

Boosting

Machine Learning: Jordan Boyd-Graber University of Maryland

Motivating Example

Goal

Automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)

- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to second subset of examples
- obtain second rule of thumb
- repeat T times

Details

- How to choose examples
- How to **combine** rules of thumb

Details

- How to choose examples concentrate on hardest examples (those most often misclassified by previous rules of thumb)
- How to combine rules of thumb

Details

- How to choose examples concentrate on hardest examples (those most often misclassified by previous rules of thumb)
- How to combine rules of thumb take (weighted) majority vote of rules of thumb

Boosting

Definition

general method of converting rough rules of thumb into highly accurate prediction rule

- assume given weak learning algorithm that can consistently find classifiers (rules of thumb) at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting)
- given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
- For t = 1, ..., T:
 - □ Construct distribution D_t on $\{1, ..., m\}$
 - Find weak classifier

$$h_t: \mathscr{X} \mapsto \{-1, +1\} \tag{1}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$$
 (2)

Formal Description

- Training set $(x_1, y_1) \dots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
- For t = 1, ..., T:
 - □ Construct distribution D_t on $\{1, ..., m\}$
 - Find weak classifier

$$h_t: \mathscr{X} \mapsto \{-1, +1\} \tag{1}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$$
 (2)

Output final classifier H_{final}

Data distribution D_t

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - □ Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
 (3)

where
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - □ Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
 (3)

where
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

Bigger if wrong, smaller if right

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - □ Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\frac{\alpha_t}{\alpha_t} y_i h_t(x_i)\right\}$$
 (3)

where
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

Weight by how good the weak learner is

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - □ Given D_t and h_t :

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\} \tag{3}$$

where
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

Final classifier:

$$H_{fin}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

Toy Example

Round 1

Round 2

Round 3

Final Classifier

Generalization

Generalization

(boosting C4.5 on "letter" dataset)

Training Error

First, we can prove that the training error goes down. If we write the the error at time t as $\frac{1}{2} - \gamma_t$,

$$\hat{R}(h) \le \exp\left\{-2\sum_{t} \gamma_{t}^{2}\right\} \tag{5}$$

• If $\forall t : \gamma_t \ge \gamma > 0$, then $\hat{R}(h) \le \exp\{-2\gamma^2 T\}$

Adaboost: do not need γ or T a priori

Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

$$D_{t+1}(i) = \frac{D_t(i)\exp\left\{-\alpha_t y_i h_t(x_i)\right\}}{Z_t}$$
(6)

$$\frac{D_{t-1}(i)\exp\{-\alpha_{t-1}y_ih_{t-1}(x_i)\}\exp\{-\alpha_ty_ih_t(x_i)\}}{Z_{t-1}Z_t}$$
 (7)

$$\frac{\exp\left\{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\right\}}{m \prod_{s=1}^{t} Z_s} \tag{8}$$

Training Error Intuition

- On round t weight of examples incorrectly classified by h_t is increased
- If x_i incorrectly classified by H_T , then x_i wrong on (weighted) majority of h_t 's
 - If x_i incorrectly classified by H_T , then x_i must have large weight under D_T
 - But there can't be many of them, since total weight ≤ 1

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (9)

(10)

Definition of training error

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (9)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\} \tag{10}$$

(11)

 $\mathbb{1}[u \le 0] \le \exp -u$ is true for all real u.

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (9)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\} \tag{10}$$

(11)

Final distribution $D_{t+1}(i)$

$$D_{t+1}(i) = \frac{\exp\{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\}}{m \prod_{s=1}^{t} Z_s}$$
(12)

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (9)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\}$$
 (10)

$$= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_{t} \right] D_{T+1}(i)$$
 (11)

(12)

m's cancel. D is a distribution

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \le 0 \right]$$
 (9)

$$\leq \frac{1}{m} \sum_{i=1}^{m} \exp\left\{-y_i g(x_i)\right\}$$
 (10)

$$= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_{t} \right] D_{T+1}(i)$$
 (11)

$$=\prod_{t=1}^{T} Z_t \tag{12}$$

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp\left\{-\alpha_{t} y_{i} h_{t}(x_{i})\right\}$$
 (13)

$$= (14)$$

$$= (15)$$

$$= (16)$$

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp\left\{-\alpha_{t} y_{i} h_{t}(x_{i})\right\}$$

$$= \sum_{i: \text{right}} D_{t}(i) \exp\left\{-\alpha_{t}\right\} + \sum_{i: \text{wrong}} D_{t}(i) \exp\left\{\alpha_{t}\right\}$$
(13)

$$= \sum_{i: \text{right}} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
 (14)

$$= (15)$$

$$= (16)$$

$$Z_t = \sum_{i=1}^m D_t(i) \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
(13)

$$= \sum_{i: \text{right}}^{i-1} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
 (14)

$$= (1 - \epsilon_t) \exp\{-\alpha_t\} + \epsilon_t \exp\{\alpha_t\}$$
 (15)

$$= (16)$$

$$Z_t = \sum_{i=1}^m D_t(i) \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$
 (13)

$$= \sum_{i: \text{right}} D_t(i) \exp\{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp\{\alpha_t\}$$
 (14)

$$= (1 - \epsilon_t) \exp\{-\alpha_t\} + \epsilon_t \exp\{\alpha_t\}$$
 (15)

$$= (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$$
 (16)

Single Weak Learner

$$Z_{t} = (1 - \epsilon_{t}) \sqrt{\frac{\epsilon_{t}}{1 - \epsilon_{t}}} + \epsilon_{t} \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$
(13)

Normalization Product

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_{t}\right)^{2}}$$
 (14)

(15)

Normalization Product

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_{t}\right)^{2}}$$
 (13)

$$\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_{t}\right)^{2}\right\} \tag{14}$$

(15)

Normalization Product

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T} 2\sqrt{\epsilon_{t}(1-\epsilon_{t})} = \sqrt{1-4\left(\frac{1}{2}-\epsilon_{t}\right)^{2}}$$
 (13)

$$\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\} \tag{14}$$

$$=\exp\left\{-2\sum_{t=1}^{T}\left(\frac{1}{2}-\epsilon_{t}\right)^{2}\right\} \tag{15}$$

Generalization

VC Dimension

$$\leq 2(d+1)(T+1)\lg[(T+1)e]$$

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L_1 margin, and the weak learnability assumption requires data to be linearly separable with margin 2γ

Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible: can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - shift in mind set: goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
- weak classifiers too complex
 - overfitting
- weak classifiers too weak ($\gamma_t \rightarrow 0$ too quickly)
 - underfitting
 - low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise