ÉRETTSÉGI VIZSGA • 2009. október 30

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2009. október 30. 14:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma						
Tisztázati						
Piszkozati						

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fizika — emelt szint Azonosító jel:																
-------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 0821 2 / 16 2009. október 30.

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

- 1. Egy vízszintes sebességű lövedék eltalál egy jégen fekvő fahasábot és belefúródik. A fahasáb ennek hatására mozgásba jön, a súrlódás közte és a jég között elhanyagolható. Milyen megmaradási tételeket alkalmazhatunk a két test közös sebességének kiszámítása során?
 - A) Csak a mechanikai energia megmaradásának tételét.
 - **B)** A mechanikai energia megmaradásának és a lendület megmaradásának tételét.
 - C) Csak a lendület megmaradásának tételét.
 - **D)** Semmilyen megmaradási tétel nem alkalmazható.

- 2. Egy bizonyos mennyiségű gázzal ismeretlen termodinamikai folyamatot hajtunk végre, melynek során a gázzal hőt közlünk. Mit állíthatunk a gáz hőmérsékletének megváltozásáról?
 - A) A gáz hőmérséklete a folyamat során mindenképpen nő.
 - B) A gáz hőmérséklete a folyamat során mindenképpen csökken.
 - C) A gáz hőmérséklete a folyamat során nőhet is, csökkenhet is, a konkrét folyamattól függően.

3. Három R ellenállású drótot egyenlő oldalú háromszög alakban forrasztunk össze. Mekkora lesz az eredő ellenállás az A és a B pont között?

- A) Kisebb, mint R/2.
- **B)** Pontosan R/2.
- C) Nagyobb, mint R/2, de kisebb, mint R.
- **D)** Pontosan R.

2 pont

Fiz	ika —	emelt szint	Azonosito jel:												
4.	Föld (A n A)	yan módosulna egy, a Föld középpontjától mért távol nesterséges hold pályáját te Körülbelül 1,41-szeresére i	lságát az ere ekintsük kör	deti	érté		_				_		•	ha	a
	B) C) D)	Kétszeresére nőne. Négyszeresére nőne. Nyolcszorosára nőne.													
											2 pc	nt			
5.		ap fényét nagyítóval összeg ével is meg lehetne gyújtan Nem, mert a tűzből kiindul Igen, ha egy megfelelő nag fókuszálunk. Nem, mert a Nap sokkal m	ni valamit ug ó fénysugara gyítóval elég s	yan k ne sok	ilyer em pa fény	ı elj árhu	árá izan	ssal' nosa	? k.		pont	ba	Z		
											2 pc	ont			
6.	ered	-e a következő állítás? Hár őjének nagysága bármekk Igaz, csak megfelelően kel Nem igaz, mert az eredő ne Igaz, amennyiben az erők e Nem igaz, mert az eredő er 3 N között.	ora lehet 0 N l megválaszta em lehet kisel egy egyenes r	ini abb, inen	3 N inz erő mint tén h	köz ővek 1 N atna	ött. ktore [. ak.	ok ir	ány	át.		és			

írásbeli vizsga 0821 4 / 16 2009. október 30.

Azonosító								
jel:								

7. Egy ideális gázzal a mellékelt ábrán látható körfolyamatot hajtjuk végre. Mit mondhatunk a gáz munkavégzéséről a teljes körfolyamat során?

- A) $W_{\text{összes}} < 0$
- **B)** $W_{\text{összes}} = 0$
- C) $W_{\text{összes}} > 0$

2 pont	

- 8. Mire használható az $E = m \cdot c^2$ képlet?
 - A) Egy m tömegű, c sebességű részecske mozgási energiáját határozza meg.
 - **B)** Egy atommag kötési energiájának meghatározására a tömegdefektusból.
 - C) A foton nyugalmi tömegének elméleti értékét adja meg.

- 9. Egy feltaláló azt állítja, hogy az általa kifejlesztett "antikuktában" hamarabb forr fel a víz, mint a hagyományos kuktában, mert találmánya, az "antiszelep" lecsökkenti a víz feletti gőz nyomását. Hasznos lenne-e egy ilyen "találmány"?
 - **A)** A nyomás csökkentése miatt magasabb hőmérsékleten, tehát később fog felforrni a víz az edényben, ezért az étel később fog megfőni, tehát a találmány haszontalan.
 - **B)** A nyomás csökkentése miatt alacsonyabb hőmérsékleten fog felforrni a víz, ezért az étel nehezebben fő meg ebben az edényben, tehát a találmány haszontalan.
 - C) Attól, hogy a víz forráspontja változik, nem melegszik fel gyorsabban. Így a találmány nem befolyásolja az étel megfőzéséhez szükséges időt.

2 pont	

írásbeli vizsga 0821 5 / 16 2009. október 30.

