Corrigés RMS 2019

Exercice 228:

Soit G un groupe fini. Pour $x \in G$, on note $\overline{x} = \{gxg^{-1}/g \in G\}$ la classe de conjugaison de x. On dit que x est ambivalent si $x^{-1} \in \overline{x}$.

- a) Montrer que si une classe de conjugaison contient un élément ambivalent alors tous ses éléments le sont.
- **b)** Pour $x \in G$, soit $\rho(x)$ le nombre de $g \in G$ tel que $g^2 = x$. Montrer que $\frac{1}{|G|} \sum_{x \in G} \rho(x)^2$ est le nombre de classes de conjugaison ambivalentes de G.
- a) Soit C une classe de conjugaison et $x \in C$ ambivalent. On a $x^{-1} \in \overline{x} = C$ donc $C = \overline{x^{-1}}$. Soit $y \in \overline{x}$. Il existe $g \in G$ tel que $y = gxg^{-1}$. Alors $y^{-1} = gx^{-1}g^{-1} \in \overline{x^{-1}} = C$. Or on a aussi $C = \overline{y}$ donc $y^{-1} \in \overline{y}$, ce qui conclut.
- Notons Γ l'ensemble des classes ambivalentes. Par le calcul, on a :

$$\begin{split} \frac{1}{|G|} \sum_{x \in G} \rho(x)^2 &= \frac{1}{|G|} \sum_{x \in G} \left(\sum_{l \in G} \delta(l^2 = x) \right)^2 \\ &= \frac{1}{|G|} \sum_{x \in G} \left(\sum_{(l,h) \in G^2} \delta(l^2 = x) \delta(h^2 = x) \right) \\ &= \frac{1}{|G|} \sum_{(l,h) \in G^2} \delta(l^2 = h^2) \\ &= \frac{1}{|G|} \sum_{(u,h) \in G^2} \delta(huhu = h^2) \text{ car } u \to hu \text{ est une bijection} \\ &= \frac{1}{|G|} \sum_{\gamma \in \Gamma} \sum_{u \in \gamma} \sum_{h \in G} \delta(u = hu^{-1}h^{-1}) \end{split}$$

Or $\forall u \in \gamma$ considérons la fonction $\Phi_u : h \in G \to hu^{-1}h^{-1} \in \gamma = \overline{u}$. Elle est surjective. On a alors:

$$\sum_{u \in \gamma} \sum_{h \in G} \delta(u = hu^{-1}h^{-1}) = \sum_{u \in \gamma} |\Phi_u^{-1}(\{u\})|$$

Cependant, $\Phi_u^{-1}(\{u\})$ et $\Phi_x^{-1}(\{u\})$ sont en bijection pour tout $x \in \gamma$.

En effet, si $x \in \gamma$ alors il existe $g \in G$ tel que $x = gu^{-1}g^{-1}$ et comme u est ambivalent il existe $h \in G$ tel que $u = hu^{-1}h^{-1}$.

x est aussi ambivalent donc il existe $k \in G$ tel que $x^{-1} = kxk^{-1}$.

On a alors en regroupant $u=(hg^{-1}k^{-1})x^{-1}(hg^{-1}k^{-1})^{-1}$. On peut donc définir $f:h\in\Phi_u^{-1}(\{u\})\to hg^{-1}k^{-1}\in\Phi_x^{-1}(\{u\})$. C'est alors clairement une bijection. Finalement, on a:

$$\sum_{u \in \gamma} |\Phi_u^{-1}(\{u\})| = \sum_{r \in \gamma} |\Phi_u^{-1}(\{r\})| = |G|$$

(La dernière somme est le cardinal de l'ensemble des antécédents des images qui est G.)

D'où $\frac{1}{|G|}\sum_{x\in G}\rho(x)^2$ est le nombre de classes de conjugaison de G.

Exercice 237:

Soient $\lambda_1, \ldots, \lambda_d$ des nombres complexes de module au plus 1, $P = \prod_{i=1}^d (X - \lambda_i)$.

Pour $n \in \mathbb{N}$, soit $f(n) = \sum_{i=1}^{d} \lambda_i^n$. On suppose que $P \in \mathbb{Z}[X]$.

- a) Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$
- b) Montrer que f est périodique à partir d'un certain rang.
- c) Montrer que, pour tout $i \in \{1, ..., d\}$, λ_i est nul ou racine de l'unité.

a) On procède par récurrence sur $n \in \mathbb{N}$.

Initialisation : n = 0

$$\sum_{i=1}^{u} \lambda_i^0 = d \in \mathbb{Z}$$

Hérédité : On suppose, pour un certain $n \in \mathbb{N}^*$, que $\forall k < n \in \mathbb{N}^*$, $\sum_{i=1}^d \lambda_i^k \in \mathbb{Z}$

On a:

$$\begin{split} \sum_{i=1}^d \lambda_i^n &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \sum_{1 \leqslant i \neq j \leqslant d} \lambda_i \lambda_j^{n-1} \\ &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \frac{1}{2} \left(\sum_{1 \leqslant i \neq j \leqslant d} \lambda_i \lambda_j\right) \left(\sum_{k=1}^d \lambda_k^{n-2}\right) + \frac{1}{2} \sum_{1 \leqslant i \neq j \neq k \leqslant d} \lambda_i \lambda_j \lambda_k^{n-2} \\ &= \cdots \\ &= \sum_{k=1}^n \left((-1)^{k+1} \left(\sum_{i=1}^d \lambda_i^{n-k}\right) \left(\sum_{1 \leqslant i_1 < \dots < i_k \leqslant d} \prod_{j=1}^k \lambda_{i_j}\right)\right) \end{split}$$

Or, par hypothèse de récurrence, $\forall k \in [\![1,n]\!], \sum_{i=1}^d \lambda_i^{n-k} \in \mathbb{Z}$

De plus, pour tout $k \in [1, n]$, $(-1)^k \sum_{1 \le i_1 < \dots < i_k \le d} \prod_{j=1}^k \lambda_{i_j}$ est le coefficient de degré n-k du polynôme P donc appartient à \mathbb{Z} .

Finalement,

$$\sum_{i=1}^{d} \lambda_i^n \in \mathbb{Z}$$

Cela conclut la récurrence.

b) Pour $n \ge d$, on a :

$$f(n) = \sum_{k=1}^{d} \left((-1)^{k+1} f(n-k) \left(\sum_{1 \le i_1 < \dots < i_k \le d} \prod_{j=1}^{k} \lambda_{i_j} \right) \right)$$

Or, $\forall n \in \mathbb{N}, f(n) \in [-d, d]$.

Comme $[-d,d]^d$ est fini, il existe $n < n' \in \mathbb{N}$ tels que n'-n > d et $\forall k \in [0,d-1], f(n+k) = f(n'+k)$. Et comme f(n) dépend des d termes précédents,

la suite
$$(f(n))_{n\in\mathbb{N}}$$
 est $(n'-n)$ -périodique

c) f est périodique à partir d'un certain rang donc $\exists r \in \mathbb{N}, \forall n \in \mathbb{N}^*, f(mr) = f(r)$ On pose $S(x) = \sum_{n=0}^{+\infty} f(nr)x^n$. Alors:

$$S(x) = d + f(r) \frac{x}{1 - x}$$

$$= d + \sum_{n=1}^{+\infty} \sum_{i=1}^{d} \lambda_i^{rn} x^n$$

$$= \sum_{n=0}^{+\infty} \sum_{i=1}^{d} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \sum_{n=0}^{+\infty} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Donc
$$d - f(r) + \frac{f(r)}{1 - x} = \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Par unicité de la DES, tous les λ_i sont nuls ou tels que $\lambda_i^{-r} = 1$

Exercice 249:

a) Calculer
$$\prod_{\alpha \in \mathbb{I}} (1 + \omega)$$

a) Calculer
$$\prod_{\omega \in \mathbb{U}} (1 + \omega)$$

b) Pour $n \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_n$, calculer $\det(I_n + P_{\sigma})$
c) Montrer que, pour tout $n \in \mathbb{N}^*, T_{n+1} = 2T_n + n(n-1)T_{n-1}$.

c) Montrer que, pour tout
$$n \in \mathbb{N}^*$$
, $T_{n+1} = 2T_n + n(n-1)T_{n-1}$.

d) Donner une formule simple pour T_n .

a) On note
$$P = \prod_{\omega \in \mathbb{U}} (-X + \omega) = (-1)^n (X^n - 1)$$
. Ainsi, $\prod_{\omega \in \mathbb{U}} (1 + \omega) = P(-1) = 1 + (-1)^{n+1}$.

 σ se décopose en produit de cycles à support disjoint. $\sigma = c_1 \dots c_p$ où $c_i = (a_1^i \dots a_{n_i}^i)$.

Si on permute les éléments de la base canonique, alors P_{σ} devient semblable à $P_{\sigma} = \begin{pmatrix} C_1 & 0 \\ & \ddots & \\ 0 & & C_n \end{pmatrix}$

Il y a p blocs C_i où chaque C_i est de taille n_i on a alors $C_i = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & & 0 & 0 \\ & \ddots & & \vdots \\ 0 & & & 1 & 0 \end{pmatrix}$

$$\chi_{C_i} = \det(XI_n - C_i) = X^{n_i} - 1 \text{ donc } \chi_{P_{\sigma}} = \prod_{i=1}^p (X^{n_i} - 1) \text{ et } \det(I_n + P_{\sigma}) = (-1)^n \cdot \chi_{P_{\sigma}}(-1) = \prod_{i=1}^p (1 - (-1)^{n_i})$$

c) On pose E_k l'ensemble des σ tel que l'orbite de n+1 soit de longueur k.

$$T_{n+1} = \sum_{\sigma \in S_{n+1}} \det(I_{n+1} + P_{\sigma})$$

$$= \sum_{k} \sum_{\sigma \in E_k} \det(I_{n+1} + P_{\sigma})$$

$$= \sum_{k-1} \sum_{\sigma \in S_{n+1}} (1 - (-1)^k) \frac{n!}{(n+1-k)!} \det(I_{n+1-k} + P_{\sigma})$$

Donc $|E_k| = \frac{n!}{(n+1-k)!} |S_{n+1-k}| \text{ donc } \binom{n}{k-1} (k-1)! (n+1-k)! = \frac{n!}{(n+1-k)!} (n+1-k)!$ Donc $n! = \frac{n!}{(n+1-k)!} (n+1-k)!$.

$$T_{n+1} = \sum_{k=1}^{n+1} (1 - (-1^k)) \frac{n!}{(n+1-k)!} T_{n+1-k}$$

$$= \sum_{k=0}^{n} (1 + (-1)^{n-k}) \frac{n!}{k!} T_k$$

$$= 2T_n + n(n-1) \sum_{k=0}^{n-1} (1 + (-1)^{n-2-k}) \frac{(n-2)!}{k!} T_k$$

$$= 2T_n + n(n-1) T_{n-1}$$

d) Déjà, on a $T_0=0$ et $T_1=2$. On pose $f:x\in\mathbb{R}\mapsto\sum_{n=1}^{+\infty}\frac{T_n}{n!}x^n$. Alors,

$$f'(x) = \sum_{n=1}^{+\infty} \frac{T_n}{(n-1)!} x^{n-1}$$

$$= \sum_{n=0}^{+\infty} \frac{T_{n+1}}{n!} x^n$$

$$= \sum_{n=1}^{+\infty} \frac{2T_n + n(n-1)T_{n-1}}{n!} x^n + 2$$

$$= 2 + 2f(x) + \sum_{n=2}^{+\infty} \frac{T_{n-1}}{(n-2)!} x^n$$

$$= \frac{2}{1 - x^2} f(x) + \frac{2}{1 - x^2}$$

Donc f vérifie l'équation différentielle

$$y' = \left(\frac{1}{1-x} + \frac{1}{1+x}\right)y + \frac{2}{1-x^2}$$

Solution générale : $y_0(x) = \lambda \exp\left(\ln\frac{1+x}{1-x}\right) = \lambda\frac{1+x}{1-x}$. Méthode de variation de la constante : $\lambda'(x) = \frac{1-x}{1+x}\frac{2}{(1-x)(1+x)} = \frac{2}{(1+x)^2}$ donc on prend $\lambda(x) = -\frac{2}{1+x}$ et $y_1(x) = -\frac{2}{1+x}\frac{1+x}{1-x} = -\frac{2}{1-x}$

