PROBLEMS FOR CHAPTER 4

2. Find the best fit in the least squares sense, to the data.

										9
fi	0	2	2	5	5	6	7	7	7	10

by a polynomial of degree at most 3.

Solution: Lets start with order 1

$$P(x) = a_0 + a_1 x^1$$

The matrix has the form:

$$\begin{bmatrix} \sum_{i=0}^{3} x_{i}^{0} & \sum_{i=0}^{3} x_{i}^{1} \\ \sum_{i=0}^{3} x_{i}^{1} & \sum_{i=0}^{3} x_{i}^{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{3} f(x_{i}) \\ \sum_{i=0}^{3} f(x_{i}) x_{i} \end{bmatrix}$$

substituting the data gives

$$\begin{bmatrix} 10 & 45 \\ 45 & 285 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 51 \\ 308 \end{bmatrix}$$

Solving the matrix gives us

$$a_1 = 0.9515$$

$$a_0 = 0.8182$$

Hence P(x) = 0.9515x + 0.8182

х	0	1	2	3	4	5	6	7	8	9
	0	2	2				-			10
fx	O	2	2	5	5	6	/	,	,	10
Px	0.8182	1.7697	2.7212	3.6727	4.6242	5.5757	6.5272	7.4787	8.4302	9.3817
E	0.6695	0.0530	0.5201	1.7617	0.1412	0.1800	0.2235	0.2292	2.0455	0.3823

$$E = \sum_{i=0}^{n} |P(x_i)-f(x_i)|^2$$

Order 2

$$P(x) = a_0 + a_1 x^1 + a_2 x^2$$

The Matrix is

$$\begin{bmatrix} 10 & 45 & 285 \\ 45 & 285 & 2025 \\ 285 & 2025 & 15333 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 51 \\ 308 \\ 2138 \end{bmatrix}$$

Solving the matrix gives us

$$a_2 = -0.0417$$

$$a_1 = 1.3265$$

$$a_0 = 0.3182$$

Hence

$$P(x) = -0.0417x^2 + 1.3265x + 0.3182$$

х	0	1	2	3	4	5	6	7	8	9
fx	0	2	2	5	5	6	7	7	7	10
Рх	0.3182	1.6030	2.8044	3.9224	4.9570	5.9082	6.7760	7.5604	8.2614	8.8790
Е	0.1013	0.1576	0.6471	1.1612	0.0018	0.0084	0.0502	0.3140	1.5911	1.2566

$$E = \sum_{i=0}^{n} |P(x_i)-f(x_i)|^2$$

Order 3

$$P(x) = a_0 + a_1x^1 + a_2x^2 + a_3x^3$$

The matrix is of the form

$$\begin{bmatrix} 10 & 45 & 285 & 2025 \\ 45 & 285 & 2025 & 15333 \\ 285 & 2025 & 15333 & 120825 \\ 2025 & 15333 & 120825 & 978405 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 51 \\ 308 \\ 2138 \\ 16010 \end{bmatrix}$$

Solving the matrix gives us

$$a_3 = 0.0196$$

$$a_2 = -0.3065$$

$$a_1 = 2.2310$$

$$a_0 = -0.1762$$

Hence

$$P(x) = 0.0196x^3 - 0.3065x^2 + 2.2310x - 0.1762$$

Х	0	1	2	3	4	5	6	7	8	9
fx	0	2	2	5	5	6	7	7	7	10
Рх	-0.1762	1.7679	3.2166	4.2875	5.0982	5.7663	6.4094	7.1451	8.0910	9.3647
Е	0.0310	0.0539	1.4801	0.5077	0.0096	0.0546	0.3488	0.0211	1.1903	0.4036

$$E = \sum_{i=0}^{n} | P(x_i) - f(x_i) |^2$$

7. From the following set of data construct a function of the type $f(x) = a e^x + b e^{-x}$ using the principle of least squares.

