ÉTUDE DU CROCHET DE LIE

- Le but du problème est d'étudier certaines propriétés du crochet de Lie.
- Dans tout le problème, E désigne un \mathbb{C} -espace vectoriel de dimension finie $n \ge 2$, et $\mathcal{L}(E)$ la \mathbb{C} -algèbre des endomorphismes de E.
- Si f et g sont deux éléments de $\mathcal{L}(E)$, on note fg la composée $f\circ g$, et [f,g] l'endomorphisme : [f,g]=fg-gf.

Il pourra être utile de remarquer: $[f,g] = 0 \iff f$ et g commutent.

- Pour f et g dans $\mathcal{L}(E)$, on pose: $\psi_f(g) = [f,g]$. ψ_f est donc un endomorphisme de $\mathcal{L}(E)$ (on ne demande pas de le vérifier).
- Pour tout entier $k \in \mathbb{N}$, et pour $f \in \mathcal{L}(E)$, f^{k+1} est défini par la relation: $f^{k+1} = ff^k$, et f^0 désigne l'automorphisme identité de E, noté Id_E .
- Pour tout polynôme $P = a_0 + a_1 X + \ldots + a_d X^d$ à coefficients dans \mathbb{C} , et pour tout $f \in \mathcal{L}(E)$, on note P(f) l'endomorphisme de E défini par : $P(f) = a_0 I d_E + a_1 f + \ldots a_d f^d$.

PARTIE A: Quelques résultats généraux.

- 1°) Soit f un élément de $\mathcal{L}(E)$. Montrer que f est nilpotent si et seulement si sa seule valeur propre est 0.
- 2°) Soient f,g,h trois éléments de $\mathcal{L}(E)$. Établir l'égalité :

$$[fg,h] = [f,h]g + f[g,h]$$

Établir une égalité similaire pour [f,gh].

 ${\bf 3}^{\circ})$ Soient f,g deux éléments de ${\mathcal L}(E)$. Dans toute cette question, on fait l'hypothèse :

$$[f,[f,g]] = 0$$

et on pose: h = [f,g].

- a) Montrer que, pour tout polynôme P de $\mathbb{C}[X]$, on a: [P(f),g] = P'(f)h (où P' est le polynôme dérivé de P) (on pourra d'abord le démontrer lorsque $P = X^k$, k entier).
- b) Pour tout entier $k \in \mathbb{N}$ et tout polynôme P non nul tel que P(f) = 0, établir l'égalité:

$$P^{(k)}(f)h^{2^k-1} = 0$$
 (où $P^{(k)}$ est le polynôme dérivé d'ordre k de P)

(on pourra considérer le produit : $h^{2^k-1}[P^{(k)}(f)h^{2^k-1},g]$, et raisonner par récurrence sur k).

- c) En déduire que h est nilpotent.
- 4°) Dans toute cette question, f et g désignent deux éléments de $\mathcal{L}(E)$ tels que:

$$f$$
 non nul, f nilpotent, $[f,[f,g]] = 0$

et on pose toujours: h = [f,g].

a) Soit $k \in \mathbb{N}^*$. On note $N_k = \text{Ker } (f^k)$. Montrer que, si x appartient à N_k , on a aussi $fg(x) \in N_k$ (utiliser 3.a). b) Soit x un vecteur propre non nul de fg, dont la valeur propre associée est notée λ , et soit k le plus petit entier strictement positif tel que $x \in N_k$.

Justifier l'existence de k.

Établir l'égalité:
$$hf^{k-1}(x) = \frac{\lambda}{k}f^{k-1}(x)$$
.

- c) En déduire que fg est nilpotent, puis que gf est nilpotent.
- d) Montrer qu'il existe un endomorphisme $g_1 \in \mathcal{L}(E)$ tel que fg_1 et g_1f ne soient pas nilpotents. En déduire que ψ_f n'est pas l'endomorphisme nul.
- 5°) Dans cette question, f désigne un endomorphisme nilpotent non nul, et p désigne son indice de nilpotence.
 - a) Soit $g \in \mathcal{L}(E)$. Établir, pour tout entier $k \geqslant 1$:

$$(\psi_f)^k(g) = \sum_{i=0}^k (-1)^i C_k^i f^{k-i} g f^i$$

- b) En déduire que ψ_f est un endomorphisme nilpotent de l'espace vectoriel $\mathcal{L}(E)$.
- c) Pour tout endomorphisme $u \in \mathcal{L}(E)$, montrer qu'il existe $v \in \mathcal{L}(E)$ tel que uvu = u. En déduire que f^{p-1} appartient à l'image de l'endomorphisme $(\psi_f)^{2p-2}$, et en déduire l'indice de nilpotence de ψ_f .

PARTIE B: Étude de l'équation $[f,g] = \alpha g$

Dans toute cette partie, f et g désignent deux endomorphismes non nuls de E tels que :

$$[f,g] \ = \ \alpha g$$
, où α est un complexe non nul

- 1°) a) Montrer que : $\forall k \in \mathbb{N}$, $fg^k g^k f = \alpha k g^k$. En déduire $\psi_f(g^k)$.
 - b) Montrer que, pour tout entier k, Ker (g^k) est stable par f.
 - c) On suppose: $\forall k \in \mathbb{N}^*$, $g^k \neq 0$. Que peut-on alors dire du spectre de ψ_f ? En déduire que g est nilpotent.
- $\mathbf{2}^{\circ})$ On suppose désormais que le rang de g est égal à n-1.
 - a) Soit $k \in \mathbb{N}$. Quelle est la dimension de Ker (g^k) ? Quel est l'indice de nilpotence de g?
 - **b)** Montrer qu'il existe $x \in E$ tel que, si l'on pose $x_k = g^{n-k}(x)$ pour tout entier $k \in [1,n]$, la famille (x_1, \ldots, x_k) soit, pour tout k, une base de Ker (g^k) .
 - c) Montrer que x_1 est un vecteur propre de f, dont on notera λ la valeur propre associée. Montrer que la matrice de f dans la base (x_1, \ldots, x_n) est triangulaire supérieure.
 - d) On note alors λ_i le terme d'indice (i,i) de cette matrice $(\lambda_1 = \lambda)$. Montrer que $\lambda_i = \lambda_{i-1} - \alpha$. En déduire que f est diagonalisable, et préciser ses valeurs propres.
 - e) Montrer que, si x est un vecteur propre de f associé à une valeur propre μ différente de λ , alors g(x) est un vecteur propre de f, dont on précisera alors la valeur propre associée.
 - f) Soit e_n un vecteur propre de f associé à la valeur propre $\lambda (n-1)\alpha$. Pour tout entier $k \in [1,n]$, on pose: $e_k = g^{n-k}(e_n)$.

Montrer que $g^{n-1}(e_n) \neq 0$.

Montrer que (e_1, \ldots, e_n) est une base de E, et donner les matrices A et B de f et g dans cette base.

PARTIE C : Étude de l'équation $[f,g] = \alpha f + \beta g$

 $\mathbf{1}^{\circ}$) Soient f,g deux éléments de $\mathcal{L}(E)$. Dans toute cette question, on fait l'hypothèse:

$$\exists (\alpha, \beta) \in \mathbb{C}^2 \text{ tels que } [f, g] = \alpha f + \beta g$$

et on pose h = [f,g].

a) Montrer que h est nilpotent.

Indication: Pour cela, on pourra commencer par envisager le cas $\beta = 0$ et utiliser alors la partie précédente; puis, dans le cas $\beta \neq 0$, on pourra considérer l'endomorphisme $g_1 = g + \frac{\alpha}{\beta}f$.

