02-09-2023

```
In [342]:
                import numpy as np
             2
                import pandas as pd
                import matplotlib.pyplot as plt
                import seaborn as sns
In [382]:
             1
                from sklearn.linear_model import LogisticRegression
             2
                a=pd.read_csv(r"C:\USERS\user\Downloads\C8_loan-train.csv")
             3
              1 LP001003
                             Male
                                       Yes
                                                         Graduate
                                                                            No
                                                                                           4583
                                                                                                            150
              2 LP001005
                             Male
                                       Yes
                                                     0
                                                         Graduate
                                                                            Yes
                                                                                           3000
                                                             Not
              3 LP001006
                                       Yes
                                                     0
                                                                                                           235
                             Male
                                                                            No
                                                                                           2583
                                                         Graduate
                 LP001008
                             Male
                                                     0
                                                         Graduate
                                                                            No
                                                                                           6000
                                       No
                                        ...
                                                                             ...
            609
                 LP002978 Female
                                                     0
                                                         Graduate
                                                                                           2900
                                       No
                                                                            No
            610 LP002979
                             Male
                                       Yes
                                                    3+
                                                         Graduate
                                                                            No
                                                                                           4106
            611 LP002983
                             Male
                                                     1
                                                         Graduate
                                                                            No
                                                                                           8072
                                                                                                            24
                                       Yes
            612 LP002984
                             Male
                                                         Graduate
                                                                                           7583
                                       Yes
                                                                            No
            613 LP002990 Female
                                       No
                                                         Graduate
                                                                            Yes
                                                                                           4583
           614 rows × 13 columns
```

In [383]: 1 a=a.head(60) 2 a

Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_
Male	No	0	Graduate	No	5849	0.0	NaN	;
Male	Yes	1	Graduate	No	4583	1508.0	128.0	;
Male	Yes	0	Graduate	Yes	3000	0.0	66.0	;
Ma l e	Yes	0	Not Graduate	No	2583	2358.0	120.0	;
Male	No	0	Graduate	No	6000	0.0	141.0	;
Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	;
Male	Yes	0	Not Graduate	No	2333	1516.0	95.0	;
Male	Yes	3+	Graduate	No	3036	2504.0	158.0	;
Male	Yes	2	Graduate	No	4006	1526.0	168.0	;
Mala	Voc	1	Graduato	Ma	170/11	10069 0	340 0	, ▼

In [384]: 1 from sklearn.linear_model import LogisticRegression

```
In [409]: 1 b=a[['ApplicantIncome', 'CoapplicantIncome']]
    b
```

Out[409]:

	ApplicantIncome	CoapplicantIncome
0	5849	0.0
1	4583	1508.0
2	3000	0.0
3	2583	2358.0
4	6000	0.0
5	5417	4196.0
6	2333	1516.0
7	3036	2504.0
8	4006	1526.0
9	12841	10968.0
10	3200	700.0
11	2500	1840.0
12	3073	8106.0
13	1853	2840.0
14	1299	1086.0
15	4950	0.0
16	3596	0.0
17	3510	0.0
18	4887	0.0
19	2600	3500.0
20	7660	0.0
21	5955	5625.0
22	2600	1911.0
23	3365	1917.0
24	3717	2925.0
25	9560	0.0
26	2799	2253.0
27	4226	1040.0
28	1442	0.0
29	3750	2083.0
30	4166	3369.0
31	3167	0.0
32	4692	0.0
33	3500	1667.0
34	12500	3000.0
35	2275	2067.0
36	1828	1330.0
37	3667	1459.0
38	4166	7210.0

		ApplicantIncome	CoapplicantIncome
	39	3748	1668.0
	40	3600	0.0
	41	1800	1213.0
	42	2400	0.0
	43	3941	2336.0
	44	4695	0.0
	45	3410	0.0
	46	5649	0.0
	47	5821	0.0
	48	2645	3440.0
	49	4000	2275.0
	50	1928	1644.0
	51	3086	0.0
	52	4230	0.0
	53	4616	0.0
	54	11500	0.0
	55	2708	1167.0
	56	2132	1591.0
	57	3366	2200.0
	58	8080	2250.0
	59	3357	2859.0
In [410]:	1 2	<pre>c=b.iloc[:,0:5 d=b.iloc[:,-1]</pre>	;] !
		u=0.110C[:,-1]	<u> </u>
In [411]:	1	c.shape	
Out[411]:	(60	, 2)	
Tn [442]:	1	d chanc	
In [412]:	1	d.shape	

Out[412]: (60,)

```
In [413]:
```

- from sklearn.preprocessing import StandardScaler
 fs=StandardScaler().fit_transform(c)
- 3 fs

```
Out[413]: array([[ 0.67433211, -0.82097989],
                  [ 0.15206627, -0.1008207 ],
                  [-0.5009723 , -0.82097989],
                  [-0.67299826, 0.30510458],
                  [ 0.73662448, -0.82097989],
                  [ 0.49611817, 1.18285829],
                  [-0.77613132, -0.09700022],
                  [-0.48612114, 0.37482822],
                  [-0.08596485, -0.09222463],
                  [ 3.55875768, 4.41688885],
                  [-0.41846585, -0.48668849],
                  [-0.70723843, 0.05772894],
                  [-0.47085745, 3.05011456],
                  [-0.97414681, 0.53528809],
                  [-1.20268968, -0.30235066],
                  [ 0.30346561, -0.82097989],
                  [-0.25510307, -0.82097989],
                  [-0.29058085, -0.82097989],
                  [ 0.27747607, -0.82097989],
                  [-0.66598521, 0.85047713],
                  [ 1.42142804, -0.82097989],
                  [ 0.71806053, 1.86529032],
                  [-0.66598521, 0.09163564],
                  [-0.35039803, 0.094501 ],
                  [-0.20518667, 0.57588062],
                  [ 2.20523933, -0.82097989],
                  [-0.58389129, 0.25496087],
                  [ 0.00479225, -0.32431838],
                  [-1.14369757, -0.82097989],
                  [-0.19157311, 0.17377581],
                  [-0.01995969, 0.78791688],
                  [-0.43207942, -0.82097989],
                  [ 0.19703228, -0.82097989],
                  [-0.29470617, -0.02488879],
                  [ 3.41808418, 0.61169755],
                  [-0.80005819, 0.16613487],
                  [-0.98446011, -0.18582622],
                  [-0.22581328, -0.12422109],
                  [-0.01995969, 2.62222157],
                  [-0.19239817, -0.02441123],
                  [-0.25345295, -0.82097989],
                  [-0.99601102, -0.24170064],
                  [-0.74849166, -0.82097989],
                  [-0.11277944, 0.29459828],
                  [ 0.19826988, -0.82097989],
                  [-0.33183408, -0.82097989],
                  [ 0.59182566, -0.82097989],
                  [ 0.66278121, -0.82097989],
                  [-0.64742126, 0.82182358],
                  [-0.08844004, 0.26546717],
                  [-0.94320689, -0.03587265],
                  [-0.46549453, -0.82097989],
                  [ 0.00644238, -0.82097989],
                  [ 0.16567983, -0.82097989],
                  [ 3.00555192, -0.82097989],
                  [-0.62143172, -0.26366836],
                  [-0.85905031, -0.06118329],
                  [-0.3499855 , 0.22965023],
                  [ 1.59469159, 0.25352819],
                  [-0.35369829, 0.54436171]])
```

```
1 logr=LogisticRegression()
In [414]:
            2 logr.fit(fs,d)
Out[414]: LogisticRegression()
In [417]:
            1 e=[[777,55]]
In [418]:
               prediction=logr.predict(e)
               prediction
Out[418]: array([3000.])
In [419]:
            1 logr.classes_
Out[419]: array([
                                   1040.,
                                           1086., 1167.,
                                                            1213.,
                      0.,
                            700.,
                                                                    1330.,
                                                                             1459.,
                   1508.,
                           1516.,
                                   1526.,
