Ringen en Lichamen

Luc Veldhuis

4 September 2017

Definitie

- Een **ring** R is een verzameling met 2 bewerkingen: Optelling $R \times R \to R$, $(a, b) \mapsto a + b$ en vermenigvuldiging $R \times R \to R$, $(a, b) \mapsto a \cdot b$ zodanig dat:
 - \bullet (R,+) is een abelse groep
 - De vermenigvuldiging is associatief $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ voor alle $a, b, c \in R$.
 - $a \cdot (b+c) = a \cdot b + a \cdot c$ voor alle $a, b, c \in R$ $(a+b) \cdot c = a \cdot c + b \cdot c$ (distributiviteit)
- R heet **commutatief** als $a \cdot b = b \cdot a$ voor alle $a, b \in R$.
- R heeft een **identiteit** (eenheids element of 1) als er een element $1 = 1_R$ zodat $a \cdot 1_R = a = 1_R \cdot a$ voor alle $a \in R$.

Opmerking

- (R,+) is een abelse groep \Leftrightarrow
 - R ≠ ∅
 - Er bestaat een $0 \in R$ zodat a + 0 = a = 0 + a voor alle $a \in R$
 - a + (b + c) = (a + b) + c voor alle $a, b, c \in R$
 - Voor elke $a \in R$ is er een $b \in R$ met a+b=0=b+a, b is uniek genoteerd als -a
 - a + b = b + a voor alle $a, b \in R$

We hebben ook dat a - b = a + 1 - b

- We weten: $0 = 0_R$ is uniek Als R een identiteit heeft, is die ook uniek: Stel 1, 1' voldoen allebei, dan geldt $1' = 1' \cdot 1 = 1$
- Vaak schrijven we ab voor a · b

Voorbeeld

- Als R een abelse groep is met + als bewerking, dan is R met $a \cdot b = 0$ voor alle $a, b \in R$ een ring.
- $R = \{0\}$ met 0 + 0 = 0, $0 \cdot 0 = 0$ is een commutatieve ring met identiteit $1_R = 0$.
- ullet $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ zijn commutatieve ringen met 1
- Als $n \ge 2$, dan is $\mathbb{Z}/n\mathbb{Z}$ met $\overline{a} + \overline{b} = \overline{a+b}$ en $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$ is een commutatieve ring met identiteit $\overline{1}$. Bijvoorbeeld:

$$\overline{a}(\overline{b}+\overline{c}) = \overline{a} \cdot (\overline{b+c}) = \overline{a \cdot (b+c)} = \overline{a \cdot b + a \cdot c} = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$$

• $R = \{\overline{0}, \overline{3}\} \subseteq \mathbb{Z}/6\mathbb{Z}$ is met de optelling en vermenigvuldiging van $\mathbb{Z}/6\mathbb{Z}$ een ring: $\overline{0} + \overline{0}, \overline{0} + \overline{3}, \overline{3} + \overline{0}, \overline{3} + \overline{3}$ $\overline{0} \cdot \overline{0}, \overline{0} \cdot \overline{3}, \overline{3} \cdot \overline{0}, \overline{3} \cdot \overline{3}$ zijn in R

Voorbeeld (vervolg)

 $(R,+)=\langle \overline{3} \rangle$ is een ondergroep van $(\mathbb{Z}/6\mathbb{Z},+)$.

Associativiteit van de vermenigvuldiging en distributiviteit gelden in $\mathbb{Z}/6\mathbb{Z}$, dus ook in R.

R is commutatief want $\mathbb{Z}/6\mathbb{Z}$ is commutatief.

R heeft een identiteit, $1_R = \overline{3}$ want $\overline{a} \cdot \overline{3} = \overline{a} = \overline{3} \cdot \overline{a}$ voor alle $\overline{a} \in R$:

$$\overline{\underline{0}} \cdot \overline{\underline{3}} = \overline{\underline{0}} = \overline{\underline{3}} \cdot \overline{\underline{0}}$$

 $\overline{3} \cdot \overline{3} = \overline{3} = \overline{3} \cdot \overline{3}$

Dus: zowel R als $\mathbb{Z}/6\mathbb{Z}$ hebben identiteiten maar die zijn verschillend.

 Als X een niet lege verzameling is, A een ring dan is {f: X → A} een ring met 'puntsgewijze optelling en vermenigvuldiging':

Voor $f, g \in R$ definieer f + g via (f + g)(x) = f(x) + g(x) $f \cdot g$ via $(f \cdot g)(x) = f(x) \cdot g(x)$ voor alle $x \in X$.

