DDA5001 Machine Learning

Notes: Matrix Differentiation

Teaching Team

The Chinese University of Hong Kong, Shenzhen

Matrix Differentiation

We have learned some commonly used results in lecture:

$$ightharpoonup rac{\partial oldsymbol{c}^ op oldsymbol{x}}{\partial oldsymbol{x}} = oldsymbol{c}$$
 ,

$$lackbox{1.5cm} rac{\partial \|m{x}\|^2}{\partial m{x}} = rac{\partial m{x}^ op m{x}}{\partial m{x}} = 2m{x}$$
 ,

$$lacksquare rac{\partial oldsymbol{A}oldsymbol{x}}{\partial oldsymbol{x}} = oldsymbol{A}^ op$$
 ,

$$lackbox{} rac{\partial oldsymbol{x}^Toldsymbol{A}oldsymbol{x}}{\partial oldsymbol{x}} = (oldsymbol{A}^ op + oldsymbol{A})oldsymbol{x},$$

How about more complex functions? What if we want to calculate the gradient with respect to a matrix?

We need a general rule to do matrix differentiation.

Matrix Differentiation

Consider the function $f: \mathbb{R}^d \to \mathbb{R}$ and gradient $\nabla f(x) := \left| \frac{\partial f(x)}{\partial x_i} \right| \in \mathbb{R}^d$.

Basic rule:

$$df = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i} dx_i = \nabla f(\boldsymbol{x})^{\top} d\boldsymbol{x}.$$

More general case where X is a $\mathbb{R}^{m \times n}$ matrix:

$$df = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial \mathbf{X}_{ij}} d\mathbf{X}_{ij} = \text{Tr}(\frac{\partial f}{\partial \mathbf{X}}^{\top} d\mathbf{X}), \tag{1}$$

where $\frac{\partial f}{\partial \boldsymbol{X}} := \left[\frac{\partial f}{\partial \boldsymbol{X}_{ij}}\right] \in \mathbb{R}^{m \times n}$ is the gradient.

▶ The equation (1) can be used to calculate the gradient $\frac{\partial f}{\partial \mathbf{X}}$.

CUHK-Shenzhen • SDS Teaching Team 3 / 8

Matrix Differentiation

$$df = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial \mathbf{X}_{ij}} d\mathbf{X}_{ij} = \text{Tr}(\frac{\partial f}{\partial \mathbf{x}}^{\top} d\mathbf{X}).$$

Example: Calculate the gradient of function $f(X) := a^{\top}Xb$.

$$df = \mathbf{a}^{\top} d\mathbf{X} \mathbf{b} \quad (d(\mathbf{X} \mathbf{Y}) = (d\mathbf{X}) \mathbf{Y} + \mathbf{X} (d\mathbf{Y}))$$

$$\implies \operatorname{Tr}(df) = \operatorname{Tr}(\mathbf{a}^{\top} d\mathbf{X} \mathbf{b})$$

$$= \operatorname{Tr}(\mathbf{b} \mathbf{a}^{\top} d\mathbf{X}) \quad (\operatorname{Tr}(\mathbf{X} \mathbf{Y}) = \operatorname{Tr}(\mathbf{Y} \mathbf{X})).$$

Hence,
$$\frac{\partial f}{\partial \boldsymbol{x}}^{\top} = \boldsymbol{b}\boldsymbol{a}^{\top} \implies \frac{\partial f}{\partial \boldsymbol{x}} = \boldsymbol{a}\boldsymbol{b}^{\top}.$$

Matrix Differential Step: (scalar to matrix/vector)

- ightharpoonup Calculate df and apply trace operator to df.
- Establish the relation in (1) based on basic rules.

CUHK-Shenzhen ◆ SDS Teaching Team 4 / 8

Basic Rules

Differential Rules:

- $(1) d(\mathbf{X} \pm \mathbf{Y}) = d\mathbf{X} \pm d\mathbf{Y}.$
- (2) d(XY) = (dX)Y + X(dY).
- (3) $dX^{-1} = -X^{-1}dXX^{-1}$.
- (4) $d(X \odot Y) = dX \odot Y + X \odot dY$, where \odot is element-wise multiplication.
- (5) $d\sigma(X) = \sigma'(X) \odot dX$, where $\sigma(X) = [\sigma(X_{ij})]$ is element-wise function mapping.

