Notas de Aula

Gustavo Henrique Silva Sarturi Matemática B - Em Ação gustavo.sarturi@ufpr.br

1 Matrizes

Definição 1.1. Uma matriz $A_{m \times n}$ é um arranjo retangular de $m \cdot n$ números reais (ou complexos) organizados em m linhas e n colunas.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

A i-ésima linha de A é:

$$[a_{i1} \ a_{i2} \ \cdots \ a_{in}]_{1\times n} \qquad i\in\mathbb{Z} \mid (1\leq i\leq m)$$

A j-ésima coluna de A é

$$\begin{bmatrix} a_{j1} \\ a_{j2} \\ \vdots \\ a_{jm} \end{bmatrix}_{m \times 1}$$

Dizemos que A é m por n, e denotamos por $m \times n$. Se m = n dizemos que A é uma **Matriz Quadrada de ordem** n e que $a_{11}, a_{22}, \cdots, a_{nn}$ formam a diagonal principal de A. Denotaremos por a_{ij} o elemento da i-ésima linha e j-ésima coluna de uma matriz. Frequentemente, denotaremos uma matriz A por:

$$A = [a_{ij}] = (a_{ij})$$

Exemplo:

$$\begin{bmatrix}
 1 & 1 & 0 \\
 2 & 0 & 1 \\
 3 & -1 & 2
 \end{bmatrix}_{3\times 3}$$

temos que $a_{11} = 1$, $a_{12} = 1$, $a_{13} = 0$, $a_{21} = 2$, $a_{22} = 0$, $a_{23} = 1$, $a_{31} = 3$, $a_{32} = -1$, $a_{33} = 2$. Os elementos a_{11} , a_{22} e a_{33} formam o conjunto da diagonal principal da matriz.

Definição 1.2. A diagonal principal de uma matriz quadrada é o conjunto dos elementos a_{ij} tais que i = j.

Definição 1.3. A diagonal secundária de uma matriz quadrada é o conjunto dos elementos a_{ij} tais que i+j=n+1

Em nosso exemplo, a_{13} , a_{22} a_{31} são os elementos do conjunto da diagonal secundária.

Definição 1.4. Uma matriz quadrada $A = [a_{ij}]$ em que todos os elementos fora da diagonal principal são nulos, isto é, $a_{ij} = 0$ para $i \neq j$ é denominada **matriz diagonal**. Em particular, se todos os elementos da diagonal forem l, i.e., $a_{ij} = 1$ para i = j, denominamos **matriz identidade**.

Definição 1.5. Uma matriz quadrada $A = [a_{ij}]$ em que todos os elementos da diagonal principal são iguais, isto \acute{e} , $a_{ij} = c$, $c \in \mathbb{R}$ para i = j e $a_{ij} = 0$ se $i \neq j$ é denominada **matriz escalar**.

$$A = \begin{bmatrix} 13 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2019 \end{bmatrix}_{3\times 3} \qquad B = I_d = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3\times 3} \qquad C = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}_{3\times 3}$$

No exemplo acima, A é uma matriz diagonal e B é uma matriz diagonal identidade, ou simplesmente, identidade. Pela relevância da matriz identidade, geralmente denotamos ela por I_d para indicar matriz identidade. As matrizes B e C são exemplos de matrizes escalares.

Definição 1.6. *Uma matriz* $A = [a_{ij}]$ *é dita Matriz Nula se todos os seus elementos são nulos, ou seja,* $a_{ij} = 0$ *para todo i e todo j.*

Definição 1.7. *Uma matriz* $B = [b_{ij}]$, *de dimensão* $m \times n$ *é dita ser oposta de uma matriz A = [a_{ij}]_m \times n se b_{ij} = -a_{ij} para todo (1 \le i \le m, 1 \le j \le n)*

Definição 1.8. Uma matriz $A = [a_{ij}]$ de dimensão $m \times n$ é dita ser simétrica se $A_{ij} = A_{ji}$ para todo $0 \le i \le m$, $1 \le i \le m$, $1 \le j \le n$.

Definição 1.9. Duas matrizes $A = [a_{ij}]$, $B = [b_{ij}]$, do tipo $m \times n$ são igual se $a_{ij} = b_{ij}$ para $1 \le i \le m$, $1 \le j \le n$. Isto é, se todos os elementos correspondentes são iguais.

Exemplo:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -3 & 4 \\ 0 & -4 & 5 \end{bmatrix}_{3\times 3} \qquad B = I_d = \begin{bmatrix} 1 & 2 & w \\ 2 & x & 4 \\ y & -4 & z \end{bmatrix}_{3\times 3}$$

são iguais se w = -1, x = -3, y = 0 e z = 5

1.1 Adição de Matrizes

Definição 1.10. Se $A = [a_{ij}]$ e $B = [b_{ij}]$ são matrizes $m \times n$, a soma de A e B gera uma matriz $C = [c_{ij}]$ definida por:

$$c_{ij} = a_{ij} + b_{ij} \qquad (1 \le i \le m, \ 1 \le j \le n)$$

Em outras palavras, bem no estilo matemática de bar, C é obtida somando-se os elementos correspondentes de A e de B.

Teorema 1.1. Seja $A = [a_{ij}]$, $B = [b_{ij}]$ e $C = [c_{ij}]$ de mesma dimensão, ou seja, todas do tipo $m \times n$. A soma de matrizes satisfazem as seguintes operações:

- 1. Associativa: A + B = B + A
- 2. *Comutativa:* A + (B + C) = (A + B) + C

- 3. Existe um elemento neutro, no caso, a matriz nula. A + [0] = A, onde [0] é a matriz nula de mesma dimensão de A.
- 4. Existe um elemento simétrico, no caso, denominamos **matriz oposta** à matriz A' tal que A + A' = 0.

A demonstração fica à cargo do leitor. Quaisquer dúvidas, consultar o autor das notas de aula, que no caso, sou eu.

1.2 Exercícios

1.2.1 Exercícios normais

- 1. Indicar explicitamente os elementos da matriz $A = (a_{ij})_{3\times 3}$ tal que $a_{ij} = i j$.
- 2. Construir as seguintes matrizes:

(a)
$$A = (a_{ij})_{3\times 3}$$
 tal que $a_{ij} = 1$ se $i = j$ e $a_{ij} = 0$ se $i \neq j$.

(b)
$$B = (b_{ij})_{3\times 3}$$
 tal que $b_{ij} = 1$ se $i + j = 4$ e $b_{ij} = 0$ se $i + j \neq 4$

3. Determinar *x* e *y* de modo que se tenha:

$$\begin{bmatrix} 2x & 3y \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} x+1 & 2y \\ 3 & y+4 \end{bmatrix}$$

4. Determinar *x*, *y*, *z* e *t* de modo que se tenha:

$$\begin{bmatrix} x^2 & 2x & y \\ 4 & 5 & t^2 \end{bmatrix} = \begin{bmatrix} x & x & 3 \\ z & 5t & t^2 \end{bmatrix}$$

5. Dadas as matrizes A, B, C abaixo:

$$A = \begin{bmatrix} 1 & 5 & 7 \\ 3 & 9 & 11 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix} \quad C = \begin{bmatrix} 0 & -1 & -5 \\ 1 & 4 & 7 \end{bmatrix}$$

calcule:

(a)
$$A+B+C$$

(b)
$$A - B + C$$

(c)
$$-A+B-C$$

1.2.2 Exercícios Teóricos

- 1. Mostre que a soma e a diferença de duas matrizes diagonais são uma matriz diagonal.
- 2. Mostre que a soma e a diferença de duas matrizes escalares são uma matriz escalar.

Referências