To prove that TSP is NP-hard, we show that HAM-CYCLE \leq_P TSP. Let G=(V,E) be an instance of HAM-CYCLE. We construct an instance of TSP as follows. We form the complete graph G'=(V,E'), where $E'=\{(i,j):i,j\in V \text{ and } i\neq j\}$, and we define the cost function c by

$$c(i,j) = \begin{cases} 0 & \text{if } (i,j) \in E, \\ 1 & \text{if } (i,j) \notin E. \end{cases}$$

(Note that because G is undirected, it has no self-loops, and so $c(\nu, \nu) = 1$ for all vertices $\nu \in V$.) The instance of TSP is then $\langle G', c, 0 \rangle$, which we can easily create in polynomial time.

We now show that graph G has a hamiltonian cycle if and only if graph G' has a tour of cost at most 0. Suppose that graph G has a hamiltonian cycle h. Each edge in h belongs to E and thus has cost 0 in G'. Thus, h is a tour in G' with cost 0. Conversely, suppose that graph G' has a tour h' of cost at most 0. Since the costs of the edges in E' are 0 and 1, the cost of tour h' is exactly 0 and each edge on the tour must have cost 0. Therefore, h' contains only edges in E. We conclude that h' is a hamiltonian cycle in graph G.

34.5.5 The subset-sum problem

We next consider an arithmetic NP-complete problem. In the *subset-sum problem*, we are given a finite set S of positive integers and an integer $target\ t > 0$. We ask whether there exists a subset $S' \subseteq S$ whose elements sum to t. For example, if $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\}$ and t = 138457, then the subset $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$ is a solution.

As usual, we define the problem as a language:

SUBSET-SUM =
$$\{\langle S, t \rangle : \text{there exists a subset } S' \subseteq S \text{ such that } t = \sum_{s \in S'} s \}$$
.

As with any arithmetic problem, it is important to recall that our standard encoding assumes that the input integers are coded in binary. With this assumption in mind, we can show that the subset-sum problem is unlikely to have a fast algorithm.

Theorem 34.15

The subset-sum problem is NP-complete.

Proof To show that SUBSET-SUM is in NP, for an instance $\langle S, t \rangle$ of the problem, we let the subset S' be the certificate. A verification algorithm can check whether $t = \sum_{s \in S'} s$ in polynomial time.

We now show that 3-CNF-SAT \leq_P SUBSET-SUM. Given a 3-CNF formula ϕ over variables x_1, x_2, \ldots, x_n with clauses C_1, C_2, \ldots, C_k , each containing exactly

three distinct literals, the reduction algorithm constructs an instance $\langle S, t \rangle$ of the subset-sum problem such that ϕ is satisfiable if and only if there exists a subset of S whose sum is exactly t. Without loss of generality, we make two simplifying assumptions about the formula ϕ . First, no clause contains both a variable and its negation, for such a clause is automatically satisfied by any assignment of values to the variables. Second, each variable appears in at least one clause, because it does not matter what value is assigned to a variable that appears in no clauses.

The reduction creates two numbers in set S for each variable x_i and two numbers in S for each clause C_j . We shall create numbers in base 10, where each number contains n+k digits and each digit corresponds to either one variable or one clause. Base 10 (and other bases, as we shall see) has the property we need of preventing carries from lower digits to higher digits.

As Figure 34.19 shows, we construct set S and target t as follows. We label each digit position by either a variable or a clause. The least significant k digits are labeled by the clauses, and the most significant n digits are labeled by variables.

- The target t has a 1 in each digit labeled by a variable and a 4 in each digit labeled by a clause.
- For each variable x_i , set S contains two integers v_i and v_i' . Each of v_i and v_i' has a 1 in the digit labeled by x_i and 0s in the other variable digits. If literal x_i appears in clause C_j , then the digit labeled by C_j in v_i contains a 1. If literal $\neg x_i$ appears in clause C_j , then the digit labeled by C_j in v_i' contains a 1. All other digits labeled by clauses in v_i and v_i' are 0.
 - All v_i and v_i' values in set S are unique. Why? For $l \neq i$, no v_l or v_l' values can equal v_i and v_i' in the most significant n digits. Furthermore, by our simplifying assumptions above, no v_i and v_i' can be equal in all k least significant digits. If v_i and v_i' were equal, then x_i and $\neg x_i$ would have to appear in exactly the same set of clauses. But we assume that no clause contains both x_i and $\neg x_i$ and that either x_i or $\neg x_i$ appears in some clause, and so there must be some clause C_i for which v_i and v_i' differ.
- For each clause C_j , set S contains two integers s_j and s'_j . Each of s_j and s'_j has 0s in all digits other than the one labeled by C_j . For s_j , there is a 1 in the C_j digit, and s'_j has a 2 in this digit. These integers are "slack variables," which we use to get each clause-labeled digit position to add to the target value of 4.
 - Simple inspection of Figure 34.19 demonstrates that all s_j and s'_j values in S are unique in set S.

