1 Úvod

Definice 1.1 (Metrika, metrický prostor)

M množina, $d: M \times M \to [0, \infty)$ je metrika, pokud $\forall x, y, z \in M$ platí:

$$d(x,y) = 0 \Leftrightarrow x = y,$$

$$d(y,x) = d(x,y),$$

$$d(x,y) < d(x,z) + d(z,y).$$

Dvojice (M,d) se pak nazývá metrický prostor.

Definice 1.2 (Norma a normovaný lineární prostor (NLP))

Ať ${\bf V}$ je vektorový prostor nad $\mathbb{F} \in \{\mathbb{R},\mathbb{C}\},$ pak $||\cdot||: {\bf V} \to [0,\infty)$ je norma, pokud $\forall {\bf x}, {\bf y} \in {\bf V}$

$$||\mathbf{x}|| = 0 \Leftrightarrow \mathbf{x} = \mathbf{o},$$

$$\forall \lambda \in \mathbb{F} : ||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}||,$$
$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||.$$

Dvojice $(\mathbf{V}, ||\cdot||)$ se pak nazývá normovaný lineární prostor.

Definice 1.3 (Otevřená a uzavřená koule)

Ať (\mathbb{M},d) je MP, $x\in\mathbb{M},\,r>0$. Pak otevřená koule o středu x a poloměru r je množina $\mathrm{B}(x,r):=\{y\in\mathbb{M}|d(x,y)< r\}$. Uzavřená koule o středu x a poloměru r je množina $\overline{\mathrm{B}}(x,r):=\{y\in\mathbb{M}|d(x,y)\leq r\}$.

Věta 1.1

 $(\mathbb{R}^d, ||\cdot||_p)$ je NLP pro $d \in \mathbb{N}, p \in [1, \infty]$.

Důkaz

1. krok: $B = \{x \in \mathbb{R}^d; ||x||_p \le 1\}$ je konvexní množina (tj. $\forall \lambda \in (0,1) \ \forall x,y \in B : \lambda x + (1-\lambda)y \in B$). Pro $p = \infty$:

$$\forall i \in [d] : |\lambda x_i + (1 - \lambda)y_i| \le \lambda |x_i| + (1 - \lambda)|y_i| \le \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1$$

Pro $p < \infty$:

$$\forall i \in [d] : |\lambda x_i + (1 - \lambda)y_i|^p \le \lambda |x_i|^p + (1 - \lambda)|y_i|^p,$$

protože $t\mapsto t^p$ je konvexní funkce. Dopočítáním obou nerovností získáme, že je to opravdu konvexní množina.

2. krok: Pokud $||\cdot||$ splňuje (i)+(ii) a B je konvexní, pak $||\cdot||$ je norma. Zvolme $\mathbf{x},\mathbf{y}\in\mathbf{V},$ BÚNO $\mathbf{x},\mathbf{y}\neq\mathbf{o},$ položme $\tilde{\mathbf{x}}:=\frac{\mathbf{x}}{||\mathbf{x}||},$ $\tilde{\mathbf{y}}:=\frac{\mathbf{y}}{||\mathbf{y}||},$ tedy:

$$\begin{split} \frac{\mathbf{x} + \mathbf{y}}{||\mathbf{x}|| + ||\mathbf{y}||} &= \frac{||\mathbf{x}||}{||\mathbf{x}|| + ||\mathbf{y}||} \tilde{\mathbf{x}} + \frac{||\mathbf{y}||}{||\mathbf{x}|| + ||\mathbf{y}||} \tilde{\mathbf{y}} \in B \text{ (zlomky jsou } \lambda, 1 - \lambda). \\ &||\frac{\mathbf{x} + \mathbf{y}}{||\mathbf{x}|| + ||\mathbf{y}||}|| \leq 1 \implies \frac{||\mathbf{x} + \mathbf{y}||}{||\mathbf{x}|| + ||\mathbf{y}||} \leq 1. \end{split}$$

3. $||\cdot||_p$ zřejmě splní (i)+(ii) a B je konvexní podle 1. kroku. Tedy $||\cdot||_p$ je norma. \square

Poznámka (Značení)

$$l_p^d := (\mathbb{R}^d, ||\cdot||_p)$$
.

Definice 1.4 (Konvergence)

At (\mathbb{M}, d) je MP, $\{x_n\}_{n=1}^{\infty}$ posloupnost v $\mathbb{M}, x \in \mathbb{M}$. Pak (x_n) konverguje k x pokud $d(x_m, x)$ konverguje k x0. Píšeme $x_n \to x$ nebo také $\lim_{n \to \infty} x_n = x$.

2 Otevřené a uzavřené množiny

Definice 2.1 (Vnitřek, vnějšek, hranice)

At (\mathbb{M}, d) je MP. $A \subseteq \mathbb{M}$. Pak $x_0 \in \mathbb{M}$ je vnitřní bod $A \equiv \exists r > 0 : B(x_0, r) \subseteq A$. Dále vnitřek (interior) množiny A je množina

$$\operatorname{int}(A) = \{x_0 \in \mathbb{M} | x_0 \text{ je vnitřní bod } A\}.$$

Dále $x_0 \in \mathbb{M}$ je vnější bod $A \equiv \exists r > 0 : \mathrm{B}(x_0, r) \subseteq \mathbb{M} \setminus A$. Vnějšek (exterior) množiny A je množina

$$\operatorname{ext}(A) = \{x_0 \in \mathbb{M} | x_0 \text{ je vnější bod } A\}.$$

Nakonec $x_0 \in \mathbb{M}$ je hraniční bod $A \equiv x \in \mathbb{M} \setminus (\operatorname{int}(A) \cup \operatorname{ext}(A))$. Hranice množiny A je množina

$$\partial A = \{x_0 \in \mathbb{M} | x_0 \text{ je hraniční bod } A\}.$$

Pozorování

Zřejmě $int(A) \subseteq A$.

Zřejmě $\operatorname{ext}(A) = \operatorname{int}(\mathbb{M} \setminus A) \subseteq \mathbb{M} \setminus A$.

Definice 2.2 (Otevřená a uzavřená množina)

Buď (M, d) MP a $A \subseteq M$. Pak A je otevřená $\equiv A \cap \partial A = \emptyset$.

Dále uzávěr množiny A je množina $\overline{A} = A \cup \partial A$. Množina A je poté uzavřená $\equiv \partial A \subseteq A$.

Pozorování

Zřejmě A je otevřená $\Leftrightarrow A = \operatorname{int}(A)$.

Otevřená koule je otevřená množina.

Lemma 2.1

 $At'(\mathbb{M},d)$ je MP, $A\subseteq \mathbb{M}$. $Pak \ x\in \overline{A} \Leftrightarrow \exists (x_n)\subseteq \mathbb{N}\times A: x_n\to x$. Zároveň následující podmínky jsou ekvivalentní:

a) A je uzavřená, b) $A = \overline{A}$, $\forall (x_n \in A) : x_n \to x \in \mathbb{M} \implies x \in A$.

 \Box $D\mathring{u}kaz$

 \implies : Af $x \in \overline{A}$. Pokud $x \in A$, polož $x_n = x$. Pokud $x \notin A$, pak $x \in \partial A$, tedy $\forall n \; \exists x_n \in \mathrm{B}(x, \frac{1}{n}) \cap A. \; \mathrm{Pak} \; x_n \to x \; (0 \le d(x_n, x) < \frac{1}{n} \to 0).$

 \Leftarrow At (x_n) je posloupnost v $A, x_n \to x$. Pokud $x \in A$, jsme hotovi. Pokud $x \notin A$, pak $\forall \varepsilon > 0 \ \exists r_0 \forall n \geq n_0 : x_n \in B(x,\varepsilon) \cap A. \ \text{Tedy } x \in \overline{A}.$

 $(a) \Leftrightarrow b$) A je uzavřená $\stackrel{\text{def}}{\Leftrightarrow} \partial A \subseteq A \Leftrightarrow A = A \cup \partial A = \overline{A}$.

 $b) \implies c) \implies a) \ A = \overline{A} \implies \forall (x_n) : x_n \to x \implies x \in A \ \overline{\text{Prvn\'i c\'ast}} \Longrightarrow \partial A \subseteq$ $\lfloor A$.

Věta 2.2 (Základní vlastnosti otevřených množin)

At(M,d) je MP. Pak

- (i) M a Ø jsou otevřené.
- (ii) Sjednocení libovolně mnoha otevřených je otevřené.

(iii) Průnik konečně mnoha otevřených je otevřený.

 $D\mathring{u}kaz$

(i) Triviální. (ii) $x \in \bigcup_i M_i$, pak $\exists j : x \in M_j$. Potom M_j je otevřená, tedy existuje r > 0: $B(x,r) \subseteq M_j \subseteq \bigcup_i M_i$. Tedy $\bigcup_i M_i$ je otevřená. (iii) $x \in \bigcap_i M_i$, pak $\forall i \exists r_i : B(x,r_i) \subseteq M_i$. Polož $r = \min_i r_i > 0$ (protože i je z konečné množiny, tedy existuje minimum a to je jistě jeden z těch poloměrů, tedy > 0), pak $B(x,r) \subseteq \bigcap_i M_i$. Tedy $\bigcap_i M_i$ je otevřená. \square

Věta 2.3 (Vztah otevřená a uzavřené množiny)

At(M,d) je MP, $A \subseteq M$. Pak A je otevřená $\Leftrightarrow M \setminus A$ je uzavřená.

 $D\mathring{u}kaz$

 \Longrightarrow : Zvol (x_n) posloupnost v $\mathbb{M}\setminus A, x_n\to x$. Sporem. Necht $x\in A$. Potom $\exists \varepsilon>0$: $\mathrm{B}(x,\varepsilon)\subseteq A,$ ale pak $\exists n:x_n\in A.$ 4.

 $\Leftarrow: \text{Zvol } x \in A. \text{ Protože } \mathbb{M} \setminus A \text{ je uzavřená, tedy } \partial(\mathbb{M} \setminus A) \subseteq \mathbb{M} \setminus A), \ x \notin \partial(\mathbb{M} \setminus A), \\ \text{tedy } \exists \varepsilon > 0 : \text{B}(x,\varepsilon) \cap A = \emptyset \text{ (to nelze) nebo } \text{B}(x,\varepsilon) \cap (\mathbb{M} \setminus A) = \emptyset. \text{ Tedy } \exists \varepsilon > 0 : \\ \text{B}(x,\varepsilon) \cap (\mathbb{M} \setminus A) = \emptyset, \text{ tj. B}(x,\varepsilon) \subseteq A, \text{ tedy } A \text{ je otevřená.}$

Věta 2.4 (Základní vlastnosti uzavřených množin)

At(M,d) je MP, $A \subseteq M$. Pak

- (i) M a Ø jsou uzavřené.
- (ii) Průnik libovolně mnoha uzavřených množin je uzavřený.
- (iii) Sjednocení konečně mnoha uzavřených množin je uzavřené.

 $D\mathring{u}kaz$

Plyne z věty výše a de-Morganových pravidel.

Věta 2.5

At(M,d) je MP, $A \subseteq M$. Pak

$$int(A) = \bigcup \{G \subseteq A | G \text{ otev} \check{r}en\acute{e}\},\$$

$$\overline{A} = \bigcap \{F \supseteq A | F \ uzav \check{r}en\acute{e}\}.$$

 \subseteq : $x \in \text{int}(A) \implies \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq A$, stačí položit $G = B(x, \varepsilon)$.

 \supseteq : At $G \subseteq A$ otevřená, pak $G = \text{int}(G) \subseteq \text{int}(A)$.

 $\subseteq: x \in \overline{A}$, pak $\exists (x_n)$ v $A: x_n \to x$. Zvol $F \supseteq A$ uzavřená, pak $x_n \to x \in F$ (z uzavřené se nedá vykonvergovat).

 \supseteq : Položme $F = \overline{A} \supseteq A$.

3 Spojitost v metrických prostorech

Definice 3.1 (Spojitost v bodě, spojitost, (k-)Lipschitzovskost)

At (\mathbb{M}, d) , (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$, $a \in \mathbb{M}$. Potom f je spojitá v $a \equiv \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{M} : d(x, a) < \delta \implies e(f(x), f(a)) < \varepsilon$.

f je spojitá na $\mathbb{M} \equiv \forall a \in \mathbb{M} : f$ je spojitá v a.

f je k-Lipschitzovská $(k > 0) \equiv \forall x, y \in \mathbb{M} : e(f(x), f(y)) \leq k \cdot d(x, y)$.

fje Lipschitzovská $\equiv \exists k>0: f$ je k-Lipschitzovská.

Pozorování

f je $k\text{-Lipschitzovská} \implies f$ je spojitá.

Definice 3.2 (Značení)

At (M, d) je MP, $A \subseteq M$, $x \in M$. Pak $dist(x, A) := \inf_{a \in A} d(x, a)$.

Lemma 3.1

At(M,d) je MP, $A \subseteq M$. Pak

$$(i)\forall x \in \mathbb{M} : d(x, A) = d(x, \overline{A}),$$

$$(ii) \forall x \in \mathbb{M} : d(x, A) = 0 \Leftrightarrow x \in \overline{A},$$

(iii) dist $(\cdot, A) : \mathbb{M} \to \mathbb{R}$ je 1-Lipschitzovská.

Důkaz

 $(i) \geq$: Jasné (infimum přes menší množinu). \leq : Pro $n \in \mathbb{N}$ zvolme $y_n \in \overline{A}$: $d(x,y_n) < \operatorname{dist}(x,\overline{A}) + \frac{1}{n}$. Zvolme dále $x_n \in \operatorname{B}\left(y_n,\frac{1}{n}\right) \cap A$, pak $\operatorname{dist}(x,A) \leq d(x,x_n) \leq d(x,y_n) + d(y_n,x_n) < \operatorname{dist}(x,\overline{A}) + \frac{1}{n}$, celkem $\forall n \in \mathbb{N} : \operatorname{dist}(x,A) < \operatorname{dist}(x,\overline{A}) + \frac{2}{n} \Longrightarrow \operatorname{dist}(x,A) \leq \operatorname{dist}(x,\overline{A})$.

(ii): BÚNO A je uzavřená (jinak podle (i)). \Rightarrow : Jasné (do inf dosadíme x). $\Rightarrow \forall n \ \exists x_n \in B(x, \frac{1}{n}) \cap A$ protože d(x, A) = 0. Pak ale $x_n \to x$, tedy $x \in A$ z uzavřenosti.

(iii): Zvolme $x, y \in \mathbb{M}$. BÚNO $d(x, A) \ge d(y, A)$. Fixujeme $n \in \mathbb{N}$. Zvolme $y_n \in A$: $d(y, y_n) < \operatorname{dist}(y, A) + \frac{1}{n}$. Pak

$$|d(x,A) - d(y,A)| = d(x,A) - d(y,A) < d(x,y_n) - \left(d(y,y_n) - \frac{1}{n}\right) \le \frac{1}{n} + d(x,y).$$

 \implies (n bylo libovolné, přejdeme k limitě) $|d(x,A)-d(y,A)| \le 1 \cdot d(x,y)$.

Lemma 3.2

At(M,d) je MP. Pak

 $(i) \forall x \neq y \in \mathbb{M} \ \exists f : \mathbb{M} \to \mathbb{R} \ 1\text{-}Lipschitzovsk\acute{a}, \ \check{z}e \ f(x) \neq f(y),$

(ii) Projekce $\pi_i: (\mathbb{R}^d, ||\cdot||_p) \to \mathbb{R}, (x_1, \dots, x_d) \mapsto x_i \text{ jsou Lipschitzovsk\'e}, d \in \mathbb{N}, p \in [1, \infty].$

 \Box $D\mathring{u}kaz$

(i) Zvol $f := d(\cdot, \{x\})$.

 $(ii) \ \forall \vec{x}, \vec{y} \in \mathbb{R}^d : |\pi_i(x_1, \dots, x_d) - \pi_i(y_1, \dots, y_d)| = |x_i - y_i|$

$$\leq \begin{cases} p = \infty : & ||\vec{x} - \vec{y}||_{\infty} \\ p \neq \infty : & \sqrt[p]{\sum_{j=1}^{d} |x_j - y_j|^p} \end{cases}.$$

Tvrzení 3.3

 $At(\mathbb{M},d), (\mathbb{N},e)$ jsou MP, $f:\mathbb{M}\to\mathbb{N}.$ Pak následující tvrzení jsou ekvivalentní:

- (i) f je spojitá,
- (ii) $f^{-1}(U)$ je otevřená, kdykoliv $U \subseteq \mathbb{N}$ je otevřená,
- (iii) $f^{-1}(F)$ je uzavřená, kdykoliv $F \subseteq \mathbb{N}$ je uzavřená.

- (ii) \Leftrightarrow (iii): Z věty o doplňcích a toho, že $f^{-1}(\mathbb{N} \setminus U) = \mathbb{M} \setminus f^{-1}(U)$.
- (i) \Longrightarrow (ii): Nechť $U\subseteq\mathbb{N}$ otevřená, $x\in f^{-1}(U)$. Pak $f(x)\in U\Longrightarrow\exists \varepsilon>0$: $\mathrm{B}(f(x),\varepsilon)\subseteq U.\Longrightarrow (f$ spojitá) $\exists \delta>0: y\in\mathrm{B}(x,\delta)\Longrightarrow f(y)\in\mathrm{B}(f(x),\varepsilon)\subseteq U,$ pak $\mathrm{B}(x,\delta)\subseteq f^{-1}(U)$.
- $(\mathrm{ii}) \implies (\mathrm{i}) \colon \mathrm{Necht} \ x \in \mathbb{M}, \varepsilon > 0. \ \mathrm{Pak} \ f^{-1}(\mathrm{B}(f(x),\varepsilon)) \ \mathrm{je} \ \mathrm{otev\check{r}en\acute{a}} \ \mathrm{dle} \ (\mathrm{ii}). \implies \exists \delta > 0: \mathrm{B}(x,\delta) \subseteq f^{-1}(\mathrm{B}(f(x),\varepsilon)). \ \mathrm{Tedy} \ d(x,y) < \delta \implies f(y) \in \mathrm{B}(f(x),\varepsilon).$

Definice 3.3 (Stejnoměrná spojitost)

Ať (\mathbb{M}, d) a (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$. Pak f je stejnoměrně spojitá, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in \mathbb{M} : d(x, y) < \delta \implies e(f(x), f(y)) < \varepsilon.$$

Důsledek

f je stejnoměrně spojitá $\implies f$ je spojitá. (Ale naopak to neplatí.)

f je Lipschitzovská $\implies f$ je stejnoměrně spojitá. (Stejně tak tohle naopak neplatí.)

Definice 3.4 (Izometrie)

At (\mathbb{M}, d) a (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$. Pak f je izometrie, pokud $\forall x, y \in \mathbb{M} : d(x, y) = e(f(x), f(y))$.

Důsledek

Izometrie je 1-Lipschitzovská. (Ale ne naopak.)

Definice 3.5 (Homeomorfismus)

Ať (\mathbb{M},d) a (\mathbb{N},e) jsou MP, $f:\mathbb{M}\to\mathbb{N}$. Pak f je homeomorfismus, pokud f je spojitá bijekce a f^{-1} je spojitá.

Důsledek

Izometrie na je homeomorfismus. (Ale opačně to neplatí.)

Lemma 3.4

 $I \text{ interval, } f: I \to \mathbb{R}, \text{ } \check{z}e \mid f'(x) \mid \leq C, \forall x \in \operatorname{int}(I) \implies f \text{ } je \text{ } C\text{-}Lipschitzovsk\'a.$

Důkaz

At $a < b \in I \implies (\text{Lagrange}) \ \exists \zeta \in (a,b) : |\frac{f(b)-f(a)}{b-a}| = |f'(\zeta)| \le C$, tj. $|f(b)-f(a)| \le C|b-a|$.

Definice 3.6 (Topologicky ekvivalentní)

Řekneme, že σ a σ_1 jsou topologicky ekvivalentní, pokud

 $\{A\subseteq \mathbb{Y}|A \text{ je otevřená v } (\mathbb{Y},\sigma)\}=\{A\subseteq \mathbb{Y}|A \text{ je otevřená v } (\mathbb{Y},\sigma_1)\}\,.$

Tvrzení 3.5

Budte (\mathbb{X}, ϱ) , (\mathbb{Y}, σ) MP, $f: (\mathbb{X}, \varrho) \to (\mathbb{Y}, \sigma)$ homeomorfismus. Definujeme pro všechna $y, y' \in \mathbb{Y}$ zobrazení $\sigma_1: \mathbb{Y} \times \mathbb{Y} \to [0, \infty)$ předpisem

$$\sigma_1(y, y') = \varrho(f^{-1}(y), f^{-1}(y')).$$

Pak σ_1 je metrika na \mathbb{Y} , $f:(\mathbb{X},\varrho)\to(\mathbb{Y},\sigma_1)$ je izometrie a metriky σ a σ_1 jsou topologicky ekvivalentní.

Důkaz

Metrika: Banální, cvičení pro nás. Izometrie: Necht $x, x' \in \mathbb{X}$ jsou libovolné body.

$$\sigma_1(f(x), f(x')) = \varrho(f^{-1}(f(x)), f^{-1}(f(x'))) = \varrho(x, x'),$$

a tedy f je izometrie.

Topologická ekvivalence: Nechť $U\subseteq \mathbb{Y}$ je otevřená vzhledem k σ . Pak $f^{-1}(U)$ je otevřená (f je homeomorfismus), ale f je izometrie, tedy f^{-1} je izometrie, tudíž f^{-1} je spojitá. Tj.

$$U = f(f^{-1}(U)) = (f^{-1})^{-1}(f^{-1}(U))$$
 je otevřená.

Podobně pokud U je σ_1 -otevřená, je σ -otevřená.

Věta 3.6

Buďte ϱ_1 , ϱ_2 metriky na \mathbb{X} . Pak ϱ_1 a ϱ_2 jsou topologicky ekvivalentní \Leftrightarrow

$$(\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_1(x,y) < \delta \implies \varrho_2(x,y) < \varepsilon) \land$$

$$\wedge (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \rho_2(x,y) < \delta \implies \rho_1(x,y) < \varepsilon).$$

 $D\mathring{u}kaz$

Snadné cvičení.

Definice 3.7 (Diametr, omezená množina)

Buď (\mathbb{X}, ϱ) MP, $A \subseteq \mathbb{X}$. Definujeme $\operatorname{diam}_{\varrho}(A) = \sup \{\varrho(x, y) : x, y \in A\}$.

Řekneme, že A je omezená, pokud $\operatorname{diam}_{\rho}(A) < \infty$.

