October 21, 2003, 08:57:52; Search time 46i1.42 Seconds (without alignments) 15995.091 Million cell updates/sec US-09-762-194-1 1803 1 gctacccccccacgcac......cctaagcataggctttccag 1803 OM nucleic - nucleic search, using sw model Title: Perfect score: Sequence: Run on:

IDENTITY_NUC Gapop 10.0 , Gapext 1.0 Scoring table:

2888711 seqs, 20454813386 residues

Searched:

5777422 Total number of hits satisfying chosen parameters: Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Database :

GenEmbl: +

1: gb ba: *

2: gb hrg; *

3: gb in: *

4: gb_ow: *

5: gb pat: *

6: gb pat: *

7: gb pr: *

1: gb_sy: *

1: gb_sy: *

2: gb_sy: *

3: gb un: *

1: gb_yr: *

1: gb_yr: *

1: gb_yr: *

2: gb_sy: *

3: gb un: *

1: gb_yr: *

2: gb_sy: *

3: gb_un: *

4: gb_yr: *

6: m_un: *

6: m_or: *

em_un:.*
em_htg.hum:.*
em_htg.huw:.*
em_htg_other:.*
em_htg_other:.*
em_htg_pln:.*
em_htg_pln:.*
em_htg_nam:.*
em_htg_nam:.*
em_htg_ord:.*
em_htg_ord:.*
em_htg_ord:.*
em_htg_ord::*
em_htg_ord::*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being print: , and is derived by analysis of the total score distribution.

SUMMARIES

No. Score Match Length DB ID Description 1 1803 10.0 1803 10 EAT17380 BAF17380 MAF17380 MAF1777 MAF1777 <td< th=""><th></th><th></th><th></th><th>dip</th><th></th><th></th><th></th><th></th></td<>				dip				
No. Score Match Length DB ID Description 1 1803 100.0 1803 10 BC042206 Mus 2 1489.4 83.1 5219 10 BC042206 BC041777 Mus 4 1460.6 81.0 362.9 10 BC042206 BC041777 Mus 5 1316.6 73.0 1323 10 AX246699 AX246699 Mus 6 1187 65.8 1323 10 AX246699 Mus 1 106.4 59.1 1323 10 AX246699 Mus 1 106.4 56.4 3455 3 AK21037 AX246699 Mus 1 106.4 56.4 3455 3 AX21037 AX246699 Mus 1 106.4 56.4 3455 3 AX21035 AX210037 AX210037 AX210037 AX210061 AX210061 AX210061 AX210061 AX210061 AX210061 AX210061<	Rea	mit		Query				
1 1803 100.0 1803 10 AF173380 AF173360 Mus 2 1487.4 82.1 5219 10 BC042206 BC042206 BC04321 Mus 4 1467.4 82.5 5219 10 BC043321 BC04321 Mus 5 1316.6 73.0 1323 10 AY246699 AY246699 AY246699 AY246699 AY246699 BC04377 BC073740 BC073740 BC073740	1	No.	Score	Match	Length	图	ID	į
2 1498.4 83.1 529 10 BC042206 BC041277 Muscalia 4 1460.6 81.0 362.9 10 BC041777 BC041777 Muscalia 5 1316.6 73.0 1323 10 AV246699 AV246699 Muscalia 6 1187 65.8 1323 10 AV208915 AV246699 Muscalia 1 1064.8 59.1 137.2 6 AV208915 AV246699 Muscalia 1 1064.6 59.3 374.2 6 AX210037 Seque 1 1061.6 55.4 342.2 6 AX210037 Seque 1 1062.6 55.7 165.5 AX210061		Н	1803	100.0	1803	10	AF173380	Mus
3 1487.4 82.5 528 10 BCO41777 Muse 4 1460.8 81.0 3528 10 BCO43321 BCO43321 BCO43321 MX246699 MX246699 MX246699 MX246699 MX246699 MX208915 Ratt 6 1187 65.8 1323 10 AY246699 MX208915 Ratt 1 1061.6 56.4 3455 9 AF121259 AX210037 AX210037 AX210037 Seque 1 1003.6 55.7 1615 AX210061 AX210061 Seque 1 228.4 51.5 5799 6 AX210061 AX210061 AX210061 Seque 1 228.4 51.5 5799 6 AX210061 AX200061 AX200061 AX200061 AX200061 AX200061 Seque 1 228.4 51.5 5799 6 AX210061 AX200991 AX200991 AX200991 AX200991 AX200991 AX200991 AX200991		7	1498.4	83.1		10	BC042206	Mus
4 1460.8 81.0 3629 10 BC043321 MBC043321 MBC043321 MBC043321 MBC043321 MBC043321 MBC043251 MBC044659 MBC044659 MBC044659 MBC044659 MBC044659 MBC044659 MBC044659 MBC04465 MBC04465 MBC04465 MBC04465 MBC04465 MBC04465 MBC04465 MBC04465 MBC04465 MBC04466 MBC04476 MBC04477 MBC04		e	1487.4	82.5		10	BC041777	Mus
5 1316.6 73.0 1323 10 AV246699 AV246699 AV246699 AV246699 AV246699 AV246699 AV2408915 AV2406915 AV2408915 AV2408915 AV2408915 AV2408915 AV2408915 AV2408915 AV2408915 AV2408915 AV210037 PGQUB AV210037 PGQUB AV210037 PGQUB PGGUB PGGB PGGUB PGGB PGGB <td></td> <td>4</td> <td>1460.8</td> <td>81.0</td> <td></td> <td>10</td> <td>BC043321</td> <td>Mus</td>		4	1460.8	81.0		10	BC043321	Mus
6 1187 65.8 1323 10 Av208915 Av208915 Ratt 7 1064.8 59.1 1977 9 Av208357 Av208915 Ratt 8 105 56.4 3455 9 Av21037 Av208915 9 1016 56.4 3455 9 Av210259 Av210037 Sequell 10 1003.6 55.7 1615 Av200068 Av210206 Av210207 Sequell 11 928.4 51.5 5799 6 Av20006 Av210061 Sequell Av20064 Av210061 Sequell 14 924.4 51.3 3315 6 BD166624 BD166624 Prime Av200949 Av200999 Av200999 </td <td></td> <td>S</td> <td>1316.6</td> <td>73.0</td> <td>П</td> <td>10</td> <td>AY246699</td> <td>Mus</td>		S	1316.6	73.0	П	10	AY246699	Mus
7 1064.8 59.1 1977 9 AF293357 ARZ93357 HOMD 8 1051 58.3 3742 6 AX210037 AX210037 AX210037 Seque 10 1003.6 55.7 1615 6 AX301208 AX210209 AX210220 AX210209 Seque 11 1003.6 55.7 1615 6 AX301208 AX210206 AX210209 AX21009 AX		9	1187	65.8	_	10	AY208915	
1051 58.3 3742 6 AX210037 AX210037 Seque 1016 56.4 3425 9 AR2121259 AR2121259 AR2121259 AR2121259 AR321228 AR321228 AR321228 AR321228 AR321228 AR321228 Seque 1 928.4 51.5 5214 9 AR802681 AR21061 AR21061 AR21061 AR31061 A		7	1064.8	9	1977	σ	AF293357	μ;
9 1016 56.4 3455 9 AF121259 AF121259 HOME 10 1003.6 55.7 1615 6 AX301208 AX210206 AX210206 AX210206 AX210206 AX210061 Seque 12 928.4 51.5 5799 6 AX210061 Seque AL096642 Home AL096643 Home AL096643 Home AL09664 AL09664 </td <td></td> <td>Ф</td> <td>1051</td> <td>58.3</td> <td>3742</td> <td>o</td> <td>AX210037</td> <td>Seque</td>		Ф	1051	58.3	3742	o	AX210037	Seque
10 1003.6 55.7 1615 6 AX301208 AX201061 Seque AX201061 Seque AX201061 Seque AX201061 Seque AX20308 AX2		on	1016	o	m	თ	AF121259	Homo
11 928.4 51.5 5214 9 HSM800681 ALO96642 Homo 12 928.4 51.5 579 6 AX210061 AX210064 Prime BD160524 Prime PRIME PRIME AX209989 AX200989 AX209899 AX209899 AX209989 AX209989 AX200999 <		10	1003.6	55.7	1615	9	AX301208	Seque
12 928.4 51.5 5799 6 AX210061 AX210061 AX210061 seque 13 928.4 51.5 5857 9 AB033114 BD160824 Prime 15 924.4 51.3 3315 6 BD160824 Prime BD160824 Prime 16 865.4 48.0 1758 6 AX20989 AX20989 AX20989 AX20999 AX20999 <td></td> <td>11</td> <td>928.4</td> <td>51.5</td> <td></td> <td>മ</td> <td>HSM800681</td> <td>Ношо</td>		11	928.4	51.5		മ	HSM800681	Ношо
13 928-4 51.5 5857 9 AB033114 AB033114 AB033114 Homo 14 924.4 51.3 3315 6 BD166624 BD166624 PLIME 15 924.4 51.3 3315 6 AX20989 AX20999 AX20999 AX20999 AX20999 Seque 16 665.4 48.0 1758 6 AX20999 AX20999 AX20999 Seque AX20999 Seque 18 665.4 48.0 3813 6 AX20999 AX20999 <t< td=""><td></td><td>12</td><td>928.4</td><td>51.5</td><td>ιC</td><td>o</td><td>AX210061</td><td></td></t<>		12	928.4	51.5	ιC	o	AX210061	
14 924.4 51.3 3315 6 BDIGGE4 BDIGG24 Prime 15 924.4 51.3 3315 9 AK204357 AK204357 AK204357 HOMO 16 865.4 48.0 3654 6 AX209987 AX209997 AX209997 AX209997 SAZ09997 SAZ09997 SAZ09997 SAZ09997 SAZ09997 SAZ009997 SAZ0099997 SAZ009997 SAZ009997 SAZ0099		13	928.4	51.5		on.	AB033114	Ношо
15 924.4 51.3 3315 9 AK024357 AK024357 AK024357 HOME 16 865.4 48.0 1758 6 AX209899 AX209999 AX209999 AX209999 AX2009997 Seque 18 865.4 48.0 3813 6 AX200991 AX200993 Seque Seque Seque AX200993 Seque AX200993 Seque Seque AX200993 Seque AX200993 Seque AX200993 Seque AX200000 AX20000 AX20000 AX20000		14	924.4	51.3		ø	BD160624	Primer
16 865.4 48.0 1758 6 AX209989 AX209989 AX209989 Sequence 17 865.4 48.0 365.4 6 AX209987 AX209998 AX209999 AX209999 AX209991 AX209991 AX209991 AX209991 AX209991 AX209991 Sequence AX209991 AX209991 AX209991 AX209991 AX209991 AX209991 AX209991 Sequence Sequence AX209991 Sequence AX209991 Sequence AX209991 Sequence AX209991 Sequence <		15	924.4	51.3		თ	AK024357	Ношо
17 865.4 48.0 365.4 6 AX209987 AX209997 Seque 18 865.4 48.0 3813 6 AX20996 AX209991 AX209991 Seque 20 861.8 47.9 1191 6 AX209991 AX209993 Seque 21 661.8 47.8 1191 6 AX209993 AX209993 Seque 22 661.8 47.8 1191 6 AX209993 AX209993 Seque 23 610 33.8 1229 10 BC03386 BC033842		16	865.4	48.0		w	AX209989	
18 865.4 48.0 383.3 6 AXZ10064 AXZ10064 Seque 19 863.8 47.9 145.8 6 AXZ09991 AXZ09991 AXZ09991 AXZ09991 AXZ09991 Seque 21 861.8 47.9 148.6 AXZ09991 AXZ00993 Seque 21 631.2 119.2 9 BC017740 Homo BC017740 Homo 23 610.3 1229 10 BC033842 BC03746 Homo 24 540.8 30.0 775 6 AXZ10002 AXZ10002 Seque 25 515.8 28.6 8194938 BC14938		17	865.4	48.0		9	AX209987	
19 863.8 47.9 1458 6 AX209991 AX209991 Seque 20 861.8 47.8 1191 6 AX209993 AX209993 Seque 21 651.8 47.8 1191 6 AX209993 AX209993 Seque 22 630 34.9 2895 9 E0017740 Homo 23 610 33.8 1229 Homo BCO33842 BCO33842 Homo 24 540.6 30.9 775 6 AX21002 BCO33842 Homo BCO33842 Homo 25 515.6 30.0 775 6 AX21002 AX21002 BCO33842 Homo 25 515.6 28.6 4830 6 BD49338 Prime Prime 27 436 2.2 AC14551 AC16511 AC16511 Mus AC16511 Mus 28 43.4 16.3 194355 AC16511 AC16511 Mus AC16511 Mus 30 29.4 16.3 194355 AC165011 AC16511 Mus AC16511 Mus 31 276.6 15.3		18	865.4	48.0	3813	9	AX210064	
20 861.8 47.8 1191 6 AX209993 AX209993 Seque 21 651.2 36.1 1142 9 BC017740 BC07740 Home 23 610 33.8 1229 10 BC033862 BC033842 BC033842 BC033842 Home 24 540.8 30.0 775 6 AX21002 AX21002 AX21002 BC033864 Hox 1000 Hox 10006 Mus 25 515.8 26.8 194355 2 AC16511 AC116511 AC116511 AC16511 AC16511 Mc097544 AC106511 AC106511 Mc097544 AC007744 AC00774 AC00774 AC00774 AC00774 AC00774 AC007		19	863.8	47.9	1458	9	AX209991	
21 651.2 36.1 1142 9 BC017740 Homo BC017740 Homo BC017740 Homo BC017340 Homo BC013342 23 630 34.9 289 9 BC033842 BC033842 Homo BC03842 Homo BC03842 Homo BC03842 Homo BC03842 24 540.8 30.0 775 6 AX210002 AX210002 Seque BC03842 25 515.8 28.6 8194938 BD149938 BD149938 Prime BD149938 27 436 24.2 270745 2 AC116511 AC097544 Retru AC097544 Retru AC00172 28 385.4 16.3 194355 2 AC116511 AC097544 Retru AC097544 Ret		20	861.8	47.8	П	9	AX209993	
22 630 34.9 2895 9 BC033842 BC033842 Homo 24 54.6 33.8 1229 10 BC033860 BC033860 Mus 25 515.6 30.0 775 6 AX210002 Sequence 25 515.6 28.6 830 6 BD49938 Prime 27 436 2.6 270445 2 AC116511 AC104531 AC116511 Mus AC1067544 AC1067544 AC1067744 Rev 28 24.4 16.3 194355 2 AC16511 AC097544 Rev AC000172 AC000172 <td></td> <td>21</td> <td>651.2</td> <td>36.1</td> <td>_</td> <td>σ</td> <td>BC017740</td> <td>Нопо</td>		21	651.2	36.1	_	σ	BC017740	Нопо
23 610 33.8 1229 10 BC030860 BC030860 Muscose 24 540.8 30.0 775 6 AX210002 AX210002 AX210002 Sequence 25 515.8 28 830 6 BD149398 BD149398 PLIME PLI49939 Prime PLI49938 Prime AZ16511 Muss m AZ16511 Muss Muss Muss AZ16511 Muss Muss AZ16511 Muss Muss Muss AZ16511 Muss Muss AZ166271 Muss AZ174065 AZ174065 AZ174065 AZ		22	630	34.9	N	σ	BC033842	Homo
24 540.8 30.0 775 6 AXZ10002 AXZ10002 AXZ10002 EAXZ1002 EAXZ105 EAXZ1002 EAXZ1002 EAXZ1002 EAXZ105 EAXZ102 EAXZ102 EAXZ102 EAXZ102 EAXZ102 EAXZ102 EAXZ103 <		23	610	33.8	П	10	BC030860	0 Mus
25 515.6 28.6 83.0 6 D149938 BD149938 BD149938 Prime 27 483.2 26.8 194355 2 ACD16511 ACD07541 ACD07541 ACD075511 ACD07541 ACD075511 ACD07554 Bas as a		24	540.8	30.0		9	AX210002	
26 483.2 26.8 194355 2 AC116511 AC116511 Mus ms 27 436 24.2 27045 2 AC009754 AC009754 AC009754 Patt. 28 385.4 2.14 2549 9 AK000172 AK000772 Home. 29 294.4 16.3 194355 2 AC116511 AC116511 Mus.m. 30 291.8 16.2 729 9 HVMCD67D11 AC086371 Home. 31 276.6 15.3 2235 9 AC0803875 HOME. 32 241.4 13.4 13.4 13.4 13.4 13.4 4 13.4 13.4 13.4 224.0 AX210056 Seque		25	515.8	28.6		9	BD149938	Primer
27 436 24.2 270745 2 AC097544 AC097544 Ratt. 28 385.4 21.4 2548 9 AX000172 AK000172 Homo 29 294.4 16.3 144355 2 AC116511 AC116511 MLST 16716511 30 291.8 16.2 729 9 HUMZD67D11 AF086371 Homo 31 276.6 15.3 2235 9 AC093875 AK093875 Homo 32 241.4 13.4 174025 9 AC124069 AC124069 Homo 33 2391.8 13.3 2850 6 AX210056 AX210056 Seque	O	26	483.2	26.8		7	AC116511	
28 385.4 21.4 2548 9 AK000172 AK000172 Homo 29 294.4 16.3 194355 2 AC116511 AC116511 Muls m3 0 291.8 16.2 729 9 HVMZD67D11 AF086371 Homo 31 276.6 15.3 5 AR093875 AK093875 Homo 32 241.4 13.4 174025 9 AC124069 33 239.8 13.3 2850 6 AX210056 AX210056 Seque		27	436	24.2	27	~	AC097544	
29 294.4 16.3 194355 2 ACI16511 ACI16511 Mus m 30 291.8 16.2 729 9 HVM2D67D11 AF086371 Homo 31 276.6 15.3 25.9 AK093875 AK093875 Homo 32 241.4 13.4 134.2 14025 9 ACI24069 Homo 33 239.8 13.3 2850 6 AX210056 Seque		28	385.4	21.4		თ	AK000172	Ношо
30 291.8 16.2 729 9 HUMZD67D11 AF086571 Homo 31 276.6 15.3 2235 9 AR093875 AR093875 Homo 32 241.4 13.4 174025 9 AC124069 Homo 33 239.8 13.3 2850 6 AX210056 AX210056 Seque		53	294.4	16.3	194	7	AC116511	Mus
31 276.6 15.3 2235 9 AK093875 AK093875 Homo 32 241.4 13.4 174025 9 ACI24069 CON ACI24069 Homo 33 239.8 13.3 2850 6 AX210056 AX210056 Seque		30	291.8	16.2		თ	HUMZD67D11	Ното
32 241.4 13.4 174025 9 AC124069 AC124069 Homo 33 239.8 13.3 2850 6 AX210056 AX210056 Seque		31	276.6	15.3		თ	AK093875	Ношо
9.8 13.3 2850 6 AX210056 Seque	υ	32	241.4	13.4	~	σ,	AC124069	Homo
		33	ο.	13.3		9	AX210056	Seque

AC026842 Homo sapi	AP006249 Homo sapi	AB018317 Homo sapi	AB020864 Homo sapi	AF165145 Homo sapi	AX210036 Sequence	BC032481 Homo sapi	AB093263 Mus muscu	AF176665 Xenopus 1	BV035724 S212P6026	AX210048 Sequence	AF267167 Homo sapi
AC026842	AP006249	AB018317	AB020864	AF165145	AX210036	BC032481) AB093263	AF176665	. BV035724	AX210048	AF267167
~	σ	Q	σ	6	9	δ	10	2	11	9	7
171075	195290	13.2 4021	100000	131299	2333	1479	4442	1003	595	700	186901
13.3	13.3	13.2	13.1	13.1	13.0	12.6	11.8	11.4	10.8	0.6	8.9
239.8	239.8	237.8	236.6	236.6	233.8	226.8	213.2	205.2	195	162	160.4
34	35	36	37	38	33	40	41	42	43	44	45
	υ		υ						O		

ALIGNMENTS

RESULT 1 AF173380 LOCUS DEFINITION	
ACCESSION	complete cds. AF17380
VERSION KEYWORDS	
SOURCE	Mus musculus (house mouse)
ORGANISM	
	Eukaryota; Metazoa; Chordata; Cranlata; Vertebrata; Euteleostoml; Mammalia: Euthoria: Dodontia: Schuromathi: Muridae: Murinae: Mus
REFERENCE	1 to 1803)
AUTHORS	baz, N.
TITLE	Molecular characterization of ATIP, a novel angiotensin II type 2
	receptor-interacting protein
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 1803)
AUTHORS	Elbaz, N., Strosberg, A.D. and Nahmias, C.
TITLE	Direct Submission
JOURNAL	Submitted (28-JUL-1999) Institut Cochin de Genetique Moleculaire,
	CNRS UPR415, 22, rue Mechain, Paris 75014, France
FEATURES	Location/Qualifiers
source	11803
	/organism="Mus musculus"
	/mol_type="mRNA"
	/db_xref="taxon:10090"
	/cell_line="E18"
	/dev_stage="fetus"
CDS	1781500
	/note="ATIP"
	/codon_start=1
	/product="angiotensin II AT2 receptor-interacting protein"
	/db_xref="GI:5733814"
	/translation="MLLSPKFSLSTIHVRLTAKGLLRNLRLPSGLRKNTVIFHTVEKG
	RQKNPRSLCIQTQTAPDVLSSERTLELAQYKTKCESQSGFILHLRQLLSRGNNKFEAL
	TVVIQHILSEREEALKQHKTLSQELVSLRGELVAASSACEKLEKARADLQTAYQEFVQ
	KINQQHQTDRTELENRLKDLYTAECEKLQSIYIEEAEKYKTQLQEQFDNINAAHETTK
	LEIEASHSEKVELLKKTYETSLSEIKKSHEMEKKSLEDLLMEKQESLEKQINDLKSEN

DAINERIKSBEQKQLSREKANSKNPQVMYLEQELESLKAVLETINEKIHQQD:KTJMYM EKLVDNNTALVDKIKREQQENEELKAHMDKHMAISRQLSTEQAALQESLEAE KVNKR LSMENEELLMKLHNGDLCSPKRSPTSSAIPFQSPRNSGSFSSFSISPR" 539 a 464 c 440 g 360 t

BASE COUNT ORIGIN

Query Ma Best Loca	100.0%; Score 1803; DB 10; Length 1803; nilarity 100.0%; Pred. No. 0;
Matches	1803; Conservative 0
Qy	1 GCTACCCCCCCCCCACACCCCCCCATCTCGCCTGGCATTAGCATGTAAGCTTGT 60
qq	1 GCTACCCCCCCCCACACGCCCCCAATCTGGGTGGCCTGGCATTAGCATGTAAGCTTGT 60
Qy	61 ITITICICIGGCIGIALCICTIGGCCTGGAAGAACCCCGAGTTGCCAAGAGACACAGAATG 120
Db	61 ITTICITION HINDER CONTROLL HINDER STREET GOODA GACACAGA GA GACACAGA GA GACACAGA GA GA CACAGA CACAGA GA CACAGA C
٥y	121 IGATGGTCCCTGGAAAAGCTGCTTCCCCTGCGAAGTTCTCCCACTGGCTTCGAAGACATG 180
qū	121 IGAIGGICCTGGAAAAGTGCTICCCCTGCGAAGTTCTCCCATGGCTTCGAAGATGT 180
٥y	181 CTGTTGTCTCCCAAATTCTCCTTATCCACCATCCACGTCCGCCTAACCGCCAAAGGACTG 240
Dio	181 CIGITGICCCAAAITCICCTIAICCACCATCCACGICCGCCTAACCGCCAAAGGACTG 240
٥y	241 CTICGAAACCICCGGCTICCTICGGGGCTCAGGAAAAACACIGICATITICCACACAGIT 300
QQ	241 CITCGAAACTCCCGGGCTCCGGGGCTCAGGAAAACACTGTCATTTTCCACACAGTT 300
Qy	301 GAAAAGGGCAGGCAGAAAAATCCCAGGAGCCTGTGCATCCAGACCAGCTGCAAT 360
Db	301 GAAAAGGGCAGGCAGAAAAAAAAAAAAAAAAAAAAAAA
٥٧	361 GTGCTGTCCTCCGAGAGACGCTTGAGTTGGCCCAATACAAGACAAAATGTGAAAGCCAA 420
QQ	361 GTGCTGCTCCGAGAGACGCTTGAGTTGGCCCAATACAAGACAAAATGTGAAAGCCAA 420
Qy	421 AGTGGATTCATCCTGCACCTCAGGCAGCTTCTTTCCCGTGGTAACAACAAGTTGAAGC 480
QQ	421 AGIGGATICATCATCATCATCATCATTCTTTCCCGTGGTAACAACATTGAAGC 480
Qy	481 CTGACAGTIGTGATCCAGCACCTCCTGTCTGAGCGGGGGGGGAGCACTGAAGCAACACAAAA 540
Q	481 CTGACAGTTGTGATCCAGCACCTCTGTCTGAGGGGGGAGGAAGCACTGAGGAGCAAA 540
Qy	541 ACCCTCTCTCAAGAACTIGTCAGCCTCCGGGGAGAGCTAGTTGCTGCAAGCGCCTGT 600
Db	541 ACCTCTCTCAAGAACTIGTCAGCCTCCGGGGGAGAGCTAGTTGCTGCTTCAAGCGCCTG: 600
Qy	601 GAGAAGCTAGAAAAGGCTAGGGCTTACAGACAGCGTATCAGAATTTGTCCAGAA. 660
qa	601 GAGAAGCTAGAAAAGGCTAGGCTGACTTACAGACAGCGTATCAAGAATTTGTCCAGAAA 660
٥y	661 CTAAACCAGCAGCATCAGACAGACGGAACTGGAGAACCGGCTGAAGGACTTATAC 720
Db	661 CTAAACCAGCATCAGACAGACGGAACTGGAGAACGGGAACTGAAGAACGGCTGAAGGACTTATAC 720

CAACTGCAAGAGCAGTTTGACAACTTAAACGCGGCCCATGAGACCAAAGCTTGAGATT 84). 	GAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAAGACCTATGAAACCTATGAACCTACTCCTTTCA 900 	GAAATCAAGAAGGCCATGAGATGGAGAAGAGTCACTGGAGGATCTGCTTAATGAGAG 960 	CAGGAATCGCTGGAGAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAACGA 1020 	agettgaartcagaggaaaaggaactgtcaagagaggggartccaaaaaccct 1080 	CAGGTCATGTATCTGGAGGAGAAGTAGAAAGCCTGAAGGCTGTGAGAGATGAAGAT 1140 	GRGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAGCTGGTGGACAATAAC 1200 	acagcattgettgacaagctgaartccagcaggaaaacgaggacttaaaagctcgc 1260 	ATGGACAAACACATGGCAATTTCAAGCAACTTTCCACCAGCAGGCGGGCTGCAAGA 1320 	TCCCTTGAGAAGGGCTAAAGGTCAACAAGAGACTGTCCATGGAAAGAAGAACTTCTG 1380 	TGGAAACTGCACAAGGGAGAOCTGTGCAGCCCCAAGAGATCCCCCACCTCCTCGGCCATC 1440 	CCTITCAGECCCAGGAATTCTGGTLOCTLCTCAGCCCAGGATCACCAGATGA 15)	CGGCTTCTGAACGCAGGAGACTCTGAAGGCACTGAGGTGCGCTTCTGCAGGACTGACC 1560
 781 CAA0	841 GAAG GAAG	901 GAA 901 GAA	961 CAG - - 961 CAG	1021 AGG 1021 AGG	1081 CAG 111 1081 CAG	1141 GAG 1141 GAG	1201 ACA 201 ACA	1261 ATG 1261 ATG	1321 TCC 1321 TCC	381	1441 CCT 111 1441 CCT	1501 CGG 501 CGG
Qy Dp	Qy	Qy Dp	Qy Db	Qy 1 Db 1	Qy 1 Db 1	Qy 1 Db 1	Qy 1 Db 1	Q.y 1	QY 1 Db 1	Qy 1 Db 1	Qy 1 Db 1	Qy 1 Db 1

Qy	1561	_
Dp	1561	CICTCATGGGAACTGGGGGTTGCTGCTCTGGAATATCCCCAGGATATCGGGAG 1620
Qy	1621	AGCAGCGCCAACCGTATCAGCTACGTACGAATAGAGAGCTCCAATAGAAGACTTTTAAC 1680
q	1621	
Qy	1681	TIGGICCAAAAGCCTCCTCCAAAAACAGATITCGGAACTGAAGTGGACATAGTIGCACAA 1740
qq	1691	
Qy	1741	1741 AGCACTTACGGAACGAGGGAACCTTGTTCTTTGCCTTCCTT
qa	1741	
Qy	1801	1801 CAG 1803
qq	1801	CAG 1803
Search Job tim	comple e:46	Search completed: October 21, 2003, 17:17:49 Job time : 4620.42 secs

OM nucleic - nucleic search, using sw model

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

ш
Н
笒
≤
Σ
Σ
⊃
Ŋ

		dР				
Result No.	Score	Query Match	Query Match Length DB	DB	ID	Description
1						
1	80	100.0	1803	21	AA Z99088	ATIB
. 4	1323	73.4	1323	21	AAZ99089	
(*)	1051	58.3	3742	21	AAZ99091	
4		58.3	3742	22	AAH74362	Nucleotide sequenc
ς.	1003.		1615	24	AAS99905	₩.
v	941.	52.2	1308	51	AAZ99092	Human ATIP coding
7	925.	51.3	5799	22	AAH74383	Nucleotide sequenc
w	924.	51.3	3315	22	AAH18632	Human cDNA sequenc
o	σ	51.3	4937	52	ABX63076	Human cDNA #76 dif
10	5	51.2		22	AAH74385	Nucleotide sequenc
11	1 886.6	49.2	1369	22	AAH74322	Nucleotide sequenc
7		48.2		25	ABX10230	Human cDNA encodin
13		48.0		22	AAH74324	Nucleotide sequenc
14		48.0	e	22	AAH74323	Nucleotide sequenc
57	B63.	47.9	-	22	AAH74325	Nucleotide sequenc
16		47.8	H	22	AAH74326	Nucleotide sequenc
17	644	35.8		24	ABS51467	Human cDNA encodin
16		30.0		22	AAH74327	Nucleotide sequenc
15	21	28.9	3287	21	AAF22392	Human secreted pro
20	51	28.6		22	AAH07946	Human cDNA clone (
21		19.6		21	AAZ99090	Mouse AIIP coding
22		19.0		22	AAS26578	CDNA 6
23	34	19.0		25	ABX73919	Human novel polynu
24		18.7	791	25	AAD53121	genou
52	304	16.9			AAS26163	
26	304		481		ABX73504	Human novel polynu
27	N	13.	2850		AAH74380	Nucleotide sequenc
28	3 237.8	13.2	4184	25	ABX71114	Novel human cDNA s
52	N	13.	2333		AAH74361	
Ř	C)	11.	435		ABX53761	Bovine EST associa
c 31	17	6	242	-	ABX74609	Human cDNA sequenc
32	2 162	o,	700		AAH74372	Nucleotide se nenc
33		æ	215	22	AAH74353	Nucleotide sy uenc
34		7.	900	22	AAH74371	Nucleotide sa uenc
c 35		7.	2672	24	ABK09997	cDNA encoding huma
36	142	7.	413	22	AAH74352	Nucleotide saquenc
37	13	7.	367	22	AAH74329	Nucleotide saguenc
36	130	7.	338	21	AAA41587	Human secreted exp
36	9 128	7.	562	23	ABV48083	Human prostals exp
4(106.	δ.	700	22	AAH74374	Nucleotide sagment
41	10		133	24	ABV88907	Human colon sancer
42	7		203	22	AAH74355	Nucleotide saquenc
4.	б Е	5.2	009	22	AAH74378	Nucleotide seguenc
4	4 92.8	5.1	120	22	AAH74363	Nucleotide seguenc
4	5 91.8	5.1	1370	22	AAD08852	Human G-protein co

ALIGNMENTS

library. Cells transformed with vectors containing the cDNA, or immobilized proteins encoded by it, can be used to screen for substances that modulate AIIP-AI2 interaction or substances that interact with AIIP, especially using yeast two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AI2 receptor signal transduction. This sequence represents the CDNA encoding a mouse angiotensin II (AT2) receptor intersective protein (ATT2). The game was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AT2 receptor as the "bait" (AAY83781). The "target" is a nouse foetal CDNA Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction /note= "angiotensin II (AT2) receptor interactive protein" Mouse, angiotensin; AI2 receptor interactive protein; AIIP; ss; two-hybrid screen; signal transduction. Sequence 1803 BP; 539 A; 464 C; 440 G; 360 T; 0 other; location/Qualifiers Strosberg AD; AAZ99088 standard; cDNA; 1803 BP. "ATIP" (CNRS) CNRS CENT NAT RECH SCI. Claim 1; Fig 3; 63pp; French. 98FR-0009997. 98FR-0009997. /*tag= a /product=' (first entry) Elbaz N, Nahmias C, 2000-248410/22. P-PSDB; AAY83777 FR2782084-A1 04-AUG-1998; 04-AUG-1998; 21-JUN-2000 11-FEB-2000 Mouse ATIP AAZ99088; Mus sp. AAZ 99088

AAZ 90088

XX AAZ 9008

XX AAZ 9

X

DB 21; Length 1803;

100.0%; Score 1803;

Query Match

ö 120 TGATGGTCCCTGGAAAAGCTGCTTCCCCTGCGAAGTTCTCCCCACTGGCTTCGAAGACAT; 180 CIGITGICICCCAAAITCICCITAICCACCAICCAGGICGGCTAACGGCAAAGGACT: 240 241 CTICGAAACTCCGGGTICCTICGGGGCTCAGGAAAAACACIGICATTITCCACAGATT 300 GIGCIGICCICCGAGAGAACGCTIGAGIIGGCCCAAIACAAGACAAAAIGIGAAAGCCAA 420 AGTGGATTCAICCTGCACCTCAGGCAGCTTCTTTCCCGTGGTAACAACAAGTTTGAAGCG 480 CTGACAGITGIGATCCAGCACCTCCTGICTGAGCGGGAGGAAGCACTGAAGCAACACAAA 540 541 ACCCICICICAGAACIIGICAGCCICCGGGGAGAGCIAGIIGCIGCIICAAGCGCCTGI 600 601 GAGAAGCTAGAAAAGGCTAGGGCTGACTTACAGACAGCGTATCAAGAATTTGTCCAGAAA 660 CTAAACCAGCAGCATCAGACAGACCGGACGGAACTGGAGAACCGGGCTGAAGGACTTATAC 720 ACCECAGAGIGIGAGAAGCIICAGAGCAITTACAITGAGGAGGCAGAAAAATAIAAAACT 780 09 09 121 TGATGGTCCCTGGAAAGCTGCTTCCCCTGCGAAGTTCTCCCACTGGCTTCGAAGACAT* 180 CITCGAAACCICCGGCTICCGGGGCICAGGAAAAAACACIGICATIIICCACACAGTT 300 GAAAAGGGCAGGAGAATCCCAGGAGCCTGTGCATCCAGACCCAGACAGCTCCAGAT 360 GIGCIGICCICCGAGAGAACGCIIGAGIIGGCCCAAIACAAGACAAAAIGIGAAAAGCCAA 420 721 ACCGCAGAGTGTGAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATATAAAAST 780 CAACTGCAAGAGCAGTTTGACAACTTAAACGCCGCCCATGAGACCACTAAGCTTGAGATT 840 1 GCTACCCCCCCCCCCACCCCCCAATCTGGGTGGCCTGGCATTAGCATGTAAGCTTGT TITICICI CI GECTGIAI CI CITGGCCTGGAAGAACCCCGGAGITGCCAAGAGACACAGIAI Gaps .**.** Indels ; 0 Pred. No. 0; .; 0 Matches 1803; Conservative 199 61 661 61 121 181 181 241 301 361 361 421 481 721 781 g 5 8 윤 2 음 δ 음 δ qq 22 쉱 δ g 8 셤 δ 8 ద δ g ò g ò

100.08;

Best Local Similarity

				0	0	0	0	0	0	0	0	0	0	0	0	0	80	0	0	0	0	0	0	·ɔ	e .	0	0
840	006	006	96.)	1020	102	108	108	1140	1140	1200	1200	1260	1260	132	132	1380	13	1440	1440	1500	1500	1560	1560	1630	1620	168	1680
CAACTGGAAGAGGTTTGACAACTTAAACGCGGCGCATGAGACCACTAAGCTTGAGATT	GAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAACATGAAAACCTCCCTTTCA		GAAATCAAGAGCCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAGAGG 		CAGGAATGGCTGGAGAAACAAATGATGTGAAGAGGGAAAAGGATGCTTAAACGAA	AGGTIGAAATCAGAGGAGAAAAGCAACTGTCAAGAGAGAGAAGGGGAATTCCAAAAACCCT	,	CAGGICALGTATCTGGAGGAAGAACTAGAAAGOCTGAAGAGCTGTGTAAGAGATCAAGAT	_	GAGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAGCTGGTGGACAATAAC	-	ACAGCATTGGTTGACAAGCTGAAGCGATTCCAGCAGGAAAACGAGGAGTTAAAAGCTCGC			AIGGACAAACACAIGGCAAIIICAAGGCAACITICCACCGAGCAGGCGGCGCTGCAAGAG		TCCCTTGAGAGAGTCAAAGGTCAACAAGAGTCTCCATGGAGAACGAGGAACTTCTG	TGGAAACTGCACAAGGAGCCTGTGCAGCCCCAAGAGATCCCCCACTCCTCGGCCATC	-		. ccticcaggaetrctgattctictictictagaetrctagae	CGGCTTCTGAACGCAGGACTCTCTGAAGGCACTGAGGTGCGCTTCTGCAGGACTGACC	~	CTCTCATGGGAACTCGAGTTGCTGCGTTAGCTCTCTGGAATATCCCCAGGATATCGGGAG	-		. AGCAGCCGCCAACCGTATCAGCTACGTACGTAGGAGCTCCCAATAGAAGACTTTTAAC
781	841	841	901	961	961	1021	1021	1081	1081	1141	1141	1201	1201	1261	1261	1321	1321	1381	1381	1441	1441	1501	1501	1561	1561	1621	1621
Op	٥y	QQ	Qy	QY	qq	٥٧	qq	Qy	QC QC	δ	g	Qy	d d	٥y	Dp	٥y	g	QY	q	Qy	đ	Qy	Db	ργ	Dp	٥y	Dp

1740	1740	1800	1800		
1681 TIGGICCAAAAGCCICCTCCAAAAACAGIIICGGAACIGAAGIGGACAIAGIIGCACAA 1740		1741 AGCACTTACGGAACGAGGGGAACCTTGTTCTTTGCCTTCCTCCACCTAAGCCTTC 1800	1741 AGCACTIACGGAACGAACCTICTITCTITCCTICACCTIAGCCATAGCCTITC 1800	1801 CAG 1803	1801 CAG 1803
168	1681	174	174	180	180
Qy	Dip	Qy	Db	٥y	QQ

Db 1801 CAG 1803 Search completed: October 21, 2003, 11:10:58 Job time: 353.674 secs

OM nucleic - nucleic search, using sw model

October 21, 2003, 17:18:24; Search time 368.905 Seconds (without alignments) 13107.130 Million cell updates/sec Run on:

US-09-762-194-1 Perfect score: Title:

1803 1 gctaccccccccccacgcac......cctaagcataggctttccag 1803 Sequence:

Scoring table:

IDENTITY_NUC Gapop 10.0 , Gapext 1.0

1792395 seqs, 1340900451 residues

Searched:

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

roging_6/ptodata1/pubpna/USO7_puBCOMB.seq:*

2: /cgn2_6/ptodata1/pubpna/PG7_NEW_PUB.seq:*

3: /cgn2_6/ptodata1/pubpna/PG7_NEW_PUB.seq:*

4: /cgn2_6/ptodata1/pubpna/USO6_PUBCOMB.seq:*

5: /cgn2_6/ptodata1/pubpna/USO6_PUBCOMB.seq:*

6: /cgn2_6/ptodata1/pubpna/USO6_NEW_PUB.seq:*

7: /cgn2_6/ptodata1/pubpna/USO8_NEW_PUB.seq:*

8: /cgn2_6/ptodata1/pubpna/USO8_PUBCOMB.seq:*

9: /cgn2_6/ptodata1/pubpna/USO8_PUBCOMB.seq:*

10: /cgn2_6/ptodata1/pubpna/USO8_PUBCOMB.seq:*

11: /cgn2_6/ptodata1/pubpna/USO8_PUBCOMB.seq:*

11: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

12: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

13: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

14: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

15: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

16: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

17: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

18: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

19: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

11: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

11: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

12: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

13: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:*

14: /cgn2_6/ptodata1/pubpna/USO9_PUBCOMB.seq:* Published_Applications_NA:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description Query Score Match Length DB No. Result

6 477 6 477 6 347 6 513 6 513 6 125 6 125 6 8513	Sequence 11578, A Sequence 2218, App Sequence 12, App Sequence 1, Appli Sequence 22859, A Sequence 19974, A Sequence 6243, Ab	e 7, 7 e 74, e 76, 20733 3972, 887,		Sequence 12217, A Sequence 157, App Sequence 157, App Sequence 127, App Sequence 12, App Sequence 12, App Sequence 26. 3, App Sequence 26. 3, App Sequence 1752, A Sequence 1752
US-10-044-090-76 US-10-043-487-47 US-09-764-864-757 US-09-764-864-342 US-09-18-935-513 US-09-918-9955-556 US-09-918-995-556 US-09-918-995-556 US-09-918-995-124 US-10-027-632-951	US-09-918-955-11578 US-09-998-598-218 US-09-925-302-132 US-10-294-804-1 US-10-029-386-22859 US-10-029-386-19774 US-10-029-386-19774	US-10-004-113-7 US-10-101-487-74 US-10-101-487-76 US-09-864-761-2073 US-09-864-761-3972 US-09-764-853-887	US-09-764-853 US-10-091-43 US-10-091-43 US-09-764-853 US-10-091-43 US-10-091-43 US-09-864-761 US-09-864-761	US-09-864-751-22817 US-09-738-973-157 US-09-864-133-157 US-09-764-868-12 US-10-144-649A-157 US-10-233-042-35 US-10-001-870-88 US-10-002-386-12333 US-10-029-386-2633 US-10-029-386-2633 US-09-938-842A-85 US-09-864-761-17529 US-09-864-761-17529 US-09-864-761-17529 US-09-864-761-17529
13 14 10 10 10 11 11 13	112 9 0 12 12 12 12 12 12 12 12 12 12 12 12 12	122	011001100 4404	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4937 910 656 481 490 435 464 444	440 133 567 3489 628 536 599	32069 720 720 575 1969 8895	888 888 888 968 965 965 965 423 742 875 875 875 875 875 875 875 875 875 875	511 2313 2313 2313 2314 2802 3809 541 1040 1374 700 6668 6688
51.3 35.8 19.0 16.9 11.8 9.2 8.8			22222222	
924.2 644.8 342.2 304.6 271.4 212.8 166.2 159.4	131.8 104.2 91.4 67 55.2 54.4	411000		444444 444 444 444 444 444 444 444 444
426459789	111111111111111111111111111111111111111	17 18 19 20 22	23 24 25 26 27 28 30 31	322 333 334 336 336 336 444 422 433
		υ υ υ	0000000 0	0 0 0

Search completed: October 22, 2003, 03:34:38 Job time : 371.905 secs

OM nucleic - nucleic search, using sw model

gb_gss1:* gb_gss2:*	
28: 29:	

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			de				
Result No.		Score	Query Match	Query Match Length	DB	ID	Description
¦ ¦	İ	201	97.1	2477	=	AK030510	AK030510 Mus muscu
		32	ø,	3963	11	AK031693	AK031693 Mus muscu
	Н	249	69.3	3237	11	AK035576	
		96	ė.	950	13	BQ921402	
	2		46.9	920	13	BU523654	
		618.4		712		BB567855	
	۲	614.2		1005	13	BQ070423	
		•	33.5	657		BB628131	BB628131
	თ	59		623		BF577785	
_	10	595.2		748		BF141309	
0	-:	93		200		BU593171	
٦,	vi o	592	32.8	624	12	BM951991	
	m, .			937		BF607509	BF607509 MY1_00045
٠,		0.6	32.T	78/	7 .	BU / UZ 398	BUTUZ398 UI-M-IU-
		567.4		700		CE316393	CESTESSES AGENCOURI
			7.5	2 6	2 5	BO321/33	
9		0.700		7 11 11	7 -	D(2043/3	DOSOOKE 0051-47 M
7 -	0 0	7000	0.00) t	7 .	EGG COGC S	2000
٦ (٠	h C	4.000		1 1 1 1	r -	BA312030 B1654474	~
	2.5	535.4	29.7	648	1 0	BB656106	BR656106 BB656106
				639	- 2	BM946483	
	231	523.4	29.0	782	9 00	AU141757	- 44
17		516	28.6	1346	11	BC007328	BC007328 Homo sapi
		515.8	28.6	830	σ	AU138373	A.
. 7		513.8	28.5	517	10	BE652532	BE652532 UI-M-AMO-
17		510.6	28.3	530	13	BQ830956	
	28	508.6	28.2	710	14	CB723104	. ₽
. 7		508.4	28.2	260	14	CD5 65 243	m
,		504.2	28.0	711	14	BY739988	
•••	31	8		209	12	BI319660	0
··/	32			200	σ	AA880300	>
,	33	O)		629	10	BB662397	
. ,	34	6		009	13	BU925066	
,	35		26.9	487	10	BF535672	
,	36	œ	ġ	634	14	BY740600	0
,	37	m	26.6		10	BE895149	
,	38		ė.		13	BQ745000	
,	39		ė.	630	10	BB617931	
7	10	77.	ė.	664	14	BY726879	
7	41	67.	25.9	469	14	CA531568	
*	42	. 99	•	792	12	BQ042290	0 UI-M E
•	43	63.		474	σ	0079	n 6/00
•	44	455.8	25,3	732	12	en .	
•	15	451.6		626	12	BM737916	BM737916 K-ESE0001

Search completed: October 21, 2003, 21:04:01 Job time : 2848.6 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 08:57:52; Search time 3383.75 Seconds (without alignments) 15995.091 Million cell updates/sec Title: US-09-762-194-3
Perfect score: 1323
Sequence: 1 atgctgttgtctcccaaatt......ccagcatctcacccagatga 1323 Run on:

Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0

2888711 seqs, 20454813386 residues Searched: 5777422 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

