

## Sistema de monitoreo de cultivos agrícolas

#### Trabajo Final de la carrera de Especialización en Sistemas Embebidos

Alumno: Ing. Mario Fernando Aguilar Montoya

Director: Esp. Ing. Julián Bustamante

Jurados:

Dr. Ing. Javier Andres Redolfi (UTN-FRSFco)

Mg. Lic. Leopoldo Zimperz (FIUBA)

Esp. Ing. Felipe Calcavecchia (FIUBA)

#### Contenido

- 1. Introducción general
- 2. Introducción específica
- 3. Diseño e implementación
- 4. Ensayos y resultados
- 5. Demostración
- 6. Conclusiones

# INTRODUCCIÓN GENERAL

#### Contexto - Idea del trabajo

Poner al alcance de los agricultores un sistema de monitoreo para sus cultivos, para ayudar a que puedan hacer un uso eficiente de sus recursos.



#### Estado del arte

#### **Modelos**



Smart Agriculture PRO (Libelium)



RF-M1 (WiseConn)

## **Objetivo**

Diseño e implementación de un prototipo funcional de un sistema de monitoreo de cultivos agrícolas.

#### **Alcances**

- Desarrollo del firmware sobre un RTOS.
- Transmisión de la información por red celular.
- Visualización de los datos en ThingsBoard.

# INTRODUCCIÓN ESPECÍFICA

#### Componentes principales de hardware



NUCLEO-L432KC (SMT32L432KC)



MÓDULO BG96

### Componentes principales de hardware - Sensores







SENSOR ML8511



**SENSOR AHT-10** 

# Herramientas de software y testing

- STM32Cube IDE
- FreeRTOS
- Ceedling







### **Plataformas IoT - ThingsBoard**



#### Protocolos de comunicación



Modelo Publicador/Suscriptor

## DISEÑO E IMPLEMENTACIÓN

#### Diagrama general del sistema



#### **Capas del firmware**



#### Desarrollo del firmware

El firmware fue desarrollado sobre freeRTOS.

Se crearon cuatro tareas:

- Tarea loop.
- Tarea para manejar el servidor.
- Tarea para la adquisición de datos.
- Tarea para manejar las alarmas.



Diagrama de flujo de inicio del firmware

#### Tarea loop

La tarea se encarga de brindar la secuencialidad al firmware.

Manda eventos a las demás tareas para que sean procesados.



#### Tarea manejador del servidor



## Tarea de adquisición de datos



## Tarea manejador de alarmas



#### Desarrollo del hardware



#### **PCB**









Modelo 3D

#### Fabricación del hardware



Ensamblado del PCB



Instalación del PCB

### Paneles de visualización-Panel Principal



#### Panel nodo sensor



## **ENSAYOS Y RESULTADOS**

#### Instalación en el terreno





#### Pruebas unitarias a los drivers



#### **GCC Code Coverage Report**

| Directory: src/                                         |           | Exec      | Total           | Coverage |
|---------------------------------------------------------|-----------|-----------|-----------------|----------|
| Date: 2023-11-07 12:31:37                               | Lines:    | 62        | 62              | 100.0 %  |
| Legend: low: < 75.0 % medium: >= 75.0 % high: >= 90.0 % | Branches: | 20        | 20              | 100.0 %  |
| File                                                    | Lines     |           | Branches        |          |
| aht10.c                                                 | 100.0 9   | 6 62 / 62 | 100.0 % 20 / 20 |          |
|                                                         |           |           |                 |          |



#### **GCC Code Coverage Report**



#### Pruebas de hardware

#### TRAMA DE LECTURA POR 12C



#### **ENVÍO DE COMANDOS POR UART**



#### Pruebas funcionales-Caso de uso 1



#### Caso de uso 2



# Prueba de envío de alarmas por SMS

```
AT+CMGF=1
OK
AT+CMGS="72950576"
> Humedad de suelo muy baja©
```

**Comandos AT** 



Recepción del SMS

# DEMOSTRACIÓN

#### **VIDEO**



#### Sistema de monitoreo de cultivos agrícolas

Trabajo Final de la carrera de Especialización en Sistemas Embebidos

Alument: Ing. Mario Ferrande Agadar Montoya Dr. Ing. Javier Andrea Redolf (UTN-FRSTon)
Biroctor: Exp. Ing. Javier Bustomann (TECREA S.A) Mag. Lie. Loopoldo Zingsere (FRBA)
Exp. Ing. Felige Colesvocchia (FRBA)

## **CONCLUSIONES**

#### **Conclusiones**

• Se fabricó un prototipo funcional y se lo instaló en un cultivo agrícola.

• Se desarrolló el firmware sobre un sistema operativo de tiempo real.

Se configuraron paneles de visualización en ThingsBoard.

#### **Próximos pasos**

- Realizar un nuevo diseño del hardware que integre a todo el sistema y no utilice módulos por separado.
- Implementar un mecanismo de actualización de firmware remoto.
- Incluir soporte para trabajar con energías renovables.
- Aumentar la seguridad al enviar los datos al servidor utilizando SSL.

# !MUCHAS GRACIAS; ¿PREGUNTAS?





El UV es el indicador de la intensidad de los rayos ultravioletas y de su capacidad para dañar nuestra piel. Consúltalo a diario en tu móvil o en www.aemet.es

diferencemb estistics