

Welcome to

7. Network Management

Communication and Network Security 2019

Henrik Lund Kramshøj hlk@zencurity.com

Slides are available as PDF, kramse@Github 7-Network-Management.tex in the repo security-courses

Plan for today

Subjects

- Network Management
- SNMP version 2 vs version 3
- Bruteforcing network devices SSH vs SNMP
- Centralized management SSH, Jump hosts
- Monitoring

Exercises

- Run SNMP walk
- Try brute-force SNMP

Reading Summary

Network management is the process of administering and managing computer networks. Services provided by this deperformance management, provisioning of networks and maintaining the quality of service. Software that enables network functions is called network management software.

https://en.wikipedia.org/wiki/Network_management

PPA chapter 9,10,11 - 94 pages

Skim:

https://nsrc.org/workshops/2015/sanog25-nmm-tutorial/materials/snmp.pdf

Very common network security task to follow guides like the ones from NSRC.org

What is a core network service?

Core Network Services

- These are critical for the network to operate correctly. IP packets may flow in the network, but if these services don't reply or aren't configured correctly, users and devices won't be able to connect, authentication services may fail, and network applications won't be accessible.
- They are:
 - 1. DNS
 - 2. DHCP
 - 3. NTP

Source: https://nsrc.org/workshops/2018/tenet-nsrc-cndo/networking/cndo/en/presentations/Campus_Operations_BCP.pdf

Goals

Show the most important components for secure networks through network management protocols, techniques, systems

Introduce essential tools for network management

Network Management

Network management is the process of administering and managing computer networks. Services provided by this discipline include fault analysis, performance management, provisioning of networks and maintaining the quality of service. Software that enables network administrators to perform their functions is called network management software.

Source: https://en.wikipedia.org/wiki/Network_management

NTP Network Time Protocol

Vigtigt at netværksenheder bruger korrekt tid, sikkerhed og drift Server NTP foregår typisk i /etc/ntp.conf eller /etc/ntpd.conf det vigtigste er navnet på den/de servere man vil bruge som tidskilde Brug enten en NTP server hos din udbyder eller en fra http://www.pool.

ntp.org/

Eksempelvis:

server 0.dk.pool.ntp.org server 0.europe.pool.ntp.org server 3.europe.pool.ntp.org

What time is it? - spørg ICMP

ICMP timestamp option - request/reply hvad er klokken på en server Slayer icmpush - er installeret på server viser tidstempel

```
# icmpush -v -tstamp 10.0.0.12
ICMP Timestamp Request packet sent to 10.0.0.12 (10.0.0.12)
Receiving ICMP replies ...
fischer     -> 21:27:17
icmpush: Program finished OK
```

Stop - NTP Konfigurationseksempler

Vi har en masse udstyr, de meste kan NTP, men hvordan Vi gennemgår, eller I undersøger selv:

- Switche (managed)
- OpenBSD check man rdate og man ntpd
- Mac OS X / Windows / Linux jeres laptops

BIND DNS server

BIND 9 is transparent open source. If your organization needs some functionality that is not in BIND 9, you can modify it, and contribute the new feature back to the the community by sending us your source. Download a tarball from the ISC web site or ftp.isc.org, or a binary from your operating system repository. BIND 9 has evolved to be a very flexible, full-featured DNS system. Whatever your application is, BIND 9 most likely has the required features.

https://www.isc.org/downloads/bind/

Berkeley Internet Name Daemon server Konfigureres gennem named.conf det anbefales at bruge BIND version 9

BIND konfiguration - et udgangspunkt


```
acl internals { 127.0.0.1; ::1; 10.0.0.0/24; };
options {
        port 53; version "Dont know"; allow-query { any; };
};
view "internal" {
  match-clients { internals; };
   recursion yes;
   zone "." {
      type hint; file "root.cache"; };
   // localhost forward lookup
   zone "localhost." {
        type master; file "internal/db.localhost"; };
   // localhost reverse lookup from IPv4 address
   zone "0.0.127.in-addr.arpa" {
        type master; file "internal/db.127.0.0"; notify no; };
```

