

Students = Users

A ternary relationship **Creates** among **Public_Events**, **Admins**, and **SuperAdmins**. Same for the ternary relationship **Creates** among **Private_Events**, **Admins**, and **SuperAdmins**.

The mapped 1-to-many ternary relation for **Private_Events** (or **Public_Events**) should look like this:

Events: **Events_ID** //primary key, could be auto-incr. integer

Time //only top of the hour?

Location //Lname: a foreign key

Event_name //could use to identify event, for example, to compute the hours of the event

Description

(Time, Lname) must be unique, i.e., a candidate key

Private_Events: Events_ID //primary key and foreign key

Admins_ID //foreign key, not NULL

SuperAdmins_ID //foreign key, not NULL

Other attributes...

Important attributes of some entities:

Location: **Lname** //primary key

Address

Longitude //Google map coor.

Latitude //Google map coor.

...

Entities, relationships should be added to the ER diagram: Universities, 1-to-many Profiles, ...

Constraints:

ISA: use Assertions of the form RSO_Events ⊆ Events, stating that the class RSO_Events is a subclass of the class Events;

Disjointness: use Assertions of the form RSO_Events \cap Private_Events = \emptyset , stating disjointness between the two classes RSO_Events and Private_Events;

Covering: use the corresponding Assertion to state that each member of a class must be contained in (at least) one of the covering classes. That is, the superclass is covered by the union of all subclass:

RSO_Events U Private_Events U Public_Events = Events

Triggers: