Estudio Socioeconómico de Países Utilizando Lógica Difusa

Diego Fogued, Javier Comyn y Francisco J. González

Universidad Politécnica de Madrid

Curso 2023/2024

Índice de contenidos

- Introducción
- 2 Recopilación de Datos
- Modelo y Análisis de Datos
- 4 Optimización del modelo
- Conclusión y Resultados

Introducción

Background

- Motivación
- Problema
- Solución
- Selección y Objetivo del Proyecto

Diego Fogued

Herramientas

- Librería RFuzzy de Ciao Prolog
- Librería Pandas y Sklearn de Python
- C
- Uflese

Marco Teórico Lógica Difusa

- ¿Qué es?
- Utilidad y aplicaciones en el proyecto
- Ventajas y desventajas que presenta

Diego Fogued

Metodología del Tratamiento de Datos

- Búsqueda: Recopilación de información de fuentes fiables.
- Procesado: Limpieza y transformación de datos.
- Implementación del Modelo: Diseño de funciones y reglas difusas.
- Resultados y Conclusiones

Diego Fogued

Recopilación de Datos

Recopilación

- Consultar fuentes: Banco Mundial¹, OMS², Kaggle³...
- Escoger indicadores más relevantes para un análisis socioeconómico.
- Elección de los conjuntos de datos más confiables y actualizados.
- Asegurarse de la consistencia y veracidad.

Javier Comyn 9 / 28

¹https://datos.bancomundial.org/

²https://data.who.int/es/indicators

³www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023

Variables

- Índice de libertad económica
- Temperatura media (^oC)
- Tasa suicidios por 100.000 habitantes
- Percepción de la corrupción
- Densidad de población
- Porcentaje de terreno agrícola
- Superficie
- Tamaño del ejército
- Tasa de natalidad
- CO2
- Índice de Precios al Consumidor (IPC)
- Tasa de fertilidad
- Porcentaje de área forestal

- PIB per cápita
- Alumnos en educación primaria
- Alumnos en educación post-obligatoria
- Mortalidad infantil
- Esperanza de vida
- Tamaño de la población
- Población activa
- Ingresos fiscales (% del PIB)
- Tasa de paro
- Población urbana
- Energías renovables
- Salario mínimo
- Edad media

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 900

Preprocesamiento y Limpieza

- Integrar todas las variables en una única base de datos.
- Eliminar inconsistencias.
- Tratar valores faltantes.
- Convertir todos los valores en enteros.

Javier Comyn 11 / 28

Modelo y Análisis de Datos

Funciones Difusas

```
critical_co2(country) :~ function(co2_emissions(country)) [(0,0), (2000,0.1), (50000,0.3), (100000,0.45), (200000,0.6), (300000,0.8), (1300000,1)].
```


Javier Comyn 13 / 28

Funciones Difusas

```
long_life_expectancy(country) :~
function(life_expectancy(country))
[(350,0), (400,0.2), (550,0.4), (600,0.6), (750,0.8), (900,1)].
```


Javier Comyn

Reglas Difusas

Definimos reglas que nos permiten relacionar las distintas funciones.

```
developed_country(country) :~ rule(mean, ((wealthy_gdp_per_capita(country)),
    (long_life_expectancy(country)), fnot((high_infant_mortality_rate(country))),
    (high_economic_freedom(country)))) with_credibility (min, 1).
```


Javier Comyn 15 / 28

Consultas

Consultas

Javier Comyn

Consultas

Javier Comyn 18 / 28

Resultados Notables

- Clean Country: Resultados lógicos : Islandia, Noruega, Dinamarca... Fue inesperado ver a Japón en los puestos más bajos, descubrimos que era por el CO2.
- **Developed Country**: España por encima de economías mejores, demostrando que no sólo eso define el desarrollo de un país.
- Environmentally Friendly Country: Se destacaron países con grandes áreas forestales y agrícolas, como Brasil, Canadá y Colombia.
- Economically Stable Country: Tailandia en primera posición, por su bajísmo desempleo. Comprendemos la importancia de la interpretación humana de los resultados.

Comparado con modelos tradicionales, la lógica difusa permite hacer interpretaciones más matizadas y completas de la realidad.

Javier Comyn 19 / 28

Optimización del modelo

Cálculo de Credibilidad

Introducción

En esta sección se explica cómo se determinaron y automatizaron los cálculos de credibilidad para funciones difusas.

- Algoritmos en Python para normalizar datos.
- Comparación de conjuntos de datos normalizados utilizando MAE (Error Absoluto Medio).
- Automatización de consultas en Ciao Prolog

・ロト・音・音・音・音・今へで Francisco J. González 21 / 28

Transformación de Datos

Problemas

- Necesidad de tener datos reales en el formato correcto para el algoritmo de normalización.
- Obtener y procesar resultados de las consultas.

Soluciones

- Aplicación de transformaciones a archivos CSV usando Pandas.
- Implementación de un programa en C que ejecuta el intérprete Ciao.

Francisco I. González 22 / 28

Implementación en C

Objetivo

Crear un programa en C que ejecute el intérprete de Ciao Prolog, automatizando las consultas para las funciones difusas.

- Ejecución del intérprete Ciao Prolog desde un programa en C.
- Envío de consultas a través de la entrada estándar.
- Recopilación y procesamiento de resultados a través de la salida estándar.

Resultado

Automatización completa de las consultas y recolección de datos para el análisis de credibilidad.

Francisco J. González 23 / 28

Automatización y Recolección de Datos

Objetivo

Automatizar todo el proceso de consultas y cálculo de credibilidades.

- Recolección de datos normalizados y valores de verdad para funciones difusas.
- Script en Python para consolidar resultados en un archivo de texto.

Resultado

Comparación de valores de verdad con valores reales para obtener valores de credibilidad de forma automática.

Francisco J. González 24 / 28

Conclusión y Resultados

Desafíos y Soluciones

Desafíos

- Recopilación y precisión de datos de múltiples fuentes.
- Definición de funciones y reglas apropiadas.
- Integración del sistema de lógica difusa con la base de datos.

Soluciones

- Referencia cruzada de fuentes.
- Refinamiento iterativo.
- Uso de herramientas robustas y discusiones en equipo.

4 □ ▶ 4 를

Conclusiones

Éxitos

- Desarrollo y validación de un modelo socioeconómico basado en lógica difusa.
- Precisión considerable en las predicciones dadas por los indicadores.

Limitaciones

Diego Fogued

- Dependencia de datos de alta calidad.
- Definición de reglas difusas universalmente aplicables.

27 / 28

Trabajo Futuro

Mejoras Propuestas

- Expandir el modelo para incluir más indicadores diversos.
- Aplicar el modelo en diferentes regiones y culturas.
- Integrar técnicas de aprendizaje automático con lógica difusa.

Potencial

• Extrapolar la automatización de cálculos de credibilidad para diseñar métodos más precisos en el modelado de funciones difusas.

 Diego Fogued
 28 / 28