OpenCL Tutorial

David Castells-Rufas
Microelectronics & Electronics Systems Department
Universitat Autònoma de Barcelona
david.castells@uab.cat

Let's get some relief

Goals

- Compile and Use our first OpenCL kernel
- Use the emulator
- Use the early estimator
- Execute in the real FPGA platform
- Familiarize with the tutorial infrastructure setup

Compiling for the Emulator

YOU DO...

- Open a Terminal
 - module load intelfpga-opencl-17.1
 - -/opt/netbeans-8.2/bin/netbeans
- Go to LAB1_2_cpu
 - right click build to compile it
- Open another Terminal
 - go to ../LABs/LAB1.2/fpga
 - -make
 - it will compile the emulation version of the system

The Code


```
#define FRAC_NUM 3
#define FRAC_DEN 2
#define N 64

__kernel void contrast(int inv, __global int* outv)
{
   int s1 = inv * FRAC_NUM;
   int s2 = s1 / FRAC_DEN;
   int s3 = s2 - N;

   *outv = (s2 < N) ? 0 : (s3 > 255) ? 255 : s3;
}
```


Execute with the Emulator

YOU DO...

- Execute the
 - go to ../LABs/LAB1.2/cpu
 - -make
 - it will compile host (it is the same that you did in netbeans with build)
 - execute
 - The emulator needs export CL_CONTEXT_EMULATOR_DEVICE_ALTERA=1 (the fpga make does it)
 - You get a crash dump (INTEL BUG)

Early Estimation

YOU DO...

- Execute the
 - go to ../LABs/LAB1.2/fpga
 - -make early
 - it will run the "aoc -c" command to compile an early version of the design (no FPGA place & route)
 - open the contrast/reports/report.html
 - you can do it from netbeans (right click "view")
 - or from terminal "firefox contrast/reports/report.html"

WHY SO MUCH RESOURCE CONSUMPTION?

FPGA compilation

YOU NOT DO THIS UNLESS NECESSARY...

- Execute
 - -go to ../LABs/LAB1.2/fpga
 - -make submit
 - it will connect you to the compilation cluster and submit a job to SLURM
 - make status
 - to query the queue

Real Execution

YOU DO...

- Execute
 - -go to ../LABs/LAB1.2/fpga
 - -make deploy
 - it will connect you to mountain machine
 - navigate to .../LABs/LAB1.2/fpga
 - make download
 - •it will download the compiled file
 - go to ../cpu
 - execute the app "./test_contrast"

Floating Point

- Floating point implementations in FPGA where not common
 - More complex
 - Typically less energy efficient that fixed point

 Do ../LABs/LAB1.3/ for a floating point version of Gamma correction

Accelerating?

We did some FPGA designs, but we are not accelerating...

WHY?

11

