

Master 1 Informatique – ENSICAEN 2A Module « Apprentissage »

TD numéro 2 Correction

Apprentissage non supervisé - Clustering

1 Classification Ascendante Hiérarchique

On dispose d'un ensemble $\mathcal{X}=\{x_1,\cdots,x_7\}$ ainsi qu'une mesure d définie sur l'ensemble des couples de \mathcal{X} , dont les valeurs sont précisées sur le tableau ci-dessous.

d	x_1	x_2	x_3	x_4	x_5	x_6	x_7
x_1	0	2	4.5	5.5	7.5	9.5	4
x_2	2	0	2.5	3.5	5.5	7.5	4
x_3	4.5	2.5	0	3	5	7	6.5
x_4	5.5	3.5	3	0	2	4	7.5
x_5	7.5	5.5	5	2	0	4	9.5
x_6	9.5	7.5	7	4	4	0	5.5
x_7	4	4	6.5	7.5	9.5	5.5	0

1. La mesure d est-elle une distance métrique ? Pour être une métrique la distance doit respecter :

$$d(x,y) = 0 \Leftrightarrow x = y$$
 séparation (1)

$$d(x,y) = d(y,x)$$
 symmétrique (2)

$$d(x,y) \le d(x,z) + d(z,y)$$
 inégalité triangulaire (3)

$$d(x,y) \ge 0$$
 positivité (4)

C'est bien le cas, par exemple : $d(x_5, x_7) = 9.5 \le d(x_5, x_2) + d(x_2, x_7) = 5.5 + 4 = 9.5$

2. Construisez et représentez graphiquement la hiérarchie obtenue par une CAH avec complete linkage (agrégation du lien maximum).

	u	Olusicis
	0	${x_1}{x_2}{x_3}{x_4}{x_5}{x_5}{x_6}{x_7}$
	2	${x_1, x_2}{x_3}{x_4}{x_5}{x_5}{x_6}{x_7}$
	2	${x_1, x_2}{x_3}{x_4, x_5}{x_6}{x_7}$
•	4	${x_1, x_2, x_7}{x_3}{x_4, x_5}{x_6}$
	4	${x_1, x_2, x_7}{x_3}{x_4, x_5, x_6}$
	6.5	${x_1, x_2, x_7, x_3}{x_4, x_5, x_6}$
	9.5	$\{x_1, x_2, x_7, x_3, x_4, x_5, x_6\}$

La mise à jour de la matrice avec le lien maximal :

Les étapes de la fusion

d	$\{x$	$\{x_1, x_2\}$	x_3	x_4	x_5	x_6	x_7							_		
$\{x_1, x_2\}$	(0	4.5	5.5	7.5	9.5	4	-	d	$\{x$	$_{1},x_{2}\}$	x_3	$\{x_4, x_4, x_4, x_5, x_6, x_6, x_6, x_6, x_6, x_6, x_6, x_6$	5}	x_6	x_7
1	(**17 ** 2)						6.5		$\{x_1, x_2\}$		0	4.5	7.5		9.5	4
x_3	x_3		0	3	5 7		7.5		x_3			0	5		7	6.5
x_4				0		2 4			$\{x_4, x_5\}$			0		4	9.5	
x_5					0	4	9.5	5	1						0	5.5
x_6						0	5.5	5	x_6						U	
x_7							0	\dashv	x_7							0
					1 ()	<u> </u>	_	1							
d		$\{x_1, x_2, x_7\}$		x_3	$\{x_4, x_5\}$		x_{ϵ}		d		$\{x_1, x$	$\{x_2, x_7\}$	x_3	{ χ	$x_4, x_5,$	x_e }
$ \{x_1, x_2, x\} $	7}	0		6.5	5	9.5		5	$\{x_1, x_2, x_7\}$		0		6.5		9.5	~0)
x_3				0	5		7								7	
$\{x_4, x_5\}$	ļ					0			x_3				0			
									$\{x_4, x_5, x_6\}$						0	
x_6							0									
$d \{x_1, x_2, x_7, x_3\}$			} { <i>a</i>	$x_4, x_5,$	x_6											
$[x_1, x_2, x_7, x_3]$			9.5													
$\{x_4, x_5, x_6\}$			0													

