WDWR 25504

Rozważamy następujące zagadnienie optymalizacji pracy elektrowni:

• Elektrownie muszą zaspokoić następujące zapotrzebowania na prąd w ciągu doby:

Pora doby	Zapotrzebowanie		
0–6	$15000~\mathrm{MW}$		
6–9	$35000~\mathrm{MW}$		
9 - 15	$20000~\mathrm{MW}$		
15-18	$45000~\mathrm{MW}$		
18-24	$20000~\mathrm{MW}$		

• Elektrownie są wyposażone w następujące generatory prądu: 16 typu T1, 14 typu T2 oraz 12 typu T3. Każdy generator musi pracować w zakresie pomiędzy minimalnym i maksymalnym obciążeniem. Rozróżnia się trzy rodzaje kosztów pracy generatora: (a) koszt godziny pracy przy minimalnym obciążeniu, (b) dodatkowy koszt godziny pracy za 1 MW wygenerowany powyżej minimalnego obciążenia, który modeluje odpowiednia składowa wektora losowego $\mathbf{R} = (R_1, R_2, R_3)^T$, (c) koszt uruchomienia.

Poziomy minimalnego i maksymalnego obciążenia oraz wysokości kosztów:

			Koszt godz.	Koszt godz./MW	Koszt
	Obc. min.	Obc. maks.	przy min. obc.	pow. min. obc.	uruch.
	MW	MW	\mathbf{z}	\mathbf{z}	\mathbf{z}
T1	1000	2000	1000	R_1	2000
T2	1300	1800	2500	R_2	1500
Т3	1500	3000	3200	R_3	1000

• Wektor losowy ${\bf R}$ opisuje 3-wymiarowy rozkład t-Studenta z 5 stopniami swobody, którego wartości składowych zostały zawężone do przedziału [1; 5]. Parametry ${\boldsymbol \mu}$ oraz ${\boldsymbol \Sigma}$ niezawężonego rozkładu t-Studenta są następujące:

$$\mu = \begin{pmatrix} 2,5 \\ 1,5 \\ 3,5 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 25 & -8 \\ -1 & -8 & 9 \end{pmatrix}.$$

- Jeżeli jest użyty generator T1, to musi być również użyty generator T2 lub T3.
- Oprócz konieczności realizacji przewidywanych zapotrzebowań, pracujące generatory muszą mieć możliwość zaspokojenia ich wzrostu do 10%. W tych przypadkach nie mogą jednak przekroczyć limitów obciążenia.
- 1. Zaproponować jednokryterialny model wyboru w warunkach ryzyka z wartością średnią jako miarą kosztu. Wyznaczyć rozwiązanie optymalne.
- 2. Jako rozszerzenie powyższego zaproponować dwukryterialny model kosztu i ryzyka z wartością średnią jako miarą kosztu i średnią różnicą Giniego jako miarą ryzyka. Dla decyzji $\mathbf{x} \in Q$ średnia różnica Giniego jest definiowana jako $\Gamma(\mathbf{x}) = \frac{1}{2} \sum_{t'=1}^{T} \sum_{t''=1}^{T} |r_{t'}(\mathbf{x}) r_{t''}(\mathbf{x})| p_{t'} p_{t''},$ gdzie $r_t(\mathbf{x})$ oznacza realizację dla scenariusza t, p_t prawdopodobieństwo scenariusza t.
 - a. Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-koszt.
 - b. Wskazać rozwiązania efektywne minimalnego ryzyka i minimalnego kosztu. Jakie odpowiadają im wartości w przestrzeni ryzyko–koszt?
 - c. Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego rzędu. Wyniki skomentować, odnieść do ogólnego przypadku.