EECS 114: Engineering Data Structures and Algorithms Lecture 8

Instructor: Ryan Rusich

E-mail: rusichr@uci.edu

Office: EH 2204

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Dictionary ADT

- Supports search, insert, and delete from a set S.
- Set is a collection of distinguishable objects called members or elements.
- $S = \{1, 2, 3, 4\}$
 - \circ 4 is in S, 5 is not
 - o Operations: intersection, union, difference
 - Laws: Empty set, idempotent, commutative, associative, distributive, absorption, De Morgan's
- Examples, BSTs and Hash Tables
 - BSTs are sorted sets, Hash Tables are not

Hash Tables

Fast Operations

- BST performs searches, inserts, and removes in a remarkable amount of time
 - o Log 1,000,000 ≈ 20
 - o Log 1,000,000,000 ≈ 30
- Sometimes not fast enough
 - o 911 call search by telephone number
 - Air traffic control search by flight number
 - Webpage retrievals

Faster Operations

 What if we could design a ADT that can provide search, insert, and remove on average O(1) time

Hash Function

- Address calculator performs hashing using a hash function
 - Hash function is user defined
 - Hash table is typically an array
 - o Each element maps into an array position
 - Operates in constant or near constant time
 - Perfect hash function maps each item to a unique table location referred to as "perfect hashing"

Hash Table

- Components:
 - Hash function h that maps keys of a given type to integers in a fixed interval [0, m-1]
 - Example:

$$h(k) = k \mod m$$

- Can have hash functions for strings, numbers
- Comparison function
 - Tells us whether two keys are equivalent
- Hash Table T: An array of size m

Example

- We design a hash table for storing items where a phone number is a tendigit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function h(x) = last four digits of x

Hash Functions

• A hash function is usually specified as the composition of two functions:

Hash code map:

 h_1 : keys \rightarrow integers

Compression map:

 c_2 : integers $\rightarrow [0, N-1]$

• The hash code map is applied first, and the compression map is applied next on the result, i.e.,

$$h(x) = c_{\gamma}(h_1(x))$$

Hash Functions

- Direct addressing storing items in an array that is the size of the largest key
 - o 300 million social security numbers, 9 digits
 - Wastes space if the number of items is small

Hash Functions

- Good hash function
 - Table size close to the number of items
 - 1 slot for each item
 - Good distribution of items
 - Ideally perfect distribution
 - Easy to compute
 - Speed
 - Ensure any two distinct items get different mappings

Perfect Hashing

- Perfect hashing no two items hash to the same location
- Impossible to give a unique mapping to an infinite number of items stored in a fixed size array
- Function should attempt to distribute items uniformly

Collision Resolution

- Collisions occur when different elements are mapped to the same cell
- Separate Chaining: let each cell in the table point to a linked list of elements that map there

 Chaining is simple, but requires additional memory outside the table

Separate Chaining

```
void insertChainedHash ( itemtype item )
            int hval = h(item)
            Node* head = hashTable[hval]
            insert ( head, item )
                                                  insert ( head, item )
int hval = h(item)
```

Separate Chaining

• In class exercise - hash the following values: 6, 45, 754, 34, 4, 66

into a table of size 10, using hash function: h(key) = key% SIZE

Use push back to insert into the chain

Separate Chaining

Hash Tables – Separate Chaining

- n = number of elements stored in the hash table
- m = size of the hash table
- $\alpha = n/m$ (load factor) average number of items stored in a chain

Separate Chaining Performance

- Worst case
 - All n keys map to the same location creating list of length n
 - Search is $\Theta(n)$, plus time to compute hash function
 - No better than using a linked list
- Average case
 - Depends on how uniformly hash function h distributes set of keys among m slots in table
 - Simple Uniform Hashing each key is equally likely to map to any location in m, independent of where any other key has already hashed
 - Search $\Theta(1+\alpha)$, under assumption of Simple Uniform Hashing

Hashing Methods for Strings

- Use ASCII values of characters
- Method 1
 - Hash on ASCII value of the first character
 - Clumping on particular characters and some may be empty
- Method 2
 - Hash on ASCII values of characters added up
 - If table size is large (i.e. 10,007), then does not take advantage of all slots
 - All keys are string of less than 8 characters
 - ASCII chars have integer value 1-127
 - 127*8 = 1016
 - 1,016 / 10,007 = 0.10152893

Hashing Methods for Strings

Method 3

- Look at the first 3 characters
- $\circ str[0] + str[1]*X + str[2]*X*X$
- o Good for random characters and large table sizes

• Method 4

- o Same as method 3 but with all characters
- Calculation more expensive than method 3.

Polynomial Accumulation

• Partition the bits of the key into a sequence of components of fixed length (8,16, or 32 bits)

$$a_0 a_1 ... a_{n-1}$$

• Evaluate the polynomial

$$p(x)=a_0+a_1x+a_2x^2+...+a_{n-1}x^{n-1}$$

at fixed value x

Use Horner's rule for polynomial time evaluation

$$p_0(x) = a_{n-1}$$

 $p_i(x) = a_{n-i-1} + xp_{i-1}(x)$

Open Address Hashing

- All items are stored in the hash table itself
- If a collision occurs, use probing to try another cell until an empty cell is found
- Techniques for computing probe sequence
 - Linear probing
 - Quadratic probing
 - Double hashing
- Load factor $\alpha = (n/m)$ is always ≤ 1
 - \circ n = number of items in hash table
 - \circ m = size of the hash table

Open Address Hashing Collision Resolution

• Linear probing

$$h(k, i) = (h'(k) + i) \bmod m$$

• Quadratic probing

$$h(k, i) = (h'(k) + i^2) \bmod m$$

Double hashing

$$h(k, i) = (h_1(k) + i h_2(k)) \mod m$$

Linear Probing

- $h(k, i) = (h'(k) + i) \mod m$
- Initial probe goes to T[h'(k)]
- i = 0, 1, 2, ..., m-1
- On collisions probe:
 - T[h'(k)+1], T[h'(k)+2],..., T[m-1]
 - Circular-array, wrap around
 - T[0], T[1], ..., T[h'(k)-1]
- Primary clustering long runs of occupied cells increase average search time

Linear Probing

keys: 13, 15, 24, 6, 20

$$h(key, i) = (h'(key) + i) \%$$
 size
 $h'(key) = key \%$ size

$$((13 \% 7) + 0) \% 7 = 6$$

 $((15 \% 7) + 0) \% 7 = 1$
 $((24 \% 7) + 0) \% 7 = 3$
 $((6 \% 7) + 0) \% 7 = 6 - COLLISION$
 $((6 \% 7) + 1) \% 7 = 0 - PROBE*$
 $((20 \% 7) + 0) \% 7 = 6 - COLLISION$
 $((20 \% 7) + 1) \% 7 = 0 - PROBE$
 $((20 \% 7) + 2) \% 7 = 1 - PROBE$

((20 % 7) + 3) % 7 = 2 - PROBE*

Linear Probing

- As long as the table is large enough, a free cell will always be found
- Even if the table is relatively empty, it may take many probes
- Primary clustering
 - Results from clumping due to linear probing
 - Long chains of occupied slots fill up
 - o Causes an increase in average search time
- Deletions require extra management
 - Items deleted may have caused collisions prior
 - Deleted items open up slots in hash table to store new entries

Primary Clustering

• In class exercise - hash the following values using linear probing into a hash table of size 25

keys: 0, 25, 50, 75, 100

Primary Clustering

$$((0\%25) + 0)\%25 = 0$$

 $((25\%25) + 0)\%25 = 0$ - COLLISION
 $((25\%25) + 1)\%25 = 1$ - PROBE
 $((50\%25) + 0)\%25 = 0$ - COLLISION
 $((50\%25) + 1)\%25 = 1$ - PROBE
 $((50\%25) + 2)\%25 = 2$ - PROBE
 $((75\%25) + 0)\%25 = 0$ - COLLISION
 $((75\%25) + 1)\%25 = 1$ - PROBE
 $((75\%25) + 2)\%25 = 2$ - PROBE
 $((75\%25) + 2)\%25 = 2$ - PROBE
 $((75\%25) + 3)\%25 = 3$ - PROBE
 $((100\%25) + 0)\%25 = 0$ - COLLISION
 $((100\%25) + 1)\%25 = 1$ - PROBE
 $((100\%25) + 2)\%25 = 2$ - PROBE
 $((100\%25) + 3)\%25 = 3$ - PROBE
 $((100\%25) + 3)\%25 = 3$ - PROBE
 $((100\%25) + 4)\%25 = 4$ - PROBE

- $h(k, i) = (h'(k) + i^2) \mod m$
- Initial probe goes to T[h'(k)]
- Next probe $T[h'(k)+1^2]$, $T[h'(k)+2^2]$, $T[h'(k)+3^2]$, ...
- **Secondary clustering** Two keys with same initial probe position, will have same probe sequence.

