

CLAIMS

What is claimed is:

- 1 1. A method for determining the free energy of binding of a potential ligand to a
2 receptor, comprising the steps of:
3 obtaining, for each of two or more actual receptor ligands, at least one of a structure
4 and a free energy of binding to said receptor, such that each of said two or more actual
5 receptor ligands has a known structure and a known free energy of binding to said receptor;
6 orienting said structures of said two or more actual receptor ligands for maximum
7 geometric coincidence with each other;
8 determining an electrostatic potential at each of more than one point on a van der
9 Waals surface of each of said actual receptor ligands;
10 thereafter, mapping each of said electrostatic potentials of each of said actual
11 receptor ligands onto a geometric surface of one of said two or more actual receptor
12 ligands, each of said two or more actual receptor ligands being thereby described by an
13 identical surface geometry but a different electrostatic potential surface, and each of said
14 electrostatic potentials being described by positional information relating said electrostatic
15 potentials to said geometric surface;
16 thereafter, inputting said electrostatic potentials, said positional information, and
17 said known free energy of binding of one of said two or more actual receptor ligands into
18 a neural network;
19 thereafter, training said neural network until said neural network predicts said free
20 energy of binding of said one of said two or more actual receptor ligands;
21 repeating said steps of inputting and training for each of the remaining said two or
22 more actual receptor ligands to produce a trained network;
23 thereafter, determining a potential ligand electrostatic potential at each of more than
24 one point on a van der Waals surface of said potential ligand, said potential ligand having
25 a known structure and an unknown free energy of binding to said receptor;

26 orienting said structure of said potential ligand for maximum geometric coincidence
27 with said structures of said two or more actual receptor ligands;
28 thereafter, mapping each of said electrostatic potentials of said potential ligand onto
29 a geometric surface of one of said two or more actual receptor ligands, said potential ligand
30 having a surface geometry identical to that of said two or more actual receptor ligands, but
31 a different electrostatic potential surface, and each of said electrostatic potentials of said
32 potential ligand being described by positional information relating said electrostatic
33 potentials to said geometric surface;
34 thereafter, inputting said electrostatic potentials and said positional information of
35 said electrostatic potentials of said potential ligand into said trained network; and
36 using said trained network to calculate a free energy of binding of said potential
37 ligand to said receptor.

1 2. A method for determining the free energy of binding of a potential ligand to a
2 receptor, comprising the steps of:
3 obtaining a structure for said potential ligand;
4 orienting structures of two or more actual receptor ligands for said receptor for
5 maximum geometric coincidence with each other;
6 each of said two or more actual receptor ligands having a known structure and a
7 known free energy of binding to said receptor;
8 determining an electrostatic potential at each of more than one point on a van der
9 Waals surface of each of said actual receptor ligands;
10 thereafter, mapping each of said electrostatic potentials of each of said actual
11 receptor ligands onto a geometric surface of one of said two or more actual receptor
12 ligands, each of said two or more actual receptor ligands being thereby described by an
13 identical surface geometry but a different electrostatic potential surface, and each of said
14 electrostatic potentials being described by positional information relating said electrostatic
15 potentials to said geometric surface;

16 thereafter, inputting said electrostatic potentials, said positional information, and
17 said known free energy of binding of one of said two or more actual receptor ligands into
18 a neural network;

19 thereafter, training said neural network until said neural network predicts said free
20 energy of binding of said one of said two or more actual receptor ligands;

21 repeating said steps of inputting and training for each of the remaining said two or
22 more actual receptor ligands to produce a trained network;

23 thereafter, determining an potential ligand electrostatic potential at each of more
24 than one point on a van der Waals surface of said potential ligand, said potential ligand
25 having an unknown free energy of binding to said receptor;

26 orienting said structure of said potential ligand for maximum geometric coincidence
27 with said structures of said two or more actual receptor ligands;

28 thereafter, mapping each of said electrostatic potentials of said potential ligand onto
29 a geometric surface of one of said two or more actual receptor ligands, said potential ligand
30 having a surface geometry identical to that of said two or more actual receptor ligands, but
31 a different electrostatic potential surface, and each of said electrostatic potentials of said
32 potential ligand being described by positional information relating said electrostatic
33 potentials to said geometric surface;

34 thereafter, inputting said electrostatic potentials and said positional information of
35 said electrostatic potentials of said potential ligand into said trained network; and
36 using said trained network to calculate a free energy of binding of said potential
37 ligand to said receptor.

