SRN	1 1			1)				
SICIA	1 1							

PES UNIVERSITY, BANGALORE

(Established under Karnataka Act 16 of 2013)

UE18MA151

END SEMESTER ASSESSMENT B. TECH. II SEMESTER- May 2019 UE18MA151 - Engineering Mathematics - II

Time: 3 Hrs Answer All Questions Max Marks: 100

1.	a)	Find the directional derivative of the function $f(x, y, z) = x^2yz + 4xz^2$ at the point P(1,-2,-1) in the direction of the line PQ, where Q is the point (2,-1,-2). In what direction it will be a maximum? Find the magnitude of this maximum and $div(gradf)$ at P and explain the significance.	7
	b)	Show that $\vec{F} = (yz - 1)\vec{i} + (z + xz + z^2)\vec{j} + (y + yx + 2yz)\vec{k}$ is a conservative field. Find the scalar potential and work done in moving the object in this field from (1,2,2) to	
		(2,3,4).	7
	c)	Using divergence theorem, evaluate the surface integral $\iint_S (x^4 + y^4 + z^4) ds$, where S is the sphere $x^2 + y^2 + z^2 = a^2$	6
2.	a)	Evaluate $\int_a^b \frac{x dx}{(x-a)^{\left(\frac{1}{3}\right)}(b-x)^{\left(\frac{2}{3}\right)}}$ using beta and gamma functions.	7
	b)	Establish the Jacobi series and hence show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ where n is a positive integer.	7
	c)	Evaluate $\int x^3 J_3(x) dx$	7
3.	a)	Find the Laplace transform of $\left(\frac{\sin 2t}{\sqrt{t}}\right)^2 + t \sin 2t + 5^t + \int_0^t t \cosh t dt$	8
	b)	State and prove the Laplace transform of a periodic function.	5
	c)	Express the following function in terms of the unit step function and hence find their t , $0 \le t < 2$	3
		Laplace transforms $f(t) = \begin{cases} 1, & 2 \le t < 3 \\ (t-3)^3, & t > 3 \end{cases}$	7
4.	a)	Laplace transforms $f(t) = \begin{cases} t, & 0 \le t < 2\\ 1, & 2 \le t < 3\\ (t-3)^3, & t \ge 3. \end{cases}$ Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$ using partial fractions.	7
	b)	Solve the differential equation $ty'' + 2y' + ty = sint$, $y(0) = 1$, $y'(0) = 0$ by using Laplace transforms	7
	c)	Evaluate $\int_0^2 x^{3/2} (2-x)^{5/2} dx$ using convolution theorem.	6
5.	a)	Obtain the Fourier series expansion of $f(x) = x \sin x$ in the interval $(0,2\pi)$.	7
	b)	Prove that in $0 < x < l, x = \frac{l}{2} - \frac{4l}{\pi} \left[\cos \frac{\pi x}{l} + \frac{1}{3^2} \cos \frac{3\pi x}{l} + \frac{1}{5^2} \cos \frac{5\pi x}{l} + \dots \right]$ and deduce	6

					SRN				
	that $\frac{1}{1^4} + \frac{1}{3^4}$	$\frac{1}{5^4} + \dots =$	$=\frac{\pi^4}{96}$						
c)	The follow	ing table gi	ves the vari	ations of po	eriodic curr	ent over a p	period T		
	tsec	0	$\frac{T}{6}$	$\frac{T}{3}$	$\frac{T}{2}$	$\frac{2T}{3}$	$\frac{5T}{6}$	T	
	Aamp	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98	
	Show that there is a direct current part 0.75 amp in the variable current and obtain the first two harmonic of the Fourier series.								
									7