Små DNS tools bind-version - Shell script


```
#! /bin/sh
# Try to get version info from BIND server
PROGRAM=`basename $0`
. `dirname $0`/functions.sh
if [ $# -ne 1 ]; then
   echo "get name server version, need a target! "
   echo "Usage: $0 target"
   echo "example $0 10.1.2.3"
   exit 0
fi
TARGET=$1
# using dig
start time
dig @$1 version.bind chaos txt
echo Authors BIND er i versionerne 9.1 og 9.2 - måske \dots
dig @$1 authors.bind chaos txt
stop time
                       http://www.kramse.dk/files/tools/dns/bind-version
```

Små DNS tools dns-timecheck - Perl script


```
#!/usr/bin/perl
# modified from original by Henrik Kramshøj, hlk@kramse.dk
# Original from: http://www.rfc.se/fpdns/timecheck.html
use Net::DNS:
my $resolver = Net::DNS::Resolver->new;
$resolver->nameservers($ARGV[0]):
my $query = Net::DNS::Packet->new;
$query->sign tsig("n","test");
my $response = $resolver->send($query);
foreach my $rr ($response->additional)
  print "localtime vs nameserver $ARGV[0] time difference: ";
  print$rr->time signed - time() if $rr->type eq "TSIG";
```

http://www.kramse.dk/files/tools/dns/dns-timecheck

Unbound and NSD

Unbound is a validating, recursive, caching DNS resolver. It is designed to be fast and lean and incorporates modern features based on open standards.

To help increase online privacy, Unbound supports DNS-over-TLS which allows clients to encrypt their communication. In addition, it supports various modern standards that limit the amount of data exchanged with authoritative servers.

https://www.nlnetlabs.nl/projects/unbound/about/

My preferred local DNS server. We will now stop and look at this configuration file and function.

Also check out uncensored DNS and his DNS over TLS setup!

Even has pinning information available:

https://blog.censurfridns.dk/blog/32-dns-over-tls-pinning-information-for-unicastcensurfridnsdk/

DHCPD server

Dynamic Host Configuration Protocol Server

Mange bruger DHCPD fra Internet Systems Consortium

http://www.isc.org - altså Open Source

konfigureres gennem dhcpd.conf - næsten samme syntaks som BIND

DHCP er en efterfølger til BOOTP protokollen

```
ddns-update-style ad-hoc;
shared-network LOCAL-NET {
    option domain-name "zencurity.com";
    option domain-name-servers 10.0.45.1;
    subnet 10.0.45.0 netmask 255.255.255.0 {
        option routers 10.0.45.1;
        range 10.0.45.32 10.0.45.127;
    }
}
```

Simple Network Management Protocol

SNMP er en protokol der supporteres af de fleste professionelle netværksenheder, såsom switche, routere

hosts - skal slås til men følger som regel med SNMP bruges til:

- network management
- statistik
- rapportering af fejl SNMP traps

sikkerheden baseres på community strings der sendes som klartekst ... det er nemmere at brute-force en community string end en brugerid/kodeord kombination

SNMP version 2 vs version 3

- SNMP versions 1 and 2c are insecure
- SNMP version 3 created to fix this
- Authenticity and integrity: Keys are used for users and messages have digital signatures generated with a hash function (MD5 or SHA)
- Privacy: Messages can be encrypted with secret-key (private) algorithms

Example for Juniper can be found at:

https://www.juniper.net/documentation/en_US/junos/topics/example/snmpv3-configuration-junos-nm.html

SNMP - hacking

Simple Network Management Protocol sikkerheden afhænger alene af en Community string SNMPv2 typisk er den nem at gætte:

- public default til at aflæse statistik
- private default når man skal ændre på enheden, skrive
- cisco
- ...

