Convex Optimization Lecture 11 - Unconstrained Optimization

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Today's Lecture

Basic Concepts

2 Descent Methods

Outline

1 Basic Concepts

Descent Methods

Unconstrained Optimization Problems

unconstrained minimization problem:

minimize
$$f(x)$$

- f(x) convex, twice continuously differentiable (\Rightarrow **dom**f open)
- optimal value $p^* = f(x^*) = \inf_x f(x)$ attained and finite

optimality condition:

$$\nabla f(x^*) = 0$$

minimization equivalent to solving n equations

Unconstrained Optimization Algorithms

unconstrained minimization algorithm:

• produce a sequence of points $x^{(k)} \in \mathbf{dom} f, \ k = 0, 1, \dots$

$$\lim_{k\to\infty}f(x^{(k)})=p^*$$

starting point $x^{(0)}$:

- $x^{(0)} \in \text{dom} f$
- sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ closed

requirements on starting points will be relaxed later

More on Initial Points

 $f(x^{(0)})$ -sublevel set closed: hard to check

sufficient conditions for the closedness of $f(x^{(0)})$ -sublevel set:

- $dom f = \mathbb{R}^n$
- $f(x) \to \infty$ as $x \to \mathbf{bd}$ dom f

examples:

- $f(x) = \log \left(\sum_{i=1}^{m} e^{a_i^T x + b_i} \right)$
- $f(x) = -\sum_{i=1}^{m} \log (b_i a_i^T x)$

Strong Convexity

we assume that the objective function is strongly convex on S:

$$\nabla^2 f(x) \succeq mI, \ \forall x \in S,$$

for some m > 0

for any $x, y \in S$, Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + (y - x)^{T} \nabla^{2} f(z) (y - x)$$

for some z on the line segment between x and y

therefore, for any $x, y \in S$, we have:

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} \|y - x\|_{2}^{2}$$

Implications of Strong Convexity

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} ||y - x||_{2}^{2}$$

minimize the right-hand side with respect to y:

$$y^{\star}(x) = x - \frac{1}{m} \nabla f(x)$$

we have

$$f(y) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2$$

stopping criterion:

$$p^* = f(x^*) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2$$

Implications of Strong Convexity

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} ||y - x||_{2}^{2}$$

setting $y = x^*$, we have:

$$p^* = f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{m}{2} \|x^* - x\|_2^2$$

$$\ge f(x) - \|\nabla f(x)\|_2 \|x^* - x\|_2 + \frac{m}{2} \|x^* - x\|_2^2$$

since $p^* \leq f(x)$, we have

$$-\|\nabla f(x)\|_2 \|x^* - x\|_2 + \frac{m}{2} \|x^* - x\|_2^2 \le 0,$$

distance between x and x^* :

$$||x^* - x||_2 \le \frac{2}{m} ||\nabla f(x)||_2$$

A Few Comments

$$p^* = f(x^*) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2$$

stopping criterion:

$$\|\nabla f(x)\|_2 \le (2m\epsilon)^{1/2} \Rightarrow f(x) - p^* \le \epsilon$$

along with $||x^* - x||_2 \le \frac{2}{m} ||\nabla f(x)||_2$, we know that

• x close to the optimal solution when $\nabla f(x)$ close to 0

in practice, m is unknown

- conceptually useful
- special functions: convergence analysis independent of m

Outline

Basic Concepts

2 Descent Methods

Descent Methods

an algorithm that produces a sequence $x^{(k)}, k = 0, 1, ...$

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$
 with $f(x^{(k+1)}) < f(x^{(k)})$

- $\Delta x^{(k)}$: step, or search direction
- $t^{(k)} > 0$: step size

from convexity of f, we have

$$f(x^{(k+1)}) \geq f(x^{(k)}) + \nabla f(x^{(k)})^T \left(x^{(k+1)} - x^{(k)}\right)$$

