Smart Air and Soil Monitor

Rodrigo Ponce Paz - 23000642^{1}

¹Ingeniería en Electrónica - FISICC

July 1, 2025

Abstract

Este proyecto aborda las dificultades que enfrentan pequeños productores y jardineros urbanos para mantener condiciones óptimas en invernaderos caseros y sistemas hidropónicos. El riego manual y el control ambiental requieren supervisión constante, lo que genera ineficiencias y riesgos como desperdicio de agua y estrés en las plantas. Para solucionarlo, se desarrolló un sistema IoT integrado que monitorea continuamente la humedad del sustrato, niveles de agua, temperatura, humedad y calidad del aire. El sistema controla automáticamente bombas, válvulas y ventiladores para optimizar la salud vegetal y el uso de recursos. Los datos son accesibles remotamente vía app móvil o interfaz web, con alertas en tiempo real y registros históricos. Las pruebas iniciales muestran mayor estabilidad en las condiciones de cultivo, ahorro de agua y menor riesgo de enfermedades.

Keywords: Electronics, IoT, Diseño y Construcción, Dispositivos Electrónicos

1 Descripción del problema

Muchos pequeños productores, aficionados a la jardinería y operadores de invernaderos caseros enfrentan dificultades para mantener condiciones óptimas de cultivo de manera constante. El riego manual y la ventilación oportuna dependen de la supervisión continua, lo cual:

- Consume tiempo y esfuerzo humano.
- Genera variabilidad en la humedad de suelo, temperatura y calidad del aire.
- Desperdicia recursos (agua, energía eléctrica) al activar bombas o ventiladores innecesariamente.

2 Objetivo General

Desarrollar un sistema IoT integrado que automatice y optimice el riego y el ambiente interno de invernaderos o cultivos hidropónicos a pequeña escala, mediante:

- Monitorización continua de humedad del sustrato, nivel de agua, temperatura, humedad ambiental y concentración de gases contaminantes.
- Control automático de bombas de riego, válvulas, ventiladores/extractores y, opcionalmente, iluminación de cultivo.
- Alertas y visualización remota vía Telegram o interfaz web (Wi-Fi/Bluetooth), para notificaciones en tiempo real y consulta de históricos.

3 Objetivos Específicos

- Pequeños productores urbanos: Invernaderos caseros, huertos en azoteas o balcones, y sistemas hidropónicos domésticos.
- Hobbyistas y entornos educativos: Escuelas técnicas, laboratorios universitarios, makerspaces y talleres de agricultura urbana.
- Microempresas de cultivo controlado: Productores de plantas ornamentales, hierbas aromáticas, microverdes y germinados para mercados locales o restaurantes.
- Mantener controlado el nivel de humedad del sustrato en el cultivo, mediante la automatización del riego, para optimizar las condiciones que favorecen el crecimiento y florecimiento saludable de las plantas.

4 Materiales (BOM List)

En esta sección se presenta la lista de componentes y herramientas utilizados para la implementación del sistema de monitoreo y automa-

tización IoT aplicado a invernaderos y entornos hidropónicos a pequeña escala.

- Microcontrolador ESP32 (Wi-Fi/Bluetooth)
- Sensor capacitivo de humedad del suelo
- \bullet Sensor DS18B20 (temperatura)
- Sensor BME680 (presión, humedad, temperatura)
- Módulo de relés de 3 canales
- Bomba de agua 12V, ventilador extractor, lámpara LED
- Sensor ZMPT101B (voltaje)
- Fuente de 5V DC + convertidores step-down
- Protoboard y cables jumper
- Aplicación móvil por Wi-Fi

5 Discusión

El sistema propuesto es técnicamente viable, económicamente accesible y fácilmente escalable. Representa una herramienta real para la mejora de cultivos urbanos e hidropónicos, reduciendo pérdidas, optimizando recursos y brindando acceso al monitoreo remoto, lo que lo convierte en una solución eficaz para ambientes domésticos, educativos y microempresariales.

Table 2: Presión, gases y humedad del suelo (últimas 2 semanas)

Fecha	Presión (hPa)	Gas (k)	Suelo (%)
2025-06-17	856.56	14.52	60
2025-06-18	856.64	28.29	100
2025-06-19	856.37	25.35	60
2025-06-20	856.34	23.80	85
2025-06-21	856.94	25.37	60
2025-06-22	856.73	30.48	90
2025-06-23	856.68	20.14	85
2025-06-24	856.48	18.97	70
2025-06-25	856.32	22.54	100
2025-06-26	856.76	27.01	85
2025-06-27	856.39	24.99	90
2025-06-28	856.42	26.77	60
2025-06-29	856.89	19.36	100
2025-06-30	856.81	21.88	85

Figure 1: Interfaz en Node-RED mostrando el flujo lógico entre sensores, procesamiento y actuadores, incluyendo dashboards y conexión con Telegram.

6 Resultados

Table 1: Temperatura y humedad ambiental (últimas 2 semanas)

Fecha	Temp. (°C)	Humedad (%)
2025-06-17	24.79	66.62
2025-06-18	24.27	71.17
2025-06-19	25.21	69.03
2025-06-20	24.19	62.71
2025-06-21	24.90	68.97
2025-06-22	24.50	67.58
2025-06-23	25.11	70.12
2025-06-24	24.63	65.33
2025-06-25	25.00	68.44
2025-06-26	24.78	66.90
2025-06-27	25.05	69.28
2025-06-28	24.38	68.12
2025-06-29	25.15	67.00
2025-06-30	24.93	70.30

Figure 2: Monitoreo de datos en tiempo real usando MQTT a través del cliente Mosquitto, observando las publicaciones de tópicos.

Figure 3: Visualización del dashboard desde un dispositivo móvil, demostrando accesibilidad remota a través de red local o internet.

Figure 6: Vista 2D de la PCB, ilustrando el ruteo de pistas.

7 Diseño del Sistema

El diseño del sistema incluye tanto la parte electrónica como la estructural. A continuación se presentan los principales elementos desarrollados durante la implementación del prototipo, desde el diseño del esquemático hasta la representación física de la carcasa.

Figure 4: Esquemático del sistema completo desarrollado en Altium Designer.

Figure 7: Carcasa personalizada diseñada en TinkerCAD para alojar el sistema.

The first term is not to the first term in the f

Figure 5: Vista tridimensional de la PCB, mostrando la disposición de componentes.

Conclusiones

El sistema desarrollado demostró ser una solución eficiente, funcional y accesible para el monitoreo y automatización de cultivos. A lo largo de las pruebas, se logró mantener estables las variables del entorno, optimizar el uso de recursos y brindar al usuario un sistema de supervisión remota y control automatizado.

El proyecto tiene potencial de aplicación práctica en ambientes educativos, urbanos y comerciales. Se recomienda como trabajo futuro la implementación de inteligencia artificial, energía solar y conexión a bases de datos para análisis predictivo.

Agradecimientos

Agradezco a los docentes de la Universidad Galileo, así como a mi familia y compañeros de clase, cuyo apoyo fue fundamental en la planificación, implementación y validación de este proyecto.

References

- [1] Simon Monk, Programming Arduino: Getting Started with Sketches. McGraw-Hill Education, 2016.
- [2] Espressif Systems, ESP32 Technical Reference Manual, Disponible en: https://www.espressif.com
- [3] Peter H. Cuno, *IoT Projects with ESP32*. Packt Publishing, 2021.
- [4] Pavia, D. L., Lampman, G. M., Kriz, G. S., & Engel, R. G. Introducción a la técnica y análisis orgánico. Cengage Learning, 2015.