Der findes lister og ordbøger på nettet over kendte default communities

Systemer med SNMP

kan være svært at finde ... det er UDP 161

Hvis man finder en så prøv at bruge **snmpwalk** programmet - det kan vise alle tilgængelige SNMP oplysninger fra den pågældende host

det kan være en af måderne at identificere uautoriserede enheder på - sweep efter port 161/UDP snmpwalk er et af de mest brugte programmer til at hente snmp oplysninger - i forbindelse med hackning og penetrationstest

snmpwalk

Typisk brug er:

snmpwalk -v 1 -c secret switch1

snmpwalk -v 2c -c secret switch1

Eventuelt bruges snmpget og snmpset

Ovenstående er en del af Net-SNMP pakken, http://net-snmp.sourceforge.net/

Bruteforcing network devices SSH vs SNMP

hvad betyder bruteforcing? afprøvning af alle mulighederne

```
Hydra v2.5 (c) 2003 by van Hauser / THC <vh@thc.org>
Syntax: hydra [[[-1 LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]]
[-o FILE] [-t TASKS] [-g TASKS] [-T SERVERS] [-M FILE] [-w TIME]
[-f] [-e ns] [-s PORT] [-S] [-vV] server service [OPT]
Options:
  -S
          connect via SSL
  -s PORT
           if the service is on a different default port, define it here
  -1 LOGIN or -L FILE login with LOGIN name, or load several logins from FILE
  -p PASS
           or -P FILE try password PASS, or load several passwords from FILE
            additional checks, "n" for null password, "s" try login as pass
  -e ns
           colon seperated "login:pass" format, instead of -L/-P option
  -C FILE
  -M FILE
           file containing server list (parallizes attacks, see -T)
  -o FILE
           write found login/password pairs to FILE instead of stdout
```

21

Eksempler på SNMP og management

Ofte foregår administration af netværksenheder via HTTP, Telnet eller SSH

- små dumme enheder er idag ofte web-enablet
- bedre enheder giver både HTTP og kommandolinieadgang
- de bedste giver mulighed for SSH, fremfor Telnet
 - Det er idag muligt at bruge scripting, som:
- RANCID http://www.shrubbery.net/rancid/
- Ansible https://www.ansible.com/
- Python
- Also make sure to note down https://github.com/ytti/oxidized
 Oxidized is a network device configuration backup tool. It's a RANCID replacement!

RANCID output

Exercise

Now lets do the exercise

SNMP walk 15min

which is number 25 in the exercise PDF.

Exercise

Now lets do the exercise

Try Hydra brute force 30min

which is number 26 in the exercise PDF.

Step 1: configure devices properly

You should always configure your devices properly

Turn on SNMP, probably SNMPv2

Turn on LLDP Link Layer Discovery Protocol,

like CDP but vendor-neutral

http://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Centralized syslog

And updated firmware, HTTPS and SSH only etc. the usual stuff

Config example: SNMP


```
snmp {
   description "SW-CPH-02";
    location "Interxion, Ballerup, Denmark";
    contact "noc@zencurity.com";
    community yourcommunitynotmine {
        authorization read-only;
        clients {
            10.1.1.1/32;
            10.1.2.2/32;
```

Location, location

Observium picks up the location from SNMP :-)

Config example: LLDP

LLDP

Dell 8024F

interface ethernet 1/xg17
mtu 9216
lldp transmit-tlv port-desc sys-name sys-desc sys-cap
lldp transmit-mgmt
exit

blade-sw-cph-01

LLDP spaghetti?

LLDP is needed!

LLDP trick using tcpdump

I know **for sure** that this server is in Unit 1 port 31!

Basic stuff - consoles

Conserver is an application that allows multiple users to watch a serial console at the same time. It can log the data, allows users to take write-access of a console (one at a time), and has a variety of bells and whistles to accentuate that basic functionality.

Watch the console!

A network device rebooted - what happened?

I accidently the whole network, what now?

