Linear Regression - Predicting Insurance Prices (Exploratory Project)

Mr. Shrey Gupta

B.Tech Student
Mathematics and Computing
Indian Institute of Technology (BHU)
Varanasi – 221 005.

December 6, 2021

Outline

Introduction and Motivation

2 Literature Survey

Main Results

Conclusion

References

Introduction and Motivation

Definition 1.1

What is Machine Learning?

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience.

Definition 1.2

What is Linear Regression?

Supervised learning algorithm in which we have to fit a function f that maps our inputs X to the corresponding function values f(x).

Introduction and Motivation

Linear Regression can be used to solve a variety of real-world problems like predicting the housing prices, predicting the sales for a particular year of a company and many more... Suppose we are given the data of an insurance company which contains the charges they charge for their insurance for a person using the provided information by the person.

age	sex	bmi	children	smoker	region	charges
19	female	27.9	0	yes	southwest	16884.924
18	male	33.77	1	no	southeast	1725.5523
28	male	33	3	no	southeast	4449.462
33	male	22.705	0	no	northwest	21984.47061
32	male	28.88	0	no	northwest	3866.8552
31	female	25.74	0	no	southeast	3756.6216
46	female	33.44	1	no	southeast	8240.5896
37	female	27.74	3	no	northwest	7281.5056
37	male	29.83	2	no	northeast	6406.4107
60	female	25.84	0	no	northwest	28923.13692
25	male	26.22	0	no	northeast	2721.3208
62	female	26.29	0	yes	southeast	27808.7251
23	male	34.4	0	no	southwest	1826.843

Introduction and Motivation

How to solve the above Problem?

- Data Analysis
- Cleaning the data and preparing the dataset for training
- Make a model that best fits the data
 - Maximum Likelihood Estimation(MLE)
 - Maximum a Posterior Estimation(MAP)
 - Bayesian Linear Regression(BLR)
- Make Predictions

Consider the following graph:

$$f(x) = \theta_0 + \theta_1 x$$

$$y_n = f(x_n) + \epsilon,$$

where ϵ is the measurement noise.

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

Problem Formulation

Let us consider the likelihood function

$$p(y|x) = \mathcal{N}(y|f(x), \sigma^2)$$

where $x \in \mathbb{R}^D$ are the inputs, and $y \in \mathbb{R}$ are the targets.

Here *D* refers to the number of features.

Also,
$$y = f(x) + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is an independent and identically distibuted random variable that represents the noise.

$$f(x) = x^T \theta$$

where x is the feature vector, and θ is the model parameters vector.

Hence.

$$p(y|x) = \mathcal{N}(y|x^T \theta, \sigma^2)$$

$$\Leftrightarrow y = x^T \theta + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Consider the training set,

$$Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

consisting of N inputs $x_n \in \mathbb{R}^D$ and targets $y_n \in \mathbb{R}$, n=1, 2, ..., N.

Now,
$$p(Y|X,\theta) = p(y_1, y_2, ..., y_n|x_1, x_2, ..., x_n, \theta)$$

As we know that y_i and y_j are conditionally independent given their respective inputs x_i and x_j .

$$\therefore p(Y|X,\theta) = \prod_{n=1}^{N} p(y_n|x_n,\theta)$$
$$= \prod_{n=1}^{N} \mathcal{N}(y_n|x_n^T\theta,\sigma^2)$$

where $X = \{x_1, x_2, \dots, x_n\}$ is the input set. and $Y = \{y_1, y_2, \dots, y_n\}$ is the target set.

Maximum Likelihood Estimation

Maximizing the likelihood means maximizing the predictive distribution of the training data given the model parameters.

Mathematically, we have to evaluate

$$\theta_{ML} = \arg\max_{\theta} P(Y|X,\theta)$$

The negative log likelihood is also called Loss function.

$$\mathcal{L}(\theta) = \frac{\sum_{n=1}^{N} (y_n - x_n^T \theta)^2}{2\sigma^2}$$
$$= \frac{(y - X\theta)^T (y - X\theta)}{2\sigma^2}$$

Maximum Likelihood Estimation

$$\theta_{ML} = (X^T X)^{-1} X^T y$$

where,

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(D)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(D)} \\ \vdots & \vdots & \ddots & \vdots \\ x_N^{(1)} & x_N^{(2)} & \dots & x_N^{(D)} \end{bmatrix} \in \mathbb{R}^{\mathbb{NXD}}$$

is the feature matrix consisting of N training inputs and D features.

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^N \qquad \text{and} \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_D \end{bmatrix} \in \mathbb{R}^D$$

Consider the following graph:

Maximum Likelihood Estimation

 $\begin{array}{l} p(y|x,\theta) = \mathcal{N}(y|\phi^T(x)\theta,\sigma^2) \\ \Leftrightarrow y = \phi^T(x)\theta + \epsilon = \sum_{k=0}^{K-1} \theta_k \phi_k(x) + \epsilon \text{ where } \phi: \mathbb{R}^D \to \mathbb{R}^K \text{ is a non linear transformation of inputs } x. \end{array}$

 $\phi_k : \mathbb{R}^D \to \mathbb{R}$ is the *k*th component of the vector ϕ .

For example

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^{K-1} \end{bmatrix} = \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_{K-1}(x) \end{bmatrix} \in \mathbb{R}^K$$

$$\theta_{ML} = (\Phi^T \Phi)^{-1} \Phi^T y$$

Overfitting In Linear Regression

Overfitting In Linear Regression

Literature Survey Overfitting In Linear Regression

Why overfitting occurs? How to overcome it?

$$p(\theta) = \mathcal{N}(0, 1)$$

Given our training data X,Y. Here we will maximize the posterior distribution $p(\theta|X,Y)$. This method is called maximum a posterior(MAP) estimation.

Now applying Baye's theorum -

$$p(\theta|X,Y) = \frac{p(Y|X,\theta)p(\theta)}{p(Y|X)}$$

$$\log p(\theta|X,Y) = \log p(Y|X,\theta) + \log p(\theta) + const$$

We assume that $p(\theta) = \mathcal{N}(0, b^2 I)$.

$$\theta_{MAP} = (\Phi^T \Phi + \frac{\sigma^2}{b^2} I)^{-1} \Phi^T y$$

$$\theta_{RLS} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$$

(a) Polynomials of degree 6. (b) Polynomials of degree 8.

Literature Survey Bayesian Linear Regression

Bayesian linear regression does not attempt to compute a point estimate of the parameters, but instead the full posterior distribution over parameters(θ) is taken into account when making predictions. This means we compute the mean over all plausible parameter settings.

For Bayesian linear regression, consider,

prior
$$p(\theta) = \mathcal{N}(m_o, S_o)$$

likelihood $p(y|x, \theta) = \mathcal{N}(y|\phi^T(x)\theta, \sigma^2)$

Prior Predictions

$$p(y_*|x_*) = \int p(y_*|x_*, \theta)p(\theta)d\theta$$
$$= E_{\theta}[p(y_*|x_*, \theta)]$$

$$p(y_*|x_*) = \mathcal{N}(\phi^T(x_*)m_o, \phi^T(x_*)S_o\phi(x_*) + \sigma^2)$$

But if we want to find out the distribution of $f(x_*) = \phi^T(x)\theta$.

$$f(x_*) = \mathcal{N}(\phi^T(x_*)m_o, \phi^T(x_*)S_o\phi(x_*))$$

Example If we chose parameter prior to be $p(\theta) = \mathcal{N}(0, \frac{I}{4})$.

(b) Samples from the prior distribution over functions.

Posterior Predictions

$$p(\theta|X,Y) = \frac{p(Y|X,\theta)p(\theta)}{p(Y|X)}$$

$$p(\theta|X,Y) = \mathcal{N}(\theta|m_N,S_N)$$

$$S_N = (\sigma^{-2}\Phi^T\Phi + S_o^{-1})^{-1}$$

$$m_N = S_N(\sigma^{-2}\Phi^Ty + S_o^{-1}m_o)$$

$$p(y_*|X,Y,x_*) = \int p(y_*|x_*,\theta)p(\theta|X,Y)d\theta$$

$$= \int \mathcal{N}(y_*|\phi^T(x_*)\theta,\sigma^2)\mathcal{N}(\theta|m_N,S_N)d\theta$$

$$= \mathcal{N}(y_*|\phi^T(x_*)m_N,\phi^T(x_*)S_N\phi(x_*) + \sigma^2)$$

$$\therefore f(x_*) = \mathcal{N}(\phi^T(x_*)m_N,\phi^T(x_*)S_N\phi(x_*))$$

Main Results

Given dataset,

age	sex	bmi	children	smoker	region	charges
19	female	27.9	0	yes	southwest	16884.924
18	male	33.77	1	no	southeast	1725.5523
28	male	33	3	no	southeast	4449.462
33	male	22.705	0	no	northwest	21984.47061
32	male	28.88	0	no	northwest	3866.8552
31	female	25.74	0	no	southeast	3756.6216
46	female	33.44	1	no	southeast	8240.5896
37	female	27.74	3	no	northwest	7281.5056
37	male	29.83	2	no	northeast	6406.4107
60	female	25.84	0	no	northwest	28923.13692
25	male	26.22	0	no	northeast	2721.3208
62	female	26.29	0	yes	southeast	27808.7251
23	male	34.4	0	no	southwest	1826.843

Correlation between Age and Charges = 0.2999

Main Results

Red:Smoker Blue:Non-Smoker

Main Results

Smokers

Smokers with BMI>30

Smokers with BMI>30

Correlation between Age and Charges = 0.8623745

Smokers with BMI>30

Smokers with BMI<=30

Smokers with BMI<=30

Correlation between Age and Charges = 0.8623745

Smokers with BMI<=30

Main Results

Non-Smokers

Main Results

Non-Smokers

Non-Smokers

Correlation between Age and Charges = 0.92874

Non-Smokers

Main Results

```
def model1(x,Y, regularization=0, power=1):
    temp=np.ones(x.shape[0])
    X=np.c_[x,temp]
    theta=np.dot(np.dot(np.linalg.inv(np.dot(X.T,X)+regularization),X.T),Y)
    Y_pred=np.dot(X,theta)
    loss=np.sum(np.square(Y-Y_pred))/x.shape[0] + regularization*np.sum(np.square(theta))
    return theta,Y_pred,loss
```

Main Results

```
def predict(x):
 yp=[]
  x1=np.append(x,[1])
  x1=np.append(x1[:4],x1[5:])
  if x[4] == 1:
    if x[2]>30:
      yp=np.dot(x1,theta1)
    else:
      yp=np.dot(x1,theta2)
  else:
    yp=np.dot(x1,theta3)
  return yp
```

Conclusion

- Based on the understandings and results from the Literature Survey we trained a model that predicts the insurance price for a person given his Age, Sex, BMI, Number of Children, Smoking Status and Region.
- First we analysed the dataset. The given data was too much scattered to be able to get a good model that fits it. So we segregated the data for smokers and non-smokers separately. Then we further segregated it using BMI. Still some scattered points were left due to unknown reasons of a particular person so we made a upper-bound to the data. This way we trained the model and finally we were able to get a decent result.

References

Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong - Mathematics For Machine Learning-Cambridge University Press (2019)

https://www.coursera.org/learn/machine-learning/home/welcome

https://towardsdatascience.com/

THANK YOU