به نام یزدان

گزارش پروژه گیربکس (فاز اول)

درس طراحی اجزای 2

استاد امیرنورانی

ريحانه نيكوبيان

ایمان شهروی

فهرست

طراحی چرخدنده های G_1 و G_3 طراحی	3
طراحی چرخدنده های G2 و G4	9
طراحی سیستم رک و پینیون	14
طراحی چرخدنده های G ₅ و G ₆	17
طراحی چرخدنده های G ₇ و G ₈	21
تحلیل نیرویی چرخدنده ها	27
محاسبه فاصله شفت هامحاسبه فاصله شفت ها	29
جدول جامع ویژگی های چرخدنده ها	30
روش های تثبیت چرخدنده ها در گیربکس	31
انتخاب موتور الكتريكى	32
بررسی اتلافات موجود در پولی و چرخدنده	34
محاسبات قيمت	35
منابع	37

طراحی چرخدنده های G_3 و spur gears):

فرض1: نسبت تبدیل سیستم زنجیر و چرخ زنجیر را برابر 3.75در نظر میگیریم. (کاهنده)

$$\omega_{Shaft1} = 3000(rpm) \times \frac{1}{3.75} = 800 (rpm)$$

گام اول : محاسبه گشتاور

$$T = \frac{P}{\omega} \rightarrow \frac{4kw}{800 \times \frac{2 \times \pi}{60}} = 47.73 \text{ (N.m)}$$

* چرخدنده پینیون G1 میباشد.

فرض2: S_{ut}=700(MPa)

گام دوم : بدست آوردن نسبت تبدیل و انتخاب تعداد دندانه

برای شفت 2 هرگاه ω =600 rpm باشد،G3 و G3 درگیر میشوند

$$m_G = \frac{N_G}{N_P} = \frac{\omega_P}{\omega_G} = \frac{800(rpm)}{600(rpm)} = 1.34$$

فرض3: دندانه را تمام عمق فرض میکنیم.(K=1)

فرض4: زاویه فشار را برابر 20 درجه فرض میکنیم.(\emptyset =20)

فرض5: تعداد دندانه پینیون(NP) را برابر 19 در نظر میگیریم.

$$\frac{N_G}{N_P}$$
 = 1.3 \rightarrow N_G = 24.7 \approx 25 (جلوگیری از پدیده شکارچی)

$$\frac{25}{19} = 1.315$$
 کمتر از 2 درصد با $\frac{25}{19} = 1.315$ فاصله دارد

گام سوم: مدول را حدس میزنیم و قطرها را محاسبه میکنیم

فرض6: حدس اولیه برای مدول m=3mm میباشد.

$$m = \frac{d}{N} \rightarrow d_{G1} = 3 \times 19 = 57 (mm), d_{G3} = 3 \times 25 = 75 (mm)$$

$$V = r \times \omega = \frac{0.057}{2} \times 800 \times \frac{2 \times \pi}{60} = 2.387 (m/s)$$

فرض7: از تراش هاب برای تولید چرخدنده استفاده شده است.

« را با توجه به سرعت تعیین میکنیم K∨

$$K_V = \frac{3.56 + \sqrt{V}}{3.56}$$

$$K_V = \frac{3.56 + \sqrt{2.387}}{3.56} \rightarrow K_V = 1.433$$

 $8<X<12 \rightarrow$

فرض8: X را برابر 10 در نظر میگیریم.

$$F = X \times m \rightarrow F = 10 \times 3 = 30 \text{ (mm)}$$

گام چهارم:FS)G:را بدست میاوریم و J (ضریب هندسی) را تعیین میکنیم.

فرض9: FS=2

فرض10:موتور الكتريكي را يونيفرم و مونتاژ را متوسط در نظر ميگيريم.

$$(FS)_G = (FS) \times (K_m) \times (K_O) \rightarrow$$

Table G5. LOAD-DISTRIBUTION FACTOR k_m FOE SPUR GEARS

	Face width, mm			
Characteristics of support	0 to 50	150	225	400 up
Accurate mountings, small bearing clearances, minimum deflection, precision gears	1.3	1.4	1.5	1.8
Less rigid mountings, less accurate gears, contact across full face	1.6	1.7	1.8	2.2
Accuracy and mounting such that less than full-face contact exists	Over 2.2			

Table G4. Table of Overload Factors, Ko

Driven Machine						
Power source	Uniform	Moderate shock	Heavy shock			
Uniform	1.00	1.25	1.75			
Light shock	1.25	1.50	2.00			
Medium shock	1.50	1.75	2.25			

$$K_m$$
 = 1.6 , K_o = 1.25 \rightarrow (FS)_G = 2×1.6×1.25 = 4

Table G2. AGMA GEPMETRY FACTOR J FOR TEETH HAVING $\phi = 20^{\circ}$, a = 1m, b = 1.25m AND $r_f = 0.300m$

Number of	Number of teeth in mating gear							
teeth	1	17	25	35	50	85	300	1000
18	0.244 86	0.324 04	0.332 14	0.338 40	0.344 04	0.350 50	0.353 94	0.361 12
19	0.247 94	0.330 29	0.338 78	0.345 37	0.351 34	0.358 22	0.364 05	0.369 63
20	0.250 12	0.336 00	0.344 85	0.351 76	0.358 04	0.365 32	0.371 51	0.377 49
21	0.253 21	0.341 24	0.350 44	0.357 64	0.364 22	0.371 86	0.378 41	0.384 75
22	0.255 52	0.346 07	0.355 59	0.363 06	0.369 92	0.377 92	0.384 79	0.391 48
24	0.259 51	0.354 68	0.364 77	0.372 75	0.380 12	0.388 77	0.396 76	0.403 60
26	0.262 89	0.362 11	0.372 72	0.381 15	0.388 97	0.396 21	0.406 25	0.414 18
28	0.265 80	0.368 60	0.379 67	0.388 51	0.396 73	0.406 50	0.415 04	0.423 51
30	0.268 31	0.374 62	0.385 80	0.395 00	0.403 59	0.413 83	0.422 83	0.431 79
34	0.272 47	0.383 94	0.396 71	0.405 94	0.415 17	0.426 24	0.436 04	0.445 86
38	0.275 75	0.391 70	0.404 46	0.414 80	0.424 56	0.436 33	0.446 80	0.457 35
45	0.280 13	0.402 23	0.415 79	0.426 85	0.437 35	0.450 10	0.461 52	0.473 10
50	0.282 37	0.408 08	0.422 08	0.435 55	0.444 48	0.457 78	0.469 75	0.481 93
60	0.286 13	0.417 02	0.431 73	0.443 83	0.455 42	0.469 60	0.482 43	0.495 57
75	0.289 79	0.426 20	0.441 63	0.454 40	0.466 68	0.481 79	0.495 54	0.509 70
100	0.293 53	0.435 61	0.451 80	0.465 27	0.478 27	0.494 37	0.509 01	0.524 35
150	0.297 38	0.445 30	0.462 26	0.478 45	0.490 23	0.507 36	0.523 12	0.539 54
300	0.301 41	0.455 26	0.473 04	0.487 98	0.502 56	0.520 78	0.537 65	0.555 33
Rack	0.305 71	0.463 54	0.484 15	0.499 88	0.515 29	0.534 67	0.552 72	0.571 73

 \rightarrow J = 0.33878

گام پنجم: محاسبه حد دوام ماده و ضرایب مارین

 $S_e = K_a.K_b.K_c.K_d.K_e.K_f \times (0.504S_{ut})$

Figure G1. Surface-finish factors ka for cut, shaved, and

 \rightarrow K_a = 0.72

Table G6. SIZE FACTORS FOR SPUR-GEAR TEETH

Module m	Factor k _b	Module m	Factor k _b
1 to 2	1.000	11	0.843
2.25	0.984	12	0.836
2.5	0.974	14	0.824
2.75	0.965	16	0.813
3	0.956	18	0.804
3.5	0.942	20	0.796
4	0.930	22	0.788
4.5	0.920	25	0.779
5	0.910	28	0.770
5.5	0.902	32	0.760
6	0.894	36	0.752
7	0.881	40	0.744
8	0.870	45	0.736
9	0.860	50	0.728
10	0.851		

→K_b = 0.956

 $K_c = 1(صریب بارگذاری)$, $K_d = 1(صریب بارگذاری)$

فرض11: قابلیت اطمینان را برابر 90٪ در نظر میگیریم.

Table G7. RELIABILITY FACTORS

Reliability R	0.50	0.90	0.95	0.99	0.999	0.9999
Facror ke	1.000	0.897	0.868	0.814	0.753	0.702

 $K_e = 0.897$

:(واسط) یا چرخدنده هرزگرد (واسط) یا چرخدنده محرک (راننده) یا متحرک (رانده شده) یا k_f بر اساس چرخدنده هرزگرد

	راننده یا رانده شده Sut < 1400 MPa		ضريب
تعیین از روی شکل	1.33	1	k_f

 $K_f = 1.33$

 $S_e = 0.72 \times 0.956 \times 1 \times 1 \times 0.897 \times 1.33 \times (0.504 \times 700 \text{(Mpa)}) = 289.7 \text{ (MPa)}$

گام ششم: تعیین مدول چرخدنده ساده بر اساس رابطه اول دورعلی برای ممان خمشی

$$m = \sqrt[3]{\frac{2K_v(FS)_GT}{S_{all}NJX}}$$

$$m = \sqrt[3]{\frac{2 \times 1.433 \times 4 \times 47.73}{289.7 \times 19 \times 0.33878 \times 10}} = 2.88 (mm)$$

*با مدولی که حدس زدیم(m=3)،کمتر از 10 درصد تفاوت دارد پس قابل قبول است.

گام هفتم: تعیین مدول چرخدنده ساده بر اساس رابطه دوم دورعلی بر اساس تنش سطحی

$$m = \sqrt[3]{\left(\frac{C_p}{S_{all}}\right)^2 \frac{2K_v(FS)_G T}{XN^2 I}}$$

Table G8. VALUES OF THE ELASTIC COEFICIENT C_p FOR SPUR AND HELICAL GEARS WITH NONLOCALIEZED CONTACT AND FOR v = 0.30 The units of C_p are $(Mpa)^{1/2}$

	Madulacas		Gear					
Pinion	Modules of elasticity E, Gpa	Steel	Malleable iron	Nodular iron	Cast iron	Aluminim bronze	Tin bronze	
Steel	200	191	181	179	174	162	158	
Mall iron	170	181	174	172	168	158	157	
Nod iron	170	179	172	170	166	156	152	
Cast iron	150	174	168	166	163	154	149	
Al. bronze	120	162	158	156	154	145	141	
Tin bronze	110	158	154	152	149	141	137	

$$\rightarrow$$
 C_p = 191(\sqrt{MPa})

`

$$I = \frac{\cos\varphi \sin\varphi}{2} \frac{m_G}{m_G + 1} \rightarrow I = 0.09$$

فرض 12:سطح چرخدنده را در كارگاه تا HB=400 سخت ميكنيم.

$$S_{es}' = 2.75 \times HB - 70 = 1030$$

 $15(years) \times 280(days) \times 12(hours) \times (60 min) \times (800 rpm) = 24.2 \times 10^8 > (10^8) \rightarrow$

10 ⁸ و بالاتر	10 ⁶	10 ⁵	10 ⁴	تعداد سیکل کاری
1	1.1	1.3	1.5	CL

 $C_L=1$, $C_T=1$ (ضریب نسبت سختی) , $C_H=1$ (ضریب نسبت سختی)

بيش از %99.9	99.9% تا %99.9%	تا %99	قابليت اطمينان
1.25	1	0.8	CR

 $C_{R} = 0.8$

$$S_{es} = \frac{C_L C_H}{C_T C_R} \times S_{es} = \frac{1030}{0.8} = 1287.5 \text{ (MPa)}$$

$$m = \sqrt[3]{\frac{191^2 \times 2 \times 1.433 \times 4 \times 47.73}{1287.5^2 \times 10^6 \times 10 \times 19^2 \times 0.09}} = 3.02(mm)$$

با مدول حدس زده شده کمتر از 10 درصد اختلاف دارد و بنابراین قابل قبول است.

پس مدول (m=3(mm) برای چرخدنده های G_1 و G_3 انتخاب میشود.

: (Helical gears) G_4 و G_2 طراحی چرخدنده های و

گام اول: محاسبه توان

T =
$$\frac{P}{\omega}$$
 = $\frac{3.5(kw)}{1000(rpm) \times \frac{2 \times \pi}{60}}$ = 33.41 (N.m)

فرض1: زاویه فشار را برابر 20 درجه و زاویه هلیکس را برابر 13 درجه در نظر میگیریم.

 $(\phi_n = 20, \psi = 13)$

$$\tan(\phi_{t}) = \frac{\tan(\phi_{n})}{\cos(\psi)} \rightarrow \phi_{t} = 20.5$$

گام دوم: نسبت تبدیل را بدست اورده و تعداد دندانه ها را تعیین میکنیم.

$$\frac{\omega_4}{\omega_2} = \frac{1000(rpm)}{800(rpm)} = \frac{N_2}{N_4} = m_G = 1.25$$

 $N_4 = N_p = 19 \rightarrow N_2 = 24$ قابل قبول $m_G = 1.238$ قابل قبول $m_G = 1.238$

گام سوم: حدس مدول

مدول را برابر 3mm در نظر میگیریم.

$$m_n = 3 \rightarrow m = \frac{m_n}{\cos(\psi)} = 3.078$$

* در قسمت قبلی برای دو چرخدنده ساده دیدیم که $\frac{d_1+d_3}{2}=66$ و در این قسمت داریم:

$$d_2 = N_2 \times m_n = 24 \times 3.078 = 73.872 \text{ (mm)}$$

$$d_4 = N_4 \times m_n = 19 \times 3.078 = 58.482 \text{ (mm)}$$

$$\frac{d_2 + d_4}{2} = 66.18 \text{ (mm)}$$

بنابر این فاصله دو شفت را برابر (mm) 66 در نظر میگیریم و در حالت دوم تنها 0.18 mm تفاوت داریم که قابل چشم پوشی میباشد:

$$V = r \times \omega \rightarrow (\frac{58.482}{2}) \times 1000 \times \frac{2 \times \pi}{60} = 3.062 (\frac{m}{s})$$

 $K_v = 1.5$

گام چهارم: (FS)_G را بدست میاوریم.

فرض2: موتورالکتریکی را یونیفرم و مونتاژ چرخدنده هلیکال را متوسط در نظر میگیریم.

