Q6.10) Set $(X, d) = (IR^{+}, euc)$ take the sequence $(x_{n})_{n}$ such $x_{n} = \frac{1}{n}$, $n = \frac{1}{2}i^{2}i^{-}$. Then Archimetern properties of $X \in Y_{n} = X_{n}$ and $X_{n} = X_{n} = X_{n}$ and $X_{n} = X_{n} = X_{n$

Q6.11) Suppose X is a m-s., Z E X and (Xu), E X.

WTS: If (x_n) has a subseq. converging to Z then alist $(Z, Zx_n : n \in N) = 0$. Also we show that converge needs not true.

Let (x_{n_k}) be a convergent subsequence of (x_n) s.t. $x_{n_k} \to z$ as $k \to \infty$. Then $\forall z \neq 0$ $\exists N \in \mathbb{N}$ s.t. $\forall n_k > N$ we have $d(x_{n_k}, z) < z = \infty$ that elist $(z, \{x_n : n \in \mathbb{N}\}) = \inf\{d(z, x_n) : n \in \mathbb{N}\}$ $\leq d(z, x_{n_k}) < \xi$ gives the result as ξ is orbitrary. For the second assertion, consider (x_n) with $x_n = n$ in \mathbb{R} , clearly taking $z = x_1 (=1)$ we see that $dist(z, \{x_n\}, n \in \mathbb{N}\}) = 0$ but no subseq of (x_n) or converges in $x = \mathbb{R}$ with d = euc.

Q6.13) 5-ppose X is a m.s. $S \subseteq X$. WTS: S is deuse in X (=) $\forall x \in X$, $\exists a seq.(x)$ in S s.t. $x_n \to x$. Y-emember (orallory 6.6.2: X mrs. $z \in X$ and $S \subseteq X$ $TF \neq E$ (i) $z \in S$ (ii) $\exists seq.(x_n) \in S$ s.t. $x_n \to Z$

 (\Rightarrow) If $\overline{5} = X$, then $\overline{z} \in X = \overline{5}$, so by Corollary $\overline{3}$ a seq. $(xn) \subseteq S$ s.t. $\overline{N}n \to \overline{z}$.

(\Leftarrow) If for all $x \in X$ \exists a seq. $(xn) \subseteq S$ s.f. $x_n \to x$, again by Corollary $x \in \overline{S}$. Thus $\overline{S} = X$.

Extra gustions: al) Prove that a subspace of a complete m.s. X is complete iff it is closed.

Defn: (Completeness) (X,d) is a complete m.s. Aff every Cauchy seq. in X converges in X.

X wougheld m.s., 5 = X

WTS: 5 is complete (=) 5 is closed in X.

(⇒) We need to show that acc(S) CS (which implies 5 is closed). Let y ∈ acc(S) i.e. dist(y, S\q\y\z)=0 n> ∀n∈ N, ∃yn ∈ S\{\g\} s.t. d(y, yn) < 1/n which implies that yn for yn As (yn) CS is convergent and hence is Cauchy in a complete subset S, y∈S.

(+) Let (yn) $\leq S$ be a Cauchy sequence. We need to show that (yn) comenges in S, Yet (yn) is Cauchy seq in X, which is complete, so if converges in X, say to $y \in X$. Hence $y \in acc(S)$ $\leq s$ ree S is closed, $acc(S) \subset S$ so that $y \in S$. Thus S is complete.

Q2) Suppose (x_n) is a sequence in \mathbb{R} which converges to $x \in \mathbb{R}$. Define a new sequence (y_n) by $y_n = \frac{\sum_{i=1}^n x_i}{n}$. Show that (y_n) converges to the same point.

Notice! Commerce is not true!

Take, for instance, $\chi_n = (-1)^n$ which appearently do not converge but $y_n = \begin{cases} 0 & n \text{ even} \\ -y_n & n \text{ odd} \end{cases}$ to 0. I.e. convergence of y_n does not necessarily amply

the commence of Xn in general.

For the Q2), we need to show that, given \$>0; INEN s.t. Yn =N |yn-x|< E

As $\pi_n \to x$, given $\Xi > 0$ $\exists M \in \mathbb{N}$ s.t. $\forall m > M$, m = 1 we have $|x_m - x| < \Xi$, so choose N > M, n > N $|y_n - x| = \left|\frac{\sum_{i=1}^{n}(x_i - x_i)}{n}\right| \leq \frac{\sum_{i=1}^{n}|x_i - x_i|}{n}$

$$= \frac{1}{n} \sum_{i=1}^{M} |x_i - x_i| + \frac{1}{n} \sum_{i=M+1}^{M} |x_i - x_i|$$

$$\leq \frac{n - (M+1)}{n} \leq$$

$$\leq \epsilon$$

Some M does not depend on the choice of N (as M is a fixed number) we can take N sufficiently large so that $\frac{1}{n}\sum_{i=1}^{M}|x_i-x_i|< 2$ i.e. choose N > max $\left\{\sum_{i=1}^{M}|x_i-x_i|< 2\right\}$ conclude that $y_n\to x$.