Serial consoles are not dead, and still very useful

http://www.conserver.com/

Hardware and software

Soekris, 4-port serial card EUR59 / 430DKK + OpenBSD + conserver

Conserver is easy


```
### set the defaults for all the consoles
# these get applied before anything else
default * {
        # The '&' character is substituted with the console name
       logfile /var/consoles/&;
        # timestamps every hour with activity and break logging
        timestamp 1hab;
        # include the 'full' default
        include full:
        # master server is localhost
       master localhost;
console portS1 {
        type device;
        device /dev/cua02; parity none; baud 57600;
        idlestring "#";
        idletimeout 5m:
                                # send a '#' every 5 minutes of idle
        timestamp "";
                                # no timestamps on this console
```

You will actually be able to say what happened at that device

Centralized management SSH, Jump hosts

A jump server, jump host or jumpbox is a computer on a network used to access and manage devices in a separate security zone. The most common example is managing a host in a DMZ from trusted networks or computers.

https://en.wikipedia.org/wiki/Jump_server

OpenSSH client config with jump host

My recommended SSH client settings, put in \$HOME/.ssh/config:

```
Host *
    ServerAliveInterval=30
    ServerAliveCountMax=30
    NoHostAuthenticationForLocalhost yes
   HashKnownHosts yes
   UseRoaming no
Host jump-01
 Hostname 10.1.2.3
 Port 12345678
Host fw-site-01 10.1.2.5
 User hlk
 Port 34
 Hostname 10.1.2.5
 ProxyCommand ssh -q -a -x jump-01 -W %h:%p
```

I configure fw using both hostname and IP, then I can use name, and any program using IP get this config too

What is Ansible

AUTOMATION FOR EVERYONE

Ansible is designed around the way people work and the way people work together.

Ansible has thousands of users, hundreds of customers and over 2,400 community contributors.

750+ Ansible modules

https://www.ansible.com/

How Ansible Works: inventory files

List your hosts in one or multiple text files:

```
[all:vars]
ansible_ssh_port=34443

[office]
fw-01 ansible_ssh_host=192.168.1.1 ansible_ssh_port=22
ansible_python_interpreter=/usr/local/bin/python

[infrastructure]
smtp-01 ansible_ssh_host=192.0.2.10
ansible_python_interpreter=/usr/local/bin/python
vpnmon-01 ansible_ssh_host=10.50.60.18
```

- Inventory files specify the hosts we work with
- Linux and OpenBSD servers shown here
- Real inventory for a site with development and staging may be 500 lines
- office and infrastructure are group names

How Ansible Works: ad hoc commands

Using the inventory file you can run commands with Ansible:

```
ansible -m ping new-server
ansible -a "date" new-server
ansible -m shell -a "grep a /etc/something" new-server
```

- Running commands on multiple servers is easy now
- This alone has value, you can start
- Checking settings on servers
- Making small changes to servers

How Ansible Works: Playbooks


```
- hosts: smartbox-*
become: yes
tasks:
- name: Create a template pf.conf
  template:
    src=pf/pf.conf.j2
    dest=/etc/pf.conf owner=root group=wheel mode=0600
notify:
    - reload pf
tags:
    - firewall
    - pf.conf
```

- Specify the end result, more than the steps, also restarts daemons
- Use the modules from https://docs.ansible.com/ansible/modules_by_category.html
- Jinja templates ooooooh so great!

How Ansible Works: typical execution


```
ansible-playbook -i hosts.cph1 -K infrastructure-firewalls.yml -t pf.conf --check --diff ansible-playbook -i hosts.cph1 -K infrastructure-firewalls.yml -t pf.conf ansible-playbook -i hosts.cph1 -K infrastructure-nagios.yml -t config-only ansible-playbook -i smartboxes -K create-pf-conf.yml -l smartbox-xxx-01
```

- Pro tip: check before you push out changes to production networks ©
- Check will see if something needs changing
- Diff will show the changes about to be made

How Ansible Works: atypical execution / gotchas


```
ansible -i ../smartboxes.osl1 --become --ask-become-pass -m shell
-a "pfctl -s rules" -l smartbox01

ansible -i ../smartboxes.osl1 --become --ask-become-pass -m shell
-a "nmap -sP 185.161.1xx.123-124 2> /dev/null| grep done" all
```

