Particle spectrograph

Wave operator and propagator

$\mathfrak{r}_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{4 i}{k (1 + 2 k^2) (r_3 + 2 r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1+}^{\#2}{}_{\alpha\beta} \; \tau_{1+}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$		0	0	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{#2} +^{\alpha}$

اة على م
$\iiint (\frac{1}{6} (4t_3 \omega_{\alpha}^{\alpha}) \omega_{\kappa\alpha}^{\kappa} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 3r_3 \partial_{\beta} \omega_{\kappa}^{\kappa\lambda} \partial_{\beta} \omega_{\lambda}^{\alpha} - 6r_5$
$\partial_{l}\omega^{\kappa\lambda}_{\kappa}\partial^{l}\omega_{\alpha}^{\alpha} + 4r_{2}\partial^{\beta}\omega^{\theta\alpha}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\kappa} - 2r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} - 4r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} +$
$3r_3\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial_\kappa\omega^{\theta\kappa\lambda} - 6r_5\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial_\kappa\omega^{\theta\kappa\lambda} - 3r_3\partial_\theta\omega_\lambda^{\alpha}_{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} + 6r_5\partial_\theta\omega_\lambda^{\alpha}_{\alpha}$
$\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $3r_3\partial_{lpha}\omega_{\lambda}^{\ lpha}\partial_{\kappa}\omega^{\kappa\lambda heta}$ - $6r_5\partial_{lpha}\omega_{\lambda}^{\ lpha}\partial_{\kappa}\omega^{\kappa\lambda heta}$ + $6r_3\partial_{ heta}\omega_{\lambda}^{\ lpha}\partial_{\kappa}\omega^{\kappa\lambda heta}$ +
$12r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 4t_3\omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f'_{\ \prime} - 4t_3\omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f'_{\ \prime} - 8t_3\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{\ \prime} +$
$4t_3\partial_\kappa f^\lambda_{}\partial^\kappa f'_{} + 4t_3\ \omega_{\alpha}^{}\partial^\kappa f'_{} + 4t_3\ \omega_{\alpha}^{}\partial^\kappa f'_{} + 4t_3\ \partial^\alpha f^\lambda_{}\partial^\kappa f_{\lambda\kappa} +$
$2r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} + 4r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} - 4r_2\partial^\beta\omega_{\alpha}^{\alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\prime} + 4r_2\partial^\beta\omega_{\lambda}^{\lambda\alpha}$
$\partial_{\lambda}\omega_{\alpha\beta}{}' - 24 r_3 \partial^{\beta}\omega_{\lambda}{}^{\lambda\alpha} \partial_{\lambda}\omega_{\alpha\beta}{}' - 3 r_3 \partial_{\alpha}\omega_{\lambda}{}^{\alpha}{}_{\theta} \partial^{\lambda}\omega^{\theta\kappa}{}_{\kappa} + 6 r_5 \partial_{\alpha}\omega_{\lambda}{}^{\alpha}{}_{\theta} \partial^{\lambda}\omega^{\theta\kappa}{}_{\kappa} +$
$3r_3\partial_ heta\omega_\lambda^{lpha}\partial^\lambda\omega^{ heta\kappa}_{}-6r_5\partial_ heta\omega_\lambda^{lpha}\partial^\lambda\omega^{ heta\kappa}_{}))[t,x,y,z]dzdydxdt$

$\omega_{1}^{\#1}{}_{\!\!\!\!\!\!-} \alpha_{eta} \qquad lpha$	$\omega_1^{\#2}{}_{\alpha\beta}$	$\iota_{eta} \ f_{1}^{\#1}{}_{aeta}$	$\omega_{1^{-}\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1^{-}\alpha}^{\#1}$	$f_{1^{-}}^{\#2}{}_{lpha}$
$(2 r_3 + r_5)$	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	$k^2 \left(\frac{73}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	$-\frac{2}{3}ikt_3$
	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
	0	0	0	0	0	0
	0	0	<u>2 i k t 3</u> 3	$-\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\sharp 1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

 $\tau_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$

 $r_0^{\#1} - 2ik\sigma_0^{\#1} == 0$

 $\tau_{0}^{\#2} == 0$

 $\sigma_{2}^{\#1}$ $\tau_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$

 $t_{2+}^{\#1}^{\#3}\alpha\beta$ == 0 Total constraints:

 $\sigma_{2}^{\#1}\alpha\beta\chi==0$

 $\sigma_{1+}^{\#2}\alpha\beta == 0$

 $\tau_1^{\#1}\alpha\beta == 0$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

0

0

0

0

0

0

, 5+	$\sigma_{2}^{\#1} + ^{a}$				
		$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
	$\omega_0^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
	$f_{0}^{#1} \dagger$	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
	$f_{0}^{#2}$ †	0	0	0	0
	$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2$

	$\sigma_{0^+}^{\#1}$	$ au_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$