Homework 1

Sean Eva

Math 4320

[2]

- (a) Let $z \in \mathbb{C}$ such that z = x + iy for some $x, y \in \mathbb{R}$. If we perform $iz = ix + i^2y = -y + ix$ and then Re(iz) = -y. Similarly, Im(z) = y and therefore -Im(z) = -y. Thus, Re(iz) = -Im(z) = -y as desired.
- (b) Similarly to part a, iz = -y = ix which implies that Im(iz) = x and Re(z) = x. Thus Im(iz) = Re(z) = x as desired.

[10]

It will be useful to first recall the multiplication identity for reference purposes. $z_1\dot{z}_2=(x_1,y_1)(x_2,y_2)=(x_1x_2-y_1y_2,y_1x_2+x_1y_2)=(x_1x_2-y_1y_2)+i(y_1x_2+x_1y_2)$. We will now calculate -(iy)=-((0,1)(y,0))=-(0-0,1y+0)=(0,-y). Similarly, (-i)y=(0,-1)(y,0)=(0-0,-y+0)=(0,-y). This would indicate what we desire that the additive inverse of a complex number z=x+iy for $x,y\in\mathbb{R}$ can be written as -z=-x-iy. We will verify this.

Proof. Let $z \in \mathbb{C}$, that is to say that $z = x_1 + iy_1$ for some $x_1, y_1 \in \mathbb{R}$ and we will denote a proposed additive inverse of a number as $(-z) = x_2 + iy_2$ for $x_2, y_2 \in \mathbb{R}$. Then, by the definition of the additive inverse of a complex number, that $z + (-z) = (x_1 + iy_1) + (x_2 + iy_2) = 0 + 0i = 0$. We then have that $x_1 + x_2 = 0$ and $iy_1 + iy_2 = (y_1 + y_2)i = 0$ which we can extend to say that $y_1 + y_2 = 0$ since $i \neq 0$. By the additive inverse rule of real numbers we then know that $x_1 + x_2 = 0$ and $y_1 + y_2 = 0$ implies that x_2, y_2 are the additive inverses of x_1, y_1 respectively. Therefore, we can denote them as $-x_1, -y_1$ which means that we can write $(-z) = -x_1 + i(-y_1) = -x_1 - iy_1$. Therefore we can then explicitly write that the additive inverse of a complex number z = x + iy as -z = -x - iy.

[6]

Proof. We can then write,

$$\begin{split} &(\frac{z_1}{z_3})(\frac{z_2}{z_4}) = z_1 z_3^{-1} z_2 z_4^{-1} \\ &= z_1 z_2 z_3^{-1} z_4^{-1} \\ &= (z_1 z_2)(z_3^{-1} z_4^{-1}) \\ &= \frac{z_1 z_2}{z_3 z_4}. \end{split}$$

Therefore, we know that $\left(\frac{z_1}{z_3}\right)\left(\frac{z_2}{z_4}\right) = \frac{z_1z_2}{z_3z_4}$ as desired.

[3]

Proof. Let $z_1, z_2, z_3, z_4 \in \mathbb{C}$. We know that $|z_3 + z_4| \ge ||z_3| - |z_4||$ which would imply that $\frac{Re(z_1 + z_2)}{|z_3 + z_4|} \le \frac{Re(z_1 + z_2)}{||z_3| - |z_4||}$. Then we also know that $Re(z_1 + z_2) \le |z_1 + z_2| \le |z_1| + |z_2|$. Then we can extend our statement $\frac{Re(z_1 + z_2)}{||z_3 + z_4||} \le \frac{Re(z_1 + z_2)}{||z_3| - |z_4||} \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}$. Thus we know that $\frac{Re(z_1 + z_2)}{||z_3 + z_4||} \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}$ as desired. □

[4]

