Numerical Analysis and CUDA-based Optimization of the Wave Equation

SUN LISHUANG

Supervisor: Mike Peardon, Kirk M. Soodhalter

MSc for High-performance Computing sinl1@tcd.ie

2025.09.08

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Content

Motivation & Background

- Wave equation: Fundamental in applied mathematics and physics (seismology, acoustics, electromagnetics).
- Limitation: Analytical solutions only for simple cases; numerical simulations needed for realistic problems.
- HPC Need: High computational demand, especially for fine grids or higher dimensions.
- Compare CPU and GPU in terms of accuracy and performance

https://www.sms-tsunami-warning.com/pages/seismic-waves

Project Objectives

- Implement the Leapfrog finite difference method for 1D and 2D.
- Analyze stability and convergence properties.
- Port and optimize the solver on GPU using CUDA.
- Compare CPU and GPU implementations in terms of accuracy and performance.

Finite Difference Method Selection

Scheme	Accuracy	Stability	Numerical Behavior	HPC Suitability
Lax	First-order in time, second-order in space	CFL: $\lambda \leq 1$	Strong numerical dissipation	High (simple stencil)
Leapfrog	Second-order in time and space	CFL: $\lambda \leq 1$	No dissipation, parasitic mode possible	Very high (efficient stencil)
Lax-Wendroff	Second-order in time and space	CFL: $\lambda \leq 1$	Dispersive oscillations near discontinuities	High (slightly more complex stencil)
Crank-Nicolson	Second-order in time and space	Unconditionally stable	No dissipation, implicit solver required	Moderate (linear solve overhead)

leapfrog:

$$u_j^{n+1} = 2u_j^n \ - \ u_j^{n-1} \ + \ \lambda^2 \big(\ u_{j+1}^n - 2u_j^n + u_{j-1}^n \big) \ \ , \, n \! > \! 1, \, \, 1 \! \leq \! j \! \leq \! N \! - \! 2$$

Chanllenges & Solutions

- Selecting Numerical Methods
- Code Debugging
- Technical Difficulties in HPC Optimization
- Encountering Superconvergence During Data Analysis

Results--Accuracy Verification (1D & 2D)

(b) Numerical vs. analytical surfaces at t=T.

Results--Stability Verification: Obeys CFL Rule (1D &2D)

Results Speedup(1D & 2D)

No speedup 150 200 250 400 450 500 550 100 N_v (grid per side)

Fif 5.16b

What do these results mean?

- Memory Is the Key Bottleneck
- Shared Memory + Boundary Fusion Are Optimization Core
- GPUs Excel at Large-Scale Problems

Thank you all for listening.

Results Speedup(2D)

150 200 500 N_v (grid per side)

(b) Optimized CUDA speedup vs. N_x .

Numerical Method

1D:

first step:
$$u_j^1 = u_j^0 + \Delta t g(x_j) + \frac{1}{2} \lambda^2 (u_{j+1}^0 - 2u_j^0 + u_{j-1}^0)$$
, $g = 0$
leap-frog: $u_j^{n+1} = 2u_j^n - u_j^{n-1} + \lambda^2 (u_{j+1}^n - 2u_j^n + u_{j-1}^n)$, $n > 1$, $1 \le j \le N-2$

2D:

first step:
$$u_{i,j}^1 = u_{i,j}^0 + \frac{1}{2} (c\Delta t)^2 \Delta_h u_{i,j}^0$$
, on $1 \le i \le N_x - 2$, $1 \le j \le N_y - 2$

leap-frog:
$$u_{i,j}^{n+1} = 2u_{i,j}^n - u_{i,j}^{n-1} + (c\Delta t)^2 \Delta_h u_{i,j}^n$$