Grau en Enginyeria Informàtica Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

MATEMÀTIQUES 1

Part II: Àlgebra Lineal

Respostes a alguns exercicis

Curs 2023-2024

Aquest document conté les respostes a alguns dels problemes de la segona part de l'assignatura Matemàtiques 1. Aprofitem per fer constar i agrair la tasca del becari docent Gabriel Bernardino en la redacció de les solucions.	
Us ho agraïrem si ens comuniqueu qualsevol errada que detecteu.	
	Anna de Mier Montserrat Maureso Dept. Matemàtiques

Matrius, sistemes i determinants

5.1 1)
$$\begin{pmatrix} 3 & 6 & 12 \\ -9 & 0 & -3 \\ 6 & 3 & 6 \end{pmatrix}$$
. 2) $\begin{pmatrix} 1 & 6 & 12 \\ -10 & 4 & -6 \\ 0 & 4 & 6 \end{pmatrix}$. 3) $\begin{pmatrix} 0 & 4 & 14 \\ -5 & -3 & -2 \\ 3 & 2 & 7 \end{pmatrix}$.

$$4) \left(\begin{smallmatrix} 2 & 4 & 8 \\ 19 & 5 & 14 \\ -6 & 0 & -3 \end{smallmatrix} \right). \ 5) \ \left(\begin{smallmatrix} -13 & 20 & 15 \\ 23 & -3 & 18 \\ 17 & -12 & -8 \\ -67 & 67 & 1 \end{smallmatrix} \right).$$

5.2 (-11) i
$$\begin{pmatrix} 2 & 4 & -6 \\ 1 & 2 & -3 \\ 5 & 10 & -15 \end{pmatrix}$$
.

5.4
$$c_{13} = 8, c_{22} = -3.$$

5.5 1)
$$C_{per} = \begin{pmatrix} 90 & 100 \\ 418 & 454 \end{pmatrix}$$
. 2) $C_{mat} = \begin{pmatrix} 25 & 30 \\ 189 & 207 \end{pmatrix}$.

5.6

a)
$$A^2 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$
, $A^3 = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 27 \end{pmatrix}$, $A^5 = \begin{pmatrix} 32 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 243 \end{pmatrix}$.

b)
$$A^5 = \begin{pmatrix} 2^{32} & 0 & 0 \\ 0 & (-1)^{32} & 0 \\ 0 & 0 & 3^{32} \end{pmatrix}$$
.

5.7 (La solució no és única.) $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

5.8
$$(AB)^t = B^t A^t = \begin{pmatrix} -4 & 7 \\ -1 & 1 \end{pmatrix}$$
.

5.10 (La solució no és única.)

1)
$$A = \begin{pmatrix} -1 \end{pmatrix} I$$
. 2) $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. 3) $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. 4) $D = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$.

5.13 (La matriu escalonada equivalent no és única.)

1)
$$\begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -3 & -3 \\ 0 & 0 & 1 & 9/8 \end{pmatrix}$$
. Té rang 3. 2) $\begin{pmatrix} 1 & 0 \\ 0 & -1/3 \\ 0 & 0 \end{pmatrix}$. Té rang 2.

5.14 1)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. 2) $\begin{pmatrix} 1/5 & 0 \\ 0 & 1 \end{pmatrix}$. 3) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. 4) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. 5) $\begin{pmatrix} 1/k & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- **5.15** 1) $\begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$. 2) No en té.
- $3) \begin{pmatrix} 1 & 1 & 8 & 4 \\ 1 & 1 & 6 & 3 \\ -2 & 0 & -11 & -5 \\ 2 & 1 & 13 & 6 \end{pmatrix}.$
- $4) \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}. \ 5) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \\ 0 & 0 & -1/8 & 1/8 \end{pmatrix}. \ 6) \ \text{Si} \ k \neq 0 \ \text{la inversa} \ \text{\'es} \begin{pmatrix} 1/k & 0 & 0 & 0 \\ -1/k^2 & 1/k & 0 & 0 \\ 1/k^3 & -1/k^2 & 1/k & 0 \\ -1/k^4 & 1/k^3 & -1/k^2 & 1/k \end{pmatrix}.$
- **5.16** Són lineals 2), 4) i 6).

5.17

1)
$$\begin{cases} x+3z = 2 \\ 2x+y+z = 3 \\ -y+2z = 4 \end{cases}$$
2)
$$\begin{cases} -x+5y = -2 \\ x+y = 0 \\ x-y = 1 \end{cases}$$
3)
$$\begin{cases} x+2y+3z+4t = 5 \\ x/3+y/4+z/5+t/2 = 1 \end{cases}$$
4)
$$\begin{cases} x = 1 \\ y = 2 \\ z = 3 \\ x+t = 4 \end{cases}$$

5.18 1) 4. Menor o igual a 3. 2) Com a mínim 3 equacions. 5 incògnites. 3) No. 4) Sí.

5)
$$SCD: \left\{ \begin{array}{cccc} x & = & 1 \\ y & = & 2 \\ z & = & 3 \\ x + y & = & 3 \end{array} \right.$$
 $SCI: \left\{ \begin{array}{cccc} x + y + z & = & 1 \\ y & = & 2 \\ x + 2y + z & = & 3 \\ x + 3y + z & = & 5 \end{array} \right.$ $SI: \left\{ \begin{array}{cccc} x & = & 1 \\ y & = & 2 \\ z & = & 3 \\ x + y & = & 4 \end{array} \right.$

5.19 1) (x, y, z) = (0, 1, 0). 2) Incompatible. 3) (x, y, z) = (0, 0, 0) i (x, y, z) = (1, 1, 1).

5.20

1)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
. 3) $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + s_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + s_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, per a tot $s_1, s_2 \in \mathbb{R}$.
2) No té solució. 4) $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1/2 \end{pmatrix} + s_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s_2 \begin{pmatrix} -4 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + s_3 \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, per a tot $s_1, s_2, s_3 \in \mathbb{R}$.

5.21

1)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} 3/4 \\ 1 \\ -7/4 \end{pmatrix}$$
, per a tot $s \in \mathbb{R}$. 3) $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = s_1 \begin{pmatrix} -2 \\ 3 \\ 1 \\ 0 \end{pmatrix} + s_2 \begin{pmatrix} -3 \\ -1 \\ 0 \\ 1 \end{pmatrix}$, per a tot $s_1, s_2 \in \mathbb{R}$.

2) $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

4) $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = s_1 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s_2 \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$, per a tot $s_1, s_2 \in \mathbb{R}$.

- 1) Compatible indeterminant si c = a + b, altrament incompatible.
- 2) Incompatible si $b \neq 2$, si b = 2 llavors és compatible determinat.
- 3) Sistema compatible indeterminat si $a \in \{4, -1\}$, sistema compatible determinat altrament.
- 4) Incompatible si a=-4, compatible indeterminat si a=4, compatible determinat si $a\neq \pm 4$.
- 5) Compatible indeterminat si a = b amb a = k o k = 0, compatible determinat si $a \neq b$ i (k = 0 o bé k = a o bé k = b). Sistema incompatible altrament.
- **5.23** 1) 5. 2) -10. 3) -5. 4) 20.
- **5.24** 1) $\lambda \in \{2,3\}$. 2) $\lambda \in \{6,2\}$. 3) $\lambda \in \{2,6\}$.
- **5.25** 1) -250. 2) -20. 3) 5. 4) 2304. 5) -4. 6) -128. 7) 7441. 8) -1100.
- **5.26** 1) 120. 2) 10^4 . 3) 96. 4) 10. 5) 10^{-1} .

Espais vectorials

6.1 1)
$$\begin{pmatrix} -1 \\ -1 \\ 10 \end{pmatrix}$$
. 2) $\begin{pmatrix} 38 \\ -3 \\ -52 \end{pmatrix}$. 3) $\begin{pmatrix} 110 \\ -15 \\ -100 \end{pmatrix}$. 4) $\begin{pmatrix} -22 \\ 4 \\ 12 \end{pmatrix}$.

6.2

6.3
$$v_1 + v_2 = \begin{pmatrix} -2 \\ -2 \end{pmatrix}, v_1 - v_3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} i v_2 - v_4 = \begin{pmatrix} -7 \\ -8 \end{pmatrix}.$$

$$\textbf{6.4} \quad u = \frac{-\beta}{\alpha} v - \frac{\gamma}{\alpha} w, \ \ u - v = -\frac{\beta + \alpha}{\alpha} v - \frac{\gamma}{\alpha} w, \ \ u + \alpha^{-1} \beta v = -\frac{\gamma}{\alpha} w.$$

- **6.5** Sí.
- **6.7** Ho són $l'E_1$, $l'E_5$, $l'E_6$ i $l'E_7$.
- **6.8** Ho són P_1 , P_4 i P_6 .
- **6.9** M_1, M_3 i M_5 ho són. M_2 ho és si i només si m=n. M_4 no ho és.

6.10
$$\begin{pmatrix} 0 \\ 3 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}.$$

- **6.11** a = -1.
- **6.12** a = 11 i b = -4.
- **6.13** x = z y.
- **6.14** $ax^2 + bx + b, a, b \in \mathbb{R}$.

6.15 2)
$$e = \begin{pmatrix} 9 \\ \sqrt{2} - 1 \\ 1 - \sqrt{2} \end{pmatrix} = 9 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + (8 + \sqrt{2}) \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \frac{17 + \sqrt{2}}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1 - \sqrt{2}}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

- **6.16** Ho són l'1), el 2) i el 5).
- **6.17** $a = -2, b = 1, -3w_1 + 2w_2 + w_3 = 0_{\mathbb{R}^4}.$
- **6.21** No.
- 6.22 1) Fals en general. 2) Cert. 3) Cert. 4) Cert. 5) Fals en general.

6.23 2)
$$\begin{pmatrix} 0\\2\\1\\-9/2 \end{pmatrix}$$
. 3) $\begin{pmatrix} y\\z\\x-y\\2(y-x)+((t-z)/2) \end{pmatrix}$.

6.24
$$A_B = \begin{pmatrix} 1 \\ -3 \\ 3 \\ 1 \end{pmatrix}$$
.

6.25
$$(-5+6x+3x^2+x^3)_B = \begin{pmatrix} -1\\ 8\\ 3\\ 1 \end{pmatrix}$$
, amb $B = \{1+x, -1+x, 1+x^2, 1-x+x^3\}$.

