```
In [58]: import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")# ignoring warnings
import seaborn as sns
import matplotlib.pyplot as plt
```

In []:

In [59]: data=pd.read_csv("/home/placement/Desktop/nio/Titanic.csv")# reading the file

In [60]: data.describe()# describing the data

Out[60]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [61]: data

Out[61]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [62]: data.head(10) #printing the starting 10 values

Out[62]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [63]: data["Pclass"].unique()# printing unique values in Pcalss
Out[63]: array([3, 1, 2])
In [64]: data["Survived"].unique()# printing unique values in Survived
Out[64]: array([0, 1])
In [65]: data["Parch"].unique()# printing unique values in Pcalss Survived
```

Out[65]: array([0, 1, 2, 5, 3, 4, 6])

```
In [66]: data["Cabin"].unique()# printing unique values in Cabin
Out[66]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',
                'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                       'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78',
                'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                'A34'. 'C104', 'C111',
                                       'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
                'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10',
                              'D19', 'D50', 'D9', 'A23', 'B50', 'A26',
                'B41'. 'A20'.
                'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45',
                'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                 'C148'l, dtype=object)
In [67]: data["SibSp"].unique()# printing unique values in SibSp
Out[67]: array([1, 0, 3, 4, 2, 5, 8])
In [68]: data["Age"].unique()# printing unique values in age
Out[68]: array([22. , 38.
                                              nan, 54. , 2.
                           , 26.
                                  , 35. ,
                                                               , 27.
                                   , 39.
                                         , 55. , 31.
                     , 58.
                            , 20.
                                                               , 15.
                 4.
                                                        , 34.
                            , 40.
                                   , 66.
                                          , 42.
                                                 , 21.
                                                        , 18.
                                                                 3.
                                             5.
                                   , 28.5 ,
                                                 , 11.
                            , 65.
                                                        , 45.
                     , 25.
                            , 0.83, 30.
                                          , 33.
                                                 , 23.
                                                        , 24.
                                                               , 46.
                            , 47. , 14.5 , 70.5 , 32.5 , 12.
                                         , 1. , 61.
                51. , 55.5 , 40.5 , 44.
                                                        , 56.
                45.5 , 20.5 , 62.
                                  , 41. , 52. , 63.
                                                       , 23.5 , 0.92, 43.
                60. , 10. , 64. , 13. , 48. , 0.75, 53.
                70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74.
```

```
In [69]: data["Fare"].unique()# printing unique values in Fare
Out[69]: array([ 7.25
                             71.2833,
                                         7.925 ,
                                                   53.1
                                                               8.05
                                                                          8.4583.
                                        11.1333,
                                                   30.0708,
                                                              16.7
                   51.8625.
                             21.075 ,
                                                                         26.55
                   31.275 ,
                              7.8542,
                                        16.
                                                   29.125 ,
                                                                         18.
                                                              13.
                                         8.0292,
                                                   35.5
                                                              31.3875, 263.
                             26.
                    7.225 ,
                    7.8792,
                              7.8958,
                                        27.7208, 146.5208,
                                                               7.75
                                                                         10.5
                  82.1708,
                             52.
                                         7.2292,
                                                               9.475 ,
                                                   11.2417,
                                                                         21.
                                        21.6792,
                                                   17.8
                                                              39.6875,
                                                                          7.8
                   41.5792.
                             15.5
                                                              80.
                                                                         83.475
                   76.7292,
                             61.9792,
                                        27.75
                                                   46.9
                   27.9
                             15.2458,
                                         8.1583,
                                                    8.6625,
                                                              73.5
                                                                         14.4542,
                   56.4958,
                              7.65
                                        29.
                                                   12.475 ,
                                                               9.
                                                                          9.5
                                        15.85
                   7.7875,
                             47.1
                                                   34.375 ,
                                                              61.175 .
                                                                         20.575 .
                                        23.
                   34.6542,
                             63.3583,
                                                   77.2875,
                                                               8.6542,
                                                                          7.775 ,
                   24.15
                              9.825 ,
                                        14.4583, 247.5208,
                                                               7.1417,
                                                                         22.3583,
                    6.975 ,
                              7.05
                                        14.5
                                                   15.0458,
                                                              26.2833,
                                                                          9.2167,
                                        11.5
                   79.2
                              6.75
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                  66.6
                              7.3125,
                                        61.3792,
                                                    7.7333,
                                                              69.55
                                                                         16.1
                  15.75
                             20.525 ,
                                        55.
                                                   25.925 ,
                                                              33.5
                                                                         30.6958,
                                                              39.
                   25.4667,
                             28.7125,
                                         0.
                                                   15.05
                                                                         22.025 ,
                                         6.4958,
                   50.
                              8.4042,
                                                   10.4625,
                                                              18.7875,
                                                                         31.
                             27.
                                                   90.
                                                               9.35
                                                                         13.5
                 113.275 ,
                                        76.2917,
                    7.55
                             26.25
                                        12.275 ,
                                                    7.125 ,
                                                              52.5542,
                                                                         20.2125,
                   86.5
                            512.3292,
                                        79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                             77.9583,
                                        20.25
                                                   78.85
                                                              91.0792,
                                                                         12.875
                          , 151.55
                                        30.5
                                                   23.25
                    8.85
                                                              12.35
                                                                      , 110.8833,
                  108.9
                             24.
                                        56.9292,
                                                   83.1583, 262.375
                                                                         14.
                                         6.2375,
                                                              28.5
                 164.8667, 134.5
                                                   57.9792,
                                                                      , 133.65
                                        35.
                                                   75.25
                  15.9
                                                              69.3
                                                                         55.4417,
                              9.225 ,
                 211.5
                              4.0125, 227.525 ,
                                                   15.7417,
                                                               7.7292,
                                                                         12.
                             12.65
                                        18.75
                                                              32.5
                 120.
                                                    6.8583,
                                                                          7.875 ,
                  14.4
                             55.9
                                         8.1125,
                                                   81.8583,
                                                              19.2583,
                                                                         19.9667,
                  89.1042,
                             38.5
                                         7.725 ,
                                                   13.7917,
                                                               9.8375,
                                                                          7.0458,
                                                                         15.1
                                         9.5875,
                    7.5208,
                             12.2875,
                                                   49.5042,
                                                              78.2667,
                             22.525 ,
                    7.6292,
                                        26.2875,
                                                   59.4
                                                               7.4958,
                                                                         34.0208,
                   93.5
                          , 221.7792, 106.425 ,
                                                   49.5
                                                              71.
                                                                         13.8625,
                    7.8292.
                             39.6
                                                   51.4792.
                                                              26.3875,
                                                                         30.
                                        17.4
                   40.125 ,
                              8.7125,
                                        15.
                                                   33.
                                                              42.4
                                                                         15.55
                             32.3208,
                                         7.0542,
                                                    8.4333,
                                                              25.5875,
                   65.
                                                                          9.8417,
                    8.1375.
                             10.1708, 211.3375,
                                                   57.
                                                              13.4167.
                                                                          7.7417.
                    9.4833,
                              7.7375,
                                         8.3625,
                                                  23.45
                                                              25.9292,
                                                                          8.6833,
```

```
8.5167, 7.8875, 37.0042, 6.45, 6.95, 8.3
6.4375, 39.4, 14.1083, 13.8583, 50.4958, 5.
9.8458, 10.5167])
```

In [70]: data #describing all the data

l													
Out[70]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

```
In [71]: data["Embarked"].unique()# printing unique values in embarked
```

Out[71]: array(['S', 'C', 'Q', nan], dtype=object)

In [74]: data1

Out[74]:		Survived	Pclass	Sex	Age	Fare	Embarked
	0	0	3	male	22.0	7.2500	S
	1	1	1	female	38.0	71.2833	С
	2	1	3	female	26.0	7.9250	S

2	1	3	iemaie	20.0	7.9250	3
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С

891 rows × 6 columns

```
In [75]: data1.isna().sum()# finding the count null values in data
```

male 32.0 7.7500

Q

Out[75]: Survived 0
Pclass 0
Sex 0
Age 177
Fare 0
Embarked 2
dtype: int64

890

In [76]: data1.shape

Out[76]: (891, 6)

In [79]: dage

Out[79]:

	Survived	Pclass	Fare
Age			
0.42	1	3	8.5167
0.67	1	2	14.5000
0.75	2	6	38.5166
0.83	2	4	47.7500
0.92	1	1	151.5500
70.00	0	3	81.5000
70.50	0	3	7.7500
71.00	0	2	84.1584
74.00	0	3	7.7750
80.00	1	1	30.0000

88 rows × 3 columns

Out[80]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	28.0	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [81]: data1.isna().sum()# finding the if any values
```

Out[81]: Survived 0 Pclass 0 Sex 0 Age 0

Fare 0 Embarked 2

dtype: int64

In [82]: data1

Out[82]:		Survived	Pclass	Sex	Age	Fare	Embarked
	0	0	3	male	22.0	7.2500	S
	1	1	1	female	38.0	71.2833	С
	2	1	3	female	26.0	7.9250	S
	3	1	1	female	35.0	53.1000	S
	4	0	3	male	35.0	8.0500	S
	886	0	2	male	27.0	13.0000	S
	887	1	1	female	19.0	30.0000	S
	888	0	3	female	28.0	23.4500	S
	889	1	1	male	26.0	30.0000	С
	890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In []:
In []: #y=data1["Age"]
In []: #y