 $K_o = 1.25$

Table G10. LOAD-DISTRIBUTION FACTOR k_m FOE HELICAL GEARS

	Face width, mm			
Characteristics of support	0 to 50	150	225	400 up
Accurate mountings, small bearing clearances, minimum deflection, precision gears	1.2	1.3	1.4	1.7
Less rigid mountings, less accurate gears, contact across full face	1.5	1.6	1.7	2.0
Accuracy and mounting such that less than full-face contact exists	Over 2.2			

 $K_{\rm m} = 1.5$

فرض3: ضریب طراحی را برابر 2.5 در نظر میگیریم. (FS=2.5)

فرض4: قابلیت اطمینان را 90 درصد در نظر میگیریم.

فرض5: X=8 را در نظر میگیریم.

$$(FS)_G = (FS) \times (K_m) \times (K_o) = 4.7$$

گام پنجم: استحکام حد دوام و ضرایب مارین را بدست میاوریم.

$$S_e = K_a.K_b.K_c.K_d.K_e.K_f \times (0.504 \times S_{ut}) \longrightarrow K_a = 0.72$$
 , $K_b = 0.956$, $K_c = 1$, $K_d = 1$, $K_e = 0.897$

$$K_f = 1.33$$

$$S_e = 0.72 \times 0.956 \times 1 \times 1 \times 0.897 \times 1.33 \times 0.504 \times 700 (Mpa) = 289.71 (MPa)$$

گام ششم: ضریب هندسی (J) را تعیین میکنیم.

$J_0 = 0.49$

$$J' = 0.93 \rightarrow J = J_0 \times J' \rightarrow 0.49 \times 0.93 = 0.45$$

گام هفتم: تعیین مدول چرخدنده هلیکال بر اساس ممان خمشی(رابطه سوم دورعلی)

$$m_n = \sqrt[3]{\frac{2K_v(FS)_GTcos^3\psi}{S_{all}NJX}}$$

$$\sqrt[3]{\frac{2\times1.5\times4.7\times33.41\times\cos(13)^3}{289.71\times10^6\times19\times0.45\times8}} \rightarrow m_n = 2.81$$

کمتر از $m_n = 3$ بنابراین قابل قبول است.

گام هشتم: تعیین مدول چرخدنده هلیکال بر اساس تنش سطحی(رابطه چهارم دورعلی)

$$m_n = \sqrt[3]{\left(\frac{C_p}{S_{all}}\right)^2 \frac{2K_v(FS)_G T \cos^3 \psi}{XN^2 I}}$$

$$C_p = 191 \sqrt{MPa}$$

$$Z = m_n \times \left\{ \sqrt[2]{\left(\frac{N_p}{2cos\psi} + 1\right)^2 - \left(\frac{N_p \times cos\phi_t}{2 \times cos\psi}\right)^2} + \sqrt[2]{\left(\frac{N_G}{2cos\psi} + 1\right)^2 - \left(\frac{N_G \times cos\phi_t}{2 \times cos\psi}\right)^2} - \left(\frac{N_p + N_G}{2}\right) \times \frac{sin\phi_t}{cos\psi} \right\}$$

$$Z = \{5.67 + 6.65 - 7.72\} \times m_n = 4.6 m_n$$

$$m_{\rm N} = \frac{\pi \times \cos(\emptyset_n)}{0.95 \times 4.6} = 0.67 \longrightarrow m_{\rm N} < 1$$
 رعایت شد

$$I = \frac{\cos(\emptyset_t) \times \sin(\emptyset_t)}{2 \times m_N} \times \frac{m_G}{m_G + 1} = 0.136$$

فرض6: سطح را تا HB=400 سخت كارى كرده ايم.

$$2.75 \times HB - 70 = S_{es}' = 1030(MPa)$$

$$C_L = 1$$
, $C_H = 1$, $C_T = 1$, $C_R = 0.8$

$$\frac{c_L c_H}{c_T c_R} \times S_{es}' = S_{es} = 1287.5 \text{ (MPa)}$$

$$m_n = \sqrt[3]{\frac{191^2 \times 2 \times 1.5 \times 4.7 \times 33.41 \times cos\psi^3}{1287.5^2 \times 10^6 \times 8 \times 19^2 \times 0.136}} = 2.92 \text{ (mm)}$$

مدولی که حدس زدیم برابر (mm) 3 بود و بنابراین کمتر از 10 درصد اختلاف دارند و قابل قبول است.

طراحی سیستم رک و پینیون:

فرض 1: سرعت رک را برابر $\frac{cm}{s}$ در نظر میگیریم.

$$V_{\text{rack}} = r \times \omega = 0.2 \left(\frac{m}{s}\right)$$

 $(\emptyset = 20 , K=1)$. دندانه تمام عمق و زاویه فشار برابر 20 درجه است

*کوچکترین پینیونی که میتواند با یک شانه بدون تداخل کارکند:

$$N_P = \frac{2(k)}{\sin^2 \phi}$$

$$\frac{2}{\sin(20)^2}$$
 =17.1 \rightarrow N_P = 18

فرض3: مدول را برابر (mm) قرض میکنیم.

 $d = m \times N_p = 5 \times 18 = 63(mm)$

$$\omega = \frac{V}{r} = \frac{0.2}{0.0315} = 6.34 \left(\frac{rad}{s}\right)$$

$$T = \frac{P}{\omega} = \frac{500}{6.34} = 78.75$$
 (N.m)

فرض4: از تراش هاب استفاده میکنیم.

$$K_{v} = \frac{3.56 + \sqrt[2]{0.2}}{3.56} = 1.125(\frac{m}{s})$$

فرض5: FS=2

فرض6: موتور الكتريكي را يونيفرم و مونتاژ را متوسط در نظر ميگيريم.

FS = 2 ,
$$K_o = 1.25$$
 , $K_m = 1.6 \rightarrow (FS)_G = 4$

فرض7: X=10

$$X = 10$$
, $m=3.5 \rightarrow F = X.m \rightarrow F = 35 (mm)$

فرض8: قابلیت اطمینان را برابر 90٪ در نظر میگیریم.

تعیین ضرایب مارین همانند دو چرخدنده ساده اولیه میباشد: (تنها K_b متفاوت است)

$$K_a$$
 = 0.72 , K_b = 0.942 , K_c =1 , K_d =1 , K_e =0.897 , K_f =1.33

Table G6. SIZE FACTORS FOR SPUR-GEAR TEETH

Module m	Factor k _b	Module m	Factor k _b
1 to 2	1.000	11	0.843
2.25	0.984	12	0.836
2.5	0.974	14	0.824
2.75	0.965	16	0.813
3	0.956	18	0.804
3.5	0.942	20	0.796
4	0.930	22	0.788
4.5	0.920	25	0.779
5	0.910	28	0.770
5.5	0.902	32	0.760
6	0.894	36	0.752
7	0.881	40	0.744
8	0.870	45	0.736
9	0.860	50	0.728
10	0.851		

$$S_{e'} = 0.504 \times S_{ut} = 352.8 (MPa)$$

$$S_e = k_a.k_b.k_c.k_d.k_e.k_f \times (352.8) = 285.46 \text{ (MPa)}$$

***تع**یین مدول بر اساس ممان خمشی(رابطه اول دورعلی):

$$m = \sqrt[3]{\frac{2K_v(FS)_GT}{S_{all}NJX}}$$

$$\sqrt[3]{\frac{2\times1.125\times4\times78.75}{285.46\times18\times0.37\times10}} = 3.34 \text{ (mm)}$$

*کمتر از ده درصد اختلاف با مدولی که حدس زدیم (m=3.5(mm)) بنابراین مدول 3.5 قابل قبول است.

*تعیین مدول بر اساس تنش سطحی (رابطه دوم دورعلی):

$$m = \sqrt[3]{\left(\frac{C_p}{S_{all}}\right)^2 \frac{2K_v(FS)_GT}{XN^2I}}$$

*سختی سطح را برابر HB=300 در نظر میگیریم.

$$S_{es}' = 2.75 \times 300 - 70 = 755 \text{ (MPa)}$$

$$C_p = 191 (\sqrt{MPa})$$

$$C_L = 1$$
 , $C_T = 1$, $C_H = 1$, $C_R = 0.8$

$$S_{es} = \frac{C_L \times C_H}{C_T \times C_R} = \frac{755}{0.8} = 943.75 \text{ (MPa)}$$

$$I = \frac{\cos \phi \sin \phi}{2} \times \frac{m_G}{m_G + 1} = 0.191$$

$$m = \sqrt[3]{\frac{191^2 \times 2 \times 1.25 \times 4 \times 78.75}{943.75^2 \times 10^6 \times 10 \times 18^2 \times 0.191}} = 3.61 (mm)$$

كمتر از 10 درصد با مدولي كه حدس زديم (mm) 3.5 تفاوت دارد و قابل قبول است.

طراحی چرخدنده های G_5 و (Helical Gears) طراحی چرخدنده این الحدیده این الحدیده الحدیده الحدید الحدیده الحدید

گام اول: محاسبه توان

$$T = \frac{P}{\omega} \rightarrow \frac{500}{600 \times \frac{2 \times \pi}{60}} = 7.96 \text{ (N.m)}$$

فرض1: زاویه فشار را برابر 20 درجه و زاویه هلیکس را برابر 13 درجه در نظر میگیریم.

 $(\phi_n = 20, \psi = 13)$

$$\tan (\phi_t) = \frac{\tan \phi_n}{\cos \psi} \rightarrow \phi_t = 20.5$$

فرض2: نسبت تبدیل سیستم پولی و تسمه را برابر 4 در نظر میگیریم.(از نوع کاهنده) خروجی سیستم پولی متصل به پینیون در سیستم رک و پینیون بوده که ω آن مشخص است. به همین ترتیب میتوانیم ω ورودی که همان ω 6 میباشد را تعیین کنیم.

$$\frac{\omega_{p_1}}{\omega_{p_2}}$$
 = 4 $\to \omega_{p_2}$ = 6.34 $\frac{rad}{s} \times \frac{60}{2 \times \pi}$ = 60.54 rpm $\to \omega_{p_1}$ = 242.16 (rpm)

$$\omega_{G_5}$$
 = ω_{shaft2} = 600 (rpm)

گام دوم: نسبت تبدیل را بدست اورده و تعداد دندانه ها را تعیین میکنیم.

$$m_G = \frac{\omega_5}{\omega_6} \approx 2.5$$

$$N_p = 19$$
 , $N_G = 48$ جلوگیری از پدیده شکارچی $m_G = \frac{N_G}{N_P} = 2.52$

گام سوم: حدس مدول

مدول را برابر (mm) 1.5 فرض میکنیم.

$$m_n = 1.5 \rightarrow m = \frac{m_n}{\cos \psi} = 1.54$$

$$d_p = 29.26 \text{ (mm)}$$
, $d_G = 73.92 \text{ (mm)}$

$$V = r \times \omega \rightarrow = \frac{29.26}{2} \times 600 \times \frac{2 \times \pi}{60} = 0.919 \left(\frac{m}{s}\right)$$

$$K_v = \frac{3.56 + \sqrt[2]{0.919}}{3.56} = 1.27$$

گام چهارم (FS): را بدست میاوریم.

فرض3: موتورالکتریکی را یونیفرم و مونتاژ چرخدنده هلیکال را متوسط در نظر میگیریم.

فرض 4: ضریب طراحی را برابر 2 فرض میکنیم.

$$K_0 = 1.25$$
, $K_m = 1.5$, $FS = 2 \rightarrow (FS)_G = 1.25 \times 1.5 \times 2 = 3.75$

فرض5: X=9

 $F = X \times m = 13.5(mm)$

گام پنجم: استحکام حد دوام و ضرایب مارین را بدست میاوریم.

 $S_e = K_a.K_b.K_c.K_d.K_e.K_f \times (0.504 \times S_{ut}) \longrightarrow K_a = 0.72$, $K_b = 0.956$, $K_c = 1$, $K_d = 1$, $K_e = 0.897$

 $K_f = 1.33$

 $S_e = 0.72 \times 1 \times 1 \times 1 \times 0.897 \times 1.33 \times 0.504 \times 700 (Mpa) = 303 (MPa)$

Table G6.	SIZE FACTORS FOR SPUR-GEAR TEETH								
Module m	Factor k _b	Module m	Factor k _b						
1 to 2	1.000	11	0.843						
2.25	0.984	12	0.836						
2.5	0.974	14	0.824						
2.75	0.965	16	0.813						
3	0.956	18	0.804						
3.5	0.942	20	0.796						
4	0.930	22	0.788						
4.5	0.920	25	0.779						
5	0.910	28	0.770						
5.5	0.902	32	0.760						
6	0.894	36	0.752						
7	0.881	40	0.744						
8	0.870	45	0.736						
9	0.860	50	0.728						
10	0.851								
		1							

گام ششم: ضریب هندسی (J) را تعیین میکنیم.

 $J_0 = 0.49$

J' =0.98

J = 0.98 * 0.49 = 0.48

گام هفتم: تعیین مدول چرخدنده هلیکال بر اساس ممان خمشی(رابطه سوم دورعلی)

$$m_n = \sqrt[3]{\frac{2K_v(FS)_GTcos^3\psi}{S_{all}NJX}}$$

$$\sqrt[3]{\frac{2 \times 1.27 \times 3.75 \times 7.96 \times cos 13^3}{303 \times 10^6 \times 19 \times 0.48 \times 9}} = 1.41 \text{(mm)} \rightarrow 200 \text{ (mm)}$$
 کمتر از دہ درصد تفاوت با مدولی که حدس زدیم

گام هشتم: تعیین مدول چرخدنده هلیکال بر اساس تنش سطحی(رابطه چهارم دورعلی)

$$m_n = \sqrt[3]{\left(\frac{C_p}{S_{all}}\right)^2 \frac{2K_v(FS)_G T \cos^3 \psi}{XN^2 I}}$$

$$Cp = 191 \sqrt{MPa}$$

$$Z = m_n \times \left\{ \sqrt[2]{\left(\frac{N_p}{2cos\psi} + 1\right)^2 - \left(\frac{N_p \times cos\phi_t}{2 \times cos\psi}\right)^2} + \sqrt[2]{\left(\frac{N_G}{2cos\psi} + 1\right)^2 - \left(\frac{N_G \times cos\phi_t}{2 \times cos\psi}\right)^2} - \left(\frac{N_p + N_G}{2}\right) \times \frac{sin\phi_t}{cos\psi} \right\}$$

$$Z = \{5.67 + 11.16 - 12.04\} \times mn = 4.79 mn$$

$$m_N = \frac{\pi \times \cos(\emptyset_n)}{0.95 \times 4.79} = 0.646$$

$$I = \frac{\cos \emptyset_t \times \sin \emptyset_t}{2 \times m_n} \times \frac{m_G}{m_G + 1} = 0.117$$

فرض6: سطح را تا HB=400 سخت كارى كرده ايم.

