Auxiliar 7

Profesor: Claudio Romero Z. Profesores auxiliares: Felipe Isaule , Rodrigo Sabaj S.

Martes 8 de Octubre de 2013

P1.

Se conecta un condensador de placas paralelas a una batería que entrega un voltaje V_0 constante. En el interior del condensador hay un bloque dieléctrico de constante ϵ . Encuentre la fuerza que actúa sobre este bloque.

P2. Puente de Wheatstone

Resistencias R_1,R_2 y R_3 , cada una de $10[\Omega]$, están colocadas en tres de los cuatro brazos del circuito que se muestra en la figura. El valor de la resistencia en el cuarto brazo ha sido ajustado de manera que la corriente i_G en el galvanómetro sea nula (es decir, el puente está balanceado). A continuación la resistencia R_3 es reemplazada por una resistencia desconocida R_X y la condición de balance ($i_G = 0$) se recupera conectado una resistencia de $1,0123 \times 10^4 [\Omega]$ en paralelo con R_4 . ¿Cuál es el valor de R_X ?

1

P3

- a) En el circuito de la figura, se pide determinar el valor de la resistencia R_Y como función de los valores de las otras resistencias, cuando se cumple la condición que la corriente por R_X es nula.
- b) Con la misma condición anterior, se pide calcular la carga almacenada en el condensador C en regimen permanente, como función de V_0 y de las resistencias.

