Física de Partículas Elementales (G71)

4 Curso - Grado de Física (29 de Enero de 2019)

Cuestión 1. En Teorías de Gran Unificación (en inglés GUT) el protón no es estable y decae de la forma: $p^+ \to \pi^0 + e^+$. Asumiendo que la masa del positrón puede despreciarse en comparación con las masas del protón y el pion ($m_{e^+}=0$), calcula la expresión para el momento del pion en el sistema de reposo del protón. (**1 Punto**). Un electrón con una energía de 20 MeV colisiona con un positrón en reposo dando lugar a dos fotones: $e^- + e^+ \to \gamma + \gamma$. Si uno de los fotones es detectado formando un ángulo de 45 grados con la dirección inicial del electrón, ¿cuáles son las energías de los fotones 1 y 2 respectivamente?. Considera una masa del electrón $m_{e^-}=0.5 MeV$. (**1 Punto**).

Cuestión 2. Considera los operadores de proyección $P_R = \frac{(1+\gamma^5)}{2}$ y $P_L = \frac{(1-\gamma^5)}{2}$. Explica qué papel juegan en la descripción de la fuerza débil y cómo se relacionan con la quiralidad y la helicidad. **(0.5 Puntos)**. Demuestra que $P_L \gamma^\mu = \gamma^\mu P_R$ y $P_R \gamma^\mu = \gamma^\mu P_L$. **(0.5 Puntos)**. Demuestra que si llamamos $\Psi_L = P_L \Psi$ y $\Psi_R = P_R \Psi$ entonces los adjuntos de Ψ_L y de Ψ_R cumplen $\overline{\Psi_L} = \overline{\Psi} P_R$ y $\overline{\Psi_R} = \overline{\Psi} P_L$. **(0.5 Puntos)**. Demuestra también que $\overline{\Psi_L} \gamma^\mu \Phi_L = \overline{\Psi} \gamma^\mu P_L \Phi$. **(0.5 Puntos)**.

Cuestión 3. Considera el siguiente proceso de aniquilación $q^-q^+ \to \mu^-\mu^+$. Dibuja los dos posibles diagramas de Feynmann de 2 vértices que describen este proceso. **(0.5 Puntos)**. Indica la estructura que tendría el elemento de matriz asociado a cada uno de ellos, explicando las diferencias. **(0.5 Puntos)**. Si el experimento en el que se está estudiando este proceso tiene una energía centro de masas $\sqrt{s} = 20 GeV$: ¿Cuál de los dos será dominante?. Razona tu respuesta. **(1 Punto)**.

Cuestión 4. Define los siguientes conceptos: Tasa de desintegración, Elemento de Matriz $|T_{fi}|$, Elemento de Matriz $|M_{fi}|$, Sección eficaz y Sección eficaz diferencial. **(1.0 Puntos)**. Indica para cada una de estas cantidades si se trata de una cantidad invariante bajo transformaciones de Lorenz o no. **(0.5 Puntos)**. La tasa de desintegración para el decaemiento de una partícula en otras dos $A \to B + C$, en el sistema de reposo de la partícula A, viene dado por: $\Gamma = \frac{|\vec{p}^*|}{32\pi^2m_i^2}\int |M_{fi}|^2d\Omega$. Explica a qué nos referimos con el momento \vec{p}^* , cuál sería su ecuación en términos de las masas de las partículas y cómo se relaciona con la expresión integral de la densidad de estados. **(Nota:** No es preciso despejar el momento, basta con indicar la ecuación que cumple.) **(0.5 Puntos)**.

Cuestión 5. Madame Wu diseñó un experimento en el que un núcleo de cobalto decae en un núcleo de níquel, un electrón y un antineutrino: $Co \rightarrow Ni + e^- + \bar{v_e}$ en presencia de un campo magnético. El diagrama **??** muestra un esquema de este proceso para dos situaciones en las que el campo magnético está alineado (derecha) o antialineado (izquierda) con el eje Z. En ambos casos el spin del cobalto y del níquel se alinea siguiendo el campo magnético. Puesto que el níquel tiene una unidad menos de spin que el cobalto, el electrón y el anti-neutrino tendrán que compensar la pérdida de spin tal y como se indica en el diagrama. Asigna y calcula los espinores de Dirac autoestados de la helicidad **??** a cada uno de los electrones y anti-neutrinos en el diagrama, en función del momento p y las masas (asume $\phi = 0$). (**0.5 Puntos**). Asumiendo que la masa del neutrino es exactamente 0, uno de los diagramas tiene una probabilidad de ocurrir igual a 0. Indica cuál y explica por qué en relación al elemento de matriz asociado a la fuerza débil mediada por un bosón W. (**0.5 Puntos**). Usando los espinores de Dirac y los operadores de proyección quiral demuestra lo mismo matemáticamente. (**1 Punto**).

Figura 0.1: Visión esquemática del experimento de Madame Wu para dos configuraciones opuestas de campo magnético.

$$u_{\uparrow} = N \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m}\cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m}e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad u_{\downarrow} = N \begin{pmatrix} -\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m}\sin\left(\frac{\theta}{2}\right) \\ -\frac{|\vec{p}|}{E+m}e^{i\phi}\cos\left(\frac{\theta}{2}\right) \end{pmatrix}$$

$$v_{\uparrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E+m}\sin\left(\frac{\theta}{2}\right) \\ -\frac{|\vec{p}|}{E+m}e^{i\phi}\cos\left(\frac{\theta}{2}\right) \\ -\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi}\cos\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad v_{\downarrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E+m}\cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m}e^{i\phi}\sin\left(\frac{\theta}{2}\right) \\ \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{pmatrix}$$

Figura 0.2: Espinores solución a la ecuación de Dirac y autoestados del operador helicidad.