

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

Лабораторная раб	ота №2 по курсу «МРЗвИС» на тему:
«Реализация модели	решения задачи на ОКМД архитектуре»

Выполнил студент группы 821701: Грицель И.А.

Проверил: Крачковский Д.Я.

Цель:

Реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Вариант задания:

Дано: сгенерированные матрицы A, B, E, G заданных размерностей $p \times m, m \times q$,

$$c_{ij} = \tilde{\bigwedge}_{k} f_{ijk} * (3 * g_{ij} - 2) * g_{ij} + (\tilde{\bigvee}_{k} d_{ijk} + (4 * (\tilde{\bigwedge}_{k} f_{ijk} \circ \tilde{\bigvee}_{k} d_{ijk}) - 3 * \tilde{\bigvee}_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \tilde{\to} b_{kj}) * (2 * e_{k} - 1) * e_{k} + (b_{kj} \tilde{\to} a_{ik}) * (1 + (4 * (a_{ik} \tilde{\to} b_{kj}) - 2) * e_{k}) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \tilde{\wedge} b_{kj}$$

1хm, pхq соответственно со значениями в рекомендуемом диапазоне [-1;1].

$$\begin{split} &\tilde{\wedge}_k f_{ijk} = \prod_k f_{ijk} \\ &\tilde{\vee}_k d_{ijk} = 1 - \prod_k \left(1 - d_{ijk}\right) \\ &\tilde{\wedge}_k f_{ijk} \tilde{\circ} \tilde{\vee}_k d_{ijk} = \max\left(\left\{\tilde{\wedge}_k f_{ijk} + \tilde{\vee}_k d_{ijk} - 1\right\} \cup \{0\}\right) \\ &a_{ik} \tilde{\to} b_{kj} = \sup\left(\left\{\delta \left|\left(\min\left(\left\{1 - a_{ik} + \delta\right\} \cup \left\{0\right\}\right) \le b_{kj}\right) \wedge \left(\delta \le 1\right)\right\}\right) \\ &b_{kj} \tilde{\to} a_{ik} = \sup\left(\left\{\delta \left|\left(\min\left(\left\{1 - b_{kj} + \delta\right\} \cup \left\{0\right\}\right) \le a_{ik}\right) \wedge \left(\delta \le 1\right)\right\}\right) \\ &a_{ik} \tilde{\wedge} b_{kj} = \max\left(\left\{a_{ik} + b_{kj} - 1\right\} \cup \left\{0\right\}\right) \end{split}$$

Heoбxoдимо: получить С матрицу значений соответствующей размерности $p \times q$.

Описание модели:

 Для подсчета коэффициента расхождения задачи необходимо измерить две характеристики L_{sum} и L_{avg} , где $-L_{sum}$ суммарная длина программы, а L_{avg} -средняя длина программы. Так как $-L_{sum}$ суммарная длина программы, то она будет равна T_n . Чтобы посчитать L_{avg} , необходимо знать, сколько объектов различных классов выполняется на каком-то из этапов вычислений. Данная задача была решена с помощью подсчета количества вызовов операций и функций на различных ветвях выполнения программой. Зная, количества объектов, выполняющихся на ветвях программы, время выполнения функции или операции, можно подсчитать.

Графики

1. График зависимости коэффициента ускорения от ранга задачи

2. График зависимости коэффициента ускорения от количества процессоров

Коэффициент ускорения Ку для r=3 Коэффициент ускорения Ку для r=4 Коэффициент ускорения Ку для r=5 Коэффициент ускорения Ку для r=6 Коэффициент ускорения Ку для r=7 Коэффициент ускорения Ку для r=8

3. График зависимости эффективности от ранга задачи

4. График зависимости эффективности от количества процессоров

для r = 7 Эффективность е для r = 8

5. График зависимости коэффициента расхождения от ранга задачи

6. График зависимости коэффициента расхождения от количества процессоров

Вопросы:

1. Проверить, что модель создана верно: программа работает правильно;

```
Input m,p,q,n
-0.3194 -0.3668 -0.7405 0.9077 0.2837
0.0975
0.7927
0.6473
0.2606
-0.1115
0.7756 -0.1865 0.1886 -0.3716 -0.101
G:
-0.699
   0.885561
Paramerts:
T1= 144
Tn= 74
Ky= 1.94595
e= 0.389189
Lsum= 74
Lavg= 29
D= 2.55172
```

2. Объяснить на графиках точки перегиба и асимптоты;

Асимптотой графика Ky(r)будет прямая y=n. Точки, которые удовлетворяют условию, r % n = 0 являются точками перегиба. Асимптотой графика Ky(n) будет прямая y=r. Асимптотой графика e(n)является прямая y=0. Асимптотой графика e(r)будет прямая y=1, при этом точки, которые удовлетворяют условию, r % n = 0 являются точками перегиба. Асимптотой графика D(n)будет прямая y=0. У графика D(r)отсутствуют асимптоты и точки и перегиба.

3. Спрогнозировать как изменится вид графиков при изменении параметров модели; если модель позволяет, то проверить на ней правильность ответа; При увеличении п значение е уменьшается.

При увеличении г значение е изменяется скачками.

При увеличении г значение Ку изменяется скачками. При увеличении п значение Ку увеличивается. При увеличении г значение D увеличивается. При увеличении п значение D уменьшается.

Вывод:

В результате выполнения лабораторной работы была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Были построены и исследованы семейства графиков характеристик данной задачи. С помощью графиков были изучены зависимости коэффициента ускорения, эффективности и коэффициента расхождения программы от ранга задачи и количества процессорных элементов.