

Corso di aggiornamento professionale Progettazione geotecnica secondo le NTC 2008

Prof. Ing. Claudia Madiai

Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze

Muri di sostegno in c.a.

Pistoia, 20 Maggio 2011

Norme Tecniche per le Costruzioni – D.M. 14.01.2008

6.5.1 CRITERI GENERALI DI PROGETTO

(per muri di sostegno)

RIEMPIMENTO A TERGO DEL MURO:

- opportuna tecnica di costipamento
- granulometria idonea a garantire il drenaggio
- eventuale uso di geotessili tra riempimento e terreno in posto
- drenaggio efficace (se necessario, monitorato)

crollo per innalzamento del livello dell'acqua a tergo

Devono essere prescritte le caratteristiche fisiche e meccaniche del riempimento

Norme Tecniche per le Costruzioni - D.M. 14.01.2008

6.5.2 AZIONI

Si considerano azioni sull'opera di sostegno quelle dovute a:

- peso proprio del terreno e del materiale di riempimento
- sovraccarichi
- acqua*
- eventuali ancoraggi presollecitati
- moto ondoso, urti e collisioni, ...
- * Il livello dell'acqua o della falda da assumere in progetto deve essere fissato in base a misure e conoscenza del regime delle pressioni interstiziali. In assenza di sistemi di drenaggio, la superficie di falda deve essere assunta ≡ con il livello superiore dei terreni con k<10⁻⁶ m/s

5/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

Norme Tecniche per le Costruzioni - D.M. 14.01.2008

6.5.3 VERIFICHE AGLI STATI LIMITE

.

È necessario portare in conto la <u>dipendenza della spinta dei terreni dallo</u> <u>spostamento</u> dell'opera

6.5.3.1 Verifiche di sicurezza (SLU)

.....

Gli SLU si riferiscono allo <u>sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno</u> e al <u>raggiungimento della resistenza degli elementi strutturali</u>

6.5.3.2 Verifiche di esercizio (SLE)

.....

nelle condizioni di esercizio, gli spostamenti dell'opera e del terreno circostante devono essere valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità dei manufatti adiacenti*...

* in presenza di manufatti particolarmente sensibili agli spostamenti deve essere sviluppata una specifica analisi di interazione, tenendo conto delle fasi costruttive

VERIFICHE AGLI STATI LIMITE ULTIMI

Per ciascuno dei meccanismi di rottura ipotizzabili (almeno quelli indicati dalle norme) si devono individuare una sollecitazione instabilizzante dovuta alle <u>azioni di progetto</u> (<u>effetto</u> E_d) e una corrispondente <u>resistenza di progetto</u> (R_d) e si deve verificare la relazione:

$$\boldsymbol{E}_{d} \leq \boldsymbol{R}_{d} \tag{1}$$

simbolicamente:

$$\begin{split} E_{d} = & E\left[\gamma_{F}F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d}\right] \\ E_{d} = & \gamma_{E} E\left[F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d}\right] \end{split} \quad \begin{array}{c} \text{sono} \\ \text{alternative} \\ \end{split}$$

$$R_d = \frac{1}{\gamma_R} R \left[\gamma_F F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

γ: coefficienti parziali

- γ_F incrementano le azioni caratteristiche
- γ_{E} incrementa l'effetto finale delle azioni caratteristiche
- $\gamma_{\rm M}$ riducono i valori caratteristici dei parametri fisici e meccanici
- γ_{R} riduce la resistenza globale

a_d valori di progetto dei dati geometrici

7/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

VERIFICHE AGLI STATI LIMITE ULTIMI

I coefficienti $\gamma_{\!\scriptscriptstyle E}$ (o $\gamma_{\!\scriptscriptstyle E}$) e $\gamma_{\!\scriptscriptstyle M}$ si differenziano solo per i diversi approcci progettuali

Tabella 6.2.1 – Coefficienti parziali per le azioni o per l'effetto delle azioni					
CARICHI	EFFETTO	Coefficiente Parziale γ_F (0 γ_E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	$\gamma_{\rm G1}$	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Permanenti non	Favorevole		0,0	0,0	0,0
strutturali (1)	Sfavorevole	$\gamma_{\rm G2}$	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
	Sfavorevole	γ_{Qi}	1,5	1,5	1,3

per permanenti non strutturali compiutamente definiti si usano i coefficienti dei permanenti. Di norma <u>terreno</u> <u>e acqua si assumono come</u> <u>permanenti strutturali</u>

Tabella 6.2.11 – Coefficienti parziali per i parametri geotecnici del terreno				
PARAMETRO	Grandezza a cui applicare il coeff. parziale	Coefficiente Parziale	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γ _{c'}	1,0	1,25
Resistenza non drenata	C _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{ν}	1,0	1,0

VERIFICHE AGLI STATI LIMITE ULTIMI

I coefficienti γ_R si differenziano <u>anche</u> per le **diverse opere geotecniche** e, per una stessa opera, per i **diversi cinematismi di rottura**

Tabella 6.5.1 – Coefficienti parziali γ_R per le verifiche aglistati limite ultimi STR e GEO di muri di sostegno				
VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)	
Capacità portante della fondazione	γ _R =1	γ _R =1	γ _R =1,4	
Scorrimento	γ _R =1	γ _R =1	γ _R =1,1	
Resistenza del terreno a valle	γ _R =1	γ _R =1	γ _R =1,4	

9/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

MURI DI SOSTEGNO - VERIFICHE SLU

Le verifiche devono essere effettuate almeno per i seguenti stati limite:

• SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)

stabilità globale (complesso opera di sostegno-terreno)	Approccio 1 Combinazione 2 : (A2+M2+R2)*	
scorrimento sul piano di posa	con almeno uno dei due approcci: • Approccio 1	
carico limite dell'insieme fondazione-terreno	-Combinazione 1: (A1+M1+R1) -Combinazione 2: (A2+M2+R2) - Approccio 2: (A1+M1+R3)	
Ribaltamento**	EQU + M2	

