Question Number	Schem	ne	Marks
1.(a)	Let X be the random variable the number of he $X \sim \text{Bin } (4, 0.5)$	eads.	
	$P(X=2) = C_2^4 \cdot 0.5^2 \cdot 0.5^2$	Use of Binomial including "Cr	M1
	=0.375	or equivalent	A1 (2)
(b)	P(X = 4) or P(X = 0)		B1
	$=2\times0.5^4$	$(0.5)^4$	M1
	= 0.125	or equivalent	A1 (3)
(c)	$P(HHT) = 0.5^3$	no ^{n}Cr	M1
	= 0.125	or equivalent	A1
	or		(2)
	P(HHTT) + P (HHTH) = 2×0.5^4 = 0.125		Total 7 marks
	1a) 2,4,6 acceptable as use of binomial.		Total / marks

Question Number	Scheme		Marks
2.(a)	Let X be the random variable the no. of accidents per week		
	X ~Po(1.5)	need poisson and must be in part (a)	B1 (1)
(b)	$P(X=2) = \frac{e^{-1.5}1.5^2}{2}$	$\frac{e^{\mu}\mu^2}{2} \text{ or } P(X \le 2) - P(X \le 1)$	M1
	= 0.2510	awrt 0.251	A1 (2)
(c)	$P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-1.5}$	correct exp awrt 0.777	B1
	= 0.7769		
	P(at least 1 accident per week for 3 weeks)		
	$=0.7769^3$	$(p)^3$	M1
	= 0.4689	awrt 0.469	A1 (3)
(d)	$X \sim Po(3)$	may be implied	B1
	$P(X > 4) = 1 - P(X \le 4)$		M1
	= 0.1847	awrt 0.1847	A1 (3)
			Total 9 marks
	c) The 0.7769 may be implied		

Question Number	Scheme	Marks
4.	$X = Po (150 \times 0.02) = Po (3)$ po,3	B1,B1(dep)
	$P(X > 7) = 1 - P(X \le 7)$	M1
	= 0.0119 awrt 0.0119	A1
	Use of normal approximation max awards B0 B0 M1 A0 in the use 1- p($x < 7.5$) $z = \frac{7.5 - 3}{\sqrt{2.94}} = 2.62$ $p(x > 7) = 1 - p(x < 7.5)$ $= 1 - 0.9953$ $= 0.0047$	Total 4 marks
5.(a)	$\int_{2}^{3} kx(x-2)dx = 1$ $\left[\frac{1}{3}kx^{3} - kx^{2}\right]_{2}^{3} = 1$ attempt \int need either x^{3} or x^{2}	M1
		M1
	$\operatorname{correct} \int (9k - 9k) - (\frac{8k}{3} - 4k) - 1$	A1
	$(9k-9k) - (\frac{8k}{3} - 4k) = 1$ $k = \frac{3}{4} = 0.75$ * cso	A1 (4)

Question Number	Scheme		Marks	
(b)	$E(X) = \int_2^3 \frac{3}{4} x^2 (x - 2) dx$ attempt $\int x^2 dx$		M1	
	$= \left[\frac{3}{16} x^4 - \frac{1}{2} x^3 \right]_2^3$ corre	ect ∫	A1	
	$= 2.6875 = 2\frac{11}{16} = 2.69 \text{ (3sf)}$ awr	t 2.69	A1	(3)
(c)	$F(x) = \int_{2}^{x} \frac{3}{4} (t^{2} - 2t) dt$	or +C	M1	
	$= \left[\frac{3}{4} \left(\frac{1}{3} t^3 - t^2 \right) \right]_2^x$ correct in	ntegral	A1	
	lower limit of 2 or $F(2) = 0$ or $F(3) = 0$	f(3) = 1	A1	
	$=\frac{1}{4}(x^3-3x^2+4)$		A1	
	$F(x) = \frac{1}{4}(x^3 - 3x^2 + 4) \qquad x \le 2$ $1 \qquad x \le 3 \qquad \text{middle},$, ends	B1√,B1	(6)
(d)	$F(x) = \frac{1}{2}$ $\frac{1}{4}(x^3 - 3x^2 + 4) = \frac{1}{2}$ their F(x) =		M1	
	$x^{3} - 3x^{2} + 2 = 0$ $x = 2.75, x^{3} - 3x^{2} + 2 > 0$ $x = 2.70, x^{3} - 3x^{2} + 2 < 0 \Rightarrow \text{root between } 2.70 \text{ and } 2.75$		M1	(2)
	(or F(2.7)=0.453, F(2.75)=0.527 \Rightarrow median between 2.70 an	d 2.75	Total 15 ma	arks

