

Completeness of Inst-saturated Sets of Clauses with Equality

Alexander Maringele

alexander.maringele@gmail.com

December 6th, 2017

Harald Ganzinger and Konstantin Korovin.

Integrating Equational Reasoning into Instantiation-Based Theorem Proving.

In 18th CSL 2004. Proceedings, volume 3210 of LNCS, pages 71–84, 2004.

The big picture

Instantiation-based first order theorem proving

The big picture

 $S_0 = S$, S_{i+1} is inferred from S_i by a sound calculus.

Preliminaries I

Equational First Order Logic

- first order signature with function (and predicate) symbols
- ▶ terms s, t, ℓ, r (and predicates P, Q, \bullet)
- ▶ atoms are equations of terms $s \approx t$ (or predicates $P \approx \bullet$)
- literals are atoms or negated atoms
- clauses are a multisets of literals
- closures are pairs of clauses and ground substitutions

$$(f(x) \approx b \lor x \not\approx a) \cdot \{x \mapsto f(a)\}$$

Preliminaries II

Equational First Order Logic

orderings

 \succ_{gr} order on ground terms, literals, and clauses defined by a total, well-founded, and monotone extension of a total simplification ordering \succ'_{gr} on ground terms

$$s \not\approx t \succ_{gr} s \approx t, \ L \lor L \succ_{gr} L$$
 $(P \succ_{gr} \bullet)$

 \succ_{ℓ} an arbitrary total well-founded extension of \succ_{gr} such that $L\sigma \succ_{gr} L'\sigma' \Rightarrow L \cdot \sigma \succ_{\ell} L' \cdot \sigma'$

 \succ_{cl} an arbitrary total well-founded extension of \succ_{gr} such that $C\tau \succ_{gr} D\rho \Rightarrow C \cdot \tau \succ_{cl} D \cdot \rho$ $(C\tau = D\rho \text{ and } C\theta = D) \Rightarrow C \cdot \tau \succ_{cl} D \cdot \rho$

Unit Paramodulation Inferences

Unit Paramodulation

$$\frac{(\ell \approx r) \cdot \sigma \quad L[\ell'] \cdot \sigma'}{L[r]\theta \cdot \rho} \ \theta \qquad \qquad \frac{(s \not\approx t) \cdot \tau}{\Box} \ \mu$$

where

- $\blacktriangleright \ell \sigma \succ_{gr} r \sigma, \ \theta = \mathsf{mgu}(\ell, \ell'), \ \ell \sigma = \ell' \sigma' = \ell' \theta \rho, \ \ell' \notin \mathcal{V}$
- ightharpoonup s au=t au, $\mu= ext{mgu}(s,t)$

Example 1

The set of literal closures $\{(f(x) \approx b) \cdot \{x \mapsto a\}, a \approx b, f(b) \not\approx b\}$ is inconsistent, but the empty clause is not derivable if $a \succ_{gr} b$.

Lemma 2

If σ , σ' are irreducible by a ground rewrite system R then ρ is irreducible by R.

Unit Paramodulation Redundancy

UP-Redundancy

▶ We define the set

$$irred_R(\mathcal{L}) = \{ L \cdot \sigma \in \mathcal{L} \mid \sigma \text{ is irreducible w.r.t. } R \}$$

for a set of literal closures \mathcal{L} and a ground rewrite system R.

- ▶ Let $\mathcal{L}_{L \cdot \sigma \succ_{\ell}} = \{ L' \cdot \sigma' \in \mathcal{L} \mid L \cdot \sigma \succ_{\ell} L' \cdot \sigma' \}.$
- ▶ A literal closure $L \cdot \sigma$ is UP-redundant in \mathcal{L} if

$$R \cup irred_R(\mathcal{L}_{L \cdot \sigma \succ_{\ell}}) \vDash L\sigma$$

for every ground rewrite system R oriented by \succ_{gr} where σ is irreducible w.r.t. R.

 $ightharpoonup \mathcal{R}_{UP}(\mathcal{L})$ denotes the set of all UP-redundant closures in \mathcal{L} .

