Train - Validate - Test

Part I

Overfitting and Underfitting

Train – Test – Split: Part I

Train – Test – Split: Part II

Too few \rightarrow \hat{w} poorly estimated

Train - Test - Split: Part III

Too few \rightarrow test error is a bad approximation of generalization of errors.

Train – Test – Split: Part IV

Training Set

Test Set

Typically, just enough test points to form a reasonable estimate of generalization of errors.

Machine Learning Workflow: Part I

Model selection

 \circ Often need to **choose tuning parameters** λ controlling model complexity (e.g., degree of polynomial)

2. Model assessment

Having selected a model, assess the generalization of error.

Hypothetical Implementation: Part I

Training Set

Test Set

1. Model selection

For each considered model complexity λ :

- i. Estimate parameters \widehat{w}_{λ} on training data
- ii. Assess performance of \widehat{w}_{λ} on test data
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Compute test error of \widehat{w}_{λ^*} (fitted model for selected complexity λ^*) to approximate generalization error.

Hypothetical Implementation: Part II

Training Set

Test Set

1. Model selection

For each considered model complexity λ :

- i. Estimate parameters \widehat{w}_{λ} on training data
- ii. Assess performance of \widehat{w}_{λ} on **test data**
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Overly optimistic!

Compute test error of \widehat{w}_{λ^*} (fitted model for selected complexity λ^*) to approximate generalization error.

Hypothetical Implementation: Part III

Training Set

Test Set

Issue: Just like fitting \widehat{w} and assessing its performance on training data.

- λ^* was selected to minimize test error (i.e., λ^* was fit on test data)
- If test data is not representative of the whole world, then \widehat{w}_{λ^*} will typically perform worse than test error indicates.

Practical Implementation

Training Set Validation Set Test Set

Solution: Create two "test" sets!

- 1. Select λ^* such that \widehat{w}_{λ^*} minimizes error on validation set
- 2. Approximate generalization error of \widehat{w}_{λ^*} using test set

Practical Implementation, Continued

Typical Splits

Training Set	Validation Set	Test Set
80%	10%	10%
50%	25%	25%

