Too many corrections: Semantic reference-less evaluation for Grammatical Error Correction

Leshem Choshen & Omri Abend

Hebrew University Jerusalem Israel

September 25 2017

Overview

The task

General performance on the task - Over conservatism

Evaluation measures - Reference based measures (RBM)s
Background and motivation
Corrections as distribution
RBMs under estimation as a function of M

Reference-less semantic measure

00

Plan

The task

General performance on the task - Over conservatism

Evaluation measures - Reference based measures (RBM)s
Background and motivation
Corrections as distribution
RBMs under estimation as a function of M

Reference-less semantic measure

the task

- Input: a text which is perhaps ungramatical
- Output: a grammatical text saying the same meaning/content.

Example: However, there are both sides of stories

The task

- Input: a text which is perhaps ungrammatical ungrammatical
- Output: a grammatical text saying conveying the same meaning/content.

Example: However , there are both sides of stories ightarrow However , there are two sides to every story.

Plan

General performance on the task - Over conservatism

RBMs under estimation as a function of M

It is a virtue to avoid bad corrections, but correcting is still the goal...

- Less words changed
- Less word order changes
- Less sentences split into two
- Less sentences merged into one
- and so on...

Plan

Evaluation measures - Reference based measures (RBM)s Background and motivation Corrections as distribution RBMs under estimation as a function of M

000

What exists

Evaluation measures all share in common:

- Compare a system correction to a set of references.
- Emphasize precision over recall.

Corpora:

 Train and validation - 1 reference per source sentence, never more.

Corrections as distribution

- Each sentence x has a set of valid corrections correct_x
- \mathcal{D}_{x} a distribution of human corrections
- In a Corpus $Y \sim \mathcal{D}_{\mathsf{x}}^{M}$ a sample of M references
- $P_{coverage}$ $P_{y \sim \mathcal{D}_x}(y \in Y)$

Distributions as we get from crowdsourcing

• Hypothesis: Probably more than 2 references, and they are not uniform but approximately so.

Distributions as we get from crowdsourcing

- Hypothesis: Probably more than 2 references, and they are not uniform but approximately so.
- Result: On average 1351.24 corrections per sentence with 8-15 words with a heavy tail like behaviour.

Analytical worries

Oracle chooses whether to produce a correction or not.

Mistake detected: incentivized to correct it only if

$$p_{correct} \cdot p_{coverage} > 1 - p_{detect}$$

Or, given α punishment for wrong corrections

$$p_{correct} \cdot p_{coverage} - (1 - p_{correct} \cdot p_{coverage}) \alpha > 1 - p_{detect}$$

Figure: Also, empirical worries, for decoration

Accuracy - analysis

Given a perfect corrector, how well will it do? $\frac{1}{N} \sum_{i=1}^{N} P_{Y \sim \mathcal{D}_{i}^{M}, y \sim \mathcal{D}_{i}} \left(y \in Y \right)$

000

 $F_{0.5}$ -score - empirical

human vs. machine - test on 2 references

Plan

RBMs under estimation as a function of M

Reference-less semantic measure

Reference-less evaluation

Input: Corrected sentences and Source sentences and references in the form of sentences.

Output: A score, but which?!

Reference-less evaluation

Combine two measures

- 1. faithfulness semantic similarity of the correction and the source. 1
- 2. grammaticality error detection over the source ²

¹Leshem Choshen and Omri Abend. "Conservatism and Over-conservatism in Grammatical Error Correction" - under revision

²Napoles Courtney, Keisuke Sakaguchi, and Joel Tetreault. "There's No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction." arXiv preprint arXiv:1610.02124 (2016). 3 > 4 3 >

UCCA

- Semantic annotation scheme that builds on typological and cognitive linguistic theories
- Provides a coarse-grained, cross-linguistically applicable representation
- Structures are DAGS, words are leaves

Ungrammatical hypotheses

- Ungrammatical text can be annotated using UCCA
- Corrections change grammar, not semantics

UCCASim(ilarity) between source and reference

	UCCASIM
Different annotators	0.84
Same annotator	0.92
TUPA parser	0.7
Ungrammatical IAA	0.83
Baseline IAA ¹	0.79
TUPA reported precision	0.69

Thank you