Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа P3112 Студент Сенина Мария Михайловна Преподаватель Сорокина E K

К работе допущен Работа выполнена

Рабочий протокол и отчёт по лабораторной работе №3 Исследование равноускоренного вращательного движения (маятник Обербека)

1 Цель работы

Изучение равноускоренного вращательного движения.

2 Задачи, решаемые при выполнении работы

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

3 Объект исслевдования

Маятник Обербека.

4 Метод экспериментального исследования

На маятнике обербека устанавливаем грузики удалённые от оси на 1-5 делений, и засекаем время, за которое грузик на штанге каснётся нулевой отметки, при том, что на грузике 1-4 шайбы. Таким образом мы сможем проследить, какую силу нужно приложить чтобы раскрутить маятник с разными моментами инерции.

Т.к. саму нить можно считать невисомой и нерастяжимой.

Из второго закона Ньютона: $ma=mg-T\Rightarrow$ момент силы трения относительно оси маятника равен $M=Tl=\frac{md}{2}(g-a)$, в то же время $a=\frac{2h}{t^2}\Rightarrow$ $\epsilon=\frac{2a}{d}$, где d - диаметр ступицы.

Значит полный момент сил действущих на маяник равен $M=I\epsilon-M_{mp},$ где $I=I_0+4m_{ym}R^2$ здесь I_0 - сумма моментов инерции маятника без утяжелителей.

5 Рабочие формулы

- 1. Среднее значение $\frac{\sum_{i=1}^{n} x_i}{n}$
- 2. Ускорение $a = \frac{2h}{t^2}$
- 3. Погрешность измерения ускорения $\Delta a = (\frac{2\Delta h}{h} + \frac{2\Delta t}{t}) * a$
- 4. Угловое ускорение $\epsilon = \frac{2a}{d}$
- 5. Погрешность измерения углового ускорения $\Delta \epsilon = \epsilon (2\frac{\Delta a}{a} + \frac{\Delta d}{d})$
- 6. Момент силы натяжения нити $M = Tl = \frac{md}{2}(g a)$
- 7. Погрешность момента силы натяжения нити $\Delta M = \frac{1}{2} M(\frac{\Delta m}{m} + \frac{\Delta d}{d} + \frac{\Delta a}{d})$
- 8. Момент сил $M = I\epsilon M_{mp}$
- 9. Момент инерции маятника $I=I_0+4m_{ym}R^2$, здесь I_0 сумма моментов инерции маятника без утяжелителей.
- 10. Коэфициенты уравнения прямой через МНК Y=aX+b $a=\frac{n\sum_{i=1}^n(x_i-\overline{x})(y_i-\overline{y})}{\sum_{i=1}^n(x_i-\overline{x})^2}, b=\overline{y}-b\overline{x}$
- 11. СКО коэффицентов уровнения прямой $\sigma_a = \sqrt{\frac{\sum_{i=1}^n d_i}{D(n-2)}}, \sigma_b = \sqrt{(\frac{1}{n} + \frac{\overline{x}^2}{D})\frac{\sum_{i=1}^n d_i^2}{n-2}},$ где $d_i = y_i (b + ax_i),$ а $D = \sum_{i=1}^n (x_i \overline{x})^2$
- 12. Насстояние между осью вращения и центром утяжелителя $R=l_1+(n-1)l_0+\frac{1}{2}b$, где l_1 расстояние от оси вращения до первой риски; n номер риски, на которой установлены утяжелители; l_0 расстояние между соседним рисками; b размер утяжелителя вдоль спицы.
- 13. Погрешность измерений через коэффицент Стьюденса $\Delta x = t_{a_{\partial o e,N}} \sqrt{\frac{\sum\limits_{i=1}^{N} (x-\bar{x})^2}{N(N-1)}},$ где $t_{a_{\partial o e,N}}$ коэффицент Стьюдентса для доверительной вероятности $a_{\partial o e}$ и количества измерений N.

