4.3. Eigenschaften der zeitkontinuierlichen FT

Ein wesentlicher Vorteil der FT (bzw. Spektraltransformationen allgemein) liegt darin, dass sie erlaubt, komplexere mathematische Operationen im Zeitbereich durch einfachere algebraische Operationen im Frequenzbereich zu ersetzen und umgekehrt.

$$11.1) 1b^{3\omega l} - 9(1)x \int_{-\infty}^{\infty} = (\omega)X \quad \stackrel{\mathcal{I}}{\Longleftrightarrow} \quad \omega b^{3\omega l} - 9(\omega)X \int_{-\infty}^{\infty} \frac{1}{\pi \Omega} = (1)x$$

$(\omega)_{\mathcal{I}}X(\omega)_{\mathcal{I}}^*X$	$\tau b(\tau + t)_{\mathcal{L}}x(\tau)_{\mathcal{L}}x \int_{-\infty}^{\infty}$	noitelerroX
$\left((0\omega-\omega)X+(0\omega+\omega)X\right)\frac{1}{2}$	(70m)soo $(7)x$	
$(\omega)_{\mathcal{I}}X*(\omega)_{\mathcal{I}}X\frac{1}{\pi\mathcal{Q}}$	$(t)_{\mathcal{L}}x(t)_{\mathcal{I}}x$	noitsluboM
$(\omega)_{\mathcal{I}}X(\omega)_{\mathcal{I}}X$	$(2)^{\mathtt{z}}x*(2)^{\mathtt{I}}x$	Faltung
$\Omega p(\Omega) X \int\limits_{-\infty}^{\infty}$	$(i)\delta(0)x\pi+(i)xrac{\ell}{4}$	(Erequenz)
$(\omega)\delta(0)X\pi+(\omega)Xrac{\mathbb{I}}{\omega \dot{t}}$	$ \begin{array}{c} $	(tioZ) noitsrgotal
$(m)X\frac{u^mp}{u^p}$	$(i)x\frac{u^{t}}{u^{t}}$	(Frequenz)
$(m)X_u(ml)$	$(2)x\frac{up}{up}$	Differentiation (Zeit)
$\left(\frac{v}{\omega}\right)X\frac{ v }{1}$	(in)x	gnurəbnädstalaM
(0m-m)X	$(t)x^{t_0\omega t_2}$	(Frequenz)
$(\omega) X^{\tau \omega \ell - \delta}$	$(\tau - t)x$	(tiəZ) gandəidərəV
$aX_1(\omega) + bX_2(\omega)$	$ax_1(t) + bx_2(t)$	Jäjinsənid
$(m)_*X$	$(i-)^*x$	
$(m-)_*X$	$(2)_* x$	Symmetrie
$(\omega)X$	(q)x	