

Cryptography using Matrix Code Equivalence.

A post-quantum cryptographic group action?

Krijn Reijnders (joint work with Simona Samardjiska and Monika Trimoska) Radboud University, Nijmegen

CBCrypto, May 30th, 2022

Today's topics

► Matrix Code Equivalence (MCE):

Given two *k*-dimensional codes \mathcal{C} and \mathcal{D} of $m \times n$ matrices over a finite field \mathbb{F}_q , find, if it exists, an isometry μ mapping \mathcal{C} to \mathcal{D} .

Today's topics

- ► Matrix Code Equivalence (MCE):
 - **Given** two *k*-dimensional codes \mathcal{C} and \mathcal{D} of $m \times n$ matrices over a finite field \mathbb{F}_q , find, if it exists, an isometry μ mapping \mathcal{C} to \mathcal{D} .
- **▶** Cryptographic group actions
 - **Group action** based on a cryptographically hard problem.
 - **Great primitive** if computing the group action is efficient.

Today's topics

► Matrix Code Equivalence (MCE):

Given two *k*-dimensional codes \mathcal{C} and \mathcal{D} of $m \times n$ matrices over a finite field \mathbb{F}_q , find, if it exists, an isometry μ mapping \mathcal{C} to \mathcal{D} .

► Cryptographic group actions

Group action based on a cryptographically hard problem.

Great primitive if computing the group action is efficient.

- ► In this talk:
 - The hardness of MCE
 - MCE as cryptographic group actions

Matrix Code Equivalence (MCE)

Matrix code C: a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathsf{A},\mathsf{B}) = \mathsf{Rank}(\mathsf{A}-\mathsf{B})$$

Matrix code C: a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(A, B) = Rank(A - B)$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \to \mathcal{D}$ such that for all $C \in \mathcal{C}$,

$$\mathsf{Rank}\,\mathsf{C}=\mathsf{Rank}\,\mu(\mathsf{C})$$

Matrix code C: a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(A,B) = Rank(A - B)$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \to \mathcal{D}$ such that for all $C \in \mathcal{C}$,

$$\mathsf{Rank}\,\mathsf{C}=\mathsf{Rank}\,\mu(\mathsf{C})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n, m, C, D):

Input: Two *k*-dimensional matrix codes $\mathcal{C}, \mathcal{D} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$

Question: Find – if any – an isometry $\mu:\mathcal{C}\to\mathcal{D}.$

Matrix code C: a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(A, B) = Rank(A - B)$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \to \mathcal{D}$ such that for all $C \in \mathcal{C}$,

$$\mathsf{Rank}\,\mathsf{C}=\mathsf{Rank}\,\mu(\mathsf{C})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n, m, C, D):

Input: Two *k*-dimensional matrix codes $\mathcal{C}, \mathcal{D} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$

Question: Find – if any – an isometry $\mu: \mathcal{C} \to \mathcal{D}$.

Known: Any isometry $\mu: \mathcal{C} \to \mathcal{D}$ can be written, for some $A \in GL_m(q)$, $B \in GL_n(q)$, as

$$\mathsf{C} \mapsto \mathsf{ACB} \in \mathcal{D}$$

$$\mu:\mathsf{C}\mapsto\mathsf{ACB}\in\mathcal{D},\quad\mathsf{with}\ \mathsf{A}\in\mathsf{GL}_m(q)\ \mathsf{and}\ \mathsf{B}\in\mathsf{GL}_n(q)$$

lacktriangledown when $A=\operatorname{Id}_m$, or $B=\operatorname{Id}_n$, finding μ is easy (MCRE)

$$\mu:\mathsf{C}\mapsto\mathsf{ACB}\in\mathcal{D},\quad\mathsf{with}\ \mathsf{A}\in\mathsf{GL}_{\mathit{m}}(\mathit{q})\ \mathsf{and}\ \mathsf{B}\in\mathsf{GL}_{\mathit{n}}(\mathit{q})$$

