Chapter 5 Orthogonality

Outlines

- The Scalar Product in Rⁿ
- Orthogonal Subspaces (skip)
- Least Squares problem (skip)
- Inner product Spaces
- Orthonormal Sets
- The Gram-Schmidt Orthogonalization Process (*)
- Orthogonal Polynomials (skip)

Introduction

- The scalar product between two vectors \mathbf{x} and \mathbf{y} can be defined as $\mathbf{x}^T\mathbf{y}$.
- A vector in can \mathbb{R}^2 be thought of as a <u>directed line</u> segment initiating at the origin.
- In \mathbb{R}^2 , the <u>angle</u> between two line segments will be a right angle if and only if the <u>scalar product of the</u> corresponding vectors is \mathbb{O} .
- In general, if V is a vector space with a scalar product, then two vectors in V are said to be **orthogonal** if their scalar product is 0.

- Orthogonality can be thought of as a generalization of **perpendicularity** to any vector space with an <u>inner product</u>.
- Consider the following problem: find the closest point *P* on *l* that is closest to *Q* which is not a point on *l*
- The solution is to find \mathbf{p} that is orthogonal to $\mathbf{v} \mathbf{p}$

5.1 The Scalar Product in \mathbb{R}^n

• The scalar product of two $n \times 1$ matrices \mathbf{x} and \mathbf{y} is the 1×1 matrix $\mathbf{x}^T \mathbf{y}$, or simply regarded as a real number. That is, if $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ and $\mathbf{y} = (y_1, y_2, ..., y_n)^T$, then

$$y_2, \dots, y_n)^T$$
, then
$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Example 1

If
$$\mathbf{x} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$, then $\mathbf{x}^T \mathbf{y} = 3 \times 4 + (-2) \times 3 + 1 \times 2 = 8$

The Scalar Product in \mathbb{R}^2 and \mathbb{R}^3

- A vector in \mathbb{R}^2 and \mathbb{R}^3 can be represented by <u>directed</u> <u>line segment</u>
- The Euclidean length of a vector \mathbf{x} in either \mathbf{R}^2 or \mathbf{R}^3 can be defined in terms of the scalar product:

$$\| \mathbf{x} \| = (\mathbf{x}^T \mathbf{x})^{1/2} = \begin{cases} \sqrt{x_1^2 + x_2^2} & \text{if } \mathbf{x} \in \mathbb{R}^2 \\ \sqrt{x_1^2 + x_2^2 + x_3^2} & \text{if } \mathbf{x} \in \mathbb{R}^3 \end{cases}$$

- The <u>angle</u> between two vectors is defined as the angle θ between the line segments.
- The distance between the vectors is measured by the length of the vector joining the terminal point of **x** and the terminal point of **y**

Definition

Let x and y be vectors in either \mathbb{R}^2 or \mathbb{R}^3 . The distance between x and y is defined to be the number $\|\mathbf{x} - \mathbf{y}\|$.

• If $\mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$, then the distance between \mathbf{x} and \mathbf{y} is given by

$$\mathbf{y} - \mathbf{x} = \begin{bmatrix} -1 \\ 7 \end{bmatrix} - \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$$

$$||\mathbf{y} - \mathbf{x}|| = \sqrt{(-1 - 3)^2 + (7 - 4)^2} = 5$$

Theorem 5.1.1

If **x** and **y** are two nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3 and θ is the angle between them, then

$$\mathbf{x}^T \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \cos \, \theta$$

Figure 5.1.1

Theorem 5.1.1 proof

• By the law of cosines (餘弦定理),

$$||\mathbf{y} - \mathbf{x}||^{2} = ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} - 2 ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$$
or $||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$

$$= \frac{1}{2} (||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} - ||\mathbf{y} - \mathbf{x}||^{2})$$

$$= \frac{1}{2} (||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} - (\mathbf{y} - \mathbf{x})^{T} (\mathbf{y} - \mathbf{x}))$$

$$= \frac{1}{2} (||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} - (\mathbf{y}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{x} - \mathbf{x}^{T}\mathbf{y} + \mathbf{x}^{T}\mathbf{x}))$$

$$= \frac{1}{2} (2 \mathbf{x}^{T}\mathbf{y})$$

$$= \mathbf{x}^{T}\mathbf{y}$$

$$|(x_{1}, x_{2})|$$

y - x

 (y_1, y_2)

Unit Vector

- If x is a nonzero vector, then we can form the unit vector u of x as $\mathbf{u} = \frac{1}{\|\mathbf{x}\|} \mathbf{x}$
- If \mathbf{x} and \mathbf{y} are two nonzero vectors, \mathbf{u} and \mathbf{v} are the unit vectors of \mathbf{x} and \mathbf{y} :

$$\mathbf{u} = \frac{1}{\parallel \mathbf{x} \parallel} \mathbf{x}$$
 and $\mathbf{v} = \frac{1}{\parallel \mathbf{y} \parallel} \mathbf{y}$

then the angle θ between \mathbf{x} and \mathbf{y} is

$$\cos\theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \mathbf{u}^T \mathbf{v}$$

• If $\mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$, then the directions of these two vectors are given by the unit vectors:

$$\mathbf{u} = \frac{1}{\parallel \mathbf{x} \parallel} \mathbf{x} = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix} \text{ and } \mathbf{v} = \frac{1}{\parallel \mathbf{y} \parallel} \mathbf{y} = \begin{bmatrix} \frac{-1}{5\sqrt{2}} \\ \frac{7}{5\sqrt{2}} \end{bmatrix}$$

$$\cos\theta = \mathbf{u}^T \mathbf{v} = \frac{3}{5} \times \frac{-1}{5\sqrt{2}} + \frac{4}{5} \times \frac{7}{5\sqrt{2}} = \frac{25}{25\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow \theta = \pi/4$$

Corollary 5.1.2

(Cauchy-Schwarz Inequality)

If x and y are vectors in either \mathbb{R}^2 or \mathbb{R}^3 , then

$$|\mathbf{x}^T\mathbf{y}| \le ||\mathbf{x}|| \ ||\mathbf{y}||$$

with equality holding if and only if one of the vectors is 0 or one vector is a multiple of the other.

• Proof: hint: $\mathbf{x}^T \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$

$$-1 \le \cos \theta \le 1$$

Definition

The vectors \mathbf{x} and \mathbf{y} are in \mathbf{R}^2 (or \mathbf{R}^3) are said to be **orthogonal** if $\mathbf{x}^T\mathbf{y} = \mathbf{0}$.

Example 4

- (a) The vector $\mathbf{0}$ is orthogonal to every vector in \mathbf{R}^2 .
- (b) The vectors $(3, 2)^T$ and $(-4, 6)^T$ are orthogonal in \mathbb{R}^2 .
- (c) The vectors $(2, -3, 1)^T$ and $(1, 1, 1)^T$ are orthogonal in \mathbb{R}^3 .

Scalar and Vector Projections

• Let \mathbf{x} and \mathbf{y} be in either \mathbf{R}^2 or \mathbf{R}^3 , then \mathbf{x} can be represented as $\mathbf{p}+\mathbf{z}$, where \mathbf{p} is in the direction of \mathbf{y} and \mathbf{z} is orthogonal to \mathbf{p} .

Scalar and Vector Projections

• Let $\mathbf{u} = (1/||\mathbf{y}||)\mathbf{y}$, thus \mathbf{u} is a unit vector (length 1) in the direction of \mathbf{y} . We wish to find α such that $\mathbf{p} = \alpha \mathbf{u}$ and is orthogonal to $\mathbf{z} = \mathbf{x} - \alpha \mathbf{u}$. Thus

$$\alpha = \| \mathbf{x} \| \cos \theta = \frac{\| \mathbf{x} \| \| \mathbf{y} \| \cos \theta}{\| \mathbf{y} \|} = \frac{\mathbf{x}^T \mathbf{y}}{\| \mathbf{y} \|},$$

 α is called the **scalar projection** of **x** onto **y** and **p** is called the **vector projection** of **x** onto **y**:

$$\mathbf{p} = \alpha \mathbf{u} = \alpha \frac{\mathbf{y}}{\|\mathbf{y}\|} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|} \frac{\mathbf{y}}{\|\mathbf{y}\|} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}$$

• Find the point Q on the line y = 1/3 x that is closest to the point (1, 4).

Notation

If P_1 and P_2 are two points in 3-space, we will denote the vector from P_1 to P_2 by $\overline{P_1P_2}$

• If **N** is a nonzero vector and P_0 is a fixed point, the set of points **P** such that $\overline{P_1P_2}$ is orthogonal to **N** forms a **plane** π in 3-space that passes through P_0 . The vector **N** and the plane π are said to be **normal** to each other. A point P = (x, y, z) will lie on π if and only if $\overline{(P_0P)}^T \mathbf{N} = 0$

If $\mathbf{N} = (a, b, c)^T$ and $P_0 = (x_0, y_0, z_0)$, the above equation can be written as

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

- Find the equation of the plane passing through the point (2, -1, 3) and normal to the vector $\mathbf{N} = (2, 3, 4)^T$.
- *Sol*:

$$\overrightarrow{P_0P} = (x-2, y+1, z-3)^T$$

The equation is $(\overrightarrow{P_0P})^T \mathbf{N} = 0$
So, $2(x-2) + 3(y+1) + 4(z-3) = 0$

- Find the distance from the point (2, 0, 0) to the plane x + 2y + 2z = 0.
- *Sol*:
- The plane equation: x + 2y + 2z = 0 $\Rightarrow 1 \cdot (x - 0) + 2 \cdot (y - 0) + 2 \cdot (z - 0) = 0$ So, $\mathbf{N} = (1, 2, 2)^T$ and $P_0 = (0, 0, 0)$ Let $= \mathbf{v} = (2, 0, 0)^T$

$$\Rightarrow d = \frac{\mathbf{v}^T \mathbf{N}}{\|\mathbf{N}\|} = \frac{1}{\sqrt{1^2 + 2^2 + 2^2}} (2, 0, 0) \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \frac{2}{3}$$

$||\mathbf{x}||||\mathbf{y}||\sin\theta = ||\mathbf{x} \times \mathbf{y}||$

If x and y are nonzero vectors in \mathbb{R}^3 and θ is the angle between the vectors, then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

It then follows that

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{(\mathbf{x}^T \mathbf{y})^2}{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2}} = \frac{\sqrt{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2 - (\mathbf{x}^T \mathbf{y})^2}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

and hence

$$\|\mathbf{x}\| \|\mathbf{y}\| \sin \theta = \sqrt{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2 - (\mathbf{x}^T \mathbf{y})^2}$$

$$= \sqrt{(x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1 y_1 + x_2 y_2 + x_3 y_3)^2}$$

$$= \sqrt{(x_2 y_3 - x_3 y_2)^2 + (x_3 y_1 - x_1 y_3)^2 + (x_1 y_2 - x_2 y_1)^2}$$

$$= \|\mathbf{x} \times \mathbf{y}\|$$

Thus, we have, for any nonzero vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^3 ,

Orthogonality in \mathbb{R}^n

• If $x \in \mathbb{R}^n$ then the Euclidean length of x is defined by

$$\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2} = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

- If x and y are two vectors in \mathbb{R}^n , then the distance between x and y is $||\mathbf{y} \mathbf{x}||$
- The Cauchy-Schwarz inequality holds in \mathbb{R}^n :

$$-1 \le \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1$$

- The angle θ between two vectors \mathbf{x} and \mathbf{y} in \mathbf{R}^n is given by $\cos\theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}, 0 \le \theta \le \pi$
- If **u** and **v** are the unit vectors of **x** and **y**:

$$\mathbf{u} = \frac{1}{\parallel \mathbf{x} \parallel} \mathbf{x}$$
 and $\mathbf{v} = \frac{1}{\parallel \mathbf{y} \parallel} \mathbf{y}$

then the angle θ between **u** and **v** is the same as the angle between **x** and **y**:

$$\cos\theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \mathbf{u}^T \mathbf{v}$$

- The cosine can be computed by simply taking the scalar product of the two unit vectors.
- Two vectors \mathbf{x} and \mathbf{y} in \mathbf{R}^n are said to be **orthogonal** if $\mathbf{x}^T\mathbf{y} = \mathbf{0}$ and often the symbol " $\mathbf{\perp}$ " is used to indicate orthogonality.
- If x and y are orthogonal, we will write $x \perp y$

• If \mathbf{x} and \mathbf{y} are vectors in \mathbf{R}^n , then

$$\|\mathbf{x} + \mathbf{y}\|^{2}$$

$$= (\mathbf{x} + \mathbf{y})^{T} (\mathbf{x} + \mathbf{y})$$

$$= (\mathbf{x}^{T} + \mathbf{y}^{T}) (\mathbf{x} + \mathbf{y})$$

$$= \mathbf{x}^{T} \mathbf{x} + (\mathbf{x}^{T} \mathbf{y}) + (\mathbf{y}^{T} \mathbf{x}) + \mathbf{y}^{T} \mathbf{y}$$

$$= \|\mathbf{x}\|^{2} + 2\mathbf{x}^{T} \mathbf{y} + \|\mathbf{y}\|^{2}$$

• If x and y are orthogonal, the above equation becomes the **Pythagorean Law**:

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

5.2 Orthogonal Subspaces

- Let A be an $m \times n$ matrix and let $\mathbf{x} \in N(A)$, the null space of A.
- Ax = 0, i.e.,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = 0$$
, for $i = 1, \dots, m$

- **x** is orthogonal to the *i*th column vector of A^T for i = 1, 2, ..., m
- \mathbf{x} is orthogonal to any linear combination of the column vector of A^T
- If y is any vector in the column space of A^T , then $\mathbf{x}^T \mathbf{y} = \mathbf{0}$
- Each vector in N(A) is orthogonal to every vector in the column space of A^T

Definition

Two subspaces X and Y of \mathbb{R}^n are said to be **orthogonal** if $\mathbf{x}^T\mathbf{y} = \mathbf{0}$ for every $\mathbf{x} \in X$ and every $\mathbf{y} \in Y$. If X and Y are orthogonal, we write $X \perp Y$.

• Let X be the subspace of \mathbb{R}^3 spanned by \mathbf{e}_1 and Y be the subspace of \mathbb{R}^3 spanned by \mathbf{e}_2 , if $\mathbf{x} \in X$ and $\mathbf{y} \in Y$, then

$$\mathbf{x} = \alpha \mathbf{e}_1 = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} \text{ and } \mathbf{y} = \beta \mathbf{e}_2 = \beta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \beta \\ 0 \end{bmatrix}$$

$$\Rightarrow \mathbf{x}^T \mathbf{y} = \begin{bmatrix} \alpha & 0 & 0 \end{bmatrix} \begin{vmatrix} 0 \\ \beta \\ 0 \end{vmatrix} = 0 \Rightarrow X \perp Y$$

- The concept of <u>orthogonal subspaces</u> does <u>not</u> always agree with our intuitive idea of perpendicularity.
 - For example, the floor and wall of the classroom "look" orthogonal, but the xy-plane and the yz-plane are not orthogonal subspaces
 - Think of the vectors $\mathbf{x}_1 = (1, 1, 0)^T$ and $\mathbf{x}_2 = (0, 1, 1)^T$ lying in the *xy*-plane and the *yz*-plane, respectively, then

$$\mathbf{x}_1^T \mathbf{x}_2 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix} = 1$$

– These two subspaces are not orthogonal!

• Let X be the subspace of \mathbb{R}^3 spanned by \mathbf{e}_1 and \mathbf{e}_2 , and let Y be the subspace spanned by \mathbf{e}_3 , if $\mathbf{x} \in X$ and $\mathbf{y} \in Y$, then

$$\mathbf{x} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2 = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ 0 \end{bmatrix} \text{ and } \mathbf{y} = \gamma \mathbf{e}_3 = \gamma \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \gamma \end{bmatrix}$$

$$\Rightarrow \mathbf{x}^T \mathbf{y} = \begin{bmatrix} \alpha & \beta & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \gamma \end{bmatrix} = 0 \Rightarrow X \perp Y$$

• If $\mathbf{z} = (z_1, z_2, z_3)^T$ is any vector in \mathbf{R}^3 that is orthogonal to every vector in Y, then $\mathbf{z} \perp \mathbf{e}_3$, and hence

$$\mathbf{z}^T \mathbf{e}_3 = \begin{bmatrix} z_1 & z_2 & z_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underbrace{z_3 = 0}$$

- If $z_3 = 0$, then $\mathbf{z} \in X$
- X is the set of all vectors in \mathbb{R}^3 that is orthogonal to every vectors in Y

5.4 Inner Product Spaces Definition

An inner product on a vector space V is an operation on V that assigns to each pair of vectors \mathbf{x} and \mathbf{y} in V a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying the following conditions:

- I. $\langle x, x \rangle \ge 0$ with equality if and only if x = 0
- II. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for all \mathbf{x} and \mathbf{y} in V
- III. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for all x, y, z in V and all scalars α and β
- A vector space V with an inner product is called an inner product space.

Case 1: The vector space \mathbb{R}^n

• The standard inner product for R^n is the scalar product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$$

Given a vector w with positive entries

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i w_i \tag{1}$$

where w_i are referred to as weights

Case 2: The vector space $R^{m \times n}$

• Given A and B in $R^{m \times n}$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$
 (2)

Case 3: The vector space C[a, b]

• In C[a, b] we may define an inner product by

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx \tag{3}$$

• If w(x) is a positive continuous function on C[a, b], then

$$\langle f, g \rangle = \int_a^b f(x)g(x)w(x)dx$$
 (4)

• The function w(x) is called a weight function

Basic Properties of Inner Product Spaces

• If v is a vector in an <u>inner product space</u> V, the **length** or **norm** of v is given by

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

• Two vectors \mathbf{u} and \mathbf{v} are said to be <u>orthogonal</u> if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Theorem 5.4.1

(The Pythagorean Law)

If \mathbf{u} and \mathbf{v} are orthogonal vectors in an inner product space V, then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Figure 5.4.1

Theorem 5.4.1

Pf:
$$\|\mathbf{u}+\mathbf{v}\|^2 = \langle \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v} \rangle$$

= $\langle \mathbf{u}, \mathbf{u}+\mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u}+\mathbf{v} \rangle$
= $\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$
= $\|\mathbf{u}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2$ (Note $\langle \mathbf{u}, \mathbf{v} \rangle = 0$)
= $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$

- Consider the vector space C[-1, 1] with inner product defined by (3).
- The vector 1 and x are orthogonal since

$$<1, x> = \int_{-1}^{1} 1 \cdot x \, dx = \frac{1}{2} x^2 \Big|_{-1}^{1} = \frac{1}{2} 1^2 - \frac{1}{2} (-1)^2 = 0$$

• To determine the length of each vector, we compute

$$<1,1> = \int_{-1}^{1} 1 \cdot 1 \, dx = x \begin{vmatrix} 1 \\ -1 \end{vmatrix} = 1 - (-1) = 2$$

$$< x, x> = \int_{-1}^{1} x \cdot x \, dx = \frac{1}{3} x^{3} \begin{vmatrix} 1 \\ -1 \end{vmatrix} = \frac{1}{3} 1^{3} - \frac{1}{3} (-1)^{3} = \frac{2}{3}$$

$$||1|| = (<1,1>)^{1/2} = \sqrt{2}$$

$$||x|| = ()^{1/2} = \sqrt{2/3} = \sqrt{6/3}$$

$$||1+x||^2 = ||1||^2 + ||x||^2 = 2 + 2/3 = 8/3$$

• Verification:

$$||1+x||^2 = <1+x, 1+x> = \int_{-1}^{1} (1+x) \cdot (1+x) \, dx = \int_{-1}^{1} (1+x)^2 \, dx$$

$$= \frac{1}{3} (1+x)^3 \left| \frac{1}{-1} = \frac{1}{3} (1+1)^3 - \frac{1}{3} (1+(-1))^3 = \frac{1}{3} 2^3 - \frac{1}{3} 0^3 = \frac{8}{3}$$

• For the vector space $C[-\pi, \pi]$, if we use a constant weight function $w(x) = 1/\pi$ to define an inner product:

Then

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx$$

$$\langle \cos x, \sin x \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos x \sin x dx = 0$$

$$\langle \cos x, \cos x \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos x \cos x dx = 1$$

$$\langle \sin x, \sin x \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin x \sin x dx = 1$$

- Thus cosx and sinx are orthogonal unit vectors with respect to this inner product.
- From the

$$\|\cos x + \sin x\| = \sqrt{\|\cos x\|^2 + \|\sin x\|^2} = \sqrt{1+1} = \sqrt{2}$$

• Verification:

$$\|\cos x + \sin x\|^{2} = \langle\cos x + \sin x, \cos x + \sin x\rangle$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos x + \sin x) \cdot (\cos x + \sin x) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} [(\cos x)^{2} + 2\sin x \cos x + (\sin x)^{2}] dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos x)^{2} dx + 2\frac{1}{\pi} \int_{-\pi}^{\pi} \sin x \cos x dx + \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin x)^{2} dx$$

$$= 1 + 2 \cdot 0 + 1 = 2$$

• For the vector space $R^{m \times n}$ the norm derived from the inner product is called the **Frobenius norm** and is denoted by $\| \cdot \|_F$. Thus if $A \in R^{m \times n}$, then

$$||A||_F = \sqrt{\langle A, A \rangle} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$$

• If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 3 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 1 \\ 3 & 0 \\ -3 & 4 \end{bmatrix}$, then

•
$$$$

= $1\times(-1) + 1\times1 + 1\times3 + 2\times0 + 3\times(-3) + 3\times4$
= 6

$$||A||_F = (1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2)^{1/2} = 5$$

 $||B||_F = [(-1)^2 + 1^2 + 3^2 + 0^2 + (-3)^2 + 4^2]^{1/2} = 6$

• In P_5 , define an inner product by (5) with $x_i = (i-1)/4$ for i = 1, 2, ..., 5. The length of the function p(x) = 4x is given by

$$||4x|| = (\langle 4x, 4x \rangle)^{1/2} = \left(\sum_{i=1}^{5} 16x^2\right)^{1/2} = \left(\sum_{i=1}^{5} (i-1)^2\right)^{1/2} = \sqrt{30}$$

Definition

If **u** and **v** are vectors in an inner product space V and **v** \neq **0**, then the **scalar projection** α and **vector projection p** of **u** onto **v** are given by

$$\alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|}$$
 and $\mathbf{p} = \alpha \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$

Observation

If $\mathbf{v} \neq \mathbf{0}$ and \mathbf{p} is the vector projection of \mathbf{u} onto \mathbf{v} , then $\mathbf{I} \cdot \mathbf{u} - \mathbf{p}$ and \mathbf{p} are orthogonal

II. $\mathbf{u} = \mathbf{p}$ if and only if \mathbf{u} is a scalar multiple of \mathbf{v}

Pf:

I. Since
$$\langle \mathbf{p}, \mathbf{p} \rangle = \langle \frac{\alpha}{\|\mathbf{v}\|} \mathbf{v}, \frac{\alpha}{\|\mathbf{v}\|} \mathbf{v} \rangle = (\frac{\alpha}{\|\mathbf{v}\|})^2 \langle \mathbf{v}, \mathbf{v} \rangle = \alpha^2$$
 and $\langle \mathbf{u}, \mathbf{p} \rangle = \langle \mathbf{u}, \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} \rangle = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \langle \mathbf{u}, \mathbf{v} \rangle = \frac{\langle \mathbf{u}, \mathbf{v} \rangle^2}{\|\mathbf{v}\|^2} = \alpha^2$

$$\Rightarrow \langle \mathbf{u} - \mathbf{p}, \mathbf{p} \rangle = \langle \mathbf{u}, \mathbf{p} \rangle - 2 \langle \mathbf{p}, \mathbf{p} \rangle = \alpha^2 - \alpha^2 = 0$$

$$\Rightarrow \mathbf{u} - \mathbf{p} \text{ and } \mathbf{p} \text{ are orthogonal}$$

Observation

II. If $\mathbf{u} = \beta \mathbf{v}$, then the vector projection of \mathbf{u} onto \mathbf{v} is given by

$$p = {< u, v > \over < v, v >} v = {< \beta v, v > \over < v, v >} v = \beta v = u$$

If
$$\mathbf{u} = \mathbf{p} \Rightarrow \mathbf{u} = \mathbf{p} = \alpha \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\alpha}{\|\mathbf{v}\|} \mathbf{v} = \beta \mathbf{v}$$
, with $\beta = \frac{\alpha}{\|\mathbf{v}\|}$

Theorem 5.4.2

(The Cauchy-Schwarz Inequality)

If **u** and **v** are any two vectors in an inner product space *V*, then

$$|< u, v> | \le ||u|| ||v||$$

Equality holds if and only if **u** and **v** are **linearly dependent**.

• From the above theorem, if **u** and **v** are nonzero vectors, then

$$-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

and hence there is a unique angle $\theta \in [0, \pi]$ such that

$$\cos\theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

this equation can be used to define the angle θ between two nonzero vectors \mathbf{u} and \mathbf{v}

Definition

A vector space V is said to be a **normed linear space** if to each vector $\mathbf{v} \in V$ there is associated a real number $\|\mathbf{v}\|$ called the **norm** of \mathbf{v} , satisfying

- I. $||\mathbf{v}|| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$
- II. $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$ for any scalar α
- III. $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$
- The third condition is called the **triangle inequality**.

