Лабораторная работа №2.1.3. Определение $\frac{C_p}{C_v}$ по скорости звука в газе

Александр Романов Б01-107

1 Введение

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) опре- деление показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; тепло- изолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

2 Работа

2.1 Установка 1

2.1.1 Скорость звука в воздухе

Закачаем в первую установку воздух и будем плавно менять длину трубы, записывая значения этой длины, на которых произойдёт резонанс. Измерения проведём для 4 разных значений частоты. Результаты сведём в таблицу:

Воздух						
частота, kHz	3.00	3.58	4	5		
удлинение 1, мм	0	0	0	0		
удлинение 2, мм	56	49	43	35		
удлинение 3, мм	113	97	85	69		
удлинение 4, мм		145	128	106		
удлинение 5, мм		193	171	138		

По измеренны данным построим график удлинения трубы от номера последоготельного резонанса:

Рис. 1: График $L_{k+n}-L_n$ от k для воздуха

Отсюда по угловым коэффициентам получим значения длин полуволны:

частота, kHz	3.0	3.58	4.0	5.0
$\frac{\lambda}{2}$, MM	56.5 ± 0.2	48.2 ± 0.1	42.7 ± 0.1	34.7 ± 1.5

Согласно с формулой $c = \lambda \nu$ найдём значение скорости звука в воздухе:

	частота, kHz	3.0	3.58	4.0	5.0
Ì	$c, \frac{M}{c}$	339 ± 0.6	345 ± 0.4	342 ± 0.4	347 ± 0 .

Эти значения довольно точно совпадают с табличным ($c=340\frac{\rm M}{c}$). Что позволяет говорить о неплохой точности нашего метода. А самое близкое к табличному значение получилось при частоте $\nu=3.0$ kHz ($c=339\frac{\rm M}{c}$)

2.1.2 Скорость звука в CO_2

Проведём аналогичные измерения, заполнив трубу CO_2 . Результаты сведём в таблицу:

Воздух						
частота, kHz	1.0	2,03	2,53	3,05	3,53	
удлинение 1, мм	135	140	175	195	168	
удлинение 2, мм	0	70	114	148	123	
удлинение 3, мм		0	57	90	83	
удлинение 4, мм			0	45	41	
удлинение 5, мм				0	0	

По эти данным построи график:

Рис. 2: График $L_{k+n}-L_n$ от k для CO_2

Отсюда по угловым коэффициентам получим значения длин полуволны:

частота, kHz	1.0	2.0	2.5	3.1	3.5
$\frac{\lambda}{2}$, MM	135 ± 0	70 ± 0	58.2 ± 0.5	49.3 ± 1	41.8 ± 0.3

Согласно с формулой $c=\lambda \nu$ найдём значение скорости звука в воздухе:

частота, kHz	1.0	2.0	2.5	3.0	3.5
$c, \frac{M}{a}$	270 ± 0	280 ± 0	291 ± 1.25	296 ± 3.1	293 ± 1.1

Эти значения также достаточно точно совпадают с табличными ($c=269\frac{\rm M}{c}$). Наиболее точное значение снова выщло при наименьшей частоте ($c=270\frac{\rm M}{c}$ при $\nu=1.0~{\rm kHz}$)

2.2 Установка 2

Буем измерять скорость звука в трубе постоянной длины. Плавно увеличивая частоту генератора получим ряд последовательных резонансных значений частоты, отмечая момент резонанса. Результаты сведём в таблицу:

установка 2						
Т, К	297	308	315	323		
резонанс 1, kHz	1,23	1,01	1,02	1,03		
резонанс 2, kHz	1,48	1,26	1,27	1,29		
резонанс 3, kHz	1,73	1,51	1,53	1,54		
резонанс 4, kHz	1,97	1,76	1,78	1,8		
резонанс 5, kHz	2,22	2,02	2,03			

На основе этих данных построим график $\nu_{k+n} - \nu_n$ от k:

Рис. 3: График $f_{k+n}-f_n$ от k для воздуха

Зная, что длина трубы в экспериментальной установке была равна 700 мм и вспомнив формулу:

$$f_{k+n} - f_n = \frac{c}{2L}k$$

вычислим скорости звука для каждого значения температуры:

Τ,	K	297	308	315	323
c,	$\frac{M}{C}$	$345 \pm 1 \cdot 10^{-3}$	$352 \pm 1 \cdot 10^{-3}$	$354 \pm 1 \cdot 10^{-3}$	$358 \pm 1 \cdot 10^{-3}$

Мы видим, что значения хорошо совпадают с теми, что были получены в первом эксперименте, и отмечаем, что скорость звука растётт с ростом температуры.

2.3 Нахождение $\gamma = \frac{C_p}{C_v}$

Вычислим отношение $\gamma = \frac{C_p}{C_v}$ по формуле:

$$\gamma = \frac{\mu}{RT}c^2$$

Взяв за скорость звука $c=(343\pm5.6)\frac{\text{м}}{c}$ из первого эксперимента, принимая $\mu_{\text{возд}}=29\frac{\text{г}}{\text{моль}}$, а температуру в комнате за 293 К, получим:

$$\gamma_{\text{возд}} = 1.40 \pm 5.7 \cdot 10^{-4}$$

Что близко к табличному значению ($\frac{7}{5}=1.4$) Для углекислого газа же, приняв $c=(286\pm13.4)\frac{\rm M}{c}$ получим значение:

$$\gamma_{CO_2} = 1.47 \pm 3.2 \cdot 10^{-3}$$

Что близко к табличному значению ($\gamma_{CO_2} = 1.30$)

Выводы 3

- 1. Итак, в нашей работе мы вычислили скорости звука в воде и углекислом газе. Они в пределах погрешности совпали с табличными, что говорит о хорошей точности нашего метода
- 2. Измерив скорость звука при разных значениях температуры мы выяснили, что она растёт с увеличением температуры. Этот результат соответствует действительности
- 3. Мы использовали полученные знания о скорости звука в воздухе и углекислом газе для вычисления коэффициента $\gamma = \frac{C_p}{C_v}$. Коэффициенты неплохо совпали с табличными, но в случае углекислого газа всё-таки отличаются больше чем на погрешность.