Statistical Analysis with Missing Data

Module 3. Imputation

Problem: let's make data Variables in "completed" The data set $Y_1 \quad Y_2 \quad Y_3$ Complete cases Cases with some missing values Y: Discrete, continuous or semi-continuous as well as D_{obs} = Observed data: multivariate D_{mis} = Missing data:

Advantages of completing missing data

- Multiple users analyzing different subsets of variables
- Multiple analytical techniques
- Different skill levels dealing with incomplete data
- Analysis to be performed with complete data is known
- Software to perform complete data analysis is available
- Assume missing at random.
 - That is conditional on the observed characteristics the residual differences between those with missing and those with no missing values are random

Imputation

Fill in the missing values with estimates

Features of Imputation

Good

Rectangular File

Retains observed data
Handles missing data once
Exploits incomplete cases

Bad

Naïve methods can be bad

Invents data – Understates uncertainty

Different ways for imputing data: (a) Imputing Means

Unconditional

Conditional on observed variables

Properties of Mean Imputation

- Marginal distributions, associations estimated from filled-in data are distorted
- Standard errors of estimates from filledin data are too small, since
 - Standard deviations are underestimated
 - "Sample size" is overstated
- Conditional better than unconditional mean, which can be worse than complete cases

(b) Stochastic Imputation

Imputations can be random draws from a predictive distribution for the missing

values

$$\hat{y}_{i2} = \hat{E}(y_{i2} | y_{i1}) + r_i$$

 $\hat{y}_{i2} = \hat{E}(y_{i2} | y_{i1}) + r_i$ $r_i \sim N(0, s_{22:1}), s_{22:1} = \text{resid variance, or}$ $\hat{y}_{r+1,2}$ $r_i = \text{residual from randomly selected complete case}$

Imputing draws for binary data

• For binary (0-1) data, impute 1 with probability \hat{p}_{i2} = predicted prob of a one, given observed covariates

$$\hat{p}_{i2} = \Pr(y_{i2} = 1 \mid y_{i1}) \text{ (e.g. logistic regression)}$$

$$\hat{p}_{r+1,2}$$

$$\hat{p}_{r+2,2}$$

$$y_{i2} = \begin{cases} 1, \text{prob } \hat{p}_{i2} \\ 0, \text{prob } 1 - \hat{p}_{i2} \end{cases}$$

Properties of Imputed Draws

- Adds noise, less efficient than imputing means, but:
- No (or reduced) bias for estimating distributions
- More robust to nonlinear data transformations
- Conditional draws better than unconditional:
 - Improved efficiency
 - Preserves associations with conditioned variables
- Standard errors from filled-in data are improved, but still wrong:
 - Standard deviation is ok
 - "Sample size" overstated; multiple imputation fixes this

Example: bivariate MCAR data

 Y_1 fully observed; Y_2 missing for fraction λ of cases; MCAR mechanism

Large sample bias ~ E(estimate from filled-in data) - true value

Method	μ_2	$\sigma_{\scriptscriptstyle 22}$	$eta_{\scriptscriptstyle 21\cdot 1}$ Pa	rameter $eta_{\scriptscriptstyle 12\cdot 2}$
U Mean	0^*	$-\lambda\sigma_{22}$	$-\lambda eta_{21:1}$	0^*
U Draw	0	0	$-\lambda \beta_{21.1}$	$-\lambdaoldsymbol{eta}_{12\cdot 2}$
C Mean	0	$-\lambda(1-\rho^2)\alpha$, 211	$\frac{\lambda(1-\rho^{2})}{1-\lambda(1-\rho^{2})}\beta_{12\cdot 2}$
C Draw	0	0	0	0

^{*} indicates that estimator is same as that from complete cases

(c) Imputing missing covariates in regression analysis

- What should imputes condition on?
 - Observed covariates and outcome, if imputing draws
 - Observed covariates only, if imputing means
- Imputing conditional means can be less efficient than complete case analysis, unless imputed cases are down-weighted
 - For details, see Little (1992)
- Standard errors from filled-in data are always understated for single imputation

Example 3: Should Imputations be conditional on all observed variables?

- Consumer Expenditure Survey (Bureau of Labor Statistics)
- Should the imputation of Income be conditional on Expenditure variables?
- Substantive models of interest are relationship between income and expenditure

BLS Simulation Example

• BLS researchers:

- created population by accumulating complete cases over several years
- drew 200 random samples of size 500 each (Before deletion data sets)
- created missing data on income in each data set
- supplied 200 data sets along with 55 covariates to University of Michigan

BLS Example (Continued)

- UM did not know how Income values were deleted (except that some or all of 55 covariates were used in specifying missing data mechanism)
- UM created two sets of imputations

Using Expenditure

Not Using Expenditure

BLS Imputations

- Imputations were created by drawing values from the posterior predictive distribution of income under an explicit model
- One included expenditure as a conditioning variable and other did not
- Two sets of imputed data sets and actual data sets were analyzed by UM and BLS respectively.

BLS Models of Interest

OLS model

Food-At-Home= β_0 + β_1 Income + covariates

Tobit Model

Food-Away-Home= $\gamma_0 + \gamma_1$ Income + covariates Left Censored Values

Estimated regression coefficients of income from undeleted and imputed data-sets: OLS Model

Imputation EXCLUDES Expenditure

Imputation Includes Expenditure

Estimated regression coefficients of income from undeleted and imputed data-sets: Tobit Model

What should imputes condition on?

- In principle, all observed variables
 - Whether predictors or outcomes of final analysis model
 - May be impractical with a lot of variables
- Variable selection
 - Similar ideas to weighting adjustments apply
 - Priority to variables predictive of missing variable (and nonresponse)
 - Favor inclusion over exclusion (more later)

Creating the predictive distribution

All imputation methods assume a model for the predictive distribution of the missing values

- Explicit: predictive distribution based on a formal statistical model (e.g. multivariate normal); assumptions are explicit
- Implicit: focus is on an algorithm, but the algorithm implies an underlying model; assumptions are implicit

Two special imputation algorithms

- Last observation carried forward (LOCF) imputation for repeated measures with dropouts:
 - impute last recorded value
 - implicit model: values are unchanged after drop-out
- Hot deck imputation (see Andridge and Little 10)
 - classify respondents, nonrespondents into adjustment cells with similar observed values
 - impute values from random respondent in same cell
 - implicit model: regression of missing variables on variables forming cells, including all interactions

Matching methods for hot deck imputation

Nonrespondents j can be matched to respondents i based on a closeness metric D(i, j)

- Adjustment cell:
$$D(i,j) = \begin{cases} 0, & \text{if } i,j \text{ belong to same cell} \\ 1, & \text{if } i,j \text{ belong to different cells} \end{cases}$$

- Mahalanobis: $D(i,j) = (x_i x_j)^T S_X^{-1} (x_i x_j)$
- Predictive Mean: $D(i, j) = (\hat{y}_i \hat{y}_j)^T S_{Y \cdot X}^{-1} (\hat{y}_i \hat{y}_j)$ $\hat{y}_i = \text{regression prediction of } Y \text{ given } X$ $S_{Y \cdot X} = \text{resid covariance matrix}$

Alternative to LOCF in Longitudinal Data Analysis

 For repeated measures, the following Row +/* Col methods includes individual (row) and time (column) effects

$$y_{it}$$
 = value for subject i , time t

$$\hat{y}_{it} = m + a_i + b_t + r_{kt} \text{ (Row + Col)}$$

$$\hat{y}_{it} = m \times a_i \times b_t \times r_{kt} \text{ (Row * Col)}$$

m = grand mean

 $a_i = \text{row effect, from deviations of row } i$

 b_t = column effect, from deviations of col t

 r_{kt} = residual from matched respondent k

Example 1: Imputing Income in a Panel Survey

- Survey of Income and Program Participation (SIPP): panel survey of income, interviews every 4 months
- Over 1000 variables in each wave: full imputation is too hard
- In practice weighting is used for wave nonresponse
 - discards wave data, inefficient use of information
- Illustrate imputation methods on single variable, monthly wages and salary from primary job

