This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 94/16069 C12N 15/12, A61K 37/02 **A2** (43) International Publication Date: 21 July 1994 (21.07.94) (21) International Application Number: PCT/US94/00198 (81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, LK, LV, MG, MN, MW, NO, NZ, PL, (22) International Filing Date: 12 January 1994 (12.01.94) RO, RU, SD, SK, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, (30) Priority Data:

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

08/004,824

08/004,824 (CIP) 15 January 1993 (15.01.93)

(71) Applicant (for all designated States except US): SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033 (US).

15 January 1993 (15.01.93)

(72) Inventors; and

- (75) Inventors/Applicants (for US only): NAKAFUKU, Masato [JP/JP]; 4-1-1, Ogawahigashi, N102, Kodaira, Tokyo 187 (JP). KAZIRO, Yoshito [JP/JP]; 6-22-10, Shakujii-Machi, Nerimaku, Tokyo 177 (JP).
- (74) Agents: LUNN, Paul, G. et al.; Schering-Plough Corporation, One Giralda Farms, M3W, Madison, NJ 07940-1000 (US).

ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: RAS ASSOCIATED GAP PROTEINS

(57) Abstract

Methods for blocking Ras-induced conditions such as proliferative abnormalities in eukaryote, e.g., mammalian cells. Proteins and mimetics, and their uses, which can block abnormal intracellular signaling often leading to uncontrolled proliferation, e.g., cancers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE .	Ireland	NZ	New Zealand
BJ	Benin	П	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	K2	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon				

WO 94/16069 PCT/US94/00198

RAS ASSOCIATED GAP PROTEINS

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

Many proliferative cell abnormalities, e.g., cancers, are caused by alterations in the cellular genome.

Mutations can affect the expression or function of genes controlling cell growth and differentiation. See, e.g.,

Bos (1989) Cancer Research 49:4682-4689. Examples of such oncogenic mutations include members of the Ras family.

See, e.g., Mangues et al. (1992) Seminars in Cancer

Research 3:229-239. These genes were initially studied as the viral oncogenes of several transforming retroviruses,

the viral oncogenes of several transforming retroviruses, and their relationship to cellular counterparts was soon recognized. Genes in the <u>Ras</u> family have been shown to be involved in the transduction of extracellular signals and the control of cellular growth.

The Ras family includes three functional genes designated H-ras, K-ras, and N-ras, which encode highly similar proteins. See Barbacid (1987) Ann. Rev. Biochem. 56:779-827. Ras genes from different human tumors were characterized and found to have undergone point mutations leading to constitutive activation, especially codons 12, 13, and 61. These mutant versions are especially potent inducers of tumorigenic or oncogenic transformation. Mutations in the Ras genes may be responsible for as many as 90% of pancreatic adenocarcinomas.

The Ras proteins are guanosine triphosphate (GTP) - binding proteins, and serve as a molecular switch in signal transduction controlling the proliferation and differentiation of cells. The linkage of Ras with the nucleoside is non-covalent and designated Ras•GXP to distinguish from a "-" which would indicate a covalent bond. Two different conformational forms of the protein exist depending upon the type of guanine nucleoside

15

20

attached to the protein. The Ras•GDP form is an inactive form which does not stimulate the downstream effector, e.g., target protein, to result in functional signal transduction. However, the Ras•GTP conformation is active, e.g., stimulates the effector to transmit an activation signal. Interconversion between the two conformations is enzymatically effected. Conversion from the protein•GDP conformation to the protein•GTP conformation causes activation, and is described as an activation step.

Somatic mutations which constitutively activate Ras, e.g., oncogenic Ras, may contribute to tumorigenesis in up to 30% of human tumors. See, e.g., Bos (1989) Cancer Res. 49:4682- 4689; and Rodenhuis (1992) Seminars in Cancer Biol. 3:241-247. Most anti-cancer drugs currently available are not directed toward specific oncogenes, but rather inhibit even normal cellular processes. These drugs are non-specific and cause severe side-effects, e.g., killing any and all proliferating cell types. Many of these proliferating cells are important for sustaining the organism, e.g., the hematopoietic and immune systems and the intestinal lining. Treatment for proliferative cell conditions, e.g., chemo- or radio-therapy have debilitating side effects due to the nonspecificity of the drugs.

A need exists for means to more directly target
therapeutic reagents to the proper abnormal cells. The
next generations of anti-cancer drugs will be compounds
which specifically target particular oncogenes, e.g., Ras.
Thus, the development of anti-cancer drugs specifically
targeting Ras oncogenes is an important goal to conquer
human malignancies. The present invention provides these
and many other advantages.

SUMMARY OF THE INVENTION

The present invention provides methods for blocking 5 Ras-induced effects on eukaryotic cells. Different Ras mutations have been demonstrated to cause oncogenic transformation in eukaryotic cells by providing constitutive activation signaling to the cells. Various fragments of GTPase 10 Activating (GAP) proteins have been identified which specifically interact with defined Ras mutants to block signal transduction. These fragments likely function through a mechanism of interacting with the Ras•GTP activated conformation to block the natural interaction of the effector protein. These fragments thus block the 15 constitutive signal transduction which results in Ras induced constitutive effects.

The present invention provides methods of blocking a Ras-induced effect on a cell, comprising a step of 20 introducing a GTPase Activating (GAP) protein to the cell. Ordinarily, the Ras will be an oncogenic Ras or one which substantially lacks GTPase activity. The Ras-induced effect will typically be induction of cell proliferation or transformation. The cell will often be eukaryotic cell, e.g., a mammalian cell, including a human cell. On some embodiments, the step of introducing is by expression of a nucleic acid encoding the GAP protein.

In preferred embodiments, the GAP protein will bind to the Ras protein with a Kd of less than 200 nM. In other embodiments, the GAP protein is selected from: (a) a fragment of a mammalian GAP protein; (b) a fragment of a mammalian NF1-GRD protein; and (c) a homologue or mimetic of (a) or (b). In particular embodiments, the GAP protein is selected from: (a) a fragment of a mammalian GAP protein having a wild type sequence, including a human GAP protein; and (b) a fragment of a mutant mammalian GAP protein having a sequence with an amino acid substitution at a position corresponding to a position 1063 through 1651 of NF1 or the

25

30

10

15

20

25

30

35

corresponding region of other GAP proteins. Many of these substitutions will be a conservative substitution.

In other embodiments, the GAP protein will interact with Ras and block interaction of an effector molecule which binds to Ras at a position corresponding to a position from 32 to 40 or from 59 to 65.

In various preferred embodiments, the GAP protein does not block signal transduction of non-oncogenic Ras. Greater specificity of action can be achieved by identifying the responsible oncogenic Ras and selecting a GAP protein which specifically blocks the identified oncogenic Ras.

The invention also provides methods of treating an oncogenic Ras transformed cell comprising the step of introducing to said cell a GAP protein capable of suppressing the transformation of said cell. Often, the oncogenic Ras transformed cell will be a mammalian cell, including a human cell.

In some embodiments, the GAP protein does not block signal transduction of non-oncogenic Ras. The method can be improved by adding steps of identifying the responsible oncogenic Ras and selecting a GAP protein which blocks transformation by the identified Ras. Preferably, the GAP protein does not block signal transduction of non-oncogenic Ras, e.g., exhibiting specificity.

In addition, the invention provides methods of identifying appropriate GAP proteins useful for treating a mutated Ras-induced condition of a eukaryote cell comprising: (a) identifying the mutated Ras which induces the condition; and (b) screening various GAP variants for specific variants which are capable of blocking the condition. In some embodiments, the eukaryote cell is a mammalian cell, including a human cell. In a preferred embodiment, additional screening is performed to determine which GAP variants have minimal effect on non-mutated Ras effects.

The invention further provides GAP proteins capable of blocking transformation of a cell, where said

15

20

transformation is due to an oncogenic Ras. In some cases, the GAP protein is selected from: (a) a fragment of a mammalian GAP protein; (b) a fragment of a mammalian NF1-GRD protein; and (c) a homologue or mimetic of (a) or (b). In others, the GAP protein is selected from: (a) a fragment of a mammalian GAP protein having a wild type sequence, including a human GAP protein; and (b) a fragment of a mutant mammalian GAP protein having a sequence with an amino acid substitution at a position corresponding to a position from 1063 through 1651 of NF1 or the corresponding region of other GAP proteins. Often the substitution will be a conservative substitution. In other embodiments, the protein interacts with Ras and blocks interaction of an effector molecule which binds to Ras at a position from 32 to 40 or from 59 to 65. Often the cell is a eukaryotic cell, e.g., a mammalian cell, including a human cell.

In preferred embodiments, the oncogenic Ras substantially lacks GTPase activity. In other embodiments, the protein binds to oncogenic Ras with a Kd of less than 200 nM. Mechanistically, the protein may interfere with interaction of Ras•GTP with an effector compound. In another embodiment, the invention provides an isolated nucleic acid encoding a protein normally expressed as a protein as described.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 shows stimulation of GTPase activity of c-HaRas^{Gly12} and c-Ha-Ras^{Val12} proteins by yeast cell extracts containing wild-type and mutant NF1-GRDs.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

- 10 OUTLINE
 - I. Ras family
 - A. structure and function
 - B. cycling between Ras•GDP and Ras•GTP
- 15 II. GAP proteins; family, mammalian, NF1
 - III. Interaction of Ras and GAP proteins
 - IV. Downstream signal transduction
 - V. Methods
 - A. administering
- 20 B. matching to corresponding Ras
 - C. making compositions, analogues, mimetics
 - I. Ras family
 - A. structure and function
- 25 Ras gene family members are ubiquitous among eukaryotic cells. See, e.g., Barbacid (1987) Ann. Rev. Biochem. 56:779-827. The genes were initially identified and studied as the viral oncogenes of several acute transforming retroviruses. The relationship to human
- cancer was quickly established upon recognition that the retroviral oncogenes were derived from a group of mammalian cellular proto-oncogenes, e.g., endogenous genes which become oncogenic upon mutation.
- Point mutations in the normal endogenous mammalian Ras gene often led to an oncogenic transformed phenotype. Further studies on the locations of the point mutations showed a high frequency at particular hot spots, e.g., codons 12, 13, or 61. Recent technology, e.g., selective hybridization with specific probes, and PCR techniques have
- 40 simplified analysis of specific alterations responsible for

15

20

25

Ras-induced effects. See Bos (1988) <u>Mutat. Res.</u> 195:255-271.

Extension of interest to the counterparts in non-mammalian systems has shown that these genes play a critical role in transduction of many extracellular signals in cells. Functional and structural data has shown that Ras proteins are GTP-binding proteins involved in transduction of signals in response to extracellular stimuli. The family of Ras proteins can be defined by a combination of functional and structural criteria. See, e.g., Bollag et al. (1991) <a href="https://doi.org/10.1001/j.mn...org/10.1

In mammalian cells, typically the Ras-induced effects will be cell transformation, but may also include differentiation or proliferation effects which fail to satisfy the full criteria for transformation.

The yeast <u>Saccharomyces cerevisiae</u> possesses two members of the Ras family (Ras1 and Ras2) which play an important role in cell growth through the regulation of adenylate cyclase. See, e.g., Broach et al. (1990) <u>Adv.</u> <u>Cancer Res.</u> 54:79-139. The Ras-induced effects in yeast show a heat-shock sensitive phenotype.

Members of the Ras family have also been studied in Xenopus laevis; Drosophila melanogaster, Caenorhabditis elegans; and Dictyostelium discoideum. See Bollag et al. (1991) Ann. Rev. Cell Biol. 7:601-632; and Kaziro et al. (1991) Ann. Rev. Biochem. 60:349-400.

Although the Ras-induced effects may be different in

different cells, the relationship in structure often allows
cross species interactions of corresponding proteins in Ras
related pathways. Exploitation of these structural
similarities provide useful means to test interaction of
proteins which normally are never found together with

advantages directed towards ease of testing effects on
various cell sources.

B. cycling between Ras•GDP and Ras•GTP
The Ras proteins have been shown to be GTP-binding
proteins. They can be either in GDP-bound conformation or
a GTP-bound conformation. The GTP-bound conformation is
the active and interacts with an as yet unidentified
effector molecule.

Current models propose that Ras proteins become activated upon stimulation, transduce the signal to an as yet unidentified effector molecule, and subsequently become inactivated. Mutated, e.g., oncogenic, Ras proteins have lost their ability to become inactivated and thus constitutively send a stimulation signal.

Ras is active in its GTP-bound form. The active Ras • GTP complex, which is a non-covalent association, is 15 converted to an inactive Ras-guanosine diphosphate (Ras•GDP) form by an intrinsic GTPase activity found on normal Ras, and which is stimulated by a GTPase Activating (GAP) protein. However, oncogenic Ras lacks the intrinsic GTPase activity and GAP proteins have little, if any, 20 effect on inactivating oncogenic Ras. This substantial lack of GTPase activity in oncogenic Ras will typically be at least 20% less than the normal, more typically at least 35% less, usually at least 50%, more usually at least 60% less, preferably at least 70% less, and more preferably at 25 least 80% or more less than normal Ras.

II. GAP proteins; family, mammalian, NF1 GTPase activities are required to inactivate the Ras•GTP form of the protein in the cycling reaction. A family of proteins stimulating endogenous GTPase activities of Ras proteins have been described which share structural and functional similarities. See Bollag et al. (1991) Ann. Rev. Cell Biol. 7:601-632. Particularly relevant members of the GAP family include yeast and mammalian proteins, including the human neurofibromatosis type 1 (NF1) protein. As used herein, GAP protein refers to a protein which shares structural or functional properties with this family

of proteins. Usually, the protein will be a fragment

10

shorter than the natural mammalian proteins so far described, normally less than about 600 amino acids, more normally less than about 550 amino acids, ordinarily less than about 500 amino acids, more ordinarily less than about 460 amino acids, usually less than about 420 amino acids, more usually less than about 380 amino acids, typically less than about 350 amino acids, more typically less than about 325 amino acids, preferably less than about 310 amino acids, more preferably less than about 300 amino acids, and in other embodiments, even fewer amino acids, down to 200 or fewer amino acids.

9

NF1 was first identified as the gene responsible for the pathogenesis of the human genetic disorder, neurofibromatosis type 1. cDNA cloning revealed that the 15 NF1 gene encodes a protein of 2818 amino acids. This putative protein product has a domain showing a significant sequence homology with members of the Ras GTPase-activating protein (GAP) family. See, e.g., Gutmann et al. (1992) Ann. Neurol. 31:555-561; Xu et al. (1990) Cell 63:835-841; Martin et al. (1990) Cell 63:843-849; and Ballester et al. (1990) Cell 63:851-859. This domain, a fragment of the natural NF1, is often referred herein as NF1 GAP Related Domain (NF1-GRD), and some fragments thereof should have similar activities.

Two yeast <u>Saccharomyces cerevisiae</u> proteins, Iral and Ira2, show particularly high sequence homology to the NF1. Subsequent studies have demonstrated that members of the GAP family, including the GAP-related domain of the NF1 gene product (NF1-GRD; sometimes referred to as NF1 fragment), can stimulate guanosine triphosphatase (GTPase) activity of Ras proteins, i.e., converting Ras•GTP to Ras•GDP, and thereby negatively regulate the activity of Ras.

Two proteins which regulate the activity of Ras

35 proteins are the GTPase activating protein (GAP) and the
protein encoded by NF1, the gene responsible for
neurofibomatosis. type I disease. See Gutmann et al.

(1992) Ann. Neurol. 31:555-561.

10

15

III. Interaction of Ras and GAP proteins

The GAP proteins have been identified as one of the means by which activated Ras proteins are converted into the inactive form. Thus, the physical interaction of the GAP and Ras proteins are important in the understanding of the functional relationship between the entities.

The GAP protein effect on endogenous GTPase activity of RAS has been localized to a fragment of the natural GAP protein, e.g., wild-type sequences. In particular, the catalytic domain has been localized to the carboxy terminal segment of the mammalian GAP proteins. The active portion has been localized to a fragments of less than about 600 amino acids, corresponding to the NF1 amino acids 1063-1651. As such, the functional activities of the GAP proteins would be expected to be localized in this region of the sequence. The sites of GAP interaction with Ras have been proposed to be positions 32-40 and 59-63 of mammalian Ras.

20 The yeast S. cerevisiae possesses two NF1 homologues, Iral and Ira2. The human NF1 is structurally closer to yeast Ira than human GAP and thus would be expected to interact well with the yeast Ras counterpart proteins. This structural similarity is reflected in a functional relationship, as NF1-GRD expressed in yeast cells can 25 complement <u>ira</u>-deficient yeast. In <u>ira</u>-cells, the conversion of Ras•GTP to Ras•GDP is defective, and the cells show a phenotype which is very similar to that of activated Ras mutants, i.e., heat shock-sensitivity. GAP-Related Domain of the NF-1 gene product (NF1-GRD) is a 30 fragment from the NF-1 which can suppress the heatsensitive phenotype of ira , but not of RAS2 Vall9 or RAS2Leu68. This is consistent with the fact that NF1-GRD stimulates GTPase activity of normal but not mutant Ras proteins. Thus, the natural GAP will have blocking effects 35 of Ras functions of normal cells.

15

20

25

30

35

IV. Downstream signal transduction

The biochemical mechanism of signal transduction, or effect, of Ras activation is poorly understood. The structural means by which signal transduction occurs has not been clarified, but it is believed that an effector compound, likely a protein, interacts with Ras•GTP.

Genetic analysis of the amino acid positions which affect effector binding have been postulated to include positions 32, 35, 36, 38 and 40. Thus, the effector may well bind near to the same sites of Ras as does the GAP proteins.

This has led to the model that variants of GAP segments may interact with Ras in a fashion which can block effector interaction. This will function to block signal transduction, in a fashion which will inactivate an oncogenically transformed Ras. Moreover, since the different oncogenic Ras forms result from mutations at sites near the GAP and effector interaction sites, variant GAP segments may show great specificity in blocking Rasinduced effects. In particular, the binding affinity of the GAP analogues which block Ras-induced effects are higher than normal GAP binding.

In particular embodiments, the GAP protein, which is intended here to also encompass the concept of protein analogues and mimetics, will preferably be a relatively small polypeptide or analogue, including modified proteins and mimetics. Mimetics include compounds possessing similar molecular shapes sufficient to confer the desired biological property. Various amino acid substitutions may be designed, tested, or screened for activity in blocking Ras-induced functions. These may be effective in blocking effects of many different Ras mutants, or specific Ras variants. The methodology described herein may be useful to define GAP proteins which exhibit high specificity for only interacting with oncogenic, e.g., mutant Ras, and having virtually no effect on natural Ras function. Thus, the GAP proteins provided herein will be highly specific in affecting only oncogenic functions and will be innocuous in cells possessing normal Ras.

Although the positions of GAP believed to be most important in the interaction with Ras are in the regions of 701-1047 of GAP, the NF1 regions considered most likely to be useful herein will be within the region of 1063-1651 or the corresponding region of other GAP proteins, including 1175-1534, and more specifically in the regions of 1400-1500. Mutations within this region are likely to interact with the Ras in the desired way, particularly in the region of 1421-1461 of NF1 or the corresponding region of other GAP proteins.

Functionally, the useful GAP proteins have high binding affinity for Ras or Ras-like proteins or GAP binding segments thereof. Typically, the GAP protein will exhibit a Kd for Ras, or its oncogenic variant, of less than about 300 nM, more typically less than about 250 nM, usually less than about 200 nM, more usually less than about 150 nM, preferably less than about 100 nM, and more preferably even higher binding affinity. Typically a higher binding affinity will allow effective competitive effect on the effector binding at low concentrations of GAP protein.

IV. Methods

A. administering

25 As described, blocking Ras-induced effects will occur upon proper selection of the GAP protein, e.g., fragments, analogues, and mimetics, and administering such composition to the cell. The GAP protein will be produced, e.g., by recombinant means, as are described in Sambrook et al. 30 (1989) Molecular Cloning: A Laboratory Manual Cold Spring Harbor Press, CSH, N.Y., and Ausubel (1987 and periodic supplements) Current Protocols in Molecular Biology Greene/Wiley, New York; which are each incorporated herein by reference. The GAP protein can be purified and then administered to a patient. These reagents can be combined 35 for therapeutic use with additional active ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, along with physiologically innocuous

10

15

stabilizers and excipients. These combinations can be sterile filtered and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations.

Drug screening using Ras or fragments thereof can be performed to identify compounds having binding affinity. Subsequent biological assays can then be utilized to determine if the compound has intrinsic activity and is therefore a blocker or antagonist in that it blocks the effects of oncogenic Ras. Additional compounds may be screened or designed using the reagents described, or by molecular modeling and structural studies including, e.g., X-ray crystallography, multidimensional NMR, and other techniques. See, e.g., Blundell et al. (1976) Protein Crystallography Academic Press, New York.

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, physiological state of the patient, and other medicants administered. 20 treatment dosages should be titrated to optimize safety and efficacy. Typically, dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will 25 provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman et al. (eds) (1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; each of which is hereby 30 incorporated herein by reference. Methods for administration are discussed therein and below, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. 35 Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Dosage

ranges would ordinarily be expected to be in amounts lower

15

20

25

30

35

than 100 mM concentrations, typically less than about 10 mM concentrations, usually less than about 100 μ M, preferably less than about 10 μ M, and most preferably less than about 1 μ M, with an appropriate carrier. Slow release

formulations, or slow release apparatus will often be utilized for continuous administration.

The GAP protein may be administered directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in any conventional dosage formulation. it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier must be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including subcutaneous, intramuscular, intravenous, and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. See, e.g., Gilman et al. (eds) (1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; each of which is hereby incorporated herein by reference. The therapy of this invention may be combined with or used in association with other chemotherapeutic or chemopreventive agents.

Isolation and characterization of these nucleic acids allow use thereof to make variants and mutants. It will also allow production of vector constructs useful, e.g., for gene therapy. See, e.g., Goodnow (1992) "Transgenic Animals" in Roitt (ed.) Encyclopedia of Immunology Academic Press, San Diego, pp. 1502-1504; Travis (1992) Science

WO 94/16069

5

256:1392-1394; Kuhn et al. (1991) <u>Science</u> 254:707-710; Capecchi (1989) <u>Science</u> 244:1288; Robertson (1987) (ed.) <u>Teratocarcinomas and Embryonic Stem Cells: A Practical Approach IRL Press, Oxford; and Rosenberg (1992) J. Clinical Oncology</u> 10:180-199; which are each incorporated herein by reference.

B. matching to corresponding Ras

In particular, the present invention allows for simple 10 matching of a therapeutic agent to various oncogenic Ras variants. This can provide highly selective treatment of defined oncogenic conditions with a GAP having highly selected safety and efficacy combinations, virtually tailored to the relatively small number of oncogenic Ras 15 mutations which cause defined proliferative conditions. For example, common variants of oncogenic Ras can be used to screen for GAP fragments which are effective in blocking the oncogenic effects. See, e.g. Kumar et al. (1990) Cancer Res. 52:6877-6884. Either the variants or 20 equivalents thereof can be transformed into a cell, e.g., a yeast cell, and GAP mutants tested for their specific effect on the Ras variants. Once appropriate GAP proteins are identified for each of the common oncogenic Ras mutants, therapeutic reagents can be selected based upon 25 the diagnosed mutant oncogenic Ras responsible for a given abnormality. Diagnosis of the responsible Ras mutation can be performed as described above.

Isolated GAP encoding DNAs can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode these modified GAP proteins, their derivatives, or proteins having the desired anti-oncogenic activity. These modified sequences can be used to produce mutant GAP proteins or to enhance the expression of GAP. Enhanced expression may involve gene

amplification, increased transcription, increased.... translation, and other mechanisms. Such mutant Ras or GAP derivatives include predetermined or site-specific mutations of the respective protein or its fragments. A mutant GAP is a polypeptide otherwise falling within the homology defined by structure and function, but having an amino acid sequence which differs from the corresponding segment of GAP as found in nature, whether by way of an amino acid deletion, substitution, or insertion. Similar proteins and nucleic acids should be 10 available from other warm blooded animals, e.g., mammals and birds. These descriptions are generally meant to encompass species and allelic variants of the GAP proteins, not limited to the specific embodiments 15 discussed.

Although site specific mutation sites are predetermined, mutants need not be site specific. GAP protein or Ras protein mutagenesis can be conducted by making amino acid insertions or deletions.

Substitutions, deletions, insertions, or any combinations may be generated to arrive at a final construct. Insertions include but are not limited to amino- or carboxy- terminal fusions. Random mutagenesis can be conducted at a target codon and the expressed GAP mutants can then be screened for the desired activity. Methods for making substitution mutations at predetermined sites in DNA having a known sequence are well known in the art, e.g., by M13 primer mutagenesis. See also Sambrook et al. (1989) and Ausubel et al. (1987 and Supplements).

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these proteins. A heterologous fusion

protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. Thus, the fusion product of an immunoglobulin with a GAP polypeptide is a continuous protein molecule having sequences fused in a typical peptide linkage, e.g., typically made as a single translation product and exhibiting properties derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences.

10 In addition, new constructs may be made from combining similar functional domains from other proteins. For example, Ras-binding or other segments may be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham et al. 15 (1989) Science 243:1330-1336; and O'Dowd et al. (1988) J. Biol. Chem. 263:15985-15992, each of which is incorporated herein by reference. Thus, new chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of 20 Ras-binding specificities. For example, the Ras-binding segments from other related proteins may be added or combined with other binding segments from other proteins. The resulting protein will often have hybrid function and properties.

25 The phosphoramidite method described by Beaucage and Caruthers (1981) <u>Tetra</u>. <u>Letts</u>. 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

The present invention provides means to produce fusion proteins. Various GAP variants may have slightly different functions or biological activities, even though they share significant structural similarities. Dissection of structural elements which effect the various physiological functions or biological activities

provided by the GAP proteins is possible using standard techniques of modern molecular biology, particularly in comparing variants within the related family of GAP proteins. See, e.g., the homolog-scanning mutagenesis technique described in Cunningham et al. (1989) <u>Science</u> 243:1339-1336; and approaches used in O'Dowd et al. (1988) <u>J. Biol. Chem.</u> 263:15985-15992; and Lechleiter et al. (1990) <u>EMBO J.</u> 9:4381-4390; each of which is incorporated herein by reference.

10 In particular, Ras binding segments can be substituted between proteins to determine what structural features are important in both Ras binding affinity and specificity for the natural or oncogenic Ras. An array of different Ras variants, e.g., allelic, will be used to screen for GAP proteins exhibiting 15 desired properties of interaction with them, e.g., high binding affinity, blocking of effector function by conformational or competitive inhibition, or even forms which can induce GTPase action of the oncogenic Ras. The specific segments of interaction of GAP with Ras may 20 be identified by mutagenesis or direct biochemical means, e.g., cross-linking or affinity methods.

physical methods will also be applicable.

25 Identification of the similarities and differences between Ras oncogenic variants will lead to new diagnostic and therapeutic reagents or treatments.

Structural analysis by crystallographic or other

Structural studies of the Ras variants will lead to design of new GAP proteins, particularly analogues exhibiting desired effect blocking properties. This can be combined with screening methods to isolate new GAP proteins exhibiting desired spectra of activities. Both the naturally occurring and the recombinant forms of Ras are particularly useful in kits and assay methods which are capable of screening compounds for binding activity to them. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds per year. See, e.g.,

30

10

15

20

25

30

35

herein.

Fodor et al. (1991) <u>Science</u> 251:767-773, which is incorporated herein by reference and which describes means for testing of binding affinity by a plurality of defined polymers synthesized on a solid substrate. Phage or other libraries of various random polypeptide sequences would also be useful. The development of suitable assays can be greatly facilitated by the availability of large amounts of purified, soluble Ras,

either natural or oncogenic, by methods as provided

Expression in other cell types will often result in glycosylation differences in a particular GAP protein. Various mutants may exhibit distinct biological activities based upon structural differences other than amino acid sequence. Differential modifications may be responsible for differential function, and elucidation of the effects are now made possible.

A nucleic acid which encodes a Ras and GAP are readily available, or can be obtained by chemical synthesis, screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. See, e.g., Marchuk et al. (1991) Genomics 11:931-940; and nucleic acid and protein data bases, e.g., Protein Identification Resource (PIR), Georgetown University, Washington, D.C., SwissProt and others, see IntelliGenetics, Menlo Park, CA, or the Univ. Wisconsin Biotechnology Center, Madison, Wisconsin.

This DNA can be expressed in a wide variety of host cells for the synthesis of a Ras, GAP. or fragments thereof which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for construction and expression of modified Ras or GAP molecules; and for structure/function studies. Each GAP can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially free of protein or cellular contaminants, other than those derived from the

15

20

25

30

35

recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. The GAP, or portions thereof, may be expressed as fusions with other proteins.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired Ras or GAP gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

The vectors of this invention contain DNA which encodes a useful GAP-like peptide, or a fragment thereof encoding, e.g., an active polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNA coding for a GAP in a prokaryotic or eukaryotic host, where the vector is compatible with the host and where the eukaryotic cDNA coding for the GAP is inserted into the vector such that growth of the host containing the vector expresses the cDNA in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number

of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the GAP in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of GAP into the host DNA by recombination.

Vectors, as used herein, comprise plasmids, 10 viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably 15 linked genes. Plasmids are the most commonly used form of vector but all other forms of vectors which serve an equivalent function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels et al. (1985 and Supplements) Cloning Vectors: A 20 Laboratory Manual, Elsevier, N.Y., and Rodriguez et al. (eds) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Buttersworth, Boston, 1988, which are incorporated herein by reference.

For purposes of this invention, DNA sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not contiguously linked but still bind to operator sequences that in turn control expression.

25

30

15

20

25

30

35

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeasts, e.g., S. cerevisiae and Pichia, and species of the genus Dictyostelium. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. herein, E. coli and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to express the GAP protein include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in Vectors: A Survey of Molecular Cloning Vectors and Their Uses, (eds. Rodriguez and Denhardt), Buttersworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by reference.

Lower eukaryotes, e.g., yeasts and <u>Dictyostelium</u>, may be transformed with GAP sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, <u>Saccharomyces cerevisiae</u>. It will be used to generically represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the Ras or GAP protein or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression

WO 94/16069

5

vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEp-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCp-series).

10 Higher eukaryotic cells grown in tissue culture are often the preferred host cells for expression of the GAP protein. In principle, any higher eukaryotic tissue culture cell line is workable, e.g., insect baculovirus 15 expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are often preferred. Transformation or transfection and propagation of such cells has become a routine procedure. Examples of useful cell lines include HeLa 20 cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, 25 RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors also usually contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying 30 promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1 (Invitrogen, San Diego, CA); pCD, see Okayama et al. (1985) Mol. Cell Biol. 5:1136-1142; pMClneo Poly-A, see Thomas et al. 35 (1987) Cell 51:503-512; and a baculovirus vector such as

pAC 373 or pAC 610.

It may be desired to express a GAP polypeptide in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression 5 system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the GAP gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable in prokaryote or other cells.

15 The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the invention in any manner.

EXAMPLES

20

25

30

35

10

In these studies, a yeast Ras system was used to isolate NF1-GRD mutants which can suppress specifically the activity of oncogenic Ras. Yeast cells carrying activated mutations in Ras (such as RAS2 Val19 and RAS2 Leu68) are defective in responding to environmental conditions, and show a variety of phenotypes including a heat shocksensitive phenotype.

First, a pool of randomly mutagenized NF1-GRD genes were screened to obtain suppressors of a specific yeast oncogenic-type Ras, RAS2 Val19. Next, these mutant NF1-GRDs were shown to be capable of inhibiting v-Ras-induced transformation in mammalian cells. These results demonstrated that this unique yeast method provides a powerful screening system to obtain anti-Ras NF1-GRD The mutants of NF1-GRD most likely bind tightly with the oncogenic, e.g., mutated, Ras proteins to sequester the latter proteins from the signal transduction for normal cell growth. Detailed analysis of the

structures involved in the interaction between mutant NF1-GRDs and Ras will enable testing of compounds, e.g., analogues and mimetics, which can mimic the action of NF1-GRDs, and inhibit specifically transforming Ras activity.

5

EXAMPLE 1: Preparation of pKP11

A plasmid pKP11, which expresses a domain of NF1
(amino acid residues 1063-1651; the numbers of amino acid
residues are referred to according to Marchuk et al. (1991)
Genomics 11:931-940, and a yeast strain carrying RAS2Val19
mutation were used to obtain mutant NF1-GAP Related Domains
(GRDs) which can suppress the phenotype of activated Ras.
In a previous study, this plasmid was shown to suppress
15 ira2 but not RAS2Val19. The plasmid was randomly
mutagenized by treatment with hydroxylamine in vitro, and a
pool of mutagenized DNAs was transformed into RAS2Val19
cells. Subsequently, about 2 x 105 independent colonies
were screened for heat shock resistance.

Wild-type NF1-GRD was cloned into the yeast expression 20 vector pKT10 which contains glyceraldehyde-3-phosphate dehydrogenese promoter, a replication origin derived from 2 μm, and <u>URA3</u> as a selection marker to yield pKP11. One hundred micrograms of pKP11 DNA was mutagenized by 25 hydroxylamine in vitro as described previously (Rose et al. (1987) Cell 48:1047-1060), and transformed into a S. cerevisiae strain, TK161-R2V-D which carries RAS2Val19 mutation. See Tanaka et al. (1989) Mol. Cell. Biol. 9:757-768; and Tanaka et al. (1990) Mol. Cell. Biol. 10:4303-4313. About 2 x 10^5 colonies were grown on selection 30 plates, and the plates were heated at 57 °C for 15 minutes. The resultant plates were incubated at 30 °C for 4 days, and growing colonies were selected. The heat shocksensitivity of these colonies were checked, and 12 clones 35 were selected at this stage. Plasmid DNAs were recovered from these cells, re-transformed into TK161-R2V-D, and phenotypic reversion was examined.

10

15

Twelve positive colonies were obtained in the initial screening. Subsequently, two clones, NF201 (SEQ ID NO: 1) and NF204 (SEQ ID NO: 2), which had a relatively strong suppression activity for $RAS2^{Vall9}$, were selected, and subjected to further analysis.

EXAMPLE 2: Effect of Mutant NF1-GRDs on yeast cells

The effects of NF201 (SEQ ID NO: 1) and NF204 (SEQ ID NO: 2) were tested on different alleles of activated RAS2Val19 in yeast cells (Table 1). Wild-type NF1-GRD could weakly revert the phenotype of RAS2Leu68, but was totally ineffective on RAS2Val19 and RAS2Ser41. Mutant NF201 suppressed the heat shock-sensitive phenotype of all three alleles of RAS2 examined, including RAS2Val19, RAS2Leu68, and RAS2Ser41 (Tanaka et al. (1992) Mol. Cell. Biol. 21:631-637). On the other hand, NF204 preferentially suppressed RAS2Val19 but not the other two alleles. These results indicate that NF201 and NF204 possess distinct properties as suppressors of activated Ras in a Ras-

25

20

specific manner.

30

35

40

Suppression of the heat-sensitive phenotypes of various activated alleles of RAS2 by mutant NF1-GRD. A wild-type S. cerevisiae strain, RAY-3A-D, harboring a combination of RAS2 plasmids (YCp-RAS2 Vall9, -RAS2 Leu68, and -RAS2 Ser41; Tanaka et al. (1992) Mol. Cell. Biol. 12:631-637) and NF1-GRD plasmids, was subjected to heat shock assay. The ability of each NF1-GRD plasmid to suppress the heat-sensitive phenotype was scored: +++, strong suppression; ++, intermediate suppression; +, weak suppression; -, no detectable suppression. The 10 complementation activity in ira2 cells (KT63-2B-D; Tanaka et al. (1989) Mol. Cell. Biol. 9:757-768; Tanaka et al. (1990) Mol. Cell. Biol. 10:4303-4313), which reflects the activity of these NF1-GRDs on wild-type RAS2 (RAS2Wt), was 15 also scored, and is shown in the table.

20

RAS2 allele

25	NF1-GRD	RAS2Val19	RAS2Leu68	RAS2Ser41	<u>RAS2</u> wt
	NF201	+++	+++	++	+++
30	NF204	+++	+	-	+++
	NF1 (wild-type)	-	+ ,	-	+++

35

40

45

Interestingly, these two mutant NF1-GRDs could suppress <u>ira2</u> cells, in which normal Ras proteins are activated, to the same extent as wild-type NF1-GRD, suggesting that NF201 and NF204 retain the ability to stimulate GTPase activity of normal Ras.

The entire region of mutant NF1-GRDs were sequenced to identify mutations in NF201 and NF204, and the sequences compared the sequences with that of wild-type NF1-GRD. In both NF201 and NF204, single nucleotide changes were found in the DNA sequences. In NF201 (SEQ ID NO: 1), the codon TTC for Phe at residue 1434 was changed to TTA coding for

Leu, while in NF204 (SEQ ID NO: 2), the codon AAG for Lys at residue 1436 was replaced by AGA coding for Arg.

Although both mutation sites are located in one of the most conserved regions of the GAP-related domain (see Xu et al. (1990) <u>Cell</u> 63:835-842; Martin et al.(1990) <u>Cell</u> 5 63:843-850; and Ballester et al. (1990) Cell 63:851-859), the amino acid residues at these sites (Phe at position 1434, and Lys at position 1436) are not strictly conserved among the members of the GAP family (Figure 1). Phe residue at 1434 in NF1 is conserved in yeast Ira2 (SEQ ID 10 NO: 4) protein, but it is replaced by other residues in Iral (SEQ ID NO: 3), GAP (SEQ ID NO: 5), and Gapl (SEQ ID NO: 6). On the other hand, Lys residue at 1346 is conserved among NF1, Iral, GAP, and Gap1, but Ira2 contains Arg at the corresponding site. Recently, two independent 15 studies have demonstrated that Lys at position 1423 in NF1-GRD, which is located just 11 and 13 amino acids upstream of the mutation sites of NF201 and NF204, respectively, is important for the structure and function of NF1. the substitution of Glu for Lys at position 1423 has been 20 identified in some human tumors as well as in a family of neurofibromatosis patients (Li et al. (1992) Cell 69:275-The GAP activity of this mutant NF1-GRD was 200- to 400-fold lower than that of the wild-type NF1-GRD. also reported that the substitution of Met for Lys at the 25 same position resulted in a decrease in stability of the protein (Wiesmuller et al. (1992) J. Biol. Chem. 267:10207-Thus, the amino acid residues at 1423, 1434 and 10219). 1436, and their surrounding sequence, are likely to be 30 important for the structure and/or function of NF1

EXAMPLE 3: Effect of mutant NF1-GRDs in mammalian cells

The effect of these mutant NF1-GRDs in mammalian cells
35 was investigated. The cDNA fragments of the wild-type and
mutant NF1-GRDs were recloned into a mammalian expression
vector, and transfected into cell lines.

proteins.

The size of the NF1-GRD protein transiently expressed in Cos7 cells was checked. Western blot analysis with an anti-NF1-GRD anti-serum (see Hattori et al. (1992) Oncogene 7:481-485) identified a protein band of an apparent molecular mass of 67-68 kDa in the cells transfected with NF1-GRD plasmids but not with the control vector. This suggests that the protein of about 67 kDa was translated starting from the internal Met residue at position 1073 of NF1 cDNA.

The anti-Ras activities of mutant NF1-GRDs were 10 examined for their effects on v-Ras-induced transformation. The above plasmids expressing NF1-GRD were cotransfected with pSV2neo into DT cells, a v-Ki-ras-transformed NIH3T3 derivative, and the ability to induce morphological reversion of the cells was examined. As shown in Table 2, 15 transfection of the plasmids expressing NF201 and NF204 could induce flat reversion at dramatically high frequencies (8-9% of total G418-resistant colonies). The frequency was even higher than that obtained by 20 transfection of a Krey-1 plasmid which has been shown to possess anti-oncogenic activity in DT cells (Kitamura et al. (1990) Proc. Natl Acad. Sci. USA 87:4284-4288). Under the same conditions, the wild-type NF1-GRD could also induce flat reversion of DT cells, although it was 5 to 6 times less potent than mutant clones. This is particularly 25 interesting since a previous study has shown that overexpression of GAP inhibited normal c-Ha-Ras- but not v-Ha-Ras-induced transformation (see Zhang et al. (1990)

No revertant of DT cells could be obtained from transfectants of the GAP plasmid (Table 2). This difference may be due to the fact that NF1-GRD possesses a much higher affinity for Ras proteins than GAP. These results clearly demonstrate that mutant NF1-GRDs possess transformation-suppressor activity against oncogenic Ras.

Nature 346:754-756).

Table 2. Induction of morphological reversion of v-Rastransformed cells by mutant NF1-GRD. DT cells were cotransfected with 20 μg of NF1-GRD plasmids and 2 μg of pSV2neo as described by Kitamura et al. (1990) Proc. Natl Acad. Sci. USA 87:4284-4288, and transfectants were selected in a medium containing 0.5 mg/ml G418. Since pKrey-1 plasmid itself contained the neo gene, 2 μg of the plasmid was cotransfected with 20 μg of pEF-BOS (the vector for NF1-GRD). The pEF-GAP contained rat full-length GAP cDNA in pEF-BOS. Frequency of reversion in DT cells is defined as the ratio (%) of morphologically flat cell colonies to total G418-resistant colonies. N.D.: not determined.

15

10

20 Flat colonies/G418-resistant colonies

25	transfected DNA	l Exp.1	Exp.2	Exp.3	ratio (%)
	per-bos	0/1155 (<0.1)	2/1279 (0.1)	3/878 (0.4)	0.1
30	per-nf1	20/1522 (1.3)	26/1151 (2.3)	15/1004 (1.5)	1.7
	pEF-NF201	86/1190 (7.2)	61/691 (8.8)	34/356 (9.6)	8.0
35	pEF-NF204	40/448 (8.9)	46/426 (10.8)	24/350 (6.9)	9.0
	pEF-GAP	N.D.	0/856 (<0.1)	0/561 (<0.2)	<0.1
	pK <u>rev</u> -1	N.D.	26/1385 (1.9)	15/736 (2.0)	1.9
40		· · · · · · · · · · · · · · · · · · ·	······································		

EXAMPLE 4: Biochemical properties of the mutant NF1-GRDs

The biological properties of the mutant NF1-GRDs were 5 studied to understand the molecular mechanism of antioncogenic activity. Extracts were prepared from yeast cells expressing wild-type and mutant NF1-GRDs, and GTPasestimulating activity was measured in vitro by using recombinant c-Ha-Ras proteins as substrates. Recombinant c-Ha-RasGly12 (A) or c-Ha-RasVall2 (B) proteins were loaded 10 with $[\gamma-32P]$ GTP (30 Ci/mmol) in buffer B (50 mM tris-HCl [pH 7.4], 50 mM KCl, 1 mM MgCl₂, 2.5 mM EDTA, and 0.2 mg/ml BSA) at 30 'C for 10 minutes. The reaction was stopped by the addition of MgCl₂ to the final concentration of 7 mM. 15 Yeast cell extracts were prepared from wild-type yeast cells, RAY-3A-D, carrying various NF1-GRD plasmids. Cells grown to the stationary phase were collected, and disrupted with acid-washed glass beads (0.5 mm diameter) in buffer A (50 mM tris-HCl [pH 7.4], 100 mM KCl, 5 mM MgCl₂, 2 mM DTT, 20 2 mM PMSF, 1 mM benzamidine, and 10 µg/ml of each of pepstatin A, aprotinin, and leupeptin. The crude extract was clarified twice by centrifugation at 2000 x g for 20 The resultant supernatants were then mixed with an aliquot of Ras•[γ -32P]GTP mixture, and incubated at 30 25 At the indicated time point, an aliquot was filtered through a nitrocellulose membrane, and radioactivity retained on the membrane was counted. The final concentrations of yeast extract proteins and Ras $(\gamma^{-32}P)$ GTP were 1 mg/ml and 11.5 nM, respectively. The cell extracts assayed were from the cell carrying the following plasmids: 30 ., wild-type NF1-GRD; o, NF201; Δ, NF204; [solid square], vector alone; or [open square], buffer A plus 1 mg/ml BSA. Two mutant NF1-GRDs, NF201 and NF204, stimulated the GTPase activity of c-Ha-RasGly12 to the same extent as wild-type 35 NF1-GRD (Figure 1).

This is consistent with the observation that NF201 and NF204 can effectively complement <u>ira2</u> in yeast (see Table

1). On the other hand, the same extracts were not able to stimulate the GTPase activity of c-Ha-RasVall2 under these experimental conditions. This suggests that the anti-oncogenic activity of the mutant NF1-GRD is not due to the stimulation of the slow GTPase of oncogenic Ras proteins.

The members of the GAP family negatively regulate the activity of Ras by stimulating intrinsic GTPase activity of normal Ras proteins. Thus, NF1 can potentially act as a specific block of effector function by normal Ras. 10 However, oncogenic Ras lacks the intrinsic GTPase activity, and thus, natural GAP sequences cannot stimulate the inactivation of the activated oncogenic Ras. Likewise, NF1-GRD suppresses the heat shock-sensitive phenotype of 15 ira cells, but not the same phenotype of activated mutants of Ras, e.g., RAS2 Val19 and RAS2 Leu68 which correspond to mammalian oncogenic Ras, ras Vall2 and ras Leu61, respectively. Various mammalian oncogenic Ras mutants may be simulated by corresponding mutations in yeast Ras 20 proteins. These observations lead to a model which is useful for testing interaction of Ras variants with GAP variants, and which predicts useful blocking or reversal of mutant or oncogenic Ras-induced effects.

25 A model of anti-oncogenic activity of mutant NF1-GRD consistent with these observations is that the mutant NF1-GRD has higher affinity for oncogenic Ras.GTP as compared to the wild-type NF1-GRD. As discussed above, the GAP binding region, and the effector binding regions on the Ras 30 protein are in close physical proximity. As such, mutant NF1-GRD binding to oncogenic Ras, e.g., high affinity binding, could form an irreversible NF1 • Ras • GTP complex. This could prevent interaction with putative downstream effector molecules, e.g., by conformational changes or 35 competition. The oncogenic Ras would be sequestered from signal transduction pathways. Two observations support this hypothesis. First, as shown in Table 1, weak but significant phenotypic reversion of RAS2 Leu68 by wild-type

NF1-GRD was observed. A previous study (Bollag et al. (1991) Nature 351:576-579) showed that the mammalian RasLeu61 protein (corresponding to yeast RAS2Leu68) has a much higher affinity for NF1-GRD than the wild-type or Vall2-form of Ras. The high affinity binding between 5 RAS2Leu68 and wild-type NF1-GRD can explain the phenotypic suppression. Likewise, this model can also explain the differences in transformation-suppressor activities among GAP, wild-type NF1-GRD, and mutant NF1-GRDs. Table 2 shows 10 that wild-type NF1-GRD, but not GAP, can suppress transformation by v-Ras; two mutant NF1-GRDs are more potent suppressors than wild-type NF1-GRD. This order of potency as transformation suppressors may reflect the relative affinity for Ras proteins; that is, wild-type NF1-15 GRD has 20 times higher affinity for Ras than GAP (see Martin et al. Cell 63:843-850); mutant NF1-GRDs may have even greater affinities. In relation to this, it should be noted that Ballester et al. (1990) Cell 63:851-859 previously observed the inhibitory effect of wild-type NF1-GRD but not of GAP on c-Ha-Ras Vall2 expressed in yeast 20 cells. This is consistent with the observation that wildtype NF1-GRD can weakly suppress v-Ras-transformation in mammalian cells. The second observation supporting this model is that NF201 can suppress the activity of not only RAS2 Val19 and RAS2 Leu68, but also RAS2 Ser41. It has been 25 shown that Ser41 mutation (corresponding to Ser34 of human Ras), which is located in the so-called "effector region," disrupts the effective binding of Ras2 proteins to yeast Ira proteins as well as NF1-GRD and GAP (Tanaka et al. 30 (1992) Mol. Cell. Biol. 12:631-637). Thus, the fact that NF201 can inhibit the activity of RAS2 Ser41 strongly suggests that the mutation in NF201 restores the interaction between RAS2Ser41 and NF1-GRD. Comparison of the relative affinities of wild-type and mutant NF1-GRDs 35 for oncogenic Ras proteins should provide a test for this model. This model predicts that highly specific reagents could be produced having specificity only for blocking

oncogenic Ras effects while having virtually no effects on normal Ras.

In summary, the data presented herein demonstrated that NF1-GRDs with single amino acid substitutions can suppress the biological activity of oncogenic Ras. According to the proposed model, mutant NF1-GRDs could inhibit specifically oncogenic but not normal Ras. case of normal Ras • GTP, bound GTP would be rapidly hydrolyzed to GDP upon interaction with NF1-GRD, and NF1-10 GRD would be released from Ras.GDP. In this study, a mutant NF1-GRD was expressed as a protein of 578 amino acids, which is still a substantially large protein. yeast screening system described will allow determination of the minimum fragment of NF1-GRD which retains anti-15 oncogenic activity. This approach will allow development of Ras-specific anti-oncogenic compounds.

All references cited herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.

20

25

SEQUENCE LISTING

5		
	(1) GENE	AL INFORMATION:
10	(i)	APPLICANT: Schering Corp.
10	(ii)	TITLE OF INVENTION: RAS Associated GAP Protein
	(iii)	NUMBER OF SEQUENCES: 2
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Schering Corp. (B) STREET: 1 Girald Farms (C) CITY: Madison
20		(D) STATE: New Jersey (E) COUNTRY: USA
		(F) ZIP: 94304-1104
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Macintosh (C) OPERATING SYSTEM: 6.0.8 (D) SOFTWARE: Microsoft Word 5.1a
30	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/004,824 (B) FILING DATE: 15-JAN-1993 (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Lunn, Paul G. (B) REGISTRATION NUMBER: 32,743 (C) REFERENCE/DOCKET NUMBER: DX0352 PCT
40	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (201)822-7255 (B) TELEFAX: (201)822-7039
4.5	(2) INFO	MATION FOR SEQ ID NO:1:
45		SEQUENCE CHARACTERISTICS: (A) LENGTH: 2485 amino acids (B) TYPE: amino acid
50		(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: protein
55	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens
60	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 5649380

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:1:						
5	Asn 1	Trp	Glu	Asp	Asn 5	Ser	Val	Ile	Phe	Leu 10	Leu	Val	Gln	Ser	Met 15	Val
	Val	Asp	Leu	Lys 20	Asn	Leu	Leu	Phe	Asn 25	Pro	Ser	Lys	Pro	Phe 30	Ser	Arg
10	Gly	Ser	Gln 35	Pro	Ala	Asp	Val	Asp 40	Leu	Met	Ile	Asp	Cys 45	Leu	Val	Ser
15	Cys	Phe 50	Arg	Ile	Ser	Pro	His 55	Asn	Asn	Gln	His	Phe 60	Lys	Ile	Cys	Leu
	Ala 65	Gln	Asn	Ser	Pro	Ser 70	Thr	Phe	His	Tyr	Val 75	Leu	Val	Asn	Ser	Leu 80
20	His	Arg	Ile	Ile	Thr 85	Asn	Ser	Ala	Leu	A sp 90	Trp	Trp	Pro	Lys	Ile 95	Asp
	Ala	Val	Tyr	Cys 100	His	Ser	Val	Glu	Leu 105	Arg	Asn	Met	Phe	Gly 110	Glu	Thr
25	Leu	His	Lys 115	Ala	Val	Gln	Gly	Cys 120	Gly	Ala	His	Pro	Ala 125	Ile	Arg	Met
30		Pro 130					135					140				
	145	Lys				150					155					160
35		Ile			165					170					175	•
4.0		Arg		180					185					190		
40		Gly	195					200				,	205			
45		Glu 210					215					220				
	225	Leu				230					235					240
50	٠	Gln			245					250					255	
		Ser		260	•				265					270		
55		Asn	275					280					285	-		·
60		Phe 290					295					300				
	Asn 305	Thr	Ser	Gln	Met	Ser 310	Met	Asp	His	Glu	Glu 315	Leu	Leu	Arg	Thr	Pro 320

	Gly	Ala	Ser	Leu	Arg 325	Lys	Gly	Lys	Gly	Asn 330	Ser	Ser	Met	Asp	Ser 335	Ala
5	Ala	Gly	Cys	Ser 340	Gly	Thr	Pro	Pro	Ile 345	Cys	Arg	Gln	Ala	Gln 350	Thr	Lys
10	Leu	Glu	Val 355	Ala	Leu	Tyr	Met	Phe 360	Leu	Trp	Asn	Pro	Asp 365	Thr	Glu	Ala
10	Val	Leu 370	Val	Ala	Met	Ser	Cys 375	Phe	Arg	His	Leu	Cys 380	Glu	Glu	Ala	Asp
15	Ile 385	Arg	Cys	Gly	Val	Asp 390	Glu	Val	Ser	Val	His 395	Asn	Leu	Leu	Pro	Asn 400
	Tyr	Asn	Thr	Phe	Met 405	Glu	Phe	Ala	Ser	Val 410	Ser	Asn	Met	Met	Ser 415	Thr
20	Gly	Arg	Ala	Ala 420	Leu	Gln	Lys	Arg	Val 425	Met	Ala	Leu	Leu	Arg 430	Arg	Ile
25	Glu	His	Pro 435	Thr	Ala	Gly	Asn	Thr 440	Glu	Ala	Trp	Glu	Asp 445	Thr	His	Ala
23	Lys	Trp 450	Glu	Gln	Ala	Thr	Lys 45 5	Leu	Ile	Leu	Asn	Tyr 460	Pro	Lys	Ala	Lys
30	Met 465	Glu	Asp	Gly	Gln	Ala 470	Ala	Glu	Ser	Leu	His 475	Lys	Thr	Ile	Val	Lys 480
	Arg	Arg	Met	Ser	His 485	Val [°]	Ser	Gly	Gly	Gly 490	Ser	Ile	Asp	Leu	Ser 495	Asp
35	Thr	Asp	Ser	Leu 500	Gln	Glu	Trp	Ile	Asn 505	Met	Thr	Gly	Phe	Leu 510	Cys	Ala
40	Leu	Gly	Gly 515	Val	Cys	Leu	Gln	Gln 520	Arg	Ser	Asn	Ser	Gly 525	Leu	Ala	Thr
	Tyr	Ser 530	Pro	Pro	Met	Gly	Pro 535	Val	Ser	Glu	Arg	Lys 540	Gly	Ser	Met	Ile
45	Ser 545	Val	Met	Ser	Ser	Glu 550	Gly	Asn	Ala	Asp	Thr 555	Pro	Val	Ser	Lys	Phe 560
	Met	Asp	Arg	Leu	Leu 565	Ser	Leu	Met	Val	Cys 570	Asn	His	Glu	Lys	Val 575	Gly
50	Leu	Gln	Ile	Arg 580	Thr	Asn	Val	Lys	Asp 585	Leu	Val	Gly	Leu	Glu 590	Leu	Ser
55	Pro	Ala	Leu 595	Tyr	Pro	Met	Leu	Phe 600	Asn	Lys	Leu	Lys	Asn 605	Thr	Ile	Ser
	Lys	Phe 610	Phe	Asp	Ser	Gln	Gly 615	Gln	Val	Leu	Leu	Thr 620	Asp	Thr	Asn	Thr
60	Gln 625	Phe	Val	Glu	Gln	Thr 630	Ile	Ala	Ile	Met	Lys 635	Asn	Leu	Leu	Asp	Asn 640

	His	Thr	Glu	Gly	Ser 645	Ser	Glu	His	Leu	Gly 650	Gln	Ala	Ser	Ile	Glu 655	Thr
5	Met	Met	Leu	Asn 660	Leu	Val	Arg	Tyr	Val 665	Arg	Val	Leu	Gly	Asn 670	Met	Val
	His	Ala	Ile 675	Gln	Ile	Lys	Thr	Lys 680	Leu	Cys	Gln	Leu	Val 685	Glu	Val	Met
10	Met	Ala 6 90	Arg	Arg	Asp	Asp	Leu 695	Ser	Phe	Cys	Gln	Glu 700	Met	Lys	Phe	Arg
15	Asn 705	Lys	Met	Val	Glu	Tyr 710	Leu	Thr	Asp	Trp	Val 715	Met	Gly	Thr	Ser	Asn 720
	Gln	Ala	Ala	Asp	Asp 725	Asp	Val	Lys	Cys	Leu 730	Thr	Arg	Asp	Leu	Asp 735	Gln
20	Ala	Ser	Met	Glu 740	Ala	Val	Val	Ser	Leu 745	Leu	Ala	Gly	Leu	Pro 750	Leu	Gln
	Pro	Glu	Glu 755	Gly	qaA	Gly	Val	Glu 760	Leu	Met	Glu	Ala	Lys 765	Ser	Gln	Leu
25	Phe	Leu 7 70	Lys	Tyr	Phe	Thr	Leu 775	Phe	Met	Asn	Leu	Leu 780	Asn	Asp	Суѕ	Ser
30	Glu 785	Val	Glu	Asp	Glu	Ser 790	Ala	Gln	Thr	Gly	Gly 79 5	Arg	Lys	Arg	Gly	Met 800
	Ser	Arg	Arg	Leu	Ala 805	Ser	Leu	Arg	His	Cys 810	Thr	Val	Leu	Ala	Met 815	Ser
35	Asn	Leu	Leu	Asn 820	Ala	Asn	Val	Asp	Ser 825	Gly	Leu	Met	His	Ser 8 30	Ile	Gly
	Leu	Gly	Tyr 835	His	Lys	Asp	Leu	Gln 840	Thr	Arg	Ala	Thr	Phe 845	Met	Glu	Val
40	Leu	Thr 850	Lys	Ile	Leu	Gln	Gln 855	Gly	Thr	Glu	Phe	Asp 86 0	Thr	Leu	Ala	Glu