GenEmbl: *

1: qb ba: *

2: qb hu; *

4: qb om: *

5: qb ow: *

6: qb pat: *

7: qb ow: *

7: qb ow: *

8: qb pu: *

10: qb ro: *

11: qb rs: *

12: qb rs: *

13: qb rs: *

14: qb rs: *

15: qb rs: *

16: qb rs: *

17: qb rs: *

18: qb rs: qb rs: *

18: qb rs:
em_un:* em_vi:*	em_htg_hum: *	em_htg_other: *	em_htg_mus:*	em htg pln:*	em_htg_rod:*	em htg mam: *	em htg vrt: *	em sy:*	em htgo hum: *	em htgo mus: *	em_htgo_other:*
28:	30:	32:	33:	34:	35:	36:	37:	38:	39:	40:	41:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description		Mus		BC042206 Mus muscu	BC043321 Mus muscu	AY208915 Rattus no	Ношо	AF121259 Homo sapi	AX301208 Sequence	AX210037 Sequence	AX209989 Sequence			AX210061 Sequence	AB033114 Homo sapi	BD160624 Primer fc .	AK024357 Homo sapi	AX209991 Sequence	AL096842 Homo sapi	AX209993 Sequence	Homo	BC033842 Homo sapi	Sedn	Prime	AK000172 Homo sapi	0 Mus	Нопо	Номо	AB018317 Homo sapi	Нопо	AC116511 Mus muscu	AB093263 Mus muscu	AF176665 Xenopus l
ID							AF293357	AF121259	AX301208	AX210037	AX209989	AX209987	AX210064	AX210061	AB033114	BD160624	AK024357	AX209991	HSM800681	AX209993	BC017740	BC033842	AX210002	BD149938	AK000172		HUMZ D67D11	AK093875	AB018317	BC032481	AC116511		AF176665
DB	10	10	10	10	10	10	σı	δ	9	9	9	9	9	o	σ	9	თ	9	σ	ø	σ	თ	9	ø	σ	10	Ø	O)	Ø	σ	2	10	S
s Query Match Length DB	1803	1323	5218	5219	3629	1323	1977	3455	1615	3742	1758	3654	3813	5799	5857	3315	3315	1458	5214	1191	1142	2895	775	830	2548	1229	729	2235	4021	1479	194355	4442	1003
% Query Match	100.0	99.2	91.0	91.0	90.2	89.7	72.3	72.3	72.0	71.2	65.4	65.4	65.4	65.4	65.4	65.4	65.4	65.3	65.3	65.1	45.5	43.1	39.2	39.0	24.6	23.8	18.9	18.9	17.8	17.0	16.3	16.0	15.5
Score	1323	1316.6	1203.4	1203.4	1193.8	1187	956.2	956.2	953	941.8	865.4	865.4	865.4	865.4	865.4	864.6	864.6	863.8	863.8	861.8	602.4	570.2	518	515.8	325.6	315	250.6	250.6	235.4	224.4	216.2	212.2	202.5
Result No.	 	2	m	4	Ŋ	9	7	8	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	c 31	32	33

13.4 192290 9 AF000549 112.9 2333 6 AX210036 12.2 700 6 AX210048 12.1 186901 2 AF267167 12.0 215 6 AX210028
2.9 233 2.2 70 2.1 18690 2.0 21

ALIGNMENTS

AF173380 Mus musculus angiotensin II AT complete cds. AF173380 AF173380.1 GI:5733813 Mus musculus (house mouse) Mus musculus	u	CNNS OF ALL	/ Godon_Starte / product**angiotensin II AT2 receptor-interacting protein" / product**angiotensin II AT2 receptor-interacting protein" / bxref="G1573814" / translation="MLSPR'SLSTIHVRLTAKGLLRNIRLPSGLRKNTVIFTYTKEG RGNPRSLCIQTQTAPDVISSERTLELAQYKTKCESQSGFILHIRQLISRGNNKFEAL TVYQHILSREEBALKGHKTLSSENASKERDVASSERTAREADATXYGETQ KINGQHQDFELENARLDYTARCEKLOSTYIEBAGKWFGLOSGSFINIAN-HETTR LEIEASHSEKVELIKKTYETSLSEIKKSHENBEKKSLEDLINEKQESLEKQINIJAHTTR
RESULT 1 AF173380 LOCUS DEFINITION ACCESSION VERSTON KEYWORDS SOURCE ORGANISH	REFERENCE AUTHORS TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL	FEATURES SOUFCE CDS	

DALNERLKSEEGKQLSREKANSKNPÇVAYLEQELESLKAVLEIKNEKLHQQDMKLAKM EKLYNYTALVDKLKREQCERRELKANDKHVALISRQLSTEGAALQESLEKESKVNKR LSWENEELLWKTHODLCSPKRETSSALPFQSPRNSGSFSSPSISPR" 1 464 — 440 g 360 t đ 539

ö 477 237 120 160 240 417 300 537 420 597 540 717 600 777 9 837 720 297 35.7 GCGCTGACAGIIGIGAICCAGCACCICCIGICIGAGCGGGGGGAAGCACIGAAGCAACAC 360 897 9 AAACTAAACCAGCAGCAT CAGACAGACGGACGGAACTGGAGAACCGGCTGAAGGACTTA 658 AAACTAAACCAGCATCAGACAGACCGGACGGAACTGGAGAACCGGCTGAAGGACTTA 601 ACTCAACTGCAAGAGCAGTTTGACAACTTAAACGCCGCCCATGAGGCCACCACTAAGCTTGAG 1 ATGCTGTTGTCTCCCAAATTCTCCTTATCCACCATCCACGTCCGCCTAACCGCCAAAGGA CTGCTTCGAAACCTCCGGCTTCCTTCGGGGCTCAGGAAAAACACTGTCATTTTCCACACA GATGTGCTGTCCTCCGAGAGAACGCTTGAGTTGGCCCAATACAAGACAAAATGTGAAAAGC 241 CAAAGIGGAIICAICCIGCACCICAGGCAGCIICTIICCCGIGGIAACAACAAGIIIGAA TACACCGCAGAGTGTGAGAAGCTTCAGAGCATTACATTGAGGAGGCAGAAAAATATAAA 661 ATTGAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAGACGTATGAAACCTCCCTT Gaps 100.0%; Score 1323; DB 10; Length 1803; ; 0 Indels 0, 0; Mismatches Pred. No. 0; 100.08; Conservative Similarity Matches 1323; 178 61 238 181 358 418 301 478 481 541 Query Match Best Local (BASE COUNT ORIGIN δ g ô qq 6 음 ζ g δ 셤 ò 음 ò 염 8 ద ò ద 5 ò g δ 임

Qy 7	721 ICAGAAATCAAGAAGACCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAG 780
Db da	898 ICAGAAAICAAGAGAGCCAIGAGAGAGGAGAAGAGTCACTGGAGGATCTGCTTAAIGAG 957
Qy 7	781 AAGCAGGAATCGCTGGAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAAC 840
Db da	958 AAGCAGGAAICGCIGGAGAAACAAICAAIGAACGAAGAGGAAAACGAIGCTIIAAAC 1017
Qy 8	841 GAAAGGIIGAAATCAGAGGAGAAAAAGCAACIGTCAAGAGAGAAGGGCGAAITCCAAAAAC 900
Db 10	018 GAAAGGTIGAAATCAGAGGAGCAAACGTCTCAAGAGAGAGGGGAATCCAAAAAC 1077
QY 9	901 CCTCAGGTCATGTATCTGGAGGAGGAAGAAGCCTGAAGGCTGTTAGAGATCAAG 960
Db 10	078 CCTCAGGICATGTATCTGGAGGAAGAACTAGAAAGCCTGAAGGCTGTGTTAGAGATCAAG 1137
Qy 9	961 AATGAGAAGCTGCACCAGCAGCACGAAGCTAATGAAGATGGAAAAGCTGGTGGACAAT 1020
Db 11	1138 AATGAGAAGCTGCAGCAGAGATGAAGGTAATGAAGATGAAAAGCTGGTGGACAAT 1197
Qy 10	1021 AACACAGCATTGGTTGACAAGCTGAAGCGATTCCAGCAGAAAACGAGGAGTTAAAAGCT 1080
Db 11	1198 AACACAGGATTGGTGACAAGCGAGGATTCCAGCAGGAAACGAGGAGTTAAAAGCT 1257
Qy 10	081 CGCAIGGACAAAACACATGGCAAIITCAAGGCAACTITCCACCGAGCCAGGCCGCGCIGCAA 1140
Dio 12	258 GGAIGGAGAAACACAIGGCAAITTCAAGGCAACTITCCACCGAGGAGGGCGCGCGCTGCA-1317
Qy 11	1141 GAGFOCCTTGAGAAGGAGGTCAACAAGAGACTGFCCATGGAGAACGAGGAACTT 1200
Db 13	318 GAGTCCCTTGAGAAGGAGCAAAGAGCAACAAGAGAGTCATGGGGGAAGGAGGAAGGA
Qy 12	201 CTGTGGAAACTGCACAACGGGAACCTGTGCAGCCCCAAGAGATCCCCCACCTCCTCGGCC 1260
Db 13	1378 CIGIGGAAACIGCACAACGGAGACCCGAGAGAGAICCCCCAACACAGCCCCAACAAGAICCCCCACCTCGGCC 1437
Qy 12	261 ATOCCITICCAGICCCCCAGGAATICTGGTTCCTTCTCCAGCCCCAGCATCTCACCCAGA 1320
Db 14	438 ATOCCITICCAGIOCOCCAGGAATTOTGGTTCCTTCTCCAGCOCCAGGATTCTCACCCAGA 1497
Qy 13	1321 TGA 1323
Db 14	498 TGA 1500
RESULT 2 AY246699 LOCUS	AY246699 1323 bp mRNA linear ROD 1C-APR-2003
DEFINITION ACCESSION VERSION	Mus musculus MTSG1 mRNA, complete cds. AY246699 AY246699.1 GI:29725653
KEYWOKUS SOURCE ORGANISM	Mus musculus (house mouse) Mus musculus (house mouse)
	nos masoumas Bukaroa; Chordata; Craniata; Vertebrata; Euteleostomi; Bukaryota; Marmalia; Eutheria; Rodentia; Sciurognathi; Muridae; Musi.

	361 AAAACCTCTCTCAAGAACTTGTCAGCCTCCGGGGGAGAGAGTTGTTGTTTTTTTT	421 TGTGAGAGGTAGAGAGTGGGCTGACTTACAGACAGGGTATCAGAATTGTCCA 480	481 AAACTAAACCAGCATCAGACAGACGGGAACTGGAGAACGGCTGAAGGACTTA 540	481 AAACTAAACCAGCAGCATCAGACAGACGGAACGGAACTGGAGAACCGGCTGAAGGACTTA 540	541 TACACCGCACAGAGAGGAGGAGGAGGAGGATTTACATTTACAGGAGGAGGAAAAAAAA		541 TACACCGCAGAGTGTGAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATATAAA 600	601 ACTCAACTGCAAGAGCAGTTGACAACTTAAACGCCGCCCATGAGCTTGAGCTTGAG 660	601 ACTCAACTGCAAGAGCAGTTTGACAACTTAAACGCCGCCCATGAGACCACTAAGCTTGAG 660	661 AITGAACCIAGCCACICGGAGAAGGTGGAAITGCIGAAGAAGACCTAIGAAACCICCTI 720	661 ATTGAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAAGACCTATGAAACCTCCCTT 720	721 TCAGAAATCAAGAAGAGCCATGAGATGAGAGAGAGTCACTGGAGGATCTCCTTAATGAG 780	721 ICAGAAAICAAGAAGACCAIGAGAIGGAGAAGAAAGAACACTGGAGAICTGCTIAAIGAG 780	781 AAGCAGGATCGCTGGAGAAACAATGATGATCTGAAGAGTGAAAACGATGCTTTAAAC 840	781 AAGCAGGAATCGCTGGAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAAC 840	GAAAGGTTGAAATCAGAGGAGAAAAGCAACTGTCAAGAGAAGGGGAAGTTCCAAAAAC	841 GAAAGGIIGAAAICAGAGGAAGGAAAGCAACIGICAAGAGAGAG	901 CCTCAGGTCATGTATCTGGAGCAAGAACTAGAAGCCTGAAGGCTGTGTGGAGATCAAG 960	くくこくからしょうじょうしょう こうしん こうさん こうさん こうさん こうさん こうさん こうさん こうさん こうさ		ייין מעטעטעט דייין מייין אייין מעטעטעט דייין מעטעטעטעט דייין מעטעטעט דייין מעטעטעטעט דייין מעטעטעטעט דייין מעטעטעטעטעט דייין מעטעטעטעטעטעטעטעטעטעטעטעטעטעטעטעטעטעטעט	MACACAGASTIGSTIGSTIGSTIGSTIGSTIGSTIGSTIGSTIGSTIG		1081 CGCATGGACAACACATGGCAATTTCAAGGCAACTTTCCACCGAGCAGCGGCTGCA- 1140	כפלאו פפאטאיאילאני וויכאפפילאני וויכאפיליפיליפיליפיליפיליפיליפיליפיליפיליפיל	1141 GAGICCTIGAGAAGGAATCAAGAAGAAGACGAGAAACAGGAAATT. 120 HIIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Db Qy	qü	Q. dg	δy	đ	òC	7	QΩ	QY	ΩP	٥٨	qū	67	ΩÞ	٥٧	QQ	¢y.	g	Qy	3 6	Ž Ž	3 (ें ह	ga	Å å	en i	δō
	<pre>2 (bases 1 to 122) Sibold, S., Wanner, C. and Galle, J. Nivert Chimission</pre>			/moi_type="mkNA" /strain="C57BL/6N"	/db_xref="taxon:10090" /rhromosome="R"	11323	/codon_start=1 /product="MmgG1"	/protein_id="MA088908.1"	/ dd_xref=~c1;2/c2o34~ /translation="WLLSPKFSLSTHVRLTAKGLIRNLRLPSGLRNTVIFHTVEKG	ROKNPRSLCIQTQTAPDVLSSERTLELAQYKTKCESQSGFILHLRQLLSRGNTKFEAL TVVIQHLLSEREEALKQHKTLSQELVSLRGELVAASSACEKLEKARADLQTAYQEFVQ	KINÇQEÇIDNIELENRIKDIYTAECEKLQSIYIEBABEYYYÇUQEQE'DNUNAAHETIK LEIEASHSEKVELLKKTYETSISEIKKSHEMEKKSLEDLINEKQESLEKQINDLKSEN	DAINERIKSEEQKOISREKANSRAPQVMYIEQELESIKAVLEI KNEKLHQQDMILMM EKLYRNYDLUVRIKREQQENEELKAMPKHAM ISROLSTEQAALQESIEKESKVNKR 1 OMNYDTI MYTHAMTI CEDOEDR GA TODOODBANGGEGEGEGEGEGE	427 a	Match 99.5%; Score 1316.6; DB 10; Lendth 1323;	Similarity 99.7%; Pred. No. 0; 9: Conservative 0: Mismatches	SCIGIIGICICCCAAAIICICCIIAICCACCAICCACGICGCCIAACGCAAAGA 60	1 ATGCTGTTGTCTCCCAAATTCTCCTTATCCACCATCCAGGTCGGCCTAACGGCAAAGGA 60	61 CTGCTTCGAAACCTCCGGCCTTCCGGGCTCAGAAAACACTGTCATTTTCCACACA 120	61 CTGCTTCGAAACCTCCGGCTTCCTTCGGGGCTCAGGAAAAACACTGTCATTTCCACACA 120	121 GTTGAAAAGGCCAGGCAGAATCCCAGGAGCCTGTGCATCCAGACCCAGACAGCTCCA 180	121 GITGAAAAGGCAGGCAGAAGAAICCCAGGAGCCIAIGCAICCAGACCCAGACCCAGCCCA 180	181 GATGIGCTGTCCTCCGGAGAGGCTTGACTTGGCCCAATACAAGACAAAATGTGAAAGC 240	181 GATGTGCTCCCCGAGAGAGCTTGAGTTGGCCCAATACAGAGAAARGTGAAAGC 240	241 CAAAGIGGAITCAICCIGCACCICAGGCAGCIICIIIOCOGIGGIAACAACAAGIITGAA 300	241 CAAAGTGGATTCATCCTGCACCTCAGACAGCTTCTTTCCCGTGGTAACACCAAGTTTGAA 300	301 GOGCTGACAGTTGTGATCCAGGACCTCCTGTCTGAGCGGGAGGAAGCACTGAAGGAACAC 360
REFERENCE AUTHORS TITLE JOURNAL	AUTHORS	JOURNAL	acinos			CDS							BASE COUNT	Query Match	Best Lo	٥٧	qu	۵y	Db	٥y	Dio	٥y	QQ	٥y	Dlo	Qy

Search completed: October 21, 2003, 17:17:54 Job time : 3388.75 secs	ch complet	Searc Job t
1321 TGA 1323	1321	q
1321 TGA 1323	1321	QY
1261 ATOCTITICAGICCCCCAGGAATTCIGGTTCCTICTCCAGCCCCAGCATCTCACCAGA 1320	1261	q
1261 ATCCCTTTCCAGTCCCCCAGGAATTCTGGTTCCTTCTCCAGCCCCAGCATCTCACCGAGA 1320	1261	Qy
	1201	g
1201 CTGTGGAAACTGCACAACGGAGACCTGTGCAGCCCCAAGAGATCCCCCACCTCCTCGGCC 1260	1201	Qy
1141 GAGTOCCTTGAGAAGGAGTCAAAGGTCAACAAGAGACTGTCCATGGAGAAAGGAACTT 1200	1141	g

OM nucleic - nucleic search, using sw model

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution

derived by analysis of the total score distribution.	
score	
Total	
the the	
Ö	
analysis	
ģ	
derived	
5	
and 15	

SUMMARIES

RESULT 1

Description	Mouse ATIP coding	Mouse ATIP gene.	u	Human ATIP coding	Human ATIP gene.	Nucleotide sequenc		tide	CDNA	Human cDNA #76 dif	Human cDNA sequenc	Nucleotide sequenc	Nucleotide sequenc	Nucleotide sequenc				otide		secre	ALIB			депош	CDNA e	novel	n cDNA			Human cDNA sequenc	Nucleotide sequenc	Nucleotide sequenc	Nucleotide sequenc		Human prostate exp	Nucleotide sequenc	Human colon cancer	Nucleotide sequenc	Nucleotide sequenc	cDNA encoding huma	Nucleotide sequenc	Nucleotide sequenc	Nucleotide sequenc	Human G-protein co	Human cDNA sequenc
ID	'	AAZ	AAS9	•	AAZ99	AAH743	AAH74		Ċ			AAH74322		•	•	•	•	•			•			•	•			•		•		•	•		ABV48		,	AAH74		ABK099		AAH743	AAH7436	AAD088	AAH18194
Length DB	8	~		m	٠.	٠.	·			_	3315 22	<u>.</u>	1458 22	•	5961 22	191	910 24		830 22	87		656 22	656 25	 .		_ ·		ים ו	0	242	2333 22			338 21		-	7	3	900 2	2 2	2	00 2	120 2	1370 22	666
% Query Match L	100.0		72.0			٠	•	•			65.4	•	65.3	65.3	65.2	65.1	48.7	39.2	39.0	34.8	26.8	25.9	25.9	25.5	23.0	23.0	17.8	16.1	m	e,	12.9	'n		e. 6	۲.6	8.1	7.9	7.8	7.1	•	7.1		7.0	6.9	6.9
Score	1323	N	953		941.8								863.8		862.2	861.8	644.8		515.8	460	354	342.2	342.2	337		304.6	235.4	212.8	176.8	174.8	170.8	162	159	130	12	106.6	04.	05.	94.2	4.	٠ ش	e,	95.8	:	•
Result No.	1	2	ო	4	S.	9	7	ω .	თ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	52	26	27	28	53	c 30	31	32	33	34	32	36	37	38	39	c 40	41	42	43		45

ALIGNMENTS

```
1 AIGCIGITGICICCCAAAIICTCCIIAICCACCAICCACGICCGCCIAACGCCAAAGGA 60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             This sequence represents the open reading frame (ORF) of the cDNA encoding a mouse angiotensin II (AT2) receptor interactive protein (ATIP). The gene was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AT2 receptor as the "bait" (AAY8378). The "target" is a mouse foctal CDNA library. Cells transformed with vectors containing the cDNA, or immobilized proteins encoded by it, can be used to screen for substances that modulate ATIP-AT2 interact: or substances that interact with ATIP, especially using yeast two-rethree-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0; Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Query Match 100.0%; Score 1323; DB 21; Length 1323; Best Local Similarity 100.0%; Pred. No. 0; Matches 1323; Conservative 0; Mismatches 0; Indels 0;
                                                                                                                                          Mouse, angiotensin, AT2 receptor interactive protein; ATIP; ss; two-hybrid screen; signal transduction; coding sequence.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Sequence 1323 BP; 425 A; 326 C; 325 G; 247 I; 0 other;
                                                                                                                                                                                                                                                                                                                                                                                                                  Elbaz N, Nahmias C, Strosberg AD;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Claim 1; Page 30-31; 63pp; French.
AAZ99089 standard; cDNA; 1323 BP.
                                                                                                                                                                                                                                                                                                                                                                                (CNRS ) CNRS CENT NAT RECH SCI.
                                                                                                                                                                                                                                                                                                            98FR-0009997.
                                                                                                                                                                                                                                                                                                                                              98FR-0009997.
                                                                                                        Mouse AIIP coding sequence.
                                                                    21-JUN-2000 (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                                                                  WPI; 2000-248410/22.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       P-PSDB; AAY83777.
                                                                                                                                                                                                                                   FR2782084-A1.
                                                                                                                                                                                                                                                                                                            04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                            04-AUG-1998;
                                                                                                                                                                                                                                                                       11-FEB-2000.
                                  AAZ99089;
                                                                                                                                                                                               Mus sp.
                                    õ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           음
```

```
540
                                                                                                                                                                                                                                                                                                                                              (178
                                                       240
                                                                                   300
                                                                                                 300
                                                                                                               360
                                                                                                                             360
                                                                                                                                           420
                                                                                                                                                        420
                                                                                                                                                                      480
                                                                                                                                                                                   480
                                                                                                                                                                                                                540
                                                                                                                                                                                                                               600
                                                                                                                                                                                                                                             600
                                                                                                                                                                                                                                                           999
                                                                                                                                                                                                                                                                         099
                                                                                                                                                                                                                                                                                       720
                                                                                                                                                                                                                                                                                                    720
                                                                                                                                                                                                                                                                                                                  780
                                                                                                                                                                                                                                                                                                                                780
                                                                                                                                                                                                                                                                                                                                                                          900
                                                                                                                                                                                                                                                                                                                                                                                         900
                                                                                                                                                                                                                                                                                                                                                                                                      CCTCAGGTCATGTATCTGGAGCAAGAACTAGAAAGCCTGAAGGCTGTGTTAGAGATCAAG 960
                                                                                                                                                                                                                                                                                                                 TACACCGCAGAGTGTGAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATATAAA
                                                                                                                                                                                                                                      CIGCTTCGAAACCTCCGGCTTCCTTCGGGGCTCAGAAAAACACTGTCATTTTCCACACA
                           GTTGAAAAGGGCAGGCAGAAAATCCCAGGAGCCTGTGCATCCAGACCCAGACAGCTCCA
                                                       GATGTGTGTCCTCCGAGAGAGCCTTGAGTTGGCCCAATACAAGACAAAATGTGAAAGC
                                                                                   CAAAGTGGATTCATCCTGCACCTCAGGCAGCTTCTTTCCCGTGGTAACAACAAGTTTGAA
                                                                                                               GCGCTGACAGTTGTGATCCAGCACCTCCTGTCTGAGCGGGGGGGAGGAAGACACAC
                                                                                                                                          361 AAAACCTCTCTCAAGAACTTGTCAGCCTCCGGGGAGAGCTAGTTGCTGCTTCAAGCGCC
                                                                                                                                                                     AAACTAAACCAGCAGCATCAGACAGACGGACGGAACTGGAGAACGGGCTGAAGGACTTA
                                                                                                                                                                                                                                                          601 ACTCAACTGCAAGAGCAGTTTGACAACTTAAACGCCGCCCATGAGACCACTAAGCTTGAG
                                                                                                                                                                                                                                                                                      661 ATTGAAGCTAGCCACTCGGAGAAGTGGAAATTGCTGAAGAAGACCTATGAAACCTCCCTT
                                                                                                                                                                                                                                                                                                                                              AAGCAGGAATCGCTGGAGAAACAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAAC
61
            61
                                       121
                                                       181
                                                                    181
                                                                                                241
                                                                                                              301
                                                                                                                            301
                                                                                                                                                       361
                                                                                                                                                                      421
                                                                                                                                                                                   421
                                                                                                                                                                                                 481
                                                                                                                                                                                                               481
                                                                                                                                                                                                                             541
                                                                                                                                                                                                                                            541
                                                                                                                                                                                                                                                                        601
                                                                                                                                                                                                                                                                                                   661
                                                                                                                                                                                                                                                                                                                  721
                                                                                                                                                                                                                                                                                                                               721
                                                                                                                                                                                                                                                                                                                                             781
                                                                                                                                                                                                                                                                                                                                                           781
                                                                                                                                                                                                                                                                                                                                                                          841
                                                                                                                                                                                                                                                                                                                                                                                                      901
                                                                                                                                                                                                                                                                                                                                                                                        841
ò
           g
                          ò
                                     g
                                                  \delta
                                                                  ద
                                                                                             음
                                                                                                            S a S
                                                                                                                                                    90
53
90
                                                                                                                                                                                                S a
                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                        QQ
                                                                                                                                                                                                                                                    8
                                                                                                                                                                                                                                                                                 $
                                                                                                                                                                                                                                                                                                80 Y
                                                                               ò
                                                                                                                                                                                                                                                                   엄
                                                                                                                                                                                                                                                                                                                          ద
                                                                                                                                                                                                                                                                                                                                            δ
                                                                                                                                                                                                                                                                                                                                                        음
                                                                                                                                                                                                                                                                                                                                                                     8
                                                                                                                                                                                                                                                                                                                                                                                     g
```

```
AATGAGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAAGCTGGTGGACAAT
                                     GAGT CCCTTGAGAAGGAGTCAAGAGAGAGAGACTGTCCATGGAGAAGGAACTT
                                                                                                                                                                                          CIGIGGAAACTGCACAAAGGGAACCTGTGCACCAAGAAAATCCCCCAACTCCTCGGC
                                                                AACACAGCATTGGTTGACAAGCTGAAGCGATTCCAGCAGAAAACGAGGAGGTTAAAAGCT
                                                                                                     CGCATGGACAAACACATGGCAATTTCAAGGCAACTTTCCACCGAGCAGGCGGCGCGCTGCAA
                                                                                                             CTGTGGAAACTGCACAACGGAGACCTGTGCAGCCCAAGAGATCCCCCACCTCCTCGGCC
                                                                                                                                            GAGTCCCTTGAGAAGGACTCAAAGGTCAACAAGAGACTGTCCATGGAGAACGAGGAACT
                                                                                                                                                                                                                     ATCCCTTTCCAGTCCCCCAGGAATTCTGGTTCCTTCTCCAGCCCCAGCATCTCACCCAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         /*tag= a
/product= "ATIP"
/note= "ATIP" (AT2) receptor interactive
protein"
                                                                                                                                                                                                                                                                                                                                                                                                          58;
                                                                                                                                                                                                                                                                                                                                                                                                       iotensin; AT2 receptor interactive protein; AT1F; screen; signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                      Location/Qualifiers
                                                                                                                                                                                                                                                                                                                             BP.
                                                                                                                                                                                                                                                                                                                            AAZ99088 standard; cDNA; 1803
                                                                                                                                                                                                                                                                                                                                                                   entry)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        /*tag=
                                                                                                                                                                                                                                                                                                                                                                  21-JUN-2000 (first
                                                                                                                                                                                                                                                                                                                                                                                                       angiotensin;
                                                                                                                                                                                                                                                                     |||
TGA 1323
                                                                                                                                                                                                                                                          TGA 1323
                                                                                                                                                                                                                                                                                                                                                                                     Mouse AIIP gene.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FR2782084-A1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11-FEB-2000.
                                                                                                                                                                                                                                                                                                                                                                                                                two-hybrid
                                                                                                                                           1141
                                                                                                                                                             1141
                                                                                                                                                                                                  1201
                                                                                                                                                                                                                                                          1321
         901
                           961
                                             196
                                                               1021
                                                                                                                                                                                                                     1261
                                                                                                                                                                                                                                                                                                                                               AAZ99088;
                                                                                                     1081
                                                                                                                                                                                1201
                                                                                                                                                                                                                                                                             1321
                                                                                                                                                                                                                                                                                                                                                                                                                                   gb.
                                                                                                                                                                                                                                                                                                                                                                                                       Mouse;
                                                                                                                                                                                                                                                                                                      ò
                                                                                 Ор
                                                                                                                    ద
                                                                                                                                                            ద
                                                                                                                                                                                             음
                                                                                                                                                                                                                                     g
                                                                                                                                                                                                                                                          ò
                                                                                                                                                                                                                                                                           a
                           Š
                                              g
                                                                                                     à
                                                                                                                                         ò
                                                                                                                                                                               8
                                                                                                                                                                                                                    à
```

Strosberg AD; (CNRS) CNRS CENT NAT RECH SCI. 98FR-0009997. 98FR-0009997. Elbaz N, Nahmias C, 2000-248410/22. 04-AUG-1998; 04-AUG-1998; WPI;

proteins useful in screening assays for receptor-protein interaction receptor AT2 interacting Nucleic acids coding for angiotensin II

P-PSDB; AAY83777.

Claim 1; Fig 3; 63pp; French.

This sequence represents the cDNA encoding a mouse angiotensin II (AIZ) receptor interactive protein (AIIP). The gene was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AIZ receptor as the "bait" (ANYB3781). The "target" is a mouse foetal cDNA library. Cells transformed with vectors containing the cDNA, or immobilized proteins encoded by it, can be used to screen for substances that interact with AIIP, especially using yeast two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.

Sequence 1803 BP; 539 A; 464 C; 440 G; 360 T; 0 other;

ò 237 120 297 180 417 357 GATGTGCTGTCCTCCGAGAACGCTTGAGTTGGCCCAATACAAGAAAATGTGAAAGC 240 360 CAAAGTGGAITCAICCIGCACCICAGGCAGCIICTIICCCGIGGIAACAACAAGIIIGAA 477 9 GTTGAAAAGGGCAGGCAGAAAATCCCAGGAGCCTGTGCATCCAGACCCAGACAGCTCCA 1 ATGCTGTTGTCTCCCAAATTCTCCTTATCCACCATCCACGTCCGCCTAACCGCCAAAGGA CTGCTTCGAAACCTCCGGCTTCGGGGGCTCAGGAAAAACACTGTCATTTTCCACACA CAAAGTGGATTCATCCTGCACCTCAGGCAGCTTCTTTCCGTGGTAACAACAAGTTTGAA GCGCTGACAGTTGTGATCCAGCACCTCCTGTCTGAGCGGGGGGAAGCACTGAAGCAACAC 0; Gaps 100.0%; Score 1323; DB 21; Length 1803; 100.0%; Pred. No. 0; 0; Indels 0; Mismatches Matches 1323; Conservative Similarity 178 61 238 121 298 181 358 241 418 301 478 Local 8 QQ ò 임 δ g δ ద Š g 5

AATGAGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAAGCTGGTGGACAAT 1020 540 361 AAAACCTCTCTCAAGAACTIGTCAGCCTCCGGGGAGAGCTAGTIGCTGCTTCAAGCGCC 420 TGTGAGAAGCTAGAAAAGGCTAGGCTTACAGACAAGAGTATCAAGAATTTGTCCAG 480 598 TGTGAGAAGCTAGAAAGGCTAGGGCTGACTTACAGACAGCGTATCAAGAATTTGTCCAG 657 600 720 780 658 AAACTAAACCAGCAGCATCAGACAGGACGGAACTGGAGAACCGGCTGAAGGACTTA 717 601 ACTCAACTGCAAGAGCAGTTTGACAACTTAAACGCGGCCCATGAGACCACTAAGCTTGAG 660 837 181 AAACTAAACCAGCAGCATCAGACAGACGGACGGAACTGGAGAACCGGCTGAAGGACTTA 718 TACACCGCAGAGTGTGAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATATAAA ATTGAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAAGACCTATGAAACCTCCCTT 838 ATTGAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAAGACCTATGAAACCTCCCTT TCAGAAATCAAGAAGAGCCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAG 781 AAGCAGGAATCGCTGGAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAAU CCTCAGGTCATGTATCTGGAGGAAGTAGAAAGCCTGAAGGCTGTGTTAGAGATCAA 1138 AATGAGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAAGCTGGTGGACAAT AACACAGCATTGGTTGACAAGCTGAAGCGATTCCAGCAGGAAAACGAGGAGGTAAAAGCT GAGICCCTTGAGAAGGACTCAAAGGTCAACAAGAGACTGTCCATGGAGAACGAGGAACTT 1141 121 199 721 901 961 1021 1801 à 음 ò 용 Ω g 2 셤 $^{\circ}$ 윰 δ 임 8 움 ò g g ò 8 g 2 셤 9 셤 9 윰 à 셤

Qγ	1201 CTC	1201 CTGTGGGAAACTGCACAACGGAACCTGTGCAGCCCAAGAGATCCCCCACTCGCCC 12:50
qu	1378 CTG	1378 CTGTGGAAACTGGAACGGAGACTGTGCAGGCCCAAGAGATCCCCACCTCCTCGGCC 1437.
٥x	1261 ATC	1261 ATCCTITICGAGICCCCGGGAATTCTGGTTCCTTCCAGCCCGAGGATCTCACCGGA 1320
đ	1438 ATC	1438 AICCTITCCAGICCCCCAGGAAIICIGGITCCTICTCCAGCCCCAGCAICTCACCCAGA 1497
δy	1321 TGA 1323	1 1323
Q	1498 TGA 1500	1500
Search o	Search completed: Octobe Job time: 259.382 secs	Search completed: October 21, 2003, 11:11:03 Job time : 259.382 secs

OM nucleic - nucleic search, using sw model

October 21, 2003, 17:18:24 ; Search time 270.694 Seconds (without alignments) 13107.130 Million cell updates:sec Run on:

Title:

US-09-762-194-3 1323 1 atgotgttgtctcccaaatt......ccagcatctcacccagatga 1323 score: Sequence: Perfect

Scoring table:

IDENTITY_NUC Gapop 10.0 , Gapext 1.0

Total number of hits satisfying chosen parameters:

1792395 seqs, 1340900451 residues

Searched:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

Published Applications NA:*

1: /cgn2_6/prodata/1/pubpna/USO7_PUBCOMB.seq:*
2: /cgn2_6/prodata/1/pubpna/USO6_NEW_PUB.seq:*
3: /cgn2_6/prodata/1/pubpna/USO6_NEW_PUB.seq:*
4: /cgn2_6/prodata/1/pubpna/USO6_NEW_PUB.seq:*
5: /cgn2_6/prodata/1/pubpna/USO8_NEW_PUB.seq:*
7: /cgn2_6/prodata/1/pubpna/USO8_NEW_PUB.seq:*
7: /cgn2_6/prodata/1/pubpna/USO8_NEW_PUB.seq:*
8: /cgn2_6/prodata/1/pubpna/USO8_NEW_PUB.seq:*
9: /cgn2_6/prodata/1/pubpna/USO8_NEW_PUB.seq:*
10: /cgn2_6/prodata/1/pubpna/USO9_PUBCOMB.seq:*
10: /cgn2_6/prodata/1/pubpna/USO9_PUBCOMB.seq:*
11: /cgn2_6/prodata/1/pubpna/USO9_NEW_PUB.seq:*
12: /cgn2_6/prodata/1/pubpna/USO9_NEW_PUB.seq:*
13: /cgn2_6/prodata/1/pubpna/USO9_NEW_PUB.seq:*
14: /cgn2_6/prodata/1/pubpna/USIOB_PUBCOMB.seq:*
15: /cgn2_6/prodata/1/pubpna/USIOB_PUBCOMB.seq:*
16: /cgn2_6/prodata/1/pubpna/USIOB_PUBCOMB.seq:*
16: /cgn2_6/prodata/1/pubpna/USIOB_PUBCOMB.seq:*
17: /cgn2_6/prodata/1/pubpna/USIOB_PUBCOMB.seq:*
16: /cgn2_6/prodata/1/pubpna/USIOB_PUBCOMB.seq:*
17: /cgn2_6/prodata/1/pubpna/USIOB_NEW_PUB.seq:*
17: /cgn2_6/prodata/1/pubpna/USIOB_NEW_PUB.seq:*
17: /cgn2_6/prodata/1/pubpna/USIOB_NEW_PUB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Sult Query No. Score Match Length DB Result

Description

Sequence 76, Appl		e 342,	5132,		12481,	o)		5569,		132, A	Sequence 1, Appli	Sequence 22859, A		62		74,		20733	3972,	887,			256	886,	933, 7	246		18355,	Sequence 6203, Ap	22817	157,	157,	157,	12, 1	Sequence 35, Appl		ø			17529,	Sequence 1670, Ap	18684,	20,
US-10-044-090-76	-09-764-	-09-764-864-3	-09-918-995-5	US-08-983-965-3690	US-09-918-995-12481	US-10-027-632-85144	US-09-918-995-11578	Ø	US-09-998-598-2218	302-	US-10-294-804-1	US-10-029-386-22859	US-10-029-386-19974	US-10-029-386-6243	US-10-004-113-7	-7	9/	US-09-864-761-20733	US-09-864-761-3972	-823-88	US-09-764-853-937	US-10-091-438-250	US-10-091-438-256	US-09-764-853-886	US-09-764-853-933	US-10-091-438-246	US-10-091-438-255	US-09-864-761-18355	US-09-864-761-6203	US-09-864-761-22817	-09-738-973	\vdash	-10-144-645	US-09-764-868-12	US-10-233-045-35	US-10-001-870-68	-10-029-386-123	US-10-029-386-26033	US-09-938-842A-85	US-09-864-761-17529	US-10-311-455-1670	761-	US-09-771-208-20
133	10	10	H	10	17	13	11	11	10	on	12	12	12	12	12	13	13	σ	σ	σ	σ	14	14	თ	6	14	14	6	6	თ	10	10	14	10	12	13	12	12	10	9	12	6	10
4937	916	481	ന	435	444	1117	440	464	133	567	3489	628	536	599	32069	720	720	575	1969	8895	8895	8895	8895	9656	9656	9656	9656	423	475	51	2313	2313	2313	2314	2802	3809	541	1040	1371	700	6668	272	659158
in 0	0.50	23.0	0	16.1	12.0	11.9	10.0	9.0	7.9	•	5.1	4.2		•		•	3.9	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.7	•	٠		•			3.6	3.6	3.5	3.5		3.5	•	3.5	3.4
865.4		304.6	271.4	212.8	159.4	156.8	131.8	119.6	104.2	91.4	67	55.2	54.4	54.4	54.2	51.8	Н	50.2	50.2	49.8	49.8	49.8	49.8	49.8	49.8	49.8	49.8	49.6	49.4	49.4	48.2	48.2			48.2	47		46.6	46.6	46.2	46	45.8	45.6
~ (4 (*	4	r)	9	7	œ	σ	10	11	12	13	14		16		18	19	20			23	24	25	56		28	29	30	31	32		34	35	36	37	38	39	40	41	42	43	44	45
															υ		o			o	υ	υ	o	υ	υ	υ	o		o	U												o	O

Search completed: October 22, 2003, 03:34:41 Job time: 273.694 secs

OM nucleic - nucleic search, using sw model

October 21, 2003, 09:08:27; Search time 2085:84 Seconds (without alignments) 15415.787 Million cell updates/sec Run on:

Title: US-09-762-194-3
Perfect score: 1323
Sequence: 1 atgetgttgtetcccaaatt......ccagcatctccccagatga 1323

Scoring table: IDENTITY_NUC Gapext 1.0

22781392 seqs, 12152238056 residues Searched:

Total number of hits satisfying chosen parameters:

45562784

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database:

EST:*

: em_estba:*
2: em_esthum:*
3: em_esthum:*
5: em_estrum:*
6: em_estru:*
7: em_estro:*
8: em_estro:*
10: gb_est1:*
11: gb_htc:*
11: gb_est2:*
11: gb_est3:*
11: gb_est4:*
11: gb_est4:*
11: gb_est4:*
11: gb_est5:*
11: gb_est6:*
11: gb_est6:*
11: gb_est7:*
11: gb_est7:*
11: gb_est7:*
11: gb_est7:*
11: gb_est7:*
12: gb_est7:*
13: gb_est7:*
14: gb_est7:*
15: em_gss_Inn:*
16: em_gss_Inn:*
17: em_gss_Inn:*
18: em_gss_Inn:*
18: em_gss_Inn:*
19: em_gss_Inn:*
19: em_gss_Inn:*
10: em_gss_Inn:*
11: em_gss_Inn:*
12: em_gss_Inn:*
13: em_gss_Inn:*
14: em_gss_Inn:*
15: em_gss_Inn:*
16: em_gss_Inn:*
17: em_gss_Inn:*
18: e

28: gb_gssl:* 29: gb_gss2:* Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	Description	AK030510 Mus muscu	AK031693 Mus muscu		•		•			BUDZ3634 AGENCUUKI			Bx512030 RZPD Mus	AU141757 AU141757	BC007328 Homo sapi	AU138373 AU138373		BQ830956 LL6in1027			BI319660 ie14a05.y	>		BE895149 601436077	\supset			CASSONS KUZINEUST						BU387252 603858971	_	BE552421 hw26b02.x					BU344537 603522603	AU131191 AU131191	BB656106 BB656106	AI466472 vx39f05.y
	ID	AK030510	AK031693							BU323634			BX512030	AU141757	BC007328	AU138373		BQ830956				K			AA9800/9			CA336838						BU387252		BE552421	BE449013			BQ893803	BU344537	<,		A1466472
	th DB	77 11	63 11	Н	-		٦.		٦,	220 13	+ -	1 44	541 4	782 9	46 11	830 9	517 10	30 13	Н	Н						01 27/		750 14	4 -	4 -	+ -	1	ı	-	862 13	557 10	Н	-	645 13	990 13		9	648 10	358 9
	Query Match Length DB			n			~1								-+																												Ò	ř
ф	Query Match	0.66	97.7	74.3	67.8	45.7	45.6	45.0	44.7	9.0	42.0	42.7	40.7	39.2	39.0	39.0	38.8	38.6	38.4	38.4	38.0	37.7	36.7	36.3	000	0.00	4.4	23.7	200	32.0	31.9	31.7	31.6	31.4	29.4	28.9	28.7	28.7	28.3	27.9	27.5	27.5	27.4	26.9
	Score	1310.2	1292.6	982.6	896.6	604.4	603.2	595.2	592	230.4	567.0	564.6	538.4	518.4	516	515.8	513.8	510.6	508.6	508.4	502.8	498.4	485.4	480	403.4	400.4	451.6	2.044	0.15t	433.0	4204	419	418.4	415.6	389.6	383	380	380	373.8	369.6	364	363.4	362.8	356.4
	Result No.		2	е	4	S	9	7	ω (א כ א	-	12	13	14	15	16	17	18	19	20	21	22	23	24	0 70	9 17	/7	200	67	ى د	32		34	35	36	c 37	38	39	40	41	42	43	44	45

ALIGNMENTS

RESULT 1

AK030510	
LOCUS	AK030510 2477 bp mRNA linear HTC 05-DE 2002
DEFINITION	Mus musculus adult male pituitary gland cDNA, RIKEN full-leng.n
	enriched library, clone:5330423L05 product:TRANSCRIPTION FACTUR homolog [Homo sapiens], full insert sequence.
ACCESSION	AK030510
VERSION	AK030510.1 GI:26326504
SOUTHOUS	Hit; CAP trapper.
ORGANISM	mus musculus (nouse mouse) Mus musculus
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
	Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE	1
AUTHORS	Carninci, P. and Hayashizaki, Y.
TITLE	High-efficiency full-length cDNA cloning
JOURNAL MEDI TAIR	Metn. Enzymot. 303, IV-44 (IVVV)
PUBMED	332/3233 10349636
REFERENCE	7
AUTHORS	Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
	Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
TITLE	Normalization and subtraction of cap-trapper-selected cDNAs to
	prepare ILLT-length CLNA libraries for rapid discovery of new genes
COURNAL	Genome Kes. 10 (10), 161/-1630 (2000)
MEDLINE	2.043493.74 13.04315.0
Camaor	11044139
KEFEKENCE	
AUTHORS	Shibata, K., Iton, M., Alzawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
	Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M., Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
	Yamamoto.R. Matsumoto.H. Sakapuchi.S. Ikedami.T. Kashiwadi.K.
	Fujiwake, S., Inoue, K., Toqawa, Y., Izawa, M., Ohara, E., Watahiki, M.,
	Yoneda,Y., Ishikawa,T., Ozawa,K., Tanaka,T., Matsuura,S., Kawai,J.
	Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
TITLE	RIKEN integrated sequence analysis (RISA) system384-format
	sequencing pipeline with 384 multicapillary sequencer
JOURNAL	Genome Res. 10 (11), 1757-1771 (2000)
MEDLINE	20530913
PUBMED	11076861
REFERENCE	4
AUTHORS	Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y.,
	Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., Adachi, J., Fukuda, S.,
	Aizawa, K., Izawa, M., Nishi, K., Kiyosawa, H., Kondo, S., Yamanaka, I.,
	Saito, T., Okazaki, Y., Gojobori, T., Bono, H., Kasukawa, T., Saite, R.,
	Kadota, K., Matsuda, H., Ashburner, M., Batalov, S., Casavant, T.,
	Filescomann, W., Gaasterland, I., Gissi, C., King, B., Kochiwa, E., Khabi, D., Tawis C., Matena V., Mikaida I., Desale G.
	Autocharbiek I Cohrim I M Staukli D Country M
	Wadchelbushion, Schrimt, E.M., Staublift, Suzuki, K., Tomita, M., Wadner I Washion . Sakai K. Okido T. Furuno M. Aono D
	Baldarelli, R., Barsh, G., Blake, J., Boffelli, D., Bohnwa, N.
	Carninci, P., de Bonaldo, M.F., Brownstein, M.J., Bult, C.,
	1.10.152 1.0

