

Compiler Design (KCS-502)

3rd year (Semester – V)

Session – 2020 - 21

Unit – II

Notes – 3

Anil Singh Asst. Prof. CSE Dept. UCEM, Prayagraj

FIRST and FOLLOW

 The construction of a predictive parser is aided by two functions associated with a grammar G.

 These functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G, whenever possible.

- We define a function FIRST(α), where α is in (V U Σ)*, as follows:
 - FIRST(α) is the set ofterminal symbols that are first symbols appearing at R.H.S. in derivation of α .
 - If α = XYZ, then FIRST(α) is computed as
 - FIRST(α) = FIRST(XYZ)
 = {X}, if X is terminal
 otherwise
 - FIRST(α) = FIRST(X), if X does not derive to an empty string i.e., if FIRST(X) does not contain €

otherwise

- If FIRST(X) contains E, then
 - FIRST(α) = FIRST(XYZ) = FIRST(X) {€} U FIRST(YZ)
 and FIRST(YZ) is computed as follows:
 - FIRST(YZ) = {Y}, if Y is terminal otherwise

= FIRST(Y), if Y does not derive to an empty string

otherwise

= $FIRST(Y) - \{E\} U FIRST(Z)$

Example:

Consider a grammar

 $S \rightarrow ACB|CbB|Ba$

 $A \rightarrow da \mid BC$

 $B \rightarrow g \mid E$

 $C \rightarrow f \mid E$

Solution:

```
FIRST(S) = FIRST(ACB) U FIRST(CbB) U FIRST(Ba)
FIRST(A) = FIRST(da) U FIRST(BC)
FIRST(B) = FIRST(g) \cup FIRST(E) = \{g, E\}
FIRST(C) = FIRST(f) \cup FIRST(E) = \{f, E\}
Now, FIRST(BC) = FIRST(B) - \{E\} \cup FIRST(C)
                  = \{g, \in\} - \{\in\} \cup \{f, \in\}
                  = \{g\} \cup \{f, \in\}
                  = \{g,f,\in\}
and FIRST(da) = \{d\}
Therefore, FIRST(A) = FIRST(da) U FIRST(BC)
                      = \{d\} \cup \{g,f,E\}
                      = \{d,g,f,E\}
```

```
Now, FIRST(ACB) = FIRST(A) - \{E\} U FIRST(CB)
= \{d,g,f,E\} - \{E\} U FIRST(CB)
```

and FIRST(CB) = FIRST(C) –
$$\{E\}$$
 U FIRST(B)
= $\{f,E\}$ – $\{E\}$ U $\{g,E\}$
= $\{f,g,E\}$

Therefore, FIRST(ACB) =
$$\{d,g,f\}$$
 U $\{f,g,E\}$
= $\{d,g,f,E\}$

```
Similarly, FIRST(CbB) = FIRST(C) – \{E\} U FIRST(bB)
= \{f, E\} – \{E\} U \{b\}
= \{f, b\}
```

and FIRST(Ba) = FIRST(B) –
$$\{E\}$$
 U FIRST(a)
= $\{g, E\}$ – $\{E\}$ U $\{a\}$
= $\{a,g\}$

Therefore, FIRST(S) =
$$\{d,f,g, \in\} \cup \{f,b\} \cup \{a,g\}$$

= $\{a,b,d,f,g, \in\}$

- We define a function FOLLOW(A), where A is a nonterminal as follows:
 - FOLLOW(A) = set of terminals that immediately follow A in any string occurring on the right side of productions of the grammar.
 - The rules for computing FOLLOW function are as follows:
 - 1) FOLLOW(S) = { \$ } // where S is the starting Non-Terminal
 - 2) If A -> pBq is a production, where p, B and q are any grammar symbols, then everything in FIRST(q) except ε is in FOLLOW(B).
 - 3) If A->pB is a production, then everything in FOLLOW(A) is in FOLLOW(B).
 - 4) If A->pBq is a production and FIRST(q) contains ε , then FOLLOW(B) contains $\{FIRST(q) \varepsilon\}$ U FOLLOW(A)

– <u>Note:</u>

 If FOLLOW(A) can be computed from different productions with different values then union of all FOLLOW(A) from all productions will give FOLLOW(A).

Example 1:

Consider the following grammar

 $S \rightarrow aABb$

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow d \mid \epsilon$

Solution:

```
FIRST(S) = FIRST(aABb) = \{a\}
FIRST(A) = FIRST(c) \cup FIRST(E) = \{c, E\}
FIRST(B) = FIRST(d) \cup FIRST(E) = \{d, E\}
Since S is the start symbol, so place $ in FOLLOW(S). Also S
is not present in R.H.S.,
Therefore, FOLLOW(S) = \{\$\}
           FOLLOW(A) = FIRST(Bb)
                         = FIRST(B) - \{E\} U FIRST(b)
                         = \{d, b\}
      and FOLLOW(B) = FIRST(b) = {b}
```

Example 2:

Production Rules:

 $S \rightarrow ACB | Cbb | Ba$

 $A \rightarrow da \mid BC$

 $B \rightarrow g \mid \epsilon$

 $C \rightarrow h \mid E$

Solution:

FIRST set:

```
FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C) = { d, g, h, b, a, \in}

FIRST(A) = { d } U FIRST(B) = { d, g, h, \in }

FIRST(B) = { g, \in }

FIRST(C) = { h, \in }
```

FOLLOW Set:

```
FOLLOW(S) = { $ }
FOLLOW(A) = { h, g, $ }
FOLLOW(B) = { a, $, h, g }
FOLLOW(C) = { b, g, $, h }
```

Example 3:

Consider the following grammar

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' | \in$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \in$
 $F \rightarrow (E) | id$

Find the FIRST and FOLLOW functions for the above grammar.

Solution:

FIRST set:

FIRST(E) = $\{(, id)\}$ FIRST(E') = $\{+, \in\}$ FIRST(T) = $\{(, id)\}$ FIRST(T') = $\{*, \in\}$ FIRST(F) = $\{(, id)\}$

FOLLOW set:

FOLLOW(E) = {), \$} FOLLOW(E') = {), \$} FOLLOW(T) = {+, }, \$} FOLLOW(T') = {+, }, \$} FOLLOW(F) = {*, +, }, \$}