- 10. Egy radioaktív izotóp először α -bomláson megy keresztül, majd egy β^- -bomlás következik be. A keletkező elem $^{231}_{91}$ Pa . Mi volt a kiindulási anyag?
 - **A)** $^{235}_{92}$ U
 - **B)** $^{235}_{90}$ Th
 - C) $^{233}_{92}$ U
 - **D)** $^{235}_{94}$ Pu

11. Egy vízszintes síkra helyezett tégla helyzeti energiája a síkhoz képest 0,5 J. Mekkora lesz két, az ábra szerint egymásra helyezett tégla helyzeti energiája a vízszintes síkhoz képest?

- **A)** 1 J
- **B)** 1,5 J
- **C**) 2 J
- **D)** 2,5 J

12. Egy rézcsőbe kisméretű, henger alakú mágnest ejtünk északi pólusával felfelé. A mágnes alatt és felett áramok indukálódtak a csőben. Melyik ábra mutatja helyesen ezen áramok irányát?

- A) Az első.
- B) A második.
- C) A harmadik.
- **D)** A negyedik.

Fizil	ka —	- emelt szint	Azonosító jel:												
13.	Mi a A) B) C) D)	A Millikan-kísérlet jelentősége: A kísérlet bebizonyította az atc A kísérlettel határozta meg Mi A kísérlet a fény részecsketern A kísérlet az anyag hullámtern	ommag lé llikan az nészeténe	ele k e	mi t Iső l	öltés bizo	nyít	éka	volt.		21	pont			
	mily	ális (nagyon nagy ellenállású) f ven jellemző feszültséget mutat	_		erőt	köti	ink	egy	tele	pre	. Kö	izelí	tőle	g	
	A) B) C)	A telep elektromotoros erejét. A telep belső ellenállásán eső a A telep rövidzárási feszültségé	-	get.							2 1	oont			
15.	Tud A)	l-e a Vénusz teljes napfogyatko Igen, de nagyon ritkán fordul e				sz ke	erin	gési	síkia	a kii	ssé e	eltér			
	B) C)	a Földétől. Nem, mert a külső bolygók ne Igen, de csak akkor, ha a Vénu tartózkodik.	m tudnak ısz ellipsz	na zisp	pfog ályá	gyatk iján	kozá épp	ist o en f	kozn öldkö	ii. özel	lben				1
	D)	Nem, mert a Vénusz látszólago napkorongot.	os aunero	<u>ர</u> ப	ui K	1081,	nel	II lā	Kaijä	. CI		oont			

írásbeli vizsga 0821 7/16 2009. október 30.

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalra írhatja.

1. Függőleges és vízszintes hajítás

A függélyesen fölhajított mozgásnál a nehézkedéserő az emelkedő testet folyamatosan húzza függélyesen lefelé, s annak azon sebességét mellyel a fölfelé hajtatni kezdett, az első másodpercre 31 lábbal, a másodikra 62 lábbal, a harmadikra 93 lábbal kevesíti.

Warga János: Természettan 1850

Ismertesse egy pontszerűnek tekintett test függőleges hajítását! Adja meg a vízszintes hajítás jellemző adatai (távolság, időtartam) és ezek kiszámításának elveit! Értelmezze az első kozmikus sebességet. Adja meg, hogy az ezzel a sebességgel (a Föld felszíne közelében) "vízszintesen elhajított" test (ideális esetben) milyen mozgást fog végezni! Magyarázza el e mozgás létrejöttének okát! Ismertesse a második kozmikus sebesség fogalmát! Mi történne egy tetszés szerinti nagy sebességgel felfelé hajított testtel, ha egy lefelé mutató homogén gravitációs térben mozogna? Miért zajlik ez a folyamat kellően nagy kezdősebesség esetén a gömb alakú Föld inhomogén gravitációs terében másképpen?

2. A fény törésének törvénye

Két közeg válfelületéről visszavert fénysugarak száma annál nagyobb, minél nagyobb a megtörés tehetség különbzéke a két közeg közt, s minél dűlősebben esnek a fénysugarak. A fémek sok fényt vernek vissza, mert megtöréstehetségük aránylag a léghez nagy, víz és üvegtáblák annál fényesebbnek látszanak, minél dűlősebben nézünk reájuk.

Warga János: Természettan 1850

Ismertesse a geometriai optika alapfeltevéseit a fény terjedéséről! Írja le a fény törésének törvényét! Értelmezze a lencsék képalkotását jellemző adatokat (képtávolság, tárgytávolság, képnagyság, tárgynagyság, nagyítás, fókusztávolság) egy tetszőlegesen választott elrendezés esetén! Írja fel a jellemző adatok közötti összefüggéseket! Értelmezze és jellemezze a távcső vagy a mikroszkóp egy választott típusának működési elvét! A magyarázathoz készítsen rajzot!

írásbeli vizsga 0821 8 / 16 2009. október 30.

3. A harmat képződése

A levegőből leszállt harmat olyan vízgőz, amely elveszítvén melegítőjét, melyet vagy a föld színe nyelt el, vagy a felsőbb levegőben esett változás ragadott el, megnehezül, s a földön levő testeknek felső színére leülepszik.

Varga Márton: A tsillagos égnek és a Föld golyóbissának az ő tüneményeivel együtt való természeti előadása, s megismertetése (1809)

Ismertesse zárt térben a folyadék és gőze között fennálló egyensúly jellemzőit! Értelmezze az egyensúlyi állapotot a folyadékban és gőzében található részecskék számának változása alapján! Ismertesse a telített és telítetlen gőz fogalmát, a relatív páratartalom jelentését! Mutassa be a harmatképződés folyamatát, ismertesse a harmat mennyiségét meghatározó feltételeket!

a)	b)	c)	d)	e)	f)	Kifejtés	Tartalom	Összesen
						5 pont	18 pont	23 pont

írásbeli vizsga 0821 9 / 16 2009. október 30.

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy síkkondenzátor lemezeinek távolsága d=1 cm, a lemezek közti feszültség U=1 V. A pozitív töltésű lemezbe fúrt lyukon át egy elektront lövünk be a kondenzátorlemezek közti térbe, azokra merőleges kezdősebességgel.

- a) Mekkora az elektron kezdősebessége a pozitív töltésű lemeznél, ha éppen eléri a negatív töltésű kondenzátorlemezt?
- b) Mennyi ideig tart az út az egyik lemeztől a másikig?

(A gravitációt tekintsük elhanyagolhatónak! Az elektron töltésének nagysága $1,6\cdot 10^{-19}$ C, tömege $9,1\cdot 10^{-31}$ kg.)

a)	b)	Összesen
9 pont	2 pont	11 pont

- 2. Egy geofizikai kísérlet során a Föld felszínén végzett robbantás segítségével rezgéshullámokat indítanak, amelyek a különböző kőzetrétegekben különböző sebességgel terjednek. Az egyes rétegekhez tartozó terjedési sebesség a mellékelt ábrán van feltüntetve. A kőzetrétegek mindegyike 100 m vastag.
 - a) Vázolja fel egy olyan hullám teljes pályáját a kőzetrétegekben, amely a robbantás helyétől a kőzetrétegekre merőleges (függőleges) egyenessel 30°-os szöget bezáró irányban indul el!
 - b) Milyen mélyre hatol le ez a hullám a Földbe?

₹ <u>₩</u>	100 m/s
	150 m/s
	250 m/s

400 m/s

a)	b)	Összesen
10 pont	2 pont	12 pont

- 3. Egy függőleges hengerben $A=20~{\rm cm}^2$ felületű, $M=10~{\rm kg}$ tömegű, súrlódásmentesen mozgó dugattyú héliumgázt zár be. A gáz kezdeti hőmérséklete $T_0=293~{\rm K}$, térfogata $V_0=400~{\rm cm}^3$. A gázt melegíteni kezdjük, eközben a dugattyú lassan $\Delta x=10~{\rm cm}$ -t emelkedik.
 - a) Mennyi a bezárt gáz tömege?
 - b) Mekkora a bezárt gáz hőmérséklete a melegítés végén?
 - c) Mennyi munkát végzett a bezárt gáz a melegítés során?

 $(P_{k\"{u}ls\~{o}} = 10^5 \text{ Pa, az ábra nem méretarányos})$

a)	b)	c)	Összesen
5 pont	5 pont	3 pont	13 pont

4. Egy lejtőt vízszintesen $a=10 \text{ m/s}^2$ gyorsulással mozgatunk. A lejtőn egy m=2 kg tömegű test a lejtőhöz képest nyugalomban marad, azzal együtt

gyorsul.
$$(g = 10 \frac{\text{m}}{\text{s}^2})$$

- a) Mekkora a lejtő hajlásszöge, ha a lejtő és a test között nincsen súrlódás? Mekkora a nyomóerő, amit a lejtő kifejt a testre?
- b) Mekkora tapadási együttható esetén lenne a test nyugalomban a lejtőn akkor is, ha a lejtő állna?

a)	b)	Összesen
6 pont	5 pont	11 pont

Fizika — emelt szint	Azonosító jel:							

írásbeli vizsga 0821 14 / 16 2009. október 30.

Fizika — emelt szint	Azonosító jel:							

írásbeli vizsga 0821 15 / 16 2009. október 30.

Fizika		~**	~14	~-	-+
ГІЛІКА	$\overline{}$	еш	e11	~/	ш

Azonosító								
jel:							i	

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	30	
II. Esszé: tartalom	18	
II. Esszé: kifejtés módja	5	
III. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	

javító tanár
Dátum:

	elért pontszám	programba beírt pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár	jegyző
Dátum:	Dátum: