1 Exercise I.4.3

(a) Let f be the rational function on \mathbb{P}^2 given by $f = x_1/x_0$. Find the set of points where f is defined and describe the corresponding regular function.

The rational function f is defined on the open set $U_0 = \{x_0 \neq 0\} = \mathbb{P}^2 \setminus Z(x_0)$, and is represented everywhere in U_0 by the quotient x_1/x_0 of degree 1 homogeneous polynomials $x_0, x_1 \in k[x_0, x_1, x_2]$, where x_0 is never zero on U_0 .

Identifying \mathbb{A}^2 in the coordinates x_1, x_2 with U_0 , we can think of f as the projection on the first coordinate, i.e., $[1:x_1:x_2]=(x_1,x_2)\longmapsto x_1$.

(b) Now think of this function as a rational map from \mathbb{P}^2 to \mathbb{A}^1 . Embed \mathbb{A}^1 in \mathbb{P}^1 , and let $\varphi : \mathbb{P}^2 \to \mathbb{P}^1$ be the resulting rational map. Find the set of points where φ is defined, and describe the corresponding morphism.

The rational map φ is defined on the set $U_0 = \mathbb{P}^2 \setminus Z(x_0)$, and the morphism $\varphi|_{U_0}$ is

2 Exercise I.4.4 A variety Y is *rational* if it is birationally equivalent to \mathbb{P}^n for some n (or, equivalently by (4.5), if K(Y) is a pure transcendental extension of k).

(a) Any conic in \mathbb{P}^2 is a rational curve.

Proof. A conic in the projective plane is a projective closure $X = \overline{Z(f)} \subseteq \mathbb{P}^2$, where $f \in k[x,y]$ is some quadratic. Let $(x_0,y_0) \in Z(f) \subseteq \mathbb{A}^2$ be any point on the affine conic. Consider the lines $L_t = Z((y-y_0) - t(x-x_0)) \subseteq \mathbb{A}^2$, parameterized by $t \in \mathbb{A}^1$. The intersection of Z(f) and L_t is the solutions of the polynomial

$$f(x, y_0 + t(x - x_0)) = 0.$$

For all but finitely many $t \in \mathbb{A}^1 = k$, this is a quadratic in k[x], with one root being x_0 . To solve for the other root write

$$f(x, y_0 + t(x - x_0)) = A_t x^2 + B_t x + C_t,$$

where A_t, B_t, C_t are polynomials in t. Denoting the other root by x_t , we have

$$x^{2} + \frac{B_{t}}{A_{t}}x + \frac{C_{t}}{A_{t}} = (x - x_{0})(x - x_{t}),$$

so $x_t = -x_0 - B_t/A_t$. Moreover, $y_t = y_0 + t(x_t - x_0)$ is therefore also a rational function in t. This means we have a rational map

$$\mathbb{A}^1 \xrightarrow{----} Z(f)$$
$$t \longmapsto (x_t, y_t),$$

since B_t/A_t is a rational function in t. This map is injective since distinct choices of t give distinct lines L_t , which intersect the conic Z(f) at distinct points away from (x_0, y_0) . It remains to construct a rational inverse.

For $(x,y) \in Z(f)$, there is some $t_{x,y} \in \mathbb{A}^1$ such that $L_{t_{x,y}}$ is the line between (x,y) and (x_0,y_0) . Since $(x,y) \in L_{t_{x,y}}$, we can solve for $t_{x,y}$ to obtain $t_{x,y} = (y-y_0)/(x-x_0)$, which is a rational function in x,y. Hence, we have a rational map

$$Z(f) \xrightarrow{\psi} \mathbb{A}^1$$
$$(x,y) \longmapsto t_{x,y},$$

which is a rational inverse to φ .

The open embeddings $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$ and $Z(f) \hookrightarrow X$ are birational maps, which allows us to extend φ and ψ to a birational equivalence between \mathbb{P}^1 and X.

(b) The cuspidal cubic $y^2 = x^3$ is a rational curve.

Let $X = Z(y^2 - x^3)$. There is an isomorphism

$$\mathbb{A}^1 \setminus \{0\} \longleftrightarrow X \setminus \{0\}$$
$$t \longmapsto (t^2, t^3)$$
$$y/x \longleftrightarrow (x, y),$$

Embedding \mathbb{A}^1 in \mathbb{P}^1 , this defines a birational equivalence between \mathbb{P}^1 and X.

(c) Let Y be the nodal cubic curve $y^2z = x^2(x+z)$ in \mathbb{P}^2 . Show that the projection φ from the point P = (0,0,1) to the line z = 0 (Ex. 3.14) induces a birational map from Y to \mathbb{P}^1 . Thus Y is a rational curve.

