Essentials of MOSFETs

Unit 3: MOS Electrostatics

Lecture 3.10: Unit 3 Recap

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Unit 3

Unit 3: electrostatics

$$\downarrow I_D/W = |Q_n(V_{GS}, V_{DS})| \langle \upsilon_x(V_{GS}, V_{DS}) \rangle$$

Energy band approach to MOS electrostatics

Charge vs. surface potential

Depletion approximation

Gate voltage and surface potential

Approximate gate vs. surface potential

$$V_G' = -\frac{Q_S(\psi_S)}{C_{ox}} + \psi_S \quad \text{(exact)}$$

$$\psi_{S} \approx \frac{V_{G}'}{m}$$

$$m = 1 + C_{D} / C_{ox}$$

$$m \ge 1$$

(depletion)

Surface potential vs. gate voltage

Workfunctions

Charge at the oxide-semiconductor interface

Flatband voltage

$$V_G = V_{FB} - \frac{Q_S(\psi_S)}{C_{ox}} + \psi_S$$

$$V_{FB} = \phi_{ms} - \frac{Q_F}{C_{ox}}$$

for
$$V_G = 0$$
, $\psi_S \neq 0$

MOS small signal capacitance

DC bias from accumulation to inversion

MOS high frequency CV

High frequency vs. low frequency CV

Mobile charge

The mobile charge carries the current.

$$Q_n = -q \int_0^\infty n(y) dy \ C/cm^2$$

(electrons in a P-type semiconductor)

Expect: $Q_n \propto e^{q\psi_S/k_BT}$

Mobile charge vs. surface potential

Bulk semiconductor:

$$\psi_S < 2\psi_B$$
: $Q_n(\psi_S) \approx -\left(\frac{n_i^2 k_B T/N_A}{\sqrt{(2qN_A \psi_S/\varepsilon_S)^{1/2}}}\right) e^{q\psi_S/k_B T}$

$$\psi_S > 2\psi_B$$
: $Q_n(\psi_S) = -\sqrt{2\varepsilon_S k_B T(n_i^2/N_A)} \times e^{q\psi_S/2k_B T}$

Fully depleted, ultra thin body:

$$\psi_S > 0$$
:
$$Q_n(\psi_S) = -q n_{S0} e^{q \psi_S / k_B T}$$

Mobile charge vs. gate voltage

bulk
$$V_G << V_T : Q_n(V_G) = -(m-1)C_{ox}(\frac{k_B T}{q})e^{q(V_G - V_T)/mk_B T}$$

$$V_G >> V_T$$
: $Q_n = -C_{inv}(V_G - V_T)$ $C_{inv} < C_{ox}$

FD UTB

$$V_G \ll V_T: \qquad Q_n(V_G) = -C_Q\left(\frac{k_B T}{q}\right) e^{q(V_G - V_T)/k_B T} \qquad m = 1$$

$$V_G >> V_T$$
: $Q_n(V_G) = -C_{inv}(V_G - V_T)$ $C_{inv} < 2C_{ox}$

- Threshold voltage decreases as the drain voltage increases
- 2) Threshold voltage decreases as the channel length decreases
- DIBL increases as channel length decreases

- 1) SS may increase as the drain voltage increases
- SS may increase as the channel length decreases
- 3) In severe cases, the device may "punch through"

1) Output resistance decreases as channel length decreases.

Barrier lowering view of 2D electrostatics

Controlling 2D electrostatics

"Transistors go Vertical," IEEE Spectrum, Nov. 2007.

See also: "Integrated Nanoelectronics of the Future," Robert Chau, Brian Doyle, Suman Datta, Jack Kavalieros, and Kevin Zhang, *Nature Materials*, **6**, 2007

"Well-tempered MOSFET"

1)
$$Q_n(0) \approx -C_{inv}(V_{GS} - V_T)$$

2) region under strong control of gate (*m* ~ 1)

$$V_T = V_{T0} - \delta V_{DS}$$

 $m = \text{constant}$

3) Additional increases in V_{DS} beyond V_{DSAT} drop near the drain and have a **small effect** on I_D (small DIBL)

Level 0 VS model

1)
$$I_D/W = |Q_n(V_{GS})|\langle v_x(V_{DS})\rangle$$

2)
$$Q_{n}(V_{GS}, V_{DS}) = -C_{ox}(V_{GS} - V_{T})$$
 $(V_{GS} > V_{T})$
 $V_{T} = V_{T0} - \delta V_{DS}$
 $Q_{n}(V_{GS}) = 0$ $(V_{GS} \le V_{T})$

3)
$$\langle \upsilon(V_{DS}) \rangle = F_{SAT}(V_{DS})\upsilon_{sat}$$

4)
$$F_{SAT}(V_{DS}) = \frac{V_{DS}/V_{DSAT}}{\left[1 + (V_{DS}/V_{DSAT})^{\beta}\right]^{1/\beta}}$$

$$V_{DSAT} = \upsilon_{sat} L / \mu_n$$

There are only 8 devicespecific parameters in this model:

$$C_{ox}, V_{T0}, \delta, \upsilon_{sat}, \mu_n, L$$

 $R_{SD} = R_S + R_D, \beta$

Level 1 VS Model

Lundstrom: 2018

1)
$$I_D/W = |Q_n(V_{GS}, V_{DS})| \langle \upsilon_x(V_{DS}) \rangle$$

2)
$$Q_n(V_{GS}, V_{DS}) = -C_{inv}m(k_BT/q)\ln(1 + e^{q(V_{GS}-V_T + \alpha(k_BT_L/q)F_f)/mk_BT})$$

 $V_T = V_{T0} - \delta V_{DS}$

3)
$$\langle \upsilon_x(V_{DS}) \rangle = F_{SAT}(V_{DS})\upsilon_{sat}$$

4)
$$F_{SAT}(V_{DS}) = \frac{V_{DS}/V_{DSAT}}{\left[1 + (V_{DS}/V_{DSAT})^{\beta}\right]^{1/\beta}}$$

$$V_{DSAT} = \frac{v_{sat}L}{\mu_n}$$

Only 10 devicespecific parameters in this model:

$$C_{inv}, V_{T0}, \delta, m, \upsilon_{sat}, \mu_n,$$
 $L, R_{SD} = R_S + R_D,$
 α, β

Subthreshold swing

On to Unit 4

Unit 3: electrostatics

Unit 4: transport