LAPORAN AKHIR SEMESTER PRAKTIKUM PENGANTAR RUNTUN WAKTU KELAS C

Yogyakarta, 21 Desember 2021

19 / 445626 / PA / 19450 Ilmu Aktuaria

Dosen Pengampu: Prof. Dr.rer.nat. Dedi Rosadi, S.Si., M.Sc.

Asisten Praktikum : Riki Dharmawan (18661)

Putri Dwi Ramadhani (18400)

LABORATORIUM KOMPUTASI MATEMATIKA DAN STATISTIKA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA YOGYAKARTA

2021

BAB I

PERMASALAHAN

- Diberikan data saham PT Indofood Sukses Makmur Tbk (INDF.JK) dari tanggal 25 November 2020 sampai dengan 25 November 2021 yang dapat dilihat pada file ^INDF.csv.
 - a. Lakukan pemodelan runtun waktu berupa model ARIMA pada data nilai penutupan sahamINDF.JK!
 - b. Jika didapatkan bahwa model terbaik pada soal a) tidak memenuhi asumsi homoskedastisitas, lakukan penanganan dengan membentuk model ARCH/GARCH dengan menambahkan efek ARMA dari model ARIMA terbaik (ARMA-GARCH)! Catatan: Jika didapatkan pada soal a) bahwa model ARIMA memenuhi asumsi homoskedastisitas, cukup ditulis tidak perlu melakukan penanganan
 - c. Lakukan forecast untuk 10 hari kedepan menggunakan model terbaik dari masing-masing metode. Berdasarkan hasil forecast, model mana yang menghasilkan performa lebih baik? Catatan: Jika didapatkan pada soal a) bahwa model ARIMA memenuhi asumsi homoskedastisitas, cukup lakukan forecast untuk model ARIMA

Keterangan:

- Pada soal a), orde maksimum dari differencing yang digunakan adalah orde 4.
- Pada soal b), untuk uji signifikansi model cukup perhatikan model untuk variansi (jika benar didapatkan bahwa model terbaik ARIMA tidak memenuhi asumsi homoskedastisitas).
- 2. Diketahui nilai utilitas produksi industri di U.S dari Januari 2010 sampai Mei 2019 dalam file "IPCU.csv". Prediksikan nilai utilitas produksi industri tersebut untuk 3 bulan ke depan besertaLangkah-langkahnya secara lengkap dan jelas. Data dapat dilihat pada file IPCU.

BAB II PEMBAHASAN

Nomor 1

A. Permodelan Runtun Waktu ARIMA

Plot data awal

Interpretasi:

Dari plot data awal saham PT Indofood Sukses Makmur Tbk (INDF.JK) dari tanggal 25 November 2020 sampai dengan 25 November 2021 diketahui data tidak stasioner terhadap mean dan tidak stasioner terhadap variansi. Dikatakan tidak stationer jika nilai rata-rata dan varian dari data time series tersebut tidak mengalami perubahan secara sistematik sepanjang waktu.

Uji ADF data awal

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.420083	0.0112
Test critical values:	1% level	-3.457061	
	5% level	-2.873190	
	10% level	-2.573054	

^{*}MacKinnon (1996) one-sided p-values.

Hipotesis

H₀ : data tidak stasioner dalam mean dan variansi

H₁ : data stasioner dalam mean dan variansi

• Tingkat signifikansi

 $\alpha = 0.05$

Statistik uji

p-value = 0,0112

Daerah kritik

 H_0 ditolak jika p-value $< \alpha$

p-value = $0.0112 < \alpha = 0.05$

Maka H₀ ditolak

Kesimpulan

Karena H₀ ditolak, maka data stasioner dalam mean dan variansi

Interpretasi:

Uji ADF ini dilakukan untuk melihat lebih pasti apakah data telah stasioner terhadap mean dan variansi atau belum. Didapatkan nilai probability sebesar 0,0112, sehingga H₀ ditolak karena kurang dari alpa, 0,05. Maka data tersebut stasioner terhadap mean dan variansi.

Transforamasi Data

Augmented Dickey-Fuller Unit Root Test on DDIF1	
Null Hypothesis: DDIF1 has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=14)	

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-17.79882	0.0000
Test critical values:	1% level	-3.457173	
	5% level	-2.873240	
	10% level	-2.573080	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DDIF1) Method: Least Squares Date: 12/09/21 Time: 00:05 Sample (adjusted): 3 245 Included observations: 243 after adjustments Augmented Dickey-Fuller Unit Root Test on DTRANS1

Null Hypothesis: DTRANS1 has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=14)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-17.73635	0.0000
Test critical values:	1% level	-3.457173	
	5% level	-2.873240	
	10% level	-2.573080	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DTRANS1) Method: Least Squares Date: 12/09/21 Time: 00:06 Sample (adjusted): 3 245 Included observations: 243 after adjustments

Dari hasil output diatas, didapat untuk DDIF t statistic yang terbesar terdapat pada DDIF 1, sementara untuk DTRANS t statistic terbesar terdapat di DTRANS 1. Selanjutnya DTRANS 1 akan berlanjut ke identifikasi model ARIMA.

Corellogram data DTRANS

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
d ·		1	-0.132	-0.132	4.3181	0.038
10 1	10 1	2	-0.053	-0.072	5.0156	0.081
1 11	1 1	3	0.027	0.010	5.1954	0.158
101	'['	4	-0.033	-0.033	5.4759	0.242
1 1	' '	5	-0.015		5.5311	0.355
141	' '	6	-0.013		5.5756	0.472
' D	' 	7	0.110	0.107	8.6623	0.278
יולן י	יוֹם י	8	0.052	0.082	9.3484	0.314
141	' '	9	-0.055		10.108	0.342
' Ψ '	'Q'	10	-0.076		11.607	0.312
'[['	'[]'	11	-0.039		12.007	0.363
1 11	' '	12	0.019	0.005	12.105	0.437
1 11	' '	13	0.025	0.030	12.262	0.506
1111	' '		-0.013		12.309	0.582
'¶'	q '		-0.069		13.565	0.559
"¶'	"		-0.091		15.762	0.470
101	'['		-0.030		16.006	0.523
יון י	יון י	18	0.043	0.052	16.494	0.558
'['	'['	19	-0.053		17.247	0.573
'['	"[]'	20	-0.042		17.710	0.607
ינוי	' '	21		-0.019	17.956	0.652
"¶'	'[]'	22	-0.098		20.538	0.549
1 1	' '	23	-0.001	0.016	20.538	0.609
יון י	יולף ו	24	0.046	0.050	21.110	0.632
1 11	' '	25		-0.012	21.135	0.685
1 11	' '	26		-0.018	21.208	0.731
' '	' '	27	0.004	0.009	21.213	0.776
' '	'	28	0.005	0.026	21.220	0.816
י ולן י	יוֹם י	29	0.048	0.076	21.854	0.826
יון י	יומוי	30	0.053	0.063	22.638	0.830
יולן י	'	31	0.058	0.039	23.576	0.827
101	'['	32	-0.035		23.919	0.847
141	'['	33	-0.021		24.045	0.872
1 11	' '	34	0.020	0.023	24.160	0.894
10	' '	35	-0.014		24.216	0.915
1 11		36	0.056	0.023	25.118	0.913

Interpretasi:

Setelah didapatkan DTRANS 1, diperoleh model awal dengan melihat korelogramnya dan diperhatikan 4 lag pertama. Berdasarkan analisis data runtun waktu yang digunakan, yaitu ARIMA, maka penulisan model adalah ARIMA (p,d,q).

- Pertama adalah MA (q) dengan melihat kolom Partial Correlation. Pada korelogram,
 data cuts off pada lag ke 1, sehingga didapat MA (1).
- Selanjutnya adalah AR (p) dengan melihat kolom Autocorrelation. Pada korelogram,
 data cuts off pada lag ke 1, sehingga didapat AR (1).

 Sedangkan untuk I (d) pada model didapatkan dari tingkat perbedaan yang dilakukan terhadap data agar stasioner, dalam hal ini adalah transformasi data differencing DDIF 1, sehingga didapat d=1

Sehingga, model awal yang diperoleh adalah ARIMA (1,1,1).

