Débito ou velocidade de transmissão (Dandwidth)

Quantidade de informação, medida em bits por segundo, que o canal é capaz de transmitir por unidade de tempo

Tempo de transmissão

Tempo de transmissão = Dimensão da frame / Débito do canal

Taxa máxima de transmissão

Tmax = B * log2(1+S/N) bits/s

p é a probabilidade de um bit chegar errado

n é a dimensão da mensagem

A probabilidade da mensagem chegar sem erros é

(1-p)^n

A probabilidade da mensagem chegar com erros é

1-(1-p)^n

Tempo de trânsito do pacote

PTT=Tempo de transmissão + Tempo de Propagação

TT= Dimensão da frame / Débito do canal

PT=Dimensão do Canal/Velocidade de Propagação

ACK = Acknowledgement (confirmação ou aviso de recepção

= podes continuar)

Total = Tt + 2 x TP

Taxa de Utilização do Canal

Tu = Tt / (Tt + 2 x Tp) **ou Tu** = Tt / (Tt + RTT)

Tu - taxa de utilização

Tt - tempo de transmissão de uma mensagem,

Tp - tempo de propagação de extremo a extremo

RTT - tempo de ida e volta (2 x TP)

Débito alto -> +-1000 Débito baixo -> +-1 Débito razoável +-100 Canais de Débito Elevado

- Quando os canais têm débito muito elevado, o tempo de transmissão diminui drasticamente. Por exemplo, se um canal tem a capacidade de 1 Gbps, transmitir 10.000 bits leva 10-5 segundos, isto é, 10 micro segundos
- Se o RTT for de alguns milissegundos, a taxa de utilização do canal tende sempre para valores muito baixos. Nestes casos, o débito útil médio extremo a extremo permitido pelo protocolo tende para:

Débito útil médio extremo a extremo do protocolo S&W = Dimensão do pacote / RTT

Protocolos de Janela Deslizante

Go-Back-N (GBN)

Débito útil médio extremo a extremo do protocolo

- ≈ Dimensão "útil" da janela em bits / (TT + RTT)
- ≈ N x Débito do protocolo Stop & Wait

Canais com Débito Muito Elevado

- Quando os canais têm débito muito elevado, o tempo de transmissão diminui drasticamente. Por exemplo, se um canal tem a capacidade de 1 Gbps, transmitir 10.000 bits leva 10-5 segundos, isto é, 10 micro segundos
- Se o RTT for de alguns milissegundos e o TT desprezável, o débito útil médio extremo a extremo permitido pelo protocolo tende para:

Débito útil médio extremo a extremo do protocolo = Dimensão da janela "útil" em bits / RTT

Débito Extremo a Extremo Teórico

Débito = Dimensão Média da Janela / RTT V = Wavr / RTT

SI			IEC1		
$10^3 = 1000$	k	kilo	$2^{10} = 1024$	Ki	kibi
10^{6}	M	mega	2^{20}	Mi	mebi
10 ⁹	G	giga	2^{30}	Gi	gibi
10^{12}	T	tera	2^{40}	Ti	tebi
10^{15}	P	peta	250	Pi	pebi
10^{18}	E	exa	2^{60}	Ei	exbi
10^{21}	Z	zetta	270	Zi	zebi
10^{24}	Y	yotta	280	Yi	yobi

.