પ્રશ્ન 1(a) [3 ગુણ]

Opto-Isolators, Opto-TRIAC અને Opto-ટ્રાન્ઝિસ્ટરની લાક્ષણિકતાઓ દોરો.

જવાબ:

ઓપ્ટો-ઇલેક્ટ્રોનિક ઉપકરણોની લાક્ષણિકતાઓ:

Opto-Isolator	Opto-TRIAC	Opto-Transistor
imgbb.com image not found	imgbb.com image not found	imgbb.com image not found
LED કરંટ અને ફોટોડિટેક્ટર કરંટ વચ્ચે લીનિયર સંબંધ	થ્રેશોલ્ડ સાથે નોન-લીનિયર ટ્રિગરિંગ રિસ્પોન્સ	લીનિયર કરંટ ટ્રાન્સફર લાક્ષણિકતા
CTR (કરંટ ટ્રાન્સફર રેશિયો) મુખ્ય પેરામીટર છે	યોક્કસ કરંટ થ્રેશોલ્ડ પર ટ્રિગરિંગ થાય છે	કલેક્ટર કરંટ બેઝ ઇલ્યુમિનેશન પર આધાર રાખે છે

- CTR (કરંટ ટ્રાન્સફર રેશિયો): આઉટપુટ કરંટનો ઇનપુટ કરંટ સાથેનો ગુણોત્તર
- ટ્રિગર કરંટ: ડિવાઈસને એક્ટિવેટ કરવા માટે જરૂરી ન્યૂનતમ કરંટ
- લિનિયારિટી: આઉટપુટ ઇનપુટ લાઇટના પ્રમાણમાં કેટલું છે

મેમરી ટ્રીક: "LTL - લાઇટ ટ્રાન્સફર્સ લાઇક કરંટ ફ્લોઝ – લીનિયર ફોર આઇસોલેટર્સ/ટ્રાન્ઝિસ્ટર્સ, ટ્રિગર્ડ ફોર TRIACs"

પ્રશ્ન 1(b) [4 ગુણ]

IGBT ની કાર્યકારી અને બાંધકામ સુવિધાઓનું વર્ણન કરો.

જવાબ:

IGBT સ્ટ્રક્ચર અને ઓપરેશન:

ફીચર	นย์า
સ્ટ્રક્ચર	MOSFET ઇનપુટને BJT આઉટપુટ સાથે જોડે છે
લેયર્સ	ગેટ/મેટલ ઓક્સાઇડ/P+ બોડી/N- ડ્રિફ્ટ/P+ કલેક્ટર
ફાયદાઓ	ઉચ્ચ ઇનપુટ ઇમ્પિડન્સ, ઓછું કન્ડક્શન લોસ
સ્વિચિંગ	BJT કરતાં ઝડપી, MOSFET કરતાં વધુ સારી પાવર હેન્ડલિંગ

- **વોલ્ટેજ કંટ્રોલ્ડ**: MOSFET જેવી ગેટ વોલ્ટેજ દ્વારા નિયંત્રિત ડિવાઇસ
- કન્ડક્ટિવિટી મોડ્યુલેશન: P+ કલેક્ટર ડ્રિફ્ટ રિજિયનમાં હોલ્સ ઇન્જેક્ટ કરે છે
- **લો ઓન-સ્ટેટ વોલ્ટેજ**: MOSFET કરતાં ઓછું કન્ડક્શન લોસ

મેમરી ટ્રીક: "IGBT MBC" - "ઇનપુટ ફ્રોમ MOS, બોડી હેન્ડત્સ કરંટ, કલેક્ટર એક્ટ્સ લાઇક BJT"

પ્રશ્ન 1(c) [7 ગુણ]

બે-ટ્રાન્ઝિસ્ટર એનાલોજીનો ઉપયોગ કરીને SCR નું કાર્ય સમજાવો.

જવાબ:

SCR એઝ ટુ-ટ્રાન્ઝિસ્ટર મોડેલ:

બે-ટ્રાન્ઝિસ્ટર સમજૂતી:

કોમ્પોનન્ટ	ફંક્શન	કનેક્શન્સ
PNP (T1)	ઉપરનો ટ્રાન્ઝિસ્ટર	એમિટર એનોડથી, કલેક્ટર N1 થી, બેઝ P2-N1 જંક્શનથી
NPN (T2)	નીચેનો ટ્રાન્ઝિસ્ટર	એમિટર કેથોડથી, કલેક્ટર P1-N1 જંક્શનથી, બેઝ ગેટથી
ફીડબેક	રિજનરેટિવ એક્શન	T1નો કલેક્ટર કરંટ = T2નો બેઝ કરંટ અને વાઇસ વર્સા

- **લેચિંગ મેકેનિઝમ**: એકવાર ટ્રિગર થયા પછી, ટ્રાન્ઝિસ્ટર એકબીજાને ON રાખે છે
- **દ્વિગરિંગ**: નાનો ગેટ કરંટ o T2 ચાલુ થાય o T1ને બેઝ કરંટ મળે o બંને ચાલુ રહે
- હોલ્ડિંગ કરંટ: રિજનરેટિવ એક્શન જાળવી રાખવા માટે જરૂરી ન્યૂનતમ કરંટ
- **ટર્ન-ઓફ**: એનોડ કરંટ હોલ્ડિંગ કરંટથી નીચે જવો જોઈએ

મેમરી ટ્રીક: "PPFF" - "પોઝિટિવ ફીડબેક પર્પેચ્યુએટ્સ ફોરવર્ડ કન્ડક્શન"

પ્રશ્ન 1(c) OR [7 ગુણ]

ઓપ્ટો-એસસીઆરનો ઉપયોગ કરીને સોલિડ સ્ટેટ રિલેનું કાર્ય સમજાવો.

જવાબ:

ઓપ્ટો-SCR સાથે સોલિડ સ્ટેટ રિલે:

કાર્ય સિદ્ધાંત અને ઘટકો:

સ્ટેજ	ફંક્શન	ફાયદો
ઇનપુટ	ઓછા વોલ્ટેજનું કંટ્રોલ સિગ્નલ LED ને એક્ટિવેટ કરે છે	હાઇ પાવરથી આઇસોલેશન
ઓપ્ટો-કપલર	LED લાઇટ ફોટો-સેન્સિટિવ SCR ને ટ્રિગર કરે છે	ઇલેક્ટ્રિકલ આઇસોલેશન
ડ્રાઇવર સર્કિટ	ફોટો-SCR મુખ્ય સ્વિચિંગ ડિવાઇસને એક્ટિવેટ કરે છે	સ્વિચિંગ ક્ષમતાનું એમ્પ્લિફિકેશન
આઉટપુટ સ્ટેજ	મુખ્ય SCR/TRIAC હાઇ-પાવર લોડને નિયંત્રિત કરે છે	લોડ કરંટને સંભાળે છે
સ્નબર	RC સર્કિટ વોલ્ટેજ સ્પાઇક્સથી રક્ષણ આપે છે	ખોટા ટ્રિગરિંગને રોકે છે

- **ઇલેક્ટ્રિકલ આઇસોલેશન**: કંટ્રોલ અને પાવર સર્કિટ વચ્ચે સંપૂર્ણ અલગતા (>1000V)
- **ઝીરો-ક્રોસિંગ**: માત્ર ઝીરો વોલ્ટેજ પર સ્વિચિંગ EMI/RFI નોઇઝ ઘટાડે છે
- સાયલેન્ટ ઓપરેશન: પરંપરાગત રિલેથી વિપરીત, કોઈ મેકેનિકલ ક્લિક નથી
- લાંબી લાઇફ: પરંપરાગત રિલેમાં જેવા મેકેનિકલ ઘસારો નથી

મેમરી ટ્રીક: "LIPO" - "લાઇટ ઇન, પાવર આઉટ - આઇસોલેશન ગેરંટેડ"

પ્રશ્ન 2(a) [3 ગુણ]

SCR માટે સ્નબર સર્કિટનું કાર્ય સમજાવો.

જવાબ:

SCR માટે સ્નબર સર્કિટ:

કોમ્પોનન્ટ	હેતુ	સાઇઝિંગ કન્સિડરેશન
કેપેસિટર (C1)	dv/dt રેટને મર્યાદિત કરે છે	SCRની મહત્તમ dv/dt રેટિંગ પર આધારિત
રેઝિસ્ટર (R1)	ડિસ્થાર્જ કરંટને મર્યાદિત કરે છે	કેપેસિટર વેલ્યુ અને સ્વિચિંગ ફ્રિક્વન્સી પર આધારિત

• dv/dt પ્રોટેક્શન: ઝડપી વોલ્ટેજ વધારાને કારણે ખોટા ટ્રિગરિંગને રોકે છે

• ટર્ન-ઓફ સપોર્ટ: વૈકલ્પિક પાથ પ્રદાન કરીને કમ્યુટેશનમાં મદદ કરે છે

• એનર્જી એલ્સોર્પશન: સ્વિચિંગ દરમિયાન ઇન્ડક્ટિવ લોડથી ઊર્જા શોષે છે

મેમરી ટ્રીક: "CARD" - "કેપેસિટર એન્ડ રેઝિસ્ટર ડેમ્પ અનવોન્ટેડ ટ્રિગરિંગ"

પ્રશ્ન 2(b) [4 ગુણ]

ફોર્સ્ડ અને નેચરલ કોમ્યુટેશન વચ્ચેનો તફાવત લખો.

જવાબ:

કોમ્યુટેશન પદ્ધતિઓની તુલના:

પેરામીટર	ફોર્સ્ડ કોમ્યુટેશન	નેચરલ કોમ્યુટેશન
વ્યાખ્યા	બાહ્ય સર્કિટ SCRને બંધ કરવા માટે દબાણ કરે છે	AC સ્ત્રોત કુદરતી રીતે કરંટને શૂન્ય સુધી ઘટાડે છે
એપ્લિકેશન	મુખ્યત્વે DC સર્કિટ્સ	મુખ્યત્વે AC સર્કિટ્સ
કોમ્પોનન્ટ્સ	વધારાના ઘટકોની જરૂર પડે છે (કેપેસિટર, ઇન્ડક્ટર)	કોઈ વધારાના ઘટકોની જરૂર નથી
કોમ્પ્લેક્સિટી	વધુ જટિલ સર્કિટ ડિઝાઇન	સરળ સર્કિટ ડિઝાઇન
એનર્જી	કોમ્યુટેશન માટે વધારાની ઊર્જા જરૂરી	હાલના સ્ત્રોત ઊર્જાનો ઉપયોગ કરે છે
કંટ્રોલ	યોક્કસપણે નિયંત્રિત કરી શકાય છે	AC સાયકલના નિશ્ચિત બિંદુઓએ થાય છે
ખર્ય	વદ્યારાના ઘટકોને કારણે વદ્યારે	ઓછી ખર્ચાળ અમલીકરણ

• **ટાઇમિંગ કંટ્રોલ**: ફોર્સ્ડ કોમ્યુટેશન વધુ સારો ટાઇમિંગ કંટ્રોલ આપે છે

• **સર્કિટ સાઇઝ**: નેચરલ કોમ્યુટેશનથી નાની સર્કિટ સાઇઝ મળે છે

• વિશ્વસનીયતા: નેચરલ કોમ્યુટેશનમાં નિષ્ફળ થવા માટે ઓછા ઘટકો છે

મેમરી ટ્રીક: "DANCE" - "DC નીડ્સ એક્ટિવ કોમ્યુટેશન, નેચરલ ફોર AC, કોસ્ટ્સ એક્સ્ટ્રા ફોર ફોર્સ્ડ"

પ્રશ્ન 2(c) [7 ગુણ]

બ્લોક ડાયાગ્રામની મદદથી યુપીએસની કામગીરીનું વર્ણન કરો.

જવાબ:

UPS બ્લોક ડાયાગ્રામ અને ઓપરેશન:

UPS ઓપરેશન મોડ્સ:

મોડ	qย์ -	પાવર પાથ
નોર્મલ	AC સ્ત્રોત રેક્ટિફાયર અને ઇન્વર્ટર મારફતે લોડને પાવર આપે છે	AC ઇનપુટ → રેક્ટિફાયર → ઇન્વર્ટર → આઉટપુટ
બેટરી	AC નિષ્ફળ થાય ત્યારે બેટરી લોડને પાવર આપે છે	બેટરી → ઇન્વર્ટર → આઉટપુટ
બાયપાસ	મેઇન્ટેનન્સ માટે AC સીધા લોડ સાથે જોડાય છે	AC ઇનપુટ → બાયપાસ સ્વિચ → આઉટપુટ
ચાર્જિંગ	નોર્મલ મોડમાં બેટરી ચાર્જ થાય છે	રેક્ટિફાયર → બેટરી

- **ઓનલાઇન UPS**: પાવર હંમેશા રેક્ટિફાયર/ઇન્વર્ટર મારફતે વહે છે (ડબલ કન્વર્ઝન)
- **ઓફલાઇન UPS**: પાવર સીધો લોડમાં જાય છે, પાવર નિષ્ફળ થાય ત્યારે બેટરી પર સ્વિચ થાય છે
- **લાઇન-ઇન્ટરેક્ટિવ**: ઓફલાઇન જેવું પરંતુ વોલ્ટેજ રેગ્યુલેશન સાથે
- બેકઅપ ટાઇમ: બેટરી ક્ષમતા અને લોડ જરૂરિયાતો પર આધાર રાખે છે

મેમરી ટ્રીક: "BRIC" - "બેટરી રેડી વ્હેન ઇનપુટ કટ્સ ઓફ"

પ્રશ્ન 2(a) OR [3 ગુણ]

SCR ની પલ્સ ગેટ ટ્વિગરિંગ પદ્ધતિ સમજાવો.

જવાબ:

પલ્સ ગેટ ટિગરિંગ મેથડ:

પેરામીટર	સ્પેસિફિકેશન	ફાયદો
પત્સ વિડ્થ	10-100 μs	યોગ્ય ટર્ન-ઓન સુનિશ્ચિત કરે છે
એમ્પ્લિટ્યુડ	થ્રેશોલ્ડથી 1-3V ઉપર	વિશ્વસનીય ટ્રિગરિંગ
રાઇઝ ટાઇમ	ફાસ્ટ (<1 µs)	ક્વિક ટર્ન-ઓન
ફ્રિક્વન્સી	સિંગલ અથવા ટ્રેન ઓફ પલ્સિસ	ટાઇમિંગ પર કંટ્રોલ

• પ્રિસાઇઝ કંટ્રોલ: SCR ટર્ન-ઓનનો ચોક્કસ સમય

• **નોઇઝ ઇમ્યુનિટી**: ખોટા ટ્રિગરિંગને ઓછું સંવેદનશીલ

• પાવર એફિશિયન્સી: ઓછો એવરેજ ગેટ પાવર વપરાશ

• **આઇસોલેશન**: પત્સ ટ્રાન્સફોર્મર અથવા ઓપ્ટો-આઇસોલેટર મારફતે કપલ કરી શકાય છે

મેમરી ટ્રીક: "TRAP" - "ટાઇમ્ડ, રિલાયબલ, એમ્પ્લિટ્યુડ-કંટ્રોલ્ડ પલ્સિસ"

પ્રશ્ન 2(b) OR [4 ગુણ]

SCR ની કમ્યુટેશન પદ્ધતિઓની યાદી બનાવો અને કોઈપણ એકને વિગતવાર સમજાવો.

