Geometria 1

Luca Vettore

March 2022

1 Relazioni

Siano A e B insiemi, è detta relazione tra A e B un insieme $R \subseteq A \times B$. Sia $(a,b) \in R$, si dice che a è in relazione con b e si denota aRb.

Se $R \subseteq A \times A$, si dice che R è relazione in A.

Una relazione in un insieme A si dice di equivalenza se:

- $\forall a \in A \text{ aRa (riflessività)}$
- $\forall a, b \in A \text{ aRb} \Leftrightarrow \text{bRa (simmetria)}$
- $\forall a, b, c \in A \text{ aRb e bRc} \Rightarrow \text{aRc (transitività)}$

Sia $R \subseteq A \times A$ una relazione di equivalenza, si dice classe di equivalenza l'insieme $[a]_R = \{ \forall b \in A : bRa \}$ $(aRb \Leftrightarrow [a]_R = [b]_R)$.

L'insieme delle classi di equivalenza si dice insieme quoziente e si denota $A/R = \{[a]_R; a \in a\}$ ("insieme di A modulo R").

Sia $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, sia $R \subseteq A \times A : (a,b)R(c,d) \Leftrightarrow ad = bc$, allora $\mathbb{Q} = A/R$.

1.1 Classi modulo

Siano $a, b \in \mathbb{Z}$ e $n \in \mathbb{N}$, si dice che a è congruo a b modulo n e si denota $a \sim b \Leftrightarrow \exists k \in \mathbb{Z} : a - b = k \cdot n$.

 \sim è relazione di equivalenza. L'insieme $\mathbb{Z}/\sim=\mathbb{Z}_n$ è detto insieme delle classi modulo n.

L'insieme \mathbb{Z}_2 contiene due classi: $[0]_{\sim} = \{..., 0, 2, 4, ..\}$ e $[1]_{\sim} = \{..., 1, 3, 5, ..\}$.

L'insieme \mathbb{Z}_3 contiene 3 classi ...

L'insieme \mathbb{Z}_n contiene n classi: $[0]_{\sim},...,[n-1]_{\sim}$.

2 Strutture algebriche

2.1 Operazioni

Sia A un insieme. Un'operazione è un'applicazione $*: A \times A \rightarrow A$.

In \mathbb{Z} sono operazioni $+,-,\cdot$, non lo è : $(2:3\notin\mathbb{Z})$.

In \mathbb{Z}_n si possono definire:

- +: $[a]_n + [b]_n = [a+b]_n$
- $\bullet : [a]_n \cdot [b]_n = [a \cdot b]_n$

Queste operazioni sono indipendente dai rappresentanti della stessa classe scelti $(a \sim a', b \sim b' \Rightarrow a \cdot b \sim a' \cdot b')$.

Una struttura algebrica è un insieme dotato di operazioni che soddisfano determinate condizioni.

2.2 Gruppi

Un gruppo (G,*) è una struttura algebrica dotata di un operazione tale che:

- 1. $\forall x, y \in G \ (x * y) * z = x * (y * z) \ (associatività)$
- 2. $\exists e \in G : \forall x \in G \ e * x = x * e = x \text{ (esistenza elemento neutro)}$
- 3. $\forall x \in G \ \exists \bar{x} : x * \bar{x} = x * \bar{x} = e \text{ (esistenza inverso)}$

Un gruppo (G, *) è detto abeliano se: 4. $\forall x, y \in G \ x * y = y * x$.

Una struttura che verifica 1 e 2 è detta monoide.

 $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{Z}_n,+)$ sono gruppi abeliani.

 $(\mathbb{Z},\cdot),(\mathbb{Q},\cdot),(\mathbb{Z}_n,\cdot)$ non sono gruppi.

 $(\mathbb{Q}\setminus\{0\},\cdot)$ è un gruppo.

Sia (G,*) un gruppo, esso ha delle proprietà fondamentali:

- L'elemento neutro è unico
- $\forall x \in G \ \bar{x} \ \text{è unico}$
- $x * y = x * z \Rightarrow y = z$ e $x * y = z * y \Rightarrow x = z$ (Leggi di cancellazione)
- $\bullet \ \overline{(x*y)} = \bar{x}*\bar{y}$
- \bullet $\overline{(\bar{x})} = x$

In un gruppo (G, *) è possibile definire le potenze di $x \in G$ come operazioni ripetute di x con se stesso $(x^n = x * ... * x$ per n volte). Le potenze godono delle usuali proprietà.

2.3 Anelli

Un anello (A, +, *) è una struttura algebrica dotata di 2 operazioni tali che:

- (A, +) sia un gruppo abeliano
- * sia associativo (c * (a * b) = a * (b * c))
- + e * siano distributive (a * (b + c) = a * b + a * c)

$$(\mathbb{Z}, +, *); (\mathbb{Q}, +, *); (\mathbb{Z}_n, +, *); (\mathbb{R}, +, *)$$
 sono anelli.

Un anello è detto commutativo se * è commutativo.

In (A, +, *) $x \in A$ è detto divisore dello zero se $\exists b \in A : a * b = 0_A$. In $(\mathbb{Z}_6, +, *)$ [2], [3], [4] sono divisori dello zero.

2.4 Campi

Un anello (K, +, *) è detto campo se $(K^*, *)$ è un gruppo abeliano. $(\mathbb{Z}_n, +, *)$ è un campo per n primo.

