10/10 points (100%)

Quiz, 10 questions

✓ Congratulations! You passed!	Next Item
 1 / 1 point 1. If searching among a large number of hyperparameters, you should try values in a 	grid rather than random
values, so that you can carry out the search more systematically and not rely on characters. True	
Correct	
1/1 point	
2. Every hyperparameter, if set poorly, can have a huge negative impact on training, a are about equally important to tune well. True or False? True	and so all hyperparameters
Correct	
Yes. We've seen in lecture that some hyperparameters, such as the learning rate others.	, are more critical than

1/1 point

5/9/2019	Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - Home Coursera
3. Hyperipe Framely Quiz, 10 ques	aramataretuning, whatch Normalization of Grammings or train a lot of points to the same of
	The presence of local minima (and saddle points) in your neural network
0	The amount of computational power you can access
Corr	ect
	The number of hyperparameters you have to tune
~	1/1 point
-	think eta (hyperparameter for momentum) is between on 0.9 and 0.99, which of the following is the mended way to sample a value for beta?
	1 r = np.random.rand() 2 beta = r*0.09 + 0.9
0	1 r = np.random.rand() 2 beta = 1-10**(- r - 1)

Correct


```
r = np.random.rand()
beta = r*0.9 + 0.09
```

10/10 points (100%)

Quiz, 10 questions 1 / 1 point

5.

Finding good hyperparameter values is very time-consuming. So typically you should do it once at the start of the project, and try to find very good hyperparameters so that you don't ever have to revisit tuning them again. True or false?

- True
- False

Correct

1/1 point

6.

In batch normalization as presented in the videos, if you apply it on the lth layer of your neural network, what are you normalizing?

- $igcup_{[l]}$
- \bigcirc $a^{[l]}$
- $\sum z^{[l]}$

Correct

 $igcup W^{[l]}$

point

7.

In the normalization formula $z_{norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+arepsilon}}$, why do we use epsilon?

To speed up convergence

10/10 points (100%)

Quiz, 10 questions **Correct**

	To have a more accurate normalization
	In case μ is too small
~	1 / 1 point
8. Which	of the following statements about γ and eta in Batch Norm are true?
	They can be learned using Adam, Gradient descent with momentum, or RMSprop, not just with gradient descent.
Corre	ect
	There is one global value of $\gamma\in\Re$ and one global value of $\beta\in\Re$ for each layer, and applies to all the hidden units in that layer.
Un-se	elected is correct
	They set the mean and variance of the linear variable $z^{\left[l ight]}$ of a given layer.
Corre	ect
	eta and γ are hyperparameters of the algorithm, which we tune via random sampling.
Un-se	elected is correct
Un-se	The optimal values are $\gamma=\sqrt{\sigma^2+arepsilon}$, and $eta=\mu$. elected is correct

10/10 points (100%)

Quiz, 10) questions

	raining a neural network with Batch Norm, at test time, to evaluate the neural network on a new le you should:	
0	Perform the needed normalizations, use μ and σ^2 estimated using an exponentially weighted average across mini-batches seen during training.	
Corr	ect	
	Skip the step where you normalize using μ and σ^2 since a single test example cannot be normalized.	
	If you implemented Batch Norm on mini-batches of (say) 256 examples, then to evaluate on one test example, duplicate that example 256 times so that you're working with a mini-batch the same size as during training.	
	Use the most recent mini-batch's value of μ and σ^2 to perform the needed normalizations.	
~	1/1 point	
10.		
	of these statements about deep learning programming frameworks are true? (Check all that apply)	
	Deep learning programming frameworks require cloud-based machines to run.	
Un-s	elected is correct	
	Even if a project is currently open source, good governance of the project helps ensure that the it remains open even in the long term, rather than become closed or modified to benefit only one company.	
	ost .	
Correct		
	A programming framework allows you to code up deep learning algorithms with typically fewer lines of code than a lower-level language such as Python.	
Corr	ert	
COLL	···	

10/10 points (100%)

Quiz, 10 questions

