Машинное обучение в гидрометеорологии: Лекция №9.

Деревья решений и их оптимизация. Ансамбли деревьев решений. Оптимизация гиперпараметров.

Михаил Иванович Варенцов (mikhail.varentsov@srcc.msu.ru)

Михаил Алексеевич Криницкий (krinitsky@sail.msk.ru)

ml4hydromet@ml4es.ru

Paнee в ML4hydromet

Деревья решений

Деревья решений

DT в режиме исполнения

Схема ветвления на первом уровне (l = 0)

На рисунке: деление выборки всех примеров R_p^0 на R_{c1}^0 , R_{c2}^0 . Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

DT в режиме исполнения

Схема ветвления на втором уровне (l=1)

На рисунке: деление выборки всех примеров R_p^0 на второй итерации ветвления. Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

DT в режиме исполнения

Схема ветвления на третьем уровне (l = 2)

На рисунке: деление выборки всех примеров R_p^0 на третьей итерации ветвления. Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

DT <u>в режиме обучения</u>

На рисунке — результат после $\it l$ -го ветвления $\it {\it {\rm {\bf TPehuposovhoй}}}$ выборки.

Цель: осуществить деление подвыборки тренировочных примеров R_p^l .

- Если в R_p^l примеры только одного класса, нет смысла их делить: в обеих областях после разделения будут присваиваться те же самые метки, что и в R_p^l ; в этом случае разделение не производится, в текущей ветке останавливается ветвление.
- Для ветвления $s(j_l,t^{(l)})$ следует выбрать номер признака j_l и пороговое значение $t^{(l)}$, исходя из каких-то соображений. **КАКИХ?**

DT <u>в режиме обучения</u>

На рисунке — результат после l-го ветвления **тренировочной** выборки. Цель: осуществить деление подвыборки тренировочных примеров R_p^l .

• Для ветвления $s(j_l, t^{(l)})$ следует выбрать **номер признака** j_l и **пороговое значение** $t^{(l)}$, исходя из <u>оптимизации приращения</u> функции потерь. В результате ветвления суммарная функция должна уменьшиться как можно сильнее.

ИДЕЯ функции потерь: это ф-я, которая должна характеризовать качество классификации в листе R. Напомним, что всем примерам, оказавшимся в листе, присваивается одинаковый класс, определяемый голосованием по классам тренировочных примеров в этом листе.

Обозначим: $p_c^{(R)}$ - доля обучающих примеров класса c в листе R Тогда класс, присваиваемый примерам в этом листе на этапе исполнения:

$$\widehat{c_R} = \operatorname*{argmax} p_c^{(R)}$$

ИДЕЯ функции потерь: это ф-я, которая должна характеризовать качество классификации в листе R. Напомним, что всем примерам, оказавшимся в листе, присваивается одинаковый класс, определяемый голосованием по классам тренировочных примеров в этом листе.

Обозначим: $p_c^{(R)}$ - доля обучающих примеров класса c в листе R (может вычисляться с учетом весов примеров $\{w_i\}$)

Тогда класс, присваиваемый примерам в этом листе на этапе исполнения:

$$\widehat{c_R} = \operatorname*{argmax}_{c \in \mathbb{Y}} p_c^{(R)}$$

Варианты функции потерь:

• Доля неверно классифицированных обучающих примеров:

$$\mathcal{L}_{mc} = 1 - \max_{c \in \mathbb{Y}} p_c^{(R)}$$

• Коэффициент Джини (отражает степень непохожести классов в R):

$$\mathcal{L}_{gini} = \sum_{c \in \mathbb{Y}} p_c^{(R)} (1 - p_c^{(R)}) = 1 - \sum_{c \in \mathbb{Y}} p_c^{(R)^2}$$

Перекрестная энтропия:

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{Y}} p_c^{(R)} \log p_c^{(R)}$$

Общее в этих функциях: чем более однородна подвыборка R в смысле классов обучающих примеров, тем меньше значение функции. Альтернативно: чем больше доля класса, по которому определяется метка для всех примеров из R, тем меньше значение функции.

$$\mathcal{L}_{mc} = 1 - \max_{c \in \mathbb{Y}} p_c^{(R)}$$

$$\mathcal{L}_{gini} = \sum_{c \in \mathbb{Y}} p_c^{(R)} (1 - p_c^{(R)})$$

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{Y}} p_c^{(R)} \log p_c^{(R)}$$

Разделение обучающей подвыборки R_p^l приводит к тому, что суммарная функция потерь снижается на величину $\Delta \mathcal{L}$.

