Alguns teoremas e definições

Emmy Nöether

Definição 1. Dada uma variedade M, denominada variedade configuracional, e uma função $L:TM \to \mathbb{R}$, denominada lagrangiana, o par (M,L) é dito sistema lagrangiano.

Definição 2. Dado um sistema lagrangiano (M,L), uma curva suave γ : $[a,b] \to M$ é dita movimento físico se $\dot{\gamma}$ é extremo do funcional de ação S associado a L, dado por

$$S[\dot{\gamma}] = \int_a^b L(\dot{\gamma}(t))dt$$

Teorema 1. Seja $\gamma:[a,b] \to M$ movimento físico do sistema lagrangiano (M,L) e $q^i\dot{q}^i$ sistema de coordenadas local de TM num aberto $\pi^{-1}(U)$, com U vizinhança de $\gamma(t') \in M$. Então, para todo t tal que $\gamma(t) \in U$, valem as equações de Euler-Lagrange

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}^{i}}(\dot{\gamma}(t)) = \frac{\partial L}{\partial q^{i}}(\dot{\gamma}(t))$$

Definição 3. Dado um sistema lagrangiano (M, L) uma família de difeomorfismos $\phi: (-\epsilon, \epsilon) \times M \to M$ suave é dita simetria contínua de (M, L) se preserva L, isto é, se, sendo $\phi_s: M \to M$ definido por $\phi_s(p) = \phi(s, p)$, ϕ_s preservar L para todo $s \in (-\epsilon, \epsilon)$.

Toda simetria contínua ϕ de um sistema define um campo vetorial $W: M \to TM$ que leva $q \mapsto \frac{\partial \phi}{\partial s}(0,p)$. O campo W(p) nada mais é do que o vetor tangente em p à curva gerada pela ação de ϕ sobre p, isto é, se $\psi_p: (-\epsilon, \epsilon) \to M$ é curva que leva $s \mapsto \phi(s,p), W(p) = \psi_p'(0)$. Temos então o

Teorema 2 (Nöether). Se o sistema (M,L) admite uma simetria contínua $\phi: (-\epsilon, \epsilon) \times M \to M$ e $\gamma: J \subset \mathbb{R} \to M$ é movimento físico então a função $I: J \to \mathbb{R}$ dada por

$$I(t) = \lim_{h \to 0} \frac{L(\dot{\gamma}(t) + hW_{\gamma}(t)) - L(\dot{\gamma}(t))}{h} \tag{1}$$

é constante, onde W_{γ} denota a restrição do campo W à curva γ (i.e., $W_{\gamma}(t) = W \circ \gamma(t)$). I é denominada carga conservada associada à simetria ϕ .

Demonstração. A demonstração é apenas uma aplicação simples da regra da cadeia, e a deixamos a cargo do leitor. $\hfill\Box$