

Convolutional Neural Networks (8DC00)

Cian Scannell (slides from Friso Heslinga)

Previously – Linear regression

$$\hat{y} = \theta^{\mathsf{T}} \mathbf{x}$$

Previously – Logistic regression

Previously – Neural networks

Previously – Neural networks

Previously – Machine learning

Figure source: nvidia.com

Today: Convolutional neural networks (CNN)

■ Neural networks → Convolutional neural networks

Building blocks for deep learning models for image analysis:

- Convolutional layer
- Max-pooling layer

Not needed for the project, but will be on the exam

Learning outcomes

- Student can explain the concept of convolutions in a neural network
- Student can describe why we can use a convolutional approach for (medical) images
- Student can explain why convolutions enable development of deep (and large) neural networks
- Students can explain and apply the max-pooling layer in a convolutional neural network
- Students can motivate the choice for a kernel size

Lecture outline

- Images as input to neural network
- Reducing # of weights
- 1D convolutions
- 2D convolutions
- Kernels
- Max-pooling
- Interactive example

Images as input to neural networks

24 pixels

3 color channels (red, green, blue)

= 1728 features (\mathbf{x}_i are 1728 dimensional vectors)

If we train linear regression with these inputs (such as in the first practical), we will have 1728 weights w and a bias h.

Every pixel is an input

Every pixel from every color channel is multiplied by a weight

Post-training: visualizing what model has learned

Reshape vector of parameters into 24x24x3 image

Post-training: visualizing what model has learned

Only 25% of training samples.. Looks noisy!

Post-training: visualizing what model has learned

You can think of it as "there is not enough training data to reliably estimate all model weights".

Many weights

With large inputs such as images and deep networks, the number of weights "explodes". We need a way to reduce the number of weights, without sacrificing performance.

receptive field ... ••• •••

sparsely

connected NN

9 weights

How many weights?

3 weights

"regular" NN

15 weights

Shared weights

$$a_1 = x_1 w_1 + x_2 w_2 + x_3 w_3$$

$$a_2 = x_2 w_1 + x_3 w_2 + x_4 w_3$$

$$a_3 = x_3 w_1 + x_4 w_2 + x_5 w_3$$

$$[a_1 \ a_2 \ a_3] = [x_1 \ x_2 \ x_3 \ x_4 \ x_5] * [w_1 \ w_2 \ w_3]$$

convolution, thus convolutional NN

How can we keep the same number of features in hidden layer 1?

Zero-padding!

Properties of convolutional neural networks

- Sparse connectivity
- Weight sharing
- Parallel computations

Why does this work?

- Multiple layers
- Hidden layers contain features calculated from previous layers

Why does this work?

- Different layers contain different transformation
 - Simple (e.g. edges, colors)
 - Complex (final layers)

One added benefit is that the learned transformations will be equivariant with translation (if the features/image is shifted up/down the features will still be detected).

two sets shared weights
6 weights

We can add additional sets of weights that can learn additional interesting transformation of the input.

Note that the added neurons <u>are not</u> a new layer. They are part of layer 1.

two sets shared weights
6 weights

$$[a_{1,1} \quad a_{1,2} \quad a_{1,3}] =$$

$$[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5] * [w_{1,1} \quad w_{1,2} \quad w_{1,3}]$$

$$[a_{2,1} \quad a_{2,2} \quad a_{2,3}] =$$

$$[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5] * [w_{2,1} \quad w_{2,2} \quad w_{2,3}]$$

[$W_{1,1}$ $W_{1,2}$ $W_{1,3}$], and [$W_{2,1}$ $W_{2,2}$ $W_{2,3}$] are **convolution kernels**. They extract <u>features</u>. However, they are not hand-designed features – they were <u>learned</u> by the neural network.

Convolutional neural networks are ideal for images

Because of the weight sharing, convolutional neural networks only work with structured data (such as images) as inputs.

Convolutions + non-linearity

Convolutions + non-linearity (sigmoid)

Convolutions + non-linearity (ReLU)

Convolutional kernels

Kernel size

1 x 1

3 x 3

5 x 5

- More weights → more information
- More computations / memory
- Receptive field

Receptive field

Max-pooling

Max-pooling

- Reduce size of feature space
- Maximum of features
- Typical kernel size = 2 x 2

Benefits of max-pooling

- "Quickly" reduces the number size of the feature maps
- Introduces translation invariance (slightly translated version of the input image will result in the same output)

Alternative: Average Pooling

Let try it out!

https://adamharley.com/nn_vis/cnn/2d.html

An Interactive Node-Link Visualization of Convolutional Neural Networks

Adam W. $Harley^{(\boxtimes)}$

Department of Computer Science, Ryerson University, Toronto, ON M5B 2K3, Canada aharley@scs.ryerson.ca

Training of Convolutional Neural Networks

- Similar to training of 'fully connected' neural networks
- Choose some (random) initial values for network weights
- Optimize networks weights with respect to a loss function that describes difference between network output and label/annotation
- Update networks weights iteratively

Through a process called 'backpropagation'. A good explanation can be found here: https://www.youtube.com/watch?v=i940vYb6noo (5:10 - 28:00, not exam material)

Keep track of model performance on train & validation set

Summary

- Concept of convolutions in a neural network
- Why can we use a convolutional approach for (medical) images
- Convolutions enable development of deep (and large) neural networks
- Max-pooling layer in a convolutional neural network
- Kernel size
- Receptive field

