Черкаський національний університет ім. Б.Хмельницького

Лабораторна робота №5

«Цифрові мікросхеми послідовнісного типу (з пам'яттю)»

з навчальної дисципліни

«Комп'ютерна схемотехніка та архітектура комп'ютерів»

Виконав: студент групи КН-

21(2-й курс)

Балинський М. М.

варіант № 2

Перевірив: доцент

Ярмілко А. В.

ЛАБОРАТОРНА РОБОТА №5

Тема: Цифрові мікросхеми послідовнісного типу (з пам'яттю).

Мета Вивчити призначення, конструктивне виконання та характеристики цифрових мікросхем послідовнісного типу. Набути навички роботи з RS, D, T, JK тригерами.

Порядок виконання роботи.

- 1. За довідниками ознайомитися з конструктивним виконанням та технічними характеристиками цифрових мікросхем послідовнісного типу.
- 2. Вивчення та набуття навичок роботи з тригерами.
- 3. Виконати емуляцію роботи тригерів у середовищі моделювання (див. схеми у додатку А). Провести експерименти з визначення таблиць істинності тригерів. Порівняти отримані за експериментальними даними таблиці істинності з теоретичними.
- 4. Зробити висновки по роботі.

Розглянемо по черзі чотири задані тригери та таблиці істинності, що відповідають іх роботі:

Асинхронний RS-тригер:

S	R	Q_t	Q_t+1	
0	0	0(1)	0 (1)	
0	1	1 (0)	0	
1	0	0 (1)	1	
1	1	не визначено		

Синхронний RS-тригер:

С	S	R	Q_t	Q_t+1	
1	0	0	0 (1)	0(1)	
1	0	1	1 (0)	0	
1	1	0	0 (1)	1	
1	1	1	не визначено		

Універсальний ЈК-тригер:

С	J	K	Q_t	Q_t+1
0	X	X	X	Q_t
1	0	0	X	Q_t
1	0	1	X	0
1	1	0	X	1
1	1	1	0	1
1	1	1	1	0

Т-тригер:

Стан	Q8	Q,	Q_2	Q_1	Стан	Qs	Q,	Q_2	Q,
0	0	0	0	0	8	1	0	0	0
1	0	0	0	1	9	1	0	0	1
2	0	0	1	0	10	1	0	1	0
3	0	0	1	1	11	1	0	1	1
4	0	1	0	0	12	1	1	0	0
5	0	1	0	1	13	1	-1	0	- 1
6	0	1	1	0	14	1	1	1	0
7	0	1	1	1	15	1	1	1	1

D-тригер:

С	D	Q_t	Q_t+1
0	X	X	Q_t
1	0	0	0
1	0	1	0
1	1	1	1
1	1	0	1

Під час проведення експерементальних запусків схем з увімкненими / вимкненими пропусками струмів для кожного входу схеми була виявлена повна збіжність отриманих результатів з очікуваними.

Приклади:

Висновок: здобуто навички з моделювання схем тригерів різного типу, тестування їх роботи та виявлення помилок у їх моделюванні. Експерементальним шляхом звірялися таблиці істинності тригерів з їх фактичними значеннями на схемах.