Climate Data Forecasting -

Atmospheric ${\cal C}{\cal O}_2$ Concentration / Temperature / Precipitation

Wolfgang Vollmer

2023-02-20

Contents

1	Forecasting of England - Temperature Climate Analysis				
	1.1	Statio	narity and differencing	2	
		1.1.1	Ljung-Box Test - independence/white noise of the time series $\ \ldots \ \ldots \ \ldots$	3	
		1.1.2	Unitroot KPSS Test - fix number of seasonal differences/differences required $\ \ .$	3	
		1.1.3	ACF Plots of Differences	4	
		1.1.4	Time Series, ACF and PACF Plots of Differences - for ARIMA p, q check	5	
2	Exp	onen]	Tial Smoothing (ETS) Forecasting Models	6	
	2.1	ETS I	Models and their componentes	7	
		2.1.1	Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE $$	8	
		2.1.2	Ljung-Box Test - independence/white noise of the forecasts residuals	9	
		2.1.3	${\rm ETS\ Models\ -\ components\ of\ ETS(A,N,A),\ ETS(A,A,A),\ ETS(A,Ad,A),\ models} .$	9	
		2.1.4	Forecast Accuracy with Training/Test Data	9	
	2.2	Forecasting with selected ETS model $<$ ETS $(A,A,A)>$		10	
		2.2.1	Forecast Plot of selected ETS model	10	
		2.2.2	Residual Stationarity	11	
		2.2.3	Histogram of forecast residuals with overlaid normal curve	12	
3	AR	IMA I	Forecasting Models - AutoRegressive-Integrated Moving Average	13	
	3.1	Season	nal ARIMA models	13	
		3.1.1	Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE $$	15	
		3.1.2	Ljung-Box Test - independence/white noise of the forecasts residuals	15	
		3.1.3	Forecast Accuracy with Training/Test Data	15	
	3.2	Temp	erature - Forecasting with selected ARIMA model $<$ ARIMA $(0,1,2)(0,1,2)[12]>$	16	
		3.2.1	Forecast Plot of selected ARIMA model	16	
		3.2.2	Residual Stationarity	17	
		3.2.3	Histogram of forecast residuals with overlaid normal curve	18	

4	ARIMA v	rs ETS	19	
	4.0.1	Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model $$.	19	
	4.0.2	Forecast Plot of selected ETS and ARIMA model	19	
	4.0.3	Ljung-Box Test - independence/white noise of the forecasts residuals	21	
5 Yearly Data Forecasts with ARIMA and ETS				
	5.0.1	Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model $$.	21	
	5.0.2	Forecast Plot of selected ETS and ARIMA model	22	
	5.0.3	Ljung-Box Test - independence/white noise of the forecasts residuals	23	
6	Backup		23	

1 Forecasting of England - Temperature Climate Analysis

1.1 Stationarity and differencing

Stationary time series is one whose properties do not depend on the time at which the series is observed. Thus, time series with trends, or with seasonality, are not stationary — the trend and seasonality will affect the value of the time series at different times. On the other hand, a white noise series is stationary — it does not matter when you observe it, it should look much the same at any point in time.

Stationary time series will have no predictable patterns in the long-term. Time plots will show the series to be roughly horizontal (although some cyclic behaviour is possible), with constant variance.

If Time Series data with seasonality are non-stationary

- => first take a seasonal difference
- if seasonally differenced data appear are still non-stationary
- => take an additional first seasonal difference

The model fit residuals have to be stationary. For good forecasting this has to be verified with residual diagnostics.

Essential:

- Residuals are uncorrelated
- The residuals have zero mean

Useful (but not necessary):

- The residuals have constant variance.
- The residuals are normally distributed.

1.1.1 Ljung-Box Test - independence/white noise of the time series

The Ljung-Box Test becomes important when checking independence/white noise of the forecasts residuals of the fitted ETS rsp. ARIMA models. There we have to check whether the forecast errors are normally distributed with mean zero

Null Hypothesis of independence/white noise in a given time series

- $=> H_0$ to be rejected for $p < \alpha = 0.05$
- => data in the given time series are dependent
- => even differenced data are dependent if $p < \alpha = 0.05$
- => independence/white noise of residuals of fitted models to be verified

```
#> Ljung-Box test with (count), w/o differences
#> # A tibble: 1 x 3
#>
     Measure
                 lb_stat lb_pvalue
#>
                   <dbl>
                              <dbl>
#> 1 Temperature 15129.
#> Ljung-Box test on (difference(count, 12))
#> # A tibble: 1 x 3
#>
     Measure
                 lb_stat lb_pvalue
#>
                   <dbl>
                              <dbl>
     <fct>
                     363.
                                  0
#> 1 Temperature
#> Ljung-Box test on (difference(count, 12) + difference())
#> # A tibble: 1 x 3
#>
     Measure
                 lb_stat lb_pvalue
                              <dbl>
#>
     <fct>
                   <dbl>
#> 1 Temperature
                    767.
```

1.1.2 Unitroot KPSS Test - fix number of seasonal differences/differences required

kpss test of stationary Null Hypothesis of stationary in a given time series $=>H_0$ to be rejected for $p<\alpha=0.05$

unitroot_nsdiffs/ndiff provides minimum number of seasonal differences/differences required for a stationary series. First fix required seasonal differences and then apply ndiffs to the seasonally differenced data.

• returns 1 = for stationarity one seasonal difference rsp. difference is required

```
#> ndiffs gives the number of differences required rsp.
#> nsdiffs gives the number of seasonal differences required to make
#> a series stationary (test is based on the KPSS test
#> kpss test, nsdiffs & ndiffs on (count), w/o differences
#> # A tibble: 1 x 5
#>
     Measure
                 kpss_stat kpss_pvalue nsdiffs ndiffs
     <fct>
                     <dbl>
                                  <dbl>
#>
                                          <int>
                      5.36
                                   0.01
#> 1 Temperature
                                              1
#> kpss test, nsdiffs & ndiffs on (difference(count, 12)
#> # A tibble: 1 x 5
                 kpss_stat kpss_pvalue nsdiffs ndiffs
#>
     Measure
                     <dbl>
                                  <dbl>
                                          <int>
                                                 <int>
#>
     <fct>
#> 1 Temperature
                   0.00530
                                    0.1
                                              0
#> kpss test, nsdiffs & ndiffs on (difference(count, 12) %>% difference(1))
#> # A tibble: 1 x 5
#>
     Measure
                 kpss_stat kpss_pvalue nsdiffs ndiffs
     <fct>
#>
                     <dbl>
                                  <dbl>
                                          <int>
#> 1 Temperature
                   0.00383
                                    0.1
```

1.1.3 ACF Plots of Differences

1.1.4 Time Series, ACF and PACF Plots of Differences - for ARIMA p, q check

#> # A tibble: 1 x 2
#> Sum Mean
#> <dbl> <dbl>
#> 1 27.5 0.00631

#> # A tibble: 1 x 2
#> Sum Mean

#> # A tibble: 1 x 2
#> Sum Mean
#> <dbl> <dbl> #> 1 0.100 0.0000230

2 ExponenTial Smoothing (ETS) Forecasting Models

Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.

The parameters are estimated by maximising the "likelihood". The likelihood is the probability of the data arising from the specified model. AIC, AICc and BIC can be used here to determine which of the ETS models is most appropriate for a given time series (see output glance(fit_ets)).

The model selection is based on recognising key components of the time series (trend and seasonal) and the way in which these enter the smoothing method (e.g., in an additive, damped or multiplicative manner).

- Mauna Loa CO_2 data best Models: ETS(M,A,A) & ETS(A,A,A)
- Basel Temperature data best Models: ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A) (close togehter). Best Forecast accuracy is with ETS(A,A,A), ETS(A,Ad,A).
- Basel Precipitation data best Models: ETS(A,N,A), ETS(A,Ad,A), ETS(A,A,A) (close togehter). Best Forecast accuracy is with ETS(A,A,A), ETS(A,Ad,A), ETS(A,N,A),

Trend term "N" for Basel Temperature/Precipitation correspondends to a "pure" exponential smooothing which results in a slope $\beta = 0$. This results in a forecast predicting a constant level. This does not fit to the result of the STL decomposition. Therefore best model choice is **ETS**(**A**,**A**,**A**).

Method Selection

Error term: either additive ("A") or multiplicative ("M").

Both methods provide identical point forecasts, but different prediction intervals and different likelihoods. AIC & BIC are able to select between the error types because they are based on likelihood.

Nevertheless, difference is for

- Mauna Loa CO_2 not relevant and AIC/AICc/BIC values are only a little bit smaller for multiplicative errors. The prediction interval plots are fully overlapping.
- Basel Temperature AIC/AICc/BIC of additive error types are much better than the multiplicative
 ones.
- Basel Precipitation AIC/AICc/BIC of additive error types are much better than the multiplicative ones

Note: For Basel Temperature and Precipitation Forecast plots the models ETS_MAdA, ETS_MMA, ETS_MMA are to be taken out since forecasts with multiplicative errors are exploding (forecast > 3 years impossible !!)

Therefore finally Error term = "A" is chosen in general.

Trend term: either none ("N"), additive ("A"), multiplicative ("M") or damped variants ("Ad", "Md").

Note: Mauna Loa CO_2 model ETS(A,Ad,A) fit plot shows to strong damping. For Basel Temperature model ETS(A,N,A) and ETS(A,Ad,A) are providing more or less the same forecast. This means that forecast remains on constant level since Trend "N" means "pure" exponentiall smoothing without trend (see above).

Therefore finally Trend term = "A" is chosen in general.

Seasonal term: either none ("N"), additive ("A") or multiplicative ("M").

For CO2 and Temperature Data we have a clear seasonal pattern and seasonal term adds always a (more or less) fix amount on level and trend component. Therefore "A" additive term is chosen. For Precipitation the seasonal pattern is only slight. Indead, a multiplicative seasonal term results in "exploding" forecasts.

Since monthly data are strongly seasonal $\mathbf{seasonal}$ \mathbf{term} "A" is chosen.

