Lo strato di collegamento Parte 3	1
Controllo d'errore e controllo di flusso	2

End-to-End vs. Hop-by-Hop

- Una funzione può essere eseguita
 - da estremo a estremo (end-to-end) (Strato di trasporto)
 - tratta per tratta (hop-by-hop) (Strato di Data link)
- Esempi
 - Controllo d'errore eseguito in ogni hop del percorso di rete oppure solamente tra sorgente e destinazione
 - Controllo di flusso eseguito in ogni hop del percorso di rete oppure solamente tra sorgente e destinazione
- Quali sono i vantaggi e gli svantaggi dei due approcci ?

3

Automatic Repeat Request (ARQ)

Obiettivo

- assicurare che una sequenza di PDU sia consegnata in ordine e senza errori o duplicazioni in presenza di un servizio offerto dagli strati sottostanti che introduce errori e/o perdite
- Possibili procedure alternative
 - Stop-and-Wait ARQ
 - Go-Back N ARQ
 - Selective Repeat ARQ
- Elementi chiave delle procedure ARQ
 - Codici di rivelazione d'errore
 - Riscontri positivi (ACK)
 - Riscontri negativi (NACK)
 - Timeout

5

Per a il secondo ACK riscntra la frame 1 che invece è persa Occorre inserire il numero di squenza anche negli ACK (R_{next}) indica il numero di sequenza della prossima frame che il ricevitore si aspetta di ricevere implicitamente riscontra tutte le frame con numero di sequenza R'<R

Stop-and-Wait ARQ (Trasmitter)

State Ready

- Attesa di una richiesta di invio di un pacchetto dallo strato superiore
- Quando arriva una richiesta, si trasmette la frame con numero di sequenza Slast e completa di CRC
- Transizione nello stato Wait

State Wait

- Attesa del riscontro della frame emessa o dell'esaurimento del timeout (la ricezione delle richieste dallo strato superiore sono bloccate)
- Se il timeout scade viene ritrasmessa la frame e viene riavviato il timer
- Se viene ricevuto un ACK
 - Se il numero di sequenza non è corretto l'ACK è ignorato
 - Se il numero di sequenza è corretto (Rnext=Slast+1), la frame è accettata e si torna nello stato Ready

Stop-and-Wait ARQ (Receiver)

Sempre nello stato Ready

- Attesa dell'arrivo di una nuova frame
- Quando arriva una frame viene eseguito il controllo d'errore (CRC)
- Se non sono rivelati errori e il numero di sequenza è corretto (Slast=Rnext)
 - la frame è accettata
 - viene aggiornato il valore di Rnext
 - viene emesso l'ACK con valore Rnext
 - il pacchetto è consegnato allo strato superiore
- Se non sono rivelati errori e il numero di sequenza non è corretto
 - la frame è scartata
 - viene emesso un ACK with Rnext (ACK duplicato)
- Se sono rivelati errori
 - la frame è scartata

Efficienza su un canale senza-errori

Rate di trasmissione efficace

bit di overhead

$$R_{eff}^{0} = \frac{\text{numero di bit infromativi consegnati a destinazione}}{\text{tempo totale necessario per la consegna dei bit informativi}} = \frac{n_f - n_o}{t_0}$$

Efficienza di trasmissione

Effetto dell'overhead di una frame

$$\eta_0 = \frac{R_{\text{eff}}}{R} = \frac{\frac{n_{\text{f}} - n_{\text{o}}}{t_0}}{R} = \frac{1 + \frac{n_{\text{o}}}{n_{\text{f}}}}{1 + \frac{n_{\text{a}}}{n_{\text{f}}} + \frac{2(t_{\text{prop}} + t_{\text{proc}})R}{n_{\text{f}}}}$$
Effetto di un ACK

Effetto del prodotto Banda-Ritardo

18

Esempio: Impatto del prodotto banda-ritardo

 $n_f = 1250$ byte = 10000 bits, $n_a = n_o = 25$ byte = 200 bit

2xDelayxBW Efficiency	1 ms	10 ms	100 ms	1 sec
	200 km	2000 km	20000 km	200000 km
1 Mbit/s	10 ³	104	10 ⁵	106
	88%	49%	9%	1%
1 Gbit/s	106	107	108	10 ⁹
	1%	0.1%	0.01%	0.001%

La tecnica Stop-and-Wait non è efficiente in link ad alta velocità o con elevati ritardi di propagazione

Efficienza su un canale con errori

- Sia $1-P_f$ = probabilità che una frame arrivi senza errori
- 1/ $(1-P_f)$ = numero medio di trasmissioni necessarie per avere una trasmissione corretta di una frame
- $t_{o}/(1 P_{f})$ = tempo medio di trasferimento di una frame

$$\eta_{SW} = \frac{R_{eff}}{R} = \frac{\frac{n_f - n_o}{t_o}}{R} = \frac{1 - \frac{n_o}{n_f}}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} (1 - P_f)$$
Effetto della probabilità di perdita delle frame

20

Esempio: Impatto del Bit Error Rate

- n_f =1250 byte = 10000 bit, n_a = n_o =25 byte = 200 bit
- Calcolo dell'efficienza per un BER p=0, 10⁻⁶, 10⁻⁶, 10⁻⁶

 $1 - P_f = (1 - p)^{n_f} \approx e^{-n_f p}$ per grandi valori di n_f e per piccoli valori di p

$1 - P_f$ Efficiency	0	10-6	10-5	10-4
R=1 Mbps	1	0.99	0.905	0.368
T _{prop} =1 ms	88%	86.6%	79.2%	32.2%

 Gli errori introducono un effetto significativo quando il prodotto n_f p si avvicina ad 1

Go-back N ARQ

- Miglioramento del protocollo Stop-and-Wait
- Elimina le attese dei riscontri
 - Il canale è mantenuto occupato inviando altre frame
 - Utilizza una finestra in trasmissione di ampiezza W_s frame
 - Usa m bit per la numerazione delle frame
- Se vengono ricevuti gli ACK delle frame emesse prima di esaurire la finestra, la finestra è aggiornata e la trasmissione delle frame può continuare
- Se la finestra si esaurisce, la trasmissione viene interrotta in attesa degli ACK
- Se non sono ricevuti ACK, allo scadere di un timeout le frame della finestra vengono ritrasmesse

Dimensione della finestra vs. prodotto banda-ritardo

29

Frame = 1250 bytes =10,000 bits, R = 1 Mbps				
2(† _{prop} + † _{proc})	2 × Delay × BW	Window		
1 ms	1000 bits	1		
10 ms	10,000 bits	2		
100 ms	100,000 bits	11		
1 second	1,000,000 bits	101		

30

Efficienza del Go-Back-N

Tempo di trasferimento di una frame

$$t_{GBN} = t_f (1 - P_f) + P_f \{t_f + \frac{W_s t_f}{1 - P_f}\} = t_f + P_f \frac{W_s t_f}{1 - P_f}$$

Efficienza

cienza
$$\eta_{\mathcal{GBN}} = rac{rac{n_f - n_o}{t_{\mathcal{GBN}}}}{R} = rac{1 - rac{n_o}{n_f}}{1 + (\mathcal{W_S} - 1)P_f} (1 - P_f)$$

Impatto del BER su GBN

- $n_f = 1250$ bytes = 10000 bits, $n_g = n_o = 25$ bytes = 200 bits
- Random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴
- R = 1 Mbps, Delay = 100 ms
- 1 Mbps x 100 ms = 100000 bits = 10 frames \rightarrow W_s = 11

Efficiency	0	10-6	10-5	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%

- Go-Back-N è migliore di S&W nei casi di elevato valore del prodotto banda ritardo
- Go-Back-N diviene inefficiente se il BER cresce

32

Selective Repeat ARQ

- Go-Back-N ARQ è inefficiente poichè, in caso di ritrasmissione, è riemesso un numero elevato di frame, anche se ricevute correttemente dal receiver
- Selective Repeat ritrasmette solo le frame che sono state perse
 - l'esaurimento del Timeout determina la ritrasmissione solo del frame corrispondente
 - La ricezione di un NAK causa la ritrasmissione della trama non riscontrata più vecchia
- Il Receiver gestisce una finestra in ricezione che indica i numeri di sequenza che possono essere accettati
 - Farme corrette, ma fuori sequenza con numero disequenza compreso nella finestra in ricezione non sono scartate, ma sono bufferizzate
 - Un arrivo di una frame con Rnext determina lo scorrimento della finestra in trasmissione

Efficienza del Selective Repeat

- Assumiamo P_f = frame loss probability
- Il numero di trasmissioni richieste per trasferire una frame è

$$1/(1-P_f)$$

Il tempo di trasferimento è quindi

$$t_f / (1-P_f)$$

L'efficienza è data da

$$\eta_{SR} = \frac{\frac{n_f - n_o}{t_f / (1 - P_f)}}{R} = (1 - \frac{n_o}{n_f})(1 - P_f)$$

Esempio: Impatto del BER sul Selective Repeat

- $n_f = 1250$ bytes = 10000 bits, $n_a = n_o = 25$ bytes = 200 bits
- Random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴
- R = 1 Mbps, Delay = 100 ms

Efficiency	0	10-6	10-5	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%
SR	98%	97%	89%	36%

Il Selective Repeat ha prestazioni migliori rispetto a GBN e S&W, ma l'efficienza diminuisce al crescere del BER Confronto tra i metodi ARQ

Assumiamo n_a e n_o trascurabili rispetto a n_f , e $L = 2(t_{prop} + t_{proc})R/n_f = (W_s-1)$

Selective-Repeat

$$\eta_{SR} = (1 - P_f)(1 - \frac{n_o}{n_f}) \approx (1 - P_f)$$

$$\begin{aligned} &\textit{Go-Back-N} \\ &\eta_{\textit{GBN}} = \frac{1 - \textit{P}_{\textit{f}}}{1 + (\textit{W}_{\textit{S}} - 1)\textit{P}_{\textit{f}}} = \frac{1 - \textit{P}_{\textit{f}}}{1 + \textit{LP}_{\textit{f}}} \end{aligned}$$

per P_f≈0, SR & GBN uguali

41

Stop-and-Wait

top-and-Wait
$$\eta_{SW} = \frac{(1 - P_f)}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} \approx \frac{1 - P_f}{1 + L}$$
per $P_f \rightarrow 1$,
GBN & SW uguali

