	(Moriai - 3 (Conta)
(1)	Briffon's Needle Problem:
let v	s détermine pue poértion
of the	e needle by specifying the formather the
mid p	out of the needle to nearest parallel line.
4	bet the projected bet the needle = 0.
	needle will intersect a line if the hypotenus right angled triangle < 1/2.
8 y nw	<u> </u>
	ire, if $\frac{X}{cno} < \frac{L}{2}$ or $\frac{X}{2} < \frac{L}{2}$ conce-
	So X ranies bett 0 and D.
	20 varies bet 0 and 172.
	We may aronne that they are independent.
	We may arenne that they are independent. Also they are uniformly distributed ran-vars over these respective Honges.
	$f_{\chi}(\chi) = \begin{pmatrix} 2 & \chi \in (0, \frac{1}{2}) \\ D & \end{pmatrix}$
	0.0

Lec-48

$$| (1)^{-1} | \frac{2\pi}{\pi} | \frac{\pi}{\pi} |$$

© Done (Lec- 47)

©
$$E(x)=1$$
, $Van(x)=4$, $E(y)=2$, $Van(y)=1$
 \vdots $S(x,y) \leq 1$
 \Rightarrow $Van(x)=1$
 \Rightarrow $Van(x)$

. By Jensen's inequality: $g(E(x)) \leq E(g(x))$ $\frac{1}{2} \cdot \left[\frac{1}{x \cdot e_1} \right] > \frac{1}{E(x) \cdot e_1} = \frac{1}{11}$ his convex and g is non-developing - (hog) ()x + (1-x) y) - h (g(xx + (1-x) y)) $\leq h\left(\lambda g(x) P(1-\lambda)g(y)\right)$ [: g in convex] $\leq \lambda(hog)(n) + (1-\lambda)(hog)(y)$: E[e = x] > e = e . $g(x) = lm \int X = \frac{1}{2} lm X$ 9''(7) = -1:- of is concave on (0,0). (Jensen's : E[hJK] = E[ZhX] L ZhE(x)

(1) (
$$X_{1}, \dots, X_{20} \rightarrow Poisson(1)$$
 ind. Ram. Nows.

. $X = X_{1} + X_{2} + \dots + X_{20} \times Poisson(20)$.

. By Markov inequality: $P(X > E) \leq \frac{E(x_{1})}{E^{-1}}$.

 $P(X > E) \leq \frac{E(x_{1})}{E^{-1}}$.

(b) Using CLT:

Each X_{1} has mean I , E variance I .

. Now $I(X) = I(X)$.

. Std. dev of $I(X) = I(X)$.

. Each $I(X)$ is an integer, $I(X)$ is an integer to.

. $I(X > I(X)) = I(X > I(X)$.

 $I(X > I(X)) = I(X) = I(X)$.

 $I(X > I(X)) = I(X)$.

 $I(X >$

Desired Presbability:
:. Desired Presbability: 1-P(Z>1-S8) = P(Z \le 1.58) \(\sigma 0.9429\) (from table)
(fram table)