Deadline: 2024-09-16, 21:00.

- 1. Each day Elon Musk solves econometrics problems and creates posts in X. Let y_i be the number of solved problems and x_i be the number of posts in X. You have 3 observations: $x_1 = 2$, $y_1 = 5$, $x_2 = 1$, $y_2 = 10$, $x_3 = 3$, $y_3 = 4$.
 - (a) Find $\hat{\beta}$ if fitted values are given by $y_i = \hat{\beta}x_i$.
 - (b) Find $\hat{\beta}_0$ and $\hat{\beta}_1$ if fitted values are given by $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.
 - (c) Find $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$ if fitted values are given by $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$.

Note: you can use any programming language to calculate the 3×3 matrix inverse but you should provide the code :)

2. Simplify as much as possible the following expressions:

$$A = \sum_{i=1}^{n} (x_i - \bar{x})\bar{x}, \quad B = \sum_{i=1}^{n} (x_i - \bar{x})\bar{y}, \quad C = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n\bar{x}^2.$$

3. Consider simple regression model with $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. You have n observations $(x_1, y_1), ..., (x_n, y_n)$ and you estimate $\hat{\beta}_0$ and $\hat{\beta}_1$ using OLS.

What will happen with $\hat{\beta}_0$ and $\hat{\beta}_1$ in each of the following cases?

- (a) You copy every observation from the original dataset twice.
- (b) You add one new observation $(y_{n+1} = \bar{y}, x_{n+1} = \bar{x})$ to the original dataset.
- (c) You add n more observations given by $(x_{n+i} = -x_i, y_{n+i} = y_i)$ for i = 1, 2, ..., n to the original dataset.

Hint: you may start by guessing the answer with an experiment, but the proof is required :)

Home assignment 2

Deadline: 2024-09-23, 21:00.

- 1. Each day Elon Musk solves econometrics problems and creates posts in X. Let y_i be the number of solved problems and x_i be the number of posts in X. You have 3 observations: $x_1 = 2$, $y_1 = 5$, $x_2 = 1$, $y_2 = 10$, $x_3 = 3$, $y_3 = 4$.
 - (a) Calculate SST, SSE, SSR and R^2 if we regress y on x with constant, ie $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.
 - (b) Calculate SST, SSE, SSR and R^2 if we regress x on y with constant, ie $\hat{x}_i = \hat{\gamma}_0 + \hat{\gamma}_1 y_i$.
 - (c) Calculate the hat-matrix H if we regress y on x with constant.

Note: this exercises uses toy dataset from the previous HA, you may reuse old results provided that you state them explicitely.

- 2. Kamala Harris removes one observation from the initial set of n observations and reestimates the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ using OLS.
 - (a) Prove that the total sum of squares SST can't increase.
 - (b) Provide an example of a dataset where explained sum of squares SSE will decrease and a second example where it will increase.
- 3. Consider the dataset of diamond prices,

https://github.com/vincentarelbundock/Rdatasets/raw/master/csv/ggplot2/diamonds.csv.

Here price is the price of diamond in \$ and carat is the weight of a diamond in carats. Let y_i be the log of diamond price in 1000\$ and x_i be the log of diamond weight in carats.

- (a) Estimate the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$ using LinearRegression from sklearn.linear_model
- (b) Estimate the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$ using ols from statsmodels.formula.api.
- (c) What is your point forecast of a price of a diamond with 2 carats weight?

Note: the first approach is faster and more stable while the second one gives you much more statistical information.

Home assignment 3

Deadline: 2024-09-30, 21:00.

