Things that make you say hmmm...

My version of why we care about complete, sufficient statistics

Sam MaWhinney
Department Seminar
10/19/11

Outline (yes, really)

- Motivating Example (Flip coin 3 times)
- Sufficient statistics
- Minimal sufficient statistics
- Ancillary and conditionally sufficient statistics
- Complete statistics
- Relationship between Sufficiency and Completeness

Flip a coin 3 times

Sample Space

ннн	ННТ	нтн	THH
TTH	THT	HTT	TTT

•
$$Pr(H) = p$$
 and $Pr(T) = (1-p)$

$$P(HHH) = p^3$$

 $P(HHT) = P(HTH) = P(THH) = p^2(1-p)$
 $P(TTH) = P(THT) = P(HTT) = p(1-p)^2$
 $P(TTT) = (1-p)^3$

Flip a coin 3 times

Sample Space

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

Random Variable

$$X_i = 1$$
 if Head

$$X_i = 0$$
 if Tail (i = 1,2,3)

$$T(X) = \sum X_i = Number of Heads$$

$$T(X) \sim Binomial(3,p)$$

Flip a coin 3 times

Sample Space

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

- $T(X) = \sum X_i = Number$ of Heads
- T(X) ~ Binomial(3,p)

$Pr(T(\mathbf{X})=3) = p^3$
$Pr(T(X)=2) = 3p^2(1-p)$
$Pr(T(X)=1) = 3p(1-p)^2$
$Pr(T(X)=0) = (1-p)^3$

Flip a coin 3 times

Sample Space

ннн	HHT	HTH	THH
TTH	THT	HTT	TTT

- $T(X) = \Sigma Xi =$ Number of Heads
- T(X) ~ Binomial(3,p)

Pr(T(X)=3) =	= p ³
-----------------------	------------------

 $Pr(T(X)=2) = 3p^2(1-p)$

 $Pr(T(X)=1) = 3p(1-p)^2$

 $Pr(T(X)=0) = (1-p)^3$

Flip a coin 3 times

Sample Space

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

- $T(X) = \Sigma Xi =$ Number of Heads
- T(**X**) ~ Binomial(3,p)

$$Pr(T(X)=3) = p^{3}$$

$$Pr(T(X)=2) = 3p^{2}(1-p)$$

$$Pr(T(X)=1) = 3p(1-p)^{2}$$

$$Pr(T(X)=0) = (1-p)^{3}$$

Flip a coin 3 times

Sample Space

- $T(X) = \Sigma Xi =$ Number of Heads
- T(**X**) ~ Binomial(3,p)

 $Pr(T(X)=3) = p^3$

 $Pr(T(X)=2) = 3p^2(1-p)$

 $Pr(T(X)=1) = 3p(1-p)^2$

 $Pr(T(X)=0) = (1-p)^3$

Flip a coin 3 times

Sample Space

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

- $T(X) = \Sigma Xi =$ Number of Heads
- T(**X**) ~ Binomial(3,p)

$Pr(T(\mathbf{X})=3) = p^3$
$Pr(T(X)=2) = 3p^2(1-p)$
$Pr(T(X)=1) = 3p(1-p)^2$
$Pr(T(X)=0) = (1-p)^3$

Hmmm.....

• Now assume that we know T(X)=2 and want to find

$$Pr(HHT \mid T(X)=2) =$$
 $Pr((HHT) \text{ and } T(X)=2) / Pr(T(X)=2) =$
 $Pr(HHT) / Pr(T(X)=2) =$

$$p^2(1-p) / 3p^2(1-p) = 1/3$$

Similarly
$$Pr(HTH) = Pr(THH) = 1/3$$

HHH	HHT	HTH	THH
TTH	THT	HTT	TTT

Hmmm... The dist'n of any outcome in S, given T(X) is independent of p.

Sample	T(X)	P(X T(X)=3)	P(X T(X)=2)	P(X T(X)=1)	P(X T(X)=0)
ННН	3	1	0	0	0
HHT	2	0	1/3	0	0
HTH	2	0	1/3	0	0
THH	2	0	1/3	0	0
TTH	1	0	0	1/3	0
THT	1	0	0	1/3	0
HTT	1	0	0	1/3	0
TTT	0	0	0	0	1

Hmmm... The dist'n of any outcome in S, given T(X) is independent of p.

Sample	T(X)	P(X T(X)=3)	P(X T(X)=2)	P(X T(X)=1)	P(X T(X)=0)
ННН	3	1	0	0	0
HHT	2	0	1/3	0	0
HTH	2	0	1/3	0	0
THH	2	0	1/3	0	0
TTH	1	0	0	1/3	0
THT	1	0	0	1/3	0
HTT	1	0	0	1/3	0
TTT	0	0	0	0	1

Hmmm... The dist'n of any outcome in S, given T(X) is independent of p.

Sample	T(X)	P(X T(X)=3)	P(X T(X)=2)	P(X T(X)=1)	P(X T(X)=0)
ННН	3	1	0	0	0
HHT	2	0	1/3	0	0
HTH	2	0	1/3	0	0
THH	2	0	1/3	0	0
TTH	1	0	0	1/3	0
THT	1	0	0	1/3	0
HTT	1	0	0	1/3	0
TTT	0	0	0	0	1

Hmmm... The dist'n of any outcome in S, given T(X) is independent of p.

