2 Functions on Complex Plane

ENSY SILVER¹

Monday 6th July, 2020

 $^{^{1}}$ Thanks to my family, my friend and freedom.

1 Continuous functions

The continuity of functions on the complex plane is analogous to the continuity of functions on the real line. Similarly, we have the theorem.

Theorem 1.1. A continuous function on a compact set Ω is bounded and attains a maximum and minimum on Ω .

2 Holomorphic functions

Let Ω be an open set in \mathbb{C} and f a complex-valued function on Ω . The function f is **holomorphic at the point** $z_0 \in \Omega$ if the quotient

$$\frac{f(z_0+h)-f(z_0)}{h}\tag{1}$$

converges to a limit when $h \to 0$. The limit of the quotient is called the **derivative of** f **at** z_0 and denoted by $f'(z_0)$

$$f'(z_0) = \frac{f(z_0 + h) - f(z_0)}{h}$$

The function f is said to be **holomorphic on** Ω if f is holomorphic at every point of Ω . If C is a closd subset of \mathbb{C} , we say that f is **holomorphic on** C if there exists a open set Ω that $C \subset \Omega$ and f is holomorphic on Ω .

Moreover, every holomorphic function is analytic and has infinitely derivatives.

Remark. Holomorphic is defined by an open set because we need to promise that every holomorphic point is an interior point.

It is clear from 1 that a function f is holomorphic at $z_0 \in \Omega$ if and only if there exists a complex number a such that

$$f(z_0 + h) - f(z_0) - ah = h\psi(h)$$
(2)

where ψ is defined for all small h and $\lim_{h\to 0} \psi(h) = 0$. Of course, we have $a = f'(z_0)$. In analogy with the situation in \mathbb{R} , we have the following proposition.

Proposition 2.0.1. If f, g are holomorphic in Ω , then:

- 1. f+g is holomorphic in Ω and (f+g)'=f'+g'.
- 2. fg is holomorphic in Ω and (fg)' = f'g + fg'.
- 3. If $g(z_0) \neq 0$, then f/g is holomorphic at z_0 and

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Moreover, if $f: \Omega \to U$ and $g: U \to \mathbb{C}$ are holomorphic, the chain rule holds

$$(g \circ f)'(z) = g'(f(z))f'(z)$$

3 Derivatives of holomorphic functions

From 1, we know that $(f(z_0) + h - f(z_0))/h \to f'(z_0)$ whenever h = x or h = iy, hence we deduce

$$f'(z_0) = \lim_{h \to 0} \frac{f(x_0 + x, y_0) - f(x_0, y_0)}{x} = \frac{\partial f}{\partial x}$$
(3)

$$f'(z_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + y) - f(x_0, y_0)}{iy} = \frac{1}{i} \frac{\partial f}{\partial y}$$
(4)

Writing f = u + iv, we find that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (5)

5 are called the **Cauchy-Riemann** equations, which link real and complex analysis. We can define two differential operators

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{1}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$$
 and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{1}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$

Proposition 3.0.1. If f is holomorphic at z_0 , then

$$\frac{\partial f}{\partial \overline{z}} = 0$$
 and $f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0)$

Also, if we write F(x,y) = f(z), then F is differentiable in the sense of real variables, and

$$\det J_F(x_0, y_0) = |f'(z_0)|^2$$

Proof.

$$\begin{split} \frac{\partial f}{\partial z} &= \frac{\partial u}{\partial z} + i \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} &= \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{1}{i} \frac{\partial u}{\partial y} \right) \\ \frac{\partial v}{\partial z} &= \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{1}{i} \frac{\partial v}{\partial y} \right) \end{split}$$

Applying 5, we have proved that $\frac{\partial u}{\partial z}=i\frac{\partial v}{\partial z}$, and $\frac{\partial f}{\partial z}=2\frac{\partial u}{\partial z}$. Applying Cauchy-Riemann equations, we deduce that

$$\det J_F = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left|2\frac{\partial u}{\partial z}\right|^2 = |f'(z_0)|^2$$

Theorem 3.1. Suppose f = u + iv is a complex-valued function defined on an open set Ω . If u and v are continuously differentiable and satisfy the Cauchy-Riemann equations on Ω , then f is holomorphic on Ω and $f'(z) = \partial f/\partial z$.

Right now, we have known the necessity and sufficiency of a holomorphic function.

4 Power series

In general, a **power series** is an expansion of the form

$$\sum_{n=0}^{\infty} a_n z^n \tag{6}$$

An important property of series is absolute convergence, in order to test it, we must investigate

$$\sum_{n=0}^{\infty} |a_n| |z|^n$$

In analogy with the situation on the real line, we have two theorems.

Theorem 4.1. Given a power series $\sum_{n=0}^{\infty} a_n z^n$, there exists $0 \le R \le \infty$ such that:

- 1. If |z| < R the series converges absolutely.
- 2. if |z| > R the series diverges

Moreover, if we use the convention that $1/0 = \infty$ and $1/\infty = 0$, the R is given by Hadamard's formula[1]

$$\frac{1}{R} = \lim \sup |a_n|^{1/n}$$

Theorem 4.2. The power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ define so holomorphic function in its disc of convergence. The derivative of f is also a power series obtained by differentiating term by term the series for f

$$f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$$

Moreover, f' has the same radius of convergence as f.

Corollary 4.2.1. A power series is infinitely complex differentiable in its disc of convergence, and the derivatives are als power series obtained by termwise differentiating.

Remark. A function f defined on an open set Ω is analytic at a point z_0 if there exists a power series centered at z_0 , with positive radius of convergence. If f has power series expansion at every point in Ω , we say that f is analytic on Ω .

5 Curves on complex plane

A parametrized curve is a function (t) which maps a closed interval $[a,b] \subset \mathbb{R}$ to the complex plane. We shall impose regularity conditions on

the parametrization which are always verified in the situations that occur in this book. We say that the curve is **smooth** if z'(t) exists and is continuous on [a,b], ans $z'(t) \neq 0$ for $t \in [a,b]$. At the points t=a,b, the quantities z'(a), z'(b) are interpreted as the one-sided limite.

Moreover, we claim that the parametrized curve is **piecewise-smooth** if z is continuous on [a, b] and if there exist points

$$a = a_0 < a_1 < \dots < a_n = b$$

where z(t) is smooth in the intervals $[a_k, a_{k+1}]$.

We now introduce the concept **equivalent**. Two parametrization $z:[a,b]\to \mathbb{C}$ and $\tilde{z}:[c,d]\to \mathbb{C}$ are equivalent if there exists a continuously differentiable bijection $s\mapsto t(s)$ from [c,d] to [a,b] so that t'(s)>0 and $\tilde{z}(s)=z(t(s))$. The family of all parametrizations that are equivalent to z(t) determines a **smooth** curve $\gamma\subset \mathbb{C}$.

A smooth or piecewise-smooth curve is **closed** if z(a) = z(b) for any of its parametrization. Finally, a smooth or piecewise-smooth curve is **simple** if it is not self-intersecting.

5.1 Orientation and integration of curves

We can define a curve γ^- obtained from the curve γ by reversing the orientation, the parametrization for γ^- is defined by

$$z^{-}(t) = z(b+a-t)$$

where $z:[a,b]\to\mathbb{C}$ is the parametrization of γ .

A simple example is a circle on the complex plane. We define the circle $C_r(z_0)$ with radius r by

$$C_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| = r \}$$

The **positive orientation** (counterclockwise) is defined by

$$z(t) = z_0 + re^{it}$$
 where $t \in [0, 2\pi]$

while the **negative orientation** is defined by

$$z(t) = z_0 + re^{-it}$$
 where $t \in [0, 2\pi]$

The properties of a holomorphic function f guarantees the equation

$$\int_{\gamma} f(z) \, dz = 0 \tag{7}$$

where γ is a closed curve on the complex plane. In order to calculate the integral of f along a smooth curve γ , we parametrize the γ by $z:[a,b]\to\mathbb{C}$, and deduce that

$$\int_{\gamma} f(z) \ d = \int_{a}^{b} f(z(t))'(t) \ dt$$

By definition, the **length** of the smooth curve γ is

$$length(\gamma) = \int_a^b |z'(t)| dt$$

We have the following proposition

Theorem 5.1. Integration of continuous functions over curves satisfies the following properties:

1. It is linear, if $\alpha, \beta \in \mathbb{C}$, then

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) \ dz = \alpha \int_{\gamma} f(z) \ dz + \beta \int_{\gamma} g(z) \ dz$$

2.

$$\int_{\gamma} f(z) \ dz = -\int_{\gamma^{-}} f(z) \ dz$$

3.

$$\left| \int_{\gamma} f(z) \ dz \right| \le \sup_{z \in \gamma} |f(z)| \cdot length(\gamma)$$

Further more, we define the **primitive** for f on Ω is a function F that is holomorphic on Ω and such that F'(z) = f(z).

Theorem 5.2. If a continuous function f has a primitive F in Ω , and γ is a curve in Ω that begins at w_1 and ends at w_2 , then

$$\int_{\gamma} f(z); dz = F(w_2) - F(w_1)$$

This is a direct result from 7.

Corollary 5.2.1. If γ is a closed curve in an open set Ω , and f is continuous and has a primitive in Ω , then

$$\int_{\gamma} f(z) \ dz = 0$$

References

[1] encyclopedia. Cauchy-Hadamard theorem. https://encyclopediaofmath.org/wiki/Cauchy-Hadamard_theorem. Feb. 2006.