

* Training / Validation / Test sets

Size	price					
2104	400	training set		2(") y("))	1	1train = 6
-			(2(")	train) y train))	
1985	300		/_	(1) (1)	\	
1534	315 3	validation set		cv", ycv"		
14 217	199	validation set 20%		:	^	1cv = 2
1380	2/2	test set 20%	(2cv	er y mer)	
1494	243	20%				
			V (24e	(1) ytest	0)	M. L. — O
			(2 test	t . Whest .		M+est=2

Training emor:
$$J_{train}(\vec{w},b) = \frac{1}{2m_{train}} \left[\sum_{i=1}^{m_{train}} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 \right]$$

Validation error:
$$J_{cv}(\vec{w},b) = \frac{1}{2m_{cv}} \left[\prod_{i=1}^{m_{cv}} (f_{\vec{w},b}(\vec{z}_{cv}^{(i)}) - g_{cv}^{(i)})^2 \right]$$

then model selection

$$\exists : fil.b(\vec{z}) = W_1 Z_1 + b \qquad \longrightarrow W^{(1)}, b^{(1)} \longrightarrow J_{CV}(W^{(1)}, b^{(2)})$$

$$\exists : fil.b(\vec{z}) = W_1 Z_1 + W_2 Z_1^2 + b \qquad \longrightarrow W^{(4)}, b^{(4)} \longrightarrow J_{CV}(W^{(2)}, b^{(2)})$$

$$\exists : fil.b(\vec{z}) = W_1 Z_1 + W_2 Z_1^2 + b \qquad \longrightarrow J_{CV}(W^{(2)}, b^{(2)})$$

$$\vdots \qquad \vdots \qquad \vdots$$

=> A Jay (W4. 642) is the lowest => Pick Wizet ... + W42++b

then "estimate generalization error using test set": I test (W<47, 6<47)