応用幾何 ma・pa 演習 06 解答例.

(2023.11.10)

次の関数を考える. $f: \mathbb{R}^3 \longrightarrow \mathbb{R}: f(x,y,z) = x^2 + y + e^z$

- (1) grad f を求めよ.
- (2) 等位面 $S = \{(x,y,z) \in \mathbb{R}^3 \mid f(x,y,z) = 3\}$ を考える. 点 $\boldsymbol{p} = (1,1,0)$ における S の 接平面 π を求めよ.
- (3) 関数 $g:\mathbb{R}^3 \longrightarrow \mathbb{R}$ は次の条件を満たすとする. $\operatorname{grad} g=(x,y,z), \quad g(\boldsymbol{p})=-1$ このとき、 $\operatorname{grad}_{\boldsymbol{p}}(fg)$ を求めよ.

(解答例)

- (1) grad $f = (2x, 1, e^z)$
- (2) π は 点 p を通り ベクトル $\operatorname{grad}_{p}f=(2,1,1)$ と直交する. \therefore π の 方程式 は 2(x-1)+1(y-1)+1z=0 \therefore 2x+y+z=3
- (3) $\operatorname{grad}_{\boldsymbol{p}}(fg) = f(\boldsymbol{p})\operatorname{grad}_{\boldsymbol{p}}g + g(\boldsymbol{p})\operatorname{grad}_{\boldsymbol{p}}f = 3(1,1,0) 1(2,1,1) = (1,2,-1)$