Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

{v-zeliu1, v-yutlin, yuecao, hanhu, v-yixwe, zhez, stevelin, bainguo}@microsoft.com

ICCV 2021 Best Paper

[1] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012-10022.

□Transformer – Self Attention

□Transformer – Multi-Head Self Attention

 $MulitHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

□Vision Transformer

□Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

- > ViT
 - 固定下采样率
 - 不具有多尺度特征
- > SwinT
 - 多尺度特征输出
 - 窗口降低运算复杂度
 - 移动窗口进行信息互通

In this paper, we seek to expand the applicability of Transformer such that it can serve as a general-purpose backbone for computer vision, as it does for NLP and as CNNs do in vision.

□Swin Transformer - Hierarchical Backbone

每一阶段的特征图宽高缩小一半,通道数增加一倍。

□ Patch Merging

与池化层作用接近,实现多尺度特征

□Two Successive Swin Transformer Blocks

- ◆每个窗口堆叠起来当做一个个 Batch并行Attention运算
- ◆移动窗口后窗口内图像大小不一, 怎样继续并行Attention运算?

□Swin Transformer Block

◆Padding

使用Padding存在的问题:

- 4个Batch → 9个Batch
- 边缘处窗口有大量无效运算
- pad位置的注意力需要mask

□Swin Transformer Block – Shifted Window

◆Cyclic Shift

□Swin Transformer Block

◆Cyclic Shift - Mask

Attn Mask

Attention(Q, K, V) = Softmax(
$$\frac{QK^{T}}{\sqrt{d}} + M + B$$
)V

□Relative Position Embedding

Attention(Q, K, V) = Softmax(
$$\frac{QK^T}{\sqrt{d}} + M + B$$
)V

0,0 0,-1 -1,0 -1,-1

1,0 1,-1 0,0 0,-1

0,0 |-1,1 |-1,0

1,0 | 0,1 | 0,0

8	7	6	W_B^8	W_B^7	W_B^6
5	4	3	W_B^5	W_B^4	W_B^3
2	1	0	W_B^2	W_B^1	W_B^0

				_				
4	3	1	0		W_B^4	W_B^3	W_B^1	W_B^0
5	4	2	1		W_B^5	W_B^4	W_B^2	W_B^1
7	6	4	3		W_B^7	W_B^6	W_B^4	W_B^3
8	7	5	4		W_B^8	W_B^7	W_B^5	W_B^4

- QK^T 的大小为 $M^2 \times M^2$
- 有 $(2M-1)^2$ 种相对位置
- 窗口确定相对位置编码索引
- 依据索引在位置编码Table 中查询编码数值构建B
- 具有平移不变性

□Window Attention的计算复杂度

Multi-Head Self Attention:

$$(h \times w) \times C$$
 $(h \times w) \times C$ $(h \times w) \times (h \times w)$ $(h \times w) \times C$ q - query $C \times C$ A - attention b^l 数据维度 b^l 系数维度 计算复杂度

$$\Omega(MSA) = 4hwC^{2} + 2(hw)^{2}C$$

$$\Omega(W-MSA) = 4hwC^{2} + 2M^{2}hwC$$

- h/w 特征图的高/宽
- C-通道数,元素的维度
- M 窗口的边长

$$\Omega(W-MSA) = (\frac{h}{M} \times \frac{w}{M}) \times [4M^2C^2 + 2(M^2)^2C] = 4hwC^2 + 2M^2hwC$$

□ Experiments - Image Classification On ImageNet

(a) Regular ImageNet-1K trained models								
method	image	#param.	FI ODe	throughput	ImageNet			
Inculou	size	трагані.	TLOFS	(image / s)	top-1 acc.			
RegNetY-4G [47]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [47]	224^{2}	39M	8.0 G	591.6	81.7			
RegNetY-16G [47]	224^{2}	84M	16.0G	334.7	82.9			
EffNet-B3 [57]	300^{2}	12M	1.8 G	732.1	81.6			
EffNet-B4 [57]	380^{2}	19 M	4.2G	349.4	82.9			
EffNet-B5 [57]	456^{2}	30M	9.9 G	169.1	83.6			
EffNet-B6 [57]	$ 528^2 $	43M	19.0G	96.9	84.0			
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	77.9			
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	76.5			
DeiT-S [60]	224^{2}	22M	4.6G	940.4	79.8			
DeiT-B [60]	224^{2}	86M	17.5G	292.3	81.8			
DeiT-B [60]	384^{2}	86M	55.4G	85.9	83.1			
Swin-T	224^{2}	29M	4.5G	755.2	81.3			
Swin-S	224^{2}	50M	8.7G	436.9	83.0			
Swin-B	224^{2}	88M	15.4G	278.1	83.3			
Swin-B	384 ²	88M	47.0G	84.7	84.2			

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

(b) ImageNet-22K pre-trained models								
method	image	#param.	EI ODa	throughput	ImageNet			
memou	size "paran		FLOFS	(image / s)	top-1 acc.			
R-101x3 [37]	384^{2}	388M	204.6G	-	84.4			
R-152x4 [37]	480^{2}	937M	840.5G	-	85.4			
ViT-B/16 [19]	384 ²	86M	55.4G	85.9	84.0			
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	85.2			
Swin-B	224 ²	88M	15.4G	278.1	85.2			
Swin-B	384 ²	88M	47.0G	84.7	86.0 86.4 *			
Swin-L	384 ²	197M	103.9G	42.1	86.4 87.3			

*: 2021年8月更新

□Experiments – Object Detection On COCO

	(a) Various frameworks								
Method	Backbone	AP ^{box}	AP_{50}^{box}	AP ₇₅ ^{box}	#param.	FLOPs	FPS		
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0		
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3		
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3		
	Swin-T	47.2	66.5	51.3	36M	215G	22.3		
PanPaints V/2	R-50	46.5	64.6	50.3	42M	274G	13.6		
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0		
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0		
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4		

(b) Various backbones w. Cascade Mask R-CNN

						AP ₇₅ ^{mask}			
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4
R50	46.3	64.3	50.5	40.1	61.7	43.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838G	12.0
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

(c) System-level Comparison								
Method		ni-val		t-dev	thorom	EI ODg		
Method	AP ^{box}	AP ^{mask}	AP ^{box}	$AP^{\text{mask}} \\$	#param.	FLOFS		
RepPointsV2* [11]	-	-	52.1	-	-	-		
GCNet* [6]	51.8	44.7	52.3	45.4	_	1041 G		
RelationNet++* [12]	_	-	52.7	-	_	-		
SpineNet-190 [20]	52.6	-	52.8	-	164M	1885G		
ResNeSt-200* [75]	52.5	-	53.3	47.1	_	-		
EfficientDet-D7 [58]	54.4	-	55.1	-	77 M	410G		
DetectoRS* [45]	_	-	55.7	48.5	_	-		
YOLOv4 P7* [3]	_	-	55.8	-	_	-		
Copy-paste [25]	55.9	47.2	56.0	47.4	185M	1440G		
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G		
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G		
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G		
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-		

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

□ Experiments – Semantic Segmentation on ADE20K

ADE20K		val	test			
Method	Backbone	mIoU	score	#param.	FLOPs	FPS
DANet [22]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3 + [10]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [23]	ResNet-101	45.9	38.5	_		
DNL [68]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [70]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [66]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [70]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [10]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [10]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [78]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2
T 11 2 D 1				-	A DEAGL	7 1

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

□ Experiments – Ablation Study

	Imag	geNet		OCO	ADE20k
	top-1	top-5	AP ^{box}	AP^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).