Kacper Czechowicz, Patryk Ławicki, Mariusz Miszczykowski

Zadanie nr 3 (seria I, AP 1)

Dla danych z wejścia różnych węzłów x_0 , x_1 , ..., x_n wyznaczyć współczynniki postaci ogólnej wielomianu P interpolującego (x_i, y_i) , i = 0,1,...,n, z danymi y_0 , y_1 , ..., y_n przy użyciu wzorów Cramera dla odpowiedniego układu równań Następnie obliczyć całkę oznaczoną $\int_a^b P(x) \, dx$ dla dodatkowo wczytanych a,

 $b \in R$.

Celem zadania jest znalezienie współczynników a występujących w wielomianie P(x) interpolacyjnym mając dane x oraz y.

$$P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$$

Algorytm rozwiązywania zadania:

1. utworzyć układ równań

$$\begin{cases} a0 + a1x0 + ... + anx0n = y0 \\ a0 + a1x1 + ... + anx1n = y1 \\ ... \\ a0 + a1xn + ... + anxnn = yn \end{cases}$$

2. Wzór Cramera

wyznaczyć wyznacznik z macierzy A:

$$\mathbf{A} = \begin{bmatrix} 1 & x0 & \dots & x0n \\ 1 & x1 & \dots & x1n \\ & \dots & & \\ 1 & xn & \dots & xnn \end{bmatrix}$$

oraz wyznacznik macierzy A_j dla poszczególnych parametrów a o indeksie $0 \le j \le n$, Gdzie j-tą kolumnę macierzy zastępujemy kolumną utworzoną z y_j . Przykład poniżej dla j=0:

$$\mathbf{A}_0 = \begin{bmatrix} y0 & x0 & \dots & x0n \\ y1 & x1 & \dots & x1n \\ & \dots & & \\ yn & xn & \dots & xnn \end{bmatrix}$$

(za j-tą kolumne wstawiamy kolumne utworzoną z y-ków)

dane a_j wyliczamy ze wzoru $a_j = \frac{\det Aj}{\det A}$. W ten sposób otrzymamy wielomian P(x) z kompletem zmiennych.

3. Z powyższego wielomianu policzyć całkę oznaczoną na zadanym wcześniej przedziale.

$$\int_{a}^{b} (a0 + a1x + a2x2 + ... + anxn) dx = (a0 + a1a + a2a2 + ... + anan) - (a0 + a1b + a2b2 + ... + anbn)$$

Przykład:

$$x_1=1$$
 $x_2=5$ $x_3=8$ $y_1=1$ $y_2=3$ $y_3=5$ $a=1$ $b=2$

$$\det A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 25 \\ 1 & 8 & 64 \end{bmatrix} = 84$$

$$\det A_0 = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 25 \\ 5 & 8 & 64 \end{bmatrix} = 52$$

$$\det A_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 25 \\ 1 & 5 & 64 \end{bmatrix} = 30$$

$$\det A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 3 \\ 1 & 8 & 5 \end{bmatrix} = 2$$

$$\int_{1}^{2} \left(\frac{52}{84} + \frac{30}{84}x + \frac{2}{84}x2 \right) dx =$$

$$\int_{1}^{2} \left(\frac{52}{84} 2 + \frac{30}{84} 4 + \frac{2}{84}16 \right) - \left(\frac{52}{84} + \frac{30}{84} + \frac{2}{84} \right)$$