

Introduction au calcul de trafic

- 1. Considérations historiques
- 2. Liaison téléphonique
- 3. Structure d'un réseau de télécommunications
- 4. Commutation
- 5. Introduction au calcul de trafic
- 6. Théorie de la sélection

V1.0 Page: 5-1 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (1)

- Préambule (1)
 - Mesure de la proportion du temps où une ligne est occupée [intensité moyenne de son trafic]
 - Unité d'intensité de trafic : l'Erlang (quantité sans dimension)
 - Volume de trafic : homogène à un temps

Introduction au calcul de trafic (2)

Préambule (2)

- Les Etats-Unis utilisent de préférence une autre unité: la CCS (Cent Call Second)
- > $1 \text{ CCS} = \frac{100}{3600} = \frac{1}{36} \text{ Erlang, c'est à dire 1 Erlang} = 36 \text{ CCS}$
- Dans le cas d'une seule machine, son trafic (exprimé en Erlang) est aussi sa probabilité d'occupation.

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (3)

Préambule (3)

- > Intensité de trafic : caractéristique nécessaire mais pas suffisante (fréquence, durée, ...)
- Activité représentée par un processus aléatoire
 - loi d'arrivée : début des communications
 - loi de service : durée des communications

Introduction au calcul de trafic (4)

- ♦ Définition (1)
 - > Approche spatiale (a)
 - o N faisceaux identiques de C circuits
 - o $V_1(t)$, $V_2(t)$, ..., $V_N(t)$ variables aléatoires
 - o Etat spatial moyen d'un système au temps t

$$\overline{v}(t) = \frac{1}{N} \sum_{i=1}^{N} v_i(t)$$

/1.0 Page: 5-5 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (5)

- Définition (2)
 - > Approche spatiale (b)
 - o Proportion des faisceaux se trouvant dans l'état (v) p(v,t)
 - o Etat moyen d'un faisceau

Esp V(t) =
$$\overline{v}(t) = \sum_{v=1}^{C} v.p(v,t)$$

Introduction au calcul de trafic (6)

- Définition (3)
 - Approche temporelle
 - Un seul faisceau comprenant C circuits
 - Valeur moyenne de son état dans [0,t]

$$\overline{\mathbf{v}}(\mathbf{t}) = \frac{1}{\mathbf{T}} \int_{0}^{\mathbf{T}} \mathbf{v}(\mathbf{t}) d\mathbf{t}$$

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (7)

- Définition (4)
 - > En résumé,
 - Collection, à un instant donné, des états d'un grand nombre N de faisceaux identiques
 - Collection des états mesurés sur une longue période sur un faisceau unique.
 - Limite commune lorsque N et T tendent vers l'infini

Introduction au calcul de trafic (8)

- ♦ Trafic d'un groupe de machines (1)
 - Moyenne du temps total d'occupation des machines ramené à la période d'observation

$$A = \frac{1}{T} \sum_{M_i} t_{M_i}$$

Le trafic généré par N machines ne peut être supérieur à N Erlangs

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (9)

- ♦ Trafic d'un groupe de machines (2)
 - Dans le cas des trafics ergodiques, la moyenne du nombre de machines simultanément occupées est égale au trafic du groupe de machines

$$A = L \times a$$

Introduction au calcul de trafic (10)

- Trafic d'un groupe de machines (3)
 - Moyenne du temps total d'occupation des machines ramené à la période d'observation

$$A = \frac{n \tau}{T}$$

n : nb total de prises de machines observées en moyenne pendant T

τ : temps moyen de prise de machine

T : Période d'observation

Le trafic généré par N machines ne peut être supérieur à N Erlangs

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (11)

- Exemple simple de calcul de trafic
 - > 10 000 abonnés raccordés à un commutateur. Chaque abonné a un trafic de 0,1 Erlangs. Les appels durent 3 minutes.
 - Quel est le nombre d'appels écoulé par heure par ce commutateur?

Introduction au calcul de trafic (12)

- Quelques définitions (1)
 - Volume de trafic : $\sum_{M} t_{Mi} = n\tau$
 - ightharpoonup Intensité de trafic : $\frac{n\tau}{T}$ (= A)
 - Faux de prises : $\frac{n}{T}$ noté λ d'où $A = \lambda \times \tau$
 - o τ représentant la durée moyenne de prise d'une machine (ou temps moyen de service)

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (13)

- Quelques définitions (2)
 - Taux maximal de service : μ
 - \Rightarrow on a donc $\tau = \frac{1}{u}$
 - Autre définition du trafic : $A = \frac{\lambda}{u}$
 - o Proportion des prises qui se produisent par de temps rapportées au nombre unité maximal de prises qui pourraient être servies.

Introduction au calcul de trafic (14)

• Équation d'équilibre (1)

/1.0 Page: 5-15 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (15)

• Équation d'équilibre (2)

 $\lambda_{x-1} \times P(x-1) = \mu_x \times P(x) \text{ avec } P(x) = \frac{t_x}{T}$

Introduction au calcul de trafic (16)

- ♦ Loi de Poisson : trafic d'un grand nombre de clients
 - Nombre d'usagers libres très supérieur au nombre d'usagers occupés
 - Taux de prise de lignes est très petit

$$P(x) = \frac{A^x}{x!} e^{-A}$$

♦ Loi de Bernouilli : trafic d'un petit nombre de clients

V1.0 Page: 5-17 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (17)

- Processus des arrivées (1)
 - > Instants d'apparition des appels

▶ Processus stochastique (« aléatoire ») (T_n) , $n \ge 0$

$$A(t) = P \left\{ t_n = T_n - T_{n-1} \le t \right\}$$

Introduction au calcul de trafic (18)

- Processus des arrivées (2)
 - > Processus de Poisson : exemple de processus de renouvellement, moyennant deux hypothèses:
 - La probabilité d'apparition d'un nouvel appel pendant un intervalle de temps (t, $t+\Delta t$) ne dépend pas de ce qui précède.
 - La probabilité d'apparition d'un nouveau client pendant Δt est proportionnelle à Δt .

