Практическая работа №4. Разработка программ для машины Тьюринга

Тема: Формирование умений и навыков по разработке программ машин Тьюринга.

Цель:

- изучить устройство машины Тьюринга
- научиться читать и выполнять программы, написанные для машины Тьюринга
- научиться разрабатывать программы для машины Тьюринга.

Задание 1

Написать программу на машине Тьюринга, прибавляющую число 2 к введенному числу.

Решение

Задание 2

Написать на машине Тьюринга программу, прибавляющую 3 к введенному числу.

Перенести первый символ непустого слова Р в его конец. Алфавит: А={a,b,c}.

Решение

Если первый символ — это а, то надо перейти в состоянии q2, в котором автомат бежит вправо и записывает в конец а. Если же первым был символ b, тогда надо перейти в состоянии q3, где делается все тоже самое, только в конце записывается символ b. Если же первым был символ c, тогда переходим в состояние q4, в котором автомат дописывает за входным символом c.

Залание 4

Если первый и последний символы (непустого) слова P одинаковы, тогда это слово не менять, а иначе заменить его пустым словом. Алфавит: $A = \{a,b,c\}$.

- 1. Запомним первый символ входного слова, не стирая его (перейдем в состояние q1, если первый символ -a, q3, если первый символ b и q5, если первый символ -c).\
- 2. Переместим автомат под последний символ и сравним его с заполненным (в q2 для а, в q4 для b и q6 для c). Если они равны, то больше ничего не делать.
- 3. В противном случае уничтожить все входное слова (q7)

Удалить из слова Р его второй символ, если такой есть. Алфавит: А={a,b}.

Решение

Запомнить первый символ, стереть второй символ и установить его на месте первого

Задание 6

Удалить из слова Р первое вхождение символа а, если такое есть. Алфавит: A={a,b,c}.

Решение

Если первый символ слова -а, то стереть его и остановиться. Иначе сдвигаем символы слова на один символ вправо до тех пор, пока не найдем символ а.

Сдвиг символов осуществляется так: в очередной клетке записываем b (если в q1) или с (если в q2), переходим вправо и меняем состояние на q1 (если в текущей клетке было записано b) или на q1 (если было записано c), где осуществляется дальнейшая запись. Если в очередной клетке записано а или пробел, то записываем в нее запомненный символ и останавливаем программу.

Если P - непустое слово, то за его первым символом вставить символ а. Алфавит: $A=\{a,b,c\}.$

Решение

Запомнить первый символ слова, меняем его на символ а, переходим на одну клетку влево и ставим там этот символ.

Задание 8

Вставить в слово P символ а за первым символом c, если такое есть. Алфавит: $A = \{a,b,c\}$.

Решение

Просмотрим слово до символов с или пустой клетки (в последнем случае останавливаем программу сразу). Затем, если с найден, запоминаем его и меняем на символ а, а далее запускаем цикл, который справа налево сдвигает символы слова, первоначально вставляя символ с перед а.

Удалить из P все вхождения символа а. $A = \{a,b,c\}$.

Решение

Вместо сдвига символов слова для закрытия образующихся дырок можно построить новое слово справа от предыдущего. Чтобы разграничить эти слова, отделим их некоторым вспомогательным символом, например =, отличным от всех символов алфавита A.

- 1. Идем в конец слова и ставим знак =.
- 2. После этого возвращаемся к началу входного слова.
- 3. Теперь наша задача перенести в цикл все символы входного слова, кроме а, вправо за знак = в формируемое выходное слово. Для этого анализируем первый символ входного слова. Если это а, тогда стираем его и переходим к следующему символу. Если же первый символ это b или c, тогда стираем его переходим вправо до первой пустой клетки, куда и записываем этот символ. Снова возвращаемся налево к тому символу, который стал первым во входном слове, и повторяем те же самые действия, но уже по отношению к этому символу.
- 4. Этот цикл завершается, когда при возврате налево мы увидим в качестве первого символа =. Это признак того, что мы полностью просмотрели входное слово и перенесли все его символы, отличные от а, в формируемое справа выходное слово. Надо этот знак стереть, сдвинуться вправо под выходное слово и остановиться.

Задание 10

Удвоить слово P, поставив между ним и его копией знак =. Алфавит: $A = \{a,b\}$.

- 1. Вначале запишем знак = за входным словом. Затем вернемся под первый символ входного слова.
- 2. Заменяем видимый символ а на двойник A (что бы при возвращении к исходному слову знать, с какого символа продолжать копирование), переходим вправо до первой свободной клетке и записываем в нее символ а. После этого возвращаемся влево к клетке с двойником A, восстанавливаем прежний символ а и сдвигаемся вправо к следующему символу. Теперь аналогичным образом копируем второй

- символ (заменяем его на A, в конце дописываем а и т.д..) и все последующие символы входного слова.
- 3. Когда скопируем последний символ входного слова и вернемся к его двойнику, то затем после сдвига на одну позицию вправо мы попадем на знак = . Это символ о том, что входное слово полностью скопировано, поэтому останавливаем программу.

Задание 11.

Построим таблицу машины Тьюринга, которая заменяет все единицы на нули, а все нули на единицы. Пример. Исходное число 111001. Результат – 000110.

Решение

1	3	0	1
Q ₁	εUQ _{fin}	1LQ ₁	0LQ ₁

Задание 12

Построим таблицу машины Тьюринга, которая удаляет из числа все нули, например, число 1001110 преобразует к виду 1111. Эта задача уже сложнее и требует ввести в рассмотрение более двух состояний.

Решение

2	3	0	1
Q ₁	εRQ ₂	0LQ ₁	1LQ ₁
Q ₂	εUQ _{fin}	0LQ ₃	1RQ ₂
Q_3	εRQ ₄	1LQ ₂	0RQ ₃
Q_4		εRQ ₂	

Задание 13

Построим машину, имеющую два конечных состояния, условно обозначаемых как YES и NO. Машина должна завершить работу в состоянии YES, если число единиц в записи числа нечетное, и в состоянии NO– в противном случае.

Решение

3	ε	0	1
Q ₁	εUQ _N	0LQ ₁	1LQ ₂
Q ₂	εUQ _Y	0LQ ₂	1LQ ₁

Задание 14

Построим машину, имеющую два конечных состояния, условно обозначаемых как YES и NO. Машина должна завершить работу в состоянии YES, если в записи числа имеется три подряд идущих единицы, и в состоянии NO– в противном случае.

4	3	0	1
Q ₁	URQ _N	0LQ ₁	1LQ ₂
Q ₂	UUQ _N	0LQ ₁	1RQ ₃
Q ₃	URQ _N	0LQ ₁	UUQ _Y

Построим машину Тьюринга, которая получает обратный порядок записи числа, например, исходное число 111001, результат 100111.

5	3	0	1
Q ₁	εLQ ₂₂	εRQ ₂	εRQ ₁₁
Q ₂	0LQ ₃		
Q ₃	εLQ ₄		
Q_4	εRQ ₅	0LQ ₄	1LQ ₄
Q ₅		εLQ ₆	εLQ ₁₄
Q ₆	0RQ ₇		
Q ₇	εRQ ₈		
Q ₈	εLQ ₁	0RQ ₈	1RQ ₈
Q ₉	εLQ ₁₀		
Q ₁₀	εRQ ₁₁	0LQ ₁₀	1LQ ₁₀
Q ₁₁	1LQ ₉	εLQ ₁₈	εLQ ₁₂
Q ₁₂	1RQ ₁₃		
Q ₁₃	εRQ ₈		
Q ₁₄	0RQ ₁₅		
Q ₁₅	εRQ ₁₆		
Q ₁₆	εRQ ₁₇	0RQ ₁₆	1RQ ₁₆
Q ₁₇	εLQ ₁	1LQ ₁₇	

		I	ı
Q ₁₈	1RQ ₁₉		
Q ₁₉	εRQ ₂₀		
Q ₂₀	εRQ ₂₁	0RQ ₂₀	1RQ ₂₀
Q ₂₁	0LQ ₂₁	εLQ ₂₂	0LQ ₈
Q ₂₂	εRQ ₂₄	0RQ ₂₁	1RQ ₂₃
Q ₂₃	1LQ ₂₃		εLQ ₂₂
Q ₂₄	εRQ ₂₅		
Q ₂₅	εRQ ₂₆	0RQ ₂₅	1RQ ₂₅
Q ₂₆	εUQ _{fin}	0LQ ₂₇	0LQ ₂₈
Q ₂₇	0RQ ₂₇	εRQ ₂₆	
Q ₂₈	1RQ ₂₈	εRQ ₂₆	

Построим машину Тьюринга, которая меняет местами соседние два элемента попарно. Пример. Исходное число 011001 заменяется на 100110.

6	3	0	1
Q ₁	εUQ _{fin}	0LQ ₂	1LQ ₅
Q ₂		0LQ ₁	0RQ ₃
Q ₃		1LQ ₄	1LQ ₁
Q_4		0LQ ₁	1LQ ₁
Q ₅		1RQ ₆	1LQ ₁
Q ₆			0LQ ₃