Como vimos,
$$[\mathbf{v}]_{\beta'} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

onde $y_1 = x_1 \cos \theta + x_2 \sin \theta = -2 \cos \frac{\pi}{3} + 3 \sin \frac{\pi}{3}$
 $y_2 = -x_1 \sin \theta + x_2 \cos \theta = 2 \sin \frac{\pi}{3} + 3 \cos \frac{\pi}{3}$

donde
$$[\mathbf{v}]_{\beta'} = \begin{bmatrix} \frac{-2+3\sqrt{3}}{2} \\ \frac{3+2\sqrt{3}}{2} \end{bmatrix}$$

ou seja, $\mathbf{v} = \left(\frac{-2+3\sqrt{3}}{2}\right)\mathbf{f}_1 + \left(\frac{3+2\sqrt{3}}{2}\right)\mathbf{f}_2$

4.8 EXERCÍCIOS

- 1. a) Seja V o espaço vetorial \mathbb{R}^n , definido no Exemplo 2 de 4.2.2. Qual é o vetor nulo de V e o que é $-(x_1, x_2, ..., x_n)$? b) Seja $\mathbb{W} = \mathbb{M}(2, 2)$ (veja 4.2.2 Exemplo 3 i)) descreva o vetor nulo e vetor oposto.
- 2. Mostre que os seguintes subconjuntos de R⁴ são subespaços

a)
$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ e } z - t = 0\}$$

b)
$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y - t = 0 \text{ e } z = 0\}$$

Responda se os subconjuntos abaixo são subespaços de M(2, 2). Em caso afirmativo exiba geradores

a)
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in \mathbf{R} \text{ e } b = c \right\}$$

b)
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in \mathbb{R} \text{ e } b = c + 1 \right\}$$

- Considere dois vetores (a, b) e (c, d) no plano. Se ad bc = 0, mostre que eles são LD. Se $ad bc \neq 0$, mostre que eles são LI.
- 5. Verifique se os conjuntos abaixo são espaço vetoriais reais, com as operações usuais. No caso afirmativo, exiba uma base e dê a dimensão.
 - a) Matrizes diagonais $n \times n$
 - b) Matrizes escalares $n \times n$

$$c)\left\{ \begin{bmatrix} a & a+b \\ a & b \end{bmatrix} : a, b \in \mathbf{R} \right\}$$

- d) $V = \{(a, a, ..., a) \in \mathbb{R}^n : a \in \mathbb{R}\}$
- e) $\{(1, a, b): a, b \in \mathbb{R}\}$
- f) A reta $\{(x, x + 3): x \in \mathbb{R}\}$
- g) $\{(a, 2a, 3a): a \in \mathbb{R}\}$
- Considere o subespaço de \mathbb{R}^4 S = [(1, 1, -2, 4), (1, 1, -1, 2), (1, 4, -4, 8)]
 - *u*) O vetor $(\frac{2}{3}, 1, -1, 2)$ pertence a S?
 - b) O vetor (0, 0, 1, 1) pertence a 5?
- Seja W o subespaço de M(2, 2) definido por

$$W = \left\{ \begin{bmatrix} 2a & a+2b \\ 0 & a-b \end{bmatrix} : a, b \in \mathbf{R} \right\}$$

$$a)\begin{bmatrix}0 & -2\\0 & 1\end{bmatrix} \in W?$$

b)
$$\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \in W?$$

8. Seja W o subespaço de M(3, 2) gerado por

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \in \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}. \text{ O vetor } \begin{bmatrix} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix} \text{ pertence a } W?$$

9. Mostre que

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é base de M(2, 2).

- Escreva uma base para o espaço vetorial das matrizes $n \times n$. Qual a dimensão deste espaço?
- Quais são as coordenadas de x = (1, 0, 0) em relação à base $\beta = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$?

