IMPLEMENTASI METHONTOLOGY UNTUK PEMBANGUNAN MODEL ONTOLOGI PROGRAM STUDI PADA PERGURUAN TINGGI DI BALI

Kadek Dwi Pradnyani Novianti

Dosen Program Studi Informasi STMIK STIKOM Bali novianti@stikom-bali.ac.id

Abstrak

Pendidikan tinggi di Indonesia memiliki banyak jenis penyelenggara seperti Universitas, Sekolah Tinggi, Akademi, Polieknik, dan Institut. Pemilihan program studi pada perguruan tinggi merupakan langkah penting bagi seorang calon mahasiswa karena hal ini berkaitan dengan bidang pekerjaan yang akan ditekuni nantinya. Maka dari itu, deskripsi informasi program studi harus dijabarkan dengan baik. Ontologi dapat menjadi sebuah solusi untuk dapat mendeskripsikan informasi mengenai program studi secara eksplisit. Pembangunan model ontologi dilakukan menggunakan metodologi METHONTOLOGY. Metodologi ini memiliki kemampuan untuk mendeskripsikan setiap aktivitas secara detail. Dalam upaya untuk mengetahui kualitas ontologi yang dibangun dapat diuji menggunakan Schema Metrics OntoQA. Ontologi Program Studi yang dibangun menghasilkan 4 class, 8 datatype properties, dan 4 object properties. Pengujian menunjukan bahwa cakupan domain pengetahuan dari ontologi Program Studi masih dikategorikan dalam cakupan yang umum dan dapat dianggap kurang membawa informasi. Diharapkan pada penelitian selanjutnya ontologi ini dapat dikembangkan untuk meningkatkan kualitas ontologi dan kemudian diterapkan ke dalam sistem pencarian Program Studi berbasis semantik.

Kata-kata kunci: ontologi, program studi, METHONTOLOGY

1. Pendahuluan

Pendidikan merupakan faktor utama pembentuk pribadi manusia. Pendidikan di Indonesia, ditempuh oleh setiap orang secara berjenjang mulai dari pendidikan tingkat usia dini, pendidikan tingkat dasar, tingkat menengah dan pendidikan tingkat tinggi. Pengetahuan yang diperoleh selama proses menempuh pendidikan tersebut dapat digunakan sebagai pedoman menciptakan inovasi dalam berbagai bidang dan aspek kehidupan masyarakat (Atmanti, 2005). Pendidikan tinggi menjadi tingkatan terakhir yang dapat dilalui oleh seseorang sebelum menjalani dunia kerja. Pendidikan tinggi di Indonesia diselenggarakan oleh banyak jenis satuan penyelenggara, seperti akademi, institut, sekolah tinggi, politeknik dan universitas. Proses pemilihan program studi dalam perguruan tinggi menjadi salah satu hal penting yang harus diperhatikan oleh seorang calon mahasiswa. Hal ini berkaitan dengan bidang yang akan ditekuni ketika nantinya menjalani kehidupan di dunia kerja. Pemilihan program studi yang tepat dapat membekali ilmu pengetahuan yang tepat pula untuk bidang pekerjaan tersebut.

Banyaknya perguruan tinggi yang tersebar di suatu daerah di Indonesia khususnya di Provinsi Bali dan program studi yang dimiliki sangatlah beragam. Keberagaman ini menjadikan calon mahasiswa memiliki banyak alternatif pilihan program studi. Informasi sebuah mengenai program studi dideskripsikan dengan baik. Penggunaan ontologi sebagai teknik representasi informasi menjadi pilihan solusi dalam permasalahan ini. Ontologi dapat digunakan untuk mengekspresikan informasi secara eksplisit dan semantik baik yang terstruktur maupun semi terstruktur (Hu dan Zhao, 2007).

ISSN: 2338-2724

METHONTOLOGY merupakan salah satu metodologi pembangunan model ontologi, dimana metodologi ini memiliki keunggulan terkait dengan deskripsi setiap aktivitas yang harus dilakukan secara mendetail. Selain itu, METHONTOLOGY juga memiliki kemampuan yaitu ontologi yang dibangun dapat digunakan kembali untuk pengembangan sistem lebih lanjut.

Maka dari itu, diusulkan sebuah penelitian untuk membangun sebuah model ontologi yang merepresentasikan domain pengetahuan mengenai program studi pada perguruan tinggi Penelitian ini diharapkan mampu di Bali. membangun model ontologi yang memiliki desain kualitas yang baik dengan metodologi memanfaatkan METHONTOLOGY.

2. Ontologi

Pada bidang kecerdasan buatan dan web, ontologi menggambarkan konsep domain dan hubungannya. Ontologi menjelaskan bagaimana teori tentang suatu objek dan keterkaitan diantara mereka (Chandrasekaran, 1999). Ontologi dapat digunakan dalam berbagai aplikasi yang secara eksplisit memiliki pengetahuan vang tertanam didalamnya (Gomez-Perez, 2002). Nov dan McGuinness (2001) mendefinisikan bahwa ontologi adalah sebuah deskripsi formal yang eksplisit dari konsep dalam sebuah domain yang terdiri dari classes (kadang disebut sebagai konsep), properti dari masing-masing konsep dan batasan yang disebut facets (role restrictions).

Sebuah ontologi mendefinisikan kosakata umum bagi para peneliti yang digunakan untuk berbagi informasi dalam domain. Hal ini mencakup definisi dari konsep dasar dalam domain dan hubungan diantara mereka. Terdapat beberapa tujuan untuk mengembangkan ontologi yaitu sebagai berikut.

- a. Berbagi pemahaman umum dari struktur informasi antar pengguna atau *software* agent
- b. Memungkinkan kembali penggunaan domain pengetahuan
- c. Membuat asumsi domain yang eksplisit
- d. Memisahkan domain pengetahuan dari operasional pengetahuan
- e. Menganalisis domain pengetahuan.

Secara teknis, ontologi direpresentasikan dalam bentuk sebagai berikut.

- a. *Class* menerangkan konsep (atau makna) suatu domain.
- b. Properti menerangkan konsep nilai-nilai, status, ukuran untuk domain.
- Slot menerangkan representasi dari kerangka pengetahuan atau relasi yang menerangkan properti dari kelas dan instances.
- d. *Instances*, adalah individu yang telah dibuat (diciptakan).

3. RDF

RDF (*Resource Development Framework*) adalah layer untuk merepresentasikan semantik dari isi halaman web. RDF merupakan sebuah model sederhana untuk mendeskripsikan

hubungan antara sumber daya yang merupakan *properties* dan *values*.

ISSN: 2338-2724

Model RDF adalah suatu triple yang dinamakan statement. Dimana statement terdiri dari satu sumber daya (subject) vang dihubungkan ke sumber daya yang lain atau satu literal (object) melalui satu arc dari sumber daya ketiga yaitu predicate. Satu dapat didefinisikan statement sebagai <subject> mempunyai satu properti cobject> yang bernilai <object> seperti yang digambarkan pada Gambar 1.

Gambar 1. Contoh Model RDF

4. Web Semantik

Kata semantik berarti makna atau sesuatu berhubungan dengan ilmu vang mempelajari makna dan perubahan makna. Berners-Lee (2006)menyebutkan makna dari suatu data yang terdapat dalam web dapat dipahami bukan hanya oleh manusia mesin namun juga oleh (machine understandable).

Web semantik adalah perluasan dari World Wide Web dengan teknik baru dan standar terhadap interoperation dan pemahaman oleh komputer. Web memiliki jumlah data yang hanya besar, tapi jika mengandalkan kemampuan komputer saja, tentunya komputer tidak bisa memahami atau membuat keputusan tentang data yang dimilikinya, sehingga diperlukan web semantik untuk menyelesaikannya. Web semantik diperlukan untuk mengekspresikan informasi yang tepat sehingga software agent dapat memproses seperangkat data yang sama untuk membagikan sebuah pemahaman tentang istilah yang mendeskripsikan maksud data.

