УДК 546.682+548.734+669.18

Мирослава ГОРЯЧ $A^{1,2}$, Галина НИЧИПОРУ K^1 , Райнер ПЬОТТГЕ H^2 , Василь $3APEMEA^1$

КРИСТАЛІЧНІ СТРУКТУРИ ФАЗ СИСТЕМИ GdCuIn_{1-X}Al_X

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: goryacha muroslava@ukr.net

²Інститут неорганічної хімії, Університет Мюнстера, Корренштрассе, 30, D 48149 Мюнстер, Німеччина

Синтезовано монокристали та рентгенівським методом (автодифрактометр Stoe IPDS II, Мо K_a -випромінювання) досліджено кристалічну структуру сполук: GdCuAl (структурний тип ZrNiAl, P-62m, a=0,70537(4); c=0,40616(2) нм, $R_I=0,0130$ для 319 незалежних відбить, 15 змінних); GdCuIn $_{0,72}$ Al $_{0,28}$ (структурний тип ZrNiAl, P-62m, a=0,73755(7); c=0,39887(3) нм, $R_I=0,0111$ для 303 незалежних відбить, 15 змінних); GdCu $_{3,26}$ Al $_{1,74}$ (структурний тип CaCu $_{5}$, P6/mmm, a=0,51527(6); c=0,416 06(2) нм, $R_I=0,0095$ для 112 незалежних відбить, 10 змінних). Виконано кристалохімічний аналіз фаз зі структурою типу ZrNiAl.

Ключові слова: алюміній, індій, метод монокристала, кристалічна структура.

Вступ

Дослідження чотирикомпонентних системи за участю індію, рідкісноземельних і перехідних металів, спрямоване на пошук нових фаз із метою їхнього подальшого використання як сучасних функціональних матеріалів. Для низки сполук складів RCuIn і RCu₂In (R = Y, Gd) вивчено вплив заміщення індію іншим p-елементом IIIa групи (Al, Ga) [1–3] на можливість утворення та протяжність твердих розчинів. Кристалічні структури сполук еквіатомного складу GdCuM (M = Al, In) належать до гексагональної сингонії зі структурою типу ZrNiAl [4–13]. Вони характеризуються тригонально-призматичною координацією атомів найменшого розміру згідно з класифікацією Π . Крип'якевича [14].

Магнітні моменти сполук RCuIn (RE = Nd, Gd, Tb, Dy, Ho, Er) впорядковуються антиферомагнітно, у сполуці GdCuAl простежується антиферомагнітний тип впорядкування за 23 К [7–12].

З огляду на цікаві магнітні властивості сполук GdCuAl і GdCuIn важливо визначити кристалічну структуру фазових складових твердих розчинів на їхній основі. Зауважимо, що кристалічні структури сполук GdCuAl [4, 5, 7, 10, 11] і GdCuIn [9, 13] вивчено методом порошку без уточнення координат атомів. Для детальнішого уточнення кристалічної структури синтезовано монокристали із сплавів різних складів системи GdCuIn_{1-x}Al_x, дослідженої раніше [1], і виконано повне структурне

дослідження рентгенівським методом монокристала, результати якого наведено нижче.

Матеріали та методика експерименту

Методику синтезу зразків системи $GdCuIn_{1-x}Al_x$ детально описано в [1]. У межах твердого розчину сплави містили незначні кількості додаткових фаз. Монокристалів, придатних для рентгенівського дослідження, не виявилось ні у литих, ні у відпалених зразках, тому їхній синтез провели з використанням спеціальної методики.

