ВикипелиЯ

Преобразование Лапласа

Материал из Википедии — свободной энциклопедии

Преобразование Лапла́са ($\mathscr L$) — интегральное преобразование, связывающее функцию F(s) комплексного переменного (изображение) с функцией f(x) вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.

Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.

Содержание

Определение

Прямое преобразование Лапласа

Обратное преобразование Лапласа

Двустороннее преобразование Лапласа

Дискретное преобразование Лапласа

Свойства и теоремы

Прямое и обратное преобразование Лапласа некоторых функций

Применения преобразования Лапласа

Связь с другими преобразованиями

Фундаментальные связи

Преобразование Лапласа — Карсона

Двустороннее преобразование Лапласа

Преобразование Фурье

Преобразование Меллина

Z-преобразование

Преобразование Бореля

Библиография

См. также

Ссылки

Примечания

Определение

Прямое преобразование Лапласа

Преобразованием Лапласа функции вещественной переменной f(t) называется функция F(s) комплексной переменной $s=\sigma+i\omega^{[1]}$, такая что:

$$F(s) = \mathcal{L}\left\{f(t)
ight\} = \int\limits_0^\infty e^{-st}f(t)\,dt.$$

Правая часть этого выражения называется интегралом Лапласа.

Функцию f(t) называют оригиналом в преобразовании Лапласа, а функцию F(s) называют изображением функции f(t).

В литературе связь между оригиналом и изображением часто обозначают так: f(t) = F(s) и F(s) = f(t), причём изображение принято записывать с заглавной буквы.

Обратное преобразование Лапласа

Обратным преобразованием Лапласа функции комплексного переменного F(s) называется функция f(t) вещественной переменной, такая что:

$$f(t)=\mathcal{L}^{-1}\{F(s)\}=rac{1}{2\pi i}\int\limits_{\sigma_1-i\cdot\infty}^{\sigma_1+i\cdot\infty}e^{st}F(s)\,ds,$$

где σ_1 — некоторое вещественное число (см. <u>условия существования</u>). Правая часть этого выражения называется *интегралом Бромвича*.

Двустороннее преобразование Лапласа

Двустороннее преобразование Лапласа — обобщение на случай задач, в которых для функции f(x) участвуют значения x < 0.

Двустороннее преобразование Лапласа определяется следующим образом:

$$F(s) = \mathcal{L}\{f(x)\} = \int\limits_{-\infty}^{+\infty} e^{-sx} f(x) \, dx.$$

Дискретное преобразование Лапласа

Применяется в сфере систем компьютерного управления. Дискретное преобразование Лапласа может быть применено для решётчатых функций.

Различают $oldsymbol{D}$ -преобразование и $oldsymbol{Z}$ -преобразование.

■ *D* -преобразование

Пусть $x_d(t) = \sum_{n=0}^\infty x(nT) \cdot \delta(t-nT)$ — решётчатая функция, то есть значения этой функции

определены только в дискретные моменты времени ${\it nT}$, где ${\it n}$ — целое число, а ${\it T}$ — период дискретизации.

Тогда, применяя преобразование Лапласа, получим:

$$\mathcal{D}\{x_d(t)\} = \sum_{n=0}^\infty x(nT) \cdot e^{-snT}.$$

ullet Z -преобразование

Если применить следующую замену переменных:

$$z=e^{sT},$$

получим Z-преобразование:

$$\mathcal{Z}\{x_d(t)\} = \sum_{n=0}^\infty x(nT) \cdot z^{-n}.$$

Свойства и теоремы

Абсолютная сходимость

Если интеграл Лапласа абсолютно сходится при $\sigma = \sigma_0$, то есть существует предел

$$\lim_{b o\infty}\int\limits_0^b|f(x)|e^{-\sigma_0x}\,dx=\int\limits_0^\infty|f(x)|e^{-\sigma_0x}\,dx,$$

то он сходится абсолютно и равномерно для $\sigma \geqslant \sigma_0$ и F(s) — аналитическая функция при $\sigma \geqslant \sigma_0$ ($\sigma = \operatorname{Re} s$ — вещественная часть комплексной переменной s). Точная нижняя грань σ_a множества чисел σ , при которых это условие выполняется, называется абсииссой абсолютной сходимости преобразования Лапласа для функции f(x).

• Условия существования прямого преобразования Лапласа

Преобразование Лапласа $\mathcal{L}\{f(x)\}$ существует в смысле абсолютной сходимости в следующих случаях:

1. $\sigma\geqslant 0$: преобразование Лапласа существует, если существует интеграл

$$\int\limits_{0}^{\infty}\left| f(x)\right| dx;$$

- 2. $\sigma>\sigma_a$: преобразование Лапласа существует, если интеграл $\int\limits_0^{x_1}|f(x)|\,dx$ существует для каждого конечного $x_1>0$ и $|f(x)|\leqslant Ke^{\sigma_a x}$ для $x>x_2\geqslant 0$:
- 3. $\sigma>0$ или $\sigma>\sigma_a$ (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции f'(x) (производная от f(x)) для $\sigma>\sigma_a$.

Примечание: это достаточные условия существования.

• Условия существования обратного преобразования Лапласа

Для существования обратного преобразования Лапласа достаточно выполнение следующих условий:

- 1. Если изображение F(s)- аналитическая функция для $\sigma\geqslant\sigma_a$ и имеет порядок меньше -1, то обратное преобразование для неё существует и непрерывно для всех значений аргумента, причём $\mathcal{L}^{-1}\{F(s)\}=0$ для $t\leqslant 0$.
- 2. Пусть $F(s)=\varphi[F_1(s),\ F_2(s),\ \dots,\ F_n(s)]$, так что $\varphi(z_1,\ z_2,\ \dots,\ z_n)$ аналитична относительно каждого z_k и равна нулю для $z_1=z_2=\dots=z_n=0$, и $F_k(s)=\mathcal{L}\{f_k(x)\}\ (\sigma>\sigma_{ak}:k=1,\ 2,\ \dots,\ n)$, тогда обратное преобразование существует и соответствующее прямое преобразование имеет абсциссу абсолютной сходимости.

Примечание: это достаточные условия существования.

Теорема о свёртке

Преобразованием Лапласа свёртки двух оригиналов является произведение изображений этих оригиналов:

$$\mathcal{L}\{f(x)*g(x)\}=\mathcal{L}\{f(x)\}\cdot\mathcal{L}\{g(x)\}.$$

Умножение изображений

$$f(x)g(0)+\int\limits_0^xf(x- au)g'(au)\,d au=sF(s)G(s).$$

Левая часть этого выражения называется интегралом Дюамеля, играющим важную роль в теории динамических систем.

Дифференцирование и интегрирование оригинала

Изображением по Лапласу первой производной от оригинала по аргументу является произведение изображения на аргумент последнего за вычетом оригинала в нуле справа:

4 of 12

$$\mathcal{L}\{f'(x)\} = s\cdot F(s) - f(0^+).$$

В более общем случае (производная *n*-го порядка):

$$\mathcal{L}\{f^{(n)}(x)\} = s^n \cdot F(s) - s^{n-1}f(0^+) - s^{n-2}f^{(1)}(0^+) - \ldots - sf^{(n-2)}(0^+) - f^{(n-1)}(0^+)$$

Изображением по Лапласу интеграла от оригинала по аргументу является изображение оригинала, делённое на свой аргумент:

$$\mathcal{L}\left\{\int\limits_0^x f(t)\,dt
ight\}=rac{F(s)}{s}.$$

Дифференцирование и интегрирование изображения

Обратное преобразование Лапласа от производной изображения по аргументу есть произведение оригинала на свой аргумент, взятое с обратным знаком:

$$\mathcal{L}^{-1}\{F'(s)\}=-xf(x).$$

Обратное преобразование Лапласа от интеграла изображения по аргументу есть оригинал этого изображения, делённый на свой аргумент:

$$\mathcal{L}^{-1} \left\{ \int\limits_{s}^{+\infty} F(s) \, ds
ight\} = rac{f(x)}{x}.$$

• Запаздывание оригиналов и изображений. Предельные теоремы

Запаздывание изображения:

$$egin{aligned} \mathcal{L}\{e^{ax}f(x)\} &= F(s-a); \ \mathcal{L}^{-1}\{F(s-a)\} &= e^{ax}f(x). \end{aligned}$$

Запаздывание оригинала:

$$egin{aligned} \mathcal{L}\{f(t-a)H(t-a)\} &= e^{-as}F(s); \ \mathcal{L}^{-1}\{e^{-as}F(s)\} &= f(x-a)H(x-a). \end{aligned}$$

где $\boldsymbol{H}(\boldsymbol{x})$ — функция Хевисайда.

Теоремы о начальном и конечном значении (предельные теоремы):

$$f(\infty) = \lim_{s o 0} sF(s)$$
, если все полюсы функции $sF(s)$ находятся в левой полуплоскости.

Теорема о конечном значении очень полезна, так как описывает поведение оригинала на бесконечности с помощью простого соотношения. Это, например, используется для анализа устойчивости траектории динамической системы.

• Другие свойства

Линейность:

$$\mathcal{L}\{af(x)+bg(x)\}=aF(s)+bG(s).$$

Умножение на число:

$$\mathcal{L}\{f(ax)\}=rac{1}{a}F\left(rac{s}{a}
ight).$$

Прямое и обратное преобразование Лапласа некоторых функций

Ниже представлена таблица преобразования Лапласа для некоторых функций.

Nº	Функция	Временная область $x(t) = \mathcal{L}^{-1}\{X(s)\}$	Частотная область $X(s)=\mathcal{L}\{x(t)\}$	Область сходимости для причинных систем
1	дельта-функция	$\delta(t)$	1	$\forall s$
1a	запаздывающая дельта-функция	$\delta(t- au)$	$e^{- au s}$	
2	запаздывание <i>п</i> -го порядка с частотным сдвигом	$rac{(t- au)^n}{n!}e^{-lpha(t- au)}\cdot H(t- au)$	$\frac{e^{-\tau s}}{(s+\alpha)^{n+1}}$	s > 0
2a	степенная <i>п</i> -го порядка	$\frac{t^n}{n!}\cdot H(t)$	$\frac{1}{s^{n+1}}$	s > 0
2a.1	степенная <i>q</i> -го порядка	$\frac{t^q}{\Gamma(q+1)} \cdot H(t)$	$rac{1}{s^{q+1}}$	s > 0
2a.2	функция Хевисайда	H(t)	$\frac{1}{s}$	s > 0
2b	функция Хевисайда с запаздыванием	H(t- au)	$\frac{e^{- au s}}{s}$	s > 0
2c	«ступенька скорости»	$t\cdot H(t)$	$\frac{1}{s^2}$	s > 0
2d	$m{n}$ -го порядка с частотным сдвигом	$\frac{t^n}{n!}e^{-\alpha t}\cdot H(t)$	$\frac{1}{(s+\alpha)^{n+1}}$	s>-lpha
2d.1	экспоненциальное затухание	$e^{-lpha t} \cdot H(t)$	$\frac{1}{s+lpha}$	$s>-\alpha$
3	экспоненциальное приближение	$(1-e^{-\alpha t})\cdot H(t)$	$\frac{\alpha}{s(s+\alpha)}$	s > 0
4	синус	$\sin(\omega t)\cdot H(t)$	$\frac{\omega}{s^2+\omega^2}$	s > 0
5	косинус	$\cos(\omega t)\cdot H(t)$	$\frac{s}{s^2+\omega^2}$	s > 0
6	<u>гиперболический</u> <u>синус</u>	$\sh{(lpha t) \cdot H(t)}$	$\frac{\alpha}{s^2-\alpha^2}$	s> lpha
7	гиперболический косинус	$\ch{(lpha t) \cdot H(t)}$	$\frac{s}{s^2-\alpha^2}$	s> lpha
8	экспоненциально затухающий синус	$e^{-lpha t}\sin(\omega t)\cdot H(t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$	s>-lpha
9	экспоненциально затухающий косинус	$e^{-lpha t}\cos(\omega t)\cdot H(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$	s>-lpha
10	корень <i>п</i> -го порядка	$\sqrt[n]{t}\cdot H(t)$	$s^{-(n+1)/n} \cdot \Gamma\left(1 + \frac{1}{n}\right)$	s > 0

11	<u>натуральный</u> логарифм	$\ln\!\left(\frac{t}{t_0}\right)\cdot H(t)$	$-\frac{t_0}{s}[\ln(t_0s)+\gamma]$	s>0
12	функция Бесселя первого рода порядка $m{n}$	$J_n(\omega t)\cdot H(t)$	$oxed{ \dfrac{\omega^n \Big(s+\sqrt{s^2+\omega^2}\Big)^{-n}}{\sqrt{s^2+\omega^2}}}$	$s>0 \ (n>-1)$
13	модифицированная функция Бесселя первого рода порядка $m{n}$	$I_n(\omega t)\cdot H(t)$	$oxed{ \dfrac{\omega^n \Big(s+\sqrt{s^2-\omega^2}\Big)^{-n}}{\sqrt{s^2-\omega^2}}}$	$s> \omega $
14	функция Бесселя второго рода нулевого порядка	$Y_0(\alpha t)\cdot H(t)$	$-\frac{2 \mathrm{arsh}(s/\alpha)}{\pi \sqrt{s^2 + \alpha^2}}$	s > 0
15	модифицированная функция Бесселя второго рода нулевого порядка	$K_0(lpha t) \cdot H(t)$		
16	функция ошибок	$\operatorname{erf}(t) \cdot H(t)$	$\frac{e^{s^2/4}\mathrm{erfc}(s/2)}{s}$	s > 0

Примечания к таблице:

- H(t) функция Хевисайда;
- $\delta(t)$ дельта-функция;
- $\Gamma(z)$ гамма-функция;
- lacktriangledown постоянная Эйлера Маскерони;
- $\blacksquare t$ вещественная переменная;
- s комплексная переменная;
- lacksquare lpha , eta , au и ω вещественные числа;
- n целое число.
- <u>Причинная система</u> система, в которой <u>импульсная передаточная функция</u> h(t) равна нулю для любого момента времени t < 0.

Применения преобразования Лапласа

Преобразование Лапласа находит широкое применение во многих областях математики (операционное исчисление), физики и техники:

- Решение систем дифференциальных и интегральных уравнений с помощью преобразования Лапласа легко переходить от сложных понятий математического анализа к простым алгебраическим соотношениям. [2]
- Расчёт <u>передаточных функций</u> динамических систем, таких, к примеру, как аналоговые фильтры.
- Расчёт выходных сигналов динамических систем в теории управления и обработке сигналов так как выходной сигнал линейной стационарной системы равен свёртке её импульсной характеристики с входным сигналом, преобразование Лапласа позволяет заменить эту операцию на простое умножение.
- Расчёт электрических схем. Производится путём решения

дифференциальных уравнений, описывающих схему операторным методом.

• Решение нестационарных задач математической физики.

Процедура решения дифференциального уравнения с использованием преобразования Лапласа состоит в следующем:

- 1. По заданному входном воздействию с помощью таблиц соответствий находят изображение.
- 2. По д.у. составляю передаточную функцию.
- 3. Находят изображение величины пунктов 1 и 2.
- 4. Определяют оригинал.^[3]

Связь с другими преобразованиями

Фундаментальные связи

Практически все интегральные преобразования имеют схожую природу и могут получаться одно из другого через выражения соответствия. Многие из них являются частными случаями других преобразований. Далее даны формулы, связывающие преобразования Лапласа с некоторыми другими функциональными преобразованиями.

Преобразование Лапласа — Карсона

Преобразование Лапласа — Карсона (иногда называют просто преобразование Карсона, иногда, не совсем корректно, используют преобразование Карсона, называя его преобразованием Лапласа) получается из преобразования Лапласа путём домножения изображения на комплексную переменную:

$$\mathcal{L}_K\{f(x)\}=sF(s).$$

Преобразование Карсона широко используется в теории электрических цепей, так как при таком преобразовании размерности изображения и оригинала совпадают, поэтому коэффициенты передаточных функций имеют физический смысл.

Двустороннее преобразование Лапласа

Двустороннее преобразование Лапласа \mathcal{L}_{B} связано с односторонним с помощью следующей формулы:

$$\mathcal{L}_{B}\{f(x);\ s\} = \mathcal{L}\{f(x);\ s\} + \mathcal{L}\{f(-x);\ -s\}.$$

Преобразование Фурье

Непрерывное преобразование Фурье эквивалентно двустороннему преобразованию Лапласа с комплексным аргументом $s=i\omega$:

$$F(\omega) = \mathcal{F}\{f(x)\} = \mathcal{L}\{f(x)\} \Big|_{s=i\omega} = F(s) \Big|_{s=i\omega} = \int\limits_{-\infty}^{+\infty} e^{-i\omega x} f(x) \, dx.$$

Примечание: в этих выражениях опущен масштабирующий множитель $\frac{1}{\sqrt{2\pi}}$, который часто включается в определения преобразования Фурье.

Связь между преобразованиями Фурье и Лапласа часто используется для того, чтобы определить частотный спектр сигнала или динамической системы.

Преобразование Меллина

Преобразование Меллина и обратное преобразование Меллина связаны с двусторонним преобразованием Лапласа простой заменой переменных. Если в преобразовании Меллина

$$G(s) = \mathcal{M}\left\{g(heta)
ight\} = \int\limits_0^\infty heta^s rac{g(heta)}{ heta} \, d heta$$

положим $heta=e^{-x}$, то получим двустороннее преобразование Лапласа.

Z-преобразование

Z-преобразование — это преобразование Лапласа решётчатой функции, производимое с помощью замены переменных:

$$z\equiv e^{sT}$$
.

где $T=1/f_s$ — период дискретизации, а f_s — частота дискретизации сигнала.

Связь выражается с помощью следующего соотношения:

$$X_q(s) = X(z) \Big|_{z=e^{sT}}.$$

Преобразование Бореля

Интегральная форма преобразования Бореля идентична преобразованию Лапласа, существует также обобщённое преобразование Бореля, с помощью которого использование преобразования Лапласа распространяется на более широкий класс функций.

Библиография

- Ван дер Поль Б., Бремер Х. . Операционное исчисление на основе двустороннего преобразования Лапласа. М.: Издательство иностранной литературы, 1952. 507 с.
- Диткин В. А., Прудников А. П. . Интегральные преобразования и

- операционное исчисление. <u>М.</u>: Главная редакция физикоматематической литературы издательства «Наука», 1974. — 544 с.
- Диткин В. А., Кузнецов П. И. . Справочник по операционному исчислению: Основы теории и таблицы формул. М.: Государственное издательство технико-теоретической литературы, 1951. 256 с.
- Карслоу Х., Егер Д. . Операционные методы в прикладной математике. —
 М.: Издательство иностранной литературы, 1948. 294 с.
- *Кожевников Н. И., Краснощёкова Т. И., Шишкин Н. Е.* . Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. <u>М.</u>.: Наука, 1964. 184 с.
- *Краснов М. Л., Макаренко Г. И.* . Операционное исчисление. Устойчивость движения. $\underline{\mathrm{M}}_{.:}$: Наука, 1964. 103 с.
- *Микусинский Я.* . Операторное исчисление. <u>М.</u>: Издательство иностранной литературы, 1956. 367 с.
- Романовский П. И. . Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. — М.: Наука, 1980. — 336 с.

См. также

- Первая теорема разложения
- Вторая теорема разложения
- Преобразование Фурье
- D с чертой-преобразование
- Дифференциальные уравнения

Ссылки

- Преобразование Лапласа и его некоторые свойства (dsplib.org) (http://ru.d splib.org/content/laplace/laplace.html)
- Преобразование Лапласа на сайте exponenta.ru (http://www.exponenta.ru/e ducat/class/courses/tfkp/theme12/theory.asp)

Примечания

- 1. В отечественной литературе обозначается также через \mathfrak{p} . См., например, \mathcal{L} иткин В. А., Кузнецов П. И. Справочник по операционному исчислению: Основы теории и таблицы формул. $\underline{\mathsf{M}}_{..}$: Государственное издательство технико-теоретической литературы, 1951. 256 с.
- 2. Ващенко-Захарченко М. Е. Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений. Киев, 1862.
- 3. Архитектура системы автоматического управления группой малых беспилотных летательных аппаратов (https://dx.doi.org/10.14357/20718632 180109) // Информационные технологии и вычислительные системы. 2018-03-20. ISSN 2071-8632 (https://www.worldcat.org/search?fq=x0:jrnl&q=n2:2071-8632). doi:10.14357/20718632180109 (https://dx.doi.org/10.14357/20718632180109).

 $\text{Источник} - \frac{\text{https://ru.wikipedia.org/w/index.php?title=Преобразование}_Лапласа\& oldid=107074504$

Эта страница в последний раз была отредактирована 16 мая 2020 в 16:37.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.