微积分(2)期末考题(A)答案

一. 填空题 (每空3分,共15空)(请将答案直接填写在横线上!)

1. 交換累次积分次序
$$\int_{-1}^{0} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx + \int_{0}^{1} dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) dx = ______.$$

答案:
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y) dy$$

2. 设曲线 L 的参数方程为 $x=1-\sin t$, $y=1-\sqrt{2}\cos t$, $0 \le t \le 2\pi$,则第一类曲线积

分
$$\int_{l} \sqrt{x^2 - 2x + 2} \, dl = \underline{\qquad}$$

答案: 3π

3. 设 S 为单位球面 $x^2 + y^2 + z^2 = 1$, 则 $\iint_S (x+1)^2 dS =$ _______。

答案:
$$\iint_{S} (x+1)^{2} dS = \iint_{S} (x^{2}+1) dS = \iint_{S} (x^{2}+1) dS$$

$$= \frac{1}{3} \iint_{S} (x^{2}+y^{2}+z^{2}) dS + \iint_{S} dS = \frac{16}{3} \pi$$

答案: 1+x+z+xy

5.
$$f(x, y, z) = e^{x+y+z}$$
, $y = y$ $gradf = y$, $rot(gradf) = y$

答案:
$$e^{x+y+z}(1,1,1)$$
, **0**

6. 设 函 数 $f(x) = x^2 + x + 2$ 在 [0,2) 上 的 Fourier 展 开 为

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(n\pi x) + b_n \sin(n\pi x)$$
, $\mathbb{M} S(0) = \underline{\hspace{1cm}}$

答案: 5

7. 三重积分
$$\iiint_{x^2+y^2+z^2\leq 1} x^{99} y^{100} z^{101} dx dy dz = \underline{\hspace{1cm}}.$$

答案: 0

答案:
$$(e^2-3)/2$$

答案:
$$\sum_{n=0}^{+\infty} (-1)^{n+1} (x-2)^n$$

10. 曲线积分
$$\int_{L^{+}} \frac{x^{\lambda} dy - y dx}{x^{2} + y^{2}} = 0$$
 对上半平面的任意光滑闭曲线 L 都成立,则常数

11.
$$S^+$$
 为球面 $x^2 + y^2 + z^2 = 1$ 的外侧,则

$$\bigoplus_{S^+} xdy \wedge dz + \cos ydz \wedge dx + dx \wedge dy = \underline{\qquad}$$

答案:
$$\frac{4}{3}\pi$$

答案:
$$x-\frac{1}{3\cdot 3!}x^3+\frac{1}{5\cdot 5!}x^5+\cdots+(-1)^{n+1}\frac{1}{(2n-1)\cdot (2n-1)!}x^{2n-1}+\cdots$$

13. 设幂级数
$$\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$$
 在 $x=3$ 处收敛, 且当 $x<3$ 时发散, 则 $a=$ _______。

答案: 4

14. 设
$$D = \{(x, y), 0 \le x \le 1, x^2 \le y \le 1\}$$
, 则 D 的形心横坐标 $\overline{x} = \underline{\hspace{1cm}}$ 。 答案: $\frac{3}{8}$

二. 计算题 (每题 10 分, 共 40 分)

1. 设
$$S^+$$
 为锥面 $z=\sqrt{x^2+y^2}$ $(0\leq z\leq 1)$ 的下侧,求 $\iint_{S^+}(x+y)dy\wedge dz+(2y-z)dz\wedge dx$ 。

解: 加平面: $S_1^+: z = 1, x^2 + y^2 \le 1$, 上侧为正,

$$\iint_{S^{+}+S_{1}^{+}} (x+y)dy \wedge dz + (2y-z)dz \wedge dx = 3 \iiint_{\sqrt{x^{2}+y^{2}} \le z \le 1} dxdydz = \pi$$

$$\iint_{S_1^+} (x+y)dy \wedge dz + (2y-z)dz \wedge dx = 0$$

故
$$\iint_{S^+} (x+y)dy \wedge dz + (2y-z)dz \wedge dx = \pi.$$

2. 求两个球体 $x^2 + y^2 + z^2 \le 1$ 、 $x^2 + y^2 + (z-2)^2 \le 4$ 相交部分的体积。

解:建立直角坐标系,使得两个球体可表为:

小球: $x^2 + y^2 + z^2 \le 1$, 大球: $x^2 + y^2 + (z - 2)^2 \le 4$ 。于是两个球面的交线方程为

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x^2 + y^2 + (z - 2)^2 = 4 \end{cases}$$
解之得
$$\begin{cases} x^2 + y^2 = 15/16 \\ z = 1/4. \end{cases}$$
于是所求立体体积为

$$\begin{split} \iint\limits_{x^2+y^2 \leq 15/16} &(z_1(x,y)-z_2(x,y)) dx dy = \iint\limits_{x^2+y^2 \leq 15/16} [\sqrt{1-x^2-y^2}-(2-\sqrt{4-x^2-y^2})] dx dy \\ &= \iint\limits_{x^2+y^2 \leq 15/16} (\sqrt{1-x^2-y^2}+\sqrt{4-x^2-y^2}) dx dy - 2\pi \cdot 15/16 \\ &= \int\limits_{0}^{2\pi} d\theta \int\limits_{0}^{\sqrt{15}/4} (\sqrt{1-r^2}+\sqrt{4-r^2}) r dr - \frac{15\pi}{8} \\ &= \pi \int\limits_{0}^{15/16} (\sqrt{1-s}+\sqrt{4-s}) ds - \frac{15\pi}{8} = \frac{13\pi}{24} \ . \end{split}$$

- 3. 设 $f(x) = \sin^2(x^2)$,
 - (I) 求 f(x) 在 $x_0 = 0$ 点的幂级数展开;
 - (II) $\dot{x} f^{(n)}(0), n = 1, 2, 3, \dots$

$$\mathfrak{M}: (1) \ f(x) = \frac{1}{2} \left[1 - \cos(2x^2) \right] = \frac{1}{2} \left[1 - \left(1 - \frac{2^2}{2!} x^{2 \cdot 2} + \frac{2^4}{4!} x^{2 \cdot 4} + \dots + (-1)^n \frac{2^{2n}}{(2n)!} x^{4n} + \dots \right) \right]$$

$$= \frac{2}{2!} x^{2 \cdot 2} - \frac{2^3}{4!} x^{2 \cdot 4} + \dots + (-1)^{n+1} \frac{2^{2n-1}}{(2n)!} x^{4n} + \dots$$

(II)
$$f^{(4n)}(0) = (-1)^{n+1} \frac{2^{2n-1} \cdot (4n)!}{(2n)!}$$

 $f^{(m)}(0) = 0$, m不能被4整除。

解: 级数
$$\sum_{n=1}^{+\infty} ne^{-nx}$$
 在 $[\ln 2, \ln 3]$ 一致收敛,故

$$\int_{\ln 2}^{\ln 3} f(x) dx = \int_{\ln 2}^{\ln 3} \left(\sum_{n=1}^{+\infty} n e^{-nx} \right) dx = \sum_{n=1}^{+\infty} \int_{\ln 2}^{\ln 3} n e^{-nx} dx$$
$$= \sum_{n=1}^{+\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right) = 1 - \frac{1}{2} = \frac{1}{2}$$

三. 证明题

1. $(8\, \odot)$ (I) 2π 为周期的函数 f(x) 在 $[-\pi,\pi]$ 上的定义为 $f(x)=\cos\alpha x$ (α 不是整数),将其展成 Fourier 级数(提示: $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$);

(II) 利用 (I) 证明:
$$\cot x = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2 \pi^2}, \quad x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$$

解: (I)

$$a_n = \frac{2}{\pi} \int_0^{\pi} \cos \alpha x \cos nx dx = \frac{1}{\pi} \int_0^{\pi} \left[\cos(\alpha - n)x + \cos(\alpha + n)x \right] dx$$
$$= \frac{1}{\pi} \left[\frac{\sin(\alpha - n)\pi}{(\alpha - n)} + \frac{\sin(\alpha + n)\pi}{(\alpha + n)} \right] = \frac{(-1)^n}{\pi} \frac{2\alpha \sin \alpha \pi}{\alpha^2 - n^2}, \quad n = 0, 1, 2, \dots$$

$$b_n = 0, \quad n = 1, 2, \dots,$$

$$\cos \alpha x = \frac{\sin \alpha \pi}{\pi} \left[\frac{1}{\alpha} + \sum_{n=1}^{+\infty} (-1)^n \frac{2\alpha}{\alpha^2 - n^2} \cos nx \right], \qquad x \in [-\pi, \pi]$$

$$\cot x = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2 \pi^2}, \quad x \neq k\pi, k = 0, \pm 1, \pm 2, \dots$$

2. (7 分) 设函数 $P(x,y), Q(x,y) \in C^{(1)}(\mathbb{R}^2)$, 在以任意点 (x_0,y_0) 为中心,任意正数 r 为 半径的上半圆周 Γ 上的第二类曲线积分 $\int_{\Gamma} P(x,y) dx + Q(x,y) dy = 0$ 。求证:在 \mathbb{R}^2 上有 $P(x,y) \equiv 0$, $\frac{\partial Q}{\partial x}(x,y) \equiv 0$ 。 证明:

加上直径L,记半圆域为D。

$$\int_{\Gamma} P(x, y) dx + Q(x, y) dy = 0$$

$$\int_{\Gamma+L} P(x, y) dx + Q(x, y) dy = \int_{\partial D} P(x, y) dx + Q(x, y) dy$$
$$= \int_{L} P(x, y) dx + Q(x, y) dy$$

由 Green 公式,

$$\int_{\partial D} P(x, y) dx + Q(x, y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)_{(\xi, \eta)} \frac{1}{2} \pi r^{2}$$

其中 (ξ,η) 为D中一点。而

$$\int_{L} P(x, y) dx + Q(x, y) dy = \int_{x_0 - r}^{x_0 + r} P(x, y_0) dx = P(\zeta, y_0) 2r$$

其中 $\varsigma \in (x_0 - r, x_0 + r)$ 。两者相等,

$$\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)_{(\xi, y)} \frac{1}{2} \pi r^2 = P(\zeta, y_0) 2r$$

$$\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)_{(\xi,\eta)} \frac{1}{2}\pi r = 2P(\zeta, y_0)$$

令 $r \to 0$, $P(x_0, y_0) = 0$ 。 由 $(x_0, y_0) \in \mathbb{R}^2$ 的任意性, $P(x, y) \equiv 0$, $(x, y) \in \mathbb{R}^2$ 。

$$\frac{\partial Q}{\partial x}(x, y) \equiv 0$$
, $(x, y) \in \mathbb{R}^2$.