcols = c("IDcol_1","IDcol_2","IDcol_3"),
  # options
  TransformNumericColumns = NULL,
  SplitRatios = c(0.70, 0.20, 0.10),
  SaveModelObjects = TRUE,
  NumOfParDepPlots = 10L,
  # grid tuning args
  GridTune = FALSE,
  grid_eval_metric = "accuracy",
```

AutoKMeans 139

```
MaxModelsInGrid = 1L,
  BaselineComparison = "default",
  MaxRunsWithoutNewWinner = 10L,
  MaxRunMinutes = 60L,
  # bandit hyperparameters
  Trees = 100L,
  eta = seq(0.05, 0.40, 0.05),
  max_depth = seq(4L, 16L, 2L),
  # random hyperparameters
  min\_child\_weight = seq(1.0, 10.0, 1.0),
  subsample = seq(0.55, 1.0, 0.05),
  colsample_bytree = seq(0.55, 1.0, 0.05))
# Score XGBoost Hurdle Model
HurdleScores <- RemixAutoML::AutoHurdleScoring(</pre>
  TestData = data,
  Path = Path,
 ModelID = "ModelTest",
  ModelClass = "xgboost",
 ModelList = NULL,
  ArgList = NULL,
  Threshold = NULL)
## End(Not run)
```

AutoKMeans

AutoKMeans Automated row clustering for mixed column types

Description

AutoKMeans adds a column to your original data with a cluster number identifier. Uses glrm (grid tune-able) and then k-means to find optimal k.

Usage

```
AutoKMeans(
 data,
 nthreads = 8,
 MaxMem = "28G"
 SaveModels = NULL,
 PathFile = NULL,
 GridTuneGLRM = TRUE,
 GridTuneKMeans = TRUE,
 glrmCols = c(1:5),
 IgnoreConstCols = TRUE,
 glrmFactors = 5,
 Loss = "Absolute"
  glrmMaxIters = 1000,
 SVDMethod = "Randomized",
 MaxRunTimeSecs = 3600,
 KMeansK = 50,
```

140 AutoKMeans

```
KMeansMetric = "totss"
)
```

Arguments

data is the source time series data.table

nthreads set based on number of threads your machine has available

MaxMem set based on the amount of memory your machine has available

SaveModels Set to "standard", "mojo", or NULL (default)

PathFile Set to folder where you will keep the models

GridTuneGLRM If you want to grid tune the glrm model, set to TRUE, FALSE otherwise
GridTuneKMeans If you want to grid tuen the KMeans model, set to TRUE, FALSE otherwise

glrmCols the column numbers for the glrm

IgnoreConstCols

tell H2O to ignore any columns that have zero variance

glrmFactors similar to the number of factors to return from PCA

Loss set to one of "Quadratic", "Absolute", "Huber", "Poisson", "Hinge", "Logistic",

"Periodic"

glrmMaxIters max number of iterations

SVDMethod choose from "Randomized", "GramSVD", "Power"

MaxRunTimeSecs set the timeout for max run time

KMeansK number of factors to test out in k-means to find the optimal number

 $\label{eq:KMeansMetric} KMeansMetric \qquad pick the metric to identify top model in grid tune c ("totss", "betweenss", "withinss")$

Value

Original data.table with added column with cluster number identifier

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: GenTSAnomVars(), H2oIsolationForest(), ResidualOutliers()

```
## Not run:
data <- data.table::as.data.table(iris)
data <- AutoKMeans(
    data,
    nthreads = 8,
    MaxMem = "28G",
    SaveModels = NULL,
    PathFile = normalizePath("./"),
    GridTuneGLRM = TRUE,
    GridTuneKMeans = TRUE,
    glrmCols = 1:(ncol(data)-1),
    IgnoreConstCols = TRUE,</pre>
```

AutoLagRollStats 141

```
glrmFactors = 2,
  Loss = "Absolute"
  glrmMaxIters = 1000,
  SVDMethod = "Randomized",
  MaxRunTimeSecs = 3600,
  KMeansK = 5,
  KMeansMetric = "totss")
unique(data[["Species"]])
unique(data[["ClusterID"]])
temp <- data[, mean(ClusterID), by = "Species"]</pre>
Setosa <- round(temp[Species == "setosa", V1][[1]],0)</pre>
Versicolor <- round(temp[Species == "versicolor", V1][[1]],0)</pre>
Virginica <- round(temp[Species == "virginica", V1][[1]],0)</pre>
data[, Check := "a"]
data[ClusterID == eval(Setosa), Check := "setosa"]
data[ClusterID == eval(Virginica), Check := "virginica"]
data[ClusterID == eval(Versicolor), Check := "versicolor"]
data[, Acc := as.numeric(ifelse(Check == Species, 1, 0))]
data[, mean(Acc)][[1]]
## End(Not run)
```

AutoLagRollStats

AutoLagRollStats

Description

AutoLagRollStats Builds lags and a large variety of rolling statistics with options to generate them for hierarchical categorical interactions.

Usage

```
AutoLagRollStats(
  data,
  Targets = NULL,
  HierarchyGroups = NULL,
  IndependentGroups = NULL,
  DateColumn = NULL,
  TimeUnit = "day",
  TimeUnitAgg = "day",
  TimeGroups = "day",
  TimeBetween = NULL,
  RollOnLag1 = TRUE,
  Type = "Lag",
  SimpleImpute = TRUE,
  Lags = c(1:5),
  MA_RollWindows = c(2, 5, 10),
  SD_RollWindows = c(5, 10),
  Skew_RollWindows = c(5, 10),
  Kurt_RollWindows = c(5, 10),
  Quantile_RollWindows = c(10),
  Quantiles_Selected = c("q25", "q75"),
  Debug = FALSE
)
```

142 AutoLagRollStats

Arguments

data A data.table you want to run the function on

Targets A character vector of the column names for the reference column in which you

will build your lags and rolling stats

HierarchyGroups

A vector of categorical column names that you want to have generate all lags and rolling stats done for the individual columns and their full set of interactions.

IndependentGroups

A vector of categorical column names that you want to have run independently

of each other. This will mean that no interaction will be done.

DateColumn The column name of your date column used to sort events over time

TimeUnit List the time aggregation level for the time between events features, such as

"hour", "day", "weeks", "months", "quarter", or "year"

TimeUnitAgg List the time aggregation of your data that you want to use as a base time unit

for your features. E.g. "raw" or "day"

TimeGroups A vector of TimeUnits indicators to specify any time-aggregated GDL fea-

tures you want to have returned. E.g. c("raw" (no aggregation is done), "hour",

"day", "week", "month", "quarter", "year")

TimeBetween Specify a desired name for features created for time between events. Set to

NULL if you don't want time between events features created.

RollOnLag1 Set to FALSE to build rolling stats off of target columns directly or set to TRUE

to build the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead" if you

want features built on future values

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation of -1

Lags A numeric vector of the specific lags you want to have generated. You must

include 1 if WindowingLag = 1.

MA_RollWindows A numeric vector of the specific rolling statistics window sizes you want to

utilize in the calculations.

SD_RollWindows A numeric vector of Standard Deviation rolling statistics window sizes you want

to utilize in the calculations.

Skew_RollWindows

A numeric vector of Skewness rolling statistics window sizes you want to utilize

in the calculations.

Kurt_RollWindows

A numeric vector of Kurtosis rolling statistics window sizes you want to utilize

in the calculations.

Quantile_RollWindows

A numeric vector of Quantile rolling statistics window sizes you want to utilize

in the calculations.

Quantiles_Selected

Select from the following c("q5", "q10", "q15", "q20", "q25", "q30", "q35",

"q40", "q45", "q50", "q55", "q60"," q65", "q70", "q75", "q80", "q85", "q90",

'a95")

Debug Set to TRUE to get a print of which steps are running

AutoLagRollStats 143

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenCreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

```
## Not run:
# Create fake Panel Data----
Count <- 1L
for(Level in LETTERS) {
  datatemp <- RemixAutoML::FakeDataGenerator(</pre>
    Correlation = 0.75,
   N = 25000L
   ID = 0L
   ZIP = 0L
    FactorCount = 0L,
   AddDate = TRUE,
    Classification = FALSE,
   MultiClass = FALSE)
  datatemp[, Factor1 := eval(Level)]
  if(Count == 1L) {
    data <- data.table::copy(datatemp)</pre>
    data <- data.table::rbindlist(</pre>
     list(data, data.table::copy(datatemp)))
  Count <- Count + 1L
}
# Add scoring records
data <- RemixAutoML::AutoLagRollStats(</pre>
  # Data
  data
                       = data,
                      = "DateTime",
  DateColumn
                      = "Adrian",
  Targets
                     = NULL,
  HierarchyGroups
  IndependentGroups = c("Factor1"),
  TimeUnitAgg
                     = "days",
                      = c("days", "weeks",
  TimeGroups
                           "months", "quarters"),
  TimeBetween
                      = NULL,
  TimeUnit
                      = "days",
```

```
# Services
  RollOnLag1
                      = TRUE,
                      = "Lag",
  Type
                      = TRUE,
  SimpleImpute
  # Calculated Columns
 Lags
                      = list("days" = c(seq(1,5,1)),
                              "weeks" = c(seq(1,3,1)),
                              "months" = c(seq(1,2,1)),
                              "quarters" = c(seq(1,2,1)),
  MA_RollWindows
                      = list("days" = c(seq(1,5,1)),
                              "weeks" = c(seq(1,3,1)),
                             "months" = c(seq(1,2,1)),
                              "quarters" = c(seq(1,2,1)),
  SD_RollWindows
                      = NULL,
 Skew_RollWindows
                      = NULL,
  Kurt_RollWindows
                      = NULL,
  Quantile_RollWindows = NULL,
  Quantiles_Selected = NULL,
  Debug
                      = FALSE)
## End(Not run)
```

AutoLagRollStatsScoring

AutoLagRollStatsScoring

Description

AutoLagRollStatsScoring Builds lags and a large variety of rolling statistics with options to generate them for hierarchical categorical interactions.

Usage

```
AutoLagRollStatsScoring(
  data,
  RowNumsID = "temp",
  RowNumsKeep = 1,
  Targets = NULL,
  HierarchyGroups = NULL,
  IndependentGroups = NULL,
  DateColumn = NULL,
  TimeUnit = "day",
  TimeUnitAgg = "day",
  TimeGroups = "day",
  TimeBetween = NULL,
  RollOnLag1 = 1,
  Type = "Lag",
  SimpleImpute = TRUE,
  Lags = NULL,
  MA_RollWindows = NULL,
  SD_RollWindows = NULL,
  Skew_RollWindows = NULL,
```

```
Kurt_RollWindows = NULL,
Quantile_RollWindows = NULL,
Quantiles_Selected = NULL,
Debug = FALSE
)
```

Arguments

data A data.table you want to run the function on

RowNumsID The name of your column used to id the records so you can specify which rows

to keep

RowNumsKeep The RowNumsID numbers that you want to keep

Targets A character vector of the column names for the reference column in which you

will build your lags and rolling stats

HierarchyGroups

A vector of categorical column names that you want to have generate all lags and rolling stats done for the individual columns and their full set of interactions.

IndependentGroups

Only supply if you do not want HierarchyGroups. A vector of categorical column names that you want to have run independently of each other. This will

mean that no interaction will be done.

DateColumn The column name of your date column used to sort events over time

TimeUnit List the time aggregation level for the time between events features, such as

"hour", "day", "weeks", "months", "quarter", or "year"

TimeUnitAgg List the time aggregation of your data that you want to use as a base time unit

for your features. E.g. "day",

TimeGroups A vector of TimeUnits indicators to specify any time-aggregated GDL features

you want to have returned. E.g. c("hour", "day", "week", "month", "quarter", "year"). STILL NEED TO ADD these '1min', '5min', '10min', '15min', '30min', '45min'

TimeBetween Specify a desired name for features created for time between events. Set to

NULL if you don't want time between events features created.

RollOnLag1 Set to FALSE to build rolling stats off of target columns directly or set to TRUE

to build the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead" if you

want features built on future values

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation of -1

Lags A numeric vector of the specific lags you want to have generated. You must

include 1 if WindowingLag = 1.

MA_RollWindows A numeric vector of the specific rolling statistics window sizes you want to

utilize in the calculations.

SD_RollWindows A numeric vector of Standard Deviation rolling statistics window sizes you want

to utilize in the calculations.

Skew_RollWindows

A numeric vector of Skewness rolling statistics window sizes you want to utilize

in the calculations.

Kurt_RollWindows

A numeric vector of Kurtosis rolling statistics window sizes you want to utilize in the calculations.

```
Quantile_RollWindows
```

A numeric vector of Quantile rolling statistics window sizes you want to utilize in the calculations.

Quantiles_Selected

```
Select from the following c("q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60"," q65", "q70", "q75", "q80", "q85", "q90", "q95")
```

Debug

Set to TRUE to get a print out of which step you are on

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGen CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

```
# Create fake Panel Data----
Count <- 1L
for(Level in LETTERS) {
  datatemp <- RemixAutoML::FakeDataGenerator(</pre>
    Correlation = 0.75,
    N = 25000L
    ID = 0L,
    ZIP = 0L
    FactorCount = 0L,
    AddDate = TRUE,
    Classification = FALSE,
    MultiClass = FALSE)
  datatemp[, Factor1 := eval(Level)]
  if(Count == 1L) {
    data <- data.table::copy(datatemp)</pre>
    data <- data.table::rbindlist(</pre>
      list(data, data.table::copy(datatemp)))
  Count <- Count + 1L
# Create ID columns to know which records to score
data[, ID := .N:1L, by = "Factor1"]
data.table::set(data, i = which(data[["ID"]] == 2L), j = "ID", value = 1L)
# Score records
data <- RemixAutoML::AutoLagRollStatsScoring(</pre>
```

```
# Data
                    = data,
data
                   = "ID",
RowNumsID
                   = 1,
RowNumsKeep
DateColumn
                   = "DateTime",
                   = "Adrian",
Targets
HierarchyGroups = c("Store", "Dept"),
IndependentGroups = NULL,
# Services
TimeBetween
                   = NULL,
                   = c("days", "weeks", "months"),
TimeGroups
                   = "day",
TimeUnit
                  = "day",
TimeUnitAgg
                    = TRUE,
RollOnLag1
                    = "Lag",
Type
SimpleImpute
                    = TRUE,
# Calculated Columns
                     = list("days" = c(seq(1,5,1)),
                             "weeks" = c(seq(1,3,1)),
                            "months" = c(seq(1,2,1)),
MA_RollWindows
                     = list("days" = c(seq(1,5,1)),
                             "weeks" = c(seq(1,3,1)),
                            "months" = c(seq(1,2,1)),
                     = list("days" = c(seq(1,5,1)),
SD_RollWindows
                            "weeks" = c(seq(1,3,1)),
                            "months" = c(seq(1,2,1)),
Skew_RollWindows
                     = list("days" = c(seq(1,5,1)),
                            "weeks" = c(seq(1,3,1)),
                            "months" = c(seq(1,2,1))),
Kurt_RollWindows
                     = list("days" = c(seq(1,5,1)),
                            "weeks" = c(seq(1,3,1)),
                            "months" = c(seq(1,2,1)),
Quantile_RollWindows = list("days" = c(seq(1,5,1)),
                            "weeks" = c(seq(1,3,1)),
                            "months" = c(seq(1,2,1)),
Quantiles_Selected = c("q5","q10","q95"),
Debug
                     = FALSE)
```

AutoLimeAid

AutoLimeAid automated lime

Description

AutoLimeAid automated lime explanations and lime model builds.

```
AutoLimeAid(
  EvalPredsData = data,
  LimeTrainingData = data,
```

```
LimeBins = 10,
LimeIterations = 7500,
LimeNumFeatures = 0,
LimeModel = NULL,
LimeModelPath = NULL,
LimeModelID = NULL,
MLModel = NULL,
MLModelPath = NULL,
MLMetaDataPath = NULL,
MLModelID = NULL,
ModelType = "xgboost",
TargetType = "classification",
NThreads = parallel::detectCores(),
MaxMem = "32G",
FeatureColumnNames = TestModel$ColNames,
IDcols = NULL,
FactorLevelsList = TestModel$FactorLevels,
TargetLevels = NULL,
OneHot = FALSE,
ReturnFeatures = TRUE,
TransformNumeric = FALSE,
BackTransNumeric = FALSE,
TargetColumnName = NULL,
TransformationObject = NULL,
TransID = NULL,
TransPath = NULL,
MDP_Impute = TRUE,
MDP_CharToFactor = TRUE,
MDP_RemoveDates = TRUE,
MDP_MissFactor = "0",
MDP\_MissNum = -1
```

Arguments

EvalPredsData Data used for interpretation. Should be the same kind of data used on ML_Scoring

functions.

LimeTrainingData

Data used to train your ML model

LimeBins Number of bins to use for bucketing numeric variables

LimeIterations Number of lime permutations ran to generate interpretation of predicted value

LimeNumFeatures

How many features do you want to be considering for the Lime evaluation? Set

to 0 to use all features

LimeModel Supply a model if you have one available. Otherwise, provide a model path and

either it will be pulling in or made and saved there.

LimeModelPath Supply a path to where your model is located or to be stored.

LimeModelID Provide a name for your model. If left NULL, a name will be created for you

(and a new model).

MLModel Supply the model object (except for H2O models). Can leave null.

MLModelPath Supply a path to where your model is located. If this is supplied, the model will

be pulled in from file (even if you supply a model)

MLMetaDataPath Supply a path to where your model metadata is located (might be the same of

the MLModelPath). If this is supplied, artifacts about the model will be pulled

in from there.

MLModelID The name of your model as read in the file directory

ModelType Choose from "xgboost", "h2o", "catboost"

TargetType For catboost models only. Select from "classification", "regression", "multi-

class"

NThreads Number of CPU threads.

MaxMem Set the max memory you want to allocate. E.g. "32G"

FeatureColumnNames

The names of the features used in training your ML model (should be returned

with the model or saved to file)

IDcols The ID columns used in either CatBoost or XGBoost

FactorLevelsList

= TestModel\$FactorLevels,

TargetLevels The target levels used in MultiClass models

OneHot Replicate what you did with the model training

ReturnFeatures TRUE or FALSE

TransformNumeric

Replicate what you did with the model training

 ${\tt BackTransNumeric}$

TRUE or FALSE. Replicate what you did with the model training.

TargetColumnName

For the transformations

TransformationObject

TRUE or FALSE. Replicate what you did with the model training.

TransID Set to the ID used in model training.

TransPath Same path used in model training.

MDP_Impute Replicate what you did with the model training.

MDP_CharToFactor

Replicate what you did with the model training.

 ${\tt MDP_RemoveDates}$

Replicate what you did with the model training.

MDP_MissFactor Replicate what you did with the model training.

MDP_MissNum Replicate what you did with the model training.

Value

LimeModelObject and Lime Explanations

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: EvalPlot(), LimeModel(), ParDepCalPlots(), RedYellowGreen(), threshOptim()

```
## Not run:
# CatBoost data generator
dataGenH20 <- function() {</pre>
  Correl <- 0.85
 N <- 10000
  data <- data.table::data.table(Classification = runif(N))</pre>
  data[, x1 := qnorm(Classification)]
  data[, x2 := runif(N)]
 data[, Independent_Variable1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
  data[, Independent_Variable2 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable3 := exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 \label{eq:data_norm} \texttt{data[, Independent\_Variable4 := exp(exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2))))]}
 data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]
 data[, Independent_Variable7 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.25]
 data[, Independent_Variable8 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.75]
  data[, Independent_Variable9 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^2]
 data[, Independent_Variable10 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^4]
  data[, Independent_Variable11 := as.factor(
    ifelse(Independent_Variable2 < 0.20,</pre>
    "A",ifelse(Independent_Variable2 < 0.40,
    "B",ifelse(Independent_Variable2 < 0.6,
    "C",ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
  data[, ':=' (x1 = NULL, x2 = NULL)]
  data[, Classification := ifelse(Classification > 0.5, 1, 0)]
  rm(N.Correl)
  return(data)
data <- dataGenH20()</pre>
TestModel <- RemixAutoML::AutoCatBoostRegression(</pre>
 data,
  TrainOnFull = FALSE,
  ValidationData = NULL.
  TestData = NULL,
  TargetColumnName = "Classification",
  FeatureColNames = c(2:12),
  PrimaryDateColumn = NULL,
  IDcols = NULL,
  MaxModelsInGrid = 3,
  task_type = "GPU"
  eval_metric = "RMSE",
  Trees = 50,
  GridTune = FALSE,
  model_path = "C:/Users/aantico/Documents/Package/GUI_Package",
  metadata_path = NULL,
  ModelID = "Adrian",
  NumOfParDepPlots = 15,
  ReturnModelObjects = TRUE,
  SaveModelObjects = TRUE,
  PassInGrid = NULL)
```

```
# CatBoost Build Lime Model and Explanations
LimeOutput <- RemixAutoML::AutoLimeAid(</pre>
  EvalPredsData = data[c(1,15)],
  LimeTrainingData = data,
 LimeBins = 10,
  LimeIterations = 7500,
  LimeNumFeatures = 0,
  TargetType = "regression",
  LimeModel = NULL,
  LimeModelPath = "C:/Users/aantico/Documents/Package/GUI_Package",
  LimeModelID = "AdrianLime",
  MLModel = NULL,
  MLModelPath = "C:/Users/aantico/Documents/Package/GUI_Package",
  MLMetaDataPath = NULL,
  MLModelID = "Adrian",
  ModelType = "catboost",
  NThreads = parallel::detectCores(),
  MaxMem = "14G",
  FeatureColumnNames = NULL,
  IDcols = NULL,
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  OneHot = FALSE,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP_MissNum = -1)
# Plot lime objects
lime::plot_features(LimeOutput$LimeExplanations)
suppressWarnings(lime::plot_explanations(LimeOutput$LimeExplanations))
# H2O data generator
dataGenH20 <- function() {</pre>
  Correl <- 0.85
  N <- 10000
  data <- data.table::data.table(Classification = runif(N))</pre>
  data[, x1 := qnorm(Classification)]
  data[, x2 := runif(N)]
  data[, Independent_Variable1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
  data[, Independent_Variable2 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable3 := exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2))))]
 data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]
 data[, Independent_Variable7 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.25]
 data[, Independent_Variable8 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.75]
  data[, Independent_Variable9 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^2]
```

```
data[, Independent_Variable10 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^4]
  data[, Independent_Variable11 := as.factor(ifelse(Independent_Variable2 < 0.20,</pre>
    "A",ifelse(Independent_Variable2 < 0.40,
    "B",ifelse(Independent_Variable2 < 0.6,
    "C",ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
  data[, ':=' (x1 = NULL, x2 = NULL)]
  data[, Classification := ifelse(Classification > 0.5, 1, 0)]
  rm(N,Correl)
  return(data)
}
data <- dataGenH20()</pre>
TestModel <- RemixAutoML::AutoH2oDRFClassifier(</pre>
  data = data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Classification",
  FeatureColNames = setdiff(names(data), "Classification"),
  eval_metric = "auc",
  Trees = 50.
  GridTune = FALSE,
  MaxMem = "32G",
  NThreads = max(1, parallel::detectCores()-2),
  MaxModelsInGrid = 10,
  model_path = "C:/Users/aantico/Desktop/Retention Analytics",
  metadata_path = NULL,
  ModelID = "Adrian",
  NumOfParDepPlots = 10,
  ReturnModelObjects = TRUE,
  SaveModelObjects = TRUE,
  IfSaveModel = "standard",
  H2OShutdown = TRUE)
LimeOutput <- RemixAutoML::AutoLimeAid(</pre>
  EvalPredsData = data[c(1,15)],
  LimeTrainingData = data,
  LimeBins = 10,
  LimeIterations = 7500,
  TargetType = "regression",
  LimeNumFeatures = 0,
  LimeModel = NULL,
  LimeModelPath = "C:/Users/aantico/Desktop/Retention Analytics",
  LimeModelID = "AdrianLime",
  MLModel = NULL,
  MLModelPath = "C:/Users/aantico/Desktop/Retention Analytics",
  MLMetaDataPath = NULL,
  MLModelID = "Adrian",
  ModelType = "h2o",
  NThreads = parallel::detectCores(),
  MaxMem = "14G",
  FeatureColumnNames = NULL,
  IDcols = NULL,
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  OneHot = FALSE,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
```

```
BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP RemoveDates = TRUE.
  MDP MissFactor = "0".
 MDP_MissNum = -1)
# Plot lime objects
lime::plot_features(LimeOutput$LimeExplanations)
suppressWarnings(lime::plot_explanations(LimeOutput$LimeExplanations))
# XGBoost create data function
dataGenXGBoost <- function() {</pre>
  Correl <- 0.85
  N <- 10000
  data <- data.table::data.table(Classification = runif(N))</pre>
  data[, x1 := qnorm(Classification)]
  data[, x2 := runif(N)]
 data[, Independent_Variable1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
  data[, Independent_Variable2 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable3 := exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2))))]
 data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
 data[, Independent_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]
 data[, Independent_Variable7 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.25]
 data[, Independent_Variable8 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.75]
  data[, Independent_Variable9 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^2]
 data[, Independent_Variable10 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^4]
  data[, Independent_Variable11 := as.factor(ifelse(Independent_Variable2 < 0.20,</pre>
    "A",ifelse(Independent_Variable2 < 0.40,
    "B",ifelse(Independent_Variable2 < 0.6,</pre>
    "C",ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
  data[, ':=' (x1 = NULL, x2 = NULL)]
  data[, Classification := ifelse(Classification > 0.5, 1, 0)]
  rm(Correl,N)
  return(data)
data <- dataGenXGBoost()</pre>
TestModel <- RemixAutoML::AutoXGBoostClassifier(</pre>
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Classification",
  FeatureColNames = 2:12,
  IDcols = NULL.
  eval_metric = "auc",
  Trees = 50.
  GridTune = FALSE,
  grid_eval_metric = "auc",
  MaxModelsInGrid = 10,
  NThreads = 8,
  TreeMethod = "hist",
```

154 AutoMarketBasketModel

```
model_path = "C:/Users/aantico/Desktop/Retention Analytics",
  metadata_path = NULL,
  ModelID = "Adrian2",
  NumOfParDepPlots = 3,
  ReturnModelObjects = TRUE,
  ReturnFactorLevels = TRUE,
  SaveModelObjects = TRUE,
  PassInGrid = NULL)
# XGBoost Build Lime and Generate Output
LimeOutput <- RemixAutoML::AutoLimeAid(</pre>
  EvalPredsData = data[c(1,15)],
 LimeTrainingData = data,
 LimeBins = 10,
  TargetType = "classification",
  LimeIterations = 7500,
  LimeNumFeatures = 0,
  LimeModel = NULL,
 LimeModelPath = "C:/Users/aantico/Desktop/Retention Analytics",
  LimeModelID = "Adrian2Lime",
  MLModel = NULL,
  MLModelPath = "C:/Users/aantico/Desktop/Retention Analytics",
  MLMetaDataPath = NULL,
  MLModelID = "Adrian2",
  ModelType = "xgboost",
  NThreads = parallel::detectCores(),
  MaxMem = "14G",
  FeatureColumnNames = NULL,
  IDcols = NULL.
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  OneHot = FALSE,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP_MissNum = -1)
# Plot lime objects
lime::plot_features(LimeOutput$LimeExplanations)
suppressWarnings(lime::plot_explanations(LimeOutput$LimeExplanations))
## End(Not run)
```

AutoMarketBasketModel 155

Description

AutoMarketBasketModel function runs a market basket analysis automatically. It will convert your data, run the algorithm, and add on additional significance values not originally contained within.

Usage

```
AutoMarketBasketModel(
data,
OrderIDColumnName,
ItemIDColumnName,
LHS_Delimeter = ",",
Support = 0.001,
Confidence = 0.1,
MaxLength = 2,
MinLength = 2,
MaxTime = 5
)
```

Arguments

data This is your transactions data set

OrderIDColumnName

Supply your column name for the Order ID Values

ItemIDColumnName

Supply your column name for the Item ID Values

 $\hbox{LHS_Delimeter} \quad \hbox{Default delimeter for separating multiple ItemID's is a comma.}$

Support Threshold for inclusion using support

Confidence Threshold for inclusion using confidence

Maximum combinations of Item ID (number of items in basket to consider)

MinLength Minimum length of combinations of ItemID (number of items in basket to con-

sider)

Max run time per iteration (default is 5 seconds)

Author(s)

Adrian Antico and Douglas Pestana

See Also

Chi-sq statistics and p-values based on this paper: http://www.cs.bc.edu/~alvarez/ChiSquare/chi2tr.pdf

```
## Not run:
rules_data <- AutoMarketBasketModel(
   data,
   OrderIDColumnName = "OrderNumber",
   ItemIDColumnName = "ItemNumber",
   LHS_Delimeter = ",",
   Support = 0.001,
   Confidence = 0.1,</pre>
```

156 AutoNLS

```
MaxLength = 2,
MinLength = 2,
MaxTime = 5)
## End(Not run)
```

AutoNLS

AutoNLS is a function for automatically building nls models

Description

This function will build models for 9 different nls models, along with a non-parametric monotonic regression and a polynomial regression. The models are evaluated, a winner is picked, and the predicted values are stored in your data table.

Usage

```
AutoNLS(data, y, x, monotonic = TRUE)
```

Arguments

data	Data is the data table you are building the modeling on
у	Y is the target variable name in quotes
x	X is the independent variable name in quotes
monotonic	This is a TRUE/FALSE indicator - choose TRUE if you want monotonic regression over polynomial regression

Value

A list containing "PredictionData" which is a data table with your original column replaced by the nls model predictions; "ModelName" the model name; "ModelObject" The winning model to later use; "EvaluationMetrics" Model metrics for models with ability to build.

Author(s)

Adrian Antico

```
## Not run:
# Create Growth Data
data <- data.table::data.table(Target = seq(1, 500, 1),
    Variable = rep(1, 500))
for (i in as.integer(1:500)) {
    if (i == 1) {
        var <- data[i, "Target"][[1]]
        data.table::set(data, i = i, j = 2L,
            value = var * (1 + runif(1) / 100))
    } else {
        var <- data[i - 1, "Variable"][[1]]
        data.table::set(data, i = i, j = 2L,
            value = var * (1 + runif(1) / 100))</pre>
```

AutoRecomDataCreate 157

```
}
# Add jitter to Target
data[, Target := jitter(Target, factor = 0.25)]
# To keep original values
data1 <- data.table::copy(data)</pre>
# Merge and Model data
data11 <- AutoNLS(</pre>
  data = data,
 y = "Target",
  x = "Variable"
 monotonic = TRUE)
# Join predictions to source data
data2 <- merge(</pre>
  data1,
  data11$PredictionData,
  by = "Variable",
  all = FALSE)
# Plot output
ggplot2::ggplot(data2, ggplot2::aes(x = Variable)) +
  ggplot2::geom_line(ggplot2::aes(y = data2[["Target.x"]],
                                   color = "Target")) +
  ggplot2::geom_line(ggplot2::aes(y = data2[["Target.y"]],
                                   color = "Predicted")) +
 RemixAutoML::ChartTheme(Size = 12) +
  ggplot2::ggtitle(paste0("Growth Models AutoNLS: ",
    data11$ModelName)) +
  ggplot2::ylab("Target Variable") +
  ggplot2::xlab("Independent Variable") +
  ggplot2::scale_colour_manual("Values",
    breaks = c("Target", "Predicted"),
    values = c("red", "blue"))
summary(data11$ModelObject)
data11$EvaluationMetrics
## End(Not run)
```

AutoRecomDataCreate Convert transactional data.table to a binary ratings matrix

Description

Convert transactional data.table to a binary ratings matrix

```
AutoRecomDataCreate(
  data,
```

158 AutoRecommender

```
EntityColName = "CustomerID",
  ProductColName = "StockCode",
  MetricColName = "TotalSales",
  ReturnMatrix = FALSE
)
```

Arguments

data This is your transactional data.table. Must include an Entity (typically cus-

tomer), ProductCode (such as SKU), and a sales metric (such as total sales).

EntityColName This is the column name in quotes that represents the column name for the En-

tity, such as customer

ProductColName This is the column name in quotes that represents the column name for the prod-

uct, such as SKU

MetricColName This is the column name in quotes that represents the column name for the met-

ric, such as total sales

ReturnMatrix Set to FALSE to coerce the object (desired route) or TRUE to return a matrix

Value

A BinaryRatingsMatrix

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Recommenders: AutoRecommenderScoring(), AutoRecommender()

Examples

```
## Not run:
RatingsMatrix <- AutoRecomDataCreate(
  data,
  EntityColName = "CustomerID",
  ProductColName = "StockCode",
  MetricColName = "TotalSales",
  ReturnMatrix = TRUE)
## End(Not run)</pre>
```

AutoRecommender

Automatically build the best recommender model among models available.

Description

This function returns the winning model that you pass onto AutoRecommenderScoring

AutoRecommender 159

Usage

```
AutoRecommender(
  data,
  Partition = "Split",
  KFolds = 1,
  Ratio = 0.75,
  Given = 1,
  RatingType = "TopN",
  RatingSKeep = 20,
  SkipModels = "AssociationRules",
  ModelMetric = "TPR"
)
```

Arguments

data	This is your BinaryRatingsMatrix. See function RecomDataCreate
Partition	Choose from "split", "cross-validation", "bootstrap". See evaluationScheme in recommenderlab for details.
KFolds	Choose 1 for traditional train and test. Choose greater than 1 for the number of cross validations
Ratio	The ratio for train and test. E.g. 0.75 for 75 percent data allocated to training
Given	The number of products you would like to evaluate. Negative values implement all-but schemes.
RatingType	Choose from "TopN", "ratings", "ratingMatrix"
RatingsKeep	The total ratings you wish to return. Default is 20.
SkipModels	$Association Rules \ runs \ the \ slowest \ and \ may \ crash \ your \ system. \ Choose \ from: \\ "Association Rules", "ItemBased CF", "UserBased CF", "Popular Items", "Random Items"$
ModelMetric	Choose from "Precision", "Recall", "TPR", or "FPR"

Value

The winning model used for scoring in the AutoRecommenderScoring function

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Recommenders: AutoRecomDataCreate(), AutoRecommenderScoring()

```
## Not run:
WinningModel <- AutoRecommender(
   RatingsMatrix,
   Partition = "Split",
   KFolds = 1,
   Ratio = 0.75,
   Given = 1,
   RatingType = "TopN",</pre>
```

```
RatingsKeep = 20,
SkipModels = "AssociationRules",
ModelMetric = "TPR")
## End(Not run)
```

AutoRecommenderScoring

 $\label{thm:coms} \textit{The AutoRecomScoring function scores recommender models from AutoRecommender()}$

Description

This function will take your ratings matrix and model and score your data in parallel.

Usage

```
AutoRecommenderScoring(
  data,
  WinningModel,
  EntityColName = "CustomerID",
  ProductColName = "StockCode",
  NumItemsReturn = 1
)
```

Arguments

data The binary ratings matrix from RecomDataCreate()

WinningModel The winning model returned from AutoRecommender()

EntityColName Typically your customer ID

ProductColName Something like "StockCode"

NumItemsReturn Number of items to return on scoring

Value

Returns the prediction data

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Recommenders: AutoRecomDataCreate(), AutoRecommender()

AutoTBATS 161

Examples

```
## Not run:
Results <- AutoRecommenderScoring(</pre>
  data = AutoRecomDataCreate(
      data,
      EntityColName = "CustomerID",
      ProductColName = "StockCode"
      MetricColName = "TotalSales"),
  WinningModel = AutoRecommender(
      AutoRecomDataCreate(
        data.
        EntityColName = "CustomerID",
        ProductColName = "StockCode",
        MetricColName = "TotalSales"),
      Partition = "Split",
      KFolds = 2,
      Ratio = 0.75,
      RatingType = "TopN",
      RatingsKeep = 20,
      SkipModels = "AssociationRules",
      ModelMetric = "TPR"),
  EntityColName = "CustomerID",
  ProductColName = "StockCode")
## End(Not run)
```

AutoTBATS

AutoTBATS

Description

AutoTBATS is a multi-armed bandit model testing framework for AR and SAR NNets. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic nnetar model from the forecast package. Depending on how many lags, seasonal lags, and fourier pairs you test the number of combinations of features to test begins to approach 10,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags, seasonal lags, and fourier pairs. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

```
AutoTBATS(
  data,
  TargetVariableName,
  DateColumnName,
  TimeAggLevel = "week",
```

162 AutoTBATS

```
EvaluationMetric = "MAE",
NumHoldOutPeriods = 5L,
NumFCPeriods = 5L,
MaxLags = 5L,
MaxMovingAverages = 5L,
MaxSeasonalPeriods = 1L,
TrainWeighting = 0.5,
MaxConsecutiveFails = 12L,
MaxNumberModels = 100L,
MaxRunTimeMinutes = 10L
```

Arguments

data Source data.table

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to use in the internal auto.arima of

tbats

MaxMovingAverages

A single value of the max number of moving averages to use in the internal

auto.arima of tbats

MaxSeasonalPeriods

A single value for the max allowable seasonal periods to be tested in the tbats

framework

TrainWeighting Model ranking is based on a weighted average of training metrics and out of

sample metrics. Supply the weight of the training metrics, such as $0.50\ \text{for}\ 50$

percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

MaxNumberModels

Indicate the maximum number of models to test.

 ${\tt MaxRunTimeMinutes}$

Indicate the maximum number of minutes to wait for a result.

Author(s)

Adrian Antico

See Also

Other Automated Time Series: AutoBanditNNet(), AutoBanditSarima(), AutoCatBoostFreqSizeScoring(), AutoH2oGBMFreqSizeScoring(), AutoTS()

AutoTransformationCreate 163

AutoTransformationCreate

AutoTransformationCreate is a function for automatically identifying the optimal transformations for numeric features and transforming them once identified.

Description

AutoTransformationCreate is a function for automatically identifying the optimal transformations for numeric features and transforming them once identified. This function will loop through your selected transformation options (YeoJohnson, BoxCox, Asinh, Asin, and Logit) and find the one that produces data that is the closest to normally distributed data. It then makes the transformation and collects the metadata information for use in the AutoTransformationScore() function, either by returning the objects (always) or saving them to file (optional).

Usage

```
AutoTransformationCreate(
  data,
  ColumnNames = NULL,
Methods = c("BoxCox", "YeoJohnson", "Asinh", "Log", "LogPlus1", "Asin", "Logit",
    "Identity"),
  Path = NULL,
  TransID = "ModelID",
  SaveOutput = FALSE
)
```

Arguments

data This is your source data

ColumnNames List your columns names in a vector, for example, c("Target", "IV1")

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Asin",

"Logit", and "Identity".

Path Set to the directly where you want to save all of your modeling files

TransID Set to a character value that corresponds with your modeling project

SaveOutput Set to TRUE to save necessary file to run AutoTransformationScore()

Value

data with transformed columns and the transformation object for back-transforming later

Author(s)

Adrian Antico

AutoTransformationScore

See Also

164

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator() CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

Examples

```
## Not run:
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Adrian = runif(N))</pre>
data[, x1 := qnorm(Adrian)]
data[, x2 := runif(N)]
data[, Adrian1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data <- RemixAutoML::AutoTransformationCreate(</pre>
   ColumnNames = "Sample",
   Methods = c("BoxCox",
                "YeoJohnson",
                "Asinh",
               "Log",
                "LogPlus1",
                "Asin",
                "Logit",
                "Identity"),
   Path = NULL,
   TransID = "Trans"
   SaveOutput = FALSE)
## End(Not run)
```

AutoTransformationScore

 $AutoTransformationScore()\ is\ a\ the\ complimentary\ function\ to\ Auto-TransformationCreate()$

Description

AutoTransformationScore() is a the compliment function to AutoTransformationCreate(). Automatically apply or inverse the transformations you identified in AutoTransformationCreate() to other data sets. This is useful for applying transformations to your validation and test data sets for modeling. It's also useful for back-transforming your target and prediction columns after you have build and score your models so you can obtain statistics on the original features.

```
AutoTransformationScore(
   ScoringData,
   FinalResults,
   Type = "Inverse",
```

AutoTransformationScore 165

```
TransID = "TestModel",
Path = NULL
)
```

Arguments

ScoringData This is your source data

FinalResults This is the FinalResults output object from AutoTransformationCreate().

Type Set to "Inverse" to back-transfrom or "Apply" for applying the transformation.

TransID Set to a character value that corresponds with your modeling project

Path Set to the directly where you want to save all of your modeling files

Value

data with transformed columns

Author(s)

Adrian Antico

See Also

```
Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()
```

```
## Not run:
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Adrian = runif(N))
data[, x1 := qnorm(Adrian)]
data[, x2 := runif(N)]
data[, Adrian1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data <- RemixAutoML::AutoTransformationScore(
    data,
    FinalResults,
    Path = NULL,
    TransID = "Trans")
## End(Not run)</pre>
```

166 AutoTS

AutoTS

AutoTS is an automated time series modeling function

Description

Step 1 is to build all the models and evaluate them on the number of HoldOutPeriods periods you specify. Step 2 is to pick the winner and rebuild the winning model on the full data set. Step 3 is to generate forecasts with the final model for FCPeriods that you specify. AutoTS builds the best time series models for each type, using optimized box-cox transformations and using a user-supplied frequency for the ts data conversion along with a model-based frequency for the ts data conversion, compares all types, selects the winner, and generates a forecast. Models include:

Usage

```
AutoTS(
  data,
  TargetName = "Target",
 DateName = "DateTime",
 FCPeriods = 30,
 HoldOutPeriods = 30,
 EvaluationMetric = "MAPE",
  InnerEval = "AICc",
 TimeUnit = "day",
 Lags = 25,
  SLags = 2,
 MaxFourierPairs = 0,
 NumCores = 4,
  SkipModels = NULL,
  StepWise = TRUE,
  TSClean = TRUE,
 ModelFreq = TRUE,
 PrintUpdates = FALSE,
 PlotPredictionIntervals = TRUE
)
```

Arguments

data is the source time series data as a data.table - or a data structure that can be

converted to a data.table

TargetName is the name of the target variable in your data.table

DateName is the name of the date column in your data.table

FCPeriods is the number of periods into the future you wish to forecast

HoldOutPeriods is the number of periods to use for validation testing

EvaluationMetric

Set this to either "MAPE", "MSE", or "MAE". Default is "MAPE"

InnerEval Choose from AICC, AIC, and BIC. These are what the time series models use

internally to optimize

TimeUnit is the level of aggregation your dataset comes in. Choices include: hour, day,

week, month, quarter, year, 1Min, 5Min, 10Min, 15Min, and 30Min

AutoTS 167

Lags is the number of lags you wish to test in various models (same as moving aver-

ages)

SLags is the number of seasonal lags you wish to test in various models (same as mov-

ing averages)

MaxFourierPairs

Set the max number of Fourier terms to test out. They will be utilized in the

ARIMA and NN models.

NumCores is the number of cores available on your computer

SkipModels Don't run specified models - e.g. exclude all models "DSHW" "ARFIMA"

"ARIMA" "ETS" "NNET" "TBATS" "TSLM"

StepWise Set to TRUE to have ARIMA and ARFIMA run a stepwise selection process.

Otherwise, all models will be generated in parallel execution, but still run much

slower.

TSClean Set to TRUE to have missing values interpolated and outliers replaced with in-

terpolated values: creates separate models for a larger comparison set

ModelFreq Set to TRUE to run a separate version of all models where the time series fre-

quency is chosen algorithmically

PrintUpdates Set to TRUE for a print to console of function progress

PlotPredictionIntervals

Set to FALSE to not print prediction intervals on your plot output

Details

DSHW: Double Seasonal Holt Winters

ARFIMA: Auto Regressive Fractional Integrated Moving Average

ARIMIA: Stepwise Auto Regressive Integrated Moving Average with specified max lags, seasonal lags, moving averages, and seasonal moving averages

ETS: Additive and Multiplicitive Exponential Smoothing and Holt Winters

NNetar: Auto Regressive Neural Network models automatically compares models with 1 lag or 1 seasonal lag compared to models with up to N lags and N seasonal lags

TBATS: Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components

TSLM: Time Series Linear Model - builds a linear model with trend and season components extracted from the data

Value

Returns a list containing 1: A data.table object with a date column and the forecasted values; 2: The model evaluation results; 3: The champion model for later use if desired; 4: The name of the champion model; 5. A time series ggplot with historical values and forecasted values with 80

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Automated Time Series: AutoBanditNNet(), AutoBanditSarima(), AutoCatBoostFreqSizeScoring(), AutoH2oGBMFreqSizeScoring(), AutoTBATS()

168 AutoWord2VecModeler

Examples

```
## Not run:
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
 Target = stats::filter(rnorm(100,
                              mean = 50,
                              sd = 20),
                        filter=rep(1,10),
                        circular=TRUE))
data[, temp := seq(1:100)][, DateTime := DateTime - temp][
 , temp := NULL]
data <- data[order(DateTime)]</pre>
output <- AutoTS(</pre>
 data,
                = "Target",
= "DateTime",
 TargetName
 DateName
FCPeriods
                       = 1,
 HoldOutPeriods
                      = 1,
= 1,
= "MAPE",
 EvaluationMetric
                       = "AICc",
 InnerEval
                        = "day",
 TimeUnit
                       = 1,
 Lags
 SLags = 1,
MaxFourierPairs = 0,
NumCores
            = 4,
= c("NNET","TBATS","ETS",
 NumCores
  SkipModels
   "TSLM", "ARFIMA", "DSHW"),
  StepWise
           = TRUE,
  TSClean
                        = FALSE,
               = TRUE,
 ModelFreq
 PlotPredictionIntervals = TRUE,
 PrintUpdates = FALSE)
ForecastData <- output$Forecast
ModelEval <- output$EvaluationMetrics
WinningModel <- output$TimeSeriesModel</pre>
## End(Not run)
```

AutoWord2VecModeler

Automated word2vec data generation via H2O

Description

This function allows you to automatically build a word2vec model and merge the data onto your supplied dataset

```
AutoWord2VecModeler(
  data,
  BuildType = "Combined",
  stringCol = c("Text_Col1", "Text_Col2"),
  KeepStringCol = FALSE,
  model_path = NULL,
```

AutoWord2VecModeler 169

```
vects = 100,
SaveStopWords = FALSE,
MinWords = 1,
WindowSize = 12,
Epochs = 25,
StopWords = NULL,
SaveModel = "standard",
Threads = max(1, parallel::detectCores() - 2),
MaxMemory = "28G",
SaveOutput = FALSE
)
```

Arguments

data Source data table to merge vects onto

BuildType Choose from "individual" or "combined". Individual will build a model for every

text column. Combined will build a single model for all columns.

stringCol A string name for the column to convert via word2vec

KeepStringCol Set to TRUE if you want to keep the original string column that you convert via

word2vec

model_path A string path to the location where you want the model and metadata stored

vects The number of vectors to retain from the word2vec model

SaveStopWords Set to TRUE to save the stop words used

MinWords For H2O word2vec model
WindowSize For H2O word2vec model
Epochs For H2O word2vec model
StopWords For H2O word2vec model

SaveModel Set to "standard" to save normally; set to "mojo" to save as mojo. NOTE: while

you can save a mojo, I haven't figured out how to score it in the AutoH20Scoring

function.

Threads Number of available threads you want to dedicate to model building

MaxMemory Amount of memory you want to dedicate to model building

SaveOutput Set to TRUE to save your models to file

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), ContinuousTimeDataGenera CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

170 AutoWordFreq

Examples

```
## Not run:
data <- AutoWord2VecModeler(</pre>
  data,
  BuildType = "individual",
  stringCol = c("Text_Col1", "Text_Col2"),
  KeepStringCol = FALSE,
  model_path = normalizePath("./"),
  vects = 100,
  SaveStopWords = FALSE,
  MinWords = 1,
  WindowSize = 1,
  Epochs = 25,
  StopWords = NULL,
  SaveModel = "standard",
  Threads = max(1,parallel::detectCores()-2),
  MaxMemory = "28G",
  SaveOutput = TRUE)
## End(Not run)
```

AutoWordFreq

Automated Word Frequency and Word Cloud Creation

Description

This function builds a word frequency table and a word cloud. It prepares data, cleans text, and generates output.

Usage

```
AutoWordFreq(
  data,
  TextColName = "DESCR",
  GroupColName = "ClusterAllNoTarget",
  GroupLevel = 0,
  RemoveEnglishStopwords = TRUE,
  Stemming = TRUE,
  StopWords = c("bla", "bla2")
)
```

Arguments

data Source data table

TextColName A string name for the column

GroupColName Set to NULL to ignore, otherwise set to Cluster column name (or factor column

name)

GroupLevel Must be set if GroupColName is defined. Set to cluster ID (or factor level)

RemoveEnglishStopwords

Set to TRUE to remove English stop words, FALSE to ignore

Stemming Set to TRUE to run stemming on your text data
StopWords Add your own stopwords, in vector format

Author(s)

Adrian Antico

See Also

Other EDA: ProblematicFeatures()

Examples

```
## Not run:
data <- data.table::data.table(</pre>
DESCR = c(
              "Gru", "Gru", "Gru", "Gru", "Gru", "Gru", "Gru",
"Gru", "Gru", "Gru", "Gru", "Gru", "Urkle",
"Urkle", "Urkle", "Urkle", "Urkle", "Urkle",
               "Gru", "Gru", "Gru", "bears", "bears", "bears",
               "bears", "bears", "smug", "smug", "smug", "smug",
              "smug", "smug", "smug", "smug", "smug", "smug", "smug", "smug", "eats", "eats", "eats", "eats", "beats", "beats
               "beats", "beats", "beats", "beats", "beats",
              "beats", "science", "science", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Schrute", "Schrute", "Schrute", "Schrute", "James", 
               "James", "James", "James", "James", "James",
               "Halpert", "Halpert", "Halpert", "Halpert"))
data <- AutoWordFreq(</pre>
               data,
               TextColName = "DESCR",
               GroupColName = NULL,
               GroupLevel = NULL,
               RemoveEnglishStopwords = FALSE,
               Stemming = FALSE,
               StopWords = c("Bla"))
 ## End(Not run)
```

 ${\tt AutoXGBoostCARMA}$

AutoXGBoostCARMA Automated XGBoost Calendar, Holiday, ARMA, and Trend Variables Forecasting

Description

AutoXGBoostCARMA Automated XGBoost Calendar, Holiday, ARMA, and Trend Variables Forecasting. Create hundreds of thousands of time series forecasts using this function.

```
AutoXGBoostCARMA(
  data,
  NonNegativePred = FALSE,
```

```
RoundPreds = FALSE,
 TrainOnFull = FALSE,
 TargetColumnName = NULL,
 DateColumnName = NULL,
 HierarchGroups = NULL,
 GroupVariables = NULL,
 FC_Periods = 5,
 TimeUnit = "week",
 TimeGroups = c("weeks", "months"),
 TargetTransformation = FALSE,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 AnomalyDetection = NULL,
 XREGS = NULL,
 Lags = c(1:5),
 MA_Periods = c(1:5),
  SD_Periods = NULL,
  Skew_Periods = NULL,
 Kurt_Periods = NULL,
 Quantile_Periods = NULL,
 Quantiles_Selected = NULL,
 Difference = TRUE,
 FourierTerms = 6,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
    "isoweek", "month", "quarter", "year"),
 HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
 HolidayLags = 1L,
 HolidayMovingAverages = 3L,
 TimeTrendVariable = FALSE,
 DataTruncate = FALSE,
 ZeroPadSeries = NULL,
  SplitRatios = c(1 - 10/100, 10/100),
 TreeMethod = "hist",
 NThreads = max(1, parallel::detectCores() - 2L),
 EvalMetric = "MAE",
 GridTune = FALSE,
 GridEvalMetric = "mae",
 ModelCount = 1L,
 NTrees = 1000L,
 PartitionType = "timeseries",
 Timer = TRUE,
 DebugMode = FALSE
)
```

Arguments

data Supply your full series data set here

NonNegativePred

TRUE or FALSE

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column name of your target variables column. E.g. "Target"

DateColumnName List the column name of your date column. E.g. "DateTime"

HierarchGroups = NULL Character vector or NULL with names of the columns that form the

interaction hierarchy

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year"

TimeGroups Select time aggregations for adding various time aggregated GDL features.

TargetTransformation

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Methods Transformation options to test which include "BoxCox", "Asinh", "Asin", "Log",

"LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

 $list("tstat_high" = 4, tstat_low = -4)$

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52)

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52)

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52)

Quantiles_Selected

and and an area of the second and area of the second area of the second and area of the second and area of the second area of the second and area of the second and area of the second area of the second and area of the second and area of the second and area of the second area of the s

Select from the following c("q5","q10","q15","q20","q25","q30","q35","q40","q45","q50","q55","q6

Difference Set to TRUE to put the I in ARIMA

FourierTerms Set to the max number of pairs

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup",

"OtherEcclesticalFeasts"

HolidayLags Number of lags for the holiday counts

HolidayMovingAverages

Number of moving averages for holiday counts

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments

by one for each success time point.

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

TreeMethod Choose from "hist", "gpu_hist"

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

EvalMetric Select from "r2", "RMSE", "MSE", "MAE"

GridTune Set to TRUE to run a grid tune

GridEvalMetric This is the metric used to find the threshold 'poisson', 'mae', 'mape', 'mse',

'msle', 'kl', 'cs', 'r2'

ModelCount Set the number of models to try in the grid tune

NTrees Select the number of trees you want to have built to train the model

PartitionType Select "random" for random data partitioning "time" for partitioning by time

frames

Timer Setting to TRUE prints out the forecast number while it is building

DebugMode Setting to TRUE generates printout of all header code comments during run time

of function

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostVectorCARMA(), AutoH2OCARMA(), AutoHurdleCARMA()

```
## Not run:

# Load Walmart Data from Dropbox----
data <- data.table::fread(
    "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")</pre>
```

```
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
  , Counts := NULL]
# Subset Columns (remove IsHoliday column)----
keep <- c("Store","Dept","Date","Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
data <- data[Store %in% c(1,2)]</pre>
xregs <- data.table::copy(data)</pre>
xregs[, GroupVar := do.call(paste, c(.SD, sep = " ")), .SDcols = c("Store","Dept")]
xregs[, c("Store","Dept") := NULL]
data.table::setnames(xregs, "Weekly_Sales", "Other")
xregs[, Other := jitter(Other, factor = 25)]
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
 # Build forecast
XGBoostResults <- AutoXGBoostCARMA(</pre>
  # Data Artifacts
  data = data.
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Data Wrangling Features
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "timeseries",
  AnomalyDetection = NULL,
  # Productionize
  FC_Periods = 4,
  TrainOnFull = FALSE,
  TreeMethod = "hist",
  EvalMetric = "RMSE",
  GridTune = FALSE,
  ModelCount = 5,
  NThreads = 8,
  Timer = TRUE,
  DebugMode = FALSE,
  # Target Transformations
  TargetTransformation = TRUE,
  Methods = c("BoxCox", "Asin", "Asin", "Log",
              "LogPlus1", "Logit", "YeoJohnson"),
  Difference = FALSE,
  # Features
  Lags = list("weeks" = seq(1L, 10L, 1L),
              "months" = seq(1L, 5L, 1L)),
```

```
MA_Periods = list("weeks" = seq(5L, 20L, 5L),
                     "months" = seq(2L, 10L, 2L),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  Quantiles_Selected = c("q5", "q95"),
  XREGS = xregs,
  FourierTerms = 4,
  CalendarVariables = c("week", "month", "quarter"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup",
    "ChristmasGroup", "OtherEcclesticalFeasts"),
  TimeTrendVariable = TRUE,
  NTrees = 300)
UpdateMetrics <- print(</pre>
  XGBoostResults$ModelInformation$EvaluationMetrics[
    Metric == "MSE", MetricValue := sqrt(MetricValue)])
print(UpdateMetrics)
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(-R2_Metric)]
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(MAE_Metric)]
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(MSE_Metric)]
XGBoostResults \$ ModelInformation \$ Evaluation \texttt{MetricsByGroup[order(MAPE\_Metric)]}
## End(Not run)
```

AutoXGBoostClassifier AutoXGBoostClassifier is an automated XGBoost modeling framework with grid-tuning and model evaluation

Description

AutoXGBoostClassifier is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

```
AutoXGBoostClassifier(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  IDcols = NULL,
  model_path = NULL,
```

```
metadata_path = NULL,
ModelID = "FirstModel"
ReturnFactorLevels = TRUE,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
Verbose = 0L,
NumOfParDepPlots = 3L,
NThreads = parallel::detectCores(),
eval_metric = "auc",
TreeMethod = "hist",
GridTune = FALSE,
BaselineComparison = "default",
MaxModelsInGrid = 10L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 24L * 60L,
PassInGrid = NULL,
Shuffles = 1L,
Trees = 1000L,
eta = seq(0.05, 0.4, 0.05),
max_depth = seq(4L, 16L, 2L),
min_child_weight = seq(1, 10, 1),
subsample = seq(0.55, 1, 0.05),
colsample_bytree = seq(0.55, 1, 0.05)
```

Arguments

)

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

 ${\tt TargetColumnName}$

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnFactorLevels

TRUE or FALSE. Set to FALSE to not return factor levels.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

Set to 0 if you want to suppress model evaluation updates in training Verbose

NumOfParDepPlots

eval metric TreeMethod

Tell the function the number of partial dependence calibration plots you want to

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

This is the metric used to identify best grid tuned model. Choose from "logloss", "error", "aucpr", "auc"

Set to TRUE to run a grid tuning procedure GridTune

Choose from "hist", "gpu_hist"

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

PassInGrid Default is NULL. Provide a data.table of grid options from a previous run.

Shuffles Numeric. List a number to let the program know how many times you want to

shuffle the grids for grid tuning

Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-Trees

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

eta Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

> erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

Bandit grid partitioned. Number, or vector for depth to test. For running grid max_depth

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

min_child_weight

Number, or vector for min child weight to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

Number, or vector for subsample to test. For running grid tuning, a NULL value subsample

supplied will mean these values are tested seq(0.55, 1.0, 0.05)

colsample_bytree

Number, or vector for colsample_bytree to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier() AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000L
 ID = 2L,
 ZIP = 0L,
  AddDate = FALSE,
  Classification = TRUE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostClassifier(</pre>
    # GPU or CPU
    TreeMethod = "hist",
    NThreads = parallel::detectCores(),
    # Metadata arguments
    model_path = normalizePath("./"),
    metadata_path = NULL,
    ModelID = "Test_Model_1",
    ReturnFactorLevels = TRUE,
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
    # Data arguments
    data = data,
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %chin%
      c("IDcol_1", "IDcol_2", "Adrian")],
    IDcols = c("IDcol_1","IDcol_2"),
    # Model evaluation
    eval_metric = "auc",
    NumOfParDepPlots = 3L,
    # Grid tuning arguments
    PassInGrid = NULL,
    GridTune = TRUE,
    BaselineComparison = "default",
    MaxModelsInGrid = 10L,
    MaxRunsWithoutNewWinner = 20L,
```

```
MaxRunMinutes = 24L*60L,
Verbose = 1L,

# Trees, Depth, and LearningRate used in the bandit grid tuning
# Must set Trees to a single value if you are not grid tuning
# The ones below can be set to NULL and the values in the
# example will be used
Shuffles = 1L,
Trees = seq(50L, 500L, 50L),
eta = seq(0.05,0.40,0.05),
max_depth = seq(4L, 16L, 2L),
min_child_weight = seq(1.0, 10.0, 1.0),
subsample = seq(0.55, 1.0, 0.05),
colsample_bytree = seq(0.55, 1.0, 0.05))
## End(Not run)
```

AutoXGBoostHurdleModel

AutoXGBoostHurdleModel is generalized hurdle modeling framework

Description

AutoXGBoostHurdleModel is generalized hurdle modeling framework

```
AutoXGBoostHurdleModel(
  TreeMethod = "hist",
  TrainOnFull = FALSE,
  PassInGrid = NULL,
  NThreads = max(1L, parallel::detectCores() - 2L),
  ModelID = "ModelTest",
  Paths = NULL,
  MetaDataPaths = NULL,
  data,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  IDcols = NULL,
  TransformNumericColumns = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  NumOfParDepPlots = 10L,
  GridTune = FALSE,
  grid_eval_metric = "accuracy",
  MaxModelsInGrid = 1L,
  BaselineComparison = "default",
  MaxRunsWithoutNewWinner = 10L,
```

AutoXGBoostHurdleModel 181

```
MaxRunMinutes = 60L,
Trees = list(classifier = seq(1000, 2000, 100), regression = seq(1000, 2000, 100)),
eta = list(classifier = seq(0.05, 0.4, 0.05), regression = seq(0.05, 0.4, 0.05)),
max_depth = list(classifier = seq(4L, 16L, 2L), regression = seq(4L, 16L, 2L)),
min_child_weight = list(classifier = seq(1, 10, 1), regression = seq(1, 10, 1)),
subsample = list(classifier = seq(0.55, 1, 0.05), regression = seq(0.55, 1, 0.05)),
colsample_bytree = list(classifier = seq(0.55, 1, 0.05), regression = seq(0.55, 1, 0.05)))
```

Arguments

TreeMethod Set to hist or gpu_hist depending on if you have an xgboost installation capable

of gpu processing

TrainOnFull Set to TRUE to train model on 100 percent of data

PassInGrid Pass in a grid for changing up the parameter settings for catboost NThreads Set to the number of threads you would like to dedicate to training

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-

DateColumn)

IDcols Includes PrimaryDateColumn and any other columns you want returned in the

validation data with predictions

TransformNumericColumns

Transform numeric column inside the AutoCatBoostRegression() function

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

ReturnModelObjects

Set to TRUE to return all model objects

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

GridTune Set to TRUE if you want to grid tune the models

```
grid_eval_metric
```

Select the metric to optimize in grid tuning. "accuracy", "microauc", "logloss"

MaxModelsInGrid

Set to a numeric value for the number of models to try in grid tune

BaselineComparison

"default"

MaxRunsWithoutNewWinner

Number of runs without a new winner before stopping the grid tuning

MaxRunMinutes Max number of minutes to allow the grid tuning to run for

Trees Provide a named list to have different number of trees for each model. Trees =

list("classifier" = seq(1000,2000,100), "regression" = seq(1000,2000,100))

eta Provide a named list to have different number of eta for each model.

max_depth Provide a named list to have different number of max_depth for each model.

min_child_weight

Provide a named list to have different number of min_child_weight for each

model.

subsample Provide a named list to have different number of subsample for each model.

colsample_bytree

Provide a named list to have different number of colsample_bytree for each

model.

Value

Returns AutoXGBoostRegression() model objects: VariableImportance.csv, Model, Validation-Data.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and the grid used

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoCatBoostSizeFreqDist(), AutoH2oDRFHurdleModel(), AutoH2oGBMHurdleModel(), AutoH2oGBMSizeFreqDist()

Examples

```
## Not run:
Output <- RemixAutoML::AutoXGBoostHurdleModel(

# Operationalization args
TreeMethod = "hist",
TrainOnFull = FALSE,
PassInGrid = NULL,

# Metadata args
NThreads = max(1L, parallel::detectCores()-2L),
ModelID = "ModelTest",
Paths = normalizePath("./"),
MetaDataPaths = NULL,</pre>
```

```
# data args
   data,
   ValidationData = NULL,
  TestData = NULL,
   Buckets = 0L,
   TargetColumnName = NULL,
   FeatureColNames = NULL.
   IDcols = NULL.
   # options
   TransformNumericColumns = NULL,
   SplitRatios = c(0.70, 0.20, 0.10),
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   NumOfParDepPlots = 10L,
   # grid tuning args
   GridTune = FALSE,
   grid_eval_metric = "accuracy",
   MaxModelsInGrid = 1L,
   BaselineComparison = "default",
   MaxRunsWithoutNewWinner = 10L,
   MaxRunMinutes = 60L,
   # bandit hyperparameters
   Trees = list("classifier" = seq(1000,2000,100),
                "regression" = seq(1000,2000,100)),
   eta = list("classifier" = seq(0.05, 0.40, 0.05),
              "regression" = seq(0.05, 0.40, 0.05)),
  max_depth = list("classifier" = seq(4L,16L,2L),
                     "regression" = seq(4L, 16L, 2L)),
   # random hyperparameters
   min_child_weight = list("classifier" = seq(1.0,10.0,1.0),
                            "regression" = seq(1.0, 10.0, 1.0)),
   subsample = list("classifier" = seq(0.55, 1.0, 0.05),
                    "regression" = seq(0.55, 1.0, 0.05)),
   colsample\_bytree = list("classifier" = seq(0.55,1.0,0.05),
                            "regression" = seq(0.55, 1.0, 0.05))
## End(Not run)
```

AutoXGBoostMultiClass AutoXGBoostMultiClass is an automated XGBoost modeling framework with grid-tuning and model evaluation

Description

AutoXGBoostMultiClass is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, variable importance, and column names used in model fitting.

Usage

```
AutoXGBoostMultiClass(
 data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
  IDcols = NULL,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel"
 Objective = "multi:softmax",
 ReturnFactorLevels = TRUE,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  Verbose = 0L,
 NumOfParDepPlots = 3L,
 NThreads = parallel::detectCores(),
  eval_metric = "merror",
  grid_eval_metric = "accuracy",
  TreeMethod = "hist",
 GridTune = FALSE,
 BaselineComparison = "default",
 MaxModelsInGrid = 10L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
 PassInGrid = NULL,
 Shuffles = 1L,
 Trees = 50L,
 eta = NULL,
 max_depth = NULL,
 min_child_weight = NULL,
  subsample = NULL,
  colsample_bytree = NULL
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

 ${\tt TargetColumnName}$

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$ numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

Objective 'multi:softmax'

ReturnFactorLevels

TRUE or FALSE. Set to FALSE to not return factor levels.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

Verbose Set to 0 if you want to suppress model evaluation updates in training

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

This is the metric used to identify best grid tuned model. Choose from "logloss", "error", "aucpr", "auc"

create.

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

grid_eval_metric

eval_metric

"accuracy", "logloss", "microauc"

TreeMethod Choose from "hist", "gpu_hist"

GridTune Set to TRUE to run a grid tuning procedure

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

PassInGrid Default is NULL. Provide a data.table of grid options from a previous run.

Shuffles Numeric. List a number to let the program know how many times you want to

shuffle the grids for grid tuning

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

eta Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

max_depth Bandit grid partitioned. Number, or vector for depth to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(4L, 16L, 2L)

min_child_weight

Number, or vector for min_child_weight to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

subsample

Number, or vector for subsample to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

colsample_bytree

Number, or vector for colsample_bytree to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, GridList, and TargetLevels

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oMLMultiClass()

Examples

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000L
  ID = 2L,
  ZIP = 0L,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostMultiClass(</pre>
    # GPU or CPU
    TreeMethod = "hist",
    NThreads = parallel::detectCores(),
    # Metadata arguments
    model_path = normalizePath("./"),
    metadata_path = file.path(normalizePath("./"),
      "R_Model_Testing"),
    ModelID = "Test_Model_1",
    ReturnFactorLevels = TRUE,
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
```

```
# Data arguments
   data = data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %chin%
     c("IDcol_1", "IDcol_2","Adrian")],
   IDcols = c("IDcol_1", "IDcol_2"),
   # Model evaluation
   eval_metric = "auc",
   Objective = 'multi:softmax',
   grid_eval_metric = "accuracy",
   NumOfParDepPlots = 3L,
   # Grid tuning arguments
   PassInGrid = NULL.
   GridTune = TRUE,
   BaselineComparison = "default",
   MaxModelsInGrid = 10L,
   MaxRunsWithoutNewWinner = 20L,
   MaxRunMinutes = 24L*60L,
   Verbose = 1L,
   # Trees, Depth, and LearningRate used in the bandit grid tuning
   # Must set Trees to a single value if you are not grid tuning
   # The ones below can be set to NULL
      and the values in the example will be used
   Shuffles = 1L,
   Trees = seq(50L, 500L, 50L),
   eta = seq(0.05, 0.40, 0.05),
   max_depth = seq(4L, 16L, 2L),
   min\_child\_weight = seq(1.0, 10.0, 1.0),
   subsample = seq(0.55, 1.0, 0.05),
   colsample_bytree = seq(0.55, 1.0, 0.05))
## End(Not run)
```

Description

AutoXGBoostRegression is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoXGBoostRegression(
 data,
 TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
  IDcols = NULL,
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel"
 ReturnFactorLevels = TRUE,
 ReturnModelObjects = TRUE,
 SaveModelObjects = FALSE,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 Verbose = 0L,
 NumOfParDepPlots = 3L,
 NThreads = parallel::detectCores(),
 eval_metric = "rmse",
 TreeMethod = "hist",
 GridTune = FALSE,
 grid_eval_metric = "rmse",
 BaselineComparison = "default",
 MaxModelsInGrid = 10L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
 PassInGrid = NULL,
 Shuffles = 1L,
 Trees = 50L,
 eta = NULL,
 max_depth = NULL,
 min_child_weight = NULL,
  subsample = NULL,
  colsample_bytree = NULL
)
```

Arguments

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ers.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnFactorLevels

Set to TRUE to have the factor levels returned with the other model objects

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "Yeo-

Johnson". Function will determine if one cannot be used because of the under-

lying data.

Verbose Set to 0 if you want to suppress model evaluation updates in training

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

eval_metric This is the metric used to identify best grid tuned model. Choose from "r2",

"RMSE", "MSE", "MAE"

TreeMethod Choose from "hist", "gpu_hist"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

grid_eval_metric

Choose from "poisson", "mae", "mape", "mse", "msle", "k1", "cs", "r2"

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options (243 total possible options)

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

PassInGrid Default is NULL. Provide a data.table of grid options from a previous run.

Shuffles Numeric. List a number to let the program know how many times you want to

shuffle the grids for grid tuning

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Otherwise, supply a vector for the trees numbers you want to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

eta Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

max_depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

min_child_weight

Number, or vector for min_child_weight to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

subsample Number, or vector for subsample to test. For running grid tuning, a NULL value

supplied will mean these values are tested seq(0.55, 1.0, 0.05)

colsample_bytree

Number, or vector for colsample_bytree to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oGLMRegression()

Examples

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
    Correlation = 0.85,
    N = 1000,
    ID = 2,
    ZIP = 0,
    AddDate = FALSE,
    Classification = FALSE,
    MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostRegression(
    # GPU or CPU
    TreeMethod = "hist",
    NThreads = NThreads = parallel::detectCores(),</pre>
```

```
# Metadata arguments:
#
    'ModelID' is used to create part of the file
#
        names generated when saving to file'
    'model_path' is where the minimal model objects
#
        for scoring will be stored
    'ModelID' will be the name of the saved model object
    'metadata_path' is where model evaluation and model
        interpretation files are saved
     objects saved to model_path if metadata_path is null
     Saved objects include:
     'ModelID_ValidationData.csv' is the supplied or generated
        TestData with predicted values
     'ModelID_ROC_Plot.png' and 'Model_ID_EvaluationPlot.png'
#
#
         calibration plot
     'ModelID_VariableImportance.csv' is the variable importance.
#
         This won't be saved to file if GrowPolicy is either
#
           "Depthwise" or "Lossguide" was used
#
     'ModelID_ExperimentGrid.csv' if GridTune = TRUE.
#
         Results of all model builds including parameter settings,
#
           bandit probs, and grid IDs
     'ModelID_EvaluationMetrics.csv' which contains all confusion
            matrix measures across all thresholds
model_path = normalizePath("./"),
metadata_path = NULL,
ModelID = "Test_Model_1"
ReturnFactorLevels = TRUE,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
# Data arguments:
    'TrainOnFull' is to train a model with 100 percent of
   That means no holdout data will be used for evaluation
#
   If ValidationData and TestData are NULL and TrainOnFull
       is FALSE then data will be split 70 20 10
   'PrimaryDateColumn' is a date column in data that is
#
      meaningful when sorted.
#
#
    CatBoost categorical treatment is enhanced when supplied
   'IDcols' are columns in your data that you don't use for
#
       modeling but get returned with ValidationData
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %chin%
  c("IDcol_1", "IDcol_2", "Adrian")],
IDcols = c("IDcol_1","IDcol_2"),
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
  "LogPlus1", "Logit", "YeoJohnson"),
# Model evaluation
eval_metric = "rmse",
NumOfParDepPlots = 3L,
# Grid tuning arguments
```

192 AutoXGBoostScoring

```
PassInGrid = NULL,
   GridTune = TRUE,
   grid_eval_metric = "mse",
   BaselineComparison = "default",
   MaxModelsInGrid = 10L,
   MaxRunsWithoutNewWinner = 20L,
   MaxRunMinutes = 24L*60L,
   Verbose = 1L,
   # Trees, Depth, and LearningRate used in the bandit grid tuning
   # Must set Trees to a single value if you are not grid tuning
   # The ones below can be set to NULL
   Shuffles = 1L,
   Trees = seq(50L, 500L, 50L),
   eta = seq(0.05, 0.40, 0.05),
   max_depth = seq(4L, 16L, 2L),
   min_child_weight = seq(1.0, 10.0, 1.0),
   subsample = seq(0.55, 1.0, 0.05),
   colsample_bytree = seq(0.55, 1.0, 0.05))
## End(Not run)
```

AutoXGBoostScoring

AutoXGBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions.

Description

AutoXGBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() and the DummifyDT() function to prepare your features for xgboost data conversion and scoring.

```
AutoXGBoostScoring(
  TargetType = NULL,
  ScoringData = NULL,
  FeatureColumnNames = NULL,
  IDcols = NULL,
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  Objective = "multi:softmax",
  OneHot = FALSE,
  ModelObject = NULL,
  ModelPath = NULL,
  ModelID = NULL,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
```

AutoXGBoostScoring 193

```
TransPath = NULL,
 MDP Impute = TRUE.
 MDP_CharToFactor = TRUE,
 MDP_RemoveDates = TRUE,
 MDP_MissFactor = "0",
 MDP_MissNum = -1
)
```

Arguments

TargetType Set this value to "regression", "classification", or "multiclass" to score mod-

els built using AutoCatBoostRegression(), AutoCatBoostClassify() or AutoCat-

BoostMultiClass().

ScoringData This is your data.table of features for scoring. Can be a single row or batch.

FeatureColumnNames

Supply either column names or column numbers used in the AutoXGBoost__()

function

IDcols Supply ID column numbers for any metadata you want returned with your pre-

dicted values

FactorLevelsList

Supply the factor variables' list from DummifyDT()

Supply the target levels output from AutoXGBoostMultiClass() or the scoring TargetLevels

function will go looking for it in the file path you supply.

Objective Set to 'multi:softprobs' if you did so in training. Default is softmax

OneHot Set to TRUE to have one-hot-encoding run. Otherwise, N columns will be made

for N levels of a factor variable

ModelObject Supply a model for scoring, otherwise it will have to search for it in the file path

you specify

ModelPath Supply your path file used in the AutoXGBoost__() function ModelID Supply the model ID used in the AutoXGBoost () function

ReturnFeatures Set to TRUE to return your features with the predicted values.

TransformNumeric

Set to TRUE if you have features that were transformed automatically from an Auto__Regression() model AND you haven't already transformed them.

BackTransNumeric

Set to TRUE to generate back-transformed predicted values. Also, if you return features, those will also be back-transformed.

TargetColumnName

Input your target column name used in training if you are utilizing the transformation service

TransformationObject

Set to NULL if you didn't use transformations or if you want the function to pull from the file output from the Auto_Regression() function. You can also supply the transformation data.table object with the transformation details versus

having it pulled from file.

Set to the ID used for saving the transformation data.table object or set it to the TransID

ModelID if you are pulling from file from a build with Auto_Regression().

TransPath Set the path file to the folder where your transformation data.table detail object

is stored. If you used the Auto_Regression() to build, set it to the same path as

ModelPath.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying Scor-

ingData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do so to your

ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace missing

values with

values with

Value

A data.table of predicted values with the option to return model features as well.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoH20MLScoring(), AutoH20Modeler(), AutoHurdleScoring(), IntermittentDemandScoringDataGenerator()

Examples

```
## Not run:
Preds <- AutoXGBoostScoring(</pre>
  TargetType = "regression",
  ScoringData = data,
  FeatureColumnNames = 2:12,
  IDcols = NULL,
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  Objective = "multi:softmax",
  OneHot = FALSE,
  ModelObject = NULL,
  ModelPath = "home",
  ModelID = "ModelTest"
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
```

```
MDP_MissNum = -1)
## End(Not run)
```

CarmaCatBoostKeepVarsGDL

CarmaCatBoostKeepVarsGDL

Description

CarmaCatBoostKeepVarsGDL is to help manage carma code

Usage

```
CarmaCatBoostKeepVarsGDL(
  data,
  IndepVarPassTRUE = "GroupVar",
  UpdateData,
  CalendarFeatures,
  XREGS,
  Difference,
  HierarchGroups,
  GroupVariables,
  GroupVarVector,
  CalendarVariables,
  HolidayVariable,
  TargetColumnName,
  DateColumnName,
  Preds
)
```

Arguments

data Supply data

IndepVarPassTRUE

Name of the column used as a single grouping variable.

UpdateData Supply UpdateData

CalendarFeatures

Supply CalendarFeatures

XREGS Supply XREGS
Difference Supply Difference
HierarchGroups Supply HierarchGroups
GroupVariables Supply GroupVariables
GroupVarVector Supply GroupVarVector

CalendarVariables

Supply Calendar Variables

HolidayVariable

Supply Holiday Variable

```
TargetColumnName
```

Supply TargetColumnName

DateColumnName Supply DateColumnName

Preds Supply Preds

Author(s)

Adrian Antico

See Also

Other Carma Helper: CARMA_Define_Args(), CARMA_Get_IndepentVariablesPass(), CARMA_GroupHierarchyCheckCarmaH2OKeepVarsGDL(), CarmaXGBoostKeepVarsGDL()

CarmaH2OKeepVarsGDL

CarmaH2OKeepVarsGDL

Description

CarmaH2OKeepVarsGDL is to help manage carma code

Usage

```
CarmaH2OKeepVarsGDL(
  data,
  IndepVarPassTRUE = "GroupVar",
  UpdateData,
  CalendarFeatures,
  XREGS,
  Difference,
  HierarchGroups,
  GroupVariables,
  GroupVarVector,
  CalendarVariables = NULL,
  HolidayVariable = NULL,
  TargetColumnName,
  DateColumnName
)
```

Arguments

data Supply data

 ${\tt IndepVarPassTRUE}$

Name of the column used as a single grouping variable.

UpdateData Supply UpdateData

 ${\tt CalendarFeatures}$

Supply CalendarFeatures

XREGS Supply XREGS
Difference Supply Difference
HierarchGroups Supply HierarchGroups

CarmaHoldoutMetrics 197

```
GroupVariables Supply GroupVariables
GroupVarVector Supply GroupVarVector
CalendarVariables
Supply CalendarVariables
HolidayVariable
Supply HolidayVariable
TargetColumnName
Supply TargetColumnName
DateColumnName Supply DateColumnName
```

Author(s)

Adrian Antico

See Also

Other Carma Helper: CARMA_Define_Args(), CARMA_Get_IndepentVariablesPass(), CARMA_GroupHierarchyCheckCarmaCatBoostKeepVarsGDL(), CarmaXGBoostKeepVarsGDL()

CarmaHoldoutMetrics

CarmaHoldoutMetrics

Description

CarmaHoldoutMetrics

Usage

```
CarmaHoldoutMetrics(
  DATA = TestDataEval,
  TARGETCOLUMNNAME = TargetColumnName,
  GROUPVARIABLES = GroupingVariables
)
```

Arguments

```
\begin{array}{ll} {\sf DATA} & {\sf TestDataEval} \\ {\sf TARGETCOLUMNNAME} & {\sf TargetColumnName} \\ \\ {\sf GROUPVARIABLES} & {\sf GroupVariables} \end{array}
```

Author(s)

Adrian Antico

See Also

 $Other\ Time\ Series:\ {\tt DifferenceDataReverse()}, \ {\tt DifferenceData()}$

 ${\tt CarmaXGBoostKeepVarsGDL}$

CarmaXGBoostKeepVarsGDL

Description

CarmaXGBoostKeepVarsGDL is to help manage carma code

Usage

```
CarmaXGBoostKeepVarsGDL(
  data,
  IndepVarPassTRUE = "GroupVar",
  UpdateData,
  CalendarFeatures,
  XREGS,
  Difference,
  HierarchGroups,
  GroupVariables,
  GroupVarVector,
  CalendarVariables = NULL,
  HolidayVariable = NULL,
  TargetColumnName,
  DateColumnName
)
```

Arguments

data Supply data

IndepVarPassTRUE

Name of the column used as a single grouping variable.

UpdateData Supply UpdateData

CalendarFeatures

Supply CalendarFeatures

XREGS Supply XREGS
Difference Supply Difference

HierarchGroups Supply HierarchGroups
GroupVariables Supply GroupVariables
GroupVarVector Supply GroupVarVector

CalendarVariables

Supply Calendar Variables

 ${\it HolidayVariable}$

Supply Holiday Variable

 ${\tt TargetColumnName}$

Supply TargetColumnName

DateColumnName Supply DateColumnName

CARMA_Define_Args

Author(s)

Adrian Antico

See Also

Other Carma Helper: CARMA_Define_Args(), CARMA_Get_IndepentVariablesPass(), CARMA_GroupHierarchyCheckCarmaCatBoostKeepVarsGDL(), CarmaH2OKeepVarsGDL()

199

CARMA_Define_Args

CARMA_Define_Args

Description

CARMA_Define_Args is to help manage carma code

Usage

```
CARMA_Define_Args(
    TimeUnit = NULL,
    TimeGroups = NULL,
    HierarchGroups = NULL,
    GroupVariables = NULL,
    FC_Periods = NULL,
    PartitionType = NULL,
    TrainOnFull = NULL,
    SplitRatios = NULL,
    SD_Periods = 0L,
    Skew_Periods = 0L,
    Kurt_Periods = 0L,
    Quantile_Periods = 0L)
```

Arguments

```
= TimeUnit
TimeUnit
TimeGroups
                  = TimeGroups
HierarchGroups = HierarchGroups
GroupVariables = GroupVariables
FC_Periods
                  = FC_Periods
PartitionType = PartitionType
TrainOnFull
                  = TrainOnFull
SplitRatios
                  = SplitRatios
SD_Periods
                  = 0L turns it off, otherwise values must be greater than 1 such as c(2L,5L,6L,25L)
                  = 0L turns it off, otherwise values must be greater than 2 such as c(3L,5L,6L,25L)
Skew_Periods
Kurt_Periods
                  = 0L turns it off, otherwise values must be greater than 3 such as c(4L,5L,6L,25L)
Quantile_Periods
                  = 0L turns it off, otherwise values must be greater than 3 such as c(5L,6L,25L)
```

Author(s)

Adrian Antico

See Also

Other Carma Helper: CARMA_Get_IndepentVariablesPass(), CARMA_GroupHierarchyCheck(), CarmaCatBoostKeepVarsGDL(), CarmaH2OKeepVarsGDL(), CarmaXGBoostKeepVarsGDL()

```
{\it CARMA\_Get\_IndepentVariablesPass} \\ {\it CARMA\_Get\_IndepentVariablesPass}
```

Description

CARMA_Get_IndepentVariablesPass is to help manage carma code

Usage

```
CARMA_Get_IndepentVariablesPass(HierarchGroups)
```

Arguments

HierarchGroups Supply HierarchGroups

Author(s)

Adrian Antico

See Also

```
Other\ Carma\ Helper:\ CARMA\_Define\_Args(), CARMA\_GroupHierarchyCheck(), CarmaCatBoostKeepVarsGDL(), CarmaH2OKeepVarsGDL(), CarmaXGBoostKeepVarsGDL()
```

CARMA_GroupHierarchyCheck

CARMA_GroupHierarchyCheck

Description

CARMA_GroupHierarchyCheck

```
CARMA_GroupHierarchyCheck(
  data = data,
  Group_Variables = GroupVariables,
  HierarchyGroups = HierarchGroups
)
```

CatBoostClassifierParams 201

Arguments

```
data data fed into function

Group_Variables

Takes GroupVariables from caram function

HierarchyGroups

Vector of group variables
```

Author(s)

Adrian Antico

See Also

Other Carma Helper: CARMA_Define_Args(), CARMA_Get_IndepentVariablesPass(), CarmaCatBoostKeepVarsGDL() CarmaH2OKeepVarsGDL(), CarmaXGBoostKeepVarsGDL()

CatBoostClassifierParams

 ${\it CatBoostClassifier Params}$

Description

CatBoostClassifierParams

Usage

```
CatBoostClassifierParams(
  counter = NULL,
  BanditArmsN = NULL,
  HasTime = NULL,
  MetricPeriods = NULL,
  ClassWeights = NULL,
  eval_metric = NULL,
  LossFunction = NULL,
  task_type = NULL,
  NumGPUs = NULL,
  model_path = NULL,
  NewGrid = NULL,
  Grid = NULL,
  ExperimentalGrid = NULL,
  GridClusters = NULL
)
```

Arguments

counter Passthrough
BanditArmsN Passthrough
HasTime Passthrough
MetricPeriods Passthrough

ClassWeights Passthrough eval_metric Passthrough LossFunction Passthrough Passthrough task_type NumGPUs Passthrough model_path Passthrough NewGrid Passthrough Grid Passthrough ExperimentalGrid Passthrough

GridClusters Passthrough

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostMultiClassParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParams(), XGBoostParameterGrids(), XGBoostRegressionMetrics(), XGBoostRegressionParams()

CatBoostMultiClassParams

CatBoostMultiClassParams

Description

CatBoostMultiClassParams

```
CatBoostMultiClassParams(
  counter = NULL,
  BanditArmsN = NULL,
  HasTime = NULL,
  MetricPeriods = NULL,
  ClassWeights = NULL,
  eval_metric = NULL,
  loss_function = NULL,
  task_type = NULL,
  model_path = NULL,
  NewGrid = NULL,
  Grid = NULL,
  ExperimentalGrid = NULL,
  GridClusters = NULL
)
```

CatBoostParameterGrids 203

Arguments

counter Passthrough BanditArmsN Passthrough HasTime Passthrough MetricPeriods Passthrough ClassWeights Passthrough Passthrough eval_metric loss_function Passthrough Passthrough task_type model_path Passthrough NewGrid Passthrough Passthrough Grid ${\tt ExperimentalGrid}$ Passthrough GridClusters Passthrough

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParams(), XGBoostParameterGrids(), XGBoostRegressionMetrics(), XGBoostRegressionParams()

CatBoostParameterGrids

CatBoostParameterGrids

Description

CatBoostParameterGrids https://catboost.ai/docs/concepts/r-training-parameters.html

```
CatBoostParameterGrids(
    TaskType = "CPU",
    Shuffles = 1L,
    NTrees = seq(1000L, 10000L, 1000L),
    Depth = seq(4L, 16L, 2L),
    LearningRate = c(0.01, 0.02, 0.03, 0.04),
    L2_Leaf_Reg = seq(1, 10, 1),
    RandomStrength = seq(1, 2, 0.1),
    BorderCount = seq(32, 256, 32),
    RSM = c(0.8, 0.85, 0.9, 0.95, 1),
    BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
    GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide")
)
```

Arguments

TaskType "GPU" or "CPU"

Shuffles The number of shuffles you want to apply to each grid

NTrees seq(1000L, 10000L, 1000L)

 $\begin{array}{ll} \text{Depth} & seq(4L,\,16L,\,2L) \\ \text{LearningRate} & seq(0.01,.10,0.01) \end{array}$

 $\label{eq:continuous} \begin{array}{ll} \text{L2_Leaf_Reg} & c(1.0:10.0) \\ \text{RandomStrength} & seq(1,2,0.1) \\ \text{BorderCount} & seq(32,256,32) \\ \end{array}$

RSM CPU ONLY, Random subspace method.c(0.80, 0.85, 0.90, 0.95, 1.0)

BootStrapType c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")

GrowPolicy c("SymmetricTree", "Depthwise", "Lossguide")

Value

A list containing data.table's with the parameters shuffled and ready to test in the bandit framework

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParams(), XGBoostParameterGrids(), XGBoostRegressionMetrics(), XGBoostRegressionParams()

CatBoostRegressionParams

CatBoostRegressionParams

Description

Cat Boost Regression Params

```
CatBoostRegressionParams(
  counter = NULL,
  BanditArmsN = NULL,
  HasTime = NULL,
  MetricPeriods = NULL,
  eval_metric = NULL,
  LossFunction = NULL,
  task_type = NULL,
  NumGPUs = NULL,
  model_path = NULL,
  NewGrid = NULL,
```

ChartTheme 205

```
Grid = NULL,
ExperimentalGrid = NULL,
GridClusters = NULL
)
```

Arguments

Passthrough counter BanditArmsN Passthrough HasTime Passthrough MetricPeriods Passthrough eval_metric Passthrough Passthrough LossFunction task_type Passthrough NumGPUs Passthrough model_path Passthrough NewGrid Passthrough Grid Passthrough ExperimentalGrid Passthrough GridClusters Passthrough

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGrids(), XGBoostClassifierParams(), XGBoostMultiClassParams(), XGBoostParameterGri XGBoostRegressionMetrics(), XGBoostRegressionParams()

ChartTheme

ChartTheme function is a ggplot theme generator for ggplots

Description

This function helps your ggplots look professional with the choice of the two main colors that will dominate the theme

206 ChartTheme

Usage

```
ChartTheme(
   Size = 12,
   AngleX = 35,
   AngleY = 0,
   ChartColor = "lightsteelblue1",
   BorderColor = "darkblue",
   TextColor = "darkblue",
   GridColor = "white",
   BackGroundColor = "gray95",
   LegendPosition = "bottom"
)
```

