

AD-A092 679 STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB F/6 12/1
A CONSTRUCTIVE PROOF OF THE BORSUK-ULAM ANTIPODAL POINT THEOREM—ETC(U)
MAY 80 R M FREUND DAAG29-78-G-0026
UNCLASSIFIED SOL-80-9 NL

1 1
AP A
DAAG29-78-G-0026

END
DATE
FILED
1-81
DTIC

ARO 15254.11-m

Systems
Optimization
Laboratory

LEVEL II

(II)

AD A 092679

DDC FILE COPY

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

DTIC ELECTED
S DEC 5 1980 D
D

Department of Operations Research
Stanford University
Stanford, CA 94305

80 12 01 147

Accession Per	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

//
LEVEL II

SYSTEMS OPTIMIZATION LABORATORY ✓
DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California
94305

A CONSTRUCTIVE PROOF OF THE BORSUK-ULAM
ANTIPODAL POINT THEOREM

by

R.M. Freund

TECHNICAL REPORT SOL 80-9
May 1980

Research and reproduction of this report were partially supported by
Department of Energy Contract DE-AC03-76-SF00326, PA #DE-AT-03-76ER72018;
the National Science Foundation Grants MCS-77-05623 and SOC-78-16811;
and the Army Research Office-Durham Contract DAAG-29-78-G-0026.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

DTIC
ELECTED
S DEC 5 1980 D
D

I. Introduction

In this paper, a proof of the Borsuk-Ulam Antipodal Point Theorem is presented by means of a constructive algorithm that computes an approximate solution by means of a simplicial subdivision and integer labels.

II. Main Results

For $x \in \mathbb{R}^n$, let $\|x\|$ denote the L^∞ norm. Let $S^n = \{x \in \mathbb{R}^n : \|x\| = 1\}$. By an odd function, we mean a function such that $f(-x) = -f(x)$. The Borsuk-Ulam Antipodal Point Theorem [1] can be stated as follows:

Theorem: Let $f : S^n \rightarrow \mathbb{R}^{n-1}$ be an odd continuous function. Then there exists a point $x^* \in S^n$ such that $f(x^*) = 0$. \square

Let T be any symmetric triangulation of S^n such that its restriction to $S^n \cap \{x|x_i = 0 \text{ } i \in U\}$ for any U is also a triangulation, with grid size δ . For example, consider a scaling of J^1 [2] restricted to S^n . Let T^0 denote the vertices of the triangulation. Consider the following labeling function on T^0 :

$$l(x) = \begin{cases} i & \text{if } i \text{ is the smallest index such that } \\ & \|f(x)\| = f_i(x) \text{ and } f_i(x) > 0 \\ -i & \text{if } i \text{ is the smallest index such that } \\ & \|f(x)\| = f_i(x) \text{ and } f_i(x) \leq 0 \end{cases}$$

Note $l(x) = -l(-x)$.

Fix $\epsilon > 0$ and choose δ such that $\|x - y\| < \delta$ implies
 $\|f(x) - f(y)\| < \epsilon$.

Lemma 1: Suppose $\ell(x) = i > 0$ and $\ell(y) = -i$ and $\|x - y\| < \delta$.
 Then $\|f(x)\| < 3\epsilon$.

Proof: $f_i(x) > 0$

$$f_i(y) \leq 0$$

$$f_i(x) - f_i(y) < \epsilon$$

$$f_i(x) \leq \epsilon + f_i(y) < \epsilon$$

$$f_i(y) > f_i(x) - \epsilon \geq -\epsilon .$$

Therefore

$$|f_i(x)| < \epsilon \text{ and } |f_i(y)| < \epsilon ,$$

also

$$f_j(x) \leq f_i(x) \text{ for any } j = 1, \dots, n$$

$$f_j(y) \geq f_i(y) \text{ for any } j = 1, \dots, n .$$

Therefore

$$f_i(x) - 2\epsilon < f_i(y) - \epsilon \leq f_j(y) - \epsilon < f_j(x) \leq f_i(x) .$$

Therefore

$$|f_j(x) - f_i(x)| < 2\epsilon ,$$

hence

$$\|f(x)\| < 3\epsilon .$$

✉

In the next section, we will prove constructively:

Lemma 2: For a given T and induced labeling $\ell(\cdot)$ as above, there exists a pair of adjacent vertices x and $y \in S^n$ such that $\ell(x) = i$ and $\ell(y) = -i$. \square

Combining Lemmas 1 and 2 and taking a limiting subsequence of x 's as $\epsilon \rightarrow 0$, we obtain the main theorem.

3. An Algorithm for Computing Oppositely Labeled Adjacent Vertices

The algorithm of this section is a modification of that of Reiser [3]. Let T^1 denote the collection of i -dimensional simplices of T . We shall define a simplex $\sigma \in T$ to be oppositely labeled if there are two vertices x, y of σ such that $\ell(x) = i$ and $\ell(y) = -i$. The algorithm will terminate with an oppositely labeled simplex. Let $R \subset \{1, \dots, n-1, -1, \dots, -n+1\}$ such that $i \in R$ implies $-i \notin R$. Define

$$\begin{aligned} A(R) = \{x \in S^n : x_i &\geq 0 \text{ for } 0 < i \in R, \\ x_i &\leq 0 \text{ for } 0 < -i \in R, \\ x_i &= 0 \text{ otherwise} \quad \} . \end{aligned}$$

The following algorithm, analogous to that of Reiser, will produce an oppositely labeled simplex. d is the dimension of the

simplex under question. q is the index of the newly added vertex.

R is the index set of the orthant of \mathbb{R}^{n-1} under consideration, and X is the set of vertices of the simplex under question.

Step 0: $R \leftarrow \emptyset$, $v' \leftarrow e^n$, $X \leftarrow \{v'\}$, $d \leftarrow 0$, $q \leftarrow 1$.

Step 1: Let $\ell = \ell(v^q)$. If there is a vertex $v \in X$ with $\ell(v) = -\ell$, stop. If there is a vertex $v^k \in X$, $k \neq q$ with $\ell(v^k) = \ell$, go to Step 2, otherwise go to Step 3.

Step 2: v^k is replaced by the unique vertex \bar{v}^k in $A(R)$ for which we have a d -dimensional simplex of T in $A(R)$, if such a \bar{v}^k exists. In this case set $v^k \leftarrow \bar{v}^k$, set $q \leftarrow k$ and go to Step 1. Otherwise, go to Step 4.

Step 3: $R \leftarrow R \cup \{\ell\}$, $d \leftarrow d + 1$. Define v^{d+2} to be the unique vertex $v \in A(R)$ such that $\langle v^1, \dots, v^{d+1}, v \rangle \in T^d$. $X \leftarrow X \cup \{v^{d+2}\}$, $q \leftarrow d + 2$. Go to Step 1.

Step 4: $X \leftarrow X \setminus \{v^k\}$. There now is a unique index $i \in R$ such that $v_i = 0$ for all $v \in X$. Set $R = R \setminus \{i\}$, $d \leftarrow d - 1$, $q \leftarrow$ that index s.t. $v^q \in X$ and $\ell(v^q) = i$. Set $k \leftarrow q$ and go to Step 2.

Note that upon returning to Step 1, we have $X = \{v^1, \dots, v^{d+1}\}$, each $v^i \in A(R)$, and R has d elements. The algorithm cannot cycle, and must terminate with either an oppositely-labeled subsimplex σ , or the simplex $\{-e^n\}$. The fact that $\ell(x) = -\ell(-x)$ guarantees that $\{-e^n\}$ cannot be the terminal simplex.

Figure 1. Sample path of algorithm

REFERENCES

- [1] Lefschetz, S., Introduction to Topology, Princeton University Press, 1949.
- [2] Todd, M. J., "Union Jack Triangulations," in Fixed Points; Algorithms and Applications, Ed: Stepan Karamardian, Academic Press, Inc., New York, 1977.
- [3] Reiser, P. M., "A Modified Integer Labelling for Complementarity Algorithms," Institut für Operations Research, Universität Zürich, June 1978.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER SOL-80-9	2. GOVT ACCESSION NO. AD-A092 679	3. RECIPIENT'S CATALOG NUMBER (18) 645 (1324.1)-N	
4. TITLE (and Subtitle) A CONSTRUCTIVE PROOF OF THE BORSUK-ULAM ANTIPODAL POINT THEOREM.		5. TYPE OF REPORT & PERIOD COVERED Technical	
6. AUTHOR(s) R. M. Freund		7. PERFORMING ORG. REPORT NUMBER DAAG-29-78-G-0026	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Operations Research Stanford University Stanford, California 94305		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
10. CONTROLLING OFFICE NAME AND ADDRESS Mathematics Division U.S. Army Research Office Box CM, Duke Station, Durham, N.C. 27706		11. REPORT DATE May 1980	
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 7	14. SECURITY CLASS. (of this report) Unclassified
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE NA	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) NA			
18. SUPPLEMENTARY NOTES The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Antipodal points Algorithm Simplicial methods Integer labels			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A proof of the Borsuk-Ulam Antipodal Point Theorem is presented by means of a constructive algorithm that computes an approximate solution by means of a simplicial subdivision and integer labels.			

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

418-166