EPI10 - Análise de Sobrevivência

Riscos competitivos em análise de dados de sobrevivência

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Faculdade de Medicina Programa de Pós-Graduação em Epidemiologia

Porto Alegre, 2021

└─ Introdução

Introdução

Análise de sobrevivência tipicamente foca em dados de **tempo até o evento**. De maneira mais geral, consiste em técnicas para variáveis aleatórias positivas, tais como

- tempo até a morte
- tempo até o início (ou recidiva) da doença
- tempo de permanência no hospital
- tempo de duração de uma greve
- medições de carga viral

Tipicamente, dados de sobrevivência não são completamente observados, mas são censurados.

Análise de sobrevivência

Estaremos interessados em estimar certas características associadas com a variável aleatória tempo até o evento, denominada por $\mathcal T$, como por exemplo

- ightharpoonup a função sobrevivência $S(t) = \Pr(T > t)$
- lacktriangle a função de taxa de falha $\lambda(t) = \lim_{\triangle t \to 0} \frac{\Pr(t \le T < t + \triangle t | T \ge t)}{\triangle t}$
- Lembrando da relação entre estas duas funções:

$$S(t) = \exp\left\{-\int_0^t \lambda(u)du\right\}$$

Análise de sobrevivência

Análise de sobrevivência

- Descrever dados de sobrevivência
 - Estimador Kaplan-Meier
- Comparar funções de sobrevivência entre grupos
 - ► Teste logrank
- Explicar a sobrevivência com covariáveis
 - Modelos de regressão ⇒ Modelo de Cox

Definição de riscos competitivos

- Riscos competitivos: situação em que mais de uma causa de falha é possível.
- Se falhas são diferentes causas de morte, apenas a primeira destas a ocorrer é observada.
- Em outras situações, observações após a primeira falha podem ser observadas, mas não são de interesse.

Definição de riscos competitivos

Figure 1: Situação de riscos competitivos com m causas de falhas.

Exemplos

- O tempo até o diagnóstico de uma certa doença (demência por Alzheimer).
 - A morte antes da doença é um risco concorrente.
- Em estudos de câncer, a morte por câncer pode ser de interesse, e morte por outras causas (mortalidade cirúrgica, velhice) são riscos concorrentes.
 - Por outro lado, pode-se estar interessado em tempo até a recidiva, em que a morte por qualquer causa é um risco concorrente.
 - Outra possibilidade, é que estajamos interessados no tempo até a morte por um tipo de câncer em específico, e mortes por outros tipos de câncer são riscos concorrentes.
- ▶ O tempo até a morte por evento cardíaco, em que outras causas de morte estão presentes, e portanto são riscos concorrentes.
 - Populações mais velhas.

Eventos concorrentes ⇒ Riscos competitivos

Eventos concorrentes ⇒ Riscos competitivos

Eventos concorrentes \Rightarrow **Riscos competitivos**

- A introdução de novas técnicas para análise de dados de sobrevivência sujeitos a riscos competitivos se faz necessária, pois as antigas técnicas consideram que eventos ocorridos pelas demais causas, que não a de interesse, são observações censuradas.
 - Por observação censurada (a direita) entendemos que o evento ocorrerá após o último tempo observado.
 - No exemplo de tempo até o diagnóstico de demência por Alzheimer, quando um indivíduo morre antes do evento de interesse, ele não pode mais experimentar o evento.

➤ Seja *T* o tempo até o evento e *D* a causa do evento. A função de taxa de falha **de causa específica** da *j*-ésima causa é definida por

$$\lambda_j(t) = \lim_{\triangle t o 0} \frac{\Pr(t \leq T < t + \triangle t, D = j | T \geq t)}{\triangle t}, \ j = 1, \dots, m.$$

 A respectiva função de taxa de falha acumulada de causa específica é definida por

$$\Lambda_j(t) = \int_0^t \lambda_j(u) du.$$

A função $S_j(t) = \exp \{-\Lambda_j(t)\}$ não deve ser interpretada como uma função de sobrevivência marginal.

