

Ευρετήρια Maria K. Krommyda

Κατασκευάστε ένα Β δέντρο για το παρακάτω σύνολο από τιμές κλειδιών:

{2,3,5,7,11,17,19,23,29,31**}**

Το δέντρο είναι αρχικά κενό και οι τιμές προστίθενται σε αύξουσα σειρά. Ο αριθμός δεικτών σε ένα κόμβο είναι n= 4.

Στο Β δέντρο όλοι οι κόμβοι, εκτός από την ρίζα, πρέπει να έχουν τουλάχιστον [(n-1)/2] κλειδιά.

Κατασκευάστε ένα Β+ δέντρο για το παρακάτω σύνολο από τιμές κλειδιών:

{<mark>2,3,5</mark>,7,11,17,19,23,29,31}

Το δέντρο είναι αρχικά κενό και οι τιμές προστίθενται σε αύξουσα σειρά. Ο αριθμός δεικτών σε ένα κόμβο είναι n= 4.

Στο Β+ δέντρο όλοι οι κόμβοι/φύλλα πρέπει να έχουν τουλάχιστον [(n-1)/2] κλειδιά.

2	3	5
---	---	---

Άρα εδώ πρέπει να έχουν τουλάχιστον 2 κλειδιά.

Βρείτε εγγραφές με τιμή κλειδιού αναζήτησης το 11. Παρουσιάστε αναλυτικά τα βήματα.

Βρείτε εγγραφές με τιμή κλειδιού αναζήτησης από το 7 μέχρι και το 17, συμπεριλαμβανομένου και των ακραίων τιμών. Παρουσιάστε αναλυτικά τα βήματα.

Εισάγετε το 9

Εισάγετε το 10

Κανόνας συνένωσης κόμβων/φύλλων:

Αν στο παραπάνω δέντρο διαγράφαμε το 9 τότε θα έπρεπε να ενώσουμε το φύλλο [10] με το **αριστερό** φύλλο [5,7]. Η επιλογή του αριστερού φύλλου είναι σύμβαση, το δέντρο θα υπάκουε όλους τους κανόνες του Β+ δέντρου ακόμα και αν η συνένωση γινόταν με το δεξί. ΠΡΟΣΟΧΗ: Αν διαγράφαμε το 19 τότε το φύλλο [23] θα συνενωνόταν με το [29,31] και όχι με το [11,17]. Πρώτη προτεραιότητα της συνένωσης είναι τα φύλλα να έχουν τον ίδιο πατέρα. (Μια τέτοια διαγραφή θα προκαλούσε αλλαγές και στο δεύτερο επίπεδο του δέντρου {Διαφάνεια 26})

Εισάγετε το 8

Διαγράψτε το 23

Διαγράψτε το 19

Υποθέστε ότι χρησιμοποιείτε επεκτάσιμο hash σε ένα αρχείο και σας δίνει τα παρακάτω αποτελέσματα:

{2,3,5,7,11,17,19,23,29,31}

Δείξτε την δομή hash για αυτές τις τιμές και κάθε bucket μπορεί να περιέχει τρεις εγγραφές.

Χρησιμοποιείστε τα λιγότερα σημαντικά ψηφία.

2	00010
3	00011
5	00101
7	00111
11	01011
17	10001
19	10011
23	10111
29	11101
31	11111

 $\{\frac{2,3,5,7}{00010,00011,00101,001111},01011,110001,10011,10111,11101,11111\}$

Υποθέστε ότι χρησιμοποιείτε επεκτάσιμο hash σε ένα αρχείο που περιέχει εγγραφές με τις παρακάτω τιμές:

{2,3,5,7,11,17,19,23,29,31}

Δείξτε την δομή hash για αυτό το αρχείο, αν η συνάρτηση είναι h(x)=x mod 8, και κάθε bucket μπορεί να περιέχει τρεις εγγραφές.

Χρησιμοποιείστε τα πιο σημαντικά ψηφία.

