*D*₂ Hyperfine Structure of Rubidium Isotopes 87Rb and 85Rb

Bhaskar Mookerji Charles Herder

8.14 Experimental Physics II MIT Department of Physics

5 March 2008

Goal:

- Probe the hyperfine structure of atoms.
- Big problem: This structure is masked by Doppler broadening

Outline

- Introduction
 - Spectrum of ⁸⁷Rb
 - Magnetic Dipole Interactions
 - Electric Quadrapole Interactions
 - Hyperfine Structure and Crossover Resonances
- Experimental
 - Doppler-Broadened Spectrum of ⁸⁵Rb and ⁸⁵Rb
 - Doppler-Free Saturation Setup
 - Fabry-Perot Calibration
 - Doppler-Broadened Spectrum of ⁸⁵Rb and ⁸⁵Rb
- Results and Error Analysis
 - Hyperfine Spectrum of ⁸⁵Rb and ⁸⁵Rb
 - Error and Systematic broadening effects

- Electronic structure:
 [Kr]5s¹
- Perturbations break energy degeneracy to n^(2s+1)L_i
- Angular momentum coupling:

$$J = L + S$$
$$F = I + J$$

⁸⁷Rb (I = 3/2) and
 ⁸⁵Rb (I = 5/2)

Parametrizing splitting with A,

$$H_{magn}^{hf} = -\mu_I \cdot \mathbf{B}_{el} = \rightarrow A\mathbf{I} \cdot \mathbf{J}$$
 (1)

Good quantum numbers, |ijfm_f>:

$$\Delta E = \frac{A}{2} \left[F(F+1) - J(J+1) F - I(I+1) \right] = \frac{A}{2} C \quad (2)$$

• Angular momentum selection rule: $\Delta F = 0, \pm 1$

Summing of nuclear electrical multipole moments:

$$H_{quad}^{hf} = \frac{-e^2}{|r_e - r_n|}$$

$$\to B \frac{3(\mathbf{I} \cdot \mathbf{J})^2 + \frac{3}{2}\mathbf{I} \cdot \mathbf{J} - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$
(3)

 B measures quadrapole interaction and vanishes for spherically charged distributions. Combined corrections yields:

$$\Delta E_F = \frac{1}{2}AC + B\frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$
(4)

Doppler Broadened Spectrum ⁸⁷Rb and ⁸⁵Rb

At 297K and 780nm, $\Delta\nu_{1/2}=2\frac{\nu_0}{c}\sqrt{\frac{2k_BT\ln2}{A}}\approx 502\text{MHz}$ (640Mhz meas.)

Parameters: Alignment, power broadening, mode (diode current/temperature and scanning).

 Free spectral range calibrates relative frequency spacing in spectra:

$$\Delta \nu = \frac{c}{2n_{\rm Air}L\cos\theta} \quad (5)$$

 Accounting for double mode, we measure FSR:

$$\Delta \nu = 214 \pm 2 MHz \quad (6)$$

Doppler Broadened Spectrum ⁸⁷Rb and ⁸⁵Rb

Fabry-Perot Fourier Transform

Center values at 1679.84 \pm 4.15, 1129.29 \pm 0.54, and 558.321 \pm 0.88 Hz.

Natural linewidth: 6.065(9) MHz (14 \pm 2MHz Meas.)

F=3

F=2

780.0nm

 $5^2S_{1/2}$

Missing peaks characterized by crossover resonances:

$$u_1 = \nu_c - \frac{\nu_{z1}}{c} \nu_c$$
 and $u_2 = \nu_c + \frac{\nu_{z1}}{c} \nu_c$ (7)

and adding,

$$\nu_{c} = \frac{\nu_{1} + \nu_{2}}{2} \tag{8}$$

 Between states with common ground states, separated less than Doppler linewidth. Table: Classification of hyperfine structure for ⁸⁷Rb and ⁸⁵Rb isotopes.

Transition	$\Delta u ({ m MHz})$	$\Delta u ({ m MHz})$
$5^{2}P_{3/2}(F=3,2)$	266.650 (9)	268.0 ± 2.0
$5^2 P_{3/2}(F=2,1)$	156.947 (7)	155.0 ± 5.7
$5^2 P_{3/2}(F=1,0)$	72.218 (4)	65.3 ± 7.0
$5^2S_{1/2}(F=2,1)$	6834.68(3)	6712.9 ± 167.5
$5^2 P_{3/2} (F=3,2)$	121	110.8 ± 8.8
$5^2 P_{3/2}(F=2,1)$	63	67.7 ± 4.1
$5^2 P_{3/2}(F=1,0)$	29	$\textbf{32.7} \pm \textbf{3.0}$
$5^2S_{1/2}(F=2,1)$	3036	2905.96 ± 115.3

- Error in calibration (Fabry Perot: ±0.4cm, multimode).
- Instrumental uncertainty (5-10mV).
- Systematic line broadening in peaks:

$$\gamma = \frac{1}{\tau} + \frac{2}{T} + 2\pi \delta_{\text{laser}} + \dots \tag{9}$$

- Natural (10⁶Hz)
- Collision $(3 \cdot 10^3 3 \cdot 10^6 \text{Hz})$
- Wall-collision (10³ 10⁴Hz)
- (Laser) power (10⁴ 10⁵Hz)

Summary

- Error analysis: Data agrees qualitatively.
- 2nd set of variable neutral density filters might be useful.