Answer:

- 7. (10 points) Let A={1, 2, 3, 4}, and R={(1, 4), (3, 1), (3, 1), (3, 1), (4, 2)}
 - (a) Show the corresponding matrix M_R and draw the digraph of R;
 - (b) Compute the matrix of R²;
 - (c) Compute the matrix of the transitive closure of R. Answer:

- 8. (10 points) Let $S = \{1, 2, 3, 4, 5\}$ and $A=S\times S$. Define the following relation R on A: (a, b) R (a', b') if and only if b=b'.
 - (a) Show that R is an equivalence relation
 - (b) Compute A/R and |A/R|.

Answer:

9. **(10 points)** Let A={1, 2, 3, 4, 5, 6} and $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix}$ be a permutation of A, i.e. a

bijection from A to A: p(1) = 3, p(2) = 1, $p(\frac{1}{2}) = 2$, ..., p(6) = 6(a) Compute p^{-1} and $p^2 = p_0 p$, and write them in the form above.

- (b) Is it possible that p^n is the identity function for some n? If yes, why and what is such a possible integer? If not, why?

Answer:

- 10. (10 points) Let f: A->B and g: B ->C be two functions that are everywhere defined. Prove
 - (a) If f and g are surjections, then gof is a surjection from A to C.
 - (b) If gof is surjective(onto), then g is surjective.
 - (c) Disprove that the following proposition: If gof is surjective, then f is surjective. Answer: