电路理论 Principles of Electric Circuits

第四章 电路定理

§ 4.4 特勒根定理

1. 问题引入

1) 将支路电压用节点电压表示

$$\begin{cases} u_{1} = u_{n1} - u_{n2} \\ u_{2} = u_{n1} \\ u_{3} = u_{n2} \end{cases}$$

2) 对节点1和2列写KCL方程

$$\begin{cases} \mathbf{i}_1 + \mathbf{i}_2 = \mathbf{0} \\ \mathbf{i}_1 - \mathbf{i}_3 = \mathbf{0} \end{cases}$$

3) 对应支路的电压、电流相乘并相加

功率守恒

$$u_{1}i_{1} + u_{2}i_{2} + u_{3}i_{3} = u_{n1}i_{2} + u_{n2}i_{3} + (u_{n1} - u_{n2})i_{1}$$

$$= u_{n1}(i_{1} + i_{2}) + u_{n2}(i_{3} - i_{1})$$

$$= 0$$

2. 特勒根定理(Tellegen's Theorem)

特勒根(Tellegen) 荷兰学者 (1952年提出)

特勒根第一定理:

任一具有b条支路、n个节点的集中参数电路,假设各支路电压和电流取关联参考方向,则电路中各支路电压和对应支路电流乘积的代数和等于零。

2. 特勒根定理(Tellegen's Theorem

特勒根第二定理:

两个**拓扑完全相同**的集中参数 路电压和电流取**关联参考方向**,则

$$\sum_{k=1}^{b} \hat{u}_k i_k = 0$$
"似功率守恒"

1. 问题引入

1) 将支路电压用节点电压表示

$$\begin{cases} u_1 = u_{n1} - u_{n2} \\ u_2 = u_{n1} \\ u_3 = u_{n2} \end{cases}$$

2) 对节点1和2列写KCL方程

$$\begin{cases} \mathbf{i}_1 + \mathbf{i}_2 = 0 \\ \mathbf{i}_1 - \mathbf{i}_3 = 0 \end{cases}$$

 $\sum_{k=1}^{3} u_k i_k = 0$

功率守恒

3) 对应支路的电压、电流相乘并相加

$$u_{1}i_{1} + u_{2}i_{2} + u_{3}i_{3} = u_{n1}i_{2} + u_{n2}i_{3} + (u_{n1} - u_{n2})i_{1}$$

$$= u_{n1}(i_{1} + i_{2}) + u_{n2}(i_{3} - i_{1})$$

$$= 0$$

$$\hat{i}_k + \hat{u}_k -$$

$$\sum_{k=1}^{b} u_k \hat{i}_k = 0$$

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求 当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求 当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

当
$$u_s$$
=10V, i_s =0A时

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求 当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

当
$$u_s$$
=10V, i_s =0A时

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

当
$$u_s$$
=10V, i_s =0A时

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

3. 定理应用

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求 当 $u_{\rm s}$ =0, $i_{\rm s}$ =5A时的电压 $u_{\rm 1}$ 。

解:

1) 根据特勒根第二定理

$$\sum_{k=1}^{b} u_{k} \hat{i}_{k} = u_{1} \hat{i}_{1} + u_{2} \hat{i}_{2} + \sum_{k=3}^{b} u_{k} \hat{i}_{k} = 0$$

$$\sum_{k=1}^{b} \hat{u}_{k} i_{k} = \hat{u}_{1} i_{1} + \hat{u}_{2} i_{2} + \sum_{k=3}^{b} \hat{u}_{k} i_{k} = 0$$

电工教研室

3. 定理应用

考虑网络 N_R 中电阻电压、电流关系:

$$egin{aligned} oldsymbol{u}_k &= oldsymbol{R}_k oldsymbol{i}_k &= oldsymbol{R}_k oldsymbol{i}_k = oldsymbol{R}_k oldsymbol{i}_k = oldsymbol{R}_k oldsymbol{i}_k = oldsymbol{\hat{u}}_k oldsymbol{i}_k = oldsymbol{\hat{u}}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k &= oldsymbol{\hat{u}}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{i}_k oldsymbol{$$

特勒根定理的重要推论

T&R Section of Electrical Engineering

【例】 $N_{\rm R}$ 为无源线性电阻网络,已知 $u_{\rm s}$ =10V, $i_{\rm s}$ =0A时, $i_{\rm 2}$ =2A,试求 当 $u_s=0$, $i_s=5A$ 时的电压 u_1 。

2) 列写端口电压、电流

$$u_1 = 10 + 4i_1$$

已知
$$i_2 = 2A$$

已知
$$i_2 = 2A$$
 $u_2 = 4i_2 = 8V$

$$\hat{u}_1 \dot{i}_1 + \hat{u}_2 \dot{i}_2 = u_1 \hat{i}_1 + u_2 \hat{i}_2$$

$$4\hat{i}_1i_1 + (5+\hat{i}_2)4 \times 2 = (10+4i_1)\hat{i}_1 + 8\hat{i}_2$$
 $\hat{u}_1 = 4\hat{i}_1 = 4 \times 4 = 16V$

$$\hat{\mathbf{u}}_1 = 4\hat{\mathbf{i}}_1
\hat{\mathbf{u}}_2 = (5 + \hat{\mathbf{i}}_2) \mathbf{4}$$

$$\hat{\boldsymbol{u}}_2 = \left(5 + \hat{\boldsymbol{i}}_2\right) 4$$

$$\hat{i}_1 = 4A$$

$$\hat{u}_1 = 4\hat{i}_1 = 4 \times 4 = 16$$
V

电路理论 Principles of Electric Circuits

第四章 电路定理

§ 4.5 互易定理

1. 互易性和互易网络

互易性是一类特殊的线性网络的重要性质。一个具有互易性的网络在输入端(激励)与输出端(响应)互换位置后,同一激励所产生的响应并不改变。

互易网络是指具有互易性的网络。

2. 互易定理 (Reciprocity Theorem)

对于一个仅含二端线性电阻的电路,在单一激励情况下, 当激励与响应互换位置时,将不改变同一激励所产生的响应。

根据激励和响应是电压还是电流,互易定理有三种形式。

1) 互易定理形式一

激励为电压源; 响应为短路电流

证明:

2) 互易定理形式二

激励为电流源;响应为开路电压

证明:

3) 互易定理形式三

激励为电流源,响应为短路电流

激励为电压源,响应为开路电压

令u。和i。数值相等

$$\hat{u}_1 = i_2$$

仅仅是数值相等

3. 定理应用

【例】利用互易定理求图示电路中支路电流I。

解:

由互易定理形式一

3. 定理应用

【例】利用互易定理求图示电路中支路电流I。

解:

由互易定理形式一

$$I_1 = \frac{36}{6+3/6+12/6} = 3A$$
 $\hat{I} = I_2 - I_3 = 1A$

由分流公式:
$$I_2 = \frac{6}{6+3} \times 3 = 2A$$
 由互易定理: $I = \hat{I} = 1A$

3. 定理应用

【例】已知图(a)所示电路中 u_2 =20V,求图(b)中电流 i_1 。

1) 根据互易定理形式三

3. 定理应用

【例】已知图(a)所示电路中 u_2 =20V,求图(b)中电流 i_1 。

1) 根据互易定理形式三

3. 定理应用

【例】已知图(a)所示电路中 u_2 =20V,求图(b)中电流 i_1 。

1) 根据互易定理形式三

若图(b)中接100A电流源产生,则 $\hat{i}_1 = u_2 = 20$ A

2) 根据齐性定理

原题中接5A电流源,则 $i_1 = \frac{5}{100}\hat{i}_1 = 1A$

4. 注意事项

- (1) 互易前后应保持网络的**拓扑结构不变**,仅独立电源 搬移;
- (2)特别注意互易前后端口处的激励和响应的参考方向; (要么都取关联,要么都取非关联)
- (3) 互易定理只适用于线性电阻网络在单一电源激励下,端口处两个支路的电压、电流关系;
- (4) 互易定理一般不适用于含有受控源的网络。

电路理论 Principles of Electric Circuits

第四章 电路定理

§ 4.6 对偶原理

对偶原理 (Dual Principle)

如果电路中某一定理(结论、公式、定律等)的表述是成立的,则将其中的概念(变量、参数、元件、连接形式等)用其对偶元素置换所得对偶表述也一定是成立的。

对偶元素		对偶元素	
电压	电流	电荷	磁链
电阻	电导	电感	电容
电压源	电流源	短路	开路
VCVS	CCCS	VCCS	CCVS
KVL	KCL	点节	网孔
串联	并联	三角形联结	星型联结
戴维南定理	诺顿定理	互易定理形式一	互易定理形式二

