BEST AVAILABLE COPY

Europäisches Patentamt

European Patent Office

Office européen des brevets

0005129 Publication number: **B1**

(T)

EUROPEAN PATENT SPECIFICATION

- Date of publication of patent specification: 29.04.81
- Int. CL3: C 07 D 401/12, A 61 K 31/44
- **2**1) Application number: 79850022.9
- ② Date of filing: 03.04.79

- Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation.
- Priority: 14.04.78 SE 7804231
- Date of publication of application: 31.10.79 Bulletin 79/22
- Publication of the grant of the patent: 29.04.81 Bulletin 81/17
- Designated Contracting States: BE CH DE FR GB IT LUNL SE
- References cited: DE-A-2 548 340

- Proprietor: Aktiebolaget Hässle, Fack, S-431 20 Mölndai 1 (SE) 73)
- Inventor: Junggron, Ulf Krister, Damillvägen 7, S-435 00 Mölllycke (SE) Inventor: Sjöstrand, öven Erik, Pragsnäs LC, S-641 00 Karineholm (SE)
- Representative: Wurm, Bengt Runio et al. Patent and Trade Mark Department Ab Astra, S-151 85 Södertälje

Note. Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filled in a written reasoned statement. It shall not be deemed to have been filled until the opposition fee has been paid (Art. 99(1) European patent

BUNDESDRUCKEREI BERLIN

Substituted pyridylsulfinylbenzimidazoles having gastric acid secretion properties, pharmaceutical preparations containing same, and intermediates for their preparation

The present invention relates to new compounds having valuable properties in affecting gastric acid secretion in mammals, including man and pharmaceutical preparations containing said novel compounds, as well as intermediates for their preparation.

The object of the present invention is to obtain compounds which affect gastric acid secretion, and which inhibit exogenously or endogenously stimulated gastric acid secretion. These compounds can be used in the treatment of peptic ulcer disease.

It is previously known from DE-A 25 04 252 and 25 48 340 (AB HASSLE) that compounds of the formulas I and II

$$R^{1} \xrightarrow{R^{2}} N \xrightarrow{\hat{i}} S - R^{4} \xrightarrow{N}$$
(II)

wherein R1 and R2 are each hydrogen, alkyl, halogen, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, 25 alkoxycerbonyialkyl, carbamoyl, carbamoyloxy, hydroxy, alkoxy, hydroxyalkyl, trifluoromethyl or coyl in any position, H3 is hydrogen, alkyl, acyl, alkoxycarbonyl, carbamoyl, alkylcarbamcyl. dialkylcarbamoyl, alkylcarbonylmethyl, alkoxycarbonylmethyl, or alkylsulphonyl, and R^a is straight or branched alkylena groups having 1 to 4 carbon atoms, whereby at most one methylene group is present between S and the pyridyl group, and whereby the pyridyl group may be further substituted 30 with alkyl or halogen, posses inhibiting effect of gastric acid secretion.

It has now, however, surprisingly been found that the compounds defined below posses a still greater inhibiting effect than those given above. Compounds of the invention are those of the general formula III

10

15

20

35

40

45

or a therapeutically acceptable salt thereof, wherein R1 and R2 are same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R6 is hydrogen, methyl, or ethyl, and R3, R4 and R5 are same or different and are each hydrogen, methyl, methoxy, ethoxy, methoxyethoxy or ethoxyethoxy, whereby R3, R4, and R5 are not all hydrogen, and whereby when two of R^3 , R^4 , and R^5 are hydrogen, the third of R^3 , R^4 and R^5 is not methyl.

Alkyl R¹ and R² of formula III are suitably alkyl having up to 7 carbon atoms, preferably up to 4 carbon atoms. Thus, alkyl R may be methyl, ethyl, n-propyl, isopropyl, n-butyl or isobutyl. Halogen R¹ and R² is chloro, bromo, fluoro, or iodo.

Alkoxy R¹ and R² are suitably alkoxy groups having up to 5 carbon atoms, preferably up to 3 carbon atoms, as methoxy, ethoxy, n-propoxy, or isopropoxy.

55 Alkanoyl R¹ and R² have preferably up to 4 carbon atoms and are e.g. formyl, acetyl, or propionyl. preferably acetyl.

A preferred group of compounds of the general formula III are those wherein R^1 and R^2 are the same or different and are each hydrogen, alkyl, methoxycarbonyl, alkoxy, or alkanovl, whereby R1 and R2 are not both hydrogen, R⁵ is hydrogen, and R³, R⁴, and R⁵ are the same or different and are each hydrogen, methyl, methoxy, or ethoxy, whereby R3, R4, and R5 are not all hydrogen, and whereby when two of R3, R^4 and R^5 are hydrogen the third of R^3 , R^4 , and R^5 is not methyl.

A second preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R⁵ is hydrogen, methyl, or ethyl, R³ is methyl, R⁴ is methoxy, and R⁵ is methyl.

A third preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R6 is hydrogen, methyl or ethyl, and R³ is hydrogen, R⁴ is methoxy and R⁵ is methyl or R³ is methyl, R⁴ is methoxy and R⁵ is hydrogen.

A fourth preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R⁵ is hydrogen, methyl or ethyl, R³ and R⁵ are hydrogen and R⁴ is methoxy.

A fifth preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy or alkanoyl, R⁵ is hydrogen, methyl, or ethyl, and R³ are methyl, and R⁴ is hydrogen.

A sixth preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl, R6 is hydrogen, methyl, or ethyl, R³ and R⁵ are hydrogen and R⁴ is ethoxy, methoxyethoxy or ethoxyethoxy.

A seventh preferred group of compounds of the general formula III are those wherein R¹ and R² are the same or different and are each hydrogen, alkyl, halogen, methoxycarbonyl, alkoxy, or alkanoyl, R⁵ is hydrogen, methyl, or ethyl, R³, R⁴ and R⁵ are all methyl.

Compounds of formula III above may be prepared according to the following methods:

a) oxidizing a compound of formula IV

15

20

35

55

wherein R^1 , R^2 , R^6 , R^3 , R^4 , and R^5 have the meanings given, to form a compound of formula Π_1 reacting a compound of the formula V

wherein R^1, R^2 , and R^6 have the meanings given above and M is a metal selected from K, Na and Li, with a compound of formula VI.

$$\mathbb{R}^3$$
 \mathbb{R}^4 \mathbb{R}^5 (VI)

wherein R^3 , R^4 , and R^5 have the same meanings as given above. Z is a reactive esterified hydroxy group, to form a compound of formula III;

c) reacting a compound of the formula VII

$$R^{1} \xrightarrow{N} Z^{1} \qquad (Vil) \qquad 60$$

wherein R1, and R2 have the same meanings as given above and Z1 is SH or a reactive esterified

hydroxy group, with a compound of the formula VIII

$$Z^{2}-CH-N$$

$$\downarrow R^{3}$$

$$\downarrow R^{5}$$

$$\downarrow R^{5}$$

$$\downarrow R^{5}$$

$$\downarrow R^{5}$$

wherein R⁶, R³, R⁴, and R⁵ have the same meanings as given above, and Z² is a reactive esterified hydroxy group or SH, to form an intermediate of formula IV above, which then is oxidized to give a compound of formula III;

f) reacting a compound of the formula IX

15

$$R^1$$
 NH_2
 NH_2
 NH_2

wherein R^1 and R^2 have the same meanings as given above with a compound of the formula \boldsymbol{X}

$$HOOC-S-CH-N$$

$$R^3$$

$$R^4$$

$$R^5$$

$$R^5$$

$$(X)$$

wherein E^c, R³, R¹ and R⁶ have the same meanings as given above, to form an intermediate of formula IV above, which then is oxidized to give a compound of formula III, which compound may be converted to its therapeutically acceptable salts, if so desired.

In the reactions above, Z. Z¹, and Z² may be a reactive, esterified hydroxy group which is a hydroxy group esterified with strong, inorginic or organic acid, preferably a hydrohalogen acid, such as hydrochloric acid, hydrohomic acid, or hydroiodic acid, also sulfutio acid or a strong organic sulfonic acid as a strong aromatic acid, e.g. benzenesulfonic acid. 4-bromobenzenesulfonic acid or 4-toluenesulfonic acid.

The oxidation of the sulfur atom in the chains above to sulfinyl (S → 0) takes place in the presence of an oxidizing agent as nitric acid, hydrogen peroxide, peracids, peresters, ozone, dinitrogentetraoxide, iodosobenzene, N-haiosuccinimide, 1-chlorobenzotriazole, t-butylhypochlorite, diazobicyclo-[2,2,2]-octane bromine complex, sodium motaperiodate, selenium dioxide, manganese dioxide, chromic acid, ceric ammonium nitrate, bromine, chlorine, and sulfuryl chloride. The oxidation usually takes place in a solvent wherein the oxidizing agent is present in some excess in relation to the product to be oxidized.

Depending on the process conditions and the starting materials, the end product is obtained either as the free base or the acid addition salt, both of which are included within the scope of the invention. Thus, basic, neutral or mixed salts may be obtained as well as hemi, mono, sesqui or polyhydrates. The acid addition salts of the new compounds may in a manner known per se be transformed into free base using basic agents such as alkali or by ion exchange. On the other hand, the free bases obtained may form salts with organic or inorganic acids. In the preparation of acid addition salts preferably such acids are used which form suitable therapeutically acceptable salts. Such acids include hydrohalogen acids, sulfonic, phosphoric, nitric, and perchloric acids; aliphatic, alicyclic, aromatic, heterocyclic carboxy or sulfonic acids, such as formic, acetic, propionic, succinic, glycolic, lactic, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, pyruvic, phenylacetic, benzoic, p-aminobenzoic, antranilic, hydroxyethanesulfonic, ethylenesulfonic, halogenbenzenesulfonic, toluenesulfonic, naphthylsulfonic or sulfanilic acids; methionine, tryptophane, lysine or arginine.

These or other salts of the new compounds, as e. g. picrates, may serve as purifying agents of the free bases obtained. Salts of the bases may be formed, separated from solution, and then the free base can be recovered from a new salt solution in a purer state. Because of the relationship between the new compounds in free base form and their salts, it will be understood that the corresponding salts are included within the scope of the invention.

