

Breast Cancer Diagnosis Classification

Predict whether the cancer is benign or malignant

RV SAMANEH MADOLIZI

Overview:

In this project we are going to use 30 different features to predict the Stage of Breast Cancer, "M" (Malignant) and "B" (Bengin). This classification has been done using Basic Machine Learning Algorithms. Our data frame consists of 569 obs. Of 32 variables. Features 3- 32 are divided into three parts: Mean (3-13), SE (13-23) and Worst(23-32) which each contains 10 features. Here "Mean" means the means of the all cells, "SE" means standard error of all cells and Worst means the worst cells.

Attribute information:

ID number

Diagnosis (M = malignant, B = benign)

To 32. Ten real-valued features are computed for each cell nucleus: a) radius (mean of distances from extended standard deviation to gray values)c) perimeter. d) area. e) smoothness (local variation in radius lengths) f) compactness (perimeter^2 / area - 1.0) g) concavity (severity of concave portions of the contours. h) concave points (number of concave portions of the contour) i) symmetry j) fractal dimension

Preprocessing:

There is a column for ID numbers that we remove it. The range of data in different

features is different. From 0 to 4254 which all are positive. So we do "Normalization" on data to make the range of all data from 0 to 1. Also we need to make the diagnosis column as factor. There is no missing data in data set and the data is clean. There is 62.7% of Benign and 37.3% of Malignant type.

Analysis:

We do the correlation for our features and re move the columns which has the correlation over o.g. Since then we will have 20 features out of 30. (index of highly correlated features : 7 8 23 21 3 24 1 13 14 2)

Then we take a look at histogram of each fea ture which is separated to two type for "M" a nd "B". We see some means of two type histo grams are very close to each other. That mea ns they reveal no significant information for classification.so we remove the ones with closer means of 0.05. the number of features we use for training our machine learning models are 14.

Classification:

The histogram of data we use for classification:

"diagnosis" "area_mean" "smoothness_mean" "compactness_mean" "symmetry_mean" "radi us_se" "compactness_se" "concave.points_se" "texture_worst" "smoothness_worst" "comp actness_worst" "concavity_worst" "concave.p oints_worst" "symmetry_worst" "fractal_di mension_worst"

First of all the data should be split up into two sets: train set and test set. Here there are 75% of total data (569) as train set (427) and the rest as test set (142).

Different classification algorithms are used: Knn, GLM (Logestic regression multiclass), RF (random forest), NNET (neural networks) and SVM (support vector machines).

The result of modeling each classification algorithms and testing it over test data is as follows:

	Accuracy	AUC
GLM	98.59%	0.989
RF	97.89%	<mark>0.989</mark>
NNET	98.59%	o.96 ₅
KNN	<mark>96.48%</mark>	<mark>0.955</mark>
SVM	<mark>91.55%</mark>	<mark>0.935</mark>

According to the accuracy GLM has the best result of 98.56% for accuracy and 0.989 for AUC. and SVM has the worst result of 91.55% for accuracy and 0.935 for AUC.

Confusion matrix:

Knn:

		pred_knn	I
Row Total	М	В	datatest\$diagnosis
107	0	107	В
0.754	0.000	1.000	
ĺ	0.000	0.982	i
İ	0.000	0.754	j
35	33	2	M
0.246	0.943	0.057	1
	1.000	0.018	1
I	0.232	0.014	j
142	33	109	Column Total
	0.232	0.768	

GLM:

	pred_qlmnet		
datatest\$diagnosis	B	М	Row Total
В	104	3	107
	0.972	0.028	0.754
	0.981	0.083	
	0.732	0.021	I
M	1 2 1	33	35
	0.057	0.943	0.246
	0.019	0.917	1
	0.014	0.232	İ
Column Total	106	36	142
	0.746	0.254	Į.

RF:

	pred_rf		
datatest\$diagnosis	В	M	Row Total
В	105 0.981 0.991 0.739	0.019 0.056 0.014	107 0.754
М	0.029 0.009 0.007	34 0.971 0.944 0.239	35 0.246
Column Total	106 0.746	36 0.254	142

NNET:

	pred_nnet	
M	В	datatest\$diagnosis
1	106	В
0.009	0.991	
0.029	0.981	
0.007	0.746	
33	2	M I
0.943	0.057	
0.971	0.019	
0.232	0.014	
34	108	Column Total
0.239	0.761	1
	1 0.009 0.029 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.000 0.	B M M 106 1 1 1 1 1 1 1 1 1

SVM:

	pred_svmRadial		
:latatest\$diagnosis	В	М	Row Total
В	96	11	107
	0.897	0.103	0.754
	0.980	0.250	į į
	0.676	0.077	
M	2	33	35
	0.057	0.943	0.246
	0.020	0.750	
	0.014	0.232	
Column Total	98	44	142
	0.690	0.310	

Accuracy bar chart:

Compare diffrent Model Accuracy

ROC AUC:

