Какво е функционално програмиране?

Трифон Трифонов

Функционално програмиране, 2024/25 г.

2 октомври 2024 г.

Тази презентация е достъпна под лиценза Creative Commons Признание-Некомерсиално-Споделяне на споделеното 4.0 Международен 🐵 🕒 🕲

Императивен стил

Описваме последователно изчислителните стъпки.

Неструктурирано програмиране

- Въведи а, в
- 2 Ако а = b, към 6.
- Ако а > b, към 5.
- \bigcirc b \leftarrow b a; към 2.
- \odot a ← a − b; към 2.
- 🧿 Изведи а
- О Край

Структурирано програмиране

- Въведи а, ъ
- ullet Докато ${\tt a}
 eq {\tt b}$
 - \bullet Ako a > b
 - $\bullet \ \mathtt{a} \ \leftarrow \ \mathtt{a} \ \ \mathtt{b}$
 - В противен случай
 - \bullet b \leftarrow b a
- Изведи а

Декларативен стил

Описваме свойствата на желания резултат.

Програмиране с ограничения

- Дадени са а и ъ.
- Търсим d, такова че:
 - $1 \leq d \leq a,b$
 - "d е делител на а"
 - "d е делител на b"
 - d е възможно най-голямо,
 - където за дадени х и у:
 - "хе делител на у", ако
 - намерим такова естествено число k, че
 - \bullet 1 \leq k \leq y
 - k * x = y

Декларативен стил (2)

Описваме свойствата на желания резултат.

Логическо програмиране

- ullet Описваме релацията над естествени числа $\gcd(a,b,c)$
- ∀а gcd(a, a, a) [факт]
- ullet $\forall a orall b(a>b \wedge orall c(gcd(a-b,b,c)
 ightarrow gcd(a,b,c)))$ [правило 1]
- ullet $\forall a orall b(a < b \land orall c(gcd(a,b-a,c)
 ightarrow gcd(a,b,c)))$ [правило 2]
- Дадени са a, b
- ullet Намери такова c, за което gcd(a,b,c)

Декларативен стил (2)

Описваме свойствата на желания резултат.

Логическо програмиране

- ullet Описваме релацията над естествени числа $\gcd(a,b,c)$
- $\forall a \gcd(a, a, a)$ [факт]
- ullet $\forall a orall b (a > b \land orall c (gcd(a-b,b,c)
 ightarrow gcd(a,b,c)))$ [правило 1]
- ullet $\forall a orall b (a < b \land orall c (gcd(a,b-a,c)
 ightarrow gcd(a,b,c)))$ [правило 2]
- Дадени са a, b
- ullet Намери такова c, за което gcd(a,b,c)

Пример: Нека a = 8, b = 12. Тогава:

$$\xrightarrow{\Phi \text{AKT}} gcd(4,4,4) \xrightarrow{\text{правило 1}} gcd(8,4,4) \xrightarrow{\text{правило 2}} gcd(8,12,4)$$

Декларативен стил (3)

Описваме свойствата на желания резултат.

Функционално програмиране

- Функцията над естествени числа gcd(a,b) притежава следните свойства:
- gcd(a, a) = a (свойство 1)
- ullet gcd(a-b,b)=gcd(a,b), ако a>b (свойство 2)
- gcd(a, b a) = gcd(a, b), ако b > a (свойство 3)
- Дадени са a, b
- Да се пресметне gcd(a,b).

Декларативен стил (3)

Описваме свойствата на желания резултат.

Функционално програмиране

- Функцията над естествени числа gcd(a,b) притежава следните свойства:
- gcd(a, a) = a (свойство 1)
- ullet gcd(a-b,b)=gcd(a,b), ако a>b (свойство 2)
- gcd(a, b a) = gcd(a, b), ако b > a (свойство 3)
- Дадени са a, b
- Да се пресметне gcd(a,b).

Пример: Нека a = 8, b = 12.

$$\gcd(8,12)\stackrel{\mathsf{свойство}}{=}^3\gcd(8,4)\stackrel{\mathsf{свойство}}{=}^2\gcd(4,4)\stackrel{\mathsf{свойство}}{=}^14.$$

Още един пример

Да се намери сумата на квадратите на нечетните числа в списъка 1.

