Complejidad y Computabilidad

Material permitido: Ninguno Duración: 2 horas

Preguntas a justificar: máximo 9 puntos; 1'5 puntos cada pregunta correcta

y convenientemente justificada

Pregunta de desarrollo: máximo 1 punto

Importante: responda al examen, íntegramente, en las hojas que le facilitan para desarrollar. No existe hoja de lectura automática, ya que el examen se corrige de forma manual. Por tanto, transcriba legiblemente las respuestas (p.ej. 1a, 2b, ...) y justifique su respuesta. No entregue el enunciado.

Reserva. Septiembre 2015

Preguntas a justificar

1. Sea M la máquina de Turing codificada por

siguiendo el convenio de que $X_1 = 0$, $X_2 = 1$, $X_3 = \square = \text{Blanco}$, $D_1 = L = \text{Izquierda}$, $D_2 = R = \text{Derecha}$, q_1 el estado inicial, q_2 el estado final y que la codificación de $\delta(q_i, X_j) = (q_k, X_l, D_m)$ está dada por $0^i 10^j 10^k 10^l 10^m$. Entonces se verifica que M no acepta ningún lenguaje.

- a) Verdadero
- b) Falso
- 2. L_d no es un lenguaje recursivamente enumerable.
 - a) Verdadero
 - b) Falso
- 3. \overline{L}_d es el conjunto de todas las cadenas w_i tales que:
 - a) w_i no forma parte de $L(M_i)$
 - b) M_i acepta w_i
- 4. El PCP "Tonto" (aquel cuyas cadenas w_i de la lista A tienen la misma longitud que las cadenas x_i de la lista B) es decidible para cualquier instancia:
 - a) Verdadera
 - b) Falsa
- 5. Si se encontrara un problema NP-completo cuyo complementario estuviera en NP, entonces NP sería igual a co-NP:
 - a) Verdadera

- b) Falsa
- 6. El problema 2SAT se puede resolver mediante un algoritmo en tiempo polinómico:
 - a) Verdadera
 - b) Falsa

Pregunta de desarrollo Defina qué es un problema PS-completo, alguna propiedad especialmente interesante de estos problemas y un ejemplo de problema de esta clase.