Some of the new compounds may, depending on the choice of starting materials and process, be

5

10

15

30

35

present as optical isomers or racemates, or if they contain at least two asymmetric carbon atoms, be present as an isomer mixture (racemate mixture).

The isomer mixtures (racemate mixtures) obtained may be separated into two stereoisomeric (diastereomeric) pure racemates by means of chromatography or fractional crystallization.

The racemates obtained can be separated according to known methods, e. g. recrystallization from an optically active solvent, use of microorganisms, reactions with optically active acids forming salts which can be separated, separation based on different solubilities of the diastereomers. Suitable optically active acids are the L- and D-forms of tartaric acid, di-o-tolyl-tartaric acid, malic acid, mandelic acid, camphorsulfonic acid or quinic acid. Preferably the more active part of the two antipodes is isolated.

The starting materials are known or may, if they should be new, be obtained according to processes known per se.

In clinical use the compounds of the invention are administered orally, rectally or by injection in the form of a pharmaceutical preparation which contains an active component either as a free base or as a pharmaceutically acceptable, non-toxic acid addition salt, such as hydrochloride, lactate, acetate, sulfamate, in combination with a pharmaceutically acceptable carrier. The carrier may be in the form of a solid, semisolid or liquid diluent, or a capsule. These pharmaceutical preparations are a further object of the invention. Usually the amount of active compound is between 0.1 to 95% by weight of the preparation, between 0.5 to 20% by weight in preparations for injection and between 2 and 50% by weight in preparations for oral administration.

In the preparation of pharmaceutical preparations containing a compound of the present invention in the form of dosage units for oral administration the compound selected may be mixed with a solid, pulverulent carrier, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives or gelatin, as well as with an anti-friction agent such as magnesium stearate, calcium stearate, and polyethyleneglycol waxes. The mixture is then pressed into tablets. If coated tablets are desired, the above prepared core may be coated with a concentrated solution of sugar, which may contain gum arabic, gelatin, talc, titanium dioxide or with a lacquer dissolved in volatile organic solvent or mixture of solvents. To this coating various dyes may be added in order to distinguish among tablets with different active compounds or with different amount of the active compound present.

Soft gelatin capsules may be prepared which capsules contain a mixture of the active compound or compounds of the invention and regetable cil. Hard gelatin capsules may contain granules of the active compound in combination with a solid, purverulent carrier as lactose, saccarose, sorbitol mannitol, potato starch, corn starch, amylopectic cellulose derivatives or gelatin.

Dosage units for rectal administration may be prepared in the form or suppositories which contain the active substance in a mixture with a neutral fat base, or they may be prepared in the form of gelatin-rectal capsules which contain the active substance in a mixture with a vegetable oil or paraffin oil.

Liquid preparations for ordi administration may be prepared in the form of sytups or suspensions, e. g. solutions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar and a mixture of ethanol, water, glycerol and propylere glycoi. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharin and carboxymethylcellulose as a thickening agent.

Solutions for parenteral administration by injection may be prepared as an aqueous solution of a water soluble pharmaceutically acceptable salt of the active compound, praferably in a concentration from 0.5 to 10% by weight. These solutions may also contain stabilizing agents and/or buffering agents and may be manufactured in different dosage unit ampoules.

Pharmaceutical tablets for oral use are prepared in the following manner. The solid substances are ground or sieved to a certain particle size, and the binding agent is homogenized and suspended in a suitable solvent. The therapeutically active compounds and auxiliary agents are mixed with the binding agent solution. The resulting mixture is moistened to form a uniform suspension having the consistency of wet snow. The moistening causes the particles to aggregate slightly, and the resulting mass is pressed through a stainless steel sieve having a mesh size of approximately 1 mm. The layers of the mixture are dried in carefully controlled drying cabinets for approximately ten hours to obtain the desired particle size and consistency. The granules of the dried mixture are sieved to remove any powder. To this mixture, disintegrating, antifriction and antiadhesive agents are added. Finally, the mixture is pressed into tablets using a machine with the appropriate punches and dies to obtain the desired tablet size. The pressure applied affects the size of the tablet, its strength and its ability to dissolve in water. The compression pressure used should be in the range 0.5 to 5 tons. Tablets are manufactured at the rate of 20,000 to 200,000 per hour. The tablets, especially those which are rough or bitter, may be coated with a layer of sugar or some other palatable substance. They are then packaged by machines having electronic counting devices. The different types of packages consist of glass or plastic gallipots, boxes, tubes and specific dosage adapted packages.

The typical daily dose of the active substance varies according to the individual needs and the manner of administration. In general, oral dosages range from 100 to 400 mg/day of active substance and intravenous dosages range from 5 to 20 mg/day.

5

10

15

20

25

30

35

55

60

65

The following illustrates preferred embodiments of the invention. Temperature is given in degrees Centigrades.

The starting materials in the examples found below were prepared in accordance with the following methods:

- a 1,2-diamino compound, such as o-phenylenediamine was reacted with potassium ethylxanthate (according to Org. Synth. Vol. 30, p. 56) to form a 2-mercaptobenzimidazole;
- (2) the compound 2-chloromethylpyridine was prepared by reacting 2-hydroxymethylpyridine with thionylchloride (according to Arch. Pharm. Vol. 26, pp. 448 451 (1956));
- (3) the compound 2-chloromethylbenzimidazole was prepared by condensing o-phenylenediamine with chloroacetic acid.