	Thr 865	Val	Leu	Ala	Asp	Arg 870	Phe	Glu	Arg	Leu	Val 875	Glu	Leu	Val	Thr	Met 880
5	Met	Gly	Asp	Gln	Gly 885	Glu	Leu	Pro	Ile	Ala 890	Met	Ala	Leu	Ala	Asn 895	Val
10	Val	Pro	Cys	Ser 900	Gln	Trp	Asp	Glu	Leu 905	Ala	Arg	Val	Leu	Val 910	Thr	Leu
10	Phe	Asp	Ser 915	Arg	His	Leu	Leu	Tyr 920	Gln	Leu	Leu	Trp	Asn 925	Met	Phe	Ser
15	Lys	Glu 930	Val	Glu	Leu	Ala	Asp 935	Ser	Met	Gln	Thr	Leu 940	Phe	Arg	Gly	Asn
	Ser 945	Leu	Ala	Ser	Lys	11e 950	Met	Thr	Phe	Cys	Phe 955	Lys	Val	Tyr	Gly	Ala 960
20	Thr	Tyr	Leu	Gln	Lys 965	Leu	Leu	Asp	Pro	Leu 970	Leu	Arg	Ile	Val	Ile 975	Thr
25	Ser	Ser	Asp	Trp 980	Gln	His	Val	Ser	Phe 985	Glu	Val	Asp	Pro	Thr 990	Arg	Leu
23	Glu	Pro	Ser 995	Glu	Ser	Leu	Glu	Glu 1000	Asn)	Gln	Arg	Asn	Leu 100		Gln	Met
30	Thr	Glu 101	-	Phe	Phe	His	Ala 1015		Ile	Ser	Ser	Ser 102		Glu	Phe	Pro
·	Pro 102		Leu	Arg	Ser	Val 1030	_	His	Cys	Leu	Tyr 1039		Val	Val	Ser	Gln 1040
35	Arg	Phe	Pro	Gln	Asn 1049		Ile	Gly	Ala	Val 1050		Ser	Ala	Met	Phe 1055	
40	Arg	Phe	Ile	Asn 1060		Ala	Ile	Val	Ser 1069		Tyr	Glu	Ala	Gly 1070		Leu
	Asp	Lys	Lys 1075		Pro	Pro	Arg	Ile 1080	Glu)	Arg	Gly	Leu	Lys 1089		Met	Ser
45	Lys	Ile 1090		Gln	Ser	Ile	Ala 1095		His	Val	Leu	Leu 110		Lys	Glu	Glu
	His 110		Arg	Pro	Phe	Asn 111		Phe	Val	Lys	Ser 111		Phe	Asp	Ala	Ala 1120
50	Arg	Arg	Phe	Phe	Leu 1125	_	Ile	Ala	Ser	Asp 1130		Pro	Thr	Ser	Asp 1135	
55	Val	Asn	His	Ser 1140		Ser	Phe	Ile	Ser 114	_	Gly	Asn	Val	Leu 115		Leu
	His	Arg	Leu 1155		Trp	Asn	Asn	Gln 1160	Glu)	Lys	Ile	Gly	Gln 116		Leu	Ser
60	Ser	Asn 1170		Asp	His	Lys	Ala 1179		Gly	Arg	Arg	Pro 118		Asp	Lys	Met

	Ala Thr Leu Leu Ala Tyr Leu Gly Pro Pro Glu His Lys Pro Val Ala 1185 1190 1195 1200
5	Asp Thr His Trp Ser Ser Leu Asn Leu Thr Ser Ser Lys Phe Glu Glu 1205 1210 1215
	Phe Met Thr Arg His His Gln Val His Glu Lys Glu Glu Phe Lys Ala 1220 1225 1230
10	Leu Lys Thr Leu Ser Ile Phe Tyr Gln Ala Gly Thr Ser Lys Ala Gly 1235 1240 1245
15	Asn Pro Ile Phe Tyr Tyr Val Ala Arg Arg Phe Lys Thr Gly Gln Ile 1250 1255 1260
	Asn Gly Asp Leu Leu Ile Tyr His Val Leu Leu Thr Leu Lys Pro Tyr 1265 1270 1275 1280
20	Tyr Ala Lys Pro Tyr Glu Ile Val Val Asp Leu Thr His Thr Gly Pro 1285 1290 1295
	Ser Asn Arg Phe Lys Thr Asp Phe Leu Ser Lys Trp Phe Val Val Phe 1300 1305 1310
25	Pro Gly Phe Ala Tyr Asp Asn Val Ser Ala Val Tyr Ile Tyr Asn Cys 1315 1320 1325
30	Asn Ser Trp Val Arg Glu Tyr Thr Lys Tyr His Glu Arg Leu Leu Thr 1330 1335 1340
	Gly Leu Lys Gly Ser Lys Arg Leu Val Phe Ile Asp Cys Pro Gly Lys 1345 1350 1355 1360
35	Leu Ala Glu His Ile Glu His Glu Gln Cln Lys Leu Pro Ala Ala Thr 1365 1370 1375
40	Leu Ala Leu Glu Glu Asp Leu Lys Val Phe His Asn Ala Leu Lys Leu 1380 1385 1390
40	Ala His Lys Asp Thr Lys Val Ser Ile Lys Val Gly Ser Thr Ala Val 1395 1400 1405
45	Gln Val Thr Ser Ala Glu Arg Thr Lys Val Leu Gly Gln Ser Val Phe 1410 1415 1420
	Leu Asn Asp Ile Tyr Tyr Ala Ser Glu Ile Glu Glu Ile Cys Leu Val 1425 1430 1435 1440
50	Asp Glu Asn Gln Phe Thr Leu Thr Ile Ala Asn Gln Gly Thr Pro Leu 1445 1450 1455
	Thr Phe Met His Gln Glu Cys Glu Ala Ile Val Gln Ser Ile Ile His 1460 1465 1470
55	Ile Arg Thr Arg Trp Glu Leu Ser Gln Pro Asp Ser Ile Pro Gln His 1475 1480 1485
60	Thr Lys Ile Arg Pro Lys Asp Val Pro Gly Thr Leu Leu Asn Ile Ala 1490 1495 1500

	Leu 1509		Asn	Leu	Gly	Ser 151		Asp	Pro	Ser	Leu 151		Ser	Ala	Ala	Tyr 1520
5	Asn	Leu	Leu	Cys	Ala 1525		Thr	Cys	Thr	Phe 1530		Leu	Lys	Ile	Glu 1535	Gly
10	Gln	Leu	Leu	Glu 1540		Ser	Gly	Leu	Cys 1549		Pro	Ala	Asn	Asn 1550	Thr	Leu
10	Phe	Ile	Val 1555		Ile	Ser	Lys	Thr 1560		Ala	Ala	Asn	Glu 1569		His	Leu
15	Thr	Leu 1570		Phe	Leu	Glu	Glu 1575		Ile	Ser	Gly	Phe 1580		Lys	Ser	Ser
	Ile 1585		Leu	Lys	His	Leu 1590	_	Leu	Glu	Tyr	Met 1599		Pro	Trp	Leu	Ser 1600
20	Asn	Leu	Val	Arg	Phe 1605	_	Lys	His	Asn	Asp 1610		Ala	Lys	Arg	Gln 1615	-
25	Val	Thr	Ala	Ile 1620		Asp	Lys	Leu	Ile 1625		Met	Thr	Ile	Asn 1630	Glu)	Lys
23	Gln	Met	Tyr 1635		Ser	Ile	Gln	Ala 1640		Ile	Trp	Gly	Ser 1645		Gly	Gln
30	Ile	Thr 1650		Leu	Leu	Asp	Val 1655		Leu	Asp	Ser	Phe 1660		Lys	Thr	Ser
	Ala 1665		Gly	Gly	Leu	Gly 1670		Ile	Lys	Ala	Glu 1675		Met	Ala	Asp	Thr 1680
35	Ala	Val	Ala	Leu	Ala 1685		Gly	Asn	Val	Lys 1690		Val	Ser	Ser	Lys 1695	
40	Ile	Gly	Arg	Met 1700		Lys	Ile	Ile	Asp 1705		Thr	Cys	Leu	Ser 1710	Pro	Thr
	Pro	Thr	Leu 1715		Gln	His	Leu	Met 1720	_	Asp	Asp	Ile	Ala 1725		Leu	Ala
45	Arg	Tyr 1730		Leu	Met	Leu	Ser 1735		Asn	Asn	Ser	Leu 1740		Val	Ala	Ala
•	His 1745		Pro	Tyr	Leu	Phe 1750		Val	Val	Thr	Phe 1755		Val	Ala	Thr	Gly 1760
50	Pro	Leu	Ser	Leu	Arg 1765		Ser	Thr	His	Gly 1770		Val	Ile	Asn	Ile 1775	
55	His	Ser	Leu	Cys 1780		Cys	Ser	Gln	Leu 1785		Phe	Ser		Glu 1790	Thr	Lys
- -	Gln	Val	Leu 1795		Leu	Ser	Leu	Thr 1800		Phe	Ser	Leu	Pro 1805	_	Phe	Tyr
60	Leu	Leu 1810		Gly	Ile	Ser	Lys 1815		Lys	Ser	Ala	Ala 1820		Ile	Ala	Phe

5	Arg Ser Ser Tyr Arg Asp Arg Ser Phe Ser Pro Gly Ser Tyr Glu Arg 1825 1830 1835 1840
J	Glu Thr Phe Ala Leu Thr Ser Leu Glu Thr Val Thr Glu Ala Leu Leu 1845 1850 1855
10	Glu Ile Met Glu Ala Cys Met Arg Asp Ile Pro Thr Cys Lys Trp Leu 1860 1865 1870
	Asp Gln Trp Thr Glu Leu Ala Gln Arg Phe Ala Phe Gln Tyr Asn Pro 1875 1880 1885
15	Ser Leu Gln Pro Arg Ala Leu Val Val Phe Gly Cys Ile Ser Lys Arg 1890 1895 1900
20	Val Ser His Gly Gln Ile Lys Gln Ile Ile Arg Ile Leu Ser Lys Ala 1905 1910 1915 1920
20	Leu Glu Ser Cys Leu Lys Gly Pro Asp Thr Tyr Asn Ser Gln Val Leu 1925 1930 1935
25	Ile Glu Ala Thr Val Ile Ala Leu Thr Lys Leu Gln Pro Leu Leu Asn 1940 1945 1950
	Lys Asp Ser Pro Leu His Lys Ala Leu Phe Trp Val Ala Val Ala Val 1955 1960 1965
30	Leu Gln Leu Asp Glu Val Asn Leu Tyr Ser Ala Gly Thr Ala Leu Leu 1970 1975 1980
	Glu Gln Asn Leu His Thr Leu Asp Ser Leu Arg Ile Phe Asn Asp Lys 1985 1990 1995 2000
35	Ser Pro Glu Glu Val Phe Met Ala Ile Arg Asn Pro Leu Glu Trp His 2005 2010 2015
40	Cys Lys Gln Met Asp His Phe Val Gly Leu Asn Phe Asn Ser Asn Phe 2020 2025 2030
	Asn Phe Ala Leu Val Gly His Leu Leu Lys Gly Tyr Arg His Pro Ser 2035 2040 2045
45	Pro Ala Ile Val Ala Arg Thr Val Arg Ile Leu His Thr Leu Leu Thr 2050 2055 2060
F.0	Leu Val Asn Lys His Arg Asn Cys Asp Lys Phe Glu Val Asn Thr Gln 2065 2070 2075 2080
50	Ser Val Ala Tyr Leu Ala Ala Leu Leu Thr Val Ser Glu Glu Val Arg
55	Ser Arg Cys Ser Leu Lys His Arg Lys Ser Leu Leu Thr Asp Ile
	Ser Met Glu Asn Val Pro Met Asp Thr Tyr Pro Ile His His Gly Asp 2115 2120 2125
60	Pro Ser Tyr Arg Thr Leu Lys Glu Thr Gln Pro Trp Ser Ser Pro Lys 2130 2135 2140

	Gly 214		Glu	Gly	Tyr	Leu 215		Ala	Thr	Tyr	Pro 215		Val	Gly	Gln	Thr 2160
5	Ser	Pro	Arg	Ala	Arg 216		Ser	Met	Ser	Leu 217		Met	Gly	Gln	Pro 217	
	Gln	Ala	Asn	Thr 2180	-	Lys	Leu	Leu	Gly 218		Arg	Lys	Ser	Phe 219	_	His
10	Leu	Ile	Ser 219	_	Thr	Lys	Ala	Pro 220		Arg	Gln	Glu	Met 220		Ser	Gly
15	Ile	Thr 221		Pro	Pro	Lys	Met 221	_	Arg	Val	Ala	Glu 222		Asp	Tyr	Glu
	Met 222	Glu 5	Thr	Gln	Arg	Ile 223		Ser	Ser	Gln	Gln 223		Pro	His	Leu	Arg 2240
20	Lys	Val	Ser	Val	Ser 2245		Ser	Asn	Val	Leu 2250		Asp	Glu	Glu	Val 2255	
	Thr	Asp	Pro	Lys 2260		Gln	Ala	Leu	Leu 2265		Thr	Val	Leu	Ala 2270		Leu
25	Val	Lys	Tyr 2275		Thr	Asp	Glu	Phe 2280		Gln	Arg	Ile	Leu 2285	_	Glu	Tyr
30	Leu	Ala 2290		Ala	Ser	Val	Val 2295		Pro	Lys	Val	Phe 2300		Val	Val	His
	Asn 230	Leu 5	Leu	Asp	Ser	Lys 2310		Asn	Thr	Leu	Leu 2315		Leu	Cys	Gln	Asp 2320
35	Pro	Asn	Leu	Leu	Asn 2325		Ile	His	Gly	Ile 2330		Gln	Ser	Val	Val 2335	_
	His	Glu	Glu	Ser 2340		Pro	Gln	Tyr	Gln 2345		Ser	Tyr		Gln 2350		Phe
40.	Gly	Phe	Asn 2355		Leu	Trp	Arg	Phe 2360		Gly	Pro	Phe	Ser 2365	_	Gln	Thr
45	Gln	Ile 2370		Asp	Tyr	Ala	Glu 2375		Ile	Val	Lys	Phe 2380		Asp	Ala	Leu
	Ile 2385	Asp	Thr	Tyr		Pro 2390		Ile	Asp		Glu 2395		Ser	Glu	Glu	Ser 2400
50	Leu	Leu	Thr	Pro	Thr 2405		Pro	Tyr		Pro 2410		Leu	Gln ·	Ser	Gln 2415	
55	Ser	Ile		Ala 2420		Leu	Asn	Leu	Ser 2425		Ser	Met		Ser 2430		Ala
<i>J J</i>	Thr	Ser	Gln 2435		Ser	Pro		Ile 2440		Lys	Glu	Asn	Val 2445		Leu	Ser
60	Pro	Thr 2450		Gly	His	Cys	Asn 2455		Gly	Arg	Thr	Arg 2460		Gly	Ser	Ala

	Ser 246		Val	Gln	Lys	Gln 247		Ser	Ala	Gly	Ser 247		Lys	Arg	Asn	Ser 2480
5	·Ile	Lys	Lys	Ile	Val 248											
	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0:2:									
10	(i)	(A (B (C) LE) TY) ST	NGTH PE: A RAND	: 24 amin EDNE	TERI 85 a o ac SS:	mino id sing	aci	ds							
15	(ii)	MOL	ECUL:	E TY	PE:]	prot	ein									
20	(vi)	ORI				: Homo	sap	iens								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Asn Trp Glu Asp Asn Ser Val Ile Phe Leu Leu Val Gln Ser Met Val															
25		Trp	Glu	Asp	Asn 5	Ser	Val	Ile	Phe	Leu 10	Leu	Val	Gln	Ser	Met 15	Val
	Val	Asp	Leu	Lys 20	Asn	Leu	Leu	Phe	Asn 25	Pro	Ser	Lys	Pro	Phe 30	Ser	Arg
30	Gly	Ser	Gln 35	Pro	Ala	Asp	Val	Asp 40	Leu	Met	Ile	Asp	Cys 45	Leu	Val	Ser
35	Cys	Phe 50	Arg	Ile	Ser	Pro	His 55	Asn	Asn	Gln	His	Phe 60	Lys	Ile	Cys	Leu
	Ala 65	Gln	Asn	Ser	Pro	Ser 70	Thr	Phe	His	Tyr	Val 75	Leu	Val	Asn	Ser	Leu 80
40	His	Arg	Ile	Ile	Thr 85	Asn	Ser	Ala	Leu	Asp 90	Trp	Trp	Pro	Lys	Ile 95	Asp
	Ala	Val	Tyr	Cys 100	His	Ser	Val	Glu	Leu 105	Arg	Asn	Met	Phe	Gly 110	Glu	Thr
45	Leu	His	Lys 115		Val	Gln	Gly	Cys 120	Gly	Ala	His	Pro	Ala 125	Ile	Arg	Met
50	Ala	Pro 130	Ser	Leu	Thr	Phe	Lys 135	Glu	Lys	Val	Thr	Ser 140	Leu	Lys	Phe	Lys
	Glu 145	Lys	Pro	Thr	Asp	Leu 150	Glu	Thr	Arg	Ser	Tyr 1 55	Lys	Tyr	Leu	Leu	Leu 160
55	Ser	Ile	Val	Lys	Leu 165	Ile	His	Ala	Asp	Pro 170	Lys	Leu	Leu	Leu	Cys 175	Asn
	Pro	Arg	Lys	Gln 180	Gly	Pro	Glu	Thr	Gln 185	Gly	Ser	Thr	Ala	Glu 190	Leu	Ile
60	Thr	Gly	Leu 195	Val	Gln	Leu	Val	Pro 200	Gln	Ser	His	Met	Pro 205	Glu	Ile	Ala