Ainsi,
$$f(x) = \lambda \frac{1+x}{1-x} - \frac{2}{1-x}$$

Comme de plus
$$f(0) = 0 = \lambda - 2$$
, on a $f(x) = \frac{2 + 2x - 2}{1 - x} = \frac{2x}{1 - x} = 2\sum_{n=1}^{+\infty} x^n = \sum_{n=1}^{+\infty} \frac{2n!}{n!} x^n$

Finalement,
$$T_0 = 0$$
 et $\forall n \in \mathbb{N}^*, T_n = 2n!$

Exercice 251:

Soit $A \in \mathcal{M}_n[\mathbb{R}]$. Comparer ses polynômes minimaux dans $\mathcal{M}_n(\mathbb{R})$ et dans $\mathcal{M}_n(\mathbb{C})$.

Soient $R \in \mathbb{R}[X]$ et $C \in \mathbb{C}[X]$ les polynômes minimaux de A dans $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$ respectivement.

On a bien sur C|R.

$$C(A) = 0$$
 donc $iC(A) = 0$ donc $Re(iC(A)) = 0$ donc $Re(iC)(A) = 0$

Or C est unitaire donc Re(iC) est de degré strictement inférieur à C (le coefficient de plus haut degré est imaginaire pur).

Ainsi, si C n'est pas à coefficients réels, Re(iC) est un polynôme non-nul, annulant A et de degré strictement inférieur à celui de C, ce qui est absurde.

Ainsi, C est réel et R|C.

Finalement,

$$R = C$$

Exercice 254:

Déterminer les $n \in \mathbb{N}$ tel qu'existe $A \in \mathcal{M}_n(\mathbb{R})$ de polynôme minimal $X^3 + 2X + 2$. Même question dans $\mathcal{M}_n(\mathbb{Q})$.

Dans $\mathcal{M}_n(\mathbb{R})$: On note $P = X^3 + 2X + 2$. On obtient $P' = 3X^2 + 2$.

x	$-\infty$ α	$+\infty$
P'(x)	+	
P(x)	0 [−]	+∞

Ainsi, par théorème de la bijection, P n'admet qu'une seule racine réel α . On note β et $\overline{\beta}$ ses racines complexes conjuguées.

Pour $n \leq 3$, il n'existe pas de matrice de $\mathcal{M}_n(\mathbb{R})$ admettant P comme polynôme minimal (Théorème de Caley-Hamilton).

Pour
$$n = 3$$
, la matrice $A = \begin{pmatrix} 0 & 0 & 2 \\ -1 & 0 & 2 \\ 0 & -1 & 0 \end{pmatrix}$ admet comme polynôme caractéristique $\chi_A = P$.

P est un polynôme annulateur de A (théorème de Caley-Hamilton), et P est scindé à racines simples donc P est le polynôme minimal de A.

Pour $n \ge 3$, la matrice $B = \begin{pmatrix} \alpha I_{n-3} \\ A \end{pmatrix}$ admet comme polynôme caractéristique $\chi_B = (X - \alpha)^{n-3}P$. P est un polynôme annulateur de B et tout polynôme annulateur de B divise P donc P est le polynôme minimal de B.

 $\begin{aligned} \mathbf{Dans} \ \mathcal{M}_n(\mathbb{Q}) \ : \quad &\text{On suppose par l'absurde que } \alpha \in \mathbb{Q}, \ \text{donc il existe } (p,q) \in \mathbb{Z} \times \mathbb{N}^* \ \text{t.q.} \ p \wedge q = 1. \\ P(\alpha) = 0 \ \Longrightarrow \ \left(\frac{p}{q}\right)^3 + 2 \cdot \frac{p}{q} + 2 = 0 \ \Longrightarrow \ p^3 + 2pq^2 + 2q^3 = 0 \ \text{donc par th\'eor\`eme de Gauss}, \ p|2 \ \text{et } q|2 \ \text{donc} \\ \alpha \in \left\{\frac{1}{2}, 1, 2, -\frac{1}{2}, -1, -2, \right\} \ \text{Absurde. Donc } \alpha \notin \mathbb{Q} \ \text{et } P, \ \text{de degr\'e} \ 3 \ , \ \text{est irr\'eductible dans} \ \mathbb{Q}[X]. \end{aligned}$

Pour
$$n \in 3\mathbb{N}$$
, la matrice $C = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix} \in \mathcal{M}_n(\mathbb{Q})$ admet bien comme polynôme minimal P .

Pour $n \notin 3\mathbb{N}$, par l'absurde on suppose qu'il existe $C \in \mathcal{M}_n(\mathbb{Q})$ ayant P comme polynôme minimal. χ_C et P ont même racines, donc $\chi_C = (X - \alpha)^p \left((X - \beta)(X - \overline{\beta}) \right)^q$ avec p + 2q = n donc $p \neq q$ car $n \notin 3\mathbb{N}$.

- Si p > q, $\chi_C = (X \alpha)^{p-q} P^q$ donc $(X \alpha)^{p-q} \in \mathbb{Q}[X]$. Or le coefficient de degré p q 1 de $(X \alpha)^{p-q}$ est $\alpha \notin \mathbb{Q}$. Absurde.
- Si q > p, $\chi_C = ((X \beta)(X \overline{\beta}))^{q-p} P^p$ donc $((X \beta)(X \overline{\beta}))^{q-p} \in \mathbb{Q}[X]$. Or le coefficient de degré q p 1 de $((X \beta)(X \overline{\beta}))^{q-p}$ est $2\text{Re}(\beta)$. Par relation coefficient racines sur P, $\alpha + 2\text{Re}(\beta) = 0$ donc $2\text{Re}(\beta) \notin \mathbb{Q}$. Absurde.

Exercice 260:

Soit E un \mathbb{C} -espace vectoriel de dimension finie n > 0.

- a) Montrer que pour tout $u \in GL(E)$ il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$, et justifier que deg $I_u < n$.
- b) Étudier la continuité de $u \in GL(E) \mapsto I_u \in \mathbb{C}_{n-1}[X]$
- a) Soient $u \in GL(E)$ et $\mu = \sum_{i=0}^r \mu_i X^i \in \mathcal{M}_n(\mathbb{C})$ où $r = \deg \lambda \leqslant n$ son polynôme minimal.

On a alors $0 = \mu(u) = \sum_{i=0}^{r} \mu_i u^i$ où $\mu_0 \neq 0$ (sinon μ n'est pas minimal).

Ainsi, Id =
$$-\frac{1}{\mu_0}\sum_{i=1}\mu_iu^i=u\left(\sum_{i=0}^{r-1}\lambda_iu^i\right)$$
 où $\lambda_i=-\frac{\mu_{i+1}}{\mu_0}$

Ainsi, en posant $I_u = \sum_{i=0}^{r-1} \lambda_i X^i$, comme u et $I_u(u)$ commutent, on a $u^{-1} = I_u(u)$

On suppose par l'absurde qu'il existe un autre polynôme $P = \sum_{i=0}^{r-1} \nu_i X^i$ de degré inférieur ou égal à celui de I_u tel que $u^{-1} = P(u)$.

Alors $\operatorname{Id} - \sum_{i=1}^{r} \nu_{i-1} u^i = 0$ donc un polynome non nul de degré inférieur à celui du polynôme minimal de u annule

ce dernier. Donc
$$X - \sum_{i=1}^{r} \nu_{i-1} u^i = N\lambda$$
 où $N \in \mathbb{C}$.

