by Chebyshev's inequality. Choose $K_{\epsilon} = [-a_{\epsilon}, a_{\epsilon}]$, then K_{ϵ} is compact in \mathbb{R} and $\mu(K_{\epsilon}) \geq 1 - \epsilon$ for all $\mu \in \Lambda(\gamma, q)$, thus $\Lambda(\gamma, q)$ is tight.

Let $B_m = \left[-\frac{1}{m}, \frac{1}{m}\right]$ for $m = 1, 2, \ldots$ Let $\{\mu_n\}_{n=1}^{\infty}$ be a convergent sequence in $\Lambda(\gamma, q)$ with limit μ_0 . Since $\mu_n(B_m) \geq q$ for every m, n, we have [15, Section 3.1]

$$q \le \limsup_{n \to \infty} \mu_n(B_m) \le \mu_0(B_m),\tag{19}$$

and hence

$$\mu_0(\{0\}) = \mu_0 \left(\bigcap_{m=1}^{\infty} B_m\right) = \lim_{m \to \infty} \mu_0(B_m) \ge q.$$
 (20)

Moreover, let $f(x) = x^2$ which is continuous and bounded below. By weak convergence [15, Section 3.1], we have

$$\mathsf{E}_{\mu_0}\left\{X^2\right\} = \int f \mathrm{d}\mu_0 \le \liminf_{n \to \infty} \int f \mathrm{d}\mu_n \le \gamma. \tag{21}$$

Therefore, $\mu_0 \in \Lambda(\gamma, q)$, i.e., $\Lambda(\gamma, q)$ is closed, and the compactness of $\Lambda(\gamma, q)$ then follows.

Since the mutual information $I(\mu)$ is continuous on \mathcal{P} [17, Theorem 9], it must achieve its maximum on the compact set $\Lambda(\gamma, q)$. Hence the capacity-achieving distribution μ_0 exists.

According to [17, Corollary 2], the mutual information $I(\mu)$ is strictly concave. It is easy to see that $\Lambda(\gamma, q)$ is convex. Hence the capacity-achieving distribution μ_0 must be unique.

B. Sufficient and Necessary Conditions

We denote the finite-power set as

$$\Lambda(q) = \bigcup_{0 \le \gamma < \infty} \Lambda(\gamma, q). \tag{22}$$

Let $\phi(\cdot)$ defined in (14) be extended to the complex plane. The relative entropy $d(x; \mu)$ defined in (16) can be extended to the complex plane \mathbb{C} and has the following property:

Lemma 2: For any $\mu \in \Lambda(q)$ and $z \in \mathbb{C}$,

$$d(z;\mu) = \int_{-\infty}^{\infty} \phi(y-z) \log \frac{\phi(y-z)}{p_Y(y;\mu)} dy$$
 (23)