Descriptive statistics/plots continued and data transformations

Overview

Review

- Plots and statistics of categorical data
- Measures of central tendency

Continuation of statistics and plots of quantitative data

- Measures of spread
- Two quantitative variables

Start on data transformations using dplyr

Reminder: Homework 2

It is due on Gradescope by 11pm on Monday July 14th

 Question 4 involves reading a short article and commented on it, so you can get started on this right away

How is the homework going so far?

Review: Categorical data

Categorical variables take on one of a fixed number of possible values

For categorical variables we usually want to view:

- Frequency table: How many items are each category or
- Relative frequency table: The proportion (or percentage) of items in each category
- # Vector of drinking behavior
- > drinking_vec <- profiles\$drinks
- # Frequency and relative frequency tables
- > drinks_table <- table(drinking_vec)
- > prop.table(drinks_table)

^	age [‡]	body_type	diet	drinks [‡]	drugs [‡]	education
1	22	a little extra	strictly anything	socially	never	working on college/university
2	35	average	mostly other	often	sometimes	working on space camp
3	38	thin	anything	socially	NA	graduated from masters program
4	23	thin	vegetarian	socially	NA	working on college/university
5	29	athletic	NA	socially	never	graduated from college/university
6	29	average	mostly anything	socially	NA	graduated from college/university

Review: Visualizing categorical data

We can plot the number of items in each category using a bar plot

```
barplot(drinks_table,
    ylab = "Count",
    xlab = "Type of drinker")
```

We can also use the pie() function to create pie charts

```
pie(drinks_table)
```


Review Visualizing quantitative data

We can visualize quantitative data using histograms

hist(profiles\$height, breaks = 50)

Common shapes of histograms are:

Review Measures of central tendency

One common measure of central tendency is the **mean**

mean(x, na.rm = TRUE)
$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

The **median** is the value such that half of the data is less than the median and half are greater than the median

$$median(v, na.rm = TRUE)$$

The median is resistant to extreme values while the mean is not

Movies gross domestic revenue Leading to the second of th

Example:

Mean US salary = \$72,641 Median US salary = \$51,939

Measures of spread

Measure of spread 1: standard deviation

The standard deviation is a statistic that quantifies how far the data is spread

Mean temperature (°F):

Des Moines = 54.49

San Francisco = 54.01

Standard deviation (°F):

Des Moines = 11.73

San Francisco = 3.38

Example: computing the standard deviation

Suppose we had a sample with n = 4 points:

$$x_1 = 8$$
, $x_2 = 2$, $x_3 = 6$, $x_4 = 4$,

We can compute the mean using the formula:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{4} \cdot (x_1 + x_2 + x_3 + x_4) = \frac{1}{4} \cdot (8 + 2 + 6 + 4) = 5$$

The standard deviation can be computed using the formula:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \qquad s = \sqrt{\frac{1}{4-1} \sum_{i=1}^{n} (x_i - 5)^2} \qquad \text{(remember order of operations!)}$$

Percentiles

The **P**th **percentile** is the value of a quantitative variable which is greater than P percent of the data

For the US income distribution what are the 20th and 80th percentiles?

20th percentile = \$21,430 80th percentile = \$112, 254 Percent of Households

R: quantile (v, .95)

Five Number Summary

A **five-number summary** is a set of five descriptive statistics that provides a concise overview of a dataset's distribution

Five Number Summary = (minimum, Q_1 , median, Q_3 , maximum)

 $Q_1 = 25^{th}$ percentile (also called 1st quartile)

 $Q_3 = 75^{th}$ percentile (also called 3^{rd} quartile)

Roughly divides the data into fourths

Measure of spread 2: Interquartile range (IQR) = $Q_3 - Q_1$

Box plots can also visualize quantitative data

R: boxplot(v)

Side-by-side boxplots

Boxplots are particularly useful for comparing distributions!

Let's look at the ages that people won the best actor/actress Oscar

What does this figure tell us?

Side-By-Side (Comparative) Boxplots

Age of Best Actor/Actress Oscar Winners (1970-2001)

Outliers

Outliers on boxplots are values that are more than 1.5 * IQR

What should we do if we have outliers?

Investigate:

- If there are due to an error, remove them
- If not, need to account for them

Questions?

Let's try it in RStudio!

Visualizing two quantitative variables

CitiBike data

Let's look at the bike share data from NYC

> load('daily_bike_totals.rda')

CitiBike analysis

•	date	trips	precipitation	snow_depth	snowfall	max_temperature	min_temperature
1	2013-07-01	16650	0.8385830	0	0	77.00	71.96
2	2013-07-02	22745	0.0787402	0	0	82.04	71.96
3	2013-07-03	21864	0.5314960	0	0	82.94	73.04
4	2013-07-04	22326	0.0000000	0	0	87.08	75.02
5	2013-07-05	21842	0.0000000	0	0	89.96	75.92
6	2013-07-06	20467	0.0000000	0	0	91.94	78.08
7	2013-07-07	20477	0.0000000	0	0	91.94	78.08
8	2013-07-08	21615	0.2204720	0	0	89.06	73.04

What does each case correspond to?

