Differentialrechnung: Teil 6

Andreas Henrici

MANIT1 IT18ta_ZH

17. Dezember 2018

Überblick

- Extremwertprobleme
 - Beispiele
 - Allgemeines Vorgehen
 - Beispiele

Einem Quadrat der Seitenlänge *a* soll ein Rechteck mit grösstmöglichem Flächeninhalt einbeschrieben werden. Die Seiten des Rechtecks sollen parallel zu den Diagonalen des Quadrats sein.

Bestimmen Sie Länge und Breite des gesuchten Rechtecks.

Beispiele zur Einführung

Beispiel

Aus einem Baumstamm mit kreisförmigen Querschnitt (Radius R) soll ein Balken mit rechteckigem Querschnitt und Seitenlängen b und h herausgeschnitten werden. Wie müssen b und h gewählt werden, damit das Widerstandmoment

$$W=\frac{1}{6}bh^2$$

maximal wird?

Beispiel

Gegeben ist die Kurve

$$y = x^{2}$$
.

Welcher Punkt auf dieser Kurve hat den kleinsten Abstand vom Punkt

$$P = (-1, 2)$$
?

Vorgehen zur Lösung

Vorgehen zur Lösung von Extremwertproblemen:

- Zielfunktion f und Definitionsbereich von f
- Evtl. ist f eine Funktion von 2 Variablen, f(x, y)
- Nebenbedingung? Falls ja: in die Funktion f(x, y) einsetzen
- Gleichung f'(x) = 0 lösen, d.h. relative Extrema im Innern von I finden
- Bestimmung des gesuchten Maximums/Minimums durch Vergleich der Funktionswerte an den relativen Extremalstellen sowie an den Randpunkten des Intervalls

Bemerkung

Falls das gesuchte Extremum am Rand des Definitionsbereichs von f liegt, findet man es evtl. nicht durch Lösen von f'(x) = 0!

Beispiel

Bestimmen Sie den grössten und kleinsten Wert von f(x) = x + 1 auf dem Intervall I = [1, 2].

Beispiel

Einem Quadrat der Seitenlänge *a* soll ein Rechteck mit grösstmöglichem Flächeninhalt einbeschrieben werden. Die Seiten des Rechtecks sollen parallel zu den Diagonalen des Quadrats sein. Bestimmen Sie Länge und Breite des gesuchten Rechtecks.

Beispiel

Aus einem Baumstamm mit kreisförmigen Querschnitt (Radius R) soll in Balken mit rechteckigem Querschnitt und Seitenlängen b und h herausgeschnitten werden. Wie müssen b und h gewählt werden, damit das Widerstandmoment $W = \frac{1}{6}bh^2$ maximal wird?

Beispiel

Gegeben ist die Kurve $y = x^2$. Welcher Punkt auf dieser Kurve hat den kleinsten Abstand vom Punkt P = (-1, 2)?