Wireless Positioning Technologies and Applications

Alan Bensky

Contents

Pref	ace	xiii
CH.	APTER 1	
Intro	oduction	1
1.1	Fundamentals and Terms	1
	1.1.1 Basic Measurements	2
	1.1.2 Terms	2
1.2	Applications	4
	1.2.1 Cellular Networks	4
	1.2.2 Person and Asset Tracking	5
	1.2.3 Wireless Network Security	6
	1.2.4 Location-Based Advertising	6
	1.2.5 Location Services for Vehicles and Traffic	6
1.3	Overview of Distance Measurement and Location Methods	6
1.4	Organization of the Book	10
	References	11
CH	APTER 2	
Basi	c Principles and Applications	13
2.1	Signal Parameters	14
	2.1.1 Time Resolution	14
	2.1.2 Pulse Width and Duty Cycle	15
	2.1.3 Bandwidth	15
	2.1.4 Noise	17
	2.1.5 Pulse Compression	20
2.2	Basics of Location	27
	2.2.1 Rho-Theta	27
	2.2.2 Theta-Theta or AOA	28
	2.2.3 Rho-Rho or TOA	29
	2.2.4 TDOA and Hyperbolic Curves	30
2.3	Navigation Systems	32
	2.3.1 DME	33
	2.3,2 VOR	37
	2.3.3 Loran-C	38
	2.3.4 GPS	44
2.4	Conclusions	51
	References	52

CH	APTER 3	
	ead Spectrum	53
3.1	Principles of Direct Sequence Spread Spectrum	53
	3.1.1 Transmitter and Receiver Configurations for DSSS	54
	3.1.2 DSSS Waveforms	55
	3.1.3 Despreading and Correlation	57
	3.1.4 Code Sequence Generation	59
	3.1.5 Synchronization	60
	3.1.6 Velocity Estimation	62
3.2	Acquisition	63
	3.2.1 Code Acquisition	64
	3.2.2 Carrier Acquisition	69
	3.2.3 Code Rate Matching	70
	3.2.4 Effect of Data Modulation on Acquisition	71
	3.2.5 Radiometric Detection	71
3.3	Tracking	72
	3.3.1 Carrier Tracking	72
	3.3.2 Code Tracking	73
3.4	Measurement of Elapsed Time	77
	3.4.1 One-Way Systems	78
	3.4.2 Two-Way Systems	78
	3.4.3 The Time Measurement Process	79
	3.4.4 High-Resolution Elapsed Time-Measuring Receiver	82
	3.4.5 Duplex and Half Duplex Two-Way Ranging Examples	83
	3.4.6 Sequence Length and Chip Period	87
3.5	Propagation Time Resolution	88
	3.5.1 Tracking Accuracy and Noise	88
	3.5.2 Multipath	90
	3.5.3 Increased Range Resolution Using Carrier Phase	92
3.6	Conclusions	93
	References	94
	APTER 4	
Tim	e Transfer	95
4.1	Time Transfer Basics	95
4.2	Calibration Constants	97
4.3	,	98
	4.3.1 Clock Drift and Measurement Time	99
	4.3.2 Noise	101
	4.3.3 Multipath	102
	4.3.4 Relative Motion	102
4.4	Ranging Procedure in Wireless Network	103
4.5	Conclusions	105
	References	105

