Enhancing the Merger Simulation Toolkit with ML/Al

Harold Chiang Jack Collison Lorenzo Magnolfi Christopher Sullivan

September 27, 2024

Work in Progress

Motivation

- Section 7 of the Clayton Act prohibits mergers if "[..] the effect of such acquisition[s] may be substantially to lessen competition or to tend to create a monopoly."
- From Horizontal Merger Guidelines:
 - "[FTC & DOJ] seek to identify and challenge competitively harmful mergers while avoiding unnecessary interference with mergers that are either competitively beneficial or neutral."
 - "Most merger analysis is necessarily predictive, requiring an assessment of what will likely happen if a merger proceeds as compared to what will likely happen if it does not."
 - "What sufficient data are available, the Agencies may construct economic models designed to quantify the unilateral price effects resulting from the merger."
- How to provide useful predictions on the effects of mergers?

The Merger Simulation Toolkit

- The standard merger simulation method is well-understood and powerful (e.g., Nevo, 2018)
- It focuses on unilateral price effects, and relies on the structure of demand and supply
 - Estimate a matrix of own- and cross-price demand elasticities
 - Typically implemented with two supply-side assumptions:
 - 1. Nash-Bertrand pricing conduct
 - 2. Constant marginal cost
 - Can solve for counterfactual post-merger prices
 - holding conduct, demand, and costs fixed or under assumptions, e.g., on efficiencies
- Evidence on the performance of merger simulation retrospectives is mixed (e.g., Bjöornerstedt and Verboven, 2016)
 - A restrictive supply side is among one of the potential problems (Peters, 2006)

What We Do

- Consider a more flexible, semi/nonparametric supply-side model
 - Nonparametric markup function, depends on endogenous prices and quantities
- Estimate model with AI/ML
 - Adapt Variational Method of Moments (VMM) developed by Bennett and Kallus (2023) for linear IV to model of oligopoly
 - Uses deep learning + an objective function with instruments
 - Potentially better performance with high-dimensional data than standard nonparametrics
 - We provide a bias-corrected inference procedure for multidimensional output
- VMM outperforms standard merger simulation and naive neural network predictions
 - Simulations quantify performance differences
 - Application: mergers in airline markets

The Merger Simulation Toolkit

Suppose we only observe pre-merger data:

- ullet (s,p) endog. outcomes, (x,w) exog. demand and supply shifters, ownership matrix ${\mathcal H}$
- 1. Estimate demand, obtain matrix $D\left(\hat{\theta},s,p\right)$ such that $D_{jk}\left(\hat{\theta},s,p\right)=\frac{\partial s_{j}}{\partial p_{k}}\left(\hat{\theta},s,p\right)$
- 2. Under Bertrand-Nash pricing back out

$$c = p - (\mathcal{H} \odot D)^{-1} s$$

3. Use the model predict prices under post-merger ownership matrix $\mathcal{\tilde{H}}$ as solution to:

$$ilde{
ho} = c + ig(ilde{\mathcal{H}} \odot D(ilde{
ho}, \cdot)ig)^{-1} s(ilde{
ho}, \cdot)$$

A Flexible Model of Supply

- Merger simulation is complex prediction problem with simultaneity
 - Prices are an equilibrium object and correlated with demand
 - Naive prediction approaches will fail to recognize this
- The Nash-Bertrand assumption doesn't always work well
- We develop a flexible model of supply that relaxes Bertrand-Nash and constant cost assumptions
- Throughout, we assume $D=\frac{\partial s}{\partial p}$ is known and focus on the supply-side

Flexible Models of Supply

In general, can express

$$p = \Delta(s, p, x) + c(s, w, \omega)$$

as long as the following holds

• Assumption 1: There exists a unique equilibrium, or the equilibrium selection rule is such that the same p arises whenever the vector (w, x, ω) is the same.

