Site_No Samp_No Location CAS_NO Analyte	Total_Or_DisolvecResult
20154214ADW-010-150811-1ADW-010STL00171 Alkalinity	T 83
20154214ADW-010-150811-1ADW-0107429-90-5 Aluminum	T 210
20154214ADW-010-150811-1ADW-0107429-90-5 Aluminum, Dissolved	D 51
20154214ADW-010-150811-1ADW-0107440-36-0 Antimony	T 0.4
20154214ADW-010-150811-1ADW-0107440-36-0 Antimony, Dissolved	D 0.4
20154214ADW-010-150811-1ADW-0107440-38-2 Arsenic	T 0.7
20154214ADW-010-150811-1ADW-0107440-38-2 Arsenic, Dissolved	D 0.37
20154214ADW-010-150811-1ADW-0107440-39-3 Barium	T 65
20154214ADW-010-150811-1ADW-0107440-39-3 Barium, Dissolved	D 62
20154214ADW-010-150811-1ADW-0107440-41-7 Beryllium	T 0.15
20154214ADW-010-150811-1ADW-0107440-41-7 Beryllium, Dissolved	D 0.15
20154214ADW-010-150811-1ADW-0107440-43-9 Cadmium	T 0.077
20154214ADW-010-150811-1ADW-0107440-43-9 Cadmium, Dissolved	D 0.043
20154214ADW-010-150811-1ADW-0107440-70-2 Calcium	T 60000
20154214ADW-010-150811-1ADW-0107440-70-2 Calcium, Dissolved	D 60000
20154214ADW-010-150811-1ADW-01016887-00-6Chloride	T 12
20154214ADW-010-150811-1ADW-0107440-47-3 Chromium	T 1
20154214ADW-010-150811-1ADW-0107440-47-3 Chromium, Dissolved	D 1
20154214ADW-010-150811-1ADW-0107440-48-4 Cobalt	T 0.23
20154214ADW-010-150811-1ADW-0107440-48-4 Cobalt, Dissolved	D 0.13
20154214ADW-010-150811-1ADW-0107440-50-8 Copper	T 4.3
20154214ADW-010-150811-1ADW-0107440-50-8 Copper, Dissolved	D 3
20154214ADW-010-150811-1ADW-01016984-48-8Fluoride	T 0.33
20154214ADW-010-150811-1ADW-0107439-89-6 Iron	T 410
20154214ADW-010-150811-1ADW-0107439-89-6 Iron, Dissolved	D 20
20154214ADW-010-150811-1ADW-0107439-92-1 Lead	T 5.2
20154214ADW-010-150811-1ADW-0107439-92-1 Lead, Dissolved	D 0.61
20154214ADW-010-150811-1ADW-0107439-95-4 Magnesium	T 8600
20154214ADW-010-150811-1ADW-0107439-95-4 Magnesium, Dissolved	ID 8700
20154214ADW-010-150811-1ADW-0107439-96-5 Manganese	T 59
20154214ADW-010-150811-1ADW-0107439-96-5 Manganese, Dissolved	D 19
20154214ADW-010-150811-1ADW-0107439-97-6 Mercury	T 0.08
20154214ADW-010-150811-1ADW-0107439-97-6 Mercury, DISSOLVED	D 0.08
20154214ADW-010-150811-1ADW-0107439-98-7 Molybdenum	T 1.1
20154214ADW-010-150811-1ADW-0107439-98-7 Molybdenum, Dissolve	:D 1.2
20154214ADW-010-150811-1ADW-0107440-02-0 Nickel	T 0.93
20154214ADW-010-150811-1ADW-0107440-02-0 Nickel, Dissolved	D 1.9
20154214ADW-010-150811-1ADW-01014797-55-8Nitrate as N	T 0.023
20154214ADW-010-150811-1ADW-010STL00204 pH	T 8.22
20154214ADW-010-150811-1ADW-010 9/7/7440 Potassium	T 2300

	_	
,,,,,,	D -	2300
20154214ADW-010-150811-1ADW-0107782-49-2 Selenium	T	2
20154214ADW-010-150811-1ADW-0107782-49-2 Selenium, Dissolved	D	2
20154214ADW-010-150811-1ADW-0107440-22-4 Silver	T	0.1
20154214ADW-010-150811-1ADW-0107440-22-4 Silver, Dissolved	D	0.1
20154214ADW-010-150811-1ADW-0107440-23-5 Sodium	T	15000
20154214ADW-010-150811-1ADW-0107440-23-5 Sodium, Dissolved	D	15000
20154214ADW-010-150811-1ADW-01014808-79-8Sulfate	Т	93
20154214ADW-010-150811-1ADW-0107440-28-0 Thallium	Т	0.1
20154214ADW-010-150811-1ADW-0107440-28-0 Thallium, Dissolved	D	0.1
20154214ADW-010-150811-1ADW-010STL00242 Total Dissolved Solids		240
20154214ADW-010-150811-1ADW-010STL00009 Total Hardness	Т	190
20154214ADW-010-150811-1ADW-010STL00161 Total Suspended Solid	₹T	58
20154214ADW-010-150811-1ADW-0107440-62-2 Vanadium	Т	0.56
20154214ADW-010-150811-1ADW-0107440-62-2 Vanadium, Dissolved	D	0.3
20154214ADW-010-150811-1ADW-0107440-66-6 Zinc	Т	22
20154214ADW-010-150811-1ADW-0107440-66-6 Zinc, Dissolved	D	5.4
20154214ADW-021-150811-1ADW-021STL00171 Alkalinity	Т	99
20154214ADW-021-150811-1ADW-0217429-90-5 Aluminum	Т	190
20154214ADW-021-150811-1ADW-0217429-90-5 Aluminum, Dissolved	D	36
20154214ADW-021-150811-1ADW-0217440-36-0 Antimony	T	0.4
20154214ADW-021-150811-1ADW-0217440-36-0 Antimony, Dissolved	D	0.4
20154214ADW-021-150811-1ADW-0217440-38-2 Arsenic	Т	0.58
20154214ADW-021-150811-1ADW-0217440-38-2 Arsenic, Dissolved	D	0.37
20154214ADW-021-150811-1ADW-0217440-39-3 Barium	Т	63
20154214ADW-021-150811-1ADW-0217440-39-3 Barium, Dissolved	D	62
20154214ADW-021-150811-1ADW-0217440-41-7 Beryllium	T	0.15
20154214ADW-021-150811-1ADW-0217440-41-7 Beryllium, Dissolved	D	0.15
20154214ADW-021-150811-1ADW-0217440-43-9 Cadmium	Т	0.099
20154214ADW-021-150811-1ADW-0217440-43-9 Cadmium, Dissolved	D	0.043
20154214ADW-021-150811-1ADW-0217440-70-2 Calcium	Т	59000
20154214ADW-021-150811-1ADW-0217440-70-2 Calcium, Dissolved	D	61000
20154214ADW-021-150811-1ADW-02116887-00-6Chloride	Т	12
20154214ADW-021-150811-1ADW-0217440-47-3 Chromium	Т	1
20154214ADW-021-150811-1ADW-0217440-47-3 Chromium, Dissolved	D	1
20154214ADW-021-150811-1ADW-0217440-48-4 Cobalt	Т	0.22
20154214ADW-021-150811-1ADW-0217440-48-4 Cobalt, Dissolved	D	0.12
20154214ADW-021-150811-1ADW-0217440-50-8 Copper	Т	4.3
20154214ADW-021-150811-1ADW-0217440-50-8 Copper, Dissolved	D	2.7
20154214ADW-021-150811-1ADW-02116984-48-8Fluoride	Т	0.33
20154214ADW-021-150811-1ADW-0217439-89-6 Iron	Т	400

20154214ADW-021-150811-1ADW-0217439-89-6 Iron, Dissolved	D	17
20154214ADW-021-150811-1ADW-0217439-92-1 Lead	Т	5.1
20154214ADW-021-150811-1ADW-0217439-92-1 Lead, Dissolved	D	0.18
20154214ADW-021-150811-1ADW-0217439-95-4 Magnesium	Т	8500
20154214ADW-021-150811-1ADW-0217439-95-4 Magnesium, Dissolved	D	8900
20154214ADW-021-150811-1ADW-0217439-96-5 Manganese	Т	53
20154214ADW-021-150811-1ADW-0217439-96-5 Manganese, Dissolved	l D	13
20154214ADW-021-150811-1ADW-0217439-97-6 Mercury	Т	0.08
20154214ADW-021-150811-1ADW-0217439-97-6 Mercury, DISSOLVED	D	0.08
20154214ADW-021-150811-1ADW-0217439-98-7 Molybdenum	Т	0.98
20154214ADW-021-150811-1ADW-0217439-98-7 Molybdenum, Dissolv	€D	1.2
20154214ADW-021-150811-1ADW-0217440-02-0 Nickel	Т	1.1
20154214ADW-021-150811-1ADW-0217440-02-0 Nickel, Dissolved	D	1.2
20154214ADW-021-150811-1ADW-02114797-55-8Nitrate as N	Т	0.042
20154214ADW-021-150811-1ADW-021STL00204 pH	Т	8.23
20154214 ADW-021-150811-1 ADW-021 9/7/7440 Potassium	Т	2200
20154214ADW-021-150811-1ADW-021 9/7/7440 Potassium, Dissolved	D	2300
20154214ADW-021-150811-1ADW-0217782-49-2 Selenium	T	0.58
20154214ADW-021-150811-1ADW-0217782-49-2 Selenium, Dissolved	D	2
20154214ADW-021-150811-1ADW-0217440-22-4 Silver	T	0.1
20154214ADW-021-150811-1ADW-0217440-22-4 Silver, Dissolved	D	0.1
20154214ADW-021-150811-1ADW-0217440-23-5 Sodium	Т	13000
20154214ADW-021-150811-1ADW-0217440-23-5 Sodium, Dissolved	D	14000
20154214 ADW-021-150811-1 ADW-02114808-79-8 Sulfate	Т	89
20154214ADW-021-150811-1ADW-0217440-28-0 Thallium	T	0.1
20154214ADW-021-150811-1ADW-0217440-28-0 Thallium, Dissolved	D	0.1
20154214ADW-021-150811-1ADW-021STL00242 Total Dissolved Solids	T	250
20154214ADW-021-150811-1ADW-021STL00009 Total Hardness	T	180
20154214ADW-021-150811-1ADW-021STL00161 Total Suspended Solid	l:T	30
20154214ADW-021-150811-1ADW-0217440-62-2 Vanadium	Т	0.45
20154214ADW-021-150811-1ADW-0217440-62-2 Vanadium, Dissolved	D	0.3
20154214ADW-021-150811-1ADW-0217440-66-6 Zinc	Т	23
20154214ADW-021-150811-1ADW-0217440-66-6 Zinc, Dissolved	D	4.6
20154214ADW-022-150811-1ADW-022STL00171 Alkalinity	Т	96
20154214ADW-022-150811-1ADW-0227429-90-5 Aluminum	Т	620
20154214ADW-022-150811-1ADW-0227429-90-5 Aluminum, Dissolved	D	39
20154214ADW-022-150811-1ADW-0227440-36-0 Antimony	Т	0.4
20154214ADW-022-150811-1ADW-0227440-36-0 Antimony, Dissolved	D	0.4
20154214ADW-022-150811-1ADW-0227440-38-2 Arsenic	Т	0.83
20154214ADW-022-150811-1ADW-0227440-38-2 Arsenic, Dissolved	D	0.37
20154214ADW-022-150811-1ADW-0227440-39-3 Barium	T	80
		_

