Math 327 HW8

Chongyi Xu

May 23, 2017

1. Show that $f:(0,1)\to\mathbb{R}$ where $f(x)=\frac{1}{x^2}$ is not uniformly continuous.

Let $(u_n)_{n\in\mathbb{N}} = \frac{1}{n+1}$, $(v_n)_{n\in\mathbb{N}} = \frac{1}{(n+1)^2}$, then $u_n - v_n \to 0$ but $f(u_n) - f(v_n) = (n+1)^2 - (n+1)^4 \to \infty$, which diverges. So f is not uniformly continuous

2. Let c be a number between 0 and 1. Without the use of Theorem 3.17, show that $f:[c,1] \to \mathbb{R}$ where $f(x) = \frac{1}{x^2}$ is uniformly continuous.

Let $f(x) = \frac{1}{x^2} : [c, 1] \to \mathbb{R}$ Let u_n, v_n be sequence in [c, 1]. Assume $u_n - v_n \to 0$. Then

$$\begin{aligned} \left| f(u_n) - f(v_n) \right| &= \left| u_n^2 - v_n^2 \right| \\ &= \left| (u_n + v_n)(u_n - v_n) \right| \\ &= \left| u_n - v_n \right| \cdot \left| u_n + v_n \right| \\ &\leq \left| u_n - v_n \right| \cdot \left(\left| u_n \right| + \left| v_n \right| \right) \text{(By Triangular Inequality)} \\ &\leq \left| u_n - v_n \right| \cdot (1+1) \text{since both } u_n \text{ and } v_n \in [c, 1]) \\ &= 2\left| u_n - v_n \right| \to 0 \text{since } u_n - v_n \to 0 \end{aligned}$$

So $|f(u_n) - f(v_n)| \to 0$. Therefore, f(x) is uniformly continuous.

- 3. Assume that $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ are uniformly continuous.
 - (a) Show by example that $fg:D\to\mathbb{R}$ does not have to be uniformly continuous.

Let f(x) = x, g(x) = x, $D = [0, \infty]$. Then both f(x) and g(x) are uniformly continuous but $fg = x^2$ does not.

(b) Show that if f and g are also bounded, then $fg: D \to \mathbb{R}$ will be uniformly continuous.

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be uniformly continuous and f, g are bounded. Let u_n, v_n be sequence in D, Assume $u_n - v_n \to 0$. Since f and g are bounded, assume $a_f < f(x) < b_f$ for all $x \in D$, $a_g < g(x) < b_g$ for all $x \in D$. Then

$$|f(u_n)g(u_n) - f(v_n)g(v_n)| = f(u_n)[g(u_n) - g(v_n)] + g(v_n)[f(u_n) - f(v_n)]$$

$$< b_f[g(u_n - g(v_n))] + b_g[f(u_n) - f(v_n)] \text{(By construction)}$$

$$\to 0 + 0 = 0 \text{since } f \text{ and } g \text{ are uniformly continuous}$$

So with f and g bounded, fg will also be uniformly continuous.

(c) Show that if D is compact, then $fg: D \to \mathbb{R}$ will be uniformly continuous.

By Extreme Value Theorem, if D is compact, f and g are continuous(uniformly continuous in this case), then f and g have max and min(bounded). So by part(b), it is proved that if f and g are bounded, fg will be uniformly continuous.

- 4. Determine wheter the following are true are false. If true, explain. If false, give a counter-example.
 - (a) A monotone function $f: \mathbb{R} \to \mathbb{R}$ is one-to-one. It is false. Let f be a constant function $f(x) = a, a \in \mathbb{R} \forall x \in \mathbb{R}$. In this case, $f(x_1) = f(x_2) = a$ does not necessary implies $x_1 = x_2$. So it is not one-to-one.
 - (b) A strictly increasing function $f : \mathbb{R} \to \mathbb{R}$ is one-to-one. It is true. Because f strictly increasing implies if $x_1 < x_2$, then $f(x_1) < f(x_2)$ by the definition. If $f(x_1) = f(x_2)$, x_1 and x_2 has to be equal.
 - (c) A strictly increasing function $f: \mathbb{R} \to \mathbb{R}$ is continuous.

It is false. Consider a step function
$$f(x) = \begin{cases} x, & \text{for } x < 1 \\ x + 1 & \text{for } x \ge 1 \end{cases}$$

In this case, f(x) is strictly increasing but not continuous.

(d) A one-to-one function $f: \mathbb{R} \to \mathbb{R}$ is continuous. It is false. Consider a step function $f(x) = \begin{cases} x, & \text{for } x < 1 \\ x + 1 & \text{for } x \geq 1 \end{cases}$

In this case, f(x) is one-to-one but not continuous.

- 5. For the following, a picture is ok, a formula is better, proving continuity of your function using its formula is the best.
 - (a) Find a continuous function $f:(0,1)\to\mathbb{R}$ with an image equal to \mathbb{R}

(b) Find a continuous function $f:(0,1)\to\mathbb{R}$ with an image equal to [0,1].

(c) Find a continuous function $f: \mathbb{R} \to \mathbb{R}$ with an image equal to (-1,1)

6. Prove that there does not exist a strictly increaising function $f: \mathbb{Q} \to \mathbb{R}$ such that $f(\mathbb{Q}) = \mathbb{R}$.

Suppose $f: \mathbb{Q} \to \mathbb{R}$ is strictly increasing. Since we have proved in previous homeworks that \mathbb{Q} is not compact, then there exists a convergent sequence $(a_n) \in \mathbb{Q}$ such that $a_n \to a$ but $a \notin \mathbb{Q}$. Since f is strictly increasing, $f(a_n) < f(a)$ for all n. So $f(a) \in \mathbb{R}$ is not in the image of $f(\mathbb{Q})$.