CLAIMS

What is claimed is:

		1	1. A method of detecting leaks in an
		2	extracorporeal blood circuit, comprising the steps of:
		3	detecting fluid outside a first portion of a
. 0		4	blood circuit;
2/10)	5	detecting air inside a second portion of a blood
٨		6	circuit located remote from said first portion such that
	w W	7	fluid is not detectable from said second portion;
		8	generating an alarm signal responsively to a
	10	9	result of either or both of said steps of detecting.
		1	2. A method as in claim 1, wherein said first
	THUE LE	2	step of detecting includes providing a fluid sensor below
		3	said circuit first portion and sensing a presence of blood
		4	with said sensor.
		1	3. A method as in claim 1, wherein said second
		2	step of detecting includes applying a positive gauge
		3	pressure to said circuit during a first time and applying a
		4	negative pressure to said blood circuit during a second
		5	time.
		1	4. A method as in claim 1, wherein said step of
		2	generating includes generating an alarm if either of said

first and second steps of detecting results in an indication of a leak. A method as in claim 1, wherein said second step of detecting includes periodically reversing a flow in said blood circuit. 1 A method as in claim 1, wherein said second step of detecting includes positioning a funnel with a fluid detector under a blood processing machine. A method as in claim 1, wherein said second portion includes tubing linking a patient to a blood 3 processing machine. A method as in claim 7, wherein said first portion includes a portion of said blood circuit at least partially housed by a blood processing machine. A method as $i \mathbf{k}$ claim 8, wherein said step of 9. detecting fluid includes directing a, flow of fluid by 2 gravity by means of a funnel to a fluid detector 3 1 10. A leak detection system for an extracorporeal blood circuit, comprising: 2 a_{a} fluid detector located in a_{a} position to capture 3 leaking blood from a first portion of said blood circuit; 4 5 a mechanism in said blood circuit to, at least periodically, create a negative pressure in all portions of

```
a patient side of said blood circuit such that any leaks in
      said all portions will result in infiltration of air;
  9
                an air infiltration detector located to detect
      air in iltrating said second portion;
 10
                an alarm connected to both said air infiltration
 11
      detector and said fluid detector and configured to generate
 12
 13
      an alarm signal if either said air infiltration detector or
      said fluid detector indicates a leak.
  1
                    A device as in claim 10, further comprising
                11.
      a container positioned with respect to said fluid detector
      to guide blood leaking from said blood circuit toward said
      fluid detector.
                12. A devide as in claim 10, wherein said
<u></u> 1
     mechanism includes a dewice adapted to reverse flow in said
TU 3
     blood circuit.
               13. A device as in claim 12, wherein said device
  2
     adapted to reverse flow includes a reversing valve.
  1
                    A device as in claim 13, further comprising
     a funnel-shaped container positioned with respect to said
     fluid detector to guide blood leaking from said blood
     circuit toward said fluid detector located at a bottom of
```

said container.

1	. 15. A device as in claim 14, wherein said
2	funne shaped container is built into a housing of a blood
3	processing machine of which said blood circuit is a part.
. 1	16. A device as in claim 10, wherein said air
2	infiltration detector is a detector of the presence of air
3	in said blood circuit.
	17. A device for detecting leaks in a blood
2	circuit, comprising:
☐ ☐ 3	circuit, comprising: a first leak detector that detects leaks by
₩ ₩ 4	sensing blood outside said blood circuit, said first leak
F N 5	detector being located to detect leaks from a first portion
	of said blood circuit located remote from a patient;
<u> </u>	a second leak detector that detects leaks by
# 8	sensing air infiltration into lines under negative
U 9	pressure;
10	said second leak detector being configured to
11	detect leaks in lines connecting said patient to said first
12	portion;
13	a mechanism that insures that at least part of
14	said lines are under negative pressure at least part of the
15	time during a treatment such that a detectable air
16	infiltration indicates a presence of a leak in said lines;
	2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 4 5 6 7 8 9 10 11 12 13 14 15

```
17
                an alarm device that outputs an alarm signal
 18
      responsively to a detection of a leak by said first or
 19
      second leak detector.
                    A device as in claim 17, wherein said second
  1
                    or oir tally
      leak detector includes a fluid sensor below said circuit
      first portion.
                19. A device as in claim 17, wherein said
      mechanism includes a flow-reversing valve in said blood
      circuit effective to reverse flow in said lines.
               20. A device as in claim 17, where in said first
  1
  2
     leak detector is located below said first portion, said
      device further comprising a Now director to concentrate dhy
leaking fluid toward said first leak detector.
                    A method of detecting a fluid leak from a
      fluid processing machine, comprising the steps of:
               detecting infiltration of air into a fluid
  3 '
     circuit;
               detecting leakage of fluid from said fluid
  5
     circuit;
               generating an alarm responsively t \ said first
```

