Some Important Distributions

Performance Evaluation of the Internet of Things (IoT)

Module Course: Performance Evaluation of Distributed Systems

Prof. Tobias Hoßfeld, Summer Semester 2022

Disclaimer and Copyright Notice

Lecture slides, figures, and scripts are based on the open access text book "Performance Modeling and Analysis of Communication Networks". The book and scripts are licensed under the Creative Commons License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

The book must be cited and the disclaimer attached when using lectures slides or scripts.

Tran-Gia, P. & Hossfeld, T. (2021).
Performance Modeling and Analysis of Communication
Networks - A Lecture Note. Würzburg University Press.
https://doi.org/10.25972/WUP-978-3-95826-153-2

Website to download book, exercises, slides and scripts: https://modeling.systems/

Chapter 2

2 Fundamentals and Prerequisites

- 2.1 Little's Theorem and General Results
 - 2.1.1 Little's Law in Finite Systems with Blocking
 - 2.1.2 Example: Multiclass Systems
 - 2.1.3 Example: Balking
 - 2.1.4 The Utilization Law
 - 2.1.5 Assumptions and Limits of Little's Law
 - 2.1.6 General Results for GI/GI/n Delay Systems
 - 2.1.7 Loss Formula for GI/GI/n-S Loss Systems
- 2.2 Probabilities and Random Variables
 - 2.2.1 Random Experiments and Probabilities
 - 2.2.2 Other Terms and Properties
 - 2.2.3 Random Variable, Distribution, Distribution Function
 - 2.2.4 Expected Value and Moments
 - 2.2.5 Functions of Random Variables and Inequalities
 - 2.2.6 Functions of Two Random Variables

- 2.3 Transform Methods
 - 2.3.1 Generating Function
 - 2.3.2 Laplace and Laplace-Stieltjes Transforms
- 2.4 Some Important Distributions
 - 2.4.1 Discrete Distributions
 - 2.4.2 Continuous Distributions
 - 2.4.3 Relationship between Continuous and Discrete Distribution

DISCRETE DISTRIBUTIONS

PMF, CDF, transform (generating function)

Bernoulli Experiment and Distribution (BER)

- ► Bernoulli experiment *X* with two possible outcomes
 - success with probability p
 - failure with probability 1 p

▶ Bernoulli distribution

$$X \sim \text{BER}(p)$$
 with $0 \le p \le 1$

$$x(i) = P(X = i) = \begin{cases} 1 - p &, i = 0 \text{ (failure)} \\ p &, i = 1 \text{ (success)} \end{cases}$$

$$\mathrm{E}[X] = p \;, \qquad c_X = \sqrt{\frac{1-p}{p}}$$

$$X_{GF}(z) = (1-p) + pz$$
.

Binomial Distribution (BINOM)

- \triangleright Sum of N statistically independent Bernoulli experiments with success probability p
 - $\binom{N}{i}$ patterns of i successes
 - Each pattern occurs with probability $p^{i}(1-p)^{N-i}$

▶ Binomial distribution

$$X \sim \text{BINOM}(N, p)$$
 with $0 \le p \le 1$, $N \in \mathbb{N}^+$
 $x(i) = \binom{N}{i} p^i (1-p)^{N-i}$, $i = 0, 1, ..., N$
 $E[X] = Np$, $c_X = \sqrt{\frac{1-p}{Np}}$
 $X_{GF}(z) = \left((1-p) + pz\right)^N$

Geometric Distribution (GEOM)

- \triangleright Series of Bernoulli experiments with success probability p until first "success" outcome
- ▶ Number *X* of failures before first success follows geometric distribution

Geometric distribution

$$X \sim \text{GEOM}(p)$$
 with $0 \le p \le 1$
 $x(i) = (1-p)^i \cdot p$, $i = 0, 1, ...$
 $E[X] = \frac{1-p}{p}$, $c_X = \frac{1}{\sqrt{1-p}}$
 $X_{GF}(z) = \frac{p}{1-z+pz}$

Geometric Distribution: Logarithmic Scale

Lecture

Variants of the Geometric Distribution

Example: Bit Errors and Packet Errors

- ightharpoonup Data packet with n bit
- ightharpoonup Bit error probability p_b
- ▶ Number of bit errors in packet: $X \sim BINOM(n, p_b)$
- ▶ Packet error probability: $p_P = 1 x(0) = 1 (1 p_b)^n \neq n \cdot p_b$
- ▶ Approximation for $p_b \ll 1$: $p_P \approx 1 (1 n \cdot p_b) = n \cdot p_b$
- Number of failed transmission attempts until successful transmission:

$$x(i) = p_P^i(1 - p_P), \qquad i = 0, 1, 2, ...$$

Negative Binomial Distribution (NEGBIN)

- Number *X* of failures in a sequence of iid. Bernoulli trials
 - with success probability p
 - before a specified (real valued) number of successes y occurs

▶ Negative binomial distribution

$$X \sim \text{NEGBIN}(y, p)$$
 with $0 \le p \le 1$, $y > 0$

$$x(i) = {y+i-1 \choose i} p^{y} (1-p)^{i}, \quad i = 0, 1, \dots$$

$$E[X] = \frac{y(1-p)}{p}, \qquad c_X = \frac{1}{\sqrt{y(1-p)}}$$

$$X_{GF}(z) = \left(\frac{p}{1 - z + pz}\right)^{y}$$

For given mean and coefficient of variation

$$p = \frac{1}{E[X] \cdot c_X^2}, \qquad y = \frac{E[X]}{E[X] \cdot c_X^2 - 1}$$

Poisson Distribution (POIS)

- Number X of arrival events
 - occurring in a fixed interval of time Δt
 - if these events randomly occur with a mean rate λ .
- ► Mean number of arrivals in interval: $y = \lambda \cdot \Delta t$
- Important in queueing theory: Poisson distribution and Poisson process (see Ch. 3.3)

Poisson distribution

$$X \sim POIS(y)$$
 with $y > 0$

$$x(i) = \frac{y^i}{i!} e^{-y}, \quad i = 0, 1, \dots$$

$$E[X] = y, c_X = \frac{1}{\sqrt{y}}$$
$$X_{GF}(z) = e^{-y(1-z)}$$

$$X_{GF}(z) = e^{-y(1-z)}$$

Poisson Distribution and Poisson Process

CONTINUOUS DISTRIBUTIONS

PDF, CDF, Laplace transform

Deterministic Distribution (D)

- ► For systematic reasons, deterministic distribution is introduced
 - r.v. A takes a constant value t_0 (no randomness)
 - CDF is a shifted step function

▶ Deterministic distribution

$$A \sim D(t_0)$$
 with $t_0 \in \mathbb{R}$

$$A(t) = \begin{cases} 0 , & t < t_0 \\ 1 , & t \ge t_0 \end{cases}$$

$$a(t) = \delta(t - t_0)$$

$$E[A] = t_0 , \qquad c_A = 0$$

$$\Phi_A(s) = LST\{A(t)\} = e^{-st_0}$$

Deterministic Distribution (D): CDF and PDF

Dirac Delta Function

Negative Exponential Distribution (EXP)

- Very important distribution in queueing theory
 - interarrival times A of Poisson process with arrival rate λ
 - Markov property of exponential distribution

Exponential distribution

$$A \sim \text{EXP}(\lambda) \text{ with } \lambda > 0$$

$$A(t) = 1 - e^{-\lambda t} , \quad t \ge 0$$

$$a(t) = \lambda e^{-\lambda t}$$

$$E[A] = \frac{1}{\lambda} , \qquad c_A = 1$$

$$\Phi_A(s) = \frac{\lambda}{\lambda + s}$$

Exponential Distribution: PDF and CDF

Erlang-k Distribution (E_k)

- ▶ Sum of k exponentially distributed r.v.s, each with parameter λ : $A = A_1 + A_2 + \cdots + A_k$
- ► A_i are independent and identically distributed (iid): $A_i(t) = 1 e^{-\lambda t}$ for i = 1, 2, ..., k

