Cyfrowe przetwarzanie sygnałów Model odczytu sygnału z detektora fizyki wysokich energii

Jakub Banaś, Marcin Mikołajczyk

Wydział Fizyki i Informatyki Stosowanej, Akademia Górniczo-Hutnicza w Krakowie

Data: 21 sierpnia 2025

Streszczenie

W projekcie przedstawiono modelowanie i rekonstrukcję amplitudy quasi-gaussowskiego impulsu napięciowego z półprzewodnikowego detektora cząstek. Sygnał wyjściowy układu odczytu opisano jako splot idealnego sygnału z detektora (aproksymacja deltą Diraca) z funkcją przenoszenia elektroniki H(t). Po zasymulowaniu próbkowania ADC w losowej fazie oraz dodaniu białego szumu zastosowano dekonwolucję w dziedzinie częstotliwości z regularyzacją Wiener/Tichonowa, co pozwala ograniczyć wzmacnianie szumu przez 1/H(f). Wykazano, że po kalibracji skali na torze bezszumowym maksymalna próbka po dekonwolucji stanowi bezpośrednią estymatę amplitudy A. Zbadano wpływ parametru regularyzacji oraz częstotliwości próbkowania na dokładność rekonstrukcji.

1 Wstęp teoretyczny

1.1 Detektor i elektronika odczytu

Przejście naładowanej cząstki przez półprzewodnik generuje pary elektron–dziura, a tym samym krótki impuls prądowy. Przedwzmacniacz ładunkowy (CSA) integruje ładunek Q_{det} , dając skok napięcia proporcjonalny do Q_{det} i powolny zanik:

$$V_{CSA}(t) \approx -\frac{1}{C_f} \int I_{det}(t) dt = -\frac{Q_{det}}{C_f}.$$

Shaper (np. $CR-RC^n$) ogranicza czas impulsu i optymalizuje SNR. Odpowiedź układu odczytu modelujemy

$$H(t) = \left(\frac{t}{\tau}\right)^n e^{-t/\tau} u(t), \qquad t \ge 0, \tag{1}$$

i normalizujemy do max H(t) = 1. Przykład pokazano na rys. 1.

1.2 Próbkowanie

Sygnał na wyjściu toru to

$$V_{\text{obs}}(t) = A H(t) + n(t),$$

gdzie n(t) jest białym szumem gaussowskim. ADC próbuje co $T_s=1/f_s$ z losowym offsetem t_0 :

$$V[m] = V_{\text{obs}}(t_0 + mT_s).$$

Losowość fazy sprawia, że żadna próbka nie musi trafić w maksimum — wymagana jest rekonstrukcja amplitudy.

1.3 Dekonwolucja

W dziedzinie częstotliwości splot przechodzi w mnożenie:

$$V_{\text{obs}}(f) = D(f) H(f).$$

Rekonstrukcję realizujemy filtrem odwrotnym z regularyzacją

$$G(f) = \frac{H^*(f)}{|H(f)|^2 + \lambda},$$
 (2)

a następnie

$$V_{\text{rec}} = \mathcal{F}^{-1} \{ \mathcal{F} \{ V \} \cdot G \}.$$

Skalę kalibrujemy torzem bezszumowym tak, aby $\max V_{\rm rec}=A$. Czas i amplitudę doprecyzowujemy interpolacją paraboliczną w otoczeniu maksimum.

2 Rekonstrukcja amplitudy impulsu

Znormalizowaną odpowiedź H(t) przedstawiono na rys. 1. Przykładowy zaszumiony przebieg ciągły $V_{\rm obs}(t)$ i próbki ADC z losowym t_0 pokazano odpowiednio na rys. 2 i 3.

Rysunek 1: Odpowiedź impulsowa shapera H(t) (CR–RCⁿ), znormalizowana do max = 1.

Rysunek 2: Sygnał obserwowany z dodanym szumem: $V_{\text{obs}}(t) = AH(t) + n(t)$.

Rysunek 3: Próbkowanie z losowym przesunięciem t_0 : linia — $V_{\text{obs}}(t)$, znaczniki — próbki V[m].

Dekonwolucję wykonujemy według (2) z zerowym dopełnieniem, aby uniknąć splotu cyklicznego, po czym odejmujemy baseline z końcówki śladu i skalujemy do A. Wynik to wąski impuls $\approx \delta[n]$ (rys. 4). Zgodność w dziedzinie częstotliwości ilustruje rys. 5: $|H(f)G(f)| \approx 1$ w paśmie użytecznym.

Rysunek 4: Dekonwolucja w dziedzinie częstotliwości (Wiener/Tichonow, $\lambda=10^{-3}$); pik odpowiada estymacie amplitudy \hat{A} .

Rysunek 5: Charakterystyki częstotliwościowe: |H(f)|, |G(f)| i produkt $|H(f)G(f)| \approx 1$. Odchylenia przy bardzo niskich i bliskich Nyquistowi częstotliwościach wynikają z regularyzacji i dyskretyzacji.

3 Dobór regularyzacji

Parametr λ równoważy odwracanie H(f) i wzmocnienie szumu. Rys. 6 pokazuje jednoprzebiegową charakterystykę $|\hat{A} - A|$ vs. λ . W praktyce λ dobiera się na podstawie średniego błędu (Monte Carlo) i/lub wiedzy o widmie szumu.

Rysunek 6: Błąd amplitudy $|\hat{A} - A|$ w funkcji λ (single-shot).

4 Opis algorytmu

- 1. **Model** H(t): równanie (1), normalizacja do max = 1.
- 2. Symulacja $V_{\text{obs}}(t) = A H(t) + n(t)$ i próbkowanie z losowym t_0 ; interpolacja pchip.
- 3. **Dekonwolucja** (FFT): G(f) z (2); mnożenie w częstotliwościach z zerowym dopełnieniem.
- 4. **Kalibracja i baseline**: skalowanie tak, by $\max V_{\text{rec}} = A$; odjęcie mediany z ogona śladu.
- 5. Estymacja A, t: maksimum V_{rec} + interpolacja paraboliczna na trzech próbkach.
- 6. **Strojenie** λ : skan po siatce λ (jak na rys. 6); wybór kompromisu szum-bias.

5 Podsumowanie

Zastosowanie dekonwolucji Wiener/Tichonowa w dziedzinie częstotliwości umożliwia stabilną rekonstrukcję amplitudy impulsu przy losowej fazie próbkowania. Po kalibracji skali i korekcji baseline'u estymacja amplitudy \hat{A} jest bliska A, a jakość zależy głównie od parametru regularyzacji λ i częstotliwości próbkowania f_s . Metoda jest prosta implementacyjnie (FFT) i dobrze uogólnia się na inne kształty H(t) oraz inne modele szumu.

Literatura

- [1] F. Sauli, Gaseous Detectors: Fundamentals and Applications. Cambridge University Press, 2014.
- [2] J. G. Proakis, D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications. Pearson.
- [3] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I. Wiley.
- [4] CERN School of Computing, Electronics for High Energy Physics, wykłady/skripta.
- [5] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing. Pearson.