

计算方法

主讲人: 陶亮

课时量: 32学时

目录

第一章: 绪论

第二章: 方程的近似解法

第三章: 线性代数方程组的解法

第四章: 矩阵特征值和特征向量

第五章:插值法

第六章:最小二乘法与曲线拟合

第七章:数值积分与数值微分

第八章: 常微分方程初值问题的数值解法

第九章: 偏微分方程的差分解法

2018/3/9 Friday 2/99

学时: 2个学时

内容: 1. 用最小二乘法求解矛盾方程组

2. 多项式拟合及误差分析

§ 6. 1用最小二乘法求解矛盾方程组

- 1.基本思想:从一组测量数据(x_i , y_i)(i=0,...,N)中寻找变量函数关系的近似表达式 y = f(x).
- 最小二乘法:给定的一组数据要求找一类函数 $y = S^*$ (x)使误差 δ (2范数、欧氏范数)平方和最小。

$$\|\delta\|_{2}^{2} = \sum_{i=0}^{N} \delta_{i}^{2} = \min \sum_{i=0}^{N} [S(x_{i}) - y_{i}]^{2}$$

矛盾方程组:方程组系数矩阵与增广矩阵的秩不相等时,方程无解。

2018/3/9 Friday 4/99

2.设线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{N1}x_1 + a_{N2}x_2 + \dots + a_{Nn}x_n = b_N \end{cases}$$

的矩阵形式为: $A\mathbf{x} = \mathbf{b}$

■ 求解矛盾方程组的前提: 上述方程组的秩 rank A = n 时,必须有N > n前提,才能够求解矛盾方程组

2018/3/9 Friday 5/99

- 定理6.1: P131类似于高等数学中的极值定理: (1) 驻点条件: (2) 极大值或极小值判定条件。
- **定**理6.2: P131 构造n阶线性方程组的方法;方程组有唯一解的形式(正则方程组): $A^TA \cdot \mathbf{x} = A^T\mathbf{b}$
- 定理6.3: P133 矛盾方程组的解存在;构造n阶线性方程组的解唯一,且是最小二乘解。

2018/3/9 Friday 6/99

例6.1 用列主元素和平方根三角分解法求解下列矛盾方程组 $A \cdot \mathbf{x} = \mathbf{b}$ 的最小二乘解。

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

2018/3/9 Friday **7**/99

解:方程组 $A \cdot \mathbf{x} = \mathbf{b}$ 的矩阵为 6×3 的,rankA = 3,存在最小二乘解。

构造正则方程组: $A^TAx = A^Tb$, 即得

$$\begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix}$$

(1) 列主元素求解增广矩阵

$$\begin{bmatrix} \triangleright 3 \triangleleft & -1 & -1 | -1 \\ -1 & 3 & -1 | 1 \\ -1 & -1 & 3 | 6 \end{bmatrix} \xrightarrow{\begin{array}{c} r_2 + r_1/3 \\ r_3 + r_1/3 \end{array}} \begin{bmatrix} \triangleright 3 \triangleleft & -1 & -1 | -1 \\ 0 & \triangleright 8/3 \triangleleft & -4/3 | 2/3 \\ 0 & -4/3 & 8/3 | 17/3 \end{bmatrix}$$

$$\Rightarrow x_3 = 3 \qquad x_2 = 7/4 \qquad x_1 = 5/4$$

§ 6.2 多项式的曲线拟合

- 1.基本思想:拟合曲线不一定要通过测量数据(x_i , y_i 点,只要保证该点偏差的平方和达到最小值,就是最小二乘解,也是正则方程组的解。
- 正则方程组的形式
- 均方差的计算
- 与插值多项式的区别

2018/3/9 Friday 9/99

已知一组测量数据:

X_i	x_1	x_2	•••	x_N
y_i	y_1	y_2		y_N

可以用一个次数低于N-1的多项式来拟合这组数据,使 之能够最好地反映实验规律。此时的问题就转化为求

$$y = \varphi(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$
 (m

(其中ai是待定系数) 使其能"最好"的拟合这组实验数据。如果选择"最好"的标准为 使得在 x_i 的偏差的平方和最小

$$Q = \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{N} [\varphi(x_i) - y_i]^2$$

将各测量点代入 $y = \varphi(x)$ 可得关于待定系数 a_i 的矛盾方程组

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_m x_1^m = y_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_m x_2^m = y_2 \\ & \dots \\ a_0 + a_1 x_N + a_2 x_N^2 + \dots + a_m x_N^m = y_N \end{cases}$$

写为矩阵形式 Ax = b , 其中:

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^m \\ 1 & x_2 & x_2^2 & \cdots & x_2^m \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^m \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

2018/3/9 Friday /99

正则方程组 $A^T A \cdot \mathbf{x} = A^T \mathbf{b}$ 求得的系数向量 $\{a_i\}$ 的方法就是拟合曲线的最小二乘法。 其中:

$$A^{T}A = \begin{bmatrix} N & \sum_{i=1}^{N} x_{i} & \cdots & \sum_{i=1}^{N} x_{i}^{m} \\ \sum_{i=1}^{N} x_{i} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{N} x_{i}^{m} & \sum_{i=1}^{N} x_{i}^{m+2} & \cdots & \sum_{i=1}^{N} x_{i}^{2m} \end{bmatrix}$$

$$A^Tb = \begin{cases} \sum_{i=1}^N y_i \\ \sum_{i=1}^N x_i y_i \\ \vdots \\ \sum_{i=1}^N x_i^m y_i \end{cases}$$

定理6.4 设向量 $\{a_i\}$ 互异,且N>m+1,则正则方程组有唯一解。(证明略)

2018/3/9 Friday 12/99

例6.2 试用最小二乘法求一个多项式,使得下列数据向拟合

(计算取4位小数)

X_i	1	3	4	5	6	7	8
y_i	10	5	4	2	1	1	2

解:(1)作草图,看出函数图形近似为抛物线: 见P139图6.1

- (2) 构造拟合曲线多项式: $y = \varphi(x) = a_0 + a_1 x + a_2 x^2$
- (3) 写出矛盾方程组的矩阵形式 Ax = b

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \\ 1 & 6 & 36 \\ 1 & 7 & 49 \\ 1 & 8 & 64 \end{bmatrix}, \quad x = \begin{cases} a_0 \\ a_1 \\ a_2 \end{cases}, \quad b = \begin{cases} 10 \\ 5 \\ 4 \\ 2 \end{cases}$$

(4) 写出正则方程组: $A^TAx = A^Tb$, 并求解

$$\begin{bmatrix} 7 & 34 & 200 \\ 34 & 200 & 1288 \\ 200 & 1288 & 8756 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 25 \\ 80 \\ 382 \end{bmatrix}$$

$$\Rightarrow a_0 = 13.4451$$
 $a_1 = -3.5850$ $a_2 = 0.2639$ 。即拟合曲线为 $y = 3.4451 - 3.5850x + 0.2639x^2$

(5) 拟合曲线的均方差和最大偏差

均方差
$$\|\delta\|_2 = \sqrt{\sum_{i=1}^N [\varphi(x_i) - y_i]^2} = 0.9348$$

最大偏差
$$\|\delta\|_{\infty} = \max |\varphi(x_i) - y_i| = 0.6725$$

2018/3/9 Friday 14/99

例6.3 试用最小二乘法求一个经验公式, 使下列数据向拟合 (计算取4位小数)

1	2	3	4	5	6	7	8
15.3	20.5	27.4	36.6	49.1	65.6	87.8	117.6

解:随堂练习,仔细研读!

2018/3/9 Friday 15/99

例 6. 4 在某化学反应里,根据实验所得生成物的浓度与时间关系如下表,求浓度 y 与时间 t 的拟合曲线 y = F(t).

t(分)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У×10 ⁻³	4.00	6.40	8.00	8.80	9.22	9.50	9.70	9.86	10.00	10.20	10.32	10.42	10.50	10.55	10.58	10.60

解:将数据标在坐标纸上,可发现数据符合双曲线函数或指数函数。

1) 双曲线函数拟合

双曲线型:
$$\frac{1}{y} = a + \frac{b}{t}$$
, 即 $y = \frac{t}{(at+b)}$.

为了确定
$$a, b$$
, 令 $\overline{y} = \frac{1}{y}$, $x = \frac{1}{t}$,

由数据表 t,y 生成数据表 x, y. 于是可用 x 的线性函数 $S_1(x) = a + bx$ 拟合数据

$$(x_i, y_i)$$
 $(i = 1, \dots, 16)$ 。方法与上例一样解方程组

$$\begin{cases} 16a + 3.38073b = 1.8372 \times 10^{3}; \\ 3.38073a + 1.58435b = 0.52886 \times 10^{3}, \end{cases}$$

得 a = 80.6621, b = 161.6822.

从而有
$$y = t/(80.6621t + 161.6822) = F^{(1)}(t)$$
,

其误差为
$$\delta_i^{(1)} = y_i - F^{(1)}(t_i)$$
 $(i = 1, \dots, 16)$.

2) 指数函数拟合

拟合曲线形如 $y = ae^{b_t}$. 对其两边取对数 $\ln y = \ln a + b_t$.

为了确定
$$a, b$$
, 令 $\hat{y} = \ln y$, $A = \ln a$, $x = \frac{1}{t}$,

于是由 (t_i, y_i) 计算出 (x_i, \hat{y}_i) , 拟合数据的曲线仍为 $S_1(x) = A + bx$.

用例 8 的方法计算出 A = -4.48072, b = -1.0567,

从而
$$a = e^A = 11.3253 \times 10^{-3} e^{-1.0567t} = F^{(2)}(t)$$
,

误差为
$$\delta_i^{(2)} = y_i - F^{(2)}(t_i)$$
 $(i = 1, \dots, 16)$.

3) 两个模型的比较

本例经计算可得
$$\max_{i} \left| \delta_{i}^{(1)} \right| = 0.568 \times 10^{-3}, \quad \max_{i} \left| \delta_{i}^{(2)} \right| = 0.277 \times 10^{-3},$$

均方误差为
$$\sqrt{\sum_{i=1}^{m} (\delta_i^{(1)})^2} = 1.19 \times 10^{-3}$$
, $\sqrt{\sum_{i=1}^{m} (\delta_i^{(2)})^2} = 0.34 \times 10^{-3}$.

由此可知 $\delta^{(2)}$ 及 $\delta^{(2)}$ 都比较小,所以用 $y = F^{(2)}(t)$ 作拟合曲线较好。

确定拟合曲线的数学模型需选择比较。

2018/3/9 Friday 18/99

第六章的基本要求

- 最小二乘法的基本原理和求解矛盾方程 组的方法
- 掌握运用最小二乘法进行多项式拟合的 基本方法
- 了解多项式插值和多项式拟合的区别

作业: 1、2、6

2018/3/9 Friday 19/99

谢谢大家! 8

西北工业大学

航空学院

学时: 2个学时

内容: 1. 牛顿-柯特斯求积公式、2. 复化求

积公式、3. 高斯型求积公式、4. 数值微分

§ 7.1 牛顿一柯特斯求积公式

- 方法背景:牛顿一布莱尼兹定积分公式面临的问题
- 求积公式:
- 代数精确度:
- 截断误差:
- 方法的稳定性:

2018/3/9 Friday 22/99

面临的问题:如果函数f(x)在区间[a, b]上连续,且原函数为 F(x),则可用牛顿—莱布尼兹公式来求得定积分。但在实

际应用中原函数难求解。

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

积分中值定理: 在区间[a, b]上存在一点u使下式成立。

$$\int_{a}^{b} f(x)dx = (b-a) \cdot f(\mu)$$

则直观地出现梯形公式和矩形公式

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \cdot \left[f(a) + f(b) \right] \qquad \int_{a}^{b} f(x)dx = \left(b - a \right) \cdot f\left(\frac{a+b}{2} \right)$$

在积分区间[a, b]上取一系列点 $x_k(k=0,1,...,n)$,设

$$a < x_0 < x_1 < ... < x_n < b$$

被积分函数f(x)在该点的函数值 $f(x_k)$ 的线性组合作为积分近似值的算式称作求积公式。

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} \cdot f(x_{k})$$

其中, x_k 称作求积节点; A_k 称作求积系数。则记求积公式的截断误差 R[f] 为:

$$R[f] = \int_a^b f(x)dx - \sum_{k=0}^n A_k \cdot f(x_k)$$

2018/3/9 Friday 24/99

1. 牛顿-柯特斯求积公式

利用等距节点在区间 [a,b] 的插值多项式 $P_n(x)$ 构造插值型 求积公式。

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx = \sum_{k=0}^{n} A_{k} \cdot f(x_{k})$$

由于 A_k 与f(x)无关,只与节点 $x_k(k=0,...n)$ 有关,得:

$$A_k = (b - a) \cdot C_k^{(n)}$$

求积公式变化为如下的牛顿-柯特斯公式, $C_k^{(n)}$ 是柯特斯系数。 其截断误差记作 R_n [f]

$$\int_{a}^{b} f(x)dx \approx (b-a) \sum_{k=0}^{n} C_{k}^{(n)} \cdot f(x_{k})$$

$$R_n[f] = \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\xi) \omega_{n+1}(x) dx$$

2018/3/9 Friday 25/99

柯特斯系数算法

$$C_k^{(n)} = \frac{(-1)^{n-k}}{k!(n-k)!n} \int_0^n t(t-1)\cdots[t-(k-1)] \times [t-(k+1)]\cdots(t-n)dt$$

当n=1柯特斯系数下的求积公式就 是梯形公式。

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \cdot [f(a) + f(b)]$$

当n=2柯特斯系数下的求积公式是 辛浦生公式。

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} \cdot \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

当n=4柯特斯系数下的	的求积公式是
柯特斯公式。	

$$\int_{a}^{b} f(x)dx = \frac{b-a}{90} \cdot \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right]$$

n	$C_K^{(n)}$
1	$\frac{1}{2},\frac{1}{2}$
2	$\frac{1}{6}, \frac{4}{6}, \frac{1}{6}$
3	$\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}$
4	$\frac{7}{90}$, $\frac{32}{90}$, $\frac{12}{90}$, $\frac{32}{90}$, $\frac{7}{90}$

例7.1 试用梯形公式和辛浦生公式计算定积分 $\int_{0.5}^{1} \sqrt{x} dx$ (计算结果取5位有效数字)

解(1)用梯形公式计算

$$\int_{0.5}^{1} \sqrt{x} dx \approx \frac{1 - 0.5}{2} [f(0.5) + f(1)] = 0.25 \times [0.70711 + 1] = 0.42678$$

(2) 用辛浦生公式, 柯特斯系数为1/6, 4/6, 1/6

$$\int_{0.5}^{1} \sqrt{x} dx = \frac{1 - 0.5}{6} \cdot \left[\sqrt{0.5} + 4\sqrt{0.75} + \sqrt{1} \right] \approx 0.43093$$

(3) 积分的精确解

$$\int_{0.5}^{1} \sqrt{x} dx = \frac{2}{3} \cdot x^{3/2} \Big|_{0.5}^{1} = 0.43096$$

2018/3/9 Friday 27/99

2. 求积公式的代数精度

定义7.1 如果求积公式(7.1)对任何不高于m次的代数 多项式都准确地成立(即 $R_n(f) \equiv 0$),而对于某个m+1 次多项式不准确成立,则称该求积公式代数精度为m。

对牛顿-柯特斯公式,其代数精确度不低于*n*。 当*n*为偶数时,牛顿-柯特斯公式具有*n*+1次代数精确度 当*n*为奇数时,牛顿-柯特斯公式具有*n*次代数精确度。 梯形公式的代数精确度为1 辛浦生公式代数精确度为3 柯特斯公式代数精确度为5

2018/3/9 Friday 28/99

例7. 2 试确定求积公式 $\int_{-1}^{1} f(x) dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$ 的代数精度

解:设f(x)分别取 $1 \times x \times x^2 \times ... \times x^m$,计算求积公式是否能够精确成立。

- (1)取f(x)=1,有:左边=右边=2
- (2) 取f(x)=x,有: 左边=右边=0
- (3)类似导出 $f(x)=x^2$ 、 x^3 时 有左边=右边、
- (4)取 $f(x)=x^4$,有:左边=2/5 \neq 右边=2/9

当m≤3求积公式精确成立,因此,该求积公式具有3次代数精度。

2018/3/9 Friday 29/99

3. 求积公式的截断误差

定理7.1 设f(x)求积区间[a, b]上 具有连续2阶导数,则 梯形公式的截断误差为(证明用积分第二中值定理)

$$R_1[f] = -\frac{(b-a)^3}{12} f''(\eta) \qquad \eta \in (a,b)$$

$$|R_1[f]| \le \frac{(b-a)^3}{12} M_2 \qquad \max_{a \le x \le b} |f''(x)| \le M_2$$

定理7.2 设f(x)求积区间[a, b]上 具有连续2阶导数,则 辛普生公式的截断误差为(证明下去练习)

$$R_{2}[f] = -\frac{(b-a)^{5}}{2880} f^{(4)}(\eta) \qquad \eta \in (a,b)$$

2018/3/9 Friday 30/99

4. 求积公式的稳定性

从前面的讨论,容易形成一种固定的思路: n越大, 牛顿-柯特斯公式的精度越好,但事实并非如此。

在实际中, n越大, 计算过程中产生的误差累积越严重, 容易导致数值求积公式的稳定性和收敛性没有保证。

因此,在实际计算中很少用到*n*较大的牛顿-柯特斯公式

2018/3/9 Friday 31/99

5. 求积公式的待定系数法

给定n+1个节点 x_k ,构造至少具有n次代数精度的求积公式对求积公式(7.1)的f(x)都准确成立,则得到求积系数 A_k 的代数方程组:

$$\begin{cases} A_0 + A_1 + \dots + A_n = b - a \\ A_0 x_0 + A_1 x_1 + \dots + A_n x_n = (b^2 - a^2)/2 \\ \dots \\ A_0 x_0^n + A_1 x_1^n + \dots + A_n x_n^n = (b^{n+1} - a^{n+1})/(n+1) \end{cases}$$

求出待定系数4、即可求的求积公式。

(例题7.3P154)

2018/3/9 Friday 32/99

§ 7.2 复化求积公式

1. 复化梯形、复化辛普生、复化柯特斯求积公式 复化梯形求积公式

$$T_{N} = \int_{a}^{b} f(x)dx = \frac{h}{2} \cdot \left[f(a) + 2 \sum_{k=1}^{N-1} f(x_{k}) + f(b) \right]$$

复化辛普生求积公式

$$S_N = \int_a^b f(x)dx = \frac{h}{6} \cdot \left[f(a) + 4 \sum_{k=0}^{N-1} f\left(x_{k+\frac{1}{2}}\right) + 2 \sum_{k=1}^{N-1} f\left(x_k\right) + f(b) \right]$$

复化柯特斯求积公式

$$C_{N} = \int_{a}^{b} f(x)dx = \frac{h}{90} \cdot \left[7f(a) + 32\sum_{k=0}^{N-1} f\left(x_{k+\frac{1}{4}}\right) + 12\sum_{k=0}^{N-1} f\left(x_{k+\frac{1}{2}}\right) + 32\sum_{k=0}^{N-1} f\left(x_{k+\frac{3}{4}}\right) + 14\sum_{k=1}^{N-1} f\left(x_{k}\right) + 7f(b) \right]$$

2018/3/9 Friday 33/99

2. 复化求积公式的截断误差 复化梯形求积公式截断误差

$$R_{1}^{(N)}[f] = -\frac{(b-a)^{3}}{12}h^{2}f''(\eta) \qquad \eta \in (a,b)$$

$$\left|R_{1}^{(N)}[f]\right| \le \frac{(b-a)^{3}}{12}h^{2}M_{2} \qquad \max_{a \le x \le b} \left|f''(x)\right| \le M_{2}$$

复化辛普生求积公式截断误差

$$R_{2}^{(N)}[f] = -\frac{(b-a)^{5}}{2880}h^{4}f^{(4)}(\eta) \qquad \eta \in (a,b)$$
$$\left|R_{2}^{(N)}[f]\right| \le \frac{(b-a)^{5}}{2880}h^{4}M_{4} \qquad \max_{a \le x \le b} \left|f^{(4)}(x)\right| \le M_{4}$$

2018/3/9 Friday 34/99

例7.4 用复化梯形公式和复化辛普生公式计算积分 ∫ e^xdx 的近似值, 若要求误差不超过0.5x10⁻⁴至少要多少节点。

解: 由 $f(x) = e^x$, $f''(x) = f^{(4)}(x) = e^x$ 得:

$$\max_{a < x \le b} |f''(x)| = \max_{a < x \le b} |f''(x)| = e = M_2 = M_1$$

对于复化梯形公式:

$$|R_{1}^{(N)}[f]| \le \frac{(b-a)^{3}}{12}h^{2}M_{2} = \frac{e}{12N^{2}} \le \frac{1}{2} \times 10^{-4}$$

 $\Rightarrow N \ge 67.3$

所以,N为整数取值68, 节点至少为N+1=69个

对于孵化辛普生公式:

$$|R_2^{(N)}[f]| \le \frac{(b-a)^5}{2880} h^4 M_4 = \frac{e}{2880N^4} \le \frac{1}{2} \times 10^{-4}$$

 $\Rightarrow N \ge 2.1$

所以, N为整数取值3, 节点至少为2N+1=7个

谢谢大家!9

西北工业大学

航空学院

§ 7.4 高斯 (Gauss) 型求积公式

1. 高斯求积公式 节点适当选择,提高求积公式代数精度,最高达到2n+1

定义7.2 把具有n+1个节点的具有2n+1次代数精度的插值型 求积公式称为高斯型求积公式,节点 x_k 是高斯点, A_k 是高斯系数 n

 $\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} \cdot f(x_{k})$

高斯型求积公式的关键在于确定高斯点,由n+1个高斯点构造基函数 $L_k(x)$,最后用下式计算高斯系数 A_k 。

$$A_k = \int_a^b l_k(x) dx = \int_a^b \frac{\omega_{n+1}(x)}{(x - x_k)\omega_{n+1}'(x_k)} dx$$

2018/3/9 Friday 37/99

定理7.4 对于插值型求积公式(7.2),其节点 $x_k(k=0,1,...,n)$

是高斯点的充要条件是以该点为零点的多项式
$$\omega_{n+1}(x) = \prod_{j=0}^{n} (x - x_j)$$

与次数不超过n的任意多项式P(x)在区间 [a,b] 上正交

$$\int_{a}^{b} P(x)\omega_{n+1}(x)dx = 0$$

证明:必要条件

 $P(x)\omega_{n+1}(x)$ 次数不超过2n+1的多项式,由高斯点定义以及

$$\omega_{n+1}(x) = 0 \Longrightarrow \int_a^b P(x)\omega_{n+1}(x)dx = \sum_{k=0}^n A_k P(x_k)\omega_{n+1}(x_k) = 0$$

充分条件(证明略)

对定理7.4 的说明

- (1) 具有n+1个节点的差值型公式(7.2) 的代数精度最高是2n+1, 因此高斯型求积公式的代数精度最高
- (2) 高斯点的求解方法。就是任意不超过n次的多项式P(x)在 [a,b] 区间上正交多项式 $\omega_{n+1}(x)$ 的零点为高斯点
- (3) 插值型求积公式(7.2)的代数精度为2n+1的充分必要 条件是多项式 $\omega_{n+1}(x)$ 与P(x)在区间[a,b]上正交

2018/3/9 Friday 39/99

2. 勒让德多项式

n次勒让德多项式为:

$$\Gamma_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \qquad x \in [-1,1], n = 0,1,2...$$

其性质

- (1) n次勒让德多项式与任意次数不超过n-1的多项式在区间[-1, 1]上正交
- (2) n次勒让德多项式的n个零点都在区间[-1, 1]。例如:

$$n=1$$
的一次勒让德多项式 x 的零点为... $n=2$ 的一次勒让德多项式 $3x^2/2-1/2$ 的零点为... $-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}$ $n=3$ 的一次勒让德多项式 $5x^3/2-3x/2$ 的零点为... $-\frac{\sqrt{0.6}}{0.0}, \sqrt{0.6}$

2018/3/9 Friday 40/99

3. 高斯-勒让德求积公式

积分区间 [-1, 1] 上的插值型求积公式的代数精度为 2n+1的充要条件是多项式 $\omega_{n+1}(x)$ 与 $\Gamma(x)$ 在区间 [-1,1] 上正交。取:

$$\omega_{n+1}(x) = \prod_{j=0}^{n} (x - x_j) = \frac{2^{n+1} [(n+1)!]^2}{(2n+2)!} \Gamma_{n+1}(x)$$

用n+1次勒让德多项式零点作为高斯点的高斯求积公式:

$$\int_{-1}^{1} f(x)dx \approx \sum_{k=0}^{n} A_k f(x_k)$$

求积系数:
$$A_k = \frac{2}{(1-x_k^2)[\Gamma'_{n+1}(x_k)]^2}$$
 $k = 0,1...,n$

2018/3/9 Friday 41/99

经过零点和求积系数计算,有具体的高斯-勒让德求积公式一点高斯-勒让德求积公式(n=0)

$$\int_{-1}^{1} f(x)dx \approx 2f(0)$$

两点高斯-勒让德求积公式(n=1)

$$\int_{-1}^{1} f(x)dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

三点高斯-勒让德求积公式(n=2)

$$\int_{-1}^{1} f(x)dx \approx \frac{5}{9} f\left(-\sqrt{0.6}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{0.6}\right)$$

容易求得它们的代数精度分别为1,3,5。

2018/3/9 Friday 42/99

对于任意积分函数 $\int_a^b f(x)dx$,需要通过变量代换,将积分区间

[a,b]转化为[-1,1] 区间的积分

设:
$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$
$$\varphi(t) = f\left(\frac{a+b}{2} + \frac{b-a}{2}t\right)$$

则任意积分转化为:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{a+b}{2} + \frac{b-a}{2}t)dt = \frac{b-a}{2} \int_{-1}^{1} \varphi(t)dt$$

之后,可以通过高斯-勒让德求积公式计算积分 $\int_{-1}^{1} \varphi(t) dt$

2018/3/9 Friday 43/99

例7.9用一点和两点高斯 – 勒让德求积公式计算积分 $I=\int_0^{\frac{\pi}{2}} f(x)dx$

解: 变量代换 $\left[0,\frac{\pi}{2}\right]$ 转化为 $\left[-1,1\right]$ 区间的积分

设:
$$x = \frac{a+b}{2} + \frac{b-a}{2}t = \frac{\pi}{4}(1+t)$$
 $\varphi(t) = (1+t)^2 \cos \frac{\pi(1+t)}{4}$

则积分转化为:
$$I = \left(\frac{\pi}{4}\right)^3 \int_{-1}^1 \varphi(t) dt$$

用一点求积公式:
$$I \approx \left(\frac{\pi}{4}\right)^3 \cdot 2\varphi(0) = 0.36840$$

用两点求积公式:
$$I \approx \left(\frac{\pi}{4}\right)^3 \left[\varphi(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})\right]$$

$$= \left(\frac{\pi}{4}\right)^{3} \left[\left(1 - \frac{1}{\sqrt{3}}\right)^{2} \cos \frac{\pi}{4} \left(1 - \frac{1}{\sqrt{3}}\right) + \left(1 + \frac{1}{\sqrt{3}}\right)^{2} \cos \frac{\pi}{4} \left(1 + \frac{1}{\sqrt{3}}\right) \right] = 0.6163$$

该积分4位有效数的近似值等于0.4674,低阶高斯误差较大!!

4. 高斯型求积公式截断误差

定理7.5 设f(x)在积分区间[-1, 1]内具有2n+2阶导数,则高斯型求积公式的截断误差为:

$$R[f] = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} \omega_{n+1}^{2}(x) dx$$

式中:
$$\xi \in [a,b], \omega_{n+1}(x) = \prod_{j=0}^{n} (x-x_j)$$

证明略

2018/3/9 Friday 45/99

§ 7.5 数值微分

数值微分目的:对于给定的函数表,求函数在某一点的导数值

- 微分公式的几何意义
- 常用微分公式
- 数值微分的稳定性

2018/3/9 Friday 46/99

1、差商型求导公式

由导数定义
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(1) 向前差商公式

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

(2) 向后差商公式

$$f'(x) \approx \frac{f(x) - f(x-h)}{h}$$

(3) 中心差商公式 (中点方法)

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

2018/3/9 Friday 47/99

2. 差商型求导公式的余项

曲 Taylor 公式
$$f'(x) - \frac{f(x+h) - f(x)}{h} = -\frac{f''(x+\theta_1 h)}{2} h = O(h)$$

$$f'(x) - \frac{f(x) - f(x-h)}{h} = \frac{f''(x-\theta_2 h)}{2} h = O(h)$$

$$f'(x) - \frac{f(x+h) - f(x-h)}{2h}$$

$$= -\frac{f^{(3)}(x+\theta_1 h) + f^{(3)}(x-\theta_2 h)}{6} h^2 = O(h^2)$$

$$0 < \theta_1, \theta_2 < 1$$

从截断误差的角度看,步长越小,计算结果越准确;

从舍入误差的角度来看,步长不宜太小。

2018/3/9 Friday 48/99

3、插值型求导公式

若已知函数f(x)在[a,b]内n+1个节点 $(x_i,f(x_i))$ $(i=0,1,\cdots,n)$,可用其插值多项式 $P_n(x)$ 的导数近似函数f(x)的导数。

$$\boxplus R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

$$\Rightarrow f'(x) - P_n'(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}'(x) + \frac{\omega_{n+1}(x)}{(n+1)!} \frac{d}{dx} f^{(n+1)}(\xi)$$

对任意 $x \in [a,b]$,因 ξ 未知,故上式很难估计误差,但若只求某个节点上的导数值,误差可估计。

$$f'(x_i) - P_n'(x_i) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x_i) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{\substack{j=0\\i\neq i}}^n (x_i - x_j)$$

因此,插值型求导公式通常用于求节点处导数的近似值。

2018/3/9 Friday 49/99

4. 常用微分公式: 一阶两点公式

设给出两节点 $(x_0, f(x_0)), (x_1, f(x_1)), 记x_1 - x_0 = h$

有
$$P_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1).$$

$$\Rightarrow P_1'(x) = \frac{1}{h}[-f(x_0) + f(x_1)]$$

$$\Rightarrow P_1'(x_0) = \frac{1}{h}[f(x_1) - f(x_0)],$$

$$P_1'(x_1) = \frac{1}{h}[f(x_1) - f(x_0)];$$

带余项的两点公式是:

$$f_1'(x_0) = \frac{1}{h} [f(x_1) - f(x_0)] - \frac{h}{2} f''(\xi_1),$$

$$f_1'(x_1) = \frac{1}{h} [f(x_1) - f(x_0)] + \frac{h}{2} f''(\xi_2).$$

2018/3/9 Friday 50/99

5. 常用数值微分公式: 一阶、二阶三点公式

带余项的三点求导公式:

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_1) - f(x_2)] + \frac{h^2}{3} f'''(\xi);$$

$$f'(x_1) = \frac{1}{2h} [-f(x_0) + f(x_2)] - \frac{h^2}{6} f'''(\xi); \quad (中点公式)$$

$$f'(x_2) = \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)] + \frac{h^2}{3} f'''(\xi).$$

带余项的二阶三点公式:

$$f''(x_1) = \frac{1}{h^2} (f(x_1 - h) - 2f(x_1) + f(x_1 + h)) - \frac{h^2}{12} f^{(4)}(\xi).$$

2018/3/9 Friday 51/99

第七章的基本要求

- 牛顿-柯特斯求积公式和算法
- ■一些常用的求积公式和截断误差
- 数值微分的一些基本概念和常用方法

作业: 1、4、5(2)、9

2018/3/9 Friday 52/99

谢谢大家! 10

西北工业大学

航空学院

学时: 2个学时

内容: 1. 欧拉法与梯形法、2. 泰勒展开法

与龙格-库塔方法

一阶常微分方程的初值问题:

$$\begin{cases} \frac{dy}{dx} = f(x, y) & a \le x \le b \\ y(x_0) = y_0 \end{cases}$$

例: 方程 $xy'-2y=4x \Rightarrow y'=\frac{2y}{x}+4$

令:
$$f(x,y) = \frac{2y}{x} + 4$$
 且给出初值 $y(1) = -3$

就得到一阶常微分方程的初值问题:

$$\begin{cases} \frac{dy}{dx} = f(x,y) = \frac{2y}{x} + 4\\ y(1) = -3 \end{cases}$$

2018/3/9 Friday 55/99

只要函数f(x,y)适当光滑连续,且关于y满足李普希兹(Lipschitz)条件,即存在常数L,使得

$$\left| f(x,y) - f(x,\overline{y}) \right| \le L \left| y - \overline{y} \right|$$

由常微分方程理论知,初值问题的解必存在且唯一。

微分方程的数值解: 设方程问题的解y(x)的存在区间是

[a,b],令 $a=x_0 < x_1 < ... < x_n = b$,其中 $h_k = x_{k+1} - x_k$,如是等距节点 h=(b-a)/n,h称为步长。

y(x)的解析表达式不容易得到或根本无法得到,我们用数值 方法求得y(x)在每个节点 x_k 上 $y(x_k)$ 的近似值,用 y_k 表示,即 $y_k \approx y(x_k)$,这样 $y_0, y_1, ..., y_n$ 称为微分方程的数值解。

2018/3/9 Friday 56/99

§ 8.1 欧拉方法与梯形方法

求解目的:对于给定初值的常微分方程,求该方程的定解

- 欧拉法计算公式
- 梯形法计算公式
- 欧拉预估-校正公式
- 数值解法的误差估计、收敛性与稳定性

2018/3/9 Friday 57/99

一、Euler 公式

计算公式:

$$\begin{cases} y(x_0) = y_0 \\ y_{n+1} = y_n + hf(x_n, y_n) & n = 0, 1, \dots \end{cases}$$

1, 几何意义。

由 (x_0, y_0) 出发取曲线 y = y(x) 的切线 (存在!),则 斜率

$$\left| \frac{dy}{dx} \right|_{(x_0, y_0)} = f(x_0, y_0)$$

由于 $f(x_0, y_0)$ 及 (x_0, y_0) 已知,必有切线方程。

2018/3/9 Friday 58/99

由点斜式写出切线方程

$$y = y_0 + (x - \chi_0) \frac{dy}{dx} \Big|_{(x_0, y_0)} = y_0 + (x - \chi_0) f(\chi_0, y_0)$$

等步长为h,则 $\chi_1 - \chi_0 = h$,可由切线算出 y_1 :

$$y_{1} = y_{0} + hf(x_{0}, y_{0})$$

逐步计算出y = y(x)在 x_{n+1} ,点值:

$$y_{n+1} = y_n + hf(x_n, y_n) \qquad n = 0, 1, 2,$$

$$n = 0, 1, 2, \cdots$$

注意:这是"折线法"而非"切线法" ◆ 除第一个点是曲线切线外,其他点不是!

59/99 2018/3/9 Friday

A· 用差商代替微商

$$\frac{dy}{dx}\bigg|_{(x_n, y_n)} = \frac{y(x_{n+1}) - y(x_n)}{x_{n+1} - x_n} = f(x_n, y(x_n))$$

用
$$h = \chi_{n+1} - \chi_n, \ y_n \approx y(\chi_n), \ y_{n+1} \approx y(\chi_{n+1})$$
 代替,则:

$$\frac{y_{n+1} - y_n}{h} = f(x_n, y_n)$$

$$y_{n+1} = y_n + hf(x_n, y_n) \qquad n = 0, 1, 2, \dots$$

$$n = 0, 1, 2, \cdots$$

2018/3/9 Friday

B. 数值积分

用数值积分方法离散化:

取左端点的矩形公式

$$\int_{x_n}^{x_{n+1}} f(x, y) dx \approx h f(x_n, y_n)$$

则有

$$y_{n+1} - y_n = hf(x_n, y_n)$$
 $(n = 0, 1, \dots)$

6 /99 2018/3/9 Friday

C· 在 χ_n 附近 y(x) 的 Taylor 展开:

$$y(\chi_n + h) = y(\chi_n) + h y'(\chi_n) + \frac{h^2}{2} y''(\chi_n) + \cdots$$

$$= y(\chi_n) + hf(\chi_n, y(\chi_n)) + \frac{h^2}{2} y''(\chi_n) + \cdots$$

取 h 的线性部分,且 $y_n \approx y(\chi_n)$ 得 $y(\chi_{n+1})$ 的近似值:

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 $n = 0, 1, 2, \cdots$

Taylor展开法不仅可得到求数值解的公式,且容易估计截断误差。

 $\frac{62}{99}$

二、梯形公式

曲积分途径:
$$y(\boldsymbol{\chi}_{n+1}) = y(\boldsymbol{\chi}_n) + \int_{\boldsymbol{\chi}_n}^{\boldsymbol{\chi}_{n+1}} f(\boldsymbol{x}, \boldsymbol{y}) dt$$

利用积分的梯形公式,且令:
$$y_{n+1} = y(\chi_{n+1})$$
 $y_n = y(\chi_n)$

得梯形法的初值问题数值求解公式

$$y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$

梯形法公式是关于 y_{n+1} 的隐式方法,而欧拉法是显式方法梯形公式不容易求解 y_{n+1} ,需要结合欧拉公式使用。

2018/3/9 Friday 63/99

三、欧拉预估-校正公式

欧拉法与梯形法相结合,形成迭代算法,对 $n=0,1,2,\cdots$ 有:

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)}) \right) k = 0,1,2,\dots \end{cases}$$

使用中h较小时上式第二式只迭代一次,得欧拉预估-校正公式

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(0)}) \right) \end{cases}$$

第一式称为预估公式;第二式成为校正公式。

2018/3/9 Friday 64/99

例8.1 用欧拉法、迭代公式(8.7)和预估-校正法求解在区间[0,1]

上初值问题的数值解(h = 0.1),并与精确解 $y = \sqrt{1 + 2x}$ 进行比较.

$$\begin{cases} y' = y - 2x/y \\ y(0) = 1 \end{cases}$$

解: 己知步长h = 0.1、 $x_0 = 0$ 和f(x,y) = y - 2x/y,则分别得到:

欧拉注:
$$y_{n+1} = y_n + h \left(y_n - \frac{2x_n}{y_n} \right)$$
 $y_0 = 1$, $h = 0.1$

预估-校正:
$$\begin{cases} y_{n+1}^{(0)} = y_n + h \left(y_n - \frac{2x_n}{y_n} \right) & y_0 = 1, \quad h = 0.1 \\ y_{n+1} = y_n + \frac{h}{2} \left[\left(y_n - \frac{2x_n}{y_n} \right) + \left(y_{n+1}^{(0)} - \frac{2x_{n+1}}{y_{n+1}^{(0)}} \right) \right], k = 0,1,2,\cdots$$

所得结果见P183的表8.1

例8.2 用梯形公式解初值问题:

$$\begin{cases} \frac{dy}{dx} = y^2, 0.0 \le x \le 0.4 \\ y(0) = 1 \end{cases}$$

解: $y_0 = 1, h = 0.1$ 用下面的迭代公式,对每个迭代4次

$$\begin{cases} y_{n+1}^{(0)} = y_n + hy_n^2 \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} \left[y_n^2 + \left(y_{n+1}^{(k)} \right)^2 \right] & k = 1, 2, 3, 4 \end{cases}$$

该方程的精确是: $y = \frac{1}{1-x}$

计算结果如表所示

n	X _n	\mathcal{Y}_n	$y(x_n)$	$ y_n - y(x_n) $
1	0.1	1.1118	1.1111	0.0007
2	0.2	1.2520	1.2500	0.0020
3	0.3	1.4331	1.4236	0.0095
4	0.4	1.6763	1.6667	0.0004

2018/3/9 Friday 66/99

四、方法误差估计、收敛性和稳定性

定义8.1 数值方法的局部(整体)截断误差: P183

(1) 欧拉方法的局部截断误差

$$R_n = y(x_{n+1}) - y_{n+1} = \frac{h^2}{2} y''(\xi_n) \qquad (x_n \le \xi \le x_{n+1})$$