	Gln	Glu 210		Met	Glu	Ala	Leu 215	Leu	Val	Leu	His	Gln 220		Asp	Ser	Ile
5	Asp 225		Trp	Asn	Pro	Asp 230	Ala	Pro	Val	Glu	Thr 235	Phe	Trp	Glu	Ile	Ser 240
	Ser	Gln	Met	Leu	Phe 245	Tyr	Ile	Cys	Lys	Lys 250	Leu	Thr	Ser	His	Gln 255	Met
10	Leu	Ser	Ser	Thr 260	Glu	Ile	Leu	Lys	Trp 265	Leu	Arg	Glu	Ile	Leu 270	Ile	Cys
15	Arg	Asn	Lys 275	Phe	Leu	Leu	Lys	Asn 280	Lys	Gln	Ala	Asp	Arg 285	Ser	Ser	Cys
	His	Phe 290	Leu	Leu	Phe	Tyr	Gly 295	Val	Gly	Cys	Asp	Ile 300	Pro	Ser	Ser	Gly
20	Asn 305	Thr	Ser	Gln	Met	Ser 310	Met	Asp	His	Glu	Glu 315	Leu	Leu	Arg	Thr	Pro 320
	Gly	Ala	Ser	Leu	Arg 325	Lys	Gly	Lys	Gly	Asn 330	Ser	Ser	Met	Asp	Ser 335	Ala
25	Ala	Gly	Cys	Ser 340	Gly	Thr	Pro	Pro	Ile 345	Cys	Arg	Gln	Ala	Gln 350	Thr	Lys
30	Leu	Glu	Val 355	Ala	Leu	Tyr	Met	Phe 360	Leu	Trp	Asn	Pro	Asp 365	Thr	Glu	Ala
	Val	Leu 370	Val	Ala	Met	Ser	Cys 375	Phe	Arg	His	Leu	Cys 380	Glu	Glu	Ala	Asp
35	Ile 385	Arg	Сув	Gly	Val	Asp 390	Glu	Val	Ser	Val	His 395	Asn	Leu	Leu	Pro	Asn 400
	Tyr	Asn	Thr	Phe	Met 405	Glu	Phe	Ala	Ser	Val 410	Ser	Asn	Met	Met	Ser 41 5	Thr
40	Gly	Arg	Ala	Ala 420	Leu	Gln	Lys	Arg	Val 425	Met	Ala	Leu	Leu	Arg 430	Arg	Ile
45	Glu	His	Pro 435	Thr	Ala	Gly	Asn	Thr 440	Glu	Ala	Trp	Glu	Asp 445	Thr	His	Ala
	Lys	Trp 450	Glu	Gln	Ala	Thr	Lys 455	Leu	Ile	Leu	Asn	Tyr 460	Pro	Lys	Ala	Lys
50	Met 465	Glu	Asp	Gly	Gln	Ala 470	Ala	Glu	Ser	Leu	His 475	Lys	Thr	Ile	Val	Lys 480
5 5	Arg	Arg	Met	Ser	His 485	Val	Ser	Gly	Gly	Gly 490	Ser	Ile	Asp	Leu	Ser 495	Asp
	Thr	Asp	Ser	Leu 500	Gln	Glu	Trp	Ile	Asn 505	Met	Thr	Gly	Phe	Leu 510	Cys	Ala
60	Leu		Gly 515	Val	Cys	Leu		Gln 520	Arg	Ser	Asn	Ser	Gly 525	Leu	Ala	Thr

	Tyr	Ser 530	Pro	Pro	Met	Gly	Pro 535	Val	Ser	Glu	Arg	Lys 540	Gly	Ser	Met	Ile
5	Ser 545	Val	Met	Ser	Ser	Glu 550	Gly	Asn	Ala	Asp	Thr 555	Pro	Val	Ser	Lys	Phe 560
	Met	Asp	Arg	Leu	Leu 565	Ser	Leu	Met	Val	Cys 570	Asn	His	Glu	Lys	Val 575	Gly
10	Leu	Gln	Ile	Arg 580	Thr	Asn	Val	Lys	Asp 585	Leu	Val	Gly	Leu	Glu 590	Leu	Ser
15	Pro	Ala	Leu 595	Tyr	Pro	Met	Leu	Phe 600	Asn	Lys	Leu	Lys	Asn 605	Thr	Ile	Ser
	Lys	Phe 610	Phe	Asp	Ser	Gln	Gly 615	Gln	Val	Leu	Leu	Thr 620	Asp	Thr	Asn	Thr
20	Gln 625	Phe	Val	Glu	Gln	Thr 630	Ile	Ala	Ile	Met	Lys 635	Asn	Leu	Leu	Asp	Asn 640
	His	Thr	Glu	Gly	Ser 645	Ser	Glu	His	Leu	Gly 650	Gln	Ala	Ser	Ile	Glu 655	Thr
25				660					665			Leu		670		
30			67 5					680				Leu	685			
		690					6 95					Glu 700				
35	705	гÀг	Met	Val	GIU	710	Leu	Thr	Asp	Trp	715	Met	Gly	Thr	Ser	Asn 720
40	Gln	Ala	Ala	Asp	Asp 725	Asp	Val	Lys	Cys	Leu 730	Thr	Arg	Asp	Leu	Asp 735	Gln
	Ala	Ser	Met	Glu 740	Ala	Val	Val	Ser	Leu 745	Leu	Ala	Gly	Leu	Pro 750	Leu	Gln
45			755					760					765			Leu
		770					775	٠				Leu 780		_	_	
50	785					790					795	Arg				800
55				•	805					810		Val			815	
				820					825			Met		830		_
60	Leu	Gly	Tyr 835	His	Lys	Asp	Leu	Gln 840	Thr	Arg	Ala	Thr	Phe 845	Met	Glu	Val

	Leu	Thr 850	Lys	Ile	Leu	Gln	Gln 855	Gly	Thr	Glu	Phe	Asp 860	Thr	Leu	Ala	Glu
5	Thr 865	Val	Leu	Ala	Asp	Arg 870	Phe	Glu	Arg	Leu	Val 875	Glu	Leu	Val	Thr	Met 880
	Met	Gly	Asp	Gln	Gly 885	Glu	Leu	Pro	Ile	Ala 890	Met	Ala	Leu	Ala	Asn 895	Val
10	Val	Pro	Cys	Ser 900	Gln	Trp	Asp	Glu	Leu 905	Ala	Arg	Val	Leu	Val 910	Thr	Leu
15	Phe	Asp	Ser 915	Arg	His	Leu	Leu	Tyr 920	Gln	Leu	Leu	Trp	Asn 925	Met	Phe	Ser
	Lys	Glu 930	Val	Glu	Leu	Ala	Asp 935	Ser	Met	Gln	Thr	Leu 940	Phe	Arg	Gly	Asn
20	Ser 945	Leu	Ala	Ser	Lys	Ile 950	Met	Thr	Phe	Cys	Phe 955	Lys	Val	Tyr	Gly	Ala 960
,	Thr	Tyr	Leu	Gln	Lys 965	Leu	Leu	Asp	Pro	Leu 970	Leu	Arg	Ile	Val	Ile 975	Thr
2 5	Ser	Ser	Asp	Trp 980	Gln	His	Val	Ser	Phe 985	Glu	Val	Asp	Pro	Thr 990	Arg	Leu
30	Glu	Pro	Ser 995	Glu	Ser	Leu	Glu	Glu 1000		Gln	Arg	Asn	Leu 1005		Gln	Met
	Thr	Glu 1010		Phe	Phe	His	Ala 1015		Ile	Ser	Ser	Ser 1020		Glu	Phe	Pro
35	Pro 1025		Leu	Arg	Ser	Val 1030		His	Cys	Leu	Tyr 1035		Val	Val	Ser	Gln 1040
40	Arg	Phe	Pro	Gln	Asn 1045		Ile	Gly	Ala	Val 1050	_	Ser	Ala	Met	Phe 1055	
	Arg	Phe	Ile	Asn 1060		Ala	Ile	Val	Ser 1065	Pro	Tyr	Glu	Ala	Gly 1070		Leu
45	Asp	Lys	Lys 1075		Pro	Pro	Arg	Ile 1080		Arg	Gly	Leu	Lys 1085		Met	Ser
	Lys	Ile 1090		Gln	Ser	Ile	Ala 1095		His	Val	Leu	Phe 1100		Arg	Glu	Glu
50	His 1105		Arg	Pro	Phe	Asn 1110		Phe	Val	Lys	Ser 1115		Phe	Asp	Ala	Ala 1120
55	Arg	Arg	Phe		Leu 1125		Ile	Ala	Ser	Asp 1130		Pro	Thr	Ser	Asp 1135	
•	Val	Asn	His	Ser 1140		Ser	Phe	Ile	Ser 1145	Asp	Gly	Asn	Val	Leu 1150		Leu
60	His	Arg	Leu 1155		Trp	Asn	Asn	Gln 1160		Lys	Ile	Gly	Gln 1165	_	Leu	Ser

	Ser Asn 1170	Arg Asp Hi	s Lys Ala 117		Arg Arg Pro		Lys Met
5	Ala Thr 1185	Leu Leu Al	a Tyr Leu 1190	Gly Pro	Pro Glu His 1195	Lys Pro	Val Ala 1200
	Asp Thr	His Trp Se			Thr Ser Ser 1210	Lys Phe	Glu Glu 1215
10	Phe Met	Thr Arg Hi	s His Gln	Val His (Glu Lys Glu	Glu Phe 1230	-
15	Leu Lys	Thr Leu Sei 1235	r Ile Phe	Tyr Gln /	Ala Gly Thi	Ser Lys 1245	Ala Gly
	Asn Pro 1250	Ile Phe Ty:)	r Tyr Val 125		Arg Phe Lys	_	Gln Ile
20	1265	Asp Leu Le	1270		1275	_	1280
		Lys Pro Ty:	35	:	1290		1295
25		Arg Phe Lys		1305		1310)
30		Phe Ala Ty: 1315	c Asp Asn	1320	Ala Val Tyr	1325	Asn Cys
	Asn Ser 1330	Trp Val Arg	Glu Tyr 133!		Tyr His Glu 134	_	Leu Thr
35	Gly Leu 1345	Lys Gly Ser	Lys Arg 1350	Leu Val	Phe Ile Asp 1355	Cys Pro	Gly Lys 1360
40		Glu His Ile 136	55	:	1370		1375
		Leu Glu Glu 1380	•	1385		1390)
45		Lys Asp Thi		1400		1405	
E0	1410		1415	5	142	10	
50	1425	Asp Ile Tyr	1430		1435		1440
55		Asn Gln Phe	15	:	L450		1455
·.	IIIL FIIC	Met His Glr 1460	. Giu Cys	1465	rie val GII	1470	
	Tle Ara	Thr Arg Trp	Clu Leu	Ser Cln 1	Dro Aco Co-	Tlo Dw-	Cla III-

	Leu	Leu 181		Gly	Ile	Ser	Lys 181		Lys	Ser	Ala	Ala 182		Ile	Ala	Phe
5	Arg 182		Ser	Tyr	Arg	Asp 183		Ser	Phe	Ser	Pro 183		Ser	Tyr	Glu	Arg 1840
	Glu	Thr	Phe	Ala	Leu 184		Ser	Leu	Glu	Thr 185		Thr	Glu	Ala	Leu 185	
10	Glu	Ile	Met	Glu 186		Cys	Met	Arg	Asp 186		Pro	Thr	Cys	Lys 187		Leu
15	Asp	Gln	Trp 187		Glu	Leu	Ala	Gln 188		Phe	Ala	Phe	Gln 188	_	Asn	Pro
-	Ser	Leu 189	Gln 0	Pro	Arg	Ala	Leu 189		Val	Phe	Gly	Cys 1900		Ser	Lys	Arg
20	Val 190		His	Gly	Gln	Ile 1910		Gln	Ile	Ile	Arg 191		Leu	Ser	Lys	Ala 1920
	Leu	Glu	Ser	Cys	Leu 1925		Gly	Pro	Asp	Thr 1930		Asn	Ser	Gln	Val 1935	
25	Ile	Glu	Ala	Thr 1940		Ile	Ala	Leu	Thr 1945		Leu	Gln	Pro	Leu 1950		Asn
30	Lys	Asp	Ser 1955		Leu	His	Lys	Ala 1960		Phe	Trp	Val	Ala 1965		Ala	Val
	Leu	Gln 1970	Leu)	Asp	Glu	Va 1	Asn 1979		Tyr	Ser	Ala	Gly 1980		Ala	Leu	Leu
35	Glu 1989		Asn	Leu	His	Thr 1990		Asp	Ser	Leu	Arg 1995		Phe	Asn	Asp	Lys 2000
			Glu		2005	5		•		2010	ı				2015	5
40			Gln	2020) ·				2025	5				2030)	
45			Ala 2035	5				2040)				2045	i		
		2050					2055	5				2060)			
50	2065	5	Asn			2070)				2075					2080
			Ala		2085	;				2090					2095	;
55			Cys	2100)				2105	i				2110)	
60			Glu 2115	i				2120)				2125	,	_	_
	Pro	Ser 2130	Tyr	Arg	Thr	Leu	Lys 2135		Thr	Gln	Pro	Trp 2140		Ser	Pro	Lys

WO 94/16069

	Gly Ser Glu Gly Tyr Leu Ala Ala Thr Tyr Pro Thr Val Gly Gln Thr 2145 2150 2155 216	
5	Ser Pro Arg Ala Arg Lys Ser Met Ser Leu Asp Met Gly Gln Pro Ser 2165 2170 2175	
10	Gln Ala Asn Thr Lys Lys Leu Leu Gly Thr Arg Lys Ser Phe Asp His 2180 2185 2190	
	Leu Ile Ser Asp Thr Lys Ala Pro Lys Arg Gln Glu Met Glu Ser Gly 2195 2200 2205	
15	Ile Thr Thr Pro Pro Lys Met Arg Arg Val Ala Glu Thr Asp Tyr Glu 2210 2215 2220	
	Met Glu Thr Gln Arg Ile Ser Ser Ser Gln Gln His Pro His Leu Arg 2225 2230 2235 224	
20	Lys Val Ser Val Ser Glu Ser Asn Val Leu Leu Asp Glu Glu Val Leu 2245 2250 2255	
25	Thr Asp Pro Lys Ile Gln Ala Leu Leu Leu Thr Val Leu Ala Thr Leu 2260 2265 2270	
	Val Lys Tyr Thr Thr Asp Glu Phe Asp Gln Arg Ile Leu Tyr Glu Tyr 2275 2280 2285	
30	Leu Ala Glu Ala Ser Val Val Phe Pro Lys Val Phe Pro Val Val His 2290 2300	
35	Asn Leu Leu Asp Ser Lys Ile Asn Thr Leu Leu Ser Leu Cys Gln Asp 2305 2310 2315 2320)
	Pro Asn Leu Leu Asn Pro Ile His Gly Ile Val Gln Ser Val Val Tyr 2325 2330 2335	
40	His Glu Glu Ser Pro Pro Gln Tyr Gln Thr Ser Tyr Leu Gln Ser Phe 2340 2345 2350	
	Gly Phe Asn Gly Leu Trp Arg Phe Ala Gly Pro Phe Ser Lys Gln Thr 2355 2360 2365	
45	Gln Ile Pro Asp Tyr Ala Glu Leu Ile Val Lys Phe Leu Asp Ala Leu 2370 2380	
50	Ile Asp Thr Tyr Leu Pro Gly Ile Asp Glu Glu Thr Ser Glu Glu Ser 2385 2390 2395 2400	
	Leu Leu Thr Pro Thr Ser Pro Tyr Pro Pro Ala Leu Gln Ser Gln Leu 2405 2410 2415	
55	Ser Ile Thr Ala Asn Leu Asn Leu Ser Asn Ser Met Thr Ser Leu Ala 2420 2425 2430	
	Thr Ser Gln His Ser Pro Ala Ser Leu Pro Cys Ser Asn Ser Ala Val 2435 2440 2445	
60	Phe Met Gln Leu Phe Pro His Gln Gly Ile Asp Lys Glu Asn Val Glu 2450 2455 2460	

5

52

Leu Ser Pro Thr Thr Gly His Cys Asn Ser Gly Arg Thr Arg His Gly 2465 2470 2475 2480

Ser Ala Ser Gln Val 2485

(2) INFORMATION FOR SEQ ID NO:3:

5	·(i)	(B (C	LE TY	NGTH PE: RAND	: 29 amin EDNE	TERI 38 a o ac SS: line	mino id sing	aci	ds							
10	(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(vi)	ORI (A				: Sacc	haro	myce	s ce	revi	siae					
15	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:3:						•
20	Met 1	Leu	Leu	Cys	Lys 5	Ile	Ser	Lys	Leu	Lys 10	Phe	Asn	Thr	Arg	Thr 15	Let
	Lys	Val	Leu	Gln 20	Asn	Met	Ser	His	His 25	Leu	Ser	Gly	Ser	Ala 30	Thr	Ile
25	Ser	Lys	Ser 35	Ser	Ile	Leu	Pro	Asp 40	Ser	Gln	Glu	Phe	Leu 45	Gln	Lys	Arg
	Asn	Tyr 50	Pro	Ala	Tyr	Thr	Glu 5 5	Lys	Ile	Asp	Leu	Thr 60	Ile	Asp	Tyr	Ile
30	Gln 65	Arg	Phe	Ile	Ser	Ala 70	Ser	Asn	His	Val	Glu 75	Phe	Thr	Lys	Cys	Va] 80
35	Lys	Thr	Lys	Val	Val 85	Ala	Pro	Leu	Leu	Ile 90	Ser	His	Thr	Ser	Thr 95	Glu
	Leu	Gly	Val	Val 100	Asn	His	Leu	Asp	Leu 105	Phe	Gly	Cys	Glu	Tyr 110	Leu	Thr
40	Asp	Lys	Asn 115	Leu	Leu	Ala	Tyr	Leu 120	Asp	Ile	Leu	Gln	His 125	Leu	Ser	Ser
	Tyr	Met 130	Lys	Arg	Thr	Ile	Phe 135	His	Ser	Leu	Leu	Leu 140	Tyr	Tyr	Ala	Ser
45	Lys 145	Ala	Phe	Leu		Trp 150		Met	Ala		Pro 155		Glu	Tyr.	Val	Lys 160
50	Ile	Tyr	Asn	Asn	Leu 165	Ile	Ser	Ser	Asp	Tyr 170	Asn	Ser	Pro	Ser	Ser 175	Ser
	Ser	Asp	Asn	Gly 180	Gly	Ser	Asn	Asn	Ser 185	Asp	Lys	Thr	Ser	Ile 190	Ser	Gln
55	Leu	Val	Ser 195	Leu	Leu	Phe	Asp	Asp 200	Val	Tyr	Ser	Thr	Phe 205	Ser	Gly	Ser
	Ser	Leu 210	Leu	Thr	Asn	Val	Asn 215	Asn	Asp	His	His	Tyr 220	His	Leu	His	His
60	Ser 225	Ser	Ser	Ser	Ser	Lys 230	Thr	Thr	Asn	Thr	Asn 235	Ser	Pro	Asn	Ser	Ile 240

	Ser	Lys	Thr	Ser	Ile 245	Lys	Gln	Ser	Ser	Val 250	Asn	Ala	Ser	Gly	Asn 255	Val
5	Ser	Pro	Ser	Gln 260	Phe	Ser	Thr	Gly	Asn 265		Ala	Ser	Pro	Thr 270		Pro
	Met	Ala	Ser 275	Leu	Ser	Ser	Pro	Leu 280	Asn	Thr	Asn	Ile	Leu 285	Gly	Tyr	Pro
10	Leu	Ser 290	Pro	Ile	Thr	Ser	Thr 295	Leu	Gly	Gln	Ala	Asn 300	Thr	Ser	Thr	Ser
15	305					310					315		Pro			320
					325					330			Asn		335	
20				340					345				Ser	350		•
25			355					360					Leu 365			_
25		370					37 5					380	Thr			
30	385					390					395		Ser			400
					405	·				410			Val	_	415	
35				420					425				Ser	430		
40		Ser	435					440					445 Ser	_		_
		450 Trp	Gly	Ser	Ala		45 5 L ys	Asn	Pro	Ser		460 Arg	His	Leu	Thr	
45	465 Gly	Leu	Lys	Lys	Leu 485	470 Thr	Leu	Gln	Gln	Gly 490	475 Arg	Lys	Arg	Asn		480 Lys
50	Phe	Leu	Thr	Tyr 500		Ile	Arg	Asn	Leu 505		Gly	Gly	Gln	Phe 510	495 Val	Ser
	Asp	Val	Ser 515		Ile	Asp	Ser	Ile 520		Ser	Ile	Leu	Phe 525		Met	Thr
55	Met	Thr 530	Ser	Ser	Ile	Ser	Gln 535	Ile	Asp	Ser	Asn	Ile 540		Ser	Val	Ile
60	Phe 545	Ser	Lys	Arg	Phe	Tyr 550	Asn	Leu	Leu	Gly	Gln 555	Asn	Leu	Glu	Val	Gly 560
60	Thr	Asn	Trp	Asn	Ser 565	Ala	Thr	Ala	Asn	Thr 570	Phe	Ile	Ser	His	Cys 575	Val

	Glu	Arg		Pro 580	Leu	Thr	His	Arg	9 Arg 585		Gln	Leu	ı Glu	Phe 590		Ala
5	Ser	Gly :	Leu (595	Gln	Leu	Asp	Ser	Asp 600		Phe	. Leu	Arg	His 605		Gln	Leu
10	Glu :	Lys (610	Glu 1	Leu	Asn	His	Ile 615		Leu	Pro	Lys	Ile 620		Leu	Tyr	Thr
	Glu (625	Gly 1	Phe 1	Arg	Val	Phe 630	Phe	His	Leu	Val	Ser 635		Lys	Lys	Leu	His 640
15	Glu 1				645					650					655	
	Ile :		6	60					665					670		
20	Val 7	6	575					680					685			
25		590					695					700				
	Ala A 705	Ala T	hr S	er '	Val	Tyr 710	Thr	Glu	Pro	Thr	Glu 715	Ile	Ile	His	Asn	Ser 720
30	Ser A			•	725					730				•	7 35	
	Asn S		7	4 0 ·					745					7 50		
35	Ile L	7	55					760					765			
40		70					775					780				
	Asn L 785					790					795					800
45	Ala S			ε	305					810					815	
	Pro P		82	20					825					830		
50	Ser S	8:	35					840					845			
5 5		50				į	855					860				_
	Ile Al 865				8	370					875					880
60	Leu Se	er As	sp As	n A 8	.sp (85	Glu /	Ala i	Arg		Ile: 890	Met 1	Met .	Asn		Phe 895	Ser

	T 3 -	nh a	7	3	W-+	mb) ~=	(T)	Dh.a	77.	.	D	3	310	3	mh
	TIE	Pne	Lys	900	Met	THE	Asn	Trp	905	116	Arg	Pro	Asp	910	Asn	Thr
5	Glu	Phe	Pro 915	Lys	Thr	Phe	Thr	Asp 920	Ile	Ile	Lys	Pro	Leu 925	Phe	Val	Ser
	Ile	Leu 930	Asp	Ser	Asn	Gln	Arg 935	Leu	Gln	Val	Thr	Ala 940	Arg	Ala	Phe	Ile
10	Glu 945	Ile	Pro	Leu	Ser	Tyr 950	Ile	Ala	Thr	Phe	Glu 955	Asp	Ile	Asp	Asn	Asp 960
15	Leu	Asp	Pro	Arg	Val 965	Leu	Asn	Asp	His	Tyr 970	Leu	Leu	Cys	Thr	Tyr 975	Ala
	Val	Thr	Leu	Phe 980	Ala	Ser	Ser	Leu	Phe 985	Asp	Leu	Lys	Leu	Glu 990	Asn	Ala
20	Lys	Arg	Glu 995	Met.	Leu	Leu	Asp	Ile 1000		Val	Lys	Phe	Gln 100	_	Val	Arg
	Ser	Tyr 1010		Ser	Asn	Leu	Ala 1019		Lys	His	Asn	Leu 1020		Gln	Ala	Ile
25	Ile 1025		Thr	Glu	Arg	Leu 1030		Leu	Pro	Leu	Leu 103		Gly	Ala	Val	Gly 1040
30	Ser	Gly	Ile	Phe	Ile 1045	Ser	Leu	Tyr	Cys	Ser 1050	_	Gly	Asn	Thr	Pro 1055	_
	Leu	Ile	Lys	Ile 1060		Cys	Cys	Glu	Phe 1065		Arg	Ser	Leu	Arg 1070		Tyr
35	Gln	Lys	Tyr 1075		Gly	Ala	Leu	Asp 1080		Tyr	Ser	Ile	Tyr 1085		Ile	Asp
		1090)			Ala	1095	5				1100)	_		
40	1105	5				1110)				1115	5				Gly 1120
45	Ser	Asp	Ser	Ile	Leu 1125	Leu	Asp	Ser	Met	Asp 1130		Ile	Tyr	Lys	Lys 1135	_
	Phe	Tyr	Phe	Ser 1140		Ser	Lys	Ser	Val 1145		Gln	Glu	Glu	Leu 1150		Asp
50	Phe	Arg	Ser 1155		Ala	Gly	Ile	Leu 1160		Ser	Met	Ser	Gly 1165		Leu	Ser
	Asp	Met 1170		Glu	Leu	Glu	Lys 1175		Lys	Ser	Ala	Pro 1180		Asn	Glu	Gly
55	Asp 1185		Leu	Ser	Phe	Glu 1190		Arg	Asn	Pro	Ala 1195		Glu	Val	His	Lys 1200
60	Ser	Leu	Lys	Leu	Glu 1205	Leu	Thr	Lys	Lys	Met 1210		Phe	Phe	Ile	Ser 1215	
	Gln	Cys	Gln	Trp 1220		Asn	Asn	Pro	Asn 1225		Leu	Thr	Arg	Glu 1230		Ser

	Pro	Ala	Asp 155		Asp	Leu	Tyr	Ala 156	Gly 0	Gly	Phe	Leu	Asn 156		Phe	Asp
5	Thr	Arg 157		Ala	Ser	His	Ile 157		Val	Thr	Glu	Leu 158		Lys	Gln	Glu
	Ile 158	Lys 5	Arg	Ala	Ala	Arg 159		Asp	Asp	Ile	Leu 159		Arg	Asn	Ser	Cys 1600
10	Ala	Thr	Arg	Ala	Leu 1609		Leu	Tyr	Thr	Arg 161		Arg	Gly	Asn	Lys 161	_
15				1620	כ				Leu 162	5				1630)	_
			1639	5				164					1649	5		
20		1650)				1655	5	Tyr			1660)			
	1665	5				1670)		Pro		1675	5		-		1680
25					1685	5			Val	1690)			_	1699	5
30				1700)				Leu 1705	5				1710)	
			1715	5				1720					1725	5		
35	Arg	Lys 1730		Phe	Ile	Thr	Leu 1735		Lys	Val	Ile	Gln 1740		Leu	Ala	Asn
40	1745	5		-		1750	•		Asp		1755	•		•		1760
					1765	;			Ile	1770)				1775	;
45				1780)				Thr 1785	;			_	1790)	
50			1795	i				1800					1805	5	_	
50		1810)				1815	•	Ile			1820)	_		
55	1825	,				1830	1		Thr		1835	i				1840
					1845				Met	1850	i				1855	•
60	Pro	Phe	Val	Val 1860	Glu	Asn	Arg	Glu	Lys 1865		Pro	Ser	Leu	Tyr 1870		Phe

	Met Ser Arg Tyr Ala Phe Lys Lys Val Asp Met Lys Glu Glu Glu G 1875 1880 1885	lu
5	Asp Asn Ala Pro Phe Val His Glu Ala Met Thr Leu Asp Gly Ile G 1890 1895 1900	ln
	Ile Ile Val Val Thr Phe Thr Asn Cys Glu Tyr Asn Asn Phe Val M 1905 1910 1915 1	et 920
10	Asp Ser Leu Val Tyr Lys Val Leu Gln Ile Tyr Ala Arg Met Trp Cy 1925 1930 1935	ys
15	Ser Lys His Tyr Val Val Ile Asp Cys Thr Thr Phe Tyr Gly Gly Ly 1940 1945 1950	ys
	Ala Asn Phe Gln Lys Leu Thr Thr Leu Phe Phe Ser Leu Ile Pro G. 1955 1960 1965	
20	Gln Ala Ser Ser Asn Cys Met Gly Cys Tyr Tyr Phe Asn Val Asn Ly 1970 1975 1980	
		000
25	Leu Val Thr Thr Ile Pro Arg Cys Phe Ile Asn Ser Asn Thr Asp G 2005 2010 2015	
30	Ser Leu Ile Lys Ser Leu Gly Leu Ser Gly Arg Ser Leu Glu Val Le 2020 2025 2030	
	Lys Asp Val Arg Val Thr Leu His Asp Ile Thr Leu Tyr Asp Lys G 2035 2040 2045	lu
35	Lys Lys Lys Phe Cys Pro Val Ser Leu Lys Ile Gly Asn Lys Tyr Ph 2050 2055 2060	ne
40	Gln Val Leu His Glu Ile Pro Gln Leu Tyr Lys Val Thr Val Ser As 2065 2070 2075 20	sn 080
	Arg Thr Phe Ser Ile Lys Phe Asn Asn Val Tyr Lys Ile Ser Asn Le 2085 2090 2095	∍u
45	Ile Ser Val Asp Val Ser Asn Thr Thr Gly Val Ser Ser Glu Phe Th 2100 2105 2110	nr
	Leu Ser Leu Asp Asn Glu Glu Lys Leu Val Phe Cys Ser Pro Lys Ty 2115 2120 2125	
50	Leu Glu Ile Val Lys Met Phe Tyr Tyr Ala Gln Leu Lys Met Glu Gl 2130 2135 2140	
55		.60
	Ser Ala Val Asn Ala Ser Tyr Cys Asn Val Lys Glu Val Gly Glu II 2165 2170 2175	
60	Ile Ser His Leu Ser Leu Val Ile Leu Val Gly Leu Phe Asn Glu As 2180 2185 2190	p

	Asp	Leu	Val 219		Asn	Ile	Ser	Tyr 220	Asn 0	Leu	Leu	Val	Ala 220		Gln	Glu
5	Ala	Phe 221		Leu	Asp	Phe	Gly 221		Arg	Leu	His	Lys 222		Pro	Glu	Thr
	Tyr 222		Pro	Asp	Asp	Thr 223		Thr	Phe	Leu	Ala 223		Ile	Phe	Lys	Ala 2240
10	Phe	Ser	Glu	Ser	Ser 224		Glu	Leu	Thr	Pro 225		Ile	Trp	Lys	Tyr 225	
15	Leu	Asp	Gly	Leu 226		Asn	Asp	Val	Ile 226		Gln	Glu	His	Ile 227		Thr
	Val	Val	Cys 227		Leu	Ser	Tyr	Trp 228	Val	Pro	Asn	Leu	Tyr 228		His	Val
20	Tyr	Leu 229		Asn	Asp	Glu	Glu 229		Pro	Glu	Ala	Ile 2300		Arg	Ile	Ile
	Tyr 230		Leu	Ile	Arg	Leu 2310		Val	Lys	Glu	Pro 2315		Phe	Thr	Thr	Ala 2320
25	Tyr	Leu	Gln	Gln	Ile 2325		Phe	Leu	Leu	Ala 2330		Asp	Gly	Arg	Leu 233	
30				2340)				Ser 2349	5				2350)	
			2359	5		·		2360					2365	5		
35		2370)				2375	5	Ile			2380)			
40	2389	5				2390)		Val		2395	5				2400
40		٠			2405	5			Ile	2410)				2415	5
45				2420)				Leu 2425	5				2430)	
			2435	5				2440					2445	5		_
50		2450)				2455	5	Ser			2460	ı			
55	2465	5				2470	+		Asp		2475	i				2480
					2485	•			Gly Ser	2490)				2495	•
60				2500					2505 Met	;				2510)	
	Deu	nsp	2515		TIT	my p	VOII	2520		neu	neu	nec	2525		стĀ	ser

	Leu Ser Thr Leu Glu 2850	Gln Ser Ser Glu Al 2855	la Val Ala Val Se 2860	r Phe Glu
5	Leu Ile Gly Met Leu 2865	Val Thr His Ser Gl 2870	lu Phe Asn Tyr Le 2875	u Glu Glu 2880
	Phe Asn Asp Glu Met 2885		ys Lys Arg Gly Le 890	u Ser Val 2895
10	Val Lys Pro Leu Asp 2900	Ile Phe Asp Gln Gl 2905	_	s Leu Lys 10
	Gly Glu Gly Glu His 2915	Gln Val Ala Ile Ty 2920	yr Glu Arg Lys Ar 2925	g Leu Ala
15	Thr Met Ile Leu Ala 2930	Arg Met Ser Cys Se 2935	er	

(2) INFORMATION FOR SEQ ID NO:4:

5	(i)	(A (B (C	SEQUENCE CHARACTERISTICS: (A) LENGTH: 3079 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
10	(ii)				•	_	ein										
	(vi)		ORIGINAL SOURCE: (A) ORGANISM: Saccharomyces cerevisiae														
15	(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	D NO	:4:							
• •	Met 1	Ser	Gln	Pro	Thr 5	Lys	Asn	Lys	Lys	Lys 10	Glu	His	Gly	Thr	Asp 15	Sea	
20	Lys	Ser	Ser	Arg 20	Met	Thr	Arg	Thr	Leu 25	Val	Asn	His	Ile	Leu 30	Phe	Glu	
25	, Arg	Ile	Leu 35	Pro	Ile	Leu	Pro	Val 40	Glu	Ser	Asn	Leu	Ser 45	Thr	Tyr	Sei	
	Glu	Val 50	Glu	Glu	Tyr	Ser	Ser 55	Phe	Ile	Ser	Cys	Arg 60	Ser	Val	Leu	Ile	
30	Asn 65	Val	Thr	Val	Ser	Arg 70	Asp	Ala	Asn	Ala	Met 75	Val	Glu	Gly	Thr	Le t 80	
35	Glu	Leu	Ile	Glu	Ser 85	Leu	Leu	Gln	Gly	His 90	Glu	Ile	Ile	Ser	Asp 95	Lys	
33	Gly	Ser	Ser	Asp 100	Val	Ile	Glu	Ser	Ile 105	Leu	Ile	Ile	Leu	Arg 110	Leu	Let	
40	Ser	Asp	Ala 115	Leu	Glu	Tyr	Asn	Trp 120	Gln	Asn	Gln	Glu	Ser 125	Leu	His	Туг	
	Asn	Asp 130	Ile	Ser	Thr	His	Val 135	Glu	His	Asp	Gln	Glu 140	Gln	Lys	Tyr	Arg	
4 5	Pro 145	Lys	Leu	Asn	Ser	Ile 150	Leu	Pro	Asp	Tyr	Ser 155	Ser	Thr	His	Ser	A sr 1 60	
- 0	Gly	Asn	Lys	His	Phe 165	Phe	His	Gln	Ser	Lys 170	Pro	Gln	Ala	Leu	Ile 175	Pro	
50	Glu	Leu	Ala	Ser 180	Lys	Leu	Leu	Glu	Ser 185	Cys	Ala	Lys	Leu	Lys 190	Phe	Asr	
55	Thr	Arg	Thr 195	Leu	Gln	Ile	Leu	Gln 200	Asn	Met	Ile	Ser	His 205	Val	His	Gly	
	Asn	Ile 210	Leu	Thr	Thr	Leu	Ser 215	Ser	Ser	Ile	Leu	Pro 220	Arg	His	Lys	Ser	
50	Tyr 225	Leu	Thr	Arg	His	Asn 230	His	Pro	Ser	His	Cys 235	Lys	Met	Ile	Asp	Ser 240	

	Thr	Leu	Gly	His	11e 245	Leu	Arg	Phe	Val	Ala 250	Ala	Ser	Asn	Pro	Ser 255	Glu
5	Tyr	Phe	Glu	Phe 260	Ile	Arg	Lys	Ser	Val 265	Gln	Val	Pro	Val	Thr 270	Gln	Thr
	His	Thr	His 275	Ser	His	Ser	His	Ser 280	His	Ser	Leu	Pro	Ser 285	Ser	Val	Tyr
10	Asn	Ser 290	Ile	Val	Pro	His	Phe 295	Asp	Leu	Phe	Ser	Phe 300	Ile	Tyr	Leu	Ser
15	Lys 305	His	Asn	Phe	Lys	Lys 310	Tyr	Leu	Glu	Leu	Ile 315	Lys	Asn	Leu	Ser	Val 320
	Thr	Leu	Arg	Lys	Thr 325	Ile	Tyr	His	Cys	Leu 330	Leu	Leu	His	Tyr	Ser 335	Ala
20	Lys	Ala	Ile	Met 340	Phe	Trp	Ile	Met	Ala 345	Arg	Pro	Ala	Glu	Tyr 350	Tyr	Glu
	Leu	Phe	Asn 355	Leu	Leu	Lys	Asp	Asn 360	Asn	Asn	Glu	His	Ser 365	Lys	Ser	Leu
25	Asn	Thr 370	Leu	Asn	His	Thr	Leu 375	Phe	Glu	Glu	Ile	His 380	Ser	Thr	Phe	Asn
30	Val 385	Asn	Ser	Met	Ile	Thr 390	Thr	Asn	Gln	Asn	Ala 395	His	Gln	Gly	Ser	Ser 400
					Ser 405		•			410					415	
35				420	Gln				425					430		
			435		Ser			440					445	_		
40		450			Thr		455					460				
45	Thr 465	Ser	Asn	Ser	Thr	Thr 470	Thr	Asp	Phe	Ser	Thr 475	His	Thr	Gln	Pro	Gly 480
					Ser 485					490					495	
50				500	Ser				505					510		
			515		Leu			520					525			
55		530			Ser		535					540				
60	545				Asp	550					555					560
	Asp	Glu	His	Phe	Leu 565	Ser	Val	Thr	Arg	Leu 570	Asp	Asn	Val	Leu	Glu 57 5	Leu

	Tyr	Thr	His	Phe 580	Asp	Asp	Thr	Glu	Val 585	Leu	Pro	His	Thr	Ser 590	Val	Leu
5	Lys	Phe	Leu 595	Thr	Thr	Leu	Thr	Met 600	Phe	Asp	Ile	Asp	Leu 605	Phe	Asn	Glu
10	Leu	Asn 610	Ala	Thr	Ser	Phe	Lys 615	Tyr	Ile	Pro	Asp	Cys 620	Thr	Met	His	Arg
	Pro 625		Glu	Arg	Thr	Ser 630	Ser	Phe	Asn	Asn	Thr 635	Ala	His	Glu	Thr	Gly 640
15	Ser	Glu	Lys	Thr	Ser 645	Gly	Ile	Lys	His	Ile 650	Thr	Gln	Gly	Leu	Lys 655	Lys
	Leu	Thr	Ser	Leu 660	Pro	Ser	Ser	Thr	Lys 665	Lys	Thr	Val	Lys	Phe 670	Val	Lys
20	Met	Leu	Leu 675	Arg	Asn	Leu	Asn	Gly 680	Asn	Gln	Ala	Val	Ser 685	Asp	Val	Ala
25	Leu	Leu 690	Asp	Thr	Met	Arg	Ala 695	Leu	Leu	Ser	Phe	Phe 700	Thr	Met	Thr	Ser
	Ala 705	Val	Phe	Leu	Val	Asp 710	Arg	Asn	Leu	Pro	Ser 715	Val	Leu	Phe	Ala	Lys 720
30	Arg	Leu	Ile	Pro	Ile 725	Met	Gly	Thr	Asn	Leu 730	Ser	Val	Gly	Gln	Asp 735	Trp
	Asn	Ser	Lys	Ile 740	Asn	Asn	Ser	Leu	Met 745	Val	Cys	Leu	Lys	Lys 750	Asn	Ser
35	Thr	Thr	Phe 755	Val	Gln	Leu	Gln	Leu 760	Ile	Phe	Phe	Ser	Ser 765	Ala	Ile	Gln
40	Phe	Asp 770	His	Glu	Leu	Leu	Leu 775	Ala	Arg	Leu	Ser	Ile 780	Asp	Thr	Met	Ala
	Asn 785	Asn	Leu	Asn	Met	Gln 790	Lys	Leu	Cys	Leu	Tyr 795	Thr	Glu	Gly	Phe	Arg 800
45	Ile	Phe	Phe	Asp	Ile 805	Pro	Ser	Lys	Lys	Glu 810	Leu	Arg	Lys	Ala	Ile 815	Ala
	Val	Lys	Ile	Ser 820	Lys	Phe	Phe	Lys	Thr 825	Leu	Phe	Ser	Ile	Ile 830	Ala	Asp
50	Ile	Leu	Leu 835	Gln	Glu	Phe	Pro	Tyr 840	Phe	Asp	Glu	Gln	Ile 845	Thr	Asp	Ile
5 5	Val	Ala 850	Ser	Ile	Leu	Asp	Gly 855	Thr	Ile	Ile	Asn	Glu 860	Tyr	Gly	Thr	Lys
	Lys 865	His	Phe	Lys	Gly	Ser 870	Ser	Pro	Ser	Leu	Cys 875	Ser	Thr	Thr	Arg	Ser 880
60	Arg	Ser	Gly	Ser	Thr 885	Ser	Gln	Ser	Ser	Met 890	Thr	Pro	Val	Ser	Pro 895	Leu

