CSCI 220 | Spring 2022 Discrete Structure

Primes and Greatest Common Divisors

Discrete Mathematics and its Application Section 4.3

Definition of Prime and Composite

- An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.
- ullet A positive integer that is greater than 1 and is not prime is called composite.

prime (p): its only positive factors are 1 and p. composite (n): it has positive factors other than 1 and n.
$$n=a\cdot b \ / \ a\cdot b \neq 1 \ , \ n \ , \ 1 < a\cdot b < n \ , \ 2 \leq a\cdot b \leq n-1 \ .$$

The Fundamental Theorem of Arithmetic

• Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes, where the prime factors are written in order of nondecreasing size.

$$2 = 2$$

 $3 = 3$
 $4 = 2.2$
 $5 = 5$
 $6 = 2.3$
 $7 = 7$
 $8 = 2.2.2$
 $9 = 3.3$
 $10 = 2.5$

Trial Division -(P->4) = PA-4

• If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n} .

Proof by contradiction:

Assume n is composite; all factors of n > In.

n = a.b, 1 < a,b < n $a > \sqrt{n}$, $b > \sqrt{n}$

 $n=a\cdot b > n \cdot n = n$

Trial Division

• If n does not have any prime divisor less than or equal to \sqrt{n} , then n is a prime.

Trial Division

- If n does not have any prime divisor less than or equal to \sqrt{n} , then n is a prime.
- Is 91 a prime?

O find all primes
$$\leq \sqrt{91} \approx 9.$$

$$2 \nmid 91$$
 $3 \nmid 91$
 $5 \nmid 91$
 $7 \mid 91 \quad 9 \mid = 7 (13)$
 $4 \quad 4$

Trial Division

- If n does not have any prime divisor less than or equal to \sqrt{n} , then n is a prime.
- Is 71 a prime?

Infinitude of Prime

• There are infinitely many primes.

Proof by contradiction:

Assume there are finitely many primes.

List out all the primes. P1, P2, P3, --- Pn composite.

(in order)

2 3 5 (argest prime.

Prime Number Theorem.

• The ratio of $\pi(x)$, the number of primes not exceeding x, and $x/\ln x$ approaches 1 as x grows without bound. (Here $\ln x$ is the natural logarithm of x.)

• Approximating $\pi(x)$ by $x/\ln x$.

2, 3, 5, 7, 11, 13, 17, 19, 23, ---

\boldsymbol{x}	$\pi(x)$	$x/\ln x$	$\pi(x)/(x/\ln x)$
10 ³	168	144.8	1.161
10^{4}	1229	1085.7	1.132
10^{5}	9592	8685.9	1.104
10^{6}	78,498	72,382.4	1.084
10^{7}	664,579	620,420.7	1.071
10^{8}	5,761,455	5,428,681.0	1.061
10^{9}	50,847,534	48,254,942.4	1.054
10^{10}	455,052,512	434,294,481.9	1.048

$$\pi(10) = 4$$
 $\pi(13) = 6$

Definition of Greatest Common Divisors

• Let a and b be integers, not both zero. The largest integer d such that d|a and d|b is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by gcd(a,b) = (a,b)

Example of Greatest Common Divisors

 \bullet What is the greatest common divisor of 24 and 36?

$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^{3} \cdot 3^{1}$$

$$36 = 2 \cdot 2 \cdot 3 \cdot 3 = 2^{2} \cdot 3^{2}$$

$$9 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2 \cdot 2 \cdot 3^{2} = 12$$

$$= 2^{2} \cdot 3^{1} = 12$$

Relatively Prime

 ullet The integers a and b are $\underline{relatively\ prime}$ if their greatest common divisor is 1.

a, b are relatively prime if gcd(a,b) = 1.
in offur words, a and b don't share any prime factors.

ex: 4 and 9 are relatively prime gcd (4,9) = 1.

Pairwise Relatively Prime

• The integers $a_1, a_2, ..., a_n$ are <u>pairwise relatively</u> <u>prime</u> if $gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$.

$$5, 6, 7, 11, 13, 18$$

$$gcd(5, 15) = 5$$

Definition of Least Common Multiple

• The <u>least common multiple</u> of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by lcm(a,b). = [a,b]

$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^{3} \cdot 3$$

 $36 = 2 \cdot 2 \cdot 3 \cdot 3 = 2^{3} \cdot 3^{2}$
 $(cm(24,36) = 2 \cdot 2 \cdot 3 \cdot 3 = 2^{3} \cdot 3^{2} = 72$

Theorem regarding GCD and LCM

• Let a and b be positive integers. Then $ab = gcd(a,b) \cdot lcm(a,b)$.

