Early Stopping Based on Unlabeled Samples in Text Classification

HongSeok Choi, Dongha Choi, and Hyunju Lee

Gwangju Institute of Science and Technology (GIST), South Korea {hongking9,hyunjulee}@gist.ac.kr, dongha528@gm.gist.ac.kr

Abstract

Early stopping, which is widely used to prevent overfitting, is generally based on a separate validation set. However, in low resource settings, validationbased stopping can be risky because a small validation set may not be sufficiently representative, and the reduction in the number of samples by validation split may result in insufficient samples for training. In this study, we propose an early stopping method that uses unlabeled samples. The proposed method is based on confidence and class distribution similarities. To further improve the performance, we present a calibration method to better estimate the class distribution of the unlabeled samples. The proposed method is advantageous because it does not require a separate validation set and provides a better stopping point by using a large unlabeled set. Extensive experiments are conducted on five text classification datasets and several stop-methods are compared. Our results show that the proposed model even performs better than using an additional validation set as well as the existing stop-methods, in both balanced and imbalanced data settings. Our code is available at https://github.com/DMCB-GIST/BUS-stop.

Motivation

- Validation-based early stopping reduces the number of training samples for a validation set, and thus decreases the prediction accuracy.
- 2. In low resource settings, the small labeled set is not representative enough to be used as a stop-criterion.
- In low resource settings, the prediction accuracy highly fluctuates during training.

Advantages

Therefore, we propose an early **stop**ping method that is based on unlabeled samples, BUS-stop.

- BUS-stop can *improve the performance* by using all the labeled samples for training.
- BUS-stop can provide more <u>reliable stopping point</u> by using large unlabeled samples.
- BUS-stop method is *related to performance metric* such as accuracy and loss.

Method

BUS-stop consists of two similarity measures:

- (i) Conf-sim, S_{conf} \longrightarrow S_{conf} = $Euclidean(\overrightarrow{P_l}, \overrightarrow{P_u^e})$ (ii) Class-sim, S_{class} \longrightarrow S_{class} = $Cosine(\overrightarrow{C_{cali}}, \overrightarrow{C_u^e})$
- * Conf-sim is the confidence similarity & Class-sim is the class distribution similarity.

Preliminary stage

For epoch e in $\{1,2,3,...\}$:

Train the model M one epoch on D_1 . Feed D_u into M and obtains the confidences, P_{μ}^{e} , and the output class distribution, C_{u}^{e} .

$$S_{conf} = Euclidean(\overrightarrow{P_l}, \overrightarrow{P_u^e})$$

$$S_{class} = Cosine(\vec{C}_{cali}, \widehat{C}_{u}^{e})$$

BUS-stop(S_{conf}, S_{class}) \rightarrow stop? if stop==yes $\rightarrow M_{best} = M$

else stop==no → continue training

$$X \times \{1, \dots, n_{class}\},\$$

the confidence, true class distribution, and output class distribution are defined as follows:

Sample
$$x_i \to p_i = \max_j (p_{ij})$$
, $C[j] = \frac{1}{n_{data}} \sum_{i=1}^{n_{data}} \mathbb{1}(y_i = j)$, $\hat{C}[j] = \frac{1}{n_{data}} \sum_{i=1}^{n_{data}} p_{ij}$.

Calibration method to better estimate the true class distribution.

$$C_{true} pprox \vec{C}_{cali} = B + \frac{(1 - Acc_{min})}{(Acc_{val} - Acc_{min})} (\hat{C}_{pred} - B)$$

Ex) in binary classification

For example, if (a, b) = (0.5, 0.5)

 $\hat{C}_{pred} = (0.65, 0.35) \xrightarrow{\text{cali}} \vec{C}_{cali} = (0.75, 0.25)$

lacktriangle BUS-stop is a combined method of S_{conf} and S_{class} .

0.783

0.839

0.78

0.843

0.835

0.873

0.876

0.837

0.768

0.832

0.747

0.836

0.821

0.86

0.861

0.827

- The combined stop-criterion is to save the model with the highest S_{class} among of the epochs from the lowest S_{conf} to the subsequent $(n_{que} - 1)$ -th epoch.
- To implement this, we use a fixed-size (n_{que}) queue.

Experimental Results

In various imbalanced settings

Train	Test	2:8	4:6	6:4	8:2
2:8	EB	0.845	0.732	0.643	0.511
	BUS-stop (ours)	0.828	0.719	0.669	0.521
	Val-stop _{add(25)}	0.679	0.660	0.621	0.634
4:6	EB	0.860	0.820	0.790	0.728
	BUS-stop (ours)	0.864	0.825	0.815	0.808
	$Val-stop_{add(25)}$	0.820	0.808	0.801	0.794
6:4	EB	0.790	0.816	0.825	0.845
	BUS-stop (ours)	0.845	0.826	0.833	0.864
	$Val-stop_{add(25)}$	0.826	0.824	0.823	0.824
8:2	EB	0.611	0.696	0.774	0.870
	BUS-stop (ours)	0.682	0.714	0.793	0.865
	Val-stop _{add(25)}	0.667	0.707	0.733	0.782

As the training size increases...

Imbalanced Classification Balanced Classification $(K = 50 \& 2:8 = \text{neg:pos in } D_{test})$

Method	SST-2	IMDB	•••	Avg.	Method
Val-stop _{split(25)}	0.775	0.746	•••	0.826	Val-stop _{split(25)}
EB	0.826	0.833	•••	0.869	EB
LID	0.794	0.761	•••	0.84	LID
PE-stop-epoch	0.816	0.826	•••	0.865	PE-stop-epoch
Conf-sim (ours)	0.807	0.793	•••	0.854	Conf-sim (ours)
Class-sim (ours)	0.795	0.789	•••	0.844	Class-sim (ours)
BUS-stop (ours)	0.831	0.828	•••	0.872	BUS-stop (ours)
*Val-stop _{add(25)}	0.819	0.824	•••	0.868	*Val-stop _{add(25)}
			<u> </u>	Accuracy	

* Accuracy ※ Val-stop_{add(25)} is the validation-based stopping that uses additional 25 labeled samples per class, which is an unfair advantage.

0.823

0.82

Datasets

Data							
Data	Class	Test	Ler				
SST-2	2	1.8K	19				
IMDB	2	25K	231				
Elec	2	25K	107				
4.0	4	7 (17	20				

 In the low resource settings, the number of training samples per class (= K) was set to 50. BERT-base was adopted **

as our text encoder.

Conclusion

Conclusion: We conducted extensive experiments on five text classification datasets. **BUS-stop**, the proposed early stopping method, achieved the best performance among the existing stop-criteria, and the performance was particularly better in imbalanced data settings. In addition, the proposed calibration method better estimates the true class distribution and improves the BUS-stop performance.

Limitation: The running time increases with the number of unlabeled samples, and the prelimnary stage requires additional running time.