2.5 Il campo complesso

Sia $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. Rappresentiamo un elemento $z \in \mathbb{C}$ come $z = a + i \cdot b$, con $a, b \in \mathbb{R}$. a = Re(z) è detto parte reale e b = Im(z) è detto parte immaginaria.

Definiamo due operazioni utilizzando le operazioni in $(\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}})$

- $+_{\mathbb{C}}: \mathbb{C} \times \mathbb{C} \to \mathbb{C}: (a+ib,c+id) \to (a+_{\mathbb{R}}c) + (b+_{\mathbb{R}}d)i$
- $*_{\mathbb{C}}: \mathbb{C} \times \mathbb{C} \to \mathbb{C}: (a+ib,c+id) \to (a*_{\mathbb{R}}c-_{\mathbb{R}}b*_{\mathbb{R}}d) + (a*_{\mathbb{R}}d+_{\mathbb{R}}b*_{\mathbb{R}}c)i$

 $(\mathbb{C}, +_{\mathbb{C}}, *_{\mathbb{C}})$ è un campo ed è chiamato campo complesso.

Esiste una corrispondenza tra gli elementi di \mathbb{R} e di \mathbb{C} : $\forall r \in \mathbb{R} \ \exists z \in \mathbb{C} : \mathrm{Re}(z) = \mathrm{re} \ \mathrm{Im}(z) = 0$.

Posto $i=0+1i,\ i^2=i*i=-1+0i.$ Data questa eguaglianza il prodotto in $\mathbb C$ segue le regole di un prodotto tra polinomi in i in $\mathbb R$.

Un elemento di z è detto immaginario puro se Re(z) = 0 o reale puro se Im(z) = 0.

Sia z = a + bi un numero complesso, il suo coniugato è definito come $\bar{z} = a - bi$.

Un numero complesso può essere rappresentato come un vettore su un piano $\mathbb{R} \times \mathbb{R}$ noto come piano di Angart-Gauss. In questo modo l'operazione di somma tra numeri complessi assume il significato di somma di vettori.

Definiamo l'argomento θ come l'angolo compreso tra l'asse reale e il vettore z (in senso antiorario), z può quindi essere espresso come $z=a+bi=\rho(\cos(\theta)+i\sin(\theta))$, dove $\rho=\sqrt{a^2+b^2}$ è il modulo di z $(\tan(\theta)=\frac{b}{a}$ con $a\neq 0$, $a=\rho\cos(\theta)$, $b=\rho\sin(\theta)$). Questa forma è nota come forma trigonometrica

Il prodotto di numeri complessi si può quindi scrivere come $z = \rho(\cos(\theta) + \sin(\theta)i), w = \eta(\cos(\psi) + \sin(\psi)i)$ $z \cdot w = \rho \cdot \eta(\cos(\theta + \psi) + \sin(\theta + \psi)i)$

Ponendo $z^{-1} = \frac{1}{\rho}(\cos(-\theta) + \sin(-\theta)i)$ è possibile definire il rapporto in \mathbb{C} come $z/w = z * w^{-1}$

Le potenze in $\mathbb C$ sono definite (per $n \geq 1$) come prodotti ripetuti: $z^n = z * ... * z$ n volte (formula di de Moivre).

Siano $z,w\in\mathbb{C},\ z=\rho(\cos(\theta)+\sin(\theta)i), w=\eta(\cos(\psi)+\sin(\psi)i),$ si dice che z è radice n-esima di w se $z^n=w,$ cioè $\rho^n=\eta$ e $\theta=\frac{\psi}{n}+\frac{2k\pi}{n}$ con $k\in\mathbb{N}.$

Sia $k' \sim k \pmod{n}$, allora $k' = k + rn \pmod{r} \in \mathbb{N} \Rightarrow \frac{\psi}{n} + \frac{2k'\pi}{n} = \frac{\psi}{n} + \frac{2k\pi}{n} + \frac{2\pi rn}{n} \sim \frac{\psi}{n} + \frac{2k\pi}{n} \pmod{n}$, quindi le radici distinte vanno ricercate nei valori $0 \le k < n$.

In $\mathbb C$ un numero ha n
 radici n-esime.

Le radici n-esime di $z = \rho(\cos(\theta) + \sin(\theta)i)$ su un piano di Angart-Gauss sono disposte su una circonferenza con centro nell'origine e raggio $\sqrt[n]{\rho}$.

Nel caso di w = 1 + 0i:

2.5.1 Teorema fondamentale dell'algebra

Il campo \mathbb{C} è algebricamente chiuso, cioè ogni polinomio $p(z) \in \mathbb{C}[z]$ di grado ≥ 1 si può scomporre come $p(z) = a(z - \alpha_1)...(z - \alpha_d)$, dove α_n è radice di p(x).

Sia $p(z) \in \mathbb{C}[z]$ con tutti i coefficienti reali, allora se $\alpha \in \mathbb{C}$ è radice, anche $\bar{\alpha}$ è radice del polinomio e $p(\bar{z}) = p(\bar{z})$.

3 Matrici

Una matrice di dimensione m×n o a m
 righe e n colonne è una tabella del tipo $\begin{pmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{1m} & \dots & \dots & a_{mn} \end{pmatrix}$

L'insieme delle matrici di dimensioni m*n si denota con $Mat_{mn}(K)$, dove k è il campo a cui apartengono i termini della matrice.

Tra matrici delle stesse dimensioni si definisce la somma, come somma elemento per elemento, e il prodotto per scalare, come prodotto di ogni elemento per lo scalare.

Una matrice formata da una sola colonna è detta vettore.

3.1 Prodotto righe per colonne

Siano $A \in Mat_{m,n}$ e $B \in Mat_{s,p}$, A e B sono dette conformabili se n = s. In tal caso si può definire il prodotto tra matrici, come la matrice che ha come elementi $c_{ij} := a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj}$. Questa operazione è anche nota come prodotto righe per colonne.

Il prodotto tra matrici ha alcune proprietà:

- A * (B + C) = A * B + A * C
- (A+B)*C = A*C + B*C
- $\bullet \ (A*B)*C = A*(B*C)$
- $\lambda(A*B) = (\lambda A)*B = A*(\lambda B)$

Data una matrice A, la sua trasposta A^T è la matrice che ha per colonne le righe di A. L'elemento neutro rispetto al prodotto tra matrici è la matrice identità, composta di 1 sulla diagonale.

3.2 Matrici e sistemi lineari

Un sistema di equazioni lineari può essere rappresentato come A * x = b, dove A una matrice contenente i coefficienti, x un vettore contenente le incognite e b un vettore formato dai termini noti.

Una soluzione del sistema è un vettore \tilde{x} tale che $A * \tilde{x} = b$.

Un sistema si dice:

- impossibile: se non ammette soluzioni
- determinato: se ammette una e una sola soluzione
- indeterminato: se ha più di una soluzione

Due sistemi lineari sono equivalenti se hanno le stesse soluzioni.

Il metodo di Gauss è un metodo che permette di trovare la soluzione di un sistema lineare. Il metodo consiste nel ridurre il sistema lineare in un sistema a scalini applicando delle operazioni che lo trasformino in uno equivalente.

Un sistema a scalini è strutturato così: $\begin{pmatrix} 0 & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * & * \end{pmatrix}$, ogni riga ha almeno uno zero più della precedente prima di un valore non nullo.

Le operazioni che mantengono le soluzioni di un sistema sono:

- Scambio di righe fra loro
- Moltiplicazione di una riga per costante non nulla
- Somma di una riga al multiplo di un altra

3.3 Rango

Il procedimento di Gauss può essere applicato a una qualsiasi matrice. Il numero di righe non nulle di una matrice ridotta a scalini è detto rango o caratteristica della matrice.

Teorema di Rouché-Capelli

Il sistema lineare Ax = b se ha soluzioni, ne ha ∞^{n-r} , dove n è il numero di righe e r il rango di A.

4 Spazi vettoriali

Sia K un campo, un insieme V si dice spazio vettoriale sul campo K se è dotato di due operazioni $+: V \times V \to V$ e $\cdot: K \times V \to V$ con le seguenti proprietà:

- \bullet (V,+)è un gruppo abeliano
- $\forall \lambda, \mu \in K, \forall u, v \in V \text{ si ha:}$
 - $-(\lambda + \mu)u = \lambda u + \mu u$
 - $-(\lambda * \mu)u = \lambda * (\mu * u)$
 - $\lambda(u+v) = \lambda u + \lambda v$
 - $-1_K * u = u$

Dati $\lambda_1, ..., \lambda_n \in K$ e $v_1, ..., v_n \in V$, $\lambda_1 v_1 + ... + \lambda_n v_n$ è detta combinazione lineare di $v_1, ..., v_n$ con coefficienti $\lambda_1, ..., \lambda_n$.

Uno spazio vettoriale generico ha le seguenti proprietà:

- le proprietà di (V, +) abeliano
- $\bullet \ \forall v \ 0 * v = 0$
- $\forall \lambda \in K \ \lambda * 0 = 0$
- $\forall v, \forall \lambda \in K (\lambda * v) = (-\lambda) * v$
- $\bullet \ \lambda * v = 0 \Rightarrow \lambda = 0 \lor v = 0$

4.1 Sottospazi

Dato uno spazio vettoriale V, si dice sottospazio di V un insieme $U \subseteq V$ tale che:

- $\forall u, v \in U \ (u+v) \in U$
- $\forall \lambda \in K \ \forall u \in U \ (\lambda u) \in U$
- $0 \in U$

Le prime due proprietà dicono che un sottospazio è chiuso rispetto alle combinazioni lineari.

Sia V uno spazio vettoriale sul campo K e siano U e W sottospazi di V, allora l'insieme $U \cap W$ è sottospazio di V, mentre l'insieme $W \cup U$ può non esserlo.

Si definisce quindi il sottospazio somma di W e U come $U+W=\{v\in V|\exists u\in U,\exists w\in W:v=w+u\}$. Nel caso in cui $U\cap W=\emptyset$ la somma è detta diretta.

Teorema

La somma di U e W è diretta se e solo se ogni $v \in (U+W)$ si scrive in uno e un solo modo come somma di $u \in U$ e $w \in W$.

