Code

- ▼ utils function
 - ▼ calculate the entropy: follow the entropy formula

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

▼ calculate the information gain: follow the IG formula

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} E(S_v)$$

```
input_ : parent_list, child_list (left child and right child)
output : float, information gain value
'''
left_num = len(left_child) / len(parent)
right_num = len(right_child) / len(parent)
child = left_num * entropy(left_child) + right_num * entropy(right_child)
return entropy(parent) - child
```

▼ standardizing data

```
# Function for standardizing data
def standardScaler(feature_array):
    num = feature_array.shape[1] # total number of columns
    for i in range(num): # iterating through each column
        feature = feature_array[:, i]
        mean = feature.mean() # mean stores mean value for the column
        std = feature.std() # std stores standard deviation value for the column
        feature_array[:, i] = (feature_array[:, i] - mean) / std # standard scali
ng of each element of the column
        return feature_array
```

▼ Decision Tree

▼ Node in the tree: to record the information of a node in the decision tree

```
class Node:
    '''
    define the node in the decistion tree
    '''
    def __init__(self, feature=None, threshold=None, data_left=None, data_right=N
one, gain=None, value=None):
        self.feature = feature
        self.threshold = threshold
        self.data_left = data_left
        self.data_right = data_right
        self.gain = gain
        self.value = value
```

▼ choose the feature to split the data by the one with highest information gain

```
class DecisionTree:
    implementing decisicion tree
    1.1.1
    def __init__(self, min_samples_split=2, max_depth=7):
      self.min_samples_split = min_samples_split
      self.max_depth = max_depth
      self.root = None
    def _best_split(self, X, y):
      calculates the best split for given features and target
      input_ : X = features, y = target
      output : best_split (dict)
      1.1.1
      best_split = {}
      best_info_gain = -1
      n_rows, n_cols = X.shape
      # For every dataset feature
      for f_idx in range(n_cols):
          X_{curr} = X[:, f_{idx}]
          # For every unique value of that feature
          for threshold in np.unique(X_curr):
              # Construct a dataset and split it to the left and right parts
              # Left part includes records lower or equal to the threshold
              # Right part includes records higher than the threshold
              df = np.concatenate((X, y.reshape(1, -1).T), axis=1)
              left = np.array([row for row in df if row[f_idx] <= threshold])</pre>
              right = np.array([row for row in df if row[f_idx] > threshold])
              # check if data in the subset
              if len(left ) <= 0:</pre>
                continue
              if len(right ) <= 0:
                continue
              # Obtain the value of the target variable for subsets
              y = df[:, -1]
              left = left [:, -1]
              right = right [:, -1]
              # Caclulate the information gain and save the split parameters
              # if the current split if better then the previous best
              gain = information_gain(y, y_left, y_right)
              if gain > best_info_gain:
                  best_split = {
                      'feature_index': f_idx,
                      'threshold': threshold,
                      'df_left': left ,
```

```
'df_right': right ,
                  'gain': gain
              }
              best_info_gain = gain
  return best_split
def _build(self, X, y, depth=0):
  build a decision tree
  input_ : X = features, y = target, depth
  output : node
  1.1.1
 n_rows, n_cols = X.shape
 # Check to see if a node should be leaf node
  if n_rows >= self.min_samples_split and depth <= self.max_depth:</pre>
      # Get the best split
     best = self._best_split(X, y)
     # If the split isn't pure
      if best['gain'] > 0:
          # Build a tree on the left
          left = self._build(
              X=best['df_left'][:, :-1],
              y=best['df_left'][:, -1],
              depth=depth + 1
          )
          right = self._build(
              X=best['df_right'][:, :-1],
              y=best['df_right'][:, -1],
              depth=depth + 1
          )
          return Node(
              feature=best['feature_index'],
              threshold=best['threshold'],
              data_left=left,
              data_right=right,
              gain=best['gain']
  # Leaf node - value is the most common target value
  return Node(
      value=Counter(y).most_common(1)[0][0]
  )
def fit(self, X, y):
 Train with given features and target
 input_ : X = features, y = target
 output : //
 # Call a recursive function to build the tree
  self.root = self._build(X, y)
```

