

1

LEGv8 **Reference Data**

CORE INSTRUCTION SET in Alphabetical Order by Mnemonic							
FOR- OPCODE (9)							
NAME, MNEM	MONIC	MAT	(Hex)	OPERATION (in Verilog)	Notes		
ADD	ADD	R	458	R[Rd] = R[Rn] + R[Rm]			
ADD Immediate	ADDI	I	488-489	R[Rd] = R[Rn] + ALUImm	(2,9)		
ADD Immediate & Set flags	ADDIS	I	588-589	R[Rd], $FLAGS = R[Rn] + ALUImm$	(1,2,9)		
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)		
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]			
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)		
AND Immediate & Set flags	ANDIS	I	790-791	R[Rd], $FLAGS = R[Rn]$ & $ALUImm$	(1,2,9)		
AND & Set flags	ANDS	R	750	R[Rd], $FLAGS = R[Rn] & R[Rm]$	(1)		
Branch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)		
Branch conditionally	B.cond	СВ	2A0-2A7	if(FLAGS==cond) PC = PC + CondBranchAddr	(4,9)		
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4; PC = PC + BranchAddr	(3,9)		
Branch to Register	BR	R	6B0	PC = R[Rt]			
Compare & Branch if Not Zero	CBNZ	СВ	5A8-5AF	if(R[Rt]!=0) PC = PC + CondBranchAddr	(4,9)		
Compare & Branch if Zero	CBZ	СВ	5A0-5A7	if(R[Rt]==0) PC = PC + CondBranchAddr	(4,9)		
Exclusive OR	EOR	R	650	$R[Rd] = R[Rn] ^ R[Rm]$			
Exclusive OR Immediate	EORI	I	690-691	$R[Rd] = R[Rn] \wedge ALUImm$	(2,9)		
LoaD Register Unscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)		
LoaD Byte Unscaled offset	LDURB	D	1C2	R[Rt]={56'b0, M[R[Rn] + DTAddr](7:0)}	(5)		
LoaD Half Unscaled offset	LDURH	D	3C2	R[Rt]={48'b0, M[R[Rn] + DTAddr] (15:0)}	(5)		
LoaD Signed Word Unscaled offset	LDURSW	D	5C4	R[Rt] = { 32 { M[R[Rn] + DTAddr] [31]}, M[R[Rn] + DTAddr] (31:0)}	(5)		
LoaD eXclusive Register	LDXR	D	642	R[Rd] = M[R[Rn] + DTAddr]	(5,7)		
Logical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \ll shamt$			
Logical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt			
MOVe wide with Keep	MOVK	IM	794-797	R[Rd] (Instruction[22:21]*16: Instruction[22:21]*16-15) = MOVImm	(6,9)		
MOVe wide with Zero	MOVZ	IM	694-697	R[Rd] = { MOVImm << (Instruction[22:21]*16) }	(6,9)		
Inclusive OR	ORR	R	550	$R[Rd] = R[Rn] \mid R[Rm]$			
Inclusive OR Immediate	ORRI	I	590-591	$R[Rd] = R[Rn] \mid ALUImm$	(2,9)		
STore Register Unscaled offset	STUR	D	7C0	M[R[Rn] + DTAddr] = R[Rt]	(5)		
STore Byte Unscaled offset	STURB	D	1C0	M[R[Rn] + DTAddr](7:0) = $R[Rt](7:0)$	(5)		
STore Half Unscaled offset	STURH	D	3C0	M[R[Rn] + DTAddr](15:0) = R[Rt](15:0)	(5)		
STore Word Unscaled offset	STURW	D	5C0	M[R[Rn] + DTAddr](31:0) = R[Rt](31:0)	(5)		
STore eXclusive Register	STXR	D	640	M[R[Rn] + DTAddr] = R[Rt]; R[Rm] = (atomic) ? 0 : 1	(5,7)		
SUBtract	SUB	R	658	R[Rd] = R[Rn] - R[Rm]			
SUBtract Immediate	SUBI	I	688-689	R[Rd] = R[Rn] - ALUImm	(2,9)		
SUBtract Immediate & Set flags	SUBIS	I	788-789	R[Rd], $FLAGS = R[Rn] - ALUImm$	(1,2,9)		
SUBtract & Set flags	SUBS	R	758	R[Rd], $FLAGS = R[Rn] - R[Rm]$	(1)		

- FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry

- BranchAddr = { 36{BR_address [25]}, BR_address, 2'b0 }

 CondBranchAddr = { 43{COND_BR_address [25]}, COND_BR_address, 2'b0 }
- DTAddr = { 55{DT_address [8]}, DT_address }
- MOVImm = { 48'b0, MOV_immediate }
- Atomic test&set pair; R[Rm] = 0 if pair atomic, 1 if not atomic
- Operands considered unsigned numbers (vs. 2's complement)
- Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes

(10) If neither is operand a NaN and Value1 == Value2, FLAGS = 4'b0110; If neither is operand a NaN and Value1 < Value2, FLAGS = 4'b1000; If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered

ARITHMETIC CORE INSTRUCTION SET

A DITHIMETIC CODE INCTIDUCTION CET						<u></u>
	ARITHMETIC CORE	INSTRU	UCTIO	N SET		(2)
				OPCODE/		
	NAME ADJEMONI	10	FOR-	SHAMT	ODED ATION (In Marilan)	Maria
	NAME, MNEMONI		MAT	(Hex)	OPERATION (in Verilog)	Notes
	Floating-point ADD Single	FADDS	R	0F1 / 0A	S[Rd] = S[Rn] + S[Rm]	
	Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]	
	Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])	(1,10)
	Floating-point CoMPare Double	FCMPD	R	0F3 / 08	FLAGS = (D[Rn] vs D[Rm])	(1,10)
	Floating-point DIVide Single	FDIVS	R	0F1 / 06	S[Rd] = S[Rn] / S[Rm]	
	Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]	
	Floating-point MULtiply Single	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]	
	Floating-point MULtiply Double	FMULD	R	0F3 / 02	D[Rd] = D[Rn] * D[Rm]	
	Floating-point SUBtract Single	FSUBS	R	0F1 / 0E	S[Rd] = S[Rn] - S[Rm]	
	Floating-point SUBtract Double	FSUBD	R	0F3 / 0E	D[Rd] = D[Rn] - D[Rm]	
	LoaD Single floating-point	LDURS	R	7C2	S[Rt] = M[R[Rn] + DTAddr]	(5)
	LoaD Double floating-point	LDURD	R	7C0	D[Rt] = M[R[Rn] + DTAddr]	(5)
	MULtiply	MUL	R	4D8 / 1F	R[Rd] = (R[Rn] * R[Rm]) (63:0)	
	Signed DIVide	SDIV	R	4D6 / 02	R[Rd] = R[Rn] / R[Rm]	
	Signed MULtiply High	SMULH	R	4DA	R[Rd] = (R[Rn] * R[Rm]) (127:64)	
	STore Single floating-point	STURS	R	7E2	M[R[Rn] + DTAddr] = S[Rt]	(5)
	STore Double floating-point	STURD	R	7E0	M[R[Rn] + DTAddr] = D[Rt]	(5)
	Unsigned DIVide	UDIV	R	4D6 / 03	R[Rd] = R[Rn] / R[Rm]	(8)
	Unsigned MULtiply High	UMULH	R	4DE	R[Rd] = (R[Rn] * R[Rm]) (127:64)	(8)
	_ ,, ,					()

CORE INSTRUCTION FORMATS

opcode		Rm	shamt		Rn		Rd	
31	21	20 16	15	10	9	5 4		0
opcode		ALU_ir	nmediate		Rn		Rd	
31	22 21			10	9	5 4		0
opcode		DT_ac	ldress	op	Rn		Rt	
31	21	20	12	11 10	9	5 4		0
opcode			BR_ad	dress				
31 26	25							0
Opcode		COND	BR_addre	SS			Rt	
31 24	23					5 4		0
opcode			MOV_imn	nedia	te		Rd	
31	21	20				5 4		0
	opcode 31 opcode 31 opcode 31 opcode 31 opcode 31 26 Opcode 31 24 opcode	31 21 opcode 31 22 21 opcode 31 21 opcode 31 21 opcode 31 26 25 Opcode 31 24 23 opcode	21 20 16 Opcode ALU in	21 20	21 20	21 20	21 20	21 20

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
CoMPare	CMP	FLAGS = R[Rn] - R[Rm]
CoMPare Immediate	CMPI	FLAGS = R[Rn] - ALUImm
LoaD Address	LDA	R[Rd] = R[Rn] + DTAddr
MOVe	MOV	R[Rd] = R[Rn]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

E.	GISTER NAME, NUMBER, USE, CALL CONVENTION							
	NAME	NUMBER	USE	PRESERVED ACROSS A CALL?				
İ	X0 - X7	0-7	Arguments / Results	No				
Ī	X8	8	Indirect result location register	No				
[X9 – X15	9-15	Temporaries	No				
	X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No				
	X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No				
	X18	18	Platform register for platform independent code; otherwise a temporary register	No				
[X19-X27	19-27	Saved	Yes				
Ī	X28 (SP) 28 Stack Pointer		Stack Pointer	Yes				
[X29 (FP)	29	Frame Pointer	Yes				
[X30 (LR)	30	Return Address	Yes				
[XZR	31	The Constant Value 0	N.A.				

© 2017 Elsevier Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface ARM® Edition

LEGv8 Reference Data Card ("Green Card")

PCODES IN NUMERICAL ORDER BY OPCODE

OPCODES	S IN NUMI	ERICAL O	RDER BY OPCO	DE		(3)
100					11-bit (
Instruction			Opcode	Shamt	Rang	
Mnemonic		Width (bit		Binary	Start (Hex)	
В	В	6	000101		0A0	0BF
FMULS	R	11	00011110001	000010	OF	
FDIVS	R	11	00011110001	000110	OF	
FCMPS	R	11	00011110001	001000	0F	
FADDS	R	11	00011110001	001010	OF	
FSUBS	R	11	00011110001	001110	0F	
FMULD	R	11	00011110011	000010	OF	
FDIVD	R	11	00011110011	000110	OF	
FCMPD	R	11	00011110011	001000	OF	
FADDD	R	11	00011110011	001010	OF	
FSUBD	R	11	00011110011	001110	OF	
STURB	D	11	00111000000		10	
LDURB	D	11	00111000010		10	
B.cond	CB	8	01010100		2A0	2A7
STURH	D	11	01111000000		30	
LDURH	D	11	01111000010		30	
AND	R	11	10001010000		45	
ADD	R	11	10001011000		45	8
ADDI	I	10	1001000100		488	489
ANDI	I	10	1001001000		490	491
BL	В	6	100101		4A0	4BF
SDIV	R	11	10011010110	000010	41	06
UDIV	R	11	10011010110	000011	40	06
MUL	R	11	10011011000	011111	40	08
SMULH	R	11	10011011010		4E	PΑ
UMULH	R	11	10011011110		4E	ÞΕ
ORR	R	11	10101010000		55	50
ADDS	R	11	10101011000		55	58
ADDIS	I	10	1011000100		588	589
ORRI	I	10	1011001000		590	591
CBZ	CB	8	10110100		5A0	5A7
CBNZ	CB	8	10110101		5A8	5AF
STURW	D	11	10111000000		50	CO
LDURSW	D	11	10111000100		50	C4
STURS	R	11	101111100000		5H	E0
LDURS	R	11	101111100010		5H	32
STXR	D	11	11001000000		64	10
LDXR	D	11	11001000010		64	12
EOR	R	11	11001010000		65	50
SUB	R	11	11001011000		65	58
SUBI	I	10	1101000100		688	689
EORI	I	10	1101001000		690	691
MOVZ	IM	9	110100101		694	697
LSR	R	11	11010011010		69	
LSL	R	11	11010011011		69	
BR	R	11	11010110000		6E	
ANDS	R	11	11101010000		75	
SUBS	R	11	11101011000		75	
SUBIS	I	10	1111000100		788	789
ANDIS	I	10	1111001000		790	791
MOVK	IM	9	111100101		794	797
STUR	D	11	11111000000		70	
LDUR	D	11	11111000000		70	
STURD	R	11	111111000010		7E	
01010	D.	11	11111100000		71	

LDURD

111111100010

11

IEEE 754 FLOATING-POINT STANDARD

3

(-1)^s × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023

IEEE 754 Symbols									
Exponent	Fraction	Object							
0	0	± 0							
0	<i>≠</i> 0	± Denorm							
1 to MAX - 1	anything	± F1. Pt. Num.							
MAX	0	± ∞							
MAX	≠ 0	NaN							

IEEE Single Precision and Double Precision Formats:

ı	rreci	21011	cormats.		S.P. MAX = 255, D.P. MAX =	2047		
	S		Exponent		Fraction			
	31	30	23	22		0		
I	S		Exponent		Fraction			
	63	62		52	2 51	0		

DATA ALIGNMENT

	Double Word									
		Wo	ord		Word					
	Halfv	word	Halfword		Halfword		Halfword			
	Byte	Byte	Byte	Byte Byte		Byte Byte		Byte		
0)	1	2	3	4	5	6	7		
	Value of three least significant bits of byte address (Big Endian)									

EXCEPTION SYNDROME REGISTER (ESR)

DIECEL .	110110	I TIDALOTIAL I	-	is i Eit (Esit)
Excep Class (Instruction Length (IL)		Instruction Specific Syndrome field (ISS)
31	26	25	24	

EXCEPTION CLASS

Z	CEPI	TON CLAS	S			
	EC	Class	Cause of Exception	Number	Name	Cause of Exception
	0	Unknown	Unknown	34	PC	Misaligned PC
ı						exception
	7	/ Shirib Shirib/11 registers		36	Data	Data Abort
- 1		disabled				
	14	FPE	Illegal Execution	40	FPE	Floating-point
- 1			State			exception
	17	Sys	Supervisor Call	52	WPT	Data Breakpoint
- 1	Exception				exception	
ı	32	Instr	Instruction Abort	56	BKPT	SW Breakpoint
						Exception

SIZE PREFIXES AND SYMBOLS

IZE PR	ZE PREFIXES AND SYMBOLS												
SIZ	E PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL								
10^{3}	Kilo-	K	2 ¹⁰	Kibi-	Ki								
10^{6}	Mega-	M	2^{20}	Mebi-	Mi								
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi								
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti								
10 ¹⁵	Peta-	P	2 ⁵⁰	Pebi-	Pi								
10 ¹⁸	Exa-	Е	2 ⁶⁰	Exbi-	Ei								
10 ²¹	Zetta-	Z	2 ⁷⁰	Zebi-	Zi								
10 ²⁴	Yotta-	Y	280	Yobi-	Yi								
10-3	milli-	m	10 ⁻¹⁵	femto-	f								
10-6	micro-	μ	10 ⁻¹⁸	atto-	a								
10-9		n	10 ⁻²¹	zepto-	z ı								
10-1	pico-	p	10 ⁻²⁴	yocto-	у								

⁽¹⁾ Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (2⁵) 11-bit opcodes.