MATH 750 NOTES INTEGRATION ON CHAINS

MARIO L. GUTIERREZ ABED

ALGEBRAIC PRELIMINARIES

Definition. If V is a vector space (over \mathbb{R}), we will denote the k-fold product $V \times \cdots \times V$ by V^k . A function $T \colon V^k \to \mathbb{R}$ is called **multilinear** if it is linear in each coordinate, that is, if for each i with $1 \le i \le k$, we have

$$T(v_1, \dots, v_i + v'_i, \dots, v_k) = T(v_1, \dots, v_i, \dots, v_k) + T(v_1, \dots, v'_i, \dots, v_k),$$

 $T(v_1, \dots, \alpha v_i, \dots, v_k) = \alpha T(v_1, \dots, v_i, \dots, v_k).$

A multilinear function $T: V^k \to \mathbb{R}$ is called a k-tensor on V and the set of all k-tensors, which we denote by $\mathfrak{J}^k(V)$, becomes a vector space (over \mathbb{R}) if for $S, T \in \mathfrak{J}^k(V)$ and $\alpha \in \mathbb{R}$ we define

$$(S+T)(v_1,\ldots,v_k) = S(v_1,\ldots,v_k) + T(v_1,\ldots,v_k)$$
$$(\alpha S)(v_1,\ldots,v_k) = \alpha \cdot S(v_1,\ldots,v_k).$$

There is also an operation connecting the various spaces $\mathfrak{J}^k(V)$:

If
$$S \in \mathfrak{J}^k(V)$$
 and $T \in \mathfrak{J}^\ell(V)$, then we define the **tensor product** $S \otimes T \in \mathfrak{J}^{k+\ell}(V)$ by $S \otimes T(v_1, \ldots, v_k, v_{k+1}, \ldots, v_{k+\ell}) = S(v_1, \ldots, v_k) \cdot T(v_{k+1}, \ldots, v_{k+\ell}).$

Note that the order of the factors S and T is crucial here since $S \otimes T$ and $T \otimes S$ are far from equal.

Remark: Note that $\mathfrak{J}^1(V)$ is just the algebraic dual space V^* . The operation \otimes allows us to express the other vector spaces $\mathfrak{J}^k(V)$ in terms of $\mathfrak{J}^1(V)$. Note also that the inner product $\langle \cdot, \cdot \rangle \in \mathfrak{J}^2(\mathbb{R}^n)$ is a 2-tensor.

Theorem 1. Let v_1, \ldots, v_n be a basis for V, and let $\varphi_1, \ldots, \varphi_n$ be the dual basis $\varphi_i(v_j) = \delta_{ij}$. Then the set of all k-fold tensor products

$$\varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k}$$
 for $1 \leq i_1, \dots, i_k \leq n$

is a basis for $\mathfrak{J}^k(V)$, which therefore has dimension n^k .

Remark: One important construction, familiar for the case of dual spaces, can also be made for tensors. If $f: V \to W$ is a linear transformation, then we can define another linear transformation $f^*: \mathfrak{J}^k(W) \to \mathfrak{J}^k(V)$ by

$$f^*T(v_1, \dots, v_k) = T(f(v_1), \dots, f(v_k))$$

for $T \in \mathfrak{J}^k(W)$ and $v_1, \ldots, v_k \in V$. It is easy to verify that

$$f^*(S \otimes T) = f^*S \otimes f^*T.$$

Theorem 2. If T is an inner product on V, then there is a basis v_1, \ldots, v_n for V such that $T(v_i, v_j) = \delta_{ij}$ (such a basis is called **orthonormal** with respect to T). Consequently there is an isomorphism $f: \mathbb{R}^n \to V$ such that $T(f(x), f(y)) = \langle x, y \rangle$ for $x, y \in \mathbb{R}^n$. In other words, $f^*T = \langle \cdot, \cdot \rangle$.

Definition. A k-tensor $\omega \in \mathfrak{J}^k(V)$ is called alternating if

$$\omega(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\omega(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

for all $v_1, \ldots, v_k \in V$. (Note that in this equation v_i and v_j are interchanged and all other v's are left fixed.) The set of all alternating k-tensors is clearly a subspace $\Lambda^k(V)$ of $\mathfrak{J}^k(V)$.

How do we turn any tensor into an alternating tensor? The answer is in the following definition:

Definition. If $T \in \mathfrak{J}^k(V)$, then we define the **alternator** of T, denoted Alt(T), by

$$Alt(T)(v_1, \dots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma) \cdot T(v_{\sigma(1)}, \dots, v_{\sigma(k)}),$$

where S_k is the set of all permutations of the numbers from 1 to k.

