

Distribuições Continuas de Probabilidade

Prof. Fermín Alfredo Tang Montané

Distribuição Uniforme

Função de Densidade e Cumulativa

- A função de densidade de probabilidade da distribuição uniforme é definida como:
 - $f(x) = \begin{cases} \frac{1}{b-a}, & \text{a < } x < b \\ 0, & \text{caso contrário.} \end{cases}$
- A função de densidade cumulativa é:

$$F(x) = \int_{a}^{x} f(t)dt$$

$$F(x) = \int_{a}^{x} \frac{1}{b-a} dt = \frac{t}{b-a} \Big|_{a}^{x} = \frac{x-a}{b-a}$$

$$F(x) = \frac{x-a}{b-a}$$

 $a^{T}(x) = \frac{1}{b-a}$

Sendo que o valor esperado e a variância correspondem a:

$$E(x) = \frac{b+a}{2} \qquad V(x) = \frac{\left(b-a\right)^2}{12}$$

Distribuição Uniforme Função de Densidade e Cumulativa

• Exemplo.- Ilustram-se as distribuições de densidade e cumulativa.

$$f(x) = \frac{1}{4-2}, \quad 2 < x < 4$$

$$F(x) = \frac{x-2}{4-2}, \ 2 < x < 4$$

Distribuição Uniforme

Exercícios

- A espessura de chapas fabricadas numa indústria está uniformemente distribuída entre 0,84cm e 1,04cm.
- a) De um total de 200 chapas inspecionadas, quantas excedem 1,00cm?
- b) Qual deve ser a espessura de modo que 40% das chapas não excedam essa espessura?
- Respostas:
- a) Calcula-se, a probabilidade de uma chapa exceder 1,00cm:

$$P(X \ge 1) = 1 - P(X \le 1) = 1 - F(1) = 1 - \frac{1 - 0.84}{1.04 - 0.84} = 0.2$$

O número de chapas que excedem 1,00cm de um lote de 200 é:

$$N_{Chapas-Excedem} = 200(0,2) = 40 \ chapas$$

• b) Pede-se, determinar o valor de x tal que: $P(X \le x) = F(x) = 0,40$

Assim:
$$\frac{x-0.84}{1.04-0.84} = 0.40$$
 onde: $x = 0.92cm$

Distribuição Exponencial

Função de Densidade e Cumulativa

 A função de densidade de probabilidade da distribuição exponencial é definida como:

$$f(x) = \lambda e^{-\lambda x}, \quad \lambda > 0, x \ge 0$$

• A função de densidade cumulativa é:

$$F(x) = \int_{0}^{x} f(t)dt$$

$$F(x) = \int_{0}^{x} \lambda e^{-\lambda t} dt = -e^{-\lambda t} \Big|_{0}^{x} = -e^{-\lambda x} + 1$$

$$F(x) = 1 - e^{-\lambda x}$$

• Sendo que o valor esperado e a variância correspondem a:

$$E(x) = \frac{1}{\lambda} \qquad V(x) = \frac{1}{\lambda^2}$$

• **Exemplo.-** Ilustram-se as distribuições de densidade e cumulativa.

 $f(t) = 4e^{-4t}, t \ge 0$

Quanto maior o tempo transcorrido menor a prob. de ocorrência.

$$F(t) = 1 - e^{-4t}$$

Retorna a prob. de que o tempo transcorrido seja menor que t.

A Distribuição Exponencial

Calculo das probabilidades de ocorrência

A Distribuição Exponencial

Valor Esperado

- No nosso contexto o valor esperado representa o tempo médio de ocorrência dos eventos (entre chegadas ou atendimentos).
- Por definição, o valor esperado é:

$$E(T) = \int_0^\infty t f(t) dt$$

No caso da distribuição exponencial negativa temos:

$$E(T) = \int_0^\infty t \lambda e^{-\lambda t} dt$$

• Integrando por partes temos: $\int u dv = uv - \int v du$

• Onde,
$$u = t$$
, $dv = \lambda e^{-\lambda t} dt$ $du = dt$, $v = -e^{-\lambda t}$

