ALGORITMOS EM GRAFOS

ÁRVORES DE STEINER

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO PUC MINAS

Referência principal

GOLDBARG, Marco Cesar; GOLDBARG, Elizabeth. **Grafos**: conceitos, algoritmos e aplicações. Rio de Janeiro, RJ: Elsevier, Campus, c2012. xv, 622 p. ISBN 9788535257168.

Problema de Steiner

 Problema original: dados três pontos no plano euclidiano, encontre um quarto ponto tal que a soma das distâncias aos pontos originais seja mínima

D

В

Problema de Steiner

 Problema original: dados três pontos no plano euclidiano, encontre um quarto ponto tal que a soma das distâncias aos pontos originais seja mínima

Problema de Steiner em grafos

 Conectar, a um custo mínimo, um conjunto de vértices obrigatórios (terminais) em um grafo G

Árvore de Steiner

- $\ \square$ Árvore que possui o conjunto X de terminais e outros vértices que possam ajudar na ligação dos vértices de X.
- \square Estes são os **vértices de Steiner**, e seu conjunto é chamado Λ

Vértices de Steiner(Λ)

Árvores de Steiner

 Infelizmente, encontrar uma árvore de Steiner de custo mínimo é um problema NP-Difícil.

□ Também há casos com obstáculos

□ Também há casos com obstáculos

□ Também há casos com obstáculos

Árvores de Steiner

□ Em geral, geradas a partir de algoritmos heurísticos

- 1) Determinar a AGM
- 2) Enquanto houver folhas que não são terminais, podar tais folhas

- 1) Determinar a AGM
- 2) Enquanto houver folhas que não são terminais, podar tais folhas

- 1) Determinar a AGM
- 2) Enquanto houver folhas que não são terminais, podar tais folhas

- 1) Determinar a AGM
- 2) Enquanto houver folhas que não são terminais, podar tais folhas

- 1) Determinar a AGM
- 2) Enquanto houver folhas que não são terminais, podar tais folhas

- 1) Determinar a AGM
- 2) Enquanto houver folhas que não são terminais, podar tais folhas

Árvore de Steiner

Algoritmo KMB (Kou, Markowsky, Berman)

- Determinar os caminhos mais curtos entre os vértices de X
- Criar um grafo G(S)
 completo com os vértices de
 X e as arestas dos caminhos
 mais curtos
- 3) Determinar a AGM de G(S)
- 4) Substituir a AGM pelos caminhos reais

- Determinar os caminhos mais curtos entre os vértices de X
- 2) Criar um grafo G(S) completo com os vértices de X e as arestas dos caminhos mais curtos

Algoritmo KMB (Kou, Markowsky, Berman)

- 3) Determinar a AGM de G(S)
- 4)Substituir a AGM pelos caminhos reais

Arborescência: conectar árvores mínimas com raízes locais

- 1) Determine o vértice mais próximo de cada terminal
- Enquanto existir mais de uma arborescência:
 - Determinar o vértice mais próximo de cada arborescência
 - Unir arborescências com vértices em comum
- 3) Podar arestas desnecessárias

- 2) Enquanto existir mais de uma arborescência:
 - Determinar o vértice mais próximo de cada arborescência
 - Unir arborescências com vértices em comum
- 3) Podar arestas desnecessárias

- 2) Enquanto existir mais de uma arborescência:
 - Determinar o vértice mais próximo de cada arborescência
 - Unir arborescências com vértices em comum
- 3) Podar arestas desnecessárias

- 2) Enquanto existir mais de uma arborescência:
 - Determinar o vértice mais próximo de cada arborescência
 - Unir arborescências com vértices em comum
- 3) Podar arestas desnecessárias

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
- 2) Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
- Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
 -) Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
- Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
 -) Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
 -) Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

- Construir a matriz de distância mínima entre todos os vértices (Floyd-Warshall)
- 2) Escolher um terminal
- 3) Ligar ao terminal mais próximo fora da árvore

OBRIGADO.

Dúvidas?