Ashutosh Mukherjee

Email: ashutosh.mukherjeecpg@gmail.com Github Page Projects Website

Education

8/2016 - 6/2020	B.Tech in Mechanical Engineering	CGPA: 8.3/10
	Punjab Engineering College, Chandigarh	
4/2014 - 3/2016	High School (10+2)	Percent: 94.4%
	Bhavan Vidyalaya, Chandigarh	
4/2013 - 3/2014	Higher Secondary (10)	CGPA: 10/10
	Bhavan Vidyalaya, Chandigarh	·

Research Experience

Research Associate

September 2020 - Ongoing

Thapar Institute of Engineering and Technology, Patiala, India

Dynamic Modelling and Control Design of Augmentative Lower Extremity Exoskeleton

- Dynamic modelling of a strength augmentation exoskeleton designed by Defence Bio-Engineering and Electro-Medical Laboratory (DEBEL), a branch of Defence Research and Development Organization (DRDO), India
- Validation of the developed kinematic and dynamic models in MSC ADAMS, a multi-body dynamics software
- Development of an optimal control strategy for exoskeleton actuators in order to ensure minimal effort by human wearer.

Professional Experience

Intern, Order Management and Assembly Department

January 2019 - June 2019

- Siemens Ltd., Vadodara, India
 - Developed a solver in C for allocation of jobs (processes) to different machines present in the shop floor in order to optimize the aggregate machining lead times
 - Designed an induction heating apparatus for heating of rotor wheel discs of steam turbines
 - Increased robustness of fixtures for machining of stator guide blade carriers of steam turbines
 - Redesigned and fabricated a machining and blading stand for rotor wheel discs of steam turbines

Other Relevant Experience

Undergraduate Thesis Project

September 2019 - May 2020

- 1. Development of a Test Rig for measuring propeller thrust
 - Built a test stand acting as an alternative to the wind tunnel for measuring the thrust produced by a propeller mounted on it.
 - Implemented Arduino Uno controlled circuits for driving the propeller motor using a brush-less DC motor and capturing and displaying the speed of the propeller using an IR sensor based tachometer.

2. Design and Analysis of a propeller for slow-flying Quad-copters

- Generated and modified propeller designs iteratively based on required flying conditions and propeller thrust using QMIL, a first order propeller design tool
- Used QPROP, a solver for calculating propeller performance to generate propeller efficiency and thrust curves for the designed propellers and reiterated the designing process until a design giving desirable propeller performance was achieved.
- Assisted in second order design validation using computational fluid dynamics (CFD) once the propeller design showed better performance than a market standard propeller.
- Developed a solver acting as an alternative to QPROP in MATLAB for calculating the performance characteristics of a propeller based on Blade Element Momentum Theory.

Relevant Independent Projects

1. Test Rig for measuring vibrations in beams

- Created a flexible multi-body system model of a test rig for measuring the vibrations of beams from harmonic centrifugal excitations due to eccentric masses rotating at high speeds using Hyperworks Motionview, a multi-body dynamics software.
- Carried out sensitivity studies on the amplitude of vibrations of the beams by varying different parameters of the model like eccentricity, beam end conditions and beam geometry

2. Solver development for vibration analysis of a simple car

- Developed a simple car model as a 2 degree of freedom system to analyse its vertical dynamics in the form of bounce and pitch motions using MATLAB and Simulink
- Provided excitations to the model in the form of frequency independent harmonic forces and base excitations in the form of road bumps modelled as waves with constant wavelengths and amplitudes.
- Applied Fast Fourier transforms to analyse the natural frequencies and mode shapes of the system
- ullet Optimized location of force application and amount of damping in the system for minimal excitations

Technical Skills

1. Multi-Body Dynamics	
1. White-Dody Dynamics	• Simulink
• MSC ADAMS	• Arduino Uno
• Hyperworks Motionview	• QMIL, QPROP
2. Finite Element Analysis	• XFOIL
• ANSYS Workbench	• Geometric Dimensioning and
3. Computer Aided Design	Tolerances (GD&T)
• SolidWorks	
• Autodesk Fusion 360	
	 Hyperworks Motionview Finite Element Analysis ANSYS Workbench Computer Aided Design SolidWorks

Additional Relevant Coursework Completed

- 1. RWTHX, edX: Machine Dynamics with MATLAB, RWTH Aachen University
- 2. **DelftX**, edX: Introduction to Aerospace Structures and Materials, TU Delft
- 3. LouvainX, edX: Modelling and Simulation of Multi-Body Systems, UCLouvain