Problem 1. [10 points]

(a) [5 pts] Prove or disprove $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$. Hint: Use a truth table.

Solution.

A	B	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$	$\neg A \lor \neg B$
true	true	true	false	false	false	false
true	false	false	true	false	true	true
false	true	false	true	true	false	true
false	false	false	true	true	true	true

Comparing the fourth and last colums, we see that the statement is true. *Note:* In fact, this is one of DeMorgan's Laws.

- (b) [5 pts] Translate the following statements from English into propositional logic or vice versa.
 - 1. If n > 1, then there is always at least one prime p such that n . Hint: Let <math>Prime(p) := p is a prime

Solution. The domain is \mathbb{Z} .

$$\forall n.(n > 1) \Rightarrow (\exists p. \text{Prime}(p) \land (n < p) \land (p < 2n))$$

Note: This is known as Bertrand's Postulate

2. The domain is N. $\forall m \exists p > m$. Prime $(p) \land \text{Prime}(p+2)$

Solution. There are infinitely many primes p such that p+2 is also prime. Note: This is known as the Twin Prime Conjecture

3. Let T be the set of TA's, S be the set of students, and G(x,y) := x grades y's exam

$$\exists t \in T \forall s \in S.G(t,s)$$

Solution. One TA will grade all of the exams. *Note:* This is not a famous law, theorem, or conjecture, but would be quite impressive.