LCM Specification

□ 1·	•	. ~ .	
l√ lPrelim	marv	specification	n
	iiiai y	specification	111

☐Final Specification

Project 项目编		TH	FT013A6QQIGC7N10			
Custon 客户名						
Module 客户型						
Product t 产品内	,	240	T LCD Module) x 3RGB x 240 D "TFT LCD	ots		
Signature by cu	Signature by customer:					
客户确认签章:						
□Trial production			□Mass pro	oduction		
编制	电子审	 核	结构审核	批	准	
Liu. YL						

<u>2020年12月7日</u> <u>Rev:0</u>

CONTROL ELECTRONIC CO.,LTD.

1 Document revision history :

DOCUMENT REVISION	DATE	DESCRIPTION	PREPARED BY	APPROVED BY
0	2020-12-07	First Release.	Liu.YL	

1. General Feature:

Item	Standard Value	Unit
Display Size	1.3"	
Number of Pixels	240(H)x3(RGB)*240(V)	
Active Area	Ф32.40(Н) *Ф32.40(V)	mm
Outline Dimension	35.60(H) × 38.10(V)× 1.60(D)	mm
Viewing Direction	Full O'clock	-
Interface	SPI 3L/4L	-
Driver IC	GC9A01	-
Driver Condition	VCI=2.8V,IOVCC=1.8V (Type)	V
Backlight	White LED	-
Touch Panel	Whitout Touch Panel	-
Operation Temperature	-20~70	$^{\circ}$
Storage Temperature	-30~80	$^{\circ}$

2. Outline Dimensions

*** Do not display the fixed pattern for a long time when using a normally black panel, as it may cause image sticking due to the LCM structure. If the screen is displayed in fixed mode, use a screen saver. It is recommended to display the fixed mode in less than 2 minutes or less. SPI4W SPI Mode Use Pins -35.60±0.2<LCD 0/D>-0 SPI 3L CS, SDA, SCL -1. 60 ± 0. 1<BL+LCD> SPI 4L CS, SDA, SCL, D/CX ?32.40<LCD A/A>-Note:Fix to VCI when not in use. Pin SIGNAL Pin SIGNAL LED A DOTS: 240*3RGB*240 VCI 38. 10±0. 2<LCD 0/D> ? 32. 40<LCD A/A> CS Full View (80/80/80/80) RESX 6 SDA D/CX SPI4W LED K GND 铁框SUS201 -PI Stiffener Contact Side -2. 25 → -0. 30 \pm 0. 05 5. 50 ± 0.1 P0. 5*9=4. 50 - 0. 50 *1. LCD Display Type TFT, Transmissive, Normally Black Dwg Title: *2. Viewing Diretion Full 0'Clock (U80/D80/R80/L80) *6. Storage Temp -30° C^80° C TFT 013A6 QQC7N10 *3. Interface SPI 3L/4L *7. Driver IC 1:1 BL CIRCUIT DIAGRAM: *4. Operating Voltage VCI=2.8V, IOVCC=1.8V (Typ) *8. Backlight WHITE Vf=3.2V If=40mA(Typ) Vf=3.2V, If=40mA Liu *5. Operating Temp -20° C~70° C *9. LCM Brightness 750 cd/m² (Typ) 2020-08-24

3. Pin Description

3.1 Pin Description

Pin NO.	Symbol	Description	
1	LED_A	LED Anode	
2	VCI	Analog Power(2.65 ~ 3.3 V)	
3	CS	Chip select input pin ("Low" enable).	
4	RESX	Reset Pin	
5	SCL	Serial interface clock	
6	SDA	SPI interface input/output pin	
7	D/CX	Display data/command selection pin	
8	SPI4W	SPI 3L/4L Select SPI4W="L",3-wire 9-bit data serial interface SPI4W="H",4-wire 8-bit data serial interface	
9	LED_K	LED Cathode	
10	GND	Ground	
	END		

3.2 Wiring Diagram

4. Electrical Characteristics

4-1 TFT LCD Module Operating Conditions

Item	Symbol	Condition	Min	Type	Max	Uint
Interface logic circuits	IOVCC	-	1.65	1.80	3.30	V
Analog Power supply	VCI	-	2.50	2.80	3.30	V
TFT Gate on voltage	VGH	-	10.0	-	16.0	V
TFT Gate off voltage	VGL	-	-16.0	-	-10.0	V

4-2 LED back light specification (pera chip)

Item	Symbol	Condition	Min	Туре	Max	Uint
Forward voltage	Vt	If=20mA	-	3.2	-	V
Forward current	lpn	/1-chip	-	40	-	mA
Luminance(With LCD)	Lv	If=60mA	-	750	-	cd/m²
Luminous color	White					

5.OPTICAL SPECIFICATION

5.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance 1lux and temperature = 25 $^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and TOPCON BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of $^{\circ}$ 0 and $^{\circ}$ 0 equal to 0 . The center of the measuring spot on the Display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement.

5.2 Optical Specifications

Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
* T' '	Horizontal	⊕ 3		-	80	-	Deg.	
Viewing Angle	Tiorizontai	Θ9	CR>10	-	80	-	Deg.	Note 1
Range	Vertical	Θ 12	CK-10	-	80	-	Deg.	
8-	Vertical	Θ 6		-	80	-	Deg.	
Contras	st ratio	CR	⊕ = 0°	900	1100	-		Note2
Color (Gamut	CG		-	60		%	
White Chr	comotioity	Wx			0.324			
Willie Cili	omanchy	Wy			0.347			
	Red	Rx			0.644			
	Red	Ry	$\Theta = 0^{\circ}$	-0.02	0.333	+0.02		Note4
Reproduction	Green	Gx			0.325			(Based
of color	Green	Gy			0.566			on C
	Blue	Bx			0.134			Light)
	Diuc	By			0.124			
Respons (Rising +		Tr+Tf	$\Theta = 0^{\circ}$ Ta= 25 °C	-	30	35	ms	Note5
Transm	ittance	Tr		4.4	4.9		%	Note3

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o' clock direction and the vertical or 6, 12 o' clock direction with respect to the optical axis which is normal to the LCD surface (see FIGURE 1).
- 2.Contrast measurements shall be made at viewing angle of $\Theta = 0$ and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black)

state . (see FIGUR 1) Luminance Contrast Ratio (CR) is defined mathematically.

CR= Luminance when displaying a white raster

Luminance when displaying a black raster

- 3. Transmittance is the Value without APF and without CG.
- 4. The color chromaticity coordinates specified in the above table shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 5. The electro-optical response time measurements shall be made as FIGURE 2 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Tf.

Figure 1 Measurement Set Up

Figure 2 Response Time Testing

第 8 页 共 20 页

6.Timing Characteristics of Input Signals

<u>6-1 Serial Interface Characteristics (3-line serial):</u>

Signal	Cymbol	Parameter	min		Uni	Description
Signal	Symbol	Farameter	шш	max	t	Description
	tscycw	Serial Clock Cycle (Write)	10	, - ;	ns	
	tshw	SCL "H" Pulse Width (Write)	5	-	ns	
SCL	tslw	SCL "L" Pulse Width (Write)	5	-	ns	
SCL	tscycr	Serial Clock Cycle (Read)	150	-	ns	
	tshr	SCL "H" Pulse Width (Read)	60	-	ns	
	tslr	SCL "L" Pulse Width (Read)	60	-	ns	
SDA/SDI	tsds	Data setup time (Write)	5	-	ns	
(Input)	tsdh	Data hold time (Write)	5	-	ns	
SDA/SD0(Outp						
)	tacc	Access time (Read)	10	-	ns	
	tscc	SCL-CSX	10	-	ns	
CSV	tchw	CSX "H" Pulse Width	10		ns	
CSX	tcss		20		ns	
()	tcsh	CSX-SCL Time	40	-	ns	

Note: Ta = 25 $^{\circ}$ C, IOVCC=1.65V to 3.3V, VCI=2.5V to 3.3V, VSSA=VSSC=0V

<u>6-2 Serial Interface Characteristics (4-line serial):</u>

Signal	Symbol	Parameter	min	max	Unit	Description
CSX	tess	Chip select time (Write)	20		ns	
CSA	tcsh	Chip select hold time (Read)	40	-	ns	
	twc	Serial Clock Cycle (Write)	10	-	ns	
	twrh	SCL "H" Pulse Width (Write)	5	-	ns	
CCI	twrl	SCL "L" Pulse Width (Write)	5	-	ns	
SCL	tre	Serial Clock Cycle (Read)	150	-	ns	
	trdh	SCL "H" Pulse Width (Read)	60	-	ns	
	trdl	SCL "L" Pulse Width (Read)	60	21	ns	
D/CV	tas	D/CX setup time	10	-	ns	
D/CX	tah	D/CX hold time (Write/Read)	10	-	ns	
SDA/SDI	tds	Data setup time (Write)	5	-	ns	
(Input)	tdh	Data hold time (Write)	5	-	ns	
SDA/SD0						
(Output)	tacc	Access time (Read)	10	-	ns	

Note: Ta = 25 $^{\circ}$ C, IOVCC=1.65V to 3.3V, VCI=2.5V to 3.3V, VSSA=VSSC=0V

7. RELIABILITY TEST

7-1 Temperature and Humidity

TEST ITEMS	CONDITIONS	NOTE
High Temperature Operation	70℃ ; 120hrs	
High Temperature Storage	80℃ ; 120hrs	
High Temperature	60℃; 90%RH ; 120hrs	
High Humidity Operation	(No condensation)	
Low Temperature Operation	-20℃ ; 120hrs	
Low Temperature Storage	-30℃ ; 120hrs	
Thermal Shock	-30°C (0.5hr) ~ 80°C (0.5hr) ; 100 Cycles	Non-Operating
Image Sticking	25℃ ; 2hrs	1

Note 1: Image test: 25℃ ±2℃

(a) Test Pattern (chess board Pattern)

(b) Gray Pattern

7-2 Shock and Vibration

ITEMS	CONDITIONS
Packing Shock	Shock level:980m/s²
(Non-Operation)	Waveform: 1/2 Sine wave,6msec
	$lacktriangledown$ \pm X, \pm Y \pm Z,each axis 1 times
	● Frequency range:8-33.3HZ
Packing Vibration	Stoke:1.0mm
(Non-Operation)	● Sweep: 10Hz-50Hz
	x,y,z 2 hours for each direction

7-3 Electrostatic Discharge

TEST ITEM	CONDITIONS
ESD	150pF,330 Ω , Contact \pm 4KV,Air : \pm 8KV.Note 1
(Non-operation)	200pF,0 Ω , \pm 200V Contact test.Note 2

Note:Measure Point:

1.LCD glass and metal bezel

2.IF connector pins

8.HANDDLING & CAUTIONS

8-1 Caution For Operation

- ♦Since the LCM is made of glass, do not apply strong mechanical impact or static load onto it. Handling with care since shock, vibration, and careless handling may seriously affect the product. If it falls from a high place or receives a strong shock, the glass maybe broken.
- ♦It is indispensable to drive the LCM within the specified voltage limit since the higher voltage than the limit causes LCM's life shorter. An electro-chemical reaction due to DC causes undesirable deterioration of the LCM so that the use of DC drive should avoid.
 - ♦Do not connect or disconnect the LCM to or from the system when power is on.
 - ♦Never use the LCM under abnormal conditions of high temperature and high humidity.
- ♦When expose to drastic fluctuation of temperature(hot to cold or cold to hot), the LCM may be affected; specifically, drastic temperature fluctuation from cold to hot, produces dew on the LCM's surface which may affect the operation of the polarizer on the LCM.
- •Response time will be extremely delay at lower temperature than the operating temperature range and on the other hand LCM may turn black at temperature above its operational range. However those phenomenon do not mean malfunction or out of order with the LCM. The LCM will revert to normal operation once the temperature returns to the recommended temperature range for normal operation.
- ♦Do not display the fixed pattern for a long time when using a normally black panel, as it may cause image sticking due to the LCM structure. If the screen is displayed in fixed mode, use a screen saver. It is recommended to display the fixed mode in less than 2 minutes or less.
 - ◆Do not disassemble and/or re-assemble LCM module

7-2 Caution Against Static Charge

- ♦The LCM use C-MOS LSI drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipments to protect against static electricity.
- •Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertical from panel surface, if possible, under ESD control device like ion blower, and the humidity of working room should be kept over 50%RH to reduce the risk of static charge.
- ♦Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- ♦In handling the LCM, wear non-charged material gloves. And the conducting wrist to the earth and the conducting shoes to the earth are necessary

