

1. Scope

This specification prescribes lead free thick film chip resistors for use in electronics system

2. Designation

Chip Resistor 0805 1/8W \pm 5% 4K7 Ω

CR0805J80472G

CR	0805	J	8	0472	G
<u>Series</u>	Size Code	Tolerance	Power Rating	<u>Value</u>	SPECIAL VALUE
<u>Name</u>	0201	B=± 0.1%	1= 1W	4digitals	G= reel
Product	0402	C=± 0.25%	2= 1/2W	49R9=49.9	V= bulk
CR=Chip	0603	D=± 0.5%	3= 1/3W	0472=4K7	D= special
Resistor	0805	F=± 1%	4= 1/4W	0103=10K	requirement
	1206	G=± 2%	8= 1/8W	0564=560K	
	1210	J=± 5%	A= 1/10W		
	2010	K=± 10%	F= 1/16W		
	2512		H=1/20W		

2.2 Remark:

- (1) Common code for chip resistors
- (2) Normal resistance value for tolerance $\pm 0.1\%$, $\pm 0.25\%$, $\pm 0.5\%$ $\pm 1\%$: the first three digits are significant figures of resistance value and the fourth one denotes the power number of 10, (10^{X})

Example: 330 ohm: 3300, 4.7K ohm: 4701 22K ohm: 2202, 100K ohm: 1003

(3) Normal resistance value for tolerance ±2%, ±5%, ±10%:

the first digit is zero, the second and third digit are significant figures of resistance value and the fourth one denotes the power number of 10, $(10^{^X})$

Example: 330 ohm: 0331, 4.7K ohm: 0472

22K ohm: 0223, 100K ohm: 0104

1

(3) EXPLANATION OF PART NUMBER FOR 0603, ±1%

EIA-96 Marking

code R	Value														
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	215	45	287	57	383	69	511	81	681	93	909
10	124	22	165	34	221	46	294	58	392	70	523	82	698	94	931
11	127	23	169	35	226	47	301	59	402	71	536	83	715	95	953
12	130	24	174	36	223	48	309	60	412	72	549	84	732	96	976

This table shows the first two digits for the tree-digit EIA-96 part marking scheme the third character is a letter multiplier:

 $Y=10^{-2}$, $X=10^{-1}$, $A=10^{0}$, $B=10^{1}$, $C=10^{2}$, $D=10^{3}$, $E=10^{4}$, $F=10^{5}$

(4) If the resistance value is not found in the table for 0603 product, will use normal three digits to show the value, but will add a special mark "- "under the three digits. Example as following:

" 331 " indicates that it is 0603 $\pm 1\%$ 330ohm product.

3. Rating

3.1 Rated Power (%)

Rated power shall be load power corresponding to normal wattage suitable for continuous use at 70° C ambient temperature in case the ambient temperature exceeds 70° C reduce the load power in accordance with derating curve shown as

ТҮРЕ	Rated Power	Max. Working	Max. Overload
1112	nated Tower	Voltage	Voltage
CR0201	1/20W	25V	50V
CR0402	1/16W	50V	100V
CR0603	1/10W	50V	100V
CR0805	1/8W	150V	300V
CR1206	1/4W	200V	400V
CR1210	1/3W	200V	400V
CR2010	1/2W	200V	400V
CR2512	1 W	200V	400V

3.2 Derating Curve

Ambient Temperature(°c)

- 3. 3 Operating Temperature Range -55°C~+125°C; storage condition is $5\sim30^{\circ}$ C, $30\sim75$ %RH.
- 3.4 Rated Voltage

The rated voltage is calculated form the rated power and normal resistance by the following formula: $E = \sqrt{RP}$

Where: E: Rated Voltage (V)

P: Rated Power (W)

R: Normal Resistance (ohm)

In case the value calculated by the formula exceed the maximum working voltage as 3.1 the maximum working voltage shall be regarded as rated

3.5 Resistance Range and Resistance Tolerance

TYPE	Tolerance	Symbol	Resistance	Standard Resistance		
NO.	(%)	Symbol	Range(ohm)	Values		
CR0402						
CR0603	±0.5%	D	10~1M	E96		
CR0805	±0. 5/0	υ 	1 U~ 1 W	E90		
CR1206						
CR0201	±1%	F	1RO-10M	E96		
CR0402	±2%	G	TRO TOM	E90		
CR0603	±5%	J				
CR0805	±10%	K				
CR1206			1R0~22M	E24		
CR1210			(0201:1R0-10M)	E24		
CR2010	±20%	M				
CR2512						

