ALGEBRA RELAZIONALE

Alcuni esempi sono adattati dal libro Albano et al e altri da Atzeni-et al., Basi di dati

Linguaggi per basi di dati

operazioni sullo schema

DDL: data definition language

Operazioni di creazione, cancellazione e modifica di schemi di tabelle, creazione viste, creazione indici...

operazioni sui dati

DML: data manipulation language

- Data Query language Query o interrogazione della base di dati
- Aggiornamento dati Inserimento, cancellazione e modifica di dati

LINGUAGGI RELAZIONALI

- Algebra relazionale: insieme di operatori su relazioni che danno come risultato relazioni.
 - Non si usa come linguaggio di interrogazione dei DBMS ma come rappresentazione interna delle interrogazioni.

 Calcolo relazionale: linguaggio dichiarativo di tipo logico dal quale è stato derivato l'SQL.

Operatori dell'algebra relazionale

- · unione, intersezione, differenza
- ridenominazione
- selezione
- proiezione
- · join (join naturale, prodotto cartesiano, theta-join)

Operatori insiemistici

· le relazioni sono insiemi

i risultati devono essere relazioni

• è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi (nome e tipo), cioè possono operare solo su tuple uniformi.

ALGEBRA RELAZIONALE: Unione

Nota campi con lo stesso nome e stesso tipo

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∪ Quadri

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

ALGEBRA RELAZIONALE: Differenza

Nota campi con lo stesso nome e stesso tipo

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati - Quadri

Matricola	Nome	Età
7274	Rossi	42

ALGEBRA RELAZIONALE: UNIONE E DIFFERENZA

• Unione: $R \cup S$

- · Differenza: R S
- Qual è il tipo del risultato? Se R e S hanno n elementi, quanti ne ha il risultato?
- Se t1 è un'ennupla non in R , allora:
 - R = $(R \cup \{t_1\}) \{t_1\}$

ALGEBRA RELAZIONALE: Una unione sensata ma impossibile

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità U Maternità

??

ALGEBRA RELAZIONALE: Ridenominazione

- operatore monadico (con un argomento)
- "modifica lo schema" lasciando inalterata l'istanza dell'operando
- · È indicato con la lettera p

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

 $\rho_{\text{Genitore} \leftarrow \text{Padre}}$ (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

ρ_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

ρ Genitore ← Madre (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

ρ Genitore ← Padre (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

 $\rho_{\text{Genitore} \leftarrow \text{Madre}}$ (Maternità)

ρ Genitore ← Madre (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

ALGEBRA RELAZIONALE: PROIEZIONE

- operatore monadico
- · produce un risultato che
 - ha parte degli attributi dell'operando
 - contiene ennuple cui contribuiscono tutte le ennuple dell'operando ristrette agli attributi nella lista

· Sintassi

π ListaAttributi (Operando)

ALGEBRA RELAZIONALE: PROIEZIONE - esempio

Matricola e cognome di tutti gli impiegati

Impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

 π Matricola, Cognome (Impiegati)

ALGEBRA RELAZIONALE: PROIEZIONE

- Proiezione: $\pi_{A1...An}$ (R)
- Qual è il tipo del risultato? Se R ha n elementi quanti ne ha il risultato?

- · Esempi:
 - π_{Nome, Matricola} (Studenti)
 - $\cdot \pi_{Nome}(Studenti)$

ALGEBRA RELAZIONALE: PROIEZIONE - esempio (con duplicati)

Cognome e filiale di tutti gli impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

Notate che vi sono due impiegati con cognome Rossi sulla filiale Roma, che succede dopo la proiezione?

