Image Processing 실습 1.

2019. 03. 11

김 혁 진

gurwls9628@naver.com

실습 소개

- 과목 홈페이지
 - 충남대학교 사이버 캠퍼스 (http://e-learn.cnu.ac.kr)
- TA 연락처
 - 김혁진
 - 공대 5호관 627호 정보보호연구실
 - gurwls9628@naver.com
 - [IP] 를 메일 제목에 붙여주세요
 - 과제 질문은 메일로만 해주세요

개요

- 실습
 - Matlab 기본
- 목표
 - Matlab에 대한 기본적인 이해
 - RGB 및 GrayScale 이미지에 대한 이해
- 구현
 - Rgb2Gray

MatLab

MATLAB(매트랩)은 MathWorks 사에서 개발한 수치 해석 및 프로그래밍 환경을 제공하는 공학용 소프트웨어이다. 행렬을 기반으로 한 계산 기능을 지원하며, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공한다. MATLAB은 수치 계산이 필요한 과학 및 공학 분야에서 다양하게 사용된다. 30일간의무료 체험판을 사용해 볼 수도 있다.

- wikipedia

MatLab

Mar 2019	Mar 2018	Change	Programming Language	Ratings	Change
1	1		Java	14.880%	-0.06%
2	2		С	13.305%	+0.55%
3	4	^	Python	8.262%	+2.39%
4	3	~	C++	8.126%	+1.67%
5	6	^	Visual Basic .NET	6.429%	+2.34%
6	5	~	C#	3.267%	-1.80%
7	8	^	JavaScript	2.426%	-1.49%
8	7	~	PHP	2.420%	-1.59%
9	10	^	SQL	1.926%	-0.76%
10	14	*	Objective-C	1.681%	-0.09%
11	18	*	MATLAB	1.469%	+0.06%
12	16	*	Assembly language	1.413%	-0.29%

MatLab

- 유료
- 학생 약 67,000 원 정도
- 실습실에서 과제를 다 하고 가는 것을 추천

MATLAB and Simulink Student Suite

MATLAB, Simulink를 비롯하여 가장 널리 쓰이는 10가지 애드온 제품 제공은 물론, 저렴한 타켓 하드웨어에서의 프로토타이핑, 테스팅 및 모델 실행을 기본 지원합니다.

지금 USD 59

과제 제출 시

- 다른 언어로 제출 가능
 - C, C++, Java, Python, Go, JavaScript 까지는 사용 가능
 - 이 외의 언어는 받지 않습니다 (Ruby, R, Rust, kotlin, scala, C# 등 안 받습니다)
- 실습은 MatLab으로 진행하지만 위의 언어로 구현해서 제출해도 인정
- 되도록이면 MatLab으로 진행할 것을 추천

Matlab

Matlab 기본 - 정의문

- a = 1
 - 변수에 값을 정의
 - 변수의 타입을 지정하지 않아도 됨
 - 타입은 자동으로 구분
 - 정의 끝에 ';' 을 붙이면 print를 막을 수 있음
- $A = [1 \ 2 \ 3], B = [1;2;3]$
 - 행렬 값을 정의
 - ';' 을 통해 행과 열을 구분
 - 띄어쓰기가 아닌 ,로 구분해도 됨
- ans
 - 결과를 변수로 받지 않으면 ans라는 변수가 받음

```
\Rightarrow a = 2.1
a =
    2.1000
>> A = [1 2 3], B = [1;2;3]
A =
R =
```

- A = 1:10
 - Python의 range함수처럼 범위의 행렬을 생성 가능
 - For문을 돌릴 때 주로 사용
 - []로 감싸도 되고 아니어도 됨
- A = [1:10; 2:2:20]
 - Python range와 거의 흡사
 - 반복할 때 간격도 정할 수 있음
 - 숫자 없이 ':'만 사용할 경우 해당 행 혹은 열을 모두 지정

