

Exploration in Policy Search by Multiple Importance Sampling

Lorenzo Lupo lorenzo.lupo@mail.polimi.it

April 16th, 2019

Exploration VS Exploitation

Reinforcement Learning Applications

Reinforcement Learning Applications

Reinforcement Learning Applications

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST
- Experiments
- 6. Conclusions

Environment

 \mathcal{P} , \mathcal{R}

Environment

 \mathcal{P} , \mathcal{R}

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Parametric policy:

$$\pi_{\theta}: \mathcal{S} \to \Delta(\mathcal{A}), \text{ i.e., } \pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{a - \theta^{T}\phi(s)}{\sigma}\right)^{2}\right)$$

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Parametric policy:

$$\pi_{\theta}: \mathcal{S} \to \Delta(\mathcal{A}), \text{ i.e., } \pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{a - \theta^{T}\phi(s)}{\sigma}\right)^{2}\right)$$

Performance:

$$\mu(\theta) = \underset{\tau \sim p_{\theta}}{\mathbb{E}}[\mathcal{R}(\tau)],$$
 where p_{θ} is the **distribution over trajectories** $\tau \in \mathcal{T}$ induced by π_{θ}

Cumulative return of a trajectory τ :

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}, \text{ with } \tau = [s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}]$$

Parametric policy:

$$\pi_{\theta}: \mathcal{S} \to \Delta(\mathcal{A}), \text{ i.e., } \pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{a - \theta^{T}\phi(s)}{\sigma}\right)^{2}\right)$$

Performance:

$$\mu(\theta) = \underset{\tau \sim p_{\theta}}{\mathbb{E}}[\mathcal{R}(\tau)],$$
 where p_{θ} is the **distribution over trajectories** $\tau \in \mathcal{T}$ induced by π_{θ}

Objective:

$$\theta^* = \arg \max_{\theta \in \Theta} \mu(\theta).$$

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST
- Experiments
- 6. Conclusions

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

• Ex1: by adopting stochastic policies.

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

- Ex1: by adopting stochastic policies.
- ► Ex2: by augmenting rewards with the entropy of the policy:

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1} + \mathcal{H}(\pi_{\theta}(\cdot|s_h)).$$

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

- ▶ Ex1: by adopting stochastic policies.
- Ex2: by augmenting rewards with the entropy of the policy:

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1} + \mathcal{H}(\pi_{\theta}(\cdot|s_h)).$$

Directed exploration

Leverage on the knowledge acquired during learning.

Undirected exploration

Generate actions based on randomness, without any knowledge of the learning process.

- ▶ Ex1: by adopting stochastic policies.
- Ex2: by augmenting rewards with the entropy of the policy:

$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1} + \mathcal{H}(\pi_{\theta}(\cdot|s_h)).$$

Directed exploration

Leverage on the knowledge acquired during learning.

Count-based techniques.

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST
- Experiments
- 6. Conclusions

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

1. **Select** an arm $\theta_t \in \Theta$;

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

- 1. **Select** an arm $\theta_t \in \Theta$;
- 2. **Sample** a trajectory $\tau_t \in \mathcal{T}$ by following π_{θ_t} ;

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

- 1. **Select** an arm $\theta_t \in \Theta$;
- 2. **Sample** a trajectory $\tau_t \in \mathcal{T}$ by following π_{θ_t} ;
- 3. **Observe** the cumulative return $\mathcal{R}(\tau_t)$.

Decision Set or Arms Set

The parameter space $\Theta \subseteq \mathbb{R}^d$.

Procedure

At every decision step $t \in [0, 1, 2, ..., T]$:

- 1. **Select** an arm $\theta_t \in \Theta$;
- 2. **Sample** a trajectory $\tau_t \in \mathcal{T}$ by following π_{θ_t} ;
- 3. **Observe** the cumulative return $\mathcal{R}(\tau_t)$.

Goal

$$\textbf{Minimize } \textit{Regret}(T) = \sum_{t=0}^{I} \mu(\boldsymbol{\theta}^*) - \mu(\boldsymbol{\theta}_t), \text{ where } \boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta} \in \Theta} \mu(\boldsymbol{\theta})$$

Multi Armed Bandits

Multi Armed Bandits

Simpler framework;

Multi Armed Bandits

- Simpler framework;
- Share the exploration-exploitation tradeoff;

Multi Armed Bandits

- Simpler framework;
- Share the exploration-exploitation tradeoff;
- Ample literature available;

Problem Formulation

Multi Armed Bandits

- Simpler framework;
- Share the exploration-exploitation tradeoff;
- Ample literature available;

Desideratum

sub-linear
$$Regret(T) \Leftrightarrow \lim_{T \to \infty} Regret(T)/T = 0$$

E.g.
$$Regret(T) = \mathcal{O}(\log T)$$

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST
- Experiments
- 6. Conclusions

Algorithm 1 OPTIMIST

1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$

Algorithm 2 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$

Algorithm 3 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**

Algorithm 4 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg\max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$

Algorithm 5 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $au_t \sim p_{ heta_t}$ and observe return $\mathcal{R}(au_t)$
- 6: end for

Algorithm 6 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $au_t \sim p_{ heta_t}$ and observe return $\mathcal{R}(au_t)$
- 6: end for

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \| \boldsymbol{\Phi}_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 7 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $au_t \sim p_{ heta_t}$ and observe return $\mathcal{R}(au_t)$
- 6: end for

Upper Confidence Bound

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \|\Phi_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 8 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $\tau_t \sim p_{\theta_t}$ and observe return $\mathcal{R}(\tau_t)$
- 6: end for

Truncated Multiple Importance Sampling Estimator

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \|\Phi_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 9 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $\tau_t \sim p_{\theta_t}$ and observe return $\mathcal{R}(\tau_t)$
- 6: end for

Exploration Bonus

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \| \boldsymbol{\Phi}_t) \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Algorithm 10 OPTIMIST

- 1: **Input:** initial parameters θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw trajectory $au_0 \sim p_{ heta_0}$ and observe return $\mathcal{R}(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Select arm $\theta_t = \arg \max_{\theta \in \Theta} B_t^{\epsilon}(\theta, \delta_t)$
- 5: Draw trajectory $au_t \sim p_{ heta_t}$ and observe return $\mathcal{R}(au_t)$
- 6: end for

Exploration Bonus

$$\mu(\boldsymbol{\theta}) \leqslant B_t^{\epsilon}(\boldsymbol{\theta}, \delta_t) = \widecheck{\mu}_t^{MIS}(\boldsymbol{\theta}) + \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \left(\frac{\left|d_{1+\epsilon}(p_{\boldsymbol{\theta}_t} \| \boldsymbol{\Phi}_t)\right| \log \frac{1}{\delta_t}}{t}\right)^{\frac{\epsilon}{1+\epsilon}}$$

Continuous Decision Set

Algorithm 11 OPTIMIST2

- 1: **Input:** initial arm θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, discretization schedule $(\nu_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw sample $u_0 \sim p_{\theta_0}$ and observe return $f(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Discretize Θ with a uniform grid $\widetilde{\Theta}_t$ of u_t^d points
- 5: Select arm $\theta_t = \arg\max_{\theta \in \widetilde{\Theta}_t} B_t^{\epsilon}(\theta, \delta_t)$
- 6: Draw sample $au_t \sim p_{ heta_t}$ and observe return $\mathcal{R}(au_t)$
- 7: end for

Continuous Decision Set

Algorithm 12 OPTIMIST2

- 1: **Input:** initial arm θ_0 , confidence schedule $(\delta_t)_{t=1}^T$, discretization schedule $(\nu_t)_{t=1}^T$, order $\epsilon \in (0,1]$
- 2: Draw sample $u_0 \sim p_{\theta_0}$ and observe return $f(au_0)$
- 3: **for** t = 1, ..., T **do**
- 4: Discretize Θ with a uniform grid $\widetilde{\Theta}_t$ of ν_t^d points
- 5: Select arm $\theta_t = \arg\max_{\theta \in \widetilde{\Theta}_t} B_t^{\epsilon}(\theta, \delta_t)$
- 6: Draw sample $au_t \sim p_{ heta_t}$ and observe return $\mathcal{R}(au_t)$
- 7: end for

The Upper Confidence Bound

Regret Analysis

Theorem (1)

Let \mathcal{X} be a discrete arm set with $|\mathcal{X}| = K \in \mathbb{N}_+$. Under Assumption (??), Algorithm 1 with confidence schedule $\delta_t = \frac{3\delta}{t^2\pi^2K}$ guarantees, with probability at least $1 - \delta$:

$$Regret(T) \leqslant \Delta_0 + CT^{\frac{1}{1+\epsilon}} \left[v_{\epsilon} \left(2 \log T + \log \frac{\pi^2 K}{3\delta} \right) \right]^{\frac{\epsilon}{1+\epsilon}},$$

where $C=(1+\epsilon)\left(2\sqrt{2}+\frac{5}{3}\right)\|f\|_{\infty}$, and Δ_0 is the instantaneous regret of the initial arm \mathbf{x}_0 .

