DEEP LEARNING FOR ARTIFICIAL INTELLIGENCE

Day 4 Lecture 1

Loss functions

Organizers

Supporters

Google Cloud

GitHub Education

+ info: http://bit.ly/dlai2019

[course site]

Javier Ruiz Hidalgo

Associate Professor Universitat Politecnica de Catalunya Technical University of Catalonia

Me

Javier Ruiz Hidalgo

- o Email: j.ruiz@upc.edu
- Office: UPC, Campus Nord, D5-008

Teaching experience

- Basic signal processing
- Project based
- Image processing & computer vision

Research experience

- Master on hierarchical image representations by UEA (UK)
- PhD on video coding by UPC (Spain)
- o Interests in image & video coding, 3D analysis and super-resolution

Acknowledgements

Kevin McGuinness

kevin.mcguinness@dcu.ie

Research Fellow
Insight Centre for Data Analytics
Dublin City University

Xavier Giró xavier.giro@upc.edu

Associate Professor ETSETB TelecomBCN Universitat Politècnica de Catalunya

Motivation

Model

- 3 layer neural network (2 hidden layers)
- Tanh units (activation function)
- 512-512-10
- Softmax on top layer
- Cross entropy loss

??

Layer	#Weights	#Biases	Total
1	784 x 512	512	401,920
2	512 x 512	512	262,656
3	512 x 10	10	5,130
			669,706

Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification
 - Metric learning
- Example

Nomenclature

loss function

```
= cost function
```

objective function

error function

Definition

In a supervised deep learning context the **loss function** measures the **quality** of a particular set of parameters based on how well the output of the network **agrees** with the ground truth labels in the training data.

Loss function (1)

Deep Network

How good does our network with the training data?

output
$$f_{\theta}(x)$$

L = $distance(f_{\theta}(x), y)$ error parameters (weights, biases)

Loss function (2)

 The loss function does not want to measure the entire performance of the network against a validation/test dataset.

Loss function (3)

 The loss function is used to guide the training process in order to find a set of parameters that reduce the value of the loss function.

Training process

Stochastic gradient descent

- Find a set of parameters which make the loss as small as possible.
- Change parameters at a rate determined by the partial derivatives of the loss function:

$$rac{\partial \mathcal{L}}{\partial w} \;\; rac{\partial \mathcal{L}}{\partial b}$$

Properties (1)

- Minimum (0 value) when the output of the network is equal to the ground truth data.
- Increase value when output differs from ground truth.

Properties (2)

Ideally → convex function

Properties (3)

 In reality → some many parameters (in the order of millions) than it is not convex

Properties (4)

- Varies smoothly with changes on the output
 - Better gradients for gradient descent
 - Easy to compute small changes in the parameters to get an improvement in the loss

Assumptions

- For backpropagation to work:
 - Loss function can be written as an average over loss functions for individual training examples:

empirical risk
$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n \mathcal{L}_i$$

 Loss functions can be written as a function of the output activations from the neural network.

Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification
 - Metric learning
- Example

Loss functions for regression (1)

- Loss functions depend on the type of task:
 - Regression: the network predicts continuous, numeric variables
 - Example: Length of fishes in images, price of a house
 - Absolute error, square error, Huber error

Loss functions for regression (2)

L2 Distance / Euclidian Distance / Square Value

Heavier computation (square)

$$\mathcal{L}_i = |y_i - f_{\theta}(x_i)| \qquad \mathcal{L}_i = (y_i - f_{\theta}(x_i))^2$$

Loss functions for regression (3)

L1 Distance / Absolute Value

Less penalty to errors > 1
More penalty to errors < 1

$$\mathcal{L}_i = |y_i - f_\theta(x_i)|$$

L2 Distance / Euclidian Distance / Square Value

More penalty to error > 1 Less penalty to errors < 1

$$\mathcal{L}_i = (y_i - f_\theta(x_i))^2$$

Loss functions for regression (4)

L1 Distance / Absolute Value

Less sensitive to outliers, which are very high y_i - $f_o(x_i)$ L2 Distance / Euclidian Distance / Square Value

More sensitive to outliers, which are very high y_i - $f_{\rho}(x_i)$

$$\mathcal{L}_i = |y_i - f_\theta(x_i)|$$

$$\mathcal{L}_i = (y_i - f_\theta(x_i))^2$$

Loss functions for regression (5)

L1 Distance /
Absolute Value

$$\mathcal{L}_i = |y_i - f_\theta(x_i)|$$

L2 Distance / Euclidian Distance / Square Value

$$\mathcal{L}_i = (y_i - f_\theta(x_i))^2$$

Loss functions for regression (6)

- L1 / absolute loss
 - More robust to outliers
 - X Large gradients for small loss → Inefficient to find minimum
- L2 / square loss
 - X Sensitive to outliers
 - More stable and closed form solution (derivatives go to 0)
- In general, L2 loss is more appropriate

Smooth / Huber loss

Loss functions for regression (7)

Smooth / Huber loss

$$\mathcal{L}_{i} = \begin{cases} \frac{1}{2} (y_{i} - f_{\theta}(x_{i}))^{2} & \text{for } |y_{i} - f_{\theta}(x_{i})| < \delta \\ \delta |y_{i} - f_{\theta}(x_{i})| - \frac{1}{2} \delta^{2} & \text{otherwise} \end{cases}$$

 Behaves like absolute error but becomes quadratic when error is small.

• δ becomes an hyper-parameter (usually δ =1)

Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification
 - Metric learning
- Example

Loss functions for classification

- Loss functions depend on the type of task:
 - Classification: the network predicts categorical variables (fixed number of classes)
 - Example
 - Classify email as spam (binary classification)
 - Classify images of numbers (single-label multiclass classification)
 - Describe images with labels (multi-label classification)
 - Hinge loss, Cross-entropy loss, Focal loss, ...

Binary classification (1)

- We want the network to classify the input into two classes
 - Spam / Not spam

Binary classification (2)

- How can we create a loss function to improve the scores?
 - Assign a number to each class (+1 for "spam" and "-1" for "not spam" and use any regression based loss (square loss)
 - Errors in between labels are treated equal than errors "outside" labels

$$\mathcal{L}_i = (y_i - f_\theta(x_i))^2$$

- Non-probabilistic interpretation → hinge loss
- Probabilistic interpretation → cross-entropy loss

Hinge loss (1)

$$\mathcal{L}_i = max(0, m - y_i f_{\theta}(x_i))$$

- Labels are y_i = ±1, m is the margin (usually m=1)
- Correct and confident predictions not penalized
- Penalizes incorrect predictions but also correct but not confident (margin)
- Maximizes the margin between our decision boundary and input data

Loss functions for classification

- How can we create a loss function to improve the scores?
 - Non-probabilistic interpretation → hinge loss
 - Probabilistic interpretation → cross-entropy loss
 - Transform output of the network into probabilities (softmax)
 - Measure the loss to expected label probabilities
 - We'll review cross-entropy loss in the context of single-label multiclass classification
 - Cross-entropy can also be applied to binary classification
 - Hinge loss could also be extended to multiclass classification

Single-label multi-class classification (1)

We want the network to classify the input into a fixed number of k classes

Single-label multi-class classification (2)

- Each input can have only one label (single-label)
 - One prediction per output class
 - The network will have "k" outputs (number of classes / multi-class)

Cross-entropy loss (1)

- Write multi-class labels (ground truth) into a vector
 - One-hot encoding
- Transform scores (output of the network) into probabilities
 - Softmax
- Measure the difference between expected probabilities
 - Negative log likelihood

One-hot encoding

- Transform each label into a vector (with only 1 and 0)
 - Length equal to the total number of classes "k"
 - Value of 1 for the correct class and 0 elsewhere

class "1"	class "2"	class "3"
1	0	0
0	1	0
0	0	1

Softmax (1)

- Convert scores into confidences/probabilities
 - From 0.0 to 1.0
 - Probability for all classes adds to 1.0

Softmax (2)

Softmax function

$$S(l_i) = rac{e^{l_i}}{\sum_k e^{l_k}}$$

Softmax (3)

exponential function

Cross-entropy loss (2)

Loss contribution from input x_i in a training batch

$$\mathcal{L}_i = -\sum_k y_k \log(S(l_k))$$

Cross-entropy loss (3)

Cross-entropy loss (4)

Cross-entropy loss (5)

$$\mathcal{L}_i = -\sum_k y_k \log(S(l_k)) = -\log(S(l))$$

-log penalizes small confidence scores for GT class 41

Cross-entropy loss (6)

• For a set of n inputs $\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i$

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}$$

labels (one-hot)
$$\mathcal{L} = -\sum_{i=1}^{n} \mathbf{y}_i \log(S(f_{\theta}(\mathbf{x}_i)))$$
 Softmax

Weighted cross-entropy

- Dealing with class imbalance
 - Different number of samples for different classes

Introduce a weighing factor (related to inverse class frequency or treated as

hyperparameter)

class "ant"

class "flamingo"

class "panda"

$$\mathcal{L}_i = -\alpha_i \log(S(f_{\theta}(\mathbf{x}_i)))$$

Focal loss (1)

- Deals with hard vs. easy examples
 - Very useful in one-shot object detection where there is extreme imbalance between classes
 - Easy examples (background) will have a lower contribution to the loss
 - Hard/Difficult examples (foreground) will contribute more

Introduce a factor related to the **estimated** probability

Focal loss (2)

estimated probability of sample x_i

$$\mathcal{L}_i = -(1 - S(f_{\theta}(\mathbf{x}_i)))^{\gamma} \log(S(f_{\theta}(\mathbf{x}_i)))$$

Multi-label classification (1)

- Outputs can be matched to more than one label
 - o "car", "automobile", "motor vehicle" can be applied to a same image of a car.