9.LCD display initialization code

```
Void Panel initial code(void)
    LCD RST = 1;
    Delayms(120);
    LCD RST = 0;
    Delayms(100);
    LCD_RST = 1;
    Delayms(120);
    LCD CtrlWrite(0xFE);
    LCD_CtrlWrite(0xEF);
    LCD CtrlWrite(0xEB);
    LCD DataWrite(0x14);
    LCD_CtrlWrite(0x84);
    LCD DataWrite(0x40);
    LCD_CtrlWrite(0x85);
    LCD_DataWrite(0xFF);
    LCD CtrlWrite(0x86);
    LCD_DataWrite(0xFF);
    LCD_CtrlWrite(0x87);
    LCD_DataWrite(0xFF);
    LCD_CtrlWrite(0x8E);
    LCD_DataWrite(0xFF);
    LCD CtrlWrite(0x8F);
    LCD_DataWrite(0xFF);
    LCD_CtrlWrite(0x88);
    LCD_DataWrite(0x0A);
    LCD CtrlWrite(0x89);
    LCD_DataWrite(0x21);
```

```
LCD_CtrlWrite(0x8A);
LCD_DataWrite(0x00);
LCD_CtrlWrite(0x8B);
LCD DataWrite(0x80);
LCD CtrlWrite(0x8C);
LCD_DataWrite(0x01);
LCD_CtrlWrite(0x8D);
LCD DataWrite(0x01);
LCD CtrlWrite(0xB6);
LCD DataWrite(0x00);
LCD DataWrite(0x20); //GS
LCD_CtrlWrite(0x36);
LCD DataWrite(0x48);
LCD_CtrlWrite(0x3A);
LCD_DataWrite(0x05);
LCD CtrlWrite(0x90);
LCD DataWrite(0x08);
LCD DataWrite(0x08);
LCD_DataWrite(0x08);
LCD_DataWrite(0x08);
LCD_CtrlWrite(0xBD);
LCD_DataWrite(0x06);
LCD CtrlWrite(0xBC);
LCD_DataWrite(0x00);
LCD_CtrlWrite(0xFF);
LCD DataWrite(0x60);
LCD DataWrite(0x01);
LCD_DataWrite(0x04);
```

```
LCD_CtrlWrite(0xC3);
LCD DataWrite(0x1d);
LCD CtrlWrite(0xC4);
LCD DataWrite(0x1d);
LCD CtrlWrite(0xC9);
LCD DataWrite(0x25);
LCD CtrlWrite(0xBE);
LCD DataWrite(0x11);
LCD CtrlWrite(0xE1);
LCD DataWrite(0x10);
LCD DataWrite(0x0E);
LCD CtrlWrite(0xDF);
LCD DataWrite(0x21);
LCD DataWrite(0x0c);
LCD DataWrite(0x02);
LCD CtrlWrite(0xF0);
LCD DataWrite(0x45);
LCD DataWrite(0x09);
LCD DataWrite(0x08);
LCD DataWrite(0x08);
LCD DataWrite(0x26);
LCD_DataWrite(0x2A);
LCD CtrlWrite(0xF1);
LCD DataWrite(0x43);
LCD_DataWrite(0x70);
LCD DataWrite(0x72);
LCD DataWrite(0x36);
LCD DataWrite(0x37);
LCD DataWrite(0x6F);
LCD CtrlWrite(0xF2);
LCD DataWrite(0x45);
LCD_DataWrite(0x09);
```

```
LCD_DataWrite(0x08);
LCD DataWrite(0x08);
LCD DataWrite(0x26);
LCD DataWrite(0x2A);
LCD CtrlWrite(0xF3);
LCD DataWrite(0x43);
LCD DataWrite(0x70);
LCD DataWrite(0x72);
LCD DataWrite(0x36);
LCD_DataWrite(0x37);
LCD DataWrite(0x6F);
LCD CtrlWrite(0xED);
LCD DataWrite(0x1B);
LCD DataWrite(0x0B);
LCD_CtrlWrite(0xAE);
LCD DataWrite(0x77);
LCD CtrlWrite(0xCD);
LCD_DataWrite(0x63);
LCD CtrlWrite(0x70);
LCD DataWrite(0x07);
LCD DataWrite(0x07);
LCD DataWrite(0x04);
LCD DataWrite(0x0E);
LCD DataWrite(0x0F);
LCD DataWrite(0x09);
LCD_DataWrite(0x07);
LCD DataWrite(0x08);
LCD DataWrite(0x03);
LCD CtrlWrite(0xE8);
LCD_DataWrite(0x34);
LCD CtrlWrite(0x60);
LCD DataWrite(0x38);
LCD_DataWrite(0x0B);
```

```
LCD DataWrite(0x6D);
LCD DataWrite(0x6D);
LCD DataWrite(0x39);
LCD DataWrite(0xF0);
LCD DataWrite(0x6D);
LCD DataWrite(0x6D);
LCD CtrlWrite(0x61);
LCD DataWrite(0x38);
LCD DataWrite(0xF4);
LCD DataWrite(0x6D);
LCD DataWrite(0x6D);
LCD_DataWrite(0x38);
//LCD DataWrite(0xF7);
LCD DataWrite(0xF7);
LCD DataWrite(0x6D);
LCD DataWrite(0x6D);
LCD CtrlWrite(0x62);
LCD DataWrite(0x38);
LCD DataWrite(0x0D);
LCD DataWrite(0x71);
LCD DataWrite(0xED);
LCD DataWrite(0x70);
LCD DataWrite(0x70);
LCD DataWrite(0x38);
LCD DataWrite(0x0F);
LCD DataWrite(0x71);
LCD DataWrite(0xEF);
LCD DataWrite(0x70);
LCD DataWrite(0x70);
LCD CtrlWrite(0x63);
LCD DataWrite(0x38);
LCD DataWrite(0x11);
LCD DataWrite(0x71);
LCD DataWrite(0xF1);
LCD_DataWrite(0x70);
```

```
LCD DataWrite(0x70);
LCD DataWrite(0x38);
LCD DataWrite(0x13);
LCD DataWrite(0x71);
LCD DataWrite(0xF3);
LCD DataWrite(0x70);
LCD DataWrite(0x70);
LCD CtrlWrite(0x64);
LCD DataWrite(0x28);
LCD DataWrite(0x29);
LCD DataWrite(0xF1);
LCD DataWrite(0x01);
LCD DataWrite(0xF1);
LCD DataWrite(0x00);
LCD DataWrite(0x07);
LCD CtrlWrite(0x66);
LCD DataWrite(0x3C);
LCD DataWrite(0x00);
LCD DataWrite(0xCD);
LCD DataWrite(0x67);
LCD DataWrite(0x45);
LCD DataWrite(0x45);
LCD DataWrite(0x10);
LCD DataWrite(0x00);
LCD DataWrite(0x00);
LCD DataWrite(0x00);
LCD CtrlWrite(0x67);
LCD DataWrite(0x00);
LCD DataWrite(0x3C);
LCD DataWrite(0x00);
LCD DataWrite(0x00);
LCD DataWrite(0x00);
LCD DataWrite(0x01);
LCD DataWrite(0x54);
LCD DataWrite(0x10);
LCD DataWrite(0x32);
```

