Tarea I - Optimización y Control

Solución 1. Sea $P = \{J(y) \mid y \in C\}$, donde $C = \{y \in C^1 \mid y(0) = 0, y(1) = 1\}$ y

$$J(y) = \int_{1}^{\frac{1}{2}} |y(x)| dx + \int_{\frac{1}{2}}^{1} |y'(x)| dx$$

- 1. Notemos que el conjunto C es no vació, pues la función $\mathrm{Id}_{[0,1]}$ cumple las condiciones para pertenecer a este. Luego podemos evaluar el funcional en $\mathrm{Id}_{[0,1]}$ y nos dará un numero pues estamos integrando una función continua sobre un compacto. Notemos que $|y(x)| \geq 0$ e $|y'(x)| \geq 0$ para todo $y \in C$ y $x \in [0,1]$, por lo tanto tenemos que $\forall y \in C, J(y) \geq 0$. Dado que mostramos que el conjunto P es no vacío y tiene una cota inferior, existe ínf $P \in \mathbb{R}$ por axioma del supremo e ínfimo.
- 2. Dado que en el paso anterior mostramos que 0 es un cota inferior para el conjunto P y el ínfimo es la mayor de las cotas superiores tenemos que

$$0 \leq \inf P$$

3. La intuición nos dice que una función que minimiza J que esta fuera del conjunto C es la indicatriz del conjunto $[\frac{1}{2},1]$, construyamos una sucesión de funciones que la aproximen desde C. Consideremos la siguiente sucesión para $n \geq 3$

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [0, \frac{1}{2} - \frac{1}{n}) \\ P_n(x) & \text{si } x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}] \\ 1 & \text{si } x \in (\frac{1}{2}, 1] \end{cases}$$

Donde P_n sera un polinomio que a de cumplir con las siguientes condiciones

$$P_n(\frac{1}{2}) = 1$$

$$P'_n(\frac{1}{2}) = 0$$

$$P_n(\frac{1}{2} - \frac{1}{n}) = 0$$

$$P'_n(\frac{1}{2} - \frac{1}{n}) = 0$$

Pues si P_n cumple con esas cuatro condiciones, entonces $f_n \in C$, dado que están de acuerdo en la derivada en los puntos de pegado y en el valor de la función también. Notemos que por construcción $f_n(0) = 0$ y $f_n(1) = 1$.

Dado que tenemos 4 condiciones sobre P_n , un polinomio de grado 3 sera suficiente. Consideraremos $P_n(x) = a(x-\frac{1}{2})^3 + b(x-\frac{1}{2})^2 + c(x-\frac{1}{2}) + d$. Luego las cuatro condiciones se transforman en lo siguiente

$$d = 1$$

$$c = 0$$

$$-\frac{a}{n^3} + \frac{b}{n^2} + 1 = 0$$

$$\frac{3a}{n^2} - \frac{2b}{n} = 0$$

Resolviendo el sistema llegamos al polinomio P_n , el cual por construcción satisface todo lo que necesitábamos.

$$P_n(x) = -2n^3(x - \frac{1}{2})^3 - 3n^2(x - \frac{1}{2})^2 + 1$$

Luego $f_n \in C$. Probemos que en efecto $(f_n)_{n\geq 3}$ es una sucesión minimizante. Notemos que

$$J(f_n) = \int_0^{\frac{1}{2}} |f_n(x)| dx + \int_{\frac{1}{2}}^1 |f_n(x)'| dx$$
$$= \int_0^{\frac{1}{2} - \frac{1}{n}} 0 dx + \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |P_n(x)| dx + \int_{\frac{1}{2}}^1 0 dx$$
$$= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} |P_n(x)| dx$$

Dado que P_n' es una cuadrática con coeficiente líder negativo, y sabemos que $P_n'(\frac{1}{2}-\frac{1}{n})=0=P_n'(\frac{1}{2})$, tenemos que $\forall x\in[\frac{1}{2}-\frac{1}{n},\frac{1}{2}],P_n'(x)\geq0$, es decir P_n es creciente en ese intervalo, dado que $P_n(\frac{1}{2}-\frac{1}{n})=0$, tenemos que

$$\forall x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}], P_n(x) \ge 0$$

Luego seguimos con el calculo

$$J(f_n) = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} P_n(x) dx$$

$$= \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} -2n^3 (x - \frac{1}{2})^3 - 3n^2 (x - \frac{1}{2})^2 + 1 dx$$

$$= -\frac{1}{2} n^3 (x - \frac{1}{2})^4 \Big|_{x = \frac{1}{2} - \frac{1}{n}}^{x = \frac{1}{2}} - n^2 (x - \frac{1}{2})^3 \Big|_{x = \frac{1}{2} - \frac{1}{n}}^{x = \frac{1}{2}} + \frac{1}{n}$$

$$= \frac{1}{2n} - \frac{1}{n} + \frac{1}{n}$$

$$= \frac{1}{2n}$$

Por lo tanto obtenemos que

$$\lim_{n \to \infty} J(f_n) = 0$$

Es decir $(f_n)_{n\geq 3}$ es una sucesión minimizante.

4. No, no existe $\overline{y} \in C$ que minimice J, si suponemos que existe, entonces

$$J(\overline{y}) = 0$$

Pues existe la sucesión minimizante a 0 que construimos en el paso anterior y por tanto demostramos que ínf P=0. Dado que $J(\overline{y})$ es la suma de dos cantidades positivas y tiene que ser igual a 0, necesariamente cada una a de ser 0.

Notemos que

$$\int_0^{\frac{1}{2}} |\overline{y}(x)| dx = 0 \implies \forall x \in [0, \frac{1}{2}], |\overline{y}(x)| = 0 \implies \forall x \in [0, \frac{1}{2}], \overline{y}(x) = 0$$

Pues la cantidad de adentro es positiva y por tanto 0 c.t.p. y por continuidad, en todas partes. Por lo tanto tenemos que $\overline{y}|_{[0,\frac{1}{2}]}\equiv 0$. Análogamente, dado que estamos suponiendo $\overline{y}\in C, \overline{y}'$ es continua y por tanto su valor absoluto igual. Por el argumento anterior $\overline{y}'|_{[\frac{1}{2},1]}\equiv 0$, por lo tanto $\overline{y}|_{[\frac{1}{2},1]}\equiv c$ para algún $c\in\mathbb{R}$, dado que $\overline{y}(1)=1\implies c=1$. Esto es una contradicción pues entonces $0=\overline{y}(\frac{1}{2})=1$.

Solución 2. Usaremos el lema de Fermat. Supongamos que $y \in Y$ satisface el problema de minimización. Consideraremos una perturbación $h \in \mathcal{C}_0^2([0,L])$. Luego tenemos que

$$\lim_{\varepsilon \to 0} \frac{J(y+\varepsilon h) - J(y)}{h} = \frac{d}{d\varepsilon} J(y+\varepsilon h) \big|_{\varepsilon = 0} = 0$$

Hagamos el calculo

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \frac{d}{d\varepsilon}(\frac{1}{2}\int_0^L EI(y''(x)+\varepsilon h''(x))^2 dx - \int_0^L q(x)(y(x)+\varepsilon h(x)))$$

Dada la regularidad de las funciones con las que estamos trabajando, podemos entrar la derivada dentro de las integrales

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \int_0^L EI(y''(x) + \varepsilon h''(x)) \cdot h''(x)dx - \int_0^L q(x)h(x)dx$$
$$= \int_0^L -q(x)h(x) + EI(y''(x) + \varepsilon h''(x))h''(x)dx$$

Luego tenemos que

$$\int_0^L -q(x)h(x) + EIy''(x)h''(x)dx = \frac{d}{d\varepsilon}J(y+\varepsilon h)|_{\varepsilon=0} = 0$$

Considerando $\alpha(x) = -q(x)$ y $\beta(x) = EIy''(x)$ podemos usar el lema, pues q es continua por hipótesis e y es continua pues estamos suponiendo que resuelve el problema. Por lo tanto concluimos que $EIy''(x) \in \mathcal{C}^2([0,L])$ lo que implica que $y \in \mathcal{C}^4([0,L])$. Tenemos entonces que

$$y^{(4)}(x) = \frac{q(x)}{EI}$$

Luego dado que la viga esta apoyada en el punto 0 y L, la variación angular en los puntos de contacto de la viga debe ser 0, pues no debería haber defleccion en los puntos de apoyo. Es decir y debe satisfacer lo siguiente

$$\begin{cases} y^{(4)}(x) = \frac{q(x)}{EI} \\ y(0) = 0 \\ y(L) = 0 \\ y''(0) = 0 \\ y''(L) = 0 \end{cases}$$

Solución 3. 1. Verifiquemos que $L(a,b) = k_1(k_2a - b - k_3)^2$ es convexa. Notemos que al ser de clase \mathcal{C}^2 , solo es necesario calcular una de las derivadas cruzadas, pues coinciden. Calculemos las derivadas

$$\partial_a L(a,b) = 2k_1(k_2a - b - k_3) \cdot k_2 \implies \partial_{aa} L(a,b) = 2k_1k_2^2$$

$$\partial_b L(a,b) = -2k_1(k_2a - b - k_3) \implies \partial_{bb} = 2k_1$$

$$\partial_{ab} L(a,b) = -2k_1k_2$$

Por lo tanto tenemos que el diferencial de L se ve de la siguiente forma

$$DL(a,b) = \begin{bmatrix} 2k_1k_2^2 & -2k_1k_2 \\ -2k_1k_2 & 2k_1 \end{bmatrix}$$

Aplicando el criterio de Sylvester tenemos que el primer subdeterminante es $2k_1k_2^2 \ge 0$ y el determinante de la matriz completa es

$$\det DL(a,b) = 4k_1^2k_2^2 - 4k_1^2k_2^2 = 0$$

Por lo tanto es una matriz definida semi-positiva, lo que implica que la función es convexa.