SIPP Data extract

12 month md data)	Sample	Mean n	nonthly WS (availa	ble
pattern	size	Mean	SD	
0000 0000 0000	10534	1344	984	
0001 0000 0000	30	924	936	
0100 0000 0000	429	1355	883	
1000 0000 0000	22	1245	943	
1001 0000 0000	413	1292	924	
1010 0000 0000	408	1277	843	
1111 0000 0000	321	1339	889	
0000 0000 1111	124	1895	1435	
0000 1111 0000	81	1827	1360	
0000 1111 1111	60	2734	1895	
1111 0000 1111	43	1426	738	
1111 1111 0000	66	1541	932	
Other	98			

Three incomplete cases

						Month	1					
ID N	lean 1	2	3	4	5	6	7	8	9	10	11	12
1	98 *	167	*	167	80	80	80	100	85	85	85	50
11 1	180 *	*	*	*	1400	1750	1400	1400	970	776	776	970
213	3680 368 *	0	3680	3680	3680	*	*	*	*	*	*	*

Imputes from Cross-Sectional Hot Deck

							Montl	1					
ID	Mea	n 1	2	3	4	5	6	7	8	9	10	11	12
1	98	<u>208</u>	167	<u>208</u>	167	80	80	80	100	85	85	85	50
11	118	0 <u>900</u>	<u>720</u>	900	720	1400	1750	1400	1400	970	776	776	970
		0 368	0	3680	3680	3680	3082	2465	2465	3082	1332	1332	1666
<u>13</u>	<u>32</u>												

Imputes from Row*Col Fit

						Montl	1					
ID Mear	1 1	2	3	4	5	6	7	8	9	10	11	12
1 98	<u>199</u>	167	<u>0</u>	167	80	80	80	100	85	85	85	50
11 1180 970) <u>112</u> (6	<u> 1676</u>	1126	1126	_1400	1750	1400	1400	970	776	776
21 <mark>3680</mark> 3814	3680	0	3680	3680	3680	3804	3804	3804	3804	3814	3814	3814

Results from five methods

Deviations from row means of average WS estimates from five imputation methods

					Mon	ith							
Method	1	2	3	4	5	6	7	8	9	10	11	12	Mean
Comp Cases	-87	-46	-42	-25	-2	-2	-2	-6	59	68	46	41	1344
Avail Cases	-40	-29	-6	7	-3	-4	-11	-14	30	39	21	10	1352
Normal ML	-82	-50	-45	-24	9	9	2	0	50	59	40	29	1365
Row*Col Fit	-81	-50	-36	-23	9	9	4	-1	44	60	36	25	1365
CS Hot Deck	0	-17	-18	6	-7	-9	-16	-17	24	34	17	6	1379

Normal ML and Row*Col results are similar -- both exploit available row and col information

These methods are more plausible and more similar to complete cases than others.

Example 2: Logistic simulation example

- Simple to create hot-deck imputations
- n_{ij} = Observed Sample size in cell D=i, E=j
- m_{ij} = Number of missing values
- Randomly draw m_{ij} values from n_{ij} observed values with replacement

Hot-deck Single Imputation Estimates

Histogram of 5000 Point Estimates

- Single Imputation
- Imputed Data Sets
 Analyzed as if
 Complete Data
- TRUE VALUE 1.1: estimates are unbiased

Summary of imputation methods

- Imputations should:
 - condition on observed variables
 - be multivariate to preserve associations between missing variables
 - generally be draws rather than means
- Key problem: single imputations do not account for imputation uncertainty in se's.
 Consider next two approaches to this problem
 - bootstrapping the imputation method
 - multiple imputation