人工智能实践课

实践课内容

实践课开始前,同学们需要自学 python 语言,课程链接:

https://www.icourse163.org/learn/NJTU-1003368009#/learn/announce 内容如下:

(1) 熟悉平台

熟悉操作百度 AI studio 平台,阅读相关文档,如有需要,可以自行搭建 Paddle Paddle 环境到本地。

(2) 波士顿房价预测

讲解波士顿房价预测使用的理论课方面的知识以及基于 Paddle Paddle 代码实现的具体思路。该示例不计入成绩,感兴趣的同学可以进行实验。

(3) 丰写体数字识别

讲解手写体数字识别使用的理论课方面的知识以及基于 Paddle Paddle 代码实现过程的具体思路。课后要求同学们将 MNIST 数据集的白底黑字图片转换为黑底白字的图片,并且将两者进行混合,成为新的数据集。同时利用该数据集,在公开项目的基础上进行修改,要自行发现公开项目的不合理之处,并且加入你认为对提高手写数字识别精度有提升的技术。在这过程中需要同学们自行查阅资料进行探索。

(4) 鸢尾花分类

讲解典型的分类问题——鸢尾花分类问题涉及到的理论知识,以及基于 PaddlePaddle 代码实现过程的具体思路。该示例不计入成绩,感兴趣的同学可以进行实 验。

(5) 人脸识别

讲解人脸识别使用的理论课方面的知识以及基于 Paddle Paddle 代码实现过程的具体思路。课后要求同学们将自己的人脸加入到训练集中进行训练。如果采用官方的数据集,加入的人脸数量为 200 张,包含人脸的各个角度,如果采用其他数据集,具体数量需要自行把握,要求训练后的模型能够识别自己的人脸。同时需要利用 Paddle 的自动网络生成器实现各种网络结构,实验在不同的网络中,提升人脸识别的精度。如果能够查阅文献加入更好的深度学习技术进行实验,写入实验报告,将会成为加分项目。

(6) 猫狗识别

讲解貓狗识别使用的理论课方面的知识以及基于 PaddlePaddle 代码实现过程的具体 思路。貓狗识别将使用 CIFAR10 数据集,该数据集更加的丰富多样,比简单的人脸识 别更加具有挑战性。

实践课平台——Al Studio

一、简介

AI Studio 是基于百度深度学习平台飞桨的一站式 AI 开发平台,提供在线编程环境、免费 GPU 算力、开源算法和开放数据,能够帮助开发者快速创建和部署模型。

官网链接: https://aistudio.baidu.com/aistudio/index

二、平台注册

(1) 使用百度账号或者 Github 账号进行登录

(2) 完善信息,填写昵称、常用邮箱和注册来源

(3) 进入个人中心, 就成功进入了平台

三、平台操作

(1) 创建项目

查找公开项目(以手写数字识别为例),点击进入

Fork 公开项目, Fork 后能在该公开项目的基础上进行自定义修改

(2) 运行项目

启动环境,官网使用了 jupyter notebook 作为远程编辑器,需要等待一会

增加 Cell。项目分成 Cell 是为了让整个项目条理更加的清晰, Cell 分为 code 和 markdown 两种类型。code 类型用来书写代码,能够被执行,markdown 类型用来记录思维过程,能够

进行可视化

编辑 cell。Code cell 可直接点击编辑,Markdown Cell 需要双击(编辑 markdown 需要掌握一定的语法知识)。点击右上角的省略号,可以对 cell 进行相应的操作。

运行代码,选中代码块,点击运行,运行完毕后 Cell 下方会显示运行结果

重启和中断程序。当程序运行需要中断时,使用上方工具栏可以进行重启和中断

(3) 项目数据集

这一部分参加平台文档

 $\underline{\text{https://ai.baidu.com/ai-doc/AISTUDI0/Uk39v044z}}$

课程阅读资料

在学习的过程中希望同学们积极查阅人工智能相关的文献,下面是一些知识链接

(1) python 语言学习网址

https://www.icourse163.org/learn/NJTU-1003368009#/learn/announce

(2) 百度 AI Studio 官方文档

https://ai.baidu.com/ai-doc/AISTUDIO/nk39v9kec

(3) PaddlePaddle 官方文档

https://www.paddlepaddle.org.cn/documentation/api/zh/1.1/api_guides/low_level/layers/data_in_out.html

(4) 百度 AI 公开课程

https://aistudio.baidu.com/aistudio/course

(5) 吴恩达深度学习公开课程代码

https://github.com/Shtahul/cs230-code-examples

(6) 计算机视觉三大顶级会议 ICCV、CVPR 和 ECCV

http://iccv2019.thecvf.com/

http://cvpr2019.thecvf.com/

https://eccv2020.eu/

(7) 文献查询入口

https://ieeexplore.ieee.org/Xplore/home.jsp