^{*}la tabella di riferimento per R2 è quella relativa alle opere di materiali sciolti e di fronti di scavo (R2=1,1)

• SLU di tipo strutturale (STR) raggiungimento della resistenza negli elementi strutturali

^{**}il <u>ribaltamento</u> è trattato come stato limite di equilibrio di corpo rigido

MURI DI SOSTEGNO - VERIFICHE SLU

Osservazioni:

- ➤ l'Approccio 1- Combinazione 1 (A1+M1+R1) è generalmente più severo per il dimensionamento strutturale delle opere a contatto con il terreno
- ▶ l'Approccio 1- Combinazione 2 (A2+M2+R2) è generalmente più severo per il dimensionamento geotecnico
-) per il dimensionamento strutturale con l'Approccio 2, γ_R non deve essere portato in conto
- per muri di sostegno dotati di ancoraggi al terreno può essere usato solo l'Approccio 1

11/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

MURI DI SOSTEGNO – CALCOLO DELLE SPINTE

Deve essere giustificato sulla base dei prevedibili spostamenti manufattoterreno (eventualmente con un'analisi di interazione terreno-struttura)

influenza degli spostamenti sul regime di spinta

Per mobilitare la spinta attiva sono sufficienti piccoli spostamenti; per mobilitare la spinta passiva occorrono grandi spostamenti (spesso non compatibili con la funzionalità dell'opera)

NB: La resistenza passiva del terreno antistante il muro può essere considerata al massimo per il 50%; in mancanza di verifiche specifiche <u>tale contributo deve essere trascurato</u>

MURI DI SOSTEGNO - CALCOLO DELLE SPINTE

influenza degli spostamenti sul regime di spinta in terreni incoerenti (EC7)

Tab. C.1 - Rapporto V_a/h

Kind of wall movement	vJh loose soil %	vJh dense soil %
a) V _a	0,4 to 0,5	0,1 to 0,2
b) v _a	0,2	0,05 to 0,1
0) 0	0,8 to 1,0	0,2 to 0,5
d) Va	0,4 to 0,5	0,1 to 0,2
V masimanta nas m		

V_a movimento per mobilizzare la spinta attiva h altezza del muro Tab. C.2 - Rapporto V_p/h

Kind of wall movement	v _e /h loose soil %	v _s /h dense soll %
n) V ₀	7 (1.5) to 25 (4.0)	5 (1.1) to 10 (2,0)
b)	5 (0.9) to 10 (1.5)	3 (0,5) to 6 (1,0)
c)	6 (1,0) to 15 (1,5)	5 (0,5) to 6 (1,3)

V_p movimento per mobilizzare la spinta passiva h altezza del muro

In parentesi le % di V_P/h necessarie per mobilizzare il 50% della spinta

13/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

CONDIZIONI STATICHE -SPINTA ATTIVA E RESISTENZA PASSIVA

Soluzione di Coulomb

$$P_A = K_A q H + \frac{1}{2} K_A \gamma H^2$$

$$K_{A} = \frac{\sin^{2}(\psi + \phi)}{\sin^{2}\psi \sin(\psi - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta)}{\sin(\psi - \delta)\sin(\psi + \beta)}}\right]^{2}}$$

$$K_{P} = \frac{\sin^{2}(\psi - \phi)}{\sin^{2}\psi \sin(\psi + \delta) \left[1 - \sqrt{\frac{\sin(\phi + \delta)\sin(\phi + \beta)}{\sin(\psi + \delta)\sin(\psi + \beta)}}\right]^{2}}$$

$$P_P = \frac{1}{2} K_P \gamma h^2$$

CONDIZIONI SISMICHE

- In condizioni sismiche il problema reale è molto complesso per la sovrapposizione di movimenti traslativi e rotazionali il cui rapporto relativo dipende dalle caratteristiche:
 - dell'opera
 - del terreno
 - del terremoto
- Durante il terremoto l'entità e la distribuzione delle pressioni trasmesse dal terreno variano nel tempo
- Il punto di applicazione della spinta si sposta verso l'alto o verso il basso a seconda che l'opera tenda ad avvicinarsi o allontanarsi dal terreno
- Il moto è amplificato in corrispondenza delle frequenze naturali dell'opera e del deposito che possono muoversi anche in opposizione di fase
- Al termine della scossa sismica possono permanere per un certo periodo sovrappressioni interstiziali in eccesso a tergo dell'opera

È un problema complesso di interazione che nella pratica viene di norma affrontato con metodi semplificati: METODI PSEUDOSTATICI METODI PSEUDODINAMICI (spostamenti)

_.

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

CONDIZIONI SISMICHE

- In condizioni sismiche il problema reale è molto complesso per la sovrapposizione di movimenti traslativi e rotazionali il cui rapporto relativo dipende dalle caratteristiche:
 - dell'opera
 - del terreno
 - del terremoto
- Durante il terremoto l'entità e la distribuzione delle pressioni trasmesse dal terreno variano nel tempo
- Il punto di applicazione della spinta si sposta verso l'alto o verso il basso a seconda che l'opera tenda ad avvicinarsi o allontanarsi dal terreno
- Il moto è amplificato in corrispondenza delle frequenze naturali dell'opera e del deposito che possono muoversi anche in opposizione di fase
- Al termine della scossa sismica possono permanere per un certo periodo sovrappressioni interstiziali in eccesso a tergo dell'opera

È un problema complesso di interazione che nella pratica viene di norma affrontato con metodi semplificati: METODI PSEUDOSTATICI METODI PSEUDODINAMICI (spostamenti)

CONDIZIONI SISMICHE

Collasso di muri di sostegno in condizioni sismiche

(da Vojoudi, 2003)