 $2.75 \times HB - 70 = S_{es}' = 1030(MPa)$

$$C_L = 1$$
, $C_H = 1$, $C_T = 1$, $C_R = 0.8$ $\sqrt[3]{\frac{191^2 \times 2 \times 1.27 \times 3.75 \times 7.96 \times cso13^3}{1287.5^2 \times 10^6 \times 9 \times 19^2 \times 0.117}} = 1.47 \rightarrow \approx 1.5 \ (mm)$

$$\frac{c_L c_H}{c_T c_R} \times S_{es}' = S_{es} = 1287.5 \text{ (MPa)}$$

طراحی چرخدنده های G₇ و Bevel gears) :

گام اول: محاسبه گشتاور

$$T = \frac{P}{\omega} \to \frac{7kw}{800 \times \frac{2 \times \pi}{60}} = 83.55 (N.m)$$

گام دوم: حدس مدول چرخدنده

مدول را برابر m = 4(mm) در نظر میگیریم

گام سوم: محاسبه قطر پینیون و گیر

فرض1: تعداد دندانه پینیون را برابر 19 در نظر میگیریم.

$$m_G = \frac{\omega_{G8}}{\omega_{G7}} = \frac{800(rpm)}{120(rpm)} = 6.67$$

$$N_P = 19 \rightarrow N_G = 19 \times 6.67 \approx 127$$

$$d_p = 19 \times 4 = 76 \text{ (mm)}$$
, $d_G = 127 \times 4 = 508 \text{ (mm)}$

گام چهارم: محاسبه عرض چرخدنده

 $F = \min[0.3A_0, 10m]$

 $10m = 10 \times 4 = 40 (mm)$

$$\gamma = tan^{-1} \left(\frac{N_P}{N_G} \right) = 8.5^{\circ} \rightarrow \Gamma = 90 - \gamma = 90 - 8.5 = 81.5^{\circ}$$

$$A_0 = \frac{d_p}{2\sin y} = \frac{76}{2\sin 8.5^{\circ}} = 257 \text{ (mm)}$$

$$F = min [0.3 \times 257, 40] = 40 (mm)$$

گام پنجم: محاسبه حد دوام ماده

فرض2: Sut را برابر SomPa در نظر میگیریم.

محاسبه ضرایب مارین:

$$\rightarrow$$
 K_a = 0.72

Figure G1. Surface-finish factors ka for cut, shaved, and

Table G6.	SIZE I	FACTORS	FOR	SPUR-GEAR	TEETH
-----------	--------	---------	-----	-----------	-------

Table Go.	SIZE FACTORS	S FOR SPUR-GEA	K IEEIH
Module m	Factor k _b	Module m	Factor k _b
1 to 2	1.000	11	0.843
2.25	0.984	12	0.836
2.5	0.974	14	0.824
2.75	0.965	16	0.813
3	0.956	18	0.804
3.5	0.942	20	0.796
4	0.930	22	0.788
4.5	0.920	25	0.779
5	0.910	28	0.770
5.5	0.902	32	0.760
6	0.894	36	0.752
7	0.881	40	0.744
8	0.870	45	0.736
9	0.860	50	0.728
10	0.851		

$$\rightarrow$$
 K_b = 0.93

$$K_c = K_d = 1$$
 (ضرایب دما و بارگذاری)

فرض3: قابلیت اطمینان را برابر 90% در نظر میگیریم

Table G7. RELIABILITY FACTORS

Reliability R	0.50	0.90	0.95	0.99	0.999	0.9999
Facror ke	1.000	0.897	0.868	0.814	0.753	0.702

 $K_e = 0.897$

فریب k_f بر اساس چرخدنده هرزگرد (واسط) یا چرخدنده محرک (راننده) یا متحرک (رانده شده):

	راننده یا رانده شده Sut < 1400 MPa	چرخدنده واسطه یا چرخدنده ای که از دو طرف می چرخد	ضريب	
تعیین از روی شکل	1.33	1	k_f	

 $K_f = 1.33$

 $S_e = K_a.K_b.K_c.K_d.K_e.K_f \times (0.504 \times S_{ut}) = 0.72 \times 0.93 \times 1 \times 1 \times 0.897 \times 1.33 \times (0.504 \times 700) = 281.83 \text{ (MPa)}$

گام ششم: به دست آوردن V و Kv و نیروی مماسی چرخدنده

$$V = \frac{d_P}{2} \times \omega = 0.038 \times 800 \times \frac{2\pi}{60} = 3.18 \left(\frac{m}{s}\right)$$

فرض 4: چرخدنده با روش تراش هاب تولید شده است.

$$K_v = \frac{3.56 + \sqrt{3.18}}{3.56} = 1.5$$

$$T = W_t \times \frac{d_P}{2} \rightarrow 83.55 = W_t \times 0.038 \rightarrow W_t = 2198.7 \text{ N}$$

گام هفتم: تعیین ضریب ایمنی با توجه به وضعیت نصب، کارکرد و ضریب طراحی موردنیاز

فرض5: (FS =2)

فرض6: موتور الكتريكي را يونيفرم و مونتاژ را متوسط در نظر ميگيريم.

$$K_o = 1.25$$
 , $K_m = 1.3$

$$(FS)_G = K_o \times K_m \times FS \rightarrow (FS)_G = 1.25 \times 1.3 \times 2 = 3.25$$

گام هشتم: تعیین ا و J در رابطه مدول استحکام سطحی و خمشی با توجه به نمودار های داده شده

 $J_P = 0.29$

 $J_G = 0.236$

I = 0.104

*چون نمودار برای دندانه های گیر عدد بیشتر از 100 را شامل نمیشود،به صورت تقریبی همان حوالی 100 را در نظر گرفته ایم.

 S_{es} از روي جدول ها و در نهايت محاسبه C_{L} و C_{L}

فرض6: سطح را تا HB=300 سخت كارى كرده ايم.

$$C_L = C_T = C_H = 1$$
, $C_R = 0.8$

$$S_{es}' = 2.75 \times 300 - 70 = 755 \rightarrow S_{es} = S_{es}' \times \frac{1 \times 1}{1 \times 0.8} = 944 \text{ (MPa)}$$

گام دهم: محاسبه ضریب ایمنی چرخدندهها و مقایسه مقدار به دست آمده با مقدار انتخابی در گام هفتم

ضریب ایمنی خمشی برای پینیون:

$$\sigma = \frac{K_V W_t(F.S)_p}{F I_m}$$

$$\sigma = \sigma_{all} = S_e$$

$$281.83 = \frac{1.5 \times 2198.7 \times (FS) \times 1.5 \times 1.3}{40 \times 0.29 \times 4} \rightarrow (FS)_P = 2.44 > 2 \text{ ok}$$

ضریب ایمنی خمشی برای گیر:

$$(FS)_G = \frac{J_G}{I_P} \times (FS)_P = 2.03 > 2 \text{ ok}$$

خستگی سطحی:

$$\sigma_H = C_p \sqrt{\frac{\omega_t(F.S)_G}{K_V F d_p I}}$$

944=191×
$$\sqrt{\frac{2198.7 \times (F.S) \times 1.5 \times 1.3}{1.5 \times 40 \times 76 \times 0.104}} \rightarrow 2.7 > 2 \text{ ok}$$

تحلیل نیروهای وارد بر چرخدنده ها:

 $: G_3
ightharpoonup G_1 = G_3$ چرخدنده های

$$W_t = \frac{60 \times 10^3 \times H}{\pi dn} = \frac{60 \times 10^3 \times 4}{\pi \times 800 \times 57} = 1.67 \text{ (kN)}$$

$$W_r = W_t \times tan(\emptyset) \rightarrow \emptyset = 20^{\circ} \rightarrow W_t = 609 (N)$$

