Multivariate Analysis of Variance - MANOVA

Dr. J. Kyle Roberts

Southern Methodist University Simmons School of Education and Human Development Department of Education Policy and Leadership

Null Hypothesis for ANOVA and MANOVA

 In the case of the Univariate ANOVA, the null hypothesis was stated as:

$$H_0: \overline{X}_1 = \overline{X}_2 = \overline{X}_3 = \dots = \overline{X}_K$$

- where K represents the total number of "levels" in the "way" for one independent variable.
- For the One-Way MANOVA, the null hypothesis would be:

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \boldsymbol{\mu}_3 = \cdots = \boldsymbol{\mu}_k$$

• where μ is a vector of means for a given number of dependent variables.

Null Hypothesis for MANOVA

 We could test to see if the vector of means of the dependent variables is equal for multiple independent groups and our new null would be:

$$H_0: \begin{bmatrix} \overline{X}_{11} \\ \overline{X}_{21} \\ \vdots \\ \overline{X}_{p1} \end{bmatrix} = \begin{bmatrix} \overline{X}_{12} \\ \overline{X}_{22} \\ \vdots \\ \overline{X}_{p2} \end{bmatrix} = \begin{bmatrix} \overline{X}_{13} \\ \overline{X}_{23} \\ \vdots \\ \overline{X}_{p3} \end{bmatrix} = \dots = \begin{bmatrix} \overline{X}_{1k} \\ \overline{X}_{2k} \\ \vdots \\ \overline{X}_{pk} \end{bmatrix}$$

 where p represents the total number of dependent variables for k levels.

The Test Statistic for MANOVA

- Recall that for the univariate ANOVA, we compute F as (MS_b/MS_w) and then compute the probability of rejecting H_0 given F and our df.
- For MANOVA, our test statistic is Λ and is computed as:

$$\Lambda = \frac{|\boldsymbol{W}|}{|\boldsymbol{T}|} = \frac{|\boldsymbol{W}|}{|\boldsymbol{B} + \boldsymbol{W}|}$$

- where W and T are determinants of the within and total sum of squares and cross-product matrices.
- This means that if the between effect, ${\pmb B}$, is very large, then Λ approaches 0.
- However, if B, is very small or even 0, then Λ approaches 1.

Example from Stevens (2002) p. 213

• Create the following dataset in R where there are 2 dependent variables and three groups.

K_1		K_2		K_3	
y_1	y_2	y_1	y_2	y_1	y_2
2	3	4	8	7	6
3	4	5	6	8	7
5	4	5	7	10	8
2	5			9	5
				7	6
$\overline{y}_{11} = 3$	$\overline{y}_{21} = 4$	$\overline{y}_{12} = 5$	$\overline{y}_{22} = 7$	$\overline{y}_{13} = 8.2$	$\overline{y}_{13} = 6.4$

Calculation of $oldsymbol{W}$

ullet Put simply, $oldsymbol{W} = oldsymbol{W}_1 + oldsymbol{W}_2 + oldsymbol{W}_3$ where

$$\boldsymbol{W}_1 = \begin{bmatrix} ss_1 & ss_{12} \\ ss_{21} & ss_2 \end{bmatrix}$$

and

$$ss_1 = \sum_{j=1}^{4} (y_{1(j)} - \overline{y}_{11})^2$$

$$ss_2 = \sum_{j=1}^{4} (y_{2(j)} - \overline{y}_{21})^2$$

$$ss_{12} = ss_{21} = \sum_{j=1}^{4} (y_{1(j)} - \overline{y}_{11})(y_{2(j)} - \overline{y}_{21})$$

Further Calcualtion of \boldsymbol{W}_1

Using the previous dataset, we can calculate

$$ss_1 = (2-3)^2 + (3-3)^2 + (5-3)^2 + (2-3)^2 = 6$$

$$ss_2 = (3-4)^2 + (4-4)^2 + (4-4)^2 + (5-4)^2 = 2$$

$$ss_{12} = ss_{21} = (2-3)(3-4) + (3-3)(4-4) + (5-3)(4-4) + (2-3)(5-4) = 0$$

• This means that the three within matrices are:

$$oldsymbol{W}_1 = egin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}, oldsymbol{W}_2 = egin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, oldsymbol{W}_3 = egin{bmatrix} 6.8 & 2.6 \\ 2.6 & 5.2 \end{bmatrix}$$

Calculation of ${m W}$ based on ${m W}_1$, ${m W}_2$, and ${m W}_3$

$$W = W_1 + W_2 + W_3 = \begin{bmatrix} 14.8 & 1.6 \\ 1.6 & 9.2 \end{bmatrix}$$

 Given the computation of the within matrix, we can further compute the between matrix as

$$\boldsymbol{B} = \begin{bmatrix} 61.87 & 24.40 \\ 24.40 & 19.05 \end{bmatrix}$$

This means that we can compute the total matrix as:

$$T = \begin{bmatrix} 61.87 & 24.40 \\ 24.40 & 19.05 \end{bmatrix} + \begin{bmatrix} 14.8 & 1.6 \\ 1.6 & 9.2 \end{bmatrix} = \begin{bmatrix} 76.72 & 26.00 \\ 26.00 & 28.25 \end{bmatrix}$$

Calculation of Wilk's Λ

$$\Lambda = \frac{|\mathbf{W}|}{|\mathbf{T}|} = \frac{\begin{vmatrix} 14.8 & 1.6 \\ 1.6 & 9.2 \end{vmatrix}}{\begin{vmatrix} 76.72 & 26.00 \\ 26.00 & 28.25 \end{vmatrix}} = \frac{14.8(9.2) - 1.6^2}{76.72(28.25) - 26^2} = 0.0897$$

and the χ^2 test statistic is

$$\chi^2 = -[(N-1) - 0.5(p+k)] \ln \Lambda$$

= -[(12-1) - 0.5(2+3)] \ln(0.0897)
= 20.4987 with $p(k-1)$ df

Setting Up the Data in R

Graphical Analysis of manova.data

y1 Boxplot

y2 Boxplot

Running the MANOVA in R

```
> (m1 <- manova(cbind(y1, y2) ~ group, manova.data))</pre>
Call:
  manova(cbind(y1, y2) ~ group, manova.data)
Terms:
                group Residuals
resp 1 61.86667 14.80000
resp 2 19.05 9.20
Deg. of Freedom 2
Residual standard error: 1.282359 1.01105
Estimated effects may be unbalanced
> summary(m1, test = "Wilks")
        Df Wilks approx F num Df den Df Pr(>F)
group 2 0.089674 9.3575 4 16 0.0004271
Residuals 9
```

One-Way MANOVA Homework

Create data for a one-way MANOVA with 4 dependent variables and 4 levels in the way.

- Create the data in such a way that there is no difference between the first three mean vectors, but there is a difference between the fourth mean vector and the other three. Prove this to me with a Lattice-style boxplot, the Wilk's Lambda, and with post-hoc ANOVAs (last part is not recommended, but just for illustrative purposes).
- 2. Create the data in such a way that the mean vectors are similar for groups 1, 2, and 4, but in group 3 ONLY one of the means from any of the 4 dependent variables is different from the means of the other 3 groups. Again, prove this to me with a Lattice-style boxplot, the Wilk's Lambda, and with post-hoc ANOVAs (last part is not recommended, but just for illustrative purposes). The results from this analysis should have a statistically significant Wilk's Lambda.