Advanced Data Structures and Algorithms

Single Source Shortest Paths (SSSP):

Dijkstra Algo

This Module

- Shortest Paths
 - BFS
 - What if the graphs are weighted?

- Part 1: Single Source
 - Dijkstra!
 - Bellman-Ford!
- Part 2: All Source
 - Floyd-Warshall

Sri City Graph

Sri City Graph

- What is the shortest path between u and v in a weighted graph?
 - the cost of a path is the sum of the weights along that path

- What is the shortest path between u and v in a weighted graph?
 - the cost of a path is the sum of the weights along that path
 - The shortest path is the one with the minimum cost.

- What is the shortest path between u and v in a weighted graph?
 - the cost of a path is the sum of the weights along that path
 - The shortest path is the one with the minimum cost.

- What is the shortest path between u and v in a weighted graph?
 - the cost of a path is the sum of the weights along that path
 - The shortest path is the one with the minimum cost.

• The **distance** d(u,v) between two vertices u and v is the cost of the shortest path between u and v.

Shortest paths

Shortest paths

Shortest paths

• A sub-path of a shortest path is also a shortest path.

• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.

• A sub-path of a shortest path is also a shortest path.

Claim: this is a shortest path from s to x.

A sub-path of a shortest path is also a shortest path.

A sub-path of a shortest path is also a shortest path.

- Say this is a shortest path from s to t.
- Claim: this is a shortest path from s to x.
 - Suppose not, this one is a shorter path from s to x.
 - But then that gives an even shorter path from s to t!

A sub-path of a shortest path is also a shortest path.

Single-source shortest-path problem

• I want to know the shortest path from one vertex (Gnan Circle) to all other vertices.

Single-source shortest-path problem

• I want to know the shortest path from one vertex (Gnan Circle) to all other vertices.

Destination	Cost	To get there
CSA	1	CSA
ICICI	2	CSA-ICICI
BlockC	10	BlockC
Tada	17	Tada
HostelB	6	CSA-ICICI-HostelB
Hospital	10	Hospital
IIITS	23	CSA-IIITS

Example

what is the shortest path from Sri City to [anywhere else]"

 Edge weights have something to do with time, money, hassle.

Example

Network routing

- I send information over the internet, from my computer to all over the world.
- Each path has a cost which depends on link length, traffic, other costs, etc..
- How should we send packets?

Dijkstra's algorithm

• Finds shortest paths from Gnan Circle to everywhere else.

All vertices are on ground initially.

A vertex is done when it's not on the ground anymore.

YOINK!

YOINK!

This creates a tree!

The shortest paths are the lengths along this tree.

How do we actually implement this?

How do we actually implement this?

How do we actually implement this?

Without string and gravity?

How far is a node from Gnan Circle?

How far is a node from Gnan Circle?

How far is a node from Gnan Circle?

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

Initialize $d[v] = \infty$ for all non-starting vertices v, and d[Gnan] = 0

How far is a node from Gnan Circle?

Initialize $d[v] = \infty$ for all non-starting vertices v, and d[Gnan] = 0

 Pick the not-sure node u with the smallest estimate d[u].

How far is a node from Gnan Circle?

 Pick the not-sure node u with the smallest estimate d[u].

How far is a node from Gnan Circle?

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as **SUre**.

How far is a node from Gnan Circle?

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gnan Circle?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gnan,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat
- After all nodes are sure, say that d(Gnan, v) = d[v] for all v

Dijkstra's algorithm

Dijkstra(G,s):

- Set all vertices to not-sure
- d[v] = ∞ for all v in V
- d[s] = 0
- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
- Now d(s, v) = d[v]

Lots of implementation details left un-explained. We'll get to that!

As usual

• Does it work?

• Is it fast?

As usual

- Does it work?
 - Yes.

- Is it fast?
 - Depends on how you implement it.

As usual

- Does it work?
 - Yes.

- Is it fast?
 - Depends on how you implement it.

• Theorem:

- Suppose we run Dijkstra on G =(V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Let's rename "Gnan Circle" to "s", our starting vertex.

• Theorem:

- Suppose we run Dijkstra on G = (V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Let's rename "Gnan Circle" to "s", our starting vertex.