Fletcher, C., Fujita, M., Gariboldi, M., Gustinoich, S., Hill, D., McKnan, M., Flue, D.A., Kaniya, M. Lee, N.H., Lyons, P., Marchionni, L., Mashima, J., Mazzarelli, J., Mombaerts, P., Nordone, P., Ring, B., Ringrad, M., Rodriguez, I., Sakamoto, N., Sasaki, H., Sato, K., Schonbach, C., Seya, T., Shibata, Y., Storch, K.F., Suzuki, H., Wynshaw-Boris, A., Yoshida, K., Hasegawa, Y., Kawaji, H., Kohtsuki, Y. and Hayashizaki, Y. Adachi, J., Aizawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P., Fukuda, S., Furuno, M., Hanagaki, T., Hara, A., Hashizume, W., Hayashida, K., Hayatsu, N., Hiramoto, K., Hiraoka, T., Hirozane, T., Hori, F., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kasukawa, T., Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M., Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M., Mishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N., Makanura, M., Mishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N., Physical and Chemical Research (RIKEN), Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Terumi-ku, Yokohama, Kanagawa 230-0045, Japan (E-mall:genome-reségsc.riken.go.jp, Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Okazaki,Y., Salto,R., Saltoh,H., Sakai,C., Sakai,K., Sakarume,N., Sano,H., Sasaki,D., Shibata,K., Shinagawa,A., Shiraki,T., Sayatume,N., Sogabe,Y., Taqami,M., Taqawa,A., Takahashi,F., Takaku-Akahira,S., Muramatsu,M., Tanaka,T., Tomaru,A., Toya,T., Yasunishi,A., Direct Submission Hayashizaki,Y. Riken cDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research frough in Rike Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to The FANTOM Consortium and the RIKEN Genome Exploration Research Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of Functional annotation of a full-length mouse cDMA collection Nature 409 (6821), 685-690 (2001) URL:http://genome.gsc.riken.go.jp/, Tel:81-45-503-9222 Please visit our web site for further details. URL:http://genome.gsc.riken.go.jp/ URL:http://fantom.gsc.riken.go.jp/ /organism="Mus musculus" Location/Qualifiers 1. .2477 /mol_type="mRNA" /strain="C57BL/6J" Nature 420, 563-573 (2002) 6 (bases 1 to 2477) prepare mouse tissues. Fax:81-45-503-9216) 11217851 TITLE JOURNAL MEDLINE PUBMED REFERENCE AUTHORS REFERENCE AUTHORS JOURNAL FEATURES TITLE COMMENT

/ translation="MLLSPKESLSTIHVRLPAKGLLRNIRLPSGLRNYTVIFHTVEKG YVQQHPRSLCTQTAPDVLSSERTLELAQYKYKGESGSGFILHLRQLLSRGNYKFRAN TVQQHLLSRESAQLKOHYLSQELVSLRGELVAASSAGEKLEKARDLQTAYGEVQ KLNQGHQTHSTELENKLKDYTARCEKLOSYYIERBKYKTQLGGFINUNAHETTK LEIEASHSEKVELLKKTYETSLSEIKKSHEMBKKSLEDLINNRQESLERQINDLKSN

/protein_id="BAC26996.1" /db_xref="GI:26326505"

codon_start=1

putative"

clone_lib="RIKEN full-length enriched mouse cDNA library"

'dev_stage="adult"

.1625

CDS

/note="unnamed protein product; TRANSCRIPTION FACTOR homolog [Homo sapiens] (SPTR[AAG33674, evidence: FASTY, 86.1%ID, 100%length, match=1317)

```
DAINERLKSEEQKQLSREKANSKOPQVAYLEQELESLKAVLETKREKLHQQDKKLAKM
EKLUDNITALVDKIKREQQENEELKARMDKHMAISRQLSTEQAALQESLEKESKVNKR
LSMENEELLMKTLHUGDLCSPKRSPTSSALPFQSPRNSGSFSSPSISPF"
                                                                                                                                                                                                                                                                                                                                                                303 AIGCIGITGTCTCCCAAATTCTCCTTATCCACCATCCACGTCCGCCTAACGCAAAGGA 362
                                                                                                                                                                                                                                                                   61 CIGCTICGAAACCICCGGCTICCTICGGGGGTCAGGAAAAACACIGTCATTITCCACACA 120
                                                                                                                                                                                                                                                                                                       363 CIGCIICGAAACCICCGGCIICCIICGGGGCICAGGAAAAACACIGICAIIIIICCACACA 422
                                                                                                                                                                                                                                                                                                                                             GATGTGCTGTCCTCCGAGAGAACGCTTGAGTTGGCCCAATACAAGACAAAATGTGAAAGC 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 241 CAAASIGGAITCAICCIGCACCICAGGCAGCIICIIICCCGIGGIAACAACAAGIIGAA 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     543 CAAAGIGGATTCAICCIGCACCICAGACAGCITCTTICCCGIGGIAACACCAAGITIGAA 602
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           301 GOGCIGACAGTIGIGALCCAGCACCTCCTGTCTGAGCGGGGGGAGGCACTGAAGCAACAC 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              603 GOGCTGACCGTTGTGATCCAGCACCTCCTGTCTGAGCGGGGGGAAGCACTGAAGCAACAC 662
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    361 AAAACCCTCTCTCAAGAACTIGICAGCCTCCGGGGAGAGCTAGTTGCTGCTTCAAGGGCC 420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IGTGAGAAGCTAGAAAAGGCTAGGGCTGACTTACAGACAGCGTATCAAGAATTTGTCCAG 480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 09
                                                                                                                                                                                          1 AIGCIGIIGICICCCAAAIICICCCIIAICCACCAICCACGICCGCCIAACGGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0; Gaps
                                                                                                                  DB 11; Length 2477;
                                                                                                                                                        8; Indels
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Score 1310.2; DB 11
Pred. No. 6.2e-294;
                                                                                                                                                        0; Mismatches
                                                             565
                                                           597 g
                                                                                                                  99.08;
                                                             2 909
C
                                                                                                                                                        Matches 1315; Conservative
                                                                                                                 Query Match
Best Local Similarity
                                                           709
                                                                                                                                                                                                                                                                                                                                                                                                                      181
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             421
                                                         BASE COUNT
                                                                             ORIGIN
                                                                                                                                                                                                                              g
                                                                                                                                                                                                                                                                     ð
                                                                                                                                                                                                                                                                                                                                             ò
                                                                                                                                                                                                                                                                                                                                                                                음
                                                                                                                                                                                                                                                                                                                                                                                                                                                            셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8
                                                                                                                                                                                                                                                                                                         a
                                                                                                                                                                                                                                                                                                                                                                                                                        Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 õ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ద
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ద
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ä
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 g
```

/db_xref="FANTOM_DB:5330423105"

/db_xref="taxon:10090"

/clone="5330423L05"

/sex="male"

/tissue_type="pituitary gland"

11. AAACTAAA.CCAGCATCAGAGAGACCGGACGGAACTGGAGAACGGGCTGAAGGACTTA 540 	1. TACACCGCAGACTGTGAGAAGCTTCAGACCATTACATTGAGGAGGCAGAAAAATATAAA 600 	11 ACTCAACTIGCAAGAGCAGTTTGACAACTTAAAGGCGGCCATGAGCACTAGGTTGAG 660 	1. ATTGAAGCTAGGCACTGGGAAGGTGGAATTGCTGAAGAGACCTATGAAACCTTT 720 	1. TCAGAANTCAAGAAGCCATGAGATGGAGAAGTCACTGGAGGATCTGCTTAATGAG 780 	1 AAGCAGGAATCOCTGGAGAAACAAATGATGTGAGGGTGAAAGGATGCTTTAAAC 840 	1 GAAAGSTTGAAATCAGAGGAGCAAAAGCAACTGTCAAGAGAGAGGGGAATTCCAAAAAC 900 	1 CCTCAGGTCATGTATCTGGAGCAGAACTAGAAAGCCTGAGGGCTGTTAGAGATCAAG 960 	1. AATGAGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAGCTGGTGGACAAT 1020 	1 AACACAGCATTGGTTGACAAGCGAGTCCAGCAGAAAGGAGGGGGTTAAAGCT 1080 	1 OCCATGGACAAAACACAATTTCAAGGAACTTTCCACGAGGAGGGGGGGG	1 GAGICCCTIGAGAAGGAGTCAAAGGICAACAAGAGACIGICCAIGGAGAACGAGAACTI 1200 	1 CTGTGGAAACTGCAACGGAGACCTGTGCAGCCCAAGAGATCCCCCACCTCCTCGGCC 1260 	ATC ATC	1 TGA 1323
481 AJ 783 AJ	541 T/ 843 T/	601 AC 1 903 AC	661 A7 963 A2	721 TG 1023 TG	781 AZ - 1083 AZ	841 G7 	901 CC 1203 CC	961 AA 1263 AA	1021 AZ 11 1323 AZ	1081 CC 	1141 GP 11 1443 GP	1201 CT 	261	1321 TC
67 Pp 67	Qy Db	<u>ئ</u> ۾	· 영	Qy Db	Qy Db	Qy Db	S da	QY	QY	Qy Db	Oy Dp	Qy Dp	op ox	δy

||| | 1623 TGA 1625

Arakawa, T., Ishinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishi., Y., Arakawa, T., Hara, A., Fukunishi, Y., Komo, H., Adachi, J., Fukuda, S., Alzawa, K., Izawa, M., Nishi, K., Kiyosawa, H., Kondo, S., Yamanaka, I., Saito, T., Cazawa, M., Nishi, K., Kosawa, T., Saito, T., Kadota, K., Matsuda, H., Ashburner, M., Batalov, S., Casavant, T., Fleischman, W., Casaterland, T., Gassi, C., King, B., Kochiwa, H., Kuchl, P., Lewis, S., Matsuo, Y., Nikaido, I., Pesolo, G., Wagner, L., Washio, T., Sakai, K., Okido, T., Furuno, M., Aono, H., Wagner, L., Washio, T., Sakai, K., Okido, T., Furuno, M., Aono, H., Baldarelli, R., Barsh, G., Boffelli, D., Bolly, C., Carinini, P., Ge Bonaldo, M.F., Brownstein, M.J., Bult, C., Fletcher, C., Fujita, M., Gariboldi, M., Gustinoich, S., Hill, D., AK031693

Mus musculus 13 days embryo male testis cDNA, RIKEN full-length enriched library, clone:6030491119 product:TRANSCRIPTION FACTOR homolog (Homo sapiens), full insert sequence. Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes Genome Res. 10 (10), 1617-1630 (2000) Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P., Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M., Sulhino, I., Harada, M., Nishino, I., Harada, A., Yamanoto, R., Matsunua, S., Iakaguchi, S., Ikagami, T., Kashiwaji, K., Yujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M., Yokazaki, Y., Matsuna, S., Kawai, J., Okazaki, Y., Murama teu, M., Inoue, Y., Kira, A. and Hayashizaki, Y. RIKEN integrated sequence analysis (RISA) system-384-format sequencing pipeline with 384 multicapillary sequencer Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. Carninci,P. and Hayashizaki,Y. High-efficiency full-length cDNA cloning Meth. Enzymol. 303, 19-44 (1999) 99279253 Mus musculus (house mouse) Mus musculus AK031693.1 GI:26327546 HTC; CAP trapper. 10349636 AK031693 11042159 11076861 DEFINITION ORGANISM AUTHORS TITLE JOURNAL JOURNAL MEDLINE PUBMED REFERENCE AUTHORS JOURNAL MEDLINE PUBMED REFERENCE AUTHORS MEDLINE PUBMED ACCESSION VERSION KEYWORDS RESULT 2 AK031693 REFERENCE REFERENCE AUTHORS TITLE SOURCE LOCUS

Adechi, J., Azzawa, K., Akimura, T., Arakawa, T., Bono, H., Carninci, P., Fukuda, S., Furuno, M., Hangaki, T., Hara, A., Hashizume, W., Hayatsu, N., Harandoto, K., Hiroka, T., Hirozane, T., Hori, F., Imceni, K., Ishi, Y., Itoh, M., Kaqawa, T., Katoh, H., Kawai, J., Kojima, Y., Kondo, S., Konno, H., Kouda, M., Koya, S., Kurihara, C., Matsuyama, T., Miyazaki, A., Murata, M., Nakamura, M., Nishi, K., Nomura, K., Numazaki, R., Ohno, M., Ohsato, N., Okzaki, Y., Saito, R., Saitoh, H., Sakai, C., Sakai, K., Sakazume, N., Sano, H., Sasaki, D., Shibata, K., Shinagawa, A., Shiraki, T., Tagami, M., Tagawa, A., Takahashi, F., Takaku-Akahira, S., Tanak, T., Tanak, T., Takahashi, F., Takaku-Akahira, S., Tanak, T., Tanak, T., Toya, T., Yasunishi, A., Takahashi, F., Takahashi, F., Takahashi, S., Tanak, T., Tanak, T., Tayanishi, A., Takahashi, F., Tak Hofmann, M., Hume, D.A., Kamiya, M., Lee, N.H., Lyons, P., Marchionni, L., Mashima, J., Mazzarelli, J., Mombaerts, P., Nordone, I., Ring, B., Ringwald, M., Rodriguez, I., Sakamoto, N., Sasaki, H., Satok, K., Sohobach, C., Seya, T., Shibata, Y., Storch, K.F., Suzuki, H., Tyo-oka, K., Mang, K.H., Weitz, C., Whittaker, C., Wilming, L., Wynshaw-Boris, A., Yoshida, K., Hasegawa, Y., Kawaji, H., Kohtsuki, S. and Hayashizaki, Y. Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute; 1-7-22 Suchitro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (E-mail:genome-resignsc.riken.go.jp, URL:http://genome.gsc.riken.go.jp/, Tel:81-45-503-9222, oCMA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Direct Submission Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of The FANTOM Consortium and the RIKEN Genome Exploration Research Physical and Chemical Research (RIKEN), Laboratory for Genome Functional annotation of a full-length mouse cDNA collection Nature 409 (6821), 685-690 (2001) 21085660 Please visit our web site for further details. URL:http://genome.gsc.riken.go.jp/ URL:http://fantom.gsc.riken.go.jp/. Location/Qualifiers /organism="Mus musculus" Muramatsu, M. and Hayashizaki, Y. (2002)prepare mouse tissues. Nature 420, 563-573 (6 (bases 1 to 3963) Fax:81-45-503-9216) 1. .3963 11217851 JOURNAL REFERENCE TITLE JOURNAL MEDLINE PUBMED TITLE JOURNAL REFERENCE AUTHORS AUTHORS FEATURES TITLE COMMENT

/translation="MLLSPKFSLSTIHVRLTAKGLRNLRLPPGLRKNTVIFH"VEKGR

/protein_id="BAC27517.1" /db_xref="GI:26327547"

/codon_start=1

/note="unnamed protein product; TRANSCRIPTION FACTOR homolog [Homo sapiens] (SPTR|AAG33674, evidence: FASTY, 86.1%ID, 100%length, match=1317)

dev_stage="13 days embryo"

.1595

CDS

```
ORNPRSICIQTOTAPDVISSERTEELAQYKTYCEGGGGTIHILROLLISRGN" FEALT
VYOHLISBREEAARQHYTLEGEDYSLAGELYAGSAGGETIHILROLLISRGN" FEALT
VYOGHOTBETERKLKOLYTAGCBKOGST YTERAEKYYOLOGGEDIANAAHETTKL
ETEASHSERVELLKKTYETSLSEIKKSHEMEKKSLEDLINEKGESLEROLNOTKGEND
                                                                                         AINERLKSEEQKQISREKANSKNPQVMYILQBIESLKAVILEI KNEKIHQQDK/IJMMB
KLYDNYTALVDKLKRFQQENEELKARMDKHWAI SRQISTEQAALQESLEKES KVNKRL
SMENEELLMKILHVGDLCSPKRSPISSAI PFQSPRNSGSFSSPSISPR"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          09
                                                                                                                                                                                                                                                                                                                                                                                                                                          276 AIGCIGITGICTCCCAAAITCTCCTIAICCACCAICCACGICCGCCIAACGGCCAAAGGA 335
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   61 CIGCTICGAAACCICCGGCTICCIICGGGGCICAGGAAAAACACIGICAITTICCACACA 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          121 GTTGAAAAGGGCAGGCAGAAGAATCCCAGGAGCCTGTGCATCCAGACCCAGACAGCTCCA 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               181 GAIGIGCIGICCICCGAGAGACGCIIGAGIIGGCCCAAIACAAGACAAAAIGIGAAAGC 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           453 GAIGTGCTCTCCGAGAAACGCTTGAGTTGGCCCAATACAAGAAAATGTGAAAGC 512
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    241 CAAAGIGGATTCATCCTGCACCTCAGGCAGCTTCTTTCCCGTGGTAACAACAAGTTTGAA 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         301 GOGCIGACAGIIGIGAICCAGCACCICCIGICIGAGCGGGGAAGCACCIGAAGCAACAC 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     361 AAAACCTCTCTAAGAACTTGTCAGCCTCCGGGGAGGGCTAGTTGCTGCTTCAAGGGUC 420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       633 AAAACCTICTCTAAGAACTIGTCAGCCTCGGGGGAGAGCTAGTTGCTGCTTCAAGGGC 692
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   421 IGIGAGAAGCIAGAAAAGGCIAGGGCIGACITACAGACAGGGIATCAAGAAITIGICCA(; 480
                                                                                                                                                                                                                                                                                                                                                                                                 1 AIGCIGITGICICCCAAAIICTCCTIAICCACCAICCAGGICGGCCIAACGGCAAAGGA
                                                                                                                                                                                                                                                                                                                                                       3; Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Score 1292.6; DB 11; Length 3963; Pred. No. 9e-290;
                                                                                                                                                                                                                                                                                                                                                     9; Indels
                                                                                                                                                                                                                                              895 g 1012 t
                                                                                                                                                                                                                                                                                                                                                     0; Mismatches
                                                                                                                                                                           /note="putative"
3963
                                                                                                                                                                                                                       /note="putative"
                                                                                                                                                                                                                                                                                                            97.78;
                                                                                                                                                                                                                                                                                                                                 99.18;
                                                                                                                                                           3939. 3944
                                                                                                                                                                                                                                            938 c
                                                                                                                                                                                                                                                                                                                                                   Matches 1311; Conservative
                                                                                                                                                                                                                                                                                                                              Best Local Similarity
                                                                                                                                                                                                                                            1118 a
                                                                                                                                                         polyA_signal
                                                                                                                                                                                                  polyA_site
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     573
                                                                                                                                                                                                                                                                                                            Query Match
                                                                                                                                                                                                                                            BASE COUNT
                                                                                                                                                                                                                                                                ORIGIN
                                                                                                                                                                                                                                                                                                                                                                                                                                        음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             원
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  õ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         유
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \tilde{\nabla}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     임
```

/tissue_type="testis" /clone_lib="RIKEN full-length enriched mouse cDNA library"

/mol_type="mRNA" /strain="C57BL/6J" /db_xref="FANTOM_DB:6030491119" /db_xref="taxon:10090"

/clone="6030491119"

/sex="male"

	AAACTAAACOAGGAGGATCAGACGGGACGGAACGGAGAACCGGCTGAAGGACTTA 540	AMICIAANCCAGCAGCAICAGACAGACGGAACTGGAGAACCGGGCTGAAGGACTTA 812	TACACCECAGAGTETGAGAAGCTTCAGAGCATTTACATTGAGGAGCAGAAAAATATAAA 600 	ACTORA CHACA AGRAGA GATTA GA CATA A A ACTORA DA A COCOCA A CATA A ACTORA A CATA A CATA A CATA A CATA A CATA A		ATTGAAGCTAGCCACTCGGAGAAGGTGGAATTGCTGAAGAAGCCTATGAAACCTCCCTT 720		TCAGAAATCAAGAAGACCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAG 780	TCAGAAATCAAGAACGAGGCATGAGAGAGAAGAAGTCACTGGAAGAATCTGCTTAATGAG 1052	AAGGAGAATGGCTGGAGAAACAAATGATGATCTGAAGAGTGAAAAGGATGCTTTAAAC 840	AAGCAGGAATCGCTGGAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAAC 1112	GAAAGGIIGAAAICAGAGGAGCAAAAGCAACIGICAAGAGAGAG		CCTCAGGTCATGTATCTGGAGCAAGAACTAGAAAGCCTGAAGGCTGTGTTAGAGATCAAG 960	CCTCAGGTCATGTATCTGGAGCAAGAACTAGAAAGCCTGAAGGCTGTGTTAGAGATCAAG 1232	AATGAGAAAGCTGCACCAGGACATGAAGCTAATGAAGATGGAAAAGCTGGTGGACAAT 1020	AATGAGAAGCTGCACCAGCAGGACATGAAGCTAATGAAGATGGAAAAGCTGCTGGACAAT 1292	AACACAGGATTGGTTGACAAGGTGAAGGGATTCCAGCAGGAAAAGGAGGAGTTAAAAGCT 1080	AACACAGCATTGGTTGACAAGCTGAAGCGATTCCAGCAGGAAACGAGGAGTAAAAGCT 1352	GGCATGGACAAACACAATTTCAAGGCAACTTTCCACCGAGCAGGCGGGGTGCAA 1140	GGCAIGGACAAAACACAIGGGAAITTCAAGGGAACTTICCACCGAGCAGGCGGCTGCAG 1412	GAGTCCCTTGAGAAGGACTCAAAGGTCAACAAGAGACTGTCCATGGAAAAGGAGGAACTT 1200	GAGTCCCTTGAGAGGGAGTCGAAGGTCAACAAGAGACTGTCCATGGAGAAGGAGGAAGTT 1472	TIET GGAAACT GCACAACGGAGACCTGTGCAGCCCCAAGAGATCCCCCACCTCCTCGGCC 1260	CTGTGGAAACTGCACAAGGGAGACCTGTGCAGGCCCAAGAGATCCCCCACCACCTCCTGGGCC 1532	ATCCTITCCAGTCCCCAGGAATTCTGGTTCCTTCTCAGCCCCAGCATCTCACCAGA 1320
- 693 TC	481 AZ		541 TZ 813 TZ	601 AC		661 AT	933 AT	721 TC	993 TC	781 AA	053	841 GA	1113 GA	901 CC	173 CC	961 AA	233	021 AA	293	081 CG	353	141	413	201 CT	473 CT	1261 AT
ପୁଘ	Qy E	3	oy Oy	>0	. q	67	ପ୍ର	Qy	qq	Qy	Db 1	٥٧	Db 1	Qy	Db 1	٥y	Db 1	Qy 1	Db 1	Qy 1	Db 1.	Qy 1	Db 1	27	Db 1	Qy 1:

And the property of the

- 1533 ATCCCTTTCCAGTCCCCCAGGAAFTCTGGTTCCTTCTCCAGCCCCAGCAFCTCACCCAG, 1592 DP CP
 - 1321 TGA 1323 ||| |1593 TGA 1595

d

 ∇

Search completed: October 21, 2003, 21:04:05 Job time : 2069.84 sec

GenCore version 5.1.6

Copyright (c) 1993 - 2003 Compugen Ltd. OM nucleic - nucleic search, using sw model Run on: October 21, 2003, 08:57:52; Search time 905,403 Seconds (without alignments) 15995.091 Million cell updates/sec Title: US-09-762-194-5 Perfect score: 334 Sequence: 1 catcagacagacoggacggaatgctttaaacgaaaggttg 354 Scoring table: IDENTITY NUC Gapop 10.0 , Gapext 1.0 Searched: 2888711 seqs, 20454813386 residues Total number of hits satisfying chosen parameters: 5777422 Minimum DB seq length: 0

	No. Score M			3 354 1	4 354 1	5 354 1		7 246.8	8 246.8	9 246.8		12 246.8	14 246.8	15 246.8	17 246.8	19 245.2	21 232.4	22 225.4					30 85		
777. Company to the control of the c	Minimum DB seq length: 0 Maximim DB seq length: 0	יימי בוווחוו בדי בפול דפוופ כווי בססססססססס	Post-processing: Minimum Match 0%	Match	Listing first 45 summaries		23		2: gb_htg:*		2: dp_ov:+								17: em_hum:*		20: em_om:*	22: en_ov:*		25: em_p1:*	

		<pre>em_htg_pln:* em_htg_rod:* em_htg_mam:* em_htg_vtr:*</pre>	en_sy:* en_htgo_hum:* en_htgo_mus:* en_htgo_other:*
28:	31: 32: 33:	34: 35: 36:	38: 39: 40: 11:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

01
ш
н
œ
⊴
ξ
ξ
S

100.0 1323 10 AYZ46699 100.0 3829 10 ARZ46699 100.0 5218 10 ARZ46699 100.0 5218 10 ARZ13880 100.0 5218 10 BCC412206 89.7 1142 9 BCC117740 69.7 1142 9 BCC117740 69.7 11758 6 AXZ09215 69.7 3315 6 BDL60624 69.7 3315 6 BDL60624 69.7 3415 9 AXZ09293 69.7 3415 9 AXZ09291 69.7 3415 6 AXZ09291 69.7 5799 6 AXZ10061 69.7 5857 9 ABC31144 69.7 5857 9 ARZ420054 69.3 5214 9 HSM800061 65.6 3742 6 AXZ1007 65.7 5799 6 AXZ1001 69.3 5214 9 HSM800061 65.6 3742 6 AXZ1001 61.7 5857 9 AXZ1001 62.7 5857 9 AXZ1001 63.7 5857 9 AXZ1001 63.7 5709 6 AXZ1001 63.8 5214 9 HSM800061 65.6 3742 6 AXZ1001 65.6 3742 6 AXZ1001 65.7 5709 8 BCC38842 64.0 100000 9 ABC26842 64.0 131299 9 ARI65145 64.0 131299 9 ARI65145 64.0 131299 9 ARZ24669	Result		Query	;	1	į	
1 354 100.0 1323 10 AYZ46699 AXZ46699 Mus 2 354 100.0 1803 10 AYZ46699 AXZ46699 AXZ462320 AXZ462320 AXZ462320 AXZ462320 AXZ46230 AXZ26206 AXZ2620 A		Score	Match	Length	e i	ID	Description
2 354 100.0 1803 10 AFF73380 AFF73380 Mus 3 354 100.0 3629 10 BC044321 BC044321 BC044321 BC044321 BC044321 BC044321 BC042206 Mus BC041777 BC042206 Mus BC042206 Mus BC042206 Mus BC042206 Mus BC041774 BC042206 Mus BC041774 BC041774 BC041777 Mus BC04177 BC04177 BC04177 BC04177 BC04177 BC04177 BC0417 BC04177 BC0417 <			100.0	1323	10	AY246699	Mus
3 554 100.0 3629 10 BCC443321 BCC443321 Mus 4 354 100.0 5219 10 BCC44377 BCC44177 Mus 5 312.4 88.2 132 3 10 AY208915 AY208915 Ratt 6 312.4 88.2 132 3 10 AY208915 AY208915 Ratt 7 46.8 69.7 1142 9 BCC01740 BCC017740 Homo 9 246.8 69.7 1756 6 AX301208 AX208998 AX203998 AX203999 10 246.8 69.7 1315 6 BD166624 BD166624 Prime 12 246.8 69.7 3315 9 AKC24357 AK203997 AK203997 14 246.8 69.7 345 6 AX210264 AX210564 Prime 15 246.8 69.7 3415 6 AX210664 AX210664 Seque 16 246.8 69.7 345 6 AX210664 AX210664 Seque 17 246.8 69.7 3419 6 AX210661 AX210661 AX210691 18 246.8 69.7 3419 6 AX210661 AX210661 Seque 19 246.2 69.3 1191 6 AX209993 AX209991 AX209991 AX209991 24 5.2 69.3 1191 6 AX209993 AX209991 AX209991 AX209991 AX209991 AX209991 AX209991 AX209991 AX209991 AX2			100.0	1803	10	AF173380	Mus
4 354 100.0 5216 10 BCG41777 BCG42206 BCG42206 BCG42206 MACG42206 MACG42020 MACG4020 MACG4020 MACG4020 MACG4020 MACG0090 <			100.0	3629	10	BC043321	Mus
5 354 100.0 5219 10 BC042206 Mus 6 312.4 488.2 1323 10 BC01770 BC017740 Honol 8 246.8 69.7 1615 6 AX301208 AX301208 AX301208 AX301208 BC017740 Honol 10 246.8 69.7 1615 6 AX301208 AX202699			100.0	21	10	BC041777	Mus
6 312.4 88.2 1323 10 AY208915 7 246.8 69.7 1142 9 PC017740 BC01740 9 246.8 69.7 1615 6 AX20989 AX20989 AX20989 10 246.8 69.7 175 6 AX20989 AX20989 AX209998 11 246.8 69.7 3315 6 BD160624 AX20999 AX20999 AX20999 AX20999 AX20999 AX20999 AX20999 AX20099 AX2			100.0	5219	10	BC042206	Mus
7 246.8 69.7 1142 9 BC017740 BC01740 9 246.8 69.7 1615 6 AX301208 AX301208 10 246.8 69.7 1977 9 AF293357 AK209989 11 246.8 69.7 315 9 BD160624 BD160624 12 246.8 69.7 315 9 AK204357 AK224357 14 246.8 69.7 345 9 AK204357 AK224357 15 246.8 69.7 345 9 AK21064 AK211559 16 246.8 69.7 345 6 AX210064 AX210064 17 246.8 69.7 5857 9 AX210064 AX210061 18 246.8 69.7 5857 9 AX209993 AX200993 24 69.7 5857 9 AX20993 AX20093 25 25.4 65.7 345 6 AX2099			88.2	1323	10	AY208915	
8 246.8 69.7 1615 6 AX201208 9 246.8 69.7 1758 6 AX20989 AX209208 10 246.8 69.7 1315 6 BD160624 BD160624 11 246.8 69.7 3315 6 BD160624 BD160624 13 246.8 69.7 345 5 AX20997 AX20997 14 246.8 69.7 365 6 AX20997 AX20997 15 246.8 69.7 369.9 AR20993 AX20997 16 246.8 69.7 585 9 AR20993 AX200987 17 246.8 69.7 585 9 AR20993 AX20091 245.2 69.3 1458 6 AX200991 AX200991 24 65.6 3742 6 AX210007 AX210002 22 225.4 65.6 3742 6 AX210002 23 226.4 <td></td> <td>7 246.8</td> <td>69.7</td> <td>1142</td> <td>σ</td> <td>BC017740</td> <td></td>		7 246.8	69.7	1142	σ	BC017740	
9 246.8 69.7 1776 6 AX209989 AX20989 10 246.8 69.7 1977 9 AK203857 AK203357 11 246.8 69.7 315 9 AK204357 AK204357 12 246.8 69.7 345 9 AK204357 AK204557 14 246.8 69.7 345 9 AK202987 AK202967 15 246.8 69.7 3813 6 AX210064 AX210064 17 246.8 69.7 579 6 AX210064 AX210064 18 246.2 69.3 1191 6 AX209991 AX210061 24 69.3 1191 6 AX209991 AX210031 20 245.2 69.3 1458 6 AX210037 21 222.4 65.6 374.2 6 AX210037 22 222.4 65.6 374.2 6 AX210002 23 </td <td></td> <td></td> <td>69.7</td> <td>1615</td> <td>9</td> <td>AX301208</td> <td></td>			69.7	1615	9	AX301208	
10 246.8 69.7 1977 9 ARP293357 ARP293357 11 246.8 69.7 315 6 BD160624 BD160624 12 246.8 69.7 315 6 AR121259 AR724357 AR724357 14 246.8 69.7 345 9 AR20987 AR21259 15 246.8 69.7 3813 6 AX210064 AX210064 17 246.8 69.7 5799 6 AX210064 AX210064 18 245.2 69.3 191 6 AX209993 AX209991 24 69.7 5857 9 AX209993 AX200993 24 65.6 374 6 AX200993 AX200993 22 25.4 65.6 374 6 AX20093 23 4 65.6 374 6 AX20093 24 15.4 43.6 6 AX20003 BD14939 25			69.7	1758	9	AX209989	
11 246.8 69.7 3315 6 BD160624 BD160624 12 246.8 69.7 3455 9 AK209987 AK202357 14 246.8 69.7 3654 6 AX209987 AK209987 15 246.8 69.7 3654 6 AX209987 AX209987 16 246.8 69.7 5857 9 AR209993 AX200981 17 246.8 69.7 5857 9 AR209993 AX200991 18 245.2 69.3 1491 6 AX200991 AX200991 20 245.2 69.3 1498 BAX200993 AX200991 20 245.2 69.3 1498 BAX200991 AX200991 21 224.4 65.6 3742 6 AX210037 22 245.2 69.3 524 AX210037 AX210037 23 266.6 58.4 2895 BC033842 BC033842	П		69.7	1977	σ	AF293357	_
12 246.8 69.7 3315 9 AKD24357 AKD24357 HOMO 14 246.8 69.7 3455 9 AF121259 AKD9967 SAZ10064 AKD9967 SAZ10664 AKD9967 SAZ10664 AKD1064 AKD9967 SAZ10664 SAZ10664 AKD1064 SAZ10664 AKD1064 AKD1064 SAZ10664 SAZ10664 AKD1064 AKD1064 AKD1064 SAZ10664 AKD1064 AKD1064 SAZ1066 AKD1064 AKD1064 AKD1064 SAZ1066 AKD1064 AKD1064 AKD1064 SAZ1066 SAZ1067 AKD1064 AKD1064 AKD1064 AKD1064 AKD1064 AKD1064 AKD1066 AKD1064 AKD1064<	-		69.7	3315	9	BD160624	
13 246.8 69.7 345.5 9 AF121259 AF212159 Homo 14 246.8 69.7 345.4 6 AX210987 AX210964 AX210964 AX210964 Seque 15 246.8 69.7 579.9 6 AX210061 AX210064 AX210064 AX210064 AX210064 AX210061 AX210061 AX210061 AX210061 AX210061 AX210061 AX210061 AX210061 AX210061 AX200993 AX200993 AX200993 AX200993 AX200993 AX200993 Seque AX200993 AX200993 AX200993 AX200993 Seque Seque Seque AX200993	-		69.7	3315	o	AK024357	Homo
14 246.8 69.7 3654 6 AX209987 AX209987 SAZ09987 Seque 15 246.8 69.7 3813 6 AX210064 AX210061 AX21061 Seque 17 246.8 69.7 5879 6 AR209933 AX209933 Seque AX209933 Seque AX209933 Seque AX209933 Seque AX209933 Seque AX209933 Seque Se	1		69.7	3455	თ	AF121259	Ношо
15 246.8 69.7 3813 6 AX210064 AX210061 16 246.8 69.7 5879 6 AX210061 AX20061 18 245.2 69.3 1191 6 AX209993 AX209993 20 245.2 69.3 1458 6 AX209991 AX209993 21 245.2 69.3 1458 6 AX2009991 AX2009993 21 225.4 65.6 374.2 6 AX210037 AX210037 22 225.4 65.6 374.2 6 AX210037 BD149938 BD149938 23 226.6 48.4 2895 9 BC033842 BD149938 BD149938 24 154.4 43.6 775 6 AX21002 AX210002 25 122.4 43.6 775 AX21002 AX210002 26 122.4 43.6 775 AX210002 AX210002 27 96.6 27.9	1		69.7	3654	9	AX209987	Seque
16 246.8 69.7 5799 6 AXX10061 17 246.2 69.3 159.7 6 AX200993 AX209931 18 245.2 69.3 145.8 6 AX209993 AX209993 19 245.2 69.3 145.8 6 AX209993 AX209993 2 245.4 69.3 5214 9 HX8000661 AX209993 2 225.4 65.3 5214 9 HX8000661 AX200993 2 225.4 63.7 83.0 6 HX8000661 AX20003 2 225.4 63.7 89.5 6 HX8000661 AX20003 2 225.4 63.6 34.2 289.5 9 HX8000661 AX20003 2 114.4 43.6 429.5 5 AX2003 AX21000 2 112.2 17745 5 AX216511 AX21000 2 112.2 17745 5 AX21661 AX21001 2 112.2 17745 5 AX22684 AX216514 3<	-	'n	69.7	3813	9	AX210064	
17 246.8 69.7 5857 9 AB033114 AB033114 18 245.2 69.3 1191 6 AX209993 AX209991 245.2 69.3 1458 6 AX209991 AX209991 20 245.2 69.3 1458 6 AX21037 AX209991 21 225.4 65.6 342 6 AX210037 AX200991 23 206.6 58.4 2895 9 BC033842 BC033842 24 13.6 775 6 AX210002 AX21002 24 13.4 194355 2 AC116511 AC116511 27 10.3 5 AC116511 AC116511 27 10.03 5 AR17665 AR21062 27 10.03 5 AR165145 AR21061 28 24.0 100000 9 AR202064 AR20664 30 85 24.0 131299 9 AR165145 </td <td>-</td> <td>w</td> <td>69.7</td> <td>5799</td> <td>9</td> <td>AX210061</td> <td></td>	-	w	69.7	5799	9	AX210061	
18 245.2 69.3 1191 6 AX209993 AX209993 20 245.2 69.3 145.8 6 AX209991 AX209993 21 245.2 69.3 524.9 6 AX200993 AX200993 21 225.4 65.6 374.2 6 AX210037 AX210037 22 225.4 63.7 83.0 6 BD149938 BD149938 BD149938 24 154.4 43.6 775 6 AX210002 AX210002 25 122.4 43.9 775 6 AX210002 AX210002 26 112.2 31.7 270745 2 AC016511 AC16511 AC16511 27 98.6 27.9 1003 5 AF176665 AX210051 28 85 24.0 100000 9 AB020864 AR210661 30 86 24.0 131299 9 AF165146 AC124069 31 85 <td>7</td> <td>^</td> <td>69.7</td> <td>5857</td> <td>σ</td> <td>AB033114</td> <td></td>	7	^	69.7	5857	σ	AB033114	
19 245.2 69.3 1458 6 AX209991 AX209991 21 232.4 65.3 5214 9 HSM800661 AL096842 22 225.4 63.7 6 AX210037 AX200991 AX200991 22 225.4 63.7 83.0 6 BD149938 BD149938 BD149938 24 154.4 43.6 1895 9 EX0031842 BC033842 BC033842 25 153.4 43.6 14355 EXX210002 AX210002 AX210002 26 17.2 17.7 27.7 2.4 AX210002 AX210002 27 96.6 27.9 1003 5 AR176665 AR2176665 AR2176665 28 24.0 100000 9 AB020864 AR020864 AR020864 30 85 24.0 110705 9 AR165145 AR026842 31 85 24.0 174025 9 AC026842 AR026842 33 85 24.0 14000 AR220167 <			69.3	1191	9	AX209993	
20 245.2 69.3 5214 9 HSMB0006B1 ALO96842 21 235.4 65.6 574.2 6 AZ210037 AZ200037 AZ200037 23 206.6 58.4 2895 9 EC033842 EC033842 24 13.4 4 3.6 AZ20002 AZ20002 AZ210002 26 112.2 31.7 270745 2 AC116511 AC116511 27 98.6 27.9 1003 5 AR176665 AC116511 28 85 24.0 600 6 AZ10081 AR210651 29 85 24.0 100000 9 AR2020864 AR2020864 30 85 24.0 1117075 9 AR165145 AR165145 31 85 24.0 114025 9 AC124069 AC124069 32 86 9 AC124069 AC124069 AC124069	1	245	69.3	45	9	AX209991	
21 223.4 65.6 374.2 6 AX210037 AX210037 23 206.6 83.7 83.0 6 BD149938 BD149938 BD149938 24 154.4 43.6 775 6 AX210002 AX210002 24 154.4 43.6 775 6 AX210002 AX210002 25 12.2 34.9 19435 2 AC116511 AX210002 27 98.6 27.9 1003 5 AF176665 AX21006 28 85 24.0 600 6 AX210051 AX21006 29 85 24.0 100000 9 AB020864 AX21006 30 85 24.0 13129 9 AF165145 AR165146 31 85 24.0 174025 9 AC124069 AC124069 33 85 24.0 1406901 2 AF267167 AF267167	7	245	69.3	5214	σı	HSM800681	
22 225.4 63.7 83.0 6 BD149938 BD149998 24 154.4 43.6 189.5 9 EC033842 EC033842 24 154.4 43.6 1455.6 AX210002 AX210002 25 123.4 34.9 149455 2 AC016511 AC116511 27 96.6 27.9 1003 5 AF176665 AF176665 28 24.0 600 6 AX210051 AX210651 29 24.0 100000 9 AB020864 AR020864 30 85 24.0 131299 9 AR165145 AR026842 31 85 24.0 174025 9 AC124069 33 85 24.0 174025 9 AC124069 33 85 24.0 166901 2 AC2671679	N	232	65.6	3742	o	AX210037	
23 206.6 58.4 2895 9 BC033342 Homo ora 24 154.4 43.6 775 6 AXC10002 AXC10002 AXC116511 ACC116511 ACC116691	2	225	63.7	830	Q	BD149938	
24 13.6 775 6 AXZ10002 Sequence 25 123.4 43.9 194355 2 AC116511 AC116511 AC10002 Sequence 26 112.2 31.7 27045 2 AC097544 AC097544 AC10051 AC10051 AC10051 27 98.6 27.9 1003 5 AP176665 AC10551 AC1055	2	206	58.4	2895	σı	BC033842	
25 13.3.4 34.9 194355 2 AC116511 Mus nus 26 112.2 31.7 270745 2 AC097544 AC09754	2	154	43.6	775	9	AX210002	
26 112.2 31.7 270745 2 AC097544 AC097544 AC097544 ACU11. 27 96.6 27.9 1003 5 AF17665 AF17666 AF17676 AF17677 AF176777 AF17677 AF176777 AF17677 AF17677 AF17677		123	34.9	194355	7	AC116511	,
27 98.6 27.9 1003 5 AF176655 AF217665 AF217665 Xenop 29 85 24.0 6 AX210051 AX210051 AX210051 AX210051 AX210051 Seque 30 85 24.0 100000 9 AF165145 A	Ñ	112	31.7	270745	7	AC097544	Rattu
28 85 24.0 600 6 AX210051 Seque 29 85 24.0 100000 9 ABD20864 ABD20864 Homc 30 85 24.0 101099 9 AFI65145 AFI65145 Homc 31 85 24.0 171075 2 AC026842 AC026842 Homc 32 85 24.0 174025 9 AC124069 AC124069 Homc 33 85 24.0 186901 2 AF267167 Homc	7	86	27.9	1003	S	AF176665	
29 85 24.0 100000 9 AB020864 AB020864 Homc 30 85 24.0 131299 9 AF165145 AF7165145 Homc 31 86 24.0 174025 2 AC026842 AC026842 Homc 32 85 24.0 174025 9 AC124069 Homc 33 85 24.0 186901 2 AF267167 AF267167	8		24.0	009	9	AX210051	
30 85 24.0 131299 9 AF165145 AF165145 Homo 31 85 24.0 174025 2 AC026842 AC026842 Homo 32 85 24.0 174025 9 AC124069 AC124069 Homo 33 85 24.0 186901 2 AF267167 AF267167			24.0	100000	0	AB020864	Homo
31 85 24.0 171075 2 AC026842 AC026842 Homo 32 85 24.0 174025 9 AC124069 AC124069 Homo 33 85 24.0 186901 2 AF267167 AF267167 Homo	ñ		24.0	131299	σ	AF165145	Ношо
32 85 24.0 174025 9 AC124069 AC124069 Homo 33 85 24.0 186901 2 AF267167 AF267167 Homo	m			-	7	AC026842	Home
85 24.0 186901 2 AF267167 AF267167 Homo				٦	σ	AC124069	Homo
	ന്				2	AF267167	Ношо

AP006249 Homo sapi AX210031 Sequence	AX210050 Sequence	BC032481 Homo sapi	AB018317 Homo sapi	AX210030 Sequence	AC099807 Homo sapi	AL929001 Mouse DNA	I66494 Sequence 14	AC103354 Mus muscu	AB081562 Paralicht	AC141179 Rattus no
AP006249 AX210031	AX210050	BC032481	AB018317	AX210030	AC099807	10 AL929001	I 66494	AC103354	AB081562	AC141179
24.0 195290 9 23.2 106 6	200 6	1479 9	4021 9	203 6	65493 2	47727 10	7218 6	01398 2	4892 5	85738 2
24.0 1	20.4	20.5	20.5	19.8	16.9	16.1 1	16.0	15.5 2	15.4	15.4 1
85 82										
c 34	36	37	38	36	40	41	c 42	43	c 44	c 45

247

323 g

326 c

427 a

BASE COUNT ORIGIN

ALI GNMENTS

ROD 10-APR-2003	Craniata; Vertebrata; Euteleostomi; Sciurognathi; Muridae; Murinae; Mus. e.J. f MISG1	versity of Germany	SGLRKMTVIFHTVEKG HIRQLISRGYIRFEAL EGRARDLGYAYGETV CGEGTNUNAAHETTR KGESLEKGINDLKSEN IRGEKHQQDMILMM ALQGELEKESKVNKR PSISPR"
linear	Vertebrata; ni; Muridae;	dicine, Univ irg 97080, (AKGLLRNLRLP: YKCESQSGFILI: VVAASSAGEKLI: YEEAEKYKTQ! ZEKSLEDLINE: ZEKSLEDLINE: ZEKSLEDLINE: ZEKSTEQLINE: ZERSYEQLSTEQ.
mRNA cds.	iata; '	Wuerzbi Wuerzbi	THVRLT; VELAQYK VSLRGE] EKLQSI; KKSHEMI QVMYLEK ZRMDKH
	Eukaryota; Metacoa; Chordata; Craniat Mammalla; Eutheria; Rodentia; Sciurog 1 (Bases 1 to 1323) Seibold, S., Wanner, C. and Galle, J. Cloning and characterization of MTSGI Unpublished 2 (bases 1 to 1323) Seibold, S., Manner, C. and Galle, J. Direct Submission	Submitted (28-FEB-2003) Department of Medicine, University Wuerzburg, Josef Schneider Str 2, Wuerzburg 97080, Germany Location/Qualifiers 11323 /organism="Mus musculus" /mol type="mkNA" /strain="C57BL/6N" /dhromosome="8" /chromosome="8" /chromosome="8"	11323 /codon_start=1 /produci= "MISGI" /protain_id="MALOB900.1" /protain_id="MALOB900.1" /brotain_id="MALOB900.1" /ba_xref="GI:29725654" /tanslation="MALSPRESINGHTANGILRNIRILPSGIRRHTVIFHTVEKG ROWPRSICIOTOTAPDVISSERILEIANGWETSGINASSERCKEREARDLOTANGEROF TVYIGHILERREEARGWETINGHTSGINASSERGINASSERCKEREARDLOTANGEROBEVG KINYOGHODFFILENRIKODLYTABCERLOSIYIERREKKSIEDLINEKQESTRAINAHETIN IEIEASHSEKVELLKKTYETSISEIKKSHEMEKKSIEDLINEKQESTEKQINDLKSEN DAINBERIKSEBOKGISREANSSENOVINIEQEELESTAATIERTREBANDHANGEN BALNDRAINALUDKIKRPOGENEELKAMENHAMISROISTEQAALDESIEKSKNNKR LSMENBELLWKLINGDLCSPKRSPISSAIPFQSPRNSGSFSSPSISPR"
RESULT 1 AY246699 LOCUS DEFINITION ACCESSION VERSION VERSION VERSION CORGANISM ORGANISM	REFERENCE AUTHORS TITLE JOURNAL REFERENCE AUTHORS TITLE	JOURNAL FEATURES SOURCE	\$00

```
AFI/3380 1803 bp mRNA linear ROD 16-AUG-1999 Mus musculus angiotensin II ATZ receptor-interacting protein HRNA, complete cds.
                                0;
                                                                                                                         09
                                                                                                                                                                                                                                                        181 TCGGAGAAGGTGGAATTGCTGAAGAAGCCTATGAAACCTCCCTTTCAGAAATCAAGAAG 240
                                                                                                                                                                                                                                                                                                                       241 AGCCATGAGATGGAGAAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCTG 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
1 (bases 1 to 1803)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Direct Submission
Submitted (28-UL-1999) Institut Cochin de Genetique Moleculaire,
CNRS UFR415, 22, rue Mechain, Paris 75014, France
Location(Qualifiers
1..1803
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Elbaz,N., Strosbeerg,A.D. and Nahmias,C.
Molecular characterization of ATIP, a novel angiotensin II type receptor-interacting protein
Unpublished
2 (bases 1 to 1803)
Elbaz,N., Strosberg,A.D. and Nahmias,C.
                                                              1 CATCAGACAGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT
                                0; Gaps
                                                                                                                                                                                                                                                                                                                                                                                                      301 GAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAACGAAAGGTTG 354
Query Match 100.0%; Score 354; DB 10; Length 1323; Best Local Similarity 100.0%; Pred. No. 2.4e-78; Matches 354; Conservative 0; Mismatches 0; Indels 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               /organism="Mus musculus"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Mus musculus (house mouse)
Mus musculus
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   AF173380.1 GI:5733813
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AF173380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  source
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DEFINITION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ORGANISM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               JOURNAL
REFERENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TITLE
JOURNAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AUTHORS
TITLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ACCESSION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RESULT 2
AF173380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               AUTHORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  VERSION
KEYWORDS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  REFERENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FEATURES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SOURCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LOCUS
                                                                                            임
                                                                                                                             63
                                                                                                                                                        셤
                                                                                                                                                                                                                                                                                   셤
                                                                                                                                                                                                                                                                                                                        à
                                                                                                                                                                                                                                                                                                                                                                                     δŏ
                                                                                                                                                                                         \delta
                                                                                                                                                                                                                      셤
                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                                                                                                                                   g
                                                                                                                                                                                                                                                                                                                                                                                                                    ద
```

KINQQHQTDRTELENRLKDLYTAECEKLQSIYIEBAEKYKTQLQBQFDNIJNAAHETTK
LEIEASHSEKVELLKKYYETSISEIKKSHENGKKSLEDJLAEKQESLEKQINDLIKSKEN
DAINERLKSEBGYOLS REKANSKNPQVNYLEQELESLKAVIEIKOHKLHQDPKKTARM
EKIVTNNYLATUKKKRYQENEELKARNDKHAAISKESTEQALQESLEKESKVNKR
LSMENEELLAKLHNGDLCSPKRSPISSAIPFQSPRNSGSFSSPSISPR" product="angiotensin II AT2 receptor-interacting protein"
protein_id="AAD49746.1" RQKNPRSLCIQTQTAPDVLSSERTLELAQYKTKCESQSGFTLHLRQLLSRGNKFEAL. TVVIQHLLSEREEALKQHKTLSQELVSLRGELVAASSACEKLEKARADLQTAYQEFVQ ö /translation="MLLSPKFSLSTIHVRLTAKGLLRNLRLPSGLRKNTVIFHTVEKG 61 GAGAAGCTICAGAGCAITIACAITGAGGAGGCAGAAAAAIAIAAAACTCAACTGCAAGAG 120 CAGITIGACAACTIAAACGCCGCCCAIGAGACCACIAAGCTIGAGATIGAAGCIAGCCAC 180 9 1 CATCAGACAGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT 0; Gaps Length 1803; 0; Indels 100.0%; Score 354; DB 10; 100.0%; Pred. No. 2.4e-78; 0; Mismatches /db_xref="taxon:10090" /cell_line="E18" /dev_stage="fetus" 178..1500 'db_xref="GI:5733814" 440 g mol_type="mRNA" 'codon_start≈1 'note="ATIP" 464 c Matches 354; Conservative Similarity 539 Query Match Best Local S 121 BASE COUNT CDS ORIGIN δŏ g ò g ò 음

linear ROD 10-JUN-2003 3629 bp mRNA linear ROD 10-Mus musculus expressed sequence AI481402, mRNA (cDNA clone MCC:49379 IMAGE:3366361), complete cds. BC043321 BC043321.1 GI:27694046 DEFINITION ACCESSION RESULT 3 BC043321 Locus

181 TOGGAGAAGGTGGAATTGCTGAAGAGCCTATGAAACCTCCCTTTCAGAAATCAAGAAG 240

 δ 셤 δ 원 ò 음

301 GAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAACGAAAGGTTG 354

Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LINL at: http://image.llnl.gov Series: IRAK Plate: 86 Row: n Column: 18

Seorge Yang, Scott Zuyderduyn, Marco Marra.

E 1 (bases 1 to 3629)
S Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G.,
Klausner, R.D., Collins, F.S., Wagner, L., Shemen, C.M., Schuler, S.D.,
Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, H. K.,
Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F.,
Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L.,
Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L.,
Scheetz, T.E., Brownstein, M.J., Usdin, E.B., Toshiyuki, S.,
Carnicci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J.,
Abramaon, R.D., Mullahy, S.J., Bosak, S.A., McKan, P.J.,
Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W.,
Wolley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W.,
Fabor, T. Marny, D.M., Sodergren, E.J., Luyk,, Gibbs, R.A., Steven Jones, Jennifer Asano, Ian Bosdet, Yaron Butterfield, Sudama Gnan, Readman Chiu, Chris Fjell, Erin Garland, Ran Guin, Letticia Hsiao, Martin Krzywinski, Reta Kutsche, Oliver Lee, Son Sen Lee, Victor Ling, Carrie Mathewson, Candioe McLeavy, Steven Ners, Pawam Pandoh, Anna-Liisae Prabhu, Parvanen Saeedi, Jaqueline Schein, Duane Smaillus, Michael Smith, Lorraine Spence, Jeff Stott, Michael Thorne, Miranada Tsai, Natasja van den Bosci, Jill Vardy, Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Madan, A., Young, A.C., Shevchenko, Y., Budfard, G.G., Blakealey, R.W., Touchman, J.W., Green, E.D., Dickson, M.C., Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M., Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailus, D.E., Schnerch, A., Schein, J.E., Jones, S.J. and Marra, M.A. Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. Mus musculus Eukaryota, Metazoa, Chordata, Craniata, Vertebrata, Euteleostomi, Submitted (00-JAN-2003) National Institutes of Health, Mammalian Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590, Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002) cDNA Library Preparation: Life Technologies, Inc. cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LINL) NIH-MGC Project URL: http://mgc.nci.nih.gov DNA Sequencing by: Genome Sequence Centre, BC Cancer Agency, Vancouver, BC, Canada Email: cgapbs-r@mail.nih.gov Tissue Procurement: The Cepko Laboratory Mus musculus (house mouse) Contact: MGC help desk (bases 1 to 3629) Direct Submission info@bcgsc.bc.ca Strausberg, R. 22388257 12477932 ORGANISM AUTHORS TITLE JOURNAL JOURNAL AUTHORS PUBMED REFERENCE REFERENCE KEYWORDS REMARK COMMENT

/ translation="MTIPGGFRSCTETDISSTIFINSTLTPPAGSERQYDATLIALLY VGSYSLCIIPLLATLTRKKGGHAAINKYEERPPRQAFQNGSGPLYLKPLVPRAHSHLL YTSKRGPSRKSLETARNVEGRQNUPRSLCIQYQTAPDVLSSERTELAQYKTKGES GSGFILHLAGOLLSRGWTREEALYVQHQLLLSGPREALKQHKTLSGELVSLRGSTRAFGLSTAAS SACEKLEKARTDLGTAVQEFVQKLNQQHQTDRTELBNRLKDLYTAECEKLQSIYTEER EKYKTQLQEQFDNIAAAHETTYLEIEASHSEKVELLKKTYETSLSEIKKSHEMEKKSL EDILNEKQESLEKQINDLKSENDALNERLKSEEQKQLSREKANSKNPQVAYLEQELES LKAVLEIKNEKLHQQDMKLAKMEKLVDNIYALVDKLKRRQGENBELKARNDKRAAISR QLSTEQAALQESLEKESKVNKRLSMENEELLMKLHNGDLCSPKRSPTSSAIPFQSPRN This clone was selected for full length sequencing because it passed the following selection criteria: Hexamer frequency ORF /tissue_type="Eye, retina, mouse strain C57Bl\6" /clone_lib="NIH_MGC_94" clone="MGC:49379 IMAGE:5366361" 'product="AI481402 protein" /lab_host="DH10B" /note="Vector: pCMV-SPORT6" /db_xref="LocusID:102103" 'db_xref="LocusID:102103" 'protein_id="AAH43321.1" 'db_xref="G1:27694047" organism="Mus musculus" /mol_type="mRNA" /db_xref="taxon:10090" db_xref="MGI:2142572" Location/Qualifiers qene="AI 481402" /codon_start=1 .1612 . .3629 analysis. gene CDS FEATURES

g

SGSFSSPSISPR"
SASE COUNT 1047 a 843 c 816 g 923 t
BRIGIN

ö TCGGAGAAGGTGGAATTGCTGAAGAAGCTATGAAACCTCCCTTTCAGAAATCAAGAG 1024 785 CATCAGACAGACGGAACTGGAGAACTGGCTGAAGGACTTATACACCGCAGAGTGT 844 GAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAATATAAAACTCAACTGCAAGAG 120 121 CAGITIGACAACTIAAACGCCGCCCAIGAGCCACTAAGCIIGAGAIIGAAGCIAGCCAC 180 181 TCGGAGAAGGTGGAATTGCTGAAGAAGACCTATGAAACCTCCCTTTCAGAAATCAAGAAG 240 241 AGCCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCTG 300 1 CATCAGACAGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT 60 0; Gaps 100.0%; Score 354; DB 10; Length 3629; 100.0%; Pred. No. 2.3e-78; Indels 0; Mismatches 354; Conservative Best Local Similarity 61 965 Query Match Matches Š 9 ò 엄 임 $^{\circ}$ çλ q

Strausberg, R.D., Feligold, E.A., Grouse, L.H., Derge, J.G.,
Klausner, R.D., Collins, F.S., Wagner, L., Shemmen, C.M., Schuler, G.D.,
Altschul, S.F., Zeeberg, B., Buecow, K.H., Schaefer, C.F., Bhar, N. R.,
Altschul, S.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F.,
Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L.,
Stapleron, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L.,
Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S.,
Carninoi, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J.,
Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J.,
Mofernan, K.J., Malek, J.B., Gunarathe, P.H., Richards, S.,
Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulk, K.S.,
Yillalon, D.K., Muzny, D.M., Sodergren, E.J., Liu, X., Gibbs, R.A.,
Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S.,
Ranchez, A., Willing, M., Madan, A., Young, A.C., Shevienko, Y.,
Ranffard, G. Rishesley, R. W. Pronchman, T. W., Gozon, P. D. BC041777 5218 bp mRNA linear ROD 10-JJN-2003 Mus musculus expressed sequence AI481402, mRNA (cDNA clone MGC:31380 IMAGE:4240274), complete cds. Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Mus. Mus. Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers;R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Submitted (23-DEC-2002) National Institutes of Health, Mammalian Gene Collection (MGC), Cancer Genomics Office, National Cancer nstitute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590, Schnerch, A., Schein, J.E., Jones, S.J. and Marra, M.A. Generation and initial analysis of more than 15,000 full-length 301 GAGAAACAAATCAATGAICTGAAGAGTGAAAACGATGCTTTAAAACGAAAGGTTG 354 Contact: MGC help desk
Email: cgapbs-r@mail.nih.gov
Tissue Procurement: Jeffrey E. Green, M.D.
cDM Liberry Preparation: Life Technologies, Inc.
cDMA Library Arrayed by: The I.M.A.G.E. Consortium (LIML) Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002) NIH-MGC Project URL: http://mgc.nci.nih.gov human and mouse cDNA sequences Mus musculus (house mouse) Mus musculus BC041777.1 GI:27469800 (bases 1 to 5218) (bases 1 to 5218) Direct Submission Strausberg, R. 12477932 22388257 BC04177 DEFINITION ORGANI SM TITLE JOURNAL ACCESSION JOURNAL MEDLINE AUTHORS VERSION KEYWORDS REFERENCE PUBMED REFERENCE AUTHORS TITLE SOURCE ò 음

DNA Sequencing by: Sequencing Group at the Stanford Human Genome Center, Stanford University School of Medicine, Stanford, CA 94305 Web site: http://www-shgc.stanford.edu Contact: (Dickson, Mark) nacd@paxil.stanford.edu Dickson, Mark) nacd@paxil.stanford.edu Dickson, M., Schmutz, J., Grimwood, J., Rodriquez, A., and Myers, Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LINL at: http://image.llnl.gov Series: IRAK Plate: 43 Row: o Column: 3. /clone="MGC:31380 IMAGE:4240274"
/clone="MGC:31380 IMAGE:4240274"
/tissue type="Kidney, normal. 5 month old male mouse."
/tissue type="Kidney, normal. 5 month old male mouse."
/tissue type="Kidney, normal. 5 month old male mouse."
/lab.host="MHGE"
/note="Wector: pGAV-SPORT6" /organism="Mus musculus" 'db xref="taxon:10090" Location/Qualifiers 1. .5218 /mol_type="mRNA" /strain="FVB/N" Я. М. source FEATURES

MNRAPRSDFRAGKKAELPINKTHKOOFNKLITSOAAQYTTHSRAASLGVPRTTSAAKS NOENVDKTGSPHAGSETGSVAAFFOKIKGILÞVRAKSSECLEVTYVSHIDOISPEKGE ODGEAÞMEKQELGKOATNEIFESKSLLVGSAPKTSTTPGRSSSKPDSRSLRKTPGLKA SLESIKKSHEMEKKSLEDILNEKQESLEKQINDLISSENDALNEKKSEEGKOLSREX,
NSKNEYOWY LEQELESIKAVLEINNEKLEQOMKLACGEKUVDNITALVDKILKREQQE
NEEKAAWDKHENS TROLSTEROALQESLEKESKNIKRILSNENEELLMKLIANGDLCSP
KREPTSSALPFOSPRINGOSFSSESISPR.

1192 c 1183 g 1262 t /db_xref="LocusID:102103" /translation="MGQNLRGTLPNCHVDGECPVLVPAFEKSKTRVLGSECKVTVTED PHIDSHDNDSDIQSSTEELILERSVSGQRGSSYEMGMGENGGAICTDKAGGMSTPVKQP PNLSFRLEPAEVKKYNNVENGPRDAKSAPNLKGEFTNMFKPNLGKSATKTNTIVGSKV KVGPTAACLRRKS ESRTLGSDRALSPQR I RRVSGSGGHAA I NKY EEKPPKQAFQNGSG PLYLKP LVPRAHSHLLKT SPKGP SRKSLFTAFNSVEKGRQKNPRSLCI QTQTAP DVLS SERTLELAQYKTKCESQSGFILHLRQLLSRGATKFEALIVVIQHLLSEREEALKQFK, LSQELVSLRGELVAASSACEKLEKARADLQTAYQEFVQKLNQQHQTDRTELENRLK,DL RKTEIISYPTPNFKNIKAKVISRSVLQPKDTSVMKDTPNPQVTGGSSPSPGPSKQLTM Y TAECEKLOSIYI EEA EKYKTOLOEOFDNINAAHETTKLEI EASHSEKVELLKKTY3T /codon_start=1 /product="AI481402 protein" /db_xref="LocusID:102103" /db_xref="MGI:2142572" 53._.2707 /protein_id="AAH41777.1" /db_xref="G1:27469801"

gene="AI481402"

...5218

dene

CDS

1581 a BASE COUNT

0; 0; Gaps Query Match 100.0%; Score 354; DB 10; Length 5218; Best Local Similarity 100.0%; Pred. No. 2.3e-78; 0; Indels 0; Mismatches Matches 354; Conservative

1880 CATCAGACAGACCGGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT 1939 9 1 CATCAGACAGGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT δ g

22388257

MEDLINE

٥٧	61 GAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATAIAAAACTCAACTGCAAGAG 120
Db 15	1940 GAGNAGCTTCAGAGCATTACATTGAGGAGGCAGAAAATATAAAACTCAACTGCAAGAG 1999
Qy 1	121 CASTITGACAACTIAAAGGCGCCCAIGAGACACACIAAGCTIGAGAITGAAGCTAGCG; 180
ζŷ	r.h
Db 20	
A	241 AGCATGAGATGAGAAGAAGTGACTGGAGGATCTGCTTAATGAGAAGAGAGAATCGC%; 300
Db 21	2120 AGCCATGAGATGGAGAAGAGAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCT; 2179
Qy 3	301 GAGAAACAAATCAATCATCTGAACAGTGAAAACCATGCTTTAAACGAAAGGTTG 354
RESULT 5 BC042206	
LOCUS DEFINITION	BC042206 5219 bp mRNA linear ROD 10-JUN-2003 Mus musculus expressed sequence AI481402, mRNA (cDNA clone
ACCESSION VERSION KEYWORDS	MGC:49685 INAGE:4240274), complete cds. BC042206 BC042206.1 GI:27503397 MGC.
SOURCE	Mus musculus (house mouse)
	etazoa; Chordata; Craniata; Vertebrata; Euteleosto
REFERENCE	nammaila; Eucheria; Modentia; Sciurognathi; Muridae; Murinae; Mus. 1 (bases 1 to 5219)
AUTHORS	<pre>Strausberg,R.L., Feingold, B.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Collins, F.S., Wagner, L., Shenmen, C.M., Schuler, G.D., Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, N.K.,</pre>
	Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L.
	Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L.,
	Carninci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J.,
	Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J., McKernan, K.J., Malek, J.A., Gunarathe, P.H., Prichards, S.
	Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W.,
	vilialon, D. A., Muzny, D. M., SodeEgren, E. J., Lu, X., Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodriques, S.,
	Sanchez, A., Whiting, M., Madan, A., Young, A.C., Shevchenko, Y.,
	Boutiard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D., Dickson, M.C., Rodri mez, A.C., Grimmond, J., Schmitt, T., M., man, J. M.
	Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailus, D.E.,
TITLE	Schnerch, A., Schein, J.E., Jones, S.J. and Marra, M.A. Generation and initial analysis of more than 15,000 feed-
	human and mouse cDNA sequences
JOURNAL	Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899~16903 (2002)

```
Akter, N. Ayele, K., Beckstrom-Sternberg, S.M., Benjamin, B.,
Akter, N., Ayele, K., Beckstrom-Sternberg, S.M., Benjamin, B.,
Blakesley, R.W., Bouffard, G.G., Breen, K., Brinkley, C., Brooks, S.,
Dietrich, N.L., Granite, S., Gan, X., Gupta, J., Haghighi, P.,
Hansen, N., Ho, S.-L., Karlins, E., Kwong, P., Laric, P., Logaspi, R.,
Maduro, Q.L., Masiello, C., Maskeri, B., Mastrian, S.D., McCloskey, J.C.,
McDowell, J. Pearson, R., Stentripop, S., Thomas, P.J., Touchman, J.W.,
Tsurgenn, C., Wogt, J.L., Walker, M.A., Wetherby, K.D., Wiggins, L.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PHIDSHINDSDIQSSTEELTLRSVSGQRGSSYEMGMGENGGALCTDKACCMSTPVKQP
PNLSFRLEPAEVKKYNNVENGPRDAKSAPNIKGEPTNMPKPNLGKSATKTNTTVGSKV
RKTEIISYPTPNFKNIKAKVISRSVLQPKDTSVMKDTPNPQVTGGSSPSPGPSKQLIM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Clone distribution: MGC clone distribution information can be found
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               'translation="MGQNLRGTLPNCHVDGECPVLVPAFEKSKTRVLGSECKVTVTED
                                                                                               Submitted (02-JAN-2003) National Institutes of Health, Mammalian Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             through the I.M.A.G.E. Consortium/LIML at: http://image.llnl.gov
Series: IRAK Plate: 85 Row: i Column: 19.
Location/Qualifiers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 /tissue type="Kidney, normal. 5 month old male mouse."
/clone_lib=wNG_GGAP_Kid14"
/lab_host="MH10B"
/note="Wector: pGAV-SPORT6"
                                                                                                                                                                                                                                                                                             Email: cgapbs-r@mail.nih.gov
Tissue Procurement: Jeffrey E. Green, M.D.
CDNA Library Preparation: Life Technologies, Inc.
CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LINL)
DNA Sequencing Center (NISC),
Sequencing Center (NISC),
Gaithersburg, Maryland;
Web site: http://www.nisc.nih.gov/
                                                                                                                                                                                                                                 NIH-MGC Project URL: http://mgc.nci.nih.gov
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     /clone="MGC:49685 IMAGE:4240274"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         /codon_start=1
/product="AI481402 protein"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (oung, A., Zhang, L.-H. and Green, E.D.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      /db_xref="LocusID:102103"
/db_xref="MGI:2142572"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        /db_xref="GI:27503398"
/db_xref="LocusID:102103"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        protein_id="AAH42206.1"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               /organism≈"Mus musculus"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     db_xref="taxon:10090"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  /mol_type="mRNA"
/strain="FVB/N"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       gene="AI481402"
                                                                                                                                                                                                                                                                    Contact: MGC help desk
(bases 1 to 5219)
                                                                      Direct Submission
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1. .5219
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ...5219
                               Strausberg, R.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   source
                                                               TITLE
JOURNAL
                               AUTHORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          gene
                                                                                                                                                                                                                                 REMARK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CDS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FEATURES
```

NQBNVDRTGSPHAGSETGSVAAFFQKIKGILÞVRMKSSECLEVTYVSHIDQISPEKGE
DQBAPREKQELGRQANNELFESKELLVGSPRATETGFEKSEKPEPPELGA
KVGPTAACLERKESSRTUGSDRALSPORIRRYGSGGHAAINKYEEKPPRGAFGLKA
KVGPTAACLEKLESSRTUGSDRALSPORIRRYGSGGHAAINKYEEKPPRGAFQNGS
PLYLKPLVPRAHSHLLKTSPKOPSRESTLFTAFNSVEKGRQKNPRSLCTGTGTAPDVLS
SERTLELAQYKTKCESGGGFTHHARQLLSRGATKFRALVATVOI OHLLSREEALKOHKT
ISQELVSLRGELVAASSACEKLEKARDLQTAVGFFVQKTAQOPGTDFFELBNIKDU
YTAACEKLOSTYI ERABEXYTGLOBQEPNLAAAHETTALE IRASHSEKYELLKKTYET
YTAACEKLOSTYI ERABEXYTGLOBGEPNLAAAHETTALE IRASHSEKYELLKKTYET
YTAACEKLOSTYI ERABEXYTGLOBGEPNLAAAHETTALE IRASHSEKYELLKKTYET
YTAACEKLOSTYI ERABEXYTGLISTROBELHQODMGLAKGRENDALVBERLKSTERQA
NSINDYQWY LIGGLESSLKAULLINGVERLAGODMGLAKGRENDALVBERLKKTYEN
NSELKARDARMALISRQLSTEQAALQESIEKESKNYKKLSNENDELLMKTHNGDLCSP
KRSPTSSALPFQSPRNSGSFSSFSISPR"

ANSE COUNT 1581 a 1193 c 1183 g 1262 t ORIGIN Query Match
100.0%; Score 354; DB 10; Length 5219;
Best Local Similarity 100.0%; Pred. No. 2.3e-78;
Matches 334; Conservative 0; Mismatches 0; Indels 0; Gaps

2000 CASILLANCHACLIANANCH CACCACUATIONACH CANDANGCITGAGAITGANGCITGAGCAN 2055
Qy 181 TGGGAGAGAGGGGAAITGCIGAAGAACCIATGAAACCITCCITTGAGAAATGAGAA, 240

24 COGNICA CONTROLL C

Qy 241 AGCCATGAGAGAGAGAGAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCT3 300

Db 2120 AGCCATGAGATGAGAAGAAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCT:

2179

Search completed: October 21, 2003, 17:17:55 Job time : 906.403 secs

MNKAPRSDFKAGKKAEIPINKTHKQQFNKLITSQAAQVTTHSKNASLGVPRTTSAAKS

OM nucleic - nu	nucleic search, using sw model
Run on:	October 21, 2003, 08:56:18; Search time 68.0658 Seconds (without alignments) 14039.364 Million cell updates/sec
Title: Perfect score: Sequence:	US-09-762-194-5 354 1 catcagacagaccggacggaatgctttaaacgaaaggttg 354
Scoring table:	IDENTITY NUC Gapop 10.0, Gapext 1.0
Searched:	2552756 seqs, 1349719017 residues
Total number of	hits satisfying chosen parameters: 5105512
Minimum DB seq Maximum DB seq	length: 0 length: 2000000000
Post-processing	Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries
Database :	N_Geneseq_19Jun03:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1980.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1981.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1981.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1982.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1982.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1985.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1985.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1980.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1980.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1980.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA1991.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA2001.DAT:+ SIDSIJ gcgdata/geneseq/geneseqn=embl/NA2001.DAT:

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.25.25.25.25.25.25.25.25.25.25.25.25.2	000000000000000000000000000000000000000	354 1323 1803 1803 1803 1803 1910 1910 1910 1910 1910 1910 1910 19	25 25 25 25 25 25 25 25 25 25 25 25 25 2	AAZ 99999 AAZ 99999 AAZ 99099 AAZ 99089 AAS 26163 AAS 26163 AAS 26163 AAH 14324 AAH 14324 AAH 14324 AAH 14323 AAH 14325 AAH 14327 AAH 14327 AAH 14337 AAH 14355 AAH 14356 AAH 14356	Mouse AIIP Coving Human CDNA expodin Polymuclectis esquenc Human CDNA sequenc Nucleotide sequenc Human DDNA clone (Human DDNA clone (Human CDNA clone (Human CDNA clone (Human CDNA clone (Human CDNA clone (Human Secreted exp Human secreted pro Nucleotide sequenc
44 44 44 44 44 44 44 44 44 44 44 44 44	4 4 4 5 5 0 5 8 8 5 0 5 8 8 5 0 5 8 8 5 0 5 8 8 5 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	15.0 12.8 12.8 12.8 12.3 11.9	2240 2435 240 240 1563 1563 240 2240	23 2 2 4 4 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3	AAH74375 AAH74376 AAH74357 AAH74377 AAB199537 ABL53204 AAH74358 AAH74358 AAH28549 ABL28548	

ALIGNMENTS

```
61 GAGAAGCTICAGAGCATITACATIGAGGAGGCAGAAAAATATAAAACTCAACTGCAAGAG 120
                                                               CAGITIGACAACTIAAACGCCGCCCAIGAGACCACTAAGCTIGAGAITGAAGCTAGCCAC 180
                                                                                                                             ICGGAGAAGGIGGAATIGCTGAAGAAGCCTAIGAAACCICCCTIICAGAAAICAAGAAG 240
 GAGAAGCTICAGAGCATTIACATIGAGGAGGCAGAAAAAIAIAAAACTCAACTGCAAGAG 120
                                                                                            121 CAGITIGACAACTIAAACGCCGCCCATGAGACCACTAAGCITGAGATTGAAGCTAGCCAC 180
                                                                                                                                                           181 TCGGAGAAGTGGAAATTGCTGAAGACCTATGAAACCTCCCTTTCAGAAATCAAGAA. 240
                                                                                                                                                                                           241 AGCCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCT:+ 300
                                                                                                                                                                                                                        241 AGCCATGAGATGGAGAAGAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCT
                                                                                Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                              GAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAAACGAAAGGTTG 354
                                                                                                                                                                                                                                                                      Mouse, angiotensin, AI2 receptor interactive protein, ATIP, ss;
two-hybrid screen; signal transduction, coding sequence.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Strosberg AD;
                                                                                                                                                                                                                                                                                                                                                                    AAZ99089 standard; cDNA; 1323 BP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (CNRS ) CNRS CENT NAT RECH SCI.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             98FR-0009997.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               98FR-0009997.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Mouse AIIP coding sequence.
                                                                                                                                                                                                                                                                                                                                                                                                                                    (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Elbaz N, Nahmias C,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WPI; 2000-248410/22.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          P-PSDB; AAY83777
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FR2782084-A1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                                                                                                                  21-JUN-2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             11-FEB-2000.
                                                                                                                                                                                                                                                                                                                                                                                                    AAZ 99089;
 61
                                                                                                                           181
                                                                                                                                                                                                                                                       301
                                                               121
                                                                                                                                                                                                                                                                                      301
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Mus sp.
                                                                                                                                                                                                                                                                                                                                   RESULT 2
                                                                                                                                                                                                                                                                                                                                                     AAZ 99089
 à
                               음
                                                               ò
                                                                                          g
                                                                                                                             9
                                                                                                                                                           쉽
                                                                                                                                                                                         8
                                                                                                                                                                                                                      엄
                                                                                                                                                                                                                                                       63
                                                                                                                                                                                                                                                                                      a
                                                                                                                                                                                                                                                                                                                                                                                                  ö
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        to screen for substances that modulate ATIP-AT2 interaction or substances that interact with ATIP, especially using yeast two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           This sequence represents the initial clone for the cDNA encoding a mouse angiotensin II (AR2) receptor interactive protein (ARIP, AAR3777). The sequence was subsequently used as a hybridisation probe isolate the complete gene (AA299089) from a two-hybrid screen using the C-terminal fragment of the mouse AR2 receptor as the "Balt" (AA87381). The "target" is a mouse focal cDNA library. Cells transformed with vectors containing the CDNA, or immobilized proteins encoded by it, can be used
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1 CATCAGACAGACCGGACGGGAACTGGAGGAACCGGCTGAAGGACTTATACACCGCAGAGTGT 60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Gaps
                                                                                                                                                          Mouse; angiotensin; AT2 receptor interactive protein; ATIP; ss; two-hybrid screen; signal transduction; hybridisation probe.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   100.0%; Score 354; DB 21; Length 354; Similarity 100.0%; Pred. No. 7.2e-89; 64; Conservative 0; Mismatches 0; Indels 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Sequence 354 BP; 130 A; 67 C; 92 G; 65 T; 0 other;
                                                                                                                                                                                                                                                                                                                                                                                                  Strosberg AD;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Claim 1; Page 33-34; 63pp; French.
                                                                                                                           Mouse ATIP coding sequence probe.
                               AAZ99090 standard; cDNA; 354 BP.
                                                                                                                                                                                                                                                                                                                                                                   (CNRS ) CNRS CENT NAT RECH SCI
                                                                                                                                                                                                                                                                                                                                   98FR-0009997.
                                                                                                                                                                                                                                                                                                     98FR-0009997.
                                                                                            (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    354; Conservative
                                                                                                                                                                                                                                                                                                                                                                                                  Elbaz N, Nahmias C,
                                                                                                                                                                                                                                                                                                                                                                                                                               WPI; 2000-248410/22.
                                                                                                                                                                                                                                                                                                                                                                                                                                                P-PSDB; AAY83779.
                                                                                                                                                                                                                                     FR2782084-A1.
                                                                                                                                                                                                                                                                                                     04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                   04-AUG-1998;
                                                                                            21-JJN-2000
                                                                                                                                                                                                                                                                     11-FEB-2000.
                                                             AAZ99090;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Local
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Matches
RESULT 1
               AAZ99090
                               ð
```

Claim 1; Page 30-31; 63pp; French.

300

```
GAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATATAAAACTCAACTGCAAGAG 120
                                                                                                                                                                                                                                                                                                                                                                                            496 CATCAGACAGACCGGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT 555
                                                                                                                                                                                                                                                                                                                                                                                                                                               121 CAGTITGACAACTIAAACGCCGCCCAIGAGACCACIAAGCITGAGAITGAAGCIAGCCAC 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      181 TCGGAGAAGGTGGAATTGCTGAAGAACCTATGAAACCTCCCTTTCAGAAATCAAGAAG 243
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       241 AGCCATGAGATGGAGAAAATCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCTG 300
             ercoding a mouse angiotensin II (AIZ) receptor interactive protein (AIIP). The gene was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AIZ receptor as the "bair" (AAN893781). The "target" is a mouse foctal CDNA library. Cells transformed with vectors containing the CDNA, or immobilized proteins encoded by it, can be used to screen for substances that modulate AIIP-AIZ interaction or substances that interact with AIIP, especially using yeast two-or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AIZ receptor signal transduction.
                                                                                                                                                                                                                                                                                                          9
                                                                                                                                                                                                                                                                                                    1 CATCAGACAGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT
                                                                                                                                                                                                                                                                    0; Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GAGAAACAAATCAATGATCTGAAGAGTGAAAACGATGCTTTAAACGAAAGGTTG 354
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  sequence represents the open reading frame (ORF) of the cDNA
                                                                                                                                                                                                                               tch 100.0%; Score 354; DB 21; Length 1323; al Similarity 100.0%; Pred. No. 1.1e-88; 354; Conservative 0; Mismatches 0; Indels 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Mouse; angiotensin; AT2 receptor interactive protein; ATIP; ss;
                                                                                                                                                                                             Sequence 1323 BP; 425 A; 326 C; 325 G; 247 T; 0 other;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           two-hybrid screen; signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             BP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AAZ99088 standard; cDNA; 1803
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (first entry)
                                                                                                                                                                                                                                                  Local Similarity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Mouse ATIP gene
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               21-JUN-2000
                                                                                                                                                                                                                                                                                                                                                                          61
                                                                                                                                                                                                                                   Query Match
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             AAZ99088;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Mus sp.
                                                                                                                                                                                                                                                                  fatches
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RESULT 3
셤
                                                                                                                                                                                                                                                                                                      ò
                                                                                                                                                                                                                                                                                                                                                                        δ
                                                                                                                                                                                                                                                                                                                                                                                                        셤
                                                                                                                                                                                                                                                                                                                                                                                                                                             ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    δÿ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    임
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \delta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             g
```

```
that modulate ATIP-AT2 interaction or substances that interact with ATIP, especially using yeast two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             61 GAGAAGCTICAGAGCATTIACALTGAGGAGGCAGAAAAATALAAAACTCAACTGCAAGA3 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             121 CAGTITGACAACTIAAACGCCGCCCATGAGACCACTAAGCTTGAGATTGAAGCTAGCCAC 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                receptor interactive protein (ATIP). The gene was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AT2 receptor as the "bait" (AAY87381). The "target" is a mouse foetal cDNA library. Cells transformed with vectors containing the cDNA, or immobilized proteins encoded by it, can be used to screen for substances
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TCGGAGAAGGTGGAATTGCTGAAGACCTATGAAACCTCCCTTTCAGAAATCAAGAAG 240
                                                                                                                                                                                                                                                                                                                                                                                                                                    This sequence represents the cDNA encoding a mouse angiotensin II (AT2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GAGAAGCTTCAGAGCATTTACATTGAGGAGGCAGAAAAATATAAAACTCAACTGCAAGAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1 CAICAGACAGACGGACGGAACTGGAGAACCGGCTGAAGGACTTATACACCGCAGAGTGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0; Gaps
                                                              'note= "angiotensin II (AT2) receptor interactive
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   100.0%; Score 354; DB 21; Length 1603; 100.0%; Pred. No. 1.3e-88;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Indels
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Sequence 1803 BP; 539 A; 464 C; 440 G; 360 T; 0 other;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0; Mismatches
Location/Qualifiers
                                                                                                                                                                                                                                                                           Strosberg AD;
                                                                                 protein"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AT2 receptor signal transduction.
                                /*tag= a
/product= "AIIP"
                                                                                                                                                                                                                                        (CNRS ) CNRS CENT NAT RECH SCI.
                                                                                                                                                                                                                                                                                                                                                                                                       Claim 1; Fig 3; 63pp; French.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    100.08;
                                                                                                                                                                                                           98FR-0009997.
                                                                                                                                                                            98FR-0009997.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Matches 354; Conservative
                                                                                                                                                                                                                                                                          Elbaz N, Nahmias C,
                                                                                                                                                                                                                                                                                                      WPI; 2000-248410/22.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Best Local Similarity
                                                                                                                                                                                                                                                                                                                       P-PSDB; AAY83777
                                                                                                                                                                            04-AUG-1998;
                                                                                                              FR2782084-A1
                                                                                                                                                                                                           04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               733
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             793
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               181
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Query Match
Key
ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              δ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ద
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  임
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ద
```

241 AGCCATGAGATGGAGAAGAAGTCACTGGAGGATCTGCTTAATGAGAAGCAGGAATCGCTG 300 completed: October 21, 2003, 11:11:04 Search completed: Octobe Job time: 69.0658 secs q ò ò g 유

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

(without alignments)
13107.130 Million cell updates sec October 21, 2003, 17:18:24; Search time 72.4306 Seconds Run on:

US-09-762-194-5 354

1 catcagacagaccggacgga.....atgctttaaacgaaaggttg 354 score: Sequence: Title: Perfect :

IDENTITY NUC Gapop 10.0 , Gapext 1.0

Scoring table:

Total number of hits satisfying chosen parameters:

1792395 seqs, 1340900451 residues

Searched:

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database:

Published Applications NA:*

1: /cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:*
2: /cgn2_6/ptodata/1/pubpna/US07_NEW Pub.seq:*
3: /cgn2_6/ptodata/1/pubpna/US06_NEW Pub.seq:*
4: /cgn2_6/ptodata/1/pubpna/US06_PUBCOMB.seq:*
5: /cgn2_6/ptodata/1/pubpna/US07_NEW Pub.seq:*
6: /cgn2_6/ptodata/1/pubpna/US08_NEW Pub.seq:*
7: /cgn2_6/ptodata/1/pubpna/US08_NEW Pub.seq:*
8: /cgn2_6/ptodata/1/pubpna/US08_NEW Pub.seq:*
9: /cgn2_6/ptodata/1/pubpna/US08_NEW Pub.seq:*
10: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
11: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
11: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
12: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
13: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
14: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
15: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
15: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
16: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
17: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
17: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
17: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*

| cgn2_6/prodate1/1/pubpna/USO9B_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USO9C_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USO9C_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USO9C_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USO9C_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USOSOB_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USOSOB_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USOSOB_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USOSOB_PUBCOMB.seq: | cgn2_6/prodate1/pubpna/USOSOB_PUBCOMB.seq:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Query Score Match Length DB Š. Result

Description ID

Sequence 342, App Sequence 47, Appl Sequence 76, Appl Sequence 757, App Sequence 5132, Ap	000000	6203, 22817, e 497, 2534, 19928,	Sequence 504, App Sequence 29, Appl Sequence 29, Appl Sequence 29, Appl Sequence 53, Appl Sequence 54, Appl Sequence 55, Appl Sequence 56, Appl Sequence 478, Appl Sequence 343, Appl Sequence 34, Appl Appl Sequence 34, Appl Appl Sequence 34, Appl Appl Sequence 34, Appl Appl Appl Sequence 34, Appl Appl Appl Appl Appl Appl Appl App	e 8, e 559 e 68, e 1, e 15, e 225	Sequence 213132, Sequence 169, App Sequence 280, App Sequence 19262, A Sequence 11284, A Sequence 11284, A Sequence 11696, A Sequence 11659, A
US-09-764 US-10-044 US-10-044 US-09-764 US-09-918 US-09-998	12 US-10-004-113-7 12 US-10-0029-386-19974 12 US-10-029-386-6243 10 US-09-960-352-6844 9 US-09-966-352-948	US-09-864-761-6203 US-09-864-761-2281 US-09-917-800A-49 US-09-864-761-2534 US-09-864-761-2534	10 US-09-862-810-504 110 US-09-860-107-2410 12 US-10-096-534-29 13 US-10-269-909-52 12 US-10-269-909-53 12 US-10-269-909-55 12 US-10-269-909-56 13 US-09-925-301-478 14 US-10-106-698-343 15 US-09-919-039-334 17 US-09-919-039-334	US-10-067-279-8 US-10-029-386-5590 US-10-01-870-68 US-10-294-804-1 US-09-972-546-15 US-09-918-995-2250 US-09-918-995-2250 US-10-027-632-2131	13 US-10-027-632-213132 14 US-10-103-313-169 14 US-10-103-313-280 9 US-09-864-761-1284 9 US-09-864-761-1284 9 US-09-864-761-28274 9 US-09-864-761-28274 9 US-09-864-761-1696
4	9000000	475 511 1607 496 232	11560 11560 1230 1230 1250 1250 1250 1250 1250 1250 1250 125	1680 551 3809 3489 143899 477	663 1631 1882 305 474 360 450
0000000	9.11.19.0			0000000	100000000000000000000000000000000000000
246.8 246.8 246.8 234 194.8	42.2 42.2 40.8 39.4	38.2 37.8 37.6 37.6		36.8 36.6 36.6 35.8 35.8	
୍ଟ ଓ ଓ ୟ ଓ ଉ	0 7 8 8 10 11 11 12 12	c 133 c 144 c 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 334 337 335 336 336	ოოძძ ძ ძძ

Search completed: October 21, 2003, 21:04:07 Job time : 560.115 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 08:57:52; Search time 9570.68 Seconds (without alignments) 15995.091 Million cell updates/sec Run on:

Scoring table: IDENTITY_NUC Gapop 10.0, Gapext 1.0

5777422 Total number of hits satisfying chosen parameters:

2888711 seqs, 20454813386 residues

Searched:

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

GenEmbl:* Database :

1: 9b_ba:*
2: 9b htg:*
4: 9b_om:*
5: 9b_ov:*
6: 9b_pat:*
7: 9b_pb:*
10: 9b_pt:*
10: 9b_pt:*
11: 9b_sts:*
12: 9b_vi:*
13: 9b_vi:*
14: 9b_vi:*
14: 9b_vi:*
15: em_ba:*
16: em_hum:*
17: em_hum:*
17: em_hum:*
17: em_hum:*
18: em_ni:*
18: em_ni:*
20: em_ov:*
22: em_ov:*
23: em_pt:*
24: em_ph:*
25: em_pt:*
26: em_pt:*
27: em_sts:*

em un:↓	em vi:*	em htg hum: *	em htg inv: *	em htg other: *	em htg mus: *	em htg pln: *	em htg rod: *	em htg mam: *	em htg vrt: *	em_sy: *	em htgo hum: *	em htgo mus: *	em_htgo_other:*
28:	29:	30:	31:	35:	33:	34:	35:	36:	37:	38:	39:	40:	41:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

	RIES	
	SUMMARIES	
•		
•		аÞ

		g.	Sequence	Homo sani	Homo sapi	Sequence	Homo sani	Primer fo	Homo sapi				Homo sabi	Sequence	Homo sapi	Seguence	Homo sapi		Homo sapi		Homo sabi		Sequence	Mus muscu		Mus musc:	Sequence	Sequence	Sequence	Seguence	Sequence	Homo sapi	Mus muscu	Rattus no	Mus muscu
		Description	AX210037	AF121259 F			AB033114 F		AK024357 F	BC033842 F	AK000172 F	AB020864 F	AF165145 H		AC026842 F	AX210036 S	AC124069 H	AP006249 F	AP006251 H	AF394227 H			AX301208 S	BC041777 Mus	BC043321	BC042206	AX209989 S	AX209987 S	AX210064 S	AX209991 \$	AX209993 S	BC017740 H	AF173380	AY208915	AY246699
		ID	AX210037	AF121259	HSM800681	AX210061	AB033114	BD160624	AK024357	BC033842	AK000172	AB020864	AF165145	AX210056	AC026842	AX210036	AC124069	AP006249	AP006251	AF394227	AF293357	AK026661	AX301208	BC041777	BC043321	BC042206	AX209989	AX209987	AX210064	AX209991	AX209993	BC017740	AF173380	AY208915	AY246699
		图	9	σ	σ	Ø	6	ø	9	σ	6	თ	σ	9	~	9	თ	σ	σ	σ	σ	σn	ø	10	10	10	9	9	9	9	9	Ø	10	10	10
		Length DB	3742	3455	5214	5799	5857	3315	3315	2895	2548	100000	131299	2850	171075	2333	174025	195290	28067	1970	1977	1927	1615	5218	3629	5219	1758	3654	3813	1458	1191	1142	1803	1323	1323
аķ	Query	Match	100.0	91.0	87.7	87.3	87.3	87.3			67.3	61.9	61.9	61.8	61.8	61.6	61.4	57.7	56.8	51.8	51.8	50.5	42.6	32.9	32.8	32.7	•	31.5	31.5	31.4	31.4	29.9	28.1	25.3	25.2
		Score	3742	3407	3282	3268.2	3268.2	3267	3267	2841.2	2519.2	2314.8	2314.8	2313.2	2313.2	2305.8	2297.6	2159.8	2126.2	1937	1937	1890.2	1594.2	1229.8	1226.4	1225.2	1177.4	1177.4	1177.4	75	1173.4	1118	1051	4	943.4
	Result	. No.	н	5	n	4	S	9	7	ထ	o,	c 10	11	12	13	14	c 15	c 16	c 17	18	19	20	21	22	23	24	52	56	27	28	59	30	31	32	33
	μ.,																																		

20.7 775 6 AX210002 AX210002 Sequence 19.8 830 6 BD149938 BD149938 PD149938 Primer fo 17.7 64160 2 AC124245 AC124245 Home sapi 17.6 888 6 BD048043 BD018043 Novel gen 17.4 897 6 BD039081 BD018044 Novel gen 17.4 897 6 BD097982 AC018041 Novel gen 14.5 19455.2 AC095544 AC09554 Rattus no 14.3 194355.2 AC116511 AK093875 AC05554 Rattus no 13.1 729 9 HUMZD67711 AK093875 Homo sapi 12.9 505 6 BD154906 BD154906 Primer fo	ALIGAMENTS AX210037 Squence 53 from Patent W00157209. AX210037.1 GI:15424423 Homo sapiens (human) Homo sapiens (human) Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalla; Eutheria; Primates; Catarrhini; Hominidae; Homo	as,C., Strosberg,A.D. and family of proteins, call and uses thereof tr: WO 0157209-A 53 09-AUG RE NATIONAL DE LA RECHERCH Location/Qualifiers 1. 3742 / coganism="Homo sapie / mol_type="genomic DN / db_xref="taxon:9606"	/ 293 1800 / note="Sequence codant pour hAIIP1" / note="Sequence codant pour hAIIP1" / codon_start=1 / protein_id="ACG0394.1" / db_rxef="115424424" / db_rxef="115424424" / translation="WLLSPRESLYTHIRLARGLENURINEDEDERGENTREPALTIVVEHTVEXS ROWNPRICTOPOTAPDALPPEXTIBLTQYKTKCBNQSGFILGLKQLIACGNTREPALTIVYQHIASBREBAKQHTTLEDTQYKTKCBNQSGFILGLKQLIACGNTREPALTIVYQHASTERERNELKEFYTREYELLENGYKTASTTCBCEKLEKANELQTVYEAVQ GHQAEKTERRNELKEFYTREYEKLENTYTEETEKKNAGTGEQFTNIANETSKCBIER KIKSEEGGKRARREKANLKOPQIMYLEQELESIKAVLEIRANEKLUD NUTALVDELKREQDEBELKARNETHALENGYBALISCENTRANEKLUD NUTALVDELKREQDEBELKARNETHALENGYBALISCENTRANEKLUD NUTALVDELKREQDEBELKARNETHALENGYBALISCENTRANEKLUD ELILWKHUNGTGEGEGEGESIKAVLENGELEKENKURENGEN EELILWKHUNGTGEGEGEGESIKAVLENGERENGENGENGENGENENGENENGENGENGENG	1180 a 762 c 793 g 1007 t 100.08; Score 3742; DB 6; Length 3742; Similarity 100.08; Pred. No. 0;
773.4 740 652.8 658.8 650.2 650.2 545.8 489.4 489.4	Ζ Σ	9 U		라 타
34 33 33 33 33 41 41 43 43 44 44 44 43	RESULT 1 AX210037 LOGUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM	REFERENCE AUTHORS TILLE JOURNAL FEATURES SOUTCE		BASE COUNT ORIGIN Query Match Best Local

0
Gaps
0
Indels
0;
Mismatches
0;
Conservative
3742;
Matches

0,3	09 09	120	120	180	180	240	240	300	300	360	360	420	420	480	480	540	540	900	009	099	099	720	720	780	780	840	840
Gaps	CAGAGG	3GCCAGC	GCCAGC	AGGCATC	GGCATC	ATGTGA	ATGTGA	GITGII	GITGIT	GCTTCG	GCTTCG	TGAAAA	TGAAAA	TGCGCI	TGCGCI	AAGTGG	AAGTGG	ATTGAC	ATTGAC	AACCCT	AACCCI	TGAGAA	IGAGAA	GCACCA	GCACCA	TGAAAA	
0;	GTAT	ACT T	ACTIO	GIGI	GTGT	ACAG	ACAG	GACAT	GACA	GGATI		ACAGI	ACAGI	#3000 CCCG	- 18 - 22 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	AACC	AACCA	GAGGC		CACAA	CACAA	ACCTG	ACCIG	CAGCA	SAGCA	SAGTA	SAGTA
Indels	CACTGTGATGTTCAGAGGAGCTTCTAGACCTGCAGGAGGAGATTGFATTCAGAGG 	AAGAGCATCATTTTGGCAACATCTGAAAGTGAAAACGGAAGCCAGAAACACTTGGCCAGC		CCTGGGGGAITTTTTTTTTATGCCTCTGTGGTGGAATGACATTTGCTGTGTAGGCATC	CCTGGGGGATTTTTTCTTCTATGCCTCTGTGGGGAATGACATTTGCTGTGAAGGATC	TTTCCTCTGACTGTATTTCTTGGCCTTGAAGAGTACTGAGTTTAAAAAGACACTATGTGA	TITCCTCTGACTGTATTTCTTGGCCTTGAGAGTACTGAGTTTAAAAGACAGTATGTGA	CAGICCAIGGAAAIIGCCICIICIGIGAAAICICGCCCACCIGCICCGAAGACAIGIIGII	CAGTCCAIGGAAAITGCCTCTTCTGTGAAATCTCGCCACCTGCTGCGAAAAATTGTT	GICT CCCAAAATT CICCTTAICCACCAIT CACATACGACTGACGGCCAAAGGATIGCITCG	GITTELLE HITTELLE HITTELLE PROPERTIES CONTRACTOR CONTRA	AAACCITCGACITCCTICAGGGTITAGGAGAAGCACTGITGITITCCACACACTIGAAAA	AAACCTICGACTICCTICAGGGTTTAGGAGAACACTGTTGTTTCCACACACTGAAAA	GAGCAGGCAAAAGAATCCTCGAAGCTTATGTATCCAGCCACAGGACAGCTCCCGATGGCGCT	GAGCAGGCAAAAGAATCCTCGAAGCTTATGTATCCAGCCACAGACAG	GCCCCTGAGAAAACACTTGAATTGACGCAATATAAAACAAAATGTGAAAAACCAAAGTGG	GCCCCCTGAGAAAACACTTGAATTGACGCAATATAAAACAAAATGTGAAAACCAATGG	ATTTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAGGCATTGAC	ATTAICCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAGGCATTGAC	AGTIGTGATTCAGCACCTGCTGTCTGAGGGGGGGAGGAAGCACTGAAACAAAAACCT	AGTTGTGTTCAGCACCTGCTGTGTGAGGGAGGAGCACTGAAACAAAAAACCCCT	AICTCAAGAACTTGTTAACCTCCGGGGAGAGCTAGTCACTGCTTCAACCACCTGTGAGAA	ATCT CAGGACTTGTTAACCTCCGGGGGGAGGTAGTCACTGCTTCAACCACCTGTGAGAA	ATTAGAAAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTCGTCCAGCAGCA	ATTAGAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTCGTCCAGCACCA	GGCT GAAAAACAGAACGAGAGAAT CGGCTTAAAGAGTTTTACACCAGGGAGTATGAAAA	GGCTGAAAAACAGAACAGAGAGAATCGGCCTTAAAGAGTTTTACACCAGGGAGTATGAAAA
0;	SCAGG SCAGG	CGGAA		SAATG	HIII BAATG	CTGAG	T GAG	CCACC	CACC	PACTG.	SACTG	JI GIT	HGTT(AGCCA(GCCA	AACA	AACA/	TAAT	HILL	AGCAC	AGCAC	CACT	CACTG	TGAAG	TGAAG	GTTT	GTTT
Mismatches	CTAGACCT	AGTGAAAA		CTGTGGTG	CTGTGGTG	SAAGAGIA	SAAGAGTA(AAATCTCG	AAAICICG	CACATAC	CACATAC	SAGAAGCAC	SAGAAGCAC	TGTATCC	TGTATCC?	SCANTATA	CAATATA?	eccrered	6001010	CGGGAGGA	CGGGAGGA	GAGCTAGE	GAGCTAGT	ACAGIGIA	ACAGIGIA	CTTAAAGA	CTTAAAGA
Mism	AGCTT	CTGAA	CTGAA	i GCCT	1000 1000 1000 1000	3CCTT(30011	CTGTG	TIGTG	ACCAT	ACCAT	TTAG	TTAG	AGCITZ	GCTI?	TGACC	TGAC	TICL	71CF	CTGAG	CTGAG	GGGGA	11111	TACAA	TACAA	ATCGG	ATCGG
0;	GAGGC	AACAT	AACAT	TICIA	TICLA	TCTIG	10110	CTCTT	CTCTT	TATCC	TATOC	CAGGG	CAGGG	CICGA	CICGN	TTGAA	TGAAT	AGCAG	4GCAGC	FGCTGI	16C7G	ACCTOC	ACCIG	ATGAGI	ATGAGT	SAGAGA	PAGAGA
tive	GGTICA	TIIGC	TITIGGO	TTTT	TTTTC	TGIATI	TGTALT	AATIGC	AATIGC	TCICCI	TCTCCT	TTCCTT	TICCLE	AGAATO	AGAATO	AAACAC	AAACAC	AGCTCA	AGCTCA	AGCACC	AGCACC	TTGTTA	TTGTTA	CCAGGAZ	CAGGA	CAGAACC	ZAGAACC
Conservative	GATGI 11111 GATGI	CATCAI	CATCAT	GGAII	SGGATT	CTGAC	CTGAC	ATGGA	ATGGA	CANAT	CAAAL	TCGAC	TCGAC	GCAAA	GCAAA	TGAGA	TGAGA	CCTGC	CCTGC	GATTC	GATTC	AGAAC	AGAAC	AAAAG	AAAAGG	AAAAA(AAAAA(
	CAGTG	AAGAG	AAGAG	CCTGG	70TGG	rrrcc	FIRCO	SAGIC	SAGTO	STCTCC	STOTO	VAACCI	AACCI	AGCAG	AGCAG	22222	- 00 - 00 - 00 - 00	TTTAT	TTTAT	GITGI	GTTGT	TCTCA	TCT CA	TTAGA	TTAGA	GCTGA	GCTGA
3742	٦ , ,	61	61	121 (121	181	181	241 (241 (301	301 (361 7	361 2	421 6	421 6	481 G	481 G	541 A	541 A	601 A	601 A	661 A	661 A	721 A	- 721 A	781 G	781 G
Matches													.,	7	7	7	7'	и)	u,	v	v	w	Ü	7	7	7	7
Mat	\$ A	δÿ	Ωp	Qγ	g	δy	Db	Qy	qq	Qy	qq	63	g	67	QQ	δy	QQ	Qy	Dp	δλ	q	٥y	ρρ	0y	DP	٥y	QD

Qy	841	F	900
OP	841	GCTTCGGGACACTTACATTGAAGAAGCAGAAGTACAAAATGCAATTGCAAGAGCAGTT (006
δy	901		960
셤	901	TGACAACTTAAATGCGCATGAAACCTCTAAGTTGGAAATTGAAGCTAGCCACTCAGAGA.	096
Qy	961		1020
원	961	ACTIGAATICTAAAGAAGGCTATGAAGCCTCCTTTCAGAATTAAGAAGGCCTGTGA	1020
οy	1021		1080
Db	1021	AATAGAAAAGAAATCGCTTGAAGATTTACTTTCTGAGAAGCAGGAATCGCTAGAGAAGCA	1080
Qy	1081		1140
QQ	1081	AAICAAIGIGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	1140
Qy	1141		1200
Dþ	1141	AAAAGAAGGAGAGAGAAATITGAAAAATCCTCAGATCATGTATCTAGAACA	1200
٥٧	1201	GGAGTTAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTGCATCAACAGGA 1	.260
Ο̈́Ω	1201	GGAGTIAGAAAGCCIGAAAGCIGIGITAGAGAICAAGAATGAGAAAACTGCAICAACAGGA 1	1260
δy	1261	D.	1320
dC	1261	CATCAAGITAATGAAAATGGAGAAACTGGTGGACAACACAAC	1320
Qy	1321		1380
QQ	1321	GAAGGTIIOCAGCAGGAGAATGAAGAATTGAAAGCTOGGATGACACGCACAIGGCAA; 1	1380
٥y	1381		1440
q	1381	CICAAGGCAGCTICCACGGAGCAGGCTGTTCTGCAAGAGTCGCTGGAAGAGGAGCGAA	1440
QY	1441		500
Db	1441	AGTCAACAAGCGACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTGCACAATGGGGA 1	500
Qy	1501	r-4	560
Db	1501	CCTGTGTAGCCCCAAGAGATCCCCCAACATCCTCCGCCATCCCTTTGCAGTCACAAGAA 1	1560
Qy	1561	-	620
QQ	1561	TIGGGGTCTICCTAGCCCAGCATICACCCAGATGACACGTCCCCAAAGTCCACG 1	1620
٥'n	1621		1680
QQ	1621	ACTCTCTGAAAGCATTTTGATGCAGGTCTGCAGGACTGACCCAAGGAGGAGGTGCGGCA 10	1680

5 1740 5 1740 5 1800 5 1800 5 1860 5 1860	; 1920 ; 1920 1980	2040	. 2160 2160 2220 2220	2280 2280 2340 2340	2450 2460 2460 2460	2520 2520 2580
CAAGAGGTAIATCAGCACACGTGAICACCGTAGGTAACTGGAGCGTCACCACCGGGGG [TTAAAGAAGGATCTTGTTCATTGCCTTTTTCACCTAAGCATAAGGGAAAAACTC [GAGTITICAGI CTGACTGIGGGGGGTGGGGGGTGTGAATGAATGGATGTCACAGAGTGTC	TATGTACTARTCAATAATAATCAATCAACAGATATACATTTCAGGCAAAGCGATAGA HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ACAGGGTAGGGAGAGGGTATAACAGGACTTGACTTGTCCCTGTCTATACATTCTC	TAGATITTCTGTAGATITTTACTTACOCATGTGAGCCTAACACTATCCTGTAATTCAT [ACTGIGIAAAGAAAAAAAGGAAGIACCAAIGGGIITIICCACCIIAITITIACCIII 2520
1681 1681 1741 1741 1801	1861 1861 1921 1921	1981 1981 2041 2041	2101 2101 2161 2161	2221 2221 2281 2281	2341 2341 2401 2401	2461 2461
	oy Oy Db	Oy Db Oy Db	Ç.y Dib	27. Db	\$ 9	λ; e λ;

qq	3361	3361 CICTGCTCAGGCTTCCAAGTTGTTCTCAATGACAATAGCCAAAGTTGGGTTTGCCAITCA 3420
οy	3421	-
QQ	3421	TCCCTAGGCAIGGTAAAICTIGTIGTIGTCCTGCTGTCCTCGTATTAGGTGACGGC 3480
δy	3481	
QD	3481	AAATAAATCICATAGCAGTTAATATAAAACATCTTIGGAGGATGGGAAGAGAGAGAGGG 3540
Qy	3541	3541 AAGATGGGAAACAAAATAGAGAATTCTTAAGATTTTGTTTAAACCAAATGTTTCATGTAG 3600
qq	3541	AAGATGGGAAACAAAATAGAGAATTCTTAAGATTTGTTTAAACCAAATGTTCATGTAG 3600
Qy	3601	
qq	3601	AAIGCAAAAIGITGGCACGTCAAAAATATGAATGTGTGTAGACAACTGTAGTGTGCCCAGT 3660
Qy	3661	-
Old	3661	TIGIAGIGGGAAGIGIAITITACICIGAICAAATAAARAAIGAGGAAIACIGAAAA 3720
67	3721	P-4, -
Op	3721	
Search Job tin	Search completed: C Job time : 9580.68	Search completed: October 21, 2003, 17:18:05 Job time : 9580.68 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

(without alignments) 14039.364 Million cell updates/sec October 21, 2003, 08:56:18; Search time 719.498 Seconds Total number of hits satisfying chosen parameters: 2552756 seqs, 1349719017 residues Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries IDENTITY_NUC Gapop 10.0, Gapext 1.0 Minimum DB seq length: 0 Maximum DB seq length: 200000000 US-09-762-194-7 Perfect score: Scoring table: Database : Sequence: Searched: Run on: Title:

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

AAZ99091 standard; cDNA; 3742 BP.

AAZ99091

RESULT 1

AAZ99091;

	Description	Human ATIP gene.	41.70		Human cDNA #76 dif	otide sequen	Nucleotide sequenc	Human secreted pro	Nucleotide sequenc		Human prostate exp	tide	Human ATIP coding		Human cDNA encodin	Nucleotide sequenc	Nucleotide sequenc	Nucleotide segmenc	Nucleotide sequenc	Mouse ATIP gene.	Mouse ATIP coding	CDNA	Nucleotide sequenc	Human cDNA clone (Human neuroblastom	Human neuroblastom	Human colon cancer	Human cDNA encodin	Human novel polynu	CDNA	genon	CDNA 6	Human novel polynu			Nucleotide sequero	Gene #1238 used to	Thyroid cancer re.	Human secreted pro	Nucleotide sequenc	Human prostate exp	secreted	CDNA segu	ALIP	tide	
SOLETIME ES	ID	AAZ99091	74	AAH18632	ABX63076	AAH74383	AAH74385	AAF22392	AAH74380	AAH74361	ABV25051	AAS99905	AAZ 99092	AAH74322	ABX10230	AAH74324	AAH74323	AAH74325	AAH74326	AAZ99088	AAZ 99089	ABS51467	AAH74327	AAH07946	AAI94206	AAI 94207	AAH33059	AAS26578	ABX73919	AAH12914	AAD53121	AAS26163	ABX73504	AAH74371	ABK09997	AAH /4352	ABN94740	ABL67318	AAC18620	AAH74329	ABV37795	AAC09266	ABX74609	AAZ99090	AAH74372	AAH74353
	DB	21	22	22	25	22			22	22	23			22				22	22	21	21	24	22	22	22	22	22	22	25	22	52	22	52	22	24	77	24	24	21	22	23	21	52	21	22	22
	Length	74	3742	3315	4937	5799	5961	3287	2850	2333	2015	1615	1308	1369	3807	1758	3654	1458	1191	1803	1323	910	775	830	888	897	581	656	656	505	/91	481	481	90	2672	413	366	366	330	367	389	253	242	354	700	215
op	Query Match	100.0	0	87.	86.9	86.9	86.8	66.1		ij	47.4	42.6	32.0	34.5	31.7	31.5	31.5	31.4	31.4	28.1	25.2	23.9	20.7	19.8	17.6	17.4	13.9	13.6	13.6	12.9	12.2	12.0	vi.	i.		-	8.6	٠					6.3	6.2	5.8	5.7
	Score	3742	<#	3267	251		275	2473.4	2313.2	2305.8	1774	1594.2	1308	1290.2	1187.8	1177.4	1177.4	175	1173.4	1051	941.8		773.4			50	5	509.2	509.2	3 3	457.6	449.6	449.6	413.4	413.4	413	366	366	327.4			24	234.6	32.	218	215
	Result No.	1	2	m	4	5	φ	7	æ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23		c 25	c 26	27	.7 (0 67	30	31	32		ο 2010		0 36	n	38	33	40	41	c 42	43	44	45

ALI GNMENTS

0;

Gapo

```
This sequence represents the CDNA encoding a human angiotensin II (AT2) receptor interactive protein (ATE). The gene was isolated using a fragment of the mouse gene (AAZ99086). Cells transformed with vectors containing the CDNA, or immobilized proteins encoded by it, can be used to screen for substances that modulate ATP-AT2 interaction or substances that interact with ATIP, especially using yeast two or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                                                                                                 /*tag= a //tag= "human ATIP"
/product= "human ATIP"
/note= "angiotensin II (AT2) receptor interactive
protein"
                                                                                                        Mouse, angiotensin; AT2 receptor interactive protein; ATIP; ss; two-hybrid screen; signal transduction; human.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Query Match 100.0%; Score 3742; DB 21; Length 3742; Best Local Similarity 100.0%; Pred. No. 0; Matches 3742; Conservative 0; Mismatches 0; Indels 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Sequence 3742 BP; 1180 A; 762 C; 793 G; 1007 T; 0 other;
                                                                                                                                                                                 Location/Qualifiers
293..1600
                                                                                                                                                                                                                                                                                                                                                                                                                                                  Elbaz N, Nahmias C, Strosberg AD;
                                                                                                                                                                                                                                                                                                                                                                                                                     (CNRS ) CNRS CENT NAI RECH SCI.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Claim 1; Fig 4; 63pp; French.
                                                                                                                                                                                                                                                                                                                                                                                        98FR-0009997.
                                                                                                                                                                                                                                                                                                                                                           98FR-0009997.
                                             21-JUN-2000 (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            WPI; 2000-248410/22.
P-PSDB; AAY83780.
                                                                           Human ATIP gene.
                                                                                                                                                      Homo sapiens.
                                                                                                                                                                                                                                                                                             FR2782084-A1.
                                                                                                                                                                                                                                                                                                                                                        04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                                                                      04-AUG-1998;
                                                                                                                                                                                                                                                                                                                          11-FEB-2000.
                                                                                                                                                                                    Key
```

CAGT GTGATGT GGTTCAGAGGAGCTTCTAGACCT GCAGGAGGAGATTGTATTCAGAGG 60 	AAGAGCATGATITIGGGAAGATGTGAAAGGGAAAGCGAAGCG	CCIGGGGGATITITICITCIATGCCTCTGTGGAAIGACATITGCTGTGTAGGCATC 180 	THICCICIANCIGIATHOTHOGCCHICAAGAGTACIGAGTHAAAAGACAGTATGIGA 240 	CAGICCATGGAAATIGCCTCTTCTGTGAAATCTCGCCACCTGCTCCGAAGACAIGTTGTT 300 	GICICOCAAAITCIOCITATOCACCATICACATAGGACIGACGGOCAAAGGAITGCITGG 360 	AAACCIICGACIICCTICAGGGIIIAGGAGAAGCACIGIIGIITITCCACACACIIGAAAA 42) 	GAGCAGGCAAAGAATOOTGGAAGCTIATGTATOCAGCGAGAGACAGCTGCGGATGGGCT 480 	GCCCCTGAGAAAACACTTGAATTGAGGGAATATAAAACAAAATGTGAAAACCAAAGTGG 540 	ATTATOCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAGGCATTGAC 600 	AGTIGTGATTCAGCACCTGCTGTCTGAGCGGGGGGGGCTCTGAACAACAACAACACCT 660 	ATCTCAAGAACTTGT1AACCTCGGGGGAGAGCTAGTCACTGCTTCAACCACCTGTGAGAA 720 	ATTAGAAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTOCTCCAGCAGCA 780 	GGCTGAAAAAACAGAAACGAGAATGGGCTTAAAGAGTTTTACACCAGGGGGTTATGAAAA 840 111111111111111111111111111111111111
1 CAC	61 AAC 	121 CCI 	181 TTT - - 181 TTI	241 CAG 241 CAG	301 GTC 301 GTC	361 AAA 361 AAA	421 GAG 421 GAG	-		601 AGT 			
		1, 1,	11 15	5 5	й й й	36	4 4	481	541	09	199	721	791
oy B	Qy Db	o oy	QY Dp	Qy Db	Qy Db	çy De	QY	Q. d.	Qy Db	\$ Q	Qy Dp	Qy	Qy Dp

	CITITGCCICGGCGAAAGATTCC 1800	CITITGCCICCGICCAAAAGAIICC 1800	acacegeacgtisticacaaagcac 1860 	CACCTAAGCATAAGGGGAAAAACTC 1920	TICITCACCACAGACACCTICITGI 1980	HILLININININININININININININININININININ	PARTGARAGGATGTCACAGAGTGTC 2040		ATGTCAAAATCTGAATATATCTGGA 2100	AIGTCAAAAICIGAAIAITCIGGA 2100	TATACATITCAGCCAAAGCCATAGA 2160	TITITITITITITITITITITITITITITITITITITI	ACCACCAACTCTGCTCAGCCCTGTA 2220	ACCACCAACTCTGCTCAGCCTGTA 2220	GACTIGICCCIGICIAIACATICIC 2280	GACTTGICHILLININININININININININININININININININ	AGIGITCAGCCATGICAGITGAAAC 2540		AGCCTAACACTATCCTGTAATTCAT 2400	HILLININININININININININININININININININ	TITCTATAAAAAACAAACTAACTA 2460	TTTCTATAAAAAACAAACTAACTA 2460	GITITICACCITATITITACCTIT 2520	GITITICCACCITAITITIACCIT 2520	TCCCATTATICTCATTTCCTTTA 2580
	1741 AAICGAGCIICIGAGACIGGAGGAGGAGGACIIIIGCCICCGICCAAAGATICC	1741 AAICGAGCIICIGAGACIGGAAGICIGGAGGAAGACIIIIGCCICCGICCAAAAGAIICC	1801 TCCAAAAAAGHTTAAAAAAGATTTCGGCATCGACACGGACGTTGTTGCACAAAGCCC 	1861 TIDAAGAACGAGAGCATCTIGTICATITCCCTTTTTCACCTAAGCATAAGGGGAAAAACTC	1921 TCAGGGCCCTATTAAGATTTATAACCTTTGTAATGTTCTTCACCACAGACACCTTCTTGT	1921 TCAGGGCCCTATTAAAGATTTATAAACCTTTGTAATGTTCTTCACCACAGACACCTTTGTTGT	1981 GAGTITICAGTCTGACTGTGGGGGGGGGGTGGAAAATGGATGTCACAGAGTGTC	1981 GAGTITICAGTCTGACTGTGGGGGGGGGGGGAATGAAATGGAAGGCACAGAGTGTC	2041 ATGTGTCTGATGCAGCCTCTGCTGTGTATAAATGTCAAAATCTGAATATATCTGGA	2041 ATGTGTTGATGCAGCTCCTCTGCTGTGTATAAATGTCAAAATCTGAATATATGGG	2101 TATGTACTAATCAAATAATAATCAATCAACATATACATTTCAGCCAAAGCCATAGA	2101 TAIGTACTAATCAATAATAATCAATCAATCAGCATATACATTTCAGCCAAAGCCATAGA	2161 AGAAAAAGCAATAGTIGCTIGAATTAIGAICAICTACCACCAACTCIGCICAGCCCTGTA	2161 AGAAAAAGCAATAGTIGCTIGAATTATGATCATCTACCACCAACTCTGCTCAGCCTGTA	2221 ACAGGGTAGGGAGGATATAACAGGAAGAGCTITGACTTGTCCCTGTCTATACATTCTC	2221 ACAGGGTAGGGAGAGGGTATAACAGGAAGAGCTTTGACTTGTCTCTGTCTATACATTCTC	2281 TGTATCTTTTGGGGGTAACTTCTTGGCAGTTTTTTCAGTGTTCAGCCATGTCAGAAAC	2281 TGTATCTTTTGGGGGTAACTTCTTGGGCAGTTTTCAGTGTTCAGCCATGTCAGTGTAAAA	2341 TAGATTTTTCTGTAGATTTTTTACCCATGTGAGCCTAACACTATCCTGTAATTCAT	2341 TAGATTITTCTGTAGATTTTTTACTTACCCATGTGAGCCTAACACTATCCTGTAATTCAT	2401 TITCTCAGGCTATGTGTAAATGTAGAACCCTAATTTTTTCTATAAAAAAAA	2401 TITCTCAGGCTAIGTGTAGAACCCTAATTITTCTATAAAAAACAACTAACTA	2461 ACTGTGTAAAGAAAGAAAAAGGGAAGTACCAATGGGTTTTTCCACCTTATTTTACCTTT	2461 ACTGTGTAAAGAAAAAAAGGGAAGTACCAATGGTTTTTCCACCTTATTTTTACCTTT	2521 GAICTACCCTIGCAGAITTAACCIGTCTICCCTCCCATTAITCTCATTTICCTTITA
Db 168	Qy 174	Db 174	Qy 180	0.0 186	Qy 192	Db 192	0y 198	Db 198	Qy 204	Db 204	Qy 21(Db 21(Qy 216	Db 216	Qy 222	Db 223	Qy 226	Db 226	Qy 234	Db 234	Qy 24(Db 24(Qy 246	Db 240	Qy 252

DP	2521	GALCTACCCTIGCAGATITAACCIGICTICCTICCCTCCCATTAITCICAITITICTITIA	2580
Qy	2581	CCTITCTCCACCATCCAGAGCCACAAAAGCAAAACCTACTTCTACCTCCTACCTA	2640
QQ	2581		2640
Qy	2641	GGGACAAGGATAAGGATATGATTTTCCAGAGCCCCAGAGCCAGCTCATCTTCCAGA3	2700
Db	2641	, rh	2700
Qy	2701	CTGAAACCACTITCCAAATAAACTAAAGCCTGGATTTGATATTACAAATTTTGGGAAAT	2760
QQ	2701	11	2760
Qy	2761		2820
Db	2761	TAGATAAGAAGGGAACAAGGAAGTCATTGCTATTAATTAA	2820
Qy	2821		2880
Db	2821	CASTGCTIACCGAIGAIGCAGTACTIGAIAGAAAAAAACAGTCIGGGGGGGAIAGCGCTCA	2880
٥y	2881		294C
qq	2881	TITITCAGITACCCITIAAGGAGTCCCTTTGTTTGGGAAAGTAGCAGAATGGTCCCGT	2940
Qy	2941		3000
qq	2941		3000
Qy	3001	CITICCAAAACTIATIACCICCCCTAAIOCTGAGACTITIGGAAAAGGIGGAAGGAACC	3060
qq	3001		3060
Qy	3061		3120
qq	3061	TETTECTIATION TETTECT TETTECT	3120
63	3121		3180
QQ	3121	TACATT CAGIGGCT GTACAAATAACAGCT GTAGTAGAAGAGATTCAGGATGCTAGAGGT	3180
Qy	3181		3240
QC	3181	GAATATITGGGTCATTTACATGTACACTACATAGCAAGTTGATACTCATGTTGCATGTTC	3240
Qy	3241		3300
QQ	3241	TITIAAATIAGIGATITIGIGTCTTAAAGTCTTTAACTTCCAATACTTCATCATGTAGT.	3300
Qy	3301	7	3360
QQ	3301	ACCITCCAIGITIGCTICTGATAAAIGGAAGGTTCACTGCCACTICATGAGAIN'	3360
٥y	3361		3420
Dp	3361	CTCTGCTCACGCTTCCAAGTTGTTCTCAATGACATTAGCCAAAGTTGGGTTTGCCATTS	3420

3541 AAGATGGGAAACAAAATAGAGAATTCTTAAGATTTTGTTTAAACCAAATGTTTCATGTAG 3600 AATGCAAAATGTTGGCACGTCAAAATATGAATGTGTAGACAACTGTAGTTGTGCCTCAGT 3660 AATGCAAAATGTTGGCACGTCAAAAATATGAATGTGTAGACAACTGTAGTTGTGCTCAGT 3660 3421 ICCCCTAGGCATGGTAAATCTTGTGTTGCTGCTGCTGTCCTCCGTATTACGTGACCGGC 3480 AAGATGGGAAACAAAATAGAGAATTCTTAAGATTTTGTTTAAACCAAATGTTTCATGTAG 3600 3661 TIGTAGIGATGGGAAGIGTATITTACTCTGATCAARAAATAATGCTGGAATACTCAAAA 37.20 AAATAAATCTCATAGCAGTTAATATAAAACATCTTTGGAGGATGGGAGAGAACAGGAGGG Human; AIIP; hAIIP2; hAIIP3; hAIIP4; hAIIP5; hAIIP6; AF2 receptor; angiotensin II receptor; antioncogenic; 8p21.3-p22; cancer; ss. Nucleotide sequence of a human ATIP isoform, designated hATIP1. Location/Qualifiers 293..1600 Nahmias C, Strosberg AD, Nouet S; /product= "hATIP1" AAH74362 standard; DNA; 3742 BP (CNRS) CNRS CENT NAT RECH SCI 07-FEB-2000; 2000FR-0001504. 07-FEB-2001; 2001WO-FR00359. (first entry) *tag= W0200157209-A2 15-0CT-2001 Homo sapiens 09-AUG-2001. 3481 7 3541 3601 3601 3661 AAH74362; Key AAH74362 ద ò g $^{\circ}$ g g δ g QΛ ò 음

```
240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GAGCAGGCAAAAGAATCCTCGAAGCTTATGTATCCAGCCACAGAGAGCTCCCGATGCGCT 480
                                                                                                                                                                                                                                                                                                                                                                                                                                                           61 AAGAGCATCATTTTGGCAACATCTGAAAGTGAAAACGGAAGCCAGAAACACTTGGCCAG7 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           61 AAGAGCATCATTTTGGCAACATCTGAAAGTGAAAACGGAAGCCAGAAACACTTGGCCAG5 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CCTGGGGGATTTTTTTTTTTTTTTTGTGTGGTGGAATGACATTTGCTGTGTAGGCAT 1 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CAGICCALGGAAATIGCCICICIGIGAAAICICGGCCACCIGCICCGAAGACAIGIIGII 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GICICCCAAATICTCCTTAICCACCATICACATACGACTGACGGCCAAAGGATTGCTTCG 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          360
                                                                                                                                                                                                                                                                                                                                                                                                 09
                                                                                                                                                                                                                                                                                                                                                                                                                            09
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    121 CCTGGGGGATTTTTTTTTCTTCTATGCCTCTGTGGTGGAATGACATTTGCTGTGTAGGCAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TITICCT CTGACTGTAT LTCTTGGCCTTGAAGAGTACTGAGTTTAAAAAGACAGTATGTGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           301 GICTCCCAAATICTCCTTATCCACCATTCACATACGACTGACGGCCAAAGGATTGCTTCG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          361 AAACCTTCGACTTCCAGGGTTTAGGAGAAGCACTGTTGTTTTCCACAGTTGAAAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      a common fragment which interacts with the angiotensin II (AT2) receptor. AIP proteins have antioncogenic functions. The human ATIP gene has 17 exons, and is located at chromosome region 8p21.3-p22. AIIP polymucleotides and polypeptides are used to detect, evaluate or give prognosis for a cancer or pre-cancer condition, and as an
                                                                                                                                                                                                                                                                                                                                                                                                 1 CAGTGTGATGTGGTTCAGAGGCAGCTTCTAGACCTGCAGGAGGAGGATTGTATTCAGAGS
                                                                                                                                                                                                                                                                                                                                                                                                                                1 CAGIGIGALGIGGITCAGAGGCAGCTICTAGACCTGCAGGAGGGGAGATTGTATTCAGAG
                                                                                                                                                                                                                                                                                                                                                                  Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         100.0%; Score 3742; DB 22; Length 3742;
                                                                                                                                                                                                                                                                                                                                                                  .
0
                                                                                                                                                                                                                                                                                                                                                                  Indels
                                                                                                                                                                                                                                                                                                      Sequence 3742 BP; 1180 A; 762 C; 793 G; 1007 T; 0 other;
                                                                                                                                                                                                                                                                                                                                                                  0;
                                                                                                                                                                                                                                                                                                                                                     Pred. No. 0;
0; Mismatches
                                                                                                                                                                                                                                                                                                                                                     Best Local Similarity 100.0%;
                                                                                                                                                                                                                                                                                                                                                                  Matches 3742; Conservative
                                                                                                                                                                                                                                                                         anti-tumour medicament.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          121
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   181
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 241
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             301
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       361
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      121
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      181
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     121
                                                                                                                                                                                                                                                                                                                                       Query Match
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  g
Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  엄
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               g
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Š
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         유
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8
```

The present sequence encodes an isoform of the human ATIP protein, designated hATIP1. ATIP has isoforms designated hATIP2, hATIP3, hATIP4, hATIP5 and hATIP6. All ATIP proteins comprise in their C-terminals

Claim 11; Page 106-109; 118pp; French.

New protein family, designated hATIP, which interacts with the AI2 receptor of angiostatin II are anti-oncogenic and useful to detect and treat cancer or precancerous conditions -

2001-488880/53. P-PSDB; AAG63540

y 13				y 14	Db 14	y 15	J5	0y 15	J5	y 16	lb 16	y 16	b 16	Qy 17	b 17	y 18	18 18	y 18	ا 18	у 19	19	у 19	b 19	у 20	20 20	у 21	b 21
QY		AO AO	· 🖸	Qy		δδ	qq	ö	අු	QY	අය	ĀŌ	qa	Ö	ସପ	Qy	qq	No.	qa	۷۵	qq	ζ	qq	ζ	ପ୍	KO .	and
	GCCCCCTGAGAAACACTTGAATTGACGCAATATAAAACAAAATGTGAAAACCAAAGTGG 540	-	ATTATCCIGCAGCICAAGCACTICTGCCIGGGAAAACCAAGITGAGGCATIGAC	ATTIAT CUTGCAGCTCAAGCATCTTCTTGCCTGGTAATACCAAGTTTGAGGGATTGAC	AGITICALCACCUTACTORACCAGAGGAAGGAAGGAAGGAAGGAAGGAAGGAAGGAAG	AGITGTGATTCAGCACCTGCTGTCTGAGGGGGGGAGGAGCACTGAAACAACAAAAACCT	ATCTCAAGAACTTGTTAACCTCCGGGGGGGGCTAGTCACTGCTTCAACCACTGTGAGAAA	ATCT CAAGAACTT GTTAACCTCGGGGAGAGCTAGT CACT GCTT CAACCACCTGT GAGAA	ATTAGAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTOGTOCAGGAGCAGCA 780 THIIITITITITITITITITITITITITITITITITITI	GGCTGAAAAAACAGAAGAAGAGAATTAAAGAGGTTTTACACCAGGAAAAAAAA		-	### ##################################	TGACAACTTAAATGGGCATGAAACCTTCTAAAGTTGGAAATTGAAGCTTACCACTTAAA	TORCAR CITARATICOCONTGARA CITCINA MILITERA MICHARACITA RECORDIGARA	ACTIGNATIGGTAAAGAAGGCCTAIGAAGCCTCCCTTTCAGAAATTAAAGAAAGGCCATGA	A CTTG A THICTA A AGA A CONTAIN THE THIN THE THIN A CANADA A CONTAIN A CTTG A THIN A CANADA A CONTAIN A CTTAIN	TOUT TOTAL TOUR LANGUAGE COLUMN CARMINES COLUMN CARMINES COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN CARMINES COLUMN CARM				**************************************	ANALYSIA KANTOO TATAATAA OO TATAATAATAA OO TATAATAATAA OO TATAATAA OO TATAATAA OO TATAATAA OO TATAATAA OO TATAATAA	AAAAAGAAGAAGAAAAAAAGCAAATTTGAAAAATCCTCAGATCATGTATCTAGAACA		GGAGTTAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTGCATGAAAGGG	CAICAAGTIAATGAAAATGGAGAAACTGGTGGACAACAACAACAGGATTGGTTGAAATT 1320
	481	481	541	041	100	109	661	661	12/	781	781	841	641	106	106	1961	196		1001	1001	1081	1711	7,11	141	1201	1021	1261

2y 13		GAAGCETTICCAGCAGAGAATGAAGAATTGAAAGCTCGGATGGACAGGACATGGCAAA, 1380
ਜ ਜੋ	1381 CTC 1381 CTC	CTCAAGGCAGCTITCCACGGAGCAGGCTGTTCTGCAAGAGCGCTGGAGAAGAGTCG. 1440
2y 1,	1441 AGI 1441 AGI	AGICAACAGCGACTCTCTAIGGAAACGAGGAGCTICTGIGGAAACIGGACAATGGGGA 1500
2y 15 Db 15	01	CCTGTGTAGCCCCAAGAGATCCCCCACATCCTCCGCCATCCCTTTGCAGTCACCAAGGAA 1560
2y 15 Db 15	61	TICGGGCTCCTICCCTAGCCCAGATICACCAGAGATGACGTCCCCAAAGTCCACAG 1620
2y 16	1621 ACI 1621 ACI	ACCECTGRARGCALTITGRIGCAGGICTGCAGGACTGACCCCAAGGASGRAGGIGGGCA 1680
2y 16	1681 CAP 1681 CAP	CAAGAGGTATATCAGCACACGTGTGATCACCGTAGGTAACTGGAGCGTCACCACCGGCGG 1740
Qy 17	1741 AAI 1741 AAI	ANTGAGCTICTGAACTGGAAGTCTGGAAGAAGTTTTGCCTCGGTCGAAAGATTCC 1800
2y 18	1801 TCC 1801 TCC	TCCAAAAAGGITTAAAAAAGGITTCGGCATCGACACGGGCGTTGTTGCTGCACAAAGCAC 1860
Qy 18	1861 TTA 1861 TTA	TTAAAGAAGGGAGATCTTGTTGATTGCCTTTTTGACCTAAGGATAAGGGGAAAAGTC 1920
Qy 19.	21 23	TORGGGCCTATTAAGALTTATAACCTTGTAAFGTTCTTCACCACAGACACCTTGTG; 1980
Oy 19	81	GAGTITICAGTCTGACTGTGGGGGTGGGGGTGTGAATGAATGGATGTCAGAGTGT; 2040
Qy 20 Db 20	41	ATGEGETCEGATGCAGCCTCCTCTGCTGTATTAAATGTCAAAATCTGAATATATCTG3 2100
2y 21 Db 21	01	INTGTACTARTGAATAATGAATGAATGAGGATATACATTTGAGGGAAGGGATAGA 2160
2y 21	2161 AGA	agaaaaagcaatagttgcttgaattatgatcatctaccaccaactctgctcagccctgta 2220

	ACAGGGTACGGAGGAGGGTATAACAGGAAGGTTTGACTTGTCCCTGTCTATACATTGTC 2280 	TGTATCTITTGGGGGTAACTICTIGGCAGTTTTTCAGTGTTCAGCCATGTCAGTTGAAC 2340 	TAGATITITICIGIAGAITITITACTIACCCAIGIGAGCCIAACACIAICCIGIAATICAI 2400 	TTTCTCAGGCTALGTGTAATGTAGAACCCTAATTTTTCTATAAAAAAACAAAC	ACTGEGRAAAAAAAAAAAGGAAGFACCAAFGGGTITITCCACCTIATITTACCTIT 2520 	GATCHACCCTIGCAGAITTAACCTGICTICTICCCTICCATTATCTCATTTTCCTTTTA 2580 	OCTITICIOCACATOCAGAGCCACAAAAGCAAACCTICTACCTCCTACCTCTTITICTCT 2640 	GGGACAAGGATAAAGAATATGATTTCCAAAGCCCCAGAGCCAGCTCATCTTCCAGGTG 2700 HILLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CTGAAACCACTITCCAAALAAACTAAAGCTGGATTIGATATTACAAATTITGGGAAATC 2760 	TIAGAAIAAAGAAGGAGAAAAGAAGICATIGGCIAGIAIAAIIAAGAAGGAAGGIAGGAIT 2F 20 	CAGTGCTTACCGATGCTGTAGTTGATAGAAGAAAACGGTCTGGGAGGATGAGGCGCTCA 2880 	THITTCASTIACCCITIAAGGAGTCCCTITGGGAAAGIAGGAGAAGAGTGCGCT 2940 	TCTITCCCAIGAGAAAATGIGGCTIGICCAACICICCAGGIIGCAIITCAGIII 3000 	CTITCCAAACITATTACCICCCCTAAICCIGAGACITIGGAAAAGGIGGAAGGAAGAAC 3060
			-			- •	_	GGGACAAGG GGGACAAGG	CTGAAACCA 	TTAGAATAA TTAGAATAA	CAGTGCTTA(TITITCAGI;	TCTTTCCCA1	CITICCAAA
2161	2221	2281	2341 2341	2401	2461	2521	2581 2581	2641	2701	2761	2821	2881	2941	3001
q	Qy Db	Qy Dp	Qy Dp	Qy Ph	Q.y Dio	Qy Dp	Qy Db	Qy Dp	Qy Db	Qy Dp	Qy Db	O.Y Dib	Q.y Db	٥y

001 CITICCAAAACITAIDACCICCCIAAICCIGAGACITIGGAAAAGGIGGAAGGAAGAAC 3060	61 IGTIGCTITATCTCCCCCTCCTGCATGIGTCAACATIGIGAIGTCAGTATTACTAATC 3120			21 TACATICAGIGGCIGIACAAAIAACAGCIGIAGIAAGAAGAAGAITCAGGAIGCTAGAG3: 3180				TITIANATIAGIGAITITGIGICITAAGICITIAACIICCAATACITCAICAIGTAIGI, 3300		01 ACCTICCATGTTTGCTICTGATAATGGAAATGTAGGTTCACTGCCACTCATGAGATAT 3360		51 CICTGCTCACGCTTCCAGGTTGTTCTCAAGATTAGCCAAAGTTGGGTTTGCCATTCA 3420		21 TCCCTAGGCAIGGIAAATCTIGIGTIGCCTGCTGTGCCCCGTATTACGTGACCGGC 3480		81 AATAAATCICATAGCAGTTAATATAAAACAICTTIGGAGGATGGGAGGAGAAACAGGAGG 3540		AAGAIGGGAAACAAAATAGAGAAITCTIAAGATTTIGTTIAAACAAATGTTTCAIGIAG 3600				1 TIGFAGIGGAAGIGIAIIIIACICIGAICAATAATAATAAIGCTGGAAAA 3720		
300	3061	3061	3121	3121	3181	3181	3241	3241	3301	3301	3361	3361	3421	3421	3481	348	3541	3541	3601	3601	3661	3661	3721	3721
Q	ζŷ	g	QY	QQ	δy	qq	Q	q	03	g	Qγ	DP	φy	Dp	ò	d d	Š	ÖÖ	δy	Q Q	Qy	Dio	ð	셤

Search completed: October 21, 2003, 11:11:12 Job time : 727.498 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 17:18:24; Search time 765.637 Seconds (Without alignments) 13107.130 Million cell updates/sec Title: Perfect score: Run on:

Scoring table: Sequence:

1792395 seqs, 1340900451 residues IDENTITY_NUC Gapop 10.0 , Gapext 1.0 Searched:

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Total number of hits satisfying chosen parameters:

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Published_Applications_NA:+

1: /cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:+
2: /cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:+
3: /cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:+
4: /cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:+
5: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:+
6: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:+
7: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:+
8: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:+
9: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:+
10: /cgn2_6/ptodata/1/pubpna/US09_PUBCOMB.seq:+
11: /cgn2_6/ptodata/1/pubpna/US09_PUBCOMB.seq:+
12: /cgn2_6/ptodata/1/pubpna/US09_PUBCOMB.seq:+
13: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
14: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
15: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
16: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
16: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
16: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
17: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
16: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
17: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:+
17: /cgn2_6/ptodata/1/pubpna/US50_PUBCOMB.seq:+
17: /cgn2_6/ptodata/1/pubpna/US50_PUBCOMB.seq:+ Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description ID Query Score Match Length DB Result No.

ie 76, A 47, A 47, A 6 125, A 757, e 6 123, e 728, e 728, e 8514, e 6 11578, e 1 132, A 1 132, A	Sequence 2834, Ap Sequence 1931, Ap Sequence 10969, A Sequence 54, Appl Sequence 52, Appl Sequence 1670, Ap Sequence 1995, Ap	e 185, 7 e 320324 ce 2, Ar e 71, Ar e 73, Ar e 69, Ar e 1186, e 4677,	Sequence 839:1, A Sequence 856, App Sequence 1652, App Sequence 112, App Sequence 214', App Sequence 2199, App Sequence 25, Appl Sequence 129.1, A Sequence 129.1, A Sequence 109, Appl Sequence 11, Appl Sequence 109, Appl Sequence 11, Appl Sequence 109, Appl Sequence 11, Appl Sequen
US-10-044-090-76 US-10-043-487-47 US-10-106-699-125 US-09-764-864-757 US-09-7164-864-757 US-09-918-995-5569 US-09-918-995-5569 US-09-918-995-5132 US-09-918-995-138 US-09-918-995-1281 US-09-918-995-1281 US-09-998-598-598-1	US-10-311-455-193 US-09-908-975-109 US-10-240-453-54 US-10-239-676-57 US-10-311-455-167 US-10-311-455-167	US-10-239-676-185 US-10-101-487-106 US-10-027-632-505 US-10-027-632-505 US-10-101-487-71 US-10-101-487-73 US-10-101-487-73 US-10-311-455-118 US-09-814-353-109 US-09-814-353-109 US-10-27-632-390	US-10-027-632-83911 US-10-311-455-365 US-10-311-455-165 US-10-311-455-1692 US-10-311-455-1169 US-10-983-965-2109 US-09-983-965-2109 US-09-960-352-12911 US-09-960-352-11467 US-10-294-804-1
13 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	112 112 113 113	14 13 13 13 13 12 12 13	100000000000000000000000000000000000000
4937 910 910 910 986 468 490 366 366 494 434 1117 1117 1133 440 567		7657 554 650 3673778 522 530 554 6334 410 410	1528 10369 17571 17934 6944 113515 529 11670 442 659158 3489
86. 113. 12. 12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13			ਰਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਹਾ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ
3251.6 894 894 519.2 509.2 449.6 412 405.4 366 215.8 215.8 215.8 215.8 215.8 215.8 215.8 215.8 215.8 217.8 2	63.4 56.8 55.8 6.8 6.8 6.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	52.2 52.2 52.2 51.8 51.8 51.6 51.4 51.2 51.2
11 12 2 4 4 3 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1	17 18 19 20 21 22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
υ υυ	0 0000	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0

Search completed: October 22, 2003, 03:34:47 Job time: 770.637 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 09:08:27 ; Search	(Without alignments) 15415.787 Million cell updates/sec	US-09-762-194-7 t score: 3742 ce: 1 cagtgtgatgtggttcagagaaaaaaaaaaaaaa	g table: IDENTITY NUC Gapop 10.0 , Gapext 1.0	ed: 22781392 segs, 12152238056 residues	number of hits satisfying chosen parameters: 45562784	n DB seq length: 0 n DB seq length: 2000000000	Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries	: EST:*	1: em_estba:*	3: em_estin: *	1: em_estmu:		9: dh_bst1.*	10: qb est2:*	12: gb_est3:* 13: gb_est4:*		16: em_estom:*	18. On the 1975	 -	22: em gss man: *	24. em gas pro.*	
Run on:		Title: Perfect score: Sequence:	Scoring table:	Searched:	Total number of		st-processin	Database :														

28: gb_gss1:* 29: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printmi, and is derived by analysis of the total score distribution.

