

IIC2223/IIC2224 — Teoría de autómatas y lenguajes formales — 2' 2024

TAREA 1

Publicación: Viernes 16 de agosto.

Entrega: Jueves 22 de agosto hasta las 23:59 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si está en blanco).

- Cada solución debe estar escrita en IATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Un stop-autómata finito determinista \mathcal{A} es igual a un autómata finito determinista con la diferencia que la ejecución de \mathcal{A} sobre una palabra se detiene apenas llega a un estado final y acepta. En cambio, si nunca llega hasta un estado final, \mathcal{A} llegará hasta el término de la palabra y rechaza. Notar que \mathcal{A} puede no necesariamente leer toda la palabra debido a que encontró un estado final antes de llegar al término de la palabra.

- 1. Formalice la definición de un stop-autómata finito determinista con su estructura, ejecución, condición de aceptación y lenguaje aceptado.
- 2. Demuestre formalmente que para todo stop-autómata finito determinista existe un autómata finito determinista que acepta el mismo lenguaje.

Pregunta 2

Considere el alfabeto binario $\Sigma = \{0,1\}$. Considere la operación \oplus entre bits tal que $i \oplus j = (i+j)$ mód 2 para todo $i,j \in \{0,1\}$. Por ejemplo, $0 \oplus 1 = 1$ y $1 \oplus 1 = 0$. Para un n > 0 y dos palabras $u = a_1 \dots a_n \in \Sigma^*$ y $v = b_1 \dots b_n \in \Sigma^*$ se define la operación $u \oplus v$ entre palabras tal que $u \oplus v = (a_1 \oplus b_1) \dots (a_n \oplus b_n)$. Por ejemplo, $001 \oplus 101 = 100$ y $0011 \oplus 0101 = 0110$. También, se define $\bigoplus u$ como $\bigoplus u = a_1 \oplus a_2 \oplus \dots \oplus a_n$. Por ejemplo, si u = 0110, entonces $\bigoplus u = 0$. Por último, en el caso especial que $u = \epsilon$ y $v = \epsilon$, entonces se define $u \oplus v = \epsilon$ y $\bigoplus u = 0$.

- 1. Demuestre que si L es regular entonces $L^{\oplus =1} = \{u \in L \mid \bigoplus u = 1\}$ es regular.
- 2. Demuestre que si L es regular entonces $\bigoplus L = \{u \in \Sigma^* \mid \exists v \in L. |u| = |v| \land \bigoplus (u \oplus v) = 1\}$ es regular.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.