Logo:
$$E(T) = -te^{-\lambda t} \Big|_0^{\infty} + \int_0^{\infty} e^{-\lambda t} dt \qquad E(T) = 0 + \frac{-e^{-\lambda t}}{\lambda} \Big|_0^{\infty} \qquad \boxed{E(T) = \frac{1}{\lambda}}$$
$$V(T) = \frac{1}{\lambda^2}$$

Distribuição Exponencial

Exercício

- Uma fábrica de lâmpadas oferece uma garantia de troca se a duração da lâmpada for inferior a 60 horas. A duração das lâmpadas é uma variável aleatória contínua X exponencialmente distribuída com função densidade de probabilidade dada por: $f(x) = \frac{1}{5000} e^{-\frac{1}{5000}x}, \quad x \ge 0$
- Determine quantas lâmpadas são trocadas por conta da garantia para cada 1 0 0 lâmpadas fabricadas.
- **Resposta:** Observa-se que a unidade de tempo é I hora. O parâmetro da distribuição: $\lambda = \frac{1}{5000}$ Em média uma lâmpara é trocada a cada 5000 horas.

A variável aleatória X, mede o tempo transcorrido entre a troca de lâmparas. Calcula-se a probabilidade de uma lâmpara durar abaixo da garantia:

$$P(X < 60) = F(X) = 1 - e^{-\frac{1}{5000}(60)} = 0,011928$$

O número de lâmparas trocadas para cada 1000 é:

$$N_{L\hat{a}mparas-Trocadas} = 1000(0,011928) = 11,928 \approx 12 \text{ lâmparas}$$

Função de Densidade e Cumulativa

• Primeiro considera-se a função de densidade de probabilidade da distribuição normal:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{1}{2}\left[\frac{x-\mu}{\sigma}\right]^2\right)}, \quad -\infty < x < +\infty$$

• onde x tem distribuição normal com parâmetros μ e σ , (σ >0). Sendo que o valor esperado e a variancia corrempondem a μ e σ ².

$$E(X) = \mu$$

$$V(X) = \sigma^2$$

• No caso em que μ =0 e σ =1, obtem-se a distribuição normal padrão, cuja função de densidade de probabilidade é:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, -\infty < x < +\infty$$

Função de Densidade e Cumulativa

• Exemplo.- Ilustram-se as distribuições de densidade e cumulativa.

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2}\left[\frac{x-10}{1}\right]^2\right)}, \quad -\infty < x < +\infty$$

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2}\left[\frac{t-10}{1}\right]^{2}\right)} dt$$

Propriedades

- I) f(x) é simétrica com relação à média μ;
- 2) f(x) tem um ponto de máximo em: $x = \mu$ e $f(x) = \frac{1}{\sigma\sqrt{2\pi}}$
- 3) f(x) tende a zero quando x tende a +∞ ou -∞;
- 4) f(x) tem um ponto de inflexão em μ σ e outro em μ + σ ;

Propriedades

• 5) 68,2% dos dados da variável aleatória estão localizados entre μ - σ e μ + σ , 95,4% entre μ -2 σ e μ +2 σ e 99,8% entre μ -3 σ e μ +3 σ .

- 6) A área abaixo da função é igual a 1;
- 7) A probabilidade da variavel X tomar valores entre a e b, é calculada pela expressão: $\begin{bmatrix} -1 \left[x \mu \right]^2 \end{bmatrix}$

 $P(a \le X \le b) = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{\left(-\frac{1}{2} \left[\frac{x-\mu}{\sigma}\right]^{2}\right)} dx = \alpha$

• O resulado da integral é resolvido por métodos numéricos.

Distribuição Normal Padrão

• Sabe-se que se x tem distribuição normal com média μ e variancia σ^2 , $x\sim N(\mu,\sigma^2)$, então a variável z definida abaixo tem distribuição normal padrão, $z\sim N(0,1)$.

$$z = \frac{x - \mu}{\sigma}$$

onde z tem função de densidade de probabilidade:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, -\infty < z < +\infty$$

Distribuição Normal Padrão

 Uma propriedade importante do processo de padronização de variáveis aleatórias com distribuição normal é a seguinte:

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$

- Assim é possível calcular qualquer probabilidade de uma variável aleatória com distribuição normal $X\sim N(\mu,\sigma^2)$ a partir da distribuição normal padrão $Z\sim N(0,1)$.
- Exemplo:
- Seja X~N(4,9), sabe-se que:

$$P(1 \le X \le 8) = P\left(\frac{1-4}{3} \le Z \le \frac{8-4}{3}\right) = P\left(-1 \le Z \le 1,3333\right)$$

Distribuição Normal Padrão

- Assim, o calculo de probabilidades para variáveis aleatórias normalmente distribuídas $X\sim N(\mu,\sigma^2)$ é obtido através de valores tabelados para a distribuição normal padrão $Z\sim N(0,1)$.
- A tabela Z fornece os valores da área abaixo da função f(z) para diversos pontos desde 0 até 3,99 com acréscimos de 0,01. Aproveita-se a simetria da distribuição para simplificar os cálculos. Esta aréa corresponde a:

$$P(0 \le Z \le z_0) = \int_0^{z_0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = \alpha$$

Distribuição Normal Padrão - Valores Tabelados

$$P(0 \le Z \le z_0) = \int_0^{z_0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = \alpha$$

$$P(0 \le Z \le 1,33) = 0,4082$$

	12/02/04/04	T are received	I marana		1 10202000	Free Care	T vess	T 100000000	I security	2022
70	0,00	0,01	0,02	0,03	0,04	0,05	0,09	0,07	0,08	0,09
0,0	00000	0,0040	0,0080	0/0120	0၇1ဆ	0,0199	0ρ239	0,0279	0,0319	000359
0,1	00338	0,0438	0,0478	0,0517	0,0657	0,0596	00638	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1016	0 1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0 ₁ 1517
0,4	0 ₁ 1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1944	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0 ₁ 2190	0,2224
9,0	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2518	0,2549
0,7	0,2580	0,2612	0,2642	0,2673	0,2704	0,2734	0,2764	0 2794	0,2823	0,2852
8,0	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,2133
90	0,3159	0,3196	0,3212	0,2238	0,3264	0,3289	0,3315	0,3340	0,3365	0,2389
1,0	0 _i 3413	0,3438	0,3461	0,3485	0,3508	0 ₁ 3531	0 ₁ 3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3865	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,2830
1.2	0,3949	0,3869	0,3888	0,3907	0,3925	0,3944	0/3962	0,3990	0,3997	0,4015
1,3	0/4032	0,4049	0,4066	0,4092	0,4099	0,4115	0/4 131	0,4147	0,4162	0/4 177
1,4	0/4 192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
15	0/4332	0,4345	0,4357	0/4370	0,4382	0,4394	0/4406	0,44 18	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0/4494	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0/4554	0,4564	0,4573	0/4582	0/4591	0,4599	0/4608	0,4616	0,4625	0/4633
1,8	0/4641	0,4649	0,4656	0/4664	0,4671	0,4678	0,4696	0,4693	0,4699	0/4706
1,9	0,4713	0,4719	0,4726	0/4732	0,4738	0,4744	0/4750	0,4756	0,4761	0/4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0/4903	0,4808	0,4812	0/4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4942	0,4946	0,4850	0,4854	0,4857
22	0,4961	0,4864	0,4868	0/4871	0,4875	0,4878	0/4881	0,4894	0,4887	0/4890
23	0/4893	0,4896	0,4898	0/4901	0 4904	0,4906	0,4909	0,4911	0,4913	0/4916
2,4	0/4918	0,4920	0,4922	0,4925	0,4927	0,4929	0/4931	0,4932	0,4934	0,4936
2,5	0/4938	0,4940	0,4941	0/4943	0,4945	0,4946	0,4948	0,4949	0,4951	0/4952

Exemplos

• Calcular:

a)
$$P(0 \le Z \le 1) = 0.3413$$

b)
$$P(Z \ge 1.93) = 0.50 - P(0 \le Z \le 1.93)$$

= $0.50 - 0.4732 = 0.0268$

c)
$$P(-2,55 \le Z \le 1,20) = P(0 \le Z \le 2,55) + P(0 \le Z \le 1,20)$$

= 0,4946 + 0,3849 = 0,8795

Exercícios

- 1) Sendo X~N(12,4), determine:
- a) $P(X \le 15,5) = P(X \le 1,75) = 0,50 + 0,4599 = 0,9599$
- b) $P(10 < X \le 15) = P(-1,00 < Z \le 1,50) = 0,7745$
- c) P(X>9,5) = P(Z>-1,25) = 0.8944
- 2)Os salários dos funcionários de uma empresa estão normalmente distribuídos com média de R\$8000,00 e desvio-padrão de R\$500,00. Qual a porcentagem de funcionários que recebem mais de R\$9280,00 nesta empresa?
- **Resposta:** P(X>9280) = P(Z>2,56) = 0,52%

Exercícios

- 3) Os pacientes de um hospital são submetidos a um tratamento de saúde cujo tempo de cura está normalmente distribuído com média de 15 dias e desvio-padrão de 2 dias.
- a) Qual a proporção de pacientes que demora mais de 17dias para se recuperar?
- b) Qual a probabilidade de um paciente escolhido ao acaso apresentar tempo de cura inferior a 20 dias?
- c) Qual deve ser o tempo máximo necessário para a recuperação de 30% dos pacientes?
- 4) O diâmetro de um anel industrial é uma variável aleatória normalmente distribuída com média de 0,10cm e desvio-padrão 0,02cm. Se o diâmetro do anel fabricado diferir da média por mais de 0,03cm ele é vendido por R\$5,00, caso contrário é vendido por R\$10,00. Qual é o preço médio de venda de cada anel?

Aproximação da Binomial

Uma aproximação da Distribuição Binomial com parâmetros n e p pode ser obtida pela Distribuição Normal fazendo: $\mu = n.p$ e $\sigma^2 = n.p.(1-p)$

Quando n tende a infinito, a variável aleatória definida como:

$$Z = \frac{X - n.p}{\sqrt{n.p(1-p)}}$$

Tem distribuição uniforme com: $\mu = 0$ e $\sigma^2 = 1$

Teorema do Limite Central

• O teorema do limite central estabelece que se temos n variáveis aleatórias independentes, $x_1, x_2, ..., x_n$, cada uma com a mesma distribuição de probabilidade e média $E(x_i)=\mu$ e variância $Var(x_i)=\sigma^2$ idênticas. Então, a soma das n variáveis aleatórias se aproxima de uma distribuição normal, a medida que n se torna suficientemente grande.

$$E(x_i) = \mu$$
$$Var(x_i) = \sigma^2$$

- Observe que trata-se de qualquer distribuição de probabilidade.
- A soma das n variáveis aleatórias tem as seguintes médias e variancias:

$$x = \sum_{i=1}^{n} x_{i}$$

$$E(x) = n\mu$$

$$Var(x) = n\sigma^{2}$$

$$x \approx N(n\mu, \sqrt{n\sigma}), \quad n \to \infty$$

- A distribuição Erlang é uma convolução de k distribuições exponenciais com parâmetro λ . Compreende k distribuições exponenciais denotadas como E_k . Representa a distribuição da soma de k variáveis aleatórias com distribuição exponencial e parâmetro λ .
- A função de densidade de probabilidade da distribuição Erlang é definida como:

$$f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}, x > 0$$

- onde λ e k são parâmetros da distribuição, tal que: $\lambda > 0$, k = 1, 2, ...
- O valor esperado e a variância de uma variável Erlang são:

$$E(X) = \frac{k}{\lambda}$$
 e $V(X) = \frac{k}{\lambda^2}$

• A variável aleatória Erlang mede o intervalo de tempo até a ocorrência de k eventos em um processo Poisson com média λ >0.

A função cumulativa da distribuição Erlang pode ser expressada como:

$$F(x) = \frac{\gamma(k, \lambda x)}{(k-1)!}, \quad x > 0$$

- onde $\gamma(.)$ corresponde a função gama incompleta.
- Uma expressão alternativa para função cumulativa é a seguinte:

$$F(x) = 1 - \sum_{n=0}^{k-1} \frac{\left(\lambda x\right)^n e^{-\lambda x}}{n!}$$

- Mostra-se exemplos da função de densidade Erlang para diferentes combinações de parâmetros λ e k.
- A forma da distribuição depende do parâmetro k. Quando k é pequeno a distribuição inclina-se à esquerda. A medida que k aumenta a distribuição torna-se centralizada primeiro e inclina-se à direita posteriormente.
- O parâmetro λ é um parâmetro de medida.
- Observe que a relação entre
- A relação entre λ e k, determina a posição da média e o grau de dispersão.

$$E(X) = \frac{k}{\lambda}$$
 e $V(X) = \frac{k}{\lambda^2}$

k	1	2	8	16
λ	2	4	8	8
Média	0,5	0,5	1	2
Variância	0,25	0,125	0,125	0,25

• Mostra-se exemplos da função de densidade Erlang para valores constantes de k, e variações de λ . Quando k=1, obtêm-se a distribuição exponencial.

k	1	1	1
λ	8	4	2
Média	0,125	0,25	0,5
Variância	0,015625	0,0625	0,25

• Mostra-se exemplos da função de densidade Erlang para valores constantes de k, e variações de λ . Um caso inclinado á esquerda e outro mais centralizado.

k	3	3	3
λ	5	4	3
Média	0,6	0,75	1
Variância	0,12	0,1875	0,333333

k	8	8	8
λ	5	4	3
Média	1,6	2	2,666667
Variância	0,32	0,5	0,888889

• A variável aleatória X tem distribuição gama se possui a seguinte distribuição de densidade de probabilidade:

$$f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)}, \quad x > 0$$

- onde λ e k são parâmetros da distribuição, tal que: $\lambda > 0$, k > 0
- Sendo que $\Gamma(k)$ corresponde a função gama, definida como:

$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$$

Obs. No caso particular em que k é inteiro a variável X tem distribuição Erlang.

• A função cumulativa da distribuição Gama pode ser expressada como:

$$F(x) = \frac{\gamma(k, \lambda x)}{\Gamma(k)}, \quad x > 0$$

- onde $\gamma(.)$ corresponde a função gama incompleta.
- O valor esperado e a variância de uma variável aleatória gama são:

$$E(X) = \frac{k}{\lambda}$$
 e $V(X) = \frac{k}{\lambda^2}$

• Mostra-se exemplos da função de densidade Erlang e função cumulativa Erlang para valores constantes de λ , e variações de k.

k=	1	2	3
λ=	0,5	0,5	0,5
Média	2	4	6
Variância	4	8	12

Distribuição Qui-quadrado (χ²) Função de Densidade e Cumulativa

- A distribuição Qui-quadrado χ^2 é um caso particular da distribuição gama, que é obtida ao fazer $\lambda=1/2$ e k= $\phi/2$, sendo que ϕ é o único parâmetro da distribuição.
- A variável aleatória contínua X tem distribuição qui-quadrado, com ϕ graus de liberdade, ($\phi \in N$) quando sua função densidade de probabilidade é dada por:

$$f(x) = \frac{x^{\left(\frac{\varphi}{2}\right) - 1} e^{-\left(\frac{1}{2}\right)x}}{2^{\left(\frac{\varphi}{2}\right)} \Gamma\left(\frac{\varphi}{2}\right)}, \quad x > 0$$

- onde φ é o parâmetro da distribuição, tal que: $\varphi = 1, 2, ...$
- Sendo que $\Gamma(k)$ corresponde a função gama, definida como:

$$\left| \Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt \right|$$

Distribuição Qui-quadrado (χ²)

Função de Densidade e Cumulativa

- Mostra-se a substituição dos parâmetros $\lambda=1/2$ e $k=\phi/2$ na função de densidade Gama de maneira a se obter a função de densidade Qui-quadrado χ^2 .
- Substituindo: $\lambda = 1/2$ e $k = \varphi/2$

Na função de densidade Gama:
$$f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)}, \quad x > 0$$

Se obtêm:

$$f(x) = \frac{\left(\frac{1}{2}\right)^{\left(\frac{\varphi}{2}\right)} x^{\left(\frac{\varphi}{2}\right) - 1} e^{-\left(\frac{1}{2}\right)x}}{\Gamma\left(\frac{\varphi}{2}\right)}, \quad x > 0$$

Reorganizando um termo, se tem a expressão desejada:

$$f(x) = \frac{x^{\left(\frac{\varphi}{2}\right) - 1} e^{-\left(\frac{1}{2}\right)x}}{2^{\left(\frac{\varphi}{2}\right)} \Gamma\left(\frac{\varphi}{2}\right)}, \quad x > 0$$

Distribuição Qui-quadrado (χ²) Função de Densidade e Cumulativa

• Devido a relação entre a distribuição Gama e a distribuição Qui-quadrado, é possível obter as expressões para a função cumulativa, o valor esperado e a variância da distribuição Qui-quadrado, a partir da substituição dos parâmetros:

$$\lambda = 1/2$$
 e $k = \varphi/2$

- nas expressões correspondentes da distribuição Gama.
- A função cumulativa da distribuição Qui-quadrado pode ser expressada como:

$$F(x) = \frac{\gamma(k, \lambda x)}{\Gamma(k)}, \quad x > 0 \qquad F(x) = \frac{\gamma(\frac{\varphi}{2}, \frac{x}{2})}{\Gamma(\frac{\varphi}{2})}, \quad x > 0$$

- onde $\gamma(.)$ corresponde a função gama incompleta.
- O valor esperado e a variância de uma variável aleatória gama são:

$$E(X) = \frac{k}{\lambda}, V(X) = \frac{k}{\lambda^2} \qquad E(X) = \frac{\frac{\varphi}{2}}{\frac{1}{2}}, V(X) = \frac{\frac{\varphi}{2}}{\frac{1}{4}} \qquad \boxed{E(X) = \varphi, V(X) = 2\varphi}$$

Distribuição Qui-quadrado (χ²) Função de Densidade e Cumulativa

A distribuição qui-quadrado é assimétrica positiva.

φ	2	4	8
k=	1	2	4
λ=	0,5	0,5	0,5
Média	2	4	8
Variância	4	8	16

Distribuição Qui-quadrado (χ²) Valores Tabelados e Calculo de abscissas

• A distribuição Qui-quadrado é muito utilizada em testes de hipóteses. Para isso é necessário calcular o valor da abscissa (valor crítico) que delimita a região de rejeição do teste e que corresponde a uma probabilidade α , geralmente pequena.

$$\int_{\chi_{\varphi}^{2}(\alpha)}^{\infty} f(u) \, \mathrm{d}u = \alpha$$

$$\chi_{\varphi}^{2}(\alpha) = \chi_{6}^{2}(0,01) = 16,81$$

φ						α							
Ψ.	0.995	0.990	0.975	0.950	0.900	0.750	0.500	0.250	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.015	0.102	0.455	1.323	2.71	3.84	5.02	6.63	7.88
2	0.010	0.020	0.050	0.103	0.211	0.575	1.386	2.77	4.61	5.99	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	1.213	2.37	4.11	6.25	7.81	9.35	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	1.923	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.61	2,67	4.35	6.63	9.24	11.07	12.83	15.09	16.75
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26,22	28.30
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00

 $\alpha - 1\%$

Distribuição Qui-quadrado (χ²) Valores Tabelados e Calculo de abscissas

• A distribuição Qui-quadrado é muito utilizada em testes de hipóteses. Para isso é necessário calcular o valor da abscissa (valor crítico) que delimita a região de rejeição do teste e que corresponde a uma probabilidade α , geralmente pequena.

$$\int_{\chi_{\varphi}^{2}(\alpha)}^{\infty} f(u) \, \mathrm{d}u = \alpha$$

$$\chi_{\varphi}^{2}(\alpha) = \chi_{6}^{2}(0,01) = 16,81$$

Distribuição Qui-quadrado (χ²) Exemplos

- 1) Sendo ϕ =8 e α =25%, determine a abscissa da qui-quadrado.
- 2)Determine as abscissas indicadas no gráfico da distribuição quiquadrado abaixo, sendo φ=10.

Distribuição t-Student Função de Densidade e Cumulativa

- Seja Z uma variável aleatória com distribuição normal padrão Z~N(0,1) e V uma variável aleatória com distribuição Qui-quadrado com φ graus de liberdade. Sejam Z e V variáveis independentes.
- A variável aleatória t definida como:

$$t = \frac{Z}{\sqrt{\frac{V}{\varphi}}}$$

- Tem distribuição t de Student com φ graus de liberdade.
- A função de densidade de probabilidade da distribuição t de Student com ϕ graus de liberdade é a seguinte:

$$f(t) = \frac{\Gamma\left(\frac{\varphi+1}{2}\right)}{\sqrt{\varphi\pi} \Gamma\left(\frac{\varphi}{2}\right)} \left(1 + \frac{t^2}{\varphi}\right)^{-\left(\frac{\varphi+1}{2}\right)}, \quad -\infty < t < +\infty$$

Distribuição t-Student Função de Densidade e Cumulativa

O valor esperado e a variância de uma variável aleatória t-student são:

$$E(X) = 0 \quad \text{e} \quad V(X) = \begin{cases} \frac{\varphi}{\varphi - 2}, & \varphi > 2\\ \infty, & 1 < \varphi \le 2 \end{cases}$$

- Observações:
- I) A distribuição é simétrica com relação a sua média;
- 2) Quanto maior o valor de φ mais se aproxima da distribuição normal padronizada;

• 3) Esta distribuição é muito utilizada para inferências estatísticas para amostra

pequenas (n<30).

Distribuição t-Student Função de Densidade

Distribuição t-Student

Valores Tabelados e Calculo de abscissas

φ	0,40	0,25	0,10	0,05	0,025	0,010	0,005	0,0025	0,0010	0,0005
1	0,325	1,000	3,078	6,314	12,706	31,821	63,657	127,321	318,309	636,619
2	0,289	0,816	1,886	2,920	4,303	6,975	9,925	14,089	22,327	31,599
3	0,277	0,765	1,638	2,353	3,182	4,541	5,841	7,453	10,215	12,924
4	0,271	0,741	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610
5	0,267	0,727	1,476	2,015	2,571	3,365	4,032	4,773	5,893	6,869
6	0,265	0,718	1,440	1,943	2,447	3,143	3,707	4,317	5,208	5,959
7	0,263	0,711	1,415	1,895	2,365	2,998	3,499	4,029	4,785	5,408
8	0,262	0,706	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041
9	0,261	0,703	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781
10	0,260	0,700	1,372	1,812	2,228	2,764	3,169	3,581	4,144	4,587
11	0,260	0,697	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437
12	0,259	0,695	1,356	1,782	2,179	2,681	3,055	3,428	3,930	4,318
13	0,259	0,694	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221
14	0,258	0,692	1,345	1,761	2,145	2,624	2,977	3,327	3,787	4,140
15	0,258	0,691	1,341	1,753	2,131	2,602	2,947	3,286	3,733	4,073
16	0,258	0,690	1,337	1,746	2,120	2,583	2,921	3,252	3,686	4,015
17	0,257	0,689	1,333	1,740	2,110	2,567	2,898	3,222	3,646	3,965
18	0,257	0,688	1,330	1,734	2,101	2,552	2,878	3,197	3,610	3,922
19	0,257	0,688	1,328	1,729	2,093	2,539	2,861	3,174	3,579	3,883
20	0,257	0,687	1,325	1,725	2,086	2,528	2,845	3,153	3,552	3,850
21	0,257	0,686	1,323	1,721	2,080	2,518	2,831	3,135	3,527	3,819
22	0,256	0,686	1,321	1,717	2,074	2,508	2,819	3,119	3,505	3,792
23	0,256	0,685	1,319	1,714	2,069	2,500	2,807	3,104	3,485	3,768
24	0,256	0,685	1,318	1,711	2,064	2,492	2,797	3,091	3,467	3,745
25	0,256	0,684	1,316	1,708	2,060	2,485	2,787	3,078	3,450	3,725
26	0,256	0,684	1,315	1,706	2,056	2,479	2,779	3,067	3,435	3,707
27	0,256	0,684	1,314	1,703	2,052	2,473	2,771	3,057	3,421	3,690
28	0,256	0,683	1,313	1,701	2,048	2,467	2,763	3,047	3,408	3,674
29	0,256	0,683	1,311	1,699	2,045	2,462	2,756	3,038	3,396	3,659
30	0,256	0,683	1,310	1,697	2,042	2,457	2,750	3,030	3,385	3,646

Função de Densidade e Cumulativa

- Esta distribuição foi desenvolvida pelo inglês R.A. Fisher (1890-1962) e pelo americano G.E. Snedecor (1881-1974).
- A distribuição F é a razão entre duas variáveis aleatórias independentes que possuem distribuições qui-quadrado.
- A distribuição F com ϕ_1 graus de liberdade no numerador e ϕ_2 graus de liberdade no denominador é definida por:

$$F(arphi_1, arphi_2) = rac{\dfrac{\chi^2_{arphi_1}}{arphi_1}}{\dfrac{\chi^2_{arphi_2}}{arphi_2}} = \dfrac{\chi^2_{arphi_1}}{\chi^2_{arphi_2}} \dfrac{arphi_2}{arphi_1}$$

Função de Densidade e Cumulativa

• A função de densidade de probabilidade de uma variável aleatória com distribuição F, ϕ_1 graus de liberdade no numerador e ϕ_2 graus de liberdade no denominador é dada pela seguinte expressão:

$$f(x; \varphi_1, \varphi_2) = \frac{1}{B(\frac{\varphi_1}{2}, \frac{\varphi_2}{2})} (\frac{\varphi_1}{\varphi_2})^{\frac{\varphi_1}{2}} x^{(\frac{\varphi_1}{2} - 1)} (1 + \frac{\varphi_1}{\varphi_2} x)^{-\frac{\varphi_1 + \varphi_2}{2}}, \quad x \ge 0$$

• onde B(.) é a função Beta.

Esperança Matemática:
$$E(X) = \frac{\varphi_2}{\varphi_2 - 2} \quad (\varphi_2 > 2)$$

Variância:
$$V(X) = \frac{2 \varphi_2^2 (\varphi_1 + \varphi_2 - 2)}{\varphi_1 (\varphi_2 - 4)(\varphi_2 - 2)^2}$$
 $(\varphi_2 > 4)$

Função de Densidade

Valores Tabelados e Calculo de abscissas

 A tabela da distribuição F retorna a abscissa que tem 5% dos dados na cauda à direita, com φ₁ e φ₂ graus de liberdade.

$\varphi_{_{2}}$	1	2	3	4	5	6	7	8	9	10	20	30	120
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	248,0	250,1	263,3
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,45	19,46	19,49
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,66	8,62	8,55
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,80	6,76	5,66
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,56	4,50	4,40
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	3,87	3,81	3,70
7	5,59	4,74	4,35	4,12	3,97	3,87	3M79	3,73	3,68	3,64	3,44	3,38	3,27
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,15	3,08	2,97
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	2,94	2,86	2,75
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,77	2,70	2,58
11	4,84	3,98	3,69	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,65	2,57	2,45
12	4,75	3,89	3,49	3,26	3,11	3,00	2,90	2,85	2,80	2,75	2,54	2,46	2,34
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,46	2,38	2,25
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,39	2,31	2,18
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,33	2,25	2,11
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,28	2,19	2,06
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,23	2,15	2,01
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,19	2,11	1,97
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,16	2,07	1,93
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,12	2,04	1,90
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,10	2,01	1,87
22	4,30	3,44	4,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,07	1,98	1,84
23	4,28	3,42	3,03	2,80	2,64	2,63	2,44	2,37	2,32	2,27	2,05	1,96	1,81
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25	2,03	1,94	1,79
30	4,17	3,32	2,92	2,69	2,63	2,42	2,33	2,27	2,21	2,16	1,93	1,84	1,68
40	4,08	3,23	2,84	2,61	2,45	2,34	2,21	2,18	2,12	2,08	1,84	1,74	1,58
60	4,00	3,15	2,76	2,53	2,36	2,25	2,17	2,10	2,04	1,99	1,75	1,65	1,47
120	3,92	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96	1,91	1,66	1,55	1,35

Exemplo

Propriedade:
$$F_{1-\alpha}(\varphi_1, \varphi_2) = \frac{1}{F_{\alpha}(\varphi_2, \varphi_1)}$$

Exemplos:

1) Calcular F_{95%} (4,10)

Resposta:
$$F_{95\%}(4,10) = \frac{1}{F_{5\%}(10,4)} = \frac{1}{5,96} = 0,17$$