

Точка пересечения высот треугольника. Ортоцентр треугольника

Главная / Геометрия / Треугольники / Глава 9. Высота треугольника / Точка пересечения высот треугольника. Ортоцентр...

<u>Точка пересечения</u> <u>Расположение точки пересечения</u> **Определение ортоцентра треугольника**

Ортоцентр треугольника – точка пересечения высот треугольника.

Теорема о точке пересечения высот треугольника

Высоты треугольника (или их продолжения) пересекаются в одной точке.

Н – ортоцентр треугольника

Доказательство

Так как в зависимости от вида треугольника высоты располагаются по-разному, то рассмотрим доказательство для каждого вида треугольников.

Шаг 1

Рассмотрим остроугольный треугольник ABC с высотами AA_1 , BB_1 и CC_1 . Докажем, что высоты пересекаются в одной точке.

Теорема о точке пересечения высот треугольника. Доказательство. Шаг 1

Шаг 2

Проведем через вершины треугольника прямые, которые будут параллельны противоположным сторонам. Точки пересечения этих прямых обозначим A_2 , B_2 и C_2 .

Теорема о точке пересечения высот треугольника. Доказательство. Шаг 2

Шаг 3

Рассмотрим четырехугольник AC₂BC.

По построению:

AC||C₂B

AC₂||CB

Следовательно, АС2ВС – параллелограмм из чего следует:

$$AC = C_2B$$

$$AC_2 = CB$$

Теорема о точке пересечения высот треугольника. Доказательство. Шаг 3

Шаг 4

Рассмотрим четырехугольник АВА₂С.

По построению:

A₂B||AC

AB||CA₂

Следовательно, АВА₂С – параллелограмм из чего следует:

Теорема о точке пересечения высот треугольника. Доказательство. Шаг 4

Шаг 5

Рассмотрим четырехугольник АВСВ2.

По построению:

 $AB||B_2C$ $AB_2||BC$

Следовательно, АВСВ2 – параллелограмм из чего следует:

AB=B₂C

AB₂=BC

Теорема о точке пересечения высот треугольника. Доказательство. Шаг 5

Шаг 6

Так как по построению $AC||A_2C_2$ и по условию $BB_1\perp AC$, то $BB_1\perp A_2C_2$.

Аналогично:

- по построению $BC||B_2C_2$ и по условию $AA_1\bot BC$, то $AA_1\bot B_2C_2$.
- по построению $AB||A_2B_2$ и по условию $CC_1\bot AB$, то $CC_1\bot A_2B_2$.

Итак в результате имеем:

- A₁A перпендикулярен стороне треугольника B₂C₂ и делит ее пополам;
- B₁B перпендикулярен стороне треугольника A₂C₂ и делит ее пополам;
- C₁C перпендикулярен стороне треугольника A₂B₂ и делит ее пополам.

По <u>определению серединного перпендикуляра</u> A_1A , B_1B , C_1C — серединные перпендикуляры.

По свойству серединных перпендикуляров, они пересекаются в одной точке.

Следовательно, A_1A , B_1B , C_1C пересекаются в одной точке.

Свойство доказано.