Econ 703 Homework 2 Answer Keys*

Fall 2008, University of Wisconsin-Madison

TA: Dai ZUSAI[†] Sep. 18, 2008

1 Question 1.

Define two points (x_0, y_0) and (x_1, y_1) of the plane to be equivalent if $y_0 - x_0^2 = y_1 - x_1^2$. Verify that this is an equivalence relation, and describe the equivalence classes.

Proof of the equivalence relation. Denote by C the relation: $C = \{((x_0, y_0), (x_1, y_1)) \in \mathbb{R}^2 \times \mathbb{R}^2 | y_0 - x_0^2 = y_1 - x_1^2 \}$. Let \sim denote the relation such as

$$(x_0, y_0) \sim (x_1, y_1) \Leftrightarrow ((x_0, y_0), (x_1, y_1)) \in C$$
, i.e. $y_0 - x_0^2 = y_1 - x_1^2$.

We check the reflectivity, symmetry, and transitivity of this relation.

Reflectivity. Suppose $(x_0, y_0) \sim (x_1, y_1)$. By the definition of C, this follows $y_0 - {x_0}^2 = y_1 - {x_1}^2$. By the reflectivity of =, this implies $y_1 - {x_1}^2 = y_0 - {x_0}^2$, and thus $(x_1, y_1) \sim (x_0, y_0)$ by the definition of C.

Symmetry. Take any $(x,y) \in \mathbb{R}^2$. By the symmetry of =, we have $y-x^2=y-x^2$ and thus $(x,y) \sim (x,y)$ by the definition of C.

Transitivity. Suppose $(x_0, y_0) \sim (x_1, y_1)$ and $(x_1, y_1) \sim (x_2, y_2)$. By the definition of C, these follow $y_0 - x_0^2 = y_1 - x_1^2$ and $y_1 - x_1^2 = y_2 - x_2^2$. By the transitivity of =, these two equations imply $y_0 - x_0^2 = y_2 - x_2^2$, and thus $(x_0, y_0) \sim (x_2, y_2)$ by the definition of C.

We therefore conclude that the relation C is an equivalence relation.

Answer for the equivalence classes. The equivalence class defined by $(x,y) \in \mathbb{R}^2$ is

$$E(x,y) := \{ (x',y') \in \mathbb{R}^2 | y - x^2 = y' - x'^2 \}.$$

For example, the equivalence class defined by (0,0) is the graph of $y-x^2=0$, i.e. $y=x^2$ in the plane. In general, the equivalence class defined by $(x,y) \in \mathbb{R}^2$ is the graph of $y-x^2=c$, i.e. $y=x^2+c$, where $c=y-x^2$. [Draw the graphs of the equivalence classes $E(0,0)=\widetilde{E}_0$, $E(1,4)=\widetilde{E}_3$ and $E(2,1)=\widetilde{E}_{-3}$ by yourself.]

Since $(x,y) \in E(x,y)$ for any $(x,y) \in \mathbb{R}^2$ by the symmetry of C, the whole space \mathbb{R}^2 is covered by the union of all the equivalent classes. Hereafter, we want to check that the collection of these equivalent classes

$$\mathcal{E} = \{ E(x, y) \subset \mathbb{R}^2 | (x, y) \in \mathbb{R}^2 \}.$$

is actually a partition of \mathbb{R}^2 .

For each $c \in \mathbb{R}$, define the set $\widetilde{E}_c \subset \mathbb{R}^2$ as

$$\widetilde{E}_c := \{ (x', y') \in \mathbb{R}^2 | y' - x'^2 = c \}.$$

^{*}Please bring this answer key and the DIS note with you to the TA session.

[†]E-mail: zusai@wisc.edu.

2 Econ 703 HW #2 Ans

Then, for a point $(x,y) \in \mathbb{R}^2$, its equivalent class E(x,y) is \widetilde{E}_{y-x^2} . Besides, for any $c \in \mathbb{R}$, \widetilde{E}_c is the equivalent class E(0,c) of the point (0,c). So the collection of these \widetilde{E} is exactly the same as the collection of the equivalent classes defined by the relation C:

$$\widetilde{\mathcal{E}} := \{\widetilde{E}_c \subset \mathbb{R}^2 | c \in (-\infty, +\infty)\} = \{E(x, y) \subset \mathbb{R}^2 | (x, y) \in \mathbb{R}^2\} = \mathcal{E}.$$

Besides, by construction, any two distinct c, c' yield two disjoint E_c and $E_{c'}$. The entire space \mathbb{R}^2 is partitioned by this collection $\widetilde{\mathcal{E}} = \mathcal{E}$.

Here I define the set \widetilde{E}_c to show you that each equivalent class is characterized with a single parameter. But the partition claim is obtained directly from the definition of equivalent classes and an equivalent relation: In general, a collection of equivalent classes induced from an equivalent relation is a partition of the whole set. (Prove it.)

2 Question 2.

Prove by induction that given $n \in \mathbb{Z}_+$, every nonempty subset of $\{1, \ldots, n\}$ has a largest element.

Ans. Denote by S_n the set $\{1, 2, ..., n\}$ for each $n \in \mathbb{N}$: $S_n := \{i \in \mathbb{Z} | i \in [1, n] \}$.

Step 1 (initial step). When n = 1, then the nonempty subset of S_1 is $S_1 = \{1\}$ itself. This set has the only element 1, which is thus the largest element by the symmetry of \geq , i.e. $1 \geq 1$.

Step 2 (inductive step). Fix $n \in N$ arbitrarily. Suppose the statement holds when n = k; that is, for every nonempty subset of S_k has a largest element (H). Then, consider the case of n = k + 1.

Since $S_{k+1} = S_k \cup \{k+1\}$, every nonempty subset A of S_{k+1} satisfies either one of three cases below:

- $(i)A \subseteq S_k$.
- $(ii)A \cap S_k \neq \emptyset$, and $k+1 \in A$; i.e. $A = \tilde{A} \cup \{k+1\}$ with some non-empty $\tilde{A} \subseteq S_k$. $(iii)A \cap S_k = \emptyset$, and $k+1 \in A$; i.e. $A = \{k+1\}$.
- (i) By the "inductive hypothesis" H, the non-empty set $A \subseteq S_k$ has the largest element.
- (ii) Suppose the largest element of $\tilde{A} \subseteq S_k$ is \tilde{M} ; its existence is given by the hypothesis H. That is,

$$M > x$$
 for any $x \in \tilde{A} = A \setminus \{k+1\}$.

Since $\tilde{M} \in S_k$, $k+1 \geq M$. By the transitivity of \geq and $k+1 \geq k+1$ (its symmetry), we have

$$k+1 \geq x \quad \text{for any } x \in \tilde{A} \cap \{k+1\} = A.$$

Because $k+1 \in A$, this means that k+1 is the largest element of A.

(iii) k+1 is the only element and thus the largest element of A by the symmetry of \geq , i.e. $k+1 \geq k+1$.

Hence, in all cases, the non-empty subset A of S_{k+1} has the largest element.

From Steps 1 and 2, we conclude that the original proposition is true for all $n \in \mathbb{N}$.

¹A partition of the set S is the collection of the subsets of S such that their union coincides the set S and each two sets in the collection are disjoint. That is, in this question, $\mathcal{E} = \mathbb{R}^2$ and $E(x_0, y_0) \cup E(x_1, y_1) \neq \emptyset \Rightarrow (x_0, y_0) \sim (x_1, y_1)$, i.e. $E(x_0, y_0) = E(x_1, y_1)$.

Econ703 HW#2 Ans 3

3 Question 3.

(Sundaram, #9, p. 67.) Given two sequences $\{a_k\}$ and $\{b_k\}$ in \mathbb{R} , show that

$$\limsup_{k} (a_k + b_k) \le \limsup_{k} a_k + \limsup_{k} b_k, \tag{1}$$

$$\liminf_{k} (a_k + b_k) \ge \liminf_{k} a_k + \liminf_{k} b_k. \tag{2}$$

$$\lim\inf_{k} (a_k + b_k) \ge \lim\inf_{k} a_k + \lim\inf_{k} b_k. \tag{2}$$

Proof for (1). The RHS of (1) is well defined, except for the case where either one of $\limsup_k a_k$ and $\limsup_k b_k$ is $+\infty$ and the other is $-\infty$. So we exclude this case.

- (i) If $\limsup_k a_k$ or $\limsup_k b_k$ (or both) is $+\infty$, then (1) holds, since $x \leq +\infty$ for any $x \in$ $[-\infty, +\infty]$.
- (ii) Consider the case where both are finite. Let $\alpha_n = \sup\{a_i\}_{i \geq n}, \ \beta_n = \sup\{b_i\}_{i \geq n}, \ \text{and}$ $\gamma_n = \sup\{a_i + b_i\}_{i \geq n}$. Then, $\alpha_n, \beta_n \in (-\infty, +\infty)$. (Why?)

Since α_n is an upper bound of $\{a_i\}_{i>n}$, we have $\alpha_n \geq a_i$ for all $i \geq n$. Similarly, we have $\beta_n \geq b_i$ for all i > n. Combining these two inequalities, we obtain

$$\alpha_n + \beta_n \ge a_i + b_i, \quad \text{for all } i \ge n.$$
 (3)

So, $\alpha_n + \beta_n$ is an upper bound of $\{a_i + b_i\}_{i > n}$.

Since γ_n is the *least* upper bound of $\{a_i + b_i\}_{i \geq n}$, it follows that

$$\alpha_n + \beta_n \ge \gamma_n. \tag{4}$$

Because a weak inequality and additivity are preserved by the operation of taking limits, by taking limits on both sides, we have

$$\lim_{n \to \infty} (\alpha_n + \beta_n) = \lim_{n \to \infty} \alpha_n + \lim_{n \to \infty} \beta_n \ge \lim_{n \to \infty} \gamma_n,$$
i.e.
$$\lim \sup_k a_k + \lim \sup_k b_k \ge \lim \sup_k (a_k + b_k).$$

(iii) Consider the case where $\limsup_k a_k$ or $\limsup_k b_k$ (or both) is $-\infty$. Still we have $\alpha_n, \beta_n \in$ $(-\infty, +\infty) = \mathbb{R}$. (Why?) Without loss of generality, we assume $\limsup_k a_k = -\infty$; by the definition of $\lim = -\infty$, for any $M \in \mathbb{R}$ we have $N \in \mathbb{N}$ such that

$$\alpha_n < M - \beta_1$$
 for all $n > N$.

