Sprawozdanie metody numeryczne Lab 2 - Rozwiązywanie układów równań metoda gaussa za pomocą rozkładu LU

Jędrzej Szostak

1. Cel ćwiczenia

Celem ćwiczenia była nauka rozwiązywania układu równań liniowych metodą Gaussa za pomocą rozkładu LU macierzy.

2. Opis problemu

Mieliśmy dane N punktów (x_i, y_i) dla i = 1,...,N (w naszym przypadku N = 6)przez, które musieliśmy przeprowadzić wielomian interpolacyjny (Wielomian stopnia N-1 o własności $w(x_i) = y_i$). Naszym zadaniem było wykonanie tego zadania poprzez znalezienie współczynników wielomianu interpolacyjnego opisanego wzorem:

$$w(x) = \sum_{i=0}^{N-1} c_i x^i$$

Współczynniki te możemy zapisać układem *N* liniowych równań o *N* niewiadomych:

$$\begin{cases} c_0 & +c_1x_1 & +c_2x_1^2 & +\dots & +c_{N-2}x_1^{N-2}+ & c_{N-1}x_1^{N-1} & =y_1\\ c_0 & +c_1x_2 & +c_2x_2^2 & +\dots & +c_{N-2}x_2^{N-2}+ & c_{N-1}x_2^{N-1} & =y_2\\ & & \vdots & & & & \\ c_0 & +c_1x_N & +c_2x_N^2 & +\dots & +c_{N-2}x_N^{N-2}+ & c_{N-1}x_N^{N-1} & =y_N \end{cases},$$

Jak wiemy z algebry i poprzedniego ćwiczenia ten układ równań możemy zapisać w postaci macierzowej:

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{N-2} & x_1^{N-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{N-2} & x_2^{N-1} \\ \vdots & & & & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^{N-2} & x_N^{N-1} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$

gdzie, Macierz A nazywana jest macierzą Vandermonde'a.

Warto zauważyć, że oznaczenia macierzy w tym wypadku mogą być trochę mylące, gdyż macierz A to tak naprawdę macierz x - ów podniesionych do odpowiednich potęg, macierz x to macierz jednostkowa współczynników c, a macierz b to macierz szukanych współczynników y. Układ równań w celu znalezienia współczynników y musieliśmy

rozwiązać za pomocą rozkładu LU. Następnie do sprawdzenia wyników mieliśmy za pomocą schematu Hornera porónać otrzymane wyniki z wartościami wielomiany interpolacyjnego w poszczególnych punktach.

3. Opis metody

Metoda rozkładu LU polega na rozłożenie macierzy A na dwie macierze trójkątne. Górnotrójkątna (upper) i dolnotrójkątna (lower), stąd też nazwa metody. Gdzie macierz L to macierz dolnotrójkątna z jedynkami na diagonali i wartościami poniżej przekątnej równymi:

$$l_{ij} = \frac{a_{ij}}{a_{ij}}$$

,gdzie I to wartości macierzy L, a a to wartości macierzy wejściowej. Macierz L przedstawia się więc następująco:

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ I_{2,1} & 1 & 0 & \dots & 0 & 0 \\ I_{3,1} & I_{3,2} & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ I_{n-1,1} & I_{n-1,2} & I_{n-1,3} & \dots & 1 & 0 \\ I_{n,1} & I_{n,2} & I_{n,3} & \dots & I_{n,n-1} & 1 \\ \end{bmatrix}$$

Z kolei macierz *U* otrzymujemy obliczając z równania(na podstawie wcześniej znanych wartości):

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \times u_{kj}$$

Zatem po takich obliczeniach macierz *U* prezentuje się następująco:

$$\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \dots & u_{1,n-1} & u_{1,n} \\ 0 & u_{2,2} & u_{2,3} & \dots & u_{2,n-1} & u_{2,n} \\ 0 & 0 & u_{3,3} & \dots & u_{3,n-1} & u_{3,n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & u_{n-1,n-1} & u_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 & u_{n,n} \end{bmatrix}$$

Mając rozkład A = LU możemy rozwiązać układ przy pomocy równań:

$$L\overline{y} = \overline{b}$$

$$\overline{y} = U\overline{x}$$

Potrzebny jeszcze jest nam schemat Hornera do wyliczenia współczynników wielomianu interpolacyjnego w danym punkcie. Wzór na każdy z nich prezentuje się następująco:

$$w(x) = (...((c_{N-1}x + c_{N-2})x + c_{N-3})x + + c_1)x + c_0$$

Błąd wyznaczamy za pomocą wektora reszt:

$$\overline{r} = \overline{b} - A\overline{x}$$

Z tak otrzymanego wektora liczymy normę i to ona jest miarą błędu rozwiązania.

4. Wyniki

Wejściowy wielomian dla, którego były wykonywane obliczenia ma postać:

$$w(x) = 2x^5 + 4x^4 + 5x^3 + 3x^2 + 3x + 1$$

Był on identyczny jak wielomian interpolacyjny. Wektor reszt wyszedł równy 0, co wskazuje na to, że rozwiązanie jest dokładne. Punkty obliczone z metody LU pokrywają się idealnie z wykresem funkcji tego wielomianu.

Wykres 1. Czerwonymi punktami zostały oznaczone wartości wyliczone przez rozkład LU (pokrywają się z tymi wyliczonymi ze schematu Hornera, więc żeby nie tracić na czytelności te ze schematu nie zostały dodane do wykresu), a niebieską linią przedstawiony został wykres funkcji w(x)

Wykres 2. Przybliżony wykres 1, tak aby było widać dokładnie wartości blisko 0

5. Podsumowanie

Powyższe zadania mieliśmy rozwiązać metodą Gaussa przy pomocy rozkładu LU. Otrzymany wynik okazał się bardzo dokładny (idealny), co sprawdziliśmy za pomocą schematu Hornera i porównania z analitycznym wykresem w(x). Na tej podstawie można wnioskować poprawne wykonanie ćwiczenia.