What is claimed is:

1	1. A method for changing a scanning period used in a liquid crystal
2	display, comprising:
3	determining a reference clock period from a first number of original clock
4	periods;
5	determining said scanning period from a second number of said reference
6	clock periods; and
7	changing said scanning period by at least one reference clock period.
1	2. A liquid crystal display controller for changing a scanning period
2	used in a liquid crystal display, comprising:
3	a reference clock generator for generating a reference clock period from a
4	first number of original clock periods;
5	a timing generator coupled to said reference clock generator for generating
6	a line pulse synchronized with a scanning period, said scanning period having a second
7	number of said reference clock periods; and
8	a control register having a third number of said reference clock periods for
9	changing said scanning period, wherein said third number is at least one original clock
10	period different from said second number.
1	3. A liquid crystal display controller for displaying a desired image on
2	a liquid crystal panel comprising a plurality of scan lines, the liquid crystal display
3	controller comprising:
4	a control register for storing operating parameters, comprising a first
5	number of reference clock periods in a scanning period and a second number of scan lines
6	in a frame period;
7	a reference clock generator for generating reference clocks for a timing
8	generator;
9	said timing generator for generating line pulses synchronized with one
10	scanning period and frame pulses synchronized with one frame period.
1	4. The liquid crystal display controller of claim 3 wherein said
2	operating parameters further comprise a division ratio and wherein said reference clock
3	from said reference generator is generated from an original clock using said division ratio.

1	5. The liquid crystal display controller of claim 4 wherein said
2	division ratio is one.
1	6. The liquid crystal display controller of claim 3 further comprising
2	an external computer coupled with said control register for determining said first number
3	given said second number and a frame frequency.
1	7. The liquid crystal display controller of claim 6, wherein in
1	conjunction with said determining said first number, a division ratio is also determined.
2	conjunction with said determining said first number, a division ratio is also determined.
1	8. The liquid crystal display controller of claim 7, wherein said
2	determining said division ratio and said first number given said second number and said
3	frame frequency is determined using a look-up table.
	9. A liquid crystal display controller for displaying a desired image
1	-
2	on a liquid crystal panel, the controller comprising:
3	a display memory for storing display data, including gradation data;
4	a control register for storing operating parameters, comprising a first
5	number of reference clock periods in a scanning period and a second number of active
6	lines in a frame period;
7	a reference clock generator for generating reference clocks for a timing
8	generator;
9	the timing generator for generating line pulses synchronized with one
10	scanning period, frame pulses synchronized with one frame period, and a gradation signal
11	indicating an effective period;
12	a scanning line driver for outputting selected and non-selected voltages as
13	scanning signals to the liquid crystal panel, wherein the selected voltage in applied only
14	during the effective period;
15	a gradation processor for reading gradation display data for a selected line
16	from the display memory to convert it into a pulse width modulated (PWM) signal; and
17	a data line driver for converting the PWM signal into a data signal for
18	output to the liquid crystal panel.

1	10. The liquid crystal display controller according to claim 9, wherein
2	said first number of reference clock periods is equal to or larger than (a number . of
3	gradation steps to be displayed minus 1).
1	11. The liquid crystal display controller according to claim 9, wherein
2	the data signal has the same voltage level at the end of one scanning period as at the
3	beginning of the next scanning period.
1	12. The liquid crystal display controller according to claim 9,
2	wherein, for the data signal, the timing of voltage level change differs from even frame to
3	odd frame.
1	13. The liquid crystal display controller according to claim 9, wherein
2	for the data signal, the timing of voltage level change differs from even data line to odd
3	data line, including when the same gradation is displayed.
1	14. The liquid crystal display controller according to claim 9, wherein
1	
2	when the data signal voltage level is for black or white, the voltage level changes at least
3	once per scan line.
1	15. A cellular phone system, comprising:
2	a liquid crystal panel for displaying a partial screen display, comprising a
3	first predetermined number of active lines, and a full screen display, comprising a second
4	predetermined number of active lines;
5	a liquid crystal display controller for controlling at least a display of an
6	active line period on said liquid crystal panel; and
7	a processor for determining a first active line period for said partial displa
8	and a second active line period for said full display, such that a first frame frequency for
9	said partial display is approximately equal to a second frame frequency for said full
10	screen display.
1	16. The cellular phone system of claim 15 wherein said second frame
2	frequency is equal to an inverse of a product of said second predetermined number of
3	active lines multiplied by said second active line period.

1 2

17. The cellular phone system of claim 15 wherein said first frame
frequency is equal to an inverse of a product of said first predetermined number of active
lines multiplied by said first active line period, said first active line period comprising a
number of reference clock periods, wherein a reference clock period comprises a division
ratio multiplied by an original clock period.

18. A cellular phone system, comprising:

a liquid crystal panel for displaying a full screen display, comprising a predetermined number of active lines;

a liquid crystal display controller for controlling at least a display of an active line period on said liquid crystal panel, wherein said active line period comprises a number of reference clock periods, wherein each reference clock period comprises a division ratio multiplied by an original clock period; and

a processor for determining a first active line period for a contrast oriented mode having a predetermined frame frequency and a second active line period for a stand-by mode having a lower predetermined frequency.

- 19. A computer readable medium containing a data structure, comprising a table for determining a scanning period given a frame frequency and a number of active lines, comprising, a first entry for said number of active lines; a second entry for a division ratio number associated with said scanning period; a third entry for a number of reference clock periods for said scanning period, and a forth entry having a calculated frame frequency dependent on said scanning period and substantially equal to said given frame frequency.
- 20. A method for maintaining a frame frequency at a substantially constant value for a liquid crystal display, having different numbers of active scan lines, said method comprising:

selecting a first number of said different numbers of scan lines, wherein each scan line period for said first number is based on a second number of reference clock periods; and

7	determining said second number such that the inverse of a product is
8	substantially equal to said frame frequency, wherein said product comprises said first
9	number multiplied by said second number multiplied by a reference clock period.
1	21. The method of claim 20 wherein said reference clock period is
1	
2	division ratio multiplied by an original clock period.
1	22. The method of claim 21 wherein said division ratio is 1.
1	23. The method of claim 21 wherein said division ratio is a power of 2.
1	24. A method for changing a frame frequency of a liquid crystal
2	display having a predetermined number of scan lines, comprising:
3	determining a scan line period for said frame frequency, wherein said
4	frame frequency equals an inverse of a product, said product comprising said scan line
5	period times said predetermined number of scan lines;
6	selecting a new frame frequency; and
7	determining a new scan line period for said new frame frequency, wherein
8	said new frame frequency equals an inverse of a new product, said new product
9	comprising said new scan line period times said predetermined number of scan lines.
	25. A method for providing substantially linear effective voltage
1	
2	characteristics for displaying a predetermined first number of graduation steps on a liquid
3	crystal display, said liquid crystal display using a scanning period based on a second
4	number of reference clocks, comprising:
5	selecting said second number such that said second number is greater than
6	or equal to said predetermined first number minus one;
7	setting an effective period from said first reference clock period to said
8	predetermined first number minus one reference clock period; and
9	displaying graduation step data only in said effective period.
1	26. The method of claim 25 wherein said reference clock periods from
2	said predetermined first number to said second number is an ineffective period, and an
3	unselected voltage is sent to said liquid crystal display during said ineffective period.

1	27. The method of claim 25 wherein for a selected graduation step, a
2	PWM signal associated with said selected graduation step is inverted every other
3	scanning period.
1	28. The method of claim 25 wherein for a selected graduation step, a
1	PWM signal associated with said selected graduation step begins with an ON voltage in
2	-
3	one frame and an OFF voltage in a subsequent frame.
1	29. The method of claim 25 wherein for a selected graduation step, a
2	PWM signal change associated with said selected graduation step is set for one scan line
3	and delayed by at least one reference clock period for a subsequent scan line.
1	30. The method of claim 25 wherein for a selected graduation step of
2	black, a PWM signal associated with said selected graduation step is changed at least
3	once per scan line.
5	once per seum mie.
1	31. A method for conserving power in a cellular phone display by
2	switching from a full screen display to a partial screen display while maintaining a
3	substantially constant frame frequency, said method comprising:
4	displaying said full screen display, comprising a first frequency;
5	determining a scanning period for said partial display comprising a
6	predetermined number of active lines such that said second frequency is substantially
7	equal to said first frequency; and
8	upon request, switching said full screen display to said partial screen
9	display having said scanning period.
	22 The week of a folion 21 whorein said determining said scanning
1	32. The method of claim 31 wherein said determining said scanning
2	period includes calculating a number of reference clock periods in a ratio of said
3	predetermined number of active lines divided by said second frequency.
1	33. A method for providing a good contrast display mode having a first
2	frame frequency and a power savings display mode having a second frame frequency in a
3	cellular phone system, wherein said first frame frequency is higher than said second
4	frame frequency, said method comprising:

5	determining a first scan line period for said good contrast display mode
6	based on said first frame frequency and a predetermined number of scan lines;
7	determining a second scan line period for said power savings display mode
8	based on said second frame frequency and said predetermined number of scan lines; and
9	displaying a full screen display on a liquid crystal panel, comprising said
10	predetermined number of scan lines, using either said first scan line period or said second
11	scan line period depending upon a selection of said good contrast display mode or said
12	power savings display mode.
1	34. A computer program product stored on a computer readable
2	medium for changing a scanning period used in a liquid crystal display, said computer
3	program product comprising:
4	code for determining a reference clock period from a first number of
5	original clock periods;
6	code for determining said scanning period from a second number of said
7	reference clock periods; and
8	code for changing said scanning period by at least one reference clock
9	period.
1	35. A computer program product stored on a computer readable
2	medium for maintaining a frame frequency at a substantially constant value for a liquid
3	crystal display, having different numbers of active scan lines, said computer program
4	product comprising:
5	code for selecting a first number of said different numbers of scan lines,
6	wherein each scan line period for said first number is based on a second number of
7	reference clock periods; and
8	code for determining said second number such that the inverse of a product
9	is substantially equal to said frame frequency, wherein said product comprises said first
10	number multiplied by said second number multiplied by a reference clock period.