As funções de taxa de falha geral $\lambda(t)$ e sobrevivência S(t) são definidas em termos das funções de taxa de falha de causa específica

$$\begin{split} \lambda(t) &= \lim_{\Delta t \to 0} \frac{\Pr(t \leq T < t + \Delta t | T \geq t)}{\Delta t} \\ &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \Pr\left(\bigcup_{j=1}^{m} \{t \leq T < t + \Delta t, D = j\} | T \geq t \right) \\ &= \sum_{j=1}^{m} \lim_{\Delta t \to 0} \frac{1}{\Delta t} \Pr(t \leq T < t + \Delta t, D = j | T \geq t) = \sum_{j=1}^{m} \lambda_{j}(t), \\ S(t) &= \exp\left\{ -\int_{0}^{t} \lambda(u) du \right\} = \exp\left\{ -\sum_{j=1}^{m} \Lambda_{j}(t) \right\}. \end{split}$$

A função de sobrevivência geral tem a seguinte interpretação: é a probabilidade de não ocorrência de evento por qualquer uma das causas até o tempo t.

ightharpoonup A função incidência acumulada da causa j, $l_i(t)$, é definida por

$$I_j(t) = \Pr(T \leq t, D = j) = \int_0^t \lambda_j(u)S(u)du, \ j = 1, \dots, m,$$

e representa a probabilidade de um indivíduo falhar pela causa j na presença de todos os riscos concorrentes.

 O estimador Kaplan-Meier da probabilidade de falhar devido a causa j até o tempo t satisfaz

$$1-S_j(t)=\int_0^t \lambda_j(u)S_j(u)du.$$

Note que $\Lambda_i(t) \geq 0, j = 1, \dots, m$, e assim

$$egin{array}{lll} \Lambda_j(t) & \leq & \sum_{j=1}^m \Lambda_j(t), \ & S_j(t) = \exp\left\{-\Lambda_j(t)
ight\} & \geq & \exp\left\{-\sum_{j=1}^m \Lambda_j(t)
ight\} = S(t), \end{array}$$

logo

$$I_j(t) = \int_0^t \lambda_j(u)S(u)du \leq \int_0^t \lambda_j(u)S_j(u)du = 1 - S_j(t).$$

lsto mostra o viés do estimador de Kaplan-Meier, se este é usado para estimar $I_i(t)$.

Métodos não paramétricos

Métodos não paramétricos

Estimação da função incidência acumulada

- ▶ Seja $0 < t_1 < t_2 < ... < t_n$ os tempos distintos observados de falha por qualquer causa.
 - $ightharpoonup d_{jk}$ é o número de indivíduos que falharam da causa j no tempo t_k .
 - $d_k = \sum_{j=1}^m d_{jk}$ é o número total de falhas (qualquer causa) no tempo t_k .
 - n_k é o número de indivíduos em risco (indivíduos ainda presentes no estudo que não falharam por qualquer causa) no tempo t_k.
- ▶ A função incidência acumulada da causa j no tempo t pode ser estimada por

$$\hat{l}_j(t) = \sum_{k:t_k \leq t} \hat{\lambda}_j(t_k) \hat{S}(t_{k-1}),$$

em que
$$\hat{\lambda}_j(t_k)=rac{d_{jk}}{n_k}$$
 e $\hat{S}(t)=\prod_{k:t_k < t} igg(1-\sum_{j=1}^m \hat{\lambda}_j(t_k)igg).$

História natural de 241 indivíduos com gamopatia monoclonal de significado indeterminado (MGUS).

- mgus: A data frame with 241 observations on the following 12 variables.
 - ▶ id: subject id
 - age: age in years at the detection of MGUS
 - sex: male or female
 - dxyr: year of diagnosis
 - pcdx: for subjects who progress to a plasma cell malignancy the subtype of malignancy: multiple myeloma (MM) is the most common, followed by amyloidosis (AM), macroglobulinemia (MA), and other lymphprolifative disorders (LP)
 - pctime: days from MGUS until diagnosis of a plasma cell malignancy
 - futime: days from diagnosis to last follow-up
 - death: 1= follow-up is until death
 - alb: albumin level at MGUS diagnosis
 - creat: creatinine at MGUS diagnosis
 - ▶ hgb: hemoglobin at MGUS diagnosis

