

Lecture 9 Random Variables 2

Dr. Noor Badshah

Bivariate Joint Distribution

- Let X and Y be two discrete random variables on same sample space.
- Probability distribution .
- The distribution function which is denoted by
- .
- Properties of DF:
 - 1.
 2. should be a non decreasing function.
 - 3.

Probability Distribution:

Joint pd:

Then will be considered as pd.

Marginal pd for :

Marginal pd for :

Conditional Probability Functions:

- For two discrete random variables X and Y with joint pd then
and
- Two random variables X and Y will be independent if

Example 7.6 An urn contains 3 black, 2 red and 3 green balls and 2 balls are selected at random from it. If X is the number of black balls and Y is the number of red balls selected, then find

- i) the joint probability function $f(x, y)$;
- ii) $P(X + Y \leq 1)$;
- iii) the marginal p.d. $g(x)$ and $h(y)$;
- iv) the conditional p.d. $f(x | 1)$,
- v) $P(X=0 | Y=1)$, and
- vi) Are X and Y independent?

i) The sample space S for this experiment contains $\binom{8}{2} = 28$ sample points. The possible values of X are 0, 1 and 2, and those for Y are 0, 1 and 2. The values that (X, Y) can take on are $(0, 0), (1, 0), (1, 1), (0, 2)$ and $(2, 0)$. We desire to find $f(x, y)$ for each value (x, y) .

Now $f(0, 0) = P(X=0 \text{ and } Y=0)$, where the event $(X=0 \text{ and } Y=0)$ represents that neither black nor red ball is selected, implying that the 2 selected are green balls. This event $(X=0 \text{ and } Y=0)$

contains $\binom{3}{0}\binom{2}{0}\binom{3}{2} = 3$ sample points, and

$$f(0, 0) = P(X=0 \text{ and } Y=0) = \frac{3}{28}.$$

Again $f(0, 1) = P(X=0 \text{ and } Y=1)$

$= P(\text{none is black, 1 is red and 1 is green})$

$$= \frac{\binom{3}{0}\binom{2}{1}\binom{3}{1}}{28} = \frac{6}{28}$$

Similarly, $f(1, 1) = P(X=1 \text{ and } Y=1)$

$= P(1 \text{ is black, 1 is red and none is green})$

$$= \frac{\binom{3}{1}\binom{2}{1}\binom{3}{0}}{28} = \frac{6}{28}$$

Similar calculations give the probabilities of other values and the joint p.f. of X and Y is

(x, y)	$(0, 0)$	$(0, 1)$	$(1, 0)$	$(1, 1)$	$(0, 2)$	$(2, 0)$
$f(x, y)$	$\frac{3}{28}$	$\frac{6}{28}$	$\frac{9}{28}$	$\frac{6}{28}$	$\frac{1}{28}$	$\frac{3}{28}$

These probabilities can also be represented in another tabular form as follows:

Joint Probability Distribution

$X \backslash Y$	0	1	2	$P(X=x_i)$ $g(x)$
0	$\frac{3}{28}$	$\frac{6}{28}$	$\frac{1}{28}$	$10/28$
	$\frac{9}{28}$	$\frac{6}{28}$	0	
	$\frac{3}{28}$	0	0	
$P(Y=y_j)$ $h(y)$	15/28	12/28	1/28	1

this joint p.d. of the two r.v.'s (X, Y) can be represented by the formula.

$$f(x, y) = \frac{\binom{3}{x} \binom{2}{y} \binom{3}{2-x-y}}{28}, \quad x = 0, 1, 2$$

$$y = 0, 1, 2$$

$$0 \leq x + y \leq 2$$

To compute $P(X + Y \leq 1)$, we see that $x + y \leq 1$ for the cells $(0, 0)$, $(0, 1)$ and $(1, 0)$.
Therefore

$$\begin{aligned} P(X + Y \leq 1) &= f(0, 0) + f(0, 1) + f(1, 0) \\ &= \frac{3}{28} + \frac{6}{28} = \frac{18}{28} = \frac{9}{14} \end{aligned}$$

