

INTERNAL AUDIT ENERGI PLTGU GRESIK TAHUN 2015

Pelaksana Audit:

Tim Manajemen Energi

UNIT PEMBANGKITAN GRESIK
PT. PEMBANGKIT JAWA BALI

LEMBAR PENGESAHAN

GRESIK, 30 Juli 2015

Diperiksa Oleh:

1 Putu Gede Sudarsana

Koordinator Bidang Operasi

Disahkan Oleh:

Hari Susanto

Manajer Energi

4. AUDIT ENERGI

A. INTERNAL AUDIT ENERGI

Audit energi secara internal dilakukan oleh Tim Manajemen Energi PT PJB UP Gresik untuk mengetahui unjuk kerja (performance) dari beberapa peralatan yang mempengaruhi efisiensi Plant secara keseluruhan serta mengidentifikasi peralatan – peralatan yang menjadi penyebab meningkatnya kosumsi energi yang dibutuhkan untuk memproduksi listrik per kWh. Jenis audit energy adalah sebagai berikut

- 1. Performance test GT
- 2. Performance ST dan blok

B. Laporan Audit Energi

1. Tujuan Audit Energi

Tujuan dilakukan audit energi internal adalah sebagai berikut

- Mengukur effisiensi plant secara keseluruhan
- Mengukur kosumsi energy yang dibutuhkan untuk memproduksi listrik per kWh
- Mengetahui peralatan –peralatan yang menjadi penyebab peningkatan konsumsi energi
- Menentukan langkah langkah yang akan di tempuh dalam rangka peningkatan effisiensi energi

2. Deskripsi Fasilitas yang Di audit

Fasilitas/peralatan yang di audit adalah seluruh fasilitas yang berhubungan langsung dengan produksi energy listrik, mulai dari bahan bakar yang digunakan untuk memutar Gas Turbin dan gas buangnya di gunakan untuk memanaskan HRSG sampai dengan terbentuknya uap/steam untuk memutar Steam turbin serta Generator listrik. Deskripsi fasilitas tersebut diantaranya sebagai berikut:

Gas turbine

Gas Turbine adalah suatu penggerak yang memanfaatkan gas sebagai fluida kerjanya. Turbin gas pada kondisi ideal memanfaatkan gas bertekanan yang didapat dari udara atmosfir yang dimampatkan dengan menggunakan *kompresor* pada kondisi *isentropik* (*reversibel adiabatik/entropi* konstan). Udara yang bertekanan tinggi ini kemudian dibakar dalam ruang bakar pada tekanan tetap. Dari ruang bakar, gas yang sudah dibakar bersama dengan bahan bakar diekspansikan ke turbin sebagai penggerak beban generator.

HRSG

HRSG adalah tempat terjadinya pemanasan air hingga menjadi uap *super heat*. Perbedaannya pada boiler terjadi proses pembakaran, sementara di HRSG tidak terjadi pembakaran. Secara garis besar HRSG terdiri dari 2 tingkat, sesuai dengan uap yang dihasilkan yaitu *High Pressure* (HP) dan *Low Pressure* (LP). Kedua uap tersebut dipisahkan dengan peralatan yang berbeda, sesuai dengan gas buang yang dilaluinya. Di bagian bawah adalah peralatan HP dan dilalui gas buang paling panas. Sementara peralatan LP terletak di bagian atas.

• Steam Turbine

Steam turbine adalah suatu mesin yang berfungsi untuk merubah energi panas (thermis) menjadu energi mekanis (energi putar).Kontruksinya terdiri rumah turbin (Casing turbin) atau stator (statis) kemudian rotor (bagian yang berputar).Pada rotor turbin ditempatkan sudu – sudu jalan yang disusun sedemikian rupa melingkar dirotor dan berjajar di sepanjang rotor.Sudu yang berputar ini ditempatkan secara simetris disela – sela sudu tetap (berselang – seling).Energi panas dalam uap mula-mula diubah menjadi energi kinetis oleh nozzle.Selanjutnya uap dengan kecepatan tinggi ini uap masuk ke turbi membentur / mendorong sudu putar pada turbin.Uap setelah keluar dari sudu putar diterima oleh sudu putar pada turbin yang akhirnya menghasilkan tenaga putar pada turbin.Uap setelah keluar dari sudu putar diterima oleh sudu tetap kemudian dipantulkan lagi ke sudu putar, begitu sudu putar diterima sudu tetap kemudian dipantulkan lagi ke sudu putar, begitu seterusnya hingga keluar melalui exhaust turbin menuju kendensor. Jadi energi kinetic diubah menjadi energi mekanis terjadi pada sudu – sudu putar turbin

Generator

Generator berfungsi untuk mengubah tenaga mekanik Turbin menjadi energy listrik dengan sistem eksitasi

Sedangkan parameter – parameter peralatan di dalam sistem *Gas turbine*, HRSG, *Steam Turbine*, dan *Generator* yang diaudit menggunakan data – data setelah *Overhaul* taun sebelumnya sebagau data refensi, sehingga audit dilaksanakan dengan membandingkan data – data hasil pengukuran sebelum *Overhaul* dengan data – data referensi untuk diketahui gap yang terjadi pada masing – masing parameter. Data referensi yang digunakan sebagai berikut

3. Deskripsi Status Energi Saat Ini

3.1 Berikut ini adalah hasil perhitungan audit energi untuk mengetahui kodisi energi PLTGU Gresik setelah dan sebelum OH untuk GT1.1

A. Performance test

Prameter	Satuan	Perform	ance Test
		Sesudah OH CI	Sebelum OH TI
Tanggal test		14-May-14	5-May-15
#1GT ACTLD	MW	106.60	105.47
#1GT FUEL GAS FLOW	kNm³/h	32.50	32.20
#1GT GEN POWER FACTOR		0.90	0.90
#1GT GEN FREQUENCY	hz	50.03	50.09
#1GT GEN COLD AIR TEMP TE	°C	41.53	41.73
#1GT GEN COLD AIR TEMP EE	°C	41.53	41.80
#1GT GEN HOT AIR TEMP	°C	67.40	68.47
380V GT2 SWGR INC WATT	kW	58.67	74.50
#1GT COMP INLET TEMP	°C	32.07	29.93
#1GT COMB SHELL PRESS	kg/cm ² g	12.50	12.60
#1GT COMP OUT A-TEMP	°C	412.67	415.00
#1GT ROTORC/A TE(L)	°C	196.10	198.23
#1GT NO.2 ROW D/C-T(L)	°C	371.87	377.43
#1GT NO.3 ROW D/C-T(L)	°C	393.27	394.43
#1GT NO.4 ROW D/C-T(L)	°C	382.40	386.97
#1GT BP AVG TEMP	°C	544.97	541.67
#1GT EXH GAS AVG TEMP	°C	524.70	523.00
#1HRSG HP FEED WATER FLOW	t/h	157.30	162.43
#1HRSG HP CIRC WATER F(1)	t/h	393.20	402.57
#1HRSG HP CIRC WATER TEMP	°C	283.20	286.67
#1HRSG LP FEED WATER FLOW	t/h	52.53	49.33
#1HRSG LP CIRC WATER F(1)	t/h	88.03	89.60
#1HRSG LP CIRC WATER TEMP	°C	175.03	176.00
#1 GAS TEMP INLET BOILER	°C	517.53	518.37
#1 GAS TEMP IN SUPHTR 1	°C	502.57	504.10
#1 GAS TEMP IN HP EVAP	°C	442.30	443.43
#1 GAS TEMP IN HP ECONO 2	°C	294.30	301.20
#1 GAS TEMP IN LP EVAP	°C	232.77	228.53
#1 GAS TEMP IN LP ECONO	°C	176.50	175.97
#1 GAS TEMP IN COND PHR	°C	160.77	161.07
#1 GAS TEMP OUT BOILER	°C	124.03	126.53
#1HRSG HP SH STEAM FLOW	t/h	171.60	160.33
#1HRSG HP SH STEAM TEMP	°C	497.50	496.33

