### Calculus II

Area swept by one clover leaf  $r = \sin(n\theta)$ ,  $r = \cos(n\theta)$ 

**Todor Milev** 

2019

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



$$<\theta<$$
?.

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



The region enclosed by the right loop corresponds to points whose  $\theta$  polar coordinate lies in the interval  $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ .

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta$$

$$-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$
.

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta$$
$$= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$$
.

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta$$
$$= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$
$$= \int_{0}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$$
.

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



The region enclosed by the right loop corresponds to points whose  $\theta$ polar coordinate lies in the interval  $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ .

$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta$$

$$= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



The region enclosed by the right loop corresponds to points whose  $\theta$  polar coordinate lies in the interval  $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ .

$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta$$

$$= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

$$= \frac{1}{2} \left[ \theta + \frac{1}{4} \sin(4\theta) \right]_{0}^{\frac{\pi}{4}}$$

Find the area enclosed by one loop of the four-leaved rose  $r = \cos 2\theta$ .



The region enclosed by the right loop corresponds to points whose  $\theta$  polar coordinate lies in the interval  $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ .

$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta$$

$$= \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1}{2} (1 + \cos(4\theta)) d\theta$$

$$= \frac{1}{2} \left[ \theta + \frac{1}{4} \sin(4\theta) \right]_{0}^{\frac{\pi}{4}}$$

$$= \frac{\pi}{8}$$