Arguments

Size The size of the axis labels and title AngleX The angle of the x axis labels The angle of the Y axis labels AngleY "lightsteelblue1", ChartColor BorderColor "darkblue", TextColor "darkblue". "white", GridColor BackGroundColor "gray95", LegendPosition Where to place legend

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

```
Other Misc: AutoH2OTextPrepScoring(), PrintObjectsSize(), RPM_Binomial_Bandit(), SimpleCap(), tempDatesFun(), tokenizeH2O()
```

Examples

ClassificationMetrics 207

```
ggplot2::geom_line()
p <- p + ChartTheme(Size = 12)
## End(Not run)</pre>
```

ClassificationMetrics ClassificationMetrics

Description

ClassificationMetrics

Usage

```
ClassificationMetrics(
  TestData,
  Thresholds,
  Target,
  Predict,
  PositiveOutcome,
  NegativeOutcome,
  CostMatrix = c(1, 0, 0, 1)
)
```

Arguments

TestData Test data from your modeling

Thresholds Value

Target Name of your target variable

Predict Name of your predicted value variable

PositiveOutcome

The value of the positive outcome level

 ${\tt NegativeOutcome}$

The value of the negative outcome level

CostMatrix c(True Positive Cost, False Negative Cost, False Positive Cost, True Negative

Cost)

Author(s)

Adrian Antico

See Also

 $Other\ Model\ Evaluation:\ DT_BinaryConfusionMatrix(), RemixClassificationMetrics()$

208 CLForecast

 ${\tt CLForecast}$

CLForecast

Description

CLForecast for generating forecasts

Usage

```
CLForecast(
  data,
  OutputFilePath = NULL,
  FC_BaseFunnelMeasure = NULL,
  SegmentName = NULL,
  MaxDateForecasted = NULL,
  MaxCalendarDate = NULL,
  ArgsList = NULL,
  MaxCohortPeriods = NULL
)
```

Arguments

```
\begin{array}{cccc} \text{data} & N \\ \text{OutputFilePath} & P \\ \text{FC\_BaseFunnelMeasure} & d \\ \text{SegmentName} & a \\ \text{MaxDateForecasted} & S \\ \text{MaxCalendarDate} & S \\ \text{ArgsList} & A \\ \text{MaxCohortPeriods} & T \\ \end{array}
```

Value

S

Author(s)

Adrian Antico

See Also

Other Population Dynamics Forecasting: CLTrainer()

CLTrainer

CLTrainer

Description

CLTrainer is a forecasting model for chain ladder style forecasting

```
CLTrainer(
  data,
  PartitionRatios = c(0.7, 0.2, 0.1),
  BaseFunnelMeasure = NULL,
  ConversionMeasure = NULL,
  ConversionRateMeasure = NULL,
  CohortPeriodsVariable = NULL,
  CalendarDate = NULL,
  CohortDate = NULL,
  TruncateDate = NULL,
  TimeUnit = c("day"),
  CalendarTimeGroups = c("day", "week", "month"),
  CohortTimeGroups = c("day", "week", "month"),
  TransformTargetVariable = TRUE,
  TransformMethods = c("Identity", "YeoJohnson"),
  AnomalyDetection = list(tstat_high = 3, tstat_low = -2),
  Jobs = c("Evaluate", "Train"),
  SaveModelObjects = TRUE,
  ModelID = "Segment_ID",
  ModelPath = NULL,
  MetaDataPath = NULL,
  TaskType = "CPU",
  NumGPUs = 1,
  DT_Threads = max(1L, parallel::detectCores()),
  EvaluationMetric = "RMSE",
  LossFunction = "RMSE",
  NumOfParDepPlots = 1L,
  MetricPeriods = 50L,
 CalendarVariables = c("wday", "mday", "yday", "week", "isoweek", "month", "quarter",
    "year"),
  HolidayGroups = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
  ImputeRollStats = -0.001,
  CohortHolidayLags = c(1L, 2L, 7L),
  CohortHolidayMovingAverages = c(3L, 7L),
  CalendarHolidayLags = c(1L, 2L, 7L),
  CalendarHolidayMovingAverages = c(3L, 7L),
 CalendarLags = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month = c(1L, 6L, 6L)
    12L)),
 CalendarMovingAverages = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month =
    c(1L, 6L, 12L)),
  CalendarStandardDeviations = NULL,
```

```
CalendarSkews = NULL,
 CalendarKurts = NULL.
 CalendarQuantiles = NULL,
 CalendarQuantilesSelected = "q50",
 CohortLags = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month = c(1L, 6L, 6L)
    12L)),
 CohortMovingAverages = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month =
    c(1L, 6L, 12L)),
  CohortStandardDeviations = NULL,
  CohortSkews = NULL,
  CohortKurts = NULL,
 CohortQuantiles = NULL,
  CohortQuantilesSelected = "q50",
 PassInGrid = NULL,
 GridTune = FALSE,
 BaselineComparison = "default",
 MaxModelsInGrid = 25L,
 MaxRunMinutes = 180L,
 MaxRunsWithoutNewWinner = 10L,
 Trees = 3000L,
 Depth = seq(4L, 8L, 1L),
 LearningRate = seq(0.01, 0.1, 0.01),
 L2\_Leaf\_Reg = seq(1, 10, 1),
 RSM = c(0.8, 0.85, 0.9, 0.95, 1),
 BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
 GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide")
)
```

Arguments

data data object

PartitionRatios

Requires three values for train, validation, and test data sets

BaseFunnelMeasure

E.g. "Leads". This value should be a forward looking variable. Say you want to forecast ConversionMeasure 2 months into the future. You should have two months into the future of values of BaseFunnelMeasure

ConversionMeasure

E.g. "Conversions". Rate is derived as conversions over leads by cohort periods out

ConversionRateMeasure

Conversions over Leads for every cohort

CohortPeriodsVariable

Numeric. Numerical value of the the number of periods since cohort base date.

CalendarDate The name of your date column that represents the calendar date

CohortDate The name of your date column that represents the cohort date

TruncateDate NULL. Supply a date to represent the earliest point in time you want in your

data. Filtering takes place before partitioning data so feature engineering can

include as many non null values as possible.

TimeUnit Base time unit of data. "days", "weeks", "months", "quarters", "years"

CalendarTimeGroups

TimeUnit value must be included. If you want to generate lags and moving averages in several time based aggregations, choose from "days", "weeks", "months", "quarters", "years".

CohortTimeGroups

TimeUnit value must be included. If you want to generate lags and moving averages in several time based aggregations, choose from "days", "weeks", "months", "quarters", "years".

TransformTargetVariable

TRUE or FALSe

TransformMethods

Choose from "Identity", "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

Provide a named list. See examples

Default is "eval" and "train" Tohs

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

ModelID A character string to name your model and output

ModelPath Path to where you want your models saved

Path to where you want your metadata saved. If NULL, function will try Mod-MetaDataPath

elPath if it is not NULL.

"GPU" or "CPU" for catboost training TaskType NumGPUs Number of GPU's you would like to utilize

DT_Threads Number of threads to use for data.table. Default is Total - 2

EvaluationMetric

This is the metric used inside catboost to measure performance on validation data during a grid-tune. "RMSE" is the default, but other options include: "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuantile", "Lq", "NumEr-

rors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError".

Used in model training for model fitting. Select from 'RMSE', 'MAE', 'Quan-LossFunction

tile', 'LogLinQuantile', 'MAPE', 'Poisson', 'PairLogitPairwise', 'Tweedie', 'QueryRMSE'

NumOfParDepPlots

Number of partial dependence plots to return

MetricPeriods Number of trees to build before the internal catboost eval step happens

CalendarVariables

"wday", "mday", "yday", "week", "isoweek", "month", "quarter", "year"

c ("USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts")HolidayGroups

ImputeRollStats

Constant value to fill NA after running AutoLagRollStats()

CohortHolidayLags

c(1L, 2L, 7L),

CohortHolidayMovingAverages

c(3L, 7L),

CalendarHolidayLags

c(1L, 2L, 7L),

CalendarHolidayMovingAverages

= c(3L, 7L),

CalendarLags List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

 ${\tt Calendar Moving Averages}$

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarStandardDeviations

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarSkews List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarKurts List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarQuantiles

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

 ${\tt CalendarQuantilesSelected}$

Supply a vector of "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

CohortLags List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortMovingAverages

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortStandardDeviations

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortSkews List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortKurts List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortQuantiles

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortQuantilesSelected

Supply a vector of "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid to tell the procedure how many models you want to test.

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options

MaxRunMinutes Maximum number of minutes to let this run MaxRunsWithoutNewWinner

Number of models built before calling it quits

Bandit grid partitioned. The maximum number of trees you want in your models Bandit grid partitioned. Number, or vector for depth to test. For running grid Depth tuning, a NULL value supplied will mean these values are tested seq(4L, 16L, LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Otherwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04) Random testing. Supply a single value for non-grid tuning cases. Otherwise, L2_Leaf_Reg supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

CPU only. Random testing. Supply a single value for non-grid tuning cases. Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.80, 0.85, 0.90,

0.95, 1.0)

Random testing. Supply a single value for non-grid tuning cases. Otherwise, BootStrapType

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

> tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

Value

Trees

RSM

Saves metadata and models to files of your choice. Also returns metadata and models from the function. User specifies both options.

Author(s)

Adrian Antico

See Also

Other Population Dynamics Forecasting: CLForecast()

Examples

```
## Not run:
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  ChainLadderData = TRUE)
# Build model
RemixAutoML::CLTrainer(
   # Data Arguments----
   data = data.
   PartitionRatios = c(0.70, 0.20, 0.10),
   BaseFunnelMeasure = "Leads",
   ConversionMeasure = "Appointments",
   ConversionRateMeasure = NULL,
   CohortPeriodsVariable = "CohortDays",
```

```
CalendarDate = "CalendarDateColumn",
CohortDate = "CohortDateColumn",
TruncateDate = NULL,
TimeUnit = "days",
TransformTargetVariable = TRUE,
TransformMethods = c("Identity", "BoxCox", "Asinh",
                      "Asin","LogPlus1","Logit",
                      "YeoJohnson"),
AnomalyDetection = list(tstat_high = 3,
  tstat_low = -2),
# MetaData Arguments----
Jobs = c("eval", "train"),
SaveModelObjects = TRUE,
ModelID = "ModelTest",
ModelPath = getwd(),
MetaDataPath = NULL,
TaskType = "GPU",
NumGPUs = 1,
DT_Threads = max(1L, parallel::detectCores() - 2L),
EvaluationMetric = "RMSE",
LossFunction = "RMSE",
NumOfParDepPlots = 1L,
MetricPeriods = 50L,
# Feature Engineering Arguments----
ImputeRollStats = -0.001,
CalendarTimeGroups = c("days", "weeks", "months"),
CohortTimeGroups = c("days", "weeks"),
CalendarVariables = c("wday","mday","yday","week",
                       "month", "quarter", "year"),
HolidayGroups = c("USPublicHolidays", "EasterGroup",
                  "ChristmasGroup", "OtherEcclesticalFeasts"),
CohortHolidayLags = c(1L, 2L, 7L),
CohortHolidayMovingAverages = c(3L,7L),
CalendarHolidayLags = c(1L, 2L, 7L),
CalendarHolidayMovingAverages = c(3L,7L),
CalendarLags = list("day" = c(1L, 2L, 7L, 35L, 42L),
                     "week" = c(5L, 6L, 10L, 12L, 25L, 26L)),
CalendarMovingAverages = list("day" = c(7L,14L,35L,42L),
                               "week" = c(5L, 6L, 10L, 12L, 20L, 24L),
                               "month" = c(6L, 12L)),
CalendarStandardDeviations = NULL,
CalendarSkews = NULL,
CalendarKurts = NULL,
CalendarQuantiles = NULL,
CalendarQuantilesSelected = "q50",
CohortLags = list("day" = c(1L, 2L, 7L, 35L, 42L),
                   "week" = c(5L,6L)),
CohortMovingAverages = list("day" = c(7L,14L,35L,42L),
                             "week" = c(5L,6L),
                             "month" = c(1L, 2L)),
CohortStandardDeviations = NULL,
CohortSkews = NULL,
CohortKurts = NULL,
CohortQuantiles = NULL,
CohortQuantilesSelected = "q50",
```

ColumnSubsetDataTable 215

```
# Grid Tuning
PassInGrid = NULL,
GridTune = FALSE,
BaselineComparison = "default",
MaxModelsInGrid = 25L,
MaxRunMinutes = 180L,
MaxRunsWithoutNewWinner = 10L,
Trees = 1000L,
Depth = seq(4L,8L,1L),
LearningRate = seq(0.01,0.10,0.01),
L2_Leaf_Reg = seq(1.0,10.0,1.0),
RSM = c(0.80,0.85,0.90,0.95,1.0),
BootStrapType = c("Bayesian","Bernoulli","Poisson","MVS","No"),
GrowPolicy = c("SymmetricTree","Depthwise","Lossguide"))
## End(Not run)
```

ColumnSubsetDataTable ColumnSubsetDataTable

Description

ColumnSubsetDataTable will subset data tables by column

Usage

```
ColumnSubsetDataTable(
  data,
  TargetColumnName = NULL,
  DateColumnName = NULL,
  GroupVars = NULL
)
```

Arguments

```
data data.table

TargetColumnName

Target variable

DateColumnName
Date variable

GroupVars
Group variables
```

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

 ${\tt Continuous Time Data Generator}$

ContinuousTimeDataGenerator for creating continuous time data sets for on demand modeling

Description

ContinuousTimeDataGenerator for creating continuous time data sets for on demand modeling of transactional panel data.

Usage

```
ContinuousTimeDataGenerator(
  data,
  RestrictDateRange = TRUE,
  Case = 2L,
  FC_Periods = 52L,
  SaveData = FALSE,
  FilePath = NULL,
  TargetVariableName = "qty",
  DateVariableName = "date",
  GDL_Targets = NULL,
  TimeUnit = "raw",
  TimeGroups = c("raw", "day", "week"),
  GroupingVariables = "sku",
  HierarchyGroupVars = NULL,
  MinTimeWindow = 1L,
  MinTxnRecords = 2L,
  Lags = 1L:7L,
  MA_Periods = 10L
  SD_Periods = 10L,
  Skew_Periods = 10L,
  Kurt_Periods = 10L,
  Quantile_Periods = 10L,
  Quantiles_Selected = c("q5"),
  HolidayLags = c(1L:7L),
  HolidayMovingAverages = c(2L:14L),
  TimeBetween = NULL,
  TimeTrendVariable = TRUE,
 CalendarVariables = c("wday", "mday", "yday", "week", "isoweek", "month", "quarter",
    "year"),
  HolidayGroups = "USPublicHolidays",
  PowerRate = 0.5,
  SampleRate = 5,
  TargetWindowSamples = 5,
  PrintSteps = TRUE
)
```

Arguments

data This is your transactional level data

RestrictDateRange

Set to TRUE to only pull samples by entity within the entity life (not beyond)

Case Currently set as 1 for forecasting and 2 for other FC_Periods The number of future periods to collect data on

SaveData Set to TRUE to save the MetaData and final modeling data sets to file FilePath Set to your file of choice for where you want the data sets saved

TargetVariableName

The name of your target variable that represents demand

DateVariableName

The date variable of the demand instances

GDL_Targets The variable names to run through AutoLagRollStats()

TimeUnit List the time unit your data is aggregated by. E.g. "day", "week", "month",

"quarter", "year"

TimeGroups = c("raw","day","week"),

GroupingVariables

These variables (or sinlge variable) is the combination of categorical variables that uniquely defines the level of granularity of each individual level to forecast. E.g. "sku" or c("Store","Department"). Sku is typically unique for all sku's. Store and Department in combination defines all unique departments as the department may be repeated across the stores.

HierarchyGroupVars

Group vars

MinTimeWindow The number of time periods you would like to omit for training. Default is 1 so

that at a minimum, there is at least one period of values to forecast. You can set it up to a larger value if you do not want more possible target windows for the

lower target window values.

MinTxnRecords I typically set this to 2 so that there is at least one other instance of demand so

that the forecasted values are not complete nonsense.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all sd variables you want to create. E.g. c(1:5,52)

Skew_Periods Select the periods for all skew variables you want to create. E.g. c(1:5,52)

Kurt_Periods Select the periods for all kurtosis variables you want to create. E.g. c(1:5,52)

Quantile_Periods

Select the periods for all quantiles variables you want to create. E.g. c(1:5,52)

Quantiles_Selected

Select the quantiles you want. q5, q10, ..., q95

HolidayLags Select the lags you want generated

HolidayMovingAverages

Select the moving averages you want generated

TimeBetween Supply a name or NULL

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments by one for each success time point.

CalendarVariables

Set to TRUE to have calendar variables created. The calendar variables are numeric representations of second, minute, hour, week day, month day, year

day, week, isoweek, quarter, and year

HolidayGroups Input the holiday groups of your choice from the CreateHolidayVariable() func-

tion in this package

PowerRate Sampling parameter

SampleRate Set this to a value greater than 0. The calculation used is the number of records

per group level raised to the power of PowerRate. Then that values is multiplied

by SampleRate.

 ${\tt TargetWindowSamples}$

= 5

PrintSteps Set to TRUE to have operation steps printed to the console

Value

Returns two data.table data sets: The first is a modeling data set for the count distribution while the second data set if for the size model data set.

Author(s)

Adrian Antico

See Also

```
Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()
```

```
## Not run:
DataSets <- ContinuousTimeDataGenerator(</pre>
  data,
  RestrictDateRange = TRUE,
  FC_Periods = 52,
  SaveData = FALSE,
  FilePath = normalizePath("./"),
  TargetVariableName = "qty",
  DateVariableName = "date",
  GDL_Targets = NULL,
  GroupingVariables = "sku",
  HierarchyGroupVars = NULL,
  TimeGroups = c("raw", "day", "week"),
  MinTimeWindow = 1,
  MinTxnRecords = 2,
  Lags = 1:7,
  MA_Periods = 10L,
  SD_Periods = 10L,
  Skew_Periods = 10L,
  Kurt_Periods = 10L,
  Quantile_Periods = 10L,
```

CreateCalendarVariables 219

```
Quantiles_Selected = c("q5"),
  HolidayLags = c(1L:7L),
  HolidayMovingAverages = c(2L:14L),
  TimeBetween = NULL,
  TimeTrendVariable = TRUE,
  TimeUnit = "day",
  CalendarVariables = c("wday",
    "mday",
    "yday",
    "week",
    "isoweek",
    "month",
    "quarter",
    "year"),
  HolidayGroups = "USPublicHolidays",
  PowerRate = 0.5,
  SampleRate = 5,
  TargetWindowSamples = 5,
  PrintSteps = TRUE)
CountModelData <- DataSets$CountModelData</pre>
SizeModelData <- DataSets$SizeModelData</pre>
rm(DataSets)
## End(Not run)
```

CreateCalendarVariables

CreateCalendarVariables Create Calendar Variables

Description

CreateCalendarVariables Rapidly creates calendar variables based on the date column you provide

Usage

```
CreateCalendarVariables(
  data,
  DateCols = NULL,
  AsFactor = FALSE,
  TimeUnits = "wday"
)
```

Arguments

data	This is your data
DateCols	Supply either column names or column numbers of your date columns you want to use for creating calendar variables
AsFactor	Set to TRUE if you want factor type columns returned; otherwise integer type columns will be returned
TimeUnits	Supply a character vector of time units for creating calendar variables. Options include: "second", "minute", "hour", "wday", "mday", "yday", "week", "isoweek", "wom" (week of month), "month", "quarter", "year"

220 CreateCalendarVariables

Value

Returns your data.table with the added calendar variables at the end

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

```
## Not run:
# Create fake data with a Date column----
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.75,
  N = 25000L
  ID = 2L,
  ZIP = 0L,
  FactorCount = 4L,
  AddDate = TRUE,
  Classification = FALSE,
  MultiClass = FALSE)
for(i in seq_len(20L)) {
  print(i)
  data <- data.table::rbindlist(</pre>
    list(data, RemixAutoML::FakeDataGenerator(
    Correlation = 0.75,
    N = 25000L
    ID = 2L,
    ZIP = 0L,
    FactorCount = 4L,
    AddDate = TRUE,
    Classification = FALSE,
    MultiClass = FALSE)))
}
# Create calendar variables - automatically excludes
# the second, minute, and hour selections since
   it is not timestamp data
runtime <- system.time(</pre>
  data <- RemixAutoML::CreateCalendarVariables(</pre>
    data = data,
    DateCols = "DateTime",
    AsFactor = FALSE,
    TimeUnits = c("second",
                   "minute",
                   "hour",
                   "wday",
                   "mday",
                   "yday",
```

```
"week",
"isoweek",
"wom",
"month",
"quarter",
"year")))
head(data)
print(runtime)
## End(Not run)
```

CreateHolidayVariables

CreateHolidayVariables Create Holiday Count Columns

Description

CreateHolidayVariables Rapidly creates holiday count variables based on the date columns you provide

Usage

```
CreateHolidayVariables(
  data,
  DateCols = NULL,
  HolidayGroups = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
       "OtherEcclesticalFeasts"),
  Holidays = NULL,
  GroupingVars = NULL,
  Print = FALSE
)
```

Arguments

data This is your data

DateCols Supply either column names or column numbers of your date columns you want

to use for creating calendar variables

HolidayGroups Pick groups
Holidays Pick holidays

Grouping Variable names

Print Set to TRUE to print iteration number to console

Value

Returns your data.table with the added holiday indicator variable

Author(s)

Adrian Antico

222 CreateProjectFolders

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

Examples

```
## Not run:
# Create fake data with a Date----
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.75,
 N = 25000L
  ID = 2L,
  ZIP = 0L
  FactorCount = 4L,
  AddDate = TRUE,
  Classification = FALSE,
  MultiClass = FALSE)
for(i in seq_len(20L)) {
  print(i)
  data <- data.table::rbindlist(list(data,</pre>
  RemixAutoML::FakeDataGenerator(
    Correlation = 0.75,
    N = 25000L
    ID = 2L
    ZIP = 0L
    FactorCount = 4L,
    AddDate = TRUE,
    Classification = FALSE,
    MultiClass = FALSE)))
}
# Run function and time it
runtime <- system.time(</pre>
  data <- CreateHolidayVariables(</pre>
    DateCols = "DateTime",
    HolidayGroups = c("USPublicHolidays", "EasterGroup",
      "ChristmasGroup", "OtherEcclesticalFeasts"),
    Holidays = NULL,
    GroupingVars = c("Factor_1", "Factor_2", "Factor_3", "Factor_4"),
    Print = FALSE))
head(data)
print(runtime)
## End(Not run)
```

CreateProjectFolders Converts path files to proper path files

Description

CreateProjectFolders Converts path files to proper path files

DataDisplayMeta 223

Usage

```
CreateProjectFolders(
   ProjectName = input$ID_NewProjectName,
   RootPath = input$ID_Root_Folder,
   ExistsButNoProjectList = FALSE,
   Local = FALSE
)
```

Arguments

ProjectName This is the name of a project which will be the name of the file created in the

root folder

RootPath This is the path file to the root folder

ExistsButNoProjectList

Set to TRUE if the folder exists but not the ProjectList file

Local

Value

Returns a proper path file string

Author(s)

Adrian Antico

DataDisplayMeta

Data Display Meta

Description

DataDisplayMeta

Usage

```
DataDisplayMeta(data)
```

Arguments

data

Source data

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

224 DifferenceDataReverse

DifferenceData

Difference Data

Description

DifferenceData differences your data set

Usage

```
DifferenceData(
  data,
  ColumnsToDiff = c(names(data)[2:ncol(data)]),
  CARMA = FALSE,
  TargetVariable = NULL,
  GroupingVariable = NULL
)
```

Arguments

data Source data

ColumnsToDiff The column numbers you want differenced

CARMA Set to TRUE for CARMA functions

TargetVariable The target variable name

GroupingVariable

Difference data by group

Author(s)

Adrian Antico

See Also

Other Time Series: CarmaHoldoutMetrics(), DifferenceDataReverse()

 ${\tt DifferenceDataReverse} \ \ {\it DifferenceDataReverse}$

Description

DifferenceDataReverse reverses the difference

Usage

```
DifferenceDataReverse(
  data,
  ScoreData = Forecasts$Predictions,
  LastRow = DiffTrainOutput$LastRow$Weekly_Sales,
  CARMA = FALSE,
  TargetCol = TargetColumnName,
  FirstRow = DiffTrainOutput$FirstRow,
  GroupingVariables = NULL
)
```

Arguments

data Pre differenced scoring data

ScoreData Predicted values from ML model

LastRow The last row from training data target variables

CARMA Set to TRUE for CARMA utilization

TargetCol Target column name

FirstRow The first row of the target variable

GroupingVariables

Group columns

Author(s)

Adrian Antico

See Also

Other Time Series: CarmaHoldoutMetrics(), DifferenceData()

 ${\tt DownloadCSVFromStorageExplorer}$

Download CSV From Storage Explorer

Description

Download CSV From Storage Explorer

Usage

```
DownloadCSVFromStorageExplorer(
   UploadCSVObjectName = "data.csv",
   SaveCSVFilePath = file.path(Root),
   SaveCSVName = "RawData.csv",
   UploadLocation = "Analytics Sandbox/Machine Learning",
   DataStoreName = NULL
)
```

Arguments

UploadCSVObjectName

Name of the file you uploaded to the Microsoft Azure Storage Explorer

SaveCSVFilePath

Path file to where you want to save your csv in Azure

SaveCSVName The name you want to give the csv that will be saved

UploadLocation The location to where the data is saved in the Azure Storage Explorer

DataStoreName The name of the store in data factory where you uploaded your data

Author(s)

Adrian Antico

```
DT_BinaryConfusionMatrix
```

DT_BinaryConfusionMatrix

Description

DT_BinaryConfusionMatrix is for computing all metrics related to binary modeling outcomes

Usage

```
DT_BinaryConfusionMatrix(
  data = MetricsData,
  GroupVariables = "IntervalNum",
  Target = "ActiveAtInterval",
  Predicted = "p1"
)
```

Arguments

data Supply your model validation data with predictions

GroupVariables Supply grouping variables to generate statistics by groups

Target The name of your target variable column

Predicted The name of your predicted value column#'

Author(s)

Adrian Antico

See Also

Other Model Evaluation: ClassificationMetrics(), RemixClassificationMetrics()

Examples

```
## Not run:
AggMetricsByGroup <- DT_BinaryConfusionMatrix(
   data,
   GroupVariables = c("Store","Dept"),
   Target = "HitTarget",
   Predicted = "p1")
## End(Not run)</pre>
```

```
DT_GDL_Feature_Engineering
```

An Automated Feature Engineering Function Using data.table frollmean

Description

Builds autoregressive and moving average from target columns and distributed lags and distributed moving average for independent features distributed across time. On top of that, you can also create time between instances along with their associated lags and moving averages. This function works for data with groups and without groups.

Usage

```
DT_GDL_Feature_Engineering(
  data,
  lags = c(seq(1, 50, 1)),
  periods = c(seq(5, 95, 5)),
  SDperiods = c(seq(5, 95, 5)),
  Skewperiods = c(seq(5, 95, 5)),
  Kurtperiods = c(seq(5, 95, 5)),
  Quantileperiods = c(seq(5, 95, 5)),
  statsFUNs = c("mean"),
  targets = NULL,
  groupingVars = NULL,
  sortDateName = NULL,
  timeDiffTarget = NULL,
  timeAgg = c("days"),
  WindowingLag = 0,
  Type = c("Lag"),
  SimpleImpute = TRUE
```

Arguments

data	A data.table you want to run the function on
lags	A numeric vector of the specific lags you want to have generated. You must include 1 if $WindowingLag = 1$.
periods	A numeric vector of the specific rolling statistics window sizes you want to utilize in the calculations.

SDperiods	A numeric vector of Standard Deviation rolling statistics window sizes you want
	to utilize in the calculations.

Skewperiods A numeric vector of Skewness rolling statistics window sizes you want to utilize

in the calculations.

Kurtperiods A numeric vector of Kurtosis rolling statistics window sizes you want to utilize

in the calculations.

Quantileperiods

A numeric vector of Quantile rolling statistics window sizes you want to utilize

in the calculations.

Select from the following c("mean", "sd", "skew", "kurt", "q5", "q10", "q15", "q20", "q25", "q30", "q35", "c statsFUNs

A character vector of the column names for the reference column in which you targets

will build your lags and rolling stats

A character vector of categorical variable names you will build your lags and groupingVars

rolling stats by

sortDateName The column name of your date column used to sort events over time

timeDiffTarget Specify a desired name for features created for time between events. Set to

NULL if you don't want time between events features created.

List the time aggregation level for the time between events features, such as timeAgg

"hour", "day", "week", "month", "quarter", or "year"

Set to 0 to build rolling stats off of target columns directly or set to 1 to build WindowingLag

the rolling stats off of the lag-1 target

List either "Lag" if you want features built on historical values or "Lead" if you Type

want features built on future values

Set to TRUE for factor level imputation of "0" and numeric imputation of -1 SimpleImpute

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

```
## Not run:
N = 25116
data <- data.table::data.table(</pre>
  DateTime = as.Date(Sys.time()),
  Target = stats::filter(rnorm(N, mean = 50, sd = 20),
  filter=rep(1,10),
```

DummifyDT 229

```
circular=TRUE))
data[, temp := seq(1:N)][, DateTime := DateTime - temp][
  , temp := NULL]
data <- data[order(DateTime)]</pre>
data <- DT_GDL_Feature_Engineering(</pre>
  data,
  lags
                 = c(seq(1,5,1)),
  periods = c(3,5,10,15,20,25),
SDperiods = c(seq(5, 95, 5)),
  Skewperiods = c(seq(5, 95, 5)),
  Kurtperiods = c(seq(5, 95, 5)),
  Quantileperiods = c(seq(5, 95, 5)),
  statsFUNs = c("mean",
    "sd", "skew", "kurt", "q05", "q95"),
  targets = c("Target"),
  groupingVars = NULL,
  sortDateName = "DateTime",
  timeDiffTarget = c("Time_Gap"),
                 = c("days"),
  timeAgg
  WindowingLag = 1,
  Type
                 = "Lag",
  SimpleImpute = TRUE)
## End(Not run)
```

DummifyDT

DummifyDT creates dummy variables for the selected columns.

Description

DummifyDT creates dummy variables for the selected columns. Either one-hot encoding, N+1 columns for N levels, or N columns for N levels.

Usage

```
DummifyDT(
   data,
   cols,
   KeepFactorCols = FALSE,
   OneHot = FALSE,
   SaveFactorLevels = FALSE,
   SavePath = NULL,
   ImportFactorLevels = FALSE,
   FactorLevelsList = NULL,
   ClustScore = FALSE,
   ReturnFactorLevels = FALSE
)
```

Arguments

data The data set to run the micro auc on

cols A vector with the names of the columns you wish to dichotomize

KeepFactorCols Set to TRUE to keep the original columns used in the dichotomization process

230 DummifyDT

OneHot Set to TRUE to run one hot encoding, FALSE to generate N columns for N

levels

SaveFactorLevels

Set to TRUE to save unique levels of each factor column to file as a csv

SavePath Provide a file path to save your factor levels. Use this for models that you have

to create dummy variables for.

ImportFactorLevels

Instead of using the data you provide, import the factor levels csv to ensure you build out all of the columns you trained with in modeling.

FactorLevelsList

Supply a list of factor variable levels

ClustScore This is for scoring AutoKMeans. Set to FALSE for all other applications.

ReturnFactorLevels

If you want a named list of all the factor levels returned, set this to TRUE. Doing so will cause the function to return a list with the source data.table and the list of factor variables' levels

Value

Either a data table with new dummy variables columns and optionally removes base columns (if ReturnFactorLevels is FALSE), otherwise a list with the data.table and a list of the factor levels.

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering TimeSeriesFill()

```
## Not run:
# Create fake data with 10 categorical columns
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 25000,
  ID = 2L,
  ZIP = 0,
  FactorCount = 10L,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Create dummy variables
data <- RemixAutoML::DummifyDT(</pre>
  data = data,
  cols = c("Factor_1",
           "Factor_2",
           "Factor_3",
```

EvalPlot 231

```
"Factor_4",
    "Factor_5",
    "Factor_6",
    "Factor_8",
    "Factor_9",
    "Factor_10"),
    KeepFactorCols = FALSE,
    OneHot = FALSE,
    SaveFactorLevels = FALSE,
    SavePath = normalizePath("./"),
    ImportFactorLevels = FALSE,
    FactorLevelsList = NULL,
    ClustScore = FALSE,
    ReturnFactorLevels = FALSE)

## End(Not run)
```

EvalPlot

EvalPlot automatically builds calibration plots for model evaluation

Description

This function automatically builds calibration plots and calibration boxplots for model evaluation using regression, quantile regression, and binary and multinomial classification

Usage

```
EvalPlot(
  data,
  PredictionColName = c("PredictedValues"),
  TargetColName = c("ActualValues"),
  GraphType = c("calibration"),
  PercentileBucket = 0.05,
  aggrfun = function(x) mean(x, na.rm = TRUE)
)
```

Arguments

data Data containing predicted values and actual values for comparison

PredictionColName

String representation of column name with predicted values from model

TargetColName String representation of column name with target values from model

GraphType Calibration or boxplot - calibration aggregated data based on summary statistic;

boxplot shows variation

PercentileBucket

Number of buckets to partition the space on (0,1) for evaluation

aggrfun The statistics function used in aggregation, listed as a function

Value

Calibration plot or boxplot

232 FakeDataGenerator

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoLimeAid(), LimeModel(), ParDepCalPlots(), RedYellowGreen(), threshOptim()
```

Examples

FakeDataGenerator

Fake Data Generator

Description

FakeDataGenerator

Usage

```
FakeDataGenerator(
   Correlation = 0.7,
   N = 1000L,
   ID = 5L,
   FactorCount = 2L,
   AddDate = TRUE,
   ZIP = 5L,
   TimeSeries = FALSE,
   TimeSeriesTimeAgg = "day",
   ChainLadderData = FALSE,
   Classification = FALSE,
   MultiClass = FALSE
)
```

FakeDataGenerator 233

Arguments

Correlation Set the correlation value for simulated data

N Number of records

ID Number of IDcols to include

FactorCount Number of factor type columns to create

AddDate Set to TRUE to include a date column

ZIP Zero Inflation Model target variable creation. Select from 0 to 5 to create that

number of distinctly distributed data, stratifed from small to large

TimeSeries For testing AutoBanditSarima

TimeSeriesTimeAgg

Choose from "1min", "5min", "10min", "15min", "30min", "hour", "day", "week", "month", "quarter", "year",

ChainLadderData

Set to TRUE to return Chain Ladder Data for using AutoMLChainLadderTrainer

Classification Set to TRUE to build classification data

MultiClass Set to TRUE to build MultiClass data

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

```
## Not run:
data <- RemixAutoML::FakeDataGenerator(
    Correlation = 0.70,
    N = 1000L,
    ID = 2L,
    FactorCount = 2L,
    AddDate = TRUE,
    ZIP = 2L,
    TimeSeries = FALSE,
    ChainLadderData = FALSE,
    Classification = FALSE,
    MultiClass = FALSE)
## End(Not run)</pre>
```

234 FinalBuildArfima

FinalBuildArfima

FinalBuildArfima

Description

FinalBuildArfima to generate forecasts and ensemble data

Usage

```
FinalBuildArfima(
   ModelOutputGrid = NULL,
   TimeSeriesPrepareOutput = NULL,
   FCPeriods = 1,
   MetricSelection = "MAE",
   NumberModelsScore = 1,
   ByDataType = TRUE
)
```

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

TimeSeriesPrepareOutput

Output from TimeSeriesPrepare()

FCPeriods The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType

Set to TRUE if you want to have models represented from all data sets utilized

in training

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArima(), FinalBuildETS(), FinalBuildNNET(), FinalBuildTBATS(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

FinalBuildArima 235

Examples

```
## Not run:
FinalBuildArfima(
   Output = NULL,
   TimeSeriesPrepareOutput = NULL,
   MaxFourierTerms = 0,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

FinalBuildArima

FinalBuildArima

Description

FinalBuildArima to generate forecasts and ensemble data

Usage

```
FinalBuildArima(
   ModelOutputGrid = NULL,
   TimeSeriesPrepareOutput = NULL,
   FCPeriods = 1,
   MetricSelection = "MAE",
   NumberModelsScore = 1,
   ByDataType = TRUE,
   DebugMode = FALSE
)
```

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

TimeSeriesPrepareOutput

Output from TimeSeriesPrepare()

FCPeriods The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType Set to TRUE if you want to have models represented from all data sets utilized

in training

DebugMode Debugging

Value

Time series data sets to pass onto auto modeling functions

236 FinalBuildETS

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildETS(), FinalBuildNNET(), FinalBuildTBATS(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
FinalBuildArima(
   Output = NULL,
   TimeSeriesPrepareOutput = NULL,
   MaxFourierTerms = 0,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

FinalBuildETS

FinalBuildETS

Description

FinalBuildETS to generate forecasts and ensemble data

Usage

```
FinalBuildETS(
   ModelOutputGrid = NULL,
   TimeSeriesPrepareOutput = NULL,
   FCPeriods = 1,
   MetricSelection = "MAE",
   NumberModelsScore = 12,
   ByDataType = TRUE
)
```

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

 ${\it Time Series Prepare Output}$

Output from TimeSeriesPrepare()

FCPeriods The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

FinalBuildNNET 237

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType Set to TRUE if you want to have models represented from all data sets utilized

in training

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildNNET(), FinalBuildTBATS(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeTS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoTS(), ParallelAutoTS(), ParallelAutoTSLM(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
FinalBuildETS(
   Output = NULL,
   TimeSeriesPrepareOutput = NULL,
   MaxFourierTerms = 0,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

FinalBuildNNET

FinalBuildNNET

Description

FinalBuildNNET to generate forecasts and ensemble data

Usage

```
FinalBuildNNET(
   ModelOutputGrid = NULL,
   TimeSeriesPrepareOutput = NULL,
   FCPeriods = 1,
   MetricSelection = "MAE",
   NumberModelsScore = 1,
   ByDataType = TRUE
)
```

238 FinalBuildTBATS

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

TimeSeriesPrepareOutput

Output from TimeSeriesPrepare()

FCPeriods The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType Set to TRUE if you want to have models represented from all data sets utilized

in training

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildTBATS(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

Examples

```
## Not run:
FinalBuildNNET(
   Output = NULL,
   TimeSeriesPrepareOutput = NULL,
   MaxFourierTerms = 0,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

FinalBuildTBATS

FinalBuildTBATS

Description

FinalBuildTBATS to generate forecasts and ensemble data

FinalBuildTBATS 239

Usage

```
FinalBuildTBATS(
  ModelOutputGrid = NULL,
  TimeSeriesPrepareOutput = NULL,
  FCPeriods = 1,
  MetricSelection = "MAE",
  NumberModelsScore = 1,
  ByDataType = TRUE
)
```

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

 ${\tt Time Series Prepare Output}$

Output from TimeSeriesPrepare()

FCPeriods The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType Set to TRUE if you want to have models represented from all data sets utilized

in training

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

```
## Not run:
FinalBuildTBATS(
   Output = NULL,
   TimeSeriesPrepareOutput = NULL,
   MaxFourierTerms = 0,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

240 FinalBuildTSLM

FinalBuildTSLM

FinalBuildTSLM

Description

FinalBuildTSLM to generate forecasts and ensemble data

Usage

```
FinalBuildTSLM(
   ModelOutputGrid = NULL,
   TimeSeriesPrepareOutput = NULL,
   FCPeriods = 1,
   MetricSelection = "MAE",
   NumberModelsScore = 1,
   ByDataType = TRUE
)
```

Arguments

ModelOutputGrid

Pass along the grid output from ParallelOptimzeArima()

TimeSeriesPrepareOutput

Output from TimeSeriesPrepare()

FCPeriods The number of periods ahead to forecast

MetricSelection

The value returned from TimeSeriesPrepare()

NumberModelsScore

The value returned from TimeSeriesPrepare()

ByDataType

Set to TRUE if you want to have models represented from all data sets utilized

in training

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTBATS(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoTSLM(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

FullFactorialCatFeatures 241

Examples

```
## Not run:
FinalBuildTSLM(
   Output = NULL,
   TimeSeriesPrepareOutput = NULL,
   MaxFourierTerms = 0,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

FullFactorialCatFeatures

FullFactorialCatFeatures

Description

FullFactorialCatFeatures reverses the difference

Usage

```
FullFactorialCatFeatures(GroupVars = GroupVariables, BottomsUp = TRUE)
```

Arguments

GroupVars Character vector of categorical columns to fully interact

BottomsUp TRUE or FALSE. TRUE starts with the most comlex interaction to the main

effects

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

242 GenerateParameterGrids

 ${\tt GenerateParameterGrids}$

GenerateParameterGrids creates and stores model results in Experiment Grid

Description

GenerateParameterGrids creates and stores model results in Experiment Grid

Usage

```
GenerateParameterGrids(
  Model = NULL,
  test = NULL,
  MinVal = NULL,
  DataSetName = NULL,
  SeasonalDifferences = NULL,
  SeasonalMovingAverages = NULL,
  SeasonalLags = NULL,
  MaxFourierTerms = NULL,
  Differences = NULL,
  MovingAverages = NULL,
  Lags = NULL
)
```

Arguments

Model 'arima', 'ets', 'tbats', 'nnet', 'arfima', 'tslm', 'dshw'

validation data test

Minimum value of time series MinVal

DataSetName Passthrough

SeasonalDifferences

Passthrough

SeasonalMovingAverages

Passthrough

SeasonalLags Passthrough

MaxFourierTerms

Passthrough

Differences Passthrough MovingAverages Passthrough Passthrough

Author(s)

Lags

Adrian Antico

GenTSAnomVars 243

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoTS(), ParallelAutoTS(), ParallelAutoTSLM(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

GenTSAnomVars

GenTSAnomVars is an automated z-score anomaly detection via GLM-like procedure

Description

GenTSAnomVars is an automated z-score anomaly detection via GLM-like procedure. Data is z-scaled and grouped by factors and time periods to determine which points are above and below the control limits in a cumulative time fashion. Then a cumulative rate is created as the final variable. Set KeepAllCols to FALSE to utilize the intermediate features to create rolling stats from them. The anomalies are separated into those that are extreme on the positive end versus those that are on the negative end.

Usage

```
GenTSAnomVars(
  data,
  ValueCol = "Value",
  GroupVars = NULL,
  DateVar = "DATE",
  HighThreshold = 1.96,
  LowThreshold = -1.96,
  KeepAllCols = TRUE,
  IsDataScaled = FALSE
)
```

Arguments

data the source residuals data.table

ValueCol the numeric column to run anomaly detection over

GroupVars this is a group by variable

DateVar this is a time variable for grouping
HighThreshold this is the threshold on the high end
LowThreshold this is the threshold on the low end

KeepAllCols set to TRUE to remove the intermediate features
IsDataScaled set to TRUE if you already scaled your data

Value

The original data.table with the added columns merged in. When KeepAllCols is set to FALSE, you will get back two columns: AnomHighRate and AnomLowRate - these are the cumulative anomaly rates over time for when you get anomalies from above the thresholds (e.g. 1.96) and below the thresholds.

244 H2oAutoencoder

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoKMeans(), H2oIsolationForest(), ResidualOutliers()

Examples

```
## Not run:
data <- data.table::data.table(</pre>
 DateTime = as.Date(Sys.time()),
  Target = stats::filter(
   rnorm(10000, mean = 50, sd = 20),
  filter=rep(1,10),
  circular=TRUE))
data[, temp := seq(1:10000)][, DateTime := DateTime - temp][
  , temp := NULL]
data <- data[order(DateTime)]</pre>
x <- data.table::as.data.table(sde::GBM(N=10000)*1000)</pre>
data[, predicted := x[-1,]]
data[, Fact1 := sample(letters, size = 10000, replace = TRUE)]
data[, Fact2 := sample(letters, size = 10000, replace = TRUE)]
data[, Fact3 := sample(letters, size = 10000, replace = TRUE)]
stuff <- GenTSAnomVars(</pre>
  data,
  ValueCol = "Target",
  GroupVars = c("Fact1", "Fact2", "Fact3"),
  DateVar = "DateTime",
 HighThreshold = 1.96,
  LowThreshold = -1.96,
  KeepAllCols = TRUE,
  IsDataScaled = FALSE)
## End(Not run)
```

H2oAutoencoder

H2oAutoencoder for anomaly detection and dimensionality reduction

Description

H2oAutoencoder for anomaly detection and or dimensionality reduction

Usage

```
H2oAutoencoder(
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  data,
  ValidationData = NULL,
  Features = NULL,
  RemoveFeatures = FALSE,
  NThreads = max(1L, parallel::detectCores() - 2L),
```

H2oAutoencoder 245

```
MaxMem = "28G",
H2oShutdown = TRUE,
ModelID = "TestModel",
LayerStructure = NULL,
ReturnLayer = 4L,
per_feature = TRUE,
Activation = "Tanh",
Epochs = 5L,
L2 = 0.1,
ElasticAveraging = TRUE,
ElasticAveragingMovingRate = 0.9,
ElasticAveragingRegularization = 0.001)
```

Arguments

AnomalyDetection

Set to TRUE to run anomaly detection

DimensionReduction

Set to TRUE to run dimension reduction

data The data.table with the columns you wish to have analyzed ValidationData The data.table with the columns you wish to have scored

Features NULL Column numbers or column names

RemoveFeatures Set to TRUE if you want the features you specify in the Features argument to be

removed from the data returned

NThreads max(1L, parallel::detectCores()-2L)

MaxMem "28G"

H2oShutdown Setting to TRUE will shutdown H2O when it done being used internally.

ModelID "TestModel"

LayerStructure a

ReturnLayer Which layer of the NNet to return. Choose from 1-7 with 4 being the layer with

the least amount of nodes

per_feature Set to TRUE to have per feature anomaly detection generated. Otherwise and

overall value will be generated

Activation Choose from "Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout",

"MaxoutWithDropout"

Epochs Quantile value to find the cutoff value for classifying outliers

L2 Specify the amount of memory to allocate to H2O. E.g. "28G"

ElasticAveraging

Specify the number of threads (E.g. cores * 2)

ElasticAveragingMovingRate

Specify the number of decision trees to build

ElasticAveragingRegularization

Specify the row sample rate per tree

Value

A data.table

246 H2oAutoencoder

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), ModelDataPrep(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

```
## Not run:
# Create simulated data
# Define correlation strength of features to target
Correl <- 0.85
# Number of rows you want returned
N <- 10000
# Create data
data <- data.table::data.table(Adrian = runif(N))</pre>
data[, x1 := qnorm(Adrian)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
\label{eq:data_solution} \texttt{data[, Independent\_Variable2 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]}
data[, Independent_Variable3 := exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.25]
data[, Independent_Variable8 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.75]
data[, Independent_Variable9 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
 data.table::fifelse(Independent_Variable2 < 0.15, "A",</pre>
        data.table::fifelse(Independent_Variable2 < 0.45, "B",</pre>
               data.table::fifelse(Independent_Variable2 < 0.65, "C",</pre>
                       data.table::fifelse(Independent_Variable2 < 0.85, "D", "E")))))]</pre>
data.table::set(data, j = c("x1", "x2"), value = NULL)
# Get number of columns for LayerStructure
N <- length(names(data)[2L:ncol(data)])</pre>
# Run algo
Output <- RemixAutoML::H2oAutoencoder(
   # Select the service
   AnomalyDetection = TRUE,
   DimensionReduction = TRUE,
   # Data related args
   data = data,
```

H2oIsolationForest 247

```
ValidationData = NULL,
   Features = names(data)[2L:ncol(data)],
   RemoveFeatures = FALSE,
   # H2O args
   NThreads = max(1L, parallel::detectCores()-2L),
   MaxMem = "28G",
   H2oShutdown = TRUE,
   ModelID = "TestModel".
   LayerStructure = NULL,
   ReturnLayer = 4L,
   per_feature = TRUE,
   Activation = "Tanh",
   Epochs = 5L,
   L2 = 0.10,
   ElasticAveraging = TRUE,
   ElasticAveragingMovingRate = 0.90,
   ElasticAveragingRegularization = 0.001)
 # Inspect output
 Data <- Output$Data
 Model <- Output$Model
 # If ValidationData is not null
 ValidationData <- Output$ValidationData</pre>
## End(Not run)
```

 ${\it H2oIsolation} Forest$

H2oIsolationForest for anomaly detection

Description

H2oIsolationForest for anomaly detection

Usage

```
H2oIsolationForest(
  data,
  TestData = NULL,
  ColumnNumbers = NULL,
  Threshold = 0.975,
  MaxMem = "28G",
  NThreads = -1,
  NTrees = 100,
  SampleRate = (sqrt(5) - 1)/2
)
```

Arguments

data The data.table with the columns you wish to have analyzed

TestData Data for scoring the trained isolation forest

ColumnNumbers A vector with the column numbers you wish to analyze

248 H2oIsolationForest

Threshold Quantile value to find the cutoff value for classifying outliers

MaxMem Specify the amount of memory to allocate to H2O. E.g. "28G"

NThreads Specify the number of threads (E.g. cores * 2)
NTrees Specify the number of decision trees to build

SampleRate Specify the row sample rate per tree

Value

A data.table

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoKMeans(), GenTSAnomVars(), ResidualOutliers()

```
## Not run:
# Create simulated data
# Define correlation strength of features to target
Correl <- 0.85
# Number of rows you want returned
N <- 10000L
# Create data
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2))))]
\label{eq:data_norm} \texttt{data[, Independent\_Variable5 := sqrt(pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]}
\label{local_data} $$ \text{data[, Independent\_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]} $$ $$ $$ $$ \text{data[, Independent\_Variable6 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.10]} $$
\label{eq:data_norm} \texttt{data[, Independent\_Variable7 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^0.25]}
data[, Independent_Variable9 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Target := as.factor(
 data.table::fifelse(Independent_Variable2 < 0.20, "A",</pre>
        data.table::fifelse(Independent_Variable2 < 0.40, "B",</pre>
                data.table::fifelse(Independent_Variable2 < 0.6,</pre>
                        \label{lem:data:table::fifelse(Independent_Variable2 < 0.8, "D", "E")))))]} \\
data[, Independent_Variable11 := as.factor(
 data.table::fifelse(Independent_Variable2 < 0.15, "A",</pre>
         data.table::fifelse(Independent_Variable2 < 0.45, "B",</pre>
                data.table::fifelse(Independent_Variable2 < 0.65,</pre>
                                                                         "C",
                        data.table::fifelse(Independent_Variable2 < 0.85, "D", "E")))))]</pre>
data.table::set(data, j = c("x1", "x2"), value = NULL)
```

ID_BuildTrainDataSets ID_BuildTrainDataSets for assembling data

Description

ID_BuildTrainDataSets for assembling data for the IntermittentDemandBootStrapper() function.

Usage

```
ID_BuildTrainDataSets(
   MetaData,
   data,
   Case = 2L,
   TargetVariableName = NULL,
   DateVariableName = NULL,
   GroupingVariables = NULL,
   FC_Periods,
   TimeUnit = "week",
   PowerRate = 0.5,
   SampleRate = 5L,
   TargetWindowSamples = 5L
)
```

Arguments

MetaData This is the metadata returned from the ID_MetadataGenerator() function

data This is your transactional data

Case Indicate which data constructor method to use

TargetVariableName

Your target variable names

DateVariableName

Your date variable names

GroupingVariables

Your grouping variables

FC_Periods The number of periods to forecast

TimeUnit The time period unit, such as "day", "week", or "month"

250 ID_MetadataGenerator

PowerRate The calculated for determining the total samples is number of records to the

power of PowerRate. Then that values is multiplied by the SampleRate. This ensures that a more representative sample is generated across the data set.

SampleRate The value used to sample from each level of the grouping variables

TargetWindowSamples

The number of different targets to utilize for a single random start date

Value

Returns the count modeling data and the size modeling data

See Also

Other Feature Engineering Helper: AutoFourierFeatures(), ID_MetadataGenerator(), ID_TrainingDataGenerator() ID_TrainingDataGenerator()

ID_MetadataGenerator

ID_MetadataGenerator for summary metadata for transactional data

Description

ID_MetadataGenerator for summary metadata for transactional data. The data returned from this function feeds into the IntermittentDemandBootStrapper() function.

Usage

```
ID_MetadataGenerator(
   data,
   RestrictDateRange = TRUE,
   DateVariableName = NULL,
   GroupingVariables = NULL,
   MinTimeWindow = 1L,
   MinTxnRecords = 2L,
   DateInterval = "day"
)
```

Arguments

data This is your transactional level data

RestrictDateRange

= TRUE

DateVariableName

Bla

GroupingVariables

Bla

MinTimeWindow The number of time periods you would like to omit for training. Default is 1 so

that at a minimum, there is at least one period of values to forecast. You can set it up to a larger value if you do not want more possible target windows for the

lower target window values.

MinTxnRecords I typically set this to 2 so that there is at least one other instance of demand so

that the forecasted values are not complete nonsense.

DateInterval This is the time unit for determining date calculations

251

Value

Returns a data.table with summary information for the IntermittentDemandBootStrapper() function.

See Also

Other Feature Engineering Helper: AutoFourierFeatures(), ID_BuildTrainDataSets(), ID_TrainingDataGeneratID_TrainingDataGenerator()

Examples

```
## Not run:
# Generate Metadata----
MetaData <- ID_MetadataGenerator(
   data = data,
   RestrictDateRange = TRUE,
   DateVariableName = DateVariableName,
   GroupingVariables = GroupingVariables,
   MinTimeWindow = MinTimeWindow,
   MinTxnRecords = MinTxnRecords,
   DateInterval = TimeUnit,
   TimeUnit = TimeUnit
)
## End(Not run)</pre>
```

ID_TrainingDataGenerator

ID_TrainingDataGenerator for subsetting data

Description

ID_TrainingDataGenerator for subsetting data for the IntermittentDemandBootStrapper() function.

Usage

```
ID_TrainingDataGenerator(
   data,
   Type = "timetoevent1",
   TargetVariableName = NULL,
   Level = NULL,
   DateVariableName = NULL,
   GroupingVariables = NULL,
   RandomStartDate = NULL,
   TimeUnit = NULL,
   TargetWindow = NULL
)
```

Arguments

```
data Source data

Type "timetoevent1", "eventinwindow1"
```

TargetVariableName

Name of the variables to run feature engineering on. List the actual target variable name first.

Level

The individual level of your group variable

DateVariableName

Name of your date variable

GroupingVariables

Your grouping variables

RandomStartDate

The date to partition the data

TimeUnit This is the TimeUnit you selected for aggregation

TargetWindow The length of the target window sampled

Value

Returns two data sets for the IntermittentDemandBootStrapper() function based on a single level from the grouping variables.

See Also

Other Feature Engineering Helper: AutoFourierFeatures(), ID_BuildTrainDataSets(), ID_MetadataGenerator() ID_TrainingDataGenerator2()

ID_TrainingDataGenerator2

ID_TrainingDataGenerator2 for subsetting data

Description

ID_TrainingDataGenerator2 for subsetting data for the IntermittentDemandBootStrapper() function.

Usage

```
ID_TrainingDataGenerator2(
  data,
  TargetVariableName = NULL,
  Level = NULL,
  GroupingVariables = NULL,
  DateVariableName = NULL,
  RandomStartDate = NULL,
  TimeUnit = NULL,
  TargetWindow = NULL
)
```

Arguments

data Source data

TargetVariableName

vector of variable names

Level The individual level of your group variable

GroupingVariables

Your grouping variables

DateVariableName

Name of your date variable

RandomStartDate

The date to partition the data

TimeUnit This is the TimeUnit you selected for aggregation

TargetWindow The length of the target window sampled

Value

Returns two data sets for the IntermittentDemandBootStrapper() function based on a single level from the grouping variables.

See Also

Other Feature Engineering Helper: AutoFourierFeatures(), ID_BuildTrainDataSets(), ID_MetadataGenerator() ID_TrainingDataGenerator()

Intermittent Demand Scoring Data Generator

Intermittent Demand Scoring Data Generator

Description

IntermittentDemandScoringDataGenerator creates the scoring data for forecasting. It will recreate the same features used for modeling, take the most recent record, and then duplicate those records for each forecast period specifed.