Заметим, что в случае функции потерь, характеризующей долю неверно классифицированных примеров, снижение суммарной функции потерь может быть нулевым => \mathcal{L}_{mc} - не лучший вариант функции потерь для настройки деревьев решений.

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{Y}} p_c^{(R)} \log p_c^{(R)}$$

На рисунке — результат после l-го ветвления <u>тренировочной</u> выборки. Цель: осуществить деление подвыборки тренировочных примеров R_p^l .

• Для ветвления $s(j_{l+1}, t^{(l+1)})$ следует выбрать **номер признака** j_{l+1} и **пороговое значение** $t^{(l+1)}$, исходя из <u>оптимизации приращения функции потерь</u>. В результате ветвления суммарная функция должна уменьшиться как можно сильнее.

Разделение обучающей подвыборки R_p^l приводит к тому, что суммарная функция потерь снижается на величину $\Delta \mathcal{L}$.

Это означает, что можно искать разделение l+1 как решение задачи оптимизации:

$$j_{l+1}, t^{(l+1)} = \underset{j \in [1...f], t_j \in \mathbb{X}_{i}}{\operatorname{argmax}} \Delta \mathcal{L}(R_p^l, R_{c1}^l, R_{c2}^l)$$

- f количество признаков признакового описания объектов
- пороговое значение t_i ищется среди всех возможных значений j-го признака

это – т.н. «жадный» (greedy) подход: получение локально оптимального решения на каждой итерации.

Loves Popcorn	Loves Soda	Age	Loves Cool As Ice
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

$$=1-(\frac{1}{1+3})^2-(\frac{3}{1+3})^2$$

And when we do the math, we get **0.375**.

https://www.youtube.com/@statquest

And when we do the math, we get **0.405**.

Gini Impurity = 0.375

Total **Gini Impurity** = weighted average of **Gini Impurities** for the **Leaves**

$$=\left(\frac{4}{4+3}\right)0.375+\left(\frac{3}{4+3}\right)0.444$$

= 0.405

Ансамбли моделей

деревья решений **сильно склонны к переобучению.** <u>НИКОГДА НЕ ПРИМЕНЯЙТЕ</u> деревья решений как таковые! Способ борьбы с этой особенностью – ансамблирование моделей.

Виды ансамблей:

• <u>Weighted averaging</u> (взвешенное осреднение): обучить K различных методов («базовых алгоритмов») на <u>одних и тех же данных</u>; результат взвешенно осреднять (в случае регрессии) или получать взвешенным голосованием (в случае классификации):

$$\widehat{y}_i = \frac{1}{\sum_i w_i} \sum_{k=1}^K w_k y_i^{(k)}$$

$$\widehat{c}_i = \underset{c \in \mathbb{Y}}{\operatorname{argmax}} \sum_{k=1}^K w_k * [c_i^{(k)} == c]$$

если все веса w_k равны 1, получим простое голосование/осреднение; в случае, когда веса зависят от x (а значит обучаемые) — получим т.н. «смесь экспертов» (blending)

- Stacking (стекинг): обучить К различных базовых алгоритмов на одних и тех же данных; вывод каждого из алгоритмов (значения параметров целевого распределения μ_i или p_i) использовать как новые признаки для новой мета-модели (обычно довольно простого, напр., любой из вариантов GLM/GAM: линейная регрессия в случае регрессии или логистическая регрессия в случае классификации);
- Обучать <u>один и тот же базовый алгоритм</u> на K полностью различных тренировочных выборках; результаты взвешенно осреднять (см. выше) или использовать эти K моделей в подходе стекинга. При этом рассчитывать на то, что каждой из этих выборок достаточно для обучения модели; все они порождены из одного и того же распределения. Однако набирать две или больше достаточно объемные тренировочные выборки дорого и долго;
- Random Subspace Method (метод случайных подпространств): обучать К базовых алгоритмов (различных или одинаковых)
- <u>Bagging</u> (Bootstrap Aggregating, аггрегирование в подходе бутстрэп) см. далее;
- <u>Boosting</u> («бустинг») см. далее.

Ансамбли моделей: stacking

Идея:

- 1. обучить несколько базовых алгоритмов, каждый из которых где-то хорошо работает, а где-то систематически ошибается, получать этими моделями т.н. «метапризнаки»;
- 2. агрегировать результаты еще одной (тоже обучаемой) моделью «метамоделью».

