CHAPITRE 4: ALGÈBRE RELATIONNELLE

Nour H. BEN SLIMEN ATTAOUI

ALGÈBRE RELATIONNELLE

- Le modèle relationnel, et en particulier l'algèbre relationnel qui lui est associée, est aussi le fondement théorique du langage standard SQL, qui est utilisé pour manipuler les données stockées dans une BD.
- Langage procédural: indique comment construire une nouvelle relation à partir d'une ou plusieurs relations existantes.
- Langage abstrait, avec des opérations qui travaillent sur une (ou plusieurs) relation(s) pour définir une nouvelle relation sans changer la (ou les) relation(s) originale(s).
- Le résultat de toute opération est une relation.

OPÉRATEURS ALGÉBRIQUES

Opérateurs ensemblistes:

- Union
- Intersection
- Différence
- Produit

Opérateurs relationnels spécifiques:

- Sélection
- Projection
- Jointure
- Division
- Renommage

OPÉRATIONS UNAIRES

Soit $R(a_1, a_2, ..., a_N)$ une relation.

• Sélection : σ_{predicat} (R)

La sélection travaille sur R et définit une relation qui ne contient que les tuples de R qui satisfont à la condition (ou prédicat) spécifiée.

• Projection : $\pi_{a_1,a_2,...,a_k}$ (R)

La projection travaille sur R et définit une relation restreinte à un sous-ensemble des attributs de R, en extrayant les valeurs des attributs spécifiés et en supprimant les doublons.

TABLES D'EXEMPLE

- CLIENT(numéro, nom, adresse, téléphone)
- PRODUIT (référence, marque, prix)
- VENTE(numéro , ref_produit#, no client#, date)

Client					
<u>numéro</u>	numéro nom adresse				
101	Durand	Nice	0493939393		
106	Fabre	Paris	NULL		
110	Prosper	Paris	NULL		
125	Antonin	Marseille	0491919191		

Produit				
<u>référence</u>	marque	prix		
153	BMW	8 000 €		
589	Peugeot	7 450 €		
158	Toyota	6 725 €		
589	Citroën	7 000 €		

Vente					
numéro	numéro ref_produit# no_client#				
102	153	101	12/10/2004		
809	809 589		20/01/2005		
11005	158	108	15/03/2005		
12005	589	125	30/03/2005		

OPÉRATEUR SÉLECTION

 La sélection: opérateur SELECT – sélection d'un sous-ensemble de tuples d'une relation qui vérifient une condition

Exemple: $\sigma_{adresse=PARIS}$ (Client)

Client	numéro	nom	adresse	téléphone
_	101	Durand	NICE	0493942613
relation	106	Fabre	PARIS	
résultante	110	Prosper	PARIS	
_	125	Antonin	MARSEILLE	0491258472

La relation résultante:

Même schéma que la relation sur laquelle porte la sélection

OPÉRATEUR PROJECTION

La projection: opérateur PROJECT – sélection de certaines colonnes d'une relation

Exemple: $\pi_{nom,t\'el\'ephone}$ (Client)

numéro	nom	adresse	téléphone
101	Durand	NICE	0493942613
106	Fabre	PARIS	NULL
110	Prosper	PARIS	NULL
125	Antonin	MARSEILLE	0491258472
A. A			
	101 106 110	101 Durand 106 Fabre 110 Prosper	101 Durand NICE 106 Fabre PARIS 110 Prosper PARIS

OPÉRATIONS ENSEMBLISTES

OPÉRATEUR UNION

Soient $R(a_1, ..., a_N) \in$

1 A1 A2 A3 a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 R2 A1 A2 A3 a1 a2 a3 e1 e2 e3 b1 b2 b3

Union : R ∪ S

Les schémas de R et

L'union de deux relatRelation temporaire

à la fois de R et S, le

UNION A:

R1∪R2 b:

c:

emporaire

A1	AZ	A3
a1	a2	a3
b1	b2	b3
c1	c2	c3
d1	d2	d3
e1	e2	e3

commutatif: $[R1 \cup R2] = [R2 \cup R1]$

Suppression des lignes identiques

es tuples de R ou de S ou

Exemple:

- Soit deux relations R1 et R2 de même schéma
- R1 ∪ R2 est la relation contenant les tuples appartenant à R1 et à R2 (en supprimant les lignes identiques)

associatif: $[(R1 \cup R2) \cup R3] = [R2 \cup (R1 \cup R3)]$

OPÉRATIONS ENSEMBLISTES OPÉRATEUR DIFFÉRENCE

Soient $R(a_1, ..., a_N)$ et $S(b_1, ..., b_M)$ der

Différence d'ensembles : R - S

La différence d'ensemble définit une re R et non dans la relation S.

