CCET510 - CONTROLE LINEAR | PROF. DR. LUCAS LIMA RODRIGUES

Controle Linear I

Unidade temática I Revisão

Parte 1: Apresentação do curso

CCET510 - CONTROLE LINEAR I

Plataforma didática

Unidades temáticas

Consiste em 8 unidades temáticas:

- a) Conceitos básicos de sinais e sistemas.
 - i. Resposta a entradas senoidais.
 - 1. Resposta a entradas não senoidais.
- b) Representação por equações diferenciais e equações de diferenças.
- → Resposta a entradas senoidais.
 - Resposta a entradas não senoidais.
 - Resposta a entradas senoidais.

Plataforma didática

Você será convidado automaticamente se tiver o e-mail institucional.

Cronograma

Unidade temática	Encontros
1	2
2	2
3	2

Estrutura do curso

O curso é dividido em 4 módulos, cada um com 3 aulas.

Estrutura do curso

Direita: bla bla

Esquerda

Teste Aaaa Teste

Teste

Teste teste

Outro exemplo

Direita: bla bla

Teste Secondary
(Yellow) Tertiary (Red)

Teste Primary

Primary + bold and Secondary + bold

Meio

Teste

Esquerda

Teste

Adnomotions

Theorem (Euclid's Theorem)

Hello world!

Exercício (Ogata 4.67)

Hello world!

Tarefa

Hello world!

Adnomotions

Resposta

Hello world!

Hello 2

Atenção: Remember that mathematical proofs should be both rigorous and clear. Clarity without rigor is insufficient, and rigor without clarity is ineffective.

Adnomotions

Remember that mathematical proofs should be both rigorous and clear. Clarity without rigor is insufficient, and rigor without clarity is ineffective.

Remember that mathematical proofs should be both rigorous and clear. Clarity without rigor is insufficient, and rigor without clarity is ineffective.

Mathematics is the queen of sciences, and number theory is the queen of mathematics. — Gauss

Exemplo 1 (Ogata 4.6)

Considere o sistema abaixo:

$$H(s) = \frac{1}{s^2 + 3s + 4}$$

Exemplo 2

Considere o sistema abaixo:

$$H(s) = \frac{1}{s^2 + 3s + 4}$$

Solução (Exemplo 2)

A solução é bla bla bla

Problema 1

Considere o sistema abaixo:

$$H(s) = \frac{1}{s^2 + 3s + 4}$$

Solução

A solução é bla bla bla

Exercício (Ogata 4.67)

Considerar o sistema de controle abaixo:

$$H(s) = \frac{1}{s^2 + 2s + 1}$$

- a) Determine a resposta do sistema a uma entrada senoidal de frequência $\omega = 1\pi \ {\rm rad/s}.$
- b) Determine a resposta do sistema a uma entrada senoidal de frequência 2 rad/s.
- **1.** A
 - a. A
 - i. (

ii. D

b. B

2. B