Today State Tables

*Shows same into as state diagram but in different form,

Curr.	next	stote	output (Z) x=0 xcj		
State	J∕≈0	ユニ	x=0	acl	
9 6 d	8 U 8 U	ь Д Ь	0	0 0 0 1	

Sequential Circuit Design

* Procedure to implement a state diagram/table infas a digit circuit.

Steps: 1) Given a verbal description, decide on stortes, draw diagram/table

2) Try to reduce the number of states (State reduction)

- 3) If states are "english names", then assign binary numbers to each state => diagram/table now only has "1"s + "0"s. (state assignment)
 - 4) Piok a FF type (DFF, TFF, JKFF) to hold the state. The # of FFs depends on how many bits are needed.
 - 5) Derive Ff input egns. (nort state egns)
 b) Derive output egns. 7) Draw Circuit.

Eg. Design a controller for a vending machine that accepts nickels (n) and dimes (d) and oppens a choor once 15¢ is deposited. Define the states as "amount deposited so far! open coin controller meahanism nd=0/ nd=10 ndan =10¢ nd=0 nd=01 nd=20L *State Assignment _____state $=04 \rightarrow 0 \rightarrow 00$ appear in =5¢ > 1 -> 01 circuit at =10+ コス → 10 ≥15⁴→3 →11 * FF selection => Need 2 of them; piok DFFS.

