2) det((AB) = det((BA) = det(A)det(B). det((AB) = k'det(A)) = (det(A')) = 1/det(A). det(A) = 0 \Leftrightarrow Matrix not Invertable. Else, det(A') = 1/det(A). We can find the determinant of a square matrix only, and this is done by getting into REF and multiplying by lead diag. The following operations have effects on det: 1) Swapping row multiplies it by -1 2.3 Adding/subbing rows does nothing 3.) If any two rows are equal, or lead diag 0, then det = 0. 4) Multiplying by scalar also increases det by a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an neatrix is invertible \Leftrightarrow rank is $n \Leftrightarrow$ columns are linearly indep. le: if $n < n > 0$ matrix is invertible \Leftrightarrow rank is $n \Leftrightarrow$ columns are linearly indep. le: if $n < n > 0$ matrix is invertible \Leftrightarrow rank is $n \Leftrightarrow$ columns are linearly indep. le: if $n < n > 0$ matrix is invertible $n > 0$ matrix is invertible and rank is $n \Leftrightarrow$ columns are linearly indep. le: if $n < n > 0$ matrix is invertible $n > 0$ m	arr Complex Matrix/Scalar multiplication works normally. The complex conjugate of its matrix simply has us compute the conjugate of its matrix simply has us compute the conjugate of each element (if complex). Denote us conjugate of each element (if complex). Denote us conjugate of us of u, lowersase = wetor, uppercase = matrix: k, z are scalar. U = v ⇔ u = y, A = B ⇔ A = B kz = k z. (ku) = k u, (Au) = A u.(A) ^T = (A ^T). If a vector, scalar or matrix = its conjugate, then its real. M4.) Standard Inner Product (SIP) - SIP of two vectors u, v ∈ C* = u. v Standard Norm: (u. v) V ^{TA} Also, the SIP is non negative - if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4. Least Squares Method Endomorphism: fof R° is a linear map of f: R° → R°, aka domain and codomain are the same. Automorphism: a bijective endomorphism: f: R° → R° automorphism ← if is injective (xer(f) = {0}) ⇔ f is surjective (mn(f) = R°) Projection of a Subspace: Let U = R° be an n dimensional subspace generated by an ordered basis (u ₁ , · v ₁ , b). Let U = [U ₁ ,, b _n] The orthogonal projection π _i , on U is the following endomorphism: π _i : R° → R° average in vectors be R°, vectors. 3. Let A ∈ R° in Ner All vectors be R°, there exist a unique b, e inm(A), and a unique b, e ker(AT) such that: b = b, + b,. 3. Let A ∈ R° and b ∈ R°. Suppose Ax = b has and no solution for x ∈ R° such that Ax - b ₂ , or equivalently, Ax - b ₂ , is minimised. Ax - b ₃	The transformations performed by an orthogonal matrix and he interpreted as a change of basis or a series of rotations and reflections. Properties of Orthogonal Matrices: 1) Orthogonal Matrix transformations preserve Euclidean length of vectors: viu ∈ R°, Qu ₂ = u ₂ 2) Orthogonal transformations preserve the magnitude of the angle between vectors: viu ∈ R°, QuQv = uv 3) det = 1 or −1. 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) Al' = A. 2) If A's a real symmetric matrix, then all its Eigenvalues are real. 3) If A's a real symmetric matrix, then for each Eigenvalues are real. 3) If A's a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A's an no hyn real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A's a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidkt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2 rd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ - ((v₂ u), u, a) - ((v₃ u, u) u, a) - ((v₃ u,	positive square root of an eigenvalue. Write S - the diagonal matrix of singular values. 2) Construct orthogonal matrix V of Eigenvectors $\{v_1, \dots, v_n\}$ corresponding to these singular values in order. 3) $r = rk(A)$. 4)u, = $1/q$, A v. (aka, 1 over our singular value, multiplied by A, multiplied by our eigenspace span vector), for $1 <= i <= r$. 5) Use the Gram Schmidt Process to turn the matrix U into an orthonormal basis. When matrix has more columns than rows: Let B = AT. Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as Sometimes are aren't enough eigenvectors of A to form a basis for R*e.g dim(kernel) of (A - λ 1) for some EVec = $=$ the multiplicity. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors are a square matrix A \in R**. A non zero vector V \in C* is a generalised eigenvector of rank m associated with eigenvalue is a generalised eigenvector of rank is eigenvalue is a generalised eigenvector with its eigenvalue is a generalised eigenvector of rank 1 associated with λ 1 the matrix A \sim λ 1, the result will be the zero vector. If A has a generalized eigenvector associated with λ 1, then when you multiply it by $\lambda \sim \lambda$ 1, the result will be another eigenvector associated with λ 1. The pattern continues for higher-rank generalized eigenvector and another eigenvector associated with λ 1. This pattern continues for higher-rank generalized eigenvector and another eigenvector by λ 1, λ 2, λ 3, λ 4, λ 4, λ 5, λ 6, λ 6, λ 7, λ 7, λ 8, λ 8, λ 8, λ 8, λ 8, λ 8, λ 9, λ	λ)². We have $\lambda_1=0$, $\lambda_2=1$, with AM 1 and 2 respectively. 2) The eigenspace of $\lambda_1=$ span {[0-12]^*}. AM = GM, so we re done. The eigenspace of $\lambda_2=$ span {[1-15]^*}. AM < GM, so we must find a generalised eigenvector. 3) We find it by: $(A-\lambda_1) W_{i,j}=V^{-1}_{i,j}, \lambda_2=1, \nu_0=[1-15]^T$ so: $(A-1) W_{i,j}=V^{-1}_{i,j}, \lambda_2=1, \nu_0=[1-15]^T$ so: $(A-1) W_{i,j}=V^{-1}_{i,j}=[-321, -732, 50-1] \nu_1=\nu_0=[1-15]^T$, solving this yields $\nu_1=[03-5]^T$. 4) Thus {[0-12]^*, [-732]^*, [50-1]^*} is a basis of R². B = [010, -1-13, 25-5] 5) computing B²AB gives us = [000, 011, 001] = J. 10) Cholesky Decomposition A matrix A ^m is lower triangular $\nu_1 < \nu_1 > \nu_2 = 1$. Another is the properties. The equation $\nu_1 > \nu_2 = 1$. Ax = b can easily be solved on them, by first getting $\nu_1 > \nu_2 = 1$. And this name is lower triangular $\nu_1 < \nu_2 > \nu_3 = 1$. And then $\nu_2 > \nu_1 > \nu_2 = 1$. Additional Properties of Symmetric Matrices: Let A e R ^m be a symmetric matrix. 1) If A is positive definite, all its diagonal elements are strictly positive. 2) If A is positive definite then $\nu_1 > \nu_2 > \nu_3 = 1$. All is positive servi definite then $\nu_1 > \nu_2 > \nu_3 = 1$. We can use these to quickly notice non positive-semi definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices. If we have a symmetric matrix with a negative element, it cannot be PSD. As if in 12 is a positive dement, it cannot be PSD. As if in 13 is no in 13 is a positive definite then the 1x1, 2x2, mm. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the interval of the positive element in a non-negative. 9. If A is positive definite then the 1x1, 2x2, mm. Matrices in the upper left corner of A are also positive definite when the positive element in the po	$ \begin{array}{ll} \textbf{13) QR Algorithm} \\ \textbf{Useful to find the eigenvalues of a matrix.} & \textbf{Works for most matrices.} \\ \textbf{1) Set } A_0 = \textbf{A}. \\ \textbf{2) For } \textbf{k} \in \textbf{N}, \text{ apply the QR decomposition to } \textbf{A}_c, \textbf{A}_c = \textbf{Q}_{c+1} \textbf{R}_{k+1} \text{ where } \textbf{Q}_{c+1} \textbf{is an orthogonal matrix and } \textbf{R}_{c,1} \textbf{is an upper triangular matrix} \\ \textbf{3) Set } \textbf{A}_{c,1} = \textbf{R}_{c,1}, \textbf{Q}_{c,1}. \textbf{Stop after sufficient iterations} \\ \textbf{Properties of QR Decomposition:} \\ \textbf{1) For } \textbf{k} \in \textbf{N}, \textbf{A}_c \textbf{is similar to } \textbf{A}. \textbf{ (similar means } \textbf{A}_c = \textbf{P}^1 \textbf{AP} \textbf{ ie}, \textbf{ it can be obtained from performing a transformation matrix on } \textbf{A}). \\ \textbf{2) For } \textbf{k} \in \textbf{N}, \textbf{W}_c \textbf{ is an eigenvector of } \textbf{A}_c \textbf{ form above. So } \textbf{A}_c \textbf{ and } \textbf{ A} \textbf{ have the same eigenvalues and v is an eigenvector of } \textbf{A}_c \textbf{ find nonly if } \textbf{Q}_c \textbf{ v} \textbf{ is an eigenvector of } \textbf{A}_d \textbf{ 3}) \textbf{ The sequence } (\textbf{Ak}) \textbf{ converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if A is symmetric)} \\ \textbf{4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. } \\ \textbf{So, the } \textbf{QR } \textbf{ decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. } \\ \textbf{Application to Symmetric Matrices} \end{aligned}$
inearly dependent. If we have pivot vars, we are linearly independent, sets we're not. Properties of Determinants: A, B ∈ R ^{noth} 1) det(A') = det(BA) = det(BA) = det(A) det(B). det(KA) = 0 det(BA) = det(BA) = det(A) det(B). det(A(A) = k'det(A) det(B). det(A) = k'det(A) = (A det(A) = k'det(A) = k'det(A) = (A det(A) = k'det(A) = k'det(A) = (A det(A) = k'det(A) = (A det(A) = k'det(A) = k'det(A	nomally. The complex onjugate of its matrix simply has us compute the onjugate of each element (if complex). Denote µ as conjugate of each element (if complex). Denote µ as conjugate of exception of a complex of each element (if complex). Denote µ as conjugate of using the properties of the properi	The transformations performed by an orthogonal matrix and he interpreted as a change of basis or a series of rotations and reflections. Properties of Orthogonal Matrices: 1) Orthogonal Matrix transformations preserve Euclidean length of vectors: viu ∈ R°, Qu ₂ = u ₂ 2) Orthogonal transformations preserve the magnitude of the angle between vectors: viu ∈ R°, QuQv = uv 3) det = 1 or −1. 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) Al' = A. 2) If A's a real symmetric matrix, then all its Eigenvalues are real. 3) If A's a real symmetric matrix, then for each Eigenvalues are real. 3) If A's a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A's an no hyn real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A's a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidkt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2 rd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ - ((v₂ u), u, a) - ((v₃ u, u) u, a) - ((v₃ u,	positive square root of an eigenvalue. Write S - the diagonal matrix of singular values. 2) Construct orthogonal matrix V of Eigenvectors $\{v_1, \dots, v_n\}$ corresponding to these singular values in order. 3) $r = rk(A)$. 4)u, = $1/q$, A v. (aka, 1 over our singular value, multiplied by A, multiplied by our eigenspace span vector), for $1 <= i <= r$. 5) Use the Gram Schmidt Process to turn the matrix U into an orthonormal basis. When matrix has more columns than rows: Let B = AT. Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as Sometimes are aren't enough eigenvectors of A to form a basis for R*e.g dim(kernel) of (A - λ 1) for some EVec = $=$ the multiplicity. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors are a square matrix A \in R**. A non zero vector V \in C* is a generalised eigenvector of rank m associated with eigenvalue is a generalised eigenvector of rank is eigenvalue is a generalised eigenvector with its eigenvalue is a generalised eigenvector of rank 1 associated with λ 1 the matrix A \sim λ 1, the result will be the zero vector. If A has a generalized eigenvector associated with λ 1, then when you multiply it by $\lambda \sim \lambda$ 1, the result will be another eigenvector associated with λ 1. The pattern continues for higher-rank generalized eigenvector and another eigenvector associated with λ 1. This pattern continues for higher-rank generalized eigenvector and another eigenvector by λ 1, λ 2, λ 3, λ 4, λ 4, λ 5, λ 6, λ 6, λ 7, λ 7, λ 8, λ 8, λ 8, λ 8, λ 8, λ 8, λ 9, λ	respectively. 2) The eigenspace of λ_1 = span { $\{[0.12]^T\}$ }. AM = GM, so we're done. The eigenspace of λ_2 = span { $\{[0.12]^T\}$ }. AM = GM, so we're done. The eigenspace of λ_2 = span { $\{[1.15]^T\}$ }. AM < GM, so we must find a generalised eigenvector. 3) We find it by: $(A - \lambda_1)^t \lambda_1^t = v^{t-1}_{ij} = \lambda_2 = 1, v_0 = [1.15]^T$ so: $(A-1)^t \lambda_1^t = v^{t-1}_{ij} = [-3.21, -7.32, 5.0-1]v_1 = v_0 = [1.15]^T$ so: $(A-1)^t \lambda_1^t = v^{t-1}_{ij} = [-3.21, -7.32, 5.0-1]v_1 = v_0 = [1.15]^T$ solving this yields $v_1 = [0.3-5]^T$. B = $[0.10, -1.13, 2.5-5]$ 5) computing B³-lAB gives us = $[0.00, 0.11, 0.01] = 1$. 10) Cholesky Decomposition A matrix A³^m is lower triangular $v_1 < j$, $A_j = 0$ A matrix A³^m is tower triangular $v_1 < j$, $A_j = 0$ A matrix A³^m is tower triangular $v_1 < j$, $A_j = 0$ A matrix A³^m is tower triangular $v_1 < j$, $A_j = 0$ A matrix A³^m is upper triangular $v_2 < j$, $A_j = 0$ A matrix A³^m is upper triangular $v_3 < j$, $A_j = 0$ A matrix A³^m is upper triangular ve extraoretingular matrices. For upper triangular reve extraoretingular matrices. For upper triangular reve extraoretingular matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_1 , and then x_2 with direct substitution and so on, on lower triangular matrices. For upper triangular reve extraoretingular matrices are strictly positive. 2) If A is positive effinite, all its diagonal elements are strictly positive. 3) If A is positive effinite then max $(A_1, A_2) > A_3 $. If A is positive effinite then max $(A_1, A_2) > A_3 $. If A is positive definite then max $(A_1, A_2) > A_3 $. If A is positive definite then max $(A_1, A_2) > A_3 $. If A is positive definite then the $x_1, x_2, x_3, x_4, x_4, x_5, x_5, x_5, x_5, x_5, x_5, x_5, x_5$	$\begin{aligned} u_2 &= a_2 \cdot (e_1 \cdot a_2) e_1 = (1/2, -1/2, 1)^r, e_2 = (1, -1, 2)^r/\sqrt{s}, e_2 \cdot a_2 = 3/\sqrt{s}, e_2 \cdot a_3 = 1/\sqrt{s}, \\ u_3 &= a_3 \cdot (e_1 \cdot a_2) e_1 \cdot (e_2 \cdot a_3) e_2 = (-1, 1, 1)^r/\sqrt{3} \text{ with } e_3 = (-1, 1, 1)^r/\sqrt{3}, e_3 \cdot a_3 = 1/\sqrt{s}, \\ Q &= \left[e_1, e_2, e_3\right] = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}, \\ R &= \begin{bmatrix} e_1 \cdot a_1 & e_1 \cdot a_2 & e_1 \cdot a_3 \\ 0 & e_2 \cdot a_2 & e_2 \cdot a_3 \\ 0 & 0 & e_3 \cdot a_3 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}, \text{ with } A &= QR \\ \textbf{12} &\text{Householder Maps:} \\ \text{Suppose we have a hyper-plane P going through the origin with unit normal u \in \mathbb{R}^n, i.e., P = \{x \in \mathbb{R}^n : u \times = 0\}. The Householder matrix defined by H_u = I - 2uu^T induces reflection wit P. Properties of a Householder Matrix: H_u : u = 0. The Householder matrix: H_u : u = H^{-1}u. H_u : u = H^{$
Properties of Determinants: $A, B \in \mathbb{R}^{non}$ 1) det(AP) = det(A) = det(A) = det(A) = det(A) det(A) = de	element (if complex). Denote μ as conjugate of u, lowercase = vector, uppercase = matrix: k, z are scalar. U = v ⇔ μ = y, A = B ⇔ A = B kz = E kz = kz (ω) = k μ, (ω) = A μ, (ω) T = (A). If a vector, scalar or matrix = its conjugate, then its real. M4) Standard Inner Product (SIP) − SIP of two vectors u, v ∈ C = μ'v Standard Norm: (μ'v) γ Also, the SIP is non negative = if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: for R° is a linear map of fr. R° → R°, aka domain and codomorphism: fr. R° → R° automorphism ⇔ fis injective (ker(f) = {0}) → fis surjective (min(f) = R°). Projection of a Subspace: Let U ∈ R° be an n dimensional subspace: Let U ∈ R° be an n dimensional subspace: Let U ∈ R° be an n dimensional subspace: Let U ∈ R° be an ordinersional subspace: Let U ∈ R° be an ordinersional subspace: Let U ∈ R° be yellow endomorphism: π,; R° → R° automorphism: π, U ∈ R° → R° is unique by elmonorphism: π, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° → R° is unique by elmonorphism: N, U ∈ R° is unique by elmonorphism: N	rotations and reflections. Properties of Orthogonal Matrices: 1) Orthogonal Matrix transformations preserve Euclidean length of vectors: vu e R°, Qu ₂ = u ₂ 2) Orthogonal transformations preserve the magnitude of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle between vectors: vu, v e R°, Qu Qv = uv of the angle vectors: vu, v e R°, Qu Qv = uv of the angle vectors: vu, v e R°, Vu, v e and vectors: vu, v e angle vector: vu, v e	diagonal matrix of singular values. 2) Construct orthogonal matrix V of Eigenvectors $[v_1, \cdots, v_n]$ corresponding to these singular values in order. 3) $r = rt(A)$. 4) $v_n = t(A)$ 4, $v_n = t(A)$ 5, $v_n = t(A)$ 5, $v_n = t(A)$ 5, $v_n = t(A)$ 6, $v_n = t(A)$ 6, $v_n = t(A)$ 7, $v_n = t(A)$ 8, $v_n = t(A)$ 9, v_n	so were done. The eigenspace of $\lambda_2 = \text{span} \{[1 \cdot 1 \cdot 5]^{T)}$. AM $< \text{GM}$, so we must find a generalised eigenvector. 3) We find it by: $(A - \lambda_1) v^{k}_{i,j} = v^{k-1}_{j}, \lambda_2 = 1, v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = v^{k-1}_{j+1}, \lambda_2 = 1, v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = v^{k-1}_{j+1}, \lambda_2 = 1, v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = v^{k-1}_{j+1}, \lambda_2 = 1, v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 7 \cdot 3 \cdot 2, 5 \cdot 0 \cdot 1] v_1 = v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 7 \cdot 3 \cdot 2, 5 \cdot 0 \cdot 1] v_1 = v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 7 \cdot 3 \cdot 2, 5 \cdot 0 \cdot 1] v_1 = v_0 = [1 \cdot 1 \cdot 5]^T$ so: $(A - \lambda_1) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 3 \cdot 2, 5) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 3 \cdot 2, 5) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 3 \cdot 2, 5) v^{k}_{i,j} = (3 \cdot 2 \cdot 1, 3 \cdot 2, 5) v^{k}_{i,j} = (3 \cdot 2 \cdot 2$	$Q = [e_1, e_2, e_3] = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix},$ $R = \begin{bmatrix} e_1 \cdot a_1 & e_1 \cdot a_2 & e_1 \cdot a_3 \\ 0 & e_2 \cdot a_2 & e_2 \cdot a_3 \\ 0 & 0 & e_3 \cdot a_3 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix},$ with $A = QR$ 12) Householder Maps: Suppose we have a hyper-plane P going through the origin with unit normal $u \in \mathbb{R}^n$, i.e., P = $\{x \in \mathbb{R}^n : ux = 0\}$. The Householder matrix defined by $H_u = I - 2uu^T$ induces reflection with P. Properties of a Householder Matrix: H_u is involutory: $H_u = H_u^{-1}u$. H_u is orthogonal: $H^Tu = H^{-1}u$. H_u preserves the euclidian length of vectors: $ H_u(X) = X $. The eigenvalues are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P reflects across - e.g. any vectors in the hyperplane P. H_u preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal projection Q on the hyperplane P is given by: $Q = I - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 13) OR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = A_0 = A_0$. 2) For $k \in \mathbb{N}$, apply the QR decomposition to A_k : $A_k = Q_{k+1}R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) Set $A_{k+1} = R_{k+1}Q_{k+1}$ is an upper triangular matrix. So, A_k and A have the same eigenvalues and V is an eigenvector of A_k if and only if $Q_k V$ is an eigenvector of A_k . Find and only if $Q_k V$ is an eigenvector of A_k if and only if $Q_k V$ is an eigenvector of A_k if and only if $Q_k V$ is an eigenvector of A_k . If and only if $Q_k V$ is an eigenvector of A_k if and only if $Q_k V$ is an eigenvector of $A_k V$ is $A_k V = A_k V $
