

Summary of I-V Relationships				
Region	NMOS	PMOS		
Nonsaturation	v _{DS} <v<sub>DS(sat)</v<sub>	v _{SD} <v<sub>SD(sat)</v<sub>		
	$i_D = K_n [2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$	$i_D = K_p [2(v_{SG} + V_{TP})v_{SD} - v_S^2]$		
Saturation	v _{DS} >v _{DS} (sat)	v _{SD} >v _{SD} (sat)		
	$i_D = K_n [v_{GS} - V_{TN}]^2$	$i_D = K_p [v_{SG} + V_{TP}]^2$		
Transition Pt.	$v_{DS}(sat) = v_{GS} - V_{TN}$	$v_{SD}(sat) = v_{SG} + V_{TP}$		
Enhancement Mode	V _{TN} > 0V	V _{TP} < 0V		
Depletion Mode	V _{TN} < 0V	V _{TP} > 0V		

Exio Given: NHOS Exhausement Type MOSFET
VTN = 0,44
Kn' = 120 m//2 , L = 0.8 mm, W = 10 mm
FIND: To Efor toble of Yos! Vas \$
$0 K_0 = \begin{array}{c} K_0 \\ A \end{array} \cdot \begin{array}{c} V \\ L \end{array} = \begin{pmatrix} 120 \\ a \end{pmatrix} \begin{pmatrix} 10 \\ e \cdot g \end{pmatrix} = 0.75 \begin{array}{c} m^{A} \\ V \end{array}$
@ ID = Kn [2(VGS-VTN) VOS - VOS]
$ \exists I_0 = k_n \left[\left(V_{QS} - V_{TN} \right)^2 \right] $ $ \exists V_{QS} (SAT) = V_{SS} - V_{TN} $ $ \exists J_0 = k_n \left[\left(V_{QS} - V_{TN} \right)^2 \right] $
N 403 (341) - 453 - 474 - 3-5

	Ex 4 cont.	
$I_0 = \frac{k_0'}{2} \cdot \frac{w}{2}$	(V65- VTN) 2	
250 pA = (}	3) (Vas - 0.8)2 => [Vas = 2.24 V
° Vs = *V		
$I_0 = \frac{S - V}{Ro}$	=> fr vo, 2.5 => Ro	= 5-2.5 = 10KR
Vos = Vo - V	s = 2.5 - (-2.24) = 4.5	74 ^V
Since Vos > Vosc	SAT) = 2.24-0.8 = 1.44V	on in SAT. REGION
Neamen	Microelectronics, 4e McGraw-Hill	Chapter 3-13

