

Inclass - Lab (Day 3)

Table of Content

- 1. Pivot Table
- 2. **Duplicate**
- 3. Replace
- 4. Summary Statistics
- 5. Merge, Join, Concatenate

Let us import the required library

```
In [1]: # import libraries
import numpy as np
import pandas as pd
```

Let's begin with some hands-on practice exercises

1. Pivot Table

3. Find the average sales for each store

Store	Location	Sales
Α	Mumbai	40000
В	Pune	45000
Α	Hyderabad	50000
С	Mumbai	90000
D	Pune	89000
Α	Delhi	87000
D	Hyderabad	85000
Α	Pune	78000
С	Mumbai	89000

B Pune 70000

Out[35]:

Location	Delhi	Hyderabad	Mumbai	Pune
Store				
Α	87000.0	50000.0	40000.0	78000.0
В	NaN	NaN	NaN	57500.0
С	NaN	NaN	89500.0	NaN
D	NaN	85000.0	NaN	89000.0

4. Compute the average sales for each store in every city

Store	Location	Sales
Α	Mumbai	40000
В	Pune	45000
Α	Hyderabad	50000
С	Mumbai	90000
D	Pune	89000
Α	Delhi	87000
D	Hyderabad	85000
Α	Pune	78000
С	Mumbai	89000
В	Pune	70000

```
In [36]: # type your code here
#pd.pivot_table(df1, index = ['Store','Location'],aggfunc = np.mean) can use this
pd.pivot_table(df1, values = 'Sales', index = 'Store', columns = 'Location',aggfunc')
```

Out[36]:

Location	Delhi	Hyderabad	Mumbai	Pune
Store				
Α	87000.0	50000.0	40000.0	78000.0
В	NaN	NaN	NaN	57500.0
С	NaN	NaN	89500.0	NaN
D	NaN	85000.0	NaN	89000.0

5. Compute the minimum sales for each store in every city

Use the dataframe given below:

Store	Location	Sales
Α	Mumbai	40000
В	Pune	45000
Α	Hyderabad	50000
С	Mumbai	90000
D	Pune	89000
Α	Delhi	87000
D	Hyderabad	85000
Α	Pune	78000
С	Mumbai	89000
В	Pune	70000

```
In [53]: # type your code here
pd.pivot_table(df1,values = 'Sales',index=['Location'],columns=['Store'],aggfunc=
Out[53]:
```

Store	Α	В	С	D
Location				
Delhi	87000.0	NaN	NaN	NaN
Hyderabad	50000.0	NaN	NaN	85000.0
Mumbai	40000.0	NaN	89000.0	NaN
Pune	78000.0	45000.0	NaN	89000.0

2. Duplicate

6. Find duplicate rows in the data

Use the dataframe given below:

City	Salary	Name
Sydeny	3400	John
Chicago	3000	Robert
New York	1600	Aadi
Chicago	3000	Robert
Chicago	3000	Robert
Texas	3000	Robert
London	4000	Aadi
Chicago	3000	Sachine

```
Name Salary City
Robert 3000 Chicago
Robert 3000 Chicago
Robert 3000 Chicago
```


7. Select duplicate rows, except the last occurrence

City	Salary	Name
Sydeny	3400	John
Chicago	3000	Robert
New York	1600	Aadi
Chicago	3000	Robert
Chicago	3000	Robert
Texas	3000	Robert
London	4000	Aadi
Chicago	3000	Sachine

8. Select the duplicated rows based on the column names 'Salary' and 'City'

Use the dataframe given below:

```
Name
         Salary
                      City
  John
          3400
                   Sydeny
          3000
 Robert
                  Chicago
          1600
                New York
   Aadi
          3000
 Robert
                  Chicago
          3000
 Robert
                  Chicago
 Robert
          3000
                    Texas
          4000
                   London
   Aadi
Sachine
          3000
                  Chicago
```

```
In [44]: # type your code here
    df8_res = df6[df6.duplicated(['Salary','City'])]
    print('Below are the duplicates based on SALARY and CITY column')
    print(df8_res)
```

```
Below are the duplicates based on SALARY and CITY column
Name Salary City
Robert 3000 Chicago
Robert 3000 Chicago
Sachine 3000 Chicago
```

3. Replace

9. Replace 'football' with 'hockey' in the column tournament

Days	Tournament
Mon	Football
Tues	Cricket
Wed	Football

Thurs Football
Fri Cricket

```
In [50]: # type your code here
         tou = {'Football':'Hockey'}
         df9 = pd.DataFrame(data = {'Days':['Mon','Tues','Wed','Thurs','Fri'],'Tournament
         print('Initial data frame')
         print(df9)
         df9.Tournament.replace(tou,inplace=True)
         print("After replacing football with hockey below is the data frame")
         print(df9)
         Initial data frame
             Days Tournament
              Mon
                    Football
         1
             Tues
                     Cricket
         2
              Wed
                    Football
         3
           Thurs
                    Football
              Fri
                     Cricket
         After replacing football with hockey below is the data frame
             Days Tournament
         0
              Mon
                      Hockey
         1
             Tues
                      Cricket
         2
              Wed
                      Hockey
         3
            Thurs
                      Hockey
              Fri
                      Cricket
```


