Introdução à Análise de dados em FAE

(18/06/2024)

Lista de exercícios 8

Professores: Sandro Fonseca, Eliza Melo, Maurício Thiel e Diego Torres, Mapse Filho Name: Miguel Lopes

EXERCÍCIO 1.1

a tese de doutorado do Doc. Kevin Mota, foi calculada a seção de choque fiducial de um canal com $\gamma D*$. os valores obtidos foram:

Estado Υ	$\sigma_{\Upsilon}(pb)$	Incertidão Estatística (pb)	Incertidão Sistematica (pb)
$\Upsilon(1S)D^{*+}$	498	± 151	± 47
$\Upsilon(2S)D^{*+}$	247	± 75	± 32
$\Upsilon(3S)D^{*+}$	156	± 47	±31

Tabela 1: Medidas das seções transversais fiduciais para cada estado Υ .

Referencia: AMARILO, Kevin Mota. Study of associated production of and $D^*\pm$ in pp collisions at s = 13 TeV with the CMS detector at LHC and contributions for the maintenance, performance and upgrade of the RPC system. 2023. 167 f. Tese (Doutorado em Física) - Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2023.

EXERCÍCIO 1.2

Segundo o artigo "Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{n}=13$ TeV with the ATLAS detector" 1. a seção de choque do J/ψ é maior do que a seção de choque do $\psi(S2)$. Logo, espero que a seção de choque da produção associada do D* com o $\psi(S2)$ seja menor que a do D* com o J/ψ .

EXERCÍCIO 1.3

Figura 1: Espalhamento PSP e DSP

(a) Espalhamento PSP

(b) Espalhamento DSP.

De maneira simplificada, o espalhamento partônico simples é quando ocorre apenas uma interação entre as partículas que compõe dois hádrons que estão interagindo. Esse tipo de interação é chamada de SPS (Simple

 $^{^{1}}$ doi: 10.1140/epjc/s10052-024-12439-9

Partonic Scattering). Para o caso de um espalhamento partônico duplo, ocorrem duas interações entre partôns em um evento. Esse tipo de interação é chamada de DPS (Double Partonic Scattering).

EXERCÍCIO 1.4

Process	Total	
$\sigma_{3J/\psi}^{\rm SPS}$ (fb)	18	
$\sigma_{3L/d}^{\mathrm{DPS}}$ (fb)	202	
$\sigma_{3J/\psi}^{\mathrm{DPS}}$ (fb)	53	
$\sigma^{\rm tot}_{3J/\psi}$ (fb)	272	

Tabela 2: Resultados da seção de choque aproximadas dos processos $\sigma_{3J/\psi}^{\rm SPS}$, $\sigma_{3J/\psi}^{\rm DPS}$ e $\sigma_{3J/\psi}^{\rm DPS}$

De acordo com o artigo "Observation of simultaneous production of three J/ψ mesons in pp collisions" Os valores da tabela acima são as seções de choque para os espalhamentos simples, duplos e tripos da produção de 3 mesóns j/ψ .

EXERCÍCIO 2.1

PDF da função Crystal Ball (CSB) geralmente é utilizada para fazer o ajuste em picos que não são simétricos, possuindo uma calda para algum de seus lados. O pico de ressonância do J/ψ geralmente possui uma calda no lado esquerdo, acredito que seja resultado das outras ressonâncias, geradas por partículas com as massas próximas da massa do J/ψ . Como a PDF Gaussiana descreve melhor distribuições simétricas, é preferível usar a CSB. A função CBS é expressa da seguinte maneira:

Para $x < \mu - \alpha \sigma$:

$$f(x;\alpha,n,\mu,\sigma) = N\left(\frac{n}{|\alpha|}\right)^n \exp\left(-\frac{|\alpha|^2}{2}\right) \left(\frac{n}{|\alpha|} - |\alpha| - \frac{x-\mu}{\sigma}\right)^{-n}$$

Para $x \ge \mu - \alpha \sigma$:

$$f(x; \alpha, n, \mu, \sigma) = N \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Está função possui 5 parâmetros, onde:

- α define o lado da calda. Se $\alpha > 0$, cauda para a esquerda. Se $\alpha < 0$, cauda para a direita.
- \bullet n define a intensidade com a qual a calda decai na distribuição.
- μ é a média da distribuição, onde ocorre o pico.
- σ desvio padrão da distribuição.
- \bullet N é os fator de normalização.