Ансамбли моделей: bagging

Bagging (Bootstrap Aggregating, аггрегирование в подходе бутстрэп)

Идея:

- 1. обучить множество базовых алгоритмов, склонных к переобучению, на подвыборках, гарантированно порожденных одним и тем же распределением (identically distributed, "i.d.");
- 2. агрегировать результаты в подходе простого голосования/осреднения.

Сэмплирование из тренировочной выборки в подходе Bootstrap гарантирует* идентичность порождающего распределения**. В случае ограниченного количества выборок Bootstrap предоставляет лучшее из доступных приближений***.

Размер каждой выборки bootstrap:

- в случае сильно ограниченного размера тренировочной выборки берут размером с тренировочную;
- в случае большого тренировочного набора данных размер bootstrap-выборки гиперпараметр, подбирается по качеству на валидационной выборке.

Почему вообще ансамблирование одинаковых переобучающихся алгоритмов может работать, если сам алгоритм «плохой»?

^{*} в пределе бесконечного количества выборок

^{**} в смысле статистик, оцениваемых эмпирически

^{***} Efron B. Bootstrap Methods: Another Look at the Jackknife Springer Series in Statistics / под ред. S. Kotz, N.L. Johnson, New York, NY: Springer, 1992. 569–593 с.

Ансамбли моделей: bagging

Bagging (Bootstrap **Agg**regating, аггрегирование в подходе бутстрэп)

Почему вообще ансамблирование K одинаковых переобучающихся алгоритмов может работать, если сам алгоритм «плохой»?

Оценка целевой переменной (точнее, какого-то параметра распределения P(y|x), например, $\mu(x)$) — тоже случайная величина (обозначим T), с определенным распределением P(T).

Обычно (в предположении, что $T_1, T_2, \dots T_K$ – оценки K разными алгоритмами, i.i.d.* случайные величины):

$$Var(T_1) = Var(T_2) = \cdots = Var(T_n) = \sigma^2$$

тогда

$$Var(\bar{T}) = Var\left(\frac{1}{K}\sum_{k=1}^{K}T_{k}\right) = \frac{\sigma^{2}}{K}$$

Представим, что эти случайные величины — не независимы (в случае обучения *К* одинаковых алгоритмов на bootstrap-выборках уже нельзя говорить о независимости результатов). Например (простейший вариант), попарные корреляции между ними одинаковы и составляют ρ :

$$\rho = \frac{Cov(T_j, T_i)}{\sigma_{T_i}\sigma_{T_j}}$$

$$Cov(T_i, T_i) = Var(T_i) = \sigma^2$$

Тогда:

$$Var(\bar{T}) = Var\left(\frac{1}{K}\sum_{k}T_{k}\right) = \frac{1}{K^{2}}\sum_{i,j}Cov(T_{i},T_{j}) = K\frac{\sigma^{2}}{K^{2}} + \frac{K(K-1)}{K^{2}}\rho\sigma^{2} = \rho\sigma^{2} + \frac{1-\rho}{K}\sigma^{2}$$

Ансамбли моделей: bagging

Bagging (Bootstrap Aggregating, аггрегирование в подходе бутстрэп)

$$Var(\bar{T}) = \rho\sigma^2 + \frac{1-\rho}{K}\sigma^2$$

где T – случайная переменная оценки параметра условного распределения P(y|x) целевой переменной (μ для регрессии, p для классификации) $Var(\bar{T})$ - дисперсия средней оценки этого параметра при ансамблировании K одинаковых алгоритмов при смягчении предположения о независимости их ответов (например, при обучении на пересекающихся bootstrap-выборках)

Выводы: для снижения дисперсии (неопределенности) ответов ансамбля

- следует повышать К количество членов ансамбля
- следует снижать ho, характеризующую степень их скоррелированности делать результаты базовых алгоритмов как можно менее похожими

Bagging эксплуатирует подход обучения большого количества ($K \gg 1$) моделей, склонных к переобучению (σ^2 - существенна, но ρ сильно меньше единицы, алгоритмы раскоррелированы за счет склонности к переобучению и за счет обучения на различающихся подвыборках).

Способ применения в случае решающих деревьев: обучить очень много довольно решающих деревьев до конца (не ограничивая их глубину, без регуляризаций); обучать на bootstrap-выборках, агрегировать результаты по принципу простого голосования (в случае классификции) или простого осреднения (в случае регрессии).

