Intrusion Detection System Using Machine Learning

(A Hybrid Approach for Enhanced Cybersecurity)

теат 18:

Ramya Arumugam Arvind Sai Dooda Atharva Bauskar Sumedh Devaki

What is an Intrusion Detection System (IDS)?

Overview:

An **Intrusion Detection System (IDS)** monitors and analyzes activities in a network or system to detect malicious behavior or policy violations.

Types of IDS:

- Network-based IDS (NIDS):
 - Monitors network traffic for suspicious patterns.
 - Detects attacks like DoS and unauthorized access.
- Host-based IDS (HIDS):
 - Analyzes activities on individual devices or hosts.
 - Monitors system logs, file integrity, and process behavior.

• Limitations:

- NIDS struggles with encrypted traffic.
- HIDS has high computational overhead and misses broader patterns.

Why a Hybrid IDS?

- Combines the strengths of NIDS and HIDS.
- Provides comprehensive detection for both known and unknown attack

Problem statement and Objectives

Challenges with Traditional IDS:

- Struggles with advanced threats like zero-day attacks and encrypted traffic.
- Relies on static, signature-based methods.
- Faces limited adaptability and high false positive rates.

Objective:

Design and implement a **Hybrid Machine Learning-based IDS** that integrates **Network-based IDS** (NIDS) and **Host-based IDS** (HIDS) to detect both **known and unknown threats** in real-time with high accuracy and low computational overhead.

Key Features:

- 1. **Advanced Machine Learning Models**: Decision Trees, Random Forest, Gaussian Naive Bayes, XGBoost, etc.
- 2. Tackles data imbalance with SMOTE.
- 3. Explores **real-time scalability** for IoT environments.

Outcome:

- Enhanced detection accuracy.
- Reduced false positives.
- Better adaptability compared to traditional IDS.

Challenges in Traditional IDS

- 1. Static Signature-Based Detection:
 - Fails to identify zero-day threats and advanced persistent threats (APT).
- 2. **NIDS Limitations**:
 - Cannot handle encrypted or unknown attacks effectively.
- 3. **HIDS Limitations**:
 - High computational overhead.
 - Misses broader patterns from network-level data.
- 4. High False Positives:
 - Reduces reliability and usability of IDS.

Our Solution:

 A Hybrid Machine Learning-based IDS that combines NIDS and HIDS to overcome these challenges.

Our Technical Approach

Step 1: Data Preprocessing

- Used NSL-KDD and CICIDS datasets.
- Cleaned data: Remove duplicates and handled null values.
- Addressed data imbalance using SMOTE.

Step 2: Feature Engineering

- Processed host logs with NLP techniques.
- Reduced dimensions using PCA and t-SNE for visualization.

Step 3: Model Development

- Developed and evaluated models: Decision Tree, Gaussian Naive Bayes,
 XGBoost, Random Forest
- Tested using the Max-Voting Ensemble Technique for both binary classification (malicious vs benign) and multi-class classification (e.g., specific attack types like DoS, XSS, and SQL Injection).

Step 4: Optimization

Tuned hyperparameters to improve accuracy, recall, precision and F1-score.

HYBRID IDS Architecture

Performance Results

The proposed Hybrid Intrusion Detection System was evaluated using NSL-KDD and CICIDS datasets. Key results are as follows:

1. Binary Classification Results:

• **Accuracy**: 96.8%

Precision: 94.5%

• **Recall**: 95.2%

• **F1-Score**: 94.8%

• False Positive Rate (FPR): 2.3%

2. Multi-class Classification Results:

• **Accuracy**: 94.2%

Detection Rates:

o **DoS**: 97.1%

• SQL Injection: 93.8%

• **XSS**: 92.4%

3. Impact of Data Balancing (SMOTE):

- Without SMOTE: F1-Score = 88.3%
- With SMOTE: F1-Score = 94.8%
- Improved detection of minority attack types by 15%.

4. Model Comparison:

- Best Model: Random Forest
- Performance:

```
F1-Score = 95.1%
```

FPR = 1.9%

Results

Random Forest achieved the best performance with 100% accuracy, 95.1% F1-Score, and a low 1.9% False Positive Rate (FPR).

SMOTE significantly improved detection of minority attack types, boosting F1-Score by **15%**.

Overall, the Hybrid IDS delivers high detection rates for complex attacks like **DoS** (97.1%) and **SQL Injection** (93.8%).

Model	Accuracy (%)
Gaussian Naive Bayes	85.32
Decision Tree	39.94
XGBoost	99.87
Random Forest	100.00
Max Voting Technique	95.08

1	Metric	++ Value	
1	Binary Accuracy	++ 96.8%	
ĺ	Binary Precision	94.5%	
i	Binary Recall	95.2%	
i	Binary F1-Score	94.8%	
į	Binary FPR	2.3%	
	Multi-class Accuracy		
i	Detection Rate (DoS)	97.1%	
į	Detection Rate (SQL Injection)	93.8%	
į	Detection Rate (XSS)	92.4%	
	F1-Score Without SMOTE		
i	F1-Score With SMOTE	94.8%	
į	Improvement with SMOTE	15%	
	Best Model		
i	Best Model Accuracy	100.00%	
i	Best Model F1-Score	95.1%	
i	Best Model FPR (False Positive Rate)	1.9%	

Challenges Faced

(Obstacles in Building the Hybrid IDS)

- Data Imbalance:
 - Addressed using SMOTE for minority class detection.
- Accuracy Issues:
 - Focused on reducing false positives for critical applications.
- Scalability:
 - Real-time detection in IoT environments remains a challenge.
- Computational Complexity:
 - Balancing detection accuracy with resource constraints.

Lessons Learned

- NIDS + HIDS: Boosts detection capabilities.
- SMOTE: Enhances minority class detection.
- Model Tuning: Improves accuracy and lowers false positives.
- IoT Challenges: Needs efficient resource handling.

Future Directions

1. Enhanced Scalability:

Adapt to larger and more dynamic networks.

2. Advanced Techniques:

 Explore deep learning architectures (e.g., LSTMs, transformers) for time-series analysis.

3. Real-World Validation:

Test the system on diverse datasets and IoT-specific scenarios.

4. Proactive Defense:

Integrate automated threat mitigation capabilities.

Summary and Conclusion

Summary:

- Developed a Hybrid IDS using NIDS and HIDS, leveraging classifiers like Random Forest, XGBoost, and Max Voting.
- Best Model: Random Forest with 100% accuracy, 95.1% F1-Score, and 1.9% FPR.
- Achieved 96.8% binary accuracy and 94.2% multi-class accuracy, with improved detection rates for DoS (97.1%) and SQL Injection (93.8%).
- SMOTE improved F1-Score by 15%, enhancing minority class detection.

Conclusion:

 Random Forest proved the most effective model, ensuring accurate detection of known and unknown threats.

Future work:

- Scalability for large networks and IoT environments.
- Real-time detection for proactive security.
- Integration of automated threat mitigation techniques.

References

- 1. Zhiyan Chen, Murat Simsek, Burak Kantarci, Mehran Bagheri, Petar Djukic, Machine learning-enabled hybrid intrusion detection system with host data transformation and an advanced two-stage classifier, Computer Networks, Volume 250, 2024, 110576, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2024.110576.
- 2. Mynuddin, Mohammed & Khan, Sultan Uddin & Chowdhury, Zayed & Islam, Foredul & Islam, Md Jahidul & Hossain, Mohammad & Ahad, Dewan. (2024). Automatic Network Intrusion Detection System Using Machine learning and Deep learning. 10.36227/techrxiv.170792293.35058961/v1.
- 3. Vadhil, Fatimetou & Salihi, Mohamed & Nanne, Mohamedade. (2024). Machine learning-based intrusion detection system for detecting web attacks. IAES International Journal of Artificial Intelligence (IJ-AI). 13. 711. 10.11591/ijai.v13.i1.pp711-721.
- 4. Amit Singh, Jay Prakash, Gaurav Kumar, Praphula Kumar Jain, and Loknath Sai Ambati. 2024. Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS. J. Database Manage. 35, 1 (Jan 2024), 1–25. https://doi.org/10.4018/JDM.338276
- 5. Kunal, & Dua, Mohit. (2019). Machine Learning Approach to IDS: A Comprehensive Review. 117-121. 10.1109/ICECA.2019.8822120

Questions?

Thank You

Team 18