日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されてる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed this Office.

日 類 年 月 日 ite of Application:

1998年 5月22日

願番号 plication Number:

平成10年特許顯第141919号

颠 人 Alicant (s):

松下電器産業株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

1998年 8月 7日

特許庁長官 Commissioner, Patent Office 保佐山建門

出証番号 出証特平10-3061431

特平10-141919

【書類名】 特許願

【整理番号】 2022500223

【提出日】 平成10年 5月22日

【あて先】 特許庁長官殿

【国際特許分類】 HO4N 1/41

【発明の名称】 画像処理方法,及び画像処理装置,並びにデータ記憶媒

体

【請求項の数】 33

【発明者】

1

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 西 孝啓

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 高橋 俊也

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 ブン チュン セン

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】 角野 眞也

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代表者】 森下 洋一

特平10-141919

【代理人】

【識別番号】 100081813

【弁理士】

【氏名又は名称】 早瀬 憲一

【電話番号】 06(380)5822

【先の出願に基づく優先権主張】

【出願番号】 平成 9年特許願第200499号

【出願日】 平成 9年 7月25日

【先の出願に基づく優先権主張】

【出願番号】 平成 9年特許願第253765号

【出願日】

平成 9年 9月18日

【手数料の表示】

【予納台帳番号】 013527

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9600402

【書類名】 明細書

【発明の名称】 画像処理方法,及び画像処理装置,並びにデータ記憶媒体【特許請求の範囲】

【請求項1】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロックの画像信号に対応する周波数成分に対する符号化の処理 順序を、該被符号化ブロック画像信号がフレーム周波数変換処理を施したもので あるかフィールド周波数変換処理を施したものであるかに応じて設定し、

上記被符号化ブロック画像信号に対応する周波数成分を、設定された処理順序でもって順次符号化することを特徴とする画像処理方法。

【請求項2】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理が、フレームを1単位として行われたフレーム単位処理であるか、フィールドを1単位として行われたフレーム単位処理であるか、フィールドを1単位として行われたフィールド単位処理であるかによって決まる配列順序で並べ替えて、上記被復号化ブロックに対応する周波数成分を生成し、

該被復号化ブロックに対応する周波数成分に逆周波数変換処理を施して、該被 復号化ブロックに対応する画像信号を再生することを特徴とする画像処理方法。

【請求項3】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波

数変換処理のいずれかの種類の周波数変換処理により周波数成分に変換し、

上記被符号化ブロックの画像信号に対応する周波数成分に対する符号化の処理 順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、該 被符号化ブロック周辺に位置する符号化済ブロックの画像信号に施された周波数 変換処理の種類との組合せのパターンに応じて設定し、

上記被符号化ブロックの画像信号に対応する周波数成分を、設定された処理順 序でもって順次符号化することを特徴とする画像処理方法。

【請求項4】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、

種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理と、該被復号化ブロックの周辺に位置する復号化済ブロックに対応する画像信号に施された周波数変換処理との組み合わせのパターンによって決まる配列順序で並べ替えて、上記被復号化ブロックに対応する周波数成分を生成し、

該被復号化ブロックに対応する周波数成分に逆周波数変換処理を施して、該被 復号化ブロックに対応する画像信号を再生することを特徴とする画像処理方法。

【請求項5】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の予測処理により被符号化ブロックの周波数成分の予測値を生成し、

上記被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の 処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と 、上記予測処理の種類との組合せのパターンに応じて設定し、

該被符号化ブロックに対応する差分値を、設定された処理順序でもって順次符

号化することを特徴とする画像処理方法。

【請求項6】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、

予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理の種類と上記予測処理の種類との組合せのパターンによって決まる配列順序で並べ替え、

上記被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から、上記予測処理の種類に基づいて該被復号化ブロックに対応する周波数成分の予測値を生成し、

上記並び替え後の入力信号と上記予測値とに基づいて、被復号化ブロックに対応する周波数成分を生成し、

上記被復号化ブロックに対応する周波数成分に対して、逆周波数変換処理を施して、上記被復号化ブロックに対応する画像信号を再生することを特徴とする画像処理方法。

【請求項7】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の予測処理により被符号化ブロックに対応する周波数成分の予測値を 生成し、

上記被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の 処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と 、該被符号化ブロック周辺に位置する符号化済ブロックの画像信号に施された周 波数変換処理の種類と、上記予測処理の種類との組合せのパターンに応じて設定 し、

該被符号化ブロックに対応する差分値を、設定された処理順序でもって順次符 号化することを特徴とする画像処理方法。

【請求項8】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号の復号化処理を、上記ブロック毎に行う画像処理方法であって、

予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理の種類と、該被復号化ブロックの周辺に位置する復号化済ブロックに対応する画像信号に施された周波数変換処理の種類と、上記予測処理の種類との組合せのパターンによって決まる配列順序で並べ替え、

上記被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から、上記予測処理の種類に基づいて該被復号化ブロックに対応する周波数成分の予測値を生成し、

上記並び替え後の入力信号と上記予測値とに基づいて、被復号化ブロックに対応する周波数成分を生成し、

上記被復号化ブロックに対応する周波数成分に対して、逆周波数変換処理を施 して、上記被復号化ブロックに対応する画像信号を再生することを特徴とする画 像処理方法。

【請求項9】 入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、

上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、

上記ブロック化された画像信号を各ブロック毎に周波数変換して、各ブロック の画像信号に対応する周波数成分を出力する周波数変換器と、

上記周波数成分を量子化して、各ブロック画像信号に対応する量子化値を出力

する量子化器と、

上記量子化値にその配列順序の並べ替えにより所定の処理順序を設定する、並 べ替え処理の際の順序が異なる複数のスキャン器と、

上記周波数変換タイプ情報に応じて上記量子化値の並べ替えに用いるスキャン 器を選択する制御信号を出力するスキャン制御器と、

上記並べ替え後の量子化値を可変長符号化する可変長符号化器とを備えたこと を特徴とする画像処理装置。

【請求項10】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、

各ブロックに対応する画像信号の周波数成分の量子化値に並べ替え処理及び可変長符号化処理を施して得られる符号化列を可変長復号化する可変長復号化器と

上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施し、上記量子化値を出力する、並べ替え処理の際の順序が異なる複数の逆スキャン器と、

上記周波数変換処理の種類を示す周波数変換タイプ情報に応じて上記量子化値 の並べ替えに用いるスキャン器を選択する制御信号を出力するスキャン制御器と

上記量子化値を逆量子化して上記各ブロックに対応するブロック化された画像 信号の周波数成分を出力する逆量子化器と、

該周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する逆 周波数変換器と、

上記ブロック化された画像信号を、上記符号化処理における周波数変換処理が フレーム単位またはフィールド単位のいずれの単位での処理であるかを示す周波 数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロ ック化器とを備えたことを特徴とする画像処理装置。 【請求項11】 入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、

上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、

上記ブロック化された画像信号を上記ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成分を出力する周波数変換器と、

該周波数成分を量子化して、各ブロックの画像信号に対応する量子化値を出力 する量子化器と、

上記符号化処理の対象となる被符号化ブロック周辺に位置する符号化済ブロックに対応する量子化値から上記被符号化ブロックに対応する量子化値の予測値を 生成し、該予測値とともに上記予測値の生成処理の種類に関する予測情報を出力 する予測器と、

上記被符号化ブロックに対応する量子化値から上記予測値を減算して差分値を 出力する第1の加算器と、

上記差分値と上記予測値との加算によりその加算値を符号化済ブロックに対応 する量子化値として出力する第2の加算器と、

上記差分値の並べ替えを行う、並べ替え順序が異なる複数のスキャン器と、

上記予測情報および上記周波数変換タイプ情報に応じて上記差分値の並べ替え に用いるスキャン器を選択する制御信号を出力するスキャン制御器と、

上記並べ替え後の差分値を可変長符号化する可変長符号化器とを備えたことを 特徴とする画像処理装置。

【請求項12】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、

各ブロックに対応する画像信号の周波数成分の量子化値に対し、その予測処理 ,並べ替え処理,及び可変長符号化処理を施して得られる符号化列を可変長復号 化する可変長復号化器と、

上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、並べ替え処理の際の順序が異なる複数の逆スキャン器と、

上記周波数変換処理の種類を示す周波数変換タイプ情報、及び上記予測処理の種類を示す予測情報に応じて、上記量子化値の並べ替えに用いるスキャン器を選択する制御信号を出力するスキャン制御器と、

上記量子化値を逆量子化して上記各ブロックに対応するブロック化された画像 信号の周波数成分を出力する逆量子化器と、

上記周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する 逆周波数変換器と、

上記ブロック化された画像信号を上記周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロック化器とを備えたことを特徴とする画像処理装置。

【請求項13】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロックの画像信号に対応する周波数成分に対する符号化の処理 順序を、符号化済みブロックの画像信号に対応する周波数成分の分布に応じて設 定し、

上記被符号化ブロックの画像信号に対応する周波数成分を、設定された処理順序でもって順次符号化することを特徴とする画像処理方法。

【請求項14】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、

種々の周波数成分を所定順序で符号化して得られる入力信号を、復号化済みブ

ロックに対応する画像信号の周波数成分の分布によって決まる配列順序で並べ替 えて、復号化処理の対象となる被復号化ブロックに対応する周波数成分を生成し

上記被復号化ブロックに対応する周波数成分に逆周波数変換処理を施して、該 被復号化ブロックに対応する画像信号を再生することを特徴とする画像処理方法

【請求項15】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の予測処理により被符号化ブロックの周波数成分の予測値を生成し、

上記被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の 処理順序を上記予測処理の種類に応じた順序に適応的に設定する第1の順序設定 動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2 の順序設定動作とを、適応的な順序設定を行うか否かを示すフラグ情報に基づい て切り替えて行い、

該被符号化ブロックに対応する差分値を、設定された処理順序でもって順次符号化して、上記フラグ情報と共に送信あるいは蓄積することを特徴とする画像処理方法。

【請求項16】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、

予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記予測処理の種類に応じた順序に適応的に並べ替える第1の並替動作と、該入力信号を上記予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上記入力信号と共に入力される適応的な並替えを行うか否かを示す

フラグ情報に基づいて切り替えて行い、

復号化処理の対象となる被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から、上記予測処理に基づいて該被復号化ブロックに対応する周波数成分の予測値を生成し、

上記並び替え後の入力信号と上記予測値とに基づいて、被復号化ブロックに対応する周波数成分を生成し、

上記被復号化ブロックに対応する周波数成分に対して、逆周波数変換処理を施 して、上記被復号化ブロックに対応する画像信号を再生することを特徴とする画 像処理方法。

【請求項17】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号の予測値を、該被符号 化ブロックが含まれる表示画面とは別の符号化済みの表示画面に対応する画像信 号から所定の予測処理により生成し、

上記被符号化ブロックの画像信号とその予測値との差分値を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロックの周波数成分に対する符号化の処理順序を上記予測処理 の種類に応じた順序に適応的に設定する第1の順序設定動作と、上記処理順序を 上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作とを、適 応的な順序設定を行うか否かを示すフラグ情報に基づいて切り替えて行い、

該被符号化ブロックに対応する周波数成分を、設定された処理順序でもって順 次符号化して、上記フラグと共に送信あるいは蓄積することを特徴とする画像処 理方法。

【請求項18】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換を含む処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、

予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信

号を、上記予測処理の種類に応じた順序に適応的に並べ替える第1の並替動作と、該入力信号を上記予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上記入力信号と共に入力される適応的な並替えを行うか否かを示すフラグ情報に基づいて切り替えて行い、

上記並び替え後の入力信号に対して、逆周波数変換処理を施して、復号化処理 の対象となる被復号化ブロックに対応する差分信号を生成し、

該被復号化ブロックの画像信号の予測値を、該被復号化ブロックが含まれる表示画面とは別の復号化済みの表示画面の画像信号から、上記予測処理に基づいて生成し、

上記差分信号と上記予測値とに基づいて、被復号化ブロックに対応する画像信号を再生することを特徴とする画像処理方法。

【請求項19】 入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、

上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、

上記ブロック化された画像信号を上記ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成分を出力する周波数変換器と、

該周波数成分を量子化して、各ブロック画像信号に対応する量子化値を出力する量子化器と、

上記量子化値にその配列順序の並べ替えにより所定の処理順次を設定する、並べ替え処理の際の順序が異なる複数のスキャン器と、

上記量子化器の出力を特性解析により、各ブロックの量子化値に適した並べ替えを行うスキャン器を指定するスキャン指定信号を出力する特性解析器と、

上記特性解析器からのスキャン指定信号を一時的に蓄えるメモリと、

上記メモリに蓄えられているスキャン指定信号に基づいて、符号化処理の対象 となる被符号化ブロックの量子化値の並べ替えに用いるスキャン器を選択する制 御信号を出力するスキャン制御器と、

上記並べ替え後の量子化値を可変長符号化する可変長符号化器とを備えたこと を特徴とする画像処理装置。

【請求項20】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、

各ブロックに対応する画像信号の周波数成分の量子化値に対し、並べ替え処理 、及び可変長符号化処理を施して得られる符号化列を可変長復号化する可変長復 号化器と、

上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、並べ替え処理の際の順序が異なる複数の逆スキャン器と、

上記逆スキャン器の出力の特性解析により、各ブロックの量子化値に適した並 べ替えを行うスキャン器を指定するスキャン指定信号を出力する特性解析器と、

上記特性解析器からのスキャン指定信号を一時的に蓄えるメモリと、

上記メモリに蓄えられているスキャン指定信号に基づいて、上記被復号化ブロックの量子化値の並べ替えに用いる逆スキャン器を選択する制御信号を出力するスキャン制御器と、

上記選択された逆スキャン器から出力される量子化値を逆量子化して上記各ブロックに対応する画像信号の周波数成分を出力する逆量子化器と、

上記周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する 逆周波数変換器と、

上記ブロック化された画像信号を、上記符号化処理における周波数変換処理が フレーム単位またはフィールド単位のいずれの単位での処理であるかを示す周波 数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロ ック化器とを備えたことを特徴とする画像処理装置。

【請求項21】 入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号

の符号化処理を上記ブロック毎に行う画像処理装置であって、

上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、

上記ブロック化された画像信号を上記ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成分を出力する周波数変換器と、

該周波数成分を量子化して、各ブロック画像信号に対応する量子化値を出力する量子化器と、

被符号化ブロック周辺に位置する符号化済ブロックに対応する量子化値から上記被符号化ブロックに対応する量子化値の予測値を生成し、該予測値とともに上記予測値の生成処理の種類に関する予測情報を出力する予測器と、

上記被符号化ブロックに対応する量子化値から上記予測値を減算して差分値を 出力する第1の加算器と、

上記差分値と上記予測値との加算によりその加算値を符号化済ブロックに対応 する量子化値として出力する第2の加算器と、

上記差分値の並べ替えを行う、選択信号により選択される、並べ替え処理の際 の順序が異なる複数のスキャン器と、

上記予測情報に応じて上記差分値の並べ替えに用いるスキャン器を選択する第 1の制御信号を出力するスキャン制御器と、

システム外部あるいはシステム内にて生成されるスキャン切替信号に応じて、 上記第1の制御信号あるいは特定のスキャンを選択する第2の制御信号のいずれ かを選択し、該選択した制御信号を上記スキャン器の選択信号として出力するス イッチと、

上記並べ替え後の差分値を可変長符号化する可変長符号化器とを備えたことを 特徴とする画像処理装置。

【請求項22】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロッ

ク毎に行う画像処理装置であって、

各ブロックに対応する画像信号の周波数成分の量子化値に対し、その予測処理 ,並べ替え処理,及び可変長符号化処理を施して得られる符号化列を可変長復号 化する可変長復号化器と、

上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、選択信号により選択される、並べ替え処理の際の順序が異なる複数の逆スキャン器と、

予測処理の種類を示す予測情報に応じて、上記量子化値の並べ替えに用いるスキャン器を選択する第1の制御信号を出力するスキャン制御器と、

スキャン切替信号に応じて、上記第1の制御信号あるいは特定のスキャンを選択する第2の制御信号のいずれかを選択し、該選択した制御信号を上記選択信号 して出力するスイッチと、

上記予測情報に応じて、被復号化ブロック周辺に位置する復号化済ブロックに対応する量子化値から上記被復号化ブロックに対応する量子化値の予測値を生成する予測器と、

上記逆スキャン器の出力に上記予測値を加算する加算器と、

上記加算器の出力を逆量子化して上記各ブロックに対応する画像信号の周波数 成分を出力する逆量子化器と、

上記周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する 逆周波数変換器と、

上記ブロック化された画像信号を上記符号化処理における周波数変換処理がフレーム単位またはフィールド単位のいずれの単位での処理であるかを示す周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロック化器とを備えたことを特徴とする画像処理装置。

【請求項23】 入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、

上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィー ルド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記 ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換 タイプ情報を出力するブロック化器と、

上記ブロック化された画像信号から、上記ブロック化された画像信号の予測値 を減算し、差分信号を出力する第1の加算器と、

上記差分信号を、上記ブロック毎に周波数変換して、各ブロックの差分信号に 対応する周波数成分を出力する周波数変換器と、

該周波数成分を量子化して、各ブロック画像信号に対応する量子化値を出力する量子化器と、

上記量子化値を逆量子化して、各ブロックの差分信号に対応する周波数成分を 出力する逆量子化器と、

上記逆量子化器の出力を逆周波数変換して、各ブロックの差分信号を出力する 逆周波数変換器と、

上記逆周波数変換器の出力と上記予測値を加算して、符号化済み表示画面を構成する符号化済ブロックの画像信号としてフレームメモリに格納する第2の加算器と、

上記フレームメモリに格納されている符号化済ブロックの画像信号および上記 ブロック化された画像信号に基づいて上記予測値を生成し、該予測値とともに上 記予測値の生成処理に関する予測情報を出力する予測器と、

上記量子化値の並べ替えを行う、並べ替え処理の際の順序が異なる複数のスキャン器と、

システム外部あるいはシステム内部にて生成されたスキャン切替信号および上 記予測情報に応じて上記差分値の並べ替えに用いるスキャン器を選択する制御信 号を出力するスキャン制御器と、

上記並べ替え後の差分値を可変長符号化する可変長符号化器とを備えたことを 特徴とする画像処理装置。

【請求項24】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、

各ブロックに対応する画像信号に対し、その予測処理、周波数変換処理、量子 化処理、並べ替え処理,及び可変長符号化処理を施して得られる符号化列を可変 長復号化する可変長復号化器と、

上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、並べ替え処理の際の順序が異なる複数の逆スキャン器と、

スキャン切替信号および予測処理の種類を示す予測情報に応じて、上記量子化 値の並べ替えに用いる逆スキャン器を選択する制御信号を出力する逆スキャン制 御器と、

上記逆スキャン器の出力を逆量子化し、上記各ブロックに対応する差分信号の 周波数成分を出力する逆量子化器と、

上記周波数成分を逆周波数変換し、上記各ブロックに対応する差分信号を出力 する逆周波数変換器と、

上記差分信号と上記各ブロックに対応する画像信号の予測値を加算し、上記ブロック化された画像信号を出力する加算器と、

上記加算器の出力を、復号化済み表示画面を構成する復号化済ブロックの画像 信号として蓄えるフレームメモリと、

上記予測情報と復号化済みブロックの画像信号に基づいて上記予測値を生成する予測器と、

上記ブロック化された画像信号を、上記符号化処理における周波数変換処理が フレーム単位またはフィールド単位のいずれの単位での処理であるかを示す周波 数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロ ック化器とを備えたことを特徴とする画像処理装置。

【請求項25】 デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号の画面間予測値を、該 被符号化ブロックが含まれる表示画面とは別の符号化済みの表示画面に対応する 画像信号から所定の画面間予測処理により生成し、 上記被符号化ブロックの画像信号とその画面間予測値との画面間差分値、あるいは上記符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、

上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の画面内予測処理により被符号化ブロックの周波数成分の画面内予測値を生成し、

上記被符号化ブロックの周波数成分とその画面内予測値との画面内差分値に対する符号化の処理順序を上記予測処理の種類に応じた順序に適応的に設定する処理を含む第1の順序設定動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作とを、順序設定の切替を示すフラグ情報に基づいて切り替えて行い、

該被符号化ブロックに対応する画面内差分値を、設定された処理順序でもって 順次符号化して、上記フラグ情報と共に送信あるいは蓄積することを特徴とする 画像処理方法。

【請求項26】 請求項25記載の画像処理方法において、

上記デジタル画像信号としてインターレース画像信号を受け、

上記第1の順序設定動作では、上記周波数変換処理により得られる周波数成分が被符号化ブロックの画面間差分値に対応するインター符号化ブロックについては、該周波数成分に対する、低周波数側から高周波数側に向けての処理順序の設定を、表示画面の水平方向に沿って並ぶ成分と垂直方向に沿って並ぶ成分の間で均等な優先順位となるよう行い、上記周波数変換処理により得られる周波数成分が被符号化ブロックの画像信号に対応するイントラ符号化ブロックについては、該周波数成分に対する、低周波数側から高周波数側に向けての処理順序の設定を、画面内予測処理の種類に応じて適応的に行い、

上記第2の順序設定動作では、上記インター符号化ブロック及びイントラ符号 化ブロックとも、上記周波数変換処理により得られる周波数成分に対する、低周 波数側から高周波数側に向けての処理順序の設定を、表示画面の垂直方向に沿っ て並ぶ成分が水平方向に沿って並ぶ成分より優先されるよう行うことを特徴とす る画像処理方法。

【請求項27】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、

画面間予測処理が施された種々の周波数成分を所定順序で符号化して得られる、復号化処理の対象となる被復号化ブロックの入力信号を、画面内予測処理の種類に応じた順序に適応的に並べ替える処理を含む第1の並替動作と、該入力信号を上記予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上記入力信号と共に入力される並替えの切替を示すフラグ情報に基づいて切り替えて行い、

復号化処理の対象となる被復号化ブロックの周辺に位置する復号化済ブロック に対応する周波数成分から、画面内予測処理により該被復号化ブロックに対応す る周波数成分の画面内予測値を生成し、

上記並び替え後の入力信号と上記画面内予測値とに基づいて、被復号化ブロックに対応する周波数成分を生成し、

上記被復号化ブロックに対応する周波数成分に対して、逆周波数変換処理を施 して、上記被復号化ブロックに対応する画像信号あるいは差分信号を生成し、

該被復号化ブロックに対応する差分信号に対しては、該被復号化ブロックが含まれる表示画面とは別の復号化済の表示画面の画像信号から上記画面間予測処理により生成した、該被復号化ブロックの画像信号の画面間予測値を、上記差分信号と加算する処理を行って、被復号化ブロックに対する画像信号を生成することを特徴とする画像処理方法。

【請求項28】 請求項27記載の画像処理方法において、

上記復号化処理の対象となる符号化画像信号として、インターレース画像信号 を上記各プロック毎に符号化して得られるインターレース画像符号化信号を受け

上記第1の並替動作では、

上記インターレース画像信号の周波数変換処理により得られた周波数成分が被 符号化ブロックの画面間差分値に対応するインター符号化ブロックについては、 その低周波数側から高周波数側へ向かって順に、表示画面の水平方向に沿って 並ぶ成分と垂直方向に沿って並ぶ成分の間で均等な優先順位となるような処理順 序の均等な設定がなされた周波数成分に対して、該均等な設定による処理順序に 応じた並べ替え処理を施し、

