AMS 572 Data Analysis I Analysis of Single Factor Experiments

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Analysis of Variance Model

- ▶ Objective: To test hypotheses about the mean of more than 2 groups
- ▶ Definition: An analysis of variance model is a linear regression model in which the predictor variables are classification variables. The categories of a variable are called the *levels* of the variable.
- Categorical predictor variables are also called qualitative factors

Analysis of Variance Model

Data structure:

Balanced design: $n_i \equiv n$

Notation

- ▶ Let Y_{ij} be the j^{th} observation in the i^{th} group
- $i = 1, ..., K; j = 1, ..., n_i$
- $\blacktriangleright \text{ Let } N = \sum_{i=1}^K n_i$
- $ightharpoonup \bar{Y}_{i.} = \sum_{j} Y_{ij}/n_i$

ANOVA Model and Hypotheses

- Assume $Y_{ij} \sim N(\mu_i, \sigma^2)$. That is, equal (unknown) population variances $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_K^2 = \sigma^2$
- Suppose

$$H_0: \mu_1 = \mu_2 = \dots = \mu_K$$

versus

 H_a : these μ_i 's are not all equal

Derivation of the test

► The mean square treatment is given by

$$MSA = \frac{\sum_{i=1}^{K} n_i (\bar{Y}_{i.} - \bar{Y})^2}{K - 1}$$

where

$$\bar{Y} = \frac{\sum_{i=1}^{K} \sum_{j=1}^{n_i} Y_{ij}}{N}$$

- ▶ A large standardized value of MSA indicates that H_0 is false.
- ▶ MSE is standardized using the pooled estimate of σ^2 which is estimated as:

$$MSE = s_p^2 = \frac{\sum_{i=1}^{K} (n_i - 1) s_i^2}{\sum_{i=1}^{K} (n_i - 1)}$$

Review: F distribution

If X_1 and X_2 are independent rvs with $X_1 \sim \chi_{v_1}^2$ and $X_2 \sim \chi_{v_2}^2$, then

$$\frac{X_1/v_1}{X_2/v_2} \sim F_{v_1, v_2}$$

Note:

- ▶ If $F \sim F_{v_1,v_2}$, then $1/F \sim F_{v_2,v_1}$
- ► Thus, if the F-table only gives the upper bound $F_{v_1,v_2,\alpha,U}$, i.e., $P(F \ge F_{v_1,v_2,\alpha,U}) = \alpha$, the lower bound can be obtained using the relationship above.

ANOVA: F test

▶ It can be shown under H_0 :

$$(N - K)$$
MSE $/\sigma^2 \sim \chi^2_{N-K}$
 $(K - 1)$ MSA $/\sigma^2 \sim \chi^2_{K-1}$

and MSE and MSA are independent

▶ Therefore, under H_0 ,

$$F_0 \equiv rac{ ext{MSA}}{ ext{MSE}} \sim$$

ANOVA: F test

▶ It can be shown that $E(MSE) = \sigma^2$ whereas

$$E(MSA) = \sigma^2 + \frac{\sum_{i} n_i (\mu_i - \mu)^2}{K - 1}$$

where $\mu = \frac{\sum_{i=1}^{K} n_i \mu_i}{N}$ is the overall mean

- ▶ Under H_0 , $F_0 = 1$
- ▶ Under H_a , $F_0 > 1$
- ▶ Intuitively, we reject H_0 in favor of H_a if $F_0 \ge C$ where

$$P(\text{reject } H_0|H_0) = P(F_0 \ge C|H_0) = \alpha$$

► The critical region:

$$C_{\alpha} = \{F_0 : F_0 > F_{K-1, N-K, \alpha, U}\}$$

▶ When K = 2, $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$

$$T_0 = \frac{\bar{y}_{1\cdot} - \bar{y}_{2\cdot}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \stackrel{H_0}{\sim} t_{n_1 + n_2 - 2}$$

AMS 572 ©PF.Kuan 10

Cell Means Model

► The version of ANOVA model that we have looked at so far is called the *cell means model*

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

for $i = 1, 2, ..., K; j = 1, 2, ..., n_i$ where

$$\epsilon_{ij} \sim N(0, \sigma^2)$$
 for all i, j

Factor Effects Model

▶ An equivalent model is the factor effects model

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

for $i = 1, 2, ..., K; j = 1, 2, ..., n_i$ where

$$\mu = \frac{1}{N} \sum_{i=1}^{K} n_i \mu_i$$

$$\alpha_i = \mu_i - \mu$$
(1)

and

$$\epsilon_{ij} \sim N(0, \sigma^2)$$
 for all i, j

► Constraint: $\sum_{i=1}^{K} n_i \alpha_i = 0$

Model Equivalence

► Equivalence of null hypotheses

$$H_0: \mu_1 = \cdots = \mu_K \Leftrightarrow H_0: \alpha_i = 0; \quad i = 1, 2, \dots, K$$

 $ightharpoonup \alpha_i$ is called the i^{th} main effect or factor effect

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

$$= \mu + (\mu_i - \mu) + \epsilon_{ij}$$

$$= \mu + \alpha_i + \epsilon_{ij}$$

ANOVA: Sum of Squares

▶ It can be shown that

$$\sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\bar{Y}_{i\cdot} - \bar{Y})^2 + \sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\cdot})^2$$

► That is,

$$SST = SSA + SSE$$

ANOVA: F Test and ANOVA Table

ANOVA Table

Source	SS	df	MS	F
Among groups	SSA	K-1	$MSA = \frac{SSA}{K-1}$	MSA/MSE
Within groups	SSE	N - K	$MSE = \frac{\overline{SSE}}{N-K}$	
Total	SST	N-1		

Example: A study was conducted to compare the lung function of groups of smokers and non-smokers. Test the hypothesis if the lung function differs by smoking status.

Group	n_i	Mean (L/sec)	sd (L/sec)
Non-smokers	200	3.78	0.79
Passive smokers	200	3.30	0.77
Non-inhalers	50	3.32	0.86
Light smokers	200	3.23	0.78
Mod. smokers	200	2.73	0.81
Heavy smokers	200	2.59	0.82