Introdução Material e Métodos Resultados e Discussão Conclusões Referências

Otimização por Colônia de Formigas

Aplicação do Algoritmo Ant System na Solução do Problema do Caixeiro-Viajante Simétrico

Douglas Ferreira de Borba

Universidade Estadual do Centro-Oeste (Unicentro)
Departamento de Ciência da Computação

22 de outubro de 2013

Sumário

- 1 Introdução
 - O Problema do Caixeiro-Viajante
 - O Algoritmo Ant System
- 2 Material e Métodos
 - Recursos Utilizados
 - A Implementação
- 3 Resultados e Discussão
 - Confronto dos Resultados com a Literatura
 - Alterando o Algoritmo
 - Visualizando os Resultados
- 4 Conclusões
 - Observações Relevantes
- 5 Referências

O Problema do Caixeiro-Viajante

Descrição

- \blacksquare É um problema NP-Completo de complexidade O(n!);
- Pode ser representado por meio de grafo G(V, E),
- Dependendo da importância que a direção da aresta tem problema, distingue-se o PCV em simétrico e assimétrico:

O Problema do Caixeiro-Viajante

Descrição

- É um problema NP-Completo de complexidade O(n!);
- Pode ser representado por meio de grafo G(V, E),
- Dependendo da importância que a direção da aresta tem problema, distingue-se o PCV em simétrico e assimétrico:

O Problema do Caixeiro-Viajante

Descrição

- É um problema NP-Completo de complexidade O(n!);
- Pode ser representado por meio de grafo G(V, E);
- Dependendo da importância que a direção da aresta tem problema, distingue-se o PCV em simétrico e assimétrico;

O Problema do Caixeiro-Viajante

Descrição

- É um problema NP-Completo de complexidade O(n!);
- Pode ser representado por meio de grafo G(V, E);
- Dependendo da importância que a direção da aresta tem no problema, distingue-se o PCV em simétrico e assimétrico:
 - PCV simétrico: $\forall a, b \in V, dist(a, b) = dist(b, a)$;
 - PCV assimétrico: a afirmação acima nem sempre é verdadeira.

Introdução O Problema do Caixeiro-Viajante

Descrição

- É um problema NP-Completo de complexidade O(n!);
- Pode ser representado por meio de grafo G(V, E);
- Dependendo da importância que a direção da aresta tem no problema, distingue-se o PCV em simétrico e assimétrico:
 - PCV simétrico: $\forall a, b \in V, dist(a, b) = dist(b, a)$;
 - PCV assimétrico: a afirmação acima nem sempre

O Problema do Caixeiro-Viajante

Descrição

- É um problema NP-Completo de complexidade O(n!);
- Pode ser representado por meio de grafo G(V, E);
- Dependendo da importância que a direção da aresta tem no problema, distingue-se o PCV em simétrico e assimétrico:
 - PCV simétrico: $\forall a, b \in V, dist(a, b) = dist(b, a)$;
 - PCV assimétrico: a afirmação acima nem sempre é verdadeira.

Descrição

- Foi implementado como um algoritmo de otimização discreta para resolver o PCV:
- Passou por diversas modificações visando a melhoria dos tados obtidos. Ex. Elitism Ant System;
- Toda a colônia realiza o deposito de feromônios;
- Faz uso de informações históricas para tomada de decisão

Descrição

- Foi implementado como um algoritmo de otimização discreta para resolver o PCV;
- Passou por diversas modificações visando a melhoria dos restados obtidos. Ex. Elitism Ant System;
- Toda a colônia realiza o deposito de feromônios;
- Faz uso de informações históricas para tomada de decisão

Descrição

- Foi implementado como um algoritmo de otimização discreta para resolver o PCV;
- Passou por diversas modificações visando a melhoria dos resultados obtidos. Ex. Elitism Ant System;
- Toda a colônia realiza o deposito de feromônios;
- Faz uso de informações históricas para tomada de decisão

Descrição

- Foi implementado como um algoritmo de otimização discreta para resolver o PCV;
- Passou por diversas modificações visando a melhoria dos resultados obtidos. Ex. Elitism Ant System;
- Toda a colônia realiza o deposito de feromônios;
- Faz uso de informações históricas para tomada_de d

Descrição

- Foi implementado como um algoritmo de otimização discreta para resolver o PCV;
- Passou por diversas modificações visando a melhoria dos resultados obtidos. Ex. Elitism Ant System;
- Toda a colônia realiza o deposito de feromônios;
- Faz uso de informações históricas para tomada de decisão

Recursos Utilizados

Para o desenvolvimento deste trabalho foi feito o uso dos seguintes recursos:

■ Ambiente de Execução:

■ Ferramentas Utilizadas

■ Instâncias de Teste:

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5
- Ferramentas Utilizadas

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5
- Ferramentas Utilizadas

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste:

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste:

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Plugin Pydev v.2.8.2.
 - Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste:

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Plugin Pydev v.2.8.2.
- Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Plugin Pydev v.2.8.2.
 - Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste:

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Plugin Pydev v.2.8.2.
 - Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste:
 - Instâncias retiradas do repositório TSPLIB.

Recursos Utilizados

- Ambiente de Execução:
 - Processador Intel i7 (2ª Geração);
 - Memória RAM 6 GB;
 - Sistema Operacional Windows 7 Home Premium (x64);
 - Interpretador Python v.2.7.5.
- Ferramentas Utilizadas:
 - Editor Sublime Text 2 v.2.0.2;
 - Eclipse IDE Kepler;
 - Plugin Pydev v.2.8.2.
 - Biblioteca matplotlib v.1.2.0.
- Instâncias de Teste:
 - Instâncias retiradas do repositório TSPLIB.

A Implementação (Pseudo-código)

O algoritmo implementado baseou-se nos pseudo-códigos apresentados em [3] e [4], o que resultou no seguinte pseudo-código:

```
Algorithm 6.3.1: Pseudocode for Ant System.
  Input: ProblemSize, Population<sub>size</sub>, m, \rho, \alpha, \beta
  Output: Phest
1 P_{best} \leftarrow CreateHeuristicSolution(ProblemSize);
2 Pbest_{cost} \leftarrow Cost(S_h);
3 Pheromone \leftarrow InitializePheromone (Pbest_{cost});
4 while -StopCondition() do
      Candidates \leftarrow \emptyset;
K
      for i = 1 to m do
6
          S_i \leftarrow \text{ProbabilisticStepwiseConstruction}(Pheromone,
          ProblemSize, \alpha, \beta);
                                                         <□ > <∄ > < ≣ >
```

A Implementação (Pseudo-código)

```
Si_{cost} \leftarrow \text{Cost}(S_i):
              if Si_{cost} \leq Pbest_{cost} then
                 Pbest_{cost} \leftarrow Si_{cost};
P_{best} \leftarrow S_i;
10
11
              end
12
              Candidates \leftarrow S_i:
13
         end
14
         DecayPheromone (Pheromone, \rho);
15
         for each S_i \in \mathsf{Candidates} do
16
              UpdatePheromone (Pheromone, S_i, Si_{cost});
17
         end
18
19 end
20 return P_{best};
```

Confronto dos Resultados com a Literatura

Ajustando os parâmetros do algoritmo para: $\alpha=5.0$, $\beta=5.0$, $\rho=0.6$, $n_{ants}=200$ e $n_{colonies}=500$ em uma série de 10 execuções, obteve-se os seguintes resultados "ótimos":

Instância	Cidades _{Total}	Solução _{Best}	Tempo _{AS}	Solução _{AS}
oliver30	30	423.74	333.6s	429.358
eil51	51	426.00	855.6s	461.811
berlin52	52	7542.00	920.1s	7823.041
st70	70	675.00	1849.8s	736.272

Tabela: Resultados da Execução do Ant System sem arredondamento.

Alterando o Algoritmo

Para melhorar o algoritmo foi adotado o elitismo, alterando o *Ant System* (AS) para *Elitism Ant System* (EAS), obtendo-se os seguintes resultados:

Instância	Tempo _{AS}	Solução _{AS}	Tempo _{EAS}	Solução _{EAS}
oliver30	333.6s	429.358	264.8s	423.740
eil51	855.6s	461.811	917.2s	429.530
berlin52	920.1s	7823.041	973.0s	7544.365
st70	1849.8s	736.272	1930.0s	693.542

Tabela: Ant System vs. Elitism Ant System.