上記インターレース画像信号の周波数変換処理により得られた周波数成分が被符号化ブロックの画像信号に対応するイントラ符号化ブロックについては、その低周波数側から高周波数側に向かって順に、画面内予測処理の種類に応じて適応的な処理順序の設定がなされた周波数成分に対して、該適応的な設定による処理順序に応じた並べ替え処理を施し、

上記第2の並替動作では、

上記インター符号化ブロック及びイントラ符号化ブロックについて共に、その 低周波数側から高周波数側へ向かって順に、表示画面の垂直方向に沿って並ぶ成 分が水平方向に沿って並ぶ成分より優先されるような縦優先の処理順序の設定が なされた、上記インターレース画像信号の周波数変換処理により得られた周波数 成分に対して、該縦優先の順序設定による処理順序に応じた並べ替え処理を施す ことを特徴とする画像処理方法。

【請求項29】 入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、

上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、

上記ブロック化された画像信号に対して、画像信号の画面間予測を含むデータ 圧縮処理を施して、各ブロックに対応する圧縮データを出力するとともに、上記 画面間予測に関連する予測情報を出力するデータ圧縮手段と、

被符号化ブロック周辺に位置する符号化済ブロックに対応する圧縮データから 上記被符号化ブロックに対応する圧縮データの画面内予測値を生成して、該圧縮 データと画面内予測値との差分値を出力するとともに、該画面内予測値とともに 上記画面内予測値の生成処理の種類に関する画面内予測情報を出力する画面内予 測手段と、

上記差分値の並べ替えを行う、選択信号により選択される、並べ替え処理の際の順序が異なる複数のスキャン器を有し、 上記画面間予測情報、及びシステム外部あるいはシステム内にて生成されるスキャン切替信号に応じて、上記差分値の並べ替えに用いるスキャン器を選択するスキャン手段と、

上記並べ替え後の差分値を可変長符号化する可変長符号化器とを備え、

上記スキャン手段は、

上記被符号化ブロックに対応する差分値に対する符号化の処理順序を上記画面 内予測処理の種類に応じた順序に適応的に設定する処理を含む第1の順序設定動 作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の 順序設定動作とを、上記スキャン切替信号に基づいて切り替えて行う構成となっ ていることを特徴とする画像処理装置。

【請求項30】 請求項29記載の画像処理装置において、

上記データ圧縮手段は、

上記ブロック化された画像信号から、上記ブロック化された画像信号の画面間 予測値を減算し、差分信号を出力する第1の加算器と、

上記差分信号を、上記ブロック毎に周波数変換して、各ブロックの差分信号に 対応する周波数成分を出力する周波数変換器と、

該周波数成分を量子化して、各ブロックの差分信号に対応する量子化値を上記 圧縮データとして出力する量子化器と、

上記量子化値を逆量子化して、各ブロックの差分信号に対応する周波数成分を 出力する逆量子化器と、

上記逆量子化器の出力を逆周波数変換して、各ブロックの差分信号を出力する 逆周波数変換器と、

上記逆周波数変換器の出力と上記画面間予測値を加算して、符号化済み表示画面を構成する符号化済ブロックの画像信号としてフレームメモリに格納する第2の加算器と、

上記フレームメモリに格納されている符号化済ブロックの画像信号および上記

ブロック化された画像信号に基づいて上記画面間予測値を生成し、該画面間予測値とともに上記画面間予測値の生成処理に関する画面間予測情報を出力する画面間予測器とから構成されており、

上記画面内予測手段は、

被符号化ブロック周辺に位置する符号化済ブロックに対応する量子化値から上記被符号化ブロックに対応する量子化値の画面内予測値を生成し、該画面内予測値とともに上記画面内予測値の生成処理の種類に関する画面内予測情報を出力する画面内予測器と、

上記被符号化ブロックに対応する量子化値から上記画面内予測値を減算して画面内差分値を出力する第3の加算器と、

上記差分値と上記画面内予測値との加算によりその加算値を上記符号化済ブロックに対応する量子化値として出力する第4の加算器とからなることを特徴とする画像処理装置。

【請求項31】 デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、

各ブロックに対応する画像信号に対し、その予測処理、周波数変換処理、量子 化処理、並べ替え処理,及び可変長符号化処理を施して得られる符号化列を可変 長復号化する可変長復号化器と、

上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、並べ替え処理の際の順序が異なる複数の逆スキャン器を有し、システム外部あるいはシステム内にて生成されるスキャン切替信号および上記予測処理の種類を示す予測情報に応じて、上記量子化値の並べ替えに用いる逆スキャン器を選択する逆スキャン手段と、

画面内予測情報に応じて、被復号化ブロック周辺に位置する復号化済ブロックに対応する量子化値から上記被復号化ブロックに対応する量子化値の画面内予測値を生成し、上記逆スキャン手段の出力と該画面内予測値との加算値を出力する画面内予測手段と、

該画面内予測手段の出力に対して、画面間予測復号化処理を施して、ブロック

化された画像信号を生成するデータ伸長手段と、

上記周波数変換処理の単位を示す周波数変換タイプ情報に応じて上記ブロック 化された画像信号を逆ブロック化してデジタル画像信号を出力する逆ブロック化 器とを備え、

上記逆スキャン手段は、

画面間予測処理が施された種々の周波数成分を所定順序で符号化して得られる、被復号化ブロックの入力信号を、上記画面内予測処理の種類に応じた順序に適応的に並べ替える処理を含む第1の並替動作と、該被復号化ブロックの入力信号を予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上記入力信号と共に入力される、並替えの切替を示すフラグ情報に基づいて切り替えて行う構成となっていることを特徴とする画像処理装置。

【請求項32】 請求項31記載の画像処理装置において、

上記画面内予測手段は、

画面内予測情報に応じて、被復号化ブロック周辺に位置する復号化済ブロックに対応する量子化値から上記被復号化ブロックに対応する量子化値の画面内予測値を生成する画面内予測器と、

上記選択された逆スキャン器の出力に上記画面内予測値を加算する第1の加算 器とからなり、

上記データ伸長手段は、

該第1の加算器の出力を逆量子化し、上記各ブロックに対応する差分信号の周 波数成分を出力する逆量子化器と、

上記周波数成分を逆周波数変換し、上記各ブロックに対応する差分信号を出力 する逆周波数変換器と、

上記差分信号と上記各ブロックに対応する画像信号の画面間予測値を加算し、 上記ブロック化された画像信号を出力する第2の加算器と、

上記第2の加算器の出力を、復号化済み表示画面を構成する復号化済ブロック の画像信号として蓄えるフレームメモリと、

上記画面間予測情報と復号化済みブロックの画像信号に基づいて上記画面間予 測値を生成する画面間予測器とからなることを特徴とする画像処理装置。 【請求項33】 画像処理プログラムを格納したデータ記憶媒体であって、

上記画像処理プログラムは、請求項1ないし8、請求項13ないし18、あるい請求項25または27のいずれかに記載された画像処理方法による画像処理を、コンピュータに行わせるよう構成されていることを特徴とするデータ記憶媒体

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、画像処理方法、及び画像処理装置、並びにデータ記憶媒体に関し、特にインタレース画像信号の周波数成分を可変長符号化する処理において、適応的に周波数成分の系列の並べ替えを行うことで、符号化効率を向上するようにしたものに関するものである。

[0002]

【従来の技術】

最近の画像符号化処理においては離散コサイン変換(DCT)が広く利用されており、代表的な画像符号化方式であるMPEGにおいては、入力される画像信号を、DCT処理の単位である1表示画面を構成する複数の矩形ブロックの各々に対応するよう分割し、ブロック化された画像信号に対して、各ブロック毎にDCT処理が施される。

[0003]

以下、MPEGにおける画像符号化処理を具体的に説明する。

図26は、上記画像符号化処理を行う従来の画像処理装置の概略構成を示すブロックであり、図において、200aは、画像信号に対して、DCT処理を含む符号化処理を施す従来の画像処理装置である。この画像処理装置200aは、入力される画像信号101を、1表示画面を構成する複数のブロックの各々に対応するよう分割して、ブロック化された画像信号を生成するブロック化器102と、該ブロック化された画像信号103に対してDCT処理を各ブロック毎に施して、上記画像信号を周波数成分(DCT係数)に変換するDCT処理器104と、該DCT処理器104の出力105を量子化して、各ブロックに対応する量子

化値107を生成する量子化器106とを有している。ここで、上記DCT処理器104及び量子化器106は情報源符号化部200a1を構成している。

[0004]

また、上記画像処理装置200aは、量子化されたDCT係数(量子化値)に その符号化のための処理順序を設定するスキャン器109と、該処理順序が設定 された量子化値111を、上記処理順序に従って可変長符号化して、各ブロック の画像信号に対応する符号化列113を生成するVLC処理器112とを有して いる。

[0005]

次に動作について説明する。

入力された画像信号101は、ブロック化器102にて、まず8×8画素の矩形ブロックに対応するようブロック化される。ブロック化された入力画像信号103は、DCT処理器104にてDCT処理が施されて複数の周波数成分(DCT係数)に変換され、さらに該DCT係数は、量子化器106にて量子化される

[0006]

該量子化されたDCT係数107は、可変長符号化(VLC)処理の効率が向上するようにスキャン器109にてその並べ替えが行われ、つまり符号化のための処理順序が設定され、さらにその後、該並べ替えられた量子化値は、VLC処理器112にて順次上記設定された処理順序に従って可変長符号化(VLC)処理が施される。なお、VLC処理では、ランレングス符号化を用いるため、同程度の大きさの係数が続くようにスキャンを実施すると、VLC処理の効率が向上する。

[0007]

ところで、インタレース画像信号の符号化処理では、隣り合う走査線間の相関が強い場合には、フレームDCT処理、つまりフレームを1単位とするDCT処理が実施され、フィールド内の相関が強い場合には、フィールドDCT処理、つまりフィールドを1単位とするDCT処理が実施される。

[0008]

具体的には、インタレース画像信号のフレームDCT処理では、図27に示すように、第1フィールドの走査線と第2フィールドの走査線とを交互に並べて1フレーム画面を形成し、この1フレーム画面を複数のマクロブロック(16×16画素)に分割し、さらに各マクロブロックを4つのサブブロック(8×8画素)に分割し、各サブブロック毎にこれに対応する画像信号にDCT処理を施す。

[0009]

また、インタレース画像信号のフィールドDCT処理では、1フレーム画面を構成する個々のマクロブロック毎に、第1フィールドの走査線のみからなる2つの第1のサブブロックと、第2フィールドの走査線のみからなる2つの第2のサブブロックとを形成し、それぞれのサブブロック毎にこれに対応する画像信号にDCT処理を施す。

[0010]

MPEGでは、マクロブロック毎にフレームDCTとフィールドDCTが適応的に選択されて実施される。そのため、入力された画像信号を正しく復号化するために、上記画像符号化装置200aでは、ブロック化器102からはブロック化した画像信号103とともに、マクロブロック毎にDCTの処理単位を示すDCT処理情報(つまり個々のマクロブロックに対してフレームDCTとフィールドDCTのいずれのDCT処理が施されているかを示す情報)114を出力するようにしている。フィールドDCTを施したサブブロック(フィールドDCTブロック)に対応するDCT係数群には、該サブブロックが1フレーム画面を構成する走査線の奇数番目あるいは偶数番目の走査線のみから構成されているため、フレームDCTを施したサブブロック(フィールドDCTブロック)のDCT係数群に比べて、表示画面の縦方向における画素値の変化率が大きいことを示すDCT係数が多く含まれている。

[0011]

図28は、図26に示す画像符号化装置に対応する画像復号化装置の概略構成を示すブロック図であり、図において、200bは、上記画像符号化装置200 aにより符号化された画像符号化信号113を復号化する画像処理装置(画像復 号化装置)である。この画像復号化装置200bは、上記画像符号化信号113に対して可変長復号化処理を施す可変長復号化器201と、該復号化処理により得られた量子化値111に、その配列順序が符号化処理における並べ替え処理を施す前の配列順序に戻るよう逆スキャン処理を施す逆スキャン器202と、該逆スキャン処理により得られた、復号化処理の対象となる被復号化ブロックに対応するDCT係数(周波数成分)105を生成する逆量子化器203とを有している。また、上記画像復号化装置200bは、上記DCT係数105に対して逆DCT処理を施して、被復号化ブロックに対応する画像信号103を生成する逆DCT器204と、該画像信号103に対して、上記DCT処理情報114に基づいて逆ブロック化を行って、1フレーム画面に対応する画像信号101を再生する逆ブロック化器205とを有している。ここで、上記逆量子化器203及び逆DCT処理器204は情報源復号化部200b1を構成している。

[0012]

このような画像復号化装置200bでは、上記画像符号化装置200aにおける各変換処理に対する逆変換処理を、上記画像符号化信号113に対して、符号化処理の際とは逆の順序で施すことにより、該画像符号化信号113の復号化処理を正しく行う。

[0013]

図29は、従来の他の画像符号化装置の概略構成を示すブロック図である。

図において、200cは、フレーム内の情報を利用して、被符号化ブロックの量子化値の予測値を生成し、この予測値と被符号化ブロックの量子化値との差分を符号化する画面内予測符号化処理を行う画像処理装置(画像符号化装置)である。

[0014]

この画像符号化装置200cは、上記画像符号化装置200aの構成に加えて、 、上記予測値を生成する予測部200c2と、該予測値の生成に関するパラメータを用いてスキャン方法を切替え可能なスキャン部200c1とを有している。

[0015]

上記予測部200c2は、予測値303を生成して出力するとともに、予測値

の生成に関連する第1,第2の予測情報309a,309bを出力する予測器305と、上記量子化器106の出力107と予測器305の予測出力(予測値)303との減算処理を行う加算器301と、該加算器301の出力302と上記予測器305の出力303との加算処理を行う加算器304とを有している。

[0016]

また、上記スキャン部200c1は、上記予測部200c2の出力に対して、スキャン処理を施す、スキャン方法の異なる3つのスキャン器(1)109s1~(3)109s3と、制御信号116に基づいて上記3つのスキャン器のうちの1つを選択し、選択したスキャン器に上記予測部200c2の出力302を供給する第1のスイッチ108cと、制御信号116に基づいて上記3つのスキャン器のうちの1つを選択し、選択したスキャン器の出力を上記可変長符号化器112に供給する第2のスイッチ110cと、上記第1の予測情報309aに基づいて上記制御信号116を発生するスキャン制御器1401cとを有している。なお、この第2の予測情報309bは、本画像符号化装置200c2から出力されるようになっている。

このような構成の画像符号化装置200cでは、予測値の生成に関するパラメータ(予測情報)309を用いてスキャン方法を切替えるので、VLC処理の効率が高いものとなっている。

[0017]

図30を用いて予測値の生成方法について説明する。

図30は、1つの16×16画素のマクロブロックを示しており、このマクロブロックは4つの8×8画素のサブブロック(以下単にブロックともいう。)R 0, R1, R2, Xからなる。ブロックXは被符号化ブロックで、ブロックR0、R1およびR2は、被符号化ブロックXに隣接する符号化済ブロックである。

[0018]

被符号化ブロックXの予測値(量子化値)の生成には、ブロックR1またはR2のいずれかが参照される。参照されるブロックの決定には、ブロックR0、R1およびR2のDC係数(各ブロックの左上隅の量子化値)が用いられる。具体的には、ブロックR0,R1間でのDC係数の差の絶対値と、ブロックR0,R

2間でのDC係数の差の絶対値が比較され、ブロックR0, R1間でのDC係数の差の絶対値の方が大きい場合には、ブロックR1が参照される(縦方向の参照)。そうでない場合は、ブロックR2が参照される(横方向の参照)。

[0019]

ブロックR1が参照される場合は、ブロックR1のDC係数(ブロック左上隅の量子化値)とAC係数(ブロック最上列の量子化値のうちDC係数を除いたもの)がブロックXの同じ位置の係数の予測値とされる。ブロックR2が参照される場合には、ブロックR2のDC係数(ブロック左上隅の量子化値)とAC係数(ブロック最左列の量子化値のうちDC係数を除いたもの)がブロックXの同じ位置の係数の予測値とされる。なお、AC係数の予測は、予測を行うことによりVLC処理の効率が悪化する場合には予測しないでおくようにすることもできる

[0020]

スキャン方法の切替えは、画面内予測においてAC予測のON(AC予測を行う場合),AC予測のOFF(AC予測を行わない場合)に応じて、また、AC予測がONの場合には予測の参照方向に応じて行われる。つまり、上記スキャン制御器1401cに供給される第1の予測情報309aには、AC予測のONorOFFを示す情報(ON/OFF情報)と、AC予測を行う際の予測の参照方向を示す情報(予測方向情報)とを含まれており、上記第2の予測情報309bには、AC予測のONorOFFを示す情報(ON/OFF情報)のみが含まれている。

AC予測がOFFの場合には、図31(a)に示す順序で量子化値のスキャンが行われる。つまり、これにより、量子化値に符号化処理の順序が設定されることとなる。この場合(AC予測OFF)には、サブブロックに対応する量子化値群は、縦横の方向に同様に高周波成分が分布しているものであることが多いので、低周波成分から高周波成分の順に一様に量子化値のスキャンを行う。AC予測が行われていて縦方向が参照されている場合には、図31(b)に示す順序で量子化値のスキャンが行われる。この場合には、サブブロックに対応する量子化値群は、横方向の高周波成分が予測により低減されたものとなっているので、横方

向を優先して量子化値のスキャンを行うことにより、VLC処理の効率が向上する。さらに、AC予測が行われていて横方向が参照されている場合には、図31(c)に示す順序で量子化値のスキャンが行われる。この場合には、サブブロックに対応する量子化値群は、縦方向の高周波成分が予測により低減されたものとなっているので、縦方向を優先して量子化値のスキャンを行うことにより、VLC処理の効率が向上する。

[0021]

図32は、図29に示す画像符号化装置に対応する画像復号化装置の概略構成を示すブロック図であり、図において、200dは、上記画像符号化装置200 cにより符号化された画像符号化信号308を復号化する画像処理装置(画像復号化装置)である。

[0022]

この画像復号化装置200dは、上記画像符号化信号308を可変長復号化して得られる量子化値に対して、その配列順序を符号化処理におけるスキャン処理前の配列順序に戻す逆スキャン処理を施すとともに、該逆スキャンの方法を上記画像符号化装置200cにおける予測値の生成に関する予測情報(パラメータ)に基づいて切替え可能な逆スキャン部200d1と、逆スキャン処理が施された被復号化ブロックに対応する量子化値に、該被復号化ブロック周辺に位置する復号化済ブロックの量子化値から予測した被復号化ブロックの量子化値(予測値)を加算する予測部200d2とを有している。

[0023]

ここで、上記逆スキャン部200d1は、上記可変長復号化器201の出力に対して、逆スキャン処理を施す、逆スキャン方法の異なる3つの逆スキャン器(1)202s1~(3)202s3と、制御信号116に基づいて上記3つの逆スキャン器のうちの1つを選択し、選択した逆スキャン器に上記可変長復号化器201の出力を供給する第1のスイッチ108dと、制御信号116に基づいて上記3つの逆スキャン器のうちの1つを選択し、選択した逆スキャン器の出力を上記予測部200d2に供給する第2のスイッチ110dと、第1の予測情報309aに基づいて上記制御信号116を発生するスキャン制御器1401dとを

有している。

[0024]

上記予測部200d2は、上記画像符号化装置200cから出力された第2の予測情報309b、及び該画像符号化装置における量子化値107に相当する値107dに基づいて予測値303を生成して出力するとともに、該画像符号化装置200cにおける第1の予測情報309aに相当する制御用予測情報309aがを生成して出力する予測器401と、該予測値303と上記スキャン部200d1の出力302とを加算する加算器304とを有している。なお、上記制御用予測情報309aがは、上記第1の予測情報309aと同様、AC予測に関するON/OFF情報と、AC予測に関する予測方向情報とを含むものである。

[0025]

このような構成の画像復号化装置200dでは、図29に示す画像符号化装置200cにおける各変換処理に対する逆変換処理を、上記画像符号化信号308に対して、上記符号化処理の際とは逆の順序で施すことにより、該画像符号化信号308の復号化処理を正しく行う。

[0026]

図33は、従来のその他の画像符号化装置の概略構成を示すブロック図であり、図において、200eは、被符号化フレームの画像信号の予測値を他のフレームから生成し、被符号化フレームの画像信号とその予測値の差分値を符号化する画面間予測符号化(インター符号化)処理を行う画像処理装置(画像符号化装置)である。

[0027]

この画像符号化装置200eは、図26の画像符号化装置200aにおける、ブロック化された画像信号103に対して情報源符号化処理を施す情報源符号化部200a1に代えて、ブロック化された画像信号103とその予測値1008との差分値1002に対して情報源符号化処理を行う情報源符号化部200e2を備え、さらに、上記画像処理装置200aにおけるスキャン器109に代えて、上記予測値1008の生成に関するパラメータ1015に応じてスキャン方法、つまり符号化のための処理順序を切り替えるスキャン部200e1を備えてい

る。

[0028]

上記情報源符号化部200e2は、被符号化ブロックに対応する、画像信号103とその予測値1008との差分値1002に対して、DCT処理を施して該差分値を周波数成分(DCT係数)1003に変換するDCT器104eと、該DCT処理器104eの出力1003を量子化して、各ブロックに対応する量子化値1004を生成する量子化器106eとを有している。

[0029]

また、上記情報源符号化部200e2は、上記量子化器106eから出力される量子化値1004を逆量子化して、上記DCT係数1003に相当するDCT係数1007を出力する逆量子化器203eと、DCT係数1007に逆DCT処理を施して、上記差分値1002に相当する差分信号1009を出力する逆DCT器204eと、該差分信号1009と上記予測値1008とを加算して、被符号化プロックに対応する符号化済み画像信号1011を出力する加算器1010とを備えている。

[0030]

さらに、上記情報源符号化部200e2は、各ブロックに対応する符号化済み 画像信号1011を1フレーム分あるいは所定数のフレーム分一時的に蓄えるフ レームメモリ1014と、該メモリ1014における参照ブロックに対応する符 号化済み画像信号1013と、入力された被符号化ブロックに対応する画像信号 103とから、被符号化ブロックに対応する画像信号を予測してその予測値10 08を生成するとともに、該予測処理に関するパラメータ1015を出力する予 測器1012と、上記入力された被符号化ブロックに対応する画像信号103か ら上記予測値1008を減算する加算器1001とを有している。

[0031]

また、上記スキャン部200e1は、上記情報源符号化部200e2の出力に対して、スキャン処理を施す、スキャン方法の異なる2つのスキャン器(1)129s1,(2)129s2と、制御信号116eに基づいて上記2つのスキャン器の一方を選択し、選択したスキャン器に上記情報源符号化部200e2の出

カ1004を供給する第1のスイッチ108eと、制御信号116eに基づいて上記2つのスキャン器のうちの一方を選択し、選択したスキャン器の出力を上記可変長符号化器112に供給する第2のスイッチ110eと、上記予測器1012からのパラメータ1015に基づいて上記制御信号116eを発生するスキャン制御器1016eとを有している。

[0032]

