

LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model

Nasim Jamshidi Avanaki, Abhijay Ghildyal[§], Nabajeet Barman^{\$}, Saman Zadtootaghaj^{\$}

§Portland State University, OR, USA, \$Sony Interactive Entertainment, UK/Germany

n.jamshidi.avanaki@gmail.com, abhijay@pdx.edu, {nabajeet.barman,saman.zadtootaghaj}@sony.com

Introduction

- NR-IQA is vital for mobile and real-time applications, but existing models are too large and computationally intensive for resource-limited devices.
- LAR-IQA tackles these challenges with a lightweight solution, achieving SOTA performance on the UHD-IQA challenge dataset, while being 5.7 times faster than the fastest SOTA model and robust against color transformations.

Proposed Model

- LAR-IQA introduces a dual-branch architecture that processes authentic and synthetic distortions independently.
- Each branch utilizes a MobileNetV3 encoder, with their outputs combined and fed into a KAN for the final quality score.
- The use of lightweight encoders and the Efficient KAN improves both accuracy and computational efficiency.
- > Incorporation of multiple color spaces for improved robustness.

Fig. 1: Proposed model architecture.

Training Stages

- Each branch is trained separately on a specific task: authentic or synthetic.
- A multi-head model is used to train each branch on multiple datasets, following a multi-task training approach where each dataset represents a new task.
- The two pretrained models are merged into one using a KAN head, followed by fine-tuning.

Datasets and Evaluation Metrics

- Datasets: MSL-IQA was evaluated on seven publicly available datasets, including:
 - Authentic: KONIQ-10K, SPAQ, BID, UHD-IQA, PIPAL
 - Synthetic: KADID-10k, TID2013, PIPAL
- **Evaluation Metrics:** to evaluate the model's performance, we use three main common criteria:
 - SRCC for prediction monotonicity
 - PLCC and KRCC for rank consistency

Problem Statement

Existing NR-IQA models are computationally expensive, requiring significant resources, making them impractical for deployment on mobile or embedded systems. The need for a model that balances speed, accuracy, and robustness is clear.

Results

Method	$\mathbf{PLCC}\uparrow$	SRCC ↑	KRCC†	$\mathbf{RMSE}\!\!\downarrow$	$\mathbf{MAE}\!\!\downarrow$	$\mathbf{MACs}(\mathbf{G})\!\!\downarrow$
HyperIQA	0.103	0.553	0.389	0.118	0.070	<u>211</u>
Effnet-2C-MLSP	0.641	0.675	0.491	0.074	0.059	345
CONTRIQUE	0.678	0.732	0.532	0.073	0.052	855
ARNIQA	0.694	0.739	0.544	0.074	0.052	855
CLIP- IQA +	0.709	0.747	0.551	0.111	0.089	895
QualiCLIP	0.725	0.770	0.570	0.083	0.066	901
LAR-IQA (MLP head) LAR-IQA (KAN head)		0.809 0.836	$\frac{0.616}{0.642}$	0.058 0.061	$\frac{0.042}{0.041}$	\leq 37 \leq 37

Table 1: Evaluation of the performance of the baselines on the test set of UHD-IQA. \uparrow means that higher values are better, \downarrow means that lower values are better.

Fig. 2: Performance of LAR-IQA on validation (left) and test (right) sets of UHD-IQA Dataset.

Fig. 3: MOS predictions of the Synthetic model using MobileNetV3, trained on KADID-10K and tested on sample images from the TID2013 dataset across different color spaces.

Conclusion

LAR-IQA offers an efficient solution for NR-IQA on mobile and resource-constrained devices, combining high accuracy with fast computation.

