11 N.º de publicación: ES 2 050 069

21 Número de solicitud: 9201424

(5) Int. Cl.5: C07D 471/04, //A61K 31/505

C07D 261/20, (C07D 471/04

C07D 239/00, C07D 221/00)

(12)

SOLICITUD DE PATENTE

A1

22 Fecha de presentación: 10.07.92

(1) Solicitante/es: Vita-Invest, S.A. C. Fontsanta, 12-14 Sant Joan Despi, Barcelona, ES

43 Fecha de publicación de la solicitud: 01.05.94

(1) Inventor/es: Marquillas Olondriz, Francisco; Bosch Rovira, Anna; Dalmases Barjoan, Pere y Caldero Ges, José María

Fecha de publicación del folleto de la solicitud: 01.05.94

Agente: Ponti Grau, Ignacio

(6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a] pirimidin - 4 - ona.

10

15

30

60

La presente invención tiene por objeto un pro-cedimiento para la obtención de 3 - [2 - [4 - (6 -fluoro - 1,2 - benzisoxazol - 3 - il)piperidinoletil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirodo[1,2 - a]pirimidin - 4 - ona de fórmula 1.

compuesto que tiene aplicaciones farmacéuticas por sus propiedades antisicóticas. Antecedentes de la invención

En la literatura química se encuentra descritos procesos similares al primer paso de dicho proce-

La patente ES 500814 describe la reacción entre 4H - pirido[1,2 - a]pirimidin - 4 - onas de fórmula 2, donde W es un grupo saliente, con 4 - benzoilpiperidinas, así como con sus correspondientes oximas.

La patente ES 553419 describe la reacción de dichos compuestos de fórmula 2, donde W es un grupo saliente, con 3 - (4 - piperidil) - 1,2 - benzisoxazoles.

Fujita y col. (Ann. Rep. Sankyo Res. Lab., 1977, 29, 75 - 98, obtienen diversos derivados 2 con W = piperidino, morfolino y 1 - piperazinilos por reacción entre compuestos 2 con W = Cl, Br, OTs y las correspondientes piperidina, morfolina

y piperazinas, respectivamente. Dichos autores describen también la reacción de compuestos de fórmula $\underline{3}$, donde R = H y W= Cl con el mismo tipo de aminas mencionadas en el caso anterior para obtener compuestos 3 con . W = piperidino, morfolino y 1 - piperazinilos.

En las patentes EP 453042 y EP 368388 se menciona la alquilación de oximas de 4 - benzoilpiperidinas, así como de sus correspondientes 3 - (4 - piperidil) - 1,2 - benzisaxazoles, con compuestos de estructura 3, donde W es un grupo saliente y R es un sustituyente distinto de hidrógeno.

Respecto al segundo paso del procedimiento objeto de la presente invención, en la patente ES 500814 se describe la reacción entre compuestos de estructura 4 e hidrocloruro de hidroxilamina para dar las correspondientes oximas, pero

no se halla descrita para sus 6,7,8,9 - tetrahidro derivados correspondientes.

Finalmente, en las patentes EP 453042 y EP 368388 está descrita la etapa de ciclación de oximas a benzisoxazoles sobre compuestos de estructura 5, pero con R distinto de hidrógeno.

Descripción de la invención

El procedimiento para la obtención de 3[2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 1, objeto de la presente invención, consiste en hacer reaccionar un compuesto de fórmula Z - CH₂CH₂cionar un compuesto de formula 2 - Ch₂Ch₂ - L 6, donde Z es el radical 2 - metil - 4 - oxo - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 3 - ilo y L un grupo saliente como halógeno o un alquil o arilsulfonilo, con la 4 - (2,4 - difluorobenzoil)piperidina 7 para dar la 3 - [2 - [4 - (2,4 - difluorobenzoil)piperidino] etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a] pirimidin - 4 - ona 8 que por resción con hidrocloruro - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a] pirimidin - 4 - ona 8, que por reacción con hidrocloruro de hidroxilamina da la correspondiente oxima 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino) metil]piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 9, la cual se cicla en condiciones básicas a la 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil] - 2 - metil - 6, 7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 1. El procedimiento sintético se puede esquema-

El procedimiento sintético se puede esquematizar del siguiente modo:

.15

La N - alquilación de 4 - (2,4 - difluorobenzoil) piperidina 7 con las 6,7,8,9 - tetrahidro - 4H - pi-rido[1,2 - alpirimidin - 4 - onas 6 se lleva a cabo en un disolvente inerte tal como cloruro de metileno, acetonitrilo, N - metilpirrolidona o N,N - dimetilformamida en presencia de una base tal como un hidróxido, un carbonato o un bicarbonato alcalino y a una temperatura comprendida entre 50 y 100°C, preferentemente entre 70 y 90°C. Adicionalmente, se introduce ioduro potásico en el

medio de reacción cuando L = Cl.

La oximación del compuesto obtenido 3 - [2 La oximación del compuesto obtenido 3 - [2 - [4 - (2,4 - difluorobenzoil)piperidinoletil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona § se lleva a cabo por reacción con hidrocloruro de hidroxilamina según los procedimientos clásicos (ver, por ejemplo, "Advanced Organic Chemistry". J. March. 2 Edición Pág. 825). Se utiliza preferentemente etanol como disolvente y un hidróxido alcalino tal como hidróxido potásico, una amina tal como piridina hidróxido potásico, una amina tal como piridina o una mezcla de ambos, como catalizador de la reacción, llevándose a cabo esta a la temperatura de ebullición de la mezcla.

de ebulición de la mezcla.

Finalmente, la ciclación de 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino)metil]piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 9 a la 3 - [2 - [4 - (8 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil - 2 - metil] - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona

1 se realiza en un disolvente inerte y en presencia de una base apropiada como por ejemplo agua y un hidróxido, carbonato o bicarbonato alcalino o bien tetrahidrofurano o dioxano y un hidruro o alcóxido alcalino. Se utiliza preferentemente agua e hidróxido potásico. La reacción se lleva a cabo a temperaturas comprendidas entre 50 y 120°C, preferentemente a la temperatura de ebullición de la mezcla de reacción.

A título ilustrativo y no limitativo del pro-cedimiento de obtención descrito en la presente memoria, se detallan a continuación los ejemplos

3 - (2 - hidroxietil) - 2 - metil - 4H - pirido[1,2 -

o/primidin - 4 - ona

Una mezcla de 18,8 g (0,2 mol) de 2 - aminopiridina, 38,4 g (0,3 mol) de acetilbutirolactona y 8 g de ácido polifosfórico se calienta, con agitación, a 160°C durante 10 horas. Se deja enfriar a 80°C y se añaden 200 mL de agua. Se agita a dicha temperatura hasta la total disolución del crudo de reacción. Se deja enfriar a temperatura ambiente y se neutraliza con hidróxido sódico al 40%. La disolución acuosa obtenida se extrae en contínuo con 250 mL de cloruro de metileno. El cloruro de metileno se concentra a mitad de volu-men y se enfría a - 10°C. Precipita un sólido que se separa por filtración. Se obtienen 14,2 g; Rdto.: 34,8%, pf = 165,8 - 167,6°C. IR (pKBr): 3241 (t OH)/3081 (t CH ar)/2942, 2856 (t CH al)/1669 (t C = O)/1637 (t C = N)/1472/1044/777. HRMN CH₃). Ejemplo 2

