Análisis Estadístico Multivariante

Francisco Javier Mercader Martínez

${\bf \acute{I}ndice}$

1	Vec	ectores aleatorios			
	1.1	$Introducci\'on$	1		
	1.2	Independencia de las variables aleatorias	1		
	1.3	Distribuciones marginales	1		
	1.4	Vector aleatorio absolutamente continuo	2		
	1.5	Vector aleatorio discreto	2		
	1.6	Distribuciones marginales	2		
		1.6.1 Caso continuo	2		
		1.6.2 Caso discreto	3		
	1.7	Distribuciones condicionadas	3		
		1.7.1 Caso continuo	3		
		1.7.2 Caso discreto	4		
	1.8	Distribución normal multivariante $\mathcal{N}_k(\mu, V)$	4		
		1.8.1 Normal bivariante	5		
	1.9	Distribución multinomial $\mathcal{M}_k(n, p_1, \dots, p_k)$	9		
	1.10	Estadístico de Pearson	9		
	1.11	Medias y covarianzas	10		
		1.11.1 Esperanza de la transformación $g:\mathbb{R}^k\longrightarrow\mathbb{R}$	10		
	1.12	Correlación	11		
		1.12.1 Correlación entre vectores aleatorios	12		
	1.13	Resultados básicos de la inferencia	13		
		1.13.1 ¿Cómo se representan las muestras aleatorias?	13		
		1.13.2 ¿Cómo se muestran los valores muestrales?	13		
		1.13.3 El conjunto de datos LifeCycleSavings	14		
	1.14	Estimador para el vector de medias μ	14		
		1.14.1 ¿Dónde se encuentra el vector de medias muestrales?	15		
	1.15	Estimador para la matriz de covarianzas V	15		
		1.15.1 Para una distribución normal	15		
2	Reg	resión Lineal	23		
		2.0.1 Modelo completo	23		
	2.1	Regresión lineal simples	23		
		2.1.1 Modelo teórico	23		
		2.1.2 Función óptima	24		
	2.2	Caso de normalidad	24		
	2.3	Restricción sobre la función h	24		

2.4	Minimizar la función costo						
	2.4.1	Ecuaciones normales de la recta	25				

Tema 1: Vectores aleatorios

1.1) Introducción

Objetivo: estudiar k variables sobre una población de individuos (objetos).

Algunos ejemplos:

- \rightarrow Las variables meteorológicas como temperatura, humedad y velocidad del viento.
- \rightarrow La intensidad y la fase de una señal aleatoria que se miden en los canales de comunicación.
- → Los parámetros clínicos de los pacientes (como presión arterial, niveles de glucosa, etc.)

Habitualmente estas variables cualitativas o discretas que nos indicarán grupos de individuos.

Estas variables se representarán mediante vectores aleatorios sobre un espacio de probabilidad.

1) Definiciones

Un vector aleatorio (v.a.) k-dimensional sobre un espacio de probabilidad $(\Omega, \mathcal{S}, \mathcal{P})$ es $X = (X_1, \dots, X_k)$ tal que

$$X_i^{-1}(-\infty, x] \in \mathcal{S}$$

para todo $x \in \mathbb{R}, i = 1, \dots, k$

• Función de distribución conjunta

$$F: \mathbb{R}^k \longrightarrow [0,1],$$

$$F(x_1, ..., x_k) := P[X_1 < x_1, X_2 < x_2, ..., X_k < x_k],$$

para todo $x_1, \ldots, x_k \in \mathbb{R}$.

1.2) Independencia de las variables aleatorias

• Definición

Las variables aleatorias X_1, \ldots, X_k son independientes si los sucesos

$$\{x_1 \le x_1\}, \{X_2 \le x_2\}, \dots, \{X_k \le x_k\}$$

son independientes para todo $x_1, \ldots, x_k \in \mathbb{R}$.

Esto es equivalente a que

$$F(x_1, \dots, x_k) = P[X_1 \le x_1] \cdot P[X_2 \le x_2] \cdots P[X_k \le x_k]$$

para todo $x_1, \ldots, x_k \in \mathbb{R}$.

1.3) Distribuciones marginales

La función $F_{X_i}(x_i) = P[X_i \le x_i]$ se denomina función de distribución marginal i-ésima y corresponde con la función de distribución de la variable aleatoria X_i

Las distribuciones marginales pueden obtenerse a partir de la distribución conjunta:

$$F_{X_i}(x_I) = F(+\infty, \dots, +\infty, x_i, +\infty, \dots, +\infty)$$

Análogamente, la función de distribución marginal del subvector aleatorio (X_{i_1},\ldots,X_{i_m}) vendrá dada por

$$F_{X_{i_1},\ldots,X_{i_m}}(x_{i_1},\ldots,x_{i_m})=F(+\infty,\ldots,+\infty,x_{i_1},+\infty,\ldots,+\infty,x_{i_m},+\infty,\ldots,+\infty).$$

1.4) Vector aleatorio absolutamente continuo

Un vector aleatorio X es absolutamente continuo si existe una función $f: \mathbb{R}^k \longrightarrow \mathbb{R}$ no negativa (llamada función de densidad) tal que

$$F(x) = F(x_1, \dots, x_k) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_k} f(z_1, \dots, z_k) dz_k, \dots, dz_1,$$

para todo $x = (x_1, \dots, x_k) \in \mathbb{R}^k$

Usando el teorema fundamental del cálculo, se tiene que en cada punto de continuidad (x_1, \ldots, x_k) de f:

$$\frac{\partial^k F(x_1,\ldots,x_k)}{\partial x_1,\ldots,\partial x_k} = f(x_1,\ldots,x_k).$$

Existen variables aleatorias cuya función de distribución es continua pero que no son absolutamente continuas (tienen una parte singular) y puede ocurrir que X_1, \ldots, X_k sean absolutamente continuas y que (X_1, \ldots, X_k) no lo sea.

- \rightarrow Ejemplo: Si X_1 es una variable aleatoria absolutamente continua, entonces el vector aleatorio $X=(X_1,X_2)$ es continuo pero no absolutamente continuo.
- \rightarrow De hecho, es completamente singular ya que está contenido en la recta y=x que tiene medida cero en \mathbb{R}^2 .

Esto ocurre si consideramos las notas de unos alumnos y sus medidas. En estos casos deberemos eliminar estas variables dependientes del vector.

1.5) Vector aleatorio discreto

Un vector aleatorio X se dice que es discreto si existe un conjunto numerable $S \in \mathbb{R}^k$ tal que $P(X \in S) = 1$.

Función masa de probabilidad de una vector aleatorio discreto:

$$P[X = x] = P[X_1 = x_1, \dots, X_k = x_k]$$

para todo $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$, satisfaciendo:

$$\rightarrow P[X = x] \ge 0, \ \forall x \in \mathcal{S}$$

$$\rightarrow \sum_{x \in S} P[X = x] = 1$$

Función de distribución de un vector aleatorio discreto:

$$F(x) = P[X \le x] = \sum_{\substack{z \in \mathcal{S} \\ z \le x}} P[X = z],$$

para todo $x \in \mathbb{R}^k$.

1.6) Distribuciones marginales

1.6.1) Caso continuo

• Distribución marginal de la variable aleatoria X_i

Sea $X = (X_1, ..., X_k)$ un vector aleatorio continuo con función de densidad f entonces cada componente X_i es de tipo continuo y su función de distribución es;

$$F_{X_i}(x_i) = P[X_i \le x_i] = \int_{-\infty}^{x_i} f_{X_i}(z_i) \mathrm{d}z_i,$$

con

$$f_{X_i} = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(z_1, \dots, z_k) dz_1, \dots, dz_{i-1} \cdot dz_{i+1} \dots, dz_k,$$

para todo $z_i \in \mathbb{R}$.

La función de densidad marginal de cualquier subvector se calcularía de igual forma.

$$X_1, \ldots, X_k$$
 son independientes $\longleftrightarrow f(x_1, \ldots, x_k) = f_{X_1}(x_1) \cdots f_{X_k}(x_k)$.

1.6.2) Caso discreto

 \bullet Distribución marginal de la variable aleatoria X_i

Sea $X = (X_1, ..., X_l)$ un vector aleatorio discreto con $P[X \in \mathcal{S}] = 1$ y función masa de probabilidad P[X = x], para todo $x \in \mathcal{S}$.