Stelling

Zij R een ring

- $0 \cdot a = 0a \cdot 0$ voor alle $a \in R$
- $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$ voor alle $a, b \in R$
- $(-a) \cdot (-b) = ab$ voor alle $a, b \in R$
- Als R een 1 heeft dan geldt $(-1) \cdot a = -a = a \cdot (-1)$ voor alle $a \in R$

Bewijs

- $0 \cdot a + 0 \cdot a = (0+0) \cdot a = 0 \cdot a$ en uit y + y = y in (R, +) volgt y = 0. Neem $y = 0 \cdot a$. $a \cdot 0 = 0$ doe dit zelf.
- $(-a) \cdot b + a \cdot b = (-a+a) \cdot b = 0 \cdot b = 0$ Tel -(ab) aan beide kanten op (-a)b = -(ab) en a(-b) = -(ab) net zo
- Volgt uit 2

Opmerking

As R een ring met 1=0, dan geldt voor elke $x\in R$ dat $x=1\cdot x=0\cdot x=0$, dan $R=\{0\}$ en die heeft $1_R=0$. Later zullen we vaak eisen dat $1_R\neq 0$ om dit uit te sluiten.

Definitie

Een ring R met $1 \neq 0$ heet een **delingsring**. (Engels: *divisionring*) als voor elke $a \neq 0$ in R er een $b \in R$ bestaat met ab = 1 = ba. Je kunt 'delen door a' door vermenigvuldigen met b.

Opgave: voor $a \neq 0$ is die b uniek. Notatie: a^{-1} . Als R commutatief is, dan heet R een lichaam. (Engels: field)

Voorbeeld

- \bullet $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ zijn lichamen
- \mathbb{Z} is geen lichaam, er is geen $b \in \mathbb{Z}$ met 2b = 1.
- $\mathbb{H} = \{a+bi+cj+dk\}$ met $a,b,c,d\in\mathbb{R}$ met optelling $(a_1+a_2i+a_3j+a_4k)+(b_1b_2i+b_3j+b_4k)=$ $(a_1+b_1)+(a_2+b_2)i+(a_3+b-3)j+(a_4+b_4)k$ en vermenigvuldiging via distributiviteit en rekenregels: reële coëfficiënten commuteren met alles en $i^2=j^2=k^2=-1$. $ij=k,\ jk=i,\ ki=j,\ ji=-k,\ kj=-i,\ ik=-j$ is een deelring (niet commutatief)

Voorbeeld

$$(1+2i)(3j+4k) = 1 \cdot 3j + 1 \cdot 4k + 2i \cdot 3j + 2i \cdot 4k$$

= 3j + 4k + 6ij + 8ik
= 3j + 4k + 6k + 8 - j
= -5j + 10k

Definieer als
$$\alpha = a + bi + cj + dk$$

$$\overline{\alpha} = a - bi - cj - dk$$
Dan geldt $\alpha \overline{\alpha} = \overline{\alpha} \alpha = a^2 + b^2 + c^2 + d^2$ en $\overline{\alpha} \overline{\beta} = \overline{\beta} \overline{\alpha}$
Als $\alpha \neq 0$ dan is $\alpha^{-1} = (\alpha \overline{\alpha})^{-1} \cdot \overline{\alpha} \in \mathbb{R}^*$

Voorbeeld

In $\mathbb{Z}/6\mathbb{Z}[x] = \{\text{polynomen in } x \text{ met coefficienten in } \mathbb{Z}/6\mathbb{Z}\}$ geldt $(\overline{2}x + \overline{1}) \cdot (\overline{3}x + \overline{1}) = \overline{2} \cdot \overline{3}x^2 + (\overline{2} \cdot \overline{1} + \overline{1} \cdot \overline{3})x + \overline{1} \cdot \overline{1} = \overline{5}x + \overline{1}$

Graad van product is 'te klein' doordat $\overline{2} \cdot \overline{3} = \overline{0}$.

Definitie

Zij R een ring.

- Een element $a \neq 0$ in R heet een **nuldeler** als er een $b \neq 0$ met ab = 0 of ba = 0
- Neem aan dat R $1 \neq 0$ heeft. Een element van $u \in R$ heet een **eenheid** van R als er een $v \in R$ is met vu = 1 = vu.

De verzameling van eenheden van R wordt genoteerd als $\mathbb{R}*$.

Opgave

Gegeven $u \in R^*$ dan is de $v \in R$ met uv = 1 = vu uniek en $v \in R^*$.

Notatie: schrijf u^{-1} voor v. Normale reken regels gelden voor exponenten (pas op als de ring niet commutatief is)

Voorbeeld

- $\mathbb{Z}^* = \{1, -1\}$
- Als R een delingsring is (bijvoorbeeld een lichaam) dan is $R^* = R \setminus \{0\}.$
- Als $n \ge 2$ dan is $(\mathbb{Z}/n\mathbb{Z})^* = \{\overline{a} | a \in \mathbb{Z}, ggd(a, n) = 1\}$

