Alunos:

RM357067 - Edinaldo Rodrigues de Oliveira Junior

RM358158 - Henrique Cardoso

RM358067 - Jefferson de Souza Santos

RM357344 - Walace Vinicius Silva dos Santos

Data Architecture, Integration and Ingestion | QuantumFinance

Parte 1 - Framework de Dados proposto

A QuantumFinance, sendo uma startup em ascensão no mercado financeiro, enfrenta desafios como a necessidade de escalabilidade, segurança e disponibilidade dos dados, fundamentais para operações financeiras robustas e confiáveis. Além disso, o cenário de inovação exige um ambiente de dados que suporte análises avançadas, inteligência artificial e tomadas de decisão ágeis.

A decisão de adotar uma arquitetura **Data Lakehouse** surge como a resposta ideal para essas demandas. Essa abordagem combina a flexibilidade do Data Lake, permitindo ingestão de dados não estruturados e semi-estruturados, com a governança e o desempenho analítico característicos de um Data Warehouse. Com essa arquitetura, a QuantumFinance será capaz de:

- 1. **Garantir Segurança e Confiabilidade:** Suporte a transações ACID e controle de acesso rigoroso, essenciais para operações financeiras críticas.
- 2. **Habilitar Escalabilidade e Agilidade:** Processamento distribuído para grandes volumes de dados e integração com ferramentas modernas de análise e ciência de dados.
- 3. **Facilitar a Inovação:** Fornecer acesso eficiente aos dados para cientistas, analistas e desenvolvedores, acelerando a entrega de insights e soluções personalizadas.
- 4. **Manter a Governança e Conformidade:** Implementação de políticas claras de gestão e qualidade de dados, fundamentais para atender regulamentos financeiros.

A escolha do Data Lakehouse não apenas atende às necessidades atuais da QuantumFinance, mas também prepara a empresa para um futuro de crescimento e competitividade em um setor dinâmico e altamente regulamentado.

Framework de dados:

Detalhe do FrameWork de Dados

1. Ingestão de Dados: Apache NiFi

Justificativa: O Apache NiFi é uma ferramenta poderosa para ingestão, roteamento e transformação de dados em tempo real e batch. Ele permite que você conecte múltiplas fontes de dados (como MySQL, APIs, arquivos CSV, entre outras) de forma simples e eficiente. Sua interface visual facilita a criação de fluxos de dados complexos sem a necessidade de código extensivo, o que é especialmente útil em um contexto de startup com necessidades ágeis e rápidas.

Conexões: NiFi pode facilmente integrar com MySQL (para dados transacionais) e Delta Lake (para dados analíticos) através de processadores de ingestão, permitindo uma movimentação fluida dos dados para os sistemas de armazenamento adequados.

2. Processamento de Dados: Apache Spark

Justificativa: O Apache Spark é uma plataforma de processamento de dados distribuída e de alto desempenho, capaz de lidar com grandes volumes de dados de maneira rápida e eficiente. Ele suporta tanto processamento batch quanto streaming, o que o torna flexível para diferentes necessidades, como transformar dados históricos e realizar análises em tempo real.

Conexões: O Spark se integra nativamente com Delta Lake, o que permite processar dados de forma eficiente, mantendo a integridade e a consistência dos dados. Além disso, o Spark pode ser executado na plataforma Databricks, otimizando o uso dos recursos de computação em nuvem.

3. Armazenamento de Dados: MySQL e Delta Lake

Justificativa:

MySQL: Utilizado para armazenar dados transacionais, como informações sobre transações financeiras, clientes e registros de sistemas operacionais. O MySQL é um banco relacional robusto, amplamente utilizado e conhecido por sua consistência e integridade de dados em sistemas de alto volume de transações (OLTP).

Delta Lake: Servindo como o repositório para dados analíticos e não estruturados (por exemplo, logs de transações, dados históricos e dados semi estruturados), o Delta Lake proporciona consistência ACID sobre dados armazenados em formato de Data Lake. Ele é ideal para processar e armazenar grandes volumes de dados de forma escalável e resiliente, com suporte a atualizações e backfills.

4. Consolidação de Dados: Delta Lake

Justificativa: O Delta Lake é a camada de consolidação de dados em uma arquitetura de Data Lakehouse, proporcionando o equilíbrio ideal entre segurança e flexibilidade. Ele oferece transações ACID, escalabilidade e controle sobre os

dados, além de permitir a atualização, exclusão e inserção de dados de maneira eficiente.

Conexões: Delta Lake recebe os dados processados pelo Apache Spark e serve como fonte central para análise e treinamento de modelos de dados. Ele também permite a consolidação de dados provenientes de múltiplas fontes, garantindo qualidade e consistência.

5. Acesso aos Dados: Databricks

Justificativa: O Databricks é uma plataforma integrada que fornece acesso fácil e otimizado aos dados no Delta Lake. Ele utiliza o Apache Spark para processamento e oferece uma interface interativa para análise, desenvolvimento de notebooks e execução de consultas SQL. Além disso, o Databricks oferece automação e escalabilidade, permitindo que o time de dados se concentre na criação de valor a partir dos dados, em vez de se preocupar com a infraestrutura.

Conexões: Databricks acessa os dados armazenados no Delta Lake e executa consultas analíticas, oferecendo uma plataforma fácil de usar para cientistas de dados e analistas de dados.

6. Visualização de Dados: Tableau

Justificativa: O Tableau é uma das ferramentas de visualização de dados mais populares e poderosas, capaz de criar dashboards interativos e dinâmicos que ajudam na exploração dos dados e na comunicação de insights de forma clara. A facilidade de uso e a integração com diversas fontes de dados (incluindo Delta Lake e MySQL) fazem do Tableau uma excelente escolha para startups que buscam agilidade e eficácia na visualização e tomada de decisões baseadas em dados.

Conexões: O Tableau pode se conectar diretamente ao Databricks e ao Delta Lake para acesso rápido a dados analíticos, além de poder integrar-se ao MySQL para visualização de dados transacionais, criando relatórios dinâmicos e interativos.

7. Operacionalização de Dados: Apache Airflow

Justificativa: O Apache Airflow é uma plataforma de orquestração de workflows, ideal para agendar e gerenciar pipelines de dados complexos, garantindo a execução ordenada e monitoramento de tarefas. Ele pode ser usado para automatizar o fluxo de dados, como ingestão, processamento e carregamento, além de lidar com dependências entre os diversos estágios da arquitetura de dados.

Conexões: O Airflow pode orquestrar processos como o Spark Jobs e a ingestão de dados via NiFi, além de garantir que as tarefas de processamento sejam executadas conforme o planejado, de maneira escalável e monitorada.

Cada ferramenta foi escolhida com base nas **necessidades específicas** da QuantumFinance, visando **escalabilidade**, **eficiência e agilidade** no tratamento e visualização de dados financeiros.

- O Apache NiFi garante uma ingestão robusta e escalável.
- O Apache Spark oferece processamento em larga escala, tanto para dados batch quanto streaming.
- O MySQL atende as necessidades de armazenamento transacional, enquanto o Delta Lake consolida dados analíticos de forma segura e eficiente.
- Databricks oferece acesso facilitado e otimizado a esses dados para análises, enquanto o Tableau torna a visualização e exploração de dados acessível.
- Finalmente, o **Apache Airflow** orquestra todos esses processos, garantindo a execução e monitoramento eficientes da pipeline de dados.

Parte 2 - MVP Processo de ingestão de registros de transações no MySQL

O exemplo de MVP de fluxo escolhido foi o de registro de transações no MySQL. Iremos montar esse utilizando o Apache NiFi para enviar dados de transações financeiras para um banco de dados MySQL, com base no modelo relacional OLTP (Online Transaction Processing). A modelagem relacional OLTP é a escolha ideal para dados de transações financeiras, pois ela assegura a integridade, a atomicidade e a consistência necessárias para o processamento de transações financeiras. O MVP irá realizar a ingestão de csv na tabela de Transacoes.

Criação dos dockers

--Nifi

docker container exec -it nifi bash mkdir /tmp/nifi exit

--MySQL

docker run --name MySQL -it ivangancev/ubuntusql:latest bash

Configurações gerais dos dockers (após criação dos mesmos)

--Configuração do nifi:

docker container cp c:\dts\transacoes.csv nifi:/tmp/nifi
docker container cp c:\dts\core-site.xml nifi:/opt/nifi/nifi-current/conf/
docker container cp c:\dts\hdfs-site.xml nifi:/opt/nifi/nifi-current/conf/
docker container cp c:\dts\postgresql-42.7.1.jar nifi:/opt/nifi/nifi-current/lib/ (essencial para a conexão do nifi com o MySQL)

--Configuração de redes

```
docker network create my_network
docker run -d --name nifi --network my_network
docker run -d --name MySQL --network my_network
```

Configuração do MySQL:

--Criação do banco do database

create database db dts:

--Criação do usuário e liberação de acesso

```
CREATE USER 'user_nifi'@'nifi.my_network' IDENTIFIED BY '";
GRANT ALL PRIVILEGES ON quantumfinance.* TO '%@'nifi.my_network';
FLUSH PRIVILEGES;
```

-- Criação da tabela

```
CREATE TABLE quantumfinance.Transacoes (
transacao_id VARCHAR(9) PRIMARY KEY,
conta_id_origem VARCHAR(6),
conta_id_destino VARCHAR(6),
valor FLOAT(15),
tipo_transacao VARCHAR(3),
data TIMESTAMP
);
```

Acessar o nifi pelo browser

http://localhost:9090/nifi

Configurações do Nifi

Dentro do NiFi, iniciamos o processo com a leitura do arquivo CSV utilizando o Processor GetFile, configurado da seguinte forma:

Como o CSV não contém um schema.name nas suas configurações padrão, uma etapa adicional foi inserida com o Processor Update Attribute, que denominamos "test". Nessa etapa, futuramente atribuíremos o schema ao arquivo.

Na sequência, utilizamos o Processor PutDatabaseRecord, responsável pela transformação do CSV em um flowfile, que será enviado para o MySQL. Para essa configuração, são utilizados dois Controller Services: um para a leitura do arquivo CSV e outro para a conexão com o banco MySQL.

O CSVReader possui as configurações adequadas, sendo que um terceiro Controller Service é utilizado para configurar o schema e passá-lo para o atributo "test" que definimos anteriormente.

Já o DBCPConnectionPool é encarregado da conexão com o MySQL. Para configurá-lo, é necessário informar o Database Connection URL, que inclui o IP, a porta do Docker do MySQL e o database em uso. Além disso, é preciso referenciar o local do arquivo do Driver (o mesmo que foi carregado anteriormente via terminal).

Por fim, o fluxo MVP é composto pelos Processors GetFile > UpdateAttribute > PutDatabaseRecord, que formam a base para a ingestão e transformação dos

dados. Esse fluxo pode ser facilmente consultado e replicado por meio do template QuantumFinance_Transacoes.xml, garantindo uma visualização clara de todo o processo e facilitando a implementação de futuras integrações ou ajustes na arquitetura de dados.

ysql> select * from quantumfinance.Transacoes;					
transacao_id	conta_id_origem	conta_id_destino	valor	tipo_transacao	data
101851338	 219 7 91	824691	 4050.86	DOC	 2024-11-10 00:13:53
114992769	856943	324815	4606.74	PIX	2024-11-01 09:38:16
117806137	862505	937918	5197.8	PIX	2024-11-24 02:50:49
179194945	611759	382245	4747.2	TED	2024-10-31 16:58:04
183776839	104675	825682	8120.67	DOC	2024-11-11 22:38:36
275584748	516417	816190	4654.72	PIX	2024-11-22 05:22:42
301884039	102785	828552	5032.88	PIX	2024-11-14 13:06:00
308284747	954943	179633	5895.89	DOC	2024-11-05 00:16:31
339807174	693987	646765	9703.18	PIX	2024-11-02 00:59:21
345648656	470073	701737	9955.58	PIX	2024-11-30 04:06:28
361140453	420631	159695	3175.72	TED	2024-11-16 16:52:09
371345537	406620	858746	571.1	TED	2024-11-08 19:54:23
373753592	839565	742432	9237.83	TED	2024-11-11 03:23:31
387087861	447350	785158	6073.62	PIX	2024-11-21 02:13:11
425492296	273028	876143	9284.86	TED	2024-11-25 18:17:49
444041889	696270	379408	5549.95	PIX	2024-11-15 12:09:35
453428389	825304	771863	5799	PIX	2024-11-30 13:33:03
454728268	172363	601114	4392.77	DOC	2024-11-28 00:42:21
470107732	759337	505268	3363.32	TED	2024-11-13 10:24:44
521434454	386314	234390	8432.27	DOC	2024-11-13 17:26:57
521525625	273535	823920	9174.47	DOC	2024-11-19 07:49:17
539007895	609527	294981	785.48	PIX	2024-11-02 04:54:50
549455354	103895	171872	4186.32	TED	2024-11-10 01:47:07
573509053	702965	431379	6740.85	PIX	2024-11-29 09:42:24
604263386	528332	606341	6095.21	DOC	2024-11-21 13:14:33
628310600	637044	833948	9585.44	TED	2024-11-06 02:24:47
642344737	603060	967038	9262.51	TED	2024-11-07 08:24:05
673874974	148025	784798	5784.69	PIX	2024-11-09 08:36:05
687684683	129213	590252	6938.04	PIX	2024-11-01 10:17:49
689869129	141071	896209	996.4	PIX	2024-11-07 06:16:17
705820949	163070	763262	6801.33	DOC	2024-11-21 01:57:03
712252874	998694	703023	1885.32	PIX	2024-11-20 17:18:54
712673554	637595	209146	6796.78	PIX	2024-11-19 08:42:27
726947679	611514	458439	448.03	DOC	2024-11-16 15:10:23
729292522	192080	115341	8750.87	DOC	2024-11-18 00:44:12
762110979	216297	687078	5049.98	PIX	2024-11-26 05:54:47
774935765	729212	622949	4302	PIX	2024-11-25 00:59:13
775817716	417822	263569	1463.49	PIX	2024-11-05 13:20:06
809547195	637689	774948	1447.74	PIX	2024-11-03 04:35:31
830319250	216934	938593	5714.53	DOC	2024-11-29 03:19:36