Si X_i es una componente arbitraria y por tanto discreta con valores en S_i , entonces su función masa de probabilidad puede obtenerse a partir de la conjunta:

$$P[X_i = x_i] = \sum_{\substack{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k \\ (x_1, \dots, x_i, \dots, x_n) \in S}} P[X_1 = x_1, \dots, X_{i-1} = x_{i-1}, X_i = x_i, X_{i+1} = x_{i+1}, \dots, X_k = x_k].$$

La función masa de probabilidad marginal de cualquier subvector se calcularía de igual forma.

 X_1, \ldots, X_k son independientes \longleftrightarrow para todo $(x_1, \ldots, x_k) \in \mathcal{S}$,

$$P[X_1 = x_1, \dots, X_k = x_k] = P[X_1 = x_1] \cdots P[X_k = x_k].$$

Nota:

A y B independientes
$$\longleftrightarrow P(A|B) = P(A)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A) \longrightarrow P(A \cap B) = P(A) \cdot P(B)$$

1.7) Distribuciones condicionadas

1.7.1) Caso continuo

• Distribución condicionada al valor de una variable

Sea $X = (X_1, \dots, X_k)$ un vector aleatorio continuo con función de densidad f.

Sea X_i una componente arbitraria y $x_i^* \in \mathbb{R}$ tal que $f_{X_i}(x_i^*) > 0$.

Se define la distribución condicionada de $(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k)$ a $(X_i = x_i^*)$ como la determinada por la función de densidad:

$$f_{X_1,\ldots,X_{i-1},\ldots,X_k|X_i=x_i^*}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_k|x_i^*) = \frac{f(x_1,\ldots,x^*,\ldots,x_k)}{f_{X_i}(x_i^*)}.$$

• Distribución condicionada a valores de varias variables

Sea $X = (X_1, \ldots, X_k)$ un vector aleatorio continuo con función de densidad f. Sea $(X_{i_1}, \ldots, X_{i_m})$ un subvector arbitrario y $(x_{i_1}^*, \ldots, x_{i_m}^*) \in \mathbb{R}^m$ tal que:

$$f_{X_{i_1},...,X_{i_m}}(x_{i_1}^*,...,x_{i_m}^*) > 0.$$

Se define la distribución condicionada de $(X_1, \ldots, X_{i_1-1}, X_{i_1+1}, \ldots, X_{i_m-1}; X_{i_m+1}, \ldots, X_k)$ a $(X_{i_1} = x_{i_1}^*, \ldots, X_{i_m} = x_{i_m}^*)$ como la determinada por la función de densidad:

$$f_{X_1,\dots,X_{i_1-1},X_{i_1+1},\dots,X_{i_m-1},\dots,X_k|X_{i_1}=x_{i_1}^*,\dots,X_{i_m}=x_{i_m}^*}(x_1,\dots,x_{i-1},x_{i+1},\dots,x_{i_{m-1}},x_{i_{m+1}},\dots,x_k|x_i^*) = \frac{f(x_1,\dots,x_{i_1}^*,\dots,x_{i_m}^*,\dots,x_{i_m}^*,\dots,x_k)}{f(x_1,\dots,x_{i_m},\dots,x_{i_m},\dots,x_{i_m},\dots,x_{i_m},\dots,x_k)}$$

1.7.2) Caso discreto

• Distribución condicionada al valor de una variable

Sea $X = (X_1, ..., X_k)$ un vector aleatorio discreto. Sea X_i una componente arbitraria y $x_i^* \in \mathbb{R}$ tal que

$$P[X_i = x_i^*] > 0.$$

Se define la distribución condicionada de $(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k)$ a $(X_i = x_i^*)$ como la determinada por la función masa de probabilidad:

$$P[X_1 = x_1, \dots, X_{i-1} = x_{i-1}, X_{i+1} = x_{i+1}, \dots, X_k = x_k | X_i = x_i^*] = P[X_1 = x_1, \dots, X_{i-1} = x_{i-1}, X_i = x_i^*, X_{i+1} = x_{i+1}, \dots, X_k = x_k]$$

$$P[X_i = x_i^*]$$

para todo $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k)$ tal que $x_1, ..., x_{i-1}, x_i^*, x_{i+1}, ..., x_k \in \mathcal{S}$.

• Distribución condicionada a valores de varias variables

Sea $X = (X_1, \dots, X_k)$ un vector aleatorio discreto.

Sea X_{i_1}, \dots, X_{i_m} un subvector arbitrario y $(x_{i_1}^*, \dots, x_{i_m}^*) \in \mathbb{R}^m$ tal que

$$P[X_{i_1} = x_{i_1}^*, \dots, X_{i_m} = x_{i_m}^*] > 0.$$

Se define la distribución condicionada de $(X_1, \ldots, X_{i_1-1}, X_{i_1+1}, \ldots, X_{i_m-1}, X_{i_m+1}, \ldots, X_k)$ a $(X_{i_1} = x_{i_1}^*, \ldots, X_{i_m} = x_{i_m}^*)$ como la determinada por la función masa de probabilidad:

$$P[X_{1} = x_{1}, \dots, X_{i_{1}-1} = x_{i_{1}-1}, X_{i_{1}+1} = x_{i_{1}+1}, \dots, X_{i_{m}-1} = x_{i_{m}-1}, X_{i_{m}+1} = x_{i_{m}+1}, \dots, X_{k} = x_{k} | X_{i_{1}} = x_{i_{1}}^{*}, \dots, X_{i_{m}} = x_{i_{m}}^{*}, \dots, X_{k} = x_{k}]$$

$$x_{i_{m}^{*}}] = \frac{P[X_{1} = x_{1}, \dots, X_{i_{1}} = x_{i_{1}}^{*}, \dots, X_{i_{m}} = x_{i_{m}}^{*}, \dots, X_{k} = x_{k}]}{P[X_{i_{1}} = x_{i_{1}}^{*}, \dots, X_{i_{m}} = x_{i_{m}}^{*}]}$$

para todo $(x_1, \ldots, x_{i_1}, x_{i_1+1}, \ldots, x_{i_m-1}, x_{i_m+1}, \ldots, x_k)$, tal que $(x_1, \ldots, x_{i_1}^*, \ldots, x_{i_m}^*, \ldots, x_k) \in \mathcal{S}$

1.8) Distribución normal multivariante $\mathcal{N}_k(\mu, V)$

1) Función de densidad

$$f(x) = \frac{1}{\sqrt{|V|(2\pi)^k}} \exp\left(-\frac{1}{2}(x-\mu)'V^{-1}(x-\mu)\right),$$

para $x \in \mathbb{R}^k$, donde μ es un vector k-dimensional y V es una matriz $k \times k$ simétrica y definida positiva.

• Definiciones

Una matriz simétrica A, de dimensión $k \times k$, se dice que es definida positiva si se verifica que x'Ax > 0 para cualquier vector no nulo $x \in \mathbb{R}^k$.

Una matriz simétrica A, de dimensión $k \times k$, se dice que es semidefinida positiva si se verifica que $x'Ax \ge 0$ para cualquier vector $x \in \mathbb{R}^k$.

¿Cómo calcular la inversa de $V = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$ con R?

```
## [,1] [,2]
## [1,] 1.3333333 -0.6666667
## [2,] -0.6666667 1.3333333
```

1.8.1) Normal bivariante

• Función de densidad

```
Caso bivariante, k=2, para \mu=(0,0) y V=\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}.
```

Cálculo de la función de densidad en x = (1,1) utilizando la función de de la librería mytnorm de R:

[1] 0.0943539

• Función de distribución

Cálculo (aproximado) de la función de distribución en x = (1, 1) con la función:

```
pmvnorm(lower = -Inf, upper = x, mean = mu, sigma = V)
```

[1] 0.7452036

• Probabilidad en rectángulos

Cálculo (aproximado) de las probabilidades en rectángulos dando los límites inferiores y superiores del rectángulo. Por ejemplo, para calcular

$$P(-1 < X_1 < 1, -1 < X_2 < 1)$$

[1] 0.499718

Su representación gráfica:

```
f <- function(x1, x2) dmvnorm(data.frame(x1, x2), mu, V)

x <- seq(-3, 3, length = 50)

y <- seq(-3, 3, length = 50)

z <- outer(x, y, f)

persp(x, y, z, xlab = 'x1', ylab = 'x2', zlab = 'f(x1, x2)', col = 'orange', main = "
Función de densidad")</pre>
```

Función de densidad

Su representación gráfica $(f(x_1, x_2) = c)$ y 50 datos simulados de este modelo

```
#Se fija la semilla para la generación aleatoria
set.seed(123)
#Generación aleatoria del modelo
d <- rmvnorm(50, mu, V)
plot(d, xlab = "X1", ylab = "X2", pch = 20, xlim = c(-3, 3), ylim = c(-3, 3))
contour(x, y, z, nlevels = 4, add = T, col = 'red')</pre>
```


• Distancia de Mahalanobis

La distancia de Mahalanobis del vector x al vector μ basada en la matriz V:

$$D = \sqrt{(x-\mu)'V^{-1}(x-\mu)}$$

Tiene en cuenta la diferentes escalas de los datos y sus correlaciones.

