TP1 RO

Programmation linéaire:modélisation et résolution

Exercice I

	or(mg)	Temps A1(s)	Temps A2(s)	Temps A3(s)	Cout A1	Cout A2	Cout A3	vente
C1	20	3	2	1	3.5	4	7	20
C2	40	2	2	2	5	9	23	40
C3	80	1	1	3	4	5	8	25
	le mg	24*60* 60 s= 86400s	24*60* 60 = 86400s	(24*60* 60)*2/3 = 57600s				

Soit x le nombre de circuit C1

y le nbre de circuit C2

z le nbre de circuit C3

Contraintes:

coût or

$$(20x + 40y + 80z)*0.025 \le 25000$$

$$0.5x + y + 2z \le 25000$$

temps

$$3x+2y+z \le 86400$$

$$2x+2y+z \le 86400$$

$$x+2y+3z \le 57600$$

production

$$x>=(50\%)x+y+z$$

 $x>=0.5x+0.5y+0.5z$
 $0.5x-0.5y-0.5z>=0$
 $x-y-z>=0$

cout or:

$$(20x + 40y + 80z)*0.025$$

cout production:

3.5	4	7	20
5	9	23	40
4	5	8	25

Cout A1: 3.5x + 5y + 4zCout A2: 4x + 9y + 5zCout A3: 7x + 23y + 8zCout total: 14.5x + 37y + 17z

Bénéfice:

Max
$$z = \text{vente circuits} - \text{cout or} - \text{cout production}$$

$$= 20x + 40y + 25z$$

$$-(0.5x + y + 2z)$$

$$-(14.5x+37y+17z)$$

$$z \text{ (Max)=5x + 2y + 6z}$$

Programme:

Maximize
$$z = 5x + 2y + 6z$$
 subject to
 $0.5x + y + 2z \le 25000$
 $3x+2y+z \le 86400$
 $2x+2y+z \le 86400$

$$x+2y+3z \le 57600$$

 $x-y-z \ge 0$

Solution:

Optimal Solution: z = 169055; x = 26872.7, y = 0, z = 5781.82

Question 3:

La contrainte $3x+2y+z \le 86400$ est inutile car on a déjà $2x+2y+z \le 86400$.

Question 4:

C'est une mauvaise idée de toute façon, car ça rajoute une contrainte.

En enlevant la contrainte x-y-z>=0 on trouve le même résultat. Le gain est donc nul.

Exercice II

On cherche le nombre de tonne de pièces de chaque type pour maximiser. On prend donc :

x la quantité de pièces de type 1 (en tonne)

y la quantité de pièce de type 2 (en tonne)

contrainte sur le temps :

Dans la fonderie on fabrique 6 tonnes de pièces 1 par heure, il faut donc 60/6 minutes pour fabriquer une tonne.

Dans la fonderie on fabrique 5 tonnes de pièces 2 par heure, il faut donc 60/5 minutes pour fabriquer une tonne.

temps total passé à la Fonderie :

$$10x + 12y \le 100$$

Dans l'atelier on fabrique 12 tonnes de pièces 1 par heure, il faut donc 60/12 minutes pour fabriquer une tonne de pièces 1.

Dans l'atelier on fabrique 5 tonnes de pièces 2 par heure, il faut donc 60/15 minutes pour fabriquer une tonne de pièces 2.

temps total passé à l'Atelier : $5x + 4y \le 45$

$$5x + 4y < = 45$$

contraintes sur l'énergie :

énergie consommé totale: $14x + 30y \le 210$

Maximisation de la recette :

max(M) = 2000x + 3000y

Programme:

Maximize
$$r = 2000x + 3000y$$
 subject to
 $10x + 12y \le 100$
 $5x + 4y \le 45$
 $14x + 30y \le 210$

Solution;

Optimal Solution: r = 255000/11; x = 40/11, y = 175/33

Exercice III

Un quintal = 100 kg

Soit a le nombre de quintal de A Soit b le nombre de quintal de B

Il faut

	Kg par animal	Kg pour 1000têtes	Quintal pour 1000 têtes
X	0.10	100	1
Y	0.14	140	1.4
Z	0.15	150	1.5
Т	0.24	240	2.4

Contraintes

0.10a+0.35b >= 1

0.20a+0.20b >= 1.4

0.30a + 0.15b >= 1.5

0.40a + 0.30b >= 2.4

Minimisationdu cout

Min(Z)=500a+800b

Programme:

Minimize z = 500a + 800b subject to

0.10a+0.35b >= 1

0.20a+0.20b >= 1.4

$$0.30a + 0.15b >= 1.5$$

$$0.40a + 0.30b >= 2.4$$

<u>Solution:</u>

Optimal Solution: z = 3860; a = 5.8, b = 1.2

Exercice IV

T1 T2 T3 dossiers

20 40 80 photocopies cout 0.05

cout photocop <=250 par an (240 jours)

E1 E2 E3 employés

E3 travaille 80 %

On souhaite maximiser le bénéfice du cabinet.