Unit Paramodulation Satuaration

UP-Saturation

The UP-saturation process for \mathcal{L} is a sequence $\{\mathcal{L}_i\}_{i=0}^{\infty}$ where

$$\mathcal{L}_{0} = \mathcal{L}$$

$$\mathcal{L}_{i} \cup \square$$
if $R \cup \operatorname{irred}_{R}(\mathcal{L}_{i,L \cdot \sigma \succ_{\ell}}) \vDash L\sigma$

$$\mathcal{L}_{i+1} = \begin{cases} \mathcal{L}_{i} \setminus L \cdot \sigma & \text{if } R \cup \operatorname{irred}_{R}(\mathcal{L}_{i,L \cdot \sigma \succ_{\ell}}) \vDash L\sigma \\ \mathcal{L}_{i} \cup \square & \text{if } \begin{cases} (s \not\approx t) \cdot \tau \in \mathcal{L}_{i} \\ s\tau = t\tau, \ \mu = \operatorname{mgu}(s,t) \end{cases}$$

$$\mathcal{L}_{i+1} = \begin{cases} \mathcal{L}_{i} \cup L[r]\theta \cdot \rho & \text{if } \begin{cases} (\ell \approx r) \cdot \sigma, \ L[\ell'] \cdot \sigma' \in \mathcal{L}_{i} \\ \ell\sigma \succ_{gr} r\sigma, \theta = \operatorname{mgu}(\ell,\ell'), \\ \ell' \notin \mathcal{V}, \ \ell\sigma = \ell'\sigma' = \ell'\theta\rho, \end{cases}$$
otherwise

Let \mathcal{L}^{∞} be the set of persistent closures, i.e. the lower limit of \mathcal{L}_i .

Unit Paramodulation Fairness

UP-Fairness

The UP-saturation process is UP-fair if for every UP-inference with premises in \mathcal{L}^{∞} the conclusion is UP-redundant w.r.t. \mathcal{L}_{j} for some j. For a set of literals \mathcal{L} we define the saturated set of literal closures $\mathcal{L}^{sat} = \mathcal{L}^{\infty} \backslash \mathcal{R}_{UP}(\mathcal{L}^{\infty})$ for some UP-saturation process $\{\mathcal{L}_{i}\}_{i=0}^{\infty}$ with $\mathcal{L}_{0} = \mathcal{L}$.

Lemma 3

The set \mathcal{L}^{sat} is unique because for any two UP-fair saturation processes $\{\mathcal{L}_i\}_{i=0}^{\infty}$ and $\{\mathcal{L}_i'\}_{i=0}^{\infty}$ with $\mathcal{L}_0 = \mathcal{L}_0'$ we have

$$\mathcal{L}^{\infty} \backslash \mathcal{R}_{\mathit{UP}}(\mathcal{L}^{\infty}) = \mathcal{L}'^{\infty} \backslash \mathcal{R}_{\mathit{UP}}(\mathcal{L}'^{\infty})$$

Instantiation Redundancy

Inst-Redundancy

Let S be a set of clauses.

- \blacktriangleright A ground closure C is Inst-redundant in S if for some k

for $i \in 1 \dots k$

- such that $C_1, \ldots, C_k \models C$
- ▶ A (possible non-ground) clause C is called Inst-redundant in S if each ground closure $C \cdot \sigma$ is Inst-redundant in S.
- $ightharpoonup R_{Inst}(S)$ denotes the set of all Inst-redundant clauses in S.

Example 4

$$S = \{ f(x) \approx x, f(a) \approx a, f(f(x)) \approx f(x) \}$$

$$R_{Inst}(S) = \{ f(f(x)) \approx f(x) \}$$

Instantiation Selection

Selection

Let S be a set of clauses S, let I_{\perp} be a model of S_{\perp} .

A selection function sel maps clauses to literals such that

$$\operatorname{sel}(C) \in C$$
 $I_{\perp} \models \operatorname{sel}(C) \perp$

► The set of *S*-relevant literal closures

$$\mathcal{L}_{S} = \left\{ L \cdot \sigma \mid \begin{array}{l} L \lor C \in S, \ L = \text{sel}(L \lor C) \\ (L \lor C) \cdot \sigma \text{ is not Inst-redundant in S,} \end{array} \right\}$$

- $\triangleright \mathcal{L}_{S}^{sat}$ denotes the satuarion process of \mathcal{L}_{S} .
- ▶ A set of clauses S is Inst-saturated w.r.t. a selection function, if \mathcal{L}_{S}^{sat} does not contain the empty clause.

mpleteness Theorem

Completeness

Theorem 5

If a set of clauses S is Inst-saturated, and $S\perp$ is satisfiable, then S is also satisfiable.

Proof.

- 1. Construction of a candidate model
- 2. Proof that candidate is a model by contradiction

Model Construction

Let S be an Inst-saturated set of clauses, i.e. $\square \not\in \mathcal{L}_S^{sat}$.

Let $L = L' \cdot \sigma \in \mathcal{L}_{S}^{sat}$. We define by induction on \succ_{ℓ} :

- ▶ $I_L = \bigcup_{L \succ_\ell M} \epsilon_M$ I.H.: ϵ_M are defined for all M where $L \succ_\ell M$
- $\blacktriangleright R_L = \{s \to t \mid s \approx t \in I_L, s \succ_{gr} t\}$

$$\bullet \ \epsilon_L = \left\{ \begin{array}{ll} \emptyset & \text{if } L'\sigma \text{ reducible by } R_L \\ \emptyset & \text{if } I_L \vDash L'\sigma \text{ or } I_L \vDash \overline{L'}\sigma \quad \text{(defined)} \\ \{L'\sigma\} & \text{otherwise} & \text{(productive)} \end{array} \right.$$

- $ightharpoonup R_S = igcup_{L \in \mathcal{L}_S^{sat}} R_L$ R_S is convergent and interreduced
- ▶ $I_S = \bigcup_{L \in \mathcal{L}_S^{\mathsf{sat}}} \epsilon_L$ I_S is consistent, $L\sigma \in I_S$ is irreducible by R_S

For the following slides let \mathcal{L}_S , \mathcal{L}_S^{sat} , I_S , R_S be defined as above and \mathcal{I} be an arbitrary consistent extension of I_S .

Lemma 6

If any $L \cdot \sigma \in \mathcal{L}_S$ exists with $\mathcal{I} \not\models L\sigma$ then there is a $L' \cdot \sigma' \in irred_{R_S}(\mathcal{L}_S^{sat})$ with $\mathcal{I} \not\models L'\sigma'$.

Proof.

We have two cases

- ▶ If $L \cdot \sigma$ is not UP-redundant in \mathcal{L}_{S}^{sat} , then $L' \cdot \sigma' = L \cdot \sigma$. \checkmark
- ▶ If $L \cdot \sigma$ is UP-redundant in \mathcal{L}_S^{sat} . By construction σ is irreducible by R_S . Then we have

$$R_S \cup irred_{R_S}(\{L' \cdot \sigma' \in \mathcal{L}_S^{sat} \mid L \cdot \sigma \succ_{\ell} L' \cdot \sigma'\}) \models L\sigma$$

At least one $L' \cdot \sigma' \in irred_{R_S}(\mathcal{L}_S^{sat})$ with $\mathcal{I} \not\models L'\sigma'$.

Lemma 7

Whenever

$$M \cdot \tau = \min_{\succ_{\ell}} \left\{ L' \cdot \tau' \mid L' \cdot \sigma' \in irred_{R_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{\mathsf{sat}}), \ L'\sigma' \ \text{false in } \mathcal{I} \right\}$$

is defined, then $M \cdot \tau$ is irreducible by R_S .

Proof

Assume $M \cdot \tau$ is reducible by $(\ell \to r) \in R_S$ and $(\ell \to r)$ is produced by $(\ell' \approx r') \cdot \rho \in \mathcal{L}_S^{sat}$.

Now UP-inference is applicable because au is irreducible by R_S ,

$$\frac{(\ell' \approx r') \cdot \rho \quad M[\ell''] \cdot \tau}{M[r']\theta \cdot \mu} \ UP$$

 μ is irreducible by R_S , and $M[r']\theta\mu$ is false in \mathcal{I} .

▶ If $M[r']\theta \cdot \mu$ is not UP-redundant in $\mathcal{L}_{\mathcal{S}}^{sat}$ then $M[r']\theta \cdot \mu \in \mathcal{L}_{\mathcal{S}}^{sat}$.

Now
$$M \cdot \tau \succ_{\ell} M[r']\theta \cdot \mu \in irred_{R_S}(\mathcal{L}_S^{sat})$$
 contradicts minimality of $M \cdot \tau$.

▶ If $M[r']\theta \cdot \mu$ is UP-redundant in $\mathcal{L}_{\mathcal{S}}^{\mathit{sat}}$ then

$$R_{S} \cup irred_{R_{S}}(\{M' \cdot \tau' \in \mathcal{L}_{S}^{sat} \mid M[r']\theta \cdot \mu \succ_{\ell} M'\tau'\} \models M[r']\theta\mu$$

Hence there is $M' \cdot \tau' \in \mathcal{L}_{S}^{sat}$ false in \mathcal{I} such that $M \cdot \tau \succ_{\ell} M[r']\theta \cdot \mu \succ_{\ell} M' \cdot \tau'$, $M' \cdot \tau'$ contradicts minimality of $M \cdot \tau$.

Hence $M \cdot \tau$ is irreducible by R_S .

Lemma 8

Let $M \cdot \tau \in \mathcal{L}_{S}^{sat}$, irreducible by R_{S} , and not productive. From $\mathcal{I} \not\models M\tau$ follows that M is not an equation ($s \approx t$).

Proof.

Assume $M = (s \approx t)$. Then we have

- $I_{M\cdot\tau}\models (s\not\approx t)\tau$
- ▶ All literals in $I_{M \cdot \tau}$ are irreducible by $R_{M \cdot \tau}$
- $s\tau$ and $t\tau$ are irreducible by $R_{M\cdot\tau}$
- $ightharpoonup R_{M,\tau}$ is a convergent term rewrite system

Hence there is $(s \not\approx t)\tau \in I_{M \cdot \tau}$ produced to $I_{M \cdot \tau}$ by a $(s' \not\approx t') \cdot \tau'$. Then $(s' \not\approx t')\tau' \succ_{gr} (s \approx t)\tau$ and $(s' \not\approx t') \cdot \tau' \succ_{\ell} M \cdot \tau$

Lemma 9

Let $M \cdot \tau \in \mathcal{L}_{S}^{sat}$, irreducible by R_{S} , and defined (not productive). From $\mathcal{I} \not\models M\tau$ follows that M is not an inequation ($s \not\approx t$).

Proof.

Assume $M \cdot \tau$ is inequation $(s \not\approx t) \cdot \tau$. We have

- $I_{M\cdot\tau}\models(s\approx t)\tau$
- ightharpoonup sau and tau are irreducible by $R_{M \cdot au}$

Hence $s\tau = t\tau$ and equality resolution is applicable.

Contradiction to $\square \notin \mathcal{L}_{S}^{sat}$.

Completeness Model

Proof I

Assume \mathcal{I} is not a model for all instances of S.

Let
$$D = \min_{\succ_{cl}} \{ \ C' \cdot \sigma \mid C' \in S, \ C' \sigma \text{ false in } \mathcal{I} \ \}$$

Then

- ▶ $D = D' \cdot \sigma$ is not Inst-redundant. Otherwise there are $D_1, \dots, D_n \models D$, $D \succ_{cl} D_i$ for all i, and D_j false in \mathcal{I} for one j, which contradicts minimality.
- ▶ $x\sigma$ irreducible by R_S for every variable x in D'. Otherwise let $(\ell \to r)\tau \in R_L$ and $x\sigma = x\sigma[I\tau]_p$ for some variable x in D'. We define substitution σ' with $x\sigma' = x\sigma[r\tau]_p$ and $y\sigma' = y\sigma$ for $y \neq x$. $D'\sigma'$ is false in $\mathcal I$ and $D \succ_{cl} D' \cdot \sigma'$, which contradicts minimality.

Proof II

Since D is not Inst-redundant in S, we have for some literal L, that $D' = L \vee D''$, sel(D') = L, $L \cdot \sigma \in \mathcal{L}_S$, $L\sigma$ is false in \mathcal{I}

Hence the following literal closure

$$M \cdot \tau = \min_{\succ_{\ell}} \left\{ L' \cdot \tau' \mid L' \cdot \sigma' \in irred_{R_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{sat}), \ L' \cdot \sigma' \text{ false in } \mathcal{I} \right\}$$

exists by Lemma 6, is irreducible by Lemma 7, and not productive.

- M is not an equation by lemma 8
- ► M is not an inequation by lemma 9

This is a contradiction.

Our assumption is false and \mathcal{I} is a model for all instances of S.

▶ UP for literal closures

$$\frac{(\ell \approx r) \cdot \sigma \quad L[\ell'] \cdot \sigma'}{L[r]\theta \cdot \rho} \theta \qquad \qquad \frac{(s \not\approx t) \cdot \tau}{\Box} \mu$$

- $\ell \sigma \succ_{gr} r \sigma$, $\theta = \text{mgu}(\ell, \ell')$, $\ell \sigma = \ell' \sigma' = \ell' \theta \rho$, $\ell' \notin \mathcal{V}$
- ightharpoonup s au = t au, $\mu = ext{mgu}(s,t)$
- UPL for literals (clauses)

$$\frac{\ell \approx r \quad L[\ell']}{L[r]\theta} \ \theta \qquad \qquad \frac{s \not\approx t}{\Box} \ \mu$$

- $\ell \sigma \succ_{gr} r \sigma$ for some grounding substitution σ , $\theta = \text{mgu}(\ell, \ell'), \ \ell' \notin \mathcal{V}$
- $\mu = \text{mgu}(s, t)$