Servirá para detectar las observaciones más alejadas del vector de medias que podrían ser observaciones atípicas (outliers) que no provengan de nuestra población o contengan errores.

- ightarrow Cuando se pueda, se deberán chequear y, si es posible, corregir o eliminar.
- \rightarrow En otros casos, se deberán mantener por ser observaciones correctas que hay que tener en cuenta.
- Cálculo de la distancia de Mahalanobis

Para calcular las distancias de Mahalanobis al cuadrado de los datos al vector de medias (teóricas o muestrales) podemos utilizar la función mahalanobis.

• Distancias de los datos simulados al vector de medias teóricas μ con respecto a V

```
summary(dM1)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.05216 0.41016 1.26433 1.66615 2.31591 7.13332
```

• ¿Dónde se encuentra la observación más alejada del vector de medias?

```
d[which.max(dM1),]
```

[1] 2.509470 2.046512

```
f <- function(x1, x2) dmvnorm(data.frame(x1, x2), mu, V)

x <- seq(-3, 3, length = 50)

y <- seq(-3, 3, length = 50)

z <- outer(x, y, f)

plot(d, xlab = "X1", ylab = "X2", pch = 20, xlim = c(-3, 3), ylim = c(-3, 3))

points(d[which.max(dM1), 1], d[which.max(dM1), 2], col = "blue", pch = 8)

text(d[which.max(dM1), 1], d[which.max(dM1), 2], which.max(dM1), cex = 0.8, pos = 3)

contour(x, y, z, nlevels = 4, add = T, col = 'red')</pre>
```


• Distancias de los datos simulados al vector de medias muestrales \overline{x} con respecto a $\mathcal S$

```
summary(dM2)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.02114 0.67111 1.52636 1.96000 2.64131 8.65906
```

• ¿Dónde se encuentra la observación más alejada del vector de medias?

```
d[which.max(dM2), ]
```

```
f <- function(x1, x2) dmvnorm(data.frame(x1, x2), colMeans(d), cov(d))
x <- seq(-3, 3, length = 50)
y <- seq(-3, 3, length = 50)
z <- outer(x, y, f)
plot(d, xlab = "X1", ylab = "X2", pch = 20, xlim = c(-3, 3), ylim = c(-3, 3))
points(d[which.max(dM2), 1], d[which.max(dM2), 2], col = "blue", pch = 8)
text(d[which.max(dM2), 1], d[which.max(dM2), 2], which.max(dM2), cex = 0.8, pos = 3)
contour(x, y, z, nlevels = 4, add = T, col = 'magenta')</pre>
```


1.9) Distribución multinomial $\mathcal{M}_k(n, p_1, \dots, p_k)$

• Modelo multinomial

 (X_1, \ldots, X_k) : variables aleatorias que representan el número de veces que ocurre el suceso A_i en un experimento aleatorio repetido n veces con k opciones dadas por $\{A_1, \ldots, A_k\}$ y con probabilidades constantes $p_i = P(A_i)$, para $i = 1, \ldots, k$. Función masa de probabilidad conjunta:

$$p(x_1, \dots, x_k) = P[X_1 = x_1, \dots, X_k = x_k] = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k},$$

para enteros no negativos tales que $x_1 + \cdots + x_k = n$ y donde $p_i \in [0,1]$ satisface $p_1 + \cdots + p_k = 1$.

Distribuciones marginales: X_i sigue una distribución binomial $B(n, p_i)$, con $E(X_i) = np_i$.

1.10) Estadístico de Pearson

• Discrepancias entre lo observado y lo esperado

Contexto: Lanzamos un dado $n = \text{veces}, p_i = \frac{1}{6}$ para todo i, y los valores esperados son $np_i = 10$, para $i = 1, \dots, 6$.

Objetivo: Medir las discrepancias entre valores observados y esperados.

Sea $X = (X_1, \dots, X_k)$ una variable aleatoria con distribución multinomial, entonces el estadístico

$$T = \sum_{i=1}^{k} \frac{X_i - np_i}{np_i}$$

sigue una distribución Chi-cuadrado χ^2_{k-1} de Pearson con k-1 grados de libertad, cuando $n \longrightarrow \infty$.

1.11) Medias y covarianzas

• Definiciones

Dado el vector aleatorio.

 \rightarrow El vector de medias (o esperanza matemática de X) se define como:

$$\mu := E[X] = (E[X_1], \dots, E[X_k])' = (\mu_1, \dots, \mu_k)'$$

(note que es un vector columna).

→ La matriz de covarianzas (o varianzas-covarianzas) se define como:

$$V = (\sigma_{i,j}),$$

donde $\sigma_{i,j}$ es la covarianza entre X_i y X_j , definida como:

$$\sigma_{i,j} = \text{Cov}(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)] = E[X_i X_j] - \mu_i \mu_j$$

Notemos que $\sigma_{i,i} = E\left[(X_i - \mu_i)^2\right] = \text{Var}(X_i) = \sigma_i^2$.

• Cálculo de la esperanza matemática

La media de cada componente X_i del vector puede calcularse a partir de la distribución conjunta o a partir de la marginal.

 \rightarrow Caso discreto:

$$E[X_i] = \sum_{x_i} x_i P[X_i = x_i]$$

$$= \sum_{x_1, \dots, x_k} x_i P[X_1 = x_1, \dots, X_k = x_k]$$

→ Caso continuo:

$$E[X_i] = \int_{\mathbb{R}} x_i f_{X_i}(x_i) \, \mathrm{d}x_i$$
$$= \int_{\mathbb{R}^k} x_i f(x_1, \dots, x_k) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_k$$

1.11.1) Esperanza de la transformación $g: \mathbb{R}^k \longrightarrow \mathbb{R}$

• Caso discreto

Sea $g:\mathbb{R}^k\longrightarrow\mathbb{R}$ una función medible $\longrightarrow Y=g(X)$ es una variable aleatoria .

Si X es de tipo discreto,

$$\exists E[g(X)] \longleftrightarrow \sum_{x_1, \dots, x_k} |g(x_1, \dots, x_k)| P[X_1 = x_1, \dots, X_k = x_k] < \infty$$

Y en caso de existir:

$$E[g(X_1, \dots, X_k)] = \sum_{x_1, \dots, x_k} g(x_1, \dots, x_k) P[X_1 = x_1, \dots, X_k = x_k]$$

• Caso continuo

Sea $g:\mathbb{R}^k \longrightarrow \mathbb{R}$ una función medible $\longrightarrow Y = g(X)$ es una variable aleatoria .

Si X es de tipo continuo,

$$\exists E[g(X)] \longleftrightarrow \int_{\mathbb{R}^k} |g(x_1, \dots, x_k)| f_X(x_1, \dots, x_k) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_k < \infty$$

Y en caso de existir:

$$E[g(X_1,\ldots,X_k)] = \int_{\mathbb{R}^k} g(x_1,\ldots,x_k) f_X(x_1,\ldots,x_k) dx_1 \cdots dx_k.$$

• Propiedades

V es una matriz simétrica y semidefinida positiva ($x'Vx \ge 0$, para todo $x \in \mathbb{R}^k$).

En forma matricial,

$$V = E[(X - \mu)(X - \mu)'] = E[XX'] - \mu\mu'.$$

donde la esperanza de una matriz aleatoria se define como la matriz de las esperanzas de cada variable.

Si X_i y X_j son independientes, entonces

$$E[X_i X_j] = E[X_i] E[X_j]$$

y, por lo tanto, $Cov(X_i, X_j) = 0$. El recíproco no es cierto.

Si $X \longrightarrow \mathcal{N}_k(\mu, V)$, se puede demostrar que μ es el vector de medias y V es la matriz de covarianzas.

