

Estrutura da Matéria 2018-2 – Prof. Célio BIK0102 – S.A. Aula 12 – Forma e estrutura das moléculas II

Teoria da Ligação de Valência

- Quando dois átomos se aproximam os orbitais atômicos se fundem;
- A fusão dos orbitais é chamada de superposição;
- Quanto maior for a superposição, mais forte é a ligação.

Teoria da ligação de valência Ligações Sigma e Pi

Ligação Sigma: não tem plano nodal no eixo internuclear.

Teoria da ligação de valência Ligações Sigma e Pi

 Ligação Pi: tem um único plano nodal sobre o eixo internuclear.

 $2p_z$ $2p_x$ $2p_x$ σ-bond

Padrão de ligação da molécula de nitrogênio

Ligações Sigma e Pi

- Simples → Sigma;
- Dupla → Sigma + Pi;
- Tripla → Sigma + 2 ligações Pi.
- Os orbitais atômicos que os elétrons ocupam se superpõem:
 - Cabeça-cabeça para formar ligações Sigma;
 - Lateralmente para formar ligações Pi.

Hibridação dos Orbitais

35 Carbon, [He] $2s^2 2p_x^{-1} 2p_y^{-1}$

36 Carbon, [He] $2s^1 2p_x^{-1} 2p_y^{-1} 2p_z^{-1}$

Orbitais Híbridos

 Vão diferir somente na orientação, cada um apontando para o vértice de um tetraedro.

38 sp³ hybridized carbon

Hibridação no Metano

Hibridação em moléculas mais complexas: Etano

Hibridação e forma molecular

TABLE 3.2 Hybridization and Molecular Shape*

Electron arrangement	Number of atomic orbitals	Hybridization of the central atom	Number of hybrid orbitals
linear	2	sp	2
trigonal planar	3	sp^2	3
tetrahedral	4	sp^3	4
trigonal bipyramidal	5	sp^3d	5
octahedral	6	sp^3d^2	6

^{*}Other combinations of *s*-, *p*-, and *d*-orbitals can give rise to the same or different shapes, but these combinations are the most common.

Ligações dos Hidrocarbonetos

41 sp² hybridized carbon

Benzeno

Acetileno

Bibliografia

 Atkins e Jones, Princípios de Química, cap. 3, ed. Bookman (2006).