IN THE CLAIMS

1. (Currently amended) A method for forming an electrode, comprising: forming a polysilicon layer on a semiconductor substrate;

after forming the polysilicon layer, forming an amorphous silicon capping layer on the polysilicon layer; and

depositing a silicide layer on the capping layer.

- 2. (Original) The method of claim 1, wherein the silicide layer is formed using a dichlorosilane (SiH₂Cl₂) gas, and wherein the capping layer is formed to have a thickness sufficient to prevent chlorine ions dissociated from the dichlorosilane (SiH₂Cl₂) gas from diffusing toward the polysilicon layer.
- 3. (Original) The method of claim 1, wherein a thickness of the amorphous silicon capping layer is not less than about 50Å.
- 4. (Original) The method of claim 1, wherein the polysilicon layer is formed by depositing polysilicon or by crystallizing amorphous silicon.
- 5. (Currently amended) A method for forming a control gate electrode layer of a semiconductor device electrode in which a gate insulation layer, a polysilicon layer for a floating gate electrode, and an intergate dielectric layer are sequentially stacked on a semiconductor substrate, the method comprising:
 - a) forming an amorphous silicon layer on the intergate dielectric layer;
 - b) annealing the amorphous silicon to form a polysilicon layer;
- c) after forming the polysilicon layer, forming an amorphous silicon capping layer on the polysilicon layer; and
 - d) forming a silicide layer on the capping layer, using dichlorosilane.
- 6. (Original) The method of claim 5, wherein the thickness of the amorphous silicon capping layer is not less than 50 Å.
- 7. (Original) The method of claim 5, wherein the silicide layer comprises tungsten silicide.

Docket No. 2522-022

Page 2 of 7

Application No. 10/626,096

8. (Currently amended) A method for forming a control gate electrode layer of a
semiconductor device electrode in which a gate insulation layer, a polysilicon layer for a
floating gate electrode, and an intergate dielectric layer are sequentially stacked on a
semiconductor substrate, the method comprising:
a) forming an amorphous silicon layer on the intergate dielectric layer;
b) annealing the amorphous silicon to form a polysilicon layer;
c) forming an amorphous silicon capping layer on the polysilicon layer; and
d) forming a silicide layer on the capping layer, using dichlorosilane, wherein the
silicide layer comprises tungsten silicide, and The method of claim 7, wherein forming the
tungsten silicide layer comprises;[:]
supplying a first silane (SiH4) gas to a process chamber in which a wafer including the
thin film of amorphous silicon is loaded;
supplying a dichlorosilane (SiH2Cl2) gas and a tungsten hexafluoride (WF6) gas to the
process chamber to deposit the tungsten silicide layer on the capping layer;
purging the dichlorosilane (SiH ₂ Cl ₂) gas and the tungsten hexafluoride (WF ₆) gas
from the process chamber; and
supplying a second silane (SiH ₄) gas to the process chamber.

- 9. (Original) The method of claim 5, wherein the annealing is performed in a nitrogen ambient.
 - 10. (Currently amended) A semiconductor memory device, comprising: a gate oxide layer formed on a semiconductor substrate; a floating gate electrode formed on the gate oxide layer; an intergate dielectric layer formed on the floating gate electrode; a polysilicon layer formed on the intergate dielectric layer; an amorphous silicon capping layer formed on the polysilicon layer; and a silicide layer formed on the capping layer.
- 11. (Original) The device of claim 10, wherein the thickness of the capping layer is not less than 50Å.
 - 12. (Cancelled)

- 13. (Original) The device of claim 10, wherein the polysilicon layer is formed by crystallizing amorphous silicon.
- 14. (Original) The device of claim 10, wherein the silicide layer comprises tungsten silicide.
- 15. (Original) The device of claim 14, wherein the tungsten silicide layer is formed using dichlorosilane.
- 16. (Currently amended) The device of claim 10, wherein the capping layer is formed to a thickness sufficient to prevent chlorine ions from diffusing into the polysilicon layer, thereby preventing an abnormal growth of the polysilicon layer.