- 1. [15 points] Determine whether the following problems are recursive problems.
 - (a) R(0) = 1, R(1) = 1, R(n) = 2R(n-1) + R(n-2)
 - (b) R(1) = 0, R(n) = 5R(n-1)
 - (c) R(0) = 0, R(n) = n
 - (d) R(1) = 1, $R(n) = 2R(\frac{n}{2}) + 5$
 - (e) R(1) = 1, R(n) = R(1)
- 2. Solve the following recurrence relations:
 - (a) **[5 points]** R(0) = 3, R(n) = 3R(n-1)
 - (b) [10 points] R(0) = k, R(n) = bR(n-1), where b and k are integers.
 - (c) [5 points] R(1) = 0, $R(n) = R(\frac{n}{5}) + 1$, where n is always of the form $n = 5^k$
 - (d) [10 points] R(1) = 0, $R(n) = R(\frac{n}{b}) + c$, where n is always of the form $n = b^k$, and b, c are integers.
- 3. [35 points] Show that the following recursive relations have the closed forms given.
 - (a) R(1) = 1, R(n) = R(n-1) + 2n 1. Closed form: n^2
 - (b) R(1) = 1, $R(n) = \frac{n}{n-1}R(n-1)$. Closed form: n
 - (c) R(1) = 1, R(n) = R(n-1) + n. Closed form: $\frac{n(n+1)}{2}$
 - (d) R(0) = 1, R(1) = 1, R(n) = 2R(n-1) R(n-2). Closed form: 1
 - (e) R(1) = 5, $R(n) = 5R(\frac{n}{2})$, where $n = 2^k$. Closed form: 5^{k+1}
 - (f) R(1) = 1, $R(n) = R(\frac{n}{2}) + n$, where $n = 2^k$. Closed form: 2n 1
 - (g) $R(1)=0,\ R(n)=R(\frac{n}{2})+\log_2{(n)},$ where $n=2^k.$ Closed form: $\frac{k(k+1)}{2}$
- 4. [10 points] Write a recursive function, then write a recurrence relation to represent the function. Include a screenshot or a recreation of your code for this question.