5 Generatori e basi

Sia V spazio vettoriale sul campo K. Sia $S = s_{\alpha\alpha\in A} \subseteq V$ e $S \neq \emptyset$, si dice sottospazio generato da S o span di s, l'insieme $< S > = < s_{\alpha} >_{\alpha\in A} = \{v \in V | \exists \lambda_1, ...\lambda_n, \exists s_{\alpha_1}, ..., s_{\alpha_n} : v = \lambda_1 s_{\alpha_1} + ... + \lambda_n s_{\alpha_n} \}$. Gli elementi di S sono detti generatori di < S >.

 $\langle S \rangle$ è un sottospazio di V.

Sia $U \subseteq V$ e $\exists S_{\{s_1, ..., s_k\}} : U = \langle S \rangle$, allora U si dice finitamente generato.

5.1 Dipendenza lineare

Sia V spazio vettoriale su K. Sia $S = \{s_{\alpha}\}_{{\alpha} \in A} \subseteq V, S \neq \emptyset.$

Si dice che gli elementi di S sono linearmente dipendenti se $\exists \lambda_1,...,\lambda_n \in K$ e $s_{\alpha_1},...,s_{\alpha_n} \in S$ tali che $(\lambda_1,...,\lambda_n) \neq (0,...,0)$ e $\lambda_1 s_{\alpha_1} + ... + \lambda_n s_{\alpha_n} = 0$.

Se gli elementi si S non sono linearmente dipendenti, allora sono linearmente indipendenti.

La dipendenza lineare ha le seguenti proprietà:

- $S \neq \emptyset$, $S \subseteq T \subseteq V$, S l.d \Rightarrow T l.d
- $S = \{v\}$, S l.d $\Leftrightarrow v = 0$
- $0 \in S \Rightarrow S$ l.d
- $S = \{v_1, v_2\}$, S l.d \Leftrightarrow uno è multiplo dell'altro
- $S = \{v_1, ..., v_n\}$, S l.d \Leftrightarrow uno è combinazione lineare degli altri
- $\lambda_1 v_1 + ... + \lambda_n v_n = 0, \ \lambda_1 \neq 0 \Rightarrow v_1 \in \langle v_2, ..., v_n \rangle$

5.2 Basi

Un sottoinsieme $B \subset V$ si dice base di V se:

- \bullet < B >= V
- B è linearmente indipendente

Teorema

 $B \subset V$ è base di V se e solo se ogni elemento di v può essere scritto in uno e un solo modo come combinazione lineare degli elementi di B.

Teorema

Sia $V \neq \emptyset$ uno spazio vettoriale su K e sia $V = \langle v_1, ..., v_n \rangle$, allora $\{v_1, ..., v_n\}$ contiene una base di V.

Un insieme $\{v_1,...,v_k\}\subseteq V$ si dice insieme massimale di linearmente indipendenti se:

- $\{v_1, ..., v_k\}$ è l.i.
- $\forall v \in V \{v_1, ..., v_k, v\}$ è l.d.

Teorema

Sia $\{v_1,...,v_k\}$ un insieme massimale di linearmente indipendenti, allora $\{v_1,...,v_k\}$ è una base.

Un insieme $\{v_1,...,v_k\}\subseteq V$ si dice insieme minimale di generatori se:

- $\bullet < v_1, ..., v_k > = V$
- $\forall i = 1, ..., k \{v_1, ..., v_k\} \setminus \{v_i\}$ non genera V

Teorema

Sia $\{v_1,...,v_k\}\subseteq V$ un insieme minimale di generatori, allora $\{v_1,...,v_k\}\subseteq V$ è una base.

Teorema: Equicardinalità delle basi

Sia V uno spazio vettoriale che ha una base con
n vettori, allora qualsiasi insieme di m > n vettori è linearmente dipendente

Corollario

Sia V uno spazio vettoriale e siano A e B due sue basi, allora A e B hanno lo stesso numero di elementi.

5.3 Dimensioni di uno spazio vettoriale

Sia V uno spazio vettoriale su K.

- Se $V = \{0\}$ si dice che V ha dimensione nulla (dimV = 0).
- Se V non è finitamente generato si dice che V ha dimensione infinita $(dimV = \infty)$.
- Se $V \neq \{0\}$ ed è generato da una base $B = \{b_1, ..., b_n\}$, allora V ha dimensione k (dimV = n).

Teorema

Sia V spazio vettoriale e dimV = n, allora $\{v_1, ..., v_n\}$ l.i. $\Rightarrow \{v_1, ..., v_n\}$ base

Teorema

V sp. vett., dimV=n, allora $\langle v_1, ..., v_n \rangle = V \Rightarrow \{v_1, ..., v_n\}$ base.

Teorema

V sp. vett., dim V=n e $U\subseteq V$ sottospazio, allora U è finitamente generato e $dimU\leq dimV$. In oltre, $dimU=dimV\Leftrightarrow U=V$

Teorema

Sia V sp. vett. con dimV = n > 0, allora presi r vettori l.i. $w_1, ..., w_r \in V \exists w_{r+1}, ..., w_n$ tali che $\{w_1, ..., w_r, w_{r+1}, ..., w_n\}$ sia base.

Teorema: formula di Grassman

Sia V uno spazio vettoriale su K e siano X e Y sottospazi, allora $X \cap Y$ e X + Y sono finitamente generati e $dimX + dimY = dimX \cap Y + dim(X + Y)$

6 Applicazioni lineari

Siano W e V due spazi vettoriali sullo stesso campo e sia $F:V\to W$ una funzione. Si dice che f è lineare su K se:

- $\forall u, v \in V \ f(u+v) = f(u) + f(v) \ (additività)$
- $\forall \lambda \in K, \forall u \in V \ f(\lambda u) = \lambda f(u) \ (\text{omogeneità})$

Se f è lineare, allora mantiene le combinazioni lineari.

Se f è lineare, allora $f(0_V) = 0_W$.

Una funzione lineare e biunivoca è detta isomorfismo

Teorema

Se $f:V\to W$ e $g:W\to Z$ sono lineari, allora $(g\circ f):V\to Z$ è lineare. Se $f:V\to W$ è lineare e biunivoca, allora $f^{-1}:W\to V$ è lineare.

Teorema: esistenza e unicità

Siano V e W spazi vettoriali, con V finitamente generato. Sia $B = \{b_1, ..., b_n\}$ una base di V e siano $w_1, ..., w_n \in W$ qualsiasi, allora $\exists ! \ f : V \to W$ lineare tale che $f(b_1) = w_1, ..., f(b_n) = w_n$

Lo spazio L(V, W) delle applicazioni lineari da V a W è vettoriale rispetto a:

- $\bullet \ +: L(V,W) \times L(V,W) \to L(V,W)$ $(f(x),g(x)) \to (f+g)(x) = f(x) + g(x)$
- $*: K \times L(V, W) \to L(V, W)$ $(\lambda, f(x)) \to (\lambda f)(x) = \lambda * f(x)$

6.1 Nucleo e immagine

Sia $f: V \to W$ lineare.

Si chiama nucleo o kernel di fl'insieme $ker(f) = \{v \in V | f(v) = 0_v)\}.$

Si chiama immagine di f l'insieme $Im(f) = \{w \in W | \exists v \in V : f(v) = w\}$

Nucleo e immagine sono sottospazi di V.

Teorema: nullità + rango

Siano V e W spazi vettoriali su K finitamente generati e sia $f: V \to W$ lineare, allora ker(f) e Im(f) sono finitamente generati e vale:

$$dimV = dim(ker(f)) + dim(Im(f))$$

6.2 Iniettività e suriettività

Siano W e V spazi vettoriali su K finitamente generati.

Teorema: iniettività

Sia $f: V \to W$ lineare, allora sono equivalenti

- fè iniettiva
- $ker(f) = \{0\}$
- se $v_1, ..., v_k$ sono l.i. $\Rightarrow f(v_1), ..., f(v_k)$ l.i.

Teorema: suriettività

Sia $f:V\to W$ lineare, allora sono equivalenti

- f è suriettiva
- dim(Im(f)) = dim(W)
- se $\langle v_1, ..., v_k \rangle = V \Rightarrow \langle f(v_1), ..., f(v_k) \rangle = W$

In ogni caso vale $\langle v_1, ..., v_k \rangle = V \Rightarrow \langle f(v_1), ..., f(v_k) \rangle = Im(f)$

Corollario

Sia $f:V\to W$, allora f'è isomorfismo \Leftrightarrow f manda una base di V in una base di W

6.3 Definizioni

Sia $f: V \to W$ lineare:

- se f è biunivoca è detta isomorfismo
- $\bullet \ \mbox{se} \ V = W$ è detta endomorfismo o operatore
- $\bullet\,$ se V=We f è biunivoca è detta automorfismo

Due spazi V e W sono detti isomorfi se $\exists f: V \to W$ isomorfismo e si indica $V \simeq W$.

Teorema: spazi isomorfi

 $V \simeq W \Leftrightarrow dimV = dimW$ Corollario

V e W finitamente generati, allora:

- $dimV > dimW \rightarrow \nexists f: V \rightarrow W$ iniettiva
- $dimV < dimW \rightarrow \nexists f: V \rightarrow W$ suriettiva

6.4 Matrici rappresentative

6.5 Determinante

[spostare sotto matrici?]

Una permutazione di n elementi è una funzione biunivoca $\sigma: [1, n] \cap \mathbb{N} \to [1, n] \cap \mathbb{N}$. Una permutazione si dice pari se è composta da un numero pari di scambi, altrimenti dispari.

Definito
$$\epsilon(\sigma) = \begin{cases} +1 \ se \ \epsilon \ pari \\ -1 \ se \ \epsilon \ dispari \end{cases}$$

Sia $A \in Mat_n(K)$, si definisce determinante lo scalare:

$$det A = \sum_{\sigma} \epsilon(\sigma) \alpha_{1,\sigma(1)} * \dots * \alpha_{n,\sigma(n)}$$

Il determinante ha le seguenti proprietà:

- $det(A) = det(A^t)$
- Scambiando righe o colonne tra loro cambia solo il segno del determinante
- Il determinante è lineare in ogni riga e colonna fissate le altre
- Il determinante dell'identità vale 1
- det(A * B) = det(A) * det(B)
- Le righe o colonne di A sono l.d $\Leftrightarrow det(A) = 0$
- $det(\lambda A) = \lambda^n det(A)$
- A è invertibile $\Leftrightarrow det(A) \neq 0$
- Se A è invertibile, allora $det(A^-1) = \frac{1}{det(A)}$

6.5.1 Teoremi di Laplace

Sia $M \in Mat_n(K)$, si dice sottomatrice di M la matrice ottenuta eliminando un certo numero di righe e colonne da M. Se N è sottomatrice quadrata di M, allora det(N) è detto minore di M.

Il determinante della matrice A_{ij} ottenuta eliminando la riga i e la colonna j si dice minore complementare di α_{ij} .

Si dice cofattore o complemento algebrico il numero:

$$A_{ij} = (-1)^{i+j} det(M_{ij})$$

La matrice cof(A) composta dai cofattori degli elementi di A, viene detta matrice dei cofattori di A.

Teorema: primo teorema di Laplace

Per l'i-esima riga:

$$det A = \alpha_{i1} A_{i1} + \alpha_{i2} A_{i2} + \dots + \alpha_{in} A_{in}$$

Per l j-esima colonna:

$$det A = \alpha_{1i} A_{1i} + \alpha_{2i} A_{2i} + \dots + \alpha_{ni} A_{ni}$$

Teorema: secondo teorema di Laplace

Per righe: se $i \neq j$

$$det A = \alpha_{i1} A_{i1} + \alpha_{i2} A_{i2} + \dots + \alpha_{in} A_{in}$$

Per colonne: se $i \neq j$

$$det A = \alpha_{1i} A_{1j} + \alpha_{2i} A_{2j} + \dots + \alpha_{ni} A_{nj}$$

Lemma

$$A * cof(A)^T = det(A) * I$$

Teorema

Sia
$$A \in Mat_n(K)$$
 con $det(A) \neq 0 \Rightarrow \exists A^{-1} \in A^{-1} = \frac{1}{det(A)}(cof(A))^T$

6.5.2 Formula di Cramer

Sia $A \in Mat_n$ con $det(A) \neq 0$ e sia $b \in K^n$.

Il sistema Ax = b è detto sistema Crameriano e ha una e una sola soluzione che vale: $x = \begin{pmatrix} x_i \\ \dots \\ x_n \end{pmatrix}$ con

$$x_i = \frac{\det(A^{(1)}, ..., A^{(i-1)}, b, A^{(i+1)}, ..., A^{(n)})}{\det(A)}$$

8

6.6 Rango

La nozione di rango può essere espressa in 4 modi equivalenti:

- Caratteristica della matrice: il numero di righe non nulle della matrice ridotta con il metodo di Gauss
- Rango per colonne: la dimensione dello spazio generato dalle colonne della matrice
- Rango per righe: la dimensione dello spazio generato dalle righe
- Rango per minori: il massimo ordine di minore non nullo estratto dalla matrice

7 Endomorfismi

7.1 Autovettori, autovalori e matrici diagonali

Sia V uno spazio vettoriale su K finitamente generato.

Un vettore $v \in V$ tale che $f(v)\lambda v$ con $\lambda \in K$ è detto autovettore, mentre λ è detto autovalore relativo a v. Lo spazio $V\lambda(f) = \{v \in V | f(v) = \lambda v\}$ è detto autospazio di f relativo a λ ed è un sottospazio di V.

Un endomorfismo f è detto diagonale se è presentata nella forma $M_B^B(f) = \begin{pmatrix} \lambda & 0 & 0 & \dots \\ 0 & \lambda & 0 & \dots \\ 0 & 0 & \lambda \end{pmatrix}$.

Se esiste una base di V tale per cui un endomorfismo risulti diagonale, allora è detto diagonalizzabile e la base è detta diagonalizzante.

La nozione di endomorfismo diagonale, diagonalizzabile, di autovettore e autovalore può essere estesa a matrici qualsiasi.

Teorema

Un endomorfismo è diagonalizzabile $\Leftrightarrow \exists$ una base composta dei suoi autovettori.

Teorema Siano $\lambda_1, ..., \lambda_n$ autovalori distinti di f endomorfismo, allora gli autovettori $v_1, ..., v_n$ a loro associati sono linearmente indipendenti.

Corollario

Se f ha n = dim(V) autovalori distinti, allora f è diagonalizzabile.

Teorema: ricerca di autovalori

 λ è autovalore di f \Leftrightarrow $det(A - \lambda Id) = 0$, e in tal caso gli autovettori associati a λ sono le soluzioni del sistema lineare $(A - \lambda Id)x = 0$

7.2 Polinomio caratteristico

Sia $A \in Mat_n$, si dice polinomio caratteristico il polinomio $P_A(t) = det(A - t * Id)$.

Due matrici simili hanno lo stesso polinomio caratteristico e quindi stesso determinante (t=0). Le matrici che rappresentano lo stesso endomorfismo sono simili, per questo si può parlare di polinomio caratteristico o di determinante di un endomorfismo senza specificare in che base.

Il polinomio caratteristico di $A \in Mat_n$ ha le seguenti proprietà:

- ha grado n
- ha coefficiente direttore (il coefficiente del termine di grado massimo) $(-1)^n$
- ha termine noto $P_A(0) = det(A)$
- ha come coefficiente di $t^{n-1} (-1)^{n-1} (a_1 1 + a_2 2 + ... + a_n n) = (-1)^{n-1} Tr(A)$
- ha come radici in K gli autovalori di A

7.2.1 Molteplicità algebrica e geometrica

Sia f un endomorfismo nello spazio vettoriale V su K e sia $\lambda \in K$ autovalore di f. La molteplicità algebrica $m_a(\lambda)$ di λ è la sua molteplicità come radice di $P_f(t)$. La molteplicità geometrica $m_q(\lambda)$ di λ è la dimensione dell'autospazio $V_{\lambda}(f)$.

Teorema

Sia $\lambda \in K$ autovalore di f, si ha che $1 \leq m_q(\lambda) \leq m_a(\lambda)$

Teorema: condizione sufficiente e necessaria di diagonalizzabilità

Sia V spazio vettoriale su K (dimV = n) e sia f un endomorfismo su V, allora f è diagonalizzabile \Leftrightarrow

- Tutte le radici di $P_f(t)$ sono in K
- $\forall \lambda$ autovalore di f si ha $m_a(\lambda) = m_a(\lambda)$

8 Forme bilineari

V spazio vettoriale su K, dimV = n.

Si dice forma bilineare un'applicazione lineare $\varphi: V \times V \to K$, tale che $\forall u, v, w \in V, \forall \alpha, \beta \in K$:

- linearità a sinistra: $\varphi(\alpha v + \beta u, w) = \alpha \varphi(v, w) + \beta \varphi(u, w)$
- linearità a destra: $\varphi(u, \alpha v + \beta w) = \alpha \varphi(u, v) + \beta \varphi(u, w)$

Ogni forma bilineare può essere rappresentata da una matrice. Sia $A = \{a_1, ..., a_n\}$ una base di V, è possibile ricavare la matrice rappresentativa di φ su A come $A_{\varphi} = (\alpha_{ij}) = \varphi(a_i, a_j)$

Due matrici A e A' sono congruenti \Leftrightarrow rappresentano la stessa forma bilineare in basi diverse.

8.1 Tensori

Si dice forma bilineare o tensore un'applicazione lineare $\varphi: V \times \times V \to K$ lineare in ciascuno dei suoi argomenti. Una forma multilineare a n argomenti può essere rappresentata dall'analogo n dimensionale di una matrice.

8.2 Forme bilineari simmeriche

Una forma bilineare $\varphi: V \times V \to K$ si dice simmetrica se $\forall u, v \in V$

$$\varphi(u,v) = \varphi(v,u)$$

Una forma bilineare è simmetrica se e solo se la sua matrice associata A verifica la proprietà $A=A^T$ Una forma bilineare si dice degenere se $\exists v \in V, v \neq 0$ tale che $\forall w \in V \ \varphi(v,w)=0$, in tal caso, la sua matrice associata è tale che $\exists x \neq 0: A \cdot x=0$

Sia $\varphi V \times V \to \mathbb{R}$ bilineare e simmetrica, φ è detta definita positiva se:

- $\forall v \in V \ \varphi(v,v) \ge 0$
- $\varphi(v,v) = 0 \Leftrightarrow v = 0$

Una forma bilineare simmetrica definita positiva è detta prodotto scalare o prodotto interno e si indica

$$\varphi(u,v) = \langle u,v \rangle$$

Un prodotto scalare non è degenere.

9 Spazi vettoriali euclidei

Sia V uno spazio vettoriale si \mathbb{R} , dimV = n.

Sia φ un prodotto scalare.

Si definisce spazio vettoriale euclideo (V, <>), lo spazio euclideo V dotato del prodotto scalare φ .

I uno spazio euclideo si possono definire i concetti di norma e distanza come:

$$||v|| = \sqrt{\langle v, v \rangle}$$
 $dist(u, v) = ||u - v||$

Prodotto scalare e norma godono delle seguenti proprietà:

- Disuguaglianza di Cauchy Schwartz: $\forall u, v \in V < u, v >^2 \le < u, u > * < v, v > < u, v >^2 = < u, u > * < v, v > \Rightarrow$ u e v l.d.
- $\bullet \ \forall u,v \in V \mid < u,v > | \leq ||u|| * ||v||$
- $\forall u, v \in V ||u + v|| \le ||u|| + ||v||$

Si dice versore un vettore u tale che ||u|| = 1.

Grazie alle proprietà del prodotto scalare è possibile definire il concetto di angolo tra vettori:

$$\cos(\theta) = \frac{< u, v>}{||u||*||v||}$$

Due vettori v e u sono detti ortogonali se $\langle v, u \rangle = 0$

Teorema

Siano $v_1,...,v_k$ vettori non nulli tali che $\forall i,j;i\neq j\ v_i\perp v_j$, allora $v_1,...,v_k$ sono l.i.

9.1 Basi ortonormali

Sia $A = \{a_1, ..., a_n\}$ una base di V spazio euclideo, si dice:

- Ortogonale: se $\forall i \neq j < a_i, a_j >= 0$
- Ortonormale: se $\langle a_i, a_j \rangle = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$

Sia A una base ortonormale, la matrice associata al prodotto scalare rispetto ad A è l'identità.

Lemma

In (V,j;), siano $a_1,...,a_k$ versori a due a due ortogonali e sia $w \in (V \setminus \langle a_1,...,a_k \rangle)$, allora $a = w - \langle a_1,w \rangle *a_1 - ... - \langle a_k,w \rangle *a_k$ è un vettore ortogonale a tutti gli a_j .

Teorema

Ogni spazio vettoriale euclideo finitamente generato ammette una base ortonormale.

9.2 Complemento ortogonale

Sia (V, j; U) euclideo, dimV=n e sia $U \subset V$ un sottospazio, si definisce sottospazio ortogonale o complemento ortogonale il sottospazio:

$$U^{\perp} = \{ v \in V | v \perp u, \forall u \in U \}$$

Teorema

Sia (V,;;) euclideo fin. gen. e sia $U \subset V$ un sottospazio, allora:

$$V = U + U^{\perp}$$

Data una base ortonormale $\{b_1,...,b_k\}$ di U, si definisce proiezione ortogonale di $v \in V$:

$$p(v) = \langle v, b_1 \rangle *b_1 + ... + \langle v, b_k \rangle *b_k$$

9.3 Endomorfismi simmetrici

Sia (V,;;) uno spazio vettoriale euclideo, dimV=n.

Un endomorfismo su V è detto simmetrico o autoaggiunto se $\forall u, v \in V$:

$$< f(u), v> = < u, f(v) >$$

Nel caso (\mathbb{R}^n , <>) con <> prodotto scalare canonico, la condizione si riduce a: L_a simmetrico $\Leftrightarrow A = A^T$ (<> è rappresentato dalla matrice identità).

Teorema

Sia $B = \{b_1, ..., b_n\}$ una base di V, allora f è simmetrico $\Leftrightarrow \forall i, j < f(b_i), b_j > = < b_i, f(b_j) >$

Teorema

Sia A una base ortonormale di V, allora f è simmetrico $\Leftrightarrow M_A^A(f)$ è simmetrica.

Teorema

Sia f
 un endomorfismo simmetrico, siano λ,μ autovalori distinti e siano
 v,u autovettori relativi rispettivamente a λ e
 μ , allora $u\perp v$

Teorema

Se f è simmetrico, il polinomio caratteristico $P_f(t)$ ha solo radici reali.

Teorema spettrale

Sia (V, <>) spazio vettoriale euclideo, dimV = n > 0 e sia $f \in End(V)$, allora:

f simmetrico \Leftrightarrow V ha una base ortonormale di autovettori di f

Corollario

Sia A una matrice quadrata simmetrica, allora è diagonalizzabile e vale $A = X * \Delta * X^{-1}$, dove Δ è una matrice diagonale e X è una matrice le cui colonne costituiscono una base ortonormale di \mathbb{R}^{n} .

11

9.4 Isometrie

Sia (V, <>) euclideo.

Sia $f \in End(V)$, si dice che f è un endomorfismo unitario o isometria se conserva il prodotto scalare:

$$\forall v, u \in V \quad \langle f(u), f(v) \rangle = \langle u, v \rangle$$

Se f è un isometria, allora f è un automorfismo.

f è un isometria \Leftrightarrow f trasforma basi ortonormali in basi ortonormali.

Teorema

f è un isometria \Leftrightarrow la sua matrice rappresentativa A rispetto a una base ortonormale verifica $A^T * A = I$ (\leftarrow rispetto a una base ortonormale M(<>) = Id).

9.5 Matrici ortogonali

Si definisce gruppo generale lineare di ordine n, l'insieme delle matrici $n \times n$ a coefficienti reali invertibili:

$$GL(n) = \{ A \in Mat_n(\mathbb{R}) \mid det(A) \neq 0 \}$$

Si definisce gruppo ortogonale, il sottogruppo di GL formato dalle matrici rappresentative di isometrie rispetto a una base ortonormale:

$$O(n) = \{ A \in Mat_n(\mathbb{R}) \mid A^T * A = Id \}$$

Le matrici ortogonali hanno le seguenti proprietà:

- $A \in O(n) \Leftrightarrow$ i vettori riga (o colonna) di A sono a due a due ortogonali (su $(\mathbb{R}^n, <>)$).
- $A \in O(n) \Rightarrow det A = \pm 1$
- λ autovalore di $A \in O(n) \Rightarrow \lambda = \pm 1$

Si dice gruppo ortogonale speciale SO(n) il sottoinsieme delle matrici i O(n) con determinante positivo:

$$SO(n) = \{ A \in O(n) \mid det A = 1 \}$$

Le matrici appartenenti al gruppo ortogonale speciale sono le matrici di rotazione di uno spaio n-dimensionale.

Indice

1	Relazioni 1.1 Classi modulo	1 1
2	Strutture algebriche 2.1 Operazioni . . 2.2 Gruppi . . 2.3 Anelli . . 2.4 Campi . . 2.5 Il campo complesso . . 2.5.1 Teorema fondamentale dell'algebra . .	1 1 2 2 2 3
3	Matrici 3.1 Prodotto righe per colonne 3.2 Matrici e sistemi lineari 3.3 Rango	3 4 4
4	Spazi vettoriali 4.1 Sottospazi	4
5	Generatori e basi 5.1 Dipendenza lineare	5 5 6
6	Applicazioni lineari 6.1 Nucleo e immagine 6.2 Iniettività e suriettività 6.3 Definizioni 6.4 Matrici rappresentative 6.5 Determinante 6.5.1 Teoremi di Laplace 6.5.2 Formula di Cramer 6.6 Rango	6 7 7 7 8 8 8 8 8 9
7	Endomorfismi 7.1 Autovettori, autovalori e matrici diagonali	9 9 9
8	8.1 Tensori	10 10 10
9	9.1 Basi ortonormali 9.2 Complemento ortogonale 9.3 Endomorfismi simmetrici 9.4 Isometrie	10 11 11 11 12