

## ISTA 421 + INFO 521 Machine Learning

### **Probability Review**

**Clay Morrison** 

claytonm@email.arizona.edu Harvill 437A, 621-6609

11 September 2017

## References for probability

#### Recommend:

```
(Ivl 1) Doing Bayesian Data Analysis (DBDA)
Ch 2, 4, 5
(Ivl 2) First Course in Machine Learning (FCML)
Ch 2.2 (foundations),
Ch 2.3 (Discrete),
Ch 2.4-2.5 (Continuous)
Ch 2.6-2.7 (Expectation and Maximum Likelihood)
Ch 3 (Bayesian)
(Ivl 3) Pattern Recognition and Machine Learning (PRML)
Ch 1.2 (foundations),
Ch 2.1-2.2 (Discrete),
Ch 2.3 (Continuous)
```

Google (and WikiPedia) for unfamiliar terms and alternative explanations.

### Wisdom from tea dipper handle



### **Probability semantics**

Two broad interpretations of probability (variants exist for both)

- 1) Representation of expected frequency ("frequentist")
- 2) Degree of belief ("Bayesian")

There is a 20% chance of rain tomorrow.



#### **Sample Space** of *outcomes* (often denoted by $\Omega$ )

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by  $\omega$  and we can say things like, e.g., "for each  $\omega \in \Omega$ ..."



#### **Sample Space** of *outcomes* (often denoted by $\Omega$ )

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by  $\omega$  and we can say things like, e.g., "for each  $\omega \in \Omega$ ..."

**Event** (subset of  $\Omega$ ) ...does or does not contain (is true or false for) a particular outcome odd  $\{1, 3, 5\}$ , even  $\{2, 4, 6\}$ , prime  $\{2, 3, 5\}$ 



#### **Sample Space** of *outcomes* (often denoted by $\Omega$ )

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by  $\omega$  and we can say things like, e.g., "for each  $\omega \in \Omega$ ..."

**Event** (subset of  $\Omega$ ) ...does or does not contain (is true or false for) a particular outcome odd  $\{1, 3, 5\}$ , even  $\{2, 4, 6\}$ , prime  $\{2, 3, 5\}$ 

### Semantics of Set Operations

Equivalence between "set" and "proposition" representations.

- 1. Set *E*: outcomes s.t. proposition *E* is true.
- 2. Union,  $E \cup F$ : logical OR between propositions E and F.
- 3. Intersection,  $E \cap F$ : logical AND
- 4. Complement,  $E^{C}$ : logical negation



#### Sample Space of *outcomes* (often denoted by $\Omega$ )

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by  $\omega$  and we can say things like, e.g., "for each  $\omega \in \Omega$ ..."

**Event** (subset of  $\Omega$ ) ...does or does not contain (is true or false for) a particular outcome odd  $\{1, 3, 5\}$ , even  $\{2, 4, 6\}$ , prime  $\{2, 3, 5\}$ 

Denote the **collection of measurable events** (ones we want to assign probabilities to) by S.

S must include  $\varnothing$  and  $\Omega$ 

These special events represent the cases where "nothing" among all the choices happens (impossible), and "something" happens (certain).

Reason for being technical: It is important to be tuned into what a particular probability is about (precisely!).



#### **Sample Space** of *outcomes* (often denoted by $\Omega$ )

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by  $\omega$  and we can say things like, e.g., "for each  $\omega \in \Omega$ ..."

**Event** (subset of  $\Omega$ ) ...does or does not contain (is true or false for) a particular outcome odd  $\{1, 3, 5\}$ , even  $\{2, 4, 6\}$ , prime  $\{2, 3, 5\}$ 

Denote the **collection of measurable events** (ones we want to assign probabilities to) by S.

S must include  $\varnothing$  and  $\Omega$ 

S is *closed* under set operations

...aka:  $\sigma$ -algebra

$$\alpha, \beta \in S \Rightarrow \alpha \cup \beta \in S$$
,  $\alpha \cap \beta \in S$ ,  $\alpha^{c} = \Omega - \alpha \in S$ , etc.

**Translation**: We need to be able to deal with concepts such as "either A or B" happens, or "both A and B" happen.

# 1

## Basic terminology and rules

#### **Probability Space**

A **probability space** is a sample space augmented with a function, P, that assigns a **probability** to each event,  $E \subset S$ .

#### Kolmogorov Axioms

- 1.  $0 \le P(E) \le 1$  for all  $E \subset S$ .
- 2.  $P(\Omega) = 1$ .
- 3. If  $E \cap F = \emptyset$  then  $P(E \cup F) = P(E) + P(F)$ .

#### Important Consequences

- 1.  $P(\emptyset) = 0$ .
- 2.  $P(E^{C}) = 1 P(E)$
- 3. In general,  $P(E \cup F) = P(E) + P(F) P(E \cap F)$ .



#### Random variables

Defined by functions mapping outcomes ( $\omega$ ) to values

A random variable is a way of reporting an attribute of an outcome

Typically r.v. are denoted by uppercase letters (e.g., X)

Generic values are corresponding lower case letters (e.g., x)

Shorthand: P(x) = P(X=x)

Value "type" is arbitrary (typically categorical or real)

#### Example (from K&F)

Outcomes are student grades (A,B,C)

Random variable G=f<sub>GRADE</sub>(student)

$$P('A') = P(G = 'A') = P(\{w \in \Omega : f_{GRADE}(w) = 'A'\})$$

We sometimes use sets, but usually R.Vs.:  $P(A \cap B \cap C) \equiv P(A, B, C)$ 



#### Random Variable

- Formally, a **random variable** is a function, X that assigns a number to each outcome in S (e.g., dead  $\rightarrow$  0, alive  $\rightarrow$  1).
- ► Key consequence: a random variable divides the sample space into **equivalence classes**: sets of outcomes that share some property (differ only in ways irrelevant to *X*)

#### Example

- Let S = all sequences of 3 coin tosses.
- ► We can define a r.v. *X* that counts number of heads.
- ► Then *HHT* and *HTH* are equivalent in the eyes of *X*:

$$X(HHT) = X(HTH) = 2$$

#### Distribution of a Random Variable

- The expression P(X = x) refers to the probability of the event  $E = \{\omega \in S : X(\omega) = x\}$ .
- Sometimes we can obtain it by breaking it down into simpler, mutually exclusive events and adding their probabilities (Kolmogorov axiom 3)

#### Example

- $\triangleright$  *S* = all sequences of 3 coin tosses.
- $ightharpoonup X(\omega) = \# \text{ of heads in } \omega.$

$$\{X = 2\} = \{HHT\} \cup \{HTH\} \cup \{THH\}$$

$$P(X = 2) = P(HHT) + P(HTH) + P(THH)$$

$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

#### Distribution of a Random Variable

- ► Similarly, P(X < x) is the probability of the event  $E = \{\omega \in S : X(\omega) < x\}.$
- ► Can sometimes obtain it the same way as we did above.

#### Example

- $\triangleright$  *S* = all sequences of 3 coin tosses.
- $\blacktriangleright$   $X(\omega) = \#$  of heads in  $\omega$ .

$$\{X < 2\} = \{TTT\} \cup \{TTH\} \cup \{THT\} \cup \{HTT\}$$

$$P(X < 2) = P(TTT) + P(TTH) + P(THT) + P(HTT)$$

$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

Distribution of a Random Variable

#### Example, continued

► Notice that in this example we could also have written

$${X < 2} = {X = 0} \cup {X = 1}$$
  
 $P(X < 2) = P(X = 0) + P(X = 1)$ 

which is useful if we have already calculated P(X = x) for each value of x.

► This always works if *X* is always an integer.

#### **Joint Probability**

- ▶ We have already seen the concept of *intersecting events*:  $A \cap B$  is the event that occurs when *both* A and B are true A the same time.
- ▶  $P(A \cap B)$  is called the **joint probability** of A and B.
- ▶ If *A* is  $\{X = x\}$  and *B* is  $\{Y = y\}$ , then  $A \cap B$  means X = x and Y = y at the same time.
- ▶ If X and Y are discrete, P(X = x, Y = y), for different combinations of x and y, characterize the **joint distribution** of X and Y.

We write 
$$P(x,y)$$
 for  $P(\{w \in \Omega : X(w) = x \text{ and } Y(w) = y\})$   
Alternatively,  $P((X = x) \cap (Y = y))$ 

Note that the comma in the usual form, P(x,y), is read as "and". Here events are being defined by assignments of random variables





#### **Joint Probability**



#### **Joint Probability**



Marginalization: 
$$P(A) = \sum_{b \in B} P(A, B)$$

Formulas that you should be comfortable with are marked by \*.

### **Conditional Probability**

"probability in context"

#### Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$



### **Conditional Probability**

"probability in context"

#### Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Example: what is the probability that you roll 2 (on a six sided die), given that you know you have rolled a prime number?



### **Product Rule**

"probability in context"

Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Applying a bit of algebra,

$$P(A \cap B) = P(B)P(A|B)$$

## **Chain (Product) Rule**

"probability in context"

#### Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Applying a bit of algebra,

$$P(A \cap B) = P(B)P(A|B)$$

In general, we have the **chain** (**product**) rule:

Product 
$$P \Big( A_1 \cap A_2 \Big) = P(A_1) P(A_2 \, \big| \, A_1)$$
 
$$P \Big( A_1 \cap A_2 \cap \dots \cap A_N \Big) = P(A_1) P(A_2 \, \big| \, A_1) P(A_3 \, \big| \, A_1 \cap A_2) \, \dots \, P(A_N \, \big| \, A_1 \cap A_2 \cap \dots \cap A_{N-1})$$
 Chain 
$$P \Big( A_1 \cap A_2 \cap \dots \cap A_N \Big) = P(A_1) P(A_2 \, \big| \, A_1) P(A_3 \, \big| \, A_1 \cap A_2 \cap \dots \cap A_{N-1})$$

### **Bayes Rule**

Going back to the definition of conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Applying a little bit more algebra,

$$P(A \cap B) = P(A)P(B|A)$$
and 
$$P(A \cap B) = P(B)P(A|B)$$
and thus 
$$P(B)P(A|B) = P(A)P(B|A)$$
and we get 
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$
Bayes rule \*\*

### **Bayes Rule**

Going back to the definition of conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Applying a little bit more algebra,

$$P(A \cap B) = P(A)P(B|A)$$
and 
$$P(A \cap B) = P(B)P(A|B)$$
and thus 
$$P(B)P(A|B) = P(A)P(B|A)$$
and we get 
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

**Pro tip!**: Common to represent denominator as marginalization of numerator:

$$P(B) = \sum_{a \in A} P(A, B)$$
$$= \sum_{a \in A} P(A)P(B|A)$$

Bayes rule \*