Lecture 13: Conic Duality

Niao He

16th April 2019

Niao He

Outline

Dual Cone

Definition **Properties** Self-dual Cone

Conic Duality

Dual CP Weak and Strong Duality **Optimality Conditions**

SOCP Duality

SDP Duality

Niao He

Dual Cone

Definition Properties Self-dual Con-

Conic Dual

Dual CP Weak and Strong Duality Optimality Conditions

SOCP Duality

SDP Duality

What's the dual to a conic program?

Recall the LP duality:

$$(LP) \quad \begin{array}{lll} \min & c^T x & \max & b^T y \\ \text{s.t.} & Ax \ge b & (LD) & \text{s.t.} & A^T y = c \\ & & y \ge 0 \end{array}$$

Now consider the conic program

$$\begin{array}{ll}
\text{min} & c^T x \\
(CP) & \text{s.t.} & Ax \ge_{\mathcal{K}} b
\end{array} (CD) ?$$

Q. Now that $Ax \ge_{\mathcal{K}} b \Rightarrow y^T (Ax) \ge y^T b$ for which y?

Niao He

Definition

Dual Cone

Definition. The dual cone of a nonempty cone K is

$$\mathcal{K}_* = \left\{ y : y^T x \ge 0, \forall x \in \mathcal{K} \right\}$$

Figure: Dual Cone

Remark. Dual cone is always a closed cone.

Niao He

INIAO HE

Definition

Properties

Self-dual C

Conic Duali

D I DD

Weak and Strong Duality

Optimality Condit

SOCP Dualit

SDP Dualit

Properties of Dual Cone

Proposition. Let K be a closed cone and K_* be its dual.

- (a) $(\mathcal{K}_*)_* = \mathcal{K}$
- (b) $\mathcal K$ is pointed iff $\mathcal K_*$ has non-empty interior
- (c) \mathcal{K} is a regular cone iff \mathcal{K}_* is a regular cone

Proof: Self-exercise.

Niao He

Self-dual Cone

Self-dual Cone

Definition. If $\mathcal{K} = \mathcal{K}_*$, we call it a self-dual cone.

Remark. Nonnegative orthant, second order cone, and positive semidefinite cone are all self-dual:

$$\blacktriangleright (\mathbb{R}^m_+)_* = \mathbb{R}^m_+$$

$$(L^n)_* = L^n$$

$$(S_+^n)_* = S_+^n$$

Niao He

Self-dual Cone

Self-dual Cone

Proposition. L^n is self-dual, i.e. $(L^n)^* = L^n$.

Proof

(i) $L^n \subset (L^n)^*$: Suppose $y \in L^n$, we show that $\forall x \in L^n$,

$$y^T x = y_1 x_1 + \ldots + y_n x_n \ge -\sqrt{\sum_{i=1}^{n-1} y_i^2} \sqrt{\sum_{i=1}^{n-1} x_i^2} + y_n x_n \ge 0$$

due to Cauchy-Schwarz inequality.

(ii) $(L^n)^* \subset L^n$: Suppose $y \in (L^n)^*$, we have $y^T x \ge 0, \forall x \in L^n$ If $(y_1, ..., y_{n-1}) = 0$, let $x = [0, ..., 0, 1] \in L^n$, we get

$$y^T x = y_n \ge 0, \Rightarrow y \in L^n.$$

Otherwise, let $x = [-y_1, ..., -y_{n-1}, \sqrt{\sum_{i=1}^{n-1} y_i^2}] \in L^n$,

$$y^T x = -\sum_{i=1}^{n-1} y_i^2 + y_n \sqrt{\sum_{i=1}^{n-1} y_i^2} \ge 0 \Rightarrow y \in L^n.$$

Niao He

Dual CP

Dual of Conic Program

Primal Conic Program:

min
$$c^T x$$

s.t. $Ax \ge_{\mathcal{K}} b$ (CP)

Dual Conic Program:

$$\text{max} \quad b^T y$$

$$\text{s.t.} \quad A^T y = c$$

$$\quad y \ge_{\mathcal{K}_*} 0$$

$$(CD)$$

Niao He

Dual Cone
Definition
Properties
Self-dual Cone

Conic Duali

Weak and Strong Duality Optimality Condition

SOCP Dualit

SDP Dualit

Conic Duality

Theorem.

- ▶ (Weak Conic Duality): $Opt(CD) \leq Opt(CP)$
- ► (Strong Conic Duality): If (CP) is bounded below and strictly feasible, i.e.,

$$\exists x_0, \text{ s.t. } Ax_0 >_{\mathcal{K}} b,$$

then (CD) is solvable and Opt(CD) = Opt(CP).

Corollary. If (CD) is bounded above and strictly feasible,

i.e.
$$\exists y >_{\mathcal{K}_*} 0$$
, s.t. $A^T y = c$

then (CP) is solvable and Opt(CD) = Opt(CP).

Niao He

Definition Properties

Properties Self-dual Cor

Conic Dualit

Dual CP

Weak and Strong Duality

SOCP Dualit

SDP Duality

Proof of Conic Duality

Denote $p^* = \operatorname{Opt}(CP)$. Sufficient to show that $\exists y^*$ feasible to (CD), s.t., $b^T y^* \ge p^*$. When c = 0, simply set $y^* = 0$. Now consider $c \ne 0$. Define

$$M = \left\{ Ax - b : c^{\mathsf{T}}x \leq p^* \right\}.$$

- ► $M \cap \operatorname{int}(\mathcal{K}) = \emptyset$ (why?)
- ▶ By separation theorem, $\exists y \neq 0$, s.t.

$$\sup_{z \in M} y^T z \le \inf_{z \in \text{int}(\mathcal{K})} y^T z$$

- ▶ It must hold that $y \in \mathcal{K}_*$ and $\sup_{x:c^T x \leq p^*} y^T (Ax b) \leq 0$.
- ▶ Hence, $\lambda c = A^T y$ for some $\lambda \geq 0$.
- ▶ By strictly feasibility of (*CP*), we further hanve $\lambda > 0$ (why?).
- ▶ Setting $y^* = \frac{y}{\lambda}$, we have $y^* \in \mathcal{K}_*, A^T y^* = c$ and $p^* \leq b^T y^*$.

Niao He

Dual Cone
Definition
Properties

Conic Dualit

Dual CP Weak and St

Optimality Conditions

SOCP Dualit

SOCP Dualit

SDP Duality

Optimality Conditions

Theorem. Suppose at least one of (CP) and (CD) is bounded and strictly feasible, then the feasible primal-dual pair (x^*, y^*) is a pair of optimal primal-dual solutions iff

- $(Zero duality gap) c^T x^* b^T y^* = 0$
- (Complementary slackness) $(Ax^* b)^T y^* = 0$

Observe that

$$c^{T}x^{*} - b^{T}y^{*} = \underbrace{c^{T}x^{*} - \mathsf{Opt}(\mathit{CP})}_{\geq 0}$$

$$+ \underbrace{\mathsf{Opt}(\mathit{CD}) - b^{T}y^{*}}_{\geq 0}$$

$$+ \underbrace{\mathsf{Opt}(\mathit{CP}) - \mathsf{Opt}(\mathit{CD})}_{> 0}$$

Niao He

Optimality Conditions

Discussions

- ▶ In the case of LP, strict feasibility is not required for strong duality nor solvability of the program.
- ▶ In general case of *CP*, strict feasibility is required.

Niao He

Optimality Conditions

Example

A conic problem can be strictly feasible and bounded, but NOT solvable.

$$\min_{\substack{x_1, x_2 \\ \text{s.t.}}} x_1 \\
\text{s.t.} \begin{bmatrix} x_1 - x_2 \\ 1 \\ x_1 + x_2 \end{bmatrix} \ge_{L^3} 0 \iff \min_{\substack{x_1, x_2 \\ \text{s.t.}}} x_1 \\
\text{s.t.} 4x_1x_2 \ge 1 \\
x_1 + x_2 > 0$$

Niao He

Optimality Conditions

Example

A conic problem can be solvable yet not strictly feasible, and the dual is infeasible.

$$\begin{array}{cccc} \min & x_2 & \max & 0 \\ \text{s.t.} & \begin{bmatrix} x_1 \\ x_2 \\ x_1 \end{bmatrix} \geq_{L^3} 0 & \iff & \text{s.t.} & \begin{bmatrix} \lambda_1 + \lambda_3 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ & \lambda \geq_{L^3} 0 \end{array}$$

Niao He

I Cone

Properties
Self-dual Con

Conic Duali

Dual CP Weak and Strong

Optimality Condit

SOCP Duality

SDP Duality

SOCP Duality

Primal SOCP:

$$\min_{x} c^{T}x$$
s.t. $||A_{i}x - b_{i}||_{2} \le d_{i}^{T}x - e_{i}, i = 1, ..., m$ (SOCP-P)

Dual SOCP:

$$\max_{\substack{\lambda \in \mathbb{R}^m \\ u_i \in \mathbb{R}^{n_i-1}, i=1,...,m}} \quad \sum_{i=1}^m b_i^\mathsf{T} u_i + e^\mathsf{T} \lambda$$
s.t.
$$\sum_{i=1}^m (A_i^\mathsf{T} u_i + d_i \lambda_i) = c \qquad (\mathsf{SOCP-D})$$

$$\|u_i\|_2 \le \lambda_i, \qquad i = 1,...,m$$

Niao He

Definition Properties

Properties Self-dual Con

Conic Duali

Conic Duan

Weak and Strong
Duality
Optimality Conditions

SOCP Duality

SDP Duality

SDP Duality

Primal SDP:

$$min c^T x$$

s.t.
$$Ax - B = \sum_{i=1}^{n} x_i A_i - B \succeq 0$$
 (SDP-P)

Dual SDP:

$$\max_{Y} \operatorname{tr}(BY)$$
s.t. $\operatorname{tr}(A_{i}Y) = c_{i}$ $i = 1, ..., n$ (SDP-D)
 $Y \succ 0$

Niao He

TVIGO II

Definition Properties

Self-dual Co

Conic Duali

Dual CP

Weak and Strong Duality

Optimality Condition

SDP Duality

SDP Optimality Conditions

min
$$c^T x$$
 max $tr(BY)$
s.t. $\sum_{i=1}^n x_i A_i - B \succeq 0$ s.t. $tr(A_i Y) = c_i, i = 1, ..., n$
 $Y \succ 0$

Remark. (x^*, Y^*) is optimal primal-dual pair iff

- 1. $\sum_{i=1}^{n} x_i^* A_i \succeq B$ (primal feasibility)
- 2. $Y^* \geq 0$, $\operatorname{tr}(A_i Y^*) = c_i$, i = 1, ..., m (dual feasibility)
- 3. $Y^*(\sum_{i=1}^n x_i^* A_i B) = 0$ (complementary slackness)

Niao He

SDP Duality

Application of SDP Duality

Example . Use SDP duality to show that for any $B \in S^n_+$:

$$\lambda_{\textit{max}}(\textit{B}) = \max_{x \in \mathbb{R}^n} \left\{ x^{\textit{T}} \textit{B} x : \|x\|_2 = 1 \right\}$$

$$\max_{X} \operatorname{tr}(Bxx^{T}) \qquad \max_{X} \operatorname{tr}(BX)$$
s.t.
$$\operatorname{tr}(xx^{T}) = 1 \qquad (P) \qquad \text{s.t.} \quad \operatorname{tr}(X) = 1 \qquad (P')$$

$$X \geqslant 0$$

(P)=(P'), why?
$$\min_{x} \lambda$$
s.t. $\lambda I - B \succeq 0$ (D)

Niao He

Definition Properties Self-dual Co

Conic Dualit

Dual CP Weak and Strong Duality Optimality Conditions

SOCP Dualit

SDP Duality

SDP Relaxation of Nonconvex QCQP

Quadratic constrained quadratic programming:

min
$$x^{T}Q_{0}x + 2q_{0}^{T}x + c_{0}$$

s.t. $x_{i}^{T}Q_{i}x_{i} + 2q_{i}^{T}x + c_{i} \le 0, \ 1 \le i \le m$ (QCQP)

Rank-1 reformulation:

Here
$$A_i = \begin{bmatrix} Q_i & q_i \\ q_i^T & c_i \end{bmatrix}, i = 0, 1, ..., m$$

Niao He

SDP Duality

SDP Relaxation of Nonconvex QCQP

SDP relaxation:

$$egin{array}{ll} \min_{X} & \operatorname{tr}(A_0X) \ & ext{s.t.} & \operatorname{tr}(A_iX) \leq 0, \ 1 \leq i \leq m \ & X \succeq 0 \ & X_{n+1,n+1} = 1 \end{array}$$

Dual of SDP relaxation:

$$\max_{\lambda \geq 0, t} t$$
s.t. $A_0 + \sum_i \lambda_i A_i - \begin{bmatrix} 0 & 0 \\ 0 & t \end{bmatrix} \succeq 0$ (SDP-d)

Remark. $Opt(SDP-d) \leq Opt(SDP-r) \leq Opt(QCQP)$

Niao He

SDP Duality

References

▶ Ben-Tal & Nemirovski (2013), Chapters 1 -3