Optique – chapitre 3

TD: Miroir plan et lentilles minces

I | Constructions optiques de lentilles

Construisez les images par la lentille des objets suivants. On donnera à chaque fois la nature de l'objet et de l'image.

A Pour une lentille convergente

1)

Ces rayons, issus d'un <u>objet réel</u>, se croisent après la lentille : on a <u>un faisceau émergent</u> convergent qui donne une image réelle.

Ici, l'objet est <u>réel</u> mais donne un faisceau émergent <u>divergent</u>, donnant donc une image virtuelle.

4)

2)

À partir d'un <u>objet réel</u>, on obtient des rayons parallèles qui donnent une image à l'infini.

On part d'un <u>objet virtuel</u>. Les rayons partant de la gauche du système passent par B, mais une fois arrivés à la lentille on continue les traits en pointillés pour montrer que ce sont des rayons virtuels. Le faisceau émergent est <u>convergent</u>, donnant lieu à une image réelle.

 \downarrow Ici, l'objet est <u>réel</u> et donne un faisceau émergent convergent, donnant donc une image <u>réelle</u>.

On n'a qu'un seul rayon, donc pas d'intersection : aucune idée de la nature de l'objet/image.

B Pour une lentille divergente

Ces rayons, issus d'un <u>objet réel</u>, se croisent avant la lentille : on a <u>un faisceau émergent</u> divergent qui donne une <u>image virtuelle</u>. 4)

Ici, l'objet est <u>virtuel</u> et donne un faisceau émergent <u>parallèle</u>, donnant donc une image à l'infini.

À partir d'un <u>objet virtuel</u>, on obtient des rayons convergents qui donnent une image réelle.

On part d'un <u>objet virtuel</u>. Le faisceau émergent est <u>divergent</u>, <u>donnant lieu</u> à une <u>image virtuelle</u>.

Lycée Pothier 2/6 MPSI – 2023/2024

5)

Ici, l'objet est <u>réel</u> et donne un faisceau émergent divergent, donnant donc une image <u>virtuelle</u>.

On n'a qu'un seul rayon, donc pas d'intersection : aucune idée de la nature de l'objet/image.

I | Constructions optiques de miroirs

Schéma

Les rayons, incidents, se coupent avant le miroir.

6)

Les rayons, incidents, se coupent après le miroir.

Les rayons, émergents, se coupent après le miroir.

Résultat attendu

Construire les objets et images avec les règles du miroir plan.

Image par miroir plan = symétrique. Objet à intersection des indicents, image intersection émergents.

Application

Le symétrique de A donne A' où les rayons émergents se croisent.

A est réel, A' virtuel.

Le symétrique de A donne A' où les rayons émergents se croisent.

A est virtuel, A' réel.

Le symétrique de A' donne A où les rayons incidents se croisent.

A est réel, A' virtuel.

III Vidéoprojecteur

Données

- 1) (AB) = $24 \,\text{mm}$: « l'objet est transverse a une hauteur de $24 \,\text{mm}$ »;
- 2) $\overline{OA'} = +4.0 \,\mathrm{m}$: « l'écran se situe à $4.0 \,\mathrm{m}$ » (c'est là que se forme l'image, c'est donc la position de A');
- 3) $\overline{OF'} = +5.0 \text{ cm}.$

Résultats attendus

- 1) Que vaut \overline{OA} ?: « Déterminer la position et la nature de l'objet » (O est bon point d'intérêt à partir duquel on peut mesurer des distances, et selon la valeur <u>algébrique</u> de \overline{OA} on saura de quel côté de la lentille l'objet se situe, et donc son caractère virtuel ou réel);
- 2) Que vaut $\overline{A'B'}$? : « Déterminer [...] la taille de l'image ».

Outils du cours

1) Relation de conjugaison pour une lentille mince :

$$\boxed{\frac{1}{\overline{OF'}} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}}$$

2) Grandissement pour une lentille mince :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

Application

1) De la relation de conjugaison, on a :

$$\overline{OA} = \left[\frac{1}{\overline{OA'}} - \frac{1}{\overline{OF'}} \right]^{-1}$$

Et avec les données,

$$\overline{\mathrm{OA}} = -5.0\,\mathrm{cm}$$

Ainsi, on a un <u>objet réel</u> situé à 5 centimètres à gauche de la lentille.

