Detect Alzheimer from Speech

Intern: Zhiyuan Chen (Jennifer)

Mentor: Vijay Ravi

- Introduction to the problem
- Database
- Baseline Experimental Details
- Baseline results
- Previous work
- What we're currently doing

ADResso Challenge

Alzheimer's Dementia Recognition through Spontaneous Speech (only)

2020 ADRess Challenge:

 speech recording + manual script acoustic feature + linguistic feature

2021 ADResso Challenge:

 speech recording only focuses on the acoustic characteristic of speech

2021 database

Speech recordings of 2 distinct datasets:

- (prognosis) AD patients performing semantic fluency task for baseline visit
- (diagnosis) picture descriptions by AD patients and control group

Speech sample: 237 participants

Train		Test
ad	cn	71
87	79	

166 training + 71 testing (7/3 split)

Training data: .wav files + segmentation timestamps

Diagnosis Baseline

Features

Acoustic: apply sliding window with 100ms to obtain frames => eGeMAPS features => ADR method

Linguistic: Google Cloud-based Speech Recogniser => convert transcripts into CHAT format => MOR function => EVAL and FREQ commands

5 Methods

Method	Decision Tree	KNN	Linear Discriminant Analysis (LDA)	Random Forest	SVM
Parameter	Leaf size: {1 to 20}	K: {1 to 20}		50 trees Leaf size: {1 to 20}	Linear kernel Box constraints: {0.1 to 1.0}

Baseline Results

- Best performing classifier
 - Cross-validation: DT (78.92% acoustic, 72.89% linguistic)
 - Test set: SVM (77.46% linguistic)

- Late fusion of the acoustic and linguistic models improves the accuracy on the test set
 - => Baseline accuracy of 78.87%

	Classifier	LDA	DT	SVM	RF	KNN	mean (sd)
CV	Acoustic	62.65	78.92	69.28	65.06	65.06	68.19 (6.4)
	Linguistic	72.29	72.89	72.89	75.90	65.06	71.81 (4.0)
Test	Acoustic	50.70	60.56	64.79	63.38	53.52	58.59 (6.2)
	Linguistic	76.06	74.65	77.46	73.24	59.15	68.19 (6.4) 71.81 (4.0) 58.59 (6.2) 72.11 (7.4)

Previous Work

- 2020 best performance paper
- 1st: 89.6% accuracy, focuses solely on linguistic feature.

Utilizes domain knowledge, process the transcript based on pause and the use of "uh", then feed into BERT

• 2nd: 85.42% accuracy, acoustic + linguistic

Different BERT alternatives for every word of every transcript

2021 challenge

Paper1: outperforms the baseline model by 2.82%

proposed a new method
 (combination of engineered features + audio representations)

- pipeline
 - 3 approaches for feature extraction
 - 4 models: LR, SVM, NN, DT (default value for all model parameters)
- Feature extraction approaches
 - approach1: conventional acoustic features

Verbal: fundamental frequency, jitter, shimmer

Non-verbal: MFCC

- approach2: pre-trained acoustic embeddings (deep neural models)
 wav2vec 2.0 (self-supervised audio representation model)
- approach3: best method combination of state-of-the-art self-supervised techniques + domain knowledge

What we're doing

- Current steps:
- 1. Segment the audio files, then extract MFCC features
- 2. t-SNE visualization for MFCC

- 3. SVM model on MFCC feature
 - provide metrics for 3 different trials on training set
- predict on frame level, then use majority voting to have the results of segment level and speaker level

Trial 1 result

Frame level

Accuracy score for frame_SVM: 0.583900 Recall score for frame_SVM: 0.806758 Precision score for frame_SVM: 0.606327 F-1 score for frame_SVM: 0.692328

Segment level

Accuracy score for segment_SVM: 0.545822 Recall score for segment_SVM: 0.881013 Precision score for segment_SVM: 0.545455 F-1 score for segment_SVM: 0.673766

Speaker level

Accuracy score for speaker_SVM: 0.620000 Recall score for speaker_SVM: 0.962963 Precision score for speaker_SVM: 0.590909 F-1 score for speaker_SVM: 0.732394

Next steps:

- produce SVM probability logits, average across 3 trials
- do the same for eGeMAPS, ComParE16, VQUAL, entropy

