Fault Detection of VLSI/SoC/IC Testing

Dr. Katherine Shu-Min Li
EDA&T Lab.

Dept. Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, TAIWAN

Thanks to Prof. Sying-Jyan Wang, sjwang@cs.nchu.edu.tw

Review: How To Do Test: **FIVE** Approaches

- □ Fault Modeling
 - Identify target faults
 - Limit the scope of test generation
 - Make analysis possible
- □ Test Generation
 - Automatic or Manual
- □ Fault Simulation
 - Assess completeness of tests (test patterns), fault/test coverage
- □ Testability Analysis
 - Analyze a circuit for potential problems on test generation
- Design For Testability
 - Input for Controllability; Output for Observability
 - Design a circuit for guaranteed test generation
 - Introduce both area overhead and performance degradation

Review: Fault Modeling

- □ Fault Models
 - Stuck-At Faults
 - Bridging Faults
 - Transistor Stuck-On/Open Faults
 - IDDQ Faults
 - Functional Faults
 - Memory Faults
 - PLA Faults
 - Delay Faults & State Transition Faults

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
- Undetectable Faults
- ☐ Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Why Logical Fault Modeling

- Fault analysis on logic rather than physical defect problem
 - Complexity is reduced
- □ Technology independent
 - Same fault model is applicable to many technologies
 - Testing and diagnosis methods remain valid despite changes in technology
- Tests/Test Inputs derived may be used for physical faults
 - Physical faults/defects effect on circuit behavior is not completely understood or too complex to be analyzed
- Stuck-at fault: The most popular logical fault mode

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
- Undetectable Faults
- ☐ Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

- A test(vector) t detects a fault f if and only if
 - $t \text{ detects } f \Leftrightarrow \mathbf{z_f(t)} \neq \mathbf{z(t)}$
- Example
 - = t=(100) detects f because $z_1(100)=0$ and

$$z_{1f}(100) = 1$$
 X_1
 X_2
 $S-a-1$
 X_3
 $Z_1 = X_1X_2$
 $Z_2 = X_2X_3$

$$Z_{1f} = X_1$$
 $Z_{2f} = X_2X_3$

Summary: X2=X2_stem + X2_up_fanout(sa1, s-a-1)+X2_down_fanout(sa1, s-a-1)

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
- Undetectable Faults
- ☐ Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Sensitization (1/2)

- \square 1011 detects the fault f (**G2 stuck-at 1**)
- \square V/V_f
 - \mathbf{v} = signal **v**alue in the **fault free** circuit
 - \mathbf{v}_f = signal **v**alue in the **faulty** circuit

Sensitization (2/2)

- ☐ A test/test input *t* detects a fault *f*
 - Step 1. FA: Activate f (or generate a fault effect)
 - by creating different v and v_f values at the site of the target fault => v/v_f
 - □ =>Test Input=>Controllability
 - Step 2. FP: Propagate the error to a primary output w
 - by making all the lines along at least one path between the fault site and w
 - \square w have different v and v_f values
 - □ =>Observability
- □ A line whose value in the test/test input changes in the presence of the fault f is said to be sensitized to the fault f by the test/test input
- ☐ A path composed of sensitized lines is called a sensitized path

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
- Undetectable Faults
- ☐ Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Detectability

- A fault f is said to be detectable if there exists a test/test input t that detects f; otherwise, f is an undetectable fault
- ☐ For an **undetectable** fault *f*
 - No test can simultaneously activate f and create a sensitized path to a primary output
 - Step 1 Fault Activation and Step 2 Fault Propagation (sensitization) need to be satisfied at the same time

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
- Undetectable Faults
- ☐ Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Undetectable Faults (1/3)

- A fault f is said to be detectable if there exists a test t that detects f; otherwise, f is an undetectable fault
- For an undetectable fault f

$$z_f(x) = z(x)$$
 for all x

No test can simultaneously activate f and create a sensitized path to a primary output

Undetectable Faults (2/3)