3

4. Dimension

4.1 Dimension

DIMENSIONS	151 × E					
Type	L	W	T	Е	е	
CR0201	0.60±0.03	0.30±0.03	0. 23±0. 03	0.15±0.05	0.15±0.05	
CR0402	1.00±0.05	0.50±0.05	0. 35±0. 05	0.15±0.10	0. 20±0. 10	
CR0603	1.60±0.15	0.80±0.10	0. 45±0. 10	0. 25±0. 20	0. 30±0. 20	
CR0805	2. 00±0. 15	1. 25±0. 15	0.50±0.10	0.35±0.20	0.40±0.20	
CR1206	3. 10±0. 15	1.60±0.15	0.55±0.10	0. 45±0. 25	0. 40±0. 25	
CR1210	3. 10±0. 15	2.50±0.15	0.55±0.15	0. 35±0. 25	0.60±0.35	
CR2010	5. 00±0. 20	2.50±0.20	0.55±0.15	0.65±0.25	0.50±0.25	
CR2512	6. 25±0. 20	3.10±0.20	0.55±0.15	0.85±0.25	0. 95±0. 25	

4.2. Construction and materials

No.	construction	Major material
1	Ceramic substrate	A1203
2	Conductive layer	Ag
3	Side conductive layer	NiCr
4	Resistive layer	Ru02 + glass
5	Inner protective layer	Glass
6	Protective layer	Epoxy
7	Marking	Epoxy
8	Termination barrier layer	Ni
9	Termination layer	Matte Tin

4. 3 Electrical Characteristics:

	Rated	Max.	Max.			Resistano	ce Range		Jumper	Jumper		
Туре	Power at 70°C		Overload Voltage	T.C.R (ppm/°C)	D(±0.5%) E96	F(±1%) E96	G(±2%) E24	J(±5%) E24	Resistance Value	Rated Current		
0201	1 /2011	2011	251	50V	±600		1Ω~25Ω	1Ω~25Ω	1Ω~25Ω	$50 \mathrm{m}\Omega$	0.54	
0201	1/20W	25V	50V	±250		25Ω~10MΩ	25Ω~10MΩ	25Ω~10MΩ	MAX	0.5A		
				+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50 O			
0402	1/16W	50 V	100V	±200	10Ω~1MΩ	10Ω~10MΩ	10Ω~10MΩ	10Ω~22MΩ	50mΩ MAX	1A		
				±100					IVIAA			
						+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50m ()	
0603	1/10W	1/10W	50V	100V	±200			10Ω~10MΩ	10Ω~22MΩ	$-$ 50m Ω MAX	1A	
					±100	10Ω~1MΩ	10Ω~10MΩ			IVIAAA		
			300V	+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50m Ω			
0805	1/8W	150V		±200			10Ω~10MΩ	10Ω~22MΩ	MAX	1.5A		
				±100	10Ω~1MΩ	10Ω~10MΩ			IVIAAA			
				+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50m Ω			
1206	1/4W	200V	400V	±200			10Ω~10MΩ	10Ω~22MΩ	MAX	1.9A		
				±100	10Ω~1MΩ	10Ω~10MΩ			1017 127			
				+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50m Ω			
1210	1/3W	200V	400V	±200			10Ω~10MΩ	10Ω~22MΩ	MAX	2.2A		
				±100		10Ω~10MΩ			1717 17 1			
				+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50m Ω			
2010	1/2W	200V	400V	±200			10Ω~10MΩ	10Ω~22MΩ	MAX	3A		
				±100		10Ω~10MΩ			MAA			
				+500~-250		1Ω~10Ω	1Ω~10Ω	1Ω~10Ω	50m Ω			
2512	1W	200V	400V	±200			10Ω~10MΩ	10Ω~22MΩ	MAX	3A		
				±100		10Ω~10MΩ			IVIAA			
*ZERO	OHM .	JUMPER<0). 050HM									

5

5. Environmental performance

Description	Specification Limits	Test Methods	
Temperature Coefficient	(over 10ohm) ±200 ppm/℃ Max.	JIS C5202 5.2	
	(lower 10ohm) +500∼-250 ppm/°C		
Short Time Overload	±(1.00%+0.05ohm) Max.	JIS C5202 5.5	
Resistance to Soldering Heat	±(1.00%+0.05ohm)Max.	JIS C5202 6.4	
Solderability	95% Coverage Min.	JIS C5202 6.4	
Load Life	±(3.00%+0.05ohm)Max.	JIS C5202 7.10	
Load Life Humidity	±(2.00%+0.05ohm)Max.	JIS C5202 7.5	
Temperature Cycle	±(2.00%+0.05ohm)Max.	JIS C5202 7.6	
Component high temperature	±(1.00%+0.05ohm) Max.	<260°C 10second	
resistance		3times	
Component rework/hand soldering	Avoid solder iron tip direct touch	Approx. 350°C for	
temperature resistance	the components body	3seconds	
MSL (moisture sensitive level)	Level 1	J-STD-020C	

6. Tapping Specification

Dimens	ions	A	В	С	F	W
CR0201 CR0402	mm	178±2. 0	60.0±1.0	13.5±0.5	11. 4±0. 1	9.00±0.3
CR0603 CR0805 CR1206 CR1210	Inch	7. 008±0. 079	2. 362±0. 039	0.531±0.020	0. 449±0. 039	0. 354±0. 012
CR2010	mm	178±2.0	60.0±1.0	13.5±0.5	15. 4±1. 0	13.0±0.3
CR2512	Inch	7. 008±0. 079	2.362±0.039	0.531±0.020	0.606±0.039	0.512±0.012

Remark: (1)CR0201/CR0402 Quantity per Reel 10,000 pcs/Reel (2)CR2010/CR2512 Quantity per Reel 4,000 pcs/Reel

Dimens	ions	A	В	D	F	P0	P1	P2	W
	mm	0.38±0.05	0.68±0.05	1.50±0.10	3.50±0.05	4.00±0.10	2.00±0.10	2.00±0.05	8.00±0.20
CR0201	inch	0.015	0.027	0.059	0.138	0.157	0.079	0.079	0.315
	HICH	±0.002	±0.002	±0.004	±0.002	±0.004	±0.004	±0.002	±0.008
	mm	0.65±0.10	1.15±0.10	1.50±0.10	3.50±0.05	4.00±0.10	2.00±0.10	2.00±0.05	8.00±0.20
CR0402	inch	0.026	0.045	0.059	0.138	0.157	0.079	0.079	0.315
	HICH	±0.004	± 0.004	±0.004	±0.002	± 0.004	± 0.004	±0.002	±0.008
	mm	1.10±0.10	1.90±0.10	1.50±0.10	3.50±0.05	4.00±0.10	4.00±0.10	2.00±0.05	8.00±0.20
CR0603	inch	0.043	0.075	0.059	0.138	0.157	0.157	0.079	0.315
	HICH	±0.004	±0.004	±0.004	±0.002	±0.004	±0.004	±0.002	±0.008
	mm	1.65±0.20	2. 40±0. 20	1.50±0.10	3.50±0.05	4.00±0.10	4.00±0.10	2.00±0.05	8.00±0.20
CR0805	inch	0.065	0.094	0.059	0.138	0.157	0.157	0.079	0.315
	HICH	±0.008	±0.008	±0.004	±0.002	±0.004	±0.004	±0.002	±0.008
	mm	2.00±0.20	3.60±0.20	1.50±0.10	3.50±0.05	4.00±0.10	4.00±0.10	2.00±0.05	8.00±0.20
CR1206	inch	0.079	0.142	0.059	0.138	0.157	0.157	0.079	0.315
		±0.008	±0.002	±0.004	±0.002	±0.004	±0.004	±0.002	±0.008
	mm	2.80±0.10	3.50±0.10	1.50±0.10	3. 50±0. 05	4. 00±0. 10	4. 00±0. 10	2. 00±0. 05	8. 00±0. 20
CR1210	inah	0.110	0.138	0.059	0.138	0.157	0.157	0.079	0.315
	inch	±0.004	±0.004	±0.004	±0.002	±0.004	±0.004	±0.002	±0.008
	mm	2. 90±0. 10	5.30±0.10	1.50±0.10	5. 50±0. 05	4. 00±0. 10	4. 00±0. 10	2. 00±0. 05	12.0±0.10
CR2010	inah	0.114	0.209	0.059	0. 216	0.157	0.157	0.079	0.472
	inch	±0.004	±0.004	±0.004	±0.002	±0.004	±0.004	±0.002	±0.004
	mm	3. 40±0. 10	6.60±0.10	1.50±0.10	5. 50±0. 05	4. 00±0. 10	4. 00±0. 10	2. 00±0. 05	12.0±0.10
CR2512	1.	0.134	0. 260	0.059	0. 216	0.157	0.157	0.079	0.315
	inch	±0.004	±0.004	±0.004	±0.002	±0.004	±0.004	±0.002	±0.004

7. Characteristics And Test Methods

- 7.1 Electrical characteristics test methods
 - 7.1.1 Resistance Value

Measurement of resistance take place by the bridge methods or by use of a measuring instrument corresponding accuracy, its accuracy being fully reliable with respect to tolerances on resistance. The applied voltage for measurement shall be as specified in Table as following.

Resistance	Voltage applied(V)
1Ω~100Ω	0.3V Ω
100 Ω ~1 K Ω	1V Ω
1Κ Ω~ 10Κ Ω	3 V Ω
10ΚΩ~100ΚΩ	10V Ω
100Κ Ω~ 1Μ Ω	25 V Ω
1MΩ~10MΩ	50V Ω
10M Ω ~above Ω	100VΩ

7.1.2 Temperature Coefficient of Resistance

In according with 7.1.1 measure initial of resistor mounted on the test board, Then Keep the temperature at each step as following table, hold for 30 minutes after reaching a given temperature and measure resistance under the same condition as initial-value measurement. The temperature coefficient of resistance calculated from these measured values by the following formula.

Temperature coefficient(ppm/°C) =
$$\frac{R - R_0}{R} * \frac{1}{t - t_0} * 10^6$$

Where R = Resistance value at tested temperature

R₀ = Initial resistance value

t = Actual measurement of tested temperature

t₀ = Initial temperature

STEP	TEMPERATURE
1	25±5°C
2	125±5°C

7.1.3 short-Time Overload

In accordance with 7.1.1 measure the initial of resistor mounted on the test socket, then apply to the resistor the voltage corresponding to 2.5 times rated voltage. However, in case the voltage corresponding to 2.5 times the rated voltage exceeds the maximum overload voltage, the maximum overload voltage shall be regarded as test voltage. Eliminate the voltage, leave aside with no load for 30 minutes and then measure resistance under the same condition as in initial-value measurement. At this time, the variation in relation to initial resistance shall be less than $\pm (1.00\% + 0.05\,\Omega)$ for 5% and less than $\pm (0.5\% + 0.05\,\Omega)$ for 1%.

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - --- (\%)$$

Where R1=resistance at experiment front in ohms . (Ω) R2=resistance at experiment after in ohms . (Ω)

7.1.4 Dielectric withstanding voltage

The applied test voltage shall be slow by increased form 0 V to maximum working voltage with DC voltage across electrode and the center of body for 60±5seconds. At this time there shall be no failure on the resistor as short circuit live, burning, breakdown, etc.

7.2 Mechanical Characteristics and Test Methods

7.2.1 Resistance to Soldering Heat

In accordance with 7.1.1, measure the initial value of a resistor Dip it in a soldering bath at 260±5°C for 10±0.5 seconds and take out at room temperature. Then, leave it aside for about one and measure resistance under the same condition as in initial value measurement. The variation in relation to the initial

resistance shall be less than, $\pm (1.00\% + 0.05\Omega)$ for 5% and less than $\pm (0.5\% + 0.05\Omega)$ for 1%, there being no failure in appearance and mechanical harm.

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - (\%)$$

Where R1=resistance at experiment front in ohms . (Ω) R2=resistance at experiment after in ohms . (Ω)

7.2.2 Solderability

Dip the terminal in a flux (methanol solution containing rosin approx. 25% in weight) for one to two sec. and then dip into a soldering bath at 245±5°C for 2± 0.5sec. The solder to be used shall be JIS C 5202 6.5

7.2.3 Bending Strength

Test Method: JIS C 5202 6.1.4

The test printed circuit board equipped with the specimen SMD shall be bend. The specified amount of bend shall be maintained for 5 ± 1 Sec and the number of time shall be one .

Test Conditions : CHIP

Item	Test Time (Sec)	Amount of bend +0.20(mm)					
CHIP	5±1	5 or 2 by type 2					
POWER CHIP	5±1						
CHIP ARRAY	5±1	1					

7.3 Temperature Cycling and Test Methods

7.3.1 Low Temperature Operation

In accordance with MIL-STD-55342D PARA 4.7.4, measure the initial value of a resistor mounted on the test substrate and place it at the condition of 25° C $\pm 3^{\circ}$ C, then change the chamber in condition at $-65^{+0}_{-5}^{\circ}$ C for 45^{+0}_{-5} mins at work voltage. Take it out at room temperature, leave aside for twenty-four hours and then measure resistance under the same condition as in initial-value measurement. At this time, the variation in relation to the initial resistance shall be below $\pm (1.00\% + 0.05\Omega)$ for 5% and shall be below $\pm (0.5\% + 0.05\Omega)$ for 1%, there being no mechanical damage.

