Compito n. 1 Nome	Cognome	Numero di matricola
Corso di Laurea in Informatica Fisica - Corso A+B - A.A. 2015-2016 - 1	II Prova in itinere - Pisa, 27 M	Iaggio 2016.
nell'apposito riquadro e si barri l poste c'è sempre la risposta corret	a lettera associata al valore ta (tolleranza massima ±5 %). me segue: 3 punti se corretta	, 0 punti se sbagliata o non presente.
• Si assumano i seguenti valori per li ficie terrestre g = 9.81 ms ⁻² , cost $k_e = 1/4\pi\epsilon_0 = 8.99 \times 10^9 \; Nm^2 C^{-2}$	te costanti che compaiono nei prante di gravitazione universal τ , τ = 3.14159265.	problemi: intensità campo gravitazionale sulla super- le $G=6.67\times 10^{-11}~\rm Nm^2kg^{-2},$ costante di Coulomb
Problema 1: Un corpo di massa 8.70 l disposta lungo la direzione orizzontale, d All'istante iniziale la molla viene lasciata	li costante elastica 240 Nm^{-1} c	no orizzontale liscio, appoggiato ad una molla ideale, compressa di 0.760 m rispetto alla lunghezza di riposo. o viene accelerato. Trovare:
1. dopo quanto tempo il corpo lascia	la molla.	
$\Delta t [\mathrm{s}] =$	A 0.0247 B	0.299 C 0.0932 D 0.338 E 0.0645
Ad un certo punto il piano orizzontale l rampa è presente la forza di attrito, con		pa inclinata di 45 gradi rispetto all'orizzontale. Sulla co $\mu_d=0.670.$ Calcolare:
2. la quota massima rispetto all'orizz	ontale raggiunta dal corpo pri:	ma di fermarsi.
$h\left[\mathrm{m} ight] = oxed{\left[}$	A 0.145 B 0	D.232 C 0.0475 D 0.486 E 0.131
Problema 2: Sappiamo che la stazion intorno alla Terra in 5500 s. La massa d		nuove di moto circolare uniforme compiendo un giro ¹⁴ kg. Si calcoli:
3. il raggio dell'orbita della stazione s	spaziale.	
R [km] =	A 482 B 4	1210 C 1970 D 6730 E 2180
La navicella Sojuz, di massa 43000 kg, o	rbita intorno alla Terra su un'o	orbita circolare distinta, di raggio 6600 km. Si calcoli:
4. qual è il valore minimo di energia a coincidente con quella della stazion		Sojuz per andare ad orbitare stabilmente su un'orbita ter effettuare il rifornimento.
$\Delta E [GJ] =$	A 17.2 B	29.5 C 14.7 D 63.0 E 25.6

Problema 3: Un perito valuta lo scontro frontale tra due auto. La prima auto, di massa $m_A = 900$ kg, viaggia verso est. La seconda, di massa $m_B = 1300$ kg, viaggia verso ovest a velocità 9.90 ms^{-1} . Le auto dopo l'urto rimangono incastrate e viaggiano assieme per 2.20 m prima di fermarsi. Il coefficiente di attrito dinamico fra le auto e il terreno, misurato dal perito, è $\mu_d=0.660$. Si calcoli:

5. la velocità della prima auto prima dell'urto

E 27.3

6. l'energia dissipata nell'urto.

$$E[MJ] =$$

$$C \boxed{2.46}$$

Problema 4: Un corpo di massa 2.60 kg si trova in quiete e in equilibrio su un piano orizzontale liscio attaccato ad una molla orizzontale di lunghezza a riposo 2.80 m e costante elastica 330 Nm⁻¹. Ad un certo istante il corpo viene urtato da un secondo corpo di massa 1.30 kg che sopraggiunge a velocità 1.70 ms⁻¹ diretta orizzontalmente verso la direzione di compressione della molla. L'urto avviene in modo perfettamente elastico. Si trascuri ogni forma di attrito. Trovare:

7. l'ampiezza delle oscillazioni del primo corpo dopo l'urto.

$$A [cm] =$$

$$C$$
 10.1

8. il modulo della velocità del secondo corpo dopo l'urto.

$$v [m/s] =$$

$$C = 0.543$$

$$D \boxed{1.82}$$

$$E \boxed{0.567}$$

Problema 5: Due cariche positive puntiformi del valore di Q=+2.00 nC sono fissate nelle due posizioni dell'asse y equidistanti dall'origine O. La distanza dall'origine è a=+0.980 m. Un guscio sferico carico isolante di carica complessiva -2Q si trova invece fissato con il centro nell'origine degli assi. Il raggio del guscio sferico è R=a/2. Si calcoli:

9. il modulo del campo elettrico nel punto X posto sull'asse x positivo, distante a dall'origine O.

$$E[N/C] =$$

$$C$$
 24.2

Posizioniamo una particella di massa 2.10 μ g e carica - 4.50 nC nel punto sull'asse x positivo distante a dall'origine. La particella viene lasciata libera di muoversi sotto l'azione della sola forza elettrica partendo dalla condizione di quiete. Si trascuri la forza di gravità e ogni forma di attrito. Si calcoli:

10. il modulo della velocità con cui si muove la particella quando arriva a distanza molto grande (ovvero all'infinito) rispetto all'origine.

$$v [m/s] =$$

$$C \boxed{6.79}$$

