ECON 899A - Problem Set 7

Alex von Hafften*

10/27/2021

1. Derive the following asymptotic moments associated with $m_3(x)$: mean, variance, first order autocorrelation. Furthermore, compute $\nabla_b g(b_0)$. Which moments are informative for estimating b?

With $|\rho_0| < 1$, the stochastic process $\{x_t\}$ is stationary, so $E[x_t] = E[x_{t-1}]$ and $Var[x_t] = Var[x_{t-1}]$:

$$E[x_t] = E[\rho_0 x_{t-1} + \varepsilon_t] = \rho_0 E[x_{t-1}] = \rho_0 E[x_t]$$

$$\implies E[x_t] = 0$$

$$Var[x_t] = Var[\rho_0 x_{t-1} + \varepsilon_t] = \rho_0^2 Var[x_{t-1}] + \sigma_0^2 = \rho_0^2 Var[x_t] + \sigma_0^2$$

$$\implies Var[x_t] = \frac{\sigma_0^2}{1 - \rho_0^2}$$

$$Cov[x_t, x_{t-1}] = Cov[\rho_0 x_{t-1} + \varepsilon_t, x_{t-1}] = \rho_0 Cov[x_{t-1}, x_{t-1}] + Cov[\varepsilon_t, x_{t-1}] = \rho_0 Var[x_t] = \frac{\sigma_0^2 \rho_0}{1 - \rho_0^2}$$

$$\begin{aligned} x_t &= \rho_0 x_{t-1} + \varepsilon_t \\ &= \rho_0 (\rho_0 x_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \\ &= \rho_0^2 x_{t-2} + \varepsilon_t + \rho_0 \varepsilon_{t-1} \\ &= \rho_0^2 (\rho_0 x_{t-3} + \varepsilon_{t-2}) + \varepsilon_t + \rho_0 \varepsilon_{t-1} \\ &= \rho_0^3 x_{t-3} + \varepsilon_t + \rho_0 \varepsilon_{t-1} + \rho_0^2 \varepsilon_{t-2} \\ &= \rho_0^t x_0 + \sum_{i=1}^t \rho_0^{t-i} \varepsilon_i \\ &= \sum_{i=1}^t \rho_0^{t-i} \varepsilon_i \\ E[x_t] &= E\left[\sum_{i=1}^t \rho_0^{t-i} \varepsilon_i\right] = \sum_{i=1}^t \rho_0^{t-i} E[\varepsilon_i] = 0 \end{aligned}$$

^{*}This problem set is for ECON 899A Computational Economics taught by Dean Corbae with assistance from Philip Coyle at UW-Madison. I worked on this problem set with a study group of Michael Nattinger, Sarah Bass, and Xinxin Hu.

¹Alternatively, we can write x_t in terms of x_0 , $\{\varepsilon_i\}_{i=1}^t$, and ρ_0 :

Thus, the asymptotic moments associated with $m_3(x)$ are:

$$\mu(x) = E[m_3(x)] = \begin{bmatrix} 0\\ \frac{\sigma_0^2}{1 - \rho_0^2} \\ \frac{\sigma_0^2 \rho_0}{1 - \rho_0^2} \end{bmatrix}$$

To calculate the Jacobian, we compute the derivative of the moment conditions with respect to each parameter:

$$\begin{split} \frac{\partial}{\partial \rho} \left(\frac{\sigma^2}{1 - \rho^2} \right) &= \frac{\sigma^2 (-2\rho) - (1 - \rho^2)(0)}{(1 - \rho^2)^2} \\ &= \frac{-2\rho\sigma^2}{(1 - \rho^2)^2} \\ \frac{\partial}{\partial \sigma} \left(\frac{\sigma^2}{1 - \rho^2} \right) &= \frac{2\sigma}{1 - \rho^2} \\ \frac{\partial}{\partial \rho} \left(\frac{\sigma^2 \rho}{1 - \rho^2} \right) &= \frac{\sigma^2 \rho (-2\rho) - (1 - \rho^2)\sigma^2}{(1 - \rho^2)^2} \\ &= \frac{-\sigma^2 (1 + \rho^2)}{(1 - \rho^2)^2} \\ \frac{\partial}{\partial \sigma} \left(\frac{\sigma^2 \rho}{1 - \rho^2} \right) &= \frac{2\sigma\rho}{1 - \rho^2} \end{split}$$

Each cell of the Jacobian is the negative of the derivative of the moment condition:

$$\implies \nabla_b g(b_0) = \begin{bmatrix} 0 & 0 \\ \frac{2\rho_0 \sigma_0^2}{(1-\rho_0^2)^2} & \frac{-2\sigma_0}{1-\rho_0^2} \\ \frac{\sigma_0^2 (1+\rho_0^2)}{(1-\rho_0^2)^2} & \frac{-2\sigma_0 \rho_0}{1-\rho_0^2} \end{bmatrix}$$

Variance and first order autocorrelation are informative for estimating b.

2. Simulate a series of "true" data of length T=200 using (1). We will use this to compute $M_T(x)$.

- 3. Set H=10 and simulate H vectors of length T=200 random variables e_t from N(0,1). We will use this to compute $M_{TH}(y(b))$. Store these vectors. You will use the same vector of random variables throughout the entire exercise. Since this exercise requires you to estimate σ^2 , you want to change the variance of e_t during the estimation. You can simply use σe_t when the variance is σ^2 .
- 4. We will start by estimating the $\ell=2$ vector b for the just identified case where m_2 uses mean and variance. Given what you found in part (1), do you think there will be a problem? In general we would not know whether this case would be a problem, so hopefully the standard error of the estimate of b as well as the J test will tell us something.

From part (1), I found that in expectation the mean is zero, so the problem is that the mean is not informative for estimating b.

(a) Set W = I and graph in three dimensions, the objective function (3) over $\rho \in [0.35, 0.65]$ and $\sigma \in [0.8, 1.2]$. Obtain an estimate of b by using W = I in (4) using fminsearch. Report \hat{b}_{TH}^1 .

$$\hat{b}_{TH}^1 = \begin{bmatrix} 0.5320 \\ 1.0115 \end{bmatrix}$$

(b) Set i(T) = 4. Obtain an estimate of W^* . Using $\hat{W}^*_{TH} = \hat{S}_{TH}^{-1}$ in (4), obtain an estimate of \hat{b}_{TH}^2 . Report \hat{b}_{TH}^2 .

. . .

(c) To obtain standard errors, compute numerically $\nabla_b g_T(\hat{b}_{TH}^2)$ defined in (6). Report the values of $\nabla_b g_T(\hat{b}_{TH}^2)$. Next, obtain the $\ell \times \ell$ variance-covariance matrix of \hat{b}_{TH}^2 as in (7). Finally, what are the standard errors defined in (8)? How can we use the information on $\nabla_b g_T(\hat{b}_{TH}^2)$ to think about local identification?

. . .

(d) Since we are in the just identified case, the J test should be zero (on a computer this may be not be exact). However, given the identification issues in this particular case where we use mean and variance, the J test may not be zero. Compute the value of the J test:

$$T\frac{H}{1+H} \times J_{TH}(\hat{b}_{TH}^2) \to \chi^2$$

noting that in this just identified case $n - \ell = 0$ degrees of freedom recognizing that there really is not distribution.

. . .

5.	Next we estimating the $\ell=2$ vector b for the just identified case where m_2 uses the variance and
	autocorrelation. Given what you found in part (1), do you now think there will be a problem? If not,
	hopefully the standard error of the estimate of b as well as the J test will tell us something. For this
	case, perform steps (a)-(d) above.

(a)

...

(b)

...

(c)

...

(d)

. . .

6.	Next, we will consider the overidentified case where m_3 uses the mean, variance and autocorrelation. For this case, perform steps (a)-(d) above.
(a)	
(b)	
(c)	
(d)	
(e)	Bootstrap the the finite sample distribution of the estimators by repeatedly drawing ε_t and e_t^h from $N(0,1)$ for $t=1,,T$ and $h=1,,H$. Compute $(\hat{b}_{TH}^1,\hat{b}_{TH}^2)$.