We also maintain:

- Assumption 2: The cost function is separable in ω , or $c(s, w, \omega) = \tilde{c}(s, w) + \omega$.
- Assumption 3: The markup function Δ only depends on s and D.

so we can write

$$p = h(s, D, w) + \omega$$

Remarks

- More general than workhorse model!
 - Assumption 1 amounts to static model describing the data
 - Assumption 2 is almost without loss
 - Assumption 3 satisfied for very broad range of conduct models (e.g., Bertrand, Cournot, Stackelberg, many collusive models, models where firms max profits + consumer surplus)
- ullet Notice that formulation of $ilde{\Delta}$ does not enforce separability of cost and markup
 - Extension: we can enforce separability with extra regularization steps (not today)
- Can be used for merger simulation (or other counterfactuals), finding prices that solve:

$$\tilde{p} - \hat{h}(s(\tilde{p}), D(\tilde{p}), w) - \hat{\omega} = 0$$

where \hat{h} is the VMM model estimate, $s(\cdot)$ is demand, and $\hat{\omega}$ are estimated residuals

Identification

- \bullet We rely on a moment condition with instruments z for identification
 - Instruments are of the right dimension, assume completeness
 - Exogeneity moment condition $\mathbb{E}[\omega|z,w]=0$
- Candidate instruments include demand shifters
 - Sets of competing products, cost shifters of competitors, etc.
- Identification of both models follows arguments akin to Berry and Haile (2014)
- Standard nonparametric techniques are unlikely to perform well in finite samples

Estimation

- Classic nonparametric estimators are well studied for GMM type setups: see reviews by Carrasco et al. (2007); Chen (2007)
- Curse of dimensionality and instability in classical nonparametric estimation under current environment: documented in e.g., Bennett et al. (2019); Bennett and Kallus (2020)
- One can use neural networks to fit high-dimensional nonlinear functions with squared loss:

$$\hat{\theta}_{n} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{\mathrm{TJ}} \sum_{j,t} (p_{jt} - h(s_{t}, D_{t}, w_{jt}; \theta))^{2}$$

- However, standard neural networks ignore endogeneity
 - ullet Cannot correctly recover the markup function $h(\cdot)$

Variational Method of Moments (VMM)

• Inherently, we have a moment condition for the structural markup:

$$\mathbb{E}[p_{jt} - h(s_t, D_t, w_{jt}; \theta)|z] = 0$$

• Given preliminary estimate $\tilde{\theta}_n$, reformulate Bennett and Kallus (2023) to:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \sup_{f \in \mathcal{F}_n} \frac{1}{TJ} \sum_{j,t} f(z_{jt})^T \rho(x_t; \theta) - \frac{1}{4TJ} \sum_{j,t} (f(z_{jt})^T \rho(x_t; \tilde{\theta}_n))^2 - R_n(f)$$
s.t.
$$\rho(x_t; \theta) = p_{it} - h(s_t, D_t, w_{it}; \theta)$$

- $R_n(\cdot)$ is a penalty term that regularize the complexity of f
- We can use the estimate of the structural object *h* for merger simulation

Inference

• If $\tilde{\theta}_n \stackrel{p}{\to} \theta_0$, under regularity conditions, Theorems 2-3 in Bennett and Kallus (2023) imply:

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -\Omega_0^{-1} \sqrt{n} \psi_n + o_p(1)$$

$$\stackrel{d}{\longrightarrow} N(0, \Omega_0^{-1}),$$

where

$$\Omega_{0} = \mathbb{E}\left[\mathbb{E}[D(X;\theta_{0})|Z]^{T}V(Z;\theta_{0})^{-1}\mathbb{E}[D(X;\theta_{0})|Z]\right],$$

$$V(Z;\theta) = \mathbb{E}[\rho(X;\theta)\rho(X;\theta)^{T}|Z],$$

$$D(X;\theta) = \nabla_{\theta}\rho(X;\theta)$$

Inference

• By the delta method, for a transformation $h: \mathbb{R}^b \supset \Theta \to \mathbb{R}^d$, denote

$$h(\hat{\theta}_n) = [h_{x_1}(\hat{\theta}_n), ..., h_{x_d}(\hat{\theta}_n)]^T = [h_1(\hat{\theta}_n), ..., h_d(\hat{\theta}_n)]^T,$$

it holds that

$$\sqrt{N}(h(\hat{\theta}_n) - h(\theta_0)) \stackrel{d}{\to} N(0, \nabla_{\theta'}h(\theta_0)\Omega_0^{-1}\nabla_{\theta'}h(\theta_0)^T)$$

Inference: Simplest Case (d = 1)

- Note that $\nabla_{\theta'} h(\theta_0)$ is $d \times b$; in the simplest case, suppose that d = 1
- Lemma 9 in Bennett and Kallus (2023) states that for any $\beta \in \mathbb{R}^b$, we have:

$$\beta^T \Omega_0^{-1} \beta = -\frac{1}{4} \inf_{\gamma \in \mathbb{R}^b} \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}[f(Z)^T \nabla_{\theta} \rho(X; \theta_0) \gamma] - \frac{1}{4} \mathbb{E}[(f(Z)^T \rho(X; \theta_0))^2] - 4\gamma^T \beta - R_n(f) \right\}$$
(1)

• Take $\beta = \nabla_{\theta} h_{x}(\theta_{0})$ and the above solution to the optimization problem becomes:

$$\sigma_{x}^{2} = \nabla_{\theta} h_{x}(\theta_{0}) \Omega_{0}^{-1} \nabla_{\theta} h_{x}(\theta_{0})^{T}$$

- This is the asymptotic variance for $\sqrt{N}(h_x(\hat{\theta}_n) h_x(\theta_0))$
 - $\nabla_{\theta} h_{x}(\theta_{0})$ can be difficult to compute analytically
 - Numerical differentiation can be employed (e.g., Hong et al. (2015))
 - Expectations can be replaced by sample means, $\hat{\theta}_n$ can be used in place of θ_0
 - These together yield a feasible version of Equation (1) which provides an estimator $\hat{\sigma}_x^2$ for σ_x^2

Inference: Extending to $d \ge 2$

- The approach above cannot obtain a covariance matrix when $d \ge 2$
- Holm's Step-Down procedure using the estimates for $\hat{\sigma}_{x_j}^2$ and $h(\hat{\theta})$ for each j=1,...,d
- The set of critical values T_{α} is known for significance levels $rac{lpha}{d+1-k}$ and k=1,...,d
 - ullet We can use a folded normal distribution with t=1 to account for bias
- For any ordering of x and fixed ordering T_{α} , we can compute the confidence interval:

$$h_{\mathsf{x}}(\hat{\theta}) \pm \mathsf{N}^{-\frac{1}{2}} \hat{\sigma}_{\mathsf{x}} \mathsf{T}_{\alpha}$$

- We compute this for all permutations of j = 1, ..., d, resulting in d! permutations of x
- ullet This is because we must consider any possible ordering of the p-values of $x_1,...,x_d$

Inference Algorithm

- 1. Estimate $\hat{\sigma}_{x_i}^2$ for $\sigma_{x_i}^2$ for $j \in \{1, ..., d\} \equiv J$ by solving the feasible version of Equation (1)
- 2. Fix values $T_{\alpha}=\{T_{\alpha_k}: k=1,...,d\}$ where $\alpha_k=rac{\alpha}{d+1-k}$
- 3. For each permutation \tilde{J} of J:
 - 3.1 Arrange values \tilde{x} and $\hat{\sigma}_{\tilde{x}}$ with permuted indices \tilde{J}
 - 3.2 Construct bounds as $h_{\tilde{x}}(\hat{\theta}) \pm n^{-\frac{1}{2}} \hat{\sigma}_{\tilde{x}} T_{\alpha}$ with fixed T_{α}
- 4. Simultaneous confidence interval as the union of $2 \times d \times d!$ linear constraints from Step (3)

