CS 325: Project 3, Question 3 Cera Olson, Robert Erick, Jacob Mastel

 $25~\mathrm{May}~2015$

Contents

1 Part A

One alternative to the least squares line is the Least Absolute Deviations (LAD). Formulate a linear program whose optimal solution minimizes the sum of the absolute deviations of the data from the line. That is formulate

$$min \sum_{i=1}^{n} |y_i - (a_1x_i + a_0)|$$

as an LP and solve for the a_0 and a_1 that minimize the sum of absolute deviations.

1.1 i: Write the linear program for the general problem written as an objective and set of constraints

The goal is to minimize $min \sum_{i=1}^{n} |y_i - (a_1x_i + a_0)|$. In order to create an objective, we drop the sum and set it equal to z_i for all values i = 1, ..., n. We can reduce that by dropping the absolute values and set it as an inequality.

$$-z_i \le y_i - (a_1 x_i + a_0) \le z_i$$

After that it gets simplified down to the following objectives and constraints.

$$y_i - (a_1x_i + a_0) \le z_i$$
 for all values $i = 1, ..., n$

$$y_i - (a_1 x_i + a_0) \ge -z_i$$
 for all values $i = 1, ..., n$

1.2 ii: Use the linear program to find the LAD regression line for the data set (x,y)=(1,5),(1,3),(2,13),(3,8),(4,10),(5,14),(6,18) What was the sum of absolute deviations?

The absolute deviation is calculated by taking the least squares values for y and finding the difference between that and the calculated actual value of y using the data. See the chart below. The trendline has an equation of y = 2.315x + 2.875

Table 1: Part A (ii)

	· /			
X	y: Data Points	Trendline	Differences	Squared
1	5	3.93	1.07	1.15
1	3	3.93	0.93	0.87
2	13	5.99	7.01	49
3	8	8.07	0.07	0.01
4	10	10.14	0.14	0.02
5	14	12.21	1.79	3.2
6	18	14.29	3.72	13.84

Based on the chart above, the sum of the absolute deviations is 14.73.

1.3 iii: Plot the points and graph your LAD line and the least squares line. Comment.

The value for point 2 appears to be an outlier. The value of the data point at x = 2 falls outside the line of best fit the most.

Figure 1: example caption

2 Part B

Another alternative to the least squares method is to find a line that minimizes of the maximum absolute deviation (MMAD). That is formulate

$$min \ max_i \ |y_i - (a_1x_i + a_0)|$$

as an LP.

2.1 i: Write the linear program for the general problem written as an objective and set of constraints

Following the same procedures as in Part A, set the equation equal to z and try to minimize z for all values i = 1, ..., n. The resulting equations are:

$$y_i - (a_1x_i + a_0) \ge z_i$$
 for all values $i = 1, ..., n$
 $y_i - (a_1x_i + a_0) \le -z_i$ for all values $i = 1, ..., n$

It is important to note that these are opposite of the solutions as found in part A.

2.2 ii: Use the linear program to find the MMAD regression line for the data set (x,y) = (1,5), (1,3), (2,13), (3,8), (4,10), (5,14), (6,18) What was the min of the max absolute deviations?

Minimize z subject to $z \ge max_i |y_i - (a_1x_i + a_0)|$

- 2.3 iii: Plot the points and graph the MMAD line and the least squares line. Compare.
- 2.4 iv: Can you create a data set for which all three methods of regression (least squares, LAD, MMAD) compute the same line.

3 Part C

Multiple Linear Regression. Generalize the simple linear regression model to allow for two independent variables $(x_1 \text{ and } x_2)$. ?? =?? $_2$?? $_2$ +?? $_1$?? $_1$ +?? $_0$, The model is called multiple linear not because the result is a line but because all variables are 1st degree. Extend the techniques from Part A to find the least absolute deviations regression equation. Use linear programming to fit a LAD multiple linear regression model to the data set below:

x_1	x_2	У
1	1	5
1	2	9
2	2	12
0	1	3
0	0	0
1	3	11

Solving for a_0 , a_1 , and a_2 using a system of equations and the values in the table above. Using the above values, a_0 must be 0. It is the only way x_1 and x_2 could be zero if y is 0. The result is that a_2 equals 3. The final value, a_1 , is 2 or 3 depending on the data points you use to calculate them. Using LAD, we minimize the values. making $a_1 = 2$. The final estimation is $y = 3 \times x_2 + 2 \times x_1$.