Teorie Efficaci Olografiche: Un caso di studio

Riccardo Antonelli

30 novembre 2016

QFT fortemente accoppiate

Problema fondamentale:

Data teoria di campo quantistica fortemente accoppiata, \longrightarrow teoria efficace di bassa energia

Teoria delle stringhe: equivalenze teorie di gauge $4D \leftrightarrow background$ di stringa 10D (olografia)

Sfruttabili per teoria efficace?

 \downarrow

teorie efficaci olografiche

Superstringhe IIB

Teoria di gravità quantistica in 10D.

- Stringhe: oggetti perturbativi 1-dimensionali
- ▶ Dp-brane: oggetti non perturbativi p-dimensionali; p dispari (D1,D3,D5,...)

A basse energie, le stringhe IIB \sim supergravità IIB (SUGRA). Teoria di campo, include:

- gravitone $g_{\mu\nu}$, assio-dilatone au (complesso)
- \blacktriangleright k-forme: B_2 , C_2 , C_4
- ► + fermioni

Olografia

Equivalenza fra

- ► Teoria di gauge in 4 dimensioni
- lacktriangle Teoria delle stringhe IIB (include gravità) su ${
 m AdS}_5\! imes\!Y^5$

AdS (Anti-de Sitter): spaziotempo iperbolico

AdS (Anti-de Sitter): Y_5 : varietà compatta 5D

Costruire dualità

Si dispongono N D3-brane coincidenti in un background

$$\mathbb{R}^{1,3} \times X_6$$

 X_6 : cono con base Y_5 : $ds_X^2 = dr^2 + r^2 ds_Y^2$

Costruire dualità (2)

Due visuali equivalenti di questo sistema:

- 1. Stringhe aperte attaccate alle D3 (teoria di gauge in 4D)
- 2. La massa delle D3 curva lo spaziotempo come

$$\mathbb{R}^{1,3} \times X_6 \longrightarrow \mathrm{AdS}_5 \times Y_5$$
,

 \Rightarrow stringhe chiuse su questa geometria warped (teoria 10D)

$$1. = 2.$$
 \Longrightarrow dualità olografica

La teoria $Y^{2,0}$

Cono $X^{2,0}$ sulla base $Y^{2,0}\sim \mathbb{S}^2 imes \mathbb{S}^3/\mathbb{Z}_2$

 $X^{2,0}$ è Calabi-Yau \Longrightarrow teoria superconforme (SCFT) con $\mathcal{N}=1$

Supersimmetria **minimale** (senza la singolarità conica, $\mathcal{N}=4$): teorie meno rigide e più realistiche, dinamica pochissimo studiata

La teoria $Y^{2,0}$

Gruppo di gauge:

$$U(N)_1 \times U(N)_2 \times U(N)_3 \times U(N)_4$$

Campi di materia: $A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2$.

$$A_i \in (\mathbf{N}, \overline{\mathbf{N}}, \mathbf{1}, \mathbf{1}),$$

$$B_i \in (\mathbf{1}, \mathbf{N}, \overline{\mathbf{N}}, \mathbf{1})$$

Teoria di quiver:

+ superpotenziale (interazione fra i campi di materia):

$$W = \lambda \varepsilon^{ij} \varepsilon^{kl} \operatorname{Tr}(A_i B_k C_j D_l)$$

Deve esistere una descrizione efficace a bassa energia, in termini di pochi campi dinamici. Come identificarla?

Varietà di vuoti (minimi del potenziale): spazio dei moduli \mathcal{M} . Le direzioni lungo \mathcal{M} sono parametrizzate da **moduli**.

Moduli = campi della teoria efficace!

$$AdS_5 \times Y^{2,0}$$

Duale olografico: stringhe IIB sulla geometria

$$AdS_5 \times Y^{2,0}$$

Quando $N \to \infty$ e a strong coupling \longrightarrow la string theory diventa la SUGRA IIB classica.

 $\begin{array}{c} \text{Moduli della CFT } Y^{2,0} \\ \updownarrow \\ \text{Moduli di SUGRA su } \mathrm{AdS}_5 \times Y^{2,0} \\ \updownarrow \\ \text{campi dinamici della teoria efficace} \end{array}$

 \Rightarrow è possibile estrarre la Lagrangiana efficace.

Moduli SUGRA

- ► Spostare le D3-brane sul cono
- ► Deformare la struttura Kähler (metrica) del cono
- lacktriangle Accendere altri campi di SUGRA (au, B_2, C_2, C_4)

3N moduli immediati:

$$z_I^i$$
,

con
$$(i = 1, 2, 3, I = 1, ..., N)$$
:

posizioni delle N D3-brane sul cono 6-dimensionale; 3N campi complessi.

