## 高等影像處理 作業六書面報告

| 學號:   | 61047064S | 姓名: | 趙怡華      |
|-------|-----------|-----|----------|
| 7 110 | OTOTIOOTO |     | 70 III + |

一、 本作業所用之程式語言及編譯器 Python 3.9.7

## 二、 程式功能

- 1. 影像平滑化與邊緣偵測(Image smoothing and edge detection)。
- 2. 請於作業一的程式中加入一個新的功能 convolution,可進行影像平滑化 (image smoothing)以及邊緣偵測(edge detection)等效果,並將程式執行檔名 稱改為 "HW6 學號.exe"。
- 3. 輸入的影像為灰階影像,輸出則為影像平滑化與邊緣偵測之後的影像。範例如附件所示。影像平滑化與邊緣偵測需由使用者輸入不同的 convolution masks,大小可為 3X3 pixels, 5X5 pixels 或其他。
- 4. 本作業 convolution 的函式需自己撰寫,不可以採用其他人的程式碼。

## 三、 程式流程或演算法

- 1. 開啟圖片。選擇「Convolution」。
- 2. 選擇 Convolution mask 的尺寸。
- 3. 輸入 Convolution mask 的值,以及 scalar 的分母。
- 4. 按下 OK 送出。
- 5. 運算結果生成的圖出現在右方 Output Image 畫布內。

四、 測試結果(請附至少三組畫面截圖,並附相關說明) 為了比較不同 convolution mask 的結果,用同一張圖作為輸入。





| HW2  | Grayscale Histogram    |       |     |    |    |  |  |
|------|------------------------|-------|-----|----|----|--|--|
| нwз  | Gaussian White Noise   |       |     |    |    |  |  |
| HW4  | Wavelet Transform      |       |     |    |    |  |  |
| HW5  | Histogram Equalization |       |     |    |    |  |  |
| HW6  | Convolution            |       |     |    |    |  |  |
| Conv | olutio                 | on ma | ask |    |    |  |  |
|      | 5x5 😂                  |       |     |    |    |  |  |
| 1    | 0                      | 0     | -1  | 0  | 0  |  |  |
|      | 0                      | -1    | -2  | -1 | 0  |  |  |
| 1    | -1                     | -2    | 16  | -2 | -1 |  |  |
|      | 0                      | -1    | -2  | -1 | 0  |  |  |
|      | 0                      | 0     | -1  | 0  | 0  |  |  |



圖二、邊緣偵測:用 Laplace operator 方法處理過的人像。(3x3 mask)



圖三、影像平滑化:用 Gaussian Blur 方法處理過的人像。(5x5 mask)

Input Image



Output Image

圖四、影像平滑化:用 Averaging 方法處理過的人像。(3x3 mask)

## 五、程式撰寫心得(至少100字)

這次作業為了配合新增的功能,把介面做了調整,新增了一個專門用來輸入數值的區域。經過這次調整,讓我對切割視窗的方法更加熟悉。

這次作業最花時間的部分不是演算法,而是刻介面。光是要讓輸入數值的地方可以隨著需要的 mask 尺寸變化並儲存數值,以及讓舊的輸入空格不會殘留在畫面上,就花了一天的時間嘗試與調整。雖然過程相當繁瑣及令人氣餒,但看到調整好的結果還是有點開心。

測試時觀察到作影像平滑化時, mask 的尺寸越大, 畫面越模糊。作邊緣偵測時, 用 5x5 mask 的 LoG 得到的細節比用 3x3 mask 的 Laplace operator 得到的細節多。