ON LOGICALITY

OSLO-GÖTEBORG WORKSHOP

Fredrik Engström, Göteborg Joint work with Denis Bonnay, Paris

December 1, 2012

INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY

LOGICALITY AND VALIDITY

Logic considers the form of sentences and arguments. To determine this form we need to know what the logical constants are.

Which of the symbols/expressions should be considered logical?

Once a demarcation is made Bolzano's analysis of logical consequence makes sense:

Bolzano

An argument is **logically valid** if no reinterpretation/substitution of its non-logical expressions makes the premises true and the conclusion false.

 INTRODUCTION
 GALOIS CONNECTIONS
 WITH EQUALITY
 WITHOUT EQUALITY

 00●000
 000
 000
 000000000

QUANTIFIERS

Definition Lindström (1966); Mostowski (1957)

- ▶ A (global) generalized quantifier Q of type $\langle n_1, \ldots, n_k \rangle$ is a (class) of structures in the language $\{R_1, \ldots, R_k\}$ where R_i is of arity n_i .
- $M \vDash_s Q\bar{x}_1, \dots, \bar{x}_k(\varphi_1, \dots, \varphi_k) \text{ iff } (M, \varphi_1^{M,s}, \dots, \varphi_k^{M,s}) \in Q.$

Examples:

- $\blacktriangleright \ \exists = \{ (M, A) \mid A \subseteq M, A \neq \emptyset \}$
- $\blacktriangleright \ \forall = \{ (M, M) \mid \top \}$
- $Q_0 = \{ (M, A) \mid A \subseteq M, |A| \ge \aleph_0 \}$
- $\quad \blacksquare \ I = \{ \ (M,A,B) \ | \ \ |A| = |B| \ \}$

A quantifier Q is definable in the logic $\mathcal L$ if there is φ of $\mathcal L(\mathsf{R}_1,\dots,\mathsf{R}_k),$ such that

 $(M, R_1, \ldots, R_k) \vDash \varphi \text{ iff } (M, R_1, \ldots, R_k) \in Q.$

 INTRODUCTION
 GALOIS CONNECTIONS
 WITH EQUALITY
 WITHOUT EQUALITY

 0000●0
 000
 000
 000

Alternative notions of invariance I

DEFINITION

A (global) quantifier Q is invariant under preimages of surjections if for every $h: M \to N$ surjection and for all $R \subseteq N^k$: $h^{-1}(R) \in Q_M$ iff $R \in Q_N$.

THEOREM (FEFERMAN)

Quantifiers of type $\langle 1,\dots,1\rangle$ are invariant under preimages of surjections iff they are definable in $\mathcal{L}^-_{\omega\omega}$.

Feferman's (OLD?) thesis -99

A quantifier is a logical constant iff it can de defined (in typed λ -calculus) from equality and monadic quantifiers invariant under preimages of surjections.

•000 000 000 000 00000000

Introduction

Ryle (1954)

An operator (function/predicate) is a logical constant if it is topic neutral.

Mautner (1946); Tarski (1986)

A MODEL THEORETIC APPROACH

Logic is the the study of the invariants under the most general transformations.

Compare with Klein's Erlangen program for classifying geometries in terms of invariance.

DEFINITION

A local quantifier on the domain M is a set of the form

$$Q_M = \{ (R_1, \dots, R_k) \mid (M, R_1, \dots, R_k) \in Q \}$$

for some generalized quantifier \mathcal{Q} .

Tarski's thesis

A (local) quantifier on a domain M is a logical constant iff it is invariant under all **permutations** of M.

Mostowski's thesis

A quantifier Q is a logical constant iff it is invariant under all bijections (across domains).

Theorem (McGee (1996); Krasner (1938))

Q is bijection invariant iff for each κ there is a formula in $\mathscr{L}_{\infty\infty}$ defining $Q_{\kappa}.$

INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY

OOOOO OOO OOOOOOOO

ALTERNATIVE NOTIONS OF INVARIANCE II

 $h: M \rightarrow N$ can be "lifted" by: $h(Q_M) = \{ h(R) \mid R \in Q_M \}$.

▶ Invariance under surjections: $h(Q_M) = Q_N$ for all surjective h.

Theorem (Casanovas, 2007)

Quantifiers are invariant under surjections iff they are definable in a certain fragment of $\mathcal{L}_{\omega\omega}$.

► Invariance under back-and-forth equivalence: If (M, A) and (N, B) are back-and-forth equivalent, then A ∈ Q_M iff B ∈ Q_N.

Theorem (Barwise, 1973)

A local quantifier Q on M is back-and-forth invariant iff Q is definable in $\mathcal{L}_{\Sigma^{(Q)}}.$

INTRODUCTION GALOS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY INTRODUCTION GALOS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY W

GALOIS CONNECTIONS

INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY 0000000 000 0000000000

With equality

Introduction Galois connections With equality Without equality 000000 000 0●0 000000000

Proof

Aut(Inv(G)) = G: Let \leq well-order Ω , and $Q = \{ g(\leq) \mid g \in G \}$ of type $\langle 2 \rangle$. If $h \in \text{Aut}(\text{Inv}(G))$ then $h(\leq) \in Q$ and so there is $g \in G$ such that $h(\leq) = g(\leq)$, implying h = g.

Inv(Aut(q)) is the set of Qs definable in $\mathscr{L}_{\infty\infty}(q)$: We assume all quantifiers of type $\langle 1 \rangle$ and $\Omega = \omega$. $Q' \in \text{Inv}(\text{Aut}(q))$ is defined by

$$\forall x_0, x_1, \dots \left[\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \bigvee_i y = x_i \land \right.$$

$$\bigwedge_{Q \in q} \left(\left(\bigwedge_{A \in Q} Qy \bigvee_{i \in A} y = x_i \right) \land \left(\bigwedge_{A \notin Q} \neg Qy \bigvee_{i \in A} y = x_i \right) \right) \rightarrow$$

$$\bigvee_{A \in Q'} \left(\bigwedge_{i \in A} Px_i \land \bigwedge_{i \notin A} \neg Px_i \right) \right]$$

Invariance

- Klein's Erlangen Program: Invariance as the defining property for geometries.
- ► Tarski's thesis: Extend to logics; use invariance as defining property for logics and logical operators. (Tarski, 1986)
- ► Idea: Extend the correspondence of invariance and operators to a (antitone) Galois connection: Inv maps invariance criteria to sets of operators, and Aut maps sets of operators to invariance critera such that

$$q \subseteq \operatorname{Inv}(G)$$
 iff $G \subseteq \operatorname{Aut}(q)$.

▶ Also, we want Inv(Aut(q)) to correspond to definability in $\mathscr{L}(q)$ for some logic $\mathscr{L}.$

Motivation

 Galois connection results give stronger correspondences between logics and invariance criteria: They are stable under adding operations.

Feferman's Theorem (Feferman, 1999)

Monadic quantifiers are invariant under preimages of surjections iff they are definable in $\mathcal{L}_{\omega\omega}^-$.

- Feferman leaves the general question for arbitrary quantifiers open.
- ▶ Our result on the equality-free version of $\mathscr{L}_{\infty\infty}$ is a variant on Feferman's theorem, generalized to a full Galois connection.

TRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY

00000 000 ●00 000000000

A GALOIS CONNECTION

- $\blacktriangleright\,$ Fix a domain $\Omega.$ Quantifier means local quantifier on $\Omega.$
- ▶ q is a set of quantifiers.
- ▶ G subgroup of the full symmetric group $\operatorname{Sym}(\Omega)$.

DEFINITION

► Let $\operatorname{Aut}(q)$ be the group of all permutations of Ω fixing all quantifiers in q: $\operatorname{Aut}(q) = \{ g \in \operatorname{Sym}(\Omega) \mid g(Q) = Q \text{ for all } Q \in q \}.$

Aut(q) = { $g \in Sym(\Omega)$ | g(Q) = Q for all $Q \in q$ • Let Inv(G) be the set of quantifiers fixed by G:

Inv(G) be the set of quantitiers fixed by G: $Inv(G) = \{ Q \mid g(Q) = Q \text{ for all } g \in G \}.$

Theorem (Krasner, 1938, 1950), (B/E)

- $\blacktriangleright \operatorname{Aut}(\operatorname{Inv}(G)) = G$
- $\,\blacktriangleright\, {\rm Inv}({\rm Aut}(q))$ is the set of quantifiers definable in $\mathscr{L}_{\infty\infty}(q)$

INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY

000000 000 000 000 000000000

Тнеогем

If $\operatorname{Inv}_m(G)$ are all monadic quantifiers invariant under G then there is a subgroup G such that $\operatorname{Aut}(\operatorname{Inv}_m(G))\supsetneq G$.

Proof. Let G be the group of piecewise monotone permutations on ω : $g \in S_{\omega}$ is piecewise monotone if there exists partitions $A_1 \cup \ldots \cup A_k = B_1 \cup \ldots \cup B_k = \omega$ such that $g|A_i$ is the unique increasing function $A_i \to B_i$.

 $\operatorname{Aut}(\operatorname{Inv}_m(G))$ is closed in the topology generated by

$$U_{\bar{A},\bar{B}} = \{ h \in \operatorname{Sym}(\omega) \mid h(A_i) = B_i \text{ all } i < k \}$$

as basic open sets, where $\bar{A}=A_0,\dots,A_{k-1}$ and $\bar{B}=B_0,\dots,B_{k-1}$ are subsets of $\omega.$

The closure of G is $Sym(\omega)$.

INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY OF CONTROL OF CON

WITHOUT EQUALITY

000000 000 000 **00000000**

SIMILARITY RELATIONS

- $\blacktriangleright \ \pi \text{ is a similarity relation on } \Omega \text{ if } \mathrm{dom}(\pi) = \mathrm{rng}(\pi) = \Omega.$
- \blacktriangleright Every surjection is a similarity relation.
- For every similarity π there are surjections $f\colon\Omega\to\Omega'$ such that $\pi=f\circ g^{-1}.$
- ► $R \pi S$ if $\forall \bar{a}, \bar{b} \in \Omega$ such that $\bar{a} \pi \bar{b}$: $\bar{a} \in R$ iff $\bar{b} \in S$.
- ► R is invariant under π if $R \pi R$.

NTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY
000000 000 000 000000000

THE MAPPINGS

- ▶ A set of operations q generates an equivalence relation \sim_q , the finest $\mathcal{L}_{\infty\infty}^-(q)$ -definable equivalence relation.
- $\blacktriangleright\,$ Dually, a set of similarities Π gives us an equivalence relation by the following condition:

 $a \approx_{\Pi} b$ if for all $\bar{c} \in \Omega^k$ there is $\pi \in \Pi$ such that $a, \bar{c} \pi b, \bar{c}$.

The mappings for the Galois connection can now be defined:

- ▶ $\operatorname{Sim}(q)$ is the set of similarities π such that all relations and quantifiers in q are \sim_q -invariant under π .
- ▶ $\operatorname{Inv}(\Pi)$ is the set of all relations R and quantifiers Q on Ω which are \approx_{Π} -invariant under all similarities in Π .

More definitions

- Π is a monoid with involution if it is closed under composition and taking converses.
- ▶ Π is full if it includes \approx_{Π} , is a monoid with involution, and closed under taking subsimilarities, i.e., such that if $\pi \in \Pi$ and $\pi' \subseteq \pi$ is a similarity then $\pi' \in \Pi$.

LEMMA

- $ightharpoonup \sim_q = pprox_{\operatorname{Sim}(q)}$ and
- $\blacktriangleright \ \ \text{If Π is full then} \sim_{\operatorname{Inv}(\Pi)} = \approx_{\Pi}.$

THEOREM

Let Π be a set of similarity relations, then $Sim(Inv(\Pi)) \text{ is the smallest full monoid including } \Pi.$

Plan

- ▶ We want a Galois connection in which the closure operator on sets of quantifiers is definability in $\mathcal{L}_{\infty\infty}^-$.
- ▶ Idea: Work in Ω/\sim , where \sim is the finest definable equivalence relation and apply the previous result.

