Supplementary materials for

Differential Privacy Protection against Membership Inference Attack on Genomic Data

Junjie Chen¹, Wendy Hui Wang² and Xinghua Shi^{1*}

¹Department of Computer and Informatics Sciences, Temple University, Philadelphia, PA 19122, USA.

²Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.

 * To whom correspondence should be addressed. E-mail: mindyshi@temple.edu

S.1. Figures

Fig. S.1. An illustration of four types of methods to implement differentially private machine learning models. DP can be implemented by adding noises to the input data, to the final weights, to loss gradient and to output probabilities.

S.2. Tables

Table S.1. The epsilon ε value as a function of epoch $\in \{50, 100\}$, batch $\in \{8, 16\}$ and noise multiplier $\in \{0.4, 0.6, 0.8, 1.0, 1.2\}$, under the condition of $\delta = 0.00066489$, using differentially private SGD. Larger epoch and batch result in larger epsilon, while larger noise multiplier result in small epsilon.

epsilon	epoch	batch	noise multiplier
2.1602	50	8	1.2
2.9187	50	8	1.0
3.1102	100	8	1.2
3.1596	50	16	1.2
4.2119	100	8	1.0
4.3068	50	16	1.0
4.5779	100	16	1.2
4.6433	50	8	0.8
6.2594	100	16	1.0
6.6847	100	8	0.8
6.8959	50	16	0.8
10.0391	100	16	0.8
10.6203	50	8	0.6
15.2897	100	8	0.6
15.3320	50	16	0.6
22.5690	100	16	0.6
47.6580	50	8	0.4
61.9543	50	16	0.4
72.9451	100	8	0.4
98.0023	100	16	0.4