Module 11A: Solutions to recurrence relations

MTH 225 18 November 2020

Agenda

- Review of Daily Prep
- Minilecture: Is it a solution?
- Activity: From sequence to solution
- Minilecture: Telescoping and iteration
- Wrap up and look ahead

Hold for Daily Prep debrief

What is a solution to a recurrence relation?

 $a_n=3a_{n-1}+4a_{n-2},\ a_0=2,a_1=3$

2, 3, 17, 63, 257, 1023, 4097, 16383,

A **solution** to this recurrence relation is a **closed formula** a(n) (domain = **N**) that produces the same sequence as the recurrence relation with these initial conditions

NOT a solution: a(n) = n + 22, 3, 4, 5, ...

$a(n) = 4^n + (-1)^n$

=4^C2+(-1)^C2 A			
A	В	С	D
		n	a(n)
2		0	2
3		1	3
17		2	17
63		3	63
257		4	257
1023		5	1023
4097		6	4097
16383		7	16383
65537		8	65537
262143		9	262143
1048577		10	1048577

Q: Does this spreadsheet mean that this a(n) is a solution to the recurrence relation?

A: No. It only means that it produces the first 11 terms correctly.

We need to know that EVERY term is produced correctly. → Need more than a list of data!

How do we show that ALL terms are produced correctly?

A: You don't. You show instead that **the proposed formula satisfies the recurrence relation and the initial conditions.**

Jamboard: Working out the algebra to show this is a solution

Jamboard: From sequence to solution

Setup

Consider the sequence: 5, 7, 11, 19, 35, 67, 131, 259, ...

- Start indexing at 0, so $a_0 = 5$, $a_1 = 7$, $a_2 = 11$, etc.
- Come up with a recurrence relation that produces this sequence.
 - **Hint**: Look at the differences between the terms: $a_1 a_0$, $a_2 a_1$, $a_3 a_2$, etc. Is there a pattern that's emerging that tells you what $a_n a_{n-1}$ equals?
 - Use that pattern to get the recurrence relation for a_n.
- Then show that an = 3 + 2n+1 is a closed-formula solution to that recurrence relation.

Debrief

- The technique of looking at differences between terms is called **telescoping**. Look at differences \rightarrow Find a pattern \rightarrow turn into a recurrence relation.
- Where did the closed formula even come from? → What kind of sequence is the difference of terms?
- Related technique: Iteration → Writing out terms and then adding them up

Example: Solve the recurrence relation $a_n = 2a_{n-1} + 1$, $a_1 = 1$

Where that last sequence is applied

Towers of Hanoi: Start with *n* discs as shown. Move the disks from the peg on the left to another peg, one at a time, without ever placing a large disc on top of a smaller one.

What's the minimum number of moves required?

$$m_n=2m_{n-1}+1, m_1=1$$

So
$$m(n) = 2^n - 1$$
.

What we learned/what's next

- A solution to a recurrence relation is a closed formula that produces the same sequence (including initial conditions)
- Given a proposed solution, we can check it by seeing if it algebraically satisfies the recurrence relation
- Coming up with a solution can be done sometimes using telescoping or iteration

Next:

Using more algebra to find solutions, if the recurrence relation is "linear"