Optimization Method homework 4

Qingfu Wen

2015213495

October 10, 2015

CONTENTS

i. Problem 1

I. PROBLEM 1

solve the following LP problem using big M algorithm.

1.

max
$$-3x_1 + 2x_2 - x_3$$

s.t. $2x_1 - x_2 + x_3 \le 5$
 $4x_1 + 3x_2 + x_3 \ge 3$
 $-x_1 + x_2 + x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

Solution:

Lead slack variable x_4 , x_5 and artificial variable x_6 , x_7 into it.

max
$$-3x_1 + 2x_2 - x_3 + M(x_6 + x_7)$$

s.t. $2x_1 - x_2 + x_3 + x_4 = 5$
 $4x_1 + 3x_2 + x_3 - x_5 + x_6 = 3$
 $-x_1 + x_2 + x_3 + x_7 = 2$
 $x_j \ge 0, j = 1, \dots, 7$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	
x_4	2	-1	1	1	0	0	0	5
x_6	4	3	1	-1	1	0	3	'
x_7	-1	1	1	0	0	0	1	2
f	-3M+3	-4M-2	-2M+1	0	M	0	0	-5M
x_4	$\frac{10}{3}$	0	$\frac{4}{3}$	1	$-\frac{1}{3}$	$\frac{1}{3}$	0	6
x_2	$\frac{10}{3}$ $\frac{4}{3}$ $\frac{7}{3}$	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	1
x_7	$-\frac{7}{3}$	0	$\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{1}{3}$	1	1
f	$\frac{7}{3}M + \frac{17}{3}$	0	$-\frac{2}{3}M + \frac{5}{3}$	0	$-\frac{M}{3} - \frac{2}{3}$	$-\frac{4}{3}M + \frac{2}{3}$	0	2-M
x_4	8	0	0	1	-1	1	-2	4
$ x_2 $	$\frac{5}{2}$	1	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$ $\frac{3}{2}$	$\frac{1}{2}$
x_3	$-\frac{7}{2}$	0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{2}$ $\frac{3}{2}$
f	$\frac{2\overline{3}}{2}$	0	0	0	$-\frac{3}{2}$	$\frac{3}{2} + M$	$-\frac{5}{2} + M$	$-\frac{1}{2}$
x_4	1	0	2	1	0	0	1	7
x_2	-1	1	1	0	0	0	1	2
x_5	-7	0	2	0	1	-1	3	3
f	1	0	3	0	0	M	2+M	4

From the above table, we can see that solution $\mathbf{x}=(0,2,0)$, $f_{max}=4$.

2.

min
$$3x_1 - 2x_2 + x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 \ge 8$
 $x_1, x_2, x_3 \ge 0$

Solution:

Lead slack variable x_4 and artificial variable x_5 into it.

min
$$3x_1 - 2x_2 + x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 - x_4 + x_5 = 8$
 $x_j \ge 0, j = 1, \dots, 5$

	x_1	x_2	<i>x</i> ₃	x_4	x_5	
x_3	2	-3	1	0	0	1
x_5	2	3	0	-1	1	8
f	2M-1	3M-1	0	-M	0	8M+1
x_3	4	0	1	-1	1	9
x_2	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	<u>8</u> 3
f	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	$\frac{1}{3}$ -M	$\frac{11}{3}$

From the above table, we can see that solution $\mathbf{x}=(0,\frac{8}{3},9), f_{min}=\frac{11}{3}.$