1) $\det(A) = \det(A) = \det(A)$ $\det(A) = \det(A) \det(A) = \det(A) \det(A) = \det(A) = \det(A) \det($	p of u, lowercase = vector, uppercase = matrix k, z are scalar. U = v ⇔ u = y, A = B ⇔ A = B kz = kz, (ku) = k u, (Au) = A u, (A) T = (A) T a vector, scalar or matrix = its conjugate, then its real. M4) Standard Inner Product (SIP) – SIP of two vectors u, v ∈ CT = u/V Standard Norm: (u/v) √2. Also, the SIP is non negative – if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A the eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: fof R° is a linear map of f. R° → R°, aka domain and codomain are the same. Automorphism: a bijective endomorphism. f. R° - R° automorphism ⇔ if is injective (ker(f) = {0}) ⇔ f is surjective (m(f) = R°) Projection of a Subspace: Let U ∈ R° be an a dimensional subspace generated by an ordered basis (u, ", -u, b). Let U = [u,, \u03bb, 1] The orthogonal projection π ₁ on U is the following endomorphism: π; R° - R° v - π ₁ (v) = U(U'U) * U'V im (A) ⊥ ker(A°) We can uniquely decompose vectors. Let A ∈ R° m° For all vectors b ∈ R°, there exist than unique b, eim(A), and a unique b, ∈ ker(A°) such that: b = b, + b,. Let A ∈ R° and b ∈ R°. Suppose Ax = b has no solution for x ∈ R°, i.e., b e / im(A). C. LSM finds x ∈ R° such that Ax - b ₂ , or equivalently, Ax - b ₂ is minimised. Ax - b ₃ is minimised. Ax - b ₃ is minimised. Ax - b ₄ ₅ minimised. Ax - b ₅ ₅ minimised. Ax - b ₅ ₅ minimised. Ax - b ₅	Properties of Orthogonal Matrix preserve Eudidean length of vectors: vu e R ⁿ , Qu ₂ = u ₂ 2) Orthogonal Matrix transformations preserve the magnitude of the angle between vectors: vu, v e R ⁿ , Qu ₂ = u ₂ 3) det = 1 or -1. 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) Al' = A. 2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQ ¹ = QDQ ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. MY) Gran-Schmidt (SS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u ₁ . 2) For the 2 rd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ = (v ₂ , u)u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd onwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ = ((v ₂ , u) ₁) ₁ = (v ₂ , u) ₂) ₂ . 1) Solve the Char Polynomial to get the eigenvalues	2) Construct orthogonal matrix V of Eigenvectors $[v_1, \cdots, v_n]$ corresponding to these singular values in order. 3) $r=rk(A)$. 4) $u_1=1/q$ A v_1 (aka, 1 over our singular value, multiplied by A, multiplied by I, and I	The eigenspace of $\lambda_{\lambda}=$ span $\{[1:15^{Ti}: AM < GM, so we must find a generalised eigenvector. 3) We find it by: (A - \lambda_{\lambda}) N'_{1j} = N^{-1}_{1j}, \lambda_{2} = 1, V_{0} = [1:15]^{T} \text{ so: } (A_{1}) N'_{1j} = N^{-1}_{1j}, \lambda_{2} = 1, V_{0} = [1:15]^{T} \text{ so: } (A_{1}) N'_{1j} = N^{-1}_{1j}, \lambda_{2} = 1, V_{0} = [1:15]^{T} \text{ so: } (A_{1}) N'_{1j} = N^{-1}_{1j}, \lambda_{2} = 1, V_{0} = [1:15]^{T} \text{ so: } (A_{1}) N'_{1j} = N^{-1}_{1j}, \lambda_{2} = 1, V_{0} = [1:15]^{T} \text{ so is } (A_{1}) N'_{1j} = N^{-1}_{1j}, \lambda_{2} = 1, \lambda_{2} = [0:10, -1:13, 25:5]^{T}_{2j} \text{ so } (A_{2})^{T}_{2j} \text{ so } (A_{2})^{T}_{2j}, \lambda_{2} = 1, \lambda$	$R = \begin{bmatrix} e_1 \cdot a_1 & e_1 \cdot a_2 & e_1 \cdot a_3 \\ 0 & e_2 \cdot a_2 & e_2 \cdot a_3 \\ 0 & 0 & e_3 \cdot a_3 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \text{ with } A = QR$ $ \begin{aligned} \textbf{12) Householder Maps:} \\ \textbf{Suppose we have a hyper-plane P going through the origin with unit normal u \in \mathbb{R}^m, i.e., P \{x \in \mathbb{R}^m : ux = 0\}. \text{ The Householder matrix defined by $H_u = 1 - 2uu^T$ induces reflection with P. \\ \textbf{Properties of a Householder Matrix:} \\ \textbf{H}_u, \text{is involutory: $H_u = H_1^{-1}u.$ H_u$ is orthogonal: $H^Tu = H^{-1}u.$ \\ \textbf{H}_u, \text{is involutory: $H_u = H_1^{-1}u.$ H_u$ is orthogonal: $H^Tu = H^{-1}u.$ \\ \textbf{H}_u, \text{ preserves the euclidian length of vectors: } \textbf{H}_u(x) = \textbf{x} . \\ \text{The eigenvalues are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P. Heffects across - e.g any vectors in the hyperplane P. Heffects across - e.g any vectors in the hyperplane P. Helpersenves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: Q = I - uu^T with Q^2 = Q and Q = Q^T. \\ \textbf{13OR Alsorithm} \\ \textbf{Useful to find the eigenvalues of a matrix. Works for most matrices.} \\ \textbf{1)Set $A_0 = A.} \\ \textbf{2)For $k \in \mathbb{N}, \text{ apply the QR decomposition to $A_{c}: A_{k} = Q_{k+1} R_{k+1}$ where Q_{c+1} is an orthogonal matrix and R_{c+1} is an upper triangular matrix.} \\ \textbf{3)Set $A_{k+1} = R_{k+1} Q_{k+1}.$ Stop after sufficient iterations.} \\ \textbf{Properties of QR Decomposition} \\ \textbf{1)For $k \in \mathbb{N}, \text{ is similar to $A.} \end{aligned} from above. So A_k and A have the same eigenvalues and v is an eigenvector of A_k if and only if $Q_k v$ is an eigenvector of A_k if and only if $Q_k v$ is an eigenvector of A_k if and only if $Q_k v$ is an eigenvector of A_k if and only if $Q_k v$ is an eigenvector of A_k if and only if $Q_k v$ is an eigenvector of A_k if and only if $Q_k v$ is an ei$
det(A) = A chet(A)	U = v ⇔ u = y , A = B ⇔ A = B x = x ∈ x	Euclidean length of vectors: $vu \in \mathbb{R}^n$, $ \hat{Q}_u _2 = u _2$ 2) Orthogonal transformations preserve the magnitude of the angle between vectors: $vu, v \in \mathbb{R}^n$, $\underline{QuQ'} = \underline{uv}$ 3) det = 1 or -1. 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) $A^T = A$. 2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalues are real. 4) If A is a neal symmetric matrix, then for each Eigenvalues are orthogonal. Spectral Theorem: If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is an an by A in the symmetric matrix A is degreated by A in the state of A is an an analysis of A is a neal symmetric matrix then it can be diagonalised like so: $A = QQQ^T = QQQ^A$ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7. Gram-Schmidit (GS) Process: If we have a linearly independent set of vectors that are a basis for V , we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to V to nectors at a time: The first vector V , is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get V is V . 2) For the V V but removing its projection on the V plane). 3) We do the same thing for V V or V	order: 3) r = rk(A). 4 \under \text{U} = \text{V}_0 A \text{(ab. 1} \text{ over our singular value,} multiplied by A, multiplied by our eigenspace span vector), for $1 < = 1 < = r$. 5 \under \text{U} into an orthonormal basis. When matrix has more columns than rows: Let B = AT. Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as there aren't enough eigenvectors of A to form a basis for R*-e.g dim(kemel) of (A - AI) for some EVec =/= the multiplicity. Remember, dim(ker) = m-rank 8). Generalised Eigenvectors Take a square matrix A \in R*\under \under	3) We find it by: $(A-\lambda,1)^{\lambda}_{i,j}=v^{\lambda-1}_{i,j}, \lambda_2=1, v_0=[1\cdot1\cdot5]^T so: (A\cdot1)^{\lambda}_{i,j}=v^{\lambda-1}_{i,j}=[\cdot3\cdot2\cdot1, -7\cdot3\cdot2, 5\cdot0\cdot1]v_1=v_0=[1\cdot1\cdot5]^T soin (A\cdot1)^{\lambda}_{i,j}=v^{\lambda-1}_{i,j}=[\cdot3\cdot2\cdot1, -7\cdot3\cdot2, 5\cdot0\cdot1]v_1=v_0=[1\cdot1\cdot5]^T soin (A\cdot1)^{\lambda}_{i,j}=(\cdot3\cdot5)^T.$ $B=[0\cdot10, -1\cdot1\cdot3, 2\cdot5\cdot5]$ $b=[0\cdot10, -1\cdot1, 0\cdot1]$ $c=[0\cdot10, -1\cdot1, 0\cdot1$	$R = \begin{bmatrix} e_1 \cdot a_1 & e_1 \cdot a_2 & e_1 \cdot a_3 \\ 0 & e_2 \cdot a_2 & e_2 \cdot a_3 \\ 0 & 0 & e_3 \cdot a_3 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}, \text{ with } A = QR$ $ \begin{aligned} \textbf{12) Householder Maps:} \\ \textbf{Suppose we have a hyper-plane P going through the origin with unit normal u \in \mathbb{R}^n, i.e., P \{x \in \mathbb{R}^n : u \times = 0\}. \text{ The Householder matrix defined by $H_u = 1 - 2uu^T$ induces reflection with P. \\ \textbf{Properties of a Householder Matrix:} \\ \textbf{H}_u$ is involutory; $H_u = H_1^{-1}u.$ H_u$ is orthogonal: $H^Tu = H^{-1}u.$ \\ \textbf{H}_u$ is involutory; $H_u = H_1^{-1}u.$ H_u$ is orthogonal: $H^Tu = H^{-1}u.$ \\ \textbf{H}_u$ preserves the euclidian length of vectors: $ H_u(x) = x .$ \\ \textbf{The eigenvalues} are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P reflects across - e.g any vectors in the hyperplane P. \\ \textbf{H}_u$ preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: Q = I - uu^T with Q^2 = Q and Q = Q^T. \\ \textbf{13OR Alsorithm} \end{aligned} Useful to find the eigenvalues of a matrix. Works for most matrices. 1) \text{ Set } A_{k+1} = A_{k+1} \text{ where } Q_{k+1} \text{ is an orthogonal matrix and R_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) \text{ Set } A_{k+1} = R_{k+1} Q_{k+1}. \text{ Stop after sufficient iterations} \textbf{Properties of QR Decomposition:} \\ 1) \text{ For } k \in \mathbb{N}, \text{ is similar to $A}. \text{ (if A is symmetric)} \textbf{2}) \text{ For } k \in \mathbb{N}, \text{ is similar to $A}. \text{ (if A is symmetric)} \textbf{3}) \text{ The sequence } (Ak) \text{ converges to an upper triangular matrix in orditions.} \textbf{3}) \text{ The sequence } (Ak) \text{ converges to an upper triangular matrix or simply its diagonal elements.} \textbf{3}) \text{ The sequence } (Ak) \text{ converges to an upper triangular matrix.} $
$\begin{aligned} & \det(\mathbf{A}') = 0 \Leftrightarrow \text{Matrix not Invertable. Else,} \\ & \det(\mathbf{A}') = 1/\det(\mathbf{A}). \end{aligned} \\ & \text{We can find the determinant of a square matrix only, and this is done by getting into RREF and multiplying by lead diag. The following operations have effects on det: 0. Swapping own writibliples it by -1 2) Adding/subbing rows does nothing 3) If any two rows are equal, or lead diag by a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an \mathbf{P}' matrix is invertible matrices. —If an \mathbf{P}' matrix is invertible explaint is nonsingular if the columns are linearly indep, le: if \mathbf{r}(\mathbf{A}) is eigenvalues of a Matrix A by solving Characteristic Polynomial (CP) of Spectrum of a matrix: set of its eigenvalues of a matrix: set of its eigenvalues of a matrix: set of its eigenvalues of equal to the eigenvalues of equal to eff. (A) = number of bias is nonsingular if the columns are linearly indep, le: if \mathbf{r}(\mathbf{A}) is eigenvalue. The eigenvalues of a matrix is the spane of \mathbf{P} or \mathbf{P} or \mathbf{P} of its a vector space \mathbf{P} of its a vector space if \mathbf{P} is a sector vector \mathbf{P} is a vector space if \mathbf{P} is a vector subspace \mathbf{P} is a generating set of \mathbf{P} it could express every vector \mathbf{P} in the Vector Space as a linear of each pivot columns. Span of this \mathbf{P} basis is a minimal generating set. To find the eigenvalues by solving \mathbf{P} get their eigenvalues by solving \mathbf{P} or \mathbf{P} is a vector space as a linear of each pivot columns. Span of this \mathbf{P} basis is a minimal generating set. To find the eigenvalues by solving \mathbf{P} get their eigenvalues by solving \mathbf{P} or \mathbf{P} is a vector space as a linear of each pivot columns. Span of this \mathbf{P} basis. A A simple basis is one with as many \mathbf{O}_{\mathbf{N}} and \mathbf{P} is a vector space as a linear properties of each pivot columns span as our simple basis. Dimension \mathbf{P} matrix of eigenvalues by solving \mathbf{P} get their eigenvalues by solving \mathbf{P} by writing \mathbf{P} matrix of eigenvalues by \mathbf{P} in \mathbf{P} in \mathbf{P} in \mathbf{P} in \mathbf{P} $	kz = k z. (ku) = k u. (Au) = A u.(A) = (A¹) If a vector, scalar or matrix = its conjugate, then its real. M4.) Standard Inner Product (SIP) − SIP of two vectors u, v ∈ C* = u¹v Standard Norm: (u²v) $^{1/2}$ Also, the SIP is non negative — if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4. Least Squares Method Endomorphism: for R° is a linear map of f: R° → R° , aka domain and codomain are = the same. Automorphism: for R° is a linear map of f: R° → R° a, aka domain and codomain are = the same. Automorphism: a bijective endomorphism: R° → R° automorphism ⇒ if is injective (ker(f) = {0}) ⇔ if is surjective (m(f) = R°) Projection of a Subspace: Let U ∈ R° be an n dimensional subspace generated by an ordered basis (u¹,···,v¹,b). Let U = [u¹,···,v¹,b]. The orthogonal projection π_{ij} on U is the following endomorphism: π_{ij} : R° → R° , π_{ij} : We can uniquely decompose vectors. B. Let Λ ∈ R° in Horthogonal projective im(Λ) ⊥ ker(Λ) We can uniquely decompose vectors. Let Λ ∈ R° and Λ ∈ R°. Suppose Λ = b has and no solution for X ∈ R°, i.e., b ∈ / im(Λ). C. LSM finds X ∈ R°, i.e., b ∈ / im(Λ). C. LSM finds X ∈ R°, i.e., b ∈ / im(Λ). M51 Least Squares Method (LSM)	2) Orthogonal transformations preserve the magnitude of the angle between vectors: vu, v ∈ R ⁿ , Qu Qv = u y 3) det = 1 or -1. 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) A ¹ = A. 2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real symmetric matrix then it can be diagonalised like so: A = QDQ* = QDQ* where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. MY) Gran-Schmidt (SG) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthogonal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2 rd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂ − (v₂.u)u, and then normalise to get u₂. (alsa we replace v₂ with v₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ − ((v₃.u)u, unit the normalise to get u₂. (alsa we replace v₂ with v₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ − ((v₃.u)u, unit the normalise to get u₂. (alsa we replace v₂ with v₂ but removing its projection on the u plane). 3) We do the Same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ − ((v₃.u)u, unit the normalise to get u₂. (alsa we replace v₂ with v₂ but removing its projection on the unit the pla	4)u = 1/ α A v, (a/ α), 1 over our singular value, multiplied by A, multiplied by our eigenspace span vector), for 1 <= i <= r. 5) Use the Gram Schmidt Process to turn the matrix U into an orthonormal basis. When matrix has more columns than rows: Let B = A ^T . Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as there arent enough eigenvectors of A to form a basis for R ^T -e.g dim(kernel) of (A − AI) for some EVec =/= the multiplicity. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors Take a square matrix A ∈ R ^m . A non zero vector V ∈ C ⁿ is a generalised eigenvector of rank m associated with eigenvalue λ if (A − AI) λ v = 0 and (A − AI) λ v =/= 0 Note that any eigenvector associated with its eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with 1s eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with λ and multiply it by the matrix A − AI, the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A − AI, the result will be another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvector and λ is pattern continues for higher-rank generalized eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvector and λ is a linear combination of a rank 1 generalized eigenvector and λ is pattern continues for higher-rank generalized eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvector and λ is a pattern continues for higher-rank generalized eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvector and λ is a pattern continue for higher-rank generalized eigenvector associated with λ is pattern continues for higher-rank generalized eigenv		$R = \begin{bmatrix} e_1 \cdot a_1 & e_1 \cdot a_2 & e_1 \cdot a_3 \\ 0 & e_2 \cdot a_2 & e_2 \cdot a_3 \\ 0 & 0 & e_3 \cdot a_3 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}, \text{ with } A = QR$ $ \begin{aligned} \textbf{12) Householder Maps:} \\ \textbf{Suppose we have a hyper-plane P going through the origin with unit normal u \in \mathbb{R}^n, i.e., P \{x \in \mathbb{R}^n : u \times = 0\}. \text{ The Householder matrix defined by $H_u = 1 - 2uu^T$ induces reflection with P. \\ \textbf{Properties of a Householder Matrix:} \\ \textbf{H}_u$ is involutory; $H_u = H_1^{-1}u.$ H_u$ is orthogonal: $H^Tu = H^{-1}u.$ \\ \textbf{H}_u$ is involutory; $H_u = H_1^{-1}u.$ H_u$ is orthogonal: $H^Tu = H^{-1}u.$ \\ \textbf{H}_u$ preserves the euclidian length of vectors: $ H_u(x) = x .$ \\ \textbf{The eigenvalues} are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P reflects across - e.g any vectors in the hyperplane P. \\ \textbf{H}_u$ preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: Q = I - uu^T with Q^2 = Q and Q = Q^T. \\ \textbf{13OR Alsorithm} \end{aligned} Useful to find the eigenvalues of a matrix. Works for most matrices. 1) \text{ Set } A_{k+1} = A_{k+1} \text{ where } Q_{k+1} \text{ is an orthogonal matrix and R_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) \text{ Set } A_{k+1} = R_{k+1} Q_{k+1}. \text{ Stop after sufficient iterations} \textbf{Properties of QR Decomposition:} \\ 1) \text{ For } k \in \mathbb{N}, \text{ is similar to $A}. \text{ (if A is symmetric)} \textbf{2}) \text{ For } k \in \mathbb{N}, \text{ is similar to $A}. \text{ (if A is symmetric)} \textbf{3}) \text{ The sequence } (Ak) \text{ converges to an upper triangular matrix in orditions.} \textbf{3}) \text{ The sequence } (Ak) \text{ converges to an upper triangular matrix or simply its diagonal elements.} \textbf{3}) \text{ The sequence } (Ak) \text{ converges to an upper triangular matrix.} $
det(λ^1) = 1/det(A). We can find the determinant of a square matrix only, and this is done by getting into RREF and multiplying by lead diag. The following operators have effects on det. 1) Swapping row multiplies it by -1. 2) Adding/subbing rows does nothing 3) If any two rows are equal, or lead diag = 0, then det = 0. 4) Multiplying by scalar also increases det by a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an n° matrix is invertible \(^2\) and ks is \(^2\) or well invertible matrix is in \(^2\) or wollding and invertible matrix is no columns are linearly indep \(^2\) rows linearly indep, le: if rk(A) = n, or det(A) = /= 0. Else its singular. Vector Space – a set $0 = /= 0$ is a vector space if U is closed under addition and salar multiplication: ie: 1) For all $u \in U$ and $u \in R$, $u \in U$ Vector Subspace: subset of a Vector Space as all inearmounds of its vectors. A basis is a minimal generating set. To find the Vector Space as a linear ombo of its vectors. A basis is a minimal generating set. To find the vector space of a matrix is the provisor of each pivot column. Span of this = basis. A simple basis is one with as many (b, as possible, optote by getting RRFF and taking the pivot columns are an as our simple basis. Dimension = number of basis vectors. A) Finding Change of Basis Matrix. We just represent each basis vector in the rest of the other basis, and each representation is one of our columns. Be $\left\{ \frac{2}{-2} \right\} \left[\frac{1}{1} \right] \left[\frac{1}{-1} $	If a vector, scalar or matrix = its conjugate, then its real. M4) Standard Inner Product (SIP) - SIP of two vectors u, v ∈ C' = u'v Standard Norm: (u'v) ¹² , Also, the SIP is non negative - if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: fo fi? is a linear map of fr. R ⁿ → R ⁿ , aka domain and codomain are the same. Automorphism: a bijective endomorphism: fr. R ⁿ → R ⁿ automorphism ← fi s injective (ker(f) = {0}) → fi s surjective (m(f) = R ⁿ) Projection of a Subspace: Let U ∈ R ⁿ be an n dimensional subspace generated by an ordered basis (u ₁ ,···u ₁). Let U = [U ₁ ,···u ₁), If the following endomorphism: π _i : R ⁿ → R ⁿ unique by endomorphism: π _i : R ⁿ → R ⁿ unique by endomorphism: π _i : R ⁿ → R ⁿ unique by endomorphism: π _i : R ⁿ → R ⁿ unique by endomorphism: π _i : R ⁿ → R ⁿ when a unique by endomorphism: π _i : R ⁿ → R ⁿ unique by endomorphism: π _i : R ⁿ → R ⁿ unique by endomorphism: n _i : be fin A(h). Let A ∈ R ^m For all vectors b ∈ R ⁿ , there exist a unique by ∈ Im(A), and a unique by ∈ ker(A ⁿ) such that: b = h + b, . Let A ∈ R ^m and b ∈ R ⁿ . Suppose Ax = b has nd no solution for x ∈ R ⁿ , i.e., b e f im(A). LSM finds x ∈ R ⁿ such that Ax - b ₂ , or equivalently, Ax - b ₂ ₃ is minimised. Ax-b ₂ is minimised. Ax-b ₂ is minimised. Ax - b ₃ M51 Least Squares Method (LSM)	of the angle between vectors: vu, v ∈ R ⁿ , Qu Qv = uv 3) det = 1 or -1. 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) Al' = A. 2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQ ⁻¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidkt (GS) Process: If We have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V or a continuous that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2 rd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂. Dut removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ - ((v₃u,l)u₁ - ((v₃u,l)u₂) - ((v₃u,l)u₂) - ((v₃u,l)u₂) - ((v₃u,l)u₂) - ((v₃u,l)u₁ - ((v₃u,l)u₂) - ((v₃u,l)u₁ - ((v₃u,l)u₂) - ((v₃u,l)u₁ - ((v₃	multiplied by A, multiplied by our eigenspace span vector), for $1 < = 1 < = r$. 5) Use the Gram Schmidt Process to turn the matrix U into an orthonormal basis. When matrix has more columns than rows: Let B = A ¹ . Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as there aren't enough eigenvectors of A to form a basis for R ¹ .e.g dim(kemel) of $(A - \lambda I)$ for some EVec =/= the multiplicty. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors Take a square matrix $A \in R^{m_1}$. A non zero vector $V \in \mathbb{C}^n$ is a generalised eigenvector of rank m associated with eigenvalue A if $(A - \lambda I)^{m_1} v = 0$ and $(A - \lambda I)^{m_1-1} v =/= 0$ Note that any eigenvector associated with A is eigenvalue A if $(A - \lambda I)^{m_1} v = 0$ and $(A - \lambda I)^{m_1-1} v =/= 0$ Note that any eigenvector of A associated with A and multiply it by the matrix $A - \lambda I$, the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with A , then when you multiply it by $A - \lambda I$, the result will be another eigenvector associated with A . If A has a generalized eigenvector of rank 2 associated with A , then when you multiply it by $A - \lambda I$, the result will be another eigenvector associated with A . This pattern continues for higher-rank generalized eigenvector. Example: Take $A = [1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1]$. $CP: (1 - \lambda)^2$, $A = 1$ (with $AM = 3$). We end up with two linearly indep EVecs: $(0, 1, -1)^2$, $(0, 0, 1)^2$. There is one more EVec for this value which can be computed by $(A - I)_{N_2} = V_{N_2}$ and so $V_{N_2} = V_{N_2} = V_{N_2}$ be found by using a suitable linear combination and $V_{N_2} = V_{N_2} = V_{N$	so: (A·1)V _{1,1} = V ⁻¹ _{1,9} = [-3 2 1, -7 32, 5 0 - 1]v ₁ = v ₀ = [1 - 1] ² ₁ soling this yields v ₁ = [0 3 - 5] ² . 4) Thus {[0 - 1 2] ² , [-7 3 2] ² , [5 0 - 1] ² } is a basis of R ² . B = [0 1 0, -1 - 1 3, 2 5 - 5] 5) computing B ² ABg gives us = [0 0 0, 0 1 1, 0 0 1] = J. 10) Cholesky Decomposition A matrix A ^m is lower triangular vi < j, A _{ij} = 0 A matrix A ^m is lower triangular vi < j, A _{ij} = 0 A matrix A ^m is lower triangular vi < j, A _{ij} = 0 A matrix A ^m is lower triangular vi < j, A _{ij} = 0 Ax = b can easily be solved on them, by first getting x _i , and then x ₂ with direct substitution and so on, on lower triangular matrices. For upper triangular we get x _n first, and go backwards. Additional Properties of Symmetric Matrices: Let A ∈ R ^m be a symmetric matrix. J) If A is positive definite, all its diagonal elements are strictly positive. 2.) If A is positive definite then max (A _{ij} , A _{ij}) > A _{ji} . If A is positive semi definite then max (A _{ij} , A _{ji}) > A _{ji} . If A is positive definite then max (A _{ij} , A _{ji}) > A _{ji} . If A is positive definite then the 1x1, 2x2, mxm matrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element; it cannot be PSD. Also: if we see a matrix element; A _{ji} > max (A _{ij} , A _{ji}) then its not PSD (e.g) if the 3 ^m element in the first row = 3, 1½ in 1 ^m x ₀ w = 2, 3 ^m in 3 ^m row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A ^m of the form A = LL ^T , where L is a lower triangular matrix.	12) Householder Maps: Suppose we have a hyper-plane P going through the origin with unit normal $u \in \mathbb{R}^m$, i.e., $P = \{x \in \mathbb{R}^m : u \times = 0\}$. The Householder matrix defined by $H_u = 1 - 2uu^T$ induces reflection wrt P. Properties of a Householder Matrix: H_u , is involutory: $H_u = H_u^{-1}u$. H_u , is rovolutory: $H_u = H_u^{-1}u$. H_u , is rovolutory: $H_u = H_u^{-1}u$. H_u , is rovolutory: $H_u = H_u^{-1}u$. H_u is orthogonal: $H^Tu = H^{-1}u$. H_u is reserves the euclidian length of vectors: $ H_u(x) = x $. The eigenvactors are vectors spependicular to the hyperplane P reflects across – e.g any vectors in the hyperplane P. H_u preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: $Q = I - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 13) QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) $Set A_0 = A_0$ is $A_0 = A_0$,
matrix only, and this is done by getting into RREF and multiplying by lead diag. The following operations have effects on det 1) Swapping row multiplies it by -1. 2) Adding/subbing rows does nothing 3) If any two rows are equal, or lead diage >0, then det = 0. 4) Multiplying by scalar also increases det by a scalar. Trace – sum of diag elems. If an n² matrix is invertible \Leftrightarrow rank is $n \Leftrightarrow$ columns are linearly indep \Leftrightarrow rows linearly indep, i.e.; if $rk(A) = r$ context is invertible \Rightarrow rank is $n \Leftrightarrow$ columns are linearly indep, i.e.; if $rk(A) = n$, or $det(A) = /= 0$. Else its singular. Vector Space n as $ext = 1 = n$ of the columns are linearly indep, i.e.; if $rk(A) = n$, or $ext = n$ as $ext = 1 = n$ of the columns are linearly indep, i.e.; if $rk(A) = n$, or $ext = n$ and $ext = n$ or $ext = n$ of the columns are linearly indep, i.e.; if $rk(A) = n$, or $ext = n$ as $ext = 1 = n$ of the columns are linearly indep, i.e.; if $rk(A) = n$, or $ext = n$ as $ext = 1 = n$ or $ext = n$ of the columns are linearly indep, i.e.; if $rk(A) = n$, or $ext = n$ and $ext = n$ or $ext = n$	M4) Standard Inner Product (SIP) - SIP of two vectors u, v e C" = u]v Standard Norm: (u]v o)v². Also, the SIP is non negative - if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: fof R° is a linear map of f: R° → R°, aka domain and codomain are the same. Automorphism: a bijective endomorphism: fr° → R° automorphism ⇒ f is nijective (ker(f) = {0}) ⇒ f is surjective (im(f) = R°) Projection of a Subspace: Let U ∈ R° be an n dimensional subspace: Let U ∈ R° be an n dimensional subspace: Let U ∈ R° be an n dimensional subspace: Let U ∈ R° be following endomorphism: π; R° → R° \ N° →	 4) All eigenvalues have a modulus of 1 Properties of Symmetric Matrices: 1) A¹ = A. 2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue he algebraic multiplicity and geometric multiplicity are equal. 4) If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. 5 Sectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQ¹ = QDQ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M¹) Gram-Schmidt (GS) Process: If We have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2nd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂. But removing its projection on the u plane). 3) We do the same thing for 3nd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ - ((v₂u)u₁ u₁) - ((v₂u)u₂). Formula: u= v₁ - proj_{in}(v) - proj_{in}(v) proj_{in}(v). M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues 	5) Use the Gram Schmidt Process to turn the matrix U into an orthonornal basis. When matrix has more columns than rows: Let $\mathbb{B} = \mathbb{A}^1$. Compute SVD of \mathbb{B} using the method above. Sometimes we can't diagonalize some matrices as there aren't enough eigenvectors of \mathbb{A} to form a basis for \mathbb{R}^n . e.g. dim(kernel) of $(\mathbb{A} - \mathbb{A} \mathbb{I})$ for some EVec =/= the multiplicity. Remember, dim(ker) = m-rank \mathbb{B} Generalised Eigenvectors Take a square matrix $\mathbb{A} \in \mathbb{R}^m$. A non zero vector $\mathbb{V} \in \mathbb{C}^n$ is a generalised eigenvector of rank m associated with eigenvalue \mathbb{A} if $(\mathbb{A} - \mathbb{A} \mathbb{I})^m \mathbb{V} = \mathbb{O}$ and $(\mathbb{A} - \mathbb{A} \mathbb{I})^{m-1} = /= \mathbb{O}$ Note that any eigenvector of rank m associated with \mathbb{A} is eigenvalue is a generalised eigenvalue of size \mathbb{I} . If you take an eigenvector of \mathbb{A} associated with \mathbb{A} and multiply it by the matrix $\mathbb{A} - \mathbb{A}$, the result will be the zero vector. If \mathbb{A} has a generalized eigenvector of rank \mathbb{A} associated with \mathbb{A} , then result will be another eigenvector associated with \mathbb{A} . If \mathbb{A} has a generalized eigenvector of rank \mathbb{A} associated with \mathbb{A} then when you multiply it by $\mathbb{A} - \mathbb{A}$, the result will be a linear combination of a rank \mathbb{I} generalized eigenvector. Example: Take $\mathbb{A} = [\mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I}, $	4) Thus $\{(0-1,2]^n, [-73,2]^n, [50-1]^n\}$ is a basis of R^3 . B = $[010, -1-13, 25-5]$ 5) computing B 1 AB gives us = $[000, 011, 001] = J$. 10) Cholesky Decomposition A matrix A^m is lower triangular $\forall < j, A_{ij} = 0$ A matrix A^m is lower triangular $\forall < j, A_{ij} = 0$ These matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_i , and then x_i with direct substitution and so n_i on lower triangular matrices. For upper triangular we get x_n first, and go badovards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. I) If A is positive definite, all its diagonal elements are strictly positive. 2) If A is positive semi-definite, all its diagonal elements are non-negative. 3) If A is positive semi-definite than $\max(A_{ij}, A_{jj}) > A_{jj} $. If A is positive definite then $\max(A_{ij}, A_{jj}) > A_{jj} $. If A is positive definite then the $\max(A_{ij}, A_{jj}) > A_{jj} $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $\max(A_{ij}, A_{ij}) > A_{ij} $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $\max(A_{ij}, A_{ij}) > A_{ij} $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $\max(A_{ij}, A_{ij}) > A_{ij} $. If A is positive definite matrix is an interval $\max(A_{ij}, A_{ij}) > A_{ij} $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $\max(A_{ij}, A_{ij}) > A_{ij} $. If A is positive definite matrix is A in A in the upper left comer of A are also positive definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element A in the first row A A A if in A	12) Householder Maps: Suppose we have a hyper-plane P going through the origin with unit normal $u \in \mathbb{R}^m$, i.e., $P = \{x \in \mathbb{R}^m : u \times = 0\}$. The Householder matrix defined by $H_u = 1 - 2uu^T$ induces reflection wrt P. Properties of a Householder Matrix: H_u , is involutory: $H_u = H_u^{-1}u$. H_u , is rovolutory: $H_u = H_u^{-1}u$. H_u , is rovolutory: $H_u = H_u^{-1}u$. H_u , is rovolutory: $H_u = H_u^{-1}u$. H_u is orthogonal: $H^Tu = H^{-1}u$. H_u is reserves the euclidian length of vectors: $ H_u(x) = x $. The eigenvactors are vectors spependicular to the hyperplane P reflects across – e.g any vectors in the hyperplane P. H_u preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: $Q = I - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 13) QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) $Set A_0 = A_0$ is $A_0 = A_0$,
RREF and multiplying by lead diag. The following operations have effects on det: 1) Swapping row multiplies it by -1 2) Adding/subbing rows does nothing 3) If any two rows are equal, or lead diag 0, then det = 0. 4) Multiplying by scalar also increases det by a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an n² matrix is invertible expression and invertible matrices – If an n² matrix is invertible expression increases det by a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an n² matrix is invertible expression and invertible matrices – If an n² matrix is invertible expression and invertible matrices – If an n² matrix is invertible expression and invertible expression of expression and invertible expression and in	of two vectors $u, v \in \mathbb{C}^n = u^Tv$ Standard Norm: $(u^Tv)^{1/2}$. Also, the SIP is non negative – if it is 0 then $u = 0$. Complex Eigenvalues and Eigenvectors: A The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: fof \mathbb{R}^n is a linear map of $f: \mathbb{R}^n \to \mathbb{R}^n$, and admain and codomain are the same. Automorphism: a bijective endomorphism. $f: \mathbb{R}^n \to \mathbb{R}^n$ automorphism \iff is injective ($(\ker(f) = \{0\}) \iff f \text{ is surjective }((\inf(f) = \mathbb{R}^n)) \iff f \text{ is surjective }(\inf(f) = \mathbb{R}^n)$ Projection of a Subspace: Let $U \in \mathbb{R}^n$ be an an dimensional subspace generated by an ordered basis (u_1, \dots, u_n) . Let $U = [U_1, \dots, U_n]$. The orthogonal projection π_U on U is the following endomorphism: $\pi_U: \mathbb{R}^n \to \mathbb{R}^n$ $V \to \pi_U(V) = U(U^TU)^2 U^TV$ $Im(A) \bot \ker(A^T)$ We can uniquely decompose vectors. Bet $A \in \mathbb{R}^m: \text{For all vectors } b \in \mathbb{R}^n$, there exist a unique $b_1 \in \min(A)$. Let $A \in \mathbb{R}^m: \text{For all vectors } b \in \mathbb{R}^n$, there exist a unique $b_1 \in \min(A)$. Let $A \in \mathbb{R}^m: \text{For all vectors } b \in \mathbb{R}^n$, there exist a unique $b_1 \in \min(A)$. Let $A \in \mathbb{R}^m: \text{For all vectors } b \in \mathbb{R}^n$ by such that: $b = b_1 + b_1$. Let $A \in \mathbb{R}^m: \text{For all vectors } b \in \mathbb{R}^n$ such that: $b = b_1 + b_2$. Let $A \in \mathbb{R}^m: \text{ and that } \ A \to b\ _2$, or equivalently, $\ A \to b\ _2^2$ is minimised. $\ A \to b\ _2$ is $\ A \to b\ _2$ is minimised. $\ A \to b\ _2$ is $\ A \to b\ _2$ is minimised. $\ A \to b\ _2$ is $\ A \to b\ _2$ is minimised. $\ A \to b\ _2$ is $\ A \to b\ _2$ is $\ A \to b\ _2$ is minimised. $\ A \to b\ _2$ is $\ A \to b\ _2$.	Properties of Symmetric Matrices: 1) AT = A. 2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an a by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQT ⁴ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. MY) Gran-Schmidt (SS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude to get u ₁ . 2) For the 2 rd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ – (v ₂ .u)u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd onwards, subtracting its projection on all the planes from before: eg: u ₃ = v ₃ – ((v ₂ u ₁ u ₁ u ₁) – ((v ₃ u ₂ u ₂ u ₂). MB) Spectral Decomposition method on M	into an orthonormal basis. When matrix has more columns than rows: Let $B=A^*$. Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as there aren't enough eigenvectors of A to form a basis for R^* .e.g dim(kemel) of $(A-A)I$ for some E Vec e^- 4 the multiplicity. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors 7 Take a square matrix $A \in R^*$. A non zero vector $V \in C^*$ is a generalised eigenvector of rank m associated with eigenvalue A if $(A-A)I)^m \vee = 0$ and $(A-A)I)^{m-1} \vee = /9$. Note that any eigenvector associated with its eigenvalue A if $(A-A)I)^m \vee = 0$ and $(A-A)I)^{m-1} \vee = /9$. Note that any eigenvector associated with A and multiply it by the matrix $A - AI$, the result will be the zero vector. If A has a generalized eigenvector of rank I associated with A , then result will be another eigenvector associated with A . The has a generalized eigenvector of rank I associated with A , then when you multiply it by $A - AI$, the result will be another eigenvector associated with A . This pattern continues for higher-rank generalized eigenvector and another eigenvector associated with A . This pattern continues for higher-rank generalized eigenvector AI in AI . The result will be a linear continues for higher-rank generalized eigenvector AI in AI is AI , the result will be a linear continues for higher-rank generalized eigenvector AI . This pattern continues for higher-rank generalized eigenvector AI in	B = [0 10, -1 -1 3, 2 5 -5] 5) computing B¹-AB gives us = [0 0 0, 0 1 1, 0 0 1] = J. 5) computing B¹-AB gives us = [0 0 0, 0 1 1, 0 0 1] = J. 10) Cholesky Decomposition A matrix A²'' is lower triangular $\forall i < j, A_{ij} = 0$ A matrix A²'' is lower triangular $\forall i < j, A_{ij} = 0$ A matrix A²'' is upper triangular $\forall i < j, A_{ij} = 0$ These matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_{ij} and then x_i with direct substitution and so on, on lower triangular matrices. For upper triangular we get x_i first, and go backwards. Additional Properties of Symmetric Matrices: Let $A \in R$ '' be a symmetric matrix. 1) If A is positive definite, all its diagonal elements are strictly positive. 2) If A is positive definite then max $(A_{ij}, A_{jj}) > A_{jj} $. If A is positive sermi definite then A max A is $A_{ij} > A$ is positive sermi definite then A is on its diagonal. 4) If A is positive definite then the A is on its diagonal. 4) If A is positive definite then the A is A is an as a spositive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $A_{ij} > A$ max $A_{ij} > A$ has if in A is one 2, A in	
1) Swapping row multiplies it by -1 2) Adding/subbing rows does nothing 3) If any two rows are equal, or lead diag 0, then det = 0. We find the eigenvalues of a Matrix A by solving Characteristic Polynomial (CP) of Spectrum of a matrix: set of its volume of the eigenvalues. The Algorization Hultiplicity (AM) of eigenvalues are linearly indep. Singular – A square matrix is nonsingular if the columns are linearly indep, i.e. if $r(A)$ = $r(A)$ in or det(A) = $r(A)$ = $r(A)$ is a worth year of the eigenvalues. The Algorization Hultiplicity (GM) of eigenvalue – number of times it is a row column are linearly indep, i.e. if $r(A)$ = $r(A)$	non negative — if it is 0 then u = 0. Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: fo R° is a linear map of f: R° → R°, aka domain and codomain are the same. Automorphism: a bijective endomorphism. f: R° → R° automorphism ⇔ fis injective (ker(f) = R°) → B° automorphism codomain are the same. Automorphism: a bijective endomorphism. f: R° → R° automorphism ⇔ fis injective (ker(f) = R°). Projection of a Subspace: Let U ∈ R° be an n dimersional subspace generated by an ordered basis (uj., ¬u,i). Let U = [Uj., …, U,i]. The orthogonal projection π _{ij} on U is the following endomorphism: π _i : R° → R° → V → π _i (V) = U(U'U) ½U'V im(A) ⊥ ker(A') We can unique by decompose vectors. Let A ∈ R°™ For all vectors b ∈ R°, there exist a unique b, ∈ im(A), and a unique b, ∈ ker(A') such that: b = b, + b,. Let A ∈ R°™ and b ∈ R°. Suppose Ax = b has no solution for x ∈ R°, i.e., b ∈ / im(A). 0. LSM finds x ∈ R° such that Ax − b ₂ , or equivalently, Ax − b ₂ ; s minimised. Ax − b ₃ ; is minimised. Ax − b ₃ ; s minimised. Ax −	2) If A is a real symmetric matrix, then all its Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue are real. 3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQ¹ = QDQ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidtt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2 nd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂ − ((v₂,u)u, and then normalise to get u₂. (aka we replace v₂ with v₂ but removing its projection on the u plane). 3) We do the same thing for 3 nd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ − ((v₃,u,u,u,u) − ((v₃,u,u,u,u) − ((v₃,u,u,u) − (v₃,u,u,u) − (v₃,u,u,u,u) − (v₃,u,u,u,u) − (v₃,u,u,u,u,u) − (v₃,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u	Let B = AT. Compute SVD of B using the method above. Sometimes we can't diagonalize some matrices as there aren't enough eigenvectors of A to form a basis for R*'e.g. dim(kemel) of (A - λ I) for some EVec =/e the multiplicity. Remember, dim(ker) = m-rank 8). Generalised Eigenvectors Take a square matrix A ∈ R*'. A non zero vector V ∈ C* is a generalised eigenvector of rank m associated with the eigenvalue h if (A - λ I)*" = 0 and (A - λ I)*** $v = 0$. Note that any eigenvector associated with 1 seigenvalue h if (A - λ I)*** = 0. AI, the result will be the zero vector. If A has a generalized eigenvector of A associated with λ and multiply it by the matrix A - λ I, the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A - λ I, the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by A - λ II, the result will be another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 1 1, 0 10, 0 0 1]. CP: $(1 - \lambda)^3$, λ 1 = 1 (with λ 1 = 3). We end up with two linearly indep EVecs: $(0, 1, -1)^3$, $(1, 0, 0)^3$. There is one more EVec for this value which can be computed by $(A - I)^3$ = λ 2, and so λ 3, = 0, 0, 0, 1). If is not always the case that we can do λ 2 is a linear combination and + bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	10) Cholesky Decomposition A matrix A^m is lower triangular $\forall i < j$, $A_{ij} = 0$ A matrix A^m is lower triangular $\forall i < j$, $A_{ij} = 0$ A matrix A^m is upper triangular $\forall i < j$, $A_{ij} = 0$ These matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_i , and then x_i with direct substitution and so on, on lower triangular matrices. For upper triangular we get x_n first, and go backwards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. 1) If A is positive effenite, all its diagonal elements are strictly positive. 2) If A is positive semi-definite, all its diagonal elements are non-negative. 3) If A is positive definite then $\max(A_{ij}, A_{ij}) > A_{ij} $. If A is positive definite then $\max(A_{ij}, A_{ij}) > A_{ij} $. If A is positive definite then $\max(A_{ij}, A_{ij}) > A_{ij} $. If A is positive definite then the $1 \times 1, 2 \times 2, \dots$ mxm matrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_{ij} > \max(A_{ij}, A_{ij})$ then its not PSD (e.g. if the 3^m element in the first row $= 3$, 1^m in 1^m row $= 2$, 3^m in 3^m row $= 1$, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^m of the form $A = LL^T$, where L is a lower triangular matrix.	Suppose we have a hyper-plane P going through the origin with unit normal $u \in \mathbb{R}^n$, i.e., $P = \{x \in \mathbb{R}^m : u \times u > 0\}$. The Householder matrix defined by $H_u = I - 2uu^T$ induces reflection wit P. Properties of a Householder Matrix : H_u is involutory: $H_u = H_u^{-1}u$. H_u is involutory: H_u involution
$ \begin{aligned} & 2) \text{ Adding/subbing rows does nothing} \\ & 3) \text{ If any two rows are equal, or lead diago} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then dependential then dependent of eigenvalues. } \text{ the det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ the dependent of eigenvalues. } \text{ the det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ the det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. \end{aligned} \\ & 0, \text{ then det} = 0. $	Complex Eigenvalues and Eigenvectors: A. The eigenvalues of a real matrix can be complex. This means our eigenvalues or a real provided in the complex too. 4. Least Squares Method Endomorphism: for R° is a linear map of fr. R° \rightarrow R°, ake domain and codomain are et the same. Automorphism: a bijective endomorphism: $f. R° \rightarrow R°$ automorphism \iff is injective (ker(f) = {0}) \iff is surjective (m(f) = R°) Projection of a Subspace Let $U \in R°$ be an n dimensional subspace generated by an ordered basis ($u_1, \cdots u_n$). Let $U = [U_1, \cdots, U_n]$. The orthogonal projection π_U on U is the following endomorphism: $\pi_U : R° \rightarrow R°$ 7. $V \rightarrow \pi_V(v) = U(U^*U)^2 U^*Uv$ 8. Let $A \in R° \rightarrow R°$ 9. We can uniquely decompose vectors. 8. Let $A \in R° \rightarrow R°$ is unique $b_v \in \ker(A°)$ such that: $b = b_v + b_v$. 10. Let $A \in R° \rightarrow R°$ is unique $b_v \in \ker(A°)$ such that: $b = b_v + b_v$. 11. Let $A \in R° \rightarrow R°$ is unique $A = R°$. Suppose $A = B$ has no solution for $X \in R°$ such that $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ individual of $A = R° \rightarrow R°$ is an individual of $A = R° \rightarrow R°$ in	Eigenvalues are real. 3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an by n real symmetric matrix, eigenvectors for district eigenvalues are orthogonal. 5 Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQT where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. MY) Gran-Schmidt (SG) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthogonal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u ₁ . 2) For the 2 rd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ = ((v ₃ u ₁) ₁) ₁ = ((v ₃ u ₂) ₁) ₂) - ((v ₃ u ₁) ₂) ₂). Formula: u ₁ = v ₁ - proj ₁₁ (v ₁) - proj ₁₂ (v ₁) proj ₁₃ (v ₁). 1) Solve the Char Polynomial to get the eigenvalues	above. Sometimes we can't diagonalize some matrices as there aren't enough eigenvectors of A to form a basis for R'*.e.g dim(kernel) of (A – λ 1) for some EVec =/= the multiplicity. Remember, dim(ker) = n-rank 8) Generalised Eigenvectors Take a square matrix λ 6 R** R"* A non zero vector $V \in \mathbb{C}^n$ is a generalised eigenvector of rank m associated with eigenvalue λ 6 If ($A - \lambda$ 1)" $V = 0$ and $(A - \lambda 1)$ " $V = 1 = 0$ Note that any eigenvector associated with its eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with λ 6 and multiply it by the matrix λ 6 A λ 7, the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ 7, then when you multiply it by λ 7 A λ 7, the result will be another eigenvector associated with λ 8. If A has a generalized eigenvector of rank 2 associated with λ 8 then when you multiply it by λ 7 A λ 7, the result will be an invariant of a rank 1 generalized eigenvector and another eigenvector associated with λ 8. This pattern continues for higher-rank generalized eigenvector λ 8 A λ 9. We have a subject to the subject with λ 9 and λ 9 and λ 9 and λ 9 and λ 9. There is one more EVec for this value which can be computed by (λ 1) λ 9 and λ 9 and λ 9. If λ 9 in the solution and λ 9, and λ 9 and λ 9 and λ 9. If λ 9 in the solution and λ 9, and λ 9 are λ 9, and λ 9 and λ 9 be found by using a suitable linear combination au 1 +bu2 of u1 and u2, i.e., we need to find the generalized eigenvector for the ei	A matrix A^m is lower triangular $\forall i < j$, $A_{ij} = 0$ A matrix A^m is upper triangular $\forall i < j$, $A_{ij} = 0$ These matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_{ij} and then x_{ij} with direct substitution and so n_i on lower triangular matrices. For upper triangular we get x_{ij} first, and go backwards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. Joint Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. Joint Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. Joint Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. 2) If $A \in \mathbb{R}^m$ be a symmetric matrix. 3) If $A \in \mathbb{R}^m$ be a symmetric matrix are strictly positive. 3) If $A \in \mathbb{R}^m$ be a symmetric definite, all its diagonal elements are non-negative. 3) If $A \in \mathbb{R}^m$ be a symmetric max $(A_{ij}, A_{jj}) > A_{jj} $. If $A \in \mathbb{R}^m$ be a symmetric definite then then $A \in \mathbb{R}^m$ be positive definite then then $A \in \mathbb{R}^m$ be a positive definite then then $A \in \mathbb{R}^m$ be a positive definite matrices in the upper left corner of $A \in \mathbb{R}^m$ be a positive definite matrices. First one and $A \in \mathbb{R}^m$ be a positive definite matrices of $A \in \mathbb{R}^m$ be an another positive definite matrices. First positive definite matrices in the upper left corner of $A \in \mathbb{R}^m$ be an approximately definite matrices. First positive $A \in \mathbb{R}^m$ be an another left $A \in \mathbb{R}^m$ be an another left $A \in \mathbb{R}^m$ be an approximately $A \in \mathbb{R}^m$ be a	$= \left\{x \in \mathbb{R}^n : u \times = 0\right\}. \text{ The Householder matrix} defined by $H_u = I - 2uu^T$ induces reflection with P_u. Properties of a Householder Matrix: H_u is involutory: H_u = H_u^3u. H_u is orthogonal: $H^Tu = H^3u.$H_u$ preserves the euclidian length of vectors: $I[H_u(x)] = x .$ The eigenvactors the euclidian length of vectors: $I[H_u(x)] = x .$ The eigenvactors are vectors perpendicular to the hyperplane P reflects across $-eq$ any vectors in the hyperplane P. H_u preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: $Q = I = uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 13 QR Algorithm$ Useful to find the eigenvalues of a matrix. Works for most matrices. $1)$ Set $A_0 = A$. $2)$ For $k \in \mathbb{N}$, apply the QR decomposition to $A_0 : $A_0 = Q_{k+1} R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3 Set $A_{k+1} = R_{k+1} Q_{k+1}$ Stop after sufficient iterations $Properties of QR Decomposition: $1)$ For $k \in \mathbb{N}$, k is similar to A. (similar means $A_0 = P^1AP$ ie, it can be obtained from performing a transformation matrix on A.) 2 For $k \in \mathbb{N}$, k is similar to A (similar means $A_0 = P^1AP$ ie, it can be obtained from performing a transformation matrix on A.) 2 For $k \in \mathbb{N}$, k is similar to A, k is m in the $A_1 = Q_1^T AQ_0$ from above. 50 A_1 and A have the same eigenvalues and v is an eigenvector of A_0 if and only if Q_1v is an eigenvector of A_1. This is important because of property 4. (If A is symmetric)$ 4) The eigenvalues of an upper triangular matrix under certain conditions. This is important because of property 4. (If A is symmetric)$ 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. A is A is A is A in A in A in A in A in $$
solying Characteristic Polynomial (CP) of Spectrum of a matrix: set of lits oby a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an normatrix is invertible \hookrightarrow rank is no columns are linearly indep \hookrightarrow rows linearly indep. Singular – A square matrix is nonsingular if the columns are linearly indep, le: if rk(A) = n, or det(A) = -0. Lise its singular. Vector Space – a set U = 1 = 0 is a vector space if U is closed under addition and scalar multiplication: le: 1) For all $u \in U$ and $c \in R$, $cu \in U$ Vector Subspace: subset of a Vector Space Sa a generating set: U vector space is a U is could express every vector U in the Vector Space as a linear combo of its vectors. A basis is a minimal generating set. To find it we get the REF, and take original vector of each pivot column. Span of this $=$ basis. A simple basis is one with as many 0s, as Dimension $=$ number of basis vectors. M1) Finding Change of Basis Matrix. We just represent each basis vector in terms of the other basis, and each representation is one of our columns. $B = \begin{cases} 1 \\ -2 \\ 1 \end{cases} 1 \\ 1 > R = \begin{cases} 4 \\ 0 \\ -2 \end{vmatrix} 1 \\ 1 > R = \begin{cases} 2 \\ -1 \\ 1 \end{vmatrix} -1 \\ -1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 4 \\ 0 \\ 6 \\ -1 \end{vmatrix} -1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 4 \\ 0 \\ 1 - 2 \end{cases} 1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 \\ 1 - 1 \end{vmatrix} -1 \\ 1 + R = \begin{cases} 2 \\ 1 + R = \begin{cases} 2 \\ 1 + R = \end{cases} -1 \\ 1 + R = \end{cases} -1 \\ 1 + R = \begin{cases} 2 \\ 1 + R = \end{cases} -1 \\ 1 + R $	A. The eigenvalues of a real matrix can be complex. This means our eigenvectors are complex too. 4 Least Squares Method Endomorphism: fof R° is a linear map of f: R° → R°, aka domain and codomain are the same. Automorphism: a bijective endomorphism: f: R° → R° automorphism ← f is injective (ker(f) = {0}) ← f is surjective (m(f) = R°) Projection of a Subspace: Let U ∈ R° be an n dimensional subspace generated by an ordered basis (uj., "u,j.). Let U = [Uj.,,U,j.] The orthogonal projection π _{ij} on U is the following endomorphism: π _{ij} : R° → R° v → π _i (v) = U(U'U) ¹·U'v im(A) ⊥ ker(A¹) We can unique by decompose vectors. Let A ∈ R° ¬ For all vectors b ∈ R°, there exist a unique b, ∈ ker(A¹) such that the b = b + b, Let A ∈ R° and b ∈ R°. Suppose Ax = b has no no solution for x ∈ R°, i.e., b ∈ / im(A). 0. LSM finds x ∈ R° such that Ax − b ₂ , or equivalently, Ax − b ₂ ₃ is minimised. Ax-b ₂ is minimised. Ax-b ₃ is minimised when Ax-b ₃ = 0 ⇔ Ax = b, M51 Least Squares Method (LSM)	3) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal. 4) If A is an n by real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is an els, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQT a where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidtt (GS) Process: If We have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V of set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2 rd vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂. Dut removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ − ((v₃u, u, u, u) − ((v₃u, u, u) − ((v₃u, u, u) − (v₃u,	there aren't enough eigenvectors of A to form a basis for R°.e.g dim(kemel) of (A – λI) for some EVec =/= the multiplicity. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors Take a square matrix A e R°. A non zero vector V ∈ C° is a generalised eigenvector of rank m associated with eigenvalue λ if (A – λI) "v = 0 and (A – λI)" "1 v =/= 0 Note that any eigenvector of srank m associated with eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of associated with λ and multiply it by the matrix A – λI , the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A – λI , the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by A – λI , the result will be another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 1 1, 0 10, 0 0 1], CP: (1 – λ)? λ , = 1 (with Am = 3). We end up with two linearly indep EVecs: (0, 1, -1)°, (1, 0, 0)°. There is one more EVec for this value which can be computed by (A-I)v ₃ = v ₂ , and so v ₃ = (0, 0, 1)°. The not always the case that we can do (A-I)v ₃ = v ₂ , or v ₃ , A generalised eigenvectors (3 and always be found by vising a suitable linear combination au 1 +bu2 of u1 and u2, i.e., we need to find the generalised eigenvector for the	A matrix A^m is lower triangular $\forall i < j$, $A_{ij} = 0$ A matrix A^m is upper triangular $\forall i < j$, $A_{ij} = 0$ These matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_{ij} and then x_{ij} with direct substitution and so n_i on lower triangular matrices. For upper triangular we get x_{ij} first, and go backwards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. Joint Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. Joint Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. Joint Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. 2) If $A \in \mathbb{R}^m$ be a symmetric matrix. 3) If $A \in \mathbb{R}^m$ be a symmetric matrix are strictly positive. 3) If $A \in \mathbb{R}^m$ be a symmetric definite, all its diagonal elements are non-negative. 3) If $A \in \mathbb{R}^m$ be a symmetric max $(A_{ij}, A_{jj}) > A_{jj} $. If $A \in \mathbb{R}^m$ be a symmetric definite then then $A \in \mathbb{R}^m$ be positive definite then then $A \in \mathbb{R}^m$ be a positive definite then then $A \in \mathbb{R}^m$ be a positive definite matrices in the upper left corner of $A \in \mathbb{R}^m$ be a positive definite matrices. First one and $A \in \mathbb{R}^m$ be a positive definite matrices of $A \in \mathbb{R}^m$ be an another positive definite matrices. First positive definite matrices in the upper left corner of $A \in \mathbb{R}^m$ be an approximately definite matrices. First positive $A \in \mathbb{R}^m$ be an another left $A \in \mathbb{R}^m$ be an another left $A \in \mathbb{R}^m$ be an approximately $A \in \mathbb{R}^m$ be a	Properties of a Householder Matrix: H _u is involutory: H _u = H _v ⁻¹ u. H _u is involutory: H _u = H _v ⁻¹ u. H _u is orthogonal: H'u = H ⁻¹ u. H _u is involutory: H _u = H _v ⁻¹ u. H _u is neverous the euclidian length of vectors: $ H_{u}(x) = x $. The eigenvalues are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P reflects across – e.g. any vectors in the hyperplane P. H _u preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: Q = 1 – uu' with Q² = Q and Q = Q². 13.3 QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set A ₀ = A. 2) For k ∈ N, apply the QR decomposition to A ₁ : A _k = Q _{k+1} R _{k+1} where Q _{k+1} is an orthogonal matrix and R _{k+1} is an upper triangular matrix. 3) Set A _{k+1} = R _{k+1} Q _{k+1} . Stop after sufficient iterations Properties of QR Decomposition: 1) For k ∈ N, A ₁ is similar to A. (similar means A _k = P¹AP ie, it can be obtained from performing a transformation matrix on A). 2) For k ∈ N, A _k is similar to A. (similar means A _k = P¹AP ie, it can be obtained from performing a transformation matrix on A). 3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangular matrix, from which eigenvalues are easily findable. Application to Symmetric Hatrices 1f A is symmetric, the algorithm converges , under certain conditions, to a diagonal matrix, for the certain conditions, to a diagonal matrix, and a diagonal matrix, and a diagonal matrix.
4) Multiplying by scalar also increases det by a scalar. Trace – sum of diag elems. The Algebraic Multiplicity (AlV) of eigenvalues and the product of eigenvalues. The Algebraic Multiplicity (AlV) of eigenvalue – and their machine and their mach	complex too. 4 Least Squares Method Endomorphism: f of \mathbb{R}^n is a linear map of f : $\mathbb{R}^n \to \mathbb{R}^n$, aka domain and codomain are the same. Automorphism: a bijective endomorphism: f : $\mathbb{R}^n \to \mathbb{R}^n$, aka domain and codomain are the same. Automorphism: f : f	multiplicity are equal. 4) If A is an by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQT where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u ₁ . 2) For the 2 rd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd orwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ - ((v ₃ u ₁)u ₁) - ((v ₃ u ₂)u ₂) Formula: u = v ₁ - proj ₁₁ (v ₁) - proj ₁₂ (v ₁) proj ₁₂ (v ₁). M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	for R^n.e.g dim(kernel) of (A – Al) for some EVec =/= the multiplicity. Remember, dim(ker) = m-rank \$\frac{3}\$ Generalised Eigenvectors\$ Take a square matrix A \(\in \text{R}^m\). A non zero vector \(V \in \text{C}^n\) is a generalised eigenvector of rank m associated with eigenvalue \(\lambda \) if (A – \(\lambda \)) \(\lambda \) = 0 and (A – \(\lambda \)) \(\lambda \) = \(\lambda \) on the that any eigenvector or sank m associated with blore that any eigenvector associated with its eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with \(\lambda \) and multiply it by the matrix \(\lambda \). All, the result will be the zero vector. If \(\lambda \) has a generalized eigenvector of rank 1 associated with \(\lambda \), the result will be another eigenvector associated with \(\lambda \). The has a generalized eigenvector of rank 2 associated with \(\lambda \), the result will be a ilinear combination of a rank 1 generalized eigenvector. Example: Take \(A = [111, 010, 001], \text{CP}, (1-\lambda)^2, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001], \text{CP}, (1-\lambda)^3, \) \(\lambda = [111, 010, 001	These matrices exhibit useful properties. The equation $Ax = b$ can easily be solved on them, by first getting x_1 , and then x_2 with direct substitution and so on, on lower triangular matrices. For upper triangular we get x_n first, and go backwards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. 1) If A is positive definite, all its diagonal elements are strictly positive . 2) If A is positive definite, all its diagonal elements are non-negative . 3) If A is positive definite then $\max(A_{i_1}, A_{j_1}) > A_{j_1} $. If A is positive definite then $\max(A_{i_1}, A_{j_1}) > A_{j_1} $. If A is positive definite then $\max(A_{i_1}, A_{j_1}) > A_{j_1} $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the A in A i	H_u is involutory: $H_u = H_u^{-1}u$. H_u is orthogonal: $H^Tu = H^{-1}u$. H_u preserves the euclidian length of vectors: $ H_u(x) = x $. The eigenvalues are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P reflects across – e.g. any vectors in the hyperplane P. H_u preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by; $Q = 1 - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 131 QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = A$. 2) For $k \in N$, apply the QR decomposition to A_k : $A_k = Q_{k+1}R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) Set $A_{k+1} = R_{k+1}Q_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $k \in N$, A_k is similar to A_k . (similar means $A_k = P^TAP$ ie, it can be obtained from performing a transformation matrix on A_k .) 2) For $k \in N$, we have that $A_k = Q_k^T AQ_k$ from above. So A_k and A have the same eigenvalues and V is an eigenvector of A_k if and only if Q_k is an eigenvector of A_k 3). The sequence (A_k) converges to an upper triangular matrix under certain conditions. This is important because of property A_k . (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable.
by a scalar. Trace – sum of diag elems. Rank of invertible matrices – If an n² matrix is invertible and per and is n exposent of the signal per and is not of the per and is a not space if U is doesd under addition and scalar multiplication: ie: 1) For all $u > U$ and $u < U$	4 Least Squares Method Endomorphism: for R° is a linear map of f: R° → R°, aka domain and codomain are the same. Automorphism: a bijective endomorphism: f: R° → R° automorphism \Longrightarrow f: sinjective (kerf(f) = {0}) \Longrightarrow f: surjective (imf(f) = R°) Projection of a Subspace: Let U ∈ R° be an n dimensional subspace generated by an ordered basis (u ₁ , ···u ₁). Let U = [U ₁ , ···U ₁]. The orthogonal projection π_{ij} on U is the following endomorphism: π_{ij} : R° → R° ··· π_{ij} : Y → π_{ij} (Y) = U(U'U') ½U'V im(A) ⊥ ker(A') We can uniquely decompose vectors. Let A ∈ R° For all vectors b ∈ R°, there exist a unique by ∈ lim(A), and a unique by ∈ ker(A') such that: b = b ₁ + b ₂ . Let A ∈ R° m³ and b ∈ R°. Suppose Ax = b has no solution for x ∈ R°, i.e., b ∈/ im(A). 0. LSM finds x ∈ R° such that $ Ax - b _2$ or equivalently, $ Ax - b _2$ is minimised. $ Ax - b _2$ is minimised when $ Ax - b _2$ is minimised when $ Ax - b _2$ is minimised when $ Ax - b _2$ is minimised. (LSM)	4) If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are orthogonal. Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQT = QDQT where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are I all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector V ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector V ₂ , we need to find an orthogonal version to U ₁ . We do this by replacing V ₂ with V ₂ – (V ₂ .U)U ₁ , and then normalise to get U ₂ . (aka we replace V ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd onwards, subtracting its projection onto all the planes from before: eg: U ₃ = V ₃ — (V ₃ .U) ₁ — (V ₃ .U) ₂ —) Formula: U ₁ = V ₁ - proj ₁₁ (V ₁) - proj ₁₂ (V ₁) proj ₃₂ (V ₁) M8) Spectral Decomposition the eigenvalues	the multiplicity. Remember, dim(ker) = m-rank 8) Generalised Eigenvectors Take a square matrix A \in R°. A non zero vector V \in C° is a generalised eigenvector of rank m associated with eigenvalue h if $(h - \lambda I)^m \vee = 0$ and $(h - \lambda I)^{m-1} \vee = -0$ Note that any eigenvector of a sociated with its eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector associated with h and multiply it by the matrix $h - \lambda I$, the result will be the zero vector. If h has a generalized eigenvector of rank 1 associated with h , then when you multiply it by h h h . If h has a generalized eigenvector of rank 1 associated with h , then when you multiply it by h h h . If h has a generalized eigenvector associated with h . If h has a generalized eigenvector of a rank 1 generalized eigenvector and another eigenvector associated with h . This pattern continues for higher-rank generalized eigenvectors. Example: Take h	Ax = b can easily be solved on them, by first getting x ₁ , and them x ₂ with direct substitution and so on, on lower triangular matrices. For upper triangular we get x ₁ , first, and go backwards. Additional Properties of Symmetric Matrices: Let A e R ^m be a symmetric matrix. 1) If A is positive definite, all its diagonal elements are strictly positive . 2) If A is positive semi-definite, all its diagonal elements are non-negative . 3) If A is positive semi-definite than $\max(A_{i_1}A_{j_2}) > A_{j_1} $. If A is positive definite then $\max(A_{i_2}A_{j_2}) > A_{j_1} $. If A is positive definite then $\max(A_{i_2}A_{j_2}) > A_{j_1} $. If A is positive definite then $\max(A_{i_2}A_{j_2}) > A_{j_1} $. If A is positive definite then the 1×1 , 2×2 , mm matrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_{j_1} > \max(A_{j_2}A_{j_1})$ then its not PSD (e.g. if the 3^m element in the first row = 3, 1^m in 1^m row = 2, 3^m in 3^m row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A ^m of the form $A = LL^T$, where L is a lower triangular matrix.	H ₁ , preserves the euclidian length of vectors: $ H_k(x) = x $. The eigenvalues are only 1 or -1. The eigenvectors are vectors perpendicular to the hyperplane P reflects across – e.g any vectors in the hyperplane P. H ₁ , preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: $Q = I - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 13) OR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = I - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 2) For $K \in \mathbb{N}$, apply the QR decomposition to $A_0 : A_0 = Q_{0+1} R_{k+1}$ where Q_{n+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) Set $A_{k+1} = R_{k+1} Q_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $K \in \mathbb{N}$, A_0 is similar to A_0 . (Similar means $A_0 = P^+AP$ ie, it can be obtained from performing a transformation matrix on A_0 .) 2) For $K \in \mathbb{N}$, we have that $A_0 = Q_0^T AQ_0$ from above. So A_0 , and A have the same eigenvalues and V is an eigenvector of A_0 if and only if $Q_0 V$ is an eigenvector of $A_0 V$ if and only if $Q_0 V$ is an eigenvector of $A_0 V$ in an upper triangular matrix under certain conditions. This is important because of property 4. (If A is symmetric.) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangular matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the $A_0 V$. If A is symmetric, so are all the $A_0 V$.
