Left – tailed test

$$H_0: p = p_0$$
 vs. $H_1: p < p_0$

If H_0 is TRUE:

Use p_0 .

Reject H ₀	Do NOT Reject H ₀	
Type I Error	Correct decision	
0 0	I	ľ

Rejection Rule for a Left – tailed test:

Find
$$a$$
 such that $P(X \le a) = CDF @ a \approx \alpha$.

(using Binomial (n, p_0))

Then the Rejection Rule is "Reject H_0 if $X \le a$."

If Rejection Rule is "Reject H_0 if $X \le a$,"

$$P(\text{Type I error}) = P(\text{Reject H}_0 \mid \text{H}_0 \text{ true}) = P(X \le a \mid p = p_0)$$

$$= \text{CDF } @ a \qquad \qquad \text{(using Binomial } (n, p_0))$$

If H_0 is FALSE:

Use new (given) p.

Reject H ₀		Do NOT Reject H ₀
Correct decision Power		Type II Error
0	\overline{a} a	+ 1 n

Power = P(Reject
$$H_0$$
) = P($X \le a$) = CDF @ a

(using Binomial (n, new p))

p-value = P(value of X as extreme or more extreme than $X = x_{observed} \mid H_0$ true) = P($X \le x_{observed} \mid p = p_0$) = CDF @ $x_{observed}$ (using Binomial (n, p_0))

Right – tailed test

$$H_0: p = p_0$$
 vs. $H_1: p > p_0$

If H_0 is TRUE:

Use p_0 .

Do NOT Reject H ₀			Reject H ₀
Correct decision		ı	Type I Error
0	b-1	b	n

Rejection Rule for a Right – tailed test:

Find
$$b$$
 such that $P(X \le b - 1) = CDF @ (b - 1) \approx 1 - \alpha$. (using Binomial (n, p_0))

(Then $P(X \ge b) \approx \alpha$.)

Then the Rejection Rule is "Reject H_0 if $X \ge b$."

If Rejection Rule is "Reject H_0 if $X \ge b$,"

$$P(\text{Type I error}) = P(\text{Reject H}_0 \mid \text{H}_0 \text{ true}) = P(X \ge b \mid p = p_0)$$

$$= (1 - \text{CDF } @ b - 1) \qquad \text{(using Binomial } (n, p_0))$$

If H₀ is FALSE:

Use new (given) p.

Do NOT Reject ${ m H}_{0}$		Reject H ₀
Type II Error		Correct decision Power
0	b-1	b n

Power = P(Reject H_0) = P($X \ge b$) = (1 - CDF @ (b-1)) (using Binomial (n, new p))

p-value = P(value of X as extreme or more extreme than
$$X = x_{observed} \mid H_0$$
 true)
= P($X \ge x_{observed} \mid p = p_0$) = $(1 - CDF @ (x_{observed} - 1))$ (using Binomial (n, p_0))

Two – tailed test

$$H_0: p = p_0$$
 vs. $H_1: p \neq p_0$

If H_0 is TRUE:

Use p_0 .

Reject H ₀		Do NOT Reject \rmH_{0}			Reject H ₀
Type I Error		Correct decision			Type I Error
α_{2}	a a -	h 1	1	h	$\alpha_{/2}$

Rejection Rule for a Two – tailed test:

Find
$$a$$
 such that $P(X \le a) = CDF @ a \approx \frac{\alpha}{2}$. (using Binomial (n, p_0))

Find b such that $P(X \le b - 1) = CDF @ (b - 1) \approx 1 - \frac{\alpha}{2}$. (Then $P(X \ge b) \approx \frac{\alpha}{2}$.)

(If $p = 0.50$, then $b = n - a$.)

Then the Rejection Rule is "Reject H_0 if $X \le a$ or $X \ge b$."

If Rejection Rule is "Reject H_0 if $X \le a$ or $X \ge b$,"

$$P(\text{Type I error}) = P(\text{Reject H}_0 \mid \text{H}_0 \text{ true}) = P(X \le a \text{ or } X \ge b \mid p = p_0)$$

$$= \text{CDF } @ a + (1 - \text{CDF } @ (b - 1)) \qquad \text{(using Binomial } (n, p_0))$$

If H_0 is FALSE:

Use new (given) p.

	Reject H ₀		Do NOT Reject ${ m H}_0$			Reject H ₀
	Correct decision Power		Type II Error		I	Correct decision Power
0	C	a^{-1}	+1 <i>b</i>	<u>-</u> 1	b	n

$$H_0: p = \frac{1}{2}$$
 vs. $H_1: p \neq \frac{1}{2}$

If x_{observed} is the left tail (i.e., if $x_{\text{observed}} < n \cdot \frac{1}{2}$),

p-value = P(value of X as extreme or more extreme than
$$X = x_{observed} \mid H_0$$
 true)
$$= 2 \cdot P(X \le x_{observed} \mid p = \frac{1}{2}) \qquad \text{(since it is a two-tail test)}$$

$$= 2 \cdot CDF @ x_{observed} \qquad \text{(using Binomial}(n, \frac{1}{2}))$$

If x_{observed} is the right tail (i.e., if $x_{\text{observed}} > n \cdot \frac{1}{2}$),

p-value = P(value of X as extreme or more extreme than
$$X = x_{observed} \mid H_0$$
 true)
= $2 \cdot P(X \ge x_{observed} \mid p = \frac{1}{2})$ (since it is a two-tail test)
= $2 \cdot (1 - CDF @ (x_{observed} - 1))$ (using Binomial $(n, \frac{1}{2})$)

If
$$x_{\text{observed}} = n \cdot \frac{1}{2}$$
,

p-value = P(value of X as extreme or more extreme than $X = x_{observed} \mid H_0$ true) = 1.