

PIRT- Parallel Iterative Reconstruction Tomography, with correction for center of rotation errors

Sajid Ali¹, Matthew Otten², Wendy Di³

¹Appiled Physics, Northwestern University, ²HRL Laboratories, ³Mathematics & Computer Science Division, Argonne National Laboratory

Tomography Overview

(Left) Tomography schematic¹ (Right) Center of rotation errors degrade reconstructions²

Statement of need

Existing tomography toolkits specialize in being suited for HPC (ex: memXCT, Trace) or being flexible (ex: TomoPy). PIRT uses a new algorithm for correcting the center of rotation errors while being implemented in PETSc/TAO thereby combining both algorithmic flexibility and distributed memory parallelism for HPC performance. PIRT can reliably reconstruct a sinogram which has 10% center of rotation drifts and 10% added noise. Each slice is reconstructed with MPI parallelism, with MPI sub communicators allowing for concurrent reconstruction of multiple slices. This hierarchical parallelism allows for good throughput.

Algorithm & Implementation

PIRT uses a new model for the center of rotation drifts, representing each drift as a scalar parameter and applies the correction as convolution with a gaussian kernel (with the gaussian's properties being determined by the scalar parameter). Two modes reconstruction are available:

- Joint : combine shifts and sample vectors into one vector and optimize for both together
- Alternating: alternate between optimizing with respect to samples and with respect to shifts

PIRT is implemented in the PETSc/TAO³ framework in C++ as a scientific software with reusability and clarity being prioritized. HDF5 is used for parallel IO (different sub communicators read different slices) and FFTW is used for convolutions.

Demonstration

Results with and without error correction, clearly indicating the improvement in quality

Robustness to drifts and added noise

Scalability

Poor scalability caused by naïve data distribution, however real world datasets are 3D.

3D architecture

Implementation of solver for 3D datasets, using MPI sub-communicators

Throughput

Near-ideal throughput achieved by solving for entire 3D dataset

References

- Jacobsen, Chris: X-Ray Microscopy. Cambridge University Press, 2019 (Advances in Microscopy and Microanalysis)
- Austin, Anthony P.; Di, Zichao; Leyffer, Sven; Wild, Stefan M.: Simultaneous Sensing Error Recovery and Tomographic Inversion Using an Optimization-Based Approach. In: SIAM Journal on Scientific Computing 41 (2019), Nr. 3, S. 8497–8521
- 3. Satish Balay et.al. PETSc Web page. https://www.mcs.anl.gov/petsc. 2021
- 4. We note that PIRT is available at : https://gitlab.com/pirt/pirt