Esercizio 2

1) Dire per quali valore di α la soluzione dell'equazione $x^2-4x+\alpha=0$ risulta essere un problema mal condizionato.

Le radici sono
$$x_1 = 2 + \sqrt{4 - \alpha}$$
 (1) $x_2 = 2 - \sqrt{4 - \alpha}$ (2)

Mettiamoci nell'ipotesi in cui le radici siano reali e distinte, con discriminante positivo.

Vogliamo studiare per quali valori di α , il problema di calcolare le 2 radici (1) e (2) sia mal condizionato;

ciò equivale a valutare il malcondizionamento del problema di valutare due funzioni:

$$f_1(\alpha) = 2 + \sqrt{4 - \alpha}$$
 ed $f_2(\alpha) = 2 - \sqrt{4 - \alpha}$

Partiamo con studiare il condizionamento di $f_2(\alpha) = 2 - \sqrt{4 - \alpha}$.

A tale scopo valutiamo l'indice di condizionamento

$$K_2 = \frac{|f_2'(\alpha)| |\alpha|}{|f_2(\alpha)|}$$

$$f_2(\alpha) = 2 - \sqrt{4 - \alpha}$$
. Si ha che $f_2'(\alpha) = \frac{1}{2\sqrt{4 - \alpha}}$

$$K_2 = \frac{|f_2'(\alpha)| |\alpha|}{|f_2(\alpha)|}$$
 $K_2(\alpha) = \frac{\left|\frac{1}{2\sqrt{4-\alpha}}\right| |\alpha|}{|2-\sqrt{4-\alpha}|}$

Osservando la formula dell'indice di condizionamento si nota che, affinchè esso cresca in maniera illimitata, deve accadere che $2-\sqrt{4-\alpha}$ tenda a zero.

Per $|\alpha|$ più piccolo dello spacing in $[2^2, 2^3]$, cioè

 $s=2^{2+1-53}=8.88178419e-016$, si ha che $4-\alpha$ viene approssimato a 4

e conseguentemente $2-\sqrt{4-\alpha}$ approssimato a zero.

Il problema di valutare $f_2(\alpha)=2-\sqrt{4-\alpha}\;$ risulta malcondizionato per $|\alpha|$ più piccolo dello spacing in $[2^2,2^3]$.

Studiamo adesso il condizionamento di $f_1(\alpha) = 2 + \sqrt{4 - \alpha}$.

A tale scopo valutiamo l'indice di condizionamento

$$K_1 = \frac{|f_1'(\alpha)| |\alpha|}{|f_1(\alpha)|}$$

$$f_1(\alpha) = 2 + \sqrt{4 - \alpha}$$
. Si ha che $f_1'(\alpha) = -\frac{1}{2\sqrt{4 - \alpha}}$

$$K_1 = \frac{|f_1'(\alpha)| |\alpha|}{|f_1(\alpha)|}$$

$$K_1(\alpha) = \frac{\left| -\frac{1}{2\sqrt{4-\alpha}} \right| |\alpha|}{|2+\sqrt{4-\alpha}|}$$

Osservando la formula dell'indice di condizionamento si nota che il denominatore non si annulla mai.

In questo caso, infatti, anche se per $|\alpha|$ più piccolo dello spacing in $[2^2, 2^3]$, cioè $s=2^{2+1-53}=8.88178419$. e-016, si ha che $4-\alpha$ viene approssimato a 4, il denominatore $2+\sqrt{4-\alpha}$ approssimato a 4.

Il problema di valutare $f_1(\alpha)=2+\sqrt{4-\alpha}\;$ risulta ben condizionato per qualunque valore di α .