જવાબ:

SCR ની કમ્યુટેશન પદ્ધતિઓ:

પદ્ધતિ	સર્કિટ પ્રકાર	એપ્લિકેશન
ક્લાસ A	LC દ્વારા સેલ્ફ-કોમ્યુટેટેડ	લો-પાવર ઇન્વર્ટર્સ
ક્લાસ B	AC સ્ત્રોત દ્વારા સેલ્ફ-કોમ્યુટેટેડ	AC પાવર કંટ્રોલ
ક્લાસ C	કોમ્પ્લિમેન્ટરી SCR કોમ્યુટેશન	DC ચોપર્સ
ક્લાસ D	એક્સટર્નલ પલ્સ કોમ્યુટેશન	DC/AC કન્વર્ટર્સ
ક્લાસ E	એક્સટર્નલ કેપેસિટર કોમ્યુટેશન	DC પાવર કંટ્રોલ
ક્લાસ F	લાઇન કોમ્યુટેશન	AC લાઇન કંટ્રોલ્ડ રેક્ટિફાયર્સ

ક્લાસ E (કેપેસિટર કોમ્યુટેશન)ની વિગતવાર સમજૂતી:

- **કાર્ય સિદ્ધાંત**: જ્યારે SCR1 ચાલુ હોય અને લોડ કરંટ વહન કરતો હોય, ત્યારે SCR2ને ફાયર કરવાથી પ્રી-ચાર્જ્ડ કેપેસિટર SCR1 પર જોડાય છે, જે તેને રિવર્સ બાયસ કરે છે
- **ટર્ન-ઓફ ટાઇમ**: કેપેસિટર વેલ્યુ અને સર્કિટ રેઝિસ્ટન્સ દ્વારા નક્કી થાય છે
- **એપ્લિકેશન્સ**: DC ચોપર્સ, પાવર કંટ્રોલ સર્કિટ્સ, ઇન્વર્ટર્સ
- ફાયદાઓ: સરળ સર્કિટ, વિશ્વસનીય ઓપરેશન, કોસ્ટ-ઇફેક્ટિવ

મેમરી ટ્રીક: "CARE" - "કેપેસિટર એપ્લાઇઝ રિવર્સ વોલ્ટેજ ફોર એક્સ્ટિંક્શન"

પ્રશ્ન 2(c) OR [7 ગુણ]

બ્લોક ડાયાગ્રામની મદદથી SMPS ની કામગીરીનું વર્ણન કરો.

જવાબ:

SMPS બ્લોક ડાયાગ્રામ અને ઓપરેશન:

SMPS કાર્ય સિદ્ધાંત:

બ્લોક	ફંક્શન	મુખ્ય ઘટકો
EMI ફિલ્ટર	નોઇઝને દબાવે છે	ઇન્ડક્ટર્સ, કેપેસિટર્સ
રેક્ટિફાયર/PFC	AC ને DC માં રૂપાંતરિત કરે છે, પાવર ફેક્ટર સુધારે છે	ડાયોડ્સ, બૂસ્ટ કન્વર્ટર
HF ઇન્વર્ટર	હાઇ-ફ્રીક્વન્સી AC બનાવે છે	સ્વિચિંગ ટ્રાન્ઝિસ્ટર્સ (MOSFET/IGBT)
HF ટ્રાન્સફોર્મર	આઇસોલેટ અને વોલ્ટેજ ટ્રાન્સફોર્મ કરે છે	ફેરાઇટ કોર ટ્રાન્સફોર્મર
આઉટપુટ સ્ટેજ	ક્લીન DC માટે રેક્ટિફાઇ અને ફિલ્ટર કરે છે	ફાસ્ટ ડાયોડ્સ, LC ફિલ્ટર
ફીડબેક	આઉટપુટ વોલ્ટેજ નિયંત્રિત કરે છે	ઓપ્ટો-આઇસોલેટર, PWM કંટ્રોલર

- હાઇ એફિશિયન્સી: લીનિયર પાવર સપ્લાય 50-60% ની તુલનામાં 70-95% કાર્યક્ષમ
- **સાઇઝ રિડક્શન**: હાઇ-ફ્રીક્વન્સી ઓપરેશન નાના ટ્રાન્સફોર્મર્સને શક્ય બનાવે છે

- રેગ્યુલેશન: ફીડબેક લૂપ ઇનપુટ/લોડ પરિવર્તન છતાં સ્થિર આઉટપુટ જાળવે છે
- પ્રોટેક્શન: ઓવરકરંટ, ઓવરવોલ્ટેજ, અને થર્મલ પ્રોટેક્શન બિલ્ટ-ઇન

મેમરી ટ્રીક: "RELIEF" - "રેક્ટિફાય, એનર્જાઈઝ એટ હાઇ ફ્રીક્વન્સી, આઇસોલેટ, એક્સટ્રેક્ટ DC, ફ્રીડબેક"

પ્રશ્ન 3(a) [3 ગુણ]

ઓવરવોલ્ટેજ સામે SCR ને સુરક્ષિત કરવાની પદ્ધતિ જણાવો.

જવાબ:

SCR ઓવરવોલ્ટેજ પ્રોટેક્શન મેથડ્સ:

પદ્ધતિ	સર્કિટ અમલીકરણ	પ્રોટેક્શન લેવલ
સ્નબર સર્કિટ	SCR પર RC નેટવર્ક	dv/dt પ્રોટેક્શન
MOV (મેટલ ઓક્સાઇડ વેરિસ્ટર)	SCR પર કનેક્ટેડ	ટ્રાન્ઝિયન્ટ સપ્રેશન
વોલ્ટેજ ક્લેમ્પિંગ	શ્રેણીમાં ઝેનર ડાયોડ્સ	ફિક્સ્ડ વોલ્ટેજ લિમિટિંગ
ક્રોબાર સર્કિટ	સેન્સિંગ અને શન્ટિંગ સર્કિટ	સંપૂર્ણ શટડાઉન

- **વોલ્ટેજ રેટિંગ**: હંમેશા સામાન્ય ઓપરેટિંગ વોલ્ટેજથી 2-3 ગણી વોલ્ટેજ રેટિંગવાળા SCR નો ઉપયોગ કરો
- **રેટ-ઓફ-રાઇઝ**: સ્નબર સર્કિટ્સ (dv/dt પ્રોટેક્શન) સાથે ફાસ્ટ ટ્રાન્ઝિયન્ટથી રક્ષણ કરો
- **બ્રેકડાઉન વોલ્ટેજ**: SCR જંક્શનના રિવર્સ બ્રેકડાઉન વોલ્ટેજને ક્યારેય ઓળંગશો નહીં
- **કોઓર્ડિનેટેડ પ્રોટેક્શન**: ક્રિટિકલ એપ્લિકેશન્સ માટે બહુવિધ પદ્ધતિઓનો ઉપયોગ કરો

મેમરી ટ્રીક: "SCRAM" - "સ્નબર સર્કિટ્સ રિડ્યુસ એબનોર્મલ મેક્સિમમ વોલ્ટેજ"

પ્રશ્ન 3(b) [4 ગુણ]

સિંગલ-ફેઝ રેક્ટિફાયર કરતાં પોલિફેઝ રેક્ટિફાયરના કોઈપણ ચાર ફાયદા જણાવો.

જવાલ:

પોલિફેઝ રેક્ટિફાયરના ફાયદાઓ:

ફાયદો	સમજૂતી	પ્રભાવ
હાયર પાવર હેન્ડલિંગ	ફ્રેઝ પર લોડ વિતરિત કરે છે	હાઇ-પાવર એપ્લિકેશન્સ માટે યોગ્ય
ઘટાડેલું રિપલ	ઓવરલેપિંગ ફ્રેઝ આઉટપુટ રિપલ ઘટાડે છે	ઓછી ફિલ્ટરિંગની જરૂર
બેટર ટ્રાન્સફોર્મર યુટિલાઇઝેશન	ઉચ્ચ ટ્રાન્સફોર્મર યુટિલાઇઝેશન ફેક્ટર (0.955 vs 0.812)	વધુ અર્થવ્યવસ્થિત ડિઝાઇન
ઇમ્પ્રૂવ્ક પાવર ફેક્ટર	બેટર લાઇન યુટિલાઇઝેશન	ઘટાડેલા લાઇન લોસિસ
લોઅર હાર્મોનિક કન્ટેન્ટ	હાર્મોનિક્સ ઉચ્ચ ફ્રિક્વન્સીથી શરૂ થાય છે	ઘટાડેલા EMI મુદ્દાઓ
હાયર એફિશિયન્સી	બેટર ડિસ્ટ્રિબ્યુશનને કારણે ઘટાડેલા લોસિસ	ઓછા ઓપરેટિંગ ખર્ચ

- **ફોર્મ ફેક્ટર**: નીચો ફોર્મ ફેક્ટર એટલે વધુ સારી DC ક્વોલિટી
- રિપલ ફ્રિક્વન્સી: ઉચ્ચ રિપલ ફ્રિક્વન્સી ફિલ્ટર કરવી સરળ છે
- **બેલેન્સ્ક લોડ**: પોલિફેઝ સપ્લાયમાંથી બેલેન્સ્ક કરંટ ખેંચે છે
- **સાઇઝ રિડક્શન**: નાના ફિલ્ટર ઘટકોની જરૂર પડે છે

મેમરી ટ્રીક: "HERBS" - "હાયર એફિશિયન્સી, ઇવન લોડ, રિક્યુસ્ડ રિપલ, બેટર PF, સ્મોલર ફિલ્ટર્સ"

પ્રશ્ન 3(c) [7 ગુણ]

બ્લોક ડાયાગ્રામની મદદથી સૌર ફોટોવોલ્ટેઇક (PV) આધારિત પાવર જનરેશનની કામગીરીનું વર્ણન કરો.

