# Revision

COST FUNCTION, ERROR, LOSS

#### LR with One Variable: Alternative Perspective

| Size $(Feet^2)$ | Price \$(× 1000) |
|-----------------|------------------|
| 1500            | 190              |
| 2250            | 285              |
| 2740            | 420              |
| 2318            | 300              |
| 2500            | 350              |
| 1250            | 180              |
|                 |                  |



#### **Notations:**

m = Total Number of Training Samples

x = Feature

y = Label

 $(x^{(i)},y^{(i)}$ : the ith sample in the dataset i.e., when  $i=1,x^{(1)}=2250,y^{(1)}=285$ 

# Gradient Descent Algorithm



### Gradient Descent Algorithm

#### Repeat until convergence {

$$w_j\coloneqq w_j-lpha\ rac{\partial}{\partial w_j}\left(J(w_0,w_1)
ight)$$
 Simultaneously update  $j=0$  and  $j=1$  (for  $j=1$  and  $j=0$ )

#### **Correct: Simultaneous Update**

$$temp0 := w_0 - \alpha \frac{\partial}{\partial w_0} (J(w_0, w_1))$$

$$temp1 := w_1 - \alpha \frac{\partial}{\partial w_1} (J(w_0, w_1))$$

$$w_0 = temp 0$$

$$w_1 = temp 1$$

#### **Incorrect:**

$$temp0 := w_0 - \alpha \frac{\partial}{\partial w_0} (J(w_0, w_1))$$

$$w_0 = temp 0$$

$$temp1 := w_1 - \alpha \frac{\partial}{\partial w_1} (J(w_0, w_1))$$

$$w_1 = temp 1$$

### Gradient Descent Algorithm

#### Repeat until convergence {

$$w_j \coloneqq w_j - \alpha \; rac{\partial}{\partial w_j} \left( J(w_0, w_1) 
ight)$$
 Simultaneously update  $j=0$  and  $j=1$ 

(for 
$$j = 1$$
 and  $j = 0$ )

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

It's evident as per this cost function that we calculate cost  $J(w_0, w_1)$  for all training instances before performing the update!

### Gradient Descent and Linear Regression

#### **Gradient Descent Algorithm**

#### **Linear Regression Model**

Repeat until convergence {

$$w_j\coloneqq w_j-lpha\ rac{\partial}{\partial w_j}\left(J(w_0,w_1)
ight)$$
 (for  $j=1$  and  $j=0$ )

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

 $h(x) = w_0 + w_1 x$ 

Self Study: Derivation of Gradient Descent

$$\frac{\partial}{\partial w_j} \left( J(w_0, w_1) \right) = \frac{\partial}{\partial w_j} \frac{1}{2m} \sum_{i=1}^m \left( h(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial w_j} \left( J(w_0, w_1) \right) = \frac{\partial}{\partial w_j} \frac{1}{2m} \sum_{i=1}^m \left( w_0 + w_1 x^{(i)} - y^{(i)} \right)^2$$

$$j = 0 : \frac{\partial}{\partial w_0} (J(w_0, w_1)) = \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2$$

$$j = 0 : \frac{\partial}{\partial w_0} (J(w_0, w_1)) = \frac{1}{m} \sum_{i=1}^m (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

$$j = 1 : \frac{\partial}{\partial w_1} (J(w_0, w_1)) = \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2 x^{(i)}$$

$$j = 1 : \frac{\partial}{\partial w_1} (J(w_0, w_1)) = \frac{1}{m} \sum_{i=1}^m (w_0 + w_1 x^{(i)} - y^{(i)})^2 x^{(i)}$$

# Gradient Descent Algorithm

#### Repeat until convergence {

$$w_{0} \coloneqq w_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

$$w_{1} \coloneqq w_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2} \cdot x^{(i)}$$

Update  $w_0$  and  $w_1$  simultaneously.

### Convex Function



Implementation Tip: Stop the weights update if error does not reduce for k iterations/steps.

$$h(x) = w_0 + w_1$$



#### $J(w_0, w_1)$









### Point to Remember...

☐ Features that produce nice circles on error surface cause quicker convergence

☐ Features that produce irregular shapes on error surface cause slower convergence

☐ We try to normalize features in a way that every feature have same scale.



### Gradient Descent Types

#### ■ Batch Gradient Descent

- Each step of gradient uses all the training examples.
- Computes the gradient of the cost function with respect to the parameters for the entire training dataset
- What if we have a very large training dataset?

#### ■Stochastic Gradient Descent

- Performs a parameter update for each training example  $x^{(i)}$  and label  $y^{(i)}$
- Cost function plot will show erratic movement (Drunken Walk)
- Converges quickly as compared to BGD

#### Mini-Batch Gradient Descent

- Takes the best of the two worlds
- Perform an update for every mini-batch of n examples.

**Useful Resource:** <a href="https://ruder.io/optimizing-gradient-descent/">https://ruder.io/optimizing-gradient-descent/</a>

# Multivariate Linear Regression

# Multiple Variables (Features)

| Size $(Feet^2)$ | Price \$(× 1000) |
|-----------------|------------------|
| 1500            | 190              |
| 2250            | 285              |
| 2740            | 420              |
| 2318            | 300              |
| 2500            | 350              |
| 1250            | 180              |
|                 |                  |

$$h(x) = w_0 + w_1 x$$

#### **Notations:**

m = Total Number of Training Samples

x = Feature

y = Label

 $(x^{(i)},y^{(i)}$ : the ith sample in the dataset i.e., when i=1,  $x^{(1)}=2250$ ,  $y^{(1)}=285$ 

# Multiple Variables (Features)

| Size $(Feet^2)$ | # of Bedrooms | # of Floors | Building Age<br>(years) | Price \$(× 1000) |
|-----------------|---------------|-------------|-------------------------|------------------|
| 2104            | 5             | 1           | 45                      | 460              |
| 1416            | 3             | 2           | 40                      | 232              |
| 1534            | 3             | 2           | 30                      | 315              |
| 852             | 2             | 1           | 36                      | 178              |
| •••             |               | •••         |                         |                  |

$$h(X) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

#### **Notations:**

m = Total Number of Training Samples

n = Total Number of Features

x = Feature

y = Label

 $(X_j^{(i)}, y_j^{(i)})$ : the jth feature of the ith sample in the dataset

# Hypothesis

**□**Previously:

$$h(x) = w_0 + w_1 x$$

■Now:

$$h(X) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Where  $X=[x_1,x_2,\ldots,x_n]$  is the n —dimensional feature vector, and  $W=[w_0,w_1,\ldots,w_n]$  is an n+1 dimensional vector of weights.

$$X \in \mathbb{R}^n$$
,  $W \in \mathbb{R}^{n+1}$ 

### Geometric Interpretation

$$h(X) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Where  $X=[x_1,x_2,\ldots,x_n]$  is the n -dimensional feature vector, and  $W=[w_0,w_1,\ldots,w_n]$  is an n+1 dimensional vector of weights.

$$h(X) = w_0 + w_1 x_1 + w_2 x_2$$
 (a 2-D hyperplane in 3-D space)



# Hypothesis

$$h(X) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Where  $X = [x_1, x_2, ..., x_n]$  is the n -dimensional feature vector, and  $W = [w_0, w_1, ..., w_n]$  is an n+1 dimensional vector of weights.

To make this more uniform, assume  $x_0 = 1$  to get:

$$h(X) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Where  $X = [x_0, x_1, x_2, ..., x_n]$  is the n+1 dimensional feature vector, and  $W = [w_0, w_1, ..., w_n]$  is an n+1 dimensional vector of weights.

$$X \in \mathbb{R}^{n+1}$$
,  $W \in \mathbb{R}^{n+1}$ 

# Dataset with $x_0$

| $x_0$ | Size $(Feet^2)$ | # of Bedrooms | # of Floors | Building Age<br>(years) | Price \$(×<br>1000) |
|-------|-----------------|---------------|-------------|-------------------------|---------------------|
| 1     | 2104            | 5             | 1           | 45                      | 460                 |
| 1     | 1416            | 3             | 2           | 40                      | 232                 |
| 1     | 1534            | 3             | 2           | 30                      | 315                 |
| 1     | 852             | 2             | 1           | 36                      | 178                 |
| ***   | •••             |               | •••         |                         |                     |

This is useful to compute whole hypothesis equation via matrix multiplication...

# Vectorizing the Notation

$$h(X) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Recall that this equation can be decomposed into vectors and we can perform dot product or matrix multiplication to get the same result...

$$W=egin{bmatrix} w_0 \ w_1 \ dots \ w_n \end{bmatrix}$$
 ,  $X=egin{bmatrix} x_0 \ x_1 \ dots \ x_n \end{bmatrix}$  where  $X\in\mathbb{R}^{n+1}$  ,  $W\in\mathbb{R}^{n+1}$ 

$$h(X) = W^T X$$

$$[w_0, w_1, ..., w_n] imes egin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = []$$
 But this was for one record/instance only. We need to do this for all training instances.

Why did we take transpose of W?

### For *m* Training Instances

$$h(X) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$W = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{bmatrix}, X = \begin{bmatrix} x_0^{(1)} & x_0^{(2)} & & x_0^{(m)} \\ x_1^{(1)} & x_1^{(2)} & & x_1^{(m)} \\ \vdots & \vdots & & \vdots \\ x_n^{(1)} & x_n^{(2)} & & x_n^{(m)} \end{bmatrix}$$
Now that you have predicted and actual labels for all instances, compute cost/metrics.