Example 1

28.9 g of 2-[2-(4,5-dimethyl-pyridyl)methylthio]-5-acetyl-6-methyl-benzimidazole were dissolved in 160 ml of CHCl₃, 24.4 g of m-chloroperbenzoic acid were added in portions while stirring and cooling to 5°C. After 10 minutes, the precipitated m-chlorobenzoic acid was filtered off. The filtrate was diluted with CH₂Cl₂, washed with Na₂CO₃ solution, dried over Na₂SO₄ and evaporated in vacuo. The residue crystallized when diluted with CH₃CN, and 2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole was recrystallized from CH₃CN. Yield 22.3 g; m. p. 158°C.

Examples 2-30

The preparation of compounds of formula III labelled 2—26 was carried out in accordance with Example 1 above. The compounds prepared are listed in Table 1 which identifies the substituents for these compounds.

Example 31 (methodic)

0.1 moles of 4-6-dimethyl-2-mercaptobenzi:hidazole were dissolved in 20 ml of water and 200 ml of ethanol containing 0.2 moles of sodium hydroxide. 0.1 moles of 2-chloromethyl-(3,5-dimethyl) pyridine hydroxhloride were added and the mixture was refluxed for two hours. The codium chloride formed was filtered off and the solution was evaporated in vacuo. The residue was dissolved in acctone and was treated with active carbon. An equivalent amount of concentrated hydroxhloric acid was added, whereupon the mono-revenentation of 2-[2-(3,5-dimethyl-pyridyl)-methylthio]-4,6-dimethyl-benzimid-azole was isolated. Yield 0.05 moles.

This compound was then exidized in accordance with Example 1 above to give the corresponding sulfinyl compound melting point 50—35°C.

Example 32 (method 5)

0.1 moles of 2-[Li-methylsulfinyl]5-acetyl-6-methyl-benzimidazole were dissolved in 150 mls of benzene. 0.1 moles 2-chloro-(3,5-dimethyl)pyridine were added and the mixture was refluxed for two hours. The lithiumchloride formed was filtered off, and the solution was evaporated in vacuo. The residue was crystallized from CH₃CN, and recrystallized from the same solvent. Yield 0.82 moles of 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole melting at 171°C.

Example 33 (method d)

23.4 g of 2-[2-(3,4,5-trimethyl-pyridyl)methylthio]formic acid and 16.6 g of o-(5-acetyl-6-methyl)phenylenediamine were boiled for 40 minutes in 100 ml of 4N HCl. The mixture was cooled and neutralized with ammonia. The neutral solution was then extracted with ethyl acetate. The organic phase was treated with active carbon and evaporated in vacuo. The residue was dissolved in acetone whereupon an equivalent of concentrated HCl was added. The precipitated hydrochloride was filtered off after cooling and the salt was recrystallized from absolute ethanol and some ether. Yield of 2-[2-(3,4,5-trimethylpyridyl)methylthio]-5-acetyl-6-methyl-benzimidazole was 6.5 g.

This compound was then oxidized in accordance with Example 1 above, to give the corresponding sulfinyl derivative. M. p. 190° C.

0 005 129

Example 34 (method c)

	of water ned was)methyl-	nethyl(4,5-dimen droxide in 20 ml im chloride forn limethyl-pyridyl ield 10.6 g. give the corres	um hyd : sodiu !-(4,5-c anol. Y	The 2-[2- etha	g or s ours. due, 70%	vo h e res from	o etna d for t cuo. Th	omi of 95 vas reflux ated in va vas recry	ed in 20 lution v evapo dazole.	n the so tion was benzimi	were upo solu sinyl- was t	ochlorir led, v/t-r ff anrl =	ne hydr ere ado tered o io]-5-ao This co
								٠,					
		_	• •	-									
				:								•	
		•											
		: .											
	. ,	-											
	:.	- 14 1 - 2-2			:								9.
		•											
			•										
					:			.*					
		3 . 3 . 3		••	•								
	•												
				•									
	· · · · · · · · · · · · · · · · · · ·	المحمدي فأعوانوا فمدا		• • • •			•	• •					. *
			•	•									
		•											
	. ,	1,150,5		,		•							
					•								
	7	11.4.11						- * •	•				
4	•				•			-					
		•											
		1.25											
£			,					•			•		
				•				•					
	•												
. 5			٠.										
-													
. <i>6</i> 6						٠		•					
						• :							
	1.	,											
65					•		•		•				
٠.			•								*		
		,					7						

$$\begin{array}{c|c}
R^{2} & O & R^{3} & R^{4} \\
R^{1} & & S & CH & N \\
& & R^{6} & R^{6}
\end{array}$$

						_	
Ex.	R ¹	R ²	R ⁶	R ³	R ⁴	R ⁵	М. р. °С ,
-1	5-COCH ₃	6-CH3	٠н	Н	CH ₃	CH ₃	158
2	5-COOCH ₃	6-CH3	Н	Н	CH ₃	СН	163
3	5-COOCH ₃	Н	Н	Н	CH ₃	CH ₃	141
4	5-COCH ₃	6-CH ₃	Н	CH ₃	СН	Н	160
5	5-COOCH ₃	6-CH ₃	Н	СН	СН, —	Н	163
6	4-CH ₃	6-CH,	н	CH ₃	Н	СН	50-55
7	5-COCH ₃	6-CH ₃	H.	CH ₃	Н	CH ₃	171
8	5-COCH ₃	6-CH,	Н	CH ₃	CH ₃	CH ₃	190
9	5-COCH3	6-CH ₃	н	H	осн,	н	165
10	4-CH ₃	6-CH ₃	Н	Н	осн,	Н	122
11	5-COCH ₃	6-CH3	H	CH ₃	осн,	 СН ₃	156
12	5-COOCH;	6-CH ₃	H	CH ₃	Н	CH ₃	144
13	5-COOCH ₃	6-CH ₃	н	CH ₁	CH ₃	CH ₃	
14	5-COOCH ₃	6-CH ₃	н	н	OCH ₃	.С.1.3 Н	185
15	5-COOCH,	ύ-CH₃	н	Н	OC ₂ H,	н	169
16	5-C00CH3	6-CH ₃	Н	CH ₃	OCH;	H	148
17	5-COOCH ₃	6-CH3	н	СН,	OCH ³	сн _з	175
18	5-COOCH ₃	6-CH3	н	Н	OCH ₃	CH ₃	155
19	5-COOCH ₃	Н	Н	CH ₃	• н	CH ₃	158
20	5-COOCH,	Н	н	CH ₃	OCH3	CH ₃	141
21	5-COCH ₃	Н	Н	CH ₃	OCH ₃	CH ₃	142
22	5-OCH ₃	Н	Н	Н	OCH ₃	CH ₃	162
3	5-OCH ₃	Н	Н	Cili	OCH;	CH ₃	178
4	5-CH ₃	Н	Н	CH ₃	OCH ₃	CH ₃	156
5 .	Н	Н	Н		· OCH3		181
6	5-CI	Н	н.	CH ₃	оси,	CH ₃	165
7	5-CH ₃	н.	Н	H	OC₁H₄OCH,	Cn ₃ H	185
8	5-COOC ₂ H ₅	H	н	CH,	OCH,	CH ₃	119
9	5-COOCH ₃	Н	CH ₃	CH ₃	. Н	CH ₃ .	150-5
0 .	5-CH ₃	Н	CH ₃	CH,	Н	CH ₃	130 152

0 005 129

Biological effect

to mpounds of the invention possess worthwhile therapeutic properties as gastric acid secretion as demonstrated by the following tests. To determine the gastric acid secretion inhibitory prizeries, experiments have been performed in conscious dogs provided with gastric fistulas of அள்கார் and type and duodenal fistulas, the latter ones used for direct intraduodenal administation of are adminishments. After 18 hours starvation and deprivation of water the dogs were given a שביבים infusion of pentagastrin (1-4 nmol/kg, h) lasting for 6-7 hours. Gastric juice was in consecutive 30 minutes samples. An aliquot of each sample was titrated with 0.1 N NaOH 🚁 7.0 for titrable acid concentration using an automatic titrator and pH-meter (Radiometer, 10 Commander, Denmark). Acid output was calculated as mmol H-/60 minutes. The percent inhibition to control experiments was calculated for each compound and the peak inhibitory effect is gives in Table 2 below. The test compounds, suspended in 0.5% Methocel® (registered Trade Mark for messay bellulose), were given intraduodenally in doses from 4-20 µmol/kg when the secretory restance to pentagastrin has reached a steady level. in the test prior known compounds were compared with the compounds of the present invention as

will be evident from the Table ? below.

്രേട് ചിരയing gastric acid inhibiting effect data were obtained for a number of compounds tested ಸಾಸ್ತ್ರಾ to the method described.

20

25

40

45

50

55

Tabelle 2

	н		_					
Ex.	R ¹	R ²	R ⁶	R ³	R ⁴	R ⁵	Dose µmol/ kg	Effect % inhi- bition
1	5-COCH ₃	6-CH,	Н	Н	CH ₃	CH ₃	2	90
4	5-COCH ₃	6-C H₃	Н	СН	CH ₃	н	1	60
7	5-COCH ₃	6-CH3	Н	CH ₃	н	CH ₃	2	100
8	5-COCH ₃	6-C H ₃	н	CH ₃	CH3	CH ₃	4	100
9	5-COCH ₃	6 CH3	Н	Н	OCH ₃	H	2	95
11	5-COCH ₃	6-CH ₃	Н	CH3	OCH;	CH ₃	0.5	70
*	5-COCH ₃	6-CH ₃	Н	H .	CH ₃	н	20	30
•	5-COCH ₁	6-CH3	H	Н	H	CH ₃	8	80
2	5-COOCH ₂	6-C H ₃	Н	Н	CH,	CH ₃	2	60
5	5-COOCH ₃	6-CH ₃	н	CH ₃	CH,	H	2	90
12	5-COOCH ₃	6-CH3	Н	CH3	Н	CH ₃	2	70
13	5-COOCH;	6-CH ₃	Н	СН₃	CH ₃	CH ₃	4	80
14	5-COOCH ₃	6-CH3	H	Н	OCH;	H	. 2	100
15	5-COOCH3	- 6-CH ₃	H ·	$\mathbf{H}_{\geq 0}$	OC ₂ H ₅	H	4	75
16	5-COOCH3	6-CH3	н	CH3	OCH ₃	H	0.5	65
17	5-COOCH;	6-CH ₃	Н	CH ₃	OCII,	CH ₃	0.5	_ 9 0
18	5-COOCH;	6-CH ₃	H	Н	OCH ₃	CH ₃		
*	5-COOCH;	6-CH ₃	H	H	Н	CH ₃	4	50
*	5-COOCH ₃	6-CH3	H	Br ·	ñ	H	4	0
6	4-CH ₃	6-CH ₃	Н	CH ₃	Н	CH ₃	. 4	40.
10	4-CH ₃	6-C H ₃	H	Н	OCH _{3,}	H	2	40
•	4-CH ₃	6-C H ₃	·H	H	H	H	4	30
٠.	4-CH ₃	6-CH ₃	Н	Н	• Н	CH ₃	12	50
3	5-COOCII,	Н	H -	H	CH ₃	CH ₃	. 4	100
19	5-COOCH,	H	H	CH ₃	Н .	CH ₃	2	60
20	5-COOCH,	Н	· H	CH3	OCH,	CH ₃	0.5	65
•	5-COOCH,	Н .	Н	Н	Н	CH,	20	90
**	5-COOCH ₃	H .	. H	Н	Н.	H	20	50
21	5-COCH ₃	Н	Н	CH ₃	OCH,	CH ₃	0.5	. 60
*	5-COCH,	Н	Н	Н	H	C ₂ H ₅	.20	40
22	5-OCH ₃	Н	H	Н	OCH ₃	CH ₃		

11 00	111711	ation:
1001		LUCIO

Ex.	R ¹	R ²	. R ⁶	R³	Ř ⁴	K2	Dose µmol/	Effect % inhi-	
							kg ————	bition	
23	5-OCH ₃	Н	н	CH ₃	OCH ₃	CH ₃	0.5	65	
*	5-OCH ₃	Н	Н	Н	CH ₃	H	20	10	1
24	5-CH ₃	Н	Н	CH ₃	OCH ₃	CH ₃	0.5	50	
•	5-CH ₃	Н	Н	Н	Н	CH ₃	4	50	
25	Н .	н	Н	CH ₃	OCH ₃	CH ₃	0.5	60	1.
*	Н	н	Н	Н	Н	. H	4	50	
28	5-COOC ₂ H ₅	Н	H	CH ₃	OCH ₃	CH_3	0.5	50	
26	5-C!	Н	H	CH ₃	OCH ₃	CH ₃	0.5	25	20
27	5-CH ₃	Н	Н	H	OC2H4OCH3	Н	0,5	30	
29	5-COOCH ₃	Н	CH ₃	CH ₃	Н	CH ₃	0.5	40	

^{*)} Denotes a previously known compound (DE-A 25 04 252 and 25 48 340).

Example 35

A syrup containing 2% (weight per volume) of active substance was prepared from the following ingredients:

2-[2-(4,5-dimet:lyt-pyridyl)methylsulfinyl]-		
5-acetyl-6-methyl-benzimidazole - HCl	2.0 g	35
Saccharin	0.6 a	
Sugar	30.0 g	•
Glycerin	5.0 g	
Flavouring agent	0.1 g	
Ethanol 96%	10.0 ml	~ ~ :7

25

45

50

60

Distilled water (sufficient to obtain a final volume of 100 ml)

Sugar, saccharin and the acid addition salt were dissolved in 60 g of warm water. After cooling, glycerin and a solution of flavouring agents dissolved in ethanol were added. To the mixture water was added to obtain a final volume of 100 ml.

The above given active substance may be replaced with other pharmaceutically acceptable acid addition salts.

Example 36

2-[2-(3,4-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole · HCl (250 g) was mixed with lactose (175.8 g), potato starch (169.7 g) and colloidal silicic acid (32 g). The mixture was moistened with 10% solution of gelatin and was ground through a 12-mesh sieve. After drying, potato starch (160 g), talc (50 g) and magnesium stearate (5 g) were added and the mixture thus obtained was pressed into tablets (10.000), with each tablet containing 25 mg of active substance. Tablets can be prepared that contain any desired amount of the active ingredient.

Example 37

Granules were prepared from 2-[2-(3,5-dimethyl-pyridyl)-methylsulfinyl]-5-acetyl-6-methyl-benz-imidazole-p-hydroxybenzoate (250 g), lactose (175.9 g) and an alcoholic solution of polyvinylpyrrolidone (25 g). After drying, the granules were mixed with talc (25 g), potato starch (40 g), and magnesium stearate (2.50 g) and were pressed into 10.000 tablets. These tablets are first coated with a

10% alcoholic solution of shellac and thereupon with an aqueous solution containing saccharose (45%), gum arabic (5%), gelatin (4%), and dyestuff (0.2%). Talc and powdered sugar were used for powdering after the first five coatings. The coating was then covered with a 66% sugar syrup and polished with a solution of 10% carnauba wax in carbon tetrachloride.