Proof outline:

- Claim 1: For all v, d[v] ≥ d(s,v).
- Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Theorem:

- Suppose we run Dijkstra on G = (V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Let's rename "Gnan Circle" to "s", our starting vertex.

• Proof outline:

- Claim 1: For all v, d[v] ≥ d(s,v).
- Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.

When v is marked sure, d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

- $d[v] \ge d(s,v)$ and never increases, so after v is sure, d[v] stops changing.
- This implies that at any time after v is marked sure, d[v] = d(s,v).
- All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

• Theorem:

- Suppose we run Dijkstra on G = (V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Let's rename "Gnan Circle" to "s", our starting vertex.

Proof outline:

- Claim 1: For all v, d[v] ≥ d(s,v).
- Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.

When v is marked sure, d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

- $d[v] \ge d(s,v)$ and never increases, so after v is sure, d[v] stops changing.
- This implies that at any time after v is marked sure, d[v] = d(s,v).
- All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Next let's prove the claims!

Claim 1 $d[v] \ge d(s,v)$ for all v.

Claim 1

 $d[v] \ge d(s,v)$ for all v.

Informally:

• Every time we update d[v], we have a path in mind:

 $d[v] \ge d(s,v)$ for all v.

Informally:

• Every time we update d[v], we have a path in mind:

 $d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$

Claim 1 $d[v] \ge d(s,v)$ for all v.

Informally:

• Every time we update d[v], we have a path in mind:

 $d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$

Whatever path we had in mind before

The shortest path to u, and then the edge from u to v.

 $d[v] \ge d(s,v)$ for all v.

Informally:

• Every time we update d[v], we have a path in mind:

 $d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$

Whatever path we had in mind before

The shortest path to u, and then the edge from u to v.

d[v] = length of the path we have in mind

≥ length of shortest path

= d(s,v)

 $d[v] \ge d(s,v)$ for all v.

Informally:

• Every time we update d[v], we have a path in mind:

 $d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$

Whatever path we had in mind before

The shortest path to u, and then the edge from u to v.

d[v] = length of the path we have in mind
 ≥ length of shortest path
 = d(s,v)

Formally:

We should prove this by induction.

Intuition!

Claim 1 $d[v] \ge d(s,v)$ for all v.

- Inductive hypothesis.
 - After t iterations of Dijkstra, $d[v] \ge d(s,v)$ for all v.

 $d[v] \ge d(s,v)$ for all v.

- Inductive hypothesis.
 - After t iterations of Dijkstra,
 d[v] ≥ d(s,v) for all v.
- Base case:
 - At step 0, d(s, s) = 0, and $d(s, v) \le \infty$

 $d[v] \ge d(s,v)$ for all v.

- Inductive hypothesis.
 - After t iterations of Dijkstra,
 d[v] ≥ d(s,v) for all v.
- Base case:
 - At step 0, d(s, s) = 0, and $d(s, v) \le \infty$
- Inductive step: say hypothesis holds for t.
 - At step t+1:
 - Pick u; for each neighbor v:
 - $d[v] \leftarrow min(d[v], d[u] + w(u,v)) \ge d(s,v)$

By induction, $d[v] \ge d(s, v)$

$$d[v] = d[u] + w(u, v)$$

$$\geq d(s, u) + w(u, v) \geq d(s, v)$$
using induction again for d[u]

 $d[v] \ge d(s,v)$ for all v.

- Inductive hypothesis.
 - After t iterations of Dijkstra, $d[v] \ge d(s,v)$ for all v.
- Base case:
 - At step 0, d(s, s) = 0, and $d(s, v) \le \infty$
- Inductive step: say hypothesis holds for t.
 - At step t+1:
 - Pick u; for each neighbor v:
 - $d[v] \leftarrow min(d[v], d[u] + w(u,v)) \ge d(s,v)$

By induction, $d[v] \ge d(s, v)$

$$d[v] = d[u] + w(u, v)$$

$$\geq d(s, u) + w(u, v) \geq d(s, v)$$

using induction again for d[u]

So the inductive hypothesis holds for t+1, and Claim 18follows.

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = d(s,v).

