SIMULATING RECURRENT NEURAL NETWORKS ON GRAPHIC PROCESSING UNITS

SUMMER PROJECT

Zhangsheng Lai Advisor: Shaowei Lin October 3, 2017

INTRODUCTION

INTRODUCTION

Figure 1: Anatomy of a neuron¹

¹By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830

FEEDFORWARD NEURAL NETWORK

Figure 2: Feedforward Neural Network

BOLTZMANN MACHINES

BOLTZMANN MACHINES

Energy configuration,
$$E = -\sum_{i < j} W_{ij} x_i x_j - \sum_i b_i x_i$$

Energy gap, $\Delta E_i = E(x_i = 0) - E(x_i = 1) = \sum_j W_{ij} x_j + b_i$
 $p_i := \mathbb{P}(x_i = 1) = \frac{1}{1 + e^{-\Delta E_i / \tau}}$

BOLTZMANN MACHINES

Algorithm 1 Boltzmann Machine Simulation.

- 1: Initialize W, b
- 2: Initialize $\mathbf{x}^{(0)}$
- 3: **for** *i* from 1 to *N* **do**
- 4: Random $k \in \{1, ..., d\}$, where d is the number of neurons
- 5: Compute $p_k = \frac{1}{1 + e^{-\Delta E_k/\tau}}$
- 6: Sample from the Bernoulli distribution with $p = p_k$
- 7: $\mathbf{x}^{(i)} \leftarrow \text{update}(\mathbf{x}^{(i-1)})$
- 8: end for

where update($x^{(i-1)}$) updates the chosen neuron k with the outcome of the sample from the Bernoulli distribution.

Transition Energy,
$$E(y, x|\theta) = -\sum_{ji \in E} W_{ji}y_jx_i - \sum_{j \in V} b_jx_j - \sum_{i \in V} b_ix_i$$

$$\Gamma_{yx} = \exp\left(-\frac{1}{2\tau}E(y, x|\theta) + \frac{1}{2\tau}E(x, x|\theta)\right)$$

Transition Energy,
$$E(y, x | \theta) = -\sum_{ji \in E} W_{ji} y_j x_i - \sum_{j \in V} b_j x_j - \sum_{i \in V} b_i x_i$$

$$\lambda_j := \Gamma_{yx} = \exp\left(\frac{1}{2\tau} s_j z_j\right)$$

where $s_j = 1 - 2x_j$, $z_j = \sum_j W_{ji}x_i + b_j$ and x, y differ by the jth unit.

Transition probability from
$$x$$
 to y , $p_{yx} = \frac{\lambda_j}{\sum_{j'} \lambda_{j'}}$
Sample holding times, $T_{yx} \sim \textit{Exp}(a_x)$, where $a_x = \sum_j \lambda_j$

Algorithm 2 CTMC Simulation.

- 1: Initialize W, b
- 2: Initialize $\mathbf{x}^{(0)}$
- 3: **for** *i* from 1 to *N* **do**
- 4: Compute Γ_{vx} , p_{vx} for each $\mathbf{y} \neq \mathbf{x}$
- 5: Compute $a_x = \sum \Gamma_{yx}$
- 6: $\mathbf{x}^{(i)} \leftarrow \text{flip}(\mathbf{x}^{(i-1)})$
- 7: Sample holding time $T_{i-1} \sim \text{Exp}(a_x)$
- 8: end for

where flip $(x^{(i-1)})$ flips the state of the transiting neuron.

$$(T_0, (1, 0, 0, 0, 1, 1))\\$$

$$(T_0, (1, 0, 0, 0, 1, 1))$$

 $(T_1, (1, 0, 0, 1, 1, 1))$

$$(T_0, (1, 0, 0, 0, 1, 1))$$

$$(T_1, (1, 0, 0, 1, 1, 1))$$

$$(T_2, (1, 0, 0, 1, 1, 0))$$

Figure 3: Comparison between the amount of transistors devoted to different functions inside a CPU and a GPU.

GPU Algorithm: Reduction

Reduction

```
mod = SourceModule("""
        __global__ void reduce_kernel(float *d_out, float *d_in)
            int myld = threadIdx.x + blockDim.x * blockIdx.x;
            int tid = threadIdx.x;
            // do reduction in global memory
            for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1)
                if (tid < s)
                    d in [myld] += d in [myld + s];
                __syncthreads(); // make sure all adds at one stage are
                     done
            // only thread 0 writes result for this block back to global
                 memory
            if (tid == 0)
                d out[blockIdx.x] = d in[myId];
            , arch='sm 60')
```

Importance to Simulating on GPUs

- Faster matrix multiplication
- Larger neural networks
- Larger function space
- Energy efficiency

REFERENCES

S. Lin.

Biological Plausible Deep Learning for Recurrent Spiking Neural Networks

CSC321: Introduction to Neural Networks and machine Learning *Hopfield nets and simulated annealing.*

https://www.cs.toronto.edu/ hinton/csc321/notes/lec16.pdf

CSC321: Introduction to Neural Networks and machine Learning **Boltzmann Machines as Probabilistic Models.**

https://www.cs.toronto.edu/ hinton/csc321/notes/lec17.pdf

CUDA C Programming Guide

From Graphics Processing to General Purpose Parallel Computing.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Energy configuration,
$$E = -\sum_{i < j} W_{ij} x_i x_j - \sum_i b_i x_i$$

Energy gap, $\Delta E_i = E(x_i = 0) - E(x_i = 1) = \sum_j W_{ij} x_j + b_i$
Update rule, $x_i := \begin{cases} 1 & \sum_j W_{ij} x_j + b_i \ge 0 \\ 0 & \text{otherwise} \end{cases}$

(1,0,0,0,0,1)

