XC6206 Series

Low ESR Cap. Compatible Positive Voltage Regulators

- ◆CMOS Low Power Consumption
- ◆Dropout Voltage : 160mV @ 100mA

: 400mV @ 200mA

◆Output Current : More Than 250mA (5.0V type)

♦ Highly Accurate : ±2%

◆Output Voltage Range: 1.2V ~ 5.0V

◆Low ESR Capacitor Compatible

■APPLICATIONS

- Battery powered equipment
- Reference voltage sources
- Cameras, video cameras
- Portable AV systems
- Mobile phones
- Portable games

■GENERAL DESCRIPTION

The XC6206 series are highly precise, low power consumption, high voltage, positive voltage regulators manufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage.

The XC6206 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error correction circuit.

The series is compatible with low ESR ceramic capacitors. The currrent limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin. Output voltage can be set internally by laser trimming technologies. It is selectable in 100mV increments within a range of 1.2V to 5.0V.

SOT-23, SOT-89, TO-92 and USP-6B packages are available.

■FEATURES

Maximum Output Current: 250mA (5.0V type)Dropout Voltage: 160mV @ IOUT=100mA

(5.0V type)

Maximum Operating Voltage : 6.0V

Output Voltage Range : 1.2V ~ 5.0V (100mV steps)

Highly Accurate : ±2%

(<u>+</u>30mV@VouT<1.5V) (<u>+</u>1% @VouT≥2.0V)

Low Power Consumption : $1.0\mu A$ (TYP.) **Operational Temperature Range** : $-40^{\circ}C \sim 85^{\circ}C$

Ultra Small Package : SOT-23, SOT-89, TO-92

USP-6B

Low ESR Capacitor : Ceramic capacitor compatible

■TYPICAL APPLICATION CIRCUIT

VouT 2 VIN Vss 1 CL 1.0 μ F(ceramic)

■TYPICAL PERFORMANCE CHARACTERISTICS

XC6206P302

XC6206 Series

■PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VIN pin.

■PIN ASSIGNMENT

	PIN NUMBER				FUNCTIONS
SOT-23	SOT-89/TO-92 (T)	USP-6B	TO-92 (L)	PIN NAME	FUNCTIONS
1	1	2	2	Vss	Ground
3	2	4	1	VIN	Power Input
2	3	6	3	Vout	Output
-	-	1, 3, 5	-	NC	No Connection

■PRODUCT CLASSIFICATION

Ordering Information

XC6206P 12345

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
12	Output Voltage	12~50	: e.g. Vouт: 3.0V→①= 3, ② = 0
3 Accuracy	Accuracy	2	: Within <u>+</u> 2% (within <u>+</u> 30mV when VouT<1.5V)
3)	Accuracy	1 *	: Within <u>+</u> 1%
		M	: SOT-23
	Package	Р	: SOT-89
4		D	: USP-6B
		Т	: TO-92 (Standard)
		L	: TO-92 (Custom pin configuration)
		R	: Embossed tape, standard feed
5	D. t. Otrofoli	L	: Embossed tape, reverse feed
9	Device Orientation	Н	: Page type (TO-92)
		В	: Bag (TO-92)

^{* ±1%} accuracy can be set at Vout(T) ≥ 2.0V.

■PACKAGING INFORMATION

●SOT-23 ●SOT-89 1.5±0.1 4.5±0.1 0.4 +0.1 -0.05 0.15 +0.1 1.6 +0.15 0~0.1 2.8±0.2 1.6 +0.2 2.5 ± 0.1 \blacksquare 0.8 Hi (0.95)0.4 +0.03 0.42±0.06 1.1±0.1 0.42±0.06 1.9 ± 0.2 0.47±0.06 2.9±0.2 1.5±0.1 1.5±0.1 ●USP-6B ●TO-92 4.65 ^{+0.35} _{-0.45} 2.0 ± 0.15 $(0.45) 0.5 \pm 0.1$ (0.05)4.8 -0.5 1.8±0.15 ►⊅ 3 (0.27) (0.45) (0.45) 0.45 ± 0.1 0.005 ± 0.002 0.65 +0.15 2.5^{+0.4}_{-0.1} 2.5^{+0.4}_{-0.1} 0.7 ± 0.03 A-A' cross section $5-0.2\pm0.05$ $0.5\pm0.1\ 0.5\pm0.$ 0.2 ± 0.05 0.1±0. 1.0±0.1 0.25 ± 0.1 0.25 ± 0.1

Note: Pin 1 is larger than the other pins.

■MARKING RULE

●SOT-23 & SOT-89

Represents product series

MARK	PRODUCT SERIES
6	XC6206Pxxxxx

2 Represents three pins regulator

MA	RK	
VOLTAGE:	VOLTAGE:	PRODUCT SERIES
0.1 ~ 3.0V	3.1 ~ 6.0V	
5	6	XC6206Pxxxxx

3 Represents output voltage

MARK	OUTPUT VOLTAGE (V)		MARK	OUTPU	JT VOLTA	GE (V)	
0	-	3.1	-	F	1.6	4.6	-
1	-	3.2	-	Н	1.7	4.7	-
2	-	3.3	-	K	1.8	4.8	-
3	-	3.4	-	L	1.9	4.9	-
4	-	3.5	-	М	2.0	5.0	1
5	-	3.6	-	Ζ	2.1	ı	ı
6	-	3.7	-	Р	2.2	ı	ı
7	-	3.8	-	R	2.3	ı	ı
8	-	3.9	-	S	2.4	ı	ı
9	-	4.0	-	Т	2.5	ı	ı
Α		4.1	-	U	2.6	-	ı
В	1.2	4.2	-	V	2.7	ı	ı
С	1.3	4.3	-	Х	2.8	-	-
D	1.4	4.4	-	Y	2.9	-	-
E	1.5	4.5	-	Z	3.0	-	-

4 Represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated.

(G, I, J, O, Q, W excepted)

●USP-6B

①② Represents product series

MA	RK	PRODUCT SERIES	
① ②		PRODUCT SERIES	
0	6	XC6206PxxxDx	

③ Represents three pins regulator

MARK	TYPE	PRODUCT SERIES
Р	Three pins regulator	XC6206PxxxDx

45 Represents output voltage

MARK		OUTPUT VOLTAGE (V)	PRODUCT SERIES
1	2	OUTFUT VOLIAGE (V)	FRODUCT SERIES
3	3	3.3	XC6206P33xDx
5	0	5.0	XC6206P50xDx

6 Represents production lot number

0 to 9, A to Z reversed (G, I, J, O, Q, W excepted)

^{*} No character inversion used.

■MARKING RULE (Continued)

●TO-92

① Represents type of regulator

MARK	PRODUCT NAME	
Р	XC6206Pxxxxx	

23 Represents output voltage

MARK		VOLTAGE (V)	PRODUCT NAME	
2	3	VOLIAGE (V)	PRODUCTIVALVIE	
3	3	3.3	XC6206P33xxx	
5	0	3.3	XC6206P50xxx	

4 Represents output voltage accuracy

MARK	OUTPUT VOLTAGE ACCURACY	PRODUCT NAME
1	within ±1%	XC6206Pxx1xx
2	within ±2%	XC6206Pxx2xx

(5) Represents least significant digit of production year

MARK	PRODUCTION YEAR
3	2003
4	2004

⑥ Represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excepted)

Note: No character inversion used.

■BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETE	R	SYMBOL	RATINGS	UNITS	
Input Voltage	е	VIN	7.0	V	
Output Curre	nt	lout	500 *	mA	
Output Voltag	је	Vout	$Vss - 0.3 \sim Vin + 0.3$	V	
	SOT-23		250		
Power Dissipation	SOT-89	Pd	500	mW	
	USP-6B		100	IIIVV	
	TO-92		300]	
Operating Temperature Range		Topr	- 40 ~ + 85	°C	
Storage Temperatur	e Range	Tstg	- 55 ~ + 125	°C	

^{*} IOUT=Pd / (VIN-VOUT)

■ELECTRICAL CHARACTERISTICS

●XC6206 series Ta=25 °C

• ACOZOO SERIES								
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT	
Output Voltage (*7)	Vout(e)	IOUT=30mA		Vout(t) E-1	x 1.02	V	1	
Maximum Output Current	IOUTMAX		-	-	E-2	mA	1	
Load Regulation	ΔVουτ	Vout(t)>1.8V, 1mA≦lout≦100mA Vout(t)≤1.8V, 1mA≦lout≦50mA	-	-	E-3	mV	1	
	Vdif1	Iout=30mA		E-4		mV		
Dropout Voltage	Vdif2	Vout(t)>1.8V: Iout=100mA Vout(t)≦1.8V: Iout=60mA	-	E-5		mV	1	
Supply Current	ldd	VCE=VIN	-	1.0	3.0	μΑ	2	
Line Regulation		VOUT(T)<4.5V:VOUT(T)+1.0V≦VIN≦6.0V VOUT(T)≥4.5V:5.5V≦VIN≦6.0V IOUT=30mA	-	0.05	0.25	%/V	1)	
Input Voltage	Vin		1.8	-	6.0	V	-	
Output Voltage Temperature Characteristics	ΔVουτ ΔTopr· Vouτ	IOUT=30mA -40 °C≦Topr≦85 °C	-	<u>+</u> 100	-	ppm/ °C	1	
Short Circuit Current	Ishort	VIN=Vout+1.5V, Vout=Vss	-	E-6	-	mA	1	

NOTE:

When Vout(T)<1.5V, accuracy is MIN.:Vout(T) -30mV / MAX.:Vout(T) +30mV

^{* 1 :} Vout(T) = Specified output voltage

^{* 2 :} Vout(E) = Effective output voltage (le. The output voltage when "Vout(T)+1.0V" is provided at the Vin pin while maintaining a certain lout value.)