```
IntermittentDemandScoringDataGenerator(
  data = NULL,
  FC_Periods = 52,
  SaveData = FALSE,
  FilePath = NULL,
  TargetVariableName = "qty",
  DateVariableName = "date",
  GroupingVariables = "sku",
  Lags = 1:7,
  MovingAverages = seq(7, 28, 7),
  TimeTrendVariable = TRUE,
  TimeUnit = "day",
  CurrentDate = NULL,
```

Arguments

data This is your source data

FC_Periods The number of periods you set up to forecast
SaveData Set to TRUE to save the output data to file
FilePath Set a path file have the data saved there

TargetVariableName

Name or column number of your target variable

DateVariableName

Name or column number of your date variable

GroupingVariables

Name or column number of your group variables

Lags The number of lags used in building the modeling data sets

MovingAverages The number of moving averages used in building the modeling data sets

TimeTrendVariable

Set to TRUE if you did so in model data creation

TimeUnit Set to the same time unit used in modeling data creation

CurrentDate Set this to the current date or a date that you want. It is user specified in case

you want to score historical data.

CalendarVariables

Set this to the same setting you used in modeling data creation

HolidayGroups Set this to the same setting you used in modeling data creation

Value

Returns the most recent records for every level of your grouping variables with all the feature used in model building

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoH20MLScoring(), AutoH20Modeler(), AutoHurdleScoring(), AutoXGBoostScoring()

```
## Not run:
ScoringData <- IntermittentDemandScoringDataGenerator(
  data = data,
  SaveData = FALSE,
  FilePath = NULL,
  TargetVariableName = "qty",
  DateVariableName = "date",</pre>
```

LimeModel 255

```
GroupingVariables = "sku",
   Lags = 1:7,
   MovingAverages = seq(7,28,7),
   TimeTrendVariable = TRUE,
   TimeUnit = "day",
  CurrentDate = NULL,
   CalendarVariables = c("wday",
                          "mday",
                          "yday",
                          "week",
                          "isoweek",
                          "month",
                          "quarter",
                          "year"),
   HolidayGroups = "USPublicHolidays")
## End(Not run)
```

LimeModel

LimeModel to build a lime model

Description

LimeModel to build a lime model for prediction explanations in this package#'

Usage

```
LimeModel(
  data,
  Model = NULL,
  Bins = 10,
  ModelType = "xgboost",
  NThreads = parallel::detectCores(),
  MaxMem = "32G",
  ModelPath = NULL,
  ModelID = NULL
)
```

Arguments

data Supply a training data set. This data set should be the data right before it gets

converted to an h2o, catboost, or xgboost data object.

Model Supply the model returned from training with the Auto__() functions.

Bins Number of bins for discretizing numeric features

ModelType Select from xgboost, h2o, and catboost

NThreads Number of CPU threads

MaxMem For use with H2O models. E.g. set to "28G"

ModelPath Set to the path where your ML model is saved

ModelID ID used to identify your ML model

256 ModelDataPrep

Value

Model for utilizing lime

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoLimeAid(), EvalPlot(), ParDepCalPlots(), RedYellowGreen(), threshOptim()
```

ModelDataPrep

Final Data Preparation Function

Description

This function replaces inf values with NA, converts characters to factors, and imputes with constants

Usage

```
ModelDataPrep(
  data,
  Impute = TRUE,
  CharToFactor = TRUE,
  FactorToChar = FALSE,
  IntToNumeric = TRUE,
  DateToChar = FALSE,
  RemoveDates = FALSE,
  MissFactor = "0",
  MissNum = -1,
  IgnoreCols = NULL
)
```

Arguments data

Impute	Defaults to TRUE which tells the function to impute the data
CharToFactor	Defaults to TRUE which tells the function to convert characters to factors
FactorToChar	Converts to character
IntToNumeric	Defaults to TRUE which tells the function to convert integers to numeric
DateToChar	Converts date columns into character columns
RemoveDates	Defaults to FALSE. Set to TRUE to remove date columns from your data.table
MissFactor	Supply the value to impute missing factor levels
MissNum	Supply the value to impute missing numeric values
IgnoreCols	Supply column numbers for columns you want the function to ignore

This is your source data you'd like to modify

ModelDataPrep 257

Value

Returns the original data table with corrected values

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), Partial_DT_GDL_Feature_Engineering(), TimeSeriesFill()

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.75,
 N = 250000L
 ID = 2L,
  ZIP = 0L,
  FactorCount = 6L,
  AddDate = TRUE,
  Classification = FALSE,
 MultiClass = FALSE)
# Check column types
str(data)
# Convert some factors to character
data <- RemixAutoML::ModelDataPrep(</pre>
  data,
              = TRUE,
  Impute
  CharToFactor = FALSE,
  FactorToChar = TRUE,
  IntToNumeric = TRUE,
  DateToChar = FALSE,
RemoveDates = TRUE,
  MissFactor = "0",
               = -1,
  MissNum
  IgnoreCols = c("Factor_1"))
# Check column types
str(data)
## End(Not run)
```

258 multiplot

multiplot

Multiplot is a function for combining multiple plots

Description

Sick of copying this one into your code? Well, not anymore.

Usage

```
multiplot(..., plotlist = NULL, cols = 2, layout = NULL)
```

Arguments

... Passthrough arguments
plotlist This is the list of your charts

cols This is the number of columns in your multiplot

layout Leave NULL

Value

Multiple ggplots on a single image

Author(s)

Adrian Antico

See Also

```
Other Graphics: RemixTheme(), TimeSeriesPlotter()
```

```
## Not run:
Correl <- 0.85
data <- data.table::data.table(Target = runif(100))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(100)]
data[, Independent_Variable1 := log(
  pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Predict := (
  pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
p1 <- RemixAutoML::ParDepCalPlots(</pre>
  PredictionColName = "Predict",
  TargetColName = "Target",
  IndepVar = "Independent_Variable1",
  GraphType = "calibration",
 PercentileBucket = 0.20,
 FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE))
p2 <- RemixAutoML::ParDepCalPlots(</pre>
  PredictionColName = "Predict",
```

OptimizeArfima 259

```
TargetColName = "Target",
  IndepVar = "Independent_Variable1",
  GraphType = "boxplot",
  PercentileBucket = 0.20,
  FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE))
RemixAutoML::multiplot(plotlist = list(p1,p2), cols = 2)
## End(Not run)
```

OptimizeArfima

OptimizeArfima is a function that takes raw data and returns time series data

Description

OptimizeArfima is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
OptimizeArfima(
  Output,
  MetricSelection = "MAE",
  DataSetName = NULL,
  train = NULL,
  test = NULL,
  Lags = NULL,
  MovingAverages = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  TrainValidateShare = NULL,
  FinalGrid = NULL
)
```

Arguments

Output This is passed through as output from TimeSeriesDataPrepare() and passed through

ParallelArima()

MetricSelection

Select from "MSE", "MAE", or "MAPE"

DataSetName This is the name of the data set passed through in parallel loop

train Training data returned from TimeSeriesDataPrepare()
test Test data returned from TimeSeriesDataPrepare()

Lags Max lags

MovingAverages Max moving averages

260 OptimizeArfima

FullData Full series data for scoring and ensemble

HoldOutPeriods Holdout periods returned from TimeSeriesDataPrepare()

Minimum value of target variable returned from TimeSeriesDataPrepare()

TargetName Target variable name returned from TimeSeriesDataPrepare()

DateName Date variable name returned from TimeSeriesDataPrepare()

TrainValidateShare

A two-element numeric vector. The first element is the weight applied to the training performance and the remainder is applied to the validation performance.

FinalGrid Grid for forecasting models

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTSLM(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

```
## Not run:
Results <- OptimizeArfima(
  Output,
  MetricSelection = "MAE",
 DataSetName = NULL,
  train = NULL,
  test = NULL,
  Lags = NULL,
  MovingAverages = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  TrainValidateShare = NULL,
  FinalGrid = NULL)
## End(Not run)
```

OptimizeArima 261

OptimizeArima	OptimizeArima is a function that takes raw data and returns time se-
	ries data

Description

OptimizeArima is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
OptimizeArima(
  Output,
  MetricSelection = "MAE",
  DataSetName = NULL,
  train = NULL,
  test = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  Lags = NULL,
  SeasonalLags = NULL,
  MovingAverages = NULL,
  SeasonalMovingAverages = NULL,
  Differences = NULL,
  SeasonalDifferences = NULL,
  MaxFourierTerms = NULL,
  TrainValidateShare = NULL,
  MaxRunsWithoutNewWinner = 20,
  MaxNumberModels = NULL,
  MaxRunMinutes = NULL,
  FinalGrid = NULL,
  DebugMode = FALSE
)
```

Arguments

 ${\tt Output} \qquad \qquad {\tt This is passed through as output from TimeSeriesDataPrepare() and passed through}$

ParallelArima()

MetricSelection

Select from "MSE", "MAE", or "MAPE"

DataSetName This is the name of the data set passed through in parallel loop

train Training data returned from TimeSeriesDataPrepare()
test Test data returned from TimeSeriesDataPrepare()

FullData Full series data for scoring and ensemble

HoldOutPeriods Holdout periods returned from TimeSeriesDataPrepare()

262 OptimizeArima

Minimum value of target variable returned from TimeSeriesDataPrepare()

TargetName Target variable name returned from TimeSeriesDataPrepare()

DateName Date variable name returned from TimeSeriesDataPrepare()

Lags Max value of lag returned from TimeSeriesDataPrepare()

SeasonalLags Max value of seasonal lags returned from TimeSeriesDataPrepare()

MovingAverages Max value of moving averages

SeasonalMovingAverages

Max value of seasonal moving average

Differences Max value of difference returned from TimeSeriesDataPrepare()

SeasonalDifferences

Max value of seasonal difference returned from TimeSeriesDataPrepare()

MaxFourierTerms

Max value of fourier pairs

TrainValidateShare

A two-element numeric vector. The first element is the weight applied to the training performance and the remainder is applied to the validation performance.

MaxRunsWithoutNewWinner

The number of runs without a new winner which if passed tells the function to stop

St

MaxNumberModels

The number of models you want to test.

MaxRunMinutes Time

FinalGrid If NULL, regular train optimization occurs. If the grid is supplied, final builds

are conducted.

DebugMode Debugging

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeETS(), OptimizeNNET(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

```
## Not run:
Results <- OptimizeArima(
   Output,
   MetricSelection = "MAE",
   DataSetName = NULL,</pre>
```

OptimizeETS 263

```
train = NULL,
  test = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
 MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
 Lags = NULL,
 SeasonalLags = NULL,
  MovingAverages = NULL,
  SeasonalMovingAverages = NULL,
  Differences = NULL,
  SeasonalDifferences = NULL,
  MaxFourierTerms = NULL,
  TrainValidateShare = NULL,
  MaxRunsWithoutNewWinner = 20,
 MaxNumberModels = 5,
  MaxRunMinutes = NULL,
  FinalGrid = NULL)
## End(Not run)
```

OptimizeETS

OptimizeETS is a function that takes raw data and returns time series data

Description

OptimizeETS is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
OptimizeETS(
   Output,
   MetricSelection = "MAE",
   DataSetName = NULL,
   train = NULL,
   test = NULL,
   FullData = NULL,
   HoldOutPeriods = NULL,
   MinVal = NULL,
   TargetName = NULL,
   DateName = NULL,
   TrainValidateShare = NULL,
   FinalGrid = NULL
)
```

Arguments

Output

This is passed through as output from TimeSeriesDataPrepare() and passed through ParallelArima()

264 OptimizeETS

MetricSelection

Select from "MSE", "MAE", or "MAPE"

DataSetName This is the name of the data set passed through in parallel loop

train Training data returned from TimeSeriesDataPrepare()
test Test data returned from TimeSeriesDataPrepare()

FullData Full series data for scoring and ensemble

HoldOutPeriods Holdout periods returned from TimeSeriesDataPrepare()

Minimum value of target variable returned from TimeSeriesDataPrepare()

TargetName Target variable name returned from TimeSeriesDataPrepare()

DateName Date variable name returned from TimeSeriesDataPrepare()

TrainValidateShare

A two-element numeric vector. The first element is the weight applied to the training performance and the remainder is applied to the validation performance.

FinalGrid Grid for forecasting models

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoTSC(), ParallelAutoTSC(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), ParallelAutoTSLM(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

```
## Not run:
Results <- OptimizeETS(
   Output,
   MetricSelection = "MAE",
   DataSetName = NULL,
   train = NULL,
   test = NULL,
   FullData = NULL,
   HoldOutPeriods = NULL,
   MinVal = NULL,
   TargetName = NULL,
   DateName = NULL,
   TrainValidateShare = NULL,
   FinalGrid = NULL)</pre>
## End(Not run)
```

OptimizeNNET 265

OptimizeNNET	OptimizeNNET is a function that takes raw data and returns time se-
	ries data

Description

OptimizeNNET is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
OptimizeNNET(
  Output,
  MetricSelection = "MAE",
  DataSetName = NULL,
  train = NULL,
  test = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  Lags = NULL,
  SeasonalLags = NULL,
  MaxFourierTerms = NULL,
  TrainValidateShare = NULL,
  MaxRunsWithoutNewWinner = 20,
  MaxNumberModels = NULL,
  MaxRunMinutes = NULL,
  FinalGrid = NULL
)
```

Arguments

 ${\tt Output} \qquad \qquad {\tt This is passed through as output from TimeSeriesDataPrepare() and passed through}$

ParallelArima()

MetricSelection

Select from "MSE", "MAE", or "MAPE"

DataSetName This is the name of the data set passed through in parallel loop

train Training data returned from TimeSeriesDataPrepare()
test Test data returned from TimeSeriesDataPrepare()

FullData Full series data for scoring and ensemble

HoldOutPeriods Holdout periods returned from TimeSeriesDataPrepare()

Minimum value of target variable returned from TimeSeriesDataPrepare()

TargetName Target variable name returned from TimeSeriesDataPrepare()

DateName Date variable name returned from TimeSeriesDataPrepare()

Lags Max value of lag returned from TimeSeriesDataPrepare()

266 OptimizeNNET

SeasonalLags Max value of seasonal lags returned from TimeSeriesDataPrepare()
MaxFourierTerms

Max value of fourier pairs

TrainValidateShare

A two-element numeric vector. The first element is the weight applied to the training performance and the remainder is applied to the validation performance.

MaxRunsWithoutNewWinner

The number of runs without a new winner which if passed tells the function to stop

MaxNumberModels

The number of models you want to test.

MaxRunMinutes Time

FinalGrid If NULL, regular train optimization occurs. If the grid is supplied, final builds

are conducted.

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

```
## Not run:
Results <- OptimizeNNET(</pre>
  Output.
  MetricSelection = "MAE",
  DataSetName = NULL,
  train = NULL,
  test = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  Lags = NULL,
  SeasonalLags = NULL,
  MaxFourierTerms = NULL,
  TrainValidateShare = NULL,
  MaxRunsWithoutNewWinner = 20,
  MaxNumberModels = 5,
  MaxRunMinutes = NULL,
  FinalGrid = NULL)
```

OptimizeTBATS 267

```
## End(Not run)
```

OptimizeTBATS OptimizeTBATS is a function that takes raw data and returns time se-

ries data

Description

OptimizeTBATS is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
OptimizeTBATS(
  Output,
  MetricSelection = "MAE",
  DataSetName = NULL,
  train = NULL,
  test = NULL,
  Lags = NULL,
  MovingAverages = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  TrainValidateShare = NULL,
  FinalGrid = NULL
)
```

Arguments

Output This is passed through as output from TimeSeriesDataPrepare() and passed through

Parallel Arima()

 ${\tt MetricSelection}$

Select from "MSE", "MAE", or "MAPE"

DataSetName This is the name of the data set passed through in parallel loop

train Training data returned from TimeSeriesDataPrepare()
test Test data returned from TimeSeriesDataPrepare()

Lags Max lags

MovingAverages Max moving averages

FullData Full series data for scoring and ensemble

 ${\tt HoldOutPeriods} \ \ Holdout\ periods\ returned\ from\ TimeSeriesDataPrepare()$

Minimum value of target variable returned from TimeSeriesDataPrepare()

TargetName Target variable name returned from TimeSeriesDataPrepare()

DateName Date variable name returned from TimeSeriesDataPrepare()

268 OptimizeTSLM

TrainValidateShare

A two-element numeric vector. The first element is the weight applied to the training performance and the remainder is applied to the validation performance.

FinalGrid Grid for forecasting models

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

Examples

```
## Not run:
Results <- OptimizeTBATS(
  Output,
  MetricSelection = "MAE",
  DataSetName = NULL,
  train = NULL,
  test = NULL,
  Lags = NULL,
  MovingAverages = NULL,
  FullData = NULL,
  HoldOutPeriods = NULL,
  MinVal = NULL,
  TargetName = NULL,
  DateName = NULL,
  TrainValidateShare = NULL,
  FinalGrid = NULL)
## End(Not run)
```

 ${\tt OptimizeTSLM}$

OptimizeTSLM is a function that takes raw data and returns time series data

Description

OptimizeTSLM is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

OptimizeTSLM 269

Usage

```
OptimizeTSLM(
   Output,
   MetricSelection = "MAE",
   DataSetName = NULL,
   train = NULL,
   test = NULL,
   FullData = NULL,
   HoldOutPeriods = NULL,
   MinVal = NULL,
   TargetName = NULL,
   DateName = NULL,
   TrainValidateShare = NULL,
   FinalGrid = NULL
)
```

Arguments

Output This is passed through as output from TimeSeriesDataPrepare() and passed through

ParallelArima()

MetricSelection

Select from "MSE", "MAE", or "MAPE"

DataSetName This is the name of the data set passed through in parallel loop

train Training data returned from TimeSeriesDataPrepare()
test Test data returned from TimeSeriesDataPrepare()

FullData Full series data for scoring and ensemble

 ${\tt HoldOutPeriods} \ \ Holdout\ periods\ returned\ from\ TimeSeriesDataPrepare()$

Minimum value of target variable returned from TimeSeriesDataPrepare()

TargetName Target variable name returned from TimeSeriesDataPrepare()

DateName Date variable name returned from TimeSeriesDataPrepare()

TrainValidateShare

A two-element numeric vector. The first element is the weight applied to the

training performance and the remainder is applied to the validation performance.

FinalGrid Grid for forecasting models

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

270 ParallelAutoArfima

Examples

```
## Not run:
Results <- OptimizeTSLM(
   Output,
   MetricSelection = "MAE",
   DataSetName = NULL,
   train = NULL,
   test = NULL,
   FullData = NULL,
   HoldOutPeriods = NULL,
   MinVal = NULL,
   TargetName = NULL,
   DateName = NULL,
   TrainValidateShare = NULL,
   FinalGrid = NULL)</pre>
```

ParallelAutoArfima

ParallelAutoArfima

Description

ParallelAutoArfima to run the 4 data sets at once

Usage

```
ParallelAutoArfima(
  Output,
  MetricSelection = "MAE",
  TrainValidateShare = c(0.5, 0.5)
)
```

Arguments

```
Output The output returned from TimeSeriesDataPrepare()

MetricSelection
Choose from MAE, MSE, and MAPE

TrainValidateShare
The value returned from TimeSeriesPrepare()
```

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

ParallelAutoARIMA 271

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

Examples

```
## Not run:
ParallelAutoArfima(
   MetricSelection = "MAE",
   Output = NULL,
   TrainValidateShare = c(0.50,0.50))
## End(Not run)
```

ParallelAutoARIMA

ParallelAutoARIMA to run the 4 data sets at once

Description

ParallelAutoARIMA to run the 4 data sets at once

Usage

```
ParallelAutoARIMA(
   Output,
   MetricSelection = "MAE",
   MaxFourierTerms = 1L,
   TrainValidateShare = c(0.5, 0.5),
   MaxNumberModels = 20,
   MaxRunMinutes = 5L,
   MaxRunsWithoutNewWinner = 12,
   NumCores = max(1L, parallel::detectCores() - 2L)
)
```

Arguments

NumCores

Value

272 ParallelAutoETS

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
ParallelAutoARIMA(
   MetricSelection = "MAE",
   Output = NULL,
   MaxRunsWithoutNewWinner = 20,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

ParallelAutoETS

ParallelAutoETS

Description

ParallelAutoETS to run the 4 data sets at once

Usage

```
ParallelAutoETS(
   Output,
   MetricSelection = "MAE",
   TrainValidateShare = c(0.5, 0.5)
)
```

Arguments

```
Output The output returned from TimeSeriesDataPrepare()

MetricSelection

Choose from MAE, MSE, and MAPE

TrainValidateShare

The value returned from TimeSeriesPrepare()
```

ParallelAutoNNET 273

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare(), WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
ParallelAutoETS(
   MetricSelection = "MAE",
   Output = NULL,
   TrainValidateShare = c(0.50,0.50))
## End(Not run)
```

 ${\tt ParallelAutoNNET}$

ParallelAutoNNET to run the 4 data sets at once

Description

ParallelAutoNNET to run the 4 data sets at once

Usage

```
ParallelAutoNNET(
   Output,
   MetricSelection = "MAE",
   MaxFourierTerms = 1,
   TrainValidateShare = c(0.5, 0.5),
   MaxNumberModels = 20,
   MaxRunMinutes = 5,
   MaxRunsWithoutNewWinner = 12
)
```

Arguments

```
Output The output returned from TimeSeriesDataPrepare()

MetricSelection
Choose from MAE, MSE, and MAPE

MaxFourierTerms
Fourier pairs
```

274 ParallelAutoTBATS

```
\begin{tabular}{ll} TrainValidateShare & $c(0.50,0.50)$ \\ MaxNumberModels & $20$ \\ MaxRunMinutes & 5 \\ MaxRunsWithoutNewWinner & $12$ \\ \end{tabular}
```

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoTBATS(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
ParallelAutoNNET(
   MetricSelection = "MAE",
   Output = NULL,
   MaxRunsWithoutNewWinner = 20,
   TrainValidateShare = c(0.50,0.50),
   MaxNumberModels = 5,
   MaxRunMinutes = 5)
## End(Not run)
```

ParallelAutoTBATS

ParallelAutoTBATS

Description

ParallelAutoTBATS to run the 4 data sets at once

```
ParallelAutoTBATS(
   Output,
   MetricSelection = "MAE",
   TrainValidateShare = c(0.5, 0.5)
)
```

ParallelAutoTSLM 275

Arguments

```
Output The output returned from TimeSeriesDataPrepare()

MetricSelection
Choose from MAE, MSE, and MAPE

TrainValidateShare
The value returned from TimeSeriesPrepare()
```

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTSLM(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
ParallelAutoTBATS(
   MetricSelection = "MAE",
   Output = NULL,
   TrainValidateShare = c(0.50,0.50))
## End(Not run)
```

ParallelAutoTSLM

ParallelAutoTSLM

Description

ParallelAutoTSLM to run the 4 data sets at once

```
ParallelAutoTSLM(
  Output,
  MetricSelection = "MAE",
  TrainValidateShare = c(0.5, 0.5)
)
```

276 ParDepCalPlots

Arguments

```
Output The output returned from TimeSeriesDataPrepare()

MetricSelection

Choose from MAE, MSE, and MAPE

TrainValidateShare

The value returned from TimeSeriesPrepare()
```

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
ParallelAutoTSLM(
   MetricSelection = "MAE",
   Output = NULL,
   TrainValidateShare = c(0.50,0.50))
## End(Not run)
```

ParDepCalPlots

ParDepCalPlots automatically builds partial dependence calibration plots for model evaluation

Description

This function automatically builds partial dependence calibration plots and partial dependence calibration boxplots for model evaluation using regression, quantile regression, and binary and multinomial classification

```
ParDepCalPlots(
  data,
  PredictionColName = c("PredictedValues"),
  TargetColName = c("ActualValues"),
  IndepVar = c("Independent_Variable_Name"),
```

ParDepCalPlots 277

```
GraphType = c("calibration"),
PercentileBucket = 0.05,
FactLevels = 10,
Function = function(x) mean(x, na.rm = TRUE)
)
```

Arguments

data Data containing predicted values and actual values for comparison

PredictionColName

Predicted values column names

TargetColName Target value column names

IndepVar Independent variable column names

GraphType calibration or boxplot - calibration aggregated data based on summary statistic;

boxplot shows variation

PercentileBucket

Number of buckets to partition the space on (0,1) for evaluation

FactLevels The number of levels to show on the chart (1. Levels are chosen based on fre-

quency; 2. all other levels grouped and labeled as "Other")

Function Supply the function you wish to use for aggregation.

Value

Partial dependence calibration plot or boxplot

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: AutoLimeAid(), EvalPlot(), LimeModel(), RedYellowGreen(), threshOptim()

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70, N = 10000000, Classification = FALSE)
data.table::setnames(data, "Independent_Variable2", "Predict")
# Build plot
Plot <- RemixAutoML::ParDepCalPlots(</pre>
  data,
  PredictionColName = "Predict",
  TargetColName = "Adrian",
  IndepVar = "Independent_Variable1",
  GraphType = "calibration",
  PercentileBucket = 0.20,
  FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE))
## End(Not run)
```

```
Partial_DT_GDL_Feature_Engineering A\ version\ of\ the\ DT\_GDL\ function\ for\ creating\ the\ GDL\ features\ for\ a new set of records
```

Description

For scoring models in production that have > 1 grouping variables and for when you need > 1 record (or records per grouping variables) returned. This function is for generating lags and moving averages (along with lags and moving averages off of time between records), for a partial set of records in your data set, typical new records that become available for model scoring. Column names and ordering will be identical to the output from the corresponding DT_GDL_Feature_Engineering() function, which most likely was used to create features for model training.

Usage

```
Partial_DT_GDL_Feature_Engineering(
  data,
  lags = c(seq(1, 5, 1)),
  periods = c(3, 5, 10, 15, 20, 25),
  SDperiods = c(seq(5, 95, 5)),
  Skewperiods = c(seq(5, 95, 5)),
  Kurtperiods = c(seq(5, 95, 5)),
  Quantileperiods = c(seq(5, 95, 5)),
  statsFUNs = c("mean"),
  targets = c("Target"),
  groupingVars = NULL,
  sortDateName = NULL,
  timeDiffTarget = NULL,
  timeAgg = NULL,
  WindowingLag = 1,
  Type = "Lag"
  Timer = TRUE.
  SimpleImpute = TRUE,
  AscRowByGroup = "temp",
  RecordsKeep = 1,
  AscRowRemove = TRUE
)
```

Arguments

data	A data.table you want to run the function on	
lags	A numeric vector of the specific lags you want to have generated. You must include 1 if WindowingLag = 1 .	
periods	A numeric vector of the specific rolling statistics window sizes you want to utilize in the calculations.	
SDperiods	A numeric vector of Standard Deviation rolling statistics window sizes you want to utilize in the calculations.	
Skewperiods	A numeric vector of Skewness rolling statistics window sizes you want to utilize in the calculations.	

Kurtperiods A numeric vector of Kurtosis rolling statistics window sizes you want to utilize

in the calculations.

Quantileperiods

A numeric vector of Quantile rolling statistics window sizes you want to utilize

in the calculations.

Select from the following c ("mean", "sd", "skew", "kurt", "q5", "q10", "q15", "q20", "q25", "q30", "q35", "continuous following continuous following cont

targets A character vector of the column names for the reference column in which you

will build your lags and rolling stats

groupingVars A character vector of categorical variable names you will build your lags and

rolling stats by

sortDateName The column name of your date column used to sort events over time

timeDiffTarget Specify a desired name for features created for time between events. Set to

NULL if you don't want time between events features created.

timeAgg List the time aggregation level for the time between events features, such as

"hour", "day", "week", "month", "quarter", or "year"

WindowingLag Set to 0 to build rolling stats off of target columns directly or set to 1 to build

the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead" if you

want features built on future values

Timer Set to TRUE if you percentage complete tracker printout

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation of -1

AscRowByGroup Required to have a column with a Row Number by group (if grouping) with the

smallest numbers being the records for scoring (typically the most current in

time).

RecordsKeep List the row number of AscRowByGroup and those data points will be returned

AscRowRemove Set to TRUE to remove the AscRowByGroup column upon returning data.

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
N = 25116
data <- data.table::data.table(
  DateTime = as.Date(Sys.time()),
  Target = stats::filter(</pre>
```

280 PredictArima

```
rnorm(N, mean = 50, sd = 20),
  filter=rep(1,10),
  circular=TRUE))
data[, temp := seq(1:N)][, DateTime := DateTime - temp]
data <- data[order(DateTime)]</pre>
data <- Partial_DT_GDL_Feature_Engineering(</pre>
  data,
  lags
                = c(1:5),
 riags = c(1:5),
periods = c(seq(10,50,10)),
SDperiods = c(seq(5, 95, 5)),
  Skewperiods = c(seq(5, 95, 5)),
  Kurtperiods = c(seq(5, 95, 5)),
  Quantileperiods = c(seq(5, 95, 5)),
  statsFUNs = c("mean", "sd", "skew",
   "kurt","q5","q95"),
  targets = c("Target"),
  groupingVars = NULL,
  sortDateName = "DateTime",
  timeDiffTarget = c("Time_Gap"),
 cimeAgg = "days",
WindowingLag = 1,
Type
  Type
                 = "Lag",
  Timer
                 = TRUE,
  SimpleImpute = TRUE,
  AscRowByGroup = "temp"
  RecordsKeep = c(1,5,100,2500),
  AscRowRemove = TRUE)
## End(Not run)
```

PredictArima

PredictArima to forecast an Arima() model from the stats package

Description

PredictArima is a function to overwrite the s3 generic <code>getS3method('predict','Arima')</code>

Usage

```
PredictArima(
  object = Results,
  n.ahead = FCPeriods,
  newxreg = NULL,
  se.fit = TRUE
)
```

Arguments

object	Object that stores the output from Arima()
n.ahead	Number of forecast periods to forecast
newxreg	NULL by default. Forward looking independent variables as matrix type
se.fit	Set to FALSE to not return prediction intervals with the forecast

PrintObjectsSize 281

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM() RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare WideTimeSeriesEnsembleForecast()

PrintObjectsSize

PrintObjectsSize prints out the top N objects and their associated sizes, sorted by size

Description

PrintObjectsSize prints out the top N objects and their associated sizes, sorted by size

Usage

```
PrintObjectsSize(N = 10)
```

Arguments

Ν

The number of objects to display

Value

A print to your console of the sizes of the objects in your environment

Author(s)

Adrian Antico

See Also

```
Other Misc: AutoH2OTextPrepScoring(), ChartTheme(), RPM_Binomial_Bandit(), SimpleCap(), tempDatesFun(), tokenizeH2O()
```

```
## Not run:
PrintObjectsSize(N = 10)
## End(Not run)
```

282 **ProblematicFeatures**

ProblematicFeatures	ProblematicFeatures	identifies	problematic	features	for	machine
	learning					

Description

ProblematicFeatures identifies problematic features for machine learning and outputs a data.table of the feature names in the first column and the metrics they failed to pass in the columns.

Usage

```
ProblematicFeatures(
  data,
  ColumnNumbers = c(1:ncol(data)),
  NearZeroVarThresh = 0.05,
  CharUniqThresh = 0.5,
  NA_Rate = 0.2,
  Zero_Rate = 0.2,
  HighSkewThresh = 10
)
```

Arguments

data The data.table with the columns you wish to have analyzed ColumnNumbers A vector with the column numbers you wish to analyze

NearZeroVarThresh

Set to NULL to not run NearZeroVar(). Checks to see if the percentage of values in your numeric columns that are not constant are greater than the value you set here. If not, the feature is collects and returned with the percentage unique value.

CharUniqThresh Set to NULL to not run CharUniqthresh(). Checks to see if the percentage of unique levels / groups in your categorical feature is greater than the value you supply. If it is, the feature name is returned with the percentage unique value.

NA_Rate

Set to NULL to not run NA_Rate(). Checks to see if the percentage of NA's in your features is greater than the value you supply. If it is, the feature name is returned with the percentage of NA values.

Zero_Rate

Set to NULL to not run Zero_Rate(). Checks to see if the percentage of zero's in your features is greater than the value you supply. If it is, the feature name is

returned with the percentage of zero values.

HighSkewThresh

Set to NULL to not run HighSkew(). Checks for numeric columns whose ratio of the sum of the top 5th percentile of values to the bottom 95th percentile of values is greater than the value you supply. If true, the column name and value is returned.

