

SEQUENCE LISTING

<110> Evotec NeuroSciences GmbH <120> Diagnostic and therapeutic use of the human HIF3alpha gene and proteins for neurodegenerative diseases <130> 042637wo Me/FM <140> PCT/EP2004/053573 <141> 2004-12-17 <160> 31 <170> PatentIn Ver. 2.1 <210> 1 <211> 289 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: HIF3a cDNA fragment <400> 1 catttatgag agtttattca ttcaaaacat atttactgtc gggcgtggtg gttcatacca 60 qtaatcccaq cactttqqqa qqccaaqqca gqtggatcgc ttgaactcag gagttcaaga 120 ccagcctggg caacatggtg gaacttcgtc tctacaaaac atataaacat cagccaggca 180 tgatggcaca tagctgcagt cccagctact tgtgggagct gaagtaggag gatcacttga 240 gcccaggagg tcgaggctgt ggtgagctgt gtttgtgcca ctgcactcc <210> 2 <211> 450 <212> PRT <213> Homo sapiens <400> 2 Met Arg Pro Ala Ala Gly Ala Ala Arg Arg Pro Arg Cys Cys Thr Ser 15 5 Trp Leu Thr Arg Cys Pro Ser Pro Ala Ala Ser Ala Pro Thr Trp Thr Arg Pro Leu Ser Cys Ala Ser Pro Ser Ala Thr Cys Ala Cys Thr Ala 40 Ser Ala Pro Gln Leu Glu Leu Ile Gly His Ser Ile Phe Asp Phe Ile 55 50 His Pro Cys Asp Gln Glu Glu Leu Gln Asp Ala Leu Thr Pro Gln Gln 75 Thr Leu Ser Arg Arg Lys Val Glu Ala Pro Thr Glu Arg Cys Phe Ser 85 90

Leu Arg Met Lys Ser Thr Leu Thr Ser Arg Gly Arg Thr Leu Asn Leu 100 105 110

Lys Ala Ala Thr Trp Lys Val Leu Asn Cys Ser Gly His Met Arg Ala 115 120 125

Tyr Lys Pro Pro Ala Gln Thr Ser Pro Ala Gly Ser Pro Asp Ser Glu 130 135 140

Pro Pro Leu Gln Cys Leu Val Leu Ile Cys Glu Ala Ile Pro His Pro 145 150 155 160

Gly Ser Leu Glu Pro Pro Leu Gly Arg Gly Ala Phe Leu Ser Arg His 165 170 175

Ser Leu Asp Met Lys Phe Thr Tyr Cys Asp Asp Arg Ile Ala Glu Val 180 185 190

Ala Gly Tyr Ser Pro Asp Asp Leu Ile Gly Cys Ser Ala Tyr Glu Tyr 195 200 205

Ile His Ala Leu Asp Ser Asp Ala Val Ser Lys Ser Ile His Thr Leu 210 215 220

Leu Ser Lys Gly Gln Ala Val Thr Gly Gln Tyr Arg Phe Leu Ala Arg 225 230 235 240

Ser Gly Gly Tyr Leu Trp Thr Gln Thr Gln Ala Thr Val Val Ser Gly
245 250 255

Gly Arg Gly Pro Gln Ser Glu Ser Ile Val Cys Val His Phe Leu Ile 260 265 270

Ser Gln Val Glu Glu Thr Gly Val Val Leu Ser Leu Glu Gln Thr Glu 275 280 285

Gln His Ser Arg Arg Pro Ile Gln Arg Gly Ala Pro Ser Gln Lys Asp 290 295 300

Thr Pro Asn Pro Gly Asp Ser Leu Asp Thr Pro Gly Pro Arg Ile Leu 305 310 315 320

Ala Phe Leu His Pro Pro Ser Leu Ser Glu Ala Ala Leu Ala Ala Asp 325 330 335

Pro Arg Arg Phe Cys Ser Pro Asp Leu Arg Arg Leu Leu Gly Pro Ile 340 345 350

Leu Asp Gly Ala Ser Val Ala Ala Thr Pro Ser Thr Pro Leu Ala Thr 355 360 365

Arg His Pro Gln Ser Pro Leu Ser Ala Asp Leu Pro Asp Glu Leu Pro 370 375 380

Val Gly Thr Glu Asn Val His Arg Leu Phe Thr Ser Gly Lys Asp Thr 385 390 395 400

Glu Ala Val Glu Thr Asp Leu Asp Ile Ala Gln Asp Pro Ser Thr Pro
405 410 415

Leu Leu Asn Leu Asn Glu Pro Leu Gly Phe His Phe Val Thr Gln Ser 420 425 430

Gly Val Gln Trp His Lys His Ser Ser Pro Gln Pro Arg Pro Pro Gly
435 440 445

Leu Lys 450

<210> 3

<211> 342

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Leu Gly Leu Gln Arg Ala Arg Ser Thr Thr Glu Leu Arg Lys
1 5 10 15