定理综合应用

【例1】 $N_{\rm S}$ 为含源线性电阻网络,已知当R=0 Ω 时, $I_1=-2{\rm A}$, $I_2=4{\rm A}$; ${\rm H}_{\rm S}$ ${\rm H$

解:

1) 求*I*₂

$$i_{\rm sc} = 4A$$
 $u_{\rm oc} = 16V$
 $R_{\rm eq} = \frac{u_{\rm oc}}{I} = 4\Omega$

定理综合应用

【例1】 $N_{\rm S}$ 为含源线性电阻网络,已知当R=0 Ω 时, $I_1=-2{\rm A}$, $I_2=4{\rm A}$; 当R→∞时, I_1 =2A, U_2 =16V。当R=4 Ω时,分别求 I_1 和 I_2 。

解:

1) 求*I*,

$$i_{sc} = 4A$$
 $u_{oc} = 16V$

$$u_{\rm oc} = 16V$$

$$R_{\rm eq} = \frac{u_{\rm oc}}{I_{\rm sc}} = 4\Omega$$

当 $R = 4\Omega$ 时

$$I_2 = \frac{U_{\text{oc}}}{R + R_{\text{eq}}} = 2A$$

定理综合应用

【例1】 $N_{\rm S}$ 为含源线性电阻网络,已知当R=0 Ω 时, $I_1=-2$ A, $I_2=4$ A; 当 $R\to\infty$ 时, $I_1=2$ A, $U_2=16$ V。当R=4 Ω 时,分别求 I_1 和 I_2 。

解:

2) 求*I*₁

根据叠加定理:

$$I_{1} = I'_{1} + kI_{s}$$

$$\begin{cases}
-2 = I'_{1} + k \times 4 \\
2 = I'_{1} + k \times 0
\end{cases}$$

$$I'_{1} = 2A$$

$$k = -1$$

$$I_{1} = 2 - I_{s}$$

$$\stackrel{\text{H}}{=} R = 4\Omega \text{ Fi} \quad I_{2} = 2A$$

 $I_1 = 2 - I_s = 2 - 2 = 0A$

定理综合应用

【例2】 N_S 为含源线性电阻网络,已知当 R_x =0 Ω 时, I_x =8A,U=12V; 当 $R_r \rightarrow \infty$ 时, $U_r = 36$ V ,U = 6V 。当 $R_r = 9\Omega$ 时,分别求U和 U_r 。

解:

1) 由已知条件

$$R_x = 0\Omega$$
 端口短路 $I_{sc} = 8A$

$$R_x = \infty$$
 端口开路 $U_{oc} = 36V$

定理综合应用

【例2】 $N_{\rm S}$ 为含源线性电阻网络,已知当 R_x =0 Ω 时, I_x =8A,U=12V; 当 R_x $\to \infty$ 时, U_x =36V,U=6V。当 R_x =9 Ω 时,分别求U和 U_x 。

解:

1) 由已知条件

$$R_x = 0\Omega$$
 端口短路 $I_{\text{sc}} = 8A$
$$R_x = \infty$$
 端口开路 $U_{\text{oc}} = 36V$

$$R_{\rm eq} = \frac{U_{\rm oc}}{I_{\rm sc}} = 4.5\,\Omega$$

2) 当 R_x =9 Ω 时

$$U_x = 36 \times \frac{9}{4.5 + 9} = 24 \text{ V}$$

定理综合应用

【例2】 $N_{\rm S}$ 为含源线性电阻网络,已知当 R_x =0 Ω 时, I_x =8A,U=12V; 当 R_x $\to \infty$ 时, U_x =36V,U=6V。当 R_x =9 Ω 时,分别求U和 U_x 。

解:

3) 由替代定理 和叠加定理

$$U = \alpha + \beta U_x$$

$$\begin{cases}
12 = \alpha + \beta \times 0 \\
6 = \alpha + \beta \times 36
\end{cases}$$

則
$$U = 12 - \frac{1}{6}U_x$$

= $12 - \frac{1}{6} \times 24 = 8 \text{ V}$