EXERCÍCIO 2.2

A função PDF Johnson é extremamente flexível. Possuindo quatro parâmetros, a função pode ter variados formatos, sendo muito útil para descrever variadas distribuições.

A equação da função de probabilidade é:

$$f(x; a, b, c, d) = \frac{c}{d\sqrt{2\pi}} \frac{1}{\sqrt{1 + \left(\frac{x-a}{b}\right)^2}} e^{-\frac{1}{2}\left(c + d\ln\left(1 + \left(\frac{x-a}{b}\right)^2\right)\right)}$$

onde:

 $^{^{2}}$ Doi: 10.22323/1.414.0842

- $\bullet \ a$ é o parâmetro de localização.
- $\bullet\,$ bé o parâmetro de escala da função.
- c e d são o parâmetro que definem a forma.

Exemplos de possíveis configurações da PDF Johnson:

Figura 2: Diferentes configurações da PDF Johnson

EXERCÍCIO 2.3

Utilizando os códigos disponibilizados durante a aula, realizei os plots, com o ajuste no pico de massa do D*, J/ψ e a distribuição para determinar de temos J/ψ prompt ou non-prompt.

A baixo estão os histogramas:

EXERCÍCIO 2.4

A distribuição que se enquadra como sinal é representada pela cor verde! Todas as demais, com exceção da vermelhar (Soma de todas as funções), possuem o BKG de alguma partícula.

EXERCÍCIO 2.5

distribuição do D* contribui mais para o fundo. Fazendo uma análise qualitativa, é possível reparar que nas partes mais ao extremo do plot da massa do j/ψ existe muito menos eventos em comparação ao histograma com a massa do D*. Um dos motívos para isso acontecer é o fato do CMS detectar com maior qualidade múons do que jatos.

EXERCÍCIO 2.6

uando mais próximo do 0 for o valor de $\chi^2/n.d.f$, pode se dizer que melhor o fit está representando os dados. Os valores encontrados de $\chi^2/n.d.f$ foram:

• J/ψ massa: 0,95274

• D* massa: 1,00424

• $J/\psi_{-}dl$: 1,18933

Isso implica que os fits estão descrevendo bem os dados, logo, esperamos pulls com pouca distancia entre os pontos e o contro. É possível observar nos pulls a baixo que realmente temos essa proximidade.

(b) Pull da distribuição do D*

(c) Pull da distribuição J/ψ prompt, non-prompt.

EXERCÍCIO 2.7

oi possível ver no arquivo "RunB_HLT_Dimuon25_vtx0p05_sigma_eff_3Dfit_pdf_params.csv" as massas das partículas.

	Partícula	Massa	Erro	
ĺ	J/ψ	3,09425	0,00089	
	D^*	0,1454649	0.0000256	

Tabela 3: Massas encontradas pelos ajustes.

EXERCÍCIO 2.8

Segundo o PDG a massa do $J/\psi \approx 3,096900 \pm 0.000006$ GeV. Pelo cálculo de compatibilidade temos $|3,09425-3,096900| \leq 2\cdot 0,0008900202$ Como: $0,87475>2\cdot 0,0008900202$ O resultado é incompatível. Não encontrei a D^* no PDG.

EXERCÍCIO 2.9

Ao executar o código como comando "python3 fit3D_JpsiDstar.py -y"foi possivel gerar um arquivo que indica os valores solicitados para está questão, os valores estão na tabela 4.

EXERCÍCIO 2.11

Componente	Valor	Erro	Porcentagem
N. Total Eventos	951	±0	-
N. Sinal	344,7	$\pm 18,57$	$\approx 36.25\%$
N. Fundo	606,3	$\pm 24,62$	$\approx 63,75\%$
N. Fundo	51,85	$\pm 7,20$	$\approx 5,45\%$

Tabela 4: Número de eventos, candidatos de sinal e candidatos a fundo.

São as funções dos histogramas representadas pelas cores abaixo. Com a exceção da linha azul e verde.

```
Signal M_{\mu^*\mu^-}, No – Prompt J/\psi, Signal D^*

Signal M_{\mu^*\mu^-}, No – Prompt J/\psi, Background D^*

Background M_{\mu^*\mu^-}, Prompt J/\psi, Signal D^*

Background M_{\mu^*\mu^-}, Prompt J/\psi, Background D^*

Background M_{\mu^*\mu^-}, No – Prompt J/\psi, Signal D^*

Background M_{\mu^*\mu^-}, No – Prompt J/\psi, Background D^*
```