- Sometimes you need a trick or persistence
- Ansible moving from sudo to become
- The normal -K did not work, but the above does for ad hoc commands

Life of a server

- Create VM
- Network install with pxeboot
- Standard settings: hostname, LDAP, SSH, timezone, ...
- Configure this server: application installation, settings, etc.
- Configure monitoring: like Smokeping

Get ready, Up and running with Ansible

Prequisites for Ansible - you need a Linux machine:

- python language Ansible uses this
- ssh keys remote login without passwords
- Sudo allow regular users to do superuser tasks
- Recommended tool: ssh-copy-id for getting your key on new server
- Recommended Change: sshd_config no passwords allowed, no bruteforce
- Recommended to use: jump hosts/ProxyCommand in ssh_config
- Highly recommended: Git and/or github for version control

Official docs:

https://docs.ansible.com/ansible/intro_installation.html

Get set, Installation options

Options:

- 1. use your laptop, easy if you run Mac or Linux
- 2. install and use a local virtual machine, like Kali Linux and use graphical editor like leafpad for playbooks
- 3. you also need Git installed

We will use:

git clone https://github.com/kramse/ansible-workshop

A goal is also to work in team on a server!
We will not do this workshop now in this course

Install Ansible on Mac and Ubuntu Linux clients

Official instructions!

http://docs.ansible.com/ansible/latest/intro_installation.html

- Mac OS X brew install ansible or use pip
 - \$ sudo easy_install pip
 \$ sudo pip install ansible
- Ubuntu Linux try something like:

```
$ sudo apt-get update
$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:ansible/ansible
```

\$ sudo apt-get update

\$ sudo apt-get install ansible openssh-client

Yes, I expect OpenSSH client is also installed :-D

Kali Linux as Ansible client

Install python on servers

You can use Kali as a client, no problem

- Ubuntu server: apt install python openssh-server
- OpenBSD: pkg_add python
 Requires PKG_PATH set, see below

OpenBSD package path can be set in /root/.profile

PKG_PATH=ftp://mirror.one.com/pub/OpenBSD/`uname -r`/packages/`uname -m`
PKG_PATH=https://stable.mtier.org/updates/\$(uname -r)/\$(arch -s):\$PKG_PATH
export PKG_PATH

Yes, I expect OpenSSH server is also installed ©

Create OpenSSH compatible private / public key pair


```
hlk@generic:~$ ssh-keygen -f .ssh/kramse
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in .ssh/kramse.
Your public key has been saved in .ssh/kramse.pub.
The key fingerprint is:
SHA256:chCjaP6BHaoPy/EMDlP6xKAP4aGAX2mknGA/ZoAzU3o hlk@generic
The key's randomart image is:
+---[RSA 2048]----+
 . 0
1.0 . . 0
BoE + .
loXoB o .
l=.0=* . S
|=0++.. o
|X++ .
|+X=
1.0+0
+----[SHA256]----+
```

/home/hlk/.ssh/kramse.pub is the public key in this example

SSH utility ssh-copy-id

You need to copy your SSH public key to the server to use SSH+Ansible:

```
hlk@kunoichi:hlk$ ssh-copy-id -i .ssh/kramse hlk@10.0.42.147
/usr/local/bin/ssh-copy-id: INFO: Source of key(s) to be installed: ".ssh/kramse.pub"
The authenticity of host '10.0.42.147 (10.0.42.147)' can't be established.

ECDSA key fingerprint is SHA256:DP6jqadDWEJW/3FYPY84cpTKmEW7XoQ4zDNf/RdTu6M.

Are you sure you want to continue connecting (yes/no)? yes
/usr/local/bin/ssh-copy-id: INFO: attempting to log in with the new key(s),
to filter out any that are already installed
/usr/local/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you
are prompted now it is to install the new keys
hlk@10.0.42.147's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh -o 'IdentitiesOnly yes' 'hlk@10.0.42.147'"
and check to make sure that only the key(s) you wanted were added.
```

This is the best tool for the job!

