FONDAMENTI DI AUTOMATICA

Federico Mainetti Gambera

18 aprile 2020

Indice

1.1	Domanda
1.2 1.3	Risposta alla domanda (dimostrazione)
1.4	Riassunto e proprietà
Risp	osta sinusoidale (SD LTI a TC, SISO)
2.1	Domanda
2.2	Risposta alla domanda (dimostrazione)
2.3	Generalizzazione della risposta (Teorema fondamentale della risposta in frequenza)
2.4	Definizione di risposta in frequenza
2.5	Esempio
Rap	presentazioni della risposta in frequenza di una funzione di trasferimento
3.1	Diagramma polare
3.2	Diagrammi cartesiani o di Bode
	3.2.1 Diagramma di Bode del modulo
	3.2.2 Diagramma di Bode della fase
3.3	Tracciamento dei diagrammi di Bode (asintotici)

Parte I **Lezioni**

1 Risposta esponenziale (SD LTI a TC, SISO)

1.1 Domanda

Dato il sistema $\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$ sottoposto all'ingresso $u(t) = e^{\lambda t}$ con $t \geq 0$ (o equivalentemente

 $e^{\lambda t}sca(t)$), esiste uno stato iniziale x(0) tale che x(0) e u(t) producono un'uscita $y(t)=Ye^{\lambda t}$, con Y un numero qualunque (non la trasformata) e $t\geq 0$?

In altri termini:

Sottoponiamo un sistema dinamico (di cui non sono note le proprietà sulla sua stabilità) a un ingresso esponenziale ($u(t)=e^{\lambda t}$, che può anche essere amplificato come $u(t)=Ue^{\lambda t}$, ovviamente il ragionamento non cambia). Detto questo sappiamo che un ingresso x(0) produce un movimento libero di y fatto da modi, invece un uscita del tipo $u(t)=e^{\lambda t}$ produce un movimento forzato fatto da modi + un termine $Ye^{\lambda t}$ (con $t\geq 0$ e con Y un numero, non la trasformata). La domanda è se esiste uno x(0) tale che questi modi si elidano e resti solo il termine $Ye^{\lambda t}$.

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases} \longrightarrow u(t) = e^{\lambda t} \longrightarrow \exists x(0) \text{ tale che } \longrightarrow y(t) = Ye^{\lambda t} \ (t \ge 0) ?$$

1.2 Risposta alla domanda (dimostrazione)

Rispondiamo a questa domanda:

Primo passaggio:

Se voglio che $y(t)=Ye^{\lambda t}$, allora anche x(t) dovrà avere la forma $Xe^{\lambda t}$ (con X un numero, non la trasformata), perchè $y(t)=cx(t)+de^{\lambda t}$ e qualunque forma di x(t) che non sia del tipo $e^{\lambda t}$ si "vedrebbe" su y.

Secondo passaggio:

Quindi $x(t) = x(0)e^{\lambda t}$ (di cui noi stiamo proprio cercando x(0)) e di conseguenza $\dot{x}(t) = \lambda x(0)e^{\lambda t}$.

Terzo passaggio:

Sostituisco x(t) e $\dot{x}(t)$ appena espressi nell'equazione di stato, che devono evidentemente soddisfare:

$$\lambda x(0)e^{\lambda t} = Ax(0)e^{\lambda t} + be^{\lambda t}$$

considerando che $e^{\lambda t} \neq 0$

$$\lambda x(0)e^{\lambda t} = Ax(0)e^{\lambda t} + be^{\lambda t}$$
$$\lambda x(0) = Ax(0) + b$$

per cui otteniamo che

$$(\lambda I - A)x(0) = b$$

1.3 Generalizzazione della risposta

Quindi in generale con $u(t)=Ue^{\lambda t}$ (con U un numero qualunque che semplicemente amplifica l'esponenziale), se λ non è autovalore di A, allora esiste uno e uno solo

$$x(0) = (\lambda I - A)^{-1}bU$$

tale che

$$\begin{cases} x(t) = (\lambda I - A)^{-1}bUe^{\lambda t} \\ y(t) = cx(t) + du(t) = [c(\lambda I - A)^{-1}b + d]Ue^{\lambda t} = G(\lambda)u(t) \end{cases}$$

1.4 Riassunto e proprietà

- Proprietà bloccante degli zeri: se $G(\lambda)=0 \implies$ con lo stesso stato iniziale x(0), l'uscita diventa y(t)=0, con $t\geq 0$.
- Se INOLTRE il sistema è asintoticamente stabile, allora qualunque sia lo stato iniziale x(0), l'uscita tenderà a $y(t) \to G(\lambda)u(t)$ per $t \to \infty$.

2 Risposta sinusoidale (SD LTI a TC, SISO)

2.1 Domanda

Dato il sistema $\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$ e l'ingresso $u(t) = Usin(\omega t)$ per $t \geq 0$ (o equivalentemente $u(t) = Usin(\omega t)sca(t)$), esiste un qualche stato iniziale x(0) tale che $y(t) = Ysin(\omega t + \phi)$ per $t \geq 0$?

In altri termini:

[La domanda è molto simile a quella data per la risposta esponenziale] Applicato un ingresso sinusoidale, esiste uno stato di iniziale che faccia elidere fra loro i modi del moto libero e i modi del moto forzato in modo che io veda in uscita solo una sinusoide?

2.2 Risposta alla domanda (dimostrazione)

Per rispondere ci basta ricordare che

$$sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

e che, data la linearità del sistema, vale il principi odi sovrapposizione degli effetti. Quindi applichiamo due volte il risultato ottenuto per la risposta esponenziale e combiniamo i risultati.

Poniamo
$$u_1(t)=e^{j\omega t}$$
 e $u_2(t)=e^{-j\omega t}$, per cui $u(t)=U\frac{u_1(t)-u_2(t)}{2j}$

Iniziamo analizzando $u_1(t)$: se $j\omega$ non è autovalore di A, allora esiste uno e un solo $x_1(0)$ tale che l'uscita ottenuta è

$$y_1(t) = G(j\omega)e^{j\omega t}$$

Per $u_2(t)$: se $-j\omega$ non è autovalore di A, allora esiste uno e un solo $x_2(0)$ tale che l'uscita ottenuta è

$$y_2(t) = G(-j\omega)e^{-j\omega t}$$

Combiniamo ora y_1 e y_2 :

$$\begin{array}{l} u(t) = \frac{U}{2j}(u_1(t) - u_2(t)) \\ x(0) = \frac{U}{2j}(x_1(0) - x_2(0)) \end{array} \Longrightarrow \text{Principio di sovrapposizione degli effetti} \\ \Longrightarrow y(t) = \frac{U}{2j}(y_1(t) - y_2(t))$$

Analiziamo y(t):

$$y(t) = \frac{U}{2j} \left(G(j\omega)e^{j\omega t} - G(-j\omega)e^{-j\omega t} \right)$$

Osserviamo che G(s) è razionale fratta, quindi $G(-j\omega)=\bar{G}(j\omega)$ (complesso coniugato). Quindi se pongo $G(j\omega)=Me^{j\phi}$ (con M modulo e ϕ argomento di $G(j\omega)$) otteniamo $G(-j\omega)=Me^{-j\phi}$.

Allora

$$y(t) = \frac{U}{2j} \left(M e^{j\phi} e^{j\omega t} - M e^{-j\phi} e^{-j\omega t} \right) = M U \frac{e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)}}{2j}$$
$$y(t) = M U \sin(\omega t + \phi)$$

con $M = |G(j\omega)| \in \phi = arg(G(j\omega))$

2.3 Generalizzazione della risposta (Teorema fondamentale della risposta in frequenza)

Dato il sistema dinamico LTI a TC, SISO $\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$, detta G(s) la sua funzione di trasferimento e considerato l'ingresso $u(t) = U sin(\omega t)$ per $t \geq 0$:

- Se $\mp j\omega$ non sono autovalori di A, allora esiste uno e uno solo stato iniziale x(0) tale che $y(t) = |G(j\omega)|Usin(\omega t + arg(G(j\omega)))$ per $t \ge 0$. (Se $\mp j\omega$ sono autovalori di A, allora si verifica un fenomeno di risonanza, che però non è argomento di questo corso).
- Se INOLTRE il sistema è asintoticamente stabile, allora qualunque sia lo stato iniziale, l'uscita tenderà a $y(t) \to |G(j\omega)Usin(\omega t + arg(G(j\omega)))$ per $t \to \infty$

2.4 Definizione di risposta in frequenza

definizione: Data una funzione di trasferimento G(s), la sua restrizione all'asse immaginario positivo J^+ , cioè $G(j\omega)$ con $\omega \geq 0$, si dice **rispsota in frequenza** (RF) di G(s).

2.5 Esempio

es. Dato $G(s)=\frac{1}{1+0,15}$, che è asintoticamente stabile, e u(t)=5sin(20t), a cosa tende $y(t)\to ?$ per $t\to \infty ?$

Siccome il sistema è asintoticamente stabile, allora per il teorema della rispsota in frequenza $y(t) \rightarrow 5|G(j20)|sin(20t + arg(G(j20)))$.

$$G(j20) = \frac{1}{1+2j} \Rightarrow \frac{|G(j20)| = \frac{1}{\sqrt{1+4}} \sim 0,45}{arg(G(j20)) = -arctan(2) \sim -63,5}$$

[il prof ha terminato i conti e ha tracciato un grafico di u(t) e y(t) usando maxima: ci sta mostrando che il modulo |G(j20)| rappresenta la percentuale dell'ampiezza dell'uscita rispetto all'ampiezza dell'ingresso, in questo esempio l'uscita è ampia il 45% dell'ingresso; invece l'argomento arg(G(j20)) rappresenta lo sfasamento del segnale di uscita rispetto al segnale di ingresso, in questo esempio l'uscita è sfasata di 63 gradi (in ritardo) e per capire quanto effettivamente sia uno sfasamento di 63 gradi basta considerare che un periodo del segnale di ingresso sono 360 gradi]

3 Rappresentazioni della risposta in frequenza di una funzione di trasferimento

3.1 Diagramma polare

[immagine dagli appunti del prof]

In un piano immaginario il termine $s=j\omega$ "cammina" lungo l'asse immaginario. Se ora calcoliamo G(s) e lo mostriamo in un secondo piano immaginario, otteniamo una curva $G(j\omega)$ con parametro ω .

Possiamo ora dire che la risposta in frequenza è l'immagine attraverso G dell semiasse immaginario positivo J^+ .

3.2 Diagrammi cartesiani o di Bode

3.2.1 Diagramma di Bode del modulo

[immagine dagli appunti del prof]

Il diagramma di Bode del modulo è un piano cartesiano in cui l'asse delle ascisse è l'asse delle ω e quello delle ordinate è l'asse di $|G(j\omega)|$.

L'asse delle ω è logaritmico, cioè a pari distanza non corrisponde pari differenza, ma pari rapporto logaritmico (in base 10). Inoltre lo zero non viene rappresentato, perchè si trova a $-\infty$, e per questo l'intersezione con l'asse di $|G(j\omega)|$ non viene rappresentato.

L'asse di $|G(j\omega)|$ è, invece, espresso in dB.

Definizione: Rappresentare una quantità in dB significa $x_{dB} = 20log_10|x|$.

Per esempio $100_{dB}=40,\ 0,1_{dB}=-20,\ -0,1_{dB}=-20,\ 1_{dB}=0.$ Notare che la scrittura in dB non distingue il segno, e inoltre che se |x|>1, allora $x_{dB}>0$ e se |x|<1, allora $x_{dB}<0$.

3.2.2 Diagramma di Bode della fase

[immagine dagli appunti del prof]

Il diagramma di Bode della fase è un piano cartesiano in cui l'asse delle ascisse è sempre logaritmico ed è l'asse delle ω , invece l'asse delle ordinate è l'asse di $arq(G(j\omega))$ misurato in gradi.

3.3 Tracciamento dei diagrammi di Bode (asintotici)

Scriviamo la funzione di trasferimento G(s) della cui risposta in frequenza vogliamo i diagrammi di Bode nella forma

$$G(s) = \frac{\mu}{s^g} \cdot \frac{(1+s\tau_1)(1+s\tau_2)\dots}{(1+st_1)(1+st_2)\dots} \cdot \frac{(1+2\frac{\zeta}{\sigma_n}s+\frac{1}{\sigma_n^2}s^2)\dots}{(1+2\frac{\xi}{\omega_n}s+\frac{1}{\omega_n^2}s^2)\dots}$$

In cui:

- prima frazione: g è il **tipo** della funzione di trasferimneto ed è il numero di poli in s=0 meno il numero di zeri in s=0, o, per dirlo in altri termini, il numero di poli (se positivo) o zeri (se negativo) in s=0.
 - Per esempio una funzione di trasferimento di tipo 1 ha un polo nell'origine, una funzione di trasferimento di tipo -1 ha uno zero nell'origine, una funzione di trasferimento di tipo 2 ha due poli nell'origine, una funzione di trasferimento di tipo 0 non ha nè poli nè zeri nell'origine.
- seconda frazione: i vari termini a numeratore del tipo $(1+s\tau_i)$ rendono conto degli zeri reali non nell'origine; invece i vari termini a denominatore del tipo $(1+st_k)$ rendono conto dei poli reali non nell'origine.
- terza frazione: infine ci possono essere coppie di zeri complessi coniugati e coppie di poli complessi coniugati, rappresentate dai termini $(1+2\frac{\zeta}{\sigma_n}s+\frac{1}{\sigma_n^2}s^2)$ (per gli zeri) e $(1+2\frac{\xi}{\omega_n}s+\frac{1}{\omega_n^2}s^2)$ (per i poli).

7

Inoltre il numero μ è detto **guadagno** della funzione di trasferimento, i termini t, τ sono **costanti di tempo** di zeri e poli, ω, σ si dicono **frequenze naturali** (o pulsazioni naturali) e ζ, ξ sono i **fattori di smorzamento**.

Una delle proprietà più particolari è che tutto il termine $\frac{(1+s\tau_1)(1+s\tau_2)\dots}{(1+st_1)(1+st_2)\dots} \cdot \frac{(1+2\frac{\zeta}{\sigma_n}s+\frac{1}{\sigma_n^2}s^2)\dots}{(1+2\frac{\xi}{\omega_n}s+\frac{1}{\omega_n^2}s^2)\dots}$ tende $a\to 1$ per $s\to 0$, quindi $G(s)\sim \frac{\mu}{s^g}$ per $s\to 0$.

es.
$$G(s) = \frac{(s+2)(s^2-3s+2)}{s^3+4s^2+s}$$

Trasformiamola nella forma che vogliamo avere per il diagramma di Bode:

$$G(s) = \frac{2(1+\frac{s}{2})(s-1)(s-2)}{s(s^2+4s+1)} = \frac{2(1+\frac{2}{2})(-1)(1-s)(-2)(1-\frac{s}{2})}{s(s-(-2-\sqrt{3}))(s-(-2+\sqrt{3}))} = \frac{2(-1)(-2)(1+\frac{s}{2})(1-s)(1-\frac{s}{2})}{(-2-\sqrt{3})(-2+\sqrt{3})s(1-\frac{s}{-2-\sqrt{3}})(1-\frac{s}{-2+\sqrt{3}})}$$

in cui
$$\mu = \frac{2(-1)(-2)}{(-2-\sqrt{3})(-2+\sqrt{3})}$$
 e $g=1.$

Quindi ogni funzione di trasferimento razionale fratta si può esprimere come prodotto di termini del tipo

$$\begin{aligned} G_a(s) &= \mu & G_c(s) &= 1 + st \\ G_b(s) &= \frac{1}{s^g} & G_d(s) &= 1 + 2\frac{\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2 \end{aligned}$$

Allora detti G_i i fattori componenti G, Siccome

$$G = \prod G_i \implies \begin{cases} |G| = \prod |G_i| \implies |G|_{dB} = \sum |G_i|_{dB} \\ arg(G) = \sum arg(G_i) \end{cases}$$

Vediamo perciò come tracciare i diagrammi di bode del modulo e della fase (asintotici) di $G_{a,b,c,d}$. Una volta fatto questo sarà semplice combinarli per arrivare al tracciamento definitivo di G.

• $G_a(s) = \mu \to G_a(j\omega) = \mu \to |G_a(j\omega)|_{dB} = 20log_10|\mu| \text{ e } arg(G_a(j\omega)) = \begin{cases} 0 & \mu > 0 \\ -180^o & \mu < 0 \end{cases}$

Il diagramma di bode del modulo è una retta orizzontale (se $|\mu|>1$ è sopra l'asse delle ascisse, se $\mu<1$ è sotto l'asse delle ascisse).

Anche il diagramma di bode della fase è una retta orizzontale che coincide con l'asse delle ascisse se $\mu>0$, altrimenti se $\mu<0$ è posta all'altezza di -180^o . (Il perchè di questi valori lo scopriremo più avanti)

LEZIONE 12 30/03/2020

link clicca qui

•
$$G_b(s) = \frac{1}{s^g} \to G(j\omega) = \frac{1}{(j\omega)^g} \to \left\{ |G_b(j\omega)| = \frac{1}{\omega^g} \to |G_b(j\omega)|_{dB} = -20glog(\omega) \right\}$$

Parte II **Esercitazioni**