Module1-quiz-SP23

Due Jan 22 at 11:59pm **Points** 10 **Questions** 10

Available Jan 8 at 11:59pm - Jan 23 at 2:59am

Time Limit 450 Minutes

Attempt History

	Attempt	Time	Score	
LATEST	Attempt 1	4 minutes	10 out of 10	

(!) Correct answers will be available on Jan 23 at 9am.

Score for this quiz: **10** out of 10 Submitted Jan 22 at 5:48pm This attempt took 4 minutes.

Question 1 1/1 pts

Consider the following propositional logic formula: (p \land q \land r) \lor (\neg p \land \neg q \land s) \lor (\neg r \land t)

Which of the following assignments of truth values to variables p, q, r, s, and t will make the formula TRUE?

- I(p)=f, I(q)=f, I(r)=t, I(s)=f, I(t)=t
- (p)=f, I(q)=t, I(r)=f, I(s)=t, I(t)=f
- I(p)=t, I(q)=f, I(r)=t, I(s)=f, I(t)=t
- I(p)=t, I(q)=t, r=t, I(s)=t, I(t)=t

Question 2 1 / 1 pts

P and Q are two propositions. Which of the following are equivalent?

I: P V ¬ Q

II: ¬ (¬ P ∧ Q)

III: $(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land Q)$

IV: $(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$

- Only I, II and III
- All of I, II, III and IV
- Only I, II and IV

I and II are equivalent due to DeMorgan's Law. The IVth can be simplified to I.

Only I and II

Question 3 1 / 1 pts

Which of the following propositional logic formulas is entailed by the statement "p implies q" i.e. $(p \longrightarrow q)$?

- ¬ q
- ¬p∨q

All interpretations of p and q that satisfy (p \longrightarrow q) also satisfies the formula on the right i.e. (¬ p \vee q).

These interpretations are:

- I(p)=f, I(q)=f
- I(p)=f, I(q)=t
- I(p)=t, I(q)=t.

For all the other answer choices, there is at least one interpretation of p and q for which $(p \longrightarrow q)$ is satisfied but the formula on the right side is not.

- (q
- О¬р
- p

Question 4 1 / 1 pts

Statement: $p \lor \neg p$ is a tautology if and only if $\neg p \land p$ is unsatisfiable.

Above statement True or False?

True

The above statement is True as there are no interpretations for $\neg p \land p$ that can be true and therefore it is unsatisfiable. As a result negation of $\neg p \land p$ must be a tautology.

False

Question 5 1 / 1 pts

F: $(p_1 \wedge q_1) \vee (p_2 \wedge q_2) \vee (p_3 \wedge q_3) \vee (p_4 \wedge q_4)$

For the above Formula F how may clauses will be generated by Clausify* (F, Γ) ?

- 0 16
- **13**

For clausify we will have $2^4 = 16$ clauses and for clausify* we will have (1 + 12) = 13 clauses that can be generated.

- 0 10
- 8

Question 6 1 / 1 pts

F: $p \wedge (\neg p \vee q) \wedge (\neg q \vee r) \wedge (q \vee \neg r)$

Let U be empty set of literals. What will be the result of set U after three iterations if we perform unit propagation for the above formula F.

- $U = \{p, \neg q, \neg r \}$
- \bigcirc U = {p, \neg q, r}
- \bigcirc U = {p, q, \neg r}
- \bigcirc U = {p, q, r}

By applying unit propagation we get $U1 = \{p\}$, $U2 = \{p,q\}$, $U3 = \{p,q,r\}$. At the end of all iterations it comes out to be true.

Question 7 1 / 1 pts

Apply unit propagation on the formula $p \wedge (p \vee q) \wedge (\neg p \vee \neg q) \wedge (q \vee r) \wedge (\neg q \vee \neg r)$ starting with an empty set U of literals. What are the resulting set U of literals from the first three iterations?

$$\bigcirc$$
 U - 1 = {p}, U - 2 = {p, ¬q}, U - 3 = {p, ¬q, r}

$$\cup$$
 U - 1 = { p }, U - 2 = { r }, U - 3 = { ¬ q }

$$\cup$$
 U - 1 = {p}, U - 2 = {¬q}, U - 3 = {r}

$$\cup$$
 U - 1 = {p}, U - 2 = {p,r}, U - 3 = {p,r, ¬q}

Question 8 1 / 1 pts

Consider the following graph where each arrow is denoted by a number in red. Which sequence of arrows best explains the steps for knowledge representation and reasoning?

2413

2314

<pre>2134</pre>			
O 4312			

Question 9	1 / 1 pts
Which option is to have a conclusion that is likely to be true though we do not have enough evidence?	even
Deductive reasoning	
Abductive reasoning	
Model finding	
Default reasoning	

Question 10	1 / 1 pts
Suppose p is an atom. Is the following statement true or fa $\{\bot\}$ entails \bot .	lse?
True	
False	

Quiz Score: 10 out of 10