数理統計

箱

2025年4月27日

概要

数理統計の基礎を解説する.

目次

1	統計モデル	1
1.1	統計モデル	1
1.2	十分性	2
1.3	完備性	4
1.4	指数型分布族	5
2	推定	6
2.1	不偏推定量	6
2.2	Fisher 情報量	7
2.3	最尤推定量	10

記号と用語

- 集合 X を考えるとき、その部分集合 A の特性関数を、 1_A と書く.
- T を集合 $\mathcal X$ から可測空間 $\mathcal Y$ への写像とするとき,T を可測にする $\mathcal X$ 上の可測構造の中で最小のもの を, $\sigma[T]$ と書く.

1 統計モデル

1.1 統計モデル

定義 1.1(統計モデル) 可測空間 \mathcal{X} とその上の確率測度の族 $(P_{\theta})_{\theta \in \Theta}$ との組 $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を,**統計モデル** (statistical model) という. \mathcal{X} をこの統計モデルの標本空間(sample space)といい, Θ をこの統計モデルのパラメータ空間(parameter space)という.

 $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとする. このとき, \mathcal{X} から集合 \mathcal{Y} への写像 $\phi: \mathcal{X} \to \mathcal{Y}$ を, しばしば**統計量** (statistic) という. また, 各 $\theta \in \Theta$ に対して, 確率空間 $(\mathcal{X}, P_{\theta})$ 上の確率変数としての期待値, 条件付き期

待値、分散、共分散を、それぞれ $E_{\theta}[\phi]$ 、 $E_{\theta}[\phi|\mathfrak{F}]$ 、 $Var_{\theta}[\phi]$ 、 $Cov_{\theta}[\phi,\psi]$ などと書く $(\phi \ b \ \psi \ b)$ は有限次元実線型空間に値をとる可測統計量であり、 \mathfrak{F} は \mathcal{X} の可測構造の部分 σ -代数である).

1.2 十分性

定義 1.2 (十分性) $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとする.

- (1) \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} がこの統計モデルに対して**十分**(sufficient)であるとは,任意の可測集合 $\mathcal{A} \subseteq \mathcal{X}$ に対して, \mathfrak{F} -可測関数 $1_{\mathcal{A},\mathfrak{F}} \colon \mathcal{X} \to [0,1]$ であって,任意の $\theta \in \Theta$ に対して条件付き期待値 $E_{\theta}[1_{\mathcal{A}}|\mathfrak{F}]$ の代表元であるものがとれることをいう.
- (2) \mathcal{Y} を可測空間とし, $T: \mathcal{X} \to \mathcal{Y}$ を可測統計量とする.T がこの統計モデルに対して**十分**であるとは, σ -代数 $\sigma[T]$ がこの統計モデルに対して十分であることをいう.

命題 1.3 $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} に対して,次の条件は同値である.

- (a) \mathfrak{F} は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (b) 任意の有限次元実線型空間 \mathcal{V} と $(P_{\theta})_{\theta \in \Theta}$ -可積分な可測写像 $\phi: \mathcal{X} \to \mathcal{V}$ に対して、 \mathfrak{F} -可測写像 $1_{A,\mathfrak{F}}: \mathcal{X} \to \mathcal{V}$ であって、任意の $\theta \in \Theta$ に対して条件付き期待値 $E_{\theta}[\phi|\mathfrak{F}]$ の代表元であるものがとれる.

証明 $(b) \Longrightarrow (a)$ 条件 (b) が成り立つとする.このとき,任意の可測集合 $A \subseteq \mathcal{X}$ に対して,条件付き期待値 $E_{\theta}[1_{A}|\mathfrak{F}]$ の $\theta \in \Theta$ によらない代表元 $1_{A,\mathfrak{F}} \colon \mathcal{X} \to \mathbb{R}$ がとれる.任意の $\theta \in \Theta$ に対して,条件付き期待値の順序保存性より, P_{θ} -ほとんど確実に $0 \le 1_{A,\mathfrak{F}} \le 1$ である.そこで, $1_{A,\mathfrak{F}}$ の 0 以下の値は 0 に,1 以上の値は 1 に修正して得られる関数を改めて $1_{A,\mathfrak{F}}$ と書くと,これも条件付き期待値 $E_{\theta}[1_{A}|\mathfrak{F}]$ の $\theta \in \Theta$ によらない代表元である.よって, \mathfrak{F} は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.

(a) \Longrightarrow (b) $\mathfrak F$ が統計モデル $(\mathcal X,(P_{\theta})_{\theta\in\Theta})$ に対して十分であるとする。任意の有限次元実線型空間 $\mathcal V$ と $(P_{\theta})_{\theta\in\Theta}$ -可積分な可測写像 $\phi\colon\mathcal X\to\mathcal V$ に対して,条件付き期待値 $E_{\theta}[\phi|\mathfrak F]$ の $\theta\in\Theta$ によらない代表元がとれることを示したい。 $\mathcal V$ の基底を一つ固定して成分ごとに考えることにより,一般性を失わず, $\mathcal V=\mathbb R$ であると仮定する。さらに,正の部分と負の部分への分解を考えることにより,一般性を失わず, $\phi\geq 0$ であると仮定する。

 \mathcal{X} 上の可測単関数の増加列 $(\phi_n)_{n\in\mathbb{N}}$ であって, ϕ に各点収束するものをとる. \mathfrak{F} の十分性より,各 $n\in\mathbb{N}$ に対して,条件付き期待値 $E_{\theta}[\phi_n|\mathfrak{F}]$ の $\theta\in\Theta$ によらない代表元 $\phi_{n,\mathfrak{F}}\colon\mathcal{X}\to\mathbb{R}_{\geq 0}$ がとれる.条件付き期待値 に対する Lebesgue の収束定理より,任意の $\theta\in\Theta$ に対して, $(E_{\theta}[\phi_n|\mathfrak{F}])_{n\in\mathbb{N}}$ は $E_{\theta}[\phi|\mathfrak{F}]$ に P_{θ} -概収束する.そこで,関数 $\phi_{\mathfrak{F}}\colon\mathcal{X}\to\mathbb{R}_{\geq 0}$ を

$$\phi_{\mathfrak{F}}(x) = \begin{cases} \limsup_{n \to \infty} \phi_{n,\mathfrak{F}}(x) & (\limsup_{n \to \infty} \phi_{n,\mathfrak{F}}(x) < \infty) \\ 0 & (\limsup_{n \to \infty} \phi_{n,\mathfrak{F}}(x) = \infty) \end{cases}$$

と定めると,これは $E_{\theta}[\phi|\mathfrak{F}]$ の $\theta\in\Theta$ によらない代表元である.これで,主張が示された.

 $\mathfrak F$ が統計モデル $(\mathcal X,(P_{\theta})_{\theta\in\Theta})$ に対して十分であるとき, $(P_{\theta})_{\theta\in\Theta}$ -可積分な可測写像 $\phi\colon\mathcal X\to\mathcal V$ ($\mathcal V$ は有限 次元実線型空間)に対して,条件付き期待値 $E_{\theta}[\phi|\mathfrak F]$ の $\theta\in\Theta$ によらない代表元を,単に $E[\phi|\mathfrak F]$ と書く.これは, $(P_{\theta})_{\theta\in\Theta}$ -ほとんど確実に一意に定まる.

補題 1.4 $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. μ を \mathcal{X} 上の σ -有限測度とし,各 P_{θ} は μ -絶対連続であるとする. このとき,パラメータの列 $(\theta_n)_{n\in\mathbb{N}_{>0}}$ を適当に選んで $Q=\sum_{n=1}^{\infty}2^{-n}P_{\theta_n}$ と置けば,各 P_{θ} は Q-絶対連続となる.

証明 $\mu(\mathcal{X}) = \infty$ ならば、 \mathcal{X} の分割 $(\mathcal{X}_i)_{i \in \mathbb{N}_{>0}}$ であって任意の $i \in \mathbb{N}_{>0}$ に対して $0 < \mu(\mathcal{X}_i) < \infty$ を満たすものをとり、可測集合 $\mathcal{A} \subset \mathcal{X}$ に対して

$$\mu'(\mathcal{A}) = \sum_{i=1}^{\infty} 2^{-i} \mu(\mathcal{X}_i)^{-1} \mu(\mathcal{A} \cap \mathcal{X}_i)$$

と定めることにより, μ と同値な有限測度 μ' が得られる. そこで, 一般性を失わず, μ は有限であると仮定 する

各 $\theta \in \Theta$ に対して、Radon–Nikodym 微分 $dP_{\theta}/d\mu$ の代表元 f_{θ} を一つ固定し、 $\mathcal{S}_{\theta} = \{x \in \mathcal{X} \mid f_{\theta}(x) > 0\}$ と置く. μ は有限だから、パラメータの列 $(\theta_n)_{n \in \mathbb{N}_{>0}}$ を、

$$\mu\left(\bigcup_{n=1}^{\infty} S_{\theta_n}\right) = \sup\left\{\mu\left(\bigcup_{\theta \in \Theta'} S_{\theta}\right) \mid \Theta' \ \text{は } \Theta \ \text{の可算部分集合}\right\}$$

を満たすようにとれる. $Q=\sum_{n=1}^{\infty}2^{-n}P_{\theta_n}$ と置き,各 P_{θ} が Q-絶対連続であることを示す。可測集合 $\mathcal{A}\subseteq\mathcal{X}$ であって $Q(\mathcal{A})=0$ を満たすものを任意にとる。Q の定義より,任意の $n\in\mathbb{N}_{>0}$ に対して, $P_{\theta_n}(\mathcal{A})=0$ だから, $\mu(\mathcal{A}\cap\mathcal{S}_{\theta_n})=0$ である。また, $(\theta_n)_{n\in\mathbb{N}_{>0}}$ のとり方より, $\mu(\mathcal{S}_{\theta}\setminus\bigcup_{n=1}^{\infty}\mathcal{S}_{\theta_n})=0$ である。したがって,

$$\mu(\mathcal{A} \cap \mathcal{S}_{\theta}) \leq \sum_{n=1}^{\infty} \mu(\mathcal{A} \cap \mathcal{S}_{\theta_n}) + \mu\left(\mathcal{S}_{\theta} \setminus \bigcup_{n=1}^{\infty} \mathcal{S}_{\theta_n}\right) = 0$$

だから, $P_{\theta}(A) = 0$ である. よって, P_{θ} は Q-絶対連続である.

定理 1.5(因子分解定理) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. μ を \mathcal{X} 上の σ -有限測度とし,各 P_{θ} は μ -絶対連続であるとする. このとき, \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} に対して,次の条件は同値である.

- (a) \mathfrak{F} は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (b) 可測関数 $g: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と \mathfrak{F} -可測関数の族 $(h_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0})_{\theta \in \Theta}$ が存在して,任意の $\theta \in \Theta$ に対して, μ -ほとんどいたるところで $dP_{\theta}/d\mu = gh_{\theta}$ が成り立つ.

証明 補題 1.4 より,パラメータの列 $(\theta_n)_{n\in\mathbb{N}_{>0}}$ を適当に選んで $Q=\sum_{n=1}^\infty 2^{-n}P_{\theta_n}$ と置けば,各 P_{θ} は Q-絶対連続となる.以下,条件 (a) と (b) が,ともに次の条件 (c) と同値であることを示す.

- (c) 任意の $\theta \in \Theta$ に対して、Radon-Nikodym 微分 dP_{θ}/dQ の代表元として、 \mathfrak{F} -可測であるものがとれる.
- $(a) \Longrightarrow (c)$ $\mathfrak F$ が統計モデル $(\mathcal X,(P_{\theta})_{\theta\in\Theta})$ に対して十分であるとする.可測集合 $\mathcal A\subseteq\mathcal X$ に対して,条件付き期待値 $E_{\theta}[1_{\mathcal A}|\mathfrak F]$ の $\theta\in\Theta$ によらない代表元 $1_{\mathcal A,\mathfrak F}\colon\mathcal X\to[0,1]$ をとる. $\mathcal B\in\mathfrak F$ とすると,任意の $\theta\in\Theta$ に対して

$$\int_{\mathcal{B}} 1_{\mathcal{A},\mathfrak{F}} dP_{\theta} = \int_{\mathcal{B}} 1_{\mathcal{A}} dP_{\theta}$$

だから、上式で $\theta = \theta_n$ として両辺に 2^{-n} を掛けたものの $n \in \mathbb{N}_{>0}$ にわたる和をとれば、

$$\int_{\mathcal{B}} 1_{\mathcal{A},\mathfrak{F}} dQ = \int_{\mathcal{B}} 1_{\mathcal{A}} dQ$$

を得る.したがって, $1_{A,\mathfrak{F}}$ は確率測度 Q に関する条件付き期待値 $E_Q[1_A|\mathfrak{F}]$ の代表元でもある.

 $\theta\in\Theta$ とし、可測空間 $(\mathcal{X},\mathfrak{F})$ 上の確率測度 $P_{\theta}|_{\mathfrak{F}}$ と $Q|_{\mathfrak{F}}$ を考える。 P_{θ} が Q-絶対連続であることより $P_{\theta}|_{\mathfrak{F}}$ は $Q|_{\mathfrak{F}}$ -絶対連続だから,Radon-Nikodym 微分 $dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}}$ が定まる。 \mathfrak{F} -可測関数 $dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}}$ (の一つの代表元)が dP_{θ}/dQ の代表元であることを示す。 $A\subseteq\mathcal{X}$ を可測集合とすると, $1_{A,\mathfrak{F}}$ が条件付き期待値 $E_{\theta}[1_{A}|\mathfrak{F}]$ や $E_{Q}[1_{A}|\mathfrak{F}]$ の代表元であることより,

$$\int_{\mathcal{A}} \frac{dP_{\theta}|_{\mathfrak{F}}}{dQ|_{\mathfrak{F}}} dQ = \int_{\mathcal{X}} 1_{\mathcal{A}} \frac{dP_{\theta}|_{\mathfrak{F}}}{dQ|_{\mathfrak{F}}} dQ$$

$$= \int_{\mathcal{X}} 1_{\mathcal{A},\mathfrak{F}} \frac{dP_{\theta}|_{\mathfrak{F}}}{dQ|_{\mathfrak{F}}} dQ$$

$$= \int_{\mathcal{X}} 1_{\mathcal{A},\mathfrak{F}} dP_{\theta}$$

$$= \int_{\mathcal{X}} 1_{\mathcal{A}} dP_{\theta}$$

$$= P_{\theta}(\mathcal{A})$$

が成り立つ. よって、 $(dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}})\cdot Q=P_{\theta}$ だから、 $dP_{\theta}|_{\mathfrak{F}}/dQ|_{\mathfrak{F}}$ は dP_{θ}/dQ の代表元である.

 $(c) \Longrightarrow (a)$ 条件 (c) が成り立つとして, dP_{θ}/dQ を \mathfrak{F} -可測関数とみなす. $\mathcal{A} \subseteq \mathfrak{X}$ を可測集合とすると,任意の $\theta \in \Theta$ と $\mathcal{B} \in \mathfrak{F}$ に対して

$$\int_{\mathcal{B}} E_Q[1_{\mathcal{A}}|\mathfrak{F}] dP_{\theta} = \int_{\mathcal{B}} E_Q[1_{\mathcal{A}}|\mathfrak{F}] \frac{dP_{\theta}}{dQ} dQ = \int_{\mathcal{B}} 1_{\mathcal{A}} \frac{dP_{\theta}}{dQ} dQ = \int_{\mathcal{B}} 1_{\mathcal{A}} dP_{\theta}$$

だから, $E_Q[1_A|\mathfrak{F}]$ は条件付き期待値 $E_\theta[1_A|\mathfrak{F}]$ の $\theta\in\Theta$ によらない代表元である.よって, \mathfrak{F} は統計モデル $(\mathcal{X},(P_\theta)_{\theta\in\Theta})$ に対して十分である.

(b) \Longrightarrow (c) 条件 (b) を満たす可測関数 $g\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ と \mathfrak{F} -可測関数の族 $(h_{\theta}\colon \mathcal{X}\to\mathbb{R}_{\geq 0})_{\theta\in\Theta}$ がとれたとする.このとき, $k_1=\sum_{n=1}^{\infty}2^{-n}gh_{\theta_n}$ は $\overline{\mathbb{R}}_{\geq 0}$ に値をとる \mathfrak{F} -可測関数であり, μ -ほとんどいたるところで $dQ/d\mu=gk_1$ が成り立つ. gk_1 は μ -ほとんどいたるところで有限だから, k_1 の値 ∞ を 0 に修正して得られる \mathfrak{F} -可測関数を $k\colon \mathcal{X}\to\mathbb{R}_{\geq 0}$ と置くと,これも μ -ほとんどいたるところで $dQ/d\mu=gk$ を満たす.

各 $\theta \in \Theta$ に対して、可測関数 $\phi_{\theta} : \mathcal{X} \to \mathbb{R}_{>0}$ を、

$$\phi_{\theta}(x) = \begin{cases} h_{\theta}(x)/k(x) & (k(x) > 0) \\ 0 & (k(x) = 0) \end{cases}$$

と定める. すると,

$$\phi_{\theta} \cdot Q = \phi_{\theta} g k \cdot \mu = \mathbb{1}_{\{k > 0\}} g h_{\theta} \cdot \mu = \mathbb{1}_{\{k > 0\}} \cdot P_{\theta}$$

が成り立つ. さらに、 μ -ほとんどいたるところで $dQ/d\mu=gk$ であることより $\{k=0\}$ は Q-無視可能だから、 P_{θ} が Q-絶対連続であることより P_{θ} -無視可能であり、したがって、 $1_{\{k>0\}}\cdot P_{\theta}=P_{\theta}$ である. よって、 dP_{θ}/dQ の代表元として、 \mathfrak{F} -可測関数 ϕ_{θ} がとれる.

(c) ⇒ (b) 条件 (c) が成り立つとして, dP_{θ}/dQ を \mathfrak{F} -可測関数とみなす.任意の $\theta \in \Theta$ に対して, $P_{\theta} = (dQ/d\mu)(dP_{\theta}/dQ) \cdot \mu$ だから, $g = dQ/d\mu$, $h_{\theta} = dP_{\theta}/dQ$ と置けばよい.

1.3 完備性

定義 1.6 (完備性) $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとする.

(1) \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} がこの統計モデルに対して**完備**(complete)であるとは,任意の \mathfrak{F} -可測統計量 $\phi: \mathcal{X} \to \mathbb{R}$ に対して,

任意の $\theta \in \Theta$ に対して ϕ が P_{θ} -可積分かつ $E_{\theta}[\phi] = 0 \Longrightarrow (P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に $\phi = 0$ が成り立つことをいう.

(2) \mathcal{Y} を可測空間とし, $T: \mathcal{X} \to \mathcal{Y}$ を可測統計量とする.T がこの統計モデルに対して**完備**であるとは, σ -代数 $\sigma[T]$ がこの統計モデルに対して完備であることをいう.

1.4 指数型分布族

定義 1.7(指数型分布族) \mathcal{X} を可測空間とする. \mathcal{X} 上の測度 μ , 可測写像 $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と $T: \mathcal{X} \to \mathcal{V}$ (\mathcal{V} は 有限次元実線型空間), 写像 $c: \Theta \to \mathcal{V}^*$ と $d: \Theta \to \mathbb{R}$ (Θ は集合)を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = h(x) \exp(\langle c(\theta), T(x) \rangle - d(\theta))$$

と表せる確率測度の族 $(P_{\theta})_{\theta \in \Theta}$ を、 \mathcal{X} 上の**指数型分布族** (exponential family) という.

注意 1.8 定義 1.7 の状況を考える.

(1) 任意の $\theta \in \Theta$ に対して, P_{θ} が \mathcal{X} 上の確率測度であることより, \mathcal{X} 上の関数 $x \mapsto h(x) \exp(\langle c(\theta), T(x) \rangle)$ は μ -可積分であり,

$$d(\theta) = \log \left(\int_{\mathcal{X}} h(x) \exp(\langle c(\theta), T(x) \rangle) d\mu(x) \right)$$

が成り立つ.

(2) $h \cdot \mu$ を改めて μ と置くことで,h = 1 であると仮定できる.

命題 1.9 \mathcal{X} を可測空間とする. \mathcal{X} 上の σ -有限測度 μ , 可測写像 $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$ と $T: \mathcal{X} \to \mathcal{V}$ (\mathcal{V} は有限次元 実線型空間), 写像 $c: \Theta \to \mathcal{V}^*$ と $d: \Theta \to \mathbb{R}$ (Θ は集合)を用いて

$$P_{\theta} = f_{\theta} \cdot \mu, \qquad f_{\theta}(x) = h(x) \exp(\langle c(\theta), T(x) \rangle - d(\theta))$$

と表せる指数型分布族 $(P_{\theta})_{\theta \in \Theta}$ を考える.

- (1) T は統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ に対して十分である.
- (2) $c(\Theta)$ が $\mathcal V$ において内点をもつとする.このとき,T は統計モデル $(\mathcal X,(P_{\theta})_{\theta\in\Theta})$ に対して完備である.

証明 (1) 因子分解定理(定理 1.5) から従う.

(2) 一般性を失わず、h=1 であると仮定する (注意 1.8 (2)).

Doob-Dynkin の補題より、 \mathcal{X} から \mathbb{R} への任意の $\sigma[T]$ -可測統計量は、可測写像 $T: \mathcal{V} \to \mathbb{R}$ を用いて $\phi \circ T$ と表せる.任意の $\theta \in \Theta$ に対して、 $\phi \circ T$ は P_{θ} -可積分で $E_{\theta}[\phi \circ T] = 0$ を満たすと仮定する.任意の $\theta \in \Theta$ に対して、

$$E_{\theta}[\phi \circ T] = \int_{\mathcal{X}} \phi(T(x)) \exp(\langle c(\theta), T(x) \rangle - d(\theta)) d\mu(x)$$
$$= e^{-d(\theta)} \int_{\mathcal{Y}} \phi(v) \exp(\langle c(\theta), v \rangle) dT_* \mu(v)$$

だから、上記の仮定は、任意の $\alpha \in c(\Theta)$ に対して

$$\int_{\mathcal{V}} \phi(v) \exp(\langle \alpha, v \rangle) dT_* \mu(v) = 0$$

であることを意味する. さらに、 $\beta \in \mathcal{V}^*$ とすると、関数 $v \mapsto \phi(v) \exp(\langle \alpha, v \rangle)$ が $T_*\mu$ -可積分であることからこれと絶対値が等しい関数 $v \mapsto \phi(v) \exp(\langle \alpha - i\beta, v \rangle)$ も $T_*\mu$ -可積分であり、積分記号下の微分に関する定理を用いて確かめられるように、 $c(\Theta)^\circ + i\mathcal{V}^*$ 上の関数 $\alpha - i\beta \mapsto \int_{\mathcal{V}} \phi(v) \exp(\langle \alpha - i\beta, v \rangle) \, dT_*\mu(v)$ は正則である. ところが、 $\beta = 0$ のときはこの積分は 0 だから、一致の定理より、任意の $\alpha - i\beta \in c(\Theta)^\circ + i\mathcal{V}^*$ に対して

$$\int_{\mathcal{V}} \phi(v) \exp(\langle \alpha - i\beta, v \rangle) dT_* \mu(v) = 0$$

が成り立つ. $\alpha \in c(\Theta)^{\circ}$ を固定すると、上式の左辺を $\beta \in \mathcal{V}^{*}$ の関数とみなしたものは、 \mathcal{V} 上の有限 Borel 測度 $\phi \exp(\langle \alpha, - \rangle) \cdot T_{*}\mu(v)$ の Fourier 変換である. したがって、Fourier 変換の単射性より

$$\phi \exp(\langle \alpha, - \rangle) \cdot T_* \mu(v) = 0$$

だから, $T_*\mu$ -ほとんどいたるところで $\phi=0$ である.すなわち, μ -ほとんどいたるところで $\phi\circ T=0$ である.特に, $(P_\theta)_{\theta\in\Theta}$ -ほとんど確実に $\phi\circ T=0$ である.以上より,T は統計モデル $(\mathcal{X},(P_\theta)_{\theta\in\Theta})$ に対して完備である.

2 推定

2.1 不偏推定量

定義 2.1(不偏推定量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、 \mathcal{V} を有限次元実線型空間、 $g\colon\Theta\to\mathcal{V}$ を写像とする。可測統計量 $\delta\colon\mathcal{X}\to\mathcal{V}$ が $g(\theta)$ の**不偏推定量**(unbiased estimator)であるとは、任意の $\theta\in\Theta$ に対して、 δ が P_{θ} -可積分かつ $E_{\theta}[\delta]=g(\theta)$ を満たすことをいう。

定義 2.2 (一様最小分散不偏推定量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、 \mathcal{V} を有限次元実内積空間、 $g\colon\Theta\to\mathcal{V}$ を写像とする. $g(\theta)$ の一様最小分散不偏推定量 (uniformly minimum-variance unbiased estimator, UMVUE) とは、 $g(\theta)$ の不偏推定量 $\delta_0\colon\mathcal{X}\to\mathcal{V}$ であって、 $g(\theta)$ の任意の不偏推定量 $\delta_1\colon\mathcal{X}\to\mathcal{V}$ と $\theta\in\Theta$ に対して

$$E_{\theta}[\|\delta_0 - q(\theta)\|^2] < E_{\theta}[\|\delta - q(\theta)\|^2]$$

を満たすものをいう.

定理 2.3(Rao-Blackwell の定理) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし, \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} はこれ に対して十分であるとする. \mathcal{V} を有限次元実線型空間, $g\colon\Theta\to\mathcal{V}$ を写像とし, $\delta\colon\mathcal{X}\to\mathcal{V}$ を $g(\theta)$ の不偏推 定量とする.

- (1) $E[\delta|\mathfrak{F}]$ は $q(\theta)$ の不偏推定量である.
- (2) $w: \Theta \times \mathcal{V} \to \mathbb{R}_{\geq 0}$ は関数であり、任意の $\theta \in \Theta$ に対して $w(\theta, -)$ は凸であるとする.このとき、任意の $\theta \in \Theta$ に対して、

$$E_{\theta}[w(\theta, E[\delta|\mathfrak{F}])] \leq E_{\theta}[w(\theta, \delta)]$$

が成り立つ. 特に、V が内積空間ならば、 $g(\theta)$ の任意の不偏推定量 $\delta': \mathcal{X} \to V$ と $\theta \in \Theta$ に対して、

$$E_{\theta}[\|E[\delta|\mathfrak{F}] - g(\theta)\|^2] \le E_{\theta}[\|\delta - g(\theta)\|^2]$$

が成り立つ.

- 証明 (1) 条件付き期待値の性質より、任意の $\theta \in \Theta$ に対して、 $E[\delta|\mathfrak{F}]$ は P_{θ} -可積分であり $E_{\theta}[E[\delta|\mathfrak{F}]] = E_{\theta}[\delta] = g(\theta)$ が成り立つ. よって、 $E[\delta|\mathfrak{F}]$ は $g(\theta)$ の不偏推定量である.
- (2) 前半の主張は,条件付き期待値に対する Jensen の不等式から従う.前半の主張において $w(\theta,v)=\|v-g(\theta)\|^2$ とすれば,後半の主張が従う. \square
- 定理 2.4(Lehmann–Scheffé の定理) $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ を統計モデルとし, \mathcal{X} の可測構造の部分 σ -代数 \mathfrak{F} はこれに対して完備かつ十分であるとする. \mathcal{V} を有限次元実線型空間とし, $g: \Theta \to \mathcal{V}$ を写像とする.
 - (1) $g(\theta)$ の不偏推定量が存在するとする. このとき, \mathfrak{F} -可測な $g(\theta)$ の不偏推定量が, $(P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に一意に存在する.
 - (2) δ_0 , δ : $\mathcal{X} \to \mathcal{V}$ を $g(\theta)$ の不偏推定量とし, δ_0 は \mathfrak{F} -可測であるとする.w: $\Theta \times \mathcal{V} \to \mathbb{R}_{\geq 0}$ は関数であり,任意の $\theta \in \Theta$ に対して $w(\theta, -)$ は凸であるとする.このとき,任意の $\theta \in \Theta$ に対して,

$$E_{\theta}[w(\theta, \delta_0)] \leq E_{\theta}[w(\theta, \delta)]$$

が成り立つ. 特に、 $\mathcal V$ が有限次元実内積空間ならば、 δ_0 は $q(\theta)$ の一様最小分散不偏推定量である.

- 証明 (1) 存在 $\delta: \mathcal{X} \to \mathcal{V}$ を $g(\theta)$ の不偏推定量とすると,Rao-Blackwell の定理(定理 2.3 (1))より, $E[\delta|\mathfrak{F}]$ は \mathfrak{F} -可測な $g(\theta)$ の不偏推定量である.
- <u>一意性</u> δ_0 , δ_0' : $\mathcal{X} \to \mathcal{V}$ がともに \mathfrak{F} -可測な $g(\theta)$ の不偏推定量であるとする.このとき,任意の $\theta \in \Theta$ に対して $E_{\theta}[\delta_0 \delta_0'] = g(\theta) g(\theta) = 0$ だから, \mathfrak{F} の完備性より, $(P_{\theta})_{\theta \in \Theta}$ -ほとんど確実に $\delta_0 \delta_0' = 0$ が成り立つ.
- (2) Rao-Blackwell の定理(定理 2.3 (1))より, $E[\delta|\mathfrak{F}]$ は \mathfrak{F} -可測な $g(\theta)$ の不偏推定量だから,(1) の一意性より, $(P_{\theta})_{\theta\in\Theta}$ -ほとんど確実に $\delta_0=E[\delta|\mathfrak{F}]$ である.よって,主張は,Rao-Blackwell の定理(定理 2.3 (2))から従う.

2.2 Fisher 情報量

- 定義 2.5(Fisher 情報量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は有限次元実線型空間 \mathcal{V} の 開集合であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}:\mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. $\theta_{0}\in\Theta$ とし、次の条件が満たされるとする.
- (FI1) μ -ほとんどすべての $x \in \mathcal{X}$ に対して、関数 $\theta \mapsto f_{\theta}(x)$ は、 θ_0 のある近傍において正であり、 θ_0 において微分可能である(したがって、微分($D_{\theta} \log f_{\theta}(x)$) $|_{\theta=\theta_0}$ が定義される).
- (FI2) \mathcal{X} 上 μ -ほとんどいたるところで定義され \mathcal{V}^* に値をとる写像 $x\mapsto (D_{\theta}\log f_{\theta}(x))|_{\theta=\theta_0}$ は, P_{θ_0} -2 乗可積分である.

このとき,

$$I(\theta_0) = E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta = \theta_0} \otimes (D_\theta \log f_\theta)|_{\theta = \theta_0}]$$

と定め, これを統計モデル $(\mathcal{X}, (P_{\theta})_{\theta \in \Theta})$ の θ_0 における **Fisher 情報量** (Fisher information) という.

定義 2.5 の状況で、Fisher 情報量 $I(\theta_0)$ は、正値対称テンソルである。すなわち、 \mathcal{V} 上の双線型形式 $(v,w)\mapsto \langle I(\theta_0),v\otimes w\rangle$ は対称であり、任意の $v\in\mathcal{V}$ に対して $\langle I(\theta_0),v\otimes v\rangle\geq 0$ である。

注意 2.6 定義 2.5 の状況を考える. パラメータ θ_0 の下での $(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}$ の期待値 (いま, $(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}$ は P_{θ_0} -2 乗可積分であると仮定しているから,この期待値が定義される)は,

$$E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0}] = \int_{\mathcal{X}} (D_\theta \log f_\theta(x))|_{\theta=\theta_0} f_{\theta_0}(x) d\mu(x)$$
$$= \int_{\mathcal{X}} (D_\theta f_\theta(x))|_{\theta=\theta_0} d\mu(x)$$

と表せる. ここで、微分と積分の順序交換ができると仮定すると、

$$E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0}] = \left(D_\theta \int_{\mathcal{X}} f_\theta(x) \, d\mu(x)\right)\Big|_{\theta=\theta_0} = (D_\theta 1)|_{\theta=\theta_0} = 0$$

となる. これが成り立つとき, Fisher 情報量は,

$$I(\theta_0) = \operatorname{Var}_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta = \theta_0}]$$

とも書ける.

積分記号下の微分に関する定理より, μ -可積分関数 $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$, μ -無視可能な集合 $\mathcal{N} \subseteq \mathcal{X}$, θ_0 の近傍 $\Xi \subseteq \Theta$ が存在して次の条件を満たす場合には,前段で述べた微分と積分の順序交換を正当化できる.

- (i) 任意の $x \in \mathcal{X} \setminus \mathcal{N}$ に対して,関数 $\theta \mapsto f_{\theta}(x)$ は Ξ 上で微分可能である.
- (ii) 任意の $\theta_1 \in \Xi$ に対して、 μ -ほとんどすべての $x \in \mathcal{X} \setminus \mathcal{N}$ に対して $\|(D_{\theta}f_{\theta}(x))|_{\theta=\theta_1}\|_{\mathcal{V}} \leq h(x)$ が成り立つ.