	Gly	Leu	Asp	Thr 900	Asp	Ile	Cys	Pro	Met 905	Asn	Thr	Leu	Ser	Leu 910	Val	Gly
5	Ser	Ser	Thr 915	Ser	Arg	Asn	Ser	Asp 920	Asn	Val	Asn	Ser	Leu 925	Asn	Ser	Ser
	Pro	Lys 930	Asn	Leu	Ser	Ser	Asp 935	Pro	Tyr	Leu	Ser	His 940	Leu	Val	Ala	Pro
10	Arg 945	Ala	Arg	His	Ala	Leu 950	Gly	Gly	Pro	Ser	Ser 955	Ile	Ile	Arg	Asn	Lys 960
15					965				Pro	970					975	
	Val	Gln	Arg	Pro 980	Gln	Thr	Glu	Ser	Ile 985	Ser	Ala	Thr	Pro	Met 990	Ala	Ile
20	Thr	Asn	Ser 995	Thr	Pro	Leu	Ser	Ser 1000	Ala	Ala	Phe	Gly	Ile 1005		Ser	Pro
	Leu	Gln 1010	-	Ile	Arg	Thr	Arg 1015		Tyr	Ser	Asp	Glu 1020		Leu	Gly	Lys
25	Phe 102		Lys	Ser	Thr	Asn 1030		Tyr	Ile	Gln	Glu 1035		Leu	Ile	Pro	Lys 1040
30	Asp	Leu	Asn	Glu	Ala 1045		Leu	Gln	Asp	Ala 1050		Arg	Ile	Met	11e 1059	
	Ile	Phe	Ser	Ile 1060		Lys	Arg	Pro	Asn 1065		Tyr	Phe	Ile	Ile 1070		His
35	Asn	Ile	Asn 107		Asn	Leu	Gln	Trp 1080	Val	Ser	Gln	Asp	Phe 1089		Asn	Ile
		109)				1099	5	Val			1100)			
40	110	5				1110)		Thr		1115	5				1120
45	Tyr	Gly	Glu	Ser	Asp 112		Asn	Ile	Ser	Ile 1130		Gly	Tyr	His	Leu 113	Leu 5
	-			1140)				Ala 114	5				1150	0	
50			115	5				116					116	5		
	Met	Lys 117		Arg	Ser	His	Leu 117	_	Gly	Ile	Ala	Glu 118		Ser	His	His
55	118	5				119	0		Lys		119	5			•	1200
60	Gly	Thr	Val	Gly	Arg 120		Leu	Phe	Val	Ser 121		Tyr	Ser	Ser	Gln 121	
	Lys	Ile	Glu	Lys 122		Leu	Lys	Ile	Ala 122		Thr	Glu	Tyr	Leu 123		Ala

WO 94/16069

	Ile	Asn	Phe 123	His 5	Glu	Arg	Asn	Ile 124		Asp	Ala	Asp	Lys 124		Trp	Val
5	His	Asn 125		Glu	Phe	Val	Glu 125		Met	Cys	His	Asp 126		Tyr	Thr	Thr
10	Ser 126		Ser	Ile	Ala	Phe 1270		Arg	Arg	Thr	Arg 127		Asn	Ile	Leu	Arg 1280
	Phe	Ala	Thr	Ile	Pro 1285		Ala	Ile	Leu	Leu 129		Ser	Met	Arg	Met 129	
15	Tyr	Lys	Lys	Trp 1300		Thr	Tyr	Thr	His 1305		Lys	Ser	Leu	Glu 1310	_	Gln
	Glu	Arg	Asn 131		Phe	Arg	Asn	Phe 1320	Ala	Gly	Ile	Leu	Ala 132		Leu	Ser
20	Gly	Ile 1330		Phe	Ile	Asn	Lys 1335		Ile	Leu	Gln	Glu 1340		Tyr	Pro	Tyr
25	Leu 1345		Asp	Thr	Val	Ser 1350		Leu	Lys	Lys	Asn 1355		Asp	Ser	Phe	Ile 1360
	Ser	Lys	Gln	Cys	Gln 1365		Leu	Asn	Tyr	Pro 1370		Leu	Leu	Thr	Arg 1375	
30				1380)				Glu 1385	5				1390)	
			1395	5				1400			_		1405	;	-	
35		1410)				1415	5	Ser			1420)			
40	Ile 1425		Lys	Met	Leu	Arg 1430		Ile	Leu	Gly.	Arg 1435		Asp	Asp	Asn	Tyr 1440
	Val	Met	Met	Leu	Phe 1445		Thr	Glu	Ile	Val 1450	_	Leu	Ile	Asp	Leu 1455	
45	Thr	Asp	Glu	Ile 1460		Lys	Ile	Pro	Ala 1465		Cys	Pro	Lys	Tyr 1470		Lys
50	Ala	Ile	Ile 1475		Met	Thr	Lys	Met 1480	Phe	Ser	Ala		Gln 1485		Ser	Glu
	Val	Asn 1490		Gly	Val	Lys	Asn 1495		Phe	His	Val	Lys 1500		Lys	Trp	Leu
55	Arg 1505		Ile	Thr		Trp 1510		Gln	Val	Ser	Ile 1515		Arg	Glu	Tyr	Asp 1520
	Phe	Glu	Asn	Leu	Ser 1525		Pro	Leu	Lys	Glu 1530		Asp	Leu	Val	Lys 1535	_
60	Asp	Met	Asp	Ile 1540		Tyr	Ile	Asp	Thr 1545		Ile	Glu	Ala	Ser 1550		Ala

	Ala	Asn 189	_	Ser	Glu	Asn	Phe 189		Arg	Trp	Pro	Ala 1900		Cys	Ser	Gln
5	Lys 190	_	Phe	Leu	Lys	Glu 1910	_	Ser	Asp	Arg	Ile 1915		Arg	Phe	Leu	Ala 1920
10	Glu	Leu	Cys	Arg	Thr 1925	_	Arg	Thr	Ile	Asp 1930		Gln	Val	Arg	Thr 1935	
	Pro	Thr	Pro	Ile 1940		Phe	Asp	Tyr	Gln 1945	Phe	Leu	His	Ser	Phe 1950		Tyr
15	Leu	Tyr	Gly 1955		Glu	Val	Arg	Arg 1960		Val	Leu	Asn	Glu 1965		Lys	His
	_	1970)			_	1979	5		Phe		1980)			
20	1985	5	_	_		1990)			Gly	1995	•	-			2000
25					2005	5	_		-	Glu 2010)			_	2015	5
				2020)				2025			_	-	2030)	
30	Ser	Thr	Ala 2035		Ser	Pro	Ser	Val 2040		Glu	Ser	Thr	Ser 2045		Glu	Gly
		2050)				2055	5		Asn		2060) -			•
35	2065	5	_			2070)				2075	i	_		_	2080
40	_			_	2085	i -				Asp 2090					2095	•
	_	_		2100)		_		2105					2110)	
4 5			2115	;				2120	٠.	Gly			2125	;		
		2130)				2135	5	-	Lys		2140)		_	
50	Val 2145	-	Val	Ser	Ser	Lys 2150		Pro	His	Tyr	Phe 2155		Asn	Ser	Asn	Ser 2160
55			_		2165					Ile 2170				-	2175	
	Val	Leu	Gln	Asp 2180		Arg	Val	Ser	Leu 2185	His	Asp	Ile		Leu 2190		Asp
60	Glu	Lys	Arg 2195		Arg	Phe	Thr	Pro 2200		Ser	Leu	-	11e 2205	_	Asp	Ile

	Tyr Phe Gln 2210		lu Thr Pro Arg C 215	Gln Tyr Lys Ile 2220	Arg Asp
5	Met Gly Thr 2225	Leu Phe Asp V 2230	al Lys Phe Asn A	asp Val Tyr Glu 235	Ile Ser 2240
	Arg Ile Phe	Glu Val His V 2245	al Ser Ser Ile T 2250	Thr Gly Val Ala	Ala Glu 2255
10	Phe Thr Val	Thr Phe Gln A 2260	sp Glu Arg Arg I 2265	eu Ile Phe Ser 227	
15	Lys Tyr Leu 2275		ys Met Phe Tyr T 2280	yr Ala Gln Ile 2285	Arg Leu
	Glu Ser Glu 2290		sp Asn Asn Ser S 295	er Thr Ser Ser 2300	Pro Asn
20	Ser Asn Asn 2305	Lys Val Lys G 2310	ln Gln Lys Glu A 2	rg Thr Ile Leu 315	Leu Cys 2320
	His Leu Leu	Leu Val Ser Le 2325	eu Ile Gly Leu P 2330	he Asp Glu Ser	Lys Lys 2335
25	Met Lys Asn	Ser Ser Tyr A 2340	sn Leu Ile Ala A 2345	la Thr Glu Ala 2350	
30	Gly Leu Asn 2355		is Phe His Arg S 2360	er Pro Glu Val 2365	Tyr Val
	Pro Glu Asp 2370		ne Leu Gly Val I 375	le Gly Lys Ser 2380	Leu Ala
3 5	Glu Ser Asn 2385	Pro Glu Leu Tl 2390	nr Ala Tyr Met P 2	he Ile Tyr Val 395	Leu Glu 2400
40	Ala Leu Lys	Asn Asn Val II 2405	le Pro His Val T 2410	yr Ile Pro His	Thr Ile 2415
	Cys Gly Leu	Ser Tyr Trp II	le Pro Asn Leu T 2425	yr Gln His Val 2430	
45	Ala Asp Asp 2435		ro Glu Asn Ile S 2440	er His Ile Phe 2445	Arg Ile
	Leu Ile Arg 2450		rg Glu Thr Asp P 155	he Lys Ala Val 2460	Tyr Met
50	Gln Tyr Val 2465	Trp Leu Leu Le 2470	eu Leu Asp Asp G 2	ly Arg Leu Thr 475	Asp Ile 2480
55	Ile Val Asp	Glu Val Ile As 2485	sn His Ala Leu G 2490	lu Arg Asp Ser	Glu Asn 2495
	Arg Asp Trp	Lys Lys Thr II 2500	le Ser Leu Leu T 2505	hr Val Leu Pro 2510	
60	Glu Val Ala 2515		le Gln Lys Ile L 2520	eu Ala Lys Ile 2525	Arg Ser

	Phe	Leu 2530		Ser	Leu	Lys	Leu 2539		Ala	Met	Thr	Gln 2540		Trp	Ser	Glu
5	Leu 2545		Ile	Leu	Val	Lys 2550		Ser	Ile	His	Val 2555		Phe	Glu	Thr	Ser 2560
	Leu	Leu	Val	Gln	Met 2565	-	Leu	Pro	Glu	11e 2570		Phe	Ile	Val	Ser 2575	
10	Leu	Ile	Asp	Val 2580	_	Pro	Arg	Glu	Leu 2585	_	Ser	Ser	Leu	His 2590		Leu
15	Leu 1	Met	Asn 2595		Суѕ	His	Ser	Leu 2600		Ile	Asn	Ser	Ala 2609		Pro	Gln
	Asp	His 2610	_	Asn	Asn	Leu	Asp 2615		Ile	Ser	Asp	11e 2620		Ala	His	Gln
20	Lys 2625		Lys	Phe	Met	Phe 2630	_	Phe	Ser	Glu	Asp 2635	_	Gly	Arg	Ile	Leu 2640
	Gln	Ile	Phe	Ser	Ala 2645		Ser	Phe	Ala	Ser 2650		Phe	Asn	Ile	Leu 2655	
25	Phe	Phe	Ile	Asn 2660		Ile	Leu	Leu	Leu 2665		Glu	Tyr	Ser	Ser 2670		Tyr
30	Glu .	Ala	Asn 2675		Trp	Lys	Thr	Arg 2680		Lys	Lys	Tyr	Val 2685		Glu	Ser
	Val	Phe 2690		Ser	Asn	Ser	Phe 2695		Ser	Ala	Arg	Ser 2700		Met	Ile	Val
35	Gly 2705		Met	Gly	Lys	Ser 2710		Ile	Thr	Glu	Gly 2715		Суѕ	Lys	Ala	M et 2720
40	Leu	Ile	Glu	Thr	Met 2725		Val	Ile	Ala	Glu 2730		Lys	Ile	Thr	Asp 2735	
20	His :	Leu	Phe	Leu 2740		Ile	Ser		11e 2745			_	Ser	Lys 2750		Val
45	Glu (Gly	Leu 2755		Pro	Asn	Leu	Asp 2760		Met	Lys	His	Leu 2765		Trp	Phe
	Ser '	Thr 2770		Phe	Leu	Glu	Ser 2775		His	Pro	Ile	Ile 2780		Glu	Gly	Ala
50	Leu 1 2785		Phe	Val	Ser	Asn 2790		Ile	Arg	Arg	Leu 2795		Met	Ala	Gln	Phe 2800
55	Glu i	Asn	Gľu	Ser	Glu 2805		Ser	Leu	Ile	Ser 2810		Leu	Leu	Lys	Gly 2815	_
<i>4.5</i>	Lys :	Phe	Ala	His 2820		Phe	Leu	Ser	Lys 2825		Glu	Asn	Leu	Ser 2830		Ile
60	Val '		Asn 2835		Asp	Asn	Phe	Thr 2840		Ile	Leu	Ile	Phe 2845		Ile	Asn

	Lys	Gly Le 2850	u Ser 1	Asn Pro	Phe 2855	Ile	Lys	Ser	Thr			Asp	Phe	Leu
	Lys	Met Me	t Phe A	Arg Asn			Phe	Glu	His	2860 Gln		Asn	Gln	Lvs
5	286	55		287	0				2875	5				2880
	Ser	Asp Hi	s Tyr I	Leu Cys 2885	Tyr	Met	Phe	Leu 2890	Leu	Tyr	Phe	Val	Leu 2895	
10	Cys	: Asn Gl	n Phe 0 2900	Glu Glu	Leu	Leu	Gly 2905	Asp	Val	Asp	Phe	Glu 291		Glu
15	Met	Val Ası 29:	n Ile G 15	Slu Asn	Lys	Asn 2920	Thr	Ile	Pro	Lys	Ile 2925		Leu	Glu
	Trp	Leu Sei 2930	Ser A	sp Asn	Glu . 2935	Asn	Ala	Asn	Ile	Thr 2940		Tyr	Gln	Gly
20	Ala 294	Ile Leu 5	Phe L	ys Cys 2950	Ser '	Val	Thr		Glu 2955		Ser	Arg	Phe	Arg 2960
25	Phe	Ala Leu	Ile I 2	le Arg 965	His 1	Leu :		Thr 2970		Lys	Pro	Ile	Cys 2975	
	Leu	Arg Phe	Tyr S 2980	er Val	Ile A		Asn 2985		Ile	Arg		Ile 2990		Ala
30	Phe	Glu Glr 299	Asn S	er Asp		Val 1	Pro 1	Leu .	Ala		Asp 3005		Leu	Asn
		Leu Val 3010			3015					3020				
35	302			3030				,	3035					3040
40		Gly Ile	3 (045				3050	•				3055	
	Lys	Pro Glu	Asp I: 3060	le Tyr	Glu A	Arg I	Lys 1 3065	Arg :	Ile 1	Met '		Met 3070	Ile :	Leu
45	Ser	Arg Met 307	_	ys Ser .	Ala		٠							
	(2) INFO	RMATION	FOR SE	Q ID NO	:5:									
50	(i)	(B) TY (C) ST	NGTH: 8 PE: ami RANDEDN	ACTERIS' 870 ami: ino acio NESS: s: : linea:	no ac d ingle	ids								
55	. (ii)	MOLECUL	E TYPE:	: prote	in									
	(vi)	ORIGINA (A) OR		CE: : Homo :	sapie	ns								
60														

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:5:						
5	Met 1	Lys	Gly	Trp	Tyr 5	His	Gly	Lys	Leu	Asp 10	Arg	Thr	Ile	Ala	Glu 15	Glu
3	Arg	Leu	Arg	Gln 20	Ala	Gly	Lys	Ser	Gly 25	Ser	Tyr	Leu	Ile	Arg 30	Glu	Ser
10	Asp	Arg	Arg 35	Pro	Gly	Ser	Phe	Val 40	Leu	Ser	Phe	Leu	Ser 45	Gln	Met	Asn
	Val	Val 50	Asn	His	Phe	Arg	Ile 55	Ile	Ala	Met	Суѕ	Gly 60	Asp	Tyr	Tyr	Ile
15	Gly 65	Gly	Arg	Arg	Phe	Ser 70	Ser	Leu	Ser	Asp	Leu 75	Ile	Gly	Tyr	Tyr	Ser 80
20	His	Val	Ser	Cys	Leu 85	Leu	Lys	Gly	Glu	Lys 90	Leu	Leu	Tyr	Pro	Val 95	Ala
20	Pro	Pro	Glu	Pro 100	Val	Glu	Asp	Arg	Arg 105	Arg	Val	Arg	Ala	Ile 110	Leu	Pro
25	Tyr	Thr	Lys 115	Val	Pro	Asp	Thr	Asp 120	Glu	Ile	Ser	Phe	Leu 125	Lys	Gly	Asp
	Met	Phe 130	Ile	Val	His	Asn	Glu 135	Leu	Glu	Asp	Gly	Trp 140	Met	Trp	Val	Thr
30	Asn 145	Leu	Arg	Thr	Asp	Glu 150		Gly	Leu	Ile	Val 155	Glu	Asp	Leu	Val	Glu 160
35	Glu	Val	Gly	Arg	Glu 165	Glu	Asp	Pro	His	Glu 170	Gly	Lys	Ile	Trp	Phe 175	His
•	Gly	Ļys	Ile	Ser 180	Lys	Gln	Glu	Ala	Tyr 185	Asn	Leu	Leu	Met	Thr 190	Val	Gly
40	Gln	Val	Cys 195	Ser	Phe	Leu	Val	Arg 200	Pro	Ser	Asp	Asn	Thr 205	Pro	Gly	Asp
	Tyr	Ser 210	Leu	Tyr	Phe	Arg	Thr 215		Glu	Asn	Ile	Gln 220	Arg	Phe	Lys	Ile
45	Cys 225	Pro	Thr	Pro	Asn	Asn 230	Gln	Phe	Met	Met	Gly 235	Gly	Arg	Tyr	Tyr	Asn 240
50	Ser	Ile	Gly	Asp	Ile 245	Ile	Asp	His	Tyr	Arg 250	Lys	Glu	Gln	Ile	Val 255	Glu
	Gly	Tyr	Туr	Leu 260	Lys	Glu	Pro	Val	Pro 265	Met	Gln	Asp	Gln	Glu 270	Gln	Val
5 5	Leu	Asn	Asp 275	Thr	Val	Asp	Gly	Lys 280	Glu	Ile	Tyr	Asn	Thr 285	Ile	Arg	Arg
	Lys	Thr 290	Lys	Asp	Ala	Phe	Tyr 295	Lys	Asn	Ile	Val	Lys 300	Lys	Gly	Tyr	Leu
60	Leu 305	Lys	Lys	Gly	Lys	Gly 310	Lys	Arg	Trp	Lys	Asn 315	Leu	Tyr	Phe	Ile	Leu 320