જવાબ:

સોલર PV પાવર જનરેશન સિસ્ટમ:

સિસ્ટમ ઘટકો અને કાર્યો:

ยวร	รเช้	મુખ્ય ફીચર્સ
PV એરે	સનલાઇટને DC ઇલેક્ટ્રિસિટીમાં રૂપાંતરિત કરે છે	મલ્ટિપલ સિરીઝ/પેરેલેલ કનેક્ટેડ પેનલ્સ
MPPT	પાવર એક્સટ્રેક્શન મહત્તમ કરે છે	ઓપ્ટિમલ ઓપરેટિંગ પોઇન્ટ ટ્રેક કરે છે
ચાર્જ કંટ્રોલર	બેટરી યાર્જિંગ મેનેજ કરે છે	ઓવરચાર્જિંગ/ડીપ ડિસ્ચાર્જ અટકાવે છે
બેટરી બેંક	એનર્જી સ્ટોરેજ	વિશ્વસનીયતા માટે ડીપ સાયકલ બેટરી
ઇન્વર્ટર	DC ને AC માં રૂપાંતરિત કરે છે	સંવેદનશીલ ઉપકરણો માટે પ્યોર સાઇન વેવ
ડિસ્ટ્રિબ્યુશન પેનલ	લોડ્સમાં પાવર રૂટ કરે છે	પ્રોટેક્શન ડિવાઇસિસ સમાવેશ કરે છે

- ગ્રિડ-ટાઇડ સિસ્ટમ્સ: યુટિલિટી ગ્રિડથી જોડાયેલ, વધારાની પાવર વેચી શકે છે
- ઓફ-ગ્રિડ સિસ્ટમ્સ: બેટરી સ્ટોરેજ સાથે સ્ટેન્ડઅલોન સિસ્ટમ
- હાઇબ્રિડ સિસ્ટમ્સ: બેટરી બેકઅપ સાથે બંને મોડમાં ચાલી શકે છે
- એફિશિયન્સી: સૂર્યપ્રકાશથી વપરાશયોગ્ય વીજળી સુધીની સામાન્ય સિસ્ટમ કાર્યક્ષમતા 15-20%

મેમરી ટ્રીક: "SIMPLE" - "સન ઇન, મેક્સિમમ પાવર, લોકલ એનર્જી"

પ્રશ્ન 3(a) OR [3 ગુણ]

ઓવર કરંટ સામે SCR ને સુરક્ષિત કરવાની પદ્ધતિ જણાવો.

જવાબ:

SCR ઓવરકરંટ પ્રોટેક્શન મેથડ્સ:

મેથડ	અમલીકરણ	રિસ્પોન્સ ટાઇમ
ह्यु अ	ફાસ્ટ-એક્ટિંગ સેમિકન્ડક્ટર ફ્યુઝ	ખૂબ ઝડપી (માઇક્રોસેકન્ડ)
સર્કિટ બ્રેકર	મેગ્નેટિક/થર્મલ બ્રેકર	મધ્યમ (મિલિસેકન્ડ)
કરંટ લિમિટિંગ રિએક્ટર	શ્રેણીમાં ઇન્ડક્ટર	તાત્કાલિક
ઇલેક્ટ્રોનિક કરંટ લિમિટિંગ	સેન્સિંગ અને કંટ્રોલ સર્કિટ	ઝડપી (માઇક્રોસેકન્ડ)

- કરેટ રેટિંગ: હંમેશા મહત્તમ ઓપરેટિંગ કરંટથી ઉપરની કરંટ રેટિંગવાળા SCR નો ઉપયોગ કરો
- **di/dt પ્રોટેક્શન**: જંક્શન નુકસાન અટકાવવા માટે કરંટ વૃદ્ધિના દરને મર્યાદિત કરો
- **થર્મલ મેનેજમેન્ટ**: થર્મલ રનવે અટકાવવા માટે યોગ્ય હીટસિંકિંગ
- **કોઓર્ડિનેશન**: SCR ને નુકસાન થાય તે પહેલા પ્રોટેક્શન ડિવાઇસ કાર્ય કરવું જોઈએ

મેમરી ટ્રીક: "FIRE" - "ફ્યુઝ ઇમિડિયટલી રિસ્ટ્રિક્ટ એક્સેસિવ કરંટ"

પ્રશ્ન 3(b) OR [4 ગુણ]

ડીસી ચોપરનો મૂળ સિદ્ધાંત સમજાવો.

જવાબ:

DC ચોપર બેઝિક પ્રિન્સિપલ:

પેરામીટર	વર્ણન	પ્રભાવ
ક્યુટી સાયકલ (α)	કુલ પીરિયડમાં ON સમયનો ગુણોત્તર	આઉટપુટ વોલ્ટેજ નિયંત્રિત કરે છે
સ્વિથિંગ ફ્રિક્વન્સી	દર સેકન્ડે ON/OFF સાયકલની સંખ્યા	રિપલ અને ફિલ્ટર સાઇઝને અસર કરે છે
ચોપિંગ મેથડ	સ્ટેપ-અપ, સ્ટેપ-ડાઉન, બક-બૂસ્ટ	વોલ્ટેજ કન્વર્ઝન નક્કી કરે છે
કંટ્રોલ સ્ટ્રેટેજી	PWM, કરંટ મોડ, વગેરે	સિસ્ટમ રિસ્પોન્સને અસર કરે છે

- **બેઝિક ઇકવેશન**: Vout = Vin × ડ્યુટી સાયકલ (સ્ટેપ-ડાઉન યોપર માટે)
- **ઓપરેટિંગ પ્રિન્સિપલ**: રેપિડ સ્વિચિંગ એવરેજ વોલ્ટેજ નિયંત્રિત કરે છે
- ફાયદાઓ: ઉચ્ચ કાર્યક્ષમતા, યોક્કસ નિયંત્રણ, કોમ્પેક્ટ સાઇઝ
- **એપ્લિકેશન્સ**: DC મોટર ડ્રાઇવ, બેટરી ચાર્જિંગ, DC વોલ્ટેજ રેગ્યુલેશન

મેમરી ટ્રીક: "DISC" - "ડ્યુટી સાયકલ ઇન્ફ્લુએન્સિસ સ્વિચિંગ ટુ કંટ્રોલ આઉટપુટ"

પ્રશ્ન 3(c) OR [7 ગુણ]

ડાયોડનો ઉપયોગ કરીને 3-Φ ફુલ વેવ રેક્ટિફાયરનું સર્કિટ ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

3-ફેઝ ફુલ વેવ ડાયોડ રેક્ટિફાયર (બ્રિજ કોન્ફિગરેશન):

વર્કિંગ પ્રિન્સિપલ:

ફેઝ	કન્ડક્શન પેટર્ન	આઉટપુટ કેરેક્ટરિસ્ટિક્સ
0°-60°	D1 અને D6 કન્ડક્ટ	R અને T ફેઝિસ લોડ સાથે કનેક્ટેડ
60°-120°	D1 અને D2 કન્ડક્ટ	R અને S ફેઝિસ લોડ સાથે કનેક્ટેડ
120°-180°	D3 અને D2 કન્ડક્ટ	S અને R ફેઝિસ લોડ સાથે કનેક્ટેડ
180°-240°	D3 અને D4 કન્ડક્ટ	S અને T ફેઝિસ લોડ સાથે કનેક્ટેડ
240°-300°	D5 અને D4 કન્ડક્ટ	T અને S ફેઝિસ લોડ સાથે કનેક્ટેડ
300°-360°	D5 અને D6 કન્ડક્ટ	T અને R ફેઝિસ લોડ સાથે કનેક્ટેડ

- **રિપલ ફિક્વન્સી**: ઇનપુટ ફિક્વન્સીથી 6 ગણી (50/60Hz ઇનપુટ માટે 300/360Hz)
- રિપલ ફેક્ટર: આશરે 4.2% (સિંગલ-ફેઝથી ઘણું ઓછું)
- એવરેજ આઉટપુટ વોલ્ટેજ: Vdc = 1.35 × Vrms (લાઇન વોલ્ટેજ)
- **કન્ડક્શન એંગલ**: દરેક ડાયોડ સાયકલના 120° માટે કન્ડક્ટ કરે છે

મેમરી ટ્રીક: "PRESTO" - "પેર્સ ઓફ ડાયોડ્સ રેક્ટિફાય એફિશિયન્ટલી, સિક્સ ટાઇમ્સ પર સાયકલ આઉટપુટ"

પ્રશ્ન 4(a) [3 ગુણ]

ઇન્ડક્શન હીટિંગની એપ્લિકેશનો લખો.

જવાલ:

ઇન્ડક્શન હીટિંગની એપ્લિકેશન્સ:

એપ્લિકેશન એરિયા	સ્પેસિફિક યુઝેસ	ફાયદાઓ
મેટલ હીટ ટ્રીટમેન્ટ	હાર્ડનિંગ, એનિલિંગ, ટેમ્પરિંગ	યોક્કસ નિયંત્રણ, લોકલાઇઝ્ડ હીટિંગ
મેલ્ટિંગ	ફાઉન્ડ્રી ઓપરેશન્સ, કિંમતી ધાતુઓ	ક્લીન, કાર્યક્ષમ મેલ્ટિંગ
વેલ્ડિંગ	પાઇપ વેલ્કિંગ, બ્રેઝિંગ, સોલ્કરિંગ	કેન્દ્રિત ગરમી, નો કોન્ટેક્ટ
ફોર્જિંગ	બિલેટ્સ પ્રી-હીટિંગ, હોટ ફોર્મિંગ	રેપિડ હીટિંગ, એનર્જી એફિશિયન્ટ
ઘરેલું	ઇન્ડક્શન કુકટોપ	સલામતી, કાર્યક્ષમતા, નિયંત્રણ
મેડિકલ	હાઇપરથર્મિયા ટ્રીટમેન્ટ	કંટ્રોલ્ક ડીપ ટિશ્યુ હીટિંગ

- **ઔદ્યોગિક ફાયદાઓ**: ઝડપી હીટિંગ, ઊર્જા કાર્યક્ષમતા, ક્લીન પ્રોસેસ
- **કંટ્રોલ બેનિફિટ્સ**: ચોક્કસ તાપમાન નિયંત્રણ, પુનરાવર્તનીય પરિણામો
- પર્યાવરણીય અસર: જીવાશ્મ બળતણ હીટિંગની તુલનામાં ઘટાડેલા ઉત્સર્જન
- મેટલર્જિકલ ક્વોલિટી: ઘણા એપ્લિકેશન્સમાં સુધારેલા મટીરિયલ પ્રોપર્ટીઝ

મેમરી ટ્રીક: "HAMMER" - "હાર્ડનિંગ, એનિલિંગ, મેલ્ટિંગ, મેડિકલ, એડી-કરંટ કુકિંગ, રિશેપિંગ મેટલ્સ"

પ્રશ્ન 4(b) [4 ગુણ]

TRIAC અને DIAC નો ઉપયોગ કરીને AC લોડને નિયંત્રિત કરવાની સર્કિટ દોરો અને સમજાવો.

જવાબ:

TRIAC અને DIAC સાથે AC લોડ કંટ્રોલ:

સર્કિટ ઓપરેશન:

કોમ્પોનન્ટ	ફંક્શન	સર્કિટ પર અસર
R1	વેરિએબલ રેઝિસ્ટર	C1 ના ચાર્જિંગ રેટને નિયંત્રિત કરે છે
C1	ટાઇમિંગ કેપેસિટર	ટ્રિગરિંગ માટે ફેઝ શિફ્ટ બનાવે છે
DIAC	બાય-ડિરેક્શનલ ટ્રિગર	શાર્પ ટ્રિગરિંગ પલ્સ પ્રદાન કરે છે
TRIAC	પાવર કંટ્રોલ ડિવાઇસ	લોડ માટે કરંટ નિયંત્રિત કરે છે
RC નેટવર્ક	ફેઝ-શિફ્ટ નેટવર્ક	ફાયરિંગ ઍંગલ નક્કી કરે છે

- ફેઝ કંટ્રોલ: R1 એડજસ્ટ કરવાથી જે ફેઝ એંગલ પર DIAC ટ્રિગર થાય છે તે બદલાય છે
- **પાવર કંટોલ**: ફાયરિંગ એંગલ બદલવાથી લોડનો એવરેજ પાવર નિયંત્રિત થાય છે
- **બાય-ડિરેક્શનલ કંટ્રોલ**: AC ઇનપુટના બંને અર્ધ-ચક્રો પર કામ કરે છે
- એપ્લિકેશન્સ: લાઇટ ડિમર, ફેન સ્પીડ કંટ્રોલ, હીટર કંટ્રોલ

મેમરી ટીક: "CRAFT" - "કેપેસિટર અને રેઝિસ્ટર એડજસ્ટ ફાયરિંગ ટાઇમ"

પ્રશ્ન 4(c) [7 ગુણ]

વર્કિંગ અને એપ્લિકેશન્સ સાથે સ્પોટ વેલ્ડીંગ સમજાવો.

જવાબ:

સ્પોટ વેલ્ડિંગ પ્રોસેસ અને એપ્લિકેશન્સ:

સ્પોટ વેલ્ડિંગ વર્કિંગ પ્રિન્સિપલ:

સ્ટેજ	પ્રોસેસ	પેરામીટર્સ
સેટઅપ	મટીરિયલ ઇલેક્ટ્રોડ વચ્ચે મૂકવામાં આવે છે	શીટ થિકનેસ, મટીરિયલ ટાઇપ
કોન્ટેક્ટ	ઇલેક્ટ્રોડ્સ પ્રેશર લાગુ કરે છે	200-1000 પાઉન્ડ પ્રેશર
કરંટ ફ્લો	વર્કપીસ મારફતે હાઇ કરંટ પસાર થાય છે	1000-100,000 એમ્પિયર
હીટિંગ	રેઝિસ્ટન્સ લોકલાઇઝ્ડ હીટિંગ બનાવે છે	આશરે 2500°F તાપમાન
ફ્યુઝન	મટીરિયલ પીગળે છે અને નગેટ બનાવે છે	0.1-1 સેકન્ડની અવધિ
કૂલિંગ	કૂલિંગ દરમિયાન પ્રેશર જાળવવામાં આવે છે	ઇલેક્ટ્રોડ કૂલિંગ મહત્વપૂર્ણ

સ્પોટ વેલ્ડિંગના એપ્લિકેશન્સ:

• ઓટોમોટિવ: કાર બોડી એસેમ્બલી, શીટ મેટલ જોઇનિંગ

• ઇલેક્ટ્રોનિક્સ: બેટરી ટેબ્સ, નાના કોમ્પોનન્ટ એસેમ્બલી

• ઉપકરણો: રેફ્રિજરેટર, વોશિંગ મશીન, ડિશવોશર

- એરોસ્પેસ: એરક્રાફ્ટ પેનલ એસેમ્બલી, લાઇટવેઇટ સ્ટ્રક્ચર
- મેડિકલ: સર્જિકલ ઇન્સ્ટ્રુમેન્ટ્સ, ઇમ્પ્લાન્ટેબલ ડિવાઇસિસ
- કન્ઝ્યુમર પ્રોડક્ટ્સ: મેટલ ફર્નિચર, કન્ટેનર, રમકડાં

મેમરી ટ્રીક: "PCAFRI" - "પોઝિશન, કોમ્પ્રેસ, એપ્લાય કરંટ, ફોર્મ નગેટ, રિલીઝ આફ્ટર કૂલિંગ, ઇન્સ્પેક્ટ"

પ્રશ્ન 4(a) OR [3 ગુણ]

ડાઇલેક્ટ્રિક હીટિંગની એપ્લિકેશનો લખો.

