中山大学本科生 2019 期末考试

考试科目:《高等代数》(A卷)

学年学期: 2	019 学年第 1 学期	姓	名:	
学 院/系: 娄	数据科学与计算机学院			
考试方式: [年级专	业:	
考试时长:1	20 分钟			
警示 《 · 位。"	中山大学授予学士学位工作细则》	》第八多	条:"	考试作弊者,不授予学士学
	一以下为试题区域,共4道大题,总	分 100 分	7,考生	请在答题纸上作答
	owercase letter (e.g. a, b, c) to repr			
(e.g. $\vec{\alpha}, \vec{b}, \vec{c}$)	to represent vector and upperca	ise lette	er (e.	g. A, B, C) to represent matrix
determinant o	the rank of matrix A , $A^* = \operatorname{adj} A$ of A , $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$ is the traced i-th row of matrix A ; A^{-1} is the	of a sq	uare	A, where a_{ii} is the entry of the i
一、填空题	(共 4 小题,每小题 4 分,共	16 分)	
	matrix $A = \begin{bmatrix} 0 & 2 & 1 \\ 0 & 3 & 2 \\ 5 & 0 & 0 \end{bmatrix}$, $\det(2AA^*)$			
(2). Given a v	vector $\vec{\alpha} = [1,2,-2]^T$, $\operatorname{tr}(\vec{\alpha}\vec{\alpha}^T) =$	=		·
(3). If vectors	$\vec{\alpha}_1 = [0,1,\lambda]^T, \vec{\alpha}_2 = [\lambda,1,0]^T, \vec{\alpha}_3$	$= [0, \lambda$	$[1, 1]^T$	are linearly dependent, then $\lambda =$
(4). If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & a & 1 \\ 0 & 1 & a \end{bmatrix}$ is a positive definite ma	trix, the	en the	value range of a is
二、选择题	(共 4 小题,每小题 4 分,共	16 分)	

(1). If AB = C, then _____.

(A)
$$\operatorname{rank}(A + B) \ge \operatorname{rank}(A) + \operatorname{rank}(B)$$
.

(B)
$$\operatorname{rank}(A) + \operatorname{rank}(B) = \operatorname{rank}(C)$$
.

(C).
$$\operatorname{rank}(C) \leq \operatorname{rank}(A)$$
.

(D) rank
$$(B) \leq \operatorname{rank}(C)$$
.

(2). Given a square matrix
$$A = \begin{bmatrix} \vec{\alpha}_1 \\ \vec{\alpha}_2 \\ \vec{\alpha}_3 \end{bmatrix} \in \mathbb{R}^{3\times 3}$$
, each $\vec{\alpha}_i (i = 1,2,3)$ is a 3-dimensional row

vector. Matrix
$$B = \begin{bmatrix} \vec{\alpha}_2 \\ \vec{\alpha}_1 \\ \vec{\alpha}_3 - 2\vec{\alpha}_1 \end{bmatrix}$$
, $P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, then_____.

(A)
$$AP_1P_2 = B$$
.

(B)
$$AP_2P_1 = B$$

(C)
$$P_1 P_2 A = B$$
.

(D)
$$P_2P_1A = B$$
.

- (3). Equation $Ax = \vec{0}$ has only the trivial solution if and only if _____.
- (A) The columns of A are linearly dependent. (B) the rows of A are linearly dependent.
- (C) A has full row rank.

(D) A has full column rank.

(4). If
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$
, then $\left(\frac{1}{2}A^*\right)^{-1} = \underline{\qquad}$.

(A)
$$\frac{1}{2}A$$
.

(B)
$$\frac{1}{4}A$$
.

(C)
$$\frac{1}{9}A$$

(D)
$$\frac{1}{16}A$$
.

三、计算题(共 5 小题, 其中第 3 小题 10 分, 其余小题 12 分, 共 58 分)

(1). Find matrix *B* satisfies
$$A^*B = 2I + 2B$$
, where $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$.

(2). Let matrix
$$A = \begin{bmatrix} 1 & 0 & 2 & a \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 0 & a+b \\ 1 & 1 & 1 & 2a \end{bmatrix}$$
 and vector $\vec{b} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ b+1 \end{bmatrix}$.

- (a) Please tell when there is no solution, unique solution and infinitely many solutions to the matrix equation $Ax = \vec{b}$.
 - (b) Find the solution set when there are infinitely many solutions.

(3). Given three vectors
$$\vec{x} = \begin{bmatrix} 4 \\ -1 \\ 9 \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} 11 \\ 1 \\ 17 \end{bmatrix}$, $\vec{z} = \begin{bmatrix} 3 \\ 6 \\ -2 \end{bmatrix}$ and their coordinate vectors $[\vec{x}]_{\beta} = \begin{bmatrix} 3 \\ 6 \\ -2 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, [\vec{y}]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, [\vec{z}]_{\beta} = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} \text{ relative to the basis } \beta.$$

- (a) Find the basis β .
- (b) Given another basis $C = \left\{ \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \right\}$, please find the change-of-coordinates matrix from β to C.
- (4) Given a vector set $\alpha = {\vec{\alpha}_1 = [2,2,2,1]^T, \vec{\alpha}_2 = [1,0,2,1]^T, \vec{\alpha}_3 = [1,2,0,1]^T}$. Answer the following questions.
- (a) Can vector set $\beta = \{\vec{b}_1 = [3,4,2,3]^T, \vec{b}_2 = [4,2,6,3]^T\}$ be linearly represented by vector set α ?
- (b) If β can be linearly represented by α , please provide the coefficients of the linear combination.

(5) Let matrix
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 2 & 1 & 0 \\ 0 & 4 & 3 \end{bmatrix}$$
 and $AX - A = 3X$. Find the matrix X .

四、证明题(共 1 小题, 共 10 分)

Prove the following theorem: A $n \times n$ real matrix A is positive definite if and only if there exist n linearly independent real vectors $\vec{\alpha}_i = (m_{i1}, m_{i2}, \cdots, m_{in}), i = 1, 2, \cdots, n$ satisfying that $A = \vec{\alpha}_1^T \vec{\alpha}_1 + \vec{\alpha}_2^T \vec{\alpha}_2 + \cdots + \vec{\alpha}_n^T \vec{\alpha}_n$.