then, by comparing numerators and denominators in Eqs. (26) and (27), we obtain the system

$$dx/dt = G(x, y), dy/dt = F(x, y). (28)$$

At first sight it may seem unlikely that a problem will be simplified by replacing a single equation by a pair of equations, but in fact, the system (28) may well be more amenable to investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems of the form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for y as a function of x. However, this situation is exceptional, and often it will be better to leave the solution in implicit form, as in Examples 1 and 3. Thus, in the problems below and in other sections where nonlinear equations appear, the words "solve the following differential equation" mean to find the solution explicitly if it is convenient to do so, but otherwise to find an equation defining the solution implicitly.

PROBLEMS

In each of Problems 1 through 8, solve the given differential equation.

1.
$$y' = x^2/y$$

2. $y' = x^2/y(1+x^3)$
3. $y' + y^2 \sin x = 0$
4. $y' = (3x^2 - 1)/(3 + 2y)$
5. $y' = (\cos^2 x)(\cos^2 2y)$
6. $xy' = (1 - y^2)^{1/2}$
7. $\frac{dy}{dx} = \frac{x - e^{-x}}{y + e^y}$
8. $\frac{dy}{dx} = \frac{x^2}{1 + y^2}$

In each of Problems 9 through 20:

- (a) Find the solution of the given initial value problem in explicit form.
- (b) Plot the graph of the solution.
- (c) Determine (at least approximately) the interval in which the solution is defined.

9.
$$y' = (1 - 2x)y^2$$
, $y(0) = -1/6$ 10. $y' = (1 - 2x)/y$, $y(1) = -2$
11. $x dx + y e^{-x} dy = 0$, $y(0) = 1$ 12. $dr/d\theta = r^2/\theta$, $r(1) = 2$
13. $y' = 2x/(y + x^2y)$, $y(0) = -2$ 14. $y' = xy^3(1 + x^2)^{-1/2}$, $y(0) = 1$
15. $y' = 2x/(1 + 2y)$, $y(2) = 0$ 16. $y' = x(x^2 + 1)/4y^3$, $y(0) = -1/\sqrt{2}$
17. $y' = (3x^2 - e^x)/(2y - 5)$, $y(0) = 1$
18. $y' = (e^{-x} - e^x)/(3 + 4y)$, $y(0) = 1$
19. $\sin 2x \, dx + \cos 3y \, dy = 0$, $y(\pi/2) = \pi/3$
20. $y^2(1 - x^2)^{1/2} dy = \arcsin x \, dx$, $y(0) = 1$

Some of the results requested in Problems 21 through 28 can be obtained either by solving the given equations analytically or by plotting numerically generated approximations to the solutions. Try to form an opinion about the advantages and disadvantages of each approach.

21. Solve the initial value problem

$$y' = (1 + 3x^2)/(3y^2 - 6y),$$
 $y(0) = 1$

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

22. Solve the initial value problem

$$y' = 3x^2/(3y^2 - 4),$$
 $y(1) = 0$

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

23. Solve the initial value problem

$$y' = 2y^2 + xy^2, \qquad y(0) = 1$$

and determine where the solution attains its minimum value.

24. Solve the initial value problem

$$y' = (2 - e^x)/(3 + 2y),$$
 $y(0) = 0$

and determine where the solution attains its maximum value.

25. Solve the initial value problem

$$y' = 2\cos 2x/(3+2y),$$
 $y(0) = -1$

and determine where the solution attains its maximum value.

26. Solve the initial value problem

$$y' = 2(1+x)(1+y^2),$$
 $y(0) = 0$

and determine where the solution attains its minimum value.

27. Consider the initial value problem

$$y' = ty(4 - y)/3,$$
 $y(0) = y_0.$

- (a) Determine how the behavior of the solution as t increases depends on the initial value y_0 .
- (b) Suppose that $y_0 = 0.5$. Find the time T at which the solution first reaches the value 3.98.

28. Consider the initial value problem

$$y' = ty(4 - y)/(1 + t),$$
 $y(0) = y_0 > 0.$

- (a) Determine how the solution behaves as $t \to \infty$.
- (b) If $y_0 = 2$, find the time T at which the solution first reaches the value 3.99.
- (c) Find the range of initial values for which the solution lies in the interval 3.99 < y < 4.01 by the time t = 2.
- 29. Solve the equation

$$\frac{dy}{dx} = \frac{ay+b}{cy+d} \,,$$

where a, b, c, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f(x, y) can be expressed as a function of the ratio y/x only, then the equation is said to be

homogeneous. Such equations can always be transformed into separable equations by a change of the dependent variable. Problem 30 illustrates how to solve first order homogeneous equations.

