

MBA em Inteligência Artificial e Big Data

- Curso 3: Administração de Dados Complexos em Larga Escala -

Caetano Traina Júnior

Grupo de Bases de Dados e Imagens – GBdI Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos

Apresenta-se técnicas de Redução de dados para agilizar tarefas de mineração em grandes volumes de dados.

Redução de Dados

Cada tarefa de Mineração de Dados tem seus requisitos sobre como devem ser os dados para produzir boas análises de dados:

- Volume de dados;
- Balanceamento entre as classes;
- Resolução dos tipos de dados;
- Escala das dimensões;
- Correlação entre medidas; ...

Aqui apresentamos técnicas para Redução de dados úteis para adequar os dados para atender aos requisitos necessários.

Roteiro

- Conceitos básicos em Redução de Dados
- 2 Técnicas de Redução da Cardinalidade
- 3 Técnicas de Redução da Dimensionalidade
- 4 Técnicas de compressão de valores de atributos

Roteiro

- D Conceitos básicos em Redução de Dados
- 2 Técnicas de Redução da Cardinalidade
- Técnicas de Redução da Dimensionalidade
- Técnicas de compressão de valores de atributos

Conceitos básicos em Redução de Dados

- Volumes de dados muito grandes levam à:
- Alto custo de processamento
- Muita redundância Muitas tuplas semelhantes
- Maldição da dimensionalidade 🏗 Muitas dimensões correlacionadas

Conceitos básicos em Redução de Dados

- Portanto, sempre que possível, é interessante reduzir os dados.
- É possível:
- * Reduzir a quantidade de tuplas
 - Redução de Cardinalidade N
- * Reduzir a quantidade de atributos
 - Redução de Dimensionalidade E
- * Reduzir a complexidade dos valores dos atributos
 - Compressão de Domínio − F

Conceitos básicos em Redução de Dados

Nesta parte do curso, os conceitos apresentados serão ilustrados usando o gerenciador

PostgreSQL

Roteiro

- Onceitos básicos em Redução de Dados
- 2 Técnicas de Redução da Cardinalidade
- Técnicas de Redução da Dimensionalidade
- 4 Técnicas de compressão de valores de atributos

• Reduzir a cardinalidade corresponde a executar uma amostragem dos dados, escolhendo um subconjunto das tuplas originais.

Isso pode ser feito com:

- Amostragem Aleatória (unbiased);
 Define-se um fator de amostragem e aleatoriamente escolhe-se a quantidade necessária de amostras para compor a base reduzida.
- Amostragem Dirigida (biased). Adota-se um critério que cria uma tendência para escolher as tuplas que irão compor a base reduzida.
 As técnicas mais importantes para Amostragem Dirigida são:
 - Baseadas em Histogramas;
 - Baseadas em Classes;
 - Baseadas em Densidade (proximidade).

Amostragem Aleatória

Amostragem Aleatória

Dado um fator de amostragem , definido por:

taxa de amostragem ou 🎏 uma quantidade de amostras

escolhem-se tuplas aleatoriamente até atingir a quantidade necessária.

- São comuns taxas de 10% até 0,01% de amostras (uma a cada dez até uma a cada 10 mil tuplas), ou mais.
- Nem sempre é útil em bases de dados muito grandes.

Vantagens:

- é rápida;
- é independente da cardinalidade N: O(

Desvantagens:

- Não preserva outliers;
- Sensível a desbalanceamento do conjunto (por exemplo, quando uma classe é muito maior do que outras);
- Reduz a sensibilidade dos processos posteriores;

SQL oferece recursos para amostragem aleatória:

 Usando a função de geração de números aleatórios Random() para selecionar tuplas:

Função para geração de números aleatórios em SQL

```
Random() - Gera valor aleatório no intervalo [0.0, 1.0]
Em distribuição uniforme
```

Pela cláusula TABLESAMPLE;

Geração de números aleatórios em SQL -

Exemplo de geração de números aleatórios:

• Um número:

SELECT Random();

random 0.639387583267645

Diversos números:

SELECT I AS Seq, Random() AS Valor
FROM GENERATE_SERIES(1, 100) WITH ORDINALITY I;

Seq	Valor
1	0.43826179184539527
2	0.8738957373219449
3	0.04871207732159277
4	0.2614364731611758
5	0.15839698835705818
100	0.709404809089428

Geração de números aleatórios em SQL – PostgreSQL

- Maria Além da função Random(), que é definida pelo padrão ...
- PostgreSQL tem uma função para geração de números aleatórios em distribuição normal.
 - Para isso é necessário usar o módulo tablefunc:

CREATE EXTENSION tablefunc;

Função para geração de números aleatórios em distribuição normal

Normal_Rand(N, Avg, Sd) - Gera valor aleatório normal

N – Quantidade de tuplas a ser gerada:

Avg – Valor da média da distribuição gerada:

Sd – Desvio padrão da distribuição gerada:

Exemplo: Gerar 100 números com média 5 e desvio padrão 2:

SELECT Row_Number() OVER () AS Seq, Valor FROM Normal_Rand(100, 5, 2) AS Valor ORDER BY 1;

Seq	Valor	
1	5.402137213668504	
2	3.535495275475742	
3	5.367789771245657	
4	4.2659448308660055	
100	7.209404809089428	

Geração de números aleatórios em SQL

É importante avaliar o tempo gasto pelos comandos:

```
SELECT Row_Number() OVER () AS Seq, Valor FROM Normal_Rand(100, 5, 2) AS Valor ORDER BY 1;
```

Isso pode ser feito usando EXPLAIN <comando> ou EXPLAIN ANALYZE <comando>

Geração de números aleatórios em SQL -

Tempo para gerar 1.000.000 de números e calcular a

média e o desvio padrão da população gerada:

EXPLAIN ANALYZE SELECT Count(*), Avg(Valor), StdDev(Valor) FROM Normal_Rand(1000000, 5, 2) AS Valor; -- Um milhao.

count	avg	stddev
1000000	4.99863009049008	1.9983642516850448

Г	Seq	Valor
	1	Aggregate (cost=17.5117.52 rows=1 width=24) (actual time=367.091367.092 rows=1 loops=1)
	2	-> Function Scan on normal_rand valor (cost=0.0010.00 rows=1000 width=8)
		(actual time=163.987266.777 rows=1000000 loops=1)
	3	Planning Time: 0.077 ms
	4	Execution Time: 370.706 ms

Cláusula TABLESAMPLE em SQL

Sintaxe geral da cláusula **TABLESAMPLE** em SQL

(Padrão ISO-SQL-2003)

- Onde:
 - <método> pode ser BERNOULLI ou SYSTEM (pelo padrao, pelo menos)
 - <argumento> é dependente do método (porcentagem de 1.0 a 100.0)
 - <semente> é o valor de inicialização da sequencia de aleatórios.
- O objetivo da cláusula TABLESAMPLE é a execução rápida de uma amostragem, sem grandes compromissos com as propriedades de amostragem no conjunto gerado.

Cláusula TABLESAMPLE em PostgreSQL

• Tanto PostgreSQL quanto Permitem usar os dois tipos padronizados de métodos de amostragem:

```
<sampling_method>= BERNOULLI ou SYSTEM
```

ORACLE: SAMPLE OU SAMPLE BLOCK).

BERNOULLI - Equivalente a:

SELECT * FROM <tabela> WHERE 100*Random() < Argumento;</pre>

- Volta uma quantidade mais correta das tuplas pedidas,
- mas é mais lento (apesar de usar bitmap para gerar os RowId).
- É útil para tabelas não muito grandes.

SYSTEM - Lê a porcentagem especificada de páginas da tabela e retorna todas as suas tuplas.

- É bem mais rápido, mas:
- volta uma quantidade aproximada de tuplas;
- pode ser tendencioso se houver tendência na armazenagem das tuplas.
- Deve ser usado apenas para tabelas grandes.

Cláusula TABLESAMPLE em SQL

Exemplo para participar uma tabela T em dois subconjuntos de tuplas: T_R para treino e outro T_E para teste:

```
ALTER TABLE Alunos

ADD COLUMN Separa CHAR -- 'R' \rightarrow Treino, 'E' \rightarrow Teste

NOT NULL DEFAULT 'E';

UPDATE Alunos TABLESAMPLE BERNOULLI (25.)

SET Separa='R'

REPEATABLE(1234);
```


- Nem sempre a cláusula TABLESAMPLE é uma solução adequada, porque:
 - Não existe alternativa para ter um controle mais fino das propriedades das amostragens geradas.
 - Não existe uma cláusula NOT IN TABLESAMPLE
 Por exemplo, para dividir a tabela em um conjunto de treino e vários de teste.
- mas é possível explorar outras alternativas com comandos simples usando as funções de geração de aleatórios, para gerar amostragens mais "controladas".
- Todas elas tendem a ser mais lentas do que a cláusula TABLESAMPLE.
- Mas elas ainda são, na maioria das vezes, mais rápidas do que usar ferramentas externas.

Exemplos de Alternativas

Exemplo: Retornar 10% das tuplas.

Alternativa 1:

```
SELECT *
   FROM Aluno
   WHERE Random() < .10;</pre>
```

- O conjunto não tem repetição,
- mas pode não ter exatamente 10% das tuplas.
- Requer um table scan sobre toda a tabela.

Exemplos de Alternativas

Exemplo: Retornar uma quantidade predefinida de tuplas (p.ex. k=1000).

• Alternativa 2:

```
SELECT *
FROM Aluno
ORDER BY Random()
LIMIT 1000;
```

- O conjunto não tem repetição, e tem exatamente a quantidade de tuplas pedida.
- Requer um table scan de toda a tabela, mais a ordenação dos atributos aleatórios! \Rightarrow Complexidade $O(N + N \cdot \log N)$
 - ★ Mas é possível adotar medidas para melhorar substancialmente o custo:

Exemplos de Alternativas

- Obter uma sobre-amostragem com p' pouco maior do que a taxa p desejada: por exemplo recuperar 20% a mais do que a taxa de amostragem. Se p=0,01%, pode-se recuperar a fração $p'=p+20\%=0,01\cdot 1,20\%=0,012$ da tabela:
- Alternativa 3:

```
SELECT *
    FROM Aluno
    WHERE Random() < 0.012
    LIMIT 1000;</pre>
```

- Quanto maior o valor de sobre-amostragem, menor a chance da cláusula WHERE produzir menos de k tuplas,
- mas também prejudica mais a aleatoriedade do resultado
- e mais lento o comando fica.

Exemplos de Alternativas

Vamos avaliar as três alternativas.

• Primeiro, criar uma tabela de teste

 Qual a quantidade de páginas ocupadas em disco por essa tabela? (paginas de 8 KBytes)

```
VACUUM ANALYZE Teste;

SELECT RelName, RelTuples, RelPages, Pg_Relation_Size(OId)
FROM pg_Class WHERE RelName='teste';
```

RelName	RelTuples	RelPages	RelSize
teste	1.000.000	5.489	44.965.888

Exemplos de Alternativas

Avaliando as três alternativas.

```
EXPLAIN ANALYZE SELECT * FROM Teste
WHERE 100*Random() < .10;
```

```
Seq Scan on teste (cost=0.00..22989.00 rows=333333 width=15) (actual time=0.023..62.210 rows=1046 loops=1)
```

Filter: (('100'::double precision * random()) < '0.1')

Rows Removed by Filter: 998954

Planning Time: 0.045 ms Execution Time: 62.233 ms

Exemplos de Alternativas

Avaliando as três alternativas.

```
EXPLAIN ANALYZE SELECT * FROM Teste
ORDER BY Random() LIMIT 1000;
```

Exemplos de Alternativas


```
EXPLAIN ANALYZE SELECT * FROM Teste
    WHERE Random() < 0.012 LIMIT 1000;</pre>
```


Exemplos de Alternativas

Exemplo: Particionar a tabela a ser processada em um conjunto de treino mais 10 conjuntos de teste.

- A tabela será particionada em 11 subconjuntos.
- Uma alternativa é associar um novo atributo, com o valor de 0 a 10, sendo um deles (digamos '0') indicando o conjunto de treino.
 - Esse atributo pode ser aleatório
 mas não é repetitivo, especialmente se a tabela sofrer atualizações.
 - Outra alternativa é usar uma função de hash sobre a chave ou qualquer combinação única de atributos da tabela
 Es e portanto pode ser repetitivo).

Exemplos de Alternativas

Função *Hash* para atributos de tipo TEXT em SQL – PostgreSQL

HashText(Text) - Gera um número aleatório de tipo INT4.

MD5(Text) - Calcula o valor *hash* em MD5 do argumento (tipo TEXT) e retorna um TEXT como um valor com 32 dígitos hexadecimais.

SELECT HashText('José da Silva'), MD5('José da Silva');

HashText	MD5
-1014468627	3edc9937173b6412c33fa988bb7b7ff6

Exemplos de Alternativas

Exemplo: Particionar a tabela a ser analisada (p.ex Alunos) em: **um** conjunto de treino mais **dez** de teste.

- O valor do *hash* constitui um novo atributos da tabela).
- Ele pode ser acrescentado à tabela:

```
ALTER TABLE Alunos ADD COLUMN SubConj DOUBLE PRECISION;

UPDATE Alunos *

SET SubConj=Abs(HashText(Nome) % 11);
```

Mas nesse caso, como o valor desse atributo é imutável, ele nem precisa ser "materializado": pode ser obtido numa VIEW.

```
CREATE VIEW PreparaAluno AS
SELECT *, Abs(HashText(Nome) % 11) AS SubConj
FROM Alunos;
```


Exemplos de Alternativas

Exemplo: Particionar a tabela em um conjunto de treino mais 10 de teste.

- É rápido acessa as tuplas apenas quando elas são necessárias.
- Não garante a quantidade exata de tuplas por partição

CREATE VIEW PreparaAluno AS

SELECT *, Abs(HashText(NUSP::TEXT) % 11) AS SubConj
FROM Alunos;

SELECT Subconj, Count(*) FROM PreparaAluno
 GROUP BY Subconj ORDER BY Subconj;

SubConj	Count
0	90950
1	91203
2	91121
3	90684
4	91029
5	91021
6	90937
7	90194
8	90926
9	91263
10	90672

Count(*): 80.000 alunos

Amostragem Dirigida

Amostragem Dirigida

A Amostragem Dirigida é usada quando se quer ressaltar alguma característica dos dados.

- Compensar o desbalanceamento de classes,
- Enfatizar alguma tendência, ...

Amostragem Dirigida: Histogramas

Amostragem Dirigida Baseada em Histogramas

Nas técnicas de amostragem de casos baseada em histogramas:

- O analista escolhe os atributos mais importantes (ou do ponto de vista do conhecimento que ele tem da aplicação, ou baseado em resultados de processos de DM anteriores),
- 2 A seguir, (se necessário) cria um processo de discretização dos atributos contínuos.

Dai:

- 3 Cria-se um histograma multidimensional com os atributos escolhidos,
- Escolhem-se tuplas do conjunto original de tal maneira que cada *bin* do histograma atenda a determinada propriedade (todos tenham o mesmo número de tuplas, ou tenha um valor mínimo e máximo para a quantidade de tuplas, etc.), o mais aleatoriamente possível.

As técnicas mais importantes para os processos envolvidos na Amostragem Baseada em Histogramas são discutidas a seguir.

Amostragem Dirigida: Histogramas — Discretização

O Processo de Discretização

O processo de discretização deve transformar os valores de um domínio contínuo em um contra-domínio discreto, ou reduzir o conjunto de valores do domínio discreto, de maneira que a quantidade de valores do contra-domínio seja pequeno o suficiente para atender às necessidades da amostragem.

As técnicas mais comuns de Discretização Baseada em Histogramas são:

- Equi-largura (Equi-width)
- Equi-altura (Equi-height)
- Equi-entropia (Equi-entropic)

Elas formam a base para todos os demais processos de amostragem dirigida.

Discretização por Histogramas em Equi-largura

Histogramas em Equi-largura (para um único atributo)

- Encontra-se o menor e o maior valor do domínio do atributo P Domínio ativo;
- ② Divide-se o domínio ativo no número de faixas definido pelo analista, criando-se faixas de valores de <u>igual largura</u> para o domínio daquele atributo: faixa(x) → N é o número do bin do valor x; (opcionalmente pode-se eliminar os k-menores e os k-maiores valores para reduzir distorcões);
- 3 Atribui-se a cada tupla o valor do contra-domínio correspondente;
- Gera-se o histograma contando-se o número de tuplas em cada bin;
- 6 (opcionalmente pode-se mostrar o histograma ao analista, para controle).

Discretização por Histogramas em Equi-largura

Discretização por Histogramas em Equi-largura

Exemplo (1.1) em SQL: Histograma de Idades da tabela Alunos

SELECT Idade, Count(*) AS Conta FROM Aluno GROUP BY Idade ORDER BY Idade;

Resultado:

Idade	Conta
19	1
20	1
21	3
22	2
23	1
24	1
25	1
27	1
35	1
	2

31ms para 15 alunos (105ms para 80.000 alunos).

Problema: somente existem bins para dados que existem!

Discretização por Histogramas em Equi-largura

Exemplo (1.2) em SQL: Histograma de Idades da tabela Alunos Solução para incluir todos os bins:

```
SELECT Bins.B AS Idade,
      CASE WHEN Tab. Conta IS NULL THEN O
                ELSE Tab.Conta END Contagem
    FROM
      (WITH Lim AS (
          SELECT Min(Idade) Mi, Max(Idade) Ma
               FROM Aluno)
          SELECT Generate_Series(Lim.Mi+1, Lim.Ma-1)
                       AS B FROM Lim) AS Bins
               LEFT OUTER JOIN
      (SELECT Idade, Count(*) Conta
         FROM Aluno
         GROUP BY Idade) AS Tab
               ON Bins.B=Tab.Idade;
```

1: Encontrar o menor e o maior valor do domínio ativo do atributo

Discretização por Histogramas em Equi-largura

Exemplo (1.2) em SQL: Histograma de Idades da tabela Alunos Solução para incluir todos os bins:

```
SELECT Bins.B AS Idade,
CASE WHEN Tab.Conta IS NULL THEN 0
ELSE Tab.Conta END Contagem

FROM

(WITH Lim AS (
SELECT Min(Idade) Mi, Max(Idade) Ma
FROM Aluno)

SELECT Generate_Series(Lim.Mi+1, Lim.Ma-1)
AS B FROM Lim) AS Bins

LEFT OUTER JOIN

(SELECT Idade, Count(*) Conta
FROM Aluno
```

2: Criar todos os valores na faixa do domínio ativo (remove k-menores e k-maiores)

GROUP BY Idade) AS Tab

ON Bins.B=Tab.Idade;

Discretização por Histogramas em Equi-largura

Exemplo (1.2) em SQL: Histograma de Idades da tabela Alunos

Solução para incluir todos os bins:

```
SELECT Bins.B AS Idade,
      CASE WHEN Tab. Conta IS NULL THEN O
                ELSE Tab.Conta END Contagem
    FROM
      (WITH Lim AS (
          SELECT Min(Idade) Mi, Max(Idade) Ma
               FROM Aluno)
          SELECT Generate_Series(Lim.Mi+1, Lim.Ma-1)
                       AS B FROM Lim) AS Bins
               LEFT OUTER JOIN
      (SELECT Idade, Count(*) Conta
         FROM Aluno
         GROUP BY Idade) AS Tab
               ON Bins.B=Tab.Idade;
```

3: Gera-se o histograma contando o número de tuplas em cada bin

Discretização por Histogramas em Equi-largura

Exemplo (1.2) em SQL: Histograma de Idades da tabela Alunos Solução para incluir todos os bins:

```
SELECT Bins.B AS Idade,
      CASE WHEN Tab. Conta IS NULL THEN O
                ELSE Tab.Conta END Contagem
    FROM
      (WITH Lim AS (
          SELECT Min(Idade) Mi, Max(Idade) Ma
               FROM Aluno)
          SELECT Generate_Series(Lim.Mi+1, Lim.Ma-1)
                       AS B FROM Lim) AS Bins
               LEFT OUTER JOIN
      (SELECT Idade, Count(*) Conta
         FROM Aluno
         GROUP BY Idade) AS Tab
               ON Bins.B=Tab.Idade;
```

4: Bins sem tuplas ficam com valor zero (não nulo)

Discretização por Histogramas em Equi-largura

Exemplo (1.2) em SQL: Histograma de Idades da tabela Alunos

Idade	Contagem
19	1
20	1
21	3
22	2
23	1
24	1
25	1
26	0
27	1
28	0
29	0
30	0
31	0
32	0
33	0
34	0
35	1

33ms para 15 alunos 62ms para 80.000 alunos

(Pode usar FULL OUTER JOIN, mas dai não se deve eliminar os extremos).

Discretização por Histogramas em Equi-largura

Exemplo (1.3) em SQL: Histograma de Idades da tabela Alunos

Agrupar de cinco em cinco:

```
SELECT Floor(Idade/5.00)*5 as Ini, Count(*) AS Conta
FROM Aluno
GROUP BY Ini
ORDER BY Ini;
```

Resultado:

Idade	Conta
15	1
20	8
25	2
35	1
	2

32ms para 15 alunos 170ms para 80.000 alunos

Discretização por Histogramas em Equi-largura

Exemplo (1.4) em SQL: Histograma de Idades da tabela Alunos

Agrupar em cinco bins:

```
WITH MinMax AS (SELECT Min(Idade) Mi, Max(Idade) Ma
FROM Aluno)

SELECT Idade,

Width_bucket(Idade, (SELECT Mi FROM MinMax),

(SELECT Ma FROM MinMax), 4) as Bin,

Count(*) Conta

FROM Aluno
GROUP BY Idade ORDER BY Idade;
```

Resultado:

Idade	Bin	Conta
19	1	1
20	1	1
21	1	3
22	1	2
23	2	1

24	2	1
25	2	1
27	3	1
35	5	1
		2

32ms para 15 alunos 170ms para 80.000 alunos

Discretização por Histogramas em Equi-largura

Função para dividir números em várias faixas – PostgreSQL

Width_bucket(Valor Real, Ini Real, Fim Real, Count INT) -

Retorna em qual faixa (bucket) o Valor dado está dentro dos números entre Ini e Fim, dividindo por Count pontos de corte (quer dizer, divide em Count+1 faixas).

Discretização por Histogramas em Equi-largura

Exemplo (1.5) em SQL: Histograma de Idades da tabela Alunos

Agrupar em cinco bins, indicando as faixas explicitamente:

```
WITH MinMax AS
  (SELECT 4 AS NB, Min(Idade) AS Mi, Max(Idade) AS Ma FROM Aluno)
  SELECT Trunc((SELECT Mi FROM MinMax)+
         ((Bin-1)*((SELECT Ma FROM MinMax)-(SELECT Mi FROM MinMax))/
            (SELECT NB FROM MinMax)),2) AS Ini,
         Trunc(((SELECT Mi FROM MinMax) +
            (Bin)*((SELECT Ma FROM MinMax)-(SELECT Mi FROM MinMax))/
            (SELECT NB FROM MinMax)),2) AS Fim.
                                                   Conta
      FROM (
          SELECT Width Bucket(Idade, (SELECT Mi FROM MinMax),
           (SELECT Ma FROM MinMax), (SELECT NB FROM MinMax)) AS Bin,
            Count(*) as Conta
          FROM Aluno
      GROUP BY Bin
                           ORDER BY Bin) Histo:
```


Discretização por Histogramas em Equi-largura

Exemplo (1.5) em SQL: Histograma de Idades da tabela Alunos

Agrupar em cinco bins, indicando as faixas explicitamente:

```
WITH MinMax AS
  (SELECT 4 AS NB, Min(Idade) AS Mi, Max(Idade) AS Ma FROM Aluno)
  SELECT Trunc((SELECT Mi FROM MinMax)+
         ((Bin-1)*((SELECT Ma FROM MinMax)-(SELECT Mi FROM MinMax))/
            (SELECT NB FROM MinMax)),2) AS Ini,
         Trunc(((SELECT Mi FROM MinMax) +
            (Bin)*((SELECT Ma FROM MinMax)-(SELECT Mi FROM MinMax))/
            (SELECT NB FROM MinMax)),2) AS Fim.
                                                     Conta
      FROM (
          SELECT Width_Bucket(Idade, (SELECT Mi FROM MinMax),
                       EDOM MI-M-- (GELEGE ND EDOM MI-Max)) AS Bin.
            (SELECT M-
                         Ini
                             Fim
                                 Conta
             Count(*)
                         19
                             23
          FROM Aluno
                         23
                              27
                         27
                              31
      GROUP BY Bin
                         35
                              39
```

Resultado:

32ms para 15 alunos

Discretização por Histogramas em Equi-largura

Histogramas em Equi-largura (para mais de um atributo)

Quando o histograma envolve mais do que um atributo:

- O histograma é multidimensional, onde cada dimensão corresponde a um dos atributos originais;
- O analista precisa especificar o número de *bins* por atributo individualmente;
- A contagem de tuplas é feita tanto para cada *bin* multidimensional quanto para todas as projeções em cada atributo.

Em SQL: Os diversos atributos são especificados na cláusula GROUP BY, e existe um comando Generate_Series() para cada atributo, unidos por um produto cartesiano (CROSS JOIN).

Discretização por Histogramas em Equi-largura

Vantagens:

- É rápida;
- É linear na cardinalidade N: C

Desvantagens:

- Tende a n\u00e3o preservar outliers e agrupamentos/classes pequenos;
- Sensível a desbalanceamento do conjunto;
- Reduz a sensibilidade dos processos posteriores;
- Não escala com o aumento da cardinalidade.

- Ordenam-se as tuplas do conjunto de dados usando-se o atributo como chave;
- (opcionalmente pode-se eliminar os *k*-menores e os *k*-maiores valores para reduzir distorções);
- Oivide-se a sequência de tuplas ordenadas no número de faixas definido pelo analista, de maneira que cada faixa tenha (aproximadamente) o mesmo número de tuplas. Portanto cada faixa de valores tende a ter a mesma quantidade de tuplas;
- Note-se que todas as tuplas de mesmo valor ficam na mesma faixa, portanto cada faixa é um valor do contra-domínio;
 - 4 Atribui-se a cada tupla o valor do contra-domínio correspondente;
 - **6** Gera-se o histograma contando-se o número de tuplas em cada bin.

Discretização por Histogramas em Equi-altura

A função de janelamento NTILE pode ser usada para dividir as tuplas em faixas segundo a ordenação dada por um (ou mais) atributo de *tiling*.

```
NTILE(NBins) OVER (
       [PARTITION BY <atrib particao>, ... ]
       [ORDER BY <atrib para 'tiling'> [ASC | DESC], ...]
    );
```

onde:

- NBins é o número de bins onde as tuplas serão distribuídas;
- PARTITION BY <atribs particao> pode indicar possíveis classificações para gerar histogramas distintos;
 - (em geral não é usado para esta aplicação)
- ORDER BY <atrib para 'tiling'> [ASC | DESC], ... deve indicar qual(is) atributos compõe cada dimensão do histograma.

Discretização por Histogramas em Equi-altura

Exemplo (2.1) em SQL: Histograma de Equi-altura Idades com 10 bins da tabela Alunos

```
SELECT Bin, Min(idade), Max(Idade), Count(*)
FROM (SELECT *,
NTILE(10) OVER(ORDER By Idade) AS Bin
FROM Alunos) AS Partes
GROUP BY Bin
ORDER BY Bin;
```

Solucao aproximada: NTILE nao respeita a divisao de valores.

Discretização por Histogramas em Equi-altura

Exemplo (2.1) em SQL: Histograma de Equi-altura Idades com 10 bins da tabela Alunos

Bin	Min	Max	Count
1	15	21	8000
2	21	21	8000
3	21	22	8000
4	22	23	8000
5	23	23	8000
6	23	24	8000
7	24	26	8000
8	26	28	8000
9	28	32	8000
10	32	81	8000

34ms para 15 alunos 122ms para 80.000 alunos

MBA

Histogramas em Equi-altura (para mais de um atributo)

Quando o histograma envolve mais do que um atributo:

- O histograma é multidimensional, onde cada dimensão corresponde a um dos atributos originais;
- O analista especifica o número de bins individualmente por atributo;
- Em geral procura-se dividir todos os atributos nas mesmas faixas, independentemente dos valores dos demais atributos, para não haver priorização entre os atributos;
- Nesse caso, a contagem de tuplas é feita tanto para cada *bin* multidimensional quanto para todas as projeções em cada atributo;
- Porém, é possível dividir um atributo pelos valores dos anteriores (priorizando os atributos) isso pode ser necessário quando algum atributo tem muito poucos valores;

Discretização por Histogramas em Equi-altura

Exemplo em SQL: Histograma de Equi-altura em Idades com 3 bins e Cidades com 4 bins da tabela Alunos

```
SELECT BinI, BinC, Min(Idade), Min(Cidade),

Max(Idade), Max(Cidade), Count(*)

FROM (SELECT *, NTILE(3) OVER(ORDER By idade) AS BinI,

NTILE(4) OVER(ORDER By Cidade) AS BinC

FROM Alunos) AS Partes

GROUP BY CUBE(Bini, Binc)

ORDER BY Bini, Binc;
```

CUBE gera todas as contagens.

Discretização por Histogramas em Equi-altura

Exemplo (2.2) em SQL: Histograma de Equi-altura em Idades com 3 bins e Cidades com 4 bins da tabela Alunos

Binl	BinC	Minl	MinC		MaxC	Count
1	1	17	Abaetetuba-PA	22	Itaquaquecetuba-SP	7593
1	2	17	Itaquaquecetuba-SP	22	São Gonçalo-RJ	7345
1	3	17	São Gonçalo-RJ	22	São Paulo-SP	5791
1	4	15	São Paulo-SP	22	Votuporanga-SP	5938
1		15	Abaetetuba-PA	22	Votuporanga-SP	26667
2	1	23	Abaetetuba-PA	25	Itaquaquecetuba-SP	5833
2	2	23	Itaquaquecetuba-SP	25	São Gonçalo-RJ	5998
2	3	22	São Gonçalo-RJ	25	São Paulo-SP	7460
2	4	22	São Paulo-SP	25	Votuporanga-SP	7376
2		22	Abaetetuba-PA	25	Votuporanga-SP	26667
3	1	26	Abaetetuba-PA	69	Itaquaquecetuba-SP	6574
3	2	26	Itaquaquecetuba-SP	81	São Gonçalo-RJ	6657
3	3	25	São Gonçalo-RJ	68	São Paulo-SP	6749
3	4	25	São Paulo-SP	67	Votuporanga-SP	6686
3		25	Abaetetuba-PA	81	Votuporanga-SP	26666
	1	17	Abaetetuba-PA	69	Itaquaquecetuba-SP	20000
	2	17	Itaquaquecetuba-SP	81	São Gonçalo-RJ	20000
	3	17	São Gonçalo-RJ	68	São Paulo-SP	20000
	4	15	São Paulo-SP	67	Votuporanga-SP	20000
		15	Abaetetuba-PA	81	Votuporanga-SP	80000

637ms para 80.000 alunos

Discretização por Histogramas em Equi-altura

Vantagens:

- Preserva melhor agrupamentos/classes pequenos;
- É menos sensível a desbalanceamento do conjunto;

Desvantagens:

- Mais lenta que Histogramas em Equi-largura;
- Não linear: O(N · log N)
- Tende a não preservar outliers;
- Não escala bem com o aumento do número de atributos no histograma.

Discretização por Histogramas em Equi-entropia

Histogramas em Equi-entropia:

- Neste caso, é necessário que se conheça alguma característica do conjunto completo, como por exemplo a existência de um atributo de classificação;
- O objetivo aqui é dividir os atributos em faixas de tal maneira que cada faixa priorize aquela característica, por exemplo, maximize uma das classes.
- Caso seja usado mais de um atributo, considera-se sua concatenação para a criação das faixas (em ordenação lexicográfica).

Um exemplo é a técnica de *Run-lenght encoding* para conjuntos que tenham um atributo indicando uma classe conhecida.

Discretização por Histogramas em Equi-entropia

Por exemplo: Run-lenght encoding (para um único atributo)

- Ordenam-se as tuplas do conjunto de dados usando-se o atributo concatenado à classe como chave;
- 2 Encontram-se as sequências continuas de tuplas da mesma classe;
- Mede-se a entropia das classes de cada sequência;
- Enquanto o número de sequências é maior do que o número de faixas solicitadas para o histograma, fundem-se as duas sequências adjacentes que levem à menor variação de entropia possível e recalcula-se a entropia da faixa resultante;
- Note-se que todas as tuplas de mesmo valor ficam na mesma faixa, portanto cada faixa resultante é um valor do contra-domínio;
 - 6 Atribui-se a cada tupla o valor do contra-domínio correspondente;
 - 6 Gera-se o histograma contando-se o número de tuplas em cada bin.

Discretização por Histogramas em Equi-entropia

Run-lenght encoding

Vantagens:

- Facilita a identificação de agrupamentos/classes pequenos;
- Bem menos sensível a desbalanceamento do conjunto.

Desvantagens:

- Lenta;
- Não linear: $O(N^2 \cdot \log N)$;
- Não escala bem com o aumento da dimensionalidade:
- Tratar mais de um atributo depende da semântica dos atributos.

Amostragem Baseada em Histogramas

Recordando:

Nas técnicas de amostragem de casos baseada em histogramas,

- lacktriangle Cria-se o histograma multidimensional com os atributos mais importantes, $\sqrt{\ }$
- $oldsymbol{2}$ executa-se o processo de discretização dos atributos escolhidos, $\sqrt{}$
- e finalmente escolhem-se tuplas do conjunto original o mais aleatoriamente possível, mas de tal maneira que cada bin do histograma gerado atenda a determinada propriedade (todos tenham o mesmo número de tuplas, ou tenha um valor mínimo e máximo para a quantidade de tuplas, etc.).
- ★ Esse último passo é relativamente independente do processo de geração do histograma, e pode ser executado em complexidade linear sobre a cardinalidade N do conjunto (e independente da complexidade F dos atributos e da dimensionalidade E): O(N).

Amostragem Baseada em Histogramas

Exemplo (3.1) em SQL: Amostragem usando Histograma de Idades da tabela

```
Alunos de cinco em cinco anos:
```

```
WITH Histo AS (

SELECT Floor(Idade/5.00)*5 as Ini, Count(*) AS Conta
FROM Alunos
GROUP BY Ini),

MaxBin AS (

SELECT (Max(Conta)/Min(Conta))::Double Precision AS Mx FROM Histo),

Sample AS (SELECT * FROM Alunos A, Histo H
WHERE H.Ini<=A.Idade AND H.Ini+5>A.Idade AND
Random()*H.Conta/(SELECT Mx FROM Maxbin) <0.01)

SELECT Ini, Count(*)
FROM Sample
GROUP BY Ini ORDER BY Ini
```

1: Aqui a tabela de resultado inclui os atributos da relação Alunos concatenados aos atributos Ini (Idade base de 5 em 5 onde a tupla é contabilizada) e Conta (total de tuplas que existem nesse bin).

Amostragem Baseada em Histogramas

Exemplo (3.1) em SQL: Amostragem usando Histograma de Idades da tabela

Alunos de cinco em cinco anos:

```
WITH Histo AS (
        SELECT Floor(Idade/5.00)*5 as Ini, Count(*) AS Conta
            FROM Alunos
            GROUP BY Ini).
   MaxBin AS (
        SELECT (Max(Conta)/Min(Conta))::Double Precision AS Mx FROM Histo).
   Sample AS (SELECT * FROM Alunos A, Histo H
            WHERE H. Ini <= A. Idade AND H. Ini +5 > A. Idade AND
                Random()*H.Conta/(SELECT Mx FROM Maxbin) <0.01)</pre>
SELECT Ini, Count(*)
   FROM Sample
   GROUP BY Ini
                           ORDER BY Ini
```

2: Aqui a tabela resultado é o próprio histograma.

Amostragem Baseada em Histogramas

Exemplo (3.1) em SQL: Amostragem usando Histograma de Idades da tabela

Alunos de cinco em cinco anos:

Resultado:

٦
1
1
1
1
1
1
1
1
1
1
1
]

289ms para 80.000 alunos

Idade	Conta
15	1
17	64
18	467
19	1001
20	1829
21	14724
22	11724
23	13522
24	5567
25	4679
26	3999
27	3569
28	3144
29	2786
30	2406
31	2002
32	1736
33	1407

Comparando com o total de tuplas:

66ms para 80.000 alunos

Amostragem Baseada em Histogramas

- As técnicas de amostragem baseadas em histogramas são as mais básicas, e são universalmente usadas para auxiliar as demais formas de amostragem.
- Elas frequentemente são consideradas parte do processo de preparação de dados, e por isso é mais indicado, e mais frequente, executá-las direto nos SGBDs.

Amostragem Dirigida — Baseada em classes

Amostragem Dirigida — Baseada em classes

Para amostragem baseada em classes também é necessário que exista um atributo de classificação, porém neste caso o efeito das classes é mais marcante, pois qualquer um dos métodos de amostragem por histograma pode ser usado em separado para cada classe.

Existem duas grandes divisões de algoritmos para a amostragem baseada em classes:

- Para classes definidas no mesmo espaço do conjunto global;
- Para classes definidas em sub-espaços distintos do conjunto global;

Amostragem Dirigida — Baseada em classes

Amostragem Baseada em classes definidas no espaço todo

É necessário escolher um atributo de classificação

Amostragem Baseada em classes definidas em projeções do espaço

É necessário escolher um atributo de classificação e quais são os atributos relevantes para cada classe.

- O processo de amostragem pode ser qualquer daqueles já estudados (aleatório ou baseados em qualquer forma de histograma)
- Aplica-se o processo de amostragem para cada classe conhecida.

Amostragem Dirigida — Baseada em classes

Vantagens:

Sensível a desbalanceamento do conjunto;

Desvantagens:

Requer o conhecimento prévio de classes;

No geral, mantém as mesmas vantagens/desvantagens do método de amostragem/discretização adotado.

Amostragem Dirigida — Baseada em classes

Amostragem Baseada em classes definidas no espaço todo

É necessário conhecer um atributo de classificação

Variação: Agrupamentos podem ser identificados durante o processo de amostragem.

- Nesse caso, aplica-se um processo de análise em multi-resolução do espaço (semelhante à análise fractal), onde
 - 1 O espaço vai sendo sucessivamente dividido em híper-retângulos,
 - Sendo que apenas os híper-retângulos com contagem de elementos acima de um limiar são re-divididos.
 - 3 No final, cada híper-retângulo tem os elementos amostrados (independente da resolução), segundo a propriedade de amostragem necessária.
- Note-se que os agrupamentos s\u00e3o naturalmente localizados pela densidade dos h\u00eaper-ret\u00e3ngulos.

Amostragem Dirigida — Baseada em classes

Amostragem Dirigida Baseada em Classes

Vantagens:

- Pode identificar agrupamentos pequenos;
- Pouco sensível a desbalanceamento do conjunto;
- Relativamente rápida $O(N \cdot E \cdot F)$.

Desvantagens:

Requer um volume maior de memória.

Amostragem Dirigida — Baseada em densidade

Amostragem Baseada em Densidade

Para amostragem baseada em densidade, é necessário que o analista defina um limiar (*threshold*) de distância (ou similaridade) dentro da qual considera-se que apenas um elemento (ou um número pequeno deles, pré-definido pelo analista) seja suficiente para representar todos eles.

Essas técnicas são também conhecidas como baseadas em Vizinhança ou em k-vizinhos mais próximos (k-Nearest Neighbors — kNN).

Vantagens:

- Preserva bem agrupamentos/classes pequenos;
- Praticamente insensível a desbalanceamento do conjunto;

Desvantagens:

- Muito lenta;
- Requer muita memória;
- Complexidade elevada: $O(N^3 \cdot E^2)$ ou maior;

Roteiro

- Conceitos básicos em Redução de Dados
- Técnicas de Redução da Cardinalidade
 - Amostragem Aleatória
 - Amostragem Dirigida Baseada em Histogramas
 - Amostragem Dirigida Baseada em classes
 - Amostragem Dirigida Baseada em densidade
- Técnicas de Redução da Dimensionalidade
- 4 Técnicas de compressão de valores de atributos

Técnicas de Redução da Dimensionalidade

Introdução

Redução da Dimensionalidade — Objetivo:

Eliminar dimensões irrelevantes ou fracamente relevantes e dimensões redundantes (correlacionadas), de maneira a causar o mínimo de impacto nos processos subsequentes (pode até melhorar o desempenho).

- O resultado é um conjunto de dados com dimensão final D < E.
- Existem basicamente duas maneiras de reduzir a dimensionalidade:
 - Selecionar as D dimensões mais importantes;
 - Transformar (extrair) as dimensões aumentando seu poder de discriminação e reduzindo sua quantidade.

Seleção de atributos

Seleção de atributos

As técnicas de seleção de atributos escolhem dentre aqueles existentes, quais são os D mais importantes para caracterizar os dados, desprezando-se os demais.

As técnicas mais importantes para a seleção de atributos são:

- Maximizar o ganho de informação: máxima entropia, PCA (linear), Random forests;
- Busca aleatória usando algoritmos genéticos;
- Identificação de correlações;
- Manual: o analista adiciona/remove atributos baseado em funções sobre ou entre os atributos (entropia ou variância mínima, valores nulos, correlações par a par, etc.).

Seleção individual de atributos

Seleção individual de atributos

- A seleção é baseada apenas em propriedades dos atributos, tais como
 - Proporção de tuplas com valores nulos

que usa os atributos selecionados.

- Variância pequena
- É necessário definir um valor de corte para eliminar atributos
- Usualmente isso é feito de maneira empírica:

 Avaliação exaustiva da precisão obtida por um processo de mineração
 - É necessário medir a propriedade a ser usada, para cada atributo.

Seleção individual de atributos

 Na maioria das vezes, é mais vantajoso executar a medida da propriedade a ser avaliada em SQL.

Exemplo: Em quantas tuplas um atributo é nulo?

Seja o atributo nota da primeira prova: NotaP1 da relação de Matriculas do aluno:

Proporção de tuplas com valores nulos

Nulos	Total 643.586	220
70.111	643.586	220ms

🎏 Variância pequena:

SELECT Variance(NotaP1) FROM Matricula

Seleção individual de atributos

- Mas é necessário calcular cada propriedade sobre todos os atributos.
- Como o Modelo Relacional é um meta-modelo, as informações sobre todos os objetos de uma base de dados, incluindo todas as tabelas da base e todos os atributos de cada tabela estão no Catálogo da base de dados.

Meta-modelo Relacional

Terminologia: Meta-Modelo

Um modelo capaz de modelar a si mesmo é chamado um Meta-Modelo.

- O Modelo Relacional é um Meta Modelo
- Um SGBD implementa o meta-modelo relacional com Tabelas de Tabelas, Tabelas de Atributos, etc.
- Essas tabelas são ditas "do sistema" e são mantidas em um esquema separado, chamado catálogo
- O Catálogo da base de dados quer esquema da base.
 Inclui todas as tabelas gerenciadas, em qual-

- No gerenciador PostgreSOL, o catálogo é mantido em dois esquemas separados, chamados Information_Schema e Pg_Catalog.
- Os nomes dos objetos do sistema começam com 'sql_' ou 'pg_', respectivamente.
- Os "objetos" do sistema (incluindo tabelas, visões, funções, etc.) têm suas propriedades comuns (incluindo nome) armazenadas na relação Pg_Class.

Por exemplo

Listar todas as tabelas do usuário com suas quantidades de atributos

e a quantidade de páginas em disco e de tuplas em cada tabela.

SELECT RelName, RelNAtts, RelKind, RelPages, RelTuples
FROM pg_class Cl JOIN Pg_NameSpace NS
ON NS.OID=CL.RelNameSpace
WHERE (Cl.RelKind='r' or CL.RelKind='v') AND
NS.NSpName='public';

RelName	RelNAtts	RelKind	RelPages	RelTuples
professor	4	r	1	6159
aluno	4	r	1	80000
turma	4	r	1	23560
discip	4	r	1	11890
matricula	3	r	1	643534
ministra	3	r	1	15232
niveis	2	v	0	0

Exemplo

Listar todas as colunas de todas as tabelas do usuário:

SELECT SELECT Cl.RelName, A.AttName, A.AttNum

FROM pg_class Cl JOIN Pg_NameSpace NS $\,$

ON NS.OID=CL.RelNameSpace

JOIN Pg_Attribute A ON A.AttRelId=CL.OID

WHERE (Cl.RelKind='r' or CL.RelKind='v') AND

NS.NSpName='public' AND

A.AttNum>0

ORDER BY 1, 3;

D. INI.	A N	A N
RelName	AttName	AttNum
aluno	nome	1
aluno	nusp	2
aluno	idade	3
aluno	cidade	4
discip	sigla	1
discip	nome	2

Todos os objetos da base de dados estão no catálogo:

Exemplo

Listar todos os esquemas definidos nesta base de dados:

SELECT NspName, NspOwner
FROM pg_catalog.pg_namespace
WHERE nspname NOT LIKE 'pg_%'
ORDER BY nspname;

NspName	NspOwner			
anoletivo	10			
historico	10			
secretaria	38225			
public	10			

Dados sobre os atributos de uma tabela

Exemplo

Listar todos os atributos de uma dada tabela, com seu respectivo tipo de dados:

```
SELECT C.RelName, A.AttName, A.AttNum, T.TypName
FROM pg_Class C, pg_attribute A, pg_type T
WHERE C.RelName NOT LIKE 'pg_%' AND C.RelName NOT LIKE 'sql_%' AND
C.RelKind='r' AND
A.AttRelId=C.OID AND
A.AttTypId=T.OID AND
A.AttNum>O AND -- AttNum<O ==> Atributo de sistema
C.RelName='alunos'
ORDER BY A.AttNum:
```

RelName	Name	AttNum	TypName
alunos	nusp	1	numeric
alunos	nome	2	varchar
alunos	idade	3	int4
alunos	cidade	4	varchar

16ms

Dados sobre os atributos de uma tabela

- Em PostgreSQL, os diversos tipos de dados disponíveis para o usuário (mais de 44 na versão V.14), são representados por poucos tipos fundamentais.
- Os tipos numéricos são representados apenas pelos tipos:

```
Inteiros - 'int2', 'int4', 'int8'
Ponto flutuante - 'float4', 'float8'
Decimais - 'numeric'
```

- Os tipos textuais s\(\tilde{a}\) internamente representados como 'character varying'
- Isso facilita testar os tipos dos dados armazenados.

Dados sobre os atributos de uma tabela

- Para medir as propriedades de um atributo, é necessário criar uma consulta específica para aquele atributo.
- Para gerar consultas sobre todos os atributos, pode-se usar SQL dinâmico

• Por por exemplo, pode-se criar uma função, em PLPgSQL para obter as estatísticas de interesse sobre todos os atributos

Exemplo

Obter: France de todos os atributos de uma tabela:

a quantidade de nulos e a Cardinalidade do domínio, e

dos atributos de tipos numéricos:

a Variância e o Desvio Padrão

```
CREATE OR REPLACE FUNCTION MinhasEstatisticas(Tab TEXT) RETURNS
  TABLE(NomeAtrib TEXT, Tipo TEXT, Nulls INTEGER,
        Cardinality INTEGER, Variance DOUBLE PRECISION, StdDev DOUBLE PRECISION) AS $$
DECLARE
    Var r Record: Var Cmd TEXT:
                                     Var Cmd2 TEXT:
BEGIN
   Var_Cmd='SELECT A.AttName::TEXT AN, T.TypName::TEXT ATy
       FROM pg_Class C, pg_attribute A, pg_type T
       WHERE C.RelName NOT LIKE ''pg_%'' AND C.RelName NOT LIKE ''sql_%'' AND
         C.RelKind=''r'' AND
          A.AttRelId=C.OID AND
          A.AttTvpId=T.OID AND A.AttNum>O AND
         C.RelName = '''||Tab||''':
   FOR Var_r IN EXECUTE Var_Cmd
         Var Cmd2:='SELECT Count(*) from '||Tab||' WHERE '||Var r.AN||' IS NULL:':
         EXECUTE Var Cmd2 INTO Nulls:
         Var_Cmd2:='SELECT Count(DISTINCT '||Var_r.AN||'), ';
             IF Var r.ATv IN('int2', 'int4', 'int8', 'float4', 'float8', 'numeric')
             Var_Cmd2:=Var_Cmd2||'Var_Pop('||Var_r.AN||'), stddev_pop('||Var_r.AN||')'; ELSE
             Var_Cmd2:=Var_Cmd2||'NULL, NULL': END IF:
             Var Cmd2:=Var Cmd2||' FROM '||Tab||':':
         EXECUTE Var_Cmd2 INTO Cardinality, Variance, StdDev;
         NomeAtrib:=Var_r.AN:
         Tipo:=Var_r.ATy;
         RETURN NEXT:
      END LOOP:
END; $$ LANGUAGE plpgsql;
```


Dados sobre os atributos de uma tabela


```
SELECT * FROM MinhasEstatisticas('alunos');
```

Resultado:

NomeAtrib	Tipo	Nulls	Cardinality	Variance	StdDev
nusp	numeric	0	80000	674394187368065	25969100.6269
nome	varchar	32	78706		
idade	int4	0	55	24.02323	4.90135
cidade	varchar	0	700		

930ms para 80.000 alunos

Dados sobre os atributos de uma tabela

SELECT * FROM MinhasEstatisticas('matricula');

Resultado:

NomeAtrib	Tipo	Nulls	Cardinality	Variance	StdDev
codigoturma	int8	0	24278	105356414.5422	10264.32728
nusp	numeric	0	79984	672637761957588	25935260.9772
notap1	numeric	70111	100	3.17375	1.78150
notap2	numeric	105131	59	2.72037	1.64935
notasub	numeric	235156	99	3.59636	1.89640
mediap	numeric	0	84	2.64423	1.62611
mediat	numeric	35134	101	5.23371	2.28773
nf	numeric	0	93	2.79450	1.67167
frequencia	numeric	1	1	0	0

9.5s para 701701 matrículas

Seleção de atributos

As técnicas de seleção de atributos baseadas em identificação de correlações procuram eliminar atributos altamente correlacionados com outros.

- Identificação de correlações bi-lineares Por exemplo:
 - Coeficiente de correlação de Pearson (PCC) Para variáveis contínuas (numéricas);
 - Medida χ^2 (qui-quadrado) de Pearson's Para variáveis discretas;
- Podem ser usadas técnicas:
 - Gulosas (greedy Backward/Forward)
 As técnicas exaustivas/regenerativas são muito demoradas;
 - Baseadas em Teoria dos Fractais.
- Identificação de correlações baseadas em técnicas de ganho de informação:

Seleção de atributos

As técnicas baseadas em **ganho de informação** em geral dependem de conhecimento sobre o conjunto, como por exemplo a existência de um **atributo de classificação**:

- Busca-se obter:
 - O máximo de correlação com o atributo de classificação;
 - O mínimo de correlação com os demais atributos.
- Exemplos:
 - Atributos mais eficentes para poda em Random Forests
 - Algoritmo Relief

Seleção de atributos com Random Forests

Seleção de atributos com Random Forests

- Constroi um grande número de árvores de decisão (1.000 a 5.000) para o atributo de classificação, com 2 ou 3 níveis e poucos atributos de decisão (5 a 8) escolhidos aleatariamente;
- ② ordenam-se os atributos medindo a frequencia com que são usados em cada nível:

```
(Score_{Atr_i} = \#Splits(raiz) / \#Candidatos(Raiz) + \#Splits(Nivel1) / \#Candidatos(Nivel1) + ...)
```

3 No final, escolhe as k dimensões i com maior valor de $Score_{Atr_i}$

WIBA (A)

O Algoritmo Refief para Seleção de Atributos

O algoritmo usa um atributo de classificação binário como objetivo para avaliar a importância de cada atributo e ranquear as E dimensões por essa importância.

- Associa um peso, inicialmente igual para todas as dimensões $(W_i = 0, i = 1 \dots E);$
- **2** Escolhe aleatoriamente elementos t_s do conjunto de dados e procura:
 - nearest hit= t_h : o elemento mais próximo a t_s da mesma classe; e
 - nearest miss= t_m : o elemento mais próximo da outra classe;
- Atualiza o peso de cada dimensão de acordo com quão bem cada um distingue a instância de seu *nearest hit* e seu *nearest miss*:

$$W_i = W_i + (t_s[i] - t_h[i])^2 - (t_s[i] - t_m[i])^2, i = 1...E$$

1 No final, escolhe as k dimensões i com maior valor de W_i .

Transformação de atributos

Transformação de atributos

As técnicas de transformação de atributos aplicam uma transformação no espaço de dados, reorientando os eixos que definem o espaço de maneira a maximizar a distribuição dos dados, com um número menor de dimensões suficientes para caracterizar adequadamente os dados.

As técnicas mais importantes para a transformação de atributos são:

- Análise das componentes principais (Principal Component Analysis PCA)
- Mapeamentos em Escala Multidimensional (Multidimensional Scaling Mapping
 - MDS mapping)
- Identificação de variáveis latentes.

Análise das componentes principais

- As transformações do espaço de dados podem ser lineares ou não.
- O principal método de transformação linear é a análise das componentes principais.

Análise das componentes principais - PCA

As técnicas de análise das componentes principais consideram que **o conjunto de elementos é um objeto** que se estende pelo espaço original, mas que não o preenche totalmente. Dessa maneira, é possível:

- Rotacionar o objeto, de maneira que sua maior extensão esteja paralela a um eixo (identificando-se a direção onde o objeto tem maior variância nos valores de seus atributos);
- 2 Rotacionar novamente o objeto mantendo o eixo já escolhido, e assim sucessivamente para todas as dimensões do objeto original;
- **3** Escolher apenas os $D \le E$ eixos com maior extensão as componentes principais como os novos atributos mais importantes.

Análise das componentes principais

Análise das componentes principais

- As dimensões são ordenadas na sequência de extensões cada vez menores;
- Pode-se estabelecer:
 - um limiar mínimo para o corte das dimensões (threshold);
 - uma quantidade definida D de dimensões.
- O resultado é uma coleção de D dimensões, $D \leq E$, tal que o valor de cada dimensão $d_i \in \mathbb{D}$ é uma função dos atributos originais, e que representa as transformações de rotação do espaço induzidas pelo método PCA.

Análise das componentes principais

Análise das componentes principais

Vantagens:

- Bastante adequada quando existem muitas correlações (lineares) entre as dimensões originais;
- Método razoavelmente rápido: O(N · E)

Desvantagens:

- Distorce o espaço original (perde a semântica dos atributos);
- Distorce dados com correlações não lineares;
- Somente opera em espaços euclidianos.

Mapeamentos em Escala Multidimensional

As técnicas de mapeamentos em escala multidimensional estendem a técnica de PCA para preservar as correlações não lineares.

- Elas são baseadas na escolha de *pivots* no espaço original que definem os eixos de maior variância (como a PCA);
- 2 Mas ao invés de rotacionar o espaço, as técnicas criam um espaço mapeado baseado na distância (usualmente a distancia euclidiana) entre cada elemento de dados e os pares de *pivots*;
- 3 Por exemplo, a técnica *FastMap* representa cada coordenada pela projeção ortogonal de cada elemento sobre o eixo que passa por cada par de *pivots*;
- O número de pares de *pivots* define a dimensionalidade final *D* do espaço mapeado.

Mapeamentos em Escala Multidimensional

- Note-se que as projeções de cada dimensão mapeada têm variância cada vez menor;
- Pode-se estabelecer:
 - um limiar mínimo para corte das dimensões (threshold);
 - ou uma quantidade definida D de dimensões.
- O resultado é uma coleção de D dimensões, $D \leq E$ tal que o valor de cada dimensão $d_i \in \mathbb{D}$ é uma função dos atributos originais.
 - No caso do método FastMap, essa função representa as projeções de cada elemento sobre os eixos (possivelmente não ortogonais) do espaço induzidos pelo método.

Mapeamentos em Escala Multidimensional

Mapeamentos em Escala Multidimensional

Vantagens:

- Adequada mesmo quando existem correlações não lineares entre as dimensões originais;
- Método razoavelmente rápido: O(N · E)
- Pode operar sobre dados em espacos métricos, inclusive com métricas nãoeuclidianas;

Desvantagens:

- Distorce o espaço original (perde a semântica dos atributos);
- Para algumas métricas não euclidianas, pode distorcer o espaço original

Roteiro

- Conceitos básicos em Redução de Dados
- 2 Técnicas de Redução da Cardinalidade
- Técnicas de Redução da Dimensionalidade
 - Seleção de atributos
 - Transformação (ou extração) de atributos
- Técnicas de compressão de valores de atributos

Introdução

Compressão de valores de atributos — Objetivo:

Reduzir a quantidade, a complexidade e a redundância dos valores associados a cada atributo, visando diminuir a complexidade computacional e o volume de dados manipulados pelos algoritmos de análise.

- As técnicas de compressão de valores são usadas com dois objetivos
 - Reduzir a redundância nos dados, por exemplo eliminando ruídos nas medidas;
 - reduzir complexidade dos dados, por exemplo em dados multimídia.

- Uma técnica trivial é reduzir a cardinalidade do domínio do atributo:
 Discretização
- Exemplo (4.1) em SQL:

Analisar as notas dos alunos desprezando os dígitos fracionários:

l	Contagem	ContaNota
l	2924	0
l	22792	1
l	60303	2
l	99600	3
l	122049	4
l	123574	5
l	103535	6
l	65796	7
l	26836	8
l	4179	9
l	2	10
ı	70111	

429ms para 701701 matrículas

Analisar por níveis:

SELECT CASE Floor(NotaP1/2)
WHEN 1 THEN 'I'
WHEN 2 THEN 'C' WHEN 3 THEN 'B'
WHEN 4 THEN 'A' WHEN 5 THEN 'A'
ELSE 'R'
END AS Conceito,
Count(*) as Contagem
FROM Matricula
GROUP BY Conceito
ORDER BY Conceito:

		-
Conceito	Contagem	ı
A	31017	
В	169331	
С	245623	5
I	159903	۱,
R	95827	Ľ.

<mark>557ms</mark> para 701701 matrícula<mark>s</mark>

Redução da redundância nos dados

A Teoria Matemática da Comunicação (ou Teoria da Informação) visa medir quanto de Informação e quanto de Redundância existe em determinado volume de dados.

- **Informação** é a porção de dados que deve ser preservada para manter a capacidade de interpretação e/ou identificação dos dados;
- Redundância é a porção de dados que pode ser removido (e posteriormente re-inserido) sem que isso altere a capacidade de interpretação e/ou identificação dos dados;
- Compressão de dados é uma técnica para reduzir a redundância sem afetar a informação contida nos dados. Ela opera em duas fases:
 - Modelagem: identifica-se e descreve-se a redundância que existe nos dados;
 - Codificação: identifica-se e descreve-se quanto os dados originais diferem do modelo.

Processos de medida de dados

Redundância nos dados

- Qualquer processo real de medida de dados pode ser descrito como uma fonte que gera uma sequência de símbolos de um domínio finito, chamado alfabeto.
- A redução da redundância nos dados medidos corresponde a eliminar a redundância das sequências de símbolos gerados, isto é, visa codificar de maneira mais compacta o modelo de medida dos dados.
- A principal técnica de redução da redundância nos dados é o Modelo das medidas independentes e a Entropia de Shannon.

Modelo de medidas independente e a Entropia de Shannon

- O Modelo de medidas independente assume que as medidas obtidas são estatisticamente independentes uma das outras:
 - Dado um alfabeto $A = \{a_i, a_2, \dots, a_S\}$ e as probabilidades de ocorrência de cada símbolo $P = \{p(a_i), p(a_2), \dots, p(a_S)\}$ em A: assume-se que cada $p(a_i)$ é independente de $p(a_i)$, $\forall i, j \in A$.
 - Como a ocorrência de cada símbolo é inesperada, então o conteúdo de informação $I(a_i)$ de cada símbolo a_i em termos da sua probabilidade de ocorrência associada $p(a_i)$ é dado por:

$$I(a_i) = \log_2\left(\frac{1}{p(a_i)}\right) = -\log_2(p(a_i)).$$

Modelo de medidas independente e a Entropia de Shannon

- MBA MA MPA
- A base 2 do logaritmo indica que a informação é expressa em **bits** (unidades binárias);
- Portanto:
 - cada símbolo a_i pode ser representado em $-\log_2 p(a_i)$ bits!
 - um símbolo com maior probabilidade de ocorrer numa medida deveria ser codificado usando menos bits!
- Em média, a quantidade de informação de um determinado volume de dados que segue o modelo de medidas independentes é dada pela Entropia de Shannon, expressa como:

$$E_{Shannon} = \sum_{i=1}^{S} p(a_i)I(a_i) = -\sum_{i=1}^{S} p(a_i)\log_2 p(a_i)$$

 Portanto, a entropia é o comprimento do código binário mais compacto possível para um dado volume de dados.

Modelo de medidas independente e a Entropia de Shannon

Por exemplo:

- Seja um processo de medida independente,
 - com alfabeto $A = \{\alpha, \beta, \gamma, \delta\}$ e
 - com as probabilidade associadas $p(\alpha) = 0.65, p(\beta) = 0.20, p(\gamma) = 0.10$ e $p(\delta) = 0.05$, respectivamente.
- A entropia desse processo é $E = -(0.65 \log_2 0.65 + 0.20 \log_2 0.20 + 0.10 \log_2 0.10 + 0.05 \log_2 0.05) \approx 1,42$ bits/símbolo.
- Portanto, cada sequência de mil símbolos gerados por esse processo de medida pode ser codificado em 1.420 bits.
- As técnicas de discretização baseadas em *Run-lenght encoding* e a técnica de codificação de **Huffman** são baseadas nesse conceito.

Redução da complexidade nos dados

Complexidade nos dados

- Dados multimídia e os dados complexos em geral são difíceis de serem comparados:
- Extraem-se características de cada objeto, de maneira que cada elemento passa a ser representado por um ponto num espaço das características.

A partir daí, a busca passa a ser realizada comparando os elementos num espaço de similaridade

Buscas por similaridade.

MBA em Inteligência Artificial e Big Data

- Curso 3: Administração de Dados Complexos em Larga Escala -

★ Redução de Dados ★

Caetano Traina Júnior

Grupo de Bases de Dados e Imagens – GBdI Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos

