Problem 6. The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + \dots + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1+2+...+10)^2 = 55^2 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

Knowledge Required: Closed form equation for sum of n natural numbers and sum of squares of n natural numbers.

Solution Outline: This problem is asking the difference between sum of the squares of first one hundred natural numbers and the square of the sum.

We will have two functions sum_n which returns the sum of n natural numbers, and sum_square_n which returns the sum of squares of n natural numbers. The internal implementations of each function can have a for loop, this implementation has time complexity O(n). We can improve this by using the closed form equations taught to us in high school resulting in O(1) time complexity.

Python Solution

```
def sum_n(n):
    return (n * (n + 1)) // 2

def sum_square_n(n):
    return (n * (n + 1) * (2*n + 1)) // 6

print(sum_n(100)**2 - sum_square_n(100))
```