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = d(s,v).
- Base case:
 - The first vertex marked **sure** is s, and d[s] = d(s,s) = 0.

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = d(s,v).
- Base case:
 - The first vertex marked **sure** is s, and d[s] = d(s,s) = 0.
- Inductive step:
 - Suppose that we are about to add u to the sure list.
 - That is, we picked u in the first line here:
 - Pick the not-sure node u with the smallest estimate d[u].
 - Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
 - Repeat

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = d(s,v).
- Base case:
 - The first vertex marked **sure** is s, and d[s] = d(s,s) = 0.
- Inductive step:
 - Suppose that we are about to add u to the sure list.
 - That is, we picked u in the first line here:
 - Pick the not-sure node u with the smallest estimate d[u].
 - Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
 - Repeat
 - Assume by induction that every v already marked sure has d[v] = d(s,v).
 - Want to show that d[u] = d(s,u).

YOINK!

Intuition

Intuition

When a vertex u is marked sure, d[u] = d(s,u)

• The first path that lifts **u** off the ground is the shortest one.

YOINK!

Intuition

When a vertex u is marked sure, d[u] = d(s,u)

• The first path that lifts **u** off the ground is the shortest one.

• But we should actually prove it.

YOINK!

Temporary definition:

v is "good" means that d[v] = d(s,v)

Claim 2 Inductive step

- Want to show that u is good.
- Consider a **true** shortest path from s to u:

The vertices in between may or may not be sure.

True shortest path.

Temporary definition:

v is "good" means that d[v] = d(s,v)

"by way of contradiction"

Want to show that u is good. BWOC, suppose u isn't good.

The vertices in between may or may not be sure.

True shortest path.

Temporary definition:

v is "good" means that d[v] = d(s,v)

"by way of contradiction"

- Want to show that u is good. BWOC, suppose u isn't good.
- Say z is the good vertex before u.

The vertices in between may or may not be sure.

True shortest path.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are shortest paths.

Claim 1

Temporary definition:

v is "good" means that d[v] = d(s,v)

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are shortest paths.

Claim 1

• If d[z] = d[u], then u is good.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are

Claim 1

shortest paths.

• If d[z] = d[u], then u is good.

But u is not good!

Temporary definition:

v is "good" means that d[v] = d(s,v)

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are

nortest paths are shortest paths.

• If d[z] = d[u], then u is good.

But u is not good!

Claim 1

• So d[z] < d[u], so z is **sure.**

We chose u so that d[u] was smallest of the unsure vertices.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

Want to show that u is good. BWOC, suppose u isn't good.

$$d[z] = d(s, z) \le d(s, u) \le d[u]$$

z is good

Subpaths of shortest paths are shortest paths.

Claim 1

• If d[z] = d[u], then u is good.

But u is not good!

• So d[z] < d[u], so z is **sure.**

We chose u so that d[u] was smallest of the unsure vertices.

s

Z

u

Temporary definition:

v is "good" means that d[v] = d(s,v)

- means good means not good
- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u: $d[u] \leftarrow min\{d[u], d[z] + w(z, u)\}$

Temporary definition:

v is "good" means that d[v] = d(s,v)

- means not good
- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

• $d[u] \leq d[z] + w(z,u)$ def of update $d[u] \leftarrow min\{d[u],d[z] + w(z,u)\}$

That is, the value of d[z] when z was marked sure...

Temporary definition:

v is "good" means that d[v] = d(s,v)

- means good
- means not good
- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

• $d[u] \le d[z] + w(z,u)$ def of update $d[u] \leftarrow min\{d[u],d[z] + w(z,u)\}$

= d(s,z) + w(z,u) By induction when z was added to the sure list it had d(s,z) = d[z]

That is, the value of d[z] when z was marked sure...

Temporary definition:

v is "good" means that d[v] = d(s,v)

- means good means not good
- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

• $d[u] \leq d[z] + w(z,u)$ def of update $d[u] \leftarrow min\{d[u],d[z] + w(z,u)\}$

= d(s,z) + w(z,u) By induction when z was added to the sure list it had d(s,z) = d[z]

That is, the value of d[z] when z was = d(s, u) sub-paths of shortest paths are shortest paths marked sure...