Visualizando os Resultados: oliver30

Figura: Melhor solução para instância oliver30.

Visualizando os Resultados: oliver30

Figura : Solução da instância oliver30 com Ant System.

Visualizando os Resultados: oliver30

Figura : Solução da instância oliver30 com Elistism Ant System.

Visualizando os Resultados: eil51

Figura : Melhor solução para instância eil51.

Visualizando os Resultados: eil51

Figura : Solução da instância eil51 com *Ant System*.

Visualizando os Resultados: eil51

Figura : Solução da instância eil51 com Elistism Ant System.

Visualizando os Resultados: berlin52

Figura: Melhor solução para instância berlin52.

Visualizando os Resultados: berlin52

Figura : Solução da instância berlin52 com Ant System.

Visualizando os Resultados: berlin52

Figura : Solução da instância berlin52 com *Elistism Ant System*.

Visualizando os Resultados: st70

Figura : Melhor solução para instância st70.

Visualizando os Resultados: st70

 ${\sf Figura: Solução\ da\ instância\ st70\ com\ \it Ant\ \it System}.$

Visualizando os Resultados: st70

Figura : Solução da instância st70 com Elistism Ant System.

- Como afirmado em [2], métodos de otimização por colônia de formigas são uma boa opção para solução de problemas combinatoriais, tais como o PCV;
- O AS fornece bons resultados para grafos pequenos (30 cidades ou menos), mas para grafos maiores os resultados tendem a piorar, e exigem uma boa combinação entre os parâmetros ou variações de sua implementação para se obter uma boa solução;
- Para problemas grandes, uma grande quantidade de memoria utilizada, comprometendo seu desempenho;
- O EAS é uma boa opção para problemas grandes, pois apresenta uma rápida convergência.

- Como afirmado em [2], métodos de otimização por colônia de formigas são uma boa opção para solução de problemas combinatoriais, tais como o PCV;
- O AS fornece bons resultados para grafos pequenos (30 cidades ou menos), mas para grafos maiores os resultados tendem a piorar, e exigem uma boa combinação entre os parâmetros ou variações de sua implementação para se obter uma boa solução;
- Para problemas grandes, uma grande quantidade de namera utilizada, comprometendo seu desempenho;
- O EAS é uma boa opção para problemas grandes, pois apresenta uma rápida convergência.

- Como afirmado em [2], métodos de otimização por colônia de formigas são uma boa opção para solução de problemas combinatoriais, tais como o PCV;
- O AS fornece bons resultados para grafos pequenos (30 cidades ou menos), mas para grafos maiores os resultados tendem a piorar, e exigem uma boa combinação entre os parâmetros ou variações de sua implementação para se obter uma boa solução;
- Para problemas grandes, uma grande quantidade de memória é utilizada, comprometendo seu desempenho;
- O EAS é uma boa opção para problemas grandes, pois apresenta uma rápida convergência.

- Como afirmado em [2], métodos de otimização por colônia de formigas são uma boa opção para solução de problemas combinatoriais, tais como o PCV;
- O AS fornece bons resultados para grafos pequenos (30 cidades ou menos), mas para grafos maiores os resultados tendem a piorar, e exigem uma boa combinação entre os parâmetros ou variações de sua implementação para se obter uma boa solução;
- Para problemas grandes, uma grande quantidade de memória é utilizada, comprometendo seu desempenho;
- O EAS é uma boa opção para problemas grandes, pois apresenta uma rápida convergência.

Referências

- [1] A. M. Monteiro and J. L. Soares, "Resolução do problema do caixeiro viajante assimétrico (e uma variante) através da relaxação lagrangeana," 2006.
- [2] M. Dorigo, V. Maniezzo, and A. Colorni, "Positive feedback as a search strategy," tech. rep., Technical Report No. 91-016, Politecnico di Milano, Italy, 1991.
- [3] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes.
 - Lulu Enterprises Incorporated, 2011.
- [4] M. Dorigo and T. Stützle, Ant Colony Optimization. A Bradford Book, Bradford Book, 2004.

