第十章 直流稳压电源

直流稳压电源一电源变压器

- 10.1 小功率整流滤波电路
- 10.2 串联反馈式稳压电路
- 10.3 开关式稳压电路

为负载提供稳定电压 (在电网波动及负载变化下)

10.2 串联反馈式稳压电路

常用稳压电路 (小功率设备) 稳压管 开关型 线性 稳压电路 稳压电路 稳压电路 效率较高,目 电路最简单,但 前用的也比较 是带负载能力差, 重点讨论 多,但因学时 一般只提供基准 有限,这里不 电压,不作为电 做介绍。 源使用。

10.2.1 稳压电路的质能指标

在电网波动及负载变化下为负载提供稳定电压。

 $\Delta V_{\rm I}$ 、 $\Delta I_{\rm O}$ 对 $\Delta V_{\rm O}$ 影响:

$$\Delta V_{\rm O} \approx \frac{\partial V_{\rm O}}{\partial V_{\rm I}} \Delta V_{\rm I} + \frac{\partial V_{\rm O}}{\partial I_{\rm O}} \Delta I_{\rm O} = S_{\rm r} \Delta V_{\rm I} + R_{\rm o} \Delta I_{\rm O}$$

(1) Line regulation
$$S_{\rm r}$$

$$S_{\rm r} = \frac{\partial V_{\rm O}}{\partial V_{\rm I}} \approx \frac{\Delta V_{\rm O}}{\Delta V_{\rm I}} \mid_{\Delta I_{\rm O}=0}$$

另一定义:
$$S_{\rm r} = \frac{\Delta V_{\rm O}/V_{\rm O}}{\Delta V_{\rm I}/V_{\rm I}} \Big|_{\Delta I_{\rm O}=0}$$
 稳压系数

(2) 输出电阻 R_{o}

$$R_{\rm o} = \frac{\Delta V_{\rm O}}{\Delta I_{\rm O}} \mid_{\Delta V_{\rm I}=0}$$

10.2.2 稳压管并联稳压电路

$$\Delta V_{\rm I} \rightarrow \Delta I_{\rm R}$$
 , $\Delta V_{\rm O}$

并联的 $D_{\mathbf{Z}}$ 和 $R_{\mathbf{L}}$: $\Delta I_{\mathbf{Z}} >> \Delta I_{\mathbf{L}}$

$$\rightarrow \Delta I_{\rm Z} \approx \Delta I_{\rm R}$$
, $\Delta I_{\rm L} \approx 0$

$$\rightarrow \Delta V_{\rm O} \approx 0$$

稳压性能与稳压管的动态电阻 r_z 以及稳压电阻R有关

稳压电阻R的作用:

限流: Izmin~Izmax

调压: 收纳 1/1 与 1/2 间额外电压

 D_Z 的小信号电阻远小于 R_L

10.2.2 稳压管并联稳压电路

稳压电阻的选择:

(1) R_{max→ I_{min}} (最恶劣情况: V_I 最小, I_I 最大)

$$R_{\text{max}} = \frac{V_{\text{Imin}} - V_{\text{Z}}}{I_{\text{Zmin}} + I_{\text{Lmax}}}$$

(2) $R_{\text{min}} \rightarrow I_{\text{zmax}}$ (最恶劣情况: V_{L} 最大, I_{L} 最小)

$$R_{\min} = \frac{V_{\max} - V_{Z}}{I_{Z\max} + I_{\min}}$$

缺点:

只适用于工作 电流 $I_1 << I_2$ 的 情况; 稳定电压值不 能连续调节。

10.2.3 线性串联型稳压电源

Series Feedback Type Regulated Power Supply

- 1 基本结构和工作原理
- 2 稳压电路的保护环节
- 3 三端集成稳压器

10.2.3 线性串联型稳压电源

1 基本结构和工作原理

(组成):

Series-pass transistor (调整管)

(四部分)

Voltage sampling network (取样环节)

Error amplifier (误差放大器, 比较放大器)

Reference voltage (基准电压源)

基准电压源

基准源也称为参考源

一般采用击穿电压十分稳定,电压温度系数经过补偿了的稳压芯片。

<u>型号</u>	<u> 稳定电压(V)</u>	_工作电流(mA)_	<u> 电压温度系数(10 -6/ ℃)</u>
MC1403	$2.5\pm1\%$	1.2	10~100
LM136/236/3	36 2.5	10	30
	5.0	10	30 .
TL431	2.5~36	0.4~100	50 .
LM3999	$\pm 6.95 \pm 5\%$	10	5 .
AD2710K/L	$10.000\pm1\mathrm{mV}$	10	2/1 .
MAX676	$4.096 \pm 0.01\%$	5	1
677	$5.000 \pm 0.01\%$	5	1
678	$10.000 \pm 0.01\%$	5	1 .

基准电压源芯片

±10.000 Volt Ultrahigh Precision Reference Series

AD2710/AD2712

FEATURES

Laser Trimmed to High Accuracy: 10.000V ± 1.0mV Low Temperature Coefficient: 1ppm/°C (L Grade) Excellent Long Term Stability: 25ppm/1000hrs.

