Mid-Term Examination, Discrete Mathematics

Department of Information Management & Finance, National Chiao Tung University November 14, 2013

- V1. (4+4 points) (a) What is the coefficient of x^3y^7 in $(2x-3y)^{10}$? (a) What is the coefficient of xy^2z^3 in $(3x+2y+z)^6$?
- (2 (8 points) Let f: Z⁺ × Z⁺ → Z⁺ be the closed binary operation defined by f(a, b) = gcd(a, b).
 (a) Is f commutative or associative? (b) Does f have an identity element?
 Repeat questions (a) and (b) for f(a, b) = lcm(a, b).
- (3) (10 points) (Pigeon hole principle) Let $p_1, p_2, \ldots, p_n \in \mathbb{Z}^+$. Prove that if $p_1 + p_2 + \cdots + p_n n + 1$ pigeons occupy n pigeonholes, then either the first pigeonhole has p_1 or more pigeons roosting in it, or the second pigeonhole has p_2 or more pigeons roosting in it, ..., or the nth pigeonhole has p_n or more pigeons roosting in it.
 - 4. (3+5 points) (Catalan Numbers) We start at the point (0, 0) in the xy-plane and consider two kinds of moves, $R:(x,y)\to (x+1,y)$ and $U:(x,y)\to (x,y+1)$. How many paths are there from point (0,0) to (10,10) without rising above the line y=x? Justify your answer.
- 5. (5+3 points) Let S(m,n) be a Stirling number of the second kind. (a) Give a combinatorial argument for the equality S(m+1,n) = S(m,n1) + nS(m,n). (b) What is the value of S(90,100)? ⋈ ≥ ⋈
 - 6. (12 points) (a) Find the number of nonnegative integer solutions of the equation x₁ + x₂ + x₃ + x₄ = 38. (b) Repeat (a) with the condition that x₁ ≥ 3, x₂ ≥ 3, x₃ > 3, x₄ > 3. (c) Repeat (a) with the condition that x₄ ≤ 4, 1 ≤ i ≤ 4.
 - (7) (5 points) Given a set A with |A| = n and a relation R on A, let M denote the relation matrix for R Explain the inequality M ∩ M^{tr} ≤ (I_n.)

- (4+4 points) With $\mathcal{U} = \{1, 2, 3\}$ and power set $A = \mathcal{P}(\mathcal{U})$, \mathcal{R} is the subset relation on A such that for $x, y \in A$, $x\mathcal{R}y$ if $x \subseteq y$. (a) Draw the Hasse diagram of the poset (A, \mathcal{R}) . (b) Give the maximal element(s) and the minimal element(s).
- (5 points) For positive integer k, let R be a relation on Z defined by xRy if x y is a multiple of k. Is R an equivalence relation? Justify your answer.
- 0. (10 points) For I = O = {0,1}, a string x ∈ I* is said to have even parity if it contains an even number of 1s. Construct a state diagram for a finite state machine that recognizes all nonempty strings of even parity.
- 11. (8 points) Is it possible to design a finite state machine to recognize sequences in $A = \{0^i 1^j | i, j \in Z^+(i > j)\}$ where the alphabet is $\sigma = \{0, 1\}$? Justify your answer.
- (10 points) Apply the minimization process to the machine defined by the following table.