20154214ADW-022-150811-1ADW-0227440-39-3 Barium, Dissolved	D	70
20154214ADW-022-150811-1ADW-0227440-41-7 Beryllium	Т	0.15
20154214ADW-022-150811-1ADW-0227440-41-7 Beryllium, Dissolved	D	0.15
20154214ADW-022-150811-1ADW-0227440-43-9 Cadmium	Т	0.17
20154214ADW-022-150811-1ADW-0227440-43-9 Cadmium, Dissolved	D	0.043
20154214ADW-022-150811-1ADW-0227440-70-2 Calcium	Т	67000
20154214ADW-022-150811-1ADW-0227440-70-2 Calcium, Dissolved	D	65000
20154214ADW-022-150811-1ADW-02216887-00-6Chloride	Т	11
20154214ADW-022-150811-1ADW-0227440-47-3 Chromium	T	1
20154214ADW-022-150811-1ADW-0227440-47-3 Chromium, Dissolved	D	1
20154214ADW-022-150811-1ADW-0227440-48-4 Cobalt	T	0.47
20154214ADW-022-150811-1ADW-0227440-48-4 Cobalt, Dissolved	D	0.13
20154214ADW-022-150811-1ADW-0227440-50-8 Copper	T	5.8
20154214ADW-022-150811-1ADW-0227440-50-8 Copper, Dissolved	D	2.9
20154214ADW-022-150811-1ADW-02216984-48-8Fluoride	T	0.31
20154214ADW-022-150811-1ADW-0227439-89-6 Iron	T	890
20154214ADW-022-150811-1ADW-0227439-89-6 Iron, Dissolved	D	17
20154214ADW-022-150811-1ADW-0227439-92-1 Lead	T	12
20154214ADW-022-150811-1ADW-0227439-92-1 Lead, Dissolved	D	0.38
20154214ADW-022-150811-1ADW-0227439-95-4 Magnesium	T	9100
20154214ADW-022-150811-1ADW-0227439-95-4 Magnesium, Dissolved	dD	8900
20154214ADW-022-150811-1ADW-0227439-96-5 Manganese	T	87
20154214ADW-022-150811-1ADW-0227439-96-5 Manganese, Dissolved	d b	19
20154214ADW-022-150811-1ADW-0227439-97-6 Mercury	T	0.08
20154214ADW-022-150811-1ADW-0227439-97-6 Mercury, DISSOLVED	D	0.08
20154214ADW-022-150811-1ADW-0227439-98-7 Molybdenum	T	1.1
20154214ADW-022-150811-1ADW-0227439-98-7 Molybdenum, Dissolv	€D	1.1
20154214ADW-022-150811-1ADW-0227440-02-0 Nickel	Т	1.3
20154214ADW-022-150811-1ADW-0227440-02-0 Nickel, Dissolved	D	1.3
20154214ADW-022-150811-1ADW-02214797-55-8Nitrate as N	Т	0.023
20154214ADW-022-150811-1ADW-022STL00204 pH	Т	8.38
20154214ADW-022-150811-1ADW-022 9/7/7440Potassium	T	2400
20154214ADW-022-150811-1ADW-022 9/7/7440 Potassium, Dissolved	D	2300
20154214ADW-022-150811-1ADW-0227782-49-2 Selenium	T	2
20154214ADW-022-150811-1ADW-0227782-49-2 Selenium, Dissolved	D	2
20154214ADW-022-150811-1ADW-0227440-22-4 Silver	T	0.1
20154214ADW-022-150811-1ADW-0227440-22-4 Silver, Dissolved	D	0.1
20154214ADW-022-150811-1ADW-0227440-23-5 Sodium	Т	13000
20154214ADW-022-150811-1ADW-0227440-23-5 Sodium, Dissolved	D	13000
20154214ADW-022-150811-1ADW-02214808-79-8Sulfate	T	88
20154214ADW-022-150811-1ADW-0227440-28-0 Thallium	Т	0.1

20154214ADW-022-150811-1ADW-022	27440-28-0	Thallium, Dissolved	D	0.1
20154214ADW-022-150811-1ADW-022	2STL00242	Total Dissolved Solids	Т	270
20154214ADW-022-150811-1ADW-022	2STL00009	Total Hardness	Т	200
20154214ADW-022-150811-1ADW-022	2STL00161	Total Suspended Solid	٤T	40
20154214ADW-022-150811-1ADW-022	27440-62-2	Vanadium	T	1.2
20154214ADW-022-150811-1ADW-022	27440-62-2	Vanadium, Dissolved	D	0.3
20154214ADW-022-150811-1ADW-022	27440-66-6	Zinc	Т	38
20154214ADW-022-150811-1ADW-022	27440-66-6	Zinc, Dissolved	D	75
20154214FW-012-150811-11 FW-012	STL00171	Alkalinity	T	93
20154214FW-012-150811-11 FW-012	7429-90-5	Aluminum	Т	220
20154214FW-012-150811-11 FW-012	7429-90-5	Aluminum, Dissolved	D	34
20154214FW-012-150811-11 FW-012	7440-36-0	Antimony	Т	0.4
20154214FW-012-150811-11 FW-012	7440-36-0	Antimony, Dissolved	D	0.4
20154214FW-012-150811-11 FW-012	7440-38-2	Arsenic	Т	0.37
20154214FW-012-150811-11 FW-012	7440-38-2	Arsenic, Dissolved	D	0.37
20154214FW-012-150811-11 FW-012	7440-39-3	Barium	Т	68
20154214FW-012-150811-11 FW-012	7440-39-3	Barium, Dissolved	D	64
20154214FW-012-150811-11 FW-012	7440-41-7	Beryllium	Т	0.15
20154214FW-012-150811-11 FW-012	7440-41-7	Beryllium, Dissolved	D	0.15
20154214FW-012-150811-11 FW-012	7440-43-9	Cadmium	Т	0.086
20154214FW-012-150811-11 FW-012	7440-43-9	Cadmium, Dissolved	D	0.043
20154214FW-012-150811-11 FW-012	7440-70-2	Calcium	Т	65000
20154214FW-012-150811-11 FW-012	7440-70-2	Calcium, Dissolved	D	66000
20154214FW-012-150811-11 FW-012	16887-00-6	EChloride	Т	12
20154214FW-012-150811-11 FW-012	7440-47-3	Chromium	Т	1
20154214FW-012-150811-11 FW-012	7440-47-3	Chromium, Dissolved	D	1
20154214FW-012-150811-11 FW-012	7440-48-4	Cobalt	Т	0.25
20154214FW-012-150811-11 FW-012	7440-48-4	Cobalt, Dissolved	D	0.12
20154214FW-012-150811-11 FW-012	7440-50-8	Copper	Т	3.9
20154214FW-012-150811-11 FW-012	7440-50-8	Copper, Dissolved	D	2.6
20154214FW-012-150811-11 FW-012	16984-48-	3Fluoride	Т	0.33
20154214FW-012-150811-11 FW-012	7439-89-6	Iron	Т	390
20154214FW-012-150811-11 FW-012	7439-89-6	Iron, Dissolved	D	17
20154214FW-012-150811-11 FW-012	7439-92-1	Lead	Т	5.1
20154214FW-012-150811-11 FW-012	7439-92-1	Lead, Dissolved	D	0.13
20154214FW-012-150811-11 FW-012	7439-95-4	Magnesium	Т	8700
20154214FW-012-150811-11 FW-012	7439-95-4	Magnesium, Dissolved	lD .	8800
20154214FW-012-150811-11 FW-012	7439-96-5	Manganese	Т	57
20154214FW-012-150811-11 FW-012	7439-96-5	Manganese, Dissolved	ID	14
20154214FW-012-150811-11 FW-012	7439-97-6	Mercury	Т	0.08
20154214FW-012-150811-11 FW-012	7439-97-6	Mercury, DISSOLVED	D	0.08

20154214FW-012-150811-11 FW-012	7439-98-7 Molybdenum	Т	1.1
20154214 FW-012-150811-11 FW-012	7439-98-7 Molybdenum, Dissolve	•	1.1
20154214FW-012-150811-11 FW-012	7440-02-0 Nickel	T	0.93
20154214FW-012-150811-11 FW-012	7440-02-0 Nickel, Dissolved	D	1
20154214FW-012-150811-11 FW-012	14797-55-8Nitrate as N	T	0.023
20154214FW-012-150811-11 FW-012	STL00204 pH	Т	8.19
20154214FW-012-150811-11 FW-012	9/7/7440 Potassium	Т	2200
20154214FW-012-150811-11 FW-012	9/7/7440 Potassium, Dissolved	D	2200
20154214FW-012-150811-11 FW-012	7782-49-2 Selenium	Т	0.58
20154214FW-012-150811-11 FW-012	7782-49-2 Selenium, Dissolved	D	2
20154214FW-012-150811-11 FW-012	7440-22-4 Silver	Т	0.1
20154214FW-012-150811-11 FW-012	7440-22-4 Silver, Dissolved	D	0.1
20154214FW-012-150811-11 FW-012	7440-23-5 Sodium	Т	16000
20154214FW-012-150811-11 FW-012	7440-23-5 Sodium, Dissolved	D	16000
20154214FW-012-150811-11 FW-012	14808-79-8Sulfate	Т	100
20154214FW-012-150811-11 FW-012	7440-28-0 Thallium	Т	0.1
20154214FW-012-150811-11 FW-012	7440-28-0 Thallium, Dissolved	D	0.1
20154214FW-012-150811-11 FW-012	STL00242 Total Dissolved Solids	Т	270
20154214FW-012-150811-11 FW-012	STL00009 Total Hardness	Т	200
20154214FW-012-150811-11 FW-012	STL00161 Total Suspended Solid	:T	24
20154214FW-012-150811-11 FW-012	7440-62-2 Vanadium	Т	0.44
20154214FW-012-150811-11 FW-012	7440-62-2 Vanadium, Dissolved	D	0.3
20154214FW-012-150811-11 FW-012	7440-66-6 Zinc	T	20
20154214FW-012-150811-11 FW-012	7440-66-6 Zinc, Dissolved	D	5.2
20154214FW-040-150811-11 FW-040	STL00171 Alkalinity	T	94
20154214FW-040-150811-11 FW-040	7429-90-5 Aluminum	T	260
20154214FW-040-150811-11 FW-040	7429-90-5 Aluminum, Dissolved	D	35
20154214FW-040-150811-11 FW-040	7440-36-0 Antimony	T	0.4
20154214FW-040-150811-11 FW-040	7440-36-0 Antimony, Dissolved	D	0.4
20154214FW-040-150811-11 FW-040	7440-38-2 Arsenic	T	0.7
20154214FW-040-150811-11 FW-040	7440-38-2 Arsenic, Dissolved	D	0.43
20154214FW-040-150811-11 FW-040	7440-39-3 Barium	Т	70
20154214FW-040-150811-11 FW-040	7440-39-3 Barium, Dissolved	D	65
20154214FW-040-150811-11 FW-040	7440-41-7 Beryllium	Т	0.15
20154214FW-040-150811-11 FW-040	7440-41-7 Beryllium, Dissolved	D	0.15
20154214FW-040-150811-11 FW-040	7440-43-9 Cadmium	Т	0.13
20154214FW-040-150811-11 FW-040	7440-43-9 Cadmium, Dissolved	D	0.043
20154214FW-040-150811-11 FW-040	7440-70-2 Calcium	Т	69000
20154214FW-040-150811-11 FW-040	7440-70-2 Calcium, Dissolved	D	67000
20154214FW-040-150811-11 FW-040	16887-00-6Chloride	T _	12
20154214FW-040-150811-11 FW-040	7440-47-3 Chromium	Т	1