The marginal p.d.'s are

x	0	1	2
$g(x)$	10/28	15/28	3/28
y	0	1	2

y	0	1	2
$h(y)$	15/28	12/28	1/28
x	0	1	2

By definition the conditional p.d. $f(x | 1)$ is

$$\begin{aligned} f(x | 1) &= P(X=x | Y=1) \\ &= \frac{P(X=x \text{ and } Y=1)}{P(Y=1)} = \frac{f(x, 1)}{h(1)} \end{aligned}$$

$$h(1) = \sum_{x=0}^2 f(x, 1) = \frac{6}{28} + \frac{6}{28} + 0 = \frac{12}{28} = \frac{3}{7}$$

$$f(x|1) = \frac{f(x, 1)}{h(1)} = \frac{7}{3} f(x, 1), \quad x = 0, 1, 2$$

$$f(0|1) = \frac{7}{3} f(0,1) = \left(\frac{7}{3}\right)\left(\frac{6}{28}\right) = \frac{1}{2}$$

$$f(1|1) = \frac{7}{3} f(1,1) = \left(\frac{7}{3}\right)\left(\frac{6}{28}\right) = \frac{1}{2}$$

$$f(2|1) = \frac{7}{3} f(2,1) = \left(\frac{7}{3}\right)(0) = 0$$

Hence the conditional p.d. of X given the $Y=1$, is

x	0	1	2
$f(x 1)$	1/2	1/2	0

v) Finally, $P(X=0 \mid Y=1) = f(0 \mid 1) = \frac{1}{2}$

vi) We find that $f(0, 1) = \frac{6}{28}$,

$$g(0) = \sum_{y=0}^2 f(0, y) = \frac{3}{28} + \frac{6}{28} + \frac{1}{28} = \frac{10}{28}$$

$$h(1) = \sum_{x=0}^2 f(x, 1) = \frac{6}{28} + \frac{6}{28} + 0 = \frac{12}{28}$$

Now $\frac{6}{28} \neq \frac{10}{28} \times \frac{12}{28}$,

i.e. $f(0, 1) \neq g(0) h(1)$.

and therefore X and Y are not statistically independent.

Example 7.7 The joint p.d. of two discrete r.v.'s X and Y is given by

$$f(x, y) = \frac{xy^2}{30} \quad \text{for } x = 1, 2, 3 \text{ and } y = 1, 2.$$

Are X and Y independent?

The *marginal p.d.* for X is

$$\begin{aligned} g(x) &= \sum_y f(x, y) \\ &= \sum_{y=1}^2 \frac{xy^2}{30} = \frac{x(1)^2}{30} + \frac{x(2)^2}{30} = \frac{x}{6}, \text{ for } x = 1, 2, 3; \end{aligned}$$

and the *marginal p.d.* for Y is

$$\begin{aligned} h(y) &= \sum_x f(x, y) \\ &= \sum_{x=1}^3 \frac{xy^2}{30} = \frac{1y^2}{30} + \frac{2y^2}{30} + \frac{3y^2}{30} = \frac{y^2}{5}, \text{ for } y = 1, 2 \end{aligned}$$

$$\frac{xy^2}{30} = \frac{x}{6} \times \frac{y^2}{5}, \text{ for } x = 1, 2, 3 \text{ and } y = 1, 2,$$

$$\therefore f(x, y) = g(x) \cdot h(y)$$

X and Y are independent.

Continuous Random vector: The joint distribution of (X, Y) can be described via a nonnegative joint density function $f(x, y)$ such that for any subset $A \subset \mathbb{R}^2$,

$$P((X, Y) \in A) = \iint_A f(x, y) dx dy.$$

We should have

$$\iint_{\mathbb{R}^2} f(x, y) dx dy = 1.$$

Continuous random vector:

$$F(x, y) = \int_{-\infty}^x \int_{-\infty}^y f(u, v) du dv$$

$$f(x, y) = \frac{\partial^2 F(x, y)}{\partial x \partial y}$$

The marginal p.d.f. of the continuous r.v. X is

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

of the r.v. Y is

$$h(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

That is the marginal p.d.f. of any of the variables is obtained by integrating out the other variable p.d.f. between the limits $-\infty$ and $+\infty$.