Contents ix

CH/	APTER 5	
Muli	ticarrier Phase Measurement	107
5.1	Principle of Multicarrier Phase Measurement	107
5.2	Phase Slope Method	108
5.3	Phase Error Versus Signal-to-Noise Ratio	111
5.4	Estimation of Distance Variance Versus SNR	115
5,5	Multipath	118
5.6	System Implementation	123
	5.6.1 Phase Difference Measurements and Analogy to TDOA	125
5.7	OFDM	126
	5.7.1 The Basics of OFDM	126
	5.7.2 OFDM Distance Measurement	130
	5.7.3 Location Based on OFDM Distance Measurement	134
	5.7.4 Resolution of OFDM Distance Measurement	136
5.8	Conclusions	137
	References	138
CH/	APTER 6	
-	eived Signal Strength	139
6.1	Advantages and Problems in RSS Location	139
6.2	Propagation Laws	140
	6.2.1 Free Space	140
	6.2.2 Free-Space dB	140
	6.2.3 Open Field	141
	6.2.4 Logarithmic Approximation	142
	6.2.5 Randomizing Term X	143
	6.2.6 Outdoor Area Networks	144
	6.2.7 Path Loss and Received Signal Strength	146
6.3	RSS Location Methods	146
	6.3.1 RSS Location from Range Estimations	146
	6.3.2 RSS Location Based on Database Comparison	147
6.4	Conclusions	158
	References	158
CH	APTER 7	
	e of Arrival and Time Difference of Arrival	161
7.1	TOA Location Method	162
	7.1.1 Overdetermined TOA Equation Solution	163
	7.1.2 TOA Method in GPS Positioning	166
7.2	TDOA	170
	7.2.1 TDOA Measurement Techniques	171
	7.2.2 Multilateral and Unilateral Topologies for TDOA	173
	7.2.3 TDOA Geometric Model	175
	7.2.4 TDOA Evample	177

x	Contents

7.3	Performance Impairment	181
	7.3.1 Uncertainties in Data Measurement	181
	7.3.2 Random Noise	182
	7.3.3 Dilution of Precision (DOP)	182
	7.3.4 Multipath	184
	7.3.5 Cochannel Interference	186
7.4		186
	References	187
CH	APTER 8	
Ang	le of Arrival	189
8.1	Triangulation	189
8.2	•	191
8.3	Finding Direction from Antenna Patterns	194
8.4		198
	8.4.1 Amplitude Comparison	198
	8.4.2 Phase Interferometer	200
8.5	Electronically Steerable Beam Antennas	207
8.6	•	214
8.7		220
	References	221
CH	APTER 9	
Cell	ular Networks	223
9.1	Cellular Location-Based Services	223
9.2		224
	9.2.1 GSM Transmissions	226
	9.2.2 CDMA	227
	9.2.3 UMTS	228
9.3	Categories of Location Systems	229
9.4	•	230
9.5	Cell-ID	231
9.6	Location Technologies Using TDOA	232
	9.6.1 Enhanced Observed Time Differences	234
	9.6.2 Observed Time Difference of Arrival	235
	9.6.3 Uplink Time Difference of Arrival	236
9.7	Angle of Arrival	236
9.8	Received Signal Strength and Pattern Recognition	236
9.9	Problems and Solutions in Cellular Network Positioning	237
	9.9.1 Narrowband Networks	237
	9.9.2 CDMA	237
	9.9.3 GSM	238
9.10	Handset-Based Versus Network-Based Systems	238
	Accuracy Factors	239
	Conclusions	239
	References	240

Contents

CHAPTER 10	
Short-Range Wireless Networks and RFID	241
10.1 WLAN/WiFi	242
10.1.1 TOA	242
10.1.2 TDOA Methods for WLAN Location	248
10.1.3 Fingerprinting	249
10.2 WPAN	251
10.2.1 Bluetooth	251
10.2.2 ZigBee	255
10.2.3 Alternate Low Rate WPAN Physical Layer IEEE 802.15.4a	257
10.2.4 ECMA-368 Standard	258
10.3 RFID	259
10.3.1 Proximity Location	260
10.3.2 Distance Bounding for Security	260
10.3.3 Accurate RFID Location	262
10.4 Conclusions	262
References	263
CHAPTER 11	
Ultrawideband (UWB)	265
11.1 Telecommunication Authority Regulations	265
11.1.1 FCC Regulations	265
11.1.2 UWB in the European Community	267
11.2 UWB Implementation	268
11.2.1 Impulse Radio UWB	268
11.2.2 OFDM	272
11.3 IEEE 802.15.4a	274
11.3.1 Physical Layer Characteristics and Synchronization	274
11.3.2 Ranging Protocol	280
11.4 Dealing with Multipath and Nonline of Sight	283
11.4.1 Multipath	283
11.4.2 Nonline of Sight	284
11.5 Conclusions	286
References	286
Bibliography	289
List of Acronyms and Abbreviations	293
About the Author	297
Index	299