Proof. Let $z \in \mathbb{C}$, then if we consider the original problem $\sqrt{2}|z| \ge |Rez| + |Imz|$ we could then say that $(\sqrt{2}|z|)^2 \ge (|Rez| + |Imz|)^2$. Then we can say $(\sqrt{2}|z|)^2 = 2|z|^2 = 2(\sqrt{x^2 + y^2})^2 = 2x^2 + 2y^2$. Similarly, if we consider $(|Rez| + |Imz|)^2 = (|x| + |y|)^2 = x^2 + y^2 + 2|xy|$. Thus we can say that $(\sqrt{2}|z|)^2 - (|Rez| + |Imz|)^2 = 2x^2 + 2y^2 - x^2 - y^2 - 2|xy| = x^2 + y^2 - 2|xy| = (|x| - |y|)^2 \ge 0$. Therefore, this then implies that $\sqrt{2}|z| \ge |Rez| + |Imz|$ as desired. □

[8]

Proof. Let $z_1, z_2 \in \mathbb{C}$ such that $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then we have that $z_1z_2 = (x_1x_2 - y_1y_2) + i(y_1x_2 + y_2x_1)$. Then it would follow that $|z_1z_2| = \sqrt{(x_1x_2 - y_1y_2)^2 + (y_1x_2 + y_2x_1)^2} = \sqrt{(x_1x_2)^2 - 2(x_1x_2y_1y_2) + (y_1y_2)^2 + (y_1x_2)^2 + (x_1y_2)^2 + 2(x_1x_2y_1y_2)} = \sqrt{(x_1x_2)^2 + (y_1y_2)^2 + (y_1x_2)^2 + (x_1y_2)^2} = \sqrt{x_1^2x_2^2 + y_1^2y_2^2 + y_1^2x_2^2 + x_1^2y_2^2} = \sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)} = |z_1||z_2|$ proving the identity. \square

[2]

(a) $Re(\bar{z}-i)=Re(\bar{z})=Re(z)=2$. Therefore if z=x+iy, then we know that x=2. Therefore, we know that this is a vertical line at x=2.

(b) We will first consider $|2\bar{z}+i|=4$ and divide the whole equation by 2 to get $|\bar{z}-(-\frac{i}{2})|=2$. Literally, this means that the distance from \bar{z} and $(-\frac{i}{2})$ is 2. If we then take the conjugate of this, we then know that the distance between z and $\frac{i}{2}$ is 2 which would imply that this is a circle of radius 2 centered at $\frac{i}{2}$

[6]

- (a) *Proof.* We know that $\frac{\bar{z_1}}{z_2} = \frac{\bar{z_1}}{\bar{z_2}}$. Then we know that $\frac{\bar{z_1}}{z_2 z_3} = \frac{\bar{z}}{z_2 \bar{z}_3}$. And since we also know that $z_1 \bar{z}_2 = \bar{z}_1 \bar{z}_2$ then we can say that $\frac{\bar{z_1}}{z_2 \bar{z}_3} = \frac{\bar{z_1}}{\bar{z}_2 \bar{z}_3}$ as desired.
- (b) *Proof.* In a similar fashion to part a of this problem we have that $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ and we have that $|z_1z_2| = |z_1||z_2|$. Therefore, we have that $\left|\frac{z_1}{z_2z_3}\right| = \frac{|z_1|}{|z_2|z_3|} = \frac{|z_1|}{|z_2||z_3|}$ as desired.

[11]

- (a) Proof. Base Case: Let n=2, then we have that $x_1 + x_2 = \bar{x_1} + \bar{x_2}$ as we know from the identity and then we know that the statement is true for n=2.

