

Projeto Tabela Periódica

Estruturas de Informação

O presente projeto envolve a criação de uma biblioteca de classes, respetivos métodos e testes que permitam gerir a informação relativa à tabela periódica.

Fonte: https://en.wikipedia.org/wiki/Periodic table

A informação encontra-se no ficheiro Periodic Table of Elements.csv¹.

Usando apenas a estrutura árvore binária de pesquisa (BST) apresentada nas aulas, desenvolva da forma mais eficiente possível as seguintes funcionalidades:

- 1. Desenvolver a/(s) classe/(s) que permita obter toda a informação relativa a cada um dos elementos da tabela periódica:
 - **a.** Pesquisa de elementos por qualquer um dos seguintes campos: Atomic Number, Element, Symbol ou Atomic Weight.
 - **b.** Pesquisa por intervalo de valores de Atomic Weight. Através de dois valores (mínimo e máximo) passados por parâmetro, devolver o conjunto de elementos com Atomic Weight nesse intervalo

¹ Fonte: https://www.data-explorer.com/content/data/periodic-table-of-elements-csv.zip

Projeto Tabela Periódica

Estruturas de Informação

ordenado por Discoverer e Year of Discovery descendente, juntamente com um sumário do número de elementos devolvidos agrupados por Type e Phase. Por exemplo, Atomic Weight [20, 65] resulta:

Atomic Number	Element	Symbol	Atomic Weight	Phase	Туре	Discoverer	Year of Discovery
17	Chlorine	Cl	35.453	solid	Alkali Metal	Arfvedson	1817
24	Chromium	Cr	51.9961	solid	Alkaline Earth Metal	Black	1755
20	Calcium	Ca	40.078	solid	Alkali Metal	Bunsen and Kirchoff	1861
21	Scandium	Sc	44.955912	solid	Alkali Metal	Bunsen and Kirchoff	1860
25	Manganese	Mn	54.938045	solid	Alkaline Earth Metal	Davy	1808
26	Iron	Fe	55.845	solid	Alkaline Earth Metal	Davy	1808
27	Cobalt	Co	58.933195	solid	Alkaline Earth Metal	Davy	1808
18	Argon	Ar	39.948	solid	Alkali Metal	Davy	1807
19	Potassium	K	39.0983	solid	Alkali Metal	Davy	1807
22	Titanium	Ti	47.867	gas	Alkali Metal	Dorn	1900
16	Sulfur	S	32.065	artificial	Actinide	Ghiorso et al.	1961
15	Phosphorus	Р	30.973762	artificial	Actinide	Ghiorso et al.	1958
14	Silicon	Si	28.0855	artificial	Actinide	Ghiorso et al.	1955
13	Aluminum	Al	26.9815386	artificial	Actinide	Ghiorso et al.	1953
12	Magnesium	Mg	24.305	artificial	Actinide	Ghiorso et al.	1952
29	Copper	Cu	63.546	gas	Halogen	Moissan	1886
28	Nickel	Ni	58.6934	solid	Alkaline Earth Metal	Perey	1939
11	Sodium	Na	22.9897693	artificial	Actinide	Seaborg et al.	1950
10	Neon	Ne	20.1797	artificial	Actinide	Seaborg et al.	1949
23	Vanadium	V	50.9415	solid	Alkaline Earth Metal	Vaulquelin	1798

	artificial	gas	liq	solid	TOTAL
Alkali Metal	0	1	0	5	6
Alkaline Earth Metal	0	0	0	6	6
Actinide	7	0	0	0	7
Halogen	0	1	0	0	1

Projeto Tabela Periódica

Estruturas de Informação

- 2. Observando a configuração electrónica dos elementos (coluna Electron Configuration), verifica-se a existência de repetição de padrões. Por exemplo, a sequência "[Ar] 3d10" é aplicada na configuração electrónica de 8 elementos.
 - a. Recorrendo apenas à estrutura árvore binária de pesquisa (BST), devolva por ordem decrescente as configurações electrónicas com mais do que uma repetição, agrupadas por número de repetições:
 - 32 [[Xe]]
 - 18 [[Ar], [Kr]]
 - 17 [[Xe] 4f14]
 - 9 [[Kr] 4d10, [Rn]]
 - 8 [[Ar] 3d10, [He], [Ne], [Xe] 4f14 5d10]
 - 7 [[Ar] 3d10 4s2, [He] 2s2, [Kr] 4d10 5s2, [Ne] 3s2, [Xe] 4f14 5d10 6s2]
 - 2 [[Ar] 3d5, [Kr] 4d5, [Xe] 4f7]
 - **b.** Construa uma nova BST inserindo por ordem decrescente as **configurações electrónicas** com repetição acima de 2 obtidas na alínea anterior.
 - c. Desenvolva um método que devolva os valores das duas configurações electrónicas mais distantes na árvore e a respectiva distância.

Considere como medida de distância entre as configurações electrónicas, o número de ramos que distam uma da outra.

d. Desenvolva um método que transforme a árvore obtida alínea anterior numa árvore binária completa, inserindo nesta possíveis configurações electrónicas únicas.

Projeto Tabela Periódica

Estruturas de Informação

Normas

- A avaliação do trabalho será feita principalmente em função das classes propostas, nomeadamente em termos da sua conformidade com o Paradigma da Programação por Objetos e eficiência das estruturas de dados usadas nas funcionalidades solicitadas.
- O projeto tem de ser desenvolvido em Java e todas as funcionalidades testadas através de testes unitários usando os ficheiros de teste disponibilizados, usando o fx fornecido.
- O trabalho deverá ser realizado em grupos de dois alunos. É obrigatório o uso de uma ferramenta de controle de versões.
- Trabalhos realizados individualmente não fazem a questão 2d.
- O relatório deverá servir de ferramenta de avaliação posterior à apresentação. Nele devem apresentar
 as classes definidas, análise de complexidade de todas as funcionalidades implementadas e
 melhoramentos possíveis.
- O trabalho deve ser submetido no Moodle até às 24 horas do dia 23 de Dezembro. A partir desta data a nota do trabalho será penalizada 10% por cada dia de atraso e não se aceitam trabalhos após dois dias da data indicada.
- A apresentação/defesa deverá ser agendada com o professor das aulas PL na 1ª semana de janeiro, em horário compatível com o horário LAPR3.