Best Neighborhoods of NYC with Maximum Venues

By: Ashkan Nejati

November 2019

Contents

- > Introduction
- > Data Acquisition and Cleaning
- > Exploratory Data Analysis
- > Predictive Modeling
- > Results & Discussion

Introduction

- Problem Background:
- ✓ New York City is the most populous city in US
- ✓ Tourism is a vital industry for New York City
- Problem Description:
- ✓ Making the NYC the first city destination for the tourists
- ✓ Invite the most famous Instagram Influencers to New York
- ✓ Finding the location with maximum venues in minimum distances

Data Acquisition and Cleaning

- > Data Sources:
- ✓ Using link https://geo.nyu.edu/catalog/nyu_2451_34572 for coordinates
- ✓ Foursquare API to explore neighborhoods in New York City
- Data Cleaning:
- ✓ Data scraped from multiple sources were combined into tables

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585
5	Bronx	Kingsbridge	40.881687	-73.902818
6	Manhattan	Marble Hill	40.876551	-73.910660
7	Bronx	Woodlawn	40.898273	-73.867315
8	Bronx	Norwood	40.877224	-73.879391
9	Bronx	Williamsbridge	40.881039	-73.857446

Data Acquisition and Cleaning

- > Data Cleaning:
- ✓ Using foursquare API for finding different kind of venues
- ✓ Cleaning the json file and structure it into a pandas data frame

	name	categories	lat	Ing
0	Fish & Ting	Caribbean Restaurant	40.885539	-73.829151
1	Cozy Cottage Restaurant	Diner	40.886332	-73.827616
2	Mario's Pizza	Pizza Place	40.888628	-73.831260
3	Dyre Fish Market	Seafood Restaurant	40.889318	-73.831453
4	Taco Bell	Fast Food Restaurant	40.883029	-73.824901
5	Dyre Deli Grocery	Deli / Bodega	40.888235	-73.831282
6	HomeGoods	Furniture / Home Store	40.890814	-73.820849
7	Smashburger	Burger Joint	40.890172	-73.820584
8	St. Paul's Church National Historic Site	Historic Site	40.893482	-73.825328
9	Dunkin'	Donut Shop	40.885384	-73.828099

Exploratory Data Analysis

- Calculation of distances:
- ✓ Radius for each neighborhood results in a better venues search
- ✓ Find the closest points for each neighborhood
- ✓ Distance column is added to the main data frame

Exploratory Data Analysis

- Analyze venues data:
- \checkmark The minimum amount of venues is 0, and the maximum is 146
- ✓ 50% of the neighborhoods presents 22 or less venues

Exploratory Data Analysis

- Analyze venues data:
- ✓ Represent the venues per neighborhood in terms of density
- ✓ 50% of the neighborhoods presents a density between 0 and 45

Predictive Modeling

- > Cluster Neighborhoods in NYC with K-means method
- ✓ Using the elbow method to find the optimal for k
- ✓ Optimal value of the number of cluster was defined as 7
- ✓ Applying the clustering to the neighborhood data frame

	Neighborhood	Density	Distance	Cluster
0	Allerton	90	353.0	4
1	Annadale	18	643.0	0
2	Arden Heights	5	694.0	0
3	Arlington	10	470.0	0
4	Arrochar	45	417.0	3
5	Arverne	34	515.0	3
6	Astoria	143	697.0	6
7	Astoria Heights	29	447.0	3
8	Auburndale	21	774.0	0
9	Bath Beach	70	656.0	4

Results & Discussion

> Centroids values of venues density and neighborhoods per cluster

_	Cluster	Centroid	Neighborhoods	
0	0	14	98	
1	3	38	79	
2	4	74	61	
3	6	129	19	
4	1	213	25	
5	5	278	15	
6	2	442	9	

Results & Discussion

- > Clustered Neighborhoods:
- ✓ Adding the cluster column to the main data frame for neighborhoods

Results & Discussion

- > Clustered Neighborhoods:
- ✓ Location of high venue density neighborhoods in the map
- ✓ Using this method for other cities to find the neighborhoods with large number of venues.

No.	Borough	Neighborhood	Latitude	Longitude	Distance	Density
0	Manhattan	Chinatown	40.71562	-73.9943	242	413
1	Manhattan	Clinton	40.7591	-73.9961	216	462
2	Manhattan	Greenwich Village	40.72693	-73.9999	266	375
3	Manhattan	Hudson Yards	40.75666	-74.0001	216	379
4	Manhattan	Little Italy	40.71932	-73.9973	212	471
5	Manhattan	Murray Hill	40.7483	-73.9783	309	478
6	Manhattan	Soho	40.72218	-74.0007	212	471
7	Brooklyn	North Side	40.71482	-73.9588	223	448
8	Brooklyn	South Side	40.71086	-73.958	206	485

Thank you for your Attention