

AUTHOR INDEX VOLUME 19

(The issue number is given in front of the page numbers)

Benidir, M., Schussler's stability theorem in the complex domain (2) 163–165

Bertran, M., see C. Nadeu (4) 311–320

Boutalis, Y., S. Kollias and G. Carayannis, A fast adaptive approach to the restoration of images degraded by noise (2) 151–162

Carayannis, G., see Y. Boutalis (2) 151–162

Chan, J.-C., Two autoregressive identities (4) 337–342

Chaudhuri, B. B., see H. Schiller (1) 61–73

Chen, H. and **Y. Dai**, Texture segmentation by least squares filters (3) 199–204

Cheng, Y. F., see D. M. Etter (1) 27–41

Chiaruttini, C., see V. Roberto (1) 43–60

Chitpraser, B. and **K. R. Rao**, Discrete cosine transform filtering (3) 235–247

Colin, N., P. Simard, P. Gaillard and R. Marsol, Un algorithme de détection de pics utilisant une simulation de palpeur (1) 83–90

Dai, Y., see H. Chen (3) 199–204

Duhamel, P. and **M. Vetterli**, Fast Fourier transforms: A tutorial review and a state of the art (4) 259–299

Er, M. H., A robust formulation for an optimum beamformer subject to amplitude and phase perturbations (1) 17–26

Etter, D. M., T. A. Gough and Y. F. Cheng, Direct computation of second-order coefficients for bandpass and bandstop digital filters (1) 27–41

Fahmy, M. M., *N*-dimensional symmetries and their applications in digital filters (2) 103–117

Feihl, F., see J. M. Vesin (3) 181–189

Gaillard, P., see N. Colin (1) 83–90

Gardaz, J. P., see J. M. Vesin (3) 181–189

Geçkili, N. C., see Z. Gülbey (1) 9–15

Gough, T. A., see D. M. Etter (1) 27–41

Goutte, R., see Y. M. Zhu (3) 205–222

Gu, Y., see B. Picinbono (1) 1–8

Gülbey, Z. and **N. C. Geçkili**, On FIR filters having approximate FIR inverses with a specified LMS error (1) 9–15

Kollias, S., see Y. Boutalis (2) 151–162

Mariadassou, C. P., see B. Yegnanarayana (2) 151–162

Marsol, R., see N. Colin (1) 83–90

Mirkovitch, V., see J. M. Vesin (3) 181–189

Nadeu, C. and **M. Bertran**, A flatness-based generalized optimization approach to spectral estimation (4) 311–320

Narayanan, S. B., see K. M. M. Prabhu (3) 191–198

Nixon, M., Improving an extended version of the Hough transform (4) 321–335

Paglietti, P., see V. Roberto (1) 43–60

Pavlovic, C., see A. M. Tekalp (3) 223–234

Perret, C., see J. M. Vesin (3) 181–189

Peyrin, F., see Y. M. Zhu (3) 205–222

Picinbono, B. and **Y. Gu**, Mean square estimation and projections (1) 1–8

Prabhu, K. M. M. and **S. B. Narayanan**, Fixed-point error analysis of fast Hartley transforms (3) 191–198

Rao, K. R., see B. Chitpraser (3) 235–247

Roberto, V., P. Paglietti and C. Chiaruttini, Syntactic filtering and recognition of wide-band noise waveforms (1) 43–60

Saini, P., see B. Yegnanarayana (2) 151–162

Schiller, H. and **B. B. Chaudhuri**, Efficient coding of side information in a low bitrate hybrid image coder (1) 61–73

Simard, P., see N. Colin (1) 83–90

Stoica, P., Performance evaluation of some methods for off-line detection of changes in autoregressive signals (4) 301–310

Tekalp, A. M. and **G. Pavlovic**, Multichannel image modeling and Kalman filtering for multispectral image restoration (3) 223–234

Vesin, J. M., F. Feihl, J. P. Gardaz, V. Mirkovitch and C. Perret, A new approach to estimate effective pulmonary capillary pressure (3) 181–189

Vetterli, M., see P. Duhamel (4) 259–299

Walden, A. T., Maximum likelihood estimation of magnitude-squared multiple and ordinary coherence (1) 75–82

Wang, Z., Fast discrete sine transform algorithms (2) 91–102

Wojcik, B. E., see Z. M. Wojcik (2) 119–138

Wojcik, Z. M., see B. E. Wojcik, A rough grammar for a linguistic recognition of image patches (2) 119–138

Yegnanarayana, B., C. P. Mariadassou and P. Saini, Signal reconstruction from partial data for sensor array imaging application (2) 151–162

Zhu, Y. M., F. Peyrin and R. Goutte, The use of a two-dimensional Hilbert transform for Wigner analysis of 2-dimensional real signals (3) 205–222