Newton's laws of motion

First law: Zvery object maintains its State of rest, on uniform motion along a straight line, unless impressed upon by an external force.

1. Force does not maintain traction, but only causes change in motion.

21. Absunce of forces (not just a complete Cancellation of forces) implies the heed to Define force as something that changes motion.

31. Law of inertra implies a natural tendency to resist change in motion.

Second hw: Fama à: di : F=kma k=1 in snitusty chosen units

I for the same force acting on two objects of different masses | F | = milail = m2 | 21 | = > | a | x |

Hence, with greater was, the tendency to resist change in motion would be greater. i. Mans is a measure of inertia. 2/. $F = m \frac{d\vec{v}}{dt}$ $\vec{F} \cdot \vec{v} = m \vec{v} \cdot \frac{d\vec{v}}{dt}$ Non V= di' = F. di' = m v. dv. => F. di' = a d (1mv2) => [F. di' = d (mv2)] .. Work done = F.di' = Change in kineticknings In one-dimension, di = da à [Fa]=Fa) $\frac{F \cdot di}{f(mv^2)} = \frac{F(n) dn}{2} = \frac{d(mv^2)}{f(n) dn}$ $\frac{f(mv^2)}{f(mv^2)} = \frac{mv^2}{2} - \frac{mv^2}{2} = \frac{f(n)}{f(n)} dn$ Work done is difference of Kinetic energy 5 8/. Further, $d\left(\frac{mv^2}{2}\right) - F(n)dx = 0$ Write F(n): - dU(n) U(x) - Potential
function i d (mv²) + du dx :0 =) fd (mv²) + fdu

consuration of Energy.

U(xi) = U(nz), no change in Kinetic Energy occurs when there is no potential difference. 4. [F:m der] dx = v and dv : Free m The integrals give n=x(t) and v=v(t). At any initial time, two initial conditions me regimed, & (au initial position) and V (an initial velocity). The former Specifies the State, and the latter the rate at which the state is changing. Hence, for a deterministic dystem, a second-order differential eguation is required (with two) Third law: | Fiz = - F21 . Particle 1 acts on Particle 2 (Action). Particle 2 reacts on Particle 1 (Reaction). Action and reaction are on different objects. At the time of allision between two pantides

(by the action- reaction principle)

=) d (m, vi) + d (m, vi) = d [m, vi + m, vi) = 0. : Mivi + mive = P'] - Conservation of Momentum Man, & Energy and Momentum il. Mars -> Emerges from the first law as a measure of inertia. iil. Energy -> & merges from the second law as a consured quantity. III. Momentum > Emerges from the third low as a consured quantity. Physical Deprocention reserves Points of Newton's laws 1. Objects have inertia. Muss in a measure of the inertia. Frice is needed to overcome (change in motion) - inertia. If The second low quantifies force, and makes it measmable in physical works. 31. The third law, (the knowledge of force), relater force to interaction among

Maxwell's Equations of Slectros fations and Magnetostation V. E'= P/Eo - Gauss's V. B'= 0 TXE = 0 Ampere's TXB = MO F 1/. P -> Change Density, F -> Cross-Sectional Current Terusity P -> Change _ Coulomb] J -> Current = ampere Area (s.1. unit) 21. Physical "somces" are electric in notine s P. J'. There is no physical element of magnetism. 3/. All magnetic effects arise me to Clectric phenomena [TXB: M.J] (Ampere) 4. Magnetic fields have neither a Somue nor a sink . F.B = 0. There are No magnetic monopoles.

(continued) - 19-: Magnetic Flux & B. da = 0 Vanishes through Nonth pole surface surface a closed surface Filld dines close upon themselves. Total filld dines entering a susface Equals total field lines exiting thereon it. Hence, net magnetic flux is zero. point on finishing point. They always Close upon themselves. They have no some point on a sink (point). Fero ii) Slectric field lines start at a positive charge, and end on a negative charge They have somces or sinks. Hence they have non-zero diversence. Vx 2 = 0 V.B=0 But [7. (7 x A) = 0] But [X (J V)=0 J Z = - J X. S = VXA A -> Magnetic vector Potential. V → Slectrostactic Scalar Potential

Maxwell's Equations of Slectrodynamis √. ₹ = P/ε.] √. B = 0] TXB = MOJ+ MOGO JE TXE = - 2B 4. Only the "curl" (x) equations are modified. Their right-hand sides how have time-varying & and B' fillds. No longer "Static" ("dynamics") 2/. $\forall x \vec{z} = -\partial \vec{B} \rightarrow faraday's low.$ fill induces an electric field. 3/ In TXB: ... , Maxwell introduced a time-varying consection, M. E. 25 15 the Static Ampere law. JD= EO DE, is known as the displacement current 4. In free-space, P=0, J=0, hochange electric field $\frac{\partial \vec{E}}{\partial t}$, induces a magnetic field.