Information Theory Prof. Mário S. Alvim

PROBLEM SET

Kolmogorov Complexity and Universal Probability (Based on slide-set)

Necessary reading for this assignment:

• Slide-set of the lecture on Kolmogorov Complexity and Universal Probability

Note: The exercises are labeled according to their level of difficulty: [Easy], [Medium] or [Hard]. This labeling, however, is subjective: different people may disagree on the perceived level of difficulty of any given exercise. Don't be discouraged when facing a hard exercise, you may find a solution that is simpler than the one the instructor had in mind!

Review questions.

- 1. Answer formally the following questions:
 - (a) Define the Kolmogorov Complexity of a string
 - (b) When is a string considered truly random? Give an example of a truly random binary string and an example of a non-random string that looks random.
 - (c) What is the universal probability of a string? How is it related to the string's Kolmogorov complexity?

Problems.

- 2. (Cover & Thomas 14.1) [Medium] Let $x, y \in \{0, 1\}^*$ be two binary sequences. Argue that the Kolmogorov complexity K(xy) of the concatenation of x and y satisfies $K(xy) \leq K(x) + K(y) + c$.
- 3. (Cover & Thomas 14.2) [Medium] Let n_1 and n_2 be two binary numbers.
 - (a) Argue that the complexity $K(n_1 + n_2)$ of the sum of n_1 and n_2 satisfies $K(n_1 + n_2) \leq K(n_1) + K(n_2) + c$.
 - (b) Give an example of binary numbers n_1 and n_2 that are complex, but such that $n_1 + n_2$ is simple.
- 4. (Cover & Thomas 14.5 Monkeys on a computer) [Medium] Suppose that a random program is typed into a computer. Give a rough estimate of the probability that the computer prints the following sequence:
 - a) 0^n followed by any arbitrary sequence.
 - b) $\pi_1\pi_2...\pi_n$ followed by any arbitrary sequence, where π_i is the *i*-th bit in the expansion of π .