LC 27 Conversion réciproque d'énergie électrique en énergie chimique

Emmy

May 27, 2019

Contents

	0.1	Pré-requis	2
1		ermodynamique d'oxydo-réduction	2
		Électrode : rappel	
	1.2	Point de vue thermodynamique	2
2	Conversion énergie chimique en énergie électrique		2
		La pile Daniell	
	2.2	Autres exemples	2
3	Cor	nversion réciproque	2
	3.1	Électrolyseur	2
	3.2	Accumulateur	2

0.1 Pré-requis

Oxydo-réduction, Nernst, thermochimie.

1 Thermodynamique d'oxydo-réduction

1.1 Électrode : rappel

Regarder le Fosset MPSI et le MC Quarrie de Chmie générale.

1.2 Point de vue thermodynamique

$$\Delta E = \frac{-\Delta_r G}{n \mathcal{F}} \tag{1}$$

2 Conversion énergie chimique en énergie électrique

2.1 La pile Daniell

Regarder le chapitre 14 p190 du *Le maréchal* Tome 1 Chimie générale. Présentation plus réalisation expérimentale.

2.2 Autres exemples

Regarder le chapitre 14 p200 du Le maréchal Tome 1 Chimie générale.

3 Conversion réciproque

3.1 Électrolyseur

Regarder le chapitre 13 p168 du *Le maréchal* **Tome 1 Chimie générale**. On transforme cette fois de l'énergie électrique en énergie chimique.

3.2 Accumulateur

Le maréchal **Tome 1 Chimie générale** p201. Il faut justifier le choix du plomb.

Questions

Remarques

Il faut être capable de déterminer la capacité d'une pile : nombre d'électrons mis en jeux (= $2*C_{Cu^2+}V$) x leur charge, le tout donné en ampères heure. Il faut parler de surtension.