VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Modelování a simulace Elektromobilita v Brně

Obsah

1	Úvod	2				
2	2 Cíle projektu					
3	Rozbor tématu a použitých metod/technologií					
	3.1 Elektromotor					
	3.2 Baterie	,				
	3.3 Typy nabíjení	,				
	3.4 Jak je na tom s elektrnabíjecími stanicemi Brno?	4				

1 Úvod

Jako téma našeho projektu jsme si zvolili modelování elektromobility v Brně. Elektromobilita je v posledních aktuálním trendem, který se v posledních letech stává stále populárnějším a je pravděpodné, že tomu bude tak i nadále. V rámci projektu se zaměříme na modelování elektromobily v Brně elektromobility v Brně s cílem určit zda je Brno, připraveno na budoucnost.[1]

2 Cíle projektu

Cílem projektu je vytvořit model, který bude schopen simulovat chování elektromobilů v Brně. Model bude zahrnovat informace o elektromobilech, nabíjecích stanicích a o cestách, kterými se elektromobily v Brně pohybují. Model bude schopen simulovat chování elektromobilů v Brně v závislosti na různých parametrech, jako je například počet elektromobilů, počet nabíjecích stanic, dostupnost nabíjecích stanic, atd. Model bude sloužit k analýze a optimalizaci elektromobility v Brně.

3 Rozbor tématu a použitých metod/technologií

Pro korektní modelování elektromobility je potřeba si nejprve uvědomit, jak elektromobily fungují, jaké jsou jejich vlastnosti/parametry, které v modelu budou definovat transakce. Mezi hlavní aspekty, ovlivňující chování elektromobilů, patří v prvé řadě jejich motor a akumulátor/baterie.

3.1 Elektromotor

U každého vozidla je nejdůležitější jeho pohon a palivo. Pro elektromobily je pohon zajištěn elektromotorem, který je základní součástí elektrického hnacího systému. Elektromotor přeměňuje elektrickou energii z baterie na mechanickou energii potřebnou pro pohyb vozidla a skládá se primárně ze dvou hlavních částí – rotoru a statoru. [2]

Rotor je pohyblivá část elektromotoru. Jedná se o součást, která se otáčí a přenáší mechanickou energii na hnací ústrojí vozidla. Pohyb rotoru je vyvolán magnetickými silami, které vznikají mezi ním a statorem. Rotor může být vyroben z permanentních magnetů (v motorech s permanentními magnety) nebo z vodivých materiálů, které reagují na elektromagnetické pole statoru (v asynchronních motorech). [3]

Stator je naopak pevná část elektromotoru, která obklopuje rotor. Obsahuje sady cívek, které jsou napájeny elektrickým proudem z baterie. Když těmito cívkami prochází proud, vytváří elektromagnetické pole. Toto pole interaguje s magnetickým polem rotoru a vytváří točivý moment, který pohání rotor. [3]

Obrázek 1: Schéma synchronního elektromotoru

3.2 Baterie

3.3 Typy nabíjení

Elektromobil, lze nabíjet hned několika způsoby, faktorů je mnoho, výkon elektrostanice, typ proudu, konektor,... My jsme se v našem modelu rozhodli zachovat pouze podstatné parametry, které v našem případě budou mít největší vliv na chování elektromobilů a to nabíjecí výkon a druh proudu. Elektromobil, zde obvykle nabíjet jak stejnosměrným proudem, tak střídavým proudem.

Obrázek 2: Rozdíl mezi nabíjením střídavým a stejnosměrným proudem [4]

Rozdíl ale je v jejich efektivitě, u nabíjení střídavým proudem nezáleží pouze na výkonu nabíjecí stanice, ale také na samotném vozidle. Baterie alektromobilu je schopna pracovat pouze se stejnosměrným proudem, proto je potřeba mít v elektromobilu vestavěný měnič (palubní nabíječka), který střídavý proud převede na stejnosměrný. Palubní nabíječka obvykle pracuje s výkonem 3,6 kW, 7,2 kW, 11 kW nebo 22 kW, který obvykle limituje nabíjení elektromobilu, daleko víc než výkon nabíjecí stanice. [5] Zato nabíjení stejnosměrným proudem je mnohem efektivnější, nemusí se měnit typ proud a nabíjení není limitováno vůbec výkonem palubní nabíječky. Tyto nabíjecí stanice obvykle poskytují výkon 50 kW, 150 kW nebo až 350 kW.[5, 6]

U nabíjení stejnosměrným proudem se standardně cyklus nabíjení skládá ze tří fází (tzv. SoC – State of Charge), první fáze se pohybuje v rozmezí 0 až 20% kapacity baterie, zde pomalu výkon narůstá, tato fáze je omezena komunikací mezi nabíjecí stanicí a elektromobilem a také teplotou baterie. Druhá fáze začíná na 20% až 80% zde se na začátku stavu dosáhne maximální výkon stanice (většínou stanice jelikož elektromobily mají zpravidla povolený větší maximální výkon než dnešní stanice standardně nabízejí) a následně začíná pokles, tento sestupný trend nastává jak se baterie plní a zároveň se přehřívá. Poslední fází je rozsah mezi 80% až 100%, zde se výkon nabíjení opět snižuje, jelikož dochází k protekci před přebitím baterie a i chemický proces, ke kterému dochází v baterii je méně efektivní při vyšších úrovních nabití, což má za následek že stejný nabíjecí proud má menší dopad na zvýšení kapacity.[7]

Obrázek 3: Efektivita AC a DC nabíjení [8]

U nabíjení na střídavý proud je situace jiná, tím, že je výkon primárně limitován elektromobilem – tedy palubní nabíječkou (OBC - On-Board Charger), výrobce automobilu zaručuje, že baterie je schopna pracovat s určitým výkonem, který externí nabíjecí stanice schopna poskytnout. TODO Dopsat!

3.4 Jak je na tom s elektrnabíjecími stanicemi Brno?

Prumerny nabijeci vykon nabijecky

	0 - 20 [%]	20 - 80 [%]	80 - 100 [%]
12kWh AC	9kWh	12kWh	9kWh
22kWh AC	16.5kWh	22kWh	16.5kWh
50kWh DC	26kWh	42kWh	17kWh
108kWh DC	54kWh	90kWh	36.72Kwh

Reference

- [1] SIMLIB/C++. Simulation library for c++. [online], 2024. [cit. 2024-11-18].
- [2] Auto.cz. Přehledně: Všechny typy elektromotorů! Čím se liší? a jaké mají výhody/nevýhody? [online], 2024. [cit. 2024-11-18].
- [3] Mgr. Magda Králová. Techmania: Elektromotory. [online], 2024. [cit. 2024-11-18].
- [4] wallbox. Ev charging current: What's the difference between ac and dc? [online], 2024. [cit. 2024-11-20].
- [5] Jan Strmiska. Ac vs. dc nabíjecí stanice elektromobilů. [online], 2024. [cit. 2024-11-18].
- [6] Datový portál města Brna. Elektrické nabíjecí stanice pro auta / ev charging points. [online], 2024. [cit. 2024-11-18].
- [7] eStation. Understanding the charging curve and the 80 [online], 2024. [cit. 2024-11-21].
- [8] Reccurent. Is your ev battery getting all the energy you pay for? [online], 2024. [cit. 2024-11-20].