LCD_DataWrite(0x98);

```
LCD_CtrlWrite(0x74);
    LCD DataWrite(0x10);
    LCD DataWrite(0x85);
    LCD DataWrite(0x80);
    LCD DataWrite(0x00);
    LCD DataWrite(0x00);
    LCD DataWrite(0x4E);
    LCD_DataWrite(0x00);
    LCD CtrlWrite(0x98);
    LCD DataWrite(0x3e);
    LCD_DataWrite(0x07);
    LCD CtrlWrite(0x35);
    LCD DataWrite(0x00);
    LCD CtrlWrite(0x21);
    Delayms(120);
    LCD CtrlWrite(0x11);
    Delayms(120);
    LCD_CtrlWrite(0x29);
    Delayms(120);
    LCD CtrlWrite(0x2C);
    Delayms(120);
}
Void Panel_SleepIn_Mode (void)
    WriteComm(0x28);
    Delayms(120);
    WriteComm(0x10);
    Delayms(120);
Void Panel_SleepOut_Mode (void)
    WriteComm(0x11);
    Delayms(120);
    WriteComm(0x29);
    Delayms(120);
}
```

```
#define ROW
              240
                           //Y
#define COL 240
                          //X
void BlockWrite(unsigned int Xstart,unsigned int Xend,unsigned int Ystart,unsigned int Yend) reentrant
    WriteComm(0x2A);
    WriteData(Xstart>>8);
    WriteData(Xstart);
    WriteData(Xend>>8);
    WriteData(Xend);
    WriteComm(0x2B);
    WriteData(Ystart>>8);
    WriteData(Ystart);
    WriteData(Yend>>8);
    WriteData(Yend);
    WriteComm(0x2c);
}
void DispColor(unsigned int color)
{
    unsigned int i,j;
     CLKSEL = 0x03;
    BlockWrite(0,COL-1,0,ROW-1);
    CS0=0;
    RS=1;
    for(i=0;i < ROW;i++)
        for(j=0;j<COL;j++)
             SendDataSPI(color>>8);
             SendDataSPI(color);
        CLKSEL = 0x00;
    CS0=1;
                                       第 20 页 共 20 页
```