Samantekt

Ingunn Lilja Bergsdóttir

7/27/2020

Samantekt úr cuenocue.

Lýsandi tölfræði

Stöplarit og tíðnitafla sem sýnir fjölda réttra og rangra svara eftir cue eða ekki cue spurningu.

Fjöldi svara fyrir cue eða ekki cue

Table 2: Meðaleinkunn

Cue	Meðaleinkunn
0	7.271317
1	7.744534

Tíðnitafla

2: cue

```
cue_nocue$correct <- with(cue_nocue, ifelse(correct==1, "Rétt", "Rangt"))
Heild <- sum
addmargins(table(correct=cue_nocue$correct, cue=cue_nocue$cue), FUN = Heild) %>%
   kable(col.names = c("Án cue", "Með cue", "Heild"),
        align = c('cccc'),
        caption = "Tíðnitafla") %>%
   kable_styling(bootstrap_options = c("striped", "hover"), "H")

## Margins computed over dimensions
## in the following order:
## 1: correct
```

Table 1: Tíðnitafla

	Án cue	Með cue	Heild
Rangt	6154	1372	7526
Rétt	16399	4711	21110
Heild	22553	6083	28636

```
cue_nocue$correct <- with(cue_nocue, ifelse(correct=="Rétt", 1, 0))
cue_nocue$correct <- as.integer(cue_nocue$correct)</pre>
```

Tafla sem sýnir meðaleinkunn fyrir hvorn flokk þar sem einkunnin byggir á fjölda réttra svara deilt með fjölda svara.

```
## `summarise()` ungrouping output (override with `.groups` argument)
#cue = 0 er spurning án vísbendingar og cue = 1 er vísbendingaspurning.
```

Mynd sem sýnir meðaltöl fyrir cue og ekki cue fyrir hverja spurningu.

```
cue_nocue %>%
  group_by(qName, cue) %>%
  summarize(mean = mean(correct)) %>%
  ggplot(aes(x= qName, y=mean, color=cue)) +
  geom_point() +
```

```
theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))+
labs(x="Spurning", y="Meðaleinkunn", color="Cue", title = "Einkunnir á spurningu")
```

`summarise()` regrouping output by 'qName' (override with `.groups` argument)

Einkunnir á spurningu

Fjöldi svara fyrir hverja spurningu.

```
cue_nocue %>%
  ggplot(aes(x= qName)) +
  geom_bar() +
  theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) +
  labs(x="Spurning", y="Fjöldi", title = "Fjöldi svara á hverja spurningu")
```


Kassarit til að sýna meðaltölin og miðgildi á milli hópa.

```
f <- medal %>%
    group_by(cue) %>%
    summarise(
        medal = mean(medal)
    )
```

```
## `summarise()` ungrouping output (override with `.groups` argument)
```

Table 3: Fjórðungamörk fyrir cue spurningar

	Meðaleinkunn
0%	0.000000
25%	6.547619
50%	7.142857
75%	7.947368
100%	10.000000

Einkunn með/án vísbendinga

Töflur sem sýna fjórðungamörk einkunna fyrir svör með og án cue.

Cue svör:

Svör án cue:

Table 4: Fjórðungamörk fyrir án cue spurningar

	Meðaleinkunn
0%	3.684210
25%	6.024845
50%	6.909976
75%	7.505669
100%	9.085714

Table 5: Hlutföll

	Án cue	Með cue
Rangt	0.273	0.226
Rétt	0.727	0.774

Hutfalla tafla.

```
cue_nocue$correct <-</pre>
  with(cue_nocue,
       ifelse(correct==1,
               "Rétt",
               "Rangt"))
kable(prop.table(table(cue_nocue$correct,
                         cue_nocue$cue),
                  2),
      col.names = c( "Án cue",
                      "Með cue"),
      align = c('rr'),
      caption = "Hlutföll",
      digits = 3)
cue_nocue$correct <-</pre>
  with(cue_nocue,
       ifelse(correct=="Rétt",
               1,
               0))
cue_nocue$correct <-</pre>
  as.integer(cue_nocue$correct)
```

Kannað hvort það sé rétt að það séu hlutfallslega fleiri rétt svör í cue hópnum með prop.test.

estimate1	estimate2	statistic	p.value	parameter	conf.low	conf.high	method
0.8177	0.7768	55.1297	0	1	0.0304	0.0513	2-sample test for equality of proportions

Líkanagerð

Einfalt línulegt aðhvarfsgreiningar líkan fyrir medal töfluna. Breytur eru meðaleinkunn á spurningu og cue.

```
fit.lm <-
lm(medal ~ cue,
    data = medal)

Anova(fit.lm,
    type = "III") %>%
broom::tidy() %>%
kable() %>%
kable_styling(bootstrap_options = c("striped",
    "hover"))
```

term	sumsq	df	statistic	p.value
(Intercept)	2219.4895	1	1033.2083689	0.0000000
cue	1.1740	1	0.5465159	0.4615486
Residuals	206.2227	96	NA	NA

Mixed effect líkan

Breytur eru cue, qName og víxlhrif þar á milli

Anova tafla.

term	statistic	df	p.value
(Intercept)	102.53477	1	0.0000000
cue	3.04862	1	0.0808058
qName	947.73285	48	0.0000000
cue:qName	119.74546	48	0.0000000

Marktækt fyrir qName og interaction á milli cue og qName.

Gæði mixed effect líkans 3

Kvörðun

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Kvörðun mixed effect líkan 3

Spáir of lágt fyrir mest allt en engu að síður nokkuð gott og best hingað til.

ROC kúrfa, AUC og brier gildi.

```
phats <- fitted(glmer3)</pre>
auc(cue_nocue$correct,
    phats) -> auc
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
b <- mean((cue_nocue$correct - predict(glmer3,</pre>
                                           type = 'response'))^2)
bm <- mean(predict(glmer3,</pre>
                     type = 'response'))*(1-mean(predict(glmer3,
                                                            type = 'response')))
bs <- 1- b/bm
pred <- prediction(phats,</pre>
                     cue_nocue$correct)
perf <- performance(pred,</pre>
                      "tpr",
                      "fpr")
plot(perf,
     colorize=T,
```

ROC mixed effect líkan 3: AUC = 0.7395 Brier = 0.12758

Mjög gott AUC gildi og langbesta brier gildi sem komið hefur upp hingað til.

Dreifni skurðpunkta við y-ás fyrir hvern nemanda í mixed effect líkaninu. Sýnir random effect.

Bootstrap

Bootstrap með cue, qName og interaction. 100 ítranir.

```
# Taflan gefur okkur auc bjartsýni fyrir hverja ítrun þar sem bjartsýnin er mismunurinn á bootstrap gag
boot <- read.csv("drasl_cue_allt.csv")
```

Myndræn framsetning bootstrap töflunnar.

```
# density = þéttleiki ?
boot %>%
  dplyr::select(1,2,3) %>%
  gather(type,
         Score) %>%
  mutate(type = factor(type,
                       levels = c('auc_b',
                                   'auc_afgangs',
                                   'auc_opt'),
                       labels = c('Bootstrap',
                                   'Afgangs',
                                   'Bjartsýni'))) %>%
  ggplot(aes(x = Score)) +
  geom_density() +
  facet_wrap(~type,
             scales = 'free') +
```

```
labs(x="Gildi", title = "AUC")-> p1
boot %>%
  dplyr::select(4,5,6) %>%
  gather(type,
         Score) %>%
    mutate(type = factor(type,
                       levels = c('brier_afgangs',
                                   'brier_b',
                                   'brier_opt'),
                       labels = c('Bootstrap',
                                   'Afgangs',
                                   'Bjartsýni'))) %>%
  ggplot(aes(x = Score)) +
  geom_density() +
  facet_wrap(~type,
             scales = 'free') +
  labs(x="Gildi", title = "Brier") -> p2
plot_grid(p1, p2,
          align ='v',
          ncol = 1)
```

AUC

Brier

ROC kúrfa með leiðréttum gildum af AUC og brier eftir bootstrap.

Brier gildi án bootstrap.

```
b <- mean((cue_nocue$correct - predict(glmer3,</pre>
                                           type = 'response'))^2)
bm <- mean(predict(glmer3,</pre>
                     type = 'response'))* (1-mean(predict(glmer3,
                                                              type = 'response')))
bs <- 1- b/bm
brier_medal_opt <- mean(boot$brier_opt)</pre>
brier_leidrett <- bs-brier_medal_opt</pre>
auc_likan <- auc(roc(cue_nocue$correct,</pre>
                       predict(glmer3,
                                type = 'response'),
                       quiet = T))[[1]]
auc_medal_opt <- mean(boot$auc_opt)</pre>
auc_leidrett <- auc_likan-auc_medal_opt</pre>
phats <- fitted(glmer3)</pre>
pred <- prediction(phats,</pre>
                     cue_nocue$correct)
perf <- performance(pred,</pre>
                      "tpr",
                      "fpr")
plot(perf,
     colorize=T,
     cex.main=1,
     main= paste("ROC kúrfa - leiðrétt AUC og brier
                  AUC =",
                  round(auc_leidrett,4),
                  " Brier =",
                  round(brier_leidrett,5)),
     cex.sub=1,)
abline(a=0, b = 1, col='blue')
```

ROC kúrfa – leiðrétt AUC og brier AUC = 0.6619 Brier = 0.0339