Императивен стил

- Нека s = 0.
- За і от 1 до length(1):
 - Ако 1[i] е нечетно, то
 s = s + 1[i]².
- Изведи в.

Функционален стил

- От елементите на 1...
- ...избираме нечетните, ...
- . . . прилагаме над тях функцията x^2 . . .
- ...и ги групираме с операцията +.

```
C++:
int s = 0;
for(int i = 0; i < sizeof(l); i++)
  if (l[i] % 2 != 0)
    s += l[i] * l[i];
cout << s;</pre>
```

```
C++:
int s = 0;
for(int i = 0; i < sizeof(1); i++)
  if (1[i] % 2 != 0)
     s += 1[i] * 1[i];
cout << s;

Scheme: (apply + (map square (filter odd? 1)))</pre>
```

```
C++:
int s = 0;
for(int i = 0; i < sizeof(1); i++)
  if (1[i] % 2 != 0)
      s += 1[i] * 1[i];
cout << s;

Scheme: (apply + (map square (filter odd? 1)))

Haskell: foldr1 (+) [ x^2 | x <- 1, odd x ]</pre>
```

```
C++:
int s = 0;
for(int i = 0; i < sizeof(1); i++)
  if (l[i] % 2 != 0)
    s += l[i] * l[i]:
cout << s:
Scheme: (apply + (map square (filter odd? 1)))
Haskell: foldr1 (+) [x^2 | x < 1, odd x]
Haskell: sum . map (^2) . filter odd
```

7/1

Нека $f:\mathbb{N} o \mathbb{N}$ е функция над естествени числа.

Примери: $f(x) = x^2$, f(x) = x-тото число на Фибоначи.

Нека $f:\mathbb{N} o \mathbb{N}$ е функция над естествени числа.

Примери: $f(x) = x^2$, f(x) = x-тото число на Фибоначи.

Въпрос 1: Какво означава да изчислим f с компютър?

Нека $f:\mathbb{N} o \mathbb{N}$ е функция над естествени числа.

Примери: $f(x) = x^2$, f(x) = x-тото число на Фибоначи.

Въпрос 1: Какво означава да изчислим f с компютър?

Въпрос 2: Какво означава "алгоритъм" или "програма"?

Нека $f:\mathbb{N} o \mathbb{N}$ е функция над естествени числа.

Примери: $f(x) = x^2$, f(x) = x-тото число на Фибоначи.

Въпрос 1: Какво означава да изчислим f с компютър?

Въпрос 2: Какво означава "алгоритъм" или "програма"?

Въпрос 3: Има ли функции, които не могат да бъдат изчислени с компютър?

Машина на Turing

Машина на Turing

M изчислява функцията f_M , ако при лента с числото n машината M завършва и записва върху лентата числото $f_M(n)$.

Машина на Turing

M изчислява функцията f_M , ако при лента с числото n машината M завършва и записва върху лентата числото $f_M(n)$.

Ако M не завърши за някое n, казваме, че $f_M(n)$ не е дефинирана.

 Всяка машина на Turing може да се кодира като дълго естествено число.

- Всяка машина на Turing може да се кодира като дълго естествено число.
- Всяка изчислима функция се изчислява от (поне една) машина.

- Всяка машина на Turing може да се кодира като дълго естествено число.
- Всяка изчислима функция се изчислява от (поне една) машина.
- Следователно, изчислимите функции са не повече от естествените числа (изброимо много).

- Всяка машина на Turing може да се кодира като дълго естествено число.
- Всяка изчислима функция се изчислява от (поне една) машина.
- Следователно, изчислимите функции са не повече от естествените числа (изброимо много).
- Но функциите от вида $\mathbb{N} \to \mathbb{N}$ са колкото редиците от естествени числа . . .

- Всяка машина на Turing може да се кодира като дълго естествено число.
- Всяка изчислима функция се изчислява от (поне една) машина.
- Следователно, изчислимите функции са не повече от естествените числа (изброимо много).
- ullet Но функциите от вида $\mathbb{N} o \mathbb{N}$ са колкото редиците от естествени числа . . .
- . . . които са неизброимо много! (защо?).

- Всяка машина на Turing може да се кодира като дълго естествено число.
- Всяка изчислима функция се изчислява от (поне една) машина.
- Следователно, изчислимите функции са не повече от естествените числа (изброимо много).
- ullet Но функциите от вида $\mathbb{N} o \mathbb{N}$ са колкото редиците от естествени числа . . .
- ...които са неизброимо много! (защо?).
- Следователно, има неизброимо много неизчислими функции.

