Autoregressive Methods (RNNs/LSTMs/GRUs)

CS229: Machine Learning

Sanmi Koyejo Stanford University, Winter 2024 (Adapted from slides by Matgus Telgarsky and Alexander Schwing)

Goals of this lecture

- Recurrent Neural Nets (RNNs)
- Long short term memory (LSTM)
- Gated recurrent unit (GRU)

Goals of this lecture

- Recurrent Neural Nets (RNNs)
- Long short term memory (LSTM)
- Gated recurrent unit (GRU)

Reading Material

- Course Notes, Section 14.3
- Goodfellow et al.; Deep Learning; Chapter 10

Notation	Usage Lim 1 Um 1 Lum am 1
$h(\cdot)$	Feature function; $\phi(\cdot)$ in the notes
$f(\cdot), F(\cdot)$	Prediction function; $h(\cdot)$ in the notes
$l(\cdot,\cdot)$	Loss function; $J(\cdot)$ in the notes
$oldsymbol{w}, oldsymbol{W}$	Model Parameters, θ in the notes
$oldsymbol{x}^{(i)}, oldsymbol{x}$	Input(s)
$y^{(i)}, y$	Label(s)
\hat{y}	Prediction; o in the notes
α_k	step size in decent methods
λ	Regularization parameter(s); C in the notes
$\sigma(\cdot)$	Activation function, nonlinearity
0	Hadamard product, $\mathbf{a} \circ \mathbf{b}$ is the element-wise product of \mathbf{a} and \mathbf{b}
$h^{(t)}$	Hidden variable(s) / Layer(s) at time/step t

Machine learning with variable length sequences of inputs and outputs.

one to one

Recurrent Neural Nets (RNNs)

Input depends on previous output.

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

Recurrent Neural Nets (RNNs)

Input depends on previous output.

 $h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$ $y^{(t)} = g(h^{(t)})$

Tos

Applications include:

- Natural language processing, speech recognition
- Image processing, video processing

Unrolling the RNN (parameter sharing).

Note that f and g are independent of time

Model Specification.

What are f and g?

Any differentiable function can be used. Why differentiable functions?

Next we will cover examples of:

- Standard recurrent nets.
- LSTM nets.
- GRU nets.

Standard recurrent nets.

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

$$y^{(t)} = g(h^{(t)})$$

$$(t) \subset \mathbb{Z}$$

Specifically:
$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + w_{hh})$$

$$y^{(t)} = \sigma_y(W_{yh}h^{(t)} + w_{yb})$$

- σ_h and σ_y are activation functions (nonlinearities), e.g., tanh, sigmoid, ReLU.
- Thus, RNN is constructed using affine transformations and point-wise non-linearities

- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem
 Same general architecture:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

Hochreiter & Schmidhuber (1997)

- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem
 Same general architecture:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate

- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem
 Same general architecture:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate

- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem
 Same general architecture:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \end{array}$$

- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem
 Same general architecture:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \end{array}$$

- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem
 Same general architecture:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \boldsymbol{w})$$

 $y^{(t)} = g(h^{(t)})$

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)} \circ \sigma_h(c^{(t)}) & \end{array}$$

General structure of hidden state.

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)} \circ \sigma_h(c^{(t)}) & \end{array}$$

Input gate Forget gate New memory cell Final memory cell

 $i^{(t)}, f^{(t)}, o^{(t)}, \tilde{c}^{(t)}$ are standard feedforward blocks

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)} \circ \sigma_h(c^{(t)}) & \end{array}$$

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

• $i^{(t)}$: Does $x^{(t)}$ matter?

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)} \circ \sigma_h(c^{(t)}) & \end{array}$$

Input gate Forget gate New memory cell Final memory cell

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)} \circ \sigma_h(c^{(t)}) & \end{array}$$

Input gate Forget gate New memory cell Final memory cell

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$: How much $c^{(t)}$ should be exposed?

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)} \circ \sigma_h(c^{(t)}) & \end{array}$$

Input gate Forget gate New memory cell Final memory cell

- $i^{(t)}$. Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$: How much $c^{(t)}$ should be exposed?
- $\tilde{c}^{(t)}$: Compute new memory

Putting components together.

 \bullet Long short term memory (LSTM) can be interpreted as a block in a neural net i.e. more complex $h^{(t)}$

Performance similar to LSTM

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Structure of hidden state:

(o denotes Hadamard product)

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Structure of hidden state:

(o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$

Update gate

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Structure of hidden state:

(o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$

$$r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$$

Update gate Reset gate

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Structure of hidden state:

(o denotes Hadamard product)

$$\begin{array}{lll} z^{(t)} & = & \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz}) & \text{Update gate} \\ r^{(t)} & = & \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br}) & \text{Reset gate} \\ \tilde{h}^{(t)} & = & \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh}) & \text{New memory cell} \\ \end{array}$$

Gated recurrent unit (GRU)

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Structure of hidden state:

(o denotes Hadamard product)

$$\begin{array}{lll} z^{(t)} & = & \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz}) & \text{Update gate} \\ r^{(t)} & = & \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br}) & \text{Reset gate} \\ \tilde{h}^{(t)} & = & \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh}) & \text{New memory cell} \\ h^{(t)} & = & (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)} & \text{Hidden state} \\ \end{array}$$

Gated recurrent unit (GRU)

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Structure of hidden state:

(o denotes Hadamard product)

$$\begin{array}{lll} z^{(t)} & = & \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz}) & \text{Update gate} \\ r^{(t)} & = & \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br}) & \text{Reset gate} \\ \tilde{h}^{(t)} & = & \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh}) & \text{New memory cell} \\ h^{(t)} & = & (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)} & \text{Hidden state} \\ \end{array}$$

This can again be interpreted as a block in the computation graph (replaces the hidden state block).

Some intuition.

$$\begin{array}{lll} z^{(t)} & = & \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz}) & \text{Update gate} \\ r^{(t)} & = & \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br}) & \text{Reset gate} \\ \tilde{h}^{(t)} & = & \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh}) & \text{New memory cell} \\ h^{(t)} & = & (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)} & \text{Hidden state} \\ \end{array}$$

Some intuition.

$$\begin{array}{lll} z^{(t)} & = & \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz}) & \text{Update gate} \\ r^{(t)} & = & \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br}) & \text{Reset gate} \\ \tilde{h}^{(t)} & = & \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh}) & \text{New memory cell} \\ h^{(t)} & = & (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)} & \text{Hidden state} \\ \end{array}$$

• $r^{(t)}$: Include $h^{(t-1)}$ in new memory?

Some intuition.

$$\begin{array}{lll} z^{(t)} & = & \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz}) & \text{Update gate} \\ r^{(t)} & = & \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br}) & \text{Reset gate} \\ \tilde{h}^{(t)} & = & \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh}) & \text{New memory cell} \\ h^{(t)} & = & (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)} & \text{Hidden state} \\ \end{array}$$

- $r^{(t)}$: Include $h^{(t-1)}$ in new memory?
- $z^{(t)}$: How much $h^{(t-1)}$ in next state?

Putting components together.

• GRU can be interpreted as a block in a neural net i.e. more complex $h^{(t)}$

Putting components together.

• GRU can be interpreted as a block in a neural net i.e. more complex $h^{(t)}$

Lots of additional variants:

• e.g. Bi-directional LSTMs [Schuster&Paliwal (1997), Graves&Schmidhuber (2005)]

How do we learn the parameters in the network?

How do we learn the parameters in the network?

$$p(y_1, \dots, y_T) = \prod_{i=1}^T p(y_i|y_1, \dots y_{i-1})$$

$$p(y_1) p(y_2|y_1)$$

$$p(y_1) q(y_2|y_1)$$

How do we learn the parameters in the network?

$$p(y_1, \dots, y_T) = \prod_{i=1}^{T} p(y_i|y_1, \dots y_{i-1})$$

The loss function is defined via maximum (log-)likelihood

How do we learn the parameters in the network?

$$p(y_1, \dots, y_T) = \prod_{i=1}^{I} p(y_i|y_1, \dots y_{i-1})$$

The loss function is defined via maximum (log-)likelihood

Relation to structured models?

Useful to think of unrolled model as a feedforward DNN with weight sharing

- Useful to think of unrolled model as a feedforward DNN with weight sharing
- Train using standard backpropagation.

- Useful to think of unrolled model as a feedforward DNN with weight sharing
- Train using standard backpropagation.
- What information do we need to store?

- Useful to think of unrolled model as a feedforward DNN with weight sharing
- Train using standard backpropagation.
- What information do we need to store?

Backpropagation through time (BPTT)

Example: Application to image completion.

Pixel Recurrent Neural Networks

occluded	completions					original
n @	41	e _h	40	*	**	.AL.
9 9		A	1			

Example: Application to image completion.

Pixel Recurrent Neural Networks

- Pick an ordering, vectorize the image as a sequence.
- Image completion as sequence prediction.
- Can also be used for synthesis (How?)

Example: Simple RNN code from Andrej Karpathy

https://gist.github.com/karpathy/d4dee566867f8291f086

Quiz:

• Describe the prediction process for an RNN?

Quiz:

- Describe the prediction process for an RNN?
- Describe the training process for RNNs?

Important topics of this lecture

- Getting to know RNNs and some variants
- Pretraining and some applications of pre-trained models

Important topics of this lecture

- Getting to know RNNs and some variants
- Pretraining and some applications of pre-trained models

What's next:

Decision Trees