- mspike: size of the monoclonal protein spike at diagnosis
- ▶ mgus1: The same data set in start,stop format. Contains the id, age, sex, and laboratory variable described above along with
 - start, stop: sequential intervals of time for each subject
 - status: =1 if the interval ends in an event
 - event: a factor containing the event type: censor, death, or plasma cell malignancy
 - enum: event number for each subject: 1 or 2

```
library(survival)
head(mgus1[c("id","sex","start","stop","status","event")])

## id sex start stop status event
## 1 1 female 0 748 1 death
## 2 2 female 0 1310 1 pcm
## 4 3 male 0 277 1 death
## 5 4 male 0 1815 1 death
## 6 5 female 0 2587 1 death
## 7 6 male 0 563 1 death
```

```
fitKM <- survfit(Surv(time = stop, event == 'pcm') ~ 1,</pre>
                 data = mgus1, subset = (start == 0))
fitCI <- survfit(Surv(time = stop, event = status*as.numeric(event),</pre>
                      type = "mstate") ~ 1,
                    data = mgus1. subset = (start == 0))
plot(fitCI, xscale = 365.25, xmax = 7300,
     mark.time = FALSE, col = c("red", "grey"),
     xlab = "Anos desde o diagnóstico de MGUS")
lines(fitKM, fun = 'event', xscale = 365.25,
      xmax = 7300, mark.time = FALSE, conf.int = FALSE)
text(x = 10*365.25, y = .4, "Risco competitivo: óbito",
     col = "grev")
text(x = 16*365.25, .15, "Risco competitivo: progressão",
    col = "red")
text(x = 15*365.25, .30, "KM: prog")
```


Comparação de funções incidência acumulada entre grupos

- ► Gray (1988)¹ desenvolveu um tipo de teste *log-rank* para testar a igualdade de curvas de incidência acumulada.
 - Pacote cmprsk do R.

¹Robert J. Gray. A class of k-sample tests for comparing the cumulative incidence of a competing risk. *The Annals of Statistics*, 16:1141–1154, 1988.

▶ Óbito = 3:

Comparação de funções incidência acumulada entre grupos

Comparação de funções incidência acumulada entre grupos

Modelos de riscos competitivos

Modelos de riscos competitivos

Para identificar potenciais fatores de risco para uma falha de causa específica, podemos utilizar o modelo de Cox, onde este modela a função de taxa de falha de causa específica

$$\lambda_j(t) = \lambda_{0j}(t) \exp\{x_1\beta_1 + \ldots + x_p\beta_p\}.$$

```
## coef exp(coef) se(coef) z Pr(>|z|)
## sexmale -0.04175948 0.9591004 0.25207587 -0.1656623 0.8684227
## age -0.00383109 0.9961762 0.01169479 -0.3275895 0.7432220
```

```
## sexmale 0.27112927 1.311445 0.163199299 1.661338 9.664550e-02 ## age 0.08475353 1.088449 0.008551291 9.911198 3.721572e-23
```

▶ O pacote riskRegression, por meio da função CSC, "envelopa" os ajustes dos modelos de Cox de causa específica:

```
print(fitcox)
```

```
## CSC(formula = Hist(stop, evtype) ~ sex + age, data = mgus1)
##
## Right-censored response of a competing.risks model
##
## No.Observations: 241
##
## Pattern:
##
## Cause event right.censored
##
    2
               64
              163
##
##
    unknown
                               14
##
##
## ----> Cause: 2
##
## Call:
  survival::coxph(formula = survival::Surv(time, status) ~ sex +
       age, x = TRUE, y = TRUE)
##
##
```

```
##
    n= 241, number of events= 64
##
##
              coef exp(coef) se(coef) z Pr(>|z|)
## sexmale -0.041759 0.959100 0.252076 -0.166 0.868
## age -0.003831 0.996176 0.011695 -0.328 0.743
##
##
        exp(coef) exp(-coef) lower .95 upper .95
## sexmale 0.9591 1.043 0.5852 1.572
## age 0.9962 1.004 0.9736 1.019
##
## Concordance= 0.508 (se = 0.038)
## Likelihood ratio test= 0.15 on 2 df, p=0.9
## Wald test = 0.15 on 2 df. p=0.9
## Score (logrank) test = 0.15 on 2 df, p=0.9
##
##
##
## ----> Cause: 3
##
## Call:
## survival::coxph(formula = survival::Surv(time, status) ~ sex +
##
      age, x = TRUE, y = TRUE)
```

```
##
##
    n= 241. number of events= 163
##
##
            coef exp(coef) se(coef) z Pr(>|z|)
## sexmale 0.271129 1.311445 0.163199 1.661 0.0966 .
## age 0.084754 1.088449 0.008551 9.911 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
       exp(coef) exp(-coef) lower .95 upper .95
##
## sexmale 1.311 0.7625 0.9524 1.806
## age 1.088 0.9187 1.0704 1.107
##
## Concordance= 0.731 (se = 0.022)
## Likelihood ratio test= 119.6 on 2 df, p=<2e-16
## Wald test = 105.6 on 2 df, p=<2e-16
## Score (logrank) test = 113 on 2 df, p=<2e-16
```

