

UNIVERSIDADE FEDERAL DO CEARÁ

Campus Quixadá

Curso: Redes de Computadores

Disciplina: Administração de Servidores Windows

Aula 5 – Instalando e Configurando Servidores (Gerenciando Discos e Volumes)

Prof. Rafael Braga

Agenda

- Sistema de arquivos
- Formato de tabela de partição
- Tipos de Discos
- Espaços de Armazenamento ou Storage Space
- Gerência de discos e volumes

Sistemas de arquivos

- Um sistema de arquivos é um conjunto de estruturas lógicas e de rotinas, que permite ao sistema operacional controlar o acesso ao disco rígido.
 - FAT (ou FAT16)
 - FAT32
 - NTFS
 - CDFS
 - UDF

- DFS
- Ext, Ext2, Ext3
- ReiserFS
- XFS
- JFS

Sistemas de arquivos

- File Allocation Table (FAT)
 - Sistema de arquivos básico;
 - Tamanho de partições são limitadas;
- New Technology File System (NTFS)
 - Metadados;
 - Segurança;
 - Auditoria;
- Resilient File System (ReFS)
 - Suporte de compatibilidade com versões anteriores do NTFS
 - Verificação de dados melhorada e correção de erros;
 - Suporte para arquivos maiores, diretórios, volumes, etc;

Formato de tabela de partição

- Master Boot Record (MBR)
 - Padrão desde 1980;
 - Suporta no máximo 4 partições por disco;
 - Pode particionar discos de até 2 TB (terabytes)
 10¹²bytes;
- GUID Partition Table (GPT)
 - Suporta até 128 partições por disco;
 - Pode particionar discos de até 18 EB (exabytes)
 10¹⁸ bytes;

Tipos de discos

- Disco básico
 - Padrão no Windows;
 - Pode ter partições dos tipos:
 - Primária;
 - Estendida;
 - Lógica;
- Disco dinâmico;
 - Podem ser reiniciados sem reiniciar o Windows;
 - Permite configurar diversas opções de volume;
 - Simples;
 - Expandido;
 - Distribuído;
 - Espelhado;
 - RAID.
 - Não é o padrão no Windows, é preciso converter de básico para dinâmico;

Arquitetura dos discos rígidos

- O acesso aos discos rígidos é feito por interface e existem vários tipos de interfaces para discos rígidos como:
 - IDE/ATA IDE
 - ATA (Advanced Technology Attachment)
 - SATA (Serial Advanced Technology Attachment)
 - SATA-I ou SATA-150 ou SATA 1,5 Gb/s
 - SATA-II ou SATA-300 ou SATA 3 Gb/s
 - SCSi
 - SAS
 - SSD
 - Fibre Channel
 - USB

Arquitetura dos discos x desempenho

 À medida que o desempenho aumenta, o que também acontece com os custos

SSD

Rápido: 1,5mio IPOS

SCSI

_ 150 10PS

SAS

-210 10PS

Desempenho

Lento

Lento

Custo

Arquitetura dos Discos Rígidos

 Para uma melhor visualização, observe a tabela abaixo com a quantidade de pinos e as taxas de transferência destes padrões.

Padrão	Qtd. Pinos	Taxa de Transferência (Mb/s)
IDE/ATA	40	133
SATA 150	07	150
SATA II (300)	07	300
SATA 600	07	600

Redundant Array of Independent Drives(RAID)
 ou Conjunto Redundante de Discos
 Independentes é um subsistema composto
 por vários discos individuais para obter
 segurança e desempenho.

- Vantagens do RAID
 - 1. Acesso mais rápido, com ganho de desempenho.
 - Maior tolerância a falhas. Caso um disco apresente problemas, basta substituí-lo sem nenhuma perda de dados.
 - Uso de várias unidades de discos com a mesma informação gravada, tornando praticamente impossível a perda de dados.

Níveis

- Existem vários níveis de RAID, numerados de acordo com a disposição dos discos e a forma como são combinados. Acompanhe:
 - RAID Nível 0 ou RAID 0 (Striping distribuição)
 - RAID Nível 1 ou RAID 1 (Mirroring espelhamento)
 - RAID Nível 2 ou RAID 2 (Parity paridade)
 - RAID Nível 3 ou RAID 3 (Parity paridade)
 - RAID Nível 4 ou RAID 4 (Parity paridade)
 - RAID Nível 5 ou RAID 5 (Parity paridade)
 - RAID Nível 6 ou RAID 6 (Parity paridade)

- Os dados são divididos em pequenos seguimentos e distribuídos entre os discos.
- As operações de leitura e escrita ocorrem ao mesmo tempo em cada unidade.
- É recomendado para aplicações de CAD e tratamento de imagens e vídeos.

- Funciona adicionando HDs paralelos aos HDs principais existentes no computador.
- A desvantagem é ser bem mais lento na gravação, porém mais rápido na leitura, tornando essa configuração indicada para servidores de arquivos.

- Essas tecnologias também utilizam bit de paridade, porém atualmente utiliza-se mais a configuração com RAID-5, por ser mais eficiente.
- O RAID 2 está em desuso pois a detecção de falhas que oferecia atualmente já vem nos HDs

 Nesta configuração, um único disco é dedicado a armazenar correções de erros e paridade Os dados são espalhados através dos demais

- Vantagens:
 - Leitura rápida;
 - Escrita rápida;
 - Possui controle de erros.
- Desvantagem:
 - Montagem difícil via software.

- Também possui um disco reservado para registro de paridade.
- A diferença entre os níveis 4 e 3 é que, em caso de falha de um dos discos, os dados podem ser reconstruídos em tempo real com a utilização de paridade.
- É indicado para o armazenamento de arquivos grandes

- Caso um disco falhe, a paridade é utilizada para reconstruir os dados sem perda total do sistema.
- Inicialmente o RAD-5 era considerado a melhor solução para alta disponibilidade e performance. Atualmente é recomendado a utilização de RAID 0+1.
- O RAID 0+1 ou RAID 01 é uma combinação dos níveis 0 (Striping) e 1 (Mirroring).

- Semelhante ao RAID 5, porém usa o dobro de bits de paridade, garantindo a integridade dos dados caso até dois HDs falhem ao mesmo tempo.
- Exemplo: Ao usar 7 HDs de 500GB em RAID 6, teríamos 2.5 TB para dados mais 1 TB de códigos de paridade.

O que é o recurso Espaços de Armazenamento?

- Use Espaços de Armazenamento para adicionar discos físicos de qualquer tipo e tamanho a um pool de armazenamento e, em seguida, criar discos virtuais altamente disponíveis a partir desse pool de armazenamento
- Para criar um disco virtual, é necessário o seguinte
 - Um ou mais discos físicos
 - Pool de armazenamento que inclua os discos
 - Unidades virtuais criadas com discos a partir do pool de armazenamento
 - Unidades de disco baseadas em unidades virtuais
- Unidades virtuais não são VHDs (discos rígidos virtuais); elas devem ser consideradas unidades no Gerenciador de Discos

Espaços de Armazenamento (Storage Space)

 O Storage Space permite adicionar discos físicos de qualquer tipo e tamanho em um pool de armazenamento e depois criar discos virtuais de alta disponibilidade.

Recurso	Opção
Modelo de armazenamento	SimpleTwo-way or three-way mirrorParity
Tamanho do setor	512 or 512e
Alocação de drive	Data StoreManualHot Spare
Provisionamento	Thin vs. Fixed provisioning

Gerência de discos e volumes

Exercício

- Faça os laboratórios 2 e 3 sobre gerenciamento de discos e RAID.
- Envie os relatórios através da plataforma moodle.