EE450 Discussion #4

- Shannon's Theorem
- Modulations
- Multiplexing

Shannon's Theorem

- Theoretical Maximum Capacity that can be obtained on a line
- Sets an Upper Bound on the capacity given the conditions
 - Used for Calculating the
 - Signal to Noise Ratio Given the Bandwidth and capacity of the channel
 - Bandwidth Given the SNR and Channel Capacity
 - Capacity Given the SNR and the Bandwidth

T1 carrier – a dedicated telephone connection or a time–division–multiplexed digital transmission service that supports a data rate of 1.544 Mbps

Problem #1

- What SNR is needed to put a T-1 carrier on a 50 khz line?
 - What do we know?
 - T-1 Capacity = 1.544 Mbps
 - Bandwidth = 50 KHz
 - Move them around and Solve:
 - \bullet 1,544,000 = 50,000 log 2 (1+SNR)
 - $2^30.88 1 = SNR$

Continued

- So SNR = 1976087931
 - SNR is typically measured in DB
 - Use SNR dB = $10 \log_{10}$ (SNR)
 - In this case
 - SNR dB = $10 \log_{10} (1976087931)$
 - SNR aprox. 92.9 dB
 - However you must NOT plug SNR into Shannon's theorem in dB format

Problem #2

- Calculate the maximum rate supported by a telephone line with BW of 4 KHz. When the signal is 10 volts, the noise is 5 milivolts.
- SNR=Signal power/Noise Power
- Power is proportional to square of the voltage
- $S/N = (10^2)/(0.005^2) = 4000000$
- B = 4000 Hz
- $C = B \log_2 (1 + S/N)$
 - Reminder: $\log_2 x = \ln x / \ln 2$
- $C = 4000 \log_2 (1+4000000) = 87726 \text{ bps}$

Ways of Multiplexing/Demultiplexing

- Time Division Multiplexing (TDM)
- You have n input lines coming in
- The same # of lines going out..
- Only one line interconnecting. How?

Packing the Data In

- Multiplexing A way of aggregating data onto a single line without compromising the rate at which original data is sent.
- We are not limiting anyone's channel capacity
- We are simply sending there signal through a shared line

Sharing – by time slots

 Sample the Line 1 – Place its value in slot 1

 Sampling the Line – and Send its value on its way

More Time Slots

- Line 2 Places its Sample on the Line
- And it goes on...

Other Side - Demultiplexing

Similar to Multiplexing just the reverse

TDM

Synchronous TDM

TDM, Multiplexing

TDM, Demultiplexing

Data Rate

8250 bps = 250 frames/second x 33 bits/frameor $8250 \text{ bps} = 4 \times 2000 \text{ bps} + 250 \text{ synchronization bps}$

TDM - Example

- T-1 Lines
 - Carries the equivalent of 24 voice lines
 - Each analog voice line is sampled at 8000 times a second
 - Digital Sample is thrown on the Digital Carrier Line
 - On the other side Digital samples are used to reconstruct Analog Signal.

STDM (Asynchronous TDM)

- How does it Work?
 - Checks to see if there is data to transmit on input line
 - If there is transmit data
 - If not move on to next input line

Asynchronous TDM

Frames and Addresses

TDM vs. STDM

 Synchronous TDM – Gray Slots are actually carrying data

```
Slot 1 Slot 2 Slot 3 Slot 4 Slot 1 Slot 2 Slot 3
```

 Statistical TDM – Uses empty time slots but does add some overhead

```
Slot 1 Slot 2 Slot 1 Slot 2 Slot 3 Slot 1
```

Notes on TDM

- Sampling Occurs very quickly
- Applicable to fixed number of flows

Requires Precise Timing

Resources are guaranteed

STDM

- Statistical Time Division Multiplexing
- Similar to regular TDM but different in this:
 - Traffic is sent on demand Only if there is data on line 1, will slot 1 be occupied by line 1
 - Resources are not guaranteed
- If we are no longer guaranteed a time slot why use it?
 - We (the carrier) can take advantage of one of the input lines not being busy
- Important distinction STDM is used mainly for Digital Lines

TDM vs.

