Einführung in die Numerik

Präsenzübung 1

Präsenzaufgabe 1:

(a) Bestimmen Sie alle Fixpunkte der Iteration

$$x^{(k+1)} = \frac{1}{2} \left(x^{(k)} + \frac{1}{x^{(k)}} \right)$$

für $x^{(0)} \in \mathbb{R} \backslash \{0\}$ beliebig.

- (b) Welche Konvergenzordnung hat diese Fixpunktiteration?
- (c) Implementieren Sie die Fixpunktiteration aus Teil a) in MATLAB.
- (d) Lässt sich diese Fixpunktiteration als Newton-Verfahren interpretieren? Wenn ja, geben Sie an wie.

Einführung in die Numerik

1. Übungsblatt

Hausaufgabe 1: (1+2+1+4=8 Punkte)

Betrachten Sie folgende Funktion

$$f(x) = 1 - x \tan(\frac{\pi}{2}x).$$

- (a) Wieviele Nullstellen hat f(x) für $x \in \mathbb{R}$? Zeigen Sie, dass die kleinste positive Nullstelle von f im Intervall [0,1] liegt.
- (b) Dazu seien nun die folgenden Fixpunktgleichungen gegeben:

(i)
$$x = \frac{1}{\tan(\frac{\pi}{2}x)}$$
 und (ii) $x = \frac{2}{\pi}\arctan(\frac{1}{x})$.

Auf welche der beiden Fixpunktgleichungen lässt sich der Banachsche Fixpunktsatz anwenden?

- (c) Stellen Sie das Newton-Verfahren für f auf.
- (d) (**Programmieraufgabe**) Implementieren Sie die Fixpunktiteration aus (b) und das Newton-Verfahren aus (c) in MATLAB so, dass sie dem folgenden Schema entsprechen

$$Z = \text{NewtonMethod}(x^{(0)}, tol),$$

$$Z = \text{FixpointIter}(x^{(0)}, tol),$$

wobei $x^{(0)}$ der Startwert und tol eine vorgegebene Genauigkeit ist sowie in Z die letzte Iterierte ausgegeben wird. Testen Sie Ihre Funktionen für die Startwerte

$$x^{(0)} = 0.1$$
 und $x^{(0)} = 0.5$

sowie für $tol=10^{-14}.$ Ferner, implementieren Sie das Bisektionsverfahren

$$Z = Bisektion(a, b, tol),$$

für passende a,b und $tol=10^{-14}.$ Vergleichen und erklären Sie die Ergebnisse.

Bitte kennzeichnen Sie die m-Files mit der Nummer des Übungsblattes und Ihrer Nachnamen im Dateinamen, z.B. im Falle der Funktion NewtonMethod U1_Nachname1_Nachname2_NewtonMethod.m!

Hausaufgabe 2:(1+1+4+1=7 Punkte)

(a) Stellen Sie das Newton-Verfahren zur numerischen Berechnung der Nullstellen des Polynoms

$$f(x) = (x - 2) \cdot (x^2 - 4)$$

auf.

- (b) Bestimmen Sie die lokale Konvergenzordnung des Newton-Verfahren in der Umgebung der Nullstelle $x^* = 2$.
- (c) Skizzieren Sie die Funktion f(x) und zeigen Sie mithilfe Ihrer Skizze, dass
 - (i) das Newton-Verfahren für alle Startwerte $x^{(0)} > -\frac{2}{3}$ gegen $x^* = 2$ konvergiert.

Erklären Sie das Konvergenzverhalten für

- (ii) $x^{(0)} = -\frac{2}{3}$ und
- (iii) $x^{(0)} < -\frac{2}{3}$.
- (d) Für den Startwert $x^{(0)}=-1$ führen Sie zwei Schritte des Newton-Verfahrens durch und geben Sie die Iterierten $x^{(1)}$ und $x^{(2)}$ explizit an.

Ein Bonuspunkt wird bei Erreichen von 11/15 Punkten dieses Übungsblattes erworben.

Abgabe: Mi. 23.10.2019, 12:00 Uhr in das Postfach Ihres Tutors