COMP3320 Introduction to OpenGL

Alex Biddulph

The University of Newcastle, Australia

Based on the work provided at www.learnopengl.com

Semester 2, 2019

The Open-Asset-Importer-Lib

- Asset importer library supporting multiple 3D model formats
- Provides some post-processing support
- ► API provided for C/C++
- ► Languange bindings available for C#, Java, Python, Delphi, D
- Can run on Android and iOS
- Check out assimp.org

Assimp Importers

200	2145	A C
305	3MF	AC
ACC	AMJ	ASE
B3D	BLEND	BVH
COB	DAE/Collada	DXF
FBX	$gITF\ 1.0 + GLB$	gITF 2.0
IFC-STEP	IRR / IRRMESH	LWO
LXO	MD2	MD3
MDC	MDL	MESH / MESH.XML
MS3D	NDO	NFF
OFF	OGEX	PLY
PRJ	Q3O	Q3S
SCN	SIB	SMD
STL	TER	UC
X	X3D	XGL
	ZGL	
	B3D COB FBX IFC-STEP LXO MDC MS3D OFF PRJ SCN STL	ACC AMJ B3D BLEND COB DAE/Collada FBX gITF 1.0 + GLB IFC-STEP IRR / IRRMESH LXO MD2 MDC MDL MS3D NDO OFF OGEX PRJ Q3O SCN SIB STL TER X X3D

Assimp Post Processing Support

- Normal generation
- ► Tangent generation
- Triangulation
- Removal of degenrate primitives
- Removal of duplicate vertices
- Index generation
- Lots more

Assimp Model Structure

Image sourced from learnopengl.com/Model-Loading/Assimp

Assimp Model Structure

- Scene is the root node of the imported model
- Scene contains all meshes and materials as well as a link to root node of the meshes
- Root Node starts a tree structure that contains links to meshes and child nodes
- Each Mesh contains vertices, normals, texture coordinates, faces, and a link to materials (textures)
- Only vertices and faces is guaranteed to be in a Mesh, the rest are only there if they were in the model or you asked Assimp to calculate them for you
- Each Face contains indices
- Each Material contains information about a texture

Assimp and OpenGL

- Not geared at OpenGL
- Best to restructure the Scene data to make it easier to work with OpenGL
 - Create our own Vertex class which encapsulates position, normal, and texture coordinates
 - Create our own Mesh class which encapsulates VAOs, VBOs, EBOs, Vertex data, and textures
 - ► The Mesh class can also bind its own textures and render its own indices/vertices
 - ► The program's main render loop can now be reduced to calling model.render() for each loaded model and setting up uniforms for lighting

OpenAL

- Software interface for audio hardware
- Meant to resemble the OpenGL API
- ► A means to generate audio in a simulated 3D space
- OpenAL includes both the core API as well as OS bindings (unlike OpenGL)
- Can handle sound source directivity, distane-related attenuation, Doppler effects, and environmental effects
 - Reflection.
 - Obstruction,
 - Transmission, and
 - Reverberation

OpenAL Structure

Image recreated from

https://www.openal.org/documentation/OpenAL_Programmers_Guide.pdf

OpenAL Structure

- Buffers are filled with audio data
 - Need to use an external library for this, similar to OpenGL and textures
 - ▶ libsndfile is one option for this
- A Buffer is then attached to a Source
- ► There can be multiple Sources
- A Source has a position and an orientation (and other properties)
- The position and orientation of a Source relative to the Listener dictates how the Source is heard
- ► There can only be 1 Listener
- Update the positions and orientations of the Listener and Sources dynamically to get convincing 3D audio

OpenAL Properties

- Listener properties
 - ► Gain
 - Position
 - Velocity
 - Orientation (position + up)
- Source properties
 - Pitch
 - Min gain, Gain, Max gain
 - Max distance, Reference distance
 - Rolloff factor
 - Position, velocity, direction
 - Source relative
 - Looping
 - many more