CONTROLE AUTOMÁTICO III

CONTROLE PID APLICADO A UMA PLANTA TÉRMICA CONTROLANDO A FONTE QUENTE E A FONTE DE RESFRIAMENTO

Equipe: Lucas Daniel de Melo Borges, Lucas Guimarães da Rocha e William Rodrigues Silva

O Modelo Real

Método de Smith

Método de Smith

$$G(s) = \frac{K}{\tau s + 1} e^{-Ls}$$

$$\tau = 1.5(t_{63.2} - t_{28.3})$$

$$L = 1.5(t_{28.3} - \frac{t_{63}}{3})$$

$$K = \frac{\Delta_y}{\Delta_u}$$

Discretização por Tustin

$$s = \frac{2}{T} \frac{(1 - z^{-1})}{(1 + z^{-1})}$$

Extraindo as curvas de reação das fontes

$$G(s) = \frac{65}{160,506s + 1}$$

Função de transferência da lâmpada

Obtendo a f.t. de malha aberta de cada atuador

$$G(s) = \frac{-48e^{-17,502s}}{43,497s+1}$$

Função de transferência dos coolers

Curvas de reação dos sistemas aproximados de 1ª ordem

Curvas de reação dos sistemas aproximados de 1ª ordem

Sintonia dos controladores

	K_p	K_i	K_d
Ziegler-Nichols	0.6 * Ku	$\frac{K_u}{0.6 * P_u}$	$Ku*0.125*P_u$

	K_p	K_i	K_d
•	233.6103		0 4501107400
Resfriamento	0.057525	0.001837918	0.4501187438

Sistema Malha Fechada com PID discretizado

Chaveamento de Controle

Comparador

Erro

PID aplicado a fonte quente

PID aplicado a fonte de resfriamento

Chaveamento de Controle

Filtro Anti-Windup

Resposta do Sistema Controlado

Deficiência encontrada