- \square G₁ output stuck-at-0=>**1/0**
- \square Zf=OR(G1,G2,G3)=1, Z=OR(G1,G2,G3)
- ☐ G2=0 and G3=0 and G1=ab=1
- □ G1=ab=1=>a=1 and b=1
- \Box G2=b*inv(c)=0=>c=1 and G3=ac=0=>c=0
- ☐ Thus, conflict at c=>No test vector available

Undetectable Faults (3/3)

- □ G₁ output stuck-at-0 fault is undetectable
 - Undetectable faults do not change the function of the circuit
 - According to Truth Table (K-map, Karnaugh Map)
 - The related circuit can be deleted to simplify the circuit
 - s-a-0 just be replaced by Line 0; s-a-1 by Line 1
- Undetectable faults = Redundant faults

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
 - Detectable vs Undetectable
- Undetectable Faults
- □ Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Test Set

- □ Complete detection test set: A set of tests/test inputs that detect any detectable faults in a class of faults
- □ Test Quality: The quality of a test set is measured by test/fault coverage
- □ Fault coverage: Fraction of faults that are detected by a test set
- The fault coverage can be determined by fault simulation
 - >95% is typically required for single stuck-at fault model
 - >99.9% in IBM
 - Four 9 principle: 99.99%

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
 - Detectable vs Undetectable
- Undetectable Faults
- Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Typical **Test Generation Flow**

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
 - Detectable vs Undetectable
- Undetectable Faults
- Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Fault Equivalence (1/3)

- □ A test t distinguishes between faults α and β if $z_α(t) ⊕ z_β(t) = 1$
- □ Two **faults**, α & β are said to be **equivalent** in a circuit , iff the **function under** α is equal to the **function under** β for any input combination (sequence) of the circuit.
 - $\mathbf{z}_{\alpha}(t) = \mathbf{z}_{\beta}(t)$ for all t
 - No test can distinguish between α and β
 - Any test which detects one of them detects all of them

Fault Equivalence (2/3)

- AND gate
 - All s-a-0 faults are equivalent
- OR gate
 - \blacksquare All s-a-1 faults are equivalent
- NAND gate
 - All the input s-a-0 faults and the output s-a-1 faults are equivalent
- NOR gate
 - All input s-a-1 faults and the output s-a-0 faults are equivalent
- □ Inverter
 - Input s-a-1 and output s-a-0 are equivalent
 - Input s-a-0 and output s-a-1 are equivalent
- Key concept: all CV (Controlling Value) are equivalent

Fault Equivalence (3/3)

GATE Type	CV (Controlling Value)	NCV (Non- Controlling Value)
AND	О п	1
NAND	0	Only output inv 1
OR	1 <u></u>	0
NOR	1	Only output inv 0
INV	0 vs 1; 1 vs 0	
XOR XNOR	0 vs 1;1 vs 0 0 vs 0;1 vs 1	XOR=1 for different inputs XNOR=1 for Same inputs

- Why Logical Fault Modeling
- □ Fault Detection
- Sensitization
- Detectability
 - Detectable vs Undetectable
- Undetectable Faults
- Test Set
- □ Test Generation Flow
- □ Fault Equivalence
 - Equivalence Fault Collapsing

Equivalence Fault Collapsing (1/3)

(N)AND vs (N)OR

- n inputs, 1 output under SA0/SA1 =>2(n+1)=2+2
- By Controlling Value: only ONE from n-inputs
 4 1 output is enough=>delete #n faults
 - n+2 instead of 2n+2 faults need to be considered for n-input gates

Equivalence Fault Collapsing (2/3) Wire

- Equivalence in a wire [between two endpoints]
 - Fault equivalence
 - ☐ A sa0 ↔ B sa0
 - \square A sa1 \leftrightarrow B sa1
 - No need to consider B sa0 and B sa1
 - Summary: Both ends of a wire are fault equivalence because same voltage value

Equivalence Fault Collapsing (3/3)

- Two/Multiple equivalent faults are detected by exactly the same tests
 - The following three faults are equivalent
 - That is, same FEs along propagation path

Thank You for Your Attention & Participation!