The conditional p.d.f. of the continuous r.v. X given that Y takes the value y , is defined to be

$$f(x|y) = \frac{f(x, y)}{h(y)},$$

and $h(y)$ are respectively the joint p.d.f. of X and Y , and the marginal p.d.f. of Y and $h(y)>0$.

Similarly, the conditional p.d.f. of the continuous r.v. Y given that $X=x$, is

$$f(y|x) = \frac{f(x, y)}{g(x)}, \text{ provided that } g(x) > 0.$$

Example 7.8 Given the following joint p.d.f.

$$f(x, y) = \begin{cases} \frac{1}{8}(6-x-y), & 0 \leq x \leq 2; 2 \leq y \leq 4, \\ 0, & \text{elsewhere.} \end{cases}$$

- a) Verify that $f(x, y)$ is a joint density function.
 - b) Calculate (i) $P\left(X \leq \frac{3}{2}, Y \leq \frac{5}{2}\right)$, (ii) $P(X + Y < 3)$.
 - c) Find the marginal p.d.f. $g(x)$ and $h(y)$.
 - d) Find the conditional p.d.f. $f(x|y)$ and $f(y|x)$.
- a) The joint density $f(x, y)$ will be a p.d.f. if
- i) $f(x, y) \geq 0$ and
 - ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$.
- Now $f(x, y)$ is clearly ≥ 0 for all x and y in the given region, and

<https://statt.com>

$$\begin{aligned} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy &= \frac{1}{8} \int_0^2 \int_0^4 (6 - x - y) dy dx \\ &= \frac{1}{8} \int_0^2 \left[6y - xy - \frac{y^2}{2} \right]_0^4 dx \\ &= \frac{1}{8} \int_0^2 (6x - 2x^2) dx = \frac{1}{8} [6x^2 - x^3]_0^2 \\ &= \frac{1}{8} [12 - 4] = 1. \end{aligned}$$

Thus $f(x, y)$ has the properties of a joint p.d.f.

$$\begin{aligned}
 P(X \leq \frac{3}{2}, Y \leq \frac{5}{2}) &= \int_{x=0}^{\frac{3}{2}} \int_{y=2}^{\frac{5}{2}} \frac{1}{8}(6-x-y) dy dx \\
 &= \frac{1}{8} \int_0^{\frac{3}{2}} \left[6y - xy - \frac{y^2}{2} \right]_2^{\frac{5}{2}} dx \\
 &= \frac{1}{8} \int_0^{\frac{3}{2}} \left(\frac{15}{8} - \frac{x}{2} \right) dx = \frac{1}{64} \left[15x - 2x^2 \right]_0^{\frac{3}{2}} = \frac{9}{32}
 \end{aligned}$$

$$\begin{aligned}
 \text{(ii)} \quad P(X + Y < 3) &= \frac{1}{8} \int_0^1 \int_2^{3-x} (6 - x - y) dy \ dx (\because x + y \leq 3, \therefore y = 3 - x) \\
 &= \frac{1}{8} \int_0^1 \left[6x - xy - \frac{y^2}{2} \right]_2^{3-x} dx \\
 &= \frac{1}{8} \int_0^1 \left(\frac{x^2}{2} - 4x + \frac{7}{2} \right) dx \\
 &= \frac{1}{8} \left[\frac{x^3}{6} - 2x^2 - \frac{7x}{2} \right]_0^1 \\
 &= \frac{1}{8} \times \frac{10}{6} = \frac{5}{24}
 \end{aligned}$$

