

Proof that 1 = 1 cent

EE16A

Introduction to Proofs, Span, Linear Dependence and Independence

Admin

- Warning: if you don't have Python experience, the lab/bootcamp will be long and hard!
 - Allocate the time, work together, don't get too discouraged

Admin

- Warning: if you don't have Python experience, the lab/bootcamp will be long and hard!
 - Allocate the time, work together, don't get too discouraged

- Today:
 - Span
 - Proofs!
 - Linear (in)dependence

Last time: Multiplying matrices/vectors

Systems of equations $A\vec{x} = b$

Last time: Row view

Rows represent how much the variables affect a particular measurement.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & a_{2n} \\ \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{bmatrix}$$

Last time: Column view

Columns represent how much a particular variable affects all measurements.

Linear combinations

Any scaling or addition of vectors

Definition:

For a set of vectors $\left\{\vec{a}_1,\vec{a}_2,...\vec{a}_M\right\}\in\mathbb{R}^N$ where $\left\{lpha_1,lpha_2,...lpha_M\right\}\in\mathbb{R}$

then $\vec{w} \triangleq \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + ... + \alpha_M \vec{a}_M$ is called a <u>linear combination</u> of the a-vectors

Linear combinations

Any scaling or addition of vectors

For a set of vectors
$$\{\vec{a}_1,\vec{a}_2,...\vec{a}_M\}\in\mathbb{R}^N$$
 where $\{\alpha_1,\alpha_2,...\alpha_M\}\in\mathbb{R}$ some coefficients then $\vec{w}\triangleq\alpha_1\vec{a}_1+\alpha_2\vec{a}_2+...+\alpha_M\vec{a}_M$ is called a linear combination of the a-vectors

Example: what are some linear combinations of $\vec{x}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $\vec{x}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$?

Linear combinations

Any scaling or addition of vectors

For a set of vectors
$$\{\vec{a}_1,\vec{a}_2,...\vec{a}_M\}\in\mathbb{R}^N$$
 where $\{\alpha_1,\alpha_2,...\alpha_M\}\in\mathbb{R}$ some coefficients then $\vec{w}\triangleq\alpha_1\vec{a}_1+\alpha_2\vec{a}_2+...+\alpha_M\vec{a}_M$ is called a linear combination of the a-vectors

Example: what are some linear combinations of
$$\vec{x}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 $\vec{x}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$?

dinear combinations what does it mean to solve Az=b w.r.t. lin. combos? with respect to Before: find x1, x2... In that satisfy eqns (10ws) Now What In combo. Of cols of A give b? column vicul. Example: Az=b say i can only walk' alorg a, a, can i get to bo yes! With Za, + az ad: $\begin{bmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow x_2 = 1$ \sqrt{yay} Try G.E. instead: can i reach any other B vector i want with combos of \vec{a}_1, \vec{a}_2 ? (Note: can go backwards) Yes! And we'll prove it later. & as long as in R2 Now can i reach any Exector? No, not unless along a particular line in IR2 SPAN of the cols of A is the set of all vectors to such that

SPAN of the cols of A is the set of all vectors b such that jargen alect! Ax = b has a solution (no need to be unique)

aka "Range" i.e. the set of possible vectors that can be reached "Col space of A" by in lin. combo. of cols of A

What is the span of $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$?

Lentire 2D plane! Because, with $A\overrightarrow{\alpha} = \overrightarrow{b}$ we can choose α_1 , α_2 such that we reach any point in R^2 set notation: span $A = \begin{bmatrix} \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} \\ \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} \end{bmatrix}$ as $A = \begin{bmatrix} \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} \\ \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} & \overrightarrow{v} \end{bmatrix}$ scalars real what is span of $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$?

Scalars real why not? because $\overrightarrow{\alpha}_1$, $\overrightarrow{\alpha}_2$ are linearly dependent

Example: What is span of $\vec{x}_1 = \begin{bmatrix} i \\ o \end{bmatrix}$, $\vec{x}_2 = \begin{bmatrix} 0 \\ i \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 0 \\ i \end{bmatrix}$?

The entire 3D space \mathbb{R}^3 !

Example: What is the span of 3? 3 This is the one vector you can always reach (always in span)

Fancy If $\exists \vec{x} \text{ s.t. } A\vec{z} = \vec{b}$ then we say $\vec{b} \in \text{Span}(\text{cols})$ there is such that all the places you can get to what if \vec{b} is NOT in span(cols of A)?

What if \vec{b} is not reachable by system A, then they are wrong (inconsistent) $\rightarrow \text{No solution!}$

Let's go back to $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$ case.

So we had 2 cols, but could only 'reach' (span)

a 1D line, because cols were linearly dependent

i.e. $\vec{a}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and $\vec{a}_2 = -\vec{a}_1$ no new info:

Redundant redundant

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Linear Dependence of a set of vectors means at least depends only on A one is redundant redundant (useless)

Definition 1: A set of vectors $\{\vec{a}_1, \vec{a}_2...\vec{a}_M\}$ is linearly dependent if $\vec{a}_j = \sum_{m \neq j} \alpha_m \vec{a}_m$ for some $\{\alpha_m \in R\}_{m \neq j}$ and some $1 \le j \le M$

i.e. one vector can be written as a linear combo of the others.

Example: $\vec{a}_1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ Can any vector in set be writen as lin.combo. of writen as lin.combo. of others? $\vec{a}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ So the set is lin.dep.

or $\vec{0} = \vec{a}_1 + 2\vec{a}_2 - \vec{a}_3$ and $\vec{a}_3 = \vec{a}_3 = \vec{a}_4 + 2\vec{a}_2 - \vec{a}_3 = \vec{a}_4 + 2\vec{a}_4 - \vec{a}_4 \vec{a$

Definition 2: A set of vectors $\{\vec{a}_1, \vec{a}_2... \vec{a}_M\}$ all in \mathbb{R}^N is linearly dependent if there are $\alpha_1, \alpha_2... \alpha_M \in \mathbb{R}$ scalar coeffs? + exclude trivial case not all such 2. $\sum_{n=0}^{\infty} \alpha_n \vec{a}_m = \vec{0}$ Lin. combas of all vectors = $\vec{0}$

Department of Redundancy Department

Are these two defs equivalent? yes!

- @ what is definition of Linear Independence? NOT lin. dep.
- (3) True or False: can o be in linearly independent set of vectors?

 No! eg. { o, a, a, a, ... a, }

 Locan always write o = oa, + oa, + oa,

 and from definition 1 it is line dep!
- (4) Give an example of 3 linearly independent vectors:

 e.g. [;], [;] * should be 3D vectors
- (5) Example: Is {[i], [-i], [3]} linearly (in) dependent?

 3 vectors in 2D space!

 one will surely be a lin. combo. of others...

 4 span of first two is R2

Properties of $A\vec{x} = \vec{b}$ systems of Equations

- ① Az=b has a solution iff be span (cols of A)
- ② A = is a linear combination of the columns of A (column view)
- 3 unique solution = unique \vec{x} that satisfies $A\vec{x} = \vec{b}$
- * (4) Every BE span (cols of A) is uniquely spanned iff the cols of A are Linearly Independent

Possible | To span (cols of A) -> no solution | To solutio

Let's op back to $A = \begin{bmatrix} 1 & -1 \end{bmatrix}$ case.

Some had 2 cols, but could only 'reach' (span)

a 1D line, because cols were linearly dependent

i.e. $\vec{a}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{a}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} \vec{a}_2 = -\vec{a}_1 \end{bmatrix}$ no new info:

Redundant redundant!

Linear Dependence of a set of vectors means at least depends only on \vec{A} one is redundant redundant (useless)

I let's us check whether system will work (shas a unique sol'n) before we take measurements (doesn't need \vec{b})

Definition 1: A set of vectors $\{\vec{a}_1, \vec{a}_2 ... \vec{a}_m\}$ is linearly

Definition 1: A set of vectors $\{\vec{a}_1, \vec{a}_2...\vec{a}_m\}$ is linearly dependent if $\vec{a}_j = \sum_{m \neq j} \alpha_m \vec{a}_m$ for some $\{\alpha_m \in \mathbb{R}\}_{m \neq j}$ and some $1 \le j \le M$

i.e. one vector can be written as a linear combo of the others i.e. one vector is in the span of the others.

Example: $\vec{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\vec{a}_3 = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$ Can any vector in set be written as lin.combo. of

yes!
$$\begin{bmatrix} 3\\4\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix} + 2\begin{bmatrix} 1\\2\\0 \end{bmatrix}$$
 cothers?
 $\vec{a}_8 = \vec{a}_1 + 2\vec{a}_2 \checkmark$ so the set is line dep.!
OR $\vec{0} = \vec{a}_1 + 2\vec{a}_2 - \vec{a}_3$ and $\vec{z}_{1} = \vec{z}_{2} = \vec{a}_{3}$

Definition 2: A set of vectors $\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_m\}$ all in \mathbb{R}^N is linearly dependent if there are $\alpha_1, \alpha_2, ..., \alpha_M \in \mathbb{R}$ scalar coeffs? + exclude trivial case not all substitutions $\sum_{s, s, s} \alpha_m \vec{a}_m = \vec{\delta}_{s} \sum_{lin. \text{ combast of all vectors}} \vec{\delta}_{s} = \vec{\delta}_{s}$

Are	these	two	defs	equivalent?	yes!
				-	

- 2 What is definition of Linear Independence? NOT I'm. dep.
- (3) True or False: can o be in linearly independent set of vectors?

 No! eg. { o, a, a, a, ... an}

 Locan always write o= oa, + oa, + ... + oan
 and from definition 1 it is line dep!
- (4) Give an example of 3 linearly independent vectors:

 e.g. [;], [;] [;] * should be 3D vectors
- (5) Example: Is {[:], [-i], [:]} linearly (in) dependent?

 3 vectors in 2D space!

 one will surely be a lin. combo. of others...

 4 span of first two is R2