                                           1591.,
                                                    1644.,
                                                            1667.,
                                                                    1668.,
                   1911.,
                           1917.,
                                   2067.,
                                           2083.,
                                                    2200.,
                                                            2250.,
                                                                    2253.,
                                                                             2275.,
                                   2504.,
                                           2840.,
                                                    2859.,
                                                            2925.,
                   2336.,
                           2358.,
                                                                    3000.,
                                                                             3369.,
                                   4196., 5625., 7210., 8106., 10968.])
                   3440.,
                           3500.,
In [420]:
            1 logr.predict_proba(e)[0][0]
Out[420]: 8.794009433362316e-302
In [421]:
               import re
            1
            2 from sklearn.datasets import load_digits
            3 import numpy as np
               import pandas as pd
               import matplotlib.pyplot as plt
               import seaborn as sns
In [422]:
            1 from sklearn.linear model import LogisticRegression
               from sklearn.model selection import train_test_split
In [423]:
            1 digits=load_digits()
            2 digits
              h<del>-----</del>--
             'pixel_1_4',
             'pixel_1_5',
             'pixel 1 6',
             'pixel 1 7',
             'pixel_2_0',
             'pixel_2_1',
             'pixel_2_2',
             'pixel_2_3',
             'pixel_2_4',
             'pixel 2 5',
             'pixel 2 6',
             'pixel_2_7',
             'pixel 3 0',
             'pixel_3_1'
             'pixel_3_2',
             'pixel_3_3',
             'pixel 3 4',
             'pixel_3_5',
             'pixel_3_6',
```

```
In [424]:
               plt.figure(figsize=(50,25))
            1
            2
               for index,(image,label) in enumerate(zip(digits.data[0:8],digits.target[0:5])):
            3
                   plt.subplot(1,8,index+1)
                   plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
            4
            5
                   plt.title('Number:%i\n'%label,fontsize=15)
                                                                         Number:3
                                                                                           Number:4
In [429]:
            1 x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0
In [430]:
            1 print(x train.shape)
            2 print(x test.shape)
               print(y_train.shape)
               print(y_test.shape)
           (736, 64)
           (1061, 64)
           (736,)
           (1061,)
In [431]:
            1 logre=LogisticRegression(max iter=10000)
            2
               logre.fit(x_train,y_train)
            3
Out[431]: LogisticRegression(max iter=10000)
In [432]:
               print(logre.predict(x_test))
           [7 2 8 ... 6 2 2]
In [433]:
               import numpy as np
               import pandas as pd
               import matplotlib.pyplot as plt
               import seaborn as sns
```