Exercise: trying Ansible

Create inventory file, and then:

```
ansible -m ping new-server
ansible -a "date" new-server
ansible -m shell -a "grep a /etc/something" new-server
```

Lets try running Ansible!

- Hopefully there is a small getting started repo to clone from Github ©
- Install software: ansible and openssh-client
- Generate SSH key pair see previous slides
- Server to use should be shown on the whiteboard (or similar)
- You can override user with ansible -u manager
 very useful if you are bringing up a server from PXE boot using predefined user manager
- Trouble? Try running with -vvv, try manual ssh, is Python installed on server and ready?

Success looks something like this


```
$ ssh-keygen -f .ssh/kramse
... generates key pair and saves public key in .ssh/kramse.pub
$ ssh-copy-id -i .ssh/kramse manager@10.0.42.147
... asks for password "henrik42" and installs key
$ cd ansible-workshop
$ leafpad hosts.sitename # add the host server01 for your group
$ ansible -i hosts.sitename -u manager -m ping server01
server01 | success >> {
    "changed": false,
   "ping": "pong"
```

Congratulations you are now running Ansible!

Exercise: try fetching facts


```
$ ansible -i hosts.cph1 -u manager -m setup server01 | grep hostname
"ansible hostname": "cph1-fw-cph1-01",
```

- Facts are fetched by default from servers
- Can be fetched / investigated using the setup module
- Returns JSON
- Try saving the output in a file and look at it:
 ansible -i hosts.cph1 -u manager -m setup server01 > facts.txt
 less facts.txt

Goal is to learn basics of Ansible by seeing some server facts

Exercise: try adding you own user

```
- hosts: all:!*openbsd*
```

become: true serial: 10

tasks:

- group: name=yourusername state=present
- user: name=yourusername shell=/bin/bash group=sudo
- Copy above or edit the create-user.yml
- Replace "hlk"with your username, the one you want
- Run this task / playbook so your own user is created
 ansible-playbook -i hosts.sitename -K -u manager create-user.yml
- Dont forget to install your key on this user!
- Try running multiple times, and try adding check and diff:

 $\verb|ansible-playbook-i| hosts.sitename -K -u yourusername create-user.yml --check--diff|$

Congratulations: you can now do real work with Ansible!

Monitor your network

MRTG The Multi Router Traffic Grapher - simple, great, fast http://oss.oetiker.ch/mrtg/

Smokeping Network Latency measurements - network quality

http://oss.oetiker.ch/smokeping/

NFsen Netflow monitoring - turn on at selected routers/switches

LibreNMS https://www.librenms.org/

Manual tools, My Traceroute, Nping

MRTG SNMP monitoring made easy

Run configmaker, indexmaker - almost done

Smokeping packet loss

Smokeping latency changed

Netflow

Netflow is getting more important, more data share the same links

Accounting is important

Detecting DoS/DDoS and problems is essential

Netflow sampling is vital information - 123Mbit, but what kind of traffic

We use mostly NFSen, but are looking at various software packages http://nfsen.sourceforge.net/

