PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-251127

(43) Date of publication of application: 17.09.1999

(51)Int.Cl.

H01F 1/11 C01G 49/00

(21)Application number: 10-051671

(71)Applicant: HITACHI METALS LTD

(22)Date of filing:

04.03.1998

(72)Inventor: KUBOTA YUTAKA

OGATA YASUNOBU

(54) HIGH-PERFORMANCE FERRITE MAGNET AND ITS MANUFACTURE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a maximum energy exceeding that of M-type ferrite and realize improvement in magnetic characteristic with a different composition, by constituting a basic composition using an atomic ratio of a substantially W-type.

SOLUTION: A material obtained by mixing, for example, SrCO3 and Fe2O3 is pre-fired at 1350°C in a nitrogen gas atmosphere with a partial pressure of oxygen of 1× 10-4 atm. The resultant calcined powder has a single W-phase in accordance with X-ray diffraction and has a saturation magnetization of 77 emu/g. After the powder is roughly ground, SrCO3 at 0.25 wt.%, CaCO3 at 0.8 wt.% and SiO2 at 0.3 wt.% are added thereto and water is further added to form a slurry having a concentration

of solid of 40 wt.%. After that, the slurry is finely ground in a wet method by an attriter so that an average grain size of 0.8-0.4 μ m in accordance with an air transmission method is obtained. The slurry is compression-molded under a pressure of 400 kgf/cm in a magnetic field having a magnetic field strength of 8 kOe, and is subsequently dried at 150°C in the ambient atmosphere. After that, the slurry is sintered for two hours at 1100-1300°C in a nitrogen gas atmosphere with a partial pressure of oxygen of 1×10-4 atm.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-251127

(43)公開日 平成11年(1999)9月17日

(51) Int.Cl. ⁶		識別記号	FΙ		
H01F	1/11		H01F	1/11	В
C01G	49/00		C 0 1 G	49/00	C

審査請求 未請求 請求項の数5 OL (全 6 頁)

		(71)出顧人	000005083
			日立金属株式会社
(22)出顧日	平成10年(1998) 3月4日		東京都千代田区丸の内2丁目1番2号
		(72)発明者	久保田 裕
		·	埼玉県熊谷市三ケ尻5200番地日立金属株式
			会社磁性材料研究所内
		(72)発明者	緒方 安伸
			埼玉県熊谷市三ケ尻5200番地日立金属株式
			会社磁性材料研究所内

(54) 【発明の名称】 高性能フェライト磁石およびその製造方法

(57)【要約】

【課題】 従来のM型フェライトを越える最大エネルギー積を有し、かつ従来とは異なる組成のW型フェライト 磁石およびその製造方法を提供する。

【解決手段】 基本組成が原子比率で $MO \cdot xFeO \cdot (y-x/2)Fe_2O_3$ (Mは $Ba \cdot Sr \cdot Pb \cdot La$ の内の1種または2種以上)、 $1.7 \le x \le 2.1$, $8.8 \le y \le 9.3$ で表されることを特徴とするフェライト磁石。

1

【特許請求の範囲】

【請求項1】 基本組成が原子比率でMO·xFeO・ (y-x/2) Fe₂O₃ (MはBa、Sr、Pb、La の内の1種または2種以上)、1.7≦x≦2.1, 8.8≦y≦9.3で表されることを特徴とするフェラ イト磁石。

【請求項2】 基本組成が原子比率でMO・xFeO・ (y-x/2) Fe₂O₃ (MはBa、Sr、Pb、La の内の1種または2種以上)、 $1.7 \le x \le 2.1.$ 8. 8 ≤ y ≤ 9. 3 で表される仮焼粉を粗粉砕後、添加 10 ¹⁺, Z n ¹⁺等遷移金属イオン)を含む点である。特に、 物とともに湿式微粉砕を行い、その後磁場中成形、焼結 することを特徴とするフェライト磁石の製造方法。

【請求項3】 微粉砕時に添加物として、CaCO,を 0.6~1.0重量%、SiOzを0.2~0.5重量 %添加した後、空気透過法による平均粒子径で0.3~ O. 8 μmに湿式微粉砕する請求項2 に記載のフェライ ト磁石の製造方法。

【請求項4】 微粉砕時に添加物としてSrC〇、を 0. 1~0. 4重量%、CaCO₃を0. 6~1. 0重 量%、SiOzを0.2~0.5重量%添加した後、空 気透過法による平均粒子径で0.3~0.8μmに湿式 微粉砕する請求項2に記載のフェライト磁石の製造方

【請求項5】 微粉砕スラリーを濃縮あるいは乾燥後、 前記濃縮あるいは乾燥したもののフェライト微粉末の重 量分に対し分散剤溶液をその固形分量で0.1~2.0 重量%添加した後、混練を行い、得られた混練物を用い て磁場中成形する請求項2乃至4のいずれかに記載のフ ェライト磁石の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、従来とは異なる組 成において高い磁気特性を実現できるW型のフェライト 磁石およびその製造方法に関する。

[0002]

【従来の技術】フェライト磁石はコストパーフォーマン ス、耐環境性等に優れているため、電装用モーター等の 各種磁石応用製品に多用されている。特に、昨今の磁石 応用製品の小型軽量化のニーズに伴いさらなる小型化、 高性能化の要求が高まっている。高い磁気特性のM型焼 40 発明磁石は、CaOを0.5~1.0重量%、SiO, 結フェライト磁石を得るためには、
●フェライト結晶粒 径を単磁区粒径に近づけること(保磁力iHc向上)、② フェライト結晶粒が磁気異方性方向に揃っていること (残留磁束密度Br向上)、③高密度であること(Br向 上)が重要である。①~③を達成するには焼結前の微粉 砕粒子の大きさを単磁区粒子径以下にし、かつ磁場中成 形時の成形体配向度を向上させ、さらに適正な温度で焼 結することが必要である。このような改善手段等によ り、従来よりM型フェライト磁石の高性能化への努力が

特性は次第に上限に近づきつつあるように思われる。し たがって、さらに高い磁気特性のフェライト磁石を実現 するには、現状のM型フェライトを越える高い磁気特性 を実現可能な新たなフェライト磁石を追求する必要があ る。

【0003】飽和磁化の大きなフェライト磁石材料に は、M型フェライト以外に、W型、X型、Y型等のフェ ライトが知られている。これらの特徴はM型フェライト 構造中には存在しない、2価金属イオン(Fe²⁺,Co M型より約10%高い飽和磁化を有し、かつM型と同程 度の異方性磁界を示す可能性を秘めた₩型フェライト (BaO・2 FeO・8 Fe, O₃)が、新しいフェライト磁石材 料として注目されている。しかしながら、₩型フェライ ト構造中に含まれる2価鉄(Fe²⁺)の存在量制御のた めに、仮焼、焼成雰囲気等の緻密な制御が必要で、量産 化に向けての多くの課題を有している。

[0004]

【発明が解決しようとする課題】本発明の課題は、従来 20 のM型フェライトを越える最大エネルギー積を有し、か つ従来とは異なる組成の₩型フェライト磁石およびその 製造方法を提供することである。

[0005]

【課題を解決するための手段】上記課題を解決した本発 明は、基本組成が原子比率でMO・xFeO・(y-x /2) Fe₂O₃ (MはBa、Sr、Pb、Laの内の1 種または2種以上)、1.7≦x≦2.1.8.8≦y ≤9.3で表される実質的にW型からなるフェライト磁 石である。2価鉄量xが1.7未満であると、W相、添 30 加物相、不可避不純物相の他にM相、ヘマタイト相等が 生成し、磁気特性が低下する。xが2.1を越えると、 ₩相、添加物相、不可避不純物相の他にスピネル相が生 成し、磁気特性が低下する。よって、x=1.7~2. 1が好ましい。yは8. $8 \le y \le 9$. 3が好ましい。y が9.3を越えると仮焼時にマグネタイト等が生成し保 磁力が低下する。yが8.8を下回ると、必要とする2 価鉄量を得ることが困難となり、磁気特性が低下する。 特に好ましいのは基本組成が、x=2、y=9なる組成 (MO・2FeO・8Fe₂O₃)をとる場合である。本 を0.2~0.5重量%含有することが高い磁気特性を 実現するために必要である。

【0006】また、本発明は、基本組成が原子比率でM $O \cdot x F = O \cdot (y - x/2) F = O, (M \& B = S)$ r、Pb、Laの内の1種または2種以上)、1.7≦ $x \le 2$. 1, 8. $8 \le y \le 9$. 3で表される仮焼粉を粗 粉砕後、添加物とともに湿式微粉砕を行い、その後磁場 中成形、焼結するフェライト磁石の製造方法である。

【0007】上記基本組成の仮焼粉は、窒素ガスまたは 続けられてきた。そして概ねM型フェライト磁石の磁気 50 アルゴンガスまたはヘリウムガスまたはこれらの混合ガ

スからなる酸素分圧1×10-3atm以下の不活性ガス 雰囲気中で、仮焼して得られる。仮焼時の酸素分圧が1 ×10⁻³a t m以下のときに不可避不純物相、添加物相 を除いてW相単相のものを得られる。酸素分圧が1×1 O-3atmを越えると、W相以外にM相、スピネル相、 ヘマタイト相等が生成する。仮焼温度は1200~14 00℃が望ましい。1200℃未満ではW相の生成反応 が不十分となり、M相、ヘマタイト相等の混相状態とな る。1400℃を越えると2価鉄が過剰に生成してW 相、マグネタイト相等の混合状態となる。上記の基本組 10 成および仮焼条件により作製された仮焼粗粉は75em u/g以上の高い飽和磁化を有している。

【0008】微粉砕時の添加物として、CaCO,を 0.6~1.0重量%、SiOzを0.2~0.5重量 %を添加した後、空気透過法による平均粒子径で0.3 ~0.8μmに湿式微粉砕することが好ましい。CaC 〇3添加量が1.0重量%を越えるか、あるいはSi〇2 の添加量が0.5重量%を越えるか、あるいは両者が前 記上限値を越えて添加されると、非磁性の添加物相が過 剰となり、磁気特性が低下する。CaCO、添加量が 0.6重量%未満か、あるいはSiO,の添加量が0. 2重量%未満か、あるいは両者が前記下限値未満の量で 添加されると、焼結密度の低下や粗大結晶粒を生成し磁 気特性が低下する。

【0009】さらに、微粉砕時に添加物としてSrCO 』を0.1~0.4重量%、CaCO』を0.6~1.0 重量%、SiO₂を0.2~0.5重量%を添加した 後、空気透過法による平均粒子径で0.3~0.8 μm に湿式微粉砕することがより好ましい。SrCO゚の添 加量が0.4重量%およびCaCO3の添加量が1.0 重量%およびSiО₂の添加量が0.5重量%を各々越 えると焼結体の非磁性相部分が過剰となり、磁気特性が 低下する。一方、SrCO3の添加量が0.1重量%未 満でかつCaCO,の添加量が0.6重量%未満でかつ Si〇2の添加量が0.2重量%未満であると、焼結密 度が向上せず、磁気特性が低下する。

【0010】微粉砕粉の平均粒子径は、空気透過法によ る測定で、0.3~0.8μmとすることが高い磁気特 性を得るために好ましい。平均粒子径が0.3μm未満 では単磁区粒子径を下回る超微粒子が増加し、磁性的に 40 タイト相等が生成し、磁気特性が低下する。 劣化した粒子が増加し凝集が強まる。よって、成形時の 磁場配向性が劣化し高い磁気特性を得ることが困難であ る。平均粒子径が0.8μmを越えると、粗大粒子が多 く存在し、焼結後の組織において粗大結晶粒が多く存在 する結果磁気特性が低下する。微粉砕は公知の手段によ ればよく、限定されないが、湿式のアトライター、ボー ルミル等の微粉砕機で短時間に0.3~0.8 μmまで 粉砕することが望ましい。

