Лабораторная работа №2

"Задача о погоне"

Выполнил: Кармацкий Никита Сергеевич

НФИбд-01-21

Цель работы:

Изучить основы языков программирования Julia и OpenModelica. Освоить библиотеки этих ЯП, которые используются для построения графиков и решения ДУ. Так же надо решить задачу о погоне.

Задачи:

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки

Основные этапы выполнения работы

1. Математическая модель

Для начала постороили математическую модель для нашего варианта задачи. Зададим начальные значения. Катер обнаруживает лодку на расстояние 11,5 км от него. Скорость катера в 3,5 раза больше.

a = 11,5

n = 3.5

Будем вести отсчет в полярных координатах. Полюс у нас это место обнаружения браконьеров.

Чтобы найти расстояние x(расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время катер и лодка окажутся на одном расстоянии от полюса. За это время лодка пройдет x, а k+x катер (или k-x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или (k+x)/3.5v (во втором случае (k-x)/3.5v). Так как время одно и то же, то эти величины одинаковы. Составим уравнения и найдем растояние x

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на радиальную и тангенциальную скорости

$$egin{align} v_r &= rac{\mathrm{d}r}{\mathrm{d}t} \ v_ au &= rrac{\mathrm{d} heta}{\mathrm{d}t} = rac{2r}{3*\sqrt{5}} \ \end{array}$$

2. Скачиваем Julia себе на устройство

Для создания траектории движения будем использовать ЯП Julia, но для начало установим все нужное для нормального функционирования.

Рис.1 Установка Julia

3. Пишем код для построения траектории на Julia

```
lab2.jl lab2.txt lab2.jl × lab2.txt

1 using Plots
2 using DifferentialEquations
3
4 # расстояние от лодки до катера
5 const a = 11.5
6 const n = 3.5
7
8 # расстояние начала спирали
9 const r0 = a/(n + 1)
10 const r0_2 = a/(n - 1)
```

Рис.2 Код для траектории

4. Компилируем файл

Для компиляции файла будем использовать команду: julia lab2.jl

ирование/mathmod/labs/lab2/ nskarmatskiy@nskarmatskiy-M1050:~/work/study/2023-2024/Математическое моделирова ние/mathmod/labs/lab2\$ julia lab2.jl

Рис.3 Начало компиляции кода

5. Просматриваем результаты работы программы

Первый рисунок - первый случай в задаче о погоне Второй рисунок - второй случай в задаче о погоне

Вывод:

Мы изучили основы языков программирования Julia и OpenModelica. Освоили библиотеки этих ЯП, которые используются для построения графиков и решения ДУ. Так же надо решили задачу о погоне.

Спасибо за внимание