1. Симплекси

Означення 1.1 (Лінійно-незалежні вектори). Вектори $a_1, \ldots, a_k \in \mathbb{R}^n$ називають лінійно залежними (ЛЗ), якщо існують такі числа $\alpha_1, \alpha_2, \ldots, \alpha_k \neq 0$, що

$$\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_k a_k = 0.$$

У зворотньому випадку вони називаються лінійно незалежними.

Означення 1.2 (Лінійно-незалежна система точок в \mathbb{R}^n). Скінченна множина точок $A = \{x_0, x_1, \dots, x_k\} \subset \mathbb{R}^n$ називається лінійно незалежною (ЛНЗ) системою точок, якщо вектори

$$x_1 - x_0, \quad x_2 - x_0, \quad x_3 - x_0, \quad \dots, \quad x_k - x_0$$

лінійно незалежні.

Лема 1.3. Нехай $A = \{x_0, x_1, \dots, x_k\} \subset \mathbb{R}^n$ скінченна підмножина. Тоді для довільних $a, b \in \{0, \dots, k\}$ системи векторів

$$\alpha = \{x_i - x_a \mid i \neq a\}, \qquad \beta = \{x_i - x_b \mid i \neq b\}$$

 ϵ одночасно ЛЗ або ЛНЗ. Зокрема, поняття ЛНЗ системи точок не залежить від їх порядку.

Нехай $A = \{x_0, x_1, \dots, x_k\} \subset \mathbb{R}^n$ скінченна підмножина. Позначимо через

$$\overline{A} = \{\alpha_0 x_0 + \alpha_1 x_1 + \ldots + \alpha_k x_k \mid \alpha_i \ge 0, \sum_{i=0}^k \alpha_i = 1\}$$

опуклу оболонку цієї множини.

Лема 1.4. Нехай $A = \{x_0, x_1, \dots, x_k\} \subset \mathbb{R}^n$ скінченна підмножина з k+1 точки. Тоді наступні умови є еквівалентними.

- (1) A ЛНЗ cucmema;
- (2) Якщо

$$\{\alpha_i \mid \alpha_i \ge 0, \sum_{i=0}^k \alpha_i = 1\},$$
 $\{\beta_i \mid \beta_i \ge 0, \sum_{i=0}^k \beta_i = 1\},$

два впорядковані набори чисел, такі, що

$$\alpha_0 x_0 + \alpha_1 x_1 + \ldots + \alpha_k x_k = \beta_0 x_0 + \beta_1 x_1 + \ldots + \beta_k x_k,$$

то $\alpha_i = \beta_i$ для всіх i;

(3) $Hexaŭ\ L$ – $nepemuh\ всіх\ площин\ в\ <math>\mathbb{R}^n$, які містять множину $A.\ Todi$ $\dim L = k.$

Ця лема показує, що кожна точка $x \in \overline{A}$ має єдине представлення у вигляді

$$x = \alpha_0 x_0 + \alpha_1 x_1 + \ldots + \alpha_k x_k,$$

у якому всі $\alpha_i \geq 0$ і $\sum_{i=0}^k \alpha_i = 1$. Ці числа називають барицентричними координатами точки $x \in \overline{A}$.

Означення 1.5 (Симплекс). Якщо A – ЛНЗ система з k+1 точки в \mathbb{R}^n , то \overline{A} називаеться симплексом розмірності k.

Якщо $B \subset A$ — довільна підмножина, то симплекс $\overline{B} \subset \overline{A}$ називають гранню \overline{A} . Зокрема $\varnothing = \overline{\varnothing}$ і \overline{A} є гранями \overline{A} розмірностей -1 та k відповідно. Грані розмірності 0 та 1 називають також вершинами та ребрами.

2. Поліедри

Означення 2.1 (Правильно розміщені симплекси). Два симплекси \overline{A} і \overline{B} в \mathbb{R}^n називаються правильно розміщеними, якщо $\overline{A} \cap \overline{B}$ є їх спільною гранню (зокрема він може бути порожнім, тобто гранню розмірності -1).

Означення 2.2 (Поліедр). Нехай $\tau = \{\overline{A_1}, \dots, \overline{A_s}\}$ – скінченний набір симплексів в \mathbb{R}^n і $K = \bigcup\limits_{i=1}^s \overline{A_i}$. Тоді K називається скіченним поліедром, якщо кожна пара симплексів $\overline{A_i}$ і $\overline{A_j}$ є правильно розміщеною. В цьому випадку система симплексів $\{\overline{A_1}, \dots, \overline{A_s}\}$ називається триангуляцією K.

Поліедр може мати багато триангуляцій.

Лема 2.3. Нехай $\overline{A_1}, \ldots, \overline{A_s}$ – скінченний набір симплексів в \mathbb{R}^n (необов'язково правильно розміщених) і $K = \bigcup_{i=1}^s \overline{A_i}$. Тоді існують триангуляції кожного симплекса $\overline{A_i} = \bigcup_{j=1}^{q_i} \overline{B_{ij}}$, такі, що $K = \bigcup_{i=1}^s \bigcup_{j=1}^{q_i} \overline{B_{ij}}$ є триангуляцією, тобто будь-які два симплекси $\overline{B_{ij}}$ і $\overline{B_{i'j'}}$ є правильно розміщеними. Зокрема, K все одно є полієдром.

Означення 2.4 (Підполіедр). $Hexaŭ\ K$ – noniedp з mpиангуляцією

$$\tau = \{\overline{A_1}, \dots, \overline{A_s}\}.$$

Тоді пімножина $L \subset K$ називається підполіедром K (відносно триангуляції τ), якщо L є об'єднанням деяких симплексів в τ .

В цьому випадку зіркою L (відносно τ) називають об'єднання всіх граней всіх замкнених симплексів, що перетинають L. Зірку L позначають через $\operatorname{st}_{\tau}(L)$.

Більш загально, пімножина $L \subset K$ називається підполіедром поліедра K, якщо L є об'єднанням деяких симплексів з деякої триангуляції K.

Означення 2.5 (Конус над поліедром).

Означення 2.6 (Барицентричне підрозбиття).

Означення 2.7 (Регулярний окіл підполіедра).