Numerical Methods for Large-Scale Nonlinear Equations

Slide 1

Homer Walker MA 512 April 28, 2005

Inexact Newton and Newton-Krylov Methods

- a. Newton-iterative and inexact Newton methods.
 - i. Formulation and local convergence.
 - ii. Globally convergent methods.
 - iii. Choosing the forcing terms.
- $b. \quad Newton-Krylov\ methods.$
 - i. General considerations.
 - ii. Matrix-free implementations.

a. Newton-iterative and inexact Newton methods.

The model method will be ...

Slide 3

Newton's Method:

Given an initial x.

Iterate:

Decide whether to stop or continue.

Solve
$$J(x)s = -F(x)$$
.

Update $x \leftarrow x + s$.

Here,
$$J(x) = F'(x) = \left(\frac{\partial F_i(x)}{\partial x_j}\right) \in \mathbb{R}^{n \times n}$$
.

About Newton's method, recall . . .

• Major strength: *quadratic local convergence*, which is often *mesh-independent* on discretized PDE problems [6], [1]. .

Slide 4

• For general discussions of stopping, scaling, "globalization" procedures, local and global convergence, etc., see [6].

Assume throughout: F is continuously differentiable.

Suppose that iterative linear algebra methods are preferred for solving

$$J(x)s = -F(x).$$

The resulting method is a Newton iterative (truncated Newton) method.

<u>Key aspect</u>: J(x)s = -F(x) is solved only approximately.

Slide 5

Key issues:

- When should we stop the linear iterations?
- How should we globalize the method?
- Which linear solver should we use?

The first two can be well treated in the <u>strictly more general context</u> of <u>inexact Newton methods</u>.

An <u>inexact Newton method</u> [4] is *any* method each step of which reduces the norm of the local linear model of F.

Slide 6

Inexact Newton Method [4]:

Given an initial x.

Iterate:

Decide whether to stop or continue.

Find **some** $\eta \in [0,1)$ and s that satisfy

$$||F(x) + J(x) s|| \le \eta ||F(x)||.$$

Update $x \leftarrow x + s$.

- A Newton iterative method fits naturally into this framework:
 - Choose $\eta \in [0,1)$.
 - Apply the iterative linear solver until $\|F(x) + J(x) s\| \le \eta \|F(x)\|$.
 - \triangleright Used in this way, η is called a *forcing term*.
 - ▶ The issue of stopping the linear iterations becomes the issue of choosing the forcing terms.

Local convergence is controlled by choices of η [4].

Theorem [4]: Suppose $F(x_*)=0$ and $J(x_*)$ is invertible. If $\{x_k\}$ is an inexact Newton sequence with x_0 sufficiently near x_* , then

- $\eta_k \le \eta_{\max} < 1 \implies x_k \to x_*$ q-linearly*,
- $\eta_k \to 0 \implies x_k \to x_* \text{ q-superlinearly}^{**}$,

If also J is Lipschitz continuous*** at x_* , then

- $\eta_k = O(\|F(x_k)\|) \implies x_k \to x_*$ q-quadratically****.
- * For some $\beta < 1$, $\|x_{k+1} x_*\|_{J(x_*)} \le \beta \|x_k x_*\|_{J(x_*)}$ for sufficiently large k, where $\|w\|_{J(x_*)} \equiv \|J(x_*) \, w\|$.
- ** $\|x_{k+1} x_*\| \le \beta_k \|x_k x_*\|$, where $\beta_k \to 0$.
- *** For some λ , $||J(x) J(x_*)|| \le \lambda ||x x_*||$ for x near x_* .
- **** For some C, $||x_{k+1} x_*|| \le C||x_k x_*||^2$ for all k.