X	0.2	0.3	0.4	0.5
f(x)	2.0	5.0	3.5	3.0

Solution: The equation type

$$f(x) = a e^x + b e^{-x}$$

Can be transformed into

$$f(x) = a v + b/v$$

where $v = e^x$

Which can then be transformed into

$$w=a u + b$$

where $u=v^2$ and w=f(x)v

Now just continue as if approximating a polynomial of degree (1),

For the given data,

$$\begin{bmatrix} \sum_{i=0}^{n} u^{0} & \sum_{i=0}^{n} u^{1} \\ \sum_{i=0}^{n} u^{1} & \sum_{i=0}^{n} u^{2} \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} w \\ \sum_{i=0}^{n} u.w \end{bmatrix}$$

i	х	f(x)	u=v ²	w=f(x)*v	u.w
0	0.2	2	1.4918	2.4428	3.6442
1	0.3	5	1.8221	6.7439	12.298
2	0.4	3.5	2.2255	5.2214	11.6204
3	0.5	3	2.7183	4.9462	13.4451
$\sum_{1=0}^{3} =$	4200	11405	6,534950 5	3744000	4094,68995

Substituting the above values we get:

$$\begin{bmatrix} 4 & 8.2578 \\ 8.2578 & 17.8877 \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 19.36 \\ 41.01 \end{bmatrix}$$

Solving the matrix gives us

Transforming back to the original equation we get

$$f(x) = 1.241 e^x + 2.278 e^{-x}$$

8. The stress and strain are known to follow a relation of the type $\sigma=k_1\;\epsilon\;exp(\text{-}k_2\epsilon)$

Obtain the least squares fit using the below data.

Stress (σ)	Strain (ε)
1030 psi	$260x10^{-6}in/in$
1410	410
1720	510
2060	710
2435	960
2750	1350

Solution: The equation

$$\sigma = k_1 \ \epsilon \exp(-k_2 \epsilon)$$
.

Can be transformed into

$$(\sigma/\epsilon) = k_1 e^{-k2\epsilon}$$

Which can then be transformed into

$$\ln\left(\sigma/\varepsilon\right) = \ln k_1 - k_2 \varepsilon$$

Now just continue as if approximating a polynomial of degree (1),

For the given data,

$$\begin{bmatrix} \sum_{i=0}^{n} \varepsilon_{i}^{0} & \sum_{i=0}^{n} \varepsilon_{i}^{1} \\ \sum_{i=0}^{n} \varepsilon_{i}^{1} & \sum_{i=0}^{n} \varepsilon_{i}^{2} \end{bmatrix} \begin{bmatrix} \ln k_{1} \\ k_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} \ln (\sigma/\varepsilon) \\ \sum_{i=0}^{n} \varepsilon. \ln (\sigma/\varepsilon) \end{bmatrix}$$

i	ε	σ	In (σ/ ε)	(ε_i^2)	ε _i ln (σ/ ε)
0	260	1030	1,376632	67600	357,92444
1	410	1410	1,235188	168100	506,42701
2	510	1720	1,215669	260100	619,99111
3	710	2060	1,065196	504100	756,28937
4	960	2435	0,930769	921600	893,538
5	1350	2750	0,711496	1822500	960,52003
$\sum_{1=0}^{3} =$	4200	11405	6,534950 5	3744000	4094,68995

Substituting the above values we get:

$$\begin{bmatrix} 6 & 4200 \\ 4200 & 3744000 \end{bmatrix} \begin{bmatrix} \ln k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 6.5349 \\ 4094.69 \end{bmatrix}$$

Solving the matrix gives us

$$k_2 = -0.0006$$

In (
$$\sigma/\epsilon$$
) = 1.5068 - 0.0006 ϵ

Transforming back to the original equation we get

$$P(\epsilon) = 4.5123 \epsilon e^{-0.0006\epsilon}$$

3	260	410	510	710	960	1350
σ	1030	1410	1720	2060	2435	2750
Ρ(ε)	1003,74	1446,59	1694,6266	2092,41	2435,093	2709,9

9. The relationship between resistance R, velocity v and time t is given by

$$t = \int_{v_0}^{v_1} \frac{m}{R(v)} dv$$

where $R(v) = -v^{3/2}$ and m=1kg, $v_0 = 10$ m/sec, $v_1 = 5$ m/sec Evaluate the integrand f(v) = m / R(v) at 6 equally spaced velocities between 5 and 10 m/sec and fit the best least-squares polynomial fit.