1 | a=pd.read_csv(r"C:\USERS\user\Downloads\C8_loan-train.csv")

In [434]:

In [435]:	1 2	a=a.head	l(60)						
	32	LP001097	Male	No	1	Graduate	Yes	4692	0 ^
	33	LP001098	Male	Yes	0	Graduate	No	3500	1667
	34	LP001100	Male	No	3+	Graduate	No	12500	3000
	35	LP001106	Male	Yes	0	Graduate	No	2275	2067
	36	LP001109	Male	Yes	0	Graduate	No	1828	1330
	37	LP001112	Female	Yes	0	Graduate	No	3667	1459
	38	LP001114	Male	No	0	Graduate	No	4166	7210
	39	LP001116	Male	No	0	Not Graduate	No	3748	1668
	40	LP001119	Male	No	0	Graduate	No	3600	0
	41	LP001120	Male	No	0	Graduate	No	1800	1213
	42	LP001123	Male	Yes	0	Graduate	No	2400	0
	43	LP001131	Male	Yes	0	Graduate	No	3941	2336

```
In [437]: 1 b=a[[ 'ApplicantIncome', 'CoapplicantIncome', 'Loan_Status']]
2 b
```

Out[437]:

	ApplicantIncome	CoapplicantIncome	Loan_Status
0	5849	0.0	Υ
1	4583	1508.0	N
2	3000	0.0	Υ
3	2583	2358.0	Υ
4	6000	0.0	Υ
5	5417	4196.0	Υ
6	2333	1516.0	Υ
7	3036	2504.0	N
8	4006	1526.0	Υ
9	12841	10968.0	N
10	3200	700.0	Υ
11	2500	1840.0	Υ
12	3073	8106.0	Υ
13	1853	2840.0	N
14	1299	1086.0	Υ
15	4950	0.0	Υ
16	3596	0.0	Υ
17	3510	0.0	N
18	4887	0.0	N
19	2600	3500.0	Υ
20	7660	0.0	N
21	5955	5625.0	Υ
22	2600	1911.0	N
23	3365	1917.0	N
24	3717	2925.0	N
25	9560	0.0	Υ
26	2799	2253.0	Υ
27	4226	1040.0	Υ
28	1442	0.0	N
29	3750	2083.0	Υ
30	4166	3369.0	N
31	3167	0.0	N
32	4692	0.0	N
33	3500	1667.0	Υ
34	12500	3000.0	N
35	2275	2067.0	Υ
36	1828	1330.0	N
37	3667	1459.0	Υ
38	4166	7210.0	Υ

	ApplicantIncome	CoapplicantIncome	Loan_Status
39	3748	1668.0	Υ
40	3600	0.0	N
41	1800	1213.0	Υ
42	2400	0.0	Υ
43	3941	2336.0	Υ
44	4695	0.0	Υ
45	3410	0.0	Υ
46	5649	0.0	Υ
47	5821	0.0	Υ
48	2645	3440.0	N
49	4000	2275.0	Υ
50	1928	1644.0	Υ
51	3086	0.0	Υ
52	4230	0.0	N
53	4616	0.0	N
54	11500	0.0	N
55	2708	1167.0	Υ
56	2132	1591.0	Υ
57	3366	2200.0	N
58	8080	2250.0	Υ
59	3357	2859.0	Υ

In [439]: 1 b['Loan_Status'].value_counts()

Out[439]: Y 38

Name: Loan_Status, dtype: int64

```
In [440]: 1 x=b.drop('Loan_Status',axis=1)
2 y=b['Loan_Status']
3 print(b)
```

