eXplainable Artificial Intelligence (XAI): 설명 가능한 인공지능

https://youtu.be/UnzrlAa07DE

XAI의 정의

XAI의 필요성

XAI 알고리즘

실습

XAI란?

- XAI
 - 사람이 AI가 도출한 결과에 대해 이해할 수 있고 해석이 가능한 AI
 - 즉, 결과에 대해 설명 가능하도록 해주는 기술

XAI의 필요성

- XAI의 필요성
 - 딥러닝은 추출부터 판단까지 전부 네트워크가 알아서 하므로 결과에 이르기까지의 과정을 확인할 수 없음
 - 이러한 이유로 딥러닝을 Black box 모델이라고도 함

XAI의 필요성

- XAI의 필요성
 - AI를 통해 대출 가능 여부를 판단하는 은행에서 대출이 거절될 경우, 어떠한 문제 때문에 거절됐는지에 대한 설명을 요구한다면 은행측은 빅데이터를 기반으로 판단했다고밖에 말할 수 없음
 - AI가 특정 파일을 랜섬웨어라고 판단할 경우, 왜 그런 결과를 도출했는지는 알 수 없음 (신뢰도 하락)
- 지금까지의 딥러닝은 대부분 결과에 대한 근거를 댈 수 없었음
- 결과가 어떤 과정을 통해 도출됐는지에 대한 설명이 있다면
 - 결과에 대해 더 잘 받아들이고 신뢰도가 높아짐
 - 사용자가 AI의 결정을 이해할 수 있음

Shapley Value

- Shapley Value란?
 - 특정 변수가 결과에 얼마나 영향을 끼치는지 파악하기 위한 수치
 - 예제) 민성, 시현, 대현, 예준 4명이 힘을 합쳐 하루 동안 풀 수 있는 알고리즘 문제 개수는?
 - 한 명도 빠짐 없이 다 같이 풀었을 경우: 50문제
 - 민성이만 빠지고, 시현, 대현, 예준 셋이 풀었을 경우 : 10문제
 - 시현이만 빠지고, 민성, 대현, 예준 셋이 풀었을 경우: 15문제
 - 대현이만 빠지고, 시현, 민성, 예준 셋이 풀었을 경우 : 30문제
 - 예준이만 빠지고, 시현, 민성, 대현 셋이 풀었을 경우: 49문제

민성	시현	대현	예준	문제 개수
0	0	0	0	50
X	0	0	0	10
0	Х	0	0	15
0	0	Х	0	40
0	0	0	Х	49

누가 가장 알고리즘을 푸는 데 가장 많이 기여했는가?

민성

Shapley Value

		feature1	feature2	feature3	예측 값
进分 (Case1	Х	Х	Х	10
	Case2	0	Х	Х	14
H91	Case3	Х	0	Х	19
	Case4	Х	Х	0	8
	Case5	Ō	0	Х	20
始2	Case6	0	Х	0	11
	Case7	Х	0	0	15
453 C	Case8	0	0	0	18

feature

$$8 - 0 = 18 - 15 \Rightarrow 3 \times \frac{5}{3} = 1$$

$$\frac{4}{3} + \frac{1}{6} + \frac{3}{6} + 1 = 3$$

Thapley value

		feature1	feature2	feature3	예측 값
150 (Case1	Х	Х	Х	10
4위	Case2	0	Х	Х	14
	Case3	Х	0	Х	19
	Case4	Х	Х	0	8
H92/	Case5	0	0	Х	20
	Case6	0	Х	0	11
V	Case7	Х	0	0	15
0±93 (Case8	0	0	0	18

feature 2

(3)
$$-(1) = 19 - 10 \Rightarrow 9 \times \frac{1}{3} = 3$$

$$(5)$$
 $-(2)$ = 20 -14 = $6 \times \frac{1}{6}$ = 1

$$8 - 6 = 18 - 11 = 7 \times \frac{1}{3} = \frac{14}{6}$$

$$3 + 1 + \frac{7}{6} + \frac{14}{6} = \frac{45}{6} = 7 \times xx$$

SHAP value 그래프

타이타닉 사망 예측 데이터

색상 : 해당 변수의 값

음수일 수록 생존에 기여 양수일 수록 사망에 기여

남성: 빨강색, 여성: 파랑색

SHAP

- Shapley Value의 문제점
 - 모든 순열 조합에 대해 연산하고 체크해야 하므로 연산 속도가 느림
- 모델의 특징에 따라 계산법을 변형시켜 연산 속도를 높임
 - 1. Kernel SHAP: Linear LIME + Shapley Value
 - 2. Tree SHAP: Tree based Model
 - 3. Deep SHAP: DeepLearning based Model

코드 라이브러리

Q&A