Glu Lys Ser Arg Asp Ala Ala Arg Ser Arg Arg Ser Gln Glu Thr Glu
20 25 30

Val Leu Tyr Gln Leu Ala His Thr Leu Pro Phe Ala Arg Gly Val Ser 35 40 45

Ala His Leu Asp Lys Ala Ser Ile Met Arg Leu Thr Ile Ser Tyr Leu 50 55 60

Arg Met His Arg Leu Cys Ala Ala Gly Glu Trp Asn Gln Val Gly Ala
65 70 75 80

Gly Gly Glu Pro Leu Asp Ala Cys Tyr Leu Lys Ala Leu Glu Gly Phe
85 90 95

Val Met Val Leu Thr Ala Glu Gly Asp Met Ala Tyr Leu Ser Glu Asn 100 105 110

Val Ser Lys His Leu Gly Leu Ser Gln Leu Glu Leu Ile Gly His Ser 115 120 125

Ile Phe Asp Phe Ile His Pro Cys Asp Gln Glu Glu Leu Gln Asp Ala 130 135 140

Leu Thr Pro Gln Gln Thr Leu Ser Arg Arg Lys Val Glu Ala Pro Thr 145 150 155 160

Glu Arg Cys Phe Ser Leu Arg Met Lys Ser Thr Leu Thr Ser Arg Gly 165 170 175

Arg Thr Leu Asn Leu Lys Ala Ala Thr Trp Lys Val Leu Asn Cys Ser 180 185 190

Gly His Met Arg Ala Tyr Lys Pro Pro Ala Gln Thr Ser Pro Ala Gly
195 200 205

Ser Pro Asp Ser Glu Pro Pro Leu Gln Cys Leu Val Leu Ile Cys Glu 210 215 220

Ala Ile Pro His Pro Gly Ser Leu Glu Pro Pro Leu Gly Arg Gly Ala 225 230 235 240

Phe Leu Ser Arg His Ser Leu Asp Met Lys Phe Thr Tyr Cys Asp Asp 245 250 255

Arg Ile Ala Glu Val Ala Gly Tyr Ser Pro Asp Asp Leu Ile Gly Cys 260 265 270

Ser Ala Tyr Glu Tyr Ile His Ala Leu Asp Ser Asp Ala Val Ser Lys 275 280 285

Ser Ile His Thr Leu Leu Ser Lys Gly Gln Ala Val Thr Gly Gln Tyr 290 295 300

Arg Phe Leu Ala Arg Ser Gly Gly Tyr Leu Trp Thr Gln Thr Gln Ala 305 310 315 320

Thr Val Val Ser Gly Gly Arg Gly Pro Gln Ser Glu Ser Ile Val Cys 325 330 335

Val His Phe Leu Ile Arg 340

<210> 4

<211> 632

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Leu Gly Leu Gln Arg Ala Arg Ser Thr Thr Glu Leu Arg Lys
1 5 10 15

Glu Lys Ser Arg Asp Ala Ala Arg Ser Arg Arg Ser Gln Glu Thr Glu
20 25 30

Val Leu Tyr Gln Leu Ala His Thr Leu Pro Phe Ala Arg Gly Val Ser
35 40 45

Ala His Leu Asp Lys Ala Ser Ile Met Arg Leu Thr Ile Ser Tyr Leu
50 60

Arg Met His Arg Leu Cys Ala Ala Gly Glu Trp Asn Gln Val Gly Ala 65 70 75 80

Gly Glu Pro Leu Asp Ala Cys Tyr Leu Lys Ala Leu Glu Gly Phe 85 90 95

Val Met Val Leu Thr Ala Glu Gly Asp Met Ala Tyr Leu Ser Glu Asn 100 105 110

Val Ser Lys His Leu Gly Leu Ser Gln Leu Glu Leu Ile Gly His Ser

Ile	Phe 130	Asp	Phe	Ile	His	Pro 135	Cys	Asp	Gln	Glu	Glu 140	Leu	Gln	Asp	Ala
Leu 145	Thr	Pro	Gln	Gln	Thr 150	Leu	Ser	Arg	Arg	Lys 155	Val	Glu	Ala	Pro	Thr 160
Glu	Arg	Cys	Phe	Ser 165	Leu	Arg	Met	Lys	Ser 170	Thr	Leu	Thr	Ser	Arg 175	Gly
Arg	Thr	Leu	Asn 180	Leu	Lys	Ala	Ala	Thr 185	Trp	Lys	Val	Leu	Asn 190	Cys	Ser
Gly	His	Met 195	Arg	Ala	Tyr	Lys	Pro 200	Pro	Ala	Gln	Thr	Ser 205	Pro	Ala	Gly
Ser	Pro 210	Asp	Ser	Glu	Pro	Pro 215	Leu	Gln	Cys	Leu	Val 220	Leu	Ile	Cys	Glu
Ala 225	Ile	Pro	His	Pro	Gly 230	Ser	Leu	Glu	Pro	Pro 235	Leu	Gly	Arg	Gly	Ala 240
Phe	Leu	Ser	Arg	His 245	Ser	Leu	Asp	Met	Lys 250	Phe	Thr	Tyr	Cys	Asp 255	Asp
Arg	Ile	Ala	Glu 260	Val	Ala	Gly	Tyr	Ser 265	Pro	Asp	Asp	Leu	Ile 270	Gly	Cys
Ser	Ala	Tyr 275	Glu	Tyr	Ile	His	Ala 280	Leu	Asp	Ser	Asp	Ala 285	Val	Ser	Lys
Ser	Ile 290	His	Thr	Leu	Leu	Ser 295	Lys	Gly	Gln	Ala	Val 300	Thr	Gly	Gln	Tyr
Arg 305	Phe	Leu	Ala	Arg	Ser 310	Gly	Gly	Tyr	Leu	Trp 315	Thr	Gln	Thr	Gln	Ala 320
Thr	Val	Val	Ser	Gly 325	Gly	Arg	Gly	Pro	Gln 330	Ser	Glu	Ser	Ile	Val 335	Cys
Val	His	Phe	Leu 340	Ile	Ser	Gln	Val	Glu 345	Glu	Thr	Gly	Val	Val 350	Leu	Ser
Leu	Glu	Gln 355	Thr	Glu	Gln	His	Ser 360	Arg	Arg	Pro	Ile	Gln 365	Arg	Gly	Ala
Pro	Ser 370	Gln	Lys	Asp	Thr	Pro 375	Asn	Pro	Gly	Asp	Ser 380	Leu	Asp	Thr	Pro
Gly 385	Pro	Arg	Ile	Leu	Ala 390	Phe	Leu	His	Pro	Pro 395	Ser	Leu	Ser	Glu	Ala 400
Ala	Leu	Ala	Ala	Asp 405	Pro	Arg	Arg	Phe	Cys 410	Ser	Pro	Asp	Leu	Arg 415	Arg
Leu	Leu	Gly	Pro	Ile	Leu	Asp	Gly	Ala	Ser	Val	Ala	Ala	Thr	Pro	Ser

420 425 430

Thr Pro Leu Ala Thr Arg His Pro Gln Ser Pro Leu Ser Ala Asp Leu
435
440
445

Pro Asp Glu Leu Pro Val Gly Thr Glu Asn Val His Arg Leu Phe Thr 450 455 460

Ser Gly Lys Asp Thr Glu Ala Val Glu Thr Asp Leu Asp Ile Ala Gln 465 470 475 480

Asp Ala Asp Ala Leu Asp Leu Glu Met Leu Ala Pro Tyr Ile Ser Met 485 490 495

Asp Asp Asp Phe Gln Leu Asn Ala Ser Glu Gln Leu Pro Arg Ala Tyr 500 505 510

His Arg Pro Leu Gly Ala Val Pro Arg Pro Arg Ala Arg Ser Phe His 515 520 525

Gly Leu Ser Pro Pro Ala Leu Glu Pro Ser Leu Leu Pro Arg Trp Gly
530 540

Ser Asp Pro Arg Leu Ser Cys Ser Ser Pro Ser Arg Gly Asp Pro Ser 545 550 555 560

Ala Ser Ser Pro Met Ala Gly Ala Arg Lys Arg Thr Leu Ala Gln Ser 565 570 575

Ser Glu Asp Glu Asp Glu Gly Val Glu Leu Gly Val Arg Pro Pro
580 585 590

Lys Arg Ser Pro Ser Pro Glu His Glu Asn Phe Leu Leu Phe Pro Leu
595 600 605

Ser Leu Val Cys Trp Gly Ile Asn Gly Ile Leu Trp Pro Ser Leu Pro 610 620

Ser Trp Leu Lys Pro Thr Val Leu 625 630

<210> 5

<211> 648

<212> PRT

<213> Homo sapiens

<400> 5

Met Arg Leu Thr Ile Ser Tyr Leu Arg Met His Arg Leu Cys Ala Ala

1 5 10 15

Gly Glu Trp Asn Gln Val Gly Ala Gly Glu Pro Leu Asp Ala Cys

Tyr Leu Lys Ala Leu Glu Gly Phe Val Met Val Leu Thr Ala Glu Gly
35 40 45

Asp	Met 50	Ala	Tyr	Leu	Ser	Glu 55	Asn	Val	Ser	Lys	His 60	Leu	Gly	Leu	Ser
Gln 65	Leu	Glu	Leu	Ile	Gly 70	His	Ser	Ile	Phe	Asp 75	Phe	Ile	His	Pro	Cys 80
Asp	Gln	Glu	Glu	Leu 85	Gln	Asp	Ala	Leu	Thr 90	Pro	Gln	Gln	Thr	Leu 95	Ser
Arg	Arg	Lys	Val 100	Glu	Ala	Pro	Thr	Glu 105	Arg	Cys	Phe	Ser	Leu 110	Arg	Met
Lys	Ser	Thr 115	Leu	Thr	Ser	Arg	Gly 120	Arg	Thr	Leu	Asn	Leu 125	Lys	Ala	Ala
Thr	Trp 130	Lys	Val	Leu	Asn	Cys 135	Ser	Gly	His	Met	Arg 140	Ala	Tyr	Lys	Pro
Pro 145	Ala	Gln	Thr	Ser	Pro 150	Ala	Gly	Ser	Pro	Asp 155	Ser	Glu	Pro	Pro	Leu 160
Gln	Cys	Leu	Val	Leu 165	Ile	Cys	Glu	Ala	Ile 170	Pro	His	Pro	Gly	Ser 175	Leu
Glu	Pro	Pro	Leu 180	Gly	Arg	Gly	Ala	Phe 185	Leu	Ser	Arg	His	Ser 190	Leu	Asp
Met	Lys	Phe 195	Thr	Tyr	Cys	Asp	Asp 200	Arg	Ile	Ala	Glu	Val 205	Ala	Gly	Tyr
Ser	Pro 210	Asp	Asp	Leu	Ile	Gly 215	Cys	Ser	Ala	Tyr	Glu 220	Tyr	Ile	His	Ala
Leu 225	Asp	Ser	Asp	Ala	Val 230	Ser	Lys	Ser	Ile	His 235	Thr	Leu	Leu	Ser	Lys 240
Gly	Gln	Ala	Val	Thr 245	Gly	Gln	Tyr	Arg	Phe 250	Leu	Ala	Arg	Ser	Gly 255	Gly
Tyr	Leu	Trp	Thr 260	Gln	Thr	Gln	Ala	Thr 265	Val	Val	Ser	Gly	Gly 270	Arg	Gly
Pro	Gln	Ser 275	Glu	Ser	Ile	Val	Cys 280	Val	His	Phe	Leu	Ile 285	Ser	Gln	Val
Glu	Glu 290	Thr	Gly	Val	Val	Leu 295	Ser	Leu	Glu	Gln	Thr 300	Glu	Gln	His	Ser
Arg 305	Arg	Pro	Ile	Gln	Arg 310	Gly	Ala	Pro	Ser	Gln 315	Lys	Asp	Thr	Pro	Asn 320
Pro	Gly	Asp	Ser	Leu 325	Asp	Thr	Pro	Gly	Pro 330	Arg	Ile	Leu	Ala	Phe 335	Leu
His	Pro	Pro	Ser 340	Leu	Ser	Glu	Ala	Ala 345	Leu	Ala	Ala	Asp	Pro 350	Arg	Arg

Phe	Cys	Ser 355	Pro	Asp	Leu	Arg	Arg 360	Leu	Leu	Gly	Pro	Ile 365	Leu	Asp	Gly
Ala	Ser 370	Val	Ala	Ala	Thr	Pro 375	Ser	Thr	Pro	Leu	Ala 380	Thr	Arg	His	Pro
Gln 385	Ser	Pro	Leu	Ser	Ala 390	Asp	Leu	Pro	Asp	Glu 395	Leu	Pro	Val	Gly	Thr 400
Glu	Asn	Val	His	Arg 405	Leu	Phe	Thr	Ser	Gly 410	Lys	Asp	Thr	Glu	Ala 415	Val
Glu	Thr	Asp	Leu 420	Asp	Ile	Ala	Gln	Asp 425	Ala	Asp	Ala	Leu	Asp 430	Leu	Glu
Met	Leu	Ala 435	Pro	Tyr	Ile	Ser	Met 440	Asp	Asp	Asp	Phe	Gln 445	Leu	Asn	Ala
Ser	Glu 450	Gln	Leu	Pro	Arg	Ala 455	Tyr	His	Arg	Pro	Leu 460	Gly	Ala	Val	Pro
Arg 465	Pro	Arg	Ala	Arg	Ser 470	Phe	His	Gly	Leu	Ser 475	Pro	Pro	Ala	Leu	Glu 480
Pro	Ser	Leu	Leu	Pro 485	Arg	Trp	Gly	Ser	Asp 490	Pro	Arg	Leu	Ser	Cys 495	Ser
Ser	Pro	Ser	Arg 500	Gly	Asp	Pro	Ser	Ala 505	Ser	Ser	Pro	Met	Ala 510	Gly	Ala
Arg	Lys	Arg 515	Thr	Leu	Ala	Gln	Ser 520	Ser	Glu	Asp	Glu	Asp 525	Glu	Gly	Val
Glu	Leu 530	Leu	Gly	Val	Arg	Pro 535	Pro	Lys	Arg	Ser	Pro 540	Ser	Pro	Glu	His
Glu 545	Asn	Phe	Leu	Leu	Phe 550	Pro	Leu	Ser	Leu	Ser 555	Phe	Leu	Leu	Thr	Gly 560
Gly	Pro	Ala	Pro	Gly 565	Ser	Leu	Gln	Asp	Pro 570	Thr	Glu	Leu	Thr	Gln 575	Phe
Leu	Leu	Ser	Val 580	Leu	Ser	Phe	Pro	Ile 585	Leu	Asp	Pro	Tyr	Pro 590	Leu	Gly
Cys	Ala	Ala 595	Pro	Gly	Leu	His	Ala 600	Ser	Pro	Phe	Ser	Leu 605	Pro	Thr	Ile
Ser	Val 610	Pro	Gln	Asn	Pro	Leu 615	His	Phe	Pro	Pro	Gln 620	Pro	Ser	Arg	His
Ala 625	Leu	Thr	Leu	Thr	Leu 630	Pro	His	Met	Phe	Gly 635	Ala	Pro	Gly	Ala	Pro 640
Ser	Pro	Leu	Gly	Trp 645	Phe	Ala	Ile								

```
<211> 1709
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HIF3a cDNA of
      splice variant 1
<400> 6
actcgtaact cgcacccggg tcctggctgc accgcatccc ctcctgcacc ccctggatgg 60
cccttcagcc aacgggggcc tgggcgatgg tcgaccacgg agctgcgcaa ggaaaagtcc 120
cqqqatqcqq cccqcaqccq gcqcaqccaq gagaccqaqq tqctqtacca gctqqctcac 180
acqctqccct tcqcccgcgg cgtcagcgcc cacctggaca aggcctctat catgcgcctc 240
accatcaget acctgegeat geacegeete tgegeegeag etggagetea ttggacacag 300
catctttgat ttcatccacc cctgtgacca agaggagctt caggacgccc tgacccccca 360
gcagaccctg tccaggagga aggtggaggc ccccacggag cggtgcttct ccttgcgcat 420
gaagagtaca ctcaccagcc gcgggcgcac cctcaacctc aaggcggcca cctggaaggt 480
gctgaactgc tctggacata tgagggccta caagccacct gcgcagactt ctccagctgg 540
qaqccctqac tcaqaqcccc cgctgcagtg cctggtgctc atctgcgaag ccatccccca 600
cccaggcage etggageece caetgggeeg aggggeette eteageegee acageetgga 660
catgaagttc acctactgtg acgacaggat tgcagaagtg gctggctata gtcccgatga 720
cctgatcggc tgttccgcct acgagtacat ccacgcgctg gactccgatg cggtcagcaa 780
gagcatccac accttgctga gcaagggcca ggcagtaaca gggcagtatc gcttcctggc 840
ccggagtggt ggctacctgt ggacccagac ccaggccaca gtggtgtcag ggggacgggg 900
cccccaqtcg gagagtatcg tctgtgtcca ttttttaatc agccaggtgg aagagaccgg 960
agtggtgctg tccctggagc aaacggagca acactctcgc agacccattc agcggggcgc 1020
cccctctcag aaggacaccc ctaaccctgg ggacagcctt gacacccctg gcccccggat 1080
cettgeette etgeaceege ettecetgag egaggetgee etggeegetg acceeegeeg 1140
tttctgcagc cctgacctcc gtcgcctcct gggacccatc ctggatgggg cttcagtagc 1200
agccactccc agcaccccgc tggccacacg gcacccccaa agtcctcttt cggctgatct 1260
cccagatgaa ctacctgtgg gcaccgagaa tgtgcacaga ctcttcacct ccgggaaaga 1320
cactgaggca gtggagacag atttagatat agctcaggac cccagcaccc cactcctgaa 1380
cctgaatgag cccctgggtt ttcactttgt cacccagtct ggagtgcagt ggcacaaaca 1440
cageteaceg cageetegae etectggget caagtgatee tectaettea geteceacaa 1500
gtagctggga ctgcagctat gtgccatcat gcctggctga tgtttatatg ttttgtagag 1560
acquigttte accatgttge ceaggetggt ettgaactee tgagtteaag egateeacet 1620
qccttqqcct cccaaaqtqc tqgqattact qgtatqaacc accacqcccg acagtaaata 1680
tgttttgaat gaataaactc tcataaatg
<210> 7
<211> 2239
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HIF3alpha cDNA
      of splice variant 2
<400> 7
tqqqaqcqqc qactgqcgag ccatgqcgct ggggctgcag cgcgcaaggt cgaccacgga 60
gctgcgcaag gaaaagtccc gggatgcggc ccgcagccgg cgcagccagg agaccgaggt 120
gctgtaccag ctggctcaca cgctgccctt cgcccgcggc gtcagcgccc acctggacaa 180
qqcctctatc atgcgcctca ccatcagcta cctgcgcatg caccgcctct gcgccgcagg 240
ggagtggaac caggtgggag cagggggaga accactggat gcctgctacc tgaaggccct 300
```

```
cagcaaacac ctgggcctca gtcagctgga gctcattgga cacagcatct ttgatttcat 420
ccacccctgt gaccaagagg agcttcagga cgccctgacc ccccagcaga ccctgtccag 480
gaggaaggtg gaggcccca cggagcggtg cttctccttg cgcatgaaga gtacgctcac 540
cageegeggg egeaceetea aceteaagge ggeeacetgg aaggtgetga actgetetgg 600
acatatgagg gcctacaagc cacctgcgca gacttctcca gctgggagcc ctgactcaga 660
qcccccqctq caqtqcctqq tgctcatctq cqaagccatc ccccacccag gcagcctgga 720
gcccccactg ggccgagggg ccttcctcag ccgccacagc ctggacatga agttcaccta 780
ctgtgacgac aggattgcag aagtggctgg ctatagtccc gatgacctga tcggctgttc 840
cgcctacgag tacatccacg cgctggactc cgacgcggtc agcaagagca tccacacctt 900
gctgagcaag ggccaggcag taacagggca gtatcgcttc ctggcccgga gtggtggcta 960
cctgtggacc cagacccagg ccacagtggt gtcaggggga cggggccccc agtcggagag 1020
tategtetgt gteeattttt taateaggta ageaggagga ggggetgggg tggetgtgtg 1080
tgggcctgat ctgcatgtgt ggacaggtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtt 1140
gcgtatgagc atgcatgtgt atcatgcata agtgtatgtg agggagtgtg cacgtgtaca 1200
catatgagga atgtgtgtca ccatgtaaat gccggtgtgt gtgtctgcat ggacacaggt 1260
atgtgtatgg gtgtgtagac tgttaatttt ttttttttt tttttttgcg tgaacctctg 1320
cttaagtgga ttgttaattc aaattagaaa ggggtcttta tttggcctgg catggtggct 1380
catgcctgta atcctagcac tttgggaggc tgaggtgggc ggattgcctg agctcaggag 1440
ttcgaaacca gcctgggcaa catgacgaaa tgctgtttct gctaataata ccaaaaatta 1500
gccgggtgtg gtgacacatg cctgtgatcc caactactcg ggaggctgag gcacgagaat 1560
cattagaacc cgggtggtgg aggctgcagt gagccgagat tgcgtcagtg cactctggcc 1620
teggeaacag agegagaete tgteteaaac aaacaaacaa acaaacaaaa ggaetetata 1680
ttcaagttaa aataagaagt gtaacagaat catggggtct tttttgcttt ttaaattttg 1740
atgtggctca cgcctgtaaa tcccaaggtg ttgggattac aggcgtgagc cactgcaccc 1800
ggcccatgtt gtggtttata tcagtagttc ctttgtaaat agtgaacagt attccatggt 1860
atgaatagag cacagttttt ttttttatcc attcaccagt tagaagacat tgggctgttt 1920
ccaagtttgg gtgattacaa aaaacagcta ctgtaaacat tctcatacaa gattttatga 1980
gatcacatgt tttcatttct cttgggtaaa cagctaggat tggaatggat gggttatata 2040
gtaagtgtat atttaatcta agaaactgcc atggctgggc acagtggctc acgcctgtaa 2100
tcccagtact ttgggaagcc aaggaaggag gatgactaga gcctctgagg tgaagaccag 2160
cctgggcaaa gtggttaaga ctcaaccgca aaaaaagaaa aacagaaaac ctgaaaacaa 2220
accaaaaaa aaaaaaaa
                                                                  2239
<210> 8
<211> 2082
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HIF3alpha cDNA
      of splice variant 3
<400> 8
gactggcgag ccatggcgct ggggctgcag cgcgcaaggt cgaccacgga gctgcgcaag 60
gaaaagtccc gggatgcggc ccgcagccgg cgcagccagg agaccgaggt gctgtaccag 120
ctggctcaca cgctgccctt cgcccgcggc gtcagcgccc acctggacaa ggcctctatc 180
atgcgcctca ccatcagcta cctgcgcatg caccgcctct gcgccgcagg ggagtggaac 240
caggtgggag cagggggaga accactggat gcctgctacc tgaaggccct ggagggcttc 300
gtcatggtgc tcaccgccga gggagacatg gcttacctgt cggagaatgt cagcaaacac 360
ctgggcctca gtcagctgga gctcattgga cacagcatct ttgatttcat ccacccctgt 420
gaccaagagg agetteagga egeeetgace eeceageaga eeetgteeag gaggaaggtg 480
gaggececca eggageggtg etteteettg egeatgaaga gtaegeteae eageegeggg 540
cgcaccctca acctcaaggc ggccacctgg aaggtgctga actgctctgg acatatgagg 600
gectacaage cacetgegea gaetteteca getgggagee etgaeteaga geeceegetg 660
cagtgcctgg tgctcatctg cgaagccatc ccccacccag gcagcctgga gcccccactg 720
```

ggagggette gteatggtge teacegeega gggagacatg gettacetgt eggagaatgt 360

```
ggccgagggg ccttcctcag ccgccacagc ctggacatga agttcaccta ctgtgacgac 780
aggattgcag aagtggctgg ctatagtccc gatgacctga tcggctgttc cgcctacgag 840
tacatccacg cgctggactc cgacgcggtc agcaagagca tccacacctt gctgagcaag 900
ggccaggcag taacagggca gtatcgcttc ctggcccgga gtggtggcta cctgtggacc 960
cagacccagg ccacagtggt gtcaggggga cggggccccc agtcggagag tatcgtctgt 1020
gtccattttt taatcagcca ggtggaagag accggagtgg tgctgtccct ggagcaaacg 1080
gagcaacact ctcgcagacc cattcagcgg ggcgccccct ctcagaagga cacccctaac 1140
cctqqqqaca qccttqacac ccctgqcccc cggatccttg ccttcctgca cccgccttcc 1200
ctgagegagg etgeectgge egetgaeece egeegtttet geageectga eeteegtege 1260
ctcctgggac ccatcctgga tggggcttca gtagcagcca ctcccagcac cccgctggcc 1320
acacggcacc cccaaagtcc tctttcggct gatctcccag atgaactacc tgtgggcacc 1380
gagaatgtgc acagactctt cacctccggg aaagacactg aggcagtgga gacagattta 1440
gatatagete aggatgetga tgetetggat ttggagatge tggeeceeta catetecatg 1500
gatgatgact tccagctcaa cgccagcgag cagctaccca gggcctacca cagacctctg 1560
ggggctgtcc cccggccccg tgctcggagc ttccatggcc tgtcacctcc agcccttgag 1620
cectecetge tacceegetg ggggagtgac ecceggetga getgetecag ecettecaga 1680
ggggacccct cagcatcctc tcccatggct ggggctcgga agaggaccct ggcccagagc 1740
tcagaggacg aggacgaggg agtggagctg ctgggagtga gacctcccaa aaggtccccc 1800
agcccagaac acgaaaactt tctgctcttt cctctcagcc tggtgtgttg ggggattaat 1860
gggattctct ggccctcatt acctagctgg cttaaaccta ctgttttata gataggaaac 1920
cagagagggg caggggctgg ttgagggtca tacagaaagt cagtgggcca gctgagacta 1980
aagcctgatc ttctagtttc actaatgggt attaaaaacc tctgcagtga actgagattg 2040
cgccactgca ccccagcatg agcgacagaa tgggaccttg tc
<210> 9
<211> 2595
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HIF3alpha cDNA
      of splice variant 5
<400> 9
aactcgcacc cgggtcctgg ctgcaccgca tcccctcctg caccccctgg atggcccttc 60
agccaacggg ggcctgggcg atggtcgacc acggagctgc gcaaggaaaa gtcccgggat 120
geggeeegea geeggegeag ceaggagace gaggtgetgt accagetgge teacacgetg 180
cccttcgccc gcggcgtcag cgcccacctg gacaaggcct ctatcatgcg cctcaccatc 240
agetacetge geatgeaceg cetetgegee geaggggagt ggaaceaggt gggageaggg 300
ggagaaccac tggatgcctg ctacctgaag gccctggagg gcttcgtcat ggtgctcacc 360
gccgagggag acatggctta cctgtcggag aatgtcagca aacacctggg cctcagtcag 420
ctggagetea ttggacacag catetttgat tteatecace cetgtgacea agaggagett 480
caggacgccc tgacccccca gcagaccctg tccaggagga aggtggaggc ccccacggag 540
cggtgcttct ccttgcgcat gaagagtacg ctcaccagcc gcgggcgcac cctcaacctc 600
aaggeggeea eetggaaggt getgaactge tetggacata tgagggeeta caageeacet 660
gegeagaett etecagetgg gageeetgae teagageece egetgeagtg eetggtgete 720
atctgcgaag ccatccccca cccaggcagc ctggagcccc cactgggccg aggggccttc 780
ctcagccgcc acagcctgga catgaagttc acctactgtg acgacaggat tgcagaagtg 840
gctggctata gtcccgatga cctgatcggc tgttccgcct acgagtacat ccacgcgctg 900
gacteegaeg eggteageaa gageateeae acettgetga geaagggeea ggeagtaaca 960
gggcagtate getteetgge eeggagtggt ggetacetgt ggaceeagae eeaggeeaca 1020
gtggtgtcag ggggacgggg cccccagtcg gagagtatcg tctgtgtcca ttttttaatc 1080
agccaggtgg aagagaccgg agtggtgctg tccctggagc aaacggagca acactctcgc 1140
agacccattc agcggggcgc cccctctcag aaggacaccc ctaaccctgg ggacagcctt 1200
gacacccctg gcccccggat cettgeette etgeacccge ettecetgag cgaggetgee 1260
```

ctggccgctg accccgccg tttctgcagc cctgacctcc gtcgcctcct gggacccatc 1320

```
ctggatgggg cttcagtagc agccactccc agcaccccgc tggccacacg gcacccccaa 1380
agtcctcttt cggctgatct cccagatgaa ctacctgtgg gcaccgagaa tgtgcacaga 1440
ctcttcacct ccgggaaaga cactgaggca gtggagacag atttagatat agctcaggat 1500
gctgatgctc tggatttgga gatgctggcc ccctacatct ccatggatga tgacttccag 1560
ctcaacqcca qcqaqcaqct acccagggcc taccacagac ctctgggggc tgtcccccgg 1620
ccccgtgctc ggagcttcca tggcctgtca cctccagccc ttgagccctc cctgctaccc 1680
cgctggggga gtgaccccg gctgagctgc tccagccctt ccagagggga cccctcagca 1740
tectetecea tqqctqqqqc teggaagagg accetggeec agageteaga ggaegaggae 1800
qaqqqaqtqq aqctqctqqq aqtqaqacct cccaaaaggt cccccagccc agaacacgaa 1860
aactttctgc tctttcctct cagcctgagt ttccttctga caggaggacc agccccaggg 1920
agectgeagg acceeactga acttacceaa tteettettt cagtettaag tttteecatt 1980
ctagacccct accctctagg ctgtgctgct cctggacttc atgcctctcc attctcattg 2040
cctacaatct ctgtgcccca gaaccccctc cacttcccac cccagccctc cagacatgca 2100
cttaccttga ctttacccca catgtttggg gcacctgggg ctccctcacc ccttgggtgg 2160
tttgcaatct gaagacttct ccagccacac aggcacatgc acaggcacgg tgctgtctgc 2220
atattgccag gtggggagag aagccaggac ccctcagctg tctgccacca tctatgtgcc 2280
tcccttaccc cccagctttc tttctacaga tggtgctact cttggtctcc cacaggaaaa 2340
qqcctcccc cttcttaqcc ccatttaccc cgtttgtgga aggcactgct cgctctgttt 2400
tgtcagagag tggcctatcc agattggtgc tatggggggg tctgacccct ccctcccc 2460
tctggaggtg atgtgggccc tcaatggagg gaattgtgct gggctaggga aaggggaggg 2520
actagactgg ccacactggc tctgaaactc accaatctct atacaccata aagacctcac 2580
                                                                   2595
cttggtaggc accag
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for
      HIF3a splice variant 1
<400> 10
                                                                   23
gggctcaagt gatcctccta ctt
<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for
      HIF3a splice variant 1
<400> 11
                                                                   22
catgatggca catagctgca gt
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for
```

HIF3a splice variant 2

<400> 12 tttgcgtgaa cctctgctta ag	22
<210> 13 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for HIF3a splice variant 2	
<400> 13 caccatgcca ggccaaat	18
<210> 14 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for HIF3a splice variant 3	
<400> 14 tetetggece teattaceta get	23
<210> 15 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for HIF3a splice variant 3	
<400> 15 ctgtatgacc ctcaaccagc c	21
<210> 16 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for HIF3a splice variant 5	
<400> 16 actcttggtc tcccacagga aa	22

```
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for
      HIF3a splice variant 5
<400> 17
                                                                    20
aacagagcga gcagtgcctt
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for the
      cyclophilin B gene
<400> 18
actgaagcac tacgggcctg
                                                                    20
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for the
      cyclophilin B gene
<400> 19
                                                                    19
agccgttggt gtctttgcc
<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for the
      gene of the ribosomal protein S9
<400> 20
                                                                    20
ggtcaaattt accctggcca
<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence
```

<220> <223> Description of Artificial Sequence:primer for the gene of the ribosomal protein S9 <400> 21 tctcatcaag cgtcagcagt tc 22 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer for the beta-actin gene <400> 22 19 tggaacggtg aaggtgaca <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer for the beta-actin gene <400> 23 19 ggcaagggac ttcctgtaa <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer for the GAPDH gene <400> 24 20 cgtcatgggt gtgaaccatg <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer for the GAPDH gene

```
<400> 25
gctaagcagt tggtggtgca g
                                                                  21
<210> 26
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for the
      transferrin receptor gene
<400> 26
gtcgctggtc agttcgtgat t
                                                                  21
<210> 27
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer for the
      transferrin receptor gene
<400> 27
                                                                  23
agcagttggc tgttgtacct ctc
<210> 28
<211> 1353
<212> DNA
<213> Homo sapiens
<400> 28
atgcqqcccq caqccqqcqc agccaggaga ccgaggtgct gtaccagctg gctcacacgc 60
tgcccttcgc ccgcggcgtc agcgcccacc tggacaaggc ctctatcatg cgcctcacca 120
tragctarct grgcatgrar regretering agetrating acacageate 180
tttgatttca tccacccctg tgaccaagag gagcttcagg acgccctgac cccccagcag 240
accetgteca ggaggaaggt ggaggeeece acggageggt getteteett gegeatgaag 300
agtacactca ccagccgcgg gcgcaccctc aacctcaagg cggccacctg gaaggtgctg 360
aactgctctg gacatatgag ggcctacaag ccacctgcgc agacttctcc agctgggagc 420
cctgactcag agcccccgct gcagtgcctg gtgctcatct gcgaagccat cccccaccca 480
ggcagcctgg agcccccact gggccgaggg gccttcctca gccgccacag cctggacatg 540
aagttcacct actgtgacga caggattgca gaagtggctg gctatagtcc cgatgacctg 600
atcggctgtt ccgcctacga gtacatccac gcgctggact ccgatgcggt cagcaagagc 660
atccacact tgctgagcaa gggccaggca gtaacagggc agtatcgctt cctggcccgg 720
agtggtggct acctgtggac ccagacccag gccacagtgg tgtcaggggg acggggcccc 780
cagtcggaga gtatcgtctg tgtccatttt ttaatcagcc aggtggaaga gaccggagtg 840
gtgctgtccc tggagcaaac ggagcaacac tctcgcagac ccattcagcg gggcgccccc 900
tctcaqaaqq acacccctaa ccctqqqqac agccttgaca cccctggccc ccggatcctt 960
geetteetge accepeette eetgagegag getgeeetgg eegetgacee eegeegttte 1020
tqcaqccttq acctccqtcg cctcctggga cccatcctgg atggggcttc agtagcagcc 1080
actoccagoa coccegotego cacacegoca coccaaagto ctotttoggo teatotocca 1140
gatgaactac ctgtgggcac cgagaatgtg cacagactct tcacctccgg gaaagacact 1200
gaggcagtgg agacagattt agatatagct caggacccca gcaccccact cctgaacctg 1260
```

acagtggtgt cagggggacg gggccccag tcggagagta tcgtctgtgt ccattttta 1020 atcagccagg tggaagagc cggagtggtg ctgtccctgg agcaaacgga gcaacactct 1080 cgcagacca ttcagcgggg cgcccctct cagaaggaca cccctaaccc tggggacagc 1140 cttgacaccc ctggcccccg gatccttgcc ttcctgcacc cgccttccct gagcgaggct 1200 gccctggccg ctgaccccg ccgtttctgc agccctgacc tccgtcgcct cctgggaccc 1260

```
atcetggatg gggetteagt ageageeact eccageacee egetggeeae aeggeacece 1320
caaagteete ttteggetga teteccagat gaactacetg tgggeacega gaatgtgeac 1380
agactettea ceteegggaa agacaetgag geagtggaga eagatttaga tatageteag 1440
gatgctgatg ctctggattt ggagatgctg gcccctaca tctccatgga tgatgacttc 1500
cageteaacg ecagegagea getaeceagg geetaecaca gaeetetggg ggetgteece 1560
eggeeegtg eteggagett ceatggeetg teaceteeag ceettgagee etecetgeta 1620
ccccgctggg ggagtgaccc ccggctgagc tgctccagcc cttccagagg ggacccctca 1680
gcatcctctc ccatggctgg ggctcggaag aggaccctgg cccagagctc agaggacgag 1740
qacqaqqqaq tggagctgct gggagtgaga cctcccaaaa ggtcccccag cccagaacac 1800
gaaaactttc tgctctttcc tctcagcctg gtgtgttggg ggattaatgg gattctctgg 1860
ccctcattac ctagctggct taaacctact gttttatag
                                                                  1899
<210> 31
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 31
```

```
atqcqcctca ccatcagcta cctgcgcatg caccgcctct gcgccgcagg ggagtggaac 60
caggtgggag cagggggaga accactggat gcctgctacc tgaaggccct ggagggcttc 120
gtcatggtgc tcaccgccga gggagacatg gcttacctgt cggagaatgt cagcaaacac 180
ctgggcctca gtcagctgga gctcattgga cacagcatct ttgatttcat ccacccctgt 240
gaccaagagg agcttcagga cgccctgacc ccccagcaga ccctgtccag gaggaaggtg 300
gaggccccca cggagcggtg cttctccttg cgcatgaaga gtacgctcac cagccgcggg 360
cgcaccctca acctcaaggc ggccacctgg aaggtgctga actgctctgg acatatgagg 420
gcctacaagc cacctgcgca gacttctcca gctgggagcc ctgactcaga gcccccgctg 480
cagtgcctgg tgctcatctg cgaagccatc ccccacccag gcagcctgga gcccccactg 540
ggccgagggg ccttcctcag ccgccacagc ctggacatga agttcaccta ctgtgacgac 600
aggattgcag aagtggctgg ctatagtccc gatgacctga tcggctgttc cgcctacgag 660
tacatccacg cgctggactc cgacgcggtc agcaagagca tccacacctt gctgagcaag 720
ggccaggcag taacagggca gtatcgcttc ctggcccgga gtggtggcta cctgtggacc 780
cagacccagg ccacagtggt gtcaggggga cggggccccc agtcggagag tatcgtctgt 840
qtccattttt taatcagcca ggtggaagag accggagtgg tgctgtccct ggagcaaacg 900
qaqcaacact ctcqcaqacc cattcagcgg ggcgccccct ctcagaagga cacccctaac 960
cctggggaca gccttgacac ccctggcccc cggatccttg ccttcctgca cccgccttcc 1020
ctgagcgagg ctgccctggc cgctgacccc cgccgtttct gcagccctga cctccgtcgc 1080
ctcctgggac ccatcctgga tggggcttca gtagcagcca ctcccagcac cccgctggcc 1140
acacggcacc cccaaagtcc tctttcggct gatctcccag atgaactacc tgtgggcacc 1200
gagaatgtgc acagactett caceteeggg aaagacaetg aggeagtgga gacagattta 1260
gatatagete aggatgetga tgetetggat ttggagatge tggeeceeta cateteeatg 1320
gatgatgact tecageteaa egecagegag eagetaceea gggeetacea eagacetetg 1380
ggggctgtcc cccggccccg tgctcggagc ttccatggcc tgtcacctcc agcccttgag 1440
ccctccctgc taccccgctg ggggagtgac ccccggctga gctgctccag cccttccaga 1500
ggggacccct cagcatcctc tcccatggct ggggctcgga agaggaccct ggcccagagc 1560
tcagaggacg aggacgaggg agtggagctg ctgggagtga gacctcccaa aaggtccccc 1620
agcccagaac acgaaaactt tctgctcttt cctctcagcc tgagtttcct tctgacagga 1680
ggaccagccc cagggagcct gcaggacccc actgaactta cccaattcct tctttcagtc 1740
ttaaqttttc ccattctaga cccctaccct ctaggctgtg ctgctcctgg acttcatgcc 1800
totocattot cattgoctac aatototgtg coccagaaco coctocactt cocaccocag 1860
ccctccaqac atgcacttac cttgacttta ccccacatgt ttggggcacc tggggctccc 1920
                                                                  1947
tcacccttg ggtggtttgc aatctga
```