

Rate law and Rate constant

25. (b)
$$R = K[A]$$
, $1.02 \times 10^{-4} = 3.4 \times 10^{-5}$, $[N_2 O_5]$ or $(N_2 O_5) = \frac{1.02 \times 10^{-4}}{3.4 \times 10^{-5}}$, $K = 3$

26. (a) Rate law for the reaction

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

is $r = k[N_2O_5]$ first order reaction.

27. Solution:

- Rate law is Rate = k[NO]²[O₂].
- Here, **k** is the rate constant. It depends only on temperature (and catalyst, if present), not on concentrations.
- Increasing the concentration of reactants affects the **rate**, but not the **rate** constant.
- To increase k, we need to increase temperature.

Answer: (a) Increasing temperature

- 28. (c) Rate constant depends on temperature only.
- 29. (c) According to Arhenius concept

Rate constant $K = A_e^{-\frac{E_a}{RT}}$, Hence rate constant depends only upon temperature of the system.

30. (d) For $2A + B \to C$ Rate= K[A][B]

Value of rate constant $K = Ae^{-\frac{Ea}{RT}}$ here K is independent of the initial concentration of A and B.

- **31.** (d) The specific rate constant of a first order reaction depends upon the temperature of reaction.
- **32.** (c) Unit of *K* for first order reaction = sec^{-1}
- 33. Write the rate law (second order):

Rate = $k [A]^2$ (or Rate = k [A][B]; both are second order overall)

Write dimensions / units:

- o Dimension of rate = $concentration / time = mol L^{-1} s^{-1}$ (denote concentration dimension by C and time by T, $so [Rate] = C T^{-1}$).
- o Dimension of concentration $[A] = mol L^{-1} = C$

Solve for dimension of ka

$$[k] = \frac{CT^{-1}}{C^2} = C^{-1}T^{-1}$$

$$[k] = L \, mol^{-1} \, s^{-1}$$

Conclusion / Answer: (c) Time and concentration

34. Rate law (second order):

Rate =
$$k[A]^2$$

Dimensions:

o Rate:

[Rate]=concentration-

$$\cdot \, T^{-1} = (mol \, L^{-1}) \, s^{-1}$$

IIT-JEE CHEMISTRY

o Concentration:

$$[A] = mol L^{-1}$$

Solve for unit of k

$$[k] = \frac{mol \, L^{-1} s^{-1}}{(mol \, L^{-1})^2}$$

- (d) $mole^{-1}$ litre sec^{-1}
- 35. (b) The rate of zero order reaction is not depend on the concentration of the reactants.
- **36.** (c) The unit of K for zero order reaction = $molelitre^{-1}sec^{-1}$.
- **37.** (c) Order of reaction is sum of the power raised on concentration terms to express rate expression.
- **38.** (a) The concentration of reactant does not change with time for zero order reaction (unit of *K* suggests zero order) since reactant is in excess.

39. (c)
$$r = K[A]^m$$
 also $2r = K[4A]^m$, $\frac{1}{2} = \left(\frac{1}{4}\right)^m$

$$\therefore m = \frac{1}{2}$$

40. (b) $K = \frac{2.303}{t} log \frac{V_{\infty}}{V_{\infty} - V_t}$ gives constant value of K. With the given date. Hence it is 1st order.

ESTD: 2005

41. Reaction:

$$CH_3COOEt + H_2O \rightarrow [H^+]CH_3COOH + EtOH$$

In principle, rate depends on both ester and water concentrations:

$$Rate = k[CH_3COOEt][H_2O]$$

Since water is present in **large excess** (as solvent), $[H_20]$ is nearly constant. So we can write:

$$Rate = k'[CH_3COOEt]$$

where $k' = k[H_2O]$.

Therefore, the reaction follows pseudo-first order kinetics.

Correct Answer: (a) First order

42. (d)
$$r = K[A]^n$$
, $100r = K[10A]^n$
Thus $\frac{1}{100} = \left(\frac{1}{10}\right)^n$ or $n = 2$

43. (a) It is a standard example of first order because in that reaction rate of reaction affected by only one concentration term.

ESTD: 2005

- 44. (c) Inversion of cane sugar is a Pseudo unimolecular reaction.
- **45.** (c) For 1st order reaction

$$K = \frac{2.303}{t} \log_{10} \frac{a}{(a-x)}$$

46. (a)
$$t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{6.2 \times 10^{-4}} = 1117.7 \text{ sec.}$$

47. (b)
$$k = \frac{2.303}{t} log \frac{a}{a-x}$$

$$\frac{0.693}{T} = \frac{2.303}{t} \log \frac{100}{100 - 30}$$

$$T = 58.2$$
 min.

48. (b) Order of reaction =
$$\frac{3}{2} + \frac{3}{2} = \frac{3+3}{2} = \frac{6}{2} = 3$$

