Exam 3A Chem 1142 Spring 2019

Name:	KEY

MULTIPLE CHOICE. [2 pts ea.] Record the best response on the scantron sheet. [40 pts total.]
Assume all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.
Q1. Bases turn litmus what color? A) blue B) green C) red Bases " blue D) yellow
Q2. The Arrhenius definition of an acid is: A) they donate H ⁺ ions to other molecules B) they form H ⁺ ions in water C) they accept electron pairs D) they turn litmus red
Q3. A good example of an Arrhenius base is: A) NH ₃ B) LiOH C) CH ₃ CO ₂ H D) HCO ₃ - L:OH L:OH L:OH L:OH
Q4. The conjugate acid to HPO ₄ ²⁻ is: A) H ₃ PO ₄ B) H ₂ PO ₄ C) PO ₄ ³⁻ D) H ₃ O ⁺
Q5. An example of a strong acid would be: A) HF B) HNO ₂ C) H ₂ SO ₄ D) H ₃ PO ₄ HOO ₄ HNO ₃ HI Six strong acids!
Q6. At 37 °C, K_w is equal to 5.5×10^{-14} . This means the pH of pure water at this temperature will be A) 7.00 B) 5.50 C) 13.26
$H_2O(1) \rightleftharpoons H^{\dagger}(a_{\xi}) + OH^{\dagger}(a_{\xi})$
of temp neutral

-1-= 5.5×10⁻¹⁴= x^2 => $x = \sqrt{5.5}$ ×10⁻¹⁴

=) K = 2.3 × 10-7, pH = - log (H+) = 6.63

Which of the following diagrams represents a snapshot of a very small portion of a beaker containing a weak acid, HA, dissolved in water? Note that the solvent molecules (H2O) are not shown for clarity.

Q8. Given three separate solutions containing equal concentrations of formic acid ($K_a = 1.7 \times 10^{-4}$), phenol $(K_a = 1.3 \times 10^{-10})$, and acetic acid $(K_a = 1.8 \times 10^{-5})$, select the response below that has the acids arranged in order of *increasing* percent dissociation at equilibrium.

- A) formic < phenol < acetic
 - B) formic < acetic < phenol
 - C) acetic < formic < phenol
 - D) phenol < acetic < formic

If the concentration of hydroxide ion is 1.8×10^{-4} M in an aqueous solution at 25 °C, what is the pH of the Q9. POH = - 105 (OH=) = 3.74 solution?

- A) 2.74
- B) 3.74
- C) 9.26
- (D) 10.26

Q10. Which solution has the largest pOH at 25°C: 0.100 M NaOH(aq), 0.100 M Sr(OH)₂(aq), or

pH=-log[0.100]

= 13.00

- 0.100 M HCl(aq)?

- B) 1.20
- C) 10.25

- D) 13.40
- POH = -105 (OH) = 0.60 14.00 = pH+pOH => pH = 13.40
- Q12. A Lewis base is a(n):
 - A) electron-pair donor
 - B) proton acceptor
 - C) electron-pair acceptor
 - D) proton donor