- ➤ A função de taxa de falha de causa específica não possui uma interpretação direta em termos de probabilidade de sobrevivência para um tipo de falha em particular.
- O efeito da covariável na função de taxa de falha pode ser muito diferente do efeito da covariável na função incidência acumulada.

Modelo de Fine e Gray

► Fine e Gray (1999)² introduziram um modelo que relaciona diretamente as covariáveis a função incidência acumulada. Seja

$$ar{\lambda}_1(t) = -rac{d}{dt} \left[\log(1-I_1(t))
ight],$$

a função *subdistribution hazard*. Dado um conjunto de covariáveis, o modelo assume a seguinte forma

$$\bar{\lambda}_1(t) = \bar{\lambda}_{1,0}(t) \exp\{x_1\beta_1 + \ldots + x_p\beta_p\}.$$

Desta forma, temos

$$I_1(t) = 1 - \exp\left\{-\exp\{x_1\beta_1 + \ldots + x_p\beta_p\}\int_0^t \bar{\lambda}_{1,0}(u)du\right\}.$$

² Jason P. Fine and Robert J. Gray. A proportional hazards model for the subdistribution of a competing risk. *Journal of the American Statistical Association*, 94:496–509, 1999.

Modelos de riscos competitivos: Modelo de Fine e Gray

A função FGR do pacote riskRegression estima os coeficientes de regressão do modelo de Fine e Gray.

Modelos de riscos competitivos: Modelo de Fine e Gray

```
print(fitfg)
##
## Right-censored response of a competing.risks model
##
## No.Observations: 241
##
## Pattern:
##
## Cause event right.censored
                64
##
                                 0
##
               163
##
    unknown
                 Λ
                                14
##
##
## Fine-Gray model: analysis of cause 2
##
  Competing Risks Regression
##
## Call:
```

Modelos de riscos competitivos: Modelo de Fine e Gray

```
## FGR(formula = prodlim::Hist(stop, evtype) ~ sex + age, data = mgus1,
      cause = 2)
##
##
##
            coef exp(coef) se(coef) z p-value
## sexmale -0.1900
                    0.827 0.25449 -0.747 4.6e-01
## age -0.0387 0.962 0.00924 -4.192 2.8e-05
##
##
         exp(coef) exp(-coef) 2.5% 97.5%
## sexmale 0.827 1.21 0.502 1.36
## age 0.962 1.04 0.945 0.98
##
## Num. cases = 241
## Pseudo Log-likelihood = -334
## Pseudo likelihood ratio test = 15.4 on 2 df.
##
## Convergence: TRUE
```

Considerações finais do curso

Considerações finais do curso

Considerações finais do curso

- A análise de sobrevivência é uma grande área de estudo na (bio)estatística.
- Neste curso enfocamos nas técnicas e modelos mais utilizados, bem como em suas aplicações.
- Nem sempre estas técnicas e modelos serão adequados para o problema de estudo:
 - Não responde a questão de investigação;
 - ► As suposições não são razoáveis;
 - Os modelos não se ajustam aos dados.

Considerações finais do curso

- Nestes casos, técnicas e modelos avançados em análise de sobrevivência existem (e estão a se desenvolver) na literatura da área.
- ► Algumas destas técnicas envolvem:
 - Modelos aditivos;
 - Censura intervalar;
 - Modelos discretos;
 - Eventos recorrentes:
 - Processos de contagem;
 - Modelos de efeitos aleatórios:
 - Censura dependente.

Para casa

- Atividade de avaliação II.
 - ► Será postada no Moodle logo em seguida.
 - O professor está a disposição para esclarecimento de dúvidas com relação à atividade.

Por hoje é só!

Bons estudos! Bom final de ano! Até a próxima!