Definice 3.8 (Omezená metrika)

 ϱ je na $\mathbb X$ omezená, pokud je množina $\mathbb X$ omezená.

4 Operace s metrickými prostory

Definice 4.1 (Operace)

Je-li (X, ϱ) MP, $Y \subseteq X$, pak metrický prostor $(Y, \varrho|_{Y \times Y})$ nazýváme podprostorem prostoru (X, ϱ) , značíme (Y, ϱ) .

 $D\mathring{u}kaz$

Že (\mathbb{Y}, ϱ) je MP je zřejmé.

Tvrzení 4.1

 $Bud'(X, \varrho) MP, Y \subseteq X. Pak:$

- 1) Pokud $G \subseteq \mathbb{X}$ je otevřená $v(\mathbb{X}, \varrho)$, pak $G' = G \cap \mathbb{Y}$ je otevřená $v(\mathbb{Y}, \varrho)$.
- 2) Pokud $G' \subseteq \mathbb{Y}$ je otevřená $v(\mathbb{Y}, \varrho)$, pak $\exists G \subseteq \mathbb{X}$ otevřená $v(\mathbb{X}, \varrho) : G' = G \cap \mathbb{Y}$.

Důkaz

- 1) Necht $y \in G'$. Protože G je otevřená v \mathbb{X} , tak $\exists r > 0 : \mathcal{B}_{\mathbb{X},\varrho}(y,r) \subseteq G$. Tedy $\mathcal{B}_{\mathbb{Y},\varrho}(y,r) = \mathcal{B}_{\mathbb{X},\varrho}(y,r) \cap \mathbb{Y} \subseteq G \cap \mathbb{Y} = G'$.
- 2) Nechť je dána G' otevřená v (\mathbb{Y},ϱ) . Pak $\forall x\in G'\ \exists \varepsilon(x)>0: \mathrm{B}_{\mathbb{Y},\varrho}(x,\varepsilon(x))\subseteq G'.$ Zřejmě $G'=\bigcup_{x\in G'}\mathrm{B}_{\mathbb{Y},\varrho}(x,\varepsilon(x)).$

Položme $G=\bigcup_{x\in G'}\mathrm{B}_{\mathbb{X},\varrho}(x,\varepsilon(x))$. Potom je $G\cap\mathbb{Y}=G'$. G je otevřená, jelikož je sjednocením otevřených množin.

Definice 4.2 (Součet MP)

Mějme MP $\{\mathbb{X}_{\alpha}, \varrho_{\alpha}\}_{\alpha \in I}$, které splňují $\forall \alpha \in I \ \forall x, y \in \mathbb{X}_{\alpha} : \varrho_{\alpha}(x, y) \leq 1$. Sumou prostorů $(\mathbb{X}_{\alpha}, \varrho_{\alpha})$ nazýváme prostor

$$\sum_{\alpha \in I} (\mathbb{X}_{\alpha}, \varrho) = (\mathbb{X}, \varrho),$$

kde

$$\mathbb{X} = \coprod_{\alpha \in I} \mathbb{X}_{\alpha} = \{(x, \alpha) | x \in \mathbb{X}_{\alpha}, \alpha \in I\},$$

 $\varrho((x,\alpha),(y,\beta)) = 1$, pokud $\alpha \neq \beta, \varrho_{\alpha}(x,y)$, pokud $\alpha = \beta$.

Definice 4.3 (Součin (spočetně mnoha) MP)

Buďte $\{X_i, \varrho_i\}_{i \in \mathbb{N}}$ MP, že $\forall i \in \mathbb{N} : \operatorname{diam}(X_i) \leq 1$. Součinem prostorů (X_i, ϱ_i) nazýváme metrický prostor (je nutno, ale jednoduché dokázat)

$$\prod_{i\in\mathbb{N}}:=(\mathbb{X},\varrho),\qquad \mathbb{X}=\prod_{i\in\mathbb{N}}\mathbb{X}_i\wedge\forall f,g\in\mathbb{X}:\varrho(f,g)=\sum_{i\in\mathbb{N}}\frac{\varrho_i(f(i),g(i))}{2^i}.$$

Tvrzení 4.2

Budte (X_i, ϱ_i) , $i \in \mathbb{N}$, MP, kde diam $X_i \leq 1$. Necht $(X, \varrho) = \prod_{i \in \mathbb{N}} (X_i, \varrho_i)$ a budiž $\{f_n\}_{n=1}^{\infty} \subseteq X$ posloupnost bodů $v \times f \in X$. Pak $\lim_{n \to \infty} f_n = f(v) = f(v)$ $v \times f \in \mathbb{N}$: $\lim_{n \to \infty} f_n(i) = f(i)$ $v \times f = f(i)$ $v \times f = f(i)$

 \implies : Nechť $f_n \to f$. Budiž dáno libovolné $i_0 \in \mathbb{N}$. Nechť $\varepsilon > 0$. Najdeme $n_0 \in \mathbb{N}$, že $\forall n \geq n_0 : \varrho(f_n, f) < \varepsilon \cdot 2^{-i_0}$. Tedy pro

$$n \ge n_0 : \varepsilon \cdot 2^{-i_0} > \varrho(f_n, f) = \sum_{i=1}^{\infty} \frac{\varrho_i(f_n(i), f(i))}{2^i} \ge \frac{\varrho_{i_0}(f_n(i_0), f(i_0))}{2^{i_0}},$$

tj. $\varrho_{i_0}(f_n(i_0), f(i_0)) < \varepsilon$. tedy $\lim_{n \to \infty} f_n(i_0) = f(i_0)$.

 \Leftarrow : Nechť $\forall i \in \mathbb{N} : f_n(i) \to f(i)$. Nechť $\varepsilon > 0$. Najděme $i_0 \in \mathbb{N}$, že $\sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2}$. Pro všechna $i \in \{1, 2, \dots, i_0\}$ najdeme n_i , že $\forall n \geq n_i : \varrho_i(f_n(i), f(i)) < \frac{\varepsilon}{i_0}$. Položme $\tilde{n} := \max\{n_1, n_2, \dots, n_{i_0}\}$. Pak $n \geq \tilde{n}$: jest

$$\varrho(f_n, f) = \sum_{i=1}^{\infty} \frac{\varrho_i(f_n(i), f(i))}{2^i} = \sum_{i=1}^{i_0} \frac{\varrho_i(f_n(i), f(i))}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{\varrho_i(f_n(i), f(i))}{2^i} \le$$

$$\leq \sum_{i=1}^{i_0} \frac{\varepsilon/i_0}{2} + \sum_{i=i+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

5 Totálně omezené a separabilní MP

Definice 5.1 (ε -síť, ε -separovanost)

Buď (\mathbb{M}, d) MP, $A \subseteq \mathbb{M}, \varepsilon > 0$.

Řekneme, že A je ε -síť pro M, jestliže $\forall x \in \mathbb{M} \ \exists a \in A : d(x, a) < \varepsilon$.

A je ε -separovaná, pokud $\forall x, y \in A : d(x, y) \geq \varepsilon$.

Definice 5.2 (Totálně omezený prostor, separabilní prostor)

 \mathbb{M} je totálně omezený, jestliže $\forall \varepsilon > 0 \ \exists A \subseteq \mathbb{M} : A$ je konečná ε -síť pro \mathbb{M} .

 \mathbb{M} je separabilní, pokud $\exists A \subseteq \mathbb{M}$ spočetná: $\overline{A} = \mathbb{M}$. (Tj. A je hustá v \mathbb{M} .)

Věta 5.1

 $MP\left(\mathbb{M},d\right)$ je totálně omezený, právě když $\forall \varepsilon>0$ je každá ε -separovaná množina konečná.

\Box Důkaz

 \Longrightarrow : Necht $\varepsilon > 0$, $B \subseteq \mathbb{M}$ je ε -separovaná. Chceme B je konečná. Protože \mathbb{M} je TO, existuje konečná $\frac{\varepsilon}{4}$ -sít $A \subseteq \mathbb{M}$. Pro každé $x \in B$ zvolíme nějaký bod $a_x \in A : d(x,a_x) < \frac{\varepsilon}{4}$. Pak pro $x \neq y, x, y \in B$ platí $a_x \neq a_y : d(a_x,a_y) \geq d(x,y) - d(x,a_x) - d(y,a_y) \geq \varepsilon - \frac{\varepsilon}{4} - \frac{\varepsilon}{4} = \frac{\varepsilon}{2} > 0$. Tj. zobrazení $B \to A : x \mapsto a_x$ je prosté. Ale A je konečná tedy B je konečná.

 \Leftarrow Nechť $\varepsilon > 0$; chceme najít konečnou ε -síť. Vezmeme si $B \subseteq M$ ε -separovaná, která je maximální (co do inkluze). Tvrdíme, že B je automaticky ε síť: Zvolme $x \in \mathbb{M}$. Pak existuje $b \in B : d(x,b) < \varepsilon$. Kdyby ne: $\forall b \in B : d(x,b) \geq \varepsilon$. To by znamenalo, že $B \cup \{x\} \supset B$ je ε -separovaná, což je spor s maximalitoui B. Tj. B je opravdu ε -síť pro \mathbb{M} .

Druhá část důkazu však potřebuje tzv. Zornovo lemma, abychom mohli brát B maximální. $\hfill\Box$

Věta 5.2

 $Bud'(\mathbb{M},d)$ MP, $\mathbb{N}\subseteq\mathbb{M}$. $Pokud(\mathbb{M},d)$ je TO, $pak~i(\mathbb{N},d)$ je TO. (Tedy TO se zachovává na podprostory.)

 $D\mathring{u}kaz$

Nechť $A \subseteq \mathbb{N}$ je ε -separovaná. Chceme: A je konečná. (Pak (\mathbb{N}, d) je TO podle V18). Ale $A \subseteq \mathbb{N} \subseteq \mathbb{M}$, tedy $A \subseteq \mathbb{M}$ je ε -separovaná v \mathbb{M} . Ale \mathbb{M} je TO, takže A musí být konečná.

Věta 5.3

 $(\mathbb{M},d) \ \textit{je MP}, \ \mathbb{N} \subseteq \mathbb{M}. \ \textit{Je-li} \ (\mathbb{N},d) \ \textit{TO}, \ \textit{pak} \ (\overline{\mathbb{N}},d) \ \textit{je TO}. \ (\textit{TO se zachovává na uzávěr.})$

\Box $D\mathring{u}kaz$

 $\varepsilon > 0$ dáno, chceme konečnou ε -síť v prostoru $(\overline{\mathbb{N}}, d)$. Nechť $A \subseteq \mathbb{N}$ je konečná $\varepsilon/2$ -síť pro \mathbb{N} (ta existuje, neboť (\mathbb{N}, d) je TO). Chceme je ε -síť pro $(\overline{\mathbb{N}}, d)$. Zvolme libovolný bod $x \in \overline{\mathbb{N}}$. Chceme $\exists y \in A : d(x, y) < \varepsilon$.

Protože $x \in \overline{\mathbb{N}}$, existuje $z \in \mathbb{N}: d(x,z) < \frac{\varepsilon}{2}$. Protože A je $\varepsilon/2$ -síť pro \mathbb{N} , existuje $y \in A: d(y,z) < \frac{\varepsilon}{2}$. Tedy $d(x,y) \leq d(x,z) + d(y,z) < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Tudíž A je ε -síť pro $\overline{\mathbb{N}}$.

