苏州大学 <u>物理化学(下)</u> 课程试卷 (A)卷 共8页

考试形式 闭 卷 2011 年	=	7	月
-----------------	---	---	---

院系: <u>材料与化学化工学部</u> 学号:	年级: 姓名:	2008 级	专业:_ 成绩:_		
一、选择题(共 20 分)					
1 、(2分) $CaCl_2$ 摩尔电导率与其离子摩尔 (A) Λ_m (CaCl ₂) = λ_m (Ca ²⁺) (B) Λ_m (CaCl ₂) = $1/2$ λ_m (Ca (C) Λ_m (CaCl ₂) = λ_m (Ca ²⁺) (D) Λ_m (CaCl ₂) = λ_m (Ca ²⁺)	$+\lambda_{\rm m}$ (Club) $+\lambda_{\rm m}$ + $\lambda_{\rm m}$ + $\lambda_{\rm m}$ + $\lambda_{\rm m}$ ($+2\lambda_{\rm m}$ ($+2\lambda_{\rm m}$)	(Cl ⁻)		()
2、(2分) 质量摩尔浓度为m的Na ₃ PO ₄ 溶	穿液, 平	均活度系数为γ	_± ,则电解		
(A) $a_{B} = 4 (m/m^{e})^{4} (\gamma_{\pm})^{4}$ (B) $a_{B} = 4 (m/m^{e}) (\gamma_{\pm})^{4}$ (C) $a_{B} = 27 (m/m^{e})^{4} (\gamma_{\pm})^{4}$ (D) $a_{B} = 27 (m/m^{e}) (\gamma_{\pm})^{4}$				()
3、(2分) 下列对原电池的描述哪个是不将(A)在阳极上发生氧化反应(B)电池内部由离子输送电荷(C)在电池外线路上电子从阴极(D)当电动势为正值时电池反应	流向阳标			()
4、(2 分) 某电池反应为: Hg ₂ Cl ₂ (s) + H ₂ (_I	p^{Θ}) = 2H ₂	$g(1) + 2H^{+}(a = 1)$	+ 2Cl (a = 1	1)已知	: E ^e =
$0.268V$, $(\partial E/\partial T)_p = -3.2 \times 10^{-1}$	0 ⁻⁴ V · K	·¹,则Δ _r S _m 为		()
(A) $-61.76 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (B) $-30.88 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (C) $62.028 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (D) $-0.268 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$					

5、(2分)		
6、(2分) 实验活化能E _a 、临界能E _c 、势能垒E _b 、零点活化能E ₀ 概念不同等,但在一定条件下,四者近似相等,其条件是: (A) E ₀ 很小 (B) E _b 很小 (C) 温度很低 (D) 基态振动频率大],数值也不 (、完全相)
7、(2分) 微小晶体与普通晶体相比较,下列哪一种性质不正确? (A)微小晶体的饱和蒸汽压大 (B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小	()
8、(2分) 298K 时,蒸汽苯在石墨上的吸附符合 Langmuir 吸附等温式, θ=0.05,当θ=1/2 时,苯气体的平衡压力为: (A) 400Pa (B) 760 Pa (C) 1000 Pa (D) 200 Pa	在 40Pa 时, (覆盖度
9、(2分) 溶胶有三个最基本的特性,下列不属于其中的是: (A)特有的分散程度 (B)不均匀(多相)性 (C)动力稳定性 (D)聚结不稳定性	()

10、(2分) 在电泳实验中,观察到分散相向阳极移动,表明: (A) 胶粒带正电 (B) 胶粒带负电 (C) 电动电位相对于溶液本体为正 (D) Stern 面处电位相对溶液本体为正
二、填空题(共15分)
1、(2 分) 用同一电导池分别测定浓度为 0.01 mol·dm ⁻³ 和 0.1 mol·dm ⁻³ 的不同电解质溶液,其电阻分别为 1000 Ω 和 500 Ω ,则它们的摩尔电导率之比为。
2、(2 分) 已知: φ ^e (Tl ⁺ /Tl) = -0.34V, φ ^e (Tl ³⁺ /Tl) = 0.72V, 则φ ^e (Tl ³⁺ /Tl ⁺) =V。
3、(2 分) 下列电池: $Pt H_2(p_1) HCl(aq, m) H_2(p_2) Pt$ 当 $p_2 > p_1$ 时,正极应为
4 、(2分) 反应 $2N_2O_5 \rightarrow 4NO_2 + O_2$ 在 328 K时 $O_2(g)$ 的生成速率为 0.75×10^{-4} mol·dm ⁻³ ·s ⁻¹ , 如其间任一中间物浓度极低,难以测出,则该反应的总包反应速率为 mol·dm ⁻³ ·s ⁻¹ , N_2O_5 之消耗速率为 mol·dm ⁻³ ·s ⁻¹ , NO_2 之生成速率为 mol·dm ⁻³ ·s ⁻¹ 。
5、(2分) 对于平行反应,改变各平行反应 k 值之比,常采用的方法有。
6、(2 分)
7、(1分) 液体在固体表面的润湿程度以

