Permutaciones circulares

Definición. Una **permutación circular** es una permutación en la cual los objetos se ordenan en un círculo.

Ejemplo 1. ¿De cuántas maneras diferentes se pueden sentar 4 personas al rededor de una mesa redonda, si se considera que 2 configuraciones son *equivalentes* si una se puede obtener a partir de una rotación de la otra?

Consideremos 4 personas: A, B, C & D. Una posible configuración es la siguiente:

Podemos representar cada configuración como una permutación de las cuatro personas:

ABCD

PABC

CDAB

BCDA

Definimos el conjunto X como el conjunto de permutaciones de 4 personas e Y como el conjunto de configuraciones válidas en las que podemos sentar a 4 personas al rededor de una mesa redonda.

Entonces, $|X| = 4 |Y| \rightarrow |Y| = |X|/4 = 4!/4 = 3! = 6$.

En general, definimos al conjunto X como el conjunto de todas las permutaciones de n objetos y el conjunto Y como el conjunto de todas las configuraciones válidas en las que podemos colocar los n objetos en forma circular.

Entonces, existe una función n a 1, $f: X \to Y$ de manera que |Y| = |X|/n = n!/n = (n-1)!

Combinaciones

Definición. Dada un conjunto con n elementos, se le llama r-combinación a una selección no ordenada (el orden no importa) de $r \le n$ elementos de dicho conjunto.

La forma más común de referirnos a una *r*-combinación es simplemente una combinación de *r* elementos.

Primero, contamos el número de selecciones ordenadas de *r* elementos de un conjunto con *n* elementos (*r*-permutación):

$$P(n,r) = \frac{n!}{(n-r)!}$$

Luego, el número de permutaciones de cada selección ordenada de r objetos es P(r,r) = r!. Entonces podemos asegurar que existe una función r! a 1 del conjunto de selecciones ordenadas de r objetos X al conjunto de selecciones no ordenadas de r objetos Y. Por lo tanto:

$$|X| = r! |Y| \rightarrow |Y| = \frac{|X|}{r!} = \frac{p(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Usamos la simbología C(n,r) = n!/r!(n-r)! para representar una combinación de r objetos de un conjunto con n objetos.

Ejemplo 2. Un mazo estándar de 52 cartas consta de 4 palos (corazones), diamantes , espadas y tréboles), cada una con 13 valores diferentes (A, 2, 3, 4, ..., J, Q, K).

¿De cuántas maneras distintas es posible seleccionar 5 cartas de un mazo estándar?

1 Los problemas de conteo de cartas son ejemplos clásicos de combinaciones.

Entonces, C(52,5) = 2,598,960 es el número de selecciones no ordenadas de 5 cartas.

Ejemplo 3. ¿De cuántas maneras distintas es posible seleccionar 12 países para formar un comité de la ONU, si 3 de ellos se eligen de un bloque de 45, 4 de un bloque de 57 y el resto de las 69 naciones restantes?

Para formar un comité de 12 países, seguimos 3 etapas:

Etapa 1: Escoger 3 de $45 \rightarrow C(45,3) = 14,190$

Etapa 2: Escoger 4 de $57 \rightarrow C(57.4) = 395.010$

Etapa 3: Escoger 5 de $69 \rightarrow C(69,5) = 11,238,513$

Por el principio del producto podemos seleccionar 12 países de $C(45,3) \cdot C(57,4) \cdot C(69,5)$.

(1) 6	ntas c	ade	nas	bin	arıa	as c	ie I	ong	ıtu	a 5	na	y ?																		
	1 .	2		n		2		1		7	5	= 1	30																	
	2 · B ₅	R		2 B ₃		<u>Z</u>	•	Z	_		-		۔۔۔																	
	05	Dq		03		P2		Dη																						
(b) ¿Cuá	ntas c	ade	nas	bin	aria	as c	le 1	ong	ritu	d 5	tie	ner	ex	act	amo	ente	e 3	cer	os?											
(0) ¿Caa	iitas (aac	IIus	OIII	uii	as c	10 1	عادن	5114	u J	tic	1101	i CA	uoi	ulliv	0110		CCI	05.											
! Este	nrobl	ema	se	nue	ede	ent	end	ler	cor	nο	ıın	pro	ble	ma	de	sel	ecc	ión	no	oro	len	ada	de	las	nc	sic	ion	es (le 1	os
bits (ya s	_			_		CIII	CII	<i>a</i> 01	001	110	uII	pro	010	IIIu	ac	501		1011	110	010	1011	uau	ac	ias	Po	510	ion	CB (10 1	05
ons (ya c	oc rus		0 10	5 1	5).																									
El núme	ro de	casi	llas	dis	por	ıibl	les	es 1	ı =	5 у	de	ber	nos	eso	cog	er l	as	pos	icic	nes	s de	r =	= 3	cer	os,	est	ор	uec	le	
hacerse o	de <i>C</i> (:	5,3)	= 1	0 fc	rm	as	dif	erei	ites	3.																				
T	1 ,		1		11	1.		.,	1				1,			_	1	1									1		_	
Luego, e unos, est																2 y	de	ber	nos	es	cog	er I	as	pos	1C10	one	s a	r	= 2	
u1105, ESI	o pue	uC I	iact	130	uc	<u> </u>	∠,∠	, –	1 10	0111	145	UII(OI CI	1105	٠.															
Por el pr	incipi	o de	el p	rodı	ıcto	o co	onc	luir	nos	s qı	ie ł	ay	C(3	5,3)	·C(2,2) =	C(:	5,3)) =	10.									
										_		_	L Ì					,												
				1													_													