Introduction to sequence to sequence models

NATURAL LANGUAGE GENERATION IN PYTHON

Biswanath Halder
Data Scientist

Sequence to sequence generation

- Output a sequence given a sequence as input.
- Fixed length input.
- Fixed length output.
- Input output length different in general.

Seq2seq applications

- Machine translation.
- Question answering.
- NER/POS-Tagging.
- Text summarization.
- Grammar correction.

Text summarization

Input:

"Russian Defense Minister Ivanov called Sunday for the creation of a joint front for combating global terrorism."

Output:

"Russia calls for joint front against terrorism."

Grammar correction

Input:

"There is no a doubt, tracking systems has brought many benefits in this information age."

Output:

"There is no doubt, tracking systems have brought many benefits in this information age."

English French dataset

```
I know. Je sais.
I left. Je suis parti.
I'm OK. Je vais bien.
Got it! J'ai pigé!
Really? Vraiment??
Shut up! Taisez-vous?!
Have fun. Amuse-toi bien!
```

¹ http://www.manythings.org/anki/

Preprocess ENG-FRA dataset

```
# Split i-th line into two at the tab character
eng_fra_line = str(lines[i]).split('\t')
# Separate out the English sentence
eng_line = eng_fra_line[0]
# Append start and end token to French sentence
fra_line = '\t' + eng_fra_line[1] + '\n'
# Append the English and French sentence to the list of sentences
english_sentences.append(eng_line)
french_sentences.append(fra_line)
```


English vocabulary

english_vocab = sorted(list(english_vocab))

```
# Create an empty set to contain the English vocabulary
english_vocab = set()
# Iterate over each English sentence
for eng_line in english_sentences:
    # Iterate over each character of each sentence
    for ch in eng_line:
        # Add the character to the vocabulary if it is already not there
        if (ch not in english_vocab):
            english_vocab.add(ch)
# Sort the vocabulary
```

French vocabulary

```
# Sort the vocabulary
french_vocab = sorted(list(french_vocab))
```


Mappings for English vocabulary

Character to integer mapping for English vocabulary.

```
eng_char_to_idx = dict((char, idx) for idx, char
    in enumerate(english_vocab))
```

Integer to character mapping for the English vocabulary.

```
eng_idx_to_char = dict((idx, char) for idx, char
    in enumerate(english_vocab))
```

Mappings for French vocabulary

Character to integer mapping for French vocabulary.

```
fra_char_to_idx = dict((char, idx) for idx, char
    in enumerate(french_vocab))
```

Integer to character mapping for the French vocabulary.

```
fra_idx_to_char = dict((idx, char) for idx, char
    in enumerate(french_vocab))
```

Let's practice!

NATURAL LANGUAGE GENERATION IN PYTHON

Neural machine translation

NATURAL LANGUAGE GENERATION IN PYTHON

Biswanath Halder
Data Scientist

Encoder

- Accepts input sequence.
- Summarizes information in state vectors.
- State vectors passed to decoder.
- Outputs ignored.

Decoder

- Initial state vectors from encoder.
- Final states ignored.
- Outputs the predicted sequence.

Teacher forcing

- Inference
 - Behavior as usual.
 - Input at each step output from previous time step.
- Training
 - Input is actual output for the current step.
 - Not the predicted output from previous time step.
 - Known as teacher-forcing.

Encoder for translation

- Inputs: English sentences.
- Number of time steps: length of the sentence.
- States summarize the English sentences.
- Final states passed to decoder.
- Outputs ignored.

Decoder for translation

- Initial states: final states of the encoder.
- Inputs: French sentences.
- Outputs: translated sentences.
- Final states ignored.
- No of time-steps: length of French sentence.

Encoder-decoder during training

Shape of input and target vectors

Define input and target vectors

Find the step sizes.

```
max_len_eng_sent = max([len(sentence) for sentence in english_sentences])
max_len_fra_sent = max([len(sentence) for sentence in french_sentences])
```

Define the input and target vectors.

Initialize input and target vectors

```
for i in range(no_of_sentences):
   # Iterate over each character of English sentences
   for k, ch in enumerate(english_sentences[i]):
        eng_input_data[i, k, eng_char_to_idx[ch]] = 1.
   # Iterate over each character of French sentences
   for k, ch in enumerate(french_sentences[i]):
        fra_input_data[i, k, fra_char_to_idx[ch]] = 1.
       # Target data will be one timestep ahead
        if k > 0:
           target_data[i, k-1, fra_char_to_idx[ch]] = 1.
```

Keras functional APIs

```
# This returns a input vector of size 784
inputs = Input(shape=(784,))
```

```
# A dense layer of 64 units is called on a vector returning a tensor
predictions = Dense(64, activation='relu')(inputs)
```

```
# This creates a model with an Input layer and an output of a dense layer
model = Model(inputs=inputs, outputs=predictions)
```

Build the encoder

Create input layer followed by the LSTM layer of 256 units.

```
encoder_input = Input(shape = (None, len(english_vocab)))
encoder_LSTM = LSTM(256, return_state = True)
```

• Feed input to the LSTM layer and get output.

```
encoder_outputs, encoder_h, encoder_c = encoder_LSTM(encoder_input)
```

Ignore the output and save the states.

```
encoder_states = [encoder_h, encoder_c]
```

Build the decoder

Create the input layer followed by the LSTM layer.

```
decoder_input = Input(shape=(None, len(french_vocab)))
decoder_LSTM = LSTM(256, return_sequences=True, return_state = True)
```

Get the output from the LSTM layer.

Feed LSTM output to a dense layer to get the final output.

```
decoder_dense = Dense(len(french_vocab), activation='softmax')
decoder_out = decoder_dense (decoder_out)
```

Combine the encoder and the decoder

Combine encoder and decoder.

```
model = Model(inputs=[encoder_input, decoder_input], outputs=[decoder_out])
```

Check model summary.

```
model.summary()
```

Compile and train the network

Compile and train the model.

Let's practice!

NATURAL LANGUAGE GENERATION IN PYTHON

Inference using encoder and decoder

NATURAL LANGUAGE GENERATION IN PYTHON

Biswanath Halder
Data Scientist

Encoder and decoder during inference

Inference model for encoder

Encoder inference model.

```
encoder_model = Model(encoder_inputs, encoder_states)
```

Decoder initial states

• Define inputs of decoder inference model.

```
decoder_hidden_state = Input(shape=(latent_dim, None))
decoder_cell_state = Input(shape=(latent_dim, None))
```

Initial state of the decoder LSTM layer.

```
decoder_input_states = [decoder_hidden_state, decoder_cell_state]
```

Decoder outputs

• Get decoder output from the trained decoder LSTM layer created earlier.

```
decoder_out, decoder_hidden, decoder_cell = decoder_LSTM(decoder_input,
initial_state=decoder_input_states)
```

Combine decoder states.

```
decoder_states = [decoder_hidden, decoder_cell]
```

Feed decoder output to the trained decoder dense layer to predict the next character.

```
decoder_out = decoder_dense(decoder_out)
```

Inference model for decoder

Decoder inference model.

Prediction using the inference models

Pick an English sentence from the preprocessed English sentences.

```
inp_seq = tokenized_eng_sentences[10:11]
```

Get encoder internal states

```
states_val = encoder_model.predict(inp_seq)
```

• Define variable to save output, initialized to contain the start token.

```
target_seq = np.zeros((1, 1, len(french_vocab)))
target_seq[0, 0, fra_char_to_index_dict['\t']] = 1
```

Generate the first character

Get output from decoder inference model.

```
decoder_out, decoder_h, decoder_c = decoder_model_inf.predict(
x=[target_seq] + states_val)
```

• Find index of most probable next character.

```
max_val_index = np.argmax(decoder_out[0,-1,:])
```

Get actual character using index to character map.

```
sampled_suffix_char = idx_to_char[max_val_index]
```

Generate the second character

Update target sequence and state values.

```
target_seq = np.zeros((1, 1, len(french_vocab)))
target_seq[0, 0, max_val_index] = 1
states_val = [decoder_h, decoder_c]
```

Get output from decoder inference model.

```
decoder_out, decoder_h, decoder_c = decoder_model_inf.predict(
x=[target_seq] + states_val)
```

Find most probable next character.

```
max_val_index = np.argmax(decoder_out[0,-1,:])
sampled_fra_char = fra_idx_to_char[max_val_index]
```

Generate translated sentence

```
translated_sent = ''
stop_condition = False
while not stop_condition:
    # Get decoder output
    decoder_out, decoder_h, decoder_c
                        = decoder_model.predict(x=[target_seq] + states_val)
    max_val_index = np.argmax(decoder_out[0,-1,:])
    # Append the generated character.
    translated_sent += fra_index_to_char_dict[max_val_index]
    # Stop if end token is encountered or max length reached
    if ( (sampled_fra_char == '\n') or (len(translated_sent) > max_len_fra_sent)):
        stop_condition = True
    # Store the generated character for next iteration
    target_seq = np.zeros((1, 1, len(french_vocab)))
    target_seq[0, 0, max_val_index] = 1
    states_val = [decoder_h, decoder_c]
print(translated_sent)
```

Let's practice!

NATURAL LANGUAGE GENERATION IN PYTHON

