# Aditya Prakash axp171931

### **Assignment 3**

#### **KMeans**

### Compression Ratio = Uncompressed Size / Compressed Size

# (1) Koala.jpg

Size: 780.8 kB

| k  | Compressed Size(kB) | Compression Ratio |
|----|---------------------|-------------------|
| 2  | 130.9               | 5.96              |
| 5  | 176.6               | 4.42              |
| 10 | 164.2               | 4.76              |
| 15 | 158.6               | 4.92              |
| 20 | 155.3               | 5.02              |

# (2) Penguins.jpg

Size: 777.8 kB

| k  | Compressed Size(kB) | Compression Ratio |
|----|---------------------|-------------------|
| 2  | 85.0                | 9.15              |
| 5  | 108.2               | 7.19              |
| 10 | 117.6               | 6.61              |
| 15 | 117.3               | 6.63              |
| 20 | 116.4               | 6.68              |

#### **Observations:**

Lower the k value, the more compressed the image is.

More compression leads to more information loss and reduced image quality.

For Koala.jpg, the compression ratios of k=10, 15 and 20 are similar. The image quality of k=15 and k=20 is almost similar.

For Penguins.jpg, the compression ratios of k=10, 15 and 20 are also similar. The image quality of k=15 and k=20 is also almost similar like in the case of Koala.jpg.

For both the images, k=15 and k=20 seem like a good value of k.

# Koala.jpg













# Penguins.jpg











