Chemistry: Chapter 15 Concentration of solutions

Combined Science (Chemistry Part): Chapter 15 Concentration of solutions

Section 15.1

|!|EMA041515001O|!|

Which of the following substances is the most concentrated?

A.

В.

D.

##C Concentration refers to the amount of solute per unit volume. C has the greatest number of particles per unit volume.##

Section 15.2

|!|EMA041515002O|!|

Which of the following solutions contains the largest amount of chloride ions?

- 100 cm³ of 1 M KCl(aq) A.
- В. 70 cm³ of 2 M NaCl(aq)
- C. 80 cm³ of 1 M CaCl₂(aq)
- 50 cm³ of 1 M AlCl₃(aq)

##C##

|!|EMA041515003O|!|

How many moles of ions are present in 200 cm³ of 1.5 M (NH₄)₂CO₃?

- 0.3 mole
- 0.9 mole В.
- C. 1.2 mole
- 1.5 mole D.

##B## |!|EMA041515004O|!| What volume of 0.8 M NaOH solution can be prepared from 12 g NaOH? 0.375 cm^3 15 cm^3 B. C. 375 cm^3 D. 1500 cm^3 ##C## |!|EMA041515005O|!| What volume of water has to be added to 200 cm³ of 0.7 M CaCl₂ solution so as to dilute it to 0.5 M? A. 80 cm³ 100 cm^3 В. C. 140 cm³ D. 280 cm³ ##A## |!|EMB041515006O|!| What is the molarity of the resultant MgCl₂ solution formed by mixing 100 cm³ of 0.5 M MgCl₂ solution and 150 cm³ of 0.9 M MgCl₂ solution? A. 0.70 M B. 0.74 M C. 1.23 M D. 1.85 M ##B## |!|EMA041515007O|!| What is the concentration of aqueous sodium ions in a 500 cm³ solution containing 0.585 g of pure sodium chloride? A. 0.01 mol dm^{-3} B. 0.02 mol dm^{-3} 0.03 mol dm^{-3}

D. 0.04 mol dm^{-3}

##B Sodium chloride completely dissociates in water to give sodium and chloride ions.

Mole ratio of NaCl(aq) to Na⁺(aq) is 1:1

Molar mass of NaCl = 23 + 35.5 = 58.5 g

No. of moles of NaCl = $\frac{0.585}{58.5}$ mol = 0.01 mol

So the concentration of sodium ions = $0.01 \times \frac{1000}{500}$ mol dm⁻³ = 0.02 mol dm⁻³##

|!|EMA041515008O|!|

What is the concentration of bromine in a 200 cm³ solution containing 1.598 g of bromine?

- A. 0.02 mol dm^{-3}
- B. 0.04 mol dm^{-3}
- C. 0.05 mol dm^{-3}
- D. 0.06 mol dm^{-3}

##C 1.598 g of bromine is equivalent to 0.01 mole. Therefore, the concentration of

bromine in 200 cm³ is $0.01 \times \frac{1000}{200}$ mol dm⁻³ = 0.05 mol dm⁻³##

|!|EMB041515009O|!|

A sample of a certain concentrated acid has a density of 1.96 g cm⁻³ and contains 95.0% of the acid by mass. What is the concentration (correct to one decimal place) of the acid in the sample?

(Relative molecular mass of the acid is 100)

- A. 17.4 M
- B. 18.2 M
- C. 18.6 M
- D. 19.3 M

##C Mass of 1 dm 3 of the concentrated acid = 1960 g

Mass of the acid in 1 dm³ of the concentrated acid = $1960 \times 0.95 = 1862$ g

No. of moles of the acid in 1 dm³ of the concentrated acid = $\frac{1862}{100}$ mol= 18.62 mol

So the concentration of the concentrated acid = 18.62 M##

_

25

|!|EMA041515010O|!|

A 2.0 M potassium chloride solution is prepared by dissolving 37.3 g of potassium chloride in distilled water. What is the volume of the solution formed?

- A. 75.0 cm^3
- B. 100.0 cm^3
- C. 250.0 cm^3
- D. 400.0 cm^3

##C No. of moles of KCl = $\frac{37.3}{39.1 + 35.5}$ mol = 0.5 mol

Let x be the volume of the solution in dm^3 .

The molarity of KCl = $2.0 = \frac{0.5}{x}$

So, x = 0.25

i.e. the volume of solution is 250.0 cm³.##

|!|EMB0415150110|!|

Which of the following concentrations is INCORRECT if 10 g of sodium carbonate solid is dissolved in water to give a 500 cm³ solution?

- A. 20 g dm^{-3}
- B. 0.02 g cm^{-3}
- C. 0.19 mol dm^{-3}
- D. 0.24 mol dm^{-3}

10

##D Concentration = $\frac{\text{mass}}{\text{volume}} = \frac{10 \text{ g}}{\left(\frac{500}{1000}\right) \text{dm}^3} = 20 \text{ g dm}^{-3}$ $= \frac{10 \text{ g}}{500 \text{ cm}^3} = 0.02 \text{ g cm}^{-3}$

No. of moles of $Na_2CO_3 = \frac{mass}{molar \ mass} = \frac{10 \ g}{106 \ g \ mol^{-1}} = 0.094 \ mol$

Concentration = $\frac{\text{no. of moles}}{\text{volume}} = \frac{\frac{0.094 \text{ mol}}{500}}{\left(\frac{500}{1000}\right) \text{dm}^3} = 0.19 \text{ mol dm}^{-3} \# \#$

|!|EMA041515012O|!|

What volume of 0.05 M Na₂CO₃ solution can be prepared from 2.65 g of Na₂CO₃?

