Analysis 1 - Übungsblatt 5

Wintersemester 2016/2017

Prof. Dr. Anna Marciniak-Czochra, Dr. Frederik Ziebell, Chris Kowall Internetseite: http://www.biostruct.uni-hd.de/Analysis1.php

Abgabe: 2. Dezember, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 5.1

4 Punkte

Sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge nicht negativer reeller Zahlen mit Limes a>0. Beweisen Sie folgende Aussagen.

(a) Es gilt $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.

Untersuchen Sie die Konvergenz der nachstehenden Folgen.

(b) $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n = \sqrt{1 + \frac{4^n}{n!}} - 1$$

(c) $(c_n)_{n\in\mathbb{N}}$ mit

$$c_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$

(d) $(d_n)_{n\in\mathbb{N}}$ mit

$$d_n = \sqrt[8]{1 + \frac{(-1)^n}{n^2}}$$

Aufgabe 5.2

4 Punkte

Untersuchen Sie nachstehende Folgen auf Konvergenz und geben Sie gegebenenfalls deren Grenzwert oder all deren Häufungswerte an.

(a) $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n = (1 + (-1)^n)(-1)^{n(n+1)/2}$$

(b) $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n = \frac{(-1)^n n^{10}}{n!}$$

(c) $(c_n)_{n \in \mathbb{N}_0}$ mit $c_0 = 1, c_1 = 2$ sowie

$$c_{n+2} = \frac{1 + c_{n+1}}{c_n} \qquad \forall \ n \in \mathbb{N}_0$$

Aufgabe 5.3 4 Punkte

(a) Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ reelle Folgen mit

$$a_n \le b_n \le c_n$$
 sowie $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$.

Beweisen Sie, dass auch $(b_n)_{n\in\mathbb{N}}$ konvergiert mit demselben Grenzwert.

(b) Zeigen Sie unter Zuhilfenahme von Aufgabenteil (a) und der Bernoulli-Ungleichung, dass die Folge $(d_n)_{n\in\mathbb{N}}$ mit

$$d_n = \left(\frac{n(n+2)}{(n+1)^2}\right)^n$$

gegen 1 konvergiert.

(c) Sei die Folge $(e_n)_{n\in\mathbb{N}}$ gegeben durch

$$e_n = \left(1 + \frac{1}{n}\right)^n.$$

- (i) Zeigen Sie, dass die Folge monoton wachsend ist, d.h. $e_{n+1}/e_n \geq 1$ für alle Indizes $n \in \mathbb{N}$.
- (ii) Beweisen Sie mithilfe des Binomialsatzes für alle $n \in \mathbb{N}$ die Ungleichung

$$e_n \le \sum_{k=0}^n \frac{1}{k!}.$$

(iii) Zeigen Sie, dass die Folge $(e_n)_{n\in\mathbb{N}}$ konvergiert mit

$$\lim_{n\to\infty}e_n\leq \mathrm{e},$$

wobei mit e die Eulersche Zahl

$$e := \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!}$$

bezeichnet sei.

Aufgabe 5.4 4 Punkte

(a) Zeigen Sie die Gültigkeit der Gleichung

$$\sum_{k=m}^{n} x^k = \begin{cases} \frac{x^m - x^{n+1}}{1 - x} & x \neq 1, \\ n - m + 1 & x = 1 \end{cases}$$

für alle $x \in \mathbb{R}$ und $m, n \in \mathbb{N}_0, m \leq n$.

Hinweis: Verwenden Sie Aufgabe 2.2.

(b) Untersuchen Sie die beiden Folgen $(s_n)_{n\in\mathbb{N}}$ sowie $(S_n)_{n\in\mathbb{N}_0}$ von Partialsummen auf die Existenz Ihrer Grenzwerte für $n\to\infty$ und geben Sie ihren Limes an. Deren Folgenglieder seien durch

(i)

$$s_n := \sum_{k=1}^n \frac{(-1)^k}{3^k}$$

(ii)

$$S_n := \sum_{k=0}^n \frac{1}{4^k}$$

gegeben.