Donc I_u et P sont associés. Comme $I_u(u)=u^{-1}=P(u),\,P=I_u.$

Ainsi, il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$. De plus, $\deg I_u = r - 1 < n$.

b) On pose la suite $A_n = \begin{pmatrix} 1 & \frac{1}{n} \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}(E)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, $I_{A_n} = 2 - X$. Or, $\lim_{n \to +\infty} A_n = I_n$ et $I_{I_n} = 1$

L'application $u \in GL(E) \mapsto I_n \in \mathbb{C}_{n-1}[X]$ n'est pas continue.

Exercice 273:

Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que la classe de similitude de M est connexe par arcs si et seulement si M est diagonalisable.

 \longleftarrow On suppose que M est diagonalisable.

Il existe donc $Q \in GL_2(\mathbb{R})$ et $D \in \mathcal{M}_2(\mathbb{R})$ diagonale tels que $M = Q^{-1}DQ$. Soit $A = P^{-1}MP \in \mathcal{C}(M)$.

Dans un premier temps, on suppose que $\det PQ$ et $\det Q$ sont de même signe, tous deux positifs par symétrie. Par pivot de Gauss, il existe $T_1, \ldots, T_n \in \mathcal{GL}(\mathbb{R})$ telles que

$$P = T_1 \times \dots \times T_n \begin{pmatrix} 1 & 0 & 0 \\ & \ddots & & 0 \\ 0 & & 1 & \\ & 0 & & \det Q \end{pmatrix} = T_1 \times \dots \times T_n \times B$$

On pose alors $\gamma_1: t \in [0,1] \mapsto \prod_{i=1}^n (I_2 + t(T_i - I_2))B \in \mathcal{M}_n(\mathbb{R})$. Elle est continue, $\gamma_1(0) = I_2$ et $\gamma_1(1) = P$ $\forall t \in [0,1], \forall i \in [1,n], \det(I_2 + t(T_i - I_2)) = 1 \text{ et } \det \gamma_1(t) > 0 \text{ donc } \gamma_1(t) \in \mathrm{GL}_n(\mathbb{R}) \text{ donc } \gamma_1([0,1]) \subset \mathrm{GL}_n(\mathbb{R}).$ De même, on trouve $\gamma_2:[0,1]\to \mathrm{GL}_n(\mathbb{R})$ continue telle que $\gamma_2(0)=PQ$ et $\gamma_2(1)=I_2$. Ainsi, $\gamma = \gamma_1 \gamma_2 : [0, 1] \to \operatorname{GL}_n(\mathbb{R})$ est continue et $\gamma(0) = PQ$ et $\gamma(1) = Q$. Finalement, $\mu: t \in [0,1] \mapsto \gamma(t)\gamma(t)^{-1} \in \mathcal{C}(M)$ est continue car $A \mapsto A^{-1}$ est continue sur $\mathrm{GL}_n(\mathbb{R})$. On a $\mu(0) = PQD(PQ)^{-1} = A$ et $\mu(1) = QPQ^{-1} = M$

Si det PQ et det Q sont de signes opposés, $A = (PQ)D(PQ)^{-1} = (PQC)D(PQC)^{-1}$ où $C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ dont le déterminant vaut -1.

Comme det PQC et det QC sont de même signe, on revient au premier cas.

Ainsi, la classe de similitude de M est connexe par arcs.

 \implies On suppose que la classe de similitude de M est connexe par arcs.

Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. On pose $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $M' = P^{-1}MP = \begin{pmatrix} d & c \\ b & a \end{pmatrix}$.
La fonction $f: (a_{ij}) \in \mathcal{M}_2(\mathbb{R}) \mapsto a_{12} - a_{21} \in \mathbb{R}$ est continue et $f(M) = -f(M')$.

Comme $\mathcal{C}(M)$ est connexe par arcs, on peut y trouver N telle que f(N) = 0, c'est-à-dire que N est symétrique. Elle est donc diagonalisable.

Comme N et M sont semblables,

M est diagonalisable