ZILFIMIAN

Regularization/R (Q7L8)

30% (6/20)

1. In Poisson regression...

- (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
- (B) The distribution of the maximum likelihood estimates is multivariate normal.
- The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
- D I do not know

✓ 2. In the case of intercept-only model

- A The mean of the dependent variable equals the exponential value of intercept
- B The mean of the dependent variable equals the intercept
- (c) The mean of the dependent variable equals 0
- D I do not know

3. In(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: e^(-0.2)=0.78

- A One unit increase in female brings a 0.2 decrease in ln(lambda).
- (B) Being female decreases the average number of articles by 0.78 percent
- (c) Being female decreases the average number of articles by 22%
- D I do not know

✓ 4. In the multiple linear regression, we assume that...

- A The number of observations is much larger than the number of variables (n>>p)
- (B) The number of observations is slightly larger than the number of variables (n>p)
- (C) The number of observations equals than the number of variables (n=p)
- $\left(\mathsf{D} \right)$ The number of observations is lees than the number of variables (n<p)
- (E) It is not important
- F I do not know

Sona Page 1 of 5

×	5.	The way of solving the problem of a large number of variables is Subset Selection & Shrinkage (Regularization)
	B	Shrinkage (Regularization) & Maximum Likelihood estimation
	(c)	Dimension Reduction & OLS estimation
		I do not know
	E	The absence of the right answer
×	6. (A)	The bias of an estimator (e.g. z^{-}) equalsHint: the OLS coefficients are unbias :) $E(z^{-}) - z$
	B	$E(z^2) - [E(z)]^2$
	C	$[E(z^2) - E(z)]^2$
	D	E(z^2)
	E	I do not know
X	7.	The main idea of regularization is
	\bigcirc A	To introduce a small amount of bias in order to have less variance.
	\bigcirc B	To introduce a small amount of variance in order to have less bias.
	(c)	To introduce a small amount of variance and bias in order to have less bias.
	D	I do not know
×	8.	With which function we can show regularization in R
	A	glmnet()
	В	regular()
	$\left(C\right)$	lm()
		glm()
	E	I do not know
×	9.	How the tune of any parametr can be made
	\bigcirc A	using Cross validation
	\bigcirc B	It is impossible
	C	I do not now
	D	using larger sample
	(E)	only having population

Sona Page 2 of 5

(A) the combination of L1 and L2 regularization the combination of L2 and L3 regularization is independent from other types of refularization I do not know not a type of regularization Regularization is used only for Poisson Regression Linear Regression Logistic Regression any regression I do not know 12. Regularization can solve the problem of heteroscedasticity multicollinearity autocorrelation I do not know As a result of regularization we will have 13. smaller slope than in case of OLS larger slope than in case of OLS the slope remains the same I do not know **X** 14. The ridge coefficient estimates shrink towards zero when lambda increases when lambda decreases when lambda = 0 I do not know

X 10. Elastic Net is

Sona Page 3 of 5

/	15. Which one can shrink the slope all the way to 0? A Lasso B Ridge
	C Regression D I do not know
×	16. When lambda = 0, we have A Ridge B Lasso C EL D Regression E I do not know
~	17. When alpha = 0, we have A Ridge B Lasso C EL D Regression E I do not know
×	18variables need to be incorporated in the model according to domain knowledge This statement is true for A Ridge B Lasso C EL D Regression E I do not know
×	 19. Which function can help to perform cross-validation for regularization in R? A cv.glmnet() B cros_val() C glmnet(method = "cv) D I do not know

Sona Page 4 of 5

X 20. Why we use set.seed() in R?

(A) To have universal result

(B) To perform better result

(C) To have random models

D I do not know

Sona Page 5 of 5