Sono legati a valori di aspettazione (VEV) di mesoni della CFT.

Troviamo due moduli della struttura Kähler (metrica): la singolarità conica si può "risolvere" in due sfere $\mathbb{S}^2_L \times \mathbb{S}^2_R$

$$\widehat{\rho} \sim \operatorname{vol} \mathbb{S}_L^2 + \operatorname{vol} \mathbb{S}_R^2$$

 $\widetilde{\rho} \sim \operatorname{vol} \mathbb{S}_L^2 - \operatorname{vol} \mathbb{S}_R^2$

 \Rightarrow Due altri campi chirali $\widehat{
ho}$, $\widetilde{
ho}$ nella teoria efficace

Troviamo due deformazioni delle 2-forme B_2 , C_2 :

$$\beta \sim \int_{\mathbb{S}_L^2 + \mathbb{S}_R^2} (B_2 - \tau C_2)$$
$$\lambda \sim \int_{\mathbb{S}_L^2 - \mathbb{S}_R^2} (B_2 - \tau C_2)$$

- $\blacktriangleright \beta$: campo dinamico.
- \triangleright λ : parametro costante, genera una deformazione marginale.
- $\widehat{
 ho}$, $\widetilde{
 ho}$, eta sono altri tre campi chirali nella teoria efficace e corrispondono a VEV di **barioni**.

Teoria efficace

Ci sono 3N+3 campi chirali $(z_I^i,\widehat{\rho},\widetilde{\rho},\beta)$ e due parametri marginali (au,λ) . Calcoliamo la $\mathcal{L}_{\mathrm{eff}}$ efficace:

$$\mathcal{L}_{\text{eff}} = -\pi \mathcal{G}^{ab} \nabla \rho_a \wedge *\nabla \bar{\rho}_b - 2\pi \sum_{I} g_{i\bar{\jmath}} dz^i \wedge *d\bar{z}^{\bar{\jmath}} - \frac{\pi \mathcal{M}}{\operatorname{Im} \tau} d\beta \wedge *d\bar{\beta}$$

- $\mathcal{G}^{ab}, \nabla, g_{i\bar{j}}, \mathcal{M}$ sono funzioni complicate di $(\widehat{\rho}, \widetilde{\rho}, \beta) \Longrightarrow$ forte non-linearità
- $g_{i\bar{\jmath}}$: metrica (hermitiana) del cono risolto: σ -model delle D3-brane
- $ightharpoonup \mathcal{L}_{ ext{eff}}$ è in realtà la parte bosonica di una Lagrangiana supersimmetrica $\mathcal{N}=1$: gli scalari $\widehat{
 ho}, \widetilde{
 ho}, eta$ sono accoppiati con superpartner spin-1/2.
- Abbiamo dunque determinato la teoria efficace olografica esatta (per $N=\infty$!)

Simmetrie

Check nontriviale: simmetrie della teoria di campo devono ricomparire nella teoria efficace.

- Gruppo superconforme: spontaneamente rotto in generale, verifichiamo l'invarianza di £ sotto un'implementazione nonlineare.
- ▶ La SCFT ha una simmetria di flavour $SU(2) \times SU(2)$. Nella HEFT: è il gruppo di isometria di $\mathbb{S}^2 \times \mathbb{S}^2$.
- ▶ A basse energie il gruppo di gauge si riduce $U(N)^4 \to SU(N)^4$: cosa succede agli U(1)?

U(1)

- ▶ $U(1)_{\text{trace}} = U(1)_1 + U(1)_2 + U(1)_3 + U(1)_4$ è disaccoppiato da tutto.
- ▶ $U(1)_B = U(1)_1 + U(1)_3$ non anomalo. Numero barionico. Nella HEFT:

$$\operatorname{Im} \widetilde{\rho} \to \operatorname{Im} \widetilde{\rho} + \alpha$$

Ne rimangono due. Sono:

$$U(1)_1 - U(1)_3 \qquad \leftrightarrow \qquad \operatorname{Im} \widehat{\rho} \to \operatorname{Im} \widehat{\rho} + \alpha$$

 $U(1)_4 - U(1)_2 \qquad \leftrightarrow \qquad \operatorname{Im} \beta \to \operatorname{Im} \beta + \alpha$

Simmetrie classiche della CFT e della \mathcal{L}_{eff} , ma anomale. Interpretazione olografica: rotte da effetti nonperturbativi $\sim \exp(-N) \sim \exp(-1/g_s)$ dovuti a istantoni di teoria delle stringhe accoppiati ad $\operatorname{Im} \widehat{\rho}$, $\operatorname{Im} \beta$.

Grazie per l'attenzione.