Regresión y Correlación

Regresión

La regresión mide en forma funcional, a través de una ecuación, la posible relación entre las variables con el objetivo de predecir una de ellas en función de la/s otra/s.

Correlación

La correlación se dirige sobre todo a medir la intensidad de la asociación entre variables numéricas.

¿Con qué datos contamos para llevar a cabo un análisis?

Disponemos de n observaciones de dos variables aleatorias medidas en los mismos individuos, del mismo conjunto.

Individuo	Variable X	Variable Y
1	X_1	Y_1
2	X_2	Y_2
	:	
n	X_n	Y_n

¿Cómo puede visualizarse la información recabada?

Gráfico de dispersión

Es una gráfica que se representa en el sistema de ejes cartesianos los pares ordenados, correspondientes a los datos apareados que resultan de las mediciones.

Figura 11.3: Diagrama de dispersión con rectas de regresión.

Variables que intervienen

- x e y determinísticas: Conocido el valor de X, el valor de Y queda perfectamente establecido.
- x: determinística e y: probabilística (Análisis de regresión lineal).
- x e y probabilísticas (Análisis de correlación): Conocido el valor de X, el valor de Y no queda perfectamente establecido.

Tipos de relaciones

Perfectas Imperfectas Positivas Negativas

Sin Relación

Regresión Lineal

1º Realizar el diagrama de dispersión Lineal.

Recta de estimación o regresión: y=bx+a

Correlación lineal

• Coeficiente de determinación (D)

$$D=r^2$$

Campo de variación de $D: 0 \le D \le 1$

Si $D \ge 0.5(50\%) \rightarrow$ Existe una fuerte incidencia entre x e y.

• Coeficiente de correlación (r)

$$r = \frac{cov(x, y)}{\delta x . \delta y}$$
 siendo $cov(x, y) = \frac{\sum (x_i - \overline{x}) . (y_i - \overline{y})}{r}$

Si cov(x, y) > 0, x e y están relacionados positivamente.