CSE 331 Software Design & Implementation

Hal Perkins
Summer 2019
Events, Listeners, and Callbacks

The limits of scaling

What prevents us from building huge, intricate structures that work perfectly and indefinitely?

- No friction
- No gravity
- No wear-and-tear

... it's the difficulty of *understanding* them

So we split designs into sensible parts and reduce interaction among the parts

- More cohesion within parts
- Less coupling across parts

Design exercise #1

Write a typing-break reminder program

Offer the hard-working user occasional reminders of the perils of Repetitive Strain Injury, and encourage the user to take a break from typing.

Naive design:

- Make a method to display messages and offer exercises
- Make a loop to call that method from time to time

(Let's ignore multithreaded solutions for this discussion)

TimeToStretch suggests exercises

```
public class TimeToStretch {
    public void run() {
        System.out.println("Stop typing!");
        suggestExercise();
    public void suggestExercise() {
```

Timer calls run () periodically

```
public class Timer {
  private TimeToStretch tts = new TimeToStretch();
  public void start() {
    while (true) {
      if (enoughTimeHasPassed) {
        tts.run();
```

Main class puts it together

```
class Main {
  public static void main(String[] args) {
    Timer t = new Timer();
    t.start();
  }
}
This program, as designed, will work...
But we can do better
```

Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD) indicates "depends on" or "knows about"

Simplistically: "any name mentioned in the source code"

What's wrong with this diagram?

- Does Timer really need to depend on TimeToStretch?
- Is Timer re-usable in a new context?

Decoupling

Timer needs to call the run method

Timer does not need to know what the run method does

Weaken the dependency of Timer on TimeToStretch

 Introduce a weaker specification, in the form of an interface or abstract class

```
public abstract class TimerTask {
   public abstract void run();
}
```

Timer only needs to know that something (e.g., TimeToStretch) meets the TimerTask specification

TimeToStretch (version 2)

```
public class TimeToStretch extends TimerTask {
   @override
    public void run() {
        System.out.println("Stop typing!");
        suggestExercise();
    public void suggestExercise() {
```

Timer (version 2)

```
public class Timer {
  private TimerTask task;
  public Timer(TimerTask task) {
     this.task = task;
  public void start() {
    while (true) {
      task.run();
Main creates a TimeToStretch object and passes it to Timer:
    Timer t = new Timer(new TimeToStretch());
    t.start();
```

Module dependency diagram (version 2)

- Timer depends on TimerTask, not TimeToStretch
 - Unaffected by implementation details of TimeToStretch
 - Now Timer is much easier to reuse
- Main depends on the constructor for TimeToStretch
 - Main still depends on Timer (is this necessary?)

The callback design pattern

An alternative: use a callback to *invert the dependency*

TimeToStretch creates a Timer, and passes in a reference to itself so the Timer can call it back

 This is a callback – a method call from a module to a client that it notifies about some condition

The callback *inverts a dependency*

- Inverted dependency: TimeToStretch depends on Timer (not vice versa)
 - Less obvious coding style, but more "natural" dependency
- Side benefit: Main does not depend on Timer

Callbacks

Callback: "Code" provided by client to be used by library

In Java, pass an object with the "code" in a method

Synchronous callbacks:

- Examples: HashMap calls its client's hashCode, equals
- Useful when library needs the callback result immediately

Asynchronous callbacks:

- Examples: GUI listeners
- Register to indicate interest and where to call back
- Useful when the callback should be performed later, when some interesting event occurs

TimeToStretch (version 3)

```
public class TimeToStretch extends TimerTask
    private Timer timer;
                                        Register interest
    public TimeToStretch() {
                                         with the timer
        timer = new Timer(this);
    public void start() {
        timer.start();
                                   Callback entry point
    @override
    public void run() {
        System.out.println("Stop typing!");
        suggestExercise();
```

