Consumer Debt Moratoria

Bulent Guler Yasin Kürşat Önder
Indiana University Ghent University

Mauricio Villamizar
Central Bank of Colombia

Jose Villegas
Ghent University

June 29th 2024

EEA-ESEM 2024 Rotterdam

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." –Qur'ar 2:280
- \cdot A world of $\mathsf{record} ext{-high}$ debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions

- · Debt moratorium: payment suspension of a debt instrument.
- · One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

- · Debt moratorium: payment suspension of a debt instrument.
- · One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280
- · A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

- Moratorium policies gained prominence in the wake of the 2020 pandemic.
 - DEBT MORATORIA remains largely unexplored in both empirical and theoretical contexts.

What do we do? Related Literature

TWO MAIN CONTRIBUTIONS:

- 1. (Empirical) Estimate the causal impact of mortgage moratorium on households.
 - We use administrative credit registry data from Colombia.
 - Exploit a discontinuity in eligibility criteria for households to receive a moratorium on mortgages during 2020.
 - Estimate the local causal effect on consumption, delinquency behavior and debt accumulation for stressed households.
- 2. (Quantitative) Study the aggregate implications of a debt moratorium policy
 - · Use an heterogeneous agent life-cycle incomplete market model (Arslan, Guler, Kuruscu, 2023)
 - We use the model for long-run analysis and policy counterfactual comparisons.

What do we find?

- 1. Moratoria improved economic conditions stressed households
 - ↑ Consumption
 - ↓ Delinquency probability
- 2. Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Welfare improving for both households and banks.
 - Payment suspension with interest rates not accrued is a better alternative.

Empirical Strategy

Data and Moratorium Policy

Data

- Colombian credit registry from Q1-2019 to Q4-2021.
 - · Comprise universe of loans between bank-individual pairs.
 - · Borrowing and loan delinquency information at quarterly frequency.
 - We can identify mortgages treated by moratoria in 2020.
- We employ 152,000 existent-mortgages (i.e. originated by 2019Q4) at the end of 2020:Q1
 - ⇒ 26 private banks & 149,000 individuals.
- Match treatment information to other household borrowing during 2019Q4-2021Q4
 - 66,000 credit cards, 24,000 short term (personal) loans and 4,100 car loans.

The Debt Moratorium Policy

- Enacted in March 2020 ⇒ mitigate the effects of the COVID-19 Pandemic
- Treatment
 - 1. Duration \leq 120 days
 - 2. Grace periods on principal and interest payments
 - 3. Interest rate accrues
 - 4. Delinquency days reset
 - 5. Credit rating remain frozen
- Eligibility: all loans with \leq 60 days past due as of 29/02/2020
 - First covid case: March 6th NO ANTICIPATION!!!
- \cdot Existent Mortgage \Longrightarrow Eligible + apply for Debt Moratorium Policy \Longrightarrow Treated

Empirical Strategy

Identification

• Household "i" existent mortgage with bank "j" (i.e. originated by 2019Q4)

$$\implies$$
 run_{ij} = 60 days – delinquency days_{ij}

Stressed households ⇒ at least one day of delinquency on existent mortgage

• Eligible and Ineligible households within 5 days of the threshold.

Identification (NElig-Elig.Distrib) (Pre-Treat.Distrib.) (Manipulation

• IDENTIFICATION ⇒ compare barely eligible and non-eligible households
 ⇒ Non-parametric Local Polynomials (Calonico, Cattaneo, and Titiunik, 2014)

Empirical Strategy

RD Estimates: Household Consumption

· We proxy consumption by CC purchases.

 $CC purchases_{it} = \Delta CC debt_{it} + CC repayment_{it}$

Upward jump CC purchases when moving along the eligibility cutoff

- Upward jump CC purchases when moving along the eligibility cutoff
 - ⇒ Explained by Eligible-Treated households

• Effect of moratoria on CC at end of the quarter of treatment (2020-Q2).

	CC Expenditure		Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	
	·	·	·	

- · Households receiving moratoria
 - increase CC expenditure by 2.10 %

CC Expenditure		Mortgage Payment	
(log)	(COP)	(COP)	
2.10**	2.39*	-3.09***	
(1.06)	(1.30)	(0.27)	
First Stage			
0.27***	0.27***	0.18***	
(0.041)	(0.035)	(0.010)	
16,504	16,504	149,867	
19.2	28.5	22.3	
	(log) 2.10** (1.06) 0.27*** (0.041) 16,504	(log) (COP) 2.10** 2.39* (1.06) (1.30) First 0.27*** 0.27*** (0.041) (0.035) 16,504 16,504	

- · Households receiving moratoria
 - increase CC expenditure by 2.4 mill COP (\approx 625 USD)
 - Reduce mortgage payments by 3.1 mill COP (≈ 805 USD)

	CC Expenditure		Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

- · Households receiving moratoria increase CC expenditure by
 - 0.77 cents (= 2.39/3.1) per dollar of mortgage payment reduction (semi-elasticity).
 - 0.12% (= 0.77 \times 0.16) if mortgage payment drop by 1% (elasticity).