Theorem 5.4.3

If V is an **inner product space**, then the equation

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
, for all $\mathbf{v} \in \mathbf{V}$

defines a **norm** on V

Figure 5.4.2

Theorem 5.4.3

• *Pf*: It is easily seen that conditions I and II are satisfied. We have to show that condition III is satisfied:

```
\begin{split} \| \mathbf{u} + \mathbf{v} \|^2 &= < \mathbf{u} + \mathbf{v}, \ \mathbf{u} + \mathbf{v} > \\ &= < \mathbf{u}, \ \mathbf{u} > + \ 2 \le \mathbf{u}, \ \mathbf{v} > + < \mathbf{v}, \ \mathbf{v} > \\ &\le \| \mathbf{u} \|^2 + 2 \ \| \mathbf{u} \| \ \| \mathbf{v} \| + \| \mathbf{v} \|^2 \\ & (\text{from The Cauchy-Schwarz Inequality}) \\ &= (\| \mathbf{u} \| + \| \mathbf{v} \|)^2 \\ &\text{Thus} \\ \| \mathbf{u} + \mathbf{v} \| \le \| \mathbf{u} \| + \| \mathbf{v} \| \end{split}
```

Definition

• For every vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ in \mathbb{R}^n

1-norm:
$$||\mathbf{x}||_1 = |x_1| + |x_2| + \dots + |x_n|$$

2-norm:
$$\|\mathbf{x}\|_2 = (|x_1|^2 + |x_2|^2 + ... + |x_n|^2)^{1/2} =$$

$$\left(\sum_{i=1}^{n} \left|x_{i}\right|^{2}\right)^{1/2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

$$\left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$
p-norm: $||\mathbf{x}||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + ... + |x_{n}|^{p})^{1/p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$

∞-norm (uniform norm, infinity norm):

$$\|\mathbf{x}\|_{\infty} = \mathbf{max}(|x_1|, |x_2|, \dots, |x_n|)$$

- If $p \neq 2$, $\| \bullet \|_p$ does not correspond to any inner product, thus the Pythogorean Law will not hold.
- For example, $\mathbf{x}_1 = [1, 2]^T$ and $\mathbf{x}_2 = [-4, 2]^T$ are orthogonal. However,

$$\mathbf{x}_{1} + \mathbf{x}_{2} = [1, 2]^{T} + [-4, 2]^{T} = [-3, 4]^{T}$$

$$(||\mathbf{x}_{1}||_{\infty})^{2} + (||\mathbf{x}_{2}||_{\infty})^{2} = 2^{2} + 4^{2} = 4 + 16 = 20$$

$$(||\mathbf{x}_{1} + \mathbf{x}_{2}||_{\infty})^{2} = 4^{2} = 16$$

$$(||\mathbf{x}_{1}||_{2})^{2} + (||\mathbf{x}_{2}||_{2})^{2} = (1^{2} + 2^{2}) + ((-4)^{2} + 2^{2})$$

$$= 5 + 20 = 25$$

$$(||\mathbf{x}_{1} + \mathbf{x}_{2}||_{2})^{2} = (-3)^{2} + 4^{2} = 9 + 16 = 25$$

• Let $\mathbf{x} = (4, -5, 3)^T$ in R^3 , then $\|\mathbf{x}\|_1 = |4| + |-5| + |3| = 12$ $\|\mathbf{x}\|_2 = (|4|^2 + |-5|^2 + |3|^2)^{1/2} = (50)^{1/2}$ $\|\mathbf{x}\|_{\infty} = \max(|4|, |-5|, |3|) = 5$

• A norm provides a way of measuring the distance between two vectors

Definition

Let \mathbf{x} and \mathbf{y} be vectors in a normed linear space. The **distance** between \mathbf{x} and \mathbf{y} is defined to be the number $||\mathbf{y} - \mathbf{x}||$.

5.5 Orthonormal Sets

- In R^2 , the elements of the standard basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ are orthogonal unit vectors
- In working with an inner product space *V*, it is generally desirable to have a basis of <u>mutually</u> orthogonal unit vectors
- Convenient in finding <u>coordinates</u> of vectors and solving least square problems

Definition

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be nonzero vectors in an inner product space V. If $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ whenever $i \neq j$, then $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is said to be an **orthogonal set** of vectors.

- The set $\{[1, 1, 1]^T, [2, 1, -3]^T, [4, -5, 1]^T\}$ is an orthogonal set in \mathbb{R}^3 .
- Since

$$[1, 1, 1]^{T} [2, 1, -3] = 0$$

$$[1, 1, 1]^{T} [4, -5, 1] = 0$$

$$[2, 1, -3]^{T} [4, -5, 1] = 0$$

Theorem 5.5.1

If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is an **orthogonal set** of <u>nonzero</u> vectors in an inner product space V, then $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are **linearly independent**.

• Pf: Let $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n = \mathbf{0}$ (1) $(\mathbf{v}_j)^T (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n) = 0$ for all j $\Rightarrow c_1 < \mathbf{v}_j, \ \mathbf{v}_1 > + c_2 < \mathbf{v}_j, \ \mathbf{v}_2 > + \ldots + c_n < \mathbf{v}_j, \ \mathbf{v}_n > = 0$ $\Rightarrow c_j ||\mathbf{v}_j||^2 = 0 \Rightarrow c_j = 0$ for all j $\Rightarrow \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent. **Definition**: An <u>orthonormal</u> set of vectors is an orthogonal set of unit vectors.

• The set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ will be orthonormal iff

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

• Given any orthogonal set of nonzero vectors $\{v_1, v_2, ..., v_n\}$, it is possible to form an **orthonormal set** by defining

$$\mathbf{u}_i = \frac{1}{\|\mathbf{v}_i\|} \mathbf{v}_i, \text{ for } i = 1, 2, \dots, n$$

Then $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ will be an orthonormal set

• To get an orthonormal set from the set $\{[1, 1, 1]^T, [2, 1, -3]^T, [4, -5, 1]^T\}$

$$\mathbf{u}_{1} = \frac{1}{\|\mathbf{v}_{1}\|} \mathbf{v}_{1} = \frac{1}{\sqrt{3}} [1, 1, 1]^{T}$$

$$\mathbf{u}_{2} = \frac{1}{\|\mathbf{v}_{2}\|} \mathbf{v}_{2} = \frac{1}{\sqrt{14}} [2, 1, -3]^{T}$$

$$\mathbf{u}_{3} = \frac{1}{\|\mathbf{v}_{3}\|} \mathbf{v}_{3} = \frac{1}{\sqrt{42}} [4, -5, 1]^{T}$$

• In $C[-\pi, \pi]$ with inner product:

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx$$
 (2)

The set $\{1, \cos x, \cos 2x, ..., \cos nx\}$ is an <u>orthogonal</u> set of vectors

- *Sol*:
 - (1) For any positive integers j and k

$$<1, \cos kx> = \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot \cos kx \, dx = 0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos kx \, dx = 0$$

$$<\cos jx, \cos kx> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos jx \cos kx \, dx = 0$$

(2) The functions $\cos x$, $\cos 2x$, ..., $\cos nx$ are unit vectors since

$$<\cos kx, \cos kx> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos kx \cos kx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 kx \, dx = 1$$

$$<1,1> = \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cdot 1 \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \, dx = 2$$

Thus, $1/\sqrt{2}$ is a unit vector

 $\Rightarrow \{1/\sqrt{2}, \cos x, \cos 2x, ..., \cos nx\}$ is an orthonormal set of vectors

- From **Theorem 5.5.1**, if $B = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is an orthonormal set in an inner product space V
 - \Rightarrow $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ are linearly independent
 - $\Rightarrow B$ is a **basis** for a subspace $S = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$

of V

 \Rightarrow B is an orthonormal basis for S

Theorem 5.5.2

Let $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ be an **orthonormal basis** for an inner product space V. If , then $c_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ (Note: the scalar projection of \mathbf{v} onto \mathbf{u}_i)

• *Pf*:

$$\langle \mathbf{v}, \mathbf{u}_i \rangle = \left\langle \sum_{j=1}^n c_j \mathbf{u}_j, \mathbf{u}_i \right\rangle = \sum_{j=1}^n c_j \left\langle \mathbf{u}_i, \mathbf{u}_j \right\rangle = \sum_{j=1}^n c_j \delta_{ij} = c_i$$

Corollary 5.5.3

Let $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ be an orthonormal basis for an inner product space V. If

$$\mathbf{u} = \sum_{i=1}^{n} a_i \mathbf{u}_i$$
 and $\mathbf{v} = \sum_{i=1}^{n} b_i \mathbf{u}_i$

then

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} a_i b_i$$

(Note: the inner product of two vectors is equivalent to the inner product of their coordinate vectors)

• *Pf*: From Theorem 5.5.2, $\langle \mathbf{v}, \mathbf{u}_i \rangle = b_i$, i = 1, 2, ..., n $\Rightarrow \langle \mathbf{u}, \mathbf{v} \rangle = \left\langle \sum_{i=1}^n a_i \mathbf{u}_i, \mathbf{v} \right\rangle = \sum_{i=1}^n a_i \langle \mathbf{u}_i, \mathbf{v} \rangle = \sum_{i=1}^n a_i b_i$

Corollary 5.5.4

(Parseval's Formula)

If $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ be an orthonormal basis for an inner product space V and

$$\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{u}_i$$

then

$$\left\|\mathbf{v}\right\|^2 = \sum_{i=1}^n c_i^2$$

• *Pf*: From Corollary 5.5.3

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^n c_i c_i = \sum_{i=1}^n c_i^2$$

• The vectors $\mathbf{u}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T$ and $\mathbf{u}_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})^T$

form an orthonormal basis for R^2 .

