MEU301 - Analyse TD1

Rappel de cours

Definition 1. Bla bla

MEU301 - Analyse TD1

Exercice 1

Exercice 1.1

On a m > 0 et n > 0 donc $\frac{m \cdot n}{(n+m)^2} > 0$, donc 0 est un minorant.

$$\frac{m.n}{(n+m)^2} = \frac{1}{\frac{m}{n} + 2 + \frac{n}{m}}$$

Il faut montrer que

$$\frac{\frac{m}{n} + \frac{n}{m} \ge 2}{\frac{m^2 + n^2}{m \cdot n}} \ge 2$$
$$\frac{m^2 + n^2}{m^2 + n^2} - 2m \cdot n \ge 0$$
$$(m - n)^2 > 0$$

Donc 1/4 est un majorant.

On a 1/4 est la borne supérieure de A si il n'existe aucun majorant inférieur à 1/4. On a $1/4 \in A$ pour m = n = 1. Donc il n'existe pas de plus petit majorant.

On a 0 est la borne inférieure de A si il n'existe aucun minorant supérieur à 0. Quand n=1, on a

$$\lim_{m \to \infty} \frac{m}{(m+1)^2} = \lim_{m \to \infty} \frac{1}{m} = 0$$

Donc il n'exise pas de minorant supérieur à 0.

Exercice 1.2

Montrons que 2 est un majorant et 0 un minorant.

On a $\frac{1}{n}+\frac{1}{m}>0$ car $n,m\in\mathbb{N}^*.$ DOnc 0 est un minorant. On a $\frac{1}{n}+\frac{1}{m}=\frac{m+n}{n.m},$ montrons que

$$\begin{array}{l} \frac{1}{m} + \frac{1}{n} \leq 2 \\ \frac{m+n}{n.m} \leq 2 \\ m+n \leq 2m.n \\ m+n-2m.n \leq 0 \\ m(1-n) + n(1-m) \leq 0 \end{array}$$

Vrai car $(1-n) \leq 0$, $(1-m) \leq 0$ et $n, m \in \mathbb{N}^*$. Donc 2 est un majorant.

On a 2 est la borne supérieure de A si il n'existe aucun majorant inférieur à 2. On a $2 \in A$ pour m = n = 1. Donc il n'existe pas de plus petit majorant.

On a 0 est la borne inférieure de A si il n'existe aucun minorant supérieur à 0. On a

$$\lim_{m\to\infty,n\to\infty,}\frac{1}{m}+\frac{1}{n}=\lim_{m\to\infty,n\to\infty,}\frac{1}{m}+\lim_{m\to\infty,n\to\infty,}\frac{1}{n}=0$$

Donc il n'exise pas de minorant supérieur à 0.

Exercice 1.3

La fonction $f(x) = \frac{x+1}{x+2}$ est strictement croissante pour $x \le -3$ $(f'(x) = \frac{(x+2)-(x+1)}{(x+2)^2} = \frac{1}{(x+2)^2} > 0)$. Donc f(-3) = 2 est la borne supérieure de A. On a

$$\lim_{x \to -\infty} \frac{x+1}{x+2} = \lim_{x \to -\infty} \frac{1+1/x}{1+2/x} = 1$$

Donc 1 est la borne inférieure. Oui la borne supérieure est atteinte pour x = -3 mais pas la borne inférieure car c'est une limite.

Maintenant si on prend $x \leq 3$ c'est autre chose car $\sup(A) = \infty$ et $\inf(A) = -\infty$ quand $x \to -2$.

MEU301 - Analyse TD1

Exercice 1.4

Si A est borné alors il existe $\sup(A)$ et $\inf(A)$. Divisons en 3 cas; x < y, x = y, et x > y.

Pour le cas x=y on a $0\in A$. Pas très intéressant car $|x-y|\geq 0$. Donc, 0 n'est pas un majorant.

Pour le cas x > y on a |x - y| = x - y. La plus grande valeur possible est quand $x = \sup(A)$ et $y = \inf(A)$ (ie. plus grand écart possible) donc $|\sup(A) - \inf(A)|$.

Pour le cas x < y on a |x - y| = y - x. La plus grande valeur possible est quand $x = \inf(A)$ et $y = \sup(A)$ (ie. plus grand écart possible) donc $|\sup(A) - \inf(A)|$.