1 Adatbiztonság, adatvédelem

A DES működése és feltörése

2 A DES

- ■4. generációs titkosítási algoritmusok őse
- **■**DES = Data Encryption Standard
- ■1976-ban állt munkába
- ► Pályázat során alkották meg
- ■1997-ben sikerült először feltörni
- ■2001-ben váltotta le az AES (Advanced Encryption Standard)
- ■Tervezésében részt vett az NSA

_

3 **A DES**

- ► Kifejlesztése az 1970-es évek elején kezdődött az IBM Lucifer nevű titkosító algoritmusával
- Több megoldás volt akkoriban is titkosításra, de mindenki által elfogadott szabvány nem létezett.
- ►A káosz megelőzése miatt az NBS (National Bureau of Standards mai nevén NIST) pályázatot írt ki.

-

4 A DES

- ► Az IBM a Lucifer algoritmusával nevezett
- ■A pályázat elvárásai:
 - ►Nyújtson magas szintű biztonságot.
 - ■Egyszerű felépítésű, könnyen megérthető legyen
 - ► A biztonság csak a kulcstól függjön, ne az algoritmustól
 - ■Gazdaságosan alkalmazható legyen elektronikus eszközökben

5 **A DES**

- A Lucifer nyerte a pályázatot, de a szabványosított változat tervezésébe már az NSA is belenyúlt
- Eredetileg 128 bites titkosítás volt 128 bites blokkokkal

6 A DES szabvány

- ■64 bites titkosítás
- ■64 bites blokkokban dolgozik egy 64 bites kulcs segítségével
- ► A kulcs valójában "csak" 56 bites, mivel a kulcs minden bájtjának utolsó bitje paritás bit.
- Teljesen nyílt szabvány, így az algoritmust mindenki megismerheti
- Tehát az adatok védelme csak a kulcs bonyolultságától függ.

7 A DES szabvány

- ► Biz almatlanul fogadták kezdetben, mivel konkrétan felezték a bitek számát, ami gyakorlatban azt jelenti, hogy az eredeti kulcstér 99,6%-a ki lett dobva.
- ■Összeesküvés elméletek szerint erre azért volt szükség, hogy az NSA gond nélkül meg tudja törni, de más kisebb csoportok ne.
- ►Ez a bizalmatlanság döntő szerepet játszott a PGP megszületésében, de erről majd később...

8 A dES szabvány

- ■Bitszintű műveletekkel dolgozik, ezért hardverből nagyon egyszerű implementálni
 - ■Gyakorlatilag egy 64 bemenetű és 64 kimenetű kombinációs hálózat
- ■Éppen ezért a szabvány elfogadása után számos integrált áramkör született meg, ami DES titkosítást tudott.

9 A DES szabvány

- ► A hardveres implementációkat az NBS bevizsgálta
- ■A szabványt 5 évente felülvizsgálták biztonság szempontjából egészen 1997-ig.
- A szabvány megjelenése után és a kezdeti bizalmatlanság miatt célba vették, megpróbálták feltörni, de ez csak 1997-ben sikerült.

10 A DES szabvány

- A DES, mint szabvány a DEA (Data Encryption Algorithm) algoritmust használja.
- Az évek során a két kifejezésből a DES terjedt el, így ma már "DES"-t mondunk, ha az algoritmusról beszélünk
- Szabványban és a hivatalos dokumentumokban a két kifejezés között különbséget tesznek.

11 A Des működése

12 A Titkosító algoritmus

- ►A bemeneti 64 bit hosszú blokk a titkosítás folyamán 2db 32 bites blokként van kezelve
- ► A 2db blokk ugyanazzal a funkcióval van titkosítva
- ► A titkosítási algoritmus 16 azonos körből áll.
- XOR al vannak összegezve az egyes körökben kapott blokkok, amelyek cserélődnek folyamatosan az algoritmus során

13 A Titkosító algoritmus

- ■Utolsó kör után a két blokkot megcserélik, ami a visszafejtéshez kell.
- Az utolsó körben alkalmazott csere és F funkció felépítése miatt fejthető vissza ugyanazon algoritmussal

-

14 Az F vagy Feistel funkció

- 1. Bemeneti 32 bit 48 bitre bővítése (E), a bitek felének duplázásával
- 2. Kulcskeverés: alkulcs XOR adat elven. Minden F híváskor (16 van összesen) más az alkulcs.

15 Az F vagy Feistel funkció

- 1. XOR után az adat 8*6 bitre van osztva. A 6 bit egy táblázat alapján cserélődik 4 bitre. A 6 bitből nem lineáris módon lesz 4 bit.
- 2. Végső permutáció a 8*4 bit kimeneten

16 Kezdeti kulcsból alkulcsok előállítása

- 1. Paritás leválasztása a 64 bitből. Eredmény: 56 bit.
- 2. 56 bit 2x24 bitre osztása
- 3. Bit eltolások 1 vagy 2 bittel.
- 4. Kimeneti 48 bit a 2db 24 bites szám permutációjaként áll elő

5.

17 A Des működése

- ■Működése során két fő elvet egyesít:
 - ■Feistel-struktúra
 - ■Produkciós titkosító
- ■A produkciós titkosító kettő vagy több eltérő elvű művelet kombinálásával szolgáltatja eredményét.
- ► Ha azonos elvű titkosítókat kötünk sorba, előfordulhat, hogy azok egymás hatását kioltják vagy a biztonságot nem növelik, csak a feldolgozási időt

18 A Des működése

- ► Emiatt elfogadott az a tervezési elv, hogy a produkciós részegységek egymástól eltérő elven működjenek.
- ► Egyik speciális eset a helyettesítő-keverő hálózat, mely helyettesítéseket és keveréseket végez egymás után

19 Lavinahatás

- A lavinahatás elve azt mondja ki, hogy ha a bemeneti blokk kicsit megváltozik, akkor a kimeneti blokk jelentősen változzon meg hozzá képest.
- ■Pontosabban, ha a bemeneti blokk egy bitje megváltozik, a kimeneti blokk bitjeinek körülbelül a fele változzon meg.
- ►Ez nehezíti a kriptoanalízist.
- ► A DES rendelkezik lavinahatással.

20 A DES biztonsága

- ■56 bit kulcs, nagyjából 7,21*10^16 kulcs lehetőség
- ► Nyers, optimalizálatlan Brute Force al ha 1 millió kulcsot próbálunk ki 1mp alatt, akkor is ~1150 év lenne megtörni.
- Speciális Cél Hardver segítségével Brute Force támadással 1998-ban törték meg először pár napon belül.

21 A DES biztonsága

- ►Az 1990-es évek elején fejlődött annyit a kriptográfia, hogy ki tudták következtetni:
 - →egy kulcsot 2^37-2^38-on ismert bemenet és ismert kimenet mintából ki lehet találni.
- De az elmélet más, mint a gyakorlat. Bitek szintjén védett, tehát az algoritmus nem hibás, de viszonylag kicsi a kulcsméret, ami kellő erőforrással törhető lesz.

22 Brute Force Célgéppel

- ■1991-ben már voltak rá tervek
- ► Akkor durván 1 millió \$-ra becsülték az építés költségét.
- ► Elvben 3,5 óra alatt tudta volna visszafejteni a kulcsot.
- ■Sosem épült meg pénzhiány miatt.

23 Brute Force Célgéppel

- DeepCrack elnevezésű gép EFF alapítvány rendelte meg.
- ►64 * 28 = 1792 egyedi tervezésű FPGA-t tartalmazott.
- ■28 alaplapra szerelve
- Egy DES kulcs megtörése 4-5 nap alatt, bonyolultságtól függően.
- ■250 000 \$ volt a megépítés költsége, jelenlegi árfolyamon durván 55 millió Ft.

	►Később, durván 50 000 \$-ból építhető volt hasonló gép.
24	Deep Crack számítógép
25	Deep Crack számítógép
26	 Deep Crack számítógép Az FPGA áramkörökben összesen 50167db DES cella volt, vagyis egy áramkör 28 szálor futtatott DES titkosítást egyszerre. Egy szál csak annyit tudott, hogy próbálgatták a lehetséges kulcsokat egészen addig, amíg érdekes szöveget nem találtak a kimeneten. Érdekes szövegnek számított az alfanumerikus karakterek egymást követő felbukkanás.
27	Deep Crack számítógép
	 ►A rendszer órajele csupán 40MHz volt, de a sok "mag" miatt egy másodperc alatt 107 520 000 000 kulcsot tudott kipróbálni. © ►Ami valljuk be:
28	Rövid kis szösszenet arról, hogy mi is az Az FPGA?
	 Field Programmable Gate Array. Olyan programozható logikai egység, amely logikai cellákból épül fel. Egy cella architektúrától függően lehet 4 vagy 8 bites, vagy n bites, és bármilyen szinkron/aszinkron hálózat megvalósítható vele n biten.
29	Rövid kis szösszenet arról, hogy mi is az Az FPGA?
	 ►A cellák kimeneti és bemeneti fizikai elhelyezkedése a chip-en belül szabadon programozható. ► Maga az áramkör belső felépítése is bármikor szabadon átprogramozható, mivel a
20	konfigurációs adatokat a belső RAM memóriájába külső tárból tölti be az eszköz.
30	 Rövid kis szösszenet arról, hogy mi is az Az FPGA? ■ Masszívan párhuzamosítható számítások elvégzésére a leginkább alkalmas. ■ Manapság kellően olcsó, így n+1 helyen alkalmazzák őket. Pl: ■ Bitcoin bányászat ■ Hardveres H.264 / VP8 kódolás ■ Egyedi CPU-k fejlesztése ■ stb
31	Rövid kis szösszenet arról, hogy mi is az Az FPGA?
	 Egyetlen egy baja az FPGA áramköröknek az, hogy bonyolult programozni őket, mivel á digitális logika szintjén kell gondolkodni. Vannak már kísérletek C/C++ fordítók átültetésére, de még komoly eredmények nem születtek. Bővebb olvasnivaló a téma iránt érdeklődőknek: http://en.wikipedia.org/wiki/Field-programmable-gate-array
32	Törési versenyek
	■RSA Inc. támogatta, célja az volt, hogy bebizonyítsák, hogy a DES elavult. ■Rekordok: ■Pentium1 CPLL + 16Mb ram -> 96 nan: 1997, január
	■PBOOLOGO LEPLE ENVINTANES AN DAN 1997 JANUAR

- ■Több géppel -> 41 nap; 1997. február
- ►EFF DeepCrack -> 56 óra; 1998 júliusa
- ►Interneten összekapcsolt több géppel -> 20 óra 19 perc; 1999. január 19. (DeepCrack + 100000 PC)

33 Mégis hogy lehetséges?

- ■Összetett kriptoanalízissel sikerült optimalizálni a Brute Force eljárást
- ■Mindenki számára publikusan letölthető a Cracking DES c. könyvben
- Amazon.com-on nagyjából 4\$-ért megvehető.
- Számos publikus törőprogram. Pl: http://www.brianhpratt.net/cms/index.php?page=des-cracker

34 Des újra biztonságossá tétele

- **■** Dupla DES (Double DES)
- Tripla DES (Triple DES)
- **→**3DES

35 **Dupla DES**

■ DES titkosítással titkosított adat ismételt DES titkosítása más jelszóval.

36 Dupla DES problémája

- ► Elvileg 2*56 bit = 112 bites kulcstérnek kellene keletkeznie
- Azonban matematikailag bebizonyították a "meet in the middle" támadással, hogy valójában ha 2x titkosítok valamit, az csak duplázza a lehetőségeket
 - ■vagyis egy bittel növeli az eredeti kulcsteret, ahelyett, hogy megduplázná azt
 - ■Dupla DES esetén ez 57 bit

37 Meet In the middle támadás

- ■Az m üzenet titkosítva van K1 kulccsal és a titkosítás eredménye ismét titkosításra kerül K2 kulccsal:
 - $\blacksquare M = C_{K2}(C_{K1}(m))$
- ► Ha a D_{K2} megfejtő függvényt az egyenlet mindkét oldalán alkalmazzuk, akkor az eredmény:
 - $-D_{K2}(M) = C_{K1}(m)$
 - ■Magyarul: Az egyik kör megfejtő kulcsa a másik kör titkosító kulcsa

38 Meet In the middle támadás

- ► Ezt a matematikai összefüggést felhasználva az egyenlet jobb és bal oldalán kiszámoljuk az összes lehetőséget, amiből utána csak ki kell választani azt, ahol az egyenlőség teljesül.
- ► A támadás fő problémája, hogy a táblázatok tárolásához 2^57 DES-szó, azaz 2^60 bájt szükséges, így ebben a formában nem kivitelezhető.

39 Meet In the middle támadás

- ► Azonban a műveletsor optimalizálható úgy, hogy az algoritmus ideje duplázódik, de a szükséges tárterület feleződik.
- A Dupla DES ötletét azonban elvetették, helyette a gyakorlatban a 3x alkalmazott DES vált be, amit már 1979-ben javasolt az IBM

40 Tripla DES és 3DES

- ■Tripla DES: 3 körös DES, 3 különböző jelszóval
- **■**3DES
 - ■Nem azonos a Tripla DES algoritmussal
 - ►Két jelszót alkalmaznak, így a kulcstér 112 bit, ha 3 jelszót alkalmazunk, akkor 168 bit.
 - ■168 bitet túlzásnak érezték, ezért maradt a két jelszó és végül ez lett a 3 DES

-

41 3DES

42 3DES Biztonsága

- ■112 bites titkosítás
- ► Ezen elven Brute Force törés ellen tovább növelhető lenne a biztonsága extra körök beiktatásával, feltéve, ha a körök száma páratlan.
- ■Olcsó megoldás új algoritmus helyett.
- Tetszőleges algoritmusra alkalmazható az elve miatt

43 **3DES Biztonsága**

- Azonban elvénél fogva előbb-utóbb megtörhető ez is.
- ■Ideiglenes megoldásnak azonban jó volt.

44 A DES valódi utódja

- ■AES titkosítás
- ■Erről majd egy másik előadáson lesz részletesen szó.
- Sokkal bonyolultabb, mint a DES.
- ■Szintén szabványosított.

45 Köszönöm a figyelmet