- ▶ **Problem**: Can we define \sim without knowing the language?
- ► Solution: Yes... sometimes.

TRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY
DOOOO 000 000 000000000

Invariance

Invariance for quantifiers is parametrized by an equivalence relation:

DEFINITION

A quantifier Q on Ω is \sim -invariant under π if for all relations $R_1, \ldots, R_k, S_1, \ldots, S_k$ on Ω invariant under \sim such that $R_i \pi S_i$ we have $\langle R_1, \ldots, R_k \rangle \in Q$ iff $\langle S_1, \ldots, S_k \rangle \in Q$.

NTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY
000000 000 000 0000 00000000

FIRST HALF OF THE CORRESPONDENCE

Let the **blow-up** \hat{Q} of Q relative to \sim be $\{\hat{R} \mid R \in Q\}$, where

$$\hat{R} = \{ \langle a_1, \ldots, a_k \rangle \mid \exists \langle b_1, \ldots, b_k \rangle \in R, a_1 \sim b_1, \ldots a_k \sim b_k \}.$$

THEOREM

Let q be a set of operators then

- 1. $Q \in \text{Inv}(\text{Sim}(q))$ iff \hat{Q} is definable in $\mathcal{L}_{\infty\infty}^-(q)$.
- 2. $R \in \operatorname{Inv}(\operatorname{Sim}(q))$ iff R is definable in $\mathscr{L}_{\infty\infty}^-(q)$.

INTRODUCTION GALOIS CONNECTIONS WITH EQUALITY WITHOUT EQUALITY

000000 000 000 000 000000€00

Summary

 $\left\{ \begin{array}{ll} G \subseteq \operatorname{Sym}(\Omega) \; \right\} & \rightleftarrows & \left\{ \; q \; \text{set of quantifiers on } \Omega \; \right\} \\ \text{least group} & \text{definability in } \mathscr{L}_{\infty\infty} \\ \end{array}$

 $\left\{ \begin{array}{ll} \Pi \text{ set of similarities on } \Omega \, \right\} & \rightleftarrows & \left\{ \begin{array}{ll} q \text{ set of quantifiers on } \Omega \, \right\} \\ & \text{least full monoid} & & \hat{} \text{-definability in } \mathcal{L}_{\infty\infty}^- \end{array}$

Introduction 000000	Galois connections 000	With equality 000	WITHOUT EQUALITY 0000000	Introduction 000000	Galois connections 000	With equality 000	WITHOUT EQUALITY 0000000●	
Thank you for your attention.				J. Barwise. E logic. Stu 1973. E. Casanova invariane Logic, 366 Solomon Fel logicism. Logic, 400 M. Krasner. théorie de de théori 1950. Marc Krasne notion de mathéma		Per Lindström. First-order with generalized quanti 165-171, 1966. FI Mautner. An extension of program: logic as invari American Journal of M 345-384, 1946. Vann McGee. Logical oper. Philosophical Logic, 25. A. Mostowski. On a genera quantifiers. Fundament 44:12-36, 1957. G. Ryle. Dilemmas: the Ta 1953, volume 12. Camb. Press, 1954. Alfred Tarski. What are logical control of the press, 1954.	er Lindström. First-order predicate logic with generalized quantifiers. Theoria, 32: 165–171, 1966. I Mautner. An extension of klein's erlanger program: logic as invariant-theory. American Journal of Mathematics, pages 345–384, 1946. 'ann McGee. Logical operations. Journal of Philosophical Logic, 25:567–580, 1996. b. Mostowski. On a generalization of quantifiers. Fundamenta mathematicae, 44:12–36, 1957. c. Ryle. Dilemmas: the Tarner lectures 1953, volume 12. Cambridge University Press, 1954. Idfred Tarski. What are logical notions? History and Philosophy of Logic, 7:	