20154214FW-040-150811-11 FW-040	7440-47-3 Chromium, Dissolved	D	1
20154214FW-040-150811-11 FW-040	7440-48-4 Cobalt	Т	0.28
20154214FW-040-150811-11 FW-040	7440-48-4 Cobalt, Dissolved	D	0.12
20154214FW-040-150811-11 FW-040	7440-50-8 Copper	Т	9.5
20154214FW-040-150811-11 FW-040	7440-50-8 Copper, Dissolved	D	2.8
20154214FW-040-150811-11 FW-040	16984-48-8Fluoride	Т	0.33
20154214FW-040-150811-11 FW-040	7439-89-6 Iron	Т	400
20154214FW-040-150811-11 FW-040	7439-89-6 Iron, Dissolved	D	17
20154214FW-040-150811-11 FW-040	7439-92-1 Lead	Т	5.7
20154214FW-040-150811-11 FW-040	7439-92-1 Lead, Dissolved	D	0.22
20154214FW-040-150811-11 FW-040	7439-95-4 Magnesium	Т	9100
20154214FW-040-150811-11 FW-040	7439-95-4 Magnesium, Dissolved	d D	8900
20154214FW-040-150811-11 FW-040	7439-96-5 Manganese	Т	64
20154214FW-040-150811-11 FW-040	7439-96-5 Manganese, Dissolved	ID	8.2
20154214FW-040-150811-11 FW-040	7439-97-6 Mercury	Т	0.08
20154214FW-040-150811-11 FW-040	7439-97-6 Mercury, DISSOLVED	D	0.08
20154214FW-040-150811-11 FW-040	7439-98-7 Molybdenum	Т	1
20154214FW-040-150811-11 FW-040	7439-98-7 Molybdenum, Dissolv	€D	1.2
20154214FW-040-150811-11 FW-040	7440-02-0 Nickel	Т	1.3
20154214FW-040-150811-11 FW-040	7440-02-0 Nickel, Dissolved	D	1.2
20154214FW-040-150811-11 FW-040	14797-55-8Nitrate as N	Т	0.023
20154214FW-040-150811-11 FW-040	STL00204 pH	T	8.26
20154214FW-040-150811-11 FW-040	9/7/7440 Potassium	Т	2300
20154214FW-040-150811-11 FW-040	9/7/7440 Potassium, Dissolved	D	2200
20154214FW-040-150811-11 FW-040	7782-49-2 Selenium	Т	2
20154214FW-040-150811-11 FW-040	7782-49-2 Selenium, Dissolved	D	2
20154214FW-040-150811-11 FW-040	7440-22-4 Silver	T	0.1
20154214FW-040-150811-11 FW-040	7440-22-4 Silver, Dissolved	D	0.1
20154214FW-040-150811-11 FW-040	7440-23-5 Sodium	Т	17000
20154214FW-040-150811-11 FW-040	7440-23-5 Sodium, Dissolved	D	17000
20154214FW-040-150811-11 FW-040	14808-79-8Sulfate	T	100
20154214FW-040-150811-11 FW-040	7440-28-0 Thallium	Т	0.1
20154214FW-040-150811-11 FW-040	7440-28-0 Thallium, Dissolved	D	0.1
20154214FW-040-150811-11 FW-040	STL00242 Total Dissolved Solids	Т	280
20154214FW-040-150811-11 FW-040	STL00009 Total Hardness	Т	210
20154214FW-040-150811-11 FW-040	STL00161 Total Suspended Solid	:T	42
20154214FW-040-150811-11 FW-040	7440-62-2 Vanadium	T	0.51
20154214FW-040-150811-11 FW-040	7440-62-2 Vanadium, Dissolved	D	0.3
20154214FW-040-150811-11 FW-040	7440-66-6 Zinc	Т	37
20154214FW-040-150811-11 FW-040	7440-66-6 Zinc, Dissolved	D	2.8
20154214LVW-020-150811-1:LVW-020	STL00171 Alkalinity	Т	95

20154214LVW-020-150811-1:LVW-020 7429-90-5 Aluminum	Т	790
20154214LVW-020-150811-1:LVW-020 7429-90-5 Aluminum, Dissolved	D	24
20154214LVW-020-150811-1:LVW-020 7440-36-0 Antimony	Т	0.4
20154214LVW-020-150811-1:LVW-020 7440-36-0 Antimony, Dissolved	D	0.4
20154214LVW-020-150811-1:LVW-020 7440-38-2 Arsenic	Т	1.1
20154214LVW-020-150811-1:LVW-020 7440-38-2 Arsenic, Dissolved	D	0.91
20154214LVW-020-150811-1:LVW-020 7440-39-3 Barium	Т	110
20154214LVW-020-150811-1:LVW-020 7440-39-3 Barium, Dissolved	D	76
20154214LVW-020-150811-1:LVW-020 7440-41-7 Beryllium	Т	0.17
20154214LVW-020-150811-1:LVW-020 7440-41-7 Beryllium, Dissolved	D	0.15
20154214LVW-020-150811-1:LVW-020 7440-43-9 Cadmium	Т	0.043
20154214LVW-020-150811-1:LVW-020 7440-43-9 Cadmium, Dissolved	D	0.043
20154214LVW-020-150811-1:LVW-020 7440-70-2 Calcium	Т	60000
20154214LVW-020-150811-1:LVW-020 7440-70-2 Calcium, Dissolved	D	59000
20154214LVW-020-150811-1:LVW-020 16887-00-6Chloride	Т	9.4
20154214LVW-020-150811-1:LVW-020 7440-47-3 Chromium	Т	1
20154214LVW-020-150811-1:LVW-020 7440-47-3 Chromium, Dissolved	D	1
20154214LVW-020-150811-1:LVW-020 7440-48-4 Cobalt	Т	0.88
20154214LVW-020-150811-11LVW-020 7440-48-4 Cobalt, Dissolved	D	0.13
20154214LVW-020-150811-1:LVW-020 7440-50-8 Copper	Т	4.8
20154214LVW-020-150811-1:LVW-020 7440-50-8 Copper, Dissolved	D	3.1
20154214LVW-020-150811-1:LVW-020 16984-48-8Fluoride	Т	0.27
20154214LVW-020-150811-1:LVW-020 7439-89-6 Iron	Т	590
20154214LVW-020-150811-1:LVW-020 7439-89-6 Iron, Dissolved	D	17
20154214LVW-020-150811-1:LVW-020 7439-92-1 Lead	Т	3.5
20154214LVW-020-150811-1:LVW-020 7439-92-1 Lead, Dissolved	D	0.06
20154214LVW-020-150811-1:LVW-020 7439-95-4 Magnesium	Т	7900
20154214LVW-020-150811-11LVW-020 7439-95-4 Magnesium, Dissolved	Δk	7900
20154214LVW-020-150811-1:LVW-020 7439-96-5 Manganese	Т	100
20154214LVW-020-150811-1:LVW-020 7439-96-5 Manganese, Dissolved	d D	3.2
20154214LVW-020-150811-1:LVW-020 7439-97-6 Mercury	Т	0.08
20154214LVW-020-150811-1:LVW-020 7439-97-6 Mercury, DISSOLVED	D	0.08
20154214LVW-020-150811-1:LVW-020 7439-98-7 Molybdenum	Т	0.96
20154214LVW-020-150811-1:LVW-020 7439-98-7 Molybdenum, Dissolv	€D	1.3
20154214LVW-020-150811-1:LVW-020 7440-02-0 Nickel	Т	1.6
20154214LVW-020-150811-1:LVW-020 7440-02-0 Nickel, Dissolved	D	1.3
20154214LVW-020-150811-1:LVW-020 14797-55-8Nitrate as N	Т	0.23
20154214LVW-020-150811-1:LVW-020 STL00204 pH	Т	8.22
20154214LVW-020-150811-1 LVW-020 9/7/7440 Potassium	Т	2500
20154214LVW-020-150811-1:LVW-020 9/7/7440 Potassium, Dissolved	D	2500
20154214LVW-020-150811-1:LVW-020 7782-49-2 Selenium	Т	2

20154214LVW-020-150811-1:LVW-020 7782-49-2 Selenium, Dissolved	D	2
20154214LVW-020-150811-1:LVW-020 7440-22-4 Silver	Т	0.1
20154214LVW-020-150811-1:LVW-020 7440-22-4 Silver, Dissolved	D	0.1
20154214LVW-020-150811-1:LVW-020 7440-23-5 Sodium	Т	20000
20154214LVW-020-150811-1:LVW-020 7440-23-5 Sodium, Dissolved	D	21000
20154214LVW-020-150811-1:LVW-020 14808-79-8Sulfate	Т	89
20154214LVW-020-150811-1:LVW-020 7440-28-0 Thallium	Т	0.1
20154214LVW-020-150811-1 LVW-020 7440-28-0 Thallium, Dissolved	D	0.1
20154214LVW-020-150811-1 LVW-020 STL00242 Total Dissolved Solids	Т	270
20154214LVW-020-150811-1 LVW-020 STL00009 Total Hardness	Т	180
20154214LVW-020-150811-1 LVW-020 STL00161 Total Suspended Solid	ŧΤ	190
20154214LVW-020-150811-1 LVW-020 7440-62-2 Vanadium	Т	2.3
20154214LVW-020-150811-1:LVW-020 7440-62-2 Vanadium, Dissolved	D	0.73
20154214LVW-020-150811-1 LVW-020 7440-66-6 Zinc	Т	110
20154214LVW-020-150811-1 LVW-020 7440-66-6 Zinc, Dissolved	D	30
20154214LVW-030-150811-1 LVW-030 STL00171 Alkalinity	Т	95
20154214LVW-030-150811-1 LVW-030 7429-90-5 Aluminum	Т	1200
20154214LVW-030-150811-1:LVW-030 7429-90-5 Aluminum, Dissolved	D	24
20154214LVW-030-150811-1 LVW-030 7440-36-0 Antimony	Т	0.4
20154214LVW-030-150811-1:LVW-030 7440-36-0 Antimony, Dissolved	D	0.4
20154214LVW-030-150811-1 LVW-030 7440-38-2 Arsenic	Т	1.1
20154214LVW-030-150811-1 LVW-030 7440-38-2 Arsenic, Dissolved	D	0.46
20154214LVW-030-150811-1 LVW-030 7440-39-3 Barium	Т	110
20154214LVW-030-150811-1 LVW-030 7440-39-3 Barium, Dissolved	D	78
20154214LVW-030-150811-1 LVW-030 7440-41-7 Beryllium	Т	0.21
20154214LVW-030-150811-1 LVW-030 7440-41-7 Beryllium, Dissolved	D	0.15
20154214LVW-030-150811-1:LVW-030 7440-43-9 Cadmium	Т	0.043
20154214LVW-030-150811-1 LVW-030 7440-43-9 Cadmium, Dissolved	D	0.043
20154214LVW-030-150811-1:LVW-030 7440-70-2 Calcium	Т	62000
20154214LVW-030-150811-1:LVW-030 7440-70-2 Calcium, Dissolved	D	59000
20154214LVW-030-150811-1:LVW-030 16887-00-6Chloride	Т	9.1
20154214LVW-030-150811-1:LVW-030 7440-47-3 Chromium	Т	1
20154214LVW-030-150811-1:LVW-030 7440-47-3 Chromium, Dissolved	D	1
20154214LVW-030-150811-1:LVW-030 7440-48-4 Cobalt	Т	1.1
20154214LVW-030-150811-1:LVW-030 7440-48-4 Cobalt, Dissolved	D	0.13
20154214LVW-030-150811-1:LVW-030 7440-50-8 Copper	Т	4.9
20154214LVW-030-150811-1:LVW-030 7440-50-8 Copper, Dissolved	D	2.1
20154214LVW-030-150811-1:LVW-030 16984-48-8Fluoride	Т	0.27
20154214LVW-030-150811-1:LVW-030 7439-89-6 Iron	Т	740
20154214LVW-030-150811-1:LVW-030 7439-89-6 Iron, Dissolved	D	17
20154214LVW-030-150811-1:LVW-030 7439-92-1 Lead	Т	3.5

