Engy-5140: Chemical and Nuclear Waste Processing 2019 UMass Lowell; Prof. V. F. de Almeida **07Nov19**

Midterm Exam 2: 07 Nov 2019

Name:

Guidance:

- This is an open-book, open-note, **individual** exam.
- No discussion with anyone is allowed.
- You may use online documents and course notes.
- Make sure to answer the questions asked.
- Show your invidual work and be crystal clear.

Ground water at volumetric flow rate of 1,500 gpm, containing a volatile organic compound (VOC), is to be treated by countercurrent air stripping in a trayed column to produce drinking water that meets EPA standards (see data below).

Component	K-value	Groundwater (ppm)	EPA drinking water tolerance (ppm)
1,2-Dichloroethane (DCA)	60	85	0.005

ppm is parts per million by mass (assume 1 ppm in water = 1 mg/L).

Using the network modeling approach covered in this course, provide answers to the problems below (based on Seader, Henly, and Roper textbook Separation Process Principles Chap. 6, 2016).

Problem (100 pts)

- 1. Compute the minimum air flow rate in scfm (60° F, 1 atm).
- 2. Compute the number of equilibrium stages (or nodes) if the air flow rate is twice the minimum required and the tower operates at 25°C and 1 atm.
- 3. Compute the composition of DCA in the air.
- 4. Is the air exiting the column safe to breathe? Present enough evidence to defend your response.

In []:		
•		

•	
In []:	
•	

