Digitalna vezja UL, FRI

P9 Programabilni gradniki

Programabilni gradniki

Arhitektura:

- AND polje
- OR polje

► Tipi:

- PLA (Programmable Logic Array)
- PAL (Programmable Array Logic)
- ROM (Read Only Memory)

PLA

- PLA ima programabilni obe polji, tako AND in OR
- Primer PLA pred programiranjem: 3 vhodi, 3 izhodi
- Oznaka x označuje povezavo na konjunktivna, disjunktivna vrata

PAL

- PAL ima programabilno polje AND in fiksno polje OR.
- Oznaka x označuje povezavo na konjunktivna vrata.
- Oznaka fiksne povezave (2, 4, 8, ...)

Realizacija funkcij

Vhodi: x_1 , x_2 , x_3

Logične funkcije: g₁, g₂, g₃, g₄

x ₁	X ₂	X ₃		g ₁	g_2	g_3	g ₄
0	0	0	0	1	0	1	0
0	0	1	1	0	0	0	1
0	1	0	2	0	0	0	0
0	1	1	3	0	0	0	0
1	0	0	4	1	1	1	1
1	0	1	5	1	0	0	1
1	1	0	6	1	1	1	1
1	1	1	7	1	1	1	1

$$g_{1} = X_{1} \lor \overline{X}_{2} \cdot \overline{X}_{3}$$
 $g_{2} = X_{1} \cdot \overline{X}_{3} \lor X_{1} \cdot X_{2}$
 $g_{3} = \overline{X}_{2} \cdot \overline{X}_{3} \lor X_{1} \cdot X_{2}$
 $g_{4} = \overline{X}_{2} \cdot X_{3} \lor X_{1}$

(PLA)

- Za realizacijo uporabimo MDNO
- Programabilna matrika

Konjunkcija	$x_1x_2x_3$	$g_1g_2g_3g_4$		$X_1.X_2$
x_1x_2	11-	$0\ 1\ 1\ 0$	* *	$\overline{X}_2.X_3$
$\bar{x}_2 x_3$	- 0 1	$0\ 0\ 0\ 1$	+++++	1) + + + *
$x_1\bar{x}_3$	1 - 0	$0\ 1\ 0\ 0$	*	$X_1.\overline{X}_3$
$\bar{x}_2\bar{x}_3$	- 0 0	$1\ 0\ 1\ 0$		$\bar{X}_2.\bar{X}_3$
x_1	1	$1\ 0\ 0\ 1$	+ + + + + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * * *
			*	X_1
				Y Y Y
				0 0 0

 x_1

DV Trebar

(PAL)

- Za realizacijo uporabimo **MDNO**
- PAL Dve konjunkciji sta $\operatorname{povezani}_{g_1 = X_1 \vee \overline{X}_2.\overline{X}_3} \operatorname{v_disjunkcijo}$

$$g_1 = X_1 \vee X_2 X_3$$

$$g_2 = X_1.\overline{X}_3 \vee X_1.X_2$$

$$g_3 = \overline{X}_2 \cdot \overline{X}_3 \vee X_1 \cdot X_2$$

$$\mathcal{G}_4 = \overline{X}_2 \cdot X_3 \vee X_1$$

Programabilno vezje - ROM

- ROM ima fiksno polje AND in programabilno polje OR.
- Fiksno polje AND je dekodirnik:
 - n naslovnih linij spremenljivke
 - 2ⁿ izhodov vhodne kombinacije, ki določajo izbiro pomnilne besede

Realizacija funkcij (ROM)

- Za realizacijo uporabimo PDNO
- Pravilnostna tabela
 - x, y, z krmilni vhodi dekodirnika
 - Izhod dekodirnika določa naslov za preslikavo funkcijskih vrednosti (zapisane so v pomnilnem polju) na izhode g₁ g₂ g₃ g₄

Х	У	Z		g 1	g 2	g 3	g ₄	0	•
0	0	0	0	1	0	1	0	1 2	Pomnilno polje
0	0	1	1	0	0	0	1	3/8	(8, y, 4)
0	1	0	2	0	0	0	0	Dekodirnik 5	(8 x 4)
0	1	1	3	0	0	0	0	\setminus $S_2 S_1 S_0 \stackrel{6}{7}$	>
1	0	0	4	1	1	1	1	\	
1	0	1	5	1	0	0	1		* * * *
1	1	0	6	1	1	1	1	$\begin{array}{c cccc} x & y & z \\ \hline 0 & 1 & 0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 1	1	1	7	1	1	1	1		

Naloga

2-bitni seštevalnik:

- Vhodi: X=(x1,x0), Y=(y1,y0)
- ▶ Izhodi: Z=(z1,z0), C

Zapis funkcij:

- ▶ MDNO → NAND
- ► MKNO → NOR
- NOT, AND, OR, XOR
- Multiplekserji: 2/1, 4/1,8/1
- Programabilni gradniki: PLA, PAL, ROM

x1	x0	y1	y0	С	z1	z0
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Pravilnostna tabela, MDNO

x1	x0	y1	y0	С	z1	z0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Pravilnostna tabela, MDNO

x1	х0	y1	у0	С	z1	z0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Pravilnostna tabela, MKNO

$$C = (x1 \lor x0).(x1 \lor y1).$$

(y1 \lor y0).(x1 \lor y0).(x0 \lor y1)

 $z0 = (\overline{x0} \vee \overline{y0}).(x0 \vee y0) =$

 $= \overline{x0 \oplus y0}$

$$z1 = (x1 \lor y1 \lor y0).(x1 \lor x0 \lor y1).$$

$$(\overline{x1} \lor \overline{y1} \lor y0).(\overline{x1} \lor x0 \lor \overline{y1}).$$

$$(x1 \lor \overline{x0} \lor \overline{y1} \lor \overline{y0}).(\overline{x1} \lor \overline{x0} \lor \overline{y1} \lor \overline{y0})$$

Zapis NAND, NOR

NAND/NAND

$$C = (x1 \uparrow y1) \uparrow (x1 \uparrow x0 \uparrow y1) \uparrow (x0 \uparrow y1 \uparrow y0)$$

$$z1 = (x1 \uparrow \overline{x0} \uparrow \overline{y1}) \uparrow (\overline{x1} \uparrow \overline{x0} \uparrow y1) \uparrow (x1 \uparrow \overline{x0} \uparrow \overline{y1}) \uparrow$$

$$(\overline{x1} \uparrow y1 \uparrow \overline{y0}) \uparrow (\overline{x1} \uparrow x0 \uparrow \overline{y1} \uparrow y0) \uparrow (x1 \uparrow x0 \uparrow y1 \uparrow y0)$$

$$z0 = (x0 \uparrow \overline{y0}) \uparrow (\overline{x0} \uparrow y0)$$

NOR/NOR

$$C = (x1 \downarrow x0) \downarrow (x1 \downarrow y1) \downarrow (y1 \downarrow y0) \downarrow (x1 \downarrow y0) \downarrow (x0 \downarrow y1)$$

$$z1 = (x1 \downarrow y1 \downarrow y0) \downarrow (x1 \downarrow x0 \downarrow y1) \downarrow (\overline{x1} \downarrow \overline{y1} \downarrow y0) \downarrow$$

$$(\overline{x1} \downarrow x0 \downarrow \overline{y1}) \downarrow (x1 \downarrow \overline{x0} \downarrow \overline{y1} \downarrow \overline{y0}) \downarrow (\overline{x1} \downarrow \overline{x0} \downarrow \overline{y1} \downarrow \overline{y0})$$

$$z0 = (\overline{x0} \downarrow \overline{y0}) \downarrow (x0 \downarrow y0)$$

Pravilnostna tabela, MUX

x1	x0	y1	y0	С	z1	z0	С	z1	z0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	1
0	0	1	0	0	1	0	0	1	0
0	0	1	1	0	1	1	0	1	1
0	1	0	0	0	0	1	0	0	1
0	1	0	1	0	1	0	0	1	0
0	1	1	0	0	1	1	0	1	1
0	1	1	1	1	0	0	1	0	0
1	0	0	0	0	1	0	0	1	0
1	0	0	1	0	1	1	0	1	1
1	0	1	0	1	0	0	1	0	0
1	0	1	1	1	0	1	1	0	1
1	1	0	0	0	1	1	0	1	1
1	1	0	1	1	0	0	1	0	0
1	1	1	0	1	0	1	1	0	1
1	1	1	1	1	1	0	1	1	0

- 2/1 MUX kaskadna realizacija
 - ▶ C, Z1, z0
- 4/1 MUX kaskadna realizacija

Pravilnostna tabela, MUX

x1	x0	y1	y0	С	z1	z0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

- 8/1 MUX kaskadna realizacija
 - C, z1
 - z0 realizacija z 2/1

Programabilni gradniki:

```
PLA
     Konjunkcije: (11), vse so
 različne
Disjunkcije: 3 izhodi (C, z1, z0)
     x1.x0.y1
     x0.y1.y0
     x1.\overline{x0}.\overline{y1}
     \overline{x1}.\overline{x0}.y1
     x1.\overline{x0}.\overline{y1}
     \overline{x1}.y1.\overline{y0}
     \overline{x1}.x0.\overline{y1}.y0
     x1.x0.y1.y0
     x0.\overline{y0}
     \overline{x0}.y0
```

PAL Konjunkcije:

► C: 3

> z1:6

> z0: 2

PAL – 8 konjunkcij povezanih v izhodno disjunkcijo

Pravilnostna tabela, ROM

x1	x0	y1	y0	С	z1	z0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

ROM: 16 x 3 ali 16 x 4