Ejemplo 2
3 - (2 - hidroxietil) - 2 - metil - 6,7,8,9 - tetrahidro
- 4H - pirido [1,2 - a]pirimidin - 4 - ona.
5 g (0,0245 mol) de 3 - (2 - hidroxietil) - 2 metil - 4H - pirido[1,2 - a]pirimidin - 4 - ona se
disuelven en una mezcla de 25 mL de agua y 35
mL de etanol. Se añaden 1,3 g de Pd/c al 5%
(50% humedad) y se hidrogena la mezcla a temcentura ambiente y presión atmosfásica. Tras peratura ambiente y presión atmosférica. Tras 5 horas de reacción (absorbe unos 1200 mL de H2) se filtra el catalizador a través de decalite. Se elimina el disolvente a vacío. El residuo se tritura por agitación en éter isopropílico. Se filtra y se seca al aire. Se obtienen 3,5 g; Rdto.: 68,7%, pf = 132,3 - 134,8°C. IR (pKBr): 3252 (t OH)/2942, 2867 (t CH al)/1648 (t C = O, t OH)/2942, 2867 (t CH al)/1848 (t C = 0, t C = N)/ 1525/1044. HRMN (DMSO - d⁶, 200 MHz); 3,8 (t, 2H, CH₂)/3,55 (sc, 1H, OH)/3,45 (t, 2H, CH₂)/2,8 (t, 2H, CH₂)/2,6 (t, 2H CH₂)/2,2 (S, 3H, CH₃)/1,7 - 1,9 (sc, 4, CH₂CH₂). Ejemplo 3 S - (2 - cloroetil) - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 6 (L = CI)

- 4H - pirido[1,2 - a]pirimiain - 4 - ona o (L - Cl).

A una disolución de 2 g (0,0096 mol) de 3 - (2 - hidroxietil) - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a] primidin - 4 - ona en 10 mL de cloruro de metileno, se le añaden 2,3 g (0,0193 mol) de cloruro de tionilo y la mezcla se de control d agita a temperatura ambiente durante 24 horas.

Se concentra por destilación a vacío y el residuo se fracciona en carbonato sódico al 10% en agua y cloruro de metileno. La fase orgánica se seca con sulfato magnésico, se filtra y lleva a sequedad. El residuo sólido se tritura en heptano, se filtra y El residuo solido se triura en neptano, se nitra y seca al aire. Se obtienen 1,4 g de producto; Rdto.: 64%. pf.: $75.7 - 79.8^{\circ}$ C. IR (pKBr): 2955, 2900 (t CH al)/1638 (t C = O, t C = N)/1538. HRMN (CDCl₃, 200 MHz): 3,9 (t, 2H, CH₂)/3,75 (t, 2H, CH₂)/3,0 (t, 2H, CH₂)/2,9 (t, 2H, CH₂)/2,3 (s, 3H, CH₃)/1,8 - 2,1 (sc, 4H, CH₂CH₂). Ejemplo 4

Acido N - etozicarbonilisonipecótico
A una disolución de 50 g (0,3875 mol) de ácido isonipecótico en 500 mL de agua se añaden 50 isonipecótico en 500 mL de agua se añaden 50 g (0,4716 mol) de carbonato sódico. A continuación se añaden con agitación una disolución de 63 g (0,5806 mol) de cloroformiato de etilo en 600 mL de tolueno y la mezcla se agita vigorosamente durante 20 horas. Se deja reposar. Se separan las fases. La fase inorgánica se acidula con HCl (c) y se extrae con Cl₂CH₂. La fase orgánica resultante se seca con sulfato magnésico y se filtra. El disolvente se elimina por evaporación y el residuo aceitoso se seca a vacío a 90°C. Tras enfriamiento, el producto cristaliza en eu C. 1ras enmamiento, el producto cristaliza en el transcurso de varios días. Se obtienen 75,6 g; Rdto.: 97%. IR (film.evap.): 2700 - 3500 (t OH scido)/1728 (t C = O ácido)/1675 (t C = O carbamato)/1434.HRMN (CDCl₃, 60 MHz): 11,3 (s, 1H, OH)/4,1 (sc, 4H, CH₂O y CH₂ piper.)/2,2 - 3,2 (sc, 3H, piper.)/1,5 - 2,1 (sc, 4H, piper.)/1,3 (t, 3H, CH₃). Ejemplo 5

Cloruro del ácido N - etoxicarbonilisonipecótico Una disolución de 75,6 g de ácido N - eto-xicarbonilisonipecótico en 315 mL de cloruro de tionilo se agita durante 1 hora a temperatura ambiente. Se destila el cloruro de tionilo a presión atmosférica y a continuación el residuo a 129°C/4 mmHg. Se obtienen 65,1 de producto; Rdto:: 78,8%. IR (film): 2955, 2855 (t, CH al)/1788 (t C = O COCI)/1694 (t C = O carbamato)/1433/1222/950/755.