Currently also investigating sFlow - hopefully more fine grained

Netflow using NFSen

Netflow processing from the web interface

Figure State Sta	ack Forward	Reload	Stop	New Tab	Home	S http:	s://nfsen	-demo/nfser	n-demo/nfse	n.php#proc	essing	<u>@</u> ▼ ▶	∭ • Ca	mbridge	Dictiona	rie Q	3
## Site 467.1 /s 8.9 k/s 6.1 k/s 2.0 k/s 181.7 /s 613.3 /s 38.8 Mb/s 28.3 Mb/s 7.4 Mb/s 104.0 kb/s 2.9 Mb/s	▽ peer2	3.3 k/s	76.2 k/s	66.9 k/s	7.0 k/s	621.0 /s	1.7 k/s	484.6 Mb/s	459.9 Mb/s	12.5 Mb/s	437.3 kb/s	11.7 Mb/s					
## site	▽ gateway	1.0 /s	651.0 /s	600.8 /s	46.6 /s	0 /s	3.7 /s	6.2 Mb/s	6.1 Mb/s	36.4 kb/s	0 b/s	4.4 kb/s					
All None Display: Sum Rate etflow Processing ource: Filter: Options: peer! peer2 pateway site upstream All Sources and <none> Image: State Top N Top: 10</none>		467.1 /s	8.9 k/s	6.1 k/s	2.0 k/s	181.7 /s	613.3 /s	38.8 Mb/s	28.3 Mb/s	7.4 Mb/s	104.0 kb/s	2.9 Mb/s					
All None Display: Sum Rate etflow Processing ource: Filter: Options: Clast Flows Stat TopN Top: 10	upstream	6.4 k/s	94.2 k/s	84.3 k/s	8.2 k/s	896.4 /s	766.7 /s	588.4 Mb/s	568.2 Mb/s	16.7 Mb/s	685.1 kb/s	2.8 Mb/s					
Determined and sources are sources and sources and sources and sources are sources and sources and sources are sources and sources and sources are sources are sources and sources and sources are sources are sources and sources are sou			○ Sum (Rate													
Top: 10									Options	:							
Stat: Flow Records order by flows									○ List								
Stat: Flow Records order by flows									Top:	10	~						
All Sources and <pre> All Sources and <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>									Stat:	Flo	w Records	▼ order l	flows	-			
Output: line / /		and <no< td=""><td>ne> 💌</td><td></td><td></td><td></td><td></td><td></td><td>Aggreg</td><td>ate 🔽 s</td><td>rcPort 🔽</td><td></td><td>4</td><td></td><td></td><td></td><td></td></no<>	ne> 💌						Aggreg	ate 🔽 s	rcPort 🔽		4				
nfdump -M /netflowO/nfsen-demo/profile-data/live/peerl:peer2:gateway:site:upstream -T -r 2007/05/31/04/nfcapd.20070531044 dump filter: pregated flows 2797250 plof lows ordered by flows: te flow start Duration Proto T-05-31 04:39:54.045 299.034 UDP 116.147.95.88:1110 → 188.142.64.162:27014 68 5508 68 07-05-31 04:39:55.082 298.174 UDP 116.147.299.27:1478 → 188.142.64.162:27014 68 5508 68 07-05-31 04:39:55.082 298.174 UDP 117.196.75.134:1146 → 188.142.64.162:27014 67 5427 67 07-05-31 04:39:57.50 298.020 UDP 117.196.75.134:1146 → 188.142.64.161:27014 67 5427 67 07-05-31 04:39:57.819 298.171 UDP 117.196.75.134:1146 → 188.142.64.161:27014 67 5427 67 07-05-31 04:39:57.819 298.171 UDP 117.196.75.134:1146 → 188.142.64.161:27014 67 5427 67 07-05-31 04:39:58.395 298.977 UDP 60.9:138.37:2121 → 118.29.39.39:2121 61 3660 61 07-05-31 04:39:58.395 298.977 UDP 60.9:138.136:2121 → 119.192.123.166:2121 61 3660 61 07-05-31 04:39:58.396 298.977 UDP 60.9:138.136:2121 → 119.192.123.166:2121 61 3660 61 07-05-31 04:39:58.396 300.734 UDP 60.9:138.137:2121 → 125.167.25.128:121 61 3660 61 07-05-31 04:39:57.946 300.734 UDP 60.9:138.137:2121 → 125.167.25.128:121 61 3660 61 07-05-31 04:39:57.946 300.734 UDP 60.9:138.38:1212 → 125.167.25.128:121 61 3660 61 07-05-31 04:39:57.946 300.734 UDP 60.9:138.38:1212 → 125.167.25.128:121 61 3660 61 07-05-31 04:39:57.946 300.734 UDP 60.9:138.38:1212 → 125.167.25.128:121 61 3660 61 07-05-31 04:39:57.946 300.535 