Evan Coleman

ecol@mit.edu • +1 (650) 796-3785 • eacoleman.github.io

EDUCATION Stanford University, Stanford, CA

Ph.D. in Theoretical Physics 2018 – 2022

• Thesis: Finite-Volume Holography and the Cosmological Constant

• Advisor: Eva Silverstein

Brown University, Providence, RI

Sc.B. (Honors) in Mathematical Physics 2014 – 2018

- Magna Cum Laude, Sigma Xi, Top of Class (Physics)
- Cumulative GPA: 4.00 / 4.00
- Physics GRE: 970 / 990

EXPERIENCE

MIT Climate Project, Research Scientist2024 – PresentMIT Climate & Sustainability Consortium, Postdoctoral Fellow2022 – 2024Stanford Institute for Theoretical Physics, NSF Graduate Research Fellow2018 – 2022CERN, Undergraduate Researcher2015 – 2018

- Research on Applied ML for industrial decarbonization and in situ material characterization.
- 3 ML conference publications applying VAEs, physics-informed models, and RL to structured prediction and measurement of soil organic carbon content. 1 patent filed for RL-based device to optimize physical separations of mixed-stream material flows (e.g. "fines" in mining). Forthcoming publications applying RL to NMR pulse sequence optimization for low-field atomic abundance measurement, and generative models to geospatial infilling of mineral resource maps.
- Experience handling high-dimensional data (hyperspectral remote sensing), training policies and models, developing OpenAI gymnasium environments, writing parallelized physical simulations, and incorporating LLM evaluation into training pipelines.
- Current projects developing ML-driven quality assessment for 2D materials (NATMs), soil carbon inference via EMIT hyperspectral satellite data, and agentic interfaces for materials databases. Recipient of Cohere for AI Research Grant.
- Managed students (1 Ph.D., 2 M.S., 2 B.S.) to execute \$600K industry-backed research program.
- Consulted with Apple, Cargill, and PepsiCo to scale environmental data collection using modern ML approaches, for analysis of local conditions driving soil carbon sequestration.

PUBLICATIONS UNDER REVIEW

[1] S. Nair*, <u>E. Coleman</u>*, S. Wang, and E. Olivetti, "Masked Mineral Modeling: Continent-scale mineral prospecting via geospatial infilling," submitted to NeurIPS2025.

PUBLISHED

- [2] R. Shenoy*, <u>E. Coleman</u>*, H. Gaensbauer, and E. Olivetti, "Counting atoms faster: policy-based nuclear magnetic resonance pulse sequencing for atomic abundance measurement," accepted (poster) to ICML2025.
- [3] R. Shenoy, H. Gaensbauer, E. Olivetti, and <u>E. Coleman</u>, "Optimizing NMR Spectroscopy Pulse Sequencing for Soil Atomic Abundance," in *Proceedings of "Tackling Climate Change with Machine Learning" at NeurIPS2024*.
- [4] <u>E. Coleman</u>, S. Nair, X. Zeng, and E. Olivetti, "Structured spectral reconstruction for scalable soil organic carbon inference," in *Proceedings of "Tackling Climate Change with Machine Learning" at ICLR*2024.
- [5] <u>E. Coleman</u>, R.M. Soni, and S. Yang. "On the spread of entanglement at finite cutoff." *Journal of High Energy Physics*, 2023(5), 1-28.
- [6] E. Coleman, E. Mazenc, V. Shyam, E. Silverstein, R.M. Soni, G. Torroba, and S. Yang. "De Sitter microstates from $T\overline{T} + \Lambda_2$ and the Hawking-Page transition." *Journal of High Energy Physics*, 2022(7), 1-32.

- [7] J. Aguilera-Damia, L.M. Anderson, and E. Coleman. "A substrate for brane shells from $T\overline{T}$." Journal of High Energy Physics, 2021(5), 1-36.
- [8] E. Coleman and V. Shyam. "Conformal boundary conditions from cutoff AdS₃." Journal of High Energy Physics, 2021(9), 1-19.
- [9] <u>E. Coleman</u>, J. Aguilera-Damia, D.Z. Freedman, and R.M. Soni. " $T\overline{T}$ -deformed actions and (1,1)supersymmetry." Journal of High Energy Physics, 2019(10), 1-16.
- [10] E. Coleman, M. Freytsis, A. Hinzmann, M. Narain, J. Thaler, N. Tran, N., and C. Vernieri. "The importance of calorimetry for highly-boosted jet substructure." Journal of Instrumentation, 13(01), T01003.

WHITEPAPERS

- [11] K. Daehn, E. Coleman, and F. Allroggen, "Global Bioenergy Availability," published on MIT DSpace. In collaboration with Maersk. January 2025.
- [12] M. MacFarlane, R. Jia, ..., E. Coleman, E. Olivetti, and C. Terrer, "Nature-Based Climate Solutions: Current Uncertainties and Data Gaps in the Assessment of Soil Carbon Sequestration Potentials," published on MIT DSpace. In collaboration with Apple, Cargill, and PepsiCo. April 2024.
- [13] E. Coleman, A. Tripathy, S. Sroka, et al., "Carbon Credits and Credibility: A Collaborative Endeavour," published on MIT DSpace. In collaboration with IBM and BBVA. September 2023.

AWARDS & SCHOLARSHIPS

■ Cohere for AI Research Grant	2025
Awarded 1M Chat API calls for LLM research developing agentic workflows for materials databases Impact Fellowship, MIT 2-year grant to pursue independent research in industrial decarbonization	2022
 Paul H. Kirkpatrick Award for Teaching, Stanford Physics Department Top 5 Stanford Physics TA of 2021 	2022
 Youth Philanthropist of the Year, National Philanthropy Day Committee Cycled 600 mi across Tibet for charity, from Lhasa to Everest base camp to Kathmandu in 10 days 	2018
 NSF Graduate Research Fellowship, National Science Foundation \$138K grant to pursue Ph.D. 	2018
 R. Bruce Lindsay Prize for Excellence in Physics Top student in Class of '18, Brown U. Physics Department 	2018
 Astronaut Scholar Merit-based scholarship 	2017
■ Goldwater Scholar Merit-based scholarship	2017

PROFESSIONAL ACTIVITIES

CONFERENCE ORGANIZATION

■ Lead Organizer, Data for Circularity Workshop, MIT Climate & Sustainability Symposium	Oct 2023
 Lead Organizer, ML for Climate Workshop, MIT Climate & Sustainability Symposium 	Oct 2022

PAPER REVIEWING

■ Reviewer, Climate Change AI @ NeurIPS2024	2024
■ Reviewer, NSF SBIR Phase I	2023

COMMUNITY SERVICE

 Volunteer farmhand, Stanford Educational Farm 	2020 - 2022
■ Exam proctor for visually-impaired students, Stanford Physics Department	2022

TEACHING

Head Teaching Assistant, Stanford University	2020
PHYSICS121: Advanced Electricity and Magnetism	
Head Teaching Assistant, Stanford University	2019
PHYSICS70: Introduction to Special Relativity and Quantum Mechanics	
Teaching Assistant, Stanford University	2019
PHYSICS40: Introduction to Classical Mechanics	

[CV compiled on 2025-05-01]

2024