Gaurav Bishnoi

CSCI 5832: Natural Language Processing

Programming Assignment 4

Date: April 21, 2016

How to run Code:

Run the python file "bishnoi_gaurav_semantic.py". Place the test files "posi.txt" and "nega.txt" in the same folder with python file. "posi.txt" contains positive opinion words and "nega.txt" file contain negative opinion words.

Additional Features Implemented:

- 1. Data of positive and negative opinions by Hu and Liu
- 2. Implemented the data given in NLTK Book by removing 'stopwords' and punctuations.

Classifiers Used:

- 1. Naïve Bayes
- 2. Maximum Entropy

Final Code:

Classifier: Naïve Bayes

Data Set: Data of positive and negative opinions by Hu and Liu

Different Codes and their results:

I first tried the code given in section 1.3, Chapter 6, NLTK Book. It was giving accuracy in the region of 0.65 for 10-fold. Then I removed some unnecessary/irrelevant features from list of maximum-probability words by using 'stopwords' function of 'nltk.corpus'. I have added this code between comment symbols, titled "Extra Code 1".

Results: Accuracy = 0.68

Then I tried Maximum Entropy Classifier with 200 most frequent words from NLTK movie review corpus. Because there is lot of calculation involved in this and using 2000 word set was giving errors (citing system performance). Also, it takes 100 iterations for 1 fold, so I run the code for just 1 fold, i.e. training set of first 100 reviews (random) and test set of remaining 1900 reviews. I have added this code between comment symbols, titled "Extra Code 2".

Results: Accuracy for first fold: 0.58

1	C:\Python34\python	.exe E:/Programming				
	/python/untitled/try.py					
2	==> Training (10	0 iterations)				
3						
4	Iteration	Log Likelihood				
	Accuracy					
5						
6	1	-0.69315				
	0.496					
7	2	-0.69253				
	0.506					
8	3	-0.69197				
	0.532	0.504.44				
9	4	-0.69141				
1.0	0.562	0 60006				
10	5	-0.69086				
11	0.581	-0.69031				
ТТ	0.594	-0.03031				
12	7	-0.68977				
12	0.607	0.00577				
13	8	-0.68922				
	0.611	0.00322				
14	9	-0.68869				
	0.614					
15	10	-0.68815				
	0.619					
16	11	-0.68762				

16	0.621	
17	12	-0.68709
	0.618	
18	13	-0.68656
	0.616	
19	14	-0.68604
	0.616	
20	15	-0.68552
	0.615	
21	16	-0.68500
	0.614	
22	17	-0.68448
	0.619	
23	18	-0.68397
	0.619	
24	19	-0.68346
	0.621	
25	20	-0.68296
	0.620	0.00045
26	21	-0.68245
0.7	0.620	0.60106
27	22	-0.68196
20	0.619	0 60146
28	23	-0.68146
20	0.619	0 60006
29	24 0.619	-0.68096
30	25	-0.68047
30	0.619	-0.00047
31	26	-0.67999
21	∠ 0	-0.0/999

...

...

91	0.624			
92	87		-0.65514	
	0.624			
93	88		-0.65480	
	0.624			
94	89		-0.65446	
	0.625			
95	90		-0.65413	
	0.624			
96	91		-0.65380	
	0.624			
97	92		-0.65347	
	0.624			
98	93		-0.65314	
	0.624			
99	94		-0.65282	
	0.624			
100	95		-0.65249	
	0.624			
101	96		-0.65217	
	0.624			
102	97		-0.65185	
	0.624			
103	98		-0.65153	
	0.624		0.65400	
104	99		-0.65122	
	0.624		0.65000	
105	Final		-0.65090	
100	0.624	6 . 3 . 3	0.50	
106	Accuracy for 1	iold:	0.58	

At last, I used 'Data of positive and negative opinions by Hu and Liu' for better results. It has separate list of positive and negative words. It increased the accuracy to a great extent. *Results: 0.82*

- 1 C:\Python34\python.exe E:/Programming
 /python/untitled/try.py
- 2 6789
- 3 Accuracy for 1 fold: 0.825
- 4 Accuracy for 2 fold: 0.785
- 5 Accuracy for 3 fold: 0.86
- 6 Accuracy for 4 fold: 0.825
- 7 Accuracy for 5 fold: 0.855
- 8 Accuracy for 6 fold: 0.85
- 9 Accuracy for 7 fold: 0.85
- 10 Accuracy for 8 fold: 0.77
- 11 Accuracy for 9 fold: 0.76
- 12 Accuracy for 10 fold: 0.82
- 13 Net Accuracy: 0.82
- 14
- 15 Process finished with exit code 0