Examenul de bacalaureat 2010 Proba E - c)

Proba scrisă la matematică

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

BAREM DE EVALUARE ŞI DE NOTARE

MODEL

- Se punctează oricare alte formulări/ modalități de rezolvare corectă a cerințelor.
- Nu se acordă punctaje intermediare, altele decât cele precizate explicit prin barem. Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

SUBIECTUL I (30 de puncte)

1.	$z = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$	2p
	$z^6 = 2^6 \cdot \left(\cos\frac{6\pi}{6} + i\sin\frac{6\pi}{6}\right) = -2^6 \Rightarrow \operatorname{Re} z^6 = -64$	3р
2.	$f(512) = \frac{1}{8}$	2p
	$(f \circ f)(512) = f\left(\frac{1}{8}\right) = 2$	3 p
3.	Ecuația devine $2\sin^2 x - \sin x - 1 = 0$, cu soluțiile $\sin x = -\frac{1}{2}$ și $\sin x = 1$.	3 p
	Obţinem $x = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$, sau $x = (-1)^{k+1} \frac{\pi}{6} + k\pi$, $k \in \mathbb{Z}$.	2p
4.	Numărul cerut este egal cu numărul submulțimilor cu trei elemente ale mulțimii M Acesta este $C_6^3 = 20$.	3p 2p
5.	Punctul $A(0,3)$ se află pe prima dreaptă.	2
	Distanța este d(A, d_2) = $\frac{ 2 \cdot 0 + 4 \cdot 3 - 11 }{\sqrt{2^2 + 4^2}} = \frac{1}{\sqrt{20}} = \frac{\sqrt{5}}{10}$.	2p 3p
6.	$\overrightarrow{AC} \cdot \overrightarrow{AD} = \left(\overrightarrow{AB} + \overrightarrow{AD}\right) \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot \overrightarrow{AD} + \overrightarrow{AD}^2$	3p
	$\overrightarrow{AB} \cdot \overrightarrow{AD} = 1 \cdot 2 \cdot \cos 60^{\circ} = 1$	1p
	$\overrightarrow{AC} \cdot \overrightarrow{AD} = 1 + 2^2 = 5$	1p

SUBIECTUL al II - lea

(30 de puncte)

2	c	b		c	b	a+b+c	c	b	a	1.a)
	b	a	=(a+b+c)							
	a	c		a	c	a+b+c	a	c	b	
	a	c		a	c	a+b+c	<i>a</i>	c	b	

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

	$\begin{vmatrix} 1 & b & c \\ 1 & a & b \\ 1 & c & a \end{vmatrix} = a^2 + b^2 + c^2 - ab - ac - bc$, de unde rezultă concluzia	3p
b)	Observăm că $x = 0$, $y = 1$, $z = 0$ verifică sistemul.	3 p
	Cum soluția este unică, aceasta este soluția căutată.	2p
c)	$a^{2} + b^{2} + c^{2} - ab - ac - bc = 0 \Leftrightarrow (a - b)^{2} + (a - c)^{2} + (c - b)^{2} = 0 \Leftrightarrow a = b = c$	2p
	Sistemul are o infinitate de soluții de forma $x = \alpha, y = \beta, z = 1 - \alpha - \beta$.	2p
	Putem lua $\beta = \frac{1}{2}(-1 + \sqrt{1 - 4\alpha^2 - 4\alpha})$, cu $4\alpha^2 + 4\alpha - 1 \le 0$.	1p
2.a)	a, b, c pot lua fiecare 4 valori	3 p
	Avem $4^3 = 64$ matrice.	2p
b)	Luăm $A = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{2} \end{pmatrix}$	3p
	$\det(A) = \hat{2}, \det(A^2) = \hat{0}$	2p
c)	$X = \begin{pmatrix} a & b \\ \hat{0} & c \end{pmatrix} \Rightarrow X^2 = \begin{pmatrix} a^2 & b(a+c) \\ \hat{0} & c^2 \end{pmatrix}$	2p
	Ecuația devine $a^2 = \hat{1}$, $b(a+c) = \hat{0}$, $c^2 = \hat{0}$.	1p
	Obținem $a \in \{\hat{1}, \hat{3}\}, c \in \{\hat{0}, \hat{2}\}, b = \hat{0}$, deci există 4 soluții	2p

SUBIECTUL al III - lea

(30 de puncte)

1.a)	$\lim_{x \to \infty} \frac{f(x)}{x} = 1 \Rightarrow m = 1$	2p
	$\lim_{x \to \infty} (f(x) - x) = 0$, deci avem asimptota oblică $y = x$.	3 p
b)	$f'(x) = \frac{(2x+1)(x+1) - (x^2 + x + 1)}{(x+1)^2}$	3р
	$f'(x) = \frac{x^2 + 2x}{(x+1)^2}$	2p
c)	$f''(x) = \frac{2}{(x+1)^3}$	3 p
	f " $(x) < 0, \forall x \in (-\infty, -1)$, deci f este concavă pe $(-\infty, -1)$	2 p
2.a)	$\int_0^{\pi} \sin 2x dx = \int_0^{\pi/2} \sin 2x dx - \int_{\pi/2}^{\pi} \sin 2x dx$	2p
	$I = \frac{-\cos 2x}{2} \Big _{0}^{\pi/2} + \frac{\cos 2x}{2} \Big _{\pi/2}^{\pi}$	2 p
	I=2	1p
b)	$I_{n} = \int_{\pi}^{2\pi} \frac{f_{n}(x)}{x} dx \le \int_{\pi}^{2\pi} \frac{1}{x} dx$	3p
	$\int_{\pi}^{2\pi} \frac{1}{x} dx = \ln x _{\pi}^{2\pi} = \ln 2$	2 p
c)	$I_n = \int_{n\pi}^{2n\pi} \frac{ \sin t }{t} dt$	1p

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

$I_n = \int_{n\pi}^{n\pi + \pi} \frac{ \sin t }{t} dt + \int_{n\pi + \pi}^{n\pi + 2\pi} \frac{ \sin t }{t} dt +$	$\dots + \int_{2n\pi-\pi}^{2n\pi} \frac{ \sin t }{t} dt$	2p
$I_n \ge \frac{1}{\pi(n+1)} \int_{n\pi}^{n\pi+\pi} \sin t dt + \frac{1}{\pi(n+2)} \int_{n\pi}^{n\pi+\pi} \sin t dt = \frac{1}{\pi(n+2)} \int_{n\pi}^{n\pi+\pi} \sin t dt $	$\lim_{n\pi+2\pi} \sin t dt + \dots + \frac{1}{2n\pi} \int_{2n\pi-\pi}^{2n\pi} \sin t dt$	1p
Din $\int_{k\pi}^{(k+1)\pi} \sin t dt = 2, \forall k \in \mathbb{Z}$ rezultă	concluzia.	1p