Exam - Large scale optimization for machine learning

Exercice 1 — Regularization of an inverse problem.

Let $\mu > 0$, we consider the minimization problem

$$(\mathcal{P}_{\mu}) \quad \min_{x \in \mathbb{R}^n} \|Ax - b\|^2 + \mu \|x\|^2 ,$$

and we assume that $S \neq \emptyset$, where

$$S := \{ x \in \mathbb{R}^n : Ax = b \}.$$

- 1. Write the optimality conditions for problem (\mathcal{P}_{μ}) and show that its solution x_{μ} is unique
- 2. We consider now the solution x_0 to the problem

$$(\mathcal{P}_0) \quad \begin{cases} \min_{x \in \mathbb{R}^n} & \|x\|^2 \\ \text{s.t.} & Ax = b \end{cases},$$

show that the solution to this problem is unique.

- 3. Show that for all $\mu > 0$ we have $||x_{\mu}|| < ||x_0||$.
- 4. We assume that there is a sequence $(\mu_n)_{n\in\mathbb{N}}$ such that $\mu_n>0$ for all n,

$$\lim_{n} \mu_n = 0$$
, and $\lim_{n} x_{\mu_n} = \tilde{x} \in \mathbb{R}^n$

show that $\tilde{x} \in S$.

5. Conclude that we have the following limit

$$\lim_{\mu \to 0} x_{\mu} = x_0.$$

Exercice 2 — Stochastic Gradient Method.

Let $n \in \mathbb{N}^*$, $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. We consider the minimization of the objective function $F : \mathbb{R}^n \to \mathbb{R}$, where for all $x \in \mathbb{R}^n$

$$F(x) = \frac{1}{2} ||Ax - b||_2^2$$

We assume that A is symmetric and $A \succ 0$.

1. (Strong convexity). Show that there exists a constant c > 0 such that for all $x \in \mathbb{R}^n$, for all $y \in \mathbb{R}^n$

$$F(y) \ge F(x) + \nabla F(x)^{\top} (y - x) + \frac{1}{2} c ||y - x||^2$$

2. Show that the gradient of F is Lipschitz-continuous, with Lipschitz constant L>0, that is

$$\forall x \in \mathbb{R}^n, \forall y \in \mathbb{R}^n, \quad \|\nabla F(y) - \nabla F(x)\|_2 \le L\|y - x\|_2$$

3. We consider the stochastic gradient method for minimizing F at x, with the stochastic vector $g(x, K(\xi))$, where

$$g(x,k) = (a_k x - b_k) a_k^{\top},$$

for $i \in \{1, \dots, n\}$, a_i is the *i*th row of matrix A, b_i is the *i*th element of vector b and $\xi \mapsto K(\xi)$ is a random variable over the indices set $I := \{1, \dots, n\}$.

a) We assume that K follow the uniform law of probability over the set I, compute the expectation

$$\mathbb{E}_{\xi}[g(x,\xi)].$$

b) Show that there exist $\mu_G \ge \mu > 0$ such that for all $x \in \mathbb{R}^n$,

$$\nabla F(x)^{\top} \mathbb{E}_{\xi}[g(x,\xi)] \ge \mu \|\nabla F(x)\|_2^2.$$

and

$$\|\mathbb{E}_{\xi}[g(x,\xi)]\|_{2} \le \mu_{G}\|\nabla F(x)\|_{2}$$

- 4. Numerical experiments. The file SGmethod.py is a Python script where the objective function is defined for n = 30. Both the objective value and the stochastic vector can be computed with the function obfj_s1.
 - a) Evaluate numerically the values of constant c and L.
 - b) Implement the stochastic gradient method with a fixed stepsize $\alpha = 0.1$. Use the initialization for x given in the Jupyter notebook. Plot the evolution of the objective value over the first 1000 iterations. What can you conclude?
 - c) Explain why it is interesting to use the stochastic gradient method with diminishing stepsize in this context?
 - d) Implement the stochastic gradient method with stepsize

$$\alpha_k = \frac{\beta}{\gamma + k},$$

with $\beta > \frac{1}{c\mu}$ and choose $\gamma > 0$ such that $\alpha_1 \leq \frac{\mu}{LM_G}$ with $M_G = \mu^2$. Plot the evolution of the objective value over the first 10^6 iterations.