Advanced Linear Algebra Week 12

Jamie Gabe

Let $A \in \operatorname{End}(V)$. For each $\lambda \in \mathcal{F}$ we call

$$V_{\lambda} := \{ x \in V \mid Ax = \lambda x \}$$

the eigenspace corresponding to λ .

If $V_{\lambda} \neq \{0\}$, λ is an eigenvalue of A.

In this case, all non-zero $x \in V_{\lambda}$ are called eigenvectors for A (corresponding to the eigenvalue λ).

Consider
$$A \colon \mathbb{C}^2 \to \mathbb{C}^2$$
 given by $A \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) = \left(\begin{array}{c} 3\alpha \\ \beta \end{array} \right)$.

Question: What can be said about
$$x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
?

- (1) $x \in V_1$;
- (2) $x \in V_2$;
- (3) $x \in V_3$;
- (4) x is not an eigenvector for A.

Let $A \in \text{End}(V)$. For each $\lambda \in \mathcal{F}$ we call

$$V_{\lambda} := \{ x \in V \mid Ax = \lambda x \}$$

the eigenspace corresponding to λ .

If $V_{\lambda} \neq \{0\}$, λ is an eigenvalue of A.

In this case, all non-zero $x \in V_{\lambda}$ are called eigenvectors for A (corresponding to the eigenvalue λ).

Consider
$$A \colon \mathbb{C}^2 \to \mathbb{C}^2$$
 given by $A \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) = \left(\begin{array}{c} 3\alpha \\ \beta \end{array} \right)$.

Question: What can be said about $x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$?

$$Ax = \begin{pmatrix} 3 \cdot 2 \\ 0 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 3x$$

so $x \in V_3$.

Let $A \in \text{End}(V)$. For each $\lambda \in \mathcal{F}$ we call

$$V_{\lambda} := \{ x \in V \mid Ax = \lambda x \}$$

the eigenspace corresponding to λ .

If $V_{\lambda} \neq \{0\}$, λ is an eigenvalue of A.

In this case, all non-zero $x \in V_{\lambda}$ are called eigenvectors for A (corresponding to the eigenvalue λ).

Note: Since $Ax = \lambda x \Leftrightarrow (A - \lambda I)x = 0$ it follows that $V_{\lambda} = N(A - \lambda I)$.

Hence V_{λ} is a subspace of V.

Note: If $x \in V_{\lambda}$ then $Ax = \lambda x \in V_{\lambda}$. Hence $A(V_{\lambda}) \subseteq V_{\lambda}$.

We say that V_{λ} is an invariant subspace for A.

When V is finite-dimensional, we call

$$\sigma(A) := \{ \lambda \in \mathcal{F} \mid \lambda \text{ is an eigenvalue of } A \}$$

the spectrum of A.

The (geometric) multiplicity of $\lambda \in \sigma(A)$ is dim V_{λ} .

 $A \in \operatorname{End}(V)$ (with dim $V < \infty$) is diagonalisable if V has a (ordered) basis $\mathcal{B} = (x_1, \ldots, x_n)$ consisting of eigenvectors for A. In this case, $Ax_i = \lambda_i x_i$, where λ_i is the corresponding eigenvalue.

Hence the \mathcal{B} -coordinates for Ax_i are λ_i in the i'th coordinate, and 0 in all other coordinates.

So
$$_{\mathcal{B}}[A]_{\mathcal{B}}=\left(\begin{array}{ccc}\lambda_1&&&0\\&&&\\0&&\lambda_n\end{array}\right).$$

Recall that a polynomial over \mathcal{F} is an expression

$$p(X) = \sum_{i=0}^{n} \alpha_i X^i = \alpha_0 + \alpha_1 X + \dots + \alpha_n X^n$$

where $n \geq 0$, $\alpha_0, \ldots, \alpha_n \in \mathcal{F}$.

The symbol X is called the indeterminate.

The set of all polynomials over \mathcal{F} is denoted $\mathcal{F}[X]$.

 $\mathcal{F}[X]$ is an \mathcal{F} -vector space with basis $\{1_{\mathcal{F}}, X, X^2, X^3, \dots\}$.

Question: What is the dimension of $\mathcal{F}[X]$?

- (1) 1
- (2) n
- (3) it depends on p(X)
- $(4) \infty$.

Answer: $\{1_{\mathcal{F}}, X, X^2, X^3, \dots\}$ is a basis with infinitely many elements, so dim $\mathcal{F}[X] = \infty$.

We can also multiply polynomials over \mathcal{F} : if $p(X) = \sum_{i=0}^{n} \alpha_i X^i$ and $q(X) = \sum_{j=0}^{m} \beta_j X^j$ then

$$pq(X) := \sum_{k=0}^{m+m} \sum_{i+j=k} (\alpha_i \beta_j) X^k.$$

Note: this is just the usual formula for multiplying polynomials

$$\left(\sum_{i=0}^{n}\alpha_{i}X^{i}\right)\left(\sum_{j=0}^{m}\beta_{j}X^{j}\right)=\sum_{k=0}^{n+m}\sum_{i+j=k}(\alpha_{i}\beta_{j})X^{k}.$$

In this way $\mathcal{F}[X]$ is actually an algebra over \mathcal{F} : an \mathcal{F} -vector space with a multiplication (bilinear map)

$$\mathcal{F}[X] \times \mathcal{F}[X] \to \mathcal{F}[X]$$
. Note

$$\underbrace{ \begin{array}{c} \text{vector space over } \mathcal{F} \\ \text{addition} + \text{scalar multip.} + \text{multip.} \\ \text{algebra over } \mathcal{F} \end{array} }_{\text{algebra over } \mathcal{F}}$$

 $\mathcal{F}[X]$ is actually an associative and commutative algebra.

Let $p(X) = \sum_{i=0}^{n} \alpha_i X^i \in \mathcal{F}[X]$. There is an induced function $p \colon \mathcal{F} \to \mathcal{F}$ (which we also denote by p) given by

$$p(\gamma) = \sum_{i=0}^{n} \alpha_i \gamma^i.$$

Let $p(X) \in \mathbb{R}[X]$ with induced function $p \colon \mathbb{R} \to \mathbb{R}$.

Question: is the function $p: \mathbb{R} \to \mathbb{R}$ linear?

- (1) Yes;
- (2) No;
- (3) It depends on the polynomial p(X).

Answer: Are real polynomial functions linear? Some are (e.g. p(X) = X) and some are not (e.g. $p(X) = X^2$). So the answer is (3).

Note that if $p(X) = \sum_{i=0}^{n} \alpha_i X^i$, $q(X) = \sum_{j=0}^{m} \beta_j X^j \in \mathcal{F}[X]$, with induced functions $p, q: \mathcal{F} \to \mathcal{F}$, then

$$p(\gamma)q(\gamma) = \sum_{i} \alpha_{i} \gamma^{i} \sum_{j} \beta_{j} \gamma^{j} = \sum_{k} \sum_{i+j=k} \alpha_{i} \beta_{j} \gamma^{k} = (pq)(\gamma).$$

What is cooler than evaluating polynomials in elements of \mathcal{F} ? Evaluating in endomorphisms!

E.g. if $p(X) = X + X^2$, and $A \in \text{End}(V)$, I can think of $A + A^2$ as being p(A). More generally:

For $p(X) = \sum_{i=0}^n \alpha_i X^i \in \mathcal{F}[X]$ and $A \in \operatorname{End}(V)$ we define

$$p(A) := \sum_{i=0}^{n} \alpha_i A^i \in \operatorname{End}(V),$$

where $A^i = A \circ \cdots \circ A$ ($i \ge 1$ times) and $A^0 = I_V$ (by convention).

For $p(X) = \sum_{i=0}^{n} \alpha_i X^i \in \mathcal{F}[X]$ and $A \in \text{End}(V)$ we define

$$p(A) := \sum_{i=0}^{n} \alpha_i A^i \in \text{End}(V)$$

Lemma (6.5)

Let $A \in \operatorname{End}(V)$ be fixed. The map $\mathcal{F}[X] \to \operatorname{End}(V)$ given by $p(X) \mapsto p(A)$ is an algebra homomorphism (i.e. it is linear and preserves multiplication).

This looks more complicated than it is.

Example: if
$$p(X) = X$$
 and $q(X) = X^2$, then $(p+q)(X) = X + X^2$. Also $p(A) = A$ and $q(A) = A^2$. Then $(p+q)(A) = A + A^2 = p(A) + q(A)$.

The general statement: (p+q)(A) = p(A) + q(A) means that the map in the lemma above is additive.

Similarly, $(\alpha p)(A) = \alpha p(A)$ means it preserves scalar multiplication, and (pq)(A) = p(A)q(A) means it is multiplicative.

For $p(X) = \sum_{i=0}^{n} \alpha_i X^i \in \mathcal{F}[X]$ and $A \in \operatorname{End}(V)$ we define

$$p(A) := \sum_{i=0}^{n} \alpha_i A^i \in \text{End}(V)$$

Lemma (6.5)

Let $A \in \operatorname{End}(V)$ be fixed. The map $\mathcal{F}[X] \to \operatorname{End}(V)$ given by $p(X) \mapsto p(A)$ is an algebra homomorphism (i.e. it is linear and preserves multiplication).

