Quiz 19 Cálculo Numérico / Análise Numérica

Prof.: Fabrício Murai

Nome:

Nº de matricula:

- 1. Dado o polinômio $P(x) = x^4 6x^3 5x^2 + 42x + 20 = 0$ e que uma das raízes encontra-se no intervalo [5;6], utilize o método de Newton e encontre uma aproximação para essa raiz com um erro $|x_{k+1} x_k| < \epsilon = 10^{-4}$.
 - (a) Utilizando o método das secantes

$$x_{n+1} = x_n - f(x_{n+1}) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

n	x_{n-1}	x_n	x_{n+1}	$P(x_{n+1})$	Δx
1	7,5000	8,5000	7,7347	-32,6808	-7,65e-01
2	8,5000	7,7347	7,7956	-8,1020	6,09e-02
3	7,7347	7,7956	7,8157	0,2802	2,01e-02
4	7,7956	7,8157	7,8150	-0,0024	-7,14e-04
5	7,8157	7,8150	7,8150	0,0000	-8,34e-06

x = 7,8150

(b) Utilizando o método Regula Falsi

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_n f(x_{n-1})}{f(x_n) - f(x_{n-1})}$$

n	x_{n-1}	x_n	x_{n+1}	$P(x_{n+1})$	Δx
1	7,5000	8,5000	7,7347	-32,6808	-7,65e-01
2	7,7347	8,5000	7,7956	-8,1020	6,09e-2
3	7,7956	8,5000	7,8104	-1,9423	1,48e-02
4	7,8104	8,5000	7,8139	-0,4591	3,50e-03
5	7,8139	8,5000	7,8147	-0,1091	8,32e-04
6	7,8147	8,5000	7,8149	-0,0291	2,22e-04
7	7,8149	8,5000	7,8150	-0,0092	6,99e-05

x = 7,8150

(c) Qual dos métodos convergiu mais rapidamente?

O método das secantes. Percebe-se que o método Regula Falsi precisou de duas iterações a mais para chegar no mesmo valor que o método das secantes obteve.

2. Cite uma diferença entre o método de Newton e o método das secantes

O método de Newton aproxima a função por sua reta tangente em x_n enquanto o método das secantes aproxima a função pela reta qu passa por $(x_{n-1}, f(x_{n-1}))$ e por (xn, f(xn))