Isomorfismo

Definição: Diz-se que dois grafos $G_1=(V_1,E_1)$, $G_2=(V_2,E_2)$ são isomorfos se existem duas funções bijetivas: $f:v_1\to v_2$, $g:E_1\to E_2$ tais que $e\in E_1$ é incidente em $v_1,w\in V$ no G_1 se e somente se, g(e) é incidente em $f(v),f(w)\in V_2$ no G_2 .

Propriedades Básicas

- São grafos estruturalmente iguais, independentes das diferenças na representação gráfica.
- Grafos não-isomorfos tem diferenças estruturais.

Teorema

Dois grafos G_1 e G_2 são isomorfos se, e somente se, existem ordenamentos dos vértices tais que suas matrizes de adjacência são iguais.

Exemplos

- Os grafos G e I são, essencialmente, o mesmo grafo, considerando as bijeções:
 - s (entre os nós)
 - t (entre as arestas)

$$s(1) = a$$

 $s(2) = c$
 $s(3) = b$
 $s(4) = d$

$$t(a_1) = e_2$$

 $t(a_2) = a_1$

$$G$$

Ex.
$$a_1 => 1-3 \rightarrow t(a_1) => s(1)-s(3)$$

Homeomorfismo

Definição: Dois grafos G_1 e G_2 são ditos Homeomorfos se eles podem ser reduzidos a grafos isomorfos, através de sequências de reduções em série.

Propriedades Básicas

- Em particular, todo grafo é homeomorfo a ele mesmo.
- A relação de Homeomorfismo é uma relação de equivalência no conjunto dos grafos.

Exemplos

H e I são homeomorfos.

Teorema de Kuratouski

Um grafo G é planar, se e somente se, G não-contém nenhum subgrafo homeomorfo a K_5 ou a $K_{3,3}$

Exemplo