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - --- (\%)$$

Where R1=resistance at experiment front in ohms . (Ω) R2=resistance at experiment after in ohms . (Ω)

7.3.2 Moisture Resistance

In accordance with 7.1.1, measure the initial value of a resistor mounted on the test substrate then, leave it in a thermal and humidity chamber condition for $1000^{+24}/_{-0}$ hours 'each step as following table. Take it out room temperature, leave aside for about one hour, and then measure resistance under the same condition as in initial-value measurement. At this time the variation in relation in to the initial resistance shall be below $\pm(2.00\%+0.05\Omega)$ for 5% and shall be below $\pm(0.5\%+0.05\Omega)$ for 1%, there being no mechanical damage.

Step	1	2	3	4	5	6	7	8	9	10	11
Temperature(°C)	65	65	25	65	65	25	25	-10	-10	25	25
Humidity(%)	92	92	92	92	92	92	92	0	0	0	92
Time(H:m)	2:30	3:00	2:30	2:30	3:00	2:30	1:30	0:30	3:00	0:30	2:30

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - --- (\%)$$

Where

R1=resistance at experiment front in ohms. (Ω)

R2=resistance at experiment after in ohms. (Ω)

7.3.3 Endurance for Humidity

In accordance with 7.1.1, measure the initial value of a resistor mounted on the test substrate . The specimen mounted as specified in the chamber at 40 $\pm 2^{\circ}$ C temperature and 90~95% relative humidity ,and then subjected to a voltage cycle consisting of rated D.C. voltage in article 3.4 application of 1h 30 mins and rest of 30 mins repeatedly for one the test durations given in 1000 $^{+48}/_{-0}$ hours. Then, take it out at room temperature, leave aside for about one hour, and measure resistance under the same condition as in initial-value measurement. At this time, the variation in relation to the initial resistance shall be below $\pm (2.00\% + 0.05\Omega)$ for 5% and shall be below $\pm (0.5\% + 0.05\Omega)$ for 1%, there being no mechanical damage.

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - ----(\%)$$

Where

R1=resistance at experiment front in ohms . (Ω)

R2=resistance at experiment after in ohms . (Ω)

7.3.4 Life

Test Method: MIL-STD-202F METHOD 108A

The specimen is measured for its resistance value in accordance with 1-1. The specimen mounted as specified in the chamber at the rated category temperature $70\pm2^{\circ}\text{C}$, and with the rated d.c. voltage application $1000^{+24}/_{-0}$ hours(42day). Next, the specimen is taken out of the test chamber, allowed to stand at room temperature without loaded for approximately 1h unless otherwise specified, measured for its resistance values again in accordance with 1-1. And then the variation in the resistance values taken before and after this test is calculated. At this time, the variation in relation to the initial resistance shall be below $\pm(3.00\%+0.05\Omega)$ for 5% and shall be below $\pm(1\%+0.05\Omega)$ for 1%, there being no mechanical damage.

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - (\%)$$

Where R1=resistance at experiment front in ohms. (Ω)

R2=resistance at experiment after in ohms . (Ω)

7.3.5Thermal shock

Test Method: MIL-STD-202F METHOD 107G

The specimen is measured for its resistance value in accordance with 1-1, and then placed in the test chamber. The test chamber at that temperature for 125°C and -55°C it shall be 5 cycles. The specimen is allowed to stand at room temperature for 1 hr or more but not more than 2 hr, measured for its resistance value again in accordance with 1-1, and then the variation in the resistance values taken before and after this test is calculated. At this time, the variation in relation to the initial resistance shall be below $\pm(1.00\%\pm0.05\Omega)$ for 5% and shall be below $\pm(0.5\%\pm0.05\Omega)$ for 1%, there being no mechanical damage.

$$\Delta R\% = \frac{R_2 - R_1}{R_1} *100 - --- (\%)$$

Where R1=resistance at experiment front in ohms. (Ω)

R2=resistance at experiment after in ohms. (Ω)

7.3.6 Peel force of top cover tape

The peel force of top cover tape shall be 0.1N to 0.7N(10 to 70 gf), when the top cover tape is pulled at a speed of 200 mm/min with the angle between the tape during peel and the direction of unreeling maintained at 165 to 180 degree as illustrated in Fig-10.

7.3.7 Recommend reflow soldering profile

波峰焊曲线

