TABLE OF CONTENTS

→ SKIP DEFINITIONS OF INVERSE TRIG FUNCTIONS

INVERTIBILITY GAME

INVERTIBILITY GAME

I'm thinking of a number x. Your hint: sin(x) = 0. What number am I thinking of?

INVERTIBILITY GAME

I'm thinking of a number x. Your hint: sin(x) = 0. What number am I thinking of?

I'm thinking of a number x, and x is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. Your hint: $\sin(x) = 0$. What number am I thinking of?

 $\arcsin(x)$ is the inverse of $\sin x$ restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\arcsin(x)$ is the inverse of $\sin x$ restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\arcsin x$ is the (unique) number θ such that:

- $ightharpoonup -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, and
- $ightharpoonup \sin \theta = x$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

θ	$\sin \theta$
0	0
$-\frac{\pi}{6}$	$-\frac{1}{2}$
$-\frac{\pi}{4}$	$-\frac{1}{\sqrt{2}}$
$-\frac{\pi}{3}$	$-\frac{\sqrt{3}}{2}$
$-\frac{\pi}{2}$	- 1

Reference Angles:

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

ightharpoonup $\arcsin(0)$

Reference Angles:

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

ightharpoonup $\arcsin(0) = 0$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right)$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$ $\sqrt{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
- ightharpoonup $\arcsin\left(-\frac{1}{\sqrt{2}}\right)$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$ $\sqrt{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
- ightharpoonup $\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
- ightharpoonup $\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$
- ightharpoonup $\arcsin\left(\frac{\pi}{2}\right)$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$ $\sqrt{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
- ightharpoonup $\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$
- ightharpoonup $\arcsin\left(\frac{\pi}{2}\right)$ undefined

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

$$ightharpoonup$$
 $\arcsin(0) = 0$

$$ightharpoonup$$
 $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$

$$ightharpoonup$$
 $\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$

- ightharpoonup $\arcsin\left(\frac{\pi}{2}\right)$ undefined
- ightharpoonup $\arctan\left(\frac{\pi}{4}\right)$

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	1

- ightharpoonup $\arcsin(0) = 0$
- ightharpoonup $\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
- ightharpoonup $\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$
- ightharpoonup $\arcsin\left(\frac{\pi}{2}\right)$ undefined
- ► $\arcsin\left(\frac{\pi}{4}\right)$ defined, but we haven't covered tools (yet) to figure it out

 $\arccos(x)$ is the inverse of $\cos x$ restricted to $[0, \pi]$.

 $\arccos(x)$ is the (unique) number θ such that:

- $ightharpoonup \cos(\theta) = x$ and
- $ightharpoonup 0 \le \theta \le \pi$

 $\arccos(x)$ is the inverse of $\cos x$ restricted to $[0, \pi]$.

 $\arccos(x)$ is the (unique) number θ such that:

$$ightharpoonup \cos(\theta) = x \text{ and } \leftarrow \leftarrow \leftarrow \text{inverse}$$

$$\leftarrow\leftarrow\leftarrow$$
 inverse

$$ightharpoonup 0 \le \theta \le \pi$$

 $\arccos(x)$ is the inverse of $\cos x$ restricted to $[0, \pi]$.

 $\arccos(x)$ is the (unique) number θ such that:

$$ightharpoonup \cos(\theta) = x \text{ and } \leftarrow \leftarrow \leftarrow \text{inverse}$$

$$\leftarrow\leftarrow\leftarrow$$
 inverse

$$ightharpoonup 0 < \theta < \pi$$

ARCTANGENT

ARCTANGENT

ARCTANGENT

$$\arctan(x) = \theta$$
 means:

- (1) $tan(\theta) = x$ and
- (2) $-\pi/2 < \theta < \pi/2$

arcsec(x) =

$$\operatorname{arcsec}(x) = x$$

$$\operatorname{arcsec}(x) = y$$

$$\operatorname{sec} y = x$$

$$\frac{1}{\cos y} = x$$

$$\cos y = \frac{1}{x}$$

$$y = \arccos\left(\frac{1}{x}\right)$$

$$\operatorname{arcsec}(x) = \arccos\left(\frac{1}{x}\right)$$

$$\operatorname{arcsec}(x) = \operatorname{arccos}\left(\frac{1}{x}\right)$$

$$\operatorname{arcsec}(x) = y$$

$$\operatorname{sec} y = x$$

$$\frac{1}{\cos y} = x$$

$$\cos y = \frac{1}{x}$$

$$y = \arccos\left(\frac{1}{x}\right)$$

$$\operatorname{arcsec}(x) = \operatorname{arccos}\left(\frac{1}{x}\right)$$

$$\operatorname{arccsc}(x) = \arcsin\left(\frac{1}{x}\right)$$

$$\operatorname{arccsc}(x) = y$$

$$\operatorname{csc} y = x$$

$$\frac{1}{\sin y} = x$$

$$\sin y = \frac{1}{x}$$

$$y = \arcsin\left(\frac{1}{x}\right)$$

$$\operatorname{arccsc}(x) = \arcsin\left(\frac{1}{x}\right)$$

$$\operatorname{arccot}(x) = \arctan\left(\frac{1}{x}\right)$$

$$\operatorname{arccot}(x) = y$$

$$\cot y = x$$

$$\frac{1}{\tan y} = x$$

$$\tan y = \frac{1}{x}$$

$$y = \arctan\left(\frac{1}{x}\right)$$

$$\operatorname{arccot}(x) = \arctan\left(\frac{1}{x}\right)$$

$$\operatorname{arcsec}(x) = \operatorname{arccos}\left(\frac{1}{x}\right)$$

The domain of arccos(y) is $-1 \le y \le 1$, so the domain of arcsec(y) is

$$\operatorname{arcsec}(x) = \operatorname{arccos}\left(\frac{1}{x}\right)$$

The domain of arccos(y) is $-1 \le y \le 1$, so the domain of arcsec(y) is

 $(-\infty, -1] \cup [1, \infty).$

$$\operatorname{arccsc}(x) = \arcsin\left(\frac{1}{x}\right)$$

Domain of $\arcsin(y)$ is $-1 \le y \le 1$, so the domain of $\arccos(x)$ is

$$\operatorname{arccsc}(x) = \arcsin\left(\frac{1}{x}\right)$$

Domain of $\arcsin(y)$ is $-1 \le y \le 1$, so the domain of $\arccos(x)$ is

$$(-\infty, -1] \cup [1, \infty).$$

$$\operatorname{arccot}(x) = \arctan\left(\frac{1}{x}\right)$$

Domain of arctan(x) is all real numbers, so the domain of arccot(x) is

$$\operatorname{arccot}(x) = \arctan\left(\frac{1}{x}\right)$$

Domain of arctan(x) is all real numbers, so the domain of arccot(x) is

$$(-\infty,0)\cup(0,\infty).$$

 $y = \arcsin x$

Find $\frac{dy}{dx}$.

x

$$y(x) = \arcsin x$$

$$x = \sin y(x)$$

$$\frac{d}{dx}[x] = \frac{d}{dx}[\sin y(x)]$$

$$1 = \cos y(x) \cdot \frac{dy}{dx}(x)$$

$$\frac{dy}{dx}(x) = \frac{1}{\cos y(x)}$$

$$= \frac{\text{hyp}}{\text{adj}}$$

$$= \frac{1}{\sqrt{1 - x^2}}$$

 $y = \arctan x$

Find $\frac{dy}{dx}$.

$$y(x) = \arctan x$$

$$x = \tan y(x)$$

$$\frac{d}{dx}[x] = \frac{d}{dx}[\tan y(x)]$$

$$1 = \sec^2 y(x) \cdot \frac{dy}{dx}(x)$$

$$\frac{dy}{dx}(x) = \cos^2 y(x)$$

$$\frac{dy}{dx}(x) = \left(\frac{\text{adj}}{\text{hyp}}\right)^2 = \left(\frac{1}{\sqrt{1+x^2}}\right)^2$$

$$= \frac{1}{1+x^2}$$

 χ

 $y = \arccos x$

Find $\frac{dy}{dx}$.

$$y(x) = \arccos x$$

$$x = \cos y(x)$$

$$\frac{d}{dx}[x] = \frac{d}{dx}[\cos y(x)]$$

$$1 = -\sin y(x) \cdot \frac{dy}{dx}(x)$$

$$\frac{dy}{dx}(x) = \frac{-1}{\sin y(x)}$$

$$\frac{dy}{dx}(x) = \frac{-hyp}{opp} = \frac{-1}{\sqrt{1 - x^2}}$$

To differentiate arcsecant, arccosecant, and arccotangent, you can use the chain rule!

To differentiate arcsecant, arccosecant, and arccotangent, you can use the chain rule!

$$\frac{d}{dx}\left[\arccos(x)\right] = \frac{d}{dx}\left[\arcsin\left(\frac{1}{x}\right)\right] = \frac{d}{dx}\left[\arcsin\left(x^{-1}\right)\right]$$

47/49

To differentiate arcsecant, arccosecant, and arccotangent, you can use the chain rule!

$$\frac{d}{dx} \left[\operatorname{arccsc}(x) \right] = \frac{d}{dx} \left[\operatorname{arcsin} \left(\frac{1}{x} \right) \right] = \frac{d}{dx} \left[\operatorname{arcsin} \left(x^{-1} \right) \right]$$

$$\frac{d}{dx} \left[\arcsin\left(\boxed{x^{-1}} \right) \right] = \frac{1}{\sqrt{1 - \left(\boxed{x^{-1}} \right)^2}} \cdot \boxed{\left(-x^{-2} \right)} = \frac{-1}{x^2 \sqrt{1 - x^{-2}}}$$

$$= \frac{-1}{\sqrt{x^4} \sqrt{1 - x^{-2}}} = \frac{-1}{\sqrt{x^2} \sqrt{x^2} \sqrt{1 - x^{-2}}} = \frac{-1}{\sqrt{x^2} \sqrt{x^2 - 1}} = \frac{-1}{|x| \sqrt{1 - x^2}}$$

Derivatives of Inverse Trigonometric Functions – Theorem 2.12.7

Memorize:

$$\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}[\arcsin x] = \frac{1}{1 + x^2}$$

Be able to derive:

$$\frac{d}{dx}[\operatorname{arccsc} x] = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}[\operatorname{arcsec} x] = \frac{1}{|x|\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}[\operatorname{arccot} x] = -\frac{1}{1 + x^2}$$