PRESENTATION ON

Aquatic FishRobo

- Presented by:
- 1.Sagar Narkhede(17231014)
- 2.Omkar Sutar (16132063)
- Guided by: Dr.N.P. Futane

- 3. Ashlesha Borade(16131036)
- 4. Pooja Katkar(17231011)
- * Reference by: eYantra Robotics Competition

1. Introdction:

In this theme, we are designing and building a **Aquatic FishRobo** that bio-mimics different locomotion's of a fish. The aquatic world is populated with a diverse variety of fishes from which we took inspiration for designing our Aquatic robot. This robot replicates the natural movement of a fish's muscles by using a number of **servo actuated joints** that are connected to each other. Through a coordinated movement of these joints, the fish robot can swim to propel itself forward.

In order to represent the muscle joints of a natural fish, we use servo actuators and for the fish's body, we design brackets, that serve the following two purposes:

- to define the relative position and orientation between actuators and
- to define the profile of the fish.

2. Arena Setup:

1.Arena

3.Gateway

2.Pool

4.Bouy

3.Block Diagram:

4.Connection diagram:

1.Transmitter System

2.Receiver System

5.Challenges:

- 1. 3D designing and fabrication.
- 2. 3D Animation using Blender Software.
- 3. 3D Gaming using key controlled.
- 4. PCB designing and Fabrication.
- 5. Microcontroller programming
- 6. Wireless communication.
- 7. Waterproofing.

7.1 Waterproofing the Electronics:

- □ Nail Polish Coating
- ☐ Silicone Paste/Adhesive

7.2 Waterproofing of Fish:

- ☐ Custom Silicon Gasket using a 3D Printed Mould and Liquid Silicone Rubber.
- \square Candle Wax near the circular joints.
- ☐ Waterproof duct tape.

6.Hardware:

Components	Quantity
Arduino Nano(Atmega328 Controller)	2
NRF24L01	2
Joystick Module	1
Buzzer Module	2
Servo Motors	5
Batteries	5, 9v
Reed Switch	1
Slide Switch	5
Magnet.	2

Components	Quantity
Push Button	10
Timer Ic555	3
Hall Effect Sensor	27
LEDs	20
Capacitors & Resistor	_
Copper Clad	_
Programming Cable	2
IC7805,7809,7812	5
Jumper Wire	_
PLA 3D Printing Material	1kg

7.Software:

- 1.Autodesk Fusion 360:- 3D designing.
- 2. Autodesk eagle :- PCB Designing.
- 3. Arduino IDE`:- Programing the microcontroller.
- 4.Blender: 3D Animation.
- 5. Latex: For Documentation.
- 6.UBGE: 3D Game using key controlled.

8. Videos:-

Video 1:Fish Animation in Pool.mp4 https://youtu.be/NSARryXW1uk

Video 2: Progress_Video_1.mp4 https://youtu.be/jCL4euYWsCw

Video 3:- Progress_Video_2.mp4 https://youtu.be/BRsX5pmcscM

Video 3:Final Demonstration https://youtu.be/UIDN9iitq78

9. 3D Fish Design using Autodesk Fusion 360

10. 3D Fish using Blender 2.82

11. 3D Arena Design using Blender 2.82

10. Application:

- 1. Submarine wireless communication.
- 2.3D Game Design Platform.
- 3. Creating Animated movies.
- 4. Macrolevel Research on Aquatic life and habitat.

Thank you