ML in healthcare

Christian Salvatore Scuola Universitaria Superiore IUSS Pavia

christian.salvatore@iusspavia.it

Machine learning applied to medical imaging

Diagnosis (early/differential)

is the patient healthy?

Screening

are the patients -within a population- healthy?

Prognosis

what will be the course of the disease?

Treatment addressing

will this therapy be effective for this patient?

ML Models | Examples (using different types of data)

Alzheimer's Disease

Clinical Diagnosis of Alzheimer's Disease

A dataset of 509 subjects

Structural MRI T1 weighted 1.5 Tesla

AD Alzheimer's Disease

MCIc Mild Cognitive Impairment, converting to Alzheimer's Dementia

MCInc Mild Cognitive Impairment, not converting to Alzheimer's Dementia

CN Cognitively-Normal subjects

Best Structural-MRI Predictors

AD vs CN

Best Structural-MRI Predictors

AD vs CN

Best Structural-MRI Predictors

MCIc vs CN

Best Structural-MRI Predictors

MCIc vs MCInc

Clinical Diagnosis of AD at 24 months follow up

MRI characterizes the progressive course of AD and predicts conversion to Alzheimer's dementia twenty-four months before probable diagnosis. Salvatore et al. 2018, Frontiers in Aging Neuroscience.

Accuracy (sen/spe)

AD + MCIc

VS

MCInc + CN

79% (79/78)

MRI

85% (83/87)

MRI + NPS

24 months before stable diagnosis

Best Neuropsychological Predictors

> 24 months before stable diagnosis

Ability in remembering appointments, family occasions, holidays, medications in <u>FAQ</u> Functional abilities

Ability in writing checks, paying bills, or balancing checkbook in <u>FAQ</u> Functional abilities

Ability in assembling tax records, business affairs in <u>FAQ</u> Functional abilities

Total score of trial 5 in <u>AVLT</u> Memory and learning

Ability in keeping track of current events in <u>FAQ</u> Functional abilities

Total intrusions of trial 1 in <u>AVLT</u> Memory and learning

Correct answers in the Backwards task in <u>Digit-Span Test</u> Working memory

Correct answers in Vegetables task in <u>Category Fluency Test</u> Language

Correct answers after a 30-min delay in <u>AVLT</u> Memory and learning

MRI characterizes the progressive course of AD and predicts conversion to Alzheimer's dementia twenty-four months before probable diagnosis. Salvatore et al. 2018, Frontiers in Aging Neuroscience.

Best Structural-MRI Predictors

24 months before stable diagnosis

Best Structural-MRI Predictors

24 months before stable diagnosis

MRI characterizes the progressive course of AD and predicts conversion to Alzheimer's dementia twenty-four months before probable diagnosis. Salvatore et al. 2018, Frontiers in Aging Neuroscience.

Autism Spectrum Disorder

Confirm a motor signature of autism

A dataset of 30 pre-school children (~3 years old)

17 kinematic features collected during a reach-to-drop task

ASD TD **Autism Spectrum Disorder**Typically-developing children

Fig. 1 The experimental task consisted of grasping a rubber ball (2) that was placed over a support (see 1, a); that is, a reach-to-grasp movement before they dropped it in a hole (3). The hole (1, c) was located inside a see-through *square box* (21 cm high, 20 cm wide) and was large enough not to require fine movements. The goal area is

transparent to allow seeing through. 4 markers are placed on the basket under the goal area, 2 on the ball and 3 on each hand (attached to the ulnar and radial surfaces of the participant's wrist and to the hand dorsum on the 4th and 5th metacarpals)

sub-movement 1

the movement necessary to reach the ball and place it on its support

- # movement units
- total movement duration
- peak velocity
- peak acceleration
- time of peak acceleration
- peak deceleration
- time of peak deceleration

sub-movement 2

the movement to transport the ball from a support to the target hole

- # movement units
- total movement duration
- peak velocity
- peak acceleration
- time of peak acceleration
- peak deceleration
- time of peak deceleration
- wrist angle

Overall mean

Diagnostic accuracy (sensitivity / specificity)

85 (82/89)% Optimal configuration

97 (100/94)%

Diagnostic accuracy (sensitivity / specificity)

Overall mean

85 (82/89)% Optimal configuration

97 (100/94)%

7 optimal features out of 17

sub-movement 2

the movement to transport the ball from a support to the target hole in which the ball was to be dropped

- 1. total movement duration
- 2. delta wrist angle
- 3. # movement units
- 4. time of peak deceleration
- 5. peak acceleration
- 6. time of peak velocity
- 7. peak velocity

Attention-Deficit/Hyperactivity Disorder

Diagnosis of ADHD & Identification of a signature

ADHD Attention Deficit / Hyperactivity Disorder
TD Typically-developing children

Multi-domain profile of measures

Biological data

10 features

Neuropsychologica I data

18 features

Near-InfraRed Spectroscopy (NIRS)

Oxy/Deoxy data from 32 channels

ENSEMBLE OF CLASSIFIERS

Measures	Accuracy (mean ± sd)	Sensitivity (mean ± sd)	Specificity (mean ± sd)
Neuropsychological	62 ± 17	70 ± 27	57 ± 24
Biological	66 ± 21	58 ± 40	73 ± 29
NIRS OXY	57 ± 27	48 ± 47	67 ± 33
NIRS DEOXY	78 ± 22	72 ± 34	82 ± 24
NIRS OXY + DEOXY	72 ± 32	73 ± 29	68 ± 43

biological features

- .linoleic acid
- . PUFA
- . AA
- .EPA
- .omega-3 index
- .AA/DHA
- . AA/EPA
- MUFZ

linoleic acid and total amount of polyunsaturated fatty acids

Measures	Accuracy (mean ± sd)	Sensitivity (mean ± sd)	Specificity (mean ± sd)
Neuropsychological	62 ± 17	70 ± 27	57 ± 24
Biological	66 ± 21	58 ± 40	73 ± 29
NIRS OXY	57 ± 27	48 ± 47	67 ± 33
NIRS DEOXY	78 ± 22	72 ± 34	82 ± 24
NIRS OXY + DEOXY	72 ± 32	73 ± 29	68 ± 43

neuropsychological features

- .sustained attention-false alarms
- .visual set-shifting-RT inhibition
- .sustained attention-coefficient of variation
- .visual set-shifting-number of inhibition errors
- .focused attention-RT correct responses
- .focused attention-correct rejections target non-relevant position
- .focused attention-SD of correct responses RT
- .focused attention-misses

. . .

measures of vigilance, focused and sustained attention, and cognitive flexibility

Sensitivity (mean ± sd) Specificity (mean ± sd) Measures Accuracy (mean ± sd) Neuropsychological 62 ± 17 70 ± 27 57 ± 24 Biological 66 ± 21 58 ± 40 73 ± 29 NIRS OXY 48 ± 47 57 ± 27 67 ± 33 NIRS DEOXY 78 ± 22 82 ± 24 72 ± 34 NIRS OXY + DEOXY 72 ± 32 73 ± 29 68 ± 43

Measures	Accuracy (mean ± sd)	Sensitivity (mean ± sd)	Specificity (mean ± sd)
NPS + BIO + NIRS OXY			
NPS + BIO + NIRS DEOXY			
NPS + NIRS OXY + NIRS DEOXY			
BIO + NIRS OXY + NIRS DEOXY			
NPS + BIO + NIRS OXY + NIRS DEOXY			

Sensitivity (mean ± sd) Specificity (mean ± sd) Measures Accuracy (mean ± sd) Neuropsychological 62 ± 17 70 ± 27 57 ± 24 Biological 66 ± 21 58 ± 40 73 ± 29 NIRS OXY 48 ± 47 57 ± 27 67 ± 33 NIRS DEOXY 78 ± 22 82 ± 24 72 ± 34 NIRS OXY + DEOXY 72 ± 32 73 ± 29 68 ± 43

Measures	Accuracy (mean ± sd)	Sensitivity (mean ± sd)	Specificity (mean ± sd)
NPS + BIO + NIRS OXY	71 ± 10	70 ± 27	73 ± 24
NPS + BIO + NIRS DEOXY	81 ± 15	73 ± 24	87 ± 22
NPS + NIRS OXY + NIRS DEOXY	78 ± 18	70 ± 36	87 ± 22
BIO + NIRS OXY + NIRS DEOXY	77 ± 21	63 ± 31	90 ± 21
NPS + BIO + NIRS OXY + NIRS DEOXY	76 ± 16	83 ± 22	68 ± 23