Resumo da A2 de Cálculo Vetorial

Arthur Rabello Oliveira 23/06/2025

Contents

1.	Revisão da A1	2
	1.1. Integrais de Linha	2
	1.1.1. Integrais de Linha Escalares	
	1.1.2. Integrais de Linha Vetoriais	
	1.1.3. Integral de Linha de um Campo Conservativo	
2.	Integrais de Superfície	
	2.1. Integrais de Superfície Escalares	
	2.2. Integrais de Superfície Vetoriais	
3.	Operadores Diferenciais	2
	Teorema de Green	
5.	Teorema de Stokes	2
	Teorema da Divergência	

1. Revisão da A1

1.1. Integrais de Linha

1.1.1. Integrais de Linha Escalares

Dada $f:\mathbb{R}^n \to \mathbb{R}$ uma função escalar e $\gamma:[a,b] \to \mathbb{R}^n$ uma curva, a integral de f sobre γ é:

$$\int_{\gamma} f dS = \int_{a}^{b} f(\gamma(\varphi)) \cdot \|\gamma'(\varphi)\| d\varphi \tag{1}$$

1.1.2. Integrais de Linha Vetoriais

Se for $F: \mathbb{R}^n \to \mathbb{R}^n$ um campo vetorial:

$$\int_{\gamma} F dS = \int_{a}^{b} F(\gamma(\varphi)) \cdot \gamma'(\varphi) d\varphi \tag{2}$$

1.1.3. Integral de Linha de um Campo Conservativo

2. Integrais de Superfície

- 2.1. Integrais de Superfície Escalares
- 2.2. Integrais de Superfície Vetoriais
- 3. Operadores Diferenciais
- 4. Teorema de Green
- 5. Teorema de Stokes
- 6. Teorema da Divergência