1.4 Неподвижни точки на оператори

1.4.1 Неподвижни и най-малки неподвижни точки

 Φ ункцията f наричаме неподвижна точка на оператора Γ , ако

$$\Gamma(f) = f$$
.

Ясно е, че за да говорим за неподвижни точки на Γ , трябва броят на аргументите на f и на $\Gamma(f)$ да е един и същ, т.е. трябва Γ да е оператор от специалния тип $(k \to k)$ за някое k.

Определение 1.12. Казваме, че f е най-малка неподвижна точка (n.м.н.т.) на оператора Γ , ако:

- 1) f е неподвижна точка на Γ ;
- 2) за всяка неподвижна точка g на Γ е вярно, че $f \subseteq g$.

Ако съществува, най-малката неподвижна точка на Γ е единствена. Наистина, ако Γ има две най-малки неподвижни точки f и g, то от второто условие на дефиницията ще имаме, че $f \subseteq g$ и $g \subseteq f$, и следователно f = g. Тази единствена най-малка неподвижна точка на Γ ще означаваме с f_{Γ} . Друго често срещано означение е $lfp(\Gamma)$ (от $least\ fixed\ point$).

Основната мотивация за интереса ни към неподвижните точки на операторите са рекурсивните програми. Ще разгледаме няколко съвсем прости примера, илюстриращи връзките между рекурсивните програми, операторите и техните неподвижни точки. Да започнем с букварния пример за рекурсивна програма — тази, която пресмята функцията $\lambda x.x!$.

Пример 1.8. Нека R е следната рекурсивна програма:

$$R: F(X) = \text{if } X = 0 \text{ then } 1 \text{ else } X.F(X-1)$$

На тялото на R можем да съпоставим оператор $\Gamma = \Gamma_R$, който се дефинира по следния начин:

$$\Gamma(f)(x)\simeq egin{cases} 1, & ext{ako }x=0 \ x.f(x-1), & ext{иначе.} \end{cases}$$

Ясно е, че функцията f, която R пресмята, удовлетворява условието

$$f(x)\simeq egin{cases} 1, & ext{ako }x=0 \ x.f(x-1), & ext{иначе}. \end{cases}$$

С други думи

$$f(x) \simeq \Gamma(f)(x)$$
 за всяко $x \in \mathbb{N}$,

или все едно, $f = \Gamma(f)$, т.е. f е неподвижна точка на оператора Γ .

Функцията факториел очевидно е неподвижна точка на Γ . Дали този оператор има и други неподвижни точки? Не. За да се убедим в това, вземаме произволна неподвижна точка f на Γ . Тогава за f е изпълнено:

$$f(x)\simeq egin{cases} 1, & ext{ako }x=0 \ x.f(x-1), & ext{иначе}. \end{cases}$$

С индукция относно $x \in \mathbb{N}$ проверяваме, че $\forall x \ f(x) = x!$.

При x = 0 имаме $f(0) = 1 \stackrel{\text{деф}}{=} 0!$, а ако допуснем, че f(x) = x! за някое $x \ge 0$, то за x + 1 получаваме последователно:

$$f(x+1) \simeq (x+1).f(x) = (x+1).x! = (x+1)!.$$

Да изследваме неподвижните точки на операторите, идващи от две поособени програми:

Пример 1.9. R: F(X) = g(X), където g е фиксирана функция.

Очевидно програмата R (която всъщност не е рекурсивна, но няма пречка да се разглежда като такава), пресмята функцията g. Операторът, определен от нея, е константният оператор

$$\Gamma_c(f) \stackrel{\text{деф}}{=} g,$$

за всяка $f \in \mathcal{F}_1$. Този оператор очевидно има единствена н.т. и това е функцията g.

Пример 1.10.
$$R: F(X) = F(X)$$

Тази програма пресмята никъде недефинираната функция $\emptyset^{(1)}$. Операторът, който тя определя, е операторът идентитет

$$\Gamma_{id}(f) \stackrel{\text{деф}}{=} f.$$

на който очевидно всяка функция е неподвижна точка, а най-малката неподвижна точка ще е точно $\emptyset^{(1)}$.

И един последен пример — за рекурсивна програма, на която съответства оператор с изброимо много неподвижни точки:

Пример 1.11. Нека R е програмата

$$R: F(X) = if X = 0 then 0 else F(X+1)$$

Да означим с Γ оператора, който се определя от R:

$$\Gamma(f)(x) \simeq \begin{cases} 0, & \text{ако } x = 0 \\ f(x+1), & \text{иначе.} \end{cases}$$

Ако f е неподвижна точка на Γ , то за нея е вярно, че

$$f(x) \simeq egin{cases} 0, & ext{ako } x = 0 \ f(x+1), & ext{иначе.} \end{cases}$$

Следователно f(0)=0, а при всяко x>0 би трябвало $f(x)\simeq f(x+1),$ което означава, че

$$f(1) \simeq f(2) \simeq f(3) \simeq \dots$$

Следователно f трябва да има една и съща стойност при x>0 или въобще да няма стойност. С други думи, f или е някоя от функциите f_c (за $c\in\mathbb{N}$), където f_c има вида

$$f_c(x) \simeq \begin{cases} 0, & \text{ako } x = 0 \\ c, & \text{ako } x > 0, \end{cases}$$

или f е $f_{\neg!}$, където

$$f_{\neg!}(x) \simeq \begin{cases} 0, & \text{ako } x = 0 \\ \neg!, & \text{ako } x > 0, \end{cases}$$

Ясно е, че най-малката н.т. на Γ ще е функцията $f_{\neg!}$.

Видяхме, че разнообразието при неподвижните точки на операторите е голямо. Те могат да имат една, няколко или безброй много неподвижни точки. Обаче едно нещо се набиваше на очи — че всички те имат наймалка неподвижна точка.

Дали това винаги е така? Не. Ще завършим тази встъпителна част с още два примера — за оператор, който няма *най-малка* неподвижна точка (но има неподвижни точки) и за оператор, който въобще няма неподвижни точки. Особеното и при двата оператора е, че те, за разлика от вече разгледаните примери, "не идват" от рекурсивни програми.

Пример 1.12. Нека f_0 и f_1 са две различни тотални функции (бихме могли да си мислим отново за константните функции $\lambda x.0$ и $\lambda x.1$.) Да определим операторите Γ и Δ както следва:

$$\Gamma(f) = \begin{cases} f_0, & \text{ako } f = f_0 \\ f_1, & \text{ako } f \neq f_0, \end{cases}$$

$$\Delta(f) = \begin{cases} f_1, & \text{ako } f = f_0 \\ f_0, & \text{ako } f \neq f_0. \end{cases}$$

За да определим неподвижните точки на Γ , да приемем, че $\Gamma(f)=f$. Като разгледаме двете възможности за f — да е равна или да е различна от f_0 , стигаме до извода, че $f=f_0$ или $f=f_1$. Следователно Γ има две неподвижни точки — f_0 и f_1 , но няма най-малка неподвижна точка.

С подобни разсъждения се показва, че операторът Δ няма никакви неподвижни точки.

1.4.2 Теорема на Кнастер-Тарски

Примерите, които разгледахме дотук, показват, че на всяка рекурсивна програма R можем да съпоставим оператор Γ , като по смисъла на този оператор, функцията, която R пресмята, ще е една от неподвижните точки на Γ .

Да се опитаме да обобщим ситуацията: ако R е рекурсивна програма с n входни променливи, можем да си мислим, че тя изглежда най-общо така:

$$R: F(X_1, \ldots, X_n) = \ldots F, X_1, \ldots, X_n \ldots$$

Тогава операторът Γ от тип $(n \to n)$, който R определя, ще изглежда така:

$$\Gamma(f)(x_1,\ldots,x_n)\simeq\ldots f,x_1,\ldots,x_n\ldots$$

Ясно е, че ако R пресмята функцията f_R , то тази функция е неподвижна точка на Γ . Но Γ може да има и много други неподвижни точки, какъвто беше операторът от $\Pi pumep~1.11$, да кажем. Възниква въпросът дали f_R има някакъв специален статут сред всички неподвижни точки на Γ ?

В примерите, които разгледахме по-горе, наблюдавахме, че f_R винаги е най-малката неподвижна точка на съответния оператор Γ , с други думи, $f_R = f_\Gamma$. Всъщност една от най-важните цели на този курс е да покажем, че това е така за всяка рекурсивна програма R. За тази цел

ще ни трябва вариант на теоремата за неподвижната точка (fixed point theorem), формулирана за подходяща структура с частична наредба. Сега ще докажем тази теорема в един частен случай на такава структура — множеството \mathcal{F}_n с частичната наредба \subseteq . В следващата глава ще обобщим тази теорема за произволни структури с подходяща наредба, т. нар. области на Скот.

Нека Γ е оператор от тип $(k \to k)$, а f е произволна k-местна функция. За всяко естествено число n, с $\Gamma^n(f)$ ще означаваме функцията, която се дефинира с индукция по n както следва:

$$\Gamma^{0}(f) = f;$$

$$\Gamma^{n+1}(f) = \Gamma(\Gamma^{n}(f)).$$

Можем да запишем, че $\Gamma^n(f) = \underbrace{\Gamma(\dots \Gamma(f)\dots)}_{n \text{ пъти}},$ с други думи, $\Gamma^n(f)$ е

функцията, която се получава след n-кратно прилагане на оператора Γ към f.

Следващата теорема играе централна роля при дефиниране на формална семантика на рекурсивните програми.

Теорема 1.1. Кнастер-Тарски Нека $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_k$ е непрекъснат оператор. Тогава Γ притежава най-малка неподвижна точка f_{Γ} и за нея е изпълнено:

$$f_{\Gamma} = \bigcup_{n} \Gamma^{n}(\emptyset^{(k)}).$$

Забележка. Тази теорема е известна още като <u>Теорема на Кнастер-Тарски-Клини</u>, защото Клини посочва начина, по който се конструира най-малката неподвижна точка f_{Γ} — като точна горна граница на редицата от функции $\{\Gamma^n(\emptyset^{(k)})\}_n$.

Доказателство. Да означим с f_n функцията $\Gamma^n(\emptyset^{(k)})$. Тогава очевидно

$$f_{n+1} = \Gamma^{n+1}(\emptyset^{(k)}) = \Gamma(\Gamma^n(\emptyset^{(k)})) = \Gamma(f_n),$$

и следователно редицата $\{f_n\}_n$ удовлетворява рекурентната схема

$$\begin{cases}
f_0 = \emptyset^{(k)} \\
f_{n+1} = \Gamma(f_n).
\end{cases}$$

Да се убедим най-напред, че тази редица е монотонно растяща. С индукция относно n ще покажем, че за всяко естествено n

$$f_n \subseteq f_{n+1}$$
.

База n=0: по определение $f_0=\emptyset^{(k)}$ и тогава очевидно $f_0\subseteq f_1.$

Сега да приемем, че за някое $n \in \mathbb{N}$

$$f_n \subseteq f_{n+1}$$
.

Операторът Γ е непрекъснат, и в частност — монотонен, съгласно Teopeticoloredenue 1.5. Тогава от горното включване ще имаме

$$\Gamma(f_n) \subseteq \Gamma(f_{n+1}),$$

или $f_{n+1} \subseteq f_{n+2}$, с което индукцията е приключена.

Щом редицата f_0, f_1, \ldots е монотонно растяща, според *Твърдение* 1.4 тя ще има точна горна граница — да я означим с g:

$$g = \bigcup_{n} f_{n}.$$

Нашата цел е да покажем, че g е най-малката неподвижна точка на Γ , т.е. $g=f_{\Gamma}$.

Това, че g е неподвижна точка, се вижда от следната верига от равенства:

$$\Gamma(g) \ \stackrel{\text{\tiny de} \varphi}{=} \ \Gamma(\bigcup_n f_n) \ = \ \bigcup_n \ \Gamma(f_n) \ = \ \bigcup_{n=0}^\infty f_{n+1} \ = \ \bigcup_{n=1}^\infty f_n \ = \ \bigcup_{n=0}^\infty f_n \ \stackrel{\text{\tiny de} \varphi}{=} \ g.$$

Нека сега h е друга неподвижна точка на Γ . Тъй като g е точна горна граница на $\{f_n\}_n$, за да покажем, че $g\subseteq h$, е достатъчно да видим, че h е горна граница на тази редица, с други думи, че $f_n\subseteq h$ за всяко $n\geq 0$. Това ще проверим отново с индукция относно n. За n=0 имаме по определение

$$f_0 \stackrel{\text{деф}}{=} \emptyset^{(k)} \subseteq h.$$

Да предположим, че за някое n

$$f_n \subset h$$
.

Прилагаме Г към двете страни на неравенството и получаваме

$$\Gamma(f_n) \subset \Gamma(h) = h,$$
 (1.4)

т.е. $f_{n+1} \subseteq h$. Сега вече можем да твърдим, че $f_n \subseteq h$ за всяко $n \geq 0$, с други думи, че h е мажоранта на редицата $\{f_n\}_n$. Следователно h мажорира и точната ѝ горна граница g, т.е. $g \subseteq h$.

Всъщност непрекъснатостта на Γ е само достатъчно условие за съществуването на f_{Γ} . Вярно е, че всеки монотонен оператор също притежава най-малка неподвижна точка.

Както отбелязахме, теоремата на Кнастер-Тарски не само твърди, че всеки непрекъснат оператор има най-малка неподвижна точка, но ни дава и *начин* за нейното конструиране. Нека я приложим към оператора от *Пример* 1.8.

Задача 1.4. Като използвате теоремата на Кнастер-Тарски, намерете най-малката неподвижна точка на следния оператор:

$$\Gamma(f)(x) \simeq \begin{cases} 1, & \text{ако } x = 0 \\ x.f(x-1), & \text{иначе.} \end{cases}$$

Решение. Нашата цел ще бъде да намерим *явния вид* на всяка функция от дефинираната по-горе редица f_0, f_1, \ldots , чиято граница се явява f_{Γ} . Функциите f_0, f_1, \ldots имат смисъл на последователни *приближения* (апроксимации) на f_{Γ} .

Да напомним, че редицата $\{f_n\}_n$ удовлетворява условията:

$$f_0 = \emptyset^{(1)}$$

 $f_{n+1} = \Gamma(f_n).$ (1.5)

Започваме с първата апроксимация f_1 на f_{Γ} :

$$f_1(x) \stackrel{(1.5)}{\simeq} \Gamma(\emptyset^{(1)})(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ako } x = 0 \\ x.\emptyset^{(1)}(x-1), & \text{ako } x > 0 \end{cases} \simeq \begin{cases} 1, & \text{ako } x = 0 \\ \neg!, & \text{ako } x > 0. \end{cases}$$

За следващата апроксимация f_2 ще имаме:

$$f_2(x) \overset{(1.5)}{\simeq} \Gamma(f_1)(x) \simeq \begin{cases} 1, & \text{ако } x = 0 \text{ деф } \Gamma \\ x.f_1(x-1), & \text{иначе} \end{cases} \overset{(1.5)}{\simeq} \begin{cases} 1, & \text{ако } x = 0 \\ 1.1, & \text{ако } x = 1 \\ \neg!, & \text{ако } x > 1. \end{cases}$$

Функцията f_2 можем да препишем още по следния начин:

$$f_2(x) \simeq \begin{cases} x!, & \text{ако } x < 2 \\ \neg !, & \text{иначе}, \end{cases}$$

което ни дава идея какъв би могъл да е общият вид на f_n :

$$f_n(x) \simeq \begin{cases} x!, & \text{ако } x < n \\ \neg !, & \text{иначе.} \end{cases}$$

Ще използваме индукция относно $n \in \mathbb{N}$, за да се убедим, че това е така.

На практика вече проверихме случаите n=0,1 и 2. Да предположим сега, че f_n има горния вид. Тогава за f_{n+1} ще имаме последователно:

$$f_{n+1}(x) \overset{(1.5)}{\simeq} \Gamma(f_n)(x) \overset{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \\ x.f_n(x-1), & \text{ако } x > 0 \end{cases}$$

 $\overset{\text{и.х.}}{\simeq} \begin{cases} 1, & \text{ако } x = 0 \\ x.(x-1)!, & \text{ако } x > 0 \& x-1 < n \simeq \begin{cases} x!, & \text{ако } x < n+1 \\ \neg !, & \text{иначе}, \end{cases}$

и значи индукционната хипотеза се потвърждава и за n+1. Остана да съобразим, че границата на редицата $\{f_n\}_n$ е функцията x!, но това следва директно от дефиницията за точна горна граница (1.3).

1.4.3 Преднеподвижни точки на оператори

За някои приложения на теоремата на Кнастер-Тарски се оказва удобно да разполагаме с едно нейно уточнение. То се отнася за понятието преднеподвижна (или още квазинеподвижна точка, prefixed point) на даден оператор. По определение, f е <u>преднеподвижна точка</u> на оператора Γ , ако $\Gamma(f) \subseteq f$ и съответно f е <u>най-малка преднеподвижна точка</u> на Γ , ако тя е най-малката функция със свойството

$$\Gamma(f) \subseteq f$$
.

Отново е ясно, че ако съществува, най-малката преднеподвижна точка е единствена.

На преднеподвижните точки на оператора Γ можем да гледаме като на решения на nepasencmsomo

$$\Gamma(X) \subseteq X$$
,

докато неподвижните му точки са решения на уравнението

$$\Gamma(X) = X$$
.

Тъй като неравенството е нестрого, очевидно всяко решение на уравнението е решение и на неравенството, с други думи, всяка неподвижна точка на Γ е и нейна преднеподвижна точка. Дали вярно и обратното? Невинаги — вижте например 3adaua~1.5 по-долу. Оказва се, обаче, че за $na\~u$ -малката преднеподвижна точка това е така, по-точно, на $\~u$ -малката преднеподвижна точка на всеки $nenpe\~v$ ocuam оператор е точно f_Γ .

Твърдение 1.9. Нека Γ е непрекъснат оператор от тип $(k \to k)$. Тогава f_{Γ} се явява и най-малка преднеподвижна точка на Γ .

Доказателство. Това твърдение следва съвсем непосредствено от доказателството на теоремата на Кнастер-Тарски. Две неща трябва да съобразим:

Първо, че f_{Γ} е преднеподвижна точка на Γ , което, както вече отбелязахме, е очевидно.

Второ, да вземем друга преднеподвижна точка h, т.е. функция, за която $\Gamma(h) \subseteq h$, и да покажем, че $f_{\Gamma} \subseteq h$. За целта следваме съвсем пунктуално доказателството на Teopema~1.1, като единствената разлика е в условието (1.4), където вместо $\Gamma(h) = h$ трябва да напишем $\Gamma(h) \subseteq h$.

Всъщност горният факт е в сила и за операторите, които са само *монотонни*, и е известен като Лема на Тарски. Доказателството ѝ е съвсем кратко, да се убедим:

Твърдение 1.10. (Лема на Тарски) Нека Γ е монотонен оператор от тип $(k \to k)$, а f е неговата най-малка преднеподвижна точка. Тогава f е и най-малката неподвижна точка на Γ .

Доказателство. Имаме $\Gamma(f) \subseteq f$ и след почленно прилагане на Γ към двете страни на неравенството получаваме

$$\Gamma(\Gamma(f)) \subseteq \Gamma(f)$$
.

Излезе, че $\Gamma(f)$ също е преднеподвижна точка на Γ , и тъй като f е наймалката, то

$$f \subseteq \Gamma(f)$$
.

Но обратното включване $\Gamma(f)\subseteq f$ също е вярно, и значи общо $\Gamma(f)=f$, т.е. f е неподвижна точка на Γ . Дали е най-малката — да, защото ако g е друга н.т. на Γ , то тя ще е и негова преднеподвижна точка, което означава, че $f\subseteq g$.

Задача 1.5. (**Задача за ЕК**) Опишете всички преднеподвижни точки на оператора Γ , дефиниран като:

$$\Gamma(f)(x)\simeq egin{cases} 0, & ext{ako } x=0 \ f(x+1), & ext{иначе}. \end{cases}$$