(2) 梯形法的局部截断误差

$$R_n = y(x_{n+1}) - y_{n+1} = -\frac{h^3}{12} y'''(\xi_n) \qquad (x_n \le \xi \le x_{n+1})$$

(3) 欧拉预估-校正法的局部截断误差

$$R_{n} = y(x_{n+1}) - y_{n+1} = -\frac{h^{3}}{3!} y'''(\xi_{n}) - O(h^{3}) = O(h^{3})$$
$$(x_{n} \le \xi \le x_{n+1})$$

2018/3/9 Friday 67/99

定义8.2 p阶精度 R_n = $O(h^{p+1})$: P185 欧拉法1阶精度,而梯形法和欧拉预估-校正法具有2阶精度 定理8.1 欧拉方法的整体截断误差—P185

如果f(x,y)关于y满足李普希兹条件: $|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2|$

且局部截断误差有界
$$|R_n| \le \frac{1}{2}h^2M_2$$
 $(n = 1, 2, ...)$

则欧拉法的整体截断误差 ε_n

$$\left| \varepsilon_n \right| \le e^{(b-a)L} \left| \varepsilon_0 \right| + \frac{hM_2}{2L} (e^{(b-a)L} - 1)$$

其中L是李普希兹常数,(b-a)为求解区间的长度,

$$M_2 = \max_{x \in \mathcal{X}} |y''(x)|$$

证明过程略。

2018/3/9 Friday 68/99

定义8. 3 方法收敛性: -P187 $x_n = x_0 + nh$ 如果某一数值方法对于低意固定的 当 $h \to 0$ 时(同时 $n \to \infty$)时,有 则称该方法是收敛的。

定义8. 4 方法稳定性: -P187 用某一数值方法求解初值问题时,如果步长h固定,仅在一个节点 y_m 上产生大小为 δ 的扰动时,如果由这个扰动引起的以后各节点值 y_k (k>m)的变化均不超过 δ ,则称该数值方法是稳定的。为了讨论稳定性问题,我们通常将满足李普希兹条件的微分方程模型化。

即设 $\partial f/\partial y = \lambda = 常数$, 此时微分方程是线性方程, $y' = \lambda y$

通常为保证稳定性进一步假定 $\lambda < 0$ 。(非线性如何的特例说明)

2018/3/9 Friday 69/99

欧拉法、梯形法与欧拉预估一校正法的稳定性

欧拉法计算公式写成: $y_{n+1} = y_n + hf(x_n, y_n) = y_n + hy' = y_n + \lambda hy_n$ 设在 y_n 上有扰动 δ_n ,传播到 y_{n+1} 变为 δ_{n+1} 。 假设用 $y_{n+1}^* = y_n + \delta_n$ 按欧拉法计算得出 $y_{n+1}^* = y_{n+1} + \delta_{n+1}$ 的过程不再产生新误差,则:

$$y_{n+1} = y_n + \lambda h y_n = (1 + \lambda h) y_n^* \Rightarrow \delta_{n+1} = (1 + \lambda h) \delta_n$$
 可见,只要h充分小,使得下式成立,则欧拉法是稳定的。

$$|1 + \lambda h| \le 1$$
或者 $0 \le h \le -2/\lambda$

同样计算出梯形法的稳定性条件为

$$\left| \frac{1 + \frac{1}{2} \lambda h}{1 - \frac{1}{2} \lambda h} \right| \le 1$$

欧拉预估一校正公式的稳定性条件

$$\left|1 + \lambda h + \frac{1}{2} (\lambda h)^2\right| \le 1$$

2018/3/9 Friday **70**/99

例8.3 用欧拉法、梯形法和预估-校正法计算y(1)的近似值,要求分别取h=0.2,0.1,0.01,0.0001计算.并与精确值0.2061154E-8b比较

$$\begin{cases} y' = -20y \\ y(0) = 1 \end{cases}$$

解: 已知步长h求解y(1), f(x,y) = -20y, 则分别得到:

欧拉法: $y_{n+1} = y_n - 20hy_n$ $y_0 = 1$, $h = 0.2, 0.1, 0.01, \dots$

梯形法:
$$y_{n+1}^{(0)} = y_n - 20hy_n$$
$$y_{n+1}^{(k+1)} = y_n - 10h(y_n + y_{n+1}^{(k)}), k = 0,1,2,\cdots$$

所得结果见P190的表8.2

2018/3/9 Friday **71**/99

§ 8. 2 泰勒展开法与龙格-库塔法

求解目的:对于给定初值的常微分方程,求该方程的定解(高阶单步数值法)

- 泰勒展开法计算公式
- 龙格-库塔法计算公式
- 龙格-库塔法的稳定性

2018/3/9 Friday 72/99

一、泰勒展开法

若用p阶Taylor多项式近似函数 $y(x_{n+1})$ 有:

$$y_{n+1} \approx y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \dots + \frac{h^p}{p!}y^{(p)}(x_n)$$

$$\sharp \psi'(x) = f(x, y), \ y''(x) = f_x'(x, y) + f_y'(x, y) f(x, y), \dots \dots$$

但由于公式中各阶偏导数计算复杂,不实用。

局部截断误差:
$$R_n = \frac{h^{p+1}}{(p+1)!} y^{(p+1)} (\xi_n)$$

以上表达式称为p阶泰勒方法,当=1就是欧拉公式。当=2时,就得到二阶泰勒方法:

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} [f_x'(x_n, y_n) + f(x_n, y_n)f_y'(x_n, y_n)]$$

2018/3/9 Friday 73/99

二、龙格-库塔(RK)法

间接利用泰勒展开的思想、避免高阶偏导数的计算困难。

一般地,RK方法设近似公式为

$$\begin{cases} y_{n+1} = y_n + h \sum_{i=1}^{p} c_i K_i \\ K_1 = f(x_n, y_n) \\ K_i = f(x_n + a_i h, y_n + h \sum_{j=1}^{i-1} b_{ij} K_j) & (i = 2, 3 \dots, p) \end{cases}$$

确定原则是使近似公式在 (x_n, y_n) 处的Taylor展开式与y(x)在 x_n 处的Taylor展开式的前面项尽可能多地重合。

74/99 Friday

龙格-库塔(RK)法在p=1时就是欧拉法,当p=2和3时就是二阶和三阶RK方法,具体表述如下:

当p=2时,近似公式为
$$\begin{cases} y_{n+1} = y_n + h(c_1K_1 + c_2K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + a_2h, y_n + hb_{21}K_1) \end{cases}$$

常用的三阶RK公式为:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 4K_2 + K_3) \\ K_1 = f(x_n, y_n) \end{cases}$$

$$K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1)$$

$$K_3 = f(x_n + h, y_n - hK_1 + 2hK_2)$$

2018/3/9 Friday **75**/99

对p=4,即四个点,可导出四阶RK公式。 常用的四阶RK公式为:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) \\ K_4 = f(x_n + h, y_n + hK_3) \end{cases}$$

2018/3/9 Friday **76**/99

两点说明:

- 1) 当p=1,2,3,4时,RK公式的最高阶数恰好是p,当p>4时,RK公式的最高阶数不是p,如p=5时仍为4,p=6时RK公式的最高阶数为5。
- 2) RK方法的导出基于Taylor展开,故要求所求问题的解具有较高的光滑度。

当解充分光滑时,四阶RK方法确实优于改进 Euler法。对一般实际问题,四阶RK方法一般可达 到精度要求。

如果解的光滑性差,则用四阶RK方法解的效果 不如改进Euler法。

2018/3/9 Friday 77/99

例:设取步长h=0.2,从x=0直到x=1用四阶龙格一库塔

方法求解初值问题
$$\begin{cases} y' = y - \frac{2x}{y} & (0 < x < 1); \\ y(0) = 1. \end{cases}$$

解: 由经典的四阶龙格一库塔公式得

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4); \\ K_1 = y_n - \frac{2x_n}{y_n}; \\ K_2 = y_n + \frac{h}{2}K_1 - \frac{2x_n + h}{y_n + \frac{h}{2}K_1}; \\ K_3 = y_n + \frac{h}{2}K_2 - \frac{2x_n + h}{y_n + \frac{h}{2}K_2}; \\ K_4 = y_n + hK_3 - \frac{2(x_n + h)}{y_n + hK_3}. \end{cases}$$

2018/3/9 Friday 78/99

龙格库塔法的稳定性

一阶一级RK方法是欧拉法,其稳定条件:

$$|1 + \lambda h| \le 1$$

稳定区域如图A所示。

同样,二级RK方法的稳定条件:

$$\left|1 + \lambda h + \frac{1}{2} (\lambda h)^2\right| \le 1$$

四级RK方法的稳定条件与稳定区(图B):

$$\left| 1 + \lambda h + \frac{1}{2} (\lambda h)^2 + \frac{1}{6} (\lambda h)^3 + \frac{1}{24} (\lambda h)^4 \right| \le 1$$

三级RK方法的稳定条件大家自己推导!!!

2018/3/9 Friday 79/99

第八章的基本要求

- 两种常微分方程解法: 欧拉方法和龙格-库塔方法
- 收敛性和稳定性的概念,能分析一些基本公式的收敛性和稳定性。

作业: 2、4

2018/3/9 Friday 8**0**/99

谢谢大家! 11

西北工业大学

航空学院

学时:6个学时

内容: 1. 抛物型方程的差分解法

2. 双曲型方程的差分解法

3. 椭圆型方程的差分解法

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。

一维热传导方程:

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + f(x), \quad 0 \le t \le T$$

其中a是正常数,f(x)是给定的连续函数。

2018/3/9 Friday 83/99

偏微分方程,再加上边界条件、初始条件构成的数学 模型,只有在很特殊情况下才可求得解析解。随着计算机 技术的发展,采用数值计算方法,可以得到其数值解。

- 偏微分方程定解问题的数值解法主要有两种:
- 差分方法——又称为<u>有限差分方法</u>或<u>网格法</u>,是求偏微 分方程定解问题的数值解中应用最广泛的方法之一。√

> 有限元方法

2018/3/9 Friday 84/99

- 差分解法的基本思想:
- 将问题中出现的连续变量的函数用定义在网格点上离散变量的函数代替;
- 通过用网格点上函数的差商代替导数,将含连续变量的偏微分方程定解问题化成只含有限个未知数的代数方程组(称为差分格式)。
- 如果差分格式有解,且当网格无限变小时其解收敛于原微分方程定解 问题的解,则差分格式的解就作为原问题的近似解(数值解)。

用差分方法求偏微分方程定解问题一般需要解决以 下问题:

- ✓ (i) 选取网格;
- ✓ (ii) 对微分方程及定解条件选择差分近似,列出差分格式;
- ✓ (iii) 求解差分格式;
- ✓ (iv) 讨论差分格式解对于微分方程解的收敛性及误 差估计。

差分的基本概念:

一元函数
$$f(x)$$
, 当有增量 h 时,由泰勒展开式
$$f(x+h)=f(x)+hf'(x)+O(h^2)$$

$$f(x-h)=f(x)-hf'(x)+O(h^2)$$

得

$$f'(x) = \frac{f(x+h)-f(x)}{h} + O(h)$$
 --->前差公式 $f'(x) = \frac{f(x)-f(x-h)}{h} + O(h)$ --->后差公式 $f'(x) = \frac{f(x+h)-f(x-h)}{2h} + O(h^2)$ -->中心差分

差分的基本概念:

一元函数
$$f(x)$$
, 当有增量 h 时,由泰勒展开式
$$f(x+h)=f(x)+hf'(x)+O(h^2)$$

$$f(x-h)=f(x)-hf'(x)+O(h^2)$$

得

截断误差:
$$\frac{O(h)}{h}$$
 --> $O(h)$ 截断误差: $\frac{O(h^2)}{h}$ --> $O(h)$

差分的基本概念:

一元函数 f(x), 当有增量 h 时,由泰勒展开式

$$f(x+h)=f(x)+hf'(x)+\frac{h^2}{2!}f''(x)+\frac{h^3}{3!}f'''(x)+O(h^4)$$

$$f(x-h)=f(x)-hf'(x)+\frac{h^2}{2!}f''(x)-\frac{h^3}{3!}f'''(x)+O(h^4)$$

得

$$f''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2} + O(h^2)$$

差分的基本概念:

二元函数 u(x, t), 当t有增量 τ 和x 有增量h 时,类似有

$$\frac{\partial u(x, t)}{\partial t} = \frac{u(x, t+\tau) - u(x, t)}{\tau} + O(\tau)$$
 (9.1)

$$\frac{\partial u(x, t)}{\partial t} = \frac{u(x, t) - u(x, t - \tau)}{\tau} + O(\tau)$$
 (9.2)

$$\frac{\partial \mathbf{u}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{t}} = \frac{\mathbf{u}(\mathbf{x}, \mathbf{t} + \tau) - \mathbf{u}(\mathbf{x}, \mathbf{t} - \tau)}{2\tau} + \mathbf{O}(\tau^2)$$
(9.3)

$$\frac{\partial^2 \mathbf{u}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{t}^2} = \frac{\mathbf{u}(\mathbf{x}, \mathbf{t} + \tau) - 2\mathbf{u}(\mathbf{x}, \mathbf{t}) + \mathbf{u}(\mathbf{x}, \mathbf{t} - \tau)}{\tau^2} + \mathbf{O}(\tau^2)$$
(9.4)

$$\frac{\partial^2 \mathbf{u}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{x}^2} = \frac{\mathbf{u}(\mathbf{x} + \mathbf{h}, \mathbf{t}) - 2\mathbf{u}(\mathbf{x}, \mathbf{t}) + \mathbf{u}(\mathbf{x} - \mathbf{h}, \mathbf{t})}{h^2} + O(h^2) \tag{9.5}$$

9.1 抛物线方程的差分解法

以一维热传导方程的混合边值问题为例

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < L, 0 < t < T)$$

$$u(x,0) = \varphi(x) \qquad (0 < x < L)$$

$$u(0,t) = \mu_1(t), u(L,t) = \mu_2(t) \qquad (0 \le t \le T)$$

其中 $\varphi(x)$, $\mu_1(t)$, $\mu_2(t)$ 是已知的连续函数,且满足相容性条件,即使问题有充分光滑的解。 $\varphi(0) = \mu_1(0)$, $\varphi(L) = \mu_2(0)$

首先,在x0t坐标空间上将求解区间划分成矩形网格

D:
$$0 \le x \le L \atop 0 \le t \le T$$

$$(i=0,1, \ldots, m) \atop \tau = \frac{T}{n}$$

$$t = t_i = j\tau \quad (j=0,1, \ldots, n)$$

 (\mathbf{x}_i, t_j) 为网格节点 $\mathbf{u}(\mathbf{x}, t_j)$ 为网格节点 $\mathbf{u}(\mathbf{x}, t_j)$ 的函数值 $\mathbf{u}(\mathbf{x}_i, t_j)$ 记为 $\mathbf{u}(\mathbf{i}, \mathbf{j})$

u(i, j)的近似值记为u_{i, j}

下面的目的就是求解这样的混合边界问题的解u(x,t) 在各个节点(i, j)处的近似值 $\mathbf{u}_{i,j}$

下面介绍几种常用的差分格式

一、古典显示差分格式

混合边值问题(9.6)的偏微分方程在节点(i,j)处表示为

$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{t}}\right)_{(\mathbf{i}, \mathbf{j})} = \mathbf{a}^2 \left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}\right)_{(\mathbf{i}, \mathbf{j})} \tag{9.7}$$

由前面的基本公式可得

$$\left(\frac{\partial u}{\partial t}\right)_{(i, j)} = \frac{u (i, j+1) - u (i, j)}{\tau} + 0 (\tau) - \frac{i}{\hbar} \stackrel{\text{E}}{\longrightarrow} \stackrel$$

把上式带入得到

$$\frac{u(i,j+1)-u(i,j)}{\tau} = \frac{a^2}{h^2} [u(i+1,j)-2u(i,j)+u(i-1,j)]+O(\tau) +O(\tau)+O(h^2)$$

记
$$\lambda = \frac{a^2}{h^2}\tau$$
,称为网比,略去截断误差 $R_{h,\tau} = O(\tau) + O(h^2)$

得到差分格式

$$\mathbf{u}_{i,j+1} = \lambda \mathbf{u}_{i-1,j} + (1 - 2\lambda)\mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j}$$

$$(i = 1, 2, 3, ..., m-1; n = 0, 1, 2, ..., n-1)$$
(9.8)

边界节点有

$$u_{i,0} = \varphi(ih) \qquad (i = 1, 2, ..., m-1)$$

$$u_{0,j} = \mu_1(j\tau), u_{m,j} = \mu_2(j\tau) \qquad (j = 0, 1, 2, ..., n)$$
(9.9)

$$\begin{aligned} \mathbf{u}_{i,j+1} &= \lambda \mathbf{u}_{i-1,j} + (1-2\lambda) \mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j} \\ u_{i,0} &= \varphi(ih) & (i=1,2,...,m-1) \\ u_{0,j} &= \mu_1(j\tau), u_{m,j} = \mu_2(j\tau) & (j=0,1,2,...,n) \end{aligned}$$

- 计算步骤(按t增加的方向逐层计算):
- ① 由(9.9) 式计算第0层上的值 u_{i,0}(i=0,1,...,m)
- ② 用(9.8) 计算出第一层的值 u_{i.1}(i=1,...,m-1)
- ③ 由(9.9) 式可计算出第一层上的u_{0,1}和u_{m,1}
- ④ 由(9.8) 计算出第二层的值 u_{i,2}(i=1,...,m-1)
- ⑤ 由(9.9) 式可计算出第二层上的u_{0,2}和u_{m,2}
- ⑥ 由上述的4、5步循环迭代获得全部节点上的数值解

例1 用古典显式格式求解热传导混合问题

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} & (0 < x < 1, 0 < t) \\ u(x,0) = 4x(1-x) & (0 \le x \le 1) \\ u(0,t) = 0, u(1,t) = 0 & (0 \le x \le 1) \end{cases}$$

的数值解。取h=0.1, $\tau=1/600$, 计算到j=36(计算保留5位小数)。

解
$$m = \frac{1}{h} = 10$$
 $n = 36$ $\lambda = \frac{\tau}{h^2} = \frac{1}{6}$

因为u(0,0) = u(1,0) = 0,从定解条件可知,解函数u(x,t)关于i=5,

即直线
$$x=\frac{1}{2}$$
对称。所以必有

$$u_{1,j} = u_{9,j}$$
 , $u_{2,j} = u_{8,j}$, $u_{3,j} = u_{7,j}$, $u_{4,j} = u_{6,j}$,

因此,只需要计算 $u_{i,j}$ ($i = 1,2,3,4,5; j = 0,1,\dots,36$) 差分格式为

$$\begin{aligned} \mathbf{u}_{i,j+1} &= \lambda \mathbf{u}_{i-1,j} + (1-2\lambda) \mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j} \\ u_{i,0} &= \varphi(ih) \\ u_{0,j} &= \mu_1(j\tau), u_{m,j} = \mu_2(j\tau) \quad (j=0,1,2,...,n) \end{aligned}$$

$$\begin{cases} u_{i,j+1} = \frac{1}{6} u_{i+1,j} + \frac{2}{3} u_{i,j} + \frac{1}{6} u_{i-1,j} \\ (i = 1, 2, 3, 4, 5; j = 0, 1, \dots, 36) \\ u_{i,0} = 0.4i(1 - 0.1i) & (i = 1, 2, 3, 4, 5) \\ u_{0,j} = u_{1,j} = 0 & (j = 0, 1, \dots, 36) \end{cases}$$

(1)第0层上的值:

$$u_{0,0} = 0$$

$$u_{1,0} = 0.4(1-0.1) = 0.36$$

$$u_{2.0} = 0.8(1 - 0.2) = 0.64$$

$$u_{3.0} = 1.2(1 - 0.3) = 0.84$$

$$u_{4.0} = 1.6(1 - 0.4) = 0.96$$

$$u_{5.0} = 2.0(1 - 0.5) = 1.00$$

(2)第一层上的值:

$$u_{0,1} = 0$$

$$u_{1,1} = \frac{1}{6} u_{2,0} + \frac{2}{3} u_{1,0} + \frac{1}{6} u_{0,0} = 0.34667$$

$$u_{2,1} = \frac{1}{6}u_{3,0} + \frac{2}{3}u_{2,0} + \frac{1}{6}u_{1,0} = 0.62667$$

$$u_{3,1} = \frac{1}{6} u_{4,0} + \frac{2}{3} u_{3,0} + \frac{1}{6} u_{2,0} = 0.82667$$

•

■ 计算结果

0.17950

0.17655

0.34130

0.33570

0.46954

0.46187

		V 1	71	1/1					1		$u_{i,j+1} - \overline{t}$	$\frac{-u_{i+1,j}}{5}$	$+\frac{1}{3}u_{i,j}+\frac{1}{6}$)
		0	1	2	3	4	5		7	8	9	10		
	0	0	0.36000	0.64000	0.84000	0.96000	1.00000	0.96000	0.84000	0.64000	0.36000	0		
	1	0	0.34667	0.62667	0.82667	0.34667	0.98667	0.94667	0.82667	0.62667	0.34667	0	4	ļ
	_ 2	0	0.33556	0.61333	0.81333	0.93333	0.97333	0.93333	0.81333	0.61333	0.33	1	2	
/	_ 3	0	0.32593	0.60037	0.80000	0.0000	0.96000	0.92000	0.80000	0.60037	0.32 <mark>u_{3.3} =</mark>	$=\frac{1}{6}u_{4,3}$	$u_{3,2} + \frac{2}{3}u_{3,2} + \frac{2}{3}u_{3$	-
	_ 4	0	0.31735	0.58790	0.78673	0.90667	0.94001	0.00007	0.78673	0.58790				(
	_ 5	0	0.30955	0.57595	0.77358	0.89334	0.93333	0.89334	0.77358	0.07 000	$u_{3,3} = u_{3,3}$	= 0.800	000	
	_ 6	0	0.30236	0.56449	0.76060	0.88005	0.92000	0.88005	0.76060	0.56449	0.30230	U		
\	_ 7	0	0.29565	0.55348	0.74782	0.86680	0.90668	0.86680	0.74782	0.55348	0.29565	0		
	_ 8	0	0.28935	0.54290	0.73526	0.85362	0.89339	0.85362	0.73526	0.54290	0.28935	0		
	9	0	0.28338	0.53270	0.72293	0.84052	0.88013	0.84052	0.72293	0.53270	0.28338	0		
	10	0	0.27771	0.52285	0.71082	0.82752	0.86693	0.82752	0.71082	0.52285	0.27771	0		
	11	0	0.27228	0.51332	0.69894	0.81464	0.85379	0.81464	0.69894	0.51332	0.27228	0		
	12	0	0.26707	0.50409	0.68729	0.80188	0.84074	0.80188	0.68729	0.50409	0.26707	0		
	30	0	0.19506	0.37076	0.50986	0.59894	0.62959	0.59894	0.50986	0.37076	0.19506	0		
	31	0	0.19183	0.36466	0.50152	0.58920	0.61938	0.58920	0.50152	0.36466	0.19183	0		
	32	0	0.18867	0.35867	0.49332	0.57962	0.60932	0.57962	0.49332	0.35867	0.18867	0		
	33	0	0.18555	0.35278	0.48526	0.57019	0.59942	0.57019	0.48526	0.35278	0.18555	0		
	34	0	0.18250	0.34699	0.47734	0.56090	0.58967	0.56090	0.47734	0.34699	0.18250	0		

对称

0.58008

0.57065

0.55177

0.54278

0.34130

0.33570

0.46954

0.46187

0.17950

0.17655

0.55177

0.54278

二、古典隐式差分格式

混合边值问题(1)的偏微分方程在节点(i, j+1)处表示为

$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{t}}\right)_{(\mathbf{i}, \mathbf{j}+1)} = \mathbf{a}^2 \left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}\right)_{(\mathbf{i}, \mathbf{j}+1)}$$

由前面的基本公式有

$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{t}}\right)_{(\mathbf{i}, \mathbf{i}+1)} = \frac{\mathbf{u}(\mathbf{i}, \mathbf{j}+1) - \mathbf{u}(\mathbf{i}, \mathbf{j})}{\tau} + \mathbf{0}(\tau) \qquad --> 后差公式$$

$$\left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}\right)_{(i, j+1)} = \frac{\mathbf{u}(i+1, j+1) - 2\mathbf{u}(i, j+1) + \mathbf{u}(i-1, j+1)}{h^2} + 0(h^2)$$

可导出另一种差分格式

$$-\lambda u_{i-1,j+1} + (1+2\lambda) u_{i,j+1} - \lambda u_{i+1,j+1} = u_{i,j}$$
(9.10)

$$(i=1,2,\ldots,m-1; j=0,1,2,\ldots,n-1)$$

$$u_{i,0} = \varphi(ih) \qquad (i = 1, 2, ..., m-1)$$

$$u_{0,j} = \mu_1(j\tau), u_{m,j} = \mu_2(j\tau) \qquad (j = 0, 1, 2, ..., n)$$

- 差分求解按 t 增加的方向逐层计算
- 求解步骤如下:
- ① 由(9.9) 式计算第0层上的值 u_{i,0}(i=0,1,...,m)
- ② 由此计算第一层上的数值解,此时必须解一个m-1个未知数u_{1,1}, u_{2,1}, ..., u_{m-1,1}的m-1阶线性方程组
- ③ 迭代思路就是先求解j层,在计算j+1层的数据,并且求解 j+1数据时,需要解线性方程

由 j 层数据获得 j+1 层的数据的 m-1 阶线性代数方程组可以通过式(9.10)获得

$$(1+2\lambda)u_{1,j+1} - \lambda u_{2,j+1} = u_{1,j} + \lambda u_{0,j+1} -\lambda u_{1,j+1} + (1+2\lambda)u_{2,j+1} - \lambda u_{3,j+1} = u_{2,j} \vdots -\lambda u_{m-3,j+1} + (1+2\lambda)u_{m-2,j+1} - \lambda u_{m-1,j+1} = u_{m-2,j} -\lambda u_{m-2,j+1} + (1+2\lambda)u_{m-1,j+1} = u_{m-1,j} + \lambda u_{m,j+1}$$

$$(9.11)$$

式中 u0, j+1 um, j+1 由式 (9.9) 的第二式确定

$$u_{0,j+1} = \mu_1[(j+1)\tau], u_{m,j+1} = \mu_2[(j+1)\tau]$$

式 (9.11) 的系数矩阵为

$$A = \begin{bmatrix} 1+2\lambda & -\lambda & & & \\ -\lambda & 1+2\lambda & -\lambda & & \\ & \ddots & \ddots & \ddots & \\ & & -\lambda & 1+2\lambda & -\lambda & \\ & & & -\lambda & 1+2\lambda & \end{bmatrix}$$

m-1 维向量记为

$$u_{j+1} = \begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ \vdots \\ u_{m-1,j+1} \end{bmatrix}$$

$$F_{j+1} = \begin{bmatrix} \lambda \mu_1 [(j+1)\tau] \\ 0 \\ \vdots \\ 0 \\ \lambda \mu_2 [(j+1)\tau] \end{bmatrix}$$

$$V_{j+1} = \begin{bmatrix} u_{1,j} + \lambda \mu_1 [(j+1)\tau] \\ u_{2,j} \\ \vdots \\ u_{m-2,j} \\ u_{m-1,j} + \lambda \mu_2 [(j+1)\tau] \end{bmatrix}$$

$$= u_j + F_{j+1}$$
 $j = 0, 1, ..., n-1$

矩阵形式为

$$Au_{j+1} = u_j + F_{j+1}$$
 $j = 0, 1, ..., n-1$ (9.12)

