Worksheet 11 Review

March 30, 2020

Question 1

a. $\forall a, b \in \mathbb{R}^+, a \leq b \Rightarrow (\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n))$

Correct Solution:

$$\forall a, b \in \mathbb{R}^+, \ a \le b \Rightarrow (\exists c, n_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \ge n_0 \Rightarrow \mathbf{n^a} \le c\mathbf{n^b})$$

b. Proof. Let $a, b \in \mathbb{R}^+$, $n \in \mathbb{N}$, c = 1, and $n_0 = 1$. Assume $a \leq b$ and $n > n_0$.

We will prove the statement by showing $n^a \le cn^b$.

Because we know $n \geq 1$, we can conclude that

$$n^a \le n^b \tag{1}$$

Then, it follows from the fact c = 1 that

$$n^a \le cn^b \tag{2}$$

Attempt 2:

Let $a, b \in \mathbb{R}^+$, $n \in \mathbb{N}$, c = 1, and $n_0 = 1$. Assume $a \leq b$ and $n > n_0$.

We will prove the statement by showing $n^a \leq cn^b$.

Because we know $n \ge 1$, we can conclude

$$n^a \ge 1^a \tag{1}$$

$$n^a \ge 1 \tag{2}$$

Then, because we know $\frac{b}{a} \ge 1$, we can conclude

$$n^a \le [n^a]^{\frac{b}{a}} \tag{3}$$

$$n^a \le n^b \tag{4}$$

Then, it follows from the fact c = 1 that

$$n^a \le cn^b \tag{5}$$

Notes:

- Professor used $\forall a,b \in \mathbb{R}^+, a \leq b \Rightarrow n^a \leq n^b$ as a fact given $n \geq 1$.
- I don't feel comfortable using the above fact with $a, b \in \mathbb{R}^+$.
- What facts can be used intuitively?
- Given $a \in \mathbb{R}^+$, is $1 \le n \Rightarrow [1]^a \le n^a$ also true? Can this be used in proof as a fact?

Question 2

• Predicate Logic: $\forall a, b \in \mathbb{R}^+, \ a > 1 \land b > 1 \Rightarrow (\exists c, n_0 \in \mathbb{R}^+, \ n \ge n_0 \Rightarrow \log_a n \le \log_b n)$

Proof. Let $a, b \in \mathbb{R}^+$, $c = 2\log_a b$, and $n_0 = 1$. Assume a > 1, b > 1, and $n \ge n_0$.

We will prove that given n_0 and c, $\log_a n \leq c \cdot \log_b n$.

It follows from the change of base rule $\log_b n = \frac{\log_a n}{\log_a b}$ that

$$\log_a n \cdot 1 = \log_a n \cdot \frac{\log_a b}{\log_a b} \tag{1}$$

$$= \log_b n \cdot \log_a b \tag{2}$$

$$\leq 2\log_a b \cdot \log_b n \tag{3}$$

Then, since $c = 2 \cdot \log_a b$,

$$\log_a n \le c \cdot \log_b n \tag{4}$$

Attempt 2:

Let $a, b \in \mathbb{R}^+$. Assume a > 1, b > 1. Let $c = 2\log_a b$, and $n_0 = 1$. Assume $n \ge n_0$.

We will prove that given n_0 and c, $\log_a n \le c \cdot \log_b n$.

Change of base rule fact tells us the following

$$\forall a, b \in \mathbb{R}^+, \forall n \in \mathbb{N}, a \neq 1 \land b \neq 1 \Rightarrow \log_b n = \frac{\log_a n}{\log_a b}$$
 (1)

Using this fact, we can write

$$\log_a n \cdot 1 = \log_a n \cdot \frac{\log_a b}{\log_a b} \tag{1}$$

$$= \log_b n \cdot \log_a b \tag{2}$$

$$\leq 2\log_a b \cdot \log_b n \tag{3}$$

Then, since $c = 2 \cdot \log_a b$,

$$\log_a n \le c \cdot \log_b n \tag{4}$$

Notes:

- Change of base rule

$$\forall a, b, n \in \mathbb{R}^+, a \neq 1 \land b \neq 1 \Rightarrow \log_b n = \frac{\log_a n}{\log_a b}$$
 (5)

– Noticed professor uses 'Let' and 'Assume' twice to introduce headers for the statement and $\log_a n \in \mathcal{O}(\log_b n)$ separately.

Let $a, b \in \mathbb{R}^+$. Assume that a > 1 and b > 1. Let $n_0 = 1$, and let $c = \frac{1}{\log_b a}$. Let $n \in \mathbb{N}$, and assume that $n \ge n_0$. We want to show that $\log_a n \le c \cdot \log_b n$.

- Noticed if $\log_a n = c \cdot \log_b n$ is true, then the following is also true
 - 1. $\log_a n \le c \cdot \log_b n$
 - $2. \log_a n \ge c \cdot \log_b n$
- Noticed professor uses the phrase

____ fact tells us the following

{...}

Using this rule, we can write

{...}

to introduce an external fact to a proof.

 $-g \in \mathcal{O}(f): \exists c, n_o \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n), \text{ where } f, g: \mathbb{N} \to \mathbb{R}^{\geq 0}$

Question 3

• Predicate Logic: $\forall f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $c_0 = 1$, $n_0 = 1$. Assume $n \geq n_0$, and $g(n) \leq c_0 f(n)$. Let $d_0 = c_0 + 1$, and $m_0 = n_0$. Assume $m \geq m_0$.

Proof. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $c_0 = 1, n_0 = 1$. Assume $n \geq n_0$, and $g(n) \leq c_0 f(n)$. Let $d_0 = c_0 + 1$ and $m_0 = n_0$. Assume $m \geq m_0$.

We will prove the statement by starting from the assumption $g(n) \le c_0 f(n)$, and show that $(f+g)(n) \le d_0 f(n)$.

It follows from the assumption $g(n) \leq c_0 f(n)$ that we can write

$$g(n) \le c_0 f(n) \tag{1}$$

$$g(n) + f(n) \le c_0 f(n) + f(n) \tag{2}$$

$$g(n) + f(n) \le f(n)(c_0 + 1)$$
 (3)

Then, since $d_0 = c_0 + 1$,

$$f(n) + g(n) \le d_0 f(n) \tag{4}$$

The sum of f and g fact tells us the following

$$\forall n \in \mathbb{N}, (f+g)(n) = f(n) + g(n) \tag{5}$$

Using this fact, we can write

$$(f+g)(n) \le d_0 f(n) \tag{6}$$