

SDD System Design Document

NetGun

Versione	1.3
Data	01/12/2022
Destinatario	Professore Carmine Gravino
Presentato da Carlo Colizzi,	
	Giulio Incoronato,
	Antonio Mazzarella

Revision History

Data	Versione	Descrizione	Autori
1/12/2022	0.1	Stesura della sezione revision history, team members e del Sommario	Tutto il gruppo
2/12/2022	0.2	Stesura dell'introduzione e dello scopo del sistema	Tutto il gruppo
3/12/2022	0.3	Definizione degli obiettivi di design e completamento del primo paragrafo	Tutto il gruppo
4/12/2022	0.4	Definizione dell'architettura del sistema	Tutto il gruppo
5/12/2022	0.5	Stesura del secondo paragrafo e inizio decomposizione del sistema	Tutto il gruppo
6/12/2022	0.6	Decomposizione e diagramma delle componenti completate	Tutto il gruppo
7/12/2022	0.7	Stesura e definizione del mapping software/hardwar e	Tutto il gruppo
8/12/2022	0.8	Aggiunta del Deployment Diagram	Tutto il gruppo
8/12/2022	0.9	Aggiunta dei diagrammi ER dei dati	Tutto il gruppo

		persistenti e correzione di	
		errori	
9/12/2022	1.0	Definizione del controllo globale del software e delle condizioni limite	Tutto il gruppo
9/12/2022	1.1	Verifica e correzione degli errori	Tutto il gruppo
10/12/2022	1.1	Aggiunto un diagramma sui servizi dei sottosistemi	Tutto il gruppo
11/12/2022	1.2	Chiusura del paragrafo 4 e aggiunta del glossario	Tutto il gruppo
15/11/2022	1.3	Verifica e correzione degli errori	Tutto il gruppo

Team Members

Nome	Informazioni di contatto
Carlo Colizzi	carlo.colizzi@gmail.com
Giulio Incoronato	g.incoronato2@studenti.unisa.it
Antonio Mazzarella	a.mazzarella5@studenti.unisa.it

Sommario

Revision History	2
Team Members	2
1 Introduzione	4
1.1 Scopo del Sistema	4
1.2 Obiettivi di Design (Design Goals)	4
Design Goals	5
Trade-off	7
1.3 Definizioni, acronimi e abbreviazioni	8
1.4 Riferimenti	8
1.5 Organizzazione del Documento	8
2 Architettura del sistema corrente	9
3 Architettura del sistema proposto	10
3.1 Panoramica sulla sezione	10
3.2 Decomposizione in sottosistemi	10
Component Diagram	12
3.3 Mapping Hardware/Software	13
Deployment Diagram	14
3.4 Gestione dei dati persistenti	14
3.5 Controllo globale del software	15
3.6 Condizioni limite	15
4 Servizi dei Sottoinsiemi	17
Glossario	17

1 Introduzione

1.1 Scopo del Sistema

NetGun ha l'obiettivo di essere un Framework per il Penetration Testing (Testing Black Box di infrastrutture in rete).

È possibile racchiudere il sistema il 3 componenti principali. La componente per lo scanning, la componente per l'enumerazione dei dati raccolti, e le utilities che assistono l'utente in tutte le fasi del pre e post scanning.

Inoltre ha il fine di facilitare una pratica complessa come i Penetration Test, così da permettere ai PT di concentrarsi su aspetti più delicati, automatizzando e velocizzando le task alla base di questo tipo di Testing.

1.2 Obiettivi di Design (Design Goals)

In questa sezione si andranno a presentare i Design Goals, ovvero le qualità sule quali il sistema deve essere focalizzato, qualsiasi decisione di Design fatta, avrà come cardine il rispetto dei Design Goal sotto descritti.

I Design Goal del Progetto sono divisi nelle seguenti categorie:

- Performance
- Modificability
- Legibility
- Robustness
- Cost
- Usabilità

Design Goals

Rank	ID Design Goal	Descrizione	Categoria	RNF di origine
4	DG_1 Velocità di accesso ai dati persistenti	Il sistema dovrà permettere un tempo di accesso ai dati persistenti minore di un secondo	Performance	10
3	DG_2 Interfaccia User-Friendly	Il sistema deve garantire all'utente delle chiare e minimali indicazioni di utilizzo in ogni sezione del software tramite un Help che gli garantisca la comprensione di ogni sezione con 1 click e una lettura di al massimo 10 secondi	Usability	1
2	DG_3 Robustezza agli errori causati dalla rete	Il sistema deve garantire un elevata robustezza, gestendo qualsiasi errore causato dalla rete	Robustness	11
1	DG_4	Il sistema deve permettere un	Performance	2

	Throughput proporzionale al numero di Thread	incremento del Throughput proporzionale al numero di Thread messi a disposizione dalla macchina Host; sui test effettuati in locale o su VM interne alla macchina.		
9	DG_5 Tempo di Risposta dello Scanner non deterministico	Il sistema non può garantire un tempo di risposta deterministico per ogni Scan, a causa dell'inaffidabilità della rete	Performance	3
7	DG_6 Costi nulli per la persistenza dei dati	Il sistema per abbattere i costi relativi alla persistenza delle informazioni utilizza dei file	Deployment cost	12
8	DG_7 Portabilità su sistemi Linux- Debian	Il sistema deve permettere un'alta portabilità data dalla Virtual Machine di Python e dalla persistenza gestita tramite file	Portability	7
5	DG_8 Manutenzione e Miglioramento	Il sistema deve permettere una facile modificabilità data dalla modularità delle sue	Modificability	4

	facilitati	componenti. Si intende realizzare questo goal tramite un forte disaccoppiamento dei sottosistemi.		
6	DG_9 Leggibilità del codice	Il sistema deve garantire commenti per le sezioni chiave, per favorire la collaborazione della community Open Source	Leggibility	6

Trade-off

Trade-off	Descrizione
Tempi di risposta vs Memoria	Per migliorare i tempi di risposta del programma, tutti i dati persistenti saranno caricati in memoria già dall'avvio del software. Con conseguente aumento della Memoria occupata.
Costi vs Memoria	Per azzerare i costi relativi allo storage, il software conterrà tutti i dati in file. A discapito della Memoria di massa occupata.

1.3 Definizioni, acronimi e abbreviazioni

Vengono riportate di seguito alcune definizioni presenti nel documento corrente:

- **Sottosistema:** un sottoinsieme dei servizi del dominio applicativo, formato da servizi legati da una relazione funzionale.
- Design Goal: le qualità sulle quali il sistema deve essere focalizzato.
- Dati persistenti: dati che sopravvivono all'esecuzione del programma che li ha creati e che dunque vengono salvati.
- Mapping Hardware/Software: studio della connessione fra parti fisiche e logiche di cui si compone il sistema
- SDD: System Design Document.
- RAD: Requirements Analysis Document.

1.4 Riferimenti

Di seguito una lista di riferimenti ad altri documenti utili durante la lettura:

1.5 Organizzazione del Documento

Questo documento di System Design è composto da 4 sezioni:

Introduzione: Viene descritto in generale lo scopo del sistema, gli obiettivi di design che il sistema propone di raggiungere.

Architettura software corrente: Viene descritto lo stato attuale dell'architettura del software già presente.

Architettura software proposta: Viene descritto come il sistema sarà definito e partizionato in sottosistemi, il loro mapping Hardware/Software, la gestione dei dati persistenti. Verranno poi presentate la struttura dei singoli sottosistemi e le boundary conditions riguardanti l'intero sistema.

Glossario: Contiene la lista dei termini usati nel documento con annessa spiegazione

2 Architettura del sistema corrente

Attualmente non esiste un software che abbia le stesse funzionalità volute in NetGun, essendo questo un progetto di Greenfield Engineering. Nonostante ciò, possiamo distinguere dei competitor che hanno funzionalità simili come Nessus, OpenVAS, Zenmap ...

3 Architettura del sistema proposto

3.1 Panoramica sulla sezione

Il sistema proposto è basato sullo stile architetturale Three Tier. Così da separare la logica di presentazione, di business e di accesso ai dati.

Lo stile architetturale Three Tier è stato scelto al fine di migliorare aspetti di qualità come:

- Modificabilità
- Leggibilità

Nello sviluppo del sistema sarà usato Python3 come linguaggio.

Per lo sviluppo della view sarà utilizzata la libreria Python Tkinter.

Per la gestione dei dati persistenti saranno usati file XML.

3.2 Decomposizione in sottosistemi

I sottosistemi individuati sono:

- Scan: si occupa di gestire lo scan del Target e i filtri con i quali configurarlo.
- Research CVE: si occupa delle funzionalità di ricerca Common
 Vulnerabilities and Exposures sui servizi del Target
- Test MisConfigurations: si occupa di testare le mal configurazioni sui servizi del Target

- Report: si occupa delle funzionalità riguardanti l'elaborazione e l'esportazione di Report ottenuti dalle analisi effettuate
- Tutorial: si occupa degli Help forniti all'utente durante l'utilizzo del sistema
- Test Network Performance: si occupa di testare la stabilità della rete dell'utente
- Verbose Progress: si occupa di osservare i progressi effettuati durante scanning e fornire all'utente un feedback in Real-Time
- Tips: si occupa di fornire all'utente dei consigli riguardo l'utilizzo dei servizi offerti dal Target
- Persistenza: Si occupa di gestire la persistenza dei dati tramite File
- Storage Manager: Si occupa di gestire i file di persistenza, la loro ottimizzazione, e l'interazione dell'intero sistema con questi.