2. El problema no tiene solución en C, consideremos el siguiente problema de valor inicial para $\lambda \in \mathbb{N}$

$$\begin{cases} k_2 y - y' - k_3 = \lambda \\ y(0) = y_0 \end{cases}$$

Resolveremos este problema de valor inicial por metodos elementales, notemos que es de variables separables

$$\frac{y'}{k_2y - k_3 - \lambda} = 1$$

Integrando obtenemos que

$$\frac{1}{k_2}\ln(k_2y - k_3 - \lambda) = x + C_1 \implies \ln(k_2y - k_3 - \lambda) = k_2x + k_2C_1$$

tomando exponencial

$$k_2 y - k_3 - \lambda = C k_2 e^{k_2 x} \implies y = C e^{k_2 x} + \frac{k_3 + \lambda}{k_2}$$

Luego para la condición inicial tenemos que

$$y_0 = C + \frac{k_3 + \lambda}{k_2} \implies y_0 - \frac{k_3 + \lambda}{k_2} = C$$

Se puede verificar que en efecto es una solución de la edo. Definamos y_{λ} como la solución al problema para alguna lambda. Luego tenemos que $y_{\lambda} \in C^{\infty}([0,T])$ y además $y_{\lambda}(0) = y_0$, por lo tanto $y_{\lambda} \in C$. Notemos que

$$J(y_{\lambda}) = \int_0^T k_1 \lambda^2 dx = k_1 \lambda^2 T$$

Lo cual se va a infinito cuando λ se va a infinito. Por lo tanto el problema **no** tiene solución.

Solución 4. Sea $x_0, x_1 \in \mathbb{R}$, tales que $x_0 < x_1$. Supongamos $L \in C^1([x_0, x_1] \times \mathbb{R}, \times \mathbb{R})$. Sea $y \in C^1([x_0, x_1])$ tal que maximice el problema, por el lema de fermat tenemos que para $h \in C^1[0, L]$, esto pues no hay condiciones de borde y por tanto no necesitamos restringir la perturbación para no salirnos del espacio. Se cumple que

$$\lim_{\varepsilon \to 0} \frac{J(y+\varepsilon h) - J(y)}{\varepsilon} = \frac{d}{d\varepsilon} J(y+\varepsilon h)|_{\varepsilon = 0} = 0$$

Calculemos, notemos que la derivada puede entrar dentro de la integral dada la regularidad de L.

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \int_{x_0}^{x_1} \frac{d}{d\varepsilon}L(x,y+\varepsilon h,y'+\varepsilon h')$$

$$= \int_{x_0}^{x_1} L_a(x,y+\varepsilon h,y'+\varepsilon h') \cdot h + L_b(x,y+\varepsilon h,y'+\varepsilon h') \cdot h'$$

Evaluamos en 0 e igualamos a 0.

$$\frac{d}{d\varepsilon}J(y+\varepsilon h) = \int_{x_0}^{x_1} L_a(x,y,y') \cdot h + L_b(x,y,y') \cdot h' = 0$$

Dado que tenemos este resultado para todo $h \in \mathcal{C}^1([x_0, x_1])$, lo tenemos en particular para $h \in \mathcal{C}_0^1([x_0, x_1])$. Dado que $L_a, L_b \in \mathcal{C}([x_0, x_1])$, podemos usar el teorema fundamental del calculo de variaciones (Lema 1) con $\alpha = L_a$ y $\beta = L_b$. Por lo tanto obtenemos que $L_b \in \mathcal{C}^1$ y que satisface

$$\frac{d}{dx}L_b(x,y,y') = L_a(x,y,y')$$

Con lo que establecemos la primera condición.

Notemos ademas que para todo $h \in \mathcal{C}^1([x_0, x_1])$ tenemos que

$$0 = \int_{x_0}^{x_1} (L_a(x, y, y')h + L_b(x, y, y')h')dx = \int_{x_0}^{x_1} (L_a(x, y, y') - \frac{d}{dx}L_b(x, y, y'))hdx + L_b \cdot h|_{x=x_0}^{x=x_1}$$

Dado que lo que esta dentro de la integral es 0, tenemos que

$$L_b \cdot h|_{x=x_0}^{x=x_1} = 0$$

Tomando $h(x) = \frac{x-x_0}{x_1-x_0}$, la cual es \mathcal{C}^{∞} en el intervalo, obtenemos que $L_b(x_1, y(x_1), y'(x_1)) = 0$, tomando $h(x) = \frac{x-x_1}{x_0-x_1}$ obtenemos que $-L_b(x_0, y(x_0), y'(x_0)) = 0 \implies L_b(x_0, y(x_0), y'(x_0)) = 0$ Con lo que tenemos el resultado.