第 3 节 双曲线渐近线相关问题 (★★★)

强化训练

1. (2023・北京模拟・★★) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一个焦点为 (√5,0),且与直线 $y = \pm 2x$ 没 有公共点,则双曲线的方程可以为_____(填一个满足要求的双曲线方程即可)

答案: $x^2 - \frac{y^2}{4} = 1$ (答案不唯一,详见解析)

解析:由于只需填一个双曲线,故最简单的做法是让 $y=\pm 2x$ 就是渐近线,可由此建立方程组求出a和b,

若 $y = \pm 2x$ 为双曲线的渐近线,则 $\frac{b}{a} = 2$,所以 b = 2a ①,

又双曲线的一个焦点是($\sqrt{5}$,0), 所以 $a^2 + b^2 = 5$ ②,

在此范围内任取一个m,得到的双曲线均满足题意.

联立①②解得: $\begin{cases} a=1\\ b=2 \end{cases}$ 故双曲线的方程为 $x^2 - \frac{y^2}{4} = 1$;

若要求出全部满足要求的双曲线,可由给的焦点设出双曲线的方程,

由题意,可设双曲线的方程为 $\frac{x^2}{m} - \frac{y^2}{5-m} = 1(0 < m < 5)$,则其渐近线为 $y = \pm \frac{\sqrt{5-m}}{\sqrt{m}} x$,

要使双曲线与直线 $y=\pm 2x$ 没有交点,如图,应有 $\frac{\sqrt{5-m}}{\sqrt{m}} \le 2$,解得: $m \ge 1$,结合 0 < m < 5 可得 $1 \le m < 5$,

- 2. (2023・重庆二模・★★) 已知点 P(1,2)和双曲线 $C: x^2 \frac{y^2}{4} = 1$, 过点 P 且与双曲线 C 只有 1 个公共点
- 的直线有(
- (A) 2 条 (B) 3 条 (C) 4 条 (D) 无数条

答案: A

解析:分析直线与双曲线的交点,可画图结合渐近线来看,

双曲线的渐近线为 $y=\pm 2x$,注意到点P(1,2)在其中一条渐近线y=2x上,如图,

我们可以让直线从竖直线出发,绕P旋转180°,就能看出满足要求的直线有几条了,

由图可知过 P 且与双曲线 C 只有 1 个公共点的直线有 2 条,其中一条是切线 x=1,另一条是与渐近线 y = -2x 平行的直线.

3. (2022 • 江苏南京模拟 • ★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条渐近线的夹角为 $\frac{\pi}{3}$,则此双 曲线的离心率为 .

答案: $\frac{2\sqrt{3}}{2}$ 或 2

解析: 双曲线的渐近线为 $y=\pm \frac{b}{a}x$,它们的夹角为 $\frac{\pi}{3}$ 有如图 1 和图 2 所示的两种情况,下面分别考虑,

若为图 1,则 $\theta = \frac{\pi}{6}$,所以 $\frac{b}{a} = \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$,从而 $a = \sqrt{3}b$,故 $a^2 = 3b^2 = 3c^2 - 3a^2$,

整理得: $\frac{c^2}{a^2} = \frac{4}{3}$, 所以离心率 $e = \frac{c}{a} = \frac{2\sqrt{3}}{3}$;

若为图 2,则 $\theta = \frac{\pi}{3}$,所以 $\frac{b}{a} = \tan \frac{\pi}{3} = \sqrt{3}$,从而 $b = \sqrt{3}a$,故 $b^2 = c^2 - a^2 = 3a^2$,

整理得: $\frac{c^2}{a^2} = 4$, 所以离心率 $e = \frac{c}{a} = 2$.

相交直线的夹角指的是它们形成的两对对顶角中较小的那一对.

