《代数学引论(第一卷)》(柯斯特利金)习题

Abreto Fu¹

2019年7月19日

 $^{^{1}\}mathrm{Email:}$ abreto [AT] std.uestc.edu.cn

目录

第	1章	代数的起源	-
	§ 1	简谈代数	
	§ 2	几个典型问题	
	§ 3	线性方程初步	
	§ 4	低阶行列式	
		第 2 题	
		第 3 颗	(

4 目录

第1章 代数的起源

- §1 简谈代数
- §2 几个典型问题
- §3 线性方程初步
 - §4 低阶行列式

第2题

证明在三阶行列式展开式中的六项不可能同时为正.

证明. 展开式中的六项的乘积为

$$\Gamma = a_{11}a_{22}a_{33} \cdot a_{12}a_{23}a_{31} \cdot a_{13}a_{21}a_{32} \cdot (-a_{11}a_{23}a_{32}) \cdot (-a_{12}a_{21}a_{33}) \cdot (-a_{13}a_{22}a_{31})$$

$$= -(a_{11}a_{12}a_{13}a_{21}a_{22}a_{23}a_{31}a_{32}a_{33})^{2} \le 0$$
(1.1)

若这六项同时为正,则应有

$$\Gamma > 0 \tag{1.2}$$

与式 (1.1) 矛盾.

故在三阶行列式展开式中的六项不可能同时为正.

第3题

验证

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}, \quad \begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix} = 0.$$

引理 1.4.1.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

引理 1.4.1 可由定义直接导出.

引理 1.4.2.

$$-a \begin{vmatrix} c & d \\ e & f \end{vmatrix} + b \begin{vmatrix} c & d \\ g & h \end{vmatrix} = -c \begin{vmatrix} a & b \\ h & f \end{vmatrix} + d \begin{vmatrix} a & b \\ g & e \end{vmatrix}$$

证明.

$$-a \begin{vmatrix} c & d \\ e & f \end{vmatrix} + b \begin{vmatrix} c & d \\ g & h \end{vmatrix} = -a(cf - de) + b(ch - dg)$$
$$= -c(af - bh) + d(ae - bg)$$
$$= -c \begin{vmatrix} a & b \\ h & f \end{vmatrix} + d \begin{vmatrix} a & b \\ g & e \end{vmatrix}$$

第一个式子

$$D_{1} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$(1.3)$$

由引理 1.4.1 可知

$$\begin{vmatrix} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{32} \\ a_{23} & a_{33} \end{vmatrix}$$
 (1.4)

§4 低阶行列式 7

由引理 1.4.2 得

$$-a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31}\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = -a_{12}\begin{vmatrix} a_{21} & a_{31} \\ a_{23} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{31} \\ a_{22} & a_{32} \end{vmatrix}$$
(1.5)

于是

$$D_{1} = a_{11} \begin{vmatrix} a_{22} & a_{32} \\ a_{23} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{31} \\ a_{23} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{31} \\ a_{22} & a_{32} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$
(1.6)

第一个式子验证完毕.

第二个式子

$$\begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix} = 0 \begin{vmatrix} 0 & c \\ -c & 0 \end{vmatrix} - (-a) \begin{vmatrix} a & b \\ -c & 0 \end{vmatrix} + (-b) \begin{vmatrix} a & b \\ 0 & c \end{vmatrix}$$

$$= abc - bac = 0$$

$$(1.7)$$

验证完毕.