 Inductive Step: Let the statement be true for n=k, that is to say that $x_1 + ... + x_k = \bar{x_1} + ... + \bar{x_k}$. We now need to prove the statement for n=k+1. We can then show $z_1 + ... + \bar{z_k} + z_{k+1}$ we will define $z=z_1+...+z_k$ and then show $z+\bar{z_{k+1}}=\bar{z}+z_{k+1}$ and since we know that the statement is true for n=k then we know that $\bar{z}=z_1+...+z_k=\bar{z_1}+...+z_k$ which then means that $z_1+...+z_k+z_{k+1}=\bar{z_1}+...+z_k+z_{k+1}$. Thus, given the statement is true for n=k and we were then able to show that the statement was true for n=k+1 then we have proved that the statement is true for all n=2,3,... as desired.
- (b) Proof. Base Case: Let n=2, then we have that $z_1\bar{z}_2=\bar{z}_1\bar{z}_2$ from the section and the statement is verified for n=2. Inductive Step: Let the statement be true for n=k, that is to say that $x_1\bar{...}x_k=\bar{x}_1...\bar{x}_k$. We then want to show that the statement is true for n=k+1. Consider if we set that $z=z_1...z_k$, we can then say that $z\bar{z}_k=\bar{z}z_k$, and by the inductive hypothesis since we know that the statement is true for n=k, then we know that $\bar{z}=z_1\bar{...}z_k=\bar{z}_1...z_k$ which allows us to say that $z_1...z_k\bar{z}_{k+1}=\bar{z}_1...\bar{z}_kz_{k+1}$ as desired. Therefore, since we knew that the statement was true for n=k, we were able to show that the statement was true for n=k+1 and we know that the statement is further true for n=2,3,... as desired.

[1]

- (a) $z^{-1} = \frac{1+\sqrt{3}i}{-2} = \frac{-1}{2} + \frac{-\sqrt{3}}{2}i$ and that $z^{-1} = \frac{1}{r}e^{-i\theta}$. If we are only consider about finding Arg(z) then we only need to find θ . Therefore, we have that $\theta = \tan^{-1}(\frac{-\sqrt{3}}{2}) = \tan^{-1}(\frac{\sqrt{3}}{2}) = \tan^{-1}(\sqrt{3})$ which we would then know the say that $\theta = -2\pi/3$ and since we know that the θ is negative, then we know that $\theta = 2\pi/3$
- (b) We know that $z^6 = r^6 e^{i6\pi}$ so then we know that $Arg(\sqrt{3} i) = -\pi/6$ so then $6 * -\pi/6 = -\pi$. However, the principal argument Arg(z) is defined $-\pi < \theta \le \pi$ so then $Arg(z) = \pi$.

[6]

Proof. We already know from the section that $arg(z_1z_2) = arg(z_1) + arg(z_2)$; therefore, we need to show that when we take this sum for the z_1, z_2 in the problem statement that the resulting angle lies in the interval $(-\pi, \pi)$. Given that we know that z_1 and z_2 have positive real parts, then we know that their respective principal arguments are in the interval $(-\pi/2, \pi/2)$. Therefore, the sum of their principal arguments is in the interval $(-\pi, \pi)$ meaning that $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$ when z_1, z_2 have positive real components.

[2]

We are going to note $z^3 = r^3 e^{i3\theta}$. So if we set $z^3 = -8i = 8e^{i(-\pi/2)}$. Then we know that we can say that $z = (8)^{1/3} e^{i(-\pi/6)} = 2e^{i(-\pi/6)}$. So if we then convert the complex number to its standard form from the polar form, then we find that the cubed roots of -8i are $\sqrt{3} - i$, $-\sqrt{3} - i$, 2i.

[5]

Proof. Let $z_0 = -4\sqrt{2} + 4\sqrt{2}i$, if we convert this to the polar form, we get that $z_0 = 8e^{i(-\pi/4)}$ or that $z_0 = 8e^{i(-\pi/4+2n\pi)}$ for $n \in \mathbb{Z}$. Then we know that the cube roots are given by $2e^{i(-\pi/12+2\pi/3)}$. Therefore, there are three solutions in a revolution, those being $2e^{i(-\pi/12)}$, $2e^{i(15\pi/12)}$ which converted back into standard form are the other two solutions as desired.