AMENDMENTS TO THE SPECIFICATION

On page 3, lines 5-11, please replace the paragraph with the following:

-- In one embodiment, R_2 is an ester ($R_{2a}C(O)O$ -), a carbamate ($R_{2a}R_{2b}NC(O)O$ -), a carbonate ($R_{2a}OC(O)O$ -), or a <u>thiocarbonate</u> <u>thiocarbamate</u> ($R_{2a}SC(O)O$ -) wherein R_{2a} and R_{2b} are independently hydrogen, hydrocarbyl, substituted hydrocarbyl or heterocyclo. In a preferred embodiment, R_2 is an ester ($R_{2a}C(O)O$ -), wherein R_{2a} is aryl or heteroaromatic. In another preferred embodiment, R_2 is an ester ($R_{2a}C(O)O$ -), wherein R_{2a} is substituted or unsubstituted phenyl, furyl, thienyl, or pyridyl. In one particularly preferred embodiment, R_2 is benzoyloxy. --.

On page 3, lines 12-33, please replace the paragraph with the following:

-- While R₉ is keto in one embodiment of the present invention, in other embodiments R₉ may have the alpha or beta stereochemical configuration, preferably the beta stereochemical configuration, and may be, for example, α - or β -hydroxy or α or β -acyloxy. For example, when R_9 is acyloxy, it may be an ester ($R_{9a}C(O)O$ -), a carbamate (R_{9a}R_{9b}NC(O)O-), a carbonate (R_{9a}OC(O)O-), or a thiocarbonate thiocarbamate (R_{9a}SC(O)O-) wherein R_{9a} and R_{9b} are independently hydrogen, hydrocarbyl, substituted hydrocarbyl or heterocyclo. If R₉ is an ester (R_{9a}C(O)O-), R_{9a} is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaromatic. Still more preferably, R_9 is an ester ($R_{9a}C(O)O$ -), wherein R_{9a} is substituted or unsubstituted phenyl, substituted or unsubstituted furyl, substituted or unsubstituted thienyl, or substituted or unsubstituted pyridyl. In one embodiment R_9 is $(R_{9a}C(O)O-)$ wherein R_{9a} is methyl, ethyl, propyl (straight, branched or cyclic), butyl (straight, branched or cyclic), pentyl, (straight, branched or cyclic), or hexyl (straight, branched or cyclic). In another embodiment R_9 is $(R_{9a}C(O)O-)$ wherein R_{9a} is substituted methyl, substituted ethyl, substituted propyl (straight, branched or cyclic), substituted butyl (straight, branched or cyclic), substituted pentyl, (straight, branched or cyclic), or substituted hexyl (straight, branched or cyclic) wherein the substituent(s) is/are selected from the group consisting of heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto,

acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester and ether moieties, but not phosphorous containing moieties. --.

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in this application.

Listing of Claims:

1. (currently amended) A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a composition comprising at least one pharmaceutically acceptable carrier and a taxane having the formula

wherein

 X_3 is isopropyl, isobutenyl, cyclopropyl, cyclobutyl, <u>cyclopentyl</u>, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyridyl, <u>or</u> 4-pyridyl or p-nitrophenyl;

 X_5 is -COX₁₀ and X_{10} is 2-furyl, 2-thienyl, 3-pyridyl, 4-pyridyl, n-propyl, <u>or</u> butenyl or isobutenyl;

R₂ is benzoyloxy;

R₇ is hydroxy;

 R_{10} is $R_{10a}OCOO$ -; and

R_{10a} is methyl or ethyl.

- 2. (original) The method of claim 1 wherein X_3 is 2-thienyl or 3-thienyl.
- 3. (original) The method of claim 1 wherein X_3 is 2-furyl or 3-furyl.

4. (currently amended) A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a composition comprising at least one pharmaceutically acceptable carrier and a taxane having the formula

$$X_5NH$$
 O R_7
 OH
 OH
 R_2
 OAC

wherein

X₃ is 2-furyl, 3-furyl or 2-thienyl or 3-thienyl;

 X_5 is -COX₁₀ and X_{10} is trans-propenyl or isopropyl;

R₂ is benzoyloxy;

R₇ is hydroxy;

R₁₀ is R_{10a}OCOO-; and

R_{10a} is methyl or ethyl.

- 5. (currently amended) The method of claim 4 wherein X_3 is 2-furyl or 3-furyl.
- 6. (currently amended) The method of claim 4 wherein X_3 is 2-thienyl or 3-thienyl.

Claims 7-9 (cancelled)

10. (original) The method of claim 4 wherein X_5 is -COX₁₀ and X_{10} is transpropenyl.

11. (original) A method for preparing a pharmaceutical composition comprising mixing at least one nonaqueous, pharmaceutically acceptable solvent and a taxane having the formula

X₅NH O R₁₀ R₉ R₇ R₇ R₁₄ HO
$$\frac{1}{R_2}$$
 $\frac{1}{O}$ $\frac{1}$

wherein

R₂ is acyloxy;

R₇ is hydroxy;

R₉ is keto, hydroxy, or acyloxy;

R₁₀ is carbonate;

R₁₄ is hydrido or hydroxy;

X₃ is heterocyclo;

 X_5 is -COX₁₀, -COOX₁₀, or -CONHX₁₀;

X₁₀ is hydrocarbyl, substituted hydrocarbyl, or heterocyclo; and

Ac is acetyl.

- 12. (original) The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl.
- 13. (original) The method of claim 11 wherein R_{10} is R_{10a} OCOO- and R_{10a} is methyl or ethyl.
- 14. (original) The method of claim 11 wherein X_5 is -COX₁₀ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, or X_5 is -COOX₁₀ and X_{10} is substituted or unsubstituted C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl.

- 15. (original) The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl, R_{10} is R_{10a} OCOO- and R_{10a} is methyl or ethyl.
- 16. (original) The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl, X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_1 C_8$ alkyl, $C_2 C_8$ alkenyl, or $C_2 C_8$ alkynyl, or $C_3 C_8$ alkynyl, or $C_3 C_8$ alkynyl.
- 17. (original) The method of claim 11 wherein R_{10} is R_{10a} OCOO- and R_{10a} is methyl or ethyl, X_5 is -COX₁₀ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, or C_3 is -COOX₁₀ and C_3 is substituted or unsubstituted C_1 C_3 alkyl, C_4 C_8 alkynyl.
- 18. (original) The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl, R_{10} is $R_{10a}OCOO$ -, R_{10a} is methyl or ethyl, X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, or C_2 C_8 alkenyl, or C_2 C_8 alkynyl.
 - 19. (original) The method of claim 11 wherein X_3 is 2-furyl or 3-furyl.
 - 20. (original) The method of claim 11 wherein X_3 is 2-thienyl or 3-thienyl.
- 21. (original) The method of claim 13 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl or 3-thienyl.
- 22. (original) The method of claim 14 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl or 3-thienyl.

- 23. (original) The method of claim 18 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl or 3-thienyl.
 - 24. (currently amended) A taxane having the formula

wherein

 X_3 is isopropyl, isobutenyl, cyclopropyl, cyclobutyl, <u>cyclopentyl</u>, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyridyl, <u>or</u> 4-pyridyl-<u>or p-nitrophenyl</u>;

 X_5 is -COX₁₀ and X_{10} is 2-furyl, 2-thienyl, 3-pyridyl, 4-pyridyl, n-propyl, <u>or</u> butenyl or isobutenyl;

R₂ is benzoyloxy;

R₇ is hydroxy;

R₁₀ is R_{10a}OCOO-; and

 R_{10a} is methyl or ethyl.

- 25. (original) The taxane of claim 24 wherein X_3 is 2-thienyl or 3-thienyl.
- 26. (original) The taxane of claim 24 wherein X_3 is 2-furyl or 3-furyl.

27. (currently amended) A taxane having the formula

wherein

X₃ is 2-furyl, 3-furyl or 2-thienyl or 3-thienyl;

 X_5 is -COX $_{10}$ and X_{10} is trans-propenyl or isopropyl;

R₂ is benzoyloxy;

R₇ is hydroxy;

R₁₀ is R_{10a}OCOO-; and

R_{10a} is methyl or ethyl.

- 28. (currently amended) The taxane of claim 27 wherein X_3 is 2-furyl or 3-furyl.
- 29. (currently amended) The taxane of claim 27 wherein X_3 is 2-thienyl or 3-thienyl.

Claim 30 (cancelled)

31. (original) The taxane of claim 27 wherein X_5 is -COX₁₀ and X_{10} is transpropenyl.

Claims 32-33. (cancelled)

34. (new) A taxane having the formula

wherein

X₃ is heterocyclo;

 X_5 is -COX₁₀, -COOX₁₀, or -CONHX₁₀;

X₁₀ is hydrocarbyl, substituted hydrocarbyl, or heterocyclo;

R₂ is benzoyloxy;

R₉ is hydroxy or acyloxy;

R₁₀ is R_{10a}OCOO-; and

R_{10a} is hydrocarbyl, substituted hydrocarbyl, or heterocyclo.

- 35. (new) The taxane of claim 34 wherein X_3 is furyl, thienyl, pyridyl, oxazolyl, pyrrolyl, indolyl, quinolinyl, or isoquinolinyl.
- 36. (new) The taxane of claim 34 wherein X_3 is oxazolyl, pyrrolyl, indolyl, quinolinyl, isoquinolinyl, thiazolyl or isoxazolyl.
- 37. (new) The taxane of claim 35 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, or 4-pyridyl.
- 38. (new) The taxane of claim 37 wherein X_5 is -COOX₁₀ and X_{10} is substituted or unsubstituted methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl.
- 39. (new) The taxane of claim 38 wherein R_{10a} is methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl.