Statistical Learning and Prediction

Marjolein Fokkema

Leiden University m.fokkema@fsw.leidenuniv.nl

This Course

- New methodology for data analysis
- Same models, different focus
- Statistics and Machine Learning: Statistical Learning

Schedule

- 1. Tue, 11:00-13:00 Introduction, bias-variance trade-off (MF).
- 2. Tue, 14:00-16:45 Classification, resampling, cross validation (TW)
- 3. Tue, 17:00-18:15 Regularization, model selection (TW)
- 4. Wed, 10:00-12:00 Unsupervised learning (TW)
- 5. Wed, 13:00-18:00 Non-linear methods (trees, splines, SVMs) (MF)

Statistical Learning

Vast set of tools for understanding data.

- − Supervised: $Y \leftarrow f(X_1, ..., X_p)$; predict Y on the basis of X
- Unsupervised: X_1, \ldots, X_p ; finding structure in X (underlying dimensions/groups)

Statistical Learning

• The linear regression model

$$Y = f(X_1, \dots, X_p) + \epsilon = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

can be used for explanation and/or prediction.

- Explanation: understanding how the X's are related to Y; possibly causally.
- <u>Prediction</u>: if we have new observations with known values of *X*'s, what is the expected (predicted) value of *Y* and how accurate are these predictions?

Explanatory Regression

Suppose we have data and obtained estimates:

$$\hat{y}_i = 2 + 0.5x_{i1} + 1.5x_{i2}$$

- Estimated coefficients indicate magnitude of the effects, standard errors indicate variability of estimates.
- Use statistical tests for deciding whether the explanatory variables really affect the response, given the other variables.
- Adequate estimation of coefficients $(\hat{\beta})$ is assumed crucial: Accurate estimates = unbiased estimates! That is:

$$\mathbb{E}[\hat{\beta}] = \beta$$

Explanatory Regression

Unbiased estimates can be obtained with e.g., OLS:

$$\hat{\beta} = \arg\min_{\beta} \left(\sum_{i=1}^{N} (y_i - f(x_i, \beta))^2 \right)$$

• "From a Bayesian perspective, the principle of unbiasedness is reasonable in the limit of large samples, but otherwise it is potentially misleading" (Gelman et al., 1995)

Predictive Regression

Suppose we have data and obtain estimates:

$$\hat{y}_i = 2 + 0.5x_{i1} + 1.5x_{i2}$$

- Suppose we have a new observation $x_i = \begin{bmatrix} 2 & 3 \end{bmatrix}$
- With these values we can predict Y, i.e., $2 + 0.5 \times 2 + 1.5 \times 3 = 7.5$
- We do not care to recover parameters that generated the data, but want to obtain a model that yields as accurate as possible \hat{Y} .
- I.e., minimize

$$\mathbb{E}(\hat{Y} - Y)^2$$

Exercise 1: Bias can be beneficial

• Generate some training observations in R:

```
set.seed(1)
x <- runif(50, min = -3, max = 3)
epsilon <- rnorm(50)
y <- 0.1*x + epsilon</pre>
```

• Combine the observations into a training dataset:

```
train_dat <- data.frame(x, y)</pre>
```

• Estimate $\hat{\beta}_{OLS}$ on the training observations (exclude the intercept from the model):

```
beta_OLS <- coef(lm(y \sim 0 + x, data = train_dat))
```

• Generate 1,000 new observations from the same distributions as above. Combine the observations into a test dataset (test_dat).

• Generate a range of shrinkage factor values:

```
s < - seq(0, 1, by = .1)
```

- Compute predictions for the test observations, but apply shrinkage to the OLS coefficient: $\hat{Y} = X \cdot s \cdot \hat{\beta}_{OLS}$
 - You thus generate predictions for the test observations 11 times: once for each value of the shrinkage factor *s*.
- For each value of *s*, compute MSE (mean squared prediction error) on the test observations.
- Plot the test MSE values as a function of shrinkage factor *s*. Is shrinkage beneficial for prediction?

Exercise 1 - Continued

- To eliminate effects due to chance fluctuations, repeat the above experiment 100 times, and plot the average MSE (over the 100 replications) as a function of shrinkage *c*.
- Plot the distribution of estimated coefficients against the values of *s*. (Hint: use function boxplot)
- Repeat above with increased training sample size: N = 100.
- Repeat above for twice as strong an effect (i.e., $Y = .2X + \epsilon$).
- Describe how optimal amount of shrinkage is affected by sample and effect size.

Predictive Regression

- Traditional statistical textbooks focus on obtaining *unbiased* estimates (e.g., OLS, ML).
- (Modern) statistical learning accepts biased parameter estimates as long as *variance* decreases more than *squared bias* increases:

Predictive perspective: Bias-variance trade-off

- We have a probability distribution P^* , from which we draw a sample \mathcal{T} of size N
- Let f_B be Bayes optimal f (unknown, depends on P^*)
- Let $\bar{f}(X) = \mathbb{E}_{\mathcal{T}}[\hat{f}(X)]$
- Aim is to minimize *expected prediction error*:

$$\mathbb{E}_{\mathcal{T}}[\text{EPE}(\hat{f})] = \mathbb{E}_{X}[Var(Y|X)] +$$

$$\mathbb{E}_{X}[(f_{B}(X) - \bar{f}(X))^{2}] +$$

$$\mathbb{E}_{\mathcal{T}}\mathbb{E}_{X,Y}[(\hat{f}(X) - \bar{f}(X))^{2}]$$

• EPE = irreducible error (or σ^2) + bias² + variance

Population: Non-linear Regression

Often we fit a linear model, assuming that the conditional means in the population lie on a straight line.

