Name: SHEIK PAREETH

Fashion ANN

Deep learning

```
In [1]:
```

```
# Deep Learning libraries
import tensorflow as tf
```

In [2]:

```
# Basic Libraries
import numpy as np
import pandas as pd
# Visualization libraries
import matplotlib.pyplot as plt
import pydot
import seaborn as sns
#Evaluation library
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
# Deep Learning libraries
import tensorflow as tf
from tensorflow.keras import layers
import keras
from keras.models import Sequential
from keras.layers.core import Dense,Activation,Dropout
from keras.datasets import mnist
from keras.utils.np_utils import to_categorical
from keras.wrappers.scikit_learn import KerasClassifier
```

In [3]:

```
# Load the dataset
fashion_train=pd.read_csv("fashion-mnist_train.csv")
fashion_test=pd.read_csv("fashion-mnist_test.csv")
```

In [4]:

```
fashion_train.shape
```

Out[4]:

(60000, 785)

In [5]:

```
fashion_test.shape
```

Out[5]:

(10000, 785)

In [6]:

```
X_train_fashion = fashion_train.drop('label',axis = 1)
y_train_fashion = fashion_train['label']
X_test_fashion = fashion_test.drop('label',axis = 1)
y_test_fashion = fashion_test['label']
```

In [7]:

```
#Reshaping the dataset
x_train_reshape = X_train_fashion.values.reshape(-1,28,28)
x_test_reshape = X_test_fashion.values.reshape(-1,28,28)
```

In [8]:

```
#Names of clothing accessories in order
col_names = ['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker',
```

In [10]:

```
#Visualizing the images
plt.figure(figsize=(10,10))
for i in range(15):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.imshow(x_train_reshape[i], cmap='gray')
    plt.xlabel(col_names[y_train_fashion[i]])
plt.show()
```


In [11]:

```
y_train_fashion = to_categorical(y_train_fashion, num_classes=10)
y_test_fashion = to_categorical(y_test_fashion, num_classes=10)
```

In [12]:

```
#Creating base neural network
model = keras.Sequential([
    layers.Dense(128, activation='relu', input_shape=(784,)),
    layers.Dropout(0.3),
    layers.BatchNormalization(),
    layers.Dropout(0.3),
    layers.BatchNormalization(),
    layers.Dense(24, activation='relu'),
    layers.Dropout(0.3),
    layers.Dropout(0.3),
    layers.Dropout(0.3),
    layers.Dense(10,activation='softmax'),])
```

In [13]:

```
#Compiling the model
model.compile(loss="categorical_crossentropy",optimizer="adam",metrics = ['accuracy'])
```

In [14]:

#Fitting the model

```
history=model.fit(X_train_fashion, y_train_fashion, batch_size=100, epochs=30,validation_da
Epoch 1/30
600/600 [============ ] - 19s 17ms/step - loss: 1.1148 - ac
curacy: 0.6205 - val_loss: 0.5428 - val_accuracy: 0.8077
Epoch 2/30
600/600 [============ ] - 9s 14ms/step - loss: 0.7390 - acc
uracy: 0.7517 - val_loss: 0.4815 - val_accuracy: 0.8451
Epoch 3/30
600/600 [============== ] - 7s 11ms/step - loss: 0.6700 - acc
uracy: 0.7729 - val_loss: 0.4781 - val_accuracy: 0.8370
600/600 [============= ] - 9s 16ms/step - loss: 0.6356 - acc
uracy: 0.7871 - val_loss: 0.4921 - val_accuracy: 0.8518
Epoch 5/30
600/600 [============ ] - 6s 10ms/step - loss: 0.6165 - acc
uracy: 0.7927 - val_loss: 0.4968 - val_accuracy: 0.8543
Epoch 6/30
600/600 [================ ] - 7s 12ms/step - loss: 0.5951 - acc
uracy: 0.8041 - val_loss: 0.4974 - val_accuracy: 0.8543
Epoch 7/30
600/600 [============ ] - 7s 11ms/step - loss: 0.5849 - acc
uracy: 0.8069 - val_loss: 0.5135 - val_accuracy: 0.8545
Epoch 8/30
600/600 [=============== ] - 5s 8ms/step - loss: 0.5842 - accu
racy: 0.8069 - val_loss: 0.5040 - val_accuracy: 0.8600
Epoch 9/30
600/600 [============= ] - 5s 9ms/step - loss: 0.5740 - accu
racy: 0.8105 - val_loss: 0.5340 - val_accuracy: 0.8551
Epoch 10/30
600/600 [============== ] - 5s 8ms/step - loss: 0.5706 - accu
racy: 0.8120 - val_loss: 0.5135 - val_accuracy: 0.8630
Epoch 11/30
600/600 [============ ] - 7s 11ms/step - loss: 0.5712 - acc
uracy: 0.8131 - val_loss: 0.4892 - val_accuracy: 0.8670
Epoch 12/30
600/600 [============= ] - 7s 12ms/step - loss: 0.5549 - acc
uracy: 0.8169 - val_loss: 0.4873 - val_accuracy: 0.8684
Epoch 13/30
600/600 [=========== ] - 8s 13ms/step - loss: 0.5445 - acc
uracy: 0.8218 - val loss: 0.4806 - val accuracy: 0.8644
Epoch 14/30
uracy: 0.8234 - val_loss: 0.4938 - val_accuracy: 0.8684
Epoch 15/30
600/600 [============ ] - 8s 13ms/step - loss: 0.5369 - acc
uracy: 0.8240 - val loss: 0.4555 - val accuracy: 0.8695
Epoch 16/30
600/600 [============ ] - 7s 11ms/step - loss: 0.5316 - acc
uracy: 0.8247 - val_loss: 0.4792 - val_accuracy: 0.8664
Epoch 17/30
600/600 [============== ] - 6s 10ms/step - loss: 0.5250 - acc
uracy: 0.8273 - val_loss: 0.5000 - val_accuracy: 0.8592
600/600 [============== ] - 6s 9ms/step - loss: 0.5260 - accu
racy: 0.8256 - val_loss: 0.4433 - val_accuracy: 0.8717
Epoch 19/30
600/600 [============== ] - 6s 10ms/step - loss: 0.5296 - acc
```

```
uracy: 0.8239 - val_loss: 0.4470 - val_accuracy: 0.8674
Epoch 20/30
600/600 [============ ] - 6s 11ms/step - loss: 0.5248 - acc
uracy: 0.8270 - val_loss: 0.4440 - val_accuracy: 0.8700
uracy: 0.8268 - val_loss: 0.4261 - val_accuracy: 0.8690
Epoch 22/30
600/600 [============ ] - 9s 14ms/step - loss: 0.5152 - acc
uracy: 0.8292 - val_loss: 0.4341 - val_accuracy: 0.8665
Epoch 23/30
600/600 [=============== ] - 6s 9ms/step - loss: 0.5107 - accu
racy: 0.8299 - val_loss: 0.4290 - val_accuracy: 0.8619
Epoch 24/30
600/600 [============= ] - 8s 14ms/step - loss: 0.5134 - acc
uracy: 0.8310 - val loss: 0.3950 - val accuracy: 0.8755
Epoch 25/30
600/600 [================= ] - 7s 12ms/step - loss: 0.5073 - acc
uracy: 0.8310 - val_loss: 0.4117 - val_accuracy: 0.8732
Epoch 26/30
600/600 [============ ] - 7s 12ms/step - loss: 0.5063 - acc
uracy: 0.8326 - val_loss: 0.3954 - val_accuracy: 0.8728
Epoch 27/30
600/600 [============ ] - 6s 9ms/step - loss: 0.4996 - accu
racy: 0.8342 - val_loss: 0.4092 - val_accuracy: 0.8736
Epoch 28/30
600/600 [============== ] - 7s 12ms/step - loss: 0.4995 - acc
uracy: 0.8356 - val_loss: 0.3998 - val_accuracy: 0.8743
Epoch 29/30
600/600 [============== ] - 5s 9ms/step - loss: 0.5003 - accu
racy: 0.8352 - val_loss: 0.4010 - val_accuracy: 0.8717
Epoch 30/30
600/600 [============== ] - 5s 8ms/step - loss: 0.4990 - accu
racy: 0.8325 - val_loss: 0.3806 - val_accuracy: 0.8698
In [15]:
test loss fashion, test acc fashion = model.evaluate(X test fashion, y test fashion)
313/313 [============== ] - 2s 6ms/step - loss: 0.3806 - accu
racy: 0.8698
In [16]:
print('Fashion MNIST Test accuracy:', round(test_acc_fashion,4))
```

Fashion MNIST Test accuracy: 0.8698

In [17]:

```
#Predicting the labels-Fashion
y_predict_fash = model.predict(X_test_fashion)
y_predict_fash=np.argmax(y_predict_fash, axis=1)
y_test_fash_eval=np.argmax(y_test_fashion, axis=1)
```

In [18]:

```
con_mat=confusion_matrix(y_test_fash_eval,y_predict_fash)
plt.style.use('seaborn-deep')
plt.figure(figsize=(10,10))
sns.heatmap(con_mat,annot=True,annot_kws={'size': 15},linewidths=0.5,fmt="d",cmap="gray")
plt.title('True or False predicted Fashion MNIST\n',fontweight='bold',fontsize=15)
plt.show()
```

True or False predicted Fashion MNIST

In [19]:

```
from sklearn.metrics import classification_report
print(classification_report(y_test_fash_eval,y_predict_fash))
```

precision	recall	f1-score	support
0.77	0.86	0.81	1000
0.99	0.98	0.98	1000
0.74	0.84	0.79	1000
0.85	0.93	0.89	1000
0.77	0.81	0.79	1000
0.97	0.93	0.95	1000
0.80	0.48	0.60	1000
0.91	0.94	0.93	1000
0.97	0.97	0.97	1000
0.94	0.95	0.95	1000
		0.87	10000
0.87	0.87	0.87	10000
0.87	0.87	0.87	10000
	0.77 0.99 0.74 0.85 0.77 0.97 0.80 0.91 0.97 0.94	0.77	0.77 0.86 0.81 0.99 0.98 0.98 0.74 0.84 0.79 0.85 0.93 0.89 0.77 0.81 0.79 0.97 0.93 0.95 0.80 0.48 0.60 0.91 0.94 0.93 0.97 0.97 0.97 0.94 0.95 0.95 0.87 0.87 0.87

In [20]:

```
print(history.keys())
```

```
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
```

In [21]:

```
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='best')
plt.show()
```


In [22]:

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='best')
plt.show()
```


In [23]:

```
#tf.expand_dims(X_test_digit[0])
y_predict = model.predict(X_test_fashion.loc[[0],:].values)
y_predict=np.argmax(y_predict, axis=1) # Here we get the index of maximum value in the enco
y_test_digit_eval=np.argmax(y_test_fashion, axis=1)
```

In [28]:

```
y_predict[0]
```

Out[28]:

6

In [25]:

```
#Names of clothing accessories in order
col_names = ['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker',
```

In [29]:

```
#Visualizing the images
plt.figure(figsize=(10,10))
plt.imshow(x_train_reshape[0], cmap='gray')
plt.xlabel("Actual:{},Pred:{}".format(col_names[np.argmax(y_test_fashion[0])],col_names[y_p]
plt.show()
```