Berners-Lee (2006) membangun berbagai infrastruktur untuk keperluan data yang bisa lebih dipahami mesin. Beberapa komponen yang telah dibangun diantaranya adalah RDF (Resource Description Framework) serta OWL (Ontology Web Language). Komponen utama web semantik ini didasarkan pada komponen lainnya yang telah dibangun oleh W3C (World Wide Web Consortium) yaitu XML (Extensible Markup Language), URI (Uniform Resource Identifier), maupun HTTP (Hypertext Transfer Protocol).

5. METHONTOLOGY

METHONTOLOGY merupakan satu metodologi untuk pengembangan ontologi. **METHONTOLOGY** (Gomez-Perez, 2003) menawarkan pelaksanaan aktivitas di konseptualisasi yang detail setiap tahapannya dan juga memiliki kemampuan merekayasa untuk ulang ontologi. METHONTOLOGY dapat dilihat pada Gambar 2. Tahapan tugas dalam METHONTOLOGY dapat dijelaskan sebagai berikut.

- a. Membangun *Glossary of Terms*Tahapan ini merupakan tahapan untuk membangun *glossary of terms* yang mencakup keseluruhan *terms* relevan dalam sebuah domain.
- b. Membangun Concept Taxonomies

 Concept Taxonomies dibangun untuk
 mendefinisikan hirarki concept setelah
 keseluruhan terms didaftarkan dalam
 glossary of terms.

Gambar 2. Metodologi METHONTOLOGY (Gomez-Perez, 2003)

- c. Membangun *Ad hoc Binary Relation*Pembangunan *ad hoc binary relation*bertujuan untuk menyusun hubungan *ad hoc*antar *concept* dari *concept taxonomies* yang sama (atau berbeda).
- d. Membangun Concept Dictionary

 Concept dictionary merupakan tahapan untuk
 menentukan sifat dan hubungan yang
 menggambarkan setiap concept taxonomies,
 ad hoc binary relation dan instances dalam
 concept dictionary.
- e. Mendeskripsikan *Ad Hoc Binary Relation*Tahapan tugas ini bertujuan untuk mendeskripsikan secara detail diagram *ad hoc binary relations* yang telah dideskripsikan dalam *concept dictionary*.
- f. Mendeskripsikan *Instance Attribute*Tujuan dari tahapan ini adalah untuk
 mendeskripsikan secara detail seluruh *instance*attributes yang sudah terdaftar dalam concept
 dictionary.

- g. Mendeskripsikan *Class Attribute*Tahapan tugas ini digunakan untuk
 mendeskripsikan tiap *class attributes*yang muncul pada *concept dictionary*.
- h. Mendeskripsikan *Constant*Pada tahapan ini digunakan untuk mendeskripsikan masing-masing konstan dan memproduksi tabel konstan. Konstan menspesifikasi informasi yang berkaitan dengan domain pengetahuan, dimana konstan selalu memiliki nilai yang sama dan biasanya digunakan dalam sebuah formula.
- Mendeskripsikan Formal Axioms
 Pendeskripsian axioms dalam METHONTOLOGY dilakukan dengan menentukan informasi yang terdiri dari name, natural language description, dan logical expression.
- j. Mendeskripsikan Rules
 Tahapan ini bertujuan untuk mengidentifikasi rules yang diperlukan di

dalam ontologi dan kemudian dideskripsikan

k. Mendeksripsikan Instances

ke dalam tabel rules.

Tahapan tugas terakhir adalah mendeskripsikan informasi dari masing-masing instances. Masing-masing instance didefinisikan secara detail seperti name, name of concept, dan attribute values.

6. Schema Metrics OntoQA

Penilaian kualitas ontologi (Tartir, 2005) menjadi hal yang penting untuk beberapa alasan seperti memungkinkan pengembang ontologi untuk mengenali area yang perlu diperbaiki, mengetahui bagian yang mungkin mengalami masalah, dan membandingkan beberapa ontologi sebagai bahan pertimbangan. OntoQA digunakan untuk menggambarkan *metrics* yang berbeda dari sebuah ontologi menggunakan kosakata yang didefinisikan di dalam RDFS atau dokumen OWL.

Metrics yang dimaksudkan adalah untuk mengevaluasi aspek-aspek tertentu dari ontologi dan potensi mereka untuk merepresentasikan pengetahuan. Pada OntoQA terdapat dua kategori metrics yaitu schema metrics dan instances metrics. Pada penelitian ini kategori metrics yang akan digunakan untuk mengevaluasi ontologi schema metrics. Schema adalah metrics digunakan untuk mengevaluasi desain ontologi potensinya untuk merepresentasikan pengetahuan kaya. yang Schema metrics menunjukan richness, width, depth, dan inheritance dari sebuah skema ontologi. Terdapat 3 jenis pengujian Schema Metrics OntoQA seperti berikut ini.

a. Relationship Richness (RR)

Relationship Richness (RR) menggambarkan keragaman hubungan di dalam sebuah ontologi. Sebuah ontologi yang mengandung lebih banyak relasi dibandingkan relasi class-subclass bersifat lebih kaya dibandingkan dengan taksonomi yang hanya memiliki relasi class-subclass saja. RR didefinisikan sebagai rasio jumlah relasi (P) yang ada di dalam skema ontologi dibagi jumlah subclass (SC) ditambah dengan jumlah relasi seperti pada persamaan (1).

$$RR = \frac{|P|}{|SC| + |P|} \dots (1)$$

Nilai RR yang semakin mendekati satu menunjukan bahwa ontologi mengandung lebih banyak relasi *non-inheritance*. Hal tersebut berarti bahwa ontologi membawa pengetahuan

yang lebih kaya dibandingkan dengan ontologi yang memiliki nilai RR mendekati

ISSN: 2338-2724

b. Attribute Richness (AR)

Attribute Richness (AR) menggambarkan yang jumah atribut didefinisikan untuk tiap class dimana AR mengindikasikan kualitas desain ontologi dan jumlah informasi yang berkaitan dengan data instances. Secara umum diasumsikan bahwa semakin banyak atribut yang didefinisikan maka semakin banyak pengetahuan yang dinyatakan dalam ontologi. AR didefinisikan sebagai rata-rata jumlah atribut per class. Perhitungan AR dilakukan dengan membagi jumlah atribut untuk semua class dengan jumlah class seperti pada persamaan (2).

$$AR = \frac{|att|}{|C|} \dots (2)$$

Semakin tinggi nilai AR maka semakin banyak jumlah informasi yang mampu disediakan per *class*-nya.

c. Inheritance Richness (IR)

Inheritance Richness (IR) menggambarkan karakteristik ontologi apakah memiliki cakupan domain pengetahuan yang umum atau spesifik. IR didefinisikan sebagai rata-rata jumlah subclass per class. Jumlah subclass (C1) untuk class Ci didefinisikan sebagai $\left|H^{C}(C_{1},C_{i})\right|$ seperti pada persamaan (3).

$$IR_s = \frac{\sum_{C_i \in C} |H^c(C_1, C_i)|}{|C|} \dots (3)$$

Ontologi dengan nilai IR yang kecil merefleksikan tipe representasi pengetahuan yang lebih rinci terhadap suatu domain (*specific domain*), sementara nilai IR yang lebih besar menunjukan bahwa ontologi merepresentasikan pengetahuan yang bersifat umum.

7. Hasil dan Pembahasan

Data yang digunakan dalam penelitian ini adalah data program studi pada Perguruan Tinggi di Provinsi Bali. Data ini diperoleh dari Pangkalan Data Pendidikan Tinggi Kementerian Riset, Teknologi dan Pendidikan Tinggi (forlap.dikti.go.id). Data yang digunakan adalah 30 perguruan tinggi di Provinsi Bali sebagai data sampel.

