Versuchsbericht zu

O1 - Geometrische Optik

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 04.04.2018 betreut von Helge Gehring

Inhaltsverzeichnis

1	Kurzfassung		3	
2	Methoden			3
3	Erge	gebnisse und Diskussion		
	3.1	Beoba	chtung	3
		3.1.1	Demonstrationsversuch	3
		3.1.2	Prisma	3
		3.1.3	Brechungsindex von Wasser	3
		3.1.4	Brennweite der Sammellinse	3
		3.1.5	Brennweite der Streulinse	3
		3.1.6	Strahlaufweitung und Sammellinse	3
	3.2 Datenanalyse		analyse	3
		3.2.1	Prisma	3
	3.3	Diskus	ssion	3
4	Schl	lussfolg	erung	3

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtung

- 3.1.1 Demonstrationsversuch
- 3.1.2 Prisma
- 3.1.3 Brechungsindex von Wasser
- 3.1.4 Brennweite der Sammellinse
- 3.1.5 Brennweite der Streulinse
- 3.1.6 Strahlaufweitung und Sammellinse

3.2 Datenanalyse

3.2.1 Prisma

In der Einleitung wurde Gleichung (1) zur Bestimmung des Brechungsindex des Prismamaterials, bei einer minimalen Ablenkung δ_m , aufgeührt.

$$n = \frac{\sin\left[(\delta_m + \alpha)/2\right]}{\sin\left(\alpha/2\right)} \tag{1}$$

Dabei wurde in einem Abstand d eine orthogonale Auslenkung a gemessen. Es folgt eine minimale Auslenkung $\delta_m = \arctan(a/d)$.

3.3 Diskussion

4 Schlussfolgerung