Simulations Setup

- Simple parametric simulations to evaluate performance relative to the baseline
 - Demand: Logit with two independent product characteristics
 - Supply: Linear costs with two independent cost shifters
- We simulate data under two different assumptions on conduct
 - Bertrand: Identity ownership matrix
 - Profit Weight: Off-diagonal weights of 0.75

Evaluating Performance

- We need a way to compare different (potentially misspecified) models
- ullet A relevant comparison is looking at the residuals ω under different assumptions
 - True, Bertrand, monopoly, perfect competition, and flexible models
 - Residuals from the true model are irreducible
- We take the mean squared difference between model residuals and true residuals
- The idea is to see how far off the prediction error is from the irreducible error

Comparison of Models

- For known demand system, under Bertrand, Monopoly, and perfect competition we recover residuals ω^B, ω^M , and ω^P
- Flexible Model In the flexible supply-side model, we estimate a flexible function h and recover $\hat{\omega}_{jt}$:

$$p_{jt} = h_j(s_t, D_t, w_{jt}) + \hat{\omega}_{jt}$$

• Naive Model A naive flexible supply-side model ignores endogeneity; we estimate a flexible function h^N and recover $\hat{\omega}^N$:

$$p_{jt} = h_j^N(s_t, D_t, w_{jt}) + \hat{\omega}_{jt}^N$$

• We evaluate performance for different neural network architectures, sample sizes, and inclusion of demand derivatives

Table 1: Model Comparison (Bertrand, Small Network)

Sample Size	Derivatives	ω	ω^B	ω^{M}	ω^P	$\hat{\omega}$	ŵΝ
N = 100	No	0.005	0.005	583.409	6.518	0.892	1.693
N = 100	Yes	-	-	-	-	0.556	1.319
N = 1,000	No	0.001	0.001	979.962	5.977	1.390	1.800
N = 1,000	Yes	-	-	-	-	0.348	0.978
N = 10,000	No	0.000	0.000	1693.914	6.317	1.221	1.743
N = 10,000	Yes	-	-	-	-	0.170	1.047

Profit Weight $(\theta = 0.75)$ Results Large Network

Table 2: Model Comparison (Profit Weight, Small Network)

Sample Size	Derivatives	ω	ω^B	ω^{M}	ω^P	$\hat{\omega}$	ŵΝ
N = 100	No	0.005	8.765	5.077	11.474	2.330	2.934
N = 100	Yes	-	-	-	-	2.749	2.512
N = 1,000	No	0.001	7.058	6.264	7.802	2.385	2.314
N = 1,000	Yes	-	-	-	-	1.176	1.747
N = 10,000	No	0.000	7.965	6.289	8.690	1.855	2.563
N = 10,000	Yes	-	-	-	-	1.112	0.892

Key Takeaways

- In the Bertrand simulations, we outperform the monopolist and perfect competition
 - Without the derivative matrix, performance holds roughly constant
 - Including the derivative matrix greatly improves performance
- In the profit weight simulations, we outperform all but the true model
 - Performance is expectedly not as good as in the baseline model
 - Our estimator scales better with sample size with the derivative matrix
- Larger neural networks improve learning in some cases
 - Performance is improved with sample size, especially for the profit weight model
 - Performance does not improve upon the addition of the derivative matrix
- The naive estimator underperforms the variational method of moments

Merger Simulation for Bertrand

Figure 1: Bertrand Merger Simulation

Model	MSE
Bertrand	0.00
Monopoly	26.26
Perf. Comp.	1.80
VMM	0.27
Naive	3.92

Merger Simulation for Profit Weight ($\theta = 0.75$)

Figure 2: Profit Weight Merger Simulation

Model	MSE
Bertrand	15.19
Monopoly	1.55
Perf. Comp.	3.57
VMM	0.24
Naive	23.79

Interpretation via Passthrough

- **Key question:** How do we interpret the flexible markup function?
- A useful object for comparison is the passthrough matrix
 - Increase costs c by 10%, loading increases on the residual $\hat{\omega}$
 - Solve for equilibrium prices under different models of conduct
- Compare post-merger prices for markets with median inside market share
 - This holds market structure constant across models

