

Tutorial Questions (Week 4)

Shihang Lu (卢仕航), TA Southern University of Science and Technology

Email: <u>lush2021@mail.sustech.edu.cn</u>

- Review
- Basic Problems with Answers 2.3, 2.7, 2.13
- Basic Problems 2.24, 2.26
- Q&A

- Basic knowledge on signal computation
- Exponential signals: Euler's relation, periodic, integral
- CT/DT unit impulse/step function
- System Properties
 - 1. Memoryless or with memory
 - 2. Causality
 - 3. Invertibility
 - 4. Stability
 - 5. Time-invariance
 - 6. Linearity

- CT/DT LTI systems
- Convolution operation procedure
 - 1. Figure computation based on "Flip-slide-multiply-sum/integral"
 - 2. Some known or typical convolution results
 - 3. Properties of convolution
- Unit impulse response and properties of LTI systems
 - 1. Memoryless or with memory
 - 2. Causality
 - 3. Invertibility
 - 4. Stability

- CT/DT LTI systems
- Convolution operation procedure
 - 1. Figure computation based on "Flip-slide-multiply-sum/integral"
 - 2. Some known or typical convolution results
 - 3. Properties of convolution
- Unit impulse response and properties of LTI systems
 - 1. Memoryless or with memory
 - 2. Causality
 - 3. Invertibility
 - 4. Stability

>
$$x[n] = a^{n}u[n]$$

> $h[n] = u[n]$
> $y[n] = x[n] * h[n] ?$ $y[n] = \begin{cases} \frac{1 - a^{n+1}}{1 - a}, & n \ge 0 \\ 0, & n < 0 \end{cases}$

$$x[k]h[n-k] = \begin{cases} a^k, & 0 \le k \le n \\ 0, & k < 0, k > n \end{cases}$$

h[n-k]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=0}^{n} a^k = \frac{1-a^{n+1}}{1-a}$$

$$\chi(n) = (\frac{1}{2})^n u[n-4]$$
 $h(n) = 4^n u[z-n]$ $\chi(n) + h(n) = \sum_{k=-\infty}^{+\infty} (\frac{1}{2})^k u[k-4] \cdot 4^{n-k} u[k-n+2]$ $u(n) \stackrel{\text{Lin}}{=} 2^n \stackrel$

$$\sum_{k=1}^{+\infty} \{\pm \frac{1}{2}\}^{k} 4^{n-k} , 4 \ge n \ge 0 \ge 0 \le 6$$

$$\sum_{k=1}^{+\infty} (-\frac{1}{2})^{k} 4^{n-k} , 4 < n \ge 0 \ge 0 \ge 6$$

①
$$\sum_{k=4}^{+\infty} (-\frac{1}{2})^k 4^{n-k}$$
, $n \le 6$

$$= \sum_{k=4}^{+\infty} (-\frac{1}{8})^k \cdot 4^n \quad (\xi_{j} + \xi_{k} + \xi_{k} + \xi_{k} + \xi_{k})$$

$$= \left\{ \sum_{k=0}^{+\infty} (-\frac{1}{8})^k - \sum_{k=0}^{3} (\frac{1}{8})^k \right\} \cdot 4^n \quad (\xi_{j} + \xi_{k} + \xi_{k} + \xi_{k}) \cdot \xi_{k} + \xi_{k} +$$

$$= \left\{ \sum_{k=0}^{+\infty} \left(-\frac{1}{2} \right)^{k} \cdot 4^{-k} - \sum_{k=0}^{n+1} \left(-\frac{1}{2} \right)^{k} 4^{-k} \right\} 4^{n}$$

$$= \left\{ \frac{1}{1+\frac{1}{8}} - \frac{1-\left(-\frac{1}{8} \right)^{n}}{1+\frac{1}{8}} \right\} \cdot 4^{n} = \frac{8}{9} \left(-\frac{1}{8} \right)^{n} \cdot 4^{n}, n > 6$$

另外, 大家了了完工变换后可以重做一下这题! 如碎石有误,请联系fushzus@mail.sustech.edu.cn by TA 声红配

$$x(t) = e^{-at}u(t)$$

$$h(t) = u(t)$$

$$y(t) = x(t) * h(t)$$

$$y(t) = \begin{cases} \frac{1 - e^{-at}}{a}, & t \ge 0 \\ 0, & t < 0 \end{cases} \qquad \frac{1 - e^{-at}}{a} u(t)$$

- CT/DT LTI systems
- Convolution operation procedure
 - 1. Figure computation based on "Flip-slide-multiply-sum/integral"
 - 2. Some known or typical convolution results
 - 3. Properties of convolution
- Unit impulse response and properties of LTI systems
 - 1. Memoryless or with memory
 - 2. Causality
 - 3. Invertibility
 - 4. Stability

表 3.4 基本信号的卷积表

连续时间卷积积分			离散时间卷积和		
x(t)	h(t)	x(t)*h(t)	x[n]	h[n]	x[n]*h[n]
x(t)	$\delta(t)$	x(t)	x[n]	$\delta[n]$	x[n]
x(t)	u(t)	$\int_{-\infty}^t x(\tau) \mathrm{d}\tau$	x[n]	u[n]	$\sum_{k=-\infty}^{n} x[k]$
x(t)	$\delta'(t)$	x'(t)	x[n]	$\Delta \delta[n]$	x[n]-x[n-1]
u(t)	u(t)	tu(t)	u[n]	u[n]	(n+1)u[n]
$e^{-at}u(t)$	u(t)	$\frac{1-e^{-at}}{a}u(t)$	$a^nu[n]$	u[n]	$\frac{1-a^{n+1}}{1-a}u[n]$
$\sin(\omega t)u(t)$	u(t)	$\frac{1-\cos(\omega t)}{\omega}u(t)$	$\sin(\Omega n)u[n]$	u[n]	
$\cos(\omega t)u(t)$	u(t)	$\frac{\sin(\omega t)}{\omega}u(t)$	$\cos(\Omega n)u[n]$	u[n]	
$e^{-at}u(t)$	$e^{-at}u(t)$	$te^{-at}u(t)$	$a^nu[n]$	$a^nu[n]$	$(n+1)a^nu[n]$
$e^{-at}u(t)$	$e^{-bt}u(t)$	$\frac{\mathrm{e}^{-at} - \mathrm{e}^{-bt}}{b - a} u(t)$	$a^nu[n]$	$b^nu[n]$	$\frac{b^{n+1}-a^{n+1}}{b-a}u[n]$

说明:表 3.4 中空着的卷积和运算结果,感兴趣的读者可自行补上。

- CT/DT LTI systems
- Convolution operation procedure
 - 1. Figure computation based on "Flip-slide-multiply-sum/integral"
 - 2. Some known or typical convolution results
 - 3. Properties of convolution
- Unit impulse response and properties of LTI systems
 - 1. Memoryless or with memory
 - 2. Causality
 - 3. Invertibility
 - 4. Stability

☐ Commutative property

$$x(t) * h(t) = h(t) * x(t)$$

$$\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$x[n] * h[n] = h[n] * x[n]$$

$$\sum_{-\infty}^{\infty} x[m]h[n-m] = \sum_{-\infty}^{\infty} h[m]x[n-m]$$

☐ Distributive property

 $m=-\infty$

$$x(t)*[h_1(t)+h_2(t)] = x(t)*h_1(t)+x(t)*h_2(t)$$

$$x[n]*\{h_1[n]+h_2[n]\} = x[n]*h_1[n]+x[n]*h_2[n]$$

☐ Associative property

$$[x(t)*h_1(t)]*h_2(t) = x(t)*[h_1(t)*h_2(t)]$$

$$\{x[n]*h_1[n]\}*h_2[n] = x[n]*\{h_1[n]*h_2[n]\}$$

☐ Time-invariant property (Collect time shift)

$$y(t) = x(t) * h(t)$$

$$x[n] * h[n] = y[n]$$

$$x(t) * h(t - t_0) = y(t - t_0)$$

$$x[n] * h[n - m] = y[n - m]$$

$$x(t - t_1) * h(t - t_2) = y(t - t_1 - t_2)$$

$$x[n - m_1] * h[n - m_2] = y[n - m_1 - m_2]$$

□ Difference property

$$\frac{d}{dt}\left[x(t)*h(t)\right] = x(t)*\frac{dh(t)}{dt} = \frac{dx(t)}{dt}*h(t) = \frac{dy(t)}{dt}$$

$$\nabla \left\{ x[n] * h[n] \right\} = \nabla x[n] * h[n] = x[n] * \nabla h[n] = \nabla y[n]$$

☐ Integral property

$$\int_{-\infty}^{t} \left[x(\tau) * h(\tau) \right] d\tau = x(t) * \int_{-\infty}^{t} h(\tau) d\tau = \int_{-\infty}^{t} x(\tau) d\tau * h(t) = \int_{-\infty}^{t} y(\tau) d\tau$$

$$\sum_{k=-\infty}^{n} \left\{ x[k] * h[k] \right\} = x[n] * \left\{ \sum_{k=-\infty}^{n} h[k] \right\} = \left\{ \sum_{k=-\infty}^{n} x[k] \right\} * h[n] = \sum_{k=-\infty}^{n} y[k]$$

- ☐ For unit impulse/step signal
- ☐ More unit impulse/step signals, more simple

$$x(t) * \delta(t) = x(t)$$

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

$$x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

$$x[n] * \delta[n] = x[n]$$
$$x[n] * \delta[n-m] = x[n-m]$$

$$x[n] * u[n] = \sum_{m=-\infty}^{n} x[m]$$

$$y(t) = r_T(t)^* r_T(t) = \frac{d}{dt} r_T(t)^* \int_{-\infty}^t r_T(\tau) d\tau$$

 $h_{-1}(t) = \int_{-\infty}^{t} r_T(\tau) d\tau$

- Figure computation based on "Flip-slidemultiply-sum/integral"
- 2. Some known or typical convolution results
- 3. Properties of convolution

$$y(t) = [\delta(t+T/2) - \delta(t-T/2)] * h_{-1}(t)$$
$$= h_{-1}(t+T/2) - h_{-1}(t-T/2)$$

- CT/DT LTI systems
- Convolution operation procedure
 - 1. Figure computation based on "Flip-slide-multiply-sum/integral"
 - 2. Some known or typical convolution results
 - 3. Properties of convolution
- Unit impulse response and properties of LTI systems
 - 1. Memoryless or with memory
 - 2. Causality
 - 3. Invertibility
 - 4. Stability

2.3. Consider an input x[n] and a unit impulse response h[n] given by

$$x[n] = \left(\frac{1}{2}\right)^{n-2} u[n-2],$$

$$h[n] = u[n+2].$$

Determine and plot the output y[n] = x[n] * h[n].

2.3. Let us define the signals

$$x_1[n] = \left(\frac{1}{2}\right)^n u[n]$$

and

$$h_1[n]=u[n].$$

We note that

$$x[n] = x_1[n-2]$$
 and $h[n] = h_1[n+2]$

Now,

$$y[n] = x[n] * h[n] = x_1[n-2] * h_1[n+2]$$
$$= \sum_{k=-\infty}^{\infty} x_1[k-2]h_1[n-k+2]$$

By replacing k with m+2 in the above summation, we obtain

$$y[n] = \sum_{m=-\infty}^{\infty} x_1[m]h_1[n-m] = x_1[n] * h_1[n]$$

Using the results of Example 2.1 in the text book, we may write

$$y[n] = 2\left[1 - \left(\frac{1}{2}\right)^{n+1}\right]u[n]$$

2.7. A linear system S has the relationship

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

between its input x[n] and its output y[n], where g[n] = u[n] - u[n-4].

- (a) Determine y[n] when $x[n] = \delta[n-1]$.
- **(b)** Determine y[n] when $x[n] = \delta[n-2]$.
- (c) Is S LTI?
- (d) Determine y[n] when x[n] = u[n].

2.7. (a) Given that

$$x[n] = \delta[n-1],$$

we see that

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k] = g[n-2] = u[n-2] - u[n-6]$$

(b) Given that

$$x[n] = \delta[n-2],$$

we see that

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k] = g[n-4] = u[n-4] - u[n-8]$$

- (c) The input to the system in part (b) is the same as the input in part (a) shifted by 1 to the right. If S is time invariant then the system output obtained in part (b) has to the be the same as the system output obtained in part (a) shifted by 1 to the right. Clealry, this is not the case. Therefore, the system is not LTI.
- (d) If x[n] = u[n], then

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$
$$= \sum_{k=0}^{\infty} g[n-2k]$$

The signal g[n-2k] is plotted for k=0,1,2 in Figure S2.7. From this figure it is clear that

$$y[n] = \begin{cases} 1, & n = 0, 1 \\ 2, & n > 1 \\ 0, & \text{otherwise} \end{cases} = 2u[n] - \delta[n] - \delta[n-1]$$

2.13. Consider a discrete-time system S_1 with impulse response

$$h[n] = \left(\frac{1}{5}\right)^n u[n].$$

- (a) Find the integer A such that $h[n] Ah[n-1] = \delta[n]$.
- (b) Using the result from part (a), determine the impulse response g[n] of an LTI system S_2 which is the inverse system of S_1 .