and second steps of detecting.

9	22. A method as in claim 21, wherein said step
10	of generating includes generating an alarm when either of
11	said steps of detecting indicates a leak.
12	23. A method as in claim 21, wherein said first
13	step of detecting is restricted to detecting infiltration
14	into a first part of said fluid circuit and said second
15	step of detecting is restricted to detecting fluid leaking
16	from a second part of said fluid circuit, said first and
¥ 17	second parts having separate respective portions.
₩ 18 .E	24. A method as in claim 21, wherein said first
19 10	step of detecting includes generating a negative pressure
。 20 口	in said fluid circuit.
⊒ ⊒21 □	25. A method as in claim 25, wherein said step
₽22 ©	of generating includes reversing a flow of fluid.
№23	26. A method as in claim 21, wherein said fluid
24	is blood.
25	27. A method as in claim 21, wherein said fluid
26	processing machine is an extracorporeal blood processing
27	machine.
28	28. A method of detecting a leak from a blood
29	circuit of an extracorporeal blood treatment machine,

30

comprising the steps of:

	31	detecting leakage of blood from respective
	32	portions of a blood circuit;
	33	said step of detecting including detecting
	34	different physical effects resulting from respective
اما	35	conditions associated with one or more leaks;
CMY	36	said respective portions including parts that are
N.	137	non-overlapping.
W W	38	29. A method as in claim 28, wherein said step
U'	39	of detecting includes triggering an indicator of a leak
		responsively to a result of either of said respective
=	트 일41	different physical effects.
=	<u></u> 42	30. A method as in claim 29, further comprising
all	⊒ =43	at least one of clamping a fluid line, stopping a pump, or
÷] [44	actuating a flow controller responsively to said indicator.
	Ū ₄₅	31. A method as in claim 29, further comprising
,	46	triggering an alarm responsively to said indicator.
	.47	32. A method as in claim 28, wherein said
•.	48	different physical effects include the infiltration of air
	49	into a blood circuit and the presence of blood outside said
	50	blood circuit.
	51	33. A method as in claim 32, further comprising
	52	controlling an output device responsively to said
	53	indicator.

leables

	54	34. A method as in claim 32, further comprising
	55	at least one of clamping a fluid line, stopping a pump, or
	56	actuating a flow controller responsively to said indicator.
	57	35. A method as in claim 32, further comprising
	58	outputting an alarm signal responsively to said indicator.
, 6	59	36. A method as in claim 35, wherein said step
M) ⁶⁰	of detecting includes triggering an indicator of a leak
13	61	responsively to a result of either of said respective
(h	☐62 ☐	different physical effects.
	☐ ₩ 63 ₩ ₩ ₩ 64 65	37. A method as in claim 36, wherein said
	₽ 10	different physical effects include the infiltration of air
	[©] 65	into a blood circuit and the presence of blood outside said
	□ ⊒66	blood circuit.
	266 267	38. A method as in claim 28, wherein said
	₩ 1168	different physical effects include the infiltration of air
	69	into a blood circuit by periodically generating a negative
	70	pressure in said blood circuit and the presence of blood
	71	outside said blood circuit.
	72	39. A method as in claim 38, wherein said step
	73	of generating includes reversing a flow of blood.
	74	40. A method as in claim 28, wherein said
	75	different physical effects include the infiltration of air
	76	into a blood circuit by periodically reversing a flow of

