§6. Производная сложной и обратной функции. Свойство инвариантности формы дифференциала

Теорема 6.1. Если функция y = f(u) дифференцируема в точке u_0 , а функция u = g(x) дифференцируема в точке x_0 , причём $u_0 = g(x_0)$, то на некоторой окрестности точки x_0 определена сложная функция y = f(g(x)), дифференцируемая в этой точке, при этом справедливо равенство:

$$y_x'(x_0) = y_u'(u_0) \cdot u_x'(x_0). \tag{6.1}$$

• Функция y = f(u) дифференцируема в точке u_0 , поэтому её приращение в этой точке представимо в виде (3.2): $\Delta y = A \cdot \Delta u + \alpha(\Delta u) \Delta u$, где $A = y'(x_0)$ (следствие из теоремы 3.1). Отсюда получаем:

$$\Delta y = y_u'(u_0) \cdot \Delta u + \alpha(\Delta u) \Delta u, \qquad (6.2)$$

где $\alpha(\Delta u) \to 0$ при $\Delta u \to 0$. Поделим обе части соотношения (6.2) на Δx :

$$\frac{\Delta y}{\Delta x} = y_u'(u_0) \cdot \frac{\Delta u}{\Delta x} + \alpha(\Delta u) \frac{\Delta u}{\Delta x}. \tag{6.3}$$

Пусть $\Delta x \to 0$, тогда $\frac{\Delta y}{\Delta x} \to y_x'(x_0)$, $\frac{\Delta u}{\Delta x} \to u'(x_0)$, $\Delta u \to 0$ как приращение дифференцируемой и потому непрерывной функции, значит, и $\alpha(\Delta u) \to 0$. Итак, переходя к пределу в (6.3) при $\Delta x \to 0$, приходим к формуле (6.1).

Теорема 6.2. Если функция y = f(x) непрерывна, строго монотонна на некоторой окрестности точки x_0 и дифференцируема в точке x_0 , причём $y'(x_0) \neq 0$, то на некоторой окрестности точки y_0 , $y_0 = f(x_0)$, определена непрерывная, строго монотонная функция $x = f^{-1}(y)$, обратная по отношению к данной. Эта функция дифференцируема в точке y_0 , при этом справедлива формула

$$x'(y_0) = \frac{1}{y'(x_0)}. (6.4)$$

►Существование, непрерывность и монотонность обратной функции $x = f^{-1}(y)$ следует из теоремы 4.5 главы 4 раздела 4, при этом $\Delta y \neq 0 \Rightarrow \Delta x \neq 0$. Докажем, что верна формула (6.4). Рассмотрим равенство: $\frac{\Delta x}{\Delta y} = \frac{1}{\Delta y/\Delta x}$ и устремим в нём Δy к нулю, при этом в силу непрерывности обратной функции Δx также стремится к нулю, имеем: $\lim_{\Delta y \to 0} \frac{1}{\Delta y/\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta y/\Delta x} = \frac{1}{y'(x_0)}$. Но тогда $\exists \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \frac{1}{y'(x_0)}$ и, следовательно, верно равенство (6.4). \blacktriangleleft

Свойство инвариантности формы дифференциала

Пусть функция y = f(x), где x — независимая переменная, дифференцируема в точке x, при этом, как установлено в §3, справедливо равенство

$$dy = y_x' dx. (6.5)$$

Введём в рассмотрение функцию x = g(t), дифференцируемую в точке t, x — теперь зависимая переменная. В силу теоремы 6.1 сложная функция y = f(g(t)) дифференцируема в точке t. Имеем

$$dy = y'_t dt = y'_x \cdot x'_t dt = y'_x dx$$

(использованы формулы (6.5) и (6.1) и равенство $dx = x_t'dt$, вытекающее из (6.5)). Последнее равенство вместе с равенством (6.5) позволяет сделать следующий вывод.

Форма записи дифференциала $dy = y_x' dx$ в случае, когда переменная x является независимой, остаётся справедливой и для случая, когда x является функцией (например, переменной t). Это свойство дифференциала называется свойством инвариантности формы.

Пример 6.1. Пусть $y = \sin x, x = \cos t$. Какие из следующих равенств справедливы: А) $dy_{|t=\pi/2} = 0$, В) $dy_{|t=\pi/2} = dx$, С) $dy_{|t=\pi/2} = -dt$?

▶ В силу инвариантности формы дифференциала имеем $dy = \cos x dx$. Так как x = 0 при $t = \pi/2$, то dy = dx и потому равенство В) верно. Равенство С) верно, поскольку $dx = -\sin t dt$ и dx = -dt при $t = \pi/2$. Равенство А) неверно. ◀