Einführung in die Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

2. Übungsblatt

Aufgabe 5 (Dynkin-Systeme, 4 = 2 + 2 Punkte).

(a) Es seien $n \in \mathbb{N}$ und Ω eine endliche Menge mit $|\Omega| = 2n$. Zeigen Sie, dass

$$\mathcal{D} := \{ A \subseteq \Omega : |A| \text{ gerade } \}$$

ein Dynkin-System ist.

(b) Zeigen Sie, dass \mathcal{D} jedoch für $n \geq 2$ keine σ -Algebra ist.

Aufgabe 6 (Eindeutigkeit von Wahrscheinlichkeitsmaßen, 4 = 2 + 2 Punkte).

(a) Beweisen Sie Satz 03.18 (Maßeindeutigkeitssatz) aus dem Skript mit Hilfe der Beweisstrategie 03.17:

Seien (Ω, \mathcal{A}) ein messbarer Raum, \mathcal{E} ein \cap -stabiler Erzeuger von \mathcal{A} und \mathbb{P}_1 , \mathbb{P}_2 Wahrscheinlichkeitsmaße auf \mathcal{A} . Es gelte

$$\mathbb{P}_1(E) = \mathbb{P}_2(E) \qquad \forall E \in \mathcal{E}.$$

Zeigen Sie, dass dann schon $\mathbb{P}_1 = \mathbb{P}_2$ folgt.

(b) Sei nun $\Omega = \{a, b, c, d\}$ und $\mathcal{E} = \{A, C\}$ mit $A = \{a, b\}$ und $C = \{b, c\}$. Zeigen Sie, dass $\sigma(\mathcal{E}) = 2^{\Omega}$ und dass zwei nicht-identische Wahrscheinlichkeitsmaße \mathbb{P}_i auf $(\Omega, \mathcal{P}(\Omega))$ existieren mit

$$\mathbb{P}_1(E) = \mathbb{P}_2(E)$$
 für alle $E \in \mathcal{E}$.

Warum ist der Maßeindeutigkeitssatz aus (a) hier nicht anwendbar?

Aufgabe 7 (Negative Binomial verteilung, 4 = 3 + 1 Punkte).

(a) Sei $\Omega = \mathbb{N}_0$, $\mathcal{A} = 2^{\mathbb{N}_0}$ und $\mathbb{p} : \Omega \longrightarrow [0,1]$ für $p \in (0,1)$, $r \in \mathbb{N}$, $\omega \in \Omega$ gegeben durch

$$\mathbb{p}(\omega) = {\omega + r - 1 \choose \omega} p^r (1 - p)^{\omega}.$$

Zeigen Sie, dass \mathbb{p} eine Zähldichte eines Wahrscheinlichkeitsmaßes auf (Ω, \mathcal{A}) ist, d.h. zeigen Sie: $\sum_{\omega \in \Omega} \mathbb{p}(\omega) = 1$.

Was kann mit Hilfe dieser Zähldichte modelliert werden?

Anleitung: Zeigen Sie die Regel $\binom{\alpha+k-1}{k} = (-1)^k \binom{-\alpha}{k}$ für den verallgemeinerten Binomialkoeffizienten $\binom{\alpha}{k} := \frac{\alpha \cdot (\alpha-1) \cdot \ldots \cdot (\alpha-(k-1))}{k!}$, der für $\alpha \in \mathbb{Z}$ und $k \in \mathbb{N}_0$ definiert ist. Beweisen Sie dann, dass für die binomische Reihe $(1+x)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$ gilt, wobei $\alpha \in \mathbb{Z}$, $x \in (-1,1)$.

(b) Nach langjähriger Erfahrung wissen Sie, dass Sie bei einer Runde Skat mit Wahrscheinlichkeit p = 0.2 gewinnen. Sie sind nun zu einem Spieleabend eingeladen worden, bei dem ausschließlich Skat gespielt wird. Wie hoch ist die Wahrscheinlichkeit, dass Sie genau beim 30. Spiel zum sechsten Mal gewinnen?

Aufgabe 8 (Binomialapprox. der Hypergeometrischen Vtlg, 4 = 2 + 1 + 1 Punkte).

- (a) Man zeige, dass sich die Zähldichte der hypergeometrischen Verteilung mit Parametern (N, M, n) für $N, M \to \infty$ und $M/N \to p$ durch die Zähldichte der Binomialverteilung mit Parametern (n, p) approximieren lässt.
- (b) In einem See befinden sich 1000 Fische, von denen 200 Karpfen sind. Es werden nun (unabhängig voneinander) 10 Fische gefangen. Wie hoch ist die Wahrscheinlichkeit, dass darunter mindestens 2 Karpfen sind? Geben Sie einmal die exakte Wahrscheinlichkeit an, und einmal die Wahrscheinlichkeit unter Nutzung der Approximation aus (a).
- (c) Ein Insekt legt 100 Eier, die sich unabhängig voneinander entwickeln. Aus jedem Ei schlüpft mit Wahrscheinlichkeit 0.01 ein Nachkomme. Wie groß ist die Wahrscheinlichkeit, dass es mindestens 2 Nachkommen gibt? Geben Sie einmal die exakte Wahrscheinlichkeit an, und einmal die Wahrscheinlichkeit unter Nutzung der Approximation durch eine Poisson-Verteilung (vgl. Poissonscher Grenzwertsatz 04.07).

Abgabe:

In Zweiergruppen, bis spätestens Monntag, den 23. November 2020, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/