Example 38

2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole hydrochloride (1 g), sodium chloride (0.6 g) and ascorbic acid (0.1 g) were dissolved in sufficient amount of distilled water to give 100 ml of solution. This solution, which contains 10 mg of active substance for each ml, was used in filling ampoules, which were sterilized by heating at 120°C for 20 minutes.

15 Claims

20

25

30

*3*5

5

1. A compound of formula III

R

or a therapeutically acceptable salt thereof in which R^{1} and R^{2} are the same or different and are hydrogen, alkyl, halogen, methoxycarbonyl, ethoxycarbonyl, alkoxy, or alkanoyl in any position, Ra is hydrogen, methyl or ethyl, R3, R4 and R5 are the same or different and are each hydrogen, methyl, methoxy, ethoxy, ...ethoxyethoxy or ethoxyethoxy, whereby R3, R4, and R5 and R5 are not all hydrogen. and whereby when two of R^3 , R^4 , and R^6 are hydrogen, the third of R^3 , R^4 , and R^5 is not methyl.

2. A compound according to claim 1, which is

2-[2-(3,4-dimetinyi-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-4,6-dimethyl-benzimidazole, 2-[2-(4,5-dimethyl-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-benzimidazole, 2-[2-(4,5-dimetnyi-pyridy:))methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(4,5-dimat:lyl-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-6-methyl-benzimidazole, 40 2-[2-(3,4-dimethyi-pyridyl)methylsulfinyl]-5-methoxy-carbonyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(5,4,5-trimethyl-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-6-methyl-benzimidazole, 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-4,6-dimethyl-benzimidazole, [2-(3,5-dimetbyl-4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-5-methyl-benzimidazole, [2-[3,5-dimethyl-pyridyl]methylsulfinyl]-5-methoxy-carbonyl-6-methyl-benzimidazole, 2-[2-(3,4,5 trimethyl-pyridyl)methylsulfinyl-5-methoxy-carbonyl-6-methyl-benzimidazole, 2-[2-(4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 2-[2-(4-eihoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 50 [2-(3-methyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl--[2-(4-methoxy-5-methyl-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, [2-[3,5-dimethyl-pyridyl)methylsulfinyl]-5-methoxycarbonyl-benzimidazole, 55 [2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methoxycarbonyl-benzimidazole, [2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-acetyl-benzimidazole, 2-[2-(4-methoxy-5-methyl-pyridyl)methylsulfinyl]-5-methoxy-benzimidazole. [2-{3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl}-5-methoxy-benzimidazole. [2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-methyl-benzimidazole, 60 [2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-benzimidazole, 2-[2-(3,5-dimethyl-4-methoxy-pyridyl)methylsulfinyl]-5-chloro-benzimidazole

3. A pharmaceutical preparation for inhibiting gastric acid secretion, characterized in that it contains as active agent a compound according to claim 1 or a pharmaceutically acceptable non-toxic acid addition salt thereof in a therapeutically effective amount in combination with a pharmaceutically acceptable carrier.

4. A pharmaceutical preparation according to claim 3 wherein the active ingredient is one of the compounds according to claim 2.

5. Intermediates of the formula

$$R^{1}$$
 N
 $S-CH$
 N
 R^{4}
 R^{5}
 R^{5}

wherein R1, R2, R3, R4, R5 and R6 are defined according to claim 1.

Patentansprüche

Verbindung der Formel III

1Ò

:5

20

55

oder ein therapeutisch verträgliches Salz derselben, worin R1 und R2 gleich oder verschieden sind und ein Wasserstoffatom, eine Alkylgruppe, ein Halogenatom, eine Methoxycarbonvlgruppe, eine Athoxyca:Donylgruppe, eine Alkoxygruppe oder eine Alkanoylgruppe in irgendeiner Stellung bedeuten. Ri ein Wasserstoffatom eine Methylgruppe oder eine Athylgruppe bedeutet, R2, R4 und R5 gleich oder verschieden sind und jeweils ein Wasserstoffatom, eine Methylgruppe, eine Methoxygruppe, eine Äthoxygruppe, eine Methoxyāthoxygruppe oder eine Äthoxyathoxygruppe bedeuten, wobei R3, R4 und R5 nicht alle ein Wasserstoff bedeuten und wohei, wenn zwei der Substituenten R3, R4 und R5 Wasserstoffatome sind, der dritte Substituent von R3, R4 und R5 keine Methylgruppe ist.

