유클리드거리에 기초한 새로운 모호부정법

김은하, 곽선일

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《새로운 과학기술분야를 개척하기 위한 사업도 전망성있게 밀고나가야 합니다.》 (《김정일선집》 중보판 제11권 138폐지)

모호추론의 합성규칙[1], 3항조따름원리[2], 5항조따름원리[3], 류사도에 기초한 모호추론방법[4]들은 추론과정에 정보손실이 산생되여 환원성이 낮아지는 결함이 있다.

론문에서는 선행연구들과는 달리 보상연산과 거리측도[5, 6]에 기초한 새로운 모호부 정법을 제안하고 정보손실정리를 정식화하고 증명하였다.

1. 유클리드거리에 의한 모호부정법의 정식화

모호부정법의 추론결과를 평가하는 환원성평가함수를 표에 보여주었다.

표. 모호부정법의 추론결과를 평가하는 환원성평가함수

쇼, ㅗㅗㅜ이답의 푸드르파르 이기에는 런던이이기요ㅜ			
모호		모호규칙 if y is	\overline{B} then x is \overline{A}
부정법	주어진 전제 B^*	추론결과 A^*	환원성평가함수 <i>RPCF</i> _{FMT}
경우 1	$B^* = 1 - B$	$A^* = 1 - A$	$\left(1 - \sum_{k=1}^{r} a_{kl}^* - (1 - a_k) / r\right) \times 100$
경우 2	$B^* = 1 - B^2$	$A^* = 1 - A^2 \stackrel{\stackrel{\bullet}{\Rightarrow}}{-} \stackrel{\bullet}{\leftarrow}$ $= 1 - A$	$\left(1 - \sum_{k=1}^{r} a_{kl}^{*} - (1 - a_{k}^{2}) /r\right) \times 100$ $\frac{\tilde{\sigma}}{1 - c} \left(1 - \sum_{k=1}^{r} a_{kl}^{*} - (1 - a_{k}) /r\right) \times 100$
경우 3	$B^* = 1 - B^{1/2}$	$A^* = 1 - A^{1/2} \stackrel{\stackrel{\bullet}{\Rightarrow}}{\leftarrow} \stackrel{\circ}{\leftarrow}$ = 1 - A	$\left(1 - \sum_{k=1}^{r} a_{kl}^{*} - (1 - a_{k}^{1/2}) /r\right) \times 100$ $\frac{\bar{\sigma}}{1 - c} \left(1 - \sum_{k=1}^{r} a_{kl}^{*} - (1 - a_{k}) /r\right) \times 100$
경우 4	$B^* = B$	$A^* = A$	$\left(1 - \sum_{k=1}^{r} a_{kl}^* - a_k /r \right) \times 100$
경우 5	$B^* = s.t. B$	$A^* = s.t.A$	$\left(1 - \sum_{k=1}^{r} a_{kl}^* - s.t.a_k) /r\right) \times 100$

표에서 a_k 는 모호규칙 후건부벡토르의 k번째 원소의 성원도값, a_{kl}^* 은 l번째로 주

어진 전제에 대한 추론결과로 얻어진 모호모임벡토르의 k번째 성원도값, r는 모호모임벡토르의 원소개수, s.t. 은 《약간 편기된》의 략자이다.

단일입력단일출력(SISO)모호체계에 대하여 제안한 모호부정법 FMT-DM은 다음과 같다.

단계 1 SISO모호체계에서 전건부 \overline{B} 와 주어진 전제 B_l^* 사이의 차벡토르를 계산한다. 즉 $1-b_k$ 와 b_{kl}^* 은 모호모임에서의 성원도값을 나타내는 \overline{B} , B_l^* 의 원소이다. 차벡토르

$$\beta_l = [\beta_{1l}, \beta_{2l}, \dots, \beta_{kl}, \dots, \beta_{rl}]$$

의 개별적원소 β_{kl} 을 다음과 같이 계산한다.

$$\beta_{kl} = b_{kl}^* - (1 - b_k) \tag{1}$$

단계 2 식 (2), (3)에 따라 부호벡토르를 계산한다.

$$P_{kl} = \text{sign}(\beta_{kl}) = \begin{cases} +1, & \beta_{kl} > 0\\ 0, & \beta_{kl} = 0\\ -1, & \beta_{kl} < 0 \end{cases}$$
 (2)

$$P_{kl} = \operatorname{sign}(\beta_{kl}) = \begin{cases} +1, & \beta_{kl} \ge 0\\ -1, & \beta_{kl} < 0 \end{cases}$$
(3)

단계 3 식 (4)에 의하여 전건부모호모임 \overline{B} 와 주어진 전제 B_l^* 사이의 유클리드거리 $DM(B_l^*, \overline{B})$ 를 계산한다.

$$DM(B_l^*, \overline{B}) = \left[\sum_{k=1}^r [b_{kl}^* - (1 - b_k)]^2 / r \right]^{1/2}$$
 (4)

단계 4 FMT의 준모호추론결과 $\stackrel{\sim}{A_l}$ 을 식 (5)에 따라 계산한다.

$$\widetilde{A}_{l} = \begin{cases} 1 - A + DM(B_{l}^{*}, \overline{B}) \times P_{l}, & \stackrel{?}{>} \uparrow 1, 2, 3 \\ A + DM(B_{l}^{*}, \overline{B}) \times P_{l}, & \stackrel{?}{>} \uparrow 4 \\ s.t. & A + DM(B_{l}^{*}, \overline{B}) \times P_{l}, & \stackrel{?}{>} \uparrow 5 \end{cases}$$

$$(5)$$

단계 5 준모호추론결과 $\stackrel{\sim}{A_l}$ 의 최대값과 최소값을 식 (6)에 따라 계산한다.

$$\xi_l = \max_{1 \le k \le r} \widetilde{A}_l , \quad \eta_l = \min_{1 \le k \le r} \widetilde{A}_l$$
 (6)

단계 6 식 (7)에 의하여 FMT에서의 모호추론결과를 구한다.

$$A_{l}^{*} = \begin{cases} \frac{\widetilde{A}_{l} - \eta_{l}}{\xi_{l} - \eta_{l}}, & B_{l}^{*} \cap B \neq \emptyset \\ 0, & B_{l}^{*} \cap B = \emptyset \end{cases}$$

$$(7)$$

2. 제안한 모호부정법의 정보손실에 대한 해석

정리 1 SISO모호체계에서 거리측도로서 유클리드거리를 리용하면 모호부정법 FMT-DM 의 추론결과는 다음과 같다.

$$A^* = \begin{cases} f(\overline{A} + DM(A^*, A)), & \ \ \, \vec{?} + 1, 2, 3 \\ f(A + DM(A^*, A)), & \ \, \vec{?} + 4 \\ f(s.t. A + DM(A^*, A)), & \ \, \vec{?} + 5 \end{cases}$$
 (8)

여기서 f는 표준화연산자이며 모호추론과정은 선형연산자와 표준화연산자를 적용하므로 정보손실을 가지지 않는다.

증명 선행방법[5]에 의하면 모호부정법에서는 표의 경우 1-5에 대하여 환원성을 론 의하므로 여기서도 같은 론리에 따라 제안방법 FMT-DM을 고찰한다.

① 먼저 식 (8)의 경우 1, 2, 3을 고찰하자.

식 (7)에서 보는바와 같이

$$B_I^* \cap \overline{B} = \phi$$

이면 $A^* = 0$ 이다. 그리고

$$B_l^* \cap \overline{B} \neq \phi$$

일 때 FMT-DM의 추론결과는 식 (8)과 같이 계산된다.

모호부정법의 경우 1,2,3에 대한 추론결과는 다음과 같다.

$$A^{*} = \bigcup_{l=1}^{s} A_{l}^{*} = A_{1}^{*} \cup A_{2}^{*} \cup \cdots A_{l}^{*} \cup \cdots A_{s}^{*} =$$

$$= (\widetilde{A}_{1} - \eta_{1})/(\xi_{1} - \eta_{1}) \cup (\widetilde{A}_{2} - \eta_{2})/(\xi_{2} - \eta_{2}) \cup \cdots \cup$$

$$\cup (\widetilde{A}_{l} - \eta_{l})/(\xi_{l} - \eta_{l}) \cup \cdots \cup (\widetilde{A}_{s} - \eta_{s})/(\xi_{s} - \eta_{s}) =$$

$$= (\overline{A}_{1} + DM(A_{1}^{*}, \overline{A}) \times P_{1} - \eta_{1})/(\xi_{1} - \eta_{1}) \cup (\overline{A}_{2} + DM(A_{2}^{*}, \overline{A}) \times P_{2} - \eta_{2})$$

$$/(\xi_{2} - \eta_{2}) \cup \cdots \cup (\overline{A}_{l} + DM(A_{l}^{*}, \overline{A}) \times P_{l} - \eta_{l})/(\xi_{l} - \eta_{l}) \cup \cdots \cup$$

