

Signali i sustavi

Auditorne vježbe 4.

Zadatak 1. Potrebno je projektirati automat koji broji riječi u tekstu

- Automat slijedno obrađuje tekst, a svaki znak može biti slovo
- ili razmak
 Početno stanje je S, pa brojač uvećamo pri prijelazu u w (početak riječi)

isaplha(ch)

Zadatak 2. Potrebno je projektirati automat koji broji riječi u HTML dokumentu

 Automat je proširenje prethodnog jer je potrebno dodatno prepoznati HTML kod koji se nalazi unutar znakova < i >

Linearnost bezmemorijskih kontinuiranih sustava

Definicija

- Sustav y = f(x) je linearan ako je: $f(ax_1 + bx_2) = a f(x_1) + b f(x_2), \forall a, b, x_1, x_2 \in \mathbb{R}$
- Sustav $y = f(x_1, x_2)$ s više ulaza je linearan ako je: $f(ax_{11} + bx_{12}, ax_{21} + bx_{22}) =$ $a f(x_{11}, x_{21}) + b f(x_{12}, x_{22})$

Linearnost bezmemorijskih kontinuiranih sustava

- Ako je svaki funkcijski blok sustava linearan i sustav je linearan, tada kažemo da je sustav operacijski i strukturno linearan.
- Obrat ne vrijedi!
- Ako je sustav linearan ne mora biti sastavljen od linearnih funkcijskih blokova.
- Za takav sustav kažemo da je operacijski linearan.

Zadatak 3. Ispitajte linearnost ZESOI zadanog sustava

$$f(t) = 2t$$

- Funkcija sustava je y = 2x
- $f(ax_1 + bx_2) = 2(ax_1 + bx_2)$ $= 2 ax_1 + 2bx_2$ $= a f(x_1) + b f(x_2)$
- Sustav je linearan operacijski i strukturno.

Zadatak 4. Ispitajte linearnost zadanog sustava

 $f(ax_{11} + bx_{12}, ax_{21} + bx_{22}) = |(ax_{11} + bx_{12})(ax_{21} + bx_{22})|, (1)$ $a f(x_{11}, x_{21}) + b f(x_{12}, x_{22}) = a|x_{11}x_{21}| + b|x_{12}x_{22}|,$ (1) ≠ (2) Sustav nije linearan ni operacijski niti strukturno.

Zadatak 5. Ispitajte linearnost zadanog sustava

 $y = \log_2(2^{x_1}2^{x_2}) = \log_2 2^{x_1+x_2} = x_1 + x_2$

 $f(ax_{11} + bx_{12}, ax_{21} + bx_{22}) = (ax_{11} + bx_{12}) + (ax_{21} + bx_{22})$ $= a(x_{11} + x_{21}) + b(x_{12} + x_{22}) = af(x_{11}, x_{21}) + bf(x_{12}, x_{22})$ Sustav je linearan i to operacijski, a ne strukturno.

Zadatak 7. Odredi paralelu zadanih zason automata				
Tablica prijelaza je (ulaz (\emptyset,\emptyset) ne pišemo):				
	(0,0)	(0,1)	(1,0)	(1,1)
(A,A)	(A,C),(0,0)	(A,B),(0,0)	(A,C),(0,0)	(A,B),(0,1)
(A,B)	(A,C),(0,0)	(A,C),(0,0)	(A,C),(0,0)	(A,C),(0,0)
(A,C)	(A,C),(0,0)	(A,A),(0,1)	(A,C),(0,0)	(A,A),(0,1)
	$(0,\emptyset)$	(1,Ø)	$(\emptyset,0)$	$(\emptyset,1)$
(A,A)	$(A,A),(0,\emptyset)$	$(A,A),(0,\emptyset)$	$(A,C),(\emptyset,0)$	$(A,B),(\varnothing,0)$
(A,B)	(A,B),(0,Ø)	(A,B),(0,Ø)	$(A,C),(\emptyset,0)$	$(A,C),(\emptyset,0)$
(A,C)	(A,C) , $(0,\emptyset)$	$(A,C),(0,\emptyset)$	$(A,C),(\emptyset,0)$	$(A,A),(\emptyset,1)$

Zadatak 8. Razmotri kaskadu zadanog automata sa samim sobom. Koja stanja nisu dostupna?

- Najprije određujemo petorku koja definira zadani automat
- *Stanja* = {A, B, C}
- *Ulazi* = {0, 1, *odsutan*}
- $Izlazi = \{0, 1, odsutan\}$
- PočetnoStanje = A

22

Zadatak 8. Razmotri kaskadu zadanog automata sa samim sobom. Koja stanja nisu dostupna?

 $(Stanje[n+1],\ Ulaz[n+1]) = FunkcijaPrijelaza(Stanje[n],\ Ulaz[n])$

Stanje	Ulaz = 0	Ulaz = 1
A	(A, 0)	(B, 1)
В	(B, 0)	(C, 0)
С	(C, 0)	(C, 0)

,

Zadatak 8. Razmotri kaskadu zadanog automata sa samim sobom. Koja stanja nisu dostupna?

- Stanja kaskade automata su
- $Stanja = \{A, B, C\} \times \{A, B, C\}$ (9 mogućih stanja)
- PočetnoStanje = (A, A)
- Crtamo novi dijagram ili popunjavamo novu tablicu prijelaza za svih devet mogućih stanja.

24

SS ZESOI Zadatak 8. Razmotri kaskadu zadanog automata sa samim sobom. Koja stanja nisu dostupna?

- Nedostupna stanja su {(A,B), (A,C), (B,A), (B,C), (C,A), (C,C)}
- Umjesto ovakve detaljne analize mogli smo razmišljati ovako
 - 1. početno stanje je (A,A) i automat ostaje tamo dok se na ulazu ne pojavi 1
 - 2. automat prelazi u (B,B) i ostaje tamo sve dok se na ulazu ne pojavi 1
 - 3. automat prelazi u (C,B) i zauvijek ostaje u tom stanju
 - 4. sva preostala stanja su nedostupna

26

9

SIS ZESOI	Zado		edi kaskadu	
 Najprije određujemo petorku koja definira zadani automat Stanja = {1, 2, 3} Ulazi = {h, a, !, odsutan} Izlazi = {1, 0, odsutan} 				
■ P	očetnoSta	anje = 1		
	Stanje	Ulaz = h	Ulaz = a	Ulaz = !
	1	(2,1)	(1,odsutan)	(1,odsutan)
	2	(2,odsutan)	(3,1)	(2,odsutan)
	3	(2,1)	(2,odsutan)	(2,0)

Zadatak 11. Za zadani automat razmotri spoj u povratnu vezu. Postoje li nedostupna stanja?

- Najprije određujemo petorku koja definira zadani automat
- *Stanja* = {A, B, C}
- *Ulazi* = {0, 1, *odsutan*}
- $Izlazi = \{0, 1, odsutan\}$
- PočetnoStanje = B

SJS ZESOI

Zadatak 11. Za zadani automat razmotri spoj u povratnu vezu. Postoje li nedostupna stanja?

 $(Stanje[n+1],\ Ulaz[n+1]) = FunkcijaPrijelaza(Stanje[n],\ Ulaz[n])$

Stanje	Ulaz = 0	Ulaz = 1
A	(B, 1)	(A, 1)
В	(C, 0)	(A, 0)
С	(B, 0)	(C, 0)

Zadatak 11. Za zadani automat razmotri spoj u povratnu vezu. Postoje li nedostupna stanja?

Stanje	Ulaz = djeluj
A	(A, 1)
В	(C, 0)
С	(B, 0)

- ◆ Početno stanje je B, a iz njega je moguće preći samo u stanje C
- ◆ Stanje A nije dostupno

•