Transistors & Number systems

Sabina Batyrkhanovna

What is transistor?

- Semiconductor element with three terminals
 - Base: This is responsible for activating the transistor.
 - Collector: This is the positive lead
 - Emitter: This is the negative lead
- Regulates current or voltage flow and acts as a switch or gate for signals.

Types of transistors

- Two types of transistors:
 - bipolar junction transistors (BJT)
 - field effect transistors (FET)

Field Effect Transistors

Application of transistors

- Transistors are applied in:
 - Motherboards
 - Video cards
 - Power supplies, etc.
- CPUs and microcontrollers are consists of millions of transistors and used for various calculations

Application of transistors (cont.)

- Transistors are also used in:
 - Lamps
 - Electric motors
 - Other devices where a rapid change in the current is needed
- The transistor can limit the current either smoothly or by pulse-pause method
- Pulse-pause method is widely used in PWM Signals

PWM Signal

- PWM Pulse Width Modulation
- A method for generating an analog signal using a digital source
- Consists of two main components:
 - duty cycle
 - frequency

PWM Signal (cont.)

- Duty cycle
 - Describes the amount of time the signal is in a high (on) state as a percentage of the total time of it takes to complete one cycle
- Frequency
 - how fast the PWM completes a cycle
 - how fast it switches between high and low states

Number systems

- Four number systems:
 - Decimal (10)
 - Binary (2)
 - Octal (8)
 - Hexadecimal (16)

Decimal Number System

- We use in out day-to-day life
- Has base 10 as it uses 10 digits from 0 to 9
- Each position represents a specific power of the base (10)
- Example:

Hundreds Position

Units Position

2018

Thousands Position

Tens Position

Binary Number System

- Characteristics
 - Uses two digits, 0 and 1
 - Also called as base 2 number system
 - The last position in a binary number represents a **0** power of the base (2). Example 2⁰
 - The first position in a binary number represents a x power of the base (2). Example 2^x where **x** represents the length 1.

Binary -> Decimal

- Technique:
 - Multiply each bit by 2^x, where x is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results
- Binary number: 10101
 - Step 1:
 - $1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 - Step 2:
 - 16 + 0 + 4 + 1 + 1 = 21

Octal Number System

- Characteristics
 - Uses eight digits, 0,1,2,3,4,5,6,7
 - Also called as base 8 number system
 - Last position in an octal number represents a **0** power of the base (8). Example 8⁰
 - The first position in an octal number represents a x power of the base (8).
 Example 8^x where x represents the length 1

Octal -> Decimal

- Technique:
 - Multiply each bit by 8^x, where x is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results
- Octal number: 12570
 - Step 1:
 - $1 \times 8^4 + 2 \times 8^3 + 5 \times 8^2 + 7 \times 8^1 + 0 \times 8^0$
 - Step 2:
 - 4096 + 1024 + 320 + 56 + 0 = 5496

Hexadecimal Number System

Characteristics

- Uses 10 digits and 6 letters, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Letters represent the numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15
- Also called as base 16 number system
- Last position in a hexadecimal number represents a **0 power of the base (16)**. Example, 16⁰
- The first position in a hexadecimal number represents a **x power of the base (16)**. Example 16^x where **x** represents the length 1

Hexadecimal -> Decimal

- Technique:
 - Multiply each bit by 16^x, where x is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results
- Octal number: 19FDE
 - Step 1:
 - $1 \times 16^4 + 9 \times 16^3 + F(15) \times 16^2 + D(13) \times 16^1 + E(14) \times 16^0$
 - Step 2:
 - 65536+ 36864+ 3840+ 208 + 14 = 106462

Purpose of octal and hexadecimal

- Ease of use and conversion
- Three bits make one octal digit

```
111 010 110 101

7 2 6 5 => 7265 in octal
```

Four bits make one hexadecimal digit

```
1110 1011 0101

E B 5 => EB5 in hex
```

Decimal -> Binary

- Technique:
 - Divide by 2 until 0
 - Keep track of remainder
- Decimal number: 21
 - Step 1:
 - $21 \div 2 = 10$ (rem. 1) -> $10 \div 2 = 5$ (rem 0) -> $5 \div 2 = 2$ (rem 1)
 - $2 \div 2 = 1 \text{ (rem 0)} \rightarrow 1 \div 2 = 0 \text{ (rem 1)}$
 - Step 2:
 - Remainders -> 10101

Decimal -> Octal

- Technique:
 - Divide by 8 until 0
 - Keep track of remainder
- Decimal number: 5496
 - Step 1:
 - 5496 \div 8 = 687 (rem. 0) -> 687 \div 8 = 85 (rem 7) -> 85 \div 8 = 10 (rem 5)
 - $10 \div 8 = 1 \text{ (rem 2)} \rightarrow 1 \div 8 = 0 \text{ (rem 1)}$
 - Step 2:
 - Remainders -> 12570

Decimal -> Hexadecimal

- Technique:
 - Divide by 16 until 0
 - Keep track of remainder
- Decimal number: 106462
 - Step 1:
 - 5496 ÷ 16 = 6653 (rem. 14 => E) -> 6653 ÷ 16 = 415 (rem 13 => D)
 - 415 ÷ 16 = 25 (rem 15 => F)
 - $25 \div 16 = 1 \text{ (rem 9)} \rightarrow 1 \div 16 = 0 \text{ (rem 1)}$
 - Step 2:
 - Remainders -> 19 F D E

Binary Addition

- Technique
 - Add individual bits
 - Propagate carries

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

Binary Multiplication

- Technique
 - Multiply individual bits
 - Continue as in decimal multiplication

А	В	AxB
0	0	0
0	1	0
1	0	0
1	1	1

Fractions

• Binary -> Decimal

```
10.1011 => 1 x 2^{-4} = 0.0625

1 x 2^{-3} = 0.125

0 x 2^{-2} = 0.0

1 x 2^{-1} = 0.5

0 x 2^{0} = 0.0

1 x 2^{1} = 2.0

2.6875
```

Fractions (cont.)

Decimal -> Binary

