Homework 1 (Due: March 19th)

- (1) Find the solutions of the following nonlinear DEs. (30 scores)
 - (a) y''(x)y'(x) = 1, y'(0) = 0

(b)
$$y''(x) = -3y'(x)y^2(x)$$
, $y(1) = 2^{-1/2}$, $y'(1) = -2^{-3/2}$

(c)
$$y''(x) = \exp(y(x)), \quad , y(0) = 0 \quad y'(0) = \sqrt{2}$$

- (2) Solve the following PDEs.
 - (a) $x^2 \frac{\partial}{\partial x} u(x, y) = y \frac{\partial}{\partial y} u(x, y)$
 - (b) $\frac{\partial^2}{\partial x^2} u(x, y) = u(x, y) + \frac{\partial}{\partial y} u(x, y) \qquad 0 < x < 2, \quad y > 0,$ $u(0, y) = u(2, y) = 0, \quad u(x, 0) = \cos(\pi x) \sin(2\pi x)$

(Conti.)

(40 scores)

(c)
$$\frac{\partial^2}{\partial x^2} u(x, y) + \frac{\partial^2}{\partial y^2} u(x, y) = 0$$
 $0 < x < 1, 0 < y < 1,$
 $u(0, y) = u(1, y) = u(x, 0) = 0, u(x, 1) = 1 - 2|x - 1/2|$

(d)
$$(x+1)\frac{\partial}{\partial x}u(x,y) = \frac{\partial}{\partial y}u(x,y) + \cos y$$

(3) Solve the following 1^{st} order nonlinear DE numerically. Plot the result y(x). The Matlab (or Python) code should also be handed out.

(30 scores)

$$\frac{\partial y(x)}{\partial x} = 5\cos\left(-\frac{1}{5}|xy|\right), \quad y(0) = 0, \quad 0 \le x \le 10, \quad x_{n+1} - x_n = 0.01$$

- (a) By Euler's method.
- (b) By modified Euler's method.
- (c) By the RK4 method.