 G_4 و G_2 و G_4

$$W_{t} = \frac{T}{\frac{d}{2}} = \frac{\frac{P}{\omega}}{\frac{d}{2}} = \frac{\frac{3500}{800 \times \frac{2\pi}{60}}}{\frac{73.872}{2}} = 1.13 \text{ (kN)}$$

øn=20° ,
$$\psi$$
 =13° \rightarrow øt=20.5°

$$G_2$$
 (راست گرد) $\rightarrow \psi$ =13 , G_4 (چپ گرد) $\rightarrow \psi$ = -13

$$W_r = W_t \tan(\emptyset_t) = 422 (N)$$

$$W_a = W_t \tan(\psi) = 261 (N)$$

 G_6 و G_5 چرخدنده های

$$W_{t} = \frac{T}{\frac{d}{2}} = \frac{\frac{P}{\omega}}{\frac{d}{2}} = \frac{\frac{500}{600 \times \frac{2\pi}{60}}}{\frac{28.5}{2}} = 558 \text{ (N)}$$

$$\varnothing_n$$
=20° , ψ =13° \rightarrow \varnothing_t =20.5°

$$G_5$$
 (راست گرد) $\rightarrow \psi$ = 13 , G_6 (چپ گرد) $\rightarrow \psi$ = -13

$$W_r = W_t \times tan (\emptyset_t) = 208.7 (N)$$

$$W_a = W_t \times tan(\psi) = 128.8 (N)$$

 $= G_8$ و G_7 و G_8

$$W_t = \frac{T_i}{r_{avp}} = 1.882 \text{ (kN)}$$
, $\emptyset_n = 20^\circ$, $Y = 8.51^\circ$

$$W_{rp} = W_t \times tan(\emptyset_n) \times cos(Y) = 677(N)$$

$$W_{ap} = W_t \times tan(\emptyset_n) \times sin(Y) = 101.3 (N)$$

چرخدنده **G**₁₁:

$$W_t = \frac{60 \times 10^3 \times H}{\pi dn} = \frac{60000 \times 0.5}{\pi \times 60.54 \times 63} = 2.504 \text{ (kN)} , \emptyset = 20^{\circ}$$

$$W_r = W_t \times tan (\emptyset) = 911 (N)$$

محاسبه فاصله شافت ها:

 $: G_3$ و G_1 و پرخدنده برای دو چرخدنده

$$\frac{d_1+d_3}{2}$$
 = 63 (mm)

 G_4 و G_2 و پرخدنده برای دو چرخدنده

$$\frac{d_2 + d_4}{2} = 63.18 \text{ (mm)}$$

بنابراین فاصله دو شفت 1و 2 را برابر (63(mm) در نظر میگریم و در حالت دوم تنها (0.18(mm تفاوت داریم که با تقریب خوبی قابل چشم پوشی است و دو شفت موازی هستند.

 $: G_6$ و G_5 برای دو چرخدنده

$$\frac{d_5+d_6}{2}$$
 = 51.6 (mm)

$$r_{G4} = 29.24(mm)$$

بنابراین فاصله دو شفت 2 و 3 را برابر (mm) 51.6 در نظر میگیریم و چون شعاع چرخدنده چهارم بیشتر از 20 میلی متر با فاصله دو شفت اختلاف دارد، تداخل و مشکلی از این نظر بوجود نمی آید.

جدول جامع ویژگی های چرخدنده ها:

1	Gears	G1	G2	G3	G4	G5	G6	G7	G8	G11
2	m	3	3	3	3	1.5	1.5	4	4	3.5
3	m_n	null	3.078	null	3.078	1.54	1.54	null	null	null
4	d	57(mm)	73.87(mm)	75(mm)	58.48(mm)	29.26(mm)	73.92(mm)	508(mm)	76(mm)	63(mm)
5	N	19	24	25	19	19	48	127	19	18
6	ф	20	20	20	20	20	20	20	20	20
7	ψ	null	13	null	13	13	13	null	null	null
8	F	30(mm)	24(mm)	30(mm)	24(mm)	13.5(mm)	13.5(mm)	null	null	35(mm)
9	ω	800(rpm)	791.7(rpm)	633(rpm)	1000(rpm)	600(rpm)	240(rpm)	120(rpm)	800(rpm)	60.5(rpm)
10	S_{ut}	700Mpa	700Mpa	700Mpa	700Mpa	700Mpa	700Mpa	700Mpa	700Mpa	700Mpa
11	Hardness	HB=400	HB=400	HB=400	HB=400	HB=400	HB=400	HB=300	HB=300	HB=300

روشهای تثبیت چرخدنده روی شفت

برای تثبیت چرخدنده روی شفت می توانیم از روش های متفاوتی استفاده کنیم. هر کدام از این روش ها در جای خود مفید هستند. گاهی نیاز به تثبیتی قابل تعویض داریم و گاهی می خواهیم چرخدنده را به طور دائمی روی شفت قرار بدهیم.

- 1- استفاده از خار و جای خار بسیار معمول است. کمک گرفتن از پله روی شفت، بوش، خار فنری و اشپیل یا پیچ و پین و واشر هم پیشنهاد می شود. همچنین اگر چرخدنده در انتهای شفت باشد می توان از مهره و واشر یا پیچ و واشر استفاده کرد.
- 2- پیچ تثبیت راهی برای تثبیت است که قابلیت تعویض چرخدنده را نیز به ما میدهد. هرچند باعث می شود عرض چرخدنده بیشتر شود و نیاز به نافی داشته باشد. می توانیم بیشتر از یک پیچ داشته باشیم که زوایای 120 درجه یا 90 درجه بین آنها پیشنهاد می شود.
- 3- شرینک فیت یک راهکار دیگر برای سوار کردن چرخدنده روی شفت است. در این روش دمای چرخدنده را بالا برده تا منقبض شود. این انقباض باعث بزرگتر شدن سوراخ داخل چرخدنده شده و بعد از سرد شدن و انبساط بر روی شفت تثبیت می شود .
- 4- هاب چاکدار هم روشی شبیه پیچ تثبیت است. با این تفاوت که شفت ما سوراخ نمیشود و تمرکز تنش در شفت نداریم. این روش نیز نیازمند نافی بر روی چرخدنده است. میتواند یک پیچ یا بیشتر داشته باشد.
 - 5- همیشه این امکان هم وجود دارد که شفت و چرخدنده به صورت یکپارچه باشند. می توانیم از متریالی با قطر بیشتر استفاده کنیم که امکان تراش چرخدنده و سپس شفت را به ما بدهد.

انتخاب موتور الكتريكي:

برای انتخاب موتور الکتریکی چند فاکتور مهم را باید در نظر بگیریم:

- 1- انتخاب جنس که معمولا آلومینیومی یا چدنی است.
- 2- انتخاب تعداد زوج قطب های مناسب که با توجه به فرکانس برق باعث مشخص شدن دور نامی میشود.
 - 3- انتخاب کلاس بازدهی مناسب که نسبت توان خروجی به توان نامی را تغییر میدهد.

این دستگاه قرار است در یک خط تولید یک کارخانه به کار گرفته شود. می توانیم نتیجه بگیریم که

الف) در شرایط دمایی اندکی بالاتر از دمای اتاق قرار دارد.

ب) در صورت خرابی موتور الکتریکی خط تولید تمام کارخانه متوقف می شود و به نسبت حجم کاری، ضرر گستردهای به کارخانه وارد خواهد شد. پس در صورت خرابی باید بتوانیم به سادگی موتور جدیدی را جایگزین کنیم.

