

Economic Dispatch

Lossy Economic Dispatch
Lossy Economic Dispatch

1

Optimization

Washington State
University

Minimize total costs (minimize losses)

- Generation costs Economic dispatch
- · Generation scheduling Unit commitment
- Market economics
 - Bidding, Market structure
 - Maximize profits

Washington State University

2

Economic dispatch $f_i = \frac{a_i}{2} P_{Gi}^2 + b_i P_{Gi} + c_i \quad (\$/h)$ How to change $P_{G1}, \dots, P_{GN} \text{ so that}$ generation meets the demand

 $P_{G1} + P_{G2} + \dots + P_{GN}$ = $P_{L1} + P_{L2} + \dots + P_{LN}$ + Line Losses

© Washington State Universi

3

Lossless Economic Dispatch

Case 1: No losses (lossless case)

$$\sum_{i=1}^{N} P_{Gi} = \sum P_{Li} = P_D$$

Optimization:

minimize $\sum_{i=1}^{N} f_i$

subject to: $P_D - \sum P_{Gi} = 0$

© Washington State University

Example:

4

Constrained optimization

SHINGTON STATE

Lagrangian
$$\mathcal{L}(P_{G1}, ..., P_{GN}, \lambda)$$

$$= \sum_{i=1}^{N} f_i(P_{Gi}) + \lambda \left(P_D - \sum P_{Gi} \right)$$

$$\frac{\partial \mathcal{L}}{\partial P_{Gi}} = \frac{\partial f_i}{\partial P_{Gi}} - \lambda = IC_i - \lambda = 0, \qquad i = 1, ..., N$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = P_D - \sum P_{Gi} = 0$$

 $\lambda = IC_1 = IC_2 = \cdots = IC_N$ for optimality

6

8

10

Generation Limits $P_{Gimin} \leq P_{Gi} \leq P_{Gimax}$ \Rightarrow When limit reached, freeze P_{Gi} at the limit \Rightarrow Optimize the rest of the problem

9

Example (continued) $0 \le P_{G1} \le 500$ $0 \le P_{G2} \le 500$ $P_D = 900 \Rightarrow 75\lambda = 575 + 900$ $\lambda = 19.67$ $\Rightarrow P_{G1} = 533.33 \text{ MW}$ $P_{G2} = 366.67 \text{ MW}$ $P_{G1} > 500 \text{ MW} \Rightarrow set \ P_{G1} = 500 \text{ MW}$ $\Rightarrow P_{G2} = 400 \text{ MW}$ © Washington State University

Lossy case $P_{G2} \Rightarrow No \ effect \ on \ losses$ $P_{G1} \Rightarrow Impacts \ on \ losses$ $P_{G1} \ close \ to \ loads \Rightarrow Less \ effect \ on \ losses$ $Far \ from \ loads \Rightarrow More \ effect \ on \ losses$ Usually cheap generation away from load centers \Rightarrow Effective cost higher due to transmission losses

o Washington State

Vashington State

Vashington State

P_{G2}

P_{G3}

P_{G2}

P_{G2}

P_{G3}

P_{G1}

P_{G2}

P_{G3}

P_{G1}

P_{G2}

P_{G2}

P_{G1}

P_{G2}

P_{G2}

P_{G2}

P_{G1}

P_{G2}

P_{G1}

P_{G2}

P_{G2}

P_{G1}

P_{G2}

P_{G2}

P_{G1}

P_{G2}

P_{G1}

P_{G2}

P_{G2}

P_{G1}

P_{G2}

Optimization $min\sum_{i=1}^{N}f_{i}(P_{Gi})$ Subject to $P_D + P_L - \sum_{i=1}^{N} P_{Gi} = 0$ $= \sum f_i(P_{Gi}) + \lambda \left(P_D + P_L(P_{G1}, \dots, P_{GN}) - \sum P_{Gi}\right)$

14

16

Lossy Economic Dispatch
$$\begin{split} \frac{\partial \mathcal{L}}{\partial P_{Gi}} &= \frac{\partial f_i}{\partial P_{Gi}} + \lambda \left(\frac{\partial P_L}{\partial P_{Gi}} - 1 \right) = 0 \\ \Longrightarrow \lambda &= \frac{IC_i}{1 - \frac{\partial P_L}{\partial P_{Gi}}} \qquad i = 1, \dots, N \end{split}$$
 $P_D + P_L - \sum_{i} P_{Gi} = 0$ N+1 equations, N+1 unknowns

Lossy Case $P_L = B_{00} + \sum_{i=1}^{N} B_{0i} P_{Gi} + \sum_{i=1}^{N} \sum_{j=1}^{N} B_{ij} P_{Gi} P_{Gj}$ $\frac{\partial P_L}{\partial P_{Gi}} = B_{0i} + 2\sum_{i=1}^{N} B_{ij} P_{Gj}$ $\left(1-\frac{\partial P_L}{\partial P_{Ci}}\right)\lambda = a_i P_{Gi} + b_i$ 1 N+1 equations $\sum P_{Gi} = P_D + P_L(P_{G1}, ..., P_{GN})$ (2) N+1 unknowns

15

Example
$$\begin{split} f_1 &= 9P_{G1} + 0.01P_{G1}^{2} \quad \$/h \\ f_2 &= 5P_{G2} + 0.02P_{G2}^{2} \quad \$/h \\ \Rightarrow IC_1 &= 9 + 0.02P_{G1} \\ IC_2 &= 5 + 0.04P_{G2} \\ P_D &= 500MW; \end{split}$$
 $P_{L} = 0.0001 P_{G1}^{2} + 0.0002 P_{G2}^{2}$ $\Rightarrow \frac{\partial P_{L}}{\partial P_{G1}} = 0.0002 P_{G1}, \quad \frac{\partial P_{L}}{\partial P_{G2}} = 0.0004 P_{G2}$

17 18

19

21

Lossy Economic Dispatch $f_i(P_{Gi}) = \frac{a_i}{2} P_{Gi}^2 + b_i P_{Gi} + c_i \ \$/h$ $IC_i = \frac{df_i}{dP_{Gi}} = a_i P_{Gi} + b_i \ \$/MWh$ $P_{Loss} = B_{00} + \sum_{i=1}^{N} B_{0i} P_{Gi} + \sum_{i=1}^{N} \sum_{j=1}^{N} B_{ij} P_{Gi} P_{Gj}$ # generator = N, P_D = total demand

20

22

Derivation $\min \sum_{i=1}^{N} f_i(P_{Gi})$ $Subject\ to\ \sum_{i=1}^{N} P_{Gi} = P_D + P_L$ $\mathcal{L}(P_{G1}, \dots, P_{GN}, \lambda) = \sum f_i(P_{Gi}) + \lambda(P_D + P_{Loss} - \sum P_{Gi})$

Algorithm derivation $\frac{\partial \mathcal{L}}{\partial P_{Gi}} = IC_i + \lambda \left(\frac{\partial P_L}{\partial P_{Gi}} - 1\right) = 0 \quad \text{(1)}$ $\frac{\partial \mathcal{L}}{\partial \lambda} = P_D + P_L(P_{G1}, \dots, P_{GN}) - \sum_{j=1}^{N} P_{Gi} = 0$ $Here, \qquad \frac{\partial P_L}{\partial P_{Gi}} = B_{0i} + 2\sum_{j=1}^{N} B_{ij}P_{Gj}$

Derivation (continued)