Actual Labels

**Actual Labels** 

$$h(X) = W^T X = \begin{bmatrix} w_0, w_1, \dots, w_n \end{bmatrix} \times \begin{bmatrix} x_0^{(1)} & x_0^{(2)} & & x_0^{(m)} \\ x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(m)} \\ \vdots & \vdots & & \vdots \\ x_n^{(1)} & x_n^{(2)} & & x_n^{(m)} \end{bmatrix} = \begin{bmatrix} y^{(1)}, y^{(2)}, \dots, y^{(m)} \\ b(x^{(1)}), b(x^{(2)}), \dots, b(x^{(m)}) \end{bmatrix}$$
Predictions for all instances

### Summary

#### ■ Hypothesis

$$h(X) = W^T X = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Parameter Vector

$$W = w_0, w_1, \dots, w_n$$

■Feature Vector

$$X = x_0, x_1, \dots, x_n$$

**□**Cost Function:

$$J(W) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

**□**Gradient Descent

Repeat until convergence {

$$w_j\coloneqq w_j-lpha\ rac{\partial}{\partial w_j}\left(J(W)
ight)$$
 // simultaneously update for all  $j=0$  ...  $n$ 

# Summary: Gradient Descent

 $\square$  Previously (n = 1):

```
Repeat until convergence { w_0\coloneqq w_0-\alpha\frac{1}{m}\sum_{i=1}^m \bigl(h\bigl(x^{(i)}\bigr)-y^{(i)}\bigr)^2 \\ w_1\coloneqq w_1-\alpha\frac{1}{m}\sum_{i=1}^m \bigl(h\bigl(x^{(i)}\bigr)-y^{(i)}\bigr)^2 \,.\, x^{(i)}  }
```

 $\square$ Now  $(n \ge 1)$ :

```
Repeat until convergence { w_j\coloneqq w_j-\alpha\frac{1}{m}\sum_{i=1}^m \bigl(h\bigl(x^{(i)}\bigr)-y^{(i)}\bigr)^2\,.\,x_j^i }
```

### Summary: Gradient Descent

 $\square$  How the equation looks like for each value of  $w_i$ 

$$w_o := w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2 \cdot x_0^i$$

$$w_1 \coloneqq w_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2 \cdot x_1^i$$

$$w_2 := w_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2 \cdot x_2^i$$

:

# Linear Regression

PRACTICAL ISSUES

# Feature Scaling

- ☐ Make sure features are on a similar scale or the learning will occur very slowly.
- $\square$  As  $\alpha$  needs to be small enough for the dimension with the smallest scale

E.g. 
$$x_1 = \text{size} (0 - 2000 \text{ feet}^2)$$
  
 $x_2 = \text{number of bedrooms} (1 - 5)$ 



 $\alpha$  (aka learning rate) must be too small to avoid missing the minima

This makes convergence very slow as we are taking very small steps towards minima...

# Feature Scaling

- ☐ Make sure features are on a similar scale or the learning will occur very slowly.
- $\square$  As  $\alpha$  needs to be small enough for the dimension with the smallest scale

E.g. 
$$x_1 = \text{size } (0 - 2000 \text{ feet}^2)$$
  
 $x_2 = \text{number of bedrooms } (1 - 5)$ 





### Ravines

□SGD has trouble navigating ravines, i.e, areas where the surface curves much more steeply in one dimension than in another, which are common around local minima





### Saddle Points

- ■A challenge of minimizing highly non-convex error function (common for neural networks), is avoiding getting trapped in their numerous suboptimal local minima.
- ☐ The difficulty arises not from local minima, but from saddle points (i.e., the points where one dimension slopes up and another sloes down).
- These saddle points are usually surrounded by a plateau of the same error, which makes it notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.





Solution: Add momentum to the SGD equation.

### Mean Normalization

- Replace  $x_i$  with  $x_i \mu_i$  to make features have approximately zero mean (Do not apply to $x_0 = 1$ )
- □ Suppose:  $\mu_1 = 1000$ ,  $\mu_2 = 2$

**E.g.** 
$$x_1 = \frac{\text{size } (\text{feet}^2) - 1000}{2000}$$

$$x_2 = \frac{\text{number of bedrooms } -2}{5}$$

#### **□**Ideally:

$$x_1 = \frac{x_1 - \mu_1}{S_1}$$
,  $x_1 = \frac{x_2 - \mu_2}{S_2}$ 

#### **Implementation Tips:**

- (1) You can use sklearn "StandardScalar" method for this.
- (2) You can define a pipeline with sklearn that conveniently does this preprocessing first and then apply classifier/regressor.

# Debugging

- ☐ How to make sure gradient descent is working correctly?
- $\square$  How to choose the learning rate  $\alpha$ ?
- □ Ideally, cost should decrease after each iteration
  - Reduce learning rate
  - Declare convergence if J(W) decreases by less than  $10^{-3}$



# Debugging

- $\square$  For sufficiently small  $\alpha$ , J(W) should decrease on every iteration
- $\square$  Warning: Too small  $\alpha$  can cause gradient descent to converge slowly



### Summary

- $\square$  If  $\alpha$  is too small: slow convergence
- $\square$  If  $\alpha$  is too large:  $J(\theta)$  may not decrease on every iteration
- $\square$ To choose  $\alpha$ , try:
  - ..., 0.001, 0.01, 0.1, 1, ...

# **Book Reading**

- ☐ Murphy Chapter 1, Chapter 14
- ☐ Tom Mitchel (TM) Chapter 4