6.(a)	$\begin{array}{ c c c c c c }\hline X & 1 & 2 & 5 \\\hline P(X=x) & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\\hline \end{array}$	
	Mean = $1 \times \frac{1}{2} + 2 \times \frac{1}{3} + 5 \times \frac{1}{6} = 2$ or 0.02 $\sum x \cdot p(x)$ need $\frac{1}{2}$ and $\frac{1}{3}$	M1A1
	Variance== $1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{3} + 5^2 \times \frac{1}{6} - 2^2 = 2$ or 0.0002	M1A1
(b)	$\sum x^2 \cdot p(x) - \lambda^2$	(4)
	(1,1) (1,2) and (2,1) (1,5) and (5,1) LHS -1	B2 B1
	e.e. (2,2) (2,5) and (5,2) repeat of "theirs" on RHS	(3) B1
	(5,5)	
(c)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1A1
	1.5+,-1ee	M1A2 (6)
		Total 13 marks
	Two tail	

7.(a)(i)	$H_0: p = 0.2, H_1: p \neq 0.2$ $p =$	B1B1
	$P(X \ge 9) = 1 - P(X \le 8)$ or attempt critical value/region	M1
	$= 1 - 0.9900 = 0.01 \qquad \text{CR } X \ge 9$	
	$0.01 < 0.025 \text{ or } 9 \ge 9 \text{ or } 0.99 > 0.975 \text{ or } 0.02 < 0.05 \text{ or lies in interval with}$	A1
	correct interval stated. Evidence that the percentage of pupils that read Deano is not 20%	A1
(ii)	$X \sim Bin (20, 0.2)$ may be implied or seen in (i) or (ii)	B1
	So 0 or [9,20] make test significant. 0,9,between "their 9" and 20	B1B1B1 (9)
(b)	$H_0: p = 0.2, H_1: p \neq 0.2$	B1
	$W \sim \text{Bin} (100, 0.2)$	
	$W \sim N (20, 16)$ normal; 20 and 16	B1; B1
	$P(X \le 18) = P(Z \le \frac{18.5 - 20}{4}) \text{or} \frac{x(+\frac{1}{2}) - 20}{4} = \pm 1.96 \pm \text{ cc, standardise}$ $= P(Z \le -0.375)$ or use z value, standardise	M1M1A1
	$= 0.352 - 0.354 \qquad \text{CR } X < 12.16 \text{ or } 11.66 \text{ for } \frac{1}{2}$	A1
	$[0.352 > 0.025 \text{ or } 18 > 12.16 \text{ therefore insufficient evidence to reject } H_0]$	
	Combined numbers of Deano readers suggests 20% of pupils read Deano	A1 (8)
(c)	Conclusion that they are different.	B1
(c)	Either large sample size gives better result	
	Or Looks as though they are not all drawn from the same population.	B1 (2)
		Total 19 marks
	One tail	
7(a)(i)	$H_0: p = 0.2, H_1: p > 0.2$	B1B0

		1
	$P(X \ge 9) = 1 - P(X \le 8)$ or attempt critical value/region	M1
	$= 1 - 0.9900 = 0.01 \qquad \text{CR } X \ge 8$	A0
	$0.01 < 0.05$ or $9 \ge 8$ (therefore Reject H_0 ,)evidence that the percentage of pupils that read Deano is not 20%	A1
(;;)	$X \sim Bin (20, 0.2)$ may be implied or seen in (i) or (ii)	B1
(ii)	So 0 or [8,20] make test significant. 0,9,between "their 8" and 20	B1B0B1
(b)	$H_0: p = 0.2, H_1: p < 0.2$ $W \sim Bin (100, 0.2)$	B1 √
	$W \sim \text{Bill (100, 0.2)}$ $W \sim \text{N (20, 16)}$ normal; 20 and 16	B1; B1
	$P(X \le 18) = P(Z \le \frac{18.5 - 20}{4}) \text{or} \frac{x - 20}{4} = -1.6449 \qquad \pm \text{ cc, standardise}$ or standardise, use z value	M1M1A1
	$=P(Z \le -0.375)$	
	= 0.3520 CR X < 13.4 or 12.9 awrt 0.352	A1
	$[0.352 > 0.05 \text{ or } 18 > 13.4 \text{ therefore insufficient evidence to reject } H_0]$	
	Combined numbers of Deano readers suggests 20% of pupils read Deano	A1 (8)
(c)	Conclusion that they are different.	B1
	Either large sample size gives better result Or Looks as though they are not all drawn from the same population.	B1 (2)
		Total 19 marks