#1HRSG HP STEAM PRESS	kg/cm ²	64.87	70.50
#1HRSG HP SH-2 IN TEMP	°C	463.53	463.67
#1HRSG HP SH-1 OUT TEMP	°C	464.00	464.00
#1HRSG HP DRUM PRESS	kg/cm ²	67.33	72.73
#1 HP FW TEMP OUT ECONO 1	°C	166.93	166.37
#1HRSG HP ECO OUTLET TEMP	°C	280.77	280.00
#1HRSG LP STEAM FLOW	t/h	51.40	48.33
#1HRSG LP STEAM TEMP	°C	161.97	162.00
#1HRSG LP STEAM PRESS	kg/cm ²	5.30	5.20
#1HRSG LP DRUM PRESS	kg/cm ²	5.60	5.59
#1 LP FW TEMP OUT ECONO	°C	161.97	161.50
#1 LP FW PRESS OUT ECONO	kg/cm ²	14.07	14.30
#1GT FUEL OIL FLOW	m³/h	0.00	
HP BFP DISCH HEAD TEMP	°C	136.53	138.53
HP BFP DISCH HEAD PRESS	kg/cm ²	109.27	105.53
LP BFP DISCH HEAD TEMP	°C	133.57	136.10
LP BFP DISCH HEAD PRESS	kg/cm ²	16.10	16.27
CEP OUTLET PRESS	kg/cm ²	13.93	13.20
GND COND OUT WATER TEMP	°C	44.20	46.77
DEA INLET WATER TEMP	°C	128.37	125.27
COND WATER FLOW	t/h	614.33	659.33
#1GT MPCSO(F.G)	%		
#1GT MTCSO(F.G)	%	65.80	67.53
#1GT GEN ACT. EXC. VOLTAGE	V	262.4	278.27
#1GT GEN ACT. EXC. CURRENT	А	646.33	679.13

Gambar 3.1.1 Data Perhitungan Performance Test GT 1.1 2015

			NI	LAI PERFO	RMANCE T	EST	
PARAMETER	SATUAN						
PARAMETER	SAIUAN	Performan	ce Test Setelal	h CI GT 1.1	Performance	e Test Sebelu	ım MI GT 1.1
		50 MW	50 MW 100 MW Maks.			100 MW	Maks.
Tanggal Test			14-May-14	14-May-14	5-May-15	5-May-15	5-May-15
Power Product	MW		100.20	106.60	50.20	100.03	105.47
Corrected Power	MW		100.23	106.97	49.04	98.51	104.98
Fuel Gas	kNm ³ /h		30.87	32.50	19.63	30.77	32.20
Fuel HSD	m³/h						-
HHV Fuel Gas	BTU/SCF		1,074.03	1,074.03	1,096.36	1,096.36	1,096.36
HHV HSD	kca1/kg						-
SG	kg/m ³						-
Ambient Temperature	°C		31.00	31.50	27.00	29.00	31.00
Compressor Outlet Temp.	°C		407.77	412.67	360.33	405.00	415.00
Compressor Out Press.	kg/cm²		12.30	12.50	9.17	12.30	12.60
Compressor Effisiensi	%		86.97	87.01	82.55	85.77	85.74
Blade Path Average Temp.	°C		527.20	544.97	446.00	525.00	541.67
Exhaust Gas Average Temp	°C		508.60	524.70	446.33	505.00	523.00
GT Heat Rate	kca1/kWh		3,111.97	3,079.92	4,033.13	3,171.67	3,148.42
GT Corrected Heat Rate	kca1/kWh		3,100.27	3,065.31	4,045.25	3,181.50	3,152.29
GT Effisiensi	%		27.64	27.92	21.32	27.12	27.32
GT Corrected Efisiensi	%		27.74	28.06	21.26	27.03	27.28

Gambar 3.1.2 Hasil Performance Test GT1.1 2015

B. Heat Rate Gap Analysis

Heat rate analysis adalah alat yang digunakan untuk membandingkan heat rate reference dengan heat rate saat ini. Semakin besar gap, berarti semakin besar pula degradasi effisiensi dari power plant tersebut. Sebagai data heat rate reference digunakan data sesudah Overhaul dan data heat rate saat ini. Dalam menganalisa kontribusi tiap equipment dalam kenaikan heat rate, untuk memetakannya maka dibuatlah pareto heat rate. Dengan menggunakan data hasil performance test dihasilkan pareto heat rate sebagai berikut:

Date		dd/mm/yyyy	05/14/14	05/05/15
Time		hh:mm		8:50
				perf periodik/sblm MI
Fuel Oil LHV	(Typical Value)	kcal/kg	10680	10680
Fuel Oil Density	(Typical Value)	kg/m3	837	837
Fuel Oil %Wt Sulphur	(Typical Value)	%wt	0.37	0.37
Fuel gas HHV (BTU/SCF)				
GT / HRSG #2				
GT Generator Output MW	G1LA264	MW	100.2	100.1
Fuel Oil Temp	1XBN20CT02QP	С	26	24.9
Fuel Oil Flow	1XBN20CF01QP	m3/h	30.87	30.7
IAF Press Differential	(Local Reading)	mm H2O	50	
GT Comp Inlet Temp	1MBL10CT01QP	С	20.00	27.8
GT Comp Discharge Temp	1MBH10CT01QP	С	30.00 407.77	406
Rotor Air Cooler (Left)	1MBA10CT02QP	С		193.8

Temp			194.13	
Rotor Air Cooler (Right) Temp	1MBA10CT01QP	С	194.13	190.8
GT Combustor Pressure	G1LA263	kg/cm2 g	12.30	12.4
GT Exhaust Duct Press	(Local Reading)	mm H2O	320	
GT Exhaust Temp (Avg)	G1LA133	С	505.00	511
HP Steam Prod T/H	1LBA20CH01QB	tonm/hr	165.10	160
HP FW Flow T/H	1LAB20CH01QB	tonm/hr	143.43	148.4
HPSH2 Outlet Temp	1LBA20CT02QP	С	484.63	483
HRSG HP Steam Press	1LBA20CP02QB	kg/cm2 g	64.50	64.8
HP Desuperheater Outlet Temp	1HAH2OCT02QP	С	454.30	454
HPSH1 Outlet Temp	1HAH2OCT01QP	С	454.93	454
HP Drum Operating Pressure	1HAD20CP02QB	kg/cm2 g	66.60	67.4
HRSG HP TURB Bypass Temp	1LBH20CT01QP	С		48
LP Steam Prod T/H	1LBA10CH01QB	tonm/hr	51.43	48
LP FW Flow T/H	1LAB10CH01QB	tonm/hr	53.23	48.4
HRSG LP Steam Temp	1LBA10CT02QP	С	162.03	162
HRSG LP Steam Pressure	1LBA10CP01QB	kg/cm2 g	5.30	5.2
LP Drum Operating Pressure	1HAD10CP02QB	kg/cm2 g	5.67	5.59
LP Eco Water Outlet Temp	1LAB10CT01QP	С	161.47	160.8
LP Eco Water Outlet Press	1LAB10CP01QB	kg/cm2 g		14.4
HP Eco 1 Water Outlet Temp	1LAB20CT01QP	С	14.07 167.63	167.1
HP Eco 2 Water Outlet Temp	1LAB20CT03QP	С	280.37	278
Gas Temp in HRSG	1HNB10CT01QP	С	503.00	496
Gas Temp in SPHT 1	1HNB10CT02QP	С	488.03	488.5
Gas Temp in HP Evap	1HNB10CT03QP	С	432.93	433.2
Gas Temp in Econ 2	1HNB10CT04QP	С	292.67	295.9
Gas Temp in LP Evap	1HNB10CT05QP	С	233.80	227.3
Gas Temp in LP Econ	1HNB10CT06QP	С	176.60	175.4
Gas Temp in Preheater	1HNB10CT07QP	С	160.63	160.7
Gas Temp to Stack	1HNE10CT01QP	С	123.97	126.4

