Assignment

2.3: 13,15,16,17; 2.4: 2(bef), 5, 17, 20; 2.5: 3(cd), 6(bc), 10, 13

Work

2.3

- 13. Let A and B be $n \times n$ matrices. Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^t)$.
- 15. Let M and A be matrices for which the product matrix MA is defined. If the jth column of A is a linear combination of a set of columns of A, prove that the jth column MA is linear combination of the corresponding columns of MA with the same corresponding coefficients.
- 16. Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear.
 - (a) If $\operatorname{rank}(T) = \operatorname{rank}(T^2)$, prove that $R(T) \cap N(T) = \{0\}$. Deduce that $V = R(T) \oplus N(T)$
 - (b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer k
- 17. Let V be a vector space. Determine all linear transformations $T: V \to V$ such that $T = T^2$.

2.4

- 2. For each of the following linear transformations T, determine whether T is invertible and justify your answer.
 - (b) $T: T^2 \to \mathbb{R}^3$ defined by $\mathsf{T}(a_1,a_2) = (3a_1 2a_2,a_2,4a_1)$
 - (e) $T: \mathsf{M}_{2\times 2}(\mathbb{R}) \to \mathsf{P}_2(\mathbb{R})$ defined by $\mathsf{T} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$
 - (f) $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$.
- 5. Let A be invertible. Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.
- 17. Let V and W be finite-dimensional vector spaces and $T:V\to W$ be an isomorphism. Let V_0 be a subspace of V.
 - (a) Prove that $T(V_o)$ is a subspace of W.
 - (b) Prove that $\dim(V_0) = \dim(T(V_0))$.
- 20. Let $T: V \to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W Let β and γ be ordered bases for V and W respectively. Prove that $\operatorname{rank}(T) = \operatorname{rank}(L_A)$ and that $\operatorname{nullity}(T = \operatorname{nullity}(L_1)$, where $A = [T]^{\gamma}_{\beta}$.

2.5

3. For each of the following pairs of ordered bases β and β' for $P_2(\mathbb{R})$, find the change or coordinate matrix that changes β' -coordinates into β -coordinates.

(c)
$$\beta = \{2x^2 - x, 3x^2 + 1, x^2\}$$
 and $\beta' = \{1, x, x^2\}$

(d)
$$\beta = \{x^2 - x + 1, x + 1, x^2 + 1\}$$
 and $\beta' = \{x^2 + x + 4, 4x^2 - 3x + 2, 2x^2 + 3\}$

6. For each matrix A and ordered basis β , find $[\mathsf{L}_A]_{\beta}$. Also find an invertible matrix Q such that $[\mathsf{L}_A]_{\beta} = Q^{-1}AQ$.

(b)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

(c)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$

- 10. Prove that if A and B are similar $n \times n$ matrices, then $\operatorname{tr}(A) = \operatorname{tr}(B)$.
- 13. Let V be a finite-dimensional vector space over a field F, and let $\beta = \{x_1, x_2, \dots, x_n\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from F. Define

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \text{ for } 1 \le j \le n$$

and set $\beta' = \{x'_1, x'_2, \dots, x'_n\}$. Prove that β' is a basis for V and hence that Q is a coordinate matrix changing β' -coordinates into β -coordinates.