A Practical Approach: Exercise 1

- $\lim_{x\to 3} \frac{1}{1+e^{x-3}}$
- $\lim_{x\to -1} \sqrt{x^2+4}$
- $\bullet \lim_{x \to 1} \left(\frac{x-2}{x^2-5} \right)^{\frac{x}{2}}$
- $\lim_{x\to 3} \ln\left(\frac{x-2}{2x-5}\right)$
- $\lim_{x\to-\infty} (x^2 + e^{-x})$
- $\lim_{x\to +\infty} x^2 \ln x$
- $\lim_{x\to 2^+} \frac{1}{(x-2)(e^2-e^x)}$
- $\bullet \ \lim_{X\to 0^+} \frac{\ln x}{x}$
- $\bullet \lim_{x\to 0^+} x \ln x$

Simple Rules for Limits [SHS 6.5]

If A and B are real numbers:

RULES FOR LIMITS

If
$$\lim_{x \to a} f(x) = A$$
 and $\lim_{x \to a} g(x) = B$, then

(a)
$$\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$$

(b)
$$\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$$

(c)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$
 (if $B \neq 0$)

(d) $\lim_{x \to r} (f(x))^r = A^r$ (if A^r is defined and r is any real number)

Further Rules (see also SHS 7.9)

- (e) $\lim_{x\to a} f(x)^{g(x)} = A^B$, with $A, B \neq 0, A, B \neq 1, A, B \neq \pm \infty$.
- (f) if f continuous (*) at B, then $\lim_{x\to a} f(g(x)) = f(B)$.
- (*) See later the definition of continuous function in the book.

Rules for Limits, extended to $0^+, 0^-, +\infty, -\infty$

- 0⁺ (0⁻) is a strictly positive (negative) number closer and closer to 0
- $+\infty$ is a quantity bigger than any finite threshold M, with M > 0
- $-\infty$ is a quantity smaller than any finite threshold -M, with M > 0

Then the following rules hold:

•
$$+\infty + \infty = +\infty$$
, $-\infty - \infty = -\infty$

•
$$(+\infty)(+\infty) = +\infty$$
, $(-\infty)(-\infty) = +\infty$, $(+\infty)(-\infty) = -\infty$

$$\bullet$$
 0⁺ * 0⁺ = 0⁺, 0⁻ * 0⁻ = 0⁺, 0⁺ * 0⁻ = 0⁻,

$$\bullet$$
 $\frac{1}{0^{+}} = +\infty$, $\frac{1}{0^{-}} = -\infty$, $\frac{1}{+\infty} = 0^{+}$, $\frac{1}{-\infty} = 0^{-}$

while the following expressions are indefinite (Indefinite Forms)

$$+\infty - \infty = ?$$
, $\frac{0}{0} = ?$, $\frac{\infty}{\infty} = ?$, $0 \cdot \infty = ?$, $1^{\infty} = ?$, $0^{0} = ?$

Exercise 2

- Spot all of the rules of limits that are used to compute the limits in Exercise 1.
- Solve all exercises for section 6.5 in the textbook.

(A glance to the) Formal Definition of Limit [SHS 7.9]

• $|f(x) - A| < \varepsilon \iff f(x) \in (A - \varepsilon, A + \varepsilon)$ $(A - \varepsilon, A + \varepsilon)$ is called a (symmetric) neighborhood of A.

Definition

By $\lim_{x\to a} f(x) = A$ we mean: for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|x-a| < \delta$ ($x \neq a$) implies $|f(x)-A| < \varepsilon$.

That is: if we set one threshold of error ε , then we may find a corresponding threshold δ so that x closer to a than δ , then f(x) is closer to A than ε .

