

Universidade Federal da Fronteira Sul Curso de Ciência da Computação **UFFS** Campus Chapecó

Finite State Machines Máquinas de Estados **Finitos**

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

Máquinas de Estado Finitos

- ✓ Podem ser síncronas (cadenciadas por um sinal monótono chamado relógio ou clock) ou assíncronas (sem relógio).
- ✓ Máquina Sequenciais Síncronas são mais utilizadas porque:
 - São mais fáceis de projetar e de validar.
 - Têm operação mais segura, são mais robustas.
- ✓ Há dois modelos: Moore e Mealy.
- ✓ Registradores podem ser vistos como Máquina Sequenciais Síncronas.

Formato geral

Máquinas de Estado Finitos

- ✓ Nome dado ao modelo genérico (abstrato) de circuitos sequenciais.
- ✓ Em inglês FSMs: Finite State Machines.
- ✓ O comportamento depende das entradas e do estado em que o circuito se encontra ("estado corrente" ou "estado atual").
- ✓ O estado corresponde ao valor de um conjunto de variáveis binárias denominadas variáveis de estado.
- ✓ As variáveis de estado ficam armazenadas no registrador de estado.
- ✓ Dado um estado atual e uma combinação de valores de entrada (vetor de entrada), a FSM calcula os valores das saídas (vetor de saída) e o próximo estado.

Modelo de Moore

✓ Característica principal: as saídas dependem apenas do estado atual.

Modelo de Mealy

✓ Característica principal: as saídas dependem do estado atual e de entrada(s) primária(s).

- Síntese de Circuitos Sequenciais Roteiro para síntese (= projeto)
- 1. Determinar quantos estados são necessários (e o nro de variáveis de estado)
- 2. Construir o diagrama de estados, observando com cuidado o comportamento solicitado para a FSM e adotando um modelo de FSM (Moore ou Mealy):
 - Determinar as transições entre estados necessárias Escolher um estado inicial
- 3. Construir a tabela de próximo estado e a tabela das saídas
- 4. Sintetizar (projetar) os circuitos combinacionais: lógica de próximo estado e lógica de saída.

UFFS

Síntese de Circuitos Sequenciais UFFS

Exemplo: Projete um circuito que satisfaça às seguintes especificações:

- 1.0 circuito possui uma entrada, w, e uma saída, z.
- 2.Todas as mudanças de valores no circuito ocorrem na borda de subida do sinal de relógio.
- 3.Quando o circuito detectar que a entrada w vale "0", a saída z deve valer "0". Porém, quando o circuito detectar que a entrada w vale "1" durante duas bordas de relógio consecutivas, a saída z deve passar a valer "1". As mudanças de z estão sincronizadas com a borda de relógio ativa.

Síntese de Circuitos Sequenciais UFFS

Diagrama de estados

Tabelas de transição de estado e de saída

estado atual	W	próximo estado
Α	0	Α
Α	1	В
В	0	Α
В	1	С
С	0	Α
С	1	С

Síntese de Circuitos Sequenciais UFFS

Diagrama de Blocos

Sinais de entrada: w

Sinais de saída: z

Número de estados: 3

⇒ Logo, são necessário2 FF para armazenaras variáveis de estado

Codificação de Estados

Supondo a seguinte codificação: A=00, B=01, C=10

estado atual	W	próximo estado
Α	0	Α
Α	1	В
В	0	Α
В	1	С
С	0	Α
С	1	С

	estado atual	W	próximo estado	
A	00	0	00	Α
A	00	1	01	В
В	01	0	00	Α
В	01	1	10	С
С	10	0	00	Α
С	10	1	10	С
_	11	0	XX	_

Projetando a lógica de próximo estado

y1y0	W	Y1Y0
00	0	00
00	1	01
01	0	00
01	1	10
10	0	00
10	1	10
11	0	XX
11	1	XX

Y1)		y0		у	0
	<u>y1</u>	0	0	1	0
	y1	0	1	X	x
		W	V	V	W
Y0)			y 0		y 0
Y0)		0	y0 1	0	y0 0
Y0)	 y1 y1				

