离散数学

周建宇

2022 秋季学期

你们最关心的事

- ▶ 期末考试改为大作业,占总成绩的60%
- 平时成绩占 40%, 为之前布置的作业, 近期组织大家提交 (拍照后提交电子版)
- ▶ 期末大作业的将会是报告或者小论文的形式,围绕这三周课程的内容,自由选题,不分小组,一人一份
- 大作业的具体要求与样例稍后发布
- 最后三周课程:津南校区线下+线上,泰达校区暂定线上 (待风险区解封消息),线上采用飞书会议。

我们这三周要做什么

《离散数学》21 天补完计划

我们这三周要做什么

《离散数学》21 天补完计划

不可能 想都不要想

- ▶ 计算机科学的理论基石
- ▶ 一个学期、甚至一个学年都 很难学完,更谈不上精通
- 无论如何,至少"不懂细节""不会推导""不会证明"好过"根本没听说过"
- 走马观花、留下印象: 这三周只会讲是什么、至 于为什么、怎样做则通过大 作业对某个知识深入学习
- ▶ 包含:数理逻辑、集合论、 信息论、数论、组合数学、 图论、抽象代数 ······

图论

2022 年秋季学期 《离散数学》 周建宇 3/31

图论 (graph theory): 刻画二元关系的强大模型

- ▶ 基本概念
- ▶ 特殊的图
- ▶ 连通性问题
- ▶ 生成树问题
- ▶ 路径问题
- ▶ 网络流问题
- ▶ 匹配问题
- ▶ 着色问题

图 (graph) 是什么:表示物体之间存在某种关系的数学模型

▶ 点 (vertex): 数学抽象后的"物体"

▶ 边 (edge): 数学抽象后的"某种关系"

——图的强大之处在于其建模能力,难点是如何将问题抽象为图

2022 年秋季学期 《离散数学》 周建宇 5/31

图 (graph) 是什么:表示物体之间存在某种关系的数学模型

- ▶ 点 (vertex): 数学抽象后的"物体"
- ▶ 边 (edge): 数学抽象后的"某种关系"
- ——图的强大之处在于其建模能力,难点是如何将问题抽象为图

数学形式化表示: 图一般表示为二元组 G = (V, E), 其中 $V = \{v_1, v_2, \dots, v_n\}$ 表示点的集合,E 则表示边的集合。 注意边集有两种不同的表示,因此产生了两类图:

- **无向图** (undirected graph) $E = \{\{u,v\}|u,v\in V\}, \ \{x,y\}$ 是集合,与 $\{y,x\}$ 等价
- ▶ 有向图 (directed graph、digraph) $E = \{(u,v)|u,v \in V\}, \ (x,y) \ \texttt{是有序对}, \ \ \texttt{与} \ (y,x) \ \textbf{不同}$
- ——两种图可以刻画不同的关系,关注的重点也不同,一定在学习和 应用时先确认是什么图 (PS: 其实无向图可以视作双向图)

2022 年秋季学期 《离散数学》 周建宇 5/31

赋权图 (weighted graph) (建模能力强化)

在点或边上添加权重 (weight),用来补完物体或关系的特殊意义

广义的形式化表示就是在图上添加一个映射 w, 该映射可以将点集 V 或边集 E 映射到另一个集合,故权重会有两种定义:

- ▶ 点权: $w:V\to S$,或者对于点 $v\in V$,点权表示为 w(v)
- ▶ 边权: $w: E \rightarrow S$, 或者对于边 $(u, v) \in E$, 边权为 w(u, v)

注意:目标集合 S 由问题定义,只不过 $\mathbb{N} \setminus \mathbb{R}$ 作为 S 比较常见

- ——有了权值,图的建模能力进一步增强。比如:
 - ▶ 点权例子:数据结构中的排序树、优先队列、字典树
 - ▶ 边权例子:路径问题定义了费用,网络流问题定义了容量

更多基础概念 (关于大小的讨论)

- ▶ 点集的大小通常用 |V| 表示,有些地方称之为M (order)
- ▶ 边集的大小通常用 |E| 表示,可以发现对于无向图而言,

$$0 \le |E| \le {|V| \choose 2} = \frac{|V|(|V|-1)}{2}$$

▶ 稀疏图 (sparse graph)、稠密图 (dense graph): 无严格定义,通常认为稀疏图边数 |E| 在 O(|V|) 量级,稠密图在 $O(|V|^2)$ 量级

——两种模型会导致不同复杂度的求解和实现算法,一般来说,稀疏图通常用<mark>邻接表</mark>实现,稠密图用邻接矩阵实现,相应时间复杂度大不相同

2022 年秋季学期

更多基础概念 (两种"令人讨厌"的边)

- ▶ **自环** (loop): 点指向自身的边: $(v,v) \in E$, where $v \in V$
- ▶ 重边 (multiple edges): 同一对点间的多条边 (边集为多重集)
- ▶ 简单图 (simple graph): 不包含自环与重边的图
- ——在建模过程中,自环与重边并无大碍,甚至体现了图的强大;但是,图论问题的诸多算法都是基于简单图的,自环和重边通常是会导致算法失效的罪魁祸首。
- ——建议在求解问题的过程中,注意讨论是否为简单图,注意讨论自 环和重边带来的 corner cases。

更多基础概念 (关于点的一些性质)

