Tutorato Informatica - 3

Scrivete nome, cognome e matricola sul foglio che consegnate ai tutor.

1. Si dimostri la seguente proposizione (in qualunque modo, anche senza usare le regole di introduzione/eliminazione).

$$((\forall x.\ (p(x)\Rightarrow\exists y.\ q(y)))\land(\forall z.\ (q(z)\Rightarrow\forall w.\ r(w))))\Rightarrow(\forall t.\ (p(t)\Rightarrow r(t)))$$

- 2. Lo scopo dei seguenti esercizi è quello di farvi riflettere sulla differenza tra la relazione di inclusione tra insiemi \subseteq e quella di appartenenza \in .
 - (a) Si dimostri che esistono due insiemi A e B tali per cui $A \subseteq B$ ma $A \notin B$. (Prendete $A = B = \emptyset$.)
 - (b) Si dimostri che esistono due insiemi C e D tali per cui $C \in D$ ma $C \not\subseteq D$. (Prendete $C = \{\emptyset\}, D = \{\{\emptyset\}\}.$)
- 3. Sia $\mathbb Z$ l'insieme dei numeri interi e sia $m \in \mathbb N$. Un sottoinsieme P di $\mathbb Z$ si dice periodico di periodo m se coincide con l'insieme ottenuto da P aggiungendo m ad ogni suo elemento. In altri termini, se soddisfa

$$P = \{x + m \mid x \in P\}$$

Per esempio alcuni insiemi di periodo m=3 sono i seguenti:

$$\{3y \mid y \in \mathbb{Z}\}, \{3y+1 \mid y \in \mathbb{Z}\}, \{3y+2 \mid y \in \mathbb{Z}\}$$

Dimostrare che, se A e B sono due insiemi periodici di periodo m, allora anche $A \cup B$ e $A \cap B$ sono periodici di periodo m.

Suggerimento: per dimostrare le uguaglianze insiemistiche, procedete dimostrando la doppia inclusione (\subseteq e \supseteq).