انتخاب جنس

با توجه به اینکه باید از موتورهای معمول استفاده کنیم تا هم هزینهها کاهش یابد هم قابلیت تعویض در اسرع وقت را داشته باشیم، به دو جنس اصلی الکتروموتورهای معمول بازار یعنی آلومینیوم و چدن میپردازیم.

از مزایای الکتروموتور چدنی نسبت به آلومینیومی میتوان به تحمل توان های بالا اشاره کرد. چدن به علت تحمل بالاتری که در تحمل تنش دارد، میتواند برای تولید الکتروموتورهای پر توان بدون بروز مشکل کار کند. همچنین چدن عایق خوبی برای حرارت است و همین قضیه باعث میشود در شرایط آب و هوایی سرد به الکتروموتورهای چدنی رو بیاوریم.

در مقابل استفاده از آلومینیوم هم در شرایط دیگری پیشنهاد می شود. آلومینیوم فلزی سبک تر است و وزن موتور الکتریکی را نسبت به چدن کمتر می کند. آلومینیوم انتقال حرارت بهتری از چدن دارد و در هوای گرمتر می تواند الکتروموتور را خنک نگه داشته و به عمر آن بیافزاید.

در این دستگاه توان مورد انتظار ما متوسط است؛ پس محدودیتی از این بابت نداریم. همچنین دمای محیط کار باید مناسب کارگرها هم باشد. فلذا در دمایی متوسط هم قرار داریم. به همین منظور الکتروموتور اقتصادی تر را انتخاب می کنیم. با توجه به بررسی قیمت این دو نوع، الکتروموتور آلومینیومی قیمت پایین تری داشت و انتخاب ما برای این شرایط است.

انتخاب كلاس بازدهى موتور

به علت استفاده معمولی از موتور و عدم نیاز به ضریب اطمینان بالا، از موتورهایی با راندمان معمولی استفاده می کنیم. چون باید موتور الکتریکی در دسترس باشد و بعد اقتصادی را نیز باید در نظر بگیریم، از موتور های الکتریکی ساخت موتوژن تبریز استفاده می کنیم. کاتالوگ موتور های ساخت این شرکت به پیوست اضافه می شود. کلاس مناسب انتخاب شده از این کاتالوگ، الکتروموتور سه فاز صنعتی تک دور با فریم آلومینیومی است. در این کلاس الکتروموتور اگر توان نامی 15 کیلووات را انتخاب کنیم با توجه به بازده 88.7٪ توان واقعی 13.3 کیلووات را به ما ارائه می کند. این توان اندکی بیشتر از توان مورد نیاز ما در این دستگاه است. فلذا موتور L2B160 را انتخاب می کنیم.

الحتروموتورهای سه فاز صنعتی تک دور با فریم آلومینیومی مطابق با استانداردهای IEC روتور قفس سنجابی، درجه حفاظت IP54 (۱) ، مناسب برای کاردائم، روش تهویه IC411 با پروانه خنک کننده و پرههای روتور، کلاس حرارتیF، فرکانس کار 50HZ و ولتاژ نامی 380V (۲)

							گشتاور نامی				گشتباور راه اندازی			
		KW	HP				N.M			جريان نامى	گشتاور نامی	گشتاورنامی		
56-2A	56	0.09	0.12	220A/380Y	2850	0.73∆/0.42Y	0.3	58	0.56	4	3.5	3.9	0.000090	2.5
56-2B	56	0.12	0.16	220A/380Y	2835	0.86∆/0.5Y	0.4	60.8	0.56	4.1	3.8	4.2	0.000105	3.4
63-2A	63	0.18	0.25	220A/380Y	2830	1A/0.6Y	0.63	66	0.67	3.9	3.2	3.4	0.000149	4
63-2B	63	0.25	0.33	220∆/380Y	2825	1.4∆/0.80Y	0.85	65	0.73	5	3.7	3.9	0.000184	4.6
71-2A	71	0.37	0.50	220A/380Y	2845	1.7∆/1Y	1.25	74	0.80	4.7	2.4	3	0.000383	6
71-2B	71	0.55	0.75	220A/380Y	2840	2.2A/1.3Y	1.86	78	0.80	4.9	3	3.2	0.000463	6.9
80-2A	80	0.75	1.0	220A/380Y	2805	3Δ/1.7Y	2.56	80.7	0.82	4.4	2.6	2.9	0.000718	8.8
80-2B	80	1.1	1.5	220A/380Y	2825	4.6Δ/2.6Y	3.72	82.7	0.82	5.3	2.7	3.1	0.000889	10.4
90L2A	90L	1.5	2.0	220A/380Y	2830	5.7∆/3.3Y	5.06	81.3	0.87	5.3	2.3	2.6	0.001483	13.3
90L2B	90L	2.2	3.0	220A/380Y	2830	8.1A/4.7Y	7.42	83.2	0.88	5.4	2.5	2.7	0.001816	15.4
100L2	100L	3	4	220A/380Y	2840	11.3A/6.5Y	10.01	84.6	0.87	6.5	2.9	2.9	0.002998	20.2
112M2	112M	4	5.5	380∆/660Y	2895	8.2∆/4.7Y	13.2	86	0.86	6.2	2.6	3.2	0.005326	27.0
132M2A	132M	5.5	7.5	380A/660Y	2895	11.3∆/6.5Y	18.14	87	0.86	5.7	2.4	2.9	0.011716	39.7
132M2B	132M	7.5	10	380A/660Y	2905	15.2∆/8.8Y	24.65	88.1	0.85	7.2	2.8	3.2	0.014361	44.9
160L2A	160L	11	15	380A/660Y	2930	21.3A/12.3Y	35.73	87.6	0.88	6.5	2.8	2.9	0.035588	71.5
160L2B	160L	15	20	380∆/660Y	2930	29.0∆/16.7Y	48.97	88.7	0.91	7	2.7	2.8	0.045925	87.7
160L2C	160L	18.5	25	380A/660Y	2940	35A/20.2Y	60.1	89.3	0.92	7	3.1	3.2	0.053162	90
56-4A	56	0.06	0.08	220A/380Y	1360	0.5A/0.3Y	0.42	53	0.58	2.8	2.7	2.8	0.000148	2.7
56-4B	56	0.09	0.12	220A/380Y	1335	0.7A/0.4Y	0.64	56	0.62	2.8	2.5	2.4	0.000172	3.6
63-4A	63	0.12	0.16	220∆/380Y	1365	0.78A/0.45Y	0.85	59.1	0.69	2.8	1.9	2.1	0.000222	4.1
63-4B	63	0.18	0.25	220A/380Y	1365	1.2A/0.7Y	1.27	65	0.64	2.8	2.5	2.6	0.000279	4.6
71-4A	71	0.25	0.33	220A/380Y	1405	1.4∆/0.8Y	1.71	70	0.66	3.4	2.3	2.6	0.000612	5.8
71-4B	71	0.37	0.50	220A/380Y	1390	2Δ/1.1Y	2.54	73	0.71	3.7	2.2	2.5	0.000744	6.6
80-4A	80	0.55	0.75	220∆/380Y	1390	2.7∆/1.6Y	3.78	74	0.72	3.8	2.3	2.4	0.001134	8.8
80-4B	80	0.7	1.0	220A/380Y	1385	3.4Δ/2 Y	5.17	77	0.76	3.8	2.3	2.4	0.001424	10
90L4A	90L	1.1	1.5	220A/380Y	1390	5Δ/2.9Y	7.53	77	0.78	4	1.9	2.2	0.002385	12.5
90L4B	90L	1.5	2.0	220∆/380Y	1405	6.4A/3.7Y	10.2	79	0.78	4.9	2.4	2.7	0.003001	14.
100L4A	100L	2.2	3.0	220A/380Y	1405	8.9A/5.1Y	14.9	81	0.80	4.5	2.1	2.5	0.004613	19
100L4B	100L	3	4	220A/380Y	1420	11.8A/6.8Y	20.25	85.5	0.79	5.6	2.7	3.1	0.006274	22.9
112M4	112M	4	5.5	380∆/660Y	1420	8.5A/4.9Y	26.9	85	0.84	5.5	2.3	2.6	0.011467	30.9
132M4A	132M	5.5	7.5	380∆/660Y	1430	11.7∆/6.7Y	36.73	85	0.83	4.8	2.1	2.3	0.024381	44.8
132M4B	132M	7.5	10	380∆/660Y	1445	15.8∆/9.1Y	49.56	86	0.82	6	2.5	2.7	0.031417	53.5
160L4A	160L	11	15	380A/660Y	1455	22.6\/13	72.2	87.6	0.83	5	2.2	2.1	0.062502	81.
160L4B	160L	15	20	380∆/660Y	1455	29.8Δ/17.2Y	98.45	88.7	0.85	5.5	2	2.3	0.080486	97

١ - درجه حفاظت IP55 بنا به تقاضا
 ٢ - ولتاژ غير از 380 ولت بنا به تقاضا

بررسی اتلافات موجود در پولی و چرخ زنجیر:

Even though the roller chain drive system has been utilized for many years, little is known concerning how to estimate efficiency, which is affected by various factors, such as transmission speed, load, lateral offset between driving and driven sprockets, deflection of the tight side of the chain, etc. In 1999, Kidd et al. [1], performed an experimental examination in which tension was statically loaded for a bicycle chain with a sprocket under conditions of in-plane loading and out-plane loading. However, since only steady-state analysis for tension was carried out, the mechanical interaction of the roller chain and its components was not addressed. James C. Conwell and Johnson G.E. [2] in 1995 investigated the tension of link and impact force on roller sprockets in roller chains under various operation conditions and summarized the results by regression analysis. The impact force increased as the rotational speed and tension of link increased. However, the results did not provide thorough theoretical basis. In 2001, [3] James B. Spicer found that chain transmission is primarily affected by frictional energy loss between 97 and 99%, and compared and validated this result under various rotational speed, power, and lubrication conditions. However, regarding the aspect of chain drive to transmission efficiency with lateral offset, that study only theoretically modeled frictional loss, and experimental verification was not performed. Furthermore, [1,3,4] designed and analyzed the effects of lateral offset for a roller chain system, but inner contact of the chain link with lateral offset owing to the derailleur type system was not reported. Hollingworth, N.E. [5] and Hills, D.A. [6] in 1986 modeled and analyzed the link tension and theoretical efficiency of a chain and formulated the contact force of the pin and bush articulation. However, it is only used in a cranked chain, and does not apply to a roller chain. Although the roller chain system is lubricated, friction occurs at the contacts between the sprockets and the rollers. One advantage of presence of friction force is that it damps out high peak forces during the contact [7,8]. Additionally, Coulomb friction modeling is simple because it only requires the kinetic coefficient of friction. Burgess, S.C. [9] in 1998 calculated chain power transmission efficiency based on the energy loss between the chain links and sprockets and investigated the effects of size of sprockets. It was found that average chain transmission efficiency was 98.8%. However, this model is limited to a race cycling bike chain links that only include pin and sleeve without roller. In 2001, Lodge [10] and Burgess [11] assessed the efficiency of roller chains by modeling frictional losses due to pin sliding against the bush and bush sliding against the roller, in which sliding friction was based on Coulomb's law of friction. The results of efficiency were in the range of 9-99% in high torque transmission. Troedsson, I. [12] and Vedmar, L. [13] in 2001 modeled a complete chain transmission with two sprockets and a chain with tight and slack spans. Damping force is considered as an important factor in the tight span that transmits the most power, and it is assumed to be proportional to the relative velocity between the two end points at the tight side. In 2004, Stuart Burgess and Chris

با توجه به مقاله بالا به آدرس https://www.mdpi.com/876558 بازده چرخ زنجیر را برابر 99 درصد و چون معمولا بازده پولی کمتر از سیستم چرخ زنجیر میباشد و لقی در سیستم پولی و تسمه داریم، برابر 95 درصد در نظر میگیریم. بنابراین توان کل سیستم با توجه به بازده 88.7 درصدی موتور برابر میشود با:

 $15kW \times 0.887 \times 0.99 \times 0.95 = 12.5 kW$

در این تحلیل ما بازده چرخدنده ها را برابر 100 و بدون اتلاف در نظر گرفته ایم.

محاسبات قيمت:

برای ساخت چرخدنده ها به تراش کاری با هاب و سخت کردن سطح دندانه ها نیاز داریم. طبق قیمتی که سایت خدمات سنجاق مشخص کرده این فرایند برای هر جفت چرخدنده به طور میانگین حدود 350 هزار تومان میشود که برای 5 جفت چرخدنده ما یک میلیون و هفتصد و پنجاه هزار تومان هزینه دارد.

تراشکاری به طور متوسط با چه هزینهای در سنجاق ارائه میشود؟

برای ساخت چرخدنده ها از فولاد VCN150 یزد استفاده میکنیم که به صورت استوانه ای و در قطر های مختلف در بازار موجود است. با توجه به عرض دندانه ها، مجموع عرض دندانه های چرخدنده های ما بجز G7 که قطر بسیار بزرگی دارد، کمتر از (mm) 300 میشود که همان 300 را در نظر میگیریم. بنابر این قطر استوانه برابر (mm) 100(mm) و طول استوانه (mm) میباشد.

$$V = \pi \frac{d^2}{4} \times h = 0.002356 \ (m^3)$$

چگالی آهن را برابر $\frac{kg}{m^3}$ 8000 در نظر میگیریم:

$$m_1 = 8000 \times V \approx 19 (kg)$$

برای G_7 نیز قطر را برابر (mm) 600 و طول را (50(mm) در نظر میگیریم.

$$m_2 = 8000 \times \pi \times \frac{d^2}{4} \times h = 113(kg)$$

$$m_{total} = 132(kg)$$

طبق قيمت بازار امروز در 25 آبان طبق سايت shahrahan.com هر كيلوگرم فولاد بالا حدود 112 هزار تومان قيمت دارد:

 $132 \times 112000 = 14,784,000$ تومان

بنابراین هزینه کلی برابر:

 $14,784,000+1,750,000 = 16,534,000 \approx 16,600,000$ تومان

منابع

جزوه استاد نورانی [1]

mdpi.com [2]

sanjagh.pro [3]

esfahanahan.com [4]

shahrahahn.com [5]

ahanpakhsh.com [6]

faramechanic.com [7]

كاتالوگ هاى كارخانه زنجيرسازى طهرانچى [8]

shigley's mechanical engineering design [9]

motogen.com [10]

siemens.com [11]

Machine Design (An Integrated Approach), Robert L. Norton, 3rd edition [12]

machine elements in mechanical design, Robert L. Mott, 4th edition [13]

yazdrollingmill.com [14]

technotav.com [15]

goalelectric.ir [16]