Travail préparatoire au DS

Exercice 1

Soit E la courbe elliptique définie sur \mathbb{Q} par les coefficients

$$E = [1, -1, 0, -167, 616]$$

- 1. Quel est le discriminant Δ de E?
- Rappellons que l'on obtient, en réduisant l'équation de E modulo un premier p ne divisant pas Δ , une courbe elliptique sur \mathbb{F}_p , que l'on notera E_p dans tout le texte.
- 2. Soient P = (-12, 34) et Q = (24, 88). Vérifiez que P et Q sont sur la courbe E. Montrez que ce sont des points d'ordre infini dans le groupe $E(\mathbb{Q})$.
- Si p est un nombre premier ne divisant pas Δ , on note \tilde{P} et \tilde{Q} les points obtenus en réduisant modulo p les points P et Q. On note $\langle \tilde{P}, \tilde{Q} \rangle$ le sous-groupe de $E_p(\mathbb{F}_p)$ engendré par ces deux points.
- 3. Donner un exemple de nombre premier p pour lequel $\langle \tilde{P}, \tilde{Q} \rangle = E_p(\mathbb{F}_p)$.
- 4. Donner un exemple de nombre premier p pour lequel $\langle \tilde{P}, \tilde{Q} \rangle \neq E_p(\mathbb{F}_p)$.

Exercice 2

Soit G la courbe elliptique définie sur \mathbb{F}_{211} par les coefficients

$$G = [0, -1, 0, 56, 108]$$

Soit R(X) le polynôme donné par la commande ffinit(211,3), et soit t la classe de X modulo R(X). On considère les points ci-dessous, à coordonnées dans \mathbb{F}_{211^3}

$$P = (83 * t^2 + 123 * t + 69, 165 * t^2 + 157 * t + 150)$$

$$Q = (25 * t^2 + 11 * t + 58, 122 * t^2 + 111 * t + 27)$$

- 1. Déterminer l'ordre de P.
- 2. On admet que Q appartient au groupe cyclique engendré par P. En utilisant l'algorithme de Shanks, trouver un entier n tel que [n]P = Q.