5mA Output Current Capability Low Noise: 30μV p-p Short Circuit Protected No Heater Utilized

Small Size (Standard 14-Pin DIP Package)

FUNCTIONAL BLOCK DIAGRAMS

LM199/LM299/LM399/LM3999 Precision Reference

1 基本结构和工作原理

实质: 深度电压负反馈 $V_{\rm f} = V_{\rm REF}$

采用瞬时极性法,

假设外界因素造成 $V_{\mathbf{O}}$ (瞬时极性为正)

$$\rightarrow V_{\rm f} \uparrow \rightarrow V_{\rm O1} \downarrow \rightarrow V_{\rm O} = V_{\rm e} \downarrow$$

1 基本结构和工作原理

参数计算:

(1) 火调节范围

根据"虚短" V_f≈V_{REF}

$$: V_{\rm f} = \frac{R_2'' + R_3}{R_1 + R_2 + R_3} V_{\rm o} = k V_{\rm o}$$

$$\therefore V_{o} = \frac{V_{f}}{k} \approx \frac{V_{REF}}{k}$$

(2) 调整管管耗

$$P_{\mathrm{T}} = v_{\mathrm{CE}} i_{C} \approx (V_{\mathrm{I}} - V_{\mathrm{o}}) I_{\mathrm{L}}$$

(3)调整管 V_{CE} 压降足够大保证它工作在线性放大区。一般大于3V。

$$|\Delta V| = |V_{\rm I} - V_{\rm O}| \ge 3V$$

(4)通常取样电路电阻远大于负载电阻,所以:

$$I_{\rm L} \approx I_{\rm e} \approx I_{\rm c}$$

1 基本结构和工作原理 几个具体的电路

输出电压 的确定和 调节范围

$$V_{\rm O} = \frac{R_1 + R_2 + R_{\rm w}}{R_{\rm w2} + R_2} (V_{\rm Z} + V_{\rm BE2})$$

$$V_{\text{Omax}} = \frac{R_1 + R_2 + R_w}{R_2} (V_Z + V_{\text{BE}2})$$

$$V_{\text{Omin}} = \frac{R_1 + R_2 + R_w}{R_2 + R_w} (V_Z + V_{\text{BE}2})$$

2 稳压电路的保护环节

输出端短路保护

调整管过损耗发热保护

保护的方法

「反馈保护型

「温度保护型

利用集成电路制造工艺,
在调整管旁制作PN结温度传感器。
当温度超标时,启动保护电路工作,
工作原理与反馈保护型相同。

3 三端集成稳压器

Three-Terminal Regulator

(1) 概述

三个端子:输入端、输出端和公共端。

(2)输出电压固定的三端集成稳压器 (正电压 78××、负电压 79××)

(3) 三端固定输出集成稳压器特性

三端固定正输出~

CW78 : 05, 09, 12, 15, 18, 24...

三端固定负输出~

CW79__: 05, 09, 12, 15, 18, 24...

$$1, V_{O-GND} = V$$

$$2 \cdot |\Delta V| = |V_{\rm I} - V_{\rm O}| \ge 3 \text{V}$$

$$3 \cdot I_{\rm I} \approx I_{\rm O}$$

(4) 应用电路

固定电压输出: 连接说明见教材P504

实际应用接线图:变压+整流+滤波+稳压

用三端稳压器也可以实现输出电压可调

运算放大器作为<mark>电压跟随器</mark>使用,它的电源就借助于稳压器的输入直流电压。

$$V_{o1} = V_{-} = V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{o}$$
 $V_{o} = V_{XX} \times (1 + \frac{R_{2}}{R_{1}})$
 $V_{o} = V_{XX} = 5V$

输出正负电压的电路

正负电压同时输出电路

三端可调式集成稳压器结构图

$$I_{\mathrm{adj}} \approx 50 \mu \mathrm{A}$$

$$I_{1} = \frac{V_{\mathrm{REF}}}{R_{1}}$$

$$I_{2} = I_{1} + I_{\mathrm{adj}} \approx I_{1}$$

$$\therefore V_{0} \approx V_{\mathrm{REF}} \left(1 + \frac{R_{2}}{R_{1}} \right)$$

直流稳压电源如下图所示,已知稳压管 D_{Z1} 的稳定电压 V_{Z1} =6V。

- (1) 说明本电路中稳压电路的四个组成部分;
- (2) 求Vo的调节范围;
- (3) 若正常工作时T3管的 V_{CE} 至少为3V,确定变压器副边电压(二次电压) V_{2min} =?
- (4) 若变压器副边电压 V_2 =25V,当 R_L =100 Ω 时,电位器 R_P 处于最下面位置时,求T3管的耗散功率 P_T =?

10.1 整流和滤波

小结

掌握: 小功率直流稳压电源的四个组成部分;

掌握: 单相桥式整流电路的结构、原理和参数计算;

掌握: 电容滤波电路的特点和关键参数估算;

预习: 稳压电路

作业

P522: 10.2.1 (1) (2) (4); 10.2.3

P523: 10.2.4

