

Professora Dra. Luana Batista da Cruz luana.batista@ufca.edu.br

Roteiro

01 Introdução

02 Matrizes

01

Introdução

Motivação

Introdução

Motivação

- Fazer um programa para ler as notas de 4 provas para 50 alunos de uma turma e calcular a média do aluno e média da turma
- Solução: criar 4 vetores de 50 posições, sendo um para cada nota
 - double nota1[50], nota2[50], nota3[50], nota4[50];

	Nota1		Nota2		Nota3	Nota4		
0	5,6	0	10	0	7,8	0	3,3	
1	10	1	10	1	6,2	1	9,1	
2	4,5	2	9,5	2	5,5	2	3,9	
•••	•••	•••	•••		•••		•••	
48	8,2	48	9,0	48	7,6	48	7,7	
49	9,0	49	9,2	49	1,4	49	8,9	

Introdução

Motivação

 E se tivermos que armazenar 100 notas? Criaremos 100 vetores com 100 nomes diferentes?

	Nota1		Nota2		Nota3		Nota100				
0	5,6	0	10	0	7,8		0	3,3			
1	10	1	10	1	6,2		1	9,1			
2	4,5	2	9,5	2	5,5	•••	2	3,9			
•••		•••	•••		•••		•••	•••			
48	8,2	48	9,0	48	7,6		48	7,7			
49	9,0	49	9,2	49	1,4		49	8,9			

Introdução

Motivação

o Uma solução mais eficaz para resolver o problema é o uso de **matrizes**:

	0	1	2	•••	99
0	5,6	9,8	7,6	• • •	4,9
1	10	9,3	4,9	•••	9,8
2	4,5	7,9	10	•••	7,9
•••	•••	•••	•••	•••	•••
48	8,2	8,6	10	•••	6,8
49	9,0	7,8	9,2	•••	3,6

Matrizes: variáveis compostas homogêneas Declaração de matrizes Inicialização de matrizes Exemplos

Matrizes: variáveis compostas homogêneas

- As variáveis compostas homogêneas correspondem a um conjunto de elementos de mesmo tipo e que compartilham um mesmo nome
- Cada um dos elementos é unicamente identificado por um número inteiro (índice) que especifica a sua localização dentro da estrutura
- Estas variáveis podem ser unidimensionais (vetores) ou multidimensionais (matrizes)

Declaração de matrizes

- <tipo> identificador [<linhas>] [<colunas>];
 - Tipo: tipo dos dados que serão armazenados na matriz (int, char, f loat, etc)
 - o **Identificador**: é o nome da variável que identifica a matriz
 - Linhas: número de elementos da primeira dimensão
 - Colunas: número de elementos da segunda dimensão
 - As linhas e colunas são numeradas de 0 até tamanho 1

Exemplo

double notas[50][100]; //matriz com 50 linhas e 100 colunas

Declaração de matrizes

 Por exemplo, uma matriz bi-dimensional pode ser vista como uma tabela de m linhas e n colunas

- Sempre começa com o índice de valor igual a zero e termina com o valor de seu tamanho menos um
- Um valor de uma matriz pode ser acessado a partir de seu índice
 - o Ex: matriz[2][0] = 3; printf("%d", matriz[1][2]);

Declaração de matrizes

Importante

- C não verifica o limite das dimensões das variáveis compostas
- Se uma instrução for feita com índices além do limite, é possível que não ocorra um erro de execução do programa e outros valores sejam sobrepostos na memória
- É responsabilidade do programador providenciar a verificação dos limites das dimensões das variáveis compostas

• **Exemplo 1**: faça um programa que leia e imprima uma matriz 4×3 (4 linhas e 3 colunas)

 Exemplo 1: faça um programa que leia e imprima uma matriz 4×3 (4 linhas e 3 colunas)

```
#include <stdio.h>
     #include <stdlib.h>
     #define M 4
     #define N 3
 6
     int main(){
         int i, j, m[M][N];
 9
         //capturando os dados
10
11
         for(i=0; i<M; i++){
                                  //linhas
12
             for(j=0; j<N; j++){ //columns
                 scanf("%d", &m[i][j]);
13
14
15
16
17
         //imprimindo a matriz
18
         for(i=0; i<M; i++){
                                  //linhas
19
             printf("\n");
20
             for(j=0; j<N; j++) //colunas
                 printf("M[%d][%d]= %d, ", i, j, m[i][j]);
21
22
23
         system("PAUSE");
24
25
         return 0;
26
```


 Exemplo 1: faça um programa que leia e imprima uma matriz 4×3 (4 linhas e 3 colunas)

```
M[0][0]= 10, M[0][1]= 11, M[0][2]= 12,
M[1][0]= 13, M[1][1]= 14, M[1][2]= 15,
M[2][0]= 16, M[2][1]= 17, M[2][2]= 18,
M[3][0]= 19, M[3][1]= 20, M[3][2]= 21,
```

```
#include <stdio.h>
     #include <stdlib.h>
     #define M 4
     #define N 3
 6
     int main(){
         int i, j, m[M][N];
9
         //capturando os dados
10
11
         for(i=0; i<M; i++){
                                  //linhas
             for(j=0; j<N; j++){ //columns
13
                 scanf("%d", &m[i][j]);
14
15
16
17
         //imprimindo a matriz
         for(i=0; i<M; i++){
18
                                  //linhas
             printf("\n");
19
             for(j=0; j<N; j++) //colunas
20
                 printf("M[%d][%d]= %d, ", i, j, m[i][j]);
21
22
23
24
         system("PAUSE");
25
         return 0:
26
```


Inicialização de matrizes

• Inicializando cada elemento da matriz (m x n) com o valor 0

Inicialização de matrizes

• Inicializando na declaração. Processo semelhante à inicialização de vetores

Mas podemos fazer também:

Ou ainda:

```
int matriz[3][4] = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 22, 33 };
```


• **Exemplo 2**: dada uma matriz (4 × 5), calcular a soma de todos os elementos da matriz. Calcular também o somatório dos elementos de cada linha da matriz, armazenando o somatório em um vetor

	0	1	2	3	4	
0	1	2	3	4	5	
1	0	-1	0	-3	1	
2	2	-2	-2	2	0	
3	0	0	6	0	0	

• Exemplo 2

```
#include<stdio.h>
     #include<stdlib.h>
     #define M 4
     #define N 5
 6
     int main(){
 7
         int i, j;
 8
         float matriz[M][N], soma_linha[4], total = 0;
 9
10
11
         //capturando os dados
12
         for(i=0; i<M; i++){ //linhas
13
             for(j=0; j<N; j++){ //columns
14
                  scanf("%f", &matriz[i][j]);
15
16
17
         for(i=0; i < M; i++){
18
              soma linha[i] = 0; //a soma de cada linha é inicializada com zero
19
             for(j=0; j < N; j++){ //somando os valores da linha em soma linha[i]</pre>
20
                  soma linha[i] = soma linha[i] + matriz[i][j];
21
22
             total = total + soma linha[i];//somando o total de cada linha
23
24
25
         //imprimindo o vetor soma linha
26
         for(i=0; i<4; i++){
27
             printf("SL[%d]: %.2f\n", i, soma linha[i]);
28
29
30
         printf("Resultado da soma de todos os elementos: %.2f\n", total);
31
32
33
         system("PAUSE");
34
         return 0;
35
```


• **Exemplo 3**: faça um programa que calcule a soma de duas matrizes 3 x 3

	0	1	2			0	1	2			0	1	2
0	1	2	3		0	10	11	12		0	11	13	15
1	4	5	6	+	1	13	14	15	=	1	17	19	21
2	7	8	9		2	16	17	18		2	23	25	27

Exemplo 3

```
int i, j;
 9
         int matriz 1[M][N], matriz 2[M][N], matriz aux[M][N];
10
11
         //capturando os dados da matriz 1
         for(i=0; i < M; i++){ //linhas
12
13
             for(j=0; j<N; j++){ //columns
14
                 scanf("%d", &matriz 1[i][j]);
15
16
17
18
         //capturando os dados da matriz 2
19
         for(i=0; i<M; i++){ //linhas
             for(j=0; j<N; j++){ //columns
20
                 scanf("%d", &matriz 2[i][j]);
21
22
23
24
25
         //soma matrizes 1 e 2
26
         for(i=0; i<M; i++){ //linhas
             for(j=0; j<N; j++){ //columns
27
                 matriz_aux[i][j] = matriz_1[i][j] + matriz_2[i][j];
28
29
30
31
32
         //imprimindo a matriz
         for(i=0; i<M; i++){ //linhas
33
             printf ("\n");
34
             for(j=0; j<N; j++) //colunas
35
                 printf("Matriz[%d][%d]= %d, ", i, j, matriz aux[i][j]);
36
37
```


• **Exemplo 4**: escreva um programa que declare e preencha uma matriz quadrada com valores fornecidos pelo usuário. Em seguida, o programa deve imprimir os elementos da diagonal principal e da diagonal secundária

Exemplo 4

```
int i, j, m;
 7
         printf("Digite o valor da matriz quadrada: ");
 8
         scanf("%d", &m);
 9
10
         int matriz[m][m];
11
12
         //capturando os dados
13
         for(i=0; i < m; i++){ //linhas
14
             for(j=0; j < m; j++){ //columns
15
                  scanf("%d", &matriz[i][j]);
16
17
18
19
         //imprimir diagonal principal
20
         printf("Diagonal principal\n");
21
         for(i=0; i<m; i++){ //linhas
22
23
             for(j=0; j < m; j++){ //columns
                 if(i == j)
24
25
                      printf("M[%d][%d]: %d\n", i, j, matriz[i][j]);
26
27
28
         //imprimir diagonal secundária
29
         printf("Diagonal secundaria\n");
30
         for(i=0; i<m; i++){ //linhas
31
             for(j=0; j < m; j++){ //columns
32
33
                 if((i+j) == m-1)
                      printf("M[%d][%d]: %d\n", i, j, matriz[i][j]);
34
35
36
```


• Exemplo 4

```
int i, j, m;
 7
         printf("Digite o valor da matriz quadrada: ");
 8
         scanf("%d", &m);
 9
10
         int matriz[m][m];
11
12
         //capturando os dados
13
         for(i=0; i<m; i++){ //linhas</pre>
14 V
15 V
             for(j=0; j < m; j++){ //columns
                  scanf("%d", &matriz[i][j]);
16
17
18
19
         //imprimir diagonal principal
20
         printf("Diagonal principal\n");
21
         for(i=0; i<m; i++)
22
23
             printf("M[%d][%d]: %d\n", i, j, matriz[i][i]);
24
         //imprimir diagonal secundária
25
         printf("Diagonal secundaria\n");
26
         for(i=0; i<m; i++)
27
             printf("M[%d][%d]: %d\n", i, j, matriz[i][m-1-i]);
28
```


Resumindo..

- Estruturas de dados homogêneas
- Matrizes
- Exemplos

Referências

PIVA, D. J. et al. **Algoritmos e programação de computadores**. Rio de Janeiro, RJ: Elsevier, 2012.

SCHILDT, Herbert. **C completo e total**. Makron, 1997.

