${f 3}$ Exercise solutions – Extension of global alignment

1. DP with score matrix

Use the score matrix below with gap penalty g = 1 and answer the following questions.

	С	G	Α	Т
С	1	0	0	0
G		1	1	0
Α			1	0
Т				1

- (a) Calculate the alignment score.
 - Alignment 1

q: ATGCT d: CA--T

Solution: -1

 \bullet Alignment 2

q: CAGCT d: C-A-T

Solution: 1

- (b) Calculate the score of $H_{i,j}$.
 - Table A

Solution: 1

• Table B

Solution: 1

(c) Fill the empty cells with appropriate scores in the DP table. What is the optimal alignment score?

q\d		С	А	Т
	0	-1	-2	-3
С	-1		0	-1
A	-2	0	2	1
G	-3	-1		2
С	-4	-2		1
Т	-5	-3	-1	

Solution: 1

(d) There are two different alignments that give the same optimal score in the solution above. Specify both of them.

Solution:

- q: CAGCT
- d: CA--T
- q: CAGCT
- d: C-A-T

2. Affine gap penalty

Affine gap penalties are often preferable ways to calculate gap scores than linear penalties. A gap with length l can be calculated as: $g_l = g_{open} + (l-1) * g_{extend}$.

Use the following scoring scheme and gap penalties to answer the questions.

Scoring scheme:

$$R_{ab} = 1 \text{ for a} = b$$

$$R_{ab} = 0$$
 for $a \neq b$

$$g_{open} = 1, g_{extend} = 0.1$$

(a) What is the gap penalty when l=2.

Solution:
$$g_{l=2} = 1 + (2-1) * 0.1 = 1.1$$

- (b) Calculate the scores of the alignments.
 - 1. q: CAGCT
 - d: CT--T

Solution: 0.9

- 2. q: CAGCT
 - d: C-T-T

Solution: 0

- 3. q: CCT-
 - d: ---CT

Solution: -2.3

3. Affine gap with single DP table

You need to check extra cells in addition to the adjacent cells of H when finding an optimal alignment with affine gap penalties.

Scoring scheme:

$$R_{ab} = 1 \text{ for a = b}$$

$$R_{ab} = 0 \text{ for a } \neq b$$

$$g_{open} = 1, g_{extend} = 0.1$$

		С	G
	0	-1	-1.1
С	-1	1	0
A	-1.1	0	
	-		

Assume we want to update $H_{2,2}$ and answer the following questions.

(a) Calculate $H_{1,1} + R_{q_2,d_2}$.

Solution: 1 + 0 = 1

(b) Calculate $\max_{1 \leq l \leq 2} (H_{2,2-l} - g_l)$.

Solution: $max(H_{2,1} - g_{l=1}, H_{2,0} - g_{l=2}) = max(0 - 1, -1.1 - 1.1) = -1$

(c) Calculate $\max_{1 \leq l \leq 2} (H_{2-l,2} - g_l)$.

Solution: $max(H_{1,2} - g_{l=1}, H_{0,2} - g_{l=2}) = max(0 - 1, -1.1 - 1.1) = -1$

(d) What is the score of $H_{2,2}$.

Solution: max(1, 1, -1) = 1

4. Initialization for affine gap penalty

Initialize the following tables when $g_{open} = 10$ and $g_{extend} = 1$.

		E					
		Т	G	С			
	0	-10	-11	-12			
A	-10						
A	-11						

		T	G	С
	0	-10	-11	-12
A	-11			
A	-12			

F

	G						
		Т	G	С			
	0	-10	-11	-12			
A	-10						
A	-11						

5. Affine gap with three DP tables

Use the following scoring scheme and gap penalties to find the optimal alignment score of two sequences q = AG and d = GGGC.

Scoring scheme:

$$R_{ab} = 1$$
 for $a = b$

$$R_{ab} = 0 \text{ for a} \neq b$$

$$g_{open} = 1, g_{extend} = 0.1$$

(a) Fill all blank cells in the DP tables E, F, and G.

	E						
		G	G	G	С		
	0	-1	-1.1	-1.2	-1.3		
A	-1	-2	-2.1	-2.2	-2.3		
G	-1.1	-1	-2	-2.1	-2.2		

		G	G	G	С
	0	-1	-1.1	-1.2	-1.3
A	-1	-2	-1		-1.2
G	-1.1	-2.1	-1	0	-0.1

F

	G						
		G	G	G	С		
	0	-1	-1.1	-1.2	-1.3		
A	-1	0	-1	-1.1	-1.2		
G	-1.1	0	1	0	-1.1		

(b) What is the optimal score?

Solution: -0.1

6. Backtrack with affine gap penalty

Perform backtracking on E, F, and G tables to find the optimal alignment. The cells with double border should be visited during backtracking.

(a) Write the optimal alignment.

Solution:

- q: -CG-
- d: ACGT

7. Sequence distance with DP

DP can be used to calculate the edit distance (Levenshtein distance) between two sequences.

Scoring scheme:

$$R_{ab} = 0$$
 for $a = b$
 $R_{ab} = -1$ for $a \neq b$
 $g = 1$

With the scoring scheme above, the edit distance d is calculated as -1 * T where T is the optimal score of the DP.

Find the edit distance between two sequences q = AG and d = ACG.

(a) Fill the DP table.

q\d		A	С	Т
	0	-1	-2	-3
A	-1	0	-1	-2
G	-2	-1	-1	-2

(b) What is the edit distance between q and d?

Solution:

2