Slide 7

Proof idea:

 ${\rm Suppose}\,\,\|F(x)+J(x)\,s\|\leq \eta\|F(x)\|.\qquad {\rm Set}\,\,x_+=x+s.$

We have $F(x_+) pprox F(x) + J(x) s \implies \|F(x_+)\| \lessapprox \eta \|F(x)\|.$

Near x_* ...

$$F(x) = F(x) - F(x_*) \approx J(x_*) (x - x_*),$$

$$F(x_{+}) = F(x_{+}) - F(x_{*}) \approx J(x_{*}) (x_{+} - x_{*}).$$

So $\|J(x_*)(x_+ - x_*)\| \lessapprox \eta \|J(x_*)(x - x_*)\|$, i.e.,

$$||x_{+} - x_{*}||_{J(x_{*})} \lesssim \eta ||x - x_{*}||_{J(x_{*})}$$

A globally convergent algorithm is ...

Inexact Newton Backtracking (INB) Method [7]:

Given an initial x and $t\in(0,1)$, $\eta_{\max}\in[0,1)$, $t\in(0,1)$, and $0<\theta_{\min}<\theta_{\max}<1$.

Iterate:

Decide whether to stop or continue.

Choose $\underline{\mathit{initial}}\ \eta \in [0, \eta_{\mathrm{max}}]$ and s such that

 $\|F(x)+J(x)\,s\|\leq \eta\|F(x)\|.$ Evaluate F(x+s).

While $||F(x+s)|| > [1 - t(1-\eta)]||F(x)||$, do:

Choose $\theta \in [\theta_{\min}, \theta_{\max}]$.

Update $s \leftarrow \theta s$ and $\eta \leftarrow 1 - \theta (1 - \eta)$.

Revaluate F(x+s).

 $\mathsf{Update}\ x \leftarrow x + s\ \mathsf{and}\ F(x) \leftarrow F(x + s).$

Slide 9

The global convergence result is ...

Theorem [7, Th.6.1]: Suppose $\{x_k\}$ is produced by the INB method. If $\{x_k\}$ has a limit point x_* such that $J(x_*)$ is nonsingular, then $F(x_*) = 0$ and $x_k \to x_*$. Furthermore, the initial s_k and η_k are accepted for all sufficiently large k.

Slide 11

Possibilities:

- $||x_k|| \to \infty$.
- $\{x_k\}$ has limit points, and J is singular at each one.
- $\{x_k\}$ converges to x_* such that $F(x_*) = 0$, $J(x_*)$ is nonsingular, and asymptotic convergence is determined by the initial η_k 's.

Practical implementation of the INB method.

Minor details (most as before):

- Choose η_{max} near 1, e.g., $\eta_{\text{max}} = .9$.
- Slide 12
- Choose t small, e.g., $t = 10^{-4}$.
- Choose $\theta_{\min} = .1$, $\theta_{\max} = .5$.
- Take $\|\cdot\|$ to be an inner-product norm, e.g., $\|\cdot\| = \|\cdot\|_2$.
- Choose $\theta \in [\theta_{\min}, \theta_{\max}]$ to minimize a quadratic or cubic that interpolates $\|F(x_k + \theta s_k)\|$.

Choosing the forcing terms.

From [4], we know ...

- $\eta_k \leq \text{constant} < 1 \implies \text{local } \underset{\text{linear}}{\textit{linear}} \text{ convergence}.$
- $\eta_k \to 0 \implies \text{local } \frac{\text{superlinear}}{\text{superlinear}}$ convergence.
- $\eta_k = O(\|F(x_k)\|) \implies \text{local } \frac{\text{quadratic}}{\text{quadratic}}$ convergence.

These allow practically implementable choices of the η_k 's that lead to desirable asymptotic convergence rates.

But there remains the danger of <u>oversolving</u>, i.e., imposing an accuracy on an approximate solution s of the Newton equation that leads to significant disagreement between F(x+s) and F(x)+J(x)s.

Example: The driven cavity problem.

$$(1/Re)\Delta^2\psi + \frac{\partial\psi}{\partial x_1}\frac{\partial}{\partial x_2}\Delta\psi - \frac{\partial\psi}{\partial x_2}\frac{\partial}{\partial x_1}\Delta\psi = 0 \quad \text{in } \mathcal{D} = [0,1]\times[0,1],$$

On
$$\partial \mathcal{D}, \ \psi = 0$$
 and $\frac{\partial \psi}{\partial n} = \left\{ egin{array}{ll} 1 & \mbox{on top.} \\ 0 & \mbox{on the sides and bottom.} \end{array} \right.$

Slide 14

Slide 13

Streamlines for Re = 10,000.

For $\eta_k = \min \left\{ \|F(x_k)\|_2, \frac{1}{k+2} \right\}$ (from [5]), ...

Performance on the driven cavity problem, Re = 500. "Gaps" indicate oversolving.

Forcing term choices have been proposed in [8] that are aimed at reducing oversolving. Here's one \dots

Choice 1: Set $\eta_k = \min{\{\eta_{\max}, \tilde{\eta}_k\}}$, where

$$\tilde{\eta}_k = \frac{\left| \|F(x_k)\| - \|F(x_{k-1}) + J(x_{k-1}) s_{k-1}\| \right|}{\|F(x_{k-1})\|}$$

- ullet This directly reflects the (dis)agreement between F and its local linear model at the previous step.
- $\bullet\,$ This is invariant under multiplication of F by a scalar.

Slide 15

If we use η_k given by Choice 1 in the backtracking method, we can combine a local convergence result in [8] with the previous global result to obtain . . .

Theorem: Suppose $\{x_k\}$ is produced by the INB method with each η_k given by Choice 1. If $\{x_k\}$ has a limit point x_* such that $J(x_*)$ is nonsingular and J is Lipschitz continuous at x_* , then $F(x_*)=0$ and $x_k\to x_*$ with

$$||x_{k+1} - x_*|| \le \beta ||x_k - x_*|| ||x_{k-1} - x_*||.$$

for some β independent of k.

• It follows that the convergence is ...

$$ightharpoonup r$$
-order $(1+\sqrt{5})/2$,

- \triangleright q-superlinear,
- \triangleright two-step q-quadratic.

This and other choices in [8] may become too small too quickly away from a solution.

We recommend safeguards that work against this.

<u>Rationale</u>: If large forcing terms are appropriate at some point, then dramatically smaller forcing terms should be justified over several iterations before usage.

Choice 1 safeguard [8]: Modify η_k by

$$\eta_k \leftarrow \max\{\eta_k, \eta_{k-1}^{(1+\sqrt{5})/2}\}$$

whenever $\eta_{k-1}^{(1+\sqrt{5})/2} > .1$.

Slide 17

b. Newton-Krylov methods.

Idea: Implement a Newton iterative method using a *Krylov subspace method* as the linear solver.

- The term appears to have originated with [3].
- Naming conventions: Newton-GMRES, Newton-Krylov-Schwarz (NKS), Newton-Krylov-Multigrid (NKMG), ...
- "Truncated Newton" originated with [5], which outlined an implementation of Newton with CG.

General considerations.

- The linear system is $J(x) \, s = -F(x)$. The usual initial approximate solution is $s_0 = 0$.
- The linear residual norm ||F(x) + J(x)s|| is just the local linear model norm.

Slide 21

- About **preconditioning** . . .
 - ▶ Preconditioning on the right retains compatibility between the norms used in the linear and nonlinear inexact Newton strategies.
 - ▶ Preconditioning on the left may introduce incompatibilities.
 - ightharpoonup It <u>is</u> safe to "precondition the problem" on the left, i.e., to solve $M^{-1}F(x)=0$ for an M that is <u>used without change throughout the solution process.</u>

Matrix-free implementations

Krylov subspace methods require only products of J(x) — and sometimes $J(x)^T$ — with vectors.

Slide 22

There are possibilities for producing these without creating and storing J(x).

One possibility for products involving either J(x) or $J(x)^T$ is automatic differentiation.

This is actively being explored in the Mathematics and Computer Science Division, Argonne National Lab. See the ANL Computational Differentiation Project web page, www-unix.mcs.anl.gov/autodiff/index.html.

A very widely used technique, applicable when only products involving J(x) are needed, is **finite-difference approximation**.

For a local convergence analysis, see [2].

Given $v \in I\!\!R^n$, formulas for approximating J(x)v to 1st, 2nd, 4th, and 6th order are . . .