Bertrand Passthrough

Table 3: Bertrand Passthrough Comparison $c_1 = 15.85, c_2 = 12.54, s_1 = 0.54, s_2 = 0.15$

(a) True Model (Bertrand)		(b)	VMM
0.49	0.05	0.49	0.10
0.14	1 0.88	0.10	0.66

• The flexible model learns markup functions that imply correct passthroughs

Profit Weight ($\theta = 0.75$) Passthrough

Table 4: Profit Weight Passthrough Comparison
$$c_1 = 13.75$$
, $c_2 = 12.96$, $s_1 = 0.61$, $s_2 = 0.04$

(a) True Model (
$$\theta = 0.75$$
) (b) VMM $0.39 -0.44$ $0.40 -0.31$ $-0.00 0.97$ $-0.00 0.88$

• The flexible model learns markup functions that imply correct passthroughs

Inference

Table 5: Inference Comparison by Sample Size (Small Network)

Model	Sample Size	ψ	$\hat{\psi}$	Avg. $\hat{\sigma}/\sqrt{N}$	Min. $\hat{\sigma}/\sqrt{N}$	Max. $\hat{\sigma}/\sqrt{N}$	Interval
Baseline	N = 100 $N = 100$	21.014	19.566	3.654	0.870	6.315	[8.748, 30.385]
Complex		17.321	14.570	2.650	0.309	3.753	[6.726, 22.415]

• Intuitively: when predicting price at a particular market structure, uncertainty is (i) quantifiable, and (ii) reasonable already at a low sample size of N=100

Application

- Airline markets in the US have rich data from DB1B
 - Fares, passenger counts, distances, carrier identifiers, etc.
 - Origin and destinations of trips
- Rich data on competition for a long panel with several large mergers
- Difference-in-differences estimates to approximate unilateral price effects of mergers
 - Zoom in on markets that move from $3 \rightarrow 2$ firms post-merger
 - Treated markets are concentrated¹ markets in which both merging firms are present
- Nested logit demand, as usual for the airline industry
- Merger simulation focuses on American-US Airways merger
 - ullet Zoom in on markets that move from 3 o 2 firms post-merger
 - Condition on similar share of nonstop flights in the pre- and post-period

 $^{^{1}\}text{HHI} \in [1,000,1,800]$ with $\Delta \text{HHI} \geq 100$ or HHI > 1,800 with $\Delta \text{HHI} \geq 50$

Airline Concentration

Figure 4: HHI in the Airline Industry

Difference-in-Differences

Table 6: Difference-in-Differences Estimates

	DL-NW (1)	log(Fare) UA-CO (2)	AA-US (3)
Treated × Post	0.0108	-0.0401	0.0517**
	(0.0192)	(0.0283)	(0.0247)
Share Nonstop	-0.2389***	-0.2218***	-0.1424***
	(0.0197)	(0.0204)	(0.0186)
R^2	0.52375	0.53233	0.44646
Observations	15,536	12,849	22,389
Treated (%)	11.251	5.0120	5.4800
Origin-destination fixed effects	√	√	√
Year-quarter fixed effects	✓	✓	✓

Demand

Table 7: Demand Estimates

	$\log(s_{jt})$ - $\log(s_{0t})$
Average Fare	-0.0048***
	(0.0004)
$\log(S_t)$	0.8356***
	(0.0133)
Share Nonstop	0.4030***
	(0.0282)
Average Distance (1,000's)	-0.4881***
	(0.0498)
Average Distance ² (1,000's)	0.0485***
	(0.0045)
log(1 + Num. Fringe)	-0.2642***
	(0.0057)
R^2	0.94238
Observations	1,283,472
Own-price elasticity	-5.1652
Origin-destination fixed effects	✓

• Elasticities broadly in line with literature (e.g., Berry and Jia, 2010)

