# 量子コンピューティング チートシート for circuit wargicings

#### ビットと量子ビット

量子コンピュータは、古典的なビットの代わりに、 **量子ビット**(略してクビット)を使う。



| 量子状態を 円表示があ           | 表現する方法の1つに<br>る:                                 |
|-----------------------|--------------------------------------------------|
| 内側の円は振幅を表す            | 黒い線は<br>位相を表す<br> 1〉                             |
| $\sqrt{0.8} 0\rangle$ | $ angle + \sqrt{0.2} e^{irac{\pi}{2}}  1 angle$ |

| 量子ビット  | ・ビットはレジスタ<br>を増やすごとに2位<br>のように書ける。(c | 音になる。 | 複数の量子ビ | 態は、 |
|--------|--------------------------------------|-------|--------|-----|
| 量子ビット数 | 状態数                                  | 例     |        |     |

| 量子ビッ | ト数 状態数 | 例                                                                                                                                                                                                                                                                                                                                                              |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 2      | $ \bigcirc\!\!\!\bigcirc_{_{(0)}} \bigcirc\!\!\!\bigcirc_{_{(1)}} \frac{1}{\sqrt{2}}  0\rangle - \frac{1}{\sqrt{2}}  1\rangle $                                                                                                                                                                                                                                |
| 2    | 4      | $igotimes_{_{[0]}}$ $igotimes_{_{[2]}}$ $igotimes_{_{[2]}}$ $igotimes_{_{[2]}}$ $igotimes_{_{[2]}}$ $igotimes_{_{[2]}}$ $igotimes_{_{[2]}}$ 2量子ビット状態で表せる線形結合                                                                                                                                                                                                   |
| 3    | 8      | $ \bigoplus_{(6)} \bigoplus_{(5)} \bigoplus_{(5)} \bigoplus_{(5)} \bigoplus_{(6)} \bigoplus_{(6)} \bigoplus_{(6)} \bigoplus_{(7)} \bigoplus_{(7)} \frac{\frac{1}{2\sqrt{2}} 000\rangle - \frac{1}{2\sqrt{2}} 001\rangle - \frac{1}{2\sqrt{2}} 010\rangle + \frac{1}{2\sqrt{2}} 101\rangle}{-\frac{1}{2\sqrt{2}} 101\rangle + \frac{1}{2\sqrt{2}} 111\rangle} $ |

2つ以上の量子ビットは**もつれ**させる ことができる。もつれているとは、 その状態が複数の状態の積で表せな いことを意味する:

 $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle \neq (a|0\rangle + b|1\rangle)(c|0\rangle + d|1\rangle)$ 



#### 量子ビットゲート

行列

ケットと円表示













































































### 複数量子







行列







ケットと円表示





トフォリは制御量子 ビットが両方とも状態 1)であれば、

ターゲット量子ビット に対してパウリ X







## 量子アルゴリズムの ビルディングブロック

量子回路の構成方法については、多くの巧妙な手法が知られている。 そのいくつかを以下に紹介する。

**加算と減算**は、レジスタに1を加算または減算するために使われ、 量子ゲートによる演算の1つの例である。



スワップテストを使うと2つのレジスタがどれほど近い状態にあるかを確認できる。



振幅増幅は位相差を振幅差に変換する。グローヴァーのアルゴリズムのようなクエリ (検索アルゴリズム) の成功確率を高めるために、 (何度も)使用できる。 を持つ



量子フーリエ変換 (QFT) を使うと、レジスタの信号周波数を知ることができる。因数分解や離散対数の計算を行うショアのアルゴリズムで使われる。

