GESTÃO DE PROJETOS Gestão de Tempo Cronograma do projeto P2

Programação: CPM/Programação para frente (data cedo)

 Na programação para frente, parte-se do evento origem e determina-se a primeira data de início (PDI_i) do evento i, a qual representa o caminho de maior duração entre a origem do projeto e o evento i

PDI_i = máx C (origem, i)

Programação: CPM/Programação para trás (data tarde)

- Na Programação para trás, parte-se do caminho inverso, ou seja, do evento objetivo do projeto para determinar a última data para acabar (UDA_i) um evento i
- Assume-se que PDI_{objetivo} = UDA_{objetivo} e subtrai-se o caminho de maior duração entre o evento *i* e o evento objetivo

UDA_i=UDA_{obietivo} - máx C(i, objetivo)

Caminho Crítico

 Pertence ao caminho crítico a atividade_{ij} que possui a data cedo igual a data tarde, ou seja, PDI = UDA nos eventos i e j

 As atividades que pertencem ao caminho crítico não possuem folgas

Caminho Crítico

Programação para frente (data

Na programação para frente, parte-se do evento origem e determina-se a primeira data de início (PDI) do evento i, a qual representa o caminho de maior duração entre a origem do projeto e o evento i PDI, = máx C (origem, i)

Programação para trás (data tarde)

Assume-se que PDI_{objetivo} = UDA_{objetivo} e subtrai-se o caminho de maior duração entre o evento i e o evento objetivo

• PDI_i = máx C (origem, i)

Caminho Crítico

Caminho critico: C-J-E-G

Folgas

Programação mais cedo

FT: <u>F</u>olga <u>T</u>otal FT_A = UDA_j - (PDI_i + d_{ij}) FT_A = 18 - (0+11) = 7

FL: <u>F</u>olga <u>L</u>ivre FL_A = PDI_j - (PDI_i + d_{ij}) FL_A = 11 - (0+11) = 0

PDI: Primeira Data de Início

PDA: Primeira Data para Acabar

UDI: <u>U</u>ltima <u>D</u>ata de <u>I</u>nício

UDA: <u>U</u>ltima <u>D</u>ata para <u>A</u>cabar

Gestão de Tempo: Cronograma do Projeto

- Gráfico de Gantt
- CPM
- Pert
- Pert: exercício

PERT

Metodologia desenvolvida nos anos 50, pelo Escritório de Projetos Especiais da Marinha dos EUA.

- Visualização de cronograma como um fluxograma (Técnicas de programação em rede).
- Considera relações de precedência (tarefas dependentes deverão ser realizados pela ordem estabelecida pelas setas)
- Tempo das atividades é uma variável probabilística

PERT: tempos

No método PERT pode-se identificar três estimativas de tempo para a finalização de um projeto:

- Otimista (O): esta é a estimativa mínima de tempo para a realização de cada atividade, representando o menor tempo possível para concluir o projeto (cenário ideal, sem imprevistos ou atrasos).
- Mais provável (M): cenário mais realista. Prevê o tempo mais provável para a execução do projeto (cenário onde pode acontecer imprevistos).
- Pessimista (P): estimativa de tempo máximo possível para a conclusão de uma tarefa ou de todo o projeto (cenário no qual vários problemas acontecerem).

PERT: tempos

Variância:
$$s_{ij}^2 = [(P-O)/6]^2$$

O cálculo da estimativa PERT é feita combinando as três estimativas.

O tempo esperado é obtido pela seguinte fórmula:

$$TE = (O + 4M + P) / 6$$

média ponderada com peso quatro para a estimativa mais provável

Variância: [(P-O)/6]²

Variância do projeto: somatório da variância das atividades do caminho crítico.

A previsão de tempo resultante também é conhecida como "a estimativa mais provável" ou "a estimativa mais esperada".

O PERT utiliza a probabilidade para estimar a duração.

PERT x CPM

Os métodos PERT e CPM se diferem no tratamento das estimativas e na atribuição do tempo para cada atividade.

- PERT: duração das atividades é determinada de forma probabilística
 - utilizado para aperfeiçoar as estimativas de tempo das atividades considerando as incertezas e riscos.
 - três estimativas para cada atividade, baseados no conhecimento e experiência do gestor.

- CPM: forma determinística

- o caminho crítico consiste na rota mais longa desde o início até o final do projeto e, consequentemente, qualquer atraso no caminho crítico atrasa o projeto como um todo.
- possibilita ao gestor mais controle dos projetos, deixando evidente quais são as atividades cruciais que não podem ser atrasadas.

Atrodal : Duração (dias)

Atividade	Precedência	Eo	Em	Ep	De	ص2	De	Var
A	-	2	2,5	6	3e - (a-41e-4) -18-3	. (5), (3),	3	0,444
\$	Α	1	À	7	54 - (<u>1.44-3)</u> = 44 - 4	- (<u>c</u>)! 1	4	1
С	А	2	3	4	(x - (x - 45 - 4) - 3 - 3	· (\$), · (\$),	3	0,111
P	A	1	2	3	DE-47+240) - 12 -9	" (Z) " 0,""	2	0,111
E	D	1	4	7	De-(1 + 4 + 4) - 52 - 4	(3-1) t	4	1
F	Ð	2	3	4	De+(2+9 5+9) = 25+3	· (\$)'. (\$)'.	3	0,111
6	C, E, F	1	ચ	3	De. (14 4.54 8) - 12 - 2	* (*)* *0,***	2	0,111
H	В	2	5	14	34 - (42 4 5 1 14) - 36 + 6	$\frac{5^{2} \cdot \left(\frac{14-2}{4}\right)^{2}}{\left(\frac{12}{4}\right)^{4}, \ \Delta^{4}}$ = 4	6	4
	g		·	in .				

PERT

Atividade	Precedência	E(0)	E(M)	E(P)	
А	-	1	2,5	7	
В	-	1	3	11	
С	А	5	7	15	
D	В	2	4	12	
E	C, D	3	4,5	9	
F	А	9	14	25	
G	E, F	1	1	1	
Н	C, D	4	11	12	
I	В	1	2	9	
J	G, H, I	1,5	2,5	12,5	

Exercício Considere um projeto composto pelas seguintes atividades:

Calcule a estimativa esperada e variância de cada atividade. Após, a partir dos valores obtidos da estimativa esperada de cada atividade, desenhe a rede de atividades e obtenha os valores referentes à programação para frente (data cedo), para trás (data tarde), duração esperada do projeto e variância do projeto.