VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA

3D objektų atpažinimas iš 2D nuotraukų 3D object recognition from 2D images

Magistro baigiamasis darbas

Atliko: Aleksas Vaitulevičius (parašas)

Darbo vadovas: prof. habil. dr. Olga Kurasova (parašas)

Recenzentas: doc. dr. Vardauskas Pavardauskas (parašas)

Santrauka

Glaustai aprašomas darbo turinys, pristatoma nagrinėta problema ir padarytos išvados. Santraukos apimtis ne didesnė nei 0,5 puslapio. Santraukų gale nurodomi darbo raktiniai žodžiai.

Raktiniai žodžiai: Klasifikavimo uždavinys, 3D objektai, dirbtiniai neuroniniai tinklai, kapsuliniai neuroniniai tinklai, tiesioginio sklidimo neuroniniai tinklai

Summary

Santrauka anglų kalba.

Keywords: classification, 3D objects, artificial neural networks, CapsNet neural networks, convolutional neural networks

Turinys

Įvadas	. 4
1. Literatūros analizė	. 7
1.1. 3D objektų atpažinimo iš 2D nuotraukų uždavinys	. 7
1.2. 3D objektų atpažinimo iš 2D nuotraukų uždavinio sprendinių pavyzdžiai	
1.3. Dirbtinių neuroninių tinklų bendrieji principai	. 8
1.3.1. Dirbtinis neuronas, perceptronas	. 8
1.3.2. Dirbtiniai neuroniniai tinklai	. 10
1.4. Tiesioginio sklidimo dirbtinių neuroninių tinklų apžvalga	. 10
1.5. Kapsulinių dirbtinių neuroninių tinklų apžvalga	. 10
2. Kapsulinių neuroninių tinklų modifikacijos ir parametrai	. 11
3. Eksperimentiniai tyrimai	. 12
3.1. Tyrimams naudoti duomenys	. 12
3.2. Kapsulinių neuroninių tinklų modifikacijų ir parametrų eksperimentiniai tyrimai	. 12
3.3. Kapsulinių ir tiesioginio sklidimo neuroninių tinklų eksperimentiniai tyrimai	. 12
Rezultatai ir išvados	. 13
Literatūra	. 14
Santrumpos	. 15
Priedas Nr.1	
Priedas Nr.2	

Įvadas

Vienas iš fundamentalių kompiuterinės regos uždavinių yra informacijos apie 3 dimensijų (3D) pasaulį išgavimas naudojant 2 dimensijų (2D) nuotraukas. Šio uždavinio tikslas yra atpažinti konkrečius 3D objektus, naudojant jų, 2D nuotraukas, padarytas iš skirtingų kampų. Šiam tikslui pasiekti, yra konstruojami objektų atpažinimo algoritmai, kurie klasifikuoja 2D nuotraukas į klases, kurios atstovauja vieną iš 3D objektų modelių.

3D objektų atpažinimas iš 2D nuotraukų yra naudojamas srityse, kuriose turimi 3D objektai turi būti atpažinti iš visų galimų 2D nuotraukų, turint tik poaibį šių nuotraukų. Keli šių sričių pavyzdžiai yra automatinė objektų inspekcija - turint algoritmą, atpažįstantį konkretų objektą, kuris turi tik jam būdinga 3D formą, galima nustatyti nuotraukas, kuriose yra tas objektas, navigacijoje - turint algoritmą, atpažįstantį konkrečius objektus, esančius skirtingose vietovėse, ir tų vietovių koordinates, galima nustatyti kurioje vietovėje buvo padaryta nuotrauka. Deja, laiko ir duomenų kaštai yra per dideli, kad pasiekti absoliutų tikslumą sprendžiant šį uždavinį. Todėl taikomi metodai yra euristiniai. Dėl to renkantis metodą, spręsti 3D objektų atpažinimo iš 2D nuotraukų uždaviniui, reikia atsižvelgti į laiko kaštus ir kaip tiksliai tuo metodu pagrįstas algoritmas klasifikuoja 2D nuotraukas, spręsdamas šį uždavinį. Šiame darbe bus atliekami tyrimai, skirti nustatyti metodą, sprendžiantį 3D objektų atpažinimo iš 2D nuotraukų uždavinį ir kuris pasiekia didžiausią tikslumą ir reikalauja mažiausiai laiko mokymui.

