

Modern Optimization Techniques

2. Unconstrained Optimization / 2.6. Coordinate Descent

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 30.10.	(1)	0. Overview
Mon. 6.11.	(2)	 Theory Convex Sets and Functions
Mon. 13.11. Mon. 20.11. Mon. 27.11. Mon. 4.12. Mon. 11.12. Mon. 18.12.	(3) (4) (5) (6) (7)	2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods — canceled — — Christmas Break —
Mon. 8.01.	(8)	2.6 Coordinate Descent
Mon. 15.01. Mon. 22.01.	(9) (10)	3. Equality Constrained Optimization3.1 Duality3.2 Methods
Mon. 29.01. Mon. 5.02. Mon. 12.02.	(11) (12) (13)	 4. Inequality Constrained Optimization 4.1 Primal Methods 4.2 Barrier and Penalty Methods 4.3 Cutting Plane Methods Q & A

Outline

1. Idea and Optimality

2. Coordinate Descent Algorithm

3. Convergence

Outline

1. Idea and Optimality

2. Coordinate Descent Algorithm

3. Convergence

- Gradient Descent and Stochastic Gradient Descent:
 - update all variables simultaneously.
 - use the gradient to do so. (first order methods)
- Coordinate Descent:
 - update one variable at a time.
 - use an analytic solver to do so (derivative-free method)
 - if not possible: use one-dimensional gradient steps (first order method; often slow)

Start with an initial guess $\mathbf{x}^{(0)}=(\mathbf{x}_1^{(0)},\mathbf{x}_2^{(0)},\ldots,\mathbf{x}_N^{(0)})\in\mathbb{R}^N$

For k = 1, 2, 3, ...:

For
$$k = 1, 2, 3, \ldots$$
:
$$\mathbf{x}_1^{(k)} \leftarrow \operatorname*{arg\,min} f(\mathbf{x}_1, \mathbf{x}_2^{(k-1)}, \mathbf{x}_3^{(k-1)}, \ldots, \mathbf{x}_N^{(k-1)})$$

Start with an initial guess
$$\mathbf{x}^{(0)} = (\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)}, \dots, \mathbf{x}_N^{(0)}) \in \mathbb{R}^N$$

For
$$k = 1, 2, 3, ...$$
:
$$\mathbf{x}_{1}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{1}} f(\mathbf{x}_{1}, \mathbf{x}_{2}^{(k-1)}, \mathbf{x}_{3}^{(k-1)}, ..., \mathbf{x}_{N}^{(k-1)})$$

$$\mathbf{x}_{2}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{2}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}, \mathbf{x}_{3}^{(k-1)}, ..., \mathbf{x}_{N}^{(k-1)})$$

For
$$k = 1, 2, 3, ...$$
:
$$\mathbf{x}_{1}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{1}} f(\mathbf{x}_{1}, \mathbf{x}_{2}^{(k-1)}, \mathbf{x}_{3}^{(k-1)}, \dots, \mathbf{x}_{N}^{(k-1)})$$

$$\mathbf{x}_{2}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{2}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}, \mathbf{x}_{3}^{(k-1)}, \dots, \mathbf{x}_{N}^{(k-1)})$$

$$\mathbf{x}_{3}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{2}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}^{(k)}, \mathbf{x}_{3}, \dots, \mathbf{x}_{N}^{(k-1)})$$

$$\begin{split} \text{For } k &= 1, 2, 3, \ldots : \\ \mathbf{x}_{1}^{(k)} \leftarrow \underset{\mathbf{x}_{1}}{\text{arg min }} f(\mathbf{x}_{1}, \mathbf{x}_{2}^{(k-1)}, \mathbf{x}_{3}^{(k-1)}, \ldots, \mathbf{x}_{N}^{(k-1)}) \\ \mathbf{x}_{2}^{(k)} \leftarrow \underset{\mathbf{x}_{2}}{\text{arg min }} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}, \mathbf{x}_{3}^{(k-1)}, \ldots, \mathbf{x}_{N}^{(k-1)}) \\ \mathbf{x}_{3}^{(k)} \leftarrow \underset{\mathbf{x}_{3}}{\text{arg min }} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}^{(k)}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{N}^{(k-1)}) \\ \vdots \\ \mathbf{x}_{n}^{(k)} \leftarrow \underset{\mathbf{x}_{3}}{\text{arg min }} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}^{(k)}, \ldots, \mathbf{x}_{n-1}^{(k)}, \mathbf{x}_{n}, \mathbf{x}_{n+1}^{(k-1)}, \ldots, \mathbf{x}_{N}^{(k-1)}) \end{split}$$

