

PREPARACIÓN DE DATOS

Integración - Limpieza - Transformación

¿QUÉ VEREMOS HOY?

1. Transformación

- a. Discretización
- b. Numerización
- c. Normalización y estandarización
- d. Otros métodos

TRANSFORMACIÓN

DISCRETIZACIÓN

Conversión de un valor numérico a un valor categórico ordinal

Nota	Valor	categoría
[0;4)	1	No Satisfactorio
[4;6)	2	Satisfactorio
[6;8)	3	Bueno
[8;9)	4	Muy Bueno
[9;10]	5	Excelente

Compra Super	Valor	categoría
[0;5)	1	Muy Bajo
[5;10)	2	Bajo
[10;20)	3	Medio
[20;50)	4	Alto
[50;+inf]	5	Muy Alto

DISCRETIZACIÓN

- **Cuantil:** Cada contenedor tiene la misma cantidad de valores, divididos según percentiles.
- **Agrupado:** Se identifican grupos y se asignan ejemplos a cada grupo.

NUMERIZACIÓN

Conversión de un valor categórico/nominal a un valor numérico

Categoría	Valor	
Sin estudios	1	
Primario	2	
Secundario	3	
Terciario	4	
Universitario	5	

	Sin estudios	Primario	Secundario	Terciario	Universitario
Primario	0	1	0	0	0
Secundario	0	0	1	0	0
Terciario	0	0	0	1	0
Universitario	0	0	0	0	1

NUMERIZACIÓN

- **Numerización 1 a n:** Si una variable nominal x tiene n posibles valores, entonces creamos n variables numéricas, con valores {0,1} dependiendo de si la variable nominal toma ese valor o no.
- **Numerización 1 a 1:** Se identifica un cierto orden o magnitud en los valores de un atributo nominal.

NORMALIZACIÓN - ESTANDARIZACIÓN

Existen técnicas de análisis de datos que requieren que los datos se encuentren normalizados en un mismo rango.

NORMALIZACIÓN - ESTANDARIZACIÓN

1) Normalización Lineal Uniforme

$$x' = \frac{x - \min}{\max - \min}$$

NORMALIZACIÓN - ESTANDARIZACIÓN

2) Estandarización

$$x' = \frac{x - \mu}{\sigma}$$

NORMALIZACIÓN - ESTANDARIZACIÓN

3) Escalado sigmoidal (softmax)

$$x' = \frac{1}{1 + e^{-x}}$$

$$x' = \frac{1}{1 + e^{-20(x - 0.5)}}$$

NORMALIZACIÓN - ESTANDARIZACIÓN

Característica	Normalización	Estandarización	
Qué hace	Escala los datos a un rango fijo (ej. [0,1])	Ajusta los datos a una distribución con media = 0 y desvío estándar = 1	
Fórmula	$x' = \frac{x - \min}{\max - \min}$	$x' = \frac{x - \mu}{\sigma}$	
Resultado	Todos los valores quedan entre 0 y 1 (a veces -1 y 1)	Valores convertidos a <i>z-scores</i> (pueden ser negativos o mayores a 1)	
Ejemplo	Notas de 0 a 10 → Nota 7 → (7-0)/(10-0)= 0.7	Notas con media=6.5 y σ =1.8 \rightarrow Nota 7 \rightarrow (7-6.5)/1.8 = 0.28	
Cuándo usar	Cuando los datos tienen rangos muy diferentes Algoritmos basados en distancias (KNN, Redes Neuronales, Clustering)	Cuando te importa la distribución estadística Algoritmos que suponen normalidad (Regresión, SVM, PCA)	
Ventaja	Pone todo en la misma escala fácil de interpretar	Permite comparar variables en función de la desviación respecto a la media	
Desventaja	Muy sensible a outliers (un valor extremo deforma la escala)	Los valores no quedan en un rango fijo, pueden ser muy grandes/pequeños	

TRANSFORMACIÓN

OTROS MÉTODOS

- Derivación: obtiene un nuevo atributo a partir de realizar cálculos con valores de otros atributos. (ingreso_per_cápita, índice de masa muscular)
- Interacciones: representa el producto, la razón o la diferencia entre columnas.
- Variables temporales: formatea fechas usando los datos día, mes, año.
 También se puede calcular la diferencia temporal.
- Y más . . .