▼ prediction

```
def _predict(self, x, tree):
     classify a single test data
      input_ : x (one input data)
      output : class (prediction)
      # Leaf node
      if tree.value != None:
          return tree.value
      feature_value = x[tree.feature]
      # classification
      if feature_value <= tree.threshold:</pre>
        return self._predict(x=x, tree=tree.data_left)
      else:
        return self._predict(x=x, tree=tree.data_right)
    def predict(self, testing_data):
      classify all data
      :param X: np.array, features
      :return: np.array, predicted classes
      # Call the _predict() function for every observation
      return [self._predict(entry, self.root) for entry in testing_data]
```

▼ Data Observation

1. fill missing data with the mean of the feature

df.info()

C < class 'pandas.core.frame.DataFrame' >
 RangeIndex: 1023 entries, 0 to 1022
 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype						
0	fixed_acidity	1023 non-null	float64						
1	volatile_acidity	1023 non-null	float64						
2	citric_acid	1023 non-null	float64						
3	residual_sugar	1023 non-null	float64						
4	chlorides	1023 non-null	float64						
5	free_sulfur_dioxide	1023 non-null	float64						
6	total_sulfur_dioxide	1023 non-null	float64						
7	density	1023 non-null	float64						
8	рН	1023 non-null	float64						
9	sulphates	1023 non-null	float64						
10	alcohol	1023 non-null	float64						
dtypes: float64(11)									

memory usage: 88.0 KB

2. found that every element is unique, so i choose one to fill that missing dat

```
~
   [96] print(train_x['Phrase'].head(10))
秒
         0
                                     going to a house party and
         1
                                                 a grand picture
         2
                                            lightweight meaning
         3
                                                most unpleasant
         4
              You can see the would-be surprises coming a mi...
         5
              this too-extreme-for-TV rendition of the notor...
         6
                              wickedly undramatic central theme
         7
              ... a fascinating curiosity piece - fascinati...
         8
                        fallible human beings, not caricatures
         9
              is so prolonged and boring it is n't even clos...
        Name: Phrase, dtype: object
         print(train_y['Sentiment'].describe())
         count
                  124848.000000
                       2.063581
         mean
                       0.893844
         std
         min
                       0.000000
         25%
                       2.000000
         50%
                       2.000000
         75%
                       3.000000
                       4.000000
         max
        Name: Sentiment, dtype: float64
```

```
[98] print(train_y['Sentiment'].value_counts())
          63665
          26342
     3
          21818
     1
     4
           7365
           5658
     Name: Sentiment, dtype: int64
[99] print(train_y['Sentiment'].value_counts()/train_y['Sentiment'].count())
     2
        0.509940
        0.210993
     3
         0.174757
         0.058992
        0.045319
     Name: Sentiment, dtype: float64
[100] temp_df = train_x.isnull().sum().reset_index()
     temp_df['Percentage of Null Values'] = temp_df[0]/len(train_x)*100
     temp_df.columns = ['Column Name', 'Number of Null Values', 'Percentage of Null Values']
     {\tt temp\_df}
         Column Name Number of Null Values Percentage of Null Values
      0
              Phrase
                                            0
                                                                      0.0
[101] train_x.describe().T.style.background_gradient(cmap = "magma")
               count unique
                                                  top freq
      Phrase 124848 124847 going to a house party and
```

Data Observation Visualization

1. dataset1

missing data(fill with mean value)

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxi	de total_sul	fur_dioxide	density	рН	sulphates	alcohol
0	7.000000	0.230000	0.400000	1.600000	0.063000	n	an	67.000000	0.995200	3.500000	0.630000	11.100000
1	7.800000	0.600000	0.260000	2.000000	0.080000	31.0000	00	131.000000	0.996220	nan	0.520000	9.900000
2	9.700000	0.690000	0.320000	2.500000	0.088000	22.0000		91.000000			0.620000	10.100000
3	12.000000	0.380000	0.560000	2.100000	0.093000	6.0000		24.000000	_	3.140000	0.710000	10.900000
4	6.400000	0.640000	0.210000	1.800000	0.081000	14.0000		31.000000	0.996890	3.590000	0.660000	nan
5	7.400000 6.900000	0.350000 0.360000	0.330000	2.400000 2.400000	0.068000	9.0000 5.0000		26.000000	0.994700	nan	0.600000	11.900000
7	7.500000	0.360000	0.250000	1.600000	0.080000	5.0000 n	_		0.996400	3.410000	0.640000	9.000000
8	7.000000	0.745000	0.120000	1.800000	0.114000	n			0.995880		0.590000	9.500000
9	6.900000	0.540000	0.040000	3.000000	0.077000	7.0000		27.000000	0.998700		0.910000	9.400000
f 0	ixed_acidity v	volatile_acidity	citric_acid 0.400000	residual_sugar 1.600000	chlorides	free_sulfur_dioxid		fur_dioxide 67.000000	density 0.995200	pH 3.500000	sulphates	alcohol 11.100000
1	7.800000	0.600000	0.260000	2.000000	0.080000	31.00000	0	131.000000	0.996220	3.308632	0.520000	9.900000
2	9.700000	0.690000	0.320000	2.500000	0.088000	22.00000		91.000000		3.290000	0.620000	10.100000
3	12.000000	0.380000	0.560000	2.100000	0.093000	6.00000	_	24.000000	0.999250	3.140000	0.710000	10.900000
4	6.400000	0.640000	0.210000	1.800000	0.081000	14.00000	_	31.000000	0.996890	3.590000	0.660000	10.445009
5	7.400000 6.900000	0.350000	0.330000	2.400000 2.400000	0.068000	9.00000 5.00000		26.000000	0.994700	3.308632	0.600000	11.900000
6 7	7.500000	0.360000	0.250000	1.600000	0.080000	15.92080		16.000000 42.000000		3.310000	0.640000	9.000000
8	7.00000	0.745000	0.120000	1.800000	0.114000	15.92080			0.995880		0.590000	9.500000
9	6.900000	0.540000	0.040000	3.000000	0.077000	7.00000	_	27.000000		3.690000	0.910000	9.400000
		co	unt	mean	std	min	25%	5	50%	75	%	max
fixed	fixed_acidity		000 8.3	373800 1.	719035	4.600000	7.200000	8.1000	000 9	9.20000	0 15.6	00000
volati	le_acidity	1023.000	000 0.5	526118 0.	172922	0.120000	0.392500	0.5261	118 (0.63500	0 1.3	30000
citr	citric_acid		000 0.2	274216 0.	187548	0.000000	0.110000	0.2742	216 (0.42000	0 1.0	000000
resid	ual_sugar	1023.000	000 2.5	510010 1.	246486	1.200000	1.900000	2.2000	000 2	2.60000	0 15.4	00000
chlorides		1023.000	0.0	087151 0.	042649	0.012000	0.071000	0.0800	000	0.09000	0 0.6	10000
free_su	lfur_dioxid	e 1023.000	000 15.9	920807 9.1	871617	1.000000	3.000000	15.0000	000 21	1.00000	0 66.0	00000
total_su	lfur_dioxid	le 1023.000	000 45.8	301125 32.	572508	6.000000 22	2.000000	38.0000	000 58	3.00000	0 289.0	000000
d	ensity	1023.000	000 0.9	996776 0.	001851	0.990200	0.995700	0.9967	776 (0.99780	0 1.0	03690
	рН	1023.000	000 3.3	308632 0.	148922	2.740000	3.210000	3.3086	332	3.39000	0 4.0	10000
sul	sulphates		000 0.6	663580 0.	172007	0.370000	0.560000	0.6300	000).73000	0 2.0	00000
alcohol		1023.000	000 10.4	145009	018217	8.400000	9.600000	10.3000	000 11	00000	0 14.0	00000