SUMMARIES

138.6 20.0	í			ø.				
1338.8 35.8 3963 11 AR031693 1338.8 35.8 3963 11 AR031693 AR031693 Mus 1338.8 35.8 3963 11 AR031693 AR031693 Mus 1338.8 35.8 3963 11 AR035576 AR0335576 Mus 1014.6 21.1 12.7 9 Ab526733 Ab52873	e i	1 T	i	Query				
1338.8 35.8 3963 11 AR0331693 AR031610 Muss 1041.6 31.8 2477 11 AR0350510 AR030510 Muss 1041.6 21.7 1130 2 AL574093	- i	١.	Score	Match	Length	8	I.D	Description
2 1191.6 31.8 2477 11 AKG30510 AGG30510 MINST AGG30510 MINST AGG30510 MINST AGG30510 MINST AGG30510 MINST AGG30510 MINST AGG3051 AGG30510 MINST AGG30510 MIN		H	38.		3963	1	AK031693	01602 Marie
c 3 1074.8 28.7 1130 9 AL574093 AL574093 AL574093 AL574093 AL574093 AL574093 AL574093 AL574093 AL550130 AL574093 AL550130		7	1191.6		47	11	AK030510	SIGS MUS
4 1051 28.1 3237 11 AK035576 AL528732 AL528732 <td>O</td> <td>ო</td> <td>1074.8</td> <td></td> <td>1130</td> <td>đ</td> <td>AL574093</td> <td>Sur o</td>	O	ო	1074.8		1130	đ	AL574093	Sur o
5 1014.4 27.1 1127 9 AL550130 AL550132 AL550130 AL550132 AL550133		4	1051		3237	11	AK035576	560#/CTW/9
c 6 1005 26.9 1201 9 AL528732		Ŋ			1127	σ	AL550130	71550130 71550130
986.4 26.4 120.1 9 AL228733 AL528733 AL528750 AL	O	9	1005		1201	თ	AL528732	
8 952.4 25.5 1070 13 BX394445 BX31576 BX41576 BX4151191 BX4151191 BX4151191 BX4151191 BX4156 BX4156 <td></td> <td>۲,</td> <td>986.4</td> <td>26.4</td> <td>1201</td> <td>σħ</td> <td>AL528733</td> <td></td>		۲,	986.4	26.4	1201	σħ	AL528733	
9 668.8 23.2 1005 13 BO070423 BC070423 AGENCOURS 11 780.4 20.9 13 BA0415760 BA415760 BA41767 BA41680 BA68000 BA414767	O	σ (952.4	25.5	1070	13	BX394445	5 BX39444
10 847.6 22.7 908 13 BX415560 BX415760		σ.	868.8	23.2	1005	13	BQ070423	
11 780.4 20.9 794 10 BG742834 BG725283 12 761.4 20.4 90 13 BG933603 AN119683 AN119684 AN119683 AN119683 AN119683 AN119683 AN119684 AN119683 AN119684 <td< td=""><td>O</td><td>10</td><td>847.6</td><td>22.7</td><td>806</td><td>13</td><td>BX415760</td><td></td></td<>	O	10	847.6	22.7	806	13	BX415760	
12 765.4 20.5 635 9 AU119683 AU119683 AU119683 AU119683 AU119683 AU119683 AU119191 AU119191 AU1191191 AU1191191 AU1191191 AU1191191 AU1191191 AU1191191 AU1191191 AU119191 AU1191191 AU11919191 AU11919191 AU11919191 AU11919191 AU11919191 AU11919191 AU11919191 AU11919191 AU1191191 AU11919191 AU11919191 AU1191919 AU1191919		=======================================	780.4	20.9	794	10	BG742834	60263258
13 761.8 20.4 945 9 AU131191 AU131191 15 761.8 20.4 945 9 AU131191 AU131191 15 740 19.8 80.9 AU133373 AU1318373 AU1318373 16 73.8 19.7 76 12 RV716134 BV716134 BV716134 18 78.2 19.5 136 11 BC070328 BU716134 BV716134 19 716.6 19.2 16 10 BG675152 BC07152 21 708.6 18.9 785 3 AU134034 BU715203 BU675152 22 703.6 18.8 785 3 AU134034 AU13		17	765.4	20.5	835	σ	AU119683	AU119683
14 75.1.4 20.1 990 13 BOR93803 BOR93803 16 736 19 8 UNT6134 BOR161343 BOR3333 BOR3333 BOR161343 BOR161343 BOR161343 BOR161333 BOR161333 BOR161333 BOR161333 BOR161333 BOR161333 BOR161333 BOR161250 BOR07328 BOR07329 BOR07328 BOR07329 BOR07328 BOR07329 BOR077929 BOR077929 BOR		E :	761.8	20.4	845	on.	AU131191	AU13119
15		14	751.4		066	13	BQ893803	ໍຕ
16		12	740	19.8	830	6	AU138373	
17 734.8 19.6 920 13 BU172503 BU172503 19 726.2 19.5 1346 11 BC676152 BC07328 BC07328 19 714 19.1 716 13 BU685931 BU665931 20 714 19.1 716 13 BU685931 BU665931 21 703.6 18.3 785 3 BU340431 BU665931 22 703.6 18.3 785 3 BU340431 BU665931 23 701.6 18.7 782 9 AU141757 BU665070 BU665		16	738	19.7	776	12	BM716134	•
18 728.2 19.5 1346 11 BC007328 BC007328 20 716.6 19.1 716 13.1 716.6 15.2 867 10 BG676152 BG67612 BG676152 BG67613 BG67613 BG67613 BG67613 BG67614 BG76917 BG69077 AU13434 AU134334 AU134331 AU13437 BU6665224 BW665224 BW665224 BW665224 BW676259 BW705259		17	734.8	19.6	920	13	BU172503	
19 716, 6 19.2 867 10 B6676152 BG676152 2 1 7 16 13 BU668531 BU669177 BU66917 BU67917 BU699177 BU69917		18	728.2	19.5	1346	11	BC007328	
109.6 18.9 716 13 BUGB5931 BUGB594 BU		13	716.6	19.5	867	10	BG676152	
21 706.6 18.9 785 13 BU940431 BU940431 23 703.6 18.8 785 9 AU134834 AV134834 23 701.6 18.8 785 9 AU141757 AU141757 24 696.6 18.6 715 13 BU609177 BU609177 BU609177 26 681.4 18.2 707 10 BG69701 BG699731 AV138331 AV138327 BV105059	U	20	714	19.1	716	13	BU685931	
22 703.6 18.8 78.5 9 AU134834 AU134737 AU134737 AU134737 AU134734 AU134737		21	708.6	18.9	785	13	BU940431	
23 701.6 18.7 782 9 AU141757 2 696.6 18.6 715 13 BUGG9177 2 691 18.2 691.4 18.2 747 9 AU141757 2 601.4 18.2 747 9 AU141757 2 601.4 18.2 747 9 AU141757 2 601.4 18.2 707 10 BGG96701 2 BM665224 601.4 18.0 874 13 BU151347 2 672.4 18.0 874 13 BU151347 2 672.4 18.0 874 13 BU151347 2 661.4 17.7 728 10 BF96579 3 661.4 17.7 728 10 BF96579 3 661.4 17.7 663 13 BU679680 3 660 17.6 660 13 BU733117 2 662 11 BM968524 3 657 2 17.6 657 12 BM968524 3 657 2 17.6 657 12 BM968524 3 653 8 17.5 657 13 BU730180 3 648 8 17.2 648 12 BM971589 643 17.2 648 12 BM971589 643 17.2 648 12 BM9871589 643 17.2 648 12 BM987189 641 641.8 17.2 648 11 BG718490 642 62 16.9 758 10 BG718490 642 62 16.9 758 10 BG718490 642 656 16.9 758 10 BG718490 656 16.9 778 10 BB89149		22	703.6	18.8	785	Ø	AU134834	۱ ۸
24 696.6 18.6 715 13 BUG09177 26 681.4 18.5 747 9 AU198331 26 681.4 18.5 707 10 BG696701 27 681 18.2 690 12 BM665224 29 672.4 18.0 676 12 BW765509 30 670.4 17.9 684 13 BUG86234 31 662.4 17.7 68 10 BP665779 32 660 17.6 660 13 BU733517 35 660 17.6 660 13 BU733517 36 653.8 17.5 67 12 BU969509 36 653.8 17.5 667 12 BU969509 37 648.8 17.2 648 11.2 648 12 BW687306 40 642.4 17.2 645 13 BO59647 41 672. 878 10 BG712926 42 635.4 17.0 656 12 BW98481 43 631.6 16.9 758 10 BG712926 44 627.4 16.9 945 10 BG712939		23	701.6	18.7	782	o	AU141757	
25 691 18.5 747 9 AU138331 27 681.4 18.2 707 10 BG695701 28 675 18.0 874 13 BU55244 29 675.1 8.0 874 13 BU5534 30 670.4 19.9 684 13 BU568524 31 662.4 17.7 728 10 BF965779 32 661.0 17.6 651 13 BU52816 34 657.2 17.6 657 13 BU52816 35 653.8 17.5 657 13 BU52816 36 653.8 17.5 657 13 BU52816 37 649.6 17.4 836 10 BF34056 40 642.4 17.2 648 12 BV68411 41 657.4 17.2 648 12 BV68411 42 635.4 17.0 656 12 BV68411 43 631.6 16.9 758 10 BG71490 44 627.4 16.8 945 11 BG71490 45 626 16.7 778 10 BB89149	υ	24	9.969	18.6	715	13	BU609177	BII609177 III—CE-END
26 681.4 18.2 707 10 BGG96701 BGG96701 BGG96701 BGG96701 BGG8627 BGG8627 BGG8627 BGG8627 BGG8627 BGG8627 BGG8627 BGG8627 BGG8623 BGG86234 BGG86234 BGG96701 BGG8702 BGG8702 BGG8703 BGG8703 BGG8704 BGG8706 BGG8706 <td></td> <td>22</td> <td>E91</td> <td>18.5</td> <td>747</td> <td>σ.</td> <td>AU138331</td> <td>AU138331 AVIT38331</td>		22	E91	18.5	747	σ.	AU138331	AU138331 AVIT38331
27 681 18.2 690 12 BM665224 UPG571 29 672.4 18.0 874 13 BU151347 BU151347 AGBNOONR 29 672.4 17.0 684 13 BU686234 BU161347 BU161347 AGBNOONR 31 662.4 17.7 684 13 BU686234 BUCH-CLI.D BU686234 BUCH-CLI.D BU696234 BUCH-CLI.D BU711-CLI.D BU611-CLI.D BU6111-CLI.D BU6111-CLI.D BU6111-		56	681.4	18.2	707	10	BG696701	1 60265971
28 675 18.0 874 13 BU151347 BU151347 30 670.4 18.0 676 12 BW702509 BW702503 31 662.4 17.7 68 13 BU66234 BW702503 31 662.4 17.7 663 13 BU66234 BW702503 32 661.4 17.7 663 13 BU679690 BW702503 33 660.1 17.7 663 13 BU679690 BW73517 34 67.2 17.6 660 13 BU73517 BW73517 35 657 12 BW69524 BW96524 BW9656524 36 657 13 BW301869 BW97566 BW96524 36 657 13 BW311869 BW971589 BW971589 39 648.6 17.3 664 12 BW971589 BW971589 40 642.4 17.2 648 12 BW971589 BW971589		27	681	18.2	069	12	BM665224	111-E-C11
29 672.4 18.0 676 12 BK702509 BK702509 30 670.4 17.9 684 13 BU666234 BK702509 32 661.4 17.7 663 13 BU666279 BK562779 34 660 17.6 660 13 BU733517 BK562779 35 660 17.6 660 13 BU733517 BU733517 36 657 17.6 657 12 BK966524 BK973517 36 657 17.6 657 12 BK966524 BK973517 37 663 12 BK967564 BK973517 BK968524 BK973517 38 643 17.2 668 12 BK971589 BK71509 39 643 17.2 668 12 BK971589 BK971589 40 641.8 17.2 668 12 BK971589 BK971589 41 641.8 17.2 668		28	7	18.0	874	13	BU151347	
30 670-4 17.9 684 13 BU686234 BU686234 BU686234 ULCR-DOLL		29	672.4	18.0	9/9	12	BM702509	
31 662.4 17.7 728 10 BF965779 BF965779 BF965779 BF965779 BF966779 BF966779 BF966779 BF966779 BF966779 BF966779 BF966779 BF966779 BF966779 BF96779 BF96770 BF96779 BF96770 BF96779 BF96779 BF96779 BF96		30	670.4	17.9	684	13	BU686234	TITECHE
32 661.4 17.7 663 13 BU679690 BU679690 BU73537 34 657.2 17.6 660 13 BU735317 BU733517 35 667 17.6 667 12 BU735317 BU733517 36 653.8 17.5 657 12 BU730180 BU730180 37 649.6 17.4 836 10 BF340950 BF340950 BF340950 38 648.8 17.3 668 12 BM971589 BM687990 BM687990 41 641.8 17.2 668 12 BM971589 BM68790 BM68790 42 635.4 17.2 645 13 BM984611 BM984611 BM984611 43 631.6 16.9 758 10 BG712926 BG713926 44 627.4 16.8 945 10 BG713829 45 626 16.7 778 10 BG933829 BM33829 BM33829 45 626 16.7 778 10 BE895149 BM3829 BM33829		31	662.4	17.7	728	10	BF965779	
33 660 17.6 660 13 BU733517 BU		32	661.4	~	663	13	BU679690	
34 677.2 17.6 736 14 CB962566 CB962566 36 67.2 17.6 657 12 BM966524 BM966554 37 649.6 17.4 836 10 BF340950 BF340950 39 648.8 17.3 664 12 BM971869 B		33		~	099	13	BU733517	
35 657 17.6 657 12 BM966524 BM968524 37 649.6 17.5 657 13 BU730180 BU730180 39 648.6 17.3 64 12 BM971589 BF340950 39 648.8 17.2 648 12 BM971589 BM687969 40 642.4 17.2 645 13 BO454647 BD645964 41 641.8 17.2 645 13 BO454647 BD54647 42 635.4 17.0 656 12 BM984811 BM984811 43 61.9 758 10 BG719490 BG719490 44 627.4 16.9 945 10 BG933829 BG933829 45 16.7 778 10 BG933829 BG933829 BG933829		34	657.2	۲.	736	14	CB962566	
36 653.8 17.5 657 13 BU730180 BU730180 39 648.8 17.4 648.12 BM971589 BM971589 39 643 17.2 668 12 BM687906 BM687906 40 642.4 17.2 645 13 B54647 B554967 41 641.8 17.2 828 10 B6422926 B64352926 42 635.4 17.0 656 12 BM9484811 BM9484811 43 631.6 9.45 10 B6719490 B6719490 44 627.4 16.9 945 10 B6333829 45 16.8 945 10 B6393429 B6345420		9	657	Ļ,	657	12	BM968524	
37 649.6 17.4 836 10 BF340950 BF340950 39 648.8 17.3 664 12 BM971589 BM977589 39 648.1 17.2 668 12 BM877189 BM877589 BM877589 64.1 17.2 645 13 B054967 B0549647 64.6 64.4 17.2 828 10 B0549647 B0549647 B0549647 65.5 12 BM984811 BM984811 BM984811 BM984811 67.7 778 10 B0593149 BG719490 BG719490 BG719490 BG719490 BG71847 BM984811 BM9884811 BM984811 BM98481 BM98481 BM99441 BM		36	653.8	ζ.	657	13	BU730180	
39 648.8 17.3 664 12 BM971589 BM971589 40 642.4 17.2 668 12 BM687906 BM687906 41 641.8 17.2 645 13 BO549647 BO549647 BO549647 42 635.4 17.0 656 12 BM9484811 BM984811 BM984811 43 631.6 16.9 758 10 BG719490 BG719490 45 626 16.7 778 10 BE899149 BR943162		37	649.6	ζ'	836	10	BF340950	
39 643 17.2 668 12 BM687906 BM687906 40 41.2 44 17.2 645 13 20.349647 BQ543647 42 641.8 17.2 828 10 BG422926 BG5432926 BG5432926 42 635.4 17.0 656 12 BM944811 BM9494811 BM9494811 BM9494811 BM9494811 BM9494811 BM9494811 BM9494811 BM948411 BM948412 BM948412 BM948411 BM948411 BM948412 BM94841			648.8	r.	664	12	BM971589	
40 642.4 17.2 645 13 BQ549647 BQ549647 42 635.4 17.0 656 12 BM984811 BM984811 BM984811 4 44 627.4 16.8 945 10 BG715940 BG715940 45 626 16.7 778 10 BB989149 BG7159490	•	ر ا	643	۲.	668		BM687906	
41 641.8 17.2 828 10 BG432926 BG432926 42 635.4 17.0 656 12 BK984811 BM984811 8 631.6 16.9 758 10 BG719490 BG719490 44 627.4 16.8 945 10 BG033829 BG033829 45 626 16.7 778 10 BE899149 BF6693829	•	٠	642.4	۲.	645		BQ549647	47
42 635.4 17.0 656 12 BM984811 BM984811 UT-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C		1	641.8	ζ.	828	10	BG432926	
3 631.6 16.9 758 10 BG719490 BG719490 G026.004 4 627.4 16.8 945 10 BG033829 BG0330120 BG0330120 5 626 16.7 778 10 BE893149 HPGG1.42 A01.07.07.07		75	635.4	۲.	656	12	BM984811	, _
4 627.4 16.8 945 10 BG033829 BG0338139 02520120 5 626 16.7 778 10 BE895149 RRR94514.9 60130120	•	23	31.	ė	758	10	BG719490	
626 16.7 778 10 BE895149 BF895149 60143607	3.	14	27.	9	945	10	BG033829	200 502020130
	7	55	Ō	16.7	778	10	BE895143	0210230120 F0366103 67

Search completed: October 21, 2003, 21:04:19 Job time : 5911.62 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 08:57:52; Search time 3345.39 Seconds (without alignments) 15395.091 Million cell updates/sec Title: US-09-762-194-9
Perfect score: 1308
Sequence: 1 atgttgttgtctcccaaatt......ccagcatttcacccagatga 1308 Run on:

Searched: 2888711 seqs, 20454813386 residues Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0

Total number of hits satisfying chosen parameters: Minimum DB seq length: 0 Maximum DB seq length: 20000000000

5777422

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

GenEmbl: *

1: gb ba: *

2: gb_htg: *

4: gb_om: *

5: gb_ow: *

6: gb_ow: *

7: gb_ow: *

7: gb_ow: *

8: gb_ow: *

10: gb_pr: *

10: gb_rc: *

112: gb_sy: *

112: gb_sy: *

112: gb_sy: *

113: gb_wi: *

115: em_ba: *

116: em_fwi: *

117: em_hwi: *

118: em_lwi: *

119: em_lwi: *

120: em_ow: *

221: em_or: *

221: em_or: *

222: em_ox: *

233: em_ph: *

244: em_ph: *

255: em_ph: *

256: em_ph: *

277: em_sts: *

	em_htg_inv: em_htg_inv: em_htg_other: em_htg_mus: em_htg_pln: em_htg_rod:	em_htg_mam:* em_htg_vrt:* em_sy:* em_htgo_hum:* em_htgo_mus:* em_htgo_other:*
28:	31: 32: 33: 34:	36: 37: 38: 39: 40:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

is to delived by analysis of the total score distribution.	
800	
total	SUMMARIES
c De	SUM
Ö	
anarysts	
3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
3	
1	

	Description	AX210037 Semience			Seane											LC:		Mila	XII.	Wils	N.		BD149938 Primer fo					Homo	Milk			HOHO	Ношо	Ношо
	DB ID	6 AX210037	9 AF293357	9 AF121259	6 AX301208	6 AX209989	6 AX209987	6 AX210064	6 AX210061	,	6 BD160624	9 AK024357	6 AX209991	9 HSM800681	6 AX209993	10 AY208915	10 AY246699	10 AF173380	10 BC043321	10 BC041777	10 BC042206	9 BC017740	6 BD149938	9 BC033842			9 HUMZD67D11	9 AK093875	10 BC030860	6 AX210056	9 AB020864	9 AF165145	2 AC026842	9 AC124069
	Match Length DB	m	1977		Н						3315	3315			1191	1323	1323	1803	3629	5218	5219	1142	830	2895	775	2548	729	2235	1229	2850	100000	131299	171075	174025
عه ر	Match	100.0	99.0	0.66	98.8	90.0	90.0	0.06	90.0	0	99.9	o.	89.9	89.9	89.7	72.5	72.1	72.0	65.3	65.3	65.3	64.0	56.6	56.2	51,8	31.4	23.9	23.9	19.3	16.7	16.7	16,7	16.7	16.7
	Score	1308	1295	1295	1291.8	1177.4	1177.4	1177.4	1177.4	1177.4	1176.2	1176.2	1175.8	1175.8	1173.4	948.2	943.4	941.8	854.6	854.6	854.6	836.6	740	734.8	678	410.4	313	313	252.6	219	219	219	219	219
Result	No.	1	2	m	4	Ω.	9	7	Φ,	on _i	10	11	12	13	14	15	16	17	® ₁-1	19	20	21	22	23	24	25	56	27	28	58	c 30	31		c 33

AP006249 Homo vapi AX210048 Sequence AZ210028 Sequence AX210028 Sequence AX210030 Sequence AX210030 Sequence AX210030 Sequence AX210030 Sequence AX2101030 Sequence AX2101030 Sequence AX2101030 Sequence AX21030 Sequence AX21030 Sequence AX21030 Sequence AX21030 Sequence AX21030 Sequence AX21031 Homo sapi AIT76665 Kenopus 1 AC116311 Mus muscu AC097544 Rattus no AB018317 Homo sapi	DNA linear PAT 31-AUG-2001	ita; Craniata; Vertebrata; Euteleostomi; es; Catarrhini; Hominidae; Homo. and Nouet, S. called atip, mucleic sequences coding for -AWG-2001; ERCHE SCIENTIFIQUE (CNRS) (FR)	11. 3742 / nol_type="genomic DnA" / nol_type="genomic DnA" / nol_type="genomic DnA" / db_xref="taxon:9606" / db_xref="taxon:9606" / db_xref="cequence codant pour hATIP!" / codons faart=! / codons faart=! / db_xref="col:15424424" / translation="WLLSPKEISSTHIRLTARGILRNIRLPSGFRRSTVV-HTVEKS RONPREICTQPQTAPDALPPEKTIELTQVKTKCAPOSGFTLGIRGILGACATREFAL TVIQHILSREEALKOHATLSGELWINGSELVALAFTCEKLEKARELOT **TRAPA RONPREICTGPGTAPDALPPEKTIELTQVKTKCAPOSGFTCAPTGATTCATTERA RONPREICTGPGTAPDALPPEKTIELTQVKTKCAPOSGFTCATTERARELAL RONPREICTGPGTAPDALPPEKTIELTQVKTKCAPOSGFTCATTERARELECATION RONPALNOMINGSELANDENDOMINTEQELESIKAVLETROBESTEROTINGSTSBUDA KLKSEEQKRAREREANINGNOMINTEQELESIKAVLETROBESTAPOSTEROTINGSTSBUDA RUMANINGSTSBURGAPOSTAPOSTAPOSTAPOSTAPOSTAPOSTAPOSTAPOST	Warrnstarrstarr" t DB 6; Length 3742; .6e-286;
9 AP006249 6 AX210048 1 2 AF267167 6 AX210036 6 AX210030 6 AX210030 6 AX210030 8 AX210030 1 6 AX210030 1 2 AC099807 2 AC09784 2 AC09784	ALIGNMENTS 3742 bp from Patent W00157209. GI:15424423	ordata; 'imates; A.D. and A.D. call 3 09-AUG	1374 / organism="Homo sapiens" / organism="Homo sapiens" / no_type="genomic DNa" / db_type="genomic DNa" / db_type="genomic DNa" / db_type="genomic Dna" / db_type="genomic Dna" / codon start=1 / todon start=1 / codon start=1 / todon st	62 c 793 g 1007 t 100.0%; Score 1308;
219 16.7 195290 216.4 16.5 186901 215 16.4 215 214 16.4 233 205.4 15.7 700 201.4 15.7 700 191.4 14.6 5493 178.2 13.6 1003 174.6 13.3 194355 169.8 13.0 270745	AX210037 Sequence 53 from AX210037.1 GI:1	Homo sapi Homo sapi Eukaryota Mammalia; 1 Nahmias,C Novel fam Same and Patent: W CENTRE NA		1180 a Similari
0 34 33 4 4 4 4 4 4 1 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1	RESULT 1 AXZ10037 LOCUS DEFINITION ACCESSION VERSION KEYWORDS	SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL	SOUTCE	BASE COUNT ORIGIN Query Match Best Local

0.	09	352	129	5.4	160	472	240	532	300	592	360	652	420	712	480	772	540	832	009	892	099	952	720	1012	780	11.72	378	1132
Gaps	PAAGGA	AAAGGA	CACACA	CACACA	GCTCCC	GCTCCC	GAAAAC	GAAAAC	TTTGAG	ITIGAG	CAACAC	CAACAC	ACCACC	ACCACC	STCCAG	STOCAG	AGGGAG	IIIII IGGGAG	TGCAA	TGCAA	GCCAC							
6	ACGGCC	ACGGCC	STITIC	FITTI	CAGACA	AGACA	AATGT	AATGT	CCAAG	CCAAG	TGAAA	11GAA.	CTTCA		CALTC	CATTC	ACACCI	ACACC!	TGCAAI	TGCAAJ	AAGCT?	AAGCT?	AAATTA	PARTTA	AGGAAT	AGGAAT	VATTGA	 NATIGA
Indels	ACGACTG	ACGACT G	CACTGIT	CACTGTTO	CAGCCAC	CAGCCAC	PAAAACA	PAAAACAA	GGTAATA	GGTAATA	GAAGCAC	GAAGCAC	GICACTG	GECACEG	TATGAAG	TATGAAG	GAGTITI	GAGTTT	TACAAAA	TACAAAA	GAAATTG.	SAAATTG	CITTCAG		SAGAAGC	HIIIII BAGAAGCI	VATGAAA	 vatgaaaz
0,5	TCACAT	TCACAL	GAGAAG	GAGAAG	ATGTATO	ATGTATO	GCAATAI	GCAATAI	TGCCTGT	TGCCTGT	GCGGGAG	GCGGGAG	AGAGCTA	AGAGCIA	AACAGIG	AACAGIG	SCTTAAA		AGAGAAG	 Agagaag	PAGTIG	PAGTIG	AGCCTCC		CTTTCT	CITICE	GCTTIA	GCTTIA
smatches	TCCACCAT	TCCACCAI	GGGTTTAG	GGGTTTAG	CGAAGCTI	CGAAGCTT	GAATTGAC	SAATIGAC	PAGCTICI	SAGCTICT	TGTCTGA	TETCTGA	TCCGGGG	11111 TCCGGGG	AGTIACA	HILLI	AGAATCG	HILLI	AAGAAGC	AAGAAGC	AAACCIC	AAACCIC	CCTATGA	CCTATGA	AAGAITI	AAGATTI	AAAATGAT	aaaatgat
O; Mism	ATGTTGTTGTCTCCCAAATTCTCCTTATCCACCATTCACATAGGACTGACGGCCAAAGGA	ATGITGITGITCCCAAAITCICCITATCCACAITCACAIACSACIGACGCCAAAGSA	TIGCITGBAAACCTICGACTICAGGGTITAGGAGAAGCACTGTIGTTITCCACACA	TIGCTICGAAACCTICGACTICCTICAGGGTITAGGAGAAGACACIGTIGTITCCACACA	GTTGAAAAGGGGGGGAAAAGAATCCTCGAAGCTTATGTATCCAGGCACAGAAAGGTCCC	GTTGAAAAGAGCAGCAAAAGAATCCTCGAAGCTTA1GTATCCAGCACAGAGACGCTCCC	GATGGGCTGCCCCCTGAGAAACACTTGAATTGACGCAATATAAAACAAAATGTGAAAAC	GATGCGCTGCCCCTGAGAAACACTTGAATTGACGCAATATAAAAAAAA	CAAAGT GGATTTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAG	CAAAGTGGATTTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAG	GCATTGACAGTTGTGATTCAGCACTGCTGTCTGAGCGGGGAGGAAGCACTGAAACAACA	GCATIGACAGITGTGTTTTTTTTTTTTTTTTTTTTTTTTT	AAAACCTATCTCAAGAACTTGTTAACCTCGGGGGAGAGCTAGTCACTGCTTCAACCACC	AAAACCIAICICAAGAACIIGIIAACCICGGGGAGAGCIAGICACIGCIICAAAACCAACACCACACAACAACAAAAAAAA	TGTGAGAAATTAGAAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGGATTGGTCCAG	TGTGAGAAAITAGAAAAGCCAGGAATGAGTTACAAACAGTGTATGAGCAITCGTCCAG	CAGCACCAGGCTGAAAAACAAGAAGAAATCGGCTTAAAGAGTTTTACACCAGGGAG		TATGAAAAGCTTCGGGACACTTACATTGAAGAAGCAGAGAAGTACAAAATGCAATTGCAA	TATGAAAAGCTTCGGGACACTTACATTGAAGAAGCAGAGAAGTACAAAATGCAATTGCAA	GAGCAGTITGACAACTTAAATGCGCATGAAACCTCTAAGTTGGAAATTGAAGCTAGCCAC	GAGCAGTITGACAACTTAAATGCGCATGAAACCTCTAAGTTGGAAATTGAAGCTAGCAC	TCAGAGAAACTTGAATTGCTAAAGAGGCCTATGAAGCCTCCCTTTCAGAAATTAAGAAA	TCAGAGAAACTIGAATIGCIAAAGAAGGCCIAIGAAGCCICCCTITCAGAAATIAAGAAA	GGCCATGAAATAGAAAAGCGCTTGAAGATTTACTTTCTGAGAAGCAGGAATCGCTA	GGCCATGAAATAGAAAAGAAATCGCTTGAAGATTTACTTTCTGAGAAGGCAGGAATCGCTA	GAGAAGCAAATCAATGATCTGAAGAGTGAAAATGATGCTTTAAATGAAAAATTGAAATCA	GGGAGCAATCAATGATCTGAAGAGTGAAATGATGCTTTAAATGAAAATTGAAATCA
	CCAAATT	CCAAATT	TTCGACT	TTCGACT	GGCAAAA	GGCAAAA	CTGAGAA	CTGAGAA	TCCTGCA	TCCTGCA	TGATTCA	TGATICA	AAGAACI	AAGAACT	AAAAAGC	AAAAAGC	AAAAAC	AAAAAC;	SGACAC	GGACAC	CTTAAA	CTTAAA1	ATTGCTA	ATTGCTA	AAAGAAA	AAAGAAA	TGAICTG	TGAICIG
Conservative	TTGTCTC	TIGICIO	CGAAACC	CGAAACC	AAGAGCA	A GAGCA	71.60000		SGATTIA	GATTTA	CAGTIG	CAGITG	TATCTC	TATCTC	AATTAG	AATTAG	AGGCTG	AGGCTG	AGCTTCC	AGCTTC	TTGACA	TTGACA	AACTTGA	AACTIGA	AAATAGA	AAATAGA	AAATCAA	AAATCAA
	ATGTTG		TIGCIL	TIGCIL	GTTGAA	GTTGAA	GATGCG	GATGCG	CAAAGI	CAMAGIC	GCALTG	GCATIGA	AAAACCC	AAAACCC	TGTGAGA	TGTGAGA	CAGCACC	CAGCACC	TATGAAA	TATGAAA	SAGCAGT	SAGCAGT	CAGAGA	CAGAGA	SGCCATG	GCCATG	SAGAAGC	BAGAAGC
es 1308;	H	293	61	353	121	413	181	473	241	533	301	593	361	653	421	713	481	773 (541	833	601	893	199	953 I	721 0	1013	781 G	1073 G
Matches	۵y	Dp	ργ	ସ୍ପ	23	۵	>-	0	>-	.0	>-	0	5.	0	,	0	_											
	Ø	Д	o	Д	O.	d	27	d	49	d	ΟŽ	d	ò	CC	δλ	Q	$Q_{\underline{Y}}$	ద	Qy	g	\circ_{Y}	입	ØΣ	g	Qy	김	ρŷ	g

90 AO

원 장 원 ζ, dg

\$ a \$

1141 GAGT CGANAGT CAACGACT CT CTATGGAAAACGAGGAGCTT CTGTGGAAACT GCG 1200 1411 | 1111 |

ζō	1201 AAIGGGGACCIGTGIAGCCCCAAGAATCCCCCAATCCTCCGCCAICCCTTTGCAGTUN 1260
QQ	1493 AAIGGGGGCCTGTGTAGCCCCAAGAGCCCCCCACATCCTCCGCCATCCCTTTGCAGTGA 1552
67	1261 CCAAGSAATTCGGGGCTCCTTCCCTAGCCCAGATTCACCCAGATGA 1308
qa	1553 CCAAGGATTCGGGCTCCTTCCCTAGCCCCAGCATTCACCCCAGATGA 1600
RESULT 2	
Ar 29335 /	
DEFINITION	
ACCESSION	
VERSION	
KEYWORDS	
SOURCE	Homo sapiens (human)
ORGANISM	
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
REFERENCE	naumain; butheria; Frimates; Catarrhini; Hominidae; Homo.
AUTHORS	
TITLE	
JOURNAL	
REFERENCE	2 (bases 1 to 1977)
AUTHORS	_
TITLE	Direct Submission
JOURNAL	
	CNRS UPR415, 22, rue Mechain, Paris 75014, France
FEATURES	Location/Qualifiers
source	
	/organism≃"Homo sapiens"
	,

ROKNPRSICTOPOTAPDALPPEKTIELTOYKTKOENOSGFILGLKOLLAGGTKEPAL VYQHILSPREEALKGHKILSPSEENAKOHTISPSEENTVASTYFCKLEKKNENDELOYYKTEPA OHQABKTERENJAKEFYTESPEKTAPTY IEDARKYMOLOSGFILGLKOLTYKASTKUST ASHSEKTELLKGAYEASLSTIKKGHEIEKKSLEDILISEKQESLEKQINLAAHTSKLEIB EKKSEEDGKRARFKANIKMOPOTYN LOGELESLKAVLEINDEKTANDAL DNYTALVWKKRYGOENBELKARMOKHANISMASTSOAJSTEGAVLQESLEKSKNAKKISME NEELLAKKLINGOLCSPKRSFISSAJPLQSPRNSGSFPSSISPR /protein_id="AAL37035.1" /db_xref="G1:17224596" /translation="MLLSPKFSLSTIHIRLTAKGLLRNLRLPSGFRRSTVVFHTVPKS contained IIGCTICGAAACCIICGACIICCIICAGGGIIIAGGAGAAGCACIGIIGIIIICCACACA 120 333 393 GATGCGCTGCCCCTGAGAAACACTTGAATTGACGCAATATAAAACAAAATGTGAAAAC 240 CAAAGTGGATTTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAG 300 361 AAAACCCTATCTCAAGAACTTGTTAACCTCCGGGGAGAGCTAGTCACTGCTTCAACCACC 420 9 GCATTGACAGTTGTGATTCAGCACCTGTCTGAGCGGGGGGAGGAGCACTGAAACAACAC 360 TGTGASAAATTAGAAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTCGTCCAG 480 274 AIGIIGICICCCAAAIICICCIIAICCACCAIICACAIAGGACIGACGGCCAAAGGA Gaps 1 AIGITGITGICCCCAAAIICICCIIAICCACCAIICACAIACGACIGACGGCCAAAGGA 'note="ATIP1; corresponding genomic sequence is 3; 99.0%; Score 1295; DB 9; Length 1977; 99.8%; Pred. No. 1.5e-283; tive 0; Mismatches 0; Indels 3 protein 'product="AT2 receptor-interacting 451 t /mol_type="mRNA" /db_xref="taxon:9606" /chromosome="8" in Genbank AB020864" 452 g /map="8p21.3-p22" 274. .1584 codon start=1 429 c Matches 1308; Conservative Similarity 645 61 334 121 394 181 454 514 301 574 Query Match 241 421 Local BASE COUNT ORIGIN CDS à 용 δ g 8 ద 2 Q 8 ద à 엄 8 ద Š 셤

```
994 AAAGGCCATGAAATAGAAAAGAAATCGCTTGAAGATTTACTTTCTGAGAAAGCAGGAATCG 1053
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CAICAACAGACAICAAGTIAAIGAAAAIGGAGAAACIGGIGGACAACAACACACACAIIS 1017
GTIGACAAATIGAAGGGTIICCAGCAGGAGAATGAAGAATIGAAAGCTCGGATGGACA&G 1077
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1078 CACATGGCAATCTCAAGGCAGCTTTCCACGGAGCAGGCTGTTCTGCAAGAGTCGCTGGAG 1137
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1138 AAGGAGTCGAAAGTCAACAAGGGACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTG 1197
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          657
                                                                                                                                                                                                                                                                                                   CACTCAGAGAAACTIGAATIGCIAAAGAAGGCCTATGAAGCCTCCCIIICAGAAAIIAAG 717
                                                                                                                                                                                                                                                                                                                                                                                                                         718 AAAGGCCATGAAATAGAAAAGAAATCGCTTGAAGATITACTTTCTGAGAAGCAGGAATCG 777
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              778 CTAGAGAAGCAAATCAATGATCTGAAGAGTGAAAATGATGCTTTAAATGAAAAATTGAAA 837
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                898 TATCTAGAACAGGAGTTAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTG 957
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1474 CACAATGGGGACCTGTAGCCCCAAGAGATCCCCCACATCCTCCGCCATCCTTTGCAG 1533
                                                                                                                                                                  TATGAAAAGCTTCGGGACACTTACATTGAAGAAGCAGAGAAGTACAAAATGCAATTGCAA
                                                                                                                                                                                                                                                             GAGCAGITTGACAACTTAAA---TGCGCATGAAACCTCTAAGTTGGAAATTGAAGCTAGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               838 ICAGAAGAACAAAAAAGAAGAAGGAAAAAGCAAAIIIGAAAAAICCICAGAIGAIG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CACAATGGGGACCTGTGTAGCCCCAAGAGATCCCCCAACATCCTCGGCCATCCTTTGCAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1294 GTTGACAAATTGAAGCGTTTCCAGCAGGAGAATGAAGAATTGAAAGCTCGGATGGACAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     пинания принципиний принципини
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TCACCAAGGAATTCGGGCTCCTTCCCTAGCCCCAGCATTTCACCCAGATGA 1308
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     181
                                                                754
                                                                                                                                                                                                                                                             601
                                                                                                                                                                                                                                                                                                                                                                                              658
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1018
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                958
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1258
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1534
                                                            g
                                                                                                                             ò
                                                                                                                                                                                      음
                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                       셤
                                                                                                                                                                                                                                                                                                                                                                                       \delta
                                                                                                                                                                                                                                                                                                                                                                                                                                          음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  g
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \delta \lambda
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        g
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  台
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \overset{\circ}{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       심
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 유
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ò
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \delta
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               à
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  g
```

Homo sapiens transcription factor MTSG1 mRNA, complete cds. AF121259.1 GI:11275569 AF121259.1 GI:11275569 Homo sapiens (human) Homo sapiens (human) Mammala; Butheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases Lo 345) Selbold, S. Nadroff, C., Weber, M., Galle, J., Wanner, C. and Mark, M. 1 (bases Lo 345) 1 (bases Lo 345) 2 (bases Lo 345) 2 (bases Lo 345) 3 (bases Lo 345) 4 (bases Lo 345) 5 (bold, S. and Mark, M.) Direct Submission 5 (bases Lo 345) 6 (bases Lo 345) 8 (bases Lo 345) 9 (bases Lo 345) 10 (bases Lo 345) 11 (bases Lo 345) 12 (bases Lo 345) 12 (bases Lo 345) 13 (bases Lo 345) 14 (bases Lo 345) 15 (bases Lo 345) 16 (bases Lo 345) 17 (brieft Submission 18 (brieft Submission 19 (brieft Submission 10 (brieft Submission 10 (brieft Submission 11 (brieft Submission 12 (brieft Submission 13 (brieft Submission 14 (brieft Submission 15 (brieft Submission 16 (brieft Submission 17 (brieft Submission 18 (brieft Submission 19 (brieft Submission 10 (brieft Submission 10 (brieft Submission 11 (brieft Submission 11 (brieft Submission 12 (brieft Submission 13 (brieft Submission 14 (brieft Submission 15 (brieft Submission 16 (brieft Submission 17 (brieft Submission 18 (brieft Submission 18 (brieft Submission 19 (brieft Submission 10 (br
--

1 AIGTIGTIGTCTCCCAAAITCTCCTIAICCACAITCACAIACGACTGACGGCCAAAGGA 60

q		CACATACGACTGACGGCCAAAGGA 60
δħ	61 IIGCITCGAAACCIICGACTICCIICAGGGIIIAGG	AGAAGCACTGTTTTTCCACACA 120
QQ	61 TIGCTICGAAACCTICGACTICGAGGTITAGAAAAGGACTGTIGTITCCACACA	AGAAGCACTGTTGTTTCCACACA 120
Qy	121 GITGAAAAGAGCAGGCAAAAAAATCCTCGAAGCTTAIGTATCCAGCCACAGAGCTCCC	IGTATCCAGCCACAGACAGCTCCC 180
QQ	121 GTTGAAAAGGGGAGGCAAAGATCCTCGAAGCTTATGTATCCAGCCACAAGACAGCTCC	
Qy	181 GAIGGGCIGCCCCTGAGAAACACTIGAAITGACGCAAIAIAAAACAAAAIGTGAAAA	CAATATAAAACAAAAIGTGAAAA 240
qq	181 GAIGGGCIGCCCCIGAGAAACACIIGAAIIGACGCAAIAIAAAACAAAAAAA	
Qy	241 CANAGIGGATITATCCTGCAGCTCAAGCAGCTTCTT	SCCTGTGGTAATACCAAGTTTGA 3 300
ф	241 CAAGTGGATTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGA	
QY	301 GCATTGACAGTTGTGATTCAGCACCTGCTGTCTGAGCGGGAGGAAGCACTGAAACAACA	GGGAGGAAGCACTGAAACAACAC 360
qu	301 GCAITGACAGITGIGAITCAGCACCTGCTGAGGGGGGGAGGAAGGAGGCTGAAAGAACA	
Qy	361 AAAACCTATCTCAAGAACTTGTTAACCTCCGGGGA	MAGCIAGICACTGCTTCAACCACC 420
QQ	361 AAAACCTAICTCAAGAACTIGITAACCICGGGGGGGGGCIAGICACIGCTICAACGACC	
Qy	421 TGTGAGAAATTAGAAAAAGCCAGGAATGAGTTAGAAACAGTGTATGAAGCATTCGT	CAGTGTATGAAGCATTCGTCCAG 480
qu	421 IGTGAGAAATIAGAAAAAGCCAGGAATGAGIIACAAACAGIGTAIGAAGCATICGTCCAG	
Qy	481 CAGCACCAGGCTGAAAAACAGAACGAGAATCGGCTTAAAGAGTTTTACACCAGGGAG	TIAAAGAGIIITACACCAGGGAG 540
Ωp	481 CAGCACCAGGCIGAAAAACAGAACGAGAGAAICGGCITAAAGAGIIITACACCAGGGAG	
Qy	541 TATGAAAAGCTTCGGGACACTTACATTGAAGAAGCA	AGAAGTACAAATGCAATTGCAA 600
QQ	541 TATGAAAGCTTGGGGACACTTACATTGAAGAAGGAGGAAGAAGAAAAATGCAATTGCAA	
δy	601 GAGCAGTITGACAACTIAAAIGCGCATGAAACC	CTAAGTIGGAAATIGAAGCIAGC 657
QD	601 GAGCAGTIGACAACTAAATGCTGCGCATGAAACCTCTAAGTIGGAAATTGAAGCTAGC	
Q <u>y</u>	658 CACTCAGAGAAACTIGAATIGCTAAAGAAGGCCTAIG	AAGCCTCCCTTTCAGAAATTAAG 717
qq	661 CACTCAGAGAAACTIGAATIGCTAAAGAAGGCCTAIGAAGCTCCCTIICAGAAATTAAG	AAGCCTCCCTTCAGAATTAAG 720
٥٧	718 AAAGGCCATGAAATAGAAAATCGCTTGAAGATT	TACITICIGAGAAGCAGGAATCG 777
qq	721 AAAGGCCATGAAATAGAAAAGCGCTTGAAGATTTACTTTCTGAGAAGGAACG	
Qy	778 CIAGAGAAGCAAATCAATGATCTGAAGAGTGAAAATGATGCTTTAAATGAAAATTGAAA	ATGCTITAAATGAAAATTGAAA 837
qu	781 CTAGAGAAGCAAATCAATGATGTGGAGAGTGAAAATGATGATGAAAATTGAAA	
Qy	838 TOAGAAGAAAAAAAAAAAAAAAAAAAAAAAAATITGAAAAATCCTGAGATOY	ATTIGAAAATCCICAGAICAI 897

TCAGAAGAACAAAAAAGAAGAGAAAAAAAGCAAATTTGAAAAATCCTCAGATCATG 900	TATCTAGAACAGGAGTTAGAAAGCCTGAAAGCTGTTAGAGATCAAGAATGAGAAACTG 957 	THE CHARLES AND THE CHARLES TO THE SHEET CHARLES AND THE SECOND TO THE SECOND	CATCAACAGACATCAAGTTAATGAAAATGGAGAACTGGTGGACAACAACACAGCATTG 1017 	GITGACAAATIGAAGCGITICCAGCAGGAGAATGAAGAATIGAAAGCTCGGAIGGACAAG 1077 	CACATGGCAATCTCAAGGCAGCTTTCCACGGACCAGGCTGTTCTGCAAGAGTCGCTGGAG 1137	CACATGGCAATCTCAAGGCAGCTTTCCACGGAGCAGGCTGTTCTGCAAGAGTCGCGGAG 1140	AAGGAGTCGAAAGAAGGAACTCTCTATGGAAAACGAGGACCTTCTGTGGAAACTG 1197	AAGAATCGAAAGTCAACAAGCGACTCTCTATGGAAAACGAGGACTTCTGTGGAAAACTG 1200	CACAAIGGGGACCIGIGIAGCCCCAAGAGAGAICCCCCACACACCCAICCCIIIGCAG 1257	CACAATGGGGACCTGTGTAGCCCCAAGAGATCCCCCACACTCCCTCC	TCACCAAGGAATTCGGGCTCCTTCCCTAGCCCCAGCATTTCACCCAGATGA 1308	TCACCAAGGAATTCGGGCTCCTTCCCTAGCCCAGCATTCACCCAGATGA 1311			Sequence 50 from Patent W00185942. AX301208	AX301208.1 GI:17382299	Homo sapiens (human)	sapiens	Euraljota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.		Azimzai,Y., Lal.P., Yao,M.G., Bandman,O., Burford,N., Batra.S.		Patent: WO 0185942-A 50 15-NOV-2001;	Incyte Genomics, Inc. (US) Location/Qualifiers	11615	/mol_type="genomic DNA" /mol_type="genomic DNA" /db_xref="taxon:9606"	/nore="noryte 1D No: 1403289CB1" 540 a 344 c 370 g 361 t	
841	898	1	958	1018	1078	1081	1138	1141	1198	1201	1258	1261		·		AX			Man	Υ	Azi	Xea Y	Pat		Φ			
qq	ζς qq	ł	රු සි	\$ a	φ	qq	Qy	Dio	0.9	Db 1	0γ 1	Db 1	RESULT 4	LOCUS	DEFINITION ACCESSION	VERSION	SOURCE	ORGANISM		REFERENCE AUTHORS		TITLE	JOURNAL	FEATURES	source		BASE COUNT	