Event " $X + Y \leq 3$ " is shaded

The marginal p.d.f. of X is

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy, \quad -\infty < x < \infty$$

$$= \frac{1}{8} \int_2^4 (6 - x - y) dy, \quad 0 < x < 2.$$

$$= \frac{1}{8} \left[6y - xy - \frac{y^2}{2} \right]_2^4 \quad 0 \leq x \leq 2.$$

$$= \frac{1}{4} (3 - x) \quad 0 \leq x \leq 2.$$

$$= 0 \quad x < 0 \text{ or } x \geq 2.$$

Similarly, the marginal p.d.f. of Y is

$$h(y) = \frac{1}{8} \int_0^2 (6 - x - y) dx, \quad 2 \leq y \leq 4$$

$$= \frac{1}{4}(5 - y) \quad 2 \leq y \leq 4$$

= 0, elsewhere.

- d) The conditional p.d.f. of X given $Y = y$, is

$$f(x|y) = \frac{f(x,y)}{h(y)}, \text{ where } h(y) > 0.$$

$$= \frac{(1/8)(6 - x - y)}{(1/4)(5 - y)} = \frac{6 - x - y}{2(5 - y)}$$

and the conditional p.d.f. of Y given $X = x$, is

$$\begin{aligned}f(y|x) &= \frac{f(x,y)}{g(x)}, \text{ where } g(x) \geq 0 \\&= \frac{(1/8)(6-x-y)}{(1/4)(3-x)} = \frac{6-x-y}{2(3-x)}.\end{aligned}$$

Mathematical Expectation:

Discrete r.v's:

Let X be a discrete r.v, then its expected value is denoted by $E(X)$ and is defined as:

- Example: Tossing 3 coins: $X \mid H$

	0	1	2	3
	1/8	3/8	3/8	1/8

a) If it's rain, an umbrella salesman can earn \$ 30 per day. If it is fair, he can lose \$ 6 per day. What is his expectation if the probability of rain is 0.3?

expected rain= 30 and probability 0.3

rain not expectd=-6 and probability=0.7

so $30 \times 0.3 = 9$

and $-6 \times 0.7 = -4.2$

$= E(X) = 9 - 4.2 = 4.8 \$ \text{ per day}$

Example:

- b) A man draws 2 balls from a bag containing 3 white and 5 black balls. If he receives Rs. 70 for white balls he draw and Rs. 7 for black ball he draws. What is the expected value.
- Bag contains 3 W and 5 B Total number of balls = 8
- A man picks 2 Balls
- Possibilities are : 2 W, 1W and 1B, 2B balls may be selected.
- Probabilities:

Continuous r.vs:

Let X be a continuous r.v with pdf f then its expected value will be defined as:

- Example: Let X be a continuous r.v with pdf

Expectation of function of a rv:

- Discrete rv: Let X be rv having pd , and let Y be a function of X , Then
- Continuous rv: : Let X be a cont rv having pdf , and let Y be a function of X , Then

Median and Mode:

- Median: If f is a continuous rv: Then a number m will be median if
- Quartiles:
- Mode: For a continuous random variable having pdf A stationary point of f will be a mode of A if

Example 7.13 Let X have the following probability distribution:

x_i	1	2	3	4	5
$f(x_i)$	0.2	0.3	0.2	0.2	0.1

Find the probability functions of $3X - 1$, X^2 and $X^2 + 2$; and find $E(3X - 1)$, $E(X^2)$ and $E(X^2 + 2)$.

The probability distribution of the r.v. $H(X) = 3X - 1$, is

Values of X ,	x_i	1	2	3	4	5
Probabilities,	$f(x_i)$	0.2	0.3	0.2	0.2	0.1
Values of $3X - 1$,	$(3x_i - 1)$	2	5	8	11	14

$$\begin{aligned}E(3X - 1) &= \sum H(x_i) f(x_i) = \sum (3x_i - 1) f(x_i) \\&= 2 \times 0.2 + 5 \times 0.3 + 8 \times 0.2 + 11 \times 0.2 + 14 \times 0.1 \\&= 0.4 + 1.5 + 1.6 + 2.2 + 1.4 = 7.1\end{aligned}$$

The p.d. of $H(X) = X^2$ is

x_i	1	2	3	4	5
$f(x_i)$	0.2	0.3	0.2	0.2	0.1
x_i^2	1	4	9	16	25

and

$$\begin{aligned}
 E(X^2) &= \sum x_i^2 f(x_i) \\
 &= 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.2 + 16 \times 0.2 + 25 \times 0.1 \\
 &= 0.2 + 1.2 + 1.8 + 3.2 + 2.5 = 8.9
 \end{aligned}$$

$$\text{Similarly, } E(X^2 + 2) = \sum (x_i^2 + 2) f(x_i)$$

$$\begin{aligned}
 &= 3 \times 0.2 + 6 \times 0.3 + 11 \times 0.2 + 18 \times 0.2 + 27 \times 0.1 \\
 &= 0.6 + 1.8 + 2.2 + 3.6 + 2.7 = 10.9
 \end{aligned}$$

Example 7.14 Let X be a r.v. with p.d.f.

$$f(x) = \begin{cases} 2(x-1), & 1 < x < 2 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected values of $H(X) = 2X - 1$ and $H(X^2)$.

$$\begin{aligned}\text{Now } E(2X - 1) &= \int_{-\infty}^{\infty} (2x-1)f(x)dx = 2 \int_1^2 (2x-1)(x-1)dx \\ &= 2 \int_1^2 (2x^2 - 3x + 1)dx = 2 \left[\frac{2x^3}{3} - \frac{3x^2}{2} + x \right]_1^2 \\ &= 2 \left[\left(\frac{16}{3} - 6 + 2 \right) - \left(\frac{2}{3} - \frac{3}{2} + 1 \right) \right] \\ &= 2 \left[\frac{4}{3} - \frac{1}{6} \right] = \frac{7}{3}\end{aligned}$$

and $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$

$$= 2 \int_1^2 x^2(x-1) dx = 2 \left[\frac{x^4}{4} - \frac{x^3}{3} \right]_1^2$$

$$= 2 \left[\left(4 - \frac{8}{3}\right) - \left(\frac{1}{4} - \frac{1}{3}\right) \right]$$

$$= 2 \left[\frac{4}{3} + \frac{1}{12} \right] = \frac{17}{6}$$

Example 7.15 If the continuous r.v. X has p.d.f.

$$f(x) = \begin{cases} \frac{3}{4}(3-x)(x-5), & 3 \leq x \leq 5 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the arithmetic mean, variance and standard deviation of X .

$$\begin{aligned} \text{Now } E(X) &= \int_{-\infty}^{\infty} x f(x) dx \\ &= \frac{3}{4} \int_3^5 x(3-x)(x-5) dx \\ &= \frac{3}{4} \int_3^5 (-x^3 + 8x^2 - 15x) dx = \frac{3}{4} \left[-\frac{x^4}{4} + \frac{8x^3}{3} - \frac{15x^2}{2} \right]_3^5 \\ &= \frac{3}{4} \left[\left(-\frac{625}{4} + \frac{1000}{3} - \frac{375}{2} \right) - \left(-\frac{81}{4} + \frac{216}{3} - \frac{135}{2} \right) \right] \end{aligned}$$

Example 7.15 If the continuous r.v. X has p.d.f.

$$f(x) = \begin{cases} \frac{3}{4}(3-x)(x-5), & 3 \leq x \leq 5 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the arithmetic mean, variance and standard deviation of X .

$$\begin{aligned} \text{Now } E(X) &= \int_{-\infty}^{\infty} x f(x) dx \\ &= \frac{3}{4} \int_3^5 x(3-x)(x-5) dx \\ &= \frac{3}{4} \int_3^5 (-x^3 + 8x^2 - 15x) dx = \frac{3}{4} \left[-\frac{x^4}{4} + \frac{8x^3}{3} - \frac{15x^2}{2} \right]_3^5 \\ &= \frac{3}{4} \left[\left(-\frac{625}{4} + \frac{1000}{3} - \frac{375}{2} \right) - \left(-\frac{81}{4} + \frac{216}{3} - \frac{135}{2} \right) \right] \end{aligned}$$

\therefore

$$\text{Var}(X) = E(X^2) - [E(X)]^2$$

$$= \frac{81}{5} - (4)^2 = \frac{1}{5} = 0.2, \text{ and}$$

$$S.D.(X) = \sqrt{0.2} = 0.447$$

mean = 4, variance = 0.2 and standard deviation = 0.447.

Example 7.16 The continuous r.v. X has p.d.f. $f(x)$, where $f(x) = \frac{3}{4}(1+x^2)$ for $0 \leq x \leq 1$

$E(X) = \mu$ and $Var(X) = \sigma^2$, find $P(|X - \mu| < \sigma)$.

Now $E(X) = \int_{-\infty}^{\infty} xf(x) dx$

$$= \frac{3}{4} \int_0^1 x(1+x^2) dx = \frac{3}{4} \int_0^1 (x + x^3) dx$$

$$= \frac{3}{4} \left[\frac{x^2}{2} + \frac{x^4}{4} \right]_0^1 = \frac{3}{4} \left[\frac{1}{2} + \frac{1}{4} \right] = \frac{9}{16} = 0.5625$$

And $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$

$$= \frac{3}{4} \int_0^1 x^2(1+x^2) dx = \frac{3}{4} \int_0^1 (x^2 + x^4) dx$$

$$\begin{aligned}&= \frac{3}{4} \left[\frac{x^3}{3} + \frac{x^5}{5} \right]_0^1 = \frac{3}{4} \left[\frac{1}{3} + \frac{1}{5} \right] \\&= \frac{3}{4} \left(\frac{8}{15} \right) = \frac{2}{5} = 0.4\end{aligned}$$

$$\begin{aligned}\therefore \text{Var}(X) &= E(X^2) - [E(X)]^2 = \frac{2}{5} - \left(\frac{9}{16} \right)^2 \\&= \frac{107}{1280} = 0.0836, \text{ so that}\end{aligned}$$

$$\text{S.D. (X) or } \sigma = \sqrt{0.0836} = 0.289$$

$$\begin{aligned}\text{Now } P(|X - \mu| < \sigma) &= P(-\sigma < X - \mu < \sigma) \\&= P(\mu - \sigma < X < \mu + \sigma) \\&= P(0.5625 - 0.289 < X < 0.5625 + 0.289) \\&= P(0.2735 < X < 0.8515), \text{ and}\end{aligned}$$

$$P(0.2735 < X < 0.8515) = \frac{3}{4} \int_{0.2735}^{0.8515} (1 + x^2) dx$$

<https://stat9943.blogspot.com>

RANDOM VARIABLES

$$= \frac{3}{4} \left[x + \frac{x^3}{3} \right]_{0.2735}^{0.8515}$$

$$= \frac{3}{4} \left[0.8515 + \frac{(0.8515)^3}{3} - (0.2735 + \frac{(0.2735)^3}{3}) \right]$$

$$= \frac{3}{4} [1.05729 - 0.28032] = 0.8527$$

$\therefore P(|X - \mu| < \sigma) = 0.8527.$

Example 7.17 A continuous r.v. X has the p.d.f.

$$f(x) = \begin{cases} \frac{3}{4}x(2-x), & 0 \leq x \leq 2 \\ 0, & \text{elsewhere} \end{cases}$$

Find the first four moments about the mean and the coefficient of skewness.

We first calculate the moments about origin as:

$$\begin{aligned}\mu'_1 &= E(X) = \int_{-\infty}^{\infty} xf(x) dx \\ &= \frac{3}{4} \int_0^2 x(2x - x^2) dx = \frac{3}{4} \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^2 \\ &= \frac{3}{4} \left[\frac{16}{3} - \frac{16}{4} \right] = \frac{3}{4} \left[\frac{16}{12} \right] = 1;\end{aligned}$$

$$\mu'_2 = E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

<https://ste29943.blogspot.com>

$$= \frac{3}{4} \int_0^2 x^2(2x - x^2) dx = \frac{3}{4} \left[\frac{2x^4}{4} - \frac{x^5}{5} \right]_0^2$$

$$= \frac{3}{4} \left[8 - \frac{32}{5} \right] = \frac{3}{4} \left[\frac{8}{5} \right] = \frac{6}{5};$$

$$\mu'_3 = E(X^3) = \int_{-\infty}^{\infty} x^3 f(x) dx$$

$$= \frac{3}{4} \int_0^2 x^3(2x - x^2) dx = \frac{3}{4} \left[\frac{2x^5}{5} - \frac{x^6}{6} \right]_0^2$$

$$= \frac{3}{4} \left[\frac{64}{5} - \frac{64}{6} \right] = \frac{3}{4} \left[\frac{64}{30} \right] = \frac{8}{5};$$

$$\mu'_2 = E(X^4) = \int_0^\infty x^4 f(x) dx$$

$$= \frac{3}{4} \int_0^\infty x^4 (2x + x^2) dx = \frac{3}{4} \left[\frac{2x^5}{5} + \frac{x^7}{7} \right]_0^\infty$$

$$= \frac{3}{4} \left[\frac{64}{3} - \frac{128}{7} \right] = \frac{3}{4} \left[\frac{64}{21} \right] = \frac{16}{7}.$$

Then we find the moments about the mean as;

$$\mu_1 = 0$$

$$\mu_2 = \mu'_2 - (\mu'_1)^2 = \frac{6}{5} - (0)^2 = \frac{6}{5}$$

$$\mu_3 = \mu'_3 - 3\mu'_1 \mu'_2 + 2(\mu'_1)^3$$

$$= \frac{8}{5} - 3(1)\left(\frac{6}{5}\right) + 2(1)^2 = \frac{8}{5} - \frac{18}{5} + 2 = 0$$

$$\mu_4 = \mu_4' - 4\mu_1'\mu_3' + 6(\mu_1')^2\mu_2' - 3(\mu_1')^4$$

$$= \frac{16}{7} - 4(1)\left(\frac{8}{5}\right) + 6(1)^2\left(\frac{6}{5}\right) - 3(1)^4$$

$$= \frac{16}{7} - \frac{32}{5} + \frac{36}{5} = \frac{3}{3}$$

The coefficient of skewness is

$$\gamma_1 = \frac{E(X - \mu)^3}{\sigma^3} = 0 \quad [\because E(X - \mu)^3 = \mu_3]$$

Geometric and Hormonic Means:

- Geometric Mean:
- Hormonic Mean:

Example 7.24 Let X be a r.v. with p.d.f.

$$f(x) = k(x - x^2), \quad 0 \leq x \leq 1,$$
$$= 0, \quad \text{elsewhere},$$

where k is a constant. Then find the mean, median, mode, harmonic mean and standard deviation.

<https://stat9943.blogspot.com>

First of all, we find the value of k which should be such as to make

$$\int_0^1 k(x - x^2) dx = 1$$

That is $k \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 1$ or $k \left(\frac{1}{2} - \frac{1}{3} \right) = 1$ or $k = 6$.

Now, the mean, μ or $E(X)$ is given by

$$\begin{aligned}\mu = E(X) &= \int_0^1 x \cdot 6(x - x^2) dx \\ &= 6 \int_0^1 (x^2 - x^3) dx = 6 \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{1}{2}\end{aligned}$$

The median, a , is given by $\int_{-\infty}^a f(x) dx = \frac{1}{2}$. Thus

$$6 \int_0^a (x - x^2) dx = \frac{1}{2} \text{ or } 6 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^a = \frac{1}{2}$$

$$\text{or } 4a^3 - 6a^2 + 1 = 0$$

factorize the equation $4a^3 - 6a^2 + 1 = 0$ as

$$(2a - 1)(2a^2 - 2a - 1) = 0$$

Now either $2a - 1 = 0$ which gives $a = \frac{1}{2}$, or

$$x^2 - 2a - 1 = 0, \text{ which gives } a = \frac{1 \pm \sqrt{3}}{2}, \text{ i.e. } a = -0.366 \text{ or } 1.366.$$

The values -0.366 and 1.366 are unacceptable since a must lie in the interval $(0, 1)$. The median is given by $a = \frac{1}{2}$.

is that value of x for which

$$f''(x) = 0, \text{ and} \quad (\text{ii}) \quad f''(x) < 0$$

$$f''(x) = 6(x - x^2), \text{ and } f''(x) = 6(1 - 2x)$$

$$f''(x) = 0 \text{ when } 1 - 2x = 0 \text{ or } x = \frac{1}{2}$$

To check that this is maximum, we find

$$f''(x) = 6(-2) = -12 < 0$$

i.e. $f''(x)$ is negative for all values of x , there is a maximum at $x = \frac{1}{2}$

Hence the mode = $\frac{1}{2}$.

The harmonic mean, H , is given by

$$\frac{1}{H} = \int_0^1 \frac{1}{x} \cdot 6(x-x^2) dx$$

$$= 6 \int_0^1 (1-x) dx = 6 \left[x - \frac{x^2}{2} \right]_0^1 = 3$$

$$\therefore H = \frac{1}{3}$$

$$\text{Again, } \mu'_2 = E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$= \int_0^1 x^2 \cdot 6(x - x^2) dx = 6 \left[\frac{x^4}{4} - \frac{x^5}{5} \right]_0^1 = \frac{3}{10}$$

$$\therefore \mu_2 = E(X^2) - [E(X)]^2 = \mu'_2 - \mu'^2_1$$

$$= \frac{3}{10} - \left(\frac{1}{2} \right)^2 \cdot \frac{1}{20} = 0.05$$

$$\text{Hence } \sigma = \sqrt{\mu_2} = \sqrt{0.05} = 0.2234$$

Moment Generating Function

if x is continuous rv.

If x is discrete rv.

Quiz # 2

10 min (Data Science)P

- 1- If a committee of size 3 selected from 7 men and 5 women. What is the probability that it will contain exactly 2 men?
- In a bolt factory, three machines M_1 , M_2 , and M_3 manufacture 2000, 2500, and 4000 bolts every day. Of their output 3%, 4%, and 2.5% are defective bolts. One of the bolts is drawn very randomly from a day's production and is found to be defective. What is the probability that it was produced by machine M_2 ?

Quiz #2 T 10 min

- 1- 5 books are selected from 8 Maths and 7 Physics books, what is the probability that all of them are Maths books?
- 2- 1% of a population have a certain disease and the remaining 99% are free from this disease. A test is used to detect this disease. This test is positive in 95% of the people with the disease and is also (falsely) positive in 2% of the people free from the disease. If a person, selected at random from this population, has tested positive, what is the probability that she/he has the disease?

Quiz # 2 U 10 min

1. 4-digit numbers are formed from 1,2,3,4,5,6 without repetition and then a number is selected at random, what is probability that it will be divisible by 5?
2. Two production lines produce the same part. Line 1 produces 1,000 parts per week of which 100 are defective. Line 2 produces 2,000 parts per week of which 150 are defective. If you choose a part randomly from the stock what is the probability it is defective? If it is defective what is the probability it was produced by line 1?

Quiz # 2 E 10 min

1. 4-digit numbers are formed from 1,2,3,4,5,6 without repetition and then a number is selected at random, what is probability that it will not be divisible by 5?
2. 1% of a population have a certain disease and the remaining 99% are free from this disease. A test is used to detect this disease. This test is positive in 95% of the people with the disease and is also (falsely) positive in 2% of the people free from the disease. If a person, selected at random from this population, has tested positive, what is the probability that she/he has the disease?