Families of Continuous Rus

1. Hasi Continuous Uniform (a,b)

$$\frac{1}{(b-a)}$$

$$M = \frac{a+b}{2}, van[x] = \frac{(b-a)^2}{12}$$

2. Exponential (2)

$$f_{x}(x) = \begin{cases} \lambda & x > 0 \\ 0, & s \text{ then.} \end{cases}$$

/x = 3 Va[x] = 3

ua Unit step

3. Gaussian 4.6 (3.5) Normal RV Woln: $f_{x}(x)$ If x is Normal

N(M,6)

Hean dx Star Dev. S pd1: $\frac{(x-\mu)^2}{26^2}$ $= \frac{1}{2\pi 6^2}$ $= \frac{1}{26^2}$ $= \frac{1}{2}$ $= \frac{1}{26^2}$ $= \frac{1}{2}$ $= \frac{1}{2}$ $f_{x}(x) = 1$ in Comm. Systems tx -> themal, Noix Channel Noise.

Apaa under fx (M) = 1 -> for any $\frac{1}{\sqrt{2\pi6^2}} \left(\frac{(x-\mu)^2}{26^2} \right) = \frac{(x-\mu)^2}{26^2}$ $\frac{1}{\sqrt{2\pi6^2}} \left(\frac{(x-\mu)^2}{26^2} \right)$ $\int_{-\infty}^{-\frac{u^2}{2}} du = \sqrt{2\pi}$ $\int_{-2\pi}^{\infty} \int_{-2}^{\infty} \int_{-2\pi}^{\infty} \int_{-2$ $\int x f_{x}(x) dx = E[x] = \frac{h}{2}$ $\frac{1}{\sqrt{2\pi6^2}} \int_{-\infty}^{\infty} \sqrt{2\pi6^2} dx = E[x^2] = (\mu^2 + 2)$

 $\int_{0}^{1} = E[x^{2}] - \mu^{2} \rightarrow E[x^{2}] = \mu^{2} + 6x^{2}$ is N (3,2) P[x >3] = 2 $\times \langle 3 \rangle =$ $D = \int \frac{1}{\sqrt{2\pi(2)^2}}$ Mulverica!
Integration Need

X is N (M, 8) (3) In general $P[x>a], a \neq M$ $S = \frac{1}{2\pi\epsilon^2} \int_{0}^{\infty} e^{-\frac{(x-w)^2}{2\epsilon^2}} dx$ If we are to tabulate the broke. weeked Direct Melhod: Use 3 parameters pr, 6 & a Com he simplified Choose one simple combination of pull Choose. M=0, 6=1 N(0,1) -> is called the Standard Morner RV -> penoted by Z

More \$ (0) = 1/2 \$ (xo) = 1 $\frac{1}{\sqrt{2\pi}} \left(\frac{3}{2}\right) = \int_{2\pi}^{2\pi} \frac{1}{\sqrt{2\pi}} e^{-\frac{3\pi}{2}u} d\frac{3\pi}{2} d\frac{3\pi}{2}$ = \\ \frac{1}{\sqrt{2\bar{\lambda}}} = \int \\ \frac{1}{\sqrt{2\bar{\lambda}}} = 1/2 took e - 42 du rendy fu Numerical integration PT 29 -1) = D(-1)? on the Table

\$ (3) is used for moderate values of 3 Values of 3 - 32 fz(2) = d e 2 For Carger $=\frac{1}{2}-\frac{1}{12h}\int_{-\infty}^{\infty}e^{-\frac{u^2}{2}}$ Ready fu Numerical Integration

$$\frac{1}{\sqrt{3}}(1) = \frac{1}{\sqrt{3}}(1)$$

$$\frac{1}{\sqrt{3}}(1) = \frac{1}{\sqrt{3}}(1)$$

eg:
$$\times$$
 is $N(M, Z)$ @

 $P[X > Q]$

Find the relationship bet $\times 2Z$
 $X = X - M$
 $Z = X - M$
 $X = Z$
 $X = X - M$
 $X = Z = X - M$
 $X = Z$

$$P(X > a] - P(Z > \frac{a-m}{2})$$

$$\varphi(-3) = 1 - \varphi(3)$$

is N(3,2) $X^2 > 4$ For X= P[X > 2 or X < -2] Union = P[x72] + P[x2-2]Exclusive $Z = \frac{X - M}{2} \frac{X - 3}{2}$ $P[x>2] = P[z>\frac{-1}{2}]$

X is W(3,2) P[|X-4| > < 1]P[-12X-42] = PT 3 4 X 25 $\times \frac{-3}{2}$ PIOZZZI $= \frac{1 - \varphi(1)}{2}$ 94.6 (3.5) X is N(0,1) y is N(0,2) = P[-1224] $\Phi(1) - \Phi(-1) = \Phi(1) - [1-\Phi(1)]$

P[-12 / 21] $Z = \frac{1-0}{2} = \frac{1}{2}$ $P\left[\frac{1}{2}\sqrt{2} - \frac{1}{2}\right] = 1-2\varphi(2)$ 4.7 (3.6) Mixed RVs In ch. 3 (ch.2) -> Disnete RK Sofar in ch. 4 (ch.3) -) Cantinuous Pla Lifetime of a machine manfacturel by a Conbu If the machine is Defeetive T=0. If Good T -> Continuous

If Defective T = D

P[T=0] + 0. * T is not a continuous RV part of it is continuous) Mixel Continuous -> fx(x), fx(1) Discrete -> Fx(x), Px(x) Mixed - fx (a) find a way to extrem find of the Discrete part.

4

Impulse finchy (17) Delta Not": $\delta(a)$ $\lim f(x) = \delta(x)$ for pall x to $\delta(\alpha) =$ 8(0) $\delta(x) dx = 1$ $\delta(x) dx = 1$ $\delta(x) dx = 1$

Graphical Representation of S(a) Area > also called the strength of the Delta 28(x-1)-38(x+2) f (x) = $\int_{0}^{\infty} f(a) da = -3$

 $g(x) = \int_{-\infty}^{\infty} S(u) du$ Area under 5(u) from -0 tox g(x) = U(x) - unit stet $u(\alpha) = \delta(\alpha)$

X is a d'isorete 3/3 JP1 06)C fx(x) Delta Delta fuchs on Axx fx (a) z_1

 $\begin{cases} 0, & \chi \leq 0 \end{cases}$ Fx (a) = $\frac{1}{2} + \frac{1}{2} x$, 0 < x < 1 $f(x) = \frac{1}{2}$ * Continuous Tx (2) Jump -> Dicrede X