Vysoké Učení Technické v Brně

Fakulta informačních technologií

Dokumentace k projektu do předmětu IMP

MSP430: Enigma

13. prosince 2016

Autor: Petr Flajšingr, xflajs00@stud.fit.vutbr.cz

Úvod

Tato dokumentace obsahuje popis zadání projektu, implementace a funkčnosti.

Úkolem bylo vytvořit aplikaci fungující stejně jako šifrovací stroj Enigma, který byl využíván za druhé světové války. Projekt byl implementován podle "komerční Enigmy" vynalezené v roce 1924. Tato verze obsahuje takzvaný plugboard, který slouží k jednoduché záměně dvou znaků. Další částí jsou tři rotory, jejichž konfigurace je zobrazená níže v tabulce. Poté, co signál projde rotory, je vrácen zpět do rotorů reflektorem, který opět provádí substituci šifrovaného znaku. Nakonec signál opět projde plugboardem a zobrazí se zašifrovaný znak.

Rotory při zašifrování každého znaku mění svoji pozici a tím je zajištěno, že substituce znaků není vždy stejná.

Rotor	Konfigurace	
I	DMTWSILRUYQNKFEJCAZBPGXOHV	
II	HQZGPJTMOBLNCIFDYAWVEUSRKX	
III	UQNTLSZFMREHDPXKIBVYGJCWOA	

Popis ovládání

Ovládání aplikace je realizováno čistě pomocí klávesnice na FITkitu a výstup je zobrazován v terminálu připojeného počítače. Klávesa "1" zobrazí v terminálu nápovědu pro použití. Tlačítka "2" až "9" slouží k zadávání znaků anglické abecedy stejně tak, jak tomu bylo u tlačítkových mobilních telefonů a klávesa "#" pro zadání vybraného znaku.

Pokud byla použita neplatná kombinace tlačítek je uživateli zobrazena chybová hláška.

Další sekcí je nastavení rotorů. Tlačítka "A", "B" a "C" umožňují nastavení jednotlivých rotorů. Zadávání konfigurace poté probíhá stejně jako zadávání znaků. Pomocí klávesy "D" lze nastavit rotory do výchozí pozice – v našem případě AAA. Posledním příkazem je zobrazení aktuální konfigurace rotoru. Toto je prováděno pomocí klávesy "*".

Implementace

Pro rotory je využito pole hodnot simulující reálný rotor. Pro orientaci v konfiguraci rotoru jsou využity pomocné proměnné, ve kterých je uložen "offset" každého rotoru. Stejným způsobem je řešen i plugboard a reflector.

Pro práci s klávesnicí a LCD FITkitu jsem využil předem poskytnuté aplikace v SVN FITkitu.

Ukázka šifrování

Vstupní data	Šifrovaná data	Konfigurace rotorů
ААААААААА	PVQNXINSDB	GGG
ABCDEFGHIJ	PLKYMGWQXV	GGG
PVQNXINSDB	ААААААААА	GGG
LETADLOABC	YPFKRXRSRQ	ABC
RICHWOODGU	DYOYERRUKI	ABC
IBANEZROCK	CMEZWBOCSN	ABC
NESCAFEFTW	MIUXMTSVGC	ZZZ
SMETANOVYJ	XXQRRMSQFLO	ZZZ
DEKWOODPEN	CICBTBZZUL	ZZZ
ENIGMACOOL	CEXODOKIQO	FSJ

7ávěr

Nedostatkem této implementace je využití cyklů pro procházení rotorů při návratu signálu z reflectoru. Původní plán byl vytvořit pole zvlášť pro průchod zpět, po hodinách útrap jsem od toho bohužel upustil.

Bylo by poměrně jednoduché rozšířit tuto implementaci o další rotory, případně implementovat možnost výměny rotorů nebo i nastavování plugboardu. Ovšem vzhledem k náročnosti těchto věcí mi připadalo zbytečné něco takového přidávat.

Zdroje

Enigma rotor details. In: Wikipedia: the free encyclopedia [online]. St. Petersburg (Florida): Wikipedia Foundation, 11. 12. 2006, last modified on 10. 8. 2016 [cit. 2016-12-13]. Dostupné z: https://en.wikipedia.org/wiki/Enigma_rotor_details