- 1 3. A computer readable medium, comprising:
 - 2 computer-readable information;
 - 3 said information capable of interacting with a computer to produce an output;
 - 4 said output being a calculated free energy of binding of a potential ligand to a
 - 5 receptor;
 - 6 said output being calculated by:

7 orienting structures of said two or more actual receptor ligands for
8 maximum geometric coincidence with each other;
9 each of said two or more actual receptor ligands having a known structure
10 and a known free energy of binding to said receptor;
11 determining an electrostatic potential at each of more than one point on a
12 van der Waals surface of each of said actual receptor ligands;
13 thereafter, mapping each of said electrostatic potentials of each of said
14 actual receptor ligands onto a geometric surface of one of said two or more actual
15 receptor ligands, each of said two or more actual receptor ligands being thereby
16 described by an identical surface geometry but a different electrostatic potential
17 surface, and each of said electrostatic potentials being described by positional
18 information relating said electrostatic potentials to said geometric surface;
19 thereafter, inputting said electrostatic potentials, said positional information,
20 and said known free energy of binding of one of said two or more actual receptor
21 ligands into a neural network;
22 thereafter, training said neural network until said neural network predicts
23 said free energy of binding of said one of said two or more actual receptor ligands;
24 repeating said steps of inputting and training for each of the remaining said
25 two or more actual receptor ligands to produce a trained network;
26 thereafter, determining an potential ligand electrostatic potential at each of
27 more than one point on a van der Waals surface of said potential ligand, said
28 potential ligand having a known structure and an unknown free energy of binding
29 to said receptor;
30 orienting said structure of said potential ligand for maximum geometric
31 coincidence with said structures of said two or more actual receptor ligands;
32 thereafter, mapping each of said electrostatic potentials of said potential
33 ligand onto a geometric surface of one of said two or more actual receptor ligands,
34 said potential ligand having a surface geometry identical to that of said two or more
35 actual receptor ligands, but a different electrostatic potential surface, and each of

36 said electrostatic potentials of said potential ligand being described by positional
37 information relating said electrostatic potentials to said geometric surface;

38 thereafter, inputting said electrostatic potentials and said positional
39 information of said electrostatic potentials of said potential ligand into said trained
40 network; and

41 using said trained network to calculate a free energy of binding of said
42 potential ligand to said receptor.

1 4. A method for determining a free energy of binding of a potential transition-state
2 inhibitor to an enzyme, comprising the steps of:

3 obtaining, for each of two or more enzyme substrates or inhibitors, at least one of
4 a structure and a free energy of binding to said enzyme, such that each of said two or more
5 enzyme substrates or inhibitors has a known structure and a known free energy of binding
6 to said enzyme;

7 orienting said structures of said two or more enzyme substrates or inhibitors for
8 maximum geometric coincidence with each other;

9 determining an electrostatic potential at each of more than one point on a van der
10 Waals surface of each of said enzyme substrates or inhibitors;

11 thereafter, mapping each of said electrostatic potentials of each of said enzyme
12 substrates or inhibitors onto a geometric surface of a transition state inhibitor, each of said
13 enzyme substrates or inhibitors being thereby described by an identical surface geometry
14 but a different electrostatic potential surface, and each of said electrostatic potentials being
15 described by positional information relating said electrostatic potentials to said geometric
16 surface of said transition state inhibitor;

17 thereafter, inputting said electrostatic potentials, said positional information, and
18 said known free energy of binding of one of said two or more enzyme substrates or
19 inhibitors into a neural network;

20 thereafter, training said neural network until said neural network predicts said free
21 energy of binding of said one of said two or more enzyme substrates or inhibitors;

22 repeating said steps of inputting and training for each of the remaining said two or
23 more enzyme substrates or inhibitors to produce a trained network;

24 thereafter, determining an potential transition electrostatic potential at each of more
25 than one point on a van der Waals surface of said potential transition-state inhibitor, said
26 potential transition-state inhibitor having a known structure and an unknown free energy
27 of binding to said enzyme;

