Defining causal effects

STSCI / INFO / ILRST 3900: Causal Inference

28 Aug 2025

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes

Typesetting

As soon as possible, you should

► Install R

► Install RStudio

► Bookmark the RMarkdown cheat sheet

(statistical software)

(user interface)

(documentation)

Left photo: By Fernando Frazão/Agência Brasil - http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CCBY3.0br, https://commons.wikimedia.org/w/index.php?curid=50548410
Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=50584648

1. Statistical evidence

► Simone Biles swung on the uneven bars. She won a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

Swinging on the uneven bars causes a person to win a gold medal.

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

What do we mean when we say "cause"?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
Sam	No (0)	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Sam	No (0)	No (0)	0

Holland 1986

Descriptive evidence

Holland 1986

Holland 1986

Holland 1986

Descriptive evidence

Causal claim

average lifespan average lifespan lifespan lifespan lifespan

Causal inference is a missing data problem

Person 1	lifespan	missing	lifespan	lifespan
Person 2	missing	lifespan	lifespan	lifespan
Person 3	lifespan	missing	lifespan	lifespan
Person 4	missing	lifespan	lifespan	lifespan
Person 5	lifespan	missing	lifespan	lifespan
Person 6	lifespan	missing	lifespan	lifespan
Person 7	missing	lifespan	lifespan	lifespan
Person 8	lifespan	missing	lifespan	lifespan
	Outcome under Mediterranean	Outcome under prudent	Outcome under Mediterranean	Outcome under prudent
	diet	diet	diet	diet

 $^{^{1}}$ Capital letters and lowercase letters mean different things!

 Y_i Outcome

Whether person *i* survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome

Whether person i survived

 A_i Treatment

Whether person i ate a Mediterranean diet

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{\mathsf{Sam}} = \mathsf{survived}$ We observe that Sam survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{\mathsf{Sam}} = \mathsf{survived}$ We observe that Sam survived

 $A_{Sam} = MedDiet$ We observed that Sam ate a Mediterranean diet

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i at a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{Sam} = survived$ We observe that Sam survived

 $A_{Sam} = MedDiet$ We observed that Sam ate a Mediterranean diet

 $Y_{\mathsf{Sam}}^{\mathsf{MedDiet}} = \mathsf{survived}$ If Sam had been assigned a Mediterranean diet

he would have survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i at a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{Sam} = survived$ We observe that Sam survived

 $A_{\mathsf{Sam}} = \mathtt{MedDiet}$ We observed that Sam ate a $\mathsf{Mediterranean}$ diet

 $Y_{\mathsf{Sam}}^{\mathsf{MedDiet}} = \mathsf{survived}$ If Sam had been assigned a Mediterranean diet

he would have survived

 $Y_{\text{Sam}}^{\text{PruDiet}} = \text{died}$ If Sam had been assigned a prudent diet

he would have died

¹Capital letters and lowercase letters mean different things!

Practice

Using the slip of paper you received and the diet you follow, what is

- $\triangleright Y_i$
- \triangleright A_i
- Y MedDiet
 Y PruDiet

 Y_i^{MedDiet}

 Y_i^{PruDiet}

Potential Outcomes

Potential Outcomes

 Y_i Factual Outcomes

Consistency Assumption $Y_i^{A_i} = Y_i$

 Y_i^{MedDiet}

 Y_i^{PruDiet}

Potential Outcomes

 Y_i

Factual Outcomes

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

$$1. \ \, \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{FALSE})$$

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

2. $E(Earnings^{Degree=TRUE}) > E(Earnings^{Degree=FALSE})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

- 2. $E(Earnings^{Degree=TRUE}) > E(Earnings^{Degree=FALSE})$
 - ► The average earning if everyone was assigned to get a degree is higher than the average earnings if everyone was assigned to not get a degree
 - ► On average, getting a degree causes higher earnings

Practice:

1. On average, individuals who eat a Mediterranean diet survive more/less than those who eat a prudent diet:

2. On average, eating a Mediterranean diet causes people to survive more/less

Practice:

1. On average, students who do the homework learn more than those who don't

2. On average, doing the homework causes more learning

Practice:

1. On average, students who do the homework learn more than those who don't

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning

$$E(Learning^{HW=TRUE}) > E(Learning^{HW=FALSE})$$

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes

You can now

- ► Read Chapter 1 of Hernán and Robins 2020
- ► Start Problem Set 1 (due Sep 9)