For
$$k = 1, 2, 3, \ldots$$
:
$$\mathbf{x}_{1}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{1}} f(\mathbf{x}_{1}, \mathbf{x}_{2}^{(k-1)}, \mathbf{x}_{3}^{(k-1)}, \ldots, \mathbf{x}_{N}^{(k-1)})$$

$$\mathbf{x}_{2}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{2}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}, \mathbf{x}_{3}^{(k-1)}, \ldots, \mathbf{x}_{N}^{(k-1)})$$

$$\mathbf{x}_{3}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{3}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}^{(k)}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{N}^{(k-1)})$$

$$\vdots$$

$$\mathbf{x}_{n}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{n}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}^{(k)}, \ldots, \mathbf{x}_{n-1}^{(k)}, \mathbf{x}_{n}, \mathbf{x}_{n+1}^{(k-1)}, \ldots, \mathbf{x}_{N}^{(k-1)})$$

$$\vdots$$

$$\mathbf{x}_{N}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{n}} f(\mathbf{x}_{1}^{(k)}, \mathbf{x}_{2}^{(k)}, \ldots, \mathbf{x}_{N-1}^{(k)}, \mathbf{x}_{N})$$

Coordinate Descent Algorithm

Nocedal and Wright, 2006, p.249

[https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf]

- ightharpoonup assume the current iterate $x^{(k)}$ is the intersection of the two red lines.
- ightharpoonup Q: Where will a coordinate descent step along axis x_1 go to?
- ightharpoonup Q: Where will a coordinate descent step along axis x_2 go to?
- ▶ Q: Where will the next coordinate descent step go to?

Question: If a point x is minimal along each axis, is it a global minimum?

$$f(\mathbf{x} + t \mathbf{e}^{(\mathbf{n})}) \ge f(\mathbf{x}) \quad \forall t \in \mathbb{R}, \forall n \in \{1, \dots, N\}$$

$$\stackrel{?}{\Longrightarrow} f(\mathbf{x}) = \min_{\mathbf{y}} f(\mathbf{y})$$

where:

▶ $\mathbf{e}^{(\mathbf{n})} \in \mathbb{R}^N$ is the *n*-th unit vector with $\mathbf{e}_n^{(n)} := 1$ and $\mathbf{e}_m^{(n)} := 0$ for $m \neq n$.

If f is convex and differentiable: yes.

Proof: $g^{(i)}(\mu) := f(\mathbf{x} + \mu \mathbf{e^{(i)}})$ are convex and differentiable.

 $\mu={\rm 0}$ is their minimum, thus

$$0 = \frac{\partial g^{(i)}}{\partial \mu}(\mu) = \frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x})$$

And then

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_1}, \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_n}\right)^T = \mathbf{0}$$

and thus x is the global optimum.

If *f* is **convex**, but **not differentiable**: in general, no.

Counter example:

If f is a sum of

- ► a differentiable convex and
- ► a separable convex function,

then: yes.

$$f(\mathbf{x}) = g(\mathbf{x}) + \sum_{n=1}^{N} h_n(\mathbf{x}_n)$$

with

- i. g is differentiable and convex
- ii. all h_n are convex (but each h_n depends only on a single \mathbf{x}_n)

Proof: For any $\mathbf{y} \in \text{dom } f$:

$$f(\mathbf{y}) - f(\mathbf{x}) = g(\mathbf{y}) - g(\mathbf{x}) + \sum_{n=1}^{N} h_n(\mathbf{y}_n) - h_n(\mathbf{x}_n)$$

$$\geq \nabla g(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \sum_{n=1}^{N} s_n(\mathbf{y}_n - \mathbf{x}_n), \quad \forall s_n \in \partial h_n(x_n)$$

$$= \sum_{n=1}^{N} \underbrace{(\nabla_n g(\mathbf{x}) + s_n)}_{=0 \text{ for } s_n = -\nabla_n g(\mathbf{x})} (\mathbf{y}_n - \mathbf{x}_n) = 0$$

as $s_n := -\nabla_n g(\mathbf{x})$ is a subgradient of h_n :

x is minimal along axis n

$$\rightarrow$$
 $f(X_n; X_{-n})$ is convex and has minimum at $X_n = x_n$

$$\rightarrow$$
 0 is a subgradient of $f(X_n; X_{-n})$ at x_n :

$$0 \in \partial f(X_n; X_{-n}) = \nabla_n g(x) + \partial h_n(x_n)$$

$$\rightarrow \exists s_n \in \partial h_n(x_n) : \nabla_n g(x) + s_n = 0$$

Outline

1. Idea and Optimality

2. Coordinate Descent Algorithm

3. Convergence

One-dimensional Subproblems

Let $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ be a function, $x \in \text{dom } f$ a point.

n-th one-dimensional subproblem at *x*:

$$g_n^{(x)}: T_n^{(x)} \to \mathbb{R}$$
 $g_n^{(x)}(t) := f(x + t e^{(n)})$
 $T_n^{(x)} := \{ t \in \mathbb{R} \mid x + t e^{(n)} \in \text{dom } f \}$

n-th one-dimensional subproblem solver at x:

$$h_n(x) := \arg\min_{t \in T_n^{(x)}} g_n^{(x)}(t)$$

One-dimensional Subproblems / Example 1

$$f(x_1, x_2) := ax_1^2 + bx_2^2 + cx_1x_2$$

Q: What are the one-dimensional problems g_1, g_2 for x_1 and x_2 ? What are their solvers h_1, h_2 ?

remember.

n-th one-dimensional subproblem at *x*:

$$\begin{split} g_n^{(x)} &: T_n^{(x)} \to \mathbb{R} \\ g_n^{(x)}(t) &:= f(x + t e^{(n)}) \\ T_n^{(x)} &:= \{ t \in \mathbb{R} \mid x + t e^{(n)} \in \mathsf{dom} \, f \} \end{split}$$

n-th one-dimensional subproblem solver at *x*:

$$h_n(x) := \arg\min_{t \in T_n^{(x)}} g_n^{(x)}(t)$$

One-dimensional Subproblems / Example 2

Solving a linear system of equations / least squares / linear regression:

$$\begin{split} f(x) &:= x^T A x - b^T x, \quad A \in \mathbb{R}^{N \times N} \text{ sym. pos.def., } b \in \mathbb{R}^N \\ g_n^{(x)}(t) &= f(X_n = x_n + t; x_{-n}), \quad T_n^{(x)} = \mathbb{R} \\ f(X_n; x_{-n}) &= A_{n,n} X_n^2 + (2(x_{-n}^T A_{-n,-})_n - b_n) X_n + x_{-n}^T A_{-n,-n} x_{-n} - b_{-n}^T x_{-n} \\ &= A_{n,n} X_n^2 + (2A_{n,-n} x_{-n} - b_n) X_n + x_{-n}^T A_{-n,-n} x_{-n} - b_{-n}^T x_{-n} \end{split}$$

analytic minimum:

$$f'(X_n; x_{-n}) = 2A_{n,n}X_n + 2A_{n,-n}x_{-n} - b_n \stackrel{!}{=} 0$$

$$V_n = \frac{b_n - 2A_{n,-n}x_{-n}}{2A_{n,n}}$$
i.e., $h_n(x) := \frac{b_n - 2A_{n,-n}x_{-n}}{2A_{n,n}}$

Coordinate Descent / Random Coordinate

```
1 min-cd(f, h, x^{(0)}, K, \epsilon):

2 for k := 1, ..., K:

3 draw n^{(k)} \sim \text{unif}(\{1, ..., N\})

4 x_m^{(k)} := x_m^{(k-1)} for m \in \{1, ..., N\}, m \neq n^{(k)}

5 x_{n^{(k)}}^{(k)} := h_{n^{(k)}}(x^{(k-1)})

6 if k \ge N and ||x^{(k)} - x^{(k-N)}|| \le \epsilon

7 return x^{(k)}

8 return "not converged"
```

- h solvers for one-dimensional subproblems $g_n^{(x)}$.
- lacktriangledown ϵ convergence threshold step in an epoche

Coordinate Descent / Cyclic Epochs

```
1 min-cd(f, h, x^{(0)}, K, \epsilon):
   for k := 1, ..., K:
3 x_1^{(k)} := h_1(x_1^{(k-1)}, \dots, x_N^{(k-1)})
4 x_2^{(k)} := h_2(x_1^{(k)}, x_2^{(k-1)}, \dots, x_N^{(k-1)})
        x_2^{(k)} := h_3(x_1^{(k)}, x_2^{(k)}, x_2^{(k-1)}, \dots, x_N^{(k-1)})
x_N^{(k)} := h_N(x_1^{(k)}, \dots, x_{N-1}^{(k)}, x_N^{(k-1)})
         if ||x^{(k)} - x^{(k-1)}|| < \epsilon
             return x^{(k)}
       return "not converged"
10
```

- h solvers for one-dimensional subproblems $g_n^{(x)}$.
- ightharpoonup ϵ convergence threshold step in an epoche

Coordinate Descent / Cyclic Epochs

```
1 \min\text{-cd}(f, h, x^{(0)}, K, \epsilon):

2 x^{(0,N)} := x^{(0)}

3 \text{for } k := 1, \dots, K:

4 x^{(k,0)} := x^{(k-1,N)}

5 \text{for } n := 1, \dots, N:

6 x_m^{(k,n)} := x_m^{(k,n-1)} \text{ for } m \in \{1, \dots, N\}, m \neq n

7 x_n^{(k,n)} := h_n(x^{(k,n-1)})

8 \text{if } ||x^{(k,N)} - x^{(k-1,N)}|| \leq \epsilon

9 \text{return } x^{(k,N)}

10 \text{return } \text{"not converged"}
```

- \blacktriangleright h solvers for one-dimensional subproblems $g_n^{(x)}$.
- ightharpoonup ϵ convergence threshold step in an epoche

Coordinate Descent / 1-dim Gradient Steps

```
1 min-cd(f, \nabla f, x^{(0)}, K, \epsilon):

2 for k := 1, ..., K:

3 draw n^{(k)} \sim \text{unif}(\{1, ..., N\})

4 x^{(k)} := x^{(k-1)} - \mu^{(k)}(\nabla f(x^{(k-1)}))_{n^{(k)}} e^{(n^{(k)})}

5 if k \ge N and ||x^{(k)} - x^{(k-N)}|| \le \epsilon

7 return "not converged"
```

- $ightharpoonup \nabla f$ gradients of objective function.
- $\blacktriangleright \mu \in (\mathbb{R}^+)^*$ step length schedule (or controller)
- lacktriangledown convergence threshold step in an epoche

Coordinate Descent / Considerations

- ▶ The order in which we cycle through the coordinates is arbitrary.
 - ► e.g., cyclic
 - better should be randomized.
- We may update blocks of coordinates at a time instead of only one (block coordinate descent).
- ► No need to adjust a step-size!
 - ightharpoonup if we have exact solvers h for the 1-dim. subproblems.
- ▶ Does not work in general with non-differentiable functions.
 - but with sums of differentiable and separable ones.
- Depends strongly on the choice of coordinates!
 (contrary to affine invariant methods like Newton)

Outline

1. Idea and Optimality

2. Coordinate Descent Algorithm

3. Convergence

Coordinate Lipschitz Constant

► standard Lipschitz constant L:

$$||f(x) - f(y)|| \le L||x - y|| \qquad \forall x, y \in \text{dom } f$$

or equivalently

$$||f(x+d)-f(x)|| \le L||d||$$
 $\forall x \in \text{dom } f, d \in \mathbb{R}^N : x+d \in \text{dom } f$

▶ component Lipschitz constant L_n : $(n \in \{1, ..., N\})$

$$||f(x+te^{(n)})-f(x)|| \le |t| L_n$$
 $\forall x \in \text{dom } f, t \in \mathbb{R}: x+te^{(n)} \in \text{dom } f$

ightharpoonup coordinate Lipschitz constant L_{max} :

$$L_{\mathsf{max}} := \max_{n \in \{1, \dots, N\}} L_n$$

▶ always $L_{max} < L$.

Note: In the following $||\cdot||$ denotes the L2-norm.

Lipschitz Continuous Functions / Bounded Derivative Lemma

A differentiable function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}$ is Lipschitz-continuous iff its derivative is bounded:

$$|f(x) - f(y)| \le L|x - y| \iff |f'(x)| \le L$$

 $\forall x, y \in \text{dom } f \qquad \forall x \in \text{dom } f$

Proof: "⇒":

$$\left| \frac{f(x) - f(x+t)}{|t|} \right| = \frac{|f(x) - f(x+t)|}{|t|} \le \frac{|t|L}{|t|} \le L \quad |t \to 0|$$
 $|f'(x)| \le L$

$$f(x) = f(y) + f'(\xi)(x - y) \text{ for a } \xi \in [x, y]$$

$$|f(x) - f(y)| = |f'(\xi)(x - y)| = |f'(\xi)||x - y|$$

$$< L|x - y|$$

Theorem (convergence of coordinate descent)

lf

- i. $f: X \to \mathbb{R}$, $X \subseteq \mathbb{R}^N$ is convex and differentiable,
- ii. ∇f is uniformly Lipschitz-continuous: $||\nabla f(x) \nabla f(y)|| \le L||x y||, \quad L \in \mathbb{R}^+_0$
- iii. the sublevel set of $x^{(0)}$ is bounded: $\max_{x^*:f(x^*)=\min_x f(x)} \max_{x\in S_f(x^{(0)})} ||x-x^*|| \leq R, \quad R\in \mathbb{R}_0^+$
- iv. constant steplength $\mu^{(k)} := 1/L_{\text{max}}$ is used (with coordinate Lipschitz constant $L_{\text{max}} \leq L$),

then coordinate descent converges and

$$\mathbb{E}(f(x^{(k)})) - f(x^*) \le \frac{2NL_{\max}R^2}{k}$$

Convergence / Proof (1/3)

$$f(x^{\text{next}}) = f(x - \mu(\nabla f(x))_n e^{(n)})$$

$$= f(x) - \nabla f(x)^T \mu(\nabla f(x))_n e^{(n)}$$

$$+ \frac{1}{2} (\mu(\nabla f(x))_n e^{(n)})^T \underbrace{\nabla^2 f(x - \xi \mu(\nabla f(x))_n e^{(n)})}_{\leq i_{\text{li. bound.deriv.}}} \mu(\nabla f(x))_n e^{(n)}$$

$$\leq f(x) - \nabla f(x))_n^2 \mu + \frac{1}{2} \mu^2 (\nabla f(x))_n^2 L_n$$

$$= f(x) - (\nabla f(x))_n^2 \mu (1 - \frac{\mu L_n}{2})$$

$$\leq f(x) - (\nabla f(x))_n^2 \mu (1 - \frac{\mu L_{\text{max}}}{2})$$

$$= f(x) - \frac{(\nabla f(x))_n^2}{2I}$$

Convergence / Proof (2/3)

$$f(x^{\text{next}}) \leq f(x) - \frac{(\nabla f(x))_n^2}{2L_{\text{max}}} \quad |\mathbb{E}_n(\dots)$$

$$\mathbb{E}_n(f(x^{\text{next}})) \leq \mathbb{E}_n(f(x) - \frac{(\nabla f(x))_n^2}{2L_{\text{max}}})$$

$$= f(x) - \frac{1}{N} \sum_{n=1}^N \frac{(\nabla f(x))_n^2}{2L_{\text{max}}}) = f(x) - \frac{1}{2NL_{\text{max}}} ||\nabla f(x)||^2 \quad (1)$$

$$\mathbb{E}_{n^{(1:k)}} := \mathbb{E}_{n^{(1)}, n^{(2)}, \dots, n^{(k)}} \quad \text{expectation over all } n^{(1)}, \dots, n^{(k)}$$

$$\phi^{(k)} := \mathbb{E}_{n^{(1:k)}} (f(x^{(k)})) - f(x^*)$$

$$f(x) - f(x^*) \leq \nabla f(x)^T (x - x^*) \leq ||\nabla f(x)|| \, ||x - x^*|| \leq R||\nabla f(x)||$$

$$\mathbb{E}_{n^{(1:k)}} (||\nabla f(x^{(k)})||) \geq \frac{1}{P} \phi^{(k)} \tag{2}$$

Convergence / Proof (3/3)

$$\mathbb{E}_{n^{(k)}}(f(x^{(k+1)})) \leq f(x^{(k)}) - \frac{1}{2NL_{\max}} ||\nabla f(x^{(k)})||^{2} ||\mathbb{E}_{n^{(1:k+1)}}|$$

$$\phi^{(k+1)} \leq \phi^{(k)} - \frac{1}{2NL_{\max}} \mathbb{E}_{n^{(1:k+1)}}(||\nabla f(x^{(k)})||^{2})$$

$$\leq \int_{\text{Jensen's Ineq.}} \phi^{(k)} - \frac{1}{2NL_{\max}} (\mathbb{E}_{n^{(1:k+1)}}(||\nabla f(x^{(k)})||))^{2}$$

$$\leq \phi^{(k)} - \frac{1}{2NL_{\max}R^{2}} (\phi^{(k)})^{2}$$

$$\leq \frac{\phi^{(k)} - \frac{1}{2NL_{\max}R^{2}} (\phi^{(k)})^{2}}{(\phi^{(k)})^{2}} \leq \frac{1}{2NL_{\max}R^{2}}$$

$$\frac{1}{\phi^{(k+1)}} - \frac{1}{\phi^{(k)}} \geq \frac{\phi^{(k)} - \phi^{(k+1)}}{\phi^{(k)}\phi^{(k+1)}} \geq \frac{\phi^{(k)} - \phi^{(k+1)}}{(\phi^{(k)})^{2}} \geq \frac{1}{2NL_{\max}R^{2}}$$

$$\frac{1}{\phi^{(k+1)}} \geq \frac{1}{\phi^{(k)}} + \frac{k+1}{2NL_{\max}R^{2}} \geq \frac{k+1}{2NL_{\max}R^{2}}$$

Summary

- Coordinate descent minimizes one-dimensional subproblems for a single variable x_n at a time.
 - ► in cyclic or random order
- Coordinate descent can be fast if the one-variable subproblems can be solved analytically.
- ► If an *x** minimizes all single-variable problems, then it also is a minimizer for the all-variable problem
 - ▶ if *f* is convex and differentiable, or
 - ightharpoonup if f = g + h is the sum of
 - ► a convex and differentiable g and
 - ▶ a convex, possibly non-differentiable, but separable $h(x_1,...,x_N) = h_1(x_1) + h_2(x_2) + \cdots + h_N(x_N)$
- Convergence of coordinate descent can be proven for mild conditions
 - ▶ e.g., f differentiable, ∇f Lipschitz, sublevel set of $x^{(0)}$ bounded, and constant steplength $1/L_{\text{max}}$.

Further Readings

- ► The coordinate descent method is not covered by Boyd and Vandenberghe, 2004
- ► Coordinate descent:
 - ▶ very briefly Nocedal and Wright, 2006, ch. 9.3
 - ► A brief, but dense survey: Wright, 2015
- ► Convergence proof: Wright, 2015

References

Boyd, Stephen and Lieven Vandenberghe (2004). *Convex Optimization*. Cambridge University Press.

Nocedal, Jorge and Stephen J. Wright (2006). *Numerical Optimization*. Springer Science+ Business Media.

Wright, Stephen J. (2015). Coordinate Descent Algorithms. In: Mathematical Programming 151.1, pp. 3–34.

