Name: Sylvia Le

Course: COM 219

Exam ID: 22 EBH44K

I will not collaborate, give or receive any help on this exam. I will not help anyone after I have submitted the exam

Signature: Sylow Le.

START TIME : 21h23' EST - 12120120 9 h23' GMT +7:00 - 12121120 END TIME 20444' EST - 12/21/20 8444' GMT+7:00 - 12/2

Question 1

as Suppose a memory chip of capacity C use in total x transistors

After Lyear, this chip will have in to tal 2x transistors, so it's like having 2 memory chips connect together to form I single chip (ignore extra gates that are not used for memory func)

— In 2 years, the capacity will also double.

-> Capacity has increase 1024 times.

bi	# Level	# instr (= n+1)	+) Average instruction execution time at lu1:
	5	6	$\frac{3 \times 50 + 5 \times 50}{100} = 4$ cycles
	4	চ	+7 Number of Wd instruction, for each lu 5 instruction.
	3	4	6 x 5 x 4 x 3 = 360 instructions
	2	3	+> Program execution time, in cycle:
	1	-	1 lubinstruction execution time
			+1 Cycle time = $\frac{1}{200MH_2}$ = 5 ns
			-> Program execution time: 14 400 000 x 5 ns = 0,0728

$$T = 5 \text{ ns} \rightarrow f = \frac{1}{5 \text{ ns}} = 200 \text{ MHz}$$

Ratio of processor bandwidth:
$$\frac{BW_{pipe}}{BW_{none}} = \frac{200}{33.33} = 6$$

$$+\frac{T_4}{T_2} = 2 \iff \frac{c + (1-h)8c}{c + (1-1.2598c} = 2$$

			Correct 6		nust be	Correct 4	Cornect 4
Г	- To	_	1			110	- 5
	10 PM					037	gas .
-		0 1				-	_
-	m15 P4		+		-5		
0	3				0		0
0 1 0	3	_			_		
0	m ₁	0			0	0	0
	2 Pg	0	+	05			
_	mu	_	1	_			_
-	m ₁₀	_	\Box	-		-	
_	m ₁₄ m ₁₃ m ₁₂ p _® m ₁₁ m ₁₀ m ₉	_		_		-	-
_	m ₈	-	H	-	-		
1 0	m ₇	0000011110000		0	0		0
0	m ₆	C		0	0	0	
0	m _s	0		0	0	0	0
	50	0	OF				
-	P26 m4 m3	-	_			1	-
0	3	- 0	0			0	
0 1 0 0 1	m ₂		-			-	-
-	m ₂ m ₁ m ₀	0	0		0		
0	m _o	_			-		-

- According to the table:
+ # message bit: 16
+ # check bit: 5

The data bits ove now: 1010, 1111,0001,0010

-) Correct bit 19 to 0

-> The bit must be correct = 1+2+16 = 19

f, +) Convert 2584 to binary

#		Result	Remainder
1	2584	1292	0
۷	1292	646	0
5	646	323	0
4	323	161	1
s	161	80	1
£	80	40	0
a	40	20	٥
1	20	10	0
5	10	5	0
to	5	2	1
ч	2	ı	0
12	1	0	1

- +) If read as big endian, new binary is: 00011000 00001010 Read as two complement: $2^{12} + 2^{11} + 2^{5} + 2^{1} = 6154_{10}$
- 9> For system B: number of data bits = 8, we have.

$$m+r+1 \leq 2^r$$
 $r=4$

Effective bandwidth = total data bits transferred - check bits

$$\rightarrow$$
 Ratio of effective bandwidth: $\frac{BW_A}{BW_6} = \frac{8}{4} = \boxed{2}$

- h, Assume each drive has capacity x of price a.
- +) System 1 = 2 groups of RAID I that joined together to make up a RAIDO
 - Each RAID 1 group has: 10/2 = 5 drives
 - RAID 1 Keep an exact copy on all drives
 - -> Capacity of a RASD 1 group: x
 - -> Total effective disk size = 2x
 - Cost of 10 drives = 10 a
 - \rightarrow Unit cost = $\frac{10a}{2x} = \frac{5a}{x}$
- +) System 2 = Data is distributed, but 2 drives are used for parity
 - -> Effective disk size = (10-2) x capacity

- Cost of 10 drives = 10a
- \rightarrow Unit cost = $\frac{10a}{8x} = \frac{5a}{4x}$
- \Rightarrow Ratio of cost per byte: $\frac{C_1}{C_2} = \frac{5a}{x} : \frac{5a}{4x} = \boxed{4}$

Question 2

D	a_{i}	ao	b,	b _o	m ₅	mz	m_1	mo	Binary multiplication
	0	0	0	0	0	0	0	0	a, a,
	0	0	0	1	0	0	O	0	*
	0	0	1	0	0	0	0	0	b, b _o
	0	0	١	1	0	0	0	0	a,b. a.b.
	0	1	0	0	0	0	0	0	
	٥	1	0	1	0	0	0.	t	a,b, a _e b, O
	0	1	1	٥	0	0	1	0	C2 a,b,+ a,b,+ a,b,
	0	1.	1	ı	0	0	1	1	Ci; aobi;
	1	0	0	0	0	0	0	0	carry carry= C,
	1	0	0	1	0	0	1	0	= C2.
	1	0	1	0	0	1	0	0	=> mo = aobo
	_1	0	1	1	0	au are	1	0	m, = a, bo + a, b,
	1	1	0	0	0	0	0	0	$m_2 = a_1b_1 + C_1$
	1	1	0	1	0	0	1	1	m3 = C2
	ı	1	1	0	0	١	1	0	
	1	1	1	1	1	0	0	1	

Boolean Junctions

m3 = a100 b, b0

m = a, a, b, b, + a, a, b, b, + a, a, b, b,

= a, a, b, (b, + b,) + a, a, b, b, distribution

= a, a, b, + a, a, b, b, invese, identity

= $a_1b_1(a_0' + a_0b_0')$ = $a_1b_1(a_0' + b_0')$ = $a_1a_0'b_1 + a_1b_1b_0'$ distribution distribution

 $m_1 = a_1' a_0 b_1 b_0' + a_1' a_0 b_1 b_0 + a_1 a_0' b_1' b_0 + a_1 a_0' b_1 b_0 + a_1 a_0 b_1' b_0'$

= a'aob, + a, a'obo + a, ao(b, + bo)
distribution, inverse, identity distribution, XOR definition

mo = a, a, b, b, + a, a, b, b, + a, a, b, b, + a, a, b, b,

= a', a, b, + a, a, b, distribution, inverse, identity.

= a, b, distribution, inverse, identity

b) Use	ao, b, , bo as select line
	a, will provide input.

aobibo.	. m ₃	m ₂	. m	mo
. 000 .		. 0.		
. 001		. O.		
. 010 .	. 0 .	. a ₁ .	. 0 .	. 0
. 011 .	. 0 .	. Q ₁ .	a,	.0
. 100 .	.0 .	. O.	. 0 .	.0
. 101 .	.0	. 0 .	. q ₁ .	. 1
. 110 .	.0.	. Q ₁ .	. 1 .	.0
. 111 .	. a ₁	.0.	. a,.	

4 output value -> 4 MUX. The MUX for mi:

