

RF & MICROWAVE CIRCUITS

CIRCUITS RF & HYPER

2018-2019

AXEL FLAMENT DAMIEN DUCATTEAU

- S-parameters represent small signal behavior
 - Linear!
 - Around a bias condition

Set Voltages and currents in a transistor

$$V_{BE} \sim 0.6V$$

 $V_{CE} = ?$
 $I_{C} = ?$

n-Channel MOSFET

3

Most common topology

What's wrong with this topology for RF?

RF Biasing

- Use of noiseless components
 - Caps for signal
 - Selfs for DC

$$V_G = 5V$$

 $V_{CC} = V_D = 6V$
 $\rightarrow I_D = 25mA$

• Bias Tees

• The impedance transformation property of $\lambda/4$ transmission lines can be used to bias transistors

 Fortunately (for you), the measurements you will perform are done on a VNA with DC bias supplies!

external

Impedance adaptation

9

$$Y = \frac{1}{Z} \quad y = \frac{1}{z}$$

$$Y_C = \frac{1}{Z_C} \quad y = \frac{Y}{Y_C} = YZ_C$$

Exemple:

Méthode:

- calculer Z_F en fonction de C, L et Z_I
- on détermine C et L pour que $Z_E = Z_C = 50 \Omega$

L'adaptation ne sera valable qu'à une seule fréquence!

On trouve alors :
$$Z_E = \frac{R_L X_{cap}^2}{R_L^2 + \left(X_L - X_{cap}\right)^2} + j \left[X_{ind} - \frac{X_{cap} \left(R_L^2 + X_L^2 - X_L X_{cap}\right)}{R_L^2 + \left(X_L - X_{cap}\right)^2} \right]$$

On veut que $Z_E = Z_C = R_C + j$ 0 = 50 + j 0 Ω : adaptation à une ligne 50 Ω

On obtient alors : X_{cap} = 29.3 Ω X_{ind} = 48.3 Ω

Soit à f = 1GHz C = 5.43 pF et L = 7.7 nH

Calculate the values of L and C so as to realize the impedance matching of the load impedance $Z_L = 125 - j$ 42.5 Ω at the frequency of 1 GHz ($Z_C = 50 \Omega$). The impedance matching network is shown below.

Use either an analytical approach or the Smith Chart.

Analytical solution

- $Z_E = Z_{cap} + Z_{ind} / / Z_L$
- $Z_{cap} = -jX_{cap}$
- $Z_{ind} = jX_{ind}$
- $Z_L = R_L + jX_L$

$$Z_{E} = \frac{X_{ind}^{2} R_{L}}{R_{L}^{2} + (X_{ind} + X_{L})^{2}} + j \frac{X_{ind} (X_{L}^{2} + X_{ind} X_{L} + R_{L}^{2})}{R_{L}^{2} + (X_{ind} + X_{L})^{2}} - j X_{cap}$$

- $Re(Z_E) = 50 \rightarrow X_{ind} = 83.12\Omega \rightarrow L = 13.2nH$
- (resolving $X_{ind}^2 + 56.67X_{ind} 11620.8 = 0$)
- $Im(Z_E) = 0 \rightarrow X_{cap} = 55.48 \Omega \rightarrow C = 2.87pF$

Smith Chart solution

- $Z_L = 125-j42.5 \Omega$
- $z_L = 2.5 j0.85$
- Admittance : $y_1 = 0.36 + j0.12$
- Shunt L brings $y_{ind} = Z_0 Y_{ind} = -jZ_0/(L\omega) = -j0.6$

$$-y = 0.36-j0.48 \rightarrow z = 1+j1.33$$

- Series C brings $z_{cap} = Z_{cap}/Z_0 = -j/(CZ_0\omega) = -j1.33$
 - -z=1
- @1GHz : L= 13.27nH and C = 2.39pF

Rappel : un SLUG est un tronçon de ligne de longueur $I = \lambda_G / 4$ d'impédance caractéristique Z_T qui a la propriété de présenter une impédance d'entrée Z_F :

En particulier, le SLUG va transformer une impédance réelle Z_L en une impédance réelle Z_E dont la valeur dépend de l'impédance caractéristique Z_T du SLUG. (Transformateur quart d'onde)

L'adaptation à SLUG est constituée d'un tronçon de ligne $Z_{\mathbb{C}}$, de longueur I à déterminer, connecté à la charge à adapter, suivi d'un SLUG dont l'impédance caractéristique $Z_{\mathcal{T}}$ est à déterminer.

Le tronçon de ligne transforme Z_L en une impédance Z = R purement réelle $\Rightarrow I$

Le SLUG transforme Z = R en $Z_E = Z_C$ (= 50 Ω) $\Rightarrow Z_T$

 $Z_L \Rightarrow z_L$ sur l'abaque : impédance réduite !

Tronçon de ligne $Z_{\mathbb{C}}$: déplacement à $|\rho|$ constant vers le générateur

Intersection avec l'axe des abscisses :

Impédance réelle : $Z = R = r Z_C$

On en déduit / (en fraction de longueur d'onde)

Calcul de Z_T pour avoir $Z_E = Z_C$: $Z_T^2 = Z_C R \Rightarrow Z_T = Z_C \sqrt{r}$

On obtient $z_E = 1$ soit $Z_E = Z_C$

 Z_L

SLUG example

Realize the impedance matching of the load impedance $Z_L = 125 - j$ 42.5 Ω at the frequency of 1 GHz ($Z_C = 50 \Omega$) using a SLUG structure.

Use the Smith Chart!

Solution

- $L = 0.478\lambda$
- $Z_T = Z_0 \sqrt{r} = 50 \sqrt{3} = 86.6 \Omega$

Rappel : un STUB est un tronçon de ligne terminé par un CC ou un CO qui présente à son entrée une impédance (une admittance) purement imaginaire dont la valeur dépend de la terminaison, de la longueur du STUB et de $Z_{\rm C}$.

Selon le signe de la partie imaginaire de l'admittance apportée par le STUB, celui-ci joue le rôle d'une capacité ou d'une inductance. On le dimensionne aisément à l'aide de l'abaque de Smith.

Un STUB s'utilise en parallèle sur une ligne et modifie donc la partie imaginaire de l'admittance (Déplacement sur un cercle à partie réelle = constante).

L'adaptation à simple STUB est constituée d'un tronçon de ligne $Z_{\mathbb{C}}$, de longueur I à déterminer, connecté à la charge à adapter, avec un STUB en parallèle dont la longueur I_{STUB} est à déterminer en fonction de la terminaison (CO ou CC).

Le tronçon de ligne transforme $Z_L(Y_L)$ en une admittance $Y = Y_C + j B \Rightarrow I$

Le STUB compense la partie imaginaire j B de Y: $Y_E = Y + Y_{STUB} = Y_C \Rightarrow Z_E = Z_C$

A partir de Y_{STUB} (et de la terminaison CO ou CC), on détermine I_{STUB} .

Synthèse de l'adaptation :

La charge Z_L = 15 + j 35 Ω est adaptée à Z_C = 50 Ω grâce à un tronçon de ligne d'impédance caractéristique Z_C et de longueur Iavec en parallèle un STUB (Z_C) de longueur I_{STUB} tels que :

Solution 1

$$I = 0.334 \lambda_{G}$$
 et

 $I_{STUBCO} = 0.330 \lambda_{G} (STUB en CO)$

ou $I_{STUB\ CC}$ = 0.080 λ_{G} (STUB en CC)

Solution 2

$$I' = 0.465 \lambda_{G}$$
 et

$$I'_{STUBCO} = 0.170 \lambda_G (STUB en CO)$$

ou
$$l'_{STUBCC}$$
 = 0.420 λ_G (STUB en CC)

Simple STUB example

Realize the impedance matching of the load impedance $Z_L = 125 - j$ 42.5 Ω at the frequency of 1 GHz ($Z_C = 50 \Omega$) using a STUB structure. Study all solutions.

Solution

- Solution 1 : $I = 0.142 \lambda$,
 - must add -1.1j
 - $-I_{CO} = 0.367\lambda$
 - $-I_{CC} = 0.117\lambda$
- Solution 2 : $I = 0.314 \lambda$,
 - must add +1.1j
 - $-I_{CO} = 0.132 \lambda$
 - $-I_{CC} = 0.382 \lambda$

Double stub

L'adaptation à double STUB est constituée de 2 STUB placés à des endroits fixes (d_1, d_2) de la ligne par rapport à la charge Z_L . Le STUB2 joue le même rôle que dans l'adaptation à simple STUB : il compense la partie imaginaire j B de l'admittance pour réaliser l'adaptation à Y_C (Z_C). Le rôle du STUB1 consiste par conséquent à créer une admittance qui, vue dans le plan du STUB2, sera de la forme $Y = Y_C + j$ B.

A partir de $Y_{STUB1,2}$ (et de la terminaison CO ou CC), on détermine $I_{STUB1,2}$.

Double stub

Impédances non adaptables :

Toutes les impédances Z_L ne sont pas adaptables ! Si le STUB1 qui modifie l'admittance y ne conduit pas à une intersection y_1 avec le cercle 1 + j xdeplacé de d_2 , alors l'adaptation n'est pas possible.

Si l'admittance y appartient au disque vert, alors l'action du STUB1 (déplacement à partie réelle constante) ne permettra pas d'obtenir une intersection y_1 avec le cercle déplacé de d_2 .

Les admittances y_L non adaptables correspondent aux admittances y non adaptables (disque vert) déplacées de d_1 vers la charge : disque orange.

Le lieu des impédances z_L non adaptables correspond au symétrique par rapport au centre de l'abaque des admittances y_L non adaptables (disque orange) : disque bleu.

Synthèse de l'adaptation :

La charge Z_L = 15 + j 35 Ω est adaptée à Z_C = 50 Ω grâce à un schéma d'adaptation double STUB avec d_1 = 0.08 λ_G , d_2 = 0.18 λ_G et des STUB de longueurs I_{STUB1} et I_{STUB2} tels que :

 y_{STUB1} = + j 0.43 soit $I_{STUB1 CO}$ = 0.065 $\lambda_{\rm G}$ (STUB en CO) ou $I_{STUB1 CC}$ = 0.315 $\lambda_{\rm G}$ (STUB en CC) et y_{STUB2} = - j 1.57 soit $I_{STUB2 CO}$ = 0.341 $\lambda_{\rm G}$ (STUB en CO) ou $I_{STUB2 CC}$ = 0.091 $\lambda_{\rm G}$ (STUB en CC)


```
y'_{STUB1} = + j 1.39 soit

I'_{STUB1} co = 0.150 \lambda_{\rm G} (STUB en CO)

ou I'_{STUB1} cc = 0.40 \lambda_{\rm G} (STUB en CC)

et y'_{STUB2} = + j 2.5 soit

I'_{STUB2} co = 0.189 \lambda_{\rm G} (STUB en CO)

ou I'_{STUB2} cc = 0.439 \lambda_{\rm G} (STUB en CC)
```

Realize the impedance matching of the load impedance $Z_L = 125 - j$ 42.5 Ω at the frequency of 1 GHz ($Z_C = 50 \Omega$) using a double STUB structure. $d_1 = \lambda_g/8$, $d_2 = \lambda_g/4$. Study all solutions. Use the Smith Chart!

emble ré-inventons le mond

```
Z=125-j42,5\Omega so z=2,5-j0,85, y=0,358+j0,122
```

The 1st TLINE rotates towards generator ($\lambda/8 = 90^{\circ}$) so y = 0,798+j0,954

```
To cross the 1+jX circle rotated toward load from \lambda/4=180^\circ, STUB 1 should add -0,56j (case 1, L_{stubCO}=0,418~\lambda, L_{stubCC}=0,168~\lambda) or -1,35j (case 2, L_{stubCO}=0,352~\lambda, L_{stubCC}=0,102~\lambda)
```

Case 1 : y=0.798+0.394jCase 2 : y=0.798-0.396j

Then y is rotated toward generator from $\lambda/4 = 180^{\circ}$,

Case 1 : y = 1 - 0.5jCase 2 : y = 1 + 0.5j

STUB 2 must add +0,5j (case 1, L_{stubCO} = 0,074 λ , L_{stubCC} =0,324 λ) or -0,5j (case 2, L_{stubCO} = 0,426 λ , L_{stubCC} =0,176 λ)

L'adaptation généralisée consiste à transformer une impédance « de charge » Z_L quelconque en une impédance d'entrée Z_E quelconque. Ce type d'adaptation est utilisée par exemple pour l'adaptation en puissance inter-étages lors de la réalisation de circuits microrubans où les étages successifs ne sont pas séparés par des tronçons de ligne Z_C . Elle est également utilisée pour la conception des circuits actifs pour optimiser les performances gain-bruit-stabilité (cf. cours paramètres S).

Le montage le plus pratique est l'association d'un SLUG et de un ou plusieurs STUB. En travaillant en admittance, le STUB1 compense la partie imaginaire de Y_L pour donner une admittance purement réelle qui sera transformée par le SLUG en une admittance réelle correspondant à la partie réelle de l'admittance Y_E recherchée. Le STUB2 apporte alors la partie imaginaire manquante pour former l'admittance Y_E désirée.

On a $Y_L = G_L + j B_L$ et on veut $Y_E = G_E + j B_E$

Le STUB1 compense $j B_L$: $Y_{STUB1} = -j B_L$ On obtient $Y = G_L$ au niveau du SLUG

Le SLUG transforme $Y = G_L$ en $Y' = G_E$ selon la formule de transformation du SLUG : $G_L G_E = Y_T^2$ soit

$$Z_T = \sqrt{\frac{1}{G_E G_L}}$$

Le STUB2 apporte $j B_E$: $Y_{STUB2} = j B_E$

On obtient alors à l'entrée du montage : $Y_E = G_E + j B_E$

STUB 2

SLUG

 $\lambda_G / 4$

STUB 1

Exemple en TD.

Make the impedance matching between the load impedance $Z_L = 125 - j$ 42.5 Ω and a source of impedance $Z_G = 12 + j$ 45 Ω ($Z_C = 50 \Omega$) using the matching network shown below. Use the Smith Chart!

ble ré-inventons le mond

End

•
$$z_1 = 2.5 - j0.85 \rightarrow z_G = 0.24 + j0.9$$

•
$$y_L = 0.36 + j0.12 \rightarrow y_G = 0.28 - j1.04$$

• STUB 1 adds -j0.12

$$-I_{CO} = 0.481\lambda$$

$$-I_{CC} = 0.231\lambda$$

SLUG modifies 0.36 to 0.28

$$-Z_C = Z_0/(\sqrt{(0.36 \times 0.28)}) = 157\Omega$$

• STUB 2 adds -j1.04

$$-I_{CO} = 0.368\lambda$$

$$-I_{CC} = 0.118\lambda$$