(Justifique las respuestas)

Cuestión 1 $(1\frac{1}{2} \text{ puntos})$

Dados los siguientes lenguajes:

$$L_1 = \{x \in \{a, b\}^* : ab \notin Seg(x)\}$$

 $L_2 = \{axa : x \in \{a, b\}^*\}$

(a) Enuncie las primeras diez palabras en orden canónico de L_1

Solución:

 λ , a, b, aa, ba, bb, aaa, baa, bba, bbb

(b) Describa el lenguaje resultado de la operación $L_1 \cap L_2$

Solución:

$$L_1 \cap L_2 = \{a^n : n \ge 2\}$$

(c) Describa el lenguaje resultado de la operación $(ab)^{-1}L_2$

Solución:

$$(ab)^{-1}L_2 = \{a,b\}^*\{a\}$$

Cuestión 2 (4 puntos)

Proporcione un AFD para los lenguajes:

(a)
$$L = \{x \in \{a, b\}^* : |x|_a \ge 1 \land |x|_b \le 1\}$$

Solución:

(b) $L = \{a^n b^m : m \text{ es el resto entero de dividir n por 2}\}$

Cuestión 3 (3 puntos)

Obtenga un AFD equivalente al siguiente autómata finito:

Solución:

Cuestión 4 (1½ puntos)

Pronúnciese sobre los siguientes enunciados:

(a) Para todo lenguaje L, se cumple que $(L^2)^* = (L^*)^2$.

Solución:

El enunciado es falso. Como contraejemplo, sea $L=\{a\}$. Nótese que:

$$\begin{array}{lll} L^* &=& (L^*)^2 &=& \{a\}^* \\ L^2 &=& \{aa\} \\ (L^2)^* &=& \{a^{2n} \ : \ n \geq 1\} \end{array}$$

y que el enunciado no se cumple.

(b) Dados dos lenguajes L_1 y L_2 sobre Σ y un símbolo $a \in \Sigma$, si se cumple que $a^{-1}L_1 = a^{-1}L_2$ entonces $L_1 = L_2$.

Solución:

El enunciado es falso. Para demostrarlo daremos un contrajemplo. Sean los lenguajes $L_1 = \{a, b\}$ y $L_2 = \{a, bb\}$. Nótese que $a^{-1}L = a^{-1}L_2 = \{\lambda\}$ pero que $L_1 \neq L_2$.

(c) Dado un homomorfismo $h: \Sigma \to \Delta^*$ y dos lenguajes L_1 y L_2 sobre Σ , si se cumple que $L_1 \neq L_2$ entonces $h(L_1) \neq h(L_2)$.

Solución:

El enunciado es falso. Para demostrarlo daremos un contrajemplo. Considerese el siguiente homomorfismo:

$$\begin{cases} h(a) = \lambda \\ h(b) = \lambda \end{cases}$$

y los lenguajes $L_1=\{a,b\}$ y $L_2=\{a,bb\}$. Nótese que $L_1\neq L_2$, pero que $h(L)=h(L_2)=\{\lambda\}$.