Homework 9 Solutions

Due: Monday, December 5th by 11:59 PM ET

Sections 5.1-5.3 Exercises

Problem 1 (5 points) Let $A \subset \mathbb{R}$ be a bounded non-empty set, and let $B := \{|x| : x \in A\}$. Prove that

$$\sup B - \inf B \le \sup A - \inf A$$

(*Hint*: Find some |x| close to sup B and some |y| close to inf B, then use the reverse triangle inequality.)

Let $\varepsilon > 0$ be arbitrary. By the properties of sup/inf, there exists $|x|, |y| \in B$ satisfying

$$\inf B \le |y| < \inf B + \varepsilon/2$$

$$\sup B - \varepsilon/2 < |x| \le \sup B$$

Which we can combine to get

$$\sup B - \inf B - \varepsilon < |x| - |y| \le ||x| - |y|| \le |x - y| \le \sup A - \inf A$$

where the last inequality comes from the fact that

$$x - y \le \sup A - \inf A$$
 and $y - x \le \sup A - \inf A \implies |x - y| \le \sup A - \inf A$

Then, since the inequality is true for all $\varepsilon > 0$, we get that

$$\sup B - \inf B \le \sup A - \inf A$$

Problem 2 (4 points each) In this problem, we will look at some properties of the Riemann integral of the absolute value of a function.

(a) Suppose $f \in \mathcal{R}[a, b]$. Show that $|f| \in \mathcal{R}[a, b]$, and that

$$0 \le \left| \int_a^b f \right| \le \int_a^b |f|$$

- (b) Find an example of a function $f:[a,b] \to \mathbb{R}$ such that $|f| \in \mathscr{R}[a,b]$ but $f \notin \mathscr{R}[a,b]$. (*Hint*: Think about the Dirichlet function)
- (c) Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Show that if f(c)>0 for some $c\in[a,b]$, then there exists some $\delta>0$ such that

$$\int_{c-\delta}^{c+\delta} f > 0$$

(*Remark*: Try to be careful about strict/non-strict inequalities and open/closed intervals in this part.)

(d) Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Show that

$$\int_{a}^{b} |f| = 0$$

if and only if f(x) = 0 for all $x \in [a, b]$

(a) Using the result from problem 1, we have that for any $S \subset [a, b]$,

$$\sup_{x \in S} |f(x)| - \inf_{x \in S} |f(x)| \le \sup_{x \in S} f(x) - \inf_{x \in S} f(x)$$

Thus for any partition \mathcal{P} of [a, b], we have that

$$U(\mathcal{P}, |f|) - L(\mathcal{P}, |f|) = \sum_{i=1}^{n} (M_i^{|f|} - m_i^{|f|}) \Delta x_i$$

$$\leq \sum_{i=1}^{n} (M_i^f - m_i^f) \Delta x_i$$

$$= U(\mathcal{P}, f) - L(\mathcal{P}, g)$$

Then, let $\varepsilon > 0$ be arbitrary. Since $f \in \mathcal{R}[a,b]$, there exists a partition \mathcal{P} of [a,b] such that

$$U(\mathcal{P},|f|) - L(\mathcal{P},|f|) \le U(\mathcal{P},f) - L(\mathcal{P},g) < \varepsilon$$

which shows that $|f| \in \mathcal{R}[a, b]$ as well.

Then by monotonicity, since $-|f(x)| \le f(x) \le |f(x)|$ for all $x \in [a, b]$, we have

$$-\int_{a}^{b}|f| \le \int_{a}^{b}f \le \int_{a}^{b}|f|$$

which gives the desired inequality

$$0 \le \left| \int_a^b f \right| \le \int_a^b |f|$$

(b) Let $f:[0,1]\to\mathbb{R}$ be given by

$$f(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}$$

Then, |f| is a constant function, so $|f| \in \mathcal{R}[0,1]$. However, f is not Riemann integrable (e.g. since $U(\mathcal{P}, f) = 1$ and $L(\mathcal{P}, f) = -1$ for any partition \mathcal{P} of [0, 1]).

