AYTOMATED FORENSIC ANALYSIS

2016 MSc Cyber Security Project Presentation

Anastasios Koutlis

MSc in Cyber Security University of York

Supervisor **Prof. Howard Chivers**

Overview

- Introduction
- Existing Work
- Literature Review
- Design & Methodology
- Implementation
- Evaluation
- Future Work & Conclusion
- References

Introduction

Problem

- Existence of a large number of artifacts in a computer that must be processed
- Time consuming process
- Danger of missing important connections

Idea

- Provide a tool that is capable of assisting an investigator during a forensic analysis
- Create rules to find these high-level events by looking into low-level artifacts
- Provide a visualization technique showing
 - Low-level events extracted
 - High-level events created
 - Their connections
- Evaluate the process based on test events provided and evaluate the efficiency of the developed framework

Existing Work

PyDFT

- Able to create high-level events
- Does not offer a graphical representation

SADFC

- Uses OWL and Data Mining to find relationships between evidence
- Offers a timeline representation

FORE

- Uses OWL to find correlations between data in a system
- Uses Event Graphs to present correlations

Log2timeline

- Is not able to create high-level events
- Offers a graphical representation of evidence

Literature Review

- Importance of Graphical Representation
 - Network Forensics
 - Social Networks
- Evidence Representation
 - Wigmore's Chart Method
 - Pollock's Argumentation Scheme

Design & Methodology (1)

Extraction Process

- Timestamps and information from files in the file system
- Information from the Windows Registry

Data Storage

- Store metadata information in .csv
- Parse .csv using Python

Design & Methodology (2)

Rules Set - Three Algorithms created

- "Is the framework able to show what happened in a particular time frame?"
- "Is the framework able to show what happened in a user's session?"
- "Is the framework able to present information that is related to a file?"

Visualization

- Use of Gephi tool
- Every node contains information like evidence name, id and timestamp
- Able to show clusters created

Implementation

- Extract file system information using Sleuth Kit Python library (pytsk3)
- Extract MFT and use analyzeMFT to extract information to a csv file
- Extract Windows Registry information and store it in csv files
 - SYSTEM
 - SOFTWARE
 - SAM
 - NTUSER.DAT
- Run rules to parse the csv files
 - Identify connections between evidence
 - Store results in an Array
- gdf file implementation for Gephi to simulate

Experiments (1)

• Preliminary Investigation

- Able to identify
 - Software information
 - Device Information
 - Time Zone information
 - User information

Files	Analysis	
MFT	mft.csv	
SAM	preliminary.csv	
SYSTEM	services.csv	
SOFTWARE	usb.csv	
SECURITY		
	lastvisitedmru_Autolycus.csv	
NTUSER.DAT	mru_ Autolycus.csv	
(1)	userassist_ Autolycus.csv	
	recent_ Autolycus.csv	

Description Value		Description	Value	
Current control Set	1 InstallDate		04/07/2011 20:01:13	
Computer Name	WIN-HG28CJ57ACD	RegisteredOwner	Windows User	
Product Name	Windows 7 SystemRoot		C:\Windows	
EditionId	Enterprise	Time Last Shutdown	15/07/2011 20:53:58	
CurrentVersion	6.1	Backup	No backup found	

Daylight Start Date				
0x0000	0x0003	0x0005	0x0001	0x0000
Every Year	March	5th week (ie last week of month)	1am	Sunday

Experiments (2)

Algorithm 2 – User Activity

- Four major clusters created
 - Allows analysis of large graphs to smaller ones

Experiments (3)

Algorithm 3 – File Investigation

Id	filename	timestamp
1	draft.Ink Std Info Creation date	2011-07-15 12:16:45.758789
2	NOTEPAD.EXE UserAssist	2011-07-15 13:07:09.039000
3	draft.Ink Std Info Entry date	2011-07-15 13:07:09.070311
4	draft.Ink Std Info Access date	2011-07-15 13:07:09.070311
5	draft.Ink Std Info Modification date	2011-07-15 13:07:09.070311

Presents information for a file called 'draft.txt'

- Ability to show file timestamps
- Ability to show program used to open the file

Evaluation

- Achieved project objectives
- The Framework is capable of assisting in a forensic investigation
 - Able to automatically extract evidence from a disk image
 - Able to identify connections between evidence
 - Able to provide a good visualization technique
- An Automated Forensic Analysis tool able to defend against false positives
 - Third Algorithm Restrictions
 - The program used to create the file the investigator is investigating must be opened up to 300 seconds before the file is created.
 - To find a file in the Recycle Bin it must be deleted up to 200 seconds before the file's timestamp.

Future Work & Conclusion

- Import extra functionality to correlate more sources of information
 - Internet Evidence
 - Hiberfil.sys
 - Windows Event Log
 - Data Carving Techniques
- Conclusion
 - Results show ability to assist in investigations
 - The framework was tested using specific experiments and identified connections between artifacts correctly
 - Further improvements can result
 - In a framework able to correlate evidence from a lot of sources of information
 - Reduce false positives

References

- S. L. Garfinkel, "Digital forensics research: The next 10 years." Digital Investigation, vol. 7, 2010.
- C. Hargreaves, J. Patterson, "An automated timeline reconstruction approach for digital forensic investigations", Digit Investing, 9 (2012) 69-79.
- Y. Chabot, A. Bertaux, C. Nicolle, and M.-T. Kechadi, "A complete formalized knowledge representation model for advanced digital forensics timeline analysis," Digital Investigation, vol. 11, 2014.
- T. Anderson and W. Twining, Analysis of evidence. Northwestern.
- "The Sleuth Kit: The Sleuth Kit (TSK) Library User's Guide and API Reference," The Sleuth Kit: The Sleuth Kit (TSK) Library User's Guide and API Reference. [Online]. Available: http://www.sleuthkit.org/sleuthkit/docs/api-docs/4.3/index.html. [Accessed: Jul-2016].
- "analyzeMFT Python Library," GitHub. [Online]. Available: https://github.com/dkovar/analyzemft. [Accessed: Jul-2016].
- "The Open Graph Visualization Platform," Gephi. [Online]. Available: https://gephi.org/.
 [Accessed: Jun-2016].
- Oh, Junghoon, Seungbong Lee, and Sangjin Lee. "Advanced evidence collection and analysis of web browser activity." digital investigation 8 (2011): S62-S70.
- "Data Carving Concepts," SANS. [Online]. Available: https://www.sans.org/reading-room/whitepapers/forensics/data-carving-concepts-32969. [Accessed: Aug-2016].

Questions?

Thank You