- ▶ 邻居 (neighborhood): 无向图中,点 v 的邻居 N(v) 是一个点集,表示为 $N(v) = \{u | \{v, u\} \in E\}$
- ▶ 度 (degree): 与点相连的边的数量
 - ▶ 无向图中度的定义为点 v 的邻居集合大小: deg(v) = |N(v)|
 - ▶ 有向图中分为入度 (in-degree) 和出度 (out-degree)。 入度为指向点 v 的边数: $\deg_{in}(v) = |\{(u,v)|(u,v) \in E\}|$ 出度为点 v 引出的边数: $\deg_{out}(v) = |\{(v,u)|(v,u) \in E\}|$

——有一个应用场景对于度展开了深入讨论: 社交网络 (social network)。对于社交关系用图建模后,度就拥有了特殊含义。社交网络中,所有点度的分布服从幂律分布 (power-law distribution),这个图也被称作无标度网络(scale-free network)。

更多基础概念 (开始在图上进行"游走"了)

▶ 链 (chain、walk): 点和边交替出现的序列。一个长度为 m 的链表示为(其中 $e_{i_k} = (v_{i_{k-1}}, v_{i_k}) \in E$,无向图同理):

$$W = v_{i_0} e_{i_1} v_{i_1} e_{i_2} v_{i_2} \cdots e_{i_m} v_{i_m}$$

- ▶ 轨迹、迹 (trial): 所有边互不相同的链
- ▶ 路径、路 (path): 所有点互不相同的链
- **环、闭链** (cycle): 两个端点 v_{i_0} 和 v_{i_m} 相同的链
- lacktriangle 回路、闭迹 (circuit):两个端点 v_{i_0} 和 v_{i_m} 相同的迹

——至于链的英文为什么会是 walk, 这其实又是图论研究的一个分支: 随机游走 (random walk)。概率论知识在这里有非常巧妙的应用。

更多基础概念 ("游走"了发现走不到,图就分裂了)

- **连通性** (connectivity): 对于图中两个点 u 和 v, 如果存在 u 到 v 的路径, 那么 u 和 v 就是**连通**的
- ▶ 连通图 (connected graph): 分两种情况讨论
- <mark>无向图</mark>中,若任意两点都是连通的,那么就是一个**连通图**
- 有向图则分三类:
 - ► 若将所有的边变成无向边,生成的无向图是连通的,那么该有向图就是**弱连通的** (weakly connected)
 - ▶ 若对于任意两点 u, v, u 到 v 或者 v 到 u 存在路径,那么该有向图就是单连通的 (unilaterally connected)
 - ▶ 若对于任意两点 u, v, u 到 v 并且 v 到 u 存在路径,那么该有向图就是**强连通的** (strongly connected)
- ▶ 连通分量 (connected component): 在一个图中,满足上述不同 连通性质,相对应的极大子图,就是连通分量

2022 年秋季学期 《离散数学》 周建宇 11/31

更多基础概念 (如何比较两个图之间的关系?)

- ▶ 子图 (subgraph): 对于图 G 和 G', 如果 $V(G') \subseteq V(G)$ 且 $E(G') \subseteq E(G)$, 则称 G' 是 G 的子图
- ▶ 生成子图 (spanning subgraph): 如果图 G 的子图 G' 满足 V(G') = V(G), 那么 G' 是 G 的生成子图
- ▶ **图的同构** (graph isomorphism): 如果两个简单图 G 和 H 是同构的,当且仅当存在一个一一映射 $f:V(G)\to V(H)$,使得: 对于 $u,v\in V(G)$,如果 $(u,v)\in E(G)$,当且仅当 $(f(u),f(v))\in E(H)$ 。记作 $G\simeq H$ 。
- ——经典难题:判定两个图是否同构,还不能确定是否可在多项式复杂度内求解;更难的**子图同构问题**(给定图 G 和 H ,G 的点数少于 H ,判断是否存在 H 的子图与 G 同构),已被证明是 NP 完全问题
- ——不过对于特殊的图,比如树、平面图,图同构问题可以快速求解

图论 (graph theory): 刻画二元关系的强大模型

- ▶ 基本概念
- ▶ 特殊的图
- ▶ 连通性问题
- ▶ 生成树问题
- ▶ 路径问题
- ▶ 网络流问题
- ▶ 匹配问题
- ▶ 着色问题

图论: 特殊的图

树:没有回路,并且连通的无向图

正则图、完全图 二分图 平面图 循人以图 他人图 编特森图 有向无环图 树

连通性问题

无向图上的连通性问题 割点、桥边 双连通分量 有向图上的连通性问题 强连通分量 弱连通分量 半联通分量 最短路径 DAG 的关键路径 欧拉路径、哈密顿路径 生成树问题 最小生成树 最小树形图 斯坦纳树

匹配问题

图的匹配 最大权匹配 覆盖问题 独立集问题 着色问题 团问题

流问题

流网络 费用流 最优传输理论

组合数学

八种小球与盒子的问题小球是否可区分、盒子是否可区分、

容斥原理

鸽巢原理

母函数

波利亚定理

抽象代数

重新定义最基础的运算

群环域

阿贝尔群置换群模群多项式运算群 伽罗瓦域乘法逆元 (费马小定理)

可以解决什么问题? 尺规作图 五次方程

谢 谢