

Op.149, No.2

Question Collection

Walpurgis 孙肇远 PB22030708

Op.149. 物理化学知识点与思考题合集

1. 热学基础知识和气体

1.

系统和环境的含义是什么? 宇宙属于哪一种系统?

2.

什么是广度函数 (广延量)? 什么是强度函数 (强度量)? 是否有既不是广度函数又不是强度函数的物理量?

3.

一个系统的广度函数之比是强度函数,还有什么方法通过广度函数构造强度函数?

4.

状态的含义是什么?状态函数是什么?

5.

什么是热力学平衡态? 什么是稳定态?

6.

什么是状态方程? 由于状态方程的存在, 一团气体的自由度是多少?

7.

气体的速度分布律,速率分布律,以及其在势场中的位矢分布律都来源于同一个根源性的分布,这个根源性分布是什么?

8.

Boltzmann 因子 $\exp[-\beta\epsilon]$ 中, β , ϵ 分别是什么物理量?

9.

对于系统的一个 "态", 其出现的概率 $P \propto \exp[-\beta \epsilon]$, 对于经典力学, 此处的 "态" 是以什么 物理量进行区分的?(比如, 是能量, 还是动量, 还是别的什么?)

10.

直接写出理想气体单个方向的速度分布律(你可以待定归一化系数),由此得到三维空间的

速率分布率.

11

理想气体在此分布律下的最概然速率, 平均速率, 方均根速率都是多少?

12.

气体的碰壁频率 $\Gamma = \frac{1}{4}n\langle v \rangle$, 这里面的物理量都是什么含义?

13.

气体相互碰撞频率 $Z = \sigma n \langle v \rangle$, 这里面的物理量都是什么含义? 这个表达式是使用条件是什么? 当分子都热运动时, 表达式又是怎样?

14.

气体的平均自由程 $\lambda = \frac{\langle v \rangle}{Z}$, 其物理意义是什么?

15.

速率分布率 f[v] dv 的含义是什么?(即代表了哪些粒子?)

16.

如何通过三维空间气体的速率分布律求算动能分布律? 如何通过 x 方向的速度分布律求算 x 方向的动能分布律?

17.

泻流可以分离不同分子量的气体,它的原理是什么? 定量上如何计算?

18.

气体的压缩因子如何定义? 对于 $p\to 0$, 其是否等价于 $V_{\rm m}\to\infty$? 此时的压缩因子是多少? 19.

气体的 Boyle 温度定义为 $\lim_{p\to 0}\left(\frac{\partial(pV_{\rm m})}{\partial p}\right)_T=0$ 或 $\lim_{p\to 0}\left(\frac{\partial Z}{\partial p}\right)_T=0$ 时的温度, 通过数学手段证明二者定义的等价性.

20.

什么是气体的临界点? 临界点下, 气体满足怎样的偏微分关系?

21.

Van der Waals 气体具有哪些假设? 写出 van der Waals 方程.

22.

确定 van der Waals 气体的 Boyle 温度.

23

确定 van der Waals 气体的临界点处各物理量,并确定此时的压缩因子.

24.

对比状态参数的定义是什么?对于同一温度下的不同气体,其对比温度随临界温度怎样变化?

2. 热力学第一定律

25.

对于两团分别满足理想气体状态方程的气体,若其被一固定的绝热隔板隔开,则整个系统是否处于处于平衡态?若隔板导热,则需要满足什么条件?若隔板可滑动呢?

2. 热力学第一定律 5

26.

若一个处于平衡态的系统的某一部分是均匀的,则其宏观可观测性质具有固定且明确的值(对于能量性质的量,零点的选取不影响其明确性),则这种性质即为态函数.

27.

能量是态函数, 温度, 压强, 体积都是态函数, 任何态函数的函数都是态函数.

28.

功和热不是态函数, 我们不能拿出来一团气体说它的功(或热)是多少.

29.

功和热是能量改变的量度,对于同一种初末态的能量,可以用无数种功和热的组合.

30.

什么是微分?什么是恰当微分?什么是非恰当微分?

31.

能量的微分是哪一种? 功 (或热) 的微分是哪一种?

32.

对于一团气体,已知始态,已知末态 (p, V, T) 中的其中一个物理量,那么确定末态需要多少个约束? 通常来说,这些约束是什么?

33.

为什么我们可以把任意一个态函数 (因变量) 写作其它两个态函数 (自变量) 的函数表达? 这两个态函数 (自变量) 的选取是否有什么要求?

34.

对于一个态函数的微分 (也就是我们熟悉的全微分), 其展开式中等号另一侧的微分前系数的含义是什么?

35.

热容以偏微分表示的定义是什么? 证明对于理想气体, 有热容差 $C_p - C_V = nR$.

36.

什么是 Legendre 变换? 我们为什么要引入 Legendre 变换?

37.

方程 $\mathrm{d}U=C_V\,\mathrm{d}T$ 总是正确的吗? 若不是,则成立条件是? 类似地,考虑方程 $\mathrm{d}H=C_p\,\mathrm{d}T$.

38.

假定热容为 C_1 , C_2 且与温度无关的两个物体, 初始温度为 T_1 , T_2 , 计算其热传递达到平衡态时的温度.

39.

膨胀功 (体积功) dW 的表达式是什么? 如何将其与系统的 -p dV 比较?

40.

哪些过程意味着 dW = 0? 哪些过程意味着 dQ = 0?

41.

证明理想气体绝热过程方程 pV^{γ} = Const. 在证明的过程中, 我们用了哪些假设?

42.

什么是 Joule 膨胀? 它说明了什么?

43.

如何求算理想气体不可逆的绝热过程? 以等外压的绝热膨胀为例.

44.

什么是 Carnot 循环? 画出 pV 说明, 并画出抽象的热功流向图.

45.

Carnot 热机效率的定义是? 制冷剂和热泵呢?

46.

什么是 Joule-Thomson 膨胀? 它是什么过程? 其可以用于什么实际应用?

47.

什么是反应进度? 其量纲是什么? 是否与方程式写法有关?

48.

化学反应的热效应在等容(压)条件下都分别对应哪个状态函数的改变?推导之.

49.

热效应 $\Delta_{\rm f} H_{\rm m}^{\circ}, \Delta_{\rm r} H_{\rm m}^{\circ}, \Delta_{\rm c} H_{\rm m}^{\circ}$ 的定义都是什么?

50.

碳和磷的最稳定单质都是什么?

51.

对于氢元素, 其考虑标准燃烧时得到的产物是什么? 氯元素, 氮元素, 硫元素呢?

52.

什么是化学反应的 Kirchhoff 定律? 其推导中利用了哪些假设?

53.

计算燃烧反应的最高火焰温度时,一般将其视作什么过程?具体计算过程是怎样的?

54.

能量均分的本质是 "每一种平方形式的能量贡献出 $\frac{1}{2}k_{\rm B}T$ ", 其在 "平方形式" 指形如 $\epsilon=kx^2$ 的能量表达式, 其中 x 为体系的坐标或动量 (以及对于多质点约束的角动量).

55.

利用能量均分原理说明单原子理想气体的能量期望是 $\frac{3}{2}k_{\rm B}T$, 并分情况考虑双原子理想气体. 以及由上述能量给出各自的热容.

56.

一绝热刚性容器中放有一可滑动的绝热活塞, 初状态两侧气体压强不同: 左侧气体为 p_1 , 右侧气体为 $p_2 > p_1$, 释放活塞后两侧气体体积发生变化, 则活塞运动至两侧气体压强相同时, 两侧气体分别的 ΔU , W 都是多少? 你发现了什么问题?

3. 第二定律

57.

什么是自发过程? 是否存在可逆的自发过程?

58.

3. 第二定律 7

是否可以从高温物体向低温物体传递热量而不做功?是否可以从高温物体拿出热量做功而不对任何低温物体传热?第二定律的 Kelvin 表述是什么?

59.

是否可以使低温物体向高温物体传热? 第二定律的 Clausius 表述是什么?

60.

如何通过连接 Carnot 热机证明两种说法的等价性?

61.

Carnot 热机的效率是多少? 工作于两个热源间的不同可逆热机的效率是否不同? 不可逆热机呢?

62.

Clausius 不等式 $\oint \frac{dQ}{T} \le 0$, 其等号成立的条件是什么? 这意味着此时的 $\frac{dQ}{T}$ 将成为什么微分?

63.

熵的定义是什么? 绝热系统具有怎样的不等式?

64.

如何计算一个过程的熵变? 假设我们知道一团理想气体的始态和末态.

65.

对于一般的 p,V,T 变化, 我们可以直接对微分式积分. 而涉及相变时, 则需设计过程使其包含可逆相变. 可逆相变时的熵变与焓变的关系是什么? 这说明了哪个热力学势变化为 0?

66.

什么是标准熵? 可否利用 $\Delta_{\rm f} H_{\rm m}^{\circ} - T S_{\rm m}^{\circ}$ 给出 $\Delta_{\rm f} G_{\rm m}^{\circ}$?

67.

系统的微观状态数不具有加和性,因此不是广度函数也不是强度函数,如何通过系统的微观状态数构造广度函数?

68.

我们利用 dQ 表示热量的非恰当微分, 此时有热力学第一定律 dU = dQ + dW, 准静态过程时, 有 dQ = T dS, dW = -p dV, 将上述等式表示为一般过程的不等式, 并说明 dU = T dS - p dV 的成立条件.

69.

分别指出理想气体进行等温可逆膨胀和焦耳 (Joule) 膨胀时, 气体和环境各自的熵变.

70.

写出热力学势 U, H, F, G 之间的联系.

71.

写出热力学势的微分表达式,并清楚地记忆其自然变量前偏导数的正负.

72.

对于任意的热力学势 X 和其自然变量 Y, Z 的组合, 给出其间任意的偏导数.

73

Legendre 变换保持外微分结构,对于热力学势的微分表达式再进行一次外微分,得到了什么?

74.

由微分形式间的坐标变换与 Jacobian 行列式的关系, 直接写出 Maxwell 关系式.

75.

证明 Gibbs-Helmholtz 方程 $H = -T^2(\frac{\partial}{\partial T}\frac{G}{T})_p$.

76.

对系统的不同约束将造成不同的系统可用功(资用能),给出恒温恒容时资用能对应的热力学势.

77.

说明热力学判据 $(dG)_{p,T} \leq 0$ 的含义并证明, 类似地, 证明 $(dH)_{S,p} \leq 0$.

78

利用两种方法计算 $(\frac{\partial C_p}{\partial p})_T$.

79

证明互反定理 $(\frac{\partial x}{\partial y})_z(\frac{\partial y}{\partial z})_x(\frac{\partial z}{\partial x})_y = -1.$

80.

如何计算气体 pVT 变化的 ΔG ? 利用 -S dT + V dp 和 d(H - TS) 两种方法计算并证明其等价.

81.

如何计算某一温度下理想气体的 Gibbs 能随压强的变化? 如何计算某一体积下理想气体熵随温度的变化?

82.

证明化学反应的 $\Delta G = \Delta H - T\Delta S$. 不同温度下的 ΔG 间的关系是什么?

83.

说出若干种热力学第三定律的等价表述,不需要证明其等价性.

84

0 K 意味者等温线与绝热线 (等熵线) 重合, 这与理想气体的上述两线斜率关系矛盾, 说明了什么?

85.

如何通过液态水在某一温度下的规定熵计算某一气态水的熵?

4. 化学势

86.

什么是相 (phase)? 混合物可不可以是一个相? 举例说明.

87.

表示组分的常见强度函数有哪些? 它们的量纲都是什么?

88

什么是 (某一广度函数的) 偏摩尔量? 它要求哪些状态函数保持不变?

89.

证明偏摩尔量的加和公式.

4. 化学势 9

90.

化学势的定义是什么?写出热力学势的微分形式在化学势修正后的表达.

91.

只有 Gibbs 能保持自然变量不变时的偏微分是偏摩尔量, 它有什么特殊之处?

92.

利用偏摩尔量的加和性证明 Gibbs-Duhem 关系 $S dT - V dp + n d\mu = 0$.

93.

写出化学势随温度, 压强变化的关系.

94

指出气相标准态的含义,并指出某一温度下理想气体化学势随压强的关系.

95.

实际气体逸度和逸度因子的定义是什么? 其在 $p \to 0$ 时回归理想气体, 此时的逸度因子是多少?

96.

稀溶液中的两个经验定律分别是什么?

97.

指出溶液相标准态的含义.

98.

写出纯气液平衡对应的化学势平衡表达式. 此时的压强称为饱和蒸汽压.

99.

什么是理想液态混合物? 写出各自组分的化学势. 其混合过程的体积, 焓, 熵, Gibbs 能分别如何变化?

