《程序设计实践》作业3 说明文档

徐浩博 2020010108 软件 02

0 运行环境

python 3.9.12 pytorch 1.8.0 + cuda opencv-python 4.6.0.66 matplotlib 3.3.3

1 图片可视化

完成方法:修改了 visualizer.py 中的 demo_display_specific_digit_combination 函数,选取对应图片拼接在一起

2 训练模型并使用它进行推理

完成方法:

torch-1.8-python39) PS C:\Users\Xsu1023\Desktop\backend\hw3\LeNet-PyTorch_initial> & C:/Users/Xsu1023/anaconda3/envs/torch-1.8-python39/pyth c:/Users/Xsu1023/Desktop/backend/hw3/LeNet-PyTorch_initial/inference.py --image_path='data/test_data/8.jpg' nference label is: 8

用 bash 运行时附加—image_path 参数,指定为对应图片即可

3 绘制 Loss 曲线

完成方法: 使用 matplotlib 内的 pyplot 进行绘制。首先记录每个 epoch 进行 train 和 validate 时的 loss 平均值,此即纵坐标(记录在数组 loss_data 中);然后利用 epoch 数生成横坐标数列,最后利用 plot 函数指定颜色和 label。我将横纵坐标我将验证集和训练集的 loss 平均

值同时绘制在了同一张图上。具体实现方法见 train.py 的 draw_plot 函数。

```
x1 = range(1, len(loss_data['train'])+ 1)
y1 = loss_data['train']
x2 = range(1, len(loss_data['vali']) + 1)
y2 = loss_data['vali']
plt.plot(x1, y1, 'r-', label = 'train-loss')
plt.plot(x2, y2, 'g-', label = 'validate-loss')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
plt.show()
```


4 更换优化器

完成方法: 修改 train.py 中 train 函数中的 optimizer:

```
optimizer = torch.optim.SGD(model.parameters(), 1r=learning_rate)
```

结果讨论:

以下为 Adam 和 SGD 的每个 epoch 的 accuracy 比较

epoch	Adam	SGD	
1	98.2 %	86.14 %	
2	98.58 %	90.57 %	
3	98.97 %	92.47 %	
4	99.1 %	93.65 %	
5	98.99 %	94.44 %	
6	99.03 %	95.04 %	
7	99.01 %	95.42 %	
8	99.19 %	95.6 %	
9	99.05 %	95.97 %	

10 99.08 % 96.21 %

能够看出,与 Adam 相比,SGD 的 performance 略差,对比二者 loss 曲线也可以看出,Adam 收敛速度快于 SGD。因此综合来看,Adam 的性能好于 SGD,这与 Adam 利用了动量机制和固定时间窗口的方式有关。

5 添加数据预处理

实现方法: 更改 pre_process.py 中的 data_augment_transform 函数(由于 Adam 的 accuracy 过高,不易看到优化效果,因此以下均采用 SGD)

随机剪裁

注意, RandomResizedCrop 默认值如下: RandomResizedCrop(size, scale=(0.08,1),ration=(0.75,1.3333)) 而对于 MNIST 来说, scale 下界 0.08 过小, 大约只有几个像素, 即使是人眼也不可能辨

别,为此我改变了 scale 进行对比。以下为**随机剪裁**各个情况的 accuracy:

epoch	原始	scale=(0.08,1)	scale=(0.6,1)	scale=(0.8,1)
1	86.14 %	66.63 %	82.45	86.6 %
2	90.57 %	82.41 %	89.82	91.96 %
3	92.47 %	89.26 %	92.67	94.03 %
4	93.65 %	91.86%	94.48	95.28 %
5	94.44 %	92.2 %	95.22	95.71 %
6	95.04 %	91.81 %	95.89	96.23 %
7	95.42 %	91.86 %	96.26	96.51 %
8	95.6 %	93.01 %	96.4	96.94 %
9	95.97 %	94.34%	96.66	97.07 %
10	96.21 %	93.87%	96.83	97.15 %

可以看到,默认的 scale=(0.08,1)效果**反而不如**未进行数据增广,而 scale 下界改为 0.6 和 0.8 **均提高了** performance,这是因为 MNIST 数据集小,而数据增广提高了数据集的丰富性,优化了模型的泛化能力。

水平翻转

垂直翻转

以下分别为**水平翻转、垂直翻转**和原始数据集的 accuracy 的比较:

epoch	原始	水平翻转	垂直翻转
1	86.14 %	77.54 %	77.53 %
2	90.57 %	86.13 %	87.71 %
3	92.47 %	89.34 %	87.31 %
4	93.65 %	90.91 %	91.59 %
5	94.44 %	90.68 %	91.92 %
6	95.04 %	89.78 %	93.14 %
7	95.42 %	91.53 %	93.82 %
8	95.6 %	93.81 %	91.23 %
9	95.97 %	94.32 %	94.74 %
10	96.21 %	93.22 %	93.87 %

能够看到,两种数据增广方式均在不同程度上造成了 performance 的下降,原因可能与 MNIST 数据集的图片类型有关。无论如何,手写数字进行水平或垂直翻转都可能造成一定的混淆,如 6 上下翻转成为 9,即使是人眼也会出错。而对于 CIFAR10、ImageNet 等真实图片的数据集,进行翻转可能会在一定程度上提升 performance

6 添加数据预处理

Module weight (64×32×5×5) bias (64)


```
Module
weight (16×1×5×5)
bias (16)
```

实现方法: 更改 lenet.py 中_init_和 forward, 具体来说, 我在 layer2 和 fc 之间添加了一层卷积层 layer3 并修改了 fc 的参数

最后,我用 <u>Netron (lutzroeder.github.io)</u>实现了模型可视化,结果如左图所示。

7 错误样例分析

实现方法:在 train.py 中的 evaluate 函数中调用 draw_wrong_case 函数,在其中寻找到错误样例,然后调用 visualizer.demo_display_single_image 函数将错误传递过去,在该函数中用 cv2 库中的 imwrite 绘制图片。注意,错误样例分析在训练的最后的几个 epoch 进行,绘制 的图片位于 train.py 同级目录下,命名方式为" labelX_predictedY.jpg",意为 label 标记图片为 X 而实际预测为 Y。

	ground truth	predicted	原因
4	4	9	手写 4 和 9 区别在于顶上连与不连,模型可能误将不连的 4 认成了 9
3	5	2	本样例中 5 写得不规范, 加上图片像素较低, 即使肉眼辨认也不很容易

6	6	4	本样例中 6 写得不规范,将 6 斜着写,的确与连笔的 4 十分相像
7	7	9	7 书写时中间加一横这个习惯, 并不是人人都有, 可能在训练集中缺少相应例子; 而且 7 加一横以后的确与 9 有几分相 似, 使得验证时出现偏差
9	9	4	手写 4 和 9 区别在于顶上连与不连,模型可能误将连的 9 认成了 4

综合以上,有一些例子的图片书写不规范,加之像素太低,即使肉眼辨识也有难度,机器判断出错情有可原;另一些数字如 4 和 9 本身在手写体中就较为相似,加之训练集较小,因此出错率就会变高。