ATMO 656A - HW6v2 & HW7

Edgardo I. Sepulveda Araya

 F, Q_{ext} — 1.3873+0.0066i ----1.299+0.037i 30 50 10 20 40 Size parameter x

$Q_{\rm ext}$ for $\lambda=0.55~\mu m$ and r from 0.001 to 10 μm (0.001 μm step):

Size parameter range from 0 to 50 (r \sim 4.4 μm) is showed

What about mi = 0 and different mr?

$Q_{\rm ext}$ and $Q_{\rm abs}$ for $\lambda=0.55~\mu m$ and r from 0.001 to 10 μm (0.001 μm step):

What about mi = 0 and different mr?

HW7

$$N(r)dr = \frac{1}{\sqrt{2\pi}\ln(\sigma_g)} \exp\left(-\frac{\left(\ln(r) - \ln(r_g)\right)^2}{2\left(\ln(\sigma_g)\right)^2}\right)$$

$$\overline{Q_{ext}} = \frac{1}{N_0} \int_{0}^{\infty} Q_{ext}(r) N(r) dr$$

 $Q_{ext}(r)$ computed with PyMieScatt.MieQ()*

*https://pymiescatt.readthedocs .io/en/latest/index.html

HW7

$$m = 1.3873 + 0.0066i$$

$$\lambda = 0.5 \ \mu \text{m}$$