28 orienting said structure of said potential transition-state inhibitor for maximum
29 geometric coincidence with said structures of said two or more enzyme substrates or
30 inhibitors;

31 thereafter, mapping each of said electrostatic potentials of said potential transition-
32 state inhibitor onto a geometric surface of one of said two or more two or more enzyme
33 substrates or inhibitors, such that said potential transition-state inhibitor has a surface
34 geometry identical to that of said two or more actual receptor transition-state inhibitors, but
35 a different electrostatic potential surface, and each of said electrostatic potentials of said
36 potential transition-state inhibitor is described by positional information relating said
37 electrostatic potentials to said geometric surface of said two or more enzyme substrates or
38 inhibitors;

39 thereafter, inputting said electrostatic potentials and said positional information of
40 said electrostatic potentials of said potential transition-state inhibitor into said trained
41 network; and

42 using said trained network to calculate a free energy of binding of said potential
43 transition-state inhibitor to said enzyme.

1 5. A method for determining the free energy of binding of a potential transition-
2 state inhibitor to a enzyme, comprising the steps of:
3 obtaining a structure for said potential transition-state inhibitor;
4 orienting structures of two or more enzyme substrates or inhibitors for said enzyme
5 for maximum geometric coincidence with each other;
6 each of said two or more enzyme substrates or inhibitors having a known structure
7 and a known free energy of binding to said enzyme;

8 determining an electrostatic potential at each of more than one point on a van der
9 Waals surface of each of said enzyme substrates or inhibitors;
10 thereafter, mapping each of said electrostatic potentials of each of said enzyme
11 substrates or inhibitors onto a geometric surface of one of said two or more enzyme
12 substrates or inhibitors, each of said two or more enzyme substrates or inhibitors being
13 thereby described by an identical surface geometry but a different electrostatic potential
14 surface, and each of said electrostatic potentials being described by positional information
15 relating said electrostatic potentials to said geometric surface;
16 thereafter, inputting said electrostatic potentials, said positional information, and
17 said known free energy of binding of one of said two or more enzyme substrates or
18 inhibitors into a neural network;
19 thereafter, training said neural network until said neural network predicts said free
20 energy of binding of said one of said two or more enzyme substrates or inhibitors;
21 repeating said steps of inputting and training for each of the remaining said two or
22 more enzyme substrates or inhibitors to produce a trained network;
23 thereafter, determining an potential transition-state inhibitor electrostatic potential
24 at each of more than one point on a van der Waals surface of said potential transition-state
25 inhibitor, said potential transition-state inhibitor having an unknown free energy of binding
26 to said enzyme;
27 orienting said structure of said potential transition-state inhibitor for maximum
28 geometric coincidence with said structures of said two or more enzyme substrates or
29 inhibitors;
30 thereafter, mapping each of said electrostatic potentials of said potential transition-
31 state inhibitor onto a geometric surface of one of said two or more enzyme substrates or
32 inhibitors, said potential transition-state inhibitor having a surface geometry identical to
33 that of said two or more enzyme substrates or inhibitors, but a different electrostatic
34 potential surface, and each of said electrostatic potentials of said potential transition-state
35 inhibitor being described by positional information relating said electrostatic potentials to
36 said geometric surface;

37 thereafter, inputting said electrostatic potentials and said positional information of
38 said electrostatic potentials of said potential transition-state inhibitor into said trained
39 network; and

40 using said trained network to calculate a free energy of binding of said potential
41 transition-state inhibitor to said enzyme.

- 1 6. A computer readable medium, comprising:
 - 2 computer-readable information;
 - 3 said information capable of interacting with a computer to produce an output;
 - 4 said output being a calculated free energy of binding of a potential transition-state
 - 5 inhibitor to a enzyme;
 - 6 said output being calculated by:
 - 7 orienting structures of said two or more actual receptor ligands for
 - 8 maximum geometric coincidence with each other;
 - 9 each of said two or more actual ligands having a known structure and a
 - 10 known free energy of binding to said enzyme;
 - 11 determining an electrostatic potential at each of more than one point on a
 - 12 van der Waals surface of each of said enzyme substrates or inhibitors;
 - 13 thereafter, mapping each of said electrostatic potentials of each of said
 - 14 enzyme substrates or inhibitors onto a geometric surface of one of said two or more
 - 15 enzyme substrates or inhibitors, each of said two or more enzyme substrates or
 - 16 inhibitors being thereby described by an identical surface geometry but a different
 - 17 electrostatic potential surface, and each of said electrostatic potentials being
 - 18 described by positional information relating said electrostatic potentials to said
 - 19 geometric surface;
 - 20 thereafter, inputting said electrostatic potentials, said positional information,
 - 21 and said known free energy of binding of one of said two or more enzyme
 - 22 substrates or inhibitors into a neural network;

23 thereafter, training said neural network until said neural network predicts
24 said free energy of binding of said one of said two or more enzyme substrates or
25 inhibitors;

26 repeating said steps of inputting and training for each of the remaining said
27 two or more enzyme substrates or inhibitors to produce a trained network;

28 thereafter, determining an potential transition-state inhibitor electrostatic
29 potential at each of more than one point on a van der Waals surface of said potential
30 receptor ligand, said potential receptor ligand having a known structure and an
31 unknown free energy of binding to said enzyme;

32 orienting said structure of said potential transition-state inhibitor for
33 maximum geometric coincidence with said structures of said two or more enzyme
34 substrates or inhibitors;

35 thereafter, mapping each of said electrostatic potentials of said potential
36 transition-state inhibitor onto a geometric surface of one of said two or more
37 enzyme substrates or inhibitors, said potential transition-state inhibitor having a
38 surface geometry identical to that of said two or more enzyme substrates or
39 inhibitors, but a different electrostatic potential surface, and each of said
40 electrostatic potentials of said potential transition-state inhibitor being described by
41 positional information relating said electrostatic potentials to said geometric
42 surface;

43 thereafter, inputting said electrostatic potentials and said positional
44 information of said electrostatic potentials of said potential transition-state inhibitor
45 into said trained network; and

46 using said trained network to calculate a free energy of binding of said
47 potential transition-state inhibitor to said enzyme.

1 7. A method for determining the free energy of binding of a potential ligand to a
2 receptor according to claim 1, wherein said neural network is a feed forward network with
3 back propagation of error that learns with momentum.

- 1 8. A method for determining the free energy of binding of a potential ligand to a
2 receptor according to claim 2, wherein said neural network is a feed forward network with
3 back propagation of error that learns with momentum.
- 1 9. A method for determining the free energy of binding of a potential transition-
2 state inhibitor to a enzyme according to claim 4, wherein said neural network is a feed
3 forward network with back propagation of error that learns with momentum.
- 1 10. A method for determining the free energy of binding of a potential transition-
2 state inhibitor to a enzyme according to claim 5, wherein said neural network is a feed
3 forward network with back propagation of error that learns with momentum.
- 1 11. A computer readable medium according to claim 3, wherein said neural
2 network is a feed forward network with back propagation of error that learns with
3 momentum.
- 1 12. A computer readable medium according to claim 6, wherein said neural
2 network is a feed forward network with back propagation of error that learns with
3 momentum.
- 1 13. A method for determining the free energy of binding of a potential ligand to a
2 receptor according to claim 7, wherein said neural network uses a learning rate between 0.1
3 and 0.5 and a momentum term between 0.8 and 0.9.
- 1 14. A method for determining the free energy of binding of a potential ligand to a
2 receptor according to claim 8, wherein said neural network uses a learning rate between 0.1
3 and 0.5 and a momentum term between 0.8 and 0.9.
- 1 15. A method for determining the free energy of binding of a potential transition-
2 state inhibitor to a enzyme according to claim 9, wherein said neural network uses a
3 learning rate between 0.1 and 0.5 and a momentum term between 0.8 and 0.9.
- 1 16. A method for determining the free energy of binding of a potential transition-
2 state inhibitor to a enzyme according to claim 10, wherein said neural network uses a
3 learning rate between 0.1 and 0.5 and a momentum term between 0.8 and 0.9.

1 17. A computer readable medium according to claim 11, wherein said neural
2 network uses a learning rate between 0.1 and 0.5 and a momentum term between 0.8 and
3 0.9.

1 18. A computer readable medium according to claim 12, wherein said neural
2 network uses a learning rate between 0.1 and 0.5 and a momentum term between 0.8 and
3 0.9.