DM N°1 (pour le 19/09/2014)

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C}

 $\mathbb{K}[X]$ désigne l'algèbre des polynômes à coefficients dans \mathbb{K} , et, si n est un entier, $\mathbb{K}_n[X]$ désigne le sous-espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré inférieur ou égal à n.

On dira qu'un endomorphisme u de $\mathbb{K}[X]$ vérifie la condition (\mathcal{D}) si :

$$\left\{ \begin{array}{lll} u(P) & = & 0 & \text{si P est constant} \\ \deg\left(u(P)\right) & = & \deg(P) - 1 & \text{sinon} \end{array} \right.$$

PARTIE A

Soit u un endomorphisme de $\mathbb{K}[X]$ vérifiant la condition (\mathcal{D}) .

- 1. Déterminer Ker(u) et Im(u).
- **2.** Soit $n \in \mathbb{N}^*$, et $E_n = \{ P \in \mathbb{K}_n[X], P(0) = 0 \}$.
 - a) Montrer que E_n est un sous-espace vectoriel de $\mathbb{K}_n[X]$. Quelle est sa dimension?
 - b) Montrer que la restriction de u à E_n est un isomorphisme entre E_n et $\mathbb{K}_{n-1}[X]$.
 - c) En déduire qu'il existe une et une seule base de $\mathbb{K}[X]$, notée $(P_k)_{k\in\mathbb{N}}$, telle que :

$$\begin{cases}
P_0 = 1 \\
\forall k \in \mathbb{N} , \deg(P_k) = k \\
\forall k \in \mathbb{N}^*, P_k(0) = 0
\end{cases}$$
 [condition (\mathcal{B})]

et telle que $u(P_k) = P_{k-1}$ pour $k \in \mathbb{N}^*$ (une telle base est dite adaptée à u).

- **3.** Réciproquement, montrer que si $(P_k)_{k\in\mathbb{N}}$ est une famille vérifiant la condition (\mathcal{B}) , il s'agit d'une base de $\mathbb{K}[X]$ et qu'il existe un et un seul endomorphisme de $\mathbb{K}[X]$ vérifiant la condition (\mathcal{D}) tel que $(P_k)_{k\in\mathbb{N}}$ soit adaptée à u.
- **4.** On pose $u^0 = \mathrm{Id}_{\mathbb{K}[X]}$ et pour tout $p \in \mathbb{N}^*$, $u^{p+1} = u^p \circ u$. Montrer que, pour tout polynôme, Q de $\mathbb{K}_n[X]$:

$$Q = \sum_{k=0}^{n} u^{k}(Q)(0)P_{k}$$
 (formule de Taylor-Mac-Laurin relative à u)

- **5.** Exemple 1 : Lorsque u est l'opérateur de dérivation (c'est-à-dire u(P) = P' pour tout $\overline{P \in \mathbb{K}[X]}$), trouver la base adaptée. Que devient alors la formule ci-dessus?
- **6.** Exemple 2: On note: $N_0 = 1$ et, pour tout $k \in \mathbb{N}^*$, $N_k = \frac{1}{k!}X(X-1)...(X-k+1)$ (polynômes de Newton, ou de Hilbert).
 - a) Vérifier que la famille $(N_k)_{k\in\mathbb{N}}$ vérifie la condition (\mathcal{B}) .
 - **b)** Démontrer que l'opérateur associé est l'application $\Delta: P \mapsto P(X+1) P(X)$. (Δ est appelé opérateur de différence de pas 1)

PARTIE B

Soit u un endomorphisme de $\mathbb{K}[X]$, vérifiant la condition (\mathcal{D}) . On appelle <u>commutant</u> de u, noté $\mathcal{C}(u)$, l'ensemble des endomorphismes φ de $\mathbb{K}[X]$ tels que : $\varphi \circ u = u \circ \varphi$.

