Teoria della computazione

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

6 aprile 2022

Cosa possiamo calcolare?

Quali problemi siamo in grado di risolvere?

- Con un certo tipo di formalismo di calcolo?
- In assoluto?
- La seconda domanda appare molto generale:
 - Cosa si intende per "problema"? Riordinare la stanza? Trovare un file sul disco fisso? Trattenere il respiro per 10 minuti?
 - Quante e quali macchine dobbiamo considerare per rispondere "in assoluto"?
 - Come astraiamo dalla specifica abilità del solutore?
 - E dai mezzi impiegati per risolvere il problema?

Una prima inquadratura

Come formalizzare un "problema informatico"?

- Abbiamo formalizzato un "problema informatico" usando il concetto di linguaggio
- ullet Formuliamo un calcolo come il problema di capire se $x\in L$ o di calcolare y= au(x)
- Queste due formulazioni possono essere unificate riconducendo una all'altra
 - So calcolare $y=\tau(x)$, voglio risolvere $x\in L$: definisco $\tau(x)=1\Leftrightarrow x\in L$ e $\tau(x)=0\Leftrightarrow x\notin L$
 - \mathcal{M} risolve $x \in L$: definisco $L_{\tau} = \{x \ddagger y | y = \tau(x)\}$, poi per tutte le possibili stringhe y chiedo a \mathcal{M} se $x \ddagger y \in L_{\tau}$. Se $\tau(x)$ è definita, prima o poi la macchina risponderà positivamente (probabilmente più poi che prima, ma per ora non ci interessa l'efficienza).

Con quale macchina calcolare?

Come formalizzare un "problema informatico"?

- Esistono moltissimi formalismi di calcolo, moltissimi altri possono essere inventati: quale scegliere?
 - A seconda della scelta, ottengo risultati come: " $a^nb^n|n>0$ è riconosciuto da un AP e una MT ma non da un FSA"
- Riflettendo sulla MT si nota come non sia facile costruire un meccanismo con capacità di calcolo maggiori (=che risolva più problemi)
 - Aggiungere nastri, testine, dimensioni al nastro non cambia
 - Essa emula qualunque meccanismo di calcolo usiamo in pratica

Tesi di Church-Turing

La MT è tutto quello che ci serve

- Nel 1933 Gödel e Herbrandt individuano un insieme di funzioni sugli interi che appaiono definire ciò che può essere calcolato "a mano, con carta e penna"
- Nel 1936, Alonso Church definisce un altro sistema basato su funzioni ricorsive, il λ -calcolo, anch'esso in grado di descrivere tutte le funzioni "calcolabili operativamente"
- Nel 1936 Turing definisce quella che è la MT a nastro singolo sempre nell'intento di fornire un formalismo per rappresentare tutto ciò che è "effettivamente calcolabile"
- Turing e Church dimostrano che i tre formalismi citati sono equivalenti: definiscono lo stesso insieme di problemi
- Tesi di Church-Turing: Tutti i problemi calcolabili operativamente sono descritti da una MT!

Un inquadramento completo

Dalla tesi di Church-Turing in avanti

- La domanda "quali sono i problemi che possiamo risolvere automaticamente o algoritmicamente?" è ben posta ora
 - n.b.: è vero, la tesi di Church-Turing non è formalmente dimostrata, ma negli ultimi 80 anni non ha avuto controesempi
- Turing chiama "effectively computable" una funzione che può essere calcolata da una procedura eseguita da una macchina, senza necessità di intervento esterno, e che dà risultato in tempo finito nella sua tesi di dottorato^a
- Esistono problemi che non si possono risolvere algoritmicamente?
 - Come è possibile determinare se questo è il caso?

^ahttps://dx.doi.org/10.1112/plms/s2-45.1.161, pag.6

Enumerazione algoritmica

Enumerare un insieme

- \bullet Enumerazione ${\mathcal E}$ di un insieme = corrispondenza biunivoca tra i suoi elementi e quelli di ${\mathbb N}$
- ullet Enumerazione algoritmica: $\mathcal E$ è "effectively computable": esiste un algoritmo (o una MT) che la calcola
- ullet Enum. algoritmica di $L=\{a^*b^*\},~\mathcal{E}:L o\mathbb{N}:$ "etichetta" le stringhe in ordine crescente di lunghezza. Per stringhe della stessa lunghezza, "etichettale" in ordine lessicografico
 - \bullet $\varepsilon \mapsto 0, a \mapsto 1, b \mapsto 2, aa \mapsto 3, ab \mapsto 4, bb \mapsto 5, aaa \mapsto 6, aab \mapsto 7...$

Primo fatto sulle MT

• Le MT sono algoritmicamente enumerabili (dimostriamolo)

Enumerazione algoritmica delle MT

Premesse senza perdita di generalità

- Consideriamo le MT a nastro singolo, con alfabeto $\mathbf{A} = \{0, 1, \mathbf{b}\}\$ e $\mathbf{Q} = \{q_0, q_1\}\$
- ullet Osserviamo quali sono le possibili δ di queste MT

0 1	0 1	0 1	
$\begin{array}{c cccc} q_0 & \bot & \bot \\ q_1 & \bot & \bot \end{array}$	$\begin{array}{c cccc} \hline q_0 & \langle q_0, 0, S \rangle & \bot \\ q_1 & \bot & \bot \end{array}$	$\begin{array}{c cccc} \hline q_0 & \langle q_0, 1, S \rangle & \bot \\ q_1 & \bot & \bot \end{array}$	
$\overline{MT_1}$	$\overline{MT_2}$	$\overline{MT_3}$	

ullet Posso contare il numero di δ possibili e sapere quante MT a 2 stati/2 lettere di alfabeto esistono

Enumerazione algoritmica delle MT

Enumerazione delle macchine

- In generale, ho $|\mathbf{C}|^{|\mathbf{D}|}$ funzioni $f: \mathbf{D} \to \mathbf{C}$
- Facendo i conti con $\delta: \mathbf{Q} \times \mathbf{A} \to (\mathbf{Q} \times \mathbf{A} \times \{R,S,L\}) \cup \{\bot\}$ abbiamo che, con $|\mathbf{Q}| = 2, |\mathbf{A}| = 3$ ci sono $(2 \cdot 3 \cdot 3 + 1)^{2 \cdot 3} = 19^6$ possibili δ per MT a 2 stati/2 lettere
- Scelgo un ordine arbitrario per l'insieme $\{MT_0, ..., MT_{19^6-1}\}$
- Allo stesso modo ordino le $(3 \cdot 3 \cdot 3 + 1)^{3 \cdot 3} = 28^9$ MT-3-stati
- ullet Numerando gli insiemi uno dopo l'altro ottengo un'enumerazione $\mathcal{E}:\mathsf{MT} o\mathbb{N}$
- \mathcal{E} è algoritmica: posso scrivere un programma (come è fatto?) che, data δ mi fornisce il suo numero.
- $\mathcal{E}(\mathcal{M})$ è detto numero di Gödel di \mathcal{M} , $\mathcal{E}(\cdot)$ è detta gödelizzazione

Convenzioni aggiuntive

Convenzioni sul calcolo

- ullet Problema = calcolo di una funzione $f: \mathbb{N} \to \mathbb{N}$
- f_i = funzione calcolata dalla i-esima MT
- N.B.: $f_i(x) = \bot$ se \mathcal{M}_i non si ferma quando riceve in ingresso x
- Convenzione: $f_i(x) = \bot$ se e solo se \mathcal{M}_i non si ferma quando riceve in ingresso x
 - Data una generica \mathcal{M}_i basta fare in modo che proceda all'infinito (e.g. sposti all'infinito la testina verso sx) se non calcola un valore significativo per $f_i(x)$
 - La convenzione consente di non dover trattare gli stati finali separatamente separatamente

Macchina di Turing Universale

Calcolare una generica MT con un'altra

- Esiste (almeno) una Macchina di Turing universale (MTU)
 - è la MT che calcola $g(i,x) = f_i(x)$
- La MTU non sembra essere dello stesso tipo delle altre \mathcal{M}_i perchè $f_i(\cdot)$ è funzione di una variabile, $g(\cdot, \cdot)$ di due
- Proviamo il contrario ricordando che $\mathbb{N} \times \mathbb{N}$ è enumerabile

Mappa di Cantor

$$d$$
 associa (x,i) a $n\in\mathbb{N}$
$$d(x,i) = \frac{(x+i)(x+i+1)}{2} + x$$

• N.B. d è invertibile: dato n ottengo una e una sola (x,y)

Macchina di Turing Universale

Calcolare una generica MT con un'altra

- Posso cambiare la codifica di g(i,x), realizzando una $\hat{g}(n) = g(d^{-1}(n))$ ($d \in d^{-1}$ sono facilmente computabili)
- ullet Schema di una MTU che calcola \hat{g}
 - Dato n calcolo $d^{-1}(n) = \langle i, x \rangle$
 - ullet Calcolo $\mathcal{E}^{-1}(i)$, memorizzo la δ di M_i sul nastro della MTU, separata da \ddag

• Uso un'altra porzione di nastro per simularne la configurazione

- N.B.: I simboli speciali ‡, △ vengono codificati in binario
- La MTU lascia sul nastro $f_i(x) \Leftrightarrow M_i$ termina la computazione su x

A confronto con la pratica

MT, MTU, ASIC e Calcolatori programmabili

- Abbiamo visto che una MT è un modello molto semplice di calcolatore in qualche senso analoga ad una macchina con programma cablato (un ASIC)
- Una MTU è l'analogo di un calcolatore programmabile
 - ullet Il numero di Göedel i agisce da "codice" del programma, l'ingresso x sono i dati
- Una MTU (e anche la sua implementazione^a) può essere molto semplice: ne esiste una con 4 stati e 6 simboli
- Nulla vieta che i sia il numero di Göedel di un'altra MTU e che x contenga quindi il numero di Gödel e i dati da far girare nella MTU "emulata": modello di una macchina virtuale

^ahttps://en.wikipedia.org/wiki/One_instruction_set_computer

Un richiamo di teoria degli insiemi

Il teorema di Cantor: $|S| < 2^{|S|}$

- Dimostriamo che dato un insieme S, $|S| < |\wp(S)|$
 - Ci saranno utili sia il risultato, sia la tecnica dimostrativa
 - ullet N.B. il teorema è valido anche se |S| non è finito

Dimostrazione.

Dim. che esiste una $f: S \to \wp(S)$ iniettiva, ma non una suriettiva.

- \exists **Iniettiva.** Esempio di f iniettiva: f mappa $x \in S$ in $\{x\} \in \wp(S)$.
- \nexists Suriettiva. Considero $T = \{x \in S, x \notin f(x)\}$. Per assurdo. Hp: esiste f sur., quindi

$$T=f(x).$$
 $x\in T\Leftrightarrow x\in f(x) \text{ (per hp }T=f(x)\text{)}$ $x\in T\Leftrightarrow x\notin f(x) \text{ (data la definizione di }T\text{)}$

ma, per qualunque $x \in S$ o è vero $x \in T$ o è vero $x \notin T$ \$\mathcal{I}\$

Quanti e quali problemi sono risolvibili algoritmicamente?