π Cognome, Filiale (Impiegati)

Neri Napoli Neri Milano	Cognome	Filiale
	Neri	Napoli
	Neri	Milano
Rossi Roma	Rossi	Roma

Cardinalità delle proiezioni

- · una proiezione
 - · contiene al più tante ennuple quante l'operando
 - · può contenerne di meno

- se X è una <u>superchiave</u> di R, allora $\pi_X(R)$ contiene esattamente tante ennuple quante R.
- Se X non è superchiave, potrebbero esistere valori ripetuti su quegli attributi, che quindi vengono rappresentati una sola volta

Il modello relazionale 4.19

ALGEBRA RELAZIONALE: SELEZIONE (RESTRIZIONE)

- · operatore monadico
- produce un risultato che
 - · ha lo stesso schema dell'operando
 - · contiene un sottoinsieme delle ennuple dell'operando,
 - quelle che soddisfano una condizione espressa combinando, con i connettivi logici \land (and), \lor (or), \neg (not), condizioni atomiche del tipo $A \ \theta \ B \ o \ A \ \theta \ c$, dove $\theta \ \grave{e}$ un operatore di confronto, $A \ e \ B \ sono attributi su cui l'operatore <math>\theta$ abbia senso, c una costante compatibile col dominio di A
- \cdot È denotata con σ , con la condizione messa a pedice

ALGEBRA RELAZIONALE: SELEZIONE - esempio

Impiegati che guadagnano più di 50 Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

σ Stipendio > 50 (Impiegati)

ALGEBRA RELAZIONALE: SELEZIONE - esempio

Impiegati che guadagnano più di 50 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

σ Stipendio > 50 AND Filiale = 'Milano' (Impiegati)

Impiegati che hanno lo stesso nome della filiale presso cui lavorano

Impiegati

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

σ Cognome = Filiale (Impiegati)

ALGEBRA RELAZIONALE: SELEZIONE - esempio con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

Quale è il risultato? Che succede alla nupla con valore NULL in età?

$$\sigma_{Et\grave{a}>40}$$
 (Impiegati)

• la condizione atomica è vera solo per valori non nulli

ALGEBRA RELAZIONALE: RESTRIZIONE

- Restrizione (selezione): $\sigma_{\text{Condizione}}$ (R)
- · Qual è il tipo del risultato? Se R ha n elementi, quanti ne ha il risultato?
- Esempi:
 - · σ_{Nome = 'Caio'} (Studenti)
- Composizione di operatori:
 - $\pi_{\text{Matricola}}(\sigma_{\text{Nome} = 'Caio'} \text{ (Studenti))}$
- · Cond ::= Espr Theta Espr | Cond And Cond | Not Cond
- Espr ::= Attributo | Costante | Espr Op Espr
- Theta ::= = | < | > | != | <= | >=
- Op ::= + | | * | StringConcat

Un risultato non desiderabile

$$\sigma_{\text{Età>30}}$$
 (Persone) $\cup \sigma_{\text{Età\leq=30}}$ (Persone) \neq Persone

- Perché?
 Perché le selezioni vengono valutate separatamente!
- Ma anche

$$\sigma_{\text{Età>30} \vee \text{Età\leq30}}$$
 (Persone) \neq Persone

- · Perché?
 - Perché anche le condizioni atomiche vengono valutate separatamente!

σ_{Età, 40} (Impiegati)

- · la condizione atomica è vera solo per valori non nulli
- · per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL

IS NOT NULL

• A questo punto:

$$\sigma_{\text{Età>30}} \text{ (Persone)} \cup \sigma_{\text{Età\leq30}} \text{ (Persone)} \cup \sigma_{\text{Età Is NULL}} \text{ (Persone)}$$

$$=$$

$$\sigma_{\text{Età>30}} \vee \text{Età\leq30} \vee \text{Età IS NULL} \text{ (Persone)}$$

$$=$$

$$Persone$$

Il modello relazionale

Esempio

Impiegati

Matricola	Cognome	Filiale	Età
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{(Et\grave{a}>40)\vee(Et\grave{a}\;IS\;NULL)}$$
 (Impiegati)

Il modello relazionale 4.29

PROIEZIONE E RESTRIZIONE

• Proiezione $\pi_{A,B}(R)$:

В

• Restrizione $\sigma_{Cond}(R)$:

Selezione e proiezione

Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

Il modello relazionale 4.31

ALGEBRA RELAZIONALE: PROIEZIONE E SELEZIONE - esempio

Matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

 $\pi_{\text{Matricola,Cognome}}$ ($\sigma_{\text{Stipendio} > 50}$ (Impiegati))

Esercizio Cardinalità

- Considerare una relazione $R(A; \underline{B}; \underline{C}; D; E)$. Indicare quali delle seguenti proiezioni hanno certamente lo stesso numero di ennuple di R:
 - 1. $\pi_{ABCD}(R)$
 - 2. $\pi_{AC}(R)$
 - 3. $\pi_{BC}(R)$
 - 4. $\pi_c(R)$
 - 5. $\pi_{CD}(R)$.