2) De l'expression du grandissement, on a :

$$\overline{A'B'} = \overline{AB} \times \frac{\overline{OA'}}{\overline{OA}}$$

Et avec les données,

$$\overline{\mathrm{A'B'}} = -1.9\,\mathrm{m}$$

Remarque -

Attention, comme on a qu'un seul chiffre significatif, on a $\overline{OA} = -5$ cm, ce qui semble correspondre à la position de F, mais en réalité ce n'est qu'une approximation numérique. Comme $\overline{OA'} \gg \overline{OF'}$, le résultat numérique est proche de $-\overline{OF'}$, mais il est évident que si l'objet était en effet au foyer objet, le vidéoprojecteur ne formerait pas l'image sur l'écran mais à l'infini.

IV

Œil réduit et accommodation

Données

- 1) Rétine = écran, cristallin = lentille;
- 2) Au repos, A à l'infini;
- 3) Au proximum, A à $25 \,\mathrm{cm}$ ($\overline{\mathrm{OA}} = -25 \,\mathrm{cm}$).

Résultats attendus

1) $\overline{OF'}_{repos}$?

2) $\overline{\text{OF'}}_{\text{accomodation}}$?

Outils du cours

Relation de conjugaison pour une lentille mince, avec $\overline{OA'} = \overline{OE} = 22.3\,\mathrm{mm}$ (le principe d'un écran c'est que l'image se forme dessus!!) et $\frac{1}{\overline{OA}} = 0$ quand $\overline{OA} = -\infty$

Résultats

V Coi

Coin de miroir

On compte 3 réflexions, et il doit revenir sur luimême : le rayon incident et le rayon émergent doivent faire le même angle avec la normale à BC. L'angle i_2 est également identique de I à Jet de J à I. Cela n'est vérifié que si la lumière est en incidence normale sur AB.

Or, $i_1 = \frac{\pi}{2} - \alpha$, donc $i_2 = -i_1 = \alpha - \frac{\pi}{2}$. Pour avoir i_2 dirigé verticalement, il faut $-i_1 + i_2 = -\frac{\pi}{2}$, autrement dit $2i_1 = \frac{\pi}{2} \Leftrightarrow i_1 = \frac{\pi}{4}$. Finalement, on trouve

$$\alpha = \frac{\pi}{4} \operatorname{rad}$$

FIGURE 3.1 – Schéma du système

VI Étude d'un rétroprojecteur

1) On a $\overline{AB} \xrightarrow[O]{\mathcal{L}} \overline{A_1B_1} \xrightarrow[H]{M} \overline{A'B'}$, avec H le point d'intersection entre le miroir plan et l'axe optique de la lentille. L'image finale A' donnée par le miroir plan est telle que

$$\overline{\mathrm{HA'}} = \overline{\mathrm{HA}_1} = D$$

On a donc pour la lentille

$$\overline{OA_1} = \overline{OH} + \overline{HA_1}$$

$$\Leftrightarrow \overline{OA_1} = d + D$$

On utilise la relation de conjugaison des lentilles minces en nommant V la vergence de la lentille :

$$V = \frac{1}{d+D} - \frac{1}{-h} \Leftrightarrow \boxed{h = \frac{d+D}{V(d+D) - d}} \quad \text{avec} \quad \begin{cases} d = 10 \times 10^{-2} \,\text{m} \\ D = 3.0 \,\text{m} \\ V = 2.0 \,\text{m}^{-1} \end{cases}$$

Et l'application numérique donne

$$h = 60 \,\mathrm{cm}$$

2) Le miroir plan a un grandissement de 1, donc le grandissement du système est celui de la lentille : on a $\gamma = \frac{\overline{A_1}\overline{B_1}}{\overline{A}\overline{B}} = \frac{\overline{O}\overline{A_1}}{\overline{O}\overline{A}}$, soit

$$\gamma = \frac{d+D}{-h}$$
$$\gamma = -5.2$$