1 Line Search

L'algoritmo di line search calcola la grandezza del passo di ottimizzazione che si può fare nella direzione discendente $p_k = -B_k^{-1} \nabla f_k$, dove B è una matrice simmetrica, non-singolare, positiva semi-definite (come si dice in italiano) che approssima la matrice Hessiana, e ∇f è il gradiente della funzione ¹. La direzione discendente p_k garantisce che il valore della funzione f può essere diminuito, ed è tale che $\nabla f_k^T B_k^{-1} f_k < 0$.

L'obiettivo della line search è trovare un minimizzatore locale della seguente funzione:

$$\phi(\alpha) = f(x_k + \alpha p_k) \qquad , \alpha > 0$$

dove α è lo step length (passo di ottimizzazione), ed output dell'algoritmo di line search. Essendo una ricerca locale, anziché globale, la line search è detta inesatta. Ad ogni iterazione k si calcola uno step length α_k e si aggiorna la soluzione candidata x_k in $x_{k+1} = x_k + \alpha_k p_k$.

Per garantire il successo della line search, α_k deve soddisfare una o più delle seguenti condizioni: condizione di Armijo, condizione di Wolfe e condizione forte di Wolfe.

Condizione di Armijo. La condizione di Armijo, chiamata anche condizione di decremento sufficiente, è definita dalla seguente disuguaglianza:

$$\phi(\alpha) \le l(\alpha),$$

$$l(\alpha) = c_1 \alpha \nabla f_k^T p_k$$
(1)

dove $l(\alpha)$ è una funzione lineare in α con coefficiente angolare $c_1 \nabla f_k^T p_k < 0$, il quale garantisce che il valore della funzione f diminuisca, e $c_1 \in (0,1)$ è una costante. La condizione di Armijo verrebbe soddisfatta da ogni valore α sufficientemente piccolo, con lo svantaggio che si avrebbe una lenta convergenza dell'algoritmo. D'altra parte un valore di α troppo grande potrebbe andare oltre il punto di minimo cercato. Per questi motivi è opportuno che α soddisfi la seguente condizione.

Condizione di Wolfe. La condizione di Wolfe, conosciuta anche come condizione di curvatura, è definita dalla seguente disuguaglianza:

$$\phi'(\alpha) \ge c_2 \phi'(0) \tag{2}$$

dove $c \in (c_1, 1)$ è una costante, $\phi'(\alpha_k) = \nabla f(x_k + \alpha_k p_k)^T p_k$, e $\phi'(\alpha) = \nabla f_k^T p_k$. (spiegare per bene, ancora non ho ben capito come funziona) Per evitare che $\phi(\alpha) \gg 0$ sia troppo positivo, vengono esclusi i punti che vanno troppo oltre un punto stazionario di ϕ , modificando la condizione di curvatura, ottenendo quella che è chiamata la condizione forte di Wolfe, di seguito definita:

$$\mid \phi'(\alpha) \mid \le c_2 \mid \phi(0) \mid \tag{3}$$

1.1 Algoritmo di Line Search

dire settaggio dei parametri e mettere pseudo codice...

 $^{^{1}}$ Il pedice k indica l'indice di iterazione dell'algoritmo.