Assignment-3 (HMM, SVM and ANN)

HMM

Mod	del 1	Mod	lel 2
$p_{11} = 0.8$	$p_{21} = 0.3$	$p_{11} = 0.2$	$p_{21} = 0.7$
$h_{11} = 0.9$	$h_{21} = 0.2$	$h_{11} = 0.1$	$h_{21} = 0.8$

Identify the model from which the following data has been generated.

DATA 1: [1 1 1 1 1 | 2 1 1 1 2 | 2 1 1 1 2 |2 2 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 2 1 1 1 1 1 1 1 ... $\dots 2 \ 1 \ 1 \ 2 \ 1 | \ 1 \ 1 \ 1 \ 1 \ 2 | 1 \ 2 \ 1 \ 2 \ 1 | \ 1 \ 2 \ 2 \ 2 \ 2 | \dots$...2 2 2 1 1 **DATA 2:** [1 1 1 1 1 1 1 1 1 2 1 | 1 2 2 1 1 | ... $\dots 2 \ 1 \ 2 \ 1 \ 2 | \ 2 \ 2 \ 1 \ 1 \ 1 | 2 \ 2 \ 1 \ 1 \ 1 | \ 1 \ 2 \ 2 \ 1 \ 2 | \dots$...1 2 1 1 1 1 2 1 1 1 1 2 2 1 2 1 2 1 1 1 12 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 2 21 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 21 1 2 1 1]

with and without state sequence.

STATE 1: [1 1 1 1 2 | 2 1 1 1 1 1 2 |2 2 2 1 1] STATE 2: [1 2 2 2 2 | 2 1 2 2 2 | 2 1 2 1] ... $\dots 2 \ 2 \ 2 \ 1 \ 2 | \ 1 \ 2 \ 2 \ 2 \ 2 | 1 \ 2 \ 2 \ 2 \ 2 | \ 1 \ 2 \ 2 \ 2 \ 1 | \dots$...2 2 1 2 1]

PART-1 ANN

TRAINING:
$$DATA_1 = \begin{bmatrix} 1.08 & 0.75 & 0.85 & 0.94 & 0.40 \\ 0.08 & -0.19 & -0.11 & 0.01 & -0.09 \end{bmatrix}$$

$$DATA_2 = \begin{bmatrix} 0.01 & -0.01 & 0.09 & -0.05 & -0.45 \\ 0.85 & 1.05 & 0.93 & 1.41 & 1.45 \end{bmatrix}$$
VALIDATION:
$$DATA_1 = \begin{bmatrix} 1.25 & 1.19 & 0.99 & 0.69 & 1.32 \\ -0.21 & 0.07 & 0.04 & -0.02 & 0.02 \end{bmatrix}$$

$$DATA_2 = \begin{bmatrix} 0.07 & -0.33 & -0.06 & -0.33 & -0.24 \\ 1.20 & 0.88 & 1.08 & 1.10 & 1.01 \end{bmatrix}$$
1. Initialize the weights:

1. Initialize the weights:

$w_{11}=0.85$	$w_{11} = 0.85 w_{12} = 0.90$		w_{13}	= 0.12	$w_{21} =$	$0.91 w_{22} = 0.63$		3	$w_{23} = 0.09$	
$v_{11} = 0.28$ $v_{12} = 0.55$		v_{21}	= 0.96	$v_{22} =$	0.96	$v_{31}=0.1$	6	$v_{32} = 0.97$		
$b_1=0.96$		$b_2 = 0.4$	49	$b_3 =$	0.80	a_1	= 0.14		$a_2=0.42$	

2. For the Input DATA1, DATA2, Obtain the hidden layer output and output layer output and error vectors $e_1 = t_1 - o_1$, $e_2 = t_2 - o_2$.

Data Index	h_1	h_2	h_3	o_1	o_2	t_1	t_2	e_1	e_2
1						1	0		
2						1	0		
3						1	0		
4						1	0		
5						1	0		
6						0	1		
7						0	1		
8						0	1		
9						0	1		
10						0	1		

$$SSE =$$

3. Update the weights using the following:

$$\begin{array}{l} w_{11}(t+1) = w_{11}(t)_+ \eta h_1(1-h_1) i_1 [e_1 v_{11} + e_2 v_{12}] \\ w_{12}(t+1) = w_{12}(t)_+ \eta h_2(1-h_2) i_1 [e_1 v_{21} + e_2 v_{22}] \\ w_{13}(t+1) = w_{13}(t)_+ \eta h_3(1-h_3) i_1 [e_1 v_{31} + e_2 v_{32}] \\ w_{21}(t+1) = w_{21}(t)_+ \eta h_1(1-h_1) i_2 [e_2 v_{11} + e_2 v_{12}] \\ w_{22}(t+1) = w_{22}(t)_+ \eta h_2(1-h_2) i_2 [e_2 v_{21} + e_2 v_{22}] \\ w_{23}(t+1) = w_{23}(t)_+ \eta h_3(1-h_3) i_2 [e_2 v_{31} + e_2 v_{32}] \\ v_{11}(t+1) = v_{11}(t)_+ \eta h_1 e_1 \\ v_{21}(t+1) = v_{21}(t)_+ \eta h_2 e_1 \\ v_{21}(t+1) = v_{21}(t)_+ \eta h_3 e_1 \\ v_{31}(t+1) = v_{31}(t)_+ \eta h_3 e_1 \\ u_{11}(t+1) = u_{11}(t)_+ \eta h_3 e_1 \\ u_{11}(t+1) = u_{$$

4. Repeat steps 2 and 3 to obtain the following for 5 epochs. EPOCH 2:

Data Index	h_1	h_2	h_3	o_1	o_2	t_1	t_2	e_1	e_2
1						1	0		
2						1	0		
3						1	0		
4						1	0		
5						1	0		
6						0	1		
7						0	1		
8						0	1		
9						0	1		
10						0	1		

SSE =

EPOCH 3:

Data Index	h_1	h_2	h_3	o_1	o_2	t_1	t_2	e_1	e_2
1						1	0		
2						1	0		
3						1	0		
4						1	0		
5						1	0		
6						0	1		
7						0	1		
8						0	1		
9						0	1		
10						0	1		

SSE =

EPOCH 4:

Data Index	h_1	h_2	h_3	o_1	o_2	t_1	t_2	e_1	e_2
1						1	0		
2						1	0		
3						1	0		
4						1	0		
5						1	0		
6						0	1		
7						0	1		
8						0	1		
9						0	1		
10						0	1		

SSE =

EPOCH 5:

Data Index	h_1	h_2	h_3	o_1	o_2	t_1	t_2	e_1	e_2
1						1	0		
2						1	0		
3						1	0		
4						1	0		
5						1	0		
6						0	1		
7						0	1		
8						0	1		
9						0	1		
10						0	1		

SSE =

- $5.\ \, {\rm Plot}\;{\rm SSE}$ versus umber of epochs.
- 6. Use the latest weights to obtain the output of the following vectors

Vector	o_1	o_2	Class Index
$\begin{bmatrix} 1.25 \\ -0.21 \end{bmatrix}$			
1.19 0.07			
0.99 0.04			
0.69 -0.02			
1.32 0.02			
0.07 1.20			
$\begin{bmatrix} -0.33 \\ 0.88 \end{bmatrix}$			
-0.06 1.08			
-0.33 1.10			
$ \begin{array}{c c} -0.24 \\ 1.01 \end{array} $			

SVM

Given the data
$$DATA_1 = [X_1 \ X_2 \dots X_{10}]$$
 and $DATA_2 = [X_{11} \ X_{12} \dots X_{20}]$
$$DATA_1 = \begin{bmatrix} 1.08 & 0.75 & 0.85 & 0.94 & 0.40 & 1.25 & 1.19 & 0.99 & 0.69 & 1.32 \\ 0.08 & -0.19 & -0.11 & 0.01 & -0.09 & -0.21 & 0.07 & 0.04 & -0.02 & 0.02 \end{bmatrix}$$

$$DATA_2 = \begin{bmatrix} 0.01 & -0.01 & 0.09 & -0.05 & -0.45 & 0.07 & -0.33 & -0.06 & -0.33 & -0.24 \\ 0.85 & 1.05 & 0.93 & 1.41 & 1.45 & 1.20 & 0.88 & 1.08 & 1.10 & 1.01 \end{bmatrix}$$

- 1. Assign $t_i = 1 \ \forall \ i = 1, \dots, 10, \ t_i = -1 \ \forall \ i = 11, \dots, 20$
- 2. Construct the linear equation

$$\begin{bmatrix} K(X_1, X_1)t_1^2 & K(X_1, X_2)t_1t_2 & \dots & K(X_1, X_{20})t_1t_{20} \\ K(X_2, X_1)t_2t_1 & K(X_2, X_2)t_2^2 & \dots & K(X_2, X_{20})t_2t_{20} \\ \vdots & \vdots & \ddots & \vdots \\ K(X_{20}, X_1)t_{20}t_1 & K(X_{20}, X_2)t_{20}t_2 & \dots & K(X_{20}, X_{20})t_{20}^2 \\ t_1 & t_2 & \dots & t_{20} \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{20} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ a_{20} \end{bmatrix}$$

where $K(X_i, X_j) = X_i^T . X_j$ with $\sigma^2 = 1$

- Solve for a₁,..., a₂₀.
- 4. Choose the values $0 \le a_i \le C$. C is the box variable. Choose it as 10. Let $n(M_1) = N_1$. Let the set be M_1 .
- 5. Choose the values $0 \le a_i \le C$. Let $n(M_2) = N_2$. Let the set be M_2 .
- Compute W matrix as follows

$$\mathbf{W} = \sum_{n=1, n \in M_2}^{20} a_n t_n \underline{x}_n$$

$$\mathbf{w} =$$

7. Obtain **b** using the following:

$$\mathbf{b} = \frac{1}{N_1} \sum_{m \in M_1} \left[t_m - \sum_{n \in M_2} a_n t_n K(X_n, X_m) \right]$$

$$\underline{\mathbf{b}} =$$

Plot the data.

Plot the line $\mathbf{W}^T.X + \mathbf{b}$

Inference: See that the obtained line partitions $DATA_1$ and $DATA_2$ Use the kernel function $K(X_i, X_j) = exp(-\frac{(X_i - X_j)^T(X_i - X_j)}{2\sigma^2})$, with $\sigma^2 = 1$.

Obtain the expression for the linear separation line/plane/hyperplane

that partitions the classes.

Obtain the index obtained for the following test data using the trained SVM.

Data	0.0083 0.85	[0.08] [0.93]	$\begin{bmatrix} 0.06 \\ 1.2 \end{bmatrix}$	[1.13] [0.07]	[1.21] [0.20]
Index					

(OR) Demonstrate soft-margin SVM classifier using Image.mat (dataset).