Algorithmic Foundations 2 - Tutorial Sheet 9 Graphs and Relations

1. Consider the following graph:

$$G = (\{a,b,c,d,e,f,g\},\{\{a,b\},\{b,c\},\{c,d\},\{a,d\},\{d,g\},\{d,e\},\{f,g\},\{e,f\}\})$$

- (a) Draw the graph
- (b) Is the graph G connected?
- 2. How many simple undirected graphs are there with 20 vertices and 60 edges?
- 3. Decide whether or not the two graphs below are isomorphic. Explain your answer.

4. Decide whether or not the two graphs below are isomorphic. Explain your answer.

- 5. What is an Euler circuit?
- 6. What is a Hamiltonian circuit?
- 7. Determine whether each of the following binary relations is
 - reflexive;
 - symmetric;
 - anti-symmetric;
 - transitive.
 - (a) The relation R_1 over $\mathbb{N} \times \mathbb{N}$ where $(a, b) \in R_1$ if and only if a | b.
 - (b) The relation R_2 over $S \times S$ where $S = \{w, x, y, z\}$ and

$$R_2 = \{(w, w), (w, x), (x, w), (x, x), (x, z), (y, y), (z, y), (z, z)\}.$$

AF2 - tutorial sheet 9

- (c) The relation R_3 over $\mathbb{Z} \times \mathbb{Z}$ where $(a, b) \in R_3$ if and only if $a \neq b$.
- (d) The relation R_4 over $P(X) \times P(X)$ where $X = \{1, 2, 3, 4\}$ and $(S, T) \in R_4$ if and only if $S \subseteq T$.
- (e) The relation R_5 over $People \times People$ where People is the set of all people and $(a, b) \in R_5$ if and only if a is younger than b.
- 8. Give an example of a relation on a set that is
 - (a) symmetric and anti-symmetric
 - (b) neither symmetric nor anti-symmetric
- 9. Draw the directed graph for the following relations

$$R_1 = \{(1,1), (1,3), (2,1), (2,2), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (4,4)\}$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

- 10. Suppose that the relation R over $A \times A$ is reflexive. Show that R^* is reflexive.
 - R^* is the transitive closure of R and is given by $R^* = \bigcup_{i=1}^{\infty} R^n = R \cup R^2 \cup R^3 \cup R^3 \cup \ldots$
- 11. If a relation R over $A \times A$ is irreflexive, then is the relation R^2 necessarily irreflexive?
- 12. Consider the partially ordered sets:
 - $(P(S), \subseteq)$ where $S = \{a, b, c\}$;
 - \bullet ($\{2,3,4,6,8,12,24\}$, |), i.e. where the relation is the divides relation.
 - (a) Draw a Hass diagram for each of the partially ordered sets.
 - (b) State both the maximal and minimal elements of each partially ordered set and the greatest and/or least elements when they exist.

Difficult/challenging questions.

- 13. What is the minimum number of edges required to produce a connected undirected graph?
- 14. Prove that an undirected graph with more than $(n-1)\cdot(n-2)/2$ edges is connected.
- 15. Prove that a relation R over $A \times A$ is transitive if and only if R^n is a subset of R for all $n \in \mathbb{Z}^+$.
- 16. Let R be a relation that is reflexive and transitive. Show that $R^n = R$ for all $n \ge 1$.
- 17. Let R be a symmetric relation. Show that R^n is symmetric for all $n \in \mathbb{Z}^+$.