САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №1

«Многократные прямые измерения физических величин и обработка результатов наблюдений»

Выполнил студент: Невзоров Никита Иванович группа: 23.Б12-мм

Проверил: Профессор Морозов Виктор Александрович

Содержание

1	Вве 1.1 1.2	едение Цель работы						
2	Основная часть							
	2.1	Теоретическая часть						
	2.2	Эксперимент						
		2.2.1 Ход эксперимента						
	2.3	Обработка данных						
		2.3.1 Код программы						
	2.4	Таблицы						
		2.4.1 Грубые измерения						
		2.4.2 Точные измерения						
3	Pac	счеты						
4	Гра	Графики						
5	Вьп	POT						

1 Введение

1.1 Цель работы

Цель данной лабораторной работы – освоение методики использования измерительного прибора для многократного прямого измерения физической величины, а также выполнение статистической обработки серии результатов наблюдений при прямых измерениях.

1.2 Решаемые задачи

- 1. Освоить методику использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнить статистическую обработку серии результатов наблюдений при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

Основные понятия, используемые в работе:

• Среднее арифметическое — наилучшее значение измеряемой величины:

$$x = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

где x_i — результаты отдельных наблюдений, n — количество измерений.

• Относительная погрешность для частотомера Ч3-32:

$$\gamma = \pm \left(\gamma_0 + \frac{1}{f_x \cdot T}\right) \cdot 100\%,$$

где $\gamma_0=5\times 10^{-7}$ — основная относительная погрешность, f_x — измеряемая частота в Γ ц, T — время измерения в с.

• Погрешность прибора:

$$\Delta f_{\text{приб}} = \gamma \cdot f_{\text{ср}}$$

• Дисперсия:

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

• Средняя квадратичная погрешность:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

• Погрешность среднего значения:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

2.2 Эксперимент

Для выполнения работы использовался частотомер Ч3-32 для измерения частоты следования импульсов, задаваемых генератором Γ 5-15.

Рис. 1: Блок-схема установки для измерения периода и частоты следования импульсов

Рис. 2: Фото экспериментальной установки

2.2.1 Ход эксперимента

- 1. Включение приборов и настройка генератора импульсов
- 2. Проведение серии измерений (10 раз на грубой шкале и 50 раз на точной шкале)
- 3. Запись результатов измерений в таблицу

2.3 Обработка данных

Для обработки результатов измерений была разработана программа на С++.

2.3.1 Код программы

Листинг 1: Вычисление среднего значения

```
double mean_f = 0.0;
for (int i = 0; i < n; i++) {
    mean_f += freq[i];
}
mean_f /= n;</pre>
```

Листинг 2: Вычисление дисперсии

```
double variance = 0.0;
for (int i = 0; i < n; i++) {
    double dev = freq[i] - mean_f;
    variance += dev * dev;
}
variance /= (n-1);</pre>
```

Листинг 3: Вычисление СКО

```
double std_dev = sqrt(variance);
```

2.4 Таблицы

2.4.1 Грубые измерения

№ п.п.	Диапазон показаний (кГц)	Результаты f_i (к Γ ц)	Погрешность $\Delta f_{ m приб}$ (к Γ ц)
1	$0-10^5$	4.53	0.01
2	$0-10^5$	4.54	0.01
3	$0-10^5$	4.54	0.01
4	$0-10^5$	4.52	0.01
5	$0-10^5$	4.52	0.01
6	$0-10^5$	4.54	0.01
7	$0-10^5$	4.52	0.01
8	$0-10^5$	4.54	0.01
9	$0-10^5$	4.55	0.01
10	$0-10^5$	4.54	0.01

Таблица 1: Результаты грубых измерений

2.4.2 Точные измерения

Таблица 2: Результаты точных измерений частоты со случайной погрешностью

1 2 3 4 5 6 7 8	4.552 4.546 4.554 4.566 4.562 4.556 4.544	(κΓη) 0.009 0.003 0.011 0.023 0.019 0.013	0.000081 0.000009 0.000121 0.000529	(κΓц) 0.004 0.004 0.004 0.004
2 3 4 5 6 7 8	4.546 4.554 4.566 4.562 4.556	0.003 0.011 0.023 0.019	0.000009 0.000121 0.000529	$0.004 \\ 0.004$
3 4 5 6 7 8	4.554 4.566 4.562 4.556	0.011 0.023 0.019	0.000121 0.000529	0.004
4 5 6 7 8	4.566 4.562 4.556	0.023 0.019	0.000529	
5 6 7 8	4.562 4.556	0.019		0.004
6 7 8	4.556		0 000961	
7 8		0.013	0.000361	0.004
8	4.544	0.010	0.000169	0.004
		0.001	0.000001	0.004
9	4.548	0.005	0.000025	0.004
	4.558	0.015	0.000225	0.004
10	4.554	0.011	0.000121	0.004
11	4.550	0.007	0.000049	0.004
12	4.550	0.007	0.000049	0.004
13	4.544	0.001	0.000001	0.004
14	4.558	0.015	0.000225	0.004
15	4.550	0.007	0.000049	0.004
16	4.574	0.031	0.000961	0.004
17	4.562	0.019	0.000361	0.004
18	4.572	0.029	0.000841	0.004
19	4.558	0.015	0.000225	0.004
20	4.557	0.014	0.000196	0.004
21	4.556	0.013	0.000169	0.004
22	4.542	-0.001	0.000001	0.004
23	4.534	-0.009	0.000081	0.004
24	4.536	-0.007	0.000049	0.004
25	4.540	-0.003	0.000009	0.004
26	4.538	-0.005	0.000025	0.004
27	4.536	-0.007	0.000049	0.004
28	4.536	-0.007	0.000049	0.004
29	4.540	-0.003	0.000009	0.004
30	4.542	-0.001	0.000001	0.004
31	4.542	-0.001	0.000001	0.004
32	4.542	-0.001	0.000001	0.004
33	4.540	-0.003	0.000009	0.004
34	4.534	-0.009	0.000081	0.004
35	4.544	0.001	0.000001	0.004
36	4.548	0.005	0.000025	0.004
37	4.544	0.001	0.000001	0.004
38	4.536	-0.007	0.000049	0.004
39	4.530	-0.013	0.000169	0.004
40	4.536	-0.007	0.000049	0.004
41	4.530	-0.013	0.000169	0.004
42	4.532	-0.011	0.000121 кение на следую	0.004

5

Продолжение таблицы 2

№ п.п.	f_i (к Γ ц)	$d_i = f_i - \bar{f}$	$d_i^2 \; (\kappa \Gamma \mathfrak{U}^2)$	$\Delta f_{ ext{c.луч},i}$				
		(кГц)		(кГц)				
43	4.530	-0.013	0.000169	0.004				
44	4.515	-0.028	0.000784	0.004				
45	4.516	-0.027	0.000729	0.004				
46	4.522	-0.021	0.000441	0.004				
47	4.518	-0.025	0.000625	0.004				
48	4.524	-0.019	0.000361	0.004				
49	4.536	-0.007	0.000049	0.004				
50	4.506	-0.037	0.001369	0.004				

3 Расчеты

1. Среднее арифметическое:

$$ar{f}=4.543\,\mathrm{k}\Gamma$$
ц

2. Дисперсия:

$$\sigma^2 = 0.00020; \quad \sigma = 0.01425$$

3. Погрешность среднего:

$$\sigma_f = 0.002\,\mathrm{k}\Gamma$$
ц

4. Суммарная погрешность:

$$\Delta f_{ ext{cym}} = 0.004\, ext{к} \Gamma$$
ц

5. Окончательный результат:

$$f=4.543\pm0.004\,\mathrm{k\Gamma}$$
ц

4 Графики

Рис. 3: График зависимости измеренной частоты от номера наблюдения

Рис. 4: Гистограмма распределения измеренных значений частоты

5 Вывод

В ходе лабораторной работы я освоил методику проведения многократных прямых измерений физической величины с использованием электронного частотомера ЧЗ-З2. Были выполнены следующие задачи: освоена методика использования измерительного прибора для многократного прямого измерения физической величины, выполнена статистическая обработка серии результатов наблюдений при прямых измерениях. Полученные навыки позволяют анализировать экспериментальные данные, учитывать случайные погрешности и представлять результаты измерений.

Список литературы

 $[1] \ https://github.com/st117161/Workshop1$