

August 11th 2014, APAN38

Network Performance Tutorial

John Hicks – Internet2

XSEDE Performance Use Cases

XSEDE Use Case Examples

- Debugging is simplified by the limited number of domains and the ongoing working relationship between network engineers at all sites
- XSEDE perfSONARs are not set up to alarm on conditions so current usage mode is primarily as a debugging resource when problems are noted
- Use case examples from XSEDE:
 - Campus integration case study
 - Jumbo frame MTU issues
 - Impact of small router buffers
 - Route changes

Campus integration case study

- The "case study" example describes debugging steps based on a true story
- Three institutions were involved: one University, PSC, and an additional XSEDE Service Provider (XSEDE-SP2)
- Initial network testing throughput was much lower than expected
- Debugging approach
 - Step by step
 - What to do without perfSONAR
 - How to take advantage of perfSONAR

Campus integration case study

Initial conditions

- Primary direction of data flow was University -> PSC and University -> XSEDE-SP2
- Between 1 GbE connected hosts over a 10 GbE link:
 - University -> PSC maximum was 220 Mb/sec
 - University -> XSEDE-SP2 maximum was 13.8 Mb/sec

Check the Path

- Manually run traceroute from each end if no perfSONAR is available
 - Requires login access at both ends or a knowledgeable collaborator at the remote site
- With perfSONAR available and connected close to servers, use Reverse Traceroute
- In either case, traceroute is a necessary first step in debugging and access is usually available to the end user

Network throughput testing

- iperf or nuttcp
- If no perfSONARs or BWCTL servers, testing requires host access at each end
- Requires some specialized knowledge to identify endpoints and set appropriate parameters
- Typically used by network engineers for performance diagnosis

BWCTL for baseline bandwidth

 If you have login on a perfSONAR or a server running BWCTL (and if the relevant perfSONARs are not access restricted)
 you can manually run a BWCTL command:

```
[benninge@ps ~]$ bwctl -s ps.nics.xsede.org -t 30 -i 5 -f
```

BWCTL supports third party test initiation

BWCTL example

```
[benninge@ps ~]$ bwctl -s ps.nics.xsede.org -t 30 -i 5 -f m
bwctl: Using tool: iperf
bwctl: 35 seconds until test results available
RECEIVER START
Server listening on TCP port 5128
Binding to local address 128.182.112.220
TCP window size: 0.08 MByte (default)
 15] local 128.182.112.220 port 5128 connected with 192.249.6.3 port 5128
                                 Bandwidth
 ID] Interval
                    Transfer
 15] 0.0- 5.0 sec 2877 MBytes 4827 Mbits/sec
                                 5412 Mbits/sec
 15] 5.0-10.0 sec 3226 MBytes
 15| 10.0-15.0 sec 2519 MBytes 4227 Mbits/sec
 15] 15.0-20.0 sec 1780 MBytes 2987 Mbits/sec
 15] 20.0-25.0 sec 1897 MBytes 3183 Mbits/sec
 15] 25.0-30.0 sec 2010 MBytes 3372 Mbits/sec
 15] 0.0-30.1 sec 14355 MBytes 3999 Mbits/sec
[ 15] MSS size 8948 bytes (MTU 8988 bytes, unknown interface)
RECEIVER END
```


3rd party BWCTL example

```
[benninge@ps ~]$ bwctl -s ps.nics.xsede.org -c ps.iu.xsede.org -t 30 -i 5 -f m
bwctl: Using tool: iperf
bwctl: 37 seconds until test results available
RECEIVER START
Server listening on TCP port 5047
Binding to local address 149.165.227.125
TCP window size: 0.08 MByte (default)
 15 local 149.165.227.125 port 5047 connected with 192.249.6.3 port 5047
                                 Bandwidth
 ID] Interval
                    Transfer
 15] 0.0- 5.0 sec 5480 MBytes 9193 Mbits/sec
[ 15] 5.0-10.0 sec 5892 MBytes 9886 Mbits/sec
[ 15] 10.0-15.0 sec 5898 MBytes 9896 Mbits/sec
 15] 15.0-20.0 sec 5898 MBytes 9896 Mbits/sec
 15] 20.0-25.0 sec 5898 MBytes 9896 Mbits/sec
 15] 25.0-30.0 sec 5898 MBytes 9896 Mbits/sec
 15] 0.0-30.0 sec 34989 MBytes 9777 Mbits/sec
[ 15] MSS size 8948 bytes (MTU 8988 bytes, unknown interface)
RECEIVER END
```


