

REGULÄRE SPRACHEN

Definition

- $L \subset \Sigma^*$ heißt regulär, falls es einen DEA A gibt, der L akzeptiert, also L = L(A)
- → Damit hat man für eine einfache Sprachklasse einen Automaten gefunden, der diese Sprachen akzeptiert.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beispiel

Damit gilt:

- · Geben Sie für diesen Automaten die Automatentabelle an.
- Geben Sie $A_{int} = (Z, \Sigma, \delta, z_0, E)$ an.
- Zeigen Sie, dass 1679 von A_{int} akzeptiert wird.
- · Zeigen Sie, dass -1-4 nicht akzeptiert wird.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Aufgabe

Konstruieren Sie jeweils einen Automaten, der folgende Sprachen über $\Sigma = \{0, 1\}$ akzeptiert:

 $L_1 = \{\omega \in \Sigma^* \mid \omega \text{ beginnt mit 1}\}$

 $L_1 = \{1\omega \mid \omega \in \Sigma^*\}$

 $L_2 = \{\omega \in \Sigma^* \mid |\omega|_1 \ge 1\}$

 $L_3 = \{\omega \in \Sigma^* \mid \omega \text{ enthält nicht 11}\}$

Wozu das ganze?

Sprache mit Syntax

B. $\omega \in L_1$ beginnt mit 1

Automat/Maschine, der/die genau solche Wörter erkennt bzw. akzeptiert

Beispiel

• Gegeben ist der folgende Automat A über $\Sigma = \{0, ..., 9\}$:

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beispiel

Wird ω = 126 erkannt?

126
$$s_0 \rightarrow s_1$$
 $\delta(s_0, 1) = s_1$

126 $s_1 \rightarrow s_0$ $\delta(s_1, 2) = s_0$

126 $s_0 \rightarrow s_0$ Endzustand: $\delta(s_0, 6) = s_0$

126 $\in L(A)$

über Konfigurationen:

$$(s_0, 126)$$
 -> $(s_1, 26)$ -> $(s_0, 6)$ -> (s_0, ϵ)
d.h. $(s_0, 126)$ \rightarrow^* $(s_0, \epsilon) \in E$

also 126 ∈ L(A) ~ reguläre Sprache

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beispiel Fortführung

Wird
$$\omega$$
 = 293 erkannt?
 $(s_0, 293)$ -> $(s_2, 93)$ -> $(s_2, 3)$ -> (s_2, ϵ) also 293 \notin L(A)

<u>Frage:</u> Welche Struktur hat ein $\omega \in L(A)$?

 $18 \in L(A)$; $25 \notin L(A)$; $111 \in L(A)$; $217 \notin L(A)$

Der Automat verarbeitet Zahlen, die aus Ziffern ∈ {0, ..., 9} bestehen.

"Quersumme" durch 3 teilbar:

Rest : $0 \rightarrow s_0$

Rest : 1 \rightarrow s₁

Rest : $2 \rightarrow s_2$ Damit L(A) = $\{z \in \Sigma^* \mid z \text{ ganzzahlig durch 3 teilbar}\}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Weitere Begriffe

- äquivalente Automaten
- · erreichbare Zustände
- Fehlerzustände

Beispiel

$$\Sigma = \{0, 1\}$$

$$A_2$$
: $L(A_2) = \{\omega 1 \mid \omega \in \Sigma^*\}$

Also: Es gibt verschiedene Automaten für dieselbe Sprache

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Äquivalente Automaten

 Zwei Automaten A₁ und A₂ heißen <u>äquivalent</u>, falls es gilt: L(A₁) = L(A₂)

Wie zeigt man diese Äquivalenz?

$$L(A_1) \subset L(A_2) \wedge L(A_2) \subset L(A_1)$$

Ein Wort, das A_1 erkennt, wird auch von A_2 erkannt. und

Ein Wort, das A_2 erkennt, wird auch von A_1 erkannt

Erreichbare Zustände

 $z' \in Z$ heißt vom Zustand $z \in \Sigma$ erreichbar, falls es $\omega \in \Sigma^*$ gibt mit

$$(z, \omega) \rightarrow^* (z', \varepsilon)$$

[z]* ⊂ Z ist die Menge aller von z aus erreichbaren Zustände.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

- 1

Fehlerzustände

Ein Fehlerzustand ist ein Zustand $z \in Z$, von dem aus kein Endzustand erreichbar ist:

$$[z]^* \cap E = \emptyset$$

Also: Gelangt man bei der Abarbeitung eines Wortes ω in einem Fehlerzustand, so gilt ω ∉ L(A)

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

14

Beispiel

 z_4 ist Fehlerzustand ~ falsche/ungültige Zahl

z.B. $(z_0, 091) \rightarrow (z_3, 91) \rightarrow (z_4, 1) \rightarrow (z_4, \epsilon)$ ungültige Zahl

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beispiel

 $L_1 = \{\omega \in \Sigma^* \mid \omega \text{ beginnt mit 1} \} \ \Sigma = \{0, 1\}$

Varianten:

HOCHSCHULE EMDEN•LEER

z.B.: 1001: $z_0 \xrightarrow{1} z_1 \xrightarrow{0} z_1 \xrightarrow{0} z_1 \xrightarrow{1} z_1$

z.B.: 01: $z_0 \xrightarrow{0} z_2 \xrightarrow{1} z_2$

$$[z_0]^* = \{z_0, z_1, z_2\}$$

 $[z_1]^* = \{z_1\}$
 $[z_2]^* = \{z_2\}$

Fehlerzustand: z2

@ Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Geben Sie für den Automaten Übergangstabelle an.

Zustand	Eingabe	Folgezustand
Z0	0	Z1
Z0	1	Z0
Z1	0	Z2
Z1	1	Z0
Z2	0	Z3
Z2	1	Z0
Z3	0	Z3
Z3	1	Z0

Zustand / Eingabe	0	1
Z 0	Z1	Z0
Z 1	Z2	Z 0
Z2	Z3	Z 0
Z3	Z3	Z0

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Aufgaben

Beim dargestellten Automaten ist Z0 gleichzeitig Start- und Endzustand $\begin{bmatrix} 0 \\ Z0 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 1 \\ Z1 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 \\ Z2 \end{bmatrix}$

Prüfe, welche der Zahlen vom Automaten akzeptiert werden.

Prüfe, ob 10101 vom Automaten akzeptiert wird.

Wort	Dezimalzahl	akzeptiert?	Wort	Dezimalzahl	akzeptiert?
0			1000		
1			1001		
10			1010		
11			1011		
100			1100		
101			1101		
110			1110		
111			1111		

 Welche Sprache (über dem Alphabet {a, b}) akzeptiert der folgende nicht-deterministische endliche Automat?

Lösung: $\{\epsilon\} \cup \{w \in \{a,b\}^* \mid w \text{ endet auf } a\}$

• Geben Sie einen deterministischen endlichen Automaten an, der die Sprache L((aa U aaa)*) akzeptiert.

Lösung: Die Sprache $L((aa \cup aaa)^*)$ besteht aus allen Wörtern a^k außer a. Dies wird vom folgenden Automat akzeptiert:

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Aufgaben

Betrachten Sie den Automaten zum Eingabealphabet $\Sigma = \{0,1\}$

Beschreiben Sie den Automaten A formal durch die Angaben $A=(\Sigma,Q,\delta,q_0,F)$.

$$\begin{array}{c|c|c|c}
\delta & 0 & 1 \\
q_0 & \{q_0, q_1\} & \{q_1\} \\
q_1 & \emptyset & \{q_0\}
\end{array}$$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Sei L := $\{\omega \in \{0,1\} * \mid \text{das zweitletzt Symbol von } \omega \text{ ist eine } 0 \}$

 Geben Sie zu L einen nichtdeterministischen endlichen Automaten A mit L(A) = L an. Beschreiben Sie den Automaten A sowohl durch einen Übergangsgraphen als auch formal als 5-Tupel.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

,

Aufgabe

Gegeben sei die Sprache L mit
 = {w ∈ {0, 1}?|∃ u ∈ {0, 1}* : w = 0u0}.

Geben Sie einen endlichen Automaten $A=(\Sigma,Q,\delta,q_0,F)$ an, welcher L erkennt. Geben Sie A vollständig an.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

22

 Auf einem Parkplatz kostet das Parken 1,50 Euro. Ein Parkscheinautomat akzeptiert 50 Cent, 1 Euro und 2 Euro-Münzen. Nach Einwurf der korrekten Geldsumme liefert der Automat das Ticket und das Restgeld. Er besitzt keine Abbruchtaste. Erstellen Sie Automaten, die die Sprache des Parkscheinautomats akzeptiert.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Yes we can...

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

24