Tutorial 6

Q.1.

Each impedance \mathbb{Z}_p in the balanced three-phase system of Fig. 12.34 is constructed using the parallel combination of a 1 mF capacitance, a 100 mH inductance, and a 10 Ω resistance. The sources have positive phase sequence and operate at 50 Hz. If $\mathbb{V}_{ab} = 208/0^{\circ}$ V, and $R_w = 0$, calculate (a) all phase voltages; (b) all line voltages; (c) all three line currents; (d) the total power drawn by the load.

■ FIGURE 12.34

Q.2.

The balanced three-phase system of Fig. 12.34 is characterized by a positive phase sequence and a line voltage of 300 V. And \mathbb{Z}_p is given by the parallel combination of a 5 - j3 Ω capacitive load and a 9 + j2 Ω inductive load. If $R_w = 0$, calculate (a) the power factor of the source; (b) the total power supplied by the source. (c) Repeat parts (a) and (b) if $R_w = 1$ Ω .

Q.3.

A three-phase load is to be powered by a three-wire three-phase Y-connected source having phase voltage of 400 V and operating at 50 Hz. Each phase of the load consists of a parallel combination of a 500 Ω resistor, 10 mH inductor, and 1 mF capacitor. (a) Compute the line current, line voltage, phase current, and power factor of the load if the load is also Y-connected. (b) Rewire the load so that it is Δ -connected and find the same quantities requested in part (a).

Q.4.

Two Δ -connected loads are connected in parallel and powered by a balanced Y-connected system. The smaller of the two loads draws 10 kVA at a lagging PF of 0.75, and the larger draws 25 kVA at a leading PF of 0.80. The line voltage is 400 V. Calculate (a) the power factor at which the source is operating; (b) the total power drawn by the two loads; (c) the phase current of each load.