BWCTL Scheduled Testing

- With login access on one of the perfSONARs at an end site, you can schedule testing to gather a performance picture throughout the day and across several days.
- Scheduled testing to intermediate hops will offer view of path segments
- Test scheduling will typically be done by network engineering staff who admin the perfSONAR systems

Scheduled throughput testing

If performance is as expected...

Declare victory and celebrate!

If performance needs improvement...

- Check end host tuning
- NDT/NPAD
- Linux script to gather OS version, sysctl, lspci, and ifconfig parameters
 - http://staff.psc.edu/benninge/networking/ check net config.html
- May be complicated by login access issues
- Knowledge of TCP tuning, NIC configuration, and system hardware along with admin access will be needed to interpret the results and implement corrections.

MTU discovery and MTU mismatch

- Potential issue between XSEDE and non-XSEDE sites
- XSEDE network standard is 9000 byte MTU
- Non-XSEDE sites often use 1500 byte MTU
 - Implementation of Science DMZs doesn't guarantee 9000 byte MTU support throughout a site
- MTU discovery may not work correctly
 - Broken network infrastructure does not handle jumbo frames correctly
 - Firewalls blocking or limiting ICMP packets

MTU testing - tracepath

```
[benninge@perfsonar ~]$ tracepath www.iup.edu
    perfsonar.3rox.net (147.73.5.240)
                                                             0.126ms pmtu 9000
    gigapop-srv-default-9k.3rox.net (147.73.5.1)
                                                             1.065ms asymm 2
1:
    gigapop-srv-default-9k.3rox.net (147.73.5.1)
                                                             1.018ms asymm 2
    re-rtr.3rox-services.3rox.net (147.73.18.225)
                                                            13.035ms
    internet2-wash-3rox.net.internet2.edu (192.88.115.83) 7.494ms
 3:
4:
    204.238.76.65 (204.238.76.65)
                                                            10.061ms
    204.238.76.65 (204.238.76.65)
                                                            10.117ms pmtu 1500
5:
    204.238.76.58 (204.238.76.58)
                                                            11.266ms
    172.28.82.1 (172.28.82.1)
                                                            36.637ms
 6:
    dmz-hub.net.iup.edu (192.231.220.1)
                                                            36.448ms
    no reply
8:
```

Commonly available for the end user to run

MTU testing – ping with varying packet size

```
[benninge@perfsonar ~]$ ping -s 1472 -M do www.sru.edu -c 5
PING www.sru.edu (205.149.70.100) 1472(1500) bytes of data.
1480 bytes from blog.sru.edu (205.149.70.100): icmp seq=1 ttl=248 time=23.5 ms
1480 bytes from blog.sru.edu (205.149.70.100): icmp seq=2 ttl=248 time=23.3 ms
1480 bytes from blog.sru.edu (205.149.70.100): icmp seq=3 ttl=248 time=23.4 ms
1480 bytes from blog.sru.edu (205.149.70.100): icmp seq=4 ttl=248 time=23.2 ms
1480 bytes from blog.sru.edu (205.149.70.100): icmp seq=5 ttl=248 time=23.1 ms
--- www.sru.edu ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4028ms
rtt min/avg/max/mdev = 23.148/23.348/23.583/0.153 ms
[benninge@perfsonar ~]$ ping -s 1473 -M do www.sru.edu -c 5
PING www.sru.edu (205.149.70.100) 1473(1501) bytes of data.
From 204.238.76.65 icmp seq=1 Frag needed and DF set (mtu = 1500)
From perfsonar.3rox.net (147.73.5.240) icmp seq=2 Frag needed and DF set (mtu = 1500)
From perfsonar.3rox.net (147.73.5.240) icmp seq=2 Frag needed and DF set (mtu = 1500)
From perfsonar.3rox.net (147.73.5.240) icmp seq=2 Frag needed and DF set (mtu = 1500)
From perfsonar.3rox.net (147.73.5.240) icmp seq=2 Frag needed and DF set (mtu = 1500)
--- www.sru.edu ping statistics ---
1 packets transmitted, 0 received, +5 errors, 100% packet loss, time 1002ms
```

ping can typically be run by end user

MTU testing - BWCTL connects but fails

- Site network configuration does not handle jumbo frames correctly:
 - bwctl testing connects, but subsequently fails to run
 - Manual bwctl testing fails and reports. Example:

[benninge@perfsonar ~]\$ bwctl -t 10 -i 2 -f m -L 300 -c net-test.univ.edu

bwctl: Using tool: iperf

bwctl: 17 seconds until test results available

RECEIVER START

bwctl: exec_line: iperf -B net-test.univ.edu -s -f m -m -p 5293 -t 10 -i 2

bwctl: start_tool: 3582477743.167692

Server listening on TCP port 5293

Binding to local address net-test.univ.edu TCP window size: 0.08 MByte (default)

[15] local 111.222.33.44 port 5293 connected with 55.66.7.89 port 5293

bwctl: local tool did not complete in allocated time frame and was killed

bwctl: stop_exec: 3582477759.069982

Additional checks

- Check for firewalls or intentional rate limiting
- perfSONAR can work within a firewall but requires:
 - http://psps.perfsonar.net/toolkit/FAQs.html#Q6
 - http://fasterdata.es.net/performance-testing/perfsonar/ps-howto/ perfsonar-firewall-requirements/
- Check network equipment counters to verify traffic volume
- Note that link aggregation of multiple 1 GbEs or 10 GbEs still only support a single flow maximum of 1 Gbps or 10 Gbps
- Verify that the file transfer software is the best choice among the available options
- Check end system performance characteristics
- Often requires consultation with network engineering staff and computer systems staff

Outcomes

- Significantly improved the end-to-end network throughput
- Initial single stream iperf testing between the University and the XSEDE-SP2 site was 13.8 Mb/sec
- Tuning and reconfiguration increased the achievable throughput to 807 Mb/sec (1GbE connected hosts)

Outcomes

- Initial single stream iperf tests between the University and PSC was 220Mb/s
- Throughput improved to over 990 Mb/s on each parallel 1
 GbE stream following steps presented
- Transfers could completely consume the available 5 Gb/s bandwidth between the University site and PSC in testing
- Transferring 470 TB of data in 22 days yielded an overall average of 21.4 TB/day with a daily average of 2.0 Gb/s and a daily maximum of 4.2 Gb/s.

perfSONAR view of network problems

- The following slides represent problems identified from perfSONAR test results
- Observations of scheduled testing over time
 - Network engineer initially scheduled the tests
 - Users can view the test results graphed on the perfSONAR Measurement Archive

perfSONAR view of router/switch buffering

Src-Dst throughput
Dst-Src throughput

<- 1 month

1 month ->

Timezone: Standard Time)

Direction	Max throughput(bps)	Mean throughput(bps)	Min throughput(bps)
Src-Dst	9.81G	4.19G	371.46K
Dst-Src	9.81G	2.84G	6.93M

Show/Hide Link

For help on how to zoom in, zoom out, use the menu options and interact with the graph, click here

perfSONAR view of router/switch buffering

Outbound bwctl multi-Gb/s; inbound << 1 Gb/s

For help on how to zoom in, zoom out, use the menu options and interact with the graph, click here

perfSONAR OWAMP view of route

change Sonar One Way Latency

Scale Y axis from 0 Show Reverse Direction Data

Timezone: Daylight Time)

10W/Hide Link

r help on how to zoom in, zoom out, use the menu options and interact with the graph, click here

perfSONAR view of network problems

- Graph of BWCTL iperf traffic
 - Use tcpdump to collect the packet headers
 - tcptrace to process the tcpdump data
 - xplot to graph
- Generated and interpreted by network engineer

tcpdump/tcptrace/xplot view

TCP buffer size is too small to support bandwidth and RTT

tcpdump/tcptrace/xplot view

Sufficient TCP buffer size to support full 10 Gbps at the RTT

XSEDE Performance Use Cases

August 11th 2014, APAN38

Network Performance Tutorial

John Hicks – Internet2