77	blood in said blood circuit using a reversing valve and the
78	presence of blood outside said blood circuit.
79	41. A method as in claim 40, wherein said
80	presence is detected using a sensor located inside a
81	housing of said extracorporeal blood treatment machine.
82	42. A method as in claim 40, wherein said
83	presence is detected by guiding and concentrating a leaking flow of blood toward a fluid sensor.
G G 85	43. A device for detecting a fluid leak from a 1.9
→ W ₩ ₩86	fluid processing machine, comprising the steps of:
루 1987 15	an air detection sensor located to detect
= 88 □	infiltration of air into a fluid circuit of said fluid
<u>1</u> 89	processing machine;
189 190	a fluid detector located to detect a leakage of
91	fluid from said fluid circuit;
92	an alarm connected to said sensor and said fluid
93	detector and configured to output an alarm signal
94	responsively to signals therefrom.
95	44. A device as in claim 43, wherein said alarm
96	is adapted to output said alarm signal when either said
97	sensor or said fluid detector indicates a leak.
98	45. A device as in claim 43, wherein said sensor
99	is located to detect infiltration into a first part of said
	an e-curence of

100	fluid circuit and said fluid detector is located to detect
101	fluid from a second part of said fluid circuit, said first
102	and second parts having separate respective portions.
103	46. A device as in claim 43, further comprising
104	a mechanism adapted to generate a negative pressure in said
105	fluid circuit to cause air to infiltrate into a breach in
106	said fluid circuit
107	47. A device as in claim 46, wherein said
08	mechanism is adapted to reverse a direction of flow of
₩ 1109	fluid in said fluid circuit.
√ ≨10 [U	48. A device as in claim 43, wherein said fluid
 ∰11	circuit is a blood circuit.
112	49. A device as in claim 43, wherein said fluid
113	processing machine is an extracorporeal blood processing
114	machine.
115	50. A device for detecting a leak from a blood
116	circuit of an extracorporeal blood treatment machine,
117	comprising the steps of:
118	respective detectors located to detect leaks of
119	blood from respective portions of a blood circuit;
120	at least two of said respective detectors
121	including sensors configured to detect different physical
122	effects correlated with one or more blood leaks;

	123	said respective portions including parts that are
	124	non-overlapping.
	125	51. A device as in claim 50, further comprising
	126	an output device connected to receive signals from said
	127	
h	128	thereto.
	129	52. A device as in claim 51, further comprising
17	0	at least one of a fluid line clamp, a pump, and an actuator
jh	7 31	of a flow controller, connected to be controlled by said
	<u>.</u> <u>.</u>]32	output device responsively to said signal.
	⊒33 ∏	53. A device as in claim 51, further comprising
	₫34 	an alarm connected to be triggered by said signal.
	1 35	54. A device as in claim 50, wherein said
	1 36	different physical effects include the infiltration of air
	137 1137	into a blood circuit and the presence of blood outside said
	138	blood circuit.
	139	55. A device as in claim 54, further comprising
•	140	an alarm connected to receive signals from said respective
	141	detectors and to output a signal responsively thereto.
	142	56. A device as in claim 54, further comprising
	143	an output device connected to receive signals from said
	144	respective detectors and to output a signal responsively
	145	thereto and at least one of a fluid line clamp, a pump, and
		<i>I</i> 4

146	an actuator of a flow controller, connected to be
147	controlled by said output device responsively to said control
148	signal.
149	57. A device as in claim 54, further comprising
150	an output device connected to receive signals from said
151	respective detectors and to output a signal responsively
152	thereto and an alarm connected to generate an output
153 ⊭	responsively to said signal.
4 54	58. A device as in claim 57, wherein said output
¥55	device and detectors are configured such that said signal
156 10	indicates a leak if either of either of said respective
157 158	different physical effects indicates a leak.
	59. A device as in claim 58, wherein said
∡ 59	different physical effects include the infiltration of air
160	into a blood circuit and the presence of blood outside said
161	blood circuit.
162	one of said detectors includes an air sensor and a
163	+
164	mechanism adapted to periodically generate a negative
165	pressure in said blood circuit such that air infiltrates
166	said blood circuit through any openings therein.

mechanism includes a mechanism adapted to reverse flow.

61. A device as in claim 60, wherein said

167

168

flow of blood toward said fluid sensor.