1; TIGCTICGAAACCITCGACTICCITCAGGGITTAGGAGAAGGACTGTTTTTCCACACA 120 463 181 GATGCGCTGCCCCTGAGAAACACTTGAATTGACGAALATAAAACAAAATGTGAAAAC 240 241 CAAAGTGGAITTAICCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAG 300 9 523 360 421 TGTGAGAAATTAGAAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTCGTCCAG 480 CAGCACCAGGCIGAAAAAACAGAACGAGAATCGGCTTAAAGAGTTTTACACCAGGGAG 540 601 GAGCAGTITGACAACTIAAA---TGCGCAIGAAACCICTAAGTIGGAAAITGAAGCTAGC 657 CACTCAGAGAAACTTGAATTGCTAAAGAAGGCCTATGAAGCCTCCCTTTCAGAAATTAAG 717 541 TAIGAAAAGCITCGGGACACTTACATIGAAGAAGCAGAGAAGTACAAAAIGCAATIGCAA 600 777 1 AIGTIGTTGTCTCCAAAITCTCCTTAICCACCAITCACATACGACTGACGGCCAAAGGA Gaps GCATTGACAGTTGTGATTCAGCACCTGCTGTCTGAGCGGGGGGGAAGCACTGAAACAACA AAAGGCCATGAAATAGAAAAGAAATGGCTTGAAGATTTACTTTCTGAGAAGCAGGAATCG DB 6; Length 1615; 3; Indels 98.8%; Score 1291.8; DB 6, 99.6%; Pred. No. 7.9e-283; tive 0; Mismatches 2; Best Local Similarity 99.6 Matches 1306; Conservative Query Match [9 301 481 658 Š 음 Ω a ò 입 ò ద \sim g β ò δ 음 27 음 ∇ 입 5 임 8 S $^{\circ}_{y}$ 셤 8 쉼

778 CTAGAGAAGCAATCAATGATCTGAAGAGTGAAAATGATGCTTTAAATGAAAATTGAAA 837 	838 TCAGAAGAAAAAAAAAAAAAGCAAGAGAAAAAGCAAATTTGAAAAATCCTCAGATCATG 897 	898 TATCTAGAACAGGAGTTAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTG 957 	958 CATCAACAGGACATCAAGTTAATGAAAATGGAGAAACTGGTGACAACAACAACATTG 1017 	1018 GTIGACGAANTIGAAGCGTTTCCAGGAGAATGAAGAATGAAAGCTCGGATGGACAAG 1077 	1078 CACATGGCAATCTCAAGGCACTTCCACGGAGCAGCCTGTTCTGCAAGAGTGGCTGGAG 1137 	1138 AAGGAGTCGAAAGTCAACAACTGTCTATGGAAAACGAGGAGTTCTGTGGAAACTG 1197 	1198 CACAATGGGGACCTGTGTAGCCCCACAGATCCCCCACATCCTCGGCATCCCTTTGCAG 1257 	1258 TCACCAAGGAATTCGGCCTCCTTOCCTAGCCCGGATTTCACCGAGATGA 1308
1.01	3 11	ξ 11	2 1 2	10	10	112	11.	12:
Qy Db	Qy Db	δ _γ	oy da	양	ço da	Sy da	<i>₹</i> 9	Qy dd

Search completed: October 21, 2003, 17:18:08 Job time : 3348.39 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 08:56:18; Search time 251.497 Seconds (without alignments) 14039:364 Million cell updates sec US-09-762-194-9 1308 1 atgitgitgitcicccaaatt......ccagcatttcacccagatga 1303 N Geneseq 19Jun03:*

| SIDSI/gcgdata/geneseq/geneseqn-embl/NA1960.DAT:*
| SIDSI/gcgdata/geneseq/geneseqn-embl/NA1981.DAT:*
| SIDSI/gcgdata/geneseq/geneseqn-embl/NA1981.DAT:*
| SIDSI/gcgdata/geneseq/geneseqn-embl/NA1981.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1981.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1981.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1986.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1986.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1989.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1989.DAT:*
| SIDSI/gcgdata/geneseqf-embl/NA1999.DAT:*
| SIDSI/gcgdata/geneseqf-eneembl/NA1999.DAT:*
| SIDSI/gcgdata/geneseqf-eneembl/NA1990.DAT:*
| SIDSI/gcgdata/geneseqf-eneembl/NA1990.DAT:*
| SIDSI/gcgdata/geneseqf-eneembl/NA1990.DAT:*
| SIDSI/gcgdata/geneseqf-eneeemdl-embl/NA1990.DAT:*
| SIDSI/gcgdata/geneeeqf /SIDS1/gcgdata/geneseq/geneseqn-emb1/NA2001A.DAT:*/SIDS1/gcgdata/geneseq/geneseqn-emb1/NA2001B.DAT:* /SIDSI/gcgdata/geneseq/geneseqn-embl/NA1989.DAT:*/SIDSI/gcgdata/geneseq/geneseqn-embl/NA1990.DAT:*/SIDSI/gcgdata/geneseq/geneseqn-embl/NA1991.DAT:*/SIDSI/gcgdata/geneseq/geneseqn-embl/NA1991.DAT:*/SIDSI/gcgdata/geneseq/ | SIDB1/gcgdata/geneseq/geneseq-emb1/NA1995.DAT: | SIDB1/gcgdata/geneseq/geneseqn-emb1/NA1994.DAT: | SIDB1/gcgdata/geneseq/geneseqn-emb1/NA1994.DAT: | SIDB1/gcgdata/geneseq/geneseqn-emb1/NA1996.DAT: | SIDB1/gcgdata/geneseq/geneseqn-emb1/NA1997.DAT: | SIDB1/gcgdata/geneseq/geneseqn-emb1/NA1997.DAT: 5105512 Total number of hits satisfying chosen parameters: 2552756 seqs, 1349719017 residues Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries IDENTITY_NUC Gapop 10.0 , Gapext 1.0 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Perfect score: Scoring table: Database : Sequence: Searched: Run on:

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

AAZ99092 standard; cDNA; 1308 BP.

AAZ99092;

ALIGNMENTS

```
This sequence represents the open reading frame (ORF) from the cDM. encoding a human angiotensin II (AT2) receptor interactive protein (ATIP, AAY83780). The human gene was isolated using a fragment of the mouse gene (AAZ99088). Cells transformed with vectors containing the CDMA, or immobilized proteins encoded by it, can be used to screen for substances that modulate ATIP-AT2 interaction or substances that interact with ATIP, especially using yeast two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                61 TIGCTIOGAAACCTICGACTICAGGGITIAGGAGAACACIGTIGTITICCACAA 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in acreening assays for receptor-protein interaction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0; Indels 0; Gaps
                                                                                                                                             Mouse; angiotensin; AT2 receptor interactive protein; ATIP; ss; two-hybrid screen; signal transduction; human.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Query Match 100.0%; Score 1308; DB 21; Length 1308; Best Local Similarity 100.0%; Pred. No. 1.3e-314; Matches 1308; Conservative 0; Mismatches 0; Indels 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Sequence 1308 BP; 460 A; 277 C; 294 G; 277 I; 0 other;
                                                                                                                                                                                                                                                                                                                                                                               Elbaz N, Nahmias C, Strosberg AD;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Claim 1; Page 40-41; 63pp; French.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AT2 receptor signal transduction.
                                                                                                                                                                                                                                                                                                                                                    (CNRS ) CNRS CENT NAT RECH SCI.
                                                                                                                                                                                                                                                                                       98FR-0009997.
                                                                                                                                                                                                                                                                                                                      98FR-0009997.
                                                                                                             Human ATIP coding sequence.
                                                                              21-JUN-2000 (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                                WPI; 2000-248410/22.
                                                                                                                                                                                           Homo sapiens.
                                                                                                                                                                                                                                                                                       04-AUG-1998;
                                                                                                                                                                                                                        FR2782084-A1.
                                                                                                                                                                                                                                                                                                                     04-AUG-1998;
                                                                                                                                                                                                                                                       11-FEB-2000.
ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                음
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                δ
```

	_	_	_																									
120		180	240	240	300	300	360	360	420	420	480	480	540	540	900	909	099	(99	720	720	780	780	840	840	006	900	096	960
1 IIGCTICGAAACCIICGACTICCTICAGGGTITAGGAGAAGCACTGTIGFIITCCACACA	1 GITCHAAAABCAGGAAAAGAICCTCGAAGCTTATGTATCAGCAAGAAGACTCCCCCAGAACAACAACTCCCCCAGAAAAAAAA			_		CAAGIGGATTIAICCTGCAGCICAAGCAGCTTCTIGCCTGTGGIAATACCAAGTITGAG				AAAACCIATCTCAAGAACTTGTTAACCTCCGGGGAGAGCTAGTCACTGCTTCAACCACC	-	TGTGAGAAATTAGAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTCGTCCAG	-	. CAGCACCAGGCTGAAAAACAGAACGAGAGAGATGGGCTTAAAGAGTTTTACACCAGGAGA		TATGAAAGCTTCGGGACACTTACATTGAAGAAGCAGAGAAGTACAAAATGCAATTGCAA		GAGCAGTTTGACAACTTAAATGCGCATGAAACCTCTAAGTTGGAAATTGAAGCTACAC		TCAGAGAAACTTGAATTGCTAAAGAAGGCCTATGAAGCCTCCCTTTCAGAAATTAAGAAA		GGCCATGAAATAGAAAAGAAATCGCTTGAAGATTTACTTTCTGAGAAGCAGGAATCGCTA		GAGAAGCAAICAATGATCGAGAAGAGTGAAAATGATGCTTAAATGAAAATTGAAATCA		GAAGAACAAAAAAGAGCAAGAGAAAAAGCCAAATTGGAAAATCCTCAGATCATGTAT	CTAGAACAGGGGTTAGAAAGCCTGAAAGCTGTTAGAGATCAAGAATGAGAAACTGCAT	CTAGAACAAGGAGTIAGAAAGCCTGAAGCTGTGTTAGAGATCAAGAATGAGAAACTGCAT
61	121	171	181	181	241	241	301	301	361	361	421	421	481	481	541	541	601	601	661	661	721	721	781	781	841	841	901	901
a	ζ, έ	9	23	셤	23	qa	٥y	Q Q	27	qq	27	qG	٥٧	QD	Qy	qq	>-	٥	>-	Ω	>-	0	٠.	0	_	0	_	٥
H	0 1	-	9	П	٠	П	J	Н	O	Ц	O.	Ð	0	Ω	Ø	Ö	ô	ద	õ	g	δy	셤	Q	g	Q_{Y}	ద	õ	셤

1021 GACAAATTGAAGGGTTTCCAGCAGGAGAATGAAGAATTGAAAGCTCGGATGGACAAGGA

1261 CCAAGGAATTCGGGCTCCTTCCCTAGCCCCAGATTCACCCAGATGA 1308

```
Location/Qualifiers
293..1600
/+tag= a /product="human AIIP"
/note= "anglotensin II (AI2) receptor interactive
protein"
                                                                                                              Mouse, angiotensin, AT2 receptor interactive protein; ATIP; ss; two-hybrid screen; signal transduction; human.
AAZ99091 standard; cDNA; 3742 BP.
                                                                                                                                                                                                                                                                              (CNRS ) CNRS CENT NAT RECH SCI.
                                                                                                                                                                                                                                                98FR-0009997.
                                                                                                                                                                                                                                                              98FR-0009997.
                                                                               21-JUN-2000 (first entry)
                                                                                              Human ATIP gene.
                                                                                                                                                                                                                                              04-AUG-1998;
                                                                                                                                                                                                                                                              04-AUG-1998;
                                                                                                                                       Homo sapiens.
                                                                                                                                                                                                               FR2782084-A1.
                                                                                                                                                                                                                              11-FEB-2000.
                                                              AAZ99091;
                              RESULT 2
                                                                                                                                                      Key
                                      AAZ99091
                                                       셤
```

Strosberg AD; Nahmias C, 2000-248410/22. Elbaz N,

P-PSDB; AAY83780.

useful in screening assays for receptor-protein interaction coding for angiotensin II receptor AT2 interacting Nucleic acids proteins

Claim 1; Fig 4; 63pp; French.

This sequence represents the cDMA encoding a human angiotensin II (AT2) receptor interactive protein (ATIP). The gene was isolated using a fragment of the mouse gene (AAZ99088). Cells transformed with vectors containing the CDMA, or immobilized proteins encoded by it, can be used to screen for substances that modulate ATIP-AT2 interaction or substances that interact with ATIP, especially using year two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.

Sequence 3742 BP; 1180 A; 762 C; 793 G; 1007 T; 0 other;

ं Gaps 100.0%; Score 1308; DB 21; Length 3742; ; Indels Pred. No. 1.3e-314; ; 0 0; Mismatches 100.08; Best Local Similarity 100.0 Matches 1308; Conservative Query Match

120 352 121 GITGAAAAGGGGGGAAAAGAATCCICGAAGCIIAIGIAITCAGCCACACAGACAGCICCC 180 GAIGCGCTGCCCCTGAGAAACACTTGAAITGACGCAATAIAAAACAAAAIGTGAAAAC 240 GCALTGACAGTTGTGATTCAGCACCTGCTGTCTGAGCGGGGGGAAGCACTGAAACAACAC 36.) CAAAGTGGAITTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTTGAG 300 GCATTGACAGTIGIGATICAGCACCTGCTGTCTGAGCGGGGGGAAGCACTGAAACAACAC 652 AAAACCCTATCTCAAGAACTIGTTAACCTCCGGGGAGAGCTAGTCACTGCTTCAACCACC 420 9 1 AIGTIGTIGTCTCCCAAATTCTCCTTATCCACCATTCACATACGACTGACGGCCAAAGGA 293 AIGIIGITGICTCCCAAAITCTCCTIAICCACCAITCACAIACGACTGACGGCCAAAGGA ITGCITCGAAACCTTCGACTTCAGGGTTTAGGAGAAGCACTGTTGTTTCCACACA 61 413 181 473 241 533 593 361 421 713 301 ద ò ò 음 $^{\circ}$ 2 입 δ 원 g δ g ò ద ò

953 TCAGAGAAACTIGAAIIGCTAAAGAAGGCCIAIGAAGCCICCCIIICAGAAAIIAAGAAA 1012 GACAAATTGAAGCGTTTCCAGCAGGAGAATGAAGAATTGAAAGCTCGGATGGACAAGCAC 1080 1081 AIGGCAAICTCAAGGCAGCTIICCACGGAGCAGGCIGIICTGCAAGAGICGCIGGAGAAG 1140 TATGAAAAGCTTCGGGACACTTACATTGAAGAAGCAGAGAAGTACAAAATGCAATTGCAA 600 CAACAGGACATCAAGTTAATGAAAATGGAGAAACTGGTGGACAACAACACAGCATTGGTT 1020 1313 GACAAATTGAAGCGTTTCCAGCAGGAATGAAGAATTGAAAGCTCGGATGGACAAGCAC 1372 GAGTCGAAAGTCAACAAGCGACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTGCAC 1200 GAGCAGTIIGACAACITAAAIGCGCAIGAAACCICTAAGIIGGAAAIIGAAGCIAGCC; 660 661 TCAGAGAAACTIGAAITGCTAAAGAAGGCCTAIGAAGCCTCCCTTTCAGAAATTAAGAAA 720 721 GGCCATGAAATAGAAAAGAAATCGCTTGAAGATTTACTTTCTGAGAAGCAGGAATCGCTA 780 AATGGGGACCTGTGTAGCCCCAAGAGATCCCCCACATCCTCCGCCATCCCTTTGCAGTCA 1260 CAGCACCAGGCTGAAAAAAAAAAAAAAAAAATGGGCTTAAAGAGTTTTACACCAGGGAG 540 960 781 GAGAAGCAAATCAATGATCTGAAGAGTGAAAATGATGCTTTAAATGAAAAATTGAAAATTG GAAGAACAAAAAAGAGGAAGAAAAAAGCAAATTTGAAAAATGCTCAGATCATGTAT CTAGAACAGGAGTTAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTGCAT 1013 GGCCATGAAATAGAAAAGAAATCGCTTGAAGATTTACTTTCTGAGAAGCAGGAATCGCT 1493 AATGGGGACCTGTGTAGCCCCAAGAGATCCCCCCACATCCTCCGCCATTGCAGTCA CCAAGGAATICGGGCTCCTTCCCIAGCCCCAGCATTTCACCCAGATGA 1308 181 773 541 1193 601 1021 1373 1141 1433 841 901 961 1261 g 2 $\stackrel{\sim}{\alpha}$ 8 Š 9 δ Q. δ 셤 8 g ò g ð 셤 ò 음 ò 임 à 셤 ð g ò g g ò

```
The present sequence encodes an isoform of the human ATIP protein, designated hATIP1. ATIP has isoforms designated hATIP2, hATIP3, hATIP4, hATIP6. All ATIP proteins comprise in their C-terminals a common fragment which interacts an englotensin II (AT2) receptor. ATIP proteins have antioncogenic functions. The human ATIP gene has 17 exons, and is located at chromosome region 8p21.3-p22. ATIP polynucleorides and polypeptides are used to detect, evaluate or give prognosis for a cancer or pre-cancer condition, and as an anti-tumour medicament.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    New protein family, designated hATIP, which interacts with the AI2 receptor of angiostatin II are anti-oncogenic and useful to detect and
                                                                                                                                                 Human, ATIP, hATIP2, hATIP3; hATIP4; hATIP5; hATIP6; AT2 receptor; angiotensin II receptor; antioncogenic; 8p21.3-p22; cancer; ss.
                                                                                                                      Nucleotide sequence of a human ATIP isoform, designated hATIP1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Sequence 3742 BP; 1180 A; 762 C; 793 G; 1007 I; 0 other;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    treat cancer or precancerous conditions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Claim 11; Page 106-109; 118pp; French.
                                                                                                                                                                                                                              Location/Qualifiers
293..1600
                                                                                                                                                                                                                                                                                                                                                                                                                                                            Nahmias C, Strosberg AD, Nouet S;
                                                                                                                                                                                                                                                                          'product= "hATIP1"
                                ВР.
                                                                                                                                                                                                                                                                                                                                                                                                                             (CNRS ) CNRS CENT NAT RECH SCI.
                            AAH74362 standard; DNA; 3742
                                                                                                                                                                                                                                                                                                                                                                                                07-FEB-2000; 2000FR-0001504.
                                                                                                                                                                                                                                                                                                                                                                07-FEB-2001; 2001WO-FR00359.
                                                                                         (first entry)
                                                                                                                                                                                                                                                           /*tag=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WPI; 2001-488880/53.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         P-PSDB; AAG63540.
                                                                                                                                                                                                                                                                                                       WO200157209-A2
                                                                                        15-0CT-2001
                                                                                                                                                                                                                                                                                                                                     09-AUG-2001
                                                            AAH74362;
                                                                                                                                                                                                Homo
RESULT 3
                                                                                                                                                                                                                             Key
                AAH74362
```

CAGCACCAGGCTGAAAAACAGAAACGAGAGAATCGGCTTAAAGAGTTTTACACCAGGGAG 540 541 TATGAAAAGCTTCGGGACACTTACAITGAAGAAGCAGAGAAGTACAAAATGCAATTGCLA 600

481

AAAACCCTATCTCAAGAACTIGITAACCTCGGGGAGAGCTAGTCACTGCTTCAACCACC 420

361

g 2

ò ß. δ 엄 δ 음

301

GCATTGACAGTTGTGATTCAGCACCTGTGTCTGAGCGGGGGGAAGCACTGAAACAACAC 360

241 CAAAGIGGAITTAIOCIGCAGCICAAGCAGCITCTIGCCIGIGGIAATACCAAGITIGAG

TIGCTICGAAACCTICGACTICCTICAGGGTITAGGAGGAAGCACTGTTGTITICCACACA 120

61

8 Š ద ò 음 à ద $\stackrel{\sim}{\sim}$ g δ 9

1 ATGITGITGICICCCAAATTCTCCTTATCCACCATTCACATAGGACTGAGGGCCAAAGG% 60

```
601 GAGCAGTITGACAACTTAAATGCGCATGAAACCICTAAGTIGGAAATTGAAGCTAGCCA. 660
                           893 GAGCAGTITGACAACTIAAAIGCGCAIGAAACCICIAAGTIGGAAAITGAAGCIAGCCia 952
                                                       TCAGAGAAACTTGAATTGCTAAAGAAGGCCTATGAAGCCTCCCTTTCAGAAATTAAGAAA, 720
                                                                                                               GGCCATGAAAIAGAAAAGCGCTIGAAGATTTACTTICTGAGAAGCAGGAAICGCTA 780
                                                                                                                                                                    GAGAAGGAAAICAATGAICTGAAGAGTGAAAATGATGATGAAAATTGAAATTGAAATCA 840
                                                                                   953
                                                                                                             721
                                                       661
                                                                                                                                                                    781
 ð
                           음
                                                       à
                                                                                셤
                                                                                                            8
                                                                                                                                      g
                                                                                                                                                                    9
```

; 0

Gaps

; 0

0; Indels

Best Local Similarity 100.0%; Score 1308; DB 22; Matches 1308; Conservative 0; Mismatrher

Length 3742;

1080 133 GAAGAACAAAAAAGAAGAAGGAAGAAAAAAGCAAAITIGAAAAAICCICAGAICAIGIAI 1192 CAACAGGACATCAAGTTAATGAAAATGGAGAAACTGGTGGACAACAACAACAAGCATTGGTT 1020 1081 AIGGCAATCTCAAGGCAGCTTTCCACGGAGCAGGCTGTTCTGCAAGAGTCGCTGGAGAG 1140 GAGTCGAAAGTCAACAAGCGACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTGCAC 1200 1433 GAGTOGAAAGTCAACAAGGGACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTGCAC 1492 CTAGAACAGGAGTIAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTGCAT 960 GAAGAACAAAAAAGAAGAGGAAGAAAAAAGCAAATTTGAAAAATCCTCAGATCATGTAT GACAAATTGAAGCGTTTCCAGCAGGAGAATGAAGAATTGAAAGCTCGGATGGACAAGCAC 1261 CCAAGGAATICGGGCTCCTTCCCTAGCCCCAGCATTTCACCCAGAIGA 1308 1021 1141 841 961 901 원 ò 셤 $\overset{\circ}{\lambda}$ a δ d δ QQ οy 셤 ò g Q_{λ} 용

AAS99905 standard; cDNA; 1615 BP. AAS99905; RESULT 4

Polynucleotide encoding human cytoskeleton-associated protein #16.

(first entry)

12-MAR-2002

Human, cytoskeleton-associated protein, CYSKP, autoimmune disorder; ss, cell proliferative disorder; inflammatory disorder; prion disease; vesicle trafficking disorder; gastrointestinal disorder; muscle disorder; neurological disorder; cell motility disorder; reproductive disorder; spinal cord disease; central nervous system disorder; mental disorder; gene therapy; cancer.

Homo sapiens.

WO200185942-A2.

15-NOV-2001.

1 AIGITGITGICCCCAAATICTCCTTATCCACCATTCACATACGACTGACGGCCAAAGG

ö 음 ð

9

3; Gaps

03-MAY-2001; 2001WO-US14355.

The invention relates to human cytoskeleton-associated polypeptides cuseful in the treatment of disorders associated with overexpression or useful in the treatment of disorders associated with overexpression or useful in the treatment of disorders associated with overexpression or underexpression of CYSRP in a parient. The disorders include cell proliferative disorders (such as cancer, actinic keratoris, arteriosis, chrobais, hepatitis and psoriasis), autoimmune/inflammatory disorders (such as, asthma, atherosolerosis, outcommune/inflammatory disorders (such as, asthma, and amenia), vesicle trafficking disorders (such as and amenia), vesicle trafficking disorders (such as and propertolestinal disorders, prion diseases, neurological disorders (such as pelipspy, stroke, cerebral neoplasms, Alzheimer's disease, Humington's disease, Parkinson's disease, amyotrophic lateral sclerosis and other motor neuron disorders), cell motility disorders, reproductive disorders (such as endometriosis and polycystic overy syndrome), muscle disorders (such as myocarditis, migraine, hypertension, hypoglycaemia, myocardial infarction, epilepsy and muscular dystrophy), spinal cord diseases, central nervous system disorders (such as Down syndrome and cerebral palsy) and mental disorders (such as anxiety and schizophrenia). Sequences AAS99890-AAS99923 represent CDNA molecules encoding human New cytoskeleton-associated proteins and polynucleotides, useful for diagnosing, preventing and treating cell proliferative, autoimmune, inflammatory, neurological, cell motility, reproductive and muscle 96.8%; Score 1291.8; DB 24; Length 1615; 99.6%; Pred. No. 1.2e-310; Baughn MR, Hillman JL; Burford N, Batra S; 2; Indels Sequence 1615 BP; 540 A; 344 C; 370 G; 361 T; 0 other; 0; Mismatches Au-Young J, Lu DAM, E , Yao MG, Bandman O, Claim 5; Page 180; 194pp; English. 2000US-202729P. 2000US-209705P. 2000US-210149P. 21-JUN-2000; 2000US-213215P. (INCY-) INCYTE GENOMICS INC. 99.68; Matches 1306; Conservative Yue H, Tang YT, Au-You Azimzai Y, Lal P, Yao Kearney L, Policky JL; CYSKP of the invention. WPI; 2002-062248/08. Best Local Similarity P-PSDB; AAU74345. 05-JUN-2000; 07-JUN-2000; Query Match

fcr

2000US-201960P.

05-MAY-2000;

£	244	さい きいきじ 中国自由の自由と言う かいびょう 木 さいかいじょう かいかいしゅう しゅうじょ はいしょ はいしょ はいしょ はいしょ はいじょ はいじょ はいじょ はいしょ かいかい はんしょう かんしょう かんしょう かんしょう かんしょう はんしょう かんしょう しょうしょう かんしょう しゅうしょう
3	F >	
Qy Dp	121	GTIGAAAAGAGGAGGAAAAAATCCICGAAGCITAIGTAICCAGCCACAGAGAGGCTCCC 180
٥ ال	181	GATGCGCTGCCCCTGAGAAACACTTGAATTGAGGCAATAAAACAAAATGTGAAAAC 240
٥y	241	
Q	524	CAAAGTGGATTATCCTGCAGCTCAAGCAGCTTCTTGCCTGTGGTAATACCAAGTTGAG 583
Σy	301	
a	584	GCATTGACAGTTGTGATTCAGCACTGTCTGAGCGGGAAGGAA
οy	361	AAAACCTATCTCAAGAACTTGTTAACCTCCGGGGGAGAGCTAGTCACTGCTTCAACCACC 420
9	644	AAAACCCIATCICAAGAACTIGITAACCICOGGGGGGGGGGCTAGICACIGCIICAACACC
οy	421	
임	704	TGTGAGAAATTAGAAAAAGCCAGGAATGAGTTACAAACAGTGTATGAAGCATTCGTCCAG 763
2y	481	CAGCACCAGGCTGAAAAAACAGAACGAGAGAATCGGCTTAAAGAGTTTTACACCAGGGAG 540
92	764	CAGCACCAGGCTGAAAAAACAGAACGAGAGAATCGGCTTAAAGAGTTTTACACCAGGGAG 823
27	541	TATGAAAAGCTTCGGGACACTTACATTGAAGAAGCAGAGAAGTACAAAATGCAATTGCAA 600
q	824	TATGAAAAGCTTCGGGACACTTACATIGAAGAAGAGAGAGAGAAGTACAAATGCAATTGCAA 883
λy	601	GAGCAGTITGACAACTIAAATGCGCATGAAACTCTAAGTIGGAAATIGAAGCIAGC 657
q	884	GAGCAGITTGACAACTTAAATGCTGCGCATGAAACCTCTAAGTTGGAAATTGAAGCTAGC 943
λ.	658	CACTCAGAGAAACTTGAATTGCTAAAGAGGCCTATGAAGCCTCCCTTTCAGAAATTAAG 717
q	944	CACTCAGAGAAACTIGAATTGCTAAAGAGGCCTATGAAGCCTCCTTTCAGAAATTAAG 1003
27	718	
q	1004	AAAGGCATGAAATAGAAAAGAATGCTTGAAGATTTACTTTCTGAGAAGAGAGAATCG 1063
λ <u>ζ</u>	778	
ą	1064	CTAGAGAAGGAAATGAATGTGAAAGTGAAAATGATGCTTTAAATGAAAATTGAAA 1123
ζλ	838	TCAGAAGAACAAAAAAGAAGAGGAAGAAAAAGCAAATTTGAAAAATCCTCAGATCATG 897
ą.	1124	TCAGAAGAACAAAAAGAAGAGAGAAAAAGCAAATTTGAAAAATCCTCAGATCATG 1183
27	868	TATCTAGAACAGGAGTTAGAAAGCCTGAAAGCTGTGTTAGAGATCAAGAATGAGAAACTG 957
q	1184	TATCTAGAACAGGAGTTAGAAAGCCTGAAAGCTGTTAGAGATCAAGAATGAGAAACTG 1243

δλ	958	
쉺	1244	CATCAACAGGACATCAAGTAATGAAAATGGAGAACTGGTGGACAACAACAACAACAACATG 1303
δy	1018	1018 GITGACAAAITGAAGCGIITCCAGCAGGAGAAITGAAAITGAAAGCICGGAIGGACAAG 1077
90	1304	GTIGACAAAITGAAGCGTITCCAGCAGGAGAAIGAAGAAITGAAAGCICGGAIGGACAG 1363
٥٧	1078	1078 CACATGECAATCTCAAGGCAGCTTTCCACGGAGCAGGTGTTCTGCAAGAGTCGCTGGAG 1137
g	1364	CACATGGCAATCTCAAGGCAGCTTTCCACGGAGCAGTCTTCTGCAAGAGTCGCTGGAGGT1423
Qy	1138	1138 AAGGAGTCGAAAGAAGCAACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTG 1197
ą	1424	AAGGAGTCGAAAGTCAACAAGGGACTCTCTATGGAAAACGAGGAGCTTCTGTGGAAACTG 1483
Qy	1198	CACAAIGGGGACCIGIGIAGCCCCAAAGAICCCCCCACAICCICCCAICCCIIIGCAG 1257
셤	1484	CACAAIGGGGACCTGIGTAGCCCGAAGAGATCCCCCACATCCTCCGCCATCCTTTGCAG 1543
οy	1258	TCACCAAGGAATTCGGGGCTTCCCTAGCCCCAGCATTCACCCAGATGA 1308
윰	1544	TCACCAAGGAATTCGGGCTCCTTACATAGCCCCAGCATTCACCCAGATGA 1594
Search	complet	Search completed: October 22, 2003, 03:34:50

Job time : 270.625 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

EST:*	1: em estba: *	2: em_esthum:*	3: em_estin: *	4: em estmu:*	5: em_estov:*	6: em_estpl:*	7: em estro:*	8: em_htc:*	9: gb_est1:*	10: gb_est2:*	11: gb_htc:*	12: gb_est3:*	13: gb_est4:*			18: em_gss_inv:*		21: em_gss_fun:*		24: em_gas_pro: *		27: em_gss_vrl:*
case:																						

••	
\vdash	
ďΩ	U,
ល	Ú,
Ď.	۲
ab o	9
28:	σ

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

S
M
H
æ
⊴
Σ
Σ
\mathcal{L}
Ŋ

+[=00	<u>+</u>	Ċ					
ON I	Scor	a)		Length	DB	ID	ion
		, 4	72.1	2477	11	AK030510	AK030510 Mus museu
	92	4		3963	17	AK031693	31693 Mus
	3 819.	**	62.6	00	13	BQ070423	23 AGEN
			٠. س	83	9	AU138373	AU138373 AU138373
				1346	Η;	BC007328	
			· .	23	Ξ.	AK035576	6 Mus
				782	თ ;	AU141757	Æ
	63			758	10	BG719490	0
,	,		~ (178	0.7	BE895149	
, ,	0.00			950	13	BQ921402	
, ,	1 618		47.3	945	10	BG033829	
	V (979		BM737916	
υ .	900 9			020	12	BM983699	on.
.7	5.			009	12	BM311947	_
-	5 541		41.4	645	13	BQ549647	
0	6 539		41.2	557	10	BE552421	BE552421 hw26b02.x
-	r-		38.5	688	10	BF574166	BF574166 602131321
	8 484		37.1	066	13	BQ893803	
c 1	9 479	4.	36.7	495		AA702088	N
	479		36.7	495		AA723012	zh30e09
• •	21 473.	в,	36.2	845		AU131191	AU131191
Ö	471		36.0	510		AA194721	
	46		35.7	486		AA778812	AA778812 zi38a04.s
•••	4.		35.7	582		BG573578	w
0	5 455		34.8	490	12	BQ011508	æ
W	6 451		34.5	920	13	BU523654	4
0	7 44		33.9	461	o,	AI564089	
W	8 43		32.9	748	10	BF141309	BF141309 601789830
2	on.	αı	32.4	836	10	BF340950	
(*)	0	m	32.2	734	14	CB316595	
m	1 41	m	31.9	541	4	BX512030	ĸ
m U	α.	-#	31.7	430	on.	AI149364	AI149364 qc82c04.x
יניה	· ·		31.4	454	10	AW984317	AW984317 PM3-HN001
	4	ın .	31.4	776	13	BU387252	C)
ט	o.	0	31.3	426		AI626069	AI626069 ar87f04.x
	(O)		31.2	009	13	BU921755	BU921755 6093-85 M
o o	99		30.3	422	10	BF515637	BF515637 UI-H-BW1-
m	۳ : ۵		30.2	440	14	CB128270	CB128270 K-EST0177
	388	S# 1	7.6	624	N	BM951991	BM951991 UI-M-EH0-
0		_	9.6	202		AI363967	AI363967 qw34e08.x
	m	S#	5.5	657	10	BB628131	1 BB6281
ο 4.	2 385	ω (5.5	405	o o	AI879905	9905 ar
4,	9 .	ю ·	5.0	862	<u> </u>	BU248050	œ
4.	3.7	۰ و	0.6	782	13	BU702398	32398 UI-M FIO
er.	5 378,	4	э. Э.	820	13	BU344537	BU344537 6035:2603

Search completed: October 21, 2003, 21:04:22 Job time : 2065.19 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

CM nucleic - nucleic search, using sw model

October 21, 2003, 08:57:52; Search time 84.402 Seconds (without alignments) 15995.091 Million cell updates/sec Run on:

Title:
Perfect score: 3
Sequence:

US-09-762-194-11 33 1 ogoggatcccagaccggacggacggagg 33

Scoring table:

IDENTITY_NUC Gapop 10.0 , Gapext 1.0

2888711 seqs, 20454813386 residues Searched:

5777422 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

GenEmbl: +
1: 9th ba: +
2: 9th htg: +
4: 9th con: +
6: 9th con: +
6: 9th con: +
6: 9th con: +
7: 9th

em un:↓	ещ vi:*	em_htg hum: *	em htg inv: *	em htg other: *	em htg mus: *	em htg pln: *		em htg mam: *	em_htg_vrt: *	em sy:*	em htgo hum: *	em htgo mus: *	em_htgo_other: *
28:	29:	30:	31:	32:	33:	34:	32:	36:	37:	38:	39:	40:	41:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	Description	AY246699 Mils milscii	×	Mus	Mus	Mus	AC116511 Mus muscu			Z97015 Lactococcus	AX139909 Sequence	BD013820 Promoter	AC137156 Mus museu	AC123870 Mus muscu	AC128362 Rattus no	AC133760 Rattus no	AC115785 Mus muscu	AC108556 Rattus no	AY208915 Rattus no	AF289666 Mus muscu	AC134957 Tetraodo	AF289667 Mus musc.1	AF325177 Mus musc:	AC097149 Rattus no	AC097544 Rattus no	AB027515 Erythroba	AC101724 Mus muscu	AC116557 Mus muscu	AE016758 Escherich	AY219410 Salvelinu	AE012025 Xanthomon	AC141672 Apis mell	AC102965 Rattus no	AC120679 Rattus no
	dI	0 AY246699	10 AF173380		10 BC041777	10 BC042206	AC116511	AX139914	BD013824	LLZ97015	AX139909	BD013820	AC137156	0 AC123870	AC128362	AC133760		AC108556		10 AF289666	ď,		0		AC097544		·	AC116557	AE016758	AY219410	AE012025	AC141672	AC102965	AC120679
ď	Query Match Length DB	72.7 1323 1	72.7 1803 1	.7 3629	.7 5218	.7 5219	72.7 194355 2	1920	œ		æ	64.8 9840 6	8 205187	8 223132	3 251396		307349	5 242130	1323	63.0 130665 1		201605	205602	263706	270745	4.	70751	232976	4 301276	1496		.8 127376	61.8 220998 2	61.8 226193 2
	Score	24	24	24	24	24	24	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.2	21	20.8	20.B	20.8	20.8	20.8	20.8	20.8	20.6	20.6	20.6	20.6	20.4	20.4	20.4	20.4	20.4
	Result No.	1	7	m	4	Ŋ	9	7	œ	თ ს	10	11	c 12	13	14	c 15	c 16	c 17	18	19	c 20	21		c 23	24			c 27	28	c 29	c 30	31	32	33

AC121386 Battus no	AC103554 Rattus no	E09269 Male-specif	E12118 Repeated se	I15249 Seguence 3	I62883 Sequence 3	Continuation (4 of	Continuation of	AC094256 Rattu no			
AC121386	AC103554	E09269	E12118	I15249	162883	AC110649 3	AC110649 2	AC094256	AC094816	AC127789	AC110861
7	7	9	9	Q	9	N	N	~	~	~	N
61.8 242366	61.8 244696	3068	3068	3068	3068	66658	61.2 110000	61.2 229635	253729	61.2 256344	269267
61.8	61.8	61.2	61.2	61.2	61.2	61.2	61.2	61.2	61.2	61.2	61.2
20.4	20.4	20.5	20.2	20.5	20.5	20.2	20.5	20.2	20.2	20.2	20.2
34	35	36	37	38	39	40	41	42	43	44	45

Search completed: October 21, 2003, 17:18:12 Job time: 88.402 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMRIES	Describtion	99094 Mouse ATIP	Mouse AIIP codir	AAZ99089 Mouse ATIP coding AAZ99088 Mouse ATTD Asna	Murine			DNA encoding	ARC43014 Arabidopsis thalia		Drosophil			high	Human china	Hunan	Human EGFR S		Drosop		ABZ19291 Group III ONA can	S Group III	0	FLJ200100fis o	GENSET	ABASSSSS AMBASSS AMBASSS COOLD AMBASSSS AMBASSS AMBASSS AMBASSS AMBASSS AMBASSS AMBASS AMBAS	Arabidopsis	Human polynu	Human ORFX	Drosophila	ABLZ1324 Drosophila melanog	AAN / 2440 HUMAN IRMUNE/ NA EMA ABI 18448 HOLDER DECEMBILE MAISTER	o m	Human		Ξ.	AAI99683 Mycobacterium tube	E C C C C C C C C C C C C C C C C C C C
ar F	- 1			7 7			•	23 24			·	•	•	•		54 P.		23 AE			25 25				25 AE				. · ·	•	n (,				A,	22 8	
1 0 1 1		33	354	1803	9840	3068	3068	852	1035	275	2255	47066	694	659158	2219	86669	97496	1398	3629	6000	240	283	392	563	625	867	1200	1424	1447	2150	3150	6130	9475	01143	4013	39328	4403765	70111
& Query Match I	ria cell	100.0	72.7	72.7	64.8	61.2	61.2	9.09			57.6		0	0 5	4	4	4	55.8		ν γ ν α	55.2		55.2	55.2	55.2	55.2	55.2	ഗ	55.2	വ	55.2	א ו	2.5	5.2	4	٠. دن	54.5 4	?
4 2 0	2 100	33		2.4	21.4	20.5	20.2	0 0	0 0	19.4			18.8	18.8	- α	18.6	ω	œ.	œ .	4. G		æ,	18.2	18.2	18.2	18.2	18.2		18.2	οа		18.2	18.2	18.2	18		38	7
Ŭ,	- !									· ল	12		77	ഹൃ		_	19	50	21	22 5	24	25			n a	30	31	32	~ -		25	. ~	. 00	a	40	14.5	24 4 21 E	

ALIGNMENTS

```
Primers AA299094-299095 were used to PCR amplify the cDNA encoding a mouse angiotensin II (AT2) receptor interactive protein (AIP; AAX83777). The initial clone (AA299090) was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AT2 receptor as the "bair" (AAX83781). The "target" is a mouse foetal cDNA library. Cells transformed with vectors containing the cDNA, or immobilized proteins encoded by it, can be used to screen for substances that modulate ATIP-AT2 interaction or substances that interact with AIIP, especially using yeast two—or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Nucleic acids coding for angiotensin II receptor AI2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                        Mouse, angiotensin, AT2 receptor interactive protein, ATIP; ss; two-hybrid screen, signal transduction, PCR primer.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Query Match
100.0%; Score 33; DB 21; Length 33;
Best Local Similarity 100.0%; Pred. No. 0.00022;
Matches 33; Conservative 0; Mismatches 0; Indels
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Sequence 33 BP; 9 A; 10 C; 12 G; 2 T; 0 other;
                                                                                                                                                                                                                                                                                                                                                                                                               Strosberg AD;
                                                                                                        Mouse AIIP gene primer oligo.sens.
                                                                                                                                                                                                                                                                                                                                                                         (CNRS ) CNRS CENT NAT RECH SCI.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Claim 4; Page 16; 63pp; French.
AAZ99094 standard; DNA; 33 BP.
                                                                                                                                                                                                                                                                                                      98FR-0009997.
                                                                                                                                                                                                                                                                                                                                         98FR-0009997.
                                                                     (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                             Elbaz N, Nahmias C,
                                                                                                                                                                                                                                                                                                                                                                                                                                                WPI; 2000-248410/22.
                                                                                                                                                                                                                              FR2782084-A1.
                                                                                                                                                                                                                                                                                                    04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                         04-AUG-1998;
                                                                   21-JUN-2000
                                                                                                                                                                                                                                                                  11-FEB-2000.
                                   AAZ 99094;
```

0

0; Gaps

δλ g

Search completed: October 21, 2003, 11:11:21 Job time : 12.3451 secs

RESULT 1 AAZ99094

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 17:18:24 ; Search time 6.75201 Seconds (without alignments) 13107.130 Million cell updates/sec Run on:

US-09-762-194-11 Title:

1 egeggateceagacagaceggaactggag 33 Perfect score: Sequence:

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

1792395 seqs, 1340900451 residues Searched:

3584790 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Published Applications NA:*

1: /cgm2_6/ptodata/1/pubpna/USO7_PUBCOMB.seq:*
2: /cgm2_6/ptodata/1/pubpna/USO6_NEW_PUB.seq:*
3: /cgm2_6/ptodata/1/pubpna/USO6_NEW_PUB.seq:*
4: /cgm2_6/ptodata/1/pubpna/USO6_PUBCOMB.seq:*
5: /cgm2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
6: /cgm2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
7: /cgm2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
8: /cgm2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
9: /cgm2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
10: /cgm2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
11: /cgm2_6/ptodata/1/pubpna/USO8_PUBCOMB.seq:*
11: /cgm2_6/ptodata/1/pubpna/USO9_PUBCOMB.seq:*
11: /cgm2_6/ptodata/1/pubpna/USO9_PUBCOMB.seq:*
12: /cgm2_6/ptodata/1/pubpna/USO9_PUBCOMB.seq:*
13: /cgm2_6/ptodata/1/pubpna/USO9_PUBCOMB.seq:*
14: /cgm2_6/ptodata/1/pubpna/USO9_PUBCOMB.seq:*
15: /cgm2_6/ptodata/1/pubpna/USO9_RUBCOMB.seq:*
16: /cgm2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:*
17: /cgm2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:*
18: /cgm2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:*
19: /cgm2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:*
10: /cgm2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:* Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query No. Score Match Length DB ID

Description

, .	7.61	;	000			
7	6	58.2	581	13	US-10-02/-632-134093 US-10-027-632-134094	Sequence 134,94,
2	19.2	58.2	640	13	-10-027-632-14319	e 14.)
ω i	6		820	13	10-027-632-14	e 143.9
7			820	13	-632-143	e 143 9
ω,			854		-10-027-632-1737	e 17374
σ			Ф	-	10-156-761-3	Sequence 357, App
10	19.2		9025608		8-10-156-761-1	ce 1, A
11	Θ.		S	12	-386-4	431
12	8	-	591	10	-09-771-208-2	20, A
13	18.6		197496	10	US-09-877-177-10	10,
14	æ		573	14	0-156-761-736	736
12	18.4		3071	13	US-10-027-632-114585	e 114585
16	œ,	_	715517	13	632-53	e 53712,
17	œ		474	11	US-09-918-995-21180	
18	œ.	55.2	480	11	US-09-918-995-13907	Sequence 13907, A
19	æ.		867		US-09-770-445-571	571, A
20	e.		888	14	US-10-156-761-2936	e 2936
21	18.2		1416	14	US-10-156-761-4207	e 4207,
22	œ.		"		US-09-814-353-19200	
23	œ.	55.2	9025608		US-10-156-761-1	Seguence 1, Appli
24	18		514		US-10-027-632-46468	Seguence 46468, A
25	18		599		0-027-632	e 67722,
56	18		599		10-027-632-67	a)
27	Н		599		US-10-027-632-295388	e 29538
28			428	11	US-09-918-995-1571	1571,
29			860		10-027-	e 120951
30	17.8		860		9	12095
31	17.8		860		0-027-632-12095	a 12095
32	17.8		1800		0-156-761-8	e 856,
33	17.8		1875		US-10-156-761-7458	e 7458,
34	17.8		2085		US-10-156-761-6252	e 6252,
35	17.8		2358	14	10-043-487-5	e 59, Ap
36	17.8		2797	14	-060-036-4	e 46.
37	17.8		11962	10	US-09-905-129-20	20,
38			11962	10	US-09-991-630-20	20,
39			11967	10	US-09-905-129-3	(A)
40			11967	10	US-09-991-630-3	
41		8	14646	12	873-319-	10 Source 691
42			14646	12	0-706-1	104 4
43	17.6		157	12	0-029-386-189	equence 18977.
44	٠.		o	11	-09-968-433-56	TOTOLOGO PE
45	7		535	15	-10-029-386-5	equence 5161
						1:010 portant

Search completed: October 22, 2003, 04:13:27 Job time : 2323.75 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nu Run on:	OM nucleic - nucleic search, using sw model Run on: October 21, 2003, 09:08:27; Search time 52.0277 Seconds
	(Mithout alignments) 15415.787 Million cell updates/sec
Title: Perfect score: Sequence:	US-09-762-194-11 33 1 cgoggatcccagaccggaccggactggag 33
Scoring table:	IDENTITY_NUC Gapop 10.0 , Gapext 1.0
Searched:	22781392 segs, 12152238056 residues
Total number of	Total number of hits satisfying chosen parameters: 45562784
Minimum DB seq length: 0 Maximum DB seq length: 2	seq length: 0 seq length: 2000000000
Post-processing	Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries
Database :	EST:*

EST:* : em_estba:* 2: em_estbum:* 3: em_estlin:* 4: em_estbli:* 6: em_estbl:* 7: em_estbl:* 8: em_estpl:* 10: qb_estl:* 10: qb_estl:* 11: qb_htc:* 11: qb_htc:* 13: qb_estl:* 14: qb_estl:* 15: em_estfun:* 16: em_estpl:* 17: em_estfun:* 18: em_gss_hum:* 17: em_gss_hum:* 18: em_gss_hum:* 20: em_gss_hum:* 21: em_gss_hum:* 22: em_gss_hum:* 23: em_gss_hum:* 24: em_gss_hum:* 25: em_gss_hum:* 26: em_gss_hum:* 27: em_gss_hum:* 28: em_gss_hum:*																			
	EST:*	e	ē	: еп	 	 	 	••	 	 	 	 	 	 	e e	e e	: еп	ssb_me :	: em_gss

	-
	Jo
\$1:*	er
gb_gss1 gb_gss2	number
g g	
	the
28: 29:	-11

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

U)
回
н
24
⊴
2
Σ
\mathcal{L}
ß

Soore Match Length DB ID Description 24 72.7 358 9 A1466472 BY066750 BY066720 BY066750 24 72.7 368 9 A1466472 A1466472 BY066750 BY066720 BY066750 24 72.7 369 10 BEA49013 BF55672 BY10313 BY10313 24 72.7 360 10 BE62532 BY065791 BF53672 BY065040 24 72.7 360 10 BE62532 BY065040 BY065040<	à	Result		ا ان مه				
1 24 72.7 352 13 BYOG6750 BYOG6750 BYOG6770 BYOG6772 BYOG672 BYOG6772 BYOG6772 <t< td=""><td>į</td><td>No.</td><td>Score</td><td>Match</td><td>Length</td><td></td><td>ID</td><td></td></t<>	į	No.	Score	Match	Length		ID	
2 24 72.7 358 9 A466472 A1466472 A1727 A		1		\sim	352	13		BY06875
3 24 72.7 364 13 BY130313 BY13031 BY130313 BY130313 BY130313 BY13031 BY130313 BY130313 <td< td=""><td></td><td>7</td><td>24</td><td>2</td><td>358</td><td>σ</td><td>AI466472</td><td>vx39f05</td></td<>		7	24	2	358	σ	AI466472	vx39f05
4 24 72.7 380 10 BE449013 BE449131 UE65050 6 24 72.7 380 10 BE4490130 AA880300 AA890300 AA880300 AA80311 BACKES 23 UT-A-M-M UT-A-M-M-M UT-A-M-M UT-A-M-M UT-A-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M UT-A-M-M-M-M UT-A-M-M-M-M UT-A-M-M-M-M-M UT-A-M-M-M-M-M UT-A-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-		m	24	N	364	13	3031	3 BY1303
5 24 72.7 487 10 BF535672 AA860300 <		4	24	N	380	10	BE449013	ut85d01
6 24 72.7 50 9 AA880300 AA880300 AA880300 8 24 72.7 50 14 CD565233 BE65233 CD6652433 9 24 72.7 65 10 BB62645 CD65233 CD652433 CD64442 CD64442 CD64442 CD64443 CD64443 CD64443 CD64443 CD64443 CD64443 CD64443 CD64443 CD6444		lo I	24	N ·	487	10	BF535672	2 6020540
7 24 72.7 517 10 BR652532 BE652532 BE652532 9 24 72.7 517 10 BR652433 CD665243 CD672104 CD72104		9	24	\sim	200	o,	AA880300	>
9 24 72.7 560 14 CD565243 CD56524 10 24 72.7 560 12 BR621931 BR626131 11 24 72.7 67 10 BR626131 BR626131 13 24 72.7 67 10 BR626131 BR626131 14 24 72.7 67 10 BR626131 BR626131 14 24 72.7 47 11 AK035510 BR626131 15 24 72.7 487 11 AK035510 AK035510 16 24 72.7 487 11 AK035510 AK035510 16 24 72.7 487 11 AK035510 AK035510 16 24 72.7 487 11 AK035510 AK031693 17 24 72.7 487 11 AK035510 AK031693 18 24 72.7 487 11 AK04642		7	24	\sim	517	10	BE652532	UI-M-N
9 24 72.7 624 12 BM951991 BM951991 11 24 72.7 657 10 BB623465 BB536465 12 24 72.7 710 14 6723104 BB536465 BB536462 13 24 72.7 710 14 6723104 BB536462 BB53104 14 24 72.7 710 14 6723104 BB53104 15 24 72.7 367 13 BQ921402 BQ921402 16 24 72.7 367 11 AK030570 AK030510 17 24 72.7 363 11 AK031693 BQ921402 BQ921402 18 23 14 72.7 363 11 AK031693 AK030510 18 24 72.7 363 13 BQ921402 BQ921402 BQ921402 19 24 72.7 363 11 AK030510 AK030510 AK030510 </td <td></td> <td>ω</td> <td>24</td> <td>72.7</td> <td>260</td> <td>14</td> <td>CD5 65 243</td> <td></td>		ω	24	72.7	260	14	CD5 65 243	
10 24 72.7 657 10 BH6531131 BH6581131 BH658163 12 24 72.7 657 10 BH653465 BH536465 BH536463 13 24 72.7 670 10 G723394 BH538463 BH5281402 15 24 72.7 782 13 BU702394 BH5081402 BH5081402 BH5081402 16 24 72.7 247 11 AK035576 BK305956 <		on :	24	72.7	624	12	BM951991	
11 24 72.7 670 10 BH656465 BH656465 13 24 72.7 710 14 CD723104 CB723104 13 24 72.7 710 14 CD723104 CB723104 14 24 72.7 2477 11 AK030510 AK03550 16 24 72.7 2477 11 AK031693 BV921402 19 22.4 72.7 3237 11 AK031693 AK031693 19 22.2 67.3 120 13 BQ921402 AK031693 19 22.4 67.3 120 11 AK031693 AK031693 19 22.4 67.3 120 13 BQ921402 AK031693 20 22.2 67.3 120 13 BQ921402 AK031693 21 64.8 69 12 CB246442 CB246442 CB246442 22 21.4 64.8 69 14		10	24	72.7	657	10	BB628131	
12 24 72.7 710 14 CB723104 14 24 72.7 710 14 CB723104 BO921402 15 24 72.7 782 13 BO921402 BO921402 15 24 72.7 2477 11 AK035516 AK035510 17 24 72.7 363 11 AK035576 AK035510 18 22.4 72.7 363 11 AK035576 AK035576 19 22.2 67.3 120 13 BO830956 BO830956 BO830956 19 22.2 67.3 120 13 BO830956 BO830956 BO830956 20 22.2 67.3 120 13 BO830956 BO830956 BO830956 21 64.8 68 28 BH996940 BF906940 BF906940 22 64.2 64.8 68 28 BH996940 BF906940 24 72.7		11		72.7	670	10	BB636465	
13 24 72.7 782 13 BU70239B BU70239B 14 24 72.7 247 11 AK035576 AK035576 AK035576 16 24 72.7 247 11 AK035576 AK035576 AK035576 19 22.4 72.7 36.3 11 AK035576 AK035576 AK035576 19 22.4 72.7 36.3 11 AK035576 AK035576 AK035576 21 6.7 53.0 13 B0830956 B0830956 B0830955 22 2.4 67.9 7.3 14 CE246442 BK30955 22 2.1.4 64.8 68 28 BH996940 BH996940 BK30956 23 2.1.4 64.8 68 28 BH996940 BK30956 BK30956 BK30956 24 7.2.7 3.7 14 GE246442 BK30956 BK30956 BK30956 25 2.1.4 64.8		12		72.7	710		CB723104	_
14 24 72.7 950 13 BO921402 BO921402 16 24 72.7 2477 11 AK031693 AK031590 16 24 72.7 3437 11 AK031693 AK031693 17 24 72.7 363 11 AK031693 AK031693 19 22.2 69.7 3 12 AK031693 AK031693 20 22.2 67.3 1201 13 BK334102 BK334102 BK334102 21 64.8 701 13 BK334102 BK33410		13	24	72.7	782	13	BU702398	
15 24 72.7 2477 11 AK035516 AK035516 AK035516 AK035516 AK031691 AK035516 AK031691 AK		14	24	72.7	920	13	BQ921402	
16 24 72.7 3237 11 AK035576 AK035576 18 24 72.7 3963 11 AK031693 AK031693 18 22 4 72.7 3963 11 AK031693 AK031693 19 22.4 67.9 732 13 G2246442 BK30956 BK30956 BK309595 21 21.4 64.8 688 28 BH996940 BK309594 BK309594 BK34102		15	24	72.7	2477	Ξ	AK030510	
17 24 72.7 3963 11 AK031693 AX031693 Mus. 18 23 67.9 730 13 BQ830956 ER820956 LLG8820956 LLG882095 LLG882095 LLG882095 LLG892095 LLG892095 </td <td></td> <td>16</td> <td>24</td> <td>72.7</td> <td>3237</td> <td>Ξ</td> <td>AK035576</td> <td></td>		16	24	72.7	3237	Ξ	AK035576	
18 23 69.7 530 13 BOB30956 BQB30956 20 22.2 67.3 132 14 62.46442 CBZ46442 CB		17	24	72.7	3963	Ξ	AK031693	M
19 22.4 67.9 732 14 GB246442 CB246442 21 21.2 67.3 1201 13 BM34102 BK334102 BK334102 21 21.4 64.8 701 10 BF468054 BF468054 22 21.4 64.8 701 10 BF468054 BF468054 24 21.4 64.8 701 10 BF468054 BF468054 25 21.4 64.8 701 10 BF468054 BF468054 25 21 63.6 36 10 BG107884 BG107864 BG107864 26 21 63.6 36 12 BF97559 BF1752041 26 20.8 63.0 376 14 BF97558 BF1752041 29 20.8 63.0 376 14 BF97404 BF371040 30 20.8 63.0 376 14 BF97404 BF373404 31 20.6 6		18	α	69.7	530	13	BQ830956	
20 22.2 67.3 1201 13 BK334102 BK334102 21 21.4 64.8 688 28 BH996940 BK968940 BK968940 22 21.4 64.8 688 28 BH996940 BK968940 BK968940 23 21.4 64.8 698 16 BC60504 BK968940 BK968040 24 21.2 64.2 968 10 BC90504 BC607084 BC607084 26 21 63.6 368 12 BL975959 BC107864 BC107864 26 21 63.6 368 12 BL975959 BC107864 BC107864 26 21 63.6 368 12 BC70755 BC621075 BC621075 29 20.8 63.0 60 12 BC71670 BC71777 30 20.8 63.0 60 10 BC91745 BC71777 31 20.6 62.4 46.2 10		19		67.9	732	14	CB246442	
21 21.4 64.8 688 28 BH996940 BH996940 23 21.4 64.8 701 10 BF468054 BF468054 23 21.4 64.8 701 10 BF468054 BF468054 24 21.2 64.2 908 10 BC107984 BF468054 25 21 63.6 1083 29 CMS05KM AL3520A1 27 20.8 63.0 376 14 CB691075 CB691075 29 20.8 63.0 376 14 CB691075 BF2107404 BF210776 29 20.8 63.0 375 14 CB691075 BF210776 30 20.8 63.0 375 10 BF410276 BF210776 31 20.6 62.4 462 10 BF410276 BF410276 32 20.6 62.4 462 10 BF410276 BF410276 33 20.6 62.4 <t< td=""><td>O</td><td>20</td><td>22.2</td><td>67.3</td><td>1201</td><td>13</td><td>BX334102</td><td></td></t<>	O	20	22.2	67.3	1201	13	BX334102	
22 21.4 64.8 701 1 BF466054 BF468054 BF468054 24 21.2 64.8 954 1 CB203504 CB203504 CB203504 24 21.2 64.8 964 1 CB203504 CB203504 BC1070864 BC107070864 BC1070864 BC1070864 BC107		21	21.4	64.8	689	28	BH996940	
23 21.4 64.8 954 14 GB203504 25 21.2 64.2 968 10 BG107884 BG107884 26 21 63.6 1083 29 ONS 058M9 AL352041 26 21 63.6 1083 29 ONS 058M9 AL352041 29 20.8 63.0 560 12 BD217670 BD317670 29 20.8 63.0 80.9 10 BF973404 BF973404 BF973407 30 20.8 63.0 80.9 10 BF973404 BF973407 31 20.6 62.4 417 13 BF478150 BF973404 BF973407 32 20.6 62.4 40 13 BF478150 BF4781707 32 20.6 62.4 40 13 BF478160 BF478107 33 20.6 62.4 40 13 BF478107 BF478107 34 20.4 61.8 <		22	21.4	64.8	701	10	BF468054	
24 21.2 64.2 908 10 BG107884 BG107884 26 21 63.6 168 12 B1975959 AL352041 27 20.8 63.0 376 14 CR691075 CR691075 29 20.8 63.0 60.0 12 B2177404 BF291075 30 20.8 63.0 60.0 10 BF973404 BF291075 31 20.8 63.0 80.5 10 BF41274 BF210775 32 20.6 62.4 462 10 BF410275 BF410275 33 20.6 62.4 462 10 BF410275 BF410275 34 20.6 62.4 462 10 BF410275 BF410275 35 20.6 62.4 462 10 BF410275 BF410275 35 20.6 62.4 462 10 BF410276 BF410275 35 20.6 61.8 13 28<		23	21.4	64.8	954	14	CB203504	
25 21 63.6 368 12 B1975959 B1755959 26 21 63.6 1083 29 ONSOSMO AL352041 28 20.8 63.0 376 14 CB691075 CB201075 29 20.8 63.0 360 12 BJ217670 CB201075 30 20.8 63.0 360 12 BJ217670 CB217670 31 20.6 62.4 417 13 BY491275 BY4931404 32 20.6 62.4 462 10 BF951635 BY4691607 34 20.6 62.4 462 10 BF951635 BY4691607 35 20.4 61.8 13 28 BH712463 BH712463 BH712463 36 20.4 61.8 360 28 BH496900 BH4960149 37 20.4 61.8 360 28 BH494004 BH49609 40 61.8 360		24	21.2	64.2	806	10	BG107884	
26 21 63.6 1083 29 CNSOSNO AL352041 28 63.0 376 14 EM61075 CR621075 CR621075 29 20.8 63.0 60 12 B.217670 B.217670 B.217670 29 20.8 63.0 875 10 BF973404 BF973404 BF973404 31 20.6 62.4 417 13 BY458150 BF458150 BF458150 32 20.6 62.4 462 10 BF951635 BF561635 33 20.6 62.4 462 10 BF951635 BF561635 34 20.6 62.4 40.7 13 28 BF061635 BF561635 35 20.6 62.4 40.2 10 BF951635 BF951635 BF951635 36 20.4 61.8 313 28 BH604194 BH604194 BH604194 BH606194 37 20.4 61.8 360		52	21	63.6	368	12	BI975959	6
27 20.8 63.0 376 14 CB691075 CB691075 29 20.8 63.0 660 12 BA217670 BF2913404 30 20.8 63.0 60.4 12 BF410275 BF410275 30 20.8 63.0 475 10 BE410275 BF410275 31 20.6 62.4 462 10 BF951635 BF410275 33 20.6 62.4 462 10 BF951635 BF410275 34 20.6 62.4 462 10 BF951635 BF410275 35 20.6 62.4 462 10 BF951635 BF951635 35 20.4 61.8 39 28 BH604194 BH72603 36 20.4 61.8 360 28 BH459603 BH459603 39 20.4 61.8 39 28 BH459604 BH459603 41 20.4 61.8 30 28 </td <td>O</td> <td>56</td> <td>21</td> <td>63.6</td> <td>1083</td> <td>53</td> <td>CNS 05 SMO</td> <td>1</td>	O	56	21	63.6	1083	53	CNS 05 SMO	1
28 20.8 63.0 560 12 BJZ17670 BJZ17670 BJZ17670 29 20.8 63.0 80.9 10 BF97404 BF273404 31 20.6 62.4 417 13 BY458150 BY4010275 32 20.6 62.4 462 10 BF951635 BY458150 34 20.6 62.4 462 10 BF951635 BF951635 34 20.6 62.4 896 14 CD360742 BH701645 35 20.4 61.8 131 28 BH711463 BH7017465 36 20.4 61.8 29 28 BH60194 BH60194 37 20.4 61.8 360 28 BH49690 BH49690 39 20.4 61.8 360 28 BH70404 BH70404 39 20.4 61.8 39 28 BH704004 BH704004 40 61.8 40.0 9 </td <td></td> <td>27</td> <td>20.8</td> <td>63.0</td> <td>376</td> <td>14</td> <td>CB691075</td> <td></td>		27	20.8	63.0	376	14	CB691075	
29 20.8 63.0 80.9 10 BEPG73404 BEPG73404 29 20.8 63.0 80.9 10 BEPG73404 BEFG10275 31 20.6 62.4 417 13 BY58150 BY581102 32 20.6 62.4 462 10 BF951635 BY58150 34 20.6 62.4 462 11 BF951635 BY581630 BF951635 35 20.6 62.4 462 13 28 BH604194 BH72463 BH72463 BH604194 BH604199 BH	υ	28	20.8	63.0	260	12	BJ217670	
30 20.8 63.0 6875 10 BE410275 BE410275 32 20.6 62.4 417 13 9451635 BF451635 BF451635 33 20.6 62.4 462 10 BF951635 BF451635 BF451635 34 20.6 62.4 462 10 BF951635 BF951635 BF951635 35 20.6 62.4 462 10 BF951635 BF971635 BF971635 36 20.4 61.8 329 28 BH468043 BH469144 BH469603 37 20.4 61.8 360 28 BH49604 BH49609 BH49609 BH49609 BH49609 BH49609 BH496090 BH49609 BH49609 BH49609 BH49609 BH496090 BH49609 BH496009 BH496009 BH496009 BH		57	20.8	63.0	608	10	BF973404	
31 20.6 62.4 417 13 BY456150 BY458150 33 20.6 62.4 462 10 BF951635 BF951635 34 20.6 62.4 66.4 96 14 CD360742 BF951635 34 20.4 61.8 131 28 BH712463 BH712463 35 20.4 61.8 348 28 BH640194 BH6714463 37 20.4 61.8 348 28 BH6496990 BH496990 39 20.4 61.8 380 28 BH73660 BH7496990 40 20.4 61.8 39 22 BH749699 BH7496990 40 20.4 61.8 39 22 BH749699 BH7496990 40 20.4 61.8 39 24222038 AIZ22038 AIZ22038 41 20.4 61.8 50 28 BH68274 BH68274 42 40 61.8		200	20.8	63.0	875	10	BE410275	
3.2 20.6 62.4 46.2 10 BF951635 BF951635 3.4 20.6 62.4 896 14 CD360742 CD360742 3.4 20.4 61.8 131 28 BH60194 BH712463 3.5 20.4 61.8 29 28 BH60194 BH60194 3.7 20.4 61.8 360 28 BH496990 BH496990 3.8 20.4 61.8 360 28 BH74064 BH496990 40 20.4 61.8 399 28 BH742660 BH496990 40 20.4 61.8 430 9 AL222039 AL222039 41 20.4 61.8 509 28 BH68274 BH68274 BH68274 42 20.4 61.8 536 28 BH58274 BH68274 BH68274 43 20.4 61.8 536 28 BH59338 BH49338 44 20.4	O	T C	20.6	62.4	417	13	BY458150	
3.5 CULB 0.2.4 0.2.4 0.2.4 0.2.4 0.2.4 0.2.4 0.1.8 131 26 131.2463 131.24663 131.2463 131.2463 131.2463 131.2463 131.2463 131.2463 131.2460<	O	3.2	20.6	62.4	462	2	BF951635	
34 20.4 01.2 131 28 BH712463 BH712463 36 20.4 61.3 29 28 BH640194 BH649690 BH69690 37 20.4 61.8 360 28 BH496990 BH49690 BH49690 38 20.4 61.8 360 28 BH49690 BH43660 BH43660 40 20.4 61.8 39 28 BH74660 BH73660 BH73660 40 20.4 61.8 50 28 BH68274 BH68274 BH68274 41 20.4 61.8 51 28 BH682764 BH682774 BH682774 43 20.4 61.8 55 28 BH556094 BH556094 BH556094 44 20.4 61.8 55 28 BH59195 BH556094		n .	20.0	62.4	968	14	CD360742	•
35 20.4 01.3 29 28 BH604194 BH604194 37 20.4 61.8 348 28 BH495603 BH4959603 38 20.4 61.8 360 28 BH496990 BH496990 39 20.4 61.8 380 28 BH43660 BH494699 40 20.4 61.8 39 28 BH43660 BH73660 BH73660 40 20.4 61.8 509 28 BH682274 BH682203 BH682274 42 20.4 61.8 512 28 BH682764 BH682774 43 20.4 61.8 550 28 BH692764 BH97338 44 20.4 61.8 550 28 BH568764 BH57338 45 20.4 61.8 557 28 BH508195 BH508195	4	ري 10 م	20.4	61.8	131	28	BH712463	
35 20.4 61.8 348 28 BH459603 BH459603 38 20.4 61.8 360 28 BH494090 BH494090 39 20.4 61.8 380 28 BH74560 BH494090 40 20.4 61.8 39 28 BH74560 BH494090 41 20.4 61.8 430 9 28 BH74560 BH5360 42 20.4 61.8 50 28 BH68274 BH68274 BH68274 BH68274 43 20.4 61.8 51 28 BH497338 BH482764 44 20.4 61.8 55 28 BH586094 BH585094 45 20.4 61.8 55 28 BH58195 BH586094	v	0 0	20.4	0.10	562	78	BH604194	
37 20.4 61.8 360 28 BH496990 BH496990 39 20.4 61.8 399 28 BH494004 BH43660 40 20.4 61.8 399 28 BH743660 BH73660 40 20.4 61.8 430 9 AIZ22038 AIZ22038 AIZ22038 41 20.4 61.8 509 28 BH68274 BH68274 BH68274 43 20.4 61.8 536 28 BH556094 BH597338 44 20.4 61.8 550 28 BH556094 BH556094 45 20.4 61.8 557 28 BH508155 BH508195	O	36	20.4	61.8	348	28	BH459603	
38 20.4 61.8 380 28 BH494004 BH494004 39 20.4 61.8 39 28 BH73660 BH73660 BH73650 40 20.4 61.8 430 9 AL222038 AL222038 AL222038 AL222038 AL222038 BH682274 BH682274 BH682274 BH682274 BH682274 BH682274 BH682274 BH682764 BH682764 BH682764 BH682764 BH682764 BH682764 BH682764 BH682764 BH682764 BH69238 BH69238 <th< td=""><td></td><td>٤,</td><td>20.4</td><td>61.8</td><td>360</td><td>28</td><td>BH496990</td><td></td></th<>		٤,	20.4	61.8	360	28	BH496990	
39 20.4 61.8 39 28 BH743660 BH743660 40 20.4 61.8 430 9 A1222034 A1222038 41 20.4 61.8 509 28 BH68274 BH68274 BH68274 42 20.4 61.8 512 28 BH682764 BH682764 43 20.4 61.8 536 28 BH585694 BH59338 44 20.4 61.8 550 28 BH585694 BH55694 45 20.4 61.8 557 28 BH508195 BH508195		38	20.4	61.8	380	28	BH494004	
40 20.4 61.8 430 9 AI222038 AI222038 AI222038 q 41 20.4 61.8 512 28 BH682764 BH597338 BH597338 BH597338 BH597338 BH597338 BH556034 BH556034 BH556034 BH556034 BH560135	O	39	20.4	61.8	399	28	BH743660	
41 20.4 61.8 509 28 BH682274 BH682764 42 20.4 61.8 512 28 BH682764 BH682764 43 20.4 61.8 536 28 BH587764 BH687764 44 20.4 61.8 550 28 BH556094 BH556094 45 20.4 61.8 557 28 BH508195 BH508195		40			430	0	AI222038	σ
42 20.4 61.8 512 28 BHG82764 BHG82764 43 20.4 61.8 536 28 BHG9338 BHG9338 44 20.4 61.8 550 28 BH556094 45 20.4 61.8 557 28 BH556195 BH556195		41			209	58	BH682274	•
43 20.4 61.8 536 28 BH497338 BH497338 44 20.4 61.8 550 28 BH556094 BH556094 45 20.4 61.8 557 28 BH508195 BH508195 BH508195	O	42			512	28	BH682764	
44 20.4 61.8 550 28 BH556094 BH556094 45 20.4 61.8 557 28 BH508195 BH508195			0		536	28	BH497338	8
45 20.4 61.8 557 28 BH508195 BH508195				-	550		BH556094	5094
	υ		•	61.8	557	58	BH508195	3195

Search completed: October 21, 2003, 21:04:24 Job time : 54.0277 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 08:57:52; Search time 86.9596 Seconds (without alignments) 15995.091 Million cell updates/sec Run on:

Title:
Perfect score: 3
Sequence: 1

US-09-762-194-12 34 1 coggaattcactacaacctttogtttaaagcatc 34

Scoring table: IDENTITY_NUC Gapox 1.0

5777422 2888711 seqs, 20454813386 residues Searched:

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

GenEmbl: *

1: 9b.ba: *

2: 9b.ba: *

4: 9b.om: *

6: 9b.pa: *

6: 9b.pa: *

7: 9b.pi: *

8: 9b.pi: *

9: 9b.pi: *

10: 9b.pi: *

10: 9b.pi: *

11: 9b.pi: *

12: 9b.pi: *

13: 9b.pi: *

14: 9b.pi: *

15: 9b.pi: *

16: 9b.pi: *

17: 9b.pi: *

18: 9b.pi: *

18: 9b.pi: *

18: 9b.pi: *

19: 9b.pi: *

20: 9b.pi: *

21: 9b.pi: *

22: 9b.pi: *

23: 9b.pi: *

24: 9b.pi: *

25: 9b.pi: *

26: 9b.pi: *

27: 9b.pi: *

28: 9b.pi: *

em_un: * em_vi: * em_vi: *		em_htg_pln:* em_htg_rod:* em_htg_mam:* em_htg_vrt:*	em_sy: * em_htgo_hum: * em_htgo_mus: * em_htgo_other: *
28: 29:	31: 32: 33:	34: 35: 36: 37:	38: 39: 40:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution

distribution.	
score	
s of the total s	MARIES
the	SUM
οĘ	
by analysis	
λq	
derived	i
53	
and	

	Description	AY208915 Rattus no			BC043321 Mus muscu	BC041777 Mus muscu	BC042206 Mus muscu	AC116511 Mus muscu	AC097544 Rattus no	AC036196 Homo sapi	AC140064 Homo sapi	AC103858 Homo sapi	EX470169 Danio rer			AC007129 Homo sapi	Нопо	Homo	Homo	Homo	AC126598 Mus muscu	AC016774 Homo sapi	AC010789 Homo sapi	AC136565 Rattus no	AC137354 Rattus no	AC129276 Rattus no	AC133021 Rattus no	AC137481 Rattus no	G70578 VE0024311FB	G71357 VE0024311FM	G71180 VE0182311FM	G70613 VE0182311FB	AC120612 Rattus no	AC113567 Canis fam
	QI	AY208915	AY246699	AF173380	BC043321	BC041777	BC042206	AC116511	AC097544	AC036196	AC140064	AC103858	BX470169	AC106365	CER07B7	AC007129	AC023157	AC122130	AC122139	AC099649	AC126598	AC016774	AC010789	AC136565	AC137354	AC129276	AC133021	AC137481	G70578	G71357	G71180	G70613	AC120612	AC113567
	BB	្ព	10	10	10	10	10	7	ณ	σ	~	σ'n	7	7	ო	σ	σ	7	2	2	7	7	თ	7	7	7	7	7	11	11	11	11	~	0
	Length	1323	1323	1803	3629	5218	5219	194355	270745	180366	183015	194996	222710	246099	43469	111103	122351	130377	148481	188209	192343	195743	203842	228736	262820	263406	267768	271639	272	291	300	328	172358	172193
ap (Query Match	65.3	65.3	65.3	65.3	65.3	65.3	65.3	65.3	64.1	64.1	64.1	64.1	63.5	65.9	65.9	65.9	65.9	65.9	65.9	65.9	65.9	65.9	62.9	65.9	65.9	62.9	65.9	62.4	62.4	62.4	4.	62.4	61.8
	Score	22.2	22.2	22.2	22.2	22.2	22.2	22.2	22.2	21.8	21.8	21.8	21.8	21.6	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4		$\overline{}$		21.2	21.2	21.2	21
	No.		c 5	ი ი	o 7	c 2	9	۲	е С	ത	c 10	11	c 12	c 13	14	15	c 16	17	c 18	19	c 20	c 21	22		c 24	c 52		c 27	c 28		30	c 31	c 35	33

AC108137 Home sapi	AC132661 Rattus no	AC095313 Rattus no	AC128261 Rattus no	AC103004 Rattus no	AC137023 Rattus no	AC111881 Rattus no	G73168 DAZ-SNV IV	X56258 Plum Pcx Vi	AC073331 Homo sapi	AC000021 Origins o	AC000022 Genomic s
AC108137	AC132661	AC095313	AC128261	AC103004	AC137023	AC111881	G73168	PPVPGP	AC073331	HSAC000021	AC000022
σ	7	2	7	~	N	7	11	14	თ	m	ത
61.8 177015	224735	61.8 227693	61.8 233886	24042	290791	305488	629	4773	40133	40328	43795
61.8	61.8	61.8	61.8	61.8	61.8			61.2	61.2	61.2	61.2
21	21	21	21	21	21	21	20.8	20.8	20.8	20.8	20.8
_	35	36	37	38	39	40	41	42	43	44	45
č											

Search completed: October 21, 2003, 17:18:16 Job time : 90.9596 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nu	nucleic search, using sw model
Run on:	October 21, 2003, 08:56:18; Search time 6.5374 Seconds (without alignments) 14039.364 Million cell updates/sec
Title: Perfect score: Sequence:	US-09-762-194-12 34 1 coggaattcactacaaccttcgtttaaagcatc 34
Scoring table:	IDENTITY NUC Gapop 10.0, Gapext 1.0
Searched:	2552756 seqs, 1349719017 residues
Total number of	hits satisfying chosen parameters: 5105512
Minimum DB seq Maximum DB seq	length: 0 length: 2000000000
Post-processing: Minimum Maximum Listing	j: Minimum Match 0% Maximum Match 100% Listing first 45 summaries
Database :	N_Geneseq_190'un03:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1980.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1981.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1981.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1981.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1981.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1981.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1986.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1980.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1980.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1980.DAT:* SiDSI/gegdata/geneseq-embl/NA1980.DAT:* SiDSI/gegdata/geneseqn-embl/NA1980.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA1991.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2001.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2001.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2001.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2002.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2001.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2002.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2002.DAT:* SiDSI/gegdata/geneseq-embl/NA2002.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2002.DAT:* SiDSI/gegdata/geneseq/geneseqn-embl/NA2002.DAT:*

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		Description		ATIP codin	Mouse ATIP gene.	nervo	Human reproductive		Human nervous syst				tassel	ATIP	Human DAZ genomic	Human DAZ genomic	Pasteurella haemol	Rat hepatocyte car	Human secreted pro	Human GDP-mannose		Human polynucieoti		Arabidopsis ralia		colon	Tumour suppressor	Human prostate exp	m	Φ	Human prostate exp	prostata	prostate		Human prostate exp		Oligonucleotide fo	Human prostate exp	Human prostate exp	Human prostate exp		prostate	prostate	ď	E4	Drosophila melanog	
SUMMARIES		QI	AAZ99095	AAZ99089	·		AAL05	•	ABA19	AAL05	ABL98	AAK6925	ABL74829	AAZ 99090	AAZ92584	AAZ 92583	ABQ83550	AAA87514	AAX84958	ABX28553	ABX26216	AAI93297	AAH17101	ABZ17460	ABV93935	ABV93936	AAS46492	ABV02911	ABV12080	ABV33225	ABV42148	ABV12257	ABV33402	ABV42106	ABV42325	ABQ43510	ABQ43511	ABV22005	ABV21848	ABV21876	ABV27672	ABV27706	ABV27838	AAD05838	ABL28792	ABL28764	AAA82126
		e į	21	21			22	23	22	22	23	22	24		•	•		-											23	23	23	23	23	25	23	24	57	23	23	23	23	23	23	22	23	23	21
		Length	34	1323	180	16	216	32169	218	218	218	m	787	354	40328	43/95	1463	262	1026	252	288	387	2176	583	820	839	8078	348	349	400	400	418	465	465	465	607	/ 09	800	801	801	801	801	0	51			
æ		Match	0	65.3		65.9		62.9			62.9	62.9	62.4		7.10	2.10	0.09	4.60	59.4	58.2	58.2	58.2	58.2	r	~	7	~ (~ 1	7	57.1	· 1		~ [~ [<u> </u>	~ I	<u>- 1</u>			<u></u>	~	~		^	57.1	56.5
	,	Score		22.2	•	•			21.4	21.4	٠	21.4	21.2	12.00	20.8 00.8	8.02	20.4	20.2	0 6	19.8	19.8	19.8	on .	6	o,	٠. د	9.6	19.4	j. On 1	19.4	4.6	7.0	4.6	4.61	P. 0.	19.4	,	19.4	'n.	'n	19.4	19.4	19.4	19.4	19.4	19.4	19.2
	Result	. i	н	0		Ο 4' Ι					,	٠,	٦.	c 12	Τ.		٠,	o ⊺	17	30 i	19	20	21	22							0 1 7 7			25.		ο 1. τ			ייי		m ·	0.40	4	42	c 43	₹	c 45

ALI GNMENTS

```
Primers AAZ99094-Z99095 were used to PCR amplify the cDRA encoding a mouse angictensin II (AT2) receptor interactive protein (ATIP; AAX83777). The initial clone (AAZ99090) was isolated from a two-hybrid screen using the C-terminal fragment of the mouse AT2 receptor as the "bait" (AAX93781). The "target" is a mouse foetal cDRA library. Cells cransformed with vectors containing the CDRA, or immobilized proteins encoded by it, can be used to screen for substances that modulate ATIP-AT2 interaction or substances that interact with ATIP, especially using yeast two- or three-hybrid techniques. Such substances may be useful for treating disorders associated with anomalous AT2 receptor signal transduction.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Nucleic acids coding for angiotensin II receptor AT2 interacting proteins useful in screening assays for receptor-protein interaction
                                                                                                                                                                Mouse, angiotensin, AT2 receptor interactive protein, ATIP; ss; two-hybrid screen, signal transduction, PCR primer.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Sequence 34 BP; 10 A; 10 C; 4 G; 10 T; 0 other;
                                                                                                                                 Mouse ATIP gene primer oligo.antisens.
                                                                                                                                                                                                                                                                                                                                                                                                               Strosberg AD;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Claim 4; Page 16; 63pp; French.
                                                                                                                                                                                                                                                                                                                                                                              (CNRS ) CNRS CENT NAT RECH SCI.
                                  AAZ99095 standard; DNA; 34 BP.
                                                                                                                                                                                                                                                                                                                98FR-0009997.
                                                                                                                                                                                                                                                                                                                                               98FR-0009997.
                                                                                                  (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                               Elbaz N, Nahmias C,
                                                                                                                                                                                                                                                                                                                                                                                                                                            WPI; 2000-248410/22.
                                                                                                                                                                                                                                                FR2782084-A1.
                                                                                                                                                                                                                                                                                                                04-AUG-1998;
                                                                                                                                                                                                                                                                                                                                               04-AUG-1998;
                                                                                                21-JUN-2000
                                                                                                                                                                                                                                                                               11-FEB-2000.
                                                                 AAZ99095;
                                                                                                                                                                                                                 Mus sp.
```

```
Search completed: October 21, 2003, 11:11:22 Job time: 7.5374 secs
```

ö

Gaps

·.

Query Match 100.0%; Score 34; DB 21; Length 34; Best Local Similarity 100.0%; Pred. No. 5.9e-05; Matches 34; Conservative 0; Mismatches 0; Indels

8 ద

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 21, 2003, 17:18:24 ; Search time 6.95661 Seconds	(without alignments)	13107.130 Million cell updates/ser
Run on:		

US-09-762-194-12 Title:

Perfect score:

1 coggaattcactacaacctttcgtttaaagcatc 34

Sequence:

Scoring table: IDENTITY_NUC Gapop 10.0, Gapext 1.0

1792395 seqs, 1340900451 residues Searched:

3584790 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Published Applications NA:+

1: /cgn2_6/ptodata/1/pubpna/USO7_PUBCOMB.seq:+
2: /cgn2_6/ptodata/1/pubpna/USO7_NEW_PUB.seq:+
3: /cgn2_6/ptodata/1/pubpna/USO6_NEW_PUB.seq:+
4: /cgn2_6/ptodata/1/pubpna/USO6_NEW_PUB.seq:+
5: /cgn2_6/ptodata/1/pubpna/USO7_NEW_PUB.seq:+
6: /cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:+
7: /cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:+
8: /cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:+
9: /cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:+
10: /cgn2_6/ptodata/1/pubpna/USO9_PUBCOMB.seq:+
10: /cgn2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:+
11: /cgn2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:+
11: /cgn2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:+
12: /cgn2_6/ptodata/1/pubpna/USO9_NEW_PUB.seq:+
13: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
14: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
15: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
16: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
17: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
16: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
17: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
16: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
17: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
16: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
17: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
18: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
18: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
18: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
19: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
19: /cgn2_6/ptodata/1/pubpna/USO0_NEW_PUB.seq:+
10: /cgn2_ Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		Description	
o s o	Query	Match Length DB ID	
		Score	
	Result	No.	

21.4 62.9 32169 11 US-09-764 21.5 62.4 2549 11 US-09-923 21.2 62.4 264 267 9 US-09-923 21.2 62.4 267 9 US-09-923 20.2 59.4 1026 11 US-09-934 20.2 59.4 1026 11 US-09-934 19.8 58.2 288 10 US-09-918 19.8 58.2 288 10 US-09-918 19.6 57.6 593 11 US-09-918 19.6 57.6 839 13 US-10-016 19.4 57.1 504 12 US-10-016 19.5 5.9 624 13 US-10-025 19.5 5.9 624 13 US-10-225 19 55.9 624 13 US-10-225 19 55.9 624 13 US-10-225 19 55.9 520000 12 US-10-225 19 55.9 520000 12 US-10-225 19 55.9 22001 12 US-10-225 19 55.9 22001 12 US-10-225 19 55.9 22001 12 US-10-027 19 55.9 322101 12 US-10-027 19 6 54.7 593 13 US-10-027 19 6 54.7 594 13 US-10-027 19 70 0000000000000000000000000000000000	91-8605 Sequence 8605, Ap 91-8604 Sequence 8604, Ap 6-1426 Sequence 1426, Ap 3B-4203 Sequence 4203, Ap 5-1205 Sequence 3205, Ap 79-36 Sequence 320, Ap	9-30 Sequence 6-36 Sequence 4-10612 Sequence 4-8275 Sequence 48-31 Sequence 48-31 Sequence 5-111429 Sequence 2-111429 Sequence	26 Sequence 27 Sequence 39 Sequence 39 Sequence 50 Sequence 50 Sequence 50 Sequence 5142 Sequence	392 Sequence 103 1 Sequence 26 Sequence 26 8900 Sequence 14 8905 Sequence 29 84102 Sequence 19 8112 Sequence 53 812 Sequence 63 812 Sequence 63 8033 Sequence 96 90323 Sequence 96	Sequence 424, App. Sequence 201, App. Sequence 201, App. 42 Sequence 301157 Sequence 301157 Sequence 301157 Sequence 249134 133 Sequence 249134 134 Sequence 249134 Sequence 249134 Sequence 249134 Sequence 249134 Sequence 249134
21.4 62.9 32169 21.5 62.4 2189 21.2 62.4 2189 21.2 62.4 287 21.2 62.4 287 20.2 59.4 1026 20.2 59.4 1026 19.8 58.2 288 19.8 58.2 288 19.6 57.6 820 19.6 57.6 820 19.6 57.6 820 19.6 57.6 820 19.6 57.6 820 19.7 57.1 504 19.5 59.5 528000 19.5 59.3 22101 18.8 55.3 438 18.8	US-09-76 US-09-923 US-09-294 US-09-594 US-09-53	US-09-305- US-09-305- US-09-878- US-10-027- US-09-918- US-09-938- US-10-027-	US-10-016- US-10-016- US-10-006- US-10-006- US-10-311- US-10-096- US-09-864-7 US-10-027-	2 US-10-225-2 2 US-10-225-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3 3 US-10-027-3	18 US-09-770-1 19 US-10-084- 19 US-10-027- 19 US-10-027- 19 US-10-027- 19 US-10-027- 19 US-10-027- 19 US-10-027- 19 US-09-778-9
21.4 62.9 21.2 20.2 21.2 20.2 21.2 62.4 20.2 29.4 20.2 59.4 19.8 58.2 19.6 57.6 19.6 57.6 19.6 57.6 19.7 6 57.6 19.8 58.2 19.8 58.2 19.8 58.2 19.8 58.3 19.8 58.3	216 218 25 28 28 32 102	1026 252 288 288 875 1572 583	820 839 292 504 19972 62804 624	77992 250000 322101 438 438 736 3655 715517 715517 593	669 1630 2940917 506 506 636 710 1126 2470 2747
11.12. 22.2.1.1.1.1.2.2.2.2.2.2.2.2.2.2.	62.9 62.9 62.4 62.4 61.8 59.4	59.7 58.2 57.6 57.6 57.6	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) N N N N N N N N N N N N N N N N N N N	7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
12m4597289012m4597289012m459784597845	21.4 21.2 21.2 21.2 21.2 21.2 20.2	2002 2001 1909 1909 1909 1909	თთთთთ		
		нння.		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 00 00 33 34 4 4 4 4 4 4 4 4 4 4 4 4

Search completed: October 22, 2003, 04:13:49 Job time : 28.9566 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

n: October 21, 2003, 09:08:27 ; Search time 53.6043 Seconds (without alignments) 15415.787 Million cell updates/sec	: US-09-762-194-12 ct score: 34 nce: 1 ccggaattcactacaaccttcgtttaaagcatc 34	ng table: IDENTITY NUC Gapop 10.0 , Gapext 1.0	ned: 22781392 seqs, 12152238056 residues	Total number of hits satisfying chosen parameters: 45562784	Minimum DB seq length: 0 Maximum DB seq length: 2000000000	Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries	ase: ESI:*
Run on:	Title: Perfect score: Sequence:	Scoring table:	Searched:	Total number	Minimum DB se Maximum DB se	Post-processi	Database :

A.CALOO EG

28: gb_gss1:* 29: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

			5				
Res	Result	97000	Query	Tongth	g	4	
;		3	110000	Total CI	9	1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Describtion
υ	-4	~	67.1	276	6	AV296549	AV296549 AV296549
	7	22.8	67.1	516	12	BM261570	dai46b
	т	22.4		508		BJ056698	BJ05669
	4	22.4		628	10	BG022525	BG022525 dab05a09.
	n l	22.4	62.9	642	on	AW767695	AW767695 da77f06.x
a	ا ک	22.2		450	14	CA556858	CA556858 K0218E03-
U	۲.	22.2		509	12	BI319660	BI319660 ie14a05.y
O	00	22.2	65.3	517	10	BE652532	N
υ	on :			541	4	BX512030	Bx512030 RZPD Mus
Ų	01	22.2		009	13	BU921755	
υ	11	22.2	65.3	657	10	BB628131	BB628131 BB628131
υ	12	22.2	65.3	667	14	BY742653	BY742653 BY742653
υ	13	22.2	65.3	734	14	CB316595	'n.
υ	14	22.2	'n.	748	10	BF141309	o
υ	15	22.2	65.3	920	13	BU523654	BU523654 AGENCOURT
O	16	22.2		920	13	BQ921402	BQ921402 AGENCOURT
	17	22.2	65,3	1090	53	CC220629	
O	18	22.2	'n.	2477	11	AK030510	AK030510 Mus muscu
υ	13	22.2	65.3	3237	11	AK035576	
υ	20	22.2	65,3	3963	11	AK031693	
	21	21.8	64.1	271	თ	AI920645	ဖ
	22	21.8	64.1	009	14	CA659570	0
	23	21.6		812	58	BH397605	
υ	24	21.4	67.9	1125	12	BM464322	
	25	21.2	62.4	263	σ	AI947351	9
	56	21.2	62.4	325	10	BG349168	∞
	27	21.2	62.4	358	o,	AW120381	9
	28	21.2	62.4	369	σι	AW017677	
υ	53	•	62.4	385	σ	AW056048	AW056048 660002A05
υ	30	•	62.4	418	σ	AW065792	
	31	•	62.4	454	σ	AI629809	
O	32	21.2	62.4	527	28	BH107504	4
	33		62.4	544	13	BQ668252	
	34		62.4	545	13	BQ703374	7
	32		62.4	549	o,	AI737756	AI737756 605040H03
U	36		62.4	554		AW067499	AW067499 66001.3C08
	37	٠	62.4	564	12	BM378462	BM378462 MEST564-D
	38	21.2	62.4	571		CD527810	CD527810 3529 1 12
	ر ان	21.2	62.4	573	0	BE344835	BE344835 946029D01
	40	21.2	62.4	280	ω.	AW126505	AW126505 614101E06
U	41		62.4	582	·	AW042241	AW042241 614025B01
	42		62.4	290	4	CA398895	S
	ي د	21.2	62.4	591	•	AI622281	AI622281 486039D07
	44	21.2	62.4	592	Ф	AQ423423	3
	4. C	21.2	62.4	604	0	AI491677	AI491677 486020F02