Лабораторная работа

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРЕОБРАЗОВАТЕЛЯ ОТОННЮТО НАПРЯЖЕНИЯ

Цель работы

Изучить принцип работы импульсного преобразователя постоянного напряжения (ППН).

Основные вопросы курса, изучаемые перед выполнением работы

- Принципы преобразования электрической энергии. Классификация преобразователей.
- 2. Требования к ключам, применяемым в ППН.
- 3. Рабочие процессы в инверторах постоянного напряжения.

Содержание работы

Изучение принципа работы и определение параметров импульсного ППН.

Описание лабораторного макета

Сменный блок «Преобразователь постоянного напряжения» (рис. 1) включает.

- регулируемый источник постоянного напряжения;
- маломощный формирователь управляющих импульсов:
- импульсный усилитель мощности;
- два выпрямителя с емкостными сглаживающими фильтрами;
- цепь отрицательной обратной связи;
- схему защиты от перегрузки со звуковой и световой сигнализацией.

Питание схемы ППН осуществляется от встроенного в сменный блок источника постоянного напряжения. Выходное напряжение источника стабилизировано и регулируется в пределах от 7 вольт до 16 вольт. Источник защищен от кратковременной перегрузки. При перегрузке источника подается звуковой сигнал и мигает светоднод «Перегрузка».

Формирователь управляющих импульсов состоит из генератора пилообразного напряжения, компаратора и формирователя импульсов.

Длительность импульсов управления зависит от напряжения на правом входе компаратора (КТ2).

В нижнем положении тумблера S1 на указанный вход подается напряжеше с переменного резистора «РЕГ.ВЫХ.», который позволяет регулировать ручную напряжение на выходах ППН.

В верхнем положении S1 вход компаратора подключен к цепи обратной связи. В этом режиме напряжение на выходе ППН автоматически поддерживается постоянным, не регулируется и мало зависит от напряжения питания и сопротивления нагрузки.

Частота следования управляющих импульсов 25 – 35 кГц.

Усилитель мощности собран по двухтактной схеме со средней точкой первичной обмотки трансформатора. В цепи истока ключевого транзистора VT2 установлен резистор R2 для осщиллографирования формы протекающего через транзистор тока. Резистор R1обеспечивает симметрию схемы.

ППН имеет два выхода.

Выход 1 (КТ11)- низкоомный, гальванически связанный с общим проводом «1». В режиме ручной регулировки напряжение на выходе изменяется в пределах 1,5 В - 8,0 В. В режиме автоматической регулировки напряжение на выходе поддерживается примерно постоянным в пределах 3,8 В – 4,2 В.

Выход 2 (КТ12) - высокоомный, не связанный гальванически с общим проводом «1». Напряжение на выходе в значительной степени зависит от сопротивления нагрузки. При R_{нагрузки} = ∞ в режиме ручной регулировки напря-

жение на выходе изменяется в пределах 7 В - 40 В.

В качестве нагрузки стабилизатора используется переменный резистор блока нагрузок (правая панель лабораторной установки). Регулирование тока, протекающего через нагрузку, производится ручками «R_H грубо» и «R_H точно». Примерные пределы изменения R_H: от 1300 Ом в положении 1 переключателя « R_H грубо» до 17 Ом в положении 11. В положении «X.X.» $R_H = \infty$.

Напряжение на резисторе нагрузки и ток, протекающий через резистор,

контролируются вольтметром PV2 и миллиамперметром PA2.

Осциллограммы напряжений и токов в схеме ППН приведены на рис. 2.

Рис. 2. Осциллограммы напряжений и токов в контрольных точках схемы преобразователя постоянного напряжения

1. Ознакомиться с работой преобразователя постоянного напряжения 1.1. Подготовить установку к работе

Собрать схему, приведенную на рис. 3.

ис. 3. Схема соединения элементов лабораторной установки

Переключатель S1 установить в нижнее положение.

Установить максимальное напряжение на выходе источника питания.

Переключатель «R_H грубо» установить в положение «Н».

Переменным резистором «РЕГ.ВЫХ» установить максимальное напрясение на выходе 1 (КТ11).

1.2. Вход 1 осциплографа подключить к КТ1. Вход 2 осциплографа подлючить к КТЗ. Синхронизировать осциллограф по входу 1. Зарисовать осцил-

Наблюдать и зарисовать осциллограммы напряжений и токов в КТ4ограммы напряжений в КТ1 и КТ3. Т10. Для этого подключать к указанным контрольным точкам вход 2 осципло-

Наблюдать изменение осциллограмм напряжений и токов в KT4-KT10 pacha. и вращении переменного резистора «РЕГ.ВЫХ.».

1.2. Переключатель S1 установить в верхнее положение.

Наблюдать изменение осциллограмм напряжений и токов в КТ4-КТ10 и изменении сопротивления нагрузки переключателем «R_H грубо».

2. Определить зависимость между длительностью управляющих импульсов и напряжением на выходе ППН.

Переключатель S1 установить в нижнее положение. Переключатель «R_Hгрубо» установить в положение «М».

Вход 2 осциплографа подключить к КТ3.

Переменным резистором «РЕГ.ВЫХ.» изменять напряжение на выходе і (КТ11) от минимального до максимального, при этом фиксировать длительность управляющих импульсов, наблюдаемых в КТЗ.

Результаты измерений занести в таблицу 1.

Измеряемая величина	Измерительный прибор		RNH)						
U _{вых} , В	PV2	2	200	23	24	277				1.
тимп, мкс	осциллограф	19	6	8	10	12				1

По результатам измерений построить зависимость $U_{BbIX} = f(\tau_{MMR})$.

3. Определить зависимость между напряжением на выходе ППН и напряжением источника питания в режиме ручной регулировки выходного напряжения.

Переключатель S1 установить в нижнее положение.

Переключатель «R_н грубо» установить в положение «ХД».

Установить максимальное напряжение на выходе источника питания.

Изменять напряжение на выходе источника питания от максимального до минимального, при этом фиксировать напряжение на выходе ППН. Результаты тзмерений занести в таблицу 2. Табляна 2

Измеряемая	Измерительный	Результаты измерения
величина	прибор	15 18 19 9 2 686
пит, В	PV1	1 20 00 00 80 05 00
вых, В	PV2	19-1-1-1-1-1
JII JULIA	вычислить	я каждого значения Uвых и занести в т

Вычислить $U_{\text{вых}}/U_{\text{вых}}$ макс для каждого значения $U_{\text{вых}}$ и занести в

ицу 2.

Построить зависимость $U_{BЫX}/U_{BЫX}$ макс = $f(U_{ПИТ})$.

4. Определить зависимость между напряжением на выходе ППН и напряением источника питания в режиме автоматической регулировки выходного

апряжения.

Переключатель S1 установить в верхнее положение. Установить максимальное напряжение на выходе источника питания.

Изменять напряжение на выходе источника питания от максимального до инимального, при этом фиксировать напряжение на выходе IIIIH. Результаты мерений занестн в таблицу 3.

Тзмеряемая Измерительный Таблица 3 величина Результаты измерения прибор mar, B PV1 зых, В PV2 BLIX/UBLIX MAKE вычислить Вычислить Uвых/Uвых макс для каждого значения Uвых и запести в таб-

Построить зависимость $U_{BMX}/U_{BMX|MARC} = f\left(U_{HMT}\right)$ в тех же координатных ях. что и в п. 3.

Сравнить полученные результаты. Сделать выводы.

5. Определить зависимость между напряжением на выходе ППН и сопроівлением нагрузки в режиме ручной регулировки выходного напряжения.

Переключатель S1 установить в нижнее положение.

Переключатель «Rн грубо» установить в положение «И». 7

Установить максимальное напряжение на выходе источника питания.

Постепенно увеличивать R_H. Для этого регулятор «R_H грубо» переклють от положения «Н» до положения «Х.Х.».

Заполнить таблицу 4.

Табимна 4

Измеряемая	Измерительный	Положение переключателя «R									грубо»		
величина	прибор	11	10	8	6	6	0	4	XX		XX		
вых, В	PV2 ·	31	100		1					-			
IX, MA	PA2	3/4	-	1			2.5	1	-	-	-		
=UBBIX / IBBIX	вычислить				-	-	-	1		-	-		
INIX/UBNIX MAKC	вычислить			1	FOD	1-	1	1:	1.	1	1		

Построить зависимость $U_{BMX}/U_{BMX MAKC} = f(R_H)$.

6. Определить зависимость между напряжением на выходе ППН и сопровлением нагрузки в режиме автоматической регулировки выходного напряния.

Переключатель S1 установить в верхнее положение. 🕳

Переключатель «R_H грубо» установить в положение «†т».

Установить максимальное напряжение на выходе источника питания.

Постепенно увеличивать R_H. Для этого регулятор «R_H грубо» переклю-

гь от положения «И» до положения «Х.Х.».

ваполнить таблицу 5.

Таблица 5

Sallominio		Положение переключателя «R _н трубо» хх
Измеряемая величина	Измерительный прибор	Положение переключи XX XX 11 10 9 3 5 3 2 XX XX
Величина	PV2	92 92 95 26 26 26 10
MX, B	PA2	244 132 89 65 25
IX, MA	вычислить	

вых/Овых макс вычислить Построить зависимость $U_{\rm BЫX}/U_{\rm BЫX}$ макс = f (R_H) в тех же координатных :ях, что и в п. 5.

Сравнить полученные результаты. Сделать выводы.

7. Изучить свойства высокоомного выхода ППН.

7.1. Вход блока нагрузок (гнезда 4 – 5 отключить от КТ11 и подключить к Г12).

Переключатель «R_н грубо» установить в положение «Х.Х.».

Переключатель S1 установить в нижнее положение.

Установить максимальное напряжение на выходе источника питания.

Переменным резистором «РЕГ.ВЫХ.» изменять длительность управляюих импульсов, наблюдаемых в КТЗ. Наблюдать изменение напряжения на выэде ППН в КТ12. Записать минимальное и максимальное напряжения на выэде ППН.

Установить максимальное напряжение на выходе ППН.

Постепенно уменьшать R_H с помощью переключателя «R_H грубо» и регуэтора «R_н точно». Получить зависимость между напряжением на выходе ППН сопротивлением нагрузки в режиме ручной регулировки выходного напряже-431.

Заполнить таблицу 6.

Таблица 6

Managangu	Измерительный	Положение переключателя «Rнгрубо»									
Измеряемая величина	прибор	XX	1	2	4	6	8	10	11	-	
В В	PV2 -	45	244	3	141	31	16	0,6	0,6	-	
IV. MA	PA2	30	19	31	133	34	35	136	1.90	-	
-URMX / IBMX	вычислить	-				1	1	1	1		
URLIN MAKC	вычислить			1	C/D	1	1	1	han		

Построить занисимость Uвых/Uвых макс Сравнить с результатами, полученными в п. 5. Сделать выводы.

7.2. Переключатель «R_Hурубо» установить в положение «Х.Х.».

Переключатель S1 установить в верхнее положение.

Постепенно уменьшать R_H с помощью переключателя «R_H грубо» и регутора «R_н точно». Получить зависимость между напряжением на выходе ППН сопротивлением нагрузки в режиме автоматической регулировки выходного пряжения.

Заполнить таблицу 7.

Измеряемая	Измерительный	ый Положение переключателя «I								Таблица 7 и грубо»		
величина	прибор	XX	1	2	3	8	5	0)	1731	1		
вых, В	PV2	3/48	23	4.4	39	21	12	00	38/21	28		
IX, MA	PA2	0	9	15	16	115	18	161	201	id		
=U _{BMX} / I _{BMX}	вычислить		136	293	243	123	66	32	002 0			
LIX/UBLIX MAKC	вычислить	1	0325	0.11	01	205	002	0.01	0000	8.10		

Построить зависимость $U_{\text{ВЫХ}}/U_{\text{ВЫХ}}/U_{\text{ВЫХ}}$ макс, = $f(R_{\text{H}})$ в тех же координатных ях, что и в п. 7.1. Сделать выводы.