This yields a $\mathcal{O}(\sqrt{T \log T})$ regret when $\epsilon = 1$.

Regret Analysis

Theorem (2)

Let \mathcal{X} be a d-dimensional compact arm set with $\mathcal{X} \subseteq [-D,D]^d$. For any $\kappa \geqslant 2$, under Assumptions (??) and (??), Algorithm 11 with confidence schedule $\delta_t = \frac{6\delta}{\pi^2 t^2 \left(1 + \left\lceil t^{1/\kappa} \right\rceil^d\right)} \text{ and discretization schedule } \tau_t = \left\lceil t^{\frac{1}{\kappa}} \right\rceil \text{ guarantees, with probability at least } 1 - \delta$:

$$Regret(T) \leqslant \Delta_0 + C_1 T^{\left(1 - \frac{1}{\kappa}\right)} d + C_2 T^{\frac{1}{1 + \epsilon}} \cdot \left[v_{\epsilon} \left((2 + d/\kappa) \log T + d \log 2 + \log \frac{\pi^2}{3\delta} \right) \right]^{\frac{\epsilon}{1 + \epsilon}},$$

where $C_1=\frac{\kappa}{\kappa-1}LD$, $C_2=(1+\epsilon)\left(2\sqrt{2}+\frac{5}{3}\right)\|f\|_{\infty}$, and Δ_0 is the instantaneous regret of the initial arm \mathbf{x}_0 .

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST
- 5. Experiments
- 6. Conclusions

Linear Quadratic Gaussian Regulator

Mountain Car - Performance

Mountain Car - Exploration

Plan

- 1. Basics of Reinforcement Learning
- 2. Exploration in Policy Search
- 3. Problem Formalization
- 4. OPTIMIST
- Experiments
- 6. Conclusions

Original Contributions

1. Algorithmic contributions: OPTIMIST and OPTIMIST2.

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;
 - 3.2 Continuous Mountain Car;

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;
 - 3.2 Continuous Mountain Car;
 - 3.3 Inverted Pendulum.

Original Contributions

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;
 - 3.2 Continuous Mountain Car;
 - 3.3 Inverted Pendulum.

Paper submission at ICML2019 (International Conference on Machine Learning)

Original Contributions

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;
 - 3.2 Continuous Mountain Car;
 - 3.3 Inverted Pendulum.

Paper submission at ICML2019 (International Conference on Machine Learning)

Future Works

Original Contributions

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;
 - 3.2 Continuous Mountain Car;
 - 3.3 Inverted Pendulum.

Paper submission at ICML2019 (International Conference on Machine Learning)

Future Works

1. Optimization problem

Original Contributions

- 1. Algorithmic contributions: OPTIMIST and OPTIMIST2.
- 2. Theoretical contributions:
 - 2.1 novel problem formalization of Policy Search;
 - 2.2 proved sub-linear regret for both algorithms.
- 3. Experimental contributions
 - 3.1 Linear Quadratic Gaussian regulation;
 - 3.2 Continuous Mountain Car;
 - 3.3 Inverted Pendulum.

Paper submission at ICML2019 (International Conference on Machine Learning)

Future Works

- 1. Optimization problem
- 2. Posterior sampling

Thank you for your attention!

References

- Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems*, pages 2312–2320.
- Agrawal, R. (1995a).
 The continuum-armed bandit problem.

 SIAM Journal on Control and Optimization, 33(6):1926–1951.
- Agrawal, R. (1995b).

 Sample mean based index policies by o (log n) regret for the multi-armed bandit problem.

 Advances in Applied Probability, 27(4):1054–1078.
- Agrawal, S. and Goyal, N. (2013).

 Further optimal regret bounds for thompson sampling.

 In *Artificial intelligence and statistics*, pages 99–107.
- 🗎 Amari, S.-I. (1998).