Тема. Степінь з натуральним показником. Властивості степеню з натуральним показником

<u>Мета.</u> Повторити поняття степеню з натуральним показником та ознайомитися з його властивостями, навчитися застосовувати властивості степеню до спрощення виразів

Пригадайте

- Що називають степенем числа?
- Що називають основою, а що показником степеню?
- Чому дорівнює нульовий степінь числа, перший степінь?
- Як називають другий, третій степінь числа?

Ознайомтеся з інформацією

Розгляньмо добуток кількох однакових множників, кожен з яких дорівнює a:

$$\underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ множників}}$$

Такий запис досить громіздкий і незручний. Існує більш зручний спосіб записати добуток, усі множники якого рівні.

Наприклад, добуток семи множників, кожен з яких дорівнює 4, записують так:

$$\underbrace{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}_{7 \text{ множників}} = 4^7$$

Вираз 4^7 називають **степенем числа 4**, множник, який повторюється, у нашому випадку число 4, — **основою степеня**, а число 7, яке показує кількість множників, — **показником степеня**. Вираз 4^7 можна читати «чотири в сьомому степені» або «сьомий степінь числа чотири».

Зверніть увагу, що показник степеня вказує на кількість множників, а отже, є натуральним числом, більшим за 1.

Означення

Степенем числа a з натуральним показником n, більшим за 1, називають добуток n множників, кожний з яких дорівнює a.

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ множників}}, n > 1.$$

Другий степінь числа a називають квадратом числа a. Третій степінь числа a називають кубом числа a.

$$a^2$$
 — «квадрат числа a »

$$a^3$$
 — «куб числа a »

$$a^1 = a$$

$$a^0 = 1$$

Обчислення степеня числа ще називають **піднесенням до степеня**. Піднесення до степеня — це п'ята арифметична дія. Черговість її виконання визначається **правилом:** якщо в числовий вираз входить степінь, то спочатку виконується піднесення до степеня, а після цього — інші дії.

Детальніше зупинімося на тому, як визначити знак степеня з натуральним показником:

- 1) якщо a > 0, то a^n це добуток n додатних чисел, а отже, теж додатне число: $a^n > 0$.
- 2) якщо a=0, то $0^n=0$. Будь-який натуральний степінь числа 0 дорівнює нулю.
- 3) якщо a < 0, то можливі два випадки. Результат залежить від того, яким є показник — парним чи непарним. Наприклад:

$$(-2)^4 = \underbrace{(-2) \cdot (-2) \cdot (-2) \cdot (-2)}_{\text{парна кількість множників}} > 0$$

$$(-2)^5 = \underbrace{(-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)}_{\text{непарна кількість множників}} < 0$$

Отже, якщо a < 0 і n — парне, то $a^n > 0$; якщо a < 0 і n — непарне, то $a^n < 0$.

Висновок: Степінь від'ємного числа з парним показником є додатним числом, степінь від'ємного числа з непарним показником є від'ємним числом.

Розгляньмо добуток двох степенів з однаковими основами.

$$a^3 \cdot a^5 = \underbrace{a \cdot a \cdot a}_{_{3 \text{ множника}}} \cdot \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{_{5 \text{ множника}}} = \underbrace{a \cdot a \cdot \dots \cdot a}_{_{8 \text{ множника}}} = a^8$$
Отже, $a^3 \cdot a^5 = a^{3+5} = a^8$.

Далі — аналогічний приклад.

$$a^3 \cdot a^5 = \underbrace{a \cdot a}_{\text{2 множника}} \cdot \underbrace{a \cdot a \cdot a}_{\text{3 множника}} = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{\text{5 множників}} = a^5$$

Отже.
$$a^2 \cdot a^3 = a^{2+3} = a^5$$
.

Логічним буде припустити, що для будь-яких натуральних чисел m і n виконується рівність: $a^n \cdot a^m = a^{n+m}$, де n і m — довільні натуральні числа.

Дійсно, існує властивість, яка має назву основна властивість степеня.

Властивість 1

Для будь-якого числа a й довільних натуральних чисел m і n виконується рівність $a^n \cdot a^m = a^{n+m}$.

Правило множення степенів:

під час множення степенів з однаковими основами основу залишають тією самою, а показники степенів додають.

Властивість 2

Для будь-якого числа $a \neq 0$ і довільних натуральних чисел m і n, таких, що m < n, виконується рівність $a^n : a^m = a^{n-m}$.

Правило ділення степенів:

під час ділення степенів з однаковими основами основу залишають тією самою, а від показника степеня діленого віднімають показник степеня дільника.

Властивість 3

Для будь-якого числа a та будь-яких натуральних чисел m і n є справедливою рівність $(a^n)^m = a^{n+m}$.

Наслідком цієї властивості є правило:

підносячи степінь до степеня, основу залишають тією самою, а показники перемножують.

Властивість 4

Для будь яких чисел a і b та будь-якого натурального числа n є справедливою рівність $(ab)^n = a^n b^n$.

Наслідком з цієї властивості є правило:

підносячи добуток до степеня, кожний множник підносять до степеня й отримані результати перемножують.

Завдання

Усні вправи

Завдання 1

Подати у вигляді степеня: 1) bbbb; 2) $17 \cdot 17 \cdot 17$; 3) $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$.

Розв'язання

- 1) $bbbb = b^4$;
- 2) $17 \cdot 17 \cdot 17 = 17^3$;
- 3) $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$.

Відповідь: b⁴; 17³; 10⁵.

Завдання 2

Виконати піднесення до степеня: 1) 2^5 ; 2) 0^4 ; 3) $(-3)^3$.

Розв'язання

- 1) $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$;
- 2) $0^4 = 0 \cdot 0 \cdot 0 \cdot 0 = 0$;
- 3) $(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27$.

Відповідь: 32; 0; –27.

Завдання 3

Порівняти з нулем значення виразу: 1) $(-3,7)^3$; 2) $(-2,15)^6$; 3) $-(-7)^5$.

Розв'язання

- 1) $(-3,7)^3 < 0$ (показник 3 непарне число);
- 2) $(-2,15)^6 > 0$ (показник 6 парне число)
- 3) $-(-7)^5 > 0$ (даний вираз є протилежним виразу $(-7)^5$, а $(-7)^5 < 0$)

Завдання 4

Подайте добуток у вигляді степеня: 1) $12^3 \cdot 12^7$; 2) $2^5 \cdot 2^6 \cdot 2^8$; 3) $y^3yy^7y^2$.

Розв'язання

Для розв'язання цих прикладів застосуймо правило множення степенів.

1)
$$12^3 \cdot 12^7 = 12^{3+7} = 12^{10}$$

2)
$$2^5 \cdot 2^6 \cdot 2^8 = 2^{5+6+8} = 2^{19}$$

3)
$$y^3yy^7y^2 = y^{3+1+7+2} = y^{13}$$

Відповідь: 1210; 219; у13.

Письмові вправи

Завдання 5

Знайдіть значення виразу $\left(-\frac{3}{4}\right)^{10}:\left(-\frac{3}{4}\right)^{7}.$

Розв'язання

$$\left(-\frac{3}{4}\right)^{10}: \left(-\frac{3}{4}\right)^7 = \left(-\frac{3}{4}\right)^{10-7} = \left(-\frac{3}{4}\right)^3 = -\frac{3}{4} \cdot \left(-\frac{3}{4}\right) \cdot \left(-\frac{3}{4}\right) = -\frac{27}{64}$$

Відповідь:
$$-\frac{27}{64}$$
.

Завдання 6

Обчисліть, використовуючи властивості степенів: $243:3^4\cdot 9$.

Розв'язання

Представмо числа 243 і 9 як степінь числа 3:

$$243:3^{4}\cdot 9=3^{5}:3^{4}\cdot 3^{2}=3^{5-4+2}=3^{3}=27.$$

Відповідь: 27.

Допоміжний матеріал

Під час розв'язання вправ буде доцільним користуватись таблицею степенів чисел 2 і 3:

n	1	2	3	4	5	6	7	8	9	10
2 ⁿ	2	4	8	16	32	64	128	256	512	1024
3n	3	9	27	81	243	729	2187	6561	19683	59049

Пригадайте

- Що називають степенем числа?
- Які властивості степенів ви знаєте?

Домашне завдання

• Прочитайте в підручнику §5,6

Виконайте письмово завдання

Завдання 7

Обчисліть значення виразу, використовуючи властивості степенів та таблицю степенів чисел 2 і 3:

1)
$$2^3 \cdot 2^7$$
; 2) 3^6 : 3; 3) $3 \cdot 3^3 \cdot 3^4$; 4) 2^{12} : 2^4 .

Завдання 8

Спростіть вираз:

1)
$$(-x)^3 \cdot x^2$$
; 2) $-z^7$: z^6 ; 3) $(-b) \cdot b^2 \cdot (-b)^3$.

Фото виконаної роботи потрібно надіслати вчителю на HUMAN або на електронну пошту <u>nataliartemiuk.55@gmail.com</u>