《复变函数与拉普拉斯变换》2022 小测

姓名: 学号: 作业本序号:

一、复数、复函数

$$(1)$$
 若 $(1+i)^n = (1-i)^n$, 求 n_\circ

解: 由
$$1+i=\sqrt{2}e^{i\frac{\pi}{4}}$$
, $1+i=\sqrt{2}e^{-i\frac{\pi}{4}}$ 得 $2^{\frac{n}{2}}e^{i\frac{\pi}{4}n}=2^{\frac{n}{2}}e^{-i\left(\frac{\pi}{4}n+2kn\right)}$, 化简得
$$\frac{\pi}{4}n=-\frac{\pi}{4}n-2k\pi$$
, 得到 $n=-4k$, $k=0,\pm 1,\cdots$

(2) 计算 i^i 。

解:
$$i^i = e^{i \operatorname{Ln} i} = e^{i \left(0 + i \frac{\pi}{2} + 2k\pi i\right)} = e^{-\left(\frac{\pi}{2} + 2k\pi\right)}, \quad k = 0, 1, \dots$$

(3) 求函数 $f(z) = z \operatorname{Re}(z)$ 的可导点和解析点。

解: $f(z) = x^2 + ixy$,由 C-R 方程易得 $f(z) = z \operatorname{Re}(z)$ 在(0,0)处可导,无处解析。

(4) 已知函数 f(z) = u + iv 解析,且 $u = x^3 + 3x^2y - 3xy^2 - y^3$, f(1) = 1 求函数 f(z) (用z 表示,其中z = x + iy)。

解:
$$f(z)=(1-i)z^3+i$$

二、计算积分、留数、级数

$$(1) \int_0^{\pi+2i} \cos\frac{z}{2} dz$$

解:
$$\int_0^{\pi+2i} \cos \frac{z}{2} dz = 2\sin \frac{z}{2} \Big|_0^{\pi+2i} = 2\sin \left(\frac{\pi}{2} + i\right) = 2\cos i = 2\cosh 1$$

(2)
$$\oint_{|z|=1} \left(\frac{\sin z}{z^6} - \frac{\ln(3+z)}{z^3+4} \right) dz$$

解:
$$\frac{\ln(3+z)}{z^3+4}$$
, $\sin z$ 在 $|z| \le 1$ 解析 所以 $\oint_{|z|=1} (\frac{\sin z}{z^6} - \frac{\ln(3+z)}{z^3+4}) dz = \oint_{|z|=1} \frac{\sin z}{z^6} dz = \frac{2\pi i}{5!}$

(3) 求函数 $f(z) = \frac{\sinh z}{z^4}$ 在孤立奇点处的留数。

解: Re
$$s[f(z), 0] = \frac{1}{6}$$

(4) 求函数 $\frac{1}{z^2(1-z^2)^2}$ 在圆环 $1 < |z| < +\infty$ 展开的罗朗级数。

解:
$$\frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n$$
 $|t| \le 1$ $\Rightarrow \frac{1}{(1-t)^2} = (\frac{1}{1-t})' = \sum_{n=0}^{+\infty} (n+1)t^n$

在圆环
$$1 < |z| < +\infty$$
 $\frac{1}{z^2(1-z^2)^2} = \frac{1}{z^6(1-z^{-2})^2} = \sum_{n=0}^{+\infty} (n+1)z^{-2n-6}$

三、证明题

(1) 设f(z)=u(x,y)+iv(x,y)是整函数,且 $v(x,y)\leq c$,求证f(z)是常数。

解: 考虑函数 $g=e^{-if}$, g 是整函数, $\mathbb{E}|g|=e^{v} \le e^{c}$,即 g 是有界整函数,

所以g是常数, $\Rightarrow g' = -if'e^{-if} = 0$, $\Rightarrow f' = 0$, 所以f(z)是常数。

(2) 已知 f(z) 是整函数,且对于充分大的 |z|,有 $|f(z)| \le M |z|^n$ 成立,其中 M 为常数, $n \ge 1$ 为整数。证明 f(z) 必是一个次数小于或等于 n 的多项式。

解: 将
$$f(z)$$
 进行 Taylor 展开 $f(z) = \sum_{k=0}^{+\infty} C_k z^k$, 其中 $C_k = \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^{k+1}} dz$ 。 若 $k > n$, 有

$$\left|C_{k}\right| = \left|\frac{1}{2\pi i} \oint_{|z|=r} \frac{f\left(z\right)}{z^{k+1}} dz\right| \leq \frac{1}{2\pi} \frac{Mr^{n}}{r^{k+1}} 2\pi r \leq \frac{M}{r^{k-n}} \to 0 \qquad \left(r \to \infty\right), \;\; \text{fif} \;\; C_{k} = 0 \; (k > n), \;\; \text{fif} \;\; \text{figure} \;$$