MATH 314: Advanced Calculus Meeting 1 - Suggested Problems

Problem 1 (Practice with Conservative Vector Fields). For each of the following vector fields, determine if it's conservative or not. If it's conservative, find the potential function for the vector field.

1.
$$\mathbf{F} = (x^3 - 4xy^2 + 2)\mathbf{i} + (6x - 7y + x^3y^3)\mathbf{j}$$

2.
$$\mathbf{F} = (6x^2 - 2xy^2 + \frac{y}{2\sqrt{x}})\mathbf{i} - (2x^2y - 4 - \sqrt{x})\mathbf{j}$$

3.
$$\mathbf{F} = (2x\sin(2y) - 3y^2)\mathbf{i} + (2 - 6xy + 2x^2\cos(2y))\mathbf{j}$$

4.
$$\mathbf{F} = y^2(1 + \cos(x + y))\mathbf{i} + (2xy - 2y + y^2\cos(x + y) + 2y\sin(x + y))\mathbf{j}$$

5.
$$\mathbf{F} = (6 - 2xy + y^3)\mathbf{i} + (x^2 - 8y + 3xy^2)\mathbf{j}$$

6.
$$\mathbf{F} = (2z^4 - 2y - y^3)\mathbf{i} + (z - 2x - 3xy^2)\mathbf{j} + (6 + y + 8xz^3)\mathbf{k}$$

Problem 2. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$ and C is the twisted cube parameterized by:

$$x = t$$
, $y = t^2$, $z = t^3$, $0 < t < 1$.

Problem 3. Compute the following line integral:

$$\int_C xy^4 ds,$$

where C is the right half of the circle $x^2 + y^2 = 16$.

Problem 4. Evaluate the following line integral: $\int_C (x^2y + \sin(x))dy$, where C is the arc of the parabola $y = x^2$ from (0,0) to (π,π^2) .

Problem 5. (Exam Question)

- 1. Show that **F** is a conservative vector field.
- 2. Consider the vector field $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by:

$$\mathbf{F}(x,y) := (y^5 + 2x, 5xy^4 - 2). \tag{1}$$

Let C be the semi-circle $x^2 + y^2 = 1$, $x \ge 0$, oriented clock-wise. Evaluate the line-integral of \mathbf{F} along the curve C, that is, the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Problem 6. (Similar in spirit to the previous problem)

- 1. Say we have the following 3 pieces of information about some parametric curve:
 - (a) $\mathbf{r}''(t) = \langle 6, 0, 0 \rangle$ for all t.
 - (b) $\mathbf{r}(0) = \langle 0, 3, 4 \rangle$.
 - (c) $\mathbf{r}'(0) = \langle 0, 0, 1 \rangle$.

Find an expression for $\mathbf{r}(t)$ for all t. Use this to find $\mathbf{r}(1)$.

2. Using this same curve that you found in (a), use an integral theorem to compute the line integral of the following vector field:

$$\mathbf{F}(x,y,z) = \pi \cos(\pi x)\mathbf{i} + (3y^2 + z)\mathbf{j} + (4z^3 + y)\mathbf{k},\tag{2}$$

along the path $\mathbf{r}(t)$ from t = 0 to t = 1.

Problem 7. Compute the line integral,

$$\oint_C \frac{-ydx}{x^2 + y^2} + \frac{xdy}{x^2 + y^2},$$

where C is the circle $x^2 + y^2 = a^2$ with $a \neq 0$ in the counter-clockwise direction.

Problem 8. Find the work done by the force,

$$\mathbf{F} = \left(2e^{2x}\cos(\pi y)\right)\mathbf{i} - \left(\pi e^{2x}\sin(\pi y)\right)\mathbf{j} \tag{3}$$

in moving

1. from (0,0) to (1,1) on the curve

$$x^{3}(y-1)^{2} = 4y^{4}(x-1)^{3}. (4)$$

2. once around the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

Problem 9. Show that the vector field,

$$\mathbf{F} = \frac{2x}{\pi}\sin(\pi y)\mathbf{i} + (x^2\cos(\pi y) - 2ye^{-z})\mathbf{j} + y^2e^{-z}\mathbf{k},\tag{5}$$

is conservative. Hence, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is a straight line from (0,0,0) to (1,1,-1).

Problem 10 (Careful – True or False?). For any vector field **F** and for any parameterized curve $\mathbf{r}(t)$ with $t \in [a, b]$, we have

$$\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)dt = \mathbf{F}(\mathbf{r}(b)) - \mathbf{F}(\mathbf{r}(a)). \tag{6}$$

Problem 11. Find the work done by the force field,

$$\mathbf{F}(x,y) = x\mathbf{i} + (y+2)\mathbf{j},\tag{7}$$

in moving an object along an arch of the cycloid,

$$\mathbf{r}(t) = (t - \sin(t))\mathbf{i} + (1 - \cos(t))\mathbf{j}, \ 0 \le t \le 2\pi.$$
 (8)

Problem 12. 1. Show that a constant force field does zero work on a particle that moves once uniformly around a circle $x^2 + y^2 = 1$.

2. Is it also true for a force field $\mathbf{F}(\mathbf{x}) = k\mathbf{x}$, where k is constant and $\mathbf{x} = \langle x, y \rangle$?

Problem 13. Show that if the vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is conservative and P, Q, R have continuous first-order partial derivatives, then:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \ \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \ \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

Problem 14. Let

$$\mathbf{F}(x,y) = \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}.$$

1. Show that

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

2. Show that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is not path-independent. Is there a contradiction? (Hint: Compute $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$, where C_1 and C_2 are the upper and lower halves of the circle $x^2 + y^2 = 1$ from (1,0) to (-1,0)).

Problem 15. Let $\mathbf{F} = \nabla f$, where $f(x,y) = \sin(x-2y)$. Find curves C_1 and C_2 that are not closed and satisfy the equation.

- 1. $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0$.
- 2. $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 1.$

Problem 16. Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + (xy + 2z)\mathbf{k},\tag{9}$$

along C, where C is the line segment from (1,0,-2) to (4,6,3).