Gana dažnai naudojamas metodas šiam uždaviniui spręsti, yra dirbtiniai gilieji neuroniniai tinklai. 3D objektų atpažinimo iš 2D nuotraukų uždavinyje naudojami duomenys yra 2D nuotraukos, yra nestruktūrizuoti, jiems sudėtinga vykdyti požymių išgavimą. Todėl daugelis kitų sprendimų nėra tokie patrauklūs kaip dirbtiniai gilieji neuroniniai tinklai, dėl savo sugebėjimo efektyviai vykdyti automatinį požymių išgavimą iš nestruktūrizuotų duomenų. Tačiau, norint pasiekti aukštą klasifikavimo tikslumą, naudojant šį metodą, yra reikalingas didelis kiekis duomenų. Konkrečiai šiam uždaviniui reikia didelio kiekio 3D modelių. Laimei, šiuo metu egzistuoja viešai prieinamos didelės 3D repozitorijos. Tokios kaip 3D Warehouse, TurboSquid, ir Shapeways. Dėl to šiuo metu daugelis senesnių architektūrų jau yra išbandytos sprendžiant 3D objektų atpažinimo iš 2D nuotraukų uždavinį. Pavyzdžiui viena iš architektūrų, kuri buvo išbandyta, yra tiesioginio sklidimo gilaus pasitikėjimo neuroninio tinklo (angl. convolutional deep belief neural network) architektūra. Šiai architektūrai atlikti tyrimai yra aprašyti darbe [WSK+15]. Tačiau 2017 metais buvo aprašyta nauja architektūra, kapsuliniai neuroniniai tinklai. Tyrimai, parodė, kad ji yra pranašesnė tikslumo atžvilgiu už senesnes architektūras, sprendžiant uždavinius panašius į 3D objektų atpažinimo iš 2D nuotraukų uždavinį.

Šiuo metu šiam uždaviniui spręsti, optimaliausius rezultatus, laiko ir tikslumo atžvilgiu, pasiekusi dirbtinio neuroninio tinklo architektūra yra tiesioginio sklidimo neuroniniai tinklai (angl. convolutional neural networks). Tyrimai, kuriuose ši architektūra buvo išbandyta, yra aprašyta darbuose [Mas18; SMK+15]. Darbe [WSK+15] atlikto tyrimo rezultatai parodo, kad pateiktas sprendimas, kuriame 3D objektų atpažinimas yra konstruojamas naudojantis tik 2D nuotraukomis, yra tikslesnis 8 %. Algoritmas, naudojantis 3D modelius, pasiekė 77 % tikslumą, o algoritmas, naudojantis tik 2D nuotraukas, pasiekė 85 % tikslumą. Todėl šiame darbe bus daromi eksperimentai

su dirbtinio neuroninio tinklo architektūrų įgyvendinimais, kurie yra pagrįsti būtent šiuo metodu. Tad šiam darbui, vienas iš pasirinktų metodų yra tiesioginio sklidimo neuroninis tinklas, kurio įgyvendinimas ir tyrimai yra aprašyti darbe [SMK+15]. Mat šio darbo įgyvendinimas naudoja tik 2D nuotraukas, konstruojant 3D objektų atpažinimo algoritmą.

Kita tiriama dirbtinio neuroninio tinklo architektūra yra kapsuliniai neuroniniai tinklai. Lyginant su tiesioginio sklidimo neuroniniais tinklais, tai gana nauja architektūra. Aprašytos 2017 metais [nNH17] darbe Kapsulinių neuroninių tinklų architektūros veikimo principas tiksliau imituoja žmogaus rega, remiantis faktu, kad žmogaus rega ignoruoja nereikšmingas vaizdo detales, naudodama tik seką fokusuotų taškų, taip apdorodama tik dalį vaizdinės informacijos su labai aukšta rezoliucija. [nNH17] darbe atliktas tyrimas parodo, kad ši architektūra atlieka ranka rašytų skaičių klasifikavimo užduotį tiksliau nei tiesioginio sklidimo neuroniniai tinklai. Kitas tyrimas, kuris yra atliktas darbe [MC17] su 4 duomenų rinkiniais, kuriuose yra veidai, kelio ženklai ir kasdieniai objektai, parodo, kad dabartiniai kapsuliniai neuroniniai tinklai ne visada yra pranašesni už tiesioginio sklidimo neuroninius tinklus. Parinkus geresnius parametrus ir modifikacijas (sluoksnių skaičių, neuronų skaičių kiekviename sluoksnyje, aktyvacijos funkcijos), tiesioginio sklidimo neuroninis tinklas dar vis būna pranašesnis už kapsulinį neuroninį tinklą. Tačiau taip pat darbe [MC17] yra teigiama, kad kapsuliniai neuroniniai tinklai dar nėra pasiekę pilno savo potencialo ir tolimesni tyrimai turi būti atlikti.

Tad šio darbo **tikslas** yra įrodyti arba paneigti keliamą **hipotezę**:

Kapsuliniai neuroniniai tinklai sprendžia 3D objektų atpažinimo iš 2D nuotraukų uždavinį efektyviau nei tiesioginio sklidimo neuroniniai tinklai remiantis apmokymo laiko ir tikslumo kriterijais.

Tikimasi, kad, sprendžiant 3D objektų atpažinimo iš 2D nuotraukų uždavinį, kapsulinio neuroninio tinklo mokymas truks trumpiau nei tiesioginio sklidimo neuroninio tinklo. Taip pat, kad apmokytas kapsulinis neuroninis tinklas vykdys klasifikavimą tiksliau nei tiesioginio sklidimo neuroninis tinklas.

Siekiant patikrinti iškeltą hipotezę reikia atlikti šiuos uždavinius:

- Išanalizuoti ir nustatyti dabartinį efektyviausią 3D objektų atpažinimo iš 2D nuotraukų uždavinio sprendinį.
- 2. Išanalizuoti kapsulinių neuroninių tinklų veikimą.
- 3. Surasti duomenis, skirtus spręsti 3D objektų atpažinimo iš 2D nuotraukų uždaviniui.
- 4. Eksperimentiškai nustatyti efektyviausius parametrus ir modifikacijas, skirtus spręsti 3D objektų atpažinimo iš 2D nuotraukų uždaviniui, kapsulinio neuroninio tinklo implementacijai, remiantis apmokymo laiko ir tikslumo kriterijais.
- Atlikti eksperimentus, skirtus palyginti kapsulino neuronino tinklo ir tiesioginio sklidimo neuronino tinklo tikslumą ir apmokymo laiką, sprendžiant 3D objektų atpažinimo iš 2D nuotraukų uždavinį.

Šiame darbe planuojami rezultatai:

- 1. Nustatyta, kad šiuo metu efektyviausias 3D objektų atpažinimo iš 2D nuotraukų uždavinio sprendinys yra tiesioginio sklidimo neuroniniai tinklai, lyginant eksperimentų, aprašytų skirtinguose literatūros šaltiniuose, rezultatus. Šiuose šaltiniuose buvo surasta tiesioginio sklidimo neuroninio tinklo implementaciją ir duomenys skirti apmokymui ir testavimui.
- 2. Išanalizuotas kapsulinių neuroninių tinklų veikimas, surasta jo implementacija.
- 3. Eksperimentiškai nustatyta efektyviausia konfigūracija kapsuliniui neuroniniui tinklui sprendžiant 3D objektų atpažinimo iš 2D nuotraukų uždaviniui, naudojantis apmokymo laiko ir tikslumo kriterijais.
- 4. Eksperimentiškai palygintas kapsulinio neuroninio tinklo tikslumas ir apmokymo laikas su tiesioginio sklidimo neuroniniu tinklu, naudojantis apmokymo laiko ir tikslumo kriterijais.

Darbas remiasi šiomis prielaidomis:

- 1. Kiekvienam 2D paveikslėliui yra priskirta jam jį atitinkantis 3D objektas.
- 2. Kiekvienas 3D objektas turi bent po vieną jį atitinkantį 2D paveikslėlį.

Šio darbo turinys yra sudarytas iš 4 skyrių. Pirmame skyriuje yra pateikiama literatūros analizė. Jame yra pateiktas 3D objektų atpažinimo iš 2D nuotraukų uždavinio aprašymas, egzistuojančių sprendimų apžvalga, bendrieji neuroninių tinklų principai, tiesioginio sklidimo neuroninio tinklo veikimo aprašymas ir kapsulinio neuroninio tinklo aprašymas. Tada antrame skyriuje yra pateikiami šiame darbe bandomų kapsulinių neuroninių tinklų modifikacijos ir parinkti parametrai. Trečiame skyriuje yra aprašomi tyrimams naudoti duomenys. Taip pat šiame skyriuje yra aprašomi tyrimai, skirti nustatyti kapsulinių neuroninių tinklų modifikaciją ir parametrus, kurie pasiekia didžiausią tikslumą ir reikalauja mažiausiai laiko apmokymui, sprendžiant 3D objektų atpažinimo iš 2D nuotraukų uždavinį. Galiausiai šiame skyriuje yra aprašomi tyrimai, skirti palyginti kapsulinių neuroninių tinklų ir tiesioginio sklidimo neuroninių tinklų tikslumą ir apmokymo laiką, sprendžiant 3D objektų atpažinimo iš 2D nuotraukų uždavinį. Paskutiniame skyriuje yra pateikiami rezultatai ir išvados.

1. Literatūros analizė

1.1. 3D objektų atpažinimo iš 2D nuotraukų uždavinys

3D objektų atpažinimo iš 2D nuotraukų uždavinys - tai klasifikavimo uždavinys, kuriame pateiktos 2D nuotraukos, kuriose yra atvaizduotas 3D objektas iš atsitiktinio apžvalgos taško, turi būti priskirtas 3D modeliui, kuris yra atvaizduotas toje 2D nuotraukoje.

Klasifikavimo uždavinys - tai uždavinys, kuriame kuriamas metodas, kaip nustatyti pavyzdžio, iš tiriamos srities populiacijos, klasę. 3D objektų atpažinimo iš 2D nuotraukų uždavinio atveju, tiriama sritis yra 2D nuotraukos, kuriose yra atvaizduotas 3D objektas iš bet kurio apžvalgos taško ir klasė - 3D objektas. Taip pat, šio darbo atveju, metodas yra dirbtinio neuroninio tinklo (kapsulinio arba tiesioginio sklidimo) apmokytas modelis.

Kaip jau minėta įvade, šiam uždaviniui spręsti efektyviausia yra naudoti mašininio mokymo metodą, kurio mokymo duomenys yra tik 2D nuotraukos, o 3D objektai bus tik duomenų klasės. Darbe [WSK $^+$ 15] atlikto tyrimo rezultatai parodo, kad pateiktas sprendimas, kuriame 3D objektų atpažinimas yra konstruojamas naudojantis tik 2D nuotraukomis, yra tikslesnis 8 %. Algoritmas, naudojantis 3D modelius, pasiekė 77 % tikslumą, o algoritmas, naudojantis tik 2D nuotraukas, pasiekė 85 % tikslumą. Šaltinyje [SMK $^+$ 15] yra teigiama, kad to priežastis yra reliatyviai efektyvesnis 2D nuotraukų informacijos saugojimas negu 3D modelių. Todėl, kad, nors 3D modelis turi visą informaciją apie atvaizduotą 3D objektą, tačiau tam, kad panaudoti vokselinę 3D objekto reprezentaciją mašininiame mokyme, kurio mokymas su pakankamai didele duomenų imtimi užtruktų racionalų laiko tarpą, tenka ženkliai sumažinti 3D modelio rezoliuciją. Pavyzdžiui, 3D modelio, kurio rezoliucija yra 30 × 30 × 30 vokseliai, įvesties dydis yra apytiksliai lygus 2D paveikslėlio, kurio rezoliucija yra 164 × 164 pikseliai. Tad šiuo atveju, 3D modelis yra apdorojamas per tiek pat laiko kaip ir 2D paveikslėlis, bet modelio rezoliucija yra apytiksliai 5.5 karto mažesnė. Todėl mašininio mokymo metodas, kurio mokymo duomenys yra 3D modelis, gauna mažesnės raiškos įvestį, negu metodas, kurio mokymo duomenys yra 2D paveikslėliai.

1.2. 3D objektų atpažinimo iš 2D nuotraukų uždavinio sprendinių pavyzdžiai

Vienas seniausių šio uždavinio sprendinių, taikantis tokią metodologiją, yra aprašytas darbe [MN95]. Šis sprendinys atpažįsta 3D objektus lygindamas jų vaizdus, kurie buvo suformuoti iš didelės imties 2D nuotraukų, parametrizuotoje eigenerdvėje (angl. eigenspace). Šios nuotraukos buvo sugeneruotos iš 3D modelių naudojant skirtingus apžvalgos taškus ir apšvietimus. Kitas pavyzdys, kuris yra gana populiarus kompiuterinėje grafikoje, yra šviesos lauko deskriptorius (angl. light field descriptor), kuris yra aprašytas darbe [CTS+03]. Šis sprendinys išgauna geometrinius ir Fourier'io deskriptorius iš 3D objektų siluetų, kurie buvo sugeneruoti iš 3D modelių, naudojant skirtingus apžvalgos taškus. Darbe [MSD+02] aprašytas šio uždavinio sprendimas, kuris 3D objekto siluetus išskaido į dalis ir išsaugo juos į orientuotą beciklį grafą (angl. directed acyclic graph), šoko grafą. Kitas pavyzdys aprašytas darbe [CK04], naudoja panašumo metrikas (angl. simi-

larity metrics), kurios yra pagrįstos kreivių palyginimu (angl. curve matching)ir sugrupuotomis panašiomis 2D nuotraukomis.

Šiuo metu, 3D objektų atpažinimo iš 2D nuotraukų uždaviniui spręsti, optimaliausius rezultatus, laiko ir tikslumo atžvilgiu, pasiekęs mašininio mokymo metodu pagrįstas sprendimas yra tiesioginio sklidimo dirbtiniai neuroniniai tinklai. Tai eksperimentu buvo įrodyta darbe [SMK+15]. Šiame eksperimente buvo palyginti įvairios tiesioginio sklidimo neuroninių tinklų tipai sprendžiant šį uždavinį ir geriausią rezultatą pasiekęs tipas buvo daugiavaizdis (angl. multi-view convolutional network)tiesioginio sklidimo neuroninis tinklas, kurio tikslumas buvo 90.1%.

1.3. Dirbtinių neuroninių tinklų bendrieji principai

1.3.1. Dirbtinis neuronas, perceptronas

Šiame darbe nagrinėjami dirbtiniai neuroniniai tinklai yra sudaryti iš Rosenblato darbe [Ros57] aprašytų dirbtinių neuronų, perceptronų. Perceptronas - tai iteratyviai apmokomas tiesinis klasifikatorius, kuris susideda iš $\boldsymbol{x} = \{x_0, x_1, x_2, ..., x_n\}$ mokymo aibės vektorių, vadinamais įėjimais, $\{w_0, w_1, w_2, ..., w_n\} \in \mathbb{R}$ perdavimo koeficientų, vadinamų svoriais, aktyvacijos (perdavimo) funkcijos f(a) ir $\{y_0, y_1, y_2, ..., y_n\}$ reikšmių, vadinamų išėjimais. Įėjimas x_0 yra vadinamas nuliniu įėjimu ir jo reikšmė yra pastovi $x_0 = 1$, o w_0 - nuliniu svoriu arba slenksčiu (angl. bias). Funkcija 1 yra aktyvacijos funkcijos argumentas.

$$a = \sum_{k=1}^{n} w_k x_k \tag{1}$$

Dažniausiai perceptronui yra naudojamos šios aktyvacijos funkcijos: slenkstinė (angl. unit step) 2, sigmoidinė (angl. sigmoid) 3, gabalais tiesinė (angl. piecewise linear) 4, Gauso (angl. Gaussian) 5 ir tiesinė (angl. linear) 6

$$f(a) = \begin{cases} 0, & \text{if } \beta > a \\ 1, & \text{if } \beta \le a \end{cases}$$
 (2)

$$f(a) = \frac{1}{1 + \exp^{-\beta}} \tag{3}$$

$$f(a) = \begin{cases} 0, & \text{if } a_{min} \ge \\ ma + b, & \text{if } a_{min} < a < a_{max} \\ 1, & \text{if } a_{max} \le a \end{cases}$$

$$(4)$$

$$f(a) = \frac{1}{\sqrt{2\pi\sigma}} \exp \frac{-(a-\mu)^2}{2\sigma^2}$$
 (5)

$$f(a) = ma + b (6)$$

Perceptronas yra skirtas spręsti klasifikavimo uždavinius. Tam kad perceptronas spręstų konkretų klasifikavimo uždavinį, jis turi būti apmokytas. Perceptrono apmokymas yra iteratyvus procesas, kuriame randami svoriai $W=\{w_0,w_1,w_2,...,w_n\}$, su kuriais funkcijos 7 rezultatas įgyja apytiksliai mažiausią reikšmę. Funkcijoje 7 y_i yra perceptrono i-tasis išėjimas ir t_i - i-tojo įėjimo norima klasė.

$$e(w) = \frac{1}{m} \sum_{i=1}^{m} (y_i - t_i)^2$$
 (7)

Apmokymo pradžioje pradiniai svoriai yra parenkami atsitiktinai. Toliau gradientinio nusileidimo algoritmu judant antigradiento kryptimi, svorių reikšmės perskaičiuojamos naudojantis funkcija 8, kur $\Delta w_k(t)$ yra funkcija 9, t - iteracijos numeris, $\eta \in [0, +\infty]$ - parinktas mokymo greitis (angl. learning rate), ir vieną įėjimo vektorių iš duomenų aibės. Svoriai yra perskaičiuojami norima skaičių kartų.

$$w_k(t+1) = w_k(t) + \Delta w_k(t) \tag{8}$$

$$\Delta w_k(t) = -\eta \frac{\partial e(W)}{\partial w_k} \tag{9}$$

Pakeitus, kai kurių kintamųjų žymėjimą, iš lygties 1 gaunama lygtis 10, kur a_i yra i-tojo įėjimo vektoriaus aktyvacijos funkcijos argumentas, x_{ik} yra i-tojo įėjimo vektoriaus k-atoji skaliarinė reikšmė.

$$a_i = \sum_{k=1}^m w_k x_{ik} \tag{10}$$

Tad i-tasis perceptrono išėjimas y_i yra $y_i = f(a_i)$. Tada funkcijos 7 išvestinė yra lygtis 11.

$$\frac{\partial e(w)}{\partial w_k} = \left(\frac{1}{m} \sum_{i=1}^m (y_i - t_i)^2\right)' = \frac{2}{m} \sum_{i=1}^m ((y_i - t_i)(f'(a_i))(\sum_{k=1}^n x_{ik}))$$
(11)

Tada bendru atveju perceptrono mokymo taisyklė 8 yra funkcija 12.

$$w_k(t+1) = w_k(t) - \eta \frac{2}{m} \sum_{i=1}^m ((y_i - t_i)(f'(a_i))(\sum_{k=1}^n x_{ik}))$$
(12)

Naudojantis apmokytu perceptronu galima nustatyti duoto duomenų vektoriaus \boldsymbol{x}' klasę. Klasė nustatoma randant reikšmę a iš lygties 1, kur $\{w_0, w_1, w_2, ..., w_n\}$ yra apmokyto perceptrono svoriai ir $\{x_0, x_1, x_2, ..., x_n\} = \boldsymbol{x}'$. \boldsymbol{x}' vektoriaus klasė atitiks intervalo b_c , į kurį patenka reikšmė a, klasė c. Klasių intervalai $b_c \in \mathbb{R}$ yra paskaičiuojami, padalinant \mathbb{R} su skiriamuoju paviršiumi (angl. decision boundary), o skiriamasis paviršius yra nustatomas pagal aktyvacijos funkciją.

1.3.2. Dirbtiniai neuroniniai tinklai

To be cont

- 1.4. Tiesioginio sklidimo dirbtinių neuroninių tinklų apžvalga
- 1.5. Kapsulinių dirbtinių neuroninių tinklų apžvalga

2.	Kapsulinių neuroninių tinklų modifikacijos ir parametrai			

3. Eksperimentiniai tyrimai

- 3.1. Tyrimams naudoti duomenys
- 3.2. Kapsulinių neuroninių tinklų modifikacijų ir parametrų eksperimentiniai tyrimai
- 3.3. Kapsulinių ir tiesioginio sklidimo neuroninių tinklų eksperimentiniai tyrimai

Rezultatai ir išvados

Rezultatų ir išvadų dalyje išdėstomi pagrindiniai darbo rezultatai (kažkas išanalizuota, kažkas sukurta, kažkas įdiegta), pateikiamos išvados (daromi nagrinėtų problemų sprendimo metodų palyginimai, siūlomos rekomendacijos, akcentuojamos naujovės).

Literatūra

- [CK04] C. M. Cyr and B. B. Kimia. A similarity-based aspect-graph approach to 3d object recognition. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1. 1.124.4344&rep=rep1&type=pdf, 2004. 3820 KB, accessed 2020-08-15.
- [CTS+03] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung. On visual similarity based 3d model retrieval. http://www.cs.jhu.edu/~misha/Papers/Chen03.pdf, 2003. 1910 KB, accessed 2020-08-15.
- [Mas18] F. Vitor Suzano Massa. Relating images and 3d models with convolutional neural networks. https://pastel.archives-ouvertes.fr/tel-01762533/document, 2018. 7.917 KB, accessed 2020-05-23.
- [MC17] R. Mukhometzianov and J. Carrillo. Capsnet comparative performance evaluation for image classification. https://arxiv.org/ftp/arxiv/papers/1805/1805. 11195.pdf, 2017. 899 KB, accessed 2020-05-23.
- [MN95] H. Murase and S. K. Nayar. Visual learning and recognition of 3-d objects from appearance. http://murase.m.is.nagoya-u.ac.jp/~murase/pdf/704-pdf.pdf, 1995. 3041 KB, accessed 2020-08-15.
- [MSD+02] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker. View-based 3-d object recognition using shock graphs. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.852&rep=rep1&type=pdf, 2002. 155 KB, accessed 2020-08-15.
- [nNH17] S. Sabour nad N. Frosst and G. E. Hinton. Dynamic routing between capsules. https://arxiv.org/pdf/1710.09829.pdf, 2017. 899 KB, accessed 2020-05-23.
- [Ros57] F. Rosenblatt. *The Perceptron—a perceiving and recognizing automaton*. Cornell Aeronautical Laboratory., 1957. 386–408 p.
- [SMK+15] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural networks for 3d shape recognition. https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Su_Multi-View_Convolutional_Neural_ICCV_2015_paper.pdf, 2015. 1.439 KB, accessed 2020-05-23.
- [WSK+15] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: a deep representation for volumetric shapes. https://www.cv-foundation.org/ openaccess/content_cvpr_2015/papers/Wu_3D_ShapeNets_A_2015_CVPR_ paper.pdf, 2015. 2.451 KB, accessed 2020-05-23.

Santrumpos

Sąvokų apibrėžimai ir santrumpų sąrašas sudaromas tada, kai darbo tekste vartojami specialūs terminai, reikalaujantys paaiškinimo, ir rečiau sutinkamos santrumpos.

Priedas Nr. 1 Niauroninio tinklo struktūra

Priedas Nr. 2 Eksperimentinio palyginimo rezultatai

1 lentelė. Lentelės pavyzdys

Algoritmas	\bar{x}	σ^2
Algoritmas A	1.6335	0.5584
Algoritmas B	1.7395	0.5647