Line plots

We can use the plot(x, y) function to create line plots

Line plots

Total number of trips on each day

Scatterplot

A **scatterplot** graphs the relationship between two variables

- Each axis represents the value of one variables
- Each point the plot shows the value for the two variables for a single data case

If there is an explanatory and response variable, then the explanatory variable is put on the x-axis and the response variable is put on the y-axis

Scatter plots

We can use the plot(x, y) function to create scatter plots

Can you create a scatter plot of the relationship between the minimum and maximum temperatures?

Scatter plots

Relationship between minimum and maximum temperatures

The correlation coefficient

The **correlation** is measure of the strength and direction of a <u>linear</u> <u>association</u> between two variables

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

R: cor(x, y)

Properties of the correlation

Correlation as always between -1 and 1: $-1 \le r \le 1$

Values close to \pm 1 show strong linear relationships, values close to 0 show no linear relationship

Correlation is symmetric: r = cor(x, y) = cor(y, x)

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Florida lakes

Correlation game

Correlation caution #1

A strong positive or negative correlation does not (necessarily) imply a cause and effect relationship between two variables

Anscombe's quartet (r = 0.81)

Data wrangling/transformation using dplyr

The tidyverse and dplyr

The 'tidyverse'

The tidyverse is set of R packages that operate 'tidy data'

• i.e., that operate on data frames (or tibbles)

Tidy data is data where:

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

Messy data...

What would be an example of data that is not tidy?

	formation												
Name	Formula	Slope at	Intercept	ED-20	ED-50	ED-80	Correlation	Forced th	rough ori	go			
Standard	Calc 1: C	standard	standard	3792394	27752	0.2	0.5	0.8	1	No			
Plate info	ormation												
Plate	Repeat	Barcode	Measure	Chamber	Chamber	Humidity	Humidity	Ambient	Ambient	Formula	Measurer	nent date	
1	1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	Calc 1: C	standard	standard	10.12.2013 10:23:3
Backgrou	und inform	nation											
Plate	Label	Result	Signal	Flashes/	Meastime	MeasInfo							
1	PicoGree	0	110307	10	0	De=1st E	x=Top En	n=Top Wo	dw=N/A				
Calculate	standard	standards on each plate) where Label: PicoGreenFilterTop(1) channel 1							nnel 1				
	1	2	3	4	5	6	7	8	9	10	11	12	
A	-0.0011	-0.0011	-0.001	-0.001	-0.0011	-0.0012	-0.0011	-0.0011	-0.0012	-0.0012	0.9973	1.0026	
В	0.0012	0.0014	0.0013	0.0012	0.0013	0.0012	0.0014	0.0003	-0.0011	-0.0011	0.0981	0.103	
С	0.0016	0.0013	0.0013	0.0011	0.0012	0.0015	0.0016	-0.0004	-0.0011	-0.0011	0.0104	0.0095	
D	0.0019	0.0024	0.0018	0.0015	-0.001	-0.001	-0.001	-0.001	-0.0011	-0.0011	0.0008	0.0009	
E	-0.001	-0.0011	-0.0011	-0.0011	-0.001	-0.0012	-0.0011	-0.001	-0.0009	-0.0011	-0.0001	-0.0002	
F	-0.001	-0.0011	-0.001	-0.001	-0.0012	-0.0011	-0.0011	-0.0009	-0.001	-0.001	-0.0003	-0.0002	
G	-0.0011	-0.0011	-0.0011	-0.001	-0.001	-0.0012	-0.0011	-0.001	-0.001	-0.0011	-0.0002	0.0012	
	-0.0011	-0.0012	-0.0011	-0.001	-0.0011	-0.0011	-0.0012	-0.0011	-0.0011	-0.001	-0.0003	-0.0003	

The 'tidyverse'

The tidyverse is a set of packages share a common design philosophy

Most written by Hadley Wickham

dplyr: A grammar for data wrangling

Grammar: a set of components that can be combined to achieve a goal

dplyr is a package that has a set of verbs that are useful for transformations data:

- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. group_by()
- 6. summarize()

All these function take a data frame and other arguments and return a data frame

> library(dplyr) # load the dplyr package

Quick overview of the dplyr functions

1. filter()

The filter() function allows you to select a subset of rows in data frame

filter(profiles, height == 77)

2. select()

The select() function allows you to select a subset of columns

select(profiles, age, height)

3. mutate()

The mutate() function allows you to create new columns that are functions of existing columns

mutate(profiles, height_feet = height/12)

4. arrange()

The arrange() function arranges the rows based values in a column

arrange(desc()) arranges from largest to smallest

arrange(profiles, desc(height))

5. summarize()

The summarize() function reduces values in many rows into single values

summarize(mean_age = mean(age))

6. The group_by() function

The group_by() function groups variables for future operations

It works in conjunction with summarize() and mutate() to do split, apply, combine

group_by(profiles, sex)

The pipe operator

The pipe operator |> allows us to chain commands together


```
profiles|>
    group_by(sex) |>
    summarize(mean_age = mean(age))
```


Let's try it out!