Component Diagram

Tramite questo Component Diagram è possibile comprendere la struttura Three Tier del sistema, distinguendo: Presentation Tier, Logic Tier e Data Tier, con i relativi sottosistemi che li compongono.

E' possibile tramite la lollipop notation comprendere quali tier offrono un servizio e quali lo utilizzano.

3.3 Mapping Hardware/Software

Il Sistema che si desidera sviluppare, per essere utilizzato, necessità di una Python Virtual Machine eseguita su Sistemi Operativi Linux Debian-Based (Preferibilmente distribuzioni per il Penetration Testing).

La memorizzazione sarà gestita tramite file XML. Questi saranno Analizzati e Serializzati in Memoria di Massa dopo il primo avvio del sistema, consentendo così una riduzione significativa dei tempi di accesso ai dati persistenti.

Per poter usufruire della maggior parte delle funzionalità del sistema, è necessario che l' Hardware della macchina Host abbia una NIC (Network Interface Card) con tecnologia wireless o wired;

Il Sistema effettuerà Scansioni e Test di rete basandosi sullo standard TCP/IP per la comunicazione.

Run-Time Environment: Python VM

O.S.: Linux Debian-Based

Storage: XML Files and Serialized Files

Hardware Components Required: NIC

Communications Standard: TCP/IP

Deployment Diagram

Il Software che sarà sviluppato si basa su una piattaforma Hardware avente un Sistema Operativo Linux Debian-Based con Macchina virtuale Python installata.

Il software dovrà essere eseguito nel Run-Time Environment della Python VM, e dovrà aver accesso al File System.

3.4 Gestione dei dati persistenti

Introduzione

Per la gestione dei dati persistenti del sistema, si è deciso di utilizzare i file così da mantenere minimi i tempi di accesso alle informazioni.

La scelta di utilizzo dei file è stata presa al fine di mantenerci quanto più possibile coerenti con I design goals stabiliti, potendo contare su:

- Costi nulli per la persistenza dei dati, in quanto l'utilizzo di un DBMS avrebbe richiesto il mantenimento di un server, con conseguente aumento dei costi
- Velocità di accesso ai dati persistenti, poiché si intende utilizzare tecniche di ottimizzazione per diminuire il tempo di lettura medio dei file, come la serializzazione in memoria.

 Modificabilità poichè tramite file, si rende semplice la modifica da parte degli utenti anche dei dati persistenti, favorendo lo sviluppo e il miglioramento del sistema attraverso la community Open Source.

Le scelte sopra elencate hanno l'obiettivo principale di favorire: l'abbassamento dei costi di mantenimento delle informazioni, e lo sviluppo del software attraverso la community Open Source

Schema ad Albero descrivente la struttura dei file

Descrizione dei dati persistenti nei file:

- Misconfigurations: Contiene un'insieme di malconfigurazioni
- Tips: Contiene un insieme di consigli per l'utente
- Tutorial: Contiene tutti gli help per l'utente

Formato dei dati persistenti

I dati saranno archiviati utilizzando il formato XML (eXtensible Markup Language), il quale permetterà una facile modifica da parte della community Open-Source.

3.5 Controllo globale del software

Il sistema NetGun richiede una continua interazione, quindi ogni funzionalità viene avviata dopo un interazione o comando impartito dall'utente tramite l'uso dell'interfaccia grafica. Per questo motivo il sistema è di tipo Event-Driven Control.

Ogni volta quindi che l'utente avvierà un evento, quest'ultimo verrà gestito da un suo handler, che indirizzerà l'intero controllo di flusso al sottosistema specifico per la funzionalità richiesta dall'utente.

3.6 Condizioni limite

Nel seguente paragrafo verranno presentate le boundary conditions inerenti a:

- 1. Avvio del sistema
- 2. Spegnimento del sistema
- 3. Fallimento del sistema

Avvio del sistema

Identificativo	UCBC_1 - Avvio del Sistema	Data	10/12/2022
		Versione	1.0
		Autori	Gianni
Descrizione	Lo UC permette l'avvio del sistema		
Attore principale	Utente		
Attori secondati	NA		

Entry	condition	L'utente avvia il sistema		
Exit co	ondition	Il sistema viene avviato correttamente		
	On			
succe	SS			
Exit co	Exit condition II sistema non viene avviato correttamente			
	On failure			
	Flusso di eventi principale			
1	Utente	Esegue sulla macchina il comando che avvia il sistema		
2	Sistema	Verifica la sanità dei dati persistenti e rende disponibili le sue funzionalità all'utente e rende disponibili i dati, se sono sani.		

