Яндекс Образование Курс по олимпиадному программированию Параллель А'

25.07.2023

Содержание

1	Корневые	3
2	Структуры данных 1	3
3	Геометрия #1	4
4	Структуры данных #2	4
5	Оптимизации ДП	5
6	LCA, RMQ	5
7	STL	5
8	Строки #1 Ахо-Корасик	7
9	Γ рафы $\#1$	7
10	Математика #1	8
11	Строки #2	9
12	Центроиды	9
13	Развлекательный контест	10
14	Зачет	10
15	Тур	10
16	Γ рафы $\#2$	10

17 Игры	10
18 Структуры данных #4	11
19 Математика #2	11
20 Геометрия #2	12
21 БПФ	12
22 Интерактивки	12
$23\ \Pi$ отоки $\#2$	12
24 Строки #3	13
25 Матроиды	13
26 Структуры данных $#5$	13
27 Математика #3	13
28 Паросочетания	14
29 Зачет	14

1 Корневые

- 1. Нахождение количества треугольников в графе за $O(E\sqrt{E})$.
- 2. Корневая для задачи dynamic records.
- 3. Корневая в задачах на строки: разбиение строк на короткие и длинные.
- 4. Корневая на графах: тяжелые и легкие вершины.
- 5. Алгоритм Мо.
- 6. Алгоритм Мо на дереве (эйлеровом обходе).
- 7. Алгорит
м Мо+корневая как структура для Мо.
- 8. 3D Mo.
- 9. Корневая декомпозиция по запросам.

2 Структуры данных 1

- 1. Дерево отрезков с операцией изменения в точке.
- 2. Дерево отрезков с групповыми операциями.
- 3. Дерево отрезков: поиск подотрезка с максимальной суммой.
- 4. Дерево отрезков: применения НВП, Дейкстра, Хеши, ДП
- 5. Сканлайн. Просто.

Задача о нахождении длины объединения отрезков.

Задача о выборе максимального количества непересекающихся отрезков.

6. Сканлайн. Средне.

Задача о нахождении суммы в прямоугольнике.

Задача о поиске точки, покрытой максимальным количеством прямоугольников.

Задача о поиске площади объединения прямоугольников.

Задача о поиске количества различных на отрезке.

7. Сжатое (неявное, динамическое) дерево отрезков.

3 Геометрия #1

- 1. Структура вектор.
- 2. Скалярное и векторное (псевдоскалярное) произведения.
- 3. Площадь многоугольника.
- 4. Расстояние от точки до прямой.
- 5. Проекция точки на прямую.
- 6. Общее уравнение прямой. Переход от него к двум точкам и наоборот. Вектор нормали.
- 7. Пересечение прямых.
- 8. Пересечение прямой и окружности.
- 9. Пересечение двух окружностей.
- 10. Поиск касательных к окружности.
- 11. Проверка на принадлежность точки многоугольнику за O(n). Два способа: сумма углов и луч.
- 12. Алгоритм Джарвиса.
- 13. Алгоритм Грэхема.
- 14. Локализация точки в выпуклом многоугольнике за $O(\log n)$ на запрос.
- 15. Поиск касательных из точки к выпуклому многоугольнику за $O(\log n)$ на запрос.
- 16. Пересечение прямой с выпуклым многоугольником за $O(\log n)$ на запрос.

4 Структуры данных #2

- 1. Декартово дерево, декартово дерево по неявному ключу.
- 2. Двумерное дерево отрезков.
- 3. Merge-sort tree.
- 4. Дерево Фенвика.
- 5. Многомерное дерево Фенвика.
- 6. ДО + Фенвики.
- 7. Φ енвики + Φ енвики ("сжатые").

5 Оптимизации ДП

- 1. Оптимизация разделяй-и-властвуй.
- 2. Оптимизация Кнута.
- 3. Convex hull trick.
- 4. Convex hull trick в дереве отрезков.
- 5. Дерево Li Chao.

6 LCA, RMQ

- 1. Sparse Table.
- 2. Sparse Table: построение за $O(n \log \log n)$; построение за $O(n \log *n)$ и ответ на запрос за $O(\log n)$.
- 3. Disjoint Sparse Table.
- 4. Очередь на двух стеках.
- 5. Минимум на окне: два стека или дек
- 6. Минимум оффлайн: идея с деком + CHM
- 7. Алгоритм Фараха-Колтона и Бендера (RMQ ± 1). RMQ \rightarrow LCA.
- 8. LCA \rightarrow RMQ ±1. Поиск LCA с помощью Sparse Table.
- 9. Двоичные подъемы:
 - а) Аналогия с бинпоиском.
 - b) Задача LA.
 - с) Задача LCA.
- 10. Ladder decomposition и k-th ancestor. Построение за $O(n\log n)$, ответ на запрос за O(1).

7 STL

- 1. $ios :: sync_with_stdio(false);$ cin.tie(nullptr);cout.tie(nullptr);
- 2. cppreference
- $3.\ {
 m scanf}\ {
 m printf}\ {
 m setprecision}\ {
 m для}\ {
 m от} {
 m форматированного}\ {
 m вывода}$

- 4. Работа с файлами:
 - freopen
 - ifstream, ofstream
 - Бонус: sstream
- 5. gcd(C + +17 -gcd, lcm) $min_element, max_element, nth_element$ $merge, sort, stable_sort$ fill, copy, (C : memset, memcpy) reverse, rotate uniquelower bound, upper bound, binary search
- $next_permutation, prev_permutation \\ partial_sum$
- 7. Лямбда-функции.
- 8. Компараторы-функторы.
- 9. range-based for Structured binding declaration
- 10. #pragma
- 11. define ifdef
- $12.\ priority_queuevs.set$
- $13.\ initializer\ list$
- 14. swap, его время работы на стандартных контейнерах (O(1))

6. $pb_ds: ordered_set, gp_hash_table,$ быстрый $priority_queue$

- 15. $mt19937, mt19937_64$ random_device shuffle
- 16. templates, template specialization
- 17. Классы, наследование, виртуальные функции
- 18. AVX
- Написание стресс-тестов с помощью python Написание стресс-тестов с помощью bash Написание простых генераторов
- 20. -fsanitize=address,undefined,bounds -g valgrind gdb
- 21. Makefile

8 Строки #1 Ахо-Корасик

- 1. Префикс-функция.
- 2. Z-функция.
- 3. Поиск тандемных повторов
- 4. Алгоритм Манакера
- 5. Бор. Способы хранения: map, unordered_map (один большой), массив, вектор.
- 6. Сжатый бор. Оценка на глубину $O(\sqrt{S})$.
- 7. Ахо-Корасик.

9 Графы #1

- 1. DFS: время входа-выхода и топсорт.
- 2. Проверка на двудольность.
- 3. DFS: конденсация.
- 4. 2-SAT.
- 5. 0-к BFS (в частности, 0-1 BFS = deque).
- 6. Дейкстра: базовая и на сете (prioriry_queue!).
- 7. Форд-Беллман.
- 8. Форд-Беллман на очереди.
- 9. Алгоритм Джонсона.
- 10. Флойд.
- 11. Мосты и точки сочленения.
- 12. Детекция циклов отрицательного веса.
- 13. Поиск минимального средневзвешенного цикла.

10 Математика #1

- 1. НОД и НОК.
- 2. Алгоритм Евклида.
- 3. Расширенный алгоритм Евклида.
- 4. Утверждение о том, что алгоритм Евклида для n чисел, не превосходящих C, работает за O(n + logC).
- 5. Утверждение о том, что НОД, уменьшаясь, уменьшается хотя бы в 2 раза. Задача поиска количества подотрезков массива с НОД = x для всех актуальных значений x.
- 6. Обратный по модулю. Критерий существования.
- 7. Применение расширенного алгоритма Евклида для поиска обратного по произвольному модулю.
- 8. Нахождение всех делителей числа за $O(\sqrt{n})$.
- 9. Факторизация за $O(\sqrt{n})$.
- 10. Быстрое возведение в степень.
- 11. Малая теорема Ферма.
- 12. Применение малой теоремы Ферма к поиску обратного по простому модулю.
- 13. Мультипликативные функции и их свойства.
- 14. Функция Эйлера и теорема Эйлера.
- 15. Вычисление функции Эйлера за $O(\sqrt{n})$.
- 16. Нижняя и верхняя оценка на частичные суммы гармонического ряда.
- 17. Решето Эратосфена за $O(n \log \log n)$.
- 18. Решето Эратосфена за O(n).
- 19. Применение решета Эратосфена для подсчета мультипликативных функций для всех натуральных чисел, не превосходящих n, за O(n).
- 20. Применение решета Эратосфена для факторизации чисел за $O(\log n)$ с предпосчетом за O(n).
- 21. Предподсчет всех обратных по простому модулю к числам, не превосходящим n, за O(n). Применение к предпосчету обратных факториалов.

- 22. Быстрое вычисление биномиальных коэффициентов с предпосчетом за O(n).
- 23. Количество делителей субполиномиальная функция, практическая оценка $O(n^{1/3})$.
- 24. Утверждение о том, что количество простых чисел, не превосходящих n, это $O(n/\log n)$.
- 25. Задача дискретного логарифмирования и ее решение за $O(\sqrt{n})$ методом meet-in-the-middle.
- 26. Китайская теорема об остатках.
- 27. Утверждение о том, что $a \ge b \Longrightarrow amodb \le a/2$. Следствие в результате взятий по модулю мы не можем уменьшить число больше $O(\log C)$ раз.

11 Строки #2

- 1. Хеши.
- 2. Хеши мультимножеств.
- 3. Проверка корневых деревьев на изоморфизм.
- 4. Парадокс дней рождения.
- 5. Суффиксный массив за $O(n \log n)$.
- 6. Подсчет LCP за O(n) в суфмасе.

12 Центроиды

- 1. Heavy-light decomposition. Объединение HLD и эйлерова обхода.
- 2. Кеширование префиксов в HLD.
- 3. Centroid decomposition.
- 4. Оптимизация меньшее к большему (вариация отрезай меньшее).
- 5. Переливания в дереве за $O(h) \Longrightarrow O(n)$.
- 6. Обходим маленькие поддеревья дважды.

13 Развлекательный контест

- 14 Зачет
- 15 Typ

16 Графы #2

- 1. Эйлеровы пути и циклы.
- 2. Паросочетания. Алгоритм Куна.
- 3. Лемма Холла
- 4. Минимальное вершинное покрытие и максимальное независимое множество в двудольных графах.
- 5. Разбиение DAG на минимальное количество путей.
- 6. Минимальные остовы.
- 7. Алгоритм Прима.
- 8. Алгоритм Крускала.
- 9. Алгоритм Борувки.
- 10. Проведение ребер на отрезке.

17 Игры

- 1. Выигрышные, проигрышные состояния.
- 2. Теория Шпрага-Гранди.
- 3. Ретро-анализ.
- 4. Альфа-бета отсечение.
- 5. Разрешающие деревья: адаптивная и неадаптивная модели. Задача об угадывании числа, задача о нахождении самого большого числа, задача сортировки сравнениями, задача о проверке на связность.

18 Структуры данных #4

- 1. Структуры данных с откатами.
- 2. Персистентный стек.
- 3. Персистентное ДО.
- 4. Персистентный СНМ.
- 5. Персистентное ДД.
- 6. Сканлайн + персистентность. Задача о поиске k-й порядковой статистики на отрезке за $O(\log n)$ на запрос.
- 7. Разделяй-и-властвуй по запросам. Dynamic connectivity problem offline за $O(n\log^2 n)$.

19 Математика #2

- 1. Определение вероятности. Подсчет простых вероятностей.
- 2. Условные вероятности.
- 3. Матожидание. Его линейность.
- 4. Циклы в перестановках. Четность перестановки через циклы, через инверсии. Обратная перестановка. Композиция перестановок.
- 5. Поиск числа сложных комбинаторных объектов через динамику: разные виды ПСП, разные разбиения на слагаемые, разные последовательности со странными свойствами (убывающие, возрастающие).
- 6. Генерация всех комбинаторных объектов в лексикографическом порядке: перестановок, сочетаний, размещений (с повторениями и без), ПСП, убывающие-возрастающие последовательности, разбиения на слагаемые (разные виды).
- 7. Поиск объекта по номеру. Поиск номера по объекту.
- 8. Треугольник Паскаля.
- 9. Бином Ньютона.

20 Геометрия #2

- 1. Поиск пары пересекающихся отрезков за $O(n \log n)$.
- 2. Локализация точки в невыпуклом многоугольнике за $O(\log n)$ на запрос.
- 3. Поиск двух ближайших точек в 2D.
- 4. Поиск двух ближайших точек в 3D.
- 5. Вращающийся scanline. Запросы количества точек в полуплоскости. $O(n^2 + q \log n)$. Возможность применения корневой.
- 6. Сумма Минковского и ее применения.
- 7. Квадродерево.
- 8. Проецирование на случайную прямую.
- 9. Проверка на непустоту пересечения полуплоскостей за O(n).
- 10. Поиск минимальной покрывающей окружности за O(n).
- 11. Триангуляция методом отрезания ушей за $O(n^2)$

21 $\Pi\Phi$

- 1. Битовые свертки: and, or.
- 2. Мастер-теорема.
- 3. Алгоритм Карацубы.
- 4. Введение в комплексные числа. Применение комплексных чисел в геометрии.
- 5. Быстрое преобразование Фурье.
- 6. Теоретико-числовое преобразование Фурье.
- 7. Применение Фурье к решению задач.

22 Интерактивки

23 Потоки #2

- 1. Поиск величины максимального потока в планарном графе.
- 2. Стоимостные потоки. Форд-Беллман на очереди, Дейкстра с потенциалами.

- 3. Алгоритм проталкивания предпотока
- 4. Алгоритм Штор-Вагнера

24 Строки #3

- 1. Суффиксный автомат.
- 2. Суффиксное дерево.

25 Матроиды

- 1. Определение и основные утверждения. Примеры матроидов.
- 2. Алгоритм Радо-Эдмондса поиска базы минимального веса.
- 3. Пересечение матроидов.

26 Структуры данных #5

- 1. Что такое амортизированное время работы?
- 2. Метод потенциалов.
- 3. Splay-дерево.
- 4. Link-cut.

27 Математика #3

- 1. Теорема Люка.
- 2. Замечание о том, что количество различных простых делителей крайне мало
- 3. Функция Мёбиуса.
- 4. Свертка Дирихле.
- 5. Первообразный корень и его поиск.
- 6. Поиск квадратного корня по простому модулю за $O(\log p)$.
- 7. Алгоритм Миллера-Рабина.
- 8. Алгоритм Полларда-Ро.

28 Паросочетания

- 1. Венгерский алгоритм.
- 2. Алгоритм сжатия соцветий (поиск максимальных паросочетаний в произвольных графах).

29 Зачет