Intégration et théorie

de la mesure

Espaces L^p

Question 1/7

Inégalité de Minkowski

Réponse 1/7

Si
$$f, g: X \to \mathbb{R}$$
 sont mesurables et $p \in [1, +\infty]$, alors $||f + g||_{L^p} \leqslant ||f||_{L^p} + ||g||_{L^p}$

Question 2/7

$$\|f\|_{L^p}$$

Réponse 2/7

$$\left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \operatorname{si} p \in \mathbb{N}^{*}$$

$$\|f\|_{L^{\infty}} = \inf \{c \geqslant 0, |f| \leqslant c \ \mu\text{-pp}\}$$

Question 3/7

$$\mathcal{L}^p(\mu)$$

Réponse 3/7

$$\left\{ f: X \to \mathbb{R} \text{ mesurables, } \int |f|^p \, \mathrm{d}\mu < +\infty \right\}$$

$$\mathcal{L}^{\infty} = \left\{ f: X \to \mathbb{R} \text{ mesurables, } ||f||_{\infty} < +\infty \right\}$$

Question 4/7

$$L^p(\mu)$$

Réponse 4/7

$$\mathcal{L}^p/\sim \text{où } f \sim g \text{ ssi } f = g \text{ μ-pp}$$

Question 5/7

Inégalité de Hölder

Réponse 5/7

Si
$$p \in [1, +\infty]$$
 et $p' = \frac{p}{p-1}$ alors pour f et g mesurables, $\int |fg| \le ||f||_{L^p} ||g||_{L^{p'}}$

Question 6/7

Structures des L^p

Réponse 6/7

$$L^p$$
 sont des espaces de Banach L^2 est un expace de Hilbert avec $\langle f,g\rangle=\int fg$

Question 7/7

Inégalité de Jensen

Réponse 7/7

Soit $I \subset \mathbb{R}$ un intervalle, μ une mesure de probabilités $(\mu(X) = 1 \text{ et } \mu \geqslant 0)$, si $\varphi : I \to \mathbb{R}$ est convexe et $f : X \to \mathbb{R}$ mesurable alors

$$\varphi\left(\int_{X} f \, \mathrm{d}\mu\right) \leqslant \int_{X} \varphi \circ f \, \mathrm{d}\mu$$