6.26
$$B_F = \{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \}. \ x - 2y + 2z = 0.$$

6.27
$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \notin F \text{ i } v = \begin{pmatrix} \sqrt{3} \\ \sqrt{2} - 1 \\ 1 - \sqrt{2} \end{pmatrix} \in F.$$

$$v_{B_F} = \begin{pmatrix} (1 - \sqrt{2} + \sqrt{3})/2 \\ (-1 + \sqrt{2} + \sqrt{3})/2 \\ (-1 + \sqrt{2} + \sqrt{3})/2 \end{pmatrix}, \qquad v_{B_G} = \begin{pmatrix} (\sqrt{2} - 1)/2 + \sqrt{3} \\ (1 - \sqrt{2})/2 \\ 0 \end{pmatrix}.$$

- **6.29** (La solució no és única.) Una base és: $\left\{ \begin{pmatrix} 1\\1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\0\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0\\2\\0 \end{pmatrix} \right\}$. Els vectors $\begin{pmatrix} 1\\0\\0\\0\\0\\0 \end{pmatrix}$ i $\begin{pmatrix} 0\\1\\0\\0\\0\\0 \end{pmatrix}$ la completen a una base de \mathbb{R}^5 .
- **6.30** (La solució no és única.) Es pot completar amb $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ per tal de formar una base de $\mathcal{M}_2(\mathbb{R})$.
- **6.31** $\lambda = 1$.
- **6.32** (a) a = -1; (b) t y = 0, z = 0
- 6.33

1)
$$B_E = \{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \}$$
, $\dim(E) = 1$; $B_F = \{ \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \}$, $\dim(F) = 1$; $E \cap F = \{ 0_{\mathbb{R}^3} \}$, $\dim(E \cap F) = 0$.

2)
$$B_E = \{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \}, \dim(E) = 2; B_F = \{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \}, \dim(F) = 2; B_{E \cap F} = \{ \begin{pmatrix} -7 \\ -3 \\ 5 \end{pmatrix} \}, \dim(E \cap F) = 1.$$

3)
$$B_E = \left\{ \begin{pmatrix} 1\\ 1\\ 2\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 3\\ -1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix} \right\}, \dim(E) = 3; B_F = \left\{ \begin{pmatrix} -2\\ 0\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1\\ 3\\ 0 \end{pmatrix} \right\}, \dim(F) = 2; B_{E \cap F} = \left\{ \begin{pmatrix} \frac{1}{7}\\ 0\\ 0\\ 21 \end{pmatrix} \right\}, \dim(E \cap F) = 1.$$

- 4) $B_E = \{\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}, \dim(E) = 2; B_F = \{\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}\}, \dim(F) = 2; E \cap F = \{0_{\mathcal{M}_2(\mathbb{R})}\}, \dim(E \cap F) = 0.$
- **6.34** (La solució no és única.)

1)
$$\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
.

3) $\left\{ \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\}$.

2)
$$\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\}$$
. 4) $\{\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0&0\\0&1 \end{pmatrix}, \begin{pmatrix} 0&1\\0&0 \end{pmatrix}, \begin{pmatrix} 0&0\\0&0 \end{pmatrix}\}$.

6.35
$$P_B^C = \begin{pmatrix} 2 & -3/2 & 1 \\ 2 & -3/2 & 2 \\ -1 & 1 & -1 \end{pmatrix}, P_B^{B'} \begin{pmatrix} 7/2 & 6 & 3 \\ 3/2 & 7 & 4 \\ -1 & -4 & -2 \end{pmatrix}$$

6.36
$$P_B^C = \begin{pmatrix} -1 & 0 & 0 \\ 7 & 2 & 1 \\ -5 & -1 & -1 \end{pmatrix}, p(x)_B = \begin{pmatrix} -3 \\ 21 \\ -16 \end{pmatrix}$$

6.37

2)
$$P_{B'}^B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}, P_{B'}^{B'} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}.$$

3)
$$\binom{2}{5}_{B} = \binom{3/4}{-5/4}_{-5/4}; \binom{2}{5}_{B'} = \binom{2}{0}_{-1/2}.$$

6.38
$$P_{B'}^B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 1 \end{pmatrix}, \qquad P_B^{B'} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

6.39 Si
$$u_B = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $u_{B'} = \begin{pmatrix} y+z \\ x+z \\ x+y \end{pmatrix}$. Si $u_{B'} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, $u_B = 1/2 \begin{pmatrix} y'+z'-x' \\ z'+x'-y' \\ z'+y'-z' \end{pmatrix}$.

6.40
$$p_1(x) = 2x^2 + 1, p_2(x) = -3x^2 + x, p_3(x) = -x^2 + 1/2.$$

Aplicacions lineals

- **7.1** 1) Sí. 2) No. 3) No. 4) Sí. 5) No.
- **7.2** 1) Sí. 2) Sí. 3) Sí.
- **7.3** 1) Sí. 2) Sí. 3) No.
- **7.4** $f(a_0 + a_1x + a_2x^2) = (a_0 + 3a_1 + 4a_2) + (a_0 + 2a_2)x + (-a_1 3a_2)x^2$. $f(2 2x + 3x^2) = 8 + 8x 7x^2$.
- **7.5** 1) Existeix. 2) Existeix. 3) No existeix.
- **7.6** 1) Falsa en general. 2) Certa. 3) Falsa en general. 4) Falsa en general. 5) Certa.
- **7.7** 1) Existeix. 2) No existeix.

7.8

1)
$$M(f) = (3)$$
. dim(Im f) = rang $(M(f)) = 1$ i dim(Ker f) = 1 - 0 = 0.

2)
$$M(f) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$$
. $\dim(\operatorname{Im} f) = \operatorname{rang}(M(f)) = 2 \text{ i } \dim(\operatorname{Ker} f) = 2 - 2 = 0$.

3)
$$M(f) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. $\dim(\operatorname{Im} f) = \operatorname{rang}(M(f)) = 3 \text{ i } \dim(\operatorname{Ker} f) = 3 - 3 = 0$.

