KI Summer School

Übung 2 Logistische Regression

Prof. Dr. Patrick Baier

Titanic Datensatz

Vorhersageproblem:

- Gegeben: Verschiedene Attribute zu den Passagieren auf der Titanic.
- Frage: Hat der Passagier das Unglück überlebt?

Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) Pclass Survival (0 = No; 1 = Yes)survival Name name Sex sex Age age Number of Siblings/Spouses Aboard sibsp Number of Parents/Children Aboard parch Ticket Number ticket Passenger Fare (British pound) fare cabin Cabin Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton) embarked

Titanic Datensatz

Da wir noch nicht den Umgang mit kategorischen Features eingeführt haben, benutzen wir nur die folgenden Attribute:

	_ Label	
Pclass	Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)	
survival	Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) Survival (0 = No; 1 = Yes)	
name	Name	
sex	Sex	
age	Age	
sibsp	Number of Siblings/Spouses Aboard	
parch	Number of Parents/Children Aboard	
ticket	Ticket Number	
fare	Passenger Fare (British pound)	
cabin	Cabin	
embarked	Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton	ı)
	,	

Aufgabe 1

- 1. Laden Sie den Datensatz aus titanic.csv in einen Pandas DataFrame.
- 2. Erstellen Sie einen neuen DataFrame, der nur die folgenden Spalten enthält: "Survived", "Pclass", "Age", "Fare", "SibSp" und "Parch"
- 3. Entfernen Sie die leere Feldern aus dem DataFrame (d.h. Felder mit NaN-Werte) indem Sie die Methode dropna () auf dem DataFrame aufrufen. Zählen Sie wie viele Zeilen der DataFrame vor und nach dem Aufruf dieser Methode hat.

Aufgabe 2

- 1. Unterteilen Sie den aus Aufgabe 1 entstandenen DataFrame mit Hilfe der Methode train test split in Trainings- und Testdaten.
- 2. Trainieren Sie eine logistische Regression auf den Trainingsdaten mit "survival" als Label.
- 3. Machen sie mit dem trainierten Modell Vorhersagen auf den Testdaten und berechnen Sie:
 - 1. Accuracy
 - 2. Precision
 - 3. Recall.

Aufgabe 3

- 1. Fügen Sie nun das Geschlecht als weitere Feature hinzu und führen Sie die Schritte aus Aufgabe 1 und 2 erneut aus. Beachten Sie dabei, dass das Geschlecht kein numerischer Wert ist, d.h. Sie müssen daraus ein numerisches Feature erstellen.
 - Beispiel: Feature "isFemale" hat den Wert 1 wenn Sex=="female", sonst 0.
- 2. In wie weit verbessert sich die Accuracy durch das neue Feature?
- 3. Versuchen Sie nun auf ähnliche Weise die Spalte "Embarked" als Feature zu nutzen.

Sex	isFemale
male	false
female	true
female	true
male	false

Hinweis: Python wandelt Booleans automatisch in Nummern um:

isFemale		
0		
1		
1		
0		

Bonus:

- 1. Welches sind die wichtigsten Features des Modells für die Vorhersage?
- 2. Wie verändert sich die Accuracy wenn Sie das unwichtigste Feature weglassen?

Fragen?