If $h(k_1, 0) == h(k_2, 0)$ then $h(k_1, i) == h(k_2, i)$

```
((0\%25) + 0^2)\%25 = 0
((25\%25) + 0^2)\%25 = 0 - COLLISION
    ((25\%25) + 1^2)\%25 = 1 - PROBE
((50\%25) + 0^2)\%25 = 0 - COLLISION
    ((50\%25) + 1^2)\%25 = 1 - PROBE
    ((50\%25) + 2^2)\%25 = 4 - PROBE
((75\%25) + 0^2)\%25 = 0 - COLLISION
     ((75\%25) + 1^2)\%25 = 1 - PROBE
     ((75\%25) + 2^2)\%25 = 4 - PROBE
    ((75\%25) + 3^2)\%25 = 9 - PROBE
((100\%25) + 0^2)\%25 = 0 - COLLISION
    ((100\%25) + 1^2)\%25 = 1 - PROBE
    ((100\%25) + 2^2)\%25 = 4 - PROBE
    ((100\%25) + 3^2)\%25 = 9 - PROBE
    ((100\%25) + 4^2)\%25 = 16 - PROBE
```

• In class exercise - hash the following values in the order shown into a table of size 7 using quadratic probing 0, 6, 7, 3, 14, 13

$$((0\%7) + 0^2)\%7 = 0$$

 $((6\%7) + 0^2)\%7 = 6$
 $((7\%7) + 0^2)\%7 = 0$ - COLLISION
 $((7\%7) + 1^2)\%7 = 1$ - PROBE
 $((3\%7) + 0^2)\%7 = 3$
 $((14\%7) + 0^2)\%7 = 0$ - COLLISION
 $((14\%7) + 1^2)\%7 = 1$ - PROBE
 $((14\%7) + 2^2)\%7 = 4$ - PROBE
 $((13\%7) + 0^2)\%7 = 6$ - COLLISION
 $((13\%7) + 1^2)\%7 = 0$ - PROBE
 $((13\%7) + 2^2)\%7 = 3$ - PROBE
 $((13\%7) + 3^2)\%7 = 1$ - PROBE
 $((13\%7) + 3^2)\%7 = 1$ - PROBE
 $((13\%7) + 5^2)\%7 = 3$ - PROBE
 $((13\%7) + 6^2)\%7 = 0$ - PROBE
 $((13\%7) + 7^2)\%7 = 6$ - PROBE
and so on...

Double Hashing

- Have a hash function that produces a series of values and place item in first available slot
- $(i + j h'(k)) \mod m$ for j=0,1,...m-1 where m is prime
- i is the value of the original hash function
- Secondary hash function h'(k) can't have zero values
- Table size m must be prime to allow probing of all cells

Double Hashing

- $h(k, i) = (h_1(k) + i h_2(k)) \mod m$
- Initial probe goes to $T[h_1(k)]$
- Successive probe positions offset from previous position by amount $h_2(k)$, mod m
- Value $h_2(k)$ must be relatively prime to hash-table size m for all cells to be probed
- Choose m to be prime number and h₂ to always produces positive integer < m
 OR
- Make m power of 2 and h_2 to produce only odd numbers only

Double Hashing

Attempt to insert 14...

$$h_1(k) = (k \text{ mod } 13)$$

 $h_2(k) = (1 + k \text{ mod } 11)$

Resizing Hash Tables

- Open Address If the table becomes too full, insertions can begin to take a long time or be denied
- Threshold ≈ 70% full
- Double the table size
- Rehash the keys into new table
- De-allocate old table if necessary
- Rehashing takes O(n)

Resizing Hash Tables

- Separate Chaining Resize table when linked lists begin to get long
- Rebuild linked list of key/value pairs for the new table
- De-allocate old table if necessary
- Rehashing takes O(n)

Performance

- Worst case: everything falls into the same bin
- Searches, removals take O(n) time
- Insertions may also take O(n) time
- Load factor alpha=n/m affects performance
- Can show that expected number of probes is 1/(1-alpha) (for hashtables that store all items in array)
- Expected time is O(1)

Universal Hash Functions

- Idea hash functions that produce a uniform flat distribution across the array
- Formally, for $0 \le i, j \le M-1$, $Pr(h(i)=h(j)) \le 1/N$
- Choose p as a prime between M and 2M.
- Randomly select 0 < a < p and $0 \le b < p$, and define $h(k) = (ak + b \mod p) \mod N$