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

$$d[u] \leftarrow min\{d[u], d[z] + w(z, u)\}$$

• $d[u] \le d[z] + w(z, u)$ def of update

$$= d(s,z) + w(z,u)$$
 By induction when z was added to the sure list it had $d(s,z) = d[z]$

That is, the value of d[z] when z was = d(s, u) sub-paths of shortest paths are shortest paths marked sure...

$$\leq d[u]$$
 Claim 1

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

 $d[u] \leftarrow \min\{d[u], d[z] + w(z, u)\}$

• $d[u] \le d[z] + w(z, u)$ def of update

$$= d(s,z) + w(z,u)$$
 By induction when z was added to the sure list it had $d(s,z) = d[z]$

That is, the value of d[z] when z was = d(s, u) sub-paths of shortest paths are shortest paths marked sure...

$$\leq d[u]$$
 Claim 1

So d(s, u) = d[u] and so u is good.

u

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

 $d[u] \leftarrow min\{d[u], d[z] + w(z, u)\}$

• $d[u] \le d[z] + w(z, u)$ def of update

$$= d(s,z) + w(z,u)$$
 By induction when z was added to the sure list it had $d(s,z) = d[z]$

That is, the value of d[z] when z was = d(s, u) sub-paths of shortest paths are shortest paths marked sure...

$$\leq d[u]$$
 Claim 1

So
$$d(s, u) = d[u]$$
 and so u is good.

Temporary definition:

v is "good" means that d[v] = d(s,v)

means good

means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated u:

 $d[u] \leftarrow \min\{d[u], d[z] + w(z, u)\}$

• $d[u] \le d[z] + w(z, u)$ def of update

$$= d(s,z) + w(z,u)$$

=d(s,z)+w(z,u) By induction when z was added to the sure list it had d(s,z)=d[z]

That is, the value of d[z] when z was = d(s, u) sub-paths of shortest paths are shortest paths marked sure...

$$\leq d[u]$$
 Claim 1

So d(s, u) = d[u] and so u is good.

So u is good!

Back to this slide

Claim 2

- Inductive Hypothesis:
 - When we mark the t'th vertex v as sure, d[v] = dist(s,v).
- Base case:
 - The first vertex marked **sure** is s, and d[s] = d(s,s) = 0.
- Inductive step:
 - Suppose that we are about to add u to the sure list.
 - That is, we picked u in the first line here:
 - Pick the not-sure node u with the smallest estimate d[u].
 - Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
 - Repeat
 - Assume by induction that every v already marked sure has d[v] = d(s,v).
 - Want to show that d[u] = d(s,u).

Why does this work?

Theorem:

- Run Dijkstra on G = (V,E) starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Proof outline:

- Claim 1: For all v, $d[v] \ge d(s,v)$.
- Claim 2: When a vertex is marked sure, d[v] = d(s,v).
- Claims 1 and 2 imply the theorem.

As usual

- Does it work?
 - Yes.

- Is it fast?
 - Depends on how you implement it.

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- d[v] = ∞ for all v in V
- d[s] = 0
- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))
 - Mark u as sure.
- Now dist(s, v) = d[v]

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- d[v] = ∞ for all v in V
- d[s] = 0
- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))
 - Mark u as sure.
- Now dist(s, v) = d[v]
 - n iterations (one per vertex)
 - How long does one iteration take?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

Stores unsure vertices v

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

- Stores unsure vertices v
- Keeps track of d[v]

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
 - findMin()

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
 - findMin()
- Can remove that u
 - removeMin(u)

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
 - findMin()
- Can remove that u
 - removeMin(u)
- Can update (decrease) d[v]
 - updateKey(v,d)

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
 - findMin()
- Can remove that u
 - removeMin(u)
- Can update (decrease) d[v]
 - updateKey(v,d)

Total running time is big-oh of:

$$\sum_{u \in V} \left(T(\text{findMin}) + \left(\sum_{v \in u.neighbors} T(\text{updateKey}) \right) + T(\text{removeMin}) \right)$$

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
 - findMin()
- Can remove that u
 - removeMin(u)
- Can update (decrease) d[v]
 - updateKey(v,d)

Total running time is big-oh of:

$$\sum_{u \in V} \left(T(\text{findMin}) + \left(\sum_{v \in u.neighbors} T(\text{updateKey}) \right) + T(\text{removeMin}) \right)$$

= n(T(findMin) + T(removeMin)) + m T(updateKey)

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

If we use an array

If we use an array

- T(findMin) = O(n)
- T(removeMin) = O(n)
- T(updateKey) = O(1)

If we use an array

- T(findMin) = O(n)
- T(removeMin) = O(n)
- T(updateKey) = O(1)

Running time of Dijkstra

```
= O(n( T(findMin) + T(removeMin) ) + m T(updateKey))
= O(n<sup>2</sup>) + O(m)
= O(n<sup>2</sup>)
```

- T(findMin) = O(log(n))
- T(removeMin) = O(log(n))
- T(updateKey) = O(log(n))

- T(findMin) = O(log(n))
- T(removeMin) = O(log(n))
- T(updateKey) = O(log(n))

Running time of Dijkstra

```
= O(n( T(findMin) + T(removeMin) ) + m T(updateKey))
```

- = O(nlog(n)) + O(mlog(n))
- = O((n + m)log(n))

- T(findMin) = O(log(n))
- T(removeMin) = O(log(n))
- T(updateKey) = O(log(n))

Running time of Dijkstra

```
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))
```

- = O(nlog(n)) + O(mlog(n))
- = O((n + m)log(n))

Better than an array if the graph is sparse! aka if m is much smaller than n²

Heaps support these operations

- T(findMin)
- T(removeMin)
- T(updateKey)

 A heap is a tree-based data structure that has the property that every node has a smaller key than its children.

Many heap implementations

Nice chart on Wikipedia:

Operation	Binary ^[7]	Leftist	Binomial ^[7]	Fibonacci ^{[7][8]}	Pairing ^[9]	Brodal ^{[10][b]}	Rank-pairing ^[12]	Strict Fibonacci ^[13]
find-min	<i>Θ</i> (1)	Θ(1)	Θ(log <i>n</i>)	<i>Θ</i> (1)	<i>Θ</i> (1)	<i>Θ</i> (1)	Θ(1)	<i>Θ</i> (1)
delete-min	Θ(log <i>n</i>)	Θ(log n)	Θ(log <i>n</i>)	$O(\log n)^{[c]}$	O(log n)[c]	O(log n)	$O(\log n)^{[c]}$	O(log n)
insert	<i>O</i> (log <i>n</i>)	Θ(log n)	Θ(1) ^[c]	Θ(1)	<i>Θ</i> (1)	<i>Θ</i> (1)	Θ(1)	<i>Θ</i> (1)
decrease-key	Θ(log <i>n</i>)	Θ(n)	Θ(log <i>n</i>)	Θ(1) ^[c]	$o(\log n)^{[c][d]}$	<i>Θ</i> (1)	Θ(1) ^[c]	<i>Θ</i> (1)
merge	Θ(n)	Θ(log n)	O(log n)[e]	Θ(1)	Θ(1)	<i>Θ</i> (1)	Θ(1)	Θ(1)

Say we use a Fibonacci Heap

Say we use a Fibonacci Heap

- T(findMin) = O(1)
- T(removeMin) = O(log(n))
- T(updateKey) = O(1)

Say we use a Fibonacci Heap

- T(findMin) = O(1)
- T(removeMin) = O(log(n))
- T(updateKey) = O(1)

Running time of Dijkstra

```
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))
= O(nlog(n) + m)
```

Dijkstra is used in practice

• eg, OSPF (Open Shortest Path First), a routing protocol for IP networks, uses Dijkstra.

But there are some things it's not so good at.

Dijkstra Drawbacks

- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.
 - in OSPF, a vertex broadcasts any changes to the network, and then every vertex re-runs Dijkstra's algorithm from scratch.

Summary

• BFS:

- (+) O(n+m)
- (-) only unweighted graphs

Dijkstra's algorithm:

- (+) weighted graphs
- (+) O(nlog(n) + m) if you implement it right.
- (-) no negative edge weights
- (-) very "centralized" (need to keep track of all the vertices to know which to update).

Acknowledgement

Stanford University