Grouping terms and rearranging, $\begin{bmatrix} a_1 + 2\lambda B_{11} & 2\lambda B_{12} & \dots & 2\lambda B_{1N} \\ 2\lambda B_{21} & a_2 + 2\lambda B_{22} & \dots & 2\lambda B_{2N} \\ \vdots & \ddots & \vdots & \vdots \\ 2\lambda B_{N1} & 2\lambda B_{N2} & \dots & a_N + 2\lambda B_{NN} \end{bmatrix} \begin{bmatrix} P_{G1} \\ P_{G2} \\ \vdots \\ P_{GN} \end{bmatrix}$ $= \begin{bmatrix} \lambda - \lambda B_{10} - b_1 \\ \lambda - \lambda B_{20} - b_2 \\ \vdots \\ \lambda - \lambda B_{N0} - b_N \end{bmatrix}$ © Washington State University

Lossy Algorithm:

ASHINGTON STA

ASHINGTON STA WINIVERSITY

Solve lossless economic dispatch.

Lossless solution: λ^0 , P_{G1}^{0} , ..., P_{GN}^{0}

Let
$$\lambda^{-1} = \lambda^0 + \tilde{\lambda}$$
. (Say $\tilde{\lambda} = 0.5$).

Solve (2) to get the corresponding schedule $P_{G1}^{-1}, \dots, P_{GN}^{-1}$.

© Washington State University

26

Example:

 $IC_2 = 5 + 0.04P_{G2}$ $P_D = 500 MW;$ $P_{Loss} = 0.0001P_{G1}^2 + 0.0002P_{G2}^2$

28

Example:

Lossless:

sless:
$$\lambda = 9 + 0.02P_{G1}$$

$$\Rightarrow P_{G1} = \frac{\lambda - 9}{0.02} = 50(\lambda - 9)$$

$$\lambda = 5 + 0.04P_{G2}$$

$$\Rightarrow P_{G2} = \frac{\lambda - 5}{0.04} = 25(\lambda - 5)$$

$$P_{G1} + P_{G2} = P_D = 500 = 75\lambda - 575$$

$$\Rightarrow \lambda = \frac{1075}{75} = 14.33$$
State University

Example:

Setting up Lossy Equations:

$$\frac{\partial P_L}{\partial P_{G1}} = 0.0002 P_{G1}$$

$$\frac{\partial P_L}{\partial P_{G2}} = 0.0004 P_{G2}$$

29 30

ASHINGTON STA Example: $\overset{k=0}{\Longrightarrow} \Delta P^0 = P_D + P_{Loss}^{\quad 0} - P_{G1}^{\quad 0} - P_{G2}^{\quad 0} = 18 > \epsilon$ $\downarrow Continue$ $\Delta \lambda^0 = \frac{\lambda^0 - \lambda^{-1}}{\sum P_{Gi}^0 - \sum P_{Gi}^{-1}} \Delta P^0 = 0.0720$

32

34

Example: $\lambda^1 = 14.4053$ $P_{G1}^{1} = 236.24$ $P_{G2}^{1} = 205.53$ (from ③) $P_{Loss}^{1} = 14.03 MW$ $\Delta P^{1} = P_{D} + P_{Loss}^{1} - P_{G1}^{1} - P_{G2}^{1} = 72.2 > \epsilon$ Example: \Downarrow Continue $\Delta \lambda^1 = -0.0893$ $\lambda^2 = 14.316$ $P_{G1}^{2} = 232.51$ $P_{G2}^2 = 203.73$ $P_{Loss}^{2} = 13.7 MW$

33

Example: $\Delta P^2 = 77.46 \ MW > \epsilon$ \Downarrow Continue $\Delta \lambda^2 = 1.2546$ \Downarrow $\lambda^3 = 15.57$ $P_{G1}^{\ \ 3}=284.26$ $P_{G2}^{-3} = 228.66$

Example: $P_{Loss}^{3} = 18.54 MW$ $\Delta P^3 = 5.6 MW > \epsilon$ **↓** Continue $\Delta \lambda^3 = 0.918$ $\lambda^4 = 15.66$ $P_{G1}^{4} = 288, \qquad P_{G2}^{4} = 230.5$

35 36

