上海财经大学《 常微分方程 》模拟试卷 三

姓名	学号	班级
江 石	ナフ	グエ 3X

题号	1	11	111	四	总分
得分					

	14 冷 昭	(每空3分,	# 20 //)
` `	块 工 政	(母生)刀,	- 大 30 カナ

- 2 . 对方程 $\frac{dy}{dx} = \frac{a_1 x + b + y}{a_2 x + b y + c}$, 当 $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$ 时,可作变量替换,令

 $u = _____$,方程就能化为变量分离方程.

则方程 $\frac{dy}{dx} = f(x,y)$ 存在唯一解 $y = \varphi(x)$,定义于区间 $|x - x_0| \le h$ 上,连续且满足初始条件 $y_0 = \varphi(x_0)$,其中 $h = \underline{\qquad}$, $M = \max_{(x,y) \in R} |f(x,y)|$.

- 4. 方程 $\frac{dy}{dx} + y \sin x = e^x$ 的任一解的最大存在区间是______.
- 5. 设 λ 是n阶常系数齐次线性方程特征方程的k重根,则该方程相应于 λ 的k个线性无关解是
- 6. 若 $x^*(t)$ 是n阶线性非齐次方程的一个特解, $x_1(t), x_2(t), \cdots$ 是其对应的齐次线性方程的n个线性无关解,则此n阶线性非齐次方程的通解可以表示为
- 7. 若 $\Phi(t)$, $\Psi(t)$ 在区间 [a,b] 上是常系数齐次线性方程组 X'=AX 的两个基解矩阵,则它们的关系是
- 8. 若矩阵 A 为二阶单位矩阵,则方程组 X'=AX 基解矩阵 $\exp(At)=$

二、单选题(每题3分,共15分)

1. 微分方程 $y^{(2)} - y^{'3} = 2\cos y - y^{5}$ 的阶数为 ().

2. 下列方程中为线性微分方程的是().

(A) $e^{x-y'} = v^{(2)}$

(B) $y'' = xy - \sqrt{x}$

(C) $y'y = \ln x$

(D) $\sin(y''' + y) = x$

3. 微分方程 y'-5y'+6y=0 的通解是 ().

(A) ce^{2x}

(B) $e^{3x} - c_2 e^{2x}$

(C) $c_1 e^{3x} - c_2 e^{2x}$

(D) $c_1 e^{3x} - c_1 e^{2x}$

(其中 c,c_1,c_2 为任意常数)

4、函数 $y = \frac{x^3}{5} + \frac{x^2}{2}$ 是下列方程() 的解.

(A) $3v' = 3x^2 + 5x$

(B) $5v' = 5x^2 + 3x$

- (C) $5y' = 3x^2 + 5x$
- (D) $5y' = 3x^2 + 3x$

5. 设 $x_1(t), x_2(t), \cdots$ 是n 阶齐次线性方程的任意n+1个解,则下列命题正确 的是 ().

- (A) 这n+1个解必线性相关
- (B) 这n+1个解可组成方程的一个基本解组
- (C) 这n+1个解组成的 Wronski 行列式恒不为零
- (D) 这 n+1 个解必线性无关

三、求下列方程的通解(共26分)

1.
$$\frac{dy}{dx} - \frac{1}{x-2}y = 2(x-2)^2$$

$$(e^x + 3y^2)dx + 2xydy = 0$$

3、
$$x''-a^2x=t+1$$
 (a 为实常数)

四、求方程组
$$X'=AX$$
 ,其中 $A=\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & -4 \end{bmatrix}$ 的一个基解矩阵. (15 分)

五、求方程 $\frac{dy}{dx} = x - y^2$ 经过(1,0)的第二次近似解(8分)

六、证明题(6分)

设 $x_1(t), x_2(t)$ 为方程 $x'' + a_1(t)x' + a_2(t)x = 0$ 的解,且 $x_1(t_0) = x_2(t_0) = 0$, $x_1(t)$ 不恒为零,其中 $a_1(t)$ 和 $a_2(t)$ 是含 t_0 的区间上的连续函数。试证:存在常数 C ,使得在该区间上有 $x_2(t) \equiv Cx_1(t)$ (或 $x_1(t) \equiv Cx_2(t)$)。