Principales resultados de Análisis Vectorial

David Cabezas Berrido

Vamos a presentar los tres principales resultados de la asignatura Análisis Vectorial: el Teorema de Green, el Teorema de la Stokes y el Teorema de la Divergencia. Todos ellos establecen propiedades relativas a las integrales en curvas y superficies de funciones reales de varias variables, normalmente en dimensión 2 y 3.

A continuación, introducimos los conceptos necesarios para la comprensión de cada uno de estos resultados. Seguidamente, iremos presentando los teoremas principales, en cada caso incluiremos una breve explicación intuitiva y un ejemplo donde comprobaremos que se verifica el resultado.

1. Conceptos previos

1.1. Operadores diferenciales

Los siguientes operadores diferenciales tienen una gran importancia en el análisis real, y algunos de ellos son necesarios para comprender los teoremas antes mencionados.

Gradiente

Sea $f: \Omega \to \mathbb{R}$ un campo escalar diferenciable, donde Ω es un abierto de \mathbb{R}^N . El **gradiente** de f es la función $\nabla f: \Omega \to \mathbb{R}^N$) dada por el vector de derivadas parciales, esto es,

$$\nabla f(x) = \left(\frac{\partial}{\partial x_1} f(x), \dots, \frac{\partial}{\partial x_1} f(x)\right)$$

para cada $x \in \Omega$.

Divergencia

Si $F: \Omega \to \mathbb{R}^N$ es un campo vectorial diferencible dado por $F=(F_1,\ldots,F_N)$, la **divergencia** de F viene dada por

$$\operatorname{div}(F(x)) = \sum_{i=1}^{N} \frac{\partial}{\partial x_i} F_i(x).$$

Se tiene div $F: \Omega \to \mathbb{R}$.

Laplaciano

Si ahora suponemos que f es de clase 2 $(f \in C^2(\Omega))$, definimos el **laplaciano** de f como la traza de su matriz Hessiana, es decir, la función $\Delta f : \Omega \to \mathbb{R}$ dada por

$$\Delta f(x) = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} f(x).$$

Además, se tiene $\Delta f = \operatorname{div}(\nabla f)$.

Rotacional

Cuando la dimensión es N=3, definimos la **rotacional** del campo vectorial diferenciable $F=(F_1,F_2,F_3)$ como el campo (vectorial) dado por

$$rotF = \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3}, \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1}, \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2}\right).$$

Para el caso bidimensional, donde $F = (F_1, F_2)$, tenemos

$$rotF = \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2}.$$

Notemos que en este caso, la rotacional es un campo escalar.

1.2. Integrales de campos escalares y vectoriales sobre curvas y superficies

Con la notación anterior, introducimos la forma de integrar campos escalares y vectoriales sobre curvas y superficies.

Integral de línea de un campo escalar

Si $f:\Omega\to\mathbb{R}$ es un campo escalar continuo con $\Omega\subset\mathbb{R}^N$ y $\gamma:[a,b]\to\Omega$ es un camino regular a trozos (una función de clase C^1 a trozos del intervalo [a,b] en Ω), definimos la integral de línea de f a lo largo de γ como

$$\int_{\gamma} f dl = \int_{a}^{b} f(\gamma(t)) \| \gamma'(t) \| dt.$$

Integral de línea de un campo vectorial

Si $F:\Omega\to\mathbb{R}^N$ es un campo escalar continuo con $\Omega\subset\mathbb{R}^N$ y $\gamma:[a,b]\to\Omega$ es un camino regular a trozos, definimos la integral de línea de F a lo largo de γ como

$$\int_{\gamma} F dl = \int_{a}^{b} \left\langle F(\gamma(t)) \middle| \gamma'(t) \right\rangle dt.$$

TODO: superficies

2. Teorema de Green

TODO: pag 11

3. Teorema de la Divergencia en \mathbb{R}^2

TODO: pag 13

4. Teorema de Stokes

TODO: pag 19

5. Teorema de la divergencia en \mathbb{R}^N

5.1. Preámbulo

TODO: dominio regular (se puede hablar de normal exterior a la frontera).

En un regular se puede despejar en la frontera una componente en función de las demás.

Particiones continuas de la unidad, caso compacto (cierre de acotado)

5.2. Resultado pricipal

TODO: pag 26