COMPLEMENTOS DE MATEMÁTICA I MATEMÁTICA DISCRETA

Depto de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

2024

CAMINOS

P_n camino de n vértices.

- Un camino en un grafo G es una lista que alterna vértices y aristas (con extremos en esos vértices) de la forma
 v₀, e₁, v₁,..., e_k, v_k donde e_i = v_{i-1} v_i para i ∈ [k]. La longitud del camino es la cantidad de aristas que posee.
- Un recorrido es un camino que no repite aristas.
- Un camino simple es un camino que no repite vértices (y por lo tanto un recorrido).
- Si queremos resaltar que los vértices u y v son los extremos del camino decimos que es un u, v-camino. Análogamente u, v-camino simple, u, v-recorrido.
- Un camino o recorrido es cerrado si sus extremos son iguales.
- Un circuito es un recorrido cerrado (camino que no repite aristas cuyos extremos son iguales).
- Un ciclo es un camino simple cerrado (sólo repite los extremos del camino).

Podemos simplificar la notación y listar sólo los vértices del camino: v_0, v_1, \dots, v_k .

EJEMPLO

LEMA

Dado un gafo G, todo u,v-camino en G para $u \neq v$ posee (como subgrafo) un u,v-camino simple.

PROOF.

Pizarra

Algunas propiedades más:

- Todo circuito contiene un ciclo. Más aún, si v es un vértice en un circuito, existe un ciclo en el circuito que contiene a v.
- Un grafo es conexo sii existe un u, v-camino en G para todo $u \neq v$ vértices de G.

DEFINICIÓN

Una componente conexa de un grafo G es un subgrafo conexo maximal. El número de componentes conexas de un grafo es $\kappa(G)$.

 G' se obtuvo agregando una arista a G entonces $\kappa(G) - 1 \le \kappa(G') \le \kappa(G)$. Análogamente, si $G' = G \setminus e$ entonces $\kappa(G') \leq \kappa(G) + 1$.

COMPLEMENTOS DE MATEMÁTICA I MATEMÁTI

• Si G' = G - v entonces $\kappa(G') \le \kappa(G) + |V(G)| - 2$.

4/7

DEFINICIÓN

Dado un grafo G, una arista de corte e de G es una arista tal que $\kappa(G \setminus e) > \kappa(G)$. Un vértice de corte v de G es un vértice tal que $\kappa(G - v) > \kappa(G)$.

LEMA

Dado un grafo G, e es una arista de corte si y sólo si e no pertenece a ningún ciclo en G.

PROOF.

Pizarra

- Si uv es una arista de corte, v es vértice de corte?
- Si G es conexo, G es conexo?
- Si v es vértice de corte de G, $\overline{G} v$ es conexo?
- Si G es autocomplementario, G tiene un vértice de corte si y sólo si G tiene un vértice de grado 1?
 Vértice colgante o pendiente = vértice de grado 1.

CIRCUITOS EULERIANOS

DEFINICIÓN

Un circuito euleriano en un grafo G es un circuito que contiene todas las aristas de G.

Idem recorrido euleriano.

Fig. 3.4. The bridges of Königsberg and their graph

DEFINICIÓN

Un grafo euleriano en un grafo G que posee un circuito euleriano.

EJEMPLO

TEOREMA

Un grafo conexo es euleriano si y sólo si todos sus vértices tienen grado par.

PROOF.

Pizarra

CIRCUITOS EULERIANOS

Dado un grafo conexo par, ¿cómo hallar un circuito euleriano? *Algoritmo de Fleury*

• Considerar cualquier vértice $u \in V(G)$.

$$W \leftarrow u$$
$$x \leftarrow u$$
$$F \leftarrow G.$$

② Mientras $gr_F(x) > 0$, seleccionar una arista e = xv (incidente en x), donde e no es de corte de F, salvo que tal arista no exista.

$$\begin{aligned} W &\leftarrow uev \\ x &\leftarrow v \\ F &\leftarrow F \setminus e. \end{aligned}$$

W es un circuito euleriano.

Teorema

 $Si\ G$ es conexo y par entonces el camino que devuelve el Alg. de Fleury es un circuito euleriano.

TEOREMA

Un grafo conexo G tiene un recorrido (no cerrado) euleriano si y sólo si tiene exactamente dos vértices de grado impar.

Grafos dirigidos (digrafos)

Definición: El grafo subyacente de un digrafo D es el grafo G obtenido considerando los arcos como pares no ordenados.

Observación: Las definiciones sobre digrafos de subdigrafo, isomorfismo, etc. son análogas a las de grafos.

- Matriz de adyacencia $A(D) = \{a_{ij}\}$ donde a_{ij} es la cantidad de arcos $(v_iv_j) \in E(D)$.
- Matriz de incidencia $M(D) = \{m_{ve}\}$ donde

$$m_{ve} = \left\{ \begin{array}{ll} 1 & \text{si } e = (v,u), \\ -1 & \text{si } e = (u,v), \\ 0 & \text{si } e = (u,w), \ u \neq v \neq w. \end{array} \right.$$

Grafos dirigidos (digrafos)

Definición: Sea D un digrafo y $v \in V(D)$. El grado de salida de v es la cantidad de aristas de la forma (v,u), i.e. que tienen a v como origen. Notación $\mathrm{d}_D^+(v)$.

El grado de entrada de v es la cantidad de aristas de la forma (u, v), i.e. que tienen a v como final. Notación $d_D^-(v)$.

Ejercicio: Sea D un digrafo,

$$\sum_{v \in V(D)} d^{+}(v) = \sum_{v \in V(D)} d^{-}(v).$$

Observación: Se definen de manera análoga camino dirigido, recorrido dirigido, camino simple dirigido, etc., respetando el orden de los arcos y nodos en la lista.

2024

DEFINICIÓN

Un circuito (recorrido) euleriano dirigido es un digrafo es un circuito (recorrido) dirigido que contiene todas las aristas.

LEMA

Si D es un digrafo tal que $d^+(v) \ge 0$ para todo $v \in V(D)$ entonces D contiene un ciclo.

TEOREMA

Un digrafo D es euleriano si y sólo si $d^+(v) = d^-(v)$ para todo $v \in V(D)$ y el grafo subyacente tiene a lo sumo una componente conexa no trivial.

Ejercicio.