Projetando a lógica de saída

	y1y0	Z
A	00	0
В	01	0
С	10	1
	11	X

$$z = y1$$

z)		<u>y0</u>	y0
	y1	0	0
	y1	1	X

Síntese de Circuitos Sequenciais UFFS

Circuito Final

- Síntese de Circuitos Sequenciais Roteiro Revisitado para a Síntese (= Projeto)
- 1. Determinar quantos estados são necessários (e o nro de variáveis de estado)
- 2. Construir o diagrama de estados, observando com cuidado o comportamento solicitado para a FSM e adotando um modelo de FSM (Moore ou Mealy):
 - Determinar as transições entre estados necessárias
 - Selecionar um estado para servir como estado inicial
- 3. Construir a tabela de próximo estado e das saídas
- 4. Escolher uma codificação para os estados e definir o tipo de flip-flops para compor o registrador de estados.
- 5. Sintetizar (projetar) os circuitos combinacionais: lógica de próximo estado e lógica de saída.

Exemplo de FSM em VHDL

```
LIBRARY ieee:
   USE ieee.std logic 1164.all;
   ENTITY contabits 1 IS
     PORT ( Clock, Reset, w : IN STD LOGIC ;
                          : OUT STD LOGIC);
   END contabits1;
   ARCHITECTURE Behavior OF contabits1 IS
        TYPE Tipo estado IS (A, B, C);
        SIGNAL y : Tipo estado ;
    BEGIN
        PROCESS (Reset, Clock)
        BEGIN
12
         IF Reset = '1' THEN
13
14
            y \leq A;
         ELSIF (Clock'EVENT AND Clock = '1') THEN
15
16
              CASE y IS
17
                  WHEN A = >
18
                       IF w = '0' THEN
19
                          V \leq A;
20
                       ELSE
21
                          V \leq B;
<del>22</del>
```

FSM descrita segundo o Modelo de Moore, Versão 1 (somente 1 processo)

"TYPE" permite criar um tipo de sinal definido pelo usuário.

Neste caso, se está definindo um dado chamado State_type que pode assumir um entre 3 valores simbólicos: A, B, C

O sinal y representa as saídas dos flip-flops que armazenam os estados desta FSM.

END | FFS - Universidade Federal da Fronteira Sul - Sistemas Digitais

Exemplo de FSM em VHDL

```
WHEN A =>
17
23
                 WHEN B =>
24
                       IF w = '0' THEN
25
                         V \leq A;
26
                       ELSE
27
                         y \leq C;
28
                       END IF:
29
                 WHEN C =>
30
                      IF w = '0' THEN
31
                         V \leq A;
32
                       ELSE
33
                         V \leq C;
34
                       END IF:
35
                END CASE:
36
             END IF:
37
          END PROCESS:
38
       z \le 1' WHEN y = C ELSE '0';
39 END Behavior:
```


Pode-se utilizar um processo apenas para implementar a lógica de saída

```
PROCESS ( y )

BEGIN

z <= '1' WHEN y = C ELSE '0';

END PROCESS;
```

39 END Behavior:

Exemplo de FSM em VHDL


```
UFFS
```

```
ARCHITECTURE Behavior OF contabits 1 IS
    TYPE Tipo estado IS (A, B, C);
    SIGNAL y atual, y prox : Tipo estado ;
                                              FSM descrita segundo o Modelo
BEGIN
                                              de Moore, Versão 2 (2 processos)
    PROCESS (w, y atual)
    BEGIN
       CASE y atual IS
                                              Em termos da notação que usamos:
          WHFN A = >
                                                   y atual \rightarrow y (estado atual)
              IF w = '0' THEN
                y prox \leq A;
                                                   y_prox → Y (próximo estado)
              ELSE
                y prox \leq B;
                                                                      y atual
                                                            y_prox
              END IF:
          WHFN B =>
              IF w = '0' THEN
               y prox \leq A;
                                                   lógica de
                                                                             lógica
              ELSE
                                                   próximo
                                                                              de
                                                    estado
               y prox \leq C;
                                                                             saída
                                                            Y1
              END IF;
          WHEN C = >
              IF w = '0' THEN
                y prox \leq A;
              ELSE
                                          ck
                y prox \leq C;
                                        Reset
              END IF:
         END CASE;
      END PROCESS:
```

UFFS - Universidade Federal da Fronteira Sul - Sistemas Digitais

FSM descrita segundo o Modelo de Moore, Versão 2 (2 processos)

UFFS - Universidade Federal da Fronteira Sul - Sistemas Digitais

Exercício

Construir uma FSM que implementa um contador crescente/decrescente de módulo 5. O circuito possui uma entrada S (sentido) que indica se a contagem é crescente (S=0) ou decrescente (S=1). As saídas são 3 bits com o valor da contagem.

Síntese de Circuitos Sequenciais UFFS

Exemplo: Projete um circuito que satisfaça às seguintes especificações:

- 1.0 circuito possui uma entrada, w, e uma saída, z.
- 2.Todas as mudanças de valores no circuito ocorrem na borda de subida do sinal de relógio.
- 3.Quando o circuito detectar que a entrada w vale "0", a saída z deve valer "0" no ciclo de relógio seguinte. Porém, quando o circuito detectar que a entrada w vale "1" durante duas bordas de relógio consecutivas, a saída z deve passar a valer "1" no ciclo de relógio seguinte. As mudanças de z estão sincronizadas com a borda de relógio ativa.

Considere a seguinte modificação da especificação acima:

- ✓O sinal de saída z não precisa esperar que um segundo valor igual a "1" seja amostrado da entrada w.
- ✓ Porém, se z = 1 e w muda de "1" para "0", z deve também mudar para "0", independentemente da borda ativa do relógio

Exemplo (mealy)

Considere a seguinte modificação da especificação acima:

- ✓ O sinal de saída z não precisa esperar que um segundo valor igual a "1" seja amostrado da entrada w.
- ✓ Porém, se z = 1 e w muda de "1" para "0", z deve também mudar para "0", independentemente da borda ativa do relógio

UFFS – Universidade Federal da Fronteira Sul – Sistemas Digitais

Exemplo (mealy)

Interpretação do Diagrama de Estados:

- ✓ Durante o ciclo de relógio atual, o valor da saída z corresponde ao rótulo assinalado em alguma das arestas que partem do estado atual.
- ✓ No caso do estado B, por exemplo, z pode valer "0" ou valer "1", conforme for o valor de w. Isto implica que z pode mudar de valor antes que a máquina de estados mude de estado.

Exemplo (mealy)

Tabelas de transição de estado e de saída

estado atual	W	próximo estado
Α	0	Α
A	1	В
В	0	Α
В	1	В

estado	W	Z
Α	0	0
Α	1	0
В	0	0
В	1	1

Exemplo (mealy)

Utilizando um bit para codificar o estado

estado atual	у	w	Υ	próximo estado
Α	0	0	0	Α
Α	0	1	1	В
В	1	0	0	Α
В	1	1	1	В
V =	17	147	+ 1/	141 = 141

estado	у	W	Z
Α	0	0	0
Α	0	1	0
В	1	0	0
В	1	1	1
7 = 1	, 1	ΛŽ	

Exemplo (mealy)

Circuito Final

Comparando Moore e Mealy

Comparando Moore e Mealy

Porém, se passarmos a saída z por um segundo flipflop, filtraremos o comportamento assíncrono. De fato, estaremos transformando o circuito para o Modelo de Moore...

Comparando Moore e Mealy

UFFS – Universidade Federal da Fronteira Sul – Sistemas Digitais

t7 t8 t9

Mealy transf. em Moore

Moore


```
ENTITY contabits 2 IS
PORT (Clock, Reset, w: IN STD LOGIC;
                      : OUT STD LOGIC);
END contabits2:
ARCHITECTURE Behavior OF contabits 2 IS
TYPE Tipo estado IS (A, B);
SIGNAL y : Tipo estado;
BEGIN
PROCESS (Reset, Clock)
BEGIN
 IF Reset = '1' THEN
    V \leq A;
 ELSIF (Clock'EVENT AND Clock = '1') THEN
    CASE v IS
     WHEN A = >
      IF w = '0' THEN y \le A;
      ELSE v \le B:
      END IF;
     WHEN B =>
      IF w = '0' THEN y \le A;
      ELSE y \le B;
      END IF:
    END CASE:
 END IF;
END PROCESS;
```

FSM descrita segundo o Modelo de Mealy (2 processos)

FSM descrita segundo o Modelo de Mealy (2 processos)

