Capstone 2: Retail Data Analysis

Jarom Hatch

Introduction

Problem Statement

- Retail data analytics can be challenging given:
 - Supply chain delays
 - Global shortages
 - Sudden market shifts
- Given a set of feature variables, can weekly sales be predicted accurately using a machine learning algorithm?

Target Audience

Major grocery store chains and retailers:

Data Overview

Initial Datasets

- 3 main datasets provided:
 - Stores, Features, Sales
- Stores:
 - Store number, Store type, Store size
- Features:
 - Store number, Date, Temperature, Fuel price, Markdowns (1 through 5), Consumer price index (CPI), Unemployment rate, Is the date a holiday
- Sales:
 - Store number, Department, Date, Weekly sales values, Is the date a holiday

- Features data: February 5th, 2010 to July 26th, 2013
- Sales data: February 5th, 2010 to October 26th, 2012

Data Wrangling

- Data from all 3 datasets needed to be combined for machine learning
- The features dataset had NaN values in a few columns
 - Missing markdown values before November 2011
 - Last rows of CPI and unemployment values
- Markdown NaN values replaced with 0
- CPI NaN values replaced using polynomial fitting
- Unemployment NaN values replaced with forward filling method

Data Wrangling (cont.)

- Datasets had both categorical and continuous variables
- Categorical variables were converted to work with machine learning
 - Store type changed using encoder
 - Dates changed to ordinal values
- Separate weekly sales values for each department caused issues
- All weekly sales for every store and date were added together to make machine learning easier to set up
- All datasets were combined based on date and store number to create one main dataset
- The extra features data without weekly sales we split off for future prediction testing

Exploratory Data Analysis

 Values from the complete dataset were plotted as histograms to determine any initial trends in the data

Exploratory Data Analysis (cont.)

The second set of values is shown below

Exploratory Data Analysis (cont.)

- The continuous features showed interesting trends
- Temperature and unemployment seemed normally distributed
- CPI and fuel price seemed to have bimodal distributions
- Weekly sales and most of the markdown columns had right skewed distributions
- Nothing in the visualizations showed problems with the data or any abnormally distributed data

Exploratory Data Analysis (cont.)

- Correlation matrix showing correlations with weekly sales
 - Store size had largest positive
 - Unemployment had largest negative

Machine Learning

Machine Learning Setup

- Dataset split with training and testing sections
- Features were first scaled to prepare for machine learning algorithms
 - Standard Scaler
 - Min/Max Scaler
 - Unscaled
- Machine learning models chosen from typically used model for continuous target variables
 - Linear regression
 - Lasso
 - Ridge
 - ElasticNet/ElasticNetCV
 - o Random Forest Regressor
- Models judged on R² value based on testing data

Machine Learning Metrics

Metrics from best models:

Model	MAE	RMSE	R ²
Linear	221404	301197	0.718
Lasso	221403	301197	0.718
Ridge	226313	306939	0.708
ElasticNet	221412	301177	0.718
Random Forest	71262	134777	0.944

Random Forest Regressor

- The random forest regressor using the unscaled version of the training and testing data produced the best results
- On the right is the plot of predicted versus actual values using this regressor

Random Forest Regressor

- On the right is the actual values from the original dataset plotted with the predicted values using the random forest model on the separate dataset with no weekly sales
- Apart from some deviation towards the middle of the data, the trends seem to follow those of the previous dataset

Conclusion

Conclusions

- Machine learning was able to accurately predict future weekly sales values per store
- Best model was default random forest regressor using unscaled training and test data
- This model can be used continuously and easily by the customer for future predictions and can be retrained using new data for even better results