

STEPS

Problem Definition

2

Data Collection

3

Exploratory
Data Analysis
and Data
Visualization

Model

Model Testing and Results

GANTT

		MONTHS							
No	Work Packages	1	2	3	4	5	6	7	8
1	Problem Detection								
2	Dataset Collection								
3	EDA and Data Visualizations								
4	Model Creation								
5	Model Testing and Interpretation								

1.PROBLEM DEFINITON

Obesity is a serious health problem linked to heart diseases, diabetes, and chronic illnesses, reducing quality of life. Data science methods help analyze the factors causing obesity and create personalized health solutions.

2.DATA COLLECTION

A suitable dataset has been found on Kaggle for conducting a data science project related to the topic. You can access the dataset through the following link: kaggle.com/datasets/lesumitkumarroy/obe sity-data-set

3. EXPLORATORY DATA ANALYSIS AND DATA VISUALIZATION

DEFINITION OF VARIABLES

- **Gender**: Gender (Male/Female).
- Age: Age (numeric value).
- **Height**: Height (in meters).
- Weight: Weight (in kilograms).
- family_history_with_overweight: Family history of obesity (Yes/No).
- **FAVC**: Habit of consuming high-calorie food (Yes/No).
- **FCVC**: Frequency of vegetable consumption (a value between 1-3).
- **NCP**: Number of main meals per day (numeric value).

- **SMOKE**: Smoking habit (Yes/No).
- **CH2O**: Daily water consumption (in liters).
- **SCC**: Habit of controlling calories (Yes/No).
- **FAF**: Weekly physical activity time (in hours).
- **TUE**: Daily technology usage time (in hours).
- CALC: Alcohol consumption frequency (None/Weekly/Daily/Special Occasions).
- MTRANS: Mode of daily transportation (Car/Motorbike/Bicycle/Walking/Public transport).
- NObeyesdad: Target variable. Obesity level (Normal weight, Overweight, Slightly obese, Severely obese, etc.).

```
# Check the number of rows and columns
str(data)
## spc_tbl_ [2,111 x 17] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ Gender
                                  : chr [1:2111] "Female" "Female" "Male" "Male" ...
## $ Age
                                  : num [1:2111] 21 21 23 27 22 29 23 22 24 22 ...
## $ Height
                                  : num [1:2111] 1.62 1.52 1.8 1.8 1.78 1.62 1.5 1.64 1.78 1.72 ...
## $ Weight
                                  : num [1:2111] 64 56 77 87 89.8 53 55 53 64 68 ...
## $ family_history_with_overweight: chr [1:2111] "yes" "yes" "yes" "no" ...
## $ FAVC
                                  : chr [1:2111] "no" "no" "no" "no" ...
## $ FCVC
                                  : num [1:2111] 2 3 2 3 2 2 3 2 3 2 ...
## $ NCP
                                  : num [1:2111] 3 3 3 3 1 3 3 3 3 3 ...
## $ CAEC
                                  : chr [1:2111] "Sometimes" "Sometimes" "Sometimes" ...
## $ SMOKE
                                  : chr [1:2111] "no" "yes" "no" "no" ...
## $ CH20
                                  : num [1:2111] 2 3 2 2 2 2 2 2 2 2 ...
## $ SCC
                                  : chr [1:2111] "no" "yes" "no" "no" ...
## $ FAF
                                  : num [1:2111] 0 3 2 2 0 0 1 3 1 1 ...
## $ TUE
                                  : num [1:2111] 1 0 1 0 0 0 0 0 1 1 ...
                                  : chr [1:2111] "no" "Sometimes" "Frequently" "Frequently" ...
## $ CALC
                                  : chr [1:2111] "Public Transportation" "Public Transportation" "Pub
## $ MTRANS
                                  : chr [1:2111] "Normal_Weight" "Normal_Weight" "Ove
## $ NObeyesdad
## - attr(*, "spec")=
    .. cols(
         Gender = col_character(),
    .. Age = col_double(),
    .. Height = col double(),
    .. Weight = col_double(),
    .. family_history_with_overweight = col_character(),
    .. FAVC = col_character(),
    .. FCVC = col_double(),
    .. NCP = col double(),
         CAEC = col_character(),
         SMOKE = col character(),
         CH20 = col_double(),
         SCC = col_character(),
         FAF = col double(),
    .. TUE = col_double(),
         CALC = col_character(),
    .. MTRANS = col_character(),
         NObeyesdad = col_character()
     . .
```

- attr(*, "problems")=<externalptr>

As a result of examining and visualizing the data, the variables that are considered to directly affect obesity and are relatively easier to address with solutions have been identified as follows;

- FCVC (Frequency of Vegetable Consumption): Increase vegetable consumption.
- FAVC (Consumption of High-Calorie Food): Reduce the consumption of high-calorie foods.
- FAF (Physical Activity Time): Increase physical activity.
- CH2O (Water Consumption): Increase daily water consumption.
- TUE (Technology Usage Time): Reduce technology usage time to create more time for physical activity.

In this context, we can begin exploring the obesity situation by focusing on the positive changes in these variables.

4.MODEL

Obesity status (NObeyesdad) is usually determined using a metric like Body Mass Index (BMI). BMI is a parameter that helps estimate a person's body fat percentage based on their height and weight.

BMI is calculated using the following formula:

```
BMI=Weight (kg)/Height (m)2
```



```
# New data for prediction based on mean values with specific adjustments
new_data <- data.frame(</pre>
 FCVC = mean(overweight_obese_data$FCVC) * 1.02,
  # 2% increase in vegetable consumption
  FAVC = mean(overweight_obese_data$FAVC) * 0.98,
  # 2% decrease in high-calorie food consumption
  FAF = mean(overweight_obese_data$FAF) * 1.05,
  # 5% increase in physical activity
  CH20 = mean(overweight_obese_data$CH20) * 1.02,
  # 2% increase in water consumption
  TUE = mean(overweight_obese_data$TUE) * 0.95
  # 5% decrease in technology use
```

Original vs Adjusted Weights

Visualizing the Difference Between Original and Adjusted Weights


```
##
 ## Call:
## lm(formula = Weight ~ FCVC + FAVC + FAF + CH20 + TUE, data = train_data)
## Residuals:
       Min
               10 Median
                                     Max
## -41.990 -11.569 -1.485 13.150 53.117
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          5.0468 1.333
                6.7254
                                           0.183
## FCVC
               14.0693
                         1.0108 13.919 < 2e-16 ***
## FAVC
               25.6381
                          2.0906 12.263 < 2e-16 ***
## FAF
                3.4866
                         0.6673 5.225 2.14e-07 ***
                4.7735
                          0.8750 5.455 6.22e-08 ***
 ## CH20
 ## TUE
               -0.2230
                          0.9223 -0.242
                                         0.809
 ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
## Residual standard error: 16.09 on 964 degrees of freedom
## Multiple R-squared: 0.3049, Adjusted R-squared: 0.3013
## F-statistic: 84.55 on 5 and 964 DF, p-value: < 2.2e-16
# Limit the weight change predictions between -10 and 10
predicted_weight_changes_scaled <-
  pmin(pmax(predicted_weight_changes_scaled, -10), 10)
```

5. MODEL TESTING AND RESULTS

THANK YOU FOR LISTENING!