Cominciamo dal "quanti"

- Sappiamo che $f: \mathbb{N} \to \mathbb{N} \supseteq f: \mathbb{N} \to \{0,1\}$ e quindi $|f: \mathbb{N} \to \mathbb{N}| \supseteq |f: \mathbb{N} \to \{0,1\}|$. Sappiamo anche che $|f: \mathbb{N} \to \{0,1\}| = 2^{\aleph_0}$ (= $|\mathbb{R}|$ sotto l'ipotesi del continuo)
- Quante sono le funzioni calcolabili $f_i:\mathbb{N}\to\mathbb{N}, i\in\mathbb{N}?$ $|\mathbb{N}|=\aleph_0$ (abbiamo dimostrato che sono enumerabili)
 - N.B. $\mathcal{E}:\{\mathcal{M}_i\} \to \mathcal{N}$ induce una $\hat{\mathcal{E}}: \mathcal{N} \to \{f_y\}$ non biunivoca, ma ci basta per dire quanto sopra
- Esistono quindi almeno 2^{\aleph_0} funzioni (sui naturali), ma solo \aleph_0 MT \Rightarrow la "stragrande" maggioranza delle funzioni (problemi) non è risolvibile algoritmicamente!

Abbiamo perso molto?

Problemi definibili

- Domanda: "quanti sono i problemi definibili?"
- Definiamo un problema con una frase in un qualche linguaggio:
 - $f(x) = x^3 + x + 1$
 - $f(x) = \sum_{i=0}^{100} ix^2$
 - "il numero che moltiplicato per il diametro di una circonferenza dà la sua lunghezza"
- Un linguaggio è sottoinsieme di A*, che è numerabile
- L'insieme dei problemi definibili è quindi numerabile come quello dei risolvibili!
- Dato che Problemi risolvibili ⊆ Problemi definibili (una MT definisce una funzione oltre a calcolarla)
 - Possiamo sperare che l'inclusione non sia propria...

Quali sono i problemi risolvibili?

Il problema della terminazione del calcolo

- Problema di carattere estremamente pratico:
 - Costruisco un programma
 - Lo eseguo su dei dati in ingresso
 - So che il programma potrebbe non terminare la sua esecuzione (in gergo, "va in loop")
 - Posso determinare, con un metodo generale, se e quando questo accade?
- Rifrasando in termini equivalenti di MT:
 - Consideriamo la funzione $g(i,x) = \begin{cases} 1 & \text{se } f_i(x) \neq \bot \\ 0 & \text{se } f_i(x) = \bot \end{cases}$
 - ullet Esiste una MT che calcola g?

Il problema della terminazione del calcolo

... non può essere risolto

- NON esiste una MT che calcola la g appena definita!
- Di conseguenza, nella pratica:
 - Non esiste un compilatore che possa dirci che il nostro programma andrà in loop su un dato input
 - Non possiamo costruire l'antivirus definitivo che sia in grado di capire a priori se un programma è malevolo
 - Non possiamo "creare un programma per tentativi ciechi" controllando solo a posteriori che sia quello corretto
- Per contro, dire se ci siam dimenticati una parentesi in un linguaggio di programmazione (ben progettato) è fattibile: basta un AP per risolvere il problema

Dimostrazione

Note tecniche

ullet Tecnica diagonale simile a quella usata da Cantor per dimostrare che $|{f S}| < 2^{|{f S}|}$ in una dimostrazione per assurdo

Dimostrazione

• Hp (nego la tesi): esiste ed è computabile

$$g(i,x) = \begin{cases} 1 & \text{se } f_i(x) \neq \bot \\ 0 & \text{se } f_i(x) = \bot \end{cases}$$

- É quindi computabile anche $h(x) = \begin{cases} 1 & \text{se } g(x,x) = 0 \\ \bot & \text{altrimenti} \end{cases}$
- Se h è computabile, esiste x_h tale che $f_{x_h} = h$

Dimostrazione

Dimostrazione - seguito

- A questo punto cosa succede se calcolo $h(x_h)$?
 - Caso $h(x_h) = 1$: Dato che $f_{x_h} = h$, si ha che $f_{x_h}(x_h) = 1$. Tuttavia, per definizione di h abbiamo che $g(x_h, x_h) = 0$, ma quindi, per definizione di g, $f_{x_h}(x_h) = \bot \mathcal{E}$
 - Caso $h(x_h)=\bot$: Dato che $f_{x_h}=h$, si ha che $f_{x_h}(x_h)=\bot$. Tuttavia, per definizione di h abbiamo che $g(x_h,x_h)=1$, ma quindi, per definizione di g, $f_{x_h}(x_h)\ne\bot$ f
- Otteniamo una contraddizione in entrambi i casi.

Una visione intuitiva della dimostrazione

Se ho un programma g(i,x) in grado di dire se un generico altro programma f_i termina, posso usarlo per costruirne un programma h che fa sempre sbagliare g(i,x) nel comprendere se h termina.

Generalizzazioni e specializzazioni

Un lemma del teorema precedente

- N.B. non può essere ricavato come conseguenza del teorema precedente (che copre un caso più generale, dove *i* e *x* possono esser diversi)
- ullet Se un dato problema P non è calcolabile un suo caso particolare (= stesso problema su una restrizione del dominio) potrebbe esserlo
 - ma una sua generalizzazione (= stesso problema con dominio ampliato) non lo è mai
- ullet Se un dato problema P è calcolabile, una sua generalizzazione potrebbe non esserlo (ma una sua specializzazione è sempre calcolabile)

Un ulteriore importante problema indecidibile

Calcolare se una funzione calcolabile è totale

$$k(i) = \begin{cases} 1 & \text{se } \forall x \in \mathbb{N}, f_i(x) \neq \bot \ (f_i(\cdot) \ \text{totale}) \\ 0 & \text{se } \exists x \in \mathbb{N}, f_i(x) = \bot \ (f_i(\cdot) \ \text{non totale}) \end{cases}$$
 non è calcolabile

- ullet Problema simile $\emph{ma diverso}$ dal precedente: voglio sapere se il calcolo di f_i termina per \emph{tutti} i suoi input
 - Saper dire, per un x fissato, se $f_i(x) \neq \bot$ non mi consente di dire sicuramente se $f_i(\cdot)$ è totale: posso provare un po'di x, ma potrei non trovare quello critico per cui $f_i(x) = \bot$
 - Viceversa, potrei essere in grado di dire che una data f_i non è totale, anche se non so decidere se $f_i(x) \stackrel{?}{=} \bot$ per un x fissato
- In pratica: questo è il problema di determinare se, dato un programma, termina su un qualsiasi dato in ingresso.

Dimostrazione

Ancora per assurdo + diagonale

- Hp assurdo: $k(i) = \begin{cases} 1 & \text{se } \forall x \in \mathbb{N}, f_i(x) \neq \bot \\ 0 & \text{se } \exists x \in \mathbb{N}, f_i(x) = \bot \end{cases}$ è calcolabile
 - Per come è definita, k è anche totale
- Definisco g(x) = w = numero di Gödel della x-esima MT che calcola una funzione totale (in pratica $g(\cdot)$ enumera le MT che calcolano funzioni totali)
- Se k è calcolabile e totale, lo è anche g; posso infatti:
 - Calcolare k(x) al crescere di x. Trovato $x_0|k(x_0)=1$ pongo $g(0)=x_0$ e riprendo a calcolare k da x_0+1 in avanti
 - Trovato $x_1|k(x_1)=1$ pongo $g(1)=x_1$, e riprendo ...
 - La procedura è algoritmica, e calcola g(x) per ogni x essendo le funzioni totali (numerabilmente) infinite

Dimostrazione

Continua dalla slide precedente

- q è strettamente monotona: $q(x) = w_x < w_{x+1} = q(x+1)$
- g^{-1} è quindi ancora una funzione strettamente monotona ma non totale ($g^{-1}(w)$ è definita solo se w è il n. di Gödel di una funzione totale)
- Definisco $h(x) = f_{g(x)}(x) + 1 = f_w(x) + 1$. Sappiamo che $f_w(x)$ è calcolabile e totale (per def. di g) \Rightarrow anche h lo è
- Esiste un $\bar{w} \mid f_{\bar{w}}(\cdot) = h(\cdot)$. Dato che h è totale, sicuramente $g^{-1}(\bar{w}) \neq \bot$: poniamo $g^{-1}(\bar{w}) = \bar{x}$
- Che forma ha $h(\bar{x})$? Per definizione di h, $h(\bar{x})=f_{g(\bar{x})}(\bar{x})+1=f_{\bar{w}}(\bar{x})+1$, ma, siccome $h(\cdot)=f_{\bar{w}}(\cdot)$ abbiamo anche $h(\bar{x})=f_{\bar{w}}(\bar{x})$?

Problema risolvibile \neq problema risolto

Sapere che la soluzione esiste \neq essere in grado di determinarla

- Spesso è possibile dare una dimostrazione non costruttiva: dimostro che una soluzione esiste, ma non mostro come ricavarla in generale
 - E' il caso tipico di problemi che non hanno soluzione nota in forma chiusa
- Nel contesto della calcolabilità: posso sapere che esiste una MT che risolve il problema, anche se non sono in grado di dire quale sia tra le possibili
- Alcuni esempi con problemi a risposta binaria:
 - É vero che una partita a scacchi "perfetta" termina in parità?
 - É vero che ogni intero > 2 è la somma di due primi?

Problema risolvibile \neq problema risolto

Un po' di formalizzazione

- In un problema con risposta binaria so a priori che la risposta è "sì" o "no" anche se non so quale sia
- Ricordando che per noi problema = funzione e risolvere un problema = calcolare una funzione, che funzioni associamo ai problemi precedenti?
 - Codificando "sì" = 1, "no" = 0, i due problemi precedenti sono espressi dalle una tra le due funzioni $f_1(x) = 1$, $f_0(x) = 0$
- Dunque sono risolvibili problemi come:
 - Dire se g(10,20) = 1, ossia se $f_{10}(20) \neq \bot$
 - Dire se $\forall x \in \{10, 11, 12\}, g(x, 20) = 1$
- Sono tutti problemi con risposta "sì" o "no": possiamo non riuscire a determinare quale tra le due sia corretta, ma sicuramente sono calcolabili

Un caso più interessante

Calcolare le cifre di π

- f(x) = x-esima cifra dell'espansione decimale di π
 - ullet f è calcolabile, è noto più di un algoritmo (MT) che la calcola
- Date le capacità attuali di calcolare f ci domandiamo se g(x) sia calcolabile: g(x)=1 se nell'espansione di π sono presenti x cifre 5 consecutive, 0 altrimenti
- Calcolando la sequenza f(0) = 3, f(1) = 1, f(2) = 4, f(3) = 1, f(4) = 5, f(5) = 9 sappiamo che g(1) = 1
- A priori, i valori di g(x) saranno distribuiti tra 0 e 1 in un modo deterministico, ma non predicibile (al meglio delle nostre conoscenze)

g(x) è calcolabile?

Un approccio enumerativo

- ullet Data x, se g(x)=1 lo scoprirò sempre (basta calcolare abbastanza cifre di π)
- Se g(x)=0 non posso esserne certo semplicemente calcolando un grande numero di cifre di π : la sequenza che cerco potrebbe essere appena dopo!
- Consideriamo la congettura: "Qualsiasi sia x esiste una sequenza di x cifre 5 nell'espansione di π ?"
- Se fosse vera, g(x) sarebbe calcolabile banalmente (sarebbe costante)
- ullet In conclusione, date le conoscenze attuali, non sappiamo dimostrare né che g sia calcolabile, né che non lo sia

Un primo esercizio

Una "lieve" modifica a q

- h(x): h(x)=1 se nell'espansione di π ci sono almeno x cifre 5 consecutive, 0 altrimenti. h(x) è computabile?
- ullet Prima osservazione : se h(x)=1 per una data x, allora $\forall y\leq x, h(y)=1$
- Deduciamo che h(x) può essere fatta in due modi

Un primo esercizio

Analizziamo h(x)

• h(x) appartiene quindi sicuramente all'insieme delle funzioni:

$$\{h_{\bar{x}}|\forall x \leq \bar{x},\ h_{\bar{x}}(x) = 1, \forall x > \bar{x},\ h_{\bar{x}}(x) = 0\} \cup \{\bar{h}|\forall x,\ \bar{h}(x) = 1\}$$

- Ogni funzione $h_{\bar{x}}$ di questo insieme è banalmente calcolabile (la MT corrispondente, data \bar{x} deve solo emettere 1 o 0 a seconda che l'ingresso sia minore/uguale o maggiore)
- Quindi h è sicuramente calcolabile, esiste la MT che la calcola
- Siamo in grado di dire quale MT calcola h ? Al momento no: tra le MT non sappiamo quale scegliere!

Decidibilità e semidecidibilità

Insiemi decidibili

- Concentriamoci su problemi con risposta binaria
 - Problema = dato un insieme $\mathbf{S} \subseteq \mathbb{N}, x \in \mathbf{S}$
 - Alternativamente, calcolare la funzione caratteristica di S

$$\mathbf{1}_S$$
: $\mathbf{1}_S(x) = 1$ se $x \in S$, $\mathbf{1}_S(x) = 0$ se $x \notin S$

- ullet Un insieme ullet si dice *ricorsivo* o *decidibile* se e solo se la sua funzione caratteristica è computabile
 - (N.B.: 1_S è una funzione dunque relazione totale per definizione)

Decidibilità e semidecidibilità

Insiemi semidecidibili

- Un insieme S è ricorsivamente enumerabile (RE) o semidecidibile se e solo se
 - S è l'insieme vuoto
 - S è l'immagine di una funzione totale e computabile:

$$\mathbf{S} = \mathbf{I}_{g_{\mathbf{S}}} = \{x | x = g_{\mathbf{S}}(y), y \in \mathbb{N}\} \Rightarrow \mathbf{S} = \{g_{\mathbf{S}}(0), g_{\mathbf{S}}(1), \ldots\}$$
 da cui ricorsivamente (algoritmicamente) enumerabile

- Il termine semidecidibile deriva dal fatto che:
 - ullet Se $x\in \mathbf{S}$ enumerando gli elementi di \mathbf{S} prima o poi lo trovo
 - Se $x \notin \mathbf{S}$ non sono mai certo di poter rispondere "no" enumerando, potrei non aver ancora trovato x

Legami tra decidibilità e semidecidibilità

Teorema (Decidibilità ⇒ semidecidibilità)

Se un insieme S è ricorsivo, esso è ricorsivamente enumerabile

Dimostrazione.

- Se S è vuoto, è RE per definizione.
- Assumiamo $\mathbf{S} \neq \emptyset$, e costruiamo una funzione totale e computabile di cui \mathbf{S} è immagine. $\exists k \in \mathbf{S} \Rightarrow \mathbf{1_S}(k) = 1$ Definiamo $g_{\mathbf{S}}$ come

$$g_{\mathbf{S}}: \begin{cases} g_{\mathbf{S}}(x) = x \text{ se } \mathbf{1}_{\mathbf{S}}(x) = 1\\ g_{\mathbf{S}}(x) = k \text{ se } \mathbf{1}_{\mathbf{S}}(x) = 0 \end{cases}$$

ullet $g_{\mathbf{S}}$ è computabile, totale e $\mathbf{I}_{g_{\mathbf{S}}} = \mathbf{S} \Rightarrow \mathbf{S}$ è RE

N.B. Dimostrazione non costruttiva: non sappiamo se $\mathbf{S}
eq \varnothing$ né in generale calcolare $g_{\mathbf{S}}$

Legami tra decidibilità e semidecidibilità

Teorema (semidecidibilità+semidecidibilità=decidibilità)

S è ricorsivo se e solo se sono ricorsivamente enumerabili sia S che il suo complemento $\bar{S}=\mathbb{N}\setminus S$

\mathbf{S} ricorsivo $\Rightarrow \mathbf{S} \in \bar{\mathbf{S}}$ RE.

- S ricorsivo $\Rightarrow S$ RE per teorema precedente
- ${f S}$ ricorsivo $\Rightarrow {f 1}_{f S}(x)$ calcolabile $\Rightarrow {f 1}_{f ar S}(x)$ calcolabile (scambio 0 con 1 come risultato di ${f 1}_{f S}(x)$ calcolabile e totale) $\Rightarrow {f ar S}$ ricorsivo $\Rightarrow {f ar S}$ RE

Legami tra decidibilità e semidecidibilità

\mathbf{S} ricorsivo $\Leftarrow \mathbf{S}$ e $\mathbf{\bar{S}}$ RE.

