Problem Set 1

Data Analysis and Interpretation (EE 223)

Instructor: Prof. Prasanna Chaporkar EE Department, IIT Bombay

1 Warming Up

1. Let X be a discrete random variable with probability mass function as given below:

$$\mathbb{P}(X=x) = \begin{cases} kx & \text{for } x = 1, 2, 4\\ k(x-1) & \text{for } x = 3, 5, 6\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find k.
- (b) Find $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.
- 2. Let X be a Gaussian random variable with density function given as below:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}.$$

Find mean and variable of X.

3. Let X be a Poisson random variable with probability mass function given as below:

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

for $k = 0, 1, 2, \ldots$ and $\lambda > 0$. Find mean and variable of X.

- 4. Let X be a continuous random variable with distribution F_X (denoted as $X \sim F_X$). Let $Y = \max\{X, c\}$ for some constant c. Find F_Y .
- 5. Let $X \sim F_X$ and $Y = I_{\{X>0\}}$. Find F_Y .

2 Getting more into it

- 1. Let X be a uniform random variable on [0,1]. Define $Y = -\log X$.
 - (a) Show that Y is a random variable.
 - (b) Find F_Y .
- 2. Let X be a continuous random variable with distribution F_X . Define $Y = aF_X(X) + b$.
 - (a) Show that Y is a random variable.
 - (b) Find F_Y .
- 3. Show that if $X \ge 0$ with $\mathbb{E}[X] = \eta$, then $\mathbb{P}(X \ge \sqrt{\eta}) \le \sqrt{\eta}$.
- 4. X is Gaussian random variable with $\mu = 0$ and $\sigma^2 = 4$ and $Y = 3X^2$. Find mean and variance of Y.
- 5. Let X and Y be two continuous random variables. Show that

$$\mathbb{E}[\log f_X(X)] \geqslant \mathbb{E}[\log f_Y(X)].$$

3 All in

- 1. Let X and Y be random variables such that $f_{XY}(x,y) = e^{-(x+y)}$ whenever x and y are positive. Find the distribution for X + Y, X Y, X/Y, $\min\{X,Y\}$ and $\max\{X,Y\}$.
- 2. Let $f_{XY}(x,y) = 2(1-x)$ whenever $(x,y) \in [0,1]^2$ and zero otherwise. Find f_Z for Z = XY.
- 3. Let $g: \Re \to \Re$ be a monotone increasing function and let Y = g(X). Find F_{XY} .
- 4. Let $f_{XY}(x,y) = e^{-x}$ if $0 \le y \le x < \infty$ and zero otherwise. Find $\mathbb{E}[Y|X]$.
- 5. Show that

$$\mathbb{E}[Y|X\leqslant 0] = \frac{1}{F_X(0)} \int_{-\infty}^0 \mathbb{E}[Y|X] f_X(x) dx.$$

4 If you like that kinda thing...

1. Let X and Y be two random variables defined on (Ω, \mathcal{F}, P) . Show that X + c, $\max\{X, Y\}$, $\min\{X, Y\}$, X + Y, XY and X/Y are random variables (Ω, \mathcal{F}, P) .