20154214LVW-030-150811-1:LVW-030 7439-92-1 Lead, Dissolved	D	0.06
20154214LVW-030-150811-1:LVW-030 7439-95-4 Magnesium	Т	8100
20154214LVW-030-150811-1:LVW-030 7439-95-4 Magnesium, Dissolve	db	7800
20154214LVW-030-150811-1 LVW-030 7439-96-5 Manganese	Т	130
20154214LVW-030-150811-1:LVW-030 7439-96-5 Manganese, Dissolved	d D	4.5
20154214LVW-030-150811-1:LVW-030 7439-97-6 Mercury	Т	0.08
20154214LVW-030-150811-1 LVW-030 7439-97-6 Mercury, DISSOLVED	D	0.08
20154214LVW-030-150811-1:LVW-030 7439-98-7 Molybdenum	Т	0.91
20154214LVW-030-150811-1 LVW-030 7439-98-7 Molybdenum, Dissolv	€D	1.3
20154214LVW-030-150811-1:LVW-030 7440-02-0 Nickel	Т	1.8
20154214LVW-030-150811-1:LVW-030 7440-02-0 Nickel, Dissolved	D	1.2
20154214LVW-030-150811-1:LVW-030 14797-55-8Nitrate as N	Т	0.17
20154214LVW-030-150811-1:LVW-030 STL00204 pH	Т	8.2
20154214LVW-030-150811-1:LVW-030 9/7/7440 Potassium	Т	2600
20154214LVW-030-150811-1:LVW-030 9/7/7440 Potassium, Dissolved	D	2400
20154214LVW-030-150811-1:LVW-030 7782-49-2 Selenium	T	2
20154214LVW-030-150811-1:LVW-030 7782-49-2 Selenium, Dissolved	D	2
20154214LVW-030-150811-1:LVW-030 7440-22-4 Silver	Т	0.1
20154214LVW-030-150811-1:LVW-030 7440-22-4 Silver, Dissolved	D	0.1
20154214LVW-030-150811-1:LVW-030 7440-23-5 Sodium	Т	20000
20154214LVW-030-150811-1:LVW-030 7440-23-5 Sodium, Dissolved	D	21000
20154214LVW-030-150811-1:LVW-030 14808-79-8Sulfate	Т	89
20154214LVW-030-150811-1:LVW-030 7440-28-0 Thallium	Т	0.1
20154214LVW-030-150811-1:LVW-030 7440-28-0 Thallium, Dissolved	D	0.1
20154214LVW-030-150811-1:LVW-030 STL00242 Total Dissolved Solids	Т	260
20154214LVW-030-150811-1:LVW-030 STL00009 Total Hardness	Т	190
20154214LVW-030-150811-11LVW-030 STL00161 Total Suspended Solid	ŀΤ	370
20154214LVW-030-150811-11LVW-030 7440-62-2 Vanadium	T	2.8
20154214LVW-030-150811-11LVW-030 7440-62-2 Vanadium, Dissolved	D	0.71
20154214LVW-030-150811-1:LVW-030 7440-66-6 Zinc	Т	17
20154214LVW-030-150811-1:LVW-030 7440-66-6 Zinc, Dissolved	D	35
20154214MW-020-150811-11MW-020 STL00171 Alkalinity	Т	87
20154214MW-020-150811-11MW-020 7429-90-5 Aluminum	Т	230
20154214MW-020-150811-11MW-020 7429-90-5 Aluminum, Dissolved	D	41
20154214MW-020-150811-11MW-020 7440-36-0 Antimony	T	0.4
20154214MW-020-150811-11MW-020 7440-36-0 Antimony, Dissolved	D	0.4
20154214MW-020-150811-11MW-020 7440-38-2 Arsenic	T	0.62
20154214MW-020-150811-11MW-020 7440-38-2 Arsenic, Dissolved	D	0.37
20154214MW-020-150811-11MW-020 7440-39-3 Barium	T	66
20154214MW-020-150811-11MW-020 7440-39-3 Barium, Dissolved	D	62
20154214MW-020-150811-11MW-020 7440-41-7 Beryllium	T	0.15

20154214MW-020-150811-11MW-020 7440-41-7 Beryllium, Dissolved	D 0).15
20154214MW-020-150811-11MW-020 7440-43-9 Cadmium	T 0.0	078
20154214MW-020-150811-11MW-020 7440-43-9 Cadmium, Dissolved	D 0.0	043
20154214MW-020-150811-11MW-020 7440-70-2 Calcium	T 630	000
20154214MW-020-150811-11MW-020 7440-70-2 Calcium, Dissolved	D 640	000
20154214MW-020-150811-11MW-020 16887-00-6Chloride	Т	12
20154214MW-020-150811-11MW-020 7440-47-3 Chromium	Т	1
20154214MW-020-150811-11MW-020 7440-47-3 Chromium, Dissolved	D	1
20154214MW-020-150811-11MW-020 7440-48-4 Cobalt	T C).24
20154214MW-020-150811-11MW-020 7440-48-4 Cobalt, Dissolved	D 0).12
20154214MW-020-150811-11MW-020 7440-50-8 Copper	T	4.2
20154214MW-020-150811-11MW-020 7440-50-8 Copper, Dissolved	D	2.7
20154214MW-020-150811-11MW-020 16984-48-8Fluoride	T C).33
20154214MW-020-150811-11MW-020 7439-89-6 Iron	Т :	370
20154214MW-020-150811-11MW-020 7439-89-6 Iron, Dissolved	D	17
20154214MW-020-150811-11MW-020 7439-92-1 Lead	Т	5.2
20154214MW-020-150811-11MW-020 7439-92-1 Lead, Dissolved	D 0).21
20154214MW-020-150811-11MW-020 7439-95-4 Magnesium	T 88	800
20154214MW-020-150811-11MW-020 7439-95-4 Magnesium, Dissolved	dD 89	900
20154214MW-020-150811-11MW-020 7439-96-5 Manganese	Т	58
20154214MW-020-150811-11MW-020 7439-96-5 Manganese, Dissolved	ID	12
20154214MW-020-150811-11MW-020 7439-97-6 Mercury	T C	80.0
20154214MW-020-150811-11MW-020 7439-97-6 Mercury, DISSOLVED	D 0	80.0
20154214MW-020-150811-11MW-020 7439-98-7 Molybdenum	Т	1
20154214MW-020-150811-11MW-020 7439-98-7 Molybdenum, Dissolv	€D	1.4
20154214MW-020-150811-11MW-020 7440-02-0 Nickel	Т	1
20154214MW-020-150811-11MW-020 7440-02-0 Nickel, Dissolved	D	1.3
20154214MW-020-150811-11MW-020 14797-55-8Nitrate as N	T 0.0	023
20154214MW-020-150811-11MW-020 STL00204 pH	Т 8	3.37
20154214MW-020-150811-11MW-020 9/7/7440 Potassium	T 2:	300
20154214 MW-020-150811-11 MW-020 9/7/7440 Potassium, Dissolved	D 2:	300
20154214MW-020-150811-11MW-020 7782-49-2 Selenium	Т	2
20154214MW-020-150811-11MW-020 7782-49-2 Selenium, Dissolved	D	2
20154214MW-020-150811-11MW-020 7440-22-4 Silver	T	0.1
20154214MW-020-150811-11MW-020 7440-22-4 Silver, Dissolved	D	0.1
20154214MW-020-150811-11MW-020 7440-23-5 Sodium	T 160	000
20154214MW-020-150811-11MW-020 7440-23-5 Sodium, Dissolved	D 170	000
20154214MW-020-150811-11MW-020 14808-79-8Sulfate		100
20154214MW-020-150811-11MW-020 7440-28-0 Thallium		0.1
20154214MW-020-150811-11MW-020 7440-28-0 Thallium, Dissolved		0.1
20154214MW-020-150811-11MW-020 STL00242 Total Dissolved Solids		270

20154214MW-020-150811-11MW-020 STL00009 Total Hardness	Т	190
20154214MW-020-150811-11MW-020 STL00161 Total Suspended Solid	l:T	36
20154214MW-020-150811-11MW-020 7440-62-2 Vanadium	Т	0.46
20154214MW-020-150811-11MW-020 7440-62-2 Vanadium, Dissolved	D	0.3
20154214MW-020-150811-11MW-020 7440-66-6 Zinc	Т	25
20154214MW-020-150811-11MW-020 7440-66-6 Zinc, Dissolved	D	2.8
20154214NSW-020-150811-1NSW-020STL00171 Alkalinity	Т	92
20154214NSW-020-150811-1NSW-0207429-90-5 Aluminum	Т	180
20154214NSW-020-150811-1NSW-0207429-90-5 Aluminum, Dissolved	D	38
20154214NSW-020-150811-1NSW-0207440-36-0 Antimony	Т	0.4
20154214NSW-020-150811-1NSW-0207440-36-0 Antimony, Dissolved	D	0.4
20154214NSW-020-150811-1NSW-0207440-38-2 Arsenic	T	0.37
20154214NSW-020-150811-1NSW-0207440-38-2 Arsenic, Dissolved	D	0.38
20154214NSW-020-150811-1NSW-0207440-39-3 Barium	T	67
20154214NSW-020-150811-1NSW-0207440-39-3 Barium, Dissolved	D	65
20154214NSW-020-150811-1NSW-0207440-41-7 Beryllium	Т	0.15
20154214NSW-020-150811-1NSW-0207440-41-7 Beryllium, Dissolved	D	0.15
20154214NSW-020-150811-1NSW-0207440-43-9 Cadmium	Т	0.093
20154214NSW-020-150811-1NSW-0207440-43-9 Cadmium, Dissolved	D	0.043
20154214NSW-020-150811-1NSW-0207440-70-2 Calcium	Т	62000
20154214NSW-020-150811-1NSW-0207440-70-2 Calcium, Dissolved	D	62000
20154214NSW-020-150811-1NSW-02016887-00-6Chloride	Т	11
20154214NSW-020-150811-1NSW-0207440-47-3 Chromium	Т	1
20154214NSW-020-150811-1NSW-0207440-47-3 Chromium, Dissolved	D	1
20154214NSW-020-150811-1NSW-0207440-48-4 Cobalt	T	0.2
20154214NSW-020-150811-1NSW-0207440-48-4 Cobalt, Dissolved	D	0.12
20154214NSW-020-150811-1NSW-0207440-50-8 Copper	T	4
20154214NSW-020-150811-1NSW-0207440-50-8 Copper, Dissolved	D	2.8
20154214NSW-020-150811-1NSW-02016984-48-8Fluoride	T	0.32
20154214NSW-020-150811-1NSW-0207439-89-6 Iron	T	380
20154214NSW-020-150811-1NSW-0207439-89-6 Iron, Dissolved	D	17
20154214NSW-020-150811-1NSW-0207439-92-1 Lead	T	5.1
20154214NSW-020-150811-1NSW-0207439-92-1 Lead, Dissolved	D	0.14
20154214NSW-020-150811-1NSW-0207439-95-4 Magnesium	T	8700
20154214NSW-020-150811-1NSW-0207439-95-4 Magnesium, Dissolved	d D	8800
20154214NSW-020-150811-1NSW-0207439-96-5 Manganese	T	46
20154214NSW-020-150811-1NSW-0207439-96-5 Manganese, Dissolved	l D	11
20154214NSW-020-150811-1NSW-0207439-97-6 Mercury	Т	0.08
20154214NSW-020-150811-1NSW-0207439-97-6 Mercury, DISSOLVED	D	0.08
20154214NSW-020-150811-1NSW-0207439-98-7 Molybdenum	Т	1
20154214NSW-020-150811-1NSW-0207439-98-7 Molybdenum, Dissolv	€D	1.1

20154214NSW-020-150811-1NSW-0207440-02-0 Nickel	Τ	0.98
20154214NSW-020-150811-1NSW-0207440-02-0 Nickel, Dissolved	D	1.6
20154214NSW-020-150811-1NSW-02014797-55-8Nitrate as N	Т	0.023
20154214NSW-020-150811-1NSW-020STL00204 pH	Т	8.31
20154214NSW-020-150811-1NSW-020 9/7/7440 Potassium	Т	2200
$20154214 \text{NSW-} 020\text{-}150811\text{-}1 \text{NSW-} 020 \\ \hspace{0.2cm} 9/7/7440 \text{Potassium, Dissolved}$	D	2300
20154214NSW-020-150811-1NSW-0207782-49-2 Selenium	Т	0.58
20154214NSW-020-150811-1NSW-0207782-49-2 Selenium, Dissolved	D	2
20154214NSW-020-150811-1NSW-0207440-22-4 Silver	Т	0.1
20154214NSW-020-150811-1NSW-0207440-22-4 Silver, Dissolved	D	0.1
20154214NSW-020-150811-1NSW-0207440-23-5 Sodium	Т	13000
20154214NSW-020-150811-1NSW-0207440-23-5 Sodium, Dissolved	D	13000
20154214NSW-020-150811-1NSW-02014808-79-8Sulfate	Т	88
20154214NSW-020-150811-1NSW-0207440-28-0 Thallium	Т	0.1
20154214NSW-020-150811-1NSW-0207440-28-0 Thallium, Dissolved	D	0.1
20154214NSW-020-150811-1NSW-020 STL00242 Total Dissolved Solids	Т	250
20154214NSW-020-150811-1NSW-020 STL00009 Total Hardness	Т	190
20154214NSW-020-150811-1NSW-020 STL00161 Total Suspended Solid	ŀТ	26
20154214NSW-020-150811-1NSW-0207440-62-2 Vanadium	Т	0.36
$20154214NSW-020-150811-1NSW-0207440-62-2\ \ Vanadium,\ Dissolved$	D	0.3
20154214NSW-020-150811-1NSW-0207440-66-6 Zinc	Т	21
20154214NSW-020-150811-1NSW-0207440-66-6 Zinc, Dissolved	D	3