Sample	T(X)	P(X T(X)=3)	P(X T(X)=2)	P(X T(X)=1)	P(X T(X)=0)
ННН	3	1	0	0	0
HHT	2	0	1/3	0	0
HTH	2	0	1/3	0	0
THH	2	0	1/3	0	0
TTH	1	0	0	1/3	0
THT	1	0	0	1/3	0
HTT	1	0	0	1/3	0
TTT	0	0	0	0	1

Hmmm... The dist'n of any outcome in S, given T(**X**) is independent of p.

Sample	T(X)	P(X T(X)=3)	P(X T(X)=2)	P(X T(X)=1)	P(X T(X)=0)
ННН	3	1	0	0	0
HHT	2	0	1/3	0	0
HTH	2	0	1/3	0	0
THH	2	0	1/3	0	0
TTH	1	0	0	1/3	0
THT	1	0	0	1/3	0
HTT	1	0	0	1/3	0
TTT	0	0	0	0	1

Sufficient Statistic

- The dist'n of **X** given **T(X)** does not involve the parameter p.
- True whenever we condition on a sufficient statistic
 T is for sufficient
- Def'n of Sufficient (C&B):
 A statistic T(X) is a sufficient statistic
 for θ if the conditional dist'n of the sample
 X given the value T(X) does not depend
 on θ.

Sufficiency Principle (C&B):

If $T(\mathbf{X})$ is a sufficient statistic for θ then any inference about θ should depend on the sample \mathbf{X} only through the value $T(\mathbf{X})$.

That is, if \mathbf{x} and \mathbf{y} are two sample points such that $T(\mathbf{x})=T(\mathbf{y})$, then the inference about θ should be the same whether $\mathbf{X}=\mathbf{x}$ or $\mathbf{Y}=\mathbf{y}$ is observed.

	X	У	
HHH	HHT	HTH	THH
TTH	THT	HTT	TTT

Sufficient Statistics

- Now we can base our inferences on T(X) (T is for sufficient).
- ideally (although not necessarily) T(X) is of smaller dimension than X
 - and ideally the same dimension as θ
- How do we find sufficient statistics?

Hmmm.... Sufficiency and Data Partition

We make our inference based on how we partition our data. The sufficient statistic, $\sum X_i$, defines the partition of S. Any sample in the same partition makes the same inference.

$$\Sigma X_i = 3$$
 $\Sigma X_i = 2$ HHH HHT HTH THH

TTH THT HTT TTT

 $\Sigma X_i = 1$ $\Sigma X_i = 0$

Finding Sufficient Statistics

Theorem (C&B, short hand):

If $X^{\sim} p(x|\theta)$ and $T(X)^{\sim} q(t|\theta)$

Then for every \mathbf{x} in the sample space:

 $T(\mathbf{X})$ sufficient $\Rightarrow p(\mathbf{x} \mid \theta) / q(T(\mathbf{X}) \mid \theta)$ constant wrt θ

 $T(\mathbf{X})$ sufficient $\leftarrow p(\mathbf{x} \mid \theta) / q(T(\mathbf{X}) \mid \theta)$ constant wrt θ

Coin flip example

- $p(\mathbf{x} \mid \theta) = p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $q(\mathbf{t} \mid \theta) = \binom{3}{\Sigma x} p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $p(x | \theta) / q(t | \theta) = 1/{\binom{3}{\Sigma x}}$
- Déjà vu (Hmmm...) : $Pr(HHT \mid T(X)=2) = ...$ Pr(HHT) / Pr(T(X)=2) = $p(X=x|\theta) / q(T=t|\theta) = p^2(1-p) / 3p^2(1-p) = 1/3$

Finding Sufficient Statistics, T(X)

- In previous theorem, we need T(X) (data partition) and dist'n of T(X)... what if no obvious choice for T(X)?
- Factorization Thm (C&B) (short hand):

Sample $X^{\sim} f(x | \theta)$, i.e. $f(x | \theta)$ is the joint dist'n

T(X) sufficient

 $f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta) h(\mathbf{x})$

T(X) sufficient

 $f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta) h(\mathbf{x})$

Functions $g(t | \theta)$ and $h(\mathbf{x})$ exist for all \mathbf{x} and all parameter points θ .

Coin flip example

$$T(\mathbf{X})$$
 sufficient \Rightarrow $f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x})$

 $T(\mathbf{X})$ sufficient $\leftarrow f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x})$

$$f(\mathbf{x} \mid \theta) = p^{\sum x} (1-p)^{3-\sum x}$$

$$g(T(\mathbf{x}) | \theta) = p^{\sum x} (1-p)^{3-\sum x}$$

$$h(x) = 1$$

$$T(\mathbf{x}) = \Sigma \mathbf{x} = \text{sufficient}$$

HHH HHT HTH THH TTH THT HTT

Easiest* way of finding Sufficient Statistics

Exponential Family Thm (C&B)

(short hand and, for simplicity, assuming **one** parameter):

$$X_1 \dots X_n \sim f(x \mid \theta)$$
, iid
 $f(x \mid \theta) = h(x) c(\theta) \exp(w(\theta) t(x))$ (note: for an individual X)

Then
$$T(X) = \sum_{j=1}^{n} t(x_j)$$
is a sufficient statistic

is a sufficient statistic for θ .

^{*}Assuming exponential family, important information for qualifying exams.

Coin flip example

$$f(x|\theta) = h(x) c(\theta) exp(w(\theta)t(x))$$
 $T(X) = \sum t(x_j) \text{ is sufficient}$

$$f(x|\theta) = p^x(1-p)^{1-x} \qquad \text{(one x, Bernoulli dist'n)}$$

$$= (p/(1-p))^x (1-p)^1$$

$$= (1-p) exp\{x \log (p/(1-p))\}$$

$$t(x) = x, \qquad h(x) = 1,$$

$$c(\theta) = (1-p), \qquad w(\theta) = \log(p/(1-p))$$

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

Coin flip example

 $T(x) = \Sigma x = sufficient$

$$f(x \mid \theta) = h(x) c(\theta) \exp(w(\theta)t(x))$$

$$T(X) = \sum t(x_j) \text{ is sufficient}$$

$$f(x \mid \theta) = p^x (1-p)^{1-x} \qquad \text{(one x, Bernoulli dist'n)}$$

$$= (p/(1-p))^x (1-p)^1$$

$$= (1-p) \exp\{x \log (p/(1-p))\}$$

$$t(x) = x, \qquad h(x) = 1,$$

$$c(\theta) = (1-p), \qquad w(\theta) = \log(p/(1-p))$$

Minimal Sufficient Statistics

• We can use the factorization theorem to argue that the sample is sufficient.

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x})$$

Define $h(\mathbf{x}) = 1$ and $T(\mathbf{x}) = \mathbf{x}$

 For a continuous outcome, we would partion the data by the order statistics

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

Minimal Sufficient Statistics

Any one-to-one function of a sufficient statistic is also sufficient –defines the same partition.

 Σx_i defines same partition as $(\Sigma x_i)^2$ or $\Sigma x_i/n$ or Σx_i^2

$$(\Sigma X_i)^2 = 9$$

$$(\Sigma X_i)^2 = 4$$

$$HHH \quad HHT \quad HTH \quad THH$$

$$TTH \quad THT \quad HTT \quad TTT$$

$$(\Sigma X_i)^2 = 1 \quad (\Sigma X_i)^2 = 0$$

Minimal Sufficient Statistics

Any one-to-one function of a sufficient statistic is also sufficient –defines the same partition.

 Σx_i defines same partition as $(\Sigma x_i)^2$ or $\Sigma x_i/n$ or Σx_i^2

$$\Sigma X_i/3 = 1$$
 $\Sigma X_i/3 = 2/3$

HHH HHT HTH THH

TTH THT HTT TTT

 $\Sigma X_i/3 = 1/3$ $\Sigma X_i/3 = 0$

Minimal Sufficient Statistics

- Numerous sufficient statistics for a problem
- Coin flip:

(X₁, X₂, X₃) (the complete data) is sufficient

Could also show: $(X_1, X_2 + X_3)$ is sufficient....

Any 1-to-1 transformation of ΣX_i is sufficient

Note ΣX_i is a function of other sufficient stats...

Hmmmm....

Minimal Sufficient Statistics

- Goal: Most data reduction with no loss of information.
- Def'n (C&B)

A sufficient statistics $T(\mathbf{X})$ is called a minimal sufficient statistic if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.

Minimal Sufficient Statistics

- Goal: Most data reduction with no loss of information.
- Practical Theorem for identifying minimal sufficient statistics (C&B, short hand):

Sample **X~** $f(\mathbf{x} \mid \theta)$, i.e. $f(\mathbf{x} \mid \theta)$ is the joint dist'n

 $T(\mathbf{X})$ minimal sufficient $\Rightarrow f(\mathbf{x} \mid \theta) / f(\mathbf{y} \mid \theta)$ constant wrt θ if $T(\mathbf{x}) = T(\mathbf{y})$.

 $T(\mathbf{X})$ minimal sufficient $\leftarrow f(\mathbf{x} \mid \theta) / f(\mathbf{y} \mid \theta)$ constant wrt θ if $T(\mathbf{x}) = T(\mathbf{y})$.