Věta 5.4

Nechť $(\mathbb{M}_{\alpha}, d_{\alpha})$, $\alpha \in I$ jsou MP, diam $M_{\alpha} \leq 1$, $\forall \alpha \in I$. Pak $\sum_{\alpha \in I} (\mathbb{M}_{\alpha}, d_{\alpha})$ je $TO \Leftrightarrow I$ je konečná a $\forall \alpha \in I : (\mathbb{M}_{\alpha}, d_{\alpha})$ je TO.

$D\mathring{u}kaz$

 \Longrightarrow : Nechť Σ je TO. Nechť $\varepsilon > 0$. Pokud $\varepsilon \ge 1$, pak libovolná jednobodová množina je ε -síť. $\varepsilon < 1$. Nechť $A \subseteq \Sigma(\mathbb{M}_{\alpha}, d_{\alpha})$ je konečná ε -síť. Položme $A_{\alpha} := \{x \in \mathbb{M}_{\alpha} | (x, \alpha) \in A\}$. Potom A_{α} je zřejmě ε -síť $(\mathbb{M}_{\alpha}, d_{\alpha})$.

 \Leftarrow : Podle předpokladů, pro dané $\varepsilon > 0$, $\forall \alpha \in I \ \exists A_{\alpha} \subseteq \mathbb{M}_{\alpha} : A_{\alpha}$ je konečná ε -sít (protože ($\mathbb{M}_{\alpha}, d_{\alpha}$) jsou TO). $A \bigcup_{\alpha \in I} A_{\alpha} \times \{\alpha\}$ je ε -sít pro $\sum_{\alpha \in I} (\mathbb{M}_{\alpha}, d_{\alpha})$.

Věta 5.5

Nechť (\mathbb{M}_i, d_i) jsou MP, $i \in \mathbb{N}$, a nechť $\forall i : \text{diam } \mathbb{M}_i \leq 1$. Pak $(\mathbb{M}, d) = \prod_{i \in \mathbb{N}} (\mathbb{M}_i, d_i)$ je TO $\Leftrightarrow \forall i \in \mathbb{N} : (\mathbb{M}_i, d_i)$ je TO.

$D\mathring{u}kaz$

 \Longrightarrow : (Lze provést i důkaz přímo z definic) Zvolme $a=(a_i)_{i=1}^\infty\in\mathbb{M}$. Definujeme zobrazení $\varphi:(\mathbb{M}_i,d_i)\to(\mathbb{M},d)$ tak, že $\varphi(x)=(a_1,a_2,\ldots,a_{i-1},x,a_{i+1},a_{i+2},\ldots)\in\mathbb{M}$. Pak φ je izometrie. Tedy $(\mathbb{M}_i,\frac{d_i}{2^i})$ lze chápat jako podprostor (neboli izometrickou kopii podprostoru) (\mathbb{M},d) . Ale \mathbb{M} je TO, tedy i jeho podprostor je TO.

 \Leftarrow : Nechť $\varepsilon > 0$ je dáno. Zvolíme $i_0 \in \mathbb{N} : \sum_{i=i_0}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2}$. Pro $i \in \{1, \dots, i_0 - 1\}$ najdeme konečné $\varepsilon/2$ -síťě A_i pro \mathbb{M}_i . $S = \{(x_i) \in \mathbb{M} | x_i \in A_i, i \in \{1, \dots, i_0 - 1\} \lor x_i = a_i, i \geq i_0\}$. S je konečná, neboť $|S| \prod_{i=1}^{i_0-1} |A_i|$. S je ε -síť pro \mathbb{M} .

Věta 5.6

Buď (\mathbb{M} , d) MP. Pak následující je ekvivalentní: 1) \mathbb{M} je separabilní, 2) existuje spočetná množina otevřených podmnožin $B_n \subseteq \mathbb{M}$ tak, že $\forall G \subseteq \mathbb{M}$ otevřená: $\exists I \subseteq \mathbb{N} : G = \bigcup_{n \in I} B_n$, 3) každý podprostor \mathbb{M} je separabilní, 4) každá ε -separovaná množina je spočetná.

- 1) \Longrightarrow 2): Uvažujme nějakou spočetnou hustou podmnožinu $D\subseteq \mathbb{M}$. $D=\{x_i:i\in\mathbb{N}\}$. $B_{(i,j)}:=\mathrm{B}(x_i,1/j)$. \mathbb{N}^2 je spočetná, tedy těchto koulí je spočetně mnoho. Nechť je dána libovolná otevřená $G\subseteq \mathbb{M}$. Chceme $G=\bigcup_{(i,j)\in I}B_{(i,j)}$, kde $I:=\{(i,j)\in\mathbb{N}^2|B_{i,j}\subseteq G\}$. Zvolme $x\in G$. Chceme $\exists (i,j)\in I:x\in B_{(i,j)}$. Protože G je otevřená, $\exists \varepsilon>0:\mathrm{B}(x,\varepsilon)\subseteq G$. Podle definice hustoty najdeme $\frac{1}{j}<\frac{\varepsilon}{2}$. $\exists i\in\mathbb{N}:x_i\in(x,\frac{1}{j})$. Pak $B_{(i,j)}\subseteq\mathrm{B}(x,\varepsilon)\subseteq G$. Tedy $x\in\bigcup_{(i,j)\in I}B_{(i,j)}$.
- 2) \Longrightarrow 1): Necht B_n mají vlastnost z 2). Chceme ukázat, že M je separabilní. Vybereme $x_n \in B_n, n \in \mathbb{N}$. Pak $D := \{x_n : n \in \mathbb{N}\}$ je hustá. Skutečně, budiž $\emptyset \neq G \subseteq \mathbb{M}$ otevřená, pak $G = \bigcup_{n \in I} B_n$ pro nějaké $I \subseteq \mathbb{M}$. Tím pádem $\forall n \in I : x_n \in B_n \subseteq G$, tj. $(I \neq \emptyset)$ některé prvky D jsou v G.
- 2) \Longrightarrow 3): Buď $\mathbb{O} \subseteq \mathbb{M}$ libovolný podprostor. Chceme: \mathbb{O} je separabilní. Stačí, že \mathbb{O} splňuje 2), tj. má spočetnou bázi otevřených množin. \mathbb{M} má spočetnou bázi otevřených množin $\{B_n|n\in\mathbb{N}\}$. Tvrdíme, že $\{B_n\cap\mathbb{O}|n\in\mathbb{N}\}$ má vlastnost z 2) (tj. je to báze) pro \mathbb{O} . Tedy všechny podprostory \mathbb{M} jsou separabilní.
- 3) \Longrightarrow 4): Nechť M splňuje 3). Budiž dáno $\varepsilon > 0$ a libovolná ε -separovaná podmnožina $A \subseteq \mathbb{M}$. Chceme $|A| \leq |\mathbb{N}|$. A, jakožto podprostor \mathbb{M} , je separabilní. Pro libovolné $x \in A$ jest $\mathrm{B}(x,\varepsilon) \cap A = \{x\}$. Je-li nyní D spočetná hustá v (A,d), pak $\forall x: A \cap \mathrm{B}(x,\varepsilon) \neq \emptyset$, tj. $\forall x \in A: x \in D$, tedy D = A a A je spočetná.
- 4) \Longrightarrow 1): Zornovo lemma: Pro $\varepsilon = \frac{1}{n}$ uvažujme maximální $\frac{1}{n}$ -separovanou podmnožinu $S_n \subseteq \mathbb{M}$. Dokážeme, že $S := \bigcup_{n \in \mathbb{N}} S_n$ je hustá v \mathbb{M} : Necht $x \in \mathbb{M}$, $\varepsilon > 0$ jsou dány. Najděme $n \in \mathbb{N} : \frac{1}{n} < \varepsilon$. Tvrdíme, že existuje $y \in S_n : d(x,y) < \frac{1}{n}$. Kdyby ne, pak $S_n \cup \{x\}$ by byla $\frac{1}{n}$ -separovaná, což by byl spor s maximalitou S_n . Tedy $y \in S$ a $d(x,y) < \frac{1}{n} < \varepsilon$. \square

Tvrzení 5.7

Pro prostory (\mathbb{M}_n, d_n) , $n \in \mathbb{N}$ splňující diam $\mathbb{M}_n \leq 1$, $n \in \mathbb{N}$, platí $\prod_{i=1}^{\infty} (\mathbb{M}_i, d_i)$ je separovaný $\Leftrightarrow \forall i : (\mathbb{M}_i, d_i)$ je separabilní.

 $D\mathring{u}kaz$

Cvičení.

Dusledek

 \mathbb{M} je separovaný $\Longrightarrow \mathbb{M}$ je TO.

6 Úplné prostory

Definice 6.1 (Cauchyovská posloupnost, úplný prostor)

 $\overline{\operatorname{Bud}}(\mathbb{M},\varrho)$ MP, $\{x_n\}_{n=1}^{\infty}$ posloupnost prvků M. Řekneme, že $\{x_n\}$ je cauchyovská, jestliže

platí

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : \varrho(x_n, x_m) < \varepsilon.$$

Řekneme, že prostor (\mathbb{M}, ϱ) je úplný, jestliže v něm každá cauchyovská posloupnost konverguje (tj. $\exists x \in \mathbb{M} : \lim_{n \to \infty} x_n = x$).

Věta 6.1 (Cantorův princip)

 $Bud'(\mathbb{M}, \varrho)$ MP. \mathbb{M} je úplný \Leftrightarrow pro každou posloupnost uzavřených množin $\{F_n\}_{n=1}^{\infty}$, $F_n \subseteq \mathbb{M}$, $kde\ F_1 \supseteq F_2 \supseteq \ldots \ a\ diam\ F_n \to 0$, $plati\bigcap F_n \neq \emptyset$.

$D\mathring{u}kaz$

 \Longrightarrow : Vybereme prvky $x_n \in F_n, n \in \mathbb{N}$ libovolně. Máme tedy $\{x_n\}_{n=1}^{\infty}$. Tato posloupnost je Cauchyovská, jelikož pro $\varepsilon > 0$ najdeme $n_0 \in \mathbb{N}$, že $\forall n \geq n_0$: diam $F_n < \varepsilon$. Pak $\forall n, m \geq n_0 : x_n \in F_n, x_m \in F_m \subseteq F_{n_0}$, tj. $\varrho(x_n, x_m) < \varepsilon$.

Tedy existuje $x \in \mathbb{M}$: $\lim_{n\to\infty} x_n = x$. Tvrdíme, že $x \in \bigcap F_n$. Nechť je dána $m \in \mathbb{N}$. Pak $\forall n \geq m : x_n \in F_m$. Ale F_m je uzavřená, a tedy $\lim_{n\to\infty} x_n \in F_m$.

 \Leftarrow : Nechť platí podmínka věty. Buď $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{M}$ cauchyovská. Chceme dokázat, že je konvergentní. Položme $F_n = \overline{\{x_i | i \geq n\}}$. Zřejmě $F_1 \supseteq F_2 \supseteq \ldots$ diam $F_n \to 0$, protože $\{x_n\}$ je cauchyovská. Tedy podle předpokladů existuje $x \in \bigcap F_n$.

Ukážeme, že $x=\lim x_n$: Nechť je dáno $\varepsilon>0$. Zvolme $n_0\in\mathbb{N}$: diam $F_{n_0}<\varepsilon$. Pro libovolné $n\geq n_0$ platí $\varrho(x_n,x)\leq \dim F_n\leq \dim F_{n_0}<\varepsilon$. Tedy $x_n\to x$.

