Analysis III

Wintersemester 2011/12

Prof. Dr. D. Lenz

Blatt 11

Abgabe Dienstag 27.01.2015

(1) Der Träger einer Funktion $f: \mathbb{R}^N \to \mathbb{R}$ ist definiert als

$$\operatorname{supp} f := \overline{\{x \in \mathbb{R}^N \mid f(x) \neq 0\}}.$$

Zeigen Sie

$$\operatorname{supp} f = \mathbb{R}^N \setminus \bigcup_{U \text{ offen}, f|_U \equiv 0} U$$

(2) Sei \mathcal{S} der Schwartzraum des \mathbb{R}^N und $F: \mathcal{S} \to \mathcal{S}$ die Fouriertransformation. Für $a \in \mathbb{R}^N$ definiere $(T_a f)(x) := f(a+x)$ und $(M_a f)(x) := e^{ixa} f(x)$ für $f: \mathbb{R}^N \to \mathbb{C}$ und $x \in \mathbb{R}^N$. Zeigen Sie für $f \in \mathcal{S}$

$$FT_a f = M_a F f,$$

$$FM_{-a} f = T_a F f.$$

- (3) (a) Sei $p: \mathbb{R}^N \to \mathbb{C}$ ein Polynom. Zeigen Sie $pf \in \mathcal{S}$ für $f \in \mathcal{S}$.
 - (b) Sei $\alpha \in \mathbb{N}_0^N$ ein Multiindex. Zeigen Sie $\partial^{\alpha} f \in \mathcal{S}$ für $f \in \mathcal{S}$.
- (4) Sei $\delta_n : \mathbb{R}^N \to [0, \infty)$ stetig mit $\int_{\mathbb{R}^N} \delta_n(x) dx = 1$ und supp $\delta_n \subset (-\frac{1}{n}, \frac{1}{n})^N$, $n \in \mathbb{N}$. Für $u \in C_c(\mathbb{R}^N)$ sei $u * \delta_n$ definiert durch

$$u * \delta_n(x) = \int_{\mathbb{R}^N} \delta_n(x - y)u(y)dy.$$

- (a) Zeigen Sie $u * \delta_n \in C_c(\mathbb{R}^N), n \geq 1.$
- (b) Zeigen Sie, dass die Folge von Funktionen $u*\delta_n, n\geq 1$, gleichmäßig gegen u konvergiert.

Zusatzaufgaben

(Z1) Seien $\delta_n: \mathbb{R}^N \to [0, \infty), n \geq 1$, wie in Aufgabe 4. Für ein Lebesgue-integrierbares $f: \mathbb{R}^N \to \mathbb{R}$ sei $f * \delta_n$ wie oben definiert durch

$$f * \delta_n(x) = \int_{\mathbb{R}^N} \delta_n(x - y) f(y) dy.$$

- (a) Zeigen Sie, dass $f * \delta_n$, $n \ge 1$, stetig ist.
- (b) Zeigen Sie $f * \delta_n(x) \to f(x), n \to \infty$, in allen Stetigkeitspunkten x von f.