# Techniques d'optimisation des temps de chargements dans les jeux à monde ouvert Ou comment réduire les temps de chargement

CHRISTIAN NGO & JONATHAN MULLER
ESGI - 5ème année IJV
12 novembre 2013

#### Résumé

Abstract place-holder

Mots clefs: chargement, optimisation, ressources, streaming, jeu

### Introduction

Les jeux vidéos comportent année après année un nombre grandissant de ressources necessaire pour leur fonctionnement. Des textures aux modèles 3D, le poids de ces ressources augmente tout comme leur nombre, l'augmentation de la taillé mémoire des machines permettant aux créateurs de jeux de charger plus de ressources à la fois. Cependant, augmenter la taille et le nombre des ressources à un prix, celui du temps de chargement. Dans ce mémoire nous verrons comment réduire ces temps de chargement en s'adaptant aux médias qui permettent de stocker les ressources du jeu, en tirant partie des capacités des processeurs, de l'espace disponible et de la mémoire RAM, des différents formats de compression, mais aussi des adaptations de gameplay qui peuvent permettre un chargement transparant pour l'utilisateur.

# Pourquoi avons nous besoin d'améliorer les temps de chargement?

La quantité de mémoire disponible augmente régulièrement sur les postes des utilisateurs, ce qui permet aux concepteurs de jeux de proposer des jeux de plus en plus riches et chargés en éléments graphiques, ce qui demande beaucoup de ressources à créer, stocker, et donc charger. En améliorant des temps de chargement des programmes, nous pouvons faire passer cette quantité de données en mémoire plus rapidement, et donc avoir des jeux qui permettent de jouer rapidement, sans passer de longs instants devant un écran de chargement à plusieurs reprises.

### Comment influencer les temps de chargement

Les temps de chargement peuvent être influencés de différentes manières.

Nous pouvons améliorer les temps de chargement en utilisant des techniques de stockage qui varient en fonction du média sur lequel le jeu est enregistré. Par exemple, les temps d'accès étant plutôt long sur un cd-rom, il faut veiller à limiter le nombre d'accès aux ressources et penser à charger des elements qui ne seront pas forcèment affichés tout de suite, lors des premiers chargements si la mémoire le permet.



FIGURE 1 – Disque dur classique

Au contraire sur un disque SSD, les temps d'accès étant très bas et la capacité de transfert élevée, on pourra séparer les ressources dans des fichiers différents afin de les charger quasiement à la volée.

Les temps de chargement peuvent égallement être réduits en utilisant le processeur pour décompresser des ressources : ainsi le temps necessaire au transfert de la donnée depuis le disque à la mémoire est réduit puisque la donnée est compressée sur le dit disque. Il faut cependant que le mode de compression soit adapté à la puissance du processeur et à la vitesse de transmission du support de stockage.

En modifiant l'algorithme du jeu, nous pouvons aussi influer sur le chargement des données, en évitant par exemple de stocker

plusieurs fois des ressources très similaires. Si nous prennons l'exemple des sprites 2D, nous pouvons stocker l'image de base une fois, puis effectuer toutes les déclinaisons de couleurs de manière algorithmique en modifiant la palette de couleurs. De cette façon, nous n'avons qu'à stocker une texture, puis uniquement des palettes de couleurs.

Enfin, une méthode pour cacher les chargements aux joueurs consiste à construire sont level design pour permettre certaines zones "tampons" comme un pont ou un couloir dont le passage est obligatoire pour passer d'une zone à l'autre, et qui va permettre de charger/décharger les zones concernées en tout transparence pour l'utilisateur. Cependant, cette technique est déconseillée puisqu'elle limite la liberté des level-designers en leur imposant des contraintes "techniques".

## Conclusion

Conclusion place-holder