Análise de Cluster - Instacart

Renato de Camargo 09/08/2020

O objetivo desse estudo é encontrar grupos com padrões de frequência de compra semelhantes na base de pedidos do Instacart.

A base de dados vem do "The Instacart Online Grocery Shopping Dataset 2017", extraída do site https://www.instacart.com/datasets/grocery-shopping-2017 em agosto/2020.

Para a análise de cluster dos usuários, usaremos o método do Kmeans com definição do número de grupos pelo método do cotovelo, trabalhando dissimilaridade 'within-cluster' em função do número de grupos.

Bibliotecas

```
if(!require(tidyverse)){install.packages("tidyverse");
library(tidyverse)}
if(!require(patchwork)){devtools::install_github("thomasp85/patchwork");
library(patchwork)}
if(!require(RColorBrewer)){install.packages("RColorBrewer");
library(RColorBrewer)}
if(!require(fmsb)){install.packages("fmsb"); library(fmsb)}
```

Bases de dados

```
raw_orders <- read_csv("./data/orders.csv")
qtd_produto <- read_csv("./data/qtd_produtos.csv")</pre>
```

Feature engineering

Para analisar a frequência dos usuários, nos basearemos na variável "days_since_prior_order". Como a primeira compra não possui compra anterior e traz esse campo vazio, vamos descartá-las.

Também baseado em "days_since_prior_order", vamos criar as variáveis: * Média de dia entre compras por usuário (day_mean) * Desvio padrão de dias entre compras por usuário (day_sd) * Correlação entre o número da compra e dias entre compras por usuário (Correl)

Essa última variável "correl" servirá de estimador para determinar se o usuário está com uma frequência crescente ou decrescente. Por exemplo, se essa correlação for positiva próxima de 1, indica que quanto mais compras o usuário faz, mais tempo ele demora entre uma compra e outra; portando possui uma frequência decrescente.

Por fim, vamos contar o número total de pedidos do usuário (qtd_order) e a média de produtos por pedido do usuário (qtd_produtos)

```
#pegar apenas o segundo pedido em diante, calcular o numero de pedidos e
achar Media e Desvio padrao dos dias entre pedidos
#também calcularemos a variável Correl
freq <- raw orders %>%
  filter(order_number!= 1) %>%
  group by(user id) %>%
  mutate ( day_mean = mean(days_since_prior_order),
            day sd = sd(days since prior order),
            qtd order = max(order number),
            correl = cor(order number, days since prior order, method =
c("pearson"))) %>%
  ungroup()
#Para a variável Correl, transformaremos os NA em Zero.
#os NAs formaram quando os days since prior order são constantes
freq <- freq %>%
  mutate( correl = coalesce(correl,0 ))
#colocar a quantidade de pridutos em um pedido, vindo da base
"qtd produto")
freq <- left_join (freq, qtd_produto, by = "order_id") %>%
  select(-X1) %>%
  filter(!is.na(qtd_produtos))
```

Aprofundando na variável "Correl", analisando um usuário que há correlação negativa para ver se a tendência é realmente de aumento de dias desde o último pedido

Tendência de pedidos do usuário 2

Por fim, vamos subir a granularidade dos dados. Ao invés de olhar por pedido, vamos agregá-los e olhar por usuário

Cálculo dos clusters

Baseado nas variáveis que criamos iremos criar grupos de usuários com o método do Kmeans com definição do número de grupos pelo método do cotovelo, trabalhando dissimilaridade 'within-cluster' em função do número de grupos.

```
#Escalonar e centralizar os dados, remover o user_id
freq_pad <- freq_user %>%
   select(-user_id) %>%
   scale()

#definição do critério de dissimilaridade within cluster
criterio <- function(k) kmeans(freq_pad, k)$tot.withinss</pre>
```

```
#coleta da dissimilaridade olhando 15 grupos
estudo <- tibble(k = 1:15) %>%
    mutate(w = map_dbl(k, criterio))

#montagem do gráfico
estudo %>%
    ggplot(aes(k, w)) +
    geom_point(size = 3) +
    geom_line() +
    labs(y = "total within sum of squares", x = "k", title = "Método do
cotovelo") +
    scale_x_continuous(breaks = 1:15) +
    theme_minimal() +
    theme(axis.line=element_blank(), panel.border =element_blank(),
    panel.grid.major.x =element_blank())
```

Método do cotovelo

Visualizando o gráfico, vemos que do 6 ao 7 grupo não há redução expressiva das dissimilaridades; portanto iremos trabalhar com 6 grupos.

```
# Passando o valor de k = 6 ao modelo
set.seed(666)
kmedias <- kmeans(freq_pad, 6)

#adicionando o resultado ao banco de dados
freq_user <- freq_user %>%
```

Interpretação dos clusters

para leitura dos cluster iremos fazer gráficos de boxplot para cada variável

Média de dias entre as compras

Desvio de padrão de dias entre as compras

Correlação entre dias desde o último pedido e ordem

Leitura de cada cluster:

Cluster 1 - Constante mensal com poucos pedidos

Cluster 4 - Constante semanalcom muitos pedidos

Cluster 2 - Frequência crescente

Cluster 5 - Frequência decrescente

Cluster 3 - Muitos produtos sem frequencia clara

Cluster 6 - Intermediário = Frequente 10 dias, constância média, pedidos intermediario, produto médio

Gráfico resumo

```
qtd_order = mean(qtd_order),
             qtd_produtos = mean(qtd_produtos)) %>%
  select(-cluster) %>%
  mutate(day mean = (day mean - min(day mean)) / (max(day mean) -
min(day mean)) * 100,
        day sd = (day sd - min(day sd)) / (max(day sd) - min(day sd)) *
100,
        correl = (correl - min(correl)) / (max(correl) - min(correl)) *
100,
        gtd order = (gtd order - min(gtd order)) / (max(gtd order) -
min(qtd order)) * 100,
        qtd_produtos = (qtd_produtos - min(qtd_produtos)) /
(max(qtd_produtos) - min(qtd_produtos)) * 100)
# Adiciona os valores min e máx dos eixos
personas <- rbind(rep(100,5), rep(0, 5), personas)</pre>
personas
## # A tibble: 8 x 5
    day_mean day_sd correl qtd_order qtd_produtos
       <dbl> <dbl> <dbl>
##
                               <dbl>
                                            <dbl>
## 1
       100
              100
                     100
                              100
                                          100
## 2
         0
                                0
                0
                       0
## 3
       100
                0
                      47.4
                                0
                                            0.381
## 4
       54.9 100
                                7.85
                                           1.03
                       0
## 5
        46.9
               71.3
                      49.7
                               13.6
                                          100
                     37.5
## 6
        0
               18.6
                              100
                                          17.3
## 7
        53.6
               99.2 100
                                7.24
                                           0
## 8
        14.2
               40.1
                     44.9
                               26.5
                                            6.15
# prepara cores
borda= alpha(c('#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#66a61e',
'#e6ab02'), 1)
inter=alpha(c('#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#66a61e',
'#e6ab02'), 0.5)
# títulos
borda
## [1] "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02"
# separa em 6 telas
par(mar=rep(0.8,4))
par(mfrow=c(2,3))
# Loop para cada plot
```