- 1. Consider the framework of simple regression model, $y_i = \beta_0 + \beta_1 x_i + u_i$, $\mathbb{E}(u_i \mid x) = 0$, independent observations, $\mathbb{V}\operatorname{ar}(u_i \mid x) = \sigma^2$, $\mathbb{C}\operatorname{ov}(u_i, u_j \mid x) = 0$ for $i \neq j$. We estimate regression $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. We have n = 3 observations with $x_i = i$.
 - (a) Find $\mathbb{E}(2\hat{\beta}_0 + 3\hat{\beta}_1 \mid x)$, $\mathbb{V}ar(2\hat{\beta}_0 + 3\hat{\beta}_1 \mid x)$.
 - (b) Find $\mathbb{E}(\hat{y}_1 \mid x)$, $\mathbb{V}ar(\hat{y}_1 \mid x)$, $\mathbb{E}(\hat{u}_1 \mid x)$, $\mathbb{V}ar(\hat{u}_1 \mid x)$.
- 2. Consider the framework of simple regression model, $y_i = \beta_0 + \beta_1 x_i + u_i$, $\mathbb{E}(u_i \mid x) = 0$, independent observations, $\mathbb{V}\mathrm{ar}(u_i \mid x) = \sigma^2$, $\mathbb{C}\mathrm{ov}(u_i, u_j \mid x) = 0$ for $i \neq j$. We estimate regression $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. We have n observations with $\sum (x_i \bar{x})^2 > 0$.
 - (a) Find $\mathbb{E}(y_i \bar{y} \mid x)$, $\mathbb{E}((y_i \bar{y})^2 \mid x)$.
 - (b) It possible find the value of γ such that the estimator $s^2 = \gamma \sum_{i=1}^n (y_i \bar{y})^2$ for σ^2 is unbiased conditional on x.
- 3. Consider the framework of simple regression model, $y_i = \beta_0 + u_i$, $\beta_0 = 2$, $\mathbb{E}(u_i \mid x) = 0$, independent observations, $\mathbb{V}\mathrm{ar}(u_i \mid x) = \sigma^2 = 4$, $\mathbb{C}\mathrm{ov}(u_i, u_j \mid x) = 0$ for $i \neq j$. Random error is conditionally normally distributed, $(u_i \mid x) \sim \mathcal{N}(0;4)$. We estimate regression $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. This setup means that we wrongly belive that y_i depends on x_i .

We have n = 10 observations with $x_i \sim \mathcal{N}(0; 1)$.

- (a) Generate the dataset and estimate the misspecified regression B=10000 times. Draw the histogram of $\hat{\beta}_0$, the histogram of $\hat{\beta}_1$. Compare these histograms with true values of β_0 and β_1 . What can you conclude based on two histogram?
- (b) Draw the histogram of R^2 for simulations in point (a). Now repeat B=10000 simulations for regression $\hat{y}_i=\hat{\beta}_0+\hat{\beta}_1x_i+\hat{\beta}_2x_i^2+\hat{\beta}_3x_i^3$. Draw the new histogram of R^2 . Describe how this new histogram for R^2 is different from the first histogram for R^2 . Can you say that the quality of your new regression is higher?

Deadline: 2024-10-07, 23:59.

- 1. Consider the simple regression model $y_i = \beta_0 + \beta_1 x_i + u_i$ with fitted values given by $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ and $\hat{u}_i = y_i \hat{y}_i$. We have n=3 observations, $x_i = i$, all Gauss-Markov assumptions are satisfied, We use ordinary least squares.
 - (a) Write $\hat{\beta}_1$ explicitely as a linear function of (y_i) , $\hat{\beta}_1 = w_1y_1 + w_2y_2 + w_3y_3$.
 - (b) Propose different coefficients w_1' , w_2' , w_3' such that the estimator $\hat{\beta}_1' = w_1'y_1 + w_2'y_2 + w_3'y_3$ is unbiased for $\hat{\beta}_1'$.
 - (c) Check that the variance of alternative estimator $\hat{\beta}'_1$ is larger than the variance of OLS-estimator $\hat{\beta}_1$.
 - (d) Find all the diagonal elements of the hat-matrix H_{ii} . Which actual value y_i has more influence on the forecasted value \hat{y}_i ?
- 2. Consider the multivariate regression model in a matrix form, $y = X\beta + u$ with fitted values given by $\hat{y} = X\hat{\beta}$ and $\hat{u} = y \hat{y}$. We have n observations, all Gauss-Markov assumptions are satisfied, We use ordinary least squares.
 - (a) Find $\mathbb{E}(\hat{u} \mid X)$, $\mathbb{E}(\hat{y} \mid X)$.
 - (b) Find $Var(\hat{u} \mid X)$, $Cov(\hat{y}, \hat{\beta} \mid X)$, $Cov(\hat{u}, \hat{\beta} \mid X)$.
- 3. Consider the simple regression model $y_i = \beta_0 + \beta_1 x_i + u_i$ with fitted values given by $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ and $\hat{u}_i = y_i \hat{y}_i$. We have n observations, all Gauss-Markov assumptions are satisfied. Yusuf Dikeç copies every observation twice and estimates regression using OLS for 2n observations.
 - (a) Which Gauss-Markov assumptions are violated for the doubled dataset of 2n observations?
 - (b) Find the true conditional variance of $\hat{\beta}_1$ in the regression on 2n observations assuming Gauss-Markov assumptions for the original dataset.
 - (c) Find the conditional variance of $\hat{\beta}_1$ in the regression on 2n observations wrongly assuming Gauss-Markov assumptions for the doubled dataset.

Home assignment 5

Deadline: No deadline.

If you wish to upload something somewhere then you are free to submit econometrics memes to the chat.

Deadline: 2024-10-24 (updated 2024-10-21), 23:59.

1. Consider the model $y_i = \beta_x x_i + \beta_w w_i + u_i$ with

$$\begin{pmatrix} x_i \\ w_i \\ u_i \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 5 & 3 & 0 \\ 3 & 10 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right).$$

Observations are independent.

- (a) Find the probability limit of $\hat{\gamma}_x$ in regression $\hat{y}_i = \hat{\gamma}_x x_i$.
- (b) Is $\hat{\gamma}_x$ consistent estimator of β_x ?
- (c) Find the conditional expected value $\mathbb{E}(y_i \mid x_i)$. Hint: it should be of the form αx_i , where α is a function of β_x and β_w .
- (d) Is $\hat{\gamma}_x$ consistent estimator of α ?
- 2. Consider the simple regression model $y_i = \beta_0 + \beta_1 x_i + u_i$. We do not observe x_i . Instead we observe two independent measurements of x_i : x_i' and x_i'' . Here $x_i' = x_i + v_i$ and $x_i'' = x_i + w_i$, where v_i and w_i are measurement errors.

Observations are independent, random variables x_i , u_i , v_i and w_i are independent. Let's denote their variance by $\mathbb{V}\mathrm{ar}(x_i) = \sigma_x^2$, $\mathbb{V}\mathrm{ar}(u_i) = \sigma_u^2$, $\mathbb{V}\mathrm{ar}(v_i) = \sigma_v^2$, $\mathbb{V}\mathrm{ar}(w_i) = \sigma_w^2$.

(a) Check whether the estimator $\hat{\beta}_1^A$ is consistent for β_1 :

$$\hat{\beta}_1^A = \frac{\sum (y_i - \bar{y})(x_i' - \bar{x}')}{\sum (x_i' - \bar{x}')(x_i'' - \bar{x}'')}.$$

(b) Check whether the estimator $\hat{\beta}_1^B$ is consistent for β_1 :

$$\hat{\beta}_1^B = \frac{\sum (y_i - \bar{y})(x_i' - \bar{x}')}{\sum (x_i'' - \bar{x}'')^2}.$$

3. Consider again the dataset of diamond prices,

https://github.com/vincentarelbundock/R datasets/raw/master/csv/ggplot2/diamonds.csv.

Here price is the price of diamond in \$ and carat is the weight of a diamond in carats. Let y_i be the log of diamond price in 1000\$ and x_i be the log of diamond weight in carats.

(a) Reestimate the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$ using ols from statsmodels.formula.api.

Let's believe in Gauss — Markov assumptions for this case.

- (b) Extract $SSRes, SST, SSExpl, R^2$ and $\hat{\sigma}^2$.
- (c) Write down true $\mathbb{V}\mathrm{ar}(\hat{\beta}\mid X)$ matrix. Hint: your matrix should contain unknown σ^2 .

