Comparison of Two Unfolding Approaches

Jan Lochman

Czech Technical University jan.lochman@cern.ch

April 24, 2015

Inclusive Jet Meeting

Introduction

- Double differential inclusive jet cross section in p_T and |y|
- Data
 - mc14_13TeV, AntiKt4LCTopoJets
- Event Selection
 - $p_T > 15 \,\text{GeV}$, |y| < 4
 - \bullet # reco jets \geq 1 & # truth jets \geq 1
 - $0.6 < p_{T,leading}^{reco}/p_{T,leading}^{truth} < 1.4$.
- Jet matching
 - Angular matching starting from lowest dR_{ij}
 - $dR_{ij} = \sqrt{d\phi_{ij}^2 + dy_{ij}^2} < 0.2$

Introduction to Unfolding

- Used two approaches to unfolding
- Simple Unfolding
 - Matching only within the same rapidity bins.
 - 8 transfer matrices 46x46 (8 = # y-Bins, 46 = # p_T-Bins).
 - Unfolding done for each transfer matrix separately.

2D Unfolding

- Matching between different rapidity bins allowed.
- 1 transfer matrix 368×368 ($368 = 8 \times 46$).

Differences:

- Different transfer matrices.
- Different matching efficiencies.

Transfer Matrices

2D unfolding

Simple unfolding

High p_T Difference in Matched Jets

mc14_13TeV_147915.Pythia8_AU2CT10_jetjet_JZ5W.merge_AOD.e2743_s1982_s2008_r5787_r5853/ AOD.01598029_000003.pool.root.1 event # 1087 (left) mc14_13TeV_147916.Pythia8_AU2CT10_jetjet_JZ6W.merge_AOD.e2743_s1982_s2008_r5787_r5853/ AOD.01598030_000005.pool.root.2 event # 1388 (right)

Jet Level	PT	У	φ
RECO	1948.9	0.7973	-2.996
TRUTH	1913.0	0.8159	-2.996
RECO	1526.4	-0.686	0.1032
TRUTH	1851.6	-0.674	0.1646
RECO	330.04	-0.732	0.5231
TRUTH	30.748	-0.839	0.5972
RECO	101.92	-0.271	-0.133
TRUTH	97.678	-0.266	-0.116
RECO	55.632	-0.086	-2.942
TRUTH	52.407	-0.014	-2.905
RECO	17.514	-2.471	-2.271
TRUTH	25.189	-2.472	-2.377
RECO	19.760	-1.650	2.6354
RECO	19.303	-0.242	-1.035
RECO	17.814	0.4432	2.8272
RECO	16.998	1.8389	0.9921
RECO	15.435	-0.692	-2.578

Рт	у	φ
1468.5	0.1580	2.0229
1420.1	0.1633	2.0300
1267.6	0.1966	-0.928
963.99	0.2578	-0.857
177.77	2.1969	-2.344
169.13	2.2085	-2.349
112.19	2.0599	-1.753
108.35	2.0499	-1.759
56.778	1.4397	2.0556
31.550	1.3559	2.0508
19.091	-0.111	-1.313
340.94	0.0072	-1.195
20.420	0.6798	-0.871
19.792	0.3520	-1.622
	1420.1 1267.6 963.99 1777.77 169.13 112.19 108.35 56.778 31.550 19.091 340.94	1468.5 0.1580 1420.1 0.1633 1267.6 0.1966 963.99 0.2578 177.77 2.1969 169.13 2.2085 112.19 2.0599 108.35 2.0499 56.778 1.4397 31.550 1.3559 19.091 -0.111 340.94 0.0072

Slices in Transfer Matrix

Matching Efficiencies Reco Jets

Matching Efficiencies Truth Jets

Different y-bins, $p_T > 1000 \,\text{GeV}$

Jet Level	РТ	у	φ
RECO	1047.2	0.50084	-0.525
TRUTH	1043.6	0.49142	-0.515
RECO	919.36	-0.8124	3.0295
TRUTH	859.44	-0.8250	3.0283
RECO	202.45	0.15152	1.5866
TRUTH	209.20	0.13535	1.5925
RECO	107.19	3.20412	0.9019
TRUTH	110.20	3.20996	0.8821
RECO	86.126	-1.0504	2.4963
TRUTH	94.136	-1.0531	2.5268
RECO	62.074	-1.3096	-3.053
TRUTH	52.706	-1.2922	-3.057
RECO	22.069	-0.7635	2.0193
TRUTH	31.753	-0.8044	1.8596
RECO	16.189	0.79967	2.1690
TRUTH	23.677	0.93080	2.1237
TRUTH	19.405	3.71203	1.5590

Jet Level	PT	У	φ
RECO	1139.3	0.15506	-2.8719
TRUTH	1196.3	0.12358	-2.8624
RECO	1083.3	-0.9936	0.29643
TRUTH	1052.4	-1.0141	0.29564
RECO	66.773	-0.1154	0.48034
TRUTH	56.250	-0.1492	0.47566
RECO	37.744	0.47975	0.69324
TRUTH	39.587	0.46135	0.67427
RECO	35.383	-1.3730	-0.4060
TRUTH	47.301	-1.4579	-0.4784
RECO	33.156	0.79242	0.02433
TRUTH	33.734	0.76861	0.01449
RECO	27.010	1.82468	1.61042
RECO	22.444	-0.2102	1.59064
RECO RECO	21.114 18.381	-1.5798 -2.9413	1.49738 2.87425
RECO	15.81	0.5550	-2.2601

Unfolding Results Reco & 2D Unfold / Truth

Unfolding Results Simple Unfold & 2D Unfold / Truth

Unfolding Results for Modified p_T Reco Spectrum

Reco Original & Reco Modified & Simple Unfold & 2D Unfold / Truth

Unfolding trained on Reco Original, but executed on Reco Modified

Conclusions

Matching Efficiencies

2D Unfolding: > 99 % for almost every bin with $p_T >$ 100 GeV.

Simple Unfolding: $\sim 2-5\%$ worse.

Unfolding Results

Small differences between both of these approaches.

2D Unfolding: Small interconnection between neighboring rapidity bins

Simple Unfolding: Interconnection is not possible