[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023 Scribed by : Pallikonda Sai Teja Lecture (Week 06)

Student ID: 202011052

1 Advance Encryption Standard AES

 \rightarrow It is a block cipher.

 \Rightarrow Round function in AES should be invertable.

• We have understand the following.

1. Round Function.

2. Key Scheduling Algorithm.

1.1 Round Function of AES - 128 bit

 $f_1, f_2, ..., f_{10}$

(A) $f_1 = f_2 = f_3 = \dots = f_9$

(B) f_{10} is different from f_i , i = 1, 2, 3,..., 9.

First 9 round functions are exactly same and 10^{th} round function is different from other 9 round functions.

• The first 9 round functions (i.e., $f_1, f_2, ..., f_9$) are based on the following.

i. Sub bytes.

 $f_i: \{0, 1\}^{128} \to \{0, 1\}^{128}$

ii. Shift rows.

iii. Mix columns.

• The 10^{th} round function (i.e., f_{10}) is based on the following.

i. Sub bytes.

 $f_{10}: \{0, 1\}^{128} \to \{0, 1\}^{128}$

ii. Shift rows.

 $f_i(X) = Mix Column(Shift Row(Sub Bytes(X)))$

1.2 Sub bytes

Sub bytes:
$$\{0, 1\}^{128} \to \{0, 1\}^{128}$$

 $S \rightarrow input.$

$$S \rightarrow \left| \begin{array}{cccc} S_{00} & S_{01} & S_{02} & S_{03} \\ S_{10} & S_{11} & S_{12} & S_{13} \\ S_{20} & S_{21} & S_{22} & S_{23} \\ S_{30} & S_{31} & S_{32} & S_{33} \end{array} \right|$$

$$S_{ij} \rightarrow 8 \ bit.$$

 $P \rightarrow Plain text 128 bit.$

$$P \rightarrow \begin{vmatrix} P_0 & P_4 & P_8 & P_{12} \\ P_1 & P_5 & P_9 & P_{13} \\ P_2 & P_6 & P_{10} & P_{14} \\ P_3 & P_7 & P_{11} & P_{15} \end{vmatrix} + K_1 \rightarrow (S_{ij})_{4x4} \qquad \qquad len(P_i) = 8 \text{ bit}$$

 $K_1 \to 128 \text{ bit. } K_0, K_1, ..., K_{15}$

$$K_1 \rightarrow \left| \begin{array}{ccccc} K_0 & K_4 & K_8 & K_{12} \\ K_1 & K_5 & K_9 & K_{13} \\ K_2 & K_6 & K_{10} & K_{14} \\ K_3 & K_7 & K_{11} & K_{15} \end{array} \right|$$

1.3 Sub bytes

$$S = (S_{ij})_{4x4}$$

 $S : \{0, 1\}^8 \to \{0, 1\}^8$ $S(0) = 0$

i.
$$(c_7c_6c_5c_4c_3c_2c_1c_0) = (01100011) = (63)_{16}$$

ii.
$$S(S_{ij}) = (a_7a_6a_5a_4a_3a_2a_1a_0)$$

iii. For
$$i=0$$
 to 7
$$b_i=(a_i+a_{(i+4)\%8}+a_{(i+5)\%8}+a_{(i+6)\%8}+a_{(i+7)\%8}+c_i) \bmod 2$$

iv.
$$(b_7b_6b_5b_4b_3b_2b_1b_0)$$

$$v.\ S^1{}_{ij} = (b_7b_6b_5b_4b_3b_2b_1b_0)$$

$$\begin{array}{l} \bullet \; S : \{0,\,1\}^8 \to \{0,\,1\}^8 \\ X \neq 0 \in \{0,\,1\}^8 \end{array} \qquad S(0) = 0$$

$$S(X) = Y \in \{0, 1\}^8$$

$$X=(a_7a_6a_5a_4a_3a_2a_1a_0),\,a_i\in\{0,\,1\}$$

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_7 x^7$$

$$deg(P(x)) \le 7$$

$$P(x) \in F_2[x]$$

$$g(x) = x^8 + x^4 + x^3 + x + 1$$

 $g(x)$ is a primitive polynomial.

 $(F_2[x]/< g(x) >, +, *) \rightarrow Field.$ Find the multiplicative inverse of P(x) under modulo $(x^8 + x^4 + x^3 + x + 1)$

$$p(x).q(x) = 1 \mod (x^8 + x^4 + x^3 + x + 1)$$

$$\Rightarrow p(x).q(x) - 1 = h(x).(x^8 + x^4 + x^3 + x + 1)$$

$$1 = p(x).q(x) + h_1(x).(x^8 + x^4 + x^3 + x + 1)$$

$$gcd(a, b) = as + bt$$

$$gcd(P(x), x^8 + x^4 + x^3 + x + 1) = 1$$
How to find g(x)?
$$\Rightarrow Extended Euclidean Algorithm finds q(x)$$

$$q(x) \to deg(q(x)) \le 7$$

$$q(x) = r_0 + r_1x + r_2x^2 + ... + r_7x^7$$

$$q(x) \to (r_7r_6r_5r_4r_3r_2r_1r_0) \in \{0, 1\}^8$$

$$S(x) = Y = (r_7r_6r_5r_4r_3r_2r_1r_0)$$

Example

Find S(01010011) = ?
$$p(x) = x^{6} + x^{4} + x + 1$$

$$g(x) = x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{6} + x^{4} + x + 1) x^{8} + x^{4} + x^{3} + x + 1 (x^{2} + 1)$$

$$x^{2} + x + 1$$

$$x^{6} + x^{4} + x^{2} + x + 1$$

$$x^{6} + x^{4} + x + 1$$

$$x^{7} + x + 1$$

$$\begin{split} 1 &= x^2 + (x+1)(x+1) \\ &= x^2 + (x+1)[(x^6 + x^4 + x + 1) + x^2(x^4 + x^2)] \\ &= x^2[x^5 + x^4 + x^3 + x^2 + 1] + (x+1)[(x^6 + x^4 + x + 1)] \\ &= [(x^8 + x^4 + x^3 + x + 1) + (x^6 + x^4 + x^2 + x + 1)(x^2 + 1)][x^5 + x^4 + x^3 + x^2 + 1] + \\ &\quad (x+1)[(x^6 + x^4 + x + 1)] \\ 1 &= [(x^6 + x^4 + x + 1)][(x^2 + 1)(x^5 + x^4 + x^3 + x^2 + 1) + (x+1)] + [(x^8 + x^4 + x^3 + x + x + 1)][(x^5 + x^4 + x^3 + x^2 + 1)] \end{split}$$

Co-efficient of
$$(x^6 + x^4 + x + 1)$$
 is multiplicative inverse of p(x) (i.e., q(x))
So, q(x) = $(x^2 + 1)(x^5 + x^4 + x^3 + x^2 + 1) + (x + 1)$
= $(x^7 + x^6 + x^5 + x^4 + x^2 + x^5 + x^4 + x^3 + x^2 + 1) + (x + 1)$

```
=x^7+x^6+x^3+x
(11001010) \rightarrow \text{output}.
c = (01100011)
b_i = (a_i + a_{(i+4)\%8} + a_{(i+5)\%8} + a_{(i+6)\%8} + a_{(i+7)\%8} + c_i) \bmod 2
b_0 = (a_0 + a_4 + a_5 + a_6 + a_7 + c_0) \mod 2
   = (0 + 0 + 0 + 1 + 1 + 1) \bmod 2
   = 1
b_1 = (a_1 + a_5 + a_6 + a_7 + a_0 + c_1) \mod 2
   = (1 + 0 + 1 + 1 + 0 + 1) \bmod 2
b_2 = 1
b_3 = 1
b_4 = 0
b_5 = 1
b_6 = 1
b_7 = 1
Output of Sub bytes (1110 1101)
Subbytes ( 0101 0011 ) = ( 1110 1101 )
Subbytes (53) = (ED)
```

1.4 AES S-Boxes

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	С9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	BB	16

(a) S-box

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	С3	4E
3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	В6	92
5	6C	70	48	50	FD	ED	В9	DA	5E	15	46	57	A7	8D	9D	84
6	90	D8	AB	00	8C	ВС	D3	0A	F7	E4	58	05	B8	В3	45	06
7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
A	47	F1	1A	71	1D	29	C5	89	6F	В7	62	0E	AA	18	BE	1B
В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	С9	9C	EF
Е	A0	E0	3B	4D	AE	2A	F5	В0	C8	EB	BB	3C	83	53	99	61
F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

(b) Inverse S-box