

Exam 1 : Electronique (Polytech Nancy PEIP 2)

Aucun document n'est autorisé excepté une feuille A4 recto verso manuscrite et non photocopiée

Questions à choix multiples : Bonne réponse (+1) ; Mauvaise réponse (-0,5) ; absence de réponse (0)

Pour chacune des questions ci-dessous, entourer l'affirmation ou la réponse juste.

- 1- Pour l'un de ces montages à amplificateur opérationnel, le signal d'entrée n'est pas connecté à l'entrée (-)?
 - a- Amplificateur inverseur,
 - b- Suiveur de tension,
 - c- Amplificateur non inverseur
- 2- Le Slew Rate (SR) d'un amplificateur opérationnel réel, s'exprime en:
 - a- V/mV
 - b- $\mu V/s$
 - c- V/µs
 - d- mV/s,
- 3- Dans un amplificateur inverseur à Ampli. Op. :
 - d- le signal d'entrée est relié à l'entrée (+) et le signal de sortie à l'entrée (+).
 - e- le signal d'entrée est relié à l'entrée (-) et le signal de sortie à l'entrée (+).
 - f- le signal d'entrée est relié à l'entrée (+) et le signal de sortie à l'entrée (-).
 - g- le signal d'entrée est relié à l'entrée (-) et le signal de sortie à l'entrée (-).
- 4- A partir d'un circuit électrique à N nœuds on peut écrire en utilisant la lois de nœuds,:
 - a- N+1 équations indépendantes.
 - b- N équations indépendantes.
 - c- N-1 équations indépendantes.
- 5- Laquelle de ces diodes permet d'émettre de la lumière :
 - a- Diode Zener
 - b- Diode à Schottky
 - c- LED
 - d- Diode Varicap

Exercice 1

Pour le montage de la figure 1, on considère l'amplificateur opérationnel idéal.

- 1- Calculez Vs en fonction de V1, V2 et V2 et des résistances R1, R2, R3 et R0.
- 2- On considère R1 = R2 = R3 = R0, quelle est la fonction réalisée?

Exercice 2

Pour le montage ci-contre, on considère l'Amplificateur Opérationnel idéal. Pour la diode D, on donne la relation liant le courant Id à la tension à ses bornes Vd:

 $Id = Is \cdot e^{\frac{Vd}{Vt}}$ où Is et Vt sont des constantes caractérisant la diode et données par le constructeur.

- 1- Exprimez i en fonction de v_e puis i_D en fonction de v_s .
- 2- Quelle relation lie i et i_D ? en déduire Vs en fonction de Ve.

- 2- Quelle est la fonction réalisée ?
- 5- On interverti les positions de R et D, exprimez de nouveau Vs en fonction de Ve. Quelle est alors la fonction réalisée ?

Exercice 2 (Structure de Sallen et Key)

1- Montrer que la fonction de transfert en tension $T = \frac{V_S}{V_e}$ du circuit de la figure 2, peut se mettre sous la

forme :
$$T = \frac{Y_1 Y_3}{(Y_3 + Y_4) \cdot (Y_1 + Y_2) + Y_3 (Y_4 - Y_2)}$$

- 2- Choisir les admittances pour réaliser un filtre passe-bas (en se limitera à l'utilisation de résistances et capacités). Quel est l'ordre de ce filtre ?
- 3- En choisissant des résistances identiques et égales à R, écrire la fonction de transfert sous la forme

d'usage:
$$T = \frac{-k}{1 + 2jm\frac{\omega}{\omega_0} + (j\frac{\omega}{\omega_0})^2}$$

$$V_2$$

$$V_3$$

$$V_4$$

$$V_5$$

Figure 3

4- En déduire les coefficients k, ω_0 et m en fonction des éléments du montage.