7.1 Konseptual Ontologi

Konseptualisasi ontologi (Gomez-Perez, 2003) bertujuan untuk mengatur dan mengelola pengetahuan yang diperoleh selama proses akusisi pengetahuan. Ketika model konseptual dibangun, metodologi mengusulkan untuk mengubah model konseptual menjadi model formal, yang kemudian diimplementasikan dengan bahasa implementasi ontologi.

Konseptualisasi ontologi program studi dibangun menggunakan metodologi METHONTOLOGY. Pembangunan ontologi ini tidak menggunakan keseluruhan tahapan yang ada karena pada tahapan-tahapan tertentu komponen tersebut tidak dapat didefinisikan. Hasil konseptualisasi ontologi menghasilkan 9 buah concept yaitu ProgramStudi, Jenjang, Lokasi. PerguruanTinggi, Universitas. SekolahTinggi. Akademi. Institut. Politeknik seperti pada Gambar 3. Gambar merupakan concept taxonomies dari ontologi program studi yang menggambarkan concept dan ad hoc binary relation yang diperoleh. Secara rinci komponen ontologi yang terbentuk pada tahapan konseptual ontologi dapat dilihat pada Tabel 1.

ISSN: 2338-2724

Gambar 3. Concept Taxonomies Ontologi Program Studi

Tabel 1. Glossary of Terms Ontologi Program Studi

NAME	DESCRIPTION	TYPE
PerguruanTinggi	Perguruan tinggi di Bali	Concept
Universitas	Kategori perguruan tinggi di Bali	Concept
Sekolah Tinggi	Kategori perguruan tinggi di Bali	Concept
Akademi	Kategori perguruan tinggi di Bali	Concept
Institut	Kategori perguruan tinggi di Bali	Concept
Politeknik	Kategori perguruan tinggi di Bali	Concept
Lokasi	Lokasi perguruan tinggi di Bali	Concept
Jenjang	Jenjang pendidikan yang ada pada perguruan tinggi di Bali	Concept
ProgramStudi	Program studi yang dimiliki oleh perguruan tinggi di Bali	Concept
hasProgramStudi	Relasi antara Perguruan Tinggi dan Program Studi	Relation
hasJenjang	Relasi antara ProgramStudi dan Jenjang	Relation
hasLokasi	Relasi antara Perguruan Tinggi dan Lokasi	Relation
isProdiof	Relasi antara Program Studi dan PerguruanTinggi	Relation

7.2 Formalisasi Ontologi

Perancangan konseptual ontologi yang telah dilakukan menggunakan **METHONTOLOGY** kemudian diformalisasikan menggunakan Protégé 4.3. Pada perangkat lunak Protégé 4.3 setiap bagian ontologi didefinisikan sesuai dengan hasil dari tiap tahapan tugas pada METHONTOLOGY, dimana concept didefinisikan sebagai class, adhocbinary relation didefinisikan sebagai object properties. class attribute instance attribute didefinisikan sebagai datatype properties, dan instances didefinisikan sebagai individual.

Class yang terbentuk dalam ontologi Program Studi pada Gambar 4 terdiri dari 4 class yaitu Jenjang, Lokasi, PerguruanTinggi, ProgramStudi.

Gambar 4. Class pada Ontologi Program Studi

digunakan Datatype properties untuk menghubungkan individu sebuah ke nilai data yang konkrit yang memiliki tipe data. buah 8 datatype properties dalam ontologi program studi yang digambarkan pada Gambar

Object properties merupakan relasi yang menghubungkan dua class. Ontologi Program Studi mendefinisikan 3 buah object properties seperti pada Gambar 6. Sebuah object properties dapat memiliki invers property. Jika sebuah object property menghubungkan individual a dan individual b maka invers property sebaliknya akan menghubungkan individual b dengan individual a.

