	2019年04月21日
7	CSC411 Homework 7 a) F= 次記は(g(ばや(xi)), ti) + 急がW
	1 12 12
	$\frac{dF}{dw} = \frac{1}{12} \sum_{i=1}^{2} \frac{dL}{dg} \frac{dg}{dz} \frac{dz}{w} + \frac{2}{2} 2w^{T}$ $O = \frac{1}{12} \sum_{i=1}^{2} \frac{dL}{dg} \frac{dg}{dz} \frac{g(x)^{T}}{w^{T}} + \lambda w^{T}$ $Z = w^{T} \varphi(x) = w_{i} \varphi_{i}(x) + w_{0} \varphi_{0}(x)$ $W^{T} = -\frac{1}{12} \sum_{i=1}^{2} \frac{dL}{dg} \frac{dg}{dz} \varphi(x)^{T}$
	0 = 1 = dq dq y(x) + 2 WT Z-WT 9(x) = W, 4, (x) + + Wo 40
	$W^{T} = -\frac{1}{2N} \sum_{i=1}^{N} \frac{\partial^{2}}{\partial z^{2}} \varphi(x^{i})^{T}$
	Scalar
	Scalar
	Clearly the optimal weights is a linear combination
	of thirow space of $\psi = (-\psi(x')^T \psi(x')^T \psi(x')^T$
	b)
	$F = \frac{1}{2N} \ t - \Psi \Psi \nabla_{\alpha} \ ^{2} + \frac{\lambda}{2} (\alpha^{T} \Psi) (\Psi^{T} \alpha)$
	$= \frac{1}{2N} \left(\frac{1}{4} - \frac{1}{4} \alpha^{T} \left(\frac{1}{4} - \frac{1}{4} \alpha^{T} \right) \right)$
	$= \frac{1}{2} \omega \left(t^{T} - \alpha^{T} K^{T} \right) \left(t^{T} + K \alpha \right) + \frac{2}{3} \alpha^{T} K \alpha \qquad \text{all scalars. Can transpose te}$ $= \frac{1}{2} \omega \left(t^{T} t - t^{T} K \alpha - \alpha^{T} K^{T} t + \alpha^{T} K^{T} K \alpha \right) + \frac{2}{3} \alpha^{T} K \alpha$
	$= \frac{1}{2M} \left(\text{tt} - \text{tTK} \alpha - \text{tTK} \alpha + \alpha \text{TK} \text{TK} \alpha \right) + \frac{3}{2} \alpha \text{TK} \alpha$
	= in (tt - attka + atktka) + atkt
	= = = = = = = = = = = = = = = = = = =
	$= \frac{1}{2} \alpha^{T} A \alpha + b^{T} \alpha + \frac{1}{20} t^{T} t$
	A= 以KTK+2K , bT=- 点tTK => b=- ルドt
	Optimal cx: \(\alpha = - A^{-1} b \), A, b as above
	7,7,0 03 0000
9	