4)
$$M(f) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 2 & -1 & 1 & -1 \end{pmatrix}$$
. $\dim(\operatorname{Im} f) = \operatorname{rang}(M(f)) = 3 \text{ i } \dim(\operatorname{Ker} f) = 4 - 3 = 1$.

5)
$$M(f) = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & -1 \\ 1 & -2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$
. $\dim(\operatorname{Im} f) = \operatorname{rang}(M(f)) = 3 \text{ i } \dim(\operatorname{Ker} f) = 3 - 3 = 0$.

- **7.9** Si $m \neq 0, 1, 2$ llavors dim $(\operatorname{Im} f) = 3$. Per a la resta de casos dim $(\operatorname{Im} f) = 2$.
- **7.10** $M_B(f) = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. dim (Im f) = 3 i una base és $\{u + 2w, v + w, 2u + v + w\}$.

7.11 Ker
$$f = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rangle$$
. $f \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$, $f^{-1} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : \lambda \in \mathbb{R} \}$, $f^{-1} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \emptyset$.

- **7.12** 1) Sí. 2) No. 3) No. 4) Sí.
- **7.13** En tots els casos, indiquem per M(f) la matriu d'f en les bases canòniques corresponents.
 - 1) M(f)=(a). Si $a\neq 0$: Ker $f=\{0_{\mathbb{R}}\}$, dim(Ker f)=0, Im $f=\mathbb{R}$ i dim(Im f)=1; f és isomorfisme i $f^{-1}(x)=\frac{1}{a}x$. Si a=0: Ker $f=\mathbb{R}$, dim(Ker f)=1, Im $f=\{0_{\mathbb{R}}\}$ i dim(Im f)=0; f no és ni injectiva ni exhaustiva.
 - 2) $M(f) = (\frac{1}{2}\frac{3}{7})$. Im $f = \mathbb{R}^2$, dim(Im f) = 2, Ker $f = \{0_{\mathbb{R}^2}\}$ i dim(Ker f) = 0. f és un isomorfisme, i $M(f^{-1}) = M(f)^{-1} = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix}$.
 - 3) $M(f) = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 1 & -2 & 2 & 0 \end{pmatrix}$. Una base de $\operatorname{Im} f$ és $\{\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}\}$, $\dim(\operatorname{Im} f) = 3$. Una base de $\operatorname{Ker} f = \{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\}$ i $\dim(\operatorname{Ker} f) = 1$. f no és injectiva però sí exhaustiva.
 - 4) $M(f) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$. Una base de $\operatorname{Im} f$ és $\{1 x^2, -1 + x\}$, $\dim(\operatorname{Im} f) = 2$. Una base de $\operatorname{Ker} f$ és $\{1 + x + x^2\}$ i $\dim(\operatorname{Ker} f) = 1$. f no és injectiva ni exhaustiva.
 - 5) $M(f) = \begin{pmatrix} 3 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$. Un base de $\operatorname{Im} f$ és $\{3 + x + 2x^2, -x + x^2, x^2\}$, $\dim(\operatorname{Im} f) = 3$. $\operatorname{Ker} f = \{0_{P_2(\mathbb{R})}\}$ i $\dim(\operatorname{Ker} f) = 0$. f és un isomorfisme i $M(f^{-1}) = \begin{pmatrix} 1/3 & 0 & 0 \\ 1/3 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$.
 - 6) $M(f) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$. Una base de $\operatorname{Im} f$ és $\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$, $\dim(\operatorname{Im} f) = 2$. Una base de $\operatorname{Ker} f$ és $\{\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\}$, $\dim\operatorname{Ker} f = 2$. f és exhaustiva i no injectiva.
 - 7) $M(f) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$. Una base de $\operatorname{Im} f$ és $\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}\}$, $\dim \operatorname{Im} f = 2$. Una base de $\operatorname{Ker} f$ és $\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\}$, $\dim \operatorname{Ker} f = 1$. f no és ni injectiva ni exhaustiva.
- **7.15** 1) És exhaustiva. 2) És exhaustiva. 3) És injectiva.

7.16 1)
$$\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$
. 2) $\begin{pmatrix} 1/2 & 0 \\ -1/3 & -2/3 \\ 1/3 & 5/3 \\ 2/3 & -5/3 \end{pmatrix}$. 3) $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

7.17

1)
$$M_B(f) = \begin{pmatrix} 9/4 & 17/4 & 21/4 \\ 1/4 & 1/4 & 1/4 \\ 1/2 & -14/4 & 1/2 \end{pmatrix}$$
.

7.18 1)
$$M_{B_F}^{B_E}(f) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$
. 2) $M_{B_F'}^{B_E}(f) = \begin{pmatrix} 1/2 & 0 & -1 \\ 0 & 1/2 & 1/2 \end{pmatrix}$. 3) $M_{B_F}^{B_E'}(f) = \begin{pmatrix} -1 & -2 & -6 \\ 2 & 2 & 3 \end{pmatrix}$. 4) $M_{B_F'}^{B_E'}(f) = \begin{pmatrix} -1/2 & -1 & -3 \\ 1 & 1 & 3/2 \end{pmatrix}$.

7.19 1)
$$M_{CAN}(f_N) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
. 2) $\operatorname{Ker} f_N = \left\{ \begin{pmatrix} x & y \\ -x & -y \end{pmatrix} \mid x, y \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right\rangle$, $\dim \left(\operatorname{Ker} f_N \right) = 2$. Im $f_N = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$, $\dim \left(\operatorname{Im} f_N \right) = 2$. 3) $M_B(f_N) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

7.20

1) Im
$$f = \langle \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \rangle$$
 i Ker $f = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle$.

