Lists. Variations

Multiple Values Per Node

ULNode = record

next: Position

elemCount: integer

elemData: array[0..MAX-1] of TElement

end

Position = ^ULNode

Terminology: unrolled linked list

Lists. Variations

with multiple links from nodes

```
Node = record:

info: TElement
```

links: List<Position> //array, record, linked

end

Terminology: General Linked Lists

Multiply Linked List

Multi-Linked Lists

4/9/2014

Multidimensional arrays

For example:

```
C++: described as "arrays of arrays".
int matrix [3][5];
  matrix[1][3]
```

the second element vertically and fourth horizontally

Using STL: Vector based multi-dim. array

```
vector<vector<double> > array2D
// Put some values in
array2D[1][2] = 6.0
```

4/9/2014

Jagged arrays

many rows of varying lengths

For example:

4/9/2014

Lists. Variations. Application Sparse Matrices

Sparse Matrix

- sparse ... many elements are zero
- dense ... few elements are zero

Structured sparse

- diagonal
- tridiagonal
- upper/lower triangular (?)

Unstructured sparse matrix. Example

- Web page matrix.
 - web pages are numbered 1 through n
 - web(i,j) = number of links from page i to page j
- $n \sim 10^9$
- n x n array => 10^{18} consecutive position (linear representation)
- each page links to 10 (say) other pages on average on average there are 10 nonzero entries per row
- space needed for non-*empty* elements is approximately 1 billion $x 10 = 10^{10}$ consecutive elements

- sparse matrix is a matrix populated primarily with zeros
- How to store it will depend at least partly on exactly how sparse it is, and what you want to do.
 - For some applications, just treating it as a regular matrix is just fine (especially if the dimensions aren't very big). A 15x15 sparse matrix isn't a big memory hog.
 - suppose the sparse matrix has 10240x10240 elements, and you're using 8-byte floating point numbers: how much memory do you need?

• Representation of sparse matrix (idea)

- list: keep information about non-zero cells
- links: for fast access from one non-zero cell to the next, on the same raw/column ← general linked list

Unstructured Sparse Matrices. Representations

linear list in row-major order.

- nonzero elements of the sparse matrix
- each nonzero element is represented by a triple (row, column, value)
- the list of triples (linked, ...)

00304	List:						
00570	row	1	1	2	2	4	4
00000	column	3	5	3	4	2	3
02600	value	3	4	5	7	2	6

One Linear List Per Row

\cap	\cap	2		4
0	0	3	0	4

$$row1 = [(3, 3), (5,4)]$$

$$row2 = [(3,5), (4,7)]$$

$$row3 = []$$

$$row4 = [(2,2), (3,6)]$$

One Linear List Per Row (Linked)

Similar: one list per column

Orthogonal Lists