Coin flip example

T(X) minimal sufficient \iff $f(x \mid \theta) / f(y \mid \theta)$ constant wrt θ if $T(\mathbf{x}) = T(\mathbf{v})$.

$$f(\mathbf{x} \mid \theta) = p^{\Sigma x} (1-p)^{3-\Sigma x}$$

$$f(\mathbf{y} | \theta) = p^{\sum y} (1-p)^{3-\sum y}$$

$$f(\mathbf{x} \mid \theta) / f(\mathbf{y} \mid \theta) = (p/(1-p))^{\sum x - \sum y}$$

$$f(\mathbf{x} | \theta) / f(\mathbf{y} | \theta)$$
 constant wrt θ if $\Sigma \mathbf{x} = \Sigma \mathbf{y}$

$$T(\mathbf{x}) = \Sigma \mathbf{x} = \text{minimal sufficient}$$

Minimal Sufficient Statistics

Any one-to-one function of a minimal sufficient statistic is also minimal sufficient –defines the same partition. Σx_i defines same partition as $(\Sigma x_i)^2$ or $\Sigma x_i/n$ or Σx_i^2

$$(\Sigma X_i)^2 = 9$$
 $(\Sigma X_i)^2 = 4$

HHH HHT HTH THH

TTH THT HTT TTT

 $(\Sigma X_i)^2 = 1$ $(\Sigma X_i)^2 = 0$

Hmmm.... Coin flipping and dice rolling

- What if...
- Give everyone a die (dice) and the number rolled determined the number times the coin flipped

$$\begin{aligned} q_n &= \text{Pr}(N=n) = 1/6; \text{ for } n = 1,2,3,4,5,6 \\ f_{n,x}(n,x) &= q_n * f(x \mid n) \\ &= (1/6) * \prod_{n=1}^{n} p^x (1-p)^{n-x} = (1/6) * p^{\sum x} (1-p)^{n-\sum x} \\ &= (1/6) * (p/(1-p))^{\sum x} (1-p)^n \end{aligned}$$

$$f(\mathbf{x},\mathbf{n} \mid \theta) / f(\mathbf{y},\mathbf{m} \mid \theta) = \underbrace{(1/6) (1-p)^n (p/1-p)^{\sum x}}_{(1/6) (1-p)^m (p/1-p)^{\sum y}}$$

Need both n=m and $\Sigma x = \Sigma y$ to be constant wrt p n and Σx are minimal sufficient (#heads not enough) Here n is an ancillary statistic... (another def'n required)

Ancillary Statistics

- Same Goal: Most data reduction with no loss of info.
- Ancillary Statistics (C&B):

A statistic S(X) whose dist'n doesn't depend on θ is called ancillary. (S is for ancillary)

We may have a minimal sufficient statistic,

 $T' = (n, \Sigma x)$ with dimension(T') > dimension(θ).

Coin flip: T' =(n, Σx), $\theta = Pr(H) = p$

We can think of Σx as 'conditionally sufficient' because it is used as a sufficient statistic in inference conditional on N=n.

An ancillary statistic is an important component of the minimal sufficient statistic... Hmmm....

Complete Statistics

- Intuition: We'd like our minimal sufficient statistic to be independent of ancillary statistics.
- Occurs with completeness....
- Completeness Def'n (C&B):

Let $f(t | \theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability dist'ns is called complete if

$$E_{\theta}[g(T)] = 0$$
 for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .

Equivalently, T(X) is called a complete statistic.

Completeness is a property of a family of dist'ns.

Hmmm.... Or Huh?!?

Coin Flip Example: Completeness

- $E_{\theta}[g(T)] = 0$ for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .
- T(X) ~ binomial(3,p) (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = \binom{3}{\Sigma x} p^{\Sigma x} (1-p)^{3-\Sigma x}$

•
$$E[g(T)] = g(0)*1*p^{0}(1-p)^{3-0} + g(1)*3*p^{1}(1-p)^{3-1}$$

 $+ g(2)*3*p^{2}(1-p)^{3-2} + g(3)*1*p^{3}(1-p)^{3-3}$
 $= (1-p)^{3} [g(0)*1*(p/(1-p))^{0} + g(1)*3*(p/(1-p))^{1}$
 $+ g(2)*3*(p/(1-p))^{2} + g(3)*1*(p/(1-p))^{3}]$

 $=? 0 \rightarrow g(0)=g(1)=g(2)=g(3)=0$

Coin Flip Example: Completeness

- $E_{\theta}[q(T)] = 0$ for all $\theta \to P_{\theta}(q(T)=0)=1$ for all θ .
- T(X) ~ binomial(3,p) (assuming n=3 known)
- $q(t|\theta) = \binom{3}{\Sigma x} p^{\Sigma x} (1-p)^{3-\Sigma x} = \binom{3}{t} p^t (1-p)^{3-t}$

•
$$E[g(T)] = g(0) 1*p^{0}(1-p)^{3-0} + g(1) 3*p^{1}(1-p)^{3-1} + g(2) 3*p^{2}(1-p)^{3-2} + g(3) 1*p^{3}(1-p)^{3-3}$$

$$= (1-p)^{3} [g(0)(p/(1-p))^{0} + g(1)3(p/(1-p))^{1} + g(2)3(p/(1-p))^{2} + g(3)(p/(1-p))^{3}] =? 0$$
since $(1-p)^{3} \neq 0$

Coin Flip Example: Completeness

- $E_{\theta}[q(T)] = 0$ for all $\theta \to P_{\theta}(q(T)=0)=1$ for all θ .
- T(X) ~ binomial(3,p) (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = {\binom{3}{\Sigma x}} p^{\Sigma x} (1-p)^{3-\Sigma x}$

•
$$E[g(T)] = 0 \Rightarrow g(0) \ 1*p^{0}(1-p)^{3-0} + g(1) \ 3*p^{1}(1-p)^{3-1}$$