同时有

$$u_0 = \begin{bmatrix} u_{1,0} \\ u_{2,0} \\ \vdots \\ u_{m-1,0} \end{bmatrix} = \begin{bmatrix} \varphi(h) \\ \varphi(2h) \\ \vdots \\ \varphi[(m-1)h] \end{bmatrix}$$
中
(9.9)
式确定

$$u_{i,0} = \varphi(ih)$$
 $(i = 1, 2, ..., m-1)$ (9.9)

$$Au_{j+1} = u_j + F_{j+1}$$

 $Au_{i+1} = u_i + F_{i+1}$ | 矩阵A对称、严格主对角占优的稀疏矩阵

求解步骤

① 对式 (9.12) 取 j=0,解 m-1 阶线性方程 $Au_1 = u_0 + F_1$ 组 ,得到第 1 层上的数值解

$$u_{1} = \begin{bmatrix} u_{1,1} \\ u_{2,1} \\ \vdots \\ u_{m-1,1} \end{bmatrix}$$

$$Au_{j+1} = u_j + F_{j+1}$$

 $Au_{i+1} = u_i + F_{i+1}$ | 矩阵A对称、严格主对角占优的稀疏矩阵

求解步骤

② 对式 (9.12) 取 j=1,解 线性方程组 $Au_2 = u_1 + F_2$ 到第2层上的数值解

$$u_2 = \begin{bmatrix} u_{1,2} \\ u_{2,2} \\ \vdots \\ u_{m-1,2} \end{bmatrix}$$

③依次迭代获得各层的数值解。

三、六点对称格式

$$\mathbf{u}_{i,j+1} = \lambda \mathbf{u}_{i-1,j} + (1 - 2\lambda)\mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j} \qquad (9.8)$$

$$-\lambda u_{i-1,j+1} + (1+2\lambda) u_{i,j+1} - \lambda u_{i+1,j+1} = u_{i,j}$$
 (9.10)

$$-\lambda u_{i-1,j+1} + (2+2\lambda) u_{i,j+1} - \lambda u_{i+1,j+1} = \lambda u_{i-1,j} + (2-2\lambda) u_{i,j} + \lambda u_{i+1,j}$$

$$(i=1,2,\ldots, m-1; j=0, 1,2,\ldots, n-1)$$
(9.13)

六点对称格式

隐式格式

解法同古典隐式格式

$$-\lambda u_{i-1,j+1} + (2+2\lambda) u_{i,j+1} - \lambda u_{i+1,j+1} = \lambda u_{i-1,j} + (2-2\lambda) u_{i,j} + \lambda u_{i+1,j}$$
(9.13)
$$u_{i,0} = \varphi(ih)$$
 (i = 1, 2, ..., m-1)

$$u_{0,j} = \mu_1(j\tau), u_{m,j} = \mu_2(j\tau)$$
 $(j = 0,1,2,...,n)$

己知j层,求解j+1层的m-1阶三对角型线性方程组

$$\begin{bmatrix} 2+2\lambda & -\lambda & & & \\ -\lambda & 2+2\lambda & -\lambda & & & \\ & \ddots & \ddots & \ddots & \\ & & -\lambda & 2+2\lambda & -\lambda & \\ & & & -\lambda & 2+2\lambda \end{bmatrix} \begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ \vdots \\ u_{m-2,j+1} \\ u_{m-1,j+1} \end{bmatrix} =$$

$$\begin{bmatrix} \lambda u_{0,j} + 2(1-\lambda)u_{1,j} + \lambda \mu_{2,j} + \lambda u_{0,j+1} \\ \lambda u_{1,j} + 2(1-\lambda)u_{2,j} + \lambda \mu_{3,j} \\ \vdots \\ \lambda u_{m-3,j} + 2(1-\lambda)u_{m-2,j} + \lambda \mu_{m-1,j} \\ \lambda u_{m-2,j} + 2(1-\lambda)u_{m-1,j} + \lambda \mu_{m,j} + \lambda \mu_{m,j+1} \end{bmatrix}$$

 $(i = 0, 1, 2, \dots, n-1)$

四、差分格式的稳定性及收敛性

节点(i,j): 精确解 u(i,j)

差分精确解 $u_{i,j}$

差分近似解 $\tilde{u}_{i,j}$

误差 $\varepsilon_{i,j} = \tilde{u}_{i,j} - u_{i,j}$

j增大 --》 $\varepsilon_{i,j}$ 有减少的趋势或至少不增加 --》 差分格式稳定

两种常用判定方法: (1) ε 图法 (2) 分离变量法

(1) ϵ 图法 ----> 误差的 ϵ 传播图

以古典显式差分格式为例。 $\lambda = 1$, $\lambda = 1/2$ 分别分析

$$\mathbf{u}_{i,j+1} = \lambda \mathbf{u}_{i-1,j} + (1 - 2\lambda)\mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j} \qquad (9.8)$$

假设: j层之前没有产生误差,j层上(i,j)节点产生ε 误差,其他节点不产生误差

误差ε传播图										
j+4	3	-4ε	10ε	-16ε	19ε	-16ε	10ε	-4ε	3	
j+3		3	-3ε	6ε	-7ε	6ε	-3ε	3		
j+2			3	-2ε	3ε	-2ε	3			
j+1				3	3-	3				
j					3					
	i-4	i-3	i-2	i-1	i	i+1	i+2	i+3	i+4	

$$\mathbf{u}_{i,j+1} = \lambda \mathbf{u}_{i-1,j} + (1 - 2\lambda)\mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j} \qquad (9.8)$$

②
$$\lambda = 1/2$$
 $u_{i,j+1} = \frac{1}{2}(u_{i-1,j} + u_{i+1,j})$ $\varepsilon_{i,j+1} = \frac{1}{2}(\varepsilon_{i-1,j} + \varepsilon_{i+1,j})$

假设: j 层之前没有产生误差,j层上(i, j) 节点产生ε 误差,其他节点不产生误差

	误差ε传播图											
j+4	ε/16	0	ε/4	0	3/8ε	0	ε/4	0	ε/16			
j+3		8/3	0	3/8ε	0	3/8ε	0	ε/4				
j+2			ε/4	0	ε/2	0	ε/4					
j+1				ε/2	0	ε/2						
j					3							
	i-4	i-3	i-2	i-1	İ	i+1	i+2	i+3	i+4			

(2) 分离变量法

以古典显式差分格式为例。

$$\mathbf{u}_{i,j+1} = \lambda \mathbf{u}_{i-1,j} + (1 - 2\lambda)\mathbf{u}_{i,j} + \lambda \mathbf{u}_{i+1,j} \qquad (9.8)$$

$$\varepsilon_{i,j+1} = \varepsilon_{i,j} + \lambda(\varepsilon_{i+1,j} - 2\varepsilon_{i,j} + \varepsilon_{i-1,j})$$

假设 $\varepsilon_{i,i}$ 为简谐波形式

$$\varepsilon_{i,j} = G^j e^{i_0 K x_i} = G^j e^{i_0 K ih}$$
(9.16)

其中 $i_0 = \sqrt{-1}$, K是频率参数,把它代入式(9.15)

$$G^{j+1}e^{i_0Kih} = G^{j}e^{i_0Kih} + \lambda[G^{j}e^{i_0K(i+1)h} - 2G^{j}e^{i_0Kih} + G^{j}e^{i_0K(i-1)h}]$$

消去
$$G^j e^{i_0 Kih}$$
 $-->$

$$G = 1 + \lambda [e^{i_0 Kh} + e^{-i_0 Kh}]$$

该式是 (9.8) 式的特征方程

$$G = 1 - 4\lambda \sin^2 \frac{Kh}{2}$$

传播因子或增长因子

$$G = 1 - 4\lambda \sin^2 \frac{Kh}{2}$$

G称为传播因子或增长因子

$$\varepsilon_{i,j} = G^j e^{i_0 K x_i} = G^j e^{i_0 K i h}$$

$$\mid \mathcal{E}_{\mathrm{i,j}} \mid = \mid G \mid^{j}$$

稳定条件

$$|G| = |1 - 4\lambda \sin^2 \frac{Kh}{2}| \le 1$$

任意K成立

$$0 < \lambda \le \frac{1}{2}$$

古典隐式格式稳定的充分条件

$$0 < \lambda \le \frac{1}{2}$$

差分格式稳定性:

古典显式格式

$$G = 1 - 4\lambda \sin^2 \frac{Kh}{2}$$

$$\lambda = \frac{a^2 \tau}{h^2} \le \frac{1}{2}$$

$$\lambda = \frac{a^2 \tau}{h^2} \le \frac{1}{2}$$

古典隐式格式

$$G = \frac{1}{1 + 4\lambda \sin^2 \frac{Kh}{2}}$$

$$\lambda > 0$$

$$\lambda = \frac{a^2 \tau}{h^2} > 0$$

$$\lambda > 0$$

差分格式收敛性:

定义: h, τ 按一定方式趋于零时, 差分方程的精确解u_{i, j}无限趋于微分方程的解u(i, j), 则称差分格式是收敛的。

 $\max |u_{i, j} - u(i, j)| \rightarrow 0$

定理9.1【Lax定理】:对于给定一个适当的线性初值问题,如果差分格式与其相容,则差分格式的稳定性是其收敛性的从要条件。

 $h, \tau \rightarrow 0$, 任何充分光滑的函数u(x, t),差分格式的截断误差 $R_{h,\tau} \rightarrow 0$,则称差分格式与微分方程是相容的。

易知,古典显式、隐式及六点对称格式都是与一维热传导方程相容的差分格式。

9.2 双曲型方程的差分解法

以一维波动方程的混合边值问题为例

$$\frac{\partial^{2} u}{\partial t^{2}} = a^{2} \frac{\partial^{2} u}{\partial x^{2}} \qquad (0 \le x \le L, 0 \le t \le T)$$

$$u(x,0) = \varphi(x) \quad \frac{\partial u}{\partial t} \Big|_{t=0} = \psi(x) \quad (0 \le x \le L)$$

$$u(0,t) = \mu_{1}(t), u(L,t) = \mu_{2}(t) \quad (0 \le t \le T)$$

其中 $\varphi(x)$, $\psi(x)$, $\mu_1(t)$, $\mu_2(t)$ 是已知的连续函数, 且满足相容性条件,即使问题有充分光滑的解。

一、差分格式的建立

在x0t坐标空间上将求解区间划分成矩形网格

D:
$$0 \le x \le L \atop 0 \le t \le T$$

$$\lim_{t = \frac{T}{n}} \xrightarrow{t = \frac{T}{n}} t = t_i = j\tau \quad (j=0,1, \ldots, m)$$

$$\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{t}^{2}}\right)_{(i,j)} = \frac{\mathbf{u}(\mathbf{i},\mathbf{j}+1)-2\mathbf{u}(\mathbf{i},\mathbf{j})+\mathbf{u}(\mathbf{i},\mathbf{j}-1)}{\tau^{2}} + \mathbf{O}(\tau^{2})$$

$$\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}\right)_{(i,j)} = \frac{\mathbf{u}(\mathbf{i}+1,\mathbf{j})-2\mathbf{u}(\mathbf{i},\mathbf{j})+\mathbf{u}(\mathbf{i}-1,\mathbf{j})}{h^{2}} + \mathbf{O}(h^{2})$$

$$\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{t}^{2}}\right)_{(i,j)} = \mathbf{a}^{2} \left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}\right)_{(i,j)} = \mathbf{a}^{2} \left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}\right)_{(i,j)}$$

$$\frac{\mathbf{u}(\mathbf{i},\mathbf{j}+1)-2\mathbf{u}(\mathbf{i},\mathbf{j})+\mathbf{u}(\mathbf{i},\mathbf{j}-1)}{\tau^2} = \mathbf{a}^2 \frac{\mathbf{u}(\mathbf{i}+1,\mathbf{j})-2\mathbf{u}(\mathbf{i},\mathbf{j})+\mathbf{u}(\mathbf{i}-1,\mathbf{j})}{h^2} + \mathbf{O}(\tau^2) + \mathbf{O}(h^2)$$

$$\frac{\mathbf{u}_{i,j+1} - 2\mathbf{u}_{i,j} + \mathbf{u}_{i,j-1}}{\tau^2} = \frac{\mathbf{a}^2}{h^2} [\mathbf{u}_{i+1,j} - 2\mathbf{u}_{i,j} + \mathbf{u}_{i-1,j}]$$

$$\lambda = \frac{|a|}{h}\tau$$

$$\mathbf{u}_{i,j+1} = \lambda^2 \mathbf{u}_{i+1,j} + 2(1 - \lambda^2) \mathbf{u}_{i,j} + \lambda^2 \mathbf{u}_{i-1,j} - \mathbf{u}_{i,j-1}$$
(9.19)

边界条件:

$$u(x,0) = \varphi(x) \rightarrow u(i,0) = u_{i,0} = \varphi(ih)$$
 $(i = 1, 2, \dots, m-1)$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x) \Rightarrow
\begin{cases}
(9.1) \vec{\Xi} : \frac{u(i,1) - u(i,0)}{\tau} + 0(\tau) = \psi(ih) \\
(9.3) \vec{\Xi} : \frac{u(i,1) - u(i,-1)}{\tau} + 0(\tau^{2}) = \psi(ih)
\end{cases}$$

$$\Rightarrow \begin{cases}
u_{i,1} = u_{i,0} + \tau \psi(ih) & (9.21) \\
u_{i,1} = u_{i,-1} + 2\tau \psi(ih) & (9.22)
\end{cases} \quad (i=1, 2, \dots, m-1)$$

新未知量 $u_{i,-1}$?