3. Donnez la partition en 3 classes obtenue par la hiérarchie.

2 K-moyennes

On dispose d'un ensemble de points 2D $\mathcal{X}=\{x_1,\cdots,x_8\}$ que l'on souhaite regrouper en 3 clusters à l'aide de la méthode des k-moyennes. Les exemples sont $x_1=(2,10)$, $x_2=(2,5)$, $x_3=(8,4)$, $x_4=(5,8)$, $x_5=(7,5)$, $x_6=(6,4)$, $x_7=(1,2)$, $x_8=(4,9)$, On utilise la distance Euclidienne pour et cela donne la matrice ci-dessous des distances (non remplie sous la diagonale) :

On suppose que les centres initiaux sont x_1 , x_4 et x_7 et nommés S_1 , S_2 , et S_3 . Faites une itération de l'algorithme des k-moyennes. À chaque itération vous spécifierez :

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
x_2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
x_3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
x_4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
x_5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{35}$
x_6							$\sqrt{29}$	$\sqrt{29}$
x_7							0	$\sqrt{58}$
x_8								0

- 1. Les exemples affectés à chaque cluster,
- 2. Les centres des clusters,
- 3. L'inertie intra cluster,
- 4. Les exemples et clusters sur une grille 10×10 .

Combien faut-il d'itérations pour que l'algorithme converge ? L'inertie intra-cluster diminue-t-elle ? On utilise la distance Euclidienne $\|x-y\|_2 = \left(\sum_{i=1}^d |x_i-y_i|^2\right)^{1/2}$ donnée par la matrice.

Itération 1:

 x_1 : C'est le centre C_1 , $\Rightarrow x_1 \in C_1$

 x_2

$$d(x_2,S_1)=d(x_2,x_1)=\sqrt{25}=5$$

$$d(x_2,S_2)=d(x_2,x_4)=\sqrt{18}=4.24$$

$$d(x_2,S_3)=d(x_2,x_7)=\sqrt{10}=3.16 \leadsto \text{le plus petit} \Rightarrow x_2 \in C_3$$

 x_3 :

$$d(x_3,S_1) = d(x_3,x_1) = \sqrt{36} = 6$$

$$d(x_3,S_2) = d(x_3,x_4) = \sqrt{25} = 5 \implies \text{le plus petit} \implies x_3 \in C_2$$

$$d(x_3,S_3) = d(x_3,x_7) = \sqrt{53} = 7.28$$

 x_4 : C'est le centre C_2 , $\Rightarrow x_4 \in C_2$

 x_5 :

$$d(x_5,S_1)=d(x_5,x_1)=\sqrt{50}=7.07$$

$$d(x_5,S_2)=d(x_5,x_4)=\sqrt{13}=3.60 \leadsto \text{le plus petit} \Rightarrow x_5 \in C_2$$

$$d(x_5,S_3)=d(x_5,x_7)=\sqrt{45}=6.70$$

 x_6 :

$$d(x_6,S_1)=d(x_6,x_1)=\sqrt{52}=7.21$$

$$d(x_6,S_2)=d(x_6,x_4)=\sqrt{17}=4.12 \leadsto \text{le plus petit} \Rightarrow x_6 \in C_2$$

$$d(x_6,S_3)=d(x_6,x_7)=\sqrt{29}=5.38$$

 x_7 : C'est le centre C_3 , $\Rightarrow x_7 \in C_3$

 x_8 :

$$d(x_8, S_1) = d(x_8, x_1) = \sqrt{5}$$
 $d(x_8, S_2) = d(x_8, x_4) = \sqrt{2} \leadsto \text{le plus petit} \Rightarrow x_8 \in C_2$ $d(x_8, S_3) = d(x_8, x_7) = \sqrt{58}$

Les clusters sont $C_1 = \{x_1\}, C_2 = \{x_3, x_4, x_5, x_6, x_8\}, C_3 = \{x_2, x_7\}.$

Les nouveaux centres des clusters sont :

$$S_1 = x_1 = (2, 10)$$

$$S_2 = ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6,6)$$

$$S_3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)$$

L'inertie Intra-cluster est $J_w = \sum_{k=1}^K \sum_{x \in C_k} d^2(x, \mu_k)$.

$$J_w = 0 + \left[(8-6)^2 + (4-6)^2 + (5-6)^2 + (8-6)^2 + (7-6)^2 + (5-6)^2 + (6-6)^2 + (4-6)^2 + (4-6)^2 + (4-6)^2 + (4-6)^2 + (5-6)^2 + ($$

Itération 2:

Les clusters sont $C_1 = \{x_1, x_8\}, C_2 = \{x_3, x_4, x_5, x_6\}, C_3 = \{x_2, x_7\}.$

Les nouveaux centres des clusters sont :

$$S_1 = ((2+4)/2, (10+9)/2) = (3, 9.5)$$

$$S_2 = ((8+5+7+6)/4, (4+8+5+4)/4) = (6.5, 5.25)$$

$$S_3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)$$

L'inertie Intra-cluster est $J_w = [(2-3)^2 + (10-9.5)^2 + (4-3)^2 + (9-9.5)^2] + [(8-6.5)^2 + (4-5.25)^2 + (5-6.5)^2 + (8-5.25)^2 + (7-6.5)^2 + (5-5.25)^2 + (6-6.5)^2 + (4-5.25)^2] + [(2-1.5)^2 + (5-3.5)^2 + (1-1.5)^2 + (2-3.5)^2] = 2.5 + 15.75 + 5 = 23.25$

Itération 3:

Les clusters sont $C_1 = \{x_1, x_4, x_8\}, C_2 = \{x_3, x_5, x_6\}, C_3 = \{x_2, x_7\}.$

Les nouveaux centres des clusters sont :

$$S_1 = ((2+5+4)/3, (10+8+9)/3) = (3.66, 9)$$

$$S_2 = ((8+7+6)/3, (4+5+4)/3) = (7, 4.33)$$

$$S_3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)$$

L'inertie Intra-cluster est $J_w = [(2-3.66)^2 + (10-9)^2 + (5-3.66)^2 + (8-9)^2 + (4-3.66)^2 + (9-9)^2] + [(8-7)^2 + (4-4.33)^2 + (7-7)^2 + (5-4.33)^2 + (6-7)^2 + (4-4.33)^2] + [(2-1.5)^2 + (5-3.5)^2 + (2-1.5)^2 + (2-3.5)^2] = 6.66 + 2.66 + 5 = 14.32$

3 GMM

On dispose d'une base de 100 exemples répartis dans 3 clusters modélisés par des Gaussiennes. Le cluster A contient 30% des points. Sa moyenne est $\mu_A=(2,2)$ et sa matrice de covariance est $\Sigma_A=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. Le cluster B contient 20% des points. Sa moyenne est $\mu_B=(5,3)$ et sa matrice de covariance est $\Sigma_B=\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Le cluster C contient 50% des points. Sa moyenne est $\mu_C=(1,4)$ et sa matrice de covariance est $\Sigma_C=\begin{bmatrix} 16 & 0 \\ 0 & 4 \end{bmatrix}$. Calculez les probabilités d'appartenance du point p=(2.5,3.0) aux clusters A,B et C.

On sait que:

Les probabilités d'appartenance sont estimées par $\gamma_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x_i} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x_i} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$ On a des distrcibutions Gaussiennes : $\mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_i|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}$

Les probabilités a priori sont $\pi_k = \frac{\sum\limits_{n=1}^{N} \gamma_{nk}}{N}$. On part avec des affectations dures des points des clusters et donc les probabilités a priori sont les proportions de chaque cluster.

```
import math
 import numpy as np
 from numpy.linalg import det
p=np.array([2.5,3])
muA=np.array([2,2])
covA=np.array([[3,0],[0,3]])
muB=np.array([5,3])
 covB=np.array([[2,1],[1,4]])
muC=np.array([1,4])
 covC=np.array([[16,0],[0,4]])
NA = \mathtt{math.exp} (-0.5*(p-\mathtt{muA}).T.\mathtt{dot}(\mathtt{inv}(\mathtt{covA})).\mathtt{dot}(p-\mathtt{muA})) / (2*\mathtt{math.pi}*(\mathtt{det}(\mathtt{covA})**0.)) / (2*\mathtt{math.pi}*(\mathtt{det}(\mathtt{covA}))) / (2*\mathtt{math.pi}*(\mathtt{covA})) / (2*\mathtt{math.
                                                                                                                                                                                                                                                                                                                                                                                                                                          5))
NB = \mathtt{math.exp} (-0.5*(p-\mathtt{muB}).T.\mathtt{dot}(\mathtt{inv}(\mathtt{covB})).\mathtt{dot}(p-\mathtt{muB})) / (2*\mathtt{math.pi}*(\mathtt{det}(\mathtt{covB})**0.)) = (2*\mathtt{math.pi}*(\mathtt{det}(\mathtt{covB})))
                                                                                                                                                                                                                                                                                                                                                                                                                                          5))
\texttt{NC=math.exp(-0.5*(p-muC).T.dot(inv(covC)).dot(p-muC))/(2*math.pi*(det(covC)**0.000))} = \texttt{NC=math.exp(-0.5*(p-muC).T.dot(inv(covC)).dot(p-muC))/(2*math.pi*(det(covC))**0.000} = \texttt{NC=math.exp(-0.5*(p-muC)).T.dot(inv(covC)).dot(p-muC))/(2*math.pi*(det(covC))**0.000} = \texttt{NC=math.exp(-0.5*(p-muC)).T.dot(inv(covC)).dot(p-muC))/(2*math.pi*(det(covC))**0.000} = \texttt{NC=math.exp(-0.5*(p-muC)).T.dot(inv(covC)).dot(p-muC))/(2*math.pi*(det(covC))**0.000} = \texttt{NC=math.exp(-0.5*(p-muC)).T.dot(inv(covC)).dot(p-muC))/(2*math.pi*(det(covC))**0.000} = \texttt{NC=math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC)).dot(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))/(2*math.exp(-0.5*(p-muC))
N = 0.3 * NA + 0.2 * NB + 0.5 * NC
pA = 0.3 * NA/N
pB=0.2*NB/N
pC=0.5*NC/N
 print (pA, pB, pC)
```

4 DBSCAN

On dispose d'en ensemble de points 2D $\mathcal{X}=\{x_1,\cdots,x_{20}\}$ que l'on découper à l'aide de l'algorithme DBSCAN. Les points sont répartis comme cela est présenté sur la figure suivante. Vous utiliserez la distance de Manhattan entre les points $d_M(x_i,x_j)=\|x_i-x_j\|_1=\left(\sum_{k=1}^2|x_i^k-x_j^k|\right)$. À l'aide de DBSCAN, déterminez quels points sont des points core, border ou noise. Les paramètres de DBSCAN seront : $\epsilon=2$ et minPts=3. Les points sont supposés tirés au hasard selon leur numérotation.

 x_1 est un core point (3 points dans son voisinage) et x_2 , x_3 et x_4 sont density reachable de $x_1 \Rightarrow$ 1 cluster est créé).

 x_5 est un noise point (pas de points dans son voisinage). x_6 est un border point (seulement 2 points dans le voisinage). x_7 est un core point et x_6 , x_8 , x_9 et x_{10} sont density reachable de $x_7 \Rightarrow 1$ cluster est créé). x_{11} est un noise point (pas de points dans son voisinage). x_{12} est un noise point (pas de points dans son voisinage). x_{13} est un core point (3 points dans son voisinage) et x_{14} à x_{20} sont density reachable \Rightarrow 1 cluster est créé).