Given $a = [x : y : z] \in Y$, the line through P and a is the set of points [tx : ty : (1 - t) + tz], parameterized by $t \in \mathbb{A}^1 = k$. Intersection with the line $\{z = 0\}$ occurs when t = 1/(1 - z), assuming a representative of a is chosen such that $z \neq 1$. In which case, $t \neq 0$, so

$$\varphi(a) = [tx : ty : 0] = [x : y : 0].$$

This suggests a rational map

$$Y \xrightarrow{} \mathbb{P}^1$$
$$[x:y:z] \longmapsto [x:y],$$

defined on $Y \setminus Z(x,y)$, which is nonempty and open in Y. Solving for z in the defining polynomial of Y, we find a rational inverse

$$\mathbb{P}^1 - \longrightarrow Y$$
$$[x:y] \longmapsto \left[x:y:\frac{x^3}{y^2-x^2}\right],$$

defined on $\mathbb{P}^1 \setminus Z(y-x,y+x)$.

- **3 Exercise I.4.6** A birational map of \mathbb{P}^2 into itself is called a *plane Cremona transformation*. We give an example, called a *quadratic transformation*. It is the rational map $\varphi: \mathbb{P}^2 \to \mathbb{P}^2$ given by $(a_0, a_1, a_2) \to (a_1 a_2, a_0 a_2, a_0 a_1)$ when no two of a_0, a_1, a_2 are 0.
- (a) Show that φ is birational and its own inverse.

We compute

$$(\varphi \circ \varphi)([x:y:z]) = [x^2yz:xy^2z:xyz^2] = [x:y:z],$$

which is well-defined on the open set $\mathbb{P}^2 \setminus Z(x, y, z)$. That is, $\varphi \circ \varphi = \mathrm{id}_{\mathbb{P}^2}$ as rational maps, so in fact φ is birational and its own inverse.

(b) Find open sets $U, V \subseteq \mathbb{P}^2$ such that $\varphi: U \to V$ is an isomorphism.

Define the open set $U = \mathbb{P}^2 \setminus Z(x, y, z)$. Then for $[x: y: z] \in U$,

$$\varphi([x:y:z]) = [yz:xz:xy] = \left[\frac{1}{x}:\frac{1}{y}:\frac{1}{z}\right] \in U.$$

It can be seen that φ is a bijective morphism on U, and part (a) tells us φ is its own inverse morphism. Hence, $\varphi|_U:U\to U$ is an isomorphism.

(c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms. See also (V, 4.2.3).

On U from part (b), $\varphi = \varphi^{-1}$ is defined. The morphism inverts each coordinate, i.e.,

$$[x:y:z] \longmapsto \left[\frac{1}{x}:\frac{1}{y}:\frac{1}{z}\right].$$

4 Exercise I.4.10 Let Y be the cuspidal cubic curve $y^2 = x^3$ in \mathbb{A}^2 . Blow up the point O = (0,0), let E be the exceptional curve, and let \tilde{Y} be the strict transform of Y. Show that E meets \tilde{Y} in one point, and that $\tilde{Y} \cong \mathbb{A}^1$. In this case the morphism $\varphi : \tilde{Y} \to Y$ is bijective and bicontinuous, but is not an isomorphism.

Proof. We consider the total inverse image

$$\varphi^{-1}(Y) = \{ ((x, y), [z, w]) \in \mathbb{A}^2 \times \mathbb{P}^1 \mid y^2 = x^3, xw = yz \},$$

which is covered by the open sets $U_z = \{z \neq 0\}$ and $U_w = \{w \neq 0\}$.

In U_z , we set z=1 and obtain the relations $y^2=x^3$ and xw=y. Substituting, we have $x^2(w^1-x)=0$. Therefore, $\varphi^{-1}(Y)$ has two components here: one defined by x=y=0 and w arbitrary, which is E, and the other defined by $w^2-x=0$, which is \tilde{Y} . Note that \tilde{Y} meets E when w=0.

In U_w , we set w=1 and obtain the relations $y^2=x^3$ and x=yz. Substituting, we have $y^2(1-yz^3)=0$. Therefore, $\varphi^{-1}(Y)$ has two components here: one defined by x=y=0 and z arbitrary, which is E, and the other defined by $1-yz^3=0$, which is \tilde{Y} . Note that \tilde{Y} does not meet E here.

Hence, \tilde{Y} meets E at only the point ((0,0),[1:0]).