Electronique Fondamentale II

2^{ième} Année CPI

TD N°1

Exercice 01

Soit à considérer le montage suivant:

On assume que $R_1\gg R_4$ et $Z_e\gg R_4$, Z_e étant l'impédance d'entrée de l'amplificateur opérationnel.

- 1. L'AOP est considéré comme étant idéal, montrer que le gain $G=\frac{v_{s}}{v_{e}}=-1$
- **2.** Montrer que le gain en circuit-ouvert de l'AOP est tel que $|G_d| = \frac{R_1}{R_4} \frac{v_s}{v}$

Exercice 02

Soit à considérer le montage suivant:

Déterminer R_1 tel que $v_s = v_e$.

Exercice 03

Soit à considérer le montage suivant:

- **1.** Déterminer i_L en fonction de v_e .
- **2.** Choisir une possible combinaison de résistances (R_1 , R_2 , R_3 , R_4) qui nous assure la condition $i_L = v_e$.

Exercice 04

Soit le montage suivant:

Déterminer v_s en fonction de v_a et v_b

Exercice 05

Soit le circuit de la figure suivante :

- **1.** Déterminer la fonction de transfert $T_v=v_s/v_e$;
- **2.** On veut réaliser un oscillateur en bouclant ce circuit déphaseur sur un amplificateur opérationnel (AOP) inverseur représenté sur la figure suivante :

Mr. ACED Mohamed Réda 1 | Page

2^{ième} Année CPI

TD N°1

- a. Poser les conditions d'oscillation;
- **b.** A quelles condition de phase doit obéir le circuit déphaseur ; en déduire la fréquence d'oscillation en fonction de R et C;
- **c.** Déterminer le gain minimum imposé à l'amplificateur pour que le système oscille.
- 3. On veut réaliser un oscillateur de fréquence 400Hz, déterminer les valeurs de R, C, R_1 et R_2 . ($R_3 \rightarrow 0$)
- **4.** On invertit cette fois les condensateurs et les résistances du circuit déphaseur.
- **a.** Déterminer la nouvelle fonction de transfert du circuit déphaseur ;
- **b.** Déterminer la nouvelle fréquence d'oscillation

Exercice 06

Soit le circuit oscillant à pont de *WIEN* de la figure suivante :

- **1.** Déterminer sa fonction de transfert $T_v=v_s/v_e$;
- 2. On veut réaliser un oscillateur avec le pont WIEN représenté sur la figure cidessous:

Déterminer la fréquence d'oscillation de l'ensemble ainsi que le gain imposé à l'amplificateur AOP.

3. Quelles sont les valeurs de R, C, R_1 et R_2 , si on veut que le montage oscille à f_0 =1kHz.

Mr. ACED Mohamed Réda 2 | Page