	CC Expenditure		Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

Empirical Strategy

RD Estimates: Delinquency

• Delinquency for existent mortgages, short term, and car loans on quarter of treatment.

Delinquent_{iit} = $\mathbb{1}$ {delinquency days_{iit} \geq 30}

t Short Term es Loans			
20 2041.0	Loans		
	-0.36** (0.18)		
First Stage			
0.27	0.18*** (0.06)		
9 28,158	4,187		
28.7	22.8		
	* -0.09** (0.04) First Stage * 0.29*** (0.01) 9 28,158		

- 0.98 pp. in quarter of treatment \implies result of delinquency days reset.

	Existent Mortgages	Short Term Loans	Car Loans	
Fuzzy-RD	-0.98** (0.07)	-0.09** (0.04)	-0.36** (0.18)	
	First Stage			
D _{ij}	0.21*** (0.02)	0.29*** (0.01)	0.18*** (0.06)	
Observations	152,879	28,158	4,187	
Bandwidth (in days)	8.2	28.7	22.8	

- 0.09 pp. and 0.36 pp. for short term and car loans in quarter of treatment.
- Moratoria mitigate households liquidity problems \implies repay debt.

	Existent Mortgages	Short Term Loans	Car Loans
Fuzzy-RD	-0.98** (0.07)	-0.09** (0.04)	-0.36** (0.18)
		First Stage	
D _{ij}	0.21*** (0.02)	0.29*** (0.01)	0.18*** (0.06)
Observations	152,879	28,158	4,187
Bandwidth (in days)	8.2	28.7	22.8

Quantitative Model

Model

Setup

- RD design generally pick up local effects, so can't capture general equilibrium and long-term effects.
- · Benchmark model: Arslan, Guler, Kuruscu (2023)
- Five sectors: households, banks, rental companies, firms, and government.
- Household heterogeneity in income, wealth, housing tenure and mortgage debt due to idiosyncratic shocks. But no aggregate uncertainty
- We study the effects moratoria in response to unexpected and persistent shock, but perfect foresight is assumed along transition.

About Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- · Two idiosyncratic shocks
 - Age: determines transition through life-cycle phases (young, middle, and old) according to $\pi_z(j'|j)$. Old individuals die after age shock, net wealth equally distributed among the newborns.
 - Labor efficiency: affect productivity before retirement, stochastic component $z_j \sim AR(1)$.
- Once shocks is observed, households decide housing tenure, saving and consumption.

About Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two idiosyncratic shocks age and labor efficiency.
- Once shocks is observed, households decide housing tenure, saving and consumption.
 - House purchase financed with mortgages (long-term perpetuities with decreasing coupons).
 - If moratoria starts at t+1, unpaid coupon is paid (with interest) when payment suspension is over.

Housing Tenure Choices (Firms) (Rental Companies)

Active renter Problem

- Households start active renters with state $\{a, z, j\}$
- Choices are: (i) stay as renters (V^{rr}) or (i) become homeowners (V^{rh})

$$V^r = \max\left\{V^{rr}, V^{rh}\right\}$$

Active renter Problem

• Households start active renters with state $\{a,z,j\} \Longrightarrow \text{if continue renting}$

$$V^{rr}(a,z,j) = \max_{c,s,a'>0} \left\{ u(c,s) + \beta EV^r(a',z',j') \right\}$$

subject to

$$c + a' + p_r s = w(1 - \tau)y(j, z) + a(1 + r_k)$$

Active renter Problem

• Households start active renters with state $\{a,z,j\} \Longrightarrow \text{if purchase a house}$

$$V^{rh}(a,z,j) = \max_{c,d,h,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',d,h) \right\}$$

subject to

$$c + p_h h + \delta_h p_h h + \varphi_f + \alpha' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(\alpha', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h (1 - \phi)$$

- · Only mortgage pricing is affected by individual default risk.
 - repayment: $m = d(r_l + \delta_m)$
 - debt next period: $d' = (d m)(1 + r_l)$

Housing Tenure Choices Firms Rental Companies

Active renter Problem

- · Once a households is a homeowner, then has four options
 - 1. Stays as a homeowner see
 - 2. Refinance mortgage (subject to mortgage origination cost) see
 - 3. Sell house (subject to transaction cost) see
 - 4. Defaults see and becomes inactive renter see
- Refinancing or selling the house requires full prepayment of mortgage