Result_	<u>Units Detec</u>	ted Resul	t Qualifie Sample Date Samp	leTime	MDL MDL_U	InitsReporting Limit
mg/L	Υ		8/11/2015	9:00	5 mg/L	5
ug/L	Υ		8/11/2015	9:00	24ug/L	24
ug/L	Υ	J	8/11/2015	9:00	24ug/L	24
ug/L	Ν	U	8/11/2015	9:00	0.4ug/L	0.4
ug/L	Ν	U	8/11/2015	9:00	0.4ug/L	0.4
ug/L	Υ	J	8/11/2015	9:00	0.37ug/L	0.37
ug/L	Ν	U	8/11/2015	9:00	0.37ug/L	0.37
ug/L	Υ		8/11/2015	9:00	0.14ug/L	0.14
ug/L	Υ		8/11/2015	9:00	0.14ug/L	0.14
ug/L	Ν	U	8/11/2015	9:00	0.15 ug/L	0.15
ug/L	N	U	8/11/2015	9:00	0.15 ug/L	0.15
ug/L	Υ	J	8/11/2015	9:00	0.043 ug/L	0.043
ug/L	N	U	8/11/2015	9:00	0.043 ug/L	0.043
ug/L	Υ		8/11/2015	9:00	25 ug/L	25
ug/L	Υ		8/11/2015	9:00	25 ug/L	25
mg/L	Υ		8/11/2015	9:00	$0.2\mathrm{mg/L}$	0.2
ug/L	Ν	U	8/11/2015	9:00	1ug/L	1
ug/L	Ν	U	8/11/2015	9:00	1ug/L	1
ug/L	Υ	J	8/11/2015	9:00	0.12 ug/L	0.12
ug/L	Υ	J	8/11/2015	9:00	0.12 ug/L	0.12
ug/L	Υ		8/11/2015	9:00	0.5 ug/L	0.5
ug/L	Υ		8/11/2015	9:00	0.5 ug/L	0.5
mg/L	Υ		8/11/2015	9:00	0.04 mg/L	0.04
ug/L	Υ		8/11/2015	9:00	17ug/L	17
ug/L	Υ	J	8/11/2015	9:00	17ug/L	17
ug/L	Υ		8/11/2015	9:00	0.06 ug/L	0.06
ug/L	Υ		8/11/2015	9:00	0.06 ug/L	0.06
ug/L	Υ		8/11/2015	9:00	33 ug/L	33
ug/L	Υ		8/11/2015	9:00	33 ug/L	33
ug/L	Υ		8/11/2015	9:00	1.2 ug/L	1.2
ug/L	Υ		8/11/2015	9:00	1.2 ug/L	1.2
ug/L	Ν	U	8/11/2015	9:00	0.08 ug/L	0.08
ug/L	N	U	8/11/2015	9:00	0.08ug/L	0.08
ug/L	Υ		8/11/2015	9:00	0.45 ug/L	0.45
ug/L	Υ		8/11/2015	9:00	0.45 ug/L	0.45
ug/L	Υ	J	8/11/2015	9:00	0.4 ug/L	0.4
ug/L	Υ	J	8/11/2015	9:00	0.4ug/L	0.4
mg/L	N	UJ	8/11/2015		0.023 mg/L	0.023
SU	Υ	J	8/11/2015		NULL SU	NULL
ug/L	Υ		8/11/2015	9:00	17ug/L	17

ug/L	Υ		8/11/2015	9:00	17ug/L	17
ug/L	Υ	U	8/11/2015	9:00	0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	9:00	0.58ug/L	0.58
ug/L	Ν	U	8/11/2015	9:00	0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	9:00	0.1ug/L	0.1
ug/L	Υ		8/11/2015	9:00	480 ug/L	480
ug/L	Υ		8/11/2015	9:00	480 ug/L	480
mg/L	Υ		8/11/2015	9:00	1.6 mg/L	1.6
ug/L	Ν	U	8/11/2015	9:00	0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	9:00	0.1ug/L	0.1
mg/L	Υ		8/11/2015	9:00	10 mg/L	10
mg/L	Υ		8/11/2015	9:00	3.3 mg/L	3.3
mg/L	Υ		8/11/2015	9:00	2 mg/L	2
ug/L	Υ	J	8/11/2015	9:00	0.3 ug/L	0.3
ug/L	Ν	U	8/11/2015	9:00	0.3 ug/L	0.3
ug/L	Υ		8/11/2015	9:00	2.8ug/L	2.8
ug/L	Υ		8/11/2015	9:00	2.8 ug/L	2.8
mg/L	Υ		8/11/2015	10:15	5 mg/L	5
ug/L	Υ	J	8/11/2015	10:15	24ug/L	24
ug/L	Υ	J	8/11/2015	10:15	24ug/L	24
ug/L	Ν	U	8/11/2015	10:15	0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	10:15	0.4ug/L	0.4
ug/L	Υ	J	8/11/2015	10:15	0.37ug/L	0.37
ug/L	Ν	U	8/11/2015	10:15	0.37ug/L	0.37
ug/L	Υ		8/11/2015	10:15	0.14ug/L	0.14
ug/L	Υ		8/11/2015	10:15	0.14ug/L	0.14
ug/L	Ν	U	8/11/2015	10:15	0.15 ug/L	0.15
ug/L	Ν	U	8/11/2015	10:15	0.15 ug/L	0.15
ug/L	Υ	J	8/11/2015		0.043 ug/L	0.043
ug/L	Ν	U	8/11/2015	10:15	0.043 ug/L	0.043
ug/L	Υ		8/11/2015	10:15	25 ug/L	25
ug/L	Υ		8/11/2015	10:15	25 ug/L	25
mg/L	Υ		8/11/2015	10:15	$0.2\mathrm{mg/L}$	0.2
ug/L	Ν	U	8/11/2015	10:15	1ug/L	1
ug/L	Ν	U	8/11/2015	10:15	1ug/L	1
ug/L	Υ	J	8/11/2015	10:15	0.12 ug/L	0.12
ug/L	Υ	J	8/11/2015	10:15	0.12 ug/L	0.12
ug/L	Υ		8/11/2015	10:15	0.5 ug/L	0.5
ug/L	Υ		8/11/2015	10:15	0.5 ug/L	0.5
mg/L	Υ		8/11/2015	10:15	0.04 mg/L	0.04
ug/L	Υ		8/11/2015	10:15	17ug/L	17

ug/L	N	U	8/11/2015	10:15	17ug/L	17
ug/L	Υ		8/11/2015	10:15	0.06 ug/L	0.06
ug/L	Υ	j	8/11/2015	10:15	0.06 ug/L	0.06
ug/L	Υ		8/11/2015	10:15	33 ug/L	33
ug/L	Υ		8/11/2015	10:15	33 ug/L	33
ug/L	Υ		8/11/2015	10:15	1.2 ug/L	1.2
ug/L	Υ		8/11/2015	10:15	1.2 ug/L	1.2
ug/L	Ν	U	8/11/2015	10:15	0.08 ug/L	0.08
ug/L	Ν	U	8/11/2015	10:15	0.08 ug/L	0.08
ug/L	Υ	J	8/11/2015	10:15	0.45 ug/L	0.45
ug/L	Υ	J	8/11/2015	10:15	0.45 ug/L	0.45
ug/L	Υ		8/11/2015	10:15	0.4 ug/L	0.4
ug/L	Υ		8/11/2015	10:15	0.4 ug/L	0.4
mg/L	Υ	J	8/11/2015	10:15	0.023 mg/L	0.023
SU	Υ	J	8/11/2015	10:15 N	NULL SU	NULL
ug/L	Υ		8/11/2015	10:15	17ug/L	17
ug/L	Υ		8/11/2015	10:15	17ug/L	17
ug/L	Ν	U	8/11/2015	10:15	0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	10:15	0.58ug/L	0.58
ug/L	Ν	U	8/11/2015	10:15	0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	10:15	0.1ug/L	0.1
ug/L	Υ		8/11/2015	10:15	480 ug/L	480
ug/L	Υ		8/11/2015	10:15	480 ug/L	480
mg/L	Υ		8/11/2015	10:15	$1.6\mathrm{mg/L}$	1.6
ug/L	Ν	U	8/11/2015	10:15	0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	10:15	0.1ug/L	0.1
mg/L	Υ		8/11/2015	10:15	10 mg/L	10
mg/L	Υ		8/11/2015	10:15	3.3 mg/L	3.3
mg/L	Υ		8/11/2015	10:15	2 mg/L	2
ug/L	Υ	j	8/11/2015	10:15	0.3 ug/L	0.3
ug/L	Ν	U	8/11/2015	10:15	0.3 ug/L	0.3
ug/L	Υ		8/11/2015	10:15	2.8 ug/L	2.8
ug/L	Υ	J	8/11/2015	10:15	2.8ug/L	2.8
mg/L	Υ		8/11/2015	12:35	5 mg/L	5
ug/L	Υ		8/11/2015	12:35	24ug/L	24
ug/L	Υ	J	8/11/2015	12:35	24ug/L	24
ug/L	N	U	8/11/2015	12:35	0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	12:35	0.4 ug/L	0.4
ug/L	Υ	J	8/11/2015	12:35	0.37ug/L	0.37
ug/L	Ν	U	8/11/2015	12:35	0.37ug/L	0.37
ug/L	Υ		8/11/2015	12:35	0.14 ug/L	0.14

/1			0/44/2045	42.25 0.44 /:	0.4.4
ug/L	Y		8/11/2015	12:35 0.14 ug/L	0.14
ug/L	N	U	8/11/2015	12:35 0.15 ug/L	0.15
ug/L	N	U	8/11/2015	12:35 0.15 ug/L	0.15
ug/L	Υ		8/11/2015	12:35 0.043 ug/L	0.043
ug/L	N	U	8/11/2015	12:35 0.043 ug/L	0.043
ug/L	Υ		8/11/2015	12:35 25 ug/L	25
ug/L	Υ		8/11/2015	12:35 25 ug/L	25
mg/L	Υ		8/11/2015	12:35 0.2 mg/L	0.2
ug/L	N	U	8/11/2015	12:35 1ug/L	1
ug/L	N	U	8/11/2015	12:35 1ug/L	1
ug/L	Υ		8/11/2015	12:35 0.12 ug/L	0.12
ug/L	Υ	J	8/11/2015	12:35 0.12 ug/L	0.12
ug/L	Υ		8/11/2015	12:35 0.5 ug/L	0.5
ug/L	Υ		8/11/2015	12:35 0.5 ug/L	0.5
mg/L	Υ		8/11/2015	12:35 0.04 mg/L	0.04
ug/L	Υ		8/11/2015	12:35 17 ug/L	17
ug/L	N	U	8/11/2015	12:35 17 ug/L	17
ug/L	Υ		8/11/2015	12:35 0.06 ug/L	0.06
ug/L	Υ		8/11/2015	12:35 0.06 ug/L	0.06
ug/L	Υ		8/11/2015	12:35 33 ug/L	33
ug/L	Υ		8/11/2015	12:35 33 ug/L	33
ug/L	Υ		8/11/2015	12:35 1.2 ug/L	1.2
ug/L	Υ		8/11/2015	12:35 1.2 ug/L	1.2
ug/L	N	U	8/11/2015	12:35 0.08 ug/L	0.08
ug/L	N	U	8/11/2015	12:35 0.08 ug/L	0.08
ug/L	Υ		8/11/2015	12:35 0.45 ug/L	0.45
ug/L	Υ		8/11/2015	12:35 0.45 ug/L	0.45
ug/L	Υ		8/11/2015	12:35 0.4ug/L	0.4
ug/L	Υ		8/11/2015	12:35 0.4 ug/L	0.4
mg/L	N	U	8/11/2015	12:35 0.023 mg/L	0.023
SU	Y	J	8/11/2015	12:35 NULL SU	NULL
ug/L	Y	· ·	8/11/2015	12:35 17ug/L	17
ug/L	Υ		8/11/2015	12:35 17 ug/L	17
ug/L	Υ	U	8/11/2015	12:35 0.58 ug/L	0.58
ug/L	Y	U	8/11/2015	12:35 0.58 ug/L	0.58
ug/L ug/L	N	U	8/11/2015	12:35 0:38 dg/L	0.1
ug/L ug/L	N	U	8/11/2015	12:35 0.1ug/L	0.1
ug/L ug/L	Y	J	8/11/2015	12:35 0:1ug/L 12:35 480ug/L	480
ug/L ug/L	Y		8/11/2015	12:35 480 ug/L	480
	Υ		8/11/2015	12:35 460 ug/L 12:35 1.6 mg/L	1.6
mg/L	r N	U	8/11/2015 8/11/2015	12:35 1.6 mg/L 12:35 0.1 ug/L	0.1
ug/L	IN	U	0/11/2013	12.33 U.IUB/L	0.1