Věta 6.2 (Úplnost a podprostory)

 $Bud'(\mathbb{M},\varrho) \ MP, \ \mathbb{N} \subseteq \mathbb{M} \ jeho \ podprostor. \ Potom \ (\mathbb{N},\varrho) \ je \ úpln\acute{y} \Leftrightarrow \mathbb{N} \ je \ uzav\check{r}en\acute{y} \ v \ \mathbb{M}.$

$D\mathring{u}kaz$

 \Longrightarrow : Kdyby \mathbb{N} nebyla uzavřená množina, existovala by posloupnost $\{x_n\}_{n=1}^{\infty}\subseteq\mathbb{N}$, že $\lim_{n\to\infty}x_n\in\mathbb{M}\setminus\mathbb{N}$. Ale protože $\{x_n\}$ je konvergentní v \mathbb{M} , je cauchyovská v \mathbb{M} , a tedy i v \mathbb{N} . Nemá ale v \mathbb{N} limitu a tak \mathbb{N} není úplný.

 \Leftrightarrow : Nechť $\mathbb{N} \subseteq \mathbb{M}$ je uzavřená v \mathbb{M} . Nechť $\{x_n\}$ je cauchyovská v \mathbb{N} , pak je cauchyovská i v \mathbb{M} , a protože \mathbb{M} je úplný, tak $\exists x \in \mathbb{M} : x = \lim_{n \to \infty} x_n$. Ale \mathbb{N} je uzavřený, takže $x \in \mathbb{N}$.

Věta 6.3 (Úplnost a součin)

Nechť $(\mathbb{M}_i, \varrho_i)$, $i \in \mathbb{N}$ jsou MP, že $\forall i \in \mathbb{N}$: diam $\mathbb{M}_i \leq 1$. Pak $\prod_{i=1}^{\infty} (\mathbb{M}_i, \varrho_i)$ je úplný $\Leftrightarrow \forall i : (\mathbb{M}_i, \varrho_i)$ je úplný.

 \Longrightarrow : $(\mathbb{M}_i, \varrho_i)$ lze chápat jako podprostor součinu $\prod(\mathbb{M}_i, \varrho_i)$. Lze si snadno rozmyslet, že je uzavřený (cvičení). Tedy podle předchozí věty je úplný.

 \Leftarrow : Nechť $\{x_n\}\subseteq \prod(\mathbb{M}_i,\varrho_i)=: \mathbb{M}$ je cauchyovská posloupnost v \mathbb{M} , $x_n(i)\in \mathbb{M}_i$. Tvrdíme, že $\forall i\in \mathbb{N}: \{x_n(i)\}_{n=1}^{\infty}$ je cauchyovská v \mathbb{M}_i . Buď $\varepsilon>0$. Najdeme $n_0\in \mathbb{N}$, že $\forall m,n\geq n_0: \varrho(x_n,x_m)<\frac{\varepsilon}{2^i}$.

$$\varrho(x_n, x_m) = \sum_{i=1}^{\infty} \frac{\varrho_j(x_n(j), x_m(j))}{2^j} < \frac{\varepsilon}{2^i}.$$

Tedy $\varrho_i(x_n(i), x_m(i)) < \varepsilon$. Tudíž existuje limita $x(i) := \lim_{n \to \infty} x_n(i)$, tj. $x \in \prod_{j=1}^{\infty} (\mathbb{M}_j, \varrho_j)$. Jednoduše (standardní zanedbatelnost "vocasu řady") dokážeme, že $\varrho(x_n, x) \to 0$.

Věta 6.4 (Bairova)

Nechť (\mathbb{M}, ϱ) je úplný MP. Nechť U_n jsou otevřené, husté podmnožiny \mathbb{M} , $n \in \mathbb{N}$. Pak $\bigcap_{n=1}^{\infty} U_n$ je hustá.

Důkaz

Stačí, že $\bigcap_{n=1}^{\infty} U_n$ protne libovolnou kouli. Mějme tedy dáno x, ε . Buď $B := B(x, \varepsilon)$. Protože U_1 je hustá, existuje $x_1 \in U_1 \cap B$. Ale U_1 i B jsou otevřené, takže i $U_1 \cap B$ je otevřená, takže existuje $\varepsilon_1 > 0$, že $B(x_1, 2\varepsilon_1) \subseteq U_1 \cap B$. Tedy $\overline{B(x_1, \varepsilon_1)} \subseteq U_1 \cap B$. Analogicky pokračujeme (navíc chceme, aby $\varepsilon_i > \varepsilon_{i+1}$).

Tím jsme dostali klesající (co do inkluze) posloupnost uzavřených množin, jejichž diametr jde k 0. Tedy průnik těchto množin je neprázdný podle Cantorova principu.

Důsledek

Existuje spojitá funkce, která nemá v žádném bodě derivaci.

Definice 6.2 (Zajímavost)

I množina, $l_{\infty} := \{ f : I \to \mathbb{R} \text{ je omezená} \}.$ $d_{\infty}(f, g) = \sup_{x \in I} |f(x) - g(x)|.$

Tvrzení 6.5 (Zajímavost)

 (l_{∞}, d_{∞}) je úplný.

Věta 6.6 (Zajímavost)

Necht (\mathbb{M}, ϱ) je MP, $\overline{D} = \mathbb{M}$. Pak existuje izometrie $\varphi : (\mathbb{M}, \varrho) \to l_{\infty}(D)$.

7 Kompaktnost

Definice 7.1 (Pokrytí, otevřené pokrytí, konečná průniková vlastnost)

At S je systém podmnožin množiny X. Řekneme, že S je pokrytí X, pokud $\bigcup S = X$.

Je-li (X, ϱ) MP, $S \subseteq \mathcal{P}(X)$, říkáme, že S je otevřené pokrytí X, pokud S je pokrytí X a každá $S \in S$ je otevřená množina v (X, ϱ) .

 $\mathcal{S} \subseteq \mathcal{P}(X)$ má konečnou průnikovou vlastnost $\equiv \forall n \in \mathbb{N} \ \forall S_1, \dots, S_n \in \mathcal{S} : \bigcap S_i \neq \emptyset$.

Definice 7.2 (Kompaktní prostor)

MP (X, ϱ) se nazývá kompaktní, pokud z každého otevřeného pokrytí S lze vybrat konečnou $S' \subseteq S$: $\bigcup S' = X$.

Definice 7.3

Ať (\mathbb{M}, ϱ) je MP, $A \subseteq \mathbb{M}$. Řekneme, že $x \in \mathbb{M}$ je hromadným bodem množiny A, pokud $\forall \varepsilon > 0 : (B(x, \varepsilon) \setminus \{x\}) \cap A \neq \emptyset$.

Věta 7.1 (Charakterizace kompaktnosti)

Pro (M, ϱ) je ekvivalentní:

- 1. M je kompaktní.
- 2. Je-li $\mathcal{F} \subseteq \mathcal{P}(\mathbb{M})$ soubor uzavřených množin s konečnou průnikovou vlastností, pak $\bigcap \mathcal{F} \neq \emptyset$.
- 3. Je-li $A \subseteq \mathbb{M}$ nekonečná, pak A má hromadný bod $v \mathbb{M}$.
- 4. Z každé posloupnosti v M lze vybrat konvergentní podposloupnost.
- 5. Každá spojitá funkce $f: \mathbb{M} \to \mathbb{R}$ je omezená.
- 6. Každá spojitá funkce $f: \mathbb{M} \to \mathbb{R}$ nabývá svého minima a maxima.
- 7. Z každého spočetného otevřeného pokrytí lze vybrat konečné pokrytí.

$D\mathring{u}kaz$

1 \Longrightarrow 2: At \mathcal{F} je soubor uzavřených množin v (\mathbb{M},ϱ) s konečnou průnikovou vlastností. Pro spor at $\bigcap \mathcal{F} = \emptyset$. At $\mathcal{S} := \{\mathbb{M} \setminus F | F \in \mathcal{F}\}$. $\mathbb{M} \setminus F$ je otevřená pro $F \in \mathcal{F}$. $\bigcup \mathcal{S} = \mathbb{M} \setminus \bigcap \mathcal{F} = \mathbb{M} \setminus \emptyset = \mathbb{M}$. Tedy \mathcal{S} je otevřené pokrytí \mathbb{M} . \mathbb{M} je kompaktní, tedy $S_1, \ldots, S_n \in \mathcal{S}: S_1 \cup S_2 \cup \ldots \cup S_n = \mathbb{M}$. $\forall i \leq n \ \exists F_i \in \mathcal{F}: S_i = \mathbb{M} \setminus F_i. F_1 \cap \ldots \cap F_n = \mathbb{M} \setminus (S_1 \cup \ldots \cup S_n) = \mathbb{M} \setminus \mathbb{M} = \emptyset$. Tedy \mathcal{F} nemá konečnou průnikovou vlastnost. 4.

Důkaz

 $2 \implies 3$: Af $A \subseteq \mathbb{M}$ je nekonečná. Af pro spor A nemá hromadný bod. Uvažujme $a \in A$, $A \setminus \{a\}$ je uzavřená množina (protože jinak by bod z $\overline{A} \setminus A$ byl hromadným bodem). $\mathcal{F} := \{A \setminus \{a\} \mid a \in A\}$ je soubor uzavřených množina a navíc má konečnou průnikovou vlastnost (můžeme odečíst pouze konečně mnoho $a_i \in A$, ale těch je nekonečně). Dle 2) je $\bigcap \mathcal{F} \neq \emptyset$. Ale $\bigcap \{A \setminus \{a\} \mid a \in A\} = A \setminus A = \emptyset$. 4.

Důkaz

 $3 \implies 4$: At $x_n \in \mathbb{M}$. Pokud $A := \{x_n | n \in \mathbb{N}\}$ je konečná, najdeme konstantní (tedy konvergentní) podposloupnost. Jinak A má hromadný bod $x \in \mathbb{M}$. Najdeme podposloupnost konvergující k x, indukcí $n_1 := 1$, $n_i < n_{i+1}$: $\varrho(x_{n_k}) < \frac{1}{k}$, k > 1:

 $B(x_{n_k}, \frac{1}{k+1}) \cap A$ je nekonečná, tedy existuje $n_{k+1} > n_k$, že je splněna chtěná podmínka. Jednoduše následně ukážeme i to, že tato posloupnost konverguje k x.

 $D\mathring{u}kaz$

Г

 $4 \implies 5$: Zase sporem: At $f: \mathbb{M} \to \mathbb{R}$ je spojitá neomezená funkce. Tj. $\forall n \in \mathbb{N} \exists x_n \in \mathbb{M}: |f(x_n)| \ge n$. Dle 4) ale víme, že posloupnost x_n má konvergentní podposloupnost x_{n_k} . $x_{n_k} \to x \in \mathbb{M}$. Ale f je spojitá, tedy $f(x_{n_k}) \to f(x)$. 4.

 $5 \implies 6$: $f: \mathbb{M} \to \mathbb{R}$ spojitá, f nenabývá maxima (búno). Dle 5 je f omezená, tedy $\sup_{x \in \mathbb{M}} f(x) = \alpha < \infty$. $g:=\frac{1}{\alpha - f}, \ \forall x \in \mathbb{M}: f(x) \neq \alpha$, tedy g je spojitá (a dobře definovaná). $\exists x_n \in \mathbb{M}: \lim_{n \to \infty} f(x_n) = \alpha$. $\lim_{n \to \infty} g(x_n) = \infty$. Tedy g není omezená, spors g s.

