ECON 204C - Macroeconomic Theory

Dynamic programming review and computation

Woongchan Jeon

University of California, Santa Barbara

Week 1 - April 3, 2020

General Information

• Name: Woongchan [oongchahn] Jeon

• Email: wjeon@ucsb.edu

• Website: woongchanjeon.com

• Zoom Office Hours: Tuesdays and Thursdays 08:00 - 09:00 AM PDT

• Problem sets need to be done in LATEX.

I will be using Python with Jupyter as my editor.
 You can use any language that you would like.

Learning Objective

- Dynamic programming in discrete time
 - Stochastic optimal growth model
 - o Bellman equation / Bellman operator / Policy function
 - Contraction mapping theorem
- Computation
 - Interpolation
 - Integration
 - o Minimization
 - Value function iteration

Preferences

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$

• *u* is a bounded, continuous and strictly increasing utility function.

$$u(c_t) = \ln c_t$$

• $\beta = 0.96 \in (0,1)$ is a discount factor.

Resource Constraints

$$y_t \geqslant c_t + \left[\underbrace{k_{t+1} - (1 - \delta)k_t}_{=i_t}\right]$$
 where $\delta = 1$

- An agent owns an amount $y_t \in \mathbb{R}_+ := [0, \infty)$ of consumption good at time t.
- Output can either be consumed or invested.
- When the good is invested, it is transformed one-for-one into capital.

Technology

$$y_{t+1} = f(k_{t+1})\xi_{t+1}$$
 where $\xi_{t+1} \sim \Phi$

• $f: \mathbb{R}_+ \mapsto \mathbb{R}_+$ is called the production function which is increasing and continuous in k.

$$f(k_{t+1}) = k_{t+1}^{\alpha}$$
 where $\alpha = 0.4 \in (0, 1)$

• Production is stochastic, in that it depends on a shock ξ_{t+1} realized at the end of the current period t.

$$\xi_{t+1} = \exp\{\mu + s\zeta_{t+1}\}$$
 where $\zeta_{t+1} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, $\mu = 0$, $s = 0.1$

Optimization

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$
s.t. $y_t \geqslant c_t + k_{t+1} \quad \forall t$ (Resource Constraint)
$$y_{t+1} = f(k_{t+1})\xi_{t+1} \quad \text{where} \quad \xi_{t+1} \stackrel{i.i.d.}{\sim} \Phi \quad \forall t \quad \text{(Technology)}$$

$$c_t \geqslant 0 \quad k_{t+1} \geqslant 0 \quad \forall t \quad \text{(Non-negativity Constraint)}$$

$$y_0 = \bar{y}_0 \quad \text{given}$$

Sequential Problem (SP)

$$\max_{\{c_{t}\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u(c_{t})\right]$$
s.t. $y_{t+1} = f(\underbrace{y_{t} - c_{t}}) \xi_{t+1}$ where $\xi_{t+1} \stackrel{i.i.d.}{\sim} \Phi \quad \forall t$

$$y_{t} \geqslant c_{t} \geqslant 0 \quad \forall t$$

$$y_{0} = \bar{y}_{0} \quad \text{given}$$

- Resource constraint holds with equality because *u* is strictly increasing.
- y_t **summarizes** the state of the world at the start of each period.
- c_t is a value **chosen** by the agent each period after observing the state.

Funtional Equation (FE)

(SP) is an infinite-dimensional optimization problem. We need to find an optimal infinite sequence $\{c_t^*\}_{t=0}^{\infty}$ solving (SP). Dynamic programming (DP) helps us find a simpler maximization problem.

$$v^*(y) = \max_{c \in [0,y]} \left\{ u(c) + \beta \int v^* \Big(f(y-c)\xi \Big) \phi(d\xi) \right\}$$
 (Bellman equation)

Solution v^* , evaluated at $y = \bar{y}_0$, gives the value of the maximum in (SP).

Bellman Operator

An operator is a map that sends functions into functions. Bellman operator T maps a function $w : \mathbb{R} \to \mathbb{R}$ into another function such that given any arbitrary $y \in \mathbb{R}$,

$$T_{\mathbf{w}}(y) := \max_{c \in [0,y]} \left\{ u(c) + \beta \int_{\mathbf{w}} (f(y-c)\xi) \phi(d\xi) \right\}$$

Notice that T is a contraction mapping with modulus β (Blackwell's sufficient conditions for a contraction).