3 цією метою зразки окремих складів, виготовлені попередньо електродуговим плавленням компактних металів, запаяли в танталові контейнери, які вакуумували у кварцові ампули. Синтез полягав у спеціальній термічній обробці у муфельній печі Naberterm HTCT 01/16: впродовж шести годин сплави нагрівали до температури 1100 °C і витримували 2 години за цієї температури, охолоджували зі швидкістю 3 °С/год до температури 900 °С та витримували 6 годин за цієї температури, в подальшому охолоджували до кімнатної температури впродовж 20-ти годин. Кристали неправильної форми з металевим блиском одержали зі зразків складів $Gd_{0.33}Cu_{0.33}Al_{0.34}$ і $Gd_{0.33}Cu_{0.33}In_{0.24}Al_{0.10}$, де в останньому виявили монокристали різної форми двох типів. Якість монокристалів попередньо тестували методом Лауе (прецизійна камера Бюргера, МоК-випромінювання) та підтвердили гексагональну сингонію для них. Кількісний і якісний склад цих монокристалів також підтверджено результатами EDX аналізу (скануючий електронний мікроскоп Zeiss EVO MA10). Масиви монокристальних даних одержано на дифрактометрі Stoe IPDS II (Мо *К*α-випромінювання) в Інституті неорганічної хімії Університету м. Мюнстера, (Німеччина).

Результати дослідження та їхнє обговорення

Монокристали сполуки GdCuAl отримали зі зразка складу $Gd_{0,33}Cu_{0,33}Al_{0,34}$, тоді як монокристали сполук $GdCuIn_{0,72}Al_{0,28}$ і $GdCu_{3,26}Al_{1,74}$ виявили у сплаві складу $Gd_{0,33}Cu_{0,33}In_{0,24}Al_{0,10}$.

Розшифрування й уточнення кристалічної структури сполук GdCuAl і $GdCuIn_{0,72}Al_{0,28}$ виконано в рамках моделі структурного типу ZrNiAl [15], а $GdCu_{3,26}Al_{1,74}$ - в моделі структурного типу CaCu₅ [16] з використанням пакета програм JANA2006 [17] на основі масивів експериментальних відбить hkl, одержаних на дифрактометрі Stoe IPDS II (Мо $K\alpha$ -випромінювання).

Деталі експерименту та результати уточнення кристалічної структури сполук узагальнено у табл. 1. Координати і параметри теплового зміщення та міжатомні віддалі й координаційні числа атомів у структурах сполук подано у табл. 2, 3, відповідно.

З огляду на подібність електронної будови атомів індію й алюмінію (елементи ІІІа групи періодичної системи) та ізоструктурність вихідних сполук (представники структурного типу ZrNiAl), а також повне заміщення індію на алюміній у системі $GdCuIn_{1-x}AI_x$ за 870 К [1] з утворенням неперервного твердого розчину, одержання зі зразків різних складів монокристалів з однаковою структурою є закономірним. Якщо порівняти уточнені параметри елементарних комірок одержаних сполук, то зі зменшенням вмісту алюмінію спостерігається збільшення періоду a та об'єму V, тоді як період c незначно зменшується (табл. 1). Таку зміну параметрів можна пояснити особливістю структури типу ZrNiAl. Заміщення атомів алюмінію атомами індію відбувається в положенні 3g (x 0 1/2) просторової групи P-62m, для

якого характерна зміна координат атомів вздовж напрямків X та Y, які відповідають періодам a і b елементарної комірки. Одержані результати узгоджуються зі значеннями параметрів елементарної комірки неперервного твердого розчину [1] та розмірами атомів індію ($r_{\rm In}$ = 0,163 нм) та алюмінію ($r_{\rm Al}$ = 0,143 нм) [18]. Просторове зображення кристалічної структури сполуки GdCuIn_{0,72}Al_{0,28} вздовж напрямку Z подано на рис. 1, a (сегментами зазначено частку заповнення атомами Al та In положення 3g).

 $\begin{tabular}{l} \it Taблиця \it 1 \\ \it Peзультати уточнення кристалічної структури сполук GdCuAl, GdCuIn_{0,72}Al_{0,28} i GdCu_{3,26}Al_{1,74} \\ \it Table \it 1 \\ \end{tabular}$

Crystal data and structure refinement for compounds GdCuAl, GdCuIn_{0.72}Al_{0.28} and GdCu_{3.26}Al_{1.74}

Емпірична формула	GdCuAl	GdCuIn _{0,72} Al _{0,28}	GdCu _{3,26} Al _{1,74}
Просторова група, Z	P-62 m , 3	P-62 m , 3	P6/mmm, 1
Символ Пірсона	hP9	hP9	hP6
	a = 0.70537(4)	a = 0,73755(7)	a = 0.51527(6)
Параметри комірки, нм	c = 0.40616(2)	c = 0.39887(3)	c = 0.41606(2)
	V = 0.17501(2)	V = 0.18791(3)	V = 0.09566(2)
Випромінювання; λ, нм		Mo $K\alpha$; 0,071073	
Температура, К		293	
Розрахована густина, г/см ³	7,053	8,253	7,142
Коефіцієнт поглинання	37,213	40,893	35,117
${\rm Hm}^{-1} \cdot 10^6$	37,213	40,073	33,117
F(000)	318	396	181
Межі θ	3,33-34,82	3,19-33,22	4,57-34,43
Межі <i>hkl</i>	±11, ±11,±6	±11, ±11,±6	$\pm 8, \pm 8, \pm 6$
Загальна кількість рефлексів	11222	3022	2205
Незалежні рефлекси /	319 / 15	303 / 15	112 / 10
параметри	210	• • •	100
Рефлекси $I > 2\sigma(I)$	310	297	108
Фактор добротності F^2	0,98	1,03	0,80
R_1 / wR_2 для $I > 2\sigma(I)$	0,0116 / 0,0260	0,0107 / 0,0259	0,0081 / 0,0189
R_1 / wR_2 для всіх даних	0,0130 /0,0265	0,0111 / 0,0260	0,0095 / 0,0194
Найбільші пік і яма на			
кінцевому різницевому	0,69 / -0,47	0,43 / -0,37	0,26 / -0,31
синтезі Фур'є, е/нм·10 ³			

Порівнюючи одержані нами результати з даними уточнення кристалічної структури тернарних сполук GdCuM (M=Al, In) методом порошку, можемо стверджувати, що співвідношення c/a=0,576 для сполуки GdCuAl таке саме, як у [7, 10, 11] (або c/a=0,574 [4, 5]), для сполуки GdCuIn c/a=0,534 [9] (або c/a=0,535 [15], тоді як співвідношення c/a=0,541 для фази $GdCuIn_{0,72}Al_{0,28}$ відповідає проміжному значенню для твердого розчину $GdCuIn_{1,x}Al_x$. Закономірно змінюються також віддалі між атомами меншого розміру (рис. 1, δ , табл. 4) під час переходу від тернарної сполуки GdCuAl через тетрарні фази $GdCuIn_{0,29}Al_{0,71}$ [1] і $GdCuIn_{0,72}Al_{0,28}$ до GdCuIn [13].

Таблиця 2 Координати та параметри теплового зміщення атомів у структурах сполук GdCuAl, GdCuIn $_{0.72}$ Al $_{0.28}$ і GdCu $_{3.26}$ Al $_{1.74}$

Table 2

Atomic coordinates and displacement parameters in the structure of the compounds GdCuAl,

GdCuIn_{0.72}Al_{0.28} and GdCu_{3.26}Al_{1.74}

		01/2 0120		0.20 1			
Атом	ПСТ	х	у	Z	$U_{iso} \cdot 10^2$, нм ²		
GdCuAl							
Gd	3f	0,58494(4)	0	0	0,0105(1)		
Al	3g	0,2335(3)	0	1/2	0,0082(4)		
Cu1	1 <i>a</i>	0	0	0	0,0110(3)		
Cu2	2d	1/3	2/3	1/2	0,0129(2)		
Атом	U_{11}	U_{22}		U_{33}	U_{12}		
Gd	0,0100(1)	0,0094(1)	0,0121(1)	0,0047(1)		
Al	0,0077(6)	0,0090(6)	0,0083(6)	0,0045(3)		
Cu1	0,0119(3)	0,0119(3)	0,0090(5)	0,0060(2)		
Cu2	0,0132(2)	0,0132(2)	0,0121(4)	0,0066(1)		
		GdCuI	$n_{0,72}Al_{0,28}$				
Gd	3f	0,58680(4)	0	0	0,0110(1)		
M^*	3g	0,24903(7)	0	1/2	0,0109(2)		
Cu1	1 <i>a</i>	0	0	0	0,0156(3)		
Cu2	2d	1/3	2/3	1/2	0,0135(2)		
Атом	U_{11}	U_{22}		U_{33}	U_{12}		
Gd	0,0110(1)	0,0104((1)	0,0115(1)	0,0052(1)		
M^*	0,0097(2)	0,0109((3)	0,0125(2)	0,0055(1)		
Cu1	0,0166(4)	0,0166(4)	0,0134(5)	0,0083(2)		
Cu2	0,0130(3)	0,0130((3)	0,0147(4)	0,0065(1)		
GdCu _{3,26} Al _{1,74}							
Gd	1 <i>a</i>	0	0	0	0,0084(1)		
Cu	2c	1/3	2/3	0	0,0095(1)		
M^{**}	3g	1/2	0	1/2	0,0100(2)		
Атом	U_{11}	U_{22}		U_{33}	U_{12}		
Gd	0,0076(1)	0,0076((1)	0,0101(1)	0,0038(1)		
Cu	0,0108(1)	0,0108((1)	0,0068(2)	0,0054(1)		
M**	0,0133(3)	0,0071((3)	0,0073(2)	0,0036(1)		
*M = 0.72(1) In + 0.28(1) Al							

^{*}M = 0.72(1) In + 0.28(1) Al;

Утворення монокристалів фази зі структурою типу $CaCu_5$ узгоджується з результатами дослідження взаємодії компонентів у системі Gd—Cu—Al [19] та з результатами уточнення кристалічної структури фаз складу $Gd(Cu,Al)_5$ [19—21]. Просторове зображення кристалічної структури сполуки $GdCu_{3,26}Al_{1,74}$ вздовж напрямку Z подано на рис. 2, сегментами зазначено частку заповнення атомами Cu та Al положення 3g.

^{**}M = 0.58(1) Al + 0.42(1) Cu;

 $U_{13} = U_{23} = 0$

Tаблиця 3 Міжатомні віддалі у структурах сполук GdCuAl, GdCuIn_{0,72}Al_{0,28} та GdCu_{3,26}Al_{1,74} Table 3 Interatomic distances in the structure of the compounds GdCuAl, GdCuIn_{0,72}Al_{0,28} and GdCu_{3,26}Al_{1,74}

			_				
A	Атом	δ, нм	КЧ	-	Атом	δ, нм	КЧ
		GdCuAl		GdCuIn _{0.72} Al _{0.28}			
Gd	Cu1	0,29277(3)		Gd	4Cu2	0,29867(2)	
	4Cu2	0,29376(1)			Cu1	0,30476(4)	
	2A1	0,32046(17)	15		2M	0,31912(5)	15
	4Al	0,32537(14)			4M	0,33228(4)	
	4Gd	0,36764(2)			4Gd	0,38508(3)	
Cu1	6Al	0,26147(7)	9	Cu1	6 <i>M</i>	0,27113(2)	9
	3Gd	0,29277(2)	9		3Gd	0,30476(3)	9
Cu2	3A1	0,27713(14)	9	Cu2	3M	0,28213(4)	9
	6Gd	0,29376(2)	9		6Gd	0,29867(3)	9
Al	2Cu1	0,26147(13)		M*	2Cu1	0,27113(4)	
	2Cu2	0,27713(14)			2Cu2	0,28213(4)	
	2A1	0,28528(26)	12		2 <i>M</i>	0,31813(7)	12
	2Gd	0,32046(17)			2Gd	0,31912(5)	
	4Gd	0,32537(2)			4Gd	0,33228(2)	