 $D\mathring{u}kaz$

 $6 \implies 7$: At $\mathcal{S} = \{S_1, S_2, \ldots\}$ je spočetné otevřené pokrytí \mathbb{M} . Položme $V_n := S_1 \cup \ldots \cup S_n$. At pro spor \mathcal{S} nemá konečné podpokrytí. Tedy $V_n \subset \mathbb{M}$, $V_1 \subseteq V_2 \subseteq \ldots$, $\bigcup V_n = \mathbb{M}$. Můžeme předpokládat, že $V_i \subset V_{i+1}$. Vybereme $x_i \in V_{i+1} \setminus V_i$ libovolně. Pro $i \in \mathbb{N}$ at $\varepsilon_i = \min_{j \le i} \varrho(x_i, x_j)$ a splňuje $\mathrm{B}(x_i, \varepsilon_i) \subseteq V_{i+1}$.

$$f(x) = \frac{4k}{\varepsilon_k} \left(\frac{\varepsilon_k}{4} - \varrho(x, x_n) \right), \text{ pro } x \in B(x_{n_k}, \frac{\varepsilon_k}{4}), \text{ a } f(x) = 0 \text{ jinak.}$$

 $f(x_k) = k, k \in \mathbb{N}$, tedy f není omezená. Ale je spojitá. Spor s 6.

7 \Longrightarrow 1: Nejprve ukážeme, že M je separabilní, sporem: M není separabilní, tedy podle charakterizace separability existuje $\varepsilon > 0$ a existuje $A \subseteq M$, A nespočetná, A je ε -separovaná. At $A' \subseteq A$ je spočetná, nekonečná. Zřejmě A' je ε -separovaná. A' je uzavřená v M. $\{M \setminus A'\} \cup \{B(a, \frac{\varepsilon}{2}) | a \in A'\}$ spočetné otevřené pokrytí M. Tento systém ale nemá konečné podpokrytí, což je spor s 7, tedy M je separabilní.

At S je otevřené pokrytí \mathbb{M} . \mathbb{M} je separabilní, tedy existuje systém $\{B_n|n\in\mathbb{N}\}$ otevřených množin, že $\forall G\subseteq\mathbb{M}$ otevřenou $\exists J\subseteq\mathbb{N}$:

$$G = \bigcup \{B_n | n \in J\}.$$

Tedy $\forall S \in \mathcal{S} \ \exists J_S \subseteq \mathbb{N} : S = \bigcup \{B_n | n \in J_S\}. \ J := \bigcup_{S \in \mathcal{S}} J_S \subseteq \mathbb{N}. \ \forall n \in J \ \exists S_n \in \mathcal{S} : B_n \subseteq S_n. \ \text{Tj.} \bigcup B_n = \bigcup \mathcal{S} = \mathbb{M}. \ \text{Tedy} \bigcup_{n=1}^{\infty} S_n = M. \ \text{Tedy} \{S_1, S_2, \ldots\} \text{ je spočetné podpokrytí } M. \ \text{Dle 7 existuje } k \in \mathbb{N} : S_1 \cup \ldots \cup S_k = M.$

Věta 7.2

 $At(\mathbb{M}, \varrho)$ je MP. Pak \mathbb{M} je kompaktní, právě když \mathbb{M} je úplný a totálně omezený.

 $D\mathring{u}kaz$

 \Longrightarrow : Úplnost: At $F_1 \supseteq F_2 \supseteq \ldots$ jsou uzavřené neprázdné a $\lim_{n\to\infty} \operatorname{diam} F_1 = 0$. Chceme, že $\bigcap F_n \neq \emptyset$. $\mathcal{F} := \{F_1, F_2, \ldots\}$ je systém uzavřených množin s konečnou průnikovou vlastností. Podle předchozí věty je $\bigcap \mathcal{F} \neq \emptyset$. Tj. $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Totální omezenost: At $\varepsilon > 0$. $\{B(x,\varepsilon)|x \in \mathbb{M}\}$ je otevřené pokrytí \mathbb{M} . Z kompaktnosti existuje konečné podpokrytí, tj. $\exists n \in \mathbb{N} \ \exists x_1, \ldots, x_n \in \mathbb{M} : B(x_1,\varepsilon) \cup \ldots \cup B(x_n,\varepsilon) = \mathbb{M}$. Tedy $\{x_1,\ldots,x_n\}$ je ε -síť pro \mathbb{M} . Tedy (\mathbb{M},ϱ) je totálně omezený.

 \Leftarrow : Ukážeme, že každá nekonečná $A \subseteq \mathbb{M}$ má hromadný bod. Indukcí najdeme klesající posloupnost $B_n, n \in \mathbb{N}$, uzavřených množin, že diam $B_n \leq \frac{1}{n}$, $B_n \cap A$ je nekonečná:

Z totální omezenosti \mathbb{M} existuje konečné pokrytí \mathbb{M} uzavřenými koulemi U_1, \ldots, U_n s diametrem ≤ 1 . $\exists i \leq n : U_i \cap A$ je nekonečná. Položme $B_1 := U_i$.

Máme-li B_1,\ldots,B_n , víme, že B_n je totálně omezená, $B_n\cap A$ je nekonečná. Z totální omezenosti B_n existují uzavřené V_1,\ldots,v_l , že $B_n=V_1\cup\ldots\cup V_l$, že $B_n=V_1\cup\ldots\cup V_l$, diam $V_l\leq \frac{1}{n+1}$. Existuje $j\leq l:V_j\cap A$ je nekonečná. $B_{n+1}:=V_j$. $B_{n+1}\subseteq B_n$.

Nyní z úplnosti M je $\bigcap B_n \neq \emptyset$. At $a \in \bigcap B_1$. a je hromadným bodem A: At $\varepsilon > 0$, pak $\exists n \in \mathbb{N} : \frac{1}{n} < \frac{\varepsilon}{2}$. $B_n \subseteq B(a, \varepsilon)$, $B(a, \varepsilon) \cap A$ je nekonečná, tedy a je hromadný bod A.

Tvrzení 7.3 (Zachovávání kompaktnosti operacemi)

1. Je-li (X, ϱ) kompaktní MP a $Y \subseteq X$ uzavřená, pak $(Y, \varrho|_Y)$ je kompaktní.

2. Je-li (\mathbb{X}, ϱ) kompaktní MP a (\mathbb{Y}, ϱ) MP, $f: (\mathbb{X}, \varrho) \to (\mathbb{Y}, \sigma)$ spojité, pak $(f(\mathbb{X}), \sigma_{f(\mathbb{X})})$

je kompaktní.

- 3. Je-li (X, ρ) MP a $Y \subseteq X$, že $(Y, \rho|_Y)$ je kompaktní, pak Y je uzavřená $v(X, \rho)$.
- 4. Jsou-li (X_i, ϱ_i) kompaktní MP, $i \in \mathbb{N}$, $\varrho_i \leq 1$, pak $\prod_{i \in \mathbb{N}} (X_i, \varrho_i)$ je kompaktní.
- 5. Jsou-li (X_i, ϱ_i) MP $a(X, \varrho)$ je suma prostorů (X_i, ϱ_i) , $i \in I$. Pak (X, ϱ) je kompaktní $\Leftrightarrow \forall i \in I : (X_i, \varrho_i)$ je kompaktní a $\{i \in I | X_i \neq \emptyset\}$ je konečná.

Důkaz

- 1. Kompaktnost \Leftrightarrow úplnost + totální omezenost. Uzavřený podprostor úplného je úplný, tedy $\mathbb Y$ je úplný (jelikož $\mathbb X$ je úplný). Podprostor totálně omezeného je totálně omezený, tedy $\mathbb Y$ je totálně omezený. Tedy $\mathbb Y$ je kompaktní.
- 2. At \mathcal{U} je otevřené pokrytí $f(\mathbb{X})$. f je spojité, tedy $f^{-1}(U)$ jsou otevřené pro $U \in \mathcal{U}$. Navíc $\{f^{-1}(U)|U \in \mathcal{U}\}$ je pokrytí \mathbb{X} . \mathbb{X} je kompaktní, tedy existuje konečné podpokrytí $\{f^{-1}(U_1),\ldots,f^{-1}(U_n)\}$ pro $n\in\mathbb{N}$ a $U_1,\ldots,U_n\in\mathcal{U}$. $\mathbb{X}=f^{-1}(U_1)\cup\ldots\cup f^{-1}(U_n)=f^{-1}(U_1\cup\ldots\cup U_n)$, tedy $f(\mathbb{X})\subseteq U_1\cup\ldots\cup U_n$, tedy $\{U_1,\ldots,U_n\}\subseteq\mathcal{U}$ je konečné podpokrytí $f(\mathbb{X})$. Tedy $f(\mathbb{X})$ je kompaktní.
- 3. Y je kompaktní, tedy úplný. Ale tím pádem je uzavřený (úplný podprostor je nutně uzavřený).
- 4. Převedením na úplnost a totální omezenost (součin spočetně mnoha úplných MP je úplný, stejně tak součin spočetně mnoha totálně omezených MP je totálně omezený).
- 5. $\Longrightarrow J := \{i \in I | \mathbb{X}_i \neq \emptyset \}$ je konečná sporem: At J je nekonečná. Pro $j \in J$ vybereme $x_j \in \mathbb{X}_j$. $A := \{x_k | j \in J\}$. A je nekonečná, \mathbb{X} kompaktní, tedy podle charakterizace kompaktnosti má A hromadný bod $a \in \sum (\mathbb{X}_i, \varrho)$. $B(a, \frac{1}{2}) \cap A$ nekonečná, $\exists i \neq j, i, j \in J$: $x_i, x_j \in B(a, \frac{1}{2})$. $\varrho(x_i, x_j) < 1$, spor, nebot $\varrho(x_i, x_j) = 1$.
- $\forall i \in I : \mathbb{X}_i$ je kompaktní: \mathbb{X}_i je uzavřená podmnožina $\sum (\dots \mathbb{X}_i, \varrho_i)$. Podle 1. je \mathbb{X}_i kompaktní.
- $\Leftarrow: \{i \in I | \mathbb{X}_i \neq \emptyset\}$ je konečná, $\forall i \in I : \mathbb{X}_i$ kompaktní. Chceme, že $\sum(\mathbb{X}_i, \varrho_i)$ je kompaktní. At $A \subseteq \sum(\mathbb{X}_i, \varrho_i)$ je nekonečná. Nutně existuje $i \in I : \mathbb{X}_i \cap A$ má hromadný bod v \mathbb{X}_i . Ten je zřejmě hromadným bodem celé množiny A. Tedy podle charakterizace kompaktnosti pomocí hromadných bodů nekonečných množin je $\sum(\mathbb{X}_i, \varrho_i)$.

Lemma 7.4 (Lebesgueovo číslo)

 $Af(X, \varrho)$ je kompaktní MP a \mathcal{U} otevřené pokrytí X. Pak existuje $\delta > 0$, ze pro každé $x \in X$ existuje $U \in \mathcal{U} : B(x, \delta) \subseteq U$.

