SO₄ SYMMETRY IN A HUBBARD MODEL

CHEN NING YANG

Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794-3840, USA

and

S. C. ZHANG

IBM Research Division, Almaden Research Center, San Jose, CA 95120-6099, USA

Received 28 May 1990

For a simple Hubbard model, using a particle-particle pairing operator η and a particle-hole pairing operator ζ , it is shown that one can write down two commuting sets of angular momenta operators **J** and **J**', both of which commute with the Hamiltonian. These considerations allow the introduction of quantum numbers j and j', and lead to the fact that the system has $SO_4 = (SU_2 \times SU_2)/Z_2$ symmetry. j is related to the existence of superconductivity for a state and j' to its magnetic properties.

In a recent paper¹ it was found that a pairing operator η is useful for considering the Hamiltonian in a simple Hubbard model on an $L \times L \times L$ lattice, where L = even. We shall extend such considerations in the present paper. All notations are the same as in Ref. 1. We introduce here a Hamiltonian H' and a momentum operator P' which are trivially different from the H and P of Ref. 1, in order to bring out more *symmetries* of the system:

$$H' = T' + V' , \qquad (1)$$

$$T' = -2\varepsilon \sum_{\mathbf{k}} (\cos k_x + \cos k_y + \cos k_z) (a_{\mathbf{k}}^+ a_{\mathbf{k}} + b_{\mathbf{k}}^+ b_{\mathbf{k}}) , \qquad (2)$$

$$V' = 2W \sum_{\mathbf{r}} \left(a_{\mathbf{r}}^{+} a_{\mathbf{r}} - \frac{1}{2} \right) \left(b_{\mathbf{r}}^{+} b_{\mathbf{r}} - \frac{1}{2} \right) . \tag{3}$$

$$\mathbf{P}' = \Sigma \left(\mathbf{k} - \frac{1}{2} \pi \right) (a_{\mathbf{k}}^+ a_{\mathbf{k}} + b_{\mathbf{k}}^+ b_{\mathbf{k}}) \, (\text{mod.} 2\pi) .$$
 (4)

(1) The operators J_x , J_y , and J_z . It is easy to verify that $\eta^+ \eta - \eta \eta^+ = \Sigma(a^+ a + b^+ b) - M$, where $M = L^3$. Calculating the commutator of this commutator with η we obtain

PACS Nos: 74.20.-z, 05.30.Fk.

Theorem 1. Defining

$$\eta^+ = J_x + iJ_y, \quad \eta = J_x - iJ_y, \quad J_z = \frac{1}{2} \sum (a^+a + b^+b) - \frac{1}{2}M,$$
 (5)

one finds that J_x , J_y , J_z commute with each other like the components of an angular momentum. Hence the eigenvalue of J^2 is j(j+1) where 2j = integer ≥ 0 . Furthermore (as can be easily checked),

$$[T',J] = [V',J] = [H',J] = [P'J] = 0.$$
 (6)

(2) The operators J'_x , J'_y and J'_z — We now define a particle-hole pairing operator,

$$\zeta = \sum a_{\mathbf{k}} b_{\mathbf{k}}^{+} = \sum a_{\mathbf{r}} b_{\mathbf{r}}^{+} . \tag{7}$$

Then

$$\zeta\zeta^+ - \zeta^+\zeta = - \sum a^+a + \sum b^+b .$$

Theorem 2. Defining

$$\zeta^{+} = J'_{x} + iJ'_{y}, \quad \zeta = J'_{x} - iJ'_{y}, \quad J'_{z} = \frac{1}{2} \sum a^{+}a - \frac{1}{2} \sum b^{+}b,$$
 (8)

one finds that J'_x , J'_y , J'_z commute with each other like the components of an angular momentum. Hence the eigenvalue of J'^2 is j'(j'+1) where 2j' = integer ≥ 0 . Furthermore all 3 components of **J** commute with all 3 components of **J**', and

$$[T',J']_{-} = [V',J']_{-} = [H',J']_{-} = [P'J']_{-} = 0.$$
 (9)

 ζ is the usual spin lowering operator and J' is the usual "spin" operator.

(3) Explicit eigenfunctions of H' — We can find many eigenstates of H' with Theorems 1 and 2 as follows. We diagonize J^2 , J'^2 , J_z , J'_z , H' and P' simultaneously. These states can be sorted out into multiplets $\{j, j'\}$, each comprising of (2j+1)(2j'+1) states, as illustrated in Fig. 1, where N_a and N_b are eigenvalues of Σa^+a and Σb^+b ,

$$j_z = \frac{1}{2}(N_a + N_b - M), \quad j_z = \frac{1}{2}(N_a - N_b).$$
 (10)

As explained in Fig. 1, j + j' = integer, i.e., not all representations of $SU_2 \times SU_2$ are present. This means that the true symmetry of the problem is $(SU_2 \times SU_2)/Z_2 = SO_4$.