Model Hasil Underfitting

Berdasarkan model awal yang didapatkan, yakni ARIMA (1,1,1), diperluas menjadi beberapa model lagi yang mungkin. Model tersebut diperluas secara underfitting Terdapat 6 model yang mungkin, yaitu:

- 1. ARIMA (1,1,1) dengan konstan
- 2. ARIMA (1,1,1) tanpa konstan
- 3. ARIMA (1,1,0) dengan konstan
- 4. ARIMA (1,1,0) tanpa konstan
- 5. ARIMA (0,1,1) dengan konstan
- 6. ARIMA (0,1,1) tanpa konstan

Overfitting

• Hipotesis

H₀: parameter tidak signifikan masuk model

H₁: parameter signifikan masuk model

• Tingkat signifikansi

 $\alpha = 0.05$

Daerah kritik

 H_0 ditolak jika p-value $< \alpha$

No	Model	Parameter	p-value	kesimpulan parameter	kesimpulan
	ΔΡΙΜΔ (1.1.1)		0.5805	Tidak signifikan masuk model	TD: 1.1
1			0.591	Tidak signifikan masuk model	Tidak signifikan masuk model
dengan konstan		MA(1)	0.3398	Tidak signifikan masuk model	model
2	ARIMA (1,1,1) AR(1) 0.6041 Tidak signifikan masuk model		Tidak signifikan masuk model	Tidak signifikan masuk	
2	tanpa konstan	MA(1)	0.3547	Tidak signifikan masuk model	model
2	ARIMA (1,1,0)	С	0.6172	Tidak signifikan masuk model	Tidak signifikan masuk
3	dengan konstan	AR(1)	0.0391	Signifikan masuk model	model

4	ARIMA (1,1,0) tanpa konstan	AR(1)	0.0398	Signifikan masuk model	Signifikan masuk model
5	ARIMA (0,1,1)	С	0.6297	Tidak signifikan masuk model	Tidak signifikan masuk
3	dengan konstan	MA(1)	0.0184	Signifikan masuk model	model
6	ARIMA (0,1,1) tanpa konstan	MA(1)	0.0191	Signifikan masuk model	Signifikan masuk model

Ke -6 model yang mungkin tersebut diuji inferensi, baik secara parameter dan overall. Model dikatakan signifikan jika setiap parameter pembentuknya signifikan masuk model. Sebuah parameter dikatakan signifikan masuk model jika p-value $< \alpha$.

Didapatkan 2 model yang signifikan dari tabel uji di atas, dimana setiap parameter pembentuk model adalah signifikan masuk model. Model tersebut adalah ARIMA (0,1,1) tanpa konstan dan ARIMA (0,1,1) tanpa konstan.

Diagnostic Checking

Model	No Autokorelasi Residual	Homoskedastisitas	Normalitas Residual
ARIMA (1,1,0) tanpa konstan	Memenuhi	Tidak memenuhi	Tidak memenuhi(0)
ARIMA (0,1,1) tanpa konstan	Memenuhi	Tidak memenuhi	Tidak memenuhi(0)

Interpretasi:

Pada diagnostic checking, semua model tidak memenuhi untuk uji normalitas residual. Semua model memenuhi uji no autokorelasi residual. Semua model tidak memenuhi Homoskedastisitas. Hal ini memiliki kecenderungan bahwa model memiliki efek ARCH GARCH. Selanjutnya model ARIMA (1,1,0) tanpa konstan dan ARIMA (0,1,1) tanpa konstan lanjut ketahapan kriteria pemilihan model, untuk menentukan model mana yang benar-benar paling baik.

Pemilihan Model Terbaik

Model	R ²	Adj R²	SE	SSR	Log Likelihood	AIC	SBC
ARIMA (1,1,0) tanpa konstan	0.01653	0.01653	0.015514	0.058247	668.0362	-5.49001	5.47564
ARIMA (0,1,1) tanpa konstan	0.019077	0.019077	0.015478	0.058212	671.3598	-5.494752	5.48042

Interpretasi:

Pada kriteria pemilihan model terbaik, dicari model yang memiliki R², Adj R², serta Log Likelihood yang besar, sedangkan SE, SSR, AIC, dan SBC yang kecil.

Kemudian diperoleh model yang paling banyak memenuhi kriteria adalah *ARIMA* (0,1,1) tanpa konstan, yaitu memiliki R² dan Adj R²yang paling besar, serta SE, SSR, AIC dan SBC yang paling kecil. Sehingga model tersebut dianggap sebagai model yang lebih baik dibandingkan model yang lain.

Model terbaik dan interpretasinya

Setelah dilakukan serangkaian langkah, didapatkan model terbaik untuk memprediksi temperatur udara bulanan di Nottingham Castle, Inggris yaitu *ARIMA* (0,1,1) tanpa konstan

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(1)	-0.149813	0.063525	-2.358345	0.0191
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.019077 0.019077 0.015478 0.058212 671.3598 1.979881	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-0.000406 0.015627 -5.494752 -5.480419 -5.488980

Bentuk persamaan umum ARIMA (0,1,1) tanpa konstan yaitu:

$$\begin{split} D_p(B)(1-B)^d X_t &= \mu + C_q(B) \ \varepsilon_t \\ (1-B)X_t &= 0 + (1-0.149813B) \ \varepsilon_t \\ X_t - X_{t-1} &= \varepsilon_t - 0.149813 \ \varepsilon_{t-1} \\ X_t &= X_{t-1} + \varepsilon_t - 0.149813 \ \varepsilon_{t-1} \end{split}$$

Dimana,

 X_t : Jumlah data penutupan harga saham pada waktu ke - t

 ε_t : nilai kesalahan pada waktu ke - t

Interpretasi:

- Setiap kenaikan satu satuan data 1 periode sebelumnya, akan menyebabkan kenaikan data ramalam sebesar 1 dengan menganggap variabel lain konstan.
- Setiap kenaikan satu satuan eror 1 periode sebelumnya, akan menyebabkan penurunan data ramalam sebesar 0.149813 dengan menganggap variabel lain konstan.

B. Penanganan Model ARCH-GARCH

Pada point A, model terbaik tidak memenuhi asumsi homoskedastisitas, sehingga diperlukan penangan model ARCH-GARCH.

Correlogram Data Asli

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.922	0.922	211.01	0.000
	יווי	2	0.860	0.059	395.05	0.000
I	']'	3	0.801	0.004	555.57	0.000
	' '	4		-0.009	695.08	0.000
	']'	5	0.694	0.003	816.54	0.000
	'[[6		-0.022	921.19	0.000
	1 12:	7	0.597	0.008	1011.9	0.000
	"	8		-0.115	1085.6	0.000
	l 91	9		-0.109	1142.1	0.000
: -	<u> </u>	10	0.411	0.004	1185.5	0.000
! □	<u> </u>	11	0.363	0.035	1219.5	0.000
! □	<u>'.</u> '.'	12	0.322	0.023	1246.4	0.000
	. <u>.</u> 9.:	13		-0.066	1266.0	0.000
	'9'	14		-0.032	1279.6	0.000
	' '	15 16	0.184	-0.013 0.054	1288.5 1294.5	0.000
;E	; <u> </u>	17	0.131	0.054	1294.5	0.000
;6	i.":	18		-0.048	1301.8	0.000
; <u>F</u> ,		19		-0.028	1303.5	0.000
, <u>F</u> ,	l ili	20	0.064	0.040	1304.6	0.000
, <u>, , , , , , , , , , , , , , , , , , </u>		21	0.050	0.040	1305.3	0.000
1 16	1 16	22		-0.015	1305.6	0.000
i hi	i h i	23	0.033	0.041	1305.9	0.000
i lii		24		-0.017	1306.1	0.000
i li	in i	25		-0.052	1306.2	0.000
111	1	26		0.021	1306.3	0.000
1 1	16	27		-0.024	1306.3	0.000
111	101		-0.010		1306.3	0.000
l ili	1 1		-0.021		1306.4	0.000
1111	id		-0.037		1306.8	0.000
10 1	ı d ı	31	-0.059	-0.069	1307.8	0.000
ıd ı	l idi		-0.090		1310.1	0.000
d ·	1)1	33	-0.114	0.009	1313.7	0.000
	id i	34	-0.141	-0.056	1319.5	0.000
 	101	35	-0.170	-0.040	1327.8	0.000
	1 1		-0.195		1338.8	0.000

Dari data close saham PT Indofood Sukses Makmur Tbk (INDF.JK) dari tanggal 25 November 2020 sampai dengan 25 November 2021 dapat di lihat plot ACF cenderung meluruh dengan lambat yang mengindikasikan ada heteroskedastisitas.