Multi-label classification (2)

- Outputs can be matched to more than one label
 - o "car", "automobile", "motor vehicle" can be applied to a same image of a car.
- .. directly use sigmoid at each output independently instead of softmax

$$\sigma(l_i) = \frac{1}{1 + e^{-l_i}}$$

Cross-entropy for multi-label classification (3)

Sigmoid + Binary cross-entropy

$$\mathcal{L}_i = -\sum_k y_k \log(\sigma(l_i)) + (1 - y_k) \log(1 - \sigma(l_i))$$

Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification
 - Metric learning
- Example

Metric learning (1)

- We want the network to generate encodings
 (embeddings) of the input to learn distances on the data
- Given two inputs x1 and x2 we want the encodings to be close if similar and further apart if dissimilar
 - Siamese networks

Siamese Network (1)

Siamese networks in the context of face recognition

Siamese Network (2)

Siamese networks in the context of face recognition

Distances (square error) between **negative pairs** to be **large**

$$d^{2}(a,n) = ||f_{\theta}(x_{a}) - f_{\theta}(x_{n})||^{2}$$

Distances (square error) between **positive** pairs to be small

$$d^{2}(a, p) = ||f_{\theta}(x_{a}) - f_{\theta}(x_{p})||^{2}$$

Contrastive loss

- Input pairs (x_a,x_b) are fed into the network during training
 - o y=+1 if inputs are similar: positive pair (x_a, x_p)
 - \circ y=-1 if inputs otherwise: negative pair (x_a, x_n)

$$\mathcal{L}_i = y_i d^2 + (1 - y_i) max(m - d, 0)^2$$

- m is the margin to "tighten" the constraint
 - o negative pairs should have distances of at least m

Triplet loss

 Learn embeddings that jointly put anchors closer to positive examples than negative examples

$$\mathcal{L}_i = max(m + d^2(a, p) - d^2(a, n), 0)$$

Pair/triplet mining (1)

- Number of pairs/triplets grows quadratically/cubically → strategy needs to be chosen
- As training goes, more pairs/triplets are easy (loss equal to 0) which prevents network from training → network needs hard examples

Pair/triplet mining (2)

For each anchor +
 positive pair, select
 a negative sample
 which is hard or
 semi-hard

Summary

- Loss functions measure the distance / error of a particular set of parameters in the network
- Loss functions drive the learning process
- Regression
 - Absolute loss, square loss, huber loss
- Classification
 - Hinge loss, cross-entropy loss, focal loss
- Metric learning
 - Contrastive loss, triplet loss

Outline

- Introduction
 - Definition, properties, training process
- Common types of loss functions
 - Regression
 - Classification
 - Metric learning
- Example of cross-entropy loss

$$\mathcal{L} = -\sum_{i=1}^{n} \mathbf{y}_i \log(S(f_{\theta}(\mathbf{x}_i)))$$

Confidences S(l_k)

0.1	0.3	0.3
0.2	0.4	0.3
0.7	0.3	0.4

Confidences S(l,)

0.3	0.1	0.1
0.3	0.7	0.2
0.4	0.2	0.7

Classification accuracy = 2/3 = 0.66 cross-entropy loss = 4.14

Classification accuracy = 2/3 = 0.66 cross-entropy loss = 1.63

a) Compute the accuracy of the predictions.

The class with the maximum confidence is predicted.

a) Compute the accuracy of the predictions.

Class predictions and ground truth can be compared with a confusion matrix.

- a) Compute the accuracy of the predictions
- b) Compute the cross-entropy loss of the prediction

Confidences S(l_k)

$$\mathcal{L} = -\sum_{i=1}^{n} \mathbf{y}_{i} \log(S(f_{\theta}(\mathbf{x}_{i})))$$

Ground Truth y

1	0	0
0	1	0
0	0	1

- a) Compute the accuracy of the predictions
- b) Compute the cross-entropy loss of the prediction

Confidences S(l_k)

Ground Truth y

1	0	0
0	1	0
0	0	1

Why you should	duse cross-entropy	instead of	classification error

 $\mathcal{L} = -\sum_{i=1}^{n} \mathbf{y}_{i} \log(S(f_{\theta}(\mathbf{x}_{i})))$

- Compute the accuracy of the predictions a)
- b) Compute the cross-entropy loss of the prediction

Confidences S(l_k)

$$\mathcal{L} = -\sum_{i=1}^{n} \mathbf{y}_i \log(S(f_{\theta}(\mathbf{x}_i)))$$

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i$$

Ground Truth y

0

0

0

0

Assignment

- a) Compute the accuracy of the predictions
- b) Compute the cross-entropy loss of the prediction
- c) Compare the result with the one obtained with the example and discuss how accuray and cross-entropy have captured the quality of the predictions.

Confidences S(l_k)

0.3	0.1	0.1
0.3	0.7	0.2
0.4	0.2	0.7

Ground Truth

1	0	0
0	1	0
0	0	1

References

- About loss functions
- Neural networks and deep learning
- Are loss functions all the same?
- Convolutional neural networks for Visual Recognition
- Deep learning book, MIT Press, 2016
- On Loss Functions for Deep Neural Networks in Classification

Thanks! Questions?