边界条件:

将j=0代入(9.19)(这里要求微分方程在t =0时成立)

$$\begin{aligned} \mathbf{u}_{i,-1}: & \quad \mathbf{u}_{i,1} = \lambda^2 \mathbf{u}_{i+1,0} + 2(1-\lambda^2) \mathbf{u}_{i,0} + \lambda^2 \mathbf{u}_{i-1,0} - \mathbf{u}_{i,-1} \\ & \quad \mathbf{u}_{i,-1} = \lambda^2 \mathbf{u}_{i+1,0} + 2(1-\lambda^2) \mathbf{u}_{i,0} + \lambda^2 \mathbf{u}_{i-1,0} - \mathbf{u}_{i,1} \\ & \quad = \lambda^2 \varphi_{i+1} + 2(1-\lambda^2) \varphi_i + \lambda^2 \varphi_{i-1} - \mathbf{u}_{i,1} \end{aligned}$$

代入 (9.22):

$$u_{i,1} = u_{i,-1} + 2\tau \psi(ih)$$
 (9.22)

$$u_{i,1} = \lambda^2 \varphi_{i+1} + 2(1 - \lambda^2) \varphi_i + \lambda^2 \varphi_{i-1} - u_{i,1} + 2\tau \psi(ih)$$

$$u_{i,1} = \varphi_{i} + \tau \psi(ih) + \frac{\lambda^{2}}{2} (\varphi_{i+1} - 2\varphi_{i} + \varphi_{i-1})$$

边界条件:第一种差分格式

$$\begin{aligned}
u_{i,j+1} &= \lambda^{2} u_{i+1,j} + 2(1-\lambda^{2}) u_{i,j} + \lambda^{2} u_{i-1,j} - u_{i,j-1} \\
& (i = 1, 2, \dots, m-1; j = 1, 2, \dots, n-1) \\
u_{i,0} &= \varphi_{i}, u_{i,1} = \varphi_{i} + \tau \psi_{i} & (i = 1, 2, \dots, m-1) \\
u_{0,j} &= \mu_{1}(j\tau), u_{m,j} = \mu_{2}(j\tau) & (j = 0, 1, 2, \dots, n)
\end{aligned}$$
(9.24)

边界条件:第二种差分格式

$$\begin{aligned}
\mathbf{u}_{i,j+1} &= \lambda^2 \mathbf{u}_{i+1,j} + 2(1-\lambda^2) \mathbf{u}_{i,j} + \lambda^2 \mathbf{u}_{i-1,j} - \mathbf{u}_{i,j-1} \\
& (i = 1, 2, \dots, m-1; j = 1, 2, \dots, n-1) \\
u_{i,0} &= \varphi_{i}, \quad u_{i,1} = \varphi_{i} + \tau \psi(ih) + \frac{\lambda^2}{2} (\varphi_{i+1} - 2\varphi_{i} + \varphi_{i-1}) \\
u_{0,j} &= \mu_{1}(j\tau), u_{m,j} = \mu_{2}(j\tau) \\
\end{aligned} (9.25)$$

计算步骤:第二种差分格式比第一种要精确些。这里给出第一种的求解,第二种类似。

- ① 利用式(9.24)的第2,3式算出第0层和第一层的值;
- ② 利用式(9.24)的第1式算出第二层上的值;
- ③ 用式(9.24)的第2式算出 $u_{0,2}$, $u_{m,2}$;
- ④ 用式(9.24)的第1式算出第3层上的值;
- ⑤ 依次逐层算出各层的数值解。

例9.2: 用第一种差分格式求解一维波动方程混合问题的数值解

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} & (0 < x < 1, 0 < t) \\ u(x,0) = \sin \pi x, \frac{\partial u}{\partial t} \Big|_{t=0} = x(1-x) & (0 < x < 1) \\ u(0,t) = u(1,t) = 0 & (0 \le t) \end{cases}$$

(计算保留7位小数)

- (1) $\lambda=1$, h=0.2, 要求算出1,2,3层的数值解;
- (2) $\lambda=1$, h=0.05, 要求算出1,2,...,20层的数值解。

(1)
$$\lambda = 1$$
, $h = 0.2$, $a = 1$, $L = 1 \Rightarrow \tau = 0.2$, $m = \frac{L}{h} = 5$ $\lambda = \frac{|a|}{h}\tau$

$$\begin{cases} u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1} & (i = 1, 2, 3, 4; j = 1, 2) \\ u_{i,0} = \sin 0.2i\pi, & u_{i,1} = \sin 0.2i\pi + 0.04i(1 - 0.2i) & (i = 1, 2, 3, 4) \\ u_{0,j} = 0, & u_{5,j} = 0 & (j = 0, 1, 2, 3) \end{cases}$$

$$x = ih = 0.2i$$

 $t = j\tau = 0.2j$

解函数关于直线x=0.5对称

 $u_{i,0} = \sin 0.2i\pi$, $u_{i,1} = \sin 0.2i\pi + 0.04i(1 - 0.2i)$

$$u_{0,j} = u_{5,j}, \quad u_{1,j} = u_{4,j}, u_{2,j} = u_{3,j} \quad (j = 0,1,...)$$

第0层

$$u_{0,0} = u_{5,0} = 0$$

$$u_{1,0} = u_{4,0} = \sin 0.2\pi = 0.5877852$$

$$u_{2,0} = u_{3,0} = \sin 0.4\pi = 0.9510565$$

第1层

$$u_{0,1} = u_{5,1} = 0$$

$$u_{1.1} = u_{4.1} = \sin 0.2\pi + 0.04(1 - 0.2) = 0.6197852$$

$$u_{2.1} = u_{3.1} = \sin 0.4\pi + 0.08(1 - 0.2) = 0.9990565$$

第2层

$$u_{0,2} = u_{5,2} = 0$$

$$u_{1,2} = u_{4,2} = u_{2,1} + u_{0,1} - u_{1,0} = 0.4112712$$

$$u_{2,2} = u_{3,2} = u_{3,1} + u_{1,1} - u_{2,0} = 0.6677852$$

第3层

$$u_{0,3} = u_{5,3} = 0$$

$$u_{1,3} = u_{4,3} = u_{2,2} + u_{0,2} - u_{1,1} = 0.0480000$$

(2)
$$\lambda = 1$$
, h=0.05, a=1, L=1 $\Rightarrow \tau = 0.05$, m= $\frac{L}{h} = 20$

$$\lambda = \frac{|a|}{h}\tau$$

$$x = ih = 0.05i$$

 $t = j\tau = 0.05j$

$$\begin{cases} u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1} & (i = 1, 2, 3, 4; j = 1, 2) \\ u_{i,0} = \sin 0.05i\pi, & u_{i,1} = \sin 0.05i\pi + 0.0025i(1 - 0.05i) & (i = 1, 2, 3, 4) \\ u_{0,j} = 0, & u_{5,j} = 0 & (j = 0, 1, 2, 3) \end{cases}$$

编程计算

解函数关于直线x=0.5对称

$u_{0,j} = 0, u_{20,j} = 0$											
	i										
		0	2	4	6	8	10				
	0	ď	0.3090170	$u_{i,0} = \sin 0.0$	$\frac{05i\pi}{0}_{090170}$	0.9510565	1.0000000				
	1	0	0.3135170	0.5957853	$0.81 \frac{u_{i,1} = \sin \theta}{2}$	$10.05i\pi + 0.00$	25i(1-0.05i)				
	2	0	0.3101580	0.5890620	0.8098463	0.9513883	1.0001267				
	3	0	0.2988773	0.5677220	0.7802455	0.9163786	0.9632364				
•	4	0	0.2800450	0.5322190	0.731/33/	0.8589165	0 9027767				
j	5	0	0.2542050	0.483	_	11 -	- 11	— 11			
	6	0	0.2220611	0.422 <i>i</i>	,j+1	$a_{i+1,j}$	i-1, <i>j</i>	$a_{i,j-1}$			
	7	0	0.1844602	0.3510666	0.4835173	0.5684623	0.5976142				
	8	0	0.1423714	0.2711312	0.3738047	0.4400790	0.4628668				
	9	0	0.0968617	0.1846400	0.2549453	0.3007063	0.3166672				
	10	0	0.0490702	0.0937597	0.1299210	0.1538498	0.1624517				

	0	2	4	6	8	10	12	14	16	18	20
0	0	0.3090170	0.5877853	0.8090170	0.9510565	1.0000000	0.9510565	0.8090170	0.5877853	0.3090170	0
1	0	0.3135170	0.5957853	0.8195170	0.9630565	1.0125000	0.9630565	0.8195170	0.5957853	0.3135170	0
2	0	0.3101580	0.5890620	0.8098463	0.9513883	1.0001267	0.9513883	0.8098463	0.5890620	0.3101580	0
3	0	0.2988773	0.5677220	0.7802455	0.9163786	0.9632364	0.9163786	0.7802455	0.5677220	0.2988773	0
4	0	0.2800450	0.5322190	0.7314334	0.8589165	0.9027767	0.8589165	0.7314334	0.5322190	0.2800450	0
5	0	0.2542050	0.4833375	0.6645836	0.7804253	0.8202573	0.7804253	0.6645836	0.4833375	0.2542050	0
6	0	0.2220611	0.4224164	0.5812892	0.6828217	0.7177063	0.6828217	0.5812892	0.4224164	0.2220611	0
7	0	0.1844602	0.3510666	0.4835173	0.5684623	0.5976142	0.5684623	0.4835173	0.3510666	0.1844602	0
8	0	0.1423714	0.2711312	0.3738047	0.4400790	0.4628668	0.4400790	0.3738047	0.2711312	0.1423714	0
9	0	0.0968617	0.1846400	0.2549453	0.3007063	0.3166672	0.3007063	0.2549453	0.1846400	0.0968617	0
10	0	0.0490702	0.0937597	0.1299210	0.1538498	0.1624517	0.1538498	0.1299210	0.0937597	0.0490702	0
11	0	0.0001798	0.0007403	0.0018290	0.0031502	0.0037983	0.0031502	0.0018290	0.0007403	0.0001798	0
12	0	-0.0486117	-0.0921400	-0.1261953	-0.1477063	-0.1551672	-0.1477063	-0.1261953	-0.0921400	-0.0486117	0
13	0	-0.0961214	-0.1826312	-0.2510547	-0.2950790	-0.3103668	-0.2950790	-0.2510547	-0.1826312	-0.0961214	0
14	0	-0.1412102	-0.2685666	-0.3697673	-0.4352123	-0.4578642	-0.4352123	-0.3697673	-0.2685666	-0.1412102	0
15	0	-0.1828111	-0.3479164	-0.4795392	-0.5645717	-0.5939563	-0.5645717	-0.4795392	-0.3479164	-0.1828111	0
16	0	-0.2199550	-0.4188375	-0.5775836	-0.6799253	-0.7152573	-0.6799253	-0.5775836	-0.4188375	-0.2199550	0
17	0	-0.2517950	-0.4797190	-0.6614334	-0.7784165	-0.8187767	-0.7784165	-0.6614334	-0.4797190	-0.2517950	0
18	0	-0.2776273	-0.5289720	-0.7289955	-0.8576286	-0.9019864	-0.8576286	-0.7289955	-0.5289720	-0.2776273	0
19	0	-0.2969080	-0.5653120	-0.7785963	-0.9156383	-0.9628767	-0.9156383	-0.7785963	-0.5653120	-0.2969080	0
20	0	-0.3090170	-0.5877853	-0.8090170	-0.9510565	-1.0000000	-0.9510565	-0.8090170	-0.5877853	-0.3090170	0

二、差分格式的稳定性及收敛性

节点(i,j): 精确解 u(i,j)

差分精确解 $u_{i,j}$

差分近似解 $\tilde{u}_{i,j}$

误差
$$\varepsilon_{i,j} = \tilde{u}_{i,j} - u_{i,j}$$

$$\mathbf{u}_{i,j+1} = \lambda^2 \mathbf{u}_{i+1,j} + 2(1 - \lambda^2) \mathbf{u}_{i,j} + \lambda^2 \mathbf{u}_{i-1,j} - \mathbf{u}_{i,j-1}$$
 (9.19)

$$\varepsilon_{i,j+1} = \lambda^2 \varepsilon_{i+1,j} + 2(1-\lambda^2)\varepsilon_{i,j} + \lambda^2 \varepsilon_{i-1,j} - \varepsilon_{i,j-1}$$
 (9. 26)

$$\varepsilon_{i,j+1} = \lambda^2 \varepsilon_{i+1,j} + 2(1-\lambda^2)\varepsilon_{i,j} + \lambda^2 \varepsilon_{i-1,j} - \varepsilon_{i,j-1}$$
 (9. 26)

$$\varepsilon_{i,j} = G^j e^{i_0 K x_i} = G^j e^{i_0 K i h} \qquad i_0 = \sqrt{-1}$$

$$i_0 = \sqrt{-1}$$

$$G^{j+1}e^{i_0Kih} = \lambda^2 \left[G^j e^{i_0K(i+1)h} + G^j e^{i_0K(i-1)h} \right] + 2(1-\lambda^2)G^j e^{i_0Kih} - G^{j-1}e^{i_0Kih}$$

消去
$$G^{j-1}e^{i_0Kx_i}$$

$$G^2 - 2(1 - 2\lambda^2 \sin^2 \frac{Kh}{2}) G + 1 = 0$$

(9.19)的特征方程

$$\left| \varepsilon_{i,j} \right| = \left| G \right|^j \Rightarrow \left| G \right| \le 1$$
时,误差不增长

定理9.2:

特征方程 (9. 27) 的根 G_1 , G_2 的模 $|G_i| \le 1$ (i = 1, 2) 的充要条件是

$$\left| 1 - 2\lambda^2 \sin^2 \frac{Kh}{2} \right| \le 1$$

证明见书P237-238

因为当且仅当 λ≤1 时,必有

$$\left| 1 - 2\lambda^2 \sin^2 \frac{Kh}{2} \right| \le 1$$

所以λ≤1时,差分格式(9.19)是稳定的,也是收敛的。

9.3 椭圆型方程的差分解法

以二维泊松方程(Poisson)的第一边值问题为例

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = f(x, y) \quad ((x, y) \in D)$$

$$u|_{\Gamma} = \varphi(x, y) \quad (\Gamma \text{是D的边界})$$
(9. 28)

D是x0y平面上分段光滑曲线Γ围成的单连通区域。

f
$$(x, y) \equiv 0$$
 ⇒ 拉普拉斯 (Laplace) 方程
$$x = x_i = ih_1 \qquad (i=0,\pm 1,\pm 2,\cdots)$$

$$y = y_i = jh_2 \qquad (j=0,\pm 1,\pm 2,\cdots)$$

- ➤ 区域为D
- > 边界为[
- $\triangleright D_h = \{(x_i, y_j) \in D\}$
- ► 「La表示网格与区域的交点集合
- D'_h:正则内点的 集合
- ➤ D"_h:非正则内点 的集合
- ❷ 非正则内点
- 。 正则内点
- 边界点

 \boldsymbol{X}

一、差分格式的建立

第一种

第一边值问题(9.28)的正则内点(i,j)处为

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{(i, j)} + \left(\frac{\partial^2 u}{\partial y^2}\right)_{(i, j)} = f_{(i, j)} \tag{9.29}$$

$$\frac{\partial^{2} \mathbf{u}(\mathbf{x}, \mathbf{t})}{\partial \mathbf{x}^{2}} = \frac{\mathbf{u}(\mathbf{x} + \mathbf{h}, \mathbf{t}) - 2\mathbf{u}(\mathbf{x}, \mathbf{t}) + \mathbf{u}(\mathbf{x} - \mathbf{h}, \mathbf{t})}{h^{2}} + O(h^{2})$$
(9.5)

$$\left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}\right)_{(i,j)} = \frac{\mathbf{u}(i-1,j)-2\mathbf{u}(i,j)+\mathbf{u}(i+1,j)}{h_1^2} + \mathbf{O}(h_1^2)$$

$$\left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}\right)_{(i,j)} = \frac{\mathbf{u}(i,j-1)-2\mathbf{u}(i,j)+\mathbf{u}(i,j+1)}{h_2^2} + \mathbf{O}(h_2^2)$$

$$\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}\right)_{(i,j)} = \frac{\mathbf{u}(i-1,j)-2\mathbf{u}(i,j)+\mathbf{u}(i+1,j)}{h_{1}^{2}} + O(h_{1}^{2}) \\
\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{y}^{2}}\right)_{(i,j)} = \frac{\mathbf{u}(i,j-1)-2\mathbf{u}(i,j)+\mathbf{u}(i,j+1)}{h_{2}^{2}} + O(h_{2}^{2}) \\
\left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}\right)_{(i,j)} + \left(\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{y}^{2}}\right)_{(i,j)} = f_{(i,j)} \qquad (9.29)$$

差分方程

$$\frac{1}{h_1^2} \left(\mathbf{u}_{i-1,j} - 2\mathbf{u}_{i,j} + \mathbf{u}_{i+1,j} \right) + \frac{1}{h_2^2} \left(\mathbf{u}_{i,j-1} - 2\mathbf{u}_{i,j} + \mathbf{u}_{i,j+1} \right) = f_{i,j}$$

 $(i,j) \in D_h$

$$h_1 = h_2 = h$$

$$\mathbf{u}_{i-1,j} + \mathbf{u}_{i+1,j} + \mathbf{u}_{i,j-1} + \mathbf{u}_{i,j+1} - 4\mathbf{u}_{i,j} = h^2 f_{i,j}$$

(9.30)

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f_{i,j}$$

5个节点的近似 值的线性组合

$$\frac{1}{h^2} \diamondsuit \mathbf{u}_{i,j} = f_{i,j} \tag{9.31}$$

第二种

如果使用u(x, y)如下的5个节点 (i, j),(i-1, j-1),(i-1, j+1),(i+1, j-1),(i+1, j+1) 的附近值

$$\mathbf{u}_{i-1,j} + \mathbf{u}_{i+1,j} + \mathbf{u}_{i,j-1} + \mathbf{u}_{i,j+1} - 4\mathbf{u}_{i,j} = h^2 f_{i,j}$$

得到五点正方形格式

$$\frac{1}{2h^2}(\mathbf{u}_{i-1,j-1} + \mathbf{u}_{i+1,j-1} + \mathbf{u}_{i-1,j+1} + \mathbf{u}_{i+1,j+1} - 4\mathbf{u}_{i,j}) = f_{i,j} \quad ((i,j) \in D'_h) \quad (9.32)$$

$$\left| \frac{1}{h^2} \square \mathbf{u}_{i,j} \right| = f_{i,j}$$

$$R_h = O(h^2)$$

二、边界条件的处理

(9.30)和(9.31)中出现非正则内点u值,需要进行边界条件的处理。

第一种:直接转移法

非正则内点P(i,j),直接取最近的边界点 $E(\overline{i},\overline{j})$ 的值作为 $u_{i,j}$ $u_{i,j} = \varphi(\overline{i},\overline{j}) \qquad ((i,j) \in D''_h)$

第二种:线性插值法

 $P(i,j) \in D''_h$,直线 t = jh上有与点P相邻的内点Q(i+1,j)和

边界点 $E(\overline{i},j)$, 如图

$$u_{i,j} = \frac{h'u_{i+1,j} + h\varphi(\overline{i},j)}{h+h'} \qquad ((i,j) \in D"_h)$$

$$I = \frac{h'u_{i+1,j} + h\varphi(\overline{i},j)}{h+h'} \qquad (i,j) \in D"_h$$

如果Q和P的相对关系如图

$$u_{i,j} = \frac{h' u_{i-1,j} + h \varphi(\overline{i}, j)}{h + h'} \qquad ((i, j) \in D''_h) \qquad Q \qquad h \qquad P \quad h'$$

完整差分方程: (1)

$$\frac{1}{2h^{2}}(\mathbf{u}_{i-1,j-1} + \mathbf{u}_{i+1,j-1} + \mathbf{u}_{i-1,j+1} + \mathbf{u}_{i+1,j+1} - 4\mathbf{u}_{i,j}) = f_{i,j} \qquad ((i,j) \in D'_{h})$$

$$u_{i,j} = \varphi(\overline{i}, \overline{j}) \qquad ((i,j) \in D''_{h})$$

$$((\overline{i}, \overline{j})$$
是距离 (i,j) 最近的边界点)

完整差分方程: (2)

$$\begin{split} \frac{1}{2h^2} (\mathbf{u}_{i-1,j-1} + \mathbf{u}_{i+1,j-1} + \mathbf{u}_{i-1,j+1} + \mathbf{u}_{i+1,j+1} - 4\mathbf{u}_{i,j}) &= f_{i,j} \qquad ((i,j) \in D'_h) \\ u_{i,j} &= \frac{h' u_{i+1,j} + h \varphi(\overline{i},j)}{h+h'} \qquad ((\overline{i},j) \in D''_h, (\overline{i},j) \in \Gamma_h, \boxtimes \mathbf{A}) \\ u_{i,j} &= \frac{h' u_{i-1,j} + h \varphi(\overline{i},j)}{h+h'} \qquad ((i,j) \in D''_h, (\overline{i},j) \in \Gamma_h, \boxtimes \mathbf{A}) \end{split}$$

矩形 格式

(9.35)

完整差分方程: (3)

$$\frac{1}{2h^{2}}(\mathbf{u}_{i-1,j} + \mathbf{u}_{i+1,j} + \mathbf{u}_{i,j-1} + \mathbf{u}_{i,j+1} - 4\mathbf{u}_{i,j}) = f_{i,j} \qquad ((i,j) \in D'_{h})$$

$$u_{i,j} = \varphi(\overline{i}, \overline{j}) \qquad ((i,j) \in D''_{h})$$

$$((\overline{i}, \overline{j})$$
是距离 (i,j) 最近的边界点)

完整差分方程: (4)

$$\begin{split} &\frac{1}{2h^2}(\mathbf{u}_{i-1,j} + \mathbf{u}_{i+1,j} + \mathbf{u}_{i,j-1} + \mathbf{u}_{i,j+1} - 4\mathbf{u}_{i,j}) = f_{i,j} \qquad ((i,j) \in D'_h) \\ &u_{i,j} = \frac{h'u_{i+1,j} + h\varphi(\overline{i},j)}{h+h'} \qquad ((\overline{i},j) \in D''_h, (\overline{i},j) \in \Gamma_h, \boxtimes \mathbf{A}) \\ &u_{i,j} = \frac{h'u_{i-1,j} + h\varphi(\overline{i},j)}{h+h'} \qquad ((i,j) \in D''_h, (\overline{i},j) \in \Gamma_h, \boxtimes \mathbf{A}) \end{split}$$

菱形 格式

求解过程: D_h 内有 N_1 个正则点, N_2 个非正则点

- (9.34)
- ✓ 写出N₁个正则内点满足的差分方程,得到N₁阶线性方程组,未知数为u在N₁个正则内点处的近似值(利用(9.34)中的第一式)
- ✓ 线性方程组中出现的u在非正则 内点的近似值由式(9.34)中的 第二式确定;
- ✓ 求解N₁阶线性方程组,得到数值 解。

- (9.35)
- ✓ 写出N₁个正则内点满足的差分方程,得到N₁阶线性方程组,未知数为u在N₁个正则内点处的近似值(利用(9.35)中的第一式)
- ✓ 线性方程组中出现的u在非正则内 点的近似值由式(9.35)中的第 二、三式确定;
- ✓ 求解N₁阶线性方程组,得到数值 解。

■ 例9.3

$$D: 0 \le x \le 0.5, 0 \le y \le 0.5$$

求下面的第一边值问题

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) & ((x, y) \in D) \\ u(0, t) = 0, u(0.5, t) = 200y & (0 \le y \le 0.5) \\ u(x, 0) = 0, u(x, 0.5) = 200x & (0 < x < 0.5) \end{cases}$$

取h=0.125,计算取2位小数。

解:作两族平行线,将区域D划分为矩形网格。

$$x = 0.125i$$
 $(i = 0, 1, \dots, 4)$

$$y = 0.125j$$
 $(j = 0, 1, \dots, 4)$

边界上9个节点的u值由边界条件确定

$$u_{0,j} = 0$$
, $u_{4,j} = 25j$ $(j = 1, 2, 3)$
 $u_{i,0} = 0$, $u_{i,4} = 25i$ $(i = 1, 2, 3)$

9个内节点的数值解记为*u*₁,*u*₂,…,*u*₉, 按式 (9.34) 第一式建立方程

$$\begin{cases} -4u_1 + u_2 + u_4 + u_{1,0} + u_{0,1} = 0 \\ u_1 - 4u_2 + u_3 + u_5 + u_{2,0} = 0 \\ u_2 - 4u_3 + u_6 + u_{3,0} + u_{4,1} = 0 \\ u_1 - 4u_4 + u_5 + u_7 + u_{0,2} = 0 \\ u_2 + u_4 - 4u_5 + u_6 + u_8 = 0 \\ u_3 + u_5 - 4u_6 + u_9 + u_{4,2} = 0 \\ u_4 - 4u_7 + u_8 + u_{0,3} + u_{1,4} = 0 \\ u_5 + u_7 - 4u_8 + u_9 + u_{2,4} = 0 \\ u_6 + u_8 - 4u_9 + u_{4,3} + u_{3,4} = 0 \end{cases}$$

代入边界节点的值

$$\begin{bmatrix} -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 \end{bmatrix} \times \begin{bmatrix} u_1 \\ u \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \\ u_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -25 \\ -50 \\ -150 \end{bmatrix}$$

求解迭代得到

$$(u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9)^T = (6.25, 12.50, 18.75, 12.50, 25.00, 37.50, 18.75, 37.50, 56.25)^T$$

第九章的基本要求

- 抛物型返程——古典显式差分格式,稳定条件
- 双曲型方程——第一种差分格式,稳定条件
- ■椭圆型方程——差分格式
- ■各个差分格式的图形理解
- 各个差分格式的求解

作业: 1、4、5、6

课程结束,感谢大家!

西北工业大学

航空学院