Note that the greatest sum of digits in any one digit position is 6, which occurs in the digits labeled by clauses (three 1s from the v_i and v'_i values, plus 1 and 2 from

		x_1	χ_2	<i>X</i> ₃	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν'_1	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
s_3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
S ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is $\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee \neg x_2 \vee \neg x_3)$, $C_3 = (\neg x_1 \vee \neg x_2 \vee x_3)$, and $C_4 = (x_1 \vee x_2 \vee x_3)$. A satisfying assignment of ϕ is $\langle x_1 = 0, x_2 = 0, x_3 = 1 \rangle$. The set S produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, $S = \{1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2\}$. The target t is 1114444. The subset $S' \subseteq S$ is lightly shaded, and it contains v_1' , v_2' , and v_3 , corresponding to the satisfying assignment. It also contains slack variables $s_1, s_1', s_2', s_3, s_4$, and s_4' to achieve the target value of 4 in the digits labeled by C_1 through C_4 .

the s_j and s'_j values). Interpreting these numbers in base 10, therefore, no carries can occur from lower digits to higher digits.¹¹

We can perform the reduction in polynomial time. The set S contains 2n + 2k values, each of which has n + k digits, and the time to produce each digit is polynomial in n + k. The target t has n + k digits, and the reduction produces each in constant time.

We now show that the 3-CNF formula ϕ is satisfiable if and only if there exists a subset $S' \subseteq S$ whose sum is t. First, suppose that ϕ has a satisfying assignment. For i = 1, 2, ..., n, if $x_i = 1$ in this assignment, then include v_i in S'. Otherwise, include v_i' . In other words, we include in S' exactly the v_i and v_i' values that cor-

¹¹In fact, any base b, where $b \ge 7$, would work. The instance at the beginning of this subsection is the set S and target t in Figure 34.19 interpreted in base 7, with S listed in sorted order.

respond to literals with the value 1 in the satisfying assignment. Having included either v_i or v_i' , but not both, for all i, and having put 0 in the digits labeled by variables in all s_i and s_i' , we see that for each variable-labeled digit, the sum of the values of S' must be 1, which matches those digits of the target t. Because each clause is satisfied, the clause contains some literal with the value 1. Therefore, each digit labeled by a clause has at least one 1 contributed to its sum by a v_i or v_i' value in S'. In fact, 1, 2, or 3 literals may be 1 in each clause, and so each clauselabeled digit has a sum of 1, 2, or 3 from the v_i and v_i' values in S'. In Figure 34.19 for example, literals $\neg x_1$, $\neg x_2$, and x_3 have the value 1 in a satisfying assignment. Each of clauses C_1 and C_4 contains exactly one of these literals, and so together ν'_1 , v_2' , and v_3 contribute 1 to the sum in the digits for C_1 and C_4 . Clause C_2 contains two of these literals, and ν'_1 , ν'_2 , and ν_3 contribute 2 to the sum in the digit for C_2 . Clause C_3 contains all three of these literals, and ν'_1 , ν'_2 , and ν_3 contribute 3 to the sum in the digit for C_3 . We achieve the target of 4 in each digit labeled by clause C_i by including in S' the appropriate nonempty subset of slack variables $\{s_i, s_i'\}$. In Figure 34.19, S' includes $s_1, s_1', s_2', s_3, s_4$, and s_4' . Since we have matched the target in all digits of the sum, and no carries can occur, the values of S' sum to t.

Now, suppose that there is a subset $S' \subseteq S$ that sums to t. The subset S' must include exactly one of v_i and v_i' for each $i=1,2,\ldots,n$, for otherwise the digits labeled by variables would not sum to 1. If $v_i \in S'$, we set $x_i=1$. Otherwise, $v_i' \in S'$, and we set $x_i=0$. We claim that every clause C_j , for $j=1,2,\ldots,k$, is satisfied by this assignment. To prove this claim, note that to achieve a sum of 4 in the digit labeled by C_j , the subset S' must include at least one v_i or v_i' value that has a 1 in the digit labeled by C_j , since the contributions of the slack variables s_j and s_j' together sum to at most 3. If S' includes a v_i that has a 1 in C_j 's position, then the literal x_i appears in clause C_j . Since we have set $x_i=1$ when $v_i \in S'$, clause C_j is satisfied. If S' includes a v_i' that has a 1 in that position, then the literal $\neg x_i$ appears in C_j . Since we have set $x_i=0$ when $v_i' \in S'$, clause C_j is again satisfied. Thus, all clauses of ϕ are satisfied, which completes the proof.

Exercises

34.5-1

The *subgraph-isomorphism problem* takes two undirected graphs G_1 and G_2 , and it asks whether G_1 is isomorphic to a subgraph of G_2 . Show that the subgraph-isomorphism problem is NP-complete.

34.5-2

Given an integer $m \times n$ matrix A and an integer m-vector b, the **0-1 integer-programming problem** asks whether there exists an integer n-vector x with ele-