

Übungsblatt 1

Zentralübung

Aufgabe 1 (Elementare Beweistechniken)

Man beweise die folgenden Aussagen:

- a) $\forall n \in \mathbb{N} : 2|n \Rightarrow 2|n^2$
- **b)** $\forall n \in \mathbb{N} : 2|n^2 \Rightarrow 2|n$
- c) $\forall n \in \mathbb{N} : 2 \mid n (n+1)$
- d) Ist p eine Primzahl, so gilt: $\forall n \in \mathbb{N} : p | n \Leftrightarrow p | n^2$
- e) Es gibt unendlich viele Primzahlen

Hinweis: Für $m \in \mathbb{N}$, $n \in \mathbb{N}$ bedeute m|n, dass m ein Teiler von n ist.

Aufgabe 2 (Abzählbarkeit)

Man begründe:

- a) Z ist abzählbar
- **b)** $\mathbb{N}_0 \times \mathbb{N}_0$ ist abzählbar
- c) $\mathcal{P}(\mathbb{N})$ ist überabzählbar

Aufgabe 3 (Manipulation von Summen)

Es seien $a: \mathbb{N}_0 \to \mathbb{R}$, $b: \mathbb{N}_0 \to \mathbb{R}$, $c \in \mathbb{R}$ und $m, n \in \mathbb{N}_0$. Man beweise mit vollständiger Induktion:

a)
$$\sum_{k=0}^{n} ca_k = c \sum_{k=0}^{n} a_k$$

b)
$$\sum_{k=0}^{n} (a_k + b_k) = \sum_{k=0}^{n} a_k + \sum_{k=0}^{n} b_k$$

c)
$$\sum_{k=m}^{n} a_k = \sum_{k=0}^{n-m} a_{m+k}$$

d)
$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{n} a_{n-k}$$

Präsenzübung

Aufgabe 4 (Ein Kriterium für Surjektivität, Injektivität und Bijektivität)

Seien X, Y beliebige Mengen und $f: X \to Y$ eine beliebige Abbildung. Zeigen Sie:

- a) $f:X\to Y$ ist surjektiv $\Leftrightarrow \forall y\in Y:|f^{-1}\left(\{y\}\right)|\geq 1$
- **b)** $f: X \to Y$ ist injektiv $\Leftrightarrow \forall y \in Y: |f^{-1}(\{y\})| \le 1$
- c) $f: X \to Y$ ist bijektiv $\Leftrightarrow \forall y \in Y: |f^{-1}(\{y\})| = 1$

Aufgabe 5 (Geometrische Summenformel)

Zeigen Sie: Für alle $x \in \mathbb{R} \setminus \{1\}$ gilt:

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

Aufgabe 6 (Berechnung von endlichen Summen)

Man berechne die folgenden Summen:

a)
$$\sum_{k=1}^{n} (2k-1)$$
 b) $\sum_{k=0}^{n-1} (2k+1)$ c) $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$

Hausaufgaben

Aufgabe 7 (Injektivität und Surjektivität von Kompositionen)

Es seien $f: A \to B$, $g: B \to C$ Abbildungen und $g \circ f: A \to C$ die Komposition von f und g. Zeigen Sie oder widerlegen Sie die folgenden Behauptungen durch ein Gegenbeispiel:

- a) Sind f und g injektiv, so ist auch $g \circ f$ injektiv.
- b) Ist $g \circ f$ injektiv, so ist auch f injektiv.
- **c)** Ist $g \circ f$ surjektiv, so ist auch f surjektiv.
- d) Ist $g \circ f$ surjektiv, so ist auch g surjektiv.

Aufgabe 8 (Die binomische Formel)

Für $k \in \mathbb{Z}$, $n \in \mathbb{N}_0$ ist $n! := \prod_{m=1}^n m$ und $\binom{n}{k} := \frac{n!}{k!(n-k)!}$, falls $0 \le k \le n$ und 0 sonst. Zeigen Sie für alle $a, b, x \in \mathbb{C}$, $k \in \mathbb{Z}$, $n \in \mathbb{N}_0$:

$$\mathbf{a)} \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

b)
$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

c)
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$\overline{\text{Aufgabe 9 (Die Anzahl }k\text{-elementiger Teilmengen aus }n\text{-elementigen Mengen)}}$

Zeigen Sie für alle $k, n \in \mathbb{N}_0$ und die Menge M mit |M| = n durch Induktion nach n: Die Anzahl B(n,k) der k-elementigen Teilmengen von M ist $\binom{n}{k}$.

Abgabe: 02.11.2021