2.1 ETS Models and their componentes

```
#> [1] "model(ETS(count)) => provides best automatically chosen model"
#> # A tibble: 1 x 11
#>
     City
             Measure
                          .model
                                  sigma2 log lik
                                                    AIC AICc
                                                                 BIC
                                                                       MSE
                                                                            AMSE
#>
     <chr>
             <fct>
                          <chr>>
                                    <dbl>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                    1.72 -2074. 4178. 4179. 4244. 1.68 1.71 1.01
#> 1 England Temperature ETS(co~
#> Series: count
#> Model: ETS(A,N,A)
#>
     Smoothing parameters:
#>
       alpha = 0.0487982
#>
       gamma = 0.0001004673
#>
#>
     Initial states:
#>
        1[0]
                   s[0]
                           s[-1]
                                      s[-2]
                                              s[-3]
                                                        s[-4]
                                                                 s[-5]
                                                                           s[-6]
    10.23805 -5.138464 -2.87223 0.6865055 4.08553 6.497967 6.615109 4.507473
#>
#>
       s[-7]
               s[-8]
                         s[-9]
                                  s[-10]
                                             s[-11]
    1.625588 -1.5092 -3.52253 -5.347447 -5.628302
#>
#>
#>
     sigma^2:
              1.7153
#>
        AIC
                AICc
#>
                           BTC
#> 4177.757 4178.579 4243.711
#> Model Selection by Information Criterion - lowest AIC, AICc, BIC
#> # A tibble: 8 x 11
```

```
#>
     City
                                  sigma2 log_lik
                                                    AIC AICc
                                                                BIC
                                                                      MSE
                                                                           AMSE
                                                                                   MAE
             Measure
                          .model
#>
     <chr>
             <fct>
                          <chr>>
                                   <dbl>
                                           <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 England Temperature ETS_ANA 1.72
                                          -2074. 4178. 4179. 4244.
                                                                    1.68
                                                                           1.71 1.01
#> 2 England Temperature ETS_AMA 1.72
                                          -2073. 4180. 4181. 4255.
                                                                     1.67
#> 3 England Temperature ETS_AAA 1.72
                                          -2073. 4180. 4181. 4255.
                                                                     1.67
                                                                            1.71 1.01
#> 4 England Temperature ETS_AA~ 1.72
                                          -2073. 4182. 4183. 4261.
                                                                            1.70 1.01
                                                                     1.67
                                          -2288. 4606. 4607. 4672.
#> 5 England Temperature ETS MNA 0.0441
                                                                     1.85
                                                                           1.85 0.138
#> 6 England Temperature ETS MMA 0.0449
                                          -2306. 4645. 4646. 4720.
                                                                     1.74
                                                                            1.76 0.137
#> 7 England Temperature ETS MAA 0.0451
                                          -2308. 4649. 4650. 4724.
                                                                     1.74
                                                                            1.75 0.137
#> 8 England Temperature ETS_MA~ 0.0480
                                          -2311. 4657. 4658. 4736.
                                                                     1.76
                                                                           1.76 0.143
```


2.1.1 Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE

Residual accuracy can be computed directly from models as the one-step-ahead fitted residuals are available. Select forecast models that minimises for lowest

- MAE (Mean absolute error, will lead to forecasts of the median) and
- RMSE (Root mean squared error, lead to forecasts of the mean)

```
#> # A tibble: 8 x 12
     City Measure .model .type
#>
                                          RMSE
                                                 MAE
                                                        MPE
                                                             MAPE MASE RMSSE
                                      MF.
#>
     <chr> <fct>
                   <chr> <chr>
                                   <dbl> <dbl> <dbl>
                                                      <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 Engl~ Temper~ ETS_A~ Trai~
                                 4.17e-2
                                          1.29
                                                 1.01
                                                      -6.76
                                                              26.2 0.699 0.705 0.199
                                                      -7.35
#> 2 Engl~ Temper~ ETS_A~ Trai~
                                 7.16e-3
                                          1.29
                                                1.01
                                                              26.4 0.698 0.706 0.203
#> 3 Engl~ Temper~ ETS_A~ Trai~ -9.28e-5
                                                      -7.63
                                          1.29
                                                1.01
                                                              26.6 0.698 0.706 0.196
                                                      -7.08
                                                             26.3 0.700 0.707 0.203
#> 4 Engl~ Temper~ ETS_A~ Trai~ 1.76e-2
                                          1.29
                                                1.01
#> 5 Engl~ Temper~ ETS_M~ Trai~ -1.55e-1
                                          1.32
                                                1.03 -10.2
                                                              28.4 0.709 0.719 0.243
#> 6 Engl~ Temper~ ETS_M~ Trai~ -1.29e-1
                                          1.32
                                                1.03 -10.0
                                                              28.4 0.712 0.721 0.234
#> 7 Engl~ Temper~ ETS_M~ Trai~ 4.96e-2
                                          1.32
                                                1.04
                                                      -7.30
                                                             27.6 0.719 0.723 0.265
#> 8 Engl~ Temper~ ETS_M~ Trai~ 1.67e-1 1.36
                                                1.05 -8.22 28.9 0.723 0.742 0.263
```

2.1.2 Ljung-Box Test - independence/white noise of the forecasts residuals

```
#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 8 x 5
#>
     City
             Measure
                         .model
                                  lb_stat lb_pvalue
             <fct>
                         <chr>
                                     <dbl>
#>
     <chr>
                                               <dbl>
#> 1 England Temperature ETS_ANA
                                     75.6
                                           8.43e- 6
#> 2 England Temperature ETS_AAA
                                     75.9
                                           7.43e- 6
#> 3 England Temperature ETS_AMA
                                     76.0
                                           7.38e- 6
#> 4 England Temperature ETS_AAdA
                                     76.5
                                           6.16e- 6
#> 5 England Temperature ETS_MMA
                                     82.9
                                           7.42e- 7
#> 6 England Temperature ETS_MAA
                                     94.9
                                           1.17e-8
                                           5.30e- 9
#> 7 England Temperature ETS_MNA
                                     97.1
#> 8 England Temperature ETS_MAdA
                                     135.
                                            3.22e-15
```

2.1.3 ETS Models - components of ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A), models

2.1.4 Forecast Accuracy with Training/Test Data

```
#> # A tibble: 5 x 12
#>
     .model
             City
                      Measure .type
                                       ME
                                           RMSE
                                                  MAE
                                                        MPE MAPE MASE RMSSE ACF1
#>
     <chr>
              <chr>
                      <fct>
                              <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 ETS_AAA England Temper~ Test 0.572
                                                             13.7 0.796 0.755 0.263
                                          1.36
                                                 1.12
                                                       3.80
#> 2 ETS ANA England Temper~ Test 0.608
                                          1.38
                                                 1.14
                                                       3.99 13.8 0.808 0.765 0.243
#> 3 ETS_AAdA England Temper~ Test  0.614  1.39
                                                 1.14
                                                       4.25 13.9 0.810 0.768 0.259
#> 4 ETS_MAA England Temper~ Test
                                   2.50
                                           3.02
                                                 2.63 26.3
                                                             29.6 1.87 1.68 0.602
#> 5 ETS_ANN England Temper~ Test 5.80
                                           7.38
                                                5.98 43.1
                                                             48.7 4.26
                                                                       4.09
                                                                             0.801
```


2.2 Forecasting with selected ETS model $\langle ETS(A,A,A) \rangle$

2.2.1 Forecast Plot of selected ETS model

```
#> Provide model coefficients by report(fit_model)
#> Series: count
#> Model: ETS(A,A,A)
#>
     Smoothing parameters:
#>
       alpha = 0.05415759
       beta = 0.0001000156
#>
#>
       gamma = 0.0001004576
#>
     Initial states:
#>
#>
        1[0]
                               s[0]
                                       s[-1]
                    b[0]
                                                 s[-2]
                                                           s[-3]
                                                                    s[-4]
                                                                             s[-5]
    9.847316 0.002216585 -5.039602 -2.87241 0.6466778 4.024446 6.432858 6.672135
#>
#>
      s[-6]
               s[-7]
                         s[-8]
                                    s[-9]
                                            s[-10]
                                                       s[-11]
#>
    4.42365 1.669413 -1.487988 -3.500233 -5.32463 -5.644317
#>
#>
     sigma^2: 1.7173
#>
#>
        AIC
                AICc
                          BIC
#> 4180.390 4181.441 4255.138
```


2.2.2 Residual Stationarity

Required checks to be ready for forecasting:

- ACF Forecast Residual: all spikes are within the significance limits, so the residuals appear to be white noise
- The Ljung-Box test also shows that the residuals have no remaining autocorrelations
- Forecast Residuals are more or less normally distributed with roughly centred on zero

2.2.3 Histogram of forecast residuals with overlaid normal curve

#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 1 x 5
#> City Measure .model lb_stat lb_pvalue
#> <chr> <fct> <chr> <dbl> <dbl> <dbl>
#> 1 England Temperature ets 69.7 0.0000534

3 ARIMA Forecasting Models - AutoRegressive-Integrated Moving Average

Exponential smoothing and ARIMA (AutoRegressive-Integrated Moving Average)models are the two most widely used approaches to time series forecasting, and provide complementary approaches to the problem.

While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.

3.1 Seasonal ARIMA models

Non-seasonal ARIMA models are generally denoted ARIMA(p,d,q) where parameters p, d, and q are non-negative integers, * p is the order (number of time lags) of the autoregressive model * d is the degree of differencing (number of times the data have had past values subtracted) * q is the order of the moving-average model of past forecast errors .

The value of d has an effect on the prediction intervals — the higher the value of d, the more rapidly the prediction intervals increase in size. For d=0, the point forecasts are equal to the mean of the data and the long-term forecast standard deviation will go to the standard deviation of the historical data, so the prediction intervals will all be essentially the same.

