Behavioral Machine Learning?

Computer Predictions of Corporate Earnings also Overreact (WP, 2025)

Murray Z. Frank, Jing Gao, and Keer Yang Presented by Kang Guo

June 27, 2025

Overview

- 1. Introduction
- 2. Design
- 3. Result
- 4. Idea

Background

- Algorithms being free from human psychological biases and emotions, should produce more accurate and rational predictions than humans
 - Inflation and GDP growth (Bianchi., 2022)
 - Corporate earnings forecasts (van Binsbergen et al., 2023)
 - Stock price forecasts (Cao et al., 2024)
- Better prediction performance ≠ predictions are truly rational
 - Why?
 - Machine learning predictions may exhibit overreaction

Motivation

Introduction

0000

Question

- Q1: Do ML forecasts show similar overreaction as human forecasts?
 - Yes
 - XGBoost, random forests, neural network, LLM and OLS
 - ML overreacts much **less** than humans
- Q2: Why do ML forecasts overreact?
 - Bias from the data
 - Bias from the model (regularization)
 - Bias primarily form the data
- Q3: Can ML mitigate the overreaction bias observed in human analysts?
 - Analysts using machine learning overreact less than traditional analysts
 - But there is a tradeoff between overreaction and forecast accuracy

Contribution

- Belief bias in financial markets.
 - Existing: Leverage ML as a benchmark to identify biases in human forecasts
 - Extension: Investigate biases in ML predictions themselves
- Measure rational expectations
 - Existing: ML prediction can serve as a proxy for an unbiased expectation
 - Extension: ML predictions exhibit overreaction like humans
- Superior accuracy of ML prediction
 - Existing: ML can capture complex nonlinear relationships
 - Extension: ML learns the irrational behavior of humans

Framework

Data

- Firm earnings forecasts (EPS) from IBES
- Firm financial data from Compustat
- Stock return data from CRSP
- Macro time series from the Federal Reserve Bank of Philadelphia
- Analyst background information from LinkedIn and FINRA
- Sample: 1994-2018

Testing for Overreaction

Introduction

• Following Bordalo et al. (2021), this paper runs the following regression:

$$y_{i,t+1} - F_{i,t+1} = \beta x_{i,t} + \lambda_t + \mu_i + \varepsilon_{i,t}$$
(1)

- Dependent variable: next year's forecast errors
 - $y_{i,t+1}$: realized earnings (EPS)
 - $F_{i,t+1}$: predicted earnings (EPS)
- $x_{i,t}$: current-year firm investments (capital expenditure)
- Investments are positively correlated with expected earnings
- Overreactive expectations $\Rightarrow \beta < 0$

Q1: Does ML Overreact? — Regularized Model

- XGBoost forecast errors are **negatively** correlated with investment
- XGBoost overreacts much less than human analysts

	(1) Forecast Error Analysts	(2) Forecast Error Analysts	(3) Forecast Error Machine	(4) Forecast Error Machine
Investment	-0.018* (-1.836)	-0.1422*** (-10.082)	-0.018** (-2.321)	-0.107*** (-8.254)
Firm FE	No	Yes	No	Yes
Year FE	Yes	Yes	Yes	Yes
Period	1994-2018	1994-2018	1994-2018	1994-2018
N	54541	53329	54541	53329
AdjR2	0.02	0.32	0.03	0.22

Q1: Does ML Overreact? — LLM

- ChatGPT forecast errors are **negatively** correlated with investment
- ChatGPT overreacts much less than human analysts

	(1) Forecast Error ChatGPT	(2) Forecast Error Analyst	(3) Forecast Error XGBoost
Investment	-0.110***	-0.164***	-0.123***
	(7.165)	(10.173)	(7.846)
Firm FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Period	1994-2018	1994-2018	1994-2018
N	28002	28002	28002
AdjR2	0.33	0.33	0.27
Forecast MSE	1.350	1.478	1.436

Q1: Does ML Overreact? — OLS

• OLS forecast errors are **negatively** correlated with investment

	(1) Forecast Error OLS	(2) Forecast Error OLS	(3) Forecast Error OLS
Investment	-0.112*** (-5.146)	-0.084*** (-3.962)	-0.102*** (-5.190)
Firm FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Forecasting Variables:			
Firm Char	Yes	Yes	Yes
Analysts Forecasts	No	Yes	Yes
Financial Statement Items	No	No	Yes
Period	1994-2018	1994-2018	1994-2018
N	53529	53529	53529
AdjR2	0.44	0.25	0.26

Q2: Why Does ML Overreact? — Hypotheses

- Biases in ML predictions: training data and the algorithm itself
- H1: The overreaction of OLS stems solely from biased training data
 - OLS incorporates all observations equally without regularization
 - OLS faithfully learns patterns in the data without assigning differential weights to noise or bias
- H2: The overreaction of regularized models stems from biases in both the data and the model itself (regularization)
 - Regularization techniques assign more weights to some signals

Q2: Why Does ML Overreact? — Simulation

• 200 simulated panels

Introduction

It's hard to support the first hypothesis and the claim made in the abstract

	β	$Mean(\mathit{fe})$	%significant	%negative (conditional)	
Panel A: 3	Panel A: 33.3% overreaction				
XGBoost OLS	-0.001 -0.113	16.13 62.05	17% 72%	58% 47%	
Panel B: No overreaction					
XGBoost OLS	-0.001 -0.116	16.14 62.99	18% 71%	51% 48%	

Q3: Can ML mitigate human analysts' overreaction? — Yes

- H3: Analysts with statistical training tend to use machine learning
 - ⇒ Identify their technical background by their educational qualifications
- Scikit-learn became popular in 2012

	(1) Forecast Error Tech	(2) Forecast Error Non-Tech	(3) Forecast Error Tech	(4) Forecast Error Non-Tech
Investment	-0.181*** (2.736)	-0.127*** (6.922)	-0.109 (1.426)	-0.090** (2.864)
Firm FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Period	1994-2012	1994-2012	2013-2018	2013-2018
N	7367	21309	6358	12316
AdjR2	0.25	0.27	0.25	0.31

Q3: Can ML mitigate analysts' overreaction? — Cost

 Higher learning rate reduces overreaction, but compromises predictive accuracy

	(1) Forecast Error Neural Network	(2) Forecast Error Neural Network	(3) Forecast Error Neural Network
Investment	-0.136***	-0.010	0.051
	(-6.981)	(-0.308)	(1.056)
Firm FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Period	1994-2018	1994-2018	1994-2018
N	53329	53329	53329
AdjR2	0.25	0.36	0.72
learning rate	0.1	0.2	0.5
Forecast MSE	1.648	2.504	3.932

Q3: Why is there a tradeoff?

Conclusion

Introduction

- Machine learning predictions exhibit overreaction
- Overreaction bias primarily comes from the training data
- ML can mitigate the overreaction bias observed in human analysts, but there is a tradeoff between overreaction and forecast accuracy

Idea

Extension

- Other behavioral biases
 - Underreaction
 - Overconfidence
 - Herding
- Are forecast errors reflected in prices?
 - Higher forecast error may be correlated with idiosyncratic risk
- Does behavioral similarity to humans enhance model prediction accuracy?
 - Similarity to humans: forecast errors between machines and human analysts