Fit: Pooled In-Sample and Out-of-Sample Results

Figure 5: Model Comparison

 \bullet Reduction of $\sim 40\%$ in passenger-weighted MSE relative to Bertrand with constant costs $_{32}$

Merger Simulation: Observed Price Changes

Figure 6: Price Change Distribution

ullet Price changes after the AA-US merger in 3 \rightarrow 2 markets with > 80% nonstop flights

Merger Simulation: Predicted Price Changes

Figure 7: Predicted Price Change Distribution

Merger Simulation: All Markets

Figure 8: Merger Simulation Comparison

Merger Simulation: Markets with Price Increases

Figure 9: Merger Simulation Comparison

Merger Simulation: Markets with Price Decreases

Figure 10: Merger Simulation Comparison

Easy to Use Framework

Figure 11: Using VMM

```
# Import VMM modules
from WM.experiment setups.inference experiment setups import *
from VMM. experiment setups estimation experiment setups import *
from VMM.utils.hyperparameter optimization import *
from VMM. scenarios, abstract parametric scenario import ParametricDataset
from WMM.scenarios.logit_scenario import EmpiricalLogitScenario
from VMM.scenarios import *
from VMM.predictor import *
# Import simulation modules
from Simulation.utils import *
from Simulation, simulate import *
from Simulation, mergers import *
from Simulation diagnostics import *
# Import libraries
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from sklearn, model selection import GroupShuffleSplit
import pandas as nd
import pickle
import random
# Load data
data = pd.read_csv("Data/data.csv")
# Set variables
exog = ['average distance thousands']
chars = ['share ponstop', 'average distance thousands squared']
ins = ['average_distance_rival', 'average_num_markets_rival', 'rival_carriers']
F = np.max(data.groupby('market ids')['firm ids'].nunique())
# Set up scenario
scenario = EmpiricalLogitScenario()
scenario setup(data, evoquevoq, charsuchars, insuins, FuF)
train = scenario.get dataset("train")
dev = scenario.get_dataset("dev")
test = scenario.get dataset("test")
# Fit model
n = len(np.unique(data.iloc[train.index].market ids))
predictor = get_estimator(scenario, train.z, n=n, use_gpu=True)
predictor.fit(x=train.x, z=train.z, m=data.iloc(train.index).market ids, x dev=dev.x, z dev=dev.z)
```

Conclusion

- We propose modern methodology to estimate flexible models of supply
 - Sidesteps the curse of dimensionality of nonparametric methods, avoids misspecification
 - Introduce tractable inference for multidimensional output
- Simulations show that the flexible method outperforms misspecified models
 - Performs well in-sample and for ex ante post-merger predictions
- We take the model to the data in the airline industry
 - Evaluate the American-US Airways merger using
 - Outperform the original merger simulation toolkit

Table 8: Model Comparison (Bertrand, Large Network)

Sample Size	Derivatives	ω	ω^B	ω^{M}	ω^P	$\hat{\omega}$	ŵΝ
N = 100	No	0.005	0.005	583.409	6.518	2.127	0.848
N = 100	Yes	-	-	-	-	1.234	1.259
N = 1,000	No	0.001	0.001	979.962	5.977	0.645	0.802
N = 1,000	Yes	-	-	-	-	0.690	0.791
N = 10,000	No	0.000	0.000	1693.914	6.317	0.352	0.875
N = 10,000	Yes	-	-	-	-	0.506	0.875

Table 9: Model Comparison (Profit Weight, Large Network)

Sample Size	Derivatives	ω	ω^B	ω^{M}	ω^P	$\hat{\omega}$	ŵΝ
N = 100	No	0.005	8.765	5.077	11.474	1.359	1.847
N = 100	Yes	-	-	-	-	2.381	2.233
N = 1,000	No	0.001	7.058	6.264	7.802	1.213	0.812
N = 1,000	Yes	-	-	-	-	0.814	0.820
N = 10,000	No	0.000	7.965	6.289	8.690	0.324	0.887
N = 10,000	Yes	-	-	-	-	0.301	0.892