【0011】本発明では、微粉砕粉を含むスラリーを乾

分濃度75~88重量%の高濃度スラリーまで濃縮後、 ニーダー等により機械的剪断力を加えながら分散剤を添 加し混練する。混練時に添加される分散剤は固形分濃度 で0.1~2.0重量%である。分散剤の添加量が固形 分量で0.1重量%より少ないと、分散剤が微粉砕粒子 の全表面に吸着することができず、成形時の希釈スラリ 一状態で良好な磁場配向性を実現することが困難であ る。分散剤の固形分量が2.0重量%より多いと、過剰 な分散剤がフェライト微粒子同士の凝集を発生させて、 分散性を逆に低下させる。なお、混練時に添加する分散 剤の一部量を、微粉砕時に先に添加することで、微粉砕 スラリー中におけるフェライト微粒子の分散性がより向 上し、高いBrを得るために好ましい。

【0012】分散剤として、有機化合物である界面活性 剤、高級脂肪酸、高級脂肪酸石鹸、高級脂肪酸エステル 等の溶液を用いることができる。その中でも、アニオン 系界面活性剤の一種であるポリカルボン酸系分散剤が、 フェライト粒子の凝集を顕著に抑え、良好な分散状態を 実現できるので好ましい。特に、ポリカルボン酸系分散 20 剤の内、ポリカルボン酸アンモニウム塩がフェライト微 粒子の分散性向上に有効である。

【0013】 ▼相焼成体中の2価鉄量は成形体の大気中 乾燥温度と分散剤添加量に依存する。成形体乾燥温度は ₩相成形体中の2価鉄量を決定し(酸化作用)、分散剤 の存在は₩相焼成体中の2価鉄量を決定する(還元作 用)。本発明は両条件のバランスを取ることによって、 最適な2価鉄量を有する♥相焼成体を得るものである。 【0014】本発明では、前記混練物を磁場中湿式成形 して得られた成形体を大気中で乾燥する。乾燥を十分行 30 わないと焼成体に割れを発生する場合がある。さらに、 ₩相成形体を大気中で扱うと、成形体が部分的に酸化さ れてW相粒子表面の2価鉄Fe²⁺がFe³⁺に酸化されて しまう。すなわち、原子比率でMO・xFeO・(yx/2) Fe,O, (MはBa、Sr、Pb、Laの内の 1種または2種以上)、1.7≦x≦2.1.8.8≦ y≦9.3なる基本組成を有するように仮焼した後、微 粉砕、磁場中成形して得られた成形体を大気中乾燥する に際し、乾燥温度によって2価鉄量がx=1.7より小 さい場合が発生する。この場合はW相の他にM相、ヘマ

【0015】この対策として、分散剤を添加して混練分 散することによりスラリー中の微粉砕粒子の凝集を抑え ることができるとともに、前記分散剤を還元剤としても 活用することができる。前記分散剤によって、過剰に酸 化されて生成したFe³⁺をFe²⁺に還元し、2価鉄量x を1. 7 ≤ x ≤ 2. 1の範囲内に戻すことができる。還 元作用を具備した分散剤の還元作用が過剰な場合は、2 価鉄量xが2. 1を越えてしまい、W相の他に2価鉄を 含むマグネタイト相等が生成して、磁気特性が低下する 燥後、あるいは微粉砕粉を含むスラリーを重量比で固形 50 ので、注意を要する。逆に、還元作用を具備した分散剤

の還元作用が不足している場合は、さらにPVA(ポリ ビニルアルコール)、カーボングラファイト、糖類等の いずれかを0.3重量%以下添加するのがよい。いずれ の還元作用を具備した分散剤を添加しても、焼成段階で 還元剤として作用した後、最終生成物中に還元剤成分は ほとんど残留せず、磁石特性に悪影響をおよぼすことは ない。

【0016】成形体の焼成は上記仮焼時と同様に酸素分 圧1×10⁻³ a t m以下の不活性ガス雰囲気中で行うと とが望ましい。酸素分圧が1×10-³atmを越えると 10 体を、酸素分圧1×10-⁴atmの窒素ガス雰囲気中で W相粒子の酸化が進行し、得られた焼成体がW相単相に ならない。結果として、M相、スピネル相、ヘマタイト 相等を含む混合相となり、磁気特性が低下する。

