4.16 (5) (7 /) Supergames que l= LL, con [1-,1]=I, demostrar que: Si (1x) = > 1x> y 14> = 1,1x> endences: [14>= (x+7)14> En efecto, tenemos: $||L|| \times = ||X|| \Rightarrow ||L|| \times = (|L_L|_+) \times ||X||$ $\Rightarrow L |x\rangle = \lambda (L L) |x\rangle$ [-, -, -] = I = I = I = I Entences: $=(IIL_{+}+L_{+}L_{-}L_{+})(x)=IIL_{+}(x)+L_{+}L_{-}L_{+}(x)$ = II) + L+(L-L+) | x > = II) + L+ L | x > $= \mathbb{I}|X\rangle + \mathbb{I}_{+}(X|X\rangle) = \mathbb{I}|Y\rangle + \mathbb{I}_{+}|X\rangle$

 $= |Y\rangle + \lambda |Y\rangle = (\lambda + 1)|Y\rangle =$

7 de mismo modo demos tran que: 51 (| 1x) = > 1x> y 17> = (1x) entenes: 112>= (>-1)12> En efecto: | | | | = I => | | | = | I = | $|L_{12}\rangle = |L_{11}\rangle = |L_{11}\rangle$ $= L_{-}(L_{-}L_{+}-I) |x\rangle$ = (L_L_L_+ - L_I) |x> = LLL (x) - LI(x), I(x) = (x) = L_L|X>-L-|X> $= \mathbb{L}_{\lambda}|x\rangle - \mathbb{L}_{|x\rangle}$ $= \chi(2) - (2) = (\chi - 1)(2) =$

and the second

111. 7