{2,3,5,7,11,17,19,23,29,31} {010,011,101,111,011,001,011,111,101,111}

2 mod 8	010
3 mod 8	011
5 mod 8	101
7 mod 8	111
11 mod 8	011
17 mod 8	001
19 mod 8	011
23 mod 8	111
29 mod 8	101
31 mod 8	111

 $\{2,3,5,7,11,17,19,23,29,31\}$ $\{010,011,101,111,011,001,011,111,101,111\}$

 $\{\frac{2,3,5,7,11,17}{19,23,29,31}\}$

 $\{2,3,5,7,11,17,19,23,29,31\}$ $\{010,011,101,111,011,001,011,111,101,111\}$

 $\{\frac{2,3,5,7,11,17,19}{010,011,101,1111,011,001,011,111},$

 $\{2,3,5,7,11,17,19,23,29,31\}$ $\{010,011,101,111,011,001,011,111,101,111\}$

Εργαστήριο Βάσεων Γνώσεων &Δεδομένων

Διαγραφή του 11

Στο επεκτάσιμο Hash δεν έχουμε συνένωση των buckets όταν αυτά αδειάζουν!

Διαγραφή του 31

Εισαγωγή του 1 (001)

Εισαγωγή του 15 (111)

Υπερχείλιση bucket

Αιτίες:

- Η αρχική εκτίμηση για τον αριθμό των εγγραφών της σχέσης ήταν πολύ μικρή με αποτέλεσμα να έχουν δωθεί λιγότεροι buckets από τους αναγκαίους
- Ανομαλίες στην κατανομή των εγγραφών στους buckets
 - Πολλές εγγραφές με την ίδια τιμή κλειδιού αναζήτησης
 - Λανθασμένη επιλογή της συνάρτησης hash, χωρίς τις κατάλληλες ιδιότητες για ομοιομορφία και τυχαιότητα.

Λύσεις:

- Προσεκτική επιλογή της συνάρτησης hash με βάση τις ιδιότητες του γνωρίσματος
- Προσεκτική εκτίμηση του μεγέθους της σχέσης
- Δέσμευση περισότερου χώρου αρχικά μέχρι και 20% για να περιοριστούν οι συνέπειες των ανωμαλιών στην κατανομή και να περιοριστούν τα overflows

Κλειδιά ανά block

Block δίσκου: 500 bytes R(A, B, C), ευρετήριο στο A A 23 bytes Δείκτης 15 bytes

Κλειδιά και δείκτες ανά block?

Έστω η κλειδιά: (n+1)*15 + n*23 = 500 n*38=485 n=12.76

n=12

Άρα έχω 12 κλειδιά και 13 δείκτες ανά block δίσκου

Φύλλα B+ tree

1000 εγγραφές R(A, B, C, D) Ευρετήριο στο C 14 κλειδιά ανά block δίσκου

$$\left\lceil \frac{1000}{14} \right\rceil = \left\lceil 71.4 \right\rceil = 72$$

Χρειάζονται 72 φύλλα για να αποθηκευτεί το ευρετήριο

Ύψος B+ tree

83 φύλλα

6 κλειδιά

Επίπεδα στο δέντρο?

6 κλειδιά -> 7 δείκτες

$$\left\lceil \frac{83}{7} \right\rceil = \left\lceil 11.85 \right\rceil = 12$$
 blocks στο επίπεδο πάνω από τα φύλλα

$$\left\lceil \frac{12}{7} \right\rceil = \left\lceil 1.71 \right\rceil = 2$$
 blocks στο επόμενο επίπεδο

1 block η ρίζα, άρα το δέντρο έχει 4 επίπεδα

Idea:

Use a family of hash functions h_0 , h_1 , h_2 , ...

- $-h_i(\text{key}) = h(\text{key}) \mod(2^i \text{N}); \text{ N} = \text{initial } \# \text{ buckets}$
- h is some hash function (range is 0 to 2|MachineBitLength|)
- If N = 2^{d0} , for some d_0 , h_i consists of applying h and looking at the last d_i bits, where $d_i = d_0 + i$.
- h_{i+1} doubles the range of h_i (similar to directory doubling)

85% πληρότητα διάσπασης

Εισάγετε το 0101

```
n = 2
(i = 1)

Buckets
(Disk blocks)

0 blk ptr
1 blk ptr
1 1111 p
0101 p
```


Εισάγετε το 0001

Εισάγετε το 1111

Questions

Thank you

Maria K. Krommyda

