ANSWERS

PROBLEM 1 - LOGIC

```
a)
```

1. $P \wedge Q$ given (premise)

2. *P* (from 1, decomposing a conjunction)

3. Q (from 1)

4. $P \rightarrow \neg (Q \land R)$ given

5. $\neg (Q \land R)$ (from 2,4)

6. $\neg Q \lor \neg R$ (from 5)

7. $\neg R$ (from 3,6)

8. $S \rightarrow R$ given

9. $\neg S$ (from 7,8)

b) Draw the truth table and see there is one row where 1,2, and 3 is true and \neg S is also true there.

c)

- d) First, we need to convert the definition of Green into CNF.
- ∀x : Green(x) ↔ Bikes(x) ∨ [∃y : Drives(x, y) ∧ Electric(y)]
 Break the double-implication into 2 conjoined implications
- ∀x : [Green(x) → Bikes(x) ∨ [∃y : Drives(x, y) ∧ Electric(y)]] ∧
 [[Bikes(x) ∨ [∃y : Drives(x, y) ∧ Electric(y)]] → Green(x)]
 Convert implications to disjunctions
- ∀x: [¬Green(x) ∨ Bikes(x) ∨ [∃y Drives(x, y) ∧Electric(y)]] ∧
 ¬[Bikes(x) ∨ [∃y Drives(x, y) ∧ Electric(y)] ∨ Green(x)

Move negations inward

- ∀x: [¬Green(x) ∨ Bikes(x) ∨ [∃y: Drives(x, y) ∧ Electric(y)]] ∧
 ¬Bikes(x) ∧ ¬[∃y Drives(x, y) ∧ Electric(y)] ∨ Green(x)
 Continue moving negations inward
- ∀x: [¬Green(x) ∨ Bikes(x) ∨ [∃y Drives(x, y) ∧ Electric(y)]] ∧
 ¬Bikes(x) ∧ [∀y ¬Drives(x, y) ∨ ¬Electric(y)] ∨ Green(x)
 Skolemizing produces an F(x) in place of the existential-quantified y:
- ∀x: [¬Green(x) ∨ Bikes(x) ∨ [Drives(x, F(x)) ∧ Electric(F(x))]] ∧
 ¬Bikes(x) ∧ [∀y: ¬Drives(x, y) ∨ ¬Electric(y)] ∨ Green(x)

Remove the universal quantifications, since all remaining variables are universally quantified.

- [¬Green(x) ∨ Bikes(x) ∨ [Drives(x,F(x)) ∧Electric(F(x))]] ∧
 ¬Bikes(x) ∧ [¬Drives(x, y) ∨ ¬Electric(y)] ∨ Green(x)
- [¬Green(x) ∨Bikes(x) ∨Drives(x,F(x))] ∧
 [¬Green(x) ∨ Bikes(x) ∨ Electric(F (x))] ∧
 ¬Bikes(x) ∧ [¬Drives(x, y) ∨ ¬Electric(y)] ∨ Green(x)

Distribute the disjunction in the first half

Distribute the disjunction in the second half to produce a conjunction of 4 disjuncts (CNF).

[¬Green(x) ∨ Bikes(x) ∨Drives(x,F(x))] ∧

 $[\neg Green(x) \lor Bikes(x) \lor Electric(F(x))] \land$

[Green(x) $\vee \neg Bikes(x)$] \wedge [$\neg Drives(x, y) \vee \neg Electric(y) \vee Green(x)$]

Next, combine these 4 clauses with the other givens and add in the negation of the goal sentence: Green(Sophie). Then keep applying the resolution rule until θ = False is derived, indicating the contradiction.

- 1. ¬Green(x) ∨Bikes(x) ∨Drives(x,F(x)) Given
- 2. ¬Green(x) VBikes(x) VElectric(F(x))] Given
- 3. Green(x) $V \neg Bikes(x)$] Given
- 4. ¬Drives(x, y) ∨ ¬Electric(y) ∨Green(x) Given
- 5. Electric(Tesla) Given
- 6. Drives(Sophie, Tesla) Given
- 7. ¬Green(Sophie) (Assuming negation of target sentence)
- 8. \neg Drives(x, Tesla) V Green(x) (Resolving 4 and 5 with $\theta = \{y/\text{Tesla}\}$)
- 9. Green(Sophie) (Resolving 6 and 8 with $\theta = \{x/Sophie\}$)
- 10. (Resolving 7 and 9 with $\theta = \{\}$)

Notice that only 1 of the 4 clauses derived from the definition of Green was used to prove the target sentence.

PROBLEM 2 -- INFORMED AND UNINFORMED SEARCH

a) Uniform cost:

Expanded nodes: SADBCE G2

Solution path: S D C G2

Path cost: 13. Optimal path. Uniform cost search is optimal when there are no negative path costs.

b) Breadth first:

Expanded: S A G1. (goal check is when childs are generated)

S. Path: S A G1

Path cost: 14. Not optimal. BFS is cost optimal only when the steps costs are identical

c) Depth first

Expanded nodes: S A B C F D E G3

Solution cost: 45

d) A*

Expanded nodes: S A B D C E G2

Solution path: S D C G2 Path cost: 13. Optimal.

PROBLEM 3 --- CSP Cross word puzzle

a)

b) C1: V1 has 5 letters

C2: V2 has 3 letters

C3: V3 has 3 letters

C4: V4 has 4 letters

C5: 3rd letter of V1 is the same letter as the first letter of V2

C6: 5th letter of V1 is the same letter as the first letter of V3

C7: 2nd letter of V4 is the same letter as 3rd letter of V2

....

....

c) Domains, according to node consistency:

V1 ----Domain1={ astar, happy, hello, hoses}

V2 ----Domain2={ live, load, loam, peal, peel, save, talk, anon, nerd, tine }

V3 ----Domain3={ ant, oak, old, run, ten}

V2 ----Domain2={ live, load, loam, peal, peel, save, talk, anon, nerd, tine}

d)

Arc consistency Queue	Set to consider arc consistency	Set domains of the 2 variables of the arc	Domains of the 2 variables after consistency checked	
V1V2, V1V3, V2V1, V2V4, V3V1, V3V4, V4V2, V4V3		V1 {astar, happy, hello, hoses} V2 {live, load, loom, peal, peel, save, talk, anon, nerd, tine}	V1 {astar, happy, hello, hoses} V2 {live, load, loom, peal, peel, save, talk, anon, nerd, tine}	
V1V3, V2V1, V2V4, V3V1, V3V4, V4V2, V4V3	V1V3	V1 {astar, happy, hello, hoses} V3 {ant, oak, old, ten, run}	V1 {astar, hello} V3 {ant, oak, old, ten, run}	
V2V1, V2V4, V3V1, V3V4, V4V2, V4V3	V2V1	V2{live, load, loom, peal, peel, save, talk, anon, nerd, tine} V1{astar, hello}	V2{live, load, loom, talk, tine} V1{astar, hello}	
V2V4, V3V1, V3V4, V4V2, V4V3, V1V2	V2V4	V2{live, load, loom, talk, tine} V4{live, load, loom, peal, peel, save, talk, anon, nerd, tine}	V2 {load, loom, tine} V4 {live, load, loom, peal, peel, save, talk, anon, nerd, tine}	
V3V1, V3V4, V4V2, V4V3, V1V2		V3 {ant, oak, old, ten, run} V1 {astar, hello}	V3{oak, old, run} V1{astar, hello}	

V3V4, V4V2, V4V3, V1V2, V1V3	V3V4	V3 {oak, old, run}	V3{oak, old, run}		
V1V2, V1V3		V4{live, load, loom, peal, peel, save, talk, anon, nerd, tine}	V4{live, load, loom, peal, peel, save, talk, anon, nerd, tine}		
V4V2, V4V3, V1V2, V1V3	V4V2	V4{live, load, loom, peal, peel, save, talk, anon, nerd, tine} V2{load, loom, tine}	V4{load, loom, save, tal anon} V2{load, loom, tine		
V4V3, V1V2, V1V3, V2V4, V3V4	V4V3	V4{load, loom, save, talk, anon} V3{oak, old, run}	V4{load, talk, anon} V3{oak, old, run}		
V1V2, V1V3, V2V4, V3V4	V1V2	V1{astar, hello} V2{load, loom, tine}	V1{astar, hello} V2{load, loom, tine}		
V1V3, V2V4, V3V4	V1V3	V1 {astar, hello} V3 {oak, old, run}	V1 {astar, hello} V3 {oak, old, run}		
V2V4, V3V4	V2V4	V2{load, loom, tine} V4{load, talk, anon}	V2{load, loom, tine} V4{load, talk, anon}		
V3V4	V3V4	V3{oak, old, run} V4{load, talk, anon}	V3{oak, old, run} V4{load, talk, anon}		

e) One of the possible solutions is:

А	S	Т	А	R
		I		U
	А	N	0	N
		Е		

PROBLEM 4 ---- ADVERSARIAL SEARCH

- a) H=7,i<=6, d=7, j=11, e>=11, b= 7, c<=5, f<=5, l <=5, m<=4. solution=7
- b) x4, k, x10, x12, and g are pruned

PROBLEM 5--- GAME THEORY

a) N={A1, A2}, Domains of A1=A2 ={0,10,20,30,40,50}, and the payoff fns are are specified by the following matrix

A1,	Agent2	0	10	20	30	40	50
0		40, 0	0, 30	0, 30	0, 30	0, 30	0, 30
10		40, 0	30, 0	0,20	0, 20	0, 20	0, 20
20		40, 0	30, 0	20, 0	0, 10	0, 10	0, 10
30		40, 0	30, 0	20, 0	10, 0	0, 0	0, 0
40	•	40, 0	30, 0	20, 0	10, 0	0, 0	0, -10
50		40, 0	30, 0	20, 0	10, 0	0, 0	-10,0

- b) There is no weakly dominant strategy eq. as neither player has a weakly dominant action. Notice that for both players, actions 30 and 40 weakly dominate every other action. But not wach other.
- c) D) There is no strictly dominated action for either player and and hence all the action profiles survive IESD actions
- d) We can eliminate the weakly dominated actions in the following order:

A:0

A2:0

A1: 50

A2: 50

A1:10

A2: 10

A1: 20

Which leads to the following set of outcomes $\{30,40\}$ x $\{20,30,40\}$. However, tehre are other orders of elimination which lead to different outcomes.

e) The game is not dominance solvable.