2. Verbindung nach Anspruch 1, die

```
4Ū
2-[2-(3,4-Dimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-4,6-dimethylbenzimidazol,
2-[2-(4,5-Dimethylpyridyl)-methylsulfinyl)-5-methoxycarbonylbenzimidazol,
2-[2-(4,5-Dimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimicazol,
                                                                                                            45
2-[2-(4,5-Dimethylpyridy!)-methylculfinyl]-5-methoxycarbonyl-6-methylbenzimidazol, 2-[2-(3,4-Dimethylpyridy!)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
2-[2-(3,4,5-Trimethylpyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
2-[2-(4-Methoxypyridyl)-methylsulfinyl]-5-acetyl-6-methylbenzimidazol,
                                                                                                            5C
2-[2-[4-Methoxypyridyl]-methylsulfinyl]-4,5-dimethylbenzimidazol.
2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-acetyl-6-mothylbenzimidazol,
2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
2-[2-(3,4,5-Trimethylpyridyl)-methylsulfinyl]-5-methoxycarbonyi-3-methylbenzimidazol,
2-[2-(Methoxypyridyl)-methylsulfinyl)-5-methoxycarbonyl-6-methylbenzimidazol.
                                                                                                            55
2-[2-[4-Āthoxypyridyl]-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
2-[2-(3-Methyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
2-[2-(4-Methoxy-5-methylpyridyl)-methylsulfinyl]-5-methoxycarbonyl-6-methylbenzimidazol,
2-[2-(3,5-Dimethylpyridyl)-methylsulfinyl]-5-methoxycarbonylbenzimidazol,
                                                                                                            60
2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxycarbonylbenzimidazol, 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-acetylbenzimidazol,
2-[2-(4-Methoxy-5-methylpyridyl)-methylsulfinyl]-5-methoxybenzimidazol,
2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methoxybenzimidazol,
2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-methylbenzimidazol,
                                                                                                            65
```

2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-benzimidazol, 2-[2-(3,5-Dimethyl-4-methoxypyridyl)-methylsulfinyl]-5-chlorbenzimidazol

ist.

5

10

15

25

30

- 3. Pharmazeutisches Präparat zur Hemmung der Magensäuresekretion, dadurch gekennzeichnet, daß es als aktives Mittel eine Verbindung gemäß Anspruch 1 enthält.
- 4. Pharmazeutisches Präparat nach Anspruch 3, worin der aktive Bestandteil eine der Verbindungen gemäß Anspruch 2 ist.
- 5. Zwischenprodukte der Formel

worin R¹, R², R³, R⁴, R⁵ und R⁶ gemäß Anspruch 1 definiert sind.

Revendications

1. Composé de la formule III

ou un sel thérapeutiquement acceptable de celui-ci, formule dans laquelle R¹ et R² sont semblables ou différents et sont un atome d'hydrogène, un groupe alkyle, un atome d'halogène, un groupe m'étick/carbonyle, éthoxycarbonyle, alcoxy ou alcanoyle dans toute position, R6 est un atome d'hydrogène ou un groupe méthyle ou éthyle et R³, R⁴ et R⁵ sont semblables ou différents et sont éthoxyéthoxy sous cette réserve que R³, R⁴ et R³ ne sont pas tous des atomes d'hydrogène et que, R³, R⁴ et R³ n'est pas un groupe méthyle.

2. Composé selor la revendication 1, qui est

le 2-[2-(3,4-dimétnyl-p; -idyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole, le 2-[2-(3,5-diméthyl-pyridyl)méthylsulfinyl]-4,6-diméthylbenzimidazole, le 2-[2-(4,5-diméthyl-pyridyl)méthylsulfinyl]-5-méthoxycarponyl-benzimidazole, 45 le 2-[2-(4,5-diméthyl-pyridyl)méthyl-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole, le 2-[2-[4,5-diméthyl-pyridyl]méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, le 2-[2-(3,4-d:.néthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, 50 le 2-[2-(3,5-dimétiyl-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole, le 2-[2-(3,4,5-triméthyl-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole, le 2-[2-(4-méthoxy-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole, le 2-[2-(4-méthoxy-pyridyl)méthylsulfinyl]-4,6-diméthylbenzimidazole, le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-acétyl-6-méthyl-benzimidazole, le 2-[2-(3,5-diméthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, 55 le 2-[2-(3,4,5-trimethyl-pyridyl)methylsulfinyl]-5-methoxycarbonyl-6-methyl-benzimidazole, le 2-[2-(4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, le 2-[2-(4-éthoxy-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, le 2-[2-(3-méthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimida-60 ie 2-[2-(4-méthoxy-5-méthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-6-méthyl-benzimidazole, te 2-[2-(3,5-diméthyl-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-benzimidazole, le 2-[2-[3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxycarbonyl-benzimidazole, le 2-[2-[3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-acétyl-benzimidazole, 65

- le 2-[2-(4-méthoxy-5-méthyl-pyridyl)méthylsulfinyl]-5-méthoxy-benzimidazole, le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthoxy-benzimidazole, le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-méthyl-benzimidazole, le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-benzimidazole, et le 2-[2-(3,5-diméthyl-4-méthoxy-pyridyl)méthylsulfinyl]-5-chloro-benzimidazole.
- 3. Composition pharmaceutique servant à inhiber la sécrétion d'acide gastrique, caractérisée en ce qu'elle contient comme agent actif un composé selon la revendication 1 ou un sel d'addition d'acide de celui-ci, non toxique, pharmaceutiquement acceptable selon une quantité thérapeutiquement efficace en combinaison avec un véhicule pharmaceutiquement acceptable.
- 4. Composition pharmaceutique selon la revendication 3, caractérisée en ce que l'ingrédient actif est l'un des composés selon la revendication 2.
- 5. Intermédiaires répondant à la formule:

$$R^{1} \xrightarrow{R^{2}} N \xrightarrow{R^{3}} S \xrightarrow{R^{4}} R$$

15

20

45

65

dans laquelle R1, R2, R3, R4, R5 et R6 répondent à la définition donnée à la revendication 1.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.