ug/L	Ν	U	8/11/2015	12:35	0.1ug/L	0.1
mg/L	Υ		8/11/2015	12:35	10 mg/L	10
mg/L	Υ		8/11/2015	12:35	3.3 mg/L	3.3
mg/L	Υ		8/11/2015	12:35	2 mg/L	2
ug/L	Υ		8/11/2015	12:35	0.3 ug/L	0.3
ug/L	Ν	U	8/11/2015	12:35	0.3 ug/L	0.3
ug/L	Υ	J	8/11/2015	12:35	2.8 ug/L	2.8
ug/L	Υ	j	8/11/2015	12:35	2.8 ug/L	2.8
mg/L	Υ		8/11/2015	9:20	5 mg/L	5
ug/L	Υ		8/11/2015	9:20	24ug/L	24
ug/L	Υ	J	8/11/2015	9:20	24ug/L	24
ug/L	Ν	U	8/11/2015	9:20	0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	9:20	0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	9:20	0.37ug/L	0.37
ug/L	Ν	U	8/11/2015	9:20	0.37ug/L	0.37
ug/L	Υ		8/11/2015	9:20	0.14 ug/L	0.14
ug/L	Υ		8/11/2015	9:20	0.14 ug/L	0.14
ug/L	Ν	U	8/11/2015	9:20	0.15 ug/L	0.15
ug/L	Ν	U	8/11/2015	9:20	0.15 ug/L	0.15
ug/L	Υ	J	8/11/2015	9:20	0.043 ug/L	0.043
ug/L	Ν	U	8/11/2015	9:20	0.043 ug/L	0.043
ug/L	Υ		8/11/2015	9:20	25 ug/L	25
ug/L	Υ		8/11/2015	9:20	25 ug/L	25
mg/L	Υ		8/11/2015	9:20	$0.2\mathrm{mg/L}$	0.2
ug/L	Ν	U	8/11/2015	9:20	1ug/L	1
ug/L	Ν	U	8/11/2015	9:20	1ug/L	1
ug/L	Υ	J	8/11/2015	9:20	0.12ug/L	0.12
ug/L	Ν	U	8/11/2015	9:20	0.12 ug/L	0.12
ug/L	Υ		8/11/2015	9:20	0.5 ug/L	0.5
ug/L	Υ		8/11/2015	9:20	0.5 ug/L	0.5
mg/L	Υ		8/11/2015	9:20	0.04 mg/L	0.04
ug/L	Υ		8/11/2015	9:20	17ug/L	17
ug/L	Ν	U	8/11/2015	9:20	17ug/L	17
ug/L	Υ		8/11/2015	9:20	0.06 ug/L	0.06
ug/L	Υ	J	8/11/2015	9:20	0.06 ug/L	0.06
ug/L	Υ		8/11/2015	9:20	33 ug/L	33
ug/L	Υ		8/11/2015	9:20	33 ug/L	33
ug/L	Υ		8/11/2015	9:20	1.2 ug/L	1.2
ug/L	Υ		8/11/2015	9:20	1.2 ug/L	1.2
ug/L	Ν	U	8/11/2015	9:20	0.08 ug/L	0.08
ug/L	N	U	8/11/2015	9:20	0.08 ug/L	0.08

ug/L	Y		8/11/2015	9:20 0.45 ug/L	0.45
ug/L	Υ		8/11/2015	9:20 0.45 ug/L	0.45
ug/L	Υ	j	8/11/2015	9:20 0.4 ug/L	0.4
ug/L	Υ		8/11/2015	9:20 0.4 ug/L	0.4
mg/L	Ν	UJ	8/11/2015	9:20 0.023 mg/L	0.023
SU	Υ	J	8/11/2015	9:20 NULL SU	NULL
ug/L	Υ		8/11/2015	9:20 17ug/L	17
ug/L	Υ		8/11/2015	9:20 17ug/L	17
ug/L	Ν	U	8/11/2015	9:20 0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	9:20 0.58ug/L	0.58
ug/L	Ν	U	8/11/2015	9:20 0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	9:20 0.1ug/L	0.1
ug/L	Υ		8/11/2015	9:20 480 ug/L	480
ug/L	Υ		8/11/2015	9:20 480 ug/L	480
mg/L	Υ		8/11/2015	9:20 1.6 mg/L	1.6
ug/L	Ν	U	8/11/2015	9:20 0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	9:20 0.1ug/L	0.1
mg/L	Υ		8/11/2015	9:20 10 mg/L	10
mg/L	Υ		8/11/2015	9:20 3.3 mg/L	3.3
mg/L	Υ		8/11/2015	9:20 1.7 mg/L	1.7
ug/L	Υ	J	8/11/2015	9:20 0.3 ug/L	0.3
ug/L	Ν	U	8/11/2015	9:20 0.3 ug/L	0.3
ug/L	Υ		8/11/2015	9:20 2.8ug/L	2.8
ug/L	Υ	j	8/11/2015	9:20 2.8 ug/L	2.8
mg/L	Υ		8/11/2015	13:05 5 mg/L	5
ug/L	Υ		8/11/2015	13:05 24 ug/L	24
ug/L	Υ	j	8/11/2015	13:05 24 ug/L	24
ug/L	Ν	U	8/11/2015	13:05 0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	13:05 0.4 ug/L	0.4
ug/L	Υ	j	8/11/2015	13:05 0.37ug/L	0.37
ug/L	Υ	j	8/11/2015	13:05 0.37ug/L	0.37
ug/L	Υ		8/11/2015	13:05 0.14 ug/L	0.14
ug/L	Υ		8/11/2015	13:05 0.14 ug/L	0.14
ug/L	Ν	U	8/11/2015	13:05 0.15 ug/L	0.15
ug/L	Ν	U	8/11/2015	13:05 0.15 ug/L	0.15
ug/L	Υ		8/11/2015	13:05 0.043 ug/L	0.043
ug/L	Ν	U	8/11/2015	13:05 0.043 ug/L	0.043
ug/L	Υ		8/11/2015	13:05 25 ug/L	25
ug/L	Υ		8/11/2015	13:05 25 ug/L	25
mg/L	Υ		8/11/2015	13:05 0.2 mg/L	0.2
ug/L	N	U	8/11/2015	13:05 1ug/L	1

ug/L	Ν	U	8/11/2015	13:05	1ug/L	1
ug/L	Υ	j	8/11/2015	13:05	0.12 ug/L	0.12
ug/L	Υ	j	8/11/2015	13:05	0.12 ug/L	0.12
ug/L	Υ		8/11/2015	13:05	0.5 ug/L	0.5
ug/L	Υ		8/11/2015	13:05	0.5 ug/L	0.5
mg/L	Υ		8/11/2015	13:05	$0.04\mathrm{mg/L}$	0.04
ug/L	Υ		8/11/2015	13:05	17ug/L	17
ug/L	Ν	U	8/11/2015	13:05	17ug/L	17
ug/L	Υ		8/11/2015	13:05	0.06 ug/L	0.06
ug/L	Υ	j	8/11/2015	13:05	0.06 ug/L	0.06
ug/L	Υ		8/11/2015	13:05	33ug/L	33
ug/L	Υ		8/11/2015	13:05	33ug/L	33
ug/L	Υ		8/11/2015	13:05	1.2 ug/L	1.2
ug/L	Υ		8/11/2015	13:05	1.2 ug/L	1.2
ug/L	Ν	U	8/11/2015	13:05	0.08ug/L	0.08
ug/L	Ν	U	8/11/2015	13:05	0.08ug/L	0.08
ug/L	Υ	j	8/11/2015	13:05	0.45 ug/L	0.45
ug/L	Υ	J	8/11/2015	13:05	0.45 ug/L	0.45
ug/L	Υ		8/11/2015	13:05	0.4 ug/L	0.4
ug/L	Υ		8/11/2015	13:05	0.4 ug/L	0.4
mg/L	Ν	U	8/11/2015	13:05	0.023 mg/L	0.023
SU	Υ	j	8/11/2015	13:05 N	NULL SU	NULL
ug/L	Υ		8/11/2015	13:05	17ug/L	17
ug/L	Υ		8/11/2015	13:05	17ug/L	17
ug/L	Υ	U	8/11/2015	13:05	0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	13:05	0.58ug/L	0.58
ug/L	Ν	U	8/11/2015	13:05	0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	13:05	0.1ug/L	0.1
ug/L	Υ		8/11/2015	13:05	480 ug/L	480
ug/L	Υ		8/11/2015	13:05	480 ug/L	480
mg/L	Υ		8/11/2015	13:05	1.6 mg/L	1.6
ug/L	Ν	U	8/11/2015	13:05	0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	13:05	0.1ug/L	0.1
mg/L	Υ		8/11/2015	13:05	10 mg/L	10
mg/L	Υ		8/11/2015	13:05	3.3 mg/L	3.3
mg/L	Υ		8/11/2015	13:05	2 mg/L	2
ug/L	Υ	j	8/11/2015	13:05	0.3 ug/L	0.3
ug/L	N	U	8/11/2015	13:05	0.3 ug/L	0.3
ug/L	Υ		8/11/2015	13:05	2.8ug/L	2.8
ug/L	N	U	8/11/2015	13:05	2.8 ug/L	2.8
mg/L	Υ		8/11/2015	11:00	5 mg/L	5
	•		-,,			•

/1	V		9/11/2015	11.00 24/	2.4
ug/L	Y	11	8/11/2015	11:00 24 ug/L	24
ug/L	N	U	8/11/2015	11:00 24 ug/L	24
ug/L	N	U	8/11/2015	11:00 0.4 ug/L	0.4
ug/L	N	U	8/11/2015	11:00 0.4 ug/L	0.4
ug/L	Y		8/11/2015	11:00 0.37ug/L	0.37
ug/L	Υ	J	8/11/2015	11:00 0.37ug/L	0.37
ug/L	Υ		8/11/2015	11:00 0.14 ug/L	0.14
ug/L	Υ		8/11/2015	11:00 0.14 ug/L	0.14
ug/L	Υ	j	8/11/2015	11:00 0.15 ug/L	0.15
ug/L	N	U	8/11/2015	11:00 0.15 ug/L	0.15
ug/L	N	U	8/11/2015	11:00 0.043 ug/L	0.043
ug/L	Ν	U	8/11/2015	11:00 0.043 ug/L	0.043
ug/L	Υ		8/11/2015	11:00 25 ug/L	25
ug/L	Υ		8/11/2015	11:00 25 ug/L	25
mg/L	Υ		8/11/2015	11:00 0.2 mg/L	0.2
ug/L	Ν	U	8/11/2015	11:00 1ug/L	1
ug/L	Ν	U	8/11/2015	11:00 1ug/L	1
ug/L	Υ		8/11/2015	11:00 0.12 ug/L	0.12
ug/L	Υ	J	8/11/2015	11:00 0.12 ug/L	0.12
ug/L	Υ		8/11/2015	11:00 0.5 ug/L	0.5
ug/L	Υ		8/11/2015	11:00 0.5 ug/L	0.5
mg/L	Υ		8/11/2015	11:00 0.04 mg/L	0.04
ug/L	Υ		8/11/2015	11:00 17 ug/L	17
ug/L	Ν	U	8/11/2015	11:00 17 ug/L	17
ug/L	Υ		8/11/2015	11:00 0.06 ug/L	0.06
ug/L	Ν	U	8/11/2015	11:00 0.06 ug/L	0.06
ug/L	Υ		8/11/2015	11:00 33 ug/L	33
ug/L	Υ		8/11/2015	11:00 33 ug/L	33
ug/L	Υ		8/11/2015	11:00 1.2 ug/L	1.2
ug/L	Υ		8/11/2015	11:00 1.2 ug/L	1.2
ug/L	N	U	8/11/2015	11:00 0.08ug/L	0.08
ug/L	N	U	8/11/2015	11:00 0.08ug/L	0.08
ug/L	Υ	j	8/11/2015	11:00 0.45 ug/L	0.45
ug/L	Υ	j	8/11/2015	11:00 0.45 ug/L	0.45
ug/L	Υ		8/11/2015	11:00 0.4 ug/L	0.4
ug/L	Y		8/11/2015	11:00 0.4 ug/L	0.4
mg/L	Ϋ́	UJ	8/11/2015	11:00 0.023 mg/L	0.023
SU	Ϋ́	J	8/11/2015	11:00 NULL SU	NULL
ug/L	Ϋ́	·	8/11/2015	11:00 17 ug/L	17
ug/L	Ϋ́		8/11/2015	11:00 17 ug/L	17
ug/L	Ϋ́	U	8/11/2015	11:00 17 dg/L 11:00 0.58 ug/L	0.58
~6/ L	į	J	0, 11, 2013	11.00 0.00ug/ L	0.56

ug/L	Υ	U	8/11/2015	11:00 0.58ug/L	0.58
ug/L	N	U	8/11/2015	11:00 0.1ug/L	0.1
ug/L	N	U	8/11/2015	11:00 0.1 ug/L	0.1
ug/L	Υ		8/11/2015	11:00 480 ug/L	480
ug/L	Υ		8/11/2015	11:00 480 ug/L	480
mg/L	Υ		8/11/2015	11:00 1.6 mg/L	1.6
ug/L	N	U	8/11/2015	11:00 0.1 ug/L	0.1
ug/L	N	U	8/11/2015	11:00 0.1 ug/L	0.1
mg/L	Υ		8/11/2015	11:00 10 mg/L	10
mg/L	Υ		8/11/2015	11:00 3.3 mg/L	3.3
mg/L	Υ		8/11/2015	11:00 6.7 mg/L	6.7
ug/L	Υ		8/11/2015	11:00 0.3 ug/L	0.3
ug/L	Υ	J	8/11/2015	11:00 0.3 ug/L	0.3
ug/L	Υ		8/11/2015	11:00 2.8 ug/L	2.8
ug/L	Υ		8/11/2015	11:00 2.8 ug/L	2.8
mg/L	Υ		8/11/2015	11:45 5 mg/L	5
ug/L	Υ		8/11/2015	11:45 24 ug/L	24
ug/L	Ν	U	8/11/2015	11:45 24 ug/L	24
ug/L	N	U	8/11/2015	11:45 0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	11:45 0.4 ug/L	0.4
ug/L	Υ		8/11/2015	11:45 0.37ug/L	0.37
ug/L	Υ	J	8/11/2015	11:45 0.37ug/L	0.37
ug/L	Υ		8/11/2015	11:45 0.14 ug/L	0.14
ug/L	Υ		8/11/2015	11:45 0.14 ug/L	0.14
ug/L	Υ	J	8/11/2015	11:45 0.15 ug/L	0.15
ug/L	N	U	8/11/2015	11:45 0.15 ug/L	0.15
ug/L	N	U	8/11/2015	11:45 0.043 ug/L	0.043
ug/L	Ν	U	8/11/2015	11:45 0.043 ug/L	0.043
ug/L	Υ		8/11/2015	11:45 25 ug/L	25
ug/L	Υ		8/11/2015	11:45 25 ug/L	25
mg/L	Υ		8/11/2015	11:45 0.2 mg/L	0.2
ug/L	N	U	8/11/2015	11:45 1ug/L	1
ug/L	N	U	8/11/2015	11:45 1ug/L	1
ug/L	Υ		8/11/2015	11:45 0.12 ug/L	0.12
ug/L	Υ	J	8/11/2015	11:45 0.12 ug/L	0.12
ug/L	Υ		8/11/2015	11:45 0.5 ug/L	0.5
ug/L	Υ		8/11/2015	11:45 0.5 ug/L	0.5
mg/L	Υ		8/11/2015	11:45 0.04 mg/L	0.04
ug/L	Υ		8/11/2015	11:45 17 ug/L	17
ug/L	N	U	8/11/2015	11:45 17 ug/L	17
ug/L	Υ		8/11/2015	11:45 0.06 ug/L	0.06

ug/L	N	U	8/11/2015	11:45 0.06 ug/L	0.06
ug/L	Υ		8/11/2015	11:45 33 ug/L	33
ug/L	Υ		8/11/2015	11:45 33 ug/L	33
ug/L	Υ		8/11/2015	11:45 1.2 ug/L	1.2
ug/L	Υ		8/11/2015	11:45 1.2 ug/L	1.2
ug/L	Ν	U	8/11/2015	11:45 0.08 ug/L	0.08
ug/L	Ν	U	8/11/2015	11:45 0.08 ug/L	0.08
ug/L	Υ	J	8/11/2015	11:45 0.45 ug/L	0.45
ug/L	Υ	J	8/11/2015	11:45 0.45 ug/L	0.45
ug/L	Υ		8/11/2015	11:45 0.4 ug/L	0.4
ug/L	Υ		8/11/2015	11:45 0.4 ug/L	0.4
mg/L	Υ	UJ	8/11/2015	11:45 0.023 mg/L	0.023
SU	Υ	J	8/11/2015	11:45 NULL SU	NULL
ug/L	Υ		8/11/2015	11:45 17 ug/L	17
ug/L	Υ		8/11/2015	11:45 17ug/L	17
ug/L	Υ	U	8/11/2015	11:45 0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	11:45 0.58 ug/L	0.58
ug/L	Ν	U	8/11/2015	11:45 0.1 ug/L	0.1
ug/L	Ν	U	8/11/2015	11:45 0.1 ug/L	0.1
ug/L	Υ		8/11/2015	11:45 480 ug/L	480
ug/L	Υ		8/11/2015	11:45 480 ug/L	480
mg/L	Υ		8/11/2015	11:45 1.6 mg/L	1.6
ug/L	Ν	U	8/11/2015	11:45 0.1 ug/L	0.1
ug/L	Ν	U	8/11/2015	11:45 0.1ug/L	0.1
mg/L	Υ		8/11/2015	11:45 10 mg/L	10
mg/L	Υ		8/11/2015	11:45 3.3 mg/L	3.3
mg/L	Υ		8/11/2015	11:45 6.7 mg/L	6.7
ug/L	Υ		8/11/2015	11:45 0.3 ug/L	0.3
ug/L	Υ	J	8/11/2015	11:45 0.3 ug/L	0.3
ug/L	Υ	J	8/11/2015	11:45 2.8 ug/L	2.8
ug/L	Υ		8/11/2015	11:45 2.8 ug/L	2.8
mg/L	Υ		8/11/2015	13:55 5 mg/L	5
ug/L	Υ		8/11/2015	13:55 24ug/L	24
ug/L	Υ	J	8/11/2015	13:55 24ug/L	24
ug/L	Ν	U	8/11/2015	13:55 0.4 ug/L	0.4
ug/L	Ν	U	8/11/2015	13:55 0.4 ug/L	0.4
ug/L	Υ	J	8/11/2015	13:55 0.37ug/L	0.37
ug/L	N	U	8/11/2015	13:55 0.37ug/L	0.37
ug/L	Υ		8/11/2015	13:55 0.14 ug/L	0.14
ug/L	Υ		8/11/2015	13:55 0.14ug/L	0.14
ug/L	N	U	8/11/2015	13:55 0.15 ug/L	0.15
<u> </u>			• •	5/	

ug/L	N	U	8/11/2015	13:55 0.15 ug/L	0.15
ug/L	Y	J	8/11/2015	13:55 0.043 ug/L	0.043
ug/L	N.	U	8/11/2015	13:55 0.043 ug/L	0.043
ug/L	Υ	_	8/11/2015	13:55 25 ug/L	25
ug/L	Y		8/11/2015	13:55 25 ug/L	25
mg/L	Ϋ́		8/11/2015	13:55 0.2 mg/L	0.2
ug/L	N	U	8/11/2015	13:55 1ug/L	1
ug/L	Ν	U	8/11/2015	13:55 1ug/L	1
ug/L	Υ	J	8/11/2015	13:55 0.12 ug/L	0.12
ug/L	Ν	U	8/11/2015	13:55 0.12ug/L	0.12
ug/L	Υ		8/11/2015	13:55 0.5 ug/L	0.5
ug/L	Υ		8/11/2015	13:55 0.5 ug/L	0.5
mg/L	Υ		8/11/2015	13:55 0.04 mg/L	0.04
ug/L	Υ		8/11/2015	13:55 17ug/L	17
ug/L	Ν	U	8/11/2015	13:55 17 ug/L	17
ug/L	Υ		8/11/2015	13:55 0.06 ug/L	0.06
ug/L	Υ	J	8/11/2015	13:55 0.06 ug/L	0.06
ug/L	Υ		8/11/2015	13:55 33 ug/L	33
ug/L	Υ		8/11/2015	13:55 33 ug/L	33
ug/L	Υ		8/11/2015	13:55 1.2 ug/L	1.2
ug/L	Υ		8/11/2015	13:55 1.2 ug/L	1.2
ug/L	Ν	U	8/11/2015	13:55 0.08 ug/L	0.08
ug/L	Ν	U	8/11/2015	13:55 0.08 ug/L	0.08
ug/L	Υ	J	8/11/2015	13:55 0.45 ug/L	0.45
ug/L	Υ	J	8/11/2015	13:55 0.45 ug/L	0.45
ug/L	Υ	J	8/11/2015	13:55 0.4ug/L	0.4
ug/L	Υ	J	8/11/2015	13:55 0.4 ug/L	0.4
mg/L	Ν	U	8/11/2015	13:55 0.023 mg/L	0.023
SU	Υ	J	8/11/2015	13:55 NULL SU	NULL
ug/L	Υ		8/11/2015	13:55 17ug/L	17
ug/L	Υ		8/11/2015	13:55 17ug/L	17
ug/L	Υ	U	8/11/2015	13:55 0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	13:55 0.58ug/L	0.58
ug/L	Ν	U	8/11/2015	13:55 0.1 ug/L	0.1
ug/L	Ν	U	8/11/2015	13:55 0.1 ug/L	0.1
ug/L	Y		8/11/2015	13:55 480 ug/L	480
ug/L	Y		8/11/2015	13:55 480 ug/L	480
mg/L	Y		8/11/2015	13:55 1.6 mg/L	1.6
ug/L	Ν	U	8/11/2015	13:55 0.1 ug/L	0.1
ug/L	N	U	8/11/2015	13:55 0.1 ug/L	0.1
mg/L	Y		8/11/2015	13:55 10 mg/L	10