On prend donc:

x le nombre de dossiers de type T1

y le nombre de dossiers de type T2

z le nombre de dossiers de type T3

contrainte coût photocopie :

$$(20x+40y+80z) * 0.05 \le 250$$

$$x+2y+4z \le 250$$

contrainte temps

nombre de jours pour E1 :3x+2y+z

nombre de jours pour E2 :2x+2y+z

nombre de jours pour E3 :x+2y+3z

$$3x+2y+z \le 240$$

$$2x+2y+z \le 240$$

$$x+2y+3z \le 240*0.8$$

$$x+2y+3z <= 192$$

cout rémunération :

E1:40x+30y+20z

E2:40x+40y+25z

E3:30x+50y+60z

cout total: 110x+120y+105z

bénéfice des dossiers traités :

400x+600y+1000z

contrainte 50 % T1:

$$T1 >= 1/2(T1+T2+T3)$$

$$T1 \ge 0.5T1 + 0.5T2 + 0.5T3$$

$$0.5T2+0.5T3-0.5T1 \le 0$$

$$z+y-x <=0$$

Benefice du cabinet :

bénéfice dossiers – cout remunération – cout photocopies=

$$400x+600y+1000z - (110x+120y+105z) - (x+2y+4z)$$

$$=289x+478y+81z$$

La prof a un résultat auquel on a pas enlevé les photocopies, elle a pris une approximation.

Valeur de la prof : **290x+480y+895z**

Programme:

Maximize p = 290x+480y+895z subject to

$$x + 2y + 4z \le 250$$

$$3x+2y+z \le 240$$

$$2x+2y+z \le 240$$

$$x+2y+3z <= 192$$

$$z+y-x <=0$$

<u>Solution:</u>

Optimal Solution: p = 56880; x = 48, y = 0, z = 48

Exercice V

Maximize z = a+2b subject to

$$40a + 20b \le 3000$$

$$50a \le 3100$$

$$20a + 40b \le 2000$$

$$30b \le 1000$$

A l'itération 1, on a :

Optimal Solution: z = 100; a = 33.3333, b = 33.3333

On va donc former 4 itérations car a eb b son tous les deux aussi prêt d'un entier.

Itération 2.1:

On prend comme contrainte supplémentaire a<=33

on obtient

Optimal Solution: z = 99.6667; a = 33, b = 33.3333

Itération 2.2:

On prend comme contrainte supplémentaire a>=34

Optimal Solution: z = 100; a = 34, b = 33

Itération 2.3:

On prend comme contrainte supplémentaire b<=33

Optimal Solution: z = 100; a = 34, b = 33

<u>Itération 2.4</u>:

On prend comme contrainte supplémentaire b>=34

No optimal solution exists for this problem.

On a donc comme solution **Z=100** a = **34** et b=**33**

Exercice VI

Maximize z = x+4y subject to

$$5x + 8y \le 40$$

$$-2x + 3y \le 9$$

<u>Itération 1 :</u>

Optimal Solution: z = 17.6774; x = 1.54839, y = 4.03226

y est le plus proche d'un entier

Itération 1.1:

contrainte supplémentaire :

Optimal Solution: z = 17.6; x = 1.6, y = 4

Itération 1.2:

contrainte supplémentaire :

No optimal solution exists for this problem.

Itération 1.1.1:

contrainte supplémentaire :

$$y \le 4$$

$$x <= 1$$

Optimal Solution: z = 15.6667; x = 1, y = 3.66667

Itération 1.1.2:

$$y \le 4$$

$$x > = 2$$

Optimal Solution: z = 17; x = 2, y = 3.75

Itération 1.1.2.1

 $v \le 4$

x > = 2

 $y \le 3$

Optimal Solution: z = 15.2; x = 3.2, y = 3

Itération 1.1.2.2

 $v \le 4$

x > = 2

v > = 4

No optimal solution exists for this problem.

<u>Itération 1.1.2.1.1</u>

 $v \le 4$

x > = 2

y<=3

x < =3

Optimal Solution: z = 15; x = 3, y = 3

<u>Itération 1.1.2.1.2</u>

 $y \le 4$

x > = 2

 $y \le 3$

x > = 4

Optimal Solution: z = 14; x = 4, y = 2.5

14<15

La solution optimale est donc :

$$z = 15$$
; $x = 3$, $y = 3$