Homework due Friday, October 20, at 11:00 pm Pacific Time.

A. Determine all the limit points of the following sets in \mathbb{R} and determine whether the sets are open or closed (or neither).

- (1) All integers.
- (2) The interval (a, b].
- (3) All rational numbers.
- (4) All numbers of the form $(-1)^n + \frac{1}{m}$, where m, n = 1, 2, ...
- (5) All numbers of the form $\frac{1}{n} + \frac{1}{m}$ where m, n = 1, 2, ...(6) All numbers of the form $\frac{(-1)^n}{1 + (1/n)}$, where n = 1, 2, ...

B. In this problem you may use without a proof the fact that \mathbb{Q} is dense in \mathbb{R} with the usual metric.

- (1) Show that $A = \{a + b\mathbf{i} : a, b \in \mathbb{Q}\}$ is dense in \mathbb{C} with the usual metric on \mathbb{C} .
- (2) Show that \mathbb{Q}^n is dense in \mathbb{R}^n with the usual metric on \mathbb{R}^n .
- (3) Let A be as in part (a). Show that A^n is dense in \mathbb{C}^n with the usual metric on \mathbb{C}^n .

C. Let $A \subset \mathbb{R}$ be an additive subgroup (that is: $A \neq \emptyset$ and A - A = A). Prove that A is either discrete or dense in \mathbb{R} .

D. Rudin, Chapter 2 (page 43), problems # 2, 5, 6, 8.

Section B: Extra practice problems: Problems in section B are for your practice; please do not hand them in. However, it is extremely important that you feel comfortable with these problems as some of them may appear on the quizzes and/or exams.

- (1) Rudin, Chapter 2 (page 43), problems 3, 7
- (2) Let (X_1, d_1) and (X_2, d_2) be two metric spaces. Let $X = X_1 \times X_2$.
 - (a) Define

$$\rho_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}.$$

Prove that (X, ρ_{∞}) is a metric space.

(b) Define

$$\rho_1((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2).$$

Prove that (X, ρ_1) is a metric space.

(c) Define

$$\rho_2((x_1, x_2), (y_1, y_2)) = \left(d_1(x_1, y_1)^2 + d_2(x_2, y_2)^2\right)^{1/2}.$$

Prove that (X, ρ_2) is a metric space.

- (d) Let (X_i, d_i) be \mathbb{R} with respect to the standard metric for i = 1, 2. Describe $N_1(0)$ in $X = \mathbb{R}^2$ with respect the metrics ρ_{∞} , ρ_1 , and ρ_2 .
- (3) Let

$$\ell^{\infty} = \Big\{ (a_1, a_2, \ldots) : a_n \in \mathbb{R} \text{ and } \sup\{ |a_n| : n \in \mathbb{N} \} < \infty \Big\}.$$

We use componentwise addition and scalar multiplication on ℓ^{∞} . For any $(a_n) \in \ell^{\infty}$, define

$$||(a_n)||_{\infty} = \sup\{|a_n| : n \in \mathbb{N}\}.$$

Define

$$d((a_n),(b_n)) = ||(a_n - b_n)||_{\infty}$$

for any two sequences (a_n) and (b_n) .

- (a) Show that $d((a_n), (b_n))$ is a finite number for any two (a_n) and (b_n) in ℓ^{∞} .
- (b) Show that (ℓ^{∞}, d) is a metric space.
- (c) (Bonus Problem) Is (ℓ^{∞}, d) a separable space? (A metric space X is called *separable* if there is a countable and dense subset $A \subset X$, e.g., \mathbb{R} with the usual metric is separable.)