Gambar 3.1.3 Data perhitungan heat rate gap analysis GT1.1 tahun 2015

Gambar 3.1.4 Grafik perbandingan heat rate gap analysis GT 1.1 tahun 2015

Gambar 3.1.5 Grafik perbandingan heat rate gap analysis GT dan HRSG 1.1 tahun 2015

C. Analisa dan kesimpulan

- Dari hasil perhitungan, kondisi energi GT 1.1 pada saat ini menunjukan telah terjadi peningkatan konsumsi energi yang dibutuhkan untuk memproduksi listrik per kWh sebesar 6.63 kcal/kWh
- Dari gambar 3.1.4 dan 3.1.5, terdapat beberapa *equipment* yang menyebabkan terjadinya peningkatan kosumsi energi dan dapat digambar sebagai berikut :

No	Equipment	Gap (kcal/kWh)
1	Comb. radiant	3.46
2	GT Turbine	1.53
3	GT Compressor	2.82
4	RCA	0.11
5	Generator	4.35

D. Pontensi Effisiensi Energi Yang Dapat Dilakukan

Berdasarkan hasil perhitungan dan analisa kondisi energi GT 1.1 gresik saat ini diatas, terlihat ada 5 (Lima) parameter utama yang berperan cukup meningkatkan konsumsi energi per kWh produksi, yaitu *Comb. Radiant, GT turbine, GT compressor*, RCA, dan Generator dengan total losses energi dari 5 (Lima) parameter tersebut sebesar 6.63 kCal/kWh.

E. Rencana Kerja Energi Efisiensi

Dalam rangka meningkatkan efisiensi energi, maka perlu dilakukan kegiatan – kegiatan efisiensi energi yang di harapkan effisiensi energy dapat meningkat atau kosumsi energi per kWh produksi dapat menurun. Rencana kerja efisiensi energi tersebut diantaranya sebagai berikut :

• Gas Turbine

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Compressor Fouling mengakibatkan efisiensi compressor turun Karena IAF kotor	Penggantian filter IAF	MO+START UP+UPHT	Meningkatkan efisiensi compressor	Standar job OH
2	efisiensi <i>compressor</i> turun Karena <i>compressor fouling</i>	Washing offline compressor	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
3	Pembakaran kurang sempurna karena <i>nozzle</i> mulai kotor	Pembersihan nozzle oil & gas	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
4	Expander losses karena tturbine fouling	Pengganti blade turbine	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
5	Pembakaran kurang sempurna karena combuster mulai kotor	Program Roll In Roll Out Combuster	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH

• HRSG

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Losses energy panas yang di akibatkan seal plate damper yang rusak	Mengganti seal plate damper	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
2	Heat transfer di HRSG buruk karena terjadi kekotoran di tube HRSG	Chemical cleaning tube HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
3	Losses energy panas yang di akibatkan kurang maksimal penyerapan panas di HRSG	Retubing HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH

3.2 Berikut ini adalah hasil perhitungan audit energi untuk mengetahui kodisi energi PLTGU Gresik setelah dan sebelum OH untuk GT1.2

A. Performance Test

Prameter	Satuan	Performance Test	
		Sesudah OH CI	Sebelum OH TI
Tanggal test		11-Mar-14	14-Apr-15
#2GT ACTLD	MW	106.60	105.47
#2GT FUEL GAS FLOW	kNm³/h	32.50	32.20
#2GT GEN POWER FACTOR		0.90	0.90
#2GT GEN FREQUENCY	hz	50.03	50.09
#2GT GEN COLD AIR TEMP TE	°C	41.53	41.73
#2GT GEN COLD AIR TEMP EE	°C	41.53	41.80
#2GT GEN HOT AIR TEMP	°C	67.40	68.47
380V GT2 SWGR INC WATT	kW	58.67	74.50
#2GT COMP INLET TEMP	°C	32.07	29.93
#2GT COMB SHELL PRESS	kg/cm ² g	12.50	12.60
#2GT COMP OUT A-TEMP	°C	412.67	415.00
#2GT ROTORC/A TE(L)	°C	196.10	198.23
#2GT NO.2 ROW D/C-T(L)	°C	371.87	377.43
#2GT NO.3 ROW D/C-T(L)	°C	393.27	394.43
#2GT NO.4 ROW D/C-T(L)	°C	382.40	386.97
#2GT BP AVG TEMP	°C	544.97	541.67
#2GT EXH GAS AVG TEMP	°C	524.70	523.00
#2HRSG HP FEED WATER FLOW	t/h	157.30	162.43
#2HRSG HP CIRC WATER F(1)	t/h	393.20	402.57
#2HRSG HP CIRC WATER TEMP	°C	283.20	286.67
#2HRSG LP FEED WATER FLOW	t/h	52.53	49.33
#2HRSG LP CIRC WATER F(1)	t/h	88.03	89.60
#2HRSG LP CIRC WATER TEMP	°C	175.03	176.00
#2 GAS TEMP INLET BOILER	°C	517.53	518.37
#2 GAS TEMP IN SUPHTR 1	°C	502.57	504.10
#2 GAS TEMP IN HP EVAP	°C	442.30	443.43
#2 GAS TEMP IN HP ECONO 2	°C	294.30	301.20
#2 GAS TEMP IN LP EVAP	°C	232.77	228.53
#2 GAS TEMP IN LP ECONO	°C	176.50	175.97
#2 GAS TEMP IN COND PHR	°C	160.77	161.07
#2 GAS TEMP OUT BOILER	°C	124.03	126.53
#2HRSG HP SH STEAM FLOW	t/h	171.60	160.33
#2HRSG HP SH STEAM TEMP	°C	497.50	496.33

#2HRSG HP STEAM PRESS	kg/cm ²	64.87	70.50
#2HRSG HP SH-2 IN TEMP	°C	463.53	463.67
#2HRSG HP SH-1 OUT TEMP	°C	464.00	464.00
#2HRSG HP DRUM PRESS	kg/cm ²	67.33	72.73
#2 HP FW TEMP OUT ECONO 1	°C	166.93	166.37
#2HRSG HP ECO OUTLET TEMP	°C	280.77	280.00
#2HRSG LP STEAM FLOW	t/h	51.40	48.33
#2HRSG LP STEAM TEMP	°C	161.97	162.00
#2HRSG LP STEAM PRESS	kg/cm ²	5.30	5.20
#2HRSG LP DRUM PRESS	kg/cm ²	5.60	5.59
#2 LP FW TEMP OUT ECONO	°C	161.97	161.50
#2 LP FW PRESS OUT ECONO	kg/cm ²	14.07	14.30
#2GT FUEL OIL FLOW	m³/h	0.00	
HP BFP DISCH HEAD TEMP	°C	136.53	138.53
HP BFP DISCH HEAD PRESS	kg/cm ²	109.27	105.53
LP BFP DISCH HEAD TEMP	°C	133.57	136.10
LP BFP DISCH HEAD PRESS	kg/cm ²	16.10	16.27
CEP OUTLET PRESS	kg/cm ²	13.93	13.20
GND COND OUT WATER TEMP	°C	44.20	46.77
DEA INLET WATER TEMP	°C	128.37	125.27
COND WATER FLOW	t/h	614.33	659.33
#2GT MPCSO(F.G)	%		
#2GT MTCSO(F.G)	%	65.80	67.53
#2GT GEN ACT. EXC. VOLTAGE	V	262.4	278.27
#2GT GEN ACT. EXC. CURRENT	А	646.33	679.13

Gambar 3.2.1 Data Perhitungan Performance Test GT 1.2 2015

			NIL	AI PERFOR	MANCE T	EST	-		
DADAMEMED	CAMITAN	GAS TURBINE 1.2							
PARAMETER	SATUAN	Performan	ce Test Setelal	h CI GT 1.2	Performan	ce Test Sebelun	n TI GT 1.2		
		50 MW	75 MW	Maks.	50 MW	100 MW	Maks.		
Tanggal Test			11-Mar-14	11-Mar-14		14-Apr-15	3-Mar-15		
Power Product	MW		100.07	107.20		100.83	106.23		
Corrected Power	MW		98.05	105.97		98.51	104.67		
Fuel Gas	kNm³/h		30.83	32.63		30.37	32.53		
Fuel HSD	m³/h						-		
HHV Fuel Gas	BTU/SCF		1,073.79	1,073.79		1,060.41	1,047.54		
HHV HSD	kcal/kg						-		
SG	kg/m ^s						-		
Ambient Temperature	°C		28.50	29.50		29.00	30.00		
Compressor Outlet Temp.	°C		396.93	406.67		399.00	410.00		
Compressor Out Press.	kg/cm²		12.20	12.57		12.40	12.57		
Compressor Effisiensi	%		87.16	87.15		87.16	86.17		
Blade Path Average Temp.	°C		523.80	536.30		517.00	543.33		
Exhaust Gas Average Temp.	°C		507.30	518.20		500.67	524.67		
GT Heat Rate	kcal/kWh		3,112.07	3,074.58		3,003.75	3,017.43		
GT Corrected Heat Rate	kcal/kWh		3,130.31	3,080.10		3,034.63	3,036.64		
GT Effisiensi	%		27.63	27.97		28.63	28.50		
GT Corrected Efisiensi	%		27.47	27.92		28.34	28.32		

Gambar 3.2.2 Hasil Performance Test GT1.2 2015

B. Heat Rate Gap Analysis

Heat rate analysis adalah alat yang digunakan untuk membandingkan heat rate reference dengan heat rate saat ini. Semakin besar gap, berarti semakin besar pula degradasi effisiensi dari power plant tersebut. Sebagai data heat rate reference digunakan data sesudah Overhaul dan data heat rate saat ini. Dalam menganalisa kontribusi tiap equipment dalam kenaikan heat rate, untuk memetakannya maka dibuatlah pareto heat rate. Dengan menggunakan data hasil performance test dihasilkan pareto heat rate sebagai berikut:

Date		dd/mm/yyyy	11-Mar-14	3-Mar-15
Time		hh:mm	8:10	9:10
			stlh CI 2014	sblm TI 2015
Fuel Oil LHV	(Typical Value)	kcal/kg	10680.00	10680.00
Fuel Oil Density	(Typical Value)	kg/m3	837.00	837.00
Fuel Oil %Wt Sulphur	(Typical Value)	%wt	0.37	0.37
Fuel gas HHV (BTU/SCF)				
GT / HRSG #2				
GT Generator Output MW	G1LA264	MW	100.07	99.10
Fuel Oil Temp	1XBN20CT02QP	С	26.00	26.00
Fuel Oil Flow	1XBN20CF01QP	m3/h	30.83	30.57
IAF Press Differential	(Local Reading)	mm H2O	50.00	
GT Comp Inlet Temp	1MBL10CT01QP	С	27.40	27.23
GT Comp Discharge Temp	1MBH10CT01QP	С	396.93	403.67
Rotor Air Cooler (Left) Temp	1MBA10CT02QP	С	175.13	177.80

Rotor Air Cooler (Right) Temp	1MBA10CT01QP	С	189.90	189.90
GT Combustor Pressure	G1LA263	kg/cm2 g	12.20	12.37
GT Exhaust Duct Press	(Local Reading)	mm H2O	320.00	
GT Exhaust Temp (Avg)	G1LA133	С	506.87	510.33
HP Steam Prod T/H	1LBA20CH01QB	tonm/hr	154.10	160.00
HP FW Flow T/H	1LAB20CH01QB	tonm/hr	154.17	160.63
HPSH2 Outlet Temp	1LBA20CT02QP	С	485.90	487.33
HRSG HP Steam Press	1LBA20CP02QB	kg/cm2 g	61.80	56.50
HP Desuperheater Outlet	1HAH2OCT02QP	С	452.23	453.20
Temp HPSH1 Outlet Temp	1HAH2OCT01QP	С	453.53	454.57
HP Drum Operating	1HAD20CP02QB	kg/cm2 g	64.67	59.60
Pressure				
HRSG HP TURB Bypass Temp	1LBH20CT01QP	С		
LP Steam Prod T/H	1LBA10CH01QB	tonm/hr	47.03	50.13
LP FW Flow T/H	1LAB10CH01QB	tonm/hr	49.00	50.13
HRSG LP Steam Temp	1LBA10CT02QP	С	160.63	160.37
HRSG LP Steam Pressure	1LBA10CP01QB	kg/cm2 g	5.30	5.10
LP Drum Operating Pressure	1HAD10CP02QB	kg/cm2 g	5.60	5.53
LP Eco Water Outlet Temp	1LAB10CT01QP	С	159.80	160.00
LP Eco Water Outlet Press	1LAB10CP01QB	kg/cm2 g	14.20	14.50
HP Eco 1 Water Outlet	1LAB20CT01QP	С	165.83	167.13
Temp HP Eco 2 Water Outlet Temp	1LAB20CT03QP	С	278.73	273.00
Gas Temp in HRSG	1HNB10CT01QP	С	500.77	501.90
Gas Temp in SPHT 1	1HNB10CT02QP	С	490.03	492.23
Gas Temp in HP Evap	1HNB10CT03QP	С	436.13	437.93
Gas Temp in Econ 2	1HNB10CT04QP	С	287.17	285.63
Gas Temp in LP Evap	1HNB10CT05QP	С	227.40	225.20
Gas Temp in LP Econ	1HNB10CT06QP	С	172.97	174.57
Gas Temp in Preheater	1HNB10CT07QP	С	157.97	159.63
Gas Temp to Stack	1HNE10CT01QP	С	115.73	120.17

Gambar 3.2.3 Data perhitungan heat rate gap analysis GT1.2 tahun 2015

Gambar 3.2.4 Grafik perbandingan heat rate gap analysis GT 1.2 tahun 2015

Gambar 3.2.5 Grafik perbandingan heat rate gap analysis GT dan HRSG 1.2 tahun 2015

C. Analisa dan kesimpulan

- Dari hasil perhitungan, kondisi energi GT 1.2 pada saat ini menunjukan telah terjadi peningkatan konsumsi energi yang dibutuhkan untuk memproduksi listrik per kWh sebesar 43.63 kcal/kWh
- Dari Gambar 3.2.4 dan 3.2.5, terdapat beberapa beberapa equipment yang menyebabkan terjadinya peningkatan kosumsi energi dan dapat digambar sebagai berikut :

No	Equipment	Gap (kcal/kWh)
1	Comb. radiant	2.84
2	GT Turbine	10.56
3	GT Compressor	17.71
4	RCA	0.03
5	Generator	7.15

D. Pontensi Effisiensi Energi Yang Dapat Dilakukan

Berdasarkan hasil perhitungan dan analisa kondisi energi GT 1.2 gresik saat ini diatas, terlihat ada 5 (Lima) parameter utama yang berperan cukup meningkatkan konsumsi energi per kWh produksi, yaitu *Comb. Radiant, GT turbine, GT compressor*, RCA, dan Generator dengan total losses energi dari 5 (Lima) parameter tersebut sebesar 43.63 kCal/kWh.

E. Rencana Kerja Energi Efisiensi

Dalam rangka meningkatkan efisiensi energi, maka perlu dilakukan kegiatan – kegiatan efisiensi energi yang di harapkan effisiensi energy dapat meningkat atau kosumsi energi per kWh produksi dapat menurun. Rencana kerja efisiensi energi tersebut diantaranya sebagai berikut :

• Gas Turbine

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Compressor Fouling mengakibatkan efisiensi compressor turun Karena IAF kotor	Penggantian filter IAF	MO+START UP+UPHT	Meningkatkan efisiensi compressor	Standar job OH
2	efisiensi <i>compressor</i> turun Karena <i>compressor fouling</i>	Washing offline compressor	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
3	Pembakaran kurang sempurna karena <i>nozzle</i> mulai kotor	Pembersihan nozzle oil & gas	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
4	Expander losses karena tturbine fouling	Pengganti blade turbine	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
5	Pembakaran kurang sempurna karena combuster mulai kotor	Program Roll In Roll Out Combuster	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH

HRSG

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Losses energy panas yang di akibatkan seal plate damper yang rusak	Mengganti seal plate damper	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
2	Heat transfer di HRSG buruk karena terjadi kekotoran di tube HRSG	Chemical cleaning tube HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
3	Losses energy panas yang di akibatkan kurang maksimal penyerapan panas di HRSG	Retubing HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH

3.3 Berikut ini adalah hasil perhitungan audit energi untuk mengetahui kodisi energi PLTGU Gresik setelah dan sebelum OH GT 2.1

A. Performance Test

Prameter	Satuan	n Performance Test	
		Sesudah OH TI	Sebelum OH CI
Tanggal test		6-May-13	27-Jan-15
#1GT ACTLD	MW	105.73	104.10
#1GT FUEL GAS FLOW	kNm³/h	32.10	31.53
#1GT GEN POWER FACTOR		1.00	1.00
#1GT GEN FREQUENCY	hz	50.03	50.04
#1GT GEN COLD AIR TEMP TE	°C	41.40	41.83
#1GT GEN COLD AIR TEMP EE	°C	40.77	41.20
#1GT GEN HOT AIR TEMP	°C	66.03	64.97
380V GT2 SWGR INC WATT	kW	14.00	10.60
#1GT COMP INLET TEMP	°C	29.33	30.07
#1GT COMB SHELL PRESS	kg/cm ² g	12.37	12.30
#1GT COMP OUT A-TEMP	°C	404.53	408.00
#1GT ROTORC/A TE(L)	°C	173.40	180.27
#1GT NO.2 ROW D/C-T(L)	°C	367.63	372.80
#1GT NO.3 ROW D/C-T(L)	°C	408.63	407.83
#1GT NO.4 ROW D/C-T(L)	°C	397.03	392.17
#1GT BP AVG TEMP	°C	542.93	543.00
#1GT EXH GAS AVG TEMP	°C	526.83	527.00
#1HRSG HP FEED WATER FLOW	t/h	163.30	161.70
#1HRSG HP CIRC WATER F(1)	t/h	391.50	387.67
#1HRSG HP CIRC WATER TEMP	°C	285.17	285.00
#1HRSG LP FEED WATER FLOW	t/h	46.33	45.00
#1HRSG LP CIRC WATER F(1)	t/h	100.73	100.80
#1HRSG LP CIRC WATER TEMP	°C	178.53	285.00
#1 GAS TEMP INLET BOILER	°C	515.73	514.33
#1 GAS TEMP IN SUPHTR 1	°C	504.63	503.80
#1 GAS TEMP IN HP EVAP	°C	447.53	446.13
#1 GAS TEMP IN HP ECONO 2	°C	301.07	299.13
#1 GAS TEMP IN LP EVAP	°C	240.13	237.20
#1 GAS TEMP IN LP ECONO	°C	189.23	186.93
#1 GAS TEMP IN COND PHR	°C	170.27	168.33
#1 GAS TEMP OUT BOILER	°C	131.97	129.07

#1HRSG HP SH STEAM FLOW	t/h	155.67	153.00
#1HRSG HP SH STEAM TEMP	°C	495.70	496.33
#1HRSG HP STEAM PRESS	kg/cm ²	67.67	67.27
#1HRSG HP SH-2 IN TEMP	°C	461.73	462.00
#1HRSG HP SH-1 OUT TEMP	°C	462.90	463.33
#1HRSG HP DRUM PRESS	kg/cm ²	70.20	69.97
#1 HP FW TEMP OUT ECONO 1	°C	169.50	169.97
#1HRSG HP ECO OUTLET TEMP	°C	283.17	280.00
#1HRSG LP STEAM FLOW	t/h	40.37	41.00
#1HRSG LP STEAM TEMP	°C	161.63	162.00
#1HRSG LP STEAM PRESS	kg/cm ²	5.30	5.30
#1HRSG LP DRUM PRESS	kg/cm ²	5.60	5.60
#1 LP FW TEMP OUT ECONO	°C	169.60	169.63
#1 LP FW PRESS OUT ECONO	kg/cm ²	14.53	14.73
#1GT FUEL OIL FLOW	m³/h	0.00	0.00
HP BFP DISCH HEAD TEMP	°C	139.00	139.17
HP BFP DISCH HEAD PRESS	kg/cm ²	106.67	104.83
LP BFP DISCH HEAD TEMP	°C	137.03	137.10
LP BFP DISCH HEAD PRESS	kg/cm ²	16.43	16.63
CEP OUTLET PRESS	kg/cm ²	13.47	13.58
GND COND OUT WATER TEMP	°C	45.70	45.37
DEA INLET WATER TEMP	°C	129.37	128.13
COND WATER FLOW	t/h	647.00	646.33
#1GT MPCSO(F.G)	%		
#1GT MTCSO(F.G)	%	66.87	
#1GT GEN ACT. EXC. VOLTAGE	V	220.10	
#1GT GEN ACT. EXC. CURRENT	A	605.33	L CT 2 1 2015

