Examen final

Lundi 20 janvier 2014 - 2h

Documents manuscrits et polycopié du cours autorisés. Tout autre document interdit.

Exercice 1

Soit $n \in \mathbb{N}^*$, X un espace de Banach et $f: X \to \mathbb{R}$ de classe \mathfrak{C}^n sur X. On suppose que $f(tx) = t^n f(x)$ pour tout $t \in \mathbb{R}$.

- 1. On considère dans cette question le cas n=1. Soit $x \in X$ fixé, et $\varphi(t)=f(tx)$.
 - (a) Exprimer la dérivée de φ en t en fonction de la différentielle de f.
 - (b) En déduire que $\forall x \in X$, $f(x) = df_0(x)$.
- 2. Dans le cas général, montrer que

$$f(x) = \frac{1}{n!} d^n f_0(x^{(n)})$$

où $x^{(n)}$ est le n-uplet (x, x, ..., x) et $d^n f_0$ la différentielle n-ième de f au point $0 \in X$.

Exercice 2

Déterminer les limites suivantes :

$$(a) \lim_{n \to +\infty} \int_0^1 (1 + nx^2)(1 + x^2)^{-n} dx \qquad (b) \lim_{n \to +\infty} \int_0^\infty \frac{n \sin(\frac{x}{n})}{x(1 + x^2)} dx$$

Exercice 3

On définit le produit de convolution de deux fonctions f et q positives sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt$$

1. Montrer que f * g est une fonction bien définie, à valeurs dans $\overline{\mathbb{R}_+}$, qui vérifie :

$$\int_{\mathbb{R}} f * g(x) dx = \left(\int_{\mathbb{R}} f(x) dx \right) \left(\int_{\mathbb{R}} g(x) dx \right)$$

En déduire que si f et g sont intégrables, alors f * g est fini presque partout sur \mathbb{R} .

2. On suppose maintenant que $f \in L^1(\mathbb{R})$ et $g \in L^\infty(\mathbb{R})$. Montrer qu'alors f * g est une fonction bornée sur \mathbb{R} .

En admettant la propriété suivante :

$$\lim_{h \to 0} \int_{\mathbb{R}} |h(x+h) - h(x)| dx = 0, \quad \forall h \in L^{1}(\mathbb{R}),$$

montrer que f * g est de plus uniformément continue sur \mathbb{R} .

- 3. Exemple: calculer
 - f * 0
 - f * 1, pour $f \in L^1(\mathbb{R})$ où 1 est la fonction constante égale à 1 sur \mathbb{R} .
 - f * f, avec $f = \mathbb{1}_{[0,1]}$, fonction indicatrice de l'intervalle [0,1].

Vérifier que la fonction obtenue est bien continue!

Exercice 4

- 1. Montrer, en utilisant la définition, que la transformée de Fourier d'une fonction réelle paire est une fonction réelle paire.
- 2. Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = e^{-2\pi|x|}$$

Calculer \hat{f} , la transformée de Fourier de f.

3. Montrer que \hat{f} est intégrable sur \mathbb{R} . En déduire la transformée de Fourier de la fonction :

$$g(x) = \frac{1}{1+x^2}$$