

ALGORITMO DE SUGIYAMA PARA CÓDIGOS REED-SOLOMON TORCIDOS

VÍCTOR ESTEBAN BOTA

Trabajo Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas

Tutores

Gabriel Navarro Garulo

FACULTAD DE CIE<mark>NC</mark>IAS E.T.S. INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, a 27 de febrero de 2023

ÍNDICE GENERAL

	RODUCCIÓN A LOS CÓDIGOS LINEALES
1.1.	Códigos lineales
1.2.	Códigos duales
1.3.	Pesos y distancias

INTRODUCCIÓN A LOS CÓDIGOS LINEALES

Todo el desarrollo de este capítulo está basado en Huffman & Pless (2010).

1.1 CÓDIGOS LINEALES

Sea \mathbb{F}_q el cuerpo finito de q elementos, denotamos \mathbb{F}_q^n al espacio vectorial de las ntuplas sobre el cuerpo finito \mathbb{F}_q . A los vectores (a_1, a_2, \dots, a_n) de \mathbb{F}_q generalmente los escribiremos como $a_1 a_2 \cdots a_n$.

Definición 1. Un (n, M) *código* C sobre \mathbb{F}_q es un subconjunto de \mathbb{F}_q^n de tamaño M. Llamaremos *palabras código* a los elementos de C.

Ejemplo 1. • En el cuerpo \mathbb{F}_2 , a los códigos se les conoce como *códigos binarios* y un ejemplo sería $\mathcal{C} = \{00, 01, 10, 11\}$.

■ En el cuerpo \mathbb{F}_3 , a los códigos se les conoce como *códigos ternarios* y un ejemplo sería $\mathcal{C} = \{01, 12, 02, 10, 20, 21, 22\}$.

Si \mathcal{C} es un espacio k-dimensional de \mathbb{F}_q^n , entonces decimos que \mathcal{C} es un [n,k] *código linear* sobre \mathbb{F}_q y tiene q^k palabras código. Las dos formas más comunes de representar un código lineal son con la *matriz generadora* o la *matriz de paridad*.

Definición 2. Una *matriz generadora* de un [n,k] *código linear* C es cualquier matriz $k \times n$ cuyas columnas forman una base de C.

Para cada conjunto de k columnas independientes de una matriz generadora G, se dice que el conjunto de coordenadas forman un *conjunto de información* de C. Las r = n - k coordenadas restantes forman el *conjunto de redundancia* y el número r es la *redundancia* de C.

En general no hay una única matriz generadora pero si las primeras k coordenadas forman un conjunto de información, entonces el código tiene una única matriz generado de la forma $[I_k|A]$, donde I_k es la matriz identidad $k \times k$. Esta matriz se dice que está en *forma estándar*.

Como un código linear es un subespacio de un espacio vectorial, es el núcleo de alguna transformación lineal.

Definición 3. Una matriz de paridad H de dimensión $(n - k) \times k$ de un [n, k] *código linear C* es una matriz que verifica :

$$C = \{x \in \mathbb{F}_q^n | Hx^T = 0\}$$

Como ocurría con la matriz generadora, la matriz de paridad no es única. Con el siguiente resultado podremos obtener una de ellas cuando $\mathcal C$ tiene una matriz generadora en forma estándar.

Teorema 1 (Matriz de paridad a partir de la generadora). Si $G = [I_k|A]$ es una matriz generadora del [n,k] código C en su forma estándar, entonces $H = [-A^T|I_{n-k}]$ es la matriz de paridad de C.

Demostración. Sabemos que $HG^T = -A^T + A^T = 0$, luego \mathcal{C} está contenido en el núcleo de la transformación lineal $x \mapsto Hx^T$. Como H tiene rango n - k, el núcleo de esta transformación es de dimensión k que coincide con la dimensión de \mathcal{C} .

Ejemplo 2. Sea la matriz $G = [I_4|A]$, donde

$$G = \left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

es la matriz generadora en forma estándar del [7,4] código binario que denotaremos por \mathcal{H}_3 . Por el teorema, la matriz de paridad de \mathcal{H}_3 es

$$H = \begin{bmatrix} A^T | I_3 \end{bmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Este código se le conoce como el [7,4] código de Hamming.

1.2 CÓDIGOS DUALES

La matriz generadora G de un [n,k] código \mathcal{C} es simplemente una matriz cuyas filas son independientes y que expanden el código. Las filas de la matriz de paridad H también son independientes, luego H es la matriz generadora del mismo código al que llamaremos *código dual u ortogonal* y lo denotaremos como \mathcal{C}^{\perp} . Notamos que \mathcal{C}^{\perp} es un [n, n-k] código. Otra forma de verlo es de la siguiente manera:

Definición 4. C es un subespacio de un espacio vectorial luego a su ortogonal es a lo que llamamos *espacio dual u ortogonal* de C y viene dado por

$$\mathcal{C}^{\perp} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\}$$

Vamos a obtener ahora la matriz generadora y de paridad de \mathcal{C}^\perp a partir de las de \mathcal{C}

Proposición 1. Si G y H son las matrices generadora y de paridad de C respectivamente, entonces H y G son las matrices generadora y de paridad de C^{\perp} .

Demostración. Sea $G = [I_k|A]$ la matriz generadora y $H = [-A^T|I_{n-k}]$ la matriz de paridad del [n,k] código C.

Sabemos que $HG^T = GH^T = 0$ luego

$$\mathcal{C}^{\perp} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot G^T = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : G \cdot \mathbf{x}^T = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\}$$

Luego \mathcal{C}^{\perp} está contenido en el núcleo de la transformación lineal $x \mapsto Gx^T$. Como G tiene rango k, el núcleo de esta transformación es de dimensión n-k que coincide con la dimensión de \mathcal{C}^{\perp} . Por tanto, G es la matriz de paridad de \mathcal{C}^{\perp} .

Por último, como $HG^T = 0$ entonces H es la matriz generadora de \mathcal{C}^{\perp} .

Tras este resultado se ve claramente que C^{\perp} es un [n, n-k] código.

Definición 5. Diremos que un código $\mathcal C$ es auto-ortogonal si $\mathcal C\subseteq\mathcal C^\perp$ y diremos que es autodual si $\mathcal C=\mathcal C^\perp$

Ejemplo 3. Tenemos una matriz generadora del código de Hamming [7,4] dada en el ejemplo 2. Ahora definimos \mathcal{H}_3' como el [8,4] código en donde hemos añadido una columna a la paridad de G. Sea

$$G' = \left(egin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{array}
ight)$$

donde G' es la matriz generadora de \mathcal{H}'_3 . Veamos que es autodual:

Sabemos que $G' = [I_4|A']$ y en este caso A' es la siguiente matriz:

$$A' = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

y $(A')^T$ es la misma matriz. Luego como $A'(A')^T = I_4$ entonces \mathcal{H}_3' es autodual.

1.3 PESOS Y DISTANCIAS

Definición 6. La *distancia de Hamming* d(x,y) entre dos vectores $x,y \in \mathbb{F}_q^n$ es el número de coordenadas en las que x e y difieren.

Ejemplo 4. Sea $\mathbf{x} = 20110$ y $\mathbf{y} = 10121$ entonces d(x, y) = 3.

Teorema 2. La función distancia d(x,y) satisface las siguientes cuatro propiedades:

- 1. No negatividad: $d(x,y) \ge 0 \quad \forall x,y \in \mathbb{F}_q^n$.
- 2. $d(x, y) = 0 \Leftrightarrow x = y$.
- 3. Simetría: $d(x,y) = d(y,x) \quad \forall x,y \in \mathbb{F}_q^n$.
- 4. Designaldad triangular: $d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in \mathbb{F}_q^n$

Demostración. Las tres primeras propiedades son evidentes por la definición de la distancia, comprobemos la última propiedad.

Distinguimos dos casos, si x=z tenemos que d(x,z)=0 y por tanto se verifica la desigualdad. Si $x \neq z$ entonces, no puede ocurrir que x=y=z, por tanto $d(x,y)\neq 0$ o $d(y,z)\neq 0$ y por la no negatividad se tendría la desigualdad, en el caso de que x=y o y=z tendríamos la igualdad.

Llamaremos distancia mínima de un código $\mathcal C$ a la menor distancia no-nula entre dos palabras cualquiera del código. Además, esta distancia es un invariante y es importante a la hora de determinar la capacidad de corrección de errores del código $\mathcal C$

Ejemplo 5. Sea $C = \{201310, 311210, 202210, 312100\}$ un código. Sus distancias son:

$$d(201310,311210) = 3$$
, $d(201310,202210) = 2$, $d(201310,312100) = 5$,

$$d(311210, 202210) = 3$$
, $d(311210, 312100) = 3$, $d(202210, 312100) = 4$

Luego, la distancia mínima es d(C) = 2.

Definición 7. El *peso de Hamming* o $\operatorname{wt}(x)$ de un vector $x \in \mathbb{F}_q^n$ es el número de coordenadas no-nulas en x. Llamaremos *peso de* \mathcal{C} a $\operatorname{wt}(\mathcal{C}) = \min(\operatorname{wt}(x))$ con $x \neq 0$.

Ejemplo 6. Sea $\mathbf{x} = 202210$ un vector en \mathbb{F}_3^6 entonces $\operatorname{wt}(x) = 4$.

Teorema 3. Si $x, y \in \mathbb{F}_q^n$, entonces d(x, y) = wt(x - y). Si \mathcal{C} es un código linear, la mínima distancia d es igual al mínimo peso de \mathcal{C} .

Demostración. Como \mathcal{C} es lineal, tenemos que $0 \in \mathcal{C}$ y además $\operatorname{wt}(x) = d(x,0) \quad \forall x \in \mathcal{C}$, luego $d(\mathcal{C}) \leq \operatorname{wt}(\mathcal{C})$.

Por otro lado, sea $x,y \in \mathcal{C}$ entonces $x-y \in \mathcal{C}$ $\forall x,y \in \mathcal{C}$ y sabemos que $d(x,y) = \operatorname{wt}(x-y) \geq \operatorname{wt}(\mathcal{C})$ para cualesquiera $x,y \in \mathcal{C}$. Se tiene que $d(\mathcal{C}) \geq \operatorname{wt}(\mathcal{C})$.

Hemos conseguido así la igualdad, d(C) = wt(C).

Como resultado de este teorema, para códigos lineales, la *mínima distancia* también se denomina el *peso mínimo* de un código. Si se conoce el peso mínimo de un código, entonces nos referiremos a él como el [n, k, d] código.

BIBLIOGRAFÍA

Huffman, W. C., & Pless, V. (2010). Fundamentals of Error-Correcting Codes. Cambridge University Press. ISBN: 978-0-521-13170-4. Accedido el 2022-04-25. URL http://www.cambridge.org/9780521782807