Mazen Alotaibi (alotaima)

Problem 1: Ford-Fulkerson. In this problem, we will...

- (a) Consider the network G shown in Fig. 1 a)...
- (b) Find any augmenting path in G_f ...
- (c) Show the residual network...
- (d) Is this the final maximum flow in this...
- (e) Show the residual network for your...
- (f) Show the cut that results by partitioning...

Solution:

- (a) Please look at Graph 1 for the residual network G_f .
- (b) Please look at Graph 1. The path s->d->b->a->t has the maximum flow to push is 2.
- (c) Please look at Graph 2 for the updated flow. Please look at Graph 4 for the updated residual network $G_{f'}$.
- (d) There isn't any path from s to t. The maximum flow is 13.
- (e) The residual graph is the same as (c) because the flow from (c) was already the maximum.
- (f) Please look at Graph 5 for reference to my answer. The minimum cuts are $(\{s, b, c, d\}, \{a, t\})$ and $(\{s, a, b, c, d\}, \{t\})$, and the capacity of both of the cuts is equal to the sum of capacities from X region to Y region in both of the suggested minimum cuts, which they have a capacity of 13.

Problem 2: Disjoint Roads.. A number k of trucking companies, c_1, \ldots, c_k ...

Solution: This problem is a max flow problem. By using Ford-Fulkerson algorithm, the result of the algorithm is a set of paths. If the value of the flow is less than k, the algorithm returns false, impossible. The time complexity is O(Ek) as the max flow |f| < k.

Problem 3: Food Truck Orders.. The Acme food truck produces a large variety of different...

Solution: This problem is a max flow problem. By using Ford-Fulkerson algorithm, the result of the algorithm is a set of food assignments. The maximum number of happy customers means the minimum number of vouchers. The time complexity is $O(mn^2)$ as the number of edges is E = mn and the max flow $|f| \le n$.

Graph 1: the residual network G_f

Graph 2: the updated flow

Graph 3: the updated residual network

Graph 4: the graph before applying the minimum cut. Note: s->d is 7 and a->t is 6

Graph 5: the minimum cut for two cuts. Note: b->a is 2 and b->c is 3. The purple line is for the $(\{s,b,c,d\},\{a,t\})$ maximum cut. The black line for the $(\{s,a,b,c,d\},\{t\})$ maximum cut.