Jensen's Inequality (review)

For a convex function f:

$$f(\mathbb{E}(x)) \leq \mathbb{E}(f(x))$$

Outline

4. Examples

For $\mathbf{x} \in \mathbb{R}^2$

$$\min_{\mathbf{x}} (a_1x_1 - a_2x_2 + a_3)^2$$

Algorithm:

- ► Initialize $\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)}$
- ► Repeat until convergence:

$$\mathbf{x}_{1}^{(k)} \leftarrow \operatorname{arg\,min}_{\mathbf{x}_{1}} (a_{1}\mathbf{x}_{1} - a_{2}\mathbf{x}_{2}^{(k-1)} + a_{3})^{2}$$

$$\mathbf{x}_{2}^{(k)} \leftarrow \arg\min_{\mathbf{x}_{1}} (a_{1}\mathbf{x}_{1}^{(k)} - a_{2}\mathbf{x}_{2} + a_{3})^{2}$$

$$\arg\min_{\mathbf{x_1}}(a_1\mathbf{x_1}-a_2\mathbf{x_2}+a_3)^2$$

$$0 \stackrel{!}{=} \frac{d}{dx_1}(a_1x_1 - a_2x_2 + a_3)^2$$

$$\arg\min_{\mathbf{x_1}}(a_1\mathbf{x_1}-a_2\mathbf{x_2}+a_3)^2$$

$$0 \stackrel{!}{=} \frac{d}{dx_1}(a_1x_1 - a_2x_2 + a_3)^2 = 2(a_1x_1 - a_2x_2 + a_3)a_1$$

$$\arg\min_{\mathbf{x_1}}(a_1\mathbf{x_1}-a_2\mathbf{x_2}+a_3)^2$$

$$0 \stackrel{!}{=} \frac{d}{dx_1} (a_1x_1 - a_2x_2 + a_3)^2 = 2(a_1x_1 - a_2x_2 + a_3)a_1$$
$$x_1 = \frac{a_2x_2 - a_3}{a_1}$$

$$\arg\min_{\mathbf{x}_2}(a_1x_1-a_2\mathbf{x}_2+a_3)^2$$

$$0 \stackrel{!}{=} \frac{d}{dx_2} (a_1x_1 - a_2x_2 + a_3)^2$$

$$\arg\min_{\mathbf{x}_2}(a_1x_1 - a_2x_2 + a_3)^2$$

$$0 \stackrel{!}{=} \frac{d}{dx_2}(a_1x_1 - a_2x_2 + a_3)^2 = -2(a_1x_1 - a_2x_2 + a_3)a_2$$

$$\arg\min_{\mathbf{x}_2}(a_1x_1-a_2x_2+a_3)^2$$

$$0 \stackrel{!}{=} \frac{d}{dx_2} (a_1x_1 - a_2x_2 + a_3)^2 = -2(a_1x_1 - a_2x_2 + a_3)a_2$$
$$x_2 = \frac{a_1x_1 + a_3}{a_2}$$

For $\mathbf{x} \in \mathbb{R}^2$

$$\min_{\mathbf{x}} (a_1x_1 - a_2x_2 + a_3)^2$$

Algorithm:

- ► Initialize $\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)}$
- ► Repeat until convergence:

$$\blacktriangleright \mathbf{x}_1^{(k)} \leftarrow \frac{a_2 \mathbf{x}_2^{(k-1)} - a_3}{a_1}$$

For $\mathbf{x} \in \mathbb{R}^2$, $a_1 = 0.1$, $a_2 = 2$, $a_3 = 1$

$$\begin{aligned} & & & \min_{\mathbf{x}} & & (0.1x_1 - 2x_2 + 1)^2 \\ \mathbf{x}_1^{(k)} \leftarrow & & \frac{2\mathbf{x}_2^{(k-1)} - 1}{0.1} & & \mathbf{x}_2^{(k)} \leftarrow \frac{0.1\mathbf{x}_1^{(k)} + 1}{2} \end{aligned}$$

For $\mathbf{x} \in \mathbb{R}^2$, $a_1 = 0.1$, $a_2 = 2$, $a_3 = 1$

$$\begin{aligned} & & \min_{\mathbf{x}} & & (0.1x_1 - 2x_2 + 1)^2 \\ \mathbf{x}_1^{(k)} \leftarrow & \frac{2\mathbf{x}_2^{(k-1)} - 1}{0.1} & & \mathbf{x}_2^{(k)} \leftarrow \frac{0.1\mathbf{x}_1^{(k)} + 1}{2} \end{aligned}$$

Start with
$$\mathbf{x}_1^{(0)} = 1, \mathbf{x}_2^{(0)} = 2$$

- $ightharpoonup x_1^{(1)} \leftarrow \frac{2 \cdot 2 1}{0.1} = 30$
- $\mathbf{x}_{2}^{(1)} \leftarrow \frac{0.1 \cdot 30 + 1}{2} = 2$

For $\mathbf{x} \in \mathbb{R}^2$, $a_1 = 0.1$, $a_2 = 2$, $a_3 = 1$

$$\begin{aligned} & & \min_{\mathbf{x}} & & (0.1x_1 - 2x_2 + 1)^2 \\ \mathbf{x}_1^{(k)} \leftarrow & \frac{2\mathbf{x}_2^{(k-1)} - 1}{0.1} & \mathbf{x}_2^{(k)} \leftarrow \frac{0.1\mathbf{x}_1^{(k)} + 1}{2} \end{aligned}$$