Spegnimento del sistema

Identificativo	UCB Siste	BC_2 - Spegnimento del ema	Data Versione	10/12/2022
			Autori	Gianni
Descrizione	Lo U	IC permette lo spegniment	o del sistema	
Attore principale	Uten	ite		
Attori secondati	NA			
Entry condition	L'ute	L'utente spegne il sistema		
Exit condition	II sis	Il sistema viene spento correttamente		
On success				
Exit condition	II sis	tema non viene spento co	rettamente	
On failur	On failure			
Flusso di eventi principale				
1 Utente	1 Utente Esegue sulla macchina il comando di spegnimento del sistema		nento del sistema	
2 Sistema	Sistema Chiude tutti i processi e termina la sua esecuzione			zione

Fallimento del sistema

Identificativo	UCBC_3 - Fallimento del Sistema	Data	10/12/2022
	Sistema	Versione	1.0

					Autori	Gianni
Descrizio	ne	Lo UC definisce il comportamento del Sistema in caso di fallimento				
Attore pri	ncipale	Uten	te			
Attori sec	condati	NA				
Entry cor	ndition	L'ute	nte viene terminato inasp	ettat	amente	
Exit cond	lition	II sist	ema viene riavviato corre	ettam	ente	
success	On					
Exit cond	lition	Il sistema non viene riavviato				
failure	On					
	Flusso di eventi principale					
1 Ute	nte		Include UCBC_1			
Flusso di Eventi Alternativo: Il sistema non può avviarsi						
2.a1		Siste	ma		Invia un messaggio di er avvisare l'utente che il s puo' avviarsi per un prob sconosciuto	istema non

4 Servizi dei Sottosistemi

In questa sezione verranno descritti i servizi di ogni sottosistema precedentemente elencati:

Servizi offerti dal Logic tier per il Presentation tier:

ScanController

Servizio	Descrizione
StartShallowScan	Questa funzionalità permette avviare una scansione non dettagliata
StartDeepScan	Questa funzionalità permette avviare una scansione dettagliata
NotifyProgress	Questa funzionalità permette di notificare lo stato

	di avanzamento della scansione
--	--------------------------------

$Research CVE_Controller$

Servizio	Descrizione
ShowCVE	Questa funzionalità permette di mostrare il risultato delle CVE dopo una scansione

Report_Controller

Servizio	Descrizione
ExportReport	Questa funzionalità permette di esportare il report

${\bf TestMisConfiguration_Controller}$

Servizio	Descrizione
TestMisConfiguration	Questa funzionalità permette di testare la mal configurazione di un servizio

TutorialController

Servizio	Descrizione
ShowTutorial	Questa funzionalità permette di mostrare l'help all'utente

TestNetworkPerfomanceController:

Servizio	Descrizione
----------	-------------

TestNetworkPerfoman	Questa funzionalità permette di testare le
ce	performance della rete che il sistema utilizzerà

TipsController

Servizio	Descrizione
ShowTips	Questa funzionalità permette di mostrare i tips consigliati per l'utente

Servizi offerti dal Data tier per il Logic tier:

DAOTestMisConfiguration

Servizio	Descrizione
ParseMissConfiguratio nFile	Questa funzionalità permette di convertire il formato XML del file delle miss configurations

DAOTutorialController

Servizio	Descrizione
ParseTutorial	Questa funzionalità permette di convertire il formato XML del file del tutorial

DAOTipsController

Servizio	Descrizione
ParseTips	Questa funzionalità permette di convertire il formato

	XML del file dei tips
--	-----------------------

Glossario

Nella presente sezione sono raccolti le sigle o i termini del documento che necessitano di una definizione.

Sigla/Termine	Definizione
PT	Penetration Test
Scan	Attività di scansione
Enumeration	Attività di raccolta informazioni
Target	Macchina da scannerizzare e analizzare
Application Layer	Livello cinque dello stack TCP/IP
Application Layer Protocol	Riferimento ad un protocollo generico utilizzato nel livello cinque dello stack TCP/IP
Transport Layer	livello quattro dello stack TCP/IP
Transport Layer Protocol	Riferimento ad un protocollo fra TCP e UDP utilizzato nel livello quattro dello stack TCP/IP

IP	Internet Protocol, permette di identificare univocamente un Host o una rete
Port	Indirizzo di livello Trasporto, identifica univocamente un servizio su un determinato Host
Service	Indica un servizio solitamente offerto da un Server (Es: FTP, SMB, http, rtsp, ssh)
Version	Indica la versione del Framework che offre un dato servizio sul server (Es: vsftpd 3.0.3)
CVE	Common Vulnerabilities and Exposures, è una falla di sicurezza ben nota, alla quale è assegnato un determinato ID per riconoscerla, detto ID CVE
Misconfiguration	rappresenta una mal configurazione del sistema
Port State	Rappresenta lo stato di una porta, può essere: (Open, Close, Filtered)