- 12. Qual seria uma base "natural" para P_n ? (Veja o Exemplo 4 de 4.2.2). Dê a dimensão deste espaço vetorial.
- Mostre que os polinômios $1 t^3$, $(1 t)^2$, 1 t e 1 geram o espaço dos polinômios de grau ≤ 3 .
- 14. Considere [-a, a] um intervalo simétrico e $C^1[-a, a]$ o conjunto das funções reais definidas no intervalo [-a, a] que possuem derivadas contínuas no intervalo. Sejam ainda os subconjuntos $V_1 = \{f(x) \in C^1[-a, a] \mid f(-x) = f(x), \forall x \in [-a, a]\}$ e $V_2 = \{f(x) \in C^1[-a, a] \mid f(-x) = -f(x), \forall x \in [-a, a]\}$.
 - a) Mostre que C^1 [-a, a] é um espaço vetorial real.
 - b) Mostre que V_1 e V_2 são subespaços de C^1 [-a, a].
 - c) Mostre que $V_1 \oplus V_2 = C^1 [-a, a]$.
- 15. Seja V o espaço das matrizes 2×2 sobre \mathbb{R} , e seja W o subespaço gerado por

$$\begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}$$

Encontre uma base, e a dimensão de W.

- Seja P o conjunto de todos os polinômios (de qualquer grau) com coeficientes reais. Existe uma base finita para este espaço? Encontre uma "base" para P e justifique então por que P é conhecido como um espaço de dimensão infinita.
- 17. a) Dada uma matriz A de ordem $m \times n$, você pode considerar as m linhas como vetores do \mathbf{R}^n e o subespaço V, de \mathbf{R}^n , gerado por estes m vetores. Da mesma forma para a matriz \mathbf{B} , linha reduzida à forma escada de \mathbf{A} , podemos considerar o subespaço W gerado pelos m vetores, dados por suas linhas. Observando que cada linha de \mathbf{B} é obtida por combinação linear das linhas de \mathbf{A} e vice-versa (basta reverter as operações com as linhas), justifique que V = W.
 - b) Mostre, ainda, que os vetores dados pelas linhas não nulas de uma matrizlinha reduzida à forma escada são LI.
- Considere o subespaço de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, -1, 0, 0)$, $v_2 = (0, 0, 1, 1)$, $v_3 = (-2, 2, 1, 1)$ e $v_4 = (1, 0, 0, 0)$.
 - a) O vetor $(2, -3, 2, 2) \in [v_1, v_2, v_3, v_4]$? Justifique.
 - b) Exiba uma base para $[v_1, v_2, v_3, v_4]$. Qual é a dimensão?
 - c) $[v_1, v_2, v_3, v_4] = \mathbb{R}^4$? Por quê?

- Considere o subespaço de \mathbf{R}^3 gerado pelos vetores $v_1 = (1, 1, 0)$, $v_2 = (0, -1, 1)$ e $v_3 = (1, 1, 1)$. $[v_1, v_2, v_3] = \mathbf{R}^3$? Por quê?
- 20. Use o exercício 17 para exibir uma base para o subespaço S, definido no Exercício 6. Qual é a dimensão de S?
- 21. Considere o sistema linear

(§)
$$\begin{cases} 2x_1 + 4x_2 - 6x_3 = a \\ x_1 - x_2 + 4x_3 = b \\ 6x_2 - 14x_3 = c \end{cases}$$

Seja $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2, x_3) \text{ é solução de (§)}\}$. Isto é, W é o conjunto-solução do sistema.

- a) Que condições devemos impor a a, b e c para que W seja subespaço vetorial de \mathbb{R}^3 ?
- b) Nas condições determinadas em a) encontre uma base para W.
- c) Que relação existe entre a dimensão de W e o grau de liberdade do sistema? Seria este resultado válido para quaisquer sistemas homogêneos?
- 22. Seja U o subespaço de \mathbb{R}^3 , gerado por (1, 0, 0) e W o subespaço de \mathbb{R}^3 , gerado por (1, 1, 0) e (0, 1, 1). Mostre que $\mathbb{R}^3 = U \oplus W$.
- Demonstre o teorema 4.3.5, isto é, mostre que, dados $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2 \in W_1 + W_2$ e $\mathbf{v} = \mathbf{w}_1' + \mathbf{w}_2' \in W_1 + W_2$ (onde $\mathbf{w}_1, \mathbf{w}_1' \in W_1$ e $\mathbf{w}_2, \mathbf{w}_2' \in W_2$), então $\mathbf{u} + \mathbf{v} \in W_1 + W_2$ e $k\mathbf{u} \in W_1 + W_2$ para todo $k \in \mathbf{R}$.
- Mostre que, se $V = W_1 \oplus W_2$ e $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ é a base de W_1 , $\beta = \{\mathbf{w}_1, ..., \mathbf{w}_r\}$ é a base de W_2 então $\gamma = \{\mathbf{v}_1, ..., \mathbf{v}_k, \mathbf{w}_1, ..., \mathbf{w}_r\}$ é base de V.