- Всяка машина на Turing може да се кодира като дълго естествено число.
- Всяка изчислима функция се изчислява от (поне една) машина.
- Следователно, изчислимите функции са не повече от естествените числа (изброимо много).
- ullet Но функциите от вида $\mathbb{N} o \mathbb{N}$ са колкото редиците от естествени числа . . .
- ...които са неизброимо много! (защо?).
- Следователно, има неизброимо много неизчислими функции.
- Но кои са те?

Стоп проблем

Нека с $\{n\}$ означаваме машината на Turing с код n. Разглеждаме функцията:

$$halts(n) = egin{cases} 1, & \mathsf{ako}\ \{n\}\ \mathsf{завършва}\ \mathsf{над}\ \mathsf{лентa}\ \mathsf{c}\ \mathsf{числотo}\ n, \ 0, & \mathsf{инaчe}. \end{cases}$$

Стоп проблем

Нека с $\{n\}$ означаваме машината на Turing с код n. Разглеждаме функцията:

$$halts(n) = egin{cases} 1, & \mathsf{ako}\ \{n\}\ \mathsf{завършва}\ \mathsf{над}\ \mathsf{лентa}\ \mathsf{c}\ \mathsf{числотo}\ n, \ 0, & \mathsf{инaчe}. \end{cases}$$

halts не е изчислима!

Стоп проблем

Нека с $\{n\}$ означаваме машината на Turing с код n. Разглеждаме функцията:

$$halts(n) = egin{cases} 1, & \mathsf{ako}\ \{n\}\ \mathsf{завършва}\ \mathsf{над}\ \mathsf{лентa}\ \mathsf{c}\ \mathsf{числотo}\ n, \ 0, & \mathsf{инa}\mathsf{чe}. \end{cases}$$

halts не е изчислима!

Доказателство.

Да допуснем, че *halts* се изчислява от машина на Turing H. Дефинираме нова машина D:

- 1. (тук слагаме всички инструкции на H)
- k+1. IFZERO k+3
- k+2. JUMP k+1
- k+3. STOP

Нека $D = \{d\}$. Завършва ли D над d?

Според вас изчислими ли са следните функции?

• $f_1(n) = n$ е просто число

- $f_1(n) = n$ е просто число
- $f_2(n) = n$ -тото поред просто число

- \bullet $f_1(n)=n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n)=n$ -тата цифра на числото π

- \bullet $f_1(n)=n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n)=n$ -тата цифра на числото π
- ullet $f_4(n)=$ има n последователни седмици в числото π

- \bullet $f_1(n)=n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n)=n$ -тата цифра на числото π
- ullet $f_4(n)=$ има n последователни седмици в числото π
- $f_5(n) = n$ е код на множество от матрици 3×3 , които могат да се умножат в някакъв ред, така че да се получи О

- $f_1(n) = n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n) = n$ -тата цифра на числото π
- ullet $f_4(n)=$ има n последователни седмици в числото π
- $f_5(n) = n$ е код на множество от матрици 3×3 , които могат да се умножат в някакъв ред, така че да се получи О
- $f_6(n) = n$ е код на вярна съждителна формула

- $f_1(n) = n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n) = n$ -тата цифра на числото π
- ullet $f_4(n)=$ има n последователни седмици в числото π
- $f_5(n) = n$ е код на множество от матрици 3×3 , които могат да се умножат в някакъв ред, така че да се получи О
- $f_6(n) = n$ е код на вярна съждителна формула
- \bullet $f_7(n) = n$ е код на вярна предикатна формула

Въпроси за изчислимост

Според вас изчислими ли са следните функции?

- $f_1(n) = n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n)=n$ -тата цифра на числото π
- ullet $f_4(n)=$ има n последователни седмици в числото π
- $f_5(n) = n$ е код на множество от матрици 3×3 , които могат да се умножат в някакъв ред, така че да се получи О
- $f_6(n) = n$ е код на вярна съждителна формула
- ullet $f_7(n)=n$ е код на вярна предикатна формула
- $f_8(n) = m$, където $\{m\}$ пресмята f_8

Въпроси за изчислимост

Според вас изчислими ли са следните функции?

- $f_1(n) = n$ е просто число
- $f_2(n) = n$ -тото поред просто число
- $f_3(n) = n$ -тата цифра на числото π
- ullet $f_4(n)=$ има n последователни седмици в числото π
- $f_5(n) = n$ е код на множество от матрици 3×3 , които могат да се умножат в някакъв ред, така че да се получи О
- $f_6(n) = n$ е код на вярна съждителна формула
- ullet $f_7(n)=n$ е код на вярна предикатна формула
- $f_8(n) = m$, където $\{m\}$ пресмята f_8
- $f_9(n) =$ машините $\{n\}$ и $\{2n\}$ изчисляват еднакви функции

λ -смятане

Нека разполагаме с изброимо много променливи x,y,z,\ldots

 T ри вида λ -изрази (E)

- х (променлива)
- ullet $E_1(E_2)$ (апликация, прилагане на функция)
- $\lambda x E$ (абстракция, конструиране на функция)

Примери: $\lambda x x$, $(\lambda x x)(z)$, $\lambda f \lambda x f(f(f(x)))$

λ -смятане

Нека разполагаме с изброимо много променливи x,y,z,\ldots

Три вида λ -изрази (E)

- х (променлива)
- ullet $E_1(E_2)$ (апликация, прилагане на функция)
- $\lambda x E$ (абстракция, конструиране на функция)

Примери:
$$\lambda x x$$
, $(\lambda x x)(z)$, $\lambda f \lambda x f(f(f(x)))$

Едно изчислително правило:

$$(\lambda x E_1)(E_2) \mapsto E_1[x := E_2].$$

Машини на Turing $= \lambda$ -смятане

Teopeмa (Alan Turing, 1937)

Функциите, които могат да се изчислят с машина на Turing са точно тези, които могат да се дефинират с λ -израз.

Машини на Turing $=\lambda$ -смятане

Teopeма (Alan Turing, 1937)

Функциите, които могат да се изчислят с машина на Turing са точно тези, които могат да се дефинират с λ -израз.

```
Машини на Turing = императивен стил за програмиране \lambda-смятане = функционален стил за програмиране
```

Машини на Turing $=\lambda$ -смятане

Teopeма (Alan Turing, 1937)

Функциите, които могат да се изчислят с машина на Turing са точно тези, които могат да се дефинират с λ -израз.

```
Машини на Turing = императивен стил за програмиране \lambda-смятане = функционален стил за програмиране
```

Факт: Практически всички съвременни езици за програмиране са със същата изчислителна сила като на машините на Turing.

Машини на Turing $=\lambda$ -смятане

Teopeмa (Alan Turing, 1937)

Функциите, които могат да се изчислят с машина на Turing са точно тези, които могат да се дефинират с λ -израз.

```
Машини на Turing = императивен стил за програмиране \lambda-смятане = функционален стил за програмиране
```

Факт: Практически всички съвременни езици за програмиране са със същата изчислителна сила като на машините на Turing.

Тезис на Church-Turing: Всяка функция, чието изчисление може да се автоматизира, може да бъде пресметната с машина на Turing.

... има:

• функции с параметри, (абстракция)

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)
- и могат да се дефинират чрез себе си, (рекурсия)

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)
- и могат да се дефинират чрез себе си, (рекурсия)

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)
- и могат да се дефинират чрез себе си, (рекурсия)

... но няма:

• памет

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)
- и могат да се дефинират чрез себе си, (рекурсия)

- памет
- присвояване

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)
- и могат да се дефинират чрез себе си, (рекурсия)

- памет
- присвояване
- цикли

... има:

- функции с параметри, (абстракция)
- които могат да се прилагат над аргументи, (апликация)
- които могат да са други функции (функции от висок ред)
- и могат да се дефинират чрез себе си, (рекурсия)

- памет
- присвояване
- цикли
- прескачане (goto, break, return)

• Кратки и ясни програми (изразителност)

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност
- При еднакви входни данни връщат един и същ резултат (референциална прозрачност),

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност
- При еднакви входни данни връщат един и същ резултат (референциална прозрачност), което позволява...

