Notes on Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control

Catherine Chen cyc2152

December 2023

A. N. Angelopoulos, S. Bates, E. J. Candès, M. I. Jordan, and L. Lei, "Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control." arXiv, Sep. 29, 2022. Accessed: Dec. 18, 2023. [Online].

Available: http://arxiv.org/abs/2110.01052

Abstract: Learn Then Test (LTT) reframes risk-control as multiple hypothesis testing, to produce finite-sample guarantess on any predictive model, without assumptions on the model or true distribution of the underlying dataset.

1 Introduction

In LTT, begin with a learned model \hat{f} , then post-process the model using calibration data to make the final predictions. The post-processing is controlled by a low-dimensional parameter λ . Multiple values of the parameter are tested using the calibration data in order to find settings that control a user-chosen statistical error rate.

Conformal prediction, and risk-controlling prediction sets requires that λ is one-dimensional, and that the risk function is monotonic in λ . LTT does not require such assumptions, thus can control possibly non-monotonic risks.

1.1 Setting and Notation

Let $(X_i, Y_i)_{i=1,\dots,n}$ be the calibration set, an i.i.d. set of variables, s.t. feature vectors $X_i \in \mathcal{X}$ and responses $Y_i \in \mathcal{Y}$, with pretrained machine learning model $\hat{f}: \mathcal{X} \mapsto \mathcal{Z}$. The raw model outputs in \mathcal{Z} are post-processed to generate predictions $\mathcal{T}_{\lambda}(x)$ indexed by a low-dimensional parameter λ . Finally, $\hat{\lambda}$ is determined by controlling a user-chosen error rate, independent of the quality of \hat{f} or the data distribution.

In the general framework, post-processing $\mathcal{T}_{\lambda}: \mathcal{X} \to \mathcal{Y}'$ take on values in any space \mathcal{Y}' . In practice, $\mathcal{Y}' = \mathcal{Y}$ for predictions, or $\mathcal{Y}' = 2^{\mathcal{Y}}$ for prediction sets. For \mathcal{T}_{λ} , the risk $R(\mathcal{T}_{\lambda}) \in \mathbb{R}$, denoted $R(\lambda)$, is defined to capture a problem-specific notion of the statistical error.

Objective: Train a function $\mathcal{T}_{\hat{\lambda}}$ based on \hat{f} and the calibration data s.t. it achieves the following error-control property:

Definition 1 (Risk-controlling prediction). Let $\hat{\lambda} \in \Lambda$ be a random variable. We say that $\mathcal{T}_{\hat{\lambda}}$ is an (α, δ) -risk-controlling prediction (RCP) if $\mathbb{P}(R(\mathcal{T}_{\hat{\lambda}}) \leq \alpha) \geq 1 - \delta$.

The risk tolerance α and error level δ are chosen by the user. $\hat{\lambda}$ is a function of the calibration data, so the probability in the above definition will be over the randomness in the sampling of $(X_1, Y_1), \ldots, (X_n, Y_n)$.

2 Risk Control in Prediction

Goal: find a function $\mathcal{T}_{\hat{\lambda}}$ whose risk is less than some user-specified threshold α .

Algorithm Outlin: Search across the collection of functions $\{\mathcal{T}_{\lambda}\}_{{\lambda}\in\Lambda}$ and estimate their risk on the calibration data $(X_i,Y_i)_{i=1,\ldots,n}$. The output of the procedure will be a set of λ values, $\widehat{\Lambda}\subseteq\Lambda$ which are all guaranteed to control the risk, $R(\lambda)$.

- 1. For each λ_j in a discrete set $\Lambda = \{\lambda_1, \dots, \lambda_N\}$, define the null hypothesis $\mathcal{H}_j : R(\lambda_j) > \alpha$. Thus, rejecting \mathcal{H}_j corresponds to selecting λ_j as a point where the risk is controlled.
- 2. For each null hypothesis, compute a finite-sample valid p-value using a concentration inequality.
- 3. Return $\widehat{\Lambda} = \mathcal{A}\left(\{p_j\}_{j \in \{1,...,|\Lambda|\}}\right) \subset \Lambda$, where \mathcal{A} is an algorithm that controls the family-wise error rate (FWER).

Result: Except with probability δ , each $\hat{\lambda} \in \hat{\Lambda}$ yields an RCP $\mathcal{T}_{\hat{\lambda}}$.

Theorem 1. Suppose p_j has a distribution stochastically dominating the uniform distribution for all j under \mathcal{H}_j . Let \mathcal{A} be an FWER-controlling algorithm at level δ . Then $\hat{\Lambda} = \mathcal{A}(p_1, \ldots, p_N)$ satisfies the following:

$$\mathbb{P}\left(\sup_{\lambda\in\widehat{\Lambda}}\{R(\lambda)\} \le \alpha\right) \ge 1 - \delta,$$

where the supremum over an empty set is defined as $-\infty$. Thus, selecting any $\lambda \in \widehat{\Lambda}$, \mathcal{T}_{λ} is an $(\alpha, \delta) - RCP$.

Theorem 1 reduces the problem of risk control into two subproblems:

- 1. Generate a p-value for each hypothesis.
- 2. Combine the hypotheses to discover the least conservative prediction that controls the risk at level α .
- 2.1 Calculating Valid p-Values
- 2.2 Multiple Hypothesis Testing
- 2.3 Multiple Risks and Multi-Dimensional λ
- 2.4 An Alternative Approach: Uniform Concentration