1.12) Correlación

La correlación (lineal de Pearson) entre X_i y X_j se define como

$$\rho_{i,j} = \operatorname{Corr}(X_i, X_j) = \frac{\sigma_{i,j}}{\sigma_i \sigma_j}$$

siendo $\rho_{i,i} = \operatorname{Corr}(X_i, X_j) = 1.$

Mide el grado de relación lineal entre X_i y X_j .

Puede demostrarse que

$$-1 \le \rho_{i,j} \le 1.$$

Se dice que X_i y X_j son incorreladas si $\rho_{i,j} = 0$.

Si son independientes serán incorreladas, pero el recíproco no es cierto.

La matriz de correlaciones es $R = (\rho_{i,j})$.

1.12.1) Correlación entre vectores aleatorios

Análogamente, si X e Y son vectores aleatorios (de dimensiones cualesquiera), se define su matriz de covarianzas como

$$Cov(X, Y) = (Cov(X_i, Y_i))$$

y su matriz de correlaciones como

$$Corr(X, Y) = (Corr(X_i, Y_j)).$$

Puede demostrarse que

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])'].$$

Evidentemente, Cov(X) = Cov(X, X).

• Propiedades

Si X, Y, Z son vectores (columna) aleatorios, se verifican las propiedades siguientes:

- 1) $E[a_1g_1(X) + a_2g_2(X)] = a_1E[g_1(X)] + a_2E[X_2]$, donde $a_1, a_2 \in \mathbb{R}$ y g_1 y g_2 son funciones medible de vectores aleatorios.
- 2) $X = (Y, Z), E_X[g(Y)] = E_Y[g(Y)]$, donde g es una función medible de un vector aleatorio, E_X denota la esperanza en la distribución conjunta y E_Y en la distribución marginal.
- 3) Si X e Y son independientes, entonces

$$E[g_1(X)g_2(Y)] = E[g_1(X)]E[g_2(Y)],$$

donde g_1 y g_2 son funciones medibles cualesquiera de vectores aleatorios .

- 4) $E[AX + b] = AE[X] + b, A \in M_{m,k}b' \in \mathbb{R}^m$.
- 5) $Cov(X_i, X_j) = E[X_i X_j] E[X_i]E[X_j].$
- 6) Si X_1, \ldots, X_k son independientes, $Cov(X_i, X_i) = 0$.
- 7) $\operatorname{Var}(X_i + X_i) = \operatorname{Var}(X_i) + 2\operatorname{Cov}(X_i, X_i) + \operatorname{Var}(X_i)$.
- 8) $\operatorname{Cov}(aX_i + b, cX_i + d) = \operatorname{ac}\operatorname{Cov}(X_i, X_i)$, donde $a, b, c, d \in \mathbb{R}$.
- 9) $Cov(X) = E[(X \mu)(X \mu)'] = E[XX'] \mu\mu'.$
- 10) $\operatorname{Var}(a'X) = a' \operatorname{Cov}(X) a = \sum_{i,j} a_i a_j \sigma_{i,j}$, donde $a \in \mathbb{R}^k$.
- 11) $\operatorname{Cov}(AX + b) = A \operatorname{Cov}(X)A'$, donde $A \in M_{m,k}$ y $b' \in \mathbb{R}^m$.
- 12) Si X_1, \ldots, X_k son independientes, $Corr(X_i, X_j) = 0$.
- 13) $\operatorname{Corr}(aX_i + b, cX_i + d) = \operatorname{Corr}(X_i, X_i)$, donde $a, b, c, d \in \mathbb{R}$.
- 14) $-1 \leq Corr(X_i, X_i) \leq 1$.
- 15) $\operatorname{Corr}(X_i, aX_i + b) = \pm 1$, donde $a, b \in \mathbb{R}$ (según el signo de a).
- 16) $\operatorname{Corr}(X) = \delta^{-1} \operatorname{Cov}(X) \delta^{-1}$, donde δ es la matriz diagonal formada por las desviaciones típicas $(\delta = \operatorname{diag}(\sigma_1, \dots, \sigma_k))$.
- 17) $\operatorname{Cov}(X, Y) = (\operatorname{Cov}(X_i, Y_j)) = \operatorname{Cov}(Y, X)'.$
- 18) $\operatorname{Cov}(X + Z, Y) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Z, Y)$

- 19) Si X e Y tienen la misma dimensión, entonces Cov(X + Y) = Cov(X) + Cov(X, Y) + Cov(Y, X) + Cov(Y).
- 20) Cov(AX, BY) = ACov(X, Y)B', donde A y B son matrices (de dimensiones adecuadas).
- 21) Si X e Y independientes, entonces Cov(X, Y) = 0.
- Demostración apartado (10)

Directamente se tiene que:

$$Var(a'X) = Cov(a'X, a'X) = E[a'(X - \mu)(X - \mu)'a] = a Cov(X)a$$

Como consecuencia, se obtiene que la matriz de covarianzas Cov(X) es semidefinida positiva ya que $Var(a'X) \ge 0$.

Lo mismo le ocurre a la matriz de correlaciones Corr(X) ya que es la matriz de covarianzas de las variables aleatorias tipificadas $Z_i = \frac{X_i - \mu_i}{\sigma_i}$.

1.13) Resultados básicos de la inferencia

• Contexto

En la práctica, todas las medidas, varianzas y covarianzas serán desconocidas por lo que tenemos que estimarlas. Para ello dispondremos de una muestra de individuos (objetos) en los que se han medido todas las variables. Proporcionamos resultados básicos de inferencia para poder aplicar las técnicas multivariantes que desarrollaremos en temas posteriores.

Se ilustran estos procedimientos de inferencia con conjuntos de datos de R, accesibles con data().

1.13.1) ¿Cómo se representan las muestras aleatorias?

• Matriz de la muestra aleatoria simple

En general, nuestra muestra aleatoria se representará como:

La variable Y solo se usará para detonar la variable respuesta en regresión.

Si no hay grupos supondremos que los objetos

$$O_i = (X_{i,1}, X_{i,2}, \dots, X_{i,k})'$$

son una muestra aleatoria simple de X, es decir, serán vectores (columna) aleatorios independientes con la misma distribución que X. Si no hay grupos supondremos lo mismo en cada grupo

En algunos casos usaremos la matriz $M = (X_{i,j})$ que será una matriz aleatoria.

1.13.2) ¿Cómo se muestran los valores muestrales?

• Matriz de datos

En general, nuestra muestra se representará como:

i	x_1	x_2	 x_k	y
o_1	$x_{1,1}$	$x_{1,2}$	 $x_{1,k}$	y_1
o_i	$x_{i,1}$	$x_{i,2}$	 $x_{i,k}$	y_i
o_n	$x_{n,1}$	$x_{n,2}$	 $x_{n,k}$	y_n

La variable Y solo se usará para detonar la variable respuesta en regresión.

En algunos casos usaremos la matriz de datos $M = (x_{i,j})$

Si no hay grupos, supondremos que los vectores

$$o_i = (x_{i,1}, x_{i,2}, \dots, x_{i,k})'$$

son una realización de una muestra aleatoria simple de X, es decir, serán vectores (columna) con los datos muestrales.

Si hay grupos supondremos lo mismo en cada grupo.

1.13.3) El conjunto de datos LifeCycleSavings

• Cargamos los datos y visualizamos las primeras filas

```
datos <- LifeCycleSavings
head(datos, n = 6)
```

```
## Australia 11.43 29.35 2.87 2329.68 2.87 ## Austria 12.07 23.32 4.41 1507.99 3.93 ## Belgium 13.17 23.80 4.43 2108.47 3.82 ## Bolivia 5.75 41.89 1.67 189.13 0.22 ## Brazil 12.88 42.19 0.83 728.47 4.56 ## Canada 8.79 31.72 2.85 2982.88 2.43
```

• ¿Qué información está recogida en el conjunto de datos?

Con la instrucción help(LifeCycleSavings) conocemos qué información está contenida en el conjunto:

- sr: incremento de los ahorros personales 1960-1970.
- pop15: % población menor de 15 años.
- pop75: % población menor de 75.
- dpi: ingresos per-capita.

1.14) Estimador para el vector de medias μ

Vector de medias muestrales, también llamado objeto medio, se define como:

$$\overline{O} = \overline{X} = (\overline{X}_1, \dots, \overline{X}_k)' = \frac{1}{n} \sum_{i=1}^n O_i,$$

donde
$$\overline{X}_j = \frac{1}{n} \sum_{i=1}^n X_{i,j}$$
.

Se puede demostrar fácilmente que:

$$\rightarrow E(\overline{O}) = \mu$$
 (estimador centrado de μ)

$$\rightarrow \operatorname{Cov}(\overline{O}) = \frac{V}{n}$$

1.14.1) ¿Dónde se encuentra el vector de medias muestrales?

Propiedad

 \overline{O} es el punto de \mathbb{R}^k que minimiza la suma de las distancias al cuadrado (error cuadrático medio, MSE), es decir, es la solución de

$$\min_{P \in \mathbb{R}^k} MSE = \sum_{i=1}^n d^2(O_i, P),$$

donde d representa la distancia Euclídea, definida para dos vectores $x, y \in \mathbb{R}^k$ como

$$d(x,y) = \sqrt{\sum_{j=1}^{k} (x_j - y_j)^2}.$$

1.15) Estimador para la matriz de covarianzas V

Para estimar $\sigma_{i,j}$ usaremos

- \rightarrow La covarianza muestral: $\hat{\sigma}_{i,j} = \frac{1}{n} \sum_{l=1}^{n} (X_{l,i} \overline{X}_i)(X_{l,j} \overline{X}_j)$
- \rightarrow La cuasi-covarianza muestral:

$$S_{i,j} = \frac{1}{n-1} \sum_{l=1}^{n} (X_{l,i} - \overline{X}_i)(X_{l,j} - \overline{X}_j)$$

Para estimar V usaremos:

$$\rightarrow \hat{V} = (\hat{\sigma}_{i,j}) = \frac{1}{n} \sum_{l=1}^{n} (O_l - \overline{O})(O_l - \overline{O})'$$

$$\rightarrow \mathcal{S} = (\mathcal{S}_{i,j}) = \frac{1}{n-1} \sum_{n=1}^{n} (O_l - \overline{O})(O_l - \overline{O})'$$

Se verifica que E(S) = V (estimador centrado de V).

1.15.1) Para una distribución normal

• Proposición

Si $X \longrightarrow \mathcal{N}_k(\mu, V)$ entonces se verifica que:

- $\overline{O} \longrightarrow \mathcal{N}_k\left(\mu, \frac{V}{n}\right)$
- \overline{O} y \hat{V} son los estimadores máximos verosímiles de μ y V, respectivamente.
- Además, \overline{O} y \hat{V} son independientes entre sí. Por tanto, también \overline{O} y \mathcal{S} son independientes entre sí.
- La distribución aleatoria

$$n\hat{V} = (n-1)\mathcal{S}$$

se conoce como distribuidor de Wishart.

• Test de normalidad multivariante: Test de Shapiro-Wilk

Para la aplicación de algunas técnicas multivariantes la hipótesis de normalidad es importante y debe ser contrastada.

$$H_0: (X_1,\ldots,X_k) \to \mathcal{N}_k(\mu,V)$$

$$H_1:(X_1,\ldots,X_k)\nrightarrow\mathcal{N}_k(\mu,V)$$

15

Podremos utilizar la función mshapiro.test de la librería mvnormtest de R para realizar el test de normalidad multivariante de Shapiro-Wilk.

 \rightarrow Si aplicamos el test a los 50 datos simulados de la normal bivariante lógicamente obtnedremos un p-valor que apoya la hipótesis nula.

```
## [1] 0.6922
```

• Seguimos con LifeCycleSavings

Cálculo de las medias muestrales para cada variable.

```
mean(datos$sr); mean(datos$pop15); mean(datos$pop75); mean(datos$dpi); mean(datos$
    ddpi)
```

```
## [1] 9.671
## [1] 35.0896
## [1] 2.293
## [1] 1106.758
## [1] 3.7576
```

O bien, podemos calcular todas las características de estas variables

```
summary(datos)
```

```
##
          sr
                          pop15
                                          pop75
                                                            dpi
##
   Min.
           : 0.600
                             :21.44
                                             :0.560
                                                              : 88.94
                     Min.
                                      Min.
                                                       Min.
    1st Qu.: 6.970
                     1st Qu.:26.21
                                      1st Qu.:1.125
                                                       1st Qu.: 288.21
##
   Median :10.510
                     Median :32.58
                                      Median :2.175
                                                       Median: 695.66
          : 9.671
##
   Mean
                     Mean
                             :35.09
                                      Mean
                                            :2.293
                                                       Mean
                                                              :1106.76
##
    3rd Qu.:12.617
                     3rd Qu.:44.06
                                      3rd Qu.:3.325
                                                       3rd Qu.:1795.62
    Max.
           :21.100
                     Max.
                             :47.64
                                      Max.
                                             :4.700
                                                              :4001.89
                                                       Max.
##
         ddpi
           : 0.220
##
   Min.
##
    1st Qu.: 2.002
   Median : 3.000
##
          : 3.758
   Mean
    3rd Qu.: 4.478
##
           :16.710
##
   Max.
```

Cálculo de la matriz de covarianzas muestrales

```
cov(d)
```

Cálculo de la matriz de correlaciones muestrales

En este caso es mejor usar correlaciones muestrales que eliminan el efecto de las unidades:

$$R_{i,j} = \frac{\mathcal{S}_{i,j}}{\mathcal{S}_i \mathcal{S}_j},$$

donde
$$S_i = \sqrt{S_{i,i}}$$
 y $S_j = \sqrt{S_{j,j}}$.

Cálculo de la matriz de correlaciones muestrales

cor(datos)

```
##
                                       pop75
                                                                ddpi
                          pop15
                                                    dpi
                 sr
          1.0000000 -0.45553809
                                  0.31652112 0.2203589
## sr
                                                         0.30478716
  pop15 -0.4555381 1.00000000 -0.90847871 -0.7561881 -0.04782569
## pop75
         0.3165211 -0.90847871
                                  1.00000000 0.7869995
          0.2203589 -0.75618810
                                 0.78699951
## dpi
                                             1.0000000 -0.12948552
## ddpi
          0.3047872 \ -0.04782569 \ \ 0.02532138 \ -0.1294855
                                                         1.00000000
```

Observamos que algunas variables tienen correlaciones positivas y otras negativas

RELACIÓN DE PROBLEMAS: VECTORES ALEATORIOS

ANÁLISIS ESTADÍSTICO MULTIVARIANTE GRADO EN CIENCIA E INGENIERÍA DE DATOS

1. Sea (X,Y) un vector aleatorio con función de densidad conjunta

$$f(x,y) = \left\{ \begin{array}{ll} 1 & \text{si } 0 < x < 1, 0 < y < 1 \\ 0 & \text{en otro caso} \end{array} \right.$$

Hallar las distribuciones marginales y condicionadas.

2. Obtener las distribuciones marginales y condicionadas asociadas al vector aleatorio (X,Y) con función de densidad

$$f(x,y) = \left\{ \begin{array}{ll} 2 & \text{si } 0 < x < 1, 0 < y < x \\ 0 & \text{en otro caso} \end{array} \right.$$

3. Sea (X,Y) un vector aleatorio con función de densidad

$$f(x,y) = \left\{ \begin{array}{ll} \frac{3}{4} \left[xy + \frac{x^2}{2} \right] & \text{si } 0 < x < 1, 0 < y < 2 \\ 0 & \text{en otro caso} \end{array} \right.$$

Hallar la distribución marginal de X y la distribución de Y condicionada a $X=\frac{1}{2}$.

4. Sea $\mathbf{X}=(X_1,X_2)$ un vector aleatorio con función masa de probabilidad

$$P[X_1 = x_1, X_2 = x_2] = \frac{k}{2^{x_1 + x_2}}, x_1, x_2 \in \mathbb{N},$$

donde k es una constante. Obtener las distribuciones marginales y condicionadas.

- 5. Calcular la función de densidad de una distribución normal bidimensional en (1, 1) si las medias son cero, las varianzas 1 y 4, y la covarianza 1.
- 6. Sea (X,Y) un vector aleatorio con distribución uniforme en el cuadrado unidad, $[0,1] \times [0,1]$, con función de densidad conjunta

$$f(x,y) = \left\{ \begin{array}{ll} 1 & \text{si } 0 < x < 1, 0 < y < 1 \\ 0 & \text{en otro caso} \end{array} \right.$$

Calcular el valor esperado de $g(X,Y)=XY^2$, es decir, $E[XY^2]$.

7. (X,Y) vector aleatorio discreto con función masa de probabilidad conjunta:

$$\begin{array}{c|cccc}
X \backslash Y & 1 & 2 \\
\hline
1 & 1/9 & 2/9 \\
2 & 2/9 & 4/9
\end{array}$$

- a) Calcular E[X+Y], E[2X+3Y].
- b) Obtener el vector de medias, la matriz de covarianzas y la matriz de correlaciones del vector (X,Y).
- c) ¿Son independientes? ¿Están incorreladas?
- 8. Demostrar que el vector de medias muestral es el punto de \mathbb{R}^k que minimiza la suma de las distancias al cuadrado (error cuadrático medio, MSE).

1

1) Sea (X,Y) un vector aleatorio con función de densidad conjunta

$$f(x,y) = \begin{cases} 1 & \text{si } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{en otro caso} \end{cases}$$

Hallar las distribuciones marginales y condicionadas

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \int_{-\infty}^{0} 0 \, \mathrm{d}y + \int_{0}^{1} 1 \, \mathrm{d}y + \int_{0}^{+\infty} 0 \, \mathrm{d}y = [y]_{y=0}^{y=1} = 1 \qquad f_X(x) = \begin{cases} 1 & \text{si } 0 < x < 1 \\ 0 & \text{en otro caso} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x = \int_0^1 1 \, \mathrm{d}x = [x]_{x=0}^{x=1} = 1 \qquad f_Y(y) = \begin{cases} 1 & \text{si } 0 < y < 1 \\ 0 & \text{en otro caso} \end{cases}$$

$$f(x,y) = \begin{cases} 1 & 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{en otro caso} \end{cases}$$

$$y|x = x^* \longrightarrow f_{y|x = x^*} = \frac{f(x^*, y)}{f_X(x^*)} = \begin{cases} 1 & 0 < y < 1 \\ 0 & \text{en otro caso} \end{cases}$$

$$f(x,y) = f_X(x) \cdot f_Y(y)$$
 X e Y independientes

2) Obtener las distribuciones marginales y condicionadas asociadas al vector aleatorio (X,Y) con función de densidad

$$f(x,y) = \begin{cases} 2 & \text{si } 0 < x < 1, \ 0 < y < x \\ 0 & \text{en otro caso} \end{cases}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \int_0^x 2 \, \mathrm{d}y = [2y]_{y=0}^{y=x} = 2x \longrightarrow \begin{cases} 2x & \text{si } 0 < x < 1 \\ 0 & \text{en otro caso} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \int_y^1 2 \, \mathrm{d}x = [2x]_{x=y}^{x=1} = 2 - 2y \longrightarrow \begin{cases} 2 - 2y & \text{si } 0 < y < 1 \\ 0 & \text{en otro caso} \end{cases}$$

Los recintos son dependientes.

$$y|x=x^*$$

$$f_X(x^*) > 0$$

$$f_{y|x=x^*}(y|x^*) = \frac{f(x^*,y)}{f(x^*)} = \begin{cases} \frac{2}{2x^*} & 0 < y < x^* \\ 0 & \text{en otro caso} \end{cases} = \begin{cases} \frac{1}{x^*} & 0 < y < x^* \\ 0 & \text{en otro caso} \end{cases}$$

$$x|y=y^*$$

$$f_Y(y^*) > 0$$

$$f_{x|y=y^*}(x|y^*) = \frac{f(x,y^*)}{f_Y(y^*)} = \begin{cases} \frac{2}{2-2y^*} & \text{si } y^* < x < 1 \\ 0 & \text{en otro caso} \end{cases} = \begin{cases} \frac{1}{1-y^*} & \text{si } y^* < x < 1 \\ 0 & \text{en otro caso} \end{cases}$$

3) Sea (X,Y) un vector aleatorio con función de densidad

$$f(x,y) = \begin{cases} \frac{3}{4} \left[xy + \frac{x^2}{2} \right] & \text{si } 0 < x < 1, \ 0 < y < 2 \\ 0 & \text{en otro caso} \end{cases}$$

Hallar la distribución marginal de X y la distribución de Y condicionada a $X = \frac{1}{2}$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \int_0^2 \frac{3}{4} \left[xy + \frac{x^2}{2} \right] = \frac{3}{4} \left[\frac{xy^2}{2} + \frac{x^2}{2} \cdot y \right]_{y=0}^{y=2} = \frac{3}{4} \left(2x + x^2 \right) \longrightarrow \begin{cases} \frac{3}{4} \left(2x + x^2 \right) & \text{si } 0 < x < 1 \\ 0 & \text{en otro caso} \end{cases}$$

$$y|x = x^*$$

$$\begin{aligned} y|x &= x^* \\ f_{y|x=x^*}(y|x^*) &= \frac{f(x^*,y)}{f(x^*)} = \frac{\frac{3}{4} \left(x^*y + \frac{(x^*)^2}{2} \right)}{\frac{3}{4} \left(2x^* + (x^*)^2 \right)} = \frac{x^*y + \frac{(x^*)^2}{2}}{2x^* + \frac{(x^*)^2}{2}} = \frac{x^*y + (x^*)^2}{4x^* + 2(x^*)^2} \xrightarrow{x^* = \frac{1}{2}} \xrightarrow{\frac{1}{2}y + \frac{1}{8}}{2 \cdot \frac{1}{2} + \frac{1}{4}} = 2 \cdot \frac{y + \frac{1}{4}}{5} \\ \begin{cases} 2 \cdot \frac{y + \frac{1}{4}}{5} & \text{si } 0 < y < 2 \\ 0 & \text{en otro caso} \end{cases} \end{aligned}$$

4) Sea $X=(X_1,X_2)$ un vector aleatorio con función masa de probabilidad

$$P[X_1=x_1,X_2=x_2]=\frac{k}{2^{x_1+x_2}},x_1,x_2\in\mathbb{N}$$

donde k es una constante. Obtener las distribuciones marginales y condicionadas.

$$P[X_1 = x_1, X_2 = x_2] = \frac{k}{2^{x_1 + x_2}}, \ x_1, x_2 \in \mathbb{N}$$
 (incluido el 0)

$$P[X_1 = x_1] = \sum_{x_2 \in \mathbb{N}} \frac{k}{2^{x_1 + x_2}} = \frac{k}{2^{x_1}} \sum_{x_2 \in \mathbb{N}} \frac{1}{2^{x_2}} = \frac{k}{2^{x_1}} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{2k}{2^{x_1}}$$

$$P[X_2 = \underset{x_1^* \in \mathbb{N}}{x_1^* \in \mathbb{N}} = x_1^*] = \frac{P[X_1 = x_1^*, X_2 = x_2]}{P[X_1 = x_1]} = \begin{cases} \frac{\frac{k}{2^{x_1 + x_2}}}{\frac{2k}{2^{x_1}}} = \frac{1}{2 \cdot 2^{x_2}} & x_2 \in \mathbb{N} \\ 0 & \text{en otro caso} \end{cases}$$

5) Calcular la función de densidad de una distribución normal bidimensional en (1,1) si las medias son cero, las varianzas 1 y 4, y la covarianza 1.

Fórmula de la función de densidad de una distribución normal bidimensional:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} \right] \right)$$

$$\mu_{x} = \mu_{y} = 0$$

$$\sigma_{x}^{2} = 1$$

$$\sigma_{y}^{2} = 4$$

$$\rho = \frac{\sigma_{xy}}{\sigma_{x} \cdot \sigma_{y}} = \frac{1}{\sqrt{1} \cdot \sqrt{4}} = \frac{1}{2}$$

$$f(1,1) = \frac{1}{2\pi \cdot 1 \cdot 2\sqrt{1 - \left(\frac{1}{2}\right)^{2}}} \exp\left(-\frac{1}{2\left(1 - \left(\frac{1}{2}\right)^{2}\right)} \cdot \left[1^{2} + \frac{1^{2}}{4} - \frac{2 \cdot \frac{1}{2}}{1 \cdot 2}\right]\right)$$

$$= \frac{1}{2\pi\sqrt{3}} \exp\left(-\frac{2}{3} \cdot \frac{3}{4}\right)$$

$$= \frac{1}{2\pi\sqrt{3}} \exp\left(-\frac{1}{2}\right) \simeq \boxed{0.0557}$$

$$f(x) = \frac{1}{|V|(2\pi)^k} e^{-\frac{1}{2}(x-\mu)^\mathsf{T} \Sigma^{-1}(x-\mu)}$$

$$V = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} \qquad |V| = 3$$

$$\mathrm{Adj}(V^\intercal) = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \qquad V^{-1} = \frac{1}{|V|} \mathrm{Adj}(V^\intercal) = \begin{pmatrix} \frac{4}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$\begin{pmatrix} x - 0 & y - 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{4}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} x - 0 \\ y - 0 \end{pmatrix} = \begin{pmatrix} \frac{4}{3}x\frac{y}{3} & -\frac{x}{3} + \frac{y}{3} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \frac{4}{3}x^2 - \frac{xy}{3} - \frac{x}{y} + \frac{y^2}{3}$$

$$f(x,y) = \frac{1}{\sqrt{3(2\pi)^k}} \cdot e^{-\frac{1}{2}\left(\frac{4}{3}x^2 - \frac{2xy}{3} - \frac{x}{y} + \frac{y^2}{3}\right)} \longrightarrow f(1,1) \simeq 0.0557$$

6) Sea (X,Y) un vector aleatorio con distribución uniforme en el cuadradado unidad, $[0,1] \times [0,1]$, con función de densidad conjunta

$$f(x,y) = \begin{cases} 1 & \text{si } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{en otro caso} \end{cases}$$

Calcular el valor esperado de $g(X,Y)=XY^2$, es decir, $E[XY^2]$.

El valor esperado de una función g(X,Y) para una variable aleatoria conjunta (X,Y) se define como:

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

En este caso, $g(X,Y) = XY^2$ y la función de densidad conjunta f(x,y) es 1 para 0 < x < 1 y 0 < y < 1, y 0 en otro caso. Por lo tanto, el valor esperado se convierte en:

$$E[XY^2] = \int_0^1 \int_0^1 xy^2 \, dx \, dy$$

Resolviendo la integral obtenemos:

$$E[XY^2] = \int_0^1 \left[\frac{1}{2} x^2 y^2 \right]_0^1 dy = \int_0^1 \frac{1}{2} y^2 dy = \left[\frac{1}{6} y^3 \right]_0^1 = \frac{1}{6}$$

Por lo tanto, el valor esperado de XY^2 es $\frac{1}{6}$.

$$E[XY^2] = E[X] \cdot E[Y^2] = (*) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$

$$E[X] = \int_0^1 x \, dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}$$

$$E[Y^2] = \int_0^1 y^2 \, dy = \left[\frac{y^3}{3}\right]_0^1 = \frac{1}{3}$$

7) (X,Y) vector aleatorio discreto con función masa de probabilidad conjunta:

a) Calcular E[X + Y], E[2X + 3Y].

$$E[X+Y] = E[X] + E[Y] = \frac{5}{3} + \frac{5}{3} = \frac{10}{3}$$

$$E[X] = 1 \cdot P(X=1) + 2 \cdot P(X=2) = 1 \cdot \left(\frac{1}{9} + \frac{2}{9}\right) + 2 \cdot \left(\frac{2}{9} + \frac{4}{9}\right) = \frac{1}{3} + \frac{4}{3} = \frac{5}{3}$$

$$E[Y] = 1 \cdot P(Y=1) + 2 \cdot P(Y=2) = 1 \cdot \left(\frac{1}{9} + \frac{2}{9}\right) + 2 \cdot \left(\frac{2}{9} + \frac{4}{9}\right) = \frac{1}{3} + \frac{4}{3} = \frac{5}{3}$$

$$E[2X + 3Y] = 2E[X] + 3E[Y] = 2 \cdot \frac{5}{3} + 3 \cdot \frac{5}{3} = \frac{25}{3}$$

- b) Obtener el vector de medias, la matriz de covarianzas y la matriz de correlaciones del vector (X,Y).
 - Vector de medias:

$$\mu = \begin{bmatrix} E[X] \\ E[Y] \end{bmatrix} = \begin{bmatrix} \frac{5}{3} \\ \frac{5}{3} \end{bmatrix} = \frac{5}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Matriz de covarianzas:

$$\Sigma = \begin{bmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(Y,X) & \operatorname{Var}(Y) \end{bmatrix} = \begin{bmatrix} \frac{2}{9} & 0 \\ 0 & \frac{2}{9} \end{bmatrix}$$

$$\begin{aligned} &\operatorname{Var}(X) = E[X^2] - (E[X])^2 = 3 - \left(\frac{5}{3}\right)^2 = \frac{2}{9} \\ &\operatorname{Cov}(X,Y) = E[XY] - E[X]E[Y] = \frac{25}{9} - \frac{5}{3} \cdot \frac{5}{3} = 0 \\ &\operatorname{Var}(Y) = E[Y^2] - (E[Y])^2 = 3 - \left(\frac{5}{3}\right)^2 = \frac{2}{9} \\ &E[X^2] = 1^2 \cdot P(X = 1) + 2^2 \cdot P(X = 2) = 1^2 \cdot \left(\frac{1}{9} + \frac{2}{9}\right) + 2^2 \cdot \left(\frac{2}{9} + \frac{4}{9}\right) = \frac{1}{3} + \frac{8}{3} = 3 \\ &E[Y^2] = 1^2 \cdot P(Y = 1) + 2^2 \cdot P(Y = 2) = 1^2 \cdot \left(\frac{1}{9} + \frac{2}{9}\right) + 2^2 \cdot \left(\frac{2}{9} + \frac{4}{9}\right) = \frac{1}{3} + \frac{8}{3} = 3 \\ &E[XY] = 1 \cdot 1 \cdot P(X = 1, Y = 1) + 1 \cdot 2 \cdot P(X = 1, Y = 2) + 2 \cdot 1 \cdot P(X = 2, Y = 1) + 2 \cdot 2 \cdot P(X = 2, Y = 2) = \frac{1}{9} + 2 \cdot \frac{2}{9} + 2 \cdot \frac{2}{9} + 4 \cdot \frac{4}{9} = \frac{25}{9} \end{aligned}$$

• Matriz de correlaciones:

$$R = \begin{bmatrix} 1 & \operatorname{Corr}(X, Y) \\ \operatorname{Corr}(Y, X) & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}} = \frac{0}{\sqrt{\frac{2}{9} \cdot \frac{2}{9}}} = 0$$

c) ¿Son independientes? ¿Están incorreladas?

Las variables aleatorias X e Y serán independientes si se cumple la condición: $P(X=x,Y=y)=P(X=x)\cdot P(Y=y) \forall x,y\in\mathbb{N}$

$$P(X=1,Y=1) = P(X=1) \cdot P(Y=1) \longrightarrow \frac{1}{9} = \left(\frac{1}{9} + \frac{2}{9}\right) \cdot \left(\frac{1}{9} + \frac{2}{9}\right) \longrightarrow \frac{1}{9} = \frac{1}{3} \cdot \frac{1}{3}$$

Por lo tanto, son independientes.

Las variables aleatorias X e Y están incorreladas si su covarianza vale 0. En este caso sí están incorreladas.

8) Demostrar que el vector de medias muestral es el punto \mathbb{R}^k que minimiza la suma de las distancias al cuadrado (error cuadrático medio, MSE).

Tema 2: Regresión Lineal

• Introducción

Objetivo: predecir una variable numérica a partir de k variables numéricas (variables predictoras) minimizando el error en la predicción. Para ello necesitamos disponer de una muestra en la que se conozcan dichas variables (aprendizaje supervisado)

Planteamiento

Se trata de predecir el valor (numérico) de una variable aleatoria (v.a.) Y a partir de unas variables predictoras X_1, \ldots, X_k .

Para ello usaremos una función predictora lineal

 h_{θ}

Si usamos como predictor la variable Assault y representamos gráficamente:

x <-

2.0.1) Modelo completo

Podemos incluir todas las variables en el modelo considerado

$$h_{\theta} = \theta_0 + \theta_1 \text{Assault} + \theta_2 \text{UrbanPop} + \theta_3 \text{Rape}$$

donde $\theta = (\theta_0, \theta_1, \theta_2, \theta_3)' \in \mathbb{R}^4$ son los parámetros del modelo que debemos ajustar para obtener las mejores aproximaciones posibles.

Los casos en los que solo usamos una variable están incluidos en este modelo haciendo que los parámetros de las otras variables sean cero.

2.1) Regresión lineal simples

2.1.1) Modelo teórico

Partiremos de un vector aleatorio (X, Y).

Objetivo: Construir una nueva variable h(X) que se parezca (aproxime) a Y.

Los errores (residuos) serán otra variable aleatoria

$$R = Y - h(X)$$

(notemos que pueden ser positivos o negativos).

Existen diversas reglas para determinar una función objetivo que mida cómo son esos errores y trate de minimizarlos.

La más usada es el denominado error cuadrático medio (EMC) definido como:

$$EMC = E\left[(h(X) - Y)^2\right]$$

(MSE, Mean Square Error)

2.1.2) Función óptima

Supongamos que (X,Y) tiene una distribución absolutamente continua con función de densidad conjunta f y marginales f_X y f_Y .

Entonces se puede demostrar que la función h que minimiza el EMC es

$$h_{\text{opt}}(x) = E(Y|X=x) = \int_{-\infty}^{+\infty} y f_{Y|X}(y|x) \, \mathrm{d}y,$$

donde

$$f_{Y|X}(y|x) = f(x,y)|f_X(x),$$

para tales $f_X(x) > 0$, es la función de densidad condicionada de (Y|X=x).

Esta función se denomina curva de regresión y es el mejor predictor de Y dado X según el ECM.

2.2) Caso de normalidad

El vector (X,Y) tiene una distribución normal $\mathcal{N}_2(\mu,V)$:

Entonces la distribución condicionada (Y|X=x) se comporta también coomo una distribución normal,

$$(Y|X=x) \longrightarrow \mathcal{N}_1(\overline{\mu}, \overline{\sigma}^2),$$

con

$$h_{\text{opt}}(x) = \overline{\mu} = E(Y|X = x)$$

Observaciones

Bajo la hipótesis de normalidad, la curva de la

2.3) Restricción sobre la función h

En Regresión Lineal Simple supondremos que la función h es una recta

• Limitamos nuestra funciín h a una recta, es decir,

$$h_{\theta}(x) \coloneqq \theta_0 + \theta_1 x$$

- Usamos como criterio minimizar el ECM.
- $\bullet~$ El objetivo será

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1),$$

donde

$$J(\theta_0, \theta_1) := E[(h_{\theta}(X) - Y)^2] = E[(\theta_0 + \theta_1 X + Y)^2]$$

se conoce como función costo y $J(\theta_0, \theta_1) \geq 0$.

→ Por lo tanto, se trata de minimizar una función costo

2.4) Minimizar la función costo

2.4.1) Ecuaciones normales de la recta

La función $J(\theta)$ es convexa por lo que tendrá un único ,ínimo que se puede obtener resolviendo el sistema

$$\partial J(\theta_0, \theta_1)$$

width=!,height=!,pages=-

1) Dado el vector aleatorio (X, Y) con función de densidad

$$f(x,y) = \begin{cases} 2 & \text{si } 0 < x < 1, \ 0 < y < x \\ 0 & \text{en otro caso} \end{cases}$$

a) Obtener la curva de regresión para predecir Y en función de valores de la variable X.

Primero saco las distribución marginal f_X :

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \int_{0}^{1} 2 \, \mathrm{d}y = [2y]_{0}^{1} = 2 \longrightarrow \begin{cases} 2 & \text{si } 0 < y < 1 \\ 0 & \text{en caso contrario} \end{cases}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f(x)} = \begin{cases} \frac{1}{x} & \text{si } 0 < y < x \\ 0 & \text{en caso contrario} \end{cases}$$

Curva de regresión:
$$h_{\text{opt}}(X) = E[Y|X = x] = \int_{-\infty}^{+\infty} y \cdot f_{Y|X}(y|x) \, dy = \int_{0}^{x} y \cdot \frac{1}{x} \, dy = \frac{1}{x} \left[\frac{y^2}{2} \right]_{y=0}^{y=x} = \frac{1}{x} \cdot \frac{x^2}{2} = \frac{x}{2}$$

b) ¿Coincide con la recta de regresión?

Recta de regresión de
$$Y|X=x$$
: $Y-\mu_Y=\frac{\cos(X,Y)}{\sigma_X^2}(x-\mu_X)\longrightarrow y-\frac{1}{3}-\frac{\frac{1}{36}}{\frac{1}{18}}\left(x-\frac{2}{3}\right)\longrightarrow y=\frac{x}{2}$

$$E[X] = \int_0^1 2x \, \mathrm{d}x = \left[2 \cdot \frac{x^3}{3}\right]_{x=0}^{x=1} = \frac{2}{3}$$

$$E[Y] = \int_0^1 y \cdot 2(1-y) \, \mathrm{d}y = 2 \int_0^1 (y-y^2) \, \mathrm{d}y = 2 \left[\frac{y^2}{2} - \frac{y^3}{3}\right]_{y=0}^{y=1} = 2 \cdot \frac{1}{6} = \frac{1}{3}$$

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

$$E[X^2] = \int_0^1 x^2 \cdot 2x \, \mathrm{d}x = 2 \int_0^1 x^3 \, \mathrm{d}x = 2 \left[\frac{x^4}{4}\right]_{x=0}^{x=1} = \frac{1}{2}$$

$$Cov(X, Y) = E[X \cdot Y] - E[X] \cdot E[Y] = \frac{1}{4} - \frac{2}{3} \cdot \frac{1}{3} = \frac{1}{36}$$

$$E[X \cdot Y] = \int_0^1 \int_0^x 2xy \, \mathrm{d}y \, \mathrm{d}x = 2 \int_0^1 x \left[\frac{y^2}{2}\right]_{y=0}^{y=x} \, \mathrm{d}x = 2 \int_0^1 x \cdot \frac{x^2}{2} \, \mathrm{d}x = 2 \cdot \left[\frac{x^4}{4}\right]_{x=0}^{x=1} = \frac{1}{4}$$

- c) $\rho_{X,Y}^2$, Var(R), ECM
- 2) Sea (X,Y) un vector aleatorio con función de densidad

$$f(x,y) = \begin{cases} \frac{3}{4} \left[xy + \frac{x^2}{2} \right] & \text{si } 0 < x < 1, \ 0 < y < 2 \\ 0 & \text{en otro caso} \end{cases}$$

A partir de la distribución de Y condicionada a X=x, obtener la curva de regresión para predecir Y a partir de los valores de X y proporcionar una predicción para $X=\frac{2}{3}$

25

$$h_{\text{opt}}(x) = E[Y|X = x] = \int_{-\infty}^{+\infty} y \cdot f_{Y|X}(y|x) \, dy = \int_{0}^{2} y \cdot \frac{y + \frac{x}{2}}{x + 2} \, dy = \frac{1}{x + 2} \int_{0}^{2} y \cdot (y + \frac{x}{2}) \, dy = \frac{1}{x + 2} \cdot \left[\frac{y^{3}}{3} - \frac{y^{2}x}{4} \right]_{0}^{2} = \frac{1}{x + 2} \left(\frac{8}{3} - x \right)$$

$$f_X(x) = \begin{cases} \frac{3}{4}(x^2 + 2x) & \text{si } 0 < x < 1\\ 0 & \text{en otro caso} \end{cases}$$

$$f_{Y|X}(y|x) = \begin{cases} \frac{y + \frac{x}{2}}{x + 2} & \text{si } 0 < y < 2\\ 0 & \text{en otro caso} \end{cases}$$

Para
$$x = \frac{2}{3}$$
, $h_{\text{opt}}\left(\frac{2}{3}\right) = \frac{1}{\frac{2}{3} + 2} \cdot \left(\frac{8}{3} + \frac{2}{3}\right) = \boxed{1.25}$

3) Sabiendo que el vector (X,Y) tiene una distribución normal con medias 1 y 2, varianzas 2 y correlación $-\frac{1}{2}$, calcular la curva de regresión para predecir Y a partir de valores de X y obtener una predicción para X=1.5

$$(X,Y) \leadsto \mathcal{N}_2(\mu,V)$$

$$\mu = (1, 2)$$

$$V = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad f_{X,Y} = -\frac{1}{2} = \frac{\text{Cov}(X, Y)}{\sqrt{\sigma_X^2 \cdot \sigma_Y^2}} \longrightarrow \text{Cov}(X, Y) = -\frac{1}{2} \cdot \sqrt{2 \cdot 2} = -1$$

$$h_{\text{top}} = \mu_Y + \frac{\text{Cov}(X,Y)}{\sigma_X^2}(x - \mu_X) = 2 + \frac{-1}{2}(x - 1) = -\frac{x}{2} + \frac{5}{2} \longrightarrow h_{\text{opt}}(1.5) = 2 - \frac{1}{2} \cdot \frac{1}{2} = \boxed{\frac{7}{4}}$$