- b) Montrer que f et g ont un vecteur propre commun. Indication: Pour cela, on envisagera d'abord le cas $\alpha = \beta = 0$, puis le cas $\alpha \neq 0, \beta = 0$; enfin, dans le cas $\beta \neq 0$, on pourra calculer [f,h].
- 2°) Soient f,g deux projecteurs distincts, non nuls, tels que:

$$\exists (\alpha, \beta) \in \mathbb{C}^2 \text{ tels que } [f,g] = \alpha f + \beta g$$

- a) On suppose dans cette question $\alpha \neq 0$ et $\alpha \neq 1$.
 - i. Montrer que: $2\alpha gf + \beta(1+\alpha)g = \alpha(1-\alpha)f$.
 - ii. En déduire: Im $(f) \subset$ Im (g) puis: gf = f.
 - iii. En déduire: $\alpha + \beta = 0$, puis $\alpha = -1$, puis Im (f) = Im (g).
 - iv. Réciproquement, vérifier qu'un couple (f,g) de projecteurs de E tels que:

$$gf = f$$
 et Im $(g) \subset$ Im (f)

est solution de l'équation : [f,g] = -f + g.

- b) On suppose dans cette question $\alpha \neq 0$ et $\alpha \neq -1$.
 - i. Montrer successivement les résultats suivants : Ker $(g) \subset \text{Ker } (f)$, fg = f , $\alpha + \beta = 0$, $\alpha = 1$, Ker (f) = Ker (g).
 - ii. Réciproquement, vérifier qu'un couple (f,g) de projecteurs de E tels que:

$$fg = f$$
 et Ker $(f) \subset$ Ker (g)

est solution de l'équation : [f,g] = f - g.

c) Conclure de ce qui précède que, si f,g sont deux projecteurs vérifiant l'égalité $[f,g] = \alpha f + \beta g$ et dont le produit n'est pas commutatif, le couple (α,β) ne peut prendre que l'une des deux valeurs (-1,1) ou (1,-1).

PARTIE D: Étude d'un système d'équations

Dans cette partie, f,g,h désignent trois endomorphismes non nuls de E tels que:

$$[f,g] = \alpha g , [f,h] = \beta h , [g,h] = f$$

où α et β sont deux complexes non nuls.

On rappelle que, d'après les résultats de la partie B, g et h sont nilpotents

1°) Calculer la valeur de $(\alpha + \beta)[g,h]$, et en déduire: $\alpha + \beta = 0$.

- 2°) Dans cette question, on suppose que le rang de g est égal à n-1.
 - a) Déterminer la somme des valeurs propres de f, et en déduire ces valeurs propres. Quel est le rang de f? (penser à utiliser les résultats de B.2)
 - **b)** Déterminer la matrice C de h dans la base définie à la question B.2.f. Quel est le rang de h?
 - c) Vérifier que les endomorphismes f,g,h déterminés par les matrices A,B,C satisfont bien aux conditions posées au début de cette partie D (ainsi, le système d'équations proposé a des solutions)
 - d) Montrer que $\{0_E\}$ et E sont les seuls sous-espaces de E stables à la fois par f,g et h.
- **3°)** Dans cette question, on suppose $\alpha = 2$, et que $\{0_E\}$ et E sont les seuls sous-espaces vectoriels de E stables à la fois par f,g et h; on ne fait plus d'hypothèse sur le rang de g.
 - a) Pour tout entier $k \in \mathbb{N}^*$, établir l'égalité:

$$[g,h^k] = kh^{k-1} (f - (k-1)Id_E)$$

et en déduire que, si p est l'indice de nilpotence de h, p-1 est valeur propre de f.

b) Montrer que g est de rang n-1 et que f est diagonalisable . Indication: montrer qu'il existe un vecteur propre x de f tel que h(x) = 0, puis considérer le sous-espace vectoriel de E engendré par les vecteurs $g^k(x)$.

<u>D'après</u>: X P' 1983, X M' 1985, ENSAIT 1992