+ $g(2) \ 3*p^{2}(1-p)^{3-2} + g(3) \ 1*p^{3}(1-p)^{3-3}$

⇒0 ?=
$$g(0)*1$$

+ $g(1)*3*(p/(1-p))^1$
+ $g(2)*3*(p/(1-p))^2$
+ $g(3)*1*(p/(1-p))^3$

Coin Flip Example: Completeness

- $E_{\theta}[g(T)] = 0$ for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .
- T(X) ~ binomial(3,p) (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = {\binom{3}{\Sigma x}} p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $E[g(T)] = g(0) 1*p^{0}(1-p)^{3-0} + g(1) 3*p^{1}(1-p)^{3-1} + g(2) 3*p^{2}(1-p)^{3-2} + g(3) 1*p^{3}(1-p)^{3-3}$

⇒0?=
$$g(0)*1$$

+ $g(1)*3*(p/(1-p))^1$
+ $g(2)*3*(p/(1-p))^2$
+ $g(3)*1*(p/(1-p))^3$ ≠ 0

•

Coin Flip Example: Completeness

- $E_{\theta}[g(T)] = 0$ for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .
- T(X) ~ binomial(3,p) (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = \binom{3}{\Sigma x} p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $E[g(T)] = g(0) 1*p^{0}(1-p)^{3-0} + g(1) 3*p^{1}(1-p)^{3-1}$ $+ g(2) 3*p^{2}(1-p)^{3-2} + g(3) 1*p^{3}(1-p)^{3-3}$

$$\rightarrow$$
0 ?=g(0)* 1
+ g(1)* 3 * (p/(1-p))¹
+ g(2)* 3 * (p/(1-p))² ≠ 0 for all p
+ g(3)* 1 * (p/(1-p))³

Coin Flip Example: Completeness

- $E_{\theta}[g(T)] = 0$ for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .
- $T(X) = \sum X \sim \text{binomial}(3,p)$ (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = {\binom{3}{\Sigma x}} p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $E[g(T)] = g(0) 1*p^{0}(1-p)^{3-0} + g(1) 3*p^{1}(1-p)^{3-1} + g(2) 3*p^{2}(1-p)^{3-2} + g(3) 1*p^{3}(1-p)^{3-3}$

Coin Flip Example: Completeness

- $E_{\theta}[g(T)] = 0$ for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .
- $T(X) = \sum x \sim \text{binomial}(3,p)$ (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = {\binom{3}{\Sigma}} p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $E[g(T)] = g(0) 1*p^{0}(1-p)^{3-0} + g(1) 3*p^{1}(1-p)^{3-1} + g(2) 3*p^{2}(1-p)^{3-2} + g(3) 1*p^{3}(1-p)^{3-3}$

Σx_i is complete

Coin Flip Example: Completeness

- $E_{\theta}[g(T)] = 0$ for all $\theta \to P_{\theta}(g(T) = 0) = 1$ for all θ .
- $T(X) = \sum X \sim \text{binomial}(3,p)$ (assuming n=3 known)
- $q(\mathbf{t} \mid \theta) = {\binom{3}{\Sigma x}} p^{\Sigma x} (1-p)^{3-\Sigma x}$
- $E[g(T)] = g(0) 1*p^{0}(1-p)^{3-0} + g(1) 3*p^{1}(1-p)^{3-1} + g(2) 3*p^{2}(1-p)^{3-2} + g(3) 1*p^{3}(1-p)^{3-3}$

$$\rightarrow$$
0 ?= g(0)* 1
+ g(1)* 3 * (p/(1-p))¹
+ g(2)* 3 * (p/(1-p))² g(0)=g(1)=g(2)=g(3)=0
+ g(3)* 1 * (p/(1-p))³

 Σx_i is complete

(and sufficient and minimal sufficient...)

Completeness and Ancillary Statistics

• Basu's Theorem (C&B):

If T(X) is complete and minimal sufficient statistic; then T(X) is independent of **every** ancillary statistic.

Note: if a dist'n is complete, then there are no unbiased estimators of zero, except zero itself.....

Easiest* way of finding Complete Statistics

Exponential Family Thm (C&B)

(short hand and, for simplicity, assuming one parameter):

$$X_1 \dots X_n \sim f(x \mid \theta)$$
, iid
 $f(x \mid \theta) = h(x) c(\theta) \exp(w(\theta) t(x))$ (note: for an individual X)

Then

$$T(X) = \sum_{i=1}^{n} t(x_i)$$

is a complete statistic as long as the parameter space Θ contains an open subset in \mathbb{R}^k .

Hmmm.... Relationship between Sufficiency and Completeness

Sufficiency / completeness move in opposite directions*
 Let T(X) = h(U(X))

T and U both statistics (ftns of data). Since T is ft'n of U: U(X) is a reduction of the data

T(X) = h(U(X)) is a further reduction.

T sufficient → U sufficient

T complete ← U complete

Recall: A sufficient statistics $T(\mathbf{X})$ is called a minimal sufficient statistic if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.

^{*}Assuming exponential family, important information for qualifying exams.

^{*} Louise Ryan class notes....