Exercise 3 - First tricks when $x \to \pm \infty$

(Hint: put in evidence the strongest power)

- $\lim_{x\to+\infty}(x^2-x^3)$
- $\bullet \lim_{x \to +\infty} \frac{\ln x + 1}{2 + 3 \ln^2 x}$

 $\bullet \ \lim_{X\to -\infty} \frac{x^2+1}{1-3x^3}$

Exercise 3 - continued

(derationalize)

•
$$\lim_{x\to+\infty}(\sqrt{x+1}-\sqrt{x})$$

$$\bullet \ \lim_{x\to +\infty} (\sqrt{x^2+1}-\sqrt{x})$$

Exercise 4 - Change of Variables

Change of Variables

$$\lim_{x\to a} g(f(x)) = \lim_{t\to f(a)} g(t)$$

$$\bullet \ \lim_{x \to 0^+} \frac{e^x}{e^x + 1} =$$

$$\bullet \ \lim_{x \to +\infty} \frac{\sqrt{e^{2x}+1}}{8e^x-1}$$

Exercise 4 - Change of Variables

•
$$\lim_{x\to-\infty}\sqrt{1-x}$$

•
$$\lim_{y\to-\infty}\frac{1}{y}\sqrt{\frac{1+y^3}{y}}$$

Comparing infinities of different strength 1/3

Definition

Assume $\lim_{x\to +\infty} f(x) = +\infty$, and $\lim_{x\to +\infty} g(x) = +\infty$. Then if

$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}=0,$$

we say that g(x) overtakes f(x), for $x \to +\infty$, or at hat g is an infinity of greater strength than f.

Example 1: Powers. The highest the strongest.

$$\lim_{x \to +\infty} \frac{x^a}{x^b} = \lim_{x \to +\infty} x^{a-b} = \begin{cases} 0, & a < b \\ +\infty, & a > b \\ 1, & a = b. \end{cases}$$

Example 2: Polynomials. Behaviour determined by the highest power.

$$\lim_{x \to +\infty} \frac{5x+2}{x-1} = 5, \quad \lim_{x \to +\infty} \frac{x^2+2}{x-1} = +\infty, \quad \lim_{x \to -\infty} \frac{x^2+2}{x^3-1} = 0$$

Graph of Power Functions

Graphs

$$\frac{5x+2}{x-1} \rightarrow 5, as x \rightarrow +\infty$$

$$\frac{x^2+2}{x-1} \rightarrow +\infty$$
, $0.5x \rightarrow +\infty$

$$\frac{\chi^2+2}{2} \rightarrow 0$$
 or $\chi \rightarrow +\infty$

Comparing infinities of different strength 2/3

Logarithms an Powers

For a > 1, b > 0, c > 0

$$\lim_{x \to +\infty} \frac{\log_a^c x}{x^b} = 0$$

Exponentials and Powers

For a > 1, for b > 0

$$\lim_{x\to+\infty}\frac{x^b}{a^x}=0$$

Summing up:

$$\log_a x << x^b << a^x,$$
 for any $a>1, b>0$, when $x\to +\infty$,

Graphs

Comparison between $\log_{1.8} x$ in green, $x^{0.5}$ in blue.

Comparison between 2^x in green, x^5 in blue.

September 13, 2022

Comparing infinities of different strength 3/3

Idea to resolve indefinite forms of type $\frac{\infty}{\infty}$:

- factor the strongest infinity at numerator and denominator
- the limit is that of the ratio of such strongest infinities, consistently with the previous rules

Exercise 5 I

Show, justifying accurately all steps, that:

$$\lim_{X\to+\infty}\frac{(\ln x)^{4000}}{1.001^x}=0$$

4
$$\lim_{x \to +\infty} \frac{\ln^4 x + 1}{\log_{34} x - 2^{-x}} = +\infty$$

Exercise 5 II

$$\mathbf{O} \lim_{x \to +\infty} \frac{e^{x+1} - x^5}{e^{x^2} - x^2} = 0$$

Exercise 6

Consider the function $f(x) = \frac{4-2x}{3x-1}$. Find: (a) natural domain; (b) sign; (c) limits at the boundary of the domain; (d) first derivative and monotonicity; (e) plot the graph.

Indefinite Forms of Type $\frac{0}{0}$

Exercise 7

Compute the following limits of ratios of polynomials:

(a) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$ (Hint: factor (x-2) both at numerator and denominator, simplify.)

(b) $\lim_{x\to 1} \frac{x^3-3x+2}{x^4-4x+3}$ (Hint: factor (x-1) twice, both at num/den, simplify.)

(c) $\lim_{x\to -1} \frac{x^2-1}{x^2+3x+2}$

(d) $\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$

Some notable $\frac{0}{0}$ and 1^{∞} limits

The following limits are given as known

Theorem: Notable limits

$$\lim_{x\to 0}\frac{e^x-1}{x}=1;\qquad \lim_{x\to \pm\infty}\left(1+\frac{1}{x}\right)^x=e$$

Corollary/Exercise 8

Prove that

(a)
$$\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$$

(b)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$

(c)
$$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x}\right)^x = e^a$$

Exercise 9

Show that:

•
$$\lim_{x\to 0} \frac{e^x-1}{e^{4x}-1} = \frac{1}{4}$$

$$\bullet \ \lim_{x\to 1} \frac{\ln(x)}{x-1} = 1$$

•
$$\lim_{x\to+\infty}\left(1+\frac{2}{x+1}\right)^x$$
.

L'Hopital's Rule [SHS 7.12]

Theorem

Assume f and g are differentiable functions in (α, β) , and $a \in (\alpha, \beta)$:

• (SHS Theorem 7.12.1) if $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, $g'(x) \neq 0$ at all $x \in (\alpha, \beta)$, and there exists $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, then:

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}=L.$$

• if $\lim_{x\to a} f(x) = \pm \infty$, and $\lim_{x\to a} g(x) = \pm \infty$, and there exists $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, then: $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)} = L.$

$$\lim_{x \to a} \frac{\zeta'}{g(x)} = \lim_{x \to a} \frac{\zeta'}{g'(x)} = L.$$

• The same results hold for $a=+\infty$ (respectively, $a=-\infty$) and f and g differentiable on a positive (respectively, negative) half line, or for $x \to \alpha^+$, and $x \to \beta^-$ (see one-sided limits).

Exercise 10

- Solve all exercises of section 7.9 in textbook.
- Confirm the results of the previous exercises using L'Hopital's Rule.
- Solve all exercises of section 7.12 in textbook.

One-sided limits [SHS 7.9]

Definition

Left limit as x tends to a (or "limit as x tends to a from the left")

$$\lim_{x \to a^{-}} f(x) \equiv \lim_{\substack{x \to a \\ x < a}} f(x)$$

Right limit as x tends to a (or "limit as x tends to a from the right")

$$\lim_{x\to a^+} f(x) \equiv \lim_{\substack{x\to a\\x>a}} f(x)$$

1 > 4 @ > 4 E > 4 E > E 990

Examples

Left and right limit may or may not exist separately, and may or may not be equal when they exist.

$$\bullet \lim_{X \to 0^-} \frac{1}{X} = -\infty \quad \lim_{X \to 0^+} \frac{1}{X} = +\infty$$

•
$$\lim_{x \to 0^{-}} xe^{\frac{1}{x}} =$$

$$\lim_{x\to 0^+} x e^{\frac{1}{x}} =$$

In such case the (overall) limit DOES NOT exist.

Conversely, if they do exist, they are finite and they are equal, the limit exists and coincide with their common value

Theorem

$$\exists \lim_{x \to a} f(x) = A \Leftrightarrow \begin{cases} \exists \lim_{x \to a^{-}} f(x) = A \\ \exists \lim_{x \to a^{+}} f(x) = A \end{cases}$$

Example - optional

Examples of a function not having left and right limits $f(x) = sin \frac{1}{x}$