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (19)

- Processus des services
 - Loi exponentielle (cas général)
 - $F(x) = 1 e^{-\mu x}$
 - o Absence de mémoire
 - Loi log-normale : durée des conversations téléphoniques

Introduction au calcul de trafic (20)

- Première loi d'Erlang (« Erlang B »)
 - Nombre fini de serveurs N
 - Nombre tini de serveurs in Loi très ressemblante à la loi de Poisson : $E_{1,N}(x) = \frac{A_1}{N}$
 - Constante de normalisation!
 - Probabilité de blocage ≡ probabilité de perte des appels

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (21)

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (22)

- Exemple de dimensionnement de faisceaux
 - Supposons un trafic de 10 Erlangs entre deux commutateurs (cas d'école !!!), quel est le nombre N de circuits à installer pour que la probabilité de perte d'appels soit inférieure à $\varepsilon = 10^{-3}$

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (23)

- Deuxième loi d'Erlang (« Erlang C »)
 - Nombre fini de serveurs N
 - Modèle à attente (préselection ...)

$$E_{2}(N) = \frac{\left(\frac{N}{N-A}\right)A^{N}}{\left(1+A+\frac{A^{2}}{2!}+...+\frac{A^{N-1}}{(N-1)!}\right)+\left(\frac{N}{N-A}\right)A^{N}}$$

Introduction au calcul de trafic (24)

Probabilités remarquables

- Probabilité d'attente : $W = E_{2,N}(A)$
- Probabilité d'occupation des N machines sans appel en attente : $P(N) = \left(1 \frac{A}{N}\right) E_{2,N}(A)$
- Probabilité d'occupation des N machines et d'avoir j appels en attente

$$P(N) = \left(\frac{A}{N}\right)^{j} \left(1 - \frac{A}{N}\right) E_{2,N}(A)$$

/1.0 Page: 5-25 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (25)

- ♦ Dimensionnement d'un faisceau simple
 - Vtilisation de la loi d'Erlang B : $\frac{A}{N} \cong \frac{A}{A+k\sqrt{A}} \cong 1 \frac{k}{\sqrt{A}}$
 - Rendement faible pour une probabilité de perte acceptable.
 - Utilisation de faisceaux de débordements pour limiter le nombre de jonctions tout en absorbant les pointes de trafic.
 - > Le trafic est dit « régulier »

Introduction au calcul de trafic (26)

- Dimensionnement d'un faisceau de débordement
 - « trafic de débordement »
 - Variance supérieure à la moyenne : le trafic de débordement n'est pas poissonnien.
 - Utilisation de méthodes approchées : « faisceau équivalent de Wilkinson ».

V1.0 Page: 5-27 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (27)

- Routages statiques
 - Routage hiérarchique fixe (FHR)
 - > Routage non hiérarchique
 - o Principe : la qualité des transmissions numérique abolit les distances et il n'y a plus de raison de se limiter à un acheminement de débordement.
 - o Exemple : le DNHR (Dynamic Non Hierarchical Routing)

Introduction au calcul de trafic (28)

- Routage adaptatif (1)
 - Principe : réponse en temps réel aux surcharges constatées sur le réseau.
 - > LBR, DCR, DAR, partage de charge

V1.0 Page: 5-29 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (29)

- Routage adaptatif (2)
 - LBR (Least Busy Routing) : Déployé aux États-Unis
 - Principe : analyse de l'encombrement de chacune ds sortantes. L'appel est acheminé vers routes commutateur C s'il:
 - ✓ Possède une liaison vers la destination de l'appel
 - ✓ A le plus petit majorant du nombre d'appels instantané sur les faisceaux entrants et sortants.

Introduction au calcul de trafic (30)

- Routage adaptatif (3)
 - > DCR (Dynamic Call Routing) : Déployé au Canada
 - o Principe : Ordinateur de supervision scrute le nombre de jonctions prises dans tous les faisceaux sortants de tous les commutateurs
 - o Modification de la traduction en fonction du trafic observé.

V1.0 Page: 5-31 V.Babot

Division Electronique, Signal et Télécommunications

Introduction au calcul de trafic (31)

- Routage adaptatif (3)
 - > DAR (Dynamic alternate Routing) : Utilisé en Angleterre
 - o Principe : Élection d'un commutateur de transit (lors de l'appel) parmi une liste prédéfinie
 - o En cas d'échec de l'appel, il y a suppression temporaire du commutateur de transit incriminé.

Introduction au calcul de trafic (32)

- Routage adaptatif (4)
 - > Partage de charge : Utilisé en France
 - o Principe : Pas de liaisons transversales ; tout appel (hors de la zone locale) passe nécessairement par un commutateur de transit.
 - o Trafic affaire ≠ trafic résidentiel

Division Electronique, Signal et Télécommunications