10. Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number.

Consider the set of intervals A_n , where each interval is given by $(0, \frac{n}{n^2}]$.

 $A_{n+1} \subset A_n$ for all n.

Proof $(A_{n+1} \subset A_n)$:

 $A_{n+1}\subset A_n$ is equivalent to $[0,\frac{1}{n+1}]\subset [0,\frac{1}{n}].$

For every element x of $[0, \frac{1}{n+1}]$, $0 \le x \le \frac{1}{n+1}$ and for every element y of $[0, \frac{1}{n}]$, $0 \le y \le \frac{1}{n}$.

 $\frac{1}{n+1} < \frac{1}{n}$, so every element of A_{n+1} is also an element of A_n .

It follows that A_{n+1} is a subset of A_n for all n.

Proof $(\bigcap_{n=1}^{\infty} A_n \text{ consists of a single real number})$:

 $\bigcap_{n=1}^{\infty} A_n$ is the limit as $n \to \infty$ (which is the intersection of all A_n).

When $n \to \infty$, $[0, \frac{1}{n}] = [0, 0]$, which is a set with a single real number (0).