UDP 60.9:138.38:1212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 300.535 UDP 60.9:138.38:1212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 300.535 UDP 60.9:138.38:61212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 300.535 UDP 60.9:138.38:61212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 30.055 UDP 60.9:138.38:61212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 300.535 UDP 60.9:138.38:61212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 30.055 UDP 60.9:138.38:61212 → 121.135.4.186:2121 61 3660 61 07-05-31 04:19:57.946 30.055 UDP 60.9:138.38:612									Limit:		Packets T	> V 0		+			
nfdump -M /netflowO/nfsen-demo/profile-data/live/peerl:peer2:gateway:site:upstream -T -r 2007/05/31/04/nfcapd.20070531044 dump filter: gregated flows 2797250 plof lows ordered by flows: te flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets Bytes Flows 07-05-31 04:39:54.045 299.034 UDP 116.147.95.88:1110 -> 188.142.64.162:27014 68 5508 68 07-05-31 04:39:55.628 298.174 UDP 116.147.249.27:1478 -> 188.142.64.162:27014 67 5427 67 07-05-31 04:39:57.502 298.174 UDP 117.196.45.134:1146 -> 188.142.64.162:27014 67 5427 67 07-05-31 04:39:57.502 298.174 UDP 117.196.75.134:1146 -> 188.142.64.162:27014 67 5427 67 07-05-31 04:39:57.502 298.174 UDP 117.196.75.134:1146 -> 188.142.64.161:27014 67 5427 67 07-05-31 04:39:55.394 208.077 UDP 60.9.138.37:2121 -> 118.25.93.95:2121 61 3660 61 07-05-31 04:39:58.395 298.977 UDP 60.9.138.36:2121 -> 119.182.123.166:2121 61 3660 61 07-05-31 04:39:54.393 930.3585 UDP 120.150.194.76:2121 -> 109.138.37:2121 61 3660 61 07-05-31 04:39:55.396 300.734 UDP 60.9.138.17:2121 -> 125.167.25.128:121 61 3660 61 07-05-31 04:39:55.396 300.373 UDP 60.9.138.37:2121 -> 125.167.25.128:121 61 3660 61 07-05-31 04:39:55.396 300.373 UDP 60.9.138.37:2121 -> 125.167.25.128:121 61 3660 61 07-05-31 04:39:55.396 300.373 UDP 60.9.138.37:2121 -> 125.167.25.128:121 61 3660 61 07-05-31 04:39:55.396 300.373 UDP 60.9.138.36:2121 -> 121.135.4.186:2121 61 3660 61 07-05-31 04:39:55.396 300.373 UDP 60.9.138.36:2121 -> 121.135.4.186:2121 61 3660 61 07-05-31 04:19:55.946 300.373 UDP 60.9.138.36:2121 -> 121.135.4.186:2121 61 3660 61 07-05-31 04:19:55.946 300.373 UDP 60.9.138.36:2121 -> 121.135.4.186:2121 61 3660 61 07-05-31 04:20:55.05.05.05.05.05.05.05.05.05.05.05.05.0											- denets						
dump filter: yregated flows 2797250 ploflows ordered by flows: te flow start plot of lows 3297250 plot flows ordered by flows: te flow start plot of lows 3297250 plot flows ordered by flows: te flow start plot of lows 12974.04 plot flows ordered by flows: te flow start plot of lows 12974.04 plot flows 12974.04 plot flow											_						
	nfdump -M	/netflow	/O/nfser	-demo/p	rofile-	-data/1	ive/pec	erl:peer2:	Output	t: line	• •	Clear Fo	orm pro	cess	.20070	531044	

Bringing the power of the command line forward

LibreNMS Automatic discovery

Automatically discover your entire network using CDP, FDP, LLDP, OSPF, BGP, SNMP and ARP.

LibreNMS Geo Location

LibreNMS wireless clients

For Next Time

Think about the subjects from this time, write down questions

Check the plan for chapters to read in the books

Most days have about 100 pages or less, but one day has 4 chapters to read!

Visit web sites and download papers if needed

Retry the exercises to get more confident using the tools