Metodi Analitici e Numerici per l'Ingegneria – A.A. 2018/2019 Appello del 28 Giugno 2019 - Docenti: Mola e Parolini

Nome:	Cognome:		Matr.	
foglio i comandi Matle	re i seguenti esercizi con l'ausilio ab utilizzati. Per accedere alle j Toolbox\Parolini').			
Esercizio 1. Si consid	eri il seguente problema di Cauc	ny		
	$\begin{cases} y'(t) = -y(t) + 2\\ y(0) = 2. \end{cases}$	$t + 2, \qquad 0 < t \le 1$,	
$(\mathtt{eulero_indietr}$	rossimazione della soluzione all'i ro.m) con passo di discretizzazion long. Sapendo che la soluzione es format long.	h = 0.04 e si ripo	orti il valore della soluzi	ione all'istante
	o precedente con diversi valori errori per i tre valori di h su un			h = 0.01 e si
	mato la definizione di convergenz onfronti con i risultati numerici o		ma di convergenza per	il metodo con-

Esercizio 2.	Si tracci il	grafico della	funzione	f(x) = 0	$(x-\pi)(\cos(x) + \sin(x))$	- 1) nell'intervallo	I = [0, 4].

a. Dopo aver verificato che il metodo di bisezione può essere utilizzato per approssimarlo lo zero della funzione nell'intervallo considerato, si calcoli un'approssimazione dello zero mediante la funzione bisez.m, con una tolleranza di 10^{-8} a partire dall'intervallo I=[0,4]. Si riporti l'approssimazione calcolata e il numero di iterazioni effettuate.

b. Si presenti il metodo di Newton per approssimare lo zero di una funzione, se ne fornisca un'interpretazione grafica e si riportino le condizioni sufficienti a garantirne la convergenza quadratica.

c. Si utilizzi il metodo di Newton (newton.m) per approssimazione lo zero di f, con una tolleranza di 10^{-8} e un valore iniziale $x_0 = 2$. Si riporti l'approssimazione calcolata e il numero di iterazioni effettuate. Si confrontino e giustifichino i risultati rispetto a quelli ottenuti con il metodo di bisezione.

Eser	ecizio 3. Si vuole interpolare la funzione $y(x) = -e^{- 4x ^2}$ in 9 punti equispaziati sull'intervallo $[-1,1]$.
a.	Dopo aver richiamato la definizione di interpolante Lagrangiana, si calcoli, utilizzando le funzioni polyfit e polyval, l'interpolante Lagrangiana della funzione nei nodi assegnati e si fornisca il valore dell'interpolante nel punto $x=0.95$.
b.	Si interpoli la stessa funzione sugli stessi nodi utilizzando ora una spline naturale cubica (funzione spline_nat.m) e si fornisca il valore della spline nel punto $x=0.95$.
c.	Si forniscano delle stime teoriche di errore per le due interpolanti considerate e si discutano i risultati numerici ottenuti alla luce delle stime teoriche.