from C.D.L.

a) 0.4 hp
$$\cdot$$
 745.7 W/bp = 298.3 W]
298, 3 W / (1.356 W/ft-16/s) = 220.0 ft-16/s)

b) heat flow
$$H = 3$$
. Power = 894.9 W

heat capacity of water $C = 4.2 \text{ J/g-°K} = 4200 \text{ J/kg-°K}$

typical body mass $M = 70 \text{ kg}$ (155 16)

rate of temperature increase $T = \frac{\dot{H}}{mc} = \frac{894.9 \text{ W}}{70 \text{ kg} \cdot 4200 \text{ J/kg°K}} = 0.003 \text{ K/s}$

Human body can't tolerate more than a few degrees of temperature rise.

Say
$$\Delta T_{\text{max}} = 3^{\circ} K = T \Delta t_{\text{max}}$$

$$\Rightarrow \Delta t_{\text{max}} = \frac{\Delta T_{\text{max}}}{T} = \frac{3^{\circ} K}{0.003^{\circ} K/s} = 1000 \text{ s} = 16.7 \text{ minutes}$$

C) dimensions, using SI units for example:

$$0 \sim kg/m^3$$
, $V \sim m/s$, $S \sim m^2$, $C \sim m$
 $L \sim N = kg \cdot m/s^2$ (force), $M \sim N - m = kg m^2/s^2$ (moment)

equation:
$$L = \frac{1}{2} \rho V^2 S C_L$$
 $nnits \Rightarrow kg m/s^2 N \left(kg/m^3\right) \left(m/s\right)^2 m^2 C_L N kg m/s^2 C_L$
 $some$
 C_L is dimensionless

equation:
$$M = \frac{1}{2} \rho V^2 S c C_M$$

units - $\frac{kg - m^2/s^2}{s^2} \sim \left(\frac{kg}{m^3}\right) \left(\frac{m}{s}\right)^2 m^2 \cdot m C_M \sim \frac{kg}{m^2/s^2} \cdot \frac{C_M}{s^2}$

so C_M is dimensionless

d) geometric dimensions scaled by 1/2, with same airflow
$$\rho \rightarrow \rho$$
 same, $V \rightarrow V$ same, $S \rightarrow \frac{1}{4} \stackrel{.}{5}$, $c \rightarrow \frac{1}{2} c$, C_L, C_m same so $L \rightarrow \frac{1}{4} L$, $M \rightarrow \frac{1}{8} M$