

Start Point

- ~ 0x00: Magic/Header: 4 bytes (Pres)
- ~ 0x04: 4 bytes, little endian offset (0x20). jumps to table offset
- ~ 0x08: byte, group table count. (always set to **08**)
- ~ 0x09: some kind of value?. changes on different RES archives.
- ~ OxOA: 2 bytes checksum?. not sure what to do with it. (but i guess it could be a a MD5 hash due to **libmd5.prx** being used)
- ~ 0x0C: 4 bytes, seems to be stuck at 3, must be a version of that RES archive?
- ~ 0x10: 4 bytes little endian offset, jumps you to where certain chunks of data are stored (related to ToC)
- ~ 0x14->0x1F: lengthy zeroes, 4 bytes each. not really useful. but can be a table offset out of nowhere so keep an eye out.

[Table Offsets] ranging: *0x20-0x5F*

- ~ 0x20: empty usually on some other .res archive, but it represent as ToC offset (`00 15 00 00` -> 0x1500 for example)
- ~ 0x24: empty usually on some other .res archive, but it represent as count for ToC (`03 00 00 00` -> 3 for example)
- rinse and repeat for others like 0x28 as ToC offset and 0x2C as ToC count.
- Table Offsets always uses 16 bytes. be creative when reading them.

- File Offset: a little endian offset. brings you to a area where a offset chunk is stored.
 Size/Compressed Size: defines the size of that area starting
- ~ Size/Compressed Size: defines the size of that area starting with
- File Offset. Size can vary if it's ZLIB compressed or not based on it's header (blz2)
- ~ Name Offset Table: a little endian offset. brings you to a area where the name is located.
- ~ Name Element: a name element (that's how i call it). can vary from 1, 2, 3.
- ~ Zeroes: bunch of zeroes, length of 12 (0xC)

[Table of Contents] (ToC) [32 bytes in size]

- ~ Size (Decompressed): Game's expected decompressed size of that Compressed Size. Value can match with Size if it's not compressed by ZLIB.
- [Identifying External File Data] in 0x940. you see that the 4th byte has `40`. let's call this
- Address Types. If you encounter any of these values, it means that the file source is external. here's the following lists for these values
- ~ 40 (0x4) = package.rdp
- ~ 50 (0x5) = data.rdp
- ~ 60 (0x6) = patch.rdp
- ~ CO (OxC) = Current (no need to go to a external source)
- ~ D0 (0xD) = Current (no need to go to a external source)
- If you encounter any of these. You will need to do multiplications.

000007C0	10 12	00 0	0 01	00	00 (00 20	12	00	00	01	00	00	00	À
000007D0	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
000007E0	40 12	00 C	:0 OF	00	00 (00 80	12	00	00	01	00	00	00	@À€
000007F0	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
00000800	A0 12	00 C	0 01	00	00 (00 B (12	00	00	01	00	00	00	ˡ
00000810	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
00000820	D0 12	00 C	0 01	00	00 (00 E	12	00	00	01	00	00	00	ĐÀà
00000830	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
00000840	00 13	00 C	03	00	00 (00 10	13	00	00	01	00	00	00	À
00000850	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
00000860	30 13	00 0	08 00	00	00 (00 50	13	00	00	01	00	00	00	0ÀP
00000870	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
00000880	80 13	00 0	08 00	00	00 (00 A	13	00	00	01	00	00	00	€À
00000890	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
000008A0	D0 13	00 0	:0 08	00	00 (00 F	13	00	00	01	00	00	00	ÐÀð
000008B0	00 00	00 0	00 00	0.0	00 (00 00	0.0	0.0	0.0	00	0.0	0.0	0.0	
000008C0	00 00	00 0	00 00	00	00 (00 20	14	00	00	01	00	00	00	
000008D0	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
000008E0	40 14	00 C	0 A8	00	00 (00 F(14	00	00	01	00	00	00	@À"ð
000008F0	00 00	00 0	00 00	0.0	00 (00 00	00	00	00	00	00	00	00	
00000900	10 15	00 C	0 12	0.0	00 (00 30	15	00	00	01	00	00	00	À0
00000910	00 00	00 0	00 00	00	00 (00 00	00	00	00	00	00	00	00	
00000920	50 15	00 C	0 02	00	00 (00 60	15	00	00	01	00	00	00	PÀ`
00000930	00 00	00 0	00_00	0.0	00 (00_00	0.0	0.0	0.0	00	0.0	0.0	0.0	
00000940	F5 78	05 4	10 E4	7E	19 (00 70	15	00	00	03	00	00	00	őx.@ä~p
00000950	00 00	00 0	00 00	00	00	00 00	00	00	00	E4	7E	19	00	ä~

Obtaining Absolute Offset (for external files)

- ~ Reassign 0x940's File Offset into Big Endian order, you'll get something like this: "400578F5"/"0x400578F5".
- ~ Remove or Change "4" to "0" and multiply the new offset by 800:
- "400578F5" * "800" = "2BC7A800"/"0x2BC7A800"
- ~ The true/absolute offset is "2BC7A800"

^{*.}rtbl files have this structures but spreads out of nowhere with lengthy paddings keep an eye out.

[Name Tables]

Note: If Name Element is less than three (sometimes it could be 1). it will rely only on Name Offset.

- ~ Name Offset: can be treated as UINT16 or UINT32, this is an offset that jumps you to the File Name.
- ~ Extension Offset: can be treated as UINT16 or UINT32. this offset jumps you to the File Extension.
- ~ Padding?: an offset that jumps you to the zeroes. Very... useless?

```
00 70 09 00 00 73 09
                                                              1...p...s...col.
00000970
                             00 00 95
00000980
                                                              Œ.........NPC.
00000990
          AC 09 00 00 BC 09 00 00 C0
                                                              ¬...4...À...MS 1
000009A0
                                                              06N boxfish.res.
000009B0
000009C0
                                                              Ü...ê...î...MS 0
000009D0
000009E0
                                                              10C white.res...
000009F0
000000A00
                                                              y entry table.tr
00000A10
```

[ZLIB Compression] 0x00: Header 4 bytes. "blz2" 0x04: Compressed file size, 2 bytes. the rest: compressed data.

Padding: adjustment for another file chunk or compressed data

[decompression sample code (python)]

```
def blz_decompress(data, csize, dsize):
  data = BytesIO(data)
 magic = data.read(4)
 if magic != b"blz2":
    raise ValueError("Data is not in BLZ2 format.")
  decom = b""
  if dsize >= OxFFFF:
    size = int.from_bytes(data.read(2), "little")
    ekor = zlib.decompress(data.read(size), -15)
    while data.tell() < csize:
      size = int.from_bytes(data.read(2), "little")
      decom += zlib.decompress(data.read(size), -15)
    return decom + ekor
  else:
    size = int.from_bytes(data.read(2), "little")
    decom = zlib.decompress(data.read(size), -15)
    return decom
```