Лабораторная работа №2 Реализация численного метода решения задачи Дирихле для уравнения Пуассона

Выполнил(а): _____

Гру	⁄ппа: Вариант №	
N	Метод	(см. стр. 5)
I	Постановка тестовой задачи	•
Δu	$x(x, y) = \underline{\qquad}$	
	при $x \in (___, ___)$, $y \in ($	∈(,);
u(_	, y) =	$u(___, y) = ____,$
	x,) =	
	$u\left(x,y\right) =\underline{\qquad }$	
	Постановка основной задачи $(x, y) = $	
	при $x \in (__, __)$, $y \in (__, \bot)$	
u(_	, y) =	
	x,) =	
1 T		
1. I	Начальное приближение:	
	Параметры метода:	— е метод в матричной и поком
		е выкладки расчета первой ите
	рации метода.	
4. Ī	Результаты тестирования на	а сетке небольшого размер
ľ	m =, m = запишите в	приложении 1.
		ст, показывающий наличие вто
ŗ	оого порядка сходимости в зад	аче.

6. В приложении 3 приведите код вашей программы.

Приложение 1.

Основные результаты тестирования должны быть показаны в таблицах 1-4.

В таблице №1 запишите точное решение тестовой задачи.

В таблице №2 запишите результат первой итерации метода, посчитанной вручную.

В таблице №3 приведите результат первой итерации метода, посчитанной вашей программой.

В таблице №4 запишите результат работы метода после многих итераций (напр., при $\varepsilon_I = 10^{-12}$).

Таблица №1

	x_0	x_{I}	x_2	x_3	x_4
<i>y</i> ₄					
у3					
<i>y</i> ₂					
y_I					
Уо					

Таблица №2

	x_0	x_1	x_2	χ_3	χ_4
<i>y</i> ₄					
<i>y</i> ₃					
<i>y</i> ₂					
y_I					
Уо					

Таблица №3

	x_0	x_{l}	x_2	x_3	χ_4
<i>y</i> ₄					
у3					
<i>y</i> ₂					
y_I					
y_0					

Таблица №4

	x_0	x_1	x_2	x_3	χ_4
<i>y</i> ₄					
у з					
<i>y</i> ₂					
<i>y</i> ₁					
Уо					

Приложение 2. Анализ порядка сходимости для тестовой задачи Укажите параметры итерационного метода

n×m	max U-V
Порядок сходимости	

Анализ порядка сходимости для основной задачи Укажите параметры итерационного метода

n×m	<i>max</i> <i>V</i> − <i>V</i> 2
Порядок	
сходимости	

Список методов для реализации

<u>№</u> по спи- ску	ФИО	Задача из варианта	Метод
1.	БЛОХИН	1	Простой итерации τ=τ _{opt}
2.	БОРИСОВ	2	Минимальных невязок
3.	винницкий	3	Простой итерации с чебышевским набором параметров
4.	ГРИБКИНА	4	Сопряженных градиентов
5.	ДВОРЯНИНОВА	5	Верхней релаксации, ω=ω _{opt}
6.	ИСРАФИЛОВ	6	Простой итерации τ=τopt
7.	КИРАКОСЯН	7	Минимальных невязок
8.	КОЗЫРЕВ	8	Простой итерации с чебышевским набором параметров
9.	КУДРЯВЦЕВ	9	Сопряженных градиентов
10.	КУЗНЕЦОВА	10	Верхней релаксации, ю=юорt
11.	КУКУШКИН	1	Простой итерации τ=τ _{opt}
12.	ЛАРИН	2	Минимальных невязок
13.	MATBEEBA	3	Простой итерации с чебышевским набором параметров
14.	НИКОЛАЕВА	4	Сопряженных градиентов
15.	ПРЫТКОВА	5	Верхней релаксации, ω=ω _{opt}
16.	ПУЗАНКОВА	6	Простой итерации τ=τ _{opt}
17.	САВИЧЕВ	7	Минимальных невязок
1.	СКРЕБКОВ	8	Простой итерации с чебышевским набором параметров
1.	СМИРНОВ	8	Сопряженных градиентов
1.	СМИРНОВА	8	Верхней релаксации, $\omega = \omega_{opt}$
1.	COBPACOB	8	Простой итерации τ=τ _{opt}
1.	ЧЕБОКСАРИНОВ	8	Минимальных невязок
2.	ЧЕРНОВ	8	Простой итерации с чебышевским набором параметров