Ансамбли моделей: Random Forests

Bagging + Random Subspace Method = Random Forests**

$$Var(\bar{T}) = \rho\sigma^2 + \frac{1-\rho}{K}\sigma^2$$

Идея метода <u>Случайных Лесов</u>: снизить корреляцию ρ результатов базовых алгоритмов еще больше (по сравнению с подходом бэггинга над решающими деревьями) за счет выбора случайных подпространств (совокупности признаков), на которых ищется оптимальное ветвление на итерациях обучения решающих деревьев.

Псевдоалгоритм обучения случайных лесов:

Начальное состояние:

Выборка $R = \{x_i, y_i\}$; множество признаков $x_i - F$; кол-во деревьев в композиции B (задается исследователем); множество базовых алгоритмов H – пустое.

ФУНКЦИЯ RANDOM FOREST(R):

Повторять В раз:

- 1. $R_k = bootstrap(R)$
- 2. $h_k = RANDOMIZED_TREE(R_k)$
- 3. $H = H \cup h_k$

Возврат H

ФУНКЦИЯ RANDOMIZED_TREE(R_k):

В каждом узле ветвления:

- 1. f небольшое подмножество признаков F
- 2. поиск оптимального разделения $s(j_l,t^{(l)})$ только среди признаков из подмножества f

Возврат обученного дерева

^{*} He совсем так. См. псевдоалгоритм случайных лесов ** Breiman L. Random Forests // Machine Learning. 2001. № 1 (45). С. 5–32.

Ансамбли моделей: Bagging, Random Forests

$$Var(\bar{T}) = \rho\sigma^2 + \frac{1-\rho}{K}\sigma^2$$

Особенности бэггинга (включая RF):

- + Возможность снижения дисперсии оценки параметра распределения целевой переменной, применяя слабые базовые алгоритмы (для RF это свойство выражено еще сильнее)
- + => снижение неопределенности решения
- + => повышение точности решения
- + «бесплатная» валидация оценка качества на ООВ-выборках, получаемых при bootstrap-сэмплировании
- + сниженная чувствительность к выбросам и отсутствующим значениям (за счет применения метода случайных подпространств, за счет bootstrap-сэмплирования)
- + повышение количества членов ансамбля не приводит к переобучению, зато приводит к снижению дисперсии ответов
- слишком низкая выразительная способность членов ансамбля может приводить к низкой выразительной способности всей композиции
- решение ансамбля сложнее интерпретировать (по сравнению с GLM/GAM или DT)
- более вычислительно затратны при обучении по сравнению с GLM/GAM или DT

Ансамбли моделей: boosting

Идея:

Обучать слабые базовые алгоритмы ("weak classifier/regressor") с низкой выразительной способностью — последовательно, с итерационным изменением весов w_i примеров x_i тренировочной выборки. Веса примеров модифицировать, руководствуясь ошибками композиции, построенной к этой итерации.

Применение в случае решающих деревьев: отдельные деревья обучают сильно регуляризуя, например, сильно ограничивая глубину (в случае глубины в 1-2 ветвления они называются «решающими пнями», decision stumps)

https://www.youtube.com/@statquest

Ансамбли моделей: boosting

Идея:

Обучать слабые базовые алгоритмы ("weak classifier/regressor") с низкой выразительной способностью — последовательно, с итерационным изменением весов w_i примеров x_i тренировочной выборки. Веса примеров модифицировать, руководствуясь ошибками композиции, построенной к этой итерации.

Применение в случае решающих деревьев: отдельные деревья обучают сильно регуляризуя, например, сильно ограничивая глубину (в случае глубины в 1-2 ветвления они называются «решающими пнями», decision stumps)

AdaBoost:

Начальное состояние:

Выборка $R = \{x_i, y_i\}$, количество примеров N = |R|; Начальные значения весов примеров: $w_i = 1/N$ для всех i = 1...N. Количество членов ансамбля K (задается исследователем).

Повторять K раз, k = 1 ... K:

- 1. Создать и оптимизировать слабый базовый алгоритм g_k на обучающей выборке с учетом весов примеров $\{w_i\}$
- 2. Вычислить взвешенную ошибку этого классификатора: $err_k = \frac{1}{\sum w_i} \sum w_i * [g_k(x_i) \neq y_i]$
- 3. Вычислить фактор модификации весов: $\alpha_k = \ln \frac{1 err_k}{err_k}$
- 4. Адаптировать веса примеров, на которых допущена ошибка: $w_i = w_i * \exp(\alpha_k [g_k(x_i) \neq y_i])$ Итоговый алгоритм агрегирующая композиция всех обученных слабых алгоритмов с соответствующими весами:

$$F(x) = \sum_{k} \alpha_{k} g_{k}(x)$$

Ансамбли моделей: boosting

Ансамбли моделей: gradient boosting*

Идея:

• в подходе бустинга воспринимать построение композиции как задачу градиентной оптимизации в отношении некоторой функции потерь в пространстве функций (базовых алгоритмов):

$$d_k(x_i) = \frac{\partial \mathcal{L}(y, F_k(x_i))}{\partial F_k(x_i)}$$

• на каждом шаге градиентной оптимизации обучается новый слабый алгоритм, аппроксимирующий $g_k(x_i)$ с той точностью, с которой позволяет его выразительная способность:

$$\tilde{d}_k(x_i) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N (g(x_i, \gamma) - d_k(x_i))^2$$

(в случае функции ошибки MSE в задаче регрессии)

• в отношении композиции производится итерация градиентной оптимизации с шагом β :

$$F_{k+1}(x) = F_k(x) + \beta \tilde{d}_k(x)$$

Подход градиентного бустинга также называют подходом пошагового аддитивного моделирования (Stepwise Additive Modeling)

^{*} Breiman L. Technical Report 486, Statistics Department, University of California. "Arcing the edge". 1997; Friedman J.H. Greedy Function Approximation: A Gradient Boosting Machine // The Annals of Statistics. 2001. № 5 (29). C. 1189–1232.

Ансамбли моделей: gradient boosting

Average Weight 71.2

			Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Ансамбли моделей: gradient boosting

Реализации градиентного бустинга над решающими деревьями:

XGBoost (в стандартном составе scikit-learn, поддерживается и развивается усилиями сообщества на принципах open source)

- 1. Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System. San Francisco, California, USA: ACM Press, 2016. 785–794 c.
- 2. https://xgboost.ai/

<u>LightGBM</u> (первоначально разработана и поддерживалась **Microsoft**, сейчас – community efforts, на принципах open source)

- 1. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu. "LightGBM: A Highly Efficient Gradient Boosting Decision Tree". Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 3149-3157.
- 2. Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Tie-Yan Liu. "<u>A Communication-Efficient Parallel Algorithm for Decision Tree</u>". Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 1279-1287.
- 3. Huan Zhang, Si Si and Cho-Jui Hsieh. "GPU Acceleration for Large-scale Tree Boosting". SysML Conference, 2018.
- 4. https://github.com/microsoft/LightGBM

CatBoost (Яндекс, развитие и поддержка на принципах open source)

- 1. Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liudmila Ostroumova Prokhorenkova, Aleksandr Vorobev "Fighting biases with dynamic boosting". arXiv:1706.09516, 2017.
- 2. Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin "CatBoost: gradient boosting with categorical features support". Workshop on ML Systems at NIPS 2017.
- 3. https://catboost.ai/

Ансамбли моделей: gradient boosting

Особенности алгоритмов бустинга:

- + Наиболее выразительные модели среди всех «классических» методов;
- + Наибольшая точность (в большинстве случаев) среди всех «классических» методов;
- + Наиболее гибкие методы, в практическом/«спортивном» применении (задачи на kaggle.com) чаще всего показывают лучшие результаты среди задач на табличных данных;
- + Можно использовать общий подход, используя другие слабые быстро обучаемые модели
- + Процесс оптимизации параллелизуется, есть ускоренные реализации на GPU, распределенные реализации;
- Склонны к переобучению: могут градиентно «настраиваться» на выбросы/шум, теряя обобщающую способность
- Много гиперпараметров (параметры базовых алгоритмов, параметры градиентной оптимизации, параметры регуляризаций...); настройка гиперпараметров на валидационной выборке может требовать большого количества итераций, что приводит к т.н. «утечке данных» из валидационной выборки в обучение
- Обучение на больших объемах данных может требовать существенных вычислительных ресурсов

Гиперпараметры ансамблевых моделей

RandomForestRegressor

```
class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *,
    criterion='squared_error', max_depth=None, min_samples_split=2,
    min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0,
    max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True,
    oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False,
    ccp_alpha=0.0, max_samples=None, monotonic_cst=None) #
```

GradientBoostingRegressor

```
class sklearn.ensemble.GradientBoostingRegressor(*, loss='squared_error',
learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse',
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None,
max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False,
validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)
```

Оптимизация гиперпараметров

Optuna: A hyperparameter optimization framework

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.

The end