• $\mathbf{S} \ \mathsf{RE} \Rightarrow \mathbf{S} = \{g_{\mathbf{S}}(0), g_{\mathbf{S}}(1), g_{\mathbf{S}}(2), g_{\mathbf{S}}(3), \ldots\}$ $\bar{\mathbf{S}} \ \mathsf{RE} \Rightarrow \bar{\mathbf{S}} = \{g_{\bar{\mathbf{S}}}(0), g_{\bar{\mathbf{S}}}(1), g_{\bar{\mathbf{S}}}(2), g_{\bar{\mathbf{S}}}(3), \ldots\}$ Osserviamo che $\mathbf{S} \cup \bar{\mathbf{S}} = \mathbb{N}$ e $\mathbf{S} \cap \bar{\mathbf{S}} = \emptyset$, quindi una qualunque $x \in \mathbb{N}$ appartiene a una e una sola delle due enumerazioni di cui sopra:

$$(\forall x \in \mathbb{N}, \exists y | x = g_{\bar{\mathbf{S}}}(y) \lor x = g_{\mathbf{S}}(y)) \land (\neg \exists z | g_{\bar{\mathbf{S}}}(z) = g_{\mathbf{S}}(z))$$

- Sono quindi certo di trovare qualunque x nell'enumerazione $\{g_{\mathbf{S}}(0), g_{\bar{\mathbf{S}}}(0), g_{\mathbf{S}}(1), g_{\bar{\mathbf{S}}}(1), g_{\mathbf{S}}(2), g_{\bar{\mathbf{S}}}(2), g_{\mathbf{S}}(3), \ldots\}$
- Nel momento in cui trovo x in posizione dispari concludo che $x \notin \mathbf{S}$, altrimenti $x \in \mathbf{S}$: so quindi calcolare $\mathbf{1}_{\mathbf{S}}$

Conseguenze pratiche e non

Chiusura per complementazione

• Gli insiemi decidibili sono chiusi rispetto al complemento

Definizione delle f calcolabili e totali

- Dato un insieme S per cui
 - Se $i \in \mathbf{S}$ allora f_i è calcolabile e totale
 - ullet Se f è totale e computabile allora $\exists i \in \mathbf{S} | f_i = f$
- Allora S non è ricorsivamente enumerabile
- Dimostrazione per assurdo: $\exists \ \mathbf{1_S}(i)$ computabile. Definisco $h(x) = \{f_x(x) + 1 \text{ se } \mathbf{1_S}(x) = 1, \ 0 \text{ altrimenti} \}$. Ho che $\forall x \ h(x) \neq f_{\mathbf{1_S}(x)}(x)$. h(x) è calcolabile, ma diversa da tutte le calcolabili (in almeno un punto, per definizione) $\mathbf{\ell}$

Conseguenze pratiche e non

Risvolti pratici

- Non è possibile, con un formalismo RE (automi, grammatiche, funzioni ricorsive) definire l'insieme di tutte e sole le f calcolabili totali
- Non posso in nessun modo descrivere come è fatto l'insieme di tutti e soli i programmi che terminano sempre:
 - Gli FSA e gli AP D definiscono solo funzioni totali, ma non tutte
 - Le MT definiscono tutte le funzioni calcolabili, ma anche quelle non totali
 - Il C mi permette di scrivere qualunque algoritmo, ma anche quelli che non terminano
 - Esiste un sottoinsieme del C che definisce tutti e soli i programmi che non terminano? NO.

Riusciamo ad eliminare le funzioni non totali?

Estendiamo la funzione parziale

- \bullet Arricchiamo $\mathbb N$ con un nuovo valore \bot oppure assegnamo un valore convenzionale ad f quando non è definita
- Matematicamente, non c'è problema nel farlo (infatti in matematica pura si dà poco attenzione alle funzioni parziali)
- Esaminiamo $g(x) = \begin{cases} f_x(x) + 1 \text{ se } f_x(x) \neq \bot \\ \bot \text{ altrimenti} \end{cases}$
- Non riusciamo a costruire una funzione computabile e totale che estende g(x) (devo risolvere il problema dell'arresto per definirla!)
- Posso provare ad estendere una funzione parziale e renderla totale, ma potrei perdere la computabilità del risultato!

Sugli insiemi ricorsivamente enumerabili

Fatti equivalenti

- É equivalente dire che:
 - S è ricorsivamente enumerabile
 - S è il dominio \mathbf{D}_h di una funzione computabile e parziale $\mathbf{S} = \{x | h(x) \neq \bot\}$
 - S è il codominio I_q di una funzione computabile e parziale $S = \{x | x = g(y), y \in \mathbb{N}\}$
- N.B. Non contraddice la definizione di RE: posso sempre ottenere una funzione totale \bar{g} da g tale per cui $\mathbf{S}=\mathbf{I}_{\bar{g}}.$
 - Allo stesso modo posso, dalla g totale della definizione, ottenere una \tilde{g} parziale facilmente, e.g. da g(x)=x a $\tilde{g}(0)=\perp, \tilde{g}(x)=x-1$

Sugli insiemi ricorsivamente enumerabili

Un ulteriore risultato di semidecidibilità

- Sfruttando le equivalenze appena citate possiamo dimostrare che esistono insiemi semidecidibili che non sono decidibili
- Consideriamo $\mathbf{S}=\{x|f_x(x)\neq \bot\}$: è il dominio \mathbb{D}_h della funzione $h(x)=f_x(x)$ che è computabile e parziale
- Abbiamo quindi che S è RE
- Sappiamo anche che l'indicatrice $\mathbf{1}_{\mathbf{S}}(x) = 1$ se $f_x(x) \neq \bot, 0$ altrimenti non è computabile totale dunque \mathbf{S} non è decidibile

Riassumendo

Una gerarchia degli insiemi $\wp(\mathbb{N})$

RE

Ricorsivi

• Gli insiemi RE non sono chiusi per complemento

Verso il teorema di Rice

Il teorema di Kleene del punto fisso

• Sia una funzione $t(\cdot)$ totale e computabile. É sempre possibile trovare un $p \in \mathbb{N}$ tale che $f_p = f_{t(p)}$. La funzione f_p è detta punto fisso di $t(\cdot)$.

Il teorema di Kleene del punto fisso

Dimostrazione - 1

- Dato $u \in \mathbb{N}$ definiamo una MT che effettua il seguente calcolo sull'ingresso x:
 - Calcola $f_u(u) = z$
 - $oldsymbol{2}$ Se e quando il calcolo precedente termina, calcola $f_z(x)$
- La definizione è effettiva, quindi esiste una MT che la calcola
- Possiamo costruire la MT e cercare (per confronto con le altre MT) il suo numero di Gödel g(u) per una qualsiasi u
- N.B. g(u) è totale e computabile
- Otteniamo $f_{g(u)}(x) = \begin{cases} f_{f_u(u)}(x) \text{ se } f_u(u) \neq \bot \\ \bot \text{ altrimenti} \end{cases}$

Il teorema di Kleene del punto fisso

Dimostrazione - 2

- Sappiamo che, data la $g(\cdot)$ totale e computabile di cui sopra, e data una $t(\cdot)$ totale e computabile anche $t(g(\cdot))$ lo è
- Chiamiamo v il numero di Gödel di $t(g(\cdot))$, cioè $t(g(\cdot)) = f_v(\cdot)$
- Ripetiamo la costruzione della slide precedente usando v al posto di u ottenendo $f_{g(v)}(x) = \begin{cases} f_{f_v(v)}(x) \text{ se } f_v(v) \neq \bot \\ \bot \text{ altrimenti} \end{cases}$
- Ricordando che $t(g(\cdot)) = f_v(\cdot)$ è totale e computabile (ossia $\forall v, f_v(v) \neq \bot$), otteniamo che $f_{g(v)}(x) = f_{f_v(v)}(x)$
- Sostituendo nel secondo membro $f_{f_v(v)}(x) = f_{t(g(v))}$, quindi g(v) è il punto fisso di $t(\cdot)$

Il teorema di Rice

Teorema

 ${f F}$ insieme di funzioni computabili, l'insieme ${f S}$ degli indici delle MT che calcolano le funzioni di ${f F}$, ${f S}=\{x|f_x\in {f F}\}$, è decidibile se e solo se ${f F}=\varnothing$ o ${f F}$ è l'insieme di tutte le funzioni computabili.

Dimostrazione - 1

- ullet Per assurdo. Supponiamo ${f S}$ sia decidibile, ${f F}$ non vuoto e diverso dall'insieme di tutte le funzioni computabili
- Consideriamo $\mathbf{1}_S(x) = \{1 \text{ se } f_x \in \mathbf{F}, \ 0 \text{ altrimenti}\}; \text{ essa è calcolabile per l'ipotesi appena fatta}$
- Possiamo quindi calcolare
 - **1** il più piccolo $i \in \mathbb{N}$ tale che $f_i \in \mathbf{F}$, ovvero $i \in \mathbf{S}$
 - ② il più piccolo $j \in \mathbb{N}$ tale che $f_j \notin \mathbf{F}$, ovvero $j \notin \mathbf{S}$

Il teorema di Rice

Dimostrazione.

- Per quanto detto, $h_{\mathbf{S}}(x) = \{i \text{ se } f_x \notin \mathbf{F}, j \text{ altrimenti}\}$ è a sua volta calcolabile e totale
- Applicando il teorema di Kleene alla funzione totale e computabile $h_{\bf S}(x)$ otteniamo che esiste un il punto fisso $f_{\bar x}$ tale per cui $f_{\bar x}=f_{h_{\bf S}(\bar x)}$
- Arriviamo alla contraddizione assumendo:
 - $h_{\mathbf{S}}(\bar{x}) = i$: per definizione di $h_{\mathbf{S}}(\cdot)$ abbiamo che $f_{\bar{x}} \notin \mathbf{F}$, ma da quanto appena detto per il t. di Kleene $f_{\bar{x}} = f_{h_{\mathbf{S}}(\bar{x})} = f_i$ da cui, per come definito $i, f_i \in \mathbf{F}$ \mathbf{f}
 - $h_{\mathbf{S}}(\bar{x}) = j$: per definizione di $h_{\mathbf{S}}(\cdot)$ abbiamo che $f_{\bar{x}} \in \mathbf{F}$, ma da quanto appena detto per il t. di Kleene $f_{\bar{x}} = f_{h_{\mathbf{S}}(\bar{x})} = f_j$ da cui, per come definito j, $f_j \notin \mathbf{F}$ f

Il teorema di Rice

Effetti pratici

- In tutti i casi non banali **S**, l'insieme delle funzioni calcolabili con una data caratteristica desiderata, *non* è *decidibile*!
 - N.B. è quindi semidecidibile o indecidibile
- Posso dire se un programma P è corretto? Dire se risolve un dato problema? (La macchina \mathcal{M}_x calcola la sola funzione contenuta nell' insieme $\mathbf{S} = \{f\}$?)
- É possibile stabilire l'equivalenza tra due programmi? (La macchina \mathcal{M}_x calcola la sola funzione contenuta nell'insieme $\mathbf{S}=\{f_y\}$?)
- É possibile stabilire se un generico programma gode di una qualsiasi proprietà non banale riferita alla funzione che calcola? (e.g. non produce mai un risultato negativo?)

Stabilire se un problema è (semi)decidibile

Metodi pratici

- Dire se un generico problema è (semi)decidibile o meno è un problema indecidibile
- Dato uno specifico problema:
 - ullet Se troviamo un algoritmo *che termina sempre* o decidibile
 - Se troviamo un algoritmo che termina sempre se la risposta è "sì", ma può non terminare se è "no" → semidecidibile
 - Se riteniamo che il problema sia indecidibile come fare? Potremmo costruirci una dimostrazione diagonale ogni volta ... fattibile, ma parecchio impegnativo!

Dimostrazioni di non (semi)decidibilità

La riduzione dei problemi

- Il teorema di Rice ci consente di mostrare agevolmente che un problema non è decidibile
 - N.B. potrebbe comunque essere semidecidibile!
- Una tecnica alternativa, molto generale, è quella della riduzione dei problemi
- L'abbiamo già usata implicitamente, in maniera informale
- Consente di dimostrare in modo agevole l'indecidibilità di alcuni problemi

Una visione operativa

- Se ho un algoritmo per risolvere un problema P, posso riusarlo (modificandolo) per risolvere P' simile a P
 - Se so risolvere il problema di ricerca di un elemento in un insieme, so calcolare l'intersezione tra due insiemi
 - Se so calcolare unione e complemento di due insiemi, so calcolarne l'intersezione
- In generale, se trovo un algoritmo che, dato un esemplare di P' ne costruisce la soluzione usando un esemplare di P che so risolvere, ho *ridotto* P' a P

Formalizzazione

- Sono in grado di risolvere $y \in \mathbf{S}'$ (= calcolare $\mathbf{1}_{\mathbf{S}'}(\cdot)$) e voglio risolvere $x \in \mathbf{S}$
- Se ho una funzione t calcolabile e totale tale per cui $x \in \mathbf{S} \Leftrightarrow t(x) \in \mathbf{S}'$ posso farlo!
 - Dato x, calcolo $\mathbf{1}_{\mathbf{S}'}(t(x))$ che, equivale a calcolare $\mathbf{1}_{\mathbf{S}}(x)$
- Utile anche in direzione opposta
 - So di non saper risolvere $y \in \mathbf{S}'$ (S' non è decidibile)
 - Se trovo una funzione t calcolabile e totale tale per cui $x \in \mathbf{S} \Leftrightarrow t(x) \in \mathbf{S}'$ anche \mathbf{S} è non decidibile

Esempi di utilizzo

- Dall'indecidibilità del problema dell'arresto della MT deduciamo l'indecidibilità del problema della terminazione del calcolo in generale
 - Siano dati una MT \mathcal{M}_i , un numero $x \in \mathbb{N}$,
 - Costruisco un programma P (e.g., in C) che simula \mathcal{M}_i e memorizzo il numero x su un file \mathbf{f}
 - Il programma P termina la computazione su f se e solo se $g(i,x) \neq \bot$
 - Se sapessi decidere se P termina, sarei in grado di risolvere il problema dell'arresto della MT
- N.B. avremmo potuto dimostrare in modo diretto l'indecidibilità di un programma C enumerando i possibili programmi e applicando la consueta tecnica diagonale... con un po' più di fatica

Esempi di utilizzo

- É decidibile dire se, durante l'esecuzione di un generico programma P si accede ad una variabile non inizializzata?
 - Assumiamo per assurdo che sia decidibile
 - Riduciamo il problema della terminazione a quello appena citato:
 - Dato un generico programma Q(n), costruisco un programma P fatto in questo modo {int x,y; Q(n); y=x;}, avendo cura di usare variabili non presenti in Q
 - l'accesso y=x alla variabile non inizializzata x da parte di P è fatto se (e solo se) Q termina
 - Se fossi in grado di decidere il problema dell' accesso a variabile non inizializzata, potrei decidere il problema della terminazione del calcolo ?

Esempi di utilizzo

- Una grande varietà di proprietà tipiche (e che spesso vorremmo eliminare) possono essere dimostrate non decidibili come visto sopra:
 - Il programma effettua un accesso ad un array fuori dai limiti?
 - Il programma effettua una divisione per zero?
 - Questi tipi saranno compatibili a run-time?
 - Questo programma solleverà un'eccezione?

Considerazioni pratiche

Non decidibili, ma...

- Le proprietà di cui sopra, così come l'arresto della MT non sono decidibili, ma sono semidecidibili:
 - Se la MT si ferma, prima o poi lo scopro, se un programma va in segfault, anche ...
- Questo è vero, ma con quale metodo operativo sono in grado di scoprire questo fatto?
 - Se inizio ad eseguire P con ingresso y e P non si ferma, come faccio a scoprire che P con ingresso x effettua una divisione per zero?

Simulazione in diagonale

Dimostrazione di semidecidibilità

- Stabilire se $\exists z | f_x(z) \neq \bot$ è semidecidibile
- Come fare? Se inizio a calcolare $f_x(0)$ e non termina, come scopro se $f_x(1) \neq \bot$?
- ullet Idea: simulo "in diagonale" $f_x()$ eseguendo una sola mossa alla volta per ogni input fin quando una non si arresta

ascisse: valori di ingresso

ordinate: numero della mossa

• Se $\exists z | f_x(z) \neq \bot$ sicuramente lo incontro prima o poi (simulo sempre abbastanza passi di $f_x(z)$)

Riassumendo

Una dimostrazione di indecidibilità

- Scoprire molti dei comportamenti indesiderati a runtime di un programma non è decidibile, ma solamente semidecidibile
- N.B. Attenzione a qual è esattamente il problema semidecidibile: la presenza del comportamento indesiderato!
- Ma il complemento di un problema semidecidibile non può essere altro che indecidibile
 - Se fosse semidecidibile, sarebbero entrambi decidibili!
- L'assenza di errori a run-time di un programma è quindi un problema indecidibile!
- Come "consolazione" otteniamo un metodo di dimostrare che un problema è indecidibile: dimostrare che il suo complemento è solamente semidecidibile, ma non decidibile