O	()	ハ	1
8、	(2	分)

溶胶是热力学_______体系,动力学______体系;而大分子溶液是热力学______体系,动力学______体系。

三、计算题(共45分)

1、(12分)

25℃时,KCl和NaNO₃溶液的极限摩尔电导率及离子的极限迁移数如下:

计算: (1) NaCl 溶液的极限摩尔电导率 Λ[∞]_m (NaCl)

(2) NaCl溶液中Na⁺的极限迁移数t_∞(Na⁺)和极限淌度U_∞(Na⁺)

2、(12分)

298K、 p^{\bullet} 时,用电解沉积法分离 Cd^{2+} 、 Zn^{2+} 混合溶液,已知 Cd^{2+} 和 Zn^{2+} 的浓度均为 0.10 $mol \cdot kg^{-1}$ (设活度系数均为 1), $H_2(g)$ 在Cd(s)和Zn(s)上的超电势分别为 0.48V和 0.7V,设电解液的pH值保持为 7.0,试问:

- (1) 阴极上首先析出何种金属?
- (2) 第二种金属析出时第一种析出的离子的残留浓度为多少?
- (3) 氢气是否有可能析出而影响分离效果?

已知: φ $^{\circ}$ (Cd²⁺/Cd) = - 0.403V , φ $^{\circ}$ (Zn²⁺/Zn) = - 0.763V

3、(10分)

由实验得知简单反应丁二烯的二聚作用 $2 C_4 H_6(g) \longrightarrow C_8 H_{12}(g)$,在 440 K - 660 K的温度范围内的速率常数 $k = 9.2 \times 10^9 \exp(-99.12 (\,\mathrm{kJ \cdot mol^{-1}}) \,/\,\mathrm{RT})$ (cm³· mol⁻¹· s⁻¹)

- (1) 求该反应在 600K时的概率因子(若 C_4 H₆的分子直径为 10^{-9} m)
- (2) 求在 $10 \min$ 内使丁二烯转化率达 60%,所需的反应温度为多少? 已知丁二烯的初始浓度为 $3 \min \cdot dm^{-3}$

4、(6分)

298K 时,乙醇水溶液的表面张力 γ 与活度 a 的关系如下: $\gamma = 0.072 - 5.0 \times 10^4 a + 2.0 \times 10^4 a^2$,求活度为 0.5 的溶液的表面超额 Γ 。

5、(5分)

在三个烧杯中分别盛 $0.02 dm^3$ 的 $Fe(OH)_3$ 溶胶,分别加入NaCl、 $NaSO_4$ 和 Na_3PO_4 使 其聚沉,至少需要加入电解质的数量为(1) $1mol \cdot dm^{-3}$ 的 $NaCl \cdot 0.021 dm^3$,(2) $0.005 mol \cdot dm^{-3}$ 的 $Na_2SO_4 \cdot 0.125 dm^3$,(3) $0.0033 mol \cdot dm^{-3}$ 的 $Na_3PO_4 \cdot 7.4 \times 10^{-3} dm^3$,试计算各电解质的聚沉值和它们的聚沉能力之比,从而可判断胶粒带什么电荷?

四、问答题(共20分)

1、(10分)

在 298K, 当电流密度为 $10A \cdot dm^{-2}$ 时, $H_2(g)和O_2(g)在Ag(s)$ 电极上的超电势分别为 0.87 和 0.98V,今用Ag(s)电极插入 0.01mol· kg^{-1} 的NaOH溶液进行电解,问在该条件下,在两个Ag(s)电极上首先发生什么反应?此时外加电压为多少?(设活度系数均为 1,已知: $\varphi^{\circ}(Ag_2O/Ag) = 0.344$ V, $\varphi^{\circ}(O_2/OH) = 0.401$ V)

2、(5分)

反应 $A + B \longrightarrow 2P$ 的可能机理如下:

 $A \stackrel{\kappa}{\rightleftharpoons} 2D$ (快速达到平衡) $D + B \stackrel{k_2}{\longrightarrow} P + F$ $F + D \stackrel{k_3}{\longrightarrow} P$

$$D + B \xrightarrow{k_2} P + F$$

$$F + D \xrightarrow{k_3} P$$

试导出产物 P 的生成速率表示的速率方程(D和F为不稳定中间产物)。

3、(5分)

混合等体积的 0.08 mol·dm⁻³ KI和 0.1 mol·dm⁻³ AgNO₃溶液所得溶胶。

- (1) 试写出胶团结构式
- (2) 指明电泳方向
- (3) 比较MgSO₄、Na₂SO₄、CaCl₂电解质对溶胶的聚沉能力