- ▶ when $A = Id_m$, or $B = Id_n$, finding μ is easy (MCRE)
- lacktriangleright code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE

$$\mu:\mathsf{C}\mapsto\mathsf{ACB}\in\mathcal{D},\quad\mathsf{with}\;\mathsf{A}\in\mathsf{GL}_{\mathit{m}}(\mathit{q})\;\mathsf{and}\;\mathsf{B}\in\mathsf{GL}_{\mathit{n}}(\mathit{q})$$

- ▶ when $A = Id_m$, or $B = Id_n$, finding μ is easy (MCRE)
- ightharpoonup code equivalence for \mathbb{F}_{a^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

$$\mu:\mathsf{C}\mapsto\mathsf{ACB}\in\mathcal{D},\quad\mathsf{with}\;\mathsf{A}\in\mathsf{GL}_{\mathit{m}}(\mathit{q})\;\mathsf{and}\;\mathsf{B}\in\mathsf{GL}_{\mathit{n}}(\mathit{q})$$

- ▶ when $A = Id_m$, or $B = Id_n$, finding μ is easy (MCRE)
- ightharpoonup code equivalence for \mathbb{F}_{a^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

$$\mu:\mathsf{C}\mapsto\mathsf{ACB}\in\mathcal{D},\quad\mathsf{with}\ \mathsf{A}\in\mathsf{GL}_{\mathit{m}}(\mathit{q})\ \mathsf{and}\ \mathsf{B}\in\mathsf{GL}_{\mathit{n}}(\mathit{q})$$

- ▶ when $A = Id_m$, or $B = Id_n$, finding μ is easy (MCRE)
- ightharpoonup code equivalence for \mathbb{F}_{a^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

What is QMLE?

▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- \triangleright most interesting when each p_s is at most degree 2

$$p_s(x_1,\ldots,x_N) = \sum_i \gamma_{ij}^{(s)} x_i x_j + \sum_i \beta_i^{(s)} x_i + \alpha^{(s)}, \qquad \alpha^{(s)}, \beta_i^{(s)}, \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- \triangleright most interesting when each p_s is at most degree 2 and homogeneous

$$p_s(x_1,\ldots,x_N) = \sum_{ij} \gamma_{ij}^{(s)} x_i x_j \qquad \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- \triangleright most interesting when each p_s is at most degree 2 and homogeneous

$$p_s(x_1,\ldots,x_N) = \sum \gamma_{ij}^{(s)} x_i x_j$$
 $\gamma_{ij}^{(s)} \in \mathbb{F}_q$

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE($N, k, \mathcal{F}, \mathcal{P}$):

Input: Two *k*-tuples of quadratic maps

$$\mathcal{F} = (f_1, f_2, \dots, f_k), \ \mathcal{P} = (p_1, p_2, \dots, p_k) \in \mathbb{F}_q[x_1, \dots, x_N]^k$$

Question: Find – if any – $S \in GL_N(q)$, $T \in GL_k(q)$ such that

$$\mathcal{P}(x) = \mathcal{F}(xS) \cdot T$$

$$p_{s} = \sum \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ & & \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{P^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

$$p_{s} = \sum \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ & & \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{P^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

so with $x = (x_1, ..., x_N)$, we get $p_s(x) = xP^{(s)}x^T$

$$p_{s} = \sum_{ij} \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ & & \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{P^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

so with
$$x = (x_1, ..., x_N)$$
, we get $p_s(x) = xP^{(s)}x^T$
so $\mathcal{P} = (p_1, ..., p_k)$ can be seen as matrix code $\tilde{\mathcal{P}} = \langle P^{(1)}, ..., P^{(k)} \rangle$

$$p_{s} = \sum \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ & & \\ & & \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{P^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

so with
$$x = (x_1, ..., x_N)$$
, we get $p_s(x) = xP^{(s)}x^T$
so $\mathcal{P} = (p_1, ..., p_k)$ can be seen as matrix code $\tilde{\mathcal{P}} = \langle P^{(1)}, ..., P^{(k)} \rangle$

Main idea

turn QMLE-instance $\mathcal{P}(x) = \mathcal{F}(xS) \cdot T$ into MCE-instance $\tilde{\mathcal{F}} \to \tilde{\mathcal{P}} : F^{(s)} \mapsto AF^{(s)}B$ and vice versa!

▶ Quadratic Maps Linear Equivalence (QMLE) problem is well-known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)

- ▶ Quadratic Maps Linear Equivalence (QMLE) problem is well-known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)
- ▶ Main result of our work: MCE is equivalent to QMLE

- ▶ Quadratic Maps Linear Equivalence (QMLE) problem is well-known equivalence problem from multivariate crypto (instance of Isomorphism of Polynomials)
- Main result of our work: MCE is equivalent to QMLE
- ▶ Gives **improved upper bound** to complexity of solving MCE (w.l.o.g. assume $m \leq n$)
 - solvable in $\mathcal{O}^*(q^{2/3(m+n)})$ time, when $k \leqslant n+m$ can be improved to $\mathcal{O}^*(q^m)$
 - previous upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE

Code equivalence:

a cryptographic group action?

$$\mu: \mathcal{C} \to \mathcal{D}$$
 $C \mapsto ACB$

lacksquare μ can be seen as element $(\mathsf{A},\mathsf{B})\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$

$$\mu: \mathcal{C} \to \mathcal{D}$$
 $\mathsf{C} \mapsto \mathsf{ACB}$

- ▶ μ can be seen as element $(A,B) \in GL_m(q) \times GL_n(q)$
- lacksquare μ acts on k-dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$

$$\mu: \mathcal{C} \to \mathcal{D}$$
 $\mathsf{C} \mapsto \mathsf{ACB}$

- lacksquare μ can be seen as element $(A,B)\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$
- \blacktriangleright μ acts on k-dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ▶ hence, $GL_m(q) \times GL_n(q)$ acts on k-dimensional matrix codes $\mathcal{C} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.

$$\mu: \mathcal{C} \to \mathcal{D}$$
 $\mathsf{C} \mapsto \mathsf{ACB}$

- lacksquare μ can be seen as element $(A,B)\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$
- \blacktriangleright μ acts on k-dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ▶ hence, $GL_m(q) \times GL_n(q)$ acts on k-dimensional matrix codes $C \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.
- ▶ Our analysis: this group action seems **cryptographically hard**

$$\mu: \mathcal{C} \to \mathcal{D}$$
 $\mathsf{C} \mapsto \mathsf{ACB}$

- lacksquare μ can be seen as element $(A,B)\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$
- \blacktriangleright μ acts on k-dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ▶ hence, $GL_m(q) \times GL_n(q)$ acts on k-dimensional matrix codes $C \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.
- Our analysis: this group action seems cryptographically hard
- ► So: Let's use it as a primitive!

Building crypto from group actions

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , find (if any) an element g s.t. $x_2 = g \cdot x_1$

Building crypto from group actions

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , find (if any) an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

9

Building crypto from group actions

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , find (if any) an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

- **▶** Zero-Knowledge Interactive Proof of knowledge
 - Zero-Knowledgness
 - soundness
 - can be used as identification scheme (IDS)

Building crypto from group actions

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , find (if any) an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

- **▶** Zero-Knowledge Interactive Proof of knowledge
 - Zero-Knowledgness
 - soundness
 - can be used as identification scheme (IDS)
- ▶ Digital Signature via Fiat-Shamir transform
 - F-S is a common strategy for PQ signatures
 - ▶ Dilithium, MQDSS, Picnic in NIST competition
 - From cryptographic group actions
 - ▶ Patarin's signature, LESS-FM, CSIDH, SeaSign . . .

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Let g be an element s.t. $x_1 = g \cdot x_0$.

Advertising MCE as a cryptographic primitive

(1) MCE is "easy to understand"

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!
- (4) (mathematically very interesting part of coding theory!)

Thank you for listening!