BAYESIAN LEARNING - LECTURE 6

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- Classification
- ► Naive Bayes
- ► Logistic regression
- ► Normal approximation of posterior

BAYESIAN CLASSIFICATION

- ► Classification: output is a discrete label. Examples:
 - ▶ binary (0-1). Spam/Ham.
 - ▶ Multi-class. (c = 1, 2, ..., C). {*iPhone*, *Android*, *Windows*, *Other*}.
- ► Bayesian classification

$$\underset{c \in \mathcal{C}}{\operatorname{argmax}} \, p(c|\mathbf{x})$$

where $\mathbf{x} = (x_1, ..., x_p)$ is a covariate/feature vector.

- **Discriminative models** model $p(c|\mathbf{x})$ directly.
- Examples: logistic regression, support vector machines.
- Generative models Use Bayes' theorem

$$p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$$

and model class-conditional distribution p(x|c) and prior p(c).

Examples: discriminant analysis, naive Bayes.

NAIVE BAYES

▶ By Bayes' theorem

$$p(c|\mathbf{x}) \propto p(\mathbf{x}|c)p(c)$$

- \triangleright p(c) can be estimated by Multinomial-Dirichlet analysis.
- ▶ $p(\mathbf{x}|c)$ can be $N(\theta_c, \Sigma_c)$ or mixture of normals (see last module).
- \triangleright p(x|c) can be very high-dimensional and hard to estimate.
- ▶ Even with binary features, the outcome space of p(x|c) can be huge.
- Naive Bayes: features are assumed independent

$$p(\mathbf{x}|c) = \prod_{j=1}^{n} p(x_j|c)$$

Naive Bayes solution

$$p(c|\mathbf{x}) \propto \left[\prod_{j=1}^{n} p(x_{j}|c)\right] p(c)$$

CLASSIFICATION WITH LOGISTIC REGRESSION

- Response is assumed to be binary (y = 0 or 1).
- **Example:** Spam (y = 1) or Ham (y = 0). Covariates: \$-symbols, etc.
- ► Logistic regression

$$\Pr(y_i = 1 \mid x_i) = \frac{\exp(x_i'\beta)}{1 + \exp(x_i'\beta)}.$$

Likelihood

$$p(y|X,\beta) = \prod_{i=1}^{n} \frac{[\exp(x_i'\beta)]^{y_i}}{1 + \exp(x_i'\beta)}.$$

- ▶ Prior $\beta \sim N(0, \lambda I)$. Posterior is non-standard.
- ► Alternative: Probit regression (see Lab 3)

$$Pr(y_i = 1|x_i) = \Phi(x_i'\beta)$$

▶ Multi-class (c = 0, 1, 2, ..., C) logistic regression

$$Pr(y_i = c \mid x_i) = \frac{\exp(x_i'\beta_c)}{1 + \exp(x_i'\beta_c)}$$

LARGE SAMPLE APPROXIMATE POSTERIOR

▶ Taylor expansion of log-posterior around the posterior mode $\theta = \tilde{\theta}$:

$$\ln p(\theta|y) = \ln p(\tilde{\theta}|y) + \frac{\partial \ln p(\theta|y)}{\partial \theta}|_{\theta = \tilde{\theta}}(\theta - \tilde{\theta}) + \frac{1}{2!} \frac{\partial^2 \ln p(\theta|y)}{\partial \theta^2}|_{\theta = \tilde{\theta}}(\theta - \tilde{\theta})^2 + \dots$$

From the definition of the posterior mode:

$$\frac{\partial \ln p(\theta|y)}{\partial \theta}|_{\theta=\tilde{\theta}} = 0$$

▶ So, in large samples (where we can ignore higher order terms):

$$p(\theta|y) pprox p(\tilde{\theta}|y) \exp\left(-rac{1}{2}J_{\mathbf{y}}(\tilde{\theta})(\theta-\tilde{\theta})^2
ight)$$

where $J_{\mathbf{y}}(\tilde{\theta})=-rac{\partial^2 \ln p(\theta|y)}{\partial \theta^2}|_{\theta=\tilde{\theta}}$ is the observed information.

Approximate posterior

$$\theta | y \stackrel{approx}{\sim} N \left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta}) \right]$$

EXAMPLE: GAMMA POSTERIOR

▶ Poisson model: $\theta|y_1,...,y_n \sim Gamma(\alpha + \sum_{i=1}^n y_i, \beta + n)$

$$\log p(\theta|y_1, ..., y_n) \propto (\alpha + \sum_{i=1}^n y_i - 1) \log \theta - \theta(\beta + n)$$

► First derivative of log density

$$\frac{\partial \ln p(\theta|y)}{\partial \theta} = \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\theta} - (\beta + n)$$
$$\tilde{\theta} = \frac{\alpha + \sum_{i=1}^{n} y_i - 1}{\beta + n}$$

ightharpoonup Second derivative at mode $ilde{ heta}$

$$\frac{\partial^2 \ln p(\theta|y)}{\partial \theta^2}|_{\theta=\tilde{\theta}} = -\frac{\alpha + \sum_{i=1}^n y_i - 1}{\left(\frac{\alpha + \sum_{i=1}^n y_i - 1}{\beta + n}\right)^2} = -\frac{(\beta + n)^2}{\alpha + \sum_{i=1}^n y_i - 1}$$

▶ So, the normal approximation is

$$N\left[\frac{\alpha+\sum_{i=1}^{n}y_{i}-1}{\beta+n},\frac{\alpha+\sum_{i=1}^{n}y_{i}-1}{(\beta+n)^{2}}\right]$$

EXAMPLE: GAMMA POSTERIOR

NORMAL APPROXIMATION OF POSTERIOR

- $\blacktriangleright \theta | y \stackrel{approx}{\sim} N \left[\tilde{\theta}, J_{\mathbf{v}}^{-1}(\tilde{\theta}) \right]$ works also when θ is a vector.
- ▶ How to compute $\tilde{\theta}$ and $J_{\mathbf{y}}(\tilde{\theta})$?
- ► Standard optimization routines may be used. (optim.r).
 - ▶ **Input**: an expression proportional to log $p(\theta|y)$ and initial values.
 - ▶ Output: $p(\tilde{\theta}|y)$, $\tilde{\theta}$ and Hessian matrix $(-J_{\mathbf{y}}(\tilde{\theta}))$.
- ► Re-parametrization may improve normal approximation. [Don't forget the Jacobian!]
 - If $\theta \geq 0$ use $\phi = \log(\theta)$.
 - If $0 \le \theta \le 1$, use $\phi = \ln[\theta/(1-\theta)]$.
- ▶ Heavy tailed approximation: $\theta|y \stackrel{approx}{\sim} t_v \left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta})\right]$ for suitable degrees of freedom v.

NORMAL APPROXIMATION OF POSTERIOR

- ▶ Even if the posterior of θ is approx normal, **interesting functions** of $g(\theta)$ may not be (e.g. predictions).
- ▶ But approximate posterior of $g(\theta)$ can be obtained by simulating from $N\left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta})\right]$.
- ► Example: Posterior of Gini coefficient.
 - ► Model: $x_1, ..., x_n | \mu, \sigma^2 \sim LN(\mu, \sigma^2)$.
 - Let $\phi = \log(\sigma^2)$. And $\theta = (\mu, \phi)$.
 - Joint posterior $p(\mu, \phi)$ may be approximately normal: $\theta | y \stackrel{approx}{\sim} N \left[\tilde{\theta}, J_{\mathbf{v}}^{-1}(\tilde{\theta}) \right]$.
 - ► Simulate $\theta^{(1)}$, ..., $\theta^{(N)}$ from $N[\tilde{\theta}, J_{\mathbf{v}}^{-1}(\tilde{\theta})]$. Compute $\sigma^{(1)}$, ..., $\sigma^{(N)}$.
 - Compute $G^{(i)} = 2\Phi\left(\sigma^{(i)}/\sqrt{2}\right)$ for i = 1, ..., N.