```
# importing libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd
dataset=pd.read_csv('/content/Mall_Customers.csv')
x = dataset.iloc[:, [3, 4]].values
#finding optimal number of clusters using the elbow method
from sklearn.cluster import KMeans
wcss_list= [] #Initializing the list for the values of WCSS
#Using for loop for iterations from 1 to 10.
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state= 42)
    kmeans.fit(x)
    wcss_list.append(kmeans.inertia_)
mtp.plot(range(1, 11), wcss_list)
mtp.title('The Elobw Method Graph')
mtp.xlabel('Number of clusters(k)')
mtp.ylabel('wcss_list')
mtp.show()
```


#training the K-means model on a dataset

```
kmeans = KMeans(n_clusters=5, init='k-means++', random_state= 42)
y_predict= kmeans.fit_predict(x)

#visulaizing the clusters
#visulaizing the clusters
```

```
#visulaizing the clusters
mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c = 'blue', label = 'Cluster 1') #for first cluster
mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c = 'green', label = 'Cluster 2') #for second cluster
mtp.scatter(x[y_predict == 2, 0], x[y_predict == 2, 1], s = 100, c = 'red', label = 'Cluster 3') #for third cluster
mtp.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4') #for fourth cluster
mtp.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') #for fifth cluster
mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroid')
mtp.title('Clusters of customers')
mtp.xlabel('Annual Income (k$)')
mtp.ylabel('Spending Score (1-100)')
mtp.legend()
mtp.show()
```