Start with
$$\mathbf{x}_{1}^{(0)} = 1, \mathbf{x}_{2}^{(0)} = 2$$

$$\mathbf{x}_{1}^{(1)} \leftarrow \frac{2 \cdot 2 - 1}{0.1} = 30$$

$$\mathbf{x}_2^{(1)} \leftarrow \frac{0.1 \cdot 30 + 1}{2} = 2$$

$$\mathbf{x}_{1}^{(1)} = 30, \mathbf{x}_{2}^{(1)} = 2$$

$$\mathbf{x}_{1}^{(2)} \leftarrow \frac{2 \cdot 2 - 1}{0.1} = 30$$

$$\mathbf{x}_{2}^{(2)} \leftarrow \frac{0.1 \cdot 30 + 1}{2} = 2$$

For the problem

minimize
$$\sum_{i=1}^{m} (y_i - \mathbf{x}^T \mathbf{a_i})^2 = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_j a_{ij} \right)^2$$

We can compute the update rule for a specific x_k :

$$\frac{\partial f(\mathbf{x})}{\partial x_k} \stackrel{!}{=} 0$$

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = 2 \cdot \sum_{i=1}^m a_{ik} \cdot \left(y_i - \sum_{j=1}^n x_j a_{ij} \right)$$

$$2 \cdot \sum_{i=1}^{m} a_{ik} \cdot \left(y_i - \sum_{j=1}^{n} x_j a_{ij} \right) = 0$$

$$\sum_{i=1}^{m} a_{ik} \cdot y_i - \sum_{i=1}^{m} a_{ik} \cdot \sum_{j=1}^{n} x_j a_{ij} = 0$$

$$\sum_{i=1}^{m} a_{ik} \cdot y_i - \sum_{i=1}^{m} a_{ik} \cdot \left(x_k a_{ik} + \sum_{j=1, j \neq k}^{n} x_j a_{ij} \right) = 0$$

$$\sum_{i=1}^{m} a_{ik} \cdot y_i - \sum_{i=1}^{m} a_{ik} \cdot x_k a_{ik} - \sum_{i=1}^{m} a_{ik} \cdot \sum_{j=1, j \neq k}^{n} x_j a_{ij} = 0$$

$$\sum_{i=1}^{m} a_{ik} \cdot y_i - x_k \sum_{i=1}^{m} a_{ik}^2 - \sum_{i=1}^{m} a_{ik} \cdot \sum_{j=1, i \neq k}^{n} x_j a_{ij} = 0$$

$$\sum_{i=1}^{m} a_{ik} \cdot y_i - x_k \sum_{i=1}^{m} a_{ik}^2 - \sum_{i=1}^{m} a_{ik} \cdot \sum_{j=1, j \neq k}^{n} x_j a_{ij} = 0$$

$$x_k \cdot \sum_{i=1}^m a_{ik}^2 = \sum_{i=1}^m a_{ik} \cdot y_i - \sum_{i=1}^m a_{ik} \cdot \sum_{j=1, j \neq k}^n x_j a_{ij}$$
$$x_k = \frac{\sum_{i=1}^m a_{ik} \cdot \left(y_i - \sum_{j=1, j \neq k}^n x_j a_{ij} \right)}{\sum_{i=1}^m a_{ik}^2}$$

Linear Regression Coordinate Descent - Simple Algorithm

```
1: procedure Linear Regression-CD
    input: f
         Get initial point \mathbf{x}^{(0)}
2:
3:
         repeat
               for k \in 1, \ldots n do
4:
                    x_k \leftarrow \frac{\sum_{i=1}^m a_{ik} \cdot \left(y_i - \sum_{j=1, j \neq k}^n x_j a_{ij}\right)}{\sum_{i=1}^m a_{ii}^2}
5:
               end for
6:
7:
          until convergence
          return x, f(x)
8:
9: end procedure
```

For each parameter we have the following update rule:

$$x_{k} = \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_{i} - \sum_{j=1, j \neq k}^{n} x_{j} a_{ij} \right)}{\sum_{i=1}^{m} a_{ik}^{2}}$$

One Coordinate descent epoch has a cost of $O(m \cdot n^2)!$

Can we do it faster?