- A(2,5)
 - 배열과 비슷하지만 Matlab은 1부터 시작
 - 행과 열을 지정해서 값을 얻을 수 있음
 - 값을 해당 위치에 넣는 것도 가능
- A(1:2, 1:5)
 - 연속적인 값도 뽑아낼 수 있음
 - 값 정의도 가능하지만 차원 수를 맞춰야 함
 - → 행렬이 크기가 작아지게 할 수 없음 2x5 -> 2x3 같은 경우는 불가능

```
>> A(2.5)
ans =
    10
>> A(1:2, 1:5)
ans =
                             1Π
```

- A > 5
 - 논리 연산자를 사용 시 행렬에 모두 적용
 - 각 논리연산자를 적용한 값이 행렬에0 혹은 1로 표시됨
 - 1은 참
 - 0은 거짓
- A(A>5)
 - A의 조건문에 맞는 값을 가져오게 됨

- A * B
 - **행렬곱**으로 연산
- A .* B
 - 연산 앞에 ':' 을 붙일 경우 각 위치의 값끼리 연산
 - 값 정의도 가능하지만 차원 수를 맞춰야 함

m×n행렬과 n×o행렬을 곱하면 m×o행렬이 된다.[2]

$$egin{bmatrix} 4 imes2$$
행렬 $4 imes3$ 행렬 $5 imes3$ $4 imes3$ 행렬 $5 imes3$ $5 imes5$ $5 imes6$ 5

- I = eye(4), I = eye(2, 5)
 - 단위 행렬을 만드는 함수
 - Identity Matrix
 - 단위 행렬을 주로 I로 사용해서 eye라는 함수로 만들어짐
 - 행렬의 곱셈에 대한 항등원 → 곱해도 같은 값이 나옴

$$AE = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} a \times 1 + b \times 0 & a \times 0 + b \times 1 \\ c \times 1 + d \times 0 & c \times 0 + d \times 1 \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

```
>> 1 = eve(4)
| =
>> 1 = eye(2, 5)
I =
```

- A = zeros(5), A = zeros(2, 5)
 - 0으로 채워진 행렬을 얻는 함수
- A = ones(5), A = ones(2, 5)
 - 1으로 채워진 행렬을 얻는 함수
- size(A)
 - 행렬의 크기를 얻는 함수
 - 변수의 경우 1, 1의 크기

```
\gg A = zeros(5)
A =
\gg A = zeros(2, 5)
A =
```

```
>> size(A)
ans =
           5
>> a = 1
a =
>> size(a)
ans =
```

- A = magic(5)
 - 마방진을 만드는 함수
 - 행, 렬, 대각선의 합이 모두 같은 값

- A = log(2), log2(2), log10(2)
 - Log 연산 함수
 - Log의 밑을 e, 2, 10으로 지정 가능
 - 행렬에도 적용 가능


```
>> log(10)
ans =
    2.3026
>> log(2)
ans =
    0.6931
>> log2(2)
ans =
>> log10(2)
ans =
    0.3010
```

- $A = \sin(x), \cos(x), \tan(x)$
 - sin, cos, tan의 삼각함수를 적용하는 함수
- A = asin(x), acos(x), atan(x)
 - arcsin, arccos, arctan의 역삼각함수를 적용하는 함수
 - 삼각함수의 역함수
- A = sqrt(x)
 - 제곱근을 적용하는 함수
- A = abs(x)
 - 절대값으로 만드는 함수

- A = exp(2)
 - 자연로그의 지수함수를 구하는 함수
- A = floor(3.5)
 - 내림 함수
- A = ceil(3.2)
 - 올림 함수
- A = round(x)
 - 반올림 함수
- A = mod(x)
 - 나머지연산 함수 (%를 사용하지 않음) % 는 주석

F

2

- length(x)
 - X 행렬의 길이를 구하는 함수
- disp('Hello World')
 - Print함수
 - Command 창에 입력받은 문자열 혹은 숫자를 출력해주는 함수
- sprintf
 - 문자열을 formatting을 해서 문자열을 내보내는 함수
- fprintf
 - fprintf의 값을 출력하는 함수

```
>> sprintf('Hello, %s', 'Image Processing')

ans =

Hello, Image Processing

>> fprintf('Hello, %s', 'Image Processing')
Hello, Image Processing>>
>> disp('Hello, %s', 'Image Processing')
다음 사용 중 오류가 발생함: disp
입력 인수가 너무 많습니다.
```

Matlab 기본 – 조건문

- If 조건문
 - If, elseif, else 로 조건문을 여러 개 나열 가능
 - 조건문이 모두 끝나고 end로 끝내야 함

```
if a < 0
    a = -a;
elseif a > 0
    a = +a;
else
    a = 0;
end
```

Matlab 기본 – 반복문

- For 반복문
 - 행렬만큼 반복하게 할 수 있음
 - ':' 와 함께 사용하여 foreach문처럼 사용 가능
- While 반복문
 - 조건을 만족할 때까지 반복
 - 무한 루프 조심
 - 무한 루프 발생 시 ctrl+c로 캔슬 가능

```
a = zeros(1, 10);

for i = 1:10
    if mod(i, 2) == 1
        a(1, i) = i+1;
    else
        a(1, i) = i;
    end

end
```

Matlab 기본 – plotting 1

Plotting

- 만들어진 행렬 값을 이용해 plotting
- 여러가지 값을 동시에 출력도 가능
- Figure를 호출 시 새 창이 뜸
- →이를 이용해 여러 창에 plotting 가능 plot(x축, y축, x축2, y축2, ...) 로 사용

```
x = 1:100;

y1 = log2(x);

y2 = log(x);

y3 = log10(x);

figure % plotting할 window 생성

plot(x, y1, x, y2, x, y3)
```


Matlab 기본 – plotting 2

subPlotting

- Window를 grid로 나누어서 plotting
- Subplot(행, 열, index)로 사용 가능
- 전체 window를 입력한 행, 열로 나누고 index번째 창에 plotting

1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	

```
>> subplot(1,3, 1);
>> plot(x, y1);
>> title('Log 2')
>>
>> subplot(1, 3, 2);
>> plot(x, y2);
>> title('Log e')
>>
>> subplot(1, 3, 3);
>> plot(x, y3);
>> title('Log 10')
```


imread

- 이미지를 읽는 함수
- 현재 지정된 폴더를 기준으로 경로설정하여 이미지를 읽음
- ';'을 붙이지 않으면 이미지의 행렬 값이 모두 출력됨
- MATLAB 내부 image 폴더에서 이미지가 있다면 내부 image 폴더에서 이미지를 찾음

imshow

- 행렬을 이미지로 보고 이미지 출력을 하는 함수
- 행렬을 입력으로 함

```
> RGB = imread('peppers.png');
> imshow(RGB)
```


imwrite

- 행렬을 이미지로 저장함
- 행렬을 입력으로 함
- 이미지 Format 지정 가능

gray = rgb2gray(RGB); imwrite(gray, 'gray_peppers.png')

- imfinfo
 - 이미지의 정보를 보는 함수
 - Format, filesize 등 여러 정보 출력

```
>> imfinfo('gray_peppers.png')

ans =

Filename: 'C:\Users\';

FileModDate: '09-Mar-20'

FileSize: 89147

Format: 'png'

FormatVersion: []

Width: 512

Height: 384

BitDepth: 8

ColorType: 'grayscale
```

```
>> imfinfo('peppers.png')

ans =

Filename: 'C:\Program
FileModDate: '16-Dec-2002
FileSize: 287677
Format: 'png'
FormatVersion: []
Width: 512
Height: 384
BitDepth: 24
ColorType: 'truecolor'
```

Matlab 기본 – m 파일

- 홈/새 스크립트 버튼을 눌러 m 파일 작성 가능
- Command 창에서 실행하는 것은 script로 진행됨
 - 다시 실행하기 어렵고, 한번 잘못했을 때 처음부터 재실행 해야함
 - .m파일을 만들어 .m파일을 실행
 - Python, JavaScript를 파일로 만들어 실행하는 것과 같은 이유
 - 실행버튼으로 m파일 실행 가능

Matlab 기본 – function

function

- 함수를 만들 때에 사용
- 함수 결과와 인자를 지정
- .m파일을 만들고 저장 시 스크립트에서 함수 호출 가능 .m파일에서만 function 선언 가능. 스크립트에서는 불가능
- 함수의 인자는 reference되지 않음

return

- C, Java, python 등의 return과 달리 함수를 종료하는 역할만 함

- return할 인자는 함수의 result을 지정한 인자로 값을 정의해 사용

```
>> my_max(2, 3)
ans =
```

```
my_max.m * +

function result = my_max(a, b)

if a >= b
result = a;
return
end
result = b;
```

Matlab 기본 – 기타

- clc
 - Command창을 초기화
 - 화면 정리용
- clear
 - Workspace를 초기화함
 - 다시 처음부터 하고싶을 때 사용

이외의 다른 것은 google에

https://kr.mathworks.com/help/matlab/getting-started-with-matlab.html

rgb2gray

- RGB 영상의 R, G, B 값을 이용하면 gray scale 영상을 만들 수 있음
 - R, G, B 값을 계산하여 하나의 값으로 만듦
- 단, 구현에 따라 영상의 품질이 다르게 보일 수 있음
 - 사람의 눈이 R, G, B 값에 반응하는 정도가 각각 다름

rgb2gray

- rgb2gray 내장 함수를 사용하지 않고 rgb2gray 함수를 구현
 - .m파일로 my_rgb2gray 함수를 만들어 제출
 - 입력 값은 (x, y, 3)인 RGB 이미지 행렬
 - 출력 결과는 (x, y)인 grayscale 이미지 행렬
 - my_rgb2gray.m 파일을 만들어 제출
 - 예외처리 하지 않아도 됨. 입력은 항상 RGB 이미지로 가정
 - 주석 굳이 달지 않아도 됨 (보고서에 정리)

• 채점 기준

- Gray Scale 영상의 품질
- 내장 함수 사용시 과제 1점 (과제를 진행하기 어렵다면 내장함수라도 사용해 제출) 미구현으로 제출 시 0점
- 다른 언어로 구현하더라도 구현 기능의 핵심 부분은 직접 계산하여 구현해야 함
 (라이브러리 혹은 내장 함수를 통해 핵심기능 구현 시 1점)

과제

• 보고서

- 내용:
 - 이름, 학번, 학과
 - 구현 내용: 구현한 내용과 방법에 대한 설명
 - 구현 이유: 구현한 방법에 대한 이유
 - 느낀 점: 구현하면서 느낀 점, 혹은 어려운 점
 - 과제 난이도: 개인적으로 생각하는 난이도 및 이유 (과제가 너무 쉬운 것 같다 등..)
- .pdf 파일로 제출 (이 외의 파일 형식일 경우 감점)
- 다른 언어로 제출 시 조금 더 자세하게 설명
- 파일 이름:
 - [IP]20xxxxxxx_이름_1주차_과제.pdf

과제

- 제출 기한
 - 3월 17일 23시 59분까지
- 추가 제출 기한
 - 3월 18일 0시 10분까지 (최대 점수 9점, 과제 총점 계산 후 -1점)
 - 3월 18일 0시 20분까지 (최대 점수 8점, 과제 총점 계산 후 -2점)
 - 3월 18일 0시 30분까지 (최대 점수 7점 , 과제 총점 계산 후 -3점)
 - 3월 18일 0시 40분까지 (최대 점수 6점, 과제 총점 계산 후 -4점)
 - 3월 18일 0시 50분까지 (최대 점수 5점, 과제 총점 계산 후 -5점)
 - 3월 24일 23시 59분까지 (최대 점수 4점 , 과제 총점 계산 후 -6점)
- Ex: 과제 점수가 1점인데 과제 3월 18일 24분 제출시 0점

과제 요약

- 1. rgb2gray 내장 함수를 사용하지 않고 rgb2gray 함수를 구현
 - .m파일로 my_rgb2gray 함수를 만들어 .m파일 제출
- 채점 기준
 - Rgb2gray 채점 기준 + 보고서
- 제출 파일
 - my_rgb2gray.m 파일
 - .pdf 보고서 파일
 - 위의 파일을 압축해서 [IP]20xxxxxxxx_이름_1주차_과제.zip로 제출