Seasonal ARIMA models are usually denoted ARIMA(p,d,q)(P,D,Q)m, where m refers to the number of periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and moving average terms for the seasonal part of the ARIMA model.

```
#> # A tibble: 1 x 10
#>
     City
             Measure
                         .model sigma2 log_lik
                                                  AIC
                                                        AICc
                                                                BIC ar_ro~1 ma_ro~2
#>
     <chr>
             <fct>
                         <chr>
                                 <dbl>
                                         <dbl>
                                                <dbl>
                                                      <dbl>
                                                              <dbl> <list>
                                                                            st>
                                  2.25 -7952. 15915. 15915. 15947. <cpl>
#> 1 England Temperature arima
#> # ... with abbreviated variable names 1: ar_roots, 2: ma_roots
#> Series: count
```

```
#> Model: ARIMA(1,0,1)(2,1,0)[12]
#>
#>
  Coefficients:
#>
            ar1
                      ma1
                               sar1
                                        sar2
#>
         0.4752
                  -0.2384
                            -0.6646
                                     -0.3278
         0.0529
                   0.0586
                             0.0143
                                      0.0143
#>
#> sigma^2 estimated as 2.254: log likelihood=-7952.49
#> AIC=15914.98
                   AICc=15915
                                 BIC=15946.88
```



```
choose p, q parameter accordingly - but only for same d, D values
#> # A tibble: 13 x 10
                  Measure
#>
        City
                                   .model
                                               sigma2 log_lik
                                                                      AIC AICc
                                                                                      BIC ar_ro~1 ma_ro~2
#>
        <chr>
                   <fct>
                                   <chr>
                                                 <dbl>
                                                           <dbl> <dbl> <dbl> <dbl> <br/> </br/> </br/> 
                                                                                                      st>
#>
     1 England Temperature ARIMA_2~
                                                  1.63
                                                          -1001. 2011. 2011. 2033. <cpl>
                                                                                                      <cpl>
                                                          -1001. 2011. 2011. 2033. <cpl>
#>
     2 England Temperature ARIMA_1~
                                                  1.63
                                                                                                      <cpl>
#>
     3 England Temperature ARIMA_1~
                                                  1.63
                                                          -1000. 2012. 2012. 2038. <cpl>
                                                                                                      <cpl>
     4 England Temperature ARIMA_0~
                                                         -1002. 2013. 2013. 2035. <cpl>
                                                  1.64
                                                                                                      <cpl>
#>
     5 England Temperature ARIMA_1~
                                                  2.18
                                                         -1065. 2138. 2138. 2156. <cpl>
                                                                                                      <cpl>
#>
     6 England Temperature ARIMA_1~
                                                  2.44
                                                         -1097. 2204. 2204. 2226. <cpl>
                                                                                                      <cpl>
                                                         -1097. 2204. 2204. 2226. <cpl>
     7 England Temperature ARIMA_2~
                                                  2.44
                                                                                                      <cpl>
     8 England Temperature ARIMA 3~
                                                         -1122. 2259. 2259. 2294. <cpl>
                                                  2.40
                                                                                                      <cpl>
     9 England Temperature ARIMA_2~
                                                  3.11
                                                         -1166. 2340. 2340. 2358. <cpl>
                                                                                                      <cpl>
#> 10 England Temperature ARIMA_1~
                                                  3.23
                                                          -1179. 2364. 2364. 2377. <cpl>
                                                                                                      <cpl>
#> 11 England Temperature ARIMA_0~
                                                  3.24
                                                          -1180. 2366. 2366. 2379. <cpl>
                                                                                                      <cpl>
#> 12 England Temperature ARIMA_0~
                                                  3.93
                                                          -1236. 2476. 2476. 2485. <cpl>
                                                                                                      <cpl>
   13 England Temperature ARIMA_1~
                                                         -1270. 2544. 2544. 2553. <cpl>
                                                  4.44
                                                                                                      <cpl>
#> # ... with abbreviated variable names 1: ar_roots, 2: ma_roots
```

#> Model Selection by Information Criterion - lowest AIC, AICc, BIC

Good models are obtained by minimising the AIC, AICc or BIC (see glance(fit_arima) output). The preference is to use the AICc to selec p and q.

These information criteria tend not to be good guides to selecting the appropriate order of differencing (d) of a model, but only for selecting the values of p and q. This is because the differencing changes the

data on which the likelihood is computed, making the AIC values between models with different orders of differencing not comparable.

3.1.1 Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE

Residual accuracy can be computed directly from models as the one-step-ahead fitted residuals are available. Select forecast models that minimises for lowest

- MAE (Mean absolute error, will lead to forecasts of the median) and
- RMSE (Root mean squared error, lead to forecasts of the mean)

```
#> # A tibble: 14 x 12
#>
      City
              Measure
                                                    RMSF.
                                                              MAE
                                                                      MPE. MAPE.
                                                                                   MASE
                          .model .type
                                               MF.
      <chr>>
                                                                    <dbl> <dbl>
                                                                                   <dbl>
#>
              \langle fct. \rangle
                          <chr> <chr>
                                            <dbl>
                                                    <dbl>
                                                            <dbl>
#>
   1 England Temperatu~ ARIMA~ Trai~
                                          3.61e-2
                                                     1.26
                                                            0.987
                                                                   -7.63
                                                                           26.4
                                                                                   0.681
                                                                   -7.65
   2 England Temperatu~ ARIMA~ Trai~
                                          3.63e-2
                                                     1.26
                                                            0.984
                                                                           26.5
                                                                                  0.680
   3 England Temperatu~ ARIMA~ Trai~
                                                     1.26
                                                            0.984
                                                                   -7.71
                                                                           26.5
                                                                                  0.680
#>
                                          3.64e-2
                                                                   -7.92
   4 England Temperatu~ ARIMA~ Trai~
#>
                                          3.52e-2
                                                     1.26
                                                            0.985
                                                                           26.6
                                                                                  0.680
    5 England Temperatu~ ARIMA~ Trai~
                                                                                  0.803
                                                                   -8.99
                                                                           29.0
                                          3.70e-2
                                                     1.46
                                                            1.16
    6 England Temperatu~ ARIMA~ Trai~
#>
                                          2.00e-2
                                                     1.54
                                                            1.24
                                                                  -12.3
                                                                           32.0
                                                                                  0.855
                                                                           30.9
#>
   7 England Temperatu~ ARIMA~ Trai~
                                         -3.63e-4
                                                     1.54
                                                            1.22
                                                                  -11.0
                                                                                  0.844
   8 England Temperatu~ ARIMA~ Trai~
                                         -3.63e-4
                                                     1.54
                                                            1.22
                                                                  -11.0
                                                                           30.9
                                                                                  0.844
                                                                           33.1
   9 England Temperatu~ ARIMA~ Trai~
                                         -6.95e-3
                                                     1.74
                                                            1.38
                                                                  -11.1
                                                                                  0.954
#> 10 England Temperatu~ ARIMA~ Trai~
                                          4.35e-3
                                                     1.77
                                                            1.40
                                                                  -10.9
                                                                           33.0
                                                                                  0.970
#> 11 England Temperatu~ ARIMA~ Trai~
                                                                           32.9
                                          5.79e-3
                                                     1.78
                                                            1.40
                                                                  -10.9
                                                                                  0.970
#> 12 England Temperatu~ ARIMA~ Trai~
                                         -7.05e-3
                                                     1.96
                                                            1.56
                                                                  -11.9
                                                                           36.3
                                                                                   1.08
#> 13 England Temperatu~ ARIMA~ Trai~
                                         -6.73e-3
                                                     2.08
                                                            1.67
                                                                  -11.4
                                                                           37.4
                                                                                   1.15
#> 14 England Temperatu~ ARIMA~ Trai~ NaN
                                                  NaN
                                                          NaN
                                                                  NaN
                                                                          NaN
                                                                                NaN
#> # ... with 2 more variables: RMSSE <dbl>, ACF1 <dbl>
```

3.1.2 Ljung-Box Test - independence/white noise of the forecasts residuals

```
\#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 14 x 5
      City
#>
              Measure
                           .model
                                         lb_stat lb_pvalue
#>
      <chr>
              <fct>
                          <chr>
                                           <dbl>
                                                     <dbl>
   1 England Temperature ARIMA_111_012
                                            35.4
                                                  2.28e- 1
#>
   2 England Temperature ARIMA_111_112
                                            35.4
                                                  2.27e- 1
   3 England Temperature ARIMA 211 011
                                            35.5
                                                  2.25e- 1
#>
   4 England Temperature ARIMA_012_012
                                            37.6
                                                  1.62e- 1
#>
   5 England Temperature ARIMA_100_210
                                            83.0 7.31e- 7
   6 England Temperature ARIMA_301_200
                                            88.4
                                                 1.16e- 7
   7 England Temperature ARIMA_100_110
                                           114.
                                                  1.12e-11
   8 England Temperature ARIMA_200_110
                                           114.
                                                  1.12e-11
   9 England Temperature ARIMA_010_110
                                           225.
#> 10 England Temperature ARIMA_012_010
                                           209.
                                                  0
#> 11 England Temperature ARIMA_110_010
                                           296.
                                                  0
#> 12 England Temperature ARIMA_111_010
                                           205.
                                                  0
                                                  0
#> 13 England Temperature ARIMA_210_110
                                           181.
#> 14 England Temperature ARIMA_002_200
                                                 NA
```

3.1.3 Forecast Accuracy with Training/Test Data

```
#> 1 ARIMA_211~ Engl~ Temper~ Test    0.373    1.29    1.05    1.35    13.3    0.751    0.714    0.249
#> 2 ARIMA_111~ Engl~ Temper~ Test    0.370    1.29    1.05    1.29    13.3    0.750    0.715    0.245
#> 3 ARIMA_012~ Engl~ Temper~ Test    0.425    1.31    1.07    1.94    13.4    0.761    0.725    0.247
#> 4 ARIMA_100~ Engl~ Temper~ Test    0.576    1.49    1.19    2.76    14.6    0.848    0.827    0.246
```


3.2 Temperature - Forecasting with selected ARIMA model $\langle ARIMA(0,1,2)(0,1,2)[12] \rangle$

3.2.1 Forecast Plot of selected ARIMA model

```
#> Provide model coefficients by report(fit_model)
#> Series: count
#> Model: ARIMA(0,1,2)(0,1,2)[12]
#>
#> Coefficients:
#>
             ma1
                      ma2
                              sma1
                                       sma2
#>
         -0.7660
                  -0.2066
                           -1.0036
                                    0.0036
          0.0395
                   0.0400
                            0.0493
                                    0.0436
#> s.e.
#>
#> sigma^2 estimated as 1.636:
                                log likelihood=-1001.64
#> AIC=2013.28
                 AICc=2013.38
                                BIC=2035.16
```


3.2.2 Residual Stationarity

Required checks to be ready for forecasting:

- ACF Forecast Residual: all spikes are within the significance limits, so the residuals appear to be white noise
- The Ljung-Box test also shows that the residuals have no remaining autocorrelations
- Forecast Residuals are more or less normally distributed with roughly centred on zero

3.2.3 Histogram of forecast residuals with overlaid normal curve

#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 1 x 5
#> City Measure .model lb_stat lb_pvalue
#> Cobs (fet) (abs) (abs)

#> <chr> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <0.105</th>

4 ARIMA vs ETS

In particular, all ETS models are non-stationary, while some ARIMA models are stationary.

The ETS models with seasonality or non-damped trend or both have two unit roots (i.e., they need two levels of differencing to make them stationary). All other ETS models have one unit root (they need one level of differencing to make them stationary).

We compare for the chosen ETS rsp. ARIMA model the RMSE / MAE values. Lower values indicate a more accurate model based on the test set RMSE, ..., MASE.

- Residual Accuracy with one-step-ahead fitted residuals
- Forecast Accuracy with Training/Test Data

Note: a good fit to training data is never an indication that the model will forecast well. Therefore the values of the Forecast Accuracy are the more relevant one.

4.0.1 Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model

```
#> # A tibble: 4 x 12
#>
     City
                                                  RMSE
                                                                 MPE
                                                                     MAPE MASE RMSSE
             Measure
                          .model
                                               MF.
                                                          MAE
                                  .type
#>
     <chr>
             <fct>
                          <chr>
                                  <chr>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 England Temperature ets
                                  Trai~ -9.28e-5
                                                   1.29 1.01
                                                              -7.63
                                                                      26.6 0.698 0.706
#> 2 England Temperature arima
                                                   1.26 0.985 -7.92
                                  Trai~
                                         3.52e-2
                                                                      26.6 0.680 0.688
#> 3 England Temperature ETS_AAA Test
                                          5.72e-1
                                                   1.36 1.12
                                                                3.80
                                                                      13.7 0.796 0.755
                                                                      13.4 0.761 0.725
#> 4 England Temperature ARIMA_~ Test
                                          4.25e-1
                                                   1.31 1.07
                                                                1.94
#> # ... with 1 more variable: ACF1 <dbl>
```

4.0.2 Forecast Plot of selected ETS and ARIMA model


```
#> # A tsibble: 6 x 8 [1M]
```

#> # Key: City, Measure, .model [2]

```
#> # Groups:
               City, Measure, .model [2]
                                                count .mean
                                                                             '80%'
#>
    City
            Measure
                     .model Year_Month
#>
     <chr>
            <fct>
                        <chr>
                               <mth>
                                               <dist> <dbl>
                                                                            <hilo>
                                 2023 Jan N(4.6, 1.7) 4.60 [2.943778, 6.255419]80
#> 1 England Temperature arima
#> 2 England Temperature arima 2023 Feb N(5.3, 1.8) 5.32 [3.623291, 7.024516]80
#> 3 England Temperature arima 2023 Mrz N(7.2, 1.8) 7.17 [5.469395, 8.871825]80
                               2023 Jan N(5.2, 1.7) 5.16 [3.485305, 6.844136]80
#> 4 England Temperature ets
#> 5 England Temperature ets
                                 2023 Feb N(5.5, 1.7) 5.49 [3.804186, 7.167958]80
#> 6 England Temperature ets
                                 2023 Mrz N(7.3, 1.7) 7.31 [5.628414, 8.997137]80
#> # ... with 1 more variable: '95%' <hilo>
#> # A tsibble: 6 x 8 [1M]
               City, Measure, .model [2]
#> # Key:
#> # Groups:
               City, Measure, .model [2]
#>
    City
                        .model Year_Mo~1
                                                                             '80%'
                                              count .mean
            Measure
#>
    <chr>>
            <fct>
                        <chr>
                                <mth>
                                              <dist> <dbl>
                                                                            <hilo>
                               2052 Okt N(12, 2.6) 12.0 [9.988547, 14.095150]80
#> 1 England Temperature arima
#> 2 England Temperature arima
                               2052 Nov N(8.5, 2.6) 8.48 [6.427450, 10.536172]80
#> 3 England Temperature arima 2052 Dez N(6.3, 2.6) 6.28 [4.222903, 8.333965]80
#> 4 England Temperature ets
                                2052 Okt
                                            N(12, 5) 12.2 [9.388611, 15.100739]80
                                2052 Nov
                                           N(8.7, 5) 8.73 [5.867525, 11.587640]80
#> 5 England Temperature ets
#> 6 England Temperature ets
                                2052 Dez
                                           N(6.6, 5) 6.56 [3.698353, 9.426461]80
#> # ... with 1 more variable: '95%' <hilo>, and abbreviated variable name
      1: Year_Month
#> #
```