Gambar 3.3.1 Data Perhitungan Performance Test GT 2.1 2015

		NILAI PERFORMANCE TEST					
DADAMETER	CATTAN			GAS TUR	BINE 2.1		
PARAMETER	SATUAN	Performan	ce Test Setelal	1 TI GT 2.1	Performan	ce Test Sebelun	n CI GT 2.1
		50 MW	75 MW	Maks.	50 MW	100 MW	Maks.
Tanggal Test			6-May-13	6-May-13		27-Jan-15	27-Jan-15
Power Product	MW		102.20	105.73		100.30	104.10
Corrected Power	MW		103.58	107.15		100.30	104.00
Fuel Gas	kNm ^s /h		31.27	32.10		30.43	31.53
Fuel HSD	m³/h						
HHV Fuel Gas	BTU/SCF		1,071.70	1,071.70		1,081.44	1,081.44
HHV HSD	kcal/kg						
SG	kg/m ³						
Ambient Temperature	°C		31.00	31.00		31.00	32.00
Compressor Outlet Temp.	°C		404.67	404.53		405.33	408.00
Compressor Out Press.	kg/cm²		12.17	12.37		12.20	12.30
Compressor Effisiensi	%		87.35	86.99		86.43	86.33
Blade Path Average Temp.	°C		540.53	542.93		532.33	543.00
Exhaust Gas Average Temp.	°C		523.93	526.83		511.67	527.00
GT Heat Rate	kcal/kWh		3,083.90	3,060.29		3,086.37	3,081.19
GT Corrected Heat Rate	kcal/kWh		2,970.70	2,949.47		3,075.76	3,070.83
GT Effisiensi	%		27.89	28.10		27.86	27.91
GT Corrected Efisiensi	%		28.95	29.16		27.96	28.01

Gambar 3.3.2 Hasil Performance Test GT 2.1 2015

B. Heat Rate Gap Analysis

Heat rate analysis adalah alat yang digunakan untuk membandingkan heat rate reference dengan heat rate saat ini. Semakin besar gap, berarti semakin besar pula degradasi effisiensi dari power plant tersebut. Sebagai data heat rate reference digunakan data sesudah Overhaul dan data heat rate saat ini. Dalam menganalisa kontribusi tiap equipment dalam kenaikan heat rate, untuk memetakannya maka dibuatlah pareto heat rate. Dengan menggunakan data hasil performance test dihasilkan pareto heat rate sebagai berikut:

Date		dd/mm/yyyy	6-May-13	27-Jan-15
Time		hh:mm	9:35	
			stlh TI 2013	sblm CI 2015
Fuel Oil LHV	(Typical Value)	kcal/kg	10680.00	10680.00
Fuel Oil Density	(Typical Value)	kg/m3	837.00	837.00
Fuel Oil %Wt Sulphur	(Typical Value)	%wt	0.37	0.37
Fuel gas HHV (BTU/SCF)				
GT / HRSG #2				
GT Generator Output MW	G1LA264	MW	100.30	100.10
Fuel Oil Temp	1XBN20CT02QP	С	26.10	26.10
Fuel Oil Flow	1XBN20CF01QP	m3/h	30.43	30.53
IAF Press Differential	(Local Reading)	mm H2O		
GT Comp Inlet Temp	1MBL10CT01QP	С	29.77	27.97

GT Comp Discharge Temp	1MBH10CT01QP	С	405.33	396.67
Rotor Air Cooler (Left) Temp	1MBA10CT02QP	С	178.83	173.73
Rotor Air Cooler (Right) Temp	1MBA10CT01QP	С	189.90	189.90
GT Combustor Pressure	G1LA263	kg/cm2 g	12.20	12.00
GT Exhaust Duct Press	(Local Reading)	mm H2O		
GT Exhaust Temp (Avg)	G1LA133	С	511.67	509.00
HP Steam Prod T/H	1LBA20CH01QB	tonm/hr	147.00	160.33
HP FW Flow T/H	1LAB20CH01QB	tonm/hr	155.93	162.93
HPSH2 Outlet Temp	1LBA20CT02QP	С	486.33	485.00
HRSG HP Steam Press	1LBA20CP02QB	kg/cm2 g	64.20	38.57
HP Desuperheater Outlet	1HAH2OCT02QP	С	455.33	453.00
Temp HPSH1 Outlet Temp	1HAH2OCT01QP	С	456.33	454.00
HP Drum Operating	1HAD20CP02QB	kg/cm2 g	66.73	42.77
Pressure HRSG HP TURB Bypass Temp	1LBH20CT01QP	С		
LP Steam Prod T/H	1LBA10CH01QB	tonm/hr	40.67	33.00
LP FW Flow T/H	1LAB10CH01QB	tonm/hr	44.60	36.80
HRSG LP Steam Temp	1LBA10CT02QP	С	162.00	161.00
HRSG LP Steam Pressure	1LBA10CP01QB	kg/cm2 g	5.30	5.20
LP Drum Operating Pressure	1HAD10CP02QB	kg/cm2 g	5.59	5.47
LP Eco Water Outlet Temp	1LAB10CT01QP	С	169.53	169.97
LP Eco Water Outlet Press	1LAB10CP01QB	kg/cm2 g	14.80	15.07
HP Eco 1 Water Outlet	1LAB20CT01QP	С	170.80	166.40
Temp HP Eco 2 Water Outlet Temp	1LAB20CT03QP	С	278.00	254.00
Gas Temp in HRSG	1HNB10CT01QP	С	500.23	501.00
Gas Temp in SPHT 1	1HNB10CT02QP	С	491.87	491.63
Gas Temp in HP Evap	1HNB10CT03QP	С	437.97	434.17
Gas Temp in Econ 2	1HNB10CT04QP	С	295.37	270.77
Gas Temp in LP Evap	1HNB10CT05QP	С	236.80	220.43
Gas Temp in LP Econ	1HNB10CT06QP	С	186.87	181.10
Gas Temp in Preheater	1HNB10CT07QP	С	168.23	166.33
Gas Temp to Stack	1HNE10CT01QP	С	129.40	129.00

Gambar 3.3.3 Data perhitungan heat rate gap analysis GT2.1 tahun 2015

Gambar 3.3.4 Grafik perbandingan heat rate gap analysis GT 2.1 tahun 2015

Gambar 3.3.5 Grafik perbandingan heat rate gap analysis GT dan HRSG 2.1 tahun 2015

F. Analisa dan kesimpulan

- Dari hasil perhitungan, kondisi energi GT 2.1 pada saat ini menunjukan telah terjadi peningkatan konsumsi energi yang dibutuhkan untuk memproduksi listrik per kWh sebesar 71.41 kcal/kWh
- Dari Gambar 3.3.4 dan 3.3.5, terdapat beberapa beberapa *equipment* yang menyebabkan terjadinya peningkatan kosumsi energi dan dapat digambar sebagai berikut :

No	Equipment	Gap (kcal/kWh)
1	Comb. radiant	22.1
2	GT Turbine	24.77
3	GT Compressor	20.89
4	RCA	0.23
5	Generator	3.88

G. Pontensi Effisiensi Energi Yang Dapat Dilakukan

Berdasarkan hasil perhitungan dan analisa kondisi energi GT 2.1 gresik saat ini diatas, terlihat ada 5 (Lima) parameter utama yang berperan cukup meningkatkan konsumsi energi per kWh produksi, yaitu *Comb. Radiant, GT turbine, GT compressor*, RCA, dan Generator dengan total losses energi dari 5 (Lima) parameter tersebut sebesar 71.41 kCal/kWh.