Consider now the states in one spot on the bottom row of Fig. 1. For these states, $N_a = 0$. The operators H' and P' for such states are easily diagonizable since for such states, there are no a-particle — b-particle interac-

Fig. 1. (N_a, N_b) diagram for M=8. The relationship between (j_z, j_z') with (N_a, N_b) is given by Eq. (10). Each multiplet $\{j, j'\}$ is represented by a rectangular set of states centered at $j_z=j_z'=0$ in this diagram. The number of states in the multiplet is (2j+1) (2j'+1). Illustrated is the multiplet $\left\{\frac{1}{2}, \frac{5}{2}\right\}$. All states of a multiplet share the same eigenvalue of H' and P'. The lowest corner in the multiplet is where $j_z=-j$, $j_z'=-j'$. One can generate all states of a multiplet by starting from its lowest corner and repeatedly operate on it with $\eta^+=J_x+iJ_y$ (which increases j_z) and with $\zeta^+=J_x'+iJ_y'$ (which increases j_z'). Obviously j+j'=1 integer. Notice that for fixed j and j', there are in general a large number of multiplets $\{j,j'\}$, except for $\{M/2,0\}$ and $\{0,M/2\}$, each of which occurs only once. For the former, the lowest corner is the point A where $N_a=N_b=0$ which is a single state. For the latter, the lowest corner is B where $N_a=0$, $N_b=M$ which is also a single state.

tions, so that the problem reduces to that of N_b noninteracting fermions. One can thus trivially write down the eigenstates of H' and P' in momentum space. There are $\binom{M}{N_b}$ such states. Operating with η^+ and ζ^+ on these states generates $\binom{M}{N_b}$ multiplets $\{j,j'\}$. Now obviously

$$j = \frac{1}{2}(M - N_b)$$
, $j' = \frac{1}{2}N_b$.

Thus we can easily write down explicitly the eigenfunctions for H' and P' for $\binom{M}{N_b}$ multiplets $\left\{\frac{1}{2}(M-N_b), \frac{1}{2}N_b\right\}$. The total number of such states is $\sum \binom{M}{N_b}(M-N_b+1)(N_b+1)$, where the summation extends from $N_b=0$ to M. The summation is equal to $2^{M-2}(M^2+3M+4)$. This is an enormous number of eigenstates, but still very small compared to the total number of eigenstates which is 4^M . We remark here that the eigenstates ψ_N of Ref. 1 are special cases of the states discussed in this section.

The eigenstates of H' constructed above obviously do not depend on W and are simultaneous eigenstates of T' and V'. We believe they are the only W-independent eigenstates of H', but we do not know how to prove this statement except in special cases.

(4) ODLRO — We shall show

Theorem 3. For any state ψ for which $j^2 - j_z^2 = O(M^2)$, there is ODLRO. The 2-particle reduced density matrix ρ_2 has matrix element

$$\langle b_s a_s | \rho_2 | b_r a_r \rangle = \psi^+ a_r^+ b_r^+ a_s b_s \psi$$
.

Thus

$$\sum e^{i\pi \cdot (\mathbf{r} - \mathbf{s})} \langle b_{\mathbf{s}} \, a_{\mathbf{s}} \, | \, \rho_2 \, | \, b_{\mathbf{r}} \, a_{\mathbf{r}} \rangle = \psi^+ \eta^+ \eta \psi = \psi^+ (J_x + iJ_y) (J_x - iJ_y) \psi$$
$$= i^2 - i^2_x + i + i_x .$$

Using

$$\langle b_{\mathbf{r}'} a_{\mathbf{r}} | \phi \rangle = M^{-1/2} e^{i\mathbf{r} \cdot \mathbf{r}} \delta(\mathbf{r} - \mathbf{r}')$$

as a trial wave function for ρ_2 , we find the expectation value of ρ_2 to be

$$\langle \rho_2 \rangle = \frac{1}{M} (j^2 - j_z^2) + O(1) = O(M) \ge 0.$$

Thus the largest eigenvalue of ρ_2 is O(M) and the state has ODLRO.²

In Ref. 1 we had showed that the states ψ_N have ODLRO. That fact is a special case of the above theorem, because for ψ_N , j = M/2, and $j_z = -M/2 + N$.

In the above discussions, the pairs are particle-particle pairs. If the particle is charged e, then the state exhibits² flux quantization in units of ch/2e. If $j'^2 - j'_z^2 = O(M^2)$, the system exhibits particle-hole ODLRO. There is no superconductivity for such a system.^{2,3} Thus j is related to superconductivity and j' to magnetic properties.

(5) Unitary Operators U_h and X — We define these two operators as follows:

$$U_b a_r U_b^{-1} = a_r , \quad U_b b_r U_b^{-1} = e^{i\pi \cdot r} b_r^+ , \quad U_b^2 = 1 ,$$
 (11)

and

$$Xa_{r}X^{-1} = e^{i\mathbf{n}\cdot\mathbf{r}}a_{r}$$
, $Xb_{r}X^{-1} = e^{i\mathbf{n}\cdot\mathbf{r}}b_{r}$, $X^{2} = 1$. (12)

Operator X is well known and operator U_b has been discussed in the literature.⁴ We observe that

$$U_b b_k U_b^{-1} = b_{\pi - k}^+ , (13)$$

and

$$\zeta = U_b \eta U_b^{-1} .$$
(14)

Theorem 4. Writing H'(W) for H', we have

$$U_b H'(W) U_b^{-1} = H'(-W) , (15)$$

$$U_b(\Sigma b^+b)U_b^{-1} = M - \Sigma b^+b , \quad U_b(\Sigma a^+a)U_b^{-1} = \Sigma a^+a . \tag{16}$$

Theorem 5.

$$XH'(W)X^{-1} = -H'(-W)$$
, (17)

$$X(\Sigma a^+ a)X^{-1} = \Sigma a^+ a$$
, $X(\Sigma b^+ b)X^{-1} = \Sigma b^+ b$. (18)

It follows that

$$(XU_b)(H'(W))(XU_b)^{-1} = -H'(W) ,$$

$$(XU_b)(\Sigma a^+ a)(XU_b)^{-1} = \Sigma a^+ a ,$$

$$(XU_b)(\Sigma b^+ b)(XU_b)^{-1} = M - \Sigma b^+ b .$$
(19)

Denoting by Spm (W, N_a, N_b) the spectrum of H'(W) for given N_a and N_b , we have, by Theorem 4,

Theorem 6.

$$Spm (W, N_a, N_b) = Spm (-W, N_a, M - N_b)$$

$$= Spm (-W, M - N_a, N_b)$$

$$= Spm (W, M - N_a, M - N_b) . (20)$$

By Theorem 5, we have

Theorem 7.

$$Spm(W, N_a, N_b) = -Spm(-W, N_a, N_b).$$
 (21)

Combining these two results we obtain

$$Spm (W, N_a, N_b) = - Spm (W, N_a, M - N_b)$$

$$= - Spm (W, M - N_a, N_b)$$

$$= Spm (W, M - N_a, M - N_b) . (22)$$

(6) Limit $M \to \infty$ — We shall now put $\varepsilon = 1$ in (2). Diagonalizing J^2 , J'^2 , J_z , J'_z , H', P', we have also diagonalized N_a and N_b because of (10). Let the lowest eigenvalue of H' at a fixed N_a , N_b be denoted by $E_0(W, N_a, N_b)$. Now keeping fixed the values of

$$N_a/M = \rho_a$$
, $N_b/M = \rho_b$

we approach the limit $M \to \infty$. It can be proved, by a method used in Ref. 5, that $M^{-1}E_0$ approaches a limit which we shall denote by $f(W, \rho_a, \rho_b)$. f is the lowest eigenvalue of H' per site at fixed densities ρ_a and ρ_b .

The function f has many symmetries. Because of Theorems 1 and 2,

$$f(W, \rho_a, \rho_b) = f(W, \rho_b, \rho_a) = f(W, 1 - \rho_a, 1 - \rho_b) = f(W, 1 - \rho_b, 1 - \rho_a) .$$
Because of (20),

$$f(W, \rho_a, \rho_b) = f(-W, \rho_a, 1 - \rho_b) = f(-W, 1 - \rho_a, \rho_b) . \tag{24}$$

These symmetries are illustrated in Fig. 2.

Fig. 2. Equi-f contours in ρ_a , ρ_b plane (schematic). Because of (23), these contours are reflection symmetrical with respect to the $\rho_a = \rho_b$ axis and the $\rho_a + \rho_b = 1$ axis. Because of Theorem 8, these contours are convex. One can obtain the ($\sim W$) contours from the ($\sim W$) contours by a rotation through 90° around the center of the square.

Theorem 8. $f(W, \rho_a, \rho_b)$ as a function of ρ_a and ρ_b is continuous and concaves upwards.

