Nombre y Apellido: Carrera:

Condición:

ANÁLISIS NUMÉRICO / ANÁLISIS NUMÉRICO I Examen Final Teórico 09/08/2019

1	2	TOTAL	NC)TA

Instrucciones: Ejercicio 1: (60pt). Ejercicio 2: (40pt).

- 1. Enuncie y demuestre el teorema del error del polinomio interpolante.
- 2. Enuncie y demuestre el teorema de existencia y unicidad del polinomio interpolante.

Nombre y Apellido: Carrera:

Condición:

ANÁLISIS NUMÉRICO / ANÁLISIS NUMÉRICO I Examen Final Práctico 09/08/2019

1	2	3	4	5	TOTAL	NOTA

Instrucciones: Ejercicio 2 solo para alumnos libres (10pt), ejercicios restantes (25pt)

- 1. Sea S una constante positiva y $g(x) = 2x Sx^2$.
 - a) Mostrar que si la iteración de punto fijo converge a un límite no nulo, entonces el límite es $x^* = 1/S$ (por lo tanto, el inverso de un número puede ser encontrado solo con multiplicaciones y sustracciones).
 - b) Encontrar un intervalo alrededor de 1/S para el cual la iteración de punto fijo converge si el punto inicial x_0 pertenece a ese intervalo.
- 2. Considerar una regla de integración de la forma:

$$\int_{-1}^{1} |x| f(x) dx = \frac{1}{4} [f(-1) + 2f(0) + f(1)].$$

Mostrar que esta regla es exacta para polinomios de grado a lo sumo 3.

- 3. Encuentre a de manera que ax^2 sea la mejor aproximación de $f(x) = \frac{1}{1+x^6} 1$ en [-1, 1], en el sentido de cuadrados mínimos.
- 4. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Si la matriz A es simétrica, entonces el método de Jacobi es convergente.
 - b) El método de Jacobi aplicado al sistema $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ converge cuando $x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- 5. Considere el siguiente problema de programación lineal:

minimizar
$$x_1 + 4x_2$$

sujeto a $x_1 + 2x_2 \ge 4$,
 $2x_1 + x_2 \ge 5$,
 $x_i \ge 0, i = 1, 2$

Graficar las restricciones, resolver usando el método Simplex, dar el minimizador y el valor mínimo.

