Festlager

May 24, 2024

1 Auswahl der Festlager

1.1~ Der Festlager wird hier als Einreihiges Zylinderrollenlager (Kurzzeichen NU 3168 ECMA) ausgewählt.

Quelle: www.skf.com/de/

- 1.1.1 Einreihige Zylinderrollenlager sind für hohe Radiallasten bei hohen Drehzahlen konzipiert.
- 1.1.2 Hohe radiale Tragfähigkeit
- 1.1.3 Reibungsarm
- 1.1.4 Lange Gebrauchsdauer
- 1.1.5 Aufnahme axialer Verschiebungen in beiden Richtungen

1.2 Übersicht

1.2.1 Abmessungen

Merkmal	Wert		
Bohrungsdurchmesser	340 mm		
Außendurchmesser	580 mm		
Breite	190 mm		

1.2.2 Leistung

Merkmal	Wert
Dynamische Tragzahl	3 470 kN
Statische Tragzahl	$5~850~\mathrm{kN}$
Referenzdrehzahl	950 r/min
Grenzdrehzahl	$1600~\mathrm{r/min}$

Quelle:SKF

TB 14-3 Richtwerte für Radial- und Axialfaktoren X, Y bzw. X_0 , Y_0

a) bei dynamisch äquivalenter Beanspruchung

Lagerart		e	$\frac{F_a}{F_r} \le e$		$\frac{F_{\rm a}}{F_{\rm r}} > e$	
			X	Y	X	Y
Rillenkugellager ¹⁾ ein- und zweireihig mit Radialluft normal übliche Passung k5 j5 und J6	$F_{\rm a}/C_0 \\ 0.025 \\ 0.04 \\ 0.07 \\ 0.13 \\ 0.25 \\ 0.50$	0,22 0,24 0,27 0,31 0,37 0,44	1	0	0,56	2,0 1,8 1,6 1,4 1,2 1,0
Schrägkugellager • Reihe 72B, 73B $\alpha = 40^\circ$; Ein Tandem-Anordnung • –; Lagerpaar in O- oder X-A • Reihe 32 B, 33 B $\alpha = 25^\circ$ • Reihe 32, 33 $\alpha = 35^\circ$	nordnung	1,14 1,14 0,68 0,95	1 1 1 1	0 0,55 0,92 0,66	0,35 0,57 0,67 0,6	0,57 0,93 1,41 1,07
Vierpunktlager, möglichst $F_a \ge$ Pendelkugellager	1,2 · F _T	s. TB 14-2	1	s. TB 14-2	0,65	s. TB 14-2
Zylinderrollenlager ²⁾ • Reihe 10, 2, 3 und 4 • Reihe 22, 23		0,2 0,3	1 1	0	0,92 0,92	0,6 0,4
Kegelrollenlager ³⁾		s. TB 14-2	1	0	0,4	s. TB 14-2
Tonnenlager		-	1	9,5	1	9,5
Pendelrollenlager		s. TB 14-2	1	s. TB 14-2	0,67	s. TB 14-2
Axial-Rillenkugellager		-	-	-	0	1
Axial-Pendelrollenlager ⁴⁾		1,82	-	-	1,2	1

Quelle: Roloff/Matek Maschinen elemente

1.2.3 Radialfaktor X und Axialfaktor Y ergeben sich aus TB 14-3a bzw. WLK (Roloff /Matek Maschinenelemente)

1.2.4

$$A_a = F_a = 10 \ KN$$

1.2.5

$$A_r = F_r = 1018.2 \ KN$$

1.2.6 Folgt daraus

$$\frac{F_a}{F_r} = 0.010$$

1.2.7 Da das wir ein Zylinderrollenlager haben (e=0.2) und

$$\frac{F_a}{F_r} = 0.010 < e$$

, wird Radialfaktor $\mathbf{X}=1$ und Axialfaktor $\mathbf{Y}=0$ sein

1.2.8 Äußer Durchmesser

$$D_{a,f} = 580 \ mm$$

1.2.9 Innere Durchmesser

$$D_{i.f} = 340 \ mm$$

1.2.10

$$A_a = N_{max} = 10 \ KN$$

1.2.11

$$A_r = Q_{max} = 1018.2 \ KN$$

1.2.12 Drehzahl bestimmen:

$$n = 20.000 \ min^{-1}$$

- 1.2.13 Die dynamische äquivalente Belastung P ist ein rechnerischer Wert,
- 1.2.14 der in Größe und Richtung konstante Radiallast oder Axiallast, Hier gibt es nur eine Radiallast

$$X = 1$$
 $Y = 0$

Aus dem MEII-Skript 2023

$$P_A = X \cdot A_r + Y \cdot A_a = 1 \cdot 1018.2 + 0 \cdot 10 = 1018.2 \ KN$$

2 Lebensdauerexponent für Rollenlager

- 2.0.1 $C_{r,f} = 3470$ KN dynamische Tragzahlen
- 2.0.2 $C_{0r.f} = 5850$ KN statische Tragzahlen

$$L_{10.h_{d.f}} = \frac{16666}{n} \cdot (\frac{C_{rfl}}{P_A})^P = \frac{16666}{20.000~min^{-1}} \cdot (\frac{3470~KN}{1018.2~KN})^{(3.3)} = 49635.148~hr$$

$$L_{10.h_{s.f}} = \frac{16666}{n} \cdot (\frac{C_{0.r.f}}{P_A})^P = \frac{16666}{20~min^{-1}} \cdot (\frac{5850~N}{1018.2~N})^{(3.3)} = 283059.212~hr$$

- 2.1 Modifizierter Lebensdauer Berechnung:
- 2.1.1 Lebensdauerbeiwert für eine Erlebneswahrscheinlichkeit von 90% , $a_1=1$, damit 90% Überlebenswharscheinlichekit gewähreistet wird (Tabelle von Lagerkatalog). Lebensdauerbeiwert für Standard-WälzlagerStahl: Der Lebensdauerbeiwert ist für normale Lagerwerkstoff mit $a_2=1$ zu Wählen
- 2.2 Bezugsviskosität
- 2.2.1 Bezugsviskosität $v_{1.f}$ bei n=20 $\frac{1}{min}$ wird aus dem Diagramm (Skript MEII 2023 S.32) abgelesen:

$$v_{1.f} = 150 \ \frac{mm^2}{s}$$

4

2.2.2 Und die Betriebsviskosität bei Betriebstemperatur 50 C beträgt:

$$v_f = 110 \ \frac{mm^2}{s}$$

2.2.3 Die Viskositätsverhaltnis ist:

$$k = \frac{v_f}{v_{1.f}} = \frac{110}{150} = 0.733$$

- ### Darasu folgt aus der Tabelle (MEII-Skript 2023 S.31) folgnedes Wert für a_3 =0.9
- 2.2.4 Mit der Annahme von hochste Sauberkeit wird a3-Lebensdauer von dem Diagramm im Lagerkatalog abgelesen

$$L_{3m.s.f} = a_1 \cdot a_2 \cdot a_{3.1} \cdot L_{10h.s.l} = 1 \cdot 1 \cdot 0.9 \cdot 283059.212 = 254753.291 \ hr$$

$$L_{3m.d.f} = a_1 \cdot a_2 \cdot a_{3.1} \cdot L_{10h.d.f} = 1 \cdot 1 \cdot 0.9 \cdot 49635.148 = 44671.633 \ hr$$