	Glu	Gly	Ser	Asp	Ala 325	Gln	Leu	Ile	Tyr	Phe 330	Glu	Ser	Glu	Lys	Arg 335	Ala
5	Thr	Lys	. Pro	Lys 340	Gly	Leu	Ile	Asp	Leu 345	Ser	Val	Cys	Ser	Val 350	Tyr	Val
	Val	His	Asp 355	Ser	Leu	Phe	Gly	Arg 360	Pro	Asn	Cys	Phe	Gln 365	Ile	Val	Val
10	Gln	His 370	Phe	Ser	Glu	Glu	His 375	Tyr	Ile	Phe	Tyr	Phe 380	Ala	Gly	Glu	Thr
15	Pro 385	Glu	Gln	Ala	Glu	Asp 390	Trp	Met	Lys	Gly	Leu 395	Gln	Ala	Phe	Cys	Asn 400
	Leu	Arg	Lys	Ser	Ser 405	Pro	Gly	Thr	Ser	Asn 410	Lys	Arg	Leu	Arg	Gln 415	Val
20	Ser	Ser	Leu	Val 420	Leu	His	Ile	Glu	Glu 425	Ala	His	Lys	Leu	Pro 430	Val	Lys
	His	Phe	Thr 435	Asn	Pro	Tyr	Cys	Asn 440	Ile	Tyr	Leu	Asn	Ser 445	Val	Gln	Val
25		450					455			Asn		460				
30	Phe 465	Val	Phe	Asp	Asp	Leu 470	Pro	Pro	Asp	Ile	Asn 475	Arg	Phe	Glu	Ile	Thr 480
					485					Asp 490					495	
35				500					505	Gly				510		
40			515					520		Lys			525		_	
40	Leu	530					5 35					540				
45	545					550				Leu	555					560
	Val				565					570					57 5	
50	Ser			580					585					590		
c c	Leu		595					600					605			
55		610					615					620				
60	Met 625					630					635					640
	Ile	∟eu	ъÀг	TTE	Met 645	GIU	ser	пĀг	GIN	Ser 6 50	Cys	Glu	Leu	Ser	Pro 655	Ser

	Lys	Leu	Glu	Lys 660	Asn	Glu	Àsp	Val	Asn 665	Thr	Asn	Leu	Thr	His 670	Leu	Leu
5	Asn	Ile	Leu 675	Ser	Glu	Leu	Val	Glu 680	Lys	Ile	Phe	Met	Ala 685		Glu	Ile
10	Leu	Pro 690	Pro	Thr	Leu	Arg	Tyr 695	Ile	Tyr	Gly	Cys	Leu 700	Gln	Lys	Ser	Val
	Gln 705	His	Lys	Trp	Pro	Thr 710	Asn	Thr	Thr	Met	Arg 715	Thr	Arg	Val	Val	Ser 720
15	Gly	Phe	Val	Phe	Leu 725	Arg	Leu	Ile	Cys	Pro 730	Ala	Ile	Leu	Asn	Pro 735	Arg
	Met	Phe	Asn	11e 740	Ile	Ser	Asp	Ser	Pro 745	Ser	Pro	Ile	Ala	Ala 750	Arg	Thr
20	Leu	Ile	Leu 755	Val	Ala	Lys	Ser	Val 760	Gln	Asn	Leu	Ala	Asn 765	Leu	Val	Glu
25	Phe	Gly 770	Ala	Lys	Glu	Pro	Tyr 775	Met	Glu	Gly	Val	Asn 780	Pro	Phe	Ile	Lys
	Ser 785	Asn	Lys	His	Arg	Met 790	Ile	Met	Phe	Leu	Asp 795	Glu	Leu	Gly	Asn	Val 800
30	Pro	Glu	Leu	Pro	Asp 805	Thr	Thr	Glu	His	Ser 810	Arg	Thr	Asp	Leu	Ser 815	Arg
	Asp	Leu	Ala	Ala 820	Leu	His	Glu	Ile	Cys 825	Val	Ala	His	Ser	Asp 830	Glu	Leu
35	Arg	Thr	Leu 835	Ser	Asn	Glu	Arg	Gly 840	Ala	Gln	Gln	His	Val 845	Leu	Lys	Ļys
40	Leu	Leu 850	Ala	Ile	Thr	Glu	Leu 855	Leu	Gln	Gln	Lys	Gln 860	Asn	Gln	Tyr	Thr
	Lys 8 65	Thr	Asn	Asp _.	Val	Ar g 8 70										
45	(2) INFOR	RMATI SEQU			_			: :								
		(A) (B)	LEN TYP STR	GTH: E: a	766 minc	ami aci	.no a .d	cids	;							
50	(ii)	(D)	TOP	OLOG	Y: 1	inea	ır									
55	(vi)	ORIG		sou	RCE:			char	OMV C	es n	ombe					
	(x i)															
60	Met 1			Arg							Ser	Ser	Val	Leu	Pro 15	Gln

	Thr	Asn	Arg	Leu 20	Ser	Leu	Leu	Arg	Asn 25	Arg	Glu	Ser	Thr	Ser 30	Val	Leu
5	Tyr	Thr	Ile 35	Asp	Leu	Asp	Met	Glu 40	Ser	Asp	Val	Glu	Asp 45	Ala	Phe	Phe
	His	Leu 50	Asp	Arg	Glu	Leu	His 55	Asp	Leu	Lys	Gln	Gln 60	Ile	Ser	Ser	Gln
10	Ser 65	Lys	Gln	Asn	Phe	Val 70	Leu	Glu	Arg	Asp	Val 75	Arg	Tyr	Leu	Asp	Ser 80
15	Lys	Ile	Ala	Leu	Leu 85	Ile	Gln	Asn	Arg	Met 90	Ala	Gln	Glu	Glu	Gln 95	His
	Glu	Phe	Ala	Lys 100	Arg	Leu	Asn	Asp	Asn 105	Tyr	Asn	Ala	Val	Lys 110	Gly	Ser
20	Phe	Pro	Asp 115	Asp	Arg	Lys	Leu	Gln 120	Leu	Tyr	Gly	Ala	Leu 125	Phe	Phe	Leu
	Leu	Gln 130	Ser	Glu	Pro	Ala	Tyr 135	Ile	Ala	Ser	Leu	Val 140	Arg	Arg	Val	Lys
2 5	145	Phe				150					155					160
30		Asn			165					170					175	
		Met \		180					185				_	190		
35		Leu	195					200					205		_	
40		Arg 210					215					220		-		_
40	225	Asn				230					235					240
45		Ser			245					250					255	
		Asp		260					265					270		
50		Lys	275					280					285			
		Arg 290					295					300				_
55	305	Ile				310					315					320
60		Pro			325					330					335	
	Phe	Phe	Leu	Arg 340	Phe	Val	Asn	Pro	Ala 345	Ile	Ile	Ser	Pro	Gln 350	Thr	Ser

5	Met	Leu	Leu 355	Asp	Ser	Cys	Pro	Ser 360	Asp	Asn	Val	Arg	Lys 365	Thr	Leu	Ala
J	Thr	Ile 370	Ala	Lys	Ile	Ile	Gln 375	Ser	Val	Ala	Asn	Gly 380	Thr	Ser	Ser	Thr
10	Lys 385	Thr	His	Leu	Asp	Val 390	Ser	Phe	Gln	Pro	Met 395	Leu	Lys	Glu	Tyr	Glu 400
	Glu	Lys	Val	His	Asn 405	Leu	Leu	Arg	Lys	Leu 410	Gly	Asn	Val	Gly	Asp 415	Phe
15	Phe	Glų	Ala	Leu 420	Glu	Leu	Asp	Gln	Tyr 425	Ile	Ala	Leu	Ser	Lys 430	Lys	Ser
20	Leu	Ala	Leu 435	Glu	Met	Thr	Val	Asn 440	Glu	Ile	Tyr	Leu	Thr 445	His	Glu	Ile
	Ile	Leu 450	Glu	Asn	Leu	Asp	Asn 455	Leu	Tyr	Asp	Pro	Asp 460	Ser	His	Val	His
25	Leu 465	Ile	Leu	Gln	Glu	Leu 470	Gly	Glu	Pro	Cys	Lys 475	Ser	Val	Pro	Gln	Glu 480
	Asp	Asn	Суѕ	Leu	Val 485	Thr	Leu	Pro	Leu	Tyr 490	Asn	Arg	Trp	Asp	Ser 495	Ser
30	Ile	Pro	Asp	Leu 500	Lys	Gln	Asn	Leu	Lys 505	Val	Thr	Arg	Glu	Asp 510	Ile	Leu
35	Tyr	Val	Asp 515	Ala	Lys	Thr	Leu	Phe 520	Ile	Gln	Leu	Leu	Arg 525	Leu	Leu	Pro
	Ser	Gly 530	His	Pro	Ala	Thr	Arg 535	Val	Pro	Leu	Asp	Leu 540	Pro	Leu	Ile	Ala
40	Asp 545	Ser	Val	Ser	Ser	Leu 550	Lys	Ser	Met	Ser	Leu 555	Met	Lys	Lys	Gly	Ile 560
	Arg	Ala	Ile	Glu	Leu 565	Leu	Asp	Glu	Leu	Ser 570	Thr	Leu	Arg	Leu	Val 575	Asp
45	Lys	Glu	Asn	Arg 580	Tyr	Glu	Pro	Leu	Thr 585	Ser	Glu	Val	Glu	Lys 590	Glu	Phe
50	Ile	Asp	Leu 595	Asp	Ala	Leu	Tyr	Glu 600	Arg	Ile	Arg	Ala	Glu 605	Arg	Asp	Ala
	Leu	Gln 610	Asp	Val	His	Arg	Ala 615	Ile	Cys	Asp	His	Asn 620	Glu	Tyr	Leu	Gln
55	Thr 625	Gln	Leu	Gln	Ile	Tyr 630	Gly	Ser	Tyr	Leu	Asn 635	Asn	Ala	Arg	Ser	Gln 640
	Ile	Lys	Pro	Ser	His 645	Ser	Asp	Ser	Lys	Gly 650	Phe	Ser	Arg	Gly	Val 655	Gly
60	Val	Val	Gly	Ile 660	Lys	Pro	Lys	Asn	Ile 665	Lys	Ser	Ser	Asn	Thr 670	Val	Lys

	Leu Ser	Ser Glr 675	d Gln Le	u Lys	L ys 680	Glu	Ser	Val	Leu	Leu 685	Asn	Cys	Thr
5	Ile Pro	Glu Phe	e Asn Va	1 Ser 695	Asn	Thr	Tyr	Phe	Thr 700	Phe	Ser	Ser	Pro
	Ser Thr 705	Asp Asr	Phe Va 71		Ala	Val	Tyr	Gln 715	Arg	Gly	His	Ser	Lys 720
10	Val Leu	Val Glu	Val Cy 725	s Ile	Cys	Leu	Asp 730	Asp	Val	Leu	Gln	Arg 735	Arg
15	Tyr Ala	Ser Asn 740		l Val	Asp	Leu 745	Gly	Phe	Leu	Thr	Phe 750	Glu	Ala
	Asn Lys	Leu Tyr 755	His Le	u Phe	Glu 760	Gln	Leu	Phe	Leu	Arg 765	Lys		

WHAT IS CLAIMED IS:

- A method of blocking a Ras-induced effect on a
 cell, comprising a step of introducing a GTPase Activating (GAP) protein to said cell.
 - 2. A method of Claim 1, wherein said Ras is an oncogenic Ras.

10

- 3. A method of Claim 1, wherein said Ras substantially lacks GTPase activity.
- 4. A method of Claim 1, wherein said effect is induction of cell proliferation or transformation.
 - 5. A method of treating an oncogenic Ras transformed cell comprising the step of introducing to said cell a GAP protein capable of suppressing the
- 20 transformation of said cell.
 - 6. The method of either Claim 1 or 5, wherein said cell is a eukaryotic cell, including a mammalian cell, including a human cell.

25

- 7. The method of either Claim 1 or 5, wherein said step of introducing is by expression of a nucleic acid encoding said GAP protein.
- 30 8. A method for the manufacture of a pharmaceutical composition for treating an oncogenic Ras transformed cell comprising admixing a GAP protein capable of suppressing the transformation of said cell with a pharmaceutically acceptable carrier.

35

9. The method of any of Claims 1,5or 8 wherein said GAP protein binds to said Ras protein with a Kd of less than 200 nM.

- 10. The method of any of Claims 1,5 or 8 wherein said GAP protein is selected from the group of:
 - a) a fragment of a mammalian GAP protein;
- b) a fragment of a mammalian NF1-GRD protein;
 - c) a homologue or mimetic of a or b; and
 - d) the proteins defined by SEQ ID NO: 1 or SEQ ID NO: 2.
- 10 11. The method of any of Claims 1, 5 or 8 wherein said GAP protein is selected from the group of:
 - a) a fragment of a mammalian GAP protein having a wild type sequence, including a human GAP protein; and
- b) a fragment of a mutant mammalian GAP protein having a sequence with an amino acid substitution at a position corresponding to a position 1063 through 1651 of NF1 or the corresponding region of other GAP proteins.

- 12. A method of Claim 11, wherein said substitution is a conservative substitution.
- 13. The method of any of Claims 1, 5 or 8 wherein said GAP protein interacts with Ras and blocks interaction of an effector molecule which binds to Ras at a position from 32 to 40 or from 59 to 65.
- 14. A method of Claim 2, wherein said GAP protein does not block signal transduction of non-oncogenic Ras.
- 15. A method of either of Claim 1 or 2, further comprising the steps of identifying the responsible oncogenic Ras and selecting said GAP protein which blocks said identified oncogenic Ras.

- 16. A method of identifying appropriate GAP proteins useful for treating a mutated Ras-induced condition of a eukaryote cell comprising the steps of:
 - a) identifying the mutated Ras which induces said condition; and
 - b) screening various GAP variants for specific variants which are capable of blocking said condition.
- 10 17. A method of Claim 16, wherein said eukaryote cell is a mammalian cell, including a human cell.
- 18. A method of 16, further comprising additional screening to determine which GAP variants have minimal effect on non-mutated Ras effects.
 - 19. A GAP protein capable of blocking transformation of a cell, where said transformation is due to an oncogenic Ras.

- 20. A protein of Claim 19, wherein said GAP is selected from the group of:
 - a) a fragment of a mammalian GAP protein;
 - b) a fragment of a mammalian NF1-GRD protein;
- c) a homologue or mimetic of a or b; and
 - d) a protein defined by SEQ ID NO: 1 or SEQ ID NO:2.
- 21. A protein of Claim 19, selected from the group 30 of:
 - a fragment of a mammalian GAP protein having a wild type sequence, including a human GAP protein; and
- b) a fragment of a mutant mammalian GAP protein
 having a sequence with an amino acid
 substitution at a position corresponding to a
 position from 1063 through 1651 or the
 corresponding region of other GAP proteins.

- 22. A protein of Claim 21, wherein said substitution is a conservative substitution.
- 5 23. A protein of Claim 19, wherein said protein interacts with Ras and blocks interaction of an effector molecule which binds to Ras at a position from 32 to 40 or from 59 to 65.
- 10 24. A protein of Claim 19, wherein said cell is a eukaryotic cell, including a mammalian cell, including a human cell.
- 25. A protein of Claim 19, wherein said oncogenic 15 Ras substantially lacks GTPase activity.
 - 26. A protein of Claim 19, which binds to said Ras protein with a Kd of less than 200 nM.
- 20 27. A protein of Claim 19, wherein said protein interferes with interaction of Ras•GTP with an effector compound.
- 28. An isolated nucleic acid encoding a protein 25 normally expressed as a protein of Claim 19.
 - 29. A pharmaceutical composition for treating an oncogenic Ras transformed cell comprising a GAP protein capable of suppressing the transformation of said cell and a pharmaceutically carrier.
 - 30. The pharmaceutical composition of claim 29 wherein the GAP protein binds to said Ras protein with a Kd of less than 200 nM.
 - 31. The pharmaceutical composition of claim 29 wherein said GAP protein is selected from the group of:
 - a) a fragment of a mammalian GAP protein;

- b) a fragment of a mammalian NF1-GRD protein;
- c) a homologue or mimetic of a or b; and
- d) the proteins defined by SEQ ID NO: 1 or SEQ ID NO: 2.

10

15

WO 94/16069

- 32. The pharmaceutical composition of claim 29 wherein said GAP protein is selected from the group of:
 - a) a fragment of a mammalian GAP protein having a wild type sequence, including a human GAP protein; and
 - b) a fragment of a mutant mammalian GAP protein having a sequence with an amino acid substitution at a position corresponding to a position 1063 through 1651 of NF1 or the corresponding region of other GAP proteins.
- 33. The pharmaceutical composition of claim 29 wherein said GAP protein interacts with Ras and blocks
 20 interaction of an effector molecule which binds to Ras at a position from 32 to 40 or from 59 to 65.
- 34. The use of a GAP protein capable of suppressing the transformation of an oncogenic Ras transformed cell and a pharmaceutically carrier for treating said oncogenic Ras transformed cell.
- 35. The use of a GAP protein capable of suppressing the transformation of an oncogenic Ras transformed cell for the manufacture of a medicament for treating said oncogenic Ras transformed cell.
- 36. The use of either Claim 34 or 35 in which the GAP protein binds to said Ras protein with a Kd of less than 200 nM.
 - 37. The use of either Claim 34 or 35 in which the GAP protein is selected from the group of:

- a) a fragment of a mammalian GAP protein;
- b) a fragment of a mammalian NF1-GRD protein;
- c) a homologue or mimetic of a or b; and
- d) the proteins defined by SEQ ID NO: 1 or SEQ ID NO: 2.
- 38. The use of either Claim 34 or 35 in which the GAP protein is selected from the group of:
- a) a fragment of a mammalian GAP protein having a wild type sequence, including a human GAP protein; and
 - b) a fragment of a mutant mammalian GAP protein having a sequence with an amino acid substitution at a position corresponding to a position 1063 through 1651 of NF1 or the corresponding region of other GAP proteins.
- 39. The use of either Claim 34 or 35 in which the
 20 GAP protein interacts with Ras and blocks interaction of an
 effector molecule which binds to Ras at a position from 32
 to 40 or from 59 to 65.

1/2

FIGURE 1A

2/2

FIGURE 1B