H. Rencana Kerja Energi Efisiensi

Dalam rangka meningkatkan efisiensi energi, maka perlu dilakukan kegiatan – kegiatan efisiensi energi yang di harapkan effisiensi energy dapat meningkat atau kosumsi energi per kWh produksi dapat menurun. Rencana kerja efisiensi energi tersebut diantaranya sebagai berikut :

• Gas Turbine

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Compressor Fouling mengakibatkan efisiensi compressor turun Karena IAF kotor	Penggantian filter IAF	MO+START UP+UPHT	Meningkatkan efisiensi compressor	Standar job OH
2	efisiensi compressor turun Karena compressor fouling	Washing offline compressor	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
3	Pembakaran kurang sempurna karena nozzle mulai kotor	Pembersihan nozzle oil & gas	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
4	Expander losses karena tturbine fouling	Pengganti blade turbine	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
5	Pembakaran kurang sempurna karena combuster mulai kotor	Program Roll In Roll Out Combuster	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH

HRSG

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Losses energy panas yang di akibatkan seal plate damper yang rusak	Mengganti seal plate damper	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
2	Heat transfer di HRSG buruk karena terjadi kekotoran di tube HRSG	Chemical cleaning tube HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
3	Losses energy panas yang di akibatkan kurang maksimal penyerapan panas di HRSG	Retubing HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH

3.4 Berikut ini adalah hasil perhitungan audit energi untuk mengetahui kodisi energi PLTGU Gresik setelah dan sebelum OH GT 3.2

A. Performance Test

Prameter	Satuan	Performance Test		
		Sesudah OH CI	Sebelum OH TI	
Tanggal test		3-Jan-14	30-Dec-14	
#2GT ACTLD	MW	97.87	94.63	
#2GT FUEL GAS FLOW	kNm³/h	30.10	29.70	
#2GT GEN POWER FACTOR		1.00	0.99	
#2GT GEN FREQUENCY	hz	50.07	50.10	
#2GT GEN COLD AIR TEMP TE	°C	41.70	42.40	
#2GT GEN COLD AIR TEMP EE	°C	41.40	41.70	
#2GT GEN HOT AIR TEMP	°C	65.27	66.13	
380V GT2 SWGR INC WATT	kW	77.70	53.17	
#2GT COMP INLET TEMP	°C	29.20	33.20	
#2GT COMB SHELL PRESS	kg/cm ² g	12.07	12.07	
#2GT COMP OUT A-TEMP	°C	399.37	414.33	
#2GT ROTORC/A TE(L)	°C	217.93	222.07	
#2GT NO.2 ROW D/C-T(L)	°C	352.90	368.23	
#2GT NO.3 ROW D/C-T(L)	°C	354.70	368.43	
#2GT NO.4 ROW D/C-T(L)	°C	373.93	371.87	
#2GT BP AVG TEMP	°C	522.20	530.67	
#2GT EXH GAS AVG TEMP	°C	503.60	515.33	
#2HRSG HP FEED WATER FLOW	t/h	165.30	163.73	
#2HRSG HP CIRC WATER F(1)	t/h	388.23	355.23	
#2HRSG HP CIRC WATER TEMP	°C	283.10	276.97	
#2HRSG LP FEED WATER FLOW	t/h	51.20	47.17	
#2HRSG LP CIRC WATER F(1)	t/h	96.23	97.53	
#2HRSG LP CIRC WATER TEMP	°C	176.60	176.10	
#2 GAS TEMP INLET BOILER	°C	494.97	504.33	
#2 GAS TEMP IN SUPHTR 1	°C	484.87	492.57	
#2 GAS TEMP IN HP EVAP	°C	431.73	434.60	
#2 GAS TEMP IN HP ECONO 2	°C	289.37	283.20	
#2 GAS TEMP IN LP EVAP	°C	231.00	225.20	
#2 GAS TEMP IN LP ECONO	°C	174.20	173.43	
#2 GAS TEMP IN COND PHR	°C	156.87	156.13	
#2 GAS TEMP OUT BOILER	°C	116.23	116.40	

#2HRSG HP SH STEAM FLOW	t/h	147.97	155.33
#2HRSG HP SH STEAM TEMP	°C	478.97	487.33
#2HRSG HP STEAM PRESS	kg/cm ²	64.17	58.10
#2HRSG HP SH-2 IN TEMP	°C	446.23	451.40
#2HRSG HP SH-1 OUT TEMP	°C	447.77	454.00
#2HRSG HP DRUM PRESS	kg/cm ²	66.50	60.57
#2 HP FW TEMP OUT ECONO 1	°C	164.53	162.70
#2HRSG HP ECO OUTLET TEMP	°C	279.63	273.40
#2HRSG LP STEAM FLOW	t/h	46.63	47.17
#2HRSG LP STEAM TEMP	°C	161.33	161.33
#2HRSG LP STEAM PRESS	kg/cm ²	5.30	5.30
#2HRSG LP DRUM PRESS	kg/cm ²	5.50	5.50
#2 LP FW TEMP OUT ECONO	°C	162.20	14.57
#2 LP FW PRESS OUT ECONO	kg/cm ²	14.50	14.57
#2GT FUEL OIL FLOW	m³/h	0.00	
HP BFP DISCH HEAD TEMP	°C	133.30	135.47
HP BFP DISCH HEAD PRESS	kg/cm ²	106.47	111.17
LP BFP DISCH HEAD TEMP	°C	131.33	132.23
LP BFP DISCH HEAD PRESS	kg/cm ²	16.40	16.43
CEP OUTLET PRESS	kg/cm ²	13.37	13.94
GND COND OUT WATER TEMP	°C	47.00	46.83
DEA INLET WATER TEMP	°C	125.57	129.53
COND WATER FLOW	t/h	653.33	589.00
#2GT MPCSO(F.G)	%		50.40
#2GT MTCSO(F.G)	%	61.93	62.83
#2GT GEN ACT. EXC. VOLTAGE	V	193.93	200.50
#2GT GEN ACT. EXC. CURRENT	A	510.00	526.77

Gambar 3.4.1 Data Perhitungan Performance Test GT 3.2 2015

		NILAI PERFORMANCE TEST						
PARAMETER	SATUAN	GAS TURBINE 3.2						
PARAMETER	SATUAN	Performance Test Setelah CI GT 3.2			Performance Test Sebelum TI GT 3.2			
		50 MW	75 MW	Maks.	50 MW	100 MW	Maks.	
Tanggal Test				3-Jan-14			30-Dec-14	
Power Product	MW			97.87			94.63	
Corrected Power	MW			96.33			91.58	
Fuel Gas	kNm ³ /h			30.10			29.70	
Fuel HSD	m³/h							
HHV Fuel Gas	BTU/SCF			1,073.32			1,071.11	
HHV HSD	kca1/kg							
SG	kg/m ³							
Ambient Temperature	°C			29.00			34.00	
Compressor Outlet Temp.	°C			399.37			414.33	
Compressor Out Press.	kg/cm²			12.07			12.07	
Compressor Effisiensi	%			87.04			85.66	
Blade Path Average Temp.	°C			522.20			530.67	
Exhaust Gas Average Temp.	°C			503.60			515.33	
GT Heat Rate	kcal/kWh			3,104.99			3,161.87	
GT Corrected Heat Rate	kcal/kWh			3,115.51			3,193.99	
GT Effisiensi	%			27.70			27.20	
GT Corrected Efisiensi	%			27.60			26.93	

Gambar 3.4.2 Hasil Perhitungan Performance Test GT 3.2 2015

B. Heat Rate Gap Analysis

Heat rate analysis adalah alat yang digunakan untuk membandingkan heat rate reference dengan heat rate saat ini. Semakin besar gap, berarti semakin besar pula degradasi effisiensi dari power plant tersebut. Sebagai data heat rate reference digunakan data sesudah Overhaul dan data heat rate saat ini. Dalam menganalisa kontribusi tiap equipment dalam kenaikan heat rate, untuk memetakannya maka dibuatlah pareto heat rate. Dengan menggunakan data hasil performance test dihasilkan pareto heat rate sebagai berikut:

Date		dd/mm/yyyy	3-Jan-14	30-Dec-14
Time		hh:mm	9:00	14:00
			CI 2013	sblm TI 2015
Fuel Oil LHV	(Typical Value)	kcal/kg	10680.00	10680.00
Fuel Oil Density	(Typical Value)	kg/m3	837.00	837.00
Fuel Oil %Wt Sulphur	(Typical Value)	%wt	0.37	0.37
Fuel gas HHV (BTU/SCF)				
GT / HRSG #2				
GT Generator Output MW	G1LA264	MW	97.87	94.63
Fuel Oil Temp	1XBN20CT02QP	С	26.00	26.10
Fuel Oil Flow	1XBN20CF01QP	m3/h	30.10	29.70
IAF Press Differential	(Local Reading)	mm H2O	50.00	

GT Comp Inlet Temp	1MBL10CT01QP	С	29.20	33.20
GT Comp Discharge Temp	1MBH10CT01QP	С	399.37	414.33
Rotor Air Cooler (Left) Temp	1MBA10CT02QP	С	217.93	222.07
Rotor Air Cooler (Right) Temp	1MBA10CT01QP	С	189.90	189.90
GT Combustor Pressure	G1LA263	kg/cm2 g	12.07	12.07
GT Exhaust Duct Press	(Local Reading)	mm H2O	320.00	
GT Exhaust Temp (Avg)	G1LA133	С	503.60	515.33
HP Steam Prod T/H	1LBA20CH01QB	tonm/hr	147.97	155.33
HP FW Flow T/H	1LAB20CH01QB	tonm/hr	165.30	163.73
HPSH2 Outlet Temp	1LBA20CT02QP	С	478.97	487.33
HRSG HP Steam Press	1LBA20CP02QB	kg/cm2 g	64.17	58.10
HP Desuperheater Outlet	1HAH2OCT02QP	С	446.23	451.40
Temp HPSH1 Outlet Temp	1HAH2OCT01QP	С	447.77	454.00
HP Drum Operating Pressure	1HAD20CP02QB	kg/cm2 g	66.50	60.57
HRSG HP TURB Bypass Temp	1LBH20CT01QP	С		
LP Steam Prod T/H	1LBA10CH01QB	tonm/hr	46.63	47.17
LP FW Flow T/H	1LAB10CH01QB	tonm/hr	51.20	47.17
HRSG LP Steam Temp	1LBA10CT02QP	С	161.33	161.33
HRSG LP Steam Pressure	1LBA10CP01QB	kg/cm2 g	5.30	5.30
LP Drum Operating	1HAD10CP02QB	kg/cm2 g	5.50	5.50
Pressure				
LP Eco Water Outlet Temp	1LAB10CT01QP	С	162.20	160.00
LP Eco Water Outlet Press	1LAB10CP01QB	kg/cm2 g	14.50	14.57
HP Eco 1 Water Outlet Temp	1LAB20CT01QP	С	164.53	162.70
HP Eco 2 Water Outlet Temp	1LAB20CT03QP	С	279.63	273.40
Gas Temp in HRSG	1HNB10CT01QP	С	494.97	504.33
Gas Temp in SPHT 1	1HNB10CT02QP	С	484.87	492.57
Gas Temp in HP Evap	1HNB10CT03QP	С	431.73	434.60
Gas Temp in Econ 2	1HNB10CT04QP	С	289.37	283.20
Gas Temp in LP Evap	1HNB10CT05QP	С	231.00	225.20
Gas Temp in LP Econ	1HNB10CT06QP	С	174.20	173.43
Gas Temp in Preheater	1HNB10CT07QP	С	156.87	156.13
Gas Temp to Stack	1HNE10CT01QP	С	116.23	116.40

Gambar 3.4.3 Data perhitungan heat rate gap analysis GT 3.2 tahun 2015

Gambar 3.6.4 Grafik perbandingan heat rate gap analysis GT 3.2 tahun 2015

Gambar 3.4.5 Grafik perbandingan heat rate gap analysis GT dan HRSG 3.2 tahun 2015

C. Analisa dan kesimpulan

- Dari hasil perhitungan, kondisi energi GT 3.2 pada saat ini menunjukan telah terjadi peningkatan konsumsi energi yang dibutuhkan untuk memproduksi listrik per kWh sebesar 94.51 kcal/kWh
- Dari Gambar 3.2.4 dan 3.2.5, terdapat beberapa beberapa equipment yang menyebabkan terjadinya peningkatan kosumsi energi dan dapat digambar sebagai berikut :

No	Equipment	Gap (kcal/kWh)
1	Comb. radiant	26.54
2	GT Turbine	33.42
3	GT Compressor	35.37
4	RCA	1.12
5	Generator	1.95

D. Pontensi Effisiensi Energi Yang Dapat Dilakukan

Berdasarkan hasil perhitungan dan analisa kondisi energi GT 3.2 gresik saat ini diatas, terlihat ada 5 (Lima) parameter utama yang berperan cukup meningkatkan konsumsi energi per kWh produksi, yaitu *Comb. Radiant, GT turbine, GT compressor*, RCA, dan Generator dengan total losses energi dari 5 (Lima) parameter tersebut sebesar 94.51 kCal/kWh.

E. Rencana Kerja Energi Efisiensi

Dalam rangka meningkatkan efisiensi energi, maka perlu dilakukan kegiatan – kegiatan efisiensi energi yang di harapkan effisiensi energy dapat meningkat atau kosumsi energi per kWh produksi dapat menurun. Rencana kerja efisiensi energi tersebut diantaranya sebagai berikut :

• Gas Turbine

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Compressor Fouling mengakibatkan efisiensi compressor turun Karena IAF kotor	Penggantian filter IAF	MO+START UP+UPHT	Meningkatkan efisiensi compressor	Standar job OH
2	efisiensi compressor turun Karena compressor fouling	Washing offline compressor	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
3	Pembakaran kurang sempurna karena nozzle mulai kotor	Pembersihan nozzle oil & gas	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
4	Expander losses karena tturbine fouling	Pengganti blade turbine	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH
5	Pembakaran kurang sempurna karena combuster mulai kotor	Program Roll In Roll Out Combuster	MO+START UP+UPHT	Meningkatkan efisiensi gas turbine	Standar job OH

HRSG

No	Root Cause Of Gap Loss	Action Plan	PIC	Tujuan	Target Pelaksana
1	Losses energy panas yang di akibatkan seal plate damper yang rusak	Mengganti seal plate damper	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
2	Heat transfer di HRSG buruk karena terjadi kekotoran di tube HRSG	Chemical cleaning tube HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH
3	Losses energy panas yang di akibatkan kurang maksimal penyerapan panas di HRSG	Retubing HRSG	MO+START UP+UPHT	Mengurangi kehilangan energipanas di HRSG	Standar job OH