• *Sol*: If $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$, then

$$c_1 = \mathbf{x}^T \mathbf{u}_1 = \frac{x_1 + x_2}{\sqrt{2}} \text{ and } c_2 = \mathbf{x}^T \mathbf{u}_2 = \frac{x_1 - x_2}{\sqrt{2}}$$

$$\Rightarrow \mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 = \frac{x_1 + x_2}{\sqrt{2}} \mathbf{u}_1 + \frac{x_1 - x_2}{\sqrt{2}} \mathbf{u}_2$$

$$\Rightarrow \|\mathbf{x}\|^2 = \sum_{i=1}^2 c_i^2 = \left(\frac{x_1 + x_2}{\sqrt{2}}\right)^2 + \left(\frac{x_1 - x_2}{\sqrt{2}}\right)^2 = x_1^2 + x_2^2$$

- Given that $\{1/\sqrt{2}, \cos 2x\}$ is an orthonormal set in $C[-\pi, \pi]$ (with inner product as in Ex 3), determine the value of $\int_{-\pi}^{\pi} \sin^4 x \, dx$ without computing antiderivatives.
- Sol: Since $\sin^2 x = \frac{1 - \cos 2x}{2} = \frac{1}{\sqrt{2}} + (-\frac{1}{2})\cos 2x$ From Parseval's Formula, we can get

$$\|\sin^2 x\|^2 = \langle \sin^2 x, \sin^2 x \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^4 x \, dx = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{3}{4}$$

$$\Rightarrow \int_{-\pi}^{\pi} \sin^4 x \, dx = \frac{3}{4}\pi$$

Orthogonal Matrices Definition

An $n \times n$ matrix Q is said to be an **orthogonal matrix** if the **column vectors** of Q form an **orthonormal set** in \mathbb{R}^n .

Theorem 5.5.5

An $n \times n$ matrix Q is orthogonal if and only if $Q^TQ = I$. $(Q^{-1} = Q^T)$

• *Pf*:

An $n \times n$ matrix Q is orthogonal if and only if its column vectors satisfy

$$\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$$

• However, is the (i, j) entry of the matrix Q^TQ $\Rightarrow Q$ is orthogonal if and only if $Q^TQ = I$

Note

$$Q^{T}Q = [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}]^{T} [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}]$$

$$= \begin{bmatrix} \mathbf{q}_{1}^{T} \\ \mathbf{q}_{2}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T} \end{bmatrix} [\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}]$$

$$= \begin{bmatrix} \mathbf{q}_{1}^{T} \mathbf{q}_{1} & \mathbf{q}_{1}^{T} \mathbf{q}_{2} & \cdots & \mathbf{q}_{1}^{T} \mathbf{q}_{n} \\ \mathbf{q}_{2}^{T} \mathbf{q}_{1} & \mathbf{q}_{2}^{T} \mathbf{q}_{2} & \cdots & \mathbf{q}_{2}^{T} \mathbf{q}_{n} \\ \vdots & \vdots & & \vdots \\ \mathbf{q}_{n}^{T} \mathbf{q}_{1} & \mathbf{q}_{n}^{T} \mathbf{q}_{2} & \cdots & \mathbf{q}_{n}^{T} \mathbf{q}_{n} \end{bmatrix}$$

• If Q is an orthogonal matrix then Q is invertible and $Q^{-1} = Q^T$

$$Q^{T}Q = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta \cos \theta + \sin \theta \sin \theta = 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is an orthogonal matrix.

 $= -\sin\theta \cos\theta + \sin\theta \cos\theta = 0$

Sol:

$$Q = (\mathbf{q}_1, \mathbf{q}_2) \text{ with } \mathbf{q}_1 = (\cos\theta, \sin\theta)^T, \mathbf{q}_2 = (-\sin\theta, \cos\theta)^T$$

$$\Rightarrow \mathbf{q}_1^T \mathbf{q}_1 = (\cos\theta, \sin\theta)(\cos\theta, \sin\theta)^T = \cos^2\theta + \sin^2\theta = 1$$

$$\Rightarrow \mathbf{q}_2^T \mathbf{q}_2 = (-\sin\theta, \cos\theta)(-\sin\theta, \cos\theta)^T$$

$$= \sin^2\theta + \cos^2\theta = 1$$

$$\Rightarrow \mathbf{q}_1^T \mathbf{q}_2 = (\cos\theta, \sin\theta)(-\sin\theta, \cos\theta)^T$$

So, Q is an orthogonal matrix.

Verification

$$Q^{-1} = Q^{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$QQ^{1} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

- The matrix Q can be thought of as a linear transformation from R^2 to R^2 that has the effect of rotating each vector by an angle θ while leaving the length of the vector unchanged.
- Q^{-1} can be thought of as a rotation by the angle - θ

- In general, inner product are preserved under multiplication by an orthogonal matrix (i.e. < x, y > = < Qx, Qy >):
 - $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = (Q\mathbf{x})^T Q\mathbf{y} = \mathbf{x}^T Q^T Q\mathbf{y} = \mathbf{x}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle$
- If $\mathbf{x} = \mathbf{y}$ (i.e. $\langle \mathbf{x}, \mathbf{x} \rangle = \langle Q\mathbf{x}, Q\mathbf{x} \rangle$), then $||Q\mathbf{x}||^2 = ||\mathbf{x}||^2$ and hence $||Q\mathbf{x}|| = ||\mathbf{x}||$
- Multiplication by an orthogonal matrix preserves the lengths of vectors

Properties of Orthogonal Matrices

If Q is an $n \times n$ orthogonal matrix, then

- (1) The column vectors of Q form an <u>orthonormal basis</u> for R^n .
- $(2) Q^T Q = I$
- (3) $Q^T = Q^{-1}$
- (4) < Qx, Qy > = <x, y >
- $(5) ||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$

Permutation Matrices

- A **permutation matrix** is a matrix formed from the identity matrix by **reordering its columns**.
- A permutation matrix is an **orthogonal matrix**.
- If P is the permutation matrix formed by reordering the columns of I in the order $(k_1, k_2, ..., k_n)$, then $P = (\mathbf{e}_{k1}, \mathbf{e}_{k2}, ..., \mathbf{e}_{kn})$. If A is an $m \times n$ matrix, then $AP = (A\mathbf{e}_{k1}, A\mathbf{e}_{k2}, ..., A\mathbf{e}_{kn}) = (\mathbf{a}_{k1}, \mathbf{a}_{k2}, ..., \mathbf{a}_{kn})$
- Post multiplication of A by P reorders the columns of A in the order $(k_1, k_2, ..., k_n)$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \text{ and } P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 & 0 \end{bmatrix}$$

Then
$$AP = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix}$$
, and

$$P^{-1} = P^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• Since $P = (\mathbf{e}_{k1}, \mathbf{e}_{k2}, ..., \mathbf{e}_{kn})$ is orthogonal, then

$$P^{-1} = P^T = egin{bmatrix} e_{k_1}^T \ e_{k_2}^T \ dots \ e_{k_n}^T \end{bmatrix}$$

- The k_1 column of P^T is \mathbf{e}_1 , the k_2 column of P^T is \mathbf{e}_2 , and so on.
- P^T is also a permutation matrix

- P^T is formed from I by reordering the rows of I in the order $(k_1, k_2, ..., k_n)$
- If Q is the permutation matrix formed by reordering the rows of I in the order $(k_1, k_2, ..., k_n)$ and B is an $n \times r$ matrix, then

$$QB = \begin{bmatrix} e_{k_1}^T \\ e_{k_2}^T \\ \vdots \\ e_{k_n}^T \end{bmatrix} B = \begin{bmatrix} e_{k_1}^T B \\ e_{k_2}^T B \\ \vdots \\ e_{k_n}^T B \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{b}}_{k_1} \\ \vec{\mathbf{b}}_{k_2} \\ \vdots \\ \vec{\mathbf{b}}_{k_n} \end{bmatrix}$$

 $\Rightarrow QB$ is formed by reordering the rows of B in the order $(k_1, k_2, ..., k_n)$.

$$Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & \text{and } B = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix}$$

$$\Rightarrow QB = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

5.6 The Gram-Schmidt Orthogonalization Process

- Learn a process for constructing an orthonormal basis for an *n*-dimensional inner product space *V*.
- Using projections to transform an ordinary basis $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ into an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$.

