Simulations of GWAS datasets harboring patterns of epistasis

1. General description of the four models used in our simulations

Each table below describes a penetrance table. Put in other words, each table cell depicts the relative disease risk given the corresponding genotype combination. With models involving two loci, one will test epistasis as the significant association between the phenotype and one of the two modeled disease susceptibility loci (locus A in model 1, for instance), conditional on the status of the other modeled disease susceptibility locus (locus B in model 1, for instance). This consists in testing association of locus A with the phenotype for a fixed genotype value at locus B, and repeating that operation for each possible genotype value at locus B. In all listed penetrance tables, α is the baseline effect, while β is the interaction effect.

Model 1 is the multiplicative model. This model simulates a pairwise epistatic interaction model. The disease risk increases in a non-linear way with the number of disease susceptibility alleles at each locus.

Model 1	BB	Bb	bb	
AA	α	α	α	
Aa	α	$\alpha(1+\beta)^2$	$\alpha(1+\beta)^3$	
aa	α	$\alpha(1+\beta)^3$	$\alpha(1+\beta)^4$	

Table 1. Model 1: multiplicative model.

Model 2 is the threshold model. This model also simulates a pairwise epistatic interaction model. The disease risk is increased when each genetic variant implicated in epistatic interaction presents at least one disease susceptibility allele. In this model, additional disease susceptibility allele (*i.e.* recessive homozygous) does not further increase the relative disease risk.

Model 2	BB	Bb	bb	
AA	α	α	α	
Aa	α	$\alpha(1+\beta)$	$\alpha(1+\beta)$	
aa	α	$\alpha(1+\beta)$	$\alpha(1+\beta)$	

Table 2. Model 2: threshold model.

Model 3 simulates a three-way epistatic interaction model. The disease risk is increased when all interacting loci are heterozygous. The disease risk is also increased when the three interacting loci respectively have a different genotype. Put in other words, if one locus is dominant homozygous, another one is heterozygous and the last one is recessive homozygous, then the relative disease susceptibility is increased (but less increased than with three heterozygous interacting loci).

Table 3. Three-way epistatic interaction model.

M - J - 1 2	CC		Сс			cc			
Model 3	BB	Bb	bb	BB	Bb	bb	BB	Bb	bb
AA	α	α	α	α	α	$\alpha(1+\beta)$	α	$\alpha(1+\beta)$	α
Aa	α	α	$\alpha(1+\beta)$	α	$\alpha(1+a\beta)$	α	$\alpha(1+\beta)$	α	α
aa	α	$\alpha(1+\beta)$	α	$\alpha(1+\beta)$	α	α	α	α	α

To generate simulated data, we used the models already used by Marchini and co-workers (Marchini *et al.*,1999) (models 1 and 2), and Zhang and Liu (Zhang,Y. and Liu,J.S., 2007) (model 3). In all three models, the prevalence is P(D) = 0.1. Heritability is $h^2 = 0.005$ in model 1, and $h^2 = 0.02$ in models 2 and 3. For each experiment, the 2 to 3 SNPs involved in the simulated interaction share the same minor allele frequency (MAF). Across the experiments, the common MAF of modeled epistatic disease susceptibility alleles vary between four possible values: $MAF \in \{0.05, 0.1, 0.2, 0.5\}$.

The Java package GAMETES (Urbanowicz,R.J. *et al.*, 2012), version 2.1, was used to simulate these 2-and 3-order epistatic interactions. For 2- and 3-order interactions, GAMETES requires the following input parameters: penetrance table, total number of SNPs, number of SNPs involved in the epistatic interaction (2 or 3), MAF for each such SNP, interval of MAFs for non-causal SNPs, number of cases and number of controls, number of replicates (i.e. datasets generated under these conditions). In this usage, GAMETES automatically computes the heritability h^2 and the disease prevalence P(D).

Following the indications in (Marchini *et al.*,1999), and in (Zhang,Y. and Liu,J.S., 2007), we instantiated four penetrance tables per model (one per MAF shared by the SNPs involved in the epistatic interaction). These 12 penetrance tables are shown below in Section 2. These settings allow to constrain the heritability and the disease penetrance to the wished values.

Model 4 simulates a 5-order epistatic interaction model. The heritability is $h^2 = 0.002$. The MAF of all five SNPs involved in the simulated epistatic interaction is 0.2. The MAFs of the SNPs which are not risk factors for the disease vary in the range [0.05, 0.5].

To simulate epistatic interactions strictly above 3-order, the software program GAMETES proceeds in a way different than for 2- and 3-orders. The input parameters are the same as for 2- and 3-orders, except that the heritability is now requested (the prevalence is an optional parameter in this usage), and that this time, a penetrance table is computed.

Given the above constraints, GAMETES found 76 potential simulated models for model 4, corresponding to the parameters *quantile population size* in GAMETES. The model with the median detection difficulty was selected out of these 76 models, with the GAMETES parameter *quantile count* = 1. The resulting penetrance table is presented in Section 2.

2. Detailed description of the four models used in our simulations

Model 1	P(D)=0.1, h2=0.005, MAF=0.05				
Wiodel 1	BB	BB Bb			
AA	0.098	0.098	0.098		
Aa	0.098	0.2989	0.5222		
aa	0.098	0.5222	0.9121		

Model 1	P(D)=0.1, h2=0.005, MAF=0.1				
Wiodel 1	BB Bb		bb		
AA	0.096	0.096	0.096		
Aa	0.096	0.1971	0.2824		
aa	0.096	0.2824	0.4047		

Model 1	P(D)=0.1, h2=0.005, MAF=0.2				
Wiodel 1	BB	Bb	bb		
AA	0.0921	0.0921	0.0921		
Aa	0.0921	0.1445	0.181		
aa	0.0921	0.181	0.2266		

Model 1	P(D)=0.1, h2=0.005, MAF=0.5				
Wiodel 1	BB	Bb	bb		
AA	0.0782	0.0782	0.0782		
Aa	0.0782	0.1054	0.1223		
aa	0.0782	0.1223	0.142		

Model 2	P(D)=0.1, h2=0.02, MAF=0.05				
	BB	Bb	bb		
AA	0.0958	0.0958	0.0958		
Aa	0.0958	0.5331	0.5331		
aa	0.0958	0.5331	0.5331		

Model 2	P(D)=0.1, h2=0.02, MAF=0.1				
Wiodel 2	BB	Bb	bb		
AA	0.0918	0.0918	0.0918		
Aa	0.0918	0.3192	0.3192		
aa	0.0918	0.3192	0.3192		

Model 2	P(D)=0.1, h2=0.02, MAF=0.2				
Widdel 2	BB	Bb	bb		
AA	0.0836	0.0836	0.0836		
Aa	0.0836	0.2099	0.2099		
aa	0.0836	0.2099	0.2099		

Model 2	P(D)=0.1, h2=0.02, MAF=0.5				
Model 2	BB	Bb	bb		
AA	0.0519	0.0519	0.0519		
Aa	0.0519	0.1374	0.1374		
aa	0.0519	0.1374	0.1374		

Model 3	P(D)=0.1, h2=0.02, MAF=0.05								
Model 5	CC			Cc		cc			
	BB	Bb	bb	BB	Bb	bb	BB	Bb	bb
AA	0.0942	0.0942	0.0942	0.0942	0.0942	0.6535	0.0942	0.6535	0.0942
Aa	0.0942	0.0942	0.6535	0.0942	0.1469	0.0942	0.6535	0.0942	0.0942
aa	0.0942	0.6535	0.0942	0.6535	0.0942	0.0942	0.0942	0.0942	0.0942

Model 3		P(D)=0.1, h2=0.02, MAF=0.1							
Middel 3	CC		Cc		cc				
	BB	Bb	bb	BB	Bb	bb	BB	Bb	bb
AA	0.099	0.099	0.099	0.099	0.099	0.549	0.099	0.549	0.099
Aa	0.099	0.099	0.549	0.099	0.1436	0.099	0.549	0.099	0.099
aa	0.099	0.549	0.099	0.549	0.099	0.099	0.099	0.099	0.099

Model 2		P(D)=0.1, h2=0.02, MAF=0.2								
Model 3	CC		Cc		cc					
	BB	Bb	bb	BB	Bb	bb	BB	Bb	bb	
AA	0.0916	00916	0.0916	0.0916	0.0916	0.3141	0.0916	0.3141	0.0916	
Aa	0.0916	0. 0916	0.3141	0.0916	0.1014	0.0916	0.3141	0.0916	0.0916	
aa	0.0916	0.3141	0.0916	0.3141	0.0916	0.0916	0.0916	0.0916	0.0916	

Model 3		P(D)=0.1, h2=0.02, MAF=0.5							
	CC		Cc			cc			
	BB	Bb	bb	BB	Bb	bb	BB	Bb	bb
AA	0.0842	0.0842	0.0842	0.0842	0.0842	0.213	0.0842	0.213	0.0842
Aa	0.0842	0.0842	0.213	0.0842	0.095	0.0842	0.213	0.0842	0.0842
aa	0.0842	0.213	0.0842	0.213	0.0842	0.0842	0.0842	0.0842	0.0842

Model 4	P(D)=0.1, h2=0.002, MAF=0.2					
Wiouci 4		CC, DD, EE				
	BB	Bb	bb			
AA	0.45754564	0.45372863	0.45679482			
Aa	0.45375128	0.46118589	0.45784658			
aa	0.45661364	0.45820894	0.43586443			
		Cc, DD, EE				
	BB	Bb	bb			
AA	0.45406104	0.46087487	0.45537852			
Aa	0.46075669	0.44778968	0.45292959			
aa	0.45632393	0.45103877	0.49786115			
		cc, DD, EE				
AA	0.45413551	0.46069713	0.45560895			
Aa	0.46128017	0.4460624	0.45837211			
aa	0.45094456	0.46770089	0.4506341			
		CC, Dd, EE				
	BB	Bb	bb			
AA	0.45345118	0.46209259	0.45539462			
Aa	0.46203869	0.44521851	0.45298704			
aa	0.45582582	0.45212464	0.49714395			
		Cc, Dd, EE				
	BB	Bb	bb			
AA	0.46144451	0.44578571	0.45795625			
Aa	0.44605222	0.47589497	0.46335891			
aa	0.45582422	0.46762298	0.37318287			
	cc, Dd, EE					
	BB	Bb	bb			
AA	0.46057924	0.447587	0.45739028			
Aa	0.44631737	0.47669824	0.45269021			
aa	0.46754732	0.43237612	0.46758795			
·		·	·			

	CC, dd, EE					
	BB	Bb	Bb			
AA	0.45901443	0.45095538	0.45548014			
Aa	0.45102422	0.46663176	0.45791252			
aa	0.45492942	0.45901396	0.45637169			
		Cc, dd, EE				
	BB	Bb	bb			
AA	0.45082139	0.46707049	0.45764789			
Aa	0.46682928	0.43555953	0.45360939			
aa	0.45957759	0.44974999	0.45611276			
		cc, dd, EE				
	BB	Bb	bb			
AA	0.45655205	0.45550408	0.45848876			
Aa	0.45633234	0.45676975	0.45187864			
aa	0.45186264	0.46513088	0.45650491			
		CC, DD, Ee				
	BB	Bb	bb			
AA	0.45104066	0.46681377	0.45619344			
Aa	0.46689535	0.43553368	0.45275906			
aa	0.45554074	0.45406445	0.48618665			
	Cc, DD, Ee					
	BB	Bb	bb			
AA	0.46692468	0.43502656	0.45634682			
Aa	0.43478401	0.49837067	0.46384458			
aa	0.4582872	0.45996381	0.39504841			
		cc, DD, Ee				
	BB	Bb	bb			
AA	0.45530614	0.45812142	0.45748457			
Aa	0.45875641	0.45184987	0.45245257			
aa	0.45240461	0.46261249	0.46798049			
		CC, Dd, Ee				
	BB	Bb	bb			
AA	0.46748064	0.43392094	0.45629641			
Aa	0.43377367	0.50039806	0.46379101			
aa	0.45747458	0.46143467	0.39628351			
	Cc, Dd, Ee					
	BB	Bb	bb			
AA	0.43368486	0.50146345	0.4566887			
Aa	0.50191076	0.36707822	0.44015624			
aa	0.45311024	0.44731316	0.57908507			

	cc, Dd, Ee					
	BB	Bb	bb			
AA	0.45818501	0.4529115	0.45310197			
Aa	0.45168938	0.46435949	0.46544815			
aa	0.46287898	0.44589414	0.43413737			
		CC, dd, Ee				
	BB	Bb	bb			
AA	0.45085846	0.46696638	0.45788784			
Aa	0.46683915	0.43563082	0.45288113			
aa	0.4589056	0.45084561	0.45809967			
		Cc, dd, Ee				
	BB	Bb	bb			
AA	0.46708037	0.43522159	0.45229543			
Aa	0.43552389	0.4967976	0.46459102			
aa	0.44987699	0.46942792	0.453899			
		cc, dd, Ee	,			
	BB	Bb	bb			
AA	0.45697584	0.45411943	0.46278526			
Aa	0.45373651	0.46288028	0.44452783			
aa	0.46584863	0.43840107	0.44656739			
	CC, DD, ee					
	BB	Bb	bb			
AA	0.47829855	0.41318596	0.44908958			
Aa	0.41217091	0.5441104	0.45973635			
aa	0.45721001	0.44349548	0.54403011			
		Cc, DD, ee				
	BB	Bb	bb			
AA	0.40698006	0.55314374	0.47052331			
Aa	0.55697494	0.25575388	0.44972409			
aa	0.4398737	0.51102331	0.28118847			
		cc, DD, ee	T			
	BB	Bb	bb			
AA	0.49873684	0.37122878	0.45773445			
Aa	0.35682004	0.65555671	0.45377979			
aa	0.57300439	0.22323991	0.4533646			
	CC, Dd, ee					
	BB	Bb	bb			
AA	0.41229022	0.54250521	0.47066897			
Aa	0.54454578	0.28067353	0.44923348			
aa	0.45434442	0.48188256	0.28278284			

	Cc, Dd, ee					
	BB	Bb	bb			
AA	0.55476305	0.2630751	0.4265446			
Aa	0.25523257	0.85640891	0.47236162			
aa	0.48928478	0.34688127	0.80374759			
		cc, Dd, ee				
	BB	Bb	bb			
AA	0.37260625	0.62267002	0.46429387			
Aa	0.65276111	0.06530636	0.44072553			
aa	0.22356513	0.92218299	0.452848			
		CC, dd, ee				
	BB	Bb	bb			
AA	0.45625555	0.45633702	0.45656917			
Aa	0.45625334	0.45619949	0.45770472			
aa	0.45723857	0.45636591	0.44060964			
		Cc, dd, ee				
	BB	Bb	bb			
AA	0.45756883	0.45245355	0.46662442			
Aa	0.45389451	0.46402079	0.43287568			
aa	0.45509676	0.45593101	0.47835791			
	cc, dd, ee					
	BB	Bb	bb			
AA	0.44671466	0.48633344	0.369252			
Aa	0.47614458	0.39599595	0.6210732			
aa	0.45076286	0.45805149	0.53073653			

Bibliographical references

Marchini, J. et al. (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet. 37,413–417. doi:10.1038/ng1537.

Urbanowicz, R.J. et al. (2012) GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min., 5, 16. doi: 10.1186/1756-0381-5-16.

Zhang, Y. and Liu, J.S. (2007) Bayesian inference of epistatic interactions in case-control studies. *Nat. Genet.* 39,1167–1173. doi:10.1038/ng2110.