- (d) Write down the estimate of $\mathbb{V}\mathrm{ar}(\hat{\beta}\mid X)$ matrix. Hint: no unknown parameters here.
- (e) Calculate all diagonal entries H_{ii} and select the most influential observation with highest $\partial \hat{y}_i/\partial y_i$. Hint: the whole matrix H is really HUGE here, please do not try to calculate it, you need only diagonal elements.
- (f) Draw the scatterplot of $|\hat{u}_i|$ against x_i . Does this plot suggests that Gauss — Markov assumptions are satisfied?

Deadline: 2024-11-02, 23:59.

1. Consider a simple regression model with Gauss — Markov assumptions, $y_i = \beta_0 + \beta_1 x_i + u_i$. Random errors are jointly normal $u \mid X \sim \mathcal{N}(0; \sigma^2 I)$.

You know that

$$X^T X = \begin{pmatrix} 100 & 200 \\ ? & 600 \end{pmatrix}, \quad X^T y = \begin{pmatrix} 0 \\ 300 \end{pmatrix}, \quad y^T y = 1000.$$

- (a) By looking at X^TX recover the number of observations.
- (b) Estimate $\hat{\beta}_0$, $\hat{\beta}_1$, $\widehat{\mathbb{Var}}(\hat{\beta} \mid X)$.
- (c) Test $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$ at significance level $\alpha = 0.05$.
- (d) Construct 99% confidence interval for β_0 and β_1 .
- (e) Esimate $\mathbb{E}(y_{101} \mid x_{101} = 5)$ and construct 99% confidence interval for $\mathbb{E}(y_{101} \mid x_{101} = 5)$.
- 2. You estimated the vector $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)^T$ in the model

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 w_i + \beta_3 h_i + u_i$$

using OLS with 200 observations. Gauss — Markov assumptions are satisfied. Random errors are jointly normal $u \mid X \sim \mathcal{N}(0; \sigma^2 I)$.

You know that

$$\hat{\beta} = \begin{pmatrix} 0.2 \\ 0.5 \\ 0.3 \\ 0.6 \end{pmatrix}, \quad \widehat{\mathbb{Var}}(\hat{\beta} \mid X) = 0.001 \cdot \begin{pmatrix} 63.14 & -14.78 & 15.56 & 0.335 \\ ? & 7.912 & -3.943 & -1.065 \\ ? & ? & 6.939 & -1.375 \\ ? & ? & ? & 1.178 \end{pmatrix}.$$

- (a) Test H_0 : $\beta_1 = \beta_2$ using significance level $\alpha = 0.05$ against H_1 : $\beta_1 \neq \beta_2$.
- (b) Test H_0 : $\beta_1 + \beta_2 = 1$ using significance level $\alpha = 0.05$ against H_1 : $\beta_1 + \beta_2 \neq 1$.
- (c) Construct 99% confidence interval for $\beta_1 + 2\beta_2 + 3\beta_3$.
- 3. Researches suspect that «College students often have poor sleep habits, staying up late and sleeping short hours, and a great deal of research suggests that lack of sleep can harm cognitive performance».

Let's build a model where dependent variable is term_gpa and other variables below as predictors:

- demo_race: binary label for underrepresented and non-underrepresented students;
- demo_gender: Gender of the subject (male = 0, female = 1);
- bedtime_mssd: Mean successive squared difference of bedtime;
- TotalSleepTime: Average time in bed in minutes;
- cum_gpa: Cumulative GPA (out of 4.0), for semesters before the one being studied;
- term_gpa: End-of-term GPA (out of 4.0) for the semester being studied;
- units_score: Standardized number of course units carried in the term;

More info can be found at:

https://cmustatistics.github.io/data-repository/psychology/cmu-sleep.html.

- (a) Check that the dataset is imported correctly! Remove missing observations.
- (b) Estimate the model using OLS.
- (c) Test the hypothesis that the effect of TotalSleepTime is zero.
- (d) Test the hypothesis that the sum of effects for demo_gender, bedtime_mssd and units_score is nonzero.
- (e) Test the hypothesis that additional two hours of sleep every day gives additional 0.3 gpa point on average.
- (f) Test the hypothesis that the parameters demo_gender, bedtime_mssd and units_score are jointly insignificant.