For each parameter we have the following update rule:

$$x_{k} = \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_{i} - \sum_{j=1, j \neq k}^{n} x_{j} a_{ij} \right)}{\sum_{i=1}^{m} a_{ik}^{2}}$$

We can rewrite:

$$\sum_{i=1}^{m} \left(y_i - \sum_{j=1, j \neq k}^{n} x_j a_{ij} \right) = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_j a_{ij} + x_k a_{ik} \right)$$

$$= \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_j a_{ij} \right) + \sum_{i=1}^{m} x_k a_{ik}$$

$$= \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_j a_{ij} \right) + x_k \sum_{j=1}^{m} a_{jk}$$

From which we have:

$$\begin{aligned} x_k &= \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_i - \sum_{j=1, j \neq k}^{n} x_j a_{ij}\right)}{\sum_{i=1}^{m} a_{ik}^2} \\ &= \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_i - \sum_{j=1}^{n} x_j a_{ij} + \mathbf{x}_k^{old} a_{ik}\right)}{\sum_{i=1}^{m} a_{ik}^2} \\ &= \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_i - \sum_{j=1}^{n} x_j a_{ij}\right)}{\sum_{i=1}^{m} a_{ik}^2} + \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(\mathbf{x}_k^{old} a_{ik}\right)}{\sum_{i=1}^{m} a_{ik}^2} \\ &= \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_i - \sum_{j=1}^{n} x_j a_{ij}\right)}{\sum_{i=1}^{m} a_{ik}^2} + \frac{\mathbf{x}_k^{old} \cdot \sum_{i=1}^{m} a_{ik}^2}{\sum_{i=1}^{m} a_{ik}^2} \\ &= \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_i - \sum_{j=1}^{n} x_j a_{ij}\right)}{\sum_{i=1}^{m} a_{ik}^2} + \mathbf{x}_k^{old} \end{aligned}$$

Now we have:

$$x_{k} = \frac{\sum_{i=1}^{m} a_{ik} \cdot \left(y_{i} - \sum_{j=1}^{n} x_{j} a_{ij}\right)}{\sum_{i=1}^{m} a_{ik}^{2}} + \mathbf{x}_{k}^{old}$$

So we can define our residual vector $\mathbf{r} \in \mathbb{R}^m$ such that

$$r_i = y_i - \sum_{j=1}^n x_j a_{ij}$$

After each update of x_k , we can maintain r_i instead of recomputing it given the old value \mathbf{x}_k^{old} :

$$r_i^{new} = y_i - \left(\sum_{j=1}^n x_j a_{ij} - \mathbf{x}_k^{old} a_{ik} + x_k a_{ik}\right)$$
$$= r_i^{old} + (\mathbf{x}_k^{old} - x_k) a_{ik}$$

Now our algorithm looks like:

- 1. Initialize x
- 2. Compute $r_i = y_i \sum_{j=1}^n x_j a_{ij}$
- 3. While Not Converged
 - 3.1 For each k = 1, ..., n

$$3.1.1 \ \mathbf{x}_k^{old} \leftarrow x_k$$

3.1.2
$$x_k \leftarrow \frac{\sum_{i=1}^{n} a_{ik} \cdot (r_i)}{\sum_{i=1}^{m} a_{ik}^2} + \mathbf{x}_k^{old}$$

3.1.3 For all i
$$r_i \leftarrow r_i + (\mathbf{x}_k^{old} - x_k)a_{ik}$$

This algorithm is now $O(m \cdot n)!$

Linear Regression Coordinate Descent Algorithm

```
1: procedure Linear Regression-CD
      input: f
            Get initial point \mathbf{x}^{(0)}
          \mathbf{r} \leftarrow \mathbf{y} - A\mathbf{x}^{(0)}
 4:
          repeat
 5:
                  for k \in 1, \ldots n do
                       \mathbf{x}_{k}^{old} \leftarrow x_{k}
 6:
                       x_k \leftarrow \frac{\sum_{i=1}^m a_{ik} \cdot r_i}{\sum_{i=1}^m a_{ik}^2} + \mathbf{x}_k^{old}
 7:
                        for i \in 1, \ldots m do
 8.
                              r_i \leftarrow r_i + (\mathbf{x}_k^{old} - x_k) a_{ik}
 9:
                        end for
10:
11:
                  end for
12:
            until convergence
            return x, f(x)
13:
14: end procedure
```

Real World Dataset: Body Fat prediction

We want to estimate the percentage of body fat based on various attributes:

- ► Age (years)
- ► Weight (lbs)
- ► Height (inches)
- ► Neck circumference (cm)
- ► Chest circumference (cm)
- ► Abdomen 2 circumference (cm)
- ► Hip circumference (cm)
- ► Thigh circumference (cm)
- ► Knee circumference (cm)
- **.**...

http://lib.stat.cmu.edu/datasets/bodyfat

Real World Dataset: Body Fat prediction

The data is represented it as:

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 1 & a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

with m = 252, n = 14

We can model the percentage of body fat y is a linear combination of the body measurements with parameters \mathbf{x} :

$$\hat{y}_i = \mathbf{x}^T \mathbf{a_i} = x_0 \mathbf{1} + x_1 a_{i,1} + x_2 a_{i,2} + \ldots + x_n a_{i,n}$$

Coordinate Descent - Body fat dataset

Year Prediction Data Set

- ► Least Squares Problem
- ▶ Prediction of the release year of a song from audio features
- ▶ 90 features
- ► Experiments done on a subset of 1000 instances of the data

Coordinate Descent - Year Prediction