Consider the case p(X) = X and $q(X) = X + X^3$.

Question: What is (pq)(A)?

- (1) A
- (2) $A + A^3$
- (3) $A^2 + A^4$

Answer:
$$(pq)(X) = p(X)q(X) = X(X + X^3) = X^2 + X^4$$
. So SD

For $p(X) = \sum_{i=0}^{n} \alpha_i X^i \in \mathcal{F}[X]$ and $A \in \operatorname{End}(V)$ we define

$$p(A) := \sum_{i=0}^{n} \alpha_i A^i \in \text{End}(V)$$

Lemma (6.5)

Let $A \in \operatorname{End}(V)$ be fixed. The map $\mathcal{F}[X] \to \operatorname{End}(V)$ given by $p(X) \mapsto p(A)$ is an algebra homomorphism (i.e. it is linear and preserves multiplication).

Proof.

If
$$p(X) = \sum_i \alpha_i X^i$$
, $q(X) = \sum_j \beta_j X^j$ then $p(A) + q(A) = \sum_i \alpha_i A^i + \sum_j \beta_j A^j = \sum_i (\alpha_i + \beta_i) A^i = (p+q)(A)$. Hence the map is additive. Similarly it preserves scalar multiplication. $p(A)q(A) = (\sum_i \alpha_i A^i)(\sum_j \beta_j A^j) = \sum_k \sum_{i+j=k} \alpha_i \beta_j A^k = (pq)(A)$

so the map is multiplicative.

Recall, (given $A \in \text{End}(V)$) that $V_{\lambda} = \{x \in V : Ax = \lambda x\}$.

Lemma

Suppose $x \in V_{\lambda}$ and $p(X) \in \mathcal{F}[X]$. Then $p(A)x = p(\lambda)x$. So if x is an eigenvector for A corresponding to λ , then x is an eigenvector for p(A) corresponding to $p(\lambda)$.

Proof.

We first show that $A^nx = \lambda^nx$ for all $n \ge 0$. First, $A^0x = Ix = \lambda^0x$. So it holds for n = 0. It also holds for n = 1 by definition, and by induction

$$A^{n}x = A(A^{n-1}x) = A(\lambda^{n-1}x) = \lambda^{n-1}Ax = \lambda^{n-1}(\lambda x) = \lambda^{n}x.$$

Now, if $p(X) = \sum_i \alpha_i X^i$, then

$$p(A)x = \sum_{i} \alpha_{i}A^{i}x = \sum_{i} \alpha_{i}\lambda^{i}x = p(\lambda)x.$$

Suppose $p(X) \in \mathcal{F}[X]$. An element $\gamma \in \mathcal{F}$ is a root of p if $p(\gamma) = 0$.

Let $R(p) \subseteq \mathcal{F}$ be the set of all roots of p.

Recall: $\sigma(A) \subseteq \mathcal{F}$ is the set of eigenvalues of A.

Lemma (6.6)

Let $A \in \text{End}(V)$ and $p(X) \in \mathcal{F}[X]$ such that p(A) = 0. Then $\sigma(A) \subseteq R(p)$.

Proof.

Let $\lambda \in \sigma(A)$ and let $x \in V_{\lambda}$ be non-zero. By the previous lemma, we have

$$p(\lambda)x = p(A)x = 0x = 0.$$

As $x \neq 0$ it follows that $p(\lambda) = 0$.

Lemma (6.6)

Let $A \in \text{End}(V)$ and $p(X) \in \mathcal{F}[X]$ such that p(A) = 0. Then $\sigma(A) \subseteq R(p)$.

We work over
$$\mathcal{F}=\mathbb{R}$$
. Consider $A=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\in\mathrm{End}(\mathbb{R}^2)$.

One easily checks that $A^2 = -I$, so if $p(X) = 1 + X^2$ then $p(A) = I + A^2 = I - I = 0$.

Question: What can we conclude?

- (1) $i \in \sigma(A)$;
- (2) $i \in R(p)$;
- (3) $1 \in R(p)$;
- (4) $\sigma(A) = \emptyset$.

Answer: $p(X) = 1 + X^2$ has no real roots, so $R(p) = \emptyset$. By Lemma 6.6 we have $\sigma(A) \subseteq R(p) = \emptyset$, so $\sigma(A) = \emptyset$.

PEPARTMENT OF MATHEMATICS

Let dim $V < \infty$ and $A \in \operatorname{End}(V)$. A minimal polynomial for A is a non-zero polynomial $p(X) \in \mathcal{F}[X]$ such that p(A) = 0, and which has minimal degree among all such polynomials.

