Analiza seria 5

Bartosz Kucypera, bk439964

13 czerwca 2023

Zadanie 1

Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją ciągłą. Udowodnić, że

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \sin(nx) dx = 0$$

Lemacik

$$\lim_{n \to \infty} \int_{a}^{b} c \cdot \sin(nx) dx = 0$$

dla dowlonych a, b, c, a < b, rzeczywistych.

Jeśli b' - a' wielokrotnością okresu $\sin(nx)$ to oczywiście

$$\int_{a'}^{b'} c \cdot \sin(nx) dx = 0, \text{ czyli też } \lim_{n \to \infty} \int_{a'}^{b'} c \cdot \sin(nx) dx = 0$$

Zauważmy, że

$$\int_a^b c \cdot \sin(nx) dx = \int_a^d c \cdot \sin(nx) dx + \int_d^b c \cdot \sin(nx) dx$$

gdzie d-a największą wielokrotnością okresu $\sin(nx)$, mniejszą od b-a. Zachodzi, więc następujący ciąg równości i nierówności

$$\left| \int_{a}^{b} c \cdot \sin(nx) dx \right| = \left| \int_{a}^{d} c \cdot \sin(nx) dx + \int_{d}^{b} c \cdot \sin(nx) dx \right| \le |(b - d) \cdot c| \le \left| \frac{2\pi}{n} c \right|$$

bo b-d mniejsze równe od okresu $\sin(nx)$, czyli $\frac{2\pi}{n}$.

Mamy więc,

$$\lim_{n \to \infty} \left| \int_a^b c \cdot \sin(nx) dx - 0 \right| \le \lim_{n \to \infty} \left| \frac{2\pi}{n} c \right| = 0$$

Czyli faktycznie

$$\lim_{n \to \infty} \int_{a}^{b} c \cdot \sin(nx) dx = 0$$

Funkcja pomocnicza g_{ϵ}

Niech funkcja $g_{\epsilon}, g_{\epsilon} : \mathbb{R} \to \mathbb{R}$, zdefiniowana następująco $\forall \epsilon > 0$, (poniżej zakładamy, że ϵ jest już ustalony):

Niech δ taka, że $\forall x, y \in [0, 2\pi]$ jeśli $|x - y| < \delta$ to $|f(x) - f(y)| < \frac{\epsilon}{2\pi} \cdot \frac{1}{2}$. Taka δ istnie, bo f(x) jest ciągła, przedział $[0, 2\pi]$ domknięty, czyli f(x) ciągła jednostajnie na $[0, 2\pi]$.

Teraz dzielimy $[0, 2\pi]$ na przedziały długości δ (jak δ nie dzieli 2π , to ostatni krótszy) i na każdym przedziale postaci $[k\delta, (k+1)\delta)$, (lub jakiś ostatni postaci $[k\delta, 2\pi]$), ustalamy $g_{\epsilon}(x) = f(k\delta)$ dla $x \in [k\delta, (k+1)\delta)$, (analogicznie dla tego ostatniego, krótszego, przedziału).

Dzięki takiej konstrukcji, g_{ϵ} ma następujące, przydatne, własności:

1)

$$\lim_{n \to \infty} \int_0^{2\pi} g_{\epsilon}(x) \sin(nx) dx = 0$$

dla ustalonego ϵ, g_{ϵ} stała przedziałami, do każdego takiego przedziału przykładamy Lemacik.

2)

$$\left| \int_0^{2\pi} |f - g_{\epsilon}|(x) \sin(nx) dx \right| \le \frac{\epsilon}{2\pi} \cdot \frac{1}{2} \cdot 2\pi = \frac{\epsilon}{2}$$

bo z jednostajnej ciągłości f, na każdym przedziale $I = [k\delta, (k+1)\delta)$,

$$\forall x \in I, \ |f(x) - f(k\delta)| < \frac{\epsilon}{2\pi} \cdot \frac{1}{2}$$

a skoro dla $x \in I, g_{\epsilon}(x) = f(k\delta)$ to

$$\forall x \in I, |f(x) - g_{\epsilon}(x)| < \frac{\epsilon}{2\pi} \cdot \frac{1}{2},$$

powtarzamy to rozumowanie dla każdego przedzaiłu gdzie g_{ϵ} stałe i otrzymujemy, że

$$\forall x \in [0, 2\pi], |f(x) - g_{\epsilon}(x)| < \frac{\epsilon}{2\pi} \cdot \frac{1}{2}$$

Rozwiązanie

Korzystając z własności 1) i 2), mamy

 $\forall \epsilon > 0, \exists N$ takie, że $\forall n > N$ zachodzi

$$\left| \int_0^{2\pi} f(x) \sin(nx) dx - 0 \right| = \left| \int_0^{2\pi} |f - g_{\epsilon}|(x) \sin(nx) dx + \int_0^{2\pi} g_{\epsilon}(x) \sin(nx) dx \right| \le$$

$$\le \left| \int_0^{2\pi} |f - g_{\epsilon}|(x) \sin(nx) dx \right| + \left| \int_0^{2\pi} g_{\epsilon}(x) \sin(nx) dx \right| = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

czyli faktycznie

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \sin(nx) dx = 0,$$

zbieżne z definicji.