When $w : \mathbb{R} \to \mathbb{R}$ is taken to be the value function, w-greedy policy σ optimally trades off current and future rewards such that given any arbitraty $y \in \mathbb{R}$,

$$\sigma(y) := \arg\max_{c \in [0,y]} \left\{ u(c) + \beta \int \frac{w}{w} (f(y-c)\xi) \phi(d\xi) \right\}$$

Contraction Mapping Theorem

If T is a contraction mapping with modulus β , then

1. there exists a unique fixed point v^* , and

$$v^* = Tv^* \quad \text{ or equivalently } \quad v^*(y) = \max_{c \in [0,y]} \left\{ u(c) + \beta \int v^* \Big(f(y-c)\xi \Big) \varphi(d\xi) \right\} \ \forall y \in \mathbb{R}$$

2. for any v_0 and any $n \in \mathbb{N}$,

$$d(T^n v_0, v^*) \leqslant \beta^n d(v_0, v^*)$$

Associated optimal policy function is given by

$$\sigma^*(y) = \arg\max_{c \in [0,y]} \left\{ u(c) + \beta \int v^* \Big(f(y-c)\xi \Big) \phi(d\xi) \right\} \ \forall y \in \mathbb{R}$$

Computation

How can we implement Bellman operator on our computer?

$$Tw(y) := \max_{c \in [0,y]} \left\{ u(c) + \beta \underbrace{\int \underbrace{w(f(y-c)\xi)}_{\text{1. Approximation}} \varphi(d\xi)}_{\text{2. Integration}} \right\}$$
3. Optimization

Approximation

• Approximate an analytically intractable real-valued function f with a computationally tractable function \hat{f} given limited information about f.

- Divide the approximation domain of the function into finite number of sub-intervals and approaximate the original function in each of the intervals using some simple functions, like polynomials.
 - o The points on the domain which separate the intervals are called grid points.
 - We use the value of the function at each grid point to approximate the original function.

Linear Interpolation

Given $(x_0, f(x_0))$ and $(x_1, f(x_1))$, fit a linear interpolant through the data.

$$\widehat{f}(x) = b_0 + b_1(x - x_0)$$

At $x = x_0$,

$$\widehat{f}(x_0) = f(x_0)$$

$$b_0 = f(x_0)$$

At $x = x_1$,

$$\widehat{f}(x_1) = f(x_1)$$

$$b_0 + b_1(x_1 - x_0) = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Linear Interpolation - Application

In order to figure out Bellman operator, we need to approximate an analytically intractable real-valued function w.

$$Tw(y) := \max_{c \in [0,y]} \left\{ u(c) + \beta \int w(f(y-c)\xi) \phi(d\xi) \right\}$$

- **1.** Determine an approximation domain of w.
- **2.** Divide the approximation domain into finite number of sub-intervals.
- **3.** Approximate the original function w in each of the intervals using linear spline.

Monte Carlo Integration

- A random variable X is distributed with $pdf f_X$.
- Consider a function $g: \mathbb{R} \to \mathbb{R}$. Given a random sample of size $n, \{X_i\}_{i=1}^n$,

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow{p} \int g(x) f_X(x) dx$$
 (LLN)

• Consider another function $h : \mathbb{R} \to \mathbb{R}$. We need to evaluate $I = \int h(x) dx$. Let us define $g(x) = \frac{h(x)}{f_n(x)}$. Then

$$I = \int h(x)dx = \int \underbrace{\frac{h(x)}{f_X(x)}}_{-g(x)} f_X(x)dx$$

Therefore, I can be estimated with

$$\frac{1}{n} \sum_{i=1}^{n} \frac{h(X_i)}{f_X(X_i)} \xrightarrow{p} \int h(x) dx$$

Monte Carlo Integration - Application

In order to figure out Bellman operator, we need to evaluate continuation value.

$$Tw(y) := \max_{c \in [0,y]} \left\{ u(c) + \beta \int w(f(y-c)\xi) \phi(d\xi) \right\}$$

Given a random sample of size n, $\{\xi_i\}_{i=1}^n$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{w(f(y-c)\xi_i)\phi(\xi_i)}{\phi(\xi_i)} \longrightarrow \int w(f(y-c)\xi)\phi(\xi)d\xi$$

Optimization

- Find the minimum of some real-valued function of several real variables on a domain that has been specified.
 - o Golden section search, Newton's method, etc.

- Finding the global minimum can be challenging.
 - The function can have many local minima.
 - More difficulties are to be expected in handling functions of many variables having a number of constraints.

Optimization - Application

In order to figure out Bellman operator, we need to maximize over feasible consumption set. For any $y \in \mathbb{R}$,

$$Tw(y) := \max_{c \in [0,y]} \left\{ u(c) + \beta \int w(f(y-c)\xi) \phi(d\xi) \right\}$$

Reference

Judd, K. L. (1998). Numerical methods in economics. MIT press.

Sargent, T. S. & Stachurski, J. (2020, March 30). Optimal growth I: The stochastic optimal growth model. Retrieved from https://python-intro.guantecon.org/optgrowth.html