Gambar 5. Datatype Properties Ontologi Program Studi

Gambar 6. Object Properties Ontologi Program Studi

Individual pada Protégé 4.3 merupakan representasi dari instance. Individual dari setiap atribut yang dimiliki masing-masing class didaftarkan pada ontologi Program Studi yang diimplementasikan menggunakan Protégé 4.3.

ISSN: 2338-2724

Gambar 7. Individual Ontologi Program Studi

model formal Setelah ontologi dibangun, kemudian dilakukan inferensi menggunakan Pellet Reasoner untuk mengecek konsistensi ontologi. Pellet Reasoner (Abburu, 2012) merupakan open source java berbasis OWL-DL Reasoner yang dikembangkan oleh grup The Mind Swap. Ketika ontologi sudah dianggap konsisten oleh reasoner, maka ontologi dapat diimplementasikan pada suatu sistem yang dibangun. Dari hasil pengujian konsistensi, ontologi Program Studi sudah konsisten yang dibuktikan dengan tidak munculnya pesan Reasoner Error.

7.3 Schema Metrics OntoQA

Kualitas ontologi Program Studi dievaluasi menggunakan *Schema Metrics* OntoQA. Evaluasi ontologi terdiri dari tiga perhitungan yaitu sebagai berikut.

a. Relationship Richness (RR)

Relationship Richness (RR) digunakan untuk mengetahui keberagaman hubungan di dalam ontologi. Perhitungan nilai RR untuk ontologi Program Studi sebagai berikut.

$$RR = \frac{|P|}{|SC| + |P|} = \frac{4}{5+4} = 0.44$$
 ...(4)

Pada ontologi Program Studi, relasi *non-inheritance* berjumlah 4 sedangkan relasi *inheritance* berjumlah 5 sehingga menghasilkan nilai RR sebesar 0,44. Nilai RR memiliki skala 0 sampai 1 dimana nilai RR pada ontologi Program Studi mendekati 0 yang mengindikasikan bahwa sebagian

ISSN: 2338-2724

besar relasi merupakan relasi class-sublclass. Nilai RR jika diklasifikasikan ke dalam 5 level yang menggambarkan kapabilitas ontologi dalam membawa informasi dapat dilihat pada Tabel 2.

Tabel 2. Skala Klasifikasi Nilai RR

Rentang Skala	Nilai Skala
0,00-0,20	Minimum
0,21-0,40	Kurang
0,41 - 0,60	Cukup
0,61-0,80	Kaya
0,80 - 1,00	Maksimum

Berdasarkan Tabel 2, nilai RR yang diperoleh adalah 0.44. sehingga dapat diklasifikasikan ke dalam kategori cukup terkait dengan pengetahuan yang dibawa oleh ontologi Program Studi.

Attribute Richness (AR)

Attribute Richness (AR) digunakan untuk mengetahui kualitas desain ontologi dan jumlah informasi yang berkaitan dengan data instances. Perhitungan nilai AR pada ontologi Program Studi adalah sebagai berikut.

$$AR = \frac{|att|}{C} = \frac{8}{4} = 2$$
(5)

Pada ontologi Program Studi, terdapat 8 atribut dari 4 class sehingga mendapatkan nilai AR adalah 2. Hal ini berarti karakteristik ontologi yang dikembangkan memiliki rata-rata 2 atribut per class. Semakin tinggi nilai AR maka ontologi memiliki semakin banyak jumlah informasi yang mampu disediakan per class-nya.

Inheritance Richness (IR)

Inheritance Richness (IR) digunakan untuk mengetahui karakteristik ontologi apakah merepresentasikan cakupan domain pengetahuan yang umum atau spesifik. Perhitungan nilai IR pada ontologi Program Studi sebagai berikut.

$$IR_s = \frac{\sum_{C_i \in C} |H^c(C_1, C_i)|}{|C|} = \frac{5}{1} = 5 \dots (6)$$