Rank of invertible matrices – If an n^2 matrix is invertible ∞ rank is $n \infty$ oolumns are linearly indep ∞ rows linearly indep. Singular – A square matrix is nonsingular if the columns are linearly indep, le: if rk(A) = n , or det(A) = n . O. Else its singular. Vector Space n as et n = n is a singular. Vector Space n as et n = n is a singular or space if n is closed under addition and scalar multiplication: ie: 1) For all n v = n v, n v + n v = n v = n v = n v and n the invertible and n and n singular if the columns space is subset of a Vector Space n and n invertible n and n is a generating set: Our vector subspace n is a generating set of n it ould express every vector n in the Vector Space as a linear comb of its vectors. A basis is a minimal generating set. To find the Evesco shall inverted n in the n space n is a minimal generating set. To find the eigenvalues, n is a minimal generating set. To find the eigenvalues, n is a minimal generating set. To find the eigenvalues by solving n is n and n in the form n = PDP and n are similar if there is an matrix n such that n is a minimal generating set. To find the eigenvalues, n is n and n and n in the eigenvalues by solving n is n and n in the eigenvalues by solving n is n and n and n in the eigenvalues n is n and n in the eigenvalue n is n and n in the eigenvalues n is n and n in the eigenvalues, n in n and n in the eigenvalues n in n and n in n	 of f: Rⁿ → Rⁿ, aka domain and codomain are the same. Automorphism: a bijective endomorphism. f: Rⁿ → Rⁿ automorphism ⇔ fis injective (ker(f) = {0}) ⇔ f is surjective (in(f) = Rⁿ) Projection of a Subspace: Let U ∈ Rⁿ be an n dimersional subspace: Let U ∈ Rⁿ be an ordered basis (u₁,···,u₁). Let U = [U₁,,U_n]. The orthogonal projection π₁ on U is the following endomorphism: π₁: Rⁿ → Rⁿ ∨ ¬π_n(v) = U(U¹U) ¹U¹V im(A) ⊥ ker(A¹) We can uniquely decompose vectors. Let A ∈ Rⁿ → For all vectors b ∈ Rⁿ, there exist a unique b, ∈ Im(A), and a unique b, ∈ ker(Aⁿ) such that: b = b, + b, Let A ∈ R^m and b ∈ Rⁿ. Suppose Ax = b has an osolution for x ∈ Rⁿ, i.e., b ∈ f im(A). LSM finds x ∈ Rⁿ such that Ax − b ₂, or equivalently, Ax − b ₂; s minimised. Ax-b ₂ is minimised. Ax-b ₂ is minimised. M51 Least Squares Method (LSM) 	Spectral Theorem: If A is a real, symmetric matrix then it can be diagonalised like so: A = QDQ¹ = QDQ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidtt (GS) Process: If We have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u₁. 2) For the 2™ vector v₂, we need to find an orthogonal version to u₁. We do this by replacing v₂ with v₂ − (v₂.u)u, and then normalise to get u₂. (ake we replace v₂ with v₂ but removing its projection on the u plane). 3) We do the same thing for 3™ orwards, subtracting its projection onto all the planes from before: eg: u₃ = v₃ − ((v₃.u.)u,u)	Take a square matrix $A \in \mathbb{R}^m$. A non zero vector $V \in \mathbb{C}^n$ is a generalisate dejernvector of rank m associated with its is a generalisate dejernvature of rank m associated with its eigenvature is a generalisate dejernvature of size 1. If you take an eigenvector associated with its eigenvature is a generalisate dejernvature of size 1. If you take an eigenvector of A associated with λ and multiply it by the matrix $A \sim \lambda I$, the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by $A \sim \lambda I$, the result will be another eigenvector associated with λ . If A has a generalized eigenvector associated with λ . If A has a generalized eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take $A = \{11, 1, 0.10, 0.01\}$. Or $\{1, -\lambda\}^2$, $\lambda_1 = 1$ (with $AM = 3\}$). We end up with two linearly indep EVecs: $\{0, 1, -1\}^2$, $\{1, 0, 0\}^2$. There is one more EVec for this value which can be computed by $\{A \sim I\}_N = 2$ y, and so $\{0, 1, -1\}^2$, $\{1, 0, 0\}^2$. The rise not always the case that we can do $\{A \sim I\}_N = V$, or $\{1, 0, 0\}^2$. The rise is one more ligenvector as one and an average of $\{0, 1, -1\}^2$, $\{1, 0, 0\}^2$. The residual binear ornibination at $\{1, 0, 0\}^2$ and $\{1, 0, 0\}^2$ and $\{1, 0, 0\}^2$. The rise of always the case that we can do $\{1, 0, 0\}^2$ and $\{1, 0, 0\}^2$ the rise of always the case that we can do $\{1, 0, 0\}^2$ be found by using a suitable linear combination at $\{1, 0, 0\}^2$ by eigenvectors for the eigenspace generated by the eigenvector from the eigenspace generated by the eigenvectors for the	triangular matrices. For upper triangular we get x_n first, and go backwards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. If $A \in \mathbb{R}^m$ be a symmetric matrix are strictly positive semi-definite, all its diagonal elements are non-negative. 3) If $A \in \mathbb{R}^m$ is positive semi-definite then $\max(A_0, A_0) > A_0 $. If $A \in \mathbb{R}^m$ is positive definite then $\max(A_0, A_0) > A_0 $. If $A \in \mathbb{R}^m$ is positive definite then $A \in \mathbb{R}^m$ is positive definite then the $A \in \mathbb{R}^m$ is positive definite. The $A \in \mathbb{R}^m$ is the upper left corner of $A \cap \mathbb{R}^m$ are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $A \in \mathbb{R}^n$ element in the first row $A \in \mathbb{R}^n$. If $A \in \mathbb{R}^n$ is $A \in \mathbb{R}^n$ in $A \in \mathbb{R}^n$	hyperplane P reflects across – e.g. any vectors in the hyperplane P. H., preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: Q = I — un' with $Q^2 = Q$ and Q = QT. 13) QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = A$. 2) For k e N, apply the QR decomposition to A_1 : $A_k = Q_{k+1} R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k-1} is an upper triangular matrix 3) Set $A_{k-1} = R_{k+1} Q_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For k e N, A_k is similar to A . (similar means $A_k = P^+AP$ ie, it can be obtained from performing a transformation matrix on a). 2) For k e N, A_k is similar to A . (similar means $A_k = P^+AP$ ie, it can be obtained from performing a transformation matrix on a). 3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, the algorithm converges , under certain conditions, to a diagonal matrix, if A is symmetric, the algorithm converges , under certain conditions, to a diagonal matrix, and the second of the property
that it's invertible ∞ rank is $n \infty$ columns are linearly indep. ∞ rows linearly indep. ∞ in the columns are linearly indep, i.e. if $n \le n$ or disciplination is a second under addition and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) For all $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) Diotain the eigenvalues by solving $n \ge n$ by writing $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) Diotain the eigenvalues by solving $n \ge n$ by writing $n \ge n$ and $n \ge n$ and scalar multiplication: ie: 1) Diotain the eigenvalues by solving $n \ge n$ by writing $n \ge n$ and $n \ge n$	 the same. Automorphism: a bijective endomorphism. f. R"—R" automorphism ← fis injective (ker(f) = {0}) ← fis surjective (m(f) = R") Projection of a Subspace: Let U ∈ R") et an ofimensional subspace generated by an ordered basis (u₁,···,u_n). Let U = [U₁,···,U_n] The orthogonal projection r_{kj} on U is the following endomorphism: r_{ki}: R"—R" v → r_{ki}(v) = U(UTU)²-UTv im(A) ⊥ ker(A*) We can uniquely decompose vectors. B. Let A ∈ R"*For all vectors b ∈ R", there exist it a unique b, e im(A), and a unique b, ∈ ker(A*) such that: b = b, + b_k. b. Let A ∈ R"* and b ∈ R". Suppose Ax = b has no no solution for x ∈ R", i.e., b e/ im(A). 0. LSM finds x ∈ R" such that Ax − b ₂, or equivalently, Ax − b ₂ is minimised. Ax-b ₂ is minimised. Ax-b ₂ is minimised. M51 Least Squares Method (LSM) 	ITA is a real, symmetric matrix then it can be diagonalised like so: A = QDQ ¹ = QDQ ¹ where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. MY) Gran-Schmidt (SS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector V ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u ₁ . 2) For the 2 nd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ width v ₂ – (v ₂ .u)u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 nd onwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ — (v ₂ u ₃) ₁) — (v ₃ u ₃) ₂ —) Formula: u ₁ = v ₁ - proj ₁₁ (v ₁) - proj ₁₂ (v ₁) — proj ₃₊₁ (v ₁). M8) Spectral Decomposition the eigenvalues	is a generalised eigenvector of rank m associated with eigenvalue λ if $(A-\lambda I)^m - v = 0$ and $(A-\lambda I)^{m-1} v = /= 0$. Note that any eigenvector associated with its eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with λ and multiply it by the matrix $A-\lambda I$, the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by $A-\lambda I$, the result will be another eigenvector associated with λ . The has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by $A-\lambda I$, the result will be another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take $A=\{1,11,0,10,00,1\}$. CP: $\{1-\lambda\}^2$, $\lambda=1$ (with $A=3$). We end up with two linearly indep EVecs: $\{0,1,-1\}^n$, $\{1,0,0,0,1\}$. There is one more EVec for this value which can be computed by $\{A-1\}_0 = 2$, and so 9 , 9 , $\{0,0,1,1\}^n$. 11 is not always the case that we can do $\{A-1\}_0 = 9$, 9, or 9, 9, eperalised eigenvectors 3 can always be found by using a suitable linear combination au $1+bu2$ of $1$1 and 12, i.e., we need to find the generalised eigenvector for the	and go badowards. Additional Properties of Symmetric Matrices: Let $A \in \mathbb{R}^m$ be a symmetric matrix. 1) If A is positive definite, all its diagonal elements are strictly positive. 2) If A is positive semi-definite, all its diagonal elements are non-negative. 3) If A is positive semi-definite then A is A is diagonal elements are non-negative. 3) If A is positive semi-definite then A is A is A is A is A is A is positive semi-definite then A is A in A is A in A is A is A is A in A	H _i preserves Euclidian length and angles between vectors as it is orthogonal, because of this any rotations and reflections are orthogonal transformations (because they preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: $Q = 1 - uu'$ with $Q^2 = Q$ and $Q = Q^2$. 13 1QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = A_0$. 2) For $A_0 = A_0$. 2) For $A_0 = A_0$, the QR decomposition to $A_1 : A_2 = Q_{a+1} R_{b+1}$ where $A_0 = A_0$ is an orthogonal matrix and A_{b+1} is an upper triangular matrix. 3) Set $A_{b+1} = R_{b+1}Q_{b+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $A_0 = A_0$, $A_0 = A_0$, similar to A. (similar means $A_0 = P^1AP$ ie, it can be obtained from performing a transformation matrix on A_0 . 2) For $A_0 = A_0$, we have that $A_0 = Q^1 AQ_0$ from above. So A_0 , and A have the same eigenvalues and $A_0 = A_0$ is an eigenvector of $A_0 = A_0$. 3) The sequence (AA) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if $A_0 = A_0 = A_0$) are decentable of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If $A_0 = A_0 = A_0$.
Fingular — A square matrix is nonsingular if the columns are linearly indep, ie: if $h(A) = n$, or det($A) = -1$ 0. Else its singular. Vector Space — a set $U = -1 = 0$ is a vector space if $U = 0$ is a vector space $U = 0$ is a vector $U = 0$ in the elgenvalues by solving $U = 0$ in the elgenvalues $U = 0$ in the elgenvalue $U = 0$ in the elgenvalues $U = 0$ in the elgenvalues $U = 0$ in the elgenvalue $U = 0$ in the elgenvalue $U = 0$ in the elge	f. R ⁿ → R ⁿ automorphism \iff is injective (ker(f) = {0}}) \iff is surjective (im(f) = R ⁿ) Projection of a Subspace: Let $U \in \mathbb{R}^n$ be an n dimensional subspace generated by an ordered basis (u_{1}, \dots, u_{n}). Let $U = [U_{1},\dots,U_{n}]$. The orthogonal projection π_{ij} on U is the following endomorphism: $\pi_{ij} : \mathbb{R}^n \to \mathbb{R}^n$. $V \to \pi_{ij}(V) = U(U^{ij})^{\frac{1}{n}}U^{ij}$ We can uniquely decompose vectors. Let $A \in \mathbb{R}^m$. For all vectors $b \in \mathbb{R}^n$, there exist a unique $b_i \in \text{lin}(A)$, and a unique $b_i \in \text{ker}(A^n)$ such that: $b = b_1 + b_1$. Let $A \in \mathbb{R}^m$ and $b \in \mathbb{R}^m$. Suppose $Ax = b$ has no solution for $x \in \mathbb{R}^n$, i.e., $b \in \text{Im}(A)$. 1. LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b _2$, is minimised. $ Ax - b _2 = 0 \Leftrightarrow Ax = b$. M51 Least Squares Method (LSM)	where: Q is an orthogonal matrix and D is a diagonal matrix of eigenvalues. M7) Gram-Schmidt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector V ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get u ₁ . 2) For the 2 nd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ – (v ₂ , u) ₁ u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 nd onwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ — ((v ₂ , u ₁) ₁) — ((v ₂ , u ₂) ₂) Formula: u = v ₁ - proj ₁₁ (v ₁) - proj ₁₂ (v ₁) — proj ₃₁ (v ₁). M8) Spectral Decomposition the eigenvalues	Note that any eigenvector associated with its eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with λ and multiply it by the matrix A - λI , the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A - λI , the result will be another eigenvector associated with λ . If A has a generalized eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by A - λI , the result will be a linear combination of a rank 1 generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take $A = [1\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 1]$. CP: $(1-\lambda)^3$, $\lambda_2 = 1$ (with $AM = 3$). We end up with two linearly indep EVecs: $(0\ 1\ -1)^2$, $(1\ 0\ 0\ 0\ 1)^3$. There is one more EVec for this value which can be computed by $(A$ - $I)_{3} = v_{3}$ and $v_{3} = (0\ 0\ 1)^3$. It is not always the case that we can do $(A \cdot I)_{3} = v_{3}$ or $v_{3} = 0\ 0\ 0\ 1$). It is not always the case that we can do (a \cdot I)_{3} = v_{3} be found by using a suitable linear combination au 1 +bu2 of u1 and u2, i.e., we need to find the generated by the eigenvectors for the	Let $A \in \mathbb{R}^m$ be a symmetric matrix. 1) If A is positive definite , all its diagonal elements are stricty positive . 2) If A is positive semi-definite , all its diagonal elements are non-negative . 3) If A is positive semi-definite than $(A_i, A_j) > A_j $. If A is positive semi-definite then $\max(A_i, A_j) > A_j $. If A is positive semi-definite then $\max(A_i, A_j) > A_j $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $\max(A_i, A_j) > A_j $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_j > \max(A_i, A_j)$ then its not PSD (e.g if the 3^m element in the first row $= 3$, 1^m in 1^m row $= 2$, 3^m in 3^m row $= 1$, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^m of the form $A = LL^T$, where L is a lower triangular matrix.	preserve the aforementioned things). The orthogonal projection Q on the hyperplane P is given by: $Q = I - uu^T$ with $Q^2 = Q$ and $Q = Q^T$. 13) QR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = A_0$. 2) For $K \in N$, apply the QR decomposition to $A_1 : A_k = Q_{k+1}R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) Set $A_{k+1} = R_{k+1}Q_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $K \in N$, A_k is similar to A . (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A). 2) For $K \in N$, we have that $A_k = Q_k^T AQ_k$ from above. So A_k , and A have the same eigenvalues and V is an eigenvector of A_k if and only if $Q_k V$ is an eigenvector of A_k 3) The sequence (AK) converges to an upper triangular matrix under certain conditions. This is important because of property $A_k V$ (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the $A_k V$. If A is symmetric, so are all the $A_k V$.
if the columns are linearly indep, ie: if rk(A) The Eigenspace of a matrix is the span (is eigenvectors, as eigvals can have rospace if U is dosed under addition and scalar multiplication: ie: 1) For all $u, v \in U, u + v \in U$ so vector space if U is dosed under addition and scalar multiplication: ie: 1) For all $u, v \in U, u + v \in U$ so vector Subspace: subset of a Vector Space (A-k1)x = 0 M41 Diagonalization of a Matrix A: 1) Obtain the eigenvalues by solving CP, get their eigenspaces. 2) Write the matrix in the form $A = PDP$ by writing $D = matrix of eigenvalues, P$ was solved. A basis is a minimal generating set. To find the expert of each pivot column. Span of this = basis. A simple basis is one with as marry D s, as possible, gotton by getting RREF and taking the pivot columns span as our simple basis. Shimpsion = number of basis vectors. M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representation is one of a irrodiumns. $B = \begin{cases} 1 \\ -2 \\ 1 \\ 1 \end{cases} P^{2} = \begin{cases} 1 \\ 1 \\ 1 \end{bmatrix} P^{2} = \begin{cases} 2 \\ 2$	(ker(f) = {0}) \leftarrow is surjective (mi(f) = R°) Projection of a Subspace : Let $U \in R^m$ be an n dimensional subspace generated by an ordered basis (u ₁ ,···,u _n). Let $U = [U_1,,U_n]$. The orthogonal projection π_U on U is the following endomorphism: $\pi_U : R^m \to R^m$. $V \to \pi_U(V) = U(U^*U)^2 U^*V$ im(A) \bot ker(A°) We can uniquely decompose vectors. Be that \bot Rem For all vectors \bot is \bot there exist a unique \bot , \bot im(A), and a unique \bot is \bot in	matrix of eigenvalues. MY) Grant-Schmidt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by list magnitude to get u ₁ . 2) For the 2 rd vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ – (v ₂ .u)u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd onwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ – ((v ₃ .u),u ₃) – ((v ₃ .u),u ₃). Formula: u ₁ = v ₁ – proj _{in} (v ₁) – proj _{in} (v ₁) – – proj _{in} (v ₁). M3) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	eigenvalue is a generalised eigenvalue of size 1. If you take an eigenvector of A associated with λ and multiply it by the matrix A - λI , the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A - λI , the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then sult will be another eigenvector of saxociated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by A - λI , the result will be a linear combination of a rank 1 generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 11, 0 10, 0 0 1], CP: (1- λ)* λ , = 1 (with AM = 3). We end up with two linearly indep EVecs: (0, 1, -1)", (1, 0, 0)". There is one more EVec for this value which can be computed by (A-I)v ₃ = ν , and so ν , = (0, 0, 1)". Its not always the case that we can do (A-I)v ₃ = ν , or v, λ , a generalised eigenvector u3 can always be found by using a suitable linear combination au1 +bu2 of u1 and u2, i.e., we need to find the generalized eigenvector from the eigensyactor generated by the eigenvectors for the	1) If A is positive definite , all its diagonal elements are strictly positive . 2) If A is positive semi-definite , all its diagonal elements are non-negative . 3) If A is positive semi-definite , all its diagonal elements are non-negative . 3) If A is positive definite then $\max(A_{ij}, A_{ji}) > A_{ji} $. If A is positive semi definite then $\max(A_{ij}, A_{ji}) > A_{ji} $. If In the positive definite then the 1x1, 2x2, mxm matrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_{ji} > \max(A_{ji}, A_{ji})$ then its not PSD (e.g if the 3^{n} element in the first row = 3, 1s in 1s row = 2, 3s in 3s row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix An of the form A = LLT, where L is a lower triangular matrix.	given by: $Q = I - uu^r$ with $Q^2 = Q$ and $Q = Q^T$. 13) OR Algorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set $A_0 = A$. 2) For $k \in N$, apply the QR decomposition to $A_k : A_k = Q_{k+1} R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix. 3) Set $A_{k+1} = R_{k+1} Q_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $k \in N$, A_k is similar to A_k (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A_k). 2) For $k \in N$, we have that $A_k = Q_k^T A Q_k$ from above. So A_k , and A have the same eigenvalues and V is an eigenvector of A_k if and only if Q_k is an eigenvector of A_k 3). The sequence (Ak) converges to an upper triangular matrix ander certain conditions. This is important because of property A_k (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangular matrix, from which eigenvalues are easily findable. Application to Symmetric, Matrices If A is symmetric, the eigenvaluer on a diagonal matrix, A in the containing matrix, the adjustion to symmetric that incomplete A in the A in A is an eigenvalue of A in
	Projection of a Subspace: Let $U \in \mathbb{R}^m$ be an n dimensional subspace generated by an ordered basis (u_1, \cdots, u_h) . Let $U = [U_1, \cdots, U_n]$. The orthogonal projection π_0 on U is the following endomorphism: $\pi_i : \mathbb{R}^m \to \mathbb{R}^m$ $\forall v \to \pi_i(v) = U(U^{\dagger}U)^{\dagger}U^{\dagger}V$ im(A) L ker(A ^T) We can unique by decompose vectors. Let $A \in \mathbb{R}^m$. For all vectors $b \in \mathbb{R}^n$, there exist a unique $b_i \in \mathbb{R}^n$ such that: $b = b_i + b_i$. Let $A \in \mathbb{R}^m$ and $b \in \mathbb{R}^m$. Suppose $Ax = b$ has no solution for $x \in \mathbb{R}^n$, i.e., $b \in I$ ind(A). Or LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b _2$, is minimised. $ Ax - b _2$ is minimised. $ Ax - b _2$ is minimised when $ Ax - b_i _2 = 0 \Leftrightarrow Ax = b$. M5) Least Squares Method (LSM)	M2) Gram-Schmidt (GS) Process: If we have a linearly independent set of vectors that are a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector v ₁ is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ – (v ₂ . u)u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₂ but removing its projection on the u plane). 3) We do the same thing for 3 rd onwards, subtracting its projection onto all the planes from before: eg: u ₃ = v ₃ – ((v ₃ u ₁).u ₁) – ((v ₃ u ₂)u ₂). Formula: u ₁ = v ₁ - proj ₁₁ (v ₁) - proj ₁₂ (v ₁) proj ₁₃ (v ₁). M8) Spectral Decomposition the eigenvalues	If you take an eigenvector of A associated with λ and multiply it by the matrix A - λI , the result will be the zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A - λI , the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ . If A has a generalized eigenvector of rank 2 associated with λ . If A has a generalized eigenvector are an eigenvector of rank 2 associated with λ . This pattern continues for higher-rank generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take $A = [1 \ 1 \ 1, 0 \ 10, 0 \ 0 \ 1]$. CP: $(1 - \lambda)^3$, $\lambda_1 = 1$ (with AM = 3). We end up with two linearly indep EVecs: $(0, 1, -1)^3$, $(1, 0, 0)^5$. There is one more EVec for this value which can be computed by $(A - 1)^3$, $a = 1$, and so $a = 1$ and $a = 1$ $a = 1$. It is not always the case that we can do $(A - 1)^3$, $a = 1$, $a = 1$ a	strictly positive. 2) If A is positive semi-definite, all its diagonal elements are non-negative. 3) If A is positive definite then $\max(A_0,A_0) > A_0 $. If A is positive entire then $\max(A_0,A_0) > A_0 $. If A is positive entire definite then $\max(A_0,A_0) > A_0 $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the 1x1, 2x2, mxm natrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_0 > \max(A_0,A_0)$, then its not PSD (e.g. if the 3^m element in the first row = 3, 1½ in 1 3^m ow = 2, 3^m in 3^m row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^m of the form $A = LL^n$, where L is a lower triangular matrix.	i 3) QR Alcorithm Useful to find the eigenvalues of a matrix. Works for most matrices. 1) Set A ₀ = A. 2) For k ∈ N, apply the QR decomposition to A ₄ : A _k = Q _{k+1} R _{k+1} where Q _{k+1} is an orthogonal matrix and R _{k+1} is an upper triangular matrix 3) Set A _{k+1} = R _{k+1} Q _{k+1} . Stop after sufficient iterations Properties of QR Decomposition: 1) For k ∈ N, A _k is similar to A. (similar means A _k = P¹AP ie, it can be obtained from performing a transformation matrix on A). 2) For k ∈ N, we have that A _k = Q _k ¹AQ _k from above. So A _k and A have the same eigenvalues and v is an eigenvector of A _k if and only if Q _k is an eigenvector of A 3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the A _k . If A is symmetric, the alignorithm converges, under certain conditions, to a diagonal matrix,
space if U is closed under addition and scalar multiplication: ie: 1) For all $u, v \in U$, $u + v \in U$ 2) For all $u \in U$ and $u \in R$, $u \in U$ Vector Subspace: subset of a Vector Space Generating set: Our vector subspace X is a generating set: Our vector Space as a linear comb of its vectors. A basis is a minimal generating set. To find it we get the REF, and take original vector of each pivot column. Span of this = basis. A simple basis is one with as many 0s, as possible, gotton by getting REF and taking the pivot columns span as our simple basis. A simple basis is one with as many 0s, as Dimension = number of basis vectors. M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representation is one of rur columns. $B = \begin{cases} 1 \\ -2 \\ 1 \end{cases} \frac{1}{1} \frac{1}{5} e^{v} = \begin{cases} 1 \\ -1 \\ 1 \end{vmatrix} \frac{1}{-1} \end{cases}$ Here, $B_1 = 4B_1 + 6B_2'$, $B_2 = -B_2'$. $ Ber B_1 = 4B_1 + 6B_2'$, $B_2 = -B_2'$. Ber Cidean norm: magnitude of vector, square each item and then root total. Parallelogram Lav: $v_1 \vee e^{v} = \frac{1}{1} v_1 ^2 + \frac{1}{2} v_2 ^2 + \frac{1}{2} v_1 ^2 + \frac{1}{2} v_2 ^2 + \frac{1}{2} v_$	ordered basis (u_1, \cdots, u_n) . Let $U = [U_1, \cdots, U_n]$. The orthogonal projection π_U on U is the following endomorphism: $\pi_U : \mathbb{R}^n \to \mathbb{R}^m$ $\vee \to \pi_U \vee = U(U^TU)^{-1}U^TV$ im(A) \bot ker(A') We can unique by decompose vectors. But \bot ker(A') We can unique by decompose vectors. Let \bot ker(A') Let \bot ker(A') Let \bot ker(A') such that: \bot b = \bot h + by. Let \bot ker(A') such that: \bot b = \bot h + by. Let \bot ker(A') such that: \bot b = \bot h + by. Let \bot ker(A') such that: \bot he \bot he has an osolution for \bot ker(\bot , be \bot imin/mised. [Ax-b]], is minimised when \bot is minimised. [Ax-b]], is minimised when \bot ker(\bot).	a basis for V, we can use the GS Process to convert this set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector \mathbf{v}_1 is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get \mathbf{u}_1 . 2) For the 2^{s_1} vector \mathbf{v}_2 , we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with \mathbf{v}_2 – $(\mathbf{v}_2$.u)U, and then normalise to get \mathbf{u}_2 . (ake we replace \mathbf{v}_2 with \mathbf{v}_2 but removing its projection on the u plane). 3) We do the same thing for 2^{s_1} or words, subtracting its projection onto all the planes from before: eg: $\mathbf{u}_3 = \mathbf{v}_3 - ((\mathbf{v}_3,\mathbf{u}_3)\mathbf{u}_1) - ((\mathbf{v}_3,\mathbf{u}_3)\mathbf{u}_2) - ((\mathbf{v}_3,\mathbf{u}_3)\mathbf{u}_2)$. Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{\mathbb{R}_2}(\mathbf{v}_1) - \operatorname{proj}_{\mathbb{R}_2}(\mathbf{v}_2) - \operatorname{proj}_{\mathbb{R}_2}(\mathbf{v}_3)$. 1) Solve the Char Polynomial to get the eigenvalues	zero vector. If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by A - λ 1, the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by A - λ 1, the result will be a linear combination of a rank 1 generalized eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 1 1, 0 10, 0 0 1]. CP: $(1-\lambda)^3$, $\lambda_1 = 1$ (with AM = 3). We end up with two linearly indep EVecs: $(0, 1-1)^3$, $(1, 0, 0)^3$. There is one more EVec for this value which can be computed by $(A-1)_{V_2} = V_{Y_2}$ and so $V_2 = (0, 0, 1)^3$. It is not always the case that we can do $(A-1)_{V_2} = V_{Y_2}$ or $V_2 = V_2$. A generalised eigenvector u3 can always be found by using a suitable linear combination au 1 + bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvector from the eigenspace generated by the eigenvector for the	elements are non-negative . 3) If A is positive definite then $\max{(A_i, A_j)} > A_j $. If A is positive semi definite then $\max{(A_i, A_j)} > A_j $. If A is positive semi definite then $\max{(A_i, A_j)} > A_j $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $1 \times 1_i \times 2_i \dots m n \times 1_i$. The state of the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_j > \max{(A_i, A_j)}$ then its not PSD (e.g. if the 3^{nl} element in the first row $= 3$, 1^{nl} in 1^{nl} vow $= 2$, 3^{nl} in 3^{nl} row $= 1$, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{nl} of the form $A = LL^{nl}$, where L is a lower triangular matrix.	1) Set $A_i = A$. 2) For $k \in \mathbb{N}$, apply the QR decomposition to A_k : $A_k = Q_{k+1}R_{k+1}$ where Q_{k+1} is an orthogonal matrix and R_{k+1} is an upper triangular matrix 3) Set $A_{k+1} = R_{k+1}Q_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $k \in \mathbb{N}$, A_k is similar to A_k (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A_k . 2) For $k \in \mathbb{N}$, A_k is similar to A_k (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A_k . 2) For $k \in \mathbb{N}$, we have that $A_k = Q_k^{-1}AQ_k$ from above. So A_k and A have the same eigenvalues and V is an eigenvector of A_k if and only if Q_k is an eigenvector of A_k 3). The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property A_k (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric, so are all the A_k . If A is symmetric, so are all the A_k .
scalar multiplication: ie: 1) For all $u, v \in U, u + v \in U$ 2) For all $u \in U$ and $u \in R$, $u \in U$ 2) For all $u \in U$ and $u \in R$, $u \in U$ 2) For all $u \in U$ and $u \in R$, $u \in U$ 2) Wector Subspace: subset of a Vector Space Generating set: Our vector subspace X: a generating set: Our vector subspace X: b write the matrix in the form $A = PPP$ by writing $D = matrix of eigenvalues, P$ by writing D	The orthogonal projection π_{ij} on U is the following endomorphism: π_{ij} : $\mathbb{R}^m \to \mathbb{R}^m$ $v \to -\pi_{ij}(v) = U(U^{\dagger}U)^{\frac{1}{2}}U^{\dagger}v$ im(A) \bot ker(A)' We can uniquely decompose vectors. Let $A \in \mathbb{R}^m$: For all vectors $b \in \mathbb{R}^m$, there exist a unique $b_i \in \text{hin}(A)$, and a unique $b_i \in \text{ker}(A^n)$ such that: $b = b_i + b_i$. Let $A \in \mathbb{R}^m$ and $b \in \mathbb{R}^m$. Suppose $Ax = b$ has no solution for $x \in \mathbb{R}^n$, i.e., $b \in \text{lin}(A)$. LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b _2 _2$ is minimised. $ Ax - b _2 = 0 \Leftrightarrow Ax = b_i$. M51 Least Squares Method (LSM)	set into an orthonormal basis for V (a set of unit vectors that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector \mathbf{v}_1 is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get \mathbf{u}_1 . 2) For the 2^{id} vector \mathbf{v}_2 we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with $\mathbf{v}_2 - (\mathbf{v}_2, \mathbf{u})\mathbf{u}_1$, and then normalise to get \mathbf{u}_2 (aka we replace \mathbf{v}_2 with \mathbf{v}_2 but removing its projection on the \mathbf{u} plane). 3) We do the same thing for 3^{id} orwards, subtracting its projection onto all the planes from before: eg: $\mathbf{u}_3 = \mathbf{v}_3 - ((\mathbf{v}_3 \mathbf{u}_1)_{\mathbf{u}_1}) - ((\mathbf{v}_3 \mathbf{u}_2)_{\mathbf{u}_2})$ Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_1) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_1) - \dots - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_1)$	associated with λ , then when you multiply it by $A - \lambda I$, the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by $A - \lambda I$, the result will be a linear combination of a rank 1 generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take $A = [1\ 1\ 1, 0\ 1\ 0, 0\ 0\ 1]$, CP: $(1 - \lambda)^3$, $\lambda_2 = 1$ (with $AM = 3$). We end up with two linearly indep EVecs: $(0, 1, -1)^7$, $(1, 0, 0)^7$. There is one more EVec for this value which can be computed by $(A-I)_{3} = v_2$, and so $v_3 = (0, 0, 1)^7$. It is not always the case that we can do $(A-I)_{3} = v_2$ or v_3 . A generalised eigenvector u3 can always be found by using a suitable linear combination au $1 + bu 2$ of $u 1$ and $u 2$, i.e., we need to find the generaties d eigenvector from the eigenspace generated by the eigenvectors for the	3) If A is positive definite then max $(A_b, A_h) > A_h $. If A is positive semi definite then max $(A_b, A_h) > A_h $. If A is positive semi definite then the Lx1, 2×2 , mxm hatrices in the upper left comer of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_h > \max\{A_b, A_h\}$ then its not PSD (e.g if the 3^m element in the first row = 3, 1^m in 3^m row = 2, 3^m in 3^m row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^m of the form $A = LL^T$, where L is a lower triangular matrix.	2) For $k \in \mathbb{N}$, apply the QR decomposition to $A_i : A_k = \mathbb{Q}_{k+1} \mathbb{R}_{k+1}$ where \mathbb{Q}_{k+1} is an orthogonal matrix and \mathbb{R}_{k+1} is an upper triangular matrix 3) Set $\mathbb{A}_{k+1} = \mathbb{R}_{k+1} \mathbb{Q}_{k+1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $k \in \mathbb{N}$, \mathbb{A}_k is similar to \mathbb{A} . (similar means $\mathbb{A}_k = \mathbb{P}^1 \mathbb{A} \mathbb{P}$ ie, it can be obtained from performing a transformation matrix on \mathbb{A}). 2) For $k \in \mathbb{N}$, \mathbb{A}_k is similar to \mathbb{A} . (similar means $\mathbb{A}_k = \mathbb{P}^1 \mathbb{A} \mathbb{P}$ ie, it can be obtained from performing a transformation matrix on \mathbb{A}). 2) For $k \in \mathbb{N}$, we have that $\mathbb{A}_k = \mathbb{Q}_k^T \mathbb{A} \mathbb{Q}_k$ from above. So \mathbb{A}_k , and \mathbb{A} have the same eigenvalues and \mathbb{A} is an eigenvector of \mathbb{A}_k if and only if $\mathbb{Q}_k \mathbb{V}$ is an eigenvector of \mathbb{A} 3). The sequence ($\mathbb{A} \mathbb{A}$) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if \mathbb{A} is symmetric.) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the $\mathbb{Q} \mathbb{R}$ decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If \mathbb{A} is symmetric, so are all the \mathbb{A}_k .
1) For all $u, v \in U, u + v \in U$ 2) For all $u \cup U$ and $c \in R$, $cu \in U$ 2) For all $u \cup U$ and $c \in R$, $cu \in U$ 2) For all $u \cup U$ and $c \in R$, $cu \in U$ 2) For all $u \cup U$ and $c \in R$, $cu \in U$ 2) Convector Subspace S Is a generating set. Curvector subspace S Is a generating set of U it could express every vector U in the Vector Space as a linear combo of its vectors. A basis is a minimal generating set. To find it we get the REF, and take original vector of each pivot column. Span of this $=$ basis. A simple basis is one with as many 0 s , as in Altself, we get the 0 matrix 0 eigenvectors, preserving order of each pivot columns span as our simple basis. A simple basis is one with as many 0 s , as in Altself, we get the 0 matrix. We can 1 inversible the 0 matrix 0 and 0 1 inversible 0 and 0 1 inversible 0 1 1 1 1 1 1 1 1 1 1	following endomorphism: n_i : $R^m \to R^m$ $v \to n_i(v) = U(U^TU)^2U^Tv$ $im(A) \perp \ker(A^T)$ We can uniquely decompose vectors. 3. Let $A \in R^m$: For all vectors $b \in R^m$, there exist a unique b_i $e_i m(A)$, and a unique $b_i \in \ker(A^T)$ such that: $b = b_i + b_i$. 3. Let $A \in R^m$ and $b \in R^m$. Suppose $Ax = b$ has all no solution for $x \in R^m$, i.e., $b \neq i m(A)$. 6. LSM finds $x \in R^m$ such that $ Ax - b _2$, or equivalently, $ Ax - b _2^2$ is minimised. $ Ax - b _2$ is minimised when $ Ax - b_i _2 = 0 \Leftrightarrow Ax = b$. M51 Least Squares Method (LSM)	that form a basis for V which are all orthogonal to each other). 1) From left to right, considering 1 to n vectors at a time: The first vector \mathbf{v}_1 is orthogonal to everythings of ar as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by lis magnitude to get \mathbf{u}_1 . 2) For the $2^{\mathbf{u}_1}$ vector \mathbf{v}_2 , we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with \mathbf{v}_2 — (\mathbf{v}_2 .u)u, and then normalise to get \mathbf{u}_2 . (aka we replace \mathbf{v}_2 with \mathbf{v}_2 but removing its projection on the u plane). 3) We do the same thing for $2^{\mathbf{u}_1}$ own subtracting its projection onto all the planes from before: eg: $\mathbf{u}_3 = \mathbf{v}_3 - ((\mathbf{v}_2\mathbf{u}_3)\mathbf{u}_3) - ((\mathbf{v}_2\mathbf{u}_3)\mathbf{u}_2)$ Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{\mathbb{H}^2}(\mathbf{v}_1) - \operatorname{proj}_{\mathbb{H}^2}(\mathbf{v}_1) - \dots - \operatorname{proj}_{\mathbb{H}^2}(\mathbf{v}_1)$ MB) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	the result will be another eigenvector associated with λ . If A has a generalized eigenvector of rank 2 associated with λ , then when you multiply it by A - λI , the result will be a linear combination of a rank 1 generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 1 1.0, 0 1 0.1], CP: (1- λ)? $\lambda_1 = 1$ (with AM = 3). We end up with two linearly indep EVecs: (0, 1, -1)", (1, 0, 0)". There is one more EVec for this value which can be computed by (A-I)v_3 = v_2, and so v_3 = (0, 0, 1)". This not always the case that we can do (A-I)v_3 = v_2, or v_3, A generalised eigenvector u3 can always be found by using a suitable linear combination au1 + bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	is positive semi definite them $\max\{A_0,A_0\}>= A_0 $. Thus, the largest coefficient of A is on its diagonal. 4) If A is positive definite then the $1\times1,2\times2,$ mxm matrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quiddy notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_0 > \max\{A_0,A_0\}$ then its not PSD (e.g. if the 3^{rd} element in the first row = 3 , 1^{rd} in 1^{rd} row = 2 , 3^{rd} in 3^{rd} row = 1 , then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{rm} of the form $A = LLT$, where L is a lower triangular matrix.	orthogonal matrix and $R_{k,1}$ is an upper triangular matrix 3) Set $A_{k,1} = R_{k,1}Q_{k,1}$. Stop after sufficient iterations Properties of QR Decomposition: 1) For $k \in \mathbb{N}$, A_k is similar to A . (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A). 2) For $k \in \mathbb{N}$, we have that $A_k = \mathbb{Q}_k^{-1}A\mathbb{Q}_k$ from above. So A_k , and A have the same eigenvalues and v is an eigenvector of A_k if and only if $Q_k v$ is an eigenvector of A 3). The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property A . (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangular matrix, from which eigenvalues are easily findable. Application to Symmetric, so are all the A_k . If A is symmetric, the eigenthim converges , under certain conditions, to a diagonal matrix,
Vector Subspace: subset of a Vector Space $\overline{2}$ Write the matrix in the form $A=PDP$ Generating set: Our vector subspace X is a generating set of U it could express every vector U in the Vector Space as a linear comb of its vectors. A basis is a minimal generating set. To find twe yet the REF, and take original vector of each pivot column. Span of this $=$ basis. A simple basis is one with as many 0 ,s, as possible, gotten by getting REF and taking the pivot column. Span of this $=$ basis. A simple basis is one with as many 0 ,s, as Dimension $=$ number of basis vectors. M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representation is one of our columns: $B = \begin{cases} 1 & 1 \\ -2 & 1 \end{cases}$ $B = \begin{cases} 1 & 2 \\ -1 & 1 \end{cases}$ $B = \begin{cases} 1 & 2 \\ -1 & 1 \end{cases}$ $B = \begin{cases} 1 & 3 \\ -1 & 3 \end{cases}$ $B = \begin{cases} 1 & 3 \\ -2 & 1 \end{cases}$ $B = \begin{cases} 1 & 3 \\ -2 & 3 \end{cases}$ $B = \begin{cases} $	v - v-n _x (v) = U(U ¹)·U ¹ V ¹ im(A) ⊥ ker(A ¹) We can uniquely decompose vectors. Let A ∈ R ^m For all vectors b ∈ R ⁿ , there exist to a unique b _x ∈ ker(A ¹) such that: b = b ₁ + b _x . Let A ∈ R ^m and b ∈ R ^m . Suppose Ax = b has no solution for x ∈ R ⁿ , i.e., b ∈/ im(A). 0. LSM finds x ∈ R ⁿ such that Ax - b ₂ , or equivalently, Ax - b ₂ ₃ is minimised. Ax-b ₂ is minimised when Ax-b ₁ ₂ = 0 ⇔ Ax = b. M51 Least Squares Method (LSM)	1.) From left to right, considering 1 to n vectors at a time: The first vector \mathbf{v}_1 is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get \mathbf{u}_1 . 2.) For the $2^{\mathbf{u}_1}$ vector \mathbf{v}_2 , we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with $\mathbf{v}_2 = (\mathbf{v}_2.\mathbf{u})\mathbf{u}_1$, and then normalise to get \mathbf{u}_2 . (ala we replace \mathbf{v}_2 with \mathbf{v}_2 but removing its projection on the \mathbf{u} plane). 3) We do the same thing for $3^{\mathbf{u}}$ onwards, subtracting its projection onto all the planes from before: eg: $\mathbf{u}_3 = \mathbf{v}_3 - ((\mathbf{v}_3.\mathbf{u}_1)\mathbf{u}_1) - ((\mathbf{v}_3.\mathbf{u}_2)\mathbf{u}_2)$ Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{in}(\mathbf{v}_1) - \operatorname{proj}_{in}(\mathbf{v}_1)$ - $\operatorname{proj}_{in}(\mathbf{v}_2)$ - $\operatorname{proj}_{in}(\mathbf{v}_3)$ - $\operatorname{proj}_{in}(\mathbf{v}_3)$ method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	with λ , their when you multiply it by A – λI , the result will be a linear combination of a rank 1 generalized eigenvector and another eigenvector associated with λ . This pattern continues for higher-rank generalized eigenvectors. Example: Take $A = [1 \ 11.0 \ 10.0 \ 01]$, CP: $(1 - \lambda)^3$, $\lambda_1 = 1$ (with $A = 3$). We end up with two linearly indep EVecs: $(0, 1, -1)^7$, $(1, 0, 0)^7$. There is one more EVec for this value which can be computed by $(A - 1)^3 = (2 - 1)^3$, $(1, 0, 0)^7$. It is not always the case that we can do $(A - 1)^3 = (2 - 1)^3$, $(1, 0, 0)^7$. It is not always the case that we can do $(A - 1)^3 = (2 - 1)^3$, be found by using a suitable linear combination au $(1, 0, 0)$ and $(1, 0, 0)$ and $(1, 0, 0)$ are need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	4.) If A is positive definite then the Lx1, 2x2, mxm matrices in the upper left comer of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element A _j > max (A _j , A _j) then its not PSD is (e.g if the 3 rd element in the first row = 3, 1 st in 1 st row = 2, 3 rd in 3 rd row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A ^{rm} of the form A = LLT, where L is a lower triangular matrix.	Properties of QR Decomposition: 1) For $k \in N$, k is milar to k . (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A). 2) For $k \in N$, we have that $A_k = Q_k^{-1}AQ_k$ from above. So A_k , and A have the same eigenvalues and V is an eigenvector of A_k if and only if $Q_k V$ is an eigenvector of A 3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (If A is symmetric): 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Natrices If A is symmetric, so are all the A_k . If A is symmetric, the algorithm converges, under certain conditions, to a diagonal matrix, A is symmetric, the algorithm converges, under certain conditions, to a diagonal matrix,
Generating set: Our vector subspace X is by agenerating set: of Uit could express every vector U in the Vector Space as a linear combo of its vectors. A sample basis is one with as many 0s, as possible, gotten by getting RREF and taking in which pivot column. Span of this = basis. A simple basis is one with as many 0s, as possible, gotten by getting RREF and taking in which pivot columns span as our simple basis. A simple basis is one with as many 0s, as possible, gotten by getting RREF and taking in which pivot columns span as our simple basis. Dimension = number of basis vectors. Subbing A in: **M1 Finding Change of Basis Matrix** We just represent each basis vector in terms of the other basis, and each representation is one of a rur orlumns. $B = \left\{ \begin{array}{c} 2 \\ -2 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ -1 \end{array} \right\} B^* = \left\{ \begin{array}{c} -1 \\ $	im(A) $\sum_{k \in \{A^n\}} s$ in(A), and a unique $b_k \in \ker(A^n)$ such that: $b = b_k + b_k$. Let $A \in \mathbb{R}^m$ and $b \in \mathbb{R}^m$. Suppose $Ax = b$ has no solution for $x \in \mathbb{R}^n$, i.e., $b \in I$ im(A). 0. LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b _2 ax - b _2$, is minimised. $ Ax - b _2 = 0 \Leftrightarrow Ax = b$. M5) Lest Squares Method (LSM)	time: The first vector \mathbf{v}_1 is orthogonal to everything so far as we haven't considered any other vectors yet. We need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get \mathbf{u}_1 . 2) For the 2^{-d} vector \mathbf{v}_2 , we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with $\mathbf{v}_2 - (\mathbf{v}_2.\mathbf{u})\mathbf{u}_1$, and then normalise to get \mathbf{u}_2 . (aka we replace \mathbf{v}_2 with \mathbf{v}_3 but removing its projection on the \mathbf{u} plane). 3) We do the same thing for 3^{-d} onwards, subtracting its projection onto all the planes from before: e.g. $\mathbf{u}_3 = \mathbf{v}_3 - ((\mathbf{v}_3\mathbf{u}_1)\mathbf{u}_1) - ((\mathbf{v}_3\mathbf{u}_2)\mathbf{u}_2)$ Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_1) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_2) - \mathbf{u}_{\mathbf{v}_3} - \mathbf{u}_{\mathbf{v}_3}(\mathbf{v}_1)$. Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_2) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_2) - \mathbf{u}_{\mathbf{v}_3} - \mathbf{u}_{\mathbf{v}_3}(\mathbf{v}_3)$. Solve the Char Polynomial to get the eigenvalues	will be a linear combination of a rank 1 generalized eigenvector and another eigenvector associated with $\lambda.$ This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 1 1, 0 1 0, 0 0 1]. CP: (1- $\lambda)^3$, λ_1 = 1 (with AM = 3). We end up with two linearly indep Evecs: (0, 1, -1)", (1, 0, 0)". There is one more EVec for this value which can be computed by (A-1)V ₂ = V ₂ , and so V ₃ = (0, 0, 1)". It is not always the case that we can do (A-1)V ₃ = V ₂ or V ₁ . A generalised eigenvector v13 can always be found by using a suitable linear combination au1 +bu2 of u1 and u2, i.e., we need to find the generalised eigenvector to from the eigenspace generated by the eigenvectors for the	matrices in the upper left corner of A are also positive definite. Same holds for semi-definite. We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_{ij} > \max(A_{ij}, A_{ij})$ then its not PSD (e.g. if the 3^{ri} element in the first row = 3, 1^{ri} in 1^{ri} row = 2, 3^{rd} in 3^{ri} row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{ri} of the form $A = LL^{ri}$, where L is a lower triangular matrix.	1) For $k \in \mathbb{N}$, A_i , is similar to A_i (similar means $A_k = P^1AP$ ie, it can be obtained from performing a transformation matrix on A_i . 2) For $k \in \mathbb{N}$, we have that $A_k = Q_i^{TA}Q_k$ from above. So A_k and A have the same eigenvalues and v is an eigenvector of A_k if and only if Q_k is an eigenvector of A_k if and only if Q_k is an eigenvector of A_k 3). The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property A_k . (If A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric, so are all the A_k . If A is symmetric, so are all the A_k .
vector U in the Vector Space as a linear combo of its vectors. A basis is a minimal generating set. To find it we get the REF, and take original vector of each pivot column. Span of this = basis. A simple basis is one with as many 0s, as possible, gotton by getting RREF and taking the pivot columns span as our simple basis. A simple basis is one with as many 0s, as in A itself, we get the 0 matrix. We can fossible yetter by getting RREF and taking the pivot columns span as our simple basis. A = $[1-1, 2]$ 1. Oran polyn = $x^2-2x+3=$ Dimension = number of basis vector in terms of the other basis, and each represent each basis vector in terms of the other basis, and each representation is one of rur columns. $B = \begin{cases} 2 & 1 \\ -2 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} = \begin{cases} 2 & -1 \\ -1 & 1 \end{cases}$ Here, $B_1 = 4B_1 + 6B_2$, $B_2 = B_2$. If $B_2 = B_2$. If $B_2 = B_2$. If $B_3 = B_3$ and the man of them root total. Parallelogram Law: $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ are equivalent—there are $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ are equivalent—there are $B_3 = B_3$ and their magnitudes are $B_3 = B_3$. If $B_3 = B_3$ are equivalent—there are $B_3 = B_3$ and their magnitudes are $B_3 = B_3$ are equivalent—there are $B_3 = B_3$ and $B_3 = B_3$ are equivalent. If $B_3 = B_3$ are $B_3 = B_3$ are equivalent. If $B_3 = B_3$ are equivalent.	We can uniquely decompose vectors. Let $A \in \mathbb{R}^m$. For all vectors $b \in \mathbb{R}^n$, there exist a unique $b_i \in \operatorname{Im}(A)$, and a unique $b_i \in \operatorname{ker}(A^n)$ such that: $b = b_i + b_i$. Let $A \in \mathbb{R}^m$ and $b \in \mathbb{R}^m$. Suppose $Ax = b$ has no solution for $x \in \mathbb{R}^n$, i.e., $b \in J$ implies on osolution for $x \in \mathbb{R}^n$, i.e., $b \in J$ implies on equivalently, $ Ax - b _2$ is minimised. $ Ax - b _2$ is minimised when $ Ax - b_i _2 = 0 \Leftrightarrow Ax = b_i$. M51 Least Squares Method (LSM)	, need to make sure the magnitude is 1 though by dividing our first vector by its magnitude to get \mathbf{u}_1 . 2) For the 2^{nd} vector \mathbf{v}_2 , we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with \mathbf{v}_2 – $(\mathbf{v}_2,\mathbf{u})\mathbf{u}_1$ and then normalise to get \mathbf{u}_2 . (ake we replace \mathbf{v}_2 with \mathbf{v}_2 but removing its projection on the \mathbf{u} plane). 3) We do the same thing for 2^{nd} ownerst, subtracting its projection onto all the planes from before: e.g.: $\mathbf{u}_3 = \mathbf{v}_3 - ((\mathbf{v}_3,\mathbf{u}_1)\mathbf{u}_1) - ((\mathbf{v}_3,\mathbf{u}_2)\mathbf{u}_2)$ formula: $\mathbf{u}_1 = \mathbf{v}_1 - \mathrm{prij}_{\mathbf{u}_1}(\mathbf{v}_1) - \mathrm{prij}_{\mathbf{u}_2}(\mathbf{v}_2) - \mathrm{prij}_{\mathbf{u}_2}(\mathbf{v}_2)$. MB) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	This pattern continues for higher-rank generalized eigenvectors. Example: Take A = [1 1 1, 0 10, 0 0 1]. CP: $(1-\lambda)^3$, $\lambda_1 = 1$ (with AM = 3). We end up with two linearly indep EVecs: $(0, 1-1)^3$, $(1, 0, 0)^3$. There is one more EVec for this value which can be computed by $(A-1)v_3 = v_3$, and so $v_3 = (0, 0, 1)^3$. If $v_3 = v_3 = v$	We can use these to quickly notice non positive-semi definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_3 > \max\{A_p,A_j\}$ then its not PSD (e.g. if the 3^{rd} element in the first row = 3 , 1^{rd} in 1^{rd} row = 2 , 3^{rd} in 3^{rd} row = 1 , then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{rd} of the form $A = LL^{rd}$, where L is a lower triangular matrix.	2) For k e Ñ, we have that A _i = Q _i ^T AQ _i from above. So A _i and A have the same eigenvalues and v is an eigenvector of A _i if and only if Q _i v is an eigenvector of A 3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (If A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric, Matrices If A is symmetric, so are all the A _i . If A is symmetric, the eligother M _i . If A is symmetric, the eligother M _i .
are similar if there is an matrix P such that A basis is a minimal generating set. To find it we get the REF, and take original vector of each pivot column. Span of this B basis. A simple basis is one with as many B , as possible, gotten by getting RREF and taking inverses this way: the pivot columns span as our simple basis. Dimension B mumber of basis vectors. M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representating is one of our mulums. $B = \left\{ \begin{array}{c} 2 \\ -2 \\ -2 \end{array} \right \begin{array}{c} 1 \\ 1 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \end{array} \right \begin{array}{c} 1 \\ -2 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \end{array} \right \begin{array}{c} 1 \\ -2 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \end{array} \right \begin{array}{c} 1 \\ -2 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \end{array} \right \begin{array}{c} 1 \\ -2 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \\ -2 \end{array} \right \begin{array}{c} B \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	ta unique b, ∈ im(A), and a unique b, ∈ ker(A') such that: b = b, +b,. Let A ∈ R ^m and b ∈ R ⁿ . Suppose Ax = b has and no solution for x ∈ R ⁿ , i.e., b ∈/ im(A). 0. LSM finds x ∈ R ⁿ such that Ax − b ₂ , or equivalently, Ax − b ₂ s minimised. Ax-b ₂ is minimised when Ax-b, ₂ = 0 ⇔ Ax = b,. M5) Lesst Squares Method (LSM)	dividing our first vector by its magnitude to get u ₁ . 2) For the 2" vector v ₂ , we need to find an orthogonal version to u ₁ . We do this by replacing v ₂ with v ₂ − (v ₂ . u)u, and then normalise to get u ₂ . (aka we replace v ₂ with v ₃ but removing its projection on the u plane). 3) We do the same thing for 3 rd onwards, subtracting its projection onto all the planes from before: e.g. u ₂ = v ₃ − ((v ₃ u ₁ u ₁) − ((v ₃ u ₂ u ₂) − ((v ₃ u ₁ u ₁) − ((v ₃ u ₁ u ₂) − (v ₃ u ₁ u ₂). Formula: u ₁ = v ₁ - proj _{ul} (v ₁) − proj _{ul} (v ₂) − ··· − proj _{ul} (v ₃). M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	eigenvectors. Example: Take A = $[1\ 1\ ,0\ 1\ 0\ ,0\ 0\ 1]$. $CP: (1-\lambda)^3$, $\lambda_1=1$ (with AM = 3). We end up with two linearly indep EVecs: $(0,\ 1,-1)^7$, $(1,0,0)^7$. There is one more EVec for this value which can be computed by $(A-1)v_2=v_3$, and so $v_3=(0,0,1)^7$. It is not always the case that we can do $(A-1)v_3=v_3$ or v_1 . A generalised eigenvector u3 can always be found by using a suitable linear combination au 1. +bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_{j} > \max\{A_{j},A_{j}\}$ then its not PSD is (e.g. if the 3^{rd} element in the first row = 3, 1^{st} in 1^{st} row = 2, 3^{rd} in 3^{rd} row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{rm} of the form $A = LLT$, where L is a lower triangular matrix.	eigenvalues and v is an eigenvector of A _s if and only if Q _s is an eigenvector of A 3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the A _s . If A is symmetric, the algorithm converges, under certain conditions, to a diagonal matrix,
A basis is a minimal generating set. To find $A=BPP1$: it we get the REF, and take original vector of each pivot column. Span of this = basis. A simple basis is one with as many 0 s, as independent of each pivot column. Span of this = basis. A simple basis is one with as many 0 s, as independent of the characteristic polynomial of A and A is sosible, gotton by getting RREF and taking the pivot columns span as our simple basis. A = $[1-1, 2 \ 1]$. Char polyn = $X^2-2x+3=0$ binension = number of basis vectors. M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representation is one of our columns. $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\} \mathcal{B}' = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ Here, $B_1 = 4B_1 + 6B_2$, $B_2 = -B_2$. $B_2 = B_2$. $B_2 = B_2$. $B_2 = B_2$. $B_2 = B_2$. $B_3 = B_3 = B_3$. $B_3 =$	such that: $b = b_1 + b_k$. Let $A \in \mathbb{R}^m$ and $b \in \mathbb{R}^m$. Suppose $Ax = b$ has no solution for $x \in \mathbb{R}^n$; i.e., $b \in I$ im(A). 0. LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b _2 _2$ is minimised. $ Ax - b _2 _2$ is minimised when $ Ax - b_1 _2 = 0 \Leftrightarrow Ax = b_1$. M5) Least Squares Method (LSM)	2) For the 2^{11} vector \mathbf{v}_2 , we need to find an orthogonal version to \mathbf{u}_1 . We do this by replacing \mathbf{v}_2 with $\mathbf{v}_2 - (\mathbf{v}_2, \mathbf{u})\mathbf{u}_1$ and then normalise to get \mathbf{u}_2 . (aka we replace \mathbf{v}_2 with \mathbf{v}_2 but removing its projection on the \mathbf{u} plane). 3) We do the same thing for 3^{10} onwards, subtracting its projection onto all the planes from before: eg: $\mathbf{u}_3 = \mathbf{v}_3 - (\mathbf{v}_3 \mathbf{u}_1)\mathbf{u}_1) - ((\mathbf{v}_3 \mathbf{u}_1)\mathbf{u}_2)$. Formula: $\mathbf{u}_1 = \mathbf{v}_1 - \operatorname{proj}_{\mathbb{H}^1}(\mathbf{v}_1) - \operatorname{proj}_{\mathbb{H}^2}(\mathbf{v}_1) - \dots - \operatorname{proj}_{\mathbb{H}^2}(\mathbf{v}_1)$. M8) Spectral Decomposition Method on Method on Methods on M	Take $A = [1\ 11, 0\ 10, 0\ 0\ 1]$, $CP \cdot (1-A)^2$, $\lambda_1 = 1$ (with AM = 3). We end up with two linearly indep EVecs: $(0, 1, -1)^n$, $(1, 0, 0)^n$. There is one more EVec for this value which can be computed by $(A-1)v_3 = v_2$, and so $v_3 = (0, 0, 1)^n$. It is not always the case that we can do $(A-1)v_3 = v_2$, or $v_3 \cdot A$, ageneralised eigenvector val can always be found by using a suitable linear combination au1 +bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	definite matrices – if we have a symmetric matrix with a negative element, it cannot be PSD. Also: if we see a matrix element $ A_{j} > \max\{A_{j},A_{j}\}$ then its not PSD is (e.g. if the 3^{rd} element in the first row = 3, 1^{st} in 1^{st} row = 2, 3^{rd} in 3^{rd} row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{rm} of the form $A = LLT$, where L is a lower triangular matrix.	3) The sequence (Ak) converges to an upper triangular matrix under certain conditions. This is important because of property 4. (if A is symmetric) 4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. 50, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the A _k . If A is symmetric, the eligorithm converges, under certain conditions, to a diagonal matrix,
of each pivot column. Span of this = basis. the characteristic polynomial of A and s. A simple basis is one with as many 0s, as in A itself, we get the 0 matrix. We can fossible, gotten by getting RREF and taking the pivot columns span as our simple basis. A itself, we get the 0 matrix. We can fossible, gotten by getting RREF and taking inverses this way: the pivot columns span as our simple basis. A = [1 - 1, 2 1]. Char polyn = $x^2-2x+3=$ Dimension = number of basis vectors. Subting Ani: -A $^2+2A=31 \Leftrightarrow A 1/3(-A+21)=1 \Leftrightarrow A^2+2A=31 \Leftrightarrow$	nd no solution for $x \in \mathbb{R}^n$, i.e., $b \in I$ im(A). 0. LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b ^2_2$ is minimised. $ Ax-b _2$ is minimised when $ Ax-b _2 = 0 \Leftrightarrow Ax = b$. M5) Least Squares Method (LSM)	$(y_2, y_1)_1$, and then normalise to get u_2 , (aka we replace y_2 with v_2 but removing its projection on the u plane). 3) We do the same thing for 3^m onwards, subtracting its projection onto all the planes from before: eg: $u_3 = v_3 - ((v_3 u_1) y_1) - ((v_3 u_2) y_2)$ Formula: $u_1 = v_1 - \text{proj}_{11}(v_1) - \text{proj}_{12}(v_1) - \dots - \text{proj}_{12}(v_1)$ M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	indep Evecs: $(0, 1, -1)^y$, $(1, 0, 0)^y$. There is one more Evec for this value which can be computed by $(A-1)y_3 = y_2$, and so $y_3 = (0, 0, 1)^y$. It is not always the case that we can do $(A-1)y_3 = y_2$ or y_1 . A generalised eigenvector y_3 can always be found by using a suitable linear combination au $1+bu2$ of $u1$ and $u2$, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	matrix element $ A_{ij} > \max(A_{ii}, A_{ji})$ then its not PSD (e.g. if the 3^{rd} element in the first row = 3, 1^{st} in 1^{st} row = 2, 3^{rd} in 3^{rd} row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A^{rn} of the form $A = LL^T$, where L is a lower triangular matrix.	4) The eigenvalues of an upper triangular matrix are simply its diagonal elements. 50, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the A _i . If A is symmetric, the eigentim converges, under certain conditions, to a diagonal matrix,
A simple basis is one with as many 0s, as in A itself, we get the 0 matrix. We can if possible, gotten by getting RREF and taking the pivot columns span as our simple basis. A = [1-1,21]. Char polyn = $x^2-2x+3=$ Submension = number of basis vectors. Subbing A in: M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representation is one of or air columns. $\mathcal{B} = \left\{ \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\} \stackrel{?}{B} = \left\{$	nd no solution for $x \in \mathbb{R}^n$, i.e., $b \in I$ im(A). 0. LSM finds $x \in \mathbb{R}^n$ such that $ Ax - b _2$, or equivalently, $ Ax - b ^2_2$ is minimised. $ Ax-b _2$ is minimised when $ Ax-b _2 = 0 \Leftrightarrow Ax = b$. M5) Least Squares Method (LSM)	v_2 with v_2 but removing its projection on the u plane). 3) We do the same thing for 3^{rd} onwards, subtracting its projection onto all the planes from before: eg: $\mathbf{u_3} = \mathbf{v_3} - ((\mathbf{v_3}.\mathbf{u_1})\mathbf{u_1}) - ((\mathbf{v_3}.\mathbf{u_2})\mathbf{u_2})$ Formula: $\mathbf{u_1} = \mathbf{v_1} - \operatorname{proj}_{i,i}(\mathbf{v_1}) - \operatorname{proj}_{i,i}(\mathbf{v_1}) - \dots - \operatorname{proj}_{i+1}(\mathbf{v_1})$ M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	Elver for this value which can be computed by $(A-1)v_a = v_p$, and so $v_p = (0, 0, 1)^T$. If $v_p = v_p = v_p = v_p$ and so $v_p = v_p = v_p = v_p = v_p$. A generalised eigenvector $u_p = v_p = v_p = v_p = v_p = v_p$. A generalised linear combination au $1 + bu_p = v_p = v_p = v_p = v_p$, where $v_p = v_p = $: (e.g if the 3 rd element in the first row = 3, 1 st in 1 st row = 2, 3 rd in 3 rd row = 1, then we violate rule 3 as above). Cholesky Decomposition: any decomposition of a real square matrix A ^{rm} of the form A = LLT, where L is a lower triangular matrix.	elements. So, the QR decomposition is easily findable, and from this, we can converge it to an upper triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the A _L . If A is symmetric, the eligorithm converges, under certain conditions, to a diagonal matrix,
the pivot columns span as our simple basis. A = $[1-1, 2\ 1]$. Char polyn = $x^2-2x+3=$ Dimension = number of basis vectors. Subbing A in: Note that the properties of the pass, and each represent each basis vector in terms of the other basis, and each representation is one of our columns. $\mathcal{B} = \begin{cases} 2 & 1 \\ 1 & 1 \end{cases} \mathcal{B}^{p} = \begin{cases} 2 & 1 \\ 2 & 1 \end{cases} \mathcal{B}^{p} = \begin{cases} 2 & 1 \\ 1 & 1 \end{cases} \mathcal{B}^{p} = \begin{cases} 2 & 1 \\ $	equivalently, $ Ax - b ^2$ is minimised. $ Ax-b _2$ is minimised when $ Ax-b_i _2 = 0 \Leftrightarrow Ax = b_1$. M5) Least Squares Method (LSM)	projection onto all the planes from before: eg: $\mathbf{u_3} = \bar{\mathbf{v_3}} - (\mathbf{v_3} + \mathbf{u_3}) + (\mathbf{v_3} + u_3$	that we can do $(A-I)v_3 = v_2 \operatorname{or} v_1$. A generalised eigenvector $\operatorname{u3}$ can always be found by using a suitable linear combination au $1 + \operatorname{bu2}$ of $\operatorname{u1}$ and $\operatorname{u2}$, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	Cholesky Decomposition: any decomposition of a real square matrix A^{rn} of the form $A = LL^T$, where L is a lower triangular matrix.	triangle matrix, from which eigenvalues are easily findable. Application to Symmetric Matrices If A is symmetric, so are all the A _i . If A is symmetric, the algorithm converges, under certain conditions, to a diagonal matrix,
$\begin{array}{ll} \textbf{Dimension} = \textbf{number of basis vectors.} & \textbf{Subbing A in:} \\ \textbf{M1)} & \textbf{Finding Change of Basis Matrix} \\ \textbf{We just represent each basis vector in terms of the other basis, and each representation is one of our ror lumns.} \\ \textbf{B} = \left\{ \begin{bmatrix} 2 & 1 & 1 \\ -2 & 1 \end{bmatrix} \right\} \mathcal{B}' = \left\{ \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} \right\} \\ \textbf{Here, B}_1 = \textbf{4B}_1 + \textbf{6B}_2, \textbf{BB}_2 = \textbf{B}_2. \\ \textbf{IB}_{B'B} = \begin{bmatrix} 4 & 0 & 1 \\ 6 & -1 \end{bmatrix} \\ \textbf{Euclidean norm: magnitude of vector, square each item and then root total.} \\ \textbf{Parallelogram Law: } \forall v, v \in \mathbb{R}^n, u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2 \\ \textbf{Angle between vectors:} \\ \textbf{SOS}(\textbf{S} = \textbf{u.v.} / u v \\ \textbf{2) Orthogonality} \\ \textbf{Vectors u and v are orthogonal if u.v.} = 0. \\ \textbf{Amatrix } A \in \mathbb{R}^{nn} \text{ is orthogonal if they are invertible and } A^1 = A^T \\ \textbf{Two subspaces are orthogonal if vector} \\ \textbf{SUBSPACE or orthogonal if u.v.} \\ \textbf{SUBPRITE or orthogonal if u.v.} = 0. \\ \textbf{Matrix } A \in \mathbb{R}^{nn} \text{ is orthogonal if they eruse orthogonal if u.v.} \\ \textbf{SUBPRITE or u.v.} \\ \textbf{SUBPRITE or orthogonal if u.v.} \\ SUBPRITE or orthogonal if u$	equivalently, $ Ax - b ^2$ is minimised. $ Ax-b _2$ is minimised when $ Ax-b_i _2 = 0 \Leftrightarrow Ax = b_1$. M5) Least Squares Method (LSM)	- ((v ₃ .u ₁)u ₁) - ((v ₃ .u ₂)u ₂) Formula: u ₁ = v ₁ - proj _{ul} (v ₁) - proj _{u2} (v ₁) proj _{u1} (v ₁) M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	eigenvector u3 can always be found by using a suitable linear combination au1 +bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	real square matrix A^m of the form $A = LL^{\dagger}$, where L is a lower triangular matrix.	Application to Symmetric Matrices If A is symmetric, so are all the A, If A is symmetric, the algorithm converges, under certain conditions, to a diagonal matrix,
M1) Finding Change of Basis Matrix We just represent each basis vector in terms of the other basis, and each representation is one of rair columns. $\mathcal{B} = \left\{ \begin{array}{l} 2 \\ -2 \\ 1 \end{array} \right 1 \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ -1 \end{array} \right] - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ 1 \end{array} \right] - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ 1 \end{array} \right] - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ 1 \end{array} \right] - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \right\} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 1 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} - \frac{1}{1} \mathcal{B}' = \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right$	Ax = b _i . M5) Least Squares Method (LSM)	Formula: $u_j = v_j - \text{proj}_{i,1}(v_j) - \text{proj}_{i,2}(v_j) - \dots - \text{proj}_{i,j-1}(v_j)$ M8) Spectral Decomposition Method on Matrix A 1) Solve the Char Polynomial to get the eigenvalues	linear combination au1 +bu2 of u1 and u2, i.e., we need to find the generalised eigenvector from the eigenspace generated by the eigenvectors for the	real square matrix A^m of the form $A = LL^{\dagger}$, where L is a lower triangular matrix.	If A is symmetric, so are all the A_k . If A is symmetric, the algorithm converges , under certain conditions, to a diagonal matrix,
terms of the other basis, and each representation is one for ur molumns. $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -2 \end{bmatrix} \right\} \underbrace{B^*}_{l} + \underbrace{GB^*}_{l} \underbrace{B_2 - B^*}_{2}.$ Here, $B_1 = 4B^*$, $+ 6B^*$, $B_2 = B^*$. $I_B = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix}$ Here, $B_1 = 4B^*$, $+ 6B^*$, $B_2 = B^*$. $I_B = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix}$ Euclidean norm: magnitude of vector, square each item and then root total. Parallelogram Law: v_1 , $v_1 \in \mathbb{R}^n$, $ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ Angle between vectors: $\cos(x) = u_1 V \cdot u v $ Languard if $v_1 = v_2 = v_3 = v_4 = v$	M5) Least Squares Method (LSM)	Solve the Char Polynomial to get the eigenvalues	eigenspace generated by the eigenvectors for the		
representation is one of nur mlumns. $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\} \mathcal{B}' = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} - 1 \end{bmatrix}$ Here, $B_1 = 4B_1' + 6B_2'$, $B_2 = -B_2'$. $I_{\mathcal{B}'\mathcal{B}} = \left\{ \begin{bmatrix} 4 \\ 0 \end{bmatrix} - 1 \end{bmatrix}$ Here, $B_1 = 4B_1' + 6B_2'$, $B_2 = -B_2'$. $I_{\mathcal{B}'\mathcal{B}} = \left\{ \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix} \right\} \mathcal{B}' = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} - 1 \end{bmatrix}$ For vector, Y_1 in \mathbb{R}^n , scalar Y_2 in \mathbb{R}^n , scalar Y_3 in \mathbb{R}^n , scalar Y_4 in \mathbb{R}^n , square each item and then root total. $ \begin{array}{ll} \text{Parallelogram Law: } \forall U_1 \vee \in \mathbb{R}^n \\ U +v ^2 + U ^2 + 2 v ^2 \\ \text{Angle between vectors:} \\ \cos(x) = u.v / u v \\ 2 \text{Orthogonality} \\ \text{Vectors } u \text{ and } v \text{ are orthogonal if } u.v = 0. \\ \text{They're orthonormal if they're orthogonal and their magnitudes are 1.} \\ \text{A matrix } A \in \mathbb{R}^{nn} \text{ is orthogonal if if they are invertible and } A^1 = A^T$ Two subspaces are orthogonal if $Y_1 \cup Y_2 \cup Y_3 \cup Y_4 \cup$					
$ S = \{ -2 \ \ \ \ \ \ \ \ \ \ $	$A^{T}Ax = A^{T}b$, solving this gives the solution to	For each eigenvalue k_i, find the corresponding	eigenvalue λ . For an Eigenvalue with AM = x, we have		LU Decomposition:
Here, $B_1=4B'_1+6B'_2$, $B_2=-B'_2$. $I_{B''B}=\begin{bmatrix} 4 & 0 \\ 6 & -1 \end{bmatrix}$ Euclidean norm: magnitude of vector, square each item and then root total. Parallelogram Law: $\forall u, v \in \mathbb{R}^n$, $ u+v ^2+ u-v ^2=2 u ^2+2 v ^2$ Angle between vectors: $\cos(x)=u\cdot V\cdot u v $ 2) Orthogonality Vectors u and v are orthogonal if $u, v=0$. A matrix $A \in \mathbb{R}^{no}$ is orthogonal if $vv \in U$. A matrix $A \in \mathbb{R}^{no}$ is orthogonal if they are invertible and $A^1=A^T$ Two subspaces are orthogonal if $vv \in U$. They is orthogonal if $vv \in U$. A matrix $A \in \mathbb{R}^{no}$ is orthogonal if $vv \in U$. They is orthogonal if $vv \in U$. A matrix $vv \in V$ is orthogonal if $vv \in U$. They is orthogonal if $vv \in U$. They is orthogonal if $vv \in U$. A matrix $vv \in V$ is orthogonal if $vv \in U$. They is orthogonal if $vv \in U$. Th	the least square problem, as this is when Ax = bi.	eigenspace E _i – the dimensions of which are equal to	x Generalised Eigenvectors (remember normal		A non singular matrix $A \in \mathbb{R}^{nn}$ can be factorised as $A = LU$
$I_{B'B} = \begin{bmatrix} 4 & 0 \\ 6 & -1 \end{bmatrix}$ Euclidean norm: magnitude of vector, square each item and then root total. Parallelogram Law: $v_1, v \in \mathbb{R}^n$, $ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ Angle between vectors: $\cos(x) = u \cdot v / u v $ 20 Orthogonality Vectors u and v are orthogonal if $u \cdot v = 0$. Any two vector norms $ _a$ and $ _b$ in invertible and $A^1 = A^T$ Two subspaces are orthogonal if $v \in U$. $v \in V$, $v \in V$, $v \in V$, $v \in V$, write $U : V$. $v \in V$, $v \in V$, $v \in V$, write $U : V$. $v \in V$, $v \in V$, $v \in V$, write $U : V$. $v \in V$, $v \in V$, $v \in V$, write $U : V$. $v \in V$, $v \in V$, $v \in V$, $v \in V$, write $U : V$. $v \in V$, $v \in V$, $v \in V$, write $U : V$. $v \in V$, $v \in $	Take A = [2 2, 1 2, 2 0], b = [0, 5, 1] ^T .	the multiplicity of K _i . 3) For each eigenspace find an orthonormal basis	eigenvectors count). 9) Jordan Normal Form	Decomposition. Also there exists a version of L with strictly positive diagonal elements.	where L is a lower triangular matrix and U is an upper triangular matrix if and only if A can be reduced to its row echelon form without swapping any two rows.
Euclidean norm: magnitude of vector, square each item and then root total. Parallelogram Law: $v_1 \vee v_1 \in \mathbb{R}$, $ v_1 + v_1 = v_1 ^2 + $	$Ax = b$ has no solution . So, compute $A^TA =$	4) Combine these basis columnwise to form the matrix	A matrix is in Jordan Normal Form if it is of this form:		If A is non singular and A = LU with the diagonal elements of L being all one, then
$\begin{aligned} &\text{square each litem and then root total.} \\ &\textbf{Parallelogram Law:} \ \forall v, v \in \mathbb{R}^n, \\ & u+v ^2+ u-v ^2=2 u ^2+2 v ^2 \\ &\textbf{Angle between vectors:} \\ &\text{cos}(x) = u.v/ u \ v \\ &\textbf{2) Orthogonality} \end{aligned} \qquad \begin{aligned} &\text{L}_1 \text{ norm } = \text{sum of vector eiems.} \\ &\text{L}_2 = \text{Euclidean Norm} \\ &\text{L}_\infty = \text{max vector entry.} \end{aligned}$ $\text{Vectors } u \text{ and } v \text{ are orthogonal if } u.v = 0. \\ &\text{Any two vector norms} \ . _0 \text{ and } v in the limits of the limi$	[9 6, 6 8] ^T , A ^T b = [3, 10]. We proceed with Gaussian Elim and get $x_1 = -1$, $x_2 = 2$.	Q – the matrix Q is orthogonal as these basis are all orthogonal to each other.	$egin{bmatrix} J_{k_1}(\lambda_1) & 0 \ J_{k_2}(\lambda_2) & 0 \end{bmatrix}$		decomposition is unique. Also, $A^n = Q_1 \dots Q_n R_1 \dots R_n$
$\begin{aligned} & \text{U}+V ^2+ \text{U}+V ^2+2 \text{U} ^2+2 \text{V} ^2\\ &&\text{Angle between vectors:}\\ &\text{Cs}(x)=\text{U}+V \text{U} \ \text{V} \\ &\textbf{2) Orthogonality} \end{aligned} \qquad \begin{aligned} &\text{L}_1\text{ norm} = \text{sum of vector eigens.}\\ &\text{L}_2 = \text{Euclidean Norm}\\ &\text{L}_{\infty} = \text{max vector entry.}\\ &\text{Vectors u and vaer orthogonal if U}, v = 0. \end{aligned}$ $&\text{They fe orthonormal if they re orthogonal and their magnitudes are 1.}\\ &\text{A matrix } A \in \mathbb{R}^{\infty n} \text{ is orthogonal if they are invertible and } A^1 = A^T \end{aligned}$ $&\text{Two subspaces are orthogonal if } \forall u \in U, \\ &\text{U}, \text{L}_2, \text{L}_{\infty} = \text{equivalent:}\\ &\text{Two subspaces are orthogonal if } \forall u \in U, \\ &\text{U}, \text{V} \subseteq V, \text{U} \cdot v = 0. \end{aligned}$ $&\text{We write U I V}. \end{aligned}$ $&\text{1} \text{X} _{\infty} \leq \text{X} _{2} \leq \text{X} _{1} \leq \text{X} _{2} \leq \text{X} _{1} \leq \text{X} _{2} \leq \text{X} $	5) Linear Regression	5) The columns of Q are eigenvectors of A. We write P	· .	have the same dimensions, set $LL^T =$, label each of L's	Let $A \in \mathbb{R}^{nn}$ be a symmetric positive definite matrix with distinct eigenvalues $\lambda_1 > \lambda_2 > >$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	We have a set of points (y _i , a _i), y a real number, and a is a real vector of dimension n	as the diagonal eigenvalues matrix, and now A = QPQ ⁻¹	$J_{k_n}(\lambda_n)$		$\lambda n > 0$ with eigendecomposition $A = Q\Lambda Q^T$. Suppose $Q^T = LU$ with unit lower triangular L
$ \begin{array}{ll} \textbf{2.) Orthogonality} \\ \text{Vectors u and v are orthogonal if u.v} = 0. \\ \text{Any two vector norms } . _a \text{ and } . _b \text{ in They for orthogonal} \\ \text{and their magnitudes are 1.} \\ \text{A matrix } A \in \mathbb{R}^m \text{ is orthogonal} \text{ if they are invertible and } A^1 = A^T \\ \text{Two subspaces are orthogonal if } \forall u \in U. \\ \text{Yw } \in V, u \cdot v = 0. \text{ We write } U \perp V. \\ \text{3.) Cauchy Schwarz inequality:} \end{array} $	We want to find the model of best fit with	Symmetric matrices perform scaling operations in the direction of their eigenvectors.	where each ${\sf J}_{\sf ki}({\sf \lambda_i})$ is a Jordan block of size k, with ${m L}{m L}^T$	11	and the diagonal elements of U are positive. Then $A_k \rightarrow \Lambda$ 14) Fixed Points
Vectors u and v are orthogonal if $u.v = 0$. Any two vector norms $. _a$ and $. _b$ in They/re orthogonal and their magnitudes are 1. A matrix $A \in \mathbb{R}^{nn}$ is orthogonal if they are invertible and $A^1 = A^T$ Two subspaces are orthogonal if $v \in V$, $u.v = 0$. We write $U \perp V$. $v \in V, u.v = 0$. We write $U \perp V$. $v \in V, u.v = 0$. We write $U \perp V$. $v \in V, u.v = 0$. We provided the $v.v \in V, u.v \in V$ and $v.v \in V, u.v \in V, u.v \in V$. $v.v \in V, u.v \in $	parameters $s_0 \in R$ and $s \in R^n$, so the sum of	7) Singular Value Decomposition	diagonal (not necessarily unique) coefficient λ_i :	$-\begin{array}{cccccccccccccccccccccccccccccccccccc$	Convergence of a Sequence of Real Numbers: Let (a _n) _{neN} ∈ R ^N be a sequence of real
They're orthonormal if they're orthogonal are equivalent – there are $r > 0$ and $s > 1$ and their magnitudes are 1. A matrix $A \in \mathbb{R}^{m}$ is orthogonal if they are invertible and $A^{-1} = A^{T}$ $ L_{j}, L_{j}, L_{m} \text{ are } \textbf{equivalent:} $ Two subspaces are orthogonal if $\forall v \in V, U, V = 0$. We write $U \perp V$. 3) Cauchy Schwarz inequality: $ U_{j} \leq V_{j} \leq V_{j} $	the errors squared is minimized:	A is real symmetric matrix. A is positive definite iff: $\forall x \in \mathbb{R}^n - \{0\}, x^T A x > 0$	$\begin{bmatrix} \lambda_i & 1 & 0 & \dots & 0 & 0 \end{bmatrix}$		numbers and $I \in R$. The sequence (a_n) is said to converge to its limit I , $\lim_{n\to\infty} a_n = I$ if and only if: $\forall e > 0$, $\exists N \in N$ such that $\forall n > N$, $ a_n - I < e$
A matrix $A \in \mathbb{R}^{\infty n}$ is orthogonal if they are $ \forall x \in \mathbb{R}^n, \Gamma X _1 \le X _1 \le s X _1 = required band A^1 = A^T. Two subspaces are orthogonal if \forall u \in U, 1, X _1 \le s X _2 \le required band A^T = A^T. Two subspaces are orthogonal if \forall u \in U, 1, X _1 \le s X _2 \le required band A^T = A^T. Two subspaces are orthogonal if \forall u \in V, X _2 \le required band A^T = A^T. The subspaces A^T = A^T is A^T = A^T.$	$\sum_{i=1}^{n} (s_0 + s \cdot a_i - g_i)$	It's positive semi-definite iff: $\forall x \in \mathbb{R}^n - \{0\}, x^T Ax >=$	$\begin{bmatrix} 0 & \lambda_i & 1 & \ddots & 0 & 0 \end{bmatrix}$	We can now compute the value of each index by	The steps we take to show a sequence of real numbers converges:
invertible and $A^{-1} = A^T$ $Two subspaces are orthogonal if \forall u \in U, 2 \mid x \mid_{\infty} \le x _2 \le x _1 \forall v \in V, U \cdot V = 0. \text{ We write } U \perp V. 3) \textbf{ Cauchy Schwarz inequality:} 3) x _1 \le x _2$	AKA: We require s_0+s . $a_i \approx y_i$ The sum of the squared errors is this:	0 Theorem: Positive definiteness in terms of Eigenvalues	$J_{b_i}(\lambda_i) = \begin{bmatrix} 0 & 0 & \lambda_i & \cdots & 0 & \vdots \end{bmatrix}$	pattern matching to A's elements and solving our	1) Find the limit I 2) Take e > 0
Two subspaces are orthogonal if $\forall u \in U$, 1) $ X _{u} \le X _2 \le X _1$ $\forall w \in V, u \cdot v = 0$. We write $U \perp V$. 2) $ X _2 \le x _1 X _{u}$ 3) Cauchy Schwarz inequality: 3) $ X _1 \le x _1 X _2$	m	Positive definite all eigenvalues are strictly positive	$J_{k_i}(\lambda_i) = \begin{bmatrix} \vdots & \ddots & \ddots & \ddots & 1 & 0 \end{bmatrix}$	simultaneous equations, to yield L.	 Find N ∈ N such that a_n − I < e for n > N, the value of N will usually depend on and
3) Cauchy Schwarz inequality: 3) $ x _1 \le \sqrt{n} x _2$	$\sum_{i=1} (s_0 + s \cdot a_i - y_i)^2 = Az - y _2^2$	2) Positive semi definite ⇔ eigenvalues are non	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_i & 1 \end{bmatrix}$		decrease with e
	M6) Linear Regression Method	negative Properties of A^TA and AA^T Take arbritrary $A \in R^{mn}$	$\begin{bmatrix} 0 & 0 & \cdots & 0 & \lambda_i \\ 0 & 0 & \cdots & 0 & 0 & \lambda_i \end{bmatrix}$	equation Given an equation Ax = b, where A has a Cholesky	Cauchy Sequence: Let $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^N$ a sequence of real numbers. Then (a_n) is said to be a Cauchy sequence if and only if: $\forall e>0$, $\exists N\in\mathbb{N}$ such that $\forall n,m>N$, $ a_n-a_m < e$
u, v ∈ R n , u · v ≤ u v 2) Matrix Norms (MN):	We construct a Matrix A, with 1 column, and	$A^TA \in R^{nn}$ and $AA^T \in R^{mm}$ are both symmetric and	Even if $A \in \mathbb{R}^{nn}$, its JNF might not be in \mathbb{R}^{nn} but in \mathbb{C}^{nn} .	Decomposition $A = LL^T$, we can solve the equation	This gives rise to the Cauchy Test: Let $(a_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ a sequence of real numbers. Then (a_n) is
4) Triangle inequality: A > 0 kA = k A ∀u, v ∈ R n , u + v ≤ u + k A + B <= A + B , as with vect	record each of our as row by row, corresponding to our y (which had that data).	positive-semi definite. This gives rise to SVD – a more general decomposition	Blocs in JNF and Multiplicities of Eigenvalues: The algebraic multiplicity of an eigenvalue λ is the sum	$LL^Tx = b$ in 2 steps: 1. Let $v = L^Tx$. Solve $Lv = b$ by forward substitution.	convergent if and only if it is a Cauchy sequence Metric Spaces: A metric space is a tuple (S, d) where S is an non-empty set and
$u \perp v \Leftrightarrow u + v ^2 = u ^2 + v ^2$ norms. We only consider Submultiplicat	$e \begin{bmatrix} 1 & a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$	than spectral, which takes more work to get into but stil	of the sizes of blocks with λ on the diagonal. The		d is a metric over S meaning: A function $d: S \times S \rightarrow R$ such that:
5) Linear Maps MNs, which also have AB <= A	$ 1 a_{21} a_{22} \cdots a_{2n} $	exhibits useful properties.	geometric multiplicity of λ is the number of blocks with λ on the diagonal.	11) OP Decomposition	$\forall x, y \in S, d(x, y) \ge 0 \text{ (positivity)}$
A map from one vector subspace to $L_i=$ max absolute column sum (e.g. for another is linear if: each column, add up the absolute value	of _A _ : : : : :	SVD Definition: Take arbritrary $A \in \mathbb{R}^{mn}$. The SVD of A is any	M10) Finding the JNF of a Matrix		$\forall x, y \in S, d(x, y) = 0 \iff x = y \text{ (reflexivity)}$ $\forall x, y \in S, d(x, y) = d(y, x) \text{ (symmetry)}$
For all $u, v \in V$, $f(u + v) = f(u) + f(v)$ each entry. Highest total $= L_1$).	$A = \begin{bmatrix} 1 & a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$	decomposition of the form: A = USV ^T	 Find the eigenvalues of A, noting the AMs. 	decomposing our matrix A into an orthogonal matrix Q	$\forall x, y, z \in S, d(x, y) \le d(x, z) + d(z, y)$ (triangle inequality)
For all $u \in V$ and $c \in R$, $f(cu) = cf(u)$ L_2 =Largest singular value of A. A basis change matrix from u to v is a L_2 = Maximum absolute row sum.		Where: $U \in \mathbb{R}^{nm}$ and $V \in \mathbb{R}^{n}$ are orthogonal matrices. $S \in \mathbb{R}^{m}$ is a diagonal matrix, $S = \text{diag}(\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_b)$	 For each eigenvalue λ_i compute the eigenspace (ES) F_i. Note the GMs of each ES and their associated 	and an upper triangular matrix such that $A = QR$.	Metric in a normed Vector Space: V is a vector space equipped with the norm $. $. Let d be the function defined by $d: V \times V \to \mathbb{R}$ d is a metric space.
linear map. Here the matrix [0 1] is a A Matrix norm is consistent with the	$\begin{bmatrix} 1 & a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$	where $p = min(m, n)$.	EVecs.	MI3) QK Decomposition using the Gram-	$ (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} - \mathbf{y} $
linear map from the subspaces visible. vector norms $. _a$ and $. _b$ if for all A^{no} $<= A x _a$ if $a = b$, they re compatil	$Az-b = [s_0 + s_1a_{11} + + s_na_{1n} - y_1]$	$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$ (We write largest first) The values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$, are known as the	3) If $g_i < a_i$ then we find the missing $a_i - g_i$ generalised		From here we will consider the concepts seen in R but generalised to a metric space (S, d).
$f(x) = \begin{vmatrix} x \end{vmatrix} = \begin{vmatrix} 1 & 0 \end{vmatrix} * \begin{vmatrix} x \end{vmatrix}$. Subordinate Matrix Norm: $\forall A \in \mathbb{R}^{m \times n}$		singular values of A. $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_p \ge 0$, are known as the	that: $(A - \lambda_i I) v_{i,i}^{k} = v^{k-1}_{ii}$. We must do it with all Evecs	they're linearly independent.	The generalisations will be pretty straightforward, mostly consisting in swapping the absolute value of the difference with the distance.
$y+x$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} y \end{bmatrix}$ $ A = \max\{ Ax : x \in \mathbb{R}^n, x =1 \}$	*) $ [s_0 + s_1 a_{m1} + \ldots + s_n a_{mn} - y_m] $	Useful Properties of SVD:	as each of them might generate part of the Generalised	We apply GS process constructing an orthonormal	Convergence in a Metric Space: Convergence in a metric space. Let (S, d) be a metric
We can compose basis change and linear AKA: max of our vec norm on Ax, taken maps. AKA: max of our vec norm on Ax, taken over all vectors with norm 1.	(b is our vector of ys). Minimizing Az-b gives us our solution. We do this by solving the	1) SVD: A = USV ^T . If U = [u ₁ ,, u _m] and V = [v ₁ ,, v _n], then	Eigenvectors.	basis (e_1e_n) s.t span $\{e_1,,e_n\}$ = span $\{a_1,,a_n\}$. From the GS formula (computing the orthonormal basis	space and (a_n) a sequence in S. Then a_n is said to converge to a limit $l \in S$ iff : $\forall e > 0$. $\exists N \in N$ such that $\forall n > N$. $d(a_n, l) < e$
good in \mathcal{B} F_{DB} good in \mathcal{D} (*) = max{ Ax / x : x \in R^n, x/= 0	normal equation $A^TAz = A^ty$		$oldsymbol{v}_{11}^1,\dots,oldsymbol{v}_{11}^{k_{11}},\dotsoldsymbol{v}_{1g_1}^1,\dots,oldsymbol{v}_{1g_1}^{k_{1g_1}},\dotsoldsymbol{v}_{m_1}^1,$	of u _i by subtracting from u _i its projection on all previous	Cauchy Sequence in a Metric Space: Let (S, d) be a metric space and (an) a sequence
$= \max\{ Ax : x \in \mathbb{R}^n, x \le 1\}$ A vector norm is compatible with its	To be clear:	 There is a link between Rank of a Matrix and SVD, the rank of A = num singular positive values in S. 	$[\ldots, oldsymbol{v}_{m1}^{k_{m1}}, \ldots oldsymbol{v}_{mg_m}^1, \ldots, oldsymbol{v}_{mg_m}^{k_{mg_m}}, igg]$	bases):	in S. (a_n) is a Cauchy sequence iff: $\forall e > 0$, $\exists N \in N$ such that $\forall n, m > N$, $d(a_n, a_m) < e$
$I_{\mathcal{D}'\mathcal{D}}$ subordinate matrix norm: for all A^{men} an		3) Let A ∈ R ^m . A ₂ = largest singular value of A.	5) Write JNF as: J : $J_{k_{11}}(\lambda_1)$ 0	Set $O = [e_1,, e_n]$. It is semi orthogonal (e.g $O^TO = I$).	Cauchy Test on a Metric Space : Let (be S, d) a metric space and (a_n) a sequence in S: if (a_n) is convergent, then it is a Cauchy sequence
coord in $\mathcal{B}' \xrightarrow{\mathbf{F}_{\mathcal{D}'\mathcal{B}'}} \operatorname{coord}$ in $\mathcal{D}' \xrightarrow{x^n, Ax <= A x }$.	z = vector of parameters we want to estimate.	 Let A ∈ R^{mn}. The positive singular values of A 	Where each Jk _{i,j}	$(e_1 \cdot a_1) (e_1 \cdot a_2) \cdots (e_1 \cdot a_m)$	Complete Space: Let (S, d) be a metric space. Then it is said to be a complete space if
For $p = 1, 2$ and infinity the MN is In an $f: \mathbb{R}^n \to \mathbb{R}^m$ linear map, the Image subordinate to the vector norm. Thus the	z = vector of parameters we want to estimate. A = matrix of data point estimates we're	are the positive square roots of the eigenvalues of AA ^T or A ^T A.	is a jordan Block of size $\mathbf{k}_{i,i}$ with $\begin{bmatrix} 0 & J_{k_{mg_m}}(\lambda_m) \end{bmatrix}$	$A = Q$. $(c_2 \ d_2)$. $(c_2 \ d_m)$	and only if every Cauchy sequence in S is also converging in S. Completeness of the L1, L2 and L∞ Norms: For any $k > 0$, R^k equipped with any of
Space: refers to the set of points mapped matrix norm is also compatible with the	z = vector of parameters we want to estimate. A = matrix of data point estimates we're minimizing		diagonal coeff λ_i . AKA, each block $Jk_{i,j}$ is associated with	: 0 : :)	the three metrics induced by L1, L2 or L∞ is complete.
to in R ^m . The Kernel/Null space is the set vector norm. of points in the N space that is 0.	z = vector of parameters we want to estimate. A = matrix of data point estimates we're minimizing	5) The span of the first r columns of $U = im(A)$. The			The space (C[a, b], $k \cdot k\infty$) is complete.
or portion to the Napade diacts of	z = vector of parameters we want to estimate. A = matrix of data point estimates we're minimizing	 The span of the first r columns of U = im(A). The span of the last m-r columns is ker(A), where r is the rank. 	eigenvalue λi , and corresponds to the transformation of each generalised eigenvector v^k_{ij} obtained from the		Only Cauchy Sequences Converge in Complete Metric Spaces: Let (S, d) be a

