Mastering the game of Go with deep neural networks

АРИНА КОСОВСКАЯ

Правила игры в Go

Главной целью игры является окружить как можно больше территории на поле 19х19

Проблема GO

▶ В отличие, например, от шахмат или шашек, GO имеет много вариантов для хода, и если в других играх можно построить дерево (Tree Search) действий, то в данной игре оно получится гигантским.

Пример дерева в игре крестики-нолики

Monte Carlo Tree Search

Архитектура Alpha Go

• SL policy network:

Нейронная сеть обучается на экспертныхчеловеческих играх с помощью максимизации правдоподобия, состоит из сверточных слоев. На вход подаются табличные признаки и картинки.

Rollout policy:

Имеет небольшое количество линейных слоев делает то же самое, но работает быстрее. Кроме того подаются только табличные признаки.

Оптимальное кол-во фильтров для conv в SL policy network

• Входные данные для SL policy network:

Extended Data Table 2 Input features for neural networks			
Feature	# of planes	Description	
Stone colour	3	Player stone / opponent stone / empty	
Ones	1	A constant plane filled with 1	
Turns since	8	How many turns since a move was played	
Liberties	8	Number of liberties (empty adjacent points)	
Capture size	8	How many opponent stones would be captured	
Self-atari size	8	How many of own stones would be captured	
Liberties after move	8	Number of liberties after this move is played	
Ladder capture	1	Whether a move at this point is a successful ladder capture	
Ladder escape	1	Whether a move at this point is a successful ladder escape	
Sensibleness	1	Whether a move is legal and does not fill its own eyes	
Zeros	1	A constant plane filled with 0	
Player color	1	Whether current player is black	

•Входные данные для Rollout policy:

Feature	# of patterns	Description
Response	1	Whether move matches one or more response features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move

В итоге после обучения точность SL policy network составляла 57%, а точность Rollout policy 24.2%. Скорость SL policy network равняется 3мс, а Rollout policy 2 нс.

Архитектура Alpha Go

RL policy network

Инициализируем весами SL, сеть учится, играя сама с собой. (z = 1 если случилась победа, -1 если проигрыш). Веса обновляются по правилу policy gradient.

Value network

Архитектура выдает одно число, учится на регрессии. Минимизируя mse (на парах состояние и результат), предсказывает число от -1 до 1 (где -1-проигрыш, 1 - выигрыш). Обучение происходит на данных, сгенерированных RL policy network.

Monte Carlo tree search in AlphaGo

Особенности Alpha Go Zero

- Тренируется не на партиях, которые играли эксперты
- ▶ Tree Search теперь используется во время тренировки модели
- Получает на вход только положение камней