【発明の実施の形態】以下、実施例により本発明を説明 する。

(実施例1)原子比率で、SrO·xFeO·(9-x /2) Fe_2O_3 、x=2. 0の基本組成を有するよう に、SrCO,およびFe,O,を混合した原料を、酸素 分圧 1×10⁻⁴ a t mの窒素ガス雰囲気、1350℃の 20 条件で仮焼した。得られた仮焼粉はX線回折よりW相単 相であり、飽和磁化77emu/gを有していた。これ を粗粉砕後、SrCOュを0.25重量%、CaCOュを 0.8重量%、SiO₂を0.3重量%添加し、さらに 水を加えて固形分濃度40重量%のスラリーとした後、 空気透過法による平均粒径が、0.8~0.4 μmにな るようにアトライターにより湿式微粉砕した。これらの 微粉砕スラリーを乾燥後、水と分散剤溶液(固形分濃度 0. 4重量%) とを添加して固形分濃度84重量%のス を添加して希釈し、固形分濃度75重量%のスラリーと した。このスラリーを用いて磁場強度8k〇eの磁場中 で400kgf/cm²の圧力で圧縮成形した。続い て、得られた成形体を大気中150℃で乾燥後、酸素分 圧1×10-4atmの窒素ガス雰囲気中で1100~1 300℃×2時間焼結してW相フェライト磁石を得た。 得られた磁石は添加物相および不可避不純物を除いて₩ 相単相のものである。磁気特性を図1に示す。図1よ り、平均粉砕粒径0. 4μmの微粉砕スラリーを用いた 場合、Br=4800G、iHc=3000Oe、(B 40 性が顕著に低下することがわかる。2価鉄量xが1.7H) max=5.5MGOeが得られた。

【0018】(実施例2)原子比率で、SrO·xFe $O \cdot (9-x/2) Fe_2O_3$ 、x=2. 0となるように SrCO,およびFe,O,を湿式混合し、酸素分圧1× 10⁻¹a t mの窒素ガス雰囲気中、1350℃で仮焼を 行った。次に、仮焼したものを粗粉砕後、SrC〇」を 0. 25重量%、CaCO₃を0. 8重量%、SiO₂を 0.3重量%添加し、さらに水を加えて固形分濃度40 重量%のスラリーとした。その後、アトライターにより 湿式微粉砕したものは空気透過法による平均粒径が0.

5 μ m だった。この微粉砕スラリーの半分を用いて磁場 中成形し、分散剤無添加の成形体を得た。次に、前記微 粉砕スラリーの残り半分を濃縮後、分散剤(その固形分 濃度0.4重量%)と水を加えて固形分濃度84重量% のスラリーとした。続いて、ニーダーにて混練を1時間 行った後、水を添加して希釈し、固形分濃度75重量% のスラリーを得た。このスラリーを用いて前記と同様の 条件で磁場中成形し、固形分濃度で0.4重量%分の分 散剤を添加してなる成形体を得た。次に、前記の各成形

1100~1300℃×2時間焼結した。得られたW相 フェライト磁石の磁気特性を図2に示す。図2より、分 散剤を添加して混練分散を行った場合は、分散剤無添加 の場合より最大200GのBrの向上効果が認められ

