27 Hilbert spaces

Assume H is a vector space over \mathbb{C} .

Definition 27.1. A pre-inner product on H is a map $(\cdot, \cdot): H \times H \to \mathbb{C}$ which is

1. sesquilinear: that is, linear in the first variable, and antilinear in the second, for $u, v, w \in H$, $\alpha, \beta \in \mathbb{C}$

$$(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w)$$

$$(w, \alpha u + \beta v) = \bar{\alpha}(w, u) + \bar{\beta}(w, v)$$

- 2. Hermitian: $(u, v) = \overline{(v, u)}$
- 3. Positive semidefinite: $(u, u) \ge 0$ for $u \in H$.

It is called an inner product or a scalar product, if instead of (3) the map is

3. positive definite: (u, u) > 0 for $u \in H$, $u \neq 0$.

A similar definition makes sense for real vector spaces, but then $(\cdot,\cdot): H\times H\to \mathbb{R}$ is

- 1. bilinear
- 2. Symmetric: (u, v) = (v, u).
- 3. Positive semidefinite (for pre-inner products) or
- 3'. positive definite (for inner products)

We only consider complex vector spaces, but all the results will have analogues for real ones as well.

Theorem 27.2. Cauchy-Schwarz inequality If (\cdot, \cdot) is a pre-inner product, then

$$|(u,v)| \le (u,u)^{1/2} (v,v)^{1/2}$$

Corollary 27.3. We have a seminorm $||u|| \equiv (u,u)^{1/2}$. It is a norm if and only if (\cdot,\cdot) is an inner product.

Definition 27.4. A <u>Hilbert space</u> is a complex vector space H with an inner product (\cdot, \cdot) s.t. H is complete with respect to the norm $||u|| = (u, u)^{1/2}$. The norm of the Hilbert space is determined by the inner product, but the inner product can also be recovered from the norm by the polarisations identity

$$(u,v) = \frac{||u+v||^2 - ||u-v||^2}{4} + i\frac{||u+iv||^2 - ||u-iv||^2}{4},$$

which is proven by direct computation. A similar computation also proves the parallelogram law:

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2.$$

Remark. A norm in a vector space is given by an inner product if and only if it satisfies the parallelogram law, and then the scalar product is uniquely determined by the polarisation identity.

Remark. Assume (X, \mathcal{B}, μ) is a measure space. Then $L^2(X, d\mu)$ is a Hilbert space with inner product

$$(f,g) = \int_{Y} f\bar{g}d\mu.$$

If $\mathscr{B} = \mathcal{P}(X)$ and μ is the counting measure, then we denote $L^2(X, d\mu)$ by $l^2(X)$. If $X = \mathbb{N}$ then we simply write l^2 , this is called sequence space. A more formal definition is

$$l^{2}(X) = \left\{ f: X \to \mathbb{C} : \sum_{x} |f(x)|^{2} < \infty \right\}$$

which is a Hilbert space with inner product $(f,g) = \sum_{x \in X} f(x)\bar{g}(x)$.

We recall that a subspace C of a vector space is called <u>convex</u> if $\forall u, v \in C, \forall t \in [0, 1]$ we have $tu + (1-t)v \in C$. The following is one of the key properties of Hilbert spaces.

Theorem 27.5. Assume H is a Hilbert space, $C \subset H$ is a closed convex subset, $u \in H$. Then there is a unique $u_0 \in C$ s.t.

$$||u - u_0|| = d(u, C) = \inf_{v \in C} ||u - v||.$$

28 Orthogonal projections

For a Hilbert space H and a subset $A \subset H$, let

$$A^{\perp} = \{ x \in H : x \perp y \ \forall y \in A \},\,$$

where $x \perp y$ means that (x,y) = 0. A^{\perp} is a closed subset of H.

Proposition 28.1. Assume H_0 is a closed subspace of a Hilbert space H. Then every $u \in H$ uniquely decomposes as $u = u_0 + u_1$ with $u_0 \in H_0$ and $u_1 \in H_0^{\perp}$.

For a closed subspace $H_0 \subset H$, consider the map $P: H \to H_0$ s.t. $pu \in H_0$ is a unique element satisfying $u - Pu \in H_0^{\perp}$. The operator $P: H \to H_0$ is linear. It is also <u>contractive</u>, meaning that $||Pu|| \le ||u||$. It is called the orthogonal projection onto H_0 . If H_0 is finite dimensional with an orthonormal basis u_1, \ldots, u_n , then

$$Pu = \sum_{k=1}^{n} (u, u_k) u_k.$$

Orthogonal basis can be defined for arbitrary Hilbert spaces.

Definition 28.2. An orthogonal system in H is a collection of vectors $u_i \in H$ $(i \in I)$ s.t.

$$(u_i, u_j) = \delta_{ij} \ \forall i, j \in I.$$

It is called an orthogonal basis if $span\{u_i\}_{i\in I}$ is dense in H.

Here $span\{u_i\}_{i\in I}$ denotes the linear span of $\{u_i\}_{i\in I}$, the space of finite linear combinations of the vectors u_i .

Theorem 28.3. Every Hilbert space H has an orthonormal basis. If H is separable, then there is a countable orthonormal basis.

Proposition 28.4. Assume $\{u_i\}_{i\in I}$ is an orthogonal system in the Hilbert space H. Take $u\in H$. Then

- 1. (Bessel's inequality) $\sum_{i \in I} |(u, u_i)|^2 \le ||u||^2$
- 2. (Parseval's identity) if $\{u_i\}_{i\in I}$ is an orthogonal basis then $\sum_{i\in I} |(u,u_i)|^2 = ||u||^2$.

If $(u_i)_{i\in I}$ is an orthogonal basis, then the numbers (u, u_i) $(i \in I)$ are called the <u>Fourier coefficients</u> of u with respect to $(u_i)_{i\in I}$. The Parseval identity suggests that u is determined by its Fourier coefficients. This is true, and even more we have

Proposition 28.5. Assume $(u_i)_{i \in I}$ is an orthogonal basis in a Hilbert space H. Then for every vector $(c_i)_{i \in I} \in l^2(I)$ there is a unique vector $u \in H$ with Fourier coefficients c_i . We write

$$u = \sum_{i \in I} c_i u_i.$$

Corollary 28.6. We have a linear isomorphism $U: l^2(I) \tilde{\to} H$, $U((c_i)_{i \in I}) = \sum_{i \in I} c_i u_i$. By Parseval's identity this isomorphism is isometric, that is $||Ux|| = ||x|| \ \forall x \in l^2(I)$. By the polarisation identity this is equivalent to

$$(Ux, Uy) = (x, y), \forall x, y \in l^2(I).$$

Hence U is unitary.

Corollary 28.7. Up to a unitary isomorphism, there is only one infinite dimensional separable Hilbert space, namely, l^2 .

Given two orthogonal bases $(u_i)_{i\in I}$ and $(v_j)_{j\in J}$ in a Hilbert space H, we can decompose $u_i = \sum_{j\in J} (u_i, v_j) v_j$ and using that the sets $\{j: (u_i, v_j) \neq 0\}$ are countable proves the following.

Remark. Any two orthonormal bases in a Hilbert space have the same cardinality.

29 Dual spaces

Lemma 29.1. Assume V is a normed space over $K = \mathbb{R}$ or $K = \mathbb{C}$. Consider a linear functional $f: V \to K$. TFAE:

- 1. f is continuous
- 2. f is continuous at 0
- 3. there is $c \ge 0$ s.t. $|f(x)| \le c||x|| \ \forall x \in V$.

If (1) - (3) are satisfies, then f is called a <u>bounded linear functional</u>. The smallest such $c \ge 0$ in (3) is called the <u>norm</u> of f and is denoted by ||f||. We have

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||x|| = 1} |f(x)| = \sup_{||x|| \le 1} |f(x)|.$$

Proposition 29.2. For every normed vector space V over $K = \mathbb{R}$ or $K = \mathbb{C}$, the bounded linear functionals on V forms a Banach space V^* .

Theorem 29.3. (Riesz) Assume H is a Hilbert space. Then every $f \in H^*$ has the form

$$f(x) = (x, y)$$

for a uniquely determined $y \in H$. Moreover, we have ||f|| = ||y||.

For every Hilbert space H we can define the <u>conjugate Hilbert space</u> \overline{H} . Its elements are the symbols \overline{x} for $x \in H$. The linear structure and inner products are defined by

$$\bar{x} + \bar{y} = \overline{x + y}, \ c\bar{x} = \overline{cx}, \ (\bar{x}, \bar{y}) = \overline{(x, y)} = (y, x).$$

Corollary 29.4. For every Hilbert space H, we have an isometric isomorphism $\overline{H} \to H^*$, $\bar{x} \mapsto (\cdot, x)$.