問題A解答

問 1 (1)

$$21 \times 29 = (25 + 4)(25 - 4)$$
$$= 25^{2} - 4^{2}$$
$$= 625 - 16$$
$$= 609$$

(2) x = 1, y = 1 を代入すると、各項の係数の和が求められ、

$$(2+3)^5 = 5^5 =$$
3125

(3) f(x) = 0 が $1 \le x$ で解をもつための必要十分条件は、軸の方程式が x = -3/2 であることから、

$$D>0$$
,かつ $f(1)\leq 0$

である. ここで、D は二次方程式 f(x) = 0 の判別式である.

$$D > 0 \iff 9 - 4a > 0 \iff a < \frac{9}{4}$$
$$f(1) \le 0 \iff a + 4 \le 0 \iff a \le -4$$

だから、上の条件は $a \le -4$ と同値である. したがって、求める最大値は $-\mathbf{4}$ である.

問2 (1) 真:命題の仮定は鋭角三角形の条件である.

- (2) **偽**:反例は f(x) = -1
- (3) (i) **偽**:真である命題の裏は一般に成り立たない.実際,P を偽,Q を真の命題とすると,命題「P ならば Q である」は真であるが,命題「P でないならば Q でない.」は偽である.
 - (ii) 真:命題「P ならば Q である」とその対偶の真偽は一致する.
 - (iii) 真:命題「P ならばQ である」と、命題「P かつQ でない」の

否定は同値だから 「Pかつ Q でないならば,Q ならば P である」 の仮定は偽である.また,含意の命題の仮定が偽ならばその命題 は真である.したがって,この命題は真である.

問 3 DA//BC と $\triangle ABC$ が正三角形であることから, $\angle BAD = \angle CAF$ と AB = AC がわかり,A, C, B, E が共円であることから, $\angle ABD = \angle ACF$ が わかるから, $\triangle ABD \equiv \triangle ACF$ であることがわかる.よって,AD = AF = 5 を得る.

 $\triangle ABC$ の面積は $16\sqrt{3}$, $\triangle ABD$ の面積は $10\sqrt{3}$ であることが計算によりわかるので, $\triangle ABD \equiv \triangle ACF$ より, $\triangle BCF$ の面積は $16\sqrt{3}-10\sqrt{3}=6\sqrt{3}$ と計算できる.

ここで、 $\triangle AEF$ に余弦定理を用いることにより FC=7 がわかり、再び円周角の定理より、 $\angle AEF=\angle CBF$ と $\angle EAF=\angle BCF$ であることから、 $\triangle AEF\sim \triangle CBF$ がわかるので、 $\triangle AEF$ の面積は

$$6\sqrt{3} \times \frac{25}{49} = \frac{150\sqrt{3}}{49}$$

となる.

問4まず分母を整理してみると、

(分段) =
$$\sqrt{x} - \sqrt{y}(x+y) + 2\sqrt{xy}(\sqrt{x} - \sqrt{y})$$

+ $8(\sqrt{x} - \sqrt{y}) - 3(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})$
= $(\sqrt{x} - \sqrt{y})(x+y+2\sqrt{xy}+8-3(\sqrt{x}+\sqrt{y}))$
= $(\sqrt{x} - \sqrt{y})\{(\sqrt{x} + \sqrt{y})^2 - 3(\sqrt{x} + \sqrt{y}) + 8\}$

となる. ここで, $t=\sqrt{x}+\sqrt{y}$ とおくと, t>0 で, 与えられた式は, t>0 の関数 $\varphi(t)=1/(t^2-3t+8)$ と表せる. $t^2-3t+8=(t-3/2)^2+23/4$ だから, この関数 φ は t=3/2 のとき, 最小値 23/4 をとる.

したがって、M=4/23で、求める条件は $\sqrt{x}+\sqrt{y}=3/2, x, y>0, x\neq y$.

問 5 -(1) $0 < \theta < 90^{\circ}$ より、 $\sin \theta, \cos \theta, \sin^2 \theta, \cos^2 \theta > 0$ であるから、相 加平均と相乗平均の関係より、

$$\frac{1}{2}(\sin^2\theta + \cos^2\theta) \ge \sqrt{\sin^2\theta \cos^2\theta}$$

よって,

$$\frac{1}{2} \ge \sin \theta \cos \theta$$

ここで,等号成立条件は $\sin^2\theta=\cos^2\theta$ である.したがって, $\theta=45^\circ$ のとき $\sin\theta\cos\theta$ は最大値 1/2 をとる.

(2) $AC = x, \angle BAC = \theta$ とおく、このとき、 $AD = x\cos\theta, DE = x\sin\theta\cos\theta, EF = x\sin^2\theta\cos\theta, DF = x\sin\theta\cos^2\theta$ より、

$$9 = \frac{DE^2(1+2DE)}{(EF+DF)^2}$$

$$= \frac{x^2 \sin^2 \theta \cos^2 \theta (1+2x\sin \theta \cos \theta)}{x^2 \sin^2 \theta \cos^2 \theta (\sin \theta + \cos \theta)^2} = \frac{1+2x\sin \theta \cos \theta}{1+2\sin \theta \cos \theta}$$

だから、 $1+2x\sin\theta\cos\theta = 9(1+2\sin\theta\cos\theta)$ より、 $(x-9)\sin\theta\cos\theta = 4$ となる. したがって、(1) より $\theta = 45^{\circ}$ のとき,AC は最小値 17 をとる.