- **1.** Montrer que C(u) est un sous-espace vectoriel de $\mathcal{L}(\mathbb{K}[X])$, et que si φ, ψ appartiennent à C(u) alors $\varphi \circ \psi$ appartient encore à C(u).
- **2.** Montrer que la famille $(u^k)_{k\in\mathbb{N}}$ est une famille libre d'éléments de $\mathcal{C}(u)$.
- **3.** Soit $(a_k)_{k\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} , et $\varphi = \sum_{k=0}^{+\infty} a_k u^k$ (on justifiera cette écriture). Montrer que φ appartient à $\mathcal{C}(u)$.
- **4.** Soit $(P_k)_{k\in\mathbb{N}}$ une base adaptée à u, et $\varphi\in\mathcal{C}(u)$. Pour tout $k\in\mathbb{N}$, on pose $Q_k=\varphi(P_k)$.
 - a) Montrer qu'il existe une unique suite $(a_k)_{k\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$, l'on ait :

$$Q_n = \sum_{k=0}^n a_{n-k} P_k$$

- **b)** En déduire que : $\varphi = \sum_{k=0}^{+\infty} a_k u^k$.
- c) Caractériser alors C(u).
- **5. a)** Soient $\varphi = \sum_{k=0}^{+\infty} a_k u^k$ et $\psi = \sum_{k=0}^{+\infty} b_k u^k$.

Déterminer en fonction des a_k et des b_k les scalaires c_n tels que $\varphi \circ \psi = \psi \circ \varphi = \sum_{n=0}^{+\infty} c_n u^n$.

- **b)** En déduire une condition nécessaire et suffisante portant sur les a_k pour que $\varphi = \sum_{k=0}^{+\infty} a_k u^k$ soit inversible.
- **6.** Soit d l'opérateur de dérivation (cf. A.5) et Δ l'opérateur de différence de pas 1 (cf. A.6).
 - a) Déterminer explicitement les a_k tels que : $d = \sum_{k=0}^{+\infty} a_k \Delta^k$.
 - b) Déterminer explicitement les b_k tels que : $\Delta = \sum_{k=0}^{+\infty} b_k d^k$.
 - c) Pour les 5/2: A quoi vous font penser ces résultats?
- 7. Soit $a \in \mathbb{K}$, et θ_a l'endomorphisme de $\mathbb{K}[X]$ qui à tout polynôme P associe le polynôme P(X+a) (on ne demande pas de vérifier qu'il s'agit bien d'un endomorphisme).
 - a) Montrer que $\theta_a = \sum_{k=0}^{+\infty} \binom{a}{k} \Delta^k$, où l'on a posé : $\binom{a}{k} = \begin{cases} 1 & \text{si } k = 0 \\ \frac{a(a-1)\dots(a-k+1)}{n} & \text{si } k \geqslant 1 \end{cases}$
 - **b)** Montrer que : $\theta_a = \sum_{k=0}^{+\infty} \frac{a^k}{k!} d^k$.

PARTIE C : Applications diverses

(Les trois questions de cette partie sont indépendantes.)

1. En considérant θ_1 , montrer qu'il existe une suite $(a_k)_{k\in\mathbb{N}}$ d'éléments de \mathbb{K} telle que, pour tout entier $n\in\mathbb{N}^*$ et pour tout polynôme $P\in\mathbb{K}_{n-1}[X]$, l'on ait :

$$P = \sum_{k=1}^{n} a_k P(X+k)$$

(on déterminera explicitement les a_k).

- **2. a)** Soit $k \in \mathbb{N}$. Démontrer qu'il existe un unique polynôme Q_k tel que $\Delta(Q_k) = X^k$ et $Q_k(0) = 0$.
 - **b)** Calculer Q_k pour $k \in \{1, 2, 3, 4\}$.
 - c) En déduire des expressions des sommes $S_k = 1^k + 2^k + \ldots + n^k$ pour $1 \le k \le 4$.
- **3. a)** Pour tout entier $n \in \mathbb{N}$ et tout entier $k \in \mathbb{Z}$, calculer $N_n(k)$ (les N_n ont été définis en **A.6**; on distinguera successivement les cas : $k \ge n$, $0 \le k \le n-1$ et k < 0). Vérifier que $N_n(k)$ est toujours un nombre entier.
 - b) En déduire, pour tout polynôme P, l'équivalence des propriétés suivantes :
 - $\left\{ \begin{array}{ll} (i) & \forall x \in \mathbb{Z} \ , \ P(x) \in \mathbb{Z} \\ (ii) & \text{Les coordonnées de P dans la base } (N_n)_{n \in \mathbb{N}} \ \text{sont entières.} \end{array} \right.$