100.

什么是理想稀溶液?写出各自组分的化学势.

101

写出稀溶液中溶剂的化学势与纯溶剂的关系,并由此定性说明凝固点,沸点的变化.

102.

给出凝固点变化 $\mathrm{d}T_{\mathrm{f}}$ 与溶剂组分 $\mathrm{d}x$ 的微分关系,并在近似下给出积分关系,由此推得凝固点降低常数的表达式.

103.

给出沸点变化 dT_b 与溶剂组分 dx 的微分关系,并在近似下给出积分关系,由此推得沸点升高常数的表达式.

104.

渗透压由不同浓度溶液间化学势平衡给出, 在稀溶液近似下推出渗透压公式 $\Pi = cRT$.

105.

对于实际情况,真实化学势的表达式中需引入活度,其替代的是理想状态下表示组分的强度函数,不同的强度函数对应了不同的活度选择,一般来说,我们选择摩尔分数对应的活度.

106.

实际平衡时满足平衡常数表达式的物理量是什么? 活度因子是什么? 其在什么情况下趋近于 1?

107.

利用化学势证明同一物质在两互不相溶溶剂中的分配定律.

5. 化学平衡

108.

化学平衡的核心是反应式的化学势平衡,反应物与生成物化学势依赖于各自表示组分的强度函数 (浓度,压强,摩尔分数, etc.),因此平衡时各物质都会存在,只是浓度高低的问题. 譬如,即使是氢氧化合反应,也会有极少量的反应物存在,以支持化学势的平衡.

109.

写出反应进度的定义, 它是否与方程式写法有关?

110.

指出化学反应的 $G \sim \xi$ 图像切线斜率的含义.

111.

我们人为将化学势的表达式分为了两部分,一是标准态的化学势,二是相对于标准态的变化,这两部分分别对应了反应的 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\circ}$ 与 $RT\ln Q$.

112.

由上一问说明 $\Delta_{\mathbf{r}}G_{\mathbf{m}}, \Delta_{\mathbf{r}}G_{\mathbf{m}}^{\bullet}, Q, K$ 的关系, 并说明其中哪些仅为温度的函数.

113.

对于理想气体气相反应,写出各种平衡常数的定义与其间关系,其中哪些仅是温度的函数? 114.

讨论对于气相分子数增加的反应,保持某些状态函数不变,分别加入反应物,生成物,惰性气体对平衡的影响.

115.

对于固体的分解反应,什么是解离压,什么是分解温度?

116.

对于多相化学反应,写出其采用的各种标准态,与对应的混合平衡常数.

117.

证明: 按照计量数投料使得生成物平衡时摩尔分数极大.

118.

相变过程, 气体溶解过程, 物质湮灭过程, 等诸多具有可分辨粒子数变化的过程都可看作化学变化.

119.

给出各标准摩尔热力学势变化与温度的关系,以及标准平衡常数与温度的关系.

6. 相平衡

120.

7. 统计热力学基础 11

写出 Gibbs 相律, 并解释其每一项的意义.

121

相图上点的含义为在该条件下化学势最低相,相与相之间的边界上的点化学势相等.

122.

利用化学势平衡给出 Clapeyron 方程, 并在理想气体近似下给出微分形式 $\frac{\mathrm{d}p}{p}=\frac{\Delta_{\mathrm{r}}H_{\mathrm{m}}\,\mathrm{d}T}{RT^2}$. 123.

指出一级相变的含义,水氷转换是否为一级相变?

124.

只有气-液转换时具有超临界态, 这源于气相与液相具有相同的对称性: 它们都具有任意处的镜面与任意次旋转轴, 而固相不具有.

125.

He 具有低温下的超流态, 相变过程称为 λ 相变 (因为相图长得像), 其为二级相变, 指出二级相变的含义.

这个相变的原理为 Bose-Einstein 凝聚.

126.

多组分相图请自行看书,书后有不少题.

7. 统计热力学基础

127.

请给出概率假设与等权原理.

128.

直接写出 Boltzmann 分布, 并以态, 能量分别作为区分, 给出某个物理量的期望.

129

配分函数即为 Boltzmann 因子之和.

130.

写出各能量形式的配分函数,以及总的分子配分函数.

131.

利用配分函数计算热力学势.