Kernel Machines different models [=> different assumptions inductive) different objective finctions
bias SUPPORT VECTOR MACHINES (SVM) Ly They do not core about probabilities or densities. Ly Weights combe written in terms of training data points. representer theorem $g(x) = W^{T} \cdot X + W_{0}$ $y(x) = W^{T} \cdot X +$

 $3x + 4x_2 - 5 = 0$ Optimal Separating $-3x_1 - 4x_2 + 5 = 0$ Sequivalent $6x_1 + 8x_2 - 10 = 0$ XHX2 7-5 $-x_1-x_2 \leqslant +5$ $\chi = \frac{3}{2}(x_i, y_i)^{3N}$ $x_i \in \frac{3}{2} - 1, +13$ 01= 2w, w.3 $W'.X + W_0 = 0$ 3×1442+5=0 (w.xi+wo) yi >+1 (yi) if yi=+1 $(w^{\dagger}.xi+wo)yi \leq -1(yi)$ if yi=-1(S16) yi(wt.xi+wo) > 1 \di > 9 => yi(w.xi+w.)> 9/1/w/1/2 |W.Xi+Wo| _ yi(w.xi+wo) IIWII2 to obtain a unique solution => 9 1/w/1/2 = 1

$$||w||_{2}^{2} = w.w = \begin{bmatrix} \frac{1}{2} & \alpha_{1}y_{1} & x_{1} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \alpha_{2}y_{2} & x_{3}y_{3} \end{bmatrix} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \end{bmatrix}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i}\alpha_{j}y_{1}y_{3} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \sum_{i=1}^{N} \alpha_{i}\alpha_{j}y_{1}y_{3} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \sum_{i=1}^{N} \alpha_{i}\alpha_{i}y_{1}y_{3} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \sum_{i=1}^{N} \alpha_{i}\alpha_{i}y_{1}y_{3} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \sum_{i=1}^{N} \alpha_{i}\alpha_{i}y_{1}y_{2} \times \frac{1}{2} \times \frac{1}{$$