Using the method of completing the square, find (i) the coordinates of the vertex of the graph, and (ii) the maximum or minimum value of each of the following quadratic functions.

1. $y = x^2 + 13x - 13$

Solution:

$$y = x^{2} + 13x - 13$$

$$= x^{2} + 13x + \left(\frac{13}{2}\right)^{2} - \left(\frac{13}{2}\right)^{2} - 13$$

$$= \left(x + \frac{13}{2}\right)^{2} - \frac{221}{4}$$

 \therefore Vertex = $\left(-\frac{13}{2},-\frac{221}{4}\right),$ Minimum value = $-\frac{221}{4}$

2. $y = x^2 + 7x + 4$

Solution:

$$y = x^{2} + 7x + 4$$

$$= x^{2} + 7x + \left(\frac{7}{2}\right)^{2} - \left(\frac{7}{2}\right)^{2} + 4$$

$$= \left(x + \frac{7}{2}\right)^{2} - \frac{33}{4}$$

 \therefore Vertex = $\left(-\frac{7}{2}, -\frac{33}{4}\right)$, Minimum value = $-\frac{33}{4}$

3. $y = x^2 - 2x - 6$

Solution:

$$y = x^{2} - 2x - 6$$

$$= x^{2} - 2x + \left(\frac{-2}{2}\right)^{2} - \left(\frac{-2}{2}\right)^{2} - 6$$

$$= (x - 1)^{2} - 7$$

 \therefore Vertex = (1, -7), Minimum value = -7

4. $y = x^2 - 4x + 7$

Name: _____ ()

Solution:

$$y = x^{2} - 4x + 7$$

$$= x^{2} - 4x + \left(\frac{-4}{2}\right)^{2} - \left(\frac{-4}{2}\right)^{2} + 7$$

$$= (x - 2)^{2} + 3$$

 \therefore Vertex = (2,3), Minimum value = 3

5.
$$y = x^2 - 10x - 5$$

Solution:

$$y = x^{2} - 10x - 5$$

$$= x^{2} - 10x + \left(\frac{-10}{2}\right)^{2} - \left(\frac{-10}{2}\right)^{2} - 5$$

$$= (x - 5)^{2} - 30$$

 \therefore Vertex = (5, -30), Minimum value = -30

6.
$$y = x^2 - 9x - 13$$

Solution:

$$y = x^{2} - 9x - 13$$

$$= x^{2} - 9x + \left(\frac{-9}{2}\right)^{2} - \left(\frac{-9}{2}\right)^{2} - 13$$

$$= \left(x - \frac{9}{2}\right)^{2} - \frac{133}{4}$$

 \therefore Vertex = $(\frac{9}{2}, -\frac{133}{4})$, Minimum value = $-\frac{133}{4}$

7.
$$y = x^2 - 3x - 15$$

Solution:

$$y = x^{2} - 3x - 15$$

$$= x^{2} - 3x + \left(\frac{-3}{2}\right)^{2} - \left(\frac{-3}{2}\right)^{2} - 15$$

$$= \left(x - \frac{3}{2}\right)^{2} - \frac{69}{4}$$

 \therefore Vertex = $\left(\frac{3}{2}, -\frac{69}{4}\right)$, Minimum value = $-\frac{69}{4}$

8. $y = x^2 - 6x + 3$

Solution:

$$y = x^{2} - 6x + 3$$

$$= x^{2} - 6x + \left(\frac{-6}{2}\right)^{2} - \left(\frac{-6}{2}\right)^{2} + 3$$

$$= (x - 3)^{2} - 6$$

 \therefore Vertex = (3, -6), Minimum value = -6

9. $y = x^2 + 14x + 3$

Solution:

$$y = x^{2} + 14x + 3$$

$$= x^{2} + 14x + \left(\frac{14}{2}\right)^{2} - \left(\frac{14}{2}\right)^{2} + 3$$

$$= (x+7)^{2} - 46$$

 \therefore Vertex = (-7, -46), Minimum value = -46

10. $y = x^2 - 9x - 13$

Solution:

$$y = x^{2} - 9x - 13$$

$$= x^{2} - 9x + \left(\frac{-9}{2}\right)^{2} - \left(\frac{-9}{2}\right)^{2} - 13$$

$$= \left(x - \frac{9}{2}\right)^{2} - \frac{133}{4}$$

 \therefore Vertex = $\left(\frac{9}{2},-\frac{133}{4}\right),$ Minimum value = $-\frac{133}{4}$

11. $y = -2x^2 - 5x + 7$

Solution:

$$y = -2x^{2} - 5x + 7$$

$$= -2\left(x^{2} + \frac{5}{2}x\right) + 7$$

$$= -2\left[x^{2} + \frac{5}{2}x + \left(\frac{5}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2}\right] + 7$$

$$= -2\left[\left(x + \frac{5}{4}\right)^{2} - \frac{25}{16}\right] + 7$$

$$= -2\left(x + \frac{5}{4}\right)^{2} - 2\left(-\frac{25}{16}\right) + 7$$

$$= -2\left(x + \frac{5}{4}\right)^{2} + \frac{81}{8}$$

 \therefore Vertex = $\left(-\frac{5}{4},\frac{81}{8}\right),$ Maximum value = $\frac{81}{8}$

12. $y = -2x^2 - 10x + 13$

Solution:

$$y = -2x^{2} - 10x + 13$$

$$= -2(x^{2} + 5x) + 13$$

$$= -2\left[x^{2} + 5x + \left(\frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2}\right] + 13$$

$$= -2\left[\left(x + \frac{5}{2}\right)^{2} - \frac{25}{4}\right] + 13$$

$$= -2\left(x + \frac{5}{2}\right)^{2} - 2\left(-\frac{25}{4}\right) + 13$$

$$= -2\left(x + \frac{5}{2}\right)^{2} + \frac{51}{2}$$

 \therefore Vertex = $\left(-\frac{5}{2}, \frac{51}{2}\right)$, Maximum value = $\frac{51}{2}$

13. $y = 3x^2 + 7x - 11$

Name: ______ ()

Solution:

$$y = 3x^{2} + 7x - 11$$

$$= 3\left(x^{2} + \frac{7}{3}x\right) - 11$$

$$= 3\left[x^{2} + \frac{7}{3}x + \left(\frac{7}{6}\right)^{2} - \left(\frac{7}{6}\right)^{2}\right] - 11$$

$$= 3\left[\left(x + \frac{7}{6}\right)^{2} - \frac{49}{36}\right] - 11$$

$$= 3\left(x + \frac{7}{6}\right)^{2} + 3\left(-\frac{49}{36}\right) - 11$$

$$= 3\left(x + \frac{7}{6}\right)^{2} - \frac{181}{12}$$

 \therefore Vertex = $\left(-\frac{7}{6}, -\frac{181}{12}\right)$, Minimum value = $-\frac{181}{12}$

14.
$$y = -2x^2 - 7x - 1$$

Solution:

$$y = -2x^{2} - 7x - 1$$

$$= -2\left(x^{2} + \frac{7}{2}x\right) - 1$$

$$= -2\left[x^{2} + \frac{7}{2}x + \left(\frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] - 1$$

$$= -2\left[\left(x + \frac{7}{4}\right)^{2} - \frac{49}{16}\right] - 1$$

$$= -2\left(x + \frac{7}{4}\right)^{2} - 2\left(-\frac{49}{16}\right) - 1$$

$$= -2\left(x + \frac{7}{4}\right)^{2} + \frac{41}{8}$$

 \therefore Vertex = $\left(-\frac{7}{4}, \frac{41}{8}\right)$, Maximum value = $\frac{41}{8}$

15.
$$y = 4x^2 - 10x + 5$$

Name: _____

Solution:

$$y = 4x^{2} - 10x + 5$$

$$= 4\left(x^{2} - \frac{5}{2}x\right) + 5$$

$$= 4\left[x^{2} - \frac{5}{2}x + \left(-\frac{5}{4}\right)^{2} - \left(-\frac{5}{4}\right)^{2}\right] + 5$$

$$= 4\left[\left(x - \frac{5}{4}\right)^{2} - \frac{25}{16}\right] + 5$$

$$= 4\left(x - \frac{5}{4}\right)^{2} + 4\left(-\frac{25}{16}\right) + 5$$

$$= 4\left(x - \frac{5}{4}\right)^{2} - \frac{5}{4}$$

 \therefore Vertex = $(\frac{5}{4}, -\frac{5}{4})$, Minimum value = $-\frac{5}{4}$

16.
$$y = -4x^2 - 12x + 3$$

Solution:

$$y = -4x^{2} - 12x + 3$$

$$= -4(x^{2} + 3x) + 3$$

$$= -4\left[x^{2} + 3x + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2}\right] + 3$$

$$= -4\left[\left(x + \frac{3}{2}\right)^{2} - \frac{9}{4}\right] + 3$$

$$= -4\left(x + \frac{3}{2}\right)^{2} - 4\left(-\frac{9}{4}\right) + 3$$

$$= -4\left(x + \frac{3}{2}\right)^{2} + 12$$

 \therefore Vertex = $\left(-\frac{3}{2}, 12\right)$, Maximum value = 12

17.
$$y = -x^2 - 2x - 10$$

Name: _____ ()

Solution:

$$y = -x^{2} - 2x - 10$$

$$= -(x^{2} + 2x) - 10$$

$$= -[x^{2} + 2x + (1)^{2} - (1)^{2}] - 10$$

$$= -[(x+1)^{2} - 1] - 10$$

$$= -(x+1)^{2} - (-1) - 10$$

$$= -(x+1)^{2} - 9$$

 \therefore Vertex = (-1, -9), Maximum value = -9

18.
$$y = -2x^2 - 4x - 18$$

Solution:

$$y = -2x^{2} - 4x - 18$$

$$= -2(x^{2} + 2x) - 18$$

$$= -2[x^{2} + 2x + (1)^{2} - (1)^{2}] - 18$$

$$= -2[(x+1)^{2} - 1] - 18$$

$$= -2(x+1)^{2} - 2(-1) - 18$$

$$= -2(x+1)^{2} - 16$$

 \therefore Vertex = (-1, -16), Maximum value = -16

19. $y = 3x^2 + 9x - 1$

Solution:

$$y = 3x^{2} + 9x - 1$$

$$= 3(x^{2} + 3x) - 1$$

$$= 3\left[x^{2} + 3x + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2}\right] - 1$$

$$= 3\left[\left(x + \frac{3}{2}\right)^{2} - \frac{9}{4}\right] - 1$$

$$= 3\left(x + \frac{3}{2}\right)^{2} + 3\left(-\frac{9}{4}\right) - 1$$

$$= 3\left(x + \frac{3}{2}\right)^{2} - \frac{31}{4}$$

 \therefore Vertex = $\left(-\frac{3}{2}, -\frac{31}{4}\right)$, Minimum value = $-\frac{31}{4}$

Name:		
Class:	()

 $20. \ y = 3x^2 - 10x + 13$

Solution:

$$y = 3x^{2} - 10x + 13$$

$$= 3\left(x^{2} - \frac{10}{3}x\right) + 13$$

$$= 3\left[x^{2} - \frac{10}{3}x + \left(-\frac{5}{3}\right)^{2} - \left(-\frac{5}{3}\right)^{2}\right] + 13$$

$$= 3\left[\left(x - \frac{5}{3}\right)^{2} - \frac{25}{9}\right] + 13$$

$$= 3\left(x - \frac{5}{3}\right)^{2} + 3\left(-\frac{25}{9}\right) + 13$$

$$= 3\left(x - \frac{5}{3}\right)^{2} + \frac{14}{3}$$

 \therefore Vertex = $\left(\frac{5}{3},\frac{14}{3}\right),$ Minimum value = $\frac{14}{3}$