

Impact of Data Preprocessing on Neural Network Performance: A Comparative Analysis

Saverio Mattia Merenda saveriomattia.merenda@studenti.unipr.it

Fondamenti di Intelligenza Artificiale [2024-2025]

Impact of Data Preprocessing on Neural Network Performance: A Comparative Analysis

Saverio Mattia Merenda saveriomattia.merenda@studenti.unipr.it

Fondamenti di Intelligenza Artificiale [2024-2025]

Overview

• **Objective:** Study how neural network effectiveness varies when using clean datasets and unfiltered datasets

Presentation Overview:

- Context and motivations for data preprocessing
- Preprocessing pipeline architecture
- Different preprocessing scenarios
- Comparative results

Why Data Quality Matters?

· Data preprocessing is a crucial step that directly impacts neural network performance.

· Poor quality data can lead to:

- · Reduced Accuracy: Inconsistent and noisy data leads to poor model predictions
- Training Instability: Missing values and outliers cause convergence issues
- · Bias Introduction: Improper handling of data can create systematic biases

Common Dataset Problems:

- Missing Values: "?", "nan", "NaN", empty cells
- Outliers: Extreme values that skew distributions
- Inconsistent Scaling: Features with different ranges

Pipeline Workflow

Scenario: Nal Values Removal

Advantages:

- · Simple and straightforward approach
- No assumptions about missing data patterns
- Clean dataset with complete information

Disadvantages:

- Potential significant data loss
- · May introduce bias if missingness is not random
- Reduced statistical power

Scenarios: NaN Imputation Strategies

Three Imputation Methods:

- Mean Imputation
- Mode Imputation
- Median Imputation

Advantages:

· Maintains dataset size with multiple imputation options

Disadvantages:

Can introduce bias and affect variance

Scenario: Outlier Removal

• Isolation Forest method with various thresholds [1%, 3%, 5%]

· Advantages:

· Improves model stability by removing extreme outliers

· Disadvantages:

· May remove valuable data if the method is too aggressive

Scenarios: Normalization and Transformation

· Descriptions of z-score normalization and quantile transformation

Advantages:

· Normalizes and transforms data for optimal training performance

Disadvantages:

· Could alter inherent characteristics of the original data

Neural Network Architecture

- The neural network used is a feed-forward network configured with 3 hidden layers:
 - First hidden layer: size = max(64, input_size * 2)
 - Second hidden layer: size = max(32, input size)
 - Third hidden layer: size = max(16, input_size // 2)
- · Each layer incorporates Batch Normalization, ReLU activation, and Dropout

Advantages:

· Adapts to the number of features and enhances training stability

Disadvantages:

• Fixed architecture that might not be optimal for every dataset

Used Datasets

• Trained for 100 epochs

· Classification:

- Census Income (48k instances): [archive.ics.uci.edu]
- Bank Marketing (45k instances): [archive.ics.uci.edu]

Regression:

- Bike Sharing (17k instances): [archive.ics.uci.edu]
- House Pricing (168k instances): [kaggle.com]

Classification Metrics

- · Accuracy: Proportion of correct predictions
- · Precision: Ratio of true positives to all positive predictions
- · Recall (Sensitivity): Ability to identify all actual positive cases
- FI Score: Harmonic mean of precision and recall

Regression Metrics

- Mean Absolute Error (MAE): The average absolute difference between actual and predicted values
- Mean Squared Error (MSE): The average of squared differences between actual and predictions
- R Squared (R²): Represents the proportion of variance explained by the model

Census Income Results

Method	Accuracy	Precision	Recall	F1
01_without_NaN	0.8513	0.8454	0.8513	0.8465
02_imputed_mean	0.8530	0.8476	0.8530	0.8492
03_imputed_mode	0.8552	0.8499	0.8552	0.8514
04_imputed_median	0.8550	0.8496	0.8550	0.8510
05_no_outliers_0.01	0.8535	0.8489	0.8535	0.8504
05_no_outliers_0.03	0.8525	0.8489	0.8525	0.8503
05_no_outliers_0.05	0.8507	0.8466	0.8507	0.8481
06_normalized	0.8511	0.8474	0.8511	0.8488
07_transformed	0.8462	0.8430	0.8462	0.8443
08_normalized_transformed	0.8452	0.8417	0.8452	0.8431
(AutoML) Light Gradient Boosting Machine	0.8737	0.8737	0.8694	0.8700

Bank Marketing Results

Method	Accuracy	Precision	Recall	F1
01_without_NaN	0.7461	0.7255	0.7461	0.6929
05_no_outliers_0.01	0.7519	0.7313	0.7519	0.7086
05_no_outliers_0.03	0.7524	0.7304	0.7524	0.7111
05_no_outliers_0.05	0.7542	0.7325	0.7542	0.7106
06_normalized	0.7526	0.7327	0.7526	0.7096
07_transformed	0.7497	0.7289	0.7497	0.7033
08_normalized_transformed	0.7530	0.7325	0.7530	0.7096
(AutoML) Gradient Boosting Classifier	0.9451	0.9451	0.9361	0.9384

Bike Sharing Results

Method	MSE	MAE	R ²
01_without_NaN	732.0428	17.9583	0.9849
05_no_outliers_0.01	1262.5328	25.7145	0.9740
05_no_outliers_0.03	1323.4792	24.9745	0.9727
05_no_outliers_0.05	1737.3779	28.8209	0.9640
06_normalized	11559.1484	83.1329	0.7615
07_transformed	12692.0869	85.6862	0.7381
08_normalized_transformed	15285.6006	95.9158	0.6843
(AutoML) Linear Regression	0.0	0.0	1.0

House Pricing Results

Method	MSE	MAE	R ²
01_without_NaN	9.893339e+14	1.444670e+07	-0.2592
05_no_outliers_0.01	7.572025e+14	1.376704e+07	-0.3129
05_no_outliers_0.03	6.610446e+14	1.334692e+07	-0.3506
05_no_outliers_0.05	6.028811e+14	1.296907e+07	-0.3639
06_normalized	4.179000e-01	2.709000e-01	0.5519
07_transformed	1.296000e-01	2.722000e-01	0.8705
08_normalized_transformed	1.501000e-01	2.942000e-01	0.8509
(AutoML) Light Gradient Boosting Machine	1.143050e+14	3.591056e+06	0.8545

Key Findings

Most Effective Techniques

- Mode/Median Imputation: Better than mean imputation
- Moderate Outlier Removal: 3-5% thresholds optimal
- Quantile Transformations: Essential for skewed data

Less Effective Techniques

- Simple Normalization: Often degraded performance
- Complex Combinations: No guaranteed improvements
- · Aggressive Preprocessing: Can remove valuable patterns

AutoML & Future Research

AutoML Growing Adoption

- Industry-wide adoption: Major cloud providers (AWS, Google, Azure) integrate AutoML
- Democratization of ML: Non-experts can now build effective models
- Preprocessing automation: Growing focus on automated data preparation pipelines

Future Research Directions

- · Adaptive preprocessing: Automatic technique selection based on data characteristics
- Intelligent quality assessment: Automated metrics for preprocessing necessity
- · Context-aware pipelines: Real-time adaptation to dataset patterns

Impact of Data Preprocessing on Neural Network Performance: A Comparative Analysis

github.com/merendamattia/neural-network-performance-by-data-quality

Saverio Mattia Merenda saveriomattia.merenda@studenti.unipr.it

Fondamenti di Intelligenza Artificiale [2024-2025]