Problem G. Subset Sums

Time limit 3000 ms **Mem limit** 262144 kB

You are given an array $a_1, a_2, ..., a_n$ and m sets $S_1, S_2, ..., S_m$ of indices of elements of this array. Let's denote $S_k = \{S_{k,i}\}$ $(1 \le i \le |S_k|)$. In other words, $S_{k,i}$ is some element from set S_k .

In this problem you have to answer q queries of the two types:

- 1. Find the sum of elements with indices from set S_k : $\sum_{i=1}^{|S_k|} a_{S_{k,i}}$. The query format is "? k".
- 2. Add number x to all elements at indices from set S_k : $a_{S_{k,i}}$ is replaced by $a_{S_{k,i}} + x$ for all i $(1 \le i \le |S_k|)$. The query format is "+ $k \times "$.

After each first type query print the required sum.

Input

The first line contains integers n, m, q ($1 \le n$, m, $q \le 10^5$). The second line contains n integers $a_1, a_2, ..., a_n$ ($|a_i| \le 10^8$) — elements of array a.

Each of the following m lines describes one set of indices. The k-th line first contains a positive integer, representing the number of elements in set ($|S_k|$), then follow $|S_k|$ distinct integers $S_{k,1}, S_{k,2}, ..., S_{k,|S_k|}$ ($1 \le S_{k,i} \le n$) — elements of set S_k .

The next q lines contain queries. Each query looks like either "? k" or "+ k x" and sits on a single line. For all queries the following limits are held: $1 \le k \le m$, $|x| \le 10^8$. The queries are given in order they need to be answered.

It is guaranteed that the sum of sizes of all sets S_k doesn't exceed 10^5 .

Output

After each first type query print the required sum on a single line.

Please, do not write the %11d specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %164d specifier.

Sample 1

Synapse Advanced Regular S3: Long 1 (Sqrt Decomposition + MO) Jul 18, 2022

Input	Output
5 3 5	-3
5 -5 5 1 -4	4
2 1 2	9
4 2 1 4 5	
2 2 5	
? 2	
+ 3 4	
? 1	
+ 2 1	
? 2	