= $f(x^{(k)}) + t^{(k)} \nabla f(x^{(k)})^T \Delta x^{(k)}$

a descent direction at $x^{(k)}$ must satisfy:

$$\nabla f(x^{(k)})^T \Delta x^{(k)} < 0$$

General Procedure of Descent Methods

a general descent method:

- a starting point $x \in \mathbf{dom} f$
- repeat the following steps until stopping criterion is satisfied
 - \bullet determine a descent direction Δx
 - 2 line search: choose a step size t > 0
 - 3 update $x := x + t\Delta x$

different descent directions ⇒ different descent methods

line search crucial to ensure

$$f(x^{(k+1)}) < f(x^{(k)})$$

Line Search

exact line search:

$$t = \operatorname{argmin}_{s>0} f(x + s\Delta x)$$

used when the above minimization can be solved efficiently

backtracking line search:

- given Δx , $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$
- initial t=1
- repeat $t := \beta t$ until

$$f(x + t\Delta x) \le f(x) + \alpha t \nabla f(x)^T \Delta x$$

most commonly used

Illustration of Backtracking Line Search

graphical illustration:

impacts of parameters α and β :

- α large: f decreases fast, line search slow
- β large: less crude line search, line search slow

Gradient Descent Method

gradient descent method:

- a starting point $x \in \mathbf{dom} f$
- repeat the following steps until $\|\nabla f(x)\|_2 \le \eta$

 - 2 exact or backtracking line search
 - 3 update $x := x + t\Delta x$

convergence result for strongly convex functions:

$$f(x^{(k)}) - p^* \le c^k \left(f(x^{(0)}) - p^* \right)$$

where $c \in (0,1)$ depends on m, $x^{(0)}$, line search method

linear convergence rate (slow)

Example - A Quadratic Problem in \mathbb{R}^2

quadratic objective function:

$$f(x) = \frac{1}{2} \left(x_1^2 + \gamma x_2^2 \right)$$

with $\gamma > 0$

starting at $x^{(0)} = (\gamma, 1)$ and using exact line search, we have

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \quad x_1^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

and

$$f(x^{(k)}) = \left(\frac{\gamma - 1}{\gamma + 1}\right)^{2k} f(x^{(0)})$$

slow convergence when $\gamma << 1$ or $\gamma >> 1$

Example - A Quadratic Problem in \mathbb{R}^2

illustration when $\gamma = 10$:

Example - A Nonquadratic Problem in \mathbb{R}^2

objective function:

$$f(x) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

gradient descent method with backtracking line search

Example - A Nonquadratic Problem in \mathbb{R}^2

backtracking versus exact line search

Steepest Descent Method

first-order Taylor approximation:

$$f(x + v) \approx f(x) + \nabla f(x)^T v$$

normalized steepest descent direction:

$$\Delta x_{\mathsf{nsd}} = \operatorname{argmin} \left\{ \nabla f(x)^{\mathsf{T}} v \mid \|v\| = 1 \right\}$$

(unnormalized) steepest descent direction: Δx_{sd}

linear convergence rate (slow)

Steepest Descent Method

steepest descent for Euclidean norm:

$$\Delta x_{\mathsf{sd}} = -\nabla f(x)$$

(gradient descent)

steepest descent for quadratic norm $||z||_P = \sqrt{z^T P z}$:

$$\Delta x_{\mathsf{sd}} = -P^{-1} \nabla f(x)$$

steepest descent for ℓ_1 -norm:

$$\Delta x_{\mathsf{sd}} = -\frac{\partial f(x)}{\partial x_i} e_i$$
, where $\left| \frac{\partial f(x)}{\partial x_i} \right| = \| \nabla f(x) \|_{\infty}$

(may simplify line search)

Choice of Norm

Nonquadratic example using steepest descent with quadratic norm:

left:
$$P_1 = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}$$
; right: $P_2 = \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix}$

Choice of Norm

Nonquadratic example using steepest descent with quadratic norm:

choice of norm has large impact on steepest descent methods

Newton's Method

second-order Taylor approximation:

$$f(x+v) \approx \hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

Newton step:

$$\Delta x_{\mathsf{nt}} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

steepest descent direction in Hessian norm $\|\cdot\|_{\nabla^2 f(x)}$

Newton Decrement

Newton decrement at x:

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

interpretation:

$$\frac{1}{2}\lambda(x)^{2} = f(x) - \inf_{v} \hat{f}(x+v) = f(x) - \hat{f}(x+\Delta x_{\rm nt})$$

$$\frac{1}{2}\lambda(x)^2$$
 is an estimate of $f(x) - p^*$

Newton's Method

Newton's method:

- a starting point $x \in \mathbf{dom} f$
- repeat the following steps
 - 1 Newton step and decrement

$$\Delta x_{\mathsf{nt}} = -\nabla^2 f(x)^{-1} \nabla f(x), \quad \lambda(x)^2 = \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$$

- 3 exact or backtracking line search
- 4 update $x := x + t\Delta x$

minor difference:

check stopping criterion after computing the search direction

Convergence Results of Newton's Method

assume that

- f is strongly convex with $\nabla^2 f(x) \succeq mI$
- $\nabla^2 f(x)$ is Lipschitz continuous with constant L

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

convergence result: there exists $\eta \in (0, m^2/L)$ and $\gamma > 0$ such that

• when $\|\nabla f(x^{(k)})\|_2 \ge \eta$, we have

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• when $\| \triangledown f(x^{(k)}) \|_2 < \eta$, we have $t^{(k)} = 1$ and

$$\frac{L}{2m^{2}} \left\| \nabla f(x^{(k+1)}) \right\|_{2} \leq \left(\frac{L}{2m^{2}} \left\| \nabla f(x^{(k)}) \right\|_{2} \right)^{2}$$

Convergence Results of Newton's Method

damped Newton phase $(\|\nabla f(x^{(k)})\|_2 \ge \eta)$

- most iterations require backtracking line search
- function value decreases by at least γ
- this phase ends after at most $\frac{f(x^{(0)})-p^{\star}}{\gamma}$ iterations

quadratically convergent phase $(\|\nabla f(x^{(k)})\|_2 < \eta)$

- no backtracking line search $t^{(k)} = 1$
- norm of gradient $\|\nabla f(x)\|_2$ converges to zero quadratically:

$$\frac{L}{2m^2} \left\| \nabla f(x^{(\ell)}) \right\|_2 \le \left(\frac{L}{2m^2} \left\| \nabla f(x^{(k)}) \right\|_2 \right)^{2^{\ell-k}}, \ \forall \ell \ge k$$

Convergence Results of Newton's Method

total number of iterations bounded by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ and ϵ_0 are constants that depend on m, L, $x^{(0)}$
- the second term is almost constant (\approx 6)

Revisit The Nonquadratic Example in \mathbb{R}^2

objective function:

$$f(x) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Newton's method with backtracking line search

Scalability of Newton's Method

objective function in \mathbb{R}^{100} :

$$f(x) = c^{\mathsf{T}} x - \sum_{i=1}^{m} \log \left(b_i - a_i^{\mathsf{T}} x \right)$$

with m = 500 and n = 100

gradient descent:

Scalability of Newton's Method

objective function in \mathbb{R}^{100} :

$$f(x) = c^{T}x - \sum_{i=1}^{m} \log \left(b_{i} - a_{i}^{T}x\right)$$

with m = 500 and n = 100

Newton's method:

Scalability of Newton's Method

objective function in \mathbb{R}^{10000} :

$$f(x) = c^{\mathsf{T}} x - \sum_{i=1}^{m} \log \left(b_i - a_i^{\mathsf{T}} x \right)$$

with m = 500 and n = 10000

Newton's method:

