SCHOOL ENROLMENT TABLE

Consider a table tracking student enrolments in courses.

A student can enrol in multiple courses, and each course has a specific teacher.

STU_ID	STU_NAME	COURSE_ID	COURSE_NAME	TEACHER_ID	TEACHER_NAME	GRADE
101	Alice	CSE101	Databases	T001	Dr Smith	Α
101	Alice	CSE102	Networking	T002	Dr Johnson	В
102	Bob	CSE101	Databases	T001	Dr Smith	B+
103	Charlie	CSE103	Al Basics	T003	Dr Allen	Α-
104	David	CSE102	Networking	T002	Dr Johnson	С

Step 1: Identify the Composite Primary Key

Since a student can take multiple courses, we need a composite primary key:

PK = ({STU_ID}, {COURSE_ID})

This ensures that each student-course combination is unique.

Step 2: Identify Functional Dependencies (FDs)

A functional dependency is when one attribute determines another.

- Student Dependencies:
 - STU_ID → STU_NAME (A student's name depends only on their ID)
- Course Dependencies:
 - COURSE_ID → COURSE_NAME, TEACHER_ID (Each course has a fixed name and teacher)
- Teacher Dependencies:
 - o TEACHER ID → TEACHER NAME (Each teacher has a unique ID and name)
- Grade Dependencies:
 - (STU_ID, COURSE_ID) → GRADE (A student receives a unique grade per course)

Step 3: Identify Partial Dependencies (Violates 2NF)

A partial dependency occurs when a non-key attribute depends on only part of a composite primary key.

- STU_NAME depends only on STU_ID, not on COURSE_ID.
 - o Partial Dependency: STU_ID → STU_NAME
- COURSE_NAME and TEACHER_ID depend only on COURSE_ID, not on STU_ID.
 - Partial Dependency: COURSE_ID → COURSE_NAME, TEACHER_ID
- TEACHER_NAME depends only on TEACHER_ID, not on the full primary key.
 - Partial Dependency: TEACHER_ID → TEACHER_NAME

Step 4: Identify Transitive Dependencies (Violates 3NF)

A transitive dependency occurs when a non-key attribute depends on another non-key attribute rather than directly on the primary key.

- TEACHER_NAME depends on TEACHER_ID, which depends on COURSE_ID.
 - Transitive Dependency: COURSE_ID → TEACHER_ID → TEACHER_NAME

Step 6: Normalize the Table into 3NF

To eliminate partial and transitive dependencies, we split the table into multiple normalised tables.

1. Students Table (Only Student-Related Data)

STU_ID (PK)	STU_NAME
101	Alice
102	Bob
103	Charlie
104	David

2. Courses Table (Only Course-Related Data)

COURSE_ID (PK)	COURSE_NAME	TEACHER_ID	
CSE101 Databases		T001	
CSE102	Networking	T002	
CSE103	Al Basics	T003	

3. Teachers Table (Only Teacher Data)

TEACHER_ID (PK)	TEACHER_NAME	
T001	Dr Smith	
T002	Dr Johnson	
T003	Dr Allen	

4. Enrolment Table (Links Students and Courses)

STU_ID (FK)	COURSE_ID (FK)	
101	CSE101	
101	CSE102	
102	CSE101	
103	CSE103	
104	CSE102	

Summary

- The original ENROLMENT table violated 2NF due to partial dependencies.
- It also violated 3NF due to transitive dependencies.
- We normalised it into four tables (Students, Courses, Teachers, and Enrolment).
- Now, data redundancy is reduced, and updates are more efficient.