

Sea Surface Temperature

April 7-9, 2020

Cara Wilson NOAA Coastwatch Satellite Course Anchorage, Alaska

Versioning

- -Wilson, 2017, WCN
- -Tomlinson and Vogel, 2018, ECN
- -Abecassis and Howell, 2018, PIN
- -Wilson and Robinson, 2019, WCN

SST

SST & Atmospheric Windows

SST measurements made in both the JR and the microwave

SST Band Selection

from Martin textbook

Microwave Ocean Surface Emissions

Change in Microwave Signal/Change in Parameter

Microwave SST measurements of SST

- The biggest advantage of making microwave measurements of SST is that microwaves can penetrate through non-precipitating clouds.
- The intensity of microwave radiation is low at the top of the atmosphere so microwave sensors need large antennas.
- The spatial resolution of microwave sensors is limited to 25-50 km, because of diffraction effects arising from the longer wavelengths.
- The microwave emissivity of land and ice is significantly higher than the ocean, preventing accurate SST retrievals close to land or ice (within ~50 km).

Sea "Surface" Temperature

Temperature more stable during night-time, or in periods of strong winds

Types of SST Measurements

Infrared Measurements

Polar orbiting

- VIIRS on SNPP, NOAA-20 satellites (NOAA)
- MODIS on Aqua & Terra satellites (NASA)
- AVHRR sensors on NOAA & MetOp satellites

Geostationary

- ABI on GOES-16,17 (NOAA)
- AHI on Himawari-8 (Japan)
- SEVIRI on Meteosat (Europe)

Microwave Measurements

- AMSR-2, 5/12 present, on GCOM-W1 (Japan)
- AMSR-E, 5/02 10/11, on Aqua (NASA)
- AMSR, 12/02 10/03, on ADEOS-2 (Japan)

The Cloud Issue...

MODIS SST 1 day

The Cloud Issue...

MODIS SST 3 day

The Cloud Issue...

MODIS SST 8 day

Polar vs. Geo

Polar vs. Geo

Polar vs Geo

MODIS, 8 day
Higher spatial resolution

GOES, 1 day
Lower spatial resolution

IR vs. Microwave

IR: MODIS

3 day, 0.025 degree res. Clouds are an issue

Microwave: AMSR-E
3 day, 0.25 degree res.
Clouds not an issue,
but trade-off is in spatial res

Global Cloudiness

MUR SST Dataset

GHRSST produces global high-resolution (<10km) SST products from merging a variety of different satellite SST datasets

MUR:

Multi-scale Ultra—high Resolution (1 km) on ERDDAP.

Product goes back to June 1 2002

Recommended SST Products on WCN ERDDAP

Name	Time Coverage	Spatial Resolution	Temporal Composites	Gap-Free?	Anomaly?
MUR	6/01/02 – now	1 km	Daily, Monthly	Yes	Yes
Pathfinder	8/25/81 – 12/31/19	4 km	Daily, Weekly, Monthly	No	No
NOAA Coral Reef	1/15/85 – now	5 km	Daily, Monthly	Yes	Yes
MODIS	01/01/03 – now	4 km	Daily, Weekly, Monthly	No	No
VIIRS	11/2/14 – now	750 m, west coast only	3-day	No	No
GeoPolar Blend	06/02/14/02 - now	5 km	Daily	Yes	No

SST Summary

- SST can be measured a variety of ways from satellites :
 - **IR** measurements made on **polar orbiting** satellites (ie MODIS, AVHRR, VIIRS) make 2 measurements per day (daytime & nighttime)
 - IR measurements on geostationary satellites make hourly, or sub-hourly, measurements
 - microwave measurements (AMSR) which can "see" through clouds, but at lower spatial resolution than IR measurements
- Using composite products an almost complete daily image can be obtained
- Cloud-masking, determining and eliminating what is a cloud, is not yet a perfect science.
- SST is accurate to < 0.3°C