(c) Let f be as given. Since f is continuous and f(c) > 0 for some $c \in [a, b]$, there exists some $\delta' > 0$ such that for all $x \in (c - \delta', c + \delta')$

$$-f(c)/2 < f(x) - f(c) < f(c)/2 \implies f(x) > f(c)/2$$

Take $\delta > 0$ such that $\delta < \delta'$ and $[c - \delta, c + \delta] \subset [a, b]$. Since the restriction of f to the interval $[c - \delta, c + \delta]$ is continuous, $f \in \mathcal{R}[c - \delta, c + \delta]$. Then, using monotonicity of the Riemann integral,

$$\int_{c-\delta}^{c+\delta} f \ge (f(c)/2)(2\delta) > 0$$

(d) First, suppose f(x) = 0 for all $x \in [a, b]$. Then, the integral of the constant function gives

$$\int_{a}^{b} |f| = 0$$

Now, we will prove the other direction by contrapositive. Suppose $f(c) \neq 0$ for some $c \in [a, b]$. Since |f| is continuous and |f(c)| > 0, by the result of (c) there exists some $\delta > 0$ such that

$$\int_{c-\delta}^{c+\delta} |f| > 0$$

Then, noting that $|f(x)| \ge 0$ for all $x \in [a, b]$, we have

$$\int_{a}^{b} |f| = \int_{a}^{c-\delta} |f| + \int_{c-\delta}^{c+\delta} |f| + \int_{c+\delta}^{b} |f|$$
$$\ge 0 + \int_{c-\delta}^{c+\delta} |f| + 0 > 0$$

This shows the desired result.

Problem 3 (5 points) Suppose F and G are continuously differentiable functions defined on [a,b] such that F'(x)=G'(x) for all $x\in [a,b]$. Using the fundamental theorem of calculus, show that F and G differ by a constant. That is, show that there exists a $C\in\mathbb{R}$ such that F(x)-G(x)=C

(Remark: This is justifying the "rule" of adding a constant $\int f + C$ to indefinite integration when you are computing an antiderivative. Make sure to use the right form of the fundamental theorem of calculus.)

Let f(x) = F'(x) = G'(x). Since F, G are continuously differentiable, f is continuous and hence Riemann integrable on the interval [a, b]. Then using the first form of the fundamental theorem of calculus, we have for any $x \in (a, b]$

$$F(x) - F(a) = \int_{a}^{x} f = G(x) - G(a)$$

Then, F(x) - G(x) = F(a) - G(a) = C for all $x \in [a, b]$.

Sections 6.1-6.2 Exercises

Problem 4 (4 points each) Practice with pointwise and uniform convergence.

(a) Let $f_n:(0,1)\to\mathbb{R}$ be given by $f_n(x):=\frac{n+1}{nx}$. Show that $\{f_n\}$ converges pointwise to a continuous function f, but the convergence is not uniform.

(Remark: This shows that pointwise convergence to a continuous function does not imply uniform convergence, so the "converse" to Theorem 6.2.2 is not true. It is also possible to find counterexamples using sequences of continuous functions on [0,1])

(b) Let $f_n:[0,1]\to\mathbb{R}$ be defined by

$$f_n(x) := \begin{cases} 0 & x = 0 \\ n & 0 < x \le \frac{1}{n} \\ 0 & \frac{1}{n} < x \le 1 \end{cases}$$

Notice that $f_n \in \mathcal{R}[0,1]$ since it has a finite number of discontinuities. Show that $\{f_n\}$ converges pointwise to a function $f \in \mathcal{R}[0,1]$, but the convergence is not uniform (without using Theorem 6.2.4). Furthermore, show that

$$\lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 f$$

- (c) Let $f_n(x) = \frac{x^n}{n}$. Show that $\{f_n\}$ converges uniformly to a differentiable function f on [0,1] (find f). However, show that $f'(1) \neq \lim_{n \to \infty} f'_n(1)$.
- (a) For fixed $x \in (0,1)$ we have by continuity of algebraic operations that

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(\frac{1}{x} + \frac{1}{nx} \right) = \frac{1}{x}$$

Thus, $\{f_n\}$ converges pointwise to the continuous function $f:(0,1)\to\mathbb{R}$ given by f(x)=1/x.

To show that the convergence is not uniform, we attempt to compute

$$\sup_{x \in (0,1)} \left| \frac{n+1}{nx} - \frac{1}{x} \right| = \sup_{x \in (0,1)} \frac{1}{nx}$$

in fact, the function $\frac{1}{nx}$ is not bounded for any $n \in \mathbb{N}$. Hence, for any given $\varepsilon > 0$, there does not exist an $M \in \mathbb{N}$ such that $\sup_{x \in (0,1)} \left| \frac{n+1}{nx} - \frac{1}{x} \right| < \varepsilon$ for all $n \geq M$.

(b) First, note that for fixed 0 < x, there exists $M_x \in \mathbb{N}$ such that $\frac{1}{M_x} < x$. Thus, $f_n(x) = 0$ for all $n \ge M_x$. $f_n(0) = 0$, so we have that $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in [0, 1]$. Thus, $\{f_n\}$ converges pointwise to $f: [0, 1] \to \mathbb{R}$ given by f(x) = 0.

Then, we compute (e.g. by using additivity and the fundamental theorem of calculus)

$$\int_0^1 f_n = \int_0^{1/n} n \, \mathrm{d}x = 1$$

Then,

$$1 = \lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 f = 0$$

(c) For $0 \le x \le 1$ we have that $0 \le x^n \le 1$ for $n \in \mathbb{N}$. So, given $\varepsilon > 0$ take $M \in \mathbb{N}$ such that $M > 1/\varepsilon$, then for all $n \ge M$ we have

$$\sup_{x \in [0,1]} \left| \frac{x^n}{n} - 0 \right| = \frac{1}{n} < \varepsilon$$

Hence, $\{f_n\}$ converges uniformly to f(x) = 0 on [0,1].

Now, we compute the derivative of f_n using e.g. the power rule (which can be proved inductively using the product rule), $f'_n(x) = x^{n-1}$. We also have f'(x) = 0, so

$$1 = \lim_{n \to \infty} f'_n(1) \neq f'(1) = 0$$

Problem 5 (3 points each) Let f and g be bounded functions on [a, b].

(a) Prove the triangle inequality for the uniform norm,

$$||f + g||_u \le ||f||_u + ||g||_u$$

(b) Using your result in (a), prove the reverse triangle inequality for the uniform norm,

$$|||f||_u - ||g||_u| \le ||f - g||_u$$

(Hint: Your proof will look very similar to the proof of the reverse triangle inequality for the absolute value)

(a) Since $|f(x) + g(x)| \le |f(x)| + |g(x)|$ for all $x \in [a, b]$, we use Proposition 1.3.7 and HW7 Problem 3c to get

$$\begin{split} \|f+g\|_u &= \sup_{x \in [a,b]} \left(|f(x)+g(x)| \right) \\ &\leq \sup_{x \in [a,b]} \left(|f(x)| + |g(x)| \right) \\ &\leq \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)| = \|f\|_u + \|g\|_u \end{split}$$

(b) Note that we have

$$||-f||_u = \sup_{x \in [a,b]} |-f(x)| = \sup_{x \in [a,b]} |f(x)| = ||f||_u$$

So, using the triangle inequality, we have that

$$||f||_u = ||(f-g) + g||_u \le ||f-g||_u + ||g||_u \implies ||f||_u - ||g||_u \le ||f-g||_u$$

$$||g||_u = ||(g-f) + f||_u \le ||g-f||_u + ||f||_u \implies ||f||_u - ||g||_u \ge -||f-g||_u$$

Combining these two inequalities, we have

$$-\|f-g\|_u \le \|f\|_u - \|g\|_u \le \|f-g\|_u \implies |\|f\|_u - \|g\|_u| \le \|f-g\|_u$$

Problem 6 (6 points) Consider the sequence of continuous functions $\{f_n\}$ on [0,1] given by

$$f_n(x) := \begin{cases} 1 - nx & 0 \le x < 1/n \\ 0 & 1/n \le x \le 1 \end{cases}$$

Show that $\{f_n\}$ has no subsequence which is convergent in uniform norm.

(*Hint*: Show that every subsequence of $\{f_n\}$ converges pointwise to some function. Can the subsequences converge uniformly?)

(*Remark*: This is an example of a sequence of continuous functions bounded in the uniform norm which has no convergent subsequence.)

For fixed $x \in (0,1]$ there exists $N \in \mathbb{N}$ such that $1/N \leq x$. Then, $f_n(x) = 0$ for all $n \geq N$. Thus, $\{f_n\}$ converges pointwise to a function $f: [0,1] \to \mathbb{R}$ given by

$$f(x) := \lim_{n \to \infty} f_n(x) = \begin{cases} 1 & x = 0 \\ 0 & 0 < x \le 1 \end{cases}$$

Since the sequences $\{f_n(x)\}$ converge to f(x) for fixed $x \in [0,1]$, any subsequence $\{f_{n_j}(x)\}_{j=1}^{\infty}$ will also converge to f(x). Thus, the subsequence $\{f_{n_j}\}_{j=1}^{\infty}$ also converges pointwise to f.

Since each of the $\{f_n\}$ are continuous and bounded, if any subsequence $\{f_{n_j}\}$ converged in uniform norm it would be to a continuous function $g:[0,1]\to\mathbb{R}$. Since uniform convergence implies pointwise convergence, and since the pointwise limit is unique (since limits of sequences of real numbers are unique), g=f. However, f is not continuous, so this is a contradiction. Thus, no subsequence $\{f_{n_j}\}$ can be convergent in uniform norm.