 \mathbb{X} kompaktní, tedy existuje konečné podpokrytí \mathcal{U} : $\{U_1,\ldots,U_n\}\subseteq\mathcal{U}$. Pokud existuje $i\in\{1,\ldots,n\}$ tak, že $U_i=\mathbb{X}$, jsme hotovi, $\delta=1$. Předpokládejme tedy, že $\forall i\leq n:U_i\subsetneq\mathbb{X}$. At $C_i:=\mathbb{X}\setminus U_i$, C_i uzavřené, $C_i\neq\emptyset$. At $f(x)=\frac{1}{n}\sum_{i=1}^n\operatorname{dist}_{\varrho}(x,C_i)$. f je spojité. $f:\mathbb{X}\to[0,\infty),\ \forall x\in\mathbb{X}:\ \exists i\in\{1,\ldots,n\}:\ x\in U_i,\ x\notin C_i,\operatorname{dist}_{\varrho}(x,C_i)>0$. tedy $f:\mathbb{X}\to(0,\infty)$. \mathbb{X} kompakt, tedy f nabývá svého minima $\delta:=\min f(\mathbb{X})>0$.

Nyní pro $x \in \mathbb{X}$: $f(x) \geq \delta$. f(x) = aritmetický průměr n čísel, tedy $\exists i \in \{1, \dots, n\}$: $\text{dist}_{\varrho}(x, C_i) \geq \delta$. Tj. $\text{B}_{\varrho}(x, \delta) \cap C_i = O$, tj. $\text{B}_{\varrho}(x, \delta) \subseteq U_i$.

Důsledek

At (X, ϱ) , (Y, σ) jsou MP, (X, ϱ) kompaktní, $f: (X, \varrho) \to (Y, \sigma)$ spojitá. Pak f je stejnoměrně spojitá.

$D\mathring{u}kaz$

At $\varepsilon > 0$ dáno. $\left\{ f^{-1}\left(\mathbf{B}_{\sigma}\left(y,\frac{\varepsilon}{2}\right) \right) | y \in \mathbb{Y} \right\}$ je otevřené pokrytí \mathbb{X} (f spojitá, tedy vzor otevřené je otevřená). \mathbb{X} kompaktní. Tedy at δ je Lebesgueovo číslo z předchozího lemmatu příslušné uvedenému otevřenému pokrytí, tj. $\forall x \in \mathbb{X} \ \exists y \in \mathbb{Y} : \mathbf{B}_{\varrho}(x,\delta) \subseteq f^{-1}\left(\mathbf{B}_{\sigma}\left(y,\frac{\varepsilon}{2}\right)\right)$. $f(\mathbf{B}_{\varrho}(x,\delta)) \subseteq \mathbf{B}_{\sigma}\left(y,\frac{\varepsilon}{2}\right)$. Tedy pokud $x,x' \in \mathbb{X}, \varrho(x,x') < \delta$, pak $x' \in \mathbf{B}_{\varrho}(x,\delta)$ a pak $f(x), f(x') \in \mathbf{B}_{\sigma}\left(y,\frac{\varepsilon}{2}\right)$ pro nějaké $y \in \mathbb{Y}$. Tedy $\sigma(f(x), f(x')) < \varepsilon$.

Lemma 7.5

 $At(X, \varrho) \ a(Y, \sigma) \ jsou\ MP, (X, \varrho) \ kompaktni, \ f:(X, \varrho) \to (Y, \sigma) \ spojitá \ bijekce. \ Pak f je homeomorfismus.$

$D\mathring{u}kaz$

Potřebujeme pouze ověřit, že $f^{-1}(\mathbb{Y}, \sigma) \to (\mathbb{X}, \varrho)$ je spojité. At $G \subseteq \mathbb{X}$ je otevřená. $(f^{-1})^{-1}(G)$ je otevřená v (\mathbb{Y}, σ) , jelikož $f(G) = \mathbb{Y} \setminus f(\mathbb{X} \setminus \mathbb{G})$ je otevřený (vzor je uzavřená, tedy kompakt, tedy obraz je kompakt, tedy uzavřený, tedy doplněk je otevřený). Tedy f^{-1} je spojitá.

Věta 7.6 (Vlastnosti Cantorova diskontinua a Hilbertovy kostky)

Pro každý neprázdný kompaktní MP (X, ϱ) existuje spojitá surjekce $f: C \to X$. Pro každý separabilní MP (Y, σ) existuje spojitá $g: Y \to Q$, že $g: Y \to g(Y)$ je homeomorfismus.

8 Souvislost

Definice 8.1 (Souvislý prostor)

MP (X, ϱ) se nazývá souvislý, pokud $X \neq \emptyset$ a pokud $X = U \cup V$ pro U, V otevřené,

Poznámka

 (\mathbb{X}, ϱ) není souvislý, právě když $\mathbb{X} = \emptyset$ nebo $\mathbb{X} = U \cup V$, že $U \cap V = \emptyset$, U, V otevřené neprázdné. (Tj. existuje obojetná množina $\neq \emptyset, \mathbb{X}$.)

Souvislost je topologický pojem.

Věta 8.1 (Charakterizace souvislosti)

Pro neprázdný MP (\mathbb{X} , ϱ) je ekvivalentní: 1) \mathbb{X} je souvislý, 2) \mathbb{X} má právě 2 obojetné podmnožiny, 3) je-li $f: \mathbb{X} \to [0,1]$ spojitá a $f(\mathbb{X}) \supseteq \{0,1\}$, pak je f na.

$D\mathring{u}kaz$

- 1) \Longrightarrow 2) : \emptyset , \mathbb{X} jsou vždy obojetné, $\mathbb{X} \neq \emptyset$. Kdyby existovala obojetná $A \subsetneq \mathbb{X}$, pak $A \neq \emptyset$, \mathbb{X} , $\mathbb{X} \setminus A \neq \emptyset$, \mathbb{X} , pak $\mathbb{X} = A \cup (\mathbb{X} \setminus A)$ je sjednocení dvou otevřených neprázdných disjunktních množin, tedy spor se souvislostí.
- 2) \Longrightarrow 3) : At $f: \mathbb{X} \to [0,1]$ je spojitá, $f(\mathbb{X}) \supseteq \{0,1\}$. At $\exists r \in (0,1): f^{-1}(r) = \emptyset$. Intervaly [0,r) a (r,1] jsou otevřené množiny v [0,1], tedy i jejich vzory (neprázdné disjunktní množiny) jsou otevřené. Tj. $\mathbb{X} = f^{-1}([0,1]) = f^{-1}([0,r)) \cup f^{-1}(r) \cup f^{-1}((r,1]) = f^{-1}([0,r)) \cup f^{-1}((r,1])$. A tedy $\emptyset, \mathbb{X}, f^{-1}((r,1]), f^{-1}([0,r))$ jsou obojetné množiny. 4.
- 3) \Longrightarrow 1) : At $\mathbb{X} = U \cup V$, kde U, V jsou otevřené neprázdné. Chceme $U \cap V \neq \emptyset$. Sporem: $U \cap V = \emptyset$. Definujeme $f: \mathbb{X} \to [0,1], \ f(x) = 0, \ x \in U$ a $f(x) = 1, \ x \in V$. f je spojitá, jelikož $f^{-1}(G) \in \{\emptyset, \mathbb{X}, U, V\}$, pro $G \subseteq [0,1]$, což jsou otevřené množiny. f tedy nenabývá např. hodnoty 1/2. 4.

Důsledek

[0, 1] je souvislá.

$D\mathring{u}kaz$

Každá spojitá funkce $f:[0,1]\to [0,1]$ má Darbouxovu vlastnost, tedy z předchozí charakterizace je [0,1] souvislá.

Věta 8.2

At (X, ϱ) je MP a at pro každou dvojici $a, b \in X$ existuje souvislá množina S(a, b), že $S(a, b) \supseteq \{a, b\}$. Pak X je souvislý.

$D\mathring{u}kaz$

Sporem: $\mathbb{X} = U \cup V$, $U \neq \emptyset \neq V$, U, V otevřené, $U \cap V = \emptyset$. At $a \in U, b \in V$ libovolné. S(a,b) je souvislá, ale $S(a,b) = (S(a,b) \cap U) \cup (S(a,b) \cap V)$, což jsou otevřené neprázdné (obsahují a a b), tedy máme spor se souvislostí S(a,b).

Věta 8.3

 $At(X, \varrho)$ je MP a S je soubor nějakých souvislých podmnožin X, pro který je $\bigcap S \neq \emptyset$, pak $\bigcup S$ je souvislý podprostor X.

 $D\mathring{u}kaz$

At U, V jsou otevřené v $\bigcup \mathcal{S}$ a $U \cap V = \emptyset$. Chceme dokázat $U = \emptyset$ nebo $V = \emptyset$. Fixujeme $x_0 \in \bigcap \mathcal{S}$. BÚNO $x_0 \in U$. Pro libovolné $y \in \bigcup \mathcal{S}$ existuje $S \in \mathcal{S} : y \in S$. $S = (S \cap U) \cup (S \cap V)$, což jsou otevřené množiny a $S \cap U$ neprázdná, tedy $S \cap V = \emptyset$, jelikož S je souvislá. Tudíž $S \subseteq U$. Celkově $\bigcup \mathcal{S} \subseteq U$. Tedy $V = \emptyset$.

Důsledek

Je-li A souvislá podmnožina MP (\mathbb{X}, ϱ), pak každá množina M, splňující $A \subseteq M \subseteq \overline{A}$, je souvislá.

 $D\mathring{u}kaz$

At $x \in \overline{A} \setminus A$. Ukážeme, že $A \cup \{x\}$ je souvislá: At $A \cup \{x\} = U \cup V$, kde U, V jsou disjunktní otevřené v $A \cup \{x\}$. BÚNO $x \in U$. U otevřená, $x \in \overline{A}$, tedy $A \cap U \neq \emptyset$.

 $A=(A\cap V)\cup (A\cap U),$ kde $A\cap U\neq\emptyset$ a $A\cap V=V$ jsou otevřené množiny, tedy $V=\emptyset.$ Tedy $A\cup\{x\}$ je souvislá.

Ať M splňuje předpoklady, $S := \{A \cup \{x\} \mid x \in M\}. \bigcup S = M, \bigcap S = A \neq \emptyset$, tedy M je souvislá.

Věta 8.4

Obraz souvislého MP při spojitém zobrazení je souvislý prostor.

 $D\mathring{u}kaz$

At $f: (\mathbb{X}, \varrho) \to (\mathbb{Y}, \sigma)$ na a (\mathbb{X}, ϱ) souvislý. Chceme, že \mathbb{Y} je souvislý. At $g: \mathbb{Y} \to [0, 1]$ je spojitá a $g(\mathbb{Y}) \supseteq \{0, 1\}$. Chceme g je na. Ale $h:=g \circ f$ je spojité a zjevně na [0, 1] podle charakterizace souvislosti, tedy podle char. souv. g je na.

Definice 8.2

Ať (X, ρ) je MP. Množina $M \subseteq X$ se nazývá oblouk, pokud M je homeomorfní s [0, 1].

Body h(0), h(1) se nazývají krajní body oblouku M.

Prostor (\mathbb{X}, ϱ) se nazývá obloukově souvislý, pokud $\forall x, y \in \mathbb{X}, x \neq y$ existuje $M \subseteq \mathbb{X}$ oblouk s krajními body x a y.

Důsledek

Každý obloukově souvislý prostor X je souvislý.

Definice 8.3

At (X, ϱ) je MP. Množina C_x se nazývá komponenta (souvislosti) bodu x v prostoru X, pokud C_x je největší souvislá podmnožina X obsahující x.