Ejemplo 6

4 - (2,4 - difluorobenzoil) - 1 - etozicarbonilpipe-ridina.

The series of th

Clorhidrato de 4 - (2,4 - difluorobenzoil)piperidi-

na 7.

Una mezcla de 23 g (0,0774 mol) de 4 - (2,4 - difluorobenzoil) - 1 - etoxicarbonilpiperidina y 245 mL de ácido clorhídrico concentrado se calienta, con agitación, a 100°C durante 10 horas. Transcurrido dicho tiempo, el crudo de reacción se deja enfriar y se lava con 3 porciones de 50 mL de cloruro de metileno. La fase acuosa se concentra por calefacción a vacío, se añaden 200 mL de isopropanol y se concentra de nuevo. Se añaden 200 mL más de isopropanol y se concentra una tercera vez. Finalmente se añaden 200 mL de tercera vez. Finalmente se añaden 200 mL de isopropanol y se agita hasta la formación de un precipitado. El sólido se recoge por filtración. Se obtienen así 19,4 g de clorhidrato de 4 - (2,4 - difluorobenzoil)piperidina; Rdto.: 96%. pf = 216 - 220°C. IR (pKBr): 2922, 2811, 2711, 2488 (t C = O)/1605, 1494 (t C = C ar). HRMN (CDCl₃, 200 MHz): 10,0 (sa, 2H, NH2)/7,7 - 8,0 (sc, 1H, ar)/6,6 - 7,1 (sc, 2H, ar)/2,7 - 4,0 (sc, 5H, piper.)/1,6 - 2,2 (sc, 4H, piper.)/1,8 (sc, 2H, piper.)/1 piper.). Ejemplo 8

Diclorhidrato de 3 - [2 - [4 - (2,4 - difluoroben-zoil)piperidino] - etil] - 2 - metil - 6,7,8,9 - te-trahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona

Una mezcla de 29,2 g (0,1116 mol) de clorhidrato de 4 - (2,4 - difluorobenzoil)piperidina, 25,3 g (0,1117 mol) de 3 - (2 - cloroetil) - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirilo - [1,2] 19,6 g (0,2333 mol) de bicarbonato sódico y 0,25 g (0,0015 mol) de IK se calienta a reflujo durante 10 horas. Finalizada la reacción, se añaden 200 mL de agua y se agita 30 min. La mezcla se ex-trae con 200 mL de cloruro de metileno. La fase orgánica (superior) se separa y seca con sulfato magnésico anhidro. Se satura entonces con HCl magnésico anhidro. Se satura entonces con HCl (g) con enfriamiento externo (baño de hielo). El sólido formado se filtra y seca. Se obtienen 34,4 g de diclorhidrato de 3 - [2 - [4 - [2,4 - difluorobenzoil)piperidino]etil] - 2 - metil - 6,7, 8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona; Rdto.: 63,1%. pf > 270°C. IR(pKBr) 3377, 2944, 2511 (t NH clorhidrato)/1683 (t C = O)/1605 (t C = C ar). HRMN (D₂O, 200 MHz): 7,85 - 8,0 (sc. 1H, ar)/7,05 - 7,2 (sc. 2H, ar)/4,0 (t, 2H, CH₂)/3,85 (sc. 2H, CH₂)/3,65 (sc. 1H, CH)/3,2 - 3,35 (sc. 4H, piper.)/3,2 (t, 2H, CH₂)/2,9 - 3,1 (sc. 2H, piper.)/2,45 (s. 3H, CH₃)/2,2 - 2,4 (sc. 2H, piper.)/1,8 - 2,1 (sc. 6, piper).

Análisis elemental cuantitativo para Análisis elemental cuantitativo para $C_{23}H_{29}Cl_2F_2 N_3O_2 (PM = 488,40)$:

% Calculado:

C - 56,56 H - 5,98 Cl - 14,52 F - 7,78 N - 8,60 % Hallado:

C - 56,49 H - 6,10 Cl - 14,48 F - 8,02 N - 8,52

Ejemplo 9
3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidro-zimino)metil]piperidino] etil] - 2 - metil - 6,7,8,9
- tetrahidro - 4H - pirido[1,2 - a] pirimidin - 4

ona) 9.
Se mezcla una disolución de 7,0 g (0,0143 mol) de diclorhidrato de 3 - [2 - [4 - (2,4 - diflurobenzoil) - piperidino]etil] - 2 - metil - 6,7,8,9 - tetra-

hidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona en 70 mL de piridina con otra de 5,4 g (0,0777 mol) de clorhidrato de hidroxilamina en 100 mL de etanol. A la disolución resultante se añaden 1,6 g (0,0286 mol) de hidróxido potásico y a continuación se refluye durante 10 horas. Se lleva a sequedad por destilación a presión reducida. El residuo se frac-ciona en 100 mL de H₂O y 100 mL de Cl₂CH₂. La fase orgánica se lava con agua (2 x 50 mL). Se seca con sulfato magnético anhidro y se lleva a sequedad. El residuo se recristaliza de acetato de etilo. dad. El residuo se recristaliza de acetato de etilo. Se obtienen 4,7 g de 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino)metil]piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona; Rdto.: 76,2%. pf: 172 - 182°C. IR (pKBr): 2944, 2800 (t CH al)/1650 (t C = 0) y t C = N)/1538/966. HRMN (CDCl₃, 200 NMz): 10,8 (sc, 1H, N - OH)/7,2 (sc, 1H, ar)/6,9 (sc, 2H, ar)/3,9 (t, 2H, CH₂)/3,1 (sc, 2H, CH₂)/2,8 (t, 2H, CH₂)/2,7 (sc, 2R, piper.)/2,45 (sc, 3H, piper.)/2,2 (sc, 3H, CH₃)/1,7 - 2,1 (sc, 10H, piper). (sc, 3H, paper). Análisis elémental cuantitativo para $C_{23}H_{28}F_2N_4O_2$ (PM = 430,50):

% Calculado: C-64,17 H-6,56 F-8,83 N-13,01 C-64,32 H-6,42 F-8,71 N-13,12 % Hallado:

Ejemplo 10

3 - [2 - [4 - [6 - fluoro - 1,2 - benzisozazol - 3 - il)piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 1.

A una suspensión de 40 mg (0,9166 mol) de hidruro sódico al 55% en aceite en 2 mL de THF se añaden 0,1089 g (0,2532 mol) de 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino)metil]piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona y la mercla se refluye durante una hora. Se ona y la mezcla se refluye durante una hora. Se ona y la mezcia se renuye durante una nora. Se añaden 5 mL de agua y se extrae con 2 porcio-nes de 10 mL de cloruro de metileno. La fase orgánica se seca con sulfato magnésico anhidro y el disolvente se elimina por destilación a presión reducida. Se obtiene 88 mg de 3 - [2 - [4 - (6 -fluoro - 1,2 - benzisoxazol - 3 - il)piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido -

[1,2 - a]pirimidin - 4 - ona; Rdto:: 84,7%. pf: 170°C. IR (pKBr): 3060 (t CH ar)/2944; 2800 (t, CH al)/1650 (t C = O y t C = N)/1527/1122. HRMN (CDCl₃, 200 HMz): 7,70 - 7,77 (d x d, 1H, ar)/7,21 - 7,28 (d x d, 1H, ar)/7,0 - 7,1 (d x d x d, 1H, ar)/3,9 (t, 2H, CH₂)/3,0 - 3,3 (sc, 3H, piper.)/2,85 (t, 2H, CH₂)/2,75 (sc, 2H piper.)/2,55 (sc, 2H, piper.)/2,3 (s, 3H, CH₃)/2,1 (sc, 4H, piper.)/1,9 (sc, 6H, piper.). Análisis elemental cuantitativo para Combor FN (2 of PM = 410.49): $C_{23}H_{27}FN_4O_2$ (PM = 410,49):