			1,
	ApplicantIncome	CoapplicantIncome	Loan_Status
0	5849	0.0	Υ
1	4583	1508.0	N
2	3000	0.0	Υ
3	2583	2358.0	Υ
4	6000	0.0	Υ
5	5417	4196.0	Υ
6	2333	1516.0	Y
7	3036	2504.0	N
8	4006	1526.0	Y
9	12841	10968.0	N
10	3200	700.0	Y
11	2500	1840.0	Ý
12		8106.0	Y
	3073		
13	1853	2840.0	N
14	1299	1086.0	Y
15	4950	0.0	Y
16	3596	0.0	Y
17	3510	0.0	N
18	4887	0.0	N
19	2600	3500.0	Υ
20	7660	0.0	N
21	5955	5625.0	Υ
22	2600	1911.0	N
23	3365	1917.0	N
24	3717	2925.0	N
25	9560	0.0	Υ
26	2799	2253.0	Υ
27	4226	1040.0	Υ
28	1442	0.0	N
29	3750	2083.0	Υ
30	4166	3369.0	N
31	3167	0.0	N
32	4692	0.0	N
33	3500	1667.0	Υ
34	12500	3000.0	N
35	2275	2067.0	Y
36	1828	1330.0	N
37	3667	1459.0	Y
38	4166	7210.0	Y
39	3748	1668.0	Y
40	3600	0.0	N
41	1800	1213.0	Y
42	2400	0.0	Ý
43	3941	2336.0	Ý
44	4695	0.0	Ý
45	3410	0.0	Y
46	5649	0.0	Y
47	5821	0.0	Y
48	2645	3440.0	ı N
49	4000	2275.0	Y
50	1928	1644.0	Y
51	3086	0.0	Y
52	4230	0.0	N
53	4616	0.0	N
54	11500	0.0	N
55	2708	1167.0	Υ
56	2132	1591.0	Υ
57	3366	2200.0	N
58	8080	2250.0	Υ
59	3357	2859.0	Υ

```
g1={"Loan_Status":{'g1':1}}
In [441]:
            1
               a=a.replace(g1)
            3
               print(a)
                Loan_ID
                         Gender Married Dependents
                                                         Education Self_Employed
           0
               LP001002
                           Male
                                      No
                                                          Graduate
           1
               LP001003
                           Male
                                     Yes
                                                   1
                                                          Graduate
                                                                               No
           2
                           Male
               LP001005
                                     Yes
                                                   0
                                                          Graduate
                                                                              Yes
           3
               LP001006
                           Male
                                     Yes
                                                   0
                                                      Not Graduate
                                                                               No
                           Male
                                                   0
           4
               LP001008
                                      No
                                                          Graduate
                                                                               No
                                                   2
           5
               LP001011
                           Male
                                     Yes
                                                          Graduate
                                                                              Yes
           6
               LP001013
                           Male
                                                   0
                                                      Not Graduate
                                     Yes
                                                                               No
           7
               LP001014
                           Male
                                                          Graduate
                                     Yes
                                                  3+
                                                                               No
           8
               LP001018
                           Male
                                     Yes
                                                   2
                                                          Graduate
                                                                               No
           9
               LP001020
                           Male
                                     Yes
                                                   1
                                                          Graduate
                                                                               No
           10
               LP001024
                           Male
                                                   2
                                                          Graduate
                                     Yes
                                                                               No
           11
               LP001027
                           Male
                                     Yes
                                                   2
                                                          Graduate
                                                                              NaN
                           Male
                                                   2
                                                          Graduate
           12 LP001028
                                     Yes
                                                                               No
           13
               LP001029
                           Male
                                      No
                                                   0
                                                          Graduate
                                                                               No
           14
               LP001030
                           Male
                                     Yes
                                                   2
                                                          Graduate
                                                                               No
           15
               LP001032
                           Male
                                      No
                                                   0
                                                          Graduate
                                                                               No
           16
               LP001034
                           Male
                                      No
                                                   1
                                                      Not Graduate
                                                                               No
                         Female
               LP001036
           17
                                      No
                                                   0
                                                          Graduate
                                                                               No
In [442]:
            1
               from sklearn.model_selection import train_test_split
               x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [443]:
               from sklearn.ensemble import RandomForestClassifier
In [444]:
               rfc=RandomForestClassifier()
            1
             2
               rfc.fit(x_train,y_train)
Out[444]: RandomForestClassifier()
In [445]:
            1
               parameters={'max depth':[1,2,3,4,5],
             2
                           'min_samples_leaf':[5,10,15,20,25],
            3
                           'n estimators':[10,20,30,40,50]}
In [446]:
               from sklearn.model selection import GridSearchCV
In [447]:
            1
               grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy"
               grid_search.fit(x_train,y_train)
Out[447]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                     'min_samples_leaf': [5, 10, 15, 20, 25],
                                     'n_estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [448]:
               grid_search.best_score_
Out[448]: 0.6190476190476191
             1 rfc_best=grid_search.best_estimator_
In [449]:
```

class = Yes

```
In [450]:
           1 from sklearn.tree import plot_tree
In [451]:
             plt.figure(figsize=(20,10))
             plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes','No'],f
Out[451]: [Text(558.0, 407.70000000000000, 'ApplicantIncome <= 5977.5\ngini = 0.495\nsamples = 26</pre>
         \nvalue = [19, 23]\nclass = No'),
          Text(279.0, 135.899999999999, 'gini = 0.463\nsamples = 21\nvalue = [12, 21]\nclass =
         No'),
          Text(837.0, 135.899999999999, 'gini = 0.346\nsamples = 5\nvalue = [7, 2]\nclass = Ye
         s')]
                              ApplicantIncome <= 5977.5
                                        gini = 0.495
                                       samples = 26
                                      value = [19, 23]
                                         class = No
                     gini = 0.463
                                                            gini = 0.346
                                                            samples = 5
                    samples = 21
                                                           value = [7, 2]
                  value = [12, 21]
```

class = No