ここで、上記スキャン器129s1は、図31(a)に示す順序で量子化値のスキャンを行うものであり、また、上記スキャン器129s2は、図29に示す予測部200c2における各構成要素301,304,305と、図29に示すスキャン部200c1における各構成要素108c,110c,109s1~109s3,1401cから構成されている。つまり、上記スキャン器129s2は、符号化処理の際、画面間予測が行われなかったブロック(イントラ符号化ブロック)に対する画面内予測処理が行われるとともに、該予測値の生成に関する予測情報に基づいて、該スキャン器129s2を構成するスキャン器109s3のいずれかが選択される構成となっている。なお、上記スキャン器129s2を構成するスキャン器109s3のうちの1つは図31(a)に示す順序で量子化値のスキャンを行うものとなっている。

[0033]

この画像符号化装置200eによる符号化処理は、図29に示す画像符号化装置200cのものと基本的には同一であるが、この画像符号化装置200eでは、ブロック化された画像信号とその予測値との差分値が符号化される点で上記画像符号化装置200cとは大きく異なっている。

[0034]

つまり、この画像符号化装置200eによる画面間予測符号化処理では、予測 効率の悪い場合には予測値1008を0にすることにより、入力された被符号化 ブロックに対応する画像信号103をそのままDCT処理する符号化(イントラ 符号化)処理が実施されることとなる。ここで、インター符号化とイントラ符号 化の切替はマクロブロック単位で行われ、実施された符号化を示す情報は予測に 関するパラメータ1015に付加される。 [0035]

また、この画像符号化装置200eの画面間予測符号化処理では、被符号化ブロックがインター符号化されたもの(インター符号化マクロブロック)である場合には、スキャン器(1)129s1が選択され、被符号化ブロックがイントラ符号化されたもの(イントラ符号化マクロブロック)である場合には、スキャン器(2)129s2が選択され、それぞれに符号化処理に応じたスキャン方法が実施される。

[0036]

具体的には、イントラ符号化マクロブロックに対応する量子化値は、上記スキャン器(2)129s2(図29の予測部200c2およびスキャン部200c1の構成からなるもの)に供給され、該スキャン器129s2にて画面内予測によりその予測値が生成され、さらにこの予測値の生成に関する予測情報に基づいて、被符号化ブロックの量子化値とその予測値との差分値に対して適応的なスキャン処理が行われる。

一方、インター符号化マクロブロックに対応する量子化値は上記スキャン器(1)109s1に供給され、該スキャン器にて、図31(a)に示す順序でのスキャンが実施される。

[0037]

このような構成の画像符号化装置では、インター符号化されているマクロブロックについては、差分値を符号化するため量子化により0となるDCT係数が多くなり、VLC処理の効率が高いものとなっている。

なお、上記構成の画像符号化装置200eでは、イントラ符号化マクロブロックに対して画面内予測処理を行わないようにすることも可能であり、この場合には、イントラ符号化マクロブロックの量子化値に対しては、上記スキャン器129s2を構成するスキャン器109s1~109s3のうちの1つにより、図31(a)に示す順序のスキャン処理が施される。

[0038]

図34は、図33に示す画像符号化装置200eに対応する画像復号化装置の 概略構成を示すブロック図であり、図において、200fは、上記画像符号化装 置200eにより符号化された画像符号化信号1006を復号化する画像復号化装置である。

[0039]

この画像復号化装置200fは、図28の画像復号化装置200bにおける逆スキャン器202に代えて、上記画像符号化信号1006を可変長復号化して得られる量子化値1005に対して、その配列順序を符号化処理におけるスキャン処理前の配列順序に戻す逆スキャン処理を施すとともに、該逆スキャンの方法を上記画像符号化装置200eにおける予測値の生成に関するパラメータ1015に基づいて切替え可能な逆スキャン部200f1を備え、さらに上記画像復号化装置200bにおける情報源復号化部200b1に代えて、逆スキャン処理が施された被復号化ブロックに対応する量子化値1004に対して情報源復号化処理を施す情報源復号化部200f2を備えている。

[0040]

上記逆スキャン部200f1は、上記可変長復号化器201の出力1005に対して、逆スキャン処理を施す、逆スキャン方法の異なる2つの逆スキャン器(1)222s1,(2)222s2と、制御信号116fに基づいて上記2つの逆スキャン器の一方を選択し、選択した逆スキャン器に上記可変長復号化器201の出力1005を供給する第1のスイッチ108fと、制御信号116fに基づいて上記2つの逆スキャン器の一方を選択し、選択した逆スキャン器の出力を上記予測部200f2に供給する第2のスイッチ110fと、上記予測パラメータ1015に基づいて上記制御信号116fを発生するスキャン制御器1016fとを有している。ここで上記逆スキャン器222s1,222s2は上記画像符号化装置200eにおけるスキャン器129s1,129s2に対応する構成となっている。

上記情報源復号化部200f2は、上記スキャン部200f1の出力に対して 逆量子化処理を施す逆量子化器203fと、該逆量子化器203fの出力100 3に対して逆DCT処理を施す逆DCT器204fとを有している。

[0041]

また、上記情報源復号化部200f2は、各ブロックに対応する復号化済み画

像信号103を1フレーム分あるいは所定数のフレーム分だけ一時的に蓄えるフレームメモリ1014fと、該メモリ1014fにおける参照ブロックに対応する復号化済み画像信号1013fと、符号化時の予測に関するパラメータ1015とに基づいて、被復号化ブロックに対応する画像信号の予測値1008を生成する予測器1102fと、該予測値1008と上記逆DCT器204fの出力1002とを加算する加算器1101fとを備えている。

[0042]

このような構成の画像復号化装置200fでは、図33に示す画像符号化装置200eにおける各変換処理に対する逆変換処理を、上記画像符号化信号1006に対して、符号化処理の際とは逆の順序で施すことにより、画像符号化信号1006の復号化処理を正しく行う。

[0043]

【発明が解決しようとする課題】

しかしながら、従来の画像処理装置におけるスキャン切替え方法は、全てのブロックがフレームDCTブロックであるプログレッシブ画像符号化処理においては有効であるが、フレームDCTブロックとフィールドDCTブロックが混在するインタレース画像符号化処理においては、フィールドDCTブロックとフレームDCTブロックのDCT係数の分布が異なるために、同様のスキャン切替え方法を用いると、同程度の大きさの係数が連続せず、VLCの効率が悪化してしまう場合がある。

[0044]

つまり、マクロブロック毎にフレームDCT処理とフィールドDCT処理が適応的に選択されて実施され、異なるDCTタイプのマクロブロックが混在するインタレース画像符号化処理においては、予測値の生成に関するパラメータを用いてスキャン方法を切替えた場合、フレームDCTブロックとフィールドDCTブロックではDCT係数の分布が異なることから、同程度の大きさの係数が連続せず、VLCの効率が悪化してしまう場合が生じるという問題点があった。

また、従来の画像処理装置におけるインタレース画像の画面間予測符号化処理 においても、異なるDCTタイプのマクロブロックが混在するため、上記と同様 な問題点があった。

[0045]

さらに、プログレッシブ画像の符号化処理においても、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした場合、例えば、隣接する走査線間の相関が強いときにはフレームDCT処理を行い、隣接する走査線間の相関が弱い時にはフィールドDCT処理を行うようにした場合には、上記インタレース画像符号化処理の場合と同様、VLCの効率が悪化してしまうといった問題が生ずることとなる。

[0046]

この発明は以上のような問題点を解消するためになされたもので、異なるDC Tタイプのマクロブロックが混在するインタレース画像を符号化する処理、あるいは、特定のプログレッシブ画像の符号化処理においても、VLCの効率を向上することができるスキャン方法を適応的に選択でき、高能率な符号化を行うことができる画像処理装置及び画像処理方法、並びに該画像処理方法を実現するための画像処理プログラムを記憶したデータ記憶媒体を提供することを目的とする。

[0047]

【課題を解決するための手段】

この発明(請求項1)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロックの画像信号に対応する周波数成分に対する符号化の処理順序を、該被符号化ブロック画像信号がフレーム周波数変換処理を施したものであるかフィールド周波数変換処理を施したものであるかに応じて設定し、上記被符号化ブロック画像信号に対応する周波数成分を、設定された処理順序でもって順次符号化するものである。

[0048]

この発明(請求項2)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理が、フレームを1単位として行われたフレーム単位処理であるか、フィールドを1単位として行われたフィールド単位処理であるかによって決まる配列順序で並べ替えて、上記被復号化ブロックに対応する周波数成分を生成し、該被復号化ブロックに対応する周波数成分に逆周波数変換処理を施して、該被復号化ブロックに対応する画像信号を再生するものである。

[0049]

この発明(請求項3)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの種類の周波数変換処理により周波数成分に変換し、上記被符号化ブロックの画像信号に対応する周波数成分に対する符号化の処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、該被符号化ブロック周辺に位置する符号化済ブロックの画像信号に施された周波数変換処理の種類との組合せのパターンに応じて設定し、上記被符号化ブロックの画像信号に対応する周波数成分を、設定された処理順序でもって順次符号化するものである

[0050]

この発明(請求項4)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、種々の周波数成分を所定順序で符号化して得られる入力信

号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理と、該被復号化ブロックの周辺に位置する復号化済ブロックに対応する画像信号に施された周波数変換処理との組み合わせのパターンによって決まる配列順序で並べ替えて、上記被復号化ブロックに対応する周波数成分を生成し、該被復号化ブロックに対応する周波数成分に逆周波数変換処理を施して、該被復号化ブロックに対応する画像信号を再生するものである。

[0051]

この発明(請求項5)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の予測処理により被符号化ブロックの周波数成分の予測値を生成し、上記被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、上記予測処理の種類との組合せのパターンに応じて設定し、該被符号化ブロックに対応する差分値を、設定された処理順序でもって順次符号化するものである。

[0052]

この発明(請求項6)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理の種類と上記予測処理の種類との組合せのパターンによって決まる配列順序で並べ替え、上記被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から、上記予測処理の種類に基づいて該被復号化ブロックに対応する周波数成分の予測値を生成し、上記並び替

え後の入力信号と上記予測値とに基づいて、被復号化ブロックに対応する周波数 成分を生成し、上記被復号化ブロックに対応する周波数成分に対して、逆周波数 変換処理を施して、上記被復号化ブロックに対応する画像信号を再生するもので ある。

[0053]

この発明(請求項7)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の予測処理により被符号化ブロックに対応する周波数成分の予測値を生成し、上記被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、上記予測処理の種類との組合せのパターンに応じて設定し、該被符号化ブロックに対応する差分値を、設定された処理順序でもって順次符号化するものである。

[0054]

この発明(請求項8)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号の復号化処理を、上記ブロック毎に行う画像処理方法であって、予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記復号化処理の対象となる被復号化ブロックに対応する画像信号に施された周波数変換処理の種類と、該被復号化ブロックの周辺に位置する復号化済ブロックに対応する画像信号に施された周波数変換処理の種類と、上記予測処理の種類との組合せのパターンによって決まる配列順序で並べ替え、上記被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分か

ら、上記予測処理の種類に基づいて該被復号化ブロックに対応する周波数成分の 予測値を生成し、上記並び替え後の入力信号と上記予測値とに基づいて、被復号 化ブロックに対応する周波数成分を生成し、上記被復号化ブロックに対応する周 波数成分に対して、逆周波数変換処理を施して、上記被復号化ブロックに対応す る画像信号を再生するものである。

[0055]

この発明(請求項9)に係る画像処理装置は、入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、上記ブロック化された画像信号を各ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成分を出力する周波数変換器と、上記周波数成分を量子化して、各ブロック画像信号に対応する周波数の分を出力する量子化値を出力する量子化器と、上記量子化値にその配列順序の並べ替えにより所定の処理順序を設定する、並べ替え処理の際の順序が異なる複数のスキャン器と、上記周波数変換タイプ情報に応じて上記量子化値の並べ替えに用いるスキャン器を選択する制御信号を出力するスキャン制御器と、上記並べ替え後の量子化値を可変長符号化する可変長符号化器とを備えたものである。

[0056]

この発明(請求項10)に係る画像処理装置は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、各ブロックに対応する画像信号の周波数成分の量子化値に並べ替え処理及び可変長符号化処理を施して得られる符号化列を可変長復号化する可変長復号化器と、上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施し、上記量子化値を出力する、並べ替え処理の際の順序が異なる複数の

逆スキャン器と、上記周波数変換処理の種類を示す周波数変換タイプ情報に応じて上記量子化値の並べ替えに用いるスキャン器を選択する制御信号を出力するスキャン制御器と、上記量子化値を逆量子化して上記各ブロックに対応するブロック化された画像信号の周波数成分を出力する逆量子化器と、該周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する逆周波数変換器と、上記ブロック化された画像信号を、上記符号化処理における周波数変換処理がフレーム単位またはフィールド単位のいずれの単位での処理であるかを示す周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロック化器とを備えたものである。

[0057]

この発明(請求項11)に係る画像処理装置は、入力されるデジタル画像信号 を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分 割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置 であって、上記デジタル画像信号を、周波数変換の処理単位となるフレームまた はフィールド毎にまとめて上記各ブロックに対応するようブロック化するととも に、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周 波数変換タイプ情報を出力するブロック化器と、上記ブロック化された画像信号 を上記ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成 分を出力する周波数変換器と、該周波数成分を量子化して、各ブロックの画像信 号に対応する量子化値を出力する量子化器と、上記符号化処理の対象となる被符 号化ブロック周辺に位置する符号化済ブロックに対応する量子化値から上記被符 号化ブロックに対応する量子化値の予測値を生成し、該予測値とともに上記予測 値の生成処理の種類に関する予測情報を出力する予測器と、上記被符号化ブロッ クに対応する量子化値から上記予測値を減算して差分値を出力する第1の加算器 と、上記差分値と上記予測値との加算によりその加算値を符号化済ブロックに対 応する量子化値として出力する第2の加算器と、上記差分値の並べ替えを行う、 並べ替え順序が異なる複数のスキャン器と、上記予測情報および上記周波数変換 タイプ情報に応じて上記差分値の並べ替えに用いるスキャン器を選択する制御信 号を出力するスキャン制御器と、上記並べ替え後の差分値を可変長符号化する可 変長符号化器とを備えたものである。

[0058]

この発明(請求項12)に係る画像処理装置は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、各ブロックに対応する画像信号の周波数成分の量子化値に対し、その予測処理,並べ替え処理,及び可変長符号化処理を施して得られる符号化列を可変長復号化する可変長復号化器と、上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、並べ替え処理の際の順序が異なる複数の逆スキャン器と、上記周波数変換処理の種類を示す周波数変換タイプ情報、及び上記予測処理の種類を示す予測情報に応じて、上記量子化値の並べ替えに用いるスキャン器を選択する制御信号を出力するスキャン制御器と、上記量子化値を逆量子化して上記各ブロックに対応するブロック化された画像信号の周波数成分を出力する逆量子化器と、上記周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する逆周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロック化器とを備えたものである。

[0059]

この発明(請求項13)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロックの画像信号に対応する周波数成分に対する符号化の処理順序を、符号化済みブロックの画像信号に対応する周波数成分の分布に応じて設定し、上記被符号化ブロックの画像信号に対応する周波数成分の分布に応じて設定し、上記被符号化ブロックの画像信号に対応する周波数成分を、設定された処理順序でもって順次符号化するものである。

[0060]

この発明(請求項14)に係る画像処理方法は、デジタル画像信号を、1表示 画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符 号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う 画像処理方法であって、種々の周波数成分を所定順序で符号化して得られる入力 信号を、復号化済みブロックに対応する画像信号の周波数成分の分布によって決 まる配列順序で並べ替えて、復号化処理の対象となる被復号化ブロックに対応す る周波数成分を生成し、上記被復号化ブロックに対応する周波数成分に逆周波数 変換処理を施して、該被復号化ブロックに対応する画像信号を再生するものであ る。

[0061]

この発明(請求項15)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化プロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の予測処理により被符号化ブロックの周波数成分の予測値を生成し、上記被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の処理順序を上記予測処理の種類に応じた順序に適応的に設定する第1の順序設定動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作と、適応的な順序設定を行うか否かを示すフラグ情報に基づいて切り替えて行い、該被符号化ブロックに対応する差分値を、設定された処理順序でもって順次符号化して、上記フラグ情報と共に送信あるいは蓄積するものである。

[0062]

この発明(請求項16)に係る画像処理方法は、デジタル画像信号を、1表示 画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符 号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う

4 2

画像処理方法であって、予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記予測処理の種類に応じた順序に適応的に並べ替える第1の並替動作と、該入力信号を上記予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上記入力信号と共に入力される適応的な並替えを行うか否かを示すフラグ情報に基づいて切り替えて行い、復号化処理の対象となる被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から、上記予測処理に基づいて該被復号化ブロックに対応する周波数成分の予測値を生成し、上記並び替え後の入力信号と上記予測値とに基づいて、被復号化ブロックに対応する周波数成分を生成し、上記被復号化ブロックに対応する周波数成分に対して、逆周波数変換処理を施して、上記被復号化ブロックに対応する 画像信号を再生するものである。

[0063]

この発明(請求項17)に係る画像処理方法は、デジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、該符号化処理の対象となる被符号化ブロックの画像信号の予測値を、該被符号化ブロックが含まれる表示画面とは別の符号化済みの表示画面に対応する画像信号から所定の予測処理により生成し、上記被符号化ブロックの画像信号とその予測値との差分値を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロックの周波数成分に対する符号化の処理順序を上記予測処理の種類に応じた順序に適応的に設定する第1の順序設定動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作とを、適応的な順序設定を行うか否かを示すフラグ情報に基づいて切り替えて行い、該被符号化ブロックに対応する周波数成分を、設定された処理順序でもって順次符号化して、上記フラグと共に送信あるいは蓄積するものである。

[0064]

この発明(請求項18)に係る画像処理方法は、デジタル画像信号を、1表示

画面を構成する個々のブロック毎に、周波数変換を含む処理により符号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う画像処理方法であって、予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、上記予測処理の種類に応じた順序に適応的に並べ替える第1の並替動作と、該入力信号を上記予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上記入力信号と共に入力される適応的な並替えを行うか否かを示すフラグ情報に基づいて切り替えて行い、上記並び替え後の入力信号に対して、逆周波数変換処理を施して、復号化処理の対象となる被復号化ブロックに対応する差分信号を生成し、該被復号化ブロックの画像信号の予測値を、該被復号化ブロックが含まれる表示画面とは別の復号化済みの表示画面の画像信号から、上記予測処理に基づいて生成し、上記差分信号と上記予測値とに基づいて、被復号化ブロックに対応する画像信号を再生するものである。

[0065]

この発明(請求項19)に係る画像処理装置は、入力されるデジタル画像信号 を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分 割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置 であって、上記デジタル画像信号を、周波数変換の処理単位となるフレームまた はフィールド毎にまとめて上記各ブロックに対応するようブロック化するととも に、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周 波数変換タイプ情報を出力するブロック化器と、上記ブロック化された画像信号 を上記ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成 分を出力する周波数変換器と、該周波数成分を量子化して、各ブロック画像信号 に対応する量子化値を出力する量子化器と、上記量子化値にその配列順序の並べ 替えにより所定の処理順次を設定する、並べ替え処理の際の順序が異なる複数の スキャン器と、上記量子化器の出力を特性解析により、各ブロックの量子化値に 適した並べ替えを行うスキャン器を指定するスキャン指定信号を出力する特性解 析器と、上記特性解析器からのスキャン指定信号を一時的に蓄えるメモリと、上 記メモリに蓄えられているスキャン指定信号に基づいて、符号化処理の対象とな る被符号化ブロックの量子化値の並べ替えに用いるスキャン器を選択する制御信 号を出力するスキャン制御器と、上記並べ替え後の量子化値を可変長符号化する 可変長符号化器とを備えたものである。

[0066]

この発明(請求項20)に係る画像処理装置は、デジタル画像信号を、1表示 画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周 波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対す る復号化処理を、上記ブロック毎に行う画像処理装置であって、各ブロックに対 応する画像信号の周波数成分の量子化値に対し、並べ替え処理、及び可変長符号 化処理を施して得られる符号化列を可変長復号化する可変長復号化器と、上記並 べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように 並べ替え処理を施す、並べ替え処理の際の順序が異なる複数の逆スキャン器と、 上記逆スキャン器の出力の特性解析により、各ブロックの量子化値に適した並べ 替えを行うスキャン器を指定するスキャン指定信号を出力する特性解析器と、上 記特性解析器からのスキャン指定信号を一時的に蓄えるメモリと、上記メモリに 蓄えられているスキャン指定信号に基づいて、上記被復号化ブロックの量子化値 の並べ替えに用いる逆スキャン器を選択する制御信号を出力するスキャン制御器 と、上記選択された逆スキャン器から出力される量子化値を逆量子化して上記各 ブロックに対応する画像信号の周波数成分を出力する逆量子化器と、上記周波数 成分を逆周波数変換して上記ブロック化された画像信号を出力する逆周波数変換 器と、上記ブロック化された画像信号を、上記符号化処理における周波数変換処 理がフレーム単位またはフィールド単位のいずれの単位での処理であるかを示す 周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆 ブロック化器とを備えたものである。

[0067]

この発明(請求項21)に係る画像処理装置は、入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するととも

に、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周 波数変換タイプ情報を出力するブロック化器と、上記ブロック化された画像信号 を上記ブロック毎に周波数変換して、各ブロックの画像信号に対応する周波数成 分を出力する周波数変換器と、該周波数成分を量子化して、各ブロック画像信号 に対応する量子化値を出力する量子化器と、被符号化ブロック周辺に位置する符 号化済ブロックに対応する量子化値から上記被符号化ブロックに対応する量子化 値の予測値を生成し、該予測値とともに上記予測値の生成処理の種類に関する予 測情報を出力する予測器と、上記被符号化ブロックに対応する量子化値から上記 予測値を減算して差分値を出力する第1の加算器と、上記差分値と上記予測値と の加算によりその加算値を符号化済ブロックに対応する量子化値として出力する 第2の加算器と、上記差分値の並べ替えを行う、選択信号により選択される、並 べ替え処理の際の順序が異なる複数のスキャン器と、上記予測情報に応じて上記 差分値の並べ替えに用いるスキャン器を選択する第1の制御信号を出力するスキ ャン制御器と、システム外部あるいはシステム内にて生成されるスキャン切替信 号に応じて、上記第1の制御信号あるいは特定のスキャンを選択する第2の制御 信号のいずれかを選択し、該選択した制御信号を上記スキャン器の選択信号とし て出力するスイッチと、上記並べ替え後の差分値を可変長符号化する可変長符号 化器とを備えたものである。

[0068]

この発明(請求項22)に係る画像処理装置は、デジタル画像信号を、1表示画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周波数変換処理を含む符号化処理により符号化して得られる画像符号化信号に対する復号化処理を、上記ブロック毎に行う画像処理装置であって、各ブロックに対応する画像信号の周波数成分の量子化値に対し、その予測処理,並べ替え処理,及び可変長符号化処理を施して得られる符号化列を可変長復号化する可変長復号化器と、上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施す、選択信号により選択される、並べ替え処理の際の順序が異なる複数の逆スキャン器と、予測処理の種類を示す予測情報に応じて、上記量子化値の並べ替えに用いるスキャン器を選択する第1の制御信号を

出力するスキャン制御器と、スキャン切替信号に応じて、上記第1の制御信号あるいは特定のスキャンを選択する第2の制御信号のいずれかを選択し、該選択した制御信号を上記選択信号して出力するスイッチと、上記予測情報に応じて、被復号化ブロック周辺に位置する復号化済ブロックに対応する量子化値から上記被復号化ブロックに対応する量子化値の予測値を生成する予測器と、上記逆スキャン器の出力に上記予測値を加算する加算器と、上記加算器の出力を逆量子化して上記各ブロックに対応する画像信号の周波数成分を出力する逆量子化器と、上記周波数成分を逆周波数変換して上記ブロック化された画像信号を出力する逆周波数変換器と、上記ブロック化された画像信号を、上記符号化処理における周波数変換処理がフレーム単位またはフィールド単位のいずれの単位での処理であるかを示す周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を出力する逆ブロック化器とを備えたものである。

[0069]

この発明(請求項23)に係る画像処理装置は、入力されるデジタル画像信号 を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分 割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置 であって、上記デジタル画像信号を、周波数変換の処理単位となるフレームまた はフィールド毎にまとめて上記各ブロックに対応するようブロック化するととも に、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周 波数変換タイプ情報を出力するブロック化器と、上記ブロック化された画像信号 から、上記ブロック化された画像信号の予測値を減算し、差分信号を出力する第 1の加算器と、上記差分信号を、上記ブロック毎に周波数変換して、各ブロック の差分信号に対応する周波数成分を出力する周波数変換器と、該周波数成分を量 子化して、各ブロック画像信号に対応する量子化値を出力する量子化器と、上記 量子化値を逆量子化して、各ブロックの差分信号に対応する周波数成分を出力す る逆量子化器と、上記逆量子化器の出力を逆周波数変換して、各ブロックの差分 信号を出力する逆周波数変換器と、上記逆周波数変換器の出力と上記予測値を加 算して、符号化済み表示画面を構成する符号化済ブロックの画像信号としてフレ ームメモリに格納する第2の加算器と、上記フレームメモリに格納されている符 号化済ブロックの画像信号および上記ブロック化された画像信号に基づいて上記 予測値を生成し、該予測値とともに上記予測値の生成処理に関する予測情報を出 力する予測器と、上記量子化値の並べ替えを行う、並べ替え処理の際の順序が異 なる複数のスキャン器と、システム外部あるいはシステム内部にて生成されたス キャン切替信号および上記予測情報に応じて上記差分値の並べ替えに用いるスキャン器を選択する制御信号を出力するスキャン制御器と、上記並べ替え後の差分 値を可変長符号化する可変長符号化器とを備えたものである。

[0070]

この発明(請求項24)に係る画像処理装置は、デジタル画像信号を、1表示 画面を構成する個々のブロック毎に、フレーム単位またはフィールド単位での周 波数変換処理を含む符号化処理により符号化して得られる符号化画像信号に対す る復号化処理を、上記ブロック毎に行う画像処理装置であって、各ブロックに対 応する画像信号に対し、その予測処理、周波数変換処理、量子化処理、並べ替え 処理,及び可変長符号化処理を施して得られる符号化列を可変長復号化する可変 長復号化器と、上記並べ替え後の量子化値に対し、その配列順序が並べ替え前の 配列順序に戻るように並べ替え処理を施す、並べ替え処理の際の順序が異なる複 数の逆スキャン器と、スキャン切替信号および予測処理の種類を示す予測情報に 応じて、上記量子化値の並べ替えに用いる逆スキャン器を選択する制御信号を出 力する逆スキャン制御器と、上記逆スキャン器の出力を逆量子化し、上記各ブロ ックに対応する差分信号の周波数成分を出力する逆量子化器と、上記周波数成分 を逆周波数変換し、上記各ブロックに対応する差分信号を出力する逆周波数変換 器と、上記差分信号と上記各ブロックに対応する画像信号の予測値を加算し、上 記ブロック化された画像信号を出力する加算器と、上記加算器の出力を、復号化 済み表示画面を構成する復号化済ブロックの画像信号として蓄えるフレームメモ リと、上記予測情報と復号化済みブロックの画像信号に基づいて上記予測値を生 成する予測器と、上記ブロック化された画像信号を、上記符号化処理における周 波数変換処理がフレーム単位またはフィールド単位のいずれの単位での処理であ るかを示す周波数変換タイプ情報に応じて逆ブロック化してデジタル画像信号を 出力する逆ブロック化器とを備えたものである。

[0071]

この発明(請求項25)に係る画像処理方法は、デジタル画像信号を、1表示 画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブ ロックの画像信号の符号化処理を上記ブロック毎に行う画像処理方法であって、

該符号化処理の対象となる被符号化ブロックの画像信号の画面間予測値を、該被符号化ブロックが含まれる表示画面とは別の符号化済みの表示画面に対応する画像信号から所定の画面間予測処理により生成し、上記被符号化ブロックの画像信号とその画面間予測値との画面間差分値、あるいは上記符号化処理の対象となる被符号化ブロックの画像信号を、フレームを1単位とするフレーム周波数変換処理、及びフィールドを1単位とするフィールド周波数変換処理のいずれかの周波数変換処理により周波数成分に変換し、上記被符号化ブロック周辺に位置する符号化済ブロックに対応する周波数成分から、所定の画面内予測処理により被符号化ブロックの周波数成分画面内予測値を生成し、上記被符号化ブロックの周波数成分画面内予測値を生成し、上記被符号化ブロックの周波数成分を上記予測処理の種類に応じた順序に適応的に設定する符号化の処理順序を上記予測処理の種類に応じた順序に適応的に設定する知理を含む第1の順序設定動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作とを、順序設定の切替を示すフラグ情報に基づいて切り替えて行い、該被符号化ブロックに対応する画面内差分値を、設定された処理順序でもって順次符号化して、上記フラグ情報と共に送信あるいは蓄積するものである。

[0072]

この発明(請求項26)に係る画像処理方法は、請求項25記載の画像処理方法において、上記デジタル画像信号としてインターレース画像信号を受け、上記第1の順序設定動作では、上記周波数変換処理により得られる周波数成分が被符号化ブロックの画面間差分値に対応するインター符号化ブロックについては、該周波数成分に対する、低周波数側から高周波数側に向けての処理順序の設定を、表示画面の水平方向に沿って並ぶ成分と垂直方向に沿って並ぶ成分の間で均等な優先順位となるよう行い、上記周波数変換処理により得られる周波数成分が被符号化ブロックの画像信号に対応するイントラ符号化ブロックについては、該周波数成分に対する、低周波数側から高周波数側に向けての処理順序の設定を、画面

内予測処理の種類に応じて適応的に行い、上記第2の順序設定動作では、上記インター符号化ブロック及びイントラ符号化ブロックとも、上記周波数変換処理により得られる周波数成分に対する、低周波数側から高周波数側に向けての処理順序の設定を、表示画面の垂直方向に沿って並ぶ成分が水平方向に沿って並ぶ成分より優先されるよう行うものである。

[0073]

この発明(請求項27)に係る画像処理方法は、デジタル画像信号を、1表示 画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符 号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う 画像処理方法であって、画面間予測処理が施された種々の周波数成分を所定順序 で符号化して得られる、復号化処理の対象となる被復号化ブロックの入力信号を 、画面内予測処理の種類に応じた順序に適応的に並べ替える処理を含む第1の並 替動作と、該入力信号を上記予測処理の種類に拘らずに特定の順序に並べ替える 第2の並替動作とを、上記入力信号と共に入力される並替えの切替を示すフラグ 情報に基づいて切り替えて行い、復号化処理の対象となる被復号化ブロックの周 辺に位置する復号化済ブロックに対応する周波数成分から、画面内予測処理によ り該被復号化ブロックに対応する周波数成分の画面内予測値を生成し、上記並び 替え後の入力信号と上記画面内予測値とに基づいて、被復号化ブロックに対応す る周波数成分を生成し、上記被復号化ブロックに対応する周波数成分に対して、 逆周波数変換処理を施して、上記被復号化ブロックに対応する画像信号あるいは 差分信号を生成し、該被復号化ブロックに対応する差分信号に対しては、該被復 号化ブロックが含まれる表示画面とは別の復号化済の表示画面の画像信号から上 記画面間予測処理により生成した、該被復号化ブロックの画像信号の画面間予測 値を、上記差分信号と加算する処理を行って、被復号化ブロックに対する画像信 号を生成するものである。

[0074]

この発明(請求項28)は、請求項27記載の画像処理方法において、上記復 号化処理の対象となる符号化画像信号として、インターレース画像信号を上記各 ブロック毎に符号化して得られるインターレース画像符号化信号を受け、上記第

1 の並替動作では、上記インターレース画像信号の周波数変換処理により得られ た周波数成分が被符号化ブロックの画面間差分値に対応するインター符号化ブロ ックについては、その低周波数側から高周波数側へ向かって順に、表示画面の水 平方向に沿って並ぶ成分と垂直方向に沿って並ぶ成分の間で均等な優先順位とな るような処理順序の均等な設定がなされた周波数成分に対して、該均等な設定に よる処理順序に応じた並べ替え処理を施し、上記インターレース画像信号の周波 数変換処理により得られた周波数成分が被符号化ブロックの画像信号に対応する イントラ符号化ブロックについては、その低周波数側から高周波数側に向かって 順に、画面内予測処理の種類に応じて適応的な処理順序の設定がなされた周波数 成分に対して、該適応的な設定による処理順序に応じた並べ替え処理を施し、上 記第2の並替動作では、上記インター符号化ブロック及びイントラ符号化ブロッ クについて共に、その低周波数側から高周波数側へ向かって順に、表示画面の垂 直方向に沿って並ぶ成分が水平方向に沿って並ぶ成分より優先されるような縦優 先の処理順序の設定がなされた、上記インターレース画像信号の周波数変換処理 により得られた周波数成分に対して、該縦優先の順序設定による処理順序に応じ た並べ替え処理を施すものである。

[0075]

この発明(請求項29)に係る画像処理装置は、入力されるデジタル画像信号を、1表示画面を構成する複数のブロックの各々に対応する複数の画像信号に分割し、各ブロックの画像信号の符号化処理を上記ブロック毎に行う画像処理装置であって、上記デジタル画像信号を、周波数変換の処理単位となるフレームまたはフィールド毎にまとめて上記各ブロックに対応するようブロック化するとともに、上記ブロック化された画像信号、および上記周波数変換の処理単位を示す周波数変換タイプ情報を出力するブロック化器と、上記ブロック化された画像信号に対して、画像信号の画面間予測を含むデータ圧縮処理を施して、各ブロックに対応する圧縮データを出力するとともに、上記画面間予測に関連する予測情報を出力するデータ圧縮手段と、被符号化ブロック周辺に位置する符号化済ブロックに対応する圧縮データから上記被符号化ブロックに対応する圧縮データの画面内予測値を生成して、該圧縮データと画面内予測値との差分値を出力するとともに

、該画面内予測値とともに上記画面内予測値の生成処理の種類に関する画面内予測情報を出力する画面内予測手段と、上記差分値の並べ替えを行う、選択信号により選択される、並べ替え処理の際の順序が異なる複数のスキャン器を有し、上記画面間予測情報、及びシステム外部あるいはシステム内にて生成されるスキャン切替信号に応じて、上記差分値の並べ替えに用いるスキャン器を選択するスキャン手段と、上記並べ替え後の差分値を可変長符号化する可変長符号化器とを備え、上記スキャン手段を、上記被符号化ブロックに対応する差分値に対する符号化の処理順序を上記画面内予測処理の種類に応じた順序に適応的に設定する処理を含む第1の順序設定動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作とを、上記スキャン切替信号に基づいて切り替えて行う構成となっている。

[0076]

この発明(請求項30)は、請求項29記載の画像処理装置において、上記デ ータ圧縮手段を、上記ブロック化された画像信号から、上記ブロック化された画 像信号の画面間予測値を減算し、差分信号を出力する第1の加算器と、上記差分 信号を、上記ブロック毎に周波数変換して、各ブロックの差分信号に対応する周 波数成分を出力する周波数変換器と、該周波数成分を量子化して、各ブロックの 差分信号に対応する量子化値を上記圧縮データとして出力する量子化器と、上記 量子化値を逆量子化して、各ブロックの差分信号に対応する周波数成分を出力す る逆量子化器と、上記逆量子化器の出力を逆周波数変換して、各ブロックの差分 信号を出力する逆周波数変換器と、上記逆周波数変換器の出力と上記画面間予測 値を加算して、符号化済み表示画面を構成する符号化済ブロックの画像信号とし てフレームメモリに格納する第2の加算器と、上記フレームメモリに格納されて いる符号化済ブロックの画像信号および上記ブロック化された画像信号に基づい て上記画面間予測値を生成し、該画面間予測値とともに上記画面間予測値の生成 処理に関する画面間予測情報を出力する画面間予測器とから構成し、上記画面内 予測手段を、被符号化ブロック周辺に位置する符号化済ブロックに対応する量子 化値から上記被符号化ブロックに対応する量子化値の画面内予測値を生成し、該 画面内予測値とともに上記画面内予測値の生成処理の種類に関する画面内予測情 報を出力する画面内予測器と、上記被符号化ブロックに対応する量子化値から上 記画面内予測値を減算して画面内差分値を出力する第3の加算器と、上記差分値 と上記画面内予測値との加算によりその加算値を上記符号化済ブロックに対応す る量子化値として出力する第4の加算器とから構成したものである。

[0077]

この発明(請求項31)に係る画像処理装置は、デジタル画像信号を、1表示 画面を構成する個々のブロック毎に、周波数変換処理を含む符号化処理により符 号化して得られる符号化画像信号に対する復号化処理を、上記ブロック毎に行う 画像処理装置であって、各ブロックに対応する画像信号に対し、その予測処理、 周波数変換処理、量子化処理、並べ替え処理、及び可変長符号化処理を施して得 られる符号化列を可変長復号化する可変長復号化器と、上記並べ替え後の量子化 値に対し、その配列順序が並べ替え前の配列順序に戻るように並べ替え処理を施 す、並べ替え処理の際の順序が異なる複数の逆スキャン器を有し、システム外部 あるいはシステム内にて生成されるスキャン切替信号および上記予測処理の種類 を示す予測情報に応じて、上記量子化値の並べ替えに用いる逆スキャン器を選択 する逆スキャン手段と、画面内予測情報に応じて、被復号化ブロック周辺に位置 する復号化済ブロックに対応する量子化値から上記被復号化ブロックに対応する 量子化値の画面内予測値を生成し、上記逆スキャン手段の出力と該画面内予測値 との加算値を出力する画面内予測手段と、該画面内予測手段の出力に対して、画 面間予測復号化処理を施して、ブロック化された画像信号を生成するデータ伸長 手段と、上記周波数変換処理の単位を示す周波数変換タイプ情報に応じて上記ブ ロック化された画像信号を逆ブロック化してデジタル画像信号を出力する逆ブロ ック化器とを備え、上記逆スキャン手段を、画面間予測処理が施された種々の周 波数成分を所定順序で符号化して得られる、被復号化ブロックの入力信号を、上 記画面内予測処理の種類に応じた順序に適応的に並べ替える処理を含む第1の並 替動作と、該被復号化ブロックの入力信号を予測処理の種類に拘らずに特定の順 序に並べ替える第2の並替動作とを、上記入力信号と共に入力される、並替えの 切替を示すフラグ情報に基づいて切り替えて行う構成としたものである。

[0078]

この発明(請求項32)は、請求項31記載の画像処理装置において、上記画面内予測手段を、画面内予測情報に応じて、被復号化ブロック周辺に位置する復号化済プロックに対応する量子化値から上記被復号化ブロックに対応する量子化値の画面内予測値を生成する画面内予測器と、上記選択された逆スキャン器の出力に上記画面内予測値を加算する第1の加算器とから構成し、上記データ伸長手段を、該第1の加算器の出力を逆量子化し、上記各ブロックに対応する差分信号の周波数成分を出力する逆量子化器と、上記周波数成分を逆周波数変換し、上記各ブロックに対応する差分信号を出力する逆周波数変換器と、上記差分信号と上記各ブロックに対応する画像信号を出力する逆周波数変換器と、上記差分信号と上記各ブロックに対応する画像信号の画面間予測値を加算し、上記ブロック化された画像信号を出力する第2の加算器と、上記第2の加算器の出力を、復号化済み表示画面を構成する復号化済プロックの画像信号に基づいて上記画面間予測値を生成する画面間予測器とから構成したものである。

[0079]

この発明(請求項33)に係るデータ記憶媒体は、画像処理プログラムを格納 したデータ記憶媒体であって、上記画像処理プログラムを、請求項1ないし8、 請求項13ないし18、あるい請求項25または27のいずれかに記載された画 像処理方法による画像処理を、コンピュータに行わせるよう構成したものである

[0080]

【発明の実施の形態】

以下、本発明の実施の形態について図面を参照しながら説明する。 実施の形態1.

図1は、本発明の実施の形態1による画像符号化装置の構成を示すブロック図である。図において、100aは、本実施の形態1の画像処理装置であり、この画像処理装置100aは、図26に示す従来の画像処理装置200aの構成に加えて、被符号化ブロックのDCTタイプに応じてスキャンを切替える適応的スキャン切替処理を行う回路構成を有している。ここで、DCTタイプとは、被符号

化ブロックがフレームDCT処理されているかフィールドDCT処理されているかを示す信号を表すものとする。

[0.081]

つまり、本実施の形態1の画像処理装置100aは、従来の画像処理装置200aのスキャン器109に代えて、上記適応的スキャン切替処理を行うスキャン部100a1を有しており、その他の構成は、上記画像処理装置200aと同一である。

[0082]

このスキャン切替部100a1は、スキャンの方法が異なる,つまり量子化値に異なる処理順序を設定するn個のスキャン器109s1~109snと、上記n個のスキャン器のいずれかを制御信号116に基づいて選択して、該選択されたスキャン器に量子化器106の出力107を供給する第1のスイッチ108aと、上記n個のスキャン器のいずれかの出力を制御信号116に基づいて選択して、選択したスキャン器の出力111を上記可変長復号化器113に供給する第2のスイッチ110aと、ブロック化器102から出力されるDCTタイプ情報114に基づいて、上記制御信号116を発生するスキャン制御器115とを有している。

[0083]

次に動作について説明する。

本画像処理装置100aに入力されたインタレース画像信号101は、ブロック化器102においてフレーム毎あるいはフィールド毎にブロック化され、該ブロック化器102からは、各ブロックに対応する画像信号103が出力される。また、ブロック化器102からは、画像信号103のブロック化の単位を示すDCTタイプ信号114も出力される。画像信号103は、DCT器104において離散コサイン変換によりDCT係数105に変換され、該DCT器104からは、各ブロックに対応するDCT係数が出力される。さらにDCT係数105は、量子化器106において量子化処理により量子化値107に変換される。

[0084]

このとき、スキャン制御器115は、DCTタイプ信号114に応じて、スイ

ッチ108a及び110aを制御する制御信号116を出力する。この制御信号116により、上記スキャン部100a1では、上記スキャン器109s1~109snのうちのいずれか1つが選択され、上記量子化値107は、選択されたスキャン器によりスキャンされる。これにより上記量子化値107には、符号化処理の順序が設定され、該順序設定された量子化値111が可変長符号化器112に出力される。VLC器112では量子化値111がその設定順序に従って可変長符号化され、符号化された量子化値が該VLC器112からビットストリーム113として出力される。

[0085]

図2(a) は、上記画像処理装置100aにおけるスキャン制御器115の回路 構成例を示している。

ここで、上記スキャン制御器115を構成する判定器501は、DCTタイプ信号114を入力とし、被符号化ブロックのDCTタイプに適切なスキャン処理を行うスキャン器がスイッチ108a及び110aにより選択されるよう、該各スイッチに制御信号116を出力する構成となっている。

[0086]

図3のフローチャートを用いて、判定器501による処理方法の一例を説明する。該判定器501は、ステップ601にて、DCTタイプ信号114に基づいて、被符号化ブロックのDCTタイプを判定する。この判定の結果、被符号化ブロックがフレームDCTブロックの場合は、上記判定器501は、ステップ602にて、スキャン器(1)109s1を選択する制御信号116を出力する。一方、上記判定の結果、被符号化ブロックがフィールドDCTブロックの場合は、判定器501は、ステップ603にて、スキャン器(2)109s2を選択する制御信号116を出力する。

[0087]

ここでのスキャン器(1)は、フレームDCTブロックに適したスキャン(量子化値に対する符号化処理順序の設定)を行うものである。具体的には、図31(a)に示す順序のスキャンなどが考えられる。また上記スキャン器(2)は、フィールドDCTブロックに適したスキャン(量子化値に対する符号化処理順序

5 6

の設定)を行うものである。具体的には、図31(c)に示す順序のスキャンなどが考えられる。

[0088]

このような構成の実施の形態1では、被符号化ブロックのDCTタイプに応じて適切なスキャンを選択するので、フレームDCTブロックとフィールドDCTブロックが混在するインタレース画像符号化においてもランレングスを長くすることができ、符号化の効率を向上させることができる。

なお、上記実施の形態 1 では、スキャン制御器の構成として図 2 (a) に示すものを示したが、スキャン制御器としては、図 2 (b) に示す回路構成のものを用いてもよい。

[0089]

図2(b) に示すスキャン制御器115aは、上記判定器502に加えて、符号 化済みのブロックのDCTタイプ信号を保持するメモリ503を有している。

このスキャン制御器115aでは、判定器502は、被符号化ブロックのDCTタイプ信号114及び符号化済みブロックのDCTタイプ信号504に基づいて、被符号化ブロックに対して適切なスキャンを選択し、選択したスキャン処理が該被符号化ブロックの量子化値に施されるよう、スイッチ108a及び110aに制御信号116を出力する。

[0090]

図4のフローチャートを用いて、判定器502による処理方法の一例を説明する。このスキャン制御器115aの判定器502は、ステップ701にて、DC Tタイプ信号114に基づいて、被符号化ブロックのDCTタイプを判定する。この判定の結果、被符号化ブロックがフレームDCTブロックの場合は、判定器502は、ステップ702にて、符号化済みブロックのDCTタイプ信号504に基づいて、符号化済みの隣接ブロックのDCTタイプの判定を行い、一方、被符号化ブロックがフィールドDCTブロックの場合は、判定器502は、ステップ703にて、符号化済みブロックのDCTタイプ信号504に基づいて、符号化済みの隣接ブロックのDCTタイプ信号504に基づいて、符号化済みの隣接ブロックのDCTタイプの判定を行う。

[0091]

ステップ702での判定の結果、符号化済みブロックがフレームDCTブロックの場合は、上記判定器502は、ステップ704にて、スキャン器(1)109s1を選択する制御信号116を出力する。一方、上記ステップ702の判定の結果、被符号化ブロックがフィールドDCTブロックの場合は、判定器502は、ステップ705にて、スキャン器(2)109s2を選択する制御信号116を出力する。

[0092]

また、ステップ703での判定の結果、符号化済みブロックがフレームDCT ブロックの場合は、上記判定器502は、ステップ706にて、スキャン器(3)109s3を選択する制御信号116を出力する。一方、上記ステップ703の判定の結果、被符号化ブロックがフィールドDCTブロックの場合は、判定器502は、ステップ707にて、スキャン器(4)109s4を選択する制御信号116を出力する。

このようにして、被符号化ブロック及び隣接ブロックのDCTタイプの組合わせにより、ステップ704、705、706及び707において4通りのスキャンを選択する。

[0093]

具体的には、被符号化ブロック及び隣接ブロックがともにフィールドDCT処理されている場合は、被符号化ブロックの画像信号には高周波成分が多いと考えられるので、ステップ704においてはその高周波成分に対応する量子化値を優先するスキャン処理を選択する。被符号化ブロックまたは隣接ブロックのいずれか一方のみがフィールドDCT処理されている場合は、被符号化ブロックの画像信号にはやや高周波成分が多いと考えられるので、ステップ705及び706においては高周波成分に対応する量子化値を少し優先するスキャン処理を選択する

[0094]

また、被符号化ブロック及び隣接ブロックがともにフレームDCT処理されている場合は、被符号化ブロックの画像信号の高周波成分は少ないと考えられるの

で、ステップ707においては、低周波成分に対応する量子化値を優先するスキャン処理を選択する。

[0095]

このような構成により、被符号化ブロックのDCTタイプだけでなく隣接ブロックのDCTタイプをも判定に用いることができるので、図1に示す実施の形態1の方法(図2(a)参照)に比べて、細かくスキャンを制御することができ、より適切なスキャンを選択することができる。よって、ランレングスをより長くして、符号化の効率をさらに向上することができる。

[0096]

なお、上記実施の形態1では、符号化処理の際、常に適応的スキャン動作を行う場合を示したが、この適応的スキャンが行われる符号化処理動作と、上記適応的スキャンが行われない符号化処理動作とを、所定の制御信号により切り替えるようにしてもよい。

[0097]

図5はこのような構成の実施の形態1の変形例による画像符号化装置を示している。図において、100 a'は上記実施の形態1の変形例による画像符号化装置であり、この画像符号化装置100 a'は、上記実施の形態1の画像符号化装置100 aにおける、常に適応的スキャン動作を行うスキャン部100 a1に代えて、スキャンモード切替信号1201により、該適応的スキャンを行うスキャンモードと、上記適応的スキャンを行わないスキャンモードとが切り換わるよう構成したスキャン部100 a1'を有している。

[0098]

この画像符号化装置100a′のスキャン部100a1′は、上記実施の形態 1のスキャン部100a1の回路構成に加えて、スキャン制御器115からの制 御信号116と、複数のスキャン器のうちの特定の1つを選択するための、予め 設定されたスキャン選択信号1202との一方をスキャンモード切替信号120 1により選択し、該選択した信号を上記各スイッチ108a,110aの制御信 号1204として出力するモードスイッチ1203aを有している。 [0099]

ここで、スキャンモード切替信号1201は、システム(画像符号化装置)の外部からマニュアル操作により与えられる信号としている。また、上記スキャン選択信号1202は、インタレース画像に適した特定のスキャン(例えば図31(c)のスキャン)を選択するものとしている。なお、上記スキャンモード切替信号1201は、上記のようにマニュアル操作により与える代わりに、VLC器112の出力113に基づいて符号化効率をモニターして得られるモニター結果に応じて出力するようにしてもよい。

このような構成の実施の形態1の変形例では、必要に応じて適応的スキャンを オフして特定のスキャンを実施することができ、符号化処理を効率よく簡略化す ることができる。

[0100]

なお、上記実施の形態1及びその変形例では、インターレース画像信号の符号 化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像 符号化装置について説明したが、上記画像符号化装置は、プログレッシブ画像の 符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールド DCT処理を切り換えるよう構成したものでもよい。

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした、特定のプログレッシブ画像の符号化処理において、VLCの効率を向上することができる。

[0101]

実施の形態2.

図6は、本発明の実施の形態2による画像処理装置を説明するためのブロック図であり、図において、100bは本実施の形態2の画像処理装置であり、この画像処理装置100bは、図28に示す従来の画像処理装置200bの構成に加えて、被復号化ブロックのDCTタイプに応じてスキャンを切替える適応的スキャン切替処理を行う回路構成を有している。ここで、DCTタイプとは、被復号化ブロックが、これに対応する符号化ブロックに対して、フレームDCT処理とフィールドDCT処理のいずれの処理がなされているかを示す信号を表すものと

する。

[0102]

つまり、本実施の形態2の画像処理装置100bは、従来の画像処理装置200bの逆スキャン器202に代えて、上記適応的スキャン切替処理を行う逆スキャン部100b1を有しており、その他の構成は、上記画像処理装置200bと同一である。

[0103]

この逆スキャン部100b1は、逆スキャンの方法が異なる,つまり順序の並べ替えがなされた量子化値をもとの順序に戻すための、それぞれ異なる並べ替え処理を行うn個の逆スキャン器202s1~202snと、上記n個の逆スキャン器のいずれかを制御信号116に基づいて選択して、該選択された逆スキャン器に可変長復号化器201の出力111を供給する第1のスイッチ108bと、上記n個の逆スキャン器のいずれかの出力を制御信号116に基づいて選択して、選択した逆スキャン器の出力107を逆量子化器203に供給する第2のスイッチ110bと、画像符号化装置100aのブロック化器102から出力されるDCTタイプ情報114に基づいて、上記制御信号116を発生する逆スキャン制御器115bとを有している。

[0104]

次に動作について説明する。

画像処理装置100aより出力されたビットストリーム113は、VLD器201において可変長復号化処理により量子化値111に変換され、VLD器201からは該量子化値111が出力される。このとき逆スキャン制御器115bには、画像処理装置100aからのDCTタイプ信号114に基づいて、逆スキャン器を選択する制御信号を、上記各スイッチ108b及び110bに出力している。

[0105]

上記制御信号により選択された逆スキャン器にて、上記量子化値1111は逆スキャンされ、符号化処理における並べ替え前の配列順序の量子化値107が出力される。さらにこの量子化値107は、逆量子化器203において逆量子化され

、該逆量子化器203からは、被復号化ブロックに対応するDCT係数105が 出力される。そして、該DCT係数105は、逆DCT器204において逆離散 コサイン変換により、被復号化ブロックに対応する画像信号103に変換され、 さらに画像信号103は、逆ブロック化器205においてDCTタイプ信号11 4に応じて逆ブロック化されて、1表示画面に対応する画像信号101として出 力される。

[0106]

このような構成の本実施の形態2の画像処理装置100bでは、適応的スキャン切替方法を用いた復号化を行うので、プログレッシブ画像及びインタレース画像のいずれのDCT係数の可変長符号化処理においても、実施の形態1における適応的スキャン切替方法を用いて符号化されたビットストリーム113から、画像信号を効率よくしかも正しく復号化することができる。

[0107]

なお、上記実施の形態2では、被符号化ブロックのDCTタイプ信号114に基づいて、逆スキャン器を選択するようにしているが、上記実施の形態1で説明したように、被復号化ブロックのDCTタイプ信号だけでなく、該被復号化ブロックに隣接する復号化済ブロックのDCTタイプ信号に基づいて、逆スキャン器を選択するようにしてもよい。

[0108]

また、上記実施の形態2では、復号化処理の際、常に適応的逆スキャン動作を 行う場合を示したが、この適応的逆スキャンが行われる復号化処理動作と、上記 適応的逆スキャンが行われない復号化処理動作とを、所定の制御信号により切り 替えるようにしてもよい。

[0109]

図7はこのような構成の実施の形態2の変形例による画像復号化装置を示している。図において、100b′は上記実施の形態2の変形例による画像復号化装置であり、この画像復号化装置100b′は、上記実施の形態2の画像復号化装置100bにおける、復号化処理時に常に適応的逆スキャン動作を行う逆スキャン部100a1に代えて、復号化処理時に、スキャンモード切替信号1201に

より、該適応的逆スキャンを行うスキャンモードと、上記適応的逆スキャンを行 わないスキャンモードとが切り換わるよう構成した逆スキャン部100b1'を 有している。

[0110]

この画像復号化装置100b′の逆スキャン部100b1′は、実施の形態2 の逆スキャン部100b1の回路構成に加えて、逆スキャン制御器115bからの制御信号116と、複数の逆スキャン器のうちの特定の1つを選択するための、予め設定された逆スキャン選択信号1202bとの一方をスキャンモード切替信号1201により選択し、該選択した信号を上記各スイッチ108b,110bの制御信号1204として出力するモードスイッチ1203bを有している。

ここで、上記スキャン選択信号1202bは、上記画像符号化装置100bにおけるスキャン選択信号1202と同様、インタレース画像に適した特定のスキャン(例えば図31(c)のスキャン)を選択するものとしている。

[0111]

このような構成の実施の形態2の変形例では、復号化処理の際、必要に応じて 適応的逆スキャン動作をオフして特定の逆スキャンを実施することができ、画像 符号化装置にて適応的スキャン動作がオフされ、特定のスキャンが実施されてい る場合でも画像符号化信号を正しく復号化することができる。

[0112]

なお、上記実施の形態2及びその変形例では、インターレース画像信号の符号 化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像 符号化装置に対応する画像復号化装置について説明したが、該画像復号化装置は 、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレーム DCT処理とフィールドDCT処理を切り換えるよう構成した画像符号化装置に 対応する画像復号化装置でもよい。

[0113]

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした、特定のプログレッシブ画像の符号化処理により得られる画像符号化信号を正しく復号化することができる。

[0114]

実施の形態3.

図8は、本発明の実施の形態3による画像処理装置の構成を示すブロック図で ある。図において、100cは、本実施の形態3の画像処理装置であり、この画 像処理装置100cは、図29に示す従来の画像処理装置200cにおけるスキ ャン制御器1401cに代えて、第1の予測情報(画面内予測に関する第1のパ ラメータ)309aだけでなく被符号化ブロックのDCTタイプ情報114にも 基づいて制御信号116を発生するスキャン制御器310cを備えたものである 。ここで、画面内予測に関する第1のパラメータ309aは、従来の画像符号化 装置200cと同様、AC予測のON/OFF情報と予測方向情報を含むもので あり、第2の予測情報309bは、AC予測のON/OFF情報のみを含んでい る。このように、復号化側に伝送する第2の予測情報309bを、画像符号化装 置でのスキャン制御に用いる第1の予測情報309aとは異なり予測方向情報を 含まないものとすることにより、予測方法の変更等があった場合でも、復号化側 に出力する第2の予測情報309bの内容を変更する必要がなく、予測方法の変 更等に容易に対応することができる。ただし、第2の予測情報309bは、第1 の予測情報309aと同様、AC予測のON/OFF情報だけでなく予測方向情 報を含むものとしてもよいことは言うまでもない。

[0115]

つまり、本実施の形態3の画像符号化装置100cの、実施の形態1による画像符号化装置100aとの違いは、画面内予測を行う予測部100c2が加わっている点、及び画面内予測に関する第1のパラメータ309aをスキャン制御に用い、第2のパラメータ309bを復号化側に出力する点である。

なお、上記画像処理装置100cのスキャン部100c1におけるスイッチ1 08c、110c、及びn個のスキャン器109s1~109snは、図1に示 す実施の形態1の対応するものと同一構成となっている。

[0116]

次に動作について説明する。ただしここでは、実施の形態1の画像処理装置100aと同一の動作についてはその説明を省略する。

上記予測器305は、符号化済みブロックの量子化値306から被符号化ブロックの量子化値107の予測値を生成し、この予測値303を出力する。また、予測器305は、予測値303の生成に関する第1,第2のパラメータ309a,309bを出力する。量子化値107は、加算器301において予測値303との減算処理が施され、その処理結果が差分値302として出力される。スキャン制御器310cは、DCTタイプ114及び第1のパラメータ309aに応じて、スイッチ108c及び110cに対する制御信号116を出力する。差分値302は、スイッチ108c及び110cにより選択された、スキャン器109s1~109snのいずれかのスキャン器によりスキャンされ、差分値307として出力される。この差分値307は、VLC器112において可変長符号化され、ビットストリーム308として出力される。また、上記差分値302は、加算器304において予測値303との加算処理が施され、その加算結果が上記符号化済みブロックの量子化値306として出力される。

[0117]

図2(c) は、スキャン制御器310cの一構成例を示している。

図2(c) において、スキャン制御器310cは判定器505からなり、この判定器505は、DCTタイプ信号114及び画面内予測に関する第1のパラメータ309aを入力とし、被符号化ブロックのDCTタイプに適切なスキャン器が選択されて、該選択したスキャン器によるスキャン処理が上記量子化したDCT係数に施されるよう、スイッチ108c及び110cに制御信号116を出力する。

[0118]

図9のフローチャートを用いて、判定器505による処理方法の一例を説明する。判定器505は、ステップ801にて、DCTタイプ信号114に基づいて、被符号化ブロックのDCTタイプを判定する。この判定の結果、被符号化ブロックがフィールドDCTブロックの場合は、ステップ807にて、スキャン器(4)を選択する制御信号を出力する。

[0119]

上記判定の結果、被符号化ブロックがフレームDCTブロックの場合は、ステ

ップ802にて、AC予測のON, OFFの判定を行う。この判定の結果、AC 予測がOFFの場合には、ステップ806にて、判定器505は、スキャン器(3)を選択する制御信号を出力する。

また、AC予測がONの場合には、ステップ803にて、予測の参照方向の判定を行う。この判定の結果、参照方向が横方向の場合には、ステップ805にて、判定器505は、スキャン器(2)を選択する制御信号を出力する。上記ステップ803での判定の結果、参照方向が縦方向の場合には、ステップ804にて、判定器505は、スキャン器(1)を選択する制御信号を出力する。

[0120]

ここで、スキャン器(1)によるスキャン処理は、縦方向予測された場合のフレームDCTブロックに適したスキャンで、具体的には図31(b)に示す順序のスキャン処理などが該当する。また、スキャン器(2)によるスキャン処理は、横方向予測された場合のフレームDCTブロックに適したスキャンで、具体的には図31(c)に示す順序のスキャン処理等が該当する。スキャン器(3)によるスキャン処理は、AC予測されていない場合のフレームDCTブロックに適したスキャンで、具体的には図31(a)に示す順次のスキャン処理などが該当する。さらに、スキャン器(4)によるスキャン処理は、フィールドDCTブロックに適したスキャンであり、具体的には図31(c)に示す順次のスキャン処理などが該当する。

[0121]

このような構成の本実施の形態3では、画面内予測に関する第1のパラメータ309a,つまりAC予測のON/OFF情報及びAC予測の参照方向情報だけでなく被符号化ブロックのDCTタイプ114に応じて適切なスキャン処理を選択するので、フレームDCTブロックとフィールドDCTブロックが混在するインタレース画像符号化においてもランレングスを長くすることができ、符号化の効率を向上させることができる。

[0122]

なお、上記実施の形態3では、スキャン制御器の構成として図2(c) に示すものを示したが、スキャン制御器としては、図2(d) に示す回路構成のものを用い

てもよい。

図2(d) に示すスキャン制御器310aは、判定器506に加えて、符号化済 みのブロックのDCTタイプ信号を保持するメモリ503を有している。

[0123]

このスキャン制御器310aでは、符号化済みのブロックのDCTタイプ信号504が、メモリ503により保持される。判定器506は、被符号化ブロックのDCTタイプ信号114、符号化済みのブロックのDCTタイプ信号504及び画面内予測に関する第1のパラメータ309aに応じて、被符号化ブロックに適切なスキャン器を選択し、選択したスキャン器によるスキャン処理が上記予測部の出力に施されるよう、スイッチ108c及び110cに制御信号116を出力する。図10のフローチャートを用いて、判定器506による処理方法の一例を説明する。この処理方法は、図4及び図9の方法を組み合わせたものである。

このスキャン制御器310aの判定器506は、ステップ901にて、DCTタイプ信号114に基づいて、被符号化ブロックのDCTタイプを判定する。この判定の結果、被符号化ブロックがフィールドDCTブロックの場合は、判定器506は、ステップ903にて、符号化済み隣接ブロックのDCTタイプ信号504に基づいて、符号化済みの隣接ブロックのDCTタイプの判定を行う。隣接ブロックがフィールドDCTブロックの場合は、判定器506は、ステップ911にて、スキャン器(6)によるスキャン処理を選択する制御信号を出力する。

[0124]

一方、隣接ブロックがフレームDCTブロックの場合は、判定器506は、ステップ910にて、スキャン器(5)によるスキャン処理を選択する制御信号を出力する。

また、上記ステップ901での判定の結果、被符号化ブロックがフレームDC Tブロックの場合は、判定器506は、ステップ902にて、符号化済み隣接ブロックのDCTタイプ信号504に基づいて、符号化済みの隣接ブロックのDC Tタイプの判定を行う。

[0125]

この判定の結果、符号化済みブロックがフィールドDCTブロックの場合は、

上記判定器506は、ステップ909にて、スキャン器(4)を選択する制御信号116を出力する。一方、上記ステップ902の判定の結果、被符号化ブロックがフレームDCTブロックの場合は、判定器506は、ステップ904にて、AC予測のON,OFFの判定を行う。この判定の結果、AC予測がOFFの場合には、ステップ908にて、判定器506は、スキャン器(3)を選択する制御信号を出力する。

[0126]

また、AC予測がONの場合には、ステップ905にて、予測の参照方向の判定を行う。この判定の結果、参照方向が横方向の場合には、ステップ907にて、判定器506は、スキャン器(2)を選択する制御信号を出力する。上記ステップ905での判定の結果、参照方向が縦方向の場合には、ステップ906にて、判定器506は、スキャン器(1)を選択する制御信号を出力する。

[0127]

このような構成により、画面内予測に関する第1のパラメータ309a及び被符号化ブロックのDCTタイプ114だけでなく隣接ブロックのDCTタイプ504にも応じて適切なスキャンを選択するので、図2(c)に示すスキャン制御器310cによるスキャン制御の方法に比べて、細かくスキャンを制御することができ、より適切なスキャンを選択することができる。よって、ランレングスをより長くすることができ、符号化の効率をさらに向上することができる。

[0128]

なお、上記実施の形態3では、符号化処理の際、常に適応的スキャン動作を行う場合を示したが、この適応的スキャンが行われる符号化処理動作と、上記適応的スキャンが行われない符号化処理動作とを、所定の制御信号により切り替えるようにしてもよい。

[0129]

図11はこのような構成の実施の形態3の変形例による画像符号化装置を示している。図において、100c′は上記実施の形態3の変形例による画像符号化装置であり、この画像符号化装置100c′は、上記実施の形態3の画像符号化装置100cにおける、常に適応的スキャン動作を行うスキャン部100c1に

代えて、スキャンモード切替信号1201により、該適応的スキャンを行うスキャンモードと、上記適応的スキャンを行わないスキャンモードとが切り換わるよう構成したスキャン部100c1'を有している。

[0130]

この画像符号化装置100c′のスキャン部100c1′は、上記実施の形態 3のスキャン部100c1の回路構成に加えて、スキャン制御器310cからの 制御信号116と、複数のスキャン器のうちの特定の1つを選択するための、予 め設定されたスキャン選択信号1202との一方をスキャンモード切替信号12 01により選択し、該選択した信号を各スイッチ108c、110cを制御する 制御信号1204として出力するモードスイッチ1203を有している。

[0131]

ここで、スキャンモード切替信号1201は、システム(画像符号化装置)の外部からマニュアル操作により与えられる信号としている。また、上記スキャン選択信号1202は、インタレース画像に適した特定のスキャン(例えば図31(c)のスキャン)を選択するものとしている。なお、上記スキャンモード切替信号1201は、上記のようにマニュアル操作により与える代わりに、VLC器112の出力308に基づいて符号化効率をモニターし、このモニター結果に応じて出力するようにしてもよい。

このような構成の実施の形態3の変形例では、必要に応じて適応的スキャンを オフして特定のスキャンを実施することができ、符号化処理を効率よく簡略化す ることができる。

[0132]

なお、上記実施の形態3及びその変形例では、インターレース画像信号の符号 化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像 符号化装置について説明したが、上記画像符号化装置は、プログレッシブ画像の 符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールド DCT処理を切り換えるよう構成したものでもよい。

[0133]

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理

を切り換えるようにした、特定のプログレッシブ画像の符号化処理において、V LCの効率を向上することができる。

[0134]

実施の形態4.

図12は、本発明の実施の形態4による画像処理装置を説明するためのブロック図であり、図において、100dは本実施の形態4の画像処理装置であり、この画像処理装置100dは、図32に示す従来の画像処理装置200dにおける逆スキャン制御器1401dに代えて、第1の予測情報(画面内予測に関する第1のパラメータ)309aに相当する制御用予測情報309a′だけでなく被復号化ブロックのDCTタイプ情報114にも基づいて制御信号116を発生する逆スキャン制御器310dを備えたものである。

[0135]

つまり、この画像復号化装置100dの、実施の形態2による画像復号化装置100bとの違いは、画面内予測を行う予測部100d2が加わっている点、及び画面内予測に関する第1のパラメータ309aに相当する制御用予測情報309a′を逆スキャン制御に用いる点である。

なお、上記画像処理装置100dの逆スキャン部100d1におけるスイッチ 108d,110d、及びn個の逆スキャン器202s1~202snは、図6 に示す実施の形態2の対応するものと同一構成となっている。

[0136]

次に動作について説明する。

実施の形態3の画像符号化装置100cより出力されたビットストリーム308が、本画像処理装置100dに入力されると、該ビットストリーム308はVLD器201において可変長復号化され、差分値307として出力される。このとき逆スキャン制御器310dは、画像符号化装置100cからのDCTタイプ信号114、及び上記予測部100d2からの制御用予測情報309a'に基づいて、逆スキャン器を選択する制御信号116を、上記各スイッチ108d及び110dに出力している。

[0137]

上記制御信号116により選択された逆スキャン器にて、この差分値307は 逆スキャン処理が施され、並べ替え処理がなされた差分値302として出力され 、さらに予測部100d2にて、対応する量子化値107に変換される。この量 子化値107は、逆量子化器203において逆量子化され、DCT係数105と して出力される。このDCT係数105は、逆DCT器204において逆離散コ サイン変換され、画像信号103として出力される。この画像信号103は、逆 ブロック化器205においてDCTタイプ信号114に応じて逆ブロック化され 、1つの表示画面に対応するインタレース画像信号101として出力される。

[0138]

このような構成の本実施の形態4の画像復号化装置100dでは、予測部100d2にて画像符号化装置100cからの第2の予測情報309bに基づいて生成された制御用予測情報309aだけでなく、被復号化ブロックのDCTタイプ情報114に応じた適応的逆スキャン切替方法を用いて復号化処理を行うので、プログレッシブ画像またはインタレース画像に対するDCT係数の可変長符号化処理の際、実施の形態3で用いた適応的スキャン切替方法を用いて符号化されたビットストリームを効率よくしかも正しく復号化して、画像信号を再生することができる。

[0139]

なお、上記実施の形態4では、被符号化ブロックのDCTタイプ信号114に基づいて、逆スキャン器を選択するようにしているが、上記実施の形態3で説明したように、被復号化ブロックのDCTタイプ信号だけでなく、該被復号化ブロックに隣接する復号化済ブロックのDCTタイプ信号に基づいて、逆スキャン器を選択するようにしてもよい。

[0140]

また、上記実施の形態4では、復号化処理の際、常に適応的逆スキャン動作を 行う場合を示したが、この適応的逆スキャンが行われる復号化処理動作と、上記 適応的逆スキャンが行われない復号化処理動作とを、所定の制御信号により切り 替えるようにしてもよい。

[0141]

図13はこのような構成の実施の形態4の変形例による画像復号化装置を示している。図において、100d'は上記実施の形態4の変形例による画像復号化装置であり、この画像復号化装置100d'は、上記実施の形態4の画像復号化装置100dにおける、復号化処理時に常に適応的逆スキャン動作を行う逆スキャン部100d1に代えて、復号化処理時に、スキャンモード切替信号1201により、該適応的逆スキャンを行うスキャンモードと、上記適応的逆スキャンを行わないスキャンモードとが切り換わるよう構成した逆スキャン部100d1'を有している。

[0142]

この画像復号化装置100d′の逆スキャン部100d1′は、実施の形態4 の逆スキャン部100d1の回路構成に加えて、逆スキャン制御器310dから の制御信号116と、複数の逆スキャン器のうちの特定の1つを選択するための 、予め設定された逆スキャン選択信号1202dとの一方をスキャンモード切替 信号1201により選択し、該選択した信号を上記各スイッチ108d,110 dの制御信号1204として出力するモードスイッチ1203dを有している。

ここで、上記逆スキャン選択信号1202dは、上記画像符号化装置100d における逆スキャン選択信号1202dと同様、インタレース画像に適した特定 のスキャン(例えば図31(c)のスキャン)を選択するものとしている。

[0143]

このような構成の実施の形態4の変形例では、復号化処理の際、必要に応じて 適応的逆スキャン動作をオフして特定のスキャンを実施することができ、画像符 号化装置にて適応的スキャン動作がオフされ、特定のスキャンが実施されている 場合でも画像符号化信号を正しく復号化することができる。

[0144]

なお、上記実施の形態4及びその変形例では、インターレース画像信号の符号 化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像 符号化装置に対応する画像復号化装置について説明したが、該画像復号化装置は 、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレーム DCT処理とフィールドDCT処理を切り換えるよう構成した画像符号化装置に 対応する画像復号化装置でもよい。

[0145]

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした、特定のプログレッシブ画像の符号化処理により得られる画像符号化信号を正しく復号化することができる。

[0146]

実施の形態5.

図14は、本発明の実施の形態5による画像処理装置の構成を示すブロック図である。図において、100eは、本実施の形態5の画像処理装置(画像符号化装置)であり、この画像符号化装置100eは、図26に示す従来の画像処理装置200aの構成に加えて、被符号化ブロック周辺に位置する一つ以上の符号化済みブロックに対する最適なスキャン方法に応じて、被符号化ブロックに対するスキャン方法を切替える適応的スキャン切替処理を行う回路構成を有している。

[0147]

具体的には、本実施の形態5の画像符号化装置100eは、従来の画像処理装置200aのスキャン器109に代えて、上記適応的スキャン切替処理を行うスキャン部100e1を有しており、その他の構成は、上記従来の画像処理装置200aと同一である。

[0148]

このスキャン部100e1は、スキャンの方法が異なる,つまり量子化値に異なる処理順序を設定する n 個のスキャン器109s1~109snと、上記 n 個のスキャン器のいずれかを制御信号1306に基づいて選択して、該選択されたスキャン器に量子化器106の出力107を供給する第1のスイッチ108eと、上記 n 個のスキャン器のいずれかの出力を制御信号1306に基づいて選択して、選択したスキャン器の出力111を上記可変長復号化器112に供給する第2のスイッチ110eとを有している。

[0149]

さらに、上記スキャン部100e1は、上記量子化器106の出力107に対

して最適なスキャン(符号化のための処理順序)を判定する特性解析器1301 と、該判定結果を上記最適スキャンを示す情報1302として格納するメモリ1 303と、該メモリ1303に格納されている情報,つまり符号化済みブロック の最適スキャンに関する情報1304に基づいて、被符号化ブロックに対する量 子化値に最適なスキャンが実施されるよう、上記制御信号1306により上記各 スイッチ108e,110eを制御するスキャン制御器1305とを有している

[0150]

次に動作について説明する。

本画像符号化装置100 e に入力されたインタレース画像信号101は、ブロック化器102においてフレーム毎あるいはフィールド毎にブロック化され、該ブロック化器102からは、各ブロックに対応する画像信号103が出力される。また、ブロック化器102からは、画像信号103のブロック化の単位を示すDCTタイプ信号114も出力される。上記画像信号103は、DCT器104において離散コサイン変換によりDCT係数105に変換され、該DCT器104からは、各ブロックに対応するDCT係数が出力される。さらにDCT係数105は、量子化器106において量子化処理により量子化値107に変換される

[0151]

このとき、特性解析器 1 3 0 1 は、被符号化ブロックの量子化値 1 0 7 の最適スキャンを判定し、最適スキャンを示す情報 1 3 0 2 をメモリ 1 3 0 3 に格納する。スキャン制御器 1 3 0 5 は、メモリ 1 3 0 3 に格納されている符号化済みブロックの最適スキャンの情報 1 3 0 4 に応じて、スイッチ 1 0 8 e 及び 1 1 0 e を制御する制御信号 1 3 0 6 を出力する。この制御信号 1 3 0 6 により、上記スキャン器のうちのいずれかが選択され、上記量子化値 1 0 7 は、選択されたスキャン器によりスキャンされる。

[0152]

これにより上記量子化値107には、符号化処理の順序が設定され、該順序設定された量子化値111が可変長符号化器112に出力される。VLC器112

では量子化値111がその設定順序に従って可変長符号化され、該VLC器11 2からビットストリーム113として出力される。

[0153]

図15は、上記画像符号化装置100eにおける特性解析器1301の詳細な回路構成を示している。

この図に示すように、上記特性解析器 1 3 0 1 は、それぞれ上記スキャン器 1 0 9 s 1~1 0 9 s nによるスキャン順序に対応した n 個の評価関数を有し、量子化値 1 0 7を該スキャン器 1 0 9 s nによりスキャンした場合における評価値を出力する n 個の評価関数回路 1 8 0 1 f 1~1 8 0 1 f n と、その出力に基づいて判定を行う判定器 1 8 0 3 とから構成される。ここで、上記判定器 1 8 0 3 は、評価値 1 8 0 2 f 1~1 8 0 2 f nを比較し、最も評価の高いスキャンを量子化値 1 0 7 に対する最適スキャンとして判定し、最適スキャンを示す情報 1 3 0 2 を出力するようになっている。つまり、上記判定器 1 8 0 3 は、上記各評価関数回路 1 8 0 1 f 1~1 8 0 1 f n から出力される評価値に基づいて、上記情報源符号化部 2 0 0 a 1 にて得られる各ブロックに対応する D C T 係数(周波数変換)の分布を判定し、該判定結果に基づいて最適スキャンを示す情報 1 3 0 2 を出力するようになっている。

[0154]

なお、上記評価関数としては、それぞれに対応するスキャンの順に複数個(例えば10個)のDCT係数の和を評価値とする関数などが考えられるが、可変長符号化効率が高いスキャンほど評価値が高くなるものであれば他の関数でも構わない。

[0155]

図16に示すフローチャートを用いて、スキャン制御器1305による処理方法の一例を説明する。

該スキャン制御器1305は、ステップ1601にて、メモリ1303に格納されている符号化済みブロックの最適スキャンを示す情報1304に基づき、被符号化ブロックの真上に位置する上側マクロブロックとその左隣に位置する左側マクロブロックに対する最適スキャンが同じであるか判定する。この判定の結果

、上記の2つのマクロブロックの最適スキャンが異なる場合は、ステップ160 5にて、スキャン器(3)109s3を選択する制御信号1306を出力する。

[0156]

一方、上記2つのマクロブロックの最適スキャンが同じである場合は、ステップ1602にて、上側及び左側マクロブロックの最適スキャンが上記スキャン(1)~スキャン(n)のいずれであるかを判定する。上側及び左側マクロブロックの最適スキャンが、スキャン(1)である場合は、ステップ1603にて、スキャン器(1)109s1を選択する制御信号1306を出力する。また、上側及び左側マクロブロックの最適スキャンが、スキャン(2)である場合は、ステップ1604にて、スキャン器(2)109s2を選択する制御信号1306を出力する。

[0157]

このような構成の実施の形態5では、被符号化ブロックの周辺に位置する符号 化済みブロックの最適スキャンに応じて適切なスキャンを選択するので、フレー ムDCTブロックとフィールドDCTブロックが混在するインタレース画像符号 化においてもランレングスを長くすることができ、符号化の効率を向上させるこ とができる。

[0158]

なお、上記実施の形態5では、符号化処理の際、常に適応的スキャン動作が行われる場合を示したが、この適応的スキャンが行われる符号化処理動作と、上記 適応的スキャンが行われない符号化処理動作とを、所定の制御信号により切り替 えるようにしてもよい。

[0159]

図17はこのような構成の実施の形態5の変形例による画像符号化装置を示している。図において、100e'は上記実施の形態5の変形例による画像符号化装置であり、この画像符号化装置100e'は、上記実施の形態5の画像符号化装置100eにおける、常に適応的スキャン動作を行うスキャン部100e1に代えて、スキャンモード切替信号1201により、該適応的スキャンを行うスキャンモードと、上記適応的スキャンを行わないスキャンモードとが切り換わるよ

う構成したスキャン部100e1′を有している。

[0160]

この画像符号化装置100e′のスキャン部100e1′は、上記実施の形態5のスキャン部100c1の回路構成に加えて、スキャン制御器1305からの制御信号116と、複数のスキャン器のうちの特定の1つを選択するための、予め設定されたスキャン選択信号1202との一方をスキャンモード切替信号1201により選択し、該選択した信号を各スイッチ108e,110eを制御する制御信号1204として出力するモードスイッチ1203eを有している。

[0161]

ここで、スキャンモード切替信号1201は、システム(画像符号化装置)の外部からマニュアル操作により与えられる信号としている。また、上記スキャン選択信号1202は、インタレース画像に適した特定のスキャン(例えば図31(c)のスキャン)を選択するものとしている。なお、上記スキャンモード切替信号1201は、上記のようにマニュアル操作により与える代わりに、VLC器112の出力113に基づいて符号化効率をモニターし、このモニター結果に応じて出力するようにしてもよい。

このような構成の実施の形態 5 の変形例では、必要に応じて適応的スキャンを オフして特定のスキャンを実施することができ、符号化処理を効率よく簡略化す ることができる。

[0162]

なお、上記実施の形態 5 及びその変形例では、インターレース画像信号の符号 化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像 符号化装置について説明したが、上記画像符号化装置は、プログレッシブ画像の 符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールド DCT処理を切り換えるよう構成したものでもよい。

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした、特定のプログレッシブ画像の符号化処理において、VLCの効率を向上することができる。

[0163]

実施の形態 6.

図18は、本発明の実施の形態6による画像処理装置を説明するためのブロック図であり、この画像処理装置は、図28に示す従来の画像処理装置200bの構成に加えて、被復号化ブロック周辺に位置する一つ以上の復号化済みブロックの最適なスキャンに応じて、被復号化ブロックの逆スキャンを切替える適応的逆スキャン切替処理を行う回路構成を有している。

[0164]

具体的には、本実施の形態6の画像処理装置100fは、従来の画像処理装置200bの逆スキャン器202に代えて、上記適応的逆スキャン切替処理を行う逆スキャン部100f1を有しており、その他の構成は、上記従来の画像処理装置200bと同一である。

[0165]

この逆スキャン部100f1は、逆スキャンの方法が異なる,つまり順序の並べ替えがなされた量子化値をもとの順序に戻すために並べ替える、それぞれ異なる並べ替え処理を行うn個の逆スキャン器202s1~202snと、上記n個の逆スキャン器のいずれかを制御信号1306に基づいて選択して、該選択された逆スキャン器に可変長復号化器201の出力111を供給する第1のスイッチ108 f と、上記n個の逆スキャン器のいずれかの出力を制御信号1306に基づいて選択して、選択した逆スキャン器の出力107を逆量子化器203に供給する第2のスイッチ110 f とを有している。

[0166]

また、上記逆スキャン部100f1は、上記逆スキャン器の出力107に対して最適なスキャンを判定する特性解析器1301と、該判定結果を上記最適スキャンを示す情報1302として格納するメモリ1303と、メモリ1303に格納されている情報,つまり復号化済みブロックの最適スキャンに関する情報に基づいて、被復号化ブロックに対する最適スキャンを選択するための上記制御信号1306を発生するスキャン制御器1305fとを有している。ここで特性解析器1301は上記実施の形態5におけるものと同一構成となっている。

[0167]

次に動作について説明する。

上記画像符号化装置100eより出力されたビットストリーム113は、VLD器201において可変長復号化処理により量子化値111に変換され、VLD器201からは該量子化値111が出力される。このとき特性解析器1301は被復号化ブロックの量子化値107に対する最適逆スキャンを判定し、最適逆スキャンを示す情報1302をメモリ1303に格納する。逆スキャン制御器1305fは、該メモリ1303に格納されている復号化済みブロックの最適スキャンを示す情報1304に応じて、上記複数の逆スキャン器202s1~202snのうちの1つを選択する制御信号1306を、上記各スイッチ108f及び110fに出力する。

[0168]

上記制御信号1306により選択された逆スキャン器にて、上記量子化値111は逆スキャンされ、符号化処理における並べ替え前の配列順序の量子化値107が出力される。さらにこの量子化値107は、逆量子化器203において逆量子化され、該逆量子化器203からは、被復号化ブロックに対応するDCT係数105が出力される。そして、該DCT係数105は、逆DCT器204において逆離散コサイン変換により、被復号化ブロックに対応する画像信号103に変換され、さらに画像信号103は、逆ブロック化器205においてDCTタイプ信号114に応じて逆ブロック化されて、1表示画面に対応する画像信号101として出力される。

[0169]

このような構成の本実施の形態6の画像符号化装置100fでは、適応的な逆スキャンの切替方法を用いた復号化処理を行うので、プログレッシブ画像及びインタレース画像のいずれのDCT係数の可変長復号化処理においても、実施の形態5における適応的スキャン切替方法を用いて符号化されたビットストリーム113から、画像信号を効率よくしかも正しく復号化することができる。

なお、上記実施の形態6では、復号化処理の際、常に適応的逆スキャン動作が 行われるものを示したが、この適応的逆スキャンが行われる復号化処理動作と、 上記適応的逆スキャンが行われない復号化処理動作とを、所定の制御信号により 切り替えるようにしてもよい。

[0170]

図19はこのような構成の実施の形態6の変形例による画像復号化装置を示している。図において、100f'は上記実施の形態6の変形例による画像復号化装置であり、この画像復号化装置100f'は、上記実施の形態6の画像復号化装置100fにおける、復号化処理時に常に適応的逆スキャン動作を行う逆スキャン部100f1に代えて、復号化処理時に、スキャンモード切替信号1201により、該適応的逆スキャンを行うスキャンモードと、上記適応的逆スキャンを行わないスキャンモードとが切り換わるよう構成した逆スキャン部100f1'を有している。

[0171]

この画像復号化装置100 f'の逆スキャン部100 f 1'は、実施の形態6の逆スキャン部100 f 1の回路構成に加えて、逆スキャン制御器1305 f からの制御信号1306 と、複数の逆スキャン器のうちの特定の1つを選択するための、予め設定された逆スキャン選択信号1202 e との一方をスキャンモード切替信号1201により選択し、該選択した信号を上記各スイッチ108 f, 110 f の制御信号1204 として出力するモードスイッチ1203 f を有している。

[0172]

このような構成の実施の形態6の変形例では、復号化処理の際、必要に応じて 適応的逆スキャン動作をオフして特定のスキャンを実施するようにしたので、画 像符号化装置にて適応的スキャン動作がオフされ、特定のスキャンが実施されて いる場合でも画像符号化信号を正しく復号化することができる。

[0173]

なお、上記実施の形態6及びその変形例では、インターレース画像信号の符号 化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像 符号化装置に対応する画像復号化装置について説明したが、該画像復号化装置は 、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレーム DCT処理とフィールドDCT処理を切り換えるよう構成した画像符号化装置に 対応する画像復号化装置でもよい。

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした、特定のプログレッシブ画像の符号化処理により得られる画像符号化信号を正しく復号化することができる。

[0174]

実施の形態7.

図20は、本発明の実施の形態7による画像処理装置の構成を示すブロック図である。図において、100gは本実施の形態7の画像処理装置(画像符号化装置)であり、この画像符号化装置100gは、図29に示す従来の画像処理装置200cにおける、符号化処理の際に常に適応的スキャンを行うスキャン部200c1に代えて、符号化処理の際に必要に応じて、適応的スキャンを行うスキャンモードと、上記適応的スキャンを行わないスキャンモードとが切り換わるよう構成したスキャン部100g1を備えたものである。

[0175]

つまり、この画像符号化装置100gのスキャン部100g1は、従来の画像符号化装置200cのスキャン部200c1の回路構成に加えて、スキャン制御器1401cからの制御信号116と、複数のスキャン器のうちの特定の1つを選択するための、予め設定されたスキャン選択信号1202との一方をスキャンモード切替信号1201により選択し、該選択した信号を、各スイッチ108c,110cを制御する制御信号1204gとして出力するモードスイッチ1203gを有している。その他の構成は上記従来の画像符号化装置200cと同一である。

[0176]

このような構成の画像符号化装置100gでは、モードスイッチ1203gは、システム(画像符号化装置)100gの外部からマニュアル操作により与えられるスキャンモード切替信号1201により、適応的に複数のスキャンのうちの1つを選択するための制御信号116と、インタレース画像に適した特定のスキャンを選択するスキャン選択信号1202のいずれかの信号を選択し、選択した

信号をスイッチ108cおよび110cに供給する。

[0177]

このとき、上記モードスイッチ1203gにより上記スキャン選択信号1202が選択された場合は、上記各スイッチ108c, 110cでは、該スキャン選択信号1202に基づいて図31(c)に示すスキャンを実施するスキャン器109s3が選択され、上記量子化値107は、上記予測値309に拘わらず、常に該選択されたスキャン器109s3によってスキャン処理が施される。

[0178]

一方、上記モードスイッチ1203gにより上記制御信号116が選択された場合は、上記スキャン部100g1では、図29に示す従来の画像符号化装置200cにおけるスキャン部200c1と全く同一のスキャン処理が行われる。

そして、その他の動作は、図29に示す従来の画像符号化装置200cと全く 同様に行われる。

[0179]

このような構成の本実施の形態7では、必要に応じて適応的スキャンをオフしてインタレース画像に適した特定のスキャンを実施するようにしたので、インタレース画像信号の符号化処理を効率よく簡単化することができる。

なお、上記スキャンモード切替信号1201は、上記のようにマニュアル操作により与える代わりに、VLC器112の出力308に基づいて符号化効率をモニターし、このモニター結果に応じて出力するようにしてもよい。

[0180]

また、上記実施の形態 7 では、インターレース画像信号の符号化処理について 説明したが、符号化処理の対象となる画像信号はこれに限るものではなく、例え は、横縞模様等の、インターレース画像と同様、奇数列あるいは偶数列走査線間 の画素値相関の高いプログレッシブ画像等でもよく、この場合も上記実施の形態 7と同様な効果が得られる。

[0181]

実施の形態8.

図21は、本発明の実施の形態8による画像処理装置を説明するためのブロッ

ク図である。図において、100hは、上記実施の形態8の画像処理装置(画像復号化装置)であり、この画像復号化装置100hは、図32に示す従来の画像処理装置200dにおける、復号化処理の際に常に適応的逆スキャンを行う逆スキャン部200d1に代えて、復号化処理の際に必要に応じて、適応的逆スキャンを行う逆スキャンモードと、上記適応的逆スキャンを行わない逆スキャンモードとが切り換わるよう構成した逆スキャン部100h1を備えたものである。

[0182]

つまり、この画像符号化装置100hのスキャン部100h1は、従来の画像符号化装置200dのスキャン部200d1の回路構成に加えて、スキャン制御器1401dからの制御信号116と、複数のスキャン器のうちの特定の1つを選択するための、予め設定されたスキャン選択信号1202との一方をスキャンモード切替信号1201により選択し、該選択した信号を、各スイッチ108d,110dを制御する制御信号1204として出力するモードスイッチ1203hを有している。その他の構成は上記従来の画像符号化装置200dと同一である。

[0183]

このような構成の画像符号化装置100hでは、モードスイッチ1203hは、システム(画像符号化装置)100hの外部からマニュアル操作により与えられるスキャン切替え信号1201により、適応的に複数のスキャンのうちの1つを選択するための制御信号116と、インタレース画像に適した特定のスキャンを選択するスキャン選択信号1202のいずれかの信号を選択し、選択した信号をスイッチ108dおよび110dに供給する。

[0184]

このとき、上記モードスイッチ1203hにより上記スキャン選択信号120 2が選択された場合は、上記各スイッチ108d,110dでは、該スキャン選 択信号1202に基づいて図31(c)に示すスキャンを実施するスキャン器1 09s3が選択され、上記量子化値107は、上記予測値309に拘わらず、常 に該選択されたスキャン器109s3によってスキャン処理が施される。 [0185]

一方、上記モードスイッチ1203hにより上記制御信号116が選択された場合は、上記スキャン部100h1では、図32に示す従来の画像復号化装置200dにおけるスキャン部200d1と全く同一のスキャン処理が行われる。

[0186]

そして、その他の動作は、図32に示す従来の画像復号化装置200dと全く 同様に行われる。

このような構成の本実施の形態8では、必要に応じて適応的スキャンをオフしてインタレース画像に適した特定のスキャンを実施するようにしたので、インタレース画像信号の符号化信号に対する復号化処理を効率よく簡単化することができる。

[0187]

また、上記実施の形態8では、インターレース画像に対する復号化処理について説明したが、上記復号化処理の対象となる画像はこれに限るものではなく、例えは、横縞模様等の、インターレース画像と同様、奇数列あるいは偶数列走査線間の画素値相関の高いプログレッシブ画像等でもよく、この場合も上記実施の形態8と同様な効果が得られる。

[0188]

実施の形態9.

図22は、本発明の実施の形態9による画像処理装置の構成を示すブロック図である。図において、100iは本実施の形態9の画像処理装置(画像符号化装置)であり、この画像符号化装置100iは、図33に示す従来の画像処理装置のスキャン部200e1に代えて、予測情報(パラメータ)1015だけでなく、システム(画像符号化装置)の外部からマニュアル操作により与えられるスキャンモード切替信号1201にも基づいて適応的にスキャンを切替えるスキャン部100i1を備えている。

[0189]

つまり、本実施の形態9の画像符号化装置100iのスキャン部100i1は、スキャンの方法が異なる, つまり量子化値に異なる処理順序を設定するn個の

スキャン器199s1~199snと、上記n個のスキャン器のいずれかを制御信号116iに基づいて選択して、該選択されたスキャン器に量子化器106の出力107を供給する第1のスイッチ108aと、上記n個のスキャン器のいずれかの出力を制御信号116iに基づいて選択して、選択したスキャン器の出力1005を上記可変長復号化器112に供給する第2のスイッチ110aと、上記予測部200e2からの予測に関するパラメータ1015および上記外部からのスキャン切替信号1201に応じて上記制御信号116iを発生するスキャン制御器1501iとを有している。

[0190]

ここで、具体的には、スキャン器(1)199s1としては、図29に示す予測部200c2における各構成要素301,304,305と、図29に示すスキャン部200c1における各構成要素108c,110c,109s1~109s3,1401cから構成されている。つまり、上記スキャン器199s1は、符号化処理の際、画面間予測が行われなかったブロック(イントラ符号化ブロック)に対する画面内予測処理が行われるとともに、該予測値の生成に関する予測情報に基づいて、該スキャン器199s1を構成するスキャン器109s1~109s3のいずれかが選択される構成となっている。なお、上記スキャン器199s1を構成するスキャン器109s3のうちの1つは図31(a)に示す順序で量子化値のスキャンを行うものとなっている。

[0191]

また、上記スキャン器(2) 199s2 としては図31 (a) に示す順序でスキャンを行うもの、スキャン器(3) 199s3 としては図31 (c) に示す順序でスキャンを行うもの、スキャン器(4) 199s4 としては図31 (a) あるいは図31 (c) に示す順序でスキャンを行うものが用いられる。

そして、この実施の形態9の画像符号化装置100iの他の構成は、図33に 示す従来の画像符号化装置200eと同一である。

[0192]

次に動作について説明する。ただしここでは、図33に示す従来の画像符号化装置200eと同一の動作についてはその説明を省略する。

図23に示すフローチャートを用いて、スキャン制御器1501iによる処理 方法の一例を説明する。

ステップ1701にて、該スキャン制御器1501iにより、被符号化ブロックの符号化に関する情報を表す画面間予測パラメータ1015の判定が行われる。この判定の結果、被符号化ブロックがイントラ符号化されているものである場合は、ステップ1702にて、スキャンモード切替信号1201の判定が行われる。その結果、スキャンモード切替信号1201がOFFである場合は、ステップ1704にてスキャン器(1)199s1を選択する制御信号116が出力される。一方スキャンモード切替信号1201がONである場合は、ステップ1705にてスキャン器(3)199s3を選択する制御信号116が出力される。

[0193]

また、上記ステップ1701での判定の結果、被符号化ブロックがインター符号化されているものである場合は、ステップ1703にて、スキャンモード切替信号1201が日子の場合は、ステップ1706にてスキャン器(2)199s2を選択する制御信号116iが出力される。一方スキャンモード切替信号1201がONである場合は、ステップ1707にてスキャン器(4)199s4を選択する制御信号116iが出力される。

[0194]

このような構成の本実施の形態9では、イントラ符号化マクロブロックとインター符号化マクロブロックのそれぞれに対し、予測に関するパラメータ1015 およびスキャン切替信号1201に応じて複数のスキャンを切り替えるようにしたので、それぞれの符号化方法に適したスキャンを実施することができ、周波数成分の分布の異なるインター符号化マクロブロックとイントラ符号化マクロブロックが混在するインタレース画像信号のインター符号化処理においてもランレングスを長くすることができ、符号化の効率を向上させることができる。

[0195]

なお、上記実施の形態9では、インターレース画像信号の符号化処理を行う際 、フレームDCT処理とフィールドDCT処理を切り換える画像符号化装置につ いて説明したが、上記画像符号化装置は、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるよう構成したものでもよい。

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるようにした、特定のプログレッシブ画像の符号化処理において、VLCの効率を向上することができる。

[0196]

実施の形態10.

図24は、本発明の実施の形態10による画像処理装置の構成を示すブロック図である。図において、100jは本実施の形態10の画像処理装置(画像復号化装置)であり、この画像復号化装置100jは、図34に示す従来の画像復号化装置200fのスキャン部200f1に代えて、予測値1015だけでなく上記スキャンモード切替信号1201にも基づいて適応的に逆スキャンを切替える逆スキャン部100j1を備えている。

[0197]

つまり、本実施の形態10の画像復号化装置100jの逆スキャン部100j 1は、逆スキャンの方法が異なる、つまり順序の並べ替えがなされた量子化値を もとの順序に戻すための、それぞれ異なる並べ替え処理を行うn個の逆スキャン 器292s1~292snと、上記n個の逆スキャン器のいずれかを制御信号1 16iに基づいて選択して、該選択された逆スキャン器に可変長復号化器201 の出力1005を供給する第1のスイッチ108bと、上記n個の逆スキャン器 のいずれかの出力を制御信号116iに基づいて選択して、選択した逆スキャン 器の出力1004を逆量子化器203に供給する第2のスイッチ110bと、上 記予測部200e2からの予測に関するパラメータ1015および上記外部から のスキャンモード切替信号1201に応じて上記制御信号116iを発生する逆 スキャン制御器1501jとを有している。ここで、上記逆スキャン器292s 1~292snは上記画像符号化装置100iにおけるスキャン器199s1~ 199snに対応する構成となっている。 [0198]

そして、この実施の形態10の画像復号化装置100jの他の構成は、図34 に示す従来の画像復号化装置200fと同一である。

この画像復号化装置100jでは、上記スキャン制御器1501jが、実施の 形態9のスキャン制御器1501iと同様の方法で、上記予測に関するパラメー タ1015および上記スキャンモード切替信号1201に応じてスキャン制御信 号i116を出力する点のみ、従来の画像復号化装置200fと異なっている。

[0199]

このような構成の本実施の形態10では、予測に関するパラメータ1015および上記スキャンモード切替信号1201に応じて適応的にスキャンを切り替えて復号化を行うので、プログレッシブ画像およびインタレース画像のいずれのDCT係数の可変長復号化処理においても、実施の形態9におけるスキャン切替方法を用いて符号化されたビットストリーム1006を効率よくしかも正しく復号化して、該ビットストリームに対応する画像信号を再生することができる。

[0200]

なお、上記実施の形態10では、インターレース画像信号の符号化処理を行う際、フレームDCT処理とフィールドDCT処理を切り換える画像符号化装置に対応する画像復号化装置について説明したが、該画像復号化装置は、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるよう構成した画像符号化装置に対応する画像復号化装置でもよい。

この場合、画像の内容に応じて、フレームDCT処理とフィールドDCT処理 を切り換えるようにした、特定のプログレッシブ画像の符号化処理により得られ る画像符号化信号を正しく復号化することができる。

[0201]

実施の形態11.

図35は、本発明の実施の形態11による画像処理装置の構成を示すブロック 図である。図において、100kは本実施の形態11の画像処理装置(画像符号 化装置)であり、この画像符号化装置100kは、入力される画像信号101を 、1表示画面を構成する複数のブロックの各々に対応するよう分割して、ブロック化された画像信号103を生成するブロック化器102と、ブロック化された画像信号103とその画面間予測値1008との差分値(画面間差分値)1002に対して情報源符号化処理を行う情報源符号化部100k1と、該情報源符号化部100k1の出力(量子化値)1004に対して画面内予測処理を行って予測値(画面内予測値)302を生成し、該量子化値1004とその画面内予測値302との差分値(画面内差分値)302を出力するとともに、第1,第2の予測情報309a,309bを出力する予測部100k2とを有している。ここで、上記第1の予測情報309aには、AC予測のONorOFFを示す情報(ON/OFF情報)と、AC予測を行う際の予測の参照方向を示す情報(予測方向情報)とが含まれており、上記第2の予測時報方309bには、AC予測のONorOFFを示す情報(ON/OFF情報)のみが含まれている。

[0202]

また上記画像処理装置100kは、該予測部100k2での予測値の生成に関する第1のパラメータ(第1の画面内予測情報)309a、情報源符号化部100k1での予測値の生成に関するパラメータ(画面間予測情報)1015、及びシステム(画像符号化装置)の外部からマニュアル操作により与えられるスキャンモード切替信号1201に基づいて、上記画面内差分値302に対するスキャン処理を切替えるスキャン部100k3と、該スキャン部100k3の出力1005を、該スキャン部100k3にて設定された処理順序に従って可変長符号化して、各ブロックの画像信号に対する符号化列(ビットストリーム)1006を生成する可変長符号化器(VLC処理器)112とを備えている。

[0203]

本実施の形態11では、上記情報源符号化部100k1は、図33に示す従来の画像処理装置200eの情報源符号化部200e2と全く同一の構成となっており、また上記予測部100k2は、図29に示す従来の画像処理装置200cの予測部200c2と全く同一の構成となっている。

[0204]

また、本実施の形態11のスキャン部100k3は、イントラ符号化ブロック

に対して上記スキャン器199k1により適応的なスキャン処理を行い、インター符号化ブロックに対して上記スキャン器199k2によりジグザグスキャン処理を行う第1のスキャン動作と、イントラ符号化ブロックに対して上記スキャン器199k3により縦方向優先のスキャン処理を行い、インター符号化ブロックに対して上記スキャン器199k4により、上記縦方向優先のスキャン処理とは異なる順序の縦方向優先のスキャン処理を行う第2のスキャン動作とが、上記スキャンモード切替信号1201により切り換えられる構成となっている。

[0205]

言い換えると、上記スキャン部100k3は、スキャンの方法が異なる,つまり量子化値に異なる処理順序を設定するn個のスキャン器199k1~199k nと、上記n個のスキャン器のいずれかを制御信号116kに基づいて選択して、該選択されたスキャン器に上記予測部100k2の出力302を供給する第1のスイッチ108aと、上記n個のスキャン器のいずれかの出力を制御信号116kに基づいて選択して、選択したスキャン器の出力1005を上記可変長復号化器112に供給する第2のスイッチ110aと、上記情報源符号化部100k1の予測部1012からの予測に関するパラメータ(画面間予測情報)1015および上記外部からのスキャン切替信号1201に応じて上記制御信号116kを発生するスキャン制御器1501kとを有している。

[0206]

ここで、具体的には、スキャン器(1)199k1としては、図29に示すスキャン部200c1における各構成要素108c,110c,109s1~109s3,1401cから構成されている。つまり、上記スキャン器199k1は、イントラ符号化ブロックに対する予測値の生成に関する第1の画面内予測情報309aに基づいて、該スキャン器199k1を構成するスキャン器109s1~109s3のいずれかが選択される構成となっている。さらに、上記スキャン器199k1を構成するスキャン器109s1~109s3のうちの1つは図31(a)に示す順序で量子化値のスキャン(ジグザグスキャン)を行うものとなっている。また、上記スキャン器(2)199k2としては図31(a)に示す順序でジグザグスキャンを行うもの、上記スキャン器(3)199k3としては図

31 (c) に示す順序で縦方向優先のスキャンを行うもの、スキャン器(4) 1 99k4としては図31 (c) に示す順序とは異なる順序で縦方向優先のスキャンを行うものが用いられる。

なお、ここで、縦方向優先のスキャンとは、ブロック化された画像信号の情報 源符号化により得られる、8×8個のマトリクス状に配列された量子化値に対し て、縦方向(表示画面の垂直方向に対応)に並ぶものが所定の個数づつ連続する 処理順序となるよう順序設定を行う処理である。

[0207]

次に動作について説明する。

本画像処理装置100kに入力されたインタレース画像信号101は、ブロック化器102においてフレーム毎あるいはフィールド毎にブロック化され、該ブロック化器102からは、各ブロックに対応する画像信号103が情報源符号化部100k1に出力される。また、このときブロック化器102からは、画像信号103のブロック化の単位を示すDCTタイプ信号114も出力される。

[0208]

上記情報源符号化部100k1では、ブロック化された画像信号103の画面間予測符号化処理が行われる。つまり、ブロック化された画像信号103とその画面間予測値1008との差分値1002がDCT器104において離散コサイン変換によりDCT係数1003に変換され、該DCT器104からは、各ブロックに対応するDCT係数1003が出力される。さらにこのDCT係数1003は、量子化器106において量子化処理により量子化値1004に変換されて、上記予測部100k2に出力される。

[0209]

このとき、上記情報源符号化部100k1では、上記量子化値1004は逆量子化器203にて、DCT係数1003に相当するDCT係数1007に変換され、さらにこのDCT係数1007は逆DCT器204にて、上記差分値1002に相当する差分信号1009に変換される。この差分信号1009は、加算器1010にて上記画面間予測値1008と加算され、その加算値1011が参照画像信号として上記フレームメモリ1014に格納される。上記予測器1012

では、このフレームメモリ1014に格納されている参照画像信号1013と、 上記ブロック化された画像信号103とに基づいて、上記画面間予測値1008 が生成される。

[0210]

なお、この画像符号化装置100kでは、被符号化ブロックに対する符号化処理としてイントラ符号化処理を行う場合には、上記情報源符号化部100k1における予測器1012は、画面間予測値1008として0レベルの値を出力し、被符号化ブロックに対する符号化処理としてインター符号化処理を行う場合は、上記予測器1012は、各ブロックに対応するレベルの予測値1008を出力する。

[0211]

また、上記予測部100k2では、情報源符号化部100k1の出力である量子化値1004に対する画面内予測処理が行われる。つまり、予測部100k2では、まず、加算器301にて、上記量子化値1004とその画面内予測値303との減算処理が行われ、その減算処理による差分値302が上記スキャン部100k3に出力される。また、このとき上記予測部100k2では、上記差分値302は加算器304にて上記画面内予測値303と加算され、その加算値306が予測器305に出力される。そして予測器305では、図30で説明した方法により、この加算値306に基づいて上記画面内予測値303を生成するとともに、予測値の生成に関する第1,第2のパラメータ(第1,第2の画面内予測情報)309a,309bを出力する。

そしてさらに、上記予測部100k2の出力302は、上記スキャン部100k3にて、上記画面内予測情報309,画面間予測情報1015,及びスキャンモード切替信号1201に基づいて所定のスキャン処理が施される。

[0212]

以下、上記スキャン部100k3でのスキャン制御器1501kによる処理の 一例を、図36に示すフローチャートを用いて説明する。

ステップ1801にて、該スキャン制御器1501kにより、被符号化ブロックの画面間予測符号化処理における予測値の生成に関する情報 (画面間予測パラ

メータ)1015に基づいて、被符号化ブロックがイントラ符号化とインター符号化のいずれの処理が施されているかの判定が行われる。この判定の結果、被符号化ブロックがイントラ符号化されているものである場合は、ステップ1802にて、スキャンモード切替信号1201の判定が行われる。その判定の結果、スキャンモード切替信号1201がOFFである場合は、ステップ1804にてスキャン器(1)199k1を選択する制御信号116kが出力される。これにより、イントラ符号化ブロックに対応する量子化値1004に画面内予測処理を施して得られた差分値302は、スキャン器(1)199k1にて第1の画面内予測情報309aに基づいて適応的なスキャン処理が施されることとなる。

[0213]

一方、上記ステップ1802での判定の結果、スキャンモード切替信号1201がONである場合は、ステップ1805にてスキャン器(3)199k3を選択する制御信号116kが出力される。これにより、イントラ符号化ブロックに対応する量子化値1004に画面内予測処理を施して得られた差分値302は、スキャン器(3)199k3にて縦方向優先のスキャン処理が施されることとなる。

[0214]

また、上記ステップ1801での判定の結果、被符号化ブロックがインター符号化されているものである場合は、ステップ1803にて、スキャンモード切替信号1201がOFFの場合は、ステップ1806にてスキャン器(2)199k2を選択する制御信号116kが出力される。これにより、インター符号化ブロックに対応する量子化値1004に画面内予測処理を施して得られた差分値302は、スキャン器(2)199k2にてジグザグスキャン処理が施されることとなる。

[0215]

一方、上記ステップ1803での判定の結果、スキャンモード切替信号120 1がONである場合は、ステップ1807にてスキャン器(4)199k4を選択する制御信号116kが出力される。これにより、インター符号化ブロックに対応する量子化値1004に画面内予測処理を施して得られた差分値302は、 スキャン器(4)199k4にて、スキャン器(2)199k2とは異なる縦方向優先のスキャン処理が施されることとなる。

そして、上記スキャン部100k3にて所定の処理順序が設定された、被符号 化ブロックの量子化値が可変長符号化器112にて符号化されて、ビットストリーム(画像符号化信号)1006として出力される。

[0216]

このような構成の本実施の形態11では、インターレース画像信号を符号化する際、イントラ符号化ブロックの量子化値に対して適応的なスキャン処理を行い、かつインター符号化ブロック量子化値に対してジグザグスキャン処理を施す第1の符号化モードと、イントラ符号化ブロックの量子化値に対して第1の縦方向優先のスキャン処理を行い、かつインター符号化ブロックの量子化値に対して第2の縦方向優先のスキャン処理を施す第2の符号化モードとを、スキャンモード切替信号1201により切り換えるようにしたので、周波数成分の分布の異なるインター符号化ブロックとイントラ符号化ブロックが混在するインタレース画像信号の符号化処理においても、符号化の効率をより一層向上させることができる

[0217]

また、上記実施の形態11では、第1の画面内予測情報309aは、従来の画像符号化装置200cと同様、AC予測のON/OFF情報と予測方向情報を含むものとし、第2の画面内予測情報309bは、AC予測のON/OFF情報のみを含むものとしている、つまり復号化側に伝送する第2の画面内予測情報309bを、画像符号化装置でのスキャン制御に用いる第1の画面内予測情報309aとは異なり予測方向情報を含まないものとしているので、予測方法の変更等があった場合でも、復号化側に出力する第2の画面内予測情報309bの内容を変更する必要がなく、予測方法の変更等に容易に対応することができる。ただし、第2の画面内予測情報309bは、第1の画面内予測情報309aと同様、AC予測のON/OFF情報だけでなく予測方向情報を含むものとしてもよいことは言うまでもない。

[0218]

なお、上記実施の形態11では、インターレース画像信号の符号化処理について説明したが、符号化処理の対象となるデジタル画像信号は、インターレース画像信号に限るものではない。例えば、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるよう構成した画像符号化装置では、上記実施の形態11と同様な構成により、プログレッシブ画像の符号化処理において、VLCの効率を向上することができる。

[0219]

実施の形態12.

図37は、本発明の実施の形態12による画像処理装置の構成を示すブロック図である。図において、100mは本実施の形態12の画像処理装置(画像復号化装置)であり、上記画像符号化装置100kにより符号化された画像符号化信号1006を復号化する画像処理装置(画像復号化装置)である。

[0220]

この画像復号化装置100mは、上記画像符号化信号1006に対して可変長復号化処理を施す可変長復号化器(VLD)201と、該復号化処理により得られた量子化値1005に、その配列順序が符号化処理における並べ替え処理を施す前の配列順序に戻るよう逆スキャン処理を施す逆スキャン部100m1と、該逆スキャン処理が施された被復号化ブロックに対応する量子化値に、該被復号化部周辺に位置する復号化済ブロックの量子化値から予測した被復号化ブロックの量子化値(画面内予測値)303を加算して出力する予測部100m2と、該予測部100m2の出力である量子化値1004に対して情報源復号化処理を施す情報源復号化部100m3と、該情報源復号化部100m3の出力である画像信号103に対して、画像符号化装置100kからのDCT処理情報114に基づいて逆ブロック化を行って、1フレーム画面に対応する画像信号101を再生する逆ブロック化器205とを有している。

[0221]

本実施の形態12では、上記情報源復号化部100m3は、図34に示す従来

の画像処理装置200fの情報源復号化部200f1と全く同一の構成となっており、また上記予測部100m2は、図32に示す従来の画像復号化装置200dの予測部200d2と全く同一の構成となっている。

[0222]

また、本実施の形態12の逆スキャン部100m1は、上記実施の形態11の画像符号化装置100kのスキャン部100k3にて、第1の画面内予測情報309a,画面間予測情報1015,及びスキャンモード切替信号1201に基づいて並べ替えがなされた量子化値を、もとの順序に戻す構成となっている。つまり、上記スキャン部100k3における各スキャン器199k1~199knによりスキャン処理された量子化値を、元の配列に戻すためのn個の逆スキャン器292m1~292mnを有している。また、上記逆スキャン部100m1は、上記n個の逆スキャン器のいずれかを制御信号116mに基づいて選択して、該選択された逆スキャン器に可変長復号化器201の出力1005を供給する第1のスイッチ108bと、上記n個の逆スキャン器のいずれかの出力を制御信号116mに基づいて選択して、選択した逆スキャン器の出力302を上記予測部100m2に供給する第2のスイッチ110bと、上記画像符号化装置100kからの予測に関するパラメータ1015および上記外部からのスキャンモード切替信号1201に応じて上記制御信号116mを発生する逆スキャン制御器1501mとを有している。

[0223]

ここで、上記各逆スキャン器292m1~292mnは上記画像符号化装置100kにおける各スキャン器199k1~199knに対応する構成となっている。具体的には、逆スキャン器(1)292m1としては、図32に示す逆スキャン部200d1における各構成要素108d,110d,202s1~202s3,1401dから構成されている。つまり、上記逆スキャン器292m1は、イントラ符号化ブロックに対する画面内予測値の生成に関する第1の画面内予測情報309a/に基づいて、該逆スキャン器292m1を構成するスキャン器292m1を構成するスキャン器

202s1~202s3のうちの1つは、図31(a) に示す順序での量子化値の ジグザグスキャンに対応する逆スキャンを行うものとなっている。また、上記ス キャン器(2)292m2としては図31(a)に示す順序でのジグザグスキャ ンに対応する逆スキャンを行うもの、上記スキャン器(3)292m3としては 図31(c)に示す順序での縦方向優先のスキャンに対応する逆スキャンを行う もの、スキャン器(4)292m4としては図31(c)に示す順序とは異なる 順序での縦方向優先のスキャンに対応する逆スキャンを行うものが用いられる。

[0224]

次に動作について説明する。

この画像復号化装置100mでは、図35に示す画像符号化装置100kにおける各変換処理に対応する逆変換処理を、上記画像符号化信号1006に対して、符号化処理の際とは逆の順序で施すことにより、画像符号化信号1006の復号化処理が正しく行われる。

以下詳述すると、上記画像符号化信号1006は、まず可変長復号化器201 にて可変長復号化処理が施されて量子化値1005に変換され、この量子化値1 005は、上記逆スキャン部100m1にて逆スキャン処理が施される。

[0225]

以下、上記逆スキャン部100m1での逆スキャン制御器1501mによる逆スキャン処理を、図38に示すフローチャートを用いて説明する。

まず、ステップ1901にて、被復号化ブロックの画面間予測復号化処理における予測値の生成に関する情報(画面間予測パラメータ)1015に基づいて、被復号化ブロックがイントラ符号化とインター符号化のいずれの処理が施されているかの判定が行われる。この判定の結果、被復号化ブロックがイントラ符号化されているものである場合は、ステップ1902にて、スキャンモード切替信号1201がOFFである場合は、ステップ1904にて逆スキャン器(1)292m1を選択する制御信号116mが出力される。これにより、イントラ符号化ブロックに対応する量子化値1005は、逆スキャン器(1)292m1にて、画像符号化装置100kからの第2の画面内予測情報309bに基づいて予測器401にて生成

された制御用予測情報309 a'に従って、適応的なスキャン処理に対応する逆スキャン処理が施されることとなる。

[0226]

一方、上記ステップ1902での判定の結果、スキャンモード切替信号1201がONである場合は、ステップ1905にて逆スキャン器(3)292m3を選択する制御信号116mが出力される。これにより、イントラ符号化ブロックに対応する量子化値1015は、逆スキャン器(3)292m3にて、縦方向優先のスキャン処理に対応する逆スキャン処理が施されることとなる。

[0227]

また、上記ステップ1901での判定の結果、被復号化ブロックがインター符号化されているものである場合は、ステップ1903にて、スキャンモード切替信号1201の判定が行われる。その結果、スキャンモード切替信号1201がOFFの場合は、ステップ1906にて逆スキャン器(2)292m2を選択する制御信号116mが出力される。これにより、インター符号化ブロックに対応する量子化値1015は、逆スキャン器(2)292m2にてジグザグスキャン処理が応されることとなる。