Terremoto di Kobe, 1995 (M=6.9)

21/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

CONDIZIONI SISMICHE

Norme Tecniche per le Costruzioni – D.M. 14.01.2008

7.11.6.1 REQUISITI GENERALI

(per muri di sostegno)

La sicurezza deve essere garantita <u>prima</u>, <u>durante</u> e <u>dopo</u> il terremoto di progetto

Sono ammissibili spostamenti permanenti che non alterino la resistenza dell'opera, compatibili con la funzionalità dell'opera e dei manufatti interagenti con essa

È comunque necessario portare in conto i seguenti aspetti:

- effetti inerziali nel terreno, nelle strutture di sostegno e negli eventuali carichi aggiuntivi presenti
- comportamento anelastico e non lineare del terreno
- effetto della distribuzione delle pressioni interstiziali, se presenti, sulle azioni scambiate fra il terreno e l'opera di sostegno
- condizioni di drenaggio
- influenza degli spostamenti dell'opera sulla mobilitazione delle condizioni di equilibrio limite

CONDIZIONI SISMICHE

Norme Tecniche per le Costruzioni - D.M. 14.01.2008

7.11.6.1 REQUISITI GENERALI

(segue)

Devono essere considerati almeno gli stessi stati limite delle condizioni statiche

I sistemi di drenaggio devono essere in grado di tollerare gli spostamenti indotti dal sisma, senza che sia pregiudicata la loro funzionalità (in terreni non coesivi il drenaggio a tergo del muro deve essere efficace fino ad una profondità superiore a quella della superficie che delimita il cuneo di rottura)

Si deve verificare preliminarmente l'esistenza di un adeguato margine di sicurezza a liquefazione dei terreni interagenti con il muro

23/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

SPINTA DELL'ACQUA IN CONDIZIONI SISMICHE

(Norme Tecniche per le Costruzioni – D.M. 14.01.2008)

Per opere con terrapieno in falda (es. opere marittime) si devono distinguere due condizioni in relazione alla permeabilità del terreno:

- $k < 5.10^4$ m/s \Rightarrow l'acqua interstiziale si muove insieme allo scheletro solido
- $k > 5.10^4$ m/s \Rightarrow l'acqua interstiziale si muove <u>rispetto</u> allo scheletro solido

EC 8 – Parte 5

$$E_d = 0.5 \gamma * (1 \pm k_v) K H^2 + E_{ws} + E_{wd}$$

- γ^* peso di volume del terreno (immerso)
- γ_w peso di volume dell'acqua
- γ peso di volume del terreno (saturo)
- \boldsymbol{k}_{h} coefficiente sismico orizzontale
- $\mathbf{k}_{_{\mathbf{v}}}$ coefficiente sismico verticale
- K coeffciente di spinta del terreno (statico+ dinamico, funzione anche di θ)
- $\mathbf{E}_{\mathrm{ws}}^{}$ spinta dell'acqua in condizioni statiche

$$y = y - \gamma_w = \gamma$$

$$\tan \theta = \frac{\gamma}{\gamma - \gamma_w} \frac{k_h}{1 \mp k_w}$$

tan
$$\vartheta = \frac{\gamma_d}{\gamma - \gamma_v} \frac{k_h}{1 \mp k_v}$$

 $E_{wd} = \frac{7}{12} k_h \cdot \gamma_v \cdot H^{12}$

ESEMPIO: verifiche agli SLU secondo le NTC08 <u>Stato limite di ribaltamento</u>

Non si mobilita la resistenza del terreno di fondazione, quindi deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU)

Si utilizzano per le **azioni** i coefficienti parziali **EQU** (**Tabella 6.2.1**), avendo calcolato le spinte con i coefficienti parziali di materiale **M2** (**Tabella 6.2.11**)

Per le <u>spinte</u>: il sovraccarico è un carico variabile sfavorevole $\rightarrow \gamma_F = \gamma_{Qi} = 1.5$ il peso del terreno è un carico permanente sfavorevole $\rightarrow \gamma_F = \gamma_{G1} = 1.1$

Momento della spinta dovuta al sovraccarico:

1.5 $(P_{a,d}(q_k)_h H/2 - P_{a,d}(q_k)_v B) = 1.5 (21.54 \cdot 2.595 - 6.73 \cdot 3.80) = 45.5 \text{ kNm/m}$

Momento della spinta dovuta al peso del terreno:

1.1 $(P_{a,d}(\gamma_k)_h H/3 - P_{a,d}(\gamma_k)_v B) = 1.1 (106.21 \cdot 1.73 - 33.18 \cdot 3.80) = 63.4 \text{ kNm/m}$

Momento totale ribaltante $E_d = M_{rib} = 108.9 \text{ kNm/m}$

Il momento stabilizzante è dovuto al peso proprio del muro e del terreno sovrastante (carico permanente favorevole $\to \gamma_F = \gamma_{G1} = 0.9$)

Momento totale stabilizzante $R_d = 0.9 M_W = 0.9 \cdot 666.7 = 600.03 \text{ kNm/m}$

 $R_d/E_d = 5.51 > 1$ verifica soddisfatta

ESEMPIO: verifiche agli SLU secondo le NTC08

Stato limite di scorrimento sul piano di posa - A1 C2 (A2+M2+R2)

L'azione di progetto E_d è la componente della risultante delle forze in direzione parallela al piano di scorrimento della fondazione; la **resistenza di progetto** R_d è il valore della forza di attrito sul piano di scorrimento

Coefficienti parziali da applicare ai parametri geotecnici : γ_{ψ} =1.25, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>spinte dovute al sovraccarico</u> : γ_{0i} =1.3 Coefficiente parziale da applicare alle <u>spinte dovute al peso del terreno</u> : γ_{G1} =1.0 Coefficiente parziale da applicare alla resistenza allo scorrimento : γ_{R} =1.0

Azione di progetto:

$$E_d = 1.3 P_{a,d}(q_k)_h + 1.0 P_{a,d}(\gamma_k)_h = 1.3 \cdot 21.54 + 1.0 \cdot 106.21 = 134.2 \text{ kN/m}$$

coefficiente caratteristico d'attrito fondazione-terreno: $tan\delta_k = tan\phi^i_k = 0.625$ coefficiente <u>di progetto</u> d'attrito fondazione-terreno: $tan\delta_k/\gamma_{\phi^i} = 0.625/1.25 = 0.5$

Resistenza di progetto:

$$\begin{split} R_{d} = & [(W_{tot} + 1.3 \; P_{a,d}(q_k)_v + 1.0 \; P_{a,d}(\gamma_k)_v) \; tan\delta_K / \gamma_\phi] \; / \gamma_R = \\ & [(287.12 + 8.75 + 33.18) \cdot 0.5] \; / \; 1 = 164.5 \; kN/m \end{split}$$

 $R_d/E_d = 1.23 > 1$ verifica soddisfatta

ESEMPIO: verifiche agli SLU secondo le NTC08 Stato limite di scorrimento sul piano di posa – A2 (A1+M1+R3)

Coefficienti parziali da applicare ai parametri geotecnici : $\gamma_{\phi'}$ =1, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>spinte dovute al sovraccarico</u> : γ_{Oi} =1.5 Coefficiente parziale da applicare alle <u>spinte dovute al peso del terreno</u> : γ_{G1} =1.3 Coefficiente parziale da applicare alla resistenza allo scorrimento : γ_{R} =1.1

Azione di progetto:

$$E_d = 1.5 P_{a,k} (q_k)_h + 1.3 P_{a,k} (\gamma_k)_h = 1.5 \cdot 16.36 + 1.3 \cdot 80.64 = 129.4 \text{ kN/m}$$

coefficiente caratteristico d'attrito fondazione-terreno = coefficiente di progetto d'attrito fondazione-terreno (γ_ϕ = 1) : $tan\delta_k/\gamma_\phi$ = 0.625

Resistenza di progetto:

$$\begin{split} R_{d} = & \left[\left(W_{tot} + 1.5 \; P_{a,k} (q_k)_v + 1.3 \; P_{a,k} (\gamma_k)_v \; \right) \; tan \delta_k / \gamma_{\psi} \; \right] / \gamma_R = \\ & \left[\left(287.12 + 1.5 \cdot 6.39 + 1.3 \cdot 31.49 \right) \cdot 0.625 \right] / 1.1 = 191.8 \; kN/m \end{split}$$

R_d/E_d = 1.48 > 1 verifica soddisfatta

ESEMPIO: verifiche agli SLU secondo le NTCO8 Stato limite di collasso per carico limite dell'insieme fondazione-terreno - A1 C2 (A2+M2+R2)

L'azione di progetto E_d è la componente della risultante delle forze in direzione normale al piano di fondazione; la resistenza di progetto R_d è il valore limite della forza normale al piano di fondazione (capacità portante)

Coefficienti parziali da applicare ai parametri geotecnici : $\gamma_{\phi'}$ = 1.25, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>azioni dovute al sovraccarico</u> : γ_{Oi} =1.3 Coefficiente parziale da applicare alle <u>azioni dovute al peso del terreno</u> : γ_{G1} =1.0 Coefficiente parziale da applicare alla capacità portante : γ_{R} =1.0

Anziché applicare il coefficiente parziale γ_{0i} all'effetto dell'azione (spinta), si può applicare γ_{0i} a q_k e poi calcolare la spinta:

$$q_d = 1.3 \; q_k = 13 \; kPa \qquad \Longrightarrow \begin{array}{c} P_{a,d} \left(q_d \right) = K_{A,d} \; q_d \; H = \\ P_{a,d} \left(q_d \right)_h = P_{a,d} \left(q_d \right) \; cos \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right) \; sen \delta_d = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = P_{a,d} \left(q_d \right)_v = \\ P_{a,d} \left(q_d$$

Le componenti di spinta $P_{a,d}(\gamma_k)_h$ e $P_{a,d}(\gamma_k)_v$ dovute al peso del terreno restano invariate $(\gamma_{G1}\!=\!1.0)$

35/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifiche agli SLU secondo le NTC08 <u>Stato limite di collasso per carico limite dell'insieme</u> <u>fondazione-terreno - A1 C2 (A2+M2+R2)</u>

Lo schema di carico è quello cui corrispondono la massima eccentricità e la massima componente orizzontale della risultante

Peso proprio del muro e del terreno sovrastante : $W_{tot} = 287.12 \text{ kN/m}$ Eccentricità dei pesi: $e_G = B/2 - e_W = -0.422 \text{ m}$ (momento orario)

Coordinate dei punti di applicazione delle spinte rispetto alla mezzeria della fondazione:

 Spinta
 x (m)
 z (m)

 $P_a(q_k)$ -B/2 =-1.90
 H/2=2.595
 (sovraccarico)

 $P_a(\gamma_k)$ -B/2=-1.90
 H/3=1.730
 (peso del terreno)

Componente verticale della risultante di progetto :

$$\begin{split} &V = W_{tot} + P_{a,d}(q_d)_v + P_{a,d}(\gamma_{d=k})_v = 287.12 + 8.75 + 33.18 = 329.1 \text{ kN/m} \\ &\text{Componente orizzontale della risultante di progetto :} \\ &H = P_{a,d}(q_d)_h + P_{a,d}(\gamma_{d=k})_h = 28.01 + 106.21 = 134.2 \text{ kN/m} \end{split}$$