જવાબ:

ડાઇલેક્ટ્રિક હીટિંગની એપ્લિકેશન્સ:

ઇન્ટસ્ટ્રી	એપ્લિકેશન્સ	ફાયદાઓ
ફૂડ પ્રોસેસિંગ	ડિફ્રોસ્ટિંગ, કુકિંગ, પાસ્ટ્યુરાઇઝેશન	યુનિફોર્મ હીટિંગ, સ્પીડ
વુડ ઇન્ડસ્ટ્રી	ડ્રાઇંગ, ગ્લુ ક્યુરિંગ, ડિલેમિનેશન	રિક્યુસ્ક ટાઇમ, ઇમ્પ્રૂવ્ક ક્વોલિટી
ટેક્સટાઇલ	યાર્ન, ફાઇબર, ફિનિશ્ડ ગુડ્સ ડ્રાઇંગ	એનર્જી એફિશિયન્સી, સ્પીડ
પ્લાસ્ટિક્સ	પ્રિહીટિંગ, મોલ્કિંગ, વેલ્કિંગ	યુનિફોર્મ હીટિંગ, નો સરફેસ ડેમેજ
ફાર્માસ્યુટિકલ	ડ્રાઇંગ, સ્ટેરિલાઇઝેશન	કંટ્રોલ્ડ પ્રોસેસ, સ્પીડ
પેપર	ડ્રાઇંગ, ગ્લુ સેટિંગ	યુનિફોર્મ મોઇસ્થર રિમૂવલ

- પ્રોસેસ બેનિફિટ્સ: વોલ્યુમેટ્રિક હીટિંગ (માત્ર સરફેસ જ નહીં પણ સંપૂર્ણ વસ્તુને ગરમ કરે છે)
- સ્પીડ એડવાન્ટેજ: પરંપરાગત હીટિંગથી નોંધપાત્ર રીતે ઝડપી
- ક્વોલિટી ઇમ્પ્રુવમેન્ટ: વધુ યુનિફોર્મ હીટિંગ, બેટર પ્રોડક્ટ ક્વોલિટી
- એનર્જી એફિશિયન્સી: મટીરિયલમાં ડાયરેક્ટ એનર્જી ટ્રાન્સફર

મેમરી ટ્રીક: "FITPP" - "ફૂડ, ઇન્સુલેશન ડ્રાઇંગ, ટેક્સટાઇલ, પ્લાસ્ટિક્સ, ફાર્માસ્યુટિકલ પ્રોડક્ટ્સ"

પ્રશ્ન 4(b) OR [4 ગુણ]

SCR ડીલે ટાઈમર પર ટૂંકી નોંધ લખો.

જવાબ:

SCR ડિલે ટાઇમર:

કોમ્પોનન્ટ	ફંક્શન	સિલેક્શન ક્રાઇટેરિયા
RC નેટવર્ક	ટાઇમ ડિલે નક્કી કરે છે	R×C આશરે ટાઇમિંગ આપે છે
SCR	સ્વિચિંગ એલિમેન્ટ	કરંટ રેટિંગ લોડ પર આધારિત
UJT/[͡ટ્રેગર	ગેટ પલ્સ પ્રદાન કરે છે	વિશ્વસનીય ટ્રિગરિંગ સર્કિટ
આઉટપુટ સ્ટેજ	લોડને નિયંત્રિત કરે છે	રિલે અથવા ડાયરેક્ટ લોડ કનેક્શન

• **ટાઇમિંગ પ્રિન્સિપલ**: RC ચાર્જિંગ ટાઇમ ડિલે પીરિયડ નક્કી કરે છે

• **એક્યુરેસી**: સામાન્ય રીતે સેટ ટાઇમના ±5-10%

• એપ્લિકેશન્સ: ઔદ્યોગિક પ્રોસેસ કંટ્રોલ, સિક્વન્સ કંટ્રોલ, પ્રોટેક્શન સર્કિટ

• ફાયદાઓ: સરળ ડિઝાઇન, વિશ્વસનીય ઓપરેશન, કોસ્ટ-ઇફેક્ટિવ

મેમરી ટ્રીક: "TIME" - "ટાઇમિંગ ઇઝ મેનેજ્ડ બાય ઇલેક્ટ્રોનિક્સ"

પ્રશ્ન 4(c) OR [7 ગુણ]

સ્ટેટિક સ્વીય તરીકે SCR નું કાર્ય સમજાવો. સ્ટેટિક સ્વીયના ફાયદા લખો.

જવાબ:

SCR એઝ સ્ટેટિક સ્વિય:

વર્કિંગ પ્રિન્સિપલ:

મોડ	સ્ટેટ	કેરેક્ટરિસ્ટિક
OFF સ્ટેટ	કોઈ ગેટ સિગ્નલ નહીં	હાઇ ઇમ્પિડન્સ, મિનિમલ લીકેજ
ON સ્ટેટ	ગેટ ટ્રિગર થયેલ	લો ઇમ્પિડન્સ, હાઇ કરંટ ફ્લો
ડર્ન-ON	ગેટ પલ્સ એપ્લાઇડ	ફાસ્ટ ટ્રાન્ઝિશન (µs રેન્જ)
ટર્ન-OFF	કરંટ હોલ્કિંગથી નીચે પડે	AC માં ઓટોમેટિક, DC માં કમ્યુટેશનની જરૂર

• DC ઓપરેશન: ટર્ન-ઓફ માટે કમ્યુટેશન સર્કિટની જરૂર પડે છે

• AC ઓપરેશન: ઝીરો ક્રોસિંગ પર નેચરલ ટર્ન-ઓક

• કંટ્રોલ મેથડ્સ: ડાયરેક્ટ ગેટ ડ્રાઇવ, પલ્સ ટ્રિગરિંગ, ઓપ્ટો-આઇસોલેશન

• પ્રોટેક્શન: સ્નબર સર્કિટ, કરંટ લિમિટિંગની જરૂર પડે છે

સ્ટેટિક સ્વિચના ફાયદાઓ:

ફાયદો	વર્ણન	મિકેનિકલ સાથે તુલના
નો મુવિંગ પાર્ટ્સ	કોઈ મિકેનિકલ ઘસારો નહીં	લાંબી લાઇફટાઇમ (લાખો ઓપરેશન્સ)
સાયલન્ટ ઓપરેશન	સ્વિચિંગ દરમિયાન કોઈ ઓડિબલ નોઇઝ નહીં	અવાજ-સંવેદનશીલ એપ્લિકેશન્સમાં મહત્વપૂર્ણ
ફાસ્ટ સ્વિચિંગ	માઇક્રોસેકન્ડ રેન્જ સ્વિચિંગ	મિકેનિકલ કોન્ટેક્ટ કરતાં ઘણું ઝડપી
નો આર્કિંગ	કોઈ કોન્ટેક્ટ બાઉન્સ કે આર્કિંગ નહીં	જોખમી વાતાવરણમાં વધુ સુરક્ષિત
સાઇઝ & વેઇટ	કોમ્પેક્ટ અને હળવું	નોંધપાત્ર સ્પેસ સેવિંગ
EMI/RFI	ઓછું ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ	સંવેદનશીલ ઇલેક્ટ્રોનિક્સ માટે બેટર

• **રિલાયબિલિટી**: ઉચ્ચ MTBF (મીન ટાઇમ બિટ્ટીન ફેલ્યોર્સ)

• કંપેટિબિલિટી: ઇલેક્ટ્રોનિક કંટ્રોલ સિસ્ટમ સાથે કામ કરે છે

• વોલ્ટેજ આઇસોલેશન: ઓપ્ટો-આઇસોલેશન સમાવી શકે છે

• સર્જ હેન્ડલિંગ: યોગ્ય ડિઝાઇન સાથે બેટર ટ્રાન્ઝિયન્ટ પ્રોટેક્શન

મેમરી ટ્રીક: "FANS" - "ફાસ્ટ સ્વિચિંગ, આર્ક-ફ્રી ઓપરેશન, નો મુવિંગ પાર્ટ્સ, સાયલન્ટ ઓપરેશન"

પ્રશ્ન 5(a) [3 ગુણ]

ડીસી ડ્રાઇવ શું છે? ડીસી ડ્રાઇવ્સનું વર્ગીકરણ આપો.