This assumption is most likely false! Why does it often work so well?

Excercise 2: Under- and overfitting with polynomial regression

• Generate a training and test set, each with n = 50, with a single predictor which has a non-linear effect on the response:

```
set.seed(42)
n <- 50
x <- runif(n, min = -5, max = 5)
y <- x + 8*sin(x/2) + rnorm(n)
train <- data.frame(x, y)
x <- runif(n, min = -5, max = 5)
y <- xtest + 8*sin(xtest/2) + rnorm(n)
test <- data.frame(x, y)</pre>
```

Excercise 2 - Continued

- Fit polynomial regression models to the training data of degree 1 trough 15, make predictions on the test set and compute the prediction error for each degree.
 - Hint: Use functions lm, poly, and a for loop. E.g.: $lm(y \sim poly(x, degree = 3))$
- Plot the test MSE as a function of the degree of the polynomial.
- If time permits, create a plot which shows the training observations, and fitted curves for the degree 1, 2, 3 and 15 polynomials.

Population: Non-linear Regression

The regression line in the <u>population</u> combines the conditional means at each point x

Sample data

Using sample data, we want to obtain an estimate $\hat{f}(X)$ of f(X).

- Due to sparsity, cannot estimate a conditional mean at all points X = x.
- \bullet Thus, take a small neighbourhood around X = x and take

neighbourhood mean as predicted value, i.e. *nearest neighbour* averaging.

• The larger the neighbourhood, the larger the bias and the smaller the variance.

Bias-variance trade-off: *k*NN

• For *k*NN, assuming a fixed sample *T*, the variance is simply the variance of an average over *k* observations:

$$EPE(\hat{f}_{kNN}) = \sigma^2 +$$

$$(f_B(X) - \bar{f}(X))^2 +$$

$$\frac{\sigma^2}{k}$$

Multiple Predictor Variables

With multiple predictors the observations are further spread out through the space:

- Nearest neighbours might not be near at every point
- Flexible models become very wild
- This is known as the *curse* of dimensionality
- More structure in *f* is needed
- How can we impose structure?

Exercise 3: Curse of dimensionality

• Generate a dataset with p=10,000, N=100 and $X \sim \mathcal{N}(\mathbf{0},\mathbf{I})$: p <- 10000 N <- 100

```
X \leftarrow matrix(rnorm(p*N), ncol = p, nrow = N)
```

set.seed(42)

- Create a histogram of the Euclidian distances between all points in the dataset. First, only use the first column of X to compute the distances (i.e., p = 1), then use the first two columns (i.e., p = 2), and so on for $p \in \{1, 2, 10, 100, 1000, 10000\}$.
 - Hint: use functions dist to compute the distances of the observations in X, use function hist to create a histogram.

Specify argument xlim for each histogram, to make sure the value of 0 is included on the x-axis.

• Are the nearest neighbours near in 1-dimensional space? In 2-dimensional space? In 10-, 100-, 1000-dimensional space?

Evaluating predictive accuracy: Numeric outcome

• Mean squared error (MSE):

$$\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} (y_i - \hat{y}_i)^2$$

• Mean absolute error (MAE):

$$MAE = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} |y_i - \hat{y}_i|$$

Classification

Response variable Y may be a categorical variable with categories C = 1, ..., k, ..., K.

Again, we want to predict response *Y* based on predictors *X*:

- Can directly construct a classifier $\hat{f}(X) = C(X)$ that assigns a predicted category from C based on X.
- Can construct a function $\hat{f}(X)$ that provides conditional probabilities: $\hat{p}_k(X) = Pr(Y = k|X = x)$.

Then Bayes classifier assigns C(X) = k if $\hat{p}_k(x) = \max{\{\hat{p}_1(x), \dots, \hat{p}_K(x)\}}$

Evaluating predictive accuracy: Classification

• Misclassification rate:

$$\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} I(y_i \neq \hat{y}_i)$$

• Brier score:

$$\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} (y_i - \hat{y}_i)^2$$

• Cross-entropy:

$$-\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} [y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)]$$

Exercise 4: Flexibility and predictive performance

For each of parts (a) through (d), indicate whether we would generally expect the performance of a flexible statistical learning method to be better or worse than an inflexible method:

- a) Sample size *N* is extremely large, and the number of predictors *p* is small.
- b) The number of predictors *p* is extremely large, and the number of observations *N* is small.
- c) The relationship between the predictors and response is highly non-linear.
- d) The variance of the error terms, $\sigma^2 = Var(\epsilon)$, is extremely high.