 $T(\mathbf{X}) = h(U(\mathbf{X}))$

U(X): reduction of the data T(X) = h(U(X)):further reduction T sufficient → U sufficient T complete ← U complete

Sufficient	X = full data vector	
Sufficient	U(X) a reduction of the data	At some point lose completeness
Minimal Sufficient Further reduction, lose sufficiency	T(X) = h(U(X)) a further reduction	Complete ?
	further reduction	Complete
	Constant, most extreme reduction	Complete

Relationship between Sufficiency and Completeness

T(X) = h(U(X)) U(X): reduction of the data T(X) = h(U(X)):further reduction

T sufficient → U sufficient T complete ← U complete

Sufficient	ннн	HHT	HTH	THH	Finest partition (8)	
	TTH	THT	HTT	ш	(X ₁ , X ₂ , X ₃)	
Sufficient	ннн	HHT	HTH	THH	U(X) = Reduction of data	
	TTH	THT	HTT	тт	(6 partitions)	
Minimal Sufficient / Complete	ннн	HHT	нтн	THH	$T(X)$ Grouped by $\Sigma X_i \#$ Heads	
	TTH	THT	HTT	тт	(4 partitions)	
Complete	ннн	ннт	HTH	THH	$T_1(X)$ = further reduction.	
PARTICLE PROPERTY.	TTH	THT	HTT	TIT	(3 partitions)	
Complete	ннн	ннт	нтн	THH	Coarsest partition (1)	
	TTH	THT	HTT	TTT	T ₂ (X)=Constant for all X	

Relationship between Sufficiency and Completeness

- Define Random Variable consistent with Finest partition.
- $T_F(\mathbf{x}) = I_{F1}(\mathbf{x}), I_{F2}(\mathbf{x}), I_{F3}(\mathbf{x}), I_{F4}(\mathbf{x}), I_{F5}(\mathbf{x}), I_{F6}(\mathbf{x}), I_{F7}(\mathbf{x}), I_{F8}(\mathbf{x})$ Where $I_{Ei}(\mathbf{x})$ is an indicator function:

 $I_{E}(\mathbf{x})=1$ if in partition i, $I_{Fi}(\mathbf{x}) = 0$ else i=1,2,...8

• $f(x|p) = (p^3)^{I_{F1}(x)} * (p^2(1-p))^{I_{F2}(x)+I_{F3}(x)+I_{F4}(x)} *$ * $(p(1-p)^2)^{I_{F5}(x)+I_{F6}(x)+I_{F7}(x)}$ * $(1-p^3)^{I_{F8}(x)}$

By Factorization theorem: $T_{E}(\mathbf{x})$ is sufficient.

Relationship between Sufficiency and Completeness

• Is $T_F(x)$ complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T_F}(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \quad (\mathsf{p}^3) \; * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}1})] \\ &+ (\mathsf{p}^2(\mathsf{1-p})) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}2}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}3}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}4})] \\ &+ (\mathsf{p}(\mathsf{1-p})^2) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}5}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}6}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}7})] \\ &+ (\mathsf{1-p})^3 \quad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}8})] = ? \; \mathsf{0} \; \; \mathsf{for \; all \; p} \end{split}$$

• Is
$$T_F(\mathbf{x})$$
 complete?
$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_F(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \; (\mathsf{p}^3) \; * \; \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}1})] \\ &+ (\mathsf{p}^2(1\text{-}\mathsf{p}))^* \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}2}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}3}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}4})] \\ &+ (\mathsf{p}(1\text{-}\mathsf{p})^2)^* \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}5}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}6}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}7})] \\ &+ (1\text{-}\mathsf{p})^3 \quad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}8})] = ? \; 0 \; \; \text{for all p ?} \\ &\quad [\mathsf{g}(\mathsf{I}_{\mathsf{F}1})] = 0 \end{split}$$

ННН	HHT	нтн	THH
TTH	THT	HTT	TTT

Relationship between Sufficiency and Completeness

• Is
$$T_F(\mathbf{x})$$
 complete?
$$E[g(T_F(\mathbf{x})) = \Sigma \ P(T) \ g(T) = (p^3) * [g(I_{F1})] \\ + (p^2(1-p)) * [g(I_{F2}) + g(I_{F3}) + g(I_{F4})] \\ + (p(1-p)^2) * [g(I_{F5}) + g(I_{F6}) + g(I_{F7})] \\ + (1-p)^3 * [g(I_{F8})] = ? \ 0 \ \text{ for all } p \ ?$$

$$[g(I_{F1})] = 0 \\ [g(I_{F8})] = 0$$

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

Relationship between Sufficiency and Completeness

• Is $T_{\epsilon}(\mathbf{x})$ complete?

ННН	HHT	HTH	THH
TTH	THT	HTT	TTT

Relationship between Sufficiency and Completeness

• Is $T_F(\mathbf{x})$ complete? $E[g(T_F(\mathbf{x})) = \Sigma \ P(T) \ g(T) = \ (p^3) \ ^* \ [g(I_{F1})] \\ + \ (p^2(1-p))^* \ [g(I_{F2}) + g(I_{F3}) + g(I_{F4})] \\ + \ (p(1-p)^2)^* \ [g(I_{F5}) + g(I_{F6}) + g(I_{F7})] \\ + \ (1-p)^3 \ ^* \ [g(I_{F3})] = ? \ 0 \ \text{for all } p \ ? \\ [g(I_{F1})] = 0 \\ [g(I_{F1})] = 0 \\ [g(I_{F2}) + g(I_{F3}) + g(I_{F4})]^* \\ [g(I_{F5}) + g(I_{F6}) + g(I_{F7})] \\ \text{if } g(I_{F5}) = -[g(I_{F6}) + g(I_{F7})] \dots \\ ^* \text{many combinations} = 0 \ \text{that don't require} \ g() = 0!!$

HHH	HHT	HTH	THH
TTH	THT	HTT	TTT

- Is $T_{\epsilon}(\mathbf{x})$ complete?
 - We have separated samples with identical information (Σx_i)

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T_F}(\mathbf{x})) &= \; \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \; \; (\mathsf{p}^3) \; * \; \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}1})] \\ &+ \; (\mathsf{p}^2(1\text{-}\mathsf{p})) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}2}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}3}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}4})] \\ &+ \; (\mathsf{p}(1\text{-}\mathsf{p})^2) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}5}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}6}) + \mathsf{g}(\mathsf{I}_{\mathsf{F}7})] \\ &+ \; (1\text{-}\mathsf{p})^3 \quad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{F}8})] \; = ? \; 0 \; \; \text{for all } \mathsf{p} \; ? \end{split}$$

*many combinations =0 that don't require g()=0!! Not complete.

HHH	HHT	HTH	THH
TTH	THT	HTT	TTT

Relationship between Sufficiency and Completeness

- Is $I_{C_1}(\mathbf{x})$ complete?
- $f(\mathbf{x} \mid p) = (p^3 + p^2(1-p) + p(1-p)^2 + (1-p)^3)^{IC1(\mathbf{x})} = 1^{IC1(\mathbf{x})} = 1$

$$E[g(T_F(x)) = \Sigma P(T) g(T) = (1) * [g(I_{C1})] = ? 0 \text{ for all } p$$

$$\rightarrow$$
 [g(I_{C1})]=0

 $I_{C_1}(\mathbf{x})$ IS complete.

We haven't separated anything with identical information (Σx_i)

Relationship between Sufficiency and Completeness

- Define Random Variable consistent w Coarsest partition.
- $T_C(\mathbf{x}) = I_{C1}(\mathbf{x})$

Where $I_{C_1}(\mathbf{x})$ is an indicator function:

$$I_{C1}(\mathbf{x})$$
 =1 if in partition 1,
 $I_{C1}(\mathbf{x})$ = 0 else

- Is $I_{C1}(x)$ sufficient
- $f(x|p) = (p^3 + 3p^2(1-p) + 3p(1-p)^2 + (1-p)^3)^{IC1(x)} = 1^{IC1(x)} = 1$

By factorization theorem: $T_C(\mathbf{x})$ is NOT sufficient. Lose sufficiency when combine samples with different info.

Relationship between Sufficiency and Completeness

- Random Variable consistent w Minimal Sufficient partition.
- $T_{MS}(x) = I_{MS1}(x), I_{MS2}(x), I_{MS3}(x), I_{MS4}(x)$

Where $I_{MSi}(\mathbf{x})$ is an indicator function:

$$I_{MSi}(\mathbf{x})$$
=1 if in partition i, $I_{MSi}(\mathbf{x})$ =0 else; i=1,2,...4

•
$$f(\mathbf{x} \mid \mathbf{p}) = (\mathbf{p}^3)^{I_{MS1}(\mathbf{x})} * (3*\mathbf{p}^2(1-\mathbf{p}))^{I_{MS2}(\mathbf{x})} * (3*\mathbf{p}(1-\mathbf{p})^2)^{I_{MS3}(\mathbf{x})} * (1-\mathbf{p}^3)^{I_{MS4}(\mathbf{x})}$$

By factorization theorem: $T_{MS}(\mathbf{x})$ is sufficient. Can also show minimal sufficient ...

• Is $T_{MS}(\mathbf{x})$ complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_{\mathsf{MS}}(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \; \; (\mathsf{p}^3) \; * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS1}})] \\ &+ (3\mathsf{p}^2(1 \text{-}\mathsf{p})) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS2}})] \\ &+ (3\mathsf{p}(1 \text{-}\mathsf{p})^2) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS3}})] \\ &+ (1 \text{-}\mathsf{p})^3 \qquad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS4}})] = ? \; \mathsf{0} \; \; \mathsf{for \; all \; p} \end{split}$$

Relationship between Sufficiency and Completeness

• Is $T_{MS}(\mathbf{x})$ complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_{\mathsf{MS}}(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \; (\mathsf{p}^3) \; * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS1}})] \\ &+ (3\mathsf{p}^2(1\text{-}\mathsf{p})) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS2}})] \\ &+ (3\mathsf{p}(1\text{-}\mathsf{p})^2) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS3}})] \\ &+ (1\text{-}\mathsf{p})^3 \qquad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS4}})] = ? \; \mathsf{O} \; \; \mathsf{for \; all \; p} \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS1}})] = \mathsf{0} \end{split}$$

Relationship between Sufficiency and Completeness

• Is T_{MS}(**x**) complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_{\mathsf{MS}}(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \; (\mathsf{p}^3) \; * \; [\mathsf{g}(I_{\mathsf{MS1}})] \\ &+ (3\mathsf{p}^2(1-\mathsf{p})) * \; [\mathsf{g}(I_{\mathsf{MS2}})] \\ &+ (3\mathsf{p}(1-\mathsf{p})^2) * \; [\mathsf{g}(I_{\mathsf{MS3}})] \\ &+ (1-\mathsf{p})^3 \qquad * \; [\mathsf{g}(I_{\mathsf{MS4}})] =? \; 0 \; \; \mathsf{for \; all \; p} \\ &[\mathsf{g}(I_{\mathsf{MS1}})] = 0 \\ &[\mathsf{g}(I_{\mathsf{MS2}})] = 0 \end{split}$$

Relationship between Sufficiency and Completeness

• Is T_{MS}(**x**) complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_{\mathsf{MS}}(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \; \; (\mathsf{p}^3) \; * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}1})] \\ &+ (3\mathsf{p}^2(1\!-\!\mathsf{p})) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}2})] \\ &+ (3\mathsf{p}(1\!-\!\mathsf{p})^2) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] \\ &+ (1\!-\!\mathsf{p})^3 \quad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}4})] = ? \; 0 \; \; \mathsf{for \; all \; p} \\ &[\mathsf{g}(\mathsf{I}_{\mathsf{MS}1})] = 0 \\ &[\mathsf{g}(\mathsf{I}_{\mathsf{MS}2})] = 0 \\ &[\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] = 0 \end{split}$$

• Is T_{MS}(**x**) complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_{\mathsf{MS}}(\mathbf{x})) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \quad (\mathsf{p}^3) \; * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}1})] \\ &+ (3\mathsf{p}^2(1\!-\!\mathsf{p})) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}2})] \\ &+ (3\mathsf{p}(1\!-\!\mathsf{p})^2) * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] \\ &+ (1\!-\!\mathsf{p})^3 \qquad * \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}4})] =? \; 0 \; \; \text{for all } \mathsf{p} \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}1})] = 0 \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}2})] = 0 \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] = 0 \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] = 0 \end{split}$$

Relationship between Sufficiency and Completeness

• Is $T_{MS}(\mathbf{x})$ complete?

$$\begin{split} \mathsf{E}[\mathsf{g}(\mathsf{T}_{\mathsf{MS}}\left(\mathbf{x}\right)) &= \Sigma \; \mathsf{P}(\mathsf{T}) \; \mathsf{g}(\mathsf{T}) = \quad (\mathsf{p}^3)^* \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}1})] \\ &+ (3\mathsf{p}^2(1\text{-}\mathsf{p}))^* \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}2})] \\ &+ (3\mathsf{p}(1\text{-}\mathsf{p})^2)^* \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] \\ &+ (1\text{-}\mathsf{p})^3 \qquad ^* \; [\mathsf{g}(\mathsf{I}_{\mathsf{MS}4})] =? \; 0 \; \; \text{for all } \mathsf{p} \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}1})] = 0 \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}2})] = 0 \qquad \mathsf{T}_{\mathsf{MS}}(\mathbf{x}) \; \text{is complete} \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}3})] = 0 \\ & [\mathsf{g}(\mathsf{I}_{\mathsf{MS}4})] = 0 \end{split}$$

Relationship between Sufficiency and Completeness

T(X) = h(U(X))

U(X): reduction of the data
T(X) = h(U(X)):further reduction

T sufficient → U sufficient T complete ← U complete

Sufficient	HHH	HHT	HTH	THH	Finest partition (8)
	TTH	THT	HTT	ш	(X ₁ , X ₂ , X ₃)
Sufficient	ннн	HHT	HTH	THH	U(X) = Reduction of data
	TTH	THT	HTT	Ш	(6 partitions)
Minimal Sufficient / Complete	ннн	HHT	HTH	THH	T(X) Grouped by ∑X _i # Heads
	TTH	THT	HTT	тт	(4 partitions)
Complete	ннн	ннт	нтн	THH	T ₁ (X) = further reduction.
	TTH	THT	HTT	Ш	(3 partitions)
Complete	ннн	ннт	нтн	THH	Coarsest partition (1)
	TTH	THT	HTT	TTT	T ₂ (X)=Constant for all X

The Point?

- Sufficiency lost when **combine** samples with **different** information in the same partition
- Completeness lost when samples with same information are separated into different partitions (dimension too big)
- Sufficiency and Completeness together provides all information with minimal dimension (and indepence from ancillary stats)

Complete, Sufficient Statistic.... Statistical Nirvana!!

Hmmm....

- Things to think about / add:
 - $-N(\mu,1)$
 - $-N(\mu, \mu^2)^*$
 - $-U(0,\theta)$
 - U(θ , θ +k)*

^{*}exponential family.... as long as the parameter space Θ contains an open subset in \mathbb{R}^k