Programmierprojekt CoMa II - Young Tableauxs

Megi Andoni - 395007 Jacob Haag - 378334 Mino Mischlich - 401947

June 2019

Lemma 2. Die Relation \backsim_K beschreibt eine Äquivalenzrelation auf \mathcal{M}_w .

Beweis:

Seien $x,y,z\in\mathcal{M}_W$ Wörter mit $x\backsim_K y$ und $y\backsim_K z$. Dann gibt es endliche Folgen $o_1\ldots o_n$ und $u_1\ldots u_m$, mit $n,m\in\mathbb{N},\ o_i,u_j\in\{K_1,K_1^{-1},K_2,K_2^{-1}\}$ für $i=1\ldots n,\ j=1\ldots m,$ und Indize $k_1,\ldots,k_n,\bar{k}_1\ldots\bar{k}_m$ an denen o_i bzw. u_j ausgeführt werden, sodass x durch $o_1\ldots o_n$ in y überführt wird, und y durch $u_1\ldots u_m$ in z. Dann wird aber auch x durch $o_1\ldots o_nu_1\ldots u_m$ in z überführt, und daher ist die Relation transitiv. Ebenso wird y offenbar durch $(o_i\ldots o_n)^{-1}=o_n^{-1}\ldots o_1^{-1}$ durch Ausführung an entsprechenden Indize in x überführt, womit die Relation symmetrisch ist. Offensichtlich ist die Relation auch reflexiv, da es keine Operationen benötigt, um x in x zu überführen. Folglich ist \backsim_K eine Äquivalenzrelation.

Beweis:

Um diese Aussage zu zeigen weisen wir folgende Eigenschaften nach:

1) Abgeschlossenheit

Seien $\overline{w}, \overline{v} \in \overline{\mathcal{M}}_W$ und $w_1, w_2 \in \overline{w}$ sowie $v_1, v_2 \in \overline{v}$. Dann gibt es $o_1 \dots o_n$ und $u_1 \dots u_m$, mit $n, m \in \mathbb{N}$, $o_i, u_j \in \{K_1, K_1^{-1}, K_2, K_2^{-1}\}$ die jeweils w_1 in w_2 und v_1 in v_2 überführen. Also gilt für $w_1 v_1, w_2 v_2 \in \overline{wv}$

$$w_2v_2 = (o_1 \dots o_n)w_1 \cdot (u_1 \dots u_m)v_1$$

was $w_2v_2 \backsim_K w_1v_1$ zeigt.

2) Assoziativität

Wegen $\bar{w} \cdot \bar{v} \in \{w \cdot v | w \in \bar{w}, v \in \bar{v}\}$ für $\bar{w}, \bar{v} \in \overline{\mathcal{M}}_w$, folgt die Assoziativität direkt aus der Assoziativität von · in \mathcal{M}_W .

3) Existenz eines neutralen Elements

Wir definieren zunächst e als das leere Wort. Offenbar ist e das neutrale Element in \mathcal{M}_W und es gilt $\bar{e} = \{e\}$. Folglich gilt für alle $\bar{w} \in \overline{\mathcal{M}}_W$ auch

$$\bar{w} \cdot \bar{e} = \overline{we} = \bar{w}.$$

Damit ist also $(\overline{\mathcal{M}}_W, \cdot)$ ein Monoid.

Korollar 5. Für zwei Young Tableaux S und T gilt $w(S \bullet T) = \bar{w}(S) \cdot \bar{w}(T)$ in $\overline{\mathcal{M}}_W$.

Beweis:

Für $w(T) = x_1 \dots x_s$ gilt nach Definition 3.2 und Proposition 4

$$\bar{w}(S \bullet T) = \bar{w}(\dots(S \leftarrow x_1) \dots) \leftarrow x_s)$$

$$= (\dots(\bar{w}(S) \cdot \bar{w}(x_1)) \dots \bar{w}(x_s))$$

$$= \bar{w}(S) \cdot \bar{w}(x_1) \cdot \dots \cdot \bar{w}(x_s)$$

$$= \bar{w}(S) \cdot \bar{w}(T)$$

wobei wir die Assoziativität von \cdot in $\overline{\mathcal{M}}_W$ ausgenutzt haben.

Lemma 6. Die Abbildung $\bar{w}: \mathcal{M}_{YT} \longrightarrow \overline{\mathcal{M}}_W$ ist surjektiv.

Beweis:

Wir beweisen die Aussage per Induktion über die Länge der Wörter $v \in \bar{v}$.

Induktionsanfang: Für Wörter v der Länge 1 gilt $\bar{v} = \{v\}$. Also ist das einelementige Young Tableaux T mit w(T) = v das einzige Urbild von \bar{v} unter der Abbildung \bar{w} .

Induktionsschritt: Es gelte die Aussage für ein beliebiges aber festes $n \in \mathbb{N}$. Sei $\bar{v} \in \overline{\mathcal{M}}$ und $v_1, \ldots, v_n, v_{n+1} \in \bar{v}$. Nach der Induktionsvoraussetzung existiert ein Young Tableaux T_n mit $w(T_n) = v_{\sigma(1)} \cdot v_{\sigma(n)}$, wobei $w(T_n)$ und v_1, \ldots, v_n äquivalent sind, für geeignetes σ . Mit Proposition 4 folgt dann

$$\bar{w}(T_n \leftarrow v_{n+1}) = \bar{w}(T_n) \cdot \bar{w}(v_{n+1})$$

$$= \bar{w}(v_1 \dots v_n) \cdot \bar{w}(v_{n+1})$$

$$= \bar{w}(v_1 \dots v_{n+1})$$

$$= \bar{v}$$

und damit folgt die Behauptung.