【0019】(実施例3)原子比率で、SrO·xFe $O \cdot (9-x/2) Fe_2O_3$ 、x=2. 0となるように 酸素分圧1×10⁻¹a t m、1350°Cの窒素ガス雰囲 気中で仮焼を行った。粗粉砕後、SrCOュを0.25 重量%、CaCO,を0.8重量%、SiO,を0.3重 量%添加し、さらに水を加えて固形分濃度40重量%の スラリーとした後、空気透過法による平均粒径が0.6 Oμmになるまでアトライターにより湿式微粉砕した。 次に、この微粉砕スラリーを濃縮後、水と分散剤量(固 形分量) 0. 4重量%を加えて固形分濃度84重量重量 %のスラリーとしてニーダーにて1時間混練した。混練 後、水を添加して希釈し、固形分濃度75重量%のスラ リーとした。このスラリーを磁場強度8k〇eの磁場中 で400kg/cm゚の圧力で圧縮成形した後、100 ラリーとした後ニーダーで1時間混練した。混練後、水 30 ~200℃で大気中乾燥した。その後、これらを酸素分 圧1×10⁻¹a t mの窒素ガス雰囲気中で1100~1 300℃×2時間焼結してW相フェライト磁石を得た。 磁気特性を図3に示す。図3より、乾燥温度100~2 00°Cに対応したそれぞれの試料の2価鉄量xはx= 1.56~2.27の範囲にあった。また、乾燥温度が 高い程、2価鉄量は減少した。x=2.01のものが磁 気特性が最も高く、xが2より大きくなると低iHc側 に推移し、xが2より小さくなると低Br側に推移し た。したがって、1.7≦x≦2.1を外れると磁気特 未満ではW相の他にヘマタイト相、M相を含む混相状態 のものが得られた。xが2.1を越えると、W相とマグ ネタイト相の混相のものが得られた。すなわち、W相の 含有する2価鉄量xが2に近い程、磁石特性は向上し た。最適2価鉄量を有したW相フェライト磁石を得るた めに、原料混合時にSrCO。とFe、O。を、モル比で Fe₂O₃/SrCO₃=8.8~9.3となるように混 合することが有効である。この比率が8.8未満では必 要とする2価鉄量を得ることが困難となる。9.3を越 50 えると仮焼時にマグネタイト等が生成し易くなり、マグ

ネタイトが生成した場合保磁力が低下する。

【0020】(実施例4)原子比率で、SrO・2Fe 〇・8Fe₂O₃の基本組成を有するように、SrCO₃ およびFe₂O₃を混合した原料を、酸素分圧1×10⁻⁴ atmの窒素ガス雰囲気中、1350℃の条件で仮焼し た。得られた仮焼粉はX線回折よりW相単相であった。 粗粉砕後、SrCO₃を0.25重量%、CaCO₃を 0.8重量%、SiO,を0.3重量%添加し、さらに 水を加えて固形分濃度40重量%のスラリーとした後。 アトライターにより湿式微粉砕した。この微粉砕スラリ 一を濃縮後、水とともに分散剤をその固形分濃度で0~ 2. 0重量%の範囲で添加して固形分濃度84重量%の スラリーとしたものをニーダーにて1時間混練した。混 練後、水を添加して希釈し、固形分濃度75重量%のス ラリーとした。次に、このスラリーを用いて磁場強度8 kOeの磁場中で400kg/cm²の圧力にて圧縮成 形した。成形体を100~300℃で大気中乾燥後、酸 素分圧1×10⁻⁴a t mの窒素ガス雰囲気中で1100 ~1300℃×2時間焼結しW型フェライト磁石を得 た。得られた焼成体中の2価鉄量と添加した分散剤量、* * 大気中の乾燥温度との関係を図4に示す。図4より、焼成体中の2価鉄量は、成形体の乾燥温度および分散剤量に依存しており、図3から定まるW相磁石として有効な2価鉄量範囲:1.7≦x≦2.1を満たすように分散剤量と乾燥温度とを組み合わせることによって2価鉄量を調節可能である。

[0021]

0.8重量%、SiO₂を0.3重量%添加し、さらに 水を加えて固形分濃度40重量%のスラリーとした後、 空気透過法による平均粒径が、0.40μmになるまで 10 はBr4800G以上および最大エネルギー積5.0M アトライターにより湿式微粉砕した。この微粉砕スラリ ーを濃縮後、水とともに分散剤をその固形分濃度で0~

【図面の簡単な説明】

【図1】本発明における平均粉砕粒径と磁気特性との相関の一例を示す図である。

【図2】本発明における分散剤の添加効果の一例を示す 図である。

【図3】本発明における2価鉄量、大気中乾燥温度、磁気特性の相関の一例を示す図である。

【図4】本発明における分散剤添加量、2 価鉄量、大気中乾燥温度との相関の一例を示す図である。

【図1】

【図2】

【図4】

