Автоматическая типизация горных пород

Александр Смирнов

27.12.2019г

Введение

- Способ разведки нефтяных месторождений разведка буром
 - Во время бурения извлекают керн
 - ▶ Видно, как залегают пласты породы
 - Позволяют обнаружить породы-коллекторы, оценить их емкостные и фильтрационные свойства
- Керн цилиндрический монолит горной породы, получаемый путём кольцевого разрушения забоя скважин при бурении

Рис.: Пример керна

Введение (2)

- Фотографии керна в ультрафиолетовом свете
 - Позволяют выделить в разрезе нефтенасыщенные участки
 - Позволяют выделить текстурные характеристики, связанные с особенностями условий осадконакопления пород

Рис.: Фотографии керна в ультрафиолетовом свете. Неравномерное желтое свечение – неравномерно нефтенасыщенный песчаник.

Проблема

- Информация о керне описывается послойно: один слой один тип породы
- ▶ Можно размечать изображения керна с большей точностью
 - Более точные модели пластов

Цели

- Получение описания керна на основе выборки фотографий
 - ▶ Тип породы с точностью до 20 см.
 - ▶ Карбонатность с точностью до 10 см.
 - Нефтенасыщенность с точностью до 10 см.
 - Разрушенность с точностью до 5 см.
- Написание удобной для пользователя обёртки над полученным решением для последующего использования

Задачи

- Произвести разведочный анализ предоставленных данных
- Ознакомиться с возможными решениями
- Реализовать решения и найти лучшие
- Сравнить результаты с уже имеющимися у заказчика
- ▶ Создать оболочку для удобного использования решения

Исходные данные

- Фотографии керна
- Те же самые фотографии керна, но в ультрафиолетовом освещении

Рис.: Пример из исходных данных. Слева — фото керна, справа — фото того же керна, но в УФ.

Исходные данные (2)

- Таблица с описанием каждой фотографии
- Необходимо предсказывать:
 - Rock (тип породы)
 - Carbonate (карбонатность)
 - Ruin (разрушенность)
 - Saturation (нефтенасыщенность)

	0	1
ld	1000000	1000001
PhotoTop	0	0
PhotoDown	1	1
Rock	песчаник	песчаник
Carbonate	не карбонатный	не карбонатный
Ruin	не разрушен	не разрушен
Saturation	нефтенасыщенные	нефтенасыщенные

Таблица: Пример из таблицы исходных данных. Предоставлена информация о первых двух записях — один и тот же керн, обычная фотография и фотография в УФ.

Анализ данных

- ► Поля **PhotoUp** и **PhotoDown** означают начало и конец данной фотографии в данном образце керна
- PhotoUp=0 и PhotoDown=1 ⇒ длина керна на фотографии 1 метр
- ▶ В категории **Rock** очень много значений, которые имеют малое количество экземпляров в сравнении с другими категориями ⇒ выбросим их после согласования с заказчиком

тип породы	количество экземпляров		
песчаник	2482		
аргиллит	1220		
алевролит	1138		
переслой	686		

Таблица: Распределение категории "тип породы".

Анализ подходов

- Классификация изображений
- Распознавание образов на изображениях
- Сегментация изображений

Анализ подходов (2)

- Задача классификации определяем входное изображение в один из классов
- Методы машинного обучения
 - Выделяем признаки с помощью алгоритмов
 - Гистограмма направленных градиентов
 - Метод Виолы Джонса
 - Используем техники классификации
 - SVM
- Методы глубокого обучения
 - ▶ Свёрточные нейронные сети
- Лучшие решения свёрточные нейронные сети

Анализ подходов (3)

- Задача распознавания образов определяем на фотографии границы объектов известных классов
- То же, что и классификация, только с помощью алгоритмов сужаем область, в которой находится объект
- Для более точного распознавания подаём на вход не только фотографию с отмеченной категорией, но и область, в которой находится данный объект

Анализ подходов (4)

- Сегментация изображений это процесс присвоения таких меток каждому пикселю изображения, что пиксели с одинаковыми метками имеют общие визуальные характеристики
- Для достижения большей точности некоторые алгоритмы помимо фотографии принимают изображение с размеченными по категориям пикселями

Рис.: Пример работы сегментационного алгоритма.

Решение

- Будем решать задачу классификации
- Подготовим данные
- Выберем алгоритм
- Сравним результаты

Подготовка данных

- В каждой категории классификации количество экземпляров не сбалансировано ⇒ применяем oversampling (увеличение количества экземпляров в недостающих классах путём их копирования)
 - Алгоритмы не учитывают перевес одних классов над другими в количестве элементов
- ► Категории должны быть определены с фиксированной точностью ⇒ на вход поступает фотография керна высотой, к примеру, 1 метр, она разделяется на 5 фотографий керна длиной 20 сантиметров каждая
- ▶ Подготовленные подобным образом фотографии будут подаваться на вход ниже описанным алгоритмам

Выбор алгоритмов

- Свёрточная нейронная сеть.
- ▶ Feature extraction на основе свёрточной нейронной сети + kNN

Свёрточная нейронная сеть

- Имеются данные двух типов обычные фотографии и фотографии в ультрафиолетовом свете
- Будем использовать предобученные модели
- Возможные решения:
 - Отдельно обучать алгоритмы на классификацию обычных фотографий и фотографий в УФ. Объединять их выводы.
 - Имея в сумме 6 каналов цвета из двух трёхканальных фотографий, можно обучать алгоритмы выборочно по 3-м каналам
 - Обучать $C_6^3 = 20$ алгоритмов на каждую тройку каналов. Объединять их выводы

Свёрточная нейронная сеть (2)

- Рассмотрим первый подход
- Протестируем и сравним точность предобученных архитектур.
- Преобразуем наши изображения до формата входных данных обученных сетей

data type	model	epochs	val acc	roc auc
non-UV	VGG16	3	0.75	0.93
non-UV	ResNet50	60	0.69	0.85
non-UV	DenseNet121	221	0.6	0.7
non-UV	Xception	34	0.62	0.74
UV	VGG16	11	0.72	0.88
UV	ResNet50	71	0.62	0.77
UV	DenseNet121	154	0.52	0.64
UV	Xception	60	0.49	0.55

Таблица: Результаты использования предобученных архитектур на примере классификации типа породы.

Свёрточная нейронная сеть (3)

- ▶ Тор-1 ассигасу вышла 0.75
- Неплохо, учитывая, что мы используем только половину информации
- Данный подход может дать ещё большую точность, если эту модель совместить с моделью для классификации по УФ фотографиям

Заключение

- Что было сделано в рамках данной работы
 - Изучена предметная область
 - Провёдены изучение и подготовка данных
 - Провёден разбор возможных решений
 - Реализовано одно решение
- Что планируется сделать
 - Улучшить реализованное решение
 - Реализовать метрическую классификацию
 - Реализовать распознавание и сегментацию
 - Сравнить результаты между собой
 - Обернуть решение в удобный интерфейс