- 4. (2022 江苏南京模拟 ★★) 椭圆 $C_1: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 与双曲线 $C_2: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率之积为
- 1,则C,的两条渐近线的倾斜角分别为()

(A)
$$\frac{\pi}{6}$$
, $-\frac{\pi}{6}$ (B) $\frac{\pi}{3}$, $-\frac{\pi}{3}$ (C) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ (D) $\frac{\pi}{3}$, $\frac{2\pi}{3}$

(B)
$$\frac{\pi}{3}$$
, $-\frac{\pi}{3}$

(C)
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

(D)
$$\frac{\pi}{3}$$
, $\frac{2\pi}{3}$

答案: D

解析: 先求渐近线斜率,可通过离心率之积为1来寻找a和b的关系,

椭圆 C_1 的离心率 $e_1 = \frac{\sqrt{4-3}}{2} = \frac{1}{2}$,双曲线 C_2 的离心率 $e_2 = \frac{\sqrt{a^2 + b^2}}{a}$,由题意, $e_1 e_2 = \frac{1}{2} \cdot \frac{\sqrt{a^2 + b^2}}{a} = 1$,

化简得: $\frac{b}{a} = \sqrt{3}$,所以 C_2 的渐近线斜率分别为 $\sqrt{3}$ 和 $-\sqrt{3}$,故其倾斜角分别为 $\frac{\pi}{3}$, $\frac{2\pi}{3}$.

5. (2020・新课标 II 卷・★★★) 设 O 为坐标原点,直线 x = a 与双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条 渐近线分别交于 D, E 两点,若 ΔODE 的面积为 8,则 C 的焦距的最小值为 ()

- (A) 4 (B) 8 (C) 16 (D) 32

答案: B

解析: 由题意,双曲线 C 的焦距 $2c = 2\sqrt{a^2 + b^2}$ ①,

要求最值,得先找a,b的关系,给了 $S_{\Delta ODE}$,如图,可通过联立方程求D,E坐标来算底边|DE|,高即为 a,

联立
$$\begin{cases} x = a \\ y = \pm \frac{b}{a} \end{cases}$$
 解得: $y = \pm b$,所以 $|DE| = 2b$, $S_{\Delta ODE} = \frac{1}{2} |DE| \cdot a = ab$,由题意, $S_{\Delta ODE} = 8$,故 $ab = 8$,

在此条件下求①的最小值,可用不等式 $a^2 + b^2 \ge 2ab$,

由①可得 $2c = 2\sqrt{a^2 + b^2} \ge 2\sqrt{2ab} = 8$,当且仅当 $a = b = 2\sqrt{2}$ 时取等号,所以焦距的最小值为 8.

6. $(2022 \cdot \Gamma 东珠海模拟 \cdot \star \star \star)$ 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 点 A 在 C 的过第二、四象限的渐近线 l 上,且 $AF_2 \perp l$,若 $|BF_2| - |BF_1| = 2a$, $\overline{F_2B} + 2\overline{BA} = \overline{0}$,则 C 的离心 率为()

- (A) $\sqrt{2}$ (B) $\sqrt{5}$ (C) $\sqrt{6}$ (D) $2\sqrt{2}$

答案: B

解析: 由 $\overline{F_2B} + 2\overline{BA} = \overline{0}$ 可得 $\overline{BF_2} = 2\overline{BA}$,所以A为 BF_2 的中点,

如图, ΔAOF_2 是C的一个特征三角形,结合A为中点,可构造中位线,计算 $|BF_1|$ 和 $|BF_2|$,

在 $\triangle AOF_2$ 中, $|AF_2|=b$, |OA|=a, 因为 O 是 F_1F_2 的中点,所以 $|BF_1|=2|OA|=2a$, $|BF_2|=2|AF_2|=2b$, 代入题干的 $|BF_2|-|BF_1|=2a$ 可得2b-2a=2a,所以b=2a,故 $b^2=c^2-a^2=4a^2$,

整理得: $\frac{c^2}{a^2} = 5$, 所以 C 的离心率 $e = \frac{c}{a} = \sqrt{5}$.

7. $(2023 \cdot 福建统考 \cdot \star \star \star \star)$ 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 $\sqrt{5}$,左、右焦点分别为 F_1 , F_2 , F_2 关于C的一条渐近线的对称点为P,若 $|PF_1|=2$,则 ΔPF_1F_2 的面积为()

- (A) 2 (B) $\sqrt{5}$ (C) 3 (D) 4

答案: D

解析:给了离心率,可建立a,b,c的比值关系,找到渐近线斜率,

离心率 $e = \frac{c}{c} = \sqrt{5} \Rightarrow c = \sqrt{5}a \Rightarrow c^2 = 5a^2 \Rightarrow a^2 + b^2 = 5a^2$,所以 b = 2a,故双曲线 C的渐近线为 $y = \pm 2x$,

条件中有点关于直线对称,于是有中点和垂直两层关系,先由它出发分析图形的几何性质,

如图,不妨设 F_2 和P关于渐近线y=2x对称,则图中Q为 PF_2 中点,且 $OQ \perp PF_2$,

又 O 为 F_1F_2 的中点,所以 $OQ//PF_1$,故 $PF_1 \perp PF_2$,

给了 $|PF_1|$,第 $S_{\Delta PF_1F_2}$ 还差 $|PF_2|$,注意到 ΔOQF_2 是一个特征三角形,且已求得其三边的比值,故由 $|PF_1|$ 先 求|OQ|,就能求得 $|QF_2|$,从而得到 $|PF_2|$,

由前面的分析过程可知 $|OQ| = \frac{1}{2}|PF_1| = 1$,在 ΔQOF_2 中, $|QF_2| = |OQ| \cdot \tan \angle QOF_2 = 2|OQ| = 2$,

所以 $|PF_2| = 2|QF_2| = 4$,故 $S_{\Delta PF_1F_2} = \frac{1}{2}|PF_1| \cdot |PF_2| = \frac{1}{2} \times 2 \times 4 = 4$.

8. (2022•江西南昌模拟•★★★) 双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,在 C的渐近线上存在一点 M,使 $\angle OMF_2 = 90^\circ$,且 M 在第一象限,若 $|MF_1| = 3|MF_2|$,则 C 的离心率为_____. 答案: $\frac{\sqrt{6}}{2}$

解析:如图, ΔMOF_2 是 C 的特征三角形,可由它的三边结合已知条件计算 $|MF_1|$,每边都用 a,b,c 表示 后,可用双余弦法构造方程求离心率,

由题意,
$$|OM| = a$$
, $|MF_2| = b$, $|MF_1| = 3|MF_2| = 3b$, $|OF_1| = |OF_2| = c$,

曲图可知
$$\cos \angle MOF_2 = \frac{|OM|}{|OF_2|} = \frac{a}{c}$$
, $\cos \angle MOF_1 = \frac{|OM|^2 + |OF_1|^2 - |MF_1|^2}{2|OM| \cdot |OF_1|} = \frac{a^2 + c^2 - 9b^2}{2ac}$,

因为
$$\angle MOF_2 = \pi - \angle MOF_1$$
,所以 $\cos \angle MOF_2 = \cos(\pi - \angle MOF_1) = -\cos \angle MOF_1$,故 $\frac{a}{c} = -\frac{a^2 + c^2 - 9b^2}{2ac}$,

整理得:
$$3a^2+c^2-9b^2=0$$
,所以 $3a^2+c^2-9(c^2-a^2)=0$,从而 $\frac{c^2}{a^2}=\frac{3}{2}$,故离心率 $e=\frac{c}{a}=\frac{\sqrt{6}}{2}$.

9. $(\bigstar \bigstar \bigstar)$ 双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F,过 F 作一条渐近线的垂线 l,垂足为 M,若 l 与另一条渐近线的交点是 N,且 $\overrightarrow{MN} = 5\overrightarrow{MF}$,则 C 的离心率为 .

答案:
$$\frac{2\sqrt{10}}{5}$$

解法 1:如图, ΔMOF 是 C 的特征三角形,先结合角平分线性质定理和 $\overline{MN} = 5\overline{MF}$ 求其它线段的长,

由题意,
$$|MF|=b$$
, $|OM|=a$,因为 $\overrightarrow{MN}=5\overrightarrow{MF}$,所以 $|MN|=5b$, $|FN|=4b$,

由渐近线的对称性,
$$OF$$
 是 $\angle MON$ 的平分线,所以 $\frac{|OM|}{|ON|} = \frac{|MF|}{|FN|} = \frac{1}{4}$,故 $|ON| = 4|OM| = 4a$,

接下来可利用 OM L MN, 由勾股定理建立方程求离心率,

在 ΔMON 中, $|OM|^2 + |MN|^2 = |ON|^2$, 所以 $a^2 + 25b^2 = 16a^2$, 整理得: $3a^2 = 5b^2$,

所以
$$3a^2 = 5c^2 - 5a^2$$
,从而 $\frac{c^2}{a^2} = \frac{8}{5}$,故离心率 $e = \frac{c}{a} = \frac{2\sqrt{10}}{5}$.

解法 2: 由题意,|MF|=b,|OM|=a,因为 $\overrightarrow{MN}=5\overrightarrow{MF}$,所以|MN|=5b,

接下来也可抓住 $\angle MON = 2\angle MOF$,利用二倍角公式来建立方程求离心率,

记
$$\angle MOF = \theta$$
 ,则 $\angle MON = 2\theta$,由图可知 $\tan \theta = \frac{|MF|}{|OM|} = \frac{b}{a}$, $\tan 2\theta = \frac{|MN|}{|OM|} = \frac{5b}{a}$,

因为
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$
,所以 $\frac{5b}{a} = \frac{2 \cdot \frac{b}{a}}{1-\frac{b^2}{a^2}}$,整理得: $3a^2 = 5b^2$,所以 $3a^2 = 5c^2 - 5a^2$,

整理得:
$$\frac{c^2}{a^2} = \frac{8}{5}$$
, 故离心率 $e = \frac{c}{a} = \frac{2\sqrt{10}}{5}$.

解法 3:由 MN \bot 一条渐近线可写出直线 MN 的方程,与两渐近线联立求 M,N 的坐标,将 \overline{MN} = $5\overline{MF}$ 翻译成坐标关系建立方程求离心率,

如图, F(c,0), 渐近线 OM、 ON 的方程分别为 $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$,

因为 $l \perp OM$,所以l的方程为 $y = -\frac{a}{b}(x-c)$,联立 $\begin{cases} y = -\frac{a}{b}(x-c) \\ y = \frac{b}{c} \end{cases}$ 解得: $y = \frac{ab}{c}$,即 $y_M = \frac{ab}{c}$ ①,

联立
$$\begin{cases} y = -\frac{a}{b}(x-c) \\ y = -\frac{b}{a}x \end{cases}$$
解得: $y = -\frac{abc}{a^2 - b^2}$, 即 $y_N = -\frac{abc}{a^2 - b^2}$ ②,

因为 $\overrightarrow{MN} = 5\overrightarrow{MF}$,所以 $\overrightarrow{FN} = 4\overrightarrow{MF}$,而 $\overrightarrow{FN} = (x_N - c, y_N)$, $\overrightarrow{MF} = (c - x_M, -y_M)$,所以 $y_N = -4y_M$ ③,

将①②代入③可得 $-\frac{abc}{a^2-b^2} = -4 \cdot \frac{ab}{c}$,整理得: $c^2 = 4a^2 - 4b^2$,所以 $c^2 = 4a^2 - 4(c^2 - a^2)$,

从而 $5c^2 = 8a^2$,故 $\frac{c^2}{a^2} = \frac{8}{5}$,所以离心率 $e = \frac{c}{a} = \frac{2\sqrt{10}}{5}$.

【反思】在双曲线的渐近线有关问题中,利用渐近线与其它直线或曲线联立求交点,往往计算量较大,可 作为次选方案,首选分析几何关系求解.

10. (2022 • 河南新安模拟 • ★★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一条渐近线与圆

 $A:(x-a)^2+y^2=b^2$ 交于 P, Q 两点, O 为原点, 若 Q 为 OP 中点,则 C 的离心率为()

(A)
$$\sqrt{2}$$

(A)
$$\sqrt{2}$$
 (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{2\sqrt{3}}{2}$ (D) $\sqrt{3}$

(C)
$$\frac{2\sqrt{3}}{2}$$

(D)
$$\sqrt{3}$$

答案: C

解析: 先画出图形, 尝试通过分析图形的几何特征来建立方程求离心率,

如图,|AP| = |AQ| = b,|OA| = a,注意到 $\tan \angle POA = \frac{b}{a} = \frac{|PA|}{|OA|}$,结合图形可得 $PA \perp OA$,

又Q为OP的中点,所以|OP|=2|AQ|=2b,接下来只需在 ΔPOA 中用勾股定理即可建立方程求离心率,

曲 $|OA|^2 + |PA|^2 = |OP|^2$ 可得 $a^2 + b^2 = 4b^2$,所以 $a^2 = 3b^2 = 3c^2 - 3a^2$,从而 $\frac{c^2}{a^2} = \frac{4}{3}$,故离心率 $e = \frac{c}{a} = \frac{2\sqrt{3}}{3}$.