30. Consider the equation

$$\frac{dy}{dx} = \frac{y - 4x}{x - y}.$$
 (i)

(a) Show that Eq. (i) can be rewritten as

$$\frac{dy}{dx} = \frac{(y/x) - 4}{1 - (y/x)};\tag{ii}$$

thus Eq. (i) is homogeneous.

- (b) Introduce a new dependent variable v so that v = y/x, or y = xv(x). Express dy/dx in terms of x, v, and dv/dx.
- (c) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and dv/dx. Show that the resulting differential equation is

$$v + x \frac{dv}{dx} = \frac{v - 4}{1 - v},$$

or

$$x\frac{dv}{dx} = \frac{v^2 - 4}{1 - v}.$$
 (iii)

Observe that Eq. (iii) is separable.

- (d) Solve Eq. (iii), obtaining v implicitly in terms of x.
- (e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).
- (f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side of Eq. (i) actually depends only on the ratio y/x. This means that integral curves have the same slope at all points on any given straight line through the origin, although the slope changes from one line to another. Therefore, the direction field and the integral curves are symmetric with respect to the origin. Is this symmetry property evident from your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That is, the substitution y = xv(x) transforms a homogeneous equation into a separable equation. The latter equation can be solved by direct integration, and then replacing vby y/x gives the solution to the original equation. In each of Problems 31 through 38:

- (a) Show that the given equation is homogeneous.
- (b) Solve the differential equation.
- (c) Draw a direction field and some integral curves. Are they symmetric with respect to the origin?

 $31. \frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$

32. $\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$

33. $\frac{dy}{dx} = \frac{4y - 3x}{2x - y}$

$$34. \frac{dy}{dx} = -\frac{4x + 3y}{2x + y}$$

¹The word "homogeneous" has different meanings in different mathematical contexts. The homogeneous equations considered here have nothing to do with the homogeneous equations that will occur in Chapter 3 and elsewhere.

$$35. \ \frac{dy}{dx} = \frac{x+3y}{x-y}$$

$$37. \frac{dy}{dx} = \frac{x^2 - 3y^2}{2xy}$$

$$36. (x^2 + 3xy + y^2) dx - x^2 dy = 0$$

$$38. \ \frac{dy}{dx} = \frac{3y^2 - x^2}{2xy}$$

2.3 Modeling with First Order Equations

Differential equations are of interest to nonmathematicians primarily because of the possibility of using them to investigate a wide variety of problems in the physical, biological, and social sciences. One reason for this is that mathematical models and their solutions lead to equations relating the variables and parameters in the problem. These equations often enable you to make predictions about how the natural process will behave in various circumstances. It is often easy to vary parameters in the mathematical model over wide ranges, whereas this may be very time-consuming or expensive, if not impossible, in an experimental setting. Nevertheless, mathematical modeling and experiment or observation are both critically important and have somewhat complementary roles in scientific investigations. Mathematical models are validated by comparison of their predictions with experimental results. On the other hand, mathematical analyses may suggest the most promising directions to explore experimentally, and they may indicate fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathematical models. We begin by recapitulating and expanding on some of the conclusions reached in those sections. Regardless of the specific field of application, there are three identifiable steps that are always present in the process of mathematical modeling.

Construction of the Model. In this step you translate the physical situation into mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps most critical at this stage is to state clearly the physical principle(s) that are believed to govern the process. For example, it has been observed that in some circumstances heat passes from a warmer to a cooler body at a rate proportional to the temperature difference, that objects move about in accordance with Newton's laws of motion, and that isolated insect populations grow at a rate proportional to the current population. Each of these statements involves a rate of change (derivative) and consequently, when expressed mathematically, leads to a differential equation. The differential equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only an approximate description of the actual process. For example, bodies moving at speeds comparable to the speed of light are not governed by Newton's laws, insect populations do not grow indefinitely as stated because of eventual lack of food or space, and heat transfer is affected by factors other than the temperature difference. Thus you should always be aware of the limitations of the model so that you will use it only when it is reasonable to believe that it is accurate. Alternatively, you can adopt the point of view that the mathematical equations exactly describe the operation of