Důkaz (Korektnost "největší")

Z předchozích vět víme, že pokud vezmeme souvislé množiny obsahující bod x, tak jejich sjednocení je souvislé.

Poznámka

 $\{C_x|x\in\mathbb{X}\}$ tvoří rozklad MP (\mathbb{X},ϱ) .

Definice 8.4

Souvislý kompaktní MP se nazývá kontinuum.

Poznámka

Kontinuum je topologický pojem.

Spojitý obraz kontinua je kontinuum.

Věta 8.5

At K_n je kontinuum pro každé $n \in \mathbb{N}$.

$$K_1 \supseteq K_2 \supseteq \dots$$

 $Pak \bigcap_{n=1}^{\infty} K_n \ je \ kontinuum.$

Každé K_n je kompaktní, tedy uzavřené v K_1 . $\bigcap_{i=1}^{\infty} K_i$ je uzavřená v K_1 , K_1 kompaktní, tedy $\bigcap_{i=1}^{\infty} K_i$ je kompaktní.

Souvislost $K:=\bigcup_{i=1}^{\infty}K_i$: Ať pro spor K není souvislé: $K=A\cup B,\,A,B$ jsou otevřené v $K,\,A\neq\emptyset\neq B,\,A\cap B=\emptyset$. $\exists U,v$ otevřené disjunktní v K_1 , že $U\cap K=A,\,V\cap K=B$. $K\subseteq U\cup V$ otevřené v K_1 . Tvrdíme, že existuje $n\in\mathbb{N}:K_n\subseteq U\cup V$. To dokážeme sporem: kdyby ne, $K_n\setminus (U\cup V)\neq\emptyset, n\in\mathbb{N}.\,F_n:=K_n\setminus (U\cup V)$ kompaktní neprázdný, $F_{n+1}\subseteq F_1$. Pak $\bigcap_{n=1}^{\infty}F_n\neq\emptyset$, protože $\{F_n|n\in\mathbb{N}\}$ má konečnou průnikovou vlastnost. $x\in\bigcap F_n\subseteq\bigcap K_n,\,x\in K_n\setminus (U\cup V)$, Spor s $K\subseteq U\cup V$.

Tedy $K_n = (K_n \cap U) \cup (K_n \cap V)$, což jsou neprázdné otevřené (v K_n) disjunktní množiny. 4.

9 Hausdorffova metrika

Poznámka (Značení)

At X je MP. Označíme

$$\varkappa(X) = \{K \subseteq \mathbb{X} | K \neq \emptyset, K \text{ kompaktní} \}.$$

Definice 9.1

Pro MP (X, ϱ) definujeme $\varrho_H : \varkappa(X) \times \varkappa(X) \to \mathbb{R}$,

$$\varrho_H(A, B) = \max \left\{ \sup_{x \in A} \operatorname{dist}_{\varrho}(x, B), \sup_{x \in B} \operatorname{dist}_{\varrho}(x, A) \right\}.$$

 ϱ_H se nazývá Hausdorffova metrika, $(\varkappa(\mathbb{X}), \varrho_H)$ se nazývá hyperprostor.

Věta 9.1

 ϱ_H je metrika na $\varkappa(\mathbb{X})$.

At $A \in \varkappa(\mathbb{X}) : \varrho_H(A, A) = 0.$

At $A, B \in \varkappa(\mathbb{X})$, $A \neq B$, $\varrho_H(A, B) \stackrel{?}{>} 0$. $(A \setminus B) \cup (B \setminus A) \neq \emptyset$. At $x \in (A \setminus B) \cup (B \setminus A)$. $\varrho(x, A) > 0$ nebo $\varrho(x, B) > 0$. Tedy $\varrho_H(A, B) > 0$.

Symetrie je triviální.

Pomocné tvrzení: Ať $C \in \varkappa(\mathbb{X}), x, y \in \mathbb{X}$. Pak $\varrho(x, C) \leq \varrho(x, y) + \varrho(y, C)$. Důkaz: Je-li $c \in C : \varrho(x, c) \leq \varrho(x, y) + \varrho(y, c)$. Přejdeme k infimu: $\varrho(x, C) \leq \varrho(x, y) + \varrho(y, C)$.

At $A, B, C \in \varkappa(\mathbb{X})$. Pro $a \in A, b \in B$: $\varrho(a, C) \leq \varrho(a, b) + \varrho(b, C) \leq \varrho(a, b) + \varrho_H(B, C)$. Přejdeme k infimu:

$$\varrho(a,C) \le \varrho(a,B) + \varrho_H(B,C) \le \varrho_H(A,B) + \varrho_H(B,C).$$

To platí pro všechna $a \in A$, tedy přejdeme k supremu:

$$\sup_{a \in A} \varrho(a, C) \le \varrho_H(A, B) + \varrho_H(B, C).$$

Analogicky $\sup_{c \in C} \varrho(c, A) \leq \dots$ Tedy $\varrho_H(A, C) \leq \varrho_H(A, B) + \varrho_H(B, C)$.

Tvrzení 9.2

At (X, ϱ) je MP, pak zobrazení $f : (X, \varrho) \to (\varkappa(X), \varrho_H)$, $f(x) = \{x\}$ je izometrické vnoření na uzavřenou podmnožinu $\varkappa(X)$.

Důkaz

 $\varrho_H(f(x), f(y)) = \varrho(x, y)$ triviálně.

 $M:=\{\{x\}\,|x\in\mathbb{X}\}$ je uzavřená v $\varkappa(\mathbb{X})$: Doplněk je otevřená: Ať $A\in\varkappa(\mathbb{X}),\ |A|\geq 2$ (tj. A je v doplňku M). Fixujeme $x,y\in A, x\neq y: \varrho(x,y)=:\varepsilon>0$. $\mathrm{B}_{\varrho_H}(A,\frac{\varepsilon}{3})\cap M=\emptyset$ sporem: Kdyby existovalo $z\in\mathbb{X}:\{z\}\in B_{\varrho_H}(A,\frac{\varepsilon}{3}),\ \mathrm{pak}\ \varrho_H(\{z\}\,,A)<\frac{\varepsilon}{3},\ \varrho(x,z)<\frac{\varepsilon}{3},\ \varrho(y,z)<\frac{\varepsilon}{3}.$

$$\varepsilon = \varrho(x, y) \le \varrho(x, z) + \varrho(y, z) < \frac{2}{3}\varepsilon.$$

_\$.

Věta 9.3

Pro MP (X, ϱ) platí:

- 1. (\mathbb{X}, ρ) je úplný \Leftrightarrow $(\varkappa(\mathbb{X}), \rho_h)$ je úplný.
- 2. (\mathbb{X}, ϱ) je totálně omezený $\Leftrightarrow (\varkappa(\mathbb{X}), \varrho_H)$ je totálně omezený.
- 3. (\mathbb{X}, ρ) je kompaktní $\Leftrightarrow (\varkappa(\mathbb{X}), \rho_H)$ je kompaktní.

4. (\mathbb{X}, ϱ) je kontinuum $\Leftrightarrow (\varkappa(\mathbb{X}), \varrho_H)$ je kontinuum.

Důkaz (Pouze náznak)

- 1), 2) \leftarrow : Z předchozího je $\mathbb X$ uzavřený podprostor úplného (tot. omezeného) prostoru, tedy úplný (tot. omezený) prostor.
- 1) \Longrightarrow : Předpokládejme, že (A_n) je cauchyovská v $(\varkappa(\mathbb{X}), \varrho_H)$. $B_n := \overline{\bigcup_{k \geq n} A_k}$. $B := \bigcap B_n$. Lze ukázat, že $B \in \varkappa(\mathbb{X}), A_n \to B$.
- 2) \Longrightarrow : At $\varepsilon > 0$. At A_0 je konečná ε -síť v (\mathbb{X}, ϱ) . $\mathcal{P}(A_0) \setminus \{\emptyset\}$ (je konečná a) je ε -síť v $(\varkappa(\mathbb{X}), \varrho_H)$.

3) plyne z 1) a 2). 4) bez náznaku.

9.1 Iterované funkční systémy

Definice 9.2

At (\mathbb{X}, ϱ) , (\mathbb{Y}, σ) jsou MP, $f: \mathbb{X} \to \mathbb{Y}$ se nazývá kontrakce, pokud existuje K < 1, že $\forall x, y \in \mathbb{X} : \sigma(f(x), f(y)) \leq K \cdot \varrho(x, y)$.

Věta 9.4 (Banachova věta)

 $At (X, \varrho)$ je neprázdný úplný MP, $f : X \to X$ kontrakce. Pak f má právě jeden pevný bod, tj. bod $x \in X : f(x) = x$.

 $D\mathring{u}kaz$

Ať $x_0 \in \mathbb{X}$ libovolně. $x_1 = f(x_0), x_2 = f(x_1), \dots$ Posloupnost $(x_n)_{n=1}^{\infty}$ je cauchyovská:

$$\varrho(x_{n+1},x_n) \le K \cdot \varrho(x_n,x_{n-1}) \le \ldots \le K^n \cdot \varrho(x_1,x_0).$$

 $\sum_{n=1}^{\infty} K^n \cdot \varrho(x_1, x_0)$ konverguje. Tedy pro $\varepsilon > 0$ $\exists n_0 \in \mathbb{N} : \sum_{n=n_0}^{\infty} K^n \cdot \varrho(x_1, x_0) < \varepsilon$. Tedy $m \ge n > n_0$:

$$\varrho(x_m, x_n) \le \varrho(x_m, x_{m-1}) + \varrho(x_{m-1}, x_{m-2}) + \ldots + \varrho(x_{n+1}, x_n) \le \sum_{i=n}^m K^i \varrho(x_0, x_1) \le \varepsilon.$$

 (\mathbb{X},ϱ) je úplný, (x_n) cauchyovská, tedy $\lim_{n\to\infty}x_n=x\in\mathbb{X}$. Tvrdíme, že f(x)=x:

$$f(x) = f(* \lim_{n \to \infty} x_n) \stackrel{f \text{ spojitá}}{=} \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$

Jednoznačnost: Kdyby f(x) = x, f(y) = y, pak

$$\varrho(x,y) \leq K \cdot \varrho(f(x),f(y)) = K\varrho(x,y) \implies \varrho(x,y) = 0 \implies x = y.$$

Definice 9.3

Ať (X, ϱ) je MP, $f_1, \ldots, f_n : X \to X$ kontrakce, $n \in \mathbb{N}$. Pak $\{f_1, \ldots, f_n\}$ se nazývá iterovaný funkční systém. Množina $K \subseteq X$ se nazývá invariantní (vůči tomuto IFS), pokud $K = f_1(K) \cup \ldots \cup f_n(K)$.

Věta 9.5

At (X, ϱ) je úplný neprázdný MP a $\{f_1, \ldots, f_n\}$ IFS na X. Pak existuje jediná kompaktní neprázdná invariantní množina pro tento IFS.

 $D\mathring{u}kaz$

Víme $(\varkappa(\mathbb{X}), \varrho_H)$ je úplný. Definujeme $F : \varkappa(\mathbb{X}) \to \varkappa(\mathbb{X}), F(L) := f_1(L) \cup \ldots \cup f_n(L) \in \varkappa(\mathbb{X}).$ F je kontrakce. Podle Banachovy věty existuje právě jedno $K \in \varkappa(\mathbb{X}) : F(K) = K$. Tím je důkaz hotov.