Trace Rules:

- (1) a = Tr(a), where a is scalar.
- (2) $\operatorname{Tr}(XY) = \operatorname{Tr}(YX)$, given X and Y^{\top} have the same size.
- (3) $\operatorname{Tr}(\boldsymbol{X}^{\top}) = \operatorname{Tr}(\boldsymbol{X}).$
- (4) $\operatorname{Tr}(\boldsymbol{X} \pm \boldsymbol{Y}) = \operatorname{Tr}(\boldsymbol{X}) \pm \operatorname{Tr}(\boldsymbol{Y}).$
- (5) $\operatorname{Tr}(\boldsymbol{X}^{\top}(\boldsymbol{Y}\odot\boldsymbol{C})) = \operatorname{Tr}((\boldsymbol{X}\odot\boldsymbol{Y})^{\top}\boldsymbol{C})$, given $\boldsymbol{X},\boldsymbol{Y},\boldsymbol{C}$ have the same size.

Exercise 1: Least Square

Problem 1: calculate the gradient of the least square problem

$$f(\boldsymbol{\theta}) = \|\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}\|_2^2.$$

Solution.

$$df = d [(X\theta - y)^{\top} (X\theta - y)]$$

$$= [d(X\theta - y)]^{\top} (X\theta - y) + (X\theta - y)^{\top} [d(X\theta - y)]$$

$$= (Xd\theta)^{\top} (X\theta - y) + (X\theta - y)^{\top} Xd\theta$$

$$= 2(X\theta - y)^{\top} Xd\theta.$$

Thus,

$$df = \text{Tr}(df) = \text{Tr}(2(\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})^{\top} \boldsymbol{X} d\boldsymbol{\theta})$$
$$\implies \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = 2\boldsymbol{X}^{\top} (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}).$$

Exercise 2: Multi-Class Logistic Regression

Problem 2: Let $\Theta \in \mathbb{R}^{K \times d}$ be the parameter. The objective of one-sample logistic regression is

$$\min_{\mathbf{\Theta}} \ f(\mathbf{\Theta}) := -\mathbf{y}^{\top} \log \sigma(\mathbf{\Theta}\mathbf{x}),$$

where $\boldsymbol{x} \in \mathbb{R}^d$ is the input sample, $\boldsymbol{y} \in \mathbb{R}^K$ is one-hot vector whose value is 1 for the corresponding class and 0 otherwise. $\sigma(\boldsymbol{z}) := \frac{\exp(\boldsymbol{z})}{1^\top \exp(\boldsymbol{z})} \in \mathbb{R}^K$ is the softmax function, where $\exp(\boldsymbol{z})$ is element-wise exponential function.

Derive the gradient $\frac{\partial f(\mathbf{\Theta})}{\partial \mathbf{\Theta}}$.

Exercise 2: Solution

Let 1 denotes all-one vector, we have

$$f = -\mathbf{y}^{\top}(\log \exp(\mathbf{\Theta}\mathbf{x}) - \mathbf{1}\log(\mathbf{1}^{\top}\exp(\mathbf{\Theta}\mathbf{x}))$$
$$= -\mathbf{y}^{\top}\mathbf{\Theta}\mathbf{x} + \log(\mathbf{1}^{\top}\exp(\mathbf{\Theta}\mathbf{x})).$$

Differentiating f:

$$\begin{aligned} df &= -\boldsymbol{y}^{\top}(d\boldsymbol{\Theta})\boldsymbol{x} + \frac{\boldsymbol{1}^{\top} \exp(\boldsymbol{\Theta}\boldsymbol{x}) \odot (d\boldsymbol{\Theta})\boldsymbol{x}}{\boldsymbol{1}^{\top} \exp(\boldsymbol{\Theta}\boldsymbol{x})} \\ &= -\boldsymbol{y}^{\top}(d\boldsymbol{\Theta})\boldsymbol{x} + \frac{\exp(\boldsymbol{\Theta}\boldsymbol{x})^{\top}(d\boldsymbol{\Theta})\boldsymbol{x}}{\boldsymbol{1}^{\top} \exp(\boldsymbol{\Theta}\boldsymbol{x})}. \qquad (\boldsymbol{1}^{\top}\boldsymbol{u} \odot \boldsymbol{v} = \boldsymbol{u}^{\top}\boldsymbol{v}) \end{aligned}$$

Take trace operator and rearrange using exchange property:

$$\operatorname{Tr}(df) = \operatorname{Tr}\left(\boldsymbol{x}\left(-\boldsymbol{y}^{\top} + \frac{\exp(\boldsymbol{\Theta}\boldsymbol{x})^{\top}}{\mathbf{1}^{\top}\exp(\boldsymbol{\Theta}\boldsymbol{x})}\right)d\boldsymbol{\Theta}\right).$$

Hence, the gradient is $\frac{\partial f}{\partial \Theta} = (-y + \sigma(\Theta x))x^{\top}$. (The loss is only for one-sample. How about multi-sample case?)