

4. (b)

According to the parse tree of φ , all occurrences of z are free, all occurrences of x are bound and left most occurrence of y is free. But other two occurrences of y are bound.

4. (c)

From parse tree diagram, we found P variable has bound and free occurrences together.

4. (d)

i.

For $\varphi/w/x$,

The equation is same a previous one (φ) since there is no free occurrences of x in φ that could be replaced by w.

For $\varphi[w/y]$,

The equation is $\exists x \ (P(w, z) \land (\forall y (\neg Q(y, x) \lor P(y, z))))$. Since free occurrence of y is replaced by w.

For $\varphi[f(x)/y]$,

The equation is $\exists x \ (P \ (f(x), z) \land (\forall y \ (\neg Q \ (y, x) \lor P(y, z))))$. Since free occurrence of y is replaced by f(x).

For $\varphi[g(y, z)/z]$,

The equation is $\exists x \ (P(y, g(y, z)) \land (\forall y (\neg Q(y, x) \lor P(y, g(y, z)))))$. Since all free occurrences of z is replaced by g(y, z).

ii. There is no free occurrences of *x* that could be begin the equation.

iii. The terms w, and g(y, z) are free for y in φ since the free occurrence of y is in $\exists x$ quantifiers. However f(x) is not free for y in φ since x in f(x) is together with the substitution process of $\exists x$.

4. (e)

The scope of $\exists x$ is the formula P(y, z).

4. (f)

The only scope of $\exists x$ is the formula P(y, z). Since the inner formulas are in the quantifier of $\forall x$, we consider that formula as a binds of x.