More on resolution for Propositional Logic

1 Example 1

- Let φ be the formula $\neg((p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q))$
- Is φ a theorem?
- In order to prove this using resolution we negate φ and put it in conjunctive normal form if necessary
- So $\neg \varphi$ is the formula $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$ which is in conjunctive normal form already
- We will now try to apply resolution on $\neg \varphi$ until
 - Either we infer the empty clause, which means that $\neg \varphi$ is a contradiction, and hence φ is a theorem or,
 - We do not infer the empty clause but at some point we do not find any new clauses either; in that case we can find a truth assignment that makes $\neg \varphi$ true, and hence, φ false, which means that φ is not a theorem

```
Applying resolution:
```

```
p \lor q

\neg p \lor q

p \lor \neg q

\neg p \lor \neg q

q \lor q (1 \text{ and } 2)

q \lor \neg q (2 \text{ and } 3)

\neg q \lor \neg q (3 \text{ and } 4)

\varnothing
```

This implies that φ is a theorem

2 Example 2

- Use resolution to prove that if
 - "It is not raining or I have my umbrella" ¬r ∨ u
 - "I do not have my umbrella or I do not get wet" $\neg u \lor \neg w$
 - "It is raining or I do not get wet" $r \lor \neg w$

then

- I do not get wet
- A formula $\varphi \Rightarrow \psi$ is logically equivalent to $\neg \varphi \lor \psi$
 - So that the negation of our formula is $\varphi \land \neg \psi$
 - * That is

$$(\neg R \vee U) \wedge (\neg U \vee \neg W) \wedge (R \vee \neg W) \wedge W$$

So we must apply resolution on clauses - it is already in cnf so is easy to do

$$\neg R \lor U, \neg U \lor \neg W, R \lor \neg W, W$$

```
R - It is raining
U - I have my umbrella
W - I get Wet
\varphi \Rightarrow \psi\neg \varphi \lor \psi\neg (\neg \varphi \lor \psi)\neg \neg \varphi \land \neg \psi
```

$$\varphi \wedge \neg \psi$$

$$W, R \lor \neg W \Rightarrow R$$

 $W, \neg U \lor \neg W \Rightarrow \neg U$

R is true, so not R is false, not U is true, so U is false. Is a theorem

$$u \lor \neg W$$
 (1 and 3)
 $\neg W \lor \neg W \Rightarrow \neg W$ (new 1 and 2)

3 Example 3

Applying resolution to the following set of clauses

$$a \lor b \lor c$$
 $a \lor \neg c \lor d$ $\neg a \lor e \lor f$ $c \lor \neg e \lor f$ $c \lor d \lor \neg f$

- 1. (1,3) $b \lor c \lor e \lor f$
- 2. (2,3) $\neg c \lor d \lor e \lor f$
- 3. $(4,n2) \neg d \lor f \lor \neg f$