3. Угловая скорость вращения вентилятора рассчитывается по формуле $\omega = 2\pi n$. Вентилятор будет неподвижным с тремя лопастями, если за время между вспышками т лопасти повернутся на угол $\Delta \varphi = \frac{2\pi}{3}k, \quad k = 1,2,3... \quad \text{(естественно,}$

предполагаем, одинаковы). Таким образом, условие будет выполнено при $2\pi n\tau = \frac{2\pi}{3}k$, или при частотах вспышек $v = \frac{1}{\tau} = \frac{3n}{k}$. Так как минимальна частота стробоскопа равняется $2\Gamma u$, то максимальное значение $k_{max} = 15$.

Вентилятор будет казаться неподвижным с шестью лопастями, если за время между вспышками лопасти повернутся на угол

$$\Delta \phi = \frac{\pi}{3} + \frac{2\pi}{3} k$$
, $k = 0,1,2,...$ Следовательно, частоты вспышек стробоскопа в этом случае можно найти из уравнения $2\pi n \tau = \frac{\pi}{3} + \frac{2\pi}{3} k$, или $v = \frac{1}{\tau} = \frac{3n}{k + \frac{1}{2}}$.

Максимальное значения k в этом случае равно 14.

Наконец, вентилятор будет казаться вращающимся противоположную сторону с частотой n_1 , если за время между

лопасти повернутся вспышками $\Delta \varphi = -2\pi n_1 \tau + \frac{2\pi}{3} k, k = 1,2,3...$ Соответствующе уравнения для определения частот стробоскопа имеет вид $2\pi n\tau = -2\pi n_I \tau + \frac{2\pi}{3} k$. Из которого

следует
$$v = \frac{1}{\tau} = \frac{3(n+n_1)}{k}$$
; $k = 1,2,3...15$.

4. В ходе перемещения поршня на него действуют силы давления $F_1 = P_0 a(a - h)$ воздуха

и воды
$$F_2 = (\rho g \frac{h}{2} + P_0)ah$$
 (2),

где ρ -плотность воды, h- изменяющаяся высота уровня воды в сосуде, $\rho g \frac{h}{2}$ - среднее давление воды на поршень. Так как поршень плотно пригнан, то между ним и правой стенкой сосуда находится вакуум.

Чтобы совершенная работа была минимальна к поршню необходимо прикладывать силу, лишь незначительно превышающую силу давления воды и воздуха:

$$F = F_1 + F_2 = P_0 a^2 + \rho g a \frac{h^2}{2}.$$
 (3)

Как следует из формулы (3) прикладываемая сила должна изменяться в ходе перемещения поршня, поэтому совершенную ею работу подсчитать сложно (необходимо использовать операцию интегрирования. Однако, первое слагаемое выражении (3) постоянно (поэтому работу этой силы A_1 подсчитать не составляет труда), а работа оставшейся составляющей силы равна изменению потенциальной энергии воды $A_2 = \Delta U$ (найти которое тоже не сложно).

Итак,

$$A_1 = P_0 a^2 x \,, \tag{4}$$

где x - смещение поршня, которое найдем из условия постоянства объема воды

$$lah_0 = (l - x)a^2 \Rightarrow x = l(1 - \frac{h_0}{a}). \tag{5}$$

Следовательно,
$$A_{I} = P_{0}a^{2}l(1 - \frac{h_{0}}{a}).$$

Вычислим изменение потенциальной энергии воды по формуле

$$A_2 = \Delta U = \rho g(l - x) a \frac{a}{2} - \rho g l h_0 \frac{h_0}{2} = \frac{\rho g a l h_0}{2}.$$
 (6)

Таким образом полная работа вычисляется по формуле

$$A = \frac{\rho galh_0}{2} + P_0 a^2 l(1 - \frac{h_0}{a})$$

Заметим, что для не очень высоких сосудов ($\rho ga << P_0$) второе слагаемое значительно превышает первое, то есть основная работа совершается по преодолению силы атмосферного давления.