- A. 0.05 dm^3
- B. 500 dm^3
- C. 0.5 dm^3
- D. 50 cm^3

##C No. of moles of Na₂CO₃ used = $\frac{2.65}{106}$ mol = 0.025 mol

Volume of solution = $\frac{0.025 \text{ mol}}{0.05 \text{ mol dm}^{-3}} = 0.5 \text{ dm}^3 \text{##}$

|!|EMA041515013O|!|

What is the mass of solute in 250.0 cm³ of 0.50 M HCl(aq)?

- A. 2.63 g
- B. 4.75 g
- C. 5.2 g
- D. 6.5 g

##B No. of moles of HCl in 0.50 M HCl(aq) = $0.50 \times \frac{250}{1000}$ mol = 0.13 mol

Mass of HCl = $0.13 \times 36.5 \text{ g} = 4.75 \text{ g.} \# \#$

|!|EMB041515014O|!|

Which of the following cases has different masses of solutes in the two solutions?

	Solution 1	Solution 2
A.	500 cm ³ of 0.50 M Na ₂ SO ₄	$100~cm^3~of~2.50~M~Na_2SO_4$
B.	0.25 dm ³ of 0.15 M Na ₂ CO ₃	$0.05~\text{dm}^3~\text{of}~0.75~\text{M}~\text{Na}_2\text{CO}_3$
C.	25 cm ³ of 0.10 M NaOH	0.05 dm ³ of 0.05 M NaOH
D.	100 cm ³ of 0.05 M NaCl	0.025 dm ³ of 0.02 M NaCl

##D No. of moles = molarity × volume of solution##

|!|EMA041515015O|!|

Which of the following statements about a 0.50 M MgCl₂ solution is correct?

- A. There are 0.50 M Mg^{2+} ions and 0.50 M Cl^- ions.
- B. There are 0.50 M Mg²⁺ ions and 1.0 M Cl⁻ ions.
- C. There are 1.0 M Mg²⁺ ions and 0.50 M Cl⁻ ions.
- D. There are 1.0 M Mg²⁺ ions and 1.0 M Cl⁻ ions.

27

##B##

|!|EMA041515016O|!|

Which of the following information about a 0.025 M sodium carbonate solution is correct?

	Concentration of Na ⁺ ions / M	Concentration of CO ₃ ²⁻ ions / M
A.	0.025	0.025
B.	0.025	0.05
C.	0.05	0.025
D.	0.05	0.05

##C Formula of sodium carbonate is Na₂CO₃.##

|!|EMA041515017O|!|

Which of the following information about the number of moles of ions present in 25 cm³ of 0.20 M ammonium sulphate solution is correct?

	Ammonium ion	Sulphate ion
A.	$5 \times 10^{-3} \text{ mol}$	$5 \times 10^{-3} \text{ mol}$
B.	$5 \times 10^{-3} \text{ mol}$	$1 \times 10^{-2} \text{ mol}$
C.	$1 \times 10^{-2} \text{ mol}$	$1 \times 10^{-2} \text{ mol}$
D.	$1 \times 10^{-2} \text{ mol}$	$5 \times 10^{-3} \text{ mol}$

##D No. of moles of $(NH_4)_2SO_4 = 0.20 \times \frac{25}{1000} = 5 \times 10^{-3} \text{ mol}$

1 mole of $(NH_4)_2SO_4$ gives 2 moles of NH_4^+ ions and 1 mole of $SO_4^{2^-}$ ions So, 5×10^{-3} mole of $(NH_4)_2SO_4$ will have 1×10^{-2} mole of NH_4^+ ions and 5×10^{-3} mole of $SO_4^{2^-}$ ions.##

|!|EMA041515018O|!|

What volume of water has to be added to 250 cm³ of 0.20 M K₂CO₃ solution to dilute it to 0.05 M?

- A. 250 cm³
- B. 500 cm³
- C. 750 cm³
- D. 1000 cm³

##C When a solution is diluted, the number of moles of the solute is unchanged.

So, no. of moles of solute = $(MV)_{\text{before dilution}} = (MV)_{\text{after dilution}}$

$$0.20 \times \frac{250}{1000} = 0.05 \times \frac{V}{1000}$$

 $V = 1000 \text{ cm}^3$

Volume of water added = (1000 - 250) cm³ = 750 cm³##

Each question below consists of two separate statements. Decide whether each of the two statements is true or false; if both are true, then decide whether or not the second statement is a *correct* explanation of the first statement. Then select one option from A to D according to the following table:

- A. Both statements are true and the 2nd statement is a correct explanation of the 1st statement.
- B. Both statements are true and the 2nd statement is NOT a correct explanation of the 1st statement.
- C. The 1st statement is false but the 2nd statement is true.
- D. Both statements are false.

Section 15.1

|!|EMA041515019O|!|

1 M solution means there is 1 mole of a solute being dissolved in 100 cm³ of water.

A 1 M solution is more concentrated than a 0.5 M of the same kind of solution.

##C 1 M means 1 mole per dm³ or per 1000 cm³.##

Section 15.2

|!|EMA041515020O|!|

0.15 mole Na₂CO₃ contains 0.45 mole ions.

1 formula unit of Na₂CO₃ gives 2 formula units of Na⁺ ions and 1 formula unit of CO₃²⁻ ions.

##**A**##