R1	A1	A2	A3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	

R2	A1	A2	A3	
~_	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

DIFFERENCE

R1-R2

A1 A2 A3 c1 c2 c3 d1 d2 d3

Relation temporaire

Non commutatif: $[R1 - R2] \neq [R2 - R1]$

Non associatif: $[(R1 - R2) - R3] \neq [R2 - (R1 - R3)]$

Exemple:

- Soit deux relations R1 et R2 de même schéma
- $\sim R1 R2$ est la relation contenant les tuples de R1 n'appartenant pas à R2

ion

OPÉRATIONS ENSEMBLISTES OPÉRATEUR INTERSECTION

R1	A1	A2	A3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	

R2	A1	A2	A3 _	
N.Z	a1	a2	a3	÷
	e1	e2	e3	
	b1	b2	b3	+

Soient $R(a_1, ..., a_N)$ et $S(b_1, ..., b_M)$ deux

Intersection : R ∩ S

 R1∩R2
 A1
 A2
 A3

 a1
 a2
 a3

 mnoraire
 b1
 b2
 b3

On garde que les lignes identiques

L'intersection définit une relation constil Relation temporaire

la fois dans R et dans S.

Exemple

commutatif: $[R1 \cap R2] = [R2 \cap R1]$ associatif: $[(R1 \cap R2) \cap R3] = [R2 \cap (R1 \cap R3)]$

- Soit deux relations R1 et R2 de même schéma
- $R1 \cap R2$ est la relation contenant les tuples appartenant à R1 et à R2

OPÉRATIONS ENSEMBLISTES OPÉRATEUR PRODUIT CARTÉSIEN

Soient $R(a_1, ..., a_N)$

R1	Α	В	С
	a1	b1	c1
	a2	b2	c2
	a3	b3	c3

R2 X Y x1 y1 x2 y2

Produit cartés PRODUIT CARTESIEN

Le produit cartésien

R1XR2

relation R avec tous (commutatif: [R1 x R2] = [R2 x R1]

associatif: [(R1 x R2) x R3] = [R2 x (R1 x R3)]

Exemple:

	Α	В	С	Х	Y	_
ſ	a1	b1	c1	x1	y1_	
l	a2	b2	c2	×1	у1	_
	a3	b3	с3	x1	у1	es de la
	a1	b1	c1	x2	y2	•
	a2	b2	c2	x2	y2	
	a3	b3	c3	x2	у2	

Soit deux relations R1 et R2 de schémas quelconques

R1 × R2 donne une nouvelle relation de schéma différent égal à l'union des schémas
 R1 et R2 et possédant comme enregistrements, la concaténation des enregistrements de R1 avec ceux de R2.

PROPRIÉTÉS DE LA STRUCTURE

Même schéma

 $Degré(R1 \cup R2) = degré(R1) = degré(R2)$

 $Degré(R1 \cap R2) = degré(R1) = degré(R2)$

Degré(R1 - R2) = degré(R1) = degré(R2)

Schéma quelconque

Degré $(R1 \times R2) = \text{degré}(R1) + \text{degré}(R2)$

OPÉRATEUR DIVISION

Supposons que la relation R soit définie sur l'ensemble d'attributs A et que la relation S soit définie sur l'ensemble d'attributs B, de telle sorte que $B \subseteq A$. Soit C = A - B.

Division R ÷ S

La division définit une relation sur les attributs C, constituée de l'ensemble des tuples de R qui correspondent à la combinaison de **tous les tuples** de S.

OPÉRATEUR DIVISION

Exemple:

Soit deux relations R1 et R2 de schémas quelconques

- Le résultat de la division d'une relation R1(A,B) par une relation R2(X) est une relation Q(A) définie par :
 - 1. Le schéma de *Q* est constitué de tous les attributs de *R*1 n'appartenant pas à *R*2.
 - 2. Les tuples q_j de Q tels que, quels que soit les tuples $r2_i$ de R_2 , le tuple $(q_j,r2_i)$ est un tuple de R1 (c'est-à-dire $Q\times R_2\subseteq R_1$).
- La division: utilisé pour répondre à des requêtes du type: « quels sont les références des produits achetés par tous les clients? »

OPÉRATEUR RENOMMER

- ightharpoonup Renommage: opérateur Renommer , noté lpha,
- Le renommage permet de renommer les attributs d'une relation pour résoudre des problèmes de comptabilité entre noms d'attributs de deux relations opérandes d'une opération binaire.
- Syntaxe:

 $\alpha[nomAtt1:NouveauNomAtt1,...]R$

OPÉRATIONS DE JOINTURE

■ Thêta-jointure $(\theta - join) : R \bowtie_{condition} S$

La thêta-jointure définit une relation qui contient les tuples qui satisfont la condition du produit cartésien de R et S. La condition est de la forme $R. a_i \theta S. b_j$ où θ est l'un des opérateurs de comparaison $(<, \le, >, \ge, =, \ne)$

Si le prédicat est l'égalité (=), on parle d'équijointure.

Jointure naturelle: R * S

La jointure naturelle est une équijointure des relations R et S sur tous les attributs communs en retirant les occurrences multiples d'attributs.

OPÉRATEUR JOINTURE ET THETA-JOINTURE

La jointure: opérateur JOIN, noté \bowtie permet de combiner une paire de tuples de deux relations en un seul tuple

	(Client	\bowtie	V	ente		
		num	éro = no_	client		de séle	
Client				Vente	= +	≤ < >	=
numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	106	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	106	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04

La relation résultante:

- Autant d'attributs que le produit cartésien (degré(R1) + degré(R2))
- Moins de tuples

OPÉRATEUR EQUIJOINTURE/JOINTURE NATURELLE

- Thêta-jointure avec opérateur =
- Equijointure la condition fait appel à l'opérateur =
- Jointure naturelle noté * :

équijointure dont la condition porte sur des attributs

identiques (de même domaine et même nom)

Un seul des deux attributs est conservé dans le résultat

EXERCICE

- 1. Afficher les clients qui habitent à Paris ou Nice
- 2. Afficher les ventes du client N°120 du 20 oct 04
- 3. Afficher les clients qui n'habitent pas à Nice

Q1: $\sigma_{\text{adresse=Paris oradresse=Nice}}$ (Client)

Q2: σ _{numéro}	client=120	and date=20	oct 04	(Vente)
-------------------------	------------	-------------	--------	---------

Q3: σ_{adresse ≠Nice}(Client)

Client				
<u>numéro</u>	nom	adresse	téléphone	
101	Durand	Nice	0493939393	
106	Fabre	Paris	NULL	
110	Prosper	Paris	NULL	
125	Antonin	Marseille	0491919191	

Vente				
numéro	ref_produit#	no_client#	date	
102	153	101	12/10/2004	
809	589	108	20/01/2005	
11005	158	108	15/03/2005	
12005	589	125	30/03/2005	

EXERCICE

- 1. Afficher la référence du produit et numéro de client
- 2. Afficher le nom et l'adresse des clients de Nice

Q1: πRéférence-produit, numéro-client (Vente)

Q2: π_{nom,adresse} (Client)

Client				
<u>numéro</u>	nom	adresse	téléphone	
101	Durand	Nice	0493939393	
106	Fabre	Paris	NULL	
110	Prosper	Paris	NULL	
125	Antonin	Marseille	0491919191	

Vente				
numéro	ref_produit#	no_client#	date	
102	153	101	12/10/2004	
809	589	108	20/01/2005	
11005	158	108	15/03/2005	
12005	589	125	30/03/2005	