ALGEBRA RELAZIONALE: PRODOTTO

Nota che i nomi dei campi sono distinti

• Prodotto: R × S

	a A	b	В	
u			b1	B1
a1	A1	×	b2	B2
α2	A2		b3	В3

а	Α	b	В
a1	A1	b1	B1
a1	A 1	b2	B2
a1	A1	b3	В3
α2	A2	b1	B1
α2	A2	b2	B2
α2	A2	b3	В3

 Qual è il tipo del risultato? Se R ha n elementi quanti ne ha il risultato? Impiegati

Reparti

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В

Codice Capo
A Mori
B Bruni

Impiegati × Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

Impiegati

Impiegato Reparto
Rossi A
Neri B
Bianchi B

Reparti

Reparto	Capo
A	Mori
В	Bruni

Impiegati × Reparti

Impiegati.Impiegato Impiegati.Reparto

ALGEBRA RELAZIONALE: Intersezione - Operatore derivato

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∩ Quadri

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45

ALGEBRA RELAZIONALE: Intersezione

· Possiamo derivare l'operatore intersezione usando gli operatori:

$$R \cap S = \{x \mid x \in R \exists y \in S, x = y\}$$

Prodotto

 $\rho_s \rightarrow$ ridenomina gli attributi di S anteponendo il prefisso S

- Ridenominazione
- · Selezione
- Proiezione

A	В	S.A	S.B	
1	2	1	2	$\rho_s S$
2	3	2	4	

. 1 0.02.0110		$R \times$	ρ_s S	
$(D, \mathcal{M}, \mathcal{M})$	A	В	S.A	S.B
$\sigma_{A=S.A\ AND\ B=S.B}(R\times\rho_S\ S)$	1	2	1	2
		A	В	
$_{R}(\sigma_{A=S A AND R=S R}(R\times\rho_{s}S))$		1	2	

Esempio: Prove scritte in un concorso pubblico

- I compiti sono anonimi e ad ognuno è associata una busta chiusa con il nome del candidato
- Ciascun compito e la relativa busta vengono contrassegnati con uno stesso numero

Г	Numero	Voto
	1	25
	2	13
	3	27
	4	28
Numero	Candida	ato
1	Mario Ro	ossi
2	Nicola Ru	JSSO
3	Mario Bia	anchi
4	Remo Neri	

Mario Rossi	25
Nicola Russo	13
Mario Bianchi	27
Remo Neri	28

Il modello relazionale

Esempio: Prove scritte in un concorso pubblico

Num	ero	Voto	Numero	Candidato
1		25	1	Mario Rossi
2		13	2	Nicola Russo
3		27	3	Mario Bianchi
4		28	4	Remo Neri

Numero	Candidato	Voto
I	Mario Rossi	25
2	Nicola Russo	13
3	Mario Bianchi	27
4	Remo Neri	28

Prodotto cartesiano e chiavi esterne

Studenti

Nome	Matricola	Provincia	AnnoNascita
Isaia	071523	PI	1982
Rossi	067459	LU	1984
Bianchi	079856	LI	1983
Bonini	075649	PI	1984

Come possiamo ottenere la tabella **EsamiStudenti** (Matricola, nome, materia, data, voto)

Esami

<u>Materia</u>	<u>Matricola*</u>	Data	Voto
BD	071523	12/01/06	28
BD	067459	15/09/06	30
FP	079856	25/10/06	30
BD	075649	27/06/06	25
LMM	071523	10/10/06	18

Vincolo di integrità referenziale Studenti × Esami

Tutte le righe del prodotto cartesiano sono utili?

 $\pi_{Matr,Nome,Materia,Data,Voto}(\sigma_{matricola=S.matricola}(Esami \times \rho_{s} Studenti))$

Prodotto cartesiano seguito da selezione -Rappresentazione mediante albero

Studenti

Nome	Matricola	Provincia	AnnoNascita
Isaia	071523	PI	1982
Rossi	067459	LU	1984
Bianchi	079856	LI	1983
Bonini	075649	PI	1984

$\pi_{Matr,Nome,Materia,Data,Voto}$ $\sigma_{S.matricola=E.matricola}$

Esami

Materia	<u>Matricola*</u>	Data	Voto
BD	071523	12/01/06	28
BD	067459	15/09/06	30
FP	079856	25/10/06	30
BD	075649	27/06/06	25
LMM	071523	10/10/06	18

 $\pi_{Matr,Nome,Materia,Data,Voto}(\sigma_{matricola=S.matricola}(Esami \times \rho_{s} Studenti))$

Vincolo di integrità referenziale

ALGEBRA RELAZIONALE: Join (giunzione) - Operatore derivato

 <u>Combinando selezione e proiezione</u>, possiamo estrarre informazioni da una relazione, ma <u>non</u> possiamo però <u>correlare</u> informazioni presenti in relazioni diverse

 il join è l'operatore più interessante dell'algebra relazionale poiché permette di correlare dati in relazioni diverse

Join (Giunzione) naturale

·Matr,Nome,Materia,Data,voto(• matricola=5.matricola (256000 · · · pg 566660 · · · ·))

ALGEBRA RELAZIONALE: Join naturale

- operatore binario (generalizzabile) che correla dati in relazioni diverse,
 sulla base di valori uguali in attributi con lo stesso nome.
- Produce un risultato:
 - · sull'unione degli attributi degli operandi
 - con ennuple che sono ottenute combinando le ennuple degli operandi con valori uguali sugli attributi in comune
 - $R_1(X_1), R_2(X_2)$
 - $R_1 \bowtie R_2$ è una relazione su $X_1 \cup X_2$

$$R_1 \bowtie R_2 = \{ t su X_1 \cup X_2 \mid esistono t_1 \in R_1 e t_2 \in R_2 \}$$

con
$$t[X_1] = t_1 e t[X_2] = t_2$$

Join naturale e attributi uguali

Join: $R_1 \bowtie R_2$

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
Α	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	А	Mori
Neri	В	Bruni
Bianchi	В	Bruni

- · ogni ennupla contribuisce al risultato:
 - · join completo

Il modello relazionale

4.47

ALGEBRA RELAZIONALE: Un join non completo

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

ALGEBRA RELAZIONALE: Un join vuoto

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
D	Mori
С	Bruni

Impiegato Reparto Capo

ALGEBRA RELAZIONALE: Un join completo, con $n \times m$ ennuple

Impiegato	Reparto
Rossi	В
Neri	В

Reparto	Capo
В	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

ALGEBRA RELAZIONALE: Cardinalità del join

$$R_1(A,B)$$
, $R_2(B,C)$

• Il join di R_1 e R_2 contiene un numero di ennuple compreso fra zero e il prodotto di $|R_1|$ e $|R_2|$:

$$0 \leq |R_1| \bowtie |R_2| \leq |R_1| \times |R_2|$$

- Se il join fra R_1 ed R_2 è completo, allora contiene un numero di ennuple almeno uguale al massimo fra $|R_1|$ e $|R_2|$;
- Se il join coinvolge una chiave B di R_2 , allora il numero di ennuple è compreso fra zero e $|R_1|$:

$$0 \leq |R_1| \bowtie |R_2| \leq |R_1|$$

• Se il join coinvolge una chiave B di R_2 e un vincolo di integrità referenziale tra attributi di R_1 (B in R_1) e la chiave di R_2 , allora il numero di ennuple è pari a $|R_1|$:

$$|R_1 \bowtie R_2| = |R_1|$$

ALGEBRA RELAZIONALE: Join, una difficoltà

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

ALGEBRA RELAZIONALE: Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- · esiste in tre versioni:
 - · sinistro, destro, completo

- Sinistro (left): mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario
- · Destro (right): ... del secondo operando ...
- · Completo (full): ... di entrambi gli operandi ...

 $(R \stackrel{\leftarrow}{\bowtie} S)$

(R ⋈ S)

R ☆ S

Impiegati

ImpiegatoRepartoRossiANeriBBianchiB

Reparti

Impiegati M LEFT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL

Impiegati

ImpiegatoRepartoRossiANeriBBianchiB

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati M RIGHT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	C	Bruni

Impiegati ⋈_{FULL} Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	C	Bruni

Il modello relazionale

ALGEBRA RELAZIONALE: Join (naturale) e proiezioni

$$R_1(X_1), R_2(X_2)$$

$$\pi_{X_1}(R_1 \bowtie R_2) \subseteq R_1$$

$$R(X)$$
, $X = X_1 \cup X_2$

$$R \subseteq (\pi_{X_1}(R)) \bowtie (\pi_{X_2}(R))$$

Il modello relazionale

Tain a

Impiegati

Reparti

Proiezioni	

Impiegato Reparto

Reparto

Capo Mori

Mostriamo che $(R_1 \bowtie R_2) \subseteq R_1$

Rossi Neri Bianchi

В

Bruni

Impiegati ⋈ Reparti

Impiegato Reparto Capo Neri Mori Bianchi Mori

 $\pi_{\text{implegato}}$ reparto (Impiegati

⋈ Reparti)

π_{reparto, capo} (Impiegati ⋈ Reparti) **Impiegato** Reparto Neri Bianchi

Reparto Capo Mori

Le proiezioni del join su X1 e X2 danno luogo a tabelle diverse da quelle da cui il join è stato ottenuto.

Il join delle proiezioni
di una tabella
può dare luogo a
una tabella più grande

newImpiegatiReparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

 $\pi_{\text{ impiegato, reparto}}(\text{newImpiegatiReparti})$

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	Α

 π reparto, capo (newImpiegatiReparti)

Reparto	Capo
В	Mori
В	Bruni
Α	Bini

 $(\pi_{impiegato, reparto}(newImpiegatiReparti))$

 $(\pi_{reparto, capo}(newImpiegatiReparti))$

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Neri	В	Bruni
Bianchi	В	Mori
Verdi	Α	Bini

ALGEBRA RELAZIONALE: Prodotto cartesiano

- · un join naturale su relazioni senza attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

Theta-join ed equi-join

 Prodotto cartesiano: concatena tuple non necessariamente correlate dal punto di vista semantico.

Impiegati	
Impiegato	Reparto
Rossi	Α
Neri	Α
Neri	В

Reparti	
Codice	Capo
Α	Venere
В	Marte

Il prodotto cartesiano è più utile se fatto seguire da una selezione.

Impiegati x Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Venere
Neri	Α	Α	Venere
Neri	В	Α	Venere
Rossi	Α	В	Marte
Neri	Α	В	Marte
Neri	В	В	Marte

Prodotto cartesiano seguito dalla selezione che mantiene solo le tuple con valori uguali sull'attributo:

Reparto di Impiegati e Codice di Reparti

ALGEBRA RELAZIONALE: Theta-join

 Il prodotto cartesiano, in pratica, ha senso solo se seguito da selezione:

$$\sigma_{Condizione} (R_1 \bowtie R_2)$$

 L'operazione viene chiamata theta-join e può essere sintatticamente indicata con

$$R_1 \bowtie_{Condizione} R_2$$

Le due scritture sono equivalenti

• La condizione C è spesso una congiunzione (\land) di atomi di confronto $A_1 \ A_2$ dove θ è uno degli operatori di confronto (=,>,<,...)

 se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join

Join (Giunzione)

 $\pi_{Matr,Nome,Materia,Data,Voto}(\sigma_{matricola=S.matricola}\left(Esami \times \rho_{S} \ Studenti)\right)$

Impiegati

Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В		

Impiegati $\bowtie_{\mathsf{Reparto}=\mathsf{Codice}}$ Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
А	Mori
В	Bruni

Impiegati ⋈ Reparti

ALGEBRA RELAZIONALE: Join naturale ed equi-join

Impiegati

Impiegato Reparto

Reparto Capo

Impiegati ⋈ Reparti

Impiegati

Impiegato Reparto

Reparti

Codice Capo

Impiegati ⋈_{Reparto=Codice} Reparti=

(π_{Impiegato,Reparto,Capo}

(Impiegati $\bowtie \rho_{Reparto \leftarrow Codice}(Reparti)$

Esercizio 1

IMPIEGATI (Codice, Nome, Cognome, Età)

Trovare gli impiegati che guadagnano più di 40 mila euro

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Il modello relazionale 4.70

Esercizio 2

IMPIEGATI (Codice, Nome, Cognome, Età)

 Trovare codice, nome ed età degli impiegati che guadagnano più di 40 mila euro

 $\pi_{\text{Codice, Nome, Età}}(\sigma_{\text{Stipendio}}(Impiegati))$

Matricola	Nome	Età
7309	Rossi	34
5698	Bruni	43
4076	Mori	45
8123	Lupi	46

Il modello relazionale 4.71

Esercizio

Impiegati

<u>Matricola</u>	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

<u>Impiegato*</u>	<u>Capo*</u>
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

ALGEBRA RELAZIONALE: Self Join

Supponiamo di considerare la seguente relazione

Genitori

Genitore	Figlio
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

e di volere ottenere una relazione Nonno-Nipote.

E' ovvio che in questo caso abbiamo bisogno di utilizzare due volte la stessa tabella

ALGEBRA RELAZIONALE: Self Join

Tuttavia Genitore ⋈ Genitore = Genitore, poiché tutti gli attributi coincidono.

In questo caso è utile effettuare una ridenominazione:

 ρ Nonno, Genitore \leftarrow Genitore, Figlio (Genitore)

A questo punto effettuando un natural join con la tabella Genitore, si ottiene l'informazione cercata

\downarrow	\downarrow
Nonno	Genitore
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

Figlio

Anna

Anna

Luca

Maria

Maria

Genitore

Luca Maria

Giorgio

Silvia

Enzo

ALGEBRA RELAZIONALE: Self Join

 \bowtie

				$\rho_{\text{Nipote} \leftarrow \text{Figlio}}$ (Genitore)
nno	Genitore	Genitore	Nipote	

Genitore	Figlio	
Luca	Anna	
_ Maria	Anna	
Giorgio	Luca	
Silvia	Maria	
Enzo	Maria	

Nonno	Genitore
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

Eventualmente si può effettuare una proiezione

 $\pi_{\text{Nonno, Nipote}}$ ($\rho_{\text{Nonno, Genitore} \leftarrow \text{Genitore}, \text{Figlio}}$ (Genitore) $\bowtie \rho_{\text{Nipote} \leftarrow \text{Figlio}}$ (Genitore))

Nonno	Nipote
Giorgio	Anna
Silvia	Anna
Enzo	Anna

ALGEBRA RELAZIONALE: ALTRI OPERATORI - Riepilogo

- Ridenominazione $\rho_{A \leftarrow B}$ (R)
- Operatori Derivati:
 - intersezione: $R \cap S$
 - giunzione: $R V_{R,A=S,B} S$ oppure $R \bowtie_{R,A=S,B} S$
 - giunzione naturale: $R \vee S$ oppure $R \bowtie S$

Esempio: Join Studenti ed Esami

Matric ola	Nome	Cognome
1	Luca	Rossi
2	Maria	Bianchi
3	Giorgio	Viola
4	Silvia	Neri
5	Enzo	Verdi

	Matricola	Voto
	1	25
N /	3	30
	2	23
	1	29
	4	29
	1	26
	5	30
	4	30

Nome	Cognome	Matricol a	Voto
Luca	Rossi	1	25
Giorgio	Viola	3	30
Maria	Bianchi	2	23
Luca	Rossi	1	29
Silvia	Neri	4	29
Luca	Rossi	1	26
Enzo	Verdi	5	30
Silvia	Neri	4	30

Problemi: Matricola, Nome, cognome, voto degli studenti:

- · con (almeno un) voto maggiore di 28 (quantificatore esistenziale)
- non hanno mai ottenuto un voto maggiore di 28 (differenza)
- Nomi degli studenti che hanno ottenuto solo voti maggiore di 28 (quantificatore universale)