Home assignment 8

Deadline: 2024-11-27, 23:59.

- 1. Let A, B, a, b be matrices and vectors of constants and V and v matrix and vector that depends on some arguments.
 - (a) Find $d(AVB + v^Tb + a^Tv)$.
 - (b) By applying differential d to the identity $V \cdot V^{-1} = I$ find $d(V^{-1})$.
 - (c) Assuming that A is symmetric find d(v'Av).
 - (d) Assuming that A is symmetric find d(v'Av/v'v).
- 2. Consider the simple regression with L^1 -penalty with three observations, y=(1,3,5), x=(1,2,2). The loss function to be minimized is given by

$$loss(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i} (y_i - \hat{y}_i)^2 + \lambda \cdot |\hat{\beta}_1|, \quad \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i.$$

- (a) Find optimal coefficients for $\lambda = 0$.
- (b) Find optimal coefficients for $\lambda = +\infty$.
- (c) Find optimal coefficients for $\lambda = 1$.

- (d) Find optimal coefficients for any $\lambda \geq 0$.
- 3. Consider the following experiment. Generate n=200 observations under for the model $y_i=-2+7x_i+2w_i+u_i$, where $w_i=x_i^2+v_i$. Random variables x_i,v_i and u_i are independent, $x_i \sim \mathcal{N}(1;1),v_i \sim \mathcal{N}(1;1),u_i \sim \text{Unif}[-5;5]$.

Simulate the experiment once.

- (a) Estimate coefficients using OLS.
- (b) Find 95% classic confidence interval for β_w .
- (c) Find 95% pair bootstrap confidence interval for β_w .
- (d) Find 95% t-statistic bootstrap confidence interval for β_w .
- (e) Find 95% pair bootstrap confidence interval for $\beta_x \beta_w^3$.
- (f) Test hypothesis H_0 : $\beta_x = \beta_w^3$ at 5% significance level against H_1 : $\beta_x \neq \beta_w^3$.

Now simulate the experiment 5000 times.

- (g) For each simulation do points (a-e).
- (h) Estimate the real coverage probability of classic confidence interval for β_w . Hint: Just count the number of simulation where true beta belongs to the interval :)
- (i) Estimate the real coverage probability of pair bootstrap confidence interval for β_w .
- (j) Estimate the real coverage probability of t-statistic bootstrap confidence interval for β_w .
- (k) Estimate the real coverage probability of pair bootstrap confidence interval for $\beta_x \beta_w^3$.

Home assignment 9

Deadline: 2024-12-15, 23:59.

- 1. Consider the model $y_i = \beta_1 + \beta_x x_i + u_i$ where $\mathbb{E}(u_i \mid x) = 0$, but $\mathbb{V}ar(u_i \mid x) = \sigma^2 \cdot x_i^2$. We have a toy dataset x = (1, 2, -1) and y = (3, 8, 8).
 - (a) Find ordinary least squares estimates $\hat{\beta}_{ols}$.
 - (b) Find weighted least squares estimates $\hat{\beta}_{wls}$ with minimal variance in this case.
 - (c) Find the true covariance matrix $\mathbb{V}ar(\hat{\beta}_{ols} \mid x)$.
 - (d) Find the true covariance matrix $Var(\hat{\beta}_{wls} \mid x)$.
 - (e) Find the hypothetical covariance matrix $\mathbb{V}ar(\hat{\beta}_{ols} \mid x, H_0)$ assuming homoskedasticity in H_0 .
- 2. The variables a, b and c are standardized. The sample correlation of a with b and c is zero. The sample correlation of b and c is 0.5.
 - (a) Write the correlation matrix C of these variables and find the SVD of C.
 - (b) Find two matrices from the SVD of the matrix *X* with columns *a*, *b* and *c*.
 - (c) Which proportion of the total variance is explained by the first component?

- (d) Which proportion of the total variance is explained by the first two components?
- (e) Express the first two components in terms of the original predictors, a, b and c.
- (f) We have estimated regression of some centered variable y onto the first two components,

$$\hat{y}_i = 0.9p_{i1} - 0.3p_{i2}.$$

Provide an approximate reconstruction of the coefficients $\hat{\beta}_a$, $\hat{\beta}_b$, $\hat{\beta}_c$ in the regression

$$\hat{y}_i = \hat{\beta}_a a_i + \hat{\beta}_b b_i + \hat{\beta}_c c_i.$$

3. Hakuna matata:)

Где б ты ни был, в саклях иль в ярангах, Проверяй везде условья ранга!

1. Let's consider the following system:

Deadline: 2025-02-05, 23:59

$$\begin{cases} P_t + \beta_{12}W_t + \gamma_{11}Q_t + \gamma_{13}P_{t-1} = \varepsilon_{1t}, \\ \beta_{21}P_t + W_t + \beta_{23}N_t + \gamma_{22}S_t + \gamma_{24}W_{t-1} = \varepsilon_{2t}, \\ \beta_{32}W_t + N_t + \gamma_{32}S_t + \gamma_{33}P_{t-1} + \gamma_{34}W_{t-1} = \varepsilon_{3t}. \end{cases}$$

The endogenous variables P_t , W_t and N_t represent the price index, wages, and union dues, respectively. The exogenous variables Q_t and S_t represent labor productivity and the number of strikes.

- (a) For each equation check the order and rank conditions in the case $\gamma_{11}=0$.
- (b) For each equation check order and rank conditions in the case $\beta_{21}=\gamma_{22}=0$.
- 2. The observations are independent and satisfy the system

$$\begin{cases} q_t = \alpha p_t + u_{1t}, \\ q_t = \beta p_t + u_{2t}. \end{cases}$$

(a) Find the probability limit of the OLS estimator $\hat{\theta}$ in the regression $\hat{q}_t = \hat{\theta} p_t$.

Assume now that your observe one more variable r_t that is correlated with u_{1t} but not correlated with u_{2t} .

- (b) Is it possible to obtain consistent estimator of α ? Of β ?
- (c) Where it is possible explain how would you obtain a consistent estimator.

Home assignment 11

Made in Moscow and Belgrad with love for pandas \heartsuit Deadline: 2025-02-23, 23:59.

1. Let x_i be the number coffee cups drinken before econometrics exam by i-th student. The dummy variable d_i is equal to one for those students who praise hedgehogs and dependen variable y_i is equal to one for those who pass the econometrics exam.

Based on n=1000 observation Nikola Tesla estimated the logistic model:

$$\hat{\mathbb{P}}(y_i = 1 \mid x_i, d_i) = \Lambda(0.2 + 0.1x_i + 0.15d_i).$$

Alice has drinken 3 cups of coffee and does not praise hedgehogs.

- (a) Estimate the probability and odds of passing an exam for Alice.
- (b) Estimate the marginal effect of the number of coffee cups on probability for Alice.
- (c) Estimate the partial effect of increasing the number of coffee cups by one for Alice. Compare it with the marginal effect.

Deadline: 2025-02-05, 23:59

(d) Estimate the odds ratio (praising hedgejogs to non-praising hedgehogs) for Alice.

2. You have a toy dataset:

value of y_i	value of x_i	number of observations
$y_i = 0$	$x_i = 3$	200
$y_i = 0$	$x_i = 5$	300
$y_i = 1$	$x_i = 3$	400
$y_i = 1$	$x_i = 5$	500

Estimate the logistic model $\mathbb{P}(y_i = 1 \mid x_i) = \Lambda(\beta_1 + \beta_2 x_i)$ using maximum likelihood by bare hands.

3. Solve the practice problem:

 $https://colab.research.google.com/drive/1_WCf2Emz3qJwqElnBKF6kmnTzJ7-OJ1P?usp=sharing \\ Use the preprocessed dataset:$

https://github.com/bdemeshev/hse_panda_metrics_2024_2025/blob/main/data