B)
$$\left| \sin \left(\sum_{k=1}^{n} x_k \right) \right| \leq \sum_{k=1}^{n} \sin x_k \quad (0 \leq x_k \leq \pi; k = 1, 2, \dots, n);$$

- r) $(2n)! < 2^{2n} (n!)^2$.
- 11. Пусть c положительное число, не являющееся точным квадратом целого числа, и A/B сечение, определяющее вещественное число \sqrt{c} , где в класс B входят все положительные рациональные числа b такие, что $b^2 > c$, а в класс A все остальные рациональные числа. Доказать, что в классе A нет наибольшего числа, а в классе B нет наименьшего числа.
- 12. Сечение A/B, определяющее число $\sqrt[3]{2}$, строится следующим образом: класс A содержит все рациональные числа a такие, что $a^3 < 2$; класс B содержит все остальные рациональные числа. Доказать, что в классе A нет наибольшего числа, a в классе B— наименьшего.
- 13. Построив соответствующие сечения, доказать равенства:

a)
$$\sqrt{2} + \sqrt{8} = \sqrt{18}$$
; 6) $\sqrt{2} \sqrt{3} = \sqrt{6}$.

- **14.** Построить сечение, определяющее число $2\sqrt{2}$.
- 15. Доказать, что всякое непустое числовое множество, ограниченное снизу, имеет нижнюю грань, а всякое непустое числовое множество, ограниченное сверху, имеет верхнюю грань.
- 16. Показать, что множество всех правильных рациональных дробей m/n, где m и n натуральные числа и 0 < m < n, не имеет наименьшего и наибольшего элементов. Найти нижнюю и верхнюю грани этого множества.
- 17. Определить нижнюю и верхнюю грани множества рациональных чисел r, удовлетворяющих неравенству $r^2 < 2$.
- 18. Пусть $\{-x\}$ множество чисел, противоположных числам $x \in \{x\}$. Доказать, что

a)
$$\inf \{-x\} = -\sup \{x\}$$
; 6) $\sup \{-x\} = -\inf \{x\}$.

19. Пусть $\{x + y\}$ есть множество всех сумм x + y, где $x \in \{x\}$ и $y \in \{y\}$.