Inclinazione della risultante rispetto alla verticale :

i=arctan (H/V)= 0.387 rad = 22.19°

ESEMPIO: verifiche agli SLU secondo le NTC08 Stato limite di collasso per carico limite dell'insieme fondazione-terreno - A1 C2 (A2+M2+R2)

Momento rispetto alla mezzeria della fondazione:

$$\begin{split} &M \! = \! W_{tot} \! \cdot \! (\text{-}0.442) + \! P_{a,d} (q_d)_v \cdot (\text{-}1.9) + \! P_{a,d} (\gamma_{d=k})_v \cdot \! (\text{-}1.9) + \! P_{a,d} (q_d)_h \cdot 2.595 + \! P_{a,d} (\gamma_{d=k})_h \cdot 1.73 \\ &= \text{-}121.17 \cdot 16.63 \cdot 63.05 \, + \, 72.67 \, + \, 183.72 \, = \, 55.55 \, \text{kNm/m} \end{split}$$

Eccentricità : e = M/V = 0.169 m (< B/6 = 0.633 m)

$$q_{lim} = c \; N_c \; s_c \; d_c \; i_c \; b_c \; g_c + q \; N_q \; s_q \; d_q \; i_q \; b_q \; g_q + 0.5 \; \gamma \; B' \; N_\gamma s_\gamma \; d_\gamma i_\gamma b_\gamma g_\gamma = \textbf{179.73 kPa}$$

c =	0	$N_q = \exp(\pi \tanh_d^{\prime}) \tan^2(\pi/4 + \phi_d^{\prime}/2) =$	12.588
$q = \gamma_k h_1 =$	22.8 kPa	$N_{\gamma}=2(Nq-1)\tan\phi'_{d}=$	11.585
B'=B-2e=	3.462 m	$i_q = (1-H/V)^m =$	0.351
ϕ'_d = arctan(tan $\phi'_k/\gamma_{\phi'}$)=	26.56°	$i_{\gamma} = (1-H/V)^{m+1} =$	0.208
$tan\phi'_d = tan \phi'_k/\gamma_{\phi'} =$	0.5	m = (2+B/L)/(1+B/L) =	2
$s_{q}=d_{q}=b_{q}=g_{q}=s_{\gamma}=d_{\gamma}=b_{\gamma}=g_{\gamma}=$	1	(Vesic, 1975)	

Azione di progetto: $E_d = V = 329.1 \text{ kN/m}$

Resistenza di progetto : $R_d = q_{lim}B'/\gamma_R = 622.2 \text{ kN/m}$

37/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifiche agli SLU secondo le NTC08 Stato limite di collasso per carico limite dell'insieme fondazione-terreno - A2 (A1+M1+R3)

Coefficienti parziali da applicare ai parametri geotecnici : $\gamma_{\phi^*}=1.0$, $\gamma_{\gamma}=1.0$ Coefficiente parziale da applicare alle <u>azioni dovute al sovraccarico</u> : $\gamma_{\text{Gi}}=1.5$ Coefficiente parziale da applicare alle <u>azioni dovute al peso del terreno</u> : $\gamma_{\text{GI}}=1.3$ Coefficiente parziale da applicare alla capacità portante: $\gamma_{\text{R}}=1.4$

Spinta dovuta al sovraccarico calcolata applicando γ_{Qi} (=1.5) a $q_k \colon$

$$q_d = 1.5 \; q_k = 15 \; kPa \\ \begin{array}{lll} P_{a,d}(q_d) = K_{A,k} \; q_d \; H = & 26.34 & kN/m \\ \\ P_{a,d}(q_d)_h = P_{a,d}(q_d) \; cos\delta_{d=k} = & 24.54 & kN/m \; \; componente \; orizz. \\ \\ P_{a,d}(q_d)_v = P_{a,d}(q_d) \; sen\delta_{d=k} = & 9.58 & kN/m \; \; componente \; vert. \end{array}$$

Spinta dovuta al peso proprio del terreno ($\gamma_{G1}=1.3$):

$$\begin{array}{lll} P_{a,d}\left(\gamma_{k}\right) = 1.3 \; P_{a,k}(\gamma_{k}) = & 112.54 & kN/m \\ \\ P_{a,d}\left(\gamma_{k}\right)_{h} = P_{a,d}(\gamma_{k}) \; cos\delta_{d=k} = & 104.83 & kN/m \; \mbox{componente orizz.} \\ \\ P_{a,d}(\gamma_{k})_{v} = P_{a,d}(\gamma_{k}) \; sen\delta_{d=k} = & 40.94 & kN/m \; \mbox{componente vert.} \end{array}$$

ESEMPIO: verifiche agli SLU secondo le NTC08 Stato limite di collasso per carico limite dell'insieme fondazione-terreno - A2 (A1+M1+R3)

Peso proprio del muro e del terreno sovrastante : $1.3~W_{tot} = 373.26~kN/m$ Eccentricità dei pesi: $e_G = B/2 - e_W = -0.422m$ (momento orario)

Componente verticale della risultante di progetto :

V= $1.3W_{tot}$ + $P_{a,d}(q_d)_v$ + $P_{a,d}(\gamma_k)_v$ = 373.26 + 9.58 + 40.94 = 423.78 kN/m Componente orizzontale della risultante di progetto :

 $H = P_{a,d}(q_d)_h + P_{a,d}(\gamma_k)_h = 24.54 + 104.83 = 129.37 \text{ kN/m}$

Inclinazione della risultante rispetto alla verticale :

i=arctan (H/V)= 0.296 rad = 16.98°

Momento rispetto alla mezzeria della fondazione:

 $\mathsf{M} = 373.26 \cdot (-0.442) + 9.58 \cdot (-1.9) + 40.94 \cdot (-1.9) + 24.54 \cdot 2.595 + 104.83 \cdot 1.73$

= -157.52 - 18.21 - 77.79 + 63.67 + 181.35 = -8.51 kNm/m

Eccentricità : e = M/V = -0.020 m (< B/6 = 0.633 m)

39/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifiche agli SLU secondo le NTC08 <u>Stato limite di collasso per carico limite dell'insieme</u> <u>fondazione-terreno - A2 (A1+M1+R3)</u>

$$q_{\text{lim}} = c \; N_c \; s_c \; d_c \; i_c \; b_c \; g_c + q \; N_q \; s_q \; d_q \; i_q \; b_q \; g_q + 0.5 \; \gamma \; B' \; N_\gamma s_\gamma \; d_\gamma i_\gamma b_\gamma g_\gamma = \textbf{586.99 kPa}$$

$$\begin{array}{lllll} c = & 0 & N_q = exp(\pi \tan \varphi'_d) tan^2(\pi/4 + \varphi_d'/2) = & 23.177 \\ q = \gamma_k h_1 = & 22.8 \text{ kPa} & N_\gamma = 2(Nq-1) tan \varphi'_d = & 27.715 \\ B' = B - 2e = & 3.760 \text{ m} & i_q = (1 - H/V)^m = & 0.483 \\ \varphi'_d = \operatorname{arctan}(\tan \varphi'_k/\gamma_{\varphi'}) = & 32^\circ & i_\gamma = (1 - H/V)^{m+1} = & 0.335 \\ \tan \varphi'_d = \tan \varphi'_k/\gamma_{\varphi'} = & 0.625 & m = (2 + B/L)/(1 + B/L) = & 2 \\ s_q = d_q = b_q = g_q = s_\gamma = d_\gamma = b_\gamma = g_\gamma = & 1 & \textit{(Vesic, 1975)} \end{array}$$

Azione di progetto: $E_d = V = 423.78 \text{ kN/m}$

 $R_d/E_d = 3.72 > 1$

Resistenza di progetto : $R_d = q_{lim}B'/\gamma_R = 1576.42 \text{ kN/m}$

Norme Tecniche per le Costruzioni – D.M. 14.01.2008 CONDIZIONI SISMICHE - METODI DI ANALISI

L'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante :

- ANALISI DINAMICHE AVANZATE
- METODI PSEUDOSTATICI
- METODI DEGLI SPOSTAMENTI (si utilizzano i valori caratteristici delle azioni statiche e dei parametri di resistenza)

L'analisi **pseudostatica** si effettua mediante metodi all'equilibrio limite Il modello deve comprendere:

- · l'opera di sostegno
- il cuneo di terreno a tergo dell'opera
- gli eventuali sovraccarichi agenti sul cuneo

Nei metodi pseudostatici l'azione sismica è rappresentata da una forza statica equivalente, prodotto delle forze di gravità per un opportuno coefficiente sismico

Norme Tecniche per le Costruzioni – D.M. 14.01.2008 CONDIZIONI SISMICHE – METODO PSEUDOSTATICO

I coefficienti sismici **orizzontale e verticale**, $\mathbf{k_h}$ e $\mathbf{k_v}$, sono valutati mediante le seguenti espressioni:

$$k_h = \beta_m \cdot a_{max}/g$$
 $k_v = \pm 0.5 k_h$

$$a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$$
 accelerazione orizzontale massima al sito accelerazione orizzontale massima al sito su terreno rigido $S_S \in S_T$ coefficienti di amplificazione stratigrafica e topografica accelerazione di gravità

eta_m si ricava dalla		Categoria di sottosuolo		
T	abella 7.11.II	A	B, C, D, E	
		β_{m}	β_{m}	
	$0.2 \le a_g(g) \le 0.4$	0,31	0,31	
	$0.1 \le a_g(g) \le 0.2$	0,29	0,24	
	$a_{g}(g) \leq 0,1$	0,20	0,18	

 $\begin{array}{l} \textbf{NB:} \ \text{per muri che non} \\ \text{siano in grado di subire} \\ \text{spostamenti relativi } \beta_m {=} 1 \end{array}$

Punto di applicazione dell'incremento di spinta dovuto al sisma:

- muro libero di ruotare o traslare → stesso punto di applicazione della spinta statica
- ullet altri casi, in assenza di studi specifici ightarrow a metà altezza del muro

퐦

ESEMPIO: verifica in condizioni sismiche secondo le NTC08

AZIONE SISMICA

Località: Pistoia

Vita nominale : $V_N \ge 50$ anni Classe d'uso : II $(C_U=1)$

Periodo di riferimento : $V_R = V_N C_U = 50$ anni

Stato limite ultimo : SLV (P_{VR} =10%) Periodo di ritorno : T_R = 475 anni

TR	a _g	Fo	To
[anni]	[g]	[-]	[s]
30	0.051	2.505	0.248
50	0.063	2.523	0.264
72	0.073	2.502	0.270
101	0.084	2.504	0.274
140	0.096	2.486	0.279
201	0.113	2.427	0.283
475	0.153	2.404	0.293
975	0.196	2.380	0.303
2475	0.260	2.396	0.317

Categoria di sottosuolo: ${f B}
ightarrow$ coefficiente $\,{f S}_S = 1,40\text{-}0,4\cdot{f F}_o\cdot{a_g}/g = 1,25
ightarrow {f S}_S = 1,20$

Coefficiente di amplificazione topografica $S_T = 1$

$$a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g = 1.20 \cdot 1 \cdot 0.153 = 0.184 g$$

 $\beta_m = 0.24$

 $k_h = \beta_m \cdot a_{max}/g = 0.044$

 $k_v = \pm 0.022$

	Categoria di sottosuolo	
	A	B, C, D, E
	β_{m}	β_{m}
$0.2 \le a_g(g) \le 0.4$	0,31	0,31
$0.1 \le a_g(g) \le 0.2$	0,29	0,24
$a_g(g) \le 0,1$	0,20	0,18