▶ Erlang-k distribution

$$A \sim E_k(\lambda)$$
 with $\lambda > 0$, $k \in \mathbb{N}^+$

$$A(t) = 1 - \sum_{i=0}^{k-1} \frac{(\lambda t)^i}{i!} e^{-\lambda t}, \quad t \ge 0$$

$$a(t) = \frac{\lambda(\lambda t)^{k-1}}{(k-1)!} e^{-\lambda t}$$

$$\mathrm{E}[A] = \frac{k}{\lambda}, \qquad c_A = \frac{1}{\sqrt{k}}$$

$$\Phi_A(s) = \left(\frac{\lambda}{\lambda + s}\right)^k$$

For given mean E[A] and coefficient of variation $0 < c_A \le 1$:

$$k = \frac{1}{c_A^2} \qquad \qquad \lambda = \frac{1}{E[A]c_A^2}$$

Lecture

Laplace Transform of Erlang-k Distribution

Hyperexponential Distribution (H_k)

- Selection between k exponentially distributed r.v.s with parameters λ_i with probability p_i
 - with vector $\mathbf{\Lambda} = (\lambda_1, ..., \lambda_k)$ and $\mathbf{p} = (p_1, ..., p_k)$

$$A \sim H_k(\mathbf{\Lambda}, \mathbf{p}) , \quad \sum_{i=1}^k p_i = 1$$

$$A(t) = \sum_{i=1}^{k} p_i (1 - e^{-\lambda_i t}) = 1 - \sum_{i=1}^{k} p_i e^{-\lambda_i t} , \quad t \ge 0 ,$$

$$a(t) = \sum_{i=1}^{k} p_i \lambda_i e^{-\lambda_i t} ,$$

$$E[A] = \sum_{i=1}^{k} \frac{p_i}{\lambda_i}, \qquad c_A = \sqrt{2\left(\sum_{i=1}^{k} \frac{p_i}{\lambda_i^2}\right) / \left(\sum_{i=1}^{k} \frac{p_i}{\lambda_i}\right)^2 - 1},$$

$$\Phi_A(s) = \sum_{i=1}^k p_i \, \frac{\lambda_i}{\lambda_i + s} \ .$$

Note: It is

 $c_A \ge 1$

Lecture

Hyperexponential Distribution of Second Order (H₂)

Lecture

Substitute Distributions

Uniform Distribution (U)

 \triangleright Continuous r.v. A follows a uniform distribution in the interval [a; b]

▶ Uniform distribution

$$A \sim U(a, b)$$
 with $a < b$

$$A(t) = \begin{cases} \frac{t-a}{b-a} , & a \le t \le b \\ 1 , & t > b \end{cases}$$

$$a(t) = \frac{1}{b-a} \,, \quad a \le t \le b$$

$$E[A] = \frac{a+b}{2}$$
, $c_A = \frac{1}{\sqrt{3}} \cdot \frac{b-a}{a+b}$

$$\Phi_A(s) = \frac{e^{-sa} - e^{-sb}}{s(b-a)}$$

Mixture Distribution (MIX)

▶ k independent r.v.s A_1, \dots, A_k are selected with probability p_i $A = \begin{cases} A_1 \text{ with } p_1 \\ \dots \\ A_k \text{ with } p_k \end{cases}$

▶ Mixture distribution

$$A \sim \text{MIX}((A_1, \dots, A_k), (p_1, \dots, p_k))$$

$$a(t) = \sum_{i=1}^k p_i \cdot a_i(t) , \qquad A(t) = \sum_{i=1}^k p_i \cdot A_i(t)$$

$$E[A] = \sum_{i=1}^k p_i \cdot E[A_i] , \quad E[A^n] = \sum_{i=1}^k p_i \cdot E[A_i^n]$$

$$\Phi_A(s) = \int_0^\infty e^{-st} a(t) dt = \int_0^\infty e^{-st} \sum_{i=1}^k p_i \cdot a_i(t) dt = \sum_{i=1}^k p_i \cdot \Phi_{A_i}(s)$$

Mixture Distribution: Visualization

Comparison of Relevant Continuous Distributions

IMPORT RELATIONSHIPS

Continuous Distributions

- Phase representation
 - visual representation of common distributions
 - indicates relationship of composed distributions

Discrete Distributions

Bernoulli distribution

with success probability p

Binomial distribution

number of success of N Bernoulli trials

Geometric distribution

number of failures until first success in series of iid. Bernoulli trials

Negative binomial distribution

• number of failures in a sequence of iid. Bernoulli trials with success probability p before a specified number of successes y occurs

Poisson Arrivals during fixed Interval

- ► Number of Poisson arrivals during fixed interval follows Poisson distribution
- ► Interarrival times follow exponential distribution: Poisson process

