0.1 Linguaggio

possiamo definire un linguaggio L su E un sottoinsieme di E^* tale che $L \subseteq E^*$. Per esempio, preso $E = \{a, b, c\}$, un linguaggio L potrebbe essere $L_1 = \{aa, cbc\}$. Un linguaggio può essere finito (vedi L_1), oppure infiniti (es. $L_2 = \{w \in E^* \mid w \text{ contiene lo stesso numero di } a e c\}$).

Preso un linguaggio $L \subseteq E^*$, possiamo affermare che:

- 1. $\emptyset \subseteq L$;
- 2. $\varepsilon \subset L$;
- 3. $E^* \subset L$;

sono tutti linguaggi. La principale caratteristica di un linguaggio è che esso deve essere riconosciuto e interpretato da una macchina (o automa) ed essa deve anche essere in grado di generarlo tramite una *grammatica*.

Problema di Decisione. Il problema di decisione si presenta nel momento in cui, dato un quesito, le possibili risposte sono sempre e sole "sì" o "no".

Problema di Membership. Il problema di Memebership è legato al concetto di stringa (come input), di linguaggio e di appartenenza ad un determinato linguaggio. Data una stringa w in input, una determinata macchina deve essere in grado di dire se essa appartiene ad un linguaggio oppure no.

DEFINIZIONI Una forma sentenziale è una stringa di simboli terminali e non terminali: $\gamma \in (V \cup T)^*$

Concatenazione di linguaggi : Dati due linguaggi $L_1, L_2 \subseteq E^*$ allora

$$L_1 \circ L_2 = \{ w | w = w_1 \circ w_2, w_1 \in L_1, w_2 \in L_2 \}$$

0.2 Grammatica context-free -CFG-

Una grammatica context free è una grammatica che non prevede l'incrocio dei simboli terminali per cui è necessario utilizzare delle regole differenti. Un esempio di linguaggio context free è il seguente:

Stringhe palindrome : le stringhe palindrome sono un esempio semplice di linguaggio che utilizza una grammatica context-free. Abbiamo il l'alfabeto $E = \{0, 1\}$ e il linguaggio costruito su esso $L_{pal} \subseteq E^*$. Da questo alfabeto e con questo linguaggio possiamo costruire una stringa w palondroma come

$$w = \{0110\}$$

Essa può essere definita per induzione come segue:

- 1. Passo base: $\varepsilon, 0, 1 \in L_{nal}$
- 2. Passo induttivo: se $w \in L_{pal}$, allora $0w0, 1w1, \varepsilon \in L_{pal}$

Un esempio di regole del linguaggio possono essere:

$$S \to \varepsilon$$

$$S \to 0$$

$$S \to 1$$

$$S \to 0S0$$

$$S \to 1S1$$
(1)

in cui la **testa** può essere sostituita dal **corpo**.

Queste regole possono essere applicate tramite le due relazioni:

- $1. \Rightarrow$
- $2. \Rightarrow^*$

La prima (1) possiamo definirla come segue:

Prima relazione. Sia G = (V, T, P, S) una CFG e sia $\alpha A \beta$ tale che $\alpha, \beta \in (V \cup T)^*$ e $A \in V$. Sia $A \to \gamma \in P$. Allora $\alpha A \beta \Rightarrow \alpha \gamma \beta$.

Seconda relazione. Si ha che $\alpha \Rightarrow^* \beta$, con $\alpha, \beta \in (V \cup T)^*$, se e solo se $\exists \gamma_1, \gamma_2, ..., \gamma_n \in (V \cup T)^*$ tale che $\alpha \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \gamma_3 \Rightarrow ... \Rightarrow \gamma_n \Rightarrow \beta$ con $n \geq 1$. Se n = 1, allora $\alpha = \beta$ e vale $\alpha \Rightarrow^* \beta$ cioè $\alpha \Rightarrow^* \gamma$.

0.3 Grammatica NON context-free

Il linguaggio di esempio (di tipo 2): $L = \{w \in \{a, b, c\}^* | w = a^n b^n c^n, n \ge 1\}$ è generato dalla seguente grammatica (NON context-free):

$$G = (\{S, X, B, C\}, \{a, b, c\}, P, S)$$

e dove le regole di produzione sono:

- 1. $S \rightarrow aSBC$
- 2. $S \rightarrow aBC$
- 3. $CB \rightarrow XB$
- 4. $XB \rightarrow XC$
- 5. $XC \rightarrow BC$
- 6. $aB \rightarrow ab$
- 7. $bB \rightarrow bb$
- 8. $bC \rightarrow bc$
- 9. $cC \rightarrow cc$

Le grammatuche 3,4,5 possono essere "collassate" in $CB \to BC$ Si può dimostrare , usando il Pumping Lemma per i CFL, che non è context-free.

Esempio di Derivazione:

Deriviamo la stringa abc (corrispondente a n=1), indicando anche ad ogni passo la regola usata.

$$S(2) \rightarrow aBC(6) \rightarrow abC(8) \rightarrow abc$$

Deriviamo la stringa aabbce (corrispondente a n=1), indicando anche ad ogni passo la regola usata.

$$S(1) \rightarrow aSBC(2) \rightarrow aaBCBC(3) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaBXCC(5) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaBXBC(4) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaBXBC(4) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaBXBC(4) \rightarrow aaBXBC(4) \rightarrow aaBXBC(5) \rightarrow$$

$$\rightarrow aaBBCC(6) \rightarrow aabBCC(7) \rightarrow aabbCC(8) \rightarrow aabbcC(9) \rightarrow aabbcC$$

In generale, per derivare $a^n b^n c^n$, per n < 1:

$$S(n-1\ volte \to (1))a^{n-1}S(BC)^{n-1} \to (2)a^n(BC)^n(n(n-1)/2\ volte\ la$$

$$sequenza \rightarrow (3), \rightarrow (4), \rightarrow (5))a^nB^nC^n...slide$$

Esercizio: creo una CFG su $L = \{a^{n+m}xc^nyd^m, conn, m \ge 0\}$:

1 Alberi Sintattici

Un albero sintattico è una rappresentazione grafica (ad albero) che mostra come una forma sentenziale o una stringa è stata ottenuta tramite le regole di derivazione.

Albero Sintattico. Data una CFG definita come

$$G = (V, T, P, S)$$

l'albero sintattico è un albero tale che

- 1. Ogni nodo interno è etichettato da una variabile;
- 2. Ogni foglia è etichettata da una variabile, oppure un simbolo terminale o ancora da ε . Se è etichettata con ε allora è l'unico figlio riscontrato.
- 3. Se un nodo è etichettato con A (variabile) e i rispettivi figli sono etichettati da sinistra verso destra con $X_1, X_2, X_3, ..., X_k$, allora $A \rightarrow X_1, X_2, X_3, ..., X_k \in P$ (ovvero A è una produzione della grammatica).

Un esempio pratico di albero sintattico: data la CFG definita come

$$E \rightarrow I \mid E + E \mid E * E \mid (E) \ e \ I \rightarrow a \mid b \mid Ia \mid I0 \mid I1$$
 (2)

abbiamo che l'albero sintattico ottenuto è un albero **radicato** e **ordinato**. Si può notare che i nodi interni rappresentano i passaggi per arrivare alle **foglie**. Difatti è possibile ricostruire il processo di derivazione:

$$E \rightarrow E + E \rightarrow I + E$$