6 Измерительные приборы

Погрешности измерительных приборов

$N_{\overline{0}}$	Наименование	Используемый диапазон	Погрешность прибора
1	Линейка	700 мм	1 мм
$\overline{2}$	Секундомер	2,44 - 10,03 с	0,01 c

7 Схема установки

Рис. 1: Стенд лаборатории механики (общий вид):

1 - основание; 2 - рукоятка сцепления крестовины; 3 - устройство принудительного трения; 4 - поперечина; 5 - груз крестовины; 6 - трубчатая направляющая; 7 - передняя крестовина; 8 - задняя крестовина; 9 - шайбы крестовины; 10 каретка; 11 - система передних стоек

Параметры стенда

$N_{\overline{0}}$	Наименование	Значение	Погрешность
1	Ускорение свободного падения g	9.82 m/c^2	0.00 m/c^2
2	Высота пардения каретки h	0.70 м	0.003 м
3	Масса каретки	0.047 кг	$0.005 \ \text{kg}$
4	Масса шайбы	0.220 кг	$0.005 \ \text{kg}$
5	Масса грузов на крестовине	0.408 кг	$0.005 \ \text{kg}$
6	Расстояние отпервой риски до оси	0.057 м	0.005 M
7	Расстояние между рисками	0.025 м	0.002 м
8	Диаметр ступицы	0.046м	0.005 M
9	Диаметр груза на крестовине	0.040 м	0.005 м
10	Высота груза на крестовине	0.040 м	0.005 M

8 Результаты прямых измерений

См. в приожении 1

9 Расчёт результатов косвенных измерений

В начале найдём среднее время падения каретки с высоты h=0,7м для каждого положения грузиков на крестовине и каждого количества шайб на каретке. Далее по формуле 12 вычислим их погрешность. Зная среднее время по формулам 2-7 вычислим ускорение a, угловое ускорение ϵ , момент силы натяжения нити M и их погрешности. Результыты преведены в таблице 1 (Приложение 2).

Таким образом у нас есть зависимость M от ϵ для каждого положения грузиков на крестовине. Значит с помощью метода наименьших квадратов (формулы 10-11) мы можем найти коэффиценты линейного приближения этой зависимости. Т.к. из теории (формула 8) мы знаем, что зависимость должна быть линейной, а коэффицентами должны быть I и $M_m p$ (см. графики 1,2 в приложении 3). Результаты приведены в таблице 2 (Приложение 2).

Потом, посчитав расстояние, на которое удалены грузики от центра маятника в каждом из экспериментов (по формуле 9) мы можем найти массу грузиков и момент инерции крестовины без них, как коффиценты линейной зависимости момента инерции от квадрата расстояния до грузиков. (см. график 3 в приложении 3). Получается что по формулам 10-11 I_0 и $m_z p$ мы можем найти:

 $I_0=0,02\kappa \varepsilon M^2;\ m_{e}p=\frac{1}{4}1.62\kappa \varepsilon=0.40\kappa \varepsilon,$ что полностью совпадает с значением обозначенным на установке.

10 Графики

См. в приложении 3.

11 Окончательные результаты

Значения и погрешности ускорений, угловых ускорений и моментов силы натяжения нити вы можете найти в таблице 1 (приложение 2).

Значения момента инерции:

```
грузики у 1 риски: I=(21\pm1)10^3\, \kappa \epsilon M^2 грузики у 2 риски: I=(27\pm1)10^3\, \kappa \epsilon M^2 грузики у 3 риски: I=(38\pm1)10^3\, \kappa \epsilon M^2 грузики у 4 риски: I=(51\pm1)10^3\, \kappa \epsilon M^2 грузики у 5 риски: I=(64\pm1)10^3\, \kappa \epsilon M^2 грузики у 6 риски: I=(76\pm1)10^3\, \kappa \epsilon M^2
```

```
Значения для момента силы трения: грузики у 1 риски: M_m p = (2\pm 3)10^3 H_M грузики у 2 риски: M_m p = (5\pm 4)10^3 H_M грузики у 3 риски: M_m p = (5\pm 3)10^3 H_M грузики у 4 риски: M_m p = (7\pm 2)10^3 H_M грузики у 5 риски: M_m p = (11\pm 2)10^3 H_M грузики у 6 риски: M_m p = (15\pm 3)10^3 H_M Значения момента инерции системы I_0 = 0,02\kappa\epsilon M^2 Значение массы грузика на крестовине m_\epsilon p = 0.40\kappa\epsilon
```

12 Выводы

В ходе лаботраторной работы я проверила, что $I\epsilon=M$ и, что момент инерции тела зависит от расстояний, на которое удалена его масса от оси вращения. Для меня были неожиданностью малые погрешности измерений и точные результаты, потому что в процессе снятия измерений я повредила установку.