Deep Residual Learning for Image Recognition

CONTENTS

- 01 Introduction
- 02 ResNet
- 03 Experiments

Introduction

the depth of representations is of central importance for many visual recognition tasks

breakthroughs

- levels of features can be enriched by the number of stacked layers
- gradient vianising/exploding problem
 - → nomalized initalization

we address the degradation problem by

degradation problem (not overfitting, higher training error)

introducing a deep residual learning framework.

01 Introduction

Will show

- extremely deep residual nets are easy to optimize, but the counterpart "plain" nets exhibit higher training error when the depth increases
- deep residual nets can easily enjoy accuracy gains from greatly increased depth

residual mapping

Figure 2. Residual learning: a building block.

H(x): a desired underlying mapping

F(x): residual mapping

F(x) + x: shortcut connection

It would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers

Building block

$$\mathbf{y} = \underbrace{\mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}}_{ ext{Residual mapping}} \quad \mathcal{F} = W_2 \sigma(W_1 \mathbf{x})$$

Figure 2. Residual learning: a building block.

If dimensions of x and F is not equal, can perform a linear projection Ws by the shortcut connections to match the dimensions.

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

Network Architectures

Plain Network

- Inspired by the philosophy of VGGnets
- Convolutional layers mostly have 3x3 filters
- For the same output feature map size, the layers have the same number of filters
- If the feature map size is halved, the number of filters is doubled so as to preserve the time complexity per layer.

Network Architectures

Plain Network

- Inspired by the philosophy of VGGnets
- Convolutional layers mostly have 3x3 filters
- For the same output feature map size, the layers have the same number of filters
- If the feature map size is halved, the number of filters is doubled so as to preserve the time complexity per layer.

Residual Network

- Based on the above plain network, insert shortcut connections
- When dimensions increase, 1) shortcut still perform, 2) projection shortcut

ImageNet Classification

ImageNet 2021 classification dataset

- 1.28 training images
- 50k validation images
- 100k test images

1. Resize with randomly sampled in [256, 480]

2. 224 x 224 crop randomly (+ horizontal flip version)

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9	

ImageNet Classification – validation error

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

This indicates that the degradation problem is well addressed in resnet and we manage to obtain accuracy gains from increased depth

ImageNet Classification

model	top-1 err.	top-5 err.
VGG-16 [40]	28.07	9.33
GoogLeNet [43]	_	9.15
PReLU-net [12]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

A – zero-padding shortcuts are used for increasing dimensions

B – projection shortcuts are used for increasing dimensions

C – all shortcuts are projection

Projection shortcuts are not essential for addressing the degradation problem.

→ not use C

ImageNet Classification – Bottle neck (with option B)

Both designs have similar time complexity

50/101/152-layer ResNets

50-layer	101-layer	152-layer	
7×7 , 64, stride 2	2		
3×3 max pool, stric	le 2		
[1×1, 64]	[1×1, 64]	[1×1, 64]	
$3\times3,64\times3$	$3\times3,64\times3$	$3\times3,64\times3$	
$\lfloor 1 \times 1, 256 \rfloor$	$\lfloor 1 \times 1, 256 \rfloor$	$\lfloor 1 \times 1, 256 \rfloor$	
[1×1, 128]	[1×1, 128]	[1×1, 128]	
$3\times3,128\times4$	$3\times3,128\times4$	$3\times3,128\times8$	
$\begin{bmatrix} 1 \times 1,512 \end{bmatrix}$	$\lfloor 1 \times 1,512 \rfloor$	$\lfloor 1 \times 1,512 \rfloor$	
[1×1, 256]	[1×1, 256]	[1×1, 256]	
$3\times3,256\times6$	$3\times3,256\times23$	$3\times3,256\times36$	
$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	$\lfloor 1 \times 1, 1024 \rfloor$	$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	
[1×1, 512]	[1×1, 512]	[1×1, 512]	
$3\times3,512\times3$	$3\times3,512\times3$	$3\times3,512\times3$	
$\lfloor 1 \times 1, 2048 \rfloor$	$\begin{bmatrix} 1 \times 1, 2048 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1, 2048 \end{bmatrix}$	
erage pool, 1000-d fc,	softmax		
3.8×10^9	7.6×10^9	11.3×10^9	

Training on CIFAR-10, Exploring over 1000 layers

method			error (%)
Maxout [9]			9.38
NII	8.81		
DSN [24]			8.22
	# layers	# params	
FitNet [34]	19	2.5M	8.39
Highway [41, 42]	19	2.3M	7.54 (7.72±0.16)
Highway [41, 42]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

The 1202-layer network may be unnecessarily large (19.4M) for this small dataset. (CIFAR-10)

→ because of overfitting.

combining with stronger regularization may improve result.