Logika dla informatyków

Egzamin końcowy (część licencjacka)

2 lutego 2011

Zadanie 1 (1 punkt). Jeśli istnieje taki zbiór X, że $\mathbb{Q} \subseteq X$ oraz $|X| \leq |\mathbb{N}|$ to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz słowo "NIE".

Q

Zadanie 2 (1 punkt). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N} \times \{0,1\})$ zdefiniowaną wzorem $f(X) = \{\langle m, n \rangle \in \mathbb{N} \times \{0,1\} \mid 2m+n \in X\}$. Jeśli istnieje funkcja odwrotna do f to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. W przeciwnym przypadku wpisz słowo "NIE".

 $g: \mathcal{P}(\mathbb{N} \times \{0,1\}) \to \mathcal{P}(\mathbb{N}),$ $g(X) = \{2m+n \mid \langle m, n \rangle \in X\}$

Zadanie 3 (1 punkt). W prostokąt poniżej wpisz liczbę różnych relacji częściowego porządku na (dwuelementowym) zbiorze $\{a,b\}$.

3

Zadanie 4 (1 punkt). W prostokąt poniżej wpisz liczbę elementów minimalnych w porządku $\langle \mathcal{P}(\{0,1,2,3\}) \setminus \{\emptyset\}, \subseteq \rangle$.

4

Zadanie 5 (1 punkt). Jeśli istnieją takie relacje porządku R i S na zbiorze liczb naturalnych \mathbb{N} , że $R \cup S$ nie jest relacją porządku, to w prostokąt poniżej wpisz dowolne takie relacje. W przeciwnym przypadku wpisz słowo "NIE".

$$R = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m \leq n \}, \hspace{5mm} S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid n \leq m \}$$

Zadanie 6 (1 punkt). Jeśli porządki $\langle \mathbb{R}, \leq \rangle$ i $\langle \mathbb{Z} \times [0,1), \leq_{lex} \rangle$ są izomorficzne, to w prostokąt poniżej wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie istnieje.

$$f: \mathbb{Z} \times [0,1) \to \mathbb{R}, \qquad f(x,y) = x + y$$

Zadanie 7 (1 punkt). Rozważmy rodzinę zbiorów $S = \{\{1,2,3\}, \{1,2,4\}, \{1,2,5\}\}$. Jeśli w zbiorze uporządkowanym $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ rodzina S ma kres górny, to w prostokąt oznaczony sup S poniżej wpisz wyliczoną wartość tego kresu; w przeciwnym przypadku wpisz słowo "NIE". Jeśli rodzina S ma kres dolny, to w prostokąt oznaczony inf S poniżej wpisz wyliczoną wartość tego kresu; w przeciwnym przypadku wpisz słowo "NIE".

$$\sup S \hspace{1cm} \{1,2,3,4,5\} \hspace{1cm} \inf S \hspace{1cm} \{1,2\}$$

Zadanie 8 (1 punkt). Jeśli istnieje taka relacja $R \subseteq \mathbb{Z} \times \mathbb{Z}$, że $\langle \mathbb{Z}, R \rangle$ jest regularnym porządkiem, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym przypadku wpisz słowo "NIE".

```
R = \{\langle x, y \rangle \in \mathbb{Z} \times \mathbb{Z} \ : \ (|x| < |y|) \lor ((|x| = |y|) \land (x \le y))\}
```

Zadanie 9 (1 punkt). Niech $R = \{\langle n, n+1 \rangle \mid n \in \mathbb{N} \}$. Rozważmy funkcję $f : \mathcal{P}(\mathbb{N} \times \mathbb{N}) \to \mathcal{P}(\mathbb{N} \times \mathbb{N})$ zdefiniowaną wzorem $f(X) = R \cup XX$. Jeśli funkcja f ma najmniejszy punkt stały, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu stałego. W przeciwnym przypadku wpisz słowo "NIE".

```
\{\langle m,n
angle \in \mathbb{N} 	imes \mathbb{N} \ : \ m < n\}
```

Zadanie 10 (1 punkt). W tym zadaniu f, g i h są symbolami funkcyjnymi, natomiast x, y i z są zmiennymi. Jeśli isnieje inny niż $\{y/h(z), \ x/g(h(z))\}$ unifikator termów f(h(z), x) i f(y, g(y)), to w prostokąt poniżej wpisz dowolny taki unifikator. W przeciwnym przypadku wpisz słowo "NIE".

$$\{y/h(y),\;x/g(h(y)),\;z/y\}$$

Zadanie 11 (1 punkt). Jeśli zbiór klauzul $\{\neg s \lor r, \neg q \lor s, p \lor q, \neg r \lor \neg s, \neg p \lor q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

$$\frac{\neg s \lor r \quad \neg r \lor \neg s}{\neg s} \qquad \frac{p \lor q \quad \neg p \lor q}{q} \quad \neg q \lor s}{\bot}$$

Zadanie 12 (1 punkt). Powiemy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $\mathcal{Q}_1 x_1 \dots \mathcal{Q}_n x_n \psi$, gdzie x_i są pewnymi zmiennymi, \mathcal{Q}_i są kwantyfikatorami (czyli $\mathcal{Q}_i \in \{\forall, \exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\forall n (\forall k \ k < n \Rightarrow k \in X) \Rightarrow n \in X$ to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$\forall n \exists k \ (k < n \land k \not\in X) \lor n \in X$$

Imię i nazwisko:	Maksymilian Debeściak		
Oddane zadania:			

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

2 lutego 2011

Każde z poniższych zadań będzie oceniane w skali od -2 do 16 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 13. Rozważmy następujący porządek \leq w rodzinie $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych. Dla zbiorów $X,Y\in\mathcal{P}(\mathbb{N})$ zachodzi $X\leq Y$ wtedy i tylko wtedy, gdy

$$X = Y$$
 lub $\min(X - Y) \in Y$,

gdzie $\dot{}$ oznacza różnicę symetryczną zbiorów, a $\min(A)$ jest najmniejszą w sensie naturalnego porządku liczbą w zbiorze A. Niech $A_i = \{i\}$ dla wszystkich $i \in \mathbb{N}$.

- (a) Czy rodzina zbiorów $\{A_i \mid i \geq 2010\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres górny? Uzasadnij odpowiedź.
- (b) Czy rodzina zbiorów $\{A_i \mid i \geq 2010\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres dolny? Uzasadnij odpowiedź.

Zadanie 14. Rozważmy dowolną funkcję $f:X\to X$. Udowodnij, że następujące warunki są równoważne.

- f jest różnowartościowa,
- istnieje dokładnie jedna taka funkcja $g: X \to X$, że fg = f.

Zadanie 15. Rozważmy dwa izomorficzne porządki $\mathcal{A} = \langle A, \leq_A \rangle$ i $\mathcal{B} = \langle B, \leq_B \rangle$. Traktujemy te porządki jak struktury nad sygnaturą bez symboli funkcyjnych i z jednym symbolem relacyjnym \leq , w których relacje \leq_A i \leq_B są interpretacjami symbolu \leq .

- (a) Udowodnij, że formuła $\forall x \exists y \ x \leq y$ jest prawdziwa w strukturze \mathcal{A} wtedy i tylko wtedy, gdy jest prawdziwa w strukturze \mathcal{B} .
- (b) Udowodnij, że dla każdej formuły φ logiki I rzędu, w której nie występują symbole funkcyjne i \leq jest jedynym symbolem relacyjnym zachodzi równoważność

 $\mathcal{A} \models \varphi$ wtedy i tylko wtedy, gdy $\mathcal{B} \models \varphi$