% Calculado: C-67,30 H-6,63 F-4,63 N-13,65 % Hallado: C-67,16 H-6,70 F-4,57 N-13,72

Ejemplo 11
3 - [2 - [4 - [6 - fluoro - 1,2 - benzisozazol - 3 - il]piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona 1.
1 g (0,0023 mol) de 3 - [2 - [4 - [1 - (2,4 - diffurorofenil) - 1 - (hidroximino)metil]piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona se adiciona sobre una diso-- alpirimidin - 4 - ona se adiciona sobre una diso-lución de 1 g de KOH en 10 mL de agua. La mez-cla se refluye durante una hora. Se deja enfriar y se extrae con dos porciones de 10 mL de cloruro de metileno. La fase orgánica se seca y el disolvente se elimina a presión reducida. Se obtienen 0,75 g de 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona; Rdto.: 78,7%. pf=170°C. IR (pKBr):3060 (t CH al)/1944, 2800 (t CH al)/1650 (t C = O y t C = N)1527/1122. HRMN (CDCl₃, 200 HMz): 7,70 - 7,77 (d x d, 1H, ar)/7,21 - 7,28 (d x d, 1H, ar)/7,0 - 7,1 (d x d x d, 1H, ar)/3,9 (t, 2H, CH₂)/3,0 - 3,3 (sc, 3H, piper.)/2,85 (t, 2H, CH₂)/2,75 (sc, 2H, piper.)/2,25 (sc, 2H, piper.)/2,3 (s, 3H CH₃)/2,1 (sc, 4H, piper.)/1,9 (sc, 6H, piper.). Análisis elemental cuantitativo para C₂₃H₂₇FN₄O₂ (PM = 410,49): se extrae con dos porciones de 10 mL de cloruro

% Calculado: C-67,30 H-6,63 D-4,63 N-13,65 C-67,42 H-6,59 D-4,68 N-13,60 % Hallado:

55

25

55

60

65

REIVINDICACIONES

1. Procedimiento para la obtención de 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona, que consiste en hacer reaccionar un compuesto de fórmula Z - CH₂CH₂ - L, donde Z es el radical 2 - metil - 4 - oxo - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 3 - ilo y L un grupo saliente como halógeno o un alquil o arilsulfonilo, con la 4 - (2,4 - difluorobenzoil)piperidina para dar la 3 - [2 - [4 - (2,4 - difluorobenzoil) - 1 - piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona, que por reacción con hidrocloruro de hidroxilamina da la correspondiente oxima 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino) metil]piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona, la cual se cicla en condiciones básicas a la 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido [1,2 - a]pirimidin - 4 - ona.

2. Procedimiento para la obtención de 3 -

2. Procedimiento para la obtención de 3[2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona,
según la reivindicación 1, caracterizado porque
la obtención de 3 - [2 - [4 - (2,4 - difluorobenzoil)piperidino[etil] - 2 - metil - 6, 7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona, se
lleva a cabo haciendo reaccionar un compuesto
de fórmula Z - CH₂ - CH₂ - L, donde Z y L tienen el significado anteriormente descrito, con la
4 - (2,4 - difluorobenzoil)piperidina en un disolvente inerte tal como cloruro de metileno, acetonitrilo, N - metilpirrolidona o N,N - dimetilformamida, de preferencia acetonitrilo, en presencia de
una base de elección entre un carbonato, bicarbonato o hidróxido alcalino de preferencia bicarbonato sódico y adicionalmente de ioduro potásico

en caso de que L = Cl.