Theorem 3. We have the following results:

- 1) If $T \in \mathfrak{J}^k(V)$, then $Alt(T) \in \Lambda^k(V)$.
- 2) If $\omega \in \Lambda^k(V)$, then $Alt(\omega) = \omega$.
- 3) If $T \in \mathfrak{J}^k(V)$, then Alt(Alt(T)) = Alt(T).

 \star

Remark: To determine the dimension of $\Lambda^k(V)$, we would like to have a theorem analogous to Theorem 1. Of course, note that if $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^\ell(V)$, then $\omega \otimes \eta$ is usually not in $\Lambda^{k+\ell}(V)$ (in other words, this tensor product may or may not result in an alternating tensor). Hence, we define a new product as follows:

Definition. The wedge product $\omega \wedge \eta \in \Lambda^{k+\ell}(V)$ is defined by

$$\omega \wedge \eta = \frac{(k+\ell)!}{k! \, \ell!} Alt(\omega \otimes \eta).$$

(The reason for the strange coefficient will appear later.)

Proposition 1. Let $\omega \in \Lambda^k(V)$, $\eta \in \Lambda^\ell(V)$, and let α be a scalar. Then the wedge product has the following properties:

$$(\omega_{1} + \omega_{2}) \wedge \eta = \omega_{1} \wedge \eta + \omega_{2} \wedge \eta,$$

$$\omega \wedge (\eta_{1} + \eta_{2}) = \omega \wedge \eta_{1} + \omega \wedge \eta_{2},$$

$$\alpha \omega \wedge \eta = \omega \wedge \alpha \eta = \alpha(\omega \wedge \eta),$$

$$\omega \wedge \eta = (-1)^{k\ell} \eta \wedge \omega_{1},$$

$$f^{*}(\omega \wedge \eta) = f^{*}(\omega) \wedge f^{*}(\eta).$$

Remark: The equation $(\omega \wedge \eta) \wedge \theta = \omega \wedge (\eta \wedge \theta)$ is also true but it requires more work. It is presented in the proposition below along with some other properties:

Proposition 2. We have the following results:

1) If
$$S \in \mathfrak{J}^k(V)$$
, $T \in \mathfrak{J}^\ell(V)$, and $Alt(S) = 0$, then
$$Alt(S \otimes T) = Alt(T \otimes S) = 0.$$

2) For any tensors ω , η , θ , we have

$$Alt(Alt(\omega \otimes \eta) \otimes \theta) = Alt(\omega \otimes \eta \otimes \theta)$$
$$= Alt(\omega \otimes Alt(\eta \otimes \theta)).$$

3) If
$$\omega \in \Lambda^k(V)$$
, $\eta \in \Lambda^\ell(V)$, and $\theta \in \Lambda^m(V)$, then
$$(\omega \wedge \eta) \wedge \theta = \omega \wedge (\eta \wedge \theta)$$

$$= \frac{(k + \ell + m)!}{k! \ell! m!} Alt(\omega \otimes \eta \otimes \theta).$$

Remark: Now we have gathered the tools necessary to craft a theorem analogous to Theorem 1 in order to determine the dimension of $\Lambda^k(V)$.

Theorem 4. If v_1, \ldots, v_n is a basis for the vector space V, with dual basis $\varphi_1, \ldots, \varphi_n$, then the set of all

$$\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}$$
 for $1 \le i_1 \le i_2 \le \cdots \le i_k \le n$

is a basis for $\Lambda^k(V)$, which therefore has dimension

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}.$$

Remark: If V has dimension n, then it follows from Theorem 4 that $\Lambda^n(V)$ has dimension 1. Thus all alternating n-tensors on V are multiples of any nonzero one. Since the determinant is an example of such a member of $\Lambda^n(\mathbb{R}^n)$, it is not surprising to find it in the following theorem:

Theorem 5. Let v_1, \ldots, v_n be a basis for the vector space V, and let $\omega \in \Lambda^n(V)$. If $w_i = \sum_{j=1}^n \alpha_{ij} v_j$ are n vectors in V, then

$$\omega(w_1, \dots, w_n) = \omega \left(\sum_{j=1}^n \alpha_{1j} v_j, \dots, \sum_{j=1}^n \alpha_{nj} v_j \right)$$
$$= \det(\alpha_{ij}) \cdot \omega(v_1, \dots, v_n).$$

Proof. Define $\eta \in \mathfrak{J}^n(\mathbb{R}^n)$ by

$$\eta((\alpha_{11},\ldots,\alpha_{1n}),\ldots,(\alpha_{n1},\ldots,\alpha_{nn})) = \omega\left(\sum \alpha_{1j}v_j,\ldots,\sum \alpha_{nj}v_j\right).$$

Clearly $\eta \in \Lambda^n(\mathbb{R}^n)$. Thus $\eta = \lambda \cdot \det$, for some $\lambda \in \mathbb{R}$, and furthermore,

$$\lambda = \eta(e_1, \dots, e_n) = \omega(v_1, \dots, v_n).$$

Remark: This theorem shows that a nonzero $w \in \Lambda^n(V)$ splits all the bases of V into two disjoint groups:

- those with $\omega(v_1,\ldots,v_n)>0$,
- and those for which $\omega(v_1,\ldots,v_n)<0$.

If v_1, \ldots, v_n and w_1, \ldots, w_n are two bases and $A = (\alpha_{ij})$ is defined by $w_i = \sum_j \alpha_{ij} v_j$, then v_1, \ldots, v_n and w_1, \ldots, w_n are in the same group iff $\det(A) > 0$.

This criterion is independent of ω and can always be used to divide the bases of V into two disjoint groups. Either of these two groups is called an **orientation** for V. The orientation to which a basis v_1, \ldots, v_n belongs is denoted $[v_1, \ldots, v_n]$ and the other orientation is denoted $-[v_1, \ldots, v_n]$. In \mathbb{R}^n we define the **usual orientation** to be $[e_1, \ldots, e_n]$.

FIELDS & FORMS

Definition. If $p \in \mathbb{R}^n$, the set of all pairs (p, v), for $v \in \mathbb{R}^n$, is denoted \mathbb{R}^n_p , and called the **tangent space** of \mathbb{R}^n at p.

Remark 1: This set is made into a vector space in the most obvious way, by defining

$$(p,v) + (p,w) = (p,v+w),$$

$$\alpha \cdot (p,v) = (p,\alpha v).$$

A vector $v \in \mathbb{R}^n$ is often pictured as an arrow from 0 to v. The vector $(p, v) \in \mathbb{R}_p^n$ on the other hand may be pictured as an arrow with the same direction and length, but with initial point p (see figure below).

This arrow goes from p to the point p+v, and we therefore define p+v to be the end point of (p, v). We will usually write (p, v) as v_p , which is read as "the vector v at p".

Remark 2: The vector space \mathbb{R}_p^n is so closely allied to \mathbb{R}^n that many of the structures on \mathbb{R}^n have analogues on \mathbb{R}_p^n . In particular, the usual inner product $\langle \cdot, \cdot \rangle_p$ for \mathbb{R}_p^n is defined by

$$\langle v_p, w_p \rangle_p = \langle v_p, w_p \rangle,$$

and the usual orientation for \mathbb{R}_p^n is

$$[(e_1)_p,\ldots,(e_n)_p].$$

Remark 3: Any operation which is possible in a vector space may be performed in each \mathbb{R}_p^n , and most of this section is merely an elaboration of this theme. About the simplest operation in a vector space is the selection of a vector from it. If such a selection is made in each \mathbb{R}_p^n , then we obtain a vector field (see figure below).

To be precise, we give the following definition:

Definition. A vector field is a function F such that $F(p) \in \mathbb{R}_p^n$ for each $p \in \mathbb{R}^n$. For each p, there are numbers $F^1(p), \ldots, F^n(p)$ such that

$$F(p) = F^{1}(p) \cdot (e_{1})_{p} + \dots + F^{n}(p) \cdot (e_{n})_{p}.$$

We thus obtain n component functions $F^i : \mathbb{R}^n \to \mathbb{R}$.

Remark: Operations on vectors yield operations on vector fields when applied at each point separately. For example, if F and G are vector fields and f is a function, then we

 \star

define

$$(F+G)(p) = F(p) + G(p),$$

$$\langle F, G \rangle (p) = \langle F(p), G(p) \rangle,$$

$$(f \cdot F)(p) = f(p)F(p).$$

Definition. We define the **divergence** of F, denoted div(F), as $div(F) = \sum_{i=1}^{n} D_i F^i$. Using standard notation, we define the operator

$$\nabla = \sum_{i=1}^{n} D_i \cdot e_i.$$

Then we can write $div(F) = \langle \nabla, F \rangle$.

Definition. For n = 3, we have

$$(\nabla \times F)(p) = (D_2 F^3 - D_3 F^2)(e_1)_p + (D_3 F^1 - D_1 F^3)(e_2)_p + (D_1 F^2 - D_2 F^1)(e_3)_p.$$

The vector field $\nabla \times F$ is called the **curl** of F, and it is denoted $\operatorname{curl}(F)$.