<u>Thm</u> (Jordan Canonical Form)

suppose V is fin. dim. over C T: V to V is a linear op

there are scalars λ_1, ..., λ_ℓ in C [pairwise distinct] s.t.

$$V = W 1 + ... + W \ell$$

where W_i = bigcup_n ker((T - λ_i)^n), the generalized λ -eigenspace of T, and the sum is a <u>direct</u> sum

II) each W_i has a basis given by a disjoint union of Jordan chains

(each chain looks like
$$e_d \rightarrow ... \rightarrow e_1$$
, where $Te_1 = \lambda e_1$, $Te_i = \lambda e_i + e_{i-1}$ for all $i > 1$, and d is some positive integer)

<u>Cor</u> every square matrix over C is conj to a <u>Jordan canonical form matrix</u>

i.e., a block-diagonal matrix with each block an upper-triangular Jordan block

Rem the JCF matrix is unique up to changing the blocks' order

let $JCF_n = \{n \times n \ JCF \ matrices \ over \ C\}$

Cor if f : Mat_n(C) to F is a conj-invariant fn
then f is determined by f|_{JCF_n(C)}

conversely:

if g : JCF_n to C has the property thatg(M) = g(M') wheneverM, M' differ by reordering of blocksthen g extends to a conj-inv. fn on Mat_n

Ex a function with arg's X_1, ..., X_n is called symmetric iff it is unchanged by any permutation of (X_1, ..., X_n)

e.g., if g: JCF_n to F is a symmetric function of the diagonal coords x11, x22, ..., xnn then g extends to a conj-invariant fn on Mat_n

Df the trace of T is def by $tr(T) = sum_i (dim W_i)λ_i$

Df the determinant of T is def by $det(T) = prod_i λ_i^{(dim W_i)}$:

Thm 1) tr = unique conj-invariant extension to Mat_n(C) of x11 + ... + xnn : JCF_n to C

2) det = unique conj-invariant extension to Mat_n(C) of x11 ... xnn : JCF_n to C

<u>Pf</u>	these formulas hold on JCF_n	<u>Thm</u>	if T has a matrix M in some basis then charpoly_T(z) = det(zI – M)	
<u>Rem</u>	tr is still given by x11 + + xnn			
	on all of Mat_n(C)	<u>Pf</u>	this formula holds on JCF_n	
but:	det is not given by x11 xnn			
	on non-triangular matrices!	<u>Ex</u>	M = a b	
			c d	
<u>Ex</u>	M = a b $det(T) = ad - bc$			
	c d ≠ ad in gen'l	charpoly	$y_T(z) = z^2 - (a + d)z + (ad - bc)$	
			$= z^2 - tr(T)z + det(T)$	
<u>Df</u>	the characteristic polynomial of T is			
		is there	a rship between charpoly and tr, det	
	charpoly_T(z)	beyond the 2 × 2 case?		
	= prod_i $(z - \lambda_i)^{\prime}$ (dim W_i)	·		

Thm 1) tr = coeff of z^{n-1} in charpoly(z) where n = dim V

2) det = constant term in charpoly(z)

<u>Pf</u> check these identities on JCF_n

More Observations

I) if V is a real, not complex, vector space then these results don't apply to T : V to V

but do apply to T_C : V_C to V_C, the complexification

PS2, #2: any basis for V produces one for V_C thus: if V is iso to R^n, then V_C is iso to C^n

so for real T, we define
tr(T), det(T), charpoly_T
to be
tr(T_C), det(T_C), charpoly_(T_C)

II) we can use det(T) to decide if T is invertible

Thm for V fin. dim.,

TFAE for any linear op T : V to V:

- 1) T is invertible
- 2) $ker(T) = \{0\}$
- 3) all eigenvals of T (or T_C) nonzero
- 4) $det(T) \neq 0$

<u>Pf</u>	 1), 2) equiv. by PS3, #1 + dim formula 2), 3) equiv. because nonzero elts of ker(T) are 	then $0 = a(T) = minpoly_T(T) q(T) + r(T) = r(T)$ forcing $r(z) = 0$ by minimality of minpoly_T	
	eigenvec's of T with eigenval 0		[but recall from last week:]
	3), 4) equiv. by defn of det	<u>Thm</u>	if λ_1,, λ_ℓ are the eigenvals of T then prod_i (T – λ_i)^(k_i) is zero
III) recall:			
		where	k_i ≤ dim(gen'lized λ_i-eigensp. of T)
$minpoly_T(z) = (nonconst) monic poly p(z) in C[z]$			
	of lowest deg s.t. p(T) is zero	<u>Cor</u>	for these k_i's,
<u>Thm</u>	if a(z) is any monic poly s.t. a(T) is zero then minpoly_T(z) divides a(z) as a poly	minpoly_T(z) divides prod_i $(z - \lambda_i)^{(k_i)}$	
		Cor (Cayley-Hamilton)	

 $\frac{Pf}{a(z) = minpoly_T(z) q(z) + r(z)}$ with deg r < deg minpoly_T

minpoly_T(z) divides charpoly_T(z)