જવાબ:

DC ડ્રાઇવ વ્યાખ્યા અને વર્ગીકરણ:

પાસું	นย์า
વ્યાખ્યા	DC મોટરની સ્પીડ, ટોર્ક અને દિશા નિયંત્રિત કરતી ઇલેક્ટ્રોનિક સિસ્ટમ
બેઝિક ફંક્શન	મોટર પેરામીટર્સને નિયંત્રિત કરવા માટે આર્મેચર વોલ્ટેજ અને/અથવા ફિલ્ડ કરંટને નિયંત્રિત કરે છે

DC ડ્રાઇવ્સનું વર્ગીકરણ:

વર્ગીકરણ આધાર	પ્રકારો	લાક્ષણિકતાઓ
પાવર રેટિંગ	ફ્રેક્શનલ, ઇન્ટિગ્રલ, હાઇ પાવર	હોર્સપાવર રેટિંગ પર આધારિત
કંટ્રોલ મેથડ	ઓપન લૂપ, ક્લોઝ્ડ લૂપ	ફીડબેક મેકેનિઝમ પર આધારિત
ક્વોડ્રન્ટ ઓપરેશન	સિંગલ, ટુ, ફોર ક્વોડ્રન્ટ	સ્પીડ/ટોર્ક દિશા પર આધારિત
પાવર સપ્લાય	સિંગલ-ફેઝ, થ્રી-ફેઝ	ઇનપુટ પાવર કોન્ફિગરેશન પર આધારિત
કન્વર્ટર ટાઇપ	હાફ-વેવ, ફુલ-વેવ, ચોપર	પાવર કન્વર્ઝન મેથડ પર આદ્યારિત
એપ્લિકેશન	જનરલ પર્પઝ, સર્વો, સ્પેશલાઇઝ્ડ	ઇન્ટેન્ડેડ યુઝ પર આદ્યારિત

• **પાવર રેન્જ**: ફ્રેક્શનલ HP થી લઈને હજારો HP સુધી

• **કંટ્રોલ પ્રિસિઝન**: બેઝિકથી હાઇ-પ્રિસિઝન (0.01%)

• રિસ્પોન્સ ટાઇમ: મિલિસેકન્ડથી માઇક્રોસેકન્ડ સુધી

• પ્રોટેક્શન: વિવિધ બિલ્ટ-ઇન પ્રોટેક્શન ફીચર્સ

મેમરી ટ્રીક: "PQCAS" - "પાવર રેટિંગ, ક્વોડ્રન્ટ્સ, કંટ્રોલ ટાઇપ, AC ઇનપુટ ફેઝિસ, સ્વિચિંગ મેથડ"

પ્રશ્ન 5(b) [4 ગુણ]

વેરિએબલ રીલક્ટન્સ પ્રકાર સ્ટેપર મોટરનું બાંઘકામ દોરો અને સમજાવો.

જવાબ:

વેરિએબલ રિલક્ટન્સ સ્ટેપર મોટર કન્સ્ટ્રક્શન:

કોમ્પોનન્ટ	કન્સ્ટ્રક્શન	ફંક્શન
સ્ટેટર	મલ્ટિપલ પોલ્સ અને વાઇન્ડિંગ્સ સાથે લેમિનેટેડ સ્ટીલ	એનર્જાઇઝ થવા પર મેગ્નેટિક ફિલ્ડ બનાવે છે
રોટર	સોફ્ટ આયર્ન વિથ મલ્ટિપલ ટીથ, કોઈ પર્મેનન્ટ મેગ્નેટ્સ નહીં	એનર્જાઇઝ્ડ સ્ટેટર પોલ્સ સાથે એલાઇન થાય છે
એર ગેપ	રોટર અને સ્ટેટર વચ્ચે નાની જગ્યા	સ્ટેપ એક્યુરેસી અને ટોર્કને અસર કરે છે
વાઇન્ડિંગ	સ્ટેટર પર મલ્ટિપલ ફ્રેઝ વાઇન્ડિંગ્સ	ક્રમિક એનર્જાઇઝિંગ રોટેશન બનાવે છે

- ટૂથ કોન્ફિંગરેશન: સામાન્ય રીતે રોટર ટીથ સ્ટેટર ટીથ કરતા ઓછી હોય છે
- **સ્ટેપ અંગલ**: આના દ્વારા નક્કી થાય છે: સ્ટેપ એંગલ = 360° ÷ (રોટર ટીથની સંખ્યા × ફેઝની સંખ્યા)
- કન્સ્ટ્રક્શન સિમ્પ્લિસટી: રોટર પર કોઈ પર્મેનન્ટ મેગ્નેટ્સ કે વાઇન્ડિંગ્સ નથી
- **ઓપરેટિંગ પ્રિન્સિપલ**: ફેઝિસ એનર્જાઇઝ થાય ત્યારે મેગ્નેટિક રિલક્ટન્સ પાથ મિનિમાઇઝ થવાનો પ્રયાસ કરે છે

મેમરી ટ્રીક: "STAR" - "સ્ટેટર એનર્જાઇઝીસ, ટીથ એલાઇન વિથ મિનિમમ રિલક્ટન્સ"

પ્રશ્ન 5(c) [7 ગુણ]

VFD (વેરિએબલ ફ્રીક્વન્સી ડ્રાઇવ) ની કામગીરી સમજાવો.

જવાબ:

વેરિએબલ ફ્રીક્વન્સી ડ્રાઇવ (VFD) વર્કિંગ:

VFD કોમ્પોનન્ટ્સ અને ફંક્શન્સ:

કોમ્પોનન્ટ	ફંક્શન	ફીચર્સ
રેક્ટિફાયર	AC ને DC માં કન્વર્ટ કરે છે	6-પત્સ અથવા 12-પત્સ ડિઝાઇન
DC બસ	ફિલ્ટર કરે છે અને એનર્જી સ્ટોર કરે છે	કેપેસિટર્સ અને ઇન્ડક્ટર્સ
દાન્તર્ટ્ક	વેરિએબલ ફ્રિક્વન્સી AC બનાવે છે	IGBT અથવા MOSFET આધારિત
કંટ્રોલ સિસ્ટમ	સમગ્ર ઓપરેશન મેનેજ કરે છે	માઇક્રોપ્રોસેસર આધારિત
HMI	યુઝર ઇન્ટરફ્રેસ	ડિસ્પ્લે, કીપેડ, કમ્યુનિકેશન
પ્રોટેક્શન	સિસ્ટમ પ્રોટેક્શન	કરંટ, વોલ્ટેજ, તાપમાન સેન્સર

વર્કિંગ પ્રિન્સિપલ:

- સ્પીડ કંટ્રોલ ઇકવેશન: મોટર સ્પીડ (RPM) = (ફ્રિક્વન્સી × 120) ÷ પોલ્સની સંખ્યા
- ટોર્ક કંટ્રોલ: V/F રેશિયો જાળવવાથી ટોર્ક આઉટપુટ નિયંત્રિત થાય છે
- સોફ્ટ સ્ટાર્ટ: ક્રમશઃ ફ્રિક્વન્સી/વોલ્ટેજ રેમ્પ-અપ ઇનરશ કરંટ ઘટાડે છે
- બ્રેકિંગ મેથડ્સ: રિજનરેટિવ, ડાયનેમિક, અથવા DC ઇન્જેક્શન બ્રેકિંગ
- એનર્જી સેવિંગ્સ: ઘટાડેલી સ્પીડ પર નોંધપાત્ર ઊર્જા બચત
- એડવાન્સ્ડ ફીચર્સ: PID કંટ્રોલ, નેટવર્ક કમ્યુનિકેશન, પ્રોગ્રામેબલ ફંક્શન્સ

મેમરી ટ્રીક: "DRIVE" - "DC કન્વર્ઝન, રેગ્યુલેશન, ઇન્વર્ટર ક્રિએટ્સ, વેરિએબલ ફ્રિક્વન્સી, એફિશિયન્ટ મોટર કંટ્રોલ"

પ્રશ્ન 5(a) OR [3 ગુણ]

હોલ ઇફેક્ટ સેન્સર શું છે અને ડીસી મોટર્સમાં તેમની ભૂમિકા શું છે?

જવાબ:

DC મોટર્સમાં હોલ ઇફેક્ટ સેન્સર:

પાસું	વર્ણન
વ્યાખ્યા	મેગ્નેટિક ફિલ્ડને ડિટેક્ટ કરતા સેમિકન્ડક્ટર-આધારિત સેન્સર
સિદ્ધાંત	મેગ્નેટિક ફિલ્ડમાં કરંટ ફ્લોથી લંબરૂપે વોલ્ટેજ ડિફરન્સ ઉત્પન્ન થાય છે
સિગ્નલ આઉટપુટ	ડિજિટલ (ON/OFF) અથવા એનાલોગ (ફિલ્ડ સ્ટ્રેન્થના પ્રમાણમાં)
સાઇઝ	કોમ્પેક્ટ, મોટર હાઉસિંગમાં ઇન્ટિગ્રેટેડ થઈ શકે છે

DC મોટર્સમાં રોલ:

ફંક્શન	એપ્લિકેશન	બેનિફિટ
પોઝિશન સેન્સિંગ	રોટર પોઝિશન ડિટેક્શન	પ્રિસાઇઝ કોમ્યુટેશન ટાઇમિંગ
સ્પીડ મેઝરમેન્ટ	RPM કેલ્ક્યુલેશન માટે પલ્સ જનરેશન	એક્યુરેટ સ્પીડ ફીડબેક
ડિરેક્શન ડિટેક્શન	ફ્રેઝ સિક્વન્સ મોનિટરિંગ	રોટેશન ડિરેક્શન કંટ્રોલ
કરંટ સેન્સિંગ	નોન-કોન્ટેક્ટ કરંટ મેઝરમેન્ટ	ઓવરલોડ પ્રોટેક્શન

• BLDC મોટર્સ: ઇલેક્ટ્રોનિક કોમ્યુટેશન (મિકેનિકલ કોમ્યુટેટરને રિપ્લેસ કરવા) માટે ક્રિટિકલ

• પ્રિસિઝન: મિકેનિકલ સેન્સર કરતાં ઉચ્ચ ચોકસાઈ

• રિલાયબિલિટી: કોઈ મિકેનિકલ ઘસારો નહીં, લાંબી સર્વિસ લાઇફ

• ઇન્ટિગ્રેશન: ડ્રાઇવ ઇલેક્ટ્રોનિક્સ સાથે ઇન્ટિગ્રેટેડ થઈ શકે છે

મેમરી ટ્રીક: "MAPS" - "મેઝર્સ પોઝિશન, એઇડ્સ કોમ્યુટેશન, પ્રોવાઇડ્સ સ્પીડ ડેટા, સેન્સિસ મેગ્નેટિક ફિલ્ડ્સ"

પ્રશ્ન 5(b) OR [4 ગુણ]

સ્ટેપર મોટરના કાર્ય સિદ્ધાંતને સમજાવો.

જવાબ:

સ્ટેપર મોટર વર્કિંગ પ્રિન્સિપલ:

ઓપરેટિંગ મોડ	વર્ણન	ફાયદાઓ
ફુલ સ્ટેપ	એક સમયે એક ફ્રેઝ એનર્જાઇઝ્ડ	મેક્સિમમ ટોર્ક
હાફ સ્ટેપ	વારાફરતી એક અને બે ફેઝિસ એનર્જાઇઝ્ડ	ડબલ રેઝોલ્યુશન, સ્મૂધર
માઇક્રોસ્ટેપિંગ	ફેઝિસમાં પ્રોપોર્શનલ કરંટ	વેરી સ્મૂધ મોશન, હાઇ રેઝોલ્યુશન
વેવ ડ્રાઇવ	સિક્વેન્શિયલ સિંગલ ફેઝ એનર્જાઇઝેશન	લોઅર પાવર કન્ઝમ્પશન

- **પોઝિશન કંટ્રોલ**: ફીડબેક વગર ચોક્કસ એન્ગ્યુલર પોઝિશનિંગ
- **સ્ટેપ એંગલ**: સામાન્ય સ્ટેપ એંગલ્સ 1.8° (200 સ્ટેપ્સ/રેવ) અથવા 0.9° (400 સ્ટેપ્સ/રેવ)
- **હોલ્કિંગ ટોર્ક**: સ્ટેન્ડસ્ટિલ પર ફેઝિસ એનર્જાઇઝ્ડ હોય ત્યારે પોઝિશન જાળવે છે
- ઓપન-લૂપ કંટ્રોલ: સામાન્ય રીતે પોઝિશન ફીડબેકની જરૂર નથી
- સ્પીડ-ટોર્ક: સ્પીડ વધે તેમ ટોર્ક ઘટે છે

મેમરી ટ્રીક: "STEPS" - "સિક્વેન્શિયલ ટ્રિગરિંગ ઓફ ઇલેક્ટ્રોમેગ્નેટિક ફેઝિસ કોઝિસ સ્ટેપિંગ"

પ્રશ્ન 5(c) OR [7 ગુણ]

PLC નો બ્લોક ડાયાગ્રામ દોરો અને દરેક બ્લોકની કામગીરી સમજાવો.

જવાબ:

PLC બ્લોક ડાયાગ્રામ અને ફંક્શન્સ:

દરેક બ્લોકનાં ફંક્શન્સ:

બ્લોક	ફંક્શન	લાક્ષણિકતાઓ
પાવર સપ્લાય	મુખ્ય પાવરને સિસ્ટમ વોલ્ટેજમાં રૂપાંતરિત કરે છે	રેગ્યુલેટેડ, પ્રોટેક્ટેડ, આઇસોલેશન સાથે
CPU/પ્રોસેસર	પ્રોગ્રામ એક્ઝિક્યુટ કરે છે, ઓપરેશન્સ નિયંત્રિત કરે છે	સ્પીડ સ્કેન ટાઇમમાં માપવામાં આવે છે (ms)
ઇનપુટ ઇન્ટરફેસ	સેન્સર અને સ્વિય સાથે કનેક્ટ કરે છે	ડિજિટલ/એનાલોગ, આઇસોલેશન, ફિલ્ટરિંગ
આઉટપુટ ઇન્ટરફેસ	એક્યુએટર અને ઇન્ડિકેટર સાથે કનેક્ટ કરે છે	રિલે/ટ્રાન્ઝિસ્ટર/ટ્રાયક આઉટપુટ
મેમરી	પ્રોગ્રામ અને ડેટા સ્ટોર કરે છે	પ્રોગ્રામ, ડેટા, અને સિસ્ટમ મેમરી એરિયા
પ્રોગ્રામિંગ ડિવાઇસ	પ્રોગ્રામ્સ ડેવલપ અને લોડ કરવા માટે વપરાય છે	PC, હેન્ડહેલ્ડ પ્રોગ્રામર, સોફ્ટવેર
કમ્યુનિકેશન	નેટવર્ક/અન્ય ડિવાઇસિસ સાથે કનેક્ટ કરે છે	ઔદ્યોગિક પ્રોટોકોલ, રિમોટ I/O

- **સ્કેન સાયકલ**: ઇનપુટ વાંચવા, પ્રોગ્રામ એક્ઝિક્યુટ કરવા, આઉટપુટ અપડેટ કરવાની ક્રમિક પ્રક્રિયા
- **પ્રોગ્રામિંગ લેંગ્વેજિસ**: લેડર ડાયાગ્રામ (LD), ફંક્શન બ્લોક ડાયાગ્રામ (FBD), સ્ટ્રક્ચર્ડ ટેક્સ્ટ (ST), ઇન્સ્ટ્રક્શન લિસ્ટ (IL), સિક્વેન્શિયલ ફંક્શન ચાર્ટ (SFC)
- **મોક્યુલરિટી**: વધારાના I/O મોક્યુલ્સ સાથે વિસ્તૃત કરી શકાય છે
- રોબસ્ટનેસ: કઠોર ઔદ્યોગિક પર્યાવરણ માટે ડિઝાઇન કરેલ
- **રિલાયાબિલિટી**: સામાન્ય રીતે MTBF >100,000 કલાક

મેમરી ટ્રીક: "PICO MPC" - "પાવર, ઇનપુટ્સ, CPU, આઉટપુટ્સ, મેમરી, પ્રોગ્રામિંગ ઇન્ટરફેસ, કમ્યુનિકેશન"