- Resources are guaranteed to the users
- Sampling Occurs very quickly
- Applicable to fixed number of flows
- 4. Requires Precise Timing
- Wastes valuable carrier space

STDM

- Traffic is sent on demand utilizing unused time slots so it benefits the Carrier
- Resources are not guaranteed so when time slots are busy the users suffer
- In real life there is some overhead
- 4. Speedup isn't as obvious

Statistical TDM Parameters

- I = Number of Input Sources
- R = Data rate of each source (bps)
- a (Alpha) = mean fraction of time each source is transmitting
- M = Effective capacity of multiplexed line
- K = M / (I x R) = Ratio of multiplexed line capacity to total input rate
- λ (lambda) = $\alpha \times I \times R$ = Average Arrival rate
- $T_s = 1 / M = Service time in seconds$

ρ: Line Utilization

- ρ = Fraction of total link capacity being used
- Many different forms to express line utilization
 - $\rho = \lambda T_s$
 - $\rho = (a \times I \times R) / M$
 - $\rho = a / K$
 - $\rho = \lambda / M$

Sample Problem #5

- Ten 9600 bps lines are multiplexed using TDM. Ignoring overhead bits what is the total capacity required for Synchronous TDM?
 - Simple: 10 X 9600 = 96 kbps (96,000)

Sample Problem #6

- Ten 9600 bps lines are multiplexed using TDM. Assuming that we limit line utilization to 0.8 and each line is busy 50 % of the time. What is the capacity required for <u>Statistical</u> TDM?
 - What do we know?
 - Line utilization $\rho = .8$
 - Fraction of time transmitting a = .5
 - R Data Rate of each input source = 9600 bps
 - I number of Input Sources = 10

Continued

- The Equation:
- $\rho = a \times I \times R \times /M$
 - Where M is the capacity of the multiplexed line
- Rearrange for M
 - $M = a \times I \times R / \rho$
- Plug in the given parameters
 - $M = 0.5 \times 10 \times 9600 / 0.8$
 - M = 60 kbps

Sample Problem #7

- Calculate the capacity of a Multiplexed carrier?
 - 24 voice channels multiplexed
 - 8000 samples per second
 - Each frame lasts $1/8000 = 125 \mu \text{ sec}$
 - Uses 8 bit encoding per sample
 - Capacity
 - 24 X 8000 samples/second X 8 bits/sampl
 - 1,536,000 bits/second
 - T-1 Adds an extra bit per frame (for synchronization) which makes it 1.544 Mbps

24*8 bits/ frame + 1 bit/frame =193 bits / frame

Sample Problem #8

- What is the percent overhead on a T-1 Carrier?
 - T-1 Carrier bandwidth of 1.544 Mbps
 - Every 192 bits one more bit is added for framing.
 - What is the overhead?

Continued

- Every frame consists of 193 bits
- 24 X 8 = 192 bits
- 193-192 = 1 overhead bit
- **1/193 = .5%**

Review on Modems

- Modem Stands for
 - MOdulator / DEModulator
- Uses Sine wave As the carrier Signal

Digital to Analog Encoding

Modulation

- Need to Encode Digital Data in an Analog Signal
- In modem transmission we use different techniques for modulation
 - Amplitude Modulation
 - Frequency Modulation
 - Phase Shift

Amplitude Modulation

Varies the Amplitude of the Signal

Amplitude Modulation

Same Signal Greater Amplitude

Amplitude = 1

Amplitude = 2

Amplitude Modulation

- Amplitude 2 = 1
- \blacksquare Amplitude 1 = 0

- This signal Represents:
 - **0011010**

ASK

FSK

Phase-Shift Modulation

- Start with our normal sine wave
- The sine wave has a period of P
 - P may be denoted as T instead in the equations

- Shift the Phase of the Sine Wave
- Shifted diagram shows that the cycle starting at 1 vs. starting at 0

PSK

Bit	Phase
0	0
1	180
Bits	

4-PSK

4-PSK Constellation

Dibit	Phase
00	0
01	90
10	180
11	270

Dibit (2 bits)

Constellation diagram

8-PSK Constellation

Tribit	Phase
000	0_
001	45 90
010	135
100	180
101	225 270
111	315

Tribits (3 bits)

Constellation diagram

PSK

Combining Both

- Modulation used in Modern Modems
 - Uses:
 - Amplitude Modulation
 - Phase Shift Keying
- QAM
 - Quadrature Amplitude Modulation
 - Big Name Simple Concept

4-QAM and 8-QAM Constellation

8-QAM Signal

16-QAM Constellation

Problem #3

- A modem uses an 8-PSK modulation scheme supporting data rate of 4800 bps. What is the signaling rate (aka baud rate)?
- 8 PSK (Phase Shift Keying)
 - 8 different encoding levels
 - Each encoding has log₂ 8 = 3 bits
 - 4800 / 3 = 1600 Baud Rate