Cours - Graphes

Louis Thevenet

Table des matières

1.	Degré	. 2
	1.1. Corollaire 1.2.3	
2.	Sous graphes, graphes partiels, cliques	. 2
	2.1. Exercice 1.4.4	
3.	Connexité	. 2
	3.1. Exmeple 2.2.9	
	3.2. Exemple 2.2.3	
	3.3. Exercice 2.2.4	
	3.4. Preuve 2.2.11	. 2
4.	Graphes eulériens et hamiltoniens	. 2
	4.1. Exercice 3.1.2	
	4.2. Théorème 3.1.2	. 2
	4.3. Exercice 3.1.2	. 2
	4.4. Exercice 4.1.2	
5.	Exercice 5.1.2	
	5.1. Preuve 5.4.3	

1.1. Corollaire 1.2.3

Soit N la somme des degrés de tous les sommets et n le nombdre d'arêtes du graphe. Supposons que le nombre de sommets de degré impair soit pair. D'après le lemme,

$$N=2n=\underbrace{\sum_{v_k ext{ de degr\'e pair}} \delta(v_k)}_{ ext{pair}} + \underbrace{\sum_{v_k ext{ de degr\'e impair}} \delta(v_k)}_{ ext{nes. graphes partiels. cliques}}$$

1. Sommets : espions de chaque pays. Une arrête relie deux sommets si les espions s'espionnent

3.2. Exemple 2.2.3

 $\begin{pmatrix} s_{11} & s_{12} & s_{21} & s_{22} & s_{31} & s_{32} \\ s_{11} & 0 & 0 & 1 & 1 & 1 & 1 \\ \end{pmatrix}$

 $\quad \mathsf{CFC} = \{ \{ s_1, s_2, s_7, s_6, s_{10}, s_9, s_5, s_4, s_3 \}, \{ s_8 \} \}$

4

1 1

9

0 0

0 0

5

2

$$\frac{3}{3}$$

- Propriété vraie pour n+1
- 4.1. Exercice 3.1.2 1. Non car 4 sommets de degrés impairs

4. Graphes eulériens et hamiltoniens

4. Oui car 2 sommets de degrés impairs 4.2. Théorème 3.1.2

 $[\Rightarrow]$ Supposons qu'un graphe G non orienté connexe admette une chaîne eulérienne

2. Oui car il y a 2 sommets de degrés impairs, par théorème il existe une chaîne eulérienne 3. Oui car il y a 0 sommets de degrés impairs, par théorème il existe un cycle eulérienn

On ajoute v et ça ne crée pas de cycle. Forcément, $\deg(v)=1$, donc il y a $|A|+1\leq (n-1)+1$

Soit $v_1, ..., v_n$ les sommets de la chaîne eulérienne On reconstruit le graphe en suivant la chaîne, le degré de v_1 est 1 car c'est le début de la chaîne.

parité du degré reste la même (impaire) • Sinon, on ajoute le sommet v_k et deux arrêtes

tous les degrés sont pairs.

Supposons que c'est vrai pour un graphe à n arêtes. Soit un graphe à n+1 arêtes.

seulement si ces ouvertures sont adjaccentes

5

6

4.3. Exercice 3.1.2

2 3

Soit G un graphe dont les sommets sont les ouvertures. Une arrête relie deux ouvertures si et

7 7 et 6 sont les seuls sommets de degré 2, il existe donc un cycle eulérien. Chemin: $7 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7$ 1 2 3 4 5 6 7 4.4. Exercice 4.1.2 current $0\ A\ B\ C\ D\ E\ F\ T$ (∞,\emptyset) (∞,\emptyset) $A\ B\ C\ D\ E\ F\ T\ \mathbb{O}$ (2,0)(5,0)(4,A)

1.

12 51 22 111 11

- Deux cas possibles: ▶ l'arête relie deux sommets de même couleur Dans ce cas là, on est obligé d'utiliser une
 - autre couleur et $\gamma(G') = \gamma(G)$ si une couleur déjà utilisée est disponible ou $\gamma(G') = \gamma(G) + \gamma(G')$ 1 sinon.

Donc $\gamma(G') \leq (r+1)+1$.

On a bien $\gamma(G') \leq (r+1)+1$

2. Sous graphes, graphes partiels, cliques 2.1. Exercice 1.4.4

3.1. Exmeple 2.2.9

• $v = s_1$

3. $\forall v \in S, \deg(v) = 4$

Il y a $\frac{4*6}{2} = 12$ arêtes.

3.3. Exercice 2.2.4

1

$$\begin{pmatrix} s_{31}^2 & 1 & 1 & 1 & 0 & 0\\ s_{32} & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$
 2. Le graphe n'est pas complet car deux espions d'un même pays ne sont pas reliés.

Pour $k \in [1, n]$, • Si $v_k = v_1$, puisque la chaîne est eulérienne, elle est simple, on ajoute ainsi deux arêtes et la

Soit n_i le nombre de sommets de degré impair

Puis, $deg(v_2) = 2$ car adjaccent à v_1 et v_3

Dans le cas du cycle eulérien, $v_1=v_n$ et on fusionne les deux arêtes, le degré devient pair. Ainsi [⇒] Supposons que tous les degrés soient pairs

Finalement, par récurrence, $deg(v_n) \equiv 0[2]$, on ajoute une arête finale et il devient impair.

1

4

2

 \mathbf{C}

 (∞,\emptyset)

(4,0)

(4,0)

(4,0)

X

X

X

X

X

D

 (∞,\emptyset)

 (∞, \emptyset)

(9, A)

(8, B)

(8, B)

(8, B)

X

X

X

 \mathbf{E}

 (∞,\emptyset)

 (∞,\emptyset)

(14, A)

(14, A)

(14, A)

(14, A)

(14, A)

X

X

 (∞,\emptyset)

 (∞,\emptyset)

 (∞,\emptyset)

(7,B)

(7,B)

X

X

X

X

 (∞,\emptyset)

 (∞, \emptyset)

 (∞,\emptyset)

 (∞,\emptyset)

 (∞,\emptyset)

(14, F)

(13, D)

(13, D)

X

3

45

2