University Of Tripoli

Faculty Of Engineering

Materials And Metallurgical Engineering

Student Name : Marwan Mohammed Ahmed El-Janzouri

No:02108594

Numerical methods

MME308

Assignment 6

Grop.

Problem no: 1,2,3,4,5

fall 2014

<u>Given</u>

$$F(x)=-0.6x^2+2.4x+5.5$$
 (1)

$$X_i=5$$
 $x_u=10$ $\xi_a=less than 5%$

Required

Fined the root by using:

- 1 -- graphical technique-
- 2- bisection method

Solution:

1-estimte the root by using graphical technique.

2- Estimate the root By using bisection method.

$$X_{\rm r} = \frac{xl - xu}{2}$$

$$X_r = \frac{5+10}{2} = 7.5$$

Substituting in eq, (1) by x ,

$$F(X_r) = -10.25$$

2

If
$$f(X_i)f(X_r)$$
 0; $X_i=X_i$ and $X_u=X_r$

If $f(X_I)f(X_r)$ 0; $X_I=X_r$ and $X_u=X_u$

iteration	X i	f(xi)	Xu	f(xu)	Хr	f(xr)	É a
1	5.0000	2.5000	10.0000	-30.5000	7.5000	-10.2500	
2	5.0000	2.5000	7.5000	-10.2500	6.2500	-2.9375	20.00
3	5.0000	2.5000	6.2500	-2.9375	5.6250	0.0156	11.11
4	5.6250	0.0156	6.2500	-2.9375	5.9375	-1.4023	5.26
5	5.6250	0.0156	5.9375	-1.4023	5.7813	-0.6787	2.70

<u>Given</u>

$$F(x) = -13 - 20x + 19x^2 - 3x^3$$
 (2)

$$X_{l}$$
=-1 x_{u} =0 $\dot{\epsilon}_{a}$ =less than 2%

Required

Fined the root by using:

- 1 -- graphical technique-
- 2- bisection method

Solution

1-Find the root by using graphical technique.

2-Fined the root by using bisection method.

$$X_{r} = \frac{xl - xu}{2}$$

$$X_r = \frac{-1+0}{2} = -0.5$$

Substituting in eq, (2) by x,

$$F(X_r) = 2.125$$

4

If $f(X_I)f(X_r)$ 0; $X_I=X_I$ and $X_u=X_r$

If $f(X_I)f(X_r)$ 0; $X_I=X_I$ and $X_u=X_r$

i	Χı	f(xı)	Xu	f(Xu)	X r	f(xr)	É a
1	-1.0000	29.0000	0.0000	-13.0000	-0.5000	2.1250	
2	-0.5000	2.1250	0.0000	-13.0000	-0.2500	-6.7656	100.00
3	-0.5000	2.1250	-0.2500	-6.7656	-0.3750	-2.6699	33.33
4	-0.5000	2.1250	-0.3750	-2.6699	-0.4375	-0.3621	14.29
5	-0.5000	2.1250	-0.4375	-0.3621	-0.4688	0.8588	6.67
6	-0.4687	0.8568	-0.4375	-0.3621	-0.4531	0.2418	3.45
7	-0.4531	0.2418	-0.4375	-0.3621	-0.4453	-0.0616	1.75

<u>Given</u>

Required

Positive solution that is closest to the origin (X=0)

Solution

1-By using fixed point iteration:

Rewriting the eq (3) by addition x from two side as :x=g(x)

$$X = X + \sin(x) + \cos(x) - 0.2$$

select Initial guess $X_0 = 0$

$$X_{i-1} = X_i + \sin(x_i) + \cos(x_i) - 0.2$$

-At substation in the sin(x), cos(x) should by converting from degrees to radians.

•
$$X_1 = X_0 + \sin(x_0) + \cos(x_0) - 0.2 = 0 + \sin(0*180/pi) + \cos(0*180/pi)$$

-0.2

$$X_1 = 0.8000$$

• $X_2 = 0.8000 + \sin(0.8*180/pi) + \cos(0.8*180/pi) - 0.2$

$$X2 = 2.0141$$

• X₃ = 2.0141 + sin(2.0141*180/pi) +cos(2.0141*180/pi) -0.2

• X₄ = 2.2885 + sin(2.2885*180/pi) +cos(2.2885*180/pi) -0.2

$$X_4 = 2.1842$$

Complete The Solution In Table

i	xi	g(x)	е
0	0.0000	0.8000	
1	0.8000	2.0141	100
2	2.0141	2.2885	60.2793
3	2.2885	2.1842	11.9930
4	2.1842	2.2263	4.7787
5	2.2263	2.2095	1.8914

In this the root at error less than 2% X₅=2.2263_

Check by substituting your final answer into the original eq (3)

2.2263+sin(127.6223)+cos(127.6223)-0.2=2.2078

2-By using bisection method:

The max angle can be used 360°.

i	xi	f(xi)	X _u	f(x _u)	X _m	f(x _m)	É
1	0	0.8	360	0.8	180	-1.2	
2	0	0.8	180	-1.2	90	0.8	100
3	90	0.8	180	-1.2	135	-0.2	33.333
4	90	0.3411	135	-0.2	112.5	0.3411	20.
5	112.5	0.0758	135	-0.2	123.75	0.0758	9.09
6	123.75	0.0758	135	-0.2	129.375	-0.0613	4.347
7	123.75	0.0075	129.375	-0.0613	126.5625	0.0075	2.22
8	126.5625	0.0075	129.375	-0.0613	127.9688	-0.0268	1.098

127.9688*pi/180=2.2323

Given

$$F(x)=8e^{-x}\sin(x)-1$$
 (4)

Required

Fined the root by using:

1 - Newton-Raphson method

2- secant method

Solution

1-By using Newton-Raphson method

$$\mathbf{X}_{\mathsf{l+1}} = \mathbf{x}_{\mathsf{l}} - \frac{f(xI)}{f(XI)}$$

The first derivative of the function can be evaluated as

$$F'(X)=8e^{-x}\cos(X)-8e^{-x}\sin(X)$$
 (4)

Initial iteration: $X_0=0.3$

Iteration 1:

Substituting in eq, (4) and (4) by x o

F(x₀)=0.7514 F`(x₀)=3.9104
$$X_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$X_1 = 0.3 - \frac{0.7514}{3.9104} = 0.1078$$

Iteration 2:

F(x₁)=-0.227 F`(x₁)=4.7389

$$X_2 = x_1 - \frac{f(x_1)}{f(X_1)}$$

$$X_2 = 0.1078 - \frac{-0.227}{4.7389} = 0.1557$$

Iteration 3:

$$F(x_2)=0.0619$$
 $F'(x_2)=4.5173$

$$X_3 = x_2 - \frac{f(x^2)}{f(x^2)}$$

$$X_3 = 0.1557 - \frac{0.0619}{4.5173} = 0.1420$$

Iteration 4:

$$F(x_3)=-0.0175$$
 $F'(x_3)=4.5796$

$$X_4 = x_3 - \frac{f(x3)}{f(x3)}$$

$$X_4 = 0.1420 - \frac{0.0175}{4.5796} = 0.1459$$

i	xi	f(xi)	f`(xi)	έa
0	0.3000	0.7514	3.9104	
1	0.1078	-0.2270	4.7389	-1.7818
2	0.1557	0.0619	4.5173	0.3075
3	0.1420	-0.0175	4.5796	-0.0965
4	0.1459	0.0049	4.5621	0.0262

The root at use four iteration = 0.1459

Check by substituting your final answer into the original eq (4) by x4

But should be convert the x₄ from degrees to radians:

$$F(x)=8e^{-0.1459}\sin(8.3637)-1=0.0005$$

2-By using secant method

$$X_{i+1} = x_i - \frac{(xi-xi-1)f(xi-1)}{f(xi)-f(xi-1)}$$

Iteration 1:

$$X_0=0.4$$
 $x_{-1}=0.5$

$$F(X_{-1})=8e^{-0.5} *sin(0.5*180/pi) - 1 = 1.3263$$

$$F(X_0)=8e^{-0.4} * \sin(0.4*180/pi) - 1 = 1.0883$$

$$X_1 = X_0 - \frac{(x0 - x - 1)f(x0)}{f(x0) - f(x - 1)} = -0.0572$$

Iteration 2:

$$F(x0) = 1.0883$$
 $f(x1) = -1.4846$

$$X_2 = X_1 - \frac{(x_1 - x_0)f(x_1)}{f(x_1) - f(x_0)} = 0.2060$$

Iteration 3:

$$F(x1) = -1.4846$$
 $f(x2) = 0.3347$

$$X_3 = X_2 - \frac{(x^2 - x^1)f(x^2)}{f(x^2) - f(x^1)} = 0.1581$$

Iteration 4:

$$F(x2) = 0.3347$$
 $f(x3) = 0.0751$

$$X_4 = X_0 - \frac{(x^3 - x^2)f(x^3)}{f(x^3) - f(x^2)} = 1440$$

Iteration 5:

$$F(x3) = 0.0751$$
 $f(x4) = -0.0058$

$$X_5 = X_0 - \frac{(x4-x3)f(x4)}{f(x4)-f(x3)} = 0.1450$$

i	xi-1	f(xi-1)	xi	f(xi)	έa
0	0.5000	1.3263	0.4000	1.0883	
1	0.4000	1.0883	-0.0572	-1.4846	-0.4572
2	-0.0572	-1.4846	0.2066	0.3347	0.2638
3	0.2066	0.3347	0.1581	0.0751	-0.0485
4	0.1581	0.0751	0.1440	-0.0058	-0.0140

The root at use four iteration = 0.1581

Check by substituting your final answer into the original eq (4) by x4

But should be convert the x_4 from degrees to radians:

$$F(x)=8e^{-0.1581}\sin(9.0584)-1=0.0753$$

Problem 5

<u>Given</u>

$$F(X)=e^{1/x}-x$$
 Initial guesses [2]

<u>Required</u>

Find the root By using Newton-Raphson method

Solution

$$\mathbf{X}_{i+1} = \mathbf{x}_i - \frac{f(\mathbf{x}i)}{f'(\mathbf{X}i)}$$

The first derivative of the function can be evaluated as

$$F'(x)=(-1/X^2 * e^{1/x}-1)$$

Initial iteration $X_0 = 2$

Iteration 1:

F(x₀)=-0.3513 F`(x₀)=-1.4122
$$X_1 = x_0 - \frac{f(x_0)}{f`(X_0)}$$

$$X_1 = 2 - \frac{-0.3513}{-1.4122} = 1.7513$$

Iteration 2:

F(x₁)=0.0188 F`(x₁)=-1.5772
$$X_2 = x_1 - \frac{f(x_1)}{f(x_1)}$$

$$X_2 = 1.7513 - \frac{0.0188}{-1.5772} = 1.7632$$

Iteration 3:

F(x₂)=0.0001 F'(x₂)=-1.5672
$$X_3 = x_2 - \frac{f(x^2)}{f'(x^2)}$$

$$X_3 = 1.7632 - \frac{0.0001}{-1.5672} = 1.7632$$

i	xi	f(xi)	f`(xi)	É
0	2	-0.3513	-1.4122	
1	1.7513	0.0188	-1.5772	14.2041
2	1.7632	0.0001	-1.5672	0.6768
3	1.7632	0.0000	-1.5671	0.0022

The solution at the error less than 2% =1.7632

Check by substituting your final answer into the original eq (5) by X_3

$$F(x) = e^{1/1.7632} - 1.7632 = 0.0000$$

12