

README License

ENCODER 8TO3 DATAFLOW Modelling

AIM:

To implement Encoder 8 To 3 in Dataflow Modelling using verilog and validating their functionality using their functional tables

SOFTWARE REQUIRED: Quartus prime

THEORY

Encoder 8 To 3

The 8 to 3 line Encoder is also known as Octal to Binary Encoder. In 8 to 3 line encoder, there is a

total of eight inputs, i.e., D0, D1, D2, D3, D4, D5, D6, and D7 and three outputs, i.e., A0, A1, and A2. In 8-input lines, one input-line is set to true at a time to get the respective binary code in the output side. Below are the block diagram and the truth table of the 8 to 3 line encoder.

Figure 01 Block Diagram of Encoder 8 * 3

Truth Table

inputs									outputs		
	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A ₂	A_1	A_0
	0	0	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	1	0	0	0	1
	0	0	0	0	0	1	0	0	0	1	0
	0	0	0	0	1	0	0	0	0	1	1
	0	0	0	1	0	0	0	0	1	0	0
	0	0	1	0	0	0	0	0	1	0	1
	0	1	0	0	0	0	0	0	1	1	0
	1	0	0	0	0	0	0	0	1	1	1

The logical expression of the term A0, A1, and A2 are as follows:

$$A0 = D1 + D3 + D5 + D7$$

$$A1 = D2 + D3 + D6 + D7$$

$$A2 = D4 + D5 + D6 + D7$$

Logical circuit of the above expressions is given below:

Q

Figure 02 Encoder 8 * 3

Procedure

- 1. Type the program in Quartus software.
- 2.Compile and run the program.
- 3. Generate the RTL schematic and save the logic diagram.
- 4.Create nodes for inputs and outputs to generate the timing diagram.
- 5. For different input combinations generate the timing diagram.

/* write all the steps invloved */

PROGRAM

/* Program for Encoder 8 To 3 in Dataflow Modelling and verify its truth table in quartus using Verilog programming.

Developed by: GANESH PRABHU J RegisterNumber: 212223220023

```
/* Program for Encoder 8 To 3 in Dataflow Modelling and verify its truth table in quartus using Verilog programming.

module encoder_top(din, a, b, c);
input [0:7] din;
output a,b,c;
assign a=din[4] | din[5] | din[6] | din[7];
assign b=din[2] | din[3] | din[6] | din[7];
assign c=din[2] | din[4] | din[6] | din[7];
endmodule
```

RTL LOGIC FOR Encoder 8 To 3 in Dataflow Modelling

TIMING DIGRAMS FOR Encoder 8 To 3 in Dataflow Modelling

RESULTS

Releases

No releases published

Packages

No packages published

Languages

• HTML 65.6%

Verilog 28.5%Standard ML 5.9%