

Diode Circuit

VE311 Electronic Circuits (Fall 2020)

Dr. Chang-Ching Tu

VIN = 10V Vin = 0.0 | SMWT Vm = 10+ 0,018mwt

Solving Techniques

Graphical Analysis

Mathematical Analysis

$$\begin{split} V_{IN} &= I_D R + V_D \\ V_{IN} &= \left[I_S \left(\frac{q V_D}{e^{\ k T}} - 1 \right) \right] R + V_D \\ 10 &= \left[10^{-13} \left(e^{\frac{V_D}{0.0258}} - 1 \right) \right] 10^4 + V_D \end{split}$$

Above is a transcendental equation which does not have a close-form **analytical solution**. So, through trial and error, we seek a **numerical solution**.

function xd = diode(vd)
xd = 10 - (10⁻⁹) *
$$\left(\exp\left(\frac{vd}{0.0258}\right) - 1\right)$$
 - vd

Use MATLAB to plot xd as a function of vd, and find out a vd that makes xd closest to zero.

$$V_D = 0.5742 \text{ V}$$

 $I_D = 0.944 \text{ mA}$

Simplified Analysis (Ideal Diode)

 V_D a power supply? What happens if $V_{IN} = 0.5 \ V$?

$$I_{D} = \frac{V_{D} = 0.6 \text{ V}}{10 \text{ k}\Omega} = 0.94 \text{ mA}$$

$$J_{0} = 0$$
 A
 $V_{0} = 0.2 + 0.018 \text{ mwt}$

Comparison

	$V_{\rm D}$	$I_{\mathbf{D}}$
Graphical Analysis	0.6 V	0.95 mA
Mathematical Analysis	0.5742 V	0.944 mA
Ideal Diode Model	0 V	1 mA
Constant Voltage Drop Model	0.6 V	0.94 mA

Example

Use constant voltage drop model ($V_{on} = 0.6 \text{ V}$) to calculate V_D and I_D of each diode.

• Assume no current flowing through D3

$$\frac{10 - V_B}{10k} = \frac{V_B - 0.6 + 20}{10k} + \frac{V_B - 0.6 + 10}{10k}$$

$$V_{B} = -6.27 \text{ V}$$

$$V_C = -6.87 \; V \; \Rightarrow \; D_3 \; \text{in forward bias}$$

Assumption NOT valid

Assume no current flowing through D₂

$$\frac{10 - V_B}{10 k} = \frac{V_B - 0.6 + 20}{10 k}$$

$$V_B = -4.7 \text{ V}$$

$$V_C = -0.6 \text{ V}$$
 \Rightarrow D_2 indeed in reverse bias
Assumption valid

Example

Use ideal diode model ($V_{on} = 0 \text{ V}$) to calculate V_D and I_D of each diode.

Assume D₃ in reverse bias

$$\begin{split} \frac{10-V_B}{10k} = & \frac{V_B+20}{10k} + \frac{V_B+10}{10k} \\ V_B = & -6.67 \text{ V} \\ V_C = & -6.67 \text{ V} \Rightarrow D_3 \text{ in forward bias} \\ & \qquad \qquad \text{Assumption NOT valid} \end{split}$$

Assume D₂ in reverse bias

$$\begin{split} \frac{10-V_B}{10k} &= \frac{V_B+20}{10k} \\ V_B &= -5 \text{ V} \\ V_C &= 0 \text{ V} \qquad \Rightarrow D_2 \text{ indeed in reverse bias} \\ &\qquad \qquad \text{Assumption valid} \end{split}$$

$$V_{D1} = 0 \text{ V} \qquad V_{D2} = -5 \text{ V} \qquad V_{D3} = 0 \text{ V} \\ I_{D1} = 1.5 \text{ mA} \qquad I_{D2} = 0 \text{ mA} \qquad I_{D3} = 1 \text{ mA}$$

Zener Diode Circuit

Simplified Analysis for Zener Diode ($R_Z = 0$)

$$I_Z = \frac{20 - 5}{5000} = 3 \times 10^{-3} \text{ (A)}$$

Simplified Analysis for Zener Diode ($R_Z = 0$)

Simplified Analysis for Zener Diode ($R_Z \neq 0$)

$$I_Z = \frac{20 - 5}{5100} = 2.94 \times 10^{-3} \text{ (A)}$$

$$I_Z = \frac{20-5}{5k} - \frac{5}{5k} = 2 \text{ mA} > 0$$

As long as the zener diode operates in reverse breakdown region ($I_Z > 0$), a constant voltage (5 V) appears across R_L .

What is the smallest R_L for reverse breakdown to happen? Answer: $R_{L,min} = 1.67 \text{ k}\Omega$

$$20V = 5V = 5K\Omega$$

$$\frac{20-5}{5K} - 1$$

$$\frac{5}{5K} = 1$$