In [83]: # data1.fillna(35,inplace=True) for replacing null values with integers as this salso

In [85]: data1["Sex"]=data1["Sex"].map({"male":1,"female":0})# mapping the values of col-sex data1["Pclass"].unique()
Out[85]: array([3, 1, 2])
```

In [86]: data1

Out[86]:		Survived	Pclass	Sex	Age	Fare	Embarked
	0	0	3	1	22.0	7.2500	S
	1	1	1	0	38.0	71.2833	С
	2	1	3	0	26.0	7.9250	S
	3	1	1	0	35.0	53.1000	S
	4	0	3	1	35.0	8.0500	S
	886	0	2	1	27.0	13.0000	S
	887	1	1	0	19.0	30.0000	S
	888	0	3	0	28.0	23.4500	S
	889	1	1	1	26.0	30.0000	С

1 32.0 7.7500

891 rows × 6 columns

890

```
In [87]: data1["Pclass"]=data1["Pclass"].map({1:"F",2:"S",3:"Third"})#MAPPING THE VALUES OF COL Pclass
```

Q

In [88]: data1

\sim		$\Gamma \cap$	\circ	
111	11	ıv	y i	
w	и с	ı ()	o	
_	-			

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Third	0	28.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Third	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [89]: data1.isna().sum()
```

Out[89]: Survived

Survived 0
Pclass 0
Sex 0
Age 0
Fare 0
Embarked 2
dtype: int64

In []:

In [91]: sns.boxplot(data1.Age)# printing the boxplot of age

Out[91]: <Axes: >


```
In [92]: plt.hist(data1["Fare"])
Out[92]: (array([732., 106., 31., 2., 11.,
                                               6.,
                                                     0.,
                                                           0.,
                                                                 0., 3.]),
          array([ 0. , 51.23292, 102.46584, 153.69876, 204.93168, 256.1646 ,
                307.39752, 358.63044, 409.86336, 461.09628, 512.3292 ]),
          <BarContainer object of 10 artists>)
          700
          600
          500
          400 -
          300
          200 -
          100
```

200

300

400

500

100

In [93]: data1['Fare'].hist(figsize=(10,10))
plt.show()# ploting the histogram

In [94]: data1.groupby(["Age"]).count()

\sim		4.	$\Gamma \cap$	4 7	
	Ш	IT.	ıч	ш	٠,

	Survived	Pclass	Sex	Fare	Embarked
Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

88 rows × 5 columns

In []:

In [95]: data1.groupby(["Age"]).sum()

Out[95]:

	Survived	Sex	Fare
Age			
0.42	1	1	8.5167
0.67	1	1	14.5000
0.75	2	0	38.5166
0.83	2	2	47.7500
0.92	1	1	151.5500
70.00	0	2	81.5000
70.50	0	1	7.7500
71.00	0	2	84.1584
74.00	0	1	7.7750
80.00	1	1	30.0000

88 rows × 3 columns

In [96]: data1=pd.get_dummies(data1)#replacing the strings wih integers

```
In [97]: data1.isna().sum()# checking if any null values are presented
Out[97]: Survived
                          0
         Sex
                          0
                          0
         Age
         Fare
                          0
         Pclass F
                          0
         Pclass_S
                          0
         Pclass Third
                          0
         Embarked C
                          0
         Embarked Q
                          0
         Embarked_S
                          0
         dtype: int64
In [ ]:
```

In [98]: data1

Out[98]:

		Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
	0	0	1	22.0	7.2500	0	0	1	0	0	1
	1	1	0	38.0	71.2833	1	0	0	1	0	0
	2	1	0	26.0	7.9250	0	0	1	0	0	1
	3	1	0	35.0	53.1000	1	0	0	0	0	1
	4	0	1	35.0	8.0500	0	0	1	0	0	1
8	386	0	1	27.0	13.0000	0	1	0	0	0	1
8	387	1	0	19.0	30.0000	1	0	0	0	0	1
8	388	0	0	28.0	23.4500	0	0	1	0	0	1
8	389	1	1	26.0	30.0000	1	0	0	1	0	0
8	390	0	1	32.0	7.7500	0	0	1	0	1	0

891 rows × 10 columns

```
In [99]: cor=data1.corr()# USING THE CORRELATION FUNCTION
```

In [100]: | sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap="bwr")# PRINTIN THE HEATMMAP OF COR DATA

Out[100]: <Axes: >


```
In [101]: data1.groupby("Survived").count()
Out[101]:
                   Sex Age Fare Pclass F Pclass S Pclass Third Embarked C Embarked Q Embarked S
           Survived
                 0 549 549
                                             549
                                                                                         549
                            549
                                     549
                                                        549
                                                                   549
                                                                              549
                                                        342
                                                                   342
                                                                              342
                 1 342 342
                            342
                                     342
                                             342
                                                                                         342
In [102]: y=data1["Survived"]
          x=datal.drop("Survived",axis=1)# REMOVING AND SAVING THE SURVIVED COL FOR THE PREDICTED VALES
In [103]: y
Out[103]: 0
                  0
                  1
           2
           3
          886
                  0
          887
                  1
          888
                  0
          889
          890
          Name: Survived, Length: 891, dtype: int64
```

In [104]: cor

Out[104]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	-0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.168240	0.003650	-0.155660
Sex	-0.543351	1.000000	0.081163	-0.182333	-0.098013	-0.064746	0.137143	-0.082853	-0.074115	0.125722
Age	-0.064910	0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.030248	-0.031415	-0.014665
Fare	0.257307	-0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	-0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	-0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.125416	-0.127301	0.192061
Pclass_Third	-0.322308	0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.153329	0.237449	-0.009511
Embarked_C	0.168240	-0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	-0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.778359	-0.496624	1.000000

In [105]: data1

\sim		F 7 /	\ F 7
11	117	116	15 1
v	uч	1 1	ו ענ

_		Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
	0	0	1	22.0	7.2500	0	0	1	0	0	1
	1	1	0	38.0	71.2833	1	0	0	1	0	0
	2	1	0	26.0	7.9250	0	0	1	0	0	1
	3	1	0	35.0	53.1000	1	0	0	0	0	1
	4	0	1	35.0	8.0500	0	0	1	0	0	1
;	886	0	1	27.0	13.0000	0	1	0	0	0	1
;	887	1	0	19.0	30.0000	1	0	0	0	0	1
;	888	0	0	28.0	23.4500	0	0	1	0	0	1
;	889	1	1	26.0	30.0000	1	0	0	1	0	0
;	890	0	1	32.0	7.7500	0	0	1	0	1	0

891 rows × 10 columns

In [106]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
#splits data into 33% testing and 66% training data

In [113]: x_test

\sim			-	-		
- ()		-				
					.)	
_	•	- 1				

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
709	1	28.0	15.2458	0	0	1	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	1
39	0	14.0	11.2417	0	0	1	1	0	0
715	1	19.0	7.6500	0	0	1	0	0	1
525	1	40.5	7.7500	0	0	1	0	1	0
381	0	1.0	15.7417	0	0	1	1	0	0
140	0	28.0	15.2458	0	0	1	1	0	0
173	1	21.0	7.9250	0	0	1	0	0	1

295 rows × 9 columns

```
In [114]: y_test
```

Out[114]: 709

Name: Survived, Length: 295, dtype: int64

173

In [115]: x_train

Out[115]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
6	1	54.0	51.8625	1	0	0	0	0	1
718	1	28.0	15.5000	0	0	1	0	1	0
685	1	25.0	41.5792	0	1	0	1	0	0
73	1	26.0	14.4542	0	0	1	1	0	0
882	0	22.0	10.5167	0	0	1	0	0	1
106	0	21.0	7.6500	0	0	1	0	0	1
270	1	28.0	31.0000	1	0	0	0	0	1
860	1	41.0	14.1083	0	0	1	0	0	1
435	0	14.0	120.0000	1	0	0	0	0	1
102	1	21.0	77.2875	1	0	0	0	0	1

596 rows × 9 columns

```
In [ ]:
```

```
In [107]: from sklearn.linear_model import LogisticRegression
    reg=LogisticRegression()
    reg.fit(x_train,y_train)
    #importing logistic regression
```

Out[107]: LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [108]: y_pred=reg.predict(x_test)
```

```
In [109]: y pred
Out[109]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0])
In [110]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,y pred)# CONFUSIO MATRIX OF TRUE POSITIVE&NEGATIVE , FASLE POSITIVE & NEGAITVE
Out[110]: array([[154, 21],
                [ 37, 83]])
In [111]: from sklearn.metrics import accuracy score
         accuracy score(y test,y pred)#EFFICENCY OF THE CONFUSION MATRIX
Out[111]: 0.8033898305084746
 In [ ]:
```