CSC148 Worksheet 14 Solution

Hyungmo Gu

April 24, 2020

Question 1

a.

Operation	Running time
Insert at the front of the list	$\mathcal{O}(n)$
Insert at the end of the list	$\mathcal{O}(1)$
Look up the element at index i , where $0 \le i < n$	$\mathcal{O}(n)$

Correct Solution:

Operation	Running time
Insert at the front of the list	$\mathcal{O}(n)$
Insert at the end of the list	$\mathcal{O}(1)$
Look up the element at index i , where $0 \le i < n$	$\mathcal{O}(1)$

b. The inserting of an element at position i requires n-i elements to be shifted to right.

Using this fact, we can write the Big-Oh expression for inserting an item at index i is $\mathcal{O}(n-i)$.

Question 2

a.

Operation	Running time
Insert at the front of the linked list	$\mathcal{O}(1)$
Insert at the end of the linked list	$\mathcal{O}(n)$
Look up the element at index i, where $0 \le i < n$	$\mathcal{O}(n)$

Correct Solution:

Operation	Running time
Insert at the front of the linked list	$\mathcal{O}(1)$
Insert at the end of the linked list	$\mathcal{O}(n)$
Look up the element at index i, where $0 \le i < n$	$\mathcal{O}(i)$

b. Without the traversal, the running time of inserting is $\mathcal{O}(1)$.

With the traversal, the running time of inserting is $\mathcal{O}(i)$.

Question 3

• Unlike linked lists that store node at different memory location, array-based lists store elements in memory immediately one after another.

Assuming it's easier for memory to find and perform operations on elements located right after another, I believe it's significantly faster for array-based lists to insert an element at position i.

Correct Solution:

Since n - i = 1,000,000 - 500,000 = 500,000, we can write $\mathcal{O}(n - i) \approx \mathcal{O}(i)$

Using this fact, we can conclude the speed of linked lists and array-based lists are roughly about the same.

Notes:

 Noticed that professor compared the performance of linked lists and array-based list in terms of Big-Oh.

Question 4

a. When n = 1, the total number of nodes traversed is 0. This is because we are only replacing None in self._first with $_Node(item)$.

When n = 2, the total number of nodes traversed is 0. This is because after adding the first element, we start at $self._first$, and add $_Node(item)$ to $self._first.next$.

When n > 2, the number of nodes traversed increases by 1 per item added starting with the 3^{rd} element, and this continues until n-1 (where it represents the last item in a list). So in this case, the total number of nodes traversed is

$$\sum_{i=2}^{n-1} (i-1) = \sum_{i'=1}^{n-2} i' \tag{1}$$

$$=\frac{(n-2)(n-1)}{2}$$
 (2)

Correct Solution:

The code for append method tells us

Listing 1: linked_list.py

When n = 1, the total number of nodes traversed is 0. This is because we are only replacing None in self_first with $_Node(item)$.

When n > 1, we know the number of nodes traversal required to add an item increases by 1 starting with the 2^{nd} element and this continues until n - 1 (where it represents the last item in a list). So in this case, the total number of nodes traversed is

$$\sum_{i=1}^{n-1} i = \frac{(n)(n-1)}{2} \tag{3}$$

Question 5