h = b-a = Xi+1-Xi $X_0 = a$, $X_1 = a + h$, $X_2 = X_1 + h = a + 2h$ X:= atich Ponto Médio $f(x)dx \approx f(\frac{2}{a+b}) \cdot (b-a)$ Malh a X0< --- < Xn $h = X_{i+1} - X_i$ X, X, 1/2 1/3 50 USD X, -- X N-1 1 porto usado $h = \frac{x_2 - x_0}{2}$ $\int f(x)dx \approx f(x) - (x_2 - x_0) = 2hf(x)$ χ_0 χ_0 Focaremos em 3: Simpson, Trape e P.M. $\int_{X_0}^{X_0} f(x) dx = \int_{X_0}^{X_0} f(x) dx + \int_{X$ 5 f(x,).2h + f(x3)2h + f(x5)2h = 2 L [f(x) + f(x3) + f(xs)] $\int_{x}^{x_{n}} f(x) dx = 2h \sum_{i=1,3,...}^{n-1} f(x_{i}) + \frac{h^{2}(b-a)}{6} f''(\mu)$ Traj. $\int_{X_{0}}^{X_{n}} f(x) dx = \frac{h}{2} \left[f(x_{0}) + 2 \sum_{i=1}^{n-1} f(x_{i}) + f(x_{n}) \right] - \frac{h^{2}(b-a)}{12} f''(\mu)$ 5: $\int_{x_{0}}^{x_{n}} f(x) dx = \frac{1}{3} \left[f(x_{0}) + 4 \sum_{i=1,3,...}^{n-1} f(x_{i}) + 2 \sum_{i=2,4,...}^{n-2} f(x_{i}) + f(x_{n}) \right] - \frac{1}{180} f(x_{0}) (\mu)$ $\int \frac{1}{\sqrt{1-x^2}} dx = \pi.$ $\sinh(t) = \frac{e - e}{2}$ $\cosh(t) = \frac{e + e}{2}$ $x = tanh\left(\frac{\pi}{2}sinh(t)\right)$ $\int f(x) dx = \int f(x(t)) x'(t) dt = \int f(x(t)) x'(t) dt$ - Calcular x'(t) tipo tron PM. - Implementar à ideia Ex. [xlnxdx, usando h=0.1, 4 casas dec. $\int_{0}^{\infty} x \ln x dx \approx 2 h \sum_{i=1,3,...}^{n-1} f(x_{i}) = 2 \times 0.1 \times (f(0,1) + f(0.3) + f(0.5))$ $\approx 0.2 \times (-1.2825) = -0.2565$ Quadratura Gaussiana $\int_{-1}^{1} g(t) dt \approx \sum_{i=0}^{n} A_{i} g(t_{i}) \qquad A_{i} \in \mathbb{R}$ $t_{i} \in [-1, 1]$ n=0 $\int g(e)dt \approx A_0g(t_0)$ g(t)=1 grau 0: Silt = A.1 grav 1: Stat = Ao-to $0 = A_o.t_o \Rightarrow [t_o=0]$ Q.6.0: $\int g(t)dt \approx 2.90$. $\int_{a}^{b} f(x) dx = \int_{a}^{1} g(t) dt = \int_{a}^{1} \frac{1}{(anst.)}$ $\int \frac{1}{\sqrt{1-x^2}} dx \approx 2 \cdot \frac{1}{\sqrt{\Gamma}} = 2.$