PRÁCTICA 2

PROCESOS DE POISSON.

Ejercicio 1. Considere un proceso Poisson en el cual los eventos ocurren a razón de 0.3 por hora. ¿Cuál es la probabilidad de que ningún evento ocurra entre las 10 de la mañana y las 2 de la tarde?

Ejercicio 2. Para un proceso Poisson con parámetro λ , determine $P(N(s) = k \mid N(t) = n)$, considerando dos casos: a) s < t y b) s > t.

Ejercicio 3. Los clientes llegan a un banco de acuerdo a un proceso de Poisson de constante λ (dada en horas). En la primera hora han llegado dos clientes. ¿Cuál es la probabilidad de que:

- a) ambos hayan llegado en los primeros 20 minutos?,
- b) al menos uno de ellos haya llegado en los primeros 20 minutos?

Ejercicio 4. Los autos pasan por cierto punto en la ruta de acuerdo con un proceso de Poisson de razón $\lambda = 3$ por minuto. Si Robin cruza corriendo la ruta sin mirar si vienen autos, ¿Cuál es la probabilidad de que salga ileso si tarda s segundos en cruzarla? Asuma que si está sobre la ruta cuando pasa un auto, entonces saldrá herido. Calcule para s = 2, 5, 10 y 20.

Ejercicio 5. Suponga que, en el Ejercicio anterior, Robin es lo suficientemente ágil para esquivar un auto, pero si se encuentra con dos o más autos mientras intenta cruzar, entonces sale herido. ¿Cuál es la probabilidad que salga ileso si le toma s segundos cruzar la ruta? Calcule para s = 5, 10, 20 y 30.

Ejercicio 6. En una estación de servicio, los clientes llegan de acuerdo con un proceso de Poisson no homogéneo con función de intensidad

$$\lambda(t) = 3 + \frac{4}{t+1}$$
, $t > 0$, donde t se mide en horas.

- a) ¿Cuál es la probabilidad que lleguen 5 clientes en la primera hora?
- b) Si llegaron 8 clientes en las dos primeras horas, ¿Cuál es la probabilidad que hayan llegado 5 clientes en la segunda hora?