Since $\beta_n = \sup\{b_i\}_{i\geq n}$ is non-increasing in n, we have $\beta_n \leq \beta_1$. Combining these two inequalities and (4), we have

$$\gamma_n \le \alpha_n + \beta_n \le M$$
 for all $n \ge N$.

Hence we have $\limsup_{k} (a_k + b_k) = \lim_{n \to \infty} \gamma_n = -\infty$; thus (1) holds in this case.

You can prove (2) by replacing "upper" with "lower", "least" with "greatest" and \geq with \leq .

(iii) can be integrated into (ii), because it holds even for the cases where $\lim x_n = \pm \infty$ and/or $\lim y_n = \pm \infty \text{ that } x_n \ge y_n \implies \lim x_n \ge \lim y_n. \text{ (Why?)}$

Question 4. 4

(Sundaram, #13, p. 68.) Find the lim sup and the lim inf of the following sequences:

(a)
$$x_k = (-1)^k$$
, $k = 1, 2, ...$;
(b) $x_k = k(-1)^k$, $k = 1, 2, ...$;
(c) $x_k = (-1)^k + \frac{1}{k}$, $k = 1, 2, ...$;
(d) $x_k = \begin{cases} 1 & \text{if } k \text{ is odd,} \\ -k/2 & \text{if } k \text{ is even.} \end{cases}$

Ans. (a) For any $N \in \mathbb{N}$, the set $\{x_k | k \geq N\}$ is $\{-1, 1\}$; so,

$$\inf_{k \ge N} x_k = -1, \ \therefore \ \lim\inf_k x_k = -1; \qquad \sup_{k \ge N} x_k = 1, \ \therefore \ \lim\sup_k x_k = 1.$$

(b) For any $N \in \mathbb{N}$, the set $\{x_k | k \ge N\}$ is $\{-k | k \ge N, \text{ odd}\} \cup \{k | k \ge N, \text{ even}\}$; so

$$\inf_{k\geq N} x_k = -N, \ \therefore \ \liminf_k x_k = -\infty; \qquad \sup_{k\geq N} x_k = +\infty, \ \therefore \ \limsup_k x_k = +\infty.$$

(c) For any $N \in \mathbb{N}$, the set $\{x_k | k \ge N\}$ is $\{-1 + 1/k | k \ge N \text{ odd}\} \cup \{1 + 1/k | k \ge N, \text{ even}\}$; so

$$\inf_{k\geq N} x_k = -1, \ \therefore \ \liminf_k x_k = -1; \qquad \sup_{k>N} x_k = 1 + 1/N, \ \therefore \ \limsup_k x_k = 1.$$

(d) For any $N \in \mathbb{N}$, the set $\{x_k | k \ge N\}$ is $\{1\} \cup \{-k/2 | k \ge N, \text{ even}\}$; so

$$\inf_{k\geq N} x_k = \begin{cases} -N/2 & \text{if N is even,} \\ -(N-1)/2 & \text{if N is odd,} \end{cases} \therefore \liminf_k x_k = -\infty; \qquad \sup_{k\geq N} x_k = 1, \ \therefore \ \limsup_k x_k = 1.$$

5 Question 5.

(Sundaram, #15, p. 68.) Let $\{x_k\}$ be a bounded sequence of real numbers. Let $S \subset \mathbb{R}$ be the set which consists only of members of the sequence $\{x_k\}$, i.e. $x \in S$ if and only if $x = x_k$ for some k. What is relationship between $\limsup_k x_k$ and $\sup_s S$.

Ans. We show the relationship between $\limsup_{k} x_k$ and $\sup_{k} S$ as

$$\limsup_{k} x_k \le \sup S.$$
(1)

- (i) Consider the case $\limsup_k x_k = -\infty$. Then, (1) holds, since $z \ge -\infty$ for any $z \in [-\infty, +\infty]$.
- (ii) Consider the case $\limsup_k x_k \in (-\infty, +\infty)$. At each $n \in \mathbb{N}$, we have

$$\{x_k | k \ge n\} \subset \{x_k | k \ge 1\} = S,$$

and thus

$$s_n := \sup\{x_k | k \ge n\} \le \sup S. \tag{2}$$

Taking limit, we have

$$\limsup_{k} x_k \le \sup S.$$

(iii) Consider the case $\limsup_k x_k = +\infty$. Then, for any $M \in \mathbb{R}$ we have $N \in \mathbb{N}$ such that $s_n \geq M$ for all $n \geq N$, and thus $\sup S \geq M$ by (2). That is, we have

$$\sup S = +\infty = \lim \sup_{k} x_k.$$

You can similarly verify

$$\lim\inf_{k} x_k \ge \inf S.$$

Again we can integrate (iii) into (ii), by the same reason as Q.4.