2) Per exemple
$$\left\{ \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
.

7.21 1)
$$M_{B_F}^{B_E}(f) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
. 2) Sí. Sí. 3) $M_{B_F'}^{B_E'} = \begin{pmatrix} 2 & -4 \\ -2 & 2 \end{pmatrix}$.

7.23 1)
$$\begin{pmatrix} -\sqrt{3}/2 & 1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$$
. 2) $\begin{pmatrix} 0 & 0 \\ 0 & 1/2 \end{pmatrix}$. 3) $\begin{pmatrix} -\sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$.

7.24 1) Sí. 2) Sí. 3) Sí. 4) No.

7.26 1)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. 2) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ -1 & 0 & 1 \end{pmatrix}$. 3) $1/6 \begin{pmatrix} \sqrt{3} - \sqrt{3}/2 & 1/2 \\ 1 & 3/2 & -\sqrt{3}/2 \\ 0 & 1 & \sqrt{3} \end{pmatrix}$.

7.27 1) Sí. 2) No.

Diagonalització

Notació: L'expressió $\operatorname{Diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ representa una matriu diagonal $n \times n$, on $\lambda_1, \lambda_2, \dots, \lambda_n$ són els elements de la diagonal.

Donats f un endomorfisme d'un espai vectorial E i k un valor propi de f, notarem per E_k el subespai associat al valor propi k, és a dir, $E_k = \{v \in E : f(v) = kv\}$.

1)
$$p(k) = k^2 - 3k - 4 = (k+1)(k-4);$$

 $E_{-1} = \langle \binom{-1}{1} \rangle, E_4 = \langle \binom{2}{3} \rangle;$
diagonalitza en la base $\{\binom{-1}{1}, \binom{2}{3}\}$ i la matriu diagonal associada és Diag $(-1, 4)$.

2)
$$p(k)=k^2-1=(k+1)(k-1);$$

$$E_{-1}=\langle \left(\begin{smallmatrix} 0\\1 \end{smallmatrix}\right)\rangle,\,E_1=\langle \left(\begin{smallmatrix} 1\\1 \end{smallmatrix}\right)\rangle;$$
 diagonalitza en la base $\{\left(\begin{smallmatrix} 0\\1 \end{smallmatrix}\right),\left(\begin{smallmatrix} 1\\1 \end{smallmatrix}\right)\}$ i la matriu diagonal associada és Diag $(-1,1).$

3)
$$p(k) = -k^3 + 10k^2 - 28k + 24 = -(k-6)(k-2)^2;$$

$$E_6 = \langle \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \rangle, E_2 = \langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \rangle;$$
 diagonalitza en la base $\{\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \}$ i la matriu diagonal associada és Diag $(6, 2, 2)$.

4)
$$p(k) = -(k-1)^3;$$
 $E_0\langle \begin{pmatrix} 1\\0\\0 \end{pmatrix} \rangle;$ no és diagonalitzable.

5)
$$p(k) = -k^3 + 12k + 16 = -(k-4)(k+2)^2;$$

$$E_4 = \langle \begin{pmatrix} 1\\1\\2 \end{pmatrix} \rangle, \ E_{-2} = \langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \rangle;$$
 diagonalitza en la base $\{\begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \}$ i la matriu diagonal associada és Diag $(4, -2, -2)$.

6)
$$p(k) = -(k-2)^3;$$

 $E_2 = \langle \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \rangle;$
la matriu no és diagonalitzable.

7) $p(k) = -(k+1)(k^2+1);$ només té un valor propi real i no diagonalitza.

8)
$$p(k) = k^4 - 6k^3 + 13k^2 - 12k + 4 = (k-1)^2(k-2)^2;$$

 $E_1 = \langle \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \rangle, E_2 = \langle \begin{pmatrix} 1\\2\\4\\8 \end{pmatrix} \rangle;$

la matriu no és diagonalitzable.

9)
$$p(k) = k^4 + 4k^3 - 13k^2 - 4k + 12 = (k+1)(k+6)(k-2)(k-1);$$

$$E_{-1} = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \rangle, E_{-6} = \langle \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \rangle, E_2 = \langle \begin{pmatrix} 1 \\ 4 \\ 2 \\ 1 \end{pmatrix} \rangle, E_1 = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle;$$
diagonalitza en la base $\{\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \}$ i la matriu diagonal associada és Diag $(-1, -6, 2, 1)$.

8.2
$$B = \{ \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\-1\\-1 \end{pmatrix} \}.$$

1) El polinomi característic és $p(k) = -k^3 + 3k^2 - 2k = -k(k-1)(k-2)$. Els subespais associats als valors propis són $E_0 = \operatorname{Ker} f = \langle \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix} \rangle$, $E_1 = \langle \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix} \rangle$, $E_2 = \langle \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \rangle$. L'endomorfisme és diagonalitzable en la base $\{\begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \}$ i la matriu diagonal associada és $\operatorname{Diag}(0,1,2)$.

- 2) El polinomi característic és $p(k) = -k^3 + 2k^2 + 15k 36 = -(k+4)(k-3)^2$. Els subespais associats als valors propis són $E_{-4} = \langle 3x^2 + 8x 6 \rangle$, $E_3 = \langle x^2 2x + 5 \rangle$. L'endomorfisme no és diagonalitzable, ja que dim $E_3 \neq 2$.
- 3) El polinomi característic és p(k) = (k-1)(k-2)(k-3)(k-4). Els subespais associats als valors propis són $E_1 = \langle 1 \rangle$, $E_2 = \langle 1+x \rangle$, $E_3 = \langle 3+4x+2x^2 \rangle$, $E_4 = \langle 8+12x+9x^3+3x^3 \rangle$. Atès que l'endomorfisme té quatre valors propis diferents, aquest diagonalitza respecte de la base $\{1, 1+x, 3+4x+2x^2, 8+12x+9x^2+3x^3\}$, essent la matriu diagonal associada Diag(1,2,3,4).
- **8.4** Els valors propis són -1, -2 i 1, de multiplicitat algebraica 1, 1 i 2, respectivament. Els subespais associats als valors propis són $E_{-1} = \langle \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \rangle$, $E_{-2} = \langle \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \rangle$, $E_{1} = \langle \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \rangle$.

8.5

- 1) El polinomi característic és $p(x) = k^2 ak + b^2$. Si $a^2 4b^2 < 0$ la matriu no diagonalitza ja que no té valors propis reals. Si $a^2 4b^2 = 0$ i $b \neq 0$ la matriu no diagonalitza. Si $a^2 4b^2 > 0$, o bé a = b = 0, la matriu diagonalitza.
- 2) El polinomi característic és $p(x) = (1-k)^2(2-k)$. La matriu és diagonalitzable si i només si a=0.
- 3) El polinomi característic és p(x) = (a k)(1 k)(-1 k). La matriu és diagonalitzable si a = -1 i b = 0, si a = 1, o bé si $a \neq 1, -1$.
- 4) El polinomi característic és $p(x)=k(k^2-c^2-4ab)$. Si $c^2+4ab<0$ la matriu no diagonalitza. Si $c^2+4ab=0$ la matriu només diagonalitza si a=b=c=0. Si $c^2+4ab>0$ la matriu diagonalitza.
- 5) El polinomi característic és $p(x) = (1-k)^2(2-k)(b-k)$. La matriu diagonalitza si $b \neq 1$ i a=0, altrament no diagonalitza.
- 6) El polinomi característic és $p(x)=(a-k)^2(1-k)$. La matriu diagonalitza per a qualsevol valor de a.
- 7) El polinomi característic és p(x) = (1 k)(2 k)(a k). La matriu diagonalitza si $a \neq 1$ o bé si a = 1 i b = 0.

8.9

1) L'endomorfisme existeix i és diagonalitzable: $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x-y+4z \\ 2x+2y-4z \end{pmatrix}$. El polinomi característic és $p(\lambda) = \lambda(\lambda-1)^2$.

2) L'endomorfisme existeix i és diagonalitzable: $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (2z-5x-y)/8 \\ (2z-5x-y)/8 \\ (2z-5x-y)/8 \end{pmatrix}$. El polinomi característic és $p(\lambda) = \lambda^2(\lambda + 1/2)$.

- 3) L'endomorfisme existeix $(f\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 2x-y\\y+z\\z \end{pmatrix})$, però no és diagonalitzable.
- 4) L'endomorfisme existeix i és diagonalitzable: $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2x+2y \end{pmatrix}$. El polinomi característic és $p(\lambda) = \lambda(\lambda-2)^2$.

8.10

- 1) dim (Im f) és 2 si a = -1 i 3 altrament.
- 2) Per a a=3, el polinomi característic és $p(\lambda)=-(\lambda-2)^3$ i dim $E_2=1$, per tant l'endomorfisme no és diagonalitzable.
- 3) El polinomi característic és $p(\lambda) = -(\lambda 2)(\lambda^2 (a+1)\lambda + a + 1)$. Té totes les arrels reals si, i només si, $a \ge 3$ o $a \le -1$.

8.11

3) i)
$$\begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 3^{100} & 0 \\ 0 & 2^{100} \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$$
.

ii)
$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{2001} & 0 \\ 0 & 0 & 4^{2001} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$
.

iii)
$$\begin{pmatrix} 0 & -1 & 6 & 0 \\ 0 & 0 & -30 & 1 \\ 1 & 0 & 7 & 0 \\ 0 & 1 & 6 & 0 \end{pmatrix} \begin{pmatrix} (-1)^{70} & 0 & 0 & 0 \\ 0 & (-7)^{70} & 0 & 0 \\ 0 & 0 & 11^{70} & 0 \\ 0 & 0 & 0 & 13^{70} \end{pmatrix} \begin{pmatrix} -7/12 & 0 & 1 & -7/12 \\ -1/2 & 0 & 0 & 1/2 \\ 1/12 & 0 & 0 & 1/12 \\ 5/2 & 1 & 0 & 5/2 \end{pmatrix}.$$

8.12 1)
$$\binom{-2046}{1023}$$
 2 No.

Exercicis de repàs i consolidació

- **B.5** Les matrius $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ que satisfan alguna de les condicions següents:
 - $a, d \in \{1, -1\}, b = c = 0.$
 - $d = -a, c = 0, a \in \{1, -1\}, b \in \mathbb{R}.$
 - $d = -a, b = 0, a \in \{1, -1\}, c \in \mathbb{R}.$
 - $d = -a, b = (1 a^2)/c, a \in \mathbb{R}, c \in \mathbb{R} \setminus \{0\}.$

- 1) 3.
- 2) Sí: $e_2 = -e_1 + 2e_3$ i $e_4 = 3e_3 e_5$.
- 3) Quan $x=2\pi$ no hi ha cap solució, i quan $y=2\sqrt{3}$ hi ha una solució amb un grau de llibertat.
- 4) Si x=0 i $y=2\sqrt{3}$ hi ha una solució. Quan $z=2\pi$ i $t=2\sqrt{3}$ no hi ha cap solució.

B.9 1)
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
. 2) $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}$. 3) Sistema incompatible. 4) $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = s \begin{pmatrix} -6 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, per a tot $s \in \mathbb{R}$.

B.10

- 1) Si m=1, SCI amb 2 graus de llibertat. Si m=-2, SI. SCD altrament.
- 2) Si a=2/5, SI. Si a=-1, SCI amb un grau de llibertat. SCD altrament.
- 3) Si a = -5, SCD. SI altrament.
- 4) Si a=1 i b=1 o a=7/3 i b=5/4, CI amb 1 grau de llibertat. Si a=1 i $b\neq 1$ o a=7/3 i $b\neq 5/4$ SI. SCD altrament.
- **B.11** 1) Sí. 2) No. 3) Sí. 4) Sí. 5) Sí.
- **B.13** a = 2.

B.16
$$\begin{pmatrix} -3 \\ 7 \\ 6 \\ -5 \end{pmatrix} = -10 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 11 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} - 5 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

B.17 (La solució de 1) i 3) no és única.)

1)
$$B = \{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 9 \end{pmatrix} \}$$
. 2) $e_B = \begin{pmatrix} -2 \\ 9 \end{pmatrix}$. 3) $B' = \{ \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 7 \\ 2 \\ 79 \end{pmatrix} \}$.

B.20 (La base donada no és l'única possible.)

1)
$$\left\{ \begin{pmatrix} 2\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}, \dim(E_1) = 2.$$

2)
$$\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1\\1 \end{pmatrix} \right\}, \dim(E_2) = 2.$$

3)
$$\left\{ \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix} \right\}, \dim(E_3) = 3.$$

4)
$$\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \}, \dim(E_4) = 2.$$

5) Atès que dim $(E_1 \cap E_2) = 0$, no hi ha base.

6)
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix} \right\}, \dim (E_3 \cap E_4) = 2.$$

B.21 (La solució no és única.)

$$1) \ \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}. \quad 2) \ \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}. \quad 3) \ \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \right\}. \quad 4) \ \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

B.22 Una base és $\left\{ \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right\}$, i el subespai té dimensió 2.

Si estem a \mathbb{Z}_2 una base serà $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$ i el subespai té dimensió 1.

B.23

- \blacksquare Per a n=2, una base és $B=\{\left(\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix}\right)\}$ i el subespai té dimensió 1.
- Per a n=3 el subespai té dimensió 3 i una base és:

$$\left\{ \begin{pmatrix} 2 & 2 & -1 \\ -2 & 1 & 4 \\ 3 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \end{pmatrix} \right\}.$$

B.24

2)
$$P_{B'}^{B} = \begin{pmatrix} 1/2 & 3/4 & 1/12 \\ -1 & -17/12 & -17/12 \\ 1 & 2/3 & 2/3 \end{pmatrix}$$
, $P_{B}^{B'} = \begin{pmatrix} 0 & 8/9 & 17/9 \\ 3/2 & -1/2 & -5/4 \\ -3/2 & -5/6 & -1/12 \end{pmatrix}$.

3)
$$v_B = \begin{pmatrix} -2/3 \\ 5/2 \\ 1/2 \end{pmatrix}$$
, $v_{B'} = \begin{pmatrix} 19/12 \\ -43/12 \\ 4/3 \end{pmatrix}$.

B.25
$$v_{B'} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

B.26
$$P_{B'}^B = \begin{pmatrix} -24 & 7 & 1 & -2 \\ -10 & 3 & 0 & -1 \\ -29 & 7 & 3 & -2 \\ 12 & -3 & -1 & 1 \end{pmatrix}, \qquad P_B^{B'} = \begin{pmatrix} 1 & -2 & -1 & -2 \\ 3 & -5 & -2 & -3 \\ 2 & -5 & -2 & -5 \\ -1 & 4 & 1 & 1 \end{pmatrix}.$$

- **B.27** Existeix i $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 30x 10y 3z \\ -9x + 3y + z \end{pmatrix}$.
- **B.28** Tots ho són menys $\mathbb{R}_6[x]$.
- **B.29** Ker $f = \{A \in \mathcal{M}_3(\mathbb{R}) : A = A^t\}$, dim Ker f = 6.
- **B.30** Una base de $\operatorname{Im} f$ és $\{u+v,u\}$ i $\operatorname{dim}(\operatorname{Im} f)=2$. Una base $\operatorname{Ker} f$ és $\{u+v\}$ i $\operatorname{dim}(\operatorname{Ker} f)=1$. Una base de $\operatorname{Im} f^2$ és $\{u+v\}$ i $\operatorname{dim}(\operatorname{Im} f^2)=1$. Una base de $\operatorname{Ker} f^2$ és $\{u,v\}$ i $\operatorname{dim}(\operatorname{Ker} f^2)=2$.

B.31

1)
$$M(f) = \begin{pmatrix} 1/3 & -1 & 2/3 \\ 0 & 0 & 0 \\ -1/3 & 1 & -2/3 \end{pmatrix}$$
.

- 2) $\dim(\operatorname{Ker} f) = 2$, $\dim(\operatorname{Im}(f)) = 1$.
- 3) $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{3} \begin{pmatrix} x 3y + 2z \\ 0 \\ -x + 3y 2z \end{pmatrix}$.
- 4) No és cap de les tres coses.

B.32

- 1) Es té dim (Im f_r) = 2 quan r = -2, altrament dim (Im f_r) = 3.
- 2) Per a r=-2, dim Ker $f_r=1$ i una base de Ker f_r és $\left\{ \begin{pmatrix} -2\\2\\1 \end{pmatrix} \right\}$.
- 3) No existeix.
- 4) En general, $f_r\left(\frac{1}{2}\right) = \binom{6}{3}_{5+r}$. Si $r \neq -2$, $f_r^{-1}(f(w)) = w$. Si r = -2, $f_r^{-1}(f_r(w)) = \{w + \lambda \begin{pmatrix} -2 \\ 2 \end{pmatrix} : \lambda \in \mathbb{R}\}$.
- **B.35** Siguin C_3 i C_2 les bases canòniques de \mathbb{R}^3 i \mathbb{R}^2 , respectivament.
- 1) $M_{\mathcal{C}_3}^{\mathcal{C}_2}(f) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. 2) $M_{B'_2}^{B'_1}(f) = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}$. 3) $f(v)_{B'_2} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

B.36

- 1) $M(f) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix}$.
- 2) No és cap de les tres coses.
- 3) Si $a \neq -b$ es té $f^{-1}(w) = \emptyset$, altrament $f^{-1}(w) = \left\{ \begin{pmatrix} 5b \\ 0 \\ -3b \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} : \lambda \in \mathbb{R} \right\}$.

B.37

- 1) $M_B(f) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- 3) dim (Im f) = 2 i una base és $\{e_1, e_2\}$. dim (Im f^2) = 1 i una base és $\{e_1\}$. dim (Ker f) = 2 i una base és $\{e_1 e_2, e_3 e_4\}$. dim (Ker f^2) = 3 i una base és $\{e_1 e_4, e_2 e_4, e_3 e_4\}$.
- $4) \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & -2 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
- **B.38** 1) $\begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix}$. 2) $\begin{pmatrix} -1/2 & \sqrt{3}/2 \\ 0 & 0 \end{pmatrix}$.
- **B.39** 1) $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. 2) $\begin{pmatrix} 0 & \sqrt{3}/2 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

B.42

- 1) Polinomi característic: $(\lambda 1)(\lambda 3)$. Valors propis: 1 i 3, ambdós de multiplicitat 1. Espais propis: $E_1 = \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle$, $E_3 = \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle$. Diagonalitza.
- 2) Polinomi característic: $\lambda(\lambda-3)(\lambda+1)$. Valors propis: 0,3,-1, tots de multiplicitat 1. Espais propis: $E_0=\langle \begin{pmatrix} 1\\0\\0 \end{pmatrix} \rangle$, $E_3=\langle \begin{pmatrix} 0\\1\\0 \end{pmatrix} \rangle$, $E_{-1}=\langle \begin{pmatrix} 0\\0\\1 \end{pmatrix} \rangle$. Clarament diagonalitza.
- 3) Polinomi característic: $\lambda^2(\lambda-3)$. Valors propis: 0 i 3, de multiplicitats 2 i 1, respectivament. Espais propis: $E_0 = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle$, $E_3 = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle$. No diagonalitza.
- 4) Polinomi característic: $-\lambda^3 + 4\lambda^2 + 4\lambda 16$. Valors propis: -2, 2, 4, tots de multiplicitat 1. Espais propis: $E_{-2} = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle$, $E_2 = \langle \begin{pmatrix} 1 \\ 7 \\ 1 \end{pmatrix} \rangle$, $E_4 = \langle \begin{pmatrix} 0 \\ 6 \\ 1 \end{pmatrix} \rangle$. Diagonalitza.
- 5) Polinomi característic: $\lambda(\lambda^2 4\lambda + 4)$. Valors propis 0 i 2, amb multiplicitats 1 i 2, respectivament. Espais propis: $E_0 = \langle \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \rangle$, $E_2 = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle$. No diagonalitza.
- 6) Polinomi característic: $(\lambda 1)(\lambda 5)(\lambda 8)(\lambda 10)$. Valors propis: 1, 5, 8, 10, tots de multiplicitat 1. Espais propis: $E_1 = \langle \begin{pmatrix} -63 \\ -4 \\ -9 \\ 28 \end{pmatrix} \rangle$, $E_5 = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rangle$, $E_8 = \langle \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \rangle$, $E_{10} = \langle \begin{pmatrix} 68 \\ 45 \\ 10 \end{pmatrix} \rangle$. Diagonalitza.
- 7) Polinomi característic: $(1 \lambda)^n$. Valors propis: 1 amb multiplicitat n. Espais propis $E_1 = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle$. Només diagonalitza si n = 1.

B.43

1) El polinomi característic és $p(x) = k^2(1-k)^2$. Els valors propis són 0 i 1, tots dos amb multiplicitat dos.

2) Els subespais propis són
$$E_0 = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4 : x + z = 0$$

$$y - 2z + 2t = 0 \} \text{ i } E_1 = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4 : x = 0$$

$$y + t = 0 \}. \text{ Una base formada per vectors propis \'es } B = \{ \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \}.$$

$$3)\ \ P=\begin{pmatrix} \begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix}, \ P^{-1}=\begin{pmatrix} \begin{smallmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ -2 & -1 & 0 & -2 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

- 4) La matriu diagonal associada a la base B és $\mathrm{Diag}(0,0,1,1)$.
- **B.44** 2) Diagonalitza si $d \neq a$.