Solution: f(v) = m / R(v) at 6 equally spaced velocities between 5 and 10 m/sec give us

n	0	1	2	3	4	5	6
V	10	9,166667	8,333333	7,5	6,6666667	5,833333	5
f(v)	-0,03162	-0,03603	-0,04157	-0,048686	-0,058095	-0,070978	-0,08944

Let's start with order 2

$$P(x) = a_0 + a_1 x^1 + a_2 x^2$$

The Matrix is of the form

$$\begin{bmatrix} \sum_{i=0}^{n} x_{i}^{0} & \sum_{i=0}^{n} x_{i}^{0} & \sum_{i=0}^{n} x_{i}^{0} \\ \sum_{i=0}^{n} x_{i}^{0} & \sum_{i=0}^{n} x_{i}^{0} & \sum_{i=0}^{n} x_{i}^{0} \\ \sum_{i=0}^{n} x_{i}^{0} & \sum_{i=0}^{n} x_{i}^{0} & \sum_{i=0}^{n} x_{i}^{0} \\ \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} f(x_{i}) \\ \sum_{i=0}^{n} f(x_{i}) x_{i} \\ \sum_{i=0}^{n} f(x_{i}) x_{i} \end{bmatrix}$$

$$\begin{bmatrix} 7 & 52.5 & 403.19 \\ 52.5 & 403.19 & 3390.625 \\ 413.19 & 3390.625 & 28805.46 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -0.37643 \\ -2.6066 \\ -19.0486 \end{bmatrix}$$

Solving the matrix gives us

$$a_2 = 0.00056$$

$$a_1 = 0.00131$$

$$a_0 = -0.09569$$

Hence

$$P(x) = 0.00056 x^2 + 0.00131x - 0.09569$$

n	0	1	2	3	4	5	6
v	10	9,166667	8,333333	7,5	6,6666667	5,833333	5
f(v)	-0,03162	-0,03603	-0,04157	-0,048686	-0,058095	-0,070978	-0,08944
P(v)	-0,0266	-0,0366	-0,0459	-0,0544	-0,0621	-0,0690	-0,0751

$$E = \sum_{i=0}^{n} | P(x_i) - f(x_i) |^2$$

Therefore the above second order polynomial seems to be a good fit.

16. Use the Lagrange interpolating polynomial to approximate cos (0.750) using the following values

$$Cos(0.698) = 0.7661$$

$$Cos(0.733) = 0.7432$$

$$Cos(0.768) = 0.7193$$

Solution: Lagrange Polynomial is

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}$$

$$L_{n,k} = \prod_{\substack{i=0\\i\neq k}}^{n} \frac{(x-x_{i})}{(x_{k}-x_{i})}$$

<u>k=0</u>

$$L_{2,0} = \prod_{\stackrel{i=0}{\underset{i\neq 0}{=}}}^{n} \frac{(x - x_{i})}{(x_{k} - x_{i})} = \frac{(x - x_{1})}{(x_{0} - x_{1})} * \frac{(x - x_{2})}{(x_{0} - x_{2})} =$$

$$\frac{(x - 0.733)(x - 0.768)}{(0.698 - 0.733)(0.698 - 0.768)} = \frac{x^{2} - 1.501x + 0.562944}{0.00245}$$

k=1

$$L_{2,1} = \prod_{\substack{i=0\\i\neq 0}}^{n} \frac{(x-x_i)}{(x_k-x_i)} = \frac{(x-x_1)}{(x_0-x_1)} * \frac{(x-x_2)}{(x_0-x_2)} = \frac{(x-0.698)(x-0.768)}{(0.733-0.698)(0.733-0.768)} = \frac{x^2-1.466x+0.536064}{-0.001225}$$

k=2

$$L_{2,2} = \prod_{\stackrel{i=0}{i\neq 0}}^{n} \frac{(x-x_{i})}{(x_{k}-x_{i})} = \frac{(x-x_{1})}{(x_{0}-x_{1})} * \frac{(x-x_{2})}{(x_{0}-x_{2})} = \frac{(x-0.698)(x-0.733)}{(0.768-0.698)(0.768-0.733)} = \frac{x^{2}-1.431x+0.511634}{0.00245}$$

$$P(x) = 0.7661 \left[\frac{x^2 - 1.501x + 0.562944}{0.00245} \right] + 0.7432 \left[\frac{x^2 - 1.466x + 0.536064}{-0.001225} \right] + 0.7193 \left[\frac{x^2 - 1.431x + 0.511634}{0.00245} \right]$$

$$P(x) = -0.40816x^2 - 0.0702x + 1.013961$$

$$P(0.75) = -0.40816(0.75)^2 - 0.0702(0.75) + 1.013961$$