Value

data table with new dummy variables columns and optionally removes base columns

Author(s)

Adrian Antico

See Also

```
Other EDA: AutoWordFreq()
```

Examples

```
## Not run:
test <- data.table::data.table(RandomNum = runif(1000))</pre>
test[, NearZeroVarEx := ifelse(runif(1000) > 0.99, runif(1), 1)]
test[, CharUniqueEx := as.factor(ifelse(RandomNum < 0.95, sample(letters, size = 1), "FFF"))]</pre>
test[, NA_RateEx := ifelse(RandomNum < 0.95, NA, "A")]</pre>
test[, ZeroRateEx := ifelse(RandomNum < 0.95, 0, runif(1))]</pre>
test[, HighSkewThreshEx := ifelse(RandomNum > 0.96, 100000, 1)]
ProblematicFeatures(
  test,
  ColumnNumbers = 2:ncol(test),
  NearZeroVarThresh = 0.05,
  CharUniqThresh = 0.50,
 NA_Rate = 0.20,
  Zero_Rate = 0.20,
 HighSkewThresh = 10)
## End(Not run)
```

QA_WALMARTDATAGENERATOR

QA_WALMARTDATAGENERATOR

Description

```
QA_WALMARTDATAGENERATOR
```

Usage

```
QA_WALMARTDATAGENERATOR(data, Groups = 1L, TimeUnit__ = "WEEK")
```

Arguments

data supply walmart data for either a single group or two group case. For no group,

use XX

Groups Supply either 0L, 1L, or 2L to indicate the number of group variables to have

tested

TimeUnit__ = TimeUnit_

Author(s)

Adrian Antico

284 RedYellowGreen

RedYellowGreen	RedYellowGreen is for determining the optimal thresholds for binary
	classification when do-nothing is an option

Description

This function will find the optimial thresholds for applying the main label and for finding the optimial range for doing nothing when you can quantity the cost of doing nothing

Usage

```
RedYellowGreen(
  data,
  PredictColNumber = 2,
  ActualColNumber = 1,
  TruePositiveCost = 0,
  TrueNegativeCost = -10,
  FalsePositiveCost = -50,
  MidTierCost = -2,
  Cores = 8,
  Precision = 0.01,
  Boundaries = c(0.05, 0.75)
)
```

Arguments

data is the data table with your predicted and actual values from a classification model

PredictColNumber

The column number where the prediction variable is located (in binary form)

ActualColNumber

The column number where the target variable is located

TruePositiveCost

This is the utility for generating a true positive prediction

TrueNegativeCost

This is the utility for generating a true negative prediction

FalsePositiveCost

This is the cost of generating a false positive prediction

 ${\tt FalseNegativeCost}$

This is the cost of generating a false negative prediction

MidTierCost This is the cost of doing nothing (or whatever it means to not classify in your

case)

Cores Number of cores on your machine

Precision Set the decimal number to increment by between 0 and 1

Boundaries Supply a vector of two values c(lower bound, upper bound) where the first value

is the smallest threshold you want to test and the second value is the largest value you want to test. Note, if your results are at the boundaries you supplied, you should extent the boundary that was reached until the values is within both

revised boundaries.

Regular_Performance 285

Value

A data table with all evaluated strategies, parameters, and utilities, along with a 3d scatterplot of the results

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: AutoLimeAid(), EvalPlot(), LimeModel(), ParDepCalPlots(), threshOptim()

Examples

```
## Not run:
data <- data.table::data.table(Target = runif(10))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(10)]
data[, Predict := log(pnorm(0.85 * x1 +
  sqrt(1-0.85^2) * qnorm(x2))]
data[, ':=' (x1 = NULL, x2 = NULL)]
data <- RedYellowGreen(</pre>
  data,
 PredictColNumber = 2,
  ActualColNumber = 1,
  TruePositiveCost = 0,
  TrueNegativeCost = 0,
  FalsePositiveCost = -1,
  FalseNegativeCost = -2,
  MidTierCost = -0.5,
 Precision = 0.01,
  Cores = 1,
  Boundaries = c(0.05, 0.75))
## End(Not run)
```

Regular_Performance

Regular_Performance creates and stores model results in Experiment Grid

Description

Regular_Performance creates and stores model results in Experiment Grid

```
Regular_Performance(
  Model = NULL,
  Results = Results,
  GridList = GridList,
  TrainValidateShare = c(0.5, 0.5),
  ExperimentGrid = ExperimentGrid,
```

```
run = run,
train = train,
ValidationData = ValidationData,
HoldOutPeriods = HoldOutPeriods
```

Arguments

Model Set to ets, tbats, arfima, tslm, nnetar

Results This is a time series model

GridList List TrainValidateShare

The values used to blend training and validation performance

ExperimentGrid The results collection table

run Iterator
train Data set
ValidationData Data set
HoldOutPeriods Passthrough

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTSLM() PredictArima(), RL_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare(), WideTimeSeriesEnsembleForecast()

RemixClassificationMetrics

Remix Classification Metrics

Description

RemixClassificationMetrics

```
RemixClassificationMetrics(
   MLModels = c("catboost", "h2oautoml", "h2ogbm", "h2odrf", "xgboost"),
   TargetVariable = "Value",
   Thresholds = seq(0.01, 0.99, 0.01),
   CostMatrix = c(1, 0, 0, 1),
   ClassLabels = c(1, 0),
   CatBoostTestData = NULL,
```

RemixClassificationMetrics 287

```
H2oAutoMLTestData = NULL,
H2oGBMTestData = NULL,
H2oDRFTestData = NULL,
H2oGLMTestData = NULL,
XGBoostTestData = NULL)
```

Arguments

```
MLModels
                 A vector of model names from remixautoml. e.g. c("catboost","h2oautoml","h2ogbm","h2odrf","h2o
TargetVariable Name of your target variable
                 seq(0.01,0.99,0.01),
Thresholds
CostMatrix
                 c(1,0,0,1),
ClassLabels
                 c(1,0),
CatBoostTestData
                 Test data returned from AutoCatBoostClassifier
H2oAutoMLTestData
                 Test data returned from AutoCatBoostClassifier
H2oGBMTestData Test data returned from AutoH2oGBMClassifier
H2oDRFTestData Test data returned from AutoH2oDRFClassifier
H2oGLMTestData Test data returned from AutoH2oGLMClassifier
XGBoostTestData
```

Test data returned from AutoXGBoostClassifier

Author(s)

Adrian Antico

See Also

 $Other\ Model\ Evaluation:\ Classification Metrics(),\ DT_Binary Confusion Matrix()$

```
## Not run:
RemixClassificationMetrics <- function(</pre>
 MLModels = c("catboost",
               "h2oautoml",
               "h2ogbm",
               "h2odrf",
               "xgboost"),
  TargetVariable = "Value";
  Thresholds = seq(0.01, 0.99, 0.01),
  CostMatrix = c(1,0,0,1),
 ClassLabels = c(1,0),
  CatBoostTestData = NULL,
  H2oAutoMLTestData = NULL,
  H2oGBMTestData = NULL,
  H2oDRFTestData = NULL,
  H2oGLMTestData = NULL,
  XGBoostTestData = NULL)
## End(Not run)
```

288 ResidualOutliers

RemixTheme

RemixTheme function is a ggplot theme generator for ggplots

Description

This function adds the Remix Theme to ggplots

Usage

```
RemixTheme()
```

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Douglas Pestana

See Also

```
Other Graphics: TimeSeriesPlotter(), multiplot()
```

Examples

ResidualOutliers

ResidualOutliers is an automated time series outlier detection function

ResidualOutliers 289

Description

ResidualOutliers is an automated time series outlier detection function that utilizes tsoutliers and auto.arima. It looks for five types of outliers: "AO" Additive outliter - a singular extreme outlier that surrounding values aren't affected by; "IO" Innovational outlier - Initial outlier with subsequent anomalous values; "LS" Level shift - An initial outlier with subsequent observations being shifted by some constant on average; "TC" Transient change - initial outlier with lingering effects that dissapate exponentially over time; "SLS" Seasonal level shift - similar to level shift but on a seasonal scale.

Usage

```
ResidualOutliers(
   data,
   DateColName = "DateTime",
   TargetColName = "Target",
   PredictedColName = NULL,
   TimeUnit = "day",
   Lags = 5,
   MA = 5,
   SLags = 0,
   SMA = 0,
   tstat = 2
)
```

Arguments

data the source residuals data.table

DateColName The name of your data column to use in reference to the target variable

TargetColName The name of your target variable column

PredictedColName

The name of your predicted value column. If you supply this, you will run anomaly detection of the difference between the target variable and your predicted value. If you leave PredictedColName NULL then you will run anomaly

detection over the target variable.

TimeUnit The time unit of your date column: hour, day, week, month, quarter, year the largest lag or moving average (seasonal too) values for the arima fit

MA Max moving average
SLags Max seasonal lags

SMA Max seasonal moving averages tstat the t-stat value for tsoutliers

Value

A named list containing FullData = original data.table with outliers data and ARIMA_MODEL = the arima model.

Author(s)

Adrian Antico

290 RL_Initialize

See Also

Other Unsupervised Learning: AutoKMeans(), GenTSAnomVars(), H2oIsolationForest()

Examples

```
## Not run:
data <- data.table::data.table(</pre>
  DateTime = as.Date(Sys.time()),
  Target = as.numeric(stats::filter(
    rnorm(1000, mean = 50, sd = 20),
  filter=rep(1,10),
  circular=TRUE)))
data[, temp := seq(1:1000)][, DateTime := DateTime - temp][
  , temp := NULL]
data <- data[order(DateTime)]</pre>
data[, Predicted := as.numeric(
  stats::filter(rnorm(1000, mean = 50, sd = 20),
filter=rep(1,10),
circular=TRUE))]
stuff <- ResidualOutliers(</pre>
  data = data,
  DateColName = "DateTime",
  TargetColName = "Target",
  PredictedColName = NULL,
  TimeUnit = "day",
  Lags = 5,
  MA = 5,
  SLags = 0,
  SMA = 0,
  tstat = 4)
data <- stuff[[1]]
model <- stuff[[2]]</pre>
model
         <- stuff[[2]]
outliers <- data[type != "<NA>"]
## End(Not run)
```

RL_Initialize

RL_Initialize

Description

RL_Initialize sets up the components necessary for RL

Usage

```
RL_Initialize(
  ParameterGridSet = NULL,
  Alpha = 1L,
  Beta = 1L,
  SubDivisions = 1000L
)
```

RL_ML_Update 291

Arguments

ParameterGridSet

This is a list of tuning grids

Alpha Prior successes
Beta Prior trials

SubDivisions Tolerance for integration

Author(s)

Adrian Antico

See Also

Other Reinforcement Learning: RL_ML_Update(), RL_Update()

Examples

```
## Not run:
RL_Start <- RL_Initialize(
    ParameterGridSet = GridClusters,
    Alpha = Alpha,
    Beta = Beta,
    SubDivisions = 1000L)
BanditArmsN <- RL_Start[["BanditArmsN"]]
Successes <- RL_Start[["Successes"]]
Trials <- RL_Start[["Trials"]]
GridIDs <- RL_Start[["GridIDs"]]
BanditProbs <- RL_Start[["BanditProbs"]]</pre>
## End(Not run)
```

RL_ML_Update

RL_ML_Update

Description

RL_ML_Update updates the bandit probabilities for selecting different grids

Usage

```
RL_ML_Update(
   ExperimentGrid = ExperimentGrid,
   ModelType = "classification",
   ModelRun = counter,
   NEWGrid = NewGrid,
   NewPerformance = NewPerformance,
   BestPerformance = BestPerformance,
   TrialVector = Trials,
   SuccessVector = Successes,
   GridIDS = GridIDs,
   BanditArmsCount = BanditArmsN,
```

292 RL_ML_Update

```
RunsWithoutNewWinner = RunsWithoutNewWinner,
MaxRunsWithoutNewWinner = MaxRunsWithoutNewWinner,
MaxNumberModels = MaxNumberModels,
MaxRunMinutes = MaxRunMinutes,
TotalRunTime = TotalRunTime,
BanditProbabilities = BanditProbs
)
```

Arguments

ExperimentGrid This is a data.table of grid params and model results

ModelType "classification", "regression", and "multiclass"

Model Run Model iteration number
NEWGrid Previous grid passed in

NewPerformance Internal

BestPerformance

Internal

TrialVector Numeric vector with the total trials for each arm

SuccessVector Numeric vector with the total successes for each arm

GridIDS The numeric vector that identifies which grid is which

BanditArmsCount

The number of arms in the bandit

RunsWithoutNewWinner

Counter of the number of models previously built without being a new winner

MaxRunsWithoutNewWinner

Maximum number of models built without a new best model (constraint)

MaxNumberModels

Maximum number of models to build (constraint)

MaxRunMinutes Run time constraint

TotalRunTime Cumulative run time in minutes

BanditProbabilities

Inital probabilities from RL_Initialize()

Author(s)

Adrian Antico

See Also

Other Reinforcement Learning: RL_Initialize(), RL_Update()

Examples

```
## Not run:
RL_Update_Output <- RL_ML_Update(
    ExperimentGrid = ExperimentGrid,
    ModelRun = run,
    ModelType = "classification",
    NEWGrid = NewGrid,
    NewPerformance = NewPerformance,
    BestPerformance = BestPerformance,</pre>
```

RL_Performance 293

```
TrialVector = Trials,
SuccessVector = Successes,
GridIDS = GridIDs,
BanditArmsCount = BanditArmsN,
RunsWithoutNewWinner = RunsWithoutNewWinner,
MaxRunsWithoutNewWinner = MaxRunsWithoutNewWinner,
MaxNumberModels = MaxNumberModels,
MaxRunMinutes = MaxRunMinutes,
TotalRunTime = TotalRunTime,
BanditProbabilities = BanditProbs)
BanditProbs <- RL_Update_Output[["BanditProbs"]]
Trials <- RL_Update_Output[["Trials"]]
Successes <- RL_Update_Output[["Successes"]]
NewGrid <- RL_Update_Output[["NewGrid"]]</pre>
## End(Not run)
```

RL_Performance

ARIMA_Performance creates and stores model results in Experiment Grid

Description

ARIMA_Performance creates and stores model results in Experiment Grid

Usage

```
RL_Performance(
  Results = Results,
  NextGrid = NextGrid,
  TrainValidateShare = c(0.5, 0.5),
  MaxFourierTerms = NULL,
  XREGFC = XREGFC,
  ExperimentGrid = ExperimentGrid,
  run = run,
  train = train,
  ValidationData = ValidationData,
  HoldOutPeriods = HoldOutPeriods,
  FinalScore = FALSE
)
```

Arguments

Results This is a time series model

NextGrid Bandit grid

TrainValidateShare

The values used to blend training and validation performance

MaxFourierTerms

Numeric value

XREGFC Fourier terms for forecasting ExperimentGrid The results collection table

294 RL_Update

run Iterator
train Data set
ValidationData Data set
HoldOutPeriods Passthrough
FinalScore FALSE

Author(s)

Adrian Antico

See Also

Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeNNET(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM() PredictArima(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare() WideTimeSeriesEnsembleForecast()

RL_Update

RL_Update

Description

RL_Update updates the bandit probabilities for selecting different grids

Usage

```
RL_Update(
  ExperimentGrid = ExperimentGrid,
  MetricSelection = MetricSelection,
  ModelRun = run,
  NEWGrid = NewGrid,
  TrialVector = Trials,
  SuccessVector = Successes,
  GridIDS = GridIDs,
  BanditArmsCount = BanditArmsN,
  RunsWithoutNewWinner = RunsWithoutNewWinner,
  MaxRunsWithoutNewWinner = MaxRunsWithoutNewWinner,
  MaxNumberModels = MaxNumberModels,
  MaxRunMinutes = MaxRunMinutes,
  TotalRunTime = TotalRunTime,
  BanditProbabilities = BanditProbs
)
```

RL_Update 295

Arguments

ExperimentGrid This is a data.table of grid params and model results

MetricSelection

The chosen metric to evalute models

Model Run Model iteration number

NEWGrid Previous grid passed in

TrialVector Numeric vector with the total trials for each arm

SuccessVector Numeric vector with the total successes for each arm

GridIDS The numeric vector that identifies which grid is which

BanditArmsCount

The number of arms in the bandit

RunsWithoutNewWinner

Counter of the number of models previously built without being a new winner

MaxRunsWithoutNewWinner

Maximum number of models built without a new best model (constraint)

MaxNumberModels

Maximum number of models to build (constraint)

MaxRunMinutes Run time constraint

TotalRunTime Cumulative run time in minutes

BanditProbabilities

Inital probabilities from RL_Initialize()

Author(s)

Adrian Antico

See Also

Other Reinforcement Learning: RL_Initialize(), RL_ML_Update()

Examples

```
## Not run:
RL_Update_Output <- RL_Update(</pre>
  ExperimentGrid = ExperimentGrid,
  MetricSelection = MetricSelection,
  ModelRun = run,
  NEWGrid = NewGrid,
  TrialVector = Trials,
  SuccessVector = Successes,
  GridIDS = GridIDs,
  BanditArmsCount = BanditArmsN,
  RunsWithoutNewWinner = RunsWithoutNewWinner,
  MaxRunsWithoutNewWinner = MaxRunsWithoutNewWinner,
  MaxNumberModels = MaxNumberModels,
  MaxRunMinutes = MaxRunMinutes,
  TotalRunTime = TotalRunTime,
  BanditProbabilities = BanditProbs)
BanditProbs <- RL_Update_Output[["BanditProbs"]]</pre>
Trials <- RL_Update_Output[["Trials"]]</pre>
Successes <- RL_Update_Output[["Successes"]]</pre>
```

```
NewGrid <- RL_Update_Output[["NewGrid"]]
## End(Not run)</pre>
```

RPM_Binomial_Bandit

RPM Binomial Bandit

Description

RPM_Binomial_Bandit computes randomized probability matching probabilities for each arm being best in a multi-armed bandit. Close cousin to Thomson Sampling.

Usage

```
RPM_Binomial_Bandit(
   Success,
   Trials,
   Alpha = 1L,
   Beta = 1L,
   SubDivisions = 1000L
)
```

Arguments

Success Vector of successes. One slot per arm.

Trials Vector of trials. One slot per arm.

Alpha Prior parameter for success

Beta Prior parameter for trials

SubDivisions Default is 100L in the stats package. Changed it to 1000 for this function.

Value

Probability of each arm being the best arm compared to all other arms.

Author(s)

Adrian Antico

See Also

```
Other Misc: AutoH2OTextPrepScoring(), ChartTheme(), PrintObjectsSize(), SimpleCap(), tempDatesFun(), tokenizeH2O()
```

SimpleCap 297

SimpleCap

SimpleCap function is for capitalizing the first letter of words

Description

SimpleCap function is for capitalizing the first letter of words (need I say more?)

Usage

```
SimpleCap(x)
```

Arguments

Х

Column of interest

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

```
Other Misc: AutoH2OTextPrepScoring(), ChartTheme(), PrintObjectsSize(), RPM_Binomial_Bandit(), tempDatesFun(), tokenizeH2O()
```

Examples

```
## Not run:
x <- "adrian"
x <- SimpleCap(x)
## End(Not run)</pre>
```

SQL_ClearTable

 $SQL_ClearTable$

Description

SQL_ClearTable get data from a database

Usage

```
SQL_ClearTable(
  DBConnection,
  SQLTableName = "",
  CloseChannel = TRUE,
  Errors = TRUE
)
```

298 SQL_DropTable

Arguments

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

SQLTableName The SQL statement you want to run

CloseChannel TRUE to close when done, FALSE to leave the channel open

Errors Set to TRUE to halt, FALSE to return -1 in cases of errors

Author(s)

Adrian Antico

See Also

Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()

SQL_DropTable

SQL_DropTable

Description

SQL_DropTable get data from a database

Usage

```
SQL_DropTable(
  DBConnection,
  SQLTableName = "",
  CloseChannel = TRUE,
  Errors = TRUE
)
```

Arguments

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

SQLTableName The SQL statement you want to run

CloseChannel TRUE to close when done, FALSE to leave the channel open

Errors Set to TRUE to halt, FALSE to return -1 in cases of errors

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

SQL_Query 299

SQL_Query

SQL_Query

Description

SQL_Query get data from a database

Usage

```
SQL_Query(
   DBConnection,
   Query,
   ASIS = FALSE,
   CloseChannel = TRUE,
   RowsPerBatch = 1024
)
```

Arguments

DBConnection RemixAutoML::SQL_Server_DBConnection()

Query The SQL statement you want to run

ASIS Auto column typing

CloseChannel TRUE to close when done, FALSE to leave the channel open

RowsPerBatch Rows default is 1024

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

SQL_Query_Push

 SQL_Query

Description

SQL_Query get data from a database

Usage

```
SQL_Query_Push(DBConnection, Query, CloseChannel = TRUE)
```

300 SQL_SaveTable

Arguments

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

Query The SQL statement you want to run

CloseChannel TRUE to close when done, FALSE to leave the channel open

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()
```

SQL_SaveTable

SQL_SaveTable

Description

SQL_SaveTable get data from a database

Usage

```
SQL_SaveTable(
  DataToPush,
  DBConnection,
  SQLTableName = "",
  RowNames = NULL,
  ColNames = TRUE,
  CloseChannel = TRUE,
  AppendData = FALSE,
  AddPK = TRUE,
  Safer = TRUE
)
```

Arguments

DataToPush data to be sent to warehouse

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

SQLTableName The SQL statement you want to run

 $\label{eq:convergence} \mbox{RowNames} \qquad \mbox{c("Segment","Date")}$

ColNames Column names in first row

CloseChannel TRUE to close when done, FALSE to leave the channel open

AppendData TRUE or FALSE

Add a PK column to table

Safer TRUE

Author(s)

Adrian Antico

See Also

Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_Server_DBConnection(), SQL_UpdateTable(), TimeSeriesMelt()

SQL_Server_DBConnection

SQL_Server_DBConnection

Description

SQL_Server_DBConnection is a function to return data dictionary data in table form

Usage

```
SQL_Server_DBConnection(DataBaseName = "", Server = "")
```

Arguments

DataBaseName Name of the database
Server Name of the server to use

Author(s)

Adrian Antico

See Also

Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_UpdateTable(), TimeSeriesMelt()

SQL_UpdateTable

 $SQL_UpdateTable$

Description

SQL_UpdateTable get data from a database

Usage

```
SQL_UpdateTable(
  DataToPush,
  DBConnection,
  SQLTableName = "",
  Index = NULL,
  CloseChannel = TRUE,
  Verbose = TRUE,
  Test = FALSE,
  NAString = "NA",
  Fast = TRUE
)
```

Arguments

DataToPush Update data table in warehouse with new values
DBConnection RemixAutoML::SQL_Server_DBConnection()

SQLTableName The SQL statement you want to run

Index Column name of index

CloseChannel TRUE to close when done, FALSE to leave the channel open

Verbose TRUE or FALSE

Test Set to TRUE to see if what you plan to do will work

NAString Supply character string to supply missing values

Fast Set to TRUE to update table in one shot versus row by row

Author(s)

Adrian Antico

See Also

```
Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), TimeSeriesMelt()
```

StackedTimeSeriesEnsembleForecast

Time Series Ensemble Forecast

Description

TimeSeriesEnsembleForecast to generate forecasts and ensemble data

Usage

```
StackedTimeSeriesEnsembleForecast(
   TS_Models = c("arima", "tbats", "nnet"),
   ML_Methods = c("CatBoost", "XGBoost", "H2oGBM", "H2oDRF"),
   CalendarFeatures = TRUE,
   HolidayFeatures = NULL,
   Path = "C:/Users/aantico/Documents/Package",
   TargetName = "Weekly_Sales",
   DateName = "Date",
   NTrees = 750,
   TaskType = "GPU",
   GridTune = FALSE,
   FCPeriods = 5,
   MaxNumberModels = 5
)
```

Arguments

TS_Models Select which ts model forecasts to ensemble
ML_Methods Select which models to build for the ensemble

CalendarFeatures

TRUE or FALSE

HolidayFeatures

TRUE or FALSE

FourierFeatures

Full set of fourier features for train and score

Path The path to the folder where the ts forecasts are stored

TargetName "Weekly_Sales"

DateName "Date"

NTrees Select the number of trees to utilize in ML models

TaskType GPU or CPU

GridTune Set to TRUE to grid tune the ML models

FCPeriods Number of periods to forecast

MaxNumberModels

The number of models to try for each ML model

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTBATS(), OptimizeTBATS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM() PredictArima(), RL_Performance(), Regular_Performance(), TimeSeriesDataPrepare(), WideTimeSeriesEnse
```

304 threshOptim

tempDatesFun

tempDatesFun Convert Excel datetime char columns to Date columns

Description

tempDatesFun takes the Excel datetime column, which imports as character, and converts it into a date type

Usage

```
tempDatesFun(x)
```

Arguments

Χ

The column of interest

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

```
Other Misc: AutoH2OTextPrepScoring(), ChartTheme(), PrintObjectsSize(), RPM_Binomial_Bandit(), SimpleCap(), tokenizeH2O()
```

Examples

```
## Not run:
Cdata <- data.table::data.table(DAY_DATE = "2018-01-01 8:53")
Cdata[, DAY_DATE := tempDatesFun(DAY_DATE)]
## End(Not run)</pre>
```

threshOptim

Utility maximizing thresholds for binary classification

Description

This function will return the utility maximizing threshold for future predictions along with the data generated to estimate the threshold

threshOptim 305

Usage

```
threshOptim(
  data,
  actTar = "target",
  predTar = "p1",
  tpProfit = 0,
  tnProfit = -1,
  fnProfit = -2,
  MinThresh = 0.001,
  MaxThresh = 0.999,
  ThresholdPrecision = 0.001
)
```

Arguments

data	data is the data table you are building the modeling on
actTar	The column name where the actual target variable is located (in binary form)
predTar	The column name where the predicted values are located
tpProfit	This is the utility for generating a true positive prediction
tnProfit	This is the utility for generating a true negative prediction
fpProfit	This is the cost of generating a false positive prediction
fnProfit	This is the cost of generating a false negative prediction
MinThresh	Minimum value to consider for model threshold
MaxThresh Maximum value to consider for model threshold ThresholdPrecision	

Value

Optimal threshold and corresponding utilities for the range of thresholds tested

Incrementing value in search

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: AutoLimeAid(), EvalPlot(), LimeModel(), ParDepCalPlots(), RedYellowGreen()

Examples

TimeSeriesDataPrepare TimeSeriesDataPrepare is a function that takes raw data and returns time series data

Description

TimeSeriesDataPrepare is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
TimeSeriesDataPrepare(
  data,
  TargetName,
  DateName,
  Lags,
  SeasonalLags,
  MovingAverages,
  SeasonalMovingAverages,
  TimeUnit,
  FCPeriods,
  HoldOutPeriods,
  TSClean = TRUE,
  ModelFreq = TRUE,
  FinalBuild = FALSE
)
```

Arguments

data Source data.table for forecasting
TargetName Name of your target variable
DateName Name of your date variable

Lags The max number of lags you want to test

Seasonal Lags The max number of seasonal lags you want to test

MovingAverages The max number of moving average terms

 ${\tt Seasonal Moving Averages}$

The max number of seasonal moving average terms

TimeUnit The level of aggregation your dataset comes in. Choices include: 1Min, 5Min,

10Min, 15Min, and 30Min, hour, day, week, month, quarter, year

FCPeriods The number of forecast periods you want to have forecasted HoldOutPeriods The number of holdout samples to compare models against

TSClean TRUE or FALSE. TRUE will kick off a time series cleaning operation. Outliers

will be smoothed and imputation will be conducted.

ModelFreq TRUE or FALSE. TRUE will enable a model-based time frequency calculation

for an alternative frequency value to test models on.

FinalBuild Set to TRUE to create data sets with full data

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTSLM() PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), WideTimeSeriesEnsembleForecast()
```

Examples

```
## Not run:
data <- data.table::fread(</pre>
  file.path(PathNormalizer(
    "C:\\Users\\aantico\\Documents\\Package\\data"),
    "tsdata.csv"))
TimeSeriesDataPrepare(
  data = data,
  TargetName = "Weekly_Sales",
  DateName = "Date",
  Lags = 5,
  MovingAverages,
  SeasonalMovingAverages,
  SeasonalLags = 1,
  TimeUnit = "week",
  FCPeriods = 10,
  HoldOutPeriods = 10,
  TSClean = TRUE,
  ModelFreq = TRUE,
  FinalBuild = FALSE)
## End(Not run)
```

308 TimeSeriesFill

TimeSeriesFill

TimeSeriesFill For Completing Time Series Data

Description

TimeSeriesFill For Completing Time Series Data For Single Series or Time Series by Group

Usage

```
TimeSeriesFill(
  data = data,
  DateColumnName = "Date",
  GroupVariables = NULL,
  TimeUnit = "days",
  FillType = "all"
)
```

Arguments

data Supply your full series data set here

DateColumnName Supply the name of your date column

GroupVariables Supply the column names of your group variables. E.g. "Group" or c("Group1", "Group2")

TimeUnit Choose from "second", "minute", "hour", "day", "week", "month", "quarter",

"year"

FillType Choose from "all" or "inner". Only relevant for when you have GroupVariables.

The "all" option will take the max date and the min date of the entire data set and fill according to those. The "inner" option will grab the max and min dates

by group levels and fill each group level based on those.

Value

Returns a data table with missing time series records filled (currently just zeros)

See Also

```
Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), ContinuousTimeDataGenerator(), CreateCalendarVariables(), CreateHolidayVariables(), DT_GDL_Feature_Engineering(), DummifyDT(), H2oAutoencoder(), ModelDataPrep(), Partial_DT_GDL_Feature
```

Examples

```
## Not run:
data <- TimeSeriesFill(
   data,
   DateColumnName = "Date",
   GroupVariables = "GroupVar",
   TimeUnit = "days",
   FillType = "inner")
## End(Not run)</pre>
```

TimeSeriesMelt 309

TimeSeriesMelt

TimeSeriesMelt

Description

TimeSeriesMelt

Usage

```
TimeSeriesMelt(
  data,
  TargetVariable = NULL,
  DateVariable = NULL,
  GroupVariables = NULL
)
```

Arguments

data source data

TargetVariable vector of target variable names

DateVariable Name of date variable

GroupVariables Vector of group variable names

Author(s)

Adrian Antico

See Also

Other Data Wrangling: AutoDataDictionaries(), ColumnSubsetDataTable(), DataDisplayMeta(), FakeDataGenerator(), FullFactorialCatFeatures(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection(), SQL_UpdateTable()

TimeSeriesPlotter

Time Series Plotter

Description

TimeSeriesPlotter is a function to plot single or multiple lines on a single plot

Usage

```
TimeSeriesPlotter(
  data = data,
  TargetVariable = "TargetVariableName",
  DateVariable = "DateVariableName",
  GroupVariables = "GroupVariableName",
  VLineDate = NULL,
  Aggregate = NULL,
```

310 TimeSeriesPlotter

```
NumberGroupsDisplay = 5,
 LevelsToDisplay = NULL,
 OtherGroupLabel = "Other"
 DisplayOtherGroup = FALSE,
 TextSize = 12,
 LineWidth = 1,
 Color = "blue",
 XTickMarks = "1 year",
  Size = 12,
 AngleX = 35,
 AngleY = 0,
 ChartColor = "lightsteelblue1",
 BorderColor = "darkblue",
 TextColor = "darkblue",
 GridColor = "white",
 BackGroundColor = "gray95",
 LegendPosition = "bottom",
 LegendTextColor = "darkblue",
 LegendTextSize = 10,
 ForecastLineColor = "black",
 Forecast = FALSE,
 PredictionIntervals = FALSE,
 TS_ModelID = NULL,
 PredictionIntervalColorInner = "aquamarine1",
 PredictionIntervalColorOuter = "peachpuff1"
)
```

Arguments

LineWidth

Color

data Source data TargetVariable Target variable DateVariable Date variable GroupVariables Group variables VLineDate Date of last actual target value Choose from 'sum' or 'mean' Aggregate NumberGroupsDisplay Number of lines to display LevelsToDisplay Value OtherGroupLabel Label to call all other group levels DisplayOtherGroup If TRUE, a line will be shown with all levels that fall into 'other' otherwise no line will be shown TextSize Default 12

Numeric value. Default is 1

Set to "blue", "red", etc

Number of tick marks on x-axis. "1 minute","15 minutes","30 minutes","1 hour","3 hour","6 hour","12 hour","1 day","3 day","1 week","2 week","1 month","3

month","6 month","1 year","2 year","5 year","10 year"

tokenizeH2O 311

Size Size of text on plot

AngleX Angle of text on x axis

AngleY Angle of text on y axis

ChartColor Color of chart background

BorderColor Color of border

TextColor Text color
GridColor Grid color

BackGroundColor

Background color

LegendPosition Legend position

LegendTextColor

Text color

LegendTextSize Text size

ForecastLineColor

Forecast line color

Forecast Set to TRUE to use forecast plots

PredictionIntervals

Set to TRUE to plot prediction intervals

TS_ModelID Select a model from the list for forecasting viewer

PredictionIntervalColorInner

Fills 20th to 80th percentiles

PredictionIntervalColorOuter

Fills 5th to 20th and 80th to 95th percentiles

Author(s)

Adrian Antico

See Also

Other Graphics: RemixTheme(), multiplot()

tokenizeH2O For NLP work

Description

This function tokenizes text data

Usage

tokenizeH2O(data)

Arguments

data The text data

Author(s)

Adrian Antico

See Also

```
Other Misc: AutoH2OTextPrepScoring(), ChartTheme(), PrintObjectsSize(), RPM_Binomial_Bandit(), SimpleCap(), tempDatesFun()
```

Examples

```
## Not run:
data <- tokenizeH2O(data = data[["StringColumn"]])
## End(Not run)</pre>
```

WideTimeSeriesEnsembleForecast

Wide Time Series Ensemble Forecast

Description

WideTimeSeriesEnsembleForecast to generate forecasts and ensemble data

Usage

```
WideTimeSeriesEnsembleForecast(
   TS_Models = c("arima", "tbats", "nnet"),
   ML_Methods = c("CatBoost", "XGBoost", "H2oGBM", "H2oDRF"),
   Path = "C:/Users/aantico/Documents/Package",
   TargetName = "Weekly_Sales",
   DateName = "Date",
   NTrees = 750,
   TaskType = "GPU",
   GridTune = FALSE,
   MaxNumberModels = 5
)
```

Arguments

TS_Models Select which ts model forecasts to ensemble
ML_Methods Select which models to build for the ensemble

Path The path to the folder where the ts forecasts are stored

TargetName "Weekly_Sales"

DateName "Date"

NTrees Select the number of trees to utilize in ML models

TaskType GPU or CPU

GridTune Set to TRUE to grid tune the ML models

MaxNumberModels

The number of models to try for each ML model

XGBoostClassifierParams 313

Author(s)

Adrian Antico

See Also

```
Other Time Series Helper: FinalBuildArfima(), FinalBuildArima(), FinalBuildETS(), FinalBuildNET(), FinalBuildTSLM(), GenerateParameterGrids(), OptimizeArfima(), OptimizeArima(), OptimizeETS(), OptimizeTSLM(), ParallelAutoARIMA(), ParallelAutoArfima(), ParallelAutoETS(), ParallelAutoNNET(), ParallelAutoTBATS(), ParallelAutoTSLM() PredictArima(), RL_Performance(), Regular_Performance(), StackedTimeSeriesEnsembleForecast(), TimeSeriesDataPrepare()
```

XGBoostClassifierParams

XGBoostClassifierParams

Description

XGBoostClassifierParams

Usage

```
XGBoostClassifierParams(
  counter = NULL,
  NThreads = -1L,
  BanditArmsN = NULL,
  eval_metric = NULL,
  task_type = NULL,
  model_path = NULL,
  NewGrid = NULL,
  Grid = NULL,
  ExperimentalGrid = NULL,
  GridClusters = NULL
)
```

Arguments

Passthrough counter NThreads = -1L, BanditArmsN Passthrough Passthrough eval_metric Passthrough task_type model_path Passthrough NewGrid Passthrough Grid Passthrough ExperimentalGrid Passthrough ${\tt GridClusters}$ Passthrough

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostMultiClassParams(), XGBoostParameterGrids(), XGBoostRegressionParams()

XGBoostMultiClassParams

XGBoostMultiClassParams

Description

XGBoostMultiClassParams

Usage

```
XGBoostMultiClassParams(
  counter = NULL,
  num_class = NULL,
  NThreads = -1L,
  BanditArmsN = NULL,
  eval_metric = NULL,
  task_type = NULL,
  model_path = NULL,
  NewGrid = NULL,
  Grid = NULL,
  ExperimentalGrid = NULL,
  GridClusters = NULL
)
```

Arguments

counter Passthrough **NULL** num_class NThreads = -1L, BanditArmsN Passthrough eval_metric Passthrough Passthrough task_type model_path Passthrough NewGrid Passthrough Grid Passthrough ExperimentalGrid Passthrough ${\tt GridClusters}$ Passthrough XGBoostParameterGrids 315

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostParameterGrids(), XGBoostRegressionParams()

 ${\tt XGBoostParameterGrids} \ \ \textit{XGBoostParameterGrids}$

Description

XGBoostParameterGrids

Usage

```
XGBoostParameterGrids(
   TaskType = "CPU",
   Shuffles = 1L,
   NTrees = seq(500L, 5000L, 5000L),
   Depth = seq(4L, 16L, 2L),
   LearningRate = seq(0.05, 0.4, 0.05),
   MinChildWeight = seq(1, 10, 1),
   SubSample = seq(0.55, 1, 0.05),
   ColSampleByTree = seq(0.55, 1, 0.05)
)
```

Arguments

```
TaskType "GPU" or "CPU"

Shuffles The number of shuffles you want to apply to each grid NTrees seq(500L, 5000L, 500L)

Depth seq(4L, 16L, 2L)

LearningRate seq(0.05,0.40,0.05)

MinChildWeight seq(1.0, 10.0, 1.0)

SubSample seq(0.55, 1.0, 0.05)

ColSampleByTree seq(0.55, 1.0, 0.05)
```

Value

A list containing data.table's with the parameters shuffled and ready to test in the bandit framework

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParams(), XGBoostRegressionMetrics(), XGBoostRegressionParams()

XGBoostRegressionMetrics

XGBoostRegressionMetrics

Description

XGBoostRegressionMetrics

Usage

XGBoostRegressionMetrics(grid_eval_metric, MinVal, calibEval)

Arguments

grid_eval_metric

Passthrough

MinVal

= -1L,

calibEval

Passthrough

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParameterGrids(), XGBoostRegressionParams()

XGBoostRegressionParams

XGBoostRegressionParams

Description

XGBoostRegressionParams

Usage

```
XGBoostRegressionParams(
  counter = NULL,
  NThreads = -1L,
  BanditArmsN = NULL,
  eval_metric = NULL,
  task_type = NULL,
  model_path = NULL,
  NewGrid = NULL,
  Grid = NULL,
  ExperimentalGrid = NULL,
  GridClusters = NULL
)
```

Arguments

Passthrough counter NThreads = -1L, BanditArmsN Passthrough eval_metric Passthrough task_type Passthrough model_path Passthrough NewGrid Passthrough Grid Passthrough ExperimentalGrid Passthrough GridClusters Passthrough

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoH2OScoring(), CatBoostClassifierParams(), CatBoostMultiClassParams(), CatBoostParameterGrids(), CatBoostRegressionParams(), XGBoostClassifierParams(), XGBoostMultiClassParameterGrids(), XGBoostRegressionMetrics()

Index

* Automated Model Scoring		* Automated Time Series
	AutoCatBoostScoring, 43	AutoBanditNNet, 5
	AutoH2OMLScoring, 115	AutoBanditSarima, 7
	AutoH2OModeler, 117	AutoCatBoostFreqSizeScoring, 26
	AutoHurdleScoring, 137	AutoH2oGBMFreqSizeScoring, 86
	AutoXGBoostScoring, 192	AutoTBATS, 161
	<pre>IntermittentDemandScoringDataGenerator,</pre>	AutoTS, 166
	253	* Azure
* Au	tomated Panel Data Forecasting	DownloadCSVFromStorageExplorer,
	AutoCatBoostCARMA, 13	225
	AutoCatBoostVectorCARMA, 50	* Carma Helper
	AutoH2OCARMA, 59	CARMA_Define_Args, 199
	AutoHurdleCARMA, 129	CARMA_Get_IndepentVariablesPass
	AutoXGBoostCARMA, 171	200
* Au	tomated Regression	CARMA_GroupHierarchyCheck, 200
	AutoNLS, 156	CarmaCatBoostKeepVarsGDL, 195
* Au	tomated Supervised Learning - Binary	CarmaH2OKeepVarsGDL, 196
	Classification	CarmaXGBoostKeepVarsGDL, 198
	AutoCatBoostClassifier, 20	* Data Wrangling
	AutoH2oDRFClassifier, 64	AutoDataDictionaries, 56
	AutoH2oGAMClassifier, 75	ColumnSubsetDataTable, 215
	AutoH2oGBMClassifier, 83	DataDisplayMeta, 223
	AutoH2oGLMClassifier, 98	FakeDataGenerator, 232
	AutoH2oMLClassifier, 106	FullFactorialCatFeatures, 241
	AutoXGBoostClassifier, 176	SQL_ClearTable, 297
* Automated Supervised Learning -		SQL_DropTable, 298
	Multiclass Classification	SQL_Query, 299
	AutoCatBoostMultiClass, 31	SQL_Query_Push, 299
	AutoH2oDRFMultiClass, 69	SQL_SaveTable, 300
	AutoH2oGAMMultiClass, 78	$SQL_Server_DBConnection, 301$
	AutoH2oGBMMultiClass, 90	SQL_UpdateTable, 301
	AutoH2oGLMMultiClass, 101	TimeSeriesMelt, 309
	AutoH2oMLMultiClass, 109	* EDA
	AutoXGBoostMultiClass, 183	AutoWordFreq, 170
* Automated Supervised Learning -		ProblematicFeatures, 282
	Regression	* Feature Engineering Helper
	AutoCatBoostRegression, 37	AutoFourierFeatures, 58
	AutoH2oDRFRegression, 72	<pre>ID_BuildTrainDataSets, 249</pre>
	AutoH2oGAMRegression, 80	ID_MetadataGenerator, 250
	AutoH2oGBMRegression, 92	ID_TrainingDataGenerator, 251
	AutoH2oGLMRegression, 103	<pre>ID_TrainingDataGenerator2, 252</pre>
	AutoH2oMLRegression, 111	* Feature Engineering
	AutoXGBoostRegression, 187	AutoDataPartition, 57

AutoHierarchicalFourier, 128	* Reinforcement Learning
AutoLagRollStats, 141	RL_Initialize, 290
AutoLagRollStatsScoring, 144	RL_ML_Update, 291
AutoTransformationCreate, 163	RL_Update, 294
AutoTransformationScore, 164	* Supervised Learning - Compound
AutoWord2VecModeler, 168	AutoCatBoostHurdleModel, 28
ContinuousTimeDataGenerator, 216	AutoCatBoostSizeFreqDist, 47
CreateCalendarVariables, 219	AutoH2oDRFHurdleModel, 67
CreateHolidayVariables, 221	AutoH2oGBMHurdleModel, 88
DT_GDL_Feature_Engineering, 227	AutoH2oGBMSizeFreqDist, 95
DummifyDT, 229	AutoXGBoostHurdleModel, 180
H2oAutoencoder, 244	* Supervised Learning
ModelDataPrep, 256	AutoH2OScoring, 125
Partial_DT_GDL_Feature_Engineering,	CatBoostClassifierParams, 201
278	CatBoostMultiClassParams, 202
TimeSeriesFill, 308	CatBoostParameterGrids, 203
* Graphics	${\tt CatBoostRegressionParams, 204}$
multiplot, 258	XGBoostClassifierParams, 313
RemixTheme, 288	XGBoostMultiClassParams, 314
TimeSeriesPlotter, 309	XGBoostParameterGrids, 315
* Misc	XGBoostRegressionMetrics, 316
AutoH2OTextPrepScoring, 127	XGBoostRegressionParams, 316
ChartTheme, 205	* System Functions
PrintObjectsSize, 281	CreateProjectFolders, 222
RPM_Binomial_Bandit, 296	* Time Series Helper
SimpleCap, 297	FinalBuildArfima, 234
tempDatesFun, 304	FinalBuildArima, 235
tokenizeH2O, 311	FinalBuildETS, 236
* Model Evaluation and Interpretation	FinalBuildNNET, 237
AutoLimeAid, 147	FinalBuildTBATS, 238
EvalPlot, 231	FinalBuildTSLM, 240
LimeModel, 255	GenerateParameterGrids, 242
ParDepCalPlots, 276	OptimizeArfima, 259
RedYellowGreen, 284	OptimizeArima, 261
threshOptim, 304	OptimizeETS, 263
* Model Evaluation	OptimizeNNET, 265
ClassificationMetrics, 207	OptimizeTBATS, 267
DT_BinaryConfusionMatrix, 226	OptimizeTSLM, 268
RemixClassificationMetrics, 286	ParallelAutoArfima, 270
* Population Dynamics Forecasting	ParallelAutoARIMA, 271
CLForecast, 208	ParallelAutoETS, 272
CLTrainer, 209	ParallelAutoNNET, 273
* QA Functions	ParallelAutoTBATS, 274
AutoCARMA_QA, 9	ParallelAutoTSLM, 275
* QA	PredictArima, 280
QA_WALMARTDATAGENERATOR, 283	Regular_Performance, 285
* Recommender Systems	RL_Performance, 293
AutoMarketBasketModel, 154	StackedTimeSeriesEnsembleForecast
* Recommenders	302
AutoRecomDataCreate, 157	TimeSeriesDataPrepare, 306
AutoRecommender, 158	WideTimeSeriesEnsembleForecast,
AutoRecommenderScoring, 160	312

* Time Series	AutoH2oGBMFreqSizeScoring, 7, 8, 27, 86,
CarmaHoldoutMetrics, 197	162, 167
DifferenceData, 224	AutoH2oGBMHurdleModel, 30, 49, 68, 88, 97,
DifferenceDataReverse, 224	182
* Unsupervised Learning	AutoH2oGBMMultiClass, 34, 71, 79, 90, 102,
AutoKMeans, 139	110, 186
GenTSAnomVars, 243	AutoH2oGBMRegression, 40, 74, 82, 92, 105,
H2oIsolationForest, 247	113, 190
ResidualOutliers, 288	AutoH2oGBMSizeFreqDist, 30, 49, 68, 89, 95, 182
AutoBanditNNet, 5, 8, 27, 87, 162, 167	AutoH2oGLMClassifier, 23, 66, 76, 85, 98,
AutoBanditSarima, 7, 7, 27, 87, 162, 167	108, 179
AutoCARMA_QA, 9	AutoH2oGLMMultiClass, 34, 71, 79, 91, 101,
AutoCatBoostCARMA, 13, <i>54</i> , <i>62</i> , <i>133</i> , <i>174</i>	110, 186
AutoCatBoostClassifier, 20, 66, 76, 85, 100, 108, 179	AutoH2oGLMRegression, 40, 74, 82, 94, 103, 113, 190
AutoCatBoostFreqSizeScoring, 7, 8, 26, 87,	AutoH2oMLClassifier, 23, 66, 76, 85, 100,
162, 167	106, 179
AutoCatBoostHurdleModel, 28, 49, 68, 89,	AutoH2oMLMultiClass, 34, 71, 79, 91, 102,
97, 182	109, 186
AutoCatBoostMultiClass, 31, 71, 79, 91,	AutoH2oMLRegression, 40, 74, 82, 94, 105,
102, 110, 186	111, 190
AutoCatBoostRegression, <i>16</i> , 37, 74, 82, 94,	AutoH20MLScoring, 45, 115, 120, 137, 194,
105, 113, 190	254
AutoCatBoostScoring, 43, <i>117</i> , <i>120</i> , <i>137</i> ,	AutoH20Modeler, 45, 117, 117, 137, 194, 254
194, 254	AutoH2OScoring, 125, 202–205, 314–317
AutoCatBoostSizeFreqDist, 30, 47, 68, 89,	AutoH2OTextPrepScoring, 127, 206, 281,
97, 182	296, 297, 304, 312
AutoCatBoostVectorCARMA, 16, 50, 62, 133,	AutoHierarchicalFourier, <i>58</i> , 128, <i>143</i> ,
174	146, 164, 165, 169, 218, 220, 222,
AutoDataDictionaries, 56, 215, 223, 233,	228, 230, 246, 257, 279, 308
241, 298–302, 309	AutoHurdleCARMA, 16, 54, 62, 129, 174
AutoDataPartition, 57, 129, 143, 146, 164,	AutoHurdleScoring, 45, 117, 120, 137, 194,
165, 169, 218, 220, 222, 228, 230,	254
246, 257, 279, 308	AutoKMeans, 139, 244, 248, 290
AutoFourierFeatures, 58, 250–253	AutoLagRollStats, 58, 129, 141, 146, 164,
AutoH20CARMA, 16, 54, 59, 133, 174	165, 169, 218, 220, 222, 228, 230,
AutoH2oDRFClassifier, 23, 64, 76, 85, 100,	246, 257, 279, 308
108, 179	AutoLagRollStatsScoring, 58, 129, 143,
AutoH2oDRFHurdleModel, 30, 49, 67, 89, 97,	144, 164, 165, 169, 218, 220, 222,
182	228, 230, 246, 257, 279, 308
AutoH2oDRFMultiClass, 34, 69, 79, 91, 102,	AutoLimeAid, 147, 232, 256, 277, 285, 305
110, 186	AutoMarketBasketModel, 154
AutoH2oDRFRegression, 40, 72, 82, 94, 105,	AutoNLS, 156
113, 190	AutoRecomDataCreate, 157, 159, 160
AutoH2oGAMClassifier, 23, 66, 75, 85, 100,	AutoRecommender, <i>158</i> , 158, <i>160</i>
108,179 AutoH2oGAMMultiClass,34,71,78,91,102,	AutoRecommenderScoring, 158, 159, 160
	AutoTBATS, 7, 8, 27, 87, 161, 167
110, 186 AutoH2oGAMRegression, 40, 74, 80, 94, 105,	AutoTransformationCreate, 58, 129, 143,
113, 190	146, 163, 165, 169, 218, 220, 222,
AutoH2oGBMClassifier, 23, 66, 76, 83, 100,	228, 230, 246, 257, 279, 308
108, 179	AutoTransformationScore, 58, 129, 143,
100,112	1.2.2.1. 0

146, 164, 164, 169, 218, 220, 222,	230, 246, 257, 279, 308
228, 230, 246, 257, 279, 308	CreateProjectFolders, 222
AutoTS, 7, 8, 27, 87, 162, 166	
AutoWord2VecModeler, 58, 129, 143, 146,	DataDisplayMeta, 56, 215, 223, 233, 241,
164, 165, 168, 218, 220, 222, 228,	298–302, 309
230, 246, 257, 279, 308	DifferenceData, <i>197</i> , 224, <i>225</i>
AutoWordFreq, 170, 283	DifferenceDataReverse, 197, 224, 224
AutoXGBoostCARMA, 16, 54, 62, 133, 171	DownloadCSVFromStorageExplorer, 225
AutoXGBoostClassifier, 23, 66, 76, 85, 100,	DT_BinaryConfusionMatrix, 207, 226, 287
108, 176	DT_GDL_Feature_Engineering, 58, 129, 143
AutoXGBoostHurdleModel, 30, 49, 68, 89, 97,	146, 164, 165, 169, 218, 220, 222,
180	227, 230, 246, 257, 279, 308
AutoXGBoostMultiClass, 34, 71, 79, 91, 102,	DummifyDT, 58, 129, 143, 146, 164, 165, 169,
	218, 220, 222, 228, 229, 246, 257,
110, 183	279, 308
AutoXGBoostRegression, 40, 74, 82, 94, 105,	277, 300
113, 187	EvalPlot, 150, 231, 256, 277, 285, 305
AutoXGBoostScoring, 45, 117, 120, 137, 192,	,,,,,,,
254	FakeDataGenerator, 56, 215, 223, 232, 241,
	298–302, 309
CARMA_Define_Args, 196, 197, 199, 199, 200,	FinalBuildArfima, 234, 236-240, 243, 260,
201	262, 264, 266, 268, 269, 271–276,
CARMA_Get_IndepentVariablesPass, 196,	281, 286, 294, 303, 307, 313
197, 199, 200, 200, 201	FinalBuildArima, 234, 235, 237–240, 243,
CARMA_GroupHierarchyCheck, 196, 197, 199,	260, 262, 264, 266, 268, 269,
200, 200	271–276, 281, 286, 294, 303, 307,
CarmaCatBoostKeepVarsGDL, 195, 197,	313
199–201	
CarmaH2OKeepVarsGDL, 196, 196, 199-201	FinalBuildETS, 234, 236, 236, 238–240, 243
CarmaHoldoutMetrics, 197, 224, 225	260, 262, 264, 266, 268, 269,
CarmaXGBoostKeepVarsGDL, 196, 197, 198,	271–276, 281, 286, 294, 303, 307,
200, 201	313
CatBoostClassifierParams, 126, 201,	FinalBuildNNET, 234, 236, 237, 237, 239,
203–205, 314–317	240, 243, 260, 262, 264, 266, 268,
CatBoostMultiClassParams, 126, 202, 202,	269, 271–276, 281, 286, 294, 303,
204, 205, 314–317	307, 313
CatBoostParameterGrids, <i>126</i> , <i>202</i> , <i>203</i> ,	FinalBuildTBATS, 234, 236–238, 238, 240,
	243, 260, 262, 264, 266, 268, 269,
203, 205, 314–317	271–276, 281, 286, 294, 303, 307,
CatBoostRegressionParams, 126, 202–204,	313
204, 314–317	FinalBuildTSLM, 234, 236-239, 240, 243,
ChartTheme, 128, 205, 281, 296, 297, 304, 312	260, 262, 264, 266, 268, 269,
ClassificationMetrics, 207, 226, 287	271–276, 281, 286, 294, 303, 307,
CLForecast, 208, 213	313
CLTrainer, 208, 209	FullFactorialCatFeatures, 56, 215, 223,
ColumnSubsetDataTable, <i>56</i> , 215, 223, 233,	233, 241, 298–302, 309
241, 298–302, 309	255, 211, 250 502, 505
ContinuousTimeDataGenerator, 58, 129,	GenerateParameterGrids, 234, 236–240,
<i>143</i> , <i>146</i> , <i>164</i> , <i>165</i> , <i>169</i> , 216, 220,	242, 260, 262, 264, 266, 268, 269,
222, 228, 230, 246, 257, 279, 308	271–276, 281, 286, 294, 303, 307,
CreateCalendarVariables, 58, 129, 143,	313
146, 164, 165, 169, 218, 219, 222,	GenTSAnomVars, 140, 243, 248, 290
228, 230, 246, 257, 279, 308	23 3 3 3, 173, 273, 270, 270
CreateHolidayVariables, 58, 129, 143, 146,	H2oAutoencoder, 58, 129, 143, 146, 164, 165
164, 165, 169, 218, 220, 221, 228,	169, 218, 220, 222, 228, 230, 244,

257, 279, 308	273, 275, 276, 281, 286, 294, 303,
H2oIsolationForest, <i>140</i> , <i>244</i> , 247, <i>290</i>	307, 313
	ParallelAutoTBATS, 234, 236-240, 243, 260,
ID_BuildTrainDataSets, 59, 249, 251-253	262, 264, 266, 268, 269, 271–274,
ID_MetadataGenerator, 59, 250, 250, 252,	274, 276, 281, 286, 294, 303, 307,
253	313
ID_TrainingDataGenerator, 59, 250, 251,	ParallelAutoTSLM, 234, 236–240, 243, 260,
251, 253	262, 264, 266, 268, 269, 271–275,
ID_TrainingDataGenerator2, 59, 250–252,	275, 281, 286, 294, 303, 307, 313
252	
IntermittentDemandScoringDataGenerator,	ParDepCalPlots, 150, 232, 256, 276, 285, 305
	Partial_DT_GDL_Feature_Engineering, 58,
45, 117, 120, 137, 194, 253	129, 143, 146, 164, 165, 169, 218,
	220, 222, 228, 230, 246, 257, 278,
LimeModel, 150, 232, 255, 277, 285, 305	308
	PredictArima, 234, 236–240, 243, 260, 262,
ModelDataPrep, 58, 129, 143, 146, 164, 165,	264, 266, 268, 269, 271–276, 280,
169, 218, 220, 222, 228, 230, 246,	286, 294, 303, 307, 313
256, 279, 308	PrintObjectsSize, 128, 206, 281, 296, 297,
multiplot, 258, 288, 311	304, 312
	ProblematicFeatures, 171, 282
OptimizeArfima, 234, 236-240, 243, 259,	, ,
262, 264, 266, 268, 269, 271–276,	QA_WALMARTDATAGENERATOR, 283
281, 286, 294, 303, 307, 313	QA_MACHANIDATACENCIATON, 203
OptimizeArima, 234, 236-240, 243, 260, 261,	D IV 11 0 150 000 056 077 004 004
264, 266, 268, 269, 271–276, 281,	RedYellowGreen, 150, 232, 256, 277, 284, 305
286, 294, 303, 307, 313	Regular_Performance, 234, 236-240, 243,
OptimizeETS, 234, 236-240, 243, 260, 262,	260, 262, 264, 266, 268, 269,
263, 266, 268, 269, 271–276, 281,	271–276, 281, 285, 294, 303, 307,
286, 294, 303, 307, 313	313
OptimizeNNET, 234, 236–240, 243, 260, 262,	RemixAutoML (RemixAutoML-package), 5
264, 265, 268, 269, 271–276, 281,	RemixAutoML-package, 5
286, 294, 303, 307, 313	RemixClassificationMetrics, 207, 226,
OptimizeTBATS, 234, 236-240, 243, 260, 262,	286
264, 266, 267, 269, 271–276, 281,	RemixTheme, 258, 288, 311
	ResidualOutliers, 140, 244, 248, 288
286, 294, 303, 307, 313	RL_Initialize, 290, 292, 295
OptimizeTSLM, 234, 236–240, 243, 260, 262,	RL_ML_Update, 291, 291, 295
264, 266, 268, 268, 271–276, 281,	RL_Performance, 234, 236–240, 243, 260,
286, 294, 303, 307, 313	262, 264, 266, 268, 269, 271–276,
D 11 1	281, 286, 293, 303, 307, 313
ParallelAutoArfima, 234, 236–240, 243,	
260, 262, 264, 266, 268, 269, 270,	RL_Update, 291, 292, 294
272–276, 281, 286, 294, 303, 307,	RPM_Binomial_Bandit, 128, 206, 281, 296,
313	297, 304, 312
ParallelAutoARIMA, 234, 236-240, 243, 260,	
262, 264, 266, 268, 269, 271, 271,	SimpleCap, 128, 206, 281, 296, 297, 304, 312
273–276, 281, 286, 294, 303, 307,	SQL_ClearTable, 56, 215, 223, 233, 241, 297,
313	298–302, 309
ParallelAutoETS, 234, 236-240, 243, 260,	SQL_DropTable, 56, 215, 223, 233, 241, 298,
262, 264, 266, 268, 269, 271, 272,	298, 299–302, 309
272, 274–276, 281, 286, 294, 303,	SQL_Query, 56, 215, 223, 233, 241, 298, 299,
307, 313	300–302, 309
ParallelAutoNNET, 234, 236–240, 243, 260,	SQL_Query_Push, 56, 215, 223, 233, 241, 298,
262, 264, 266, 268, 269, 271–273,	299, 299, 301, 302, 309

```
SQL_SaveTable, 56, 215, 223, 233, 241,
         298–300, 300, 301, 302, 309
SQL_Server_DBConnection, 56, 215, 223,
         233, 241, 298–301, 301, 302, 309
SQL_UpdateTable, 56, 215, 223, 233, 241,
         298–301, 301, 309
StackedTimeSeriesEnsembleForecast, 234,
         236-240, 243, 260, 262, 264, 266,
         268, 269, 271–276, 281, 286, 294,
         302, 307, 313
tempDatesFun, 128, 206, 281, 296, 297, 304,
         312
threshOptim, 150, 232, 256, 277, 285, 304
TimeSeriesDataPrepare, 234, 236-240, 243,
         260, 262, 264, 266, 268, 269,
         271-276, 281, 286, 294, 303, 306,
TimeSeriesFill, 58, 129, 143, 146, 164, 165,
         169, 218, 220, 222, 228, 230, 246,
         257, 279, 308
TimeSeriesMelt, 56, 215, 223, 233, 241,
         298–302, 309
TimeSeriesPlotter, 258, 288, 309
tokenizeH20, 128, 206, 281, 296, 297, 304,
         311
WideTimeSeriesEnsembleForecast, 234,
         236-240, 243, 260, 262, 264, 266,
         268, 269, 271–276, 281, 286, 294,
         303, 307, 312
XGBoostClassifierParams, 126, 202-205,
         313, 315–317
XGBoostMultiClassParams, 126, 202-205,
         314, 314, 316, 317
XGBoostParameterGrids, 126, 202-205, 314,
         315, 315, 316, 317
XGBoostRegressionMetrics, 126, 202-205,
         314-316, 316, 317
XGBoostRegressionParams, 126, 202-205,
         314–316, 316
```