10. Replace all 0's with male and all 1's with female in the gender column

Name	Num_Children	Gender
John	0	0
Robert	4	0
Johny	5	0
Mia	3	1

```
In [51]: # type your code here
    df10 = pd.DataFrame(data={'Name':['John','Robert','Johny','Mia'],'Num_Children':[
        gen = {0:'Male',1:'Female'}
        print('Initial data frame')
        print(df10)
        df10.Gender.replace(gen,inplace=True)
        print('After replacing 0 with MALE and 1 with FEMALE')
        print(df10)
```

```
Initial data frame
    Name Num Children Gender
0
    John
1 Robert
                              0
2
    Johny
                     5
                              0
     Mia
                     3
                              1
After replacing 0 with MALE and 1 with FEMALE
    Name Num Children Gender
0
    John
                          Male
1
  Robert
                     4
                          Male
2
   Johny
                          Male
     Mia
                     3 Female
```

4. Summary Statistics

12. Find the descriptive statistics for the sales column of the given dataframe

Month	Sales	Seasons
Jan	22000	Winter
Feb	27000	Winter
Mar	25000	Spring
Apr	29000	Spring
May	35000	Spring
June	67000	Summer
July	78000	Summer
Aug	67000	Summer
Sep	56000	Fall
Oct	56000	Fall
Nov	56000	Fall
Dec	60000	Winter

```
The data frame is:
  Month Sales Seasons
0
     Jan
         22000 Winter
1
     Feb 27000
                Winter
2
     Mar
         25000
                 Spring
3
     Apr 29000
                 Spring
    May 35000
4
                 Spring
5
    June 67000
                 Summer
6
    July
         78000
                 Summer
7
     Aug
         67000
                 Summer
8
         56000
                   Fall
     Sep
9
     Oct 56000
                   Fall
10
     Nov 56000
                   Fall
11
     Dec 60000 Winter
The descriptive statistics of Sales column is:
count
            12.000000
         48166.666667
mean
std
         19385.249000
         22000.000000
min
25%
         28500.000000
50%
         56000.000000
75%
         61750.000000
max
         78000.000000
Name: Sales, dtype: float64
```

13. Find the median of sales for each season

Month	Sales	Seasons
Jan	22000	Winter
Feb	27000	Winter
Mar	25000	Spring
Apr	29000	Spring
May	35000	Spring
June	67000	Summer
July	78000	Summer
Aug	67000	Summer

```
        Sep
        56000
        Fall

        Oct
        56000
        Fall

        Nov
        56000
        Fall

        Dec
        60000
        Winter
```

```
In [61]: # type your code here
    #df12.groupby('Seasons').describe()
    df12.groupby('Seasons').agg(np.median)
```

Out[61]:

Sales

Seasons	
Fall	56000
Spring	29000
Summer	67000
Winter	27000

14. Find the descriptive statistics for categorical data from the dataframe

Month	Sales	Seasons
Jan	22000	Winter
Feb	27000	Winter
Mar	25000	Spring
Apr	29000	Spring
May	35000	Spring
June	67000	Summer
July	78000	Summer
Aug	67000	Summer
Sep	56000	Fall
Oct	56000	Fall
Nov	56000	Fall
Dec	60000	Winter

In [85]: # type your code here
df12.groupby(['Seasons','Month']).describe()

Out[85]:

		Sales							
		count	mean	std	min	25%	50%	75%	max
Seasons	Month								
Fall	Nov	1.0	56000.0	NaN	56000.0	56000.0	56000.0	56000.0	56000.0
	Oct	1.0	56000.0	NaN	56000.0	56000.0	56000.0	56000.0	56000.0
	Sep	1.0	56000.0	NaN	56000.0	56000.0	56000.0	56000.0	56000.0
Spring	Apr	1.0	29000.0	NaN	29000.0	29000.0	29000.0	29000.0	29000.0
	Mar	1.0	25000.0	NaN	25000.0	25000.0	25000.0	25000.0	25000.0
	May	1.0	35000.0	NaN	35000.0	35000.0	35000.0	35000.0	35000.0
Summer	Aug	1.0	67000.0	NaN	67000.0	67000.0	67000.0	67000.0	67000.0
	July	1.0	78000.0	NaN	78000.0	78000.0	78000.0	78000.0	78000.0
	June	1.0	67000.0	NaN	67000.0	67000.0	67000.0	67000.0	67000.0
Winter	Dec	1.0	60000.0	NaN	60000.0	60000.0	60000.0	60000.0	60000.0
	Feb	1.0	27000.0	NaN	27000.0	27000.0	27000.0	27000.0	27000.0
	Jan	1.0	22000.0	NaN	22000.0	22000.0	22000.0	22000.0	22000.0

15. Find the kurtosis for each subject

Name	Maths	Science	English
Emma	56	89	89
Mia	78	87	89
Sophia	78	78	76
James	67	89	78
John	88	78	87

	Name	Maths	Science	English
0	Emma	56	89	89
1	Mia	78	87	89
2	Sophia	78	78	76
3	James	67	89	78
4	John	88	78	87

```
The kurtosis of Maths is: -0.21959853904003523
The kurtosis of Science is: -3.2323317341413444
The kurtosis of English is: -2.9238812504362084
```

5. Merge, Join, Concatenate

16. Merge the given dataframes on the column 'Brand'

Product	Brand	ID
iPhone	Apple	101
DSLR	Canon	102
SmartPhone	Samsung	103
DSLR	Nikon	104
SmartTV	Sony	105

Quantity_sold	Brand	ID
234	Apple	101
344	Canon	102
345	Samsung	104
262	Nikon	103
356	Sony	105

```
ID
           Brand
                     Product
  101
          Apple
                     iPhone
0
1
  102
          Canon
                       DSLR
2
  103 Samsung SmartPhone
3 104
          Nikon
                       DSLR
4 105
           Sony
                    SmartTV
The second data frame is:
     ID
          Brand Quantity sold
  101
          Apple
                           234
1
  102
          Canon
                           344
  104 Samsung
                           345
3 103
          Nikon
                           262
4 105
                           356
           Sony
After Merging the 2 data frames on key Brand:
```

	ID_x	Brand	Product	ID_y	Quantity_sold
0	101	Apple	iPhone	101	234
1	102	Canon	DSLR	102	344
2	103	Samsung	SmartPhone	104	345
3	104	Nikon	DSLR	103	262
4	105	Sony	SmartTV	105	356

17. Using the dataframes created in question 16, merge the given dataframes by 'ID' and 'Brand'

```
In [73]: # type your code here
print('After Merging the 2 data frames on keys ID and Brand:\n')
print(pd.merge(df16a, df16b, how ='inner', on =['ID','Brand']))
```

After Merging the 2 data frames on keys ID and Brand:

```
ID Brand Product Quantity_sold
0 101 Apple iPhone 234
1 102 Canon DSLR 344
2 105 Sony SmartTV 356
```


18. Using the dataframes created in question 16, perform left join to combine values in the columns 'Brand' and 'ID'

```
In [77]: # type your code here
pd.merge(df16a,df16b,on=['Brand','ID'],how='left')
```

Out[77]:

_		ID	Brand	Product	Quantity_sold
	0	101	Apple	iPhone	234.0
	1	102	Canon	DSLR	344.0
	2	103	Samsung	SmartPhone	NaN
	3	104	Nikon	DSLR	NaN
	4	105	Sony	SmartTV	356.0

19. Using the dataframes created in question 16, perform outer join to combine values in the columns 'Brand' and 'ID'

```
In [78]: # type your code here
pd.merge(df16a,df16b,on=['Brand','ID'],how='outer')
```

Out[78]:

_		ID	Brand	Product	Quantity_sold
	0	101	Apple	iPhone	234.0
	1	102	Canon	DSLR	344.0
	2	103	Samsung	SmartPhone	NaN
	3	104	Nikon	DSLR	NaN
	4	105	Sony	SmartTV	356.0
	5	104	Samsung	NaN	345.0
	6	103	Nikon	NaN	262.0

20. Concatenate rows of the given dataframes and assign the store as its key

Products in Store_A:

Product	Brand	ID
iPhone	Apple	101
DSLR	Canon	102
SmartPhone	Samsung	103
DSLR	Nikon	104
SmartTV	Sony	105

```
101
          Apple
                      iPhone
   102
1
          Canon
                        DSLR
2
  103
                  SmartPhone
        samsung
3
   104
          Nikon
                        DSLR
4
  105
           Sony
                     SmartTV
The 2nd Data frame is:
     ID
           Brand
                      Product
0
   103
          Apple
                      iPhone
   104
                        iPod
1
          Apple
2
   104
                  SmartPhone
        Samsung
                        DSLR
3
   107
          Canon
4
   101
           Sony
                     SmartTV
The resulting data frame after concatination is:
              ID
                    Brand
                               Product
Store A 0
           101
                   Apple
                               iPhone
           102
                   Canon
                                 DSLR
        1
        2
           103
                 samsung
                          SmartPhone
        3
           104
                   Nikon
                                 DSLR
           105
        4
                    Sony
                              SmartTV
Store B 0
           103
                   Apple
                               iPhone
           104
                                 iPod
        1
                   Apple
        2
           104
                 Samsung
                          SmartPhone
        3
           107
                   Canon
                                 DSLR
           101
                    Sony
                              SmartTV
```