^{* 3 :} $Vdif = \{Vin 1^{(*5)} + Vout 1^{(*4)}\}$

^{* 4 :} Vout1 = A voltage equal to 98% of the output voltage whenever an amply stabilized lout {Vout(t) + 1.0V} is input.

^{* 5 :} VIN 1 = The input voltage when Vout1 appears as input voltage is gradually decreased.

^{* 6 :} Unless otherwise stated, VIN = VOUT(T) + 1.0V

^{* 7 :} When Vout(T)≥1.5V, accuracy is ±2%.

^{+1%} accuracy (MIN.: VouT(T) x 0.99 / MAX.: VouT(T) x 1.01) is set at VouT(T)≥2.0V

■ELECTRICAL CHARACTERISTICS (Continued)

•Electrical Characteristics Chart

	aracteristics Chart E-1		E-2	E-3	E-4		E-5		E-6		
PARAMETER SETTING	20	%	VOLTAGE 1%		MAX. OUTPUT CURRENT	LOAD REGULATION	DROPOUT VOLTAGE 1		DROPOUT VOLTAGE 2		SHORT CURRENT
VOLTAGE	ACCU Vout(ACCU Voute		IOUTMAX	△Vout	Vo	dif1	Vo	dif2	Ishort
Vout(t)	MIN.	MAX.	MIN.	MAX.	` ,	(mA) MAX.		TYP. MAX.		MAX.	TYP.
1.2	1.170	1.230	IVIIIN.	IVIAA.	IVIIIN.	IVIAA.	460	760	TYP.	IVIAA.	ITP.
1.3	1.270	1.330				40	400	650	700	960	180
1.4	1.370	1.430			60		350	590			
1.5	1.470	1.530					300	510	580	860	
1.6	1.568	1.632				45	250	450	450	780	155
1.7	1.666	1.734					200	410	450		
1.8	1.764	1.836			80		150	390			
1.9	1.862	1.938									130
2.0	1.960	2.040	1.980	2.020		50			350		
2.1	2.058	2.042	2.079	2.121	120						
2.2	2.156	2.244	2.178	2.222							
2.3	2.254	2.346	2.277	2.323							
2.4	2.352	2.448	2.376	2.424			100	370			
2.5	2.450	2.550	2.475	2.525						710	
2.6	2.548	2.652	2.574	2.626	150	55					
2.7	2.646	2.754	2.673	2.727							
2.8	2.744	2.856	2.772	2.828							
2.9	2.842	2.958	2.871	2.929							
3.0	2.940	3.060	2.970	3.030							
3.1	3.038	3.162	3.069	3.131		60	75	350	250	680	100
3.2	3.136	3.264	3.168	3.232							
3.3	3.234	3.366	3.267	3.333	200						
3.4	3.332	3.468	3.366	3.434							
3.5 3.6	3.430 3.528	3.570 3.672	3.465 3.564	3.535 3.636							
3.7	3.626	3.774	3.663	3.737		65					
3.8	3.724	3.876	3.762	3.838							
3.9	3.822	3.978	3.861	3.939							
4.0	3.920	4.080	3.960	4.040							
4.1	4.018	4.182	4.059	4.141							
4.2	4.116	4.284	4.158	4.242	250	70	60	320	200	630	
4.3	4.214	4.386	4.257	4.343		.,					
4.4	4.312	4.488	4.356	4.444							
4.5	4.410	4.590	4.455	4.545							
4.6	4.508	4.692	4.554	4.646							
4.7	4.606	4.794	4.653	4.747		75					
4.8	4.704	4.896	4.752	4.848							
4.9	4.802	4.998	4.851	4.949							
5.0	4.900	5.100	4.950	5.050		80	50	290	175	600	

XC6206 Series

■TEST CIRCUITS

Circuit ①

Circuit 2

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(2) Current Limit

(3) Output Voltage vs. Input Voltage

(4) Dropout Voltage vs. Output Current

(5) Supply Current vs. Input Voltage

(6) Output Voltage vs. Ambient Temperature

(7) Output Voltage vs. Ambient Temperature

(8) Input Transient Response 1

(9) Input Transient Response 2

(10) Load Transient Response

(11) Ripple Rejection Rate