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност
- При еднакви входни данни връщат един и същ резултат (референциална прозрачност), което позволява...
- Избягване на повторно пресмятане на резултати чрез запомняне (мемоизация)

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност
- При еднакви входни данни връщат един и същ резултат (референциална прозрачност), което позволява...
- Избягване на повторно пресмятане на резултати чрез запомняне (мемоизация)
- Премахване на части от програмата, които не участват в крайния резултат (мъртъв код)

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност
- При еднакви входни данни връщат един и същ резултат (референциална прозрачност), което позволява...
- Избягване на повторно пресмятане на резултати чрез запомняне (мемоизация)
- Премахване на части от програмата, които не участват в крайния резултат (мъртъв код)
- Пренареждане на програмата за по-ефективно изпълнение (стратегия за оценяване)

- Кратки и ясни програми (изразителност)
- Лесна проверка за коректност
- При еднакви входни данни връщат един и същ резултат (референциална прозрачност), което позволява...
- Избягване на повторно пресмятане на резултати чрез запомняне (мемоизация)
- Премахване на части от програмата, които не участват в крайния резултат (мъртъв код)
- Пренареждане на програмата за по-ефективно изпълнение (стратегия за оценяване)
- Паралелно изпълнение на независими части от програмата (паралелизация)

Видове функционални езици

- според типовата система
 - динамично типизирани (стойностите имат тип)
 - статично типизирани (променливите имат тип)
- според страничните ефекти
 - нечисти (със странични ефекти)
 - чисти (без странични ефекти)
- според стратегията за оценяване
 - стриктно (първо сметни, после предай)
 - лениво (първо предай, после смятай)

Видове функционални езици

- според типовата система
 - динамично типизирани (стойностите имат тип) [Scheme]
 - статично типизирани (променливите имат тип) [Haskell]
- според страничните ефекти
 - нечисти (със странични ефекти) [Scheme]
 - чисти (без странични ефекти) [Haskell]
- според стратегията за оценяване
 - стриктно (първо сметни, после предай) [Scheme]
 - лениво (първо предай, после смятай) [Haskell]

(1936) Church и Rosser дефинират λ -смятането

(1936) Church и Rosser дефинират λ -смятането

(1960) McCarthy създава първия функционален език LISP

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават Scheme, диалект на LISP

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават **Scheme**, диалект на LISP
- (1977) Backus (авторът на FORTRAN) популяризира функционалния стил

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават **Scheme**, диалект на LISP
- (1977) Backus (авторът на FORTRAN) популяризира функционалния стил
- (1985) Turner създава Miranda, първият комерсиален чист функционален език

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават **Scheme**, диалект на LISP
- (1977) Backus (авторът на FORTRAN) популяризира функционалния стил
- (1985) Turner създава Miranda, първият комерсиален чист функционален език
- (1990) Публикувана е първата версия на Haskell

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават **Scheme**, диалект на LISP
- (1977) Backus (авторът на FORTRAN) популяризира функционалния стил
- (1985) Turner създава Miranda, първият комерсиален чист функционален език
- (1990) Публикувана е първата версия на **Haskell**
- (1998) Отваряне на кода на реализацията на Erlang

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават **Scheme**, диалект на LISP
- (1977) Backus (авторът на FORTRAN) популяризира функционалния стил
- (1985) Turner създава Miranda, първият комерсиален чист функционален език
- (1990) Публикувана е първата версия на Haskell
- (1998) Отваряне на кода на реализацията на Erlang
- (1990—2000) Функционални елементи в императивни езици: Python (1991), JavaScript (1995), Ruby (1995), ActionScript (1998)

- (1936) Church и Rosser дефинират λ -смятането
- (1960) McCarthy създава първия функционален език LISP
- (1975) Steele и Sussman създават **Scheme**, диалект на LISP
- (1977) Backus (авторът на FORTRAN) популяризира функционалния стил
- (1985) Turner създава Miranda, първият комерсиален чист функционален език
- (1990) Публикувана е първата версия на **Haskell**
- (1998) Отваряне на кода на реализацията на Erlang
- (1990–2000) Функционални елементи в императивни езици: Python (1991), JavaScript (1995), Ruby (1995), ActionScript (1998)
 - (2000—) Функционалният стил на програмиране превзема света: Scala (2003), F# (2005), C# (2007), Clojure (2007), C++11 (2011), Elixir (2011), Java 8 (2014), AWS Lambda (2014), Azure Functions (2016)