2.13. (a) We require that

$$\left(\frac{1}{5}\right)^n u[n] - A\left(\frac{1}{5}\right)^{(n-1)} u[n-1] = \delta[n]$$

Putting n=1 and solving for A gives $A=\frac{1}{5}$.

(b) From part (a), we know that

$$h[n] - \frac{1}{5}h[n-1] = \delta[n]$$

 $h[n] * (\delta[n] - \frac{1}{5}\delta[n-1]) = \delta[n]$

From the definition of an inverse system, we may argue that

$$g[n] = \delta[n] - \frac{1}{5}\delta[n-1].$$

2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Figure P2.24(a). The impulse response $h_2[n]$ is

$$h_2[n] = u[n] - u[n-2], \qquad \delta[n] + \delta[n-1]$$

and the overall impulse response is as shown in Figure P2.24(b).

Figure P2.24

- (a) Find the impulse response $h_1[n]$.
- **(b)** Find the response of the overall system to the input

$$x[n] = \delta[n] - \delta[n-1].$$

2.24. (a) We are given that $h_2[n] = \delta[n] + \delta[n-1]$. Therefore,

$$h_2[n] * h_2[n] = \delta[n] + 2\delta[n-1] + \delta[n-2].$$

Since

$$h[n] = h_1[n] * [h_2[n] * h_2[n]],$$

we get

$$h[n] = h_1[n] + 2h_1[n-1] + h_1[n-2].$$

Therefore,

$$h[0] = h_1[0] \Rightarrow h_1[0] = 1,$$

$$h[1] = h_1[1] + 2h_1[0] \Rightarrow h_1[1] = 3,$$

$$h[2] = h_1[2] + 2h_1[1] + h_1[0] \Rightarrow h_1[2] = 3,$$

$$h[3] = h_1[3] + 2h_1[2] + h_1[1] \Rightarrow h_1[3] = 2,$$

$$h[4] = h_1[4] + 2h_1[3] + h_1[2] \Rightarrow h_1[4] = 1$$

$$h[5] = h_1[5] + 2h_1[4] + h_1[3] \Rightarrow h_1[5] = 0.$$

 $h_1[n] = 0$ for n < 0 and $n \ge 5$.

(b) In this case,

$$y[n] = x[n] * h[n] = h[n] - h[n-1].$$

2.26. Consider the evaluation of

$$y[n] = x_1[n] * x_2[n] * x_3[n],$$

where $x_1[n] = (0.5)^n u[n]$, $x_2[n] = u[n+3]$, and $x_3[n] = \delta[n] - \delta[n-1]$.

- (a) Evaluate the convolution $x_1[n] * x_2[n]$.
- (b) Convolve the result of part (a) with $x_3[n]$ in order to evaluate y[n].
- (c) Evaluate the convolution $x_2[n] * x_3[n]$.
- (d) Convolve the result of part (c) with $x_1[n]$ in order to evaluate y[n].

2.26. (a) We have

$$y_1[n] = x_1[n] * x_2[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n-k]$$
$$= \sum_{k=0}^{\infty} (0.5)^k u[n+3-k].$$

This evaluates to

$$y_1[n] = x_1[n] * x_2[n] = \begin{cases} 2\{1 - (1/2)^{n+4}\}, & n \ge -3 \\ 0, & \text{otherwise} \end{cases}$$

(b) Now,

$$y[n] = x_3[n] * y_1[n] = y_1[n] - y_1[n-1].$$

Therefore,

$$y[n] = \begin{cases} 2\left\{1 - (1/2)^{n+3}\right\} + 2\left\{1 - (1/2)^{n+4}\right\} = (1/2)^{n+3}, & n \ge -2\\ 1, & n = -3\\ 0, & \text{otherwise} \end{cases}$$

Therefore, $y[n] = (1/2)^{n+3}u[n+3]$.

(c) We have

$$y_2[n] = x_2[n] * x_3[n] = u[n+3] - u[n+2] = \delta[n+3].$$

(d) From the result of part (c), we get

$$y[n] = y_2[n] * x_1[n] = x_1[n+3] = (1/2)^{n+3}u[n+3].$$

- 1教111,周一至周四
- 21:00-22:00, in 11/12/13/14 Oct
- Review
- Basic Problems with Answers 2.20
- Basic Problems 2.29
- Advanced Problems 2.40, 2.43, 2.47

Thanks for Your Attendance

Q&A

Shihang Lu (卢仕航), TA Southern University of Science and Technology

Email: <u>lush2021@mail.sustech.edu.cn</u>