Correlogram Data Return

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
d,	d:	1 -0.1	32 -0.132	4.3181	0.038
10 1	'd'	2 -0.0	53 -0.072	5.0156	0.081
		3 0.0	27 0.010	5.1954	0.158
101	'('	4 -0.0	33 -0.033	5.4759	0.242
10	10	5 -0.0	15 -0.022	5.5311	0.355
10	1 10	6 -0.0	13 -0.023	5.5756	0.472
	' b	7 0.1	10 0.107	8.6623	0.278
I		8 0.0	52 0.082	9.3484	0.314
10 1	1 1/1	9 -0.0	55 -0.024	10.108	0.342
ıd ı	'd'	10 -0.0	76 -0.089	11.607	0.312
101	ıd ı	11 -0.0	39 -0.067	12.007	0.363
1 1		12 0.0	0.005	12.105	0.437
1 1	ונוי	13 0.0	25 0.030		0.506
1 1	1(1	14 -0.0	13 -0.021	12.309	0.582
ı d ı	q '	15 -0.0	69 -0.099	13.565	0.559
III	4'	16 -0.0	91 -0.124	15.762	0.470
	'('	17 -0.0	30 -0.047	16.006	0.523
ı ji ı	ולןי	18 0.0	43 0.052	16.494	0.558
10 1	'(()	19 -0.0	53 -0.049	17.247	0.573
101	"[]'	20 -0.0	42 -0.093	17.710	0.607
1 11	1(1	21 0.0	30 -0.019		0.652
III	'd '	22 -0.0	98 -0.081	20.538	0.549
1 1		23 -0.0	0.016	20.538	0.609
ı ji ı	ולןי	24 0.0	46 0.050	21.110	0.632
1 1	10	25 0.0	10 -0.012	21.135	0.685
1 1	10	26 0.0	16 -0.018		0.731
1 1	' -	27 0.0	0.009	21.213	0.776
1 1	ינוי		0.026		0.816
i ji i	יום י		0.076		0.826
i ji i	ולןי		0.063		0.830
י ולן י	ינוי		0.039		0.827
101	'4'		35 -0.054		0.847
1(1	'(()		21 -0.037		0.872
1 1	' '		20 0.023		0.894
10	' '		14 -0.008		0.915
1 11	1 11	36 0.0	0.023	25.118	0.913

Interpretasi:

Dari data close saham PT Indofood Sukses Makmur Tbk (INDF.JK) dari tanggal 25 November 2020 sampai dengan 25 November 2021 yang kita miliki, dibuat data Return. Kemudian dilihat korelogramnya. Karena banyak lag yang tidak keluar, maka ada indikasi ARCH/GARCH.

Correlogram Data Return^2

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
, þ.	<u> </u>	1	0.078	0.078	1.4983	0.221
ı b		2	0.130	0.125	5.7094	0.058
ıďı	<u> </u>	3	-0.069	-0.090	6.9027	0.075
ı d ı	'd'	4	-0.088	-0.095	8.8239	0.066
1(1)		5	-0.038	-0.004	9.1814	0.102
ι¢ι	'('	6	-0.051	-0.029	9.8255	0.132
ı j i	ווןו	7	0.027	0.025	10.006	0.188
1 1		8	-0.004	-0.008	10.010	0.264
ı þ i	ונן ו	9	0.073	0.059	11.360	0.252
1 (1	'['	10	-0.040	-0.053	11.770	0.301
1(1	'('	11	-0.023		11.910	0.370
' ['	'['		-0.091		14.049	0.298
' ['	'['		-0.073		15.449	0.280
ι [ι	'['		-0.053		16.182	0.302
ι [] ι	'[] '		-0.080		17.878	0.269
' ['	"[]'		-0.083		19.673	0.235
' ['	'['		-0.030		19.910	0.279
1 [1	'['	18	-0.047		20.504	0.305
' ('	'['	19	-0.045		21.046	0.334
' 🚍		20	0.251	0.264	37.883	0.009
1 1	'['	21	-0.001	-0.037	37.883	0.013
ı þi	' '	22	0.104	0.020	40.781	0.009
۱ ۵ ۱	'['	23	-0.059		41.738	0.010
י ולן י	יוֹם י	24	0.052	0.084	42.462	0.011
י ולן י	יולן י	25	0.047	0.065	43.057	0.014
١ 🏿 ١	' '	26	0.029	0.013	43.284	0.018
141	"[]'	27	-0.038		43.689	0.022
' ['	'[]'	28	-0.072		45.140	0.021
111	'[['	29	-0.018		45.231	0.028
' ['	'[['	30	-0.075		46.818	0.026
' ['	'[['	31	-0.028		47.042	0.032
111	' '		-0.019	0.016	47.141	0.041
1 1	' '	33	-0.006		47.151	0.053
١ 🏿 ١	'['	34	0.025	0.003	47.325	0.064
١]١	'P	35	0.058	0.101	48.295	0.067
1(1)	' '	36	-0.026	0.013	48.494	0.080

Interpretasi:

Selanjutnya setelah Return, kembali dibuat data Return². Kemudian dilihat korelogramnya. Untuk itu, karena ada lag yang keluar, maka ada indikasi ARCH/GARCH.

Model ARCH/GARCH

Dalam melakukan peramalan runtun waktu menggunakan metode ARCH/ GARCH, dengan pasti akan memiliki model seperti berikut :

- 1. GARCH (2,2) dengan konstan
- 2. GARCH (2,2) tanpa konstan
- 3. GARCH (2,1) dengan konstan
- 4. GARCH (2,1) tanpa konstan
- 5. GARCH (2,0) dengan konstan
- 6. GARCH (2,0) tanpa konstan

- 7. GARCH (1,2) dengan konstan
- 8. GARCH (1,2) tanpa konstan
- 9. GARCH (1,1) dengan konstan
- 10. GARCH (1,1) tanpa konstan
- 11. GARCH (1,0) dengan konstan
- 12. GARCH (1,0) tanpa konstan

Uji Signifikansi Parameter

• Hipotesis

H₀: parameter tidak signifikan masuk model

H₁: parameter signifikan masuk model

• Tingkat signifikansi

 $\alpha = 0.05$

• Daerah kritik

 H_0 ditolak jika p-value $\leq \alpha$

No	Model	Parameter	p-value	kesimpulan parameter	kesimpulan
		С	0.201	Tidak signifikan masuk model	
		MA(1)	0.0918	Tidak signifikan masuk model	
	GARCH	С	0	Signifikan masuk model	Tidal cianifikan maayk
1	(2,2)	RESID(-1)^2	0.043	Signifikan masuk model	Tidak signifikan masuk model
	Konstan	RESID(-2)^2	0.028	Signifikan masuk model	moder
		GARCH(-1)	0.5568	Tidak signifikan masuk model	
		GARCH(-2)	0.0025	Signifikan masuk model	
		MA(1)	0.0619	Tidak signifikan masuk model	
	GARCH	С	0	Signifikan masuk model	
2	(2,2)	RESID(-1)^2	0.0205	Signifikan masuk model	Tidak signifikan masuk
	Tanpa Konstan	RESID(-2)^2	0.1326	Tidak signifikan masuk model	model
	Konstan	GARCH(-1)	0.1281	Tidak signifikan masuk model	
		GARCH(-2)	0.0005	Signifikan masuk model	
		С	0.1508	Tidak signifikan masuk model	
		MA(1)	0.0878	Tidak signifikan masuk model	
3	GARCH (2,1)	С	0	Signifikan masuk model	Tidak signifikan masuk
3	(2,1) Konstan	RESID(-1)^2	0.1405	Tidak signifikan masuk model	model
		RESID(-2)^2	0.0007	Signifikan masuk model	
		GARCH(-1)	0.0037	Signifikan masuk model	
4		MA(1)	0.1339	Tidak signifikan masuk model	

	GARCH	С	0	Signifikan masuk model		
	(2,1)	RESID(-1)^2	0.0997	Tidak signifikan masuk model	Tidak signifikan masuk	
	Tanpa	RESID(-2)^2	0.0013	Signifikan masuk model	model	
	Konstan	GARCH(-1)	0.2136	Tidak signifikan masuk model		
		С	0.267	Tidak signifikan masuk model		
	GARCH	MA(1)	0.1197	Tidak signifikan masuk model		
5	(2,0)	С	0	Signifikan masuk model	Tidak signifikan masuk	
	Konstan	RESID(-1)^2	0.1541	Tidak signifikan masuk model	– model	
		RESID(-2)^2	0.005	Signifikan masuk model	_	
		MA(1)	0.1124	Tidak signifikan masuk model		
	GARCH (2,0)	C	0	Signifikan masuk model	Tidak signifikan masuk	
6	Tanpa	RESID(-1)^2	0.1111	Tidak signifikan masuk model	model	
	Konstan	RESID(-2)^2	0.0085	Signifikan masuk model	†	
		C C	0.2549	Tidak signifikan masuk model		
		MA(1)	0.2349	Signifikan masuk model	-	
	GARCH	C	0.0018	Signifikan masuk model		
7	(1,2)	RESID(-1)^2	0.0011	Signifikan masuk model	model	
	Konstan	GARCH(-1)	0.0011	Signifikan masuk model	-	
		GARCH(-2)	0	Signifikan masuk model		
		MA(1)	0.0321	Signifikan masuk model		
	GARCH	C	0	Signifikan masuk model	†	
8	(1,2)	RESID(-1)^2	0.0027	Signifikan masuk model	Signifikan masuk	
	Tanpa Konstan	GARCH(-1)	0	Signifikan masuk model	- model	
		GARCH(-2)	0.0001	Signifikan masuk model		
		С	0.567	Tidak signifikan masuk model		
	GARCH	MA(1)	0.0463	Signifikan masuk model	T'.1.1 .''C'l	
9	(1,1)	С	0.0111	Signifikan masuk model	Tidak signifikan masuk model	
	Konstan	RESID(-1)^2	0.0426	Signifikan masuk model	illodei	
		GARCH(-1)	0.2233	Tidak signifikan masuk model		
	GARCH	MA(1)	0.0467	Signifikan masuk model		
10	(1,1)	С	0.0109	Signifikan masuk model	Tidak signifikan masuk	
10	Tanpa	RESID(-1)^2	0.0391	Signifikan masuk model	model	
	Konstan	GARCH(-1)	0.2438	Tidak signifikan masuk model		
	CADCII	С	0.7185	Tidak signifikan masuk model		
11	GARCH (1,0)	MA(1)	0.0271	Signifikan masuk model	Tidak signifikan masuk	
	Konstan	С	0	Signifikan masuk model	model	
		RESID(-1)^2	0.1111	Tidak signifikan masuk model		
	GARCH (1,0)	MA(1)	0.0277	Signifikan masuk model	Tidak signifikan masuk	
12	Tanpa	С	0	Signifikan masuk model	model	
	Konstan	RESID(-1)^2	0.0942	Tidak signifikan masuk model		

Ke - 12 model yang mungkin tersebut diuji inferensi, baik secara parameter dan overall. Model dikatakan signifikan jika setiap parameter pembentuknya signifikan masuk model. Sebuah parameter dikatakan signifikan masuk model jika p-value $< \alpha$.

Didapatkan 2 model yang signifikan dari tabel uji di atas, dimana setiap parameter pembentuk model adalah signifikan masuk model.

Model yang signifikan adalah

- 1. GARCH (1,2) tanpa konstan
- 2. GARCH (1,2) konstan

Diagnostic Checking

Model	ARCH LM Test	NA	NR
GARCH (1,2) Tanpa Konstan	Memenuhi(0.9172)	Memenuhi	Tidak memenuhi (0.000041)
GARCH (1,2) Konstan	Memenuhi(0.9355)	Tidak memenuhi	Tidak memenuhi (0.000001)

Interpretasi:

Pada diagnostic checking, semua model yang signifikan tidak memiliki efek ARCH/GARCH, karena H0 tidak ditolak, sehingga asumsi residual terpenuhi. Model GARCH (1,2) Konstan tidak memenuhi asumsi residual no autokorelasi karena didapati lag ke – 15 yang keluar. Sedangkan model dianggap memenuhi asumsi no autokorelasi jika pada korelogram residual tidak ada lag yang keluar. Kemudian pada asumsi normalitas residual, kedua model juga tidak memenuhi normalitas. Residual dikatakan berdistribusi normal karena p-value (probability Jarque-Bera) lebih dari alpha, yakni 0,05.

Sehingga model yang paling baik atau lebih baik di antara model yang lain adalah *GARCH* (1,2) *Tanpa Konstan*.

Model terbaik dan interpretasinya

Setelah dilakukan serangkaian langkah, didapatkan model terbaik untuk memprediksi harga penutupan saham PT Indofood Sukses Makmur Tbk (INDF.JK) adalah *GARCH* (1,2) *Tanpa Konstan*.

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
MA(1)	-0.157274	0.073404	-2.142584	0.0321	
Variance Equation					
C RESID(-1)^2 GARCH(-1) GARCH(-2)	0.000182 0.178361 0.559537 -0.489351	3.03E-05 0.059538 0.106002 0.128966	6.024702 2.995764 5.278539 -3.794410	0.0000 0.0027 0.0000 0.0001	

Bentuk persamaan umum GARCH (1,2) Tanpa Konstan yaitu:

Model GARCH	Estimasi Model
GARCH (1,1) Tanpa	$return_t = \varepsilon_t - 0.157274\varepsilon_{t-1}$
Konstan	$\sigma_t^2 = 0.000182 + 0.0559537\sigma_{t-1}^2 - 0.489351\sigma_{t-2}^2 + 0.178361 \ \varepsilon_{t-1}^2$

Interpretasi:

- Setiap kenaikan satu satuan eror 1 periode sebelumnya, akan menyebabkan penurunan data ramalam sebesar 0.157274 dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan variansi pada periode yang lalu, variansi nilai forecast juga akan bertambah sebesar 0.0559537 satuan.
- Setiap kenaikan 1 satuan variansi pada 2 periode yang lalu, variansi nilai forecast akan berkurang sebesar 0.489351 satuan.
- Setiap kenaikan 1 satuan residual pada periode yang lalu, variansi nilai forecast juga akan bertambah sebesar 0.178361 satuan.

C. Forcasting 10 hari

Model ARIMA (0,1,1) tanpa konstan

PERIODE	FORECAST	RMSE
246	6487.330617	99.30359
247	6487.330617	99.10072
248	6487.330617	98.8991
249	6487.330617	98.69869
250	6487.330617	98.4995
251	6487.330617	98.30151
252	6487.330617	98.10471
253	6487.330617	97.90909
254	6487.330617	97.71463
255	6487.330617	97.52133

Untuk peramalan saham PT Indofood Sukses Makmur Tbk (INDF.JK) dengan model *ARIMA* (0,1,1) tanpa konstan; didapatkan hasil forecasting untuk 10 hari kedepan atau mulai dari periode 246 sampai 255.

Root Mean Square Error (RMSE) juga didapatkan dari hasil forecasting untuk 10 hari kedepan atau mulai dari periode 246 sampai 255 pada saham PT Indofood Sukses Makmur Tbk (INDF.JK).

Model GARCH (1,2) Tanpa Konstan

PERIODE	FORECAST	RMSE
246	6488.005099	99.30379
247	6488.005099	99.10093
248	6488.005099	98.8993
249	6488.005099	98.69889
250	6488.005099	98.4997
251	6488.005099	98.30171
252	6488.005099	98.10491
253	6488.005099	97.90929
254	6488.005099	97.71483
255	6488.005099	97.52153

Untuk peramalan saham PT Indofood Sukses Makmur Tbk (INDF.JK) dengan model *GARCH* (1,2) *Tanpa Konstan*; didapatkan hasil forecasting untuk 10 hari kedepan atau mulai dari periode 246 sampai 255.

Root Mean Square Error (RMSE) juga didapatkan dari hasil forecasting untuk 10 hari kedepan atau mulai dari periode 246 sampai 255 pada saham PT Indofood Sukses Makmur Tbk (INDF.JK).

Nomor 2

Plot data awal

Berdasarkan plot awal nilai utilitas produksi industri di U.S dari Januari 2010 sampai Mei 2019, didapatkan bahwa data telah stasioner terhadap, namun data tersebut mengandung unsur musiman dan tentunya belum stasioner terhadap variansi. Dikatakan mengandung unsur musiman karena data time series dari suhu tersebut mengalami perubahan secara sistematik dari waktu ke waktu dengan panjang periode yang sama. Kemudian dikatakan belum stasioner terhadap variansi karena rentang antara waktu tersebut masih fluktuatif atau berbeda – beda satu dengan yang lain. Analisis runtun waktu yang tepat untuk menganalisis permasalahan diatas ialah **SARIMA ADITIF.**Untuk itu, kita perlu melakukan transformasi logaritma untuk menghilangkan unsur musiman dan membuat data stasioner terhadap variansi agar selanjutnya dapat dilakukan prediksi untuk periode mendatang.

Uji ADF data awal

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-1.567257	0.4955
Test critical values:	1% level	-3.497029	
	5% level	-2.890623	
	10% level	-2.582353	

^{*}MacKinnon (1996) one-sided p-values.

Hipotesis

 $H_0\;$: data tidak stasioner dalam mean dan variansi

H₁: data stasioner dalam mean dan variansi

Tingkat signifikansi

$$\alpha = 0.05$$

• Statistik uji

$$p$$
-value = 0,4955

• Daerah kritik

 H_0 ditolak jika p-value $< \alpha$

p-value =
$$0.4955 > \alpha = 0.05$$

Maka H₀ tidak ditolak

• Kesimpulan

Karena H₀ tidak ditolak, maka data stasioner dalam mean dan variansi

Interpretasi:

Uji ADF ini dilakukan untuk melihat lebih pasti apakah data telah stasioner terhadap mean dan variansi atau belum. Didapatkan nilai probability sebesar 0,4955, sehingga H₀ tidak ditolak karena lebih dari alpa, 0,05. Maka data tersebut stasioner terhadap mean dan variansi.

Correlogram data awal

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.489	0.489	27.788	0.000
<u> </u>		2 -0.349	-0.774	42.076	0.000
	 	3 -0.764	-0.267	110.97	0.000
-		4 -0.405	0.145	130.57	0.000
· 🔚		5 0.333	0.235	143.92	0.000
1		6 0.699	0.031	203.29	0.000
' 📂	 	7 0.339		217.40	0.000
- ·	 	8 -0.396		236.76	0.000
	'E '	9 -0.748		306.63	0.000
<u> </u>		10 -0.341	0.160	321.29	0.000
· -		11 0.409		342.65	0.000
		12 0.799	0.245	424.71	0.000
'	q '	13 0.385		443.98	0.000
<u> </u>		14 -0.325		457.85	0.000
-	'[] '	15 -0.694		521.68	0.000
·	'['		-0.037	540.10	0.000
' 	'['		-0.047	552.52	0.000
1	'[] '		-0.071	606.41	0.000
' 🔚	' '	19 0.296		618.56	0.000
<u> </u>	' '	20 -0.351	0.016	635.78	0.000
	'['		-0.065	698.33	0.000
<u> </u>	' '	22 -0.317		712.67	0.000
' 📼	'4'		-0.075	727.50	0.000
	'['		-0.051	787.62	0.000
' 📂	'9'		-0.117	800.45	0.000
<u> </u>	' '		-0.009	814.80	0.000
·	' '		-0.015	870.06	0.000
<u> </u>	'9'	28 -0.313		885.04	0.000
' =	' '	29 0.275		896.74	0.000
' -	יון י	30 0.566	0.042	946.91	0.000
' 🖃	'9'	31 0.259		957.56	0.000
<u> </u>	'4'	32 -0.325		974.49	0.000
	1 11	33 -0.582	0.039	1029.5	0.000
_ '	'[] '	34 -0.275		1042.0	0.000
' 💻	יון י	35 0.286	0.051	1055.6	0.000
·	ים י	36 0.582	0.106	1112.7	0.000

Berdasarkan korelogram awal nilai utilitas produksi industri di U.S dari Januari 2010 sampai Mei 2019, didapatkan lag pada ACF bergerak secara sinusoidal, dan setiap kelipatan 6 lag akan menonjol lebih panjang dibandingkan lag sebelum dan sesudahnya. Sedangkan pada PACF, lag terjadi cut off secara tajam. Sehingga tidak dapat dibentuk model dari korelogram dan dicurigai terdapat unsur musiman pada data time series.

Langkah selanjutnya, data time series nilai utilitas produksi dikenai transformasi logaritma dengan tujuan menghilangkan unsur musiman yang ada dan stasioner terhadap variansi, sehungga dapat dilakukan prediksi untuk periode berikutnya.

Transformasi Variansi dan Mean

Augmented Dickey-Fuller Unit Root Test on DDIF1					
Null Hypothesis: DDIF Exogenous: Constant Lag Length: 7 (Automa	1 has a unit root atic based on SIC, MAXI	_AG=12)			
		t-Statistic	Prob.*		
Augmented Dickey-Fu	ller test statistic	-8.284287	0.0000		
Test critical values:	1% level	-3.498439			
	5% level	-2.891234			
	10% level	-2.582678			

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Unit Root Test on DTRANS1 Null Hypothesis: DTRANS1 has a unit root Exogenous: Constant Lag Length: 7 (Automatic based on SIC, MAXLAG=12) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -8.213827 0.0000 Test critical values: 1% level -3.498439

-2.891234

-2.582678

5% level

10% level

Interpretasi:

Dari hasil output diatas, didapat untuk DDIF t statistic yang terbesar terdapat pada DDIF 1, sementara untuk DTRANS t statistic terbesar terdapat di DTRANS 1. Selanjutnya DTRANS 1 akan berlanjut ke identifikasi model SARIMA.

Differencing Musiman

Augmented Dickey-Fuller Unit Root Test on DDIFS1					
Null Hypothesis: DDIF Exogenous: Constant Lag Length: 6 (Automa	S1 has a unit root atic based on SIC, MAXL	AG=12)			
		t-Statistic	Prob.*		
Augmented Dickey-Fu	ller test statistic	-4.889033	0.0001		
Test critical values:	1% level	-3.497029			
	5% level	-2.890623			
	10% level	-2.582353			

^{*}MacKinnon (1996) one-sided p-values.

*MacKinnon (1996) one-sided p-v

Interpretasi:

Augmented Dickey-Fuller Unit Root Test on DDIFS2						
Null Hypothesis: DDIFS2 has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=12)						
		t-Statistic	Prob.*			
Augmented Dickey-Ful	ller test statistic	-5.901702	0.0000			
Test critical values:	1% level	-3.497029				
	5% level	-2.890623				
	10% level	-2.582353				

^{*}MacKinnon (1996) one-sided p-values.

Dari hasil output diatas, didapat untuk DDIFS t statistic yang terbesar terdapat pada DDIFS 2, sehingga di dapatkan orde D=2.

Korelogram dtrans1

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	-0.192	-0.192	4.0158	0.045
· 🗆 ·		2	-0.126	-0.169	5.7584	0.056
1 10 1	1 1 1	3	0.079	0.020	6.4546	0.091
1 10 1	1 10	4	0.066	0.071	6.9451	0.139
1 11	1 101	5	0.048	0.100	7.2067	0.206
-		6	-0.744	-0.755	70.602	0.000
1 🖃	(E)	7	0.206	-0.160	75.487	0.000
1 10 1	III	8		-0.144	76.345	0.000
(E)	1 1	9	-0.137	0.004	78.551	0.000
1 1 1	1 10 1	10	0.014	0.058	78.574	0.000
1 1	1 1	11	0.013	-0.003	78.595	0.000
	= 1	12	0.475	-0.164	106.09	0.000
E	101	13	-0.166	-0.051	109.50	0.000
101	101	14	-0.057	-0.074	109.91	0.000
1 (3)	101	15	0.110	-0.089	111.42	0.000
1 1	1 10	16	-0.002	0.105	111.42	0.000
1 1 1		17	0.024	0.207	111.49	0.000
	1 1	18	-0.348	-0.007	127.29	0.000
1 🖃	1 1 1	19	0.152	0.043	130.32	0.000
1 11	101	20	0.044	-0.060	130.58	0.000
(0)	10	21	-0.131	-0.137	132.90	0.00
1 1	1 1	22	-0.003	-0.006	132.90	0.00
1 1	1 10	23	-0.002	0.147	132.90	0.00
1 =	1 1	24	0.214	-0.012	139.31	0.00
100	1 1	25	-0.142	0.022	142.15	0.00
1 11	1 1	26	0.048	0.148	142.48	0.00
1 10 1	10 1	27	0.083	-0.153	143.47	0.00
1 1 1	141	28	0.009	-0.010	143.48	0.00
1 1	1 1	29	-0.004	-0.006	143.48	0.00
(4)	100	30	-0.165	-0.151	147.57	0.00
1 101	111	31	0.100	-0.046	149.09	0.00
10 1	101	32	-0.130	-0.066	151.69	0.00
1 1	101	33	-0.006	-0.055	151.69	0.000
1 11		34	0.026	0.135	151.80	0.000
111	0.10	35	-0.049	0.014	152.19	0.000
1	1 1	36	0.190	-0.004	158.12	0.000

Interpretasi:

Akan dilihat 3 lag pertama berdasarkan grafik ACF dan PACF di atas. Untuk grafik PACF, dari 3 lag teratas, lag 1 adalah lag yang terakhir keluar dari batas (secara signifikan tidak sama dengan 0). Sehingga, didapatkan orde p=1. Untuk grafik ACF, dari 3 lag pertama, lag 1 adalah lag yang terakhir keluar dari batas (secara signifikan tidak sama dengan 0) sehingga didapatkan orde q=1 dengan orde differencing d=1. Untuk menentukan orde P, D, Q dapat dilihat dari korelogram yang full. Untuk grafik PACF, diperhtikam lag 1, 6, 12, 18, 24, 30, 36. Dimana yang terakhir keluar ialah lag 6, yang berarti orde 1 . Sehingga, didapatkan orde P=1. Untuk grafik ACF juga diperhatikan lag 1, 6, 12, 18, 24, 30, 36. Dimana yang terakhir keluar ialah lag 24, yang berarti orde 4. Sehingga, didapatkan orde Q=4. Sehingga model di dapat model SARIMA (1,1)(1,2)(1,4)_6.

Model Hasil Underfitting

Berdasarkan model awal yang didapatkan, yakni **SARIMA** (1,1)(1,2)(1,4)_6, diperluas menjadi beberapa model lagi yang mungkin. Model tersebut diperluas secara underfitting.

Terdapat 30 model yang mungkin, yaitu:

- 1. SARIMA $(1,1)(1,2)(1,0)_{6}$, dengan konstan
- 2. SARIMA $(1,1)(1,2)(1,0)_6$ tanpa konstan
- 3. SARIMA $(1,1)(1,2)(0,0)_6$, dengan konstan
- 4. SARIMA (1,1)(1,2)(0,0)_6 tanpa konstan
- 5. SARIMA $(0,1)(1,2)(1,0)_6$ dengan konstan
- 6. SARIMA $(0,1)(1,2)(1,0)_6$ tanpa konstan
- 7. SARIMA $(1,0)(1,2)(1,1)_6$ dengan konstan
- 8. SARIMA $(1,0)(1,2)(1,1)_6$ tanpa konstan
- 9. SARIMA $(1,0)(1,2)(0,1)_6$, dengan konstan
- 10. SARIMA (1,0)(1,2)(0,1)_6 tanpa konstan
- 11. SARIMA $(0,0)(1,2)(1,1)_6$, dengan konstan
- 12. SARIMA (0,0)(1,2)(1,1)_6 tanpa konstan
- 13. SARIMA (1,0)(1,2)(1,2)_6 dengan konstan
- 14. SARIMA (1,0)(1,2)(1,2)_6 tanpa konstan
- 15. SARIMA (1,0)(1,2)(0,2)_6 dengan konstan
- 16. SARIMA (1,0)(1,2)(0,2)_6 tanpa konstan
- 17. SARIMA (0,0)(1,2)(1,2)_6 dengan konstan
- 18. SARIMA $(0,0)(1,2)(1,2)_6$ tanpa konstan
- 19. SARIMA $(1,0)(1,2)(1,3)_6$ dengan konstan
- 20. SARIMA (1,0)(1,2)(1,3)_6 tanpa konstan
- 21. SARIMA $(1,0)(1,2)(0,3)_6$ dengan konstan
- 22. SARIMA $(1,0)(1,2)(0,3)_6$ tanpa konstan
- 23. SARIMA $(0,0)(1,2)(1,3)_6$ dengan konstan
- 24. SARIMA (0,0)(1,2)(1,3)_6 tanpa konstan
- 25. SARIMA $(1,0)(1,2)(1,4)_6$ dengan konstan
- 26. SARIMA (1,0)(1,2)(1,4)_6 tanpa konstan
- 27. SARIMA $(1,0)(1,2)(0,4)_6$ dengan konstan
- 28. SARIMA (1,0)(1,2)(0,4)_6 tanpa konstan
- 29. SARIMA $(0,0)(1,2)(1,4)_6$ dengan konstan
- 30. SARIMA $(0,0)(1,2)(1,4)_6$ tanpa konstan

Overfitting

• Hipotesis

 H_0 : parameter tidak signifikan masuk model

H₁ : parameter signifikan masuk model

• Tingkat signifikansi

 $\alpha = 0.05$

• Daerah kritik

 H_0 ditolak jika p-value $\leq \alpha$

No	Model	Parameter	p-value	kesimpulan parameter	kesimpulan	
		С	0.9233	Tidak signifikan masuk model		
	SARIMA	AR(1)	0.9345	Tidak signifikan masuk model	Tidak signifikan	
1	(1,1)(1,2)(1,0)_6, konstan	AR(6)	0	Signifikan masuk model	masuk model	
	Konstan	MA(1)	0	Signifikan masuk model		
	SARIMA	AR(1)	0.9308	Tidak signifikan masuk model		
2	(1,1)(1,2)(1,0)_6, tanpa	AR(6)	0	Signifikan masuk model	Tidak signifikan masuk model	
	konstan	MA(1)	0	Signifikan masuk model	masuk model	
	SARIMA	С	0.8554	Tidak signifikan masuk model		
3	(1,1)(1,2)(1,0)_6	AR(1)	0.0157	Signifikan masuk model	Tidak signifikan masuk model	
	konstan	AR(6)	0	Signifikan masuk model	masuk model	
4	SARIMA (1,1)(1,2)(1,0)_6 tanpa	AR(1)	0.0154	Signifikan masuk model	Signifikan masuk	
4	konstan	AR(6)	0	Signifikan masuk model	model	
	SARIMA	SARIMA C 0.9208 Tidak signifika		Tidak signifikan masuk model		
5	$(0,1)(1,2)(1,0)_6$	AR(6)	0	Signifikan masuk model	Tidak signifikan masuk model	
	konstan	MA(1)	0	Signifikan masuk model	masuk model	
	SARIMA	AR(6)	0	Signifikan masuk model	Signifikan masuk	
6	(0,1)(1,2)(1,0)_6 tanpa konstan	MA(1)	0	Signifikan masuk model	model	
	SARIMA	С	0.9949	Tidak signifikan masuk model		
7	$(1,0)(1,2)(1,1)_6$	AR(1)	0.0626	Tidak signifikan masuk model	Tidak signifikan	
′	konstan	MA(1)	0.557	Tidak signifikan masuk model	masuk model	
		MA(6)	0	Signifikan masuk model		
	SARIMA	AR(1)	0.0621	Tidak signifikan masuk model	Tidak signifikan	
8	(1,0)(1,2)(1,1)_6 tanpa	MA(1)	0.5475	Tidak signifikan masuk model	masuk model	
	konstan	MA(6)	0	Signifikan masuk model		
	SARIMA	С	0.9821	Tidak signifikan masuk model	Tidak signifikan	
9	(1,0)(1,2)(0,1)_6	AR(1)	0.0146	Signifikan masuk model	masuk model	
	konstan	MA(6)	0	Signifikan masuk model		
10		AR(1)	0.0141	Signifikan masuk model		

	SARIMA (1,0)(1,2)(0,1)_6 tanpa konstan	MA(6)	0	Signifikan masuk model	Signifikan masuk model	
	SARIMA	C	0.4102	Tidak signifikan masuk model		
11	(0,0)(1,2)(1,1)_6	MA(6)	0	Signifikan masuk model	Tidak signifikan	
	konstan	MA(1)	0.8669	Tidak signifikan masuk model	masuk model	
	SARIMA	MA(6)	0	Signifikan masuk model		
12	(0,0)(1,2)(1,1)_6 tanpa konstan	MA(1)	0.3453	Tidak signifikan masuk model	Tidak signifikan masuk model	
		С	0.9082	Tidak signifikan masuk model		
	SARIMA	AR(1)	0.9821	Tidak signifikan masuk model	Tidak signifikan	
13	(1,0)(1,2)(1,2)_6	MA(12)	0	Signifikan masuk model	masuk model	
	konstan	MA(1)	0.0001	Signifikan masuk model		
	SARIMA	AR(1)	0.981	Tidak signifikan masuk model		
14	(1,0)(1,2)(1,2)_6 tanpa	MA(12)	0	Signifikan masuk model	Tidak signifikan	
	konstan	MA(1)	0.0001	Signifikan masuk model	masuk model	
	SARIMA	С	0.8242	Tidak signifikan masuk model		
15	(1,0)(1,2)(0,2)_6	AR(1)	0.0146	Signifikan masuk model	Tidak signifikan	
	konstan	MA(12)	0	Signifikan masuk model	masuk model	
	SARIMA	AR(1)	0.0143	Signifikan masuk model	Ciamifilm a manada	
16	(1,0)(1,2)(0,2)_6 tanpa konstan	MA(12)	0	Signifikan masuk model	Signifikan masuk model	
	SARIMA	С	0.9417	Tidak signifikan masuk model	Tidal at a sign a	
17	(0,0)(1,2)(1,2)_6	MA(1)	0	Signifikan masuk model	Tidak signifikan	
	konstan	MA(12)	0	Signifikan masuk model	masuk model	
	SARIMA	MA(1)	0	Signifikan masuk model	Signifikan masuk	
18	(0,0)(1,2)(1,2)_6 tanpa konstan	MA(12)	0	Signifikan masuk model	model	
	CADINAA	С	0.8785	Tidak signifikan masuk model		
19	SARIMA (1,0)(1,2)(1,3)_6	AR(1)	0.3848	Tidak signifikan masuk model	Tidak signifikan	
19	konstan	MA(1)	0.8201	Tidak signifikan masuk model	masuk model	
	Konstan	MA(18)	0.0003	Signifikan masuk model		
	SARIMA	AR(1)	0.3812	Tidak signifikan masuk model	Tidak signifikan	
20	(1,0)(1,2)(1,3)_6 tanpa	MA(1)	0.8165	Tidak signifikan masuk model	Tidak signifikan masuk model	
	konstan	MA(18)	0.0003	Signifikan masuk model	masuk model	
	SARIMA	С	0.9031	Tidak signifikan masuk model		
21	(1,0)(1,2)(0,3)_6	AR(1)	0.0484	Signifikan masuk model	Tidak signifikan masuk model	
	konstan	MA(18)	0	Signifikan masuk model	masuk modei	
	SARIMA	AR(1)	0.0475	Signifikan masuk model	Signifikan masuk	
22	(1,0)(1,2)(0,3)_6 tanpa konstan	MA(18)	0	Signifikan masuk model	model	
	SARIMA	С	0.7933	Tidak signifikan masuk model	Tidak signifikan	
23	(0,0)(1,2)(1,3)_6	MA(1)	0.0515	Tidak signifikan masuk model	Tidak signifikan masuk model	
	konstan	MA(18)	0	Signifikan masuk model	masuk mouel	

	SARIMA	MA(1)	0.0481	Signifikan masuk model	Signifikan masuk	
24	(0,0)(1,2)(1,3)_6 tanpa konstan	MA(18)	0	Signifikan masuk model	model	
	CARIAA	С	0.838	Tidak signifikan masuk model		
25	SARIMA	AR(1)	0.7681	Tidak signifikan masuk model	Tidak signifikan	
25	(1,0)(1,2)(1,4)_6 konstan	MA(1)	0.7314	Tidak signifikan masuk model	masuk model	
	Konstan	MA(24)	0.0057	Signifikan masuk model		
	SARIMA	AR(1)	0.7998	Tidak signifikan masuk model	I I · · · · · · · · · · · · · · · ·	
26	(1,0)(1,2)(1,4)_6 tanpa	MA(1)	0.7885	Tidak signifikan masuk model	Tidak signifikan	
	konstan	MA(24)	0.0558	Tidak signifikan masuk model	masuk model	
	SARIMA	С	0.8531	Tidak signifikan masuk model		
27	(1,0)(1,2)(0,4)_6	AR(1)	0.1048	Tidak signifikan masuk model	Tidak signifikan masuk model	
	konstan	MA(24)	0.0245	Signifikan masuk model	masuk modei	
	SARIMA	AR(1)	0.1033	Tidak signifikan masuk model	Tidak signifikan	
28	(1,0)(1,2)(0,4)_6 tanpa konstan	MA(24)	0.0238	Signifikan masuk model	masuk model	
	SARIMA	С	0.9356	Tidak signifikan masuk model		
	(0,0)(1,2)(1,4)_6	MA(1)	0.0909	Tidak signifikan masuk model	Tidak signifikan	
29	konstan	MA(24)	0.0519	Tidak signifikan masuk model	masuk model	
	SARIMA	MA(1)	0.0892	Tidak signifikan masuk model	Tidak signifikan	
30	(0,0)(1,2)(1,4)_6 tanpa konstan	MA(24)	0.0508	Tidak signifikan masuk model	masuk model	

Ke-30 model yang mungkin tersebut diuji inferensi, baik secara parameter dan overall. Model dikatakan signifikan jika setiap parameter pembentuknya signifikan masuk model. Sebuah parameter dikatakan signifikan masuk model jika p-value $< \alpha$.

Didapatkan 7 model yang signifikan dari tabel uji di atas, dimana setiap parameter pembentuk model adalah signifikan masuk model.

Model yang memenuhi uji signifikansi model

Model yang signifikan adalah

- 1. SARIMA (1,1)(1,2)(1,0)_6 tanpa konstan
- 2. SARIMA $(0,1)(1,2)(1,0)_6$ tanpa konstan
- 3. SARIMA $(1,0)(1,2)(0,1)_6$ tanpa konstan

- 4. SARIMA (1,0)(1,2)(0,2)_6 tanpa konstan
- 5. SARIMA $(0,0)(1,2)(1,2)_6$ tanpa konstan
- 6. SARIMA $(1,0)(1,2)(0,3)_6$ tanpa konstan
- 7. SARIMA $(0,0)(1,2)(1,3)_6$ tanpa konstan

Diagnostic Checking

Model	NA	HR	NR
SARIMA (1,1)(1,2)(1,0)_6	Tidak	Tidak	Memenuhi
tanpa konstan	memenuhi	memenuhi	(0.930545)
SARIMA (0,1)(1,2)(1,0)_6	Tidak	Tidak	Memenuhi
tanpa konstan	memenuhi	memenuhi	(0.936800)
SARIMA (1,0)(1,2)(0,1)_6	Tidak	Tidak	Memenuhi
tanpa konstan	memenuhi	memenuhi	(0.062670)
SARIMA (1,0)(1,2)(0,2)_6	Tidak	Tidak	Memenuhi
tanpa konstan	memenuhi	memenuhi	(0.821681)
SARIMA (0,0)(1,2)(1,2)_6	Tidak	Tidak	Memenuhi
tanpa konstan	memenuhi	memenuhi	(0.923751)
SARIMA (1.0)(1.2)(0.2) 6			Tidak
SARIMA (1,0)(1,2)(0,3)_6 tanpa konstan	Tidak	Tidak	memenuhi
taripa koristari	memenuhi	memenuhi	(0.046890)
SARIMA (0,0)(1,2)(1,3)_6			Tidak
	Tidak	Tidak	memenuhi
tanpa konstan	memenuhi	memenuhi	(0.011869)

<u>Interpretasi</u>:

Pada diagnostic checking, semua model yang signifikan tidak memenuhi asumsi residual no autokorelasi dan homoskedastisitas. Model dianggap memenuhi asumsi no autokorelasi dan homoskedastisitas jika pada korelogram residual tidak ada lag yang keluar. Namun didapati lag yang masih keluar pada korelogram residual tiap model, sehingga tidak ada model yang memenuhi.

Kemudian pada asumsi normalitas residual, terdapat 5 model yang memenuhi yaitu, SARIMA $(1,1)(1,2)(1,0)_6$ tanpa konstan, SARIMA $(0,1)(1,2)(1,0)_6$ tanpa konstan, SARIMA $(1,0)(1,2)(0,1)_6$ tanpa konstan, SARIMA $(1,0)(1,2)(0,2)_6$ tanpa konstan, SARIMA $(0,0)(1,2)(1,2)_6$ tanpa konstan. Residual dikatakan berdistribusi normal karena p-value (probability Jarque-Bera) lebih dari alpha, yakni 0,05.

Sehingga sebenarnya kelima model tersebut akan lanjut ke pemilihan model terbaik.

Pemilihan Model Terbaik

					Log		
Model	R ²	Adj R ²	SE	SSR	Likelihood	AIC	SBC
SARIMA (1,1)(1,2)(1,0)_6 tanpa konstan	0.632545	0.628795	0.039076	0.149637	183.3418	3.62684	- 3.57473
SARIMA (0,1)(1,2)(1,0)_6						-	-
tanpa konstan	0.663178	0.659741	0.037411	0.137162	187.6941	3.71388	3.66178
SARIMA (1,0)(1,2)(0,1)_6 tanpa konstan	0.628821	0.625218	0.038615	0.153582	193.7042	- 3.65151	- 3.60096
SARIMA (1,0)(1,2)(0,2)_6 tanpa konstan	0.300502	0.293711	0.053009	0.28943	160.4361	3.01783	2.96728
SARIMA (0,0)(1,2)(1,2)_6						-	-
tanpa konstan	0.326463	0.319987	0.052125	0.282565	163.7386	3.05167	3.00142

<u>Interpretasi:</u>

Pada kriteria pemilihan model terbaik, dicari model yang memiliki R², Adj R², serta Log Likelihood yang besar, sedangkan SE, SSR, AIC, dan SBC yang kecil.

Kemudian diperoleh model yang paling banyak memenuhi kriteria adalah **SARIMA** (0,1)(1,2)(1,0)_6 tanpa konstan, yaitu memiliki R² dan Adj R² yang paling besar, serta SE, SSR, AIC, dan BIC yang paling kecil. Sehingga model tersebut dianggap sebagai model yang lebih baik dibandingkan model yang lain.

Model terbaik dan interpretasinya

Setelah dilakukan serangkaian langkah, didapatkan model terbaik untuk memprediksi nilai utilitas produksi industry di U.S yaitu **SARIMA** (0,1)(1,2)(1,0)_6 tanpa konstan.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(6)	-0.830875	0.061185	-13.57964	0.0000
MA(1)	-0.504649	0.089119	-5.662650	0.0000

Bentuk persamaan umum **SARIMA** (0,1)(1,2)(1,0)_ 6 tanpa konstan yaitu:

(*) Interaksi pada komponen MA (Q)

$$\begin{split} D_p(B)(1-B)^d(1-B^s)^DX_t &= (C_q(B)+C_q(B^s))\,\varepsilon_t\\ &(1-0.830875B^6)(1-B)^1(1-B^6)^2X_t = (1-0.504649B)\,\varepsilon_t\\ &(0.830875B^{19}-0.830875B^{18}-2.66175B^{13}+2.66175B^{12}+2.830875B^7-2.830875B^6-B+1)X_t = \varepsilon_t - 0.504649\,\varepsilon_{t-1} \end{split}$$

```
0.830875X_{t-19} - 0.830875X_{t-18} - 2.66175X_{t-13} + 2.66175X_{t-12} + 2.830875X_{t-7} - 2.830875X_{t-6} - X_{t-1} + X_t = \varepsilon_t - 0.504649\ \varepsilon_{t-1} \\ X_t = -0.830875X_{t-19} + 0.830875X_{t-18} + 2.66175X_{t-13} - 2.66175X_{t-12} - 2.830875X_{t-7} + 2.830875X_{t-6} + X_{t-1} + \varepsilon_t - 0.504649\ \varepsilon_{t-1} + 2.830875X_{t-7} + 2.830875X_{
```

Dimana,

 X_t : rata-rata temperatur udara Nottem pada waktu ke – t (0Fahrenheit)

 ε_t : nilai kesalahan pada waktu ke – t (⁰Fahrenheit)

Interpretasi:

- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 19 periode yang lalu, akan menyebabkan penururnan data peramalan rata-rata temperatur udara sebesar 0,840875 satuan pada periode ke – t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 18 periode yang lalu (t-18), akan menyebabkan kenaikan data peramalan rata-rata temperatur udara sebesar 0,840875 satuan pada periode ke – t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 13 periode yang lalu (t-13), akan menyebabkan kenaikan data peramalan rata-rata temperatur udara sebesar 2,66175 satuan pada periode ke – t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 12 periode yang lalu (t-13), akan menyebabkan penurunan data peramalan rata-rata temperatur udara sebesar 2,66175 satuan pada periode ke t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 7 periode yang lalu (t-7), akan menyebabkan penurunan data peramalan rata-rata temperatur udara sebesar 2,830875 satuan pada periode ke – t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 6 periode yang lalu (t-6), akan menyebabkan kenaikan data peramalan rata-rata temperatur udara sebesar 2,830875 satuan pada periode ke – t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan data rata-rata temperature udara pada 1 periode yang lalu (t-1), akan menyebabkan kenaikan data peramalan rata-rata temperatur udara sebesar 1 satuan pada periode ke – t dengan menganggap variabel lain konstan.
- Setiap kenaikan 1 satuan error 12 periode yang lalu (t-12), akan menyebabkan penurunan data peramalan rata-rata temperatur udara sebesar 1,115968 satuan pada waktu ke t.

• Setiap kenaikan 1 satuan error 24 periode yang lalu (t-24), akan menyebabkan kenaikan data peramalan rata-rata temperatur udara sebesar 0,189539 satuan pada waktu ke – t.

Forcasting

PERIODE	FORECAST	RMSE
2019M06	102.6142976	3.842477
2019M07	112.5373785	3.823408
2019M08	110.7962137	3.804619

• Forcasting periode bulan ke 6 tahun 2019. Dilakukan dengan menginput satu data, kemudian melakukan forcasting dataf1 pada model SARIMA (0,1)(1,2)(1,0)_ 6 tanpa konstan, kemudian akan didapatkan nilai RMSE dan data peramalan untuk periode bulan ke 6 tahun 2019.

• Forcasting periode bulan ke 7 tahun 2019. Dilakukan dengan menginput satu data, kemudian melakukan forcasting dataf1 pada model SARIMA (0,1)(1,2)(1,0)_ 6 tanpa konstan, kemudian akan didapatkan nilai RMSE dan data peramalan untuk periode bulan ke 7 tahun 2019.

• Forcasting periode bulan ke 8 tahun 2019. Dilakukan dengan menginput satu data, kemudian melakukan forcasting dataf1 pada model SARIMA (0,1)(1,2)(1,0)_ 6 tanpa konstan, kemudian akan didapatkan nilai RMSE dan data peramalan untuk periode bulan ke 8 tahun 2019.

BAB III

KESIMPULAN

1. Pemasalahan pada nomor 1 diselesaikan dengan model ARIMA-GARCH. Dimana model awal arima yang didapat dari permasalahan nomor 1 adalah **ARIMA** (1,1,1). Kemudian model ini dilakukan underfitting, dan didapatkan 6 model. Kemudian yang signifikan hanya ada 2 model yaitu ARIMA (1,1,0) tanpa konstan dan ARIMA (0,1,1) tanpa konstan. 2 model ini masuk kedalam diagnostic checking, dimana kedua model ini memenuhi No autokorelasi residual, tidak memenuhi homoskedastisitas, dan tidak memenuhi normalitas residual. Kemudian lanjut ke pemilihan model terbaik. Dari pemilihan model terbaik ini didapatkan model terbaik yaitu ARIMA(0,1,1) tanpa konstan dengan persamaan umum $X_t = X_{t-1} + \varepsilon_t - 0.149813 \varepsilon_{t-1}$ dan dilanjutkan dengan forcasting 10 hari kedepan.

Karena model arima terbaik tidak memenuhi homoskedastisitas maka dilakukan penanganan dalam membentuk model ARCH/GARCH dengan menambahkan efek ARMA dari model terbaik. Dari penanganan model ARCH/GARCH dilakukan underfitting dan didapatkan 12 model. Dengan melakukan uji signifikansi didapatkan model yang signifikan ada 2 yaitu GARCH (1,2) tanpa konstan dan GARCH (1,2) konstan. Kedua model ini akan masuk ke diagnostic checking, dimana model GARCH (1,2) tanpa konstan memenuhi ARCH LM TEST dan No autokorelasi dan tidak memenuhi normalitas residual. Sedangkan model GARCH (1,2) konstan memenuhi ARCH LM Test, tidak memenuhi noa utokorelasi dan normalitas residual. Dari diagnostic checking sudah didapatkan model terbaiknya yaitu GARCH (1,2) tanpa konstan dengan persamaan umum $return_t = \varepsilon_t - 0.157274\varepsilon_{t-1} \qquad \qquad \text{dan} \\ \sigma_t^2 = 0.000182 + 0.0559537\sigma_{t-1}{}^2 - 0.489351\sigma_{t-2}{}^2 + 0.178361~\varepsilon_{t-1}{}^2. \text{ Kemudian} \\ \text{dilakuakan forascting 10 hari kedepan.}$

2. Permasalahan nomor 2 dapat diselesaikan dengan model **SARIMA ADITIF**, dimana model awal yang didapat ialah SARIMA (1,1)(1,1)(1,4)_6. Model ini akan diunderfitting dan didapatkan 30 model. Model-model tersebut kemudian di uji signifikansi, dan didapat

7 model yang signifikan dan yang lanjut ke diagnostic checking. Dimana dari diagnostic ditemukan 4 model yang akan lanjut ke pemilihan model terbaik. Model itu adalah SARIMA (1,1)(1,2)(1,0)_6 tanpa konstan, SARIMA (0,1)(1,2)(1,0)_6 tanpa konstan, SARIMA (1,0)(1,2)(0,1)_6 tanpa konstan, SARIMA (1,0)(1,2)(0,2)_6 tanpa konstan, SARIMA (0,0)(1,2)(1,2)_6 tanpa konstan. Setelah dilakukan pemilihan model terbaik didapatkanlah model SARIMA (0,1)(1,2)(1,0)_6 tanpa konstan menjadi model terbaik untuk permaslahan nomor 2, dengan persamaan model sebagai berikut

 $Xt = -0.830875Xt - 19 + 0.830875Xt - 18 + 2.66175Xt - 13 - 2.66175Xt - 12 - 2.830875Xt - 7 + 2.830875Xt - 6 + Xt - 1 + \varepsilon t - 0.504649 \varepsilon t - 1$ Dan dilakukan forasting selama 3 bulan kedepan.