Logic in CS Autumn 2024

Problem Sheet 2

S. Krishna

1. An adequate set of connectives is a set such that for every formula there is an equivalent formula with only connectives from that set. For example, $\{\neg, \lor\}$ is adequate for propositional logic since any occurrence of \land and \rightarrow can be removed using the equivalences

$$\varphi \to \psi \equiv \neg \varphi \lor \psi$$
$$\varphi \land \psi \equiv \neg (\neg \varphi \lor \neg \psi)$$

- (a) Show that $\{\neg, \land\}$, $\{\neg, \rightarrow\}$ and $\{\rightarrow, \bot\}$ are adequate sets of connectives. (\bot treated as a nullary connective).
- (b) Show that if $C \subseteq \{\neg, \land, \lor, \rightarrow, \bot\}$ is adequate, then $\neg \in C$ or $\bot \in C$.
- 2. The binary connective nand, $F \downarrow G$, is defined by the truth table corresponding to $\neg (F \land G)$. Show that nand is complete - that is, it can express all binary Boolean connectives.
- 3. The binary connective xor, $F \oplus G$ is defined by the truth table corresponding to $(\neg F \land G) \lor (F \land \neg G)$. Show that xor is not complete that is, it cannot express all binary Boolean connectives.
- 4. If a contradiction can be derived from a set of formulae, then the set of formulae is said to be inconsistent. Otherwise, the set of formulae is consistent. Let \mathcal{F} be a set of formulae. Show that \mathcal{F} is consistent iff it is satisfiable.
- 5. Suppose \mathcal{F} is an inconsistent set of formulae. For each $G \in \mathcal{F}$, let \mathcal{F}_G be the set obtained by removing G from \mathcal{F} .
 - (a) Prove that for any $G \in \mathcal{F}$, $\mathcal{F}_G \vdash \neg G$, using the previous question.
 - (b) Prove this using a formal proof.
- 6. Consider a formula φ which is of the form $C_1 \wedge C_2 \wedge \ldots C_n$ where each clause C_i is of the form $(\top \to \alpha)$ or $(\alpha_1 \wedge \ldots \alpha_n \to \beta)$ or $(\gamma \to \bot)$ where $\alpha, \alpha_i, \beta, \gamma$ are literals. A logician wishes to apply HornSAT to this formula φ by renaming negative literals (if any) with fresh positive literals. Thus, if any $\alpha, \alpha_i, \beta, \gamma$ was of the form $\neg p$, the logician will replace that $\neg p$ with a fresh variable p'. The logician claims that he can check satisfiability of φ correctly by applying HornSAT on the new formula (call it φ') in the following way: φ is satisfiable iff HornSAT concludes that φ' is unsatisfiable. Do you agree with the logician?

- 7. We have seen in class that HornSAT has a polynomial satisfiability, while general SAT is NP-complete. Here is a reduction called "Hornification" proposed by a student from SAT to HornSAT. Given a formula φ in CNF, "hornify" each non-horn clause as follows.
 - If we have a clause $C_1 = p \vee q \vee r$, then all occurrences of p, q are renamed to $\neg p'$ and $\neg q'$ where p', q' are fresh variables (In general, you could have chosen to rename all but one positive literal to Hornify). Clearly, this renaming can be done in polynomial time.
 - Additionally, to respect the relationship between the original variables and their renamed counterparts, add a new Horn clause $p' \wedge p \to \bot$ (and similarly for q') whenever you rename p as $\neg p'$. This ensures that the new variables p' and q' behave correctly with respect to their original negated forms.

Call the new formula (on an expanded set of variables) as φ' . Since φ' is in HornSAT, we can check its satisfiability in polynomial time. Can we conclude that "Hornification" makes SAT to be in P?

8. Using resolution, show that $P_1 \wedge P_2 \wedge P_3$ is a consequence of

$$F := (\neg P_1 \lor P_2) \land (\neg P_2 \lor P_3) \land (P_1 \lor \neg P_3) \land (P_1 \lor P_2 \lor P_3).$$

- 9. Show that the satisfiability of any 2-CNF formula can be checked in polynomial time.
- 10. Call a set of formulae minimal unsatisfiable iff it is unsatisfiable, but every proper subset is satisfiable. Show that there exist minimal unsatisfiable sets of formulae of size n for each $n \ge 1$.