Атом		δ, нм	КЧ			
	GdCu _{3,26} Al _{1,74}					
Gd	6Cu	0,29749(2)	15			
	12 <i>M</i>	0,33114(2)	13			
Cu	6 <i>M</i>	0,25574(1)				
	3Gd	0,29749(2)	12			
	3Cu	0,29749(3)				
M**	4Cu	0,25574(1)				
	4M	0,25763(2)	12			
	4Gd	0,33114(2)				

 $[*]M = 0.72(1) \ln + 0.28(1) \text{ Al}, **M = 0.58(1) \text{ Al} + 0.42(1) \text{ Cu}$

Таблиця 4

Віддалі між атомами (нм) меншого розміру у структурах сполук системи $GdCuIn_{1-x}Al_x$

Table 4

The distances between the small atoms (nm) in the structures of the compounds in $GdCuIn_{1:x}Al_x \ system$

Сполука	GdCuAl	GdCuIn _{0,29} Al _{0,71} [1]	GdCuIn _{0,72} Al _{0,28}	GdCuIn [13]
X–Cu1	0,2615	0,2680	0,2711	0,2736
X–Cu2	0,2771	0,2750	0,2821	0,2848
X–X (сторона призми)	0,2853	0,3030	0,3181	0,3238
<i>X</i> – <i>X</i> (висота призми)	0,4062	0,4070	0,3989	0,3996
X = Al, M, In				

Рис. 1. Гексагональні сітки (*a*) та тригогальні призми (δ) вздовж напрямку Z у структурі GdCuIn_{0,72}Al_{0,28}.

Fig. 1. Hexagonal networks (*a*) and trigonal prisms (*b*) in the GdCuIn_{0.72}Al_{0.28} structure along the Z direction.

Рис. 2. Просторове розміщення атомів вздовж напрямку Z у структурі сполуки $GdCu_{3,26}Al_{1,74}$.

Fig. 2. Perspective view the GdCu_{3.26}Al_{1.74} structure along the Z direction.

Висновки

Використовуючи спеціальну методику, синтезовано монокристали й уточнено кристалічну структуру сполук GdCuAl і GdCuIn_{0,72}Al_{0,28}, які є представниками структурного типу ZrNiAl, а також GdCu_{3,26}Al_{1,74} (структурний тип CaCu₅). Заміщення атомів алюмінію атомами індію у структурі сполуки GdCuIn_{0,72}Al_{0,28} відбувається в положенні 3g (x 0 1/2) просторової групи P-62m, для якого характерна зміна координат атомів вздовж напрямків X та Y, що відповідають періодам a і b елементарної комірки. Відповідно простежується збільшення періоду a й об'єму комірки V і незначне зменшення періоду c. Одержані результати узгоджуються з даними попередніх досліджень [1, 13, 19].

Поляка

М. Горяча вдячна за фінансову підтримку експериментальних робіт у рамках дослідницької стипендії фонду DAAD (Німеччина).

ЛІТЕРАТУРА

- Horiacha M., Zinko L., Nychyporuk G., Serkiz R., Zaremba V. The GdTIn_{1-x}M_x (T = Ni, Cu; M = Al, Ga; 0<x<1) systems // Visn. Lviv Univ. Series Chem. 2017. Is. 58, Pt. 1. P. 77–85 (in Ukrainian).
- 2. Horiacha M., Rinylo N., Nychyporuk G., Serkiz R., Pöttgen R., Zaremba V. The interaction of the components in the YCuIn_{1-x}M_x (M = Al, Ga) // Ukr. Chem. Jorn. 2018. Vol. 84, № 11. P. 31–37 (in Ukrainian).
- 3. *Kharkhalis A., Horiacha M., Nychyporuk G., Bednarchuk O., Zaremba V.* Investigation of the components interaction in the RECu₂In_{1-x}Al_x (RE = Y, La, Gd) systems // Visn. Lviv Univ. Series Chem. 2014. Is. 55. P. 54–62 (in Ukrainian).
- Oesterreicher H. Structural and magnetic studies on rare-earth compounds RNiAl and RCuAl // J. Less. Comm. Met. 1973. Vol. 30. P. 225-236 (doi.org/10.1016/0022-5088(73)90109-4).
- 5. Dwight A.E., Mueller M.H., Conner R.A. Jr., Downey J.W., Knott H.W. Ternary compounds with the Fe₂P-type structure // Trans. Metall. Soc. AIME. 1968. Vol. 242. P. 2075–2080.
- Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth– Transition Metal–Indides // In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (eds.), Handbook on the Physics and Chemistry of Rare Earths. Elsevier; Amsterdam, 2005. Vol. 34. P. 1–133 (doi.org/10.1016/S0168-1273(04)34001-8).
- Buschow K. H. J. Note on the magnetic properties of some Fe₂P-type rare-earth intermetallic compounds // J. Less-Common Met. 1975. Vol. 39. P. 185–188 (doi.org/10.1016/0022-5088 (75)90227-1).
- 8. *Gupta S., Suresh K. G.* Review on magnetic and related properties of RTX compounds // J. Alloys Compd. 2014. P. 1–158 (doi.org/10.1016/j.jallcom.2014.08.079).
- 9. Szytula A., Tyvanchuk Y.B., Jaworska-Gołąb T., Zarzycki A., Kalychak Y.M, Gondek L., Stüsser N. Magnetic properties of the RCuIn (R = Ce, Nd, Gd, Tb, Dy, Ho, Er) and R₂CuIn₃ (R = Ce, Gd, Tb, Dy) compounds // Chem. Met. Alloys. 2008. Vol. 1. P. 97–101.
- Javorsky P., Havela L., Sechovsky V., Michor H., Jurek K. Magnetic behaviour of RCuAl compounds // J. Alloys Compd. 1998. Vol. 264. P. 38–42 (doi.org/10.1016/s0925-8388 (97) 00198-9).
- 11. Andreev A.V., Javorsky P., Lindbaum A. Magnetic anisotropy and spontaneous magnetostriction of RCuAl (R = Gd, Dy, Ho) // J. Alloys Compd. 1999. Vol. 290. P. 10–16 (doi.org/10.1016/S0925-8388(99)00193-0).
- 12. Jarosz J., Talik E., Mydlarz T., Kusz J., Böhm H., Winiarski A. Crystallographic, electronic structure and magnetic properties of the GdTAl; T = Co, Ni and Cu ternary compounds // J. Magn. Magn. Mater. 2000. Vol. 208. P. 169–180 (doi.org/10.1016/S0304-8853(99)00592-2).
- 13. Sysa L.V., Zaremba V.I., Kalychak Y.M., Baranyak V.M. New ternary compounds with indium, rare-earth and 3d metals with MgCu₄Sn and ZrNiAl type structure // Visn. Lviv Univ. Series Chem. 1988. Is. 29. P. 32-34 (in Ukrainian).
- 14. Krypyakevych P. I. Structure types of the intermetallic compounds // M.: Nauka. 1977. 290 p. (in Russian).
- 15. Krypyakevych P. I., Markiv V. Ya., Mel'nyk E. V. The crystal structure of the compounds ZrNiAl, ZrCuGa and their analogue // Dopov. AN URSR, Ser. A. 1967. P. 750–753 (in Ukrainian).

- 16. Nowotny H. Die Kristallstrukturen von Ni₅Ce, Ni₅La, Ni₅Ca, Cu₅La, Cu₅Ca, Zn₅La, Zn₅Ca, Ni₂Ce, MgCe, MgLa und MgSr // Z. Metallkd. 1942. Bd. 34. S. 247–253.
- 17. Petříček V., Dušek M., Palatinus L. Crystallographic Computing System JANA 2006: Generalfeatures // Z. Kristalogr. 2014. Vol. 229, № 5. P. 345–352 (doi.org/10.1515/zkri-2014-1737).
- 18. Emsley J. The Elements: 2nd ed. Oxford: Clarendon Press, 1991. 251 p.
- 19. *Prevarskii A.P., Kuz'ma Y.B.* X-ray structural investigation of the system Gd–Cu–Al // Izv. Akad. Nauk SSSR, Met. 1988, P. 207–210 (in Russian).
- 20. *Bobev S., Fritsch V., Thompson J.D., Sarrao J.L.* Synthesis, structure and physical properties of GdCu₄Al and GdCu₄Ga // J. Solid State Chem. 2006. Vol. 179. P. 1035–1040 (doi.org/10. 1016/j.jssc.2005.12.034).
- 21. *Takeshita T., Malik S.K., Wallace W.E.* Crystal Structure of RCu₄Ag and RCu₄Al (R = Rare Earth) Intermetallic Compounds // J. Solid State Chem. 1978. Vol. 23. P. 225–229 (doi.org/10. 1016/0022-4596(78)90069-5).

SUMMARY

Myroslava HORIACHA^{1,2}, Galyna NYCHYPORUK¹, Reiner PÖTTGEN², Vasyl ZAREMBA¹ THE CRYSTAL STRUCTURES OF THE PHASES IN THE GdCuIn_{1-X}Al_X SYSTEM

¹Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: goryacha muroslava@ukr.net

²Institut für Anorganische Chemie, Universität Münster, Corrensstraße 30, D-48149, Münster, Germany

Single crystals of the two ternary GdCuAl and GdCu_{3.26}Al_{1.74} and quaternary GdCuIn_{0.72}Al_{0.28} compounds were grown by heating/cooling procedure of arc-melted alloys in sealed Ta container in high frequency furnace using special thermal mode. The crystal structures were investigated by single crystal X-ray analysis (Stoe IPDS II diffractometer, Mo $K\alpha$ -radiation). The refined compositions are confirmed by the results of the EDX analysis (Zeiss EVO MA10 scanning electron microscope). The structures were solved and refined using JANA2006 package. GdCuAl and GdCuIn_{0.72}Al_{0.28} compounds crystallized in ZrNiAl-type structure, space group P-62m, Pearson symbol hP9: a = 0.70537(4), c = 0.40616(2) nm, R_1 = 0.0130, 319 F^2 values, 15 variables for GdCuAl; and a = 0.73755(7), c = 0.39887(3) nm, R_1 = 0.0111, 303 F^2 values, 15 variables for GdCuIn_{0.72}Al_{0.28}.

All positions of the atoms in the refined structure are completely occupied, including the statistical mixture of aluminium and indium in 3g Wyckoff position in the $GdCuIn_{0.72}AI_{0.28}$ compound. The replacement of Aluminium atoms with Indium atoms in the structure of $GdCuIn_{0.72}AI_{0.28}$ is characterized by a change in the coordinates of the atoms along the directions X and Y, that corresponding to the a and b parameters of the unit cell. In the compounds GdCuAI and $GdCuIn_{0.72}AI_{0.28}$, that belong to the ZrNiAI-type structure increasing of the unit cell dimensions a and the volume V and slightly decreasing of the parameter c are observed, accordingly. This result well corresponding with the results of the study interaction between the components in the $GdCuIn_{1x}AI_x$ system.

The crystal structure of the $GdCu_{3.26}Al_{1.74}$ compound belongs to the $CaCu_5$ -type structure (space group P6/mmm, Pearson symbol hP6, a=0.51527(6); c=0.41606(2) nm, $R_1=0.0095$, $112\ F^2$ values, 10 variables). The statistical mixture of aluminium and copper atoms are occupied 3g Wyckoff position in the $GdCu_{3.26}Al_{1.74}$ compound. The formation single crystals of the phase that belong to $CaCu_5$ -type structure, is correspond with the results of the study interaction between the components in the Gd-Cu-Al system.

Keywords: Aluminium, Indium, single crystal, crystal structure.

Стаття надійшла: 26.06.2019. Після доопрацювання: 22.07.2019. Прийнята до друку: 28.08.2019...