Some Class Random Examples

Esteban Morales

Fri, 23 Aug, 2024

[section]Contentstoc

Contents

Chapter 1

1.1 Random Examples

Limit of Sequence in Let $\{s_n\}$ be a sequence in . We say

$$\lim_{n \to \infty} s_n = s$$

where $s \in \text{if } \forall \text{ real numbers} > 0 \exists \text{ natural number } N \text{ such that for } n > N$

$$s - < s_n < s + i.e. |s - s_n| <$$

Is the set x-axis\{Origin} a closed set We have to take its complement and check whether that set is a open set i.e. if it is a union of open balls We will do topology in Normed Linear Space (Mainly n and occasionally n)using the language of Metric Space TopologyTopology is cool Open Set and Close

Open Set: $\bullet \phi$ $\bullet \bigcup_{x \in X} B_r(x) \text{ (Any } r > 0 \text{ will do)}$

• $B_r(x)$ is open

If $x \in \text{open set } V \text{ then } \exists$

Closed Set:

Set

 $\bullet X, \phi$

 \bullet $B_r(x)$

x-axis $\cup y$ -axis

 $\delta > 0$ such that $B_{\delta}(x) \subset V$ By openness of $V, x \in B_r(u) \subset V$

[red] (0,0) circle [x radius=3.5cm, y radius=2cm]; (3,1.6) node[red]V; [blue] (1,0) circle (1.45cm); [blue] (1,0) circle (1pt) node[anchor=north]u; (2.9,0.4) node[blue] $B_r(u)$; [green!40!black] (1.7,0) circle (0.5cm) node

[yshift=0.7cm] $B_{\delta}(x)$; [green!40!black] (1.7,0) circle (1pt) node[anchor=west]x;

Given $x \in B_r(u) \subset V$, we want $\delta > 0$ such that $x \in B_\delta(x) \subset B_r(u) \subset V$. Let d = d(u, x). Choose δ such that $d + \delta < r$ (e.g. $\delta < \frac{r-d}{2}$)

If $y \in B_{\delta}(x)$ we will be done by showing that d(u, y) < r but

$$d(u, y) \le d(u, x) + d(x, y) < d + \delta < r$$

By the result of the proof, we can then show... Suppose $\vec{v_1}, \dots, \vec{v_n} \in [n]$ is subspace of n . 1+1=2.

1.2 Random

Normed Linear Space and Norm $\|\cdot\|$ Let V be a vector space over (or). A norm on V is function $\|\cdot\|$ $V \to_{>0}$ satisfying

 $\begin{array}{l} \left[\text{label} = \mathbf{0} \right] \|x\| = 0 \iff x = 0 \ \forall \ x \in V \quad \|\lambda x\| = |\lambda| \|x\| \ \forall \ \lambda \in (\mathbf{or} \), \ x \in V \quad \|x + y\| \leq \|x\| + \|y\| \ \forall x, y \in V \ (\text{Triangle Inequality/Subadditivity}) \end{array}$

And V is called a normed linear space.

• Same definition works with V a vector space over $(again <math>\|\cdot\| \to_{\geq 0})$ where ?? becomes $\|\lambda x\| = |\lambda| \|x\| \ \forall \ \lambda \in, \ x \in V$, where for $\lambda = a + ib$, $|\lambda| = \sqrt{a^2 + b^2}$ p-Norm $V = {}^m$, $p \in_{\geq 0}$. Define for $x = (x_1, x_2, \cdots, x_m) \in {}^m$

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_m|^p)^{\frac{1}{p}}$$

(In school p=2) **Special Case** p=1: $||x||_1=|x_1|+|x_2|+\cdots+|x_m|$ is clearly a norm by usual triangle inequality.

Special Case $p \to \infty$ (m with $\|\cdot\|_{\infty}$): $\|x\|_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_m|\}$ For m=1 these p-norms are nothing but |x|. Now exercise Prove that triangle inequality is true if $p \ge 1$ for p-norms. (What goes wrong for p < 1?) For **Property ??** for norm-2

When field is:

We have to show $\sum_i (x_i + y_i)^2 \leq \left(\sqrt{\sum_i x_i^2} + \sqrt{\sum_i y_i^2}\right)^2$ $\sum_i (x_i^2 + 2x_i y_i + y_i^2) \leq \sum_i x_i^2 + 2\sqrt{\left[\sum_i x_i^2\right]\left[\sum_i y_i^2\right]} + \sum_i y_i^2$ $\left[\sum_i x_i y_i\right]^2 \leq \left[\sum_i x_i^2\right] \left[\sum_i y_i^2\right]$ So in other words prove $\langle x, y \rangle^2 \leq \langle x, x \rangle \langle y, y \rangle$ where

$$\langle x, y \rangle = \sum_{i} x_i y_i$$

- $\|x\|^2 = \langle x, x \rangle$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle \cdot, \cdot \rangle$ is -linear in each slot i.e. $\langle rx+x', y \rangle = r\langle x, y \rangle + \langle x', y \rangle$ and similarly for second slot Here in $\langle x, y \rangle$ x is in first slot and y is in second slot.

Now the statement is just the Cauchy-Schwartz Inequality. For proof

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

expand everything of $\langle x - \lambda y, x - \lambda y \rangle$ which is going to give a quadratic equation in variable $\lambda \ \langle x - \lambda y, x - \lambda y \rangle = \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle$

$$=\langle x,x\rangle-\lambda\langle x,y\rangle-\lambda\langle y,x\rangle+\lambda^2\langle y,y\rangle$$

 $=\langle x,x\rangle-2\lambda\langle x,y\rangle+\lambda^2\langle y,y\rangle$ Now unless $x=\lambda y$ we have $\langle x-\lambda y,x-\lambda y\rangle>0$ Hence the quadratic equation has no root therefore the discriminant is greater than zero.

When field is:

Modify the definition by

$$\langle x, y \rangle = \sum_{i} \overline{x_i} y_i$$

Then we still have $\langle x, x \rangle \geq 0$

1.3 Algorithms

[H] This is some input This is some output This is a comment some code here $x\leftarrow 0$ $y\leftarrow 0$ x>5 x is greater than 5 *This is also a comment x is less than or equal to 5 y in 0..5 $y\leftarrow y+1$ y in 0..5 $y\leftarrow y-1$ x>5 $x\leftarrow x-1$ Return something here what