mg/L	Υ		8/11/2015	13:55 3.3 mg	g/L 3.3
mg/L	Υ		8/11/2015	13:55 2 mg	
ug/L	Υ	j	8/11/2015	13:55 0.3 ug	
ug/L	N	U	8/11/2015	13:55 0.3 ug	
ug/L	Υ		8/11/2015	13:55 2.8ug	/L 2.8
ug/L	N	U	8/11/2015	13:55 2.8ug	/L 2.8
mg/L	Υ		8/11/2015	11:45 5 mg	g/L 5
ug/L	Υ	J	8/11/2015	11:45 24 ug	/L 24
ug/L	Υ	J	8/11/2015	11:45 24 ug	/L 24
ug/L	N	U	8/11/2015	11:45 0.4 ug	/L 0.4
ug/L	Ν	U	8/11/2015	11:45 0.4 ug	/L 0.4
ug/L	Υ	J	8/11/2015	11:45 0.37ug	/L 0.37
ug/L	Υ	J	8/11/2015	11:45 0.37ug	/L 0.37
ug/L	Υ		8/11/2015	11:45 0.14 ug	/L 0.14
ug/L	Υ		8/11/2015	11:45 0.14 ug	/L 0.14
ug/L	N	U	8/11/2015	11:45 0.15 ug	/L 0.15
ug/L	Ν	U	8/11/2015	11:45 0.15 ug	/L 0.15
ug/L	Υ	J	8/11/2015	11:45 0.043 ug	/L 0.043
ug/L	N	U	8/11/2015	11:45 0.043 ug	/L 0.043
ug/L	Υ		8/11/2015	11:45 25 ug	/L 25
ug/L	Υ		8/11/2015	11:45 25 ug	/L 25
mg/L	Υ		8/11/2015	11:45 0.2 mg	g/L 0.2
ug/L	N	U	8/11/2015	11:45 1ug	/L 1
ug/L	Ν	U	8/11/2015	11:45 1ug	/L 1
ug/L	Υ	J	8/11/2015	11:45 0.12 ug	/L 0.12
ug/L	Υ	J	8/11/2015	11:45 0.12 ug	/L 0.12
ug/L	Υ		8/11/2015	11:45 0.5 ug	/L 0.5
ug/L	Υ		8/11/2015	11:45 0.5 ug	/L 0.5
mg/L	Υ		8/11/2015	11:45 0.04 mg	
ug/L	Υ		8/11/2015	11:45 17 ug	/L 17
ug/L	N	U	8/11/2015	11:45 17 ug	
ug/L	Υ		8/11/2015	11:45 0.06 ug	
ug/L	Υ	J	8/11/2015	11:45 0.06 ug	
ug/L	Υ		8/11/2015	11:45 33 ug	
ug/L	Υ		8/11/2015	11:45 33 ug	
ug/L	Υ		8/11/2015	11:45 1.2 ug	
ug/L	Υ		8/11/2015	11:45 1.2 ug	
ug/L	N	U	8/11/2015	11:45 0.08 ug	
ug/L	N	U	8/11/2015	11:45 0.08 ug	
ug/L	Υ		8/11/2015	11:45 0.45 ug	
ug/L	Υ		8/11/2015	11:45 0.45 ug	/L 0.45

ug/L	Υ	j	8/11/2015	11:45 0.4 ug/L	0.4
ug/L	Υ	j	8/11/2015	11:45 0.4 ug/L	0.4
mg/L	Ν	U	8/11/2015	11:45 0.023 mg/L	0.023
SU	Υ	j	8/11/2015	11:45 NULL SU	NULL
ug/L	Υ		8/11/2015	11:45 17 ug/L	17
ug/L	Υ		8/11/2015	11:45 17 ug/L	17
ug/L	Ν	U	8/11/2015	11:45 0.58ug/L	0.58
ug/L	Υ	U	8/11/2015	11:45 0.58 ug/L	0.58
ug/L	Ν	U	8/11/2015	11:45 0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	11:45 0.1ug/L	0.1
ug/L	Υ		8/11/2015	11:45 480 ug/L	480
ug/L	Υ		8/11/2015	11:45 480 ug/L	480
mg/L	Υ		8/11/2015	11:45 1.6 mg/L	1.6
ug/L	N	U	8/11/2015	11:45 0.1ug/L	0.1
ug/L	Ν	U	8/11/2015	11:45 0.1ug/L	0.1
mg/L	Υ		8/11/2015	11:45 10 mg/L	10
mg/L	Υ		8/11/2015	11:45 3.3 mg/L	3.3
mg/L	Υ		8/11/2015	11:45 2 mg/L	2
ug/L	Υ	j	8/11/2015	11:45 0.3 ug/L	0.3
ug/L	Ν	U	8/11/2015	11:45 0.3 ug/L	0.3
ug/L	Υ		8/11/2015	11:45 2.8 ug/L	2.8
ug/L	Υ	j	8/11/2015	11:45 2.8 ug/L	2.8

Reporting Limit_Uni	t: Matrix QA_Comment	<u>Latitude</u>	<u>Longitude</u>
mg/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.83746	-107.99168
SU	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168

<i>t.</i>			
ug/L	Surface Water		-107.99168
ug/L	Surface Water		-107.99168
ug/L	Surface Water		-107.99168
ug/L	Surface Water		-107.99168
ug/L	Surface Water		-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water		-107.99168
mg/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
ug/L	Surface Water	36.83746	-107.99168
mg/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084

ug/L	Surface Water		-107.96084
ug/L	Surface Water		-107.96084
ug/L	Surface Water		-107.96084
ug/L	Surface Water		-107.96084
ug/L	Surface Water		-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
SU	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
ug/L	Surface Water	36.87280	-107.96084
mg/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991

ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
SU	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991

ug/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
ug/L	Surface Water	36.92056	-107.90991
mg/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
mg/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
mg/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water		-108.10211
ug/L	Surface Water	36.78364	-108.10211
ug/L	Surface Water	36.78364	-108.10211

	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
mg/L Surface Water 36.78	3364 -108.10211
SU Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
mg/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
mg/L Surface Water 36.78	3364 -108.10211
mg/L Surface Water 36.78	3364 -108.10211
mg/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
ug/L Surface Water 36.78	3364 -108.10211
mg/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
C.	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713
<i>-</i> ,	.966 -108.20713
3,	.966 -108.20713
5 ,	.966 -108.20713
ug/L Surface Water 36.71	.966 -108.20713

ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
mg/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
mg/L	Surface Water	36.71966	-108.20713
SU	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water	36.71966	-108.20713
ug/L	Surface Water		-108.20713
ug/L	Surface Water		-108.20713
ug/L	Surface Water	36.71966	-108.20713
mg/L	Surface Water		-108.20713
ug/L	Surface Water		-108.20713
ug/L	Surface Water	36.71966	-108.20713
mg/L	Surface Water		-108.20713
mg/L	Surface Water		-108.20713
mg/L	Surface Water		-108.20713
ug/L	Surface Water		-108.20713
ug/L	Surface Water		-108.20713
ug/L	Surface Water		-108.20713
ug/L	Surface Water		-108.20713
mg/L	Surface Water	36.73056	-108.25105

ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
mg/L	Surface Water		-108.25105
SU	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water		-108.25105
ug/L	Surface Water	36.73056	-108.25105

ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
ug/L	Surface Water	36.73056	-108.25105
mg/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
mg/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
mg/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water	36.72181	-108.32593

ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
mg/L	Surface Water	36.72181	-108.32593
SU	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
mg/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water	36.72181	-108.32593
mg/L	Surface Water	36.72181	-108.32593
mg/L	Surface Water	36.72181	-108.32593
mg/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water	36.72181	-108.32593
ug/L	Surface Water		-108.32593
ug/L	Surface Water		-108.32593
mg/L	Surface Water		-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water		-108.11860
ug/L	Surface Water	36.77191	-108.11860

ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.77191	-108.11860
SU	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.77191	-108.11860

mg/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
ug/L	Surface Water	36.77191	-108.11860
mg/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
mg/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
mg/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water	36.90090	-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water		-107.91712
ug/L	Surface Water	36.90090	-107.91712

ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
mg	/L	Surface Water	36.90090	-107.91712
SU		Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
mg	/L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
mg	/L	Surface Water	36.90090	-107.91712
mg	/L	Surface Water	36.90090	-107.91712
mg	/L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712
ug/	L	Surface Water	36.90090	-107.91712

Analysis

- 2320B Alkalinity, Total
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 300_ORGFMS Anions, Ion Chromatography
- SM4500_H+ pH
- 200.7 Metals (ICP)

```
200.7 Metals (ICP)
```

- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2540C Total Dissolved Solids (Dried at 180 °C)
- SM2340B Total Hardness (as CaCO3) by calculation
- 2540D Total Suspended Solids Dried at 103-105-¦C
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2320B Alkalinity, Total
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)

- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 300_ORGFMS Anions, Ion Chromatography
- SM4500_H+ pH
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2540C Total Dissolved Solids (Dried at 180 °C)
- SM2340B Total Hardness (as CaCO3) by calculation
- 2540D Total Suspended Solids Dried at 103-105-¦C
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2320B Alkalinity, Total
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)

```
200.8 Metals (ICP/MS)
```

- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 300_ORGFMS Anions, Ion Chromatography
- SM4500_H+ pH
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)

```
200.8 Metals (ICP/MS)
```

2540C Total Dissolved Solids (Dried at 180 °C)

SM2340B Total Hardness (as CaCO3) by calculation

2540D Total Suspended Solids Dried at 103-105-¦C

- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2320B Alkalinity, Total
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)

```
200.8 Metals (ICP/MS)
```

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

300_ORGFMS Anions, Ion Chromatography

SM4500_H+ pH

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2540C Total Dissolved Solids (Dried at 180 A°C)

SM2340B Total Hardness (as CaCO3) by calculation

2540D Total Suspended Solids Dried at 103-105-¦C

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2320B Alkalinity, Total

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

```
200.8 Metals (ICP/MS)
```

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

300 ORGFM 28D Anions, Ion Chromatography

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

245.1 Mercury (CVAA)

245.1 Mercury (CVAA)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

300_ORGFMS Anions, Ion Chromatography

SM4500_H+ pH

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2540C Total Dissolved Solids (Dried at 180 °C)

SM2340B Total Hardness (as CaCO3) by calculation

2540D Total Suspended Solids Dried at 103-105-¦C

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2320B Alkalinity, Total

```
200.7 Metals (ICP)
```

- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 300_ORGFMS Anions, Ion Chromatography
- SM4500_H+ pH
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)

```
200.8 Metals (ICP/MS)
```

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2540C Total Dissolved Solids (Dried at 180 °C)

SM2340B Total Hardness (as CaCO3) by calculation

2540D Total Suspended Solids Dried at 103-105-¦C

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2320B Alkalinity, Total

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

200.8 Metals (ICP/MS)

300_ORGFM_28D Anions, Ion Chromatography

200.7 Metals (ICP)

200.7 Metals (ICP)

```
200.8 Metals (ICP/MS)
```

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

245.1 Mercury (CVAA)

245.1 Mercury (CVAA)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

300_ORGFMS Anions, Ion Chromatography

SM4500_H+ pH

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2540C Total Dissolved Solids (Dried at 180 A°C)

SM2340B Total Hardness (as CaCO3) by calculation

2540D Total Suspended Solids Dried at 103-105-¦C

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2320B Alkalinity, Total

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

```
200.8 Metals (ICP/MS)
```

- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 300_ORGFMS Anions, Ion Chromatography
- SM4500_H+ pH
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2540C Total Dissolved Solids (Dried at 180 °C)

- SM2340B Total Hardness (as CaCO3) by calculation
- 2540D Total Suspended Solids Dried at 103-105-¦C
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 2320B Alkalinity, Total
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.8 Metals (ICP/MS)
- 300_ORGFM_28D Anions, Ion Chromatography
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 200.7 Metals (ICP)
- 200.7 Metals (ICP)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)
- 245.1 Mercury (CVAA)
- 245.1 Mercury (CVAA)
- 200.8 Metals (ICP/MS)
- 200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

300_ORGFMS Anions, Ion Chromatography

SM4500_H+ pH

200.7 Metals (ICP)

200.7 Metals (ICP)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.7 Metals (ICP)

200.7 Metals (ICP)

300_ORGFM_28D Anions, Ion Chromatography

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

2540C Total Dissolved Solids (Dried at 180 °C)

SM2340B Total Hardness (as CaCO3) by calculation

2540D Total Suspended Solids Dried at 103-105-¦C

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)

200.8 Metals (ICP/MS)