January 10, 2017

- 1. Two triangles are congruent if
 - (1) corresponding angles are congruent
 - (2) corresponding sides and corresponding angles are congruent
 - (3) the angles in each triangle have a sum of 180°
 - (4) corresponding sides are proportional
- 2. The endpoints of \overline{CD} are C(-2,4) and D(6,2). What are the coordinates of the midpoint of \overline{CD} ?
 - (1) (2,-1)
- (2) (4, -2) (3) (4, 3)
- (4) (2,3)
- 3. In the accompanying diagram, \underline{ABC} and \underline{DEF} are triangles with $\angle A \cong \angle D$, and $\overline{AC} \cong \overline{DF}$. Which statement is sufficient to *prove* $\triangle ABC \cong \triangle DEF$?

- (1) $\angle C \cong \angle F$ (2) $\angle C \cong \angle E$ (3) $\overline{CB} \cong \overline{EF}$ (4) $\overline{AC} \parallel \overline{DE}$
- 4. In the accompanying diagram, line *a* intersects line *b*.

What is the value of x?

- (1) -10
- (2) 5
- (3) 10
- (4) 90

- 5. A line segment has endpoints (4,7) and (1,11). What is the length of the segment?
 - (1) 5
- (2) 7
- (3) 16
- (4) 25
- 6. In the diagram below, $\Delta AEC \cong \Delta BED$

Which statement is *not* always true?

(1) $\overline{AC} \cong \overline{BD}$

- (2) $\overline{CE} \cong \overline{DE}$
- (3) $\angle EAC \cong \angle EBD$
- (4) $\angle ACE \cong \angle DBE$
- 7. Base your answer to the following question on the accompanying diagram, \overline{ACE} , \overline{BCD} , \overline{AB} , and \overline{DE} , $\angle A \cong \angle E$, and C is the midpoint of \overline{AE} .

Which theorem justifies $\triangle ABC \cong \triangle EDC$?

(1) SSS \cong SSS

(2) SAS \cong SAS

(3) $ASA \cong ASA$

- (4) $SSA \cong SSA$
- 8. Line segment AB has endpoints A(2,-3) and B(-4,6). What are the coordinates of the midpoint of AB?
 - (1) (-2,3)
- (2) $(-1,1\frac{1}{2})$ (3) (-1,3) (4) $(3,4\frac{1}{2})$

10. Base your answer to the following question on the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point D.

If $\angle BCD = 6x + 2$, $\angle BAC = 3x + 15$, and $\angle ABC = 2x - 1$, what is the value of x?

- (1) 12
- (2) $14\frac{10}{11}$
- (3) 16 (4) $18\frac{1}{9}$
- 11. When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
 - (1) supplementary angles
- (2) linear pair of angles
- (3) adjacent angles
- (4) vertical angle
- 12. Which point is closest to the origin?
 - (1) (5,12)
- (2) (6,8)
- (3) (10,4)
- (4) (0,9)

13. Base your answer to the following question on the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle ABC \cong \triangle ADC$?

- (1) SSS
- (2) AAA
- (3) SAS
- (4) AAS
- 14. Base your answer to the following question on In the accompanying diagram of rectangle ABCD, $m\angle BAC = 3x + 5$ and $m\angle ACD = x + 37$.

What is $m\angle CAD$?

- (1) 16
- (2) 37
- (3) 50
- (4) 53
- 15. A line segment has endpoints A(7,-1) and B(-3,3). What are the coordinates of the midpoint of \overline{AB} ?
 - (1) (1,2)
- (2) (2,1)
- (3) (-5,2)
- (4) (5,-2)

16. Base your answer to the following question on In the accompanying diagram of $\triangle ABC$, side \overline{BC} is extended to D, $m\angle B = 2y$, $m\angle BCA = 6y$, and $m\angle ACD = 3y$.

What is $m \angle B$?

- (1) 15
- (2) 17
- (3) 20
- (4) 40
- 17. In the diagram below, transversal \overrightarrow{TU} intersects \overrightarrow{PQ} and \overrightarrow{RS} at V and W, respectively.

If m\(\angle TVQ = 5x - 22\) and m\(\angle VWS = 3x + 10\). For which value of x is $\overrightarrow{PQ} \parallel \overrightarrow{RS}$?

- (1) 6
- (2) 16
- (3) 24
- (4) 28

January 10, 2017

19. Based on the diagram below, which statement is true?

- (1) $a \parallel b$
- (2) $a \parallel c$
- (3) $b \| c$
- (4) $d \parallel e$

20. In the diagram below of quadrilateral *ABCD*, diagonals \overline{AEC} and \overline{BED} are perpendicular at E.

Which statement is always true based on the given information?

(1) $\overline{DE} \cong \overline{EB}$

- (2) $\overline{AD} \cong \overline{AB}$
- (3) $\angle DAC \cong \angle BAC$
- $(4) \angle AED \cong \angle CED$

- 22. What is the equation of a line passing through the point (6,1) and parallel to the line whose equation is 3x = 2y + 4?
 - (1) $y = -\frac{2}{3}x + 5$
- (2) $y = -\frac{2}{3}x 3$ (4) $y = \frac{3}{2}x 5$
- (3) $y = \frac{3}{2}x 8$

- 23. In the diagram below of ΔDAE and ΔBCE , \overline{AB} and \overline{CD} intersect at E, such that $\overline{AE} \cong \overline{CE}$ and $\angle BCE \cong \angle DAE$.

Triangle DAE can be proved congruent to triangle BCE by

- (1) ASA
- (2) SAS
- (3) SSS
- (4) HL
- 24. Of the following, which equation represents a line that is parallel to the line whose equation is 3x + 2y = 7?
 - (1) $y = -\frac{3}{2}x + 5$ (3) $y = \frac{3}{2}x 5$

- (2) $y = -\frac{2}{3}x + 4$ (4) $y = \frac{2}{3}x 4$