Highly Scalable Deep Learning Training System with Mixed Precision: Training ImageNet in Four Minutes

Tencent Inc., Hong Kong Baptist University

Presented by Xupeng Miao 2018/07/16

Outlines

- Background
- Introduction
- System Overview
 - Mixed-Precision Training with LARS
 - Improvements on Model Architecture
 - Improvements on Communication Strategies
- Experiments

Background

Large-scale deep neural networks with synchronized SGD

- Large mini-batch size
 - Improve the system scalability by reducing the communication-tocomputation ratio
 - Hurt the generalization ability of the models

Background

GPU	SP performance	Memory	Bandwidth
P40	12 TFlops	24 GB	346 GB/s
P100	9.3 TFlops	16 GB	732 GB/s

- Challenge
 - Large mini-batch size often leads to generalization gap
 - Large clusters is hard to achieve near-linear scalability.

- Large mini-batch
 - Less update and Less communication
 - Less variance of gradients
 - Equivalent to decaying the learning rate to some degree

$$\begin{aligned} \text{Var}(\mathbf{g}) &= \text{Var}\Big(\frac{1}{m}\sum\nolimits_{i=1}^{m} g(x_i, y_i)\Big) = \frac{1}{m^2} Var\Big(g(x_1, y_1) + g(x_2, y_2) + \dots + g(x_m, y_m)\Big) \\ &= \frac{1}{m^2} m Var\Big(g(x_1, y_1)\Big) = \frac{1}{m} Var\Big(g(x_1, y_1)\Big) \end{aligned}$$

- Large mini-batch
 - More epochs
 - Difficult to escape from saddle points/local minima

(b) Validation error

Facebook: ImageNet in 1 Hour

Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning rate by k.

Warmup

after
$$k$$
 iterations $w_{t+k} = w_t - \eta \frac{1}{n} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_{t+j})$ minibatch size n

$$\hat{\eta} = kn \qquad \hat{w}_{t+1} = w_t - \hat{\eta} \frac{1}{kn} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_t) \text{ minibatch size } kn$$

$$\nabla l(x, w_t) \approx \nabla l(x, w_{t+j})$$

Facebook: ImageNet in 1 Hour

Figure 1. ImageNet top-1 validation error vs. minibatch size.

Mixed-Precision Training with LARS

$$\Delta w_t^l = \gamma \cdot \eta \cdot \frac{\|w^l\|}{\|\nabla L(w^l)\|} \cdot \nabla L(w_t^l)$$

Table 1: Effectiveness of using LARS on ResNet-50

Mini-Batch Size	Number of Epochs	LARS	Top-1 Accuracy
64K	90	NO	73.2%
64K	90	YES	76.2%

• Improvements on Model Architecture

$$\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma^2 + \epsilon}}$$

$$E(w) = E_0(w) + \frac{1}{2}\lambda \sum_i w_i^2$$

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

Table 2: Effect of Regularization with b, β and γ for AlexNet

Batch	Epochs	Regularize b , β and γ	Top1
64K	95	Yes	55.8%
64K	95	No	57.1%

Figure 4: Feature Map Distribution of Pool5(a) and Pool5-BN5(b) of AlexNet as shown in Figure 3. (the horizontal axis is the training steps, the vertical axis is the feature map distributions.)

• Improvements on Communication Strategies

Tensor Fusion

- Improvements on Communication Strategies
 - Tensor Fusion
 - Hierarchical All-reduce

- Improvements on Communication Strategies
 - Tensor Fusion
 - Hierarchical All-reduce

- Improvements on Communication Strategies
 - Tensor Fusion
 - Hierarchical All-reduce
 - Hybrid All-reduce

For fully-connected layers which usually have a much larger number of weights, ring-based all-reduce still outperforms our hierarchical all-reduce.

Model	Input Size	Parameter Size	FLOPs	Baseline Top1
AlexNet	227x227	62M	727 M	58.8%
ResNet-50	224x224	25M	4 G	75.3%

Figure 8: ImageNet Training with ResNet-50 Using 64K Mini-Batch Size

Table 4: Compare AlexNet training with different teams

Team	Batch	Hardware	Software	Top-1 Accuracy	Time
You et al. [27]	512	DGX-1 station	NVCaffe	58.8%	6h 10m
You et al. [27]	32K	$CPU \times 1024$	Intel Caffe	58.6%	11min
This work	64K	Tesla P40 \times 512	TensorFlow	58.8%	5 m
This work	64K	Tesla P40 \times 1024	TensorFlow	58.7%	4m

Table 5: Compare ResNet-50 training with different teams

Team	Batch	Hardware	Software	Top-1 Accuracy	Time
He et al. [13]	256	Tesla P100 × 8	Caffe	75.3%	29h
Goyal et al. [12]	8K	Tesla P100 \times 256	Caffe2	76.3%	1h
Cho et al. [4]	8K	Tesla P100 \times 256	Torch	75.0%	50min
Codreanu et al. [5]	32K	$KNL \times 1024$	Intel Caffe	75.3%	42min
You et al. [27]	32K	$KNL \times 2048$	Intel Caffe	75.4%	20min
Akiba et al. [2]	32K	Tesla P100 \times 1024	Chainer	74.9%	15min
This work	64K	Tesla P40 \times 1024	TensorFlow	76.2%	8.7m
This work	64K	Tesla P40 \times 2048	TensorFlow	75.8%	6.6m

Figure 10: Compare the convergence of mixed-precision and single-precision training

Table 6: Effect of LARS to ResNet-50 Training

Batch	LARS	Top-1 Accuracy
64K	×	60.6%
64K	\checkmark	71.9%

Table 7: Effect of improvements to ResNet-50 Training

Batch	No Decay BN	Top1
64K	×	71.9%
64K	\checkmark	76.2%

Table 9: ResNet-50: Compare the speed of mixed-precision training and single-precision training

Batch/GPU	Data Type	Images/Sec
64	FP32	172
64	mixed	218

Figure 11: ResNet-50 training throughput with batch 64/GPU

Figure 12: ResNet-50 training throughput with batch 32/GPU

99.2%

87.9%

Figure 13: AlexNet training throughput with batch 128/GPU

Conclusion

Q&A