Effect of low-rise building geometry on tornado-induced loads

140926 WANG Yong

Southeast University

September 17, 2015

Introduction

Description of simulated tornado

Maximum horizonal wind speed Tornado vortex diameter Swirl ratio

Model description, instruments, conventions

Building models
Instrumentation
Procedure and conventions

Results

The effect of eave height The effect of roof pitch

Challenges to quantify tornado-induced loads:

► Lack of research facilities capable of determining tornado-induced loads (pressures, forces, etc.)

Challenges to quantify tornado-induced loads:

- Lack of research facilities capable of determining tornado-induced loads (pressures, forces, etc.)
- Absence of full-scale data

Challenges to quantify tornado-induced loads:

- Lack of research facilities capable of determining tornado-induced loads (pressures, forces, etc.)
- Absence of full-scale data
- Lack of interest in tornado-resistant design

How to overcome these challenges:

Iowa State University (ISU) tornado simulator

How to overcome these challenges:

- Iowa State University (ISU) tornado simulator
- ► Full-scale data from several recent tornados

How to overcome these challenges:

- Iowa State University (ISU) tornado simulator
- ► Full-scale data from several recent tornados
- Pressures obtained form the ISU simulator are verified

Description of simulated tornado
Maximum horizonal wind speed

Maximum horizontal wind speed

Fact 1: Around 90% of all tornados are rated F2 or less

Maximum horizonal wind speed

Maximum horizontal wind speed

Fact 1: Around 90% of all tornados are rated F2 or less

Fact 2: Maximum velocity of F2 tornado is 74 m/s

Maximum horizontal wind speed

```
Fact 1: Around 90% of all tornados are rated F2 or less
```

Fact 2: Maximum velocity of F2 tornado is 74 m/s

Fact 3: Design wind speed ranges from 63 m/s to 80 m/s (ASCE 7-10, 2010)

Maximum horizontal wind speed

- Fact 1: Around 90% of all tornados are rated F2 or less
- Fact 2: Maximum velocity of F2 tornado is 74 m/s
- Fact 3: Design wind speed ranges from 63 m/s to 80 m/s (ASCE 7-10, 2010)
- Fact 4: Maximum horizonal velocity of the tornado generated by ISU Simulator is 11.7 m/s

Description of simulated tornado

Maximum horizonal wind speed

Maximum horizontal wind speed

- Fact 1: Around 90% of all tornados are rated F2 or less
- Fact 2: Maximum velocity of F2 tornado is 74 m/s
- Fact 3: Design wind speed ranges from 63 m/s to 80 m/s (ASCE 7-10, 2010)
- Fact 4: Maximum horizonal velocity of the tornado generated by ISU Simulator is 11.7 m/s

Choose target full-scale wind speed to be $74 \,\mathrm{m/s}$

Velocity scale $\lambda_{v} = 11.7/74 = 1/6.3$

Contour plot of normalized tangential velocity

Figure: Contour plot of tangential velocity magnitudes normalized with respect to the maximum tangential velocity

Description of simulated tornado

Maximum horizonal wind speed

└ Tornado vortex diameter

Tornado vortex diameter

Definition

Radius of the core r_c : radius of the maximum wind near the ground

└ Tornado vortex diameter

Tornado vortex diameter

Definition

Radius of the core r_c : radius of the maximum wind near the ground

Fact 1: r_c of F2 tornado is between 45 to 225 m

└ Tornado vortex diameter

Tornado vortex diameter

Definition

Radius of the core r_c : radius of the maximum wind near the ground

Fact 1: r_c of F2 tornado is between 45 to 225 m

Fact 2: r_c of simulated tornado is $0.56 \,\mathrm{m}$

Tornado vortex diameter

Definition

Radius of the core r_c : radius of the maximum wind near the ground

Fact 1: r_c of F2 tornado is between 45 to 225 m

Fact 2: r_c of simulated tornado is $0.56 \,\mathrm{m}$

Choose r_c of target full-scale tornado to be $56 \,\mathrm{m}$

Length scale is 1:100

Description of simulated tornado

[└] Tornado vortex diameter

Swirl ratio

Swirl ratio: definition

Definition Swirl ratio *S*:

$$S = \frac{\pi V_{\theta \max} r_c^2}{Q}$$

 r_c : core radius

 $V_{\theta \rm max}$: maximum tangential wind speed

Q: inflow rate of the vortex measured at $r = r_c$

How to choose swirl ratio

Swirl ratio

How to choose swirl ratio

Fact 1: Data from full-scale tornados indicates $S \ge 2.0$

└─Description of simulated tornado └─Swirl ratio

How to choose swirl ratio

- Fact 1: Data from full-scale tornados indicates $S \ge 2.0$
- Fact 2: Best fit of full-scale data with numerical simulation when $S \ge 2.0$

└─Description of simulated tornado └─Swirl ratio

How to choose swirl ratio

- Fact 1: Data from full-scale tornados indicates $S \ge 2.0$
- Fact 2: Best fit of full-scale data with numerical simulation when $S \ge 2.0$

Choose the swirl ratio S to be 2.6

└─Building models

Building models

☐ Model description, instruments, conventions☐ Building models

Model dimensions

Model	Roof pitch, θ (deg)	Width, B (mm)	Length, L (mm)	Eave height, h_e (mm)	Roof ridge height, h_t (mm)	Mean roof height, h (mm)	L/B	h/L
1	15.95	98	146	60	74	67	1.5	0.46
2	15.95	98	146	110	124	117	1.5	0.80
3	4.6	98	98	53	57	55	1.0	0.56
4	15.95	98	98	48	62	55	1.0	0.56
5	35.5	98	98	37	72	55	1.0	0.56
6	35.5	221	221	37	114	76	1.0	0.34
7 (Overhang)	15.95	98	146	60	74	67	1.5	0.46
8 (Garage 1) ^a	35.5 ^b	98	187	37	72	55	1.9	0.29
9 (Garage 2) ^a	15.95 ^b	98	235	60	74	67	2.4	0.29

^a Dimensions of "garage" addition were B=98 mm, L=89 mm, h_e=33 mm, and h_t=47 mm.
^b Roof pitch of "house" part of model, Roof pitch of "garage" addition was 15.95°.

Roof pitch of "house" part of model. Roof pitch of "garage" addition was 15.95°.

Instrumentation

Wind velocity measurement: Cobra probe

□Instrumentation

Wind velocity measurement: Cobra probe

Measurement points horizontally spaced at 50.8 mm vertically spaced at 6.35 mm

Instrumentation

Pressure measurement: ZOC33/64Px pressure transducer

Effect of low-rise building geometry on tornado-induced loads

Model description, instruments, conventions

Instrumentation

Pressure measurement: ZOC33/64Px pressure transducer

Measurement frequency: 390 Hz

Procedure and conventions

Procedure

▶ For each test case the pressure were recorded 10 times

Procedure and conventions

Procedure

- ▶ For each test case the pressure were recorded 10 times
- ► Calculate the peak pressure as the average of the peak pressures from each of the 10 runs

Procedure

- For each test case the pressure were recorded 10 times
- ► Calculate the peak pressure as the average of the peak pressures from each of the 10 runs
- ► Change the BOA from 0° to 90° with a step size of 15°

Definition

BOA: the orientation of the building with respect to the direction of translation of the tornado

Model description, instruments, conventions

Procedure and conventions

BOA & Areas used to compute force coefficients

Figure: Building orientation angle (BOA) with respect to the tornado translation axis (X) and areas (S_v, S_z) used to normalize force coefficients

Model description, instruments, conventions

Procedure and conventions

Calculation of force coefficients

$$C_{F_X} = \frac{F_X}{(1/2)\rho V_H^2 S_V} \tag{1}$$

$$C_{Fy} = \frac{F_y}{(1/2)\rho V_H^2 S_v}$$
 (2)

$$C_{Fz} = \frac{F_z}{(1/2)\rho V_H^2 S_z}$$
 (3)

$$C_{Fxy} = \sqrt{C_{Fx}^2 + C_{Fy}^2} \tag{4}$$

Model description, instruments, conventions

Procedure and conventions

☐ The effect of eave height

The effect of eave height: Models

Fact 1: Difference between Model 1 & 2 was eave heights h_e

Results

☐ The effect of eave height

The effect of eave height: Models

Fact 1: Difference between Model 1 & 2 was eave heights he

Fact 2: Model 1: $h_e = 60 \text{ mm}$ Model 2: $h_e = 110 \text{ mm}$

The effect of eave height: Peak pressures

Figure: Peak pressure contours for Model 1 (left) & 2 (right), BOA=30°

- Peak pressure contours of Model 1 & 2 are similar
- ▶ Magnitudes of peak pressure: Model 1 > Model 2

Results

☐ The effect of eave height

The effect of eave height: Vertical force coefficient

Figure: C_{Fz} time history for Model 1 & 2, BOA=30°

The effect of eave height: XY force coefficient

Figure: C_{Exy} time history for Models 1 & 2, BOA=30°

└ The effect of roof pitch

The effect of roof pitch: Models

Fact 1: Difference between Model 3, 4 & 5 was roof pitch θ

The effect of roof pitch: Models

Fact 1: Difference between Model 3, 4 & 5 was roof pitch θ

Fact 2: Model 3: $\theta = 4.6^{\circ}$

Model 4: $\theta = 15.95^{\circ}$

Model 5: $\theta = 35.5^{\circ}$

The effect of roof pitch: Peak pressures

Figure: Peak pressure contours for Model 3 (left), 4 (center) & 5 (right), BOA= 45°

The effect of roof pitch: Peak pressures

Figure: Peak pressure contours for Model 3 (left), 4 (center) & 5 (right), $BOA=45^{\circ}$

▶ As $\theta \uparrow$, peak pressure magnitudes for the roof \downarrow

The effect of roof pitch: Peak pressures

Figure: Peak pressure contours for Model 3 (left), 4 (center) & 5 (right), BOA=45°

- ▶ As $\theta \uparrow$, peak pressure magnitudes for the roof \downarrow
- ▶ As $\theta \uparrow$, peak pressure magnitudes for the wall \uparrow

Results

└ The effect of roof pitch

The effect of roof pitch: Vertical force coefficient

Figure: C_{Fz} time history for Models 3, 4 & 5, for each BOA

Results

☐ The effect of roof pitch

The effect of roof pitch: Vertical force coefficient

Figure: C_{Fz} time history for Models 3, 4 & 5, BOA=30°