Forecasts by ETS <ETS(A,A,A)> and ARIMA model <ARIMA(0,1,2)(0,1,2)[12]>

#> # A tibble: 180 x 5 City, Measure, .model, Year [60] #> # Groups: #> City Measure .model Year Year_avg #> <fct> <chr>> <chr> <dbl> <dbl> 1 England Temperature arima 2023 4.60 #> 2 England Temperature arima 2023 5.32 #> 3 England Temperature arima 2023 7.17 4 England Temperature arima 2024 5.13 #> #> 5 England Temperature arima 2024 5.35

```
6 England Temperature arima
                                   2024
                                            7.20
                                   2025
   7 England Temperature arima
                                            5.15
   8 England Temperature arima
                                   2025
                                            5.38
#> 9 England Temperature arima
                                   2025
                                            7.22
#> 10 England Temperature arima
                                   2026
                                            5.18
#> # ... with 170 more rows
#> # A tibble: 180 x 5
#> # Groups:
               City, Measure, .model, Year [60]
#>
      City
              Measure
                           .model Year Year avg
#>
      <chr>
              <fct>
                           <chr>
                                  <dbl>
                                           <dbl>
   1 England Temperature arima
                                   2023
#>
                                           11.3
   2 England Temperature arima
                                   2023
                                            7.78
   3 England Temperature arima
                                   2023
                                            5.59
#>
   4 England Temperature arima
                                   2024
                                           11.4
   5 England Temperature arima
#>
                                   2024
                                            7.81
   6 England Temperature arima
                                   2024
                                            5.61
   7 England Temperature arima
                                   2025
                                           11.4
  8 England Temperature arima
                                   2025
                                            7.84
#> 9 England Temperature arima
                                   2025
                                            5.63
#> 10 England Temperature arima
                                   2026
                                           11.4
#> # ... with 170 more rows
```

4.0.3 Ljung-Box Test - independence/white noise of the forecasts residuals

```
#> # A tibble: 2 x 5
#>
     City
             Measure
                          .model lb_stat
                                           lb_pvalue
#>
     <chr>
             <fct>
                          <chr>
                                    <dbl>
                                               <dbl>
#> 1 England Temperature arima
                                    37.6 0.162
#> 2 England Temperature ets
                                    75.9 0.00000743
```

5 Yearly Data Forecasts with ARIMA and ETS

For yearly data the seasonal monthly data are replaced by the yearly average data. Therefore the seasonal component of the ETS and ARIMA model are to be taken out.

The ETS model < ETS(A,A,N) > with seasonal term change "A" -> "N" is chosen. For ARIMA models the seasonal term (P,D,Q)m has to be taken out and an optimal ARIMA(p,1,q) with one differencing (d=1) is selected. However, for Mauna Loa two times differencing had to be selected $CO_2 < ARIMA(0,2,1) \text{ w/ poly} >$. For Temperature and Precipitation the same model as for monthly data can be taken by leaving out the seasonal term < ARIMA(0,1,2)w/drift >.

5.0.1 Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model

5.0.2 Forecast Plot of selected ETS and ARIMA model


```
#> # A tsibble: 6 x 8 [1Y]
#> # Key:
                City, Measure, .model [2]
                City, Measure, .model [2]
#> # Groups:
                                                                            '80%'
#>
     City
             Measure
                         .model Year
                                          Year_avg .mean
     <chr>
             <fct>
                         <chr>
                                <dbl>
                                            <dist> <dbl>
#>
#> 1 England Temperature arima
                                 2023 N(11, 0.26)
                                                   10.7 [10.069897, 11.37662]80
                                                   10.7 [10.011791, 11.33444]80
                                 2024 N(11, 0.27)
#> 2 England Temperature arima
                                                   10.7 [10.037982, 11.36064]80
#> 3 England Temperature arima
                                 2025 N(11, 0.27)
#> 4 England Temperature ets
                                 2023 N(11, 0.29)
                                                   10.7 [ 9.986755, 11.36898]80
#> 5 England Temperature ets
                                 2024 N(11, 0.31)
                                                   10.7 [ 9.991042, 11.40719]80
#> 6 England Temperature ets
                                 2025 N(11, 0.32)
                                                   10.7 [ 9.995711, 11.44502]80
#> # ... with 1 more variable: '95%' <hilo>
#> # A tsibble: 6 x 8 [1Y]
                City, Measure, .model [2]
#> # Key:
#> # Groups:
                City, Measure, .model [2]
#>
     City
             Measure
                         .model Year
                                                                          '80%'
                                          Year avg .mean
#>
     <chr>
             <fct>
                         <chr>
                                <dbl>
                                            <dist> <dbl>
                                                                         <hilo>
                                 2050 N(11, 0.27) 11.4 [10.69277, 12.01542]80
#> 1 England Temperature arima
#> 2 England Temperature arima
                                 2051 N(11, 0.27)
                                                   11.4 [10.71896, 12.04161]80
#> 3 England Temperature arima
                                 2052 N(11, 0.27)
                                                   11.4 [10.74515, 12.06780]80
#> 4 England Temperature ets
                                 2050 N(11, 0.69)
                                                   11.3 [10.19048, 12.31269]80
#> 5 England Temperature ets
                                 2051 N(11, 0.7)
                                                   11.3 [10.20034, 12.34533]80
#> 6 England Temperature ets
                                 2052 N(11, 0.72) 11.3 [10.21030, 12.37787]80
#> # ... with 1 more variable: '95%' <hilo>
```

arly Data Forecasts by ETS <ETS(A,A,N)> and ARIMA model <ARIMA(0,1,2) w/ drift> w/ Prediction Interval

5.0.3 Ljung-Box Test - independence/white noise of the forecasts residuals

#> # A tibble: 2 x 5
#> City Measure .model lb_stat lb_pvalue
#> <chr> <fct> <chr> <fct> <chr> <dbl> <dbl> <dbl> <dbl> <
#> 1 England Temperature arima 29.4 0.496
#> 2 England Temperature ets 29.4 0.499

6 Backup