Measures of Center (part 2)

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

- 1 Frequency Tables
- 2 Charts & Graphics
- 3 Numeric Summaries

Measures of Center

Centers and shapes of Distributions

When do you use one or the other?

Distribution of annual household income in the United States

Source: U.S. Census Bureau, Current Population Survey, 2012 Annual Social and Economic Supplement

Author: vikjam

Average -vs- Median

When the shape of the distribution is symmetric, the average and the median are very similar

When the distribution is skewed, the average is further out in the tail than the median

The median is much less sensitive to extreme values

10

Average -vsMedian

Consider the following list of numbers

12

Where's the center?

somewhere here

$$median = (8 + 12) / 2 = 10$$

average =
$$12.35$$

14

What does the median tell us?

for a minute

35

16 Gaston Sanchez

order values from smallest to largest

let's focus on the positions

Gaston Sanchez

data values are secondary

What does the average tell us?

20

average is the balancing point

Implications?

extreme values are secondary

How do extreme values affect the average?

About the average

extreme values affect the average

Median

Average = 12.35

About the average

extreme values affect the average

Median

Average = 17

About the average

extreme values affect the average

Median

Average = 709.78

More about the Average

Should we scare the opposition by announcing our mean height or lull them by announcing our median height?

Harvard Salary Survey

In 1998, Harvard conducted a salary survey of entering class of 1973

They were interested in determining a typical salary 25 years after first entering Harvard

They found:

Average: \$750,000

Median: \$175,000

"Despite our efforts to improve literacy in the past 3 years, half of our children in America are still reading below the median reading level"

More Examples

Example: frequency of use

Frequency of usage:

- Never
- Sometimes
- Always

Example: frequency of use

Frequency of usage:

- Never = -1
- Sometimes = 0
- Always = 1

Average on qualitative variables

$$Avg = 0$$

Average usage frequency: *sometimes*

Assigning numbers to qualities

Frequency of usage

never = 0

rarely = 1

sometimes = 2

often = 3

always = 4

Assigning numbers to qualities

Avg = 2.3

What does it mean?

Transformations: change of scale

Linear Transformation

Consider a list of values:

What happens if you add a constant to the data?

e.g. add 2 to all values

4, 5, 7, 9, 10 average = 7

Adding a constant to the data

Avg =
$$\frac{1}{n} \sum_{i=1}^{n} (x_i + a)$$

Avg = a +
$$\sum_{i=1}^{n} \frac{X_i}{n}$$

43

Linear Transformation

Consider a list of values:

What happens if you **multiply** the data with a constant?

e.g. multiply by 2 to all values

4, 6, 10, 14, 16 average = 10

Multiplying the data by a constant

$$Avg = \frac{1}{n} \sum_{i=1}^{n} (bx_i)$$

$$Avg = \frac{b}{n} \sum_{i=1}^{n} x_i$$

45

Linear Transformation

Consider a list of values:

What happens if you add a constant and multiply by a constant?

e.g. add 1 to all values, and multiply by 2

Adding a constant and multiplying

Avg =
$$\frac{1}{n} \sum_{i=1}^{n} (bx_i + a)$$

Avg = a +
$$\frac{b}{n} \sum_{i=1}^{n} X_i$$

47

Converting Temperature from °C to °F

conversion formula

$$1 \, ^{\circ}F = 32 + 9/5 \, ^{\circ}C$$

If avg temp is 30 °C, What's the corresponding Avg temp in °F?

$$Avg = 32 + 9/5 (30^{\circ}C)$$

$$Avg = 86 \, ^{\circ}F$$

Average

Uses all data in the computation

Use with quantitative variables

Can be used for estimating projected totals

Sensitive to outliers

Limiting without information about spread

Should not be used with qualitative variables

The average may be an impossible value

Median

Middle observation

Use with almost any distribution

Not affected by outliers

The median is an actual observed value (or almost)

Not used enough

Not understood

Cannot be used for estimating projected totals