[0228]

一方、上記ステップ1903での判定の結果、スキャンモード切替信号1201がONである場合は、ステップ1907にて、逆スキャン器(4)292m4を選択する制御信号116mが出力される。これにより、インター符号化ブロックに対応する量子化値1015は、逆スキャン器(4)292m4にて、上記逆スキャン器(2)292m2とは異なる、縦方向優先のスキャン処理に対応する逆スキャン処理が施されることとなる。

[0229]

そして、上記逆スキャン部100m1の出力である量子化値302は、予測部100m2にてその画面内予測値303と加算されて、その加算値1004が上記情報源復号化器100m3に出力される。またこのとき、上記予測部100m2では、上記加算値1004と、画像符号化装置100kからの第2の画面内予測情報309bとに基づいて、図30に示すような方法により上記画面内予測値

303を生成する。

[0230]

そしてさらに、上記予測部100m2の出力である量子化値1004が情報源復号化部100m3にて復号化される。ここでは、上記量子化値1004は、逆量子化器203にて逆量子化処理によりDCT係数1003に変換され、さらに該DCT係数1003が、逆DCT器204にて逆DCT処理により差分信号1002に変換される。この差分信号1002は加算器1101にてその画面間予測値1008と加算されて画像信号103に変換される。このとき該画像信号103はフレームメモリ1014に格納され、上記予測器1102では、フレームメモリ1014に格納され、上記予測器1102では、フレームメモリ1014に格納された画像信号1013と、画像符号化装置100kからの予測パラメータ1015に基づいて上記画面間予測値1008を生成する。

最後に上記画像信号103は上記逆ブロック化器205にて、画素を符号化装置100kからのDCTタイプ情報114に基づいて逆ブロック処理が施されて、1フレーム画面に対応する画像信号101が再生される。

[0231]

このような構成の本実施の形態12では、インターレース画像信号の符号化により得られる画像符号化信号を復号化する際、イントラ符号化ブロックの量子化値に対して、適応的なスキャン処理に対応する逆スキャン処理を行い、かつインター符号化ブロックの量子化値に対して、ジグザグスキャン処理に対応した逆スキャン処理を施す第1の復号化モードと、イントラ符号化ブロックの量子化値に対して、第1の縦方向優先のスキャン処理に対応する逆スキャン処理を行い、かつインター符号化ブロックの量子化値に対して、第2の縦方向優先のスキャン処理に対応する逆スキャン処理を施す第2の復号化モードとを、スキャンモード切替信号1201により切り換えるようにしたので、周波数成分の分布の異なるインター符号化ブロックとイントラ符号化ブロックが混在するインタレース画像信号の符号化処理をスキャン処理の切替により高い符号化効率でもって行って得られる画像符号化信号を、正しく復号化することができる。

[0232]

なお、上記実施の形態12では、インターレース画像信号の復号化処理につい

て説明したが、復号化処理の対象となるデジタル画像信号は、インターレース画像信号に限るものではない。例えば、プログレッシブ画像の符号化処理を行う際に、画像の内容に応じて、フレームDCT処理とフィールドDCT処理を切り換えるよう構成した画像符号化装置に対応する画像復号化装置では、上記実施の形態12と同様な構成により、プログレッシブ画像信号を高い符号化効率で符号化した画像符号化信号を正しく復号化することができる。

[0233]

また、上記実施の形態12では、第1の画面内予測情報309aに対応する制御用予測情報309a′は、従来の画像復号化装置200dと同様、AC予測のON/OFF情報と予測方向情報を含むものとし、画像符号化装置100kからの第2の画面内予測情報309bは、AC予測のON/OFF情報のみを含むものとしている、つまり復号化側に伝送する第2の画面内予測情報309bを、画像符号化装置でのスキャン制御に用いる制御用画面内予測情報309a′とは異なり予測方向情報を含まないものとしているので、予測方法の変更等があった場合でも、復号化側へ入力される第2の画面内予測情報309bの内容を変更する必要がなく、予測方法の変更等に容易に対応することができる。ただし、第2の画面内予測情報309bは、制御用予測情報309a′と同様、AC予測のON/OFF情報だけでなく予測方向情報を含むものとしてもよいことは言うまでもない。

[0234]

実施の形態13.

さらに、上記各実施の形態で示した画像処理装置による画像処理を実現するための符号化あるいは復号化プログラムを、フロッピーディスク等のデータ記憶媒体に記録するようにすることにより、上記各実施の形態で示した処理を、独立したコンピュータシステムにおいて簡単に実施することが可能となる。

[0235]

図25は、上記実施の形態1から実施の形態12の画像符号化あるいは画像復 号化処理を、上記符号化あるいは復号化プログラムを格納したフロッピーディス クを用いて、コンピュータシステムにより実施する場合の説明図である。 図25は、フロッピーディスクFDの正面からみた外観、及び円盤状磁気記憶 媒体であるフロッピーディスク本体Dを示している。フロッピーディスクFDは ケースF内に内蔵され、該ディスク本体Dの表面には、同心円状に外周から内周 に向かって複数のトラックが形成され、各トラックは角度方向に例えば、16個 のセクタに分割されている。従って、上記プログラムを格納したフロッピーディ スクでは、上記フロッピーディスク本体D上に割り当てられた領域に、上記プロ グラムとしてのデータが記録されている。

[0236]

【発明の効果】

以上のように、本発明(請求項1,9,33)によれば、被符号化ブロック画像信号に対応する周波数成分に対する符号化の処理順序を、該被符号化ブロック画像信号がフレーム周波数変換処理を施したものであるかフィールド変換処理を施したものであるかによって設定するので、フレームDCTブロックとフィールドDCTブロックが混在するインタレース画像符号化においてもランレングスを長くすることができ、このため、インタレース画像符号化において、符号化の効率を向上させることができるという効果が得られる。また、フレームDCTブロックとフィールドDCTブロックが混在する、特定のプログレッシブ画像に対する符号化処理においても同様の効果が得られる。

[0237]

本発明(請求項2,10,33)によれば、種々の周波数成分を所定順序で符号化して得られる入力信号を、該被復号化ブロックに対応する画像信号に施された周波数変換処理が、フレームを1単位として行われたフレーム変換処理であるか、フィールドを1単位として行われたフィールド変換処理であるかによって決まる配列順序で並べ替えて、復号化処理の対象となる被復号化ブロックに対応する周波数成分を生成するので、プログレッシブ画像及びインタレース画像のいずれのDCT係数の可変長復号化処理においても、適応的なスキャン切替方法、つまり適応的に符号化の処理順序を切り替える方法を用いて符号化されたビットストリームから、画像信号を効率よくしかも正しく復号化することができる。

[0238]

本発明(請求項3,33)によれば、被符号化ブロックの画像信号に対応する 周波数成分に対する符号化の処理順序を、該被符号化ブロックの画像信号に施さ れた周波数変換処理の種類と、該被符号化ブロック周辺に位置する符号化済ブロ ックの画像信号に施された周波数変換処理の種類との組合せのパターンに応じて 設定するので、上記符号化順序設定のためのスキャンを細かく制御することがで き、より適切なスキャンを選択することができる。従って、ランレングスをより 長くすることができ、符号化の効率をさらに向上することができる効果がある。

[0239]

本発明(請求項4,33)によれば、種々の周波数成分を所定順序で符号化して得られる入力信号を、該被復号化ブロックに対応するデジタル画像信号に施された周波数変換処理と、該被復号化ブロックの周辺に位置する復号化済ブロックに対応する画像信号に施された周波数変換処理との組み合わせのパターンによって決まる配列順序で並べ替えて、復号化処理の対象となる被復号化ブロックに対応する周波数成分を生成するので、プログレッシブ画像及びインタレース画像のいずれのDCT係数の可変長復号化処理においても、適応的スキャン切替方法、つまり適応的に符号化の処理順序を切り替える方法を用いて符号化されたビットストリームから画像信号を効率よくしかも正しく復号化することができる。

[0240]

本発明(請求項5,11,33)によれば、被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、予測処理の種類との組合せのパターンに応じて設定するので、フレームDCTブロックとフィールドDCTブロックが混在するインタレース画像符号化においてもランレングスを長くすることができ、符号化の効率を向上させることができる。

[0241]

本発明(請求項6,12,33)によれば、予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、該被復号化ブロックに対応するデジタル画像信号に施された周波数変換処理の種類と、上記予測処理の種類と

の組合せのパターンによって決まる配列順序で並べ替え、復号化処理の対象となる被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から、上記予測処理の種類に基づいて該被復号化ブロックに対応する周波数成分の予測値を生成するので、プログレッシブ画像及びインタレース画像のいずれのDCT係数の可変長復号化処理においても、きめ細かい適応的なスキャン切替方法,つまりきめ細かく適応的に符号化の処理順序を切り替える方法を用いて符号化されたビットストリームから、画像信号を効率よくしかも正しく復号化することができる。

[0242]

本発明(請求項7,33)によれば、被符号化ブロックの周波数成分とその予測値との差分値に対する符号化の処理順序を、該被符号化ブロックの画像信号に施された周波数変換処理の種類と、該被符号化ブロック周辺に位置する符号化済ブロックの画像信号に施された周波数変換処理の種類と、予測処理の種類との組合せのパターンに応じて設定するので、上記符号化順序設定のためのスキャンを細かく制御することができ、より適切なスキャンを選択することができる。従って、ランレングスをより長くすることができ、符号化の効率をさらに向上することができる。

[0243]

本発明(請求項8,33)によれば、予測処理が施された種々の周波数成分を 所定順序で符号化して得られる入力信号を、該被復号化ブロックに対応する画像 信号に施された周波数変換処理の種類と、該被復号化ブロックの周辺に位置する 復号化済ブロックに施された周波数変換処理の種類と、上記予測処理の種類との 組合せのパターンによって決まる配列順序で並べ替え、復号化処理の対象となる 被復号化ブロックの周辺に位置する復号化済ブロックに対応する周波数成分から 、上記予測処理の種類に基づいて該被復号化ブロックに対応する周波数成分の予 測値を生成するので、きめ細かいスキャン切替方法、つまりきめ細かく適応的に 符号化の処理順序を切り替える方法を用いて符号化されたビットストリームから 、画像信号を効率よくしかも正しく復号化することができる。

[0244]

本発明(請求項13,19,33)によれば、被符号化ブロックの周波数成分に対する符号化の処理順序を、符号化済みのブロックの周波数成分に適した符号化の処理順序に応じて設定するので、フレームDCTブロックとフィールドDCTブロックが混在するインタレース画像符号化においてもランレングスを長くすることができ、符号化の効率を向上させることができる。また、フレームDCTブロックとフィールドDCTブロックが混在する、特定のプログレッシブ画像の符号化処理においても上記と同様の効果が得られる。

[0245]

本発明(請求項14,20,33)によれば、予測処理が施された種々の周波数成分を所定順序で符号化して得られる入力信号を、復号化済みのブロックの周波数成分に適した符号化の処理手順によって決まる配列順序で並べ替え、プログレッシブ画像及びインタレース画像のいずれのDCT係数の可変長復号化処理においても、きめ細かい適応的なスキャン切替方法、つまりきめ細かく適応的に符号化の処理順序を切り替える方法を用いて符号化されたビットストリームから、画像信号を効率よくしかも正しく復号化することができる。

[0246]

本発明(請求項15,21,33)によれば、符号化処理の際、必要に応じて 適応的スキャンをオフしてインタレース画像や特定のプログレッシブ画像に適し た特定のスキャンを実施するようにしたので、インタレース画像や特定のプログ レッシブ画像の符号化処理を効率よく簡単化することができる。

[0247]

本発明(請求項16,22,33)によれば、復号化処理の際、必要に応じて 適応的スキャンをオフしてインタレース画像や特定のプログレッシブ画像に適し た特定のスキャンを実施するようにしたので、符号化時に適応的にスキャンがオ フされ特定のスキャンが実施されているインタレース画像や特定のプログレッシ ブ画像を正しく復号化することができる。

[0248]

本発明(請求項17,23,33)によれば、符号化処理の際、イントラ符号

化マクロブロックとインター符号化マクロブロックのそれぞれに対し、予測に関するパラメータおよびスキャン切替信号に応じて複数のスキャンを切り替えるようにしたので、それぞれの符号化方法に適したスキャンを実施することができ、周波数成分の分布の異なるインター符号化マクロブロックとイントラ符号化マクロブロックが混在するインタレース画像のインター符号化においてもランレングスを長くすることができ、符号化の効率を向上させることができる。また、周波数成分の分布の異なるインター符号化マクロブロックとイントラ符号化マクロブロックが混在する、特定のプログレッシブ画像のインター符号化においても上記と同様の効果が得られる。

[0249]

本発明(請求項18,24,33)によれば、復号化処理の際、イントラ符号 化マクロブロックとインター符号化マクロブロックのそれぞれに対し、予測に関 するパラメータおよびスキャン切替信号に応じて複数のスキャンを切り替えるよ うにしたので、イントラ符号化マクロブロックとインター符号化マクロブロック のそれぞれに対し、予測に関するパラメータおよびスキャン切替信号に応じて複 数のスキャンを切り替えて符号化されたビットストリームから、画像信号を効率 よくしかも正しく復号化することができる。

[0250]

本発明(請求項25,26,29,30,33)によれば、符号化処理の際、被符号化ブロックの周波数成分とその画面内予測値との画面内差分値に対する符号化の処理順序を予測処理の種類に応じた順序に適応的に設定する処理を含む第1の順序設定動作と、上記処理順序を上記予測処理の種類に拘わらず特定順序に設定する第2の順序設定動作とを、順序設定の切替を示すフラグ情報に基づいて切り替えて行うようにしたので、周波数成分の分布の異なるインター符号化マクロブロックとイントラ符号化マクロブロックが混在するインタレース画像のインター符号化においてもランレングスをより一層長くすることができ、符号化の効率を向上させることができる。また、周波数成分の分布の異なるインター符号化マクロブロックとイントラ符号化マクロブロックが混在する、特定のプログレッシブ画像のインター符号化においても上記と同様の効果が得られる。

[0251]

具体的には、インターレース画像信号を符号化する際、イントラ符号化ブロックの量子化値に対して適応的なスキャン処理を行い、かつインター符号化ブロック量子化値に対してジグザグスキャン処理を施す第1の符号化モードと、イントラ符号化ブロックの量子化値に対して第1の縦方向優先のスキャン処理を行い、かつインター符号化ブロックの量子化値に対して第2の縦方向優先のスキャン処理を施す第2の符号化モードとを、スキャンモード切替信号1201により切り換えるようにしたので、周波数成分の分布の異なるインター符号化ブロックとイントラ符号化ブロックが混在するインタレース画像信号の符号化処理においても、符号化の効率をより一層向上させることができる。

[0252]

本発明(請求項27,28,31,32,33)によれば、復号化処理の際、 画面間予測処理が施された種々の周波数成分を所定順序で符号化して得られる、 復号化処理の対象となる被復号化ブロックの入力信号を、画面内予測処理の種類 に応じた順序に適応的に並べ替える処理を含む第1の並替動作と、該入力信号を 上記予測処理の種類に拘らずに特定の順序に並べ替える第2の並替動作とを、上 記入力信号と共に入力される並替えの切替を示すフラグ情報に基づいて切り替え て行うようにしたので、イントラ符号化マクロブロックとインター符号化マクロ ブロックのそれぞれに対し、予測に関するパラメータおよびスキャン切替信号に 応じて複数のスキャンを切り替えて符号化されたビットストリームから、画像信 号を効率よくしかも正しく復号化することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態1による画像処理装置である画像符号化装置の構成を示す ブロック図である。

【図2】

上記実施の形態1及び3で用いられるスキャン制御器の構成の一例を示す図である。

【図3】

実施の形態1および2における適応的スキャン切替方法のフローの一例を示す 図である。

【図4】

実施の形態1および2における適応的スキャン切替方法のフローの一例を示す 図である。

【図5】

本発明の実施の形態1の変形例による画像処理装置である画像符号化装置の構成を示すブロック図である。

【図6】

本発明の実施の形態2による画像処理装置である画像復号化装置の構成を示す ブロック図である。

【図7】

本発明の実施の形態2の変形例による画像処理装置である画像復号化装置の構成を示すブロック図である。

【図8】

本発明の実施の形態3による画像処理装置である画像符号化装置の構成を示すブロック図である。

【図9】

実施の形態3および4における適応的スキャン切替方法のフローの一例を示す 図である。

【図10】

実施の形態3および4における適応的スキャン切替方法のフローの一例を示す 図である。

【図11】

本発明の実施の形態3の変形例による画像処理装置である画像符号化装置の構成を示すブロック図である。

【図12】

本発明の実施の形態4による画像処理装置である画像復号化装置の構成を示す

ブロック図である。

【図13】

本発明の実施の形態4の変形例による画像処理装置である画像復号化装置の構成を示すブロック図である。

【図14】

本発明の実施の形態 5 による画像処理装置である画像符号化装置の構成を示す ブロック図である。

【図15】

上記実施の形態5及び6で用いられる特性解析器の構成の一例を示す図である

【図16】

実施の形態5および6における適応的スキャン切替方法のフローの一例を示す 図である。

【図17】

本発明の実施の形態5の変形例による画像処理装置である画像符号化装置の構成を示すブロック図である。

【図18】

本発明の実施の形態 6 による画像処理装置である画像復号化装置の構成を示す ブロック図である。

【図19】

本発明の実施の形態6の変形例による画像処理装置である画像復号化装置の構成を示すブロック図である。

【図20】

本発明の実施の形態7による画像処理装置である画像符号化装置の構成を示す ブロック図である。

【図21】

本発明の実施の形態 8 による画像処理装置である画像復号化装置の構成を示す ブロック図である。 【図22】

本発明の実施の形態9による画像処理装置である画像符号化装置の構成を示す ブロック図である。

【図23】

実施の形態 9 および 1 0 における適応的スキャン切替方法のフローの一例を示す図である。

【図24】

本発明の実施の形態10による画像処理装置である画像復号化装置の構成を示すブロック図である。

【図25】

本発明の実施の形態11によるデータ記録媒体の構成を示す図である。

【図26】

従来の画像処理装置である画像符号化装置の構成を示すブロック図である。

【図27】

画像信号をDCT処理単位毎にブロック化する処理を説明するための図である

【図28】

従来の画像処理装置である画像復号化装置の構成を示すブロック図である。

【図29】

従来の画像処理装置である他の画像符号化装置のの構成を示すブロック図である。

【図30】

画面内予測方法を概念的に説明するための図である。

【図31】

従来のスキャン切替方法において選択されるスキャン処理におけるスキャン順 を示す図である。

【図32】

従来の画像処理装置である他の画像復号化装置の構成を示すブロック図である

【図33】

従来の画像処理装置である他の画像符号化装置の構成を示すブロック図である

【図34】

従来の画像処理装置である他の画像復号化装置の構成を示すブロック図である

【図35】

本発明の実施の形態 1 1 による画像処理装置である画像符号化装置の構成を示すプロック図である。

【図36】

上記実施の形態11におけるスキャン切替方法のフローの一例を示す図である

【図37】

本発明の実施の形態 1 2 による画像処理装置である画像復号化装置の構成を示すブロック図である。

【図38】

上記実施の形態12におけるスキャン切替方法のフローの一例を示す図である

【符号の説明】

100a~100k, 100m 画像処理装置

100al, 100cl, 100el, 100al', 100cl', 100

e 1', 100g1, 100i1, 100k1 スキャン部

100b1, 100d1, 100f1, 100b1', 100d1', 100

f 1', 100h1, 100j1, 100m1 逆スキャン部

100c2, 100d2 予測部

101 画像信号

102 ブロック化器

104 DCT器

106 量子化器

- 108a~108d, 110a~110d, 1203a, 1203b スイッチ
 - 109s1~109sn, 199s1~199sn, 199k1~199kn スキャン器
 - 202s1~202sn, 292s1~292sn, 292m1~292mn 逆スキャン器
 - 112 可変長符号化器
 - 113, 308, 1006 ビットストリーム
 - 114 DCTタイプ信号
- 115,310c,1305g,1401c,1501i,1501k スキャン制御器
- 115b, 310d, 1401d, 1501j, 1501m 逆スキャン制御 器
 - 116, 1202, 1204 スキャン制御信号
 - 200a1 情報源符号化部
 - 200b1 情報源復号化部
 - 201 可変長復号化器
 - 202 逆スキャン器
 - 203 逆量子化器
 - 204 逆DCT器
 - 205 逆ブロック化器
 - 301, 304, 1012 加算器
 - 305, 401, 1102 予測器
 - 309,1015 画面内予測パラメータ(予測情報)
 - 1002 差分信号
 - 1008 予測信号
 - 1014 フレームメモリ
 - 1201 スキャン切替信号
 - 1301 周波数特性解析器

1303 メモリ

【書類名】 図面

【図1】

【図3】

【図14】

出証特平10-3061431

【図15】

1301:特性解析器

【図16】

2 2

【図26】

【図28】

【図29】 309b 307 109s3 スキャン2 スキャン3 スキャン スキャン制御器 108c 304 306 302 301 子巡器 107 305 105 200a1 103 102 ブロック化

[図30]

【図31】

52	53	54	22	9	61	62	63
38	39	50	51	56	57	58	59
36	37	40	41	46	47	48	49
22	23	34	35	42	43	44	45
20	21	24	25	30	31	32	33
မ	7	19	18	26	27	28	29
4	5	8	6	17	16	15	14
0	1	2	3	10	11	12	13

<u>(</u>)

13	14	29	33	45	49	69	63
12	15	28	32	44	48	58	62
=	16	27	31	43	47	57	61
10	17	26	30	42	46	56	60
က	6	18	25	35	41	51	55
2	8	19	24	34	40	50	54
1	5	2	21	23	37	39	53
0	4	9	20	22	36	38	52

(9)

28	42	43	53	54	09	61	63
27	29	41	44	52	55	59	62
15	26	30	40	45	51	56	58
14	16	25	31	39	46	50	57
9	13	17	24	32	38	47	49
5	7	12	18	23	33	37	48
-	4	æ	11	19	22	34	36
0	2	3	6	10	20	21	35

<u>(a</u>

【図32】

【図33】

زا

【図34】

【図36】

【図38】

【書類名】 要約書

【要約】

【課題】 インタレース画像符号化において、効率を高めたDCT係数の可変長符号化を実現する。

【解決手段】 インターレース画像信号を、DCT処理単位となるフレームまたはフィールド毎にまとめてブロック化し、該ブロック化された画像信号、および上記DCT処理単位を示すDCTタイプ情報を出力するブロック化器102と、上記ブロック化された画像信号にDCT処理及び量子化処理を施して得られる量子化値に、その配列順序の並べ替えにより所定の処理順序を設定する、並べ替え順序が異なる複数のスキャン器109s1~109snとを備え、上記DCTタイプ情報に応じて上記量子化値の並べ替えに用いるスキャン器を選択するようにした。

【選択図】 図1

特平10-141919~

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005821

【住所又は居所】

大阪府門真市大字門真1006番地

【氏名又は名称】

松下電器産業株式会社

【代理人】

申請人

【識別番号】

100081813

【住所又は居所】

大阪府吹田市江の木町17番1号 江坂全日空ビル

8階 早瀬特許事務所

【氏名又は名称】

早瀬 憲一

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

氏 名

松下電器産業株式会社