Mostre com um exemplo que o resultado não continua verdadeiro se a soma de subespaços não for uma soma direta.

Sejam $W_1 = \{(x, y, z, t) | \in \mathbb{R}^4 \mid x + y = 0 \text{ e } z - t = 0\}$ e $W_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y - z + t = 0\}$

subespaços de R4.

- a) Determine $W_1 \cap W_2$.
- b) Exiba uma base para $W_1 \cap W_2$.
- c) Determine $W_1 + W_2$.
- d) $W_1 + W_2$ é soma direta? Justifique.
- $e) W_1 + W_2 = \mathbf{R}^4$?

Sejam
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ tais que } a = d \text{ e } b = c \right\}$$

e $W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ tais que } a = c \text{ e } b = d \right\}$

subespaços de M(2, 2)

- a) Determine $W_1 \cap W_2$ e exiba uma base.
- b) Determine $W_1 + W_2$. É soma direta? $W_1 + W_2 = M(2, 2)$?
- **27.** a) Dado o subespaço $V_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}$ ache um subespaço V_2 tal que $\mathbb{R}^3 = V_1 \oplus V_2$.
 - b) Dê exemplos de dois subespaços de dimensão dois de \mathbb{R}^3 tais que $V_1 + V_2 = \mathbf{R}^3$. A soma é direta?
- 28) Ilustre com um exemplo a proposição: "Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então: $\dim (U + W) = \dim U + \dim W - \dim (U \cap W).$
- **29)** Sejam $\beta = \{(1, 0), (0, 1)\}, \beta_1 = \{(-1, 1), (1, 1)\}, \beta_2 = \{(\sqrt{3}, 1), (\sqrt{3}, -1)\}$ e $\beta_3 = \{(2, 0), (0, 2)\}$ bases ordenadas de \mathbb{R}^2 .
 - a) Ache as matrizes de mudaça de base:

- b) Quais são as coordenadas do vetor $\mathbf{v} = (3, -2)$ em relação à base: iii) β_2
- c) As coordenadas de um vetor v em relação à base β_1 são dadas por

$$[\mathbf{v}]_{\beta_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Quais são as coordenadas de v em relação à base:

- ii) β_2
- $[I]_{\alpha}^{\alpha'} = \begin{vmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{vmatrix}$
 - ache a) $[\mathbf{v}]_{\alpha}$ onde $[\mathbf{v}]_{\alpha'} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$
- b) $[\mathbf{v}]_{\alpha'}$ onde $[\mathbf{v}]_{\alpha} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$

(31) Se β' é obtida de β , a base canônica de \mathbb{R}^2 , pela rotação por um ângulo

a)
$$[I]^{\beta'}_{\beta}$$
 b) $[I]^{\beta}_{\beta'}$

Sejam $\beta_1 = \{(1, 0), (0, 2)\}, \beta_2 = \{(-1, 0), (1, 1)\} \in \beta_3 = \{(-1, -1), (0, -1)\}$ três bases ordenadas de \mathbb{R}^2 .

a) Ache
$$i) \ [I]_{\beta_1}^{\beta_2} \qquad ii) \ [I]_{\beta_2}^{\beta_3} \qquad iii) \ [I]_{\beta_1}^{\beta_3} \qquad iv) \ [I]_{\beta_1}^{\beta_2} \cdot [I]_{\beta_2}^{\beta_3}$$
 b) Se for possível, dê uma relação entre estas matrizes de mudança de base.

33. Seja V o espaço vetorial de matrizes 2×2 triangulares superiores. Sejam

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

$$e \beta_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

duas bases de V. Ache $[I]_{\mathcal{B}}^{\beta_1}$

Volte a 4.7.2 e mostre efetivamente que
$$([I]_{\beta}^{\beta'})^{-1} = [I]_{\beta'}^{\beta}$$

35. Se α é base de um espaço vetorial, qual é a matriz de mudança de base $[I]_{\alpha}^{\alpha}$?