Домашняя Работа №4 по Дискретной Математике Цалапов Александр Михайлович Группа 191-322

Вариант - 27

Преподаватели: Набебин А.А.,

Будылина Е.А.

Московский Политех 2020

7.27

1-1----0-010101

 $f0 = -x-y-z-w \ V -x-y-zw \ V \ x-yzw \ V \ xy-zw \ V \ xyzw$

N	xyzw	f	f0	f1	-f	h0	h1
0	0000	1	1	1	0	0	0
1	0001	-	0	1	-	0	1
2	0010	1	1	1	0	0	0
3	0011	-	0	1	-	0	1
4	0100	-	0	1	-	0	1
5	0101	-	0	1	-	0	1
6	0110	-	0	1	-	0	1
7	0111	-	0	1	-	0	1
8	1000	0	0	0	1	1	1
9	1001	-	0	1	-	0	1
10	1010	0	0	0	1	1	1
11	1011	1	1	1	0	0	0
12	1100	0	0	0	1	1	1
13	1101	1	1	1	0	0	0
14	1110	0	0	0	1	1	1
15	1111	1	1	1	0	0	0

$$f1 = (-x y z w) (-x y -z w) (-x -y z w) (-x-y-z w) =$$

для умножения группируем скобки 1 и 2, 3 и 4

$$(-x y w) (-x -y w) =$$

Умножим скобки 1 и 2

$$-x y w V -x -y w =$$

-x v w

Сокращенная ДНФ f1(x, y, z, w) = -x v w

N	ПИ	-x y z w	-x y –z w	-x –y z w	-x -y -z w
1	-X	1	1	1	1
2	W	1	1	1	1

4. Строим решеточный полином по столбцам матрицы покрытий

 $E = 1 \vee 2$

5. Минимальные и тупиковые ДНФ

g = -x V w

|| Минимализация функции f в классе КНФ

Для этого проведем минимализацию функции -f в классе ДНФ. Пусть h0 и h1 есть доопределения нулями и единицами соответственно функции -f

1. Строим СДНФ для доопределения нулями h0 функции -f. h0(x, y, z, w) = (x - y - z - w) (x - y z - w) (x y - z - w) (x y z - w)

2. Сокращенная ДНФ для *h1* (Строится по СКНФ для h1)

$$h1 = (x y z w) (x y -z w) (-x y -z -w) (-x -y z -w) (-x -y -z -w) =$$
 для умножения группируем 1 и 2, 3 и 4

 $[(x \lor xy \lor x-z \lor xw) \lor (xy \lor y \lor y-z \lor yw) \lor (xz \lor yz \lor zw) \lor (xw \lor yw \lor -zw \lor w)] \&$

(-x - y - w) (-x - y - z - w) =

Поглощение (меньшее x, y, w поглощает большее)

 $(x \lor y \lor w) (-x \lor -y \lor -w) (-x -y -z -w)$

Сокращенная ДНФ для $h1 = (x \ y \ w) (-x -y -w) (-x-z-w)$

3. Матрица покрытий конситуент единицы в СДНФ для h1 с помощью простых импликант в сокращенной ДНФ для h1

N	ПИ	xyzw	xy-zw	-x y –z –w	-x -y z -w	-x -y -z -w
1	хуw	+	+			
2	-x -y -w				+	+
3	-x -z -w			+		+

4. Решеточный полином

E = 123 (23) = 23

5. Тупиковые и минимальные ДНФ

$$g = x y w V -x -y -w V -x -z -w$$

6. МДНФ МКНФ

$$G = x y w V -x -y -w V -x -z -w$$