TEMA №20

Проекции

Съдържание

Тема 20: Проекции

- Гледна точка
- Движение на гледната точка
- Проекции
- Матрици на проекции

Гледна точка

Да си припомним

Лекция №4

Преди растеризацията

Дейности преди растеризацията

- Гледна точка определяне коя част от модела виждаме и в каква ориентация
- Проекция определяне на 2D образ на 3D модел
- Могат да се извършат заедно, но по-лесно е отделно

Гледна точка

Всяка сцена я включва

Явна или неявна, винаги я има

Използване

- Определяне как се вижда сцената
- Движение из тримерен свят
- Плъзгане на образа и приближаване

Неразличимост

Идеи за въртене в кръг

- Сцената се върти заедно с обектите ѝ (като чиния в микровълнова печка)
- Сцената е неподвижна, а ние се въртим около нея (като акула около тюлен)
- Неразличими математически и физически идеи
- Различими от практическа гледна точка (при статична сцена нещата са по-прости и по-бързи)

Това какво е и на какво е?

– Карта на част от Европа

Елементи

Гледната точка не е просто 3D точка

- Определя положението на зрителя спрямо сцената (3D точка)
- Определя посоката на гледане (друга 3D точка или ненулев вектор)
- Определя ориентацията на образа (трета неколинеарна 3D точка или неколинеарен 3D вектор)

Вектори "нагоре"

Пример

Плавен преход към гледна точка

– Демонстрация на гледна точка

Традиционни чертежи

Традиционни 2D чертежи

- В средата на екрана е (0,0)
- Оста \vec{X} е надясно, а \vec{Y} е нагоре

Как се постига?

- Гледаме от точка (0,0,n>0)
- Гледаме към точка (0,0,0)
- Посоката нагоре е (0,1,0)

Реализация

Реализация на гледната точка

– Естествено, че чрез матрица

В матрицата са включени

- Транслация
 (за да може гледаната точка да е в средата на екрана)
- Ротации
 (за да нагласят координатните оси и посоката "нагоре")
- Понякога и мащабиране

Движение на гледната точка

Движение

Гледната точка като графичен обект

- Може да се променя с времето
- Създава илюзия за движение

Възприемане от зрителя

- Промяна на посоката на гледане е като въртене
- Промяна на точката, от която се гледа преместване

Различни движения в 2D

- Плъзгане транслация
- Мащабиране
- Ротация

Въртене в кръг

Чрез полярни/сферични координати

 Могат да се наслагват допълнителни движения (за близост, за издигнатост)

Внимание! Опасност!

 Ако при движението "прелетим" над вектора "нагоре" се получава проблем

Решение

- Посоката "нагоре" се променя динамично
- Конкретни решения за конкретни случаи

Пример с въртене в равнината ХҮ

– Ако "нагоре" е (0,1,0), то проблемна точка за наблюдение е (0,r,0)

$$\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$$

$$\begin{vmatrix} p_x = r \cos \alpha \\ p_y = r \sin \alpha \end{vmatrix}$$

$$\begin{vmatrix} v_x = \cos \left(\alpha + \frac{\pi}{2}\right) = -\sin \alpha \\ v_y = \sin \left(\alpha + \frac{\pi}{2}\right) = \cos \alpha \end{vmatrix}$$

Преход

Плавен преход между гледни точки

- Чрез линейна комбинация и k∈[0,1]
- Можем да меним k линейно, полиномиално или тригонометрично (тема 13, сл. 7, 12)

$$P = (1 - k)P_1 + kP_2$$

$$Q = (1 - k)Q_1 + kQ_2$$

$$\vec{v} = (1 - k)\vec{v}_1 + k\vec{v}_2$$

Илюстрация на преход

Плочка с разбъркани цифри

– Последователно се доближаваме до всяка от тях

Слалом

Последна задача за подтемата

- Поредица конуси
- Минаваме на зиг-заг покрай тях

Допълнителен проблем

- Крайно пространство
- А искаме безкрайно движение и то все напред
- Как да се реши това? (бонус 3т.)

Реализация

- Разстоянията между конусите са Δd
- Движенията на гледната точка е само по оста ${\it Z}$ и е:

$$z = \frac{1}{2}\sin\left(\frac{\pi}{\Delta d}t + \frac{\pi}{6}\right)$$

А с накланяне?

– Посоката "нагоре" става променлива

$$\vec{v}\left(\frac{1}{2}\sin\frac{\pi}{\Delta d}t + \frac{5\pi}{6}, 1, 0\right)$$

– От къде идват коефициентите?