Main (version 3)

```
TimeToStretch tts = new TimeToStretch();
tts.start();
```

- Uses a callback in TimeToStretch to invert a dependency
- This MDD shows the inversion of the dependency between
 Timer and TimeToStretch (compare to version 1)

Decoupling and design

- A good design has dependences (coupling) only where it makes sense
- While you design (before you code), examine dependences
- Don't introduce unnecessary coupling
- Coupling is an easy temptation if you code first
 - Suppose a method needs information from another object:
 - If you hack in a way to get it:
 - The hack might be easy to write
 - It will damage the code's modularity and reusability
 - More complex code is harder to understand

Design exercise #2

A program to display information about stocks

- Stock tickers
- Spreadsheets
- Graphs

Naive design:

- Make a class to represent stock information
- That class updates all views of that information (tickers, graphs, etc.) when it changes

Module dependency diagram

- Main class gathers information and stores in Stocks
- Stocks class updates viewers when necessary

Problem: To add/change a viewer, must change Stocks
Better: insulate Stocks from the vagaries of the viewers

Weaken the coupling

What should Stocks class know about viewers?

- Only needs an update method to call with changed data
- Old way:

```
void updateViewers() {
  ticker.update(newPrice);
  spreadsheet.update(newPrice);
  graph.update(newPrice);
  // Edit this method to
  // add a new viewer. 😕
}
```

Weaken the coupling

What should Stocks class know about viewers?

- Only needs an update method to call with changed data
- New way: The "observer pattern"

```
interface PriceObserver {
  void update(PriceInfo pi);
class Stocks {
  private List<PriceObserver> observers;
  void addObserver(PriceObserver pi) {
    observers.add(pi); -
                                             Register a
  void notifyObserver(PriceInfo i)
    for (PriceObserver obs : observers)
                                              callback
      obs.update(i); -
                                        Do the callbacks
```

The observer pattern

- Stocks not responsible for viewer creation
- Main passes viewers to Stocks as observers
- Stocks keeps list of PriceObservers, notifies them of changes

 Issue: update method must pass enough information to (unknown) viewers
 UW CSE 331 Summer 2019

A different design: pull versus push

- The Observer pattern (last slide) implements *push* functionality
- Alternative: a *pull* model: give viewers access to **Stocks**, let them extract the data they need

"Push" versus "pull" efficiency can depend on frequency of operations (Also possible to use both patterns simultaneously.)

UW CSE 331 Summer 2019

Another example of Observer pattern

```
// Represents a sign-up sheet of students
public class SignupSheet extends Observable {
  private List<String> students
                  = new ArrayList<String>();
                                               Part of the
 public void addStudent(String student) {
                                                 JDK
    students.add(student);
    setChanged();
    notifyObservers();
 public int size() {
    return students.size();
```

An Observer

Part of the JDK

```
public class SignupObserver implements Observer
  // called whenever observed object cha Not relevant to us
  // and observers are notified
  public void update(Observable o, Object arg) {
    System.out.println("Signup count: "
                        + ((SignupSheet)o).size());
                                       cast because
                                      Observable is
                                       not generic ®
```

Using the observer

```
SignupSheet s = new SignupSheet();
s.addStudent("billg");
// nothing visible happens
s.addObserver(new SignupObserver());
s.addStudent("torvalds");
// now text appears: "Signup count: 2"
```

Java's "Listeners" (particularly in GUI classes) are examples of the Observer pattern

(Feel free to use the Java observer classes in your designs – if they are a good fit – but you don't have to use them)

User interfaces: appearance vs. content

It is easy to tangle up *appearance* and *content*

- Particularly when supporting direct manipulation (e.g., dragging line endpoints in a drawing program)
- Another example: program state stored in widgets in dialog boxes

Neither can be understood easily or changed easily

This destroys modularity and reusability

- Over time, it leads to bizarre hacks and huge complexity
- Code must be discarded

Callbacks, listeners, and other patterns can help