Numerical relativity — Exercise sheet # 2

Boris Daszuta boris.daszuta@uni-jena.de

03.05.2021

Extrinsic curvature

Exercise 1.1: Sphere embedded in \mathbb{R}^3

Consider a sphere of radius a under the embedding in \mathbb{R}^3 specified through t := r - a = 0 with $r = \sqrt{x^2 + y^2 + z^2}$. Compute the intrinsic and extrinsic curvature.

Exercise 1.2: Extrinsic curvature of Schwarzschild

Consider Schwarzschild in isotropic coordinates

$$ds^2 = -\alpha^2 dt^2 + \psi^4 (dr^2 + r^2 d\Omega^2)$$

where $\psi := (1 + M/2r)$, $\alpha := (1 - M/2r)/\psi$ and $d\Omega^2$ is the standard 2-sphere metric. Identify spatial slices Σ with hypersurfaces of constant coordinate time t.

- What is the 3-metric?
- Compute the intrinsic and extrinsic curvature.

Gauss-Codazzi-Ricci equations

Choose one of the following exercises.

Exercise 2.1: Derivation of Gauss equations (Gauss-Codazzi-Ricci equations)

The Gauss-Codazzi-Ricci equations are identities relating the 3+1 projections of the 4D Riemann and Ricci tensors. The Gauss equation is the spatial projection of the 4D Riemann tensor ${}^4R_{abcd}$ that can be expressed in terms of the spatial (3D) Riemann tensor R_{abcd} and extrisinc curvature K_{ab} as

$$\gamma_a^p \gamma_b^q \gamma_c^r \gamma_d^{s4} R_{pqrs} = R_{abcd} + K_{ac} K_{bd} - K_{ad} K_{bc} , \qquad (1)$$

where $\gamma_b^a = g^{ac}\gamma_{cb} = \delta_b^a + n^a n_b$ is the 3+1 spatial projection operator and n^a the unit normal vector to hypersurfaces Σ_t . Compute the above relation and the contractions

$$\gamma_a^p \gamma_b^{q4} R_{pq} + \gamma_{ap} n^q \gamma_b^r n^{s4} R_{qrs}^p = R_{ab} + K K_{ab} - K_{ap} K_b^p , \qquad (2)$$

$${}^{4}R + 2n^{a}n^{b4}R_{ab} = R + K^{2} - K_{ab}K^{ab} . (3)$$

Exercise 2.2: Derivation of Codazzi equations (Gauss-Codazzi-Ricci equations)

The Gauss-Codazzi-Ricci equations are identities relating the 3+1 projections of the 4D Riemann and Ricci tensors. The Codazzi equation is the projection of the 4D Riemann tensor ${}^4R_{abcd}$

$$\gamma_a^p \gamma_b^q \gamma_c^r n^{s4} R_{pqrs} = D_b K_{ac} - D_a K_{bc} , \qquad (4)$$

expressed in terms of the spatial (3D) Riemann tensor R_{abcd} and extrisinc curvature K_{ab} . Above $\gamma_b^a = g^{ac}\gamma_{cb} = \delta_b^a + n^a n_b$ is the 3+1 spatial projection operator, n^a the unit normal vector to hypersurfaces Σ_t , and D_a the covariant derivative of (Σ_t, γ_{ab}) . Compute the above relation and the contraction

$$\gamma_a^p n^{q4} R_{pq} = D_a K - D_s K_a^s . agen{5}$$

Exercise 2.3: Derivation of Ricci equations (Gauss-Codazzi-Ricci equations)

The Gauss-Codazzi-Ricci equations are identities relating the 3+1 projections of the 4D Riemann and Ricci tensors. The Ricci equation is the spatial projection of the 4D Riemann tensor ${}^4R_{abcd}$

$$\gamma_a^p \gamma_b^q n^r n^{s4} R_{pras} = \mathcal{L}_m K_{ab} + \alpha^{-1} D_a D_b \alpha + K_b^d K_{ad} , \qquad (6)$$

expressed in terms of the spatial (3D) Riemann tensor R_{abcd} and extrisinc curvature K_{ab} . Above $\gamma_b^a = g^{ac}\gamma_{cb} = \delta_b^a + n^a n_b$ is the 3+1 spatial projection operator, n^a the unit normal vector to hypersurfaces Σ_t , $m^a = \alpha n^a$ is the normal evolution vector, D_a the covariant derivative of (Σ_t, γ_{ab}) , and \mathcal{L}_n is the Lie drivative along n^a . Derive this equations.

The term " $\gamma \gamma nn^4 R$ " appears also in the contracted Ricci equation,

$$\gamma_a^p n^{q4} R_{pq} = D_a K - D_s K_a^s . (7)$$

Combine the two equations to obtain

$$\gamma_a^p \gamma_b^{q4} R_{pq} = -\alpha^{-1} \mathcal{L}_m K_{ab} - \alpha^{-1} D_a D_b \alpha + R_{ab} + K K_{ab} - 2K_{ar} K_b^r . \tag{8}$$