Note: for constant polynomials $p(X) = \alpha$ we have $p(A) = \alpha I_V$. Hence (unless $V = \{0\}$) a minimal polynomial is never constant.

Consider $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}\in\mathrm{End}(\mathbb{R}^2)$, and $p(X)=1+X^2$ so that p(A)=0. If $q(X)=\alpha+\beta X$, then

$$q(A) = \alpha I + \beta A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}.$$

Question: Is p(X) a minimal polynomial for A?

- (1) Yes
- (2) No
- (3) There is not enough information to determine this.

Let dim $V < \infty$ and $A \in \operatorname{End}(V)$. A minimal polynomial for A is a non-zero polynomial $p(X) \in \mathcal{F}[X]$ such that p(A) = 0, and which has minimal degree among all such polynomials.

Consider
$$A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}\in\mathrm{End}(\mathbb{R}^2)$$
, and $p(X)=1+X^2$ so that $p(A)=0$. If $q(X)=\alpha+\beta X$, then

$$q(A) = \alpha I + \beta A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}.$$

Question: Is p(X) a minimal polynomial for A? Answer: p(X) has degree 2. Any polynomial of degree ≤ 1 $q(X) = \alpha + \beta X$ satisfies q(A) = 0 only when $\alpha = \beta = 0$. Hence p(X) is minimal.

Lemma (6.8)

Let dim $V < \infty$ and $A \in \operatorname{End}(V)$. There exists a minimal polynomial for A, and if p(X) is a minimal polynomial, then $\sigma(A) = R(p)$.

Proof.

Existence: Let $n := \dim V$

It is enough to prove that p(A)=0 for a non-zero p(X). Since dim $\operatorname{End}(V)=n^2$, the n^2+1 vectors A^0,A^1,\ldots,A^{n^2} cannot be linearly independent. Hence $\sum_{i=0}^{n^2}\alpha_iA^i=0$ for some non-trivial linear combination. Hence p(A)=0 for $p(X)=\sum_{i=0}^{n^2}\alpha_iX^i$.

Lemma (6.8)

Let dim $V < \infty$ and $A \in \operatorname{End}(V)$. There exists a minimal polynomial for A, and if p is a minimal polynomial, then $\sigma(A) = R(p)$.

Proof.

Now suppose p(X) is a minimal polynomial for A. We already know $\sigma(A) \subseteq R(p)$.

Let $\lambda \in R(p)$. By the division algorithm for polynomials (Algebra 1), $p(X) = (X - \lambda)q(X)$ for some polynomial q(X) of degree less than p(X). By minimality of the degree of p(X), we know that $q(A) \neq 0$. Let $x \in V$ such that $y := q(A)x \neq 0$. Then

$$(A - \lambda I)y = (A - \lambda I)q(A)x = p(A)x = 0.$$

Hence y is an eigenvector for A with eigenvalue λ , and thus $\lambda \in \sigma(A)$. Hence $R(p) \subset \sigma(A)$.

A field \mathcal{F} is called algebraically closed if every non-constant polynomial $p(X) \in \mathcal{F}[X]$ has at least one root, i.e. there exists $\lambda \in \mathcal{F}$ such that $p(\lambda) = 0$.

The fundamental theorem of algebra states that $\mathbb C$ is algebraically closed.

Suppose $\lambda \in \mathcal{F}$ is a root of p(X). By polynomial division there is a polynomial $q(X) \in \mathcal{F}[X]$ with degree one less than p(X), such that

$$p(X) = (X - \lambda)q(X).$$

By induction on the degree it follows that if $\mathcal F$ is algebraically closed then every polynomial of degree $k\geq 1$ can be factored as

$$p(X) = \alpha(X - \lambda_1)(X - \lambda_2) \cdots (X - \lambda_k).$$

Moreover, α and the scalars $\lambda_1, \ldots, \lambda_k$ are unique (up to permutation of the indices). Each λ_i can occur multiple times, this number is called the multiplicity of the root.

Theorem (6.9)

Assume that \mathcal{F} is algebraically closed and $0 < \dim V < \infty$. Let $A \in \operatorname{End}(V)$. Then $\sigma(A) \neq \emptyset$. In particular, there exists an eigenvector $x \in V$ for A.

Proof.

By Lemma 6.8, there exists a minimal polynomial p(X) for A, and $\sigma(A) = R(p)$. As p(X) is non-constant and as \mathcal{F} is algebraically closed p(X) has a root. In other words, $\sigma(A) = R(p) \neq \emptyset$.

