

Accelerated Visualization of Transparent Molecular Surfaces in Molecular Dynamics

Adam Jurcik, Jiri Sochor, Barbora Kozlikova (Masaryk University)
Julius Parulek (University of Bergen)

PacificVIS 2016 April 19, Taipei

Protein Surfaces in Biochemistry

- Proteins in all living cells
- Protein features delimited by surfaces
 - Molecular surface pockets
 - Transport pathways tunnels
 - Closed voids cavities
- Molecular Dynamics
 - Simulation of natural motion
 - Surfaces change

Molecular Surface

- Solvent Accessible [Lee et al. '71]
 - Spherical patches

- Solvent Excluded [Connolly '83]
 - Spherical patches
 - Toroidal patches
 - Spherical triangles
 - reentrant

Transparent Molecular Surface

- Molecular surface using OIT [Kauker et al. '13]
 - Fragments of all atom spheres
 - CSG operations on fragments
 - Correct transparency
 - High depth complexity
 - 188 layers/10000 atoms

Our Accelerated Method

Idea: Compute and render only surface

- Method overview:
 - 1) Surface computation
 - 2) Surface components analysis
 - 3) Transparent surface rendering
- Visual enhancements:
 - Cavity coloring by area
 - Opacity modulation

Step 1: Surface Computation

Contour-buildup algorithm [Totrov et al. '96]

Accelerated and localized computation

- Parallelization
 - Mutliple CPUs [Lindow et al. '10]
 - Single GPU [Krone et al. '11]
- Rendering using transparency
 - Cavities possible occlusion

Step 2: Surface Analysis

Ideas:

- Surfaces = isolated connected components (CC)
- Spherical patches are enclosed with tori
- Tori connect triangles

Algorithm:

- 1) Adjacency list
- 2) CC analysis use BFS
- 3) Cycles forming patches

Step 3: Surface rendering I

- Surface graph benefits:
 - Extraction of all SES patches
 - Extraction of inner cavities

Step 3: Surface rendering II

- Ray-casting
 - Improved performance of ray-casting individual SES patches using OBBs

Results I

- Transparent SES visualization:
 - Static and dynamic structures PDB ID
 - SES probe size = 1,4 Å

Results II

Performance comparison

• Resolution: 1024 x 768

• GPU: NVIDIA GF GTX 680

		Our method		Kauker et al.		
PDB ID	Atoms	DL	FPS	DL	FPS	Speedup
10GZ	~650	12	48.1	117	31.0	1.55
1VIS	~2500	15	34.1	135	11.2	3.04
4ADJ	~10000	19	15.5	188	6.2	2.50

Summary

- Contribution
 - Accelerated transparent dynamic SES visualization
 - Improved memory efficiency
- Limitations
 - Uneasy to perceive transparency in still images
 - Unable to detect open pathways tunnels
- Future work
 - Detection and coloring of tunnels
 - (Employment of efficient BFS algorithm)

Thank you for your attention!