• Perfectly competitive risk averse banks. They borrow from the international market (r_t) and lend to households (long-term mortgages) and firms (short-term working capital)

$$\max_{L_{t+1},B_{t+1}} \sum_{t=0}^{\infty} \beta_L^{t-1} \log \left(d_t^B \right)$$

subject to

$$d_t^B + L_{t+1} = \omega_t + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

 L_t Total lending to firms and households \Longrightarrow Banks make same return on each loan

- Banks don't face aggregate risk
- Law of large numbers apply for households

· Perfectly competitive risk averse banks.

$$\max_{L_{t+1},B_{t+1}} \sum_{t=0}^{\infty} \beta_L^{t-1} \log \left(d_t^B \right)$$

subject to

$$d_t^B + L_{t+1} = \omega_t + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

$$(1 - \phi_{t+1}) (1 + r_{\ell,t+1}) L_{t+1} \ge (1 + r_{t+1}) B_{t+1}$$

Endogenous leverage constraint

Banks can default and steal fraction of assets (Gertler and Kiyotaki, 2010)

$$\phi_t = \xi^{1-\beta_L} \left((1+r_{t+1}) / (1+r_{\ell,t+1}) - (1-\phi_{t+1}) \right)^{\beta_L}$$

Quantitative Model

Model Results

Calibration (external param) (internal param)

• Model is calibrated to Colombia targeting the averages of 2010 to 2019.

Statistic	Data	Model
Capital- quarterly GDP ratio	8	8
Homeownership rate–aggregate	43%	43%
Mortgage debt to quarterly GDP ratio	112%	112%
Share of housing services in GDP	15%	15%
House price- quarterly rental price ratio	30	30
loan-to-value ratio	70%	70%
Bank leverage ratio	10	10
Lending premium	0.375%	0.375%

- Evaluate the impact of an aggregate productivity shock with moratoria policy in place.
 - (1) Economy starts is in steady state before shock.
 - (2) Productivity shock replicates output drop around COVID.
 - (3) Perfect foresight after the shock hits the economy.
 - (4) No mortgage payments for 2 quarters $\Longrightarrow m=0$ but interest accrues $\Longrightarrow d'=d$ (1 + r_l).

Linking the model to RDD

- \cdot Evaluate if quantitative model aligns with the empirical estimates. \Longrightarrow PE response
 - Fix wages, lending rate, house prices, rental prices
 - Compute average consumption elasticity at the end of the second quarter relative to economy with no moratoria.

Linking the model to RDD

- \cdot Evaluate if quantitative model aligns with the empirical estimates \Longrightarrow PE response
 - Fix wages, lending rate, house prices, rental prices
 - Compute average consumption elasticity at the end of the second quarter relative to economy with no moratoria.

```
⇒ Model elasticity = 0.04
```

- We need to consider that model provides average elasticity for all mortgage holders including ricardian households (non-stressed).
- Model matches the average consumption elasticity for stressed households and non-stressed households

Aggregate impact of debt moratoria

- Turn on GE effect on prices to explore the long-run impacts.
- Compare economy transition path to same productivity shock in absence of moratoria.

- · Aggregate impact without moratoria
 - $-\downarrow$ labor income (20% on impact) $\Longrightarrow \downarrow$ consumption and house prices

- · Aggregate impact without moratoria
 - In short-run: \downarrow house prices \Longrightarrow \downarrow household debt.
 - In the medium-run: house prices and income growth $\Longrightarrow \uparrow$ household debt

- Aggregate impact without moratoria
 - On impact: \downarrow lending \Rightarrow ↑ valuation of existing mortgages \Rightarrow ↑ bank net worth.
 - ↓ assets liquidation value (prepay mortgages) \Longrightarrow ↓ bank net worth.

- Aggregate impact with moratoria (All Other Moratoria length Decomposition)
 - Consumption and welfare ($\approx 7\%$).
 - Housing prices (18%)

- Aggregate impact with moratoria (All Other Moratoria length Decomposition)
 - liquidation value and \uparrow mortgage debt $\Longrightarrow \uparrow$ banks profitability in the long run.

Policy Comparison All

· Compare alternative debt relief policies

Moratoria + no interests accrued ⇒ welfare improving and beneficial for banks.

Conclusions

- This paper study implications of temporary payment debt suspension for households.
- Empirical strategy ⇒ LATE on stressed households
 - Exploit discontinuity in eligibility for Colombia debt moratoria policy.
 - Higher consumption ⇒ credit card purchases, household investment, and new car loans.
 - Drop in delinquency rates on existent mortgages, credit card debt and car loan debt.
- Quantative model ⇒ approximates RDD estimates when eliminating all price effects.
 - Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Long-term effects of the policy is beneficial for banks.
 - Larger welfare gains if policy stipulate debt forgiveness or moratoria with interest rate not accrued.