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 Calcolo delle spinte in condizioni sismiche

 $(\beta_m = 0.24)$

PER LE VERIFICHE SISMICHE ALLO STATO LIMITE ULTIMO SI ASSUMONO I COEFFICIENTI PARZIALI SULLE AZIONI PARI ALL'UNITÀ $(\gamma_E = \gamma_F = 1)$

19/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifica in condizioni sismiche secondo le NTC08

Stato limite di ribaltamento

Trattandosi di un meccanismo di 'rottura' fragile può essere più opportuno calcolare le spinte con $\beta_m\!=\!1$ (anche l'osservazione di casi reali evidenzia che la maggior parte dei crolli in condizioni sismiche avvengono per ribaltamento)

Per
$$\beta_m = 1 \rightarrow k_h = 0.184$$
 $k_v = 0.092 \rightarrow \theta^{(-)} = 0.1999$ $^{(\cdot)}K_{AE,d} = 1.006 \rightarrow P_{a,d}(\gamma_k) = 233.69 \text{ kN/m} \rightarrow P_{a,d}(\gamma_k)_h = 223.06 \text{ kN/m} \ P_{a,d}(\gamma_k)_v = 69.69 \text{ kN/m}$

Momento totale ribaltante (dovuto alla spinta γ_E =1.0) $E_d = M_{rib} = 1.0 \ (P_{a,d}(\gamma_k)_h \ H/3 - P_{a,d}(\gamma_k)_v \ B) = 1.0 \ (223.06 \cdot 1.73 - 69.69 \cdot 3.80) = 121.02 \ kNm/m$

Momento totale stabilizzante (dovuto al peso proprio del muro e del

 $M_W = W(1-k_v) e_{Wv} - k_h W e_{Wh} = 260.71 \cdot 2.317 - 52.83 \cdot 2.211 = 487.2 \text{ kNm/m}$

terreno sovrastante, incluse le f. d'inerzia $\rightarrow \gamma_E = 1.0$)

 $R_d/E_d = 4.03 > 1$ verifica soddisfatta

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 <u>Stato limite di scorrimento sul piano di posa - A1 C2</u> (A2+M2+R2)

Coefficienti parziali da applicare ai parametri geotecnici : γ_{ϕ} : =1.25, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>spinte dovute al peso del terreno</u> : γ_{G1} =1.0 Coefficiente parziale da applicare alla resistenza allo scorrimento : γ_{R} =1.0

Azione di progetto:

 $E_d = 1.0 [P_{a,d}(\gamma_k)_h] + k_h W = 1.0 \cdot (117.28) + 12.63 = 129.9 kN/m$

coefficiente caratteristico d'attrito fondazione-terreno: $tan\delta_k = tan\phi'_k = 0.625$ coefficiente <u>di progetto</u> d'attrito fondazione-terreno: $tan\delta_k/\gamma_{a'} = 0.625/1.25 = 0.5$

Resistenza di progetto:

 $R_{d} = \left[\left(W(1-k_{v}) + 1.0 \; P_{a,d}(\gamma_{k})_{v} \; \right) \; tan\delta_{k} / \gamma_{\phi'} \; \right] / \gamma_{R} = \\ \left[\left(280.8 + 36.64 \right) \cdot 0.5 \; \right] / 1 = 158.7 k N / m \; ds$

 $R_d/E_d = 1.22 > 1$ verifica soddisfatta

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 Stato limite di scorrimento sul piano di posa – A2 (A1+M1+R3)

Coefficienti parziali da applicare ai parametri geotecnici : γ_{φ} =1, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>spinte dovute al peso del terreno</u> : γ_{G1} =1.0 Coefficiente parziale da applicare alla resistenza allo scorrimento : γ_{R} =1.1

Azione di progetto:

$$E_d = 1.0 P_{a,k} (\gamma_k)_h + k_h W = 88.91 + 12.63 = 129.9 kN/m$$

coefficiente caratteristico d'attrito fondazione-terreno = coefficiente di progetto d'attrito fondazione-terreno (γ_ϕ = 1) : $tan\delta_k/\gamma_\phi$ = 0.625

Resistenza di progetto:

 $R_{d} = \left[\left(W(1-k_{v}) + 1.0 \; P_{a,k}(\gamma_{k})_{v} \right) \tan \delta_{k} / \gamma_{\phi'} \; \right] / \gamma_{R} = \left[\left(280.80 + 34.72 \right) \cdot 0.625 \right] / 1.1 = 185.2 \; kN/m$

 $R_d/E_d = 1.77 > 1$ verifica soddisfatta

53/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 Stato limite di scorrimento sul piano di posa

b (m)	R_d/E_d	
	A1-C2	A2
1.8	1.12	1.62
2.2	1.22	1.77
2.6	1.31	1.90
3	1.40	2.02

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 Stato limite di collasso per carico limite dell'insieme fondazione-terreno - A1 C2 (A2+M2+R2)

Coefficienti parziali da applicare ai parametri geotecnici : $\gamma_{\varphi'}$ =1.25, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>azioni dovute al peso del terreno</u> : γ_{G1} =1.0 Coefficiente parziale da applicare alla capacità portante : γ_{R} =1.0

Peso e f. d'inerzia verticali del muro+terreno sovrastante: $(1-k_v)W=280.8kN/m$ Eccentricità : $e_{Gv}=B/2-e_{Wv}=-0.417 m$ (momento orario)

Componente verticale della risultante di progetto :

 $V = (1-k_v)W + P_{a,d}(\gamma_k)_v = 280.80 + 36.64 = 317.4 \text{ kN/m}$

Componente orizzontale della risultante di progetto :

 $H = k_h W + P_{a,d}(\gamma_k)_h = 12.63 + 117.28 = 129.9 \text{ kN/m}$

Inclinazione della risultante rispetto alla verticale :

i=arctan (H/V) = 0.388 rad = 22.26°

55/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 <u>Stato limite di collasso per carico limite dell'insieme</u> <u>fondazione-terreno - A1 C2</u> (A2+M2+R2)

Momento rispetto alla mezzeria della fondazione:

M= $(1-k_v)W\cdot(-0.417) + k_hW\cdot(2.211) + P_{a,d}(\gamma_{d=k})_v\cdot(-1.9) + P_{a,d}(\gamma_{d=k})_h\cdot(1.73)$ = -117.00 + 27.93 -69.62 + 202.88 = 44.19 kNm/m

Eccentricità : e = M/V = 0.139 m (< B/6 = 0.633 m)

 $q_{\text{lim}} = c \, N_c \, s_c \, d_c \, i_c \, b_c \, g_c + q \, N_q \, s_q \, d_q \, i_q \, b_q \, g_q + 0.5 \, \gamma \, B' \, N_\gamma s_\gamma \, d_\gamma i_\gamma b_\gamma g_\gamma = 180.06 \, kPa$

 $N_{d} = \exp(\pi \tan \phi'_{d}) \tan^{2}(\pi/4 + \phi_{d}'/2) = 12.588$ c = $q = \gamma_k h_1 =$ 22.8 kPa $N_{y} = 2(Nq-1)tan\phi'_{d} =$ 11.585 $i_{a} = (1-H/V)^{m} =$ 0.349 B'=B-2e= 3.522 m $i_{v} = (1-H/V)^{m+1} =$ $\phi'_{d} = \arctan(\tan \phi'_{k}/\gamma_{\phi'}) =$ 26.56° 0.206 $tan\phi'_d = tan \phi'_k/\gamma_{\phi'} =$ m = (2+B/L)/(1+B/L) = $s_{q} = d_{q} = b_{q} = g_{q} = s_{y} = d_{y} = b_{y} = g_{y} = 1$ (Vesic, 1975)

Azione di progetto: $E_d = V = 317.5 \text{ kN/m}$

Resistenza di progetto : $R_d = q_{lim}B'/\gamma_R = 634.1 \text{ kN/m}$

 $R_d/E_d = 2.00 > 1$

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 <u>Stato limite di collasso per carico limite dell'insieme</u> <u>fondazione-terreno - A2 (A1+M1+R3)</u>

Coefficienti parziali da applicare ai parametri geotecnici : γ_{ψ} =1.0, γ_{γ} =1.0 Coefficiente parziale da applicare alle <u>azioni dovute al peso del terreno</u> : γ_{G1} =1.0 Coefficiente parziale da applicare alla capacità portante: γ_{R} =1.4

Peso e f. d'inerzia verticali del muro+terreno sovrastante: 1.0(1-k_v)W=280.8 kN/m

Eccentricità : $e_{Gv} = B/2-e_{Wv} = -0.417 \text{ m}$ (momento orario)

Forza d'inerzia orizzontale del muro+terreno sovrastante: khW=12.63 kN/m

Componente verticale della risultante di progetto :

 $V=1.0 [(1-k_v)W + P_{a,k}(\gamma_k)_v] = 280.8 + 34.72 = 315.53 kN/m$

Componente orizzontale della risultante di progetto :

 $H= 1.0[k_hW + P_{a,k}(\gamma_k)_h] = 12.63 + 88.91 = 101.54 \text{ kN/m}$

Inclinazione della risultante rispetto alla verticale :

 $i=arctan (H/V) = 0.275 rad = 15.74^{\circ}$

57/

Claudia Madiai - Muri di sostegno in c.a. Corso di aggiornamento professionale: Progettazione geotecnica secondo le NTC 2008 - Pistoia, 20 maggio 2011

ESEMPIO: verifica in condizioni sismiche secondo le NTC08 <u>Stato limite di collasso per carico limite dell'insieme</u> <u>fondazione-terreno - A2 (A1+M1+R3)</u>

Momento rispetto alla mezzeria della fondazione:

M= 280.8·(-0.417) + 12.63·(2.211)+ 88.91·(1.73)+ 34.72·(-1.9) = -1.24 kNm/m Eccentricità : e = M/V = -0.004 m (<B/6=0.633m)

$$q_{lim} = c \, N_c \, s_c \, d_c \, i_c \, b_c \, g_c + q \, N_q \, s_q \, d_q \, i_q \, b_q \, g_q + 0.5 \, \gamma \, B' \, N_\gamma s_\gamma \, d_\gamma i_\gamma b_\gamma g_\gamma = \textbf{642.49 kPa}$$

$$\begin{array}{lllll} c = & 0 & N_q = exp(\pi \tan \phi'_d) tan^2(\pi/4 + \phi_d'/2) = & 23.177 \\ q = \gamma_k h_1 = & 22.8 \text{ kPa} & N_\gamma = 2(\text{Nq-1}) tan \phi'_d = & 27.715 \\ B' = B - 2e = & 3.792 \text{ m} & i_q = (1 - \text{H/V})^m = & 0.516 \\ \phi'_d = \arctan(\tan \phi'_k/\gamma_{\phi'}) = & 32^\circ & i_\gamma = (1 - \text{H/V})^{m+1} = & 0.370 \\ \tan \phi'_d = \tan \phi'_k/\gamma_{\phi'} = & 0.625 & m = (2 + B/L)/(1 + B/L) = & 2 \\ s_d = d_0 = b_0 = g_0 = s_\gamma = d_\gamma = b_\gamma = g_\gamma = & 1 & \textit{(Vesic, 1975)} \\ \end{array}$$

Azione di progetto: $E_d = V = 315.5 \text{ kN/m}$

 $R_d/E_d = 5.52 > 1$

Resistenza di progetto : $R_d = q_{lim}B'/\gamma_R = 1740.3 \text{ kN/m}$

