Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 18.11.2016

Arbeitszeit: 150 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note:
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	10	9	11	10	40	
	erreichte Punkte						
							,
$\mathbf{Bitte}\$							
tragen Sie	e Name, Vorname und	Matrik	elnumr	ner auf	dem I	eckbla ⁻	tt ein,
rechnen S	ie die Aufgaben auf se	eparater	n Blätte	ern, ni e	c ht auf	dem A	ingabeblatt,
		, .					
beginnen	Sie für eine neue Aufg	abe im:	mer au	ch eine	neue S	seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
begründe	n Sie Ihre Antworten a	ausführl	ich und	d			
kreuzen S antreten k	ie hier an, an welchem könnten:	der fol	genden	Termin	ne Sie z	zur mür	ıdlichen Prüfung
	Fr., 25.11.2016	□ Mo.,	28.11.	2016		Di., 29	0.11.2016

1. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben:

10 P.

a) Ein Prozess mit Eingangsgröße u und Ausgangsgröße y wird durch die nichtlineare Differentialgleichung

5.5 P.

$$\ddot{y} + \sqrt{y} + y\dot{y} = u^2$$

beschrieben.

- i. Transformieren Sie das obige System in Zustandsraumdarstellung, indem $1.5 \, P.$ Sie neue Zustände x_1 und x_2 einführen.
 - $2.0 \, P.$
- ii. Bestimmen Sie sämtliche Ruhelagen (\mathbf{x}_R,y_R,u_R) mit $\boldsymbol{x}_R=(x_{1,R},x_{2,R}).$ iii. Linearisieren Sie das gegebene System um die Ruhelage für $u=u_R=1$ $2.0 \, P.$

$$\Delta \dot{\boldsymbol{x}} = \boldsymbol{A} \Delta \boldsymbol{x} + \boldsymbol{b} \Delta u,$$

$$\Delta \boldsymbol{y} = \boldsymbol{c}^{\mathrm{T}} \Delta \boldsymbol{x} + d \Delta u$$

mit $\Delta x = x - x_R$, $\Delta u = u - u_R$ und $\Delta y = y - y_R$ dar.

und stellen Sie das linearisierte System in der Form

b) Betrachtet wird das System

 $4.5 \, P.$

$$\dot{x} = -x^2 u, \quad x(0) = 1.$$

- i. Bestimmen Sie die Lösung $\tilde{x}(t)$ der obigen Differentialgleichung für die $2.5 \, P.$ zeitabhängige Eingangsgröße $\tilde{u}(t) = t$. *Hinweis*: Ersetzen Sie \dot{x} durch dx/dt und verwenden Sie Trennung der Variablen.
- ii. Linearisieren Sie das System um die zuvor berechnete Lösung, d.h. be- $2.0 \, P.$ trachten Sie kleine Abweichungen von der Trajektorie $(\tilde{x}(t), \tilde{u}(t))$.

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}.$$
(1)

- a) Ist das System global asymptotisch stabil? 0.5 P.|
- b) Bestimmen Sie die Eigenvektoren des Systems und geben Sie eine reguläre Zustandstransformation $\mathbf{x} = \mathbf{V}\mathbf{z}$ so an, dass die Dynamikmatrix $\tilde{\mathbf{A}}$ des transformierten Systems Diagonalstruktur aufweist.
- c) Bestimmen Sie die Transitionsmatrix $\Phi(t) = \mathbf{V}\tilde{\Phi}(t)\mathbf{V}^{-1}$ des Systems (1).
- d) Berechnen und skizzieren Sie die Antwort des Systems (1) auf einen Einheitssprung am Eingang einmal für den Anfangszustand $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ und einmal für den Anfangszustand $\mathbf{x}_0 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$.
- e) Ist das System (1) BIBO-stabil? Begründen Sie Ihre Antwort. 1.5 P.|

3. Bearbeiten Sie die voneinander unabhängigen Teilaufgaben:

11 P.

a) Die Übertragungsfunktion G(s) hat die Form

$$G(s) = \frac{V}{(1 + sT_1)^{\chi_1} (1 + sT_2)^{\chi_2}}.$$

Bestimmen Sie aus dem zugehörigen Bode-Diagramm in Abb. 1 die Parameter V, T_1, χ_1, T_2 und χ_2 . Lesen Sie nur ganzzahlige Werte aus dem Bode-Diagramm ab.

b) Gegeben ist die Regelstrecke

$$G(s) = \frac{20\left(\frac{s}{10} + \sqrt{3}\right)}{20 + 8s + s^2}.$$

Entwerfen Sie mittels des Frequenzkennlinienverfahrens einen PI-Regler so, dass die Sprungantwort des geschlossenen Kreises folgenden Anforderungen genügt:

- Anstiegszeit $t_r = 0.15 \,\mathrm{s}$
- prozentuelles Überschwingen $\ddot{u} = 25 \%$
- bleibende Regelabweichung $e_{\infty} = 0$
- c) Gegeben sind die Übertragungsfunktionen

 $2.5 \, P.$

$$G_1(s) = \frac{4s}{s+1} - 2, \quad G_2(s) = \frac{8(1+3s)(1+4s)}{(1+s)(2+s)(3+s)(5+s)},$$

$$G_3(s) = -\frac{10(1-s)^2}{s(s+4)^2}, \quad G_4(s) = \frac{20s^2 + 10s + 5}{s(s^3 + 4s^2 - s - 4)}, \quad G_5(s) = \frac{10(s+1)^2}{s(s-4)^2}.$$

Ordnen Sie den Übertragungsfunktionen G_1, G_2, G_3, G_4 und G_5 die entsprechenden Ortskurven aus Abb. 2 a), b), c), d) und e) zu.

d) Gegeben ist die Übertragungsfunktion

 $2.5 \, P.$

$$L(s) = \frac{20(s-1)}{s^2 + 8s + 15}$$

des offenen Standardregelkreises. Die entsprechende Nyquist-Ortskurve ist in Abb. 2 f) dargestellt. Untersuchen Sie den geschlossenen Regelkreis mit Hilfe des Nyquist-Kriteriums auf BIBO-Stabilität. Dokumentieren Sie Ihre Vorgehensweise.

Abbildung 1: Bode-Diagramm zu Aufgabe 3a.

Abbildung 2: Ortskurven der Übertragungsfunktionen G_1, G_2, G_3, G_4 und G_5 zu Aufgabe 3c und der Übertragungsfunktion L zu Aufgabe 3d.

4. Gegeben ist das zeitdiskrete System

$$\boldsymbol{x}_{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & \alpha \\ 1 & 0 & 2 \end{bmatrix} \boldsymbol{x}_k + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \boldsymbol{x}_k.$$

a) Bestimmen Sie den Wertebereich von α für welchen das betrachtete System 2.5 P.| gleichzeitig vollständig erreichbar und vollständig beobachtbar ist.

 $10 \, P.$

- b) Setzen Sie $\alpha=1$ und entwerfen Sie einen Zustandsregler, welcher jede Anfangsauslenkung \boldsymbol{x}_0 in höchstens 3 Schritten in $\boldsymbol{0}$ überführt.
- c) Setzen Sie $\alpha=1$ und entwerfen Sie einen vollständigen Luenberger Beobachter für den Zustand \boldsymbol{x} . Die Eigenwerte der Dynamikmatrix $\boldsymbol{\Phi}_e$ des Fehlersystems $\boldsymbol{e}_{k+1}=\boldsymbol{\Phi}_e\boldsymbol{e}_k$ sollen bei

$$\lambda_{1,2} = -\frac{1}{2} \pm \frac{1}{2}I, \quad \lambda_3 = \frac{1}{2}$$

zu liegen kommen.

d) Bestimmen Sie für ein allgemeines α den Wert des Ausgangs y_k zum Zeitpunkt k=2 mit $u_k=(1,0,0,\dots)$ und $\boldsymbol{x}_0=\begin{bmatrix}1&0&0\end{bmatrix}^{\mathrm{T}}$.