

Unit 0. Course Overview,

Course > Homework 0, Project 0 (1 week)

> Homework 0 > 2. Planes

2. Planes

A hyperplane in n dimensions is a n-1 dimensional subspace. For instance, a hyperplane in 2-dimensional space can be any line in that space and a hyperplane in 3-dimensional space can be any plane in that space. A hyperplane separates a space into two sides.

In general, a hyperplane in n-dimensional space can be written as $\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n = 0$. For example, a hyperplane in two dimensions, which is a line, can be expressed as $Ax_1 + Bx_2 + C = 0$.

Using this representation of a plane, we can define a plane given an n-dimensional vector $\theta = \begin{bmatrix} \cdot & \cdot & \cdot \\ \theta_2 & \cdot & \cdot \\ \vdots & \cdot & \cdot \end{bmatrix}$ and offset θ_0 . This vector and

offset combination would define the plane $\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n = 0$. One feature of this representation is that the vector θ is normal to the plane.

2. (a)

1/1 point (graded)

Given a d-dimensional vector θ and offset θ_0 which describe a hyperplane p, how many alternative descriptions θ' and θ'_0 are there for p?

0

0 1

∞ ✓

STANDARD NOTATION

Solution:

Given a normal vector θ and an offset θ_0 that uniquely determine the plane $\theta \cdot x + \theta_0 = 0$, we can scale θ and θ_0 by $\alpha > 0$, $\alpha \in \mathbb{R}$ without changing the orientation of the plane. Notice that if we only scale the normal $\theta' = \alpha \theta$ without affecting the offset $\theta'_0 = \theta_0$, then for $\alpha > 1$ the value of the θ'_0 must decrease for $\theta' \cdot x + \theta'_0 = 0$. Thus, there is an infinite number of possible parameter vectors that can describe the plane.

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

2. (b)

0/1 point (graded)

To check if a vector x is orthogonal to a plane p characterized by θ and θ_0 , we check whether

 $x \cdot \theta = 0$

 $\bullet x \cdot \theta + \theta_0 = 0 \times$

STANDARD NOTATION

Solution:

A vector x is orthogonal to the plane if and only if it is collinear with the normal vector θ of the plane.

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

2. (c)

1.0/1 point (graded)

Given a point x in n-dimensional space and a hyperplane described by θ and θ_0 , find the **signed distance between the hyperplane** and x. This is equal to the perpendicular distance between the hyperplane and x, and is positive when x is on the same side of the plane as θ points and negative when x is on the opposite side.

(Enter **theta_0** for the offset θ_0 .)

(To enter the norm of a vector, for instance $\|\theta\|$, type **norm(theta)**.)

(To enter dot product of two vectors, for example $v \cdot w$, use the equivalent definition of the dot product $v^T w$ (or $w^T v$) where v^T is the transpose of the vector v. Type **trans(v)** for the transpose v^T . Then type **trans(v)*w** for the dot product $v^T w = v \cdot w$.)

(trans(theta)*x+theta_0)/norm(theta)

✓ Answer: (trans(theta)*x+theta_0)/norm(theta)

STANDARD NOTATION

Solution:

The distance from a point x_1 to a plane $\theta \cdot x + \theta_0$ is equal to $|\theta \cdot x_1 + \theta_0|/||\theta||$. If $\theta \cdot x_1 + \theta_0 > 0$, then x_1 belongs to a half-space in the direction of θ . Therefore, we can define the signed distance as:

$$d_{x_1} = rac{ heta \cdot x_1 + heta_0}{\| heta\|}$$

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

2. (d)

1.0/1 point (graded)

Find the expression for the **orthogonal projection** of a point v onto a plane p characterized by θ and θ_0 .

(Enter **theta_0** for the offset θ_0 .)

(To enter the norm of a vector, for instance $\|\theta\|$, type **norm(theta)**.)

(To enter dot product of two vectors, for example $v \cdot w$, use the equivalent definition of the dot product $v^T w$ (or $w^T v$) where v^T is the transpose of the vector v. Type $\mathbf{trans}(\mathbf{v})$ for the transpose v^T . Then type $\mathbf{trans}(\mathbf{v})$ for the vector product $v^T w = v \cdot w$.)

v - (trans(theta)*v+theta_0)/norm(theta)*(theta/norm(theta))

Answer: v-(((trans(v)*theta)+theta_0)/(norm(theta))^2)*theta

STANDARD NOTATION

Solution:

Since v-x is collinear with the normal, $v-x=\lambda\theta$ for some λ . Also, x lies in the plane, so $\theta \cdot x + \theta_0 = 0$. Solve this to get the value of λ and plug it back to find the orthogonal projection:

$$egin{array}{lll} (v-\lambda heta)\cdot heta+ heta_0&=&0\ \lambda&=&rac{v\cdot heta+ heta_0}{\left\| heta
ight\|^2}\ x&=&v-rac{v\cdot heta+ heta_0}{\left\| heta
ight\|}\hat{ heta} \end{array}$$

Submit

You have used 4 of 5 attempts

• Answers are displayed within the problem

2. (e)

4/4 points (graded)

Let p_1 be the hyperplane (a line, since it is 1-dimensional) consisting of the set of points $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ for which $3x_1+x_2-1=0$.

What is the signed perpendicular distance of point a=[-1,-1] from p_1 ?

What is the signed perpendicular distance of the origin from p_1 ?

What is the orthogonal projection of point a=[-1,-1] onto p_1 ?

First coordinate:

Second coordinate:

STANDARD NOTATION

Solution:

1. For $a = [-1, -1]^T$ the signed distance is:

$$rac{ heta \cdot a + heta_0}{\| heta\|} = rac{(3)\left(-1
ight) + (1)\left(-1
ight) - 1}{\sqrt{\left(3
ight)^2 + \left(1
ight)^2}} = -rac{5}{\sqrt{10}}$$

2. For $a = \left[0,0\right]^T$ the signed distance is:

$$rac{ heta\cdot 0+ heta_0}{\| heta\|}=rac{-1}{\sqrt{\left(3
ight)^2+\left(1
ight)^2}}=-rac{1}{\sqrt{10}}$$

3. For $a = \begin{bmatrix} -1, -1 \end{bmatrix}^T$ the orthogonal projection is:

$$x = v - rac{v \cdot heta + heta_0}{\| heta\|} \hat{ heta}$$

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

2. (f)

1/1 point (graded)

Consider a hyperplane in a d-dimensional space. If we project a point onto the plane, can we recover the original point from this projection?

no •

✓ Answer: no

STANDARD NOTATION

Solution:

Given a projection on a plane, there are infinitely many points that project to that point. They all lie along the normal to the plane which passes through that point.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Show Discussion

Topic: Unit 0. Course Overview, Homework 0, Project 0 (1 week):Homework 0 / 2. Planes

© All Rights Reserved