Solution (21.1):

(a) Doing a partial fraction decomposition, we find

$$\frac{1}{(z-1)(z+2)} = \frac{1}{3} \frac{1}{z-1} - \frac{1}{3} \frac{1}{z+2},$$

giving giving a residue of $\frac{1}{3}$ at z = 1 and a residue of $-\frac{1}{3}$ at z = -2.

(b) Evaluating the residue at z = 1, we may use the cover-up method to find

Res[f(z), 1] =
$$\frac{e^{2i}}{27}$$
.

To evaluate the residue at z = -2, we use the formula to calculate residues, giving

Res[f(z), -2] =
$$\frac{1}{2} \frac{d^2}{dz^2} \left(\frac{e^{2iz}}{z-1} \right) \Big|_{z=-2}$$

= $\frac{38}{27} e^{-4i}$

(c) Note that sin(z) is a simple zero at $z = n\pi$. Therefore, we evaluate

Res[f(z),
$$n\pi$$
] = $(-1)^n e^{n\pi}$.

(d) Using the Laurent series for $e^{1/z}$, we find that

$$e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots$$

so that

$$Res[f(z), 0] = 1.$$

(e) Note that $e^{2z} + 1 = 0$ whenever $z = i(2n + 1)\pi/2$. These are all simple zeros, so we may evaluate

Res[f(z), i(2n + 1)
$$\pi$$
/2] = $\frac{-(2n + 1)^2 \pi^2(-1)}{4(-2)}$
= $-\frac{(2n + 1)^2 \pi^2}{8}$.

- | **Solution** (21.2):
- | **Solution** (21.6):
- | **Solution** (21.8):
- | **Solution** (21.10):
- | **Solution** (21.12):
- | **Solution** (21.16):
- | **Solution** (21.17):
- | Solution (21.22):