3. Procedimiento para la obtención de 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino[etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]ona, según las reivindicaciones 1 y 2, caracterizado porque la reacción entre el compuesto de formula Z - CH₂CH₂ - L, donde Z y L tienen el significado anteriormente descrito, con la 4 - (2,4 - difluorobenzoil)piperidina, se efectúa a una temperatura comprendida entre 20 y 100°C, de preferencia la temperatura de reflujo de la mezcla de reacción, cuando el disolvente elegido es

de bajo punto de ebullición tal como ocurre en el caso del cloruro de metileno o acetonitrilo, y preferentemente entre 50 y 80°C, cuando el disolvente es de alto punto de ebullición como en el caso de la N - metilpirrolidona o N,N - dimetilformamida.

4. Procedimiento para la obtención de 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona, según la reivindicación 1, caracterizado porque la reacción entre la 3 - [2 - [4 - (2,4 - difluoro-benzoi))piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona y el clorhidrato de hidroxilamina se lleva a cabo en un disolvente polar inerte tal como un alcohol de bajo peso molecular, de preferencia etanol, y en presencia de una base orgánica, tal como una amina terciaria o heterocíclica, de preferencia piridina, o una base inorgánica tal como un carbonato o hidróxido alcalino, de preferencia hidróxido potásico o bien una mezcla de ambas, de preferencia una mezcla de piridina e hidróxido potásico y a la temperatura de reflujo de la mezcla.

5. Procedimiento para la obtención de 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - alpirimidin - 4 - ona, según la reivindicación 1, caracterizado porque la ciclación de 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino)metil]piperidino] - etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a] - pirimidin - 4 - ona se lleva a cabo en un disolvente inerte prótico, de preferencia agua, en cuyo caso la reacción se efectua en presencia de una base de elección entre un carbonato o un hidróxido alcalino, de preferencia hidróxido sódico o potásico, o bien en un disolvente inerte aprótico, en cuyo caso la base se elige entre un hidruro o un alcóxido alcalino, de preferencia hidruro sódico.

caso la base se elige entre un hidruro o un alcóxido alcalino, de preferencia hidruro sódico.

6. Procedimiento para la obtención de 3 - [2 - [4 - (6 - fluoro - 1,2 - benzisoxazol - 3 - il)piperidino]etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a]pirimidin - 4 - ona, según la reivindicación 1, caracterizado porque la ciclación de 3 - [2 - [4 - [1 - (2,4 - difluorofenil) - 1 - (hidroximino)metil]piperidino] - etil] - 2 - metil - 6,7,8,9 - tetrahidro - 4H - pirido[1,2 - a] - pirimidin - 4 - ona se lleva a cabo a una temperatura comprendida entre 50 y 150°C, de preferencia la temperatura de reflujo de la mezcla de reacción.

① ES 2 050 069

21 N.º solicitud: 9201424

22) Fecha de presentación de la solicitud: 10.07.92

32) Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(51) Int. Cl. ⁵ :	C07D 471/04 // A61K 31/505, C07D 261/20, (C07D 471/04, 239:00, 221:00)		
		•	

DOCUMENTOS RELEVANTES

Categoría	Documentos citados					Reivindicaciones afectadas
Y	ES-A-8705881 (JANSSEN PHA * Todo el documento *	RMACEUTICA)				1-6
γ .	EP-A-368388 (JANSSEN PHAR * Todo el documento *	RMACEUTICA)	٠		· · .	1-6
Y	EP-A-453042 (JANSSEN PHAR * Todo el documento *	RMACEUTICA)				1-6
· A	EP-A-110435 (JANSSEN PHAR	RMACEUTICA)				1-6
					· .	
· ·			.•			
•						
X: de Y: de m	egoría de los documentos citado e particular relevancia e particular relevancia combinado con isma categoría dieja el estado de la técnica		P: pu de E: do	la solicitud	cha de prioridad y la c pero publicado desp	
	resente informe ha sido realizad para todas las reivindicaciones	lo		ara las reivindic	aciones nº:	
Fecha d	le realización del informe 23.03.94			iminador idez Fernández		Página 1/1