Theorem 9. $f(W, \rho_a, \rho_b)$ as a function of W concaves downwards. These two theorems can be proved using the methods of Ref. 5.

Theorem 8 and Eq. (23) show that the minimum of $f(W, \rho_a, \rho_b)$ for fixed W is f(W, 1/2, 1/2). This minimum value may be shared by f at other values of (ρ_a, ρ_b) than (1/2, 1/2). Let the region of (ρ_a, ρ_b) where this is true be denoted by R, and call the states that have this minimum value of f lowest states. (23) shows that R is reflection symmetrical with respect to the axis: $\rho_a = \rho_b$, and with respect to the axis: $\rho_a + \rho_b = 1$. Using Theorem 8 we can show

Theorem 10. The region R in (ρ_a, ρ_b) where $f(W, \rho_a, \rho_b) = f(W, 1/2, 1/2)$ is convex. Possible schematic shapes of R are illustrated in Fig. 3.

Each of the *lowest state* belongs to a multiplet $\{j, j'\}$. Within that multiplet the leading state (i.e. where $j_z = j$, $j'_z = j$,) is also a *lowest state*. Hence it must be in the $j_z \ge 0$, $j'_z \ge 0$ quadrant of R. Thus

Theorem 11. All the *lowest states* on the boundary of R have $j = |j_z|$, $j' = |j'_z|$. Finally we remark that for the points $\rho_a = 0$ (or $\rho_b = 0$,) the system is devoid of a (or b) particles. Hence the value of $f(W, 0, \rho_b)$ and $f(W, \rho_a, 0)$ can be easily evaluated. (23) then allows one to write down $f(W, 1, \rho_b)$ and $f(W, \rho_a, 1)$. Thus the value of f on the boundary of the square in Fig. 2 is known.

We now define $g(W, \rho_a, \rho_b)$ to be highest eigenvalue of H' per site. Equation (22) then shows that

$$g(W, \rho_a, \rho_b) = -f(W, \rho_a, 1 - \rho_b) = -f(W, 1 - \rho_a, \rho_b).$$
 (25)

More generally we define the free energy per site by

$$F(\beta, W, \rho_a, \rho_b) = \lim (-M\beta)^{-1} \ln (p.f.)$$
 (26)

where

(p.f.) = trace of block of exp
$$(-\beta H')$$
 belonging to given ρ_a, ρ_b , (27)

and the limit is for $M \rightarrow \infty$. Then

$$F(\infty, W, \rho_a, \rho_b) = f(W, \rho_a, \rho_b) ,$$

$$F(-\infty, W, \rho_a, \rho_b) = g(W, \rho_a, \rho_b) .$$
(28)

The function F has many symmetries. Theorems 1 and 2 show that

$$F(\beta, W, \rho_a, \rho_b) = F(\beta, W, \rho_b, \rho_a)$$

$$= F(\beta, W, 1 - \rho_a, 1 - \rho_b)$$

$$= F(\beta, W, 1 - \rho_b, 1 - \rho_a) . \tag{29}$$

Equation (20) shows that

$$F(\beta, W, \rho_a, \rho_b) = F(\beta, -W, \rho_a, 1 - \rho_b) = F(\beta, -W, 1 - \rho_a, \rho_b) . \tag{30}$$

Equation (21) shows that

$$F(\beta, W, \rho_a, \rho_b) = -F(-\beta, -W, \rho_a, \rho_b)$$
 (31)

Fig. 3. Possible shapes for R. R is convex and is reflection symmetrical with respect to the $\rho_a = \rho_b$, and the $\rho_a + \rho_b = 1$ axes. For case c there is particle-particle ODLRO at low temperatures in the open line segment. For case d there is particle-particle ODLRO at low temperatures *inside* of the region R. These cases exhibit superconductivity.

These two last equations together show that

$$F\left(0, W, \rho_a, \frac{1}{2}\right) = F\left(0, W, \frac{1}{2}, \rho_b\right) = 0$$
 (32)

Acknowledgments

One of us (CNY) is supported in part by the National Science Foundation under grant number PHY 8908495.

References

- 1. C. N. Yang, Phys. Rev. Lett. 63 (1989) 2144.
- 2. C. N. Yang, Rev. Mod. Phys. 34 (1962) 694.
- 3. W. Kohn and D. Sherrington, Rev. Mod. Phys. 42 (1970) 1.
- 4. H. Shiba, Prog. Theor. Phys. 48 (1972) 2171.
- 5. C. N. Yang and C. P. Yang, Phys. Rev. 147 (1966) 303.