Pada ontologi Program Studi memiliki 5 subclass untuk 1 buah class yang memiliki subclass tersebut sehingga menghasilkan nilai IR sebesar 5. Dalam upaya untuk mengetahui cakupan domain ontologi Program Studi, maka IR pada ontologi Program dibandingkan dengan nilai IR dari ontologi yang telah ada (Tartir, 2005). Beberapa nilai IR yang dirangkum sebagai perbandingan adalah SWETO, TAP, dan GlycO. SWETO merupakan ontologi yang bersifat umum, dengan cakupan domain publikasi, affiliasi, geografi, dan terorisme. TAP bersifat umum yang terbagi atas 43 domain, dimana beberapa domainnya terdiri dari publikasi, olahraga dan geografi. GlycO berdasarkan nilai IR-nya merupakan ontologi dengan domain spesifik. Nilai IR dari masingmasing ontologi dapat dilihat pada Tabel 3.

Tabel 3. Perbandingan Nilai IR Ontologi

No	Ontologi	IR
1	TAP (Guha & McCool, 2003)	5,36
2	Ontologi Program Studi	5,00
3	PSM (Tan, et al, 2012)	4,59
4	SWETO (Aleman-Meza &	4,00
	Halaschek, 2004)	
5	GlycO (Sheth & York, 2004)	1,56

Nilai IR dari TAP dan SWETO digunakan sebagai acuan untuk memberikan skala pada nilai IR sebuah ontologi. Rentangan nilai IR mulai dari 0 sampai dengan 5,36 dikategorikan menjadi 4 level maka didapatkan rentangan skala seperti pada Tabel 4.

Tabel 4. Skala Klasifikasi Domain Ontologi

Rentang Skala	Nilai Skala
0,00 - 1,34	Spesifik
1,35 - 2,68	Cukup Spesifik
2,69 - 4,02	Cukup Umum
4,03 – 5,36	Umum

Berdasarkan rentangan skala nilai IR pada Tabel 4, maka ontologi Program Studi menunjukan karakteristik domain yang umum.

Kesimpulan

Ontologi Program Studi yang dibangun berdasarkan metodologi METHONTOLOGY memiliki 4 class, 8 datatype properties, dan 4 object properties. Berdasarkan pengujian Schema Metrics OntoQA, ontologi ini dianggap masih memiliki cakupan domain pengetahuan yang umum dan masih kurang dalam membawa informasi.

Pengembangan ontologi untuk mendapatkan kualitas desain ontologi dapat **METHONTOLOGY** dilakukan karena

ISSN: 2338-2724

memiliki kemampuan untuk melakukan hal tersebut. Selain itu, ontologi Program Studi selanjutnya dapat dijadikan dasar pembangunan untuk sistem pencarian program studi pada perguruan tinggi yang ada di Provinsi Bali.

DAFTAR PUSTAKA

- Atmanti, Hastarini Dwi. 2005. *Investasi Sumber Daya Manusia Melalui Pendidikan*. Jurnal Dinamika Pembangunan Vol. 2 No 1.
- Zhao, Y & Hu, C. 2007. An Ontology-Based Framework for Knowledge Service in Digital Library. International Conference on Wireless Communications, Networking and Mobile Computing.
- Chandrasekaran, B & Josephson, J. R & Benjamins, V. R. 1999. What Are Ontologies, and Why Do We Need Them?. IEEE Intell. Syst. Their Appl. vol. 14, no. 1.
- Gomez-Perez, A & Corcho, O. 2002. *Ontology Languages for the Semantic Web*. IEEE Intell. Syst., vol. 17, no. 1.
- Noy, N. F. & McGuinness, D. L. 2001. Ontology Development 101: A Guide to Creating Your First Ontology. Stanford University.
- N. Shadbolt, W. Hall, and T. Berners-Lee. 2006. *The Semantic Web Revisited*. IEEE Intell. Syst., vol. 21, no. 3, pp. 96–101.
- Gómez-Pérez, A & Fernández-López, M. & Corcho, O. 2003. Ontological Engineering with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer.
- Tartir, S, Arnipar, I. B, Moore M, Sheth, A. P, and Aleman-Meza, B. 2005. OntoQA: Metric-Based Ontology Quality Analysis.