Q13. Which pair of substances will constitute a buffer when found in solution together:	
A) NaNO2/HNO3 B) KCI/HF weak acid, HF (ounterior)	
B) KCI/HF weak acid, Ht /	
C) HF/NaF D) NaNO2/KNO2 Conj. base, F- (Nat F-)	
Q14. A solution containing 0.30 M HClO(aq) ($K_a = 3.5 \times 10^{-8}$) and 0.25 M of NaClO(aq) would	d have a pH of:
A) 7/6	
(B) 7.38) PKa = -log (Ka)	
C) 7.54	
Q15. A weak monoprotic acid (HA) has a p K_a of 3.94. If we need to prepare a buffer with a pH of say for sure that:	3.74, then we can
A) [HA] > [A-]) AH < pka! So need more HA,	(HA)>(A)
say for sure that: (A) [HA] > [A^-] (B) [HA] = [A^-] - 0.20 M (C) [HA] < [A^-] (OT: PH = pka+log bla =) PH-pka = -	0.20 = 10 6/
C) [HA] < [A-] Or: PH = PKa+10g 10 =) PM-PKa	0.20 2 109 74
$D) [HA] = [A^{-}] + 0.20 M$	D= 10-0.20 = 0.63
Q16. Which of the following acids would it be best to use to prepare a buffer with a pH of 4.25?	=> [a] = 1 × [b]
A) $HClO_2$, $K_a = 1.1 \times 10^{-2}$ pkg = 1.96 B) HNO_2 , $K_a = 4.0 \times 10^{-4}$ pkg = 3.40	
C) HCHO K = 18 × 10-7) = 3.74 × closur to pH.	(a) = 1.58[b]
D) H_2CO_3 , $K_a = 4.3 \times 10^{-7}$ 3 6.37 (but buffer is when pka 2 (27). Which chemical equation best corresponds to the K_{sp} reaction for calcium carbonate?	PH) [a] > [b] !
Q17. Which chemical equation best corresponds to the $K_{\rm sp}$ reaction for calcium carbonate?	
A) $CaCO_3(s) = Ca^*(aq) + C^*(aq) + 2O^*(g)$	
B) $CaCO_3(s) \rightleftharpoons Ca(aq) + CO_3(aq)$	
C) $CaCO_3(s) \rightleftharpoons Ca^+(aq) + CO_3^-(aq)$ Solid \rightleftharpoons Alsso like \rightleftharpoons D) $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$	
Q18. Which substance will have the <u>smallest molar solubility</u> : BaSO ₄ ($K_{sp} = 1.07 \times 10^{-10}$), CaSO ₄ ($K_{sp} = 7.10 \times 10^{-5}$), or FeS ($K_{sp} = 3.72 \times 10^{-19}$).	Λ .
A) BaSO ₄ kspt, so fewer dusolo	
B) CaSO ₄	10/2 50
C) FeS D) Impossible to determine	
Q19. In which solution would ammonium fluoride be the <u>most soluble</u> ?	C2 1
A) 0.25 M NH ₄ Br(aq) 3 UH ₄ rommon in NH ₄ F(s) = NH ₄ (ac)	+ L (8C,
C) 0.50 M LiF(aq) } F - common in	CZ's are increased.
(D) 0.35 M KBr(aq) } no common ion! His head so! see shift to LHS	(Le châtelier) => lower
Q20. The solubility product constant for magnesium hydroxide, $Mg(OH)_2$ is 2.06×10^{-13} . Which	solution would
form a precipitate immediately upon mixing? (A) A solution containing 1.0×10^{-6} M Mg ²⁺ and 1.0×10^{-3} M OH Mg(OH) ₂ UI	Mg2trep1+2Free1.
B) A solution containing 1.0×10^{-5} M Mg ²⁺ and 1.0×10^{-4} M OH ⁻	15-26
C) A solution containing $1.0 \times 10^{-4} \mathrm{M Mg^{2+}}$ and $1.0 \times 10^{-5} \mathrm{M OH^{-}}$	JLFJ
D) A solution containing 1.0 × 10 M Mg and 1.0 × 10 M O11	
if Osp>K	sp, will shift bolhs
() = (10) (10) = (1)	
of the second second	, USP
co will the when withink	Qsp S

Short Response.

Show ALL work to receive credit.

Q21. [15 pts.] (a) The pH of 0.13 M HF(aq) is 2.01. Use this information to determine K_a for HF. Be sure to write an ICE chart as part of your answer.

$$HF(ag) + H_2O(e) \rightleftharpoons H_3O^{\dagger}(ag) + F^{\dagger}(ag)$$
 $I = 0.13 - 0 = 0$
 $C - x - x + x + x$
 $F = (0.13 - x) - (x)$

$$K_a = [H_0 t][F-] = x^2$$

 $[HF]_{eq} = 0.13-x$

$$pH = 2.01 \Rightarrow [H_30^{\frac{1}{2}}] = 10^{-pH} = 10^{-2.01} = x \Rightarrow K_a = \frac{(10^{-2.01})^2}{0.13 - 10^{-2.01}} = 7.9 \times 10^{-4}$$

(b) Using your calculated K_a , predict the pH of 1.3 M HF(aq).

$$HF(ag) + H_2O(g) \rightleftharpoons H_3O^{\dagger}(ag) + F^{\dagger}(ag)$$

I 1.3 — 20 0

C -x + x + x

E (1.3-x) — (x) (x)

$$K_q = \frac{\chi^2}{1.3 - \chi} = 7.9 \times 10^{-4}$$
. Assume $\chi << 1.3$
 $\Rightarrow 7.9 \times 10^{-4} \times \frac{\chi^2}{1.3} \Rightarrow \chi = \sqrt{1.3} \times 7.9 \times 10^{-4}$
 $= 0.032$

57. ml? 7. ionization =
$$\frac{[H_50^{\dagger}]e_0}{[H_7]_6}$$
 $v_100 = \frac{0.032}{1.3}$ $v_100 = 2.5$ %. $v_100 = 2.5$ %. $v_200 = 2.5$ %.

Part (a)
$$\frac{7.5}{\%}$$
 Part (b) $\frac{2.5}{\%}$ %

Q22. [15 pts.] (Be sure to write all relevant chemical equations and ICE/ICF charts for this question.) 250.0 mL of 0.400 M HNO₂(aq), $K_a = 4.0 \times 10^{-4}$, is mixed with 50.0 mL of 0.800 M NaOH(aq).

(a) Calculate the pH of the solution formed.

#mol NaOM 50.0 mLx 1L x 0.800mol NoOH = 0.0400 mol NoOH

(weak acid (onj. ban)

(b) If 0.010 mol HCl is added to the solution formed in part (a), what will the final pH be?

Q23. [15 pts.] Calculate the molar solubility of aluminum hydroxide in pure water vs. in 0.200 M KOH(aq). Comment on the difference. K_{sp} for Al(OH)₃ is 2.3×10^{-8} .

Be sure to write the K_{sp} chemical equation and an ICE chart as part of your answer! Explain any assumptions you are making.

in water

$$K_{SP} \text{ r.m.}$$
 $Al(OH)_3(S) = Al^{3+}(a_2) + 3OH(a_2)$
 $C = C + S + 3S$
 $C = C + S + 3S$

when dissolving in 0.200M KOH,

there's a common ion, OH-!

KOH -> K+OH
O.200M Common

ion.

$$|| K_{SP} = [A(3+)][OH^{-3}] ||$$

$$= (3+)[OH^{-3}] || (3+)[OH^{-3}] |$$

 $A1(OH)_3 IS) \rightleftharpoons A1^3 t_{(ag)} + 30 H_{(ag)}$ $I \longrightarrow O \quad 0.200$ $C \stackrel{''-s''}{=} + 5 \quad +3 S$ $E \longrightarrow (S) \quad (0.200 + 3s)$

 $|| (so, yes)||^{3s} || (S)(0.200)||^{3s} || (So, 200)|| (So, yes)||^{3s} || (S)(0.200)|| (So, yes)||^{3s} || (So, 200)|| (So$

(omment

molar. Sol. is much lower when OHT is already present.

This is expected due to be Châtelier!

Inc. [OHT], causes shift to LHS...

so less ppt(s) will dissolve!

(a) Write out the chemical equation (reaction) corresponding to K_b for $CH_3CH_2NH_2(aq)$, ethylamine.

(b) Write out the chemical equation (reaction) corresponding to K_w .

(c) Without performing a calculation, explain how the pH of $0.100\,M$ NH $_3(aq)$ compares with $0.100\,M$ LiOH(aq).

LiOH is a strong base (100% dissoc.), so will have a greater pH than NHz, a weak base of same conc.

Calculate the pH of 12 0 M HC/(ag)

(d) Calculate the pH of 12.0 M HCl(aq) (concentrated hydrochloric acid).

HCl -> H+ + Clor H₂O(e) + HCe(ag) 100'. H₃O+(ag) + Ce⁻(ag) 12.0M 12.0M

$$pH = -log [H^{\dagger}] = -log [12.0] = -1.079$$
(3sf.) (3dp)

Bonus question

Predict whether the following aqueous salts will be acidic, basic, neutral, or whether there is not enough information to decide.

NaF banc

Al(NO3)3 acidic

LiCI Neura

ht: neutral

(from strong have, Naon)

(from weak and, HF

- 7 -

Useful Information

IA	IIA	Periodic Table of the Elements											IVA	VA	VIA	VIIA	VIII
1	ı																18
Н																	He
1.008	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	l N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.1
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293
	-	72.5														1	
	-	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
	-	138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.50	164.9	167.3	168.9	173.0	1	
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
	L	[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

 $N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$

$$R = 8.3145 \frac{J}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

$$M_1V_1 = M_2V_2$$

$$pH = -log_{10}[H^+]$$

$$pH + pOH = 14.00 (25 \, ^{\circ}C)$$

$$K_{\rm w} = 1.0 \times 10^{-14} \, (25 \, {\rm ^{\circ}C})$$

$$K_a \cdot K_b = K_w$$

$$pH = pK_a + \log \frac{\text{[Base]}}{\text{[Acid]}}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