От тук

- Изборът им е по естетически причини
- Максималният наклон се влияе от $\frac{1}{2}$
- Избързването или забавянето на накланянето спрямо завиването се определя от $\frac{5\pi}{6}$
- Завиването точно покрай конусите се контролира от $\frac{\pi}{\Delta d}\,t$ и $\frac{5\pi}{6}$
- Скоростта по оста Z е избрана да е линейната z(t)=t, за да са по-леки сметките

Проекции

Етимология

Етимология на "проекция"

– Лат. "projectus" – (из)хвърлям напред

Разнообразие от производни-

- Проект и проектант
- Проектор и проекция
- Прожектор и прожекция
- Инк-джет (принтер), джет (воден)
- Инжекция и инжекцион

Езикови, а не

математически

Проекции в КГ

Основна цел

- Създаване на 2D модел на 3D обект
- Възпроизвеждане как човек възприема 3D обекти

Кога, къде и как се прави

- След обработването на гледната точка
- Преди растеризирането
- С матрици в хомогенни координати

Координатите

Основни термини

Проекция

- Превръщането на 3D в 2D
- Самият 2D образ на 3D обект

Център на проекция

– Точка, спрямо която се проектира

Проекционна равнина

– Равнина, в която се намира проекцията

Проекционни прави

 Прави, които свързват центъра с точки от 3D обекта и 2D проекцията

Убежна точка

 2D точка, в която успоредни прави се събират след проектирането си

Видове проекции

Някои видове проекции

- Централна центърът е крайна точка
- Паралелна проекционните прави са успоредни, центърът е безкрайна точка
- Ортогонална паралелна проекция с проекционни прави перпендикулярни на проекционната равнина

Примери с проекции

Централна проекция

Да видим двете проекции

- Ортогонална проекция
- Централна проекция

Перспективни проекции

Едноточкова – една убежна точка

– Безкрайна 3D точка се проектира в крайна 2D точка

Двуточкова перспектива

- Вертикалните линии са все още успоредни
- Помежду си и спрямо екрана

Триточкова перспектива

– Представяне на сгради в анимационни филми

Матрици на проекции

Ортогонална проекция

За удобство предполагаме

- Проективната равнина е успоредна на равнината XY и на разстояние f от нея
- Проективните лъчи са успоредни на оста Z

Проектиране на точка

– Проектирането е тривиално $P(x, y, z) \rightarrow P'(x, y, f)$

– А като матрица?

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ f \\ 1 \end{pmatrix}$$

Забележете как първо зануляваме z, а после го наf ваме

– А като програма?

Централна проекция

За удобство предполагаме

- Проективната равнина е успоредна на равнината XY и на разстояние f от нея
- Центърът на проекцията е (0,0,0)

Проектиране на точка

– Проектирането $P(x,y,z) \to P' = \frac{f}{z}P$ в хомогенни координати става $P' = \left(\frac{f}{z}x, \frac{f}{z}y, f, 1\right) = \left(x, y, z, \frac{z}{f}\right)$

- Защо
$$P' = \frac{f}{z}P$$
 ?
$$p_x$$

$$p_x$$

$$p_y$$

$$p_y'$$

$$p'$$

$$p_x' = f$$

$$p_z' = f$$

$$\frac{p_x'}{p_x} = \frac{p_z'}{p_z} = \frac{f}{p} \Rightarrow p_x' = \frac{f}{p_z} p_x$$

– Аналогично получаваме
$$p_y' = rac{f}{p_z} p_y$$
 и $p_z' = rac{f}{p_z} p_z = f$

Матрицата на проекцията е тази

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & z/f \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ z/f \end{pmatrix}$$

— ... и е абсолютно напълно тотално негодна. Защо?

Защото

- В матрицата участва координата z
- Матрицата трябва да е всеобща и да не зависи от точките, над които се прилага

Справяне с матрицата

Имаме

– От последния ред на лошата матрица

$$\frac{z}{f} = [0]x + [0]y + [0]z + \left[\frac{z}{f}\right]$$
1

Искаме

- В квадратните скоби да няма x, y или z
- Използваме, че има още едно z
- Елементарно и хитро: $\frac{z}{f} = [0]x + [0]y + \left[\frac{1}{f}\right]z + [0]1$

Новата матрица

– Матрица без зависимост от точките

$$- \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ z/f \end{pmatrix}$$

– Да я проверим, все пак

По-сложен пример

Простоват смартфон

 Показва перспективна проекция на куб, който се върти някъде пред екрана

В резюме за матриците

Трансформационна и проективна

(при $a_{41}, a_{42}, a_{43} \neq 0$ се получават 1/2/3-точкови перспективи)

Сложност на проекциите

- Често матриците са доста по-сложни
- Включени са допълнителни действия

Примерно

- Координатата z не се нулира, а се запазва за Z-Buffer
- 3D сцената се изрязва до дадена зона (frustum)
- Дълбочината се нормализира до [-1,1]
- Центърът на проекцията не е (0,0,0)
- Матрицата е вградена в друга матрица

Въпроси?

Повече информация

[ALZH] стр. 111-131 гл. 5 [LENG] [AGO1] CTD. 161-166 [MORT] ctp. 313-321 [**BAGL**] ctp. 136-137 [PARE] стр. 31-39, 46-48 [KLAW] CTp. 121-128 [SEAK] стр. 34 [VINC] [AGO2] ctp. 111-121, 138 стр. 103-105 [ZHDA] стр. 247-252

А също и:

- Perspective projections
 http://web.iitd.ac.in/~hegde/cad/lecture/L9_persproj.pdf
- Perspective and Orthographic Projection Matrix
 http://www.scratchapixel.com/lessons/3d-advanced-lessons/perspective-and-orthographic-projection-matrix/

Край