

Week 11 Deliverables

Group Name: The Data Doctors

Team Details

Name: Noah Gallego

Email: noahgallego394@gmail.com

Country: United States

College/Company: California State University

Bakersfield

Specialization: Data Science

Name: Mohammad Shehzar Khan

Email: mshehzarkhan@gmail.com

Country: Turkey

College/Company: Koç University

Specialization: Data Science

Name: Tomisin Abimbola Adeniyi

Email: tomisin_adeniyi11@yahoo.com

Country: Nigeria

College/Company: N/A

Specialization: Data Science

Name: Ashish Sasanapuri

Email: sashrao21@gmail.com

Country: India

College/Company: N/A

Specialization: Data Science

Problem Description

One challenge for all Pharmaceutical companies is to understand the persistence of a drug as per the physician's prescription. To solve this problem ABC Pharma company approached an analytics company to automate this process of identification.

Data Description

Data Understanding

- The dataset provides the factors impacting the patient's persistence to New Therapy Medication (NTM) by ABC pharmaceutical company prescribed by various physicians.
- The aim is to build a machine-learning model that classifies the patient into Persistent (Compliant) and Non-persistent (Non-Compliant).
- The dataset consists of 3242 records and is a an imbalanced dataset due to low number of **Persistent** records as compared to **Non-persistent**.

Data Understanding

- The dataset contains a total of 69 features that are divided into multiple categories -
 - 1 Target variable: Persistency_Flag
 - 1 Unique identifier for each patient: Ptid
 - 6 Demographic variables of the each patient: Age_Bucket, Gender, Race, Ethnicity, Region,
 Idn_Indicator
 - 3 Physician Specialist attributes: Ntm_Speciality, Ntm_Specialist_Flag, Ntm_Specialist_Bucket
 - 13 Clinical factors: T-Score details, Risk_Segment details, Multiple risk factors count, DEXA details, Fragility fracture details, Glucocorticoid details
 - 45 Disease/Treatment factors: Injectable drugs, Risk factors, Comorbidities, Concomitancies,
 Adherence to therapy

Data Analysis

Demographic Data

- Majority of the patients recorded are Females and most of them are Non-Persistent to NTM therapies.
- We can observe that majority of the patients are aged above 55 years and majority Non-Persistent patients fall in the age group of more than 75 years of age.
- Midwest, South, and West regions display majority of the patients recorded.

Demographic Data

• We can see that majority of the patients are Caucasian and Non-Hispanic.

Demographic Data

 Majority of Non-Persistent patients belong to the age group above 75 years in the Midwest region.

Physician Attributes

Around 45% of Physicians who have prescribed new medication to the patients are 'General Practitioners'.

Physician Attributes

 Majority of the Non-Persistent patients have been prescribed the new medication by Physicians who are not Specialists.

Clinical Factors

 Based on the below graph, the Dexa Scans is part of the therapy and majority of patients who haven't gone through Dexa Scans are Non-Persistent.

Risk Factors

As the number of risks per patient increases, the number of Non-Persistent patients decreases.

Risk Factors

- Majority of the patients have been susceptible to Risk Factors such as 'Vitamin D insufficiency',
 'smoking tobacco', 'chronic malnutrition or malabsorption' and have a 'family history of osteoporosis'.
- Due to heavy imbalance of data in **Risk Factor** categories, we can reduce dimensionality by reducing the categories capturing less data into a single category.

Risk Factors

 Below graph displays the distribution of top Risks between different Age groups 1 year prior starting NTM therapy.

Comorbidity Factors

- There are total 14 Comorbidity Factors recorded for each patient.
- The top Comorbidity Factors include disorders_of_lipoprotein_metabolism_and_other_lipidemias, encounter_for_screening_for_malignant_neoplasms, encounter_for_immunization, and encntr_for_general_exam_w_o_complaint,_susp_or_reprtd_dx.

Comorbidity Factors

• Below graph displays the distribution of top **Comorbidities** between different **Age** groups 1 year prior to NTM OP therapy.

Concomitant Drugs

- We can see that the graph shows the distribution of patients who have received Concomitant Drugs 1
 year prior to start therapy.
- The count for Non-Persistent patients who have been given Concomitant Drugs such as Narcotics, cholesterol_and_triglyceride_regulating_preparations, and anti_depressants_and_mood_stabilisers is greater compared to the other categories.

Concomitant Drugs

 Below graph displays the distribution of top Concomitant Drugs administered to patients between different Age groups 1 year prior to NTM OP therapy.

Recommendations

Recommended Models

- Majority of the attributes in the dataset are categorical in nature. Label Encoding will help in converting the data type from string to numerical.
- As the problem statement requires a classification model, following models are recommended Logistic Regression, Support Vector Classifier, Random Forest, Decision Tree Classifier etc.
- Model optimisation can be carried out by applying Grid Search with Cross Validation as it helps in hyper-parameter tuning.
- Methods like Recursive Feature Elimination, Attribute Relevance Analysis, Principal Component Analysis(PCA) can be employed to handle dimensionality and complexity of dataset.
- Performance metrics such as **AUC-ROC curves**, **Accuracy**, and **F1-Score** will help us understand the performance of the models.

Thank You