- · Impact of debt relief on financial distress on households
 - Dobbie and Song (2015) (consumer bankruptcy protection), Campbell et al.(2021) (mortgage design and maturity extension), Ganong and Noel (2020) (mortgage modifications), Dinerstein et al. (2024) (student loan moratoria)
- · Quantitative models with long-term debt and default
 - Hatchondo et al. (2022) (contingent convertible bonds and sovereign default), Önder et al. (2023) (corporate debt moratoria)

Testing Manipulation Dack

• Reject manipulation of the running variable (p-value=0.25)

Treated and non-Treated Mortgages (back)

Pre-treatment distribution of loans back

Enforcement of the policy back

Treatment Biting: Existing Mortgages 2020q2

	During quarter of treatment			One quarter after treatment			
	Log(payment)	Delinq. (days)	Maturity (months)	Log(payment)	Delinq. (days)	Maturity (months)	
Sharp-RD	-40.20*** (2.0)	-55.50*** (3.2)	0.76 (0.5)	6.69 (8.0)	-17.04*** (5.1)	1.51*** (0.3)	
Observations	138,150	109,445	122,786	108,446	108,446	108,446	
BW loc. poly.	9.5	17.0	30.0	21.9	24.2	46.4	

Moratoria and New Mortgages (back)

Log(new mortgage_{iit})

new mortgage_{ijt} = value of loan_{ij} at quarter of origination t_0

Moratoria and New Car Loans (back)

· Log(new car loan;it)

new car $loan_{ijt} = value$ of $loan_{ij}$ at quarter of origination t_0

Pre-existing differences in Household Consumption (back)

- What if we exploit the discontinuity before the implementation of the policy?
 ⇒ same measures of consumption for 2019Q4
- Observed jump in CC purchases around cutoff disappears

Moratoria and Durable Consumption (back)

· Durable Consumption: Log(new mortgage;it), Log(new car loan;it)

new mortgage_{ijt} (new car loan_{ijt}) = value of loan_{ij} at quarter of origination t_0

	New Cars	New Mortgages		
Fuzzy-RD	6.67**	3.78*		
	(0.6)	(2.2)		
	First Stage			
D_{ii}	0.14**	0.05**		
	(0.05)	(0.02)		
Observations	4,407	8,846		
Bandwidth (in days)	22.8	17.0		

Summary Statistics: Treated Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	2.0	4.1	0.2	0.7	2.0	10,379
CC purchases growth	4.8	101.2	-40.2	16.9	67.9	7,534
Existent Mortgages						
Delinquency probability	4.9	21.6	0.0	0.0	0.0	79,228
Outstanding debt	51.7	49.0	20.6	38.2	64.2	76,629
Interest rate	10.5	2.7	9.0	10.7	12.5	77,895
Maturity	10.7	5.9	6.1	10.2	14.7	79,158
LTV	37.2	18.1	22.8	37.1	51.4	79,228
Rating	4.9	0.4	5.0	5.0	5.0	79,183
Short Term Loans						
Delinquency probability	5.0	21.8	0.0	0.0	0.0	17,001
Outstanding debt	5.0	7.4	1.0	2.4	5.4	16,126
Interest rate	22.9	7.9	23.7	27.1	27.2	16,797
Maturity	7.2	8.9	2.9	4.3	5.0	16,853
Rating	4.7	0.9	5.0	5.0	5.0	17,001
Car Loans						
Delinquency probability	17.7	38.2	0.0	0.0	0.0	2,082
Outstanding debt	28.6	26.1	11.1	22.1	37.2	2,048
Repayment	1.6	3.6	0.0	8.0	2.1	2,082
Interest rate	12.3	6.4	10.3	13.0	15.9	1,990
Maturity	3.2	1.8	1.7	3.3	4.5	2,053
Rating	4.3	1.3	5.0	5.0	5.0	2,082

Summary Statistics: Eligible Non-Treated Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	2.3	4.3	0.2	0.8	2.4	4,035
CC purchases growth	-1.4	195.0	-36.1	26.1	77.3	3,043
Existent Mortgages						
Repayment	1.4	1.6	0.5	1.0	1.8	27,597
Delinquency probability	43.9	49.6	0.0	0.0	100.0	32,606
Outstanding debt	50.4	54.8	16.6	33.9	62.6	32,052
Interest rate	10.8	2.7	9.5	10.7	12.7	31,823
Maturity	9.3	5.7	4.8	8.7	13.1	32,334
LTV	32.5	18.5	17.5	31.9	46.5	32,605
Rating	4.4	0.9	4.0	5.0	5.0	32,536
Short Term Loans						
Delinquency probability	8.7	28.2	0.0	0.0	0.0	7,174
Outstanding debt	5.0	7.4	1.1	2.4	5.4	6,414
Interest rate	23.3	7.6	24.3	27.1	27.2	7,040
Maturity	7.1	9.1	2.7	4.2	5.0	7,097
Rating	4.6	1.1	5.0	5.0	5.0	7,174
Car Loans						
Delinquency probability	31.8	46.6	0.0	0.0	100.0	1,484
Outstanding debt	25.6	27.1	5.9	18.3	35.2	1,448
Interest rate	12.7	5.7	10.7	13.2	15.7	1,231
Maturity	2.7	1.8	1.0	2.6	4.2	1,447
_ Rating	3.6	1.8	2.0	5.0	5.0	1,484

Summary Statistics: Non-Eligible Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	1.3	3.1	0.1	0.4	1.2	1,992
CC purchases growth	-63.7	245.3	-96.3	-25.3	34.1	1,522
Existent Mortgages						
Repayment	1.6	2.4	0.3	0.9	1.9	19,982
Delinquency probability	94.8	22.2	100.0	100.0	100.0	41,045
Outstanding debt	53.1	58.0	18.3	35.2	64.1	40,702
Interest rate	11.1	3.1	9.5	11.1	13.0	40,831
Maturity	9.7	5.8	5.2	8.9	13.8	40,621
LTV	35.3	17.1	21.6	35.8	48.5	41,045
Rating	3.4	1.0	3.0	3.0	4.0	12,150
Short Term Loans						
Delinquency probability	27.9	44.9	0.0	0.0	100.0	3,983
Outstanding debt	4.7	7.0	1.1	2.3	5.0	3,766
Interest rate	24.7	6.4	25.9	27.2	27.2	3,870
Maturity	9.1	11.3	2.1	3.9	5.6	3,903
Rating	3.5	1.8	1.0	5.0	5.0	3,983
Car Loans						
Delinquency probability	81.6	38.7	100.0	100.0	100.0	621
Outstanding debt	22.5	24.2	4.3	16.0	30.4	609
Interest rate	15.1	6.1	11.8	14.6	18.1	459
Maturity	2.4	1.8	0.9	2.0	3.6	594
Rating	1.7	1.1	1.0	1.0	2.0	621

Testing Manipulation Dack

• Reject manipulation of the running variable (p-value=0.25)

Donut-hole sensitivity test (back)

- Test checks for additional "bunching" of observations around the cutoff
- · Most estimates are robust to excluding 1, 2, and 3 days before/after the cutoff

Falsification - different cutoffs back

- What if move the cutoff for delinquency days?
- no effects on placebo cutoffs

Testing for pre-policy differences I back

Variable	RD	Robu	st Inference	Bandwidth	Observations
variable	Estimator	p-value	95% Conf. Int.	(in days)	
Credit Cards Log(Expenditure) Delinquency Prob. Log(Outstanding Debt) Interest Rate	-0.68	0.71	[-3.70, 2.35]	49.56	17,252
	-0.05	0.11	[-0.11, 0.00]	20.71	58,303
	-0.14	0.68	[-0.67, 0.40]	32.91	53,469
	0.04	0.85	[-0.29, 0.37]	18.33	66,581
Existing Mortgages Repayment Delinquency Prob. Log(Outstanding Debt) Interest Rate Maturity LTV Rating	-0.06	0.71	[-0.32, 0.20]	30.84	149,556
	-0.05	0.52	[-0.19, 0.08]	14.81	119,817
	-0.17	0.28	[-0.44, 0.09]	24.57	152,734
	-0.30	0.52	[-1.07, 0.47]	48.99	155,970
	-0.98	0.29	[-2.49, 0.53]	52.19	155,551
	-1.45	0.64	[-6.52, 3.62]	24.28	155,985
	0.20	0.17	[-0.04, 0.44]	8.83	119,802

Testing for pre-policy differences II (back)

Variable	RD .	r Robust Inference p-value 95% Conf. Int.		Bandwidth	Observations
variable	Estimator			(in days)	
Short Term Loans					
Delinquency Prob.	-0.02	0.50	[-0.08, 0.03]	30.34	27,158
Log(Outstanding Debt)	0.05	0.83	[-0.36, 0.47]	27.87	24,971
Interest Rate	0.08	0.92	[-1.33, 1.49]	19.02	26,830
Maturity	-0.36	0.35	[-0.99, 0.27]	35.76	26,522
Rating	0.24	0.26	[-0.11, 0.59]	40.45	27,158
Car Loans					
Delinquency Prob.	-0.11	0.63	[-0.49, 0.27]	38.28	5,489
Log(Outstanding Debt)	-1.57	0.19	[-3.52,0.38]	27.07	5,362
Interest Rate	0.55	0.65	[-1.44, 2.53]	33.36	4,878
Maturity	-0.22	0.80	[-1.63, 1.20]	35.12	5,379
LTV	5.15	0.58	[-10.19, 20.49]	33.94	5,489
Rating	0.52	0.09	[0.02, 1.02]	30.50	5,489

(Un)-Predictability of Treatment (back)

- Check which mortgage characteristics explain treatment status
- · Only unning variable explain treatment choice consistently.

	Entire sample	BW=40	BW=30	BW=25	BW=15
Running	0.0021***	0.0090***	0.0087***	0.011***	0.012***
o .	(0.0001)	(0.00005)	(0.0001)	(0.0001)	(0.0004)
Oustanding Debt	0.41***	0.15***	0.21***	0.19	0.13
	(0.041)	(0.042)	(0.071)	(0.123)	(0.108)
Expected Payment	-1.14e-08***	0.0012***	0.00015	0.00023	0.00072
	(0.000)	(0.0002)	(0.0003)	(0.0003)	(0.0006)
Maturity	-0.0001	-0.00006	0.0004	0.0004	0.0004
	(0.0002)	(0.0003)	(0.0004)	(0.0005)	(0.0005)
LTV	-1.9e-12***	-8.83e-07	1.05e-06	4.2e-06	7.9e-06
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Observations	822,876	28,513	20,289	14,916	10,348
R-squared	0.21	0.38	0.26	0.29	0.34

Dynamic Estimates: CC Expenditure (back)

- \cdot T \Longrightarrow contemporaneous effect.
- \cdot T + $\tau \Longrightarrow$ effect τ quarters after receiving debt moratoria.
- $T + 2 \Longrightarrow pre-policy differences$.

	T-2	Т	T+1	T+2	T+3		
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)		
	First Stage						
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)		
All Observations	17,344	16,504	17,954	19,696	20,630		
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9		

Dynamic Estimates: CC Expenditure back

• No differences in CC purchases before policy implementation.

	T-2	Т	T+1	T+2	T+3			
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)			
	First Stage							
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)			
All Observations	17,344	16,504	17,954	19,696	20,630			
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9			

Dynamic Estimates: CC Expenditure (back)

- Effect of moratorium on consumption disappears after two quarters.
 Treated households
 CC purchases:
 - 2.10% in quarter moratoria started.
 - 4.24% one quarter after. ⇒ liquidity mitigation + treatment timming and duration.

	T-2	Т	T+1	T+2	T+3
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)
		First	Stage		
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)
All Observations	17,344	16,504	17,954	19,696	20,630
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9

Moratoria and Mortgage Delinquency Dynamics (back)

• \ \ Delinquency over next four quarters after treatment.

	T-1 (1)	T (2)	T+1 (3)	T+2 (4)	T+3 (5)	T+4 (6)			
Fuzzy-RD	-0.05 (0.08)	-0.98*** (0.07)	-0.67*** (0.1)	-0.70*** (0.04)	-0.31*** (0.05)	-0.26*** (0.06)			
		First Stage							
D _{ij}	0.24*** (0.02)	0.21*** (0.02)	0.23*** (0.02)	0.22*** (0.01)	0.24*** (0.02)	0.25*** (0.02)			
Observations	119,981	152,879	147,628	143,105	138,268	102,596			
Bandwidth (in days)	14.8	8.2	8.5	20.13	14.6	13.8			

Moratoria and Delinquency Dynamics on Other Debt (back)

• Only short term \downarrow delinquency probability for other household debt.

	T-1	Т	T+1	T+2	T+3	T+4	
	(1)	(2)	(3)	(4)	(5)	(6)	
(A) Short Term Loans							
Fuzzy-RD	-0.02 (0.03)	-0.09** (0.04)	-0.16*** (0.06)	-0.09 (0.06)	0.03 (0.05)	-0.09 (0.06)	
Observations	27,158	28,158	29,348	31,134	32,823	34,783	
(B) Car Loans							
Fuzzy-RD	-0.11	-0.36**	0.13	0.24	0.21	0.27	
	(0.23)	(0.18)	(0.26)	(0.18)	(0.19)	(0.51)	
Observations	5,489	4,187	4,110	4237	4,335	4,702	

Moratoria and Mortgage Debt Dynamics (back)

- Existent Mortgage debt ⇒ Log (Outstanding Balance_{it})
 - Financial burden doesn't increase in quarter of treatment.
 - → Mortgage debt four quarters after treatment (due to ↓ delinquency)

	T-1	Т	T+1	T+2	T+3	T+4			
	(1)	(2)	(3)	(4)	(5)	(6)			
Fuzzy-RD	-0.17	-0.16	-0.19	-0.17	-0.15	-0.22**			
	(0.16)	(0.16)	(0.16)	(0.13)	(0.14)	(0.11)			
		First Stage							
$D_{i,j}$	0.21*** (0.01)	0.21*** (0.01)	0.21*** (0.01)	0.21*** (0.01)	0.21*** (0.01)	0.24*** (0.02)			
Observations	152,734	149,383	144,872	140,284	135,606	100,420			
Bandwidth (in days)	24.6	23.7	22.6	20.8	20.4	18.6			

Moratoria and Dynamics on Other Debt Deck

 \cdot Household debt on short term loans and car loans \Longrightarrow Log (Outstanding Balance_{it})

	T-1	T+1	T+1	T+2	T+3	T+4		
	(1)	(2)	(3)	(4)	(5)	(6)		
(A) Short Term Loans								
Fuzzy-RD	0.06	-0.52*	-0.58**	-0.09	-0.06	-0.35		
	(0.25)	(0.29)	(0.27)	(0.34)	(0.39)	(0.31)		
Observations	24,971	25,897	26,306	26,964	27,557	28,278		
(B) Car Loans								
Fuzzy-RD	-1.60	-2.7**	-2.4***	-0.77	0.94	0.92		
	(0.77)	(1.22)	(0.91)	(0.86)	(1.10)	(1.12)		
Observations	5,362	4,105	4,006	4,141	4,235	1,837		

Moratoria and Dynamics on Other Debt (back)

- \ \ Outstanding debt on short term loans and car loans:
 - Ouarter of treatment: 0.52% and 2.7%.
 - One quarter after treatment: 0.58% and 2.4%.

	T-1	Т	T+1	T+2	T+3	T+4
	(1)	(2)	(3)	(4)	(5)	(6)
		(A) Short	Term Loa	ns		
Fuzzy-RD	0.06	-0.52*	-0.58**	-0.09	-0.06	-0.35
	(0.25)	(0.29)	(0.27)	(0.34)	(0.39)	(0.31)
Observations	24,971	25,897	26,306	26,964	27,557	28,278
		(B) C	ar Loans			
Fuzzy-RD	-1.60	-2.7**	-2.4***	-0.77	0.94	0.92
	(0.77)	(1.22)	(0.91)	(0.86)	(1.10)	(1.12)
Observations	5,362	4,105	4,006	4,141	4,235	1,837

Exposure to Debt Moratoria and Bank Response (back)

	ΔProfit	ΔEquity	Δ Assets	ΔLiab.		
Bartik-IV	0.46** (0.038)	0.21*** (0.18)	0.37*** (0.021)	0.06 (0.16)		
	First Stage					
B_{jt}	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)		
F-first stage	26.06	26.06	26.06	26.06		
Observations	200	200	200	200		
Bank fixed effects Time-quarter fixed effects	√ ✓	√ ✓	√ ✓	√ √		

Mortgages with moratoria (back)

• Coupon structure of a **non-contingent bond** issued at *t*:

Homeowner Stayer (back)

If remains homeowner

$$V^{hh}(a, h, d, z, j) = \max_{c, a' \ge 0} \left\{ u(c, h) + \beta EV^{h}(a', z', j', h, d) \right\}$$

subject to

$$c + \delta_h p_h h + a' + m = w(1 - \tau) y(j, z) + a(1 + r_k)$$

 $d' = (d - m)(1 + r_l),$

Homeowner Refinancer (back)

 \cdot If decide to refinance \Longrightarrow pay balance and get a new mortgage

$$V^{hf}(a,h,d,z,j) = \max_{c,d',a'} \left\{ u(c,h) + \beta EV^{h}(a',z',j',h,d'') \right\}$$

subject to

$$c + d + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d'(q^m(a', z, j, d, h) - \varphi_m)$$

 $d' \leq p_h h(1 - \phi)$

Homeowner Seller back

• If sell house (rent or buy new house) \Longrightarrow identical to a renter's problem

$$V^{hr}(a, h, d, z, j) = V^{rr}(a + p_h h(1 - \varphi_s) - d, z, j)$$

Homeowner Defaulter (back)

If default

$$V^{he}(a,d,z,j) = \max_{c,s,a' \ge 0} \left\{ u(c,s) + \beta_i E\left[\pi V^r(a',z',j') + (1-\pi) V^i(a',z',j')\right] \right\}$$
(1)

subject to

$$c + a' + p_r s = a(1 + r_k) + w(1 - \tau)y(j, z) + \max\{(1 - \varphi_e)p_h h - d, 0\}.$$

Inactive renter (back)

$$V^{i}(\alpha,z,j) = \max_{c,s,\alpha'} \left\{ u(c,s) + \beta \left[\pi E V^{r}(\alpha',z',j') + (1-\pi)E V^{i}(\alpha',z',j') \right] \right\}$$

subject to

$$c + a' + p_r s = w(1 - \tau)y(j, z) + a(1 + r_k)$$

Firms back

· Perfectly competitive firm produces final output

$$\max_{K_{t},N_{t},u_{t}} \mathbb{Z}_{t} K_{t}^{\alpha} \left(N_{t} u_{t}\right)^{1-\alpha} - \left(r_{k,t} + \delta_{k}\right) K_{t} - \left(1 + \zeta r_{l,t+1}\right) w_{t} N_{t}$$

• Wage per efficiency of labor (w_t) is defined as:

$$W_t = \underbrace{\bar{W}_t}_{\text{base rate}} + \underbrace{\vartheta \frac{u_t^{1+\psi}}{1+\psi}}_{\text{convex adjustment cost}}$$

Firms back

· Perfectly competitive firm produces final output

$$\max_{K_{t},N_{t},u_{t}} \mathbb{Z}_{t} K_{t}^{\alpha} \left(N_{t} u_{t}\right)^{1-\alpha} - \left(r_{k,t} + \delta_{k}\right) K_{t} - \left(1 + \zeta r_{l,t+1}\right) w_{t} N_{t}$$

• Wage per efficiency of labor (w_t) is defined as:

$$W_t = \underbrace{\bar{W}_t}_{\text{base rate}} + \underbrace{\vartheta \frac{u_t^{1+\psi}}{1+\psi}}_{\text{convex adjustment cost}}$$

Rental companies (back)

• Own the rental housing units by buying and selling from households and from each other.

$$(1+r_{k})V^{rc}(H_{r}) = \max_{H_{r}} \left\{ \left(p^{r} - \kappa - p^{h} \right) H_{r}' + (1-\delta_{h})H_{r} + \eta \frac{(H_{r} - H_{r}')^{2}}{2} + V^{rc}(H_{r}') \right\}$$

• In equilibrium rate of return equal to the rate of return on capital

$$p_{r} = \kappa + p_{h} + \eta p_{h} (H'_{r} - H_{r}) - \frac{(1 - \delta_{h} + \eta (H''_{r} - H'_{r})) p'_{h}}{1 + r_{h}}$$

Rental companies (back)

• Own the rental housing units by buying and selling from households and from each other.

$$(1+r_{k})V^{rc}(H_{r}) = \max_{H_{r}} \left\{ \left(p^{r} - \kappa - p^{h} \right) H_{r}' + (1-\delta_{h})H_{r} + \eta \frac{(H_{r} - H_{r}')^{2}}{2} + V^{rc}(H_{r}') \right\}$$

· In equilibrium rate of return equal to the rate of return on capital

$$p_r = \kappa + p_h + \eta p_h (H'_r - H_r) - \frac{(1 - \delta_h + \eta (H''_r - H'_r)) p'_h}{1 + r_h}.$$

Externally Set Parameters (back)

Parameter	Explanation	Value
σ	risk aversion	2
α	capital share	0.4
$ ho_arepsilon$	annual persistence of income	0.96
$\sigma_arepsilon$	annual std of innovation to AR(1)	0.19
φ_h	selling cost for a household	7%
$arphi_e$	selling cost for foreclosures	25%
φ_{f}	fixed cost of mortgage origination	8%
$arphi_m$	variable cost of mortgage origination	0.75
δ_h	annual housing depreciation rate	2.5%
π	quarterly prob. of being an active renter	3.6%
Ħ	housing supply	1
ψ	wage curvature	3
ϕ	down payment requirement	0.3
ζ	share of wage bill financed	100%
δ_k	quarterly capital depreciation rate	2.5%
δ_m	quarterly mortgage depreciation rate	2.5%

Internally Calibrated Parameters (back)

Parameter	Explanation	Value
β	discount factor	0.96
<u>h</u>	minimum house size	0.89
r	bank borrowing rate	1.5%
γ	weight of housing services in utility	0.19
κ	rental maintenance cost	0.06
ϑ	wage parameter	2.36
ξ	bank seizure rate	0.2
eta_{L}	bank discount factor	0.95

Decomposition of the Debt Suspension Policy (back)

- Decompose change in consumption after two quarters into components.
- Indirect effect explains most of the consumption response.
- Direct effect is about 10%

Decomposition of the Debt Suspension Policy (back)

- Decompose change in consumption after two quarters into components.
- Indirect effect explains most of the consumption response.
- Direct effect is about 10%

Aggregate Effect: all aggregate variables (back)

Introducing Moratoria: Other Outcomes (back)

Policy Comparison **back**

Comparing Length of Moratoria (All back)

· Gains increase with length of payment suspension to households

Comparing Length of Moratoria (back)