ここで,V上のノルム $\|-\|_V$ を一つ固定した(有限次元実線型空間上のノルムはすべて同値だから,上記の条件を成否は,このノルムのとり方には依存しない).

 \mathcal{V} を(可換体上の)有限次元線型空間, $T \in \mathcal{V}^* \otimes \mathcal{V}^*$ を非退化対称テンソルとするとき,T は線型同型写像 $\Phi: \mathcal{V} \to \mathcal{V}^*$ を定める.T を $\Phi^{-1} \otimes \Phi^{-1}$ で移して得られる非退化対称テンソル $T^\vee = (\Phi^{-1} \otimes \Phi^{-1})(T) \in \mathcal{V} \otimes \mathcal{V}$ を,T の**逆形式**(inverse form)という.

定理 2.7(Cramér–Rao の不等式) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとし、パラメータ空間 Θ は有限次元実線型空間 \mathcal{Y} の開集合であるとする. μ を \mathcal{X} 上の測度とし、各 P_{θ} は可測関数 $f_{\theta}:\mathcal{X}\to\mathbb{R}_{\geq 0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. \mathcal{Y} を有限次元実線型空間、 $g:\Theta\to\mathcal{W}$ を写像とし、 $\delta:\mathcal{X}\to\mathcal{W}$ を可測統計量とする. $\theta_0\in\Theta$ とし、次の条件が満たされるとする(条件 (FI1) と (FI2) は、定義 2.5 のものと同一である).

- (FI1) μ -ほとんどすべての $x \in \mathcal{X}$ に対して,関数 $\theta \mapsto f_{\theta}(x)$ は, θ_0 のある近傍において正であり, θ_0 において微分可能である(したがって,微分 $(D_{\theta} \log f_{\theta}(x))|_{\theta=\theta_0}$ が定義される).
- (FI2) \mathcal{X} 上 μ -ほとんどいたるところで定義され \mathcal{V}^* に値をとる写像 $x\mapsto (D_{\theta}\log f_{\theta}(x))|_{\theta=\theta_0}$ は, P_{θ_0} -2 乗可積分である.
- (FI3) Fisher 情報量 $I(\theta_0)$ は非退化である(したがって、逆形式 $I(\theta)^{\vee} \in \mathcal{V} \otimes \mathcal{V}$ が定義される).

(FI4) g は θ_0 において微分可能であり(したがって、微分 $Dg(\theta_0)$ が定義される), δ は P_{θ_0} -2 乗可積分であり,

$$E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0}] = 0,$$

$$E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0} \otimes \delta] = Dg(\theta_0)$$

が成り立つ(いま, $(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}$ と δ は 2 乗可積分であると仮定しているから,上式の左辺の期待値が定義される).

このとき,

$$\operatorname{Var}_{\theta_0}[\delta] \ge (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

が成り立つ.

証明 $I(\theta_0)$ が定める \mathcal{V} から \mathcal{V}^* への線型同型写像を $\Phi: \mathcal{V} \to \mathcal{V}^*$ と書き, $u(x) = \Phi^{-1}((D_\theta \log f_\theta(x))|_{\theta=\theta_0}) \in \mathcal{V}$ と置く. $(D_\theta \log f_\theta(x))|_{\theta=\theta_0}$ は μ -ほとんどすべての $x \in \mathcal{X}$ に対して定義され x の関数として P_{θ_0} -2 乗可積分だから, u(x) も同様である. また, 条件 (ii) より,

$$E_{\theta_0}[u] = \Phi^{-1}(E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta=\theta_0}]) = 0, \tag{*}$$

$$E_{\theta_0}[u \otimes \delta] = (\Phi^{-1} \otimes \mathrm{id}_{\mathcal{W}})(E_{\theta_0}[(D_\theta \log f_\theta)|_{\theta = \theta_0} \otimes \delta]) = (\Phi^{-1} \otimes \mathrm{id}_{\mathcal{W}})(Dg(\theta_0)) \tag{**}$$

かつ

$$\operatorname{Var}_{\theta_0}[u] = (\Phi^{-1} \otimes \Phi^{-1})(\operatorname{Var}_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta=\theta_0}])$$

$$= (\Phi^{-1} \otimes \Phi^{-1})(I(\theta_0))$$

$$= I(\theta_0)^{\vee} \tag{***}$$

である.

以下,

$$\begin{aligned} & \operatorname{Var}_{\theta_0}[\delta - Dg(\theta_0) \circ u] \\ &= \operatorname{Var}_{\theta_0}[\delta] - \operatorname{Cov}_{\theta_0}[\delta, Dg(\theta_0) \circ u] - \operatorname{Cov}_{\theta_0}[Dg(\theta_0) \circ u, \delta] + \operatorname{Var}_{\theta_0}[Dg(\theta_0) \circ u] \end{aligned} \tag{****}$$

の左辺の各項を計算する. まず, (***) より,

$$\operatorname{Var}_{\theta_0}[Dg(\theta_0) \circ u] = (Dg(\theta_0) \otimes Dg(\theta_0))(\operatorname{Var}_{\theta_0}[u])$$
$$= (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

である. 次に、(*)と(**)より、

$$Cov_{\theta_0}[Dg(\theta_0) \circ u, \delta] = (Dg(\theta_0) \otimes id_{\mathcal{W}})(Cov_{\theta_0}[u, \delta])$$

$$= (Dg(\theta_0) \otimes id_{\mathcal{W}})(E_{\theta_0}[(u - E_{\theta_0}[u]) \otimes (\delta - E_{\theta_0}[\delta])])$$

$$= (Dg(\theta_0) \otimes id_{\mathcal{W}})(E_{\theta_0}[u \otimes \delta])$$

$$= (Dg(\theta_0)\Phi^{-1} \otimes id_{\mathcal{W}})(Dg(\theta_0))$$

$$= (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$$

である(最後の等号は,両辺とも $I(\theta_0)^\vee \in \mathcal{V} \otimes \mathcal{V}$ と二つの $Dg(\theta_0) \in \mathcal{V}^* \otimes \mathcal{W}$ の縮約であることから成り立つ). これらを (****) に代入すると

 $\operatorname{Var}_{\theta_0}[\delta - Dg(\theta_0) \circ u]$

- $= \operatorname{Var}_{\theta_0}[\delta] (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee}) (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee}) + (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$
- $= \operatorname{Var}_{\theta_0}[\delta] (Dg(\theta_0) \otimes Dg(\theta_0))(I(\theta_0)^{\vee})$

となり、 $Var_{\theta_0}[\delta - Dg(\theta_0) \circ u] \ge 0$ であることと合わせて、主張の不等式を得る.

注意 2.8 定理 2.7 の状況で,条件 (FI1) と (FI2) が成り立ち,さらに, μ -可積分関数 $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$, μ -無視可能な集合 $\mathcal{N} \subseteq \mathcal{X}$, θ_0 の近傍 $\Xi \subseteq \Theta$ が存在して次の条件を満たすとする.

- (i) 任意の $x \in \mathcal{X} \setminus \mathcal{N}$ に対して、関数 $\theta \mapsto f_{\theta}(x)$ は Ξ 上で微分可能である.
- (ii) 任意の $\theta_1 \in \Xi$ に対して、 μ -ほとんどすべての $x \in \mathcal{X} \setminus \mathcal{N}$ に対して $\|(D_{\theta}f_{\theta}(x))|_{\theta=\theta_1}\|_{\mathcal{V}}$, $\|(D_{\theta}(f_{\theta}(x)\delta(x)))|_{\theta=\theta_1}\|_{\mathrm{Hom}(\mathcal{V},\mathcal{W})} \leq h(x)$ が成り立つ.
- (iii) δ は P_{θ_0} -2 乗可積分な $g(\theta)$ の不偏推定量である.

ここで,V上のノルム $\|-\|_{\mathcal{V}}$ と $\operatorname{Hom}(\mathcal{V},\mathcal{W})$ 上のノルム $\|-\|_{\operatorname{Hom}(\mathcal{V},\mathcal{W})}$ を一つずつ固定した(有限次元実線型空間上のノルムはすべて同値だから,上記の条件を成否は,これらのノルムのとり方には依存しない).このとき,条件 (FI4) が成り立つことを示そう.

 δ が P_{θ_0} -2 乗可積分であることは仮定 (iii) に含まれており、仮定 (i) と (ii) より $E_{\theta_0}[(D_{\theta}\log f_{\theta})|_{\theta=\theta_0}]=0$ が成り立つ (注意 2.6). 次に、 $E_{\theta_0}[(D_{\theta}\log f_{\theta})|_{\theta=\theta_0}\otimes\delta]$ について考える.この期待値は、

$$E_{\theta_0}[(D_{\theta} \log f_{\theta})|_{\theta=\theta_0} \otimes \delta] = \int_{\mathcal{X}} (D_{\theta} \log f_{\theta}(x))|_{\theta=\theta_0} f_{\theta_0}(x) \otimes \delta(x) d\mu(x)$$

$$= \int_{\mathcal{X}} (D_{\theta} f_{\theta}(x))|_{\theta=\theta_0} \otimes \delta(x) d\mu(x)$$

$$= \int_{\mathcal{X}} (D_{\theta} (f_{\theta}(x) \delta(x)))|_{\theta=\theta_0} d\mu(x)$$
(*)

と表せる. 一方で、 δ が $g(\theta)$ の不偏推定量であること(仮定 (iii))より

$$g(\theta) = E_{\theta}[\delta] = \int_{\mathcal{X}} f_{\theta}(x) \delta(x) d\mu(x)$$

だから、仮定 (i), (ii) と積分記号下の微分に関する定理より、g は θ_0 において微分可能であり、

$$Dg(\theta_0) = \int_{\mathcal{X}} (D_{\theta}(f_{\theta}(x)\delta(x)))|_{\theta=\theta_0} d\mu(x)$$
 (**)

が成り立つ. (*) と (**) を比較して, $E_{\theta_0}[(D_{\theta}\log f_{\theta})|_{\theta=\theta_0}\otimes\delta]=Dg(\theta_0)$ を得る.これで,主張が示された.

2.3 最尤推定量

定義 2.9(最尤推定量) $(\mathcal{X},(P_{\theta})_{\theta\in\Theta})$ を統計モデルとする. μ を \mathcal{X} 上の測度とし,各 P_{θ} は可測関数 $f_{\theta}\colon\mathcal{X}\to\mathbb{R}_{\geq0}$ を用いて $f_{\theta}\cdot\mu$ と表されているとする. 写像 $\delta\colon\mathcal{X}\to\Theta$ が θ の最尤推定量(maximum likelihood estimator,MLE)であるとは,任意の $x\in\mathcal{X}$ に対して, Θ 上の関数 $\theta\mapsto f_{\theta}(x)$ が $\theta=\delta(x)$ において最大値をとることをいう.

参考文献

- [1] 野田一雄,宮岡悦良,『入門・演習 数理統計』,共立出版,1990.
- [2] 吉田朋広,『数理統計学』, 朝倉書店, 2006.