• Construction process – construct the \mathbf{u}_i 's so that

Span(
$$\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$$
) = Span($\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$)
for $k = 1, ..., n$

$$- \underline{\mathbf{Step 1:}} \quad \mathbf{u_1} = \left(\frac{1}{\|\mathbf{x}_1\|}\right) \mathbf{x}_1 \qquad \Rightarrow \mathbf{Span}(\mathbf{u}_1) = \mathbf{Span}(\mathbf{x}_1)$$

- Step 2: Let \mathbf{p}_1 denote the projection of \mathbf{x}_2 onto Span(\mathbf{x}_1) = Span(\mathbf{u}_1):

$$\mathbf{p}_1 = \langle \mathbf{x}_2, \mathbf{u}_1 \rangle \mathbf{u}_1$$

From Theorem 5.5.7: $(\mathbf{x}_2 - \mathbf{p}_1) \perp \mathbf{u}_1$

Note that $\mathbf{x}_2 - \mathbf{p}_1 \neq \mathbf{0}$ since

$$\mathbf{x_2} - \mathbf{p_1} = \mathbf{x_2} - \langle \mathbf{x_2}, \mathbf{u_1} \rangle \mathbf{u_1} = \mathbf{x_2} - \frac{\langle \mathbf{x_2}, \mathbf{u_1} \rangle}{||\mathbf{x_1}||} \mathbf{x_1}$$

and \mathbf{x}_1 and \mathbf{x}_2 are linearly independent

$$\Rightarrow \mathbf{u}_2 = \frac{1}{\|\mathbf{x}_2 - \mathbf{p}_1\|} (\mathbf{x}_2 - \mathbf{p}_1)$$

 \Rightarrow **u**₂ is a unit vector orthogonal to **u**₁

$$\Rightarrow$$
 Span($\mathbf{u}_1, \mathbf{u}_2$) = Span($\mathbf{x}_1, \mathbf{x}_2$)

- Step 3: Let \mathbf{p}_2 be the projection of \mathbf{x}_3 onto Span(\mathbf{x}_1 , \mathbf{x}_2) = Span(\mathbf{u}_1 , \mathbf{u}_2):

$$\mathbf{p}_{2} = \langle \mathbf{x}_{3}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} + \langle \mathbf{x}_{3}, \mathbf{u}_{2} \rangle \mathbf{u}_{2}$$

$$\Rightarrow \mathbf{u}_{3} = \frac{1}{\|\mathbf{x}_{3} - \mathbf{p}_{2}\|} (\mathbf{x}_{3} - \mathbf{p}_{2})$$

Theorem 5.6.1

(The Gram-Schmidt Process)

Let $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ be a basis for the inner product space V. Let

$$\mathbf{u_1} = \left(\frac{1}{\|\mathbf{x}_1\|}\right) \mathbf{x}_1$$

and define $\mathbf{u}_2, ..., \mathbf{u}_n$ recursively by

$$\mathbf{u}_{k+1} = \frac{1}{\|\mathbf{x}_{k+1} - \mathbf{p}_k\|} (\mathbf{x}_{k+1} - \mathbf{p}_k)$$

where $\mathbf{p}_k = \langle \mathbf{x}_{k+1}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \langle \mathbf{x}_{k+1}, \mathbf{u}_2 \rangle \mathbf{u}_2 + \dots + \langle \mathbf{x}_{k+1}, \mathbf{u}_k \rangle \mathbf{u}_k$ is the projection of \mathbf{x}_{k+1} onto Span $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$. The set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is an **orthonormal basis** for V.

• Find an orthonormal basis for P_3 if the inner product on P_3 is defined by

$$\langle p,q\rangle = \sum_{i}^{3} p(x_i)q(x_i)$$

 $\langle p, q \rangle = \sum_{i=1}^{3} p(x_i) q(x_i)$ where $x_1 = -1$, $x_2 = 0$, and $x_3 = 1$.

• *Sol*:

Use the Gram-Schmidt Process to generate an orthonormal basis.

$$||1^2|| = \langle 1, 1 \rangle = 3$$

$$\mathbf{u}_1 = \left(\frac{1}{\|\mathbf{1}\|}\right) \mathbf{1} = \frac{1}{\sqrt{3}}$$

- Set $p_1 = \left\langle x, \frac{1}{\sqrt{3}} \right\rangle \frac{1}{\sqrt{3}} = \left(-1 \cdot \frac{1}{\sqrt{3}} + 0 \cdot \frac{1}{\sqrt{3}} + 1 \cdot \frac{1}{\sqrt{3}} \right) \frac{1}{\sqrt{3}} = 0$
- Therefore, $x p_1 = x$ and $||x p_1||^2 = \langle x, x \rangle = 2$
- Hence

$$\mathbf{u}_2 = \frac{1}{\sqrt{2}}x$$

• Finally, $p_2 = \left\langle x^2, \frac{1}{\sqrt{3}} \right\rangle \frac{1}{\sqrt{3}} + \left\langle x^2, \frac{1}{\sqrt{2}} \right\rangle \frac{1}{\sqrt{2}} x = \frac{2}{3}$ $\left\| x^2 - p_2 \right\|^2 = \left\langle x^2 - \frac{2}{3}, x^2 - \frac{2}{3} \right\rangle = \frac{2}{3}$

and hence

$$u_3 = \frac{\sqrt{6}}{2} \left(x^2 - \frac{2}{3} \right)$$

$$A = \begin{vmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{vmatrix}$$

Find an orthonormal basis for the column space of A.

• *Sol*:

The column vectors of A are <u>linearly independent</u> (why?) and hence form a basis for a 3-dimensional subspace of R^4 . The Gram-Schmidt process used to construct an orthonormal basis as follows.

• Step 1:
$$\mathbf{q}_1 = \left(\frac{1}{\|\mathbf{a}_1\|}\right) \mathbf{a}_1$$

$$r_{11} = ||\mathbf{a}_1|| = \sqrt{1^2 + 1^2 + 1^2 + 1^2} = 2$$

$$\mathbf{q_1} = \frac{1}{r_{11}} \, \mathbf{a_1} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

• Step 2:
$$\mathbf{q_2} = \left(\frac{1}{\|\mathbf{a}_2 - \mathbf{p}_1\|}\right) (\mathbf{a}_2 - \mathbf{p}_1)$$
, where $\mathbf{p}_1 = \langle \mathbf{a}_2, \mathbf{q}_1 \rangle \mathbf{q}_1$

$$r_{12} = \langle \mathbf{a}_2, \mathbf{q}_1 \rangle = \mathbf{a}_2^T \mathbf{q}_1 = \begin{bmatrix} -1 & 4 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = 3$$

$$\mathbf{p}_{1} = \langle \mathbf{a}_{2}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} = r_{12}\mathbf{q}_{1} = 3\mathbf{q}_{1} = \begin{bmatrix} 3/2 \\ 3/2 \\ 3/2 \\ 3/2 \end{bmatrix}$$

$$\mathbf{a}_{2} - \mathbf{p}_{1} = \begin{bmatrix} -1 \\ 4 \\ 4 \\ -1 \end{bmatrix} - \begin{bmatrix} 3/2 \\ 3/2 \\ 3/2 \end{bmatrix} = \begin{bmatrix} -5/2 \\ 5/2 \\ 5/2 \\ -5/2 \end{bmatrix}$$

$$r_{22} = \|\mathbf{a}_2 - \mathbf{p}_1\| = \sqrt{(-5/2)^2 + (5/2)^2 (5/2)^2 (-5/2)^2} = 5$$

$$\mathbf{q_2} = \frac{1}{r_{22}} (\mathbf{a_2} - \mathbf{p_1}) = \frac{1}{5} \begin{bmatrix} -5/2 \\ 5/2 \\ 5/2 \\ -5/2 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$$

• Step 3:

$$\mathbf{q}_{3} = \left(\frac{1}{\|\mathbf{a}_{3} - \mathbf{p}_{2}\|}\right) (\mathbf{a}_{3} - \mathbf{p}_{2}), \text{ where } \mathbf{p}_{2} = \langle \mathbf{a}_{3}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{a}_{3}, \mathbf{q}_{2} \rangle \mathbf{q}_{2}$$

$$r_{13} = \langle \mathbf{a}_{3}, \mathbf{q}_{1} \rangle = \mathbf{a}_{3}^{T} \mathbf{q}_{1} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix} = 2$$

$$r_{23} = \langle \mathbf{a}_{3}, \mathbf{q}_{2} \rangle = \mathbf{q}_{2}^{T} \mathbf{a}_{3} = \begin{bmatrix} -1/2 & 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix} = -2$$

$$\mathbf{p}_{2} = \langle \mathbf{a}_{3}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{a}_{3}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} = r_{13}\mathbf{q}_{1} + r_{23}\mathbf{q}_{2} = 2 \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} - 2 \begin{bmatrix} -1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\mathbf{a}_{3} - \mathbf{p}_{2} = \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix}$$

$$r_{33} = \|\mathbf{a}_3 - \mathbf{p}_2\| = 4$$

$$r_{33} = \|\mathbf{a}_3 - \mathbf{p}_2\| = 4$$

$$\mathbf{q}_3 = \left(\frac{1}{\|\mathbf{a}_3 - \mathbf{p}_2\|}\right) (\mathbf{a}_3 - \mathbf{p}_2) = \frac{1}{r_{33}} (\mathbf{a}_3 - \mathbf{p}_2) = \frac{1}{4} \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{bmatrix}$$

Note

(1)
$$\mathbf{q}_{1} = \frac{1}{r_{11}} \mathbf{a}_{1} \Rightarrow \mathbf{a}_{1} = r_{11} \mathbf{q}_{1}$$

(2) $\mathbf{q}_{2} = \frac{1}{r_{22}} (\mathbf{a}_{2} - \mathbf{p}_{1})$
 $\Rightarrow \mathbf{a}_{2} = r_{22} \mathbf{q}_{2} + \mathbf{p}_{1} = r_{22} \mathbf{q}_{2} + r_{12} \mathbf{q}_{1} \quad (\because \mathbf{p}_{1} = r_{12} \mathbf{q}_{1})$
(3) $\mathbf{q}_{3} = \frac{1}{r_{33}} (\mathbf{a}_{3} - \mathbf{p}_{2})$
 $\Rightarrow \mathbf{a}_{3} = r_{33} \mathbf{q}_{3} + \mathbf{p}_{2} = r_{22} \mathbf{q}_{2} + r_{13} \mathbf{q}_{1} + r_{23} \mathbf{q}_{2} \quad (\because \mathbf{p}_{2} = r_{13} \mathbf{q}_{1} + r_{23} \mathbf{q}_{2})$

• If the r_{ij} 's are used to form a matrix $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}$ and we set $Q = [\mathbf{q_1} \ \mathbf{q_2} \ \mathbf{q_3}]$ Then,

$$QR = [\mathbf{q}_{1} \quad \mathbf{q}_{2} \quad \mathbf{q}_{3}] \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}$$

$$= [r_{11}\mathbf{q}_{1} \quad r_{12}\mathbf{q}_{1} + r_{22}\mathbf{q}_{2} \quad r_{13}\mathbf{q}_{1} + r_{23}\mathbf{q}_{2} + r_{33}\mathbf{q}_{3}]$$

$$= [\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \mathbf{a}_{3}]$$

$$= A$$

Theorem 5.6.2

(Gram-Schmidt QR Factorization)

If A is an $m \times n$ matrix of rank n, then A can be factored into a product QR, where Q is an $m \times n$ matrix with orthonormal columns and R is an $n \times n$ matrix whose diagonal entries are all positive [Note: R must be nonsingular since det(R) > 0]

Note

$$Q = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & & & \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}$$

• Compute the Gram-Schmidt *QR* factorization of the matrix

matrix
$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{bmatrix}$$
• Sol:
• Step 1: $\mathbf{q}_1 = \frac{1}{r_{11}} \mathbf{a}_1 = \frac{1}{\|\mathbf{a}_1\|} \mathbf{a}_1$

$$|r_{11}| = ||\mathbf{a}_1|| = \sqrt{1^2 + 2^2 + 2^2 + 4^2} = 5$$

$$r_{11} = ||\mathbf{a}_1|| = \sqrt{1^2 + 2^2 + 2^2 + 4^2} = 5$$
 $\mathbf{q}_1 = \frac{1}{r_{11}} \mathbf{a}_1 = \frac{1}{5} \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} = \begin{vmatrix} 1/5 \\ 2/5 \\ 4/5 \end{vmatrix}$

• **Step 2:**

$$\mathbf{q_2} = \frac{1}{\|\mathbf{a}_2 - \mathbf{p}_1\|} (\mathbf{a}_2 - \mathbf{p}_1) = \frac{1}{r_{22}} (\mathbf{a}_2 - \mathbf{p}_1), \text{ where } \mathbf{p}_1 = \langle \mathbf{a}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 = r_{12} \mathbf{q}_1$$

$$\mathbf{q}_{2} = \frac{1}{\|\mathbf{a}_{2} - \mathbf{p}_{1}\|} (\mathbf{a}_{2} - \mathbf{p}_{1}) = \frac{1}{r_{22}} (\mathbf{a}_{2} - \mathbf{p}_{1}), \text{ where } \mathbf{p}_{1} = \langle \mathbf{a}_{2}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} = r_{12} \mathbf{q}_{1}$$

$$r_{12} = \langle \mathbf{a}_{2}, \mathbf{q}_{1} \rangle = \mathbf{a}_{2}^{T} \mathbf{q}_{1} = \begin{bmatrix} -2 & 0 & -4 & 0 \end{bmatrix} \begin{bmatrix} 1/5 \\ 2/5 \\ 2/5 \\ 4/5 \end{bmatrix} = -2$$

$$\mathbf{p}_{1} = \langle \mathbf{a}_{2}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} = r_{12}\mathbf{q}_{1} = -2\mathbf{q}_{1} = \begin{bmatrix} -2/5 \\ -4/5 \\ -4/5 \\ -8/5 \end{bmatrix}$$

$$\mathbf{a}_{2} - \mathbf{p}_{1} = \begin{bmatrix} -2 \\ 0 \\ -4 \\ 0 \end{bmatrix} - \begin{bmatrix} -2/5 \\ -4/5 \\ -4/5 \\ -8/5 \end{bmatrix} = \begin{bmatrix} -8/5 \\ 4/5 \\ -16/5 \\ 8/5 \end{bmatrix}$$

$$r_{22} = \|\mathbf{a}_2 - \mathbf{p}_1\| = \sqrt{(-8/5)^2 + (4/5)^2 + (-16/5)^2 + (8/5)^2} = 4$$

$$\mathbf{q}_{2} = \frac{1}{r_{22}} (\mathbf{a}_{2} - \mathbf{p}_{1}) = \frac{1}{4} \begin{bmatrix} -8/5 \\ 4/5 \\ -16/5 \\ 8/5 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 1/5 \\ -4/5 \\ 2/5 \end{bmatrix}$$

• **Step 3:**

$$\mathbf{q_3} = \frac{1}{\|\mathbf{a}_3 - \mathbf{p}_2\|} (\mathbf{a}_3 - \mathbf{p}_2) = \frac{1}{r_{33}} (\mathbf{a}_3 - \mathbf{p}_2),$$
where $\mathbf{p}_2 = \langle \mathbf{a}_3, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{a}_3, \mathbf{q}_2 \rangle \mathbf{q}_2 = r_{13} \mathbf{q}_1 + r_{23} \mathbf{q}_2$

$$r_{13} = \langle \mathbf{a}_3, \mathbf{q}_1 \rangle = \mathbf{a}_3^T \mathbf{q}_1 = \begin{bmatrix} -1 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1/5 \\ 2/5 \\ 2/5 \\ 4/5 \end{bmatrix} = 1$$

$$r_{23} = \langle \mathbf{a}_3, \mathbf{q}_2 \rangle = \mathbf{a}_3^T \mathbf{q}_2 = \begin{bmatrix} -1 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} -2/5 \\ 1/5 \\ -4/5 \\ 2/5 \end{bmatrix} = -1$$

$$\mathbf{p}_{2} = \langle \mathbf{a}_{3}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{a}_{3}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} = r_{13}\mathbf{q}_{1} + r_{23}\mathbf{q}_{2}$$

$$= \begin{bmatrix} 1/5 \\ 2/5 \\ 2/5 \\ 4/5 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 1/5 \\ -4/5 \end{bmatrix} = \begin{bmatrix} 3/5 \\ 1/5 \\ 6/5 \\ 2/5 \end{bmatrix}$$

$$\mathbf{a}_{3} - \mathbf{p}_{2} = \begin{bmatrix} -1\\1\\2\\0 \end{bmatrix} - \begin{bmatrix} 3/5\\1/5\\6/5\\2/5 \end{bmatrix} = \begin{bmatrix} -8/5\\4/5\\4/5\\-2/5 \end{bmatrix}$$

$$r_{33} = \|\mathbf{a}_3 - \mathbf{p}_2\| = \sqrt{(-8/5)^2 + (4/5)^2 + (4/5)^2 + (-2/5)^2} = 2$$

$$\mathbf{q}_{3} = \frac{1}{r_{33}} (\mathbf{a}_{3} - \mathbf{p}_{2}) = \frac{1}{2} \begin{bmatrix} -8/5 \\ 4/5 \\ 4/5 \\ -2/5 \end{bmatrix} = \begin{bmatrix} -4/5 \\ 2/5 \\ 2/5 \\ -1/5 \end{bmatrix}$$

• Step 4:

$$A = QR = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}$$

$$= \begin{bmatrix} 1/5 & -2/5 & -4/5 \\ 2/5 & 1/5 & 2/5 \\ 2/5 & -4/5 & 2/5 \\ 4/5 & 2/5 & -1/5 \end{bmatrix} \begin{bmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

• The system $R\mathbf{x} = Q^T\mathbf{b}$ is easily solved by back substitution: $\begin{bmatrix} 5 & -2 & 1 \\ -1 \end{bmatrix}$

substitution:

$$\begin{bmatrix}
 5 & -2 & 1 | -1 \\
 0 & 4 & -1 | -1 \\
 0 & 0 & 2 | 2
 \end{bmatrix}$$

$$\Rightarrow \text{ The solution is } x = \begin{bmatrix} -2/5 \\ 0 \\ 1 \end{bmatrix}$$

EXAMPLE 3. Compute the Gram-Schmidt QR factorization of the matrix

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{bmatrix}$$

SOLUTION.

Step 1. Set

$$r_{11} = \|\mathbf{a}_1\| = 5$$

$$\mathbf{q}_1 = \frac{1}{r_{11}} \mathbf{a}_1 = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{4}{5}\right)^T$$

Step 2. Set

$$r_{12} = \mathbf{q}_{1}^{T} \mathbf{a}_{2} = -2$$

$$\mathbf{p}_{1} = r_{12} \mathbf{q}_{1} = -2 \mathbf{q}_{1}$$

$$\mathbf{a}_{2} - \mathbf{p}_{1} = \left(-\frac{8}{5}, \frac{4}{5}, -\frac{16}{5}, \frac{8}{5}\right)^{T}$$

$$r_{22} = \|\mathbf{a}_{2} - \mathbf{p}_{1}\| = 4$$

$$\mathbf{q}_{2} = \frac{1}{r_{22}} (\mathbf{a}_{2} - \mathbf{p}_{1}) = \left(-\frac{2}{5}, \frac{1}{5}, -\frac{4}{5}, \frac{2}{5}\right)^{T}$$

Step 3. Set

$$r_{13} = \mathbf{q}_{1}^{T} \mathbf{a}_{3} = 1, \qquad r_{23} = \mathbf{q}_{2}^{T} \mathbf{a}_{3} = -1$$

$$\mathbf{p}_{2} = r_{13} \mathbf{q}_{1} + r_{23} \mathbf{q}_{2} = \mathbf{q}_{1} - \mathbf{q}_{2} = \left(\frac{3}{5}, \frac{1}{5}, \frac{6}{5}, \frac{2}{5}\right)^{T}$$

$$\mathbf{a}_{3} - \mathbf{p}_{2} = \left(-\frac{8}{5}, \frac{4}{5}, \frac{4}{5}, -\frac{2}{5}\right)^{T}$$

$$r_{33} = \|\mathbf{a}_{3} - \mathbf{p}_{2}\| = 2$$

$$\mathbf{q}_{3} = \frac{1}{r_{33}} (\mathbf{a}_{3} - \mathbf{p}_{2}) = \left(-\frac{4}{5}, \frac{2}{5}, \frac{2}{5}, -\frac{1}{5}\right)^{T}$$

At each step we have determined a column of Q and a column of R. The factorization is given by

$$A = QR = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & -\frac{4}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{4}{5} & \frac{2}{5} \\ \frac{4}{5} & \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

Theorem 5.6.3

THEOREM 5.6.3 If A is an $m \times n$ matrix of rank n, then the solution to the least squares problem $A\mathbf{x} = \mathbf{b}$ is given by $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$, where Q and R are the matrices obtained from the factorization given in Theorem 5.6.2. The solution $\hat{\mathbf{x}}$ may be obtained by using back substitution to solve $R\mathbf{x} = Q^T\mathbf{b}$.

Proof. Let $\hat{\mathbf{x}}$ be the solution to the least squares problem $A\mathbf{x} = \mathbf{b}$ guaranteed by Theorem 5.3.2. Thus $\hat{\mathbf{x}}$ is the solution to the normal equations

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

If A is factored into a product QR, these equations become

$$(QR)^T QR\mathbf{x} = (QR)^T \mathbf{b}$$

or

$$R^T(Q^TQ)R\mathbf{x} = R^TQ^T\mathbf{b}$$

Since Q has orthonormal columns, it follows that $Q^{T}Q = I$ and hence

$$R^T R \mathbf{x} = R^T Q^T \mathbf{b}$$

Since R^T is invertible, this simplifies to

$$R\mathbf{x} = Q^T\mathbf{b}$$
 or $\mathbf{x} = R^{-1}Q^T\mathbf{b}$

EXAMPLE 4. Find the least squares solution to

$$\begin{bmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix}$$

SOLUTION. The coefficient matrix of this system was factored in Example 3. Using that factorization, we have

$$Q^{T}\mathbf{b} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} & \frac{2}{5} & \frac{4}{5} \\ -\frac{2}{5} & \frac{1}{5} & -\frac{4}{5} & \frac{2}{5} \\ -\frac{4}{5} & \frac{2}{5} & \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$$

The system $R\mathbf{x} = Q^T\mathbf{b}$ is easily solved by back substitution:

$$\left[\begin{array}{ccc|ccc|c}
5 & -2 & 1 & -1 \\
0 & 4 & -1 & -1 \\
0 & 0 & 2 & 2
\end{array}\right]$$

The solution is $\mathbf{x} = \left(-\frac{2}{5}, 0, 1\right)^T$.

The Modified Gram-Schmidt Process

In Chapter 7 we will consider computer methods for solving least squares problems. The QR method of Example 4 does not in general produce accurate results when carried out with finite-precision arithmetic. In practice, there may be a loss of orthogonality due to roundoff error in computing $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$. We can achieve better numerical accuracy using a modified version of the Gram-Schmidt method. In the modified version the vector \mathbf{q}_1 is constructed as before:

$$\mathbf{q}_1 = \frac{1}{\|\mathbf{a}_1\|} \mathbf{a}_1$$

However, the remaining vectors $\mathbf{a}_2, \ldots, \mathbf{a}_n$ are then modified so as to be orthogonal to \mathbf{q}_1 . This can be done by subtracting from each vector \mathbf{a}_k the projection of \mathbf{a}_k

onto \mathbf{q}_1 .

$$\mathbf{a}_k^{(1)} = \mathbf{a}_k - (\mathbf{q}_1^T \mathbf{a}_k) \mathbf{q}_1 \qquad k = 2, \dots, n$$

At the second step we take

$$\mathbf{q}_2 = \frac{1}{\|\mathbf{a}_2^{(1)}\|} \mathbf{a}_2^{(1)}$$

The vector \mathbf{q}_2 is already orthogonal to \mathbf{q}_1 . We then modify the remaining vectors to make them orthogonal to \mathbf{q}_2 .

$$\mathbf{a}_{k}^{(2)} = \mathbf{a}_{k}^{(1)} - (\mathbf{q}_{2}^{T} \mathbf{a}_{k}^{(1)}) \mathbf{q}_{2}$$
 $k = 3, ..., n$

In a similar manner $\mathbf{q}_3, \mathbf{q}_4, \ldots, \mathbf{q}_n$ are successively determined. At the last step we need only set

$$\mathbf{q}_n = \frac{1}{\|\mathbf{a}_n^{(n-1)}\|} \mathbf{a}_n^{(n-1)}$$

to achieve an orthonormal set $\{\mathbf{q}_1, \ldots, \mathbf{q}_n\}$. The following algorithm summarizes the process.

Algorithm 5.6.4

► ALGORITHM 5.6.4 [The Modified Gram—Schmidt Process]

For
$$k = 1, 2, ..., n$$
 set
$$r_{kk} = \|\mathbf{a}_k\|$$

$$\mathbf{q}_k = \frac{1}{r_{kk}} \mathbf{a}_k$$
For $j = k + 1, k + 2, ..., n$, set
$$r_{kj} = \mathbf{q}_k^T \mathbf{a}_j$$

$$\mathbf{a}_j = \mathbf{a}_j - r_{kj} \mathbf{q}_k$$
Find for loop
$$End for loop$$

If the modified Gram-Schmidt process is applied to the column vectors of an $m \times n$ matrix A having rank n, then, as before, we can obtain a QR factorization of A. This factorization may then be used computationally to determine the least squares solution to $A\mathbf{x} = \mathbf{b}$.