Slide 23

Slide 24

$$\begin{split} &\frac{1}{\delta}[F(x+\delta v)-F(x)],\\ &\frac{1}{2\delta}[F(x+\delta v)-F(x-\delta v)],\\ &\frac{1}{6\delta}\left[8F(x+\frac{\delta}{2}v)-8F(x-\frac{\delta}{2}v)-F(x+\delta v)+F(x-\delta v)\right],\\ &\frac{1}{90\delta}\left[256F(x+\frac{\delta}{4}v)-256F(x-\frac{\delta}{4}v)-40F(x+\frac{\delta}{2}v)+40F(x-\frac{\delta}{2}v)+F(x+\delta v)-F(x-\delta v)\right]. \end{split}$$

• The 1st-order formula is very commonly used; the others very rarely used (although sometimes they're needed, see [13], [12]).

Choosing δ .

- As before ...
 - \triangleright We try to choose δ to roughly balance truncation and floating point error.
- A choice used in [12] that approximately minimizes a bound on the relative error in the difference approximation is based on . . .

$$\delta = \frac{\left[(1 + ||x||) \epsilon_F \right]^{1/(p+1)}}{||v||},$$

where p is the difference order and ϵ_F is the relative error in F-evaluations ("function precision"). The main underlying assumption is that F and its derivatives up to order p+1 have about the same scale.

• A crude heuristic is $\delta = \epsilon^{1/(p+1)}$, where ϵ is machine epsilon.

Additional references and software.

In addition to the classic book of Dennis and Schnabel [6], I recommend the books by Kelley, especially [9] and also [10] and [11]. These come with MATLAB software. You can download PDF files of [9] and [10] as well as the associated software from the SIAM sites http://www.siam.org/books/kelley/kelley.html and http://www.siam.org/books/fr18/, resp.

See also Kelley's website http://www4.ncsu.edu/eos/users/c/ctkelley/www/tim.html.

Slide 25

For challenging large-scale applications, I recommend the following publicly available, downloadable software:

- NITSOL This is a flexible Newton-Krylov code written in Fortran. It is described in [12] and downloadable at http://users.wpi.edu/~walker/NITSOL/.
- NOX and KINSOL These are powerful codes for parallel solution of large-scale nonlinear systems, downloadable at http://software.sandia.gov/trilinos/packages/nox/and http://www.llnl.gov/CASC/sundials/, resp.
- PETSc This is a broad suite of codes for parallel solution of large-scale linear and nonlinear systems plus ancillary tasks such as preconditioning. It is downloadable at http://www-unix.mcs.anl.gov/petsc/petsc-as/.

References

- [1] E. L. Allgower, K. Böhmer, F. A. Potra, and W. C. Rheinboldt, A mesh-independence principle for operator equations and their discretizations, SIAM J. Numer. Anal., 23 (1986), pp. 160–169.
- [2] P. N. Brown, A local convergence theory for combined inexact-newton/finite difference projection methods, SIAM J. Numer. Anal., 24 (1987), pp. 407–434.
- [3] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 450–481.
- [4] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), pp. 400-408.
- [5] R. S. Dembo and T. Steihaug, Truncated Newton algorithms for large-scale optimization, Math. Prog., 26 (1983), pp. 190-212.
- [6] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, vol. 16 of Classics in Applied Mathematics, SIAM, Philadelphia, PA, 1996.
- [7] S. C. EISENSTAT AND H. F. WALKER, Globally convergent inexact Newton methods, SIAM J. Optimization, 4 (1994), pp. 393-422.
- [8] ______, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17 (1996), pp. 16–32.
- [9] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, vol. 16 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1995.
- [10] _____, Iterative Methods for Optimization, vol. 18 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1999.
- [11] —, Solving Nonlinear Equations with Newton's Method, vol. 1 of Fundamentals of Algorithms, SIAM, Philadelphia, PA, 2003.
- [12] M. PERNICE AND H. F. WALKER, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput., 19 (1998), pp. 302–318.
- [13] K. TURNER AND H. F. WALKER, Efficient high accuracy solutions with GMRES(m), SIAM J. Sci. Stat. Comput., 13 (1992), pp. 815–825.