

OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015-16

MAT234 Matematik IV - Ödev 2

N. Course

SON TESLİM TARİHİ: Salı 23 Şubat 2016 saat 16:00'e kadar.

Definition. A sequence (a_n) of real numbers tends to infinity $(a_n \to \infty \text{ as } n \to \infty)$ iff $\forall A > 0, \exists N = N(A) \in \mathbb{N}$ such that

$$n > N \implies a_n > A.$$

Egzersiz 4 (Examples of sequences which tend to infinity).

- (a) [20p] Let $u_n = n! n^2 \sin n$ for all $n \in \mathbb{N}$. Use the definition to show that $u_n \to \infty$ as $n \to \infty$.
- (b) [20p] Let $v_n = \frac{n+7}{2+\sin n}$ for all $n \in \mathbb{N}$. Use the definition to show that $v_n \to \infty$ as $n \to \infty$.
- (c) [20p] Let $w_n = n 2\log\left(1 + \frac{1}{n}\right)$ for all $n \in \mathbb{N}$. <u>Use the definition</u> to show that $w_n \to \infty$ as $n \to \infty$.

Egzersiz 5 (Sequences tending to infinity). [40p] Suppose that

- $(a_n)_{n=1}^{\infty}$ is a sequence of real numbers;
- $a_n \to \infty$ as $n \to \infty$;
- c > 0 is a real number; and
- $b_n := a_n c$ for all $n \in \mathbb{N}$.

Show that $b_n \to \infty$ as $n \to \infty$.

Ödev 1'in çözümleri

1. (a)

P	Q	R	$Q \vee R$	$(P \land (Q \lor R))$	$P \wedge Q$	$P \wedge R$	$(P \wedge Q) \vee (P \wedge R)$
T	Т	T	T	T	T	T	T
T	Т	F	T	T	T	F	T
T	F	T	T	T	F	Т	${f T}$
T	F	F	\mathbf{F}	F	F	F	\mathbf{F}
F	Т	T	T	F	F	F	\mathbf{F}
F	Т	F	T	F	F	F	\mathbf{F}
F	F	T	$^{\mathrm{T}}$	F	F	F	\mathbf{F}
F	F	F	F	F	F	F	F

(b) $(\exists \varepsilon > 0)(\forall N \in \mathbb{N})(\exists n \in \mathbb{N})((n > N) \land (|a_n| \ge \varepsilon)).$

- 2. Let P_n denote the proposition $1+2+3+\ldots+n=\frac{1}{2}n(n+1)$. First $1=\frac{1(1+1)}{2}$ so P_1 is true. Next assume that P_k is true. Then $1+2+3+4+5+\ldots+k=\frac{k(k+1)}{2}$. It follows that $1+2+3+4+5+\ldots+k+(k+1)=(1+2+3+4+5+\ldots+k)+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)+2k+2}{2}=\frac{k^2+3k+2}{2}=\frac{(k+1)(k+2)}{2}$ and hence P_{k+1} is also true. By the principle of mathematical induction, the proposition is true for all $n\in\mathbb{N}$.
- 3. Suppose that $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$. Then we can write $x = \frac{a}{b}$ and $y = \frac{c}{d}$ for $a, b, c, d \in \mathbb{Z}$, $b \neq 0 \neq d$. But then $xy = \frac{ac}{bd}$ so $xy \in \mathbb{Q}$.

x.co/mat234 1