$$\cup (\overline{A}_{s} + DM(A_{s}^{*}, \overline{A}) \times P_{s} - \eta_{s})/(\xi_{s} - \eta_{s}) =$$

$$= (\overline{A}_{1} \cup \overline{A}_{2} \cup \cdots \cup \overline{A}_{l} \cup \cdots \overline{A}_{s}) + (DM(B_{1}^{*}, \overline{B}) \times P_{1} - \eta_{1})/(\xi_{1} - \eta_{1}) \cup$$

$$\cup (DM(B_{2}^{*}, \overline{B}) \times P_{2} - \eta_{2})/(\xi_{2} - \eta_{2}) \cup \cdots \cup (DM(B_{l}^{*}, \overline{B}) \times P_{l} - \eta_{l})/(\xi_{l} - \eta_{l}) \cup \cdots \cup$$

$$\cup (DM(B_{s}^{*}, \overline{B}) \times P_{s} - \eta_{s})/(\xi_{s} - \eta_{s}) =$$

$$= \bigcup_{l=1}^{s} \overline{A}_{l} + \bigcup_{l=1}^{s} (DM(B_{l}^{*}, \overline{B}) \times P_{l} - \eta_{l})/(\xi_{l} - \eta_{l}) =$$

$$= \bigcup_{l=1}^{s} \overline{A}_{l} + \bigcup_{l=1}^{s} (DM(B_{l}^{*}, \overline{B}) \times P_{l} - \eta_{l})/(\xi_{l} - \eta_{l}) =$$

$$= \int_{l=1}^{s} \overline{A}_{l} + \bigcup_{l=1}^{s} (DM(B_{l}^{*}, \overline{B})) = \int_{l=1}^{s} \overline{A}_{l} + \int_{l=1}^{s} DM(B_{l}^{*}, \overline{B}) =$$

$$= f(\overline{A} + DM(B_{l}^{*}, \overline{B})) = f(\overline{A} + DM(A_{l}^{*}, \overline{A}))$$

$$(9)$$

- ② 식 (8)에서 경우 4의 증명은 ①의 증명과 류사하므로 생략한다.
- ③ 경우 5의 증명도 류사하므로 생략한다.

이와 같이 식 (8)에 의하여 얻어진 FMT-DM에서의 모호추론결과 A^* 은 비선형연산자를 쓰지 않고 선형연산자와 표준화연산자를 적용하므로 정보손실을 가지지 않는다는것을 알수 있다.

정보손실은 식 (9)에서 보는바와 같이 준모호추론결과 \widetilde{A}_l 의 최대값과 최소값에 의하

여 담보된다.(증명끝)

정리 2 SISO모호체계에서 추론의 합성규칙[1], 3항조따름원리[2], 5항조따름원리[3], 류사도에 기초한 모호추론방법[4]들은 비선형연산자를 적용하므로 추론과정에 반드시 정보소실을 가져온다.

선행방법[1-4]들에서 환원성이 낮아지는 결함을 피할수 없는 원인은 모호부정법과 모호긍정법이 서로 쌍대라는 공리를 옳바로 적용하지 못한데 있다.

맺 는 말

불확정성을 가진 SISO모호체계에서 근사추론의 새로운 연구방향을 열수 있는 한가지 새로운 원리적인 모호추론방법을 정식화하고 정보손실을 가지지 않는다는것을 론증하였다.

참 고 문 헌

- [1] Lotfi A. Zadeh; Information Sciences, 8, 199, 1975.
- [2] G. J. Wang; Science in China, 29, 43, 1999.
- [3] Bao-Qui Zhou et al.; Information Sciences, 297, 202, 2015.
- [4] I. B. Turksen et al.; Fuzzy Sets and Systems, 34, 323, 1990.
- [5] Son-Il Kwak et al.; Iranian Journal of Fuzzy Systems, 16, 3, 17, 2019.
- [6] Son-Il Kwak et al.; WSEAS Transactions on Computer Research, 8, 73, 2020.

주체109(2020)년 11월 5일 원고접수

A Novel Fuzzy Modus Tollens Based on Euclidian Distance

Kim Un Ha, Kwak Son Il

In this paper we have pointed out a novel principal fuzzy reasoning method that can draw up a new study direction of the approximate inference in SISO fuzzy systems with uncertainty and then have proved its theorem of the information loss.

Keywords: fuzzy modus tollens, euclidian distance, fuzzy reasoning