Übungsblatt 3

Abgabe am 18. Oktober 16

Aufgabe 1. Seien $f: U \longrightarrow \mathbb{C}, g: U \longrightarrow \mathbb{C} \setminus \{0\}$ analytische Funktionen mit $U \subset \mathbb{C}$ offen. Zeige, dass dann $\frac{f}{g}$ analytisch ist mit

$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}.$$

Aufgabe 2. Sei $f: U \longrightarrow \mathbb{C}$ eine analytische Funktion mit $U \subset \mathbb{C}$ offen und zusammenhängend. Zeige, dass f konstant sein muss, wenn eine der folgenden Bedingungen erfüllt ist:

- Re f = konstant
- Im f = konstant
- |f| = konstant

Aufgabe 3.

- (i) Sei $A(z) = \sum_{n=0}^{\infty} nz^n$. Berechne von Hand die Potenzreihenentwicklung von A^2 bis zur Ordnung 5.
- (ii) Zeige, dass $A(z) = \frac{z}{(1-z)^2}$ für |z| < 1.
- (iii) Wir definieren die Bernoullizahlen B_n durch

$$\sum_{n=0}^{\infty} \frac{B_n}{n!} z^n = \frac{z}{e^z - 1}.$$

Berechne B_n für $n \leq 4$.

(iv) Berechne die Konvergenzradien von

$$\sum_{n=1}^{\infty} (\log n)^2 z^n$$

und

$$\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n.$$

- * Aufgabe 4. Untersuche die Konvergenz der folgenden Reihen auf dem Konvergenzradius, dass heisst für |z|=1:

 - (i) $\sum_{k=1}^{\infty} \frac{z^k}{k^2}$ (ii) $\sum_{k=1}^{\infty} \frac{z^k}{k}$

Hinweis: Test von Abel

* Aufgabe 5. Versuche eine Definition der quaternionischen Ableitung analog zur komplexen Ableitung zu finden und untersuche die Funktion $f: \mathbb{H} \longrightarrow \mathbb{H}, \ f(h) = h^2$ mit deiner Definition auf quaternionische Differenzierbarkeit.