Theorem regarding GCD and LCM

- Let a and b be positive integers. Then $ab = gcd(a,b) \cdot lcm(a,b)$.
 - Let $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\dots\cdot p_n^{\alpha_n}$ and $b=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\dots\cdot p_n^{\beta_n}$.
 - $gcd(a,b) = p_1^{\min(\alpha_1,\beta_1)} \cdot p_2^{\min(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\min(\alpha_n,\beta_n)}$ $lcm(a,b) = p_1^{\max(\alpha_1,\beta_1)} \cdot p_2^{\max(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\max(\alpha_n,\beta_n)}$

$$\alpha = 2^3 \cdot 3 \cdot 7^2 = 2^3 \cdot 3^1 \cdot 5^2 \cdot 7^2$$
 $b = 3^2 \cdot 5^3 \cdot 7 = 2^0 \cdot 3^2 \cdot 5^3 \cdot 7^1$

Theorem regarding GCD and LCM

- Let a and b be positive integers. Then $ab = gcd(a,b) \cdot lcm(a,b)$.
 - Let $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\dots\cdot p_n^{\alpha_n}$ and $b=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\dots\cdot p_n^{\beta_n}$.
 - $gcd(a,b) = p_1^{\min(\alpha_1,\beta_1)} \cdot p_2^{\min(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\min(\alpha_n,\beta_n)}$ $lcm(a,b) = p_1^{\max(\alpha_1,\beta_1)} \cdot p_2^{\max(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\max(\alpha_n,\beta_n)}$
 - $\gcd(a,b) \cdot \operatorname{lcm}(a,b)$ $= \left(p_1^{\min(\alpha_1,\beta_1)} \cdot p_2^{\min(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\min(\alpha_n,\beta_n)}\right) \left(p_1^{\max(\alpha_1,\beta_1)} \cdot p_2^{\max(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\max(\alpha_n,\beta_n)}\right)$ $= p_1^{\min(\alpha_1,\beta_1) + \max(\alpha_1,\beta_1)} \cdot p_2^{\min(\alpha_2,\beta_2) + \max(\alpha_2,\beta_2)} \cdot \dots \cdot p_n^{\min(\alpha_n,\beta_n) + \max(\alpha_n,\beta_n)}$ $= p_1^{\alpha_1 + \beta_1} \cdot p_2^{\alpha_2 + \beta_2} \cdot \dots \cdot p_n^{\alpha_n + \beta_n} = p_1^{\alpha_1} p_1^{\beta_1} \cdot p_2^{\alpha_2} p_2^{\beta_2} \cdot \dots \cdot p_n^{\alpha_n} p_n^{\beta_n}$ $= \left(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_n^{\alpha_n}\right) \left(p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_n^{\beta_n}\right) = ab$

Examples of Greatest Common Divisors

• Find gcd(16,20). = 4

• Find gcd(0,100). = 100

$$gcd(0,n) = n$$
 $n \neq 0$

• Find gcd(2014, 2067). = 53 2 (807 - 3689) (53) (9 (53) (3)

Example of Greatest Common Divisors

• Find $\gcd(2014,2067)$ without factoring.

$$\frac{d|2014}{d|2067} > \frac{d|2067 - 2014}{d|2067} = 53$$

$$\frac{d|53}{d|53} = \frac{d|2014 - 53(38)}{d|0} = 0$$

$$\frac{d|0}{grd(2014, 2067)}$$

$$= \frac{gcd(53, 2014)}{gcd(0, 53)}$$

$$= \frac{gcd(0, 53)}{53}$$

$$2067 = 2014(1) + (53)$$

$$2014 = 53(38) + 0$$

Euclidean Algorithm

- Lemma: Let a = bq + r, where a, b, q, and r are integers. Then $\gcd(a,b) = \gcd(b,r)$.
 - Let $r_0=a$ and $r_1=b$. $r_0=r_1q_1+r_2,\ 0\leq r_2< r_1;$ $r_1=r_2q_2+r_3,\ 0\leq r_3< r_2;$

 $r_{n-2} = r_{n-1}q_{n-1} + r_n, \quad 0 \le r_n < r_{n-1};$ $r_{n-1} = r_nq_n.+0$

• Then $\gcd(a,b) = \gcd(r_0,r_1) = \gcd(r_1,r_2) = \dots = \gcd(r_{n-2},r_{n-1})$ $= \gcd(r_{n-1},r_n) = \gcd(r_n,0) \neq r_n.$

Example of Euclidean Algorithm

 \bullet Find $\gcd(414,662)$ using Euclidean Algorithm.

$$662 = 414(1) + 248$$

$$414 = 248(1) + 166$$

$$248 = 166(1) + 82$$

$$166 = 82(2) + 249ed$$

$$82 = 2(41) + 0$$

$$gcd(248,414)$$
 $=gcd(166,248)$
 $=gcd(82,166)$
 $=gcd(2182)$
 $=gcd(0,2)$

BEZOUT'S THEOREM

• If a and b are positive integers, then there exist integers s and t such that $\gcd(a,b)=sa+tb$.

Example of BEZOUT'S THEOREM

• Find linear combination of $414s + 662t = \gcd(414,662)$.

$$grd(414,662)$$
 $gcd(248,414)$
 $=gcd(166,248)$
 $=gcd(82,166)$
 $=gcd(82,166)$
 $=gcd(2,166)$
 $=gcd(2,166)$

$$2 = 166 - 8 \ 2(2) = 166(1) + (2)$$

$$= 166(1) + (248(1) + 166(1))(-2)$$

$$2 = 166(3) + 248(-2)$$

$$= (414(1) + 248(-1))(3) + 248(-2)$$

$$2 = 248(-5) + 414(3)$$

$$= (662(1) + 414(-1))(-5) + 414(3)$$

$$2 = 414(8) + 662(-5)$$

$$4$$

$$5$$

Example of BEZOUT'S THEOREM

- Find gcd(198,252) using Euclidean Algorithm.
- Find linear combination of $198^3 + 252^2 = \gcd(198, 252)$.

$$252 = 198(1) + 544$$

$$198 = 54(3) + 36$$

$$54 = 36(1) + 18$$

$$36 = 18(2) + 0$$

$$18 = 54(1) + 36(-1)$$

$$= 54(1) + [198(1) + 54(-3)](-1)$$

$$= 54(4) + 198(-1)$$

$$= [252(1) + 198(-1)](4) + 198(-1)$$

$$18 = [98(-5) + 252(4)$$

$$9$$

Lemma regarding GCD and Division

• If a, b, and c are positive integers such that $\gcd(a,b)=1$ and a|bc, then a|c.

$$a \nmid b$$
, $a \mid bc \rightarrow a \mid c$.
 $4 \nmid 7$ $4 \mid 7.8 \rightarrow 4 \mid 8$
 $3cd(4,7)=1$
 $3cd(4,7)=1$
 $3cd(4,6)=2$

Lemma regarding GCD and Division

• If a, b, and c are positive integers such that $\gcd(a,b)=1$ and a|bc, then a|c.

Proof:
$$\gcd(a,b)=1$$
 $\exists s,t \in \mathbb{Z}$.

by Bezout's Thun, $as+bt=1$

multiply c , $asc+btc=c$
 $a|asc$ $a|btc$ $\rightarrow a|asc+btc=c$
 $since a(a,a|bc)$ $\rightarrow a(c)$

Lemma regarding GCD and Division

• If p is a prime and $p|a_1a_2\cdots a_n$, where each a_i is an integer, then $p|a_i$ for some i.

gcd
$$(P, a_{\overline{i}}) = 1$$
 or P .

when a_{i} is multiple of P .

 $\Rightarrow P | a_{\overline{i}}$

Theorem about Division on Modular

• Let m be a positive integer and let a, b, and c be integers. If $ac \equiv bc \pmod{m}$ and gcd(c,m) = 1, then $a \equiv b \pmod{m}$.

$$8 = 18 \pmod{5}$$

 $\frac{3}{2} = \frac{3}{2} \pmod{5}$
 $4 = 9 \pmod{5}$
 $\gcd(2,5)=1$

$$8 = 18 \pmod{10}$$

 $4 = 9 \pmod{10}$
 $9 \operatorname{cod}(2,10) = 2$
 $4 = 9 \pmod{\frac{10}{9\operatorname{cd}(2,10)}}$
 $4 = 9 \pmod{\frac{10}{9\operatorname{cd}(2,10)}}$

Theorem about Division on Modular

• Let m be a positive integer and let a, b, and c be integers. If $ac \equiv bc \pmod{m}$ and gcd(c,m) = 1, then $a \equiv b \pmod{m}$.

$$m \mid ac - bc \rightarrow m \mid c(a-b) \rightarrow m \mid a-b$$

$$gcd(m,c) = 1 \qquad a = b \pmod{m}$$