Regression Cautions

Stat 230: Applied Regression Analysis

Multicollinearity

Situation where 2+ predictors are "nearly" perfectly correlated

Think about it

- Work through Examples 1-3 on worksheet
- Work with your group to complete the tasks
- Let me know when finish Task 6
- Be prepared to share thoughts with the class

Diagnosing multicollinearity

- Examine scatterplot matrix
- Examine pairwise correlations between predictors
- Look for $\hat{\beta}_i$ s with unusual signs
- Notice sensitivity to changes in the model/order of predictors
- Calculate the Variance Inflation Factor (VIF)

Variance Inflation Factor (VIF)

$$VIF = \frac{1}{1 - R_i^2}$$

 $R_i^2 = R^2$ from model predicting x_i using all other predictor variables

Guidelines:

- VIF_i > 5 suspicions begin; R_i^2 > .8
- VIF_i > 10 indicates a problem; $R_i^2 > .9$
- VIF_i > 100 indicates a big problem; R_i^2 > .99

VIFs for Example 1

```
1 ex1_mod <- lm(y ~ x1 + x2, data = ex1)
2 car::vif(ex1_mod)</pre>
```

Variable	VIF
x1	1
x2	1

VIFs for Example 2

car::vif() throws an error! Why?

$$VIF = \frac{1}{1 - R_i^2}$$

- Since x_1 and x_2 are perfectly correlated, $R_i^2 = 1$
- This makes the denominator $1 R_i^2 = 0$
- So, VIF = $\frac{1}{0}$ is undefined

VIFs for Example 3

```
1 bodyfat_mod <- lm(body_fat ~ ., data = bodyfat)
2 car::vif(bodyfat_mod)</pre>
```

Variable	VIF
triceps_skinfold	708.8
thigh_circumference	564.3
midarm_circumference	104.6

Remedial measures

- Use the model only for prediction, if you think future observations will have the same relationships amongst variables
- For polynomials, use poly(x, degree) in R, or center the variable
- Drop some of highly correlated variables USE CAUTION, doesn't always work and loses information
- Add cases that break the correlation between predictors reasonable in designed experiments
- Create composite variables (e.g., sums, averages, principal components) can be harder to interpret
- Use ridge regression or LASSO need Stat 270 (Statistical Learning)

The problem with R²

Different polynomial models were used to predict the horizontal distance based on the starting point in Galileo's experimental data

Order	\mathbb{R}^2
1	0.9264
2	0.9903
3	0.9994
4	0.9998
5	0.99996
6	1.0000

Adjusted R²

Imposes a **penalty for model complexity**, so it increases only if the improvement outweighs the cost of making the model more complex

$$R_{\text{adj}}^2 = 1 - \left(\frac{n-1}{n-p-1}\right) \cdot (1-R^2)$$

Adjusted R²

Order	R ²	R ² adj
1	0.9264	0.91164
2	0.9903	0.98551
3	0.9994	0.99875
4	0.9998	0.9995
5	0.99996	0.99977
6	1.0000	undefined