NAIL062 V&P Logika: 10. sada příkladů – Rezoluční metoda v PL

Cíle výuky: Po absolvování cvičení student

- rozumí pojmu unifikace, umí provádět Unifikační algoritmus
- zná potřebné pojmy z rezoluční metody v predikátové logice (rezoluční pravidlo, rezolventa, rezoluční důkaz/zamítnutí, rezoluční strom), umí je formálně definovat, uvést příklady, vysvětlit rozdíly oproti výrokové logice,
- umí aplikovat rezoluční metodu k řešení daného problému (slovní úlohy, aj.), provést všechny potřebné kroky (převod do PNF, skolemizace, převod do CNF)
- umí sestrojit rezoluční zamítnutí dané (i nekonečné) CNF formule (existuje-li), a také nakreslit příslušný rezoluční strom, včetně uvedení použitých unifikací
- z rezolučního stromu umí sestrojit nesplnitelnou konjunkci základních instancí axiomů
- zná pojem LI-rezoluce, umí najít LI-zamítnutí dané teorie (existuje-li)
- seznámil se s vybranými pojmy z teorie modelů

Příklady na cvičení

Příklad 1. Každý holič holí všechny, kdo neholí sami sebe. Žádný holič neholí nikoho, kdo holí sám sebe. Formalizujte v predikátové logice a dokažte rezolucí, že: Neexistují žádní holiči.

Příklad 2. Jsou dána následující tvrzení o proběhlém genetickém experimentu:

- (i) Každá ovce byla buď porozena jinou ovcí, nebo naklonována (avšak nikoli oboje zároveň).
- (ii) Žádná naklonovaná ovce neporodila.

Chceme ukázat rezolucí, že pak: (iii) Pokud ovce porodila, byla sama porozena. Konkrétně:

- (a) Vyjádřete sentencemi $\varphi_1, \varphi_2, \varphi_3$ v jazyce $L = \langle P, K \rangle$ bez rovnosti (P je binární, K unární relační symbol, P(x, y) znamená 'ovce x porodila ovci y', K(x) 'ovce x byla naklonována').
- (b) S využitím skolemizace těchto sentencí nebo jejich negací sestrojte množinu klauzulí S (může být ve větším jazyce), která je nesplnitelná, právě když $\{\varphi_1, \varphi_2\} \models \varphi_3$.
- (c) Najděte rezoluční zamítnutí S, nakreslete rezoluční strom s použitými unifikacemi.
- (d) Má S LI-zamítnutí?

Příklad 3. Nechť $T = \{ \neg (\exists x) R(x), (\exists x) (\forall y) (P(x,y) \rightarrow P(y,x)), (\forall x) ((\exists y) (P(x,y) \land P(y,x)) \rightarrow R(x)), (\forall x) (\exists y) P(x,y) \}$ je teorie jazyka $L = \langle P, R \rangle$ bez rovnosti.

- (a) Skolemizací nalezněte k T otevřenou ekvisplnitelnou teorii T'.
- (b) Převedte T' na ekvivalentní teorii S v CNF. Zapište S v množinové reprezentaci.
- (c) Nalezněte rezoluční zamítnutí teorie S. U každého kroku uveďte použitou unifikaci.
- (d) Nalezněte nesplnitelnou konjunkci základních instancí klauzulí z S. Nápověda: využijte unifikace z (c).

Další příklady k procvičení

Příklad 4. Najděte rezoluční zamítnutí:

$$S = \{ \{ P(a,x,f(y)), P(a,z,f(h(b))), \neg Q(y,z) \}, \ \{ \neg Q(h(b),w), H(w,a) \}, \ \{ \neg H(v,a) \}, \ \{ \neg P(a,w,f(h(b))), H(x,a) \}, \ \{ P(a,u,f(h(u))), H(u,a), Q(h(b),b) \} \}$$

Příklad 5. Mějme jazyk $L = \langle <, j, h, s \rangle$ bez rovnosti, kde j, h, q jsou konstantní symboly ('jablka/hrušky/švestky') a x < y vyjadřuje, že "ovoce y je lepší než ovoce x". Víme, že:

- (i) Relace "být lepší" je ostré částečné uspořádání (ireflexivní, asymetrická, tranzitivní).
- (ii) Hrušky jsou lepší než jablka.

1

Dokažte rezolucí, že (iii) Jsou-li švestky lepší než hrušky, nejsou jablka lepší než švestky.

- (a) Tvrzení (i), (ii), (iii) vyjádřete jako otevřené formule v jazyce L.
- (b) Pomocí těchto formulí najděte CNF formuli S, která je nesplnitelná, právě když z (i) a (ii) vyplývá (iii). Napište S v množinové reprezentaci.
- (c) Rezolucí dokažte, že S není splnitelná. Rezoluční zamítnutí znázorněte rezolučním stromem. U každého kroku uveďte použitou unifikaci. Nápověda: stačí čtyři rezoluční kroky.
- (d) Nalezněte konjunkci základních instancí axiomů S, která je nesplnitelná.
- (e) Je S zamítnutelná LI-rezolucí?

Příklad 6. Buď $T = \{\varphi\}$ teorie jazyka $L = \langle U, c \rangle$ s rovností, kde U je unární relační symbol, c konstantní symbol, a axiom φ vyjadřuje "Existuje alespoň 5 prvků, pro které platí U(x)."

- (a) Najděte dvě neekvivalentní kompletní jednoduché extenze T.
- (b) Je teorie T otevřeně axiomatizovatelná? Uveďte zdůvodnění.

Příklad 7. Necht $T = \{U(x) \to U(f(x)), (\exists x)U(x), \neg(f(x) = x), \varphi\}$ je teorie v jazyce $L = \langle U, f \rangle$ s rovností, kde U je unární relační symbol, f je unární funkční symbol a φ vyjadřuje, že "existují maximálně 4 prvky".

- (a) Je teorie T extenzí teorie $S = \{(\exists x)(\exists y)(\neg x = y \land U(x) \land U(y)), \varphi\}$ v jazyce $L' = \langle U \rangle$? Je konzervativní extenzí? Zdůvodněte.
- (b) Je teorie T otevřeně axiomatizovatelná? Zdůvodněte.

Příklad 8. Buď $T = \{(\forall x)(\exists y)S(y) = x, \ S(x) = S(y) \to x = y\}$ teorie v jazyce $L = \langle S \rangle$ s rovností, kde S je unární funkční symbol.

- (a) Nalezněte extenzi T' teorie T o definici nového unárního funkčního symbolu P takovou, že $T' \models S(S(x)) = y \leftrightarrow P(P(y)) = x$.
- (b) Je teorie T' otevřeně axiomatizovatelná? Uveďte zdůvodnění.

Příklad 9. Nechť T je extenze teorie $DeLO^-$ (tj. hustých lineárních uspořádání s minimálním prvkem a bez maximálního prvku) o nový axiom $c \leq d$ v jazyce $L = \langle \leq, c, d \rangle$ s rovností, kde c, d jsou nové konstantní symboly.

- (a) Jsou sentence $(\exists x)(x \leq d \land x \neq d)$ a $(\forall x)(x \leq d)$ pravdivé / lživé / nezávislé v T?
- (b) Napište dvě neekvivalentní kompletní jednoduché extenze teorie T.

Příklad 10. Mějme následující graf.

- (a) Najděte všechny automorfismy.
- (b) Které podmnožiny množiny vrcholů V jsou definovatelné? Uveďte definující formule. (Nápověda: Využijte (a).)
- (c) Které binární relace na V jsou definovatelné?

K zamyšlení

Příklad 11. Buď $T=\{(\forall x)(\exists y)S(y)=x,\ S(x)=S(y)\to x=y\}$ teorie v jazyce $L=\langle S\rangle$ s rovností, kde S je unární funkční symbol.

- (a) Buď $\mathcal{R} = \langle \mathbb{R}, S \rangle$, kde S(r) = r+1 pro $r \in \mathbb{R}$. Pro která $r \in \mathbb{R}$ je množina $\{r\}$ definovatelná v \mathcal{R} z parametru 0?
- (b) Je teorie T otevřeně axiomatizovatelná? Uveďte zdůvodnění.
- (c) Je extenze T' teorie T o axiom $S(x) = x \omega$ -kategorická teorie